ESAME DI FISICA MATEMATICA 2

Corso di laurea in Matematica Alma Mater – Università di Bologna

Il tempo a disposizione è pari a 120 minuti. Risposte non giustificate non verranno conteggiate.

Esercizio A

Moto in campo centrale

Si consideri un punto materiale di massa unitaria, soggetto ad un potenziale centrale

$$V(r) = -\frac{1}{1 + \sqrt{1 + r^2}},$$

con r distanza dall'origine di un riferimento. Sia L>0 il modulo del suo momento angolare rispetto all'origine. Posto $s=1+\sqrt{1+r^2}$, si risponda alle seguenti domande.

- A1 Detto $V_{\rm eff}(r)$ il potenziale efficace a cui è soggetto il punto materiale, lo si riesprima in termini della variabile s, ottenendo un nuovo potenziale efficace $U_{\rm eff}(s)$. Si mostri che \bar{r} è stazionario per $V_{\rm eff}$ se e solo se $\bar{s}=1+\sqrt{1+\bar{r}^2}$ è stazionario per $U_{\rm eff}(s)$, e che il cambio di parametrizzazione non altera il segno della derivata seconda nei punti stazionari.
- **A2** Si esegua uno studio qualitativo del moto radiale al variare del valore dell'energia meccanica E utilizzando il potenziale $U_{\rm eff}$ per L=1. Si individuino, in questo caso, eventuali orbite circolari e se ne calcoli il periodo.
- A3 Si considerino valori dell'energia meccanica E compatibili con orbite limitate, e siano $s_{\pm}(E) = 1 + \sqrt{1 + r_{\pm}^2(E)}$, dove $r_{-}(E)$ e $r_{+}(E)$ sono rispettivamente pericentro ed apocentro all'energia E. Si dimostri che la somma $s_{+}(E) + s_{-}(E)$ non dipende da L.

Esercizio B

$Formalismo\ lagrangiano$

Un punto materiale di massa unitaria è vincolato sul piano a scorrere su una guida iperbolica liscia, grafico della funzione y=1/x per x>0 secondo un certo riferimento cartesiano. Il punto è inoltre agganciato ad una molla ideale, di lunghezza a riposo nulla e costante elastica k>0, fissata nell'origine del riferimento. Si supponga che la forza elastica sia l'unica forza attiva sul punto.

- B1 Si scrivano la lagrangiana del sistema e le corrispondenti equazioni di Lagrange.
- **B2** Si calcoli il periodo delle piccole oscillazioni attorno alla configurazione di equilibrio stabile del sistema, corrispondente al punto dell'iperbole con x = 1.
- **B3** Si indichi una quantità conservata durante il moto, giustificando la risposta.

QUESITO — Un ricercatore osserva il moto di un sistema di N punti materiali $\{P_k\}_{k=1}^N$, ciascuno in posizione \mathbf{x}_k , e postula che la forza sul punto P_i abbia una forma funzionale del tipo $\mathbf{F}_i = \sum_k \phi(\langle \mathbf{x}_i - \mathbf{x}_k, \dot{\mathbf{x}}_i \rangle)$. Si dica se tale espressione è compatibile con l'invarianza galileiana, giustificando la risposta.

SCHEMA DI RISOLUZIONE

Esercizio A. Osserviamo preliminarmente che, dovendo essere r > 0, $s = 1 + \sqrt{1 + r^2} \in (2, +\infty)$.

A1 Imponiamo $s=1+\sqrt{1+r^2} \Leftrightarrow r(s)=\sqrt{(s-1)^2-1}=\sqrt{s(s-2)}$ nel potenziale efficace

$$V_{ ext{eff}}(r) = rac{L^2}{2r^2} - rac{1}{1 + \sqrt{1 + r^2}} \Rightarrow V_{ ext{eff}}(r(s)) \equiv U_{ ext{eff}}(s) = rac{L^2}{2s(s-2)} - rac{1}{s}.$$

Osserviamo anzitutto che

$$\frac{\mathrm{d} V_{\mathrm{eff}}(r)}{\mathrm{d} r}\Big|_{r=r(s)} = \frac{1}{r'(s)} \frac{\mathrm{d} U_{\mathrm{eff}}(s)}{\mathrm{d} s}.$$

