

FLOW HUNTER

Ultrasonic Open Channel Flow Measurement

User Manual

Security Code Default = 1

ECHO Process Instrumentation, Inc.

Ship to: 70 6th Ave. Mail to: PO Box 800 Shalimar, FL 32579 USA

Phone: 850-609-1300
Fax: 850-651-4777
Email: info@echopi.com
Website: www.echopi.com

CONTENTS

			rage
1.0	Introduction		1
2.0	Operating and Prog	ramming	2
	2.1	Run Mode	3
	2.2	Main Menu	4
	2.2.1	Quick Set-up	5
	2.2.2	Set-up relays	9
	2.2.3	Advanced Set-up	10
	2.2.4	Reset Totalizer	12
	2.2.5	Review Set-up	12
3.0	Mounting Instruction	ons	12
	3.1	Transducer Mounting	13
	3.2	Correct Location	14
	3.3	Blanking Distance, Deadband and Safety Procedure	14
APPENDIX A	Primary Measuring	Device Types and Dimensions	15
APPENDIX B	Overview of Termi	nal Connections – Flow Hunter	17
	Connections and W	iring	18
APPENDIX C	All Terminal Conne	ections	19
APPENDIX D	Fault Finding		23

1.0 Introduction

The Flow Hunter instrumentation unit is for use in conjunction with the Xducer 06 non-contact ultrasonic sensor head. The Flow Hunter is a fully programmable open channel flowmeter conforming to US and UK BS3680 calculations for the following channels:

	Range
Model	Liquid
Xducer 06	9.8 – 236 in (0.25 – 6 m)

- V-Notch Weir
- Rectangular Weir
- Rectangular Flume
- 25 Point Table (X,Y)
- Parshall Flume
- Palmer-Bowlus Flume
- Manning Equation (Pipe)

The Flow Hunter measures.

- (i). Volumetric Flow.
- (ii). Total Flow.
- (iii). Distance.
- (iiii). Temperature.

The head measures the time of flight of an ultrasonic pulse to travel from the sensor to

the reflecting surface and back to the transducer. This information is transmitted to the instrumentation unit where it is converted into distance and flow information.

distance (\mathbf{d}) = Time of Flight x Ultrasonic Velocity

2

Figure 1

The instrumentation unit contains a versatile fully programmable computer which enables a number of processing functions to be carried out. These functions must be configured on first power up of the system. This is known as 'CALIBRATION'.

Programming the unit is simple as the unit is fully menu driven and prompts the user for his preferred choice.

Figure 1. shows the facia layout of the Flow Hunter.

On the front panel facia you will find the LCD display, the **Alarm Set** LED'sto the right and the **Programming Keys**.

2.0 Operation and Programming

When installing the Flow Hunter, first install the transducer above the channel as per the instructions in Appendix A.

When power is first applied to the Flow Hunter, it will show the following messages on the LCD display quickly in succession:

This means the Flow Hunter is retrieving the system set-up data from the non-volatile memory.

Retrieving data from EEPROM

ECHO PI Inc.

Flow Hunter X.XX

Displays the software version number

Addr=0 Baud=96 32K CFG=2000

System information concerning the unit's RS485 address and Baud rate.

Flow xx.xx GPM Air Temp xx F

At this point the Flow Hunter will start to fire the Ultrasonic Head and display the flow rate and air temperature, *using the factory programmed default channel dimensions*.

This is called 'Run Mode' and is the mode the Flow Hunter uses to display the volumetric temperature, totalizer and distance.

To program the Flow Hunter, the user is presented with several menus each of which contain numerous options that can be toggled on/off or a numeric value entered.

The menus are all presented on the display as a series of statements which 'cycle round' each time the 'UP' or 'DOWN' push-button is pressed.

To select a particular option, the user has to press the 'ENTER' button when the relevant menu option is displayed.

For all numeric values, the menu statement displays the currently programmed value and allows the user to increase or decrease this value by pressing and holding 'UP' or 'DOWN'. Pressing 'ENTER' will enter the new value into the system and overwrite the old value. If the old value is on the display and the user presses 'ENTER', it has the effect of leaving the number unchanged. The push-buttons automatically repeat if held pressed. The user will see the numbers displayed change slowly at first then increase in speed every few seconds as long as a push-button remains held down. The Flow Hunter also emits a short 'bleep' as an acknowledgement of a key press or when the auto repeat function is in use (default is OFF).

