中国石油大学(北京)2017-2018 学年第一学期

《数学分析》I期末补考试卷

考试方式 (闭卷考试)

班级:	
姓名:	
学号:	

题号	_	 111	四	五	六	七	八	九	总分
得分									

(试卷不得拆开,所有答案均写在题后相应位置)

一、填空题(每题3分,共30分)

- 1. 函数 $y = x^x$ 的导函数为:_____
- 2. 函数 $f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$, 则 α 的取值范围为: ______
- 3. $\lim_{x\to 0} \frac{e^x e^{-x}}{\sin x} =$
- 4. 数列 $\{\sqrt[n]{n}, n = 1,2,\cdots\}$ 的最大项为: _____
- 5. 函数 $\sqrt{x^2 8x + 3}$ 的渐近线为: _____
- 6. $\int e^{2x+1} dx =$ _____
- $7. \quad \int \sin^4 x \cos x \, dx = \underline{\hspace{1cm}}$
- 8. 函数 $y = \sin x$ 在 $x_0 = 0$ 点带有拉格朗日余项的5阶泰勒展式为: _______
- 9. 设 $y = x \cosh x$, 其中 $\cosh x = \frac{e^x + e^{-x}}{2}$, 则 $(x \cosh x)^{(100)} =$ ______
- 10. 极限 $\lim_{n\to+\infty} \left[\frac{1}{\sqrt{n^2+1^2}} + \frac{1}{\sqrt{n^2+2^2}} + \dots + \frac{1}{\sqrt{n^2+n^2}} \right]$ 的积分表示为:

二、计算题(本题 8 分) 求 $\lim_{x\to 0} \frac{x \tan x - \sin^2 x}{x^4}$

三、**计算题(本题 8 分)** 计算不定积分 $\int \frac{2x+3}{(x^2-1)(x^2+2)} dx$.

四、**证明题(本题 8 分)**证明不等式 $\frac{2}{\pi}x < \sin x < x(0 < x < \frac{\pi}{2})$.

五、**作图题(本题 10 分)**作出函数 $y = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ 的图像.

六、**计算题(本题 8 分)**将多项式 $P(x) = 1 + x + x^2 - 2x^3$ 表示成(x + 2)正整数次幂的多项式

七、**证明题(本题 10 分)**证明: 若函数f(x)满足: (1) 在闭区间[a,b]上可导; (2) f(x)为 非线性函数。则在区间(a,b)内至少能够找到一点 $\xi \in (a,b)$,满足:

$$|f'(\xi)| > \left| \frac{f(b) - f(a)}{b - a} \right|$$

作出以上证明的几何解释。

八、**解答题(本题8分)** 利用 Taylor 公式求极限:

$$\lim_{x \to \infty} \left[x - x^2 \ln \left(1 + \frac{1}{x} \right) \right]$$

九、解答题(本题 10 分)推出积分 $\int \cos^n x \, dx$ 的递推公式,并利用该递推公式计算不定积分 $\int \cos^4 x \, dx$