In altre parole, la parametrizzazione non cambia il segno della derivata prima essendo $r'(s) = \sqrt{\frac{s}{(s-2)}} > 0$ per s > 2. Infine, $V''_{\rm eff}(r)|_{r=r(s)} = \frac{1}{r'(s)}U''_{\rm eff}(s) - \frac{r''(s)}{r'(s)^3}U'_{\rm eff}(s)$, per cui se \bar{r} è un punto stazionario di $V_{\rm eff}(r)$, detto $\bar{s} = s(\bar{r})$, si ha che $U'_{\rm eff}(\bar{s}) = V'_{\rm eff}(\bar{r}) = 0$ e $U''_{\rm eff}(\bar{s})$ ha lo stesso segno di $V''_{\rm eff}(\bar{r})$, essendo $V''_{\rm eff}(\bar{r}) = \frac{1}{r'(\bar{s})}U''(\bar{s})$.

A2 Poniamo L=1. Il potenziale $U_{\text{eff}}(s)$ è definito su $(2,+\infty)$. Abbiamo che

$$\lim_{s \to 2^+} U_{\text{eff}}(s) = +\infty, \qquad \lim_{s \to +\infty} U_{\text{eff}}(s) = 0.$$

Inoltre (ricordando che s > 2)

$$U'_{\text{eff}}(s) = -\frac{(s-1)}{s^2(s-2)^2} + \frac{1}{s^2} = \frac{(s-2)^2 - (s-1)}{s^2(s-2)^2} = \frac{s^2 - 5s + 5}{s^2(s-2)^2}.$$

La derivata si annulla in

$$s^2 - 5s + 5 = 0 \Rightarrow s_{\pm} = \frac{5 \pm \sqrt{5}}{2}.$$

La soluzione s_- è fuori dal dominio, per cui l'unico punto stazionario di $U_{\rm eff}$ corrisponde a $s_+ \equiv s_0 = \frac{5+\sqrt{5}}{2}$. Questo punto corrisponde al valore $U_{\rm eff}(s_0) = \frac{\sqrt{5}-3}{4} < 0$. Dal segno di $s^2 - 5s + 5$, che è una parabola con minimo in s_0 , deduciamo che $U_{\rm eff}$ è decrescente tra $+\infty$ e $U_{\rm eff}(s_0)$ in $(2, s_0)$ e crescente tra $U_{\rm eff}(s_0)$ e 0 in $(s_0, +\infty)$. Di conseguenza possiamo distinguere tre regimi:

 $E < U_{\text{eff}}(s_0)$: Moto non ammesso.

 $E=U_{\text{eff}}(s_0)$: Orbita circolare di raggio $r_0=\sqrt{s_0(s_0-2)}$. In tal caso, la legge per l'anomalia è $\theta=\theta_0+\frac{L}{mr_0^2}t$, per cui, detto τ il periodo,

$$\frac{L}{mr_0^2}\tau = 2\pi \Rightarrow \tau = 2\pi r_0^2 = 2\pi s_0(s_0 - 2) = (5 + 3\sqrt{5})\pi.$$

 $E \in (U_{\text{eff}}(s_0), 0)$: Orbite limitate comprese tra un pericentro r_- ed un apocentro r_+ , punti di inversione del moto radiale, corrispondenti a $s_{\pm} = 1 + \sqrt{1 + r_{\pm}^2}$, $2 < s_- < s_+ < +\infty$, soluzioni dell'equazione $U_{\text{eff}}(s) = E$.

E=0: Separatrice tra orbite limitate e orbite illimitate.

E > 0: Orbite non limitate: s varia tra un certo $2 < s_- < s_0$, unica soluzione di $U_{\text{eff}}(s) = E$, $e + \infty$.

A3 Per $E \in (U_{\text{eff}}(s_0), 0)$ le orbite sono limitate, e il moto prende valori $s \in [s_-, s_+]$, con estremi dati dagli zeri dell'equazione

$$E - U_{\text{eff}}(s) = 0 \Leftrightarrow E - \frac{L^2}{2s(s-2)} + \frac{1}{s} = \frac{2Es(s-2) + L^2 + 2(s-2)}{2s(s-2)} = 0,$$

ovvero s_{\pm} sono le due soluzioni di $2Es(s-2)+L^2+2(s-2)=0$. Poiché L appare solo nel coefficiente del termine di ordine zero, $s_{+}+s_{-}$ non dipende da L per via della formula di Viète applicata ad un polinomio di grado 2^{1} .

