

### 计算机组成与系统结构

### 第六章 总线系统(2)

#### 吕昕晨

lvxinchen@bupt.edu.cn

网络空间安全学院







#### 总线系统

解决公共通路难题

总线共享与判决

集中式判决

分布式判决

#### 实现不同模块正确通信

总线通信控制

通信控制方式

总线传送方式

# 第六章 总线系统



- 总线的仲裁
  - 仲裁基本概念
  - 集中式仲裁
  - 分布式仲裁
- 总线的通信控制

### 总线的仲裁

- 为什么需要总线仲裁?
  - 总线是多个功能模块共用的数据传输部件
  - 为了解决多个功能模块争用总线的问题,必须设置总线仲裁 部件
- 总线传输方式
  - 连接到总线上的功能模块有主动和被动两种形态
  - 主方可以启动一个总线周期,而从方只能向主方请求每次总 线操作,只能有一个主方,但是可以有多个从方



#### 总线仲裁的分类

- 总线占用期: 主方持续控制总线的时间
- 定义: 以某中方式选择一个主设备获得总线控制权
- 按照总线仲裁电路的位置不同,仲裁方式分为
  - 集中式仲裁: 中央总线仲裁部件, 请求与授权方式
  - 分布式仲裁:不存在集中式仲裁部件,由各功能模块争用仲裁总线





# 第六章 总线系统



- 总线的仲裁
  - 仲裁基本概念
  - 集中式仲裁(重点)
  - 分布式仲裁
- 总线的通信控制

## 集中式仲裁(线数/特征)

- 集中式仲裁
  - 通过总线仲裁部件确定由哪个设备占用总线
  - 总线请求—总线授权
    - BR (Bus Request)
    - BG (Bus Grant)
  - 总线仲裁器
    - 是一个单独功能模块 单处理器系统中又称 为总线控制器
  - BS/BR/BG→控制总线



(a) 菊花链查询方式



(b) 计数器定时查询方式



## 1链式查询方式——组成结构

- 组成结构 (3根线)
  - A表示地址线,D表示数据线
  - 总线占用状态
    - BS=1,表示总线正被占用
  - 总线链式查询与反馈
    - 授权: BG线; 请求: BR线
- 查询方式
  - 收到总线请求,BG线顺序进行查询 若有总线请求,则不再向下查询
  - 该设备占用总线进行传输
- 实现
  - 利用与/或逻辑门屏蔽功能,参考带符号乘法器中对2求补电路



图6.9 集中式总线仲裁方式

## 1链式查询——工作流程

- 主设备发出请求信号
  - BR线置1
  - BR=1:控制部件明确至少一个设备 准备进行总线传输
- 总线控制器进行判优 (链式查询)
  - 条件: BS=0 (总线空闲)
  - BG线(链式查询),依据与控制部件顺序进行逐个查询
  - 设备i: 若接收BG=1,可截断BG传递,并设置BS=1
- 数据传送
  - 主设备开始传送数据



图6.9 集中式总线仲裁方式

### 1链式查询方式——优缺点



- 链式查询方式特点
  - 离中央仲裁器最近的设备具有 最高优先权; 离总线控制器越 远, 优先权越低
- 优点
  - 只用很少几根线就能按一定优 先次序实现总线控制,并且这 种链式结构很容易扩充设备

#### 缺点

- 对询问链的电路故障很敏感
- 优先级固定
- 优先级高部件可长期抢占总线



图6.9 集中式总线仲裁方式

## 2 计数器定时方式——组成结构

- 组成结构
  - 相比链式查询结构,将授权BG线替换为设备地址线
- 特点
  - 仍共用一条总线请求线
  - 总线控制器/仲裁器需增加计数功能
  - 设备地址线根数: [log N] (表示所有设备地址信息)
  - 总控制线根数: [log N] + 2



