

TECNICATURA SUPERIOR EN

Telecomunicaciones

Sistema de Monitoreo de Maduración de Quesos

Actividad:

 Dado el esquema de modelización por desarrollos, implementar dispositivos loT con 8 sistemas loT diferentes. Esquematizar según triángulo de proceso, conectividad y sensores.

El sistema de monitoreo de maduración de quesos basado en IoT, ejemplificado a través del esquema triangular, demuestra cómo la integración de sensores, conectividad y actuadores permite un control preciso y eficiente de este delicado proceso.

- Sensores: La elección de sensores, como los de temperatura, humedad y pH, proporcionan datos cruciales sobre las condiciones ambientales y la evolución del queso monitorizado. Esto permite una detección temprana de desviaciones y la posibilidad de tomar medidas correctivas y preventivas para procesos futuros.
- Conectividad: A través de Wi-Fi, Ethernet o tecnologías de baja potencia como LoRaWAN, habilita la comunicación efectiva entre los sensores, el ESP32 y los usuarios. Esto posibilita el monitoreo en tiempo real, control remoto y el acceso a datos históricos para análisis.
- Actuadores: Los actuadores, como ventiladores, humidificadores/deshumidificadores y sistemas de alarma, permiten al sistema responder de manera autónoma a los datos de los sensores, manteniendo las condiciones óptimas de maduración y alertando a los usuarios en caso de problemas.
- Procesos y Usuarios: El sistema se centra en las necesidades de los usuarios, brindando información relevante, alertas tempranas y la capacidad de controlar el proceso de maduración de forma remota. Esto se traduce en una mayor eficiencia, calidad del producto y toma de decisiones informadas.
 - 2) Describir en las implementaciones anteriores los sistemas de medición, actuación y visualización si correspondiera, según el esquema de dispositivos.

El diagrama representa un sistema IoT diseñado para controlar y supervisar el proceso de maduración de quesos.

Sistema IoT:

Modelo del Sistema: Define la estructura y el comportamiento general del sistema, incluyendo las entradas (sensores), salidas (actuadores) y la lógica de control que relaciona ambas.

Modelo Dinámico: Describe cómo el sistema evoluciona en el tiempo, considerando diversos factores.

Acondicionamiento e Interfaz de Señal de Entrada

Prepara las señales provenientes de los sensores para que puedan ser procesadas por el sistema de control digital.

Aislamiento galvánico: Protege el sistema de interferencias eléctricas.

Amplificadores operacionales: Ajustan las señales a niveles adecuados.

Resistencias: Configuran los circuitos para un funcionamiento óptimo.

Módulo de relé: Permite controlar dispositivos de mayor potencia.

Filtros: Eliminan el ruido de las señales analógicas.

Conversores A/D: Transforman señales analógicas en digitales para su procesamiento.

PWM: Modula señales para un control preciso de actuadores.

Arquitecturas de Control Digital

Es el procesador del sistema, donde se toman decisiones basadas en los datos de los sensores y se generan las señales para los actuadores.

Temporizadores y contadores: Programan acciones y llevan registro de eventos.

PWM: Controla la velocidad de los actuadores.

Watchdog timer: Supervisa el funcionamiento del sistema y lo reinicia en caso de fallos.

Algoritmos de control: Implementan la lógica de control, como ON/OFF, PID o lógica difusa.

Comunicación a Internet

Wi-Fi, Ethernet, LoRaWAN, NB-IoT: Opciones de conectividad para enviar datos a la nube o recibir comandos remotos

MQTT, COAP, HTTP, NB-IoT: Protocolos de comunicación para el intercambio de datos

Acondicionamiento e Interfaz de Señal de Salida

Conversores D/A y A/D: Transforman señales entre formatos analógico y digital si es necesario

Drivers: Amplifican las señales de control para manejar actuadores de mayor potencia

Módulo de relé: Controla dispositivos que requieren aislamiento eléctrico

Protecciones: Salvaguardan el sistema contra cortocircuitos y sobrecargas

PWM: Controla la velocidad de motores o la intensidad de luces

Visualizadores

LEDs: Indicadores simples de estado

OLED/LCD: Pantallas para mostrar datos más detallados

Visualización remota: Acceso a la información a través de aplicaciones móviles o web

Pantalla e-ink: Para mostrar información estática o de baja actualización con bajo consumo

Matriz de LEDs: Visualización de gráficos sencillos o iconos

Sensores

Temperatura: Monitorea la temperatura ambiente en la cámara de maduración

Humedad: Mide la humedad relativa en la cámara

pH: Evalúa el pH del queso para determinar su grado de maduración

Gases: Detecta compuestos volátiles liberados durante la maduración

Actuadores

Ventilador: Regula la circulación del aire

Humidificador/Deshumidificador: Controla la humedad en la cámara

Alarma/Buzzer: Emite alertas en caso de desviaciones en los parámetros