

Medium Power Phase Control Thyristors (Power Modules), 50 A, 70 A, 90 A

D-55 (T-module)

PRIMARY CHARACTERISTICS								
Package	D-55 (T-module)							
Circuit configuration	Single SCR							
I _{T(AV)}	50 A, 70 A, 90 A							
V_{DRM}/V_{RRM}	100 V, 1200 V							
V _{TM}	1.55 V							
I _{GT}	120 mA							
TJ	-40 °C to +125 °C							
Туре	Modules - thyristor, standard							

FEATURES

- · Electrically isolated base plate
- Types up to 1200 V_{RRM}
- 3500 V_{RMS} isolating voltage
- · Simplified mechanical designs, rapid assembly
- High surge capability
- · Large creepage distances
- UL E78996 approved
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

These series of T-modules are intended for general purpose applications such as battery chargers, welders and plating equipment, regulated power supplies and temperature and speed control circuits. The semiconductors are electrically isolated from the metal base, allowing common heatsinks and compact assemblies to be built.

MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL	CHARACTERISTICS	VALUES T50RIA	VALUES T70RIA	VALUES T90RIA	UNITS				
I _{T(AV)}	70 °C	50	70	90	Α				
I _{T(RMS)}		80	110	141	Α				
	50 Hz	1310	1660	1780	А				
ITSM	60 Hz	1370	1740	1870	А				
I ² t	50 Hz	8550	13 860	15 900	A ² s				
1-1	60 Hz	7800	12 650	14 500	A-S				
I ² √t		85 500	138 500	159 100	A²√s				
V _{RRM}	Range	100 to 1200	100 to 1200	100 to 1200	V				
T _J		-40 to +125 °C							

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE AND PEAK OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} MAXIMUM AT T _J = 25 °C μΑ					
	10	100	150						
20 VS-T50RIA 40		200	300						
		400	500						
VS-T70RIA	VS-T70RIA 60	600 700		100					
VS-T90RIA 80		800 900							
	100	1000 1100							
	120	1200	1300						

ON-STATE CONDUCTION								
PARAMETER	SYMBOL		VALUES T50RIA	VALUES T70RIA	VALUES T90RIA	UNITS		
Maximum average on-state current at	I _{T(AV)}	180° condu	uction, half sine	wave	50	70	90	Α
case temperature	1(40)				70	70	70	°C
Maximum RMS on-state current	I _{T(RMS)}			1	80	110	141	Α
		t = 10 ms	No voltage		1310	1660	1780	
Maximum peak, one-cycle on-state,	I _{TSM}	t = 8.3 ms	reapplied		1370	1740	1870	Α
non-repetitive surge current	TSM	t = 10 ms	100 % V _{RRM}		1100	1400	1500	^
		t = 8.3 ms	reapplied	Sine half wave, initial	1150	1460	1570	
		t = 10 ms	No voltage	$T_{.1} = T_{.1}$ maximum	8550	13 860	15 900	A ² s
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied	0 0	7800	12 650	14 500	
waxiinum i-t for fusing	1-1	t = 10 ms	100 % V _{RRM}		6050	9800	11 250	
		t = 8.3 ms	reapplied		5520	8950	10 270	
Maximum I ² √t for fusing	I²√t	t = 0.1 to 1	85 500	138 500	159 100	A²√s		
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x \mid I_{T(AV)} < I < \pi x$	(I _{T(AV)}), T _J maximum	0.97	0.77	0.78	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$	_{/)}), T _J maximum		1.13	0.88	0.88	V
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π	$x \mid_{T(AV)} < 1 < \pi x$	(I _{T(AV)}), T _J maximum	4.1	3.6	2.9	mΩ
High level value of on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(A)})$	3.3	3.2	2.6	1117.5		
Maximum on-state voltage drop	V _{TM}	$\begin{split} I_{TM} = \pi \; x \; I_{T(AV)}, T_J = 25 \; ^{\circ}C, t_p = 400 \; \mu s \; square \\ \text{Average power} = V_{T(TO)} \; x \; I_{T(AV)} + r_f \; x \; (I_{T(RMS)})^2 \end{split}$			1.60	1.55	1.55	V
Maximum forward voltage drop	V _{FM}	$\begin{split} I_{TM} = \pi \times I_{T(AV)}, T_J = 25 \text{ °C}, t_p = 400 \mu\text{s} \text{ square} \\ \text{Average power} = V_{T(TO)} \times I_{T(AV)} + r_f \times (I_{T(RMS)})^2 \end{split}$			1.60	1.55	1.55	V
Maximum holding current	I _H	Anode supp	ply = 6 V, initial l	$I_T = 30 \text{ A}, T_J = 25 ^{\circ}\text{C}$	200	200	200	
Maximum latching current	ΙL		ply = 6 V, resisti : 10 V, 100 µs, T		400	400	400	mA

SWITCHING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Typical turn-on time	t _{gd}	$T_J = 25$ °C, $V_d = 50$ % V_{DRM} , $I_{TM} = 50$ A $I_g = 500$ mA, $t_r \le 0.5$, $t_p \ge 6$ μs	0.9					
Typical reverse recovery time	t _{rr}	$T_J = 125 ^{\circ}\text{C}$, $I_{TM} = 50 \text{A}$, $t_p = 300 \mu\text{s}$, $dI/dt = 10 \text{A}/\mu\text{s}$	3	μs				
Typical turn-off time	t _q	$T_J = T_J$ maximum, $I_{TM} = 50$ A, $t_p = 300~\mu s,~dI/dt = 15~A/\mu s,~V_R = 100~V, linear to 80 \%~V_{DRM}$	110					

