CS 1.2: Intro to Data Structures & Algorithms

	•	
Histogram & Markov Chain Worksheet	Name:	

Joseph Paul
Dominic Barnett
Marco Yin

Text: "I like dogs and you like dogs. I like cats but you hate cats." (ignore all punctuation)

Histograms

Q1: How many distinct word types are present in this input text? How many total word tokens?

Distinct word types: 8

Q2: What data structure would be appropriate to store a <u>histogram</u> counting word frequency? Why did you choose this data structure? In other words, what makes this data structure ideal?

Dictionary

Easier access, key value pairs, easy to iterate over

Q3: Write the data structure you would create to store this <u>histogram</u> counting word frequency (as it would look if you printed it out with Python). def histogram(source_text):

histogram = {}
for i in source_text:
 if i in histogram:
 histogram[i] += 1
 else:
 histogram[i] = 1
 return histogram

Markov Chains

Q4: <u>Draw a conceptual diagram</u> of the *Markov chain* generated from analyzing the text above. <u>Label each state transition arc</u> with the <u>count</u> of how many times you observed that <u>word pair</u>.

Q5: Write the data structure you would create to store the word <u>transitions out of the state</u> that represents the word <u>"like"</u> in this Markov chain (as it would look if you printed it out with Python).

Q6: Write a new sentence that can be generated by doing a random walk on this Markov chain.