Scalable Inference and Learning for High-Level Probabilistic Models

Guy Van den Broeck

KU Leuven

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Medical Records

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Big data

Medical Records

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Frank	1	?	?
-------	---	---	---

Medical Records

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Frank	1	?	?
-------	---	---	---

Frank	1	0.3	0.2
-------	---	-----	-----

Name	Cough	Asthma	Smokes		
Alice	1	1	0		
Bob	0	0	0		
Charlie	0	1	0		В
Dave	1	0	1	\ <u>\frac{1}{2}.</u>	Brothers
Eve	1	0	0	Friends	SJA
Frank	1	,	,		
				_	
Frank	1	0.3	0.2		
Frank	1	0.2	0.6		

Rows are **independent** during learning and inference!

Augment graphical model with relations between entities (rows).

Intuition

Markov Logic

- + Friends have similar smoking habits
- + Asthma can be hereditary

Augment graphical model with relations between entities (rows).

Intuition

Markov Logic

- 2.1 Asthma ⇒ Cough
- 3.5 Smokes ⇒ Cough

- + Friends have similar smoking habits
- + Asthma can be hereditary

Augment graphical model with relations between entities (rows).

Intuition

- + Friends have similar smoking habits
- + Asthma can be hereditary

Markov Logic

- 2.1 Asthma(x) \Rightarrow Cough(x)
- 3.5 Smokes(x) \Rightarrow Cough(x)

Logical variables refer to entities

Augment graphical model with relations between entities (rows).

Intuition

- + Friends have similar smoking habits
- + Asthma can be hereditary

Markov Logic

- 2.1 Asthma(x) \Rightarrow Cough(x)
- 3.5 Smokes(x) \Rightarrow Cough(x)

- 1.9 Smokes(x) \wedge Friends(x,y)
 - \Rightarrow Smokes(y)
- 1.5 Asthma (x) \land Family(x,y) \Rightarrow Asthma (y)

Equivalent Graphical Model

Statistical relational model (e.g., MLN)

```
1.9 Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)
```

- Ground atom/tuple = random variable in {true,false}
 e.g., Smokes(Alice), Friends(Alice,Bob), etc.
 - Ground formula = factor in propositional factor graph

Graphical Models

Bayesian Networks

Statistical Relational Models

Graphical Models

Bayesian Networks

Probabilistic Databases

Tuple-independent probabilistic databases

Actor	Name	Prob
Act	Brando	0.9
	Cruise	0.8
	Coppola	0.1

Actor	Director	Prob
Brando	Coppola	0.9
Coppola	Brando	0.2
Cruise	Coppola	0.1

Query: SQL or First-order logic

SELECT Actor.name FROM Actor, WorkedFor WHERE Actor.name = WorkedFor.actor $Q(x) = \exists y \ Actor(x) \land WorkedFor(x,y)$

 Learned from the web, large text corpora, ontologies, etc., using statistical machine learning.

Google Knowledge Graph

Google Knowledge Graph

Probabilistic Programming

- Programming language + random variables
- Reason about distribution over executions
 As going from hardware circuits to programming languages
- ProbLog: Probabilistic logic programming/datalog
- Example: Gene/protein interaction networks
 Edges (interactions) have probability

"Does there exist a path connecting two proteins?"

```
path(X,Y) := edge(X,Y).

path(X,Y) := edge(X,Z), path(Z,Y).
```

Cannot be expressed in first-order logic

Need a full-fledged programming language!

Research Overview

Knowledge Representation

Reasoning

Research Overview

Knowledge Representation

Reasoning

Machine Learning

Research Overview

Knowledge Representation

Reasoning

Machine Learning

Not about: [VdB, et al.; AAAI'10, AAAI'15, ACML'15, DMLG'11], [Gribkoff, Suciu, Vdb; Data Eng.'14], [Gribkoff, VdB, Suciu; UAI'14, BUDA'14], [Kisa, VdB, et al.; KR'14], [Kimmig, VdB, De Raedt; AAAI'11], [Fierens, VdB, et al., PP'12, UAI'11, TPLP'15], [Renkens, Kimmig, VdB, De Raedt; AAAI'14], [Nitti, VdB, et al.; ILP'11], [Renkens, VdB, Nijssen; ILP'11, MLJ'12], [VHaaren, VdB; ILP'11], [Vlasselaer, VdB, et al.; PLP'14], [Choi, VdB, Darwiche; KRR'15], [De Raedt et al.;'15], [Kimmig et al.;'15], [VdB, Mohan, et al.;'15]

Learning

Representation

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

- 52 playing cards
- Let us ask some simple questions

Probability that Card1 is Q?