## 2 计数器定时方式——工作流程



- 查询流程
  - 任一设备要求使用总线时,通过BR线发出总线请求
  - 中央仲裁器接到请求信号以后,在BS线为0的情况下让计数器开始计数,计数值通过一组地址线发向各设备
  - 每个设备地址判别电路,当地址线上的计数值与请求总线的设备地址相一致时,该设备置BS线为1,占用总线
  - 控制器准备接收数据,设备开始数据传输



### 2 计数器定时方式——优缺点



13

- 计数值设置
  - 每次计数可以从0开始,也可以从上次中止点开始
  - 如果从0开始,各设备的优先次序与链式查询法相同,优 先级的顺序是固定的。如果从上次中止点开始,则每个设 备使用总线的优级相等(循环优先级)
- 特点
  - 计数器的初值也可用程序来设置,可以改变优先次序
  - 需由总线仲裁器发出递增的设备地址,效率低,控制复杂





- 组成结构
  - 每个设备有独立的总线请求BR<sub>i</sub>与总线授权BG<sub>i</sub>线
- 特点
  - 设备独立拥有设备请求线与授权线
  - 总线仲裁器可了解所有设备请求情况,并独立进行授权
  - 仍需要1根BS线进行总线忙状态判定(下图未画出)
  - 总线根数: 2n+1



## 3 独立请求方式——工作流程

- 查询方式
  - 设备根据需求发出总线请求信号BR<sub>i</sub>
  - 若BS=0,总线仲裁器收取BG线设备总线请求情况,并准备进行判优
  - 总线仲裁器中有一个排队电路,根据一定的优先次序决定 首先响应哪个设备的请求,给设备以授权信号BG<sub>i</sub>
  - 设备收到授权信号后占用总线



## 3 独立请求方式——优缺点

- 优点
  - 不需要进行查询,响应时间快
  - 优先次序的控制相当灵活
    - 可以预先固定,也可以通过程序来改变优先次序
    - 还可以用屏蔽请求的办法
  - 当代总线标准普遍采用独立请求方式
- 缺点:控制线数量多,控制逻辑复杂







| 仲裁方式<br>对比项目 | 链式查询               | 计数器定时查询                   | 独立请求           |  |
|--------------|--------------------|---------------------------|----------------|--|
| 控制线数         | 3                  | 「log <sub>2</sub> n]+2    | 2n+1           |  |
|              | 总线请求: 1            | 总线请求: 1                   | 总线请求: n        |  |
|              | 总线允许: 1            | 总线允许:「log <sub>2</sub> n] | 总线允许: n        |  |
|              | 总线忙: 1             | 总线忙: 1                    | 总线忙: 1         |  |
| 优点           | 优先级固定<br>结构简单,扩充容易 | 优先级较灵活                    | 响应速度快<br>优先级灵活 |  |
| 缺点           | 对电路故障敏感            | 控制线较多                     | 控制线多           |  |
|              | 优先级不灵活             | 控制相对复杂                    | 控制复杂           |  |

# 第六章 总线系统



- 总线的仲裁
  - 仲裁基本概念
  - 集中式仲裁
  - 分布式仲裁(了解)
- 总线的通信控制

## 分布式仲裁场景

- 集中式仲裁
  - 适用:单机系统
  - 集中式总线仲裁器:CPU
  - 容易实现独立仲裁方式(独立的一对BR、BG线)
- 分布式仲裁
  - 适用:多主机系统
  - 无集中式仲裁器,从机节点间需要进行分布式仲裁
  - 每个从机具有一个唯一仲裁号CN (CN7~CN0)
  - 从机竞争仲裁总线,最后获胜者仲裁号留在仲裁线





## 分布式仲裁基本思路(协议)



- 不需要中央仲裁器,而是多个仲裁器竞争使用总线
- 当它们有总线请求时,把它们唯一的仲裁号发送到共享的仲裁 总线上,每个仲裁器将仲裁总线上得到的号与自己的号进行比 较。如果仲裁总线上的号大,则它的总线请求不予响应,并撤 消它的仲裁号(优先级比较)
- 最后,获胜者的仲裁号保留在仲裁总线上