2.1 Run Mode

The Flow Hunter will normally remain in 'Run Mode' displaying the flow information. All the relay outputs are active during this mode. Depending on the options programmed, pressing the 'UP' or 'DOWN' buttons will scroll the display through the following:

Flow xx.xx GPM Air Temp xx F Displays the flow rate and air temperature in the Channel. The flow is displayed in Gallons per Minute (GPM) or in other pre-set units and the air temperature in degrees Fahrenheit ($^{\circ}$ F).

Distance xx.xx ft
Air Temp xx F

Displays Distance from the transducer face to the water. If the PMD is empty, then this value is "No Flow Distance".

Total xx.xx Gal
Air Temp xx F

Displays the totalized flow up to 999,999.99 Gal.

All the information regarding the shape and size of the channel, the head offset etc. are programmed into the Flow Hunter in the calibration menus.

If the Ultrasonic Head should fail to receive echo's from the flow surface, the 'Lost Echo' error message is displayed. If the echo is lost for longer

than 20 seconds (user settable), the Lost Echo Relay will then be de-energised. The relay coil is re-energised when the echo returns.

Lost Echo Air Temp xx F

Security

Code? x

To bring the Flow Hunter out of 'Run Mode', press the 'ENTER' button. The unit will then ask for the Security Code number to be entered. The factory pre-set code number is indicated on the front cover of this manual (1) but this can be changed by the authorised user at any time. Use the 'UP' or 'DOWN' buttons to change the displayed number then press 'ENTER' to enter the code. If no code is entered within 12 seconds, the Flow Hunter returns to run mode.

*** ERROR ***
INVALID ENTRY

If an incorrect Security Code is entered, this error message is displayed and the unit returns to 'Run Mode'.

2.2 Main Menu

When the correct security code has been entered, the Flow Hunter stops firing the head, turns off all the relays and displays the main menu. This is where the system set-up and calibration parameters can be entered.

The 'UP' and 'DOWN' buttons move the Flow Hunter through the following menu options:

Press 'ENTER' to select the required option.

Main Menu Run Mode?

Returns the Flow Hunter to 'Run Mode'

Main Menu Quick Setup?

Programs the flumes, weirs, lookup table and the ultrasonic head parameters.

Main Menu Setup Relays?

Programs the relays parameters.

Main Menu Advanced Setup? Programs the temperature, new password and RS485/RS232 data communications address.

Main Menu Reset Totalizer?

Resets the Totalizer to zero.

Main Menu Review Setup?

Displays the final parameters programmed as a list.

Each of the above menus should be programmed as appropriate when first installing the Flow Hunter.

Definition of Terms:

No flow distance

Distance from sensor face to zero (0) flow point in Primary Measuring Device in inches. Used to calculate the span and fixes the 4mA output value to 0%.

Max. Flow Height

Distance from zero (0) to maximum (100%) HEAD (Level) height in inches corresponding to maximum flow.

This is used to calculate the flow span and fixes the 20mA output value to 100%.

Span

 $\label{eq:calculated} \mbox{Calculated flow span = (max. flow - min flow (zero)). This calculates the Max Flow based on the "Max. Flow Ht" given.} \\ \mbox{This should agree with your flow calculations.}$

Blanking Distance

Minimum = 9.84 inch (0.25 meter).

Should be increased as required to overcome interfering objects / structures between the sensor and maximum

flow height. Such interference can lead to a false echo.

2.2.1 Quick Set-up

The "Quick Set-up" menu is where the Primary Measuring Device and the ultrasonic transducer parameters are entered into the Flow Hunter.

Flow Chart: V Notch Weir. For dimensional definitions see Appendix A.

				[Program V	Notch Weir)					
\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Selec	Device:						
V NOTCH WEIR	RECTANO	GULAR WE	IR	RECTANGU	LAR FLUME	TAB	LE (X,Y)	PARS	HALL FLUN	ΛE	PALMER	R-BOWLUS	MANNING (PIPE)
						Sele	ct one:						
120 c	leg 90	deg	60 deg	53 d	leg & 8 mins	45 deg	30 deg	28 d	leg & 4 min	15	22 deg & 3	30 mins	EXIT
						Sele	t Units:						
	MGD	GPM	GPH	f GPD	L/s	m3/s L/	m m3/m	L/h	m3/h	L/d	m3/d	EXIT	
					*53	No Flow Di	tance (inches)	.14	(Enter	the dista	ince from Xi	ducer Face to	o Zero Flow)
				- 1		>	xx.xx						
						Max Flow I	leight (inches)		(Enter	Мах Неа	nd or Level f	for Max Flow	to be calculated)
				Į		>	xx.xx						
						Calculated Sp	n xxxx.xx (unit	s)	(Span o	or Max F	low is autor	matically cal	culated & shown)
				l		> ANS = Y	S, NO or EXIT						
						Blankin	Distance?		(Extend	d the Bla	nking Dista	nce to ignor	e any false echoes)
				l		>	.82 ft						
						Acce	ot Data?		(YES sa	ives the o	data to EEP	ROM)	
				l		> ANS = Y	S, NO or EXIT						

Flow Chart: Rectangular Weir. For dimensional definitions see Appendix A.

