תרגיל בית 6

22: 00 עד שעה ,26/5/2014, יום שני, הגשה: יום שני

<u>שאלה 1:</u>

נתון כי לכל סדרה מונוטונית $x_0 \neq x_n o x_0$ מתכנסת.

א. הוכיחו כי הסדרות $x_0 \neq x_n o x_0$ מתכנסות כולן לאותו הגבול מתכנסות $f(x_n)$ מתכנסות אולה.

נניח בשלילה כי קיימות 2 סדרות מונוטוניות עולות x_n , $y_n \to x_0$ כך ש- $x_0 \neq x_n$, כך ש- $x_0 \neq x_n$, וניח תונים x_n , y_n מאיברי x_n , y_n בצורה הבאה: לאיבר הראשון נבחר את הקטן מבין x_n . נניח בשלב הבא נבחר את בשלב הבא נבחר את הקטן מבין x_n , נמשיך כך, כאשר בכל שלב נבחר את הקטן מבין האיברים הראשונים שעדיין לא השתמשנו בהם מכל אחת מהסדרות. נשים לב כי בהכרח הסדרה החדשה המתקבלת מכילה את כל איברי x_n , x_n , ובפרט מכילה אינסוף מאיברי כל אחת מהסדרות המקוריות, כי אם קיים מקום בסדרה החדשה שהחל ממנו קיימים רק איברי אחת מהסדרות המקוריות, נניח בהייכ רק איברי x_n , אם קיים מקום בסדרה החדשה שהחל ממנו קיימים רק איברי אחת מהסדרות המקוריות, נניח בהייכ רק איברי x_n אומר כי קיימים ב x_n כך שר x_n לכל x_n לכל x_n אבל x_n בונים מ- x_n , ולכן מתקיים כי x_n מהוות פירוק שלה לשתי תתי סדרות המתכנסות שתיהן ל- x_n , אבל ל- מונוטונית עולה המתכנסת ל- x_n (כי x_n , x_n), מהוות פירוק שלה לשתי תתי סדרות המתכנסת - סתירה לנתון. x_n שתי תתי-סדרות המתכנסות לשני גבולות שונים x_n , כומר x_n ללומר x_n ללומר x_n ללומר x_n

- . x_0 ב. הוכיחו / הפריכו : ל- f קיים גבול ב- x_0 ב. הוכיחו / הפריכו : ל- $f(x) = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \end{cases}$ לא נכון, דיינ
- x_0 -בדיים ב- גבולות הפריכו ל- f קיימים גבולות הפריכו ...

:2 שאלה

f א. תהי $f:\mathbb{R} \to \mathbb{R}$ לכל f(x)=f(2x) הוכיחו כי $f:\mathbb{R} \to \mathbb{R}$ א. תהי הביחו כי $f:\mathbb{R} \to \mathbb{R}$ לכל

, מהנתון, גסתכל על הסדרה $x_n=rac{x_0}{2^n}$ וזה יראה כי f קבועה. ניסתכל אוזה יראה ני $f(x_0)=f(0)$ נראה כי $x_0\in\mathbb{R}$

,0 -ם f הכל n, לכן מרציפות . $\lim f(x_n) = f(x_0)$ בפרט f לכל f, לכל f, לכן בפרט . f

 $f(x_0) = f(0)$ מיחידות הגבול, נקבל כי $f(x_n) \to f(0)$

ב. האם הטענה נכונה אם f אינה רציפה ב- 0! האם ניתן להסיק לגבי קיום גבולות חד"צ ב- 0 במקרה זה!

אם f אינה רציפה ב- 0, הטענה לא נכונה. ד"נ: $x \geq 0 \\ -1$ במצב כזה לא ניתן לומר דבר על $x \in \mathbb{Q}$ אז גם $x \in \mathbb{Q}$ אינה רצידיים ב- 0 לא בהכרח קיימים לה : פונקציית דיריכלה מקיימת את הנתון (כי אם $x \in \mathbb{Q}$ אז גם , $x \in \mathbb{Q}$, וכך גם עבור אי-רציונלים), ואין לה אפילו גבולות חד-צדדיים ב- 0.