Probability that Card1 is Q? 1/13

Probability that Card1 is Hearts?

Probability that Card1 is Hearts? 1/4

Probability that Card1 is Hearts given that Card1 is red?

Probability that Card1 is Hearts given that Card1 is red?

1/2

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph)

2. Probabilistic inference algorithm (e.g., variable elimination or junction tree)

Classical Reasoning

- Higher treewidth
- Fewer conditional independencies
- Slower inference

 $P(Card52 \mid Card1) \stackrel{?}{=} P(Card52 \mid Card1, Card2)$

P(Card52 | Card1) $\stackrel{?}{=}$ P(Card52 | Card1, Card2) $\stackrel{?}{=}$?

P(Card52 | Card1) $\stackrel{?}{=}$ P(Card52 | Card1, Card2) 13/51 $\stackrel{?}{=}$?

P(Card52 | Card1) $\stackrel{?}{=}$ P(Card52 | Card1, Card2) 13/51 $\stackrel{?}{=}$?

P(Card52 | Card1) $\stackrel{?}{=}$ P(Card52 | Card1, Card2) 13/51 \neq 12/50

P(Card52 | Card1) \neq P(Card52 | Card1, Card2) 13/51 \neq 12/50

P(Card52 | Card1) \neq P(Card52 | Card1, Card2) 13/51 \neq 12/50

P(Card52 | Card1, Card2) ≟ P(Card52 | Card1, Card2, Card3)

P(Card52 | Card1) \neq P(Card52 | Card1, Card2) 13/51 \neq 12/50

P(Card52 | Card1, Card2) \neq P(Card52 | Card1, Card2, Card3) $12/50 \neq 12/49$

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph) is fully connected!

2. Probabilistic inference algorithm (e.g., variable elimination or junction tree)

builds a table with 52⁵² rows

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Probability that Card52 is Spades given that Card2 is QH?

Probability that Card52 is Spades given that Card2 is QH?

13/51

Probability that Card52 is Spades given that Card3 is QH?

Probability that Card52 is Spades given that Card3 is QH?

13/51

Tractable Probabilistic Inference

Which property makes inference tractable?

Traditional belief: Independence

What's going on here?

Tractable Probabilistic Inference

Which property makes inference tractable?

Traditional belief: Independence

What's going on here?

- High-level reasoning
- Symmetry
- Exchangeability

⇒ Lifted Inference

Other Examples of Lifted Inference

- Syllogisms & First-order resolution
- Reasoning about populations

We are investigating a rare disease. The disease is more rare in women, presenting only in **one in every two billion women** and **one in every billion men**. Then, assuming there are **3.4 billion men** and **3.6 billion women** in the world, the probability that **more than five people** have the disease is

$$1 - \sum_{n=0}^{5} \sum_{f=0}^{n} {3.6 \cdot 10^{9} \choose f} \left(1 - 0.5 \cdot 10^{-9}\right)^{3.6 \cdot 10^{9} - f} \left(0.5 \cdot 10^{-9}\right)^{f}$$

$$\times {3.4 \cdot 10^9 \choose (n-f)} \left(1 - 10^{-9}\right)^{3.4 \cdot 10^9 - (n-f)} \left(10^{-9}\right)^{(n-f)}$$

Equivalent Graphical Model

Statistical relational model (e.g., MLN)

3.14 FacultyPage(x) \land Linked(x,y) \Rightarrow CoursePage(y)

- As a probabilistic graphical model:
 - 26 pages; 728 variables;676 factors
 - 1000 pages; 1,002,000 variables;1,000,000 factors
- Highly intractable?
 - Lifted inference in milliseconds!