					Р	rogram Rec	tangular We	eir?					
						Select	Device:						
V NOTCH WEIR	RECTANG	GULAR WEIR	RE	CTANGUL	AR FLUME	TABI	E (X,Y)	PARS	HALL FLUN	ME	PALME	R-BOWLUS	MANNING (PIPE)
						Selec	t Units:						
	MGD	GPM	GPH	GPD	L/s	m3/h	L/d	m3/d	EXIT				
						(Enter	the widt	h or crest le	ength of the Re	ectangular Weir)			
				[> :							
						Approach V	Vidth (inches)		(Enter	the widt	h or crest le	enath of the Cl	hannel. Suppressed = 0)
							x.xx						
						Sill Heig	nt (inches)		(Enter	the heia	ht of the Re	ectangular We	ir)
							cx.xx						,
						No Flow Dis	tance (inches)		(Enter	the dista	ance from X	ducer Face to	Zero Flow)
							x.xx			the disto	ince from A	ducer ruce to	zeroriowy
						Max Flow H	eight (inches)		(Enter	Max Her	nd or Level	for Max Flow I	to be calculated)
				[кх.хх			mox nec	ad or Lever,	or max non .	to be calculated,
						Calculated Sna	n xxxx.xx (uni	ts)	/Snan	or Max F	low is auto	matically calc	ulated & shown)
							S, NO or EXIT			or max r	ion is duto	matically calci	adica a showing
				-		Blanking	Distance?		/Exten	d the Ria	ankina Dista	ance to ignore	any false echoes)
				Γ			.82 ft			a the blo	many Disto	ince to ignore	any juise echoesy
				_		Acces	t Data?		/VES ex	ayes the	data to EEP	POM	
				Γ			S, NO or EXIT		7/2330	ives the	dota to EEF	KOWIJ	
				_					_				

Flow Chart: Rectangular Flume. For dimensional definitions see Appendix A.

					Pr	ogram Rectang	gular Flum	e?						
						Select De	vice:					_		
V NOTCH WEIR	RECTANG	ULAR WEIR	RE	CTANGULA	AR FLUME	TABLE (X	(,Y)	PARSI	RSHALL FLUME PALMER-BOWLUS MANI					
						Select Ur	nits:							
	MGD	GPM	GPH	GPD	L/s	m3/s L/m	m3/h L/c	l m3/d	EXIT					
				100		Throat Width	(Enter the throat or narrowest width of the Rectangular Flume							
						> xx.x								
						Channel Width	(inches)		(Enter the wi	dth of the Ap	proach Chann	el before the Flume)		
						> xx.x	×							
						Throat Length	(inches)		(Enter the Th	roat or narro	west section L	ength)		
						> xx.x	x							
						No Flow Distance	e (inches)		(Enter the di	stance from X	ducer Face to	Zero Flow)		
						> xx.x								
						Max Flow Heigh	nt (inches)		(Enter Max H	lead or Level	for Max Flow I	to be calculated)		
						> xx.x						•		
						Calculated Span x	xxx.xx (units	V	(Span or Ma	Flow is auto	matically calc	ulated & shown)		
						> ANS = YES, N								
						Blanking Dis	tance?		(Extend the I	Blankina Dista	ince to ianore	any false echoes)		
						> 0.82				nammy Dista	mee to ignore	any juise censesy		
				_		Accept Da	nta?		(VES saves th	e data to EEF	PROM)			
				Г		> ANS = YES, N			TILD Saves th	e duto to EEr	KONI			

Flow Chart: X,Y Table.