## 分布式仲裁举例



- 两个从机设备仲裁号
  - 设备1: 1010 1110、设备2: 0110 1000
  - 第一轮:将仲裁号发布至总线AB 0001 0001 (1110 1110)
    - 设备1保留: 1000 0000 (设备2, CN6为1)
    - 设备2保留: 0000 0000 (设备1, CN7为1, 退出竞争)
  - 第二轮:根据第一轮结果继续竞争 AB: 0101 0001
    - 设备1: 1111 1111 (对应设备1占用总线)



## 第六章 总线系统

- 总线的仲裁
- 总线的通信控制
  - 总线的定时
  - 总线数据传送模式

## 总线周期



- 总线的一次信息传送过程,大致可分为如下五个阶段
  - 请求总线
  - 总线仲裁
  - 寻址(目的地址)
  - 信息传送
  - 状态返回(或错误报告)
- 为了同步主方、从方的操作,必须制订定时协定
- 定时:事件出现在总线上的时序关系
- 数据传送中常用定时方式
  - 同步定时
  - 异步定时



- 事件出现在总线时刻由总线时 钟信号决定,总线包含时钟信 号线
- 时序特点
  - 事件出现在时钟信号上升沿
  - 大多数只占单一时钟周期
- 优点
  - 采用公共时钟,效率较高
  - 适用于传输距离较短,各模 块存取时间相对比较接近



#### 异步定时

- 事件出现在总线时刻由前一事件的出现决定,即基于应答式/互锁机制
- 不需要统一的公共时钟信号
- 特点
  - 应答式机制中,需等待确 认信号有效后,才能撤销 数据
- 优点
  - 总线周期长度可变,允许 快速和慢速模块都能连接 到同一总线上



### 异步定时——分类



速度快 可靠差







- 不互锁方式
  - 请求与回答信号均定时自动撤销
  - 不需要等待对方回应
- 半互锁方式
  - 主设备请求信号必须等到回答信号有效后 撤销
  - 回答信号定时自动撤销
- 全互锁方式
  - 请求与回答信号均等待对方回应撤销



## 异步定时——TCP三次握手





## 异步定时——TCP三次握手





## 异步定时——TCP三次握手





扩展阅读: https://juejin.cn/post/7028003193502040072#heading-4

【例3】某CPU采用集中式仲裁方式,使用独立请求与 菊花链查询相结合的二维总线控制结构。

每一对请求线BRi和授权线BGi组成一对菊花链查询 电路。每一根请求线可以被若干个传输速率接近的 设备共享。

当这些设备要求传送时通过BRi线向仲裁器发出请求,对应的BGi线则串行查询每个设备,从而确定哪个设备享有总线控制权。

请分析说明图6.14所示的总线仲裁时序图。







解:从时序图看出,该总线采用异步定时协议。

- 当某个设备请求使用总线时,在该设备所属的请求线上 发出申请信号BRi(1)。
- CPU按优先原则同意后给出授权信号BGi作为回答(2)。
- BGi链式查询各设备,并上升从设备回答SACK信号证实 已收到BGi信号(3)。
- CPU接到SACK信号后下降BG作为回答(4)。



 在总线"忙"标志BBSY为"0"情况该设备上升BBSY, 表示该设备获得了总线控制权,成为控制总线的主设 备(5)。



- 在设备用完总线后,下降BBSY和SACK (6)
- 释放总线。
- 在上述选择主设备过程中,可能现行的主从设备正在 进行传送。此时需等待现行传送结束,即现行主设备 下降BBSY信号后(7),新的主设备才能上升BBSY, 获得总线控制权。



