Analyse I – Série 3

Remarque générale:

Les Exercices 4 et 8 (au verso) consistent de questions de type Vrai ou Faux (V/F). Ce type de questions réapparaîtra tout au long du semestre. Pour chaque question, répondre par VRAI si l'affirmation est toujours vraie ou par FAUX si elle n'est pas toujours vraie.

Echauffement 1. (Nombres irrationnels)

Soit $q \in \mathbb{Q}$ et $n \in \mathbb{N}^*$. Donner une demonstration par l'absurde que le nombre $r = q + \frac{1}{n}\sqrt{2}$ est irrationnel.

Exercice 1. (Nombres irrationnels)

Démontrer que les nombres réels r suivants sont irrationnels :

$$i) \quad r = \sqrt{3}$$

$$ii) \quad r = \sqrt{7 + \sqrt{17}}$$

$$iii) \quad r = \sqrt{2} + \sqrt[3]{3}.$$

Exercice 2. (Notation des intervalles)

Récrire les ensembles A suivants en utilisant la notation des intervalles :

i)
$$A = \{x \in \mathbb{R} : x < 1\}$$

$$ii)$$
 $A = \{x \in \mathbb{R} : x \le 1\}$

$$iii) \ A = \{x \in \mathbb{R} : -x \le 1\}$$

$$iv) \ A = \{x \in \mathbb{R} : x^2 \le 2\}$$

$$v) \quad A = \{ x \in \mathbb{R} : x^2 \ge 2 \}$$

$$vi) \ A = \{x \in \mathbb{R} : -x^3 \ge 3\}$$

Exercice 3. (Sous-ensembles de \mathbb{R})

Donner l'infimum et le supremum des sous-ensembles de $\mathbb R$ ci-dessous et préciser s'il s'agit d'un minimum ou d'un maximum.

i)
$$A =]-1, \sqrt{2}]$$

$$ii) B = \sqrt{3}, \infty$$

iii)
$$C = \{x \in \mathbb{R} : |2x - 1| \le 1\}$$

$$iv) D = \{x \in \mathbb{R} : |x^2 - 2| < 1\}$$

$$v) E = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\}$$

$$vi) F = \left\{ \frac{n(-1)^n}{n+1} : n \in \mathbb{N} \right\}$$

$$vii)$$
 $G = \mathbb{Q}$

$$viii)$$
 $H = (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1]$

Exercice 4. (V/F: Intervalles, infimum et supremum)

Soit $A \subset \mathbb{R}$ un intervalle borné non vide.

Q1: Il suit que $\operatorname{Sup} A \in A$ et $\operatorname{Inf} A \in A$.

Q2: Si Sup $A \in A$ et Inf $A \in A$, alors A est fermé.

Q3: Si A est fermé, alors $\operatorname{Sup} A \in A$ et $\operatorname{Inf} A \in A$.

Q4: Si $\operatorname{Sup} A \not\in A$ et $\operatorname{Inf} A \not\in A$, alors A est ouvert.

Q5: Si A est ouvert, alors Inf $A \not\in A$ et Sup $A \not\in A$.

Echauffement 2. (Inégalité triangulaire)

Montrer que pour tout $x, y \in \mathbb{R}$

$$|x+y| \le |x| + |y|.$$

Exercice 5. (Valeur absolue)

Montrer que pour tout $x, y \in \mathbb{R}$

$$|x + y| + |x - y| = |x| + |y| + ||x| - |y||$$
.

Indication: Utiliser les propriétés de la valeur absolue pour conclure qu'il suffit de considérer les cas $x \ge 0$ et $y \ge 0$.

Exercice 6. (Inéquation)

Résoudre dans $\mathbb R$ l'inéquation

$$\frac{x}{|x| - 2} + \frac{|x|}{x + 1} \ge 0,$$

c'est-à-dire spécifier (en termes d'unions d'intervalles) l'ensemble $A \subset \mathbb{R}$ tel que l'inéquation est satisfaite pour tout $x \in A$ et pas satisfaite pour $x \notin A$.

Exercice 7. (QCM: Inéquation)

Le plus grand sous-ensemble $A \subset \mathbb{R}$ tel que pour tout $x \in A$

$$||x-1|-1| \le ||x|-1||$$

2

est

Exercice 8. (V/F : Fonctions)

Soient $f, g: \mathbb{R} \to \mathbb{R}$ deux fonctions.

Q1: $f \circ g = g \circ f \Leftrightarrow f = g$.

Q2: Si f et g sont injectives, alors $f \circ g$ est injective.

Q3: Si $f \circ f$ est injective, alors f est injective.

Q4: Si $f \circ g$ est injective, alors g est injective.

Q5: Si $f \circ g$ est injective, alors f est injective.

Q6: Si $f \circ g$ est surjective, alors f est surjective.