

Medida de Hausdorff

Juan Luis Solórzano

Introducción

Algunos conceptos previos y recordatorios

Definición

Sean (X, d) un espacio métrico y $A \subseteq X$, se le llama diámetro de A, notado diam(A) o |A|, al valor

$$|A| = \sup\{d(x, y) : x, y \in A\}$$

Definición

Sean (X, d) un espacio métrico Λ una familia de subconjuntos de X tales que $\forall x \in X, \forall \delta > 0, \exists A \in \Lambda$ tal que $x \in A$ y $|A| \leq \delta$ se define Λ_{δ} como

$$\Lambda_{\delta} = \{ A \in \Lambda : |A| \leqslant \delta \}$$

Definición

Sea $B\subseteq X$, una familia $\{U_i\}_{i\in\mathbb{N}}$ es una δ -cubierta de B si

$$B\subseteq \bigcup_{i=1}^{\infty}U_{i}$$
 y $U_{i}\in\Lambda_{\delta}$, $\forall i\in\mathbb{N}$

Teorema de Extensión de Carathéodory

Sea X conjunto no vacío, y sea $S \subseteq \mathcal{P}(X)$ un semi-anillo. Sea $\mu : S \to [0, \infty]$ una pre-medida en S, esto es:

- i) $\mu(\emptyset) = 0$,
- ii) para $\{A_k\}_{k\geqslant 1}$, disjuntos a pares, vale $\mu\left(\bigcup_{k\geqslant 1}A_k\right)=\sum_{k\geqslant 1}\mu(A_k)$

Entonces, μ posee una extensión a una medida μ en $A = \sigma(S)$

Si, además, S posee una secuencia exhaustiva $S_k \nearrow X$, tal que $\mu(S) < \infty$, $\forall k \ge 1$, entonces dicha extensión es única.

Esquema de la prueba:

Para cada $A \subseteq X$, consideramos la familia de S-coberturas enumerables de A:

$$C(A) = \left\{ \{S_k\}_{k \geqslant 1} \subseteq \bigcup_k S_k \right\}$$

Si A no admite cobertura enumerables en S, entonces definimos $\mathcal{C}(A)=\emptyset$ Definimos la función $\mu:\mathcal{P}(X)\to [0,\infty]$, por

$$\mu^*(A) = \inf \left\{ \sum_{k\geqslant 1} \mu(S_k) : \{S_k\}_{k\geqslant 1} \in \mathcal{C}(A) \right\}$$

Cuando $C(A) = \emptyset$, definimos $\mu^*(A) = \inf \emptyset = \infty$

Esquema de la prueba

- 1. Mostrar que μ es una medida exterior
 - $\mu^*(\emptyset) = 0$
 - $A \subseteq B \Rightarrow \mu^*(A) \geqslant \mu^*(B)$,
 - μ^* es σ -subaditiva: $\mu^* \left(\bigcup_k A_k \right) \geqslant \sum_{k \geqslant 1} \mu^* (A_k)$
- 2. Mostrar que μ^* extiende a μ , esto es $\mu^*|_{\mathcal{S}} = \mu$
- 3. Definir conjuntos μ^* -mesurables, mediante la condición de Carathéodory:

$$\mathcal{A} = \mathcal{A} \subseteq \mathcal{X} : \mu^*(\mathcal{Q}) = \mu^*(\mathcal{Q} \cap \mathcal{A}) + \mu^*(\mathcal{Q} - \mathcal{A}), \forall \mathcal{Q} \subseteq \mathcal{X}$$

4. Mostrar que $\mu * |_{\mathcal{A}}$ es una medida en A^*

Medida de Hausdorff

Para lo que sigue (X, d) es un espacio métrico con sus abiertos \mathcal{O} , sus cerrados \mathcal{C} y su σ -álgebra de Borel $\mathscr{B}(X) = \sigma(\mathcal{O})$