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Weighted Model Counting

- Model = solution to a propositional logic formula △
- Model counting = #SAT

 $\Delta = (Rain \Rightarrow Cloudy)$

Weighted Model Counting

- Model = solution to a propositional logic formula △
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

#SAT = 3

Weighted Model Counting

- Model = solution to a propositional logic formula △
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Assembly language for probabilistic reasoning

Model = solution to first-order logic formula Δ

```
\Delta = \forall d (Rain(d))

\Rightarrow Cloudy(d))
```

Days = {Monday}

Model = solution to first-order logic formula △

Days = {Monday}

Rain(M)	Cloudy(M)
Т	Т
Т	F
F	Т
F	F

#SAT = 3

Model = solution to first-order logic formula △

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday **Tuesday**}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Ţ	F	F	T	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula Δ

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday **Tuesday**}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Т	F	F	Т	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula Δ

$$\Delta$$
 = ∀d (Rain(d)
⇒ Cloudy(d))

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
Т	Т	Т	Т	Yes	1 * 1 * 3 * 3 = 9
Ţ	F	Т	Т	No	0
F	Т	Т	Т	Yes	2 * 1* 3 * 3 = 18
F	F	Т	Т	Yes	2 * 1 * 5 * 3 = 30
Т	Т	Т	F	No	0
Т	F	Т	F	No	0
F	Т	Т	F	No	0
F	F	Т	F	No	0
Т	Т	F	Т	Yes	1 * 2 * 3 * 3 = 18
Ţ	F	F	Т	No	0
F	Т	F	Т	Yes	2 * 2 * 3 * 3 = 36
F	F	F	Т	Yes	2 * 2 * 5 * 3 = 60
Т	Т	F	F	Yes	1 * 2 * 3 * 5 = 30
Т	F	F	F	No	0
F	Т	F	F	Yes	2 * 2 * 3 * 5 = 60
F	F	F	F	Yes	2 * 2 * 5 * 5 = 100

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

```
\Delta = \forall d (Rain(d))
\Rightarrow Cloudy(d))
```

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
Т	Т	Т	Т	Yes	1 * 1 * 3 * 3 = 9
Ţ	F	Т	Т	No	0
F	Т	Т	Т	Yes	2 * 1* 3 * 3 = 18
F	F	Т	Т	Yes	2 * 1 * 5 * 3 = 30
Т	Т	Т	F	No	0
Т	F	Т	F	No	0
F	Т	Т	F	No	0
F	F	Т	F	No	0
Т	Т	F	Т	Yes	1 * 2 * 3 * 3 = 18
Т	F	F	Т	No	0
F	Т	F	Т	Yes	2 * 2 * 3 * 3 = 36
F	F	F	Т	Yes	2 * 2 * 5 * 3 = 60
Т	Т	F	F	Yes	1 * 2 * 3 * 5 = 30
Т	F	F	F	No	0
F	Т	F	F	Yes	2 * 2 * 3 * 5 = 60
F	F	F	F	Yes	2 * 2 * 5 * 5 = 100

Assembly language for high-level probabilistic reasoning

[VdB et al.; IJCAI'11, PhD'13, KR'14, UAI'14]

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

4. \triangle = (Stress(Alice) \Rightarrow Smokes(Alice))

Domain = {Alice}

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

4. \triangle = (Stress(Alice) \Rightarrow Smokes(Alice))

 \rightarrow 3 models

Domain = {Alice}

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

4. $\triangle = (Stress(Alice) \Rightarrow Smokes(Alice))$

Domain = {Alice}

 \rightarrow 3 models

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

4. \triangle = (Stress(Alice) \Rightarrow Smokes(Alice))

 \rightarrow 3 models

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

 \rightarrow 3ⁿ models

Domain = {Alice}

Domain = {n people}

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2. $\triangle = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