: 3 שאלה

חשבו את הגבולות הבאים:

.
$$\lim_{x\to 0^+} \frac{x^2}{(1+x)^{74}-1}$$
 .א

(x>0) לכן בפרט לכל לכל $(1+x)^{74}-1 \geq 74x$, ובפרט לכל כדי לקבל: אפתמש באי-שוויון ברנולי כדי לקבל:

.0 הגבול כי הגבול מסנדוויץי (x>0 הביטוי כולו חיובי כי המכנה חיובי (הביטוי כולו חיובי נקבל כי הגבול הוא 0. מסנדוויץי (x>0

.
$$\lim_{x\to 0} \left(\frac{\ln(ex^2)}{\ln(x^2)}\right)^{\ln|x|}$$
 . .

והמעבר האחרון מתקיים . $\left(\frac{\ln(ex^2)}{\ln(x^2)}\right)^{\ln|x|} = \left(\frac{\ln e + \ln x^2}{\ln x^2}\right)^{\ln|x|} = \left(1 + \frac{1}{\ln|x|^2}\right)^{\ln|x|} = \left(1 + \frac{1}{2\ln|x|}\right)^{\ln|x|} \rightarrow e^{\frac{1}{2}}$ מכיוון ש- ∞ - 0 מכיוון ש- 0 מכיוון ש- 0

$$. \lim_{x \to \infty} \frac{\ln(1+x)}{x} . \lambda$$

נרשום:
$$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$$
 מתקיים $\lim_{x \to \infty} \ln\left[(1+x)^{\frac{1}{x}}\right]$ כי

יט ל- 1 כי (1 + [x]) ושני הביטויים בקצוות מתכנסים ל- 1 כי (1 + [x]) ושני הביטויים בקצוות מתכנסים ל- 1 כי (1 + [x]) ושני הביטויים בקצוות מתכנסים ל- 1 כי (1 + [x]) ושני הביטויים בקצוות מתכנסים ל- 1 כי

. $\ln\left[(1+x)^{\frac{1}{x}}\right]
ightarrow \ln(1) = 0$ מכיוון ש- \ln פונקציה רציפה, נקבל כי מכיוון ש- $\ln n^{\frac{1}{n}}
ightarrow 1$

$$. \lim_{x \to 4} \left(\frac{x}{4}\right)^{\frac{7}{x-4}} . \tau$$

לכו $0 \neq t \rightarrow 0 \Leftrightarrow 4 \neq x \rightarrow 4$, ונשים לב כי $t \rightarrow 0 \Leftrightarrow 4 \neq x \rightarrow 4$. לכו

ובדיקת גבולות חדייצ מראה כי הביטוי האחרון , $\lim_{x \to 4} \left(\frac{x}{4}\right)^{\frac{7}{x-4}} = \lim_{t \to 0} \left(\frac{t+4}{4}\right)^{\frac{7}{t}} = \lim_{t \to 0} \left(\left(1+\frac{t}{4}\right)^{\frac{1}{t}}\right)^7$ מתכנס ל- $e^{\frac{7}{4}}$.

:4 שאלה

, $\{x \in \mathbb{R} \mid g(x) < h(x)\}$ פונקציות רציפות. הוכיחו כי הקבוצות g , h

. הן פתוחות $\{x \in \mathbb{R} \mid g(x) > h(x)\}$

g-h . g(x)-h(x)>0 לכן g(x)< h(x) , A מהגדרת $x\in A$ מהגדרת $A=\{x\in \mathbb{R}\ | g(x)< h(x)\}$ לכן פראה כי $\delta>0$ בין ש- $\delta>0$ בין שקיים $\delta>0$ בין ש- $\delta>0$ בין שקיים $\varepsilon=\frac{g(x)-h(x)}{2}>0$ בין עבור $t\in (x-\delta,x+\delta)$ לכל $t\in (x-\delta,x+\delta)$ לכל $t\in (x-\delta,x+\delta)$ לכל $t\in (x-\delta,x+\delta)$ לכל $t\in (x-\delta,x+\delta)$, בין מפוחה.

: 5 שאלה

, $\lim_{x \to \infty} f(x) = f(1)$: תחי המקיימת פונקציה רציפה פונקציה המקיימת $f: \mathbb{R} \to \mathbb{R}$