						Program Table?						
						Select Device:						
V NOTCH WEIR	RECTANGL	JLAR WEIR	RE	CTANGUL	AR FLUME	TABLE (X,Y)	PARSH	HALL FLUME		PALME	R-BOWLUS	MANNING (PIPE)
						Select Units:						•
	MGD	GPM	GPH	GPD	L/s	m3/s L/m m3/m	L/h	m3/h	L/d	m3/d	EXIT	
						No Flow Distance (inches) > xx.xx		(Enter the	ne distan	ce from X	ducer Face to	o Zero Flow)
				Г		Max Flow Height (inches) > xx.xx		(Enter Me	lax Head	or Level ;	for Max Flow	to be calculated)
				_		# table entries		(Enter the	ne numbe	er of X,Y p	oints to plot	Head, Flow)
						# table entries > xx		(Enter the	ne numbe	er of X,Y p	oints to plot	Head, Flow)
Ignore Zero o	ınd Max Flow,				tically. # Po		(UOM = Ui	nits of Meas	suremen	t) for eac		*
Ignore Zero d	ınd Max Flow,	Point	inputed (1) ? UC		tically. # Po	> xx	(UOM = UI	nits of Mease Poir		t) for eac		*
Ignore Zero (and Max Flow,	Point	(1) ? UC		tically. # Po	> xx ints/100 and Enter Flowrate (Accept Data?	(UOM = Ui	nits of Measi Poir	suremen int (n) ? (> xx.xx	t) for eac	h Point n pro	*
Ignore Zero d	and Max Flow,	Point	(1) ? UC		tically. # Po	> xx hints/100 and Enter Flowrate ((UOM = Ui	nits of Measi Poir	suremen int (n) ? (> xx.xx	ot) for eac UOM x	h Point n pro	*
Ignore Zero d	and Max Flow,	Point	(1) ? UC		tically. # Po	> xx ints/100 and Enter Flowrate (Accept Data?	(UOM = UI	nits of Measu Poir	suremen int (n) ? (> xx.xx es the do	ot) for eac UOM x	h Point n pro	*
Ignore Zero d	and Max Flow,	Point	(1) ? UC		tically. # Po	> xx pints/100 and Enter Flowrate (Accept Data? ANS = YES, NO or EXIT	(UOM = U	nits of Measu Poir	suremen int (n) ? (> xx.xx es the do	ot) for eac UOM x	h Point n pro	oportionally.
Ignore Zero (and Max Flow,	Point	(1) ? UC		tically.#Po	> xx pints/100 and Enter Flowrate (Accept Data? > ANS = YES, NO or EXIT Blanking Distance?	(UOM = UI	(YES save	suremen int (n) ? ! > xx.xx es the do	ot) for eac UOM x	h Point n pro	oportionally.

Flow Chart: Parshall Flume. For dimensional definitions see Appendix A.

						Program	n Parsha	all Flume?						
						Se	elect Dev	rice:						
V NOTCH WEIR	RECTANG	GULAR WEIR	RE	CTANGU	LAR FLUME	1	TABLE (X	,Y)	PARSI	HALL FLUI	ME	PALMER	R-BOWLUS	MANNING (PIPE)
				1			Select Si	ze		(Select	Size: 1",	2", 3", 6", 9	9", 12", 1.5', 2	', 3', 4', 5', 6', 8', 12')
						s	Select Un	its:						
	MGD	GPM	GPH	GPD	L/s	m3/s	L/m	m3/m	L/h	m3/h	L/d	m3/d	EXIT	
						No Flow	v Distanc	e (inches)		(Enter	the dista	nce from X	ducer Face to	Zero Flow)
							> xx.xx							
						Max Flo	ow Heigh	t (inches)		(Enter	Мах Нес	d or Level f	or Max Flow t	to be calculated)
							> xx.xx							
						Calculated	Span xx	xx.xx (units)		(Span	or Max F	low is auto	matically calcu	ulated & shown)
						> ANS	= YES, N	O or EXIT						
				4		Blan	king Dist	ance?		(Exten	d the Bla	nking Dista	nce to ignore	any false echoes)
							> 0.82	ft						
						А	ccept Da	ta?		(YES se	aves the	data to EEP	ROM)	
						> ANS	= YES, N	O or EXIT						

Flow Chart: Palmer-Bowlus Flume. For dimensional definitions see Appendix A.

						_	Device:							
V NOTCH WEIR	RECTANG	GULAR WEIR	REC	TANGUL	SULAR FLUME TABLE (X,Y) PARS					ΛE	-BOWLUS	MANNING (PIPE)		
				_		Sel	ct Size		(Select	Size: 4",	6", 8", 10",	12", 15", 18",	, 21", 24", 27", 30")	
				L			· xx							
						Sele	t Units:							
	MGD	GPM	GPH	GPD	L/s	m3/s L/	m m3/m	L/h	m3/h	L/d	m3/d	EXIT		
				100		No Flow Di	tance (inches)		(Enter	the dista	nce from X	ducer Face to .	Zero Flow)	
						>	xx.xx							
						Max Flow	leight (inches)		(Enter	Мах Неа	d or Level f	or Max Flow t	to be calculated)	
						>	xx.xx							
					8	Calculated Sp	n xxxx.xx (units)	(Span	or Max Fl	ow is autor	natically calcu	ulated & shown)	
						> ANS = Y	S, NO or EXIT							
						Blankin	Distance?		(Exten	d the Blai	nking Dista	nce to ignore	any false echoes)	
						>).82 ft				1010 1 To 101 101 101 101 101 101 101 101 101 10	e van de e t errese		
						Acce	ot Data?		(YES so	ves the a	lata to EEP	ROM)		
				Г		> ANS = Y	S, NO or EXIT							

Flow Chart: Manning Equation (PIPE).

