

Customer Clustering Based on Behavior & Needs

DAFT NOV 2021

Domain

Help the company to better understand their customers by separating customers into groups that reflect similarities among them.

Problem 1

ROI:

modify products based on target customers needs.

Problem 2

Customer satisfaction:

serve customers with different shopping behaviors by attractive campaigns and customer service.

Process

1/ Data Preparation

Define target, Find Dataset, Cleaning (Missing value, Outlier, Duplication), Encode, Scale

2/EDA

Understanding of data, Correlation, Descriptive Analysis, Drop/ Merge/ Create Columns

3/ Clustering

PCA, Model Building & Evaluation, Unsupervised ML

4/Insight

Patterns Analysis from Descrptive Statistics and Profiling

Data Map

Step 1

Dataset

1/ Data Preparation

People

ID

Year_Birth
Education
Marital_Status
Kidhome

Income

Teenhome

Date_Enrollment
Recency
Complain

Products

MntWines
MntFruits
MntMeatProducts
MntFishProducts
MntSweetProducts
MntGoldProds

Place

NumWebPurchases
NumCatalogPurchases
NumStorePurchases
NumWebVisitsMonth

Promotion

NumDealsPurchases

AcceptedCmp1
AcceptedCmp3
AcceptedCmp3
AcceptedCmp4
AcceptedCmp5
Response

1/ Data Preparation

Input Missing Values & Remove Outliers

Step 2
Cleaning

```
data.isna().sum()

ID 0
Year_Birth 0
Education 0
Marital_Status 0
Income 24
Kidhome 0
Teenhome 0
```

```
avg_sal_edu = round(data.groupby('Education')['Income'].agg('mean'),1)

for index, row in data[data.isna().any(axis=1)].iterrows():
    a = row['Education']
    data.loc[index,'Income'] = avg_sal_edu[a]
```


1/ Data Preparation

Data Conversion & Add up columns into total value

Year_Birth	Dt_Customer	Age	Client_since_(month)
1983	15-11-2013	42	7.6
1986	29-02-2013	30	21.8
1959	95-11-2013	44	28.7
1951	01-01-2014	28	28.9
1982	17-06-2013	40	24.1

total spendings:

data['Spending']=data['Wines']+data['Fruits']+data['Meat']+data['Fish']+data['Sweets']+data['Gold']

Step 3
Wrangling

Gold	Sweets	Fish	Meat	Fruits	Wines
88	88	172	546	88	635
6	1	2	6	1	11
42	21	111	127	49	426
5	3	10	20	4	11
15	27	46	118	43	173

oponag	
1617	
27	
776	
53	
422	

Spending

1/ Data Preparation Categorical Columns value grouping

Step 2

Cleaning

Graduation 1127
PhD 486
Master 370
2n Cycle 203
Basic 54
Name: Education, dtype:

Bachelor 1127
PhD 486
Master 370
Undergraduate 257
Name: Education, dtype: int64

data['Marital_Status'].value_

Name: Marital Status, dtype:

Married	864		
Together	580	?	
Single	480	•	
Divorced	232		
Widow	77	X	
Alone	3	X	
Absurd	2	X	
YOLO	2	X	

Married 864
Couple 578
Single 563
Divorced 231

Name: Marital Status, dtype: int64

1/Data Preparation

Encode Non-Numeric Columns

Using LabelEncoder

```
lable = LabelEncoder()

for x in ['Education','Marital_Status']:
    # to have a dict of class & encode
    lable.fit(data_encode[x])
    label_name_mapping = dict(zip(lable.classes_, lable.transform(lable.classes_)))
    print(label_name_mapping)

#Encode class col
    data_encode[x]=lable.fit_transform(data_encode[x])

data_encode

{'Bachelor': 0, 'Master': 1, 'PhD': 2, 'Undergraduate': 3}
{'Couple': 0, 'Divorced': 1, 'Married': 2, 'Single': 3}
```

ducation	Marital_Status	Educ	cation	Marital_Stat
Bachelor	Single		0	
Bachelor	Single		0	
Bachelor	Couple		0	
Bachelor	Couple		0	
PhD	Married		2	

1/Data Preparation

Scale Data

Using StandardScaler

Education	Marital_Status	Yearly_Income	Recency_(days)	Wines	Fruits	Meat	Fish	;
0	3	58138.0	58	635	88	546	172	
0	3	46344.0	38	11	1	6	2	
0	0	71613.0	26	426	49	127	111	
0	0	26646.0	26	11	4	20	10	
2	2	58293.0	94	173	43	118	46	

```
df = data.copy()
scaler = StandardScaler()
scaler.fit(df)
scaled_data = pd.DataFrame(scaler transform(df), columns=df.columns)
scaled_data
```