. הוכיחו מקבלת מינימום ומקסימום. $\lim_{x \to -\infty} f(x) = f(-1)$

נסתכל על הקרן $(x) \leq f(1)$, ונראה כי הפונקציה מקבלת מקסימום על קרן $(x) \leq f(1)$ מתקיים $(x) \leq f(1)$, אז מהגדרת הגבול עבור $(x) \leq f(1)$ הוא הערך המקסימלי בקרן, ונסמנו $(x) \leq f(1)$. אם קיים $(x) \leq f(1)$ של מהגדרת הגבול עבור $(x) \leq f(1)$ המקסימלי בקרן, ונסמנו $(x) \leq f(1)$ בי $(x) \leq f(1) + \varepsilon \leq f(1)$ מתקיים $(x) \leq f(1) + \varepsilon \leq f(1)$ חסם של $(x) \leq f(1) + \varepsilon \leq f(1)$ הפונקציה רציפה ולכן מויירשטראס מקבלת שם מקסימום $(x) \leq f(1) = f(1)$ הפונקציה בכל הקרן $(x) \leq f(1) = f(1)$. באותו אופן הפונקציה מקבלת מקסימום של כל הפונקציה. באופן דומה ומרציפות מקבלת גם מינימום. $(x) \leq f(1) = f(1)$ ולכן $(x) \leq f(1) = f(1)$ ולכן $(x) \leq f(1) = f(1)$ הוא המקסימום של כל הפונקציה. באופן דומה הפונקציה מקבלת גם מינימום.

שאלה 6:

. $f(x) = \left[\sqrt{|x|}\right] \sin\left(\frac{\pi x}{2}\right)$ מיינו את נקודות אי-הרציפות של הפונקציה

מכיוון ש- $\sin\left(\frac{\pi x}{2}\right)$ רציפה, הנקודות החשודות כאי-רציפות של f הן רק נקודות אי-הרציפות של $\sin\left(\frac{\pi x}{2}\right)$, ואלו הן הנקודות הנקודות הוא הנקודות באי-רציפות של $m\in\mathbb{Z}$ עבור m עבור m זוגי, $\sqrt{|x|}\in\mathbb{Z}$ מתחלק ב- $x_0=\pm m^2$, כלומר נקודות מהצורה $x_0=\pm m^2$ עבור $x_0=\pm m^2$, כלומר $x_0=\pm m^2$, לומר $x_0=\pm m^2$, לומר $x_0=\pm m^2$, לומר $x_0=\pm m^2$, ולכן $x_0=\pm m^2$, ולכן $x_0=\pm m^2$, ולכן $x_0=\pm m^2$, ולכן בפרט $x_0=\pm m^2$, ולכן בפרט בפרט וליים ו

אם $(x_0)=1$ אם $(x_0)=1$ אולכן $(x_0)=1$ אולכן $(x_0)=1$ בדיקת גבולות בדיקת אם $(x_0)=1$ אולכן $(x_0)=1$ אולכן $(x_0)=1$ אול בדיקת אול בדיקת אול בדיקת אולכן $(x_0)=1$ אולכן $(x_0)=1$ אולכן בדיקת אולכן בדיקת אולכן $(x_0)=1$ אולכן בדיקת אולכן בד

<u>:7 שאלה</u>

, $\max\{f(x)$, $g(x)\}$ היו כי הפונקציות רציפות. הוכקציות f , $g:\mathbb{R}\to\mathbb{R}$ יהיו $\min\{f(x)$, $g(x)\}$

נראה עבור המקסימום, באופן דומה מתקיים עבור המינימום. נסמן f(x),g(x) יש להבחין כי הנקודות העבור המקסימום, באופן דומה מתקיים עבור המינימום. נסמן f(x)=g(x) המיימת f(x)=g(x), ותהי סדרה היחידות החשודות באי-רציפות הן אלו בהן f(x)=g(x). תהי אם כן $f(x_0)=g(x_0)$ אם אחת $f(x)=g(x_0)$. נסתכל על קבוצות האינדקסים $f(x_0)=g(x_0)$ או החל ממקום מסוים $f(x_n)=g(x_0)$, ולכן החל ממקום מסוים האלו היא סופית, נניח בהייכ $f(x_0)=g(x_0)$ סופית, אז החל ממקום מסוים $f(x_0)=g(x_0)$, ולכן החל ממקום מסוים $f(x_0)=g(x_0)$, ולכן מרציפות $f(x_0)=g(x_0)$, ולכן מרציפות $f(x_0)=g(x_0)$, ולכן מידירות שתי תייס של $f(x_0)=g(x_0)$, שבאופן דומה $f(x_0)=g(x_0)$, אם שתי קבוצות האינדקסים הן אינסופיות אז הן מגדירות שתי סדרות אלו ממצות את איברי $f(x_0)=g(x_0)$, ומכיוון ששתי סדרות אלו ממצות את איברי $f(x_0)=g(x_0)$, ולכן $f(x_0)=g(x_0)$