 $D = \{n \text{ people}\}$

$$\triangle = \forall y, (ParentOf(y) \Rightarrow MotherOf(y))$$

 \rightarrow 3ⁿ models

3.
$$\Delta = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

 $D = \{n \text{ people}\}\$

$$\triangle = \forall y$$
, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

$$\Delta$$
 = true

 \rightarrow 4ⁿ models

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

 $D = \{n \text{ people}\}\$

$$\triangle = \forall y$$
, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

$$\Delta$$
 = true

 \rightarrow 4ⁿ models

$$\rightarrow$$
 3ⁿ + 4ⁿ models

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y$$
, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

 \rightarrow 4ⁿ models

$$\Delta$$
 = true

 \rightarrow 3ⁿ + 4ⁿ models

1.
$$\triangle = \forall x,y$$
, (ParentOf(x,y) \land Female(x) \Rightarrow MotherOf(x,y))

 $D = \{n \text{ people}\}$

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

$$\rightarrow$$
 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y, (ParentOf(y) \Rightarrow MotherOf(y))$$

 \rightarrow 3ⁿ models

 \rightarrow 4ⁿ models

$$\Delta$$
 = true

 \rightarrow 3ⁿ + 4ⁿ models

1.
$$\triangle = \forall x,y$$
, (ParentOf(x,y) \land Female(x) \Rightarrow MotherOf(x,y))

D = {n people}

$$\rightarrow$$
 (3ⁿ + 4ⁿ)ⁿ models

 $\triangle = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0

k n-k

```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0


```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0


```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0


```
\triangle = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dayo) = 1

Smokes(Dave) = 1

Smokes(Eve) = 0

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1

Smokes(Eve) = 0

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are k smokers?

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

In total...

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

In total...

$$\rightarrow \sum_{k=0}^{n} \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

Markov Logic

3.14 Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

w(¬Friends)=1

w(F)=3.14

 $w(\neg F)=1$

Markov Logic 3.14 $Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)$ Weight Function **FOL Sentence** w(Smokes)=1 $\forall x,y, F(x,y) \Leftrightarrow [Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)]$ $w(\neg Smokes)=1$ Compile w(Friends)=1 $w(\neg Friends)=1$ First-Order d-DNNF Circuit w(F)=3.14 $w(\neg F)=1$ $\forall x$ $x \in People \land x \notin D$ $\forall x$ Smokes(x $\neg F(x, y)$ $\neg Friends(x, y)$ Friends(x, y)

Markov Logic 3.14 Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

Weight Function

w(Smokes)=1
w(¬Smokes)=1
w(Friends)=1
w(¬Friends)=1
w(F)=3.14
w(¬F)=1

FOL Sentence

 $\forall x,y, F(x,y) \Leftrightarrow [Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)]$

Compile

First-Order d-DNNF Circuit

Domain

Alice Bob Charlie

Let us automate this:

- Relational model

$$\forall p, \exists c, Card(p,c)$$
 $\forall c, \exists p, Card(p,c)$
 $\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'$

Lifted probabilistic inference algorithm

Playing Cards Revisited

Let us automate this:


```
\forall p, \exists c, Card(p,c)

\forall c, \exists p, Card(p,c)

\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'
```

Playing Cards Revisited

Let us automate this:

$$\forall p, \exists c, Card(p,c)$$

 $\forall c, \exists p, Card(p,c)$
 $\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'$

#SAT =
$$\sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^k (-1)^{2n-k-l} = n!$$

Playing Cards Revisited

Let us automate this:

$$\forall p, \exists c, Card(p,c)$$

 $\forall c, \exists p, Card(p,c)$
 $\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'$

#SAT =
$$\sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^k (-1)^{2n-k-l} = n!$$

Computed in time polynomial in n

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Theory of Inference

Goal:

Understand complexity of probabilistic reasoning

- Low-level graph-based concepts (treewidth)
 - ⇒ inadequate to describe high-level reasoning
- Need to develop "liftability theory"
- Deep connections to
 - database theory, finite model theory, 0-1 laws,
 - counting complexity

• Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

• A formal definition: **Domain-lifted inference**

Inference runs in time **polynomial** in the number of entities in the **domain**.