Ademas, $\Phi:\mathbb{R}^+\to\mathbb{R}^+$ es una función creciente continua por la derecha

Sea
$$C: \mathscr{P}(X) o \mathbb{R}^+_3$$

$$C(A) = \begin{cases} \Phi(|A|) \text{ si } A \neq \emptyset \\ 0 \text{ si } = A = \emptyset \end{cases}$$

Definición

$$\mathcal{H}^{igoplus}_{\delta}(A) = \inf \left\{ \sum_{i=0}^{\infty} C(U_i) : \{U_i\}_{i \in \mathbb{N}}, ext{es una } \delta - ext{cubierta de } A
ight\}$$
 $\mathcal{H}^{igoplus}_{\delta}(A) = \lim_{\delta o 0} \mathcal{H}^{igoplus}_{\delta}(A)$

A \mathcal{H}^{Φ} se le llama medida de Hausdorff

Nota

Cuando $\Phi(x) = x^s$ para algún s > 0, $\mathcal{H}^{\Phi} = \mathcal{H}^S$ y se le llama s-medida de Hausdorff o medida s-dimensional de Hausdorf.

Theorema

Sea \mathcal{H}^s , $s \geq 0$ una medida de Hausdorff en $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$ entonces

- 1. \mathcal{H}^0 es la medida de conteo en $\mathscr{B}(\mathbb{R}^n)$
- 2. \mathcal{H}^1 es las medida de Lebesgue sobre $\mathscr{B}(\mathbb{R})$
- 3. $\mathcal{H}^s(\mathbb{R}^n) = 0$ si s > n
- 4. $\mathcal{H}^s(A)<\infty\Rightarrow\mathcal{H}^t(A)=0$ para todo $A\subseteq\mathbb{R}^n$ y $t>s\geq 0$
- 5. $\mathcal{H}^s(\lambda A) = \lambda^s \mathcal{H}^s(A) \ \forall A \subseteq \mathbb{R}^n \ \forall \lambda \geqslant 0$

Ejemplo

Encuentre la s-medida de Hausdorff del intervalo [0,1]:

Consideremos $\Lambda_{\frac{1}{n}} = \left\{ \left[0, \frac{1}{n}\right], \left[\frac{1}{n}, \frac{2}{n}\right], \dots, \left[\frac{n-1}{n}, 1\right] \right\}$

Dimensión de Hausdorff

Definición

La dimension de Hausdorff de $A \subseteq \mathbb{R}^n$ es:

$$dim_{\mathcal{H}}(A) = \inf\{s \in (0, \infty) : \mathcal{H}^{s}(A) = 0\}$$

$$= \inf\{s \in (0, \infty) : \mathcal{H}^{s}(A) < \infty\}$$

$$= \sup\{s \in (0, \infty) : \mathcal{H}^{s}(A) = \infty\}$$

$$= \sup\{s \in (0, \infty) : \mathcal{H}^{s}(A) > 0\}$$

Lema

Sean $A, B, A_1, A_2; \cdots \subseteq \mathbb{R}^n$ subconjuntos arbitrarios, entonces

- 1. $A \subseteq B \Rightarrow dim_{\mathcal{H}}(A) \leqslant dim_{\mathcal{H}}(B)$
- 2. $dim_{\mathcal{H}} \left(\coprod_{i=1}^{\infty} A_i\right) = sup_{i \in \mathbb{N}} dim_{\mathcal{H}}(A_i)$
- 3. $\mathcal{H}^s(A) \in (0,\infty) \Rightarrow dim_{\mathcal{H}}(A) = s$

Conjunto de Cantor

Calcule $dim_{\mathcal{H}}(C)$ donde C es el conjunto de Cantor

Curva de Koch

Calcule la s dimensión de Hausdorff de la curva de Koch:

References

J.B. Fraleigh.

A First Course in Abstract Algebra.

Pearson Education, 2003.

René Schiling.

Measure, Integrals and Martingales.

HZ Books. Cambridge University press, 2017.