## 第六章 总线系统



- 总线的仲裁
- 总线的通信控制
  - 总线的定时
  - 总线数据传送模式



- 读操作是由从方到主方的数据传送;写操作是由主方到从方的数据传送。
- 读写传输过程
  - 主方先以一个总线周期发出命令和 从方地址,经过一定的延时再开始 数据传送总线周期。
  - 为了提高总线利用率,减少延时损失,主方完成寻址总线周期后可让出总线控制权。然后再重新竞争总线,完成数据传送总线周期(分离式通信)









| 主模块发出地址、命令 | 占用总线  |
|------------|-------|
| 从模块准备数据    | 不占用总线 |
| 从模块发出数据    | 占用总线  |







| 第1分钟: | 我 _ | 我要一个苹果(1分钟)  | → 同学A |
|-------|-----|--------------|-------|
| 第2分钟: |     | 我更一个莁里 (1分钟) | → 同学B |
| 第3分钟: |     | 我——个带里(1分钟)  | → 同学C |
|       |     | 我要一个苹果(1分钟)  |       |
| 第4分钟: |     | 传递一个苹果 (1分钟) | → 同学D |
| 第5分钟: |     | 传递一个苹果(1分钟)  | - 同学A |
| 第6分钟: |     | 传递一个苹果(1分钟)  | - 同学B |
| 第7分钟: | 我◆  |              | - 同学C |
| 第8分钟: | 我←  | 传递一个苹果(1分钟)  | - 同学D |

## 块传送操作



- 块传送操作
  - 只需给出块的起始地址,然后对固定块长度的数据-接一个地读出或写入
  - 对于CPU (主方) 存储器 (从方) 而言的块传送, 常称 为猝发式传送,其块长一般固定为数据线宽度(存储器 字长)的4倍
  - 例如一个64位数据线的总线,一次猝发式传送可达256 位。这在超标量流水中十分有用



## 写后读、读修改写操作



- 这是两种组合操作。只给出地址一次(表示同一地址),
  或进行先写后读操作,或进行先读后写操作。
- 前者用于校验目的,后者用于多道程序系统中对共享存储 资源的保护。
- 这两种操作和猝发式操作一样,主方掌管总线直到整个操作完成。



## 广播、广集操作



- 广播、广集操作
  - 一般而言,数据传送只在一个主方和一个从方之间 进行
  - 但有的总线允许一个主方对多个从方进行写操作, 这种操作称为广播
  - 与广播相反的操作称为广集,它将选定的多个从方数据在总线上完成AND或OR操作,用以检测多个中断源

# 回顾: 总线结构





(一) 总线型搭补结构锁



(二) 魔斯塔科特构造



(三) 特别斯拉特特斯



(四) 树梨花科结构造



(百) 异状紫经护结构造



(六) 混合型形价结构图

#### 思考——CSMA/CD





- 与集中式仲裁/分布式仲裁有何区别?
- 两种方式的优劣对比?



- 集中式总线仲裁中, \_\_\_方式响应时间最快, \_\_\_方式 对电路故障最敏感。
- A. 菊花链方式
- B. 独立请求方式
- c. 计数器定时查询方式

B, A



- 以RS232为接口,进行7位ASCII码字符传送,带1位 奇偶校验和2位停止位,当波特率为9600时,字符传 送率为\_\_\_\_。
- A. )960
- в. 873
- c. 1371
- D. 480



- 下列各项中, \_\_\_\_\_是同步传输的特点。
- A. 需要应答信号
- B. 总线长度较长
- c. 各部件存取时间比较接近
- D. 总线周期长度可变



- 下列各项中,应采用异步传输方式的是\_\_\_\_。
- A. I/O接口与打印机交换信息
  - B. CPU与存储器交换信息
  - c. CPU与I/O接口交换信息
  - D. CPU与系统总线



- 单总线结构中系统总线中地址线的功用是\_\_\_\_。
- A. 用于选择主存单元
- B. 用于选择信息传输的设备
- c. 用于指定主存和I/O接口电路的地址
- D. 用于传送主存物理地址和逻辑地址



## 总结