					Prog	gram Ma	nning Eq	uation (P	ipe)?				
							Select Devic	ce:					
V NOTCH WEIR	RECTANGUL	AR WEIR	REC	TANGULA	R FLUME	:	TABLE (X,Y	()	PARS	HALL FLUME	PALME	R-BOWLUS	MANNING (PIPE)
						Inner	Diameter (inches)					
							> xx.xx						
							Slope (ΔΥ/Δ	XX)		(Enter the P	ipe (Inlet - Ou	tlet) Vertical H	t & Horizontal Length)
							> x.xx						
							Roughness	s		(Enter the N	lannina Coeff	icient of Rough	nness for the Pipe Liner)
							> x.xx	-			,		***************************************
							Select Unit	s:					
	MGD	GPM	GPH	GPD	L/s	m3/s	L/m	m3/m	L/h	m3/h L/	d m3/d	EXIT	
						No Flo	w Distance	(inches)		(Enter the d	istance from i	Xducer Face to	Zero Flow)
							> xx.xx						
						Max F	low Height	(inches)		(Enter Max	Head or Level	for Max Flow t	to be calculated)
							> xx.xx						
				<u></u>		Calculate	d Span xxx	x.xx (units)	((Span or Ma	x Flow is auto	omatically calc	ulated & shown)
				L		> ANS	S = YES, NO	or EXIT					
				_		Bla	nking Dista	nce?		(Extend the	Blanking Dist	ance to ignore	any false echoes)
				L			> 0.82 ft						
				9 <u></u>		39	Accept Data	a?		(YES saves to	he data to EE	PROM)	
						> ANS	S = YES, NO	or EXIT					

2.2.2 Setup Relays

The 'Set-up relay' menu is where the programmable relay information is entered into the Flow Hunter.

The relays can be programmed via the 'Set-up relay' option of the main menu. There are 4 relays on the Flow Hunter of both **Normally Open** (NO) and **Normally Closed** (NC) configuration.

The 4 relays on the ECHO Flow Hunter can be programmed individually to switch on the following choices:

Flow 1. High flow LEVEL alarm based on a maximum level value

2. Low flow LEVEL alarm based on a minimum level value

Sampler 3. Pulsed every $xxx ext{ ft}^3$

Once you have selected 'Set-up relay' you may cycle through these choices until you select one of them. You will then be asked to enter the appropriate values.

2.2.3 Advanced Set-up

In this menu, the settings of the unit address (RS485 only), temperature compensation, operator security code and Lost Signal settings can be changed. The menu structure is displayed below:

4 - 20mA Output

The unit is provided with a 4-20mA isolated output as standard.

The 4-20mA output is automatically scaled to the selected span (max flow height) you have programmed.

e.g. If you have programmed a span of 50 GPM then the unit will output 4mA as Zero(0) flow and 20mA as max. flow (50 GPM)

Lost Echo:

The Lost Echo function is signalled on the 4-20mA output as 0mA (i.e Open Circuit). To ensure the unit fails to a safe condition under power loss or malfunction the lost echo function must always be used.

NOTE:

The velocity of sound changes by 0.18% per $^{\circ}\text{C}$ change in temperatures.

2.2.4 Reset Totalizer

It will display "Clear Totalizer, Change ?" Select "YES" and press ENTER password "120".

It will then show "Totalizer Clear".

.

2.2.4 Display Set-up

In this menu, the settings of the unit can be confirmed. Press any key to scroll through the display (it will loop back to Review Setup at the end).

This is a useful way to view that all programmed parameters have been correctly entered.

3.0 Mounting

Transducer Location

Correct positioning of the sensor is vital if accurate results are to be obtained. A basic error in installing the sensor will cause inaccuracies in all other aspects of flow metering. The sensor must be held rigidly over the channel and directed towards the liquid face.

- i. Locate the sensor at least 18 inches above the maximum level.
- ii. Ensure that the ultrasonic beam has a clear path to its target and is not going to strike objects on the wall of the channel.
- iii. Fix the sensor in a vertical position. Hand-tighten the transducer to avoid ringing in the winter.
- iv. Try to avoid situations where the temperature sensor is exposed to sunlight especially at dawn and evening.
- v. In the event of the transducer being exposed to prolonged strong sunlight a simple heat-shield erected above the sensor will ensure correct temperature compensation in the most severe conditions. A suitable shield is available from ECHO PI.