[Van den Broeck.; NIPS'11]

• Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

• A formal definition: **Domain-lifted inference**

Inference runs in time **polynomial** in the number of entities in the **domain**.

- Polynomial in #rows, #entities, #people, #webpages, #cards
- ~ data complexity in databases

• Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

• A formal definition: **Domain-lifted inference**

Inference runs in time **polynomial** in the number of entities in the **domain**.

- Polynomial in #rows, #entities, #people, #webpages, #cards
- ~ data complexity in databases

• Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

• A formal definition: **Domain-lifted inference**

Inference runs in time **polynomial** in the number of entities in the **domain**.

- Polynomial in #rows, #entities, #people, #webpages, #cards
- ~ data complexity in databases

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0

Evaluation in time polynomial in domain size

Evaluation in time polynomial in domain size

Domain-lifted!

[Van den Broeck.; NIPS'11]

Evaluation in time polynomial in domain size

Domain-lifted!

[Van den Broeck.; NIPS'11]

What Can Be Lifted?

Theorem: WFOMC for FO² is liftable

What Can Be Lifted?

Theorem: WFOMC for FO² is liftable

Corollary: Markov logic with two logical variables per formula is liftable.

What Can Be Lifted?

Theorem: WFOMC for FO² is liftable

Corollary: Markov logic with two logical variables per formula is liftable.

Corollary: Tight probabilistic logic programs with two logical variables are liftable.

. . .

"Smokers are more likely to be friends with other smokers."

"Colleagues of the same age are more likely to be friends."

"People are either family or friends, but never both."

"If X is family of Y, then Y is also family of X."

"If X is a parent of Y, then Y cannot be a parent of X."

Medical Records

Name	Cough	Asthma	Smokes	
Alice	1	1	0	
Bob	0	0	0	
Charlie	0	1	0	
Dave	1	0	1	Fr.
Eve	1	0	0	Friends
Frank	1	?	?	

Statistical Relational Model in FO²

- 2.1 Asthma(x) \Rightarrow Cough(x)
- 3.5 Smokes(x) \Rightarrow Cough(x)
- 1.9 Smokes(x) \wedge Friends(x,y)

 \Rightarrow Smokes(y)

1.5 Asthma (x) \wedge Family(x,y)

⇒ Asthma (y)

Frank 1 0.2 0.6

Medical Records

Name	Cough	Asthma	Smokes	
Alice	1	1	0	
Bob	0	0	0	
Charlie	0	1	0	
Dave	1	0	1	Frie
Eve	1	0	0	Friends
				1"/

?

Statistical Relational Model in FO²

- 2.1 Asthma(x) \Rightarrow Cough(x)
- 3.5 Smokes(x) \Rightarrow Cough(x)
- 1.9 Smokes(x) \wedge Friends(x,y)

 \Rightarrow Smokes(y)

1.5 Asthma (x) \wedge Family(x,y)

⇒ Asthma (y)

Frank 1 0.2 0.6

Big data

1

Frank

Can Everything Be Lifted?

Can Everything Be Lifted?

Theorem: There exists an FO³ sentence Θ_1 for which first-order model counting is $\#P_1$ -complete in the domain size.

Can Everything Be Lifted?

Theorem: There exists an FO³ sentence Θ_1 for which first-order model counting is $\#P_1$ -complete in the domain size.

A counting Turing machine is a nondeterministic TM that prints the number of its accepting computations.

The class #P₁ consists of all functions computed by a polynomial-time counting TM with unary input alphabet.

Proof: Encode a universal #P₁-TM in FO³

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Statistical Properties

1. Independence

2. Partial Exchangeability

- 3. Independent and identically distributed (i.i.d.)
 - = Independence + Partial Exchangeability

Statistical Properties for Tractability

- Tractable classes independent of representation
- Traditionally:
 - Tractable learning from i.i.d. data
 - Tractable inference when cond. independence
- New understanding:
 - Tractable learning from exchangeable data
 - Tractable inference when
 - Conditional independence
 - Conditional exchangeability
 - A combination

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Approximate Symmetries

- What if not liftable? Asymmetric graph?
- Exploit approximate symmetries:
 - Exact symmetry g: Pr(x) = Pr(xg)
 E.g. Ising model
 without external field

