Energy-loss of Alpha Particles in Matter

By Rahul Avula and Tia Jobbins

Aims

- •Find stopping power of each material
- Compare results for validity
- •Find ionisation energies of materials

The Bethe - Bloch equation

Stopping power can be theoretically calculated using the Bethe-Bloch equation:

$$-\frac{dE}{dx} = 4\pi z^2 \left[\frac{e^2}{4\pi \varepsilon_0} \right]^2 \frac{NZ}{mv^2} \left(\ln \left[\frac{2mv^2}{I} \right] - \ln \left[1 - \left(\frac{v}{c} \right)^2 \right] - \frac{C_K}{Z} \right)$$

Which can be simplified to:

$$-\frac{dE}{dx} = 3.801 \frac{NZ}{E} (\ln E + 6.307 - \ln I) * 10^{-19} eV m^{-1}$$

How do alpha particles lose energy?

- Elastic collisions
- Alpha particle loses energy
- Electron excited or liberated

Differential Range

Calculate differential range from stopping power

$$\Delta R = -\int_{E_1}^{E_2} \frac{dE}{(dE/dx)}$$

dE/dx calculated both theoretically and experimentally

Finding the Ionisation energy

- For each value of I, the reduced chi squared between the theoretical and the experimental values of the differential range was calculated
- The best value of the ionisation energy is the one with the minimum reduced chi squared, as this shows the best agreement between theoretical and experimental results

Experiment and results

Experimental set-up - foils

Experimental set-up - gases

How does the Si detector work?

- Alpha particles incident on depletion region
- Ionizes electrons in region
- Electrons-holes pair is created
- Electrons flow to the p-type material
- Hole flow to the n-type
- Total electrons collected at electrode produces a pulse
- Pulse amplitude proportional to the incident alpha particle
- Once signal is picked up, its sent to preamplifier, the amplifier, the multichannel analyzer then computer

Bias Voltage

- Bias voltage applied to detector
- Increases efficiency of detector
- Increases region of sensitivity

Choosing Bias Voltage

Reasoning

Voltage(V)	Centroid(Channel)	FWHM (Channel width)	
2	642.953	147.955	
3	676.269	135.193	
4	734.484	102.502	
5	797.938	82.793	
6	824.99	68.622	
8	861.807	53.363	
10	877.397	44.606	
15	892.045	36.419	
20	898.223	32.927	
25	901.781	30.519	
30	904.152	29.638	
35	905.796	27.827	
40	907.224	26.377	
45	907.978	25.656	
50	908.79	24.599	
60	909.902	23.946	

Calibration

- Calibration required for all data
- Oscilloscope used to simulate peaks at lower energies
- Voltage-Channel Number relationship used to ascertain gain and offset

Calibration

Foils

Equation:

 $E=Ax^2 + Bx + C$

A=3.51e-4

B=-2.77e-8

C=9.27e^-13

Equation:

 $-dE/dx=(AE^2 + BE + C)$

A= -8.301e+15

B = -9593

C= 4.371e-08

Uncertainty in -dE/dx = 2*A*(uncertainty in thickness)

Integral prediction:

(7.75-8.5)*10^-13 integral

Did ½ * base * height + the rectangle underneath

Differential Range comes to 2.42 micrometers

Simpson rule is that

Integral = $(1/3)*(h)*(f_1 + 4f_2 + f_3)$

Where h is $(f_1 - f_3)/2$ and $f_{1,2,3}$ where 1 is the final energy, 2 is the middle energy and 3 is the final energy

Uncertainty in the integral is given by the following formula

$$\Delta R^2 = \left(\frac{f_1 + 4f_2 + f_3}{3}\right)^2 \left(uncertainty \ in \ h\right)^2 + \left(\frac{h}{3}\right)^2 (\Delta f_1)^2 + \left(\frac{4h}{3}\right)^2 (\Delta f_2)^2 + \left(\frac{h}{3}\right)^2 (\Delta f_3)^2$$

Where uncertainty in f_1, f_2 and f_3 is given by

$$\Delta f = (\Delta E)^2 \left(\frac{(2 * A * \Delta E + B)}{(Ax^2 + Bx + C)^2} \right)^2$$

Where E is the uncertainty in the energy recorded, <u>A</u>, <u>B</u> and C are the coefficients of the quadratic equation.

Gases

Source: 230 Thorium

Calculating thickness

$$x_1 = x_2 \frac{P_2}{P_1}$$

$$\Delta f = \sqrt{\left(\frac{P_2}{P_1} \Delta x_2\right)^2 + \left(\frac{x_2}{P_1} \Delta P_2\right)^2} = \frac{1}{P_1} \sqrt{(P_2 \Delta x_2)^2 + (x_2 \Delta P_2)^2}$$

Argon

Argon

Helium

Nitrogen

Element	Average ionization energy(e Calculated ionization energy(eV)		Reduced chi squared
Al	166 ± 2	126.53 ± 20.90	0.02
Ni	311 ± 10	384.02 ± 9.85	0.44
He	41.8 ± 0.8	72.73 ± 15.37	0.33
Ar	188 ± 10	219.27 ± 16.76	0.1
N2	82.0 ± 2	104.92 ± 1.62	5.18

Sources of error

- Holes in foil:

- Not all particles required to pass through foil
 Higher energy peak counts than expect for not just one but 2 or more foils
 Way to reduce is overlap foils with half thickness at rotated 90 degrees to ensure most holes covered

- Overestimating of uncertainty:
 FWHM used to determine uncertainty in energy
 Looking at chi squared values, appear to be very low
 Maybe due to contribution from background and taking FWHM at too low a point
- Uncertainty in creating a vacuum:
 When making the vacuum there would be error in taking making one
 Not possible to produce an exact vacuum
 Air can always leak into the experiment

- Leads to uncertainty in the pressure being measured

Conclusion

- Results are consistent with literature values
- Low reduced chi-squared values
- Ionization energy increases with proton number

Improvements

- Quantify and account for gas leakage
- Increase run times
- Improve background subtraction method
- Use more accurate alternative to Simpson's Rule