3.1 Transducer Mounting

It is recommended that the Ultrasonic transducer is mounted on a bracket above the channel to overcome the deadband of the transducer as follows:

Xducer 06 - Deadband = 9.84" (0.25m)

This arrangement allows the transducer to cover the full operating range.

The top of the sensor is provided with a 1" NPT thread allowing it to be bolted to a suitable bracket.

When tightening the transducer securing screw it is important that the natural turning moment of the transducer is resisted with a suitable open-ended spanner. Failure to observe this precaution could result in the damage of the transducer. Hand-tight ONLY.

UNDER NO CIRCUMSTANCE SHOULD THE BODY OF THE TRANSDUCER BE CLAMPED, EITHER WHILE IT IS BEING SECURED OR WHEN IN USE.

NOTES

- A. Support and restrain sensor cables to avoid damage.
- B. Route sensor cables away from power cables and other sources of interference.
- C. Where cables pass through a junction box, maintain continuity of the screen.

NOTE

You will have been provided with the correct/requested length of transducer cable for your application-should you wish to extend this cable length it should only be done by adding to the existing length through an IP68 gland.

Always use the nut provided and insert the damping washers. Do not over-tighten the nut as ringing may occur.

Use a sprit level or a plumb line to ensure the transducer is aligned "normal" to the reflecting surface.

3.2 Correct Location

The transducers should be placed such that the ultrasonic beam does not reflect from interfering structures during it's flight path.

The beam spread for the ultrasonic wave as it travels from the transducer is 6 degrees.

Ensure that at the maximum distance to be measured, the beam does not collide with interfering structures.

3.3 Blanking Distance, Deadband and Safety Procedure

There may be instances where obstructions in the channel give rise to false echoes. If such obstructions are above the maximum level to be measured then they may be gated out by instructing the computer to ignore any return echo in the flight path up to such an obstruction. This is performed in the calibration mode by programming in a blanking distance. The blanking distance programmed should be the distance from the transducer to 9.8 inches (0.25m).

All ultrasonic transducers have a blind area called the "deadband". Within this area the sensor cannot detect the true echo. This should be borne in mind when setting up the unit since if you allow your liquid to fill into this area the instrumentation unit will not return lost echo but give an erroneous reading which relates to a multiple echo, which in the time base is perceived to be outside the deadband region.

In order to prevent this occurrence you should always assign one of the relays to a high alarm condition. The level of this high alarm must be

below the dead band zone which is given in inches in the Quick Setup menu for each head type. It is recommended that you make this alarm setting equal to the distance of the deadband plus 20%. For example an Xducer 06 head with a deadband of 9.8 inches should have a high level alarm set at a distance of 12 inches from the surface of the transducer head.

A safety margin of 2 inches above the blanking zone should be sufficient for most applications.

Appendix A: Channel types and dimensions

Transducer Location For Rectangular Flumes

Transducer Location For Parshall Flumes

Mount the transducer 2/3 L upstream.

Transducer Location For Weirs

Appendix B: Overview of Terminal Connections for Flow Hunter

All connections to the unit are located on the rear section of the unit housing. The Ultrasonic Transducer has been supplied with 10m standard cable unless ordered with longer length with the wires labelled (see Connections and Wiring). A weatherproof IP68 gland must be used to make any termination's or when extending cable length. Access into the transducer will invalidate the guarantee. All wiring must be to the latest IEEE regulations.

Power Connections

The unit can be powered from mains 110/230VAC (24VDC is ordered separately). The details of the Power connections are given in the diagram below.

The Power drawn is 5 Watts.

Fuse Rating: 20mm 1A Anti-surge

Relay Connections

There are 4 programmable relays. These relays have both normally open (NO) and normally closed (NC) contacts so that they can be used in any configuration.

The ratings for the relays are as follows:

Max. Switched current and voltage 1A @ 24VDC

Electrical life at full load min. 8×10^4 operations Mechanical life min. 5×10^6 operations

Communications

The RS232 is factory set to:-

8 Data bits

1 Start bit

1 Stop bit

No Parity

The data is fixed at 9600 baud.

The information format is an ASCII string of characters that is terminated by a ZERO character before the information is repeated.