BLOCKING									
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS					
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum	15	mA					
RMS isolation voltage	V _{ISOL}	50 Hz, circuit to base, all terminals shorted, T_J = 25 °C, t = 1 s	3500	V					
Critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, linear to 80 % rated V_{DRM} ⁽¹⁾	500	V/µs					

Note

 $^{(1)}$ Available with dV/dt = 1000 V/ μ s, to complete code add S90 i.e. T90RIA80S90

TRIGGERING								
PARAMETER	SYMBOL	TEST C	VALUES T50RIA	VALUES T70RIA	VALUES T90RIA	UNIT S		
Maximum peak gate power	P _{GM}	$T_J = T_J$ maximum,	t _p ≤ 5 ms	10	12	12	W	
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum,	f = 50 Hz	2.5	3	3	VV	
Maximum peak gate current	I_{GM}	T - T movimum	: < E mo	2.5	3	3	Α	
Maximum peak negative gate voltage	-V _{GT}	$T_J = T_J$ maximum,	. _p ≥ 5 ms	10	10	10	V	
		T _J = -40 °C		4.0	4.0	4.0		
Maximum required DC gate voltage to trigger	V_{GT}	T _J = 25 °C		2.5	2.5	2.5	V mA	
inggor		$T_J = T_J$ maximum	Anode supply = 6 V, resistive load;	1.5	1.5	1.5		
		T _J = -40 °C	Ra = 1 Ω	250	270	270		
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C		100	120	120		
119901		$T_J = T_J$ maximum		50	60	60		
Maximum gate voltage that will not trigger	V _{GD}	T - T maximum	T _J = T _J maximum, rated V _{DRM} applied		0.2	0.2	V	
Maximum gate current that will not trigger	I _{GD}	ıj = ıj maximum, ı	5.0	6.0	6.0	mA		
		$V_D = 0.67 \text{ rated } V_{DF}$	_{RM} , I _{TM} = 2 x rated dl/dt	200	200	200		
Maximum rate of rise of turned-on	.117.11	$I_g = 400 \text{ mA}$ for T50RIA and $I_g = 500 \text{ mA}$ for		180	180	180	Λ/μο	
current	dl/dt		T70RIA/T90RIA; $t_r < 0.5 \mu s$, $t_p \ge 6 \mu s$ For repetitive value use 40 % non-repetitive		160	160	A/µs	
		per JEDEC® STD. RS397, 5.2.2.6		150	150	150		

THERMAL AND MECHANICAL SPECIFICATIONS									
PARAMETER	SYMBOL	TEST	VALUES T50RIA	VALUES T70RIA	VALUES T90RIA	UNITS			
Maximum junction operating temperature range	TJ		-40 to +125			္င			
Maximum storage temperature range	T _{Stg}		-40 to +150						
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation	0.65	0.50	0.38	K/W			
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface	0.2			TV VV			
Mounting torque, ± 10 %		Non-lubricated	M3.5 mounting screws (1)	1.3 ± 10 %)	Nm		
terminals		threads M5 screw terminals		3 ± 10 %			INIII		
Approximate weight				54		•	g		
Case style					D-55 (T-1	module)			

Note

⁽¹⁾ A mounting compound is recommended and the torque should be rechecked after a period of 3 hours to allow for the spread of the compound

AR CONDUCTION PER JUNCTION											
		SINUSOIDAL CONDUCTION AT T _J MAXIMUM RECTANGULAR CONDUCTION AT T _J MAXIMUM									LINUTO
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
T50RIA	0.08	0.10	0.13	0.19	0.31	0.06	0.10	0.14	0.20	0.32	
T70RIA	0.07	0.08	0.10	0.14	0.24	0.05	0.08	0.11	0.15	0.24	K/W
T90RIA	0.05	0.06	0.08	0.12	0.20	0.04	0.06	0.09	0.12	0.20]

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

www.vishay.com

Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 3 - On-State Power Loss Characteristics

Fig. 4 - On-State Power Loss Characteristics

Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 6 - Maximum Non-Repetitive Surge Current

Fig. 7 - On-State Voltage Drop Characteristics

Fig. 8 - Gate Characteristics

Fig. 9 - Current Ratings Characteristics

Fig. 10 - Current Ratings Characteristics

Fig. 11 - On-State Power Loss Characteristics

Fig. 12 - On-State Power Loss Characteristics

Fig. 13 - Maximum Non-Repetitive Surge Current

Fig. 14 - Maximum Non-Repetitive Surge Current

Fig. 15 - On-State Voltage Drop Characteristics

Fig. 16 - Gate Characteristics

Fig. 17 - Current Ratings Characteristics

Fig. 18 - Current Ratings Characteristics

Fig. 19 - On-State Power Loss Characteristics

Fig. 20 - On-State Power Loss Characteristics

Fig. 21 - Maximum Non-Repetitive Surge Current

Fig. 22 - Maximum Non-Repetitive Surge Current

Fig. 23 - On-State Voltage Drop Characteristics

Fig. 24 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Module type

3 - Current rating

4 - Circuit configuration

5 - Voltage code x 10 = V_{RRM}

LINKS TO RELAT	ED DOCUMENTS
Dimensions	www.vishay.com/doc?95336

D-55 (T-Module) Thyristor Standard

DIMENSIONS in millimeters (inches)

Note

1 = anode
 2 = cathode

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.