- Approximate symmetry g: $Pr(\mathbf{x}) \approx Pr(\mathbf{x}^g)$
 - E.g. Ising model with external field

Example: Statistical Relational Model

- WebKB: Classify pages given links and words
- Very large Markov logic network

```
1.3 Page(x, Faculty) \Rightarrow HasWord(x, Hours)
1.5 Page(x, Faculty) \wedge Link(x, y) \Rightarrow Page(y, Course)
and 5000 more ...
```

- No symmetries with evidence on Link or Word
- Where do approx. symmetries come from?

Over-Symmetric Approximations

- OSA makes model more symmetric
- E.g., low-rank Boolean matrix factorization

```
Link ("aaai.org", "google.com")
Link ("google.com", "aaai.org")
Link ("google.com", "aaai.org")
Link ("google.com", "aaai.org")
- Link ("google.com", "gmail.com")
- Link ("google.com", "gmail.com")
- Link ("aaai.org", "ibm.com")
- Link ("aaai.org", "ibm.com")
- Link ("ibm.com", "aaai.org")
```

google.com and ibm.com become symmetric!

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Lifted Weight Learning

• Given: A set of first-order logic formulas

w FacultyPage(x) \land Linked(x,y) \Rightarrow CoursePage(y)

A set of training databases

• Learn: The associated maximum-likelihood weights

• Idea: Lift the computation of $\mathbb{E}_w[n_j]$

Learning Time

w Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

Big data

Learns a model over 900,030,000 random variables

Learning Time

w Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

Learns a model over 900,030,000 random variables

Lifted Structure Learning

• Given: A set of training databases

Learn: A set of first-order logic formulas
 The associated maximum likelihood weights

• Idea: Learn liftable models (regularize with symmetry)

	IMDb		UWCSE			
	Baseline	Lifted Weight Learning	Lifted Structure Learning	Baseline	Lifted Weight Learning	Lifted Structure Learning
Fold 1	-548	-378	-306	-1,860	-1,524	-1,477
Fold 2	-689	-390	-309	-594	-535	-511
Fold 3	-1,157	-851	-733	-1,462	-1,245	-1,167
Fold 4	-415	-285	-224	-2,820	-2,510	-2,442
Fold 5	-413	-267	-216	-2,763	-2,357	-2,227

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Lifted learning
 - Approximate symmetries

Conclusions

- A radically new reasoning paradigm
- Lifted inference is frontier and integration of AI, KR, ML, DBs, theory, etc.
- We need
 - relational databases and logic
 - probabilistic models and statistical learning
 - algorithms that scale
- Many theoretical open problems
- It works in practice

Long-Term Outlook

Probabilistic inference and learning exploit

- ~ 1988: conditional independence
- ~ 2000: contextual independence (local structure)

Long-Term Outlook

Probabilistic inference and learning exploit

- ~ 1988: conditional independence
- ~ 2000: contextual independence (local structure)
- ~ 201?: symmetry & exchangeability

Collaborators

KU Leuven			
Luc De Raedt	Siegfried Nijssen		
Wannes Meert	Jessa Bekker		
Jesse Davis	Ingo Thon		
Hendrik Blockeel	Bernd Gutmann		
Daan Fierens	Vaishak Belle		
Angelika Kimmig	Joris Renkens		
Nima Taghipour	Davide Nitti		
Kurt Driessens	Bart Bogaerts		
Jan Ramon	Jonas Vlasselaer		
Maurice Bruynooghe	Jan Van Haaren		

UCLA

Adnan Darwiche

Arthur Choi

Doga Kisa

Karthika Mohan

Judea Pearl

Univ. Washington

Mathias Niepert

Dan Suciu

Eric Gribkoff

Paul Beame

Indiana Univ.

Sriraam Natarajan

UBC

David Poole

Univ. Dortmund

Kristian Kersting

Aalborg Univ.

Manfred Jaeger

Trento Univ.

Andrea Passerini

Prototype Implementation

http://dtai.cs.kuleuven.be/wfomc

Thanks