Connections and Wiring

Relay 1	RL1				
	Common	COM			
	Normally Closed	NC		RL 1	COM
	Normally Open	NO			N.C
			Relays		N.O
			Kelays		COM
Relay 2	RL2			RLn	N.C
	Common	COM			N.O
	Normally Closed	NC	Analog	4-20mA	+VE
	Normally Open	NO	Analog	4-20IIIA	0V
					,
				+VE	(empty)
4-20mA I	solated			$\mathbf{0V}$	(empty)
	+Ve (+)			SCR (S	
	0V (-)		Xducer	RET	RED
			24uucci		BLACK
Transduc	<u>cer</u>				WHITE
	SCR	Shield			GREEN
	RET	RED		1141-	GREEN
	TR	BLACK			
	TM+	WHITE			,
	TM-	GREEN	D C	1	L N
			Power St	ірріу	E
Supply					E
	L	LIVE			
	N	NEUTRAL			
	E	EARTH (Ground)			

Cable type: 4 Conductor Cable, Shielded. Max. current per Core 1A. Max. Temp 70 deg C.

Transducer Remote Driver

If the transducer cable exceeds 50m (150'), a remote driver interface box is required for extended runs. The connection to this driver is via a 6 core cable type Defence Standard 61-12, Sub miniature Cable Specification 16-2-6C. See page 22. Connection details are printed on the rear of the units

Appendix C: All Terminal Connections for Flow Hunter

All connections to the unit are located in the lower section of the unit housing. Access to this area does not invalidate the guarantee.

All wiring must be to the latest IEEE regulations.

The unit supply voltage must be provided via a double pole spur.

Mains Connection

The units are factory set to operate from either 115V or 230V, 50Hz mains. This is indicated on the rating label adhered to the unit.

Printed Circuit Board

CTR3

(PCB)

Fuse Rating :- 20mm 250V, 250mA Anti-Surge.

The diagram shows the connections for Live, Neutral and Earth.

Relay Connections

There are 4 programmable relays and 1 lost echo relay that are available to external circuitry. These relays have both normally open (NO) and normally closed (NC) contacts so that they can be used in any configuration.

The ratings for the relays are as follows:

Max. Switched current

Max. Switched voltage 30V DC / 250V AC min. 8 x 104 operations Electrical life at full load min. 107 operations Mechanical life

The connections for the relays are shown below

Printed Ciruit Board (PCB)

Lost Echo Relay:

Normal procedure for the lost echo relay would be to connect the NO and COM terminals since this relay is energised during normal operation of the transducers.

On a lost echo condition the relay is de-energised.

The L.E relay should be used as a fail-safe relay connected in series with the other 4 programmable relays. The ensures that all power to external equipment is removed when the

Flow Hunter is not in the 'Run Mode' or if there is a power failure to the unit. If the L.E relay is

not used, any equipment connected to the NC connections of the other relays will run if power is removed because these relays will de-energise. i.e. NC contact is made.

Transducer Connections from Enclosure to Remote Transducer Driver J-Box (long cable run only)

The connections for the ultrasonic head is shown below. Normally the head uses four wires, red, green, white and white as indicated in the table below.

 $The \ `THERMISTOR'\ connections\ relate\ to\ the\ temperature\ sensor\ associated\ with\ the\ ultrasonic\ head.$

Connection	Head Cable Color			
			CTR10	CTR11
+VE	Red	Printed Cicuit		
0V	Green	Board (PCB)		
SCR	Screen	Note Ensure connector		
RTN	Blue	block from		
TR	Yellow	transducer is correctly wired	+VE 0V SCR	RET TR OR +
Thermistor +	White OR Temperature sensor			RETURNISTOR
Thermistor -	Black " " "			RM

Transducer Connections with Internal Transducer Driver (Standard)

Connection	Head Cable Color		CI	R1	0	C	TR	11	
+VE 0V	No Connection No Connection	Printed Circuit Board (PCB)							
SCR	Shield								
RET	Red		+ V E	00	SCR	RET	TR	+	R-
TR	Black				•			STO	STO
Thermistor $+$ (TM $+$)	White (Temperature sensor)							RMI	RMI
Thermistor – (TM-)	Green (Temperature sensor)							THERMISTOR	THERMISTOR

Communications The RS232/422 is factory set to: CTR14 8 Data bits **Printed Circuit** Board 1 Start bit (PCB) 1 Stop bit No Parity RS232 TX / RS422TXA RS232 RX / RS422 RXA RS422 TXB RS422 RXB GND (0V) The data rate is fixed at 9600 baud. The information format is an ASCII string of characters that is terminated by a ZERO character before the information is repeated. The connections are as shown. **←**Printer

Low Voltage Power Connections

The unit can be powered from either 24 Volts AC or 24 Volts DC. The details of the		CT	R4
low Voltage power connections are:-	Printed Circuit Board (PCB)		
THIS MUST BE FACTORY SET		V AC / +24V DC	24 V AC / 0V DC
		4	7

4 - 20mA Output

The unit can be provided with a 4-20mA output option.