Esercizio B.

B1 Sia $\mathbf{x} = (x, y)^{\mathsf{T}}$ il vettore delle coordinate del punto materiale (ignoriamo la terza coordinata essendo il moto in un piano). Utilizziamo come parametro lagrangiano q = x > 0. Per via del vincolo, $\mathbf{x} = (q, 1/q)^{\mathsf{T}}$, per cui $\dot{\mathbf{x}} = \dot{q}(1, -1/q^2)^{\mathsf{T}}$. La funzione lagrangiana è

$$\mathcal{L}(q,\dot{q}) = \frac{1}{2} \|\dot{\mathbf{x}}\|^2 - \frac{1}{2} k \|\mathbf{x}\|^2 = \frac{\dot{q}^2}{2} \left(1 + \frac{1}{q^4}\right) - \frac{k}{2} \left(q^2 + \frac{1}{q^2}\right).$$

L'equazione di Eulero-Lagrange è quindi

$$\begin{split} 0 &= \frac{\mathrm{d}}{\mathrm{d}\,t} \frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\dot{q} \left(1 + \frac{1}{q^4} \right) \right] + \frac{2 \dot{q}^2}{q^5} + k \left(q - \frac{1}{q^3} \right) \\ &= \ddot{q} \left(1 + \frac{1}{q^4} \right) - \frac{4 \dot{q}^2}{q^5} + \frac{2 \dot{q}^2}{q^5} + k \left(q - \frac{1}{q^3} \right) = \ddot{q} \left(1 + \frac{1}{q^4} \right) - \frac{2 \dot{q}^2}{q^5} + k \left(q - \frac{1}{q^3} \right) \end{split}$$

che, messa in forma normale, diventa

$$\ddot{q} = \frac{2\dot{q}^2 - kq^2(q^4 - 1)}{q(q^4 + 1)}.$$

B2 Osservando che

$$\mathcal{L}(q,\dot{q}) = \frac{1}{2}A(q)\dot{q}^2 - V(q), \qquad A(q) = 1 + \frac{1}{q^4}, \qquad V(q) = \frac{k}{2}\left(q^2 + \frac{1}{q^2}\right)$$

scriviamo anzitutto la lagrangiana associata al problema in approssimazione di piccole oscillazioni attorno al punto q=1, ovvero

$$\hat{\mathcal{L}}(q,\dot{q}) = \frac{1}{2}\hat{A}\dot{q} - \frac{1}{2}\hat{V}(q-1)^2, \qquad \hat{A} = A(1) = 2, \qquad \hat{V} = V''(1) = \frac{k}{2}\left(2 + \frac{6}{q^4}\right)\Big|_{q=1} = 4k.$$

Introducendo $\xi = q-1$, le equazioni del moto sono quindi, in questa approssimazione,

$$\ddot{\xi} + \frac{\hat{V}}{4}\xi = \ddot{\xi} + 2k\xi = 0$$

che sono quelle di un oscillatore armonico con pulsazione $\omega^2=2k$, ovvero periodo $\tau=\frac{2\pi}{\omega}=\pi\sqrt{\frac{2}{k}}$.

B3 La lagrangiana è invariante per traslazioni temporali e dunque, per il teorema di Noether, la sua funzione hamiltoniana si conserva, ovvero

$$\mathcal{H} = \frac{\partial \mathcal{L}}{\partial \dot{q}} \dot{q} - \mathcal{L} = \frac{1}{2} ||\dot{\mathbf{x}}||^2 + \frac{1}{2} k ||\mathbf{x}||^2 = \frac{\dot{q}^2}{2} \left(1 + \frac{1}{q^4} \right) + \frac{k}{2} \left(q^2 + \frac{1}{q^2} \right)$$

è una costante del moto.

¹La stessa conclusione si ottiene con un calcolo esplicito: il polinomio ha la forma $as^2 + bs + c = 0$ con dipendenza da L solo in c, per cui $s_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\Rightarrow s_+ + s_- = -\frac{b}{a}$.