	Education	Marital_Status	Yearly_Income	Recency_(days)	Wines	Fruits	Meat	Fish
0	-0.869141	1.222432	0.288195	0.306856	0.983228	1.554170	1.679746	2.461068
1	-0.869141	1.222432	-0.262715	-0.383971	-0.871064	-0.636431	-0.713455	-0.650414
2	-0.869141	-1.457331	0.917627	-0.798467	0.362159	0.572177	-0.177201	1.344595
3	-0.869141	-1.457331	-1.182829	-0.798467	-0.871064	-0.560893	-0.651409	-0.503991
4	0.977319	0.329178	0.295435	1.550344	-0.389661	0.421101	-0.217088	0.154911

2/EDA

Categories

The **best-selling** categories are:

Wine(50.2%)

Meat(27.6%)

The worst-selling categories are:

Fruits (4.3%)

Sweets(4.5%)

2/ **EDA**

Categories preference of customers with different Education level

PhD's & Master spend 50%(in median) of total spending on Wine categories.

Undergraduates spend more of their budget(20%) on Gold than other customers.

2/ EDA

Half of the customers are: Bachelor(50.4%)

Biggest customers age group is: 30-45 years old (43.6%)

2/ EDA

Most of the customers (60%) don't have any child.

The most popular Channel is: Store (46.2%)

3/ Clustering

Unsupervised ML

Using unsupervised machine learning to cluster customers who share some similarities, to better serve for future sales & marketing activities.

Step1

Build Model with Different Methods

Step 2

Evaluate Model: Silhouette Score

Step 3

Visulization with PCA

3/ Clustering

- Build Model with Different Methods.
- Compare the Silhouette score.
- KMeans & GMM got the best score, but KMeans seems more interesting given the distribution of customer in different clusters.

	Model	No. of Clusters	Silhouette Score
0	KMeans	4	0.524
1	Agglomerative Clustering	4	0.486
2	Gaussian Mixture	4	0.524
3	DBSCAN	3	0.058

3/ Clustering

KMeans Model

• KElbowVisualizer to find optimal

no. of clusters

• Train the model.

 PCA feature selection to visualize clusters

- Cluster1: Average Income x High Spending
- Cluster 2: Average Income x Low Spending
- Cluster 3: High Income x High Spending
- Custer 4: Low Income x Low Spending, but they have the 2nd most complaints (in %)

Income

Spending

^{*}I convert yearly income into monthly income, it's easier to understand for business scenario

- Cluster1: Average Income x High Spending
- Cluster 2: Average Income x Low Spending
- Cluster 3: High Income x High Spending
- Custer 4: Low Income x Low Spending, but they have the 2nd most complaints (in %)

Spending

^{*}I convert yearly income into monthly income, it's easier to understand for business scenario

- Most customers in each cluster are among 30-45 years old
- Cluster 4 have 50% + of 30-45
 year-old customers, and most of the
 Young people among all clusters
- There are mostly parents in 1st,
 2nd, 4th clusters.
- Most customers in 3rd cluster have no child.

Children

Category wise:

 Popular products types are the same in all clusters: Wine & Meat

Cluster wise:

- Cluster 1&2&3 spend around 50% on Wine products (median, in %)
- Cluster 3 buy Meat more than others
- Cluster 4 spend the most (in %) on
 Gold among all clusters

Channel wise:

 Most customers in each cluster bought from Stores.

Cluster wise:

 Customers from 3rd and 1st clusters bought more from Catalog* more than other clusters, better to target them for Catalog Channel

Channel

^{*}Retailers provide product information to consumers through mail

Campaign wise:

- Last campaign was the most successful,
 Campaign 2 is the least accepted,
- The biggest interest in Campaign 5: Cluster 3

Cluster wise:

- Cluster 1 & 3 accepted more campaigns than other clusters
- Interesting that wealthy people are more chasing for sales

Campaign

Conclusion

Cluster 1

Avg Income x High Spending Most of them are parent.

Wine, Meat Store, Catalog

Sensitive to Camp
4 & last Camp works well

Silver

Cluster 2

Avg Income x Low Spending Most of them are parent.

Wine, Meat, Gold Store

Not quite sensitive to Camp 3 & last Camp works well

Cluster 3

High Income x High Spending

Most of them have no child

Wine, Meat Store, Catalog

Sensitive to Camp

1 & 5 & last Camp works well

Highest complain rate

Cluster 4

Low Income x Low Spending

Most of them are parent.

Have most of customers <30 y/o

Meat, Gold, Wine

Store

Not sensitive to Camp

3 & last Camp works well

2nd highest complain rate

Customer Clustering Based on Behavior & Needs Thank you:)

Zijing XUE

DAFT NOV 2021

Customer Clustering Based on Behavior & Needs

Question?

Zijing XUE

DAFT NOV 2021