The terminal connections for this are shown below:

Printed Circuit Board (PCB)

Installation With Remote Driver Electronics

Note:

If you have specified the distance from the instrument to the transducer less than 50m, the instrument supplied will have an integral transducer driver board built in.

Wiring Connection For Remote Transducer Driver

	CONNECTION	<u>ID</u>				
<u>To Instrument</u>						
	TH1	- Instrument White	: Temperature sensor			
	TH2	- Instrument Black	: Temperature sensor			
	TRIG	- Instrument Yellow				
	RET	- Instrument Blue				
	GND	- Instrument Green				
	+15V	- Instrument Red				
From Transducer						
	X1	- Transducer Red				
	SCN	- Transducer Screen				
	X2	- Transducer Black				
	TH1	- Transducer Green	: Temperature sensor			
	TH2	- Transducer White	: Temperature sensor			

Cable Type and Cable Installation:

From Instrument to Remote Transducer Drive Electronics: Defence Standard, 61-12 Sub-miniature Cable Specification 16-2-6C. It is essential to use this cable type or cable with cores in the same orientation. Failure to do so will cause fluctuating readings due to cross coupling of transmit and receive signals.

From Transducer To Remote Transducer Drive Electronics: 4 Core Screened twisted Pair with Integral Drain Wire And Individually Screened. Impedance 54 ohms, Capacitance core/core 115pF.

General Notes: Where multiple sensors are connected to the instrumentation ensure that the cables are kept at least 12 inches apart to prevent magnetic coupling. Always ensure grounds and screens are connected.

Appendix D: Fault Finding

Ringing

When in the transmit mode, ultrasonic transducers convert electrical energy into mechanical energy causing the transducer to vibrate, like a loudspeaker. Most of this energy is converted into an ultrasonic acoustic wave but some is transmitted into the transducer housing. This is analogous to striking a bell whereby you hear a sound but also you can observe the bell mechanically "RINGING". If this is excessive it will take a long time to die away and can still be present when the return echo arrives back at the transducer. In such cases the transducer cannot recognize the returning echo and as a result the system cannot calculate range.

Ringing can be recognised by a higher than expected level indicated. To reduce ringing always use gaskets and never over-tighten bolts. Hand tighten the transducer. Increasing the blanking distance beyond the ringing time will also lock out its effect.

No Display showing FMP not firing:

Check supply to FMP.

Carefully unscrew the four screws and remove facia label plate and check fuse, if blown replace with 1.0 Amp anti-surge fuse.

Display shows higher than expected reading:

Ringing of transducer - check bolts have not been over-tightened and the damping washer is fitted.

False echo from object in transmission path - reposition transducer or extend blanking distance.

Velocity of sound not set correctly - re-program to correct temperature setting or install new temperature sensor.

Display shows lost echo:

Transducer incorrectly wired - check wiring diagrams against installation.

Poor wiring connection - ensure all wires are securely connected.

Poor Earth - meter earth connection and rewire if necessary. \\

 $Liquid\ level\ has\ entered\ the\ blanking\ zone\ and\ /\ or\ the\ near\ field\ -\ reduce\ level\ until\ reading\ returns\ (see\ Section\ 3.2)$

Stilling well has curved bottom and is empty - this will cause the ultrasonic signal to bounce around the well arriving back at the transducer outside its permissible time for the set height - ensure transducer is positioned as central as possible and the well always has liquid present below the transducer.

Foam present - foam absorbs ultrasound - reposition transducer away from foam. Placing in a stand (stilling pipe) pipe will suffice provided foam does not penetrate the pipe.

Temperature thermals - foam occasionally present; use stand pipe

Display shows periodic lost echo:

Large undulating surface associated with very turbulent liquids causing unfavourable reflecting surface; reposition transducer above flattest surface or in the case of liquids use a stilling pipe.

Transducer not mounted to the normal reflecting surface - using a spirit level realign transducer.

Ultrasonic beam occasionally catches edge of weir tank or flume; Lower transducer or place in stilling pipe.

Temperature fluctuations:

Damage to thermocouple - using a multimeter check the resistance of the thermocouple. It should read between 400 ohms and 100K ohms depending on the temperature being measured. (10K ohms @ 25 deg. C)

Display fluctuates:

Periodic lost echo - check all factors above.

Totalizer gives lower than expected readings

Low flow rate operating outside the BS standards. Increase flow rate through weir.