2016 年全国高中数学联合竞赛试题(A 卷) 一试

— 、	填空顯	(本大题共8小题,	每小题8分,	共64分)
•	77.1.12			// // // //

- 1. 设实数 a 满足 $a < 9a^3 11a < |a|$,则 a 的取值范围是_____.
- 2. 设复数 z、w 满足 |z|=3, $(z+\bar{w})(\bar{z}-w)=7+4i$,其中 i 是虚数单位, \bar{z} , \bar{w} 分别表示 z,w 的共轭复数,则 $(z+2\bar{w})(\bar{z}-2w)$ 的模为_____.
- 3. 正实数u,v,w均不等于 1,若 $\log_u vw + \log_v w = 5$, $\log_v u + \log_w v = 3$,则 $\log_w u$ 的值为_____.
- 4. 袋子 A 中装有 2 张 10 元纸币和 3 张 1 元纸币,袋子 B 中装有 4 张 5 元纸币和 3 张 1 元纸币. 现随机从两个袋子中各取出两张纸币,则 A 中剩下的纸币面值之和大于 B 中剩下的纸币面值之和的概率为
- 5. 设 P 为一圆锥的顶点,A、B、C 是其底面圆周上的三点,满足 $\angle ABC = 90^\circ$,M 为 AP 的中点.若 AB = 1, AC = 2, $AP = \sqrt{2}$,则二面角 M BC A 的大小为______.
- 6. 设函数 $f(x) = \sin^4 \frac{kx}{10} + \cos^4 \frac{kx}{10}$, 其中 k 是一个正整数. 若对任意实数 a ,均有 $\{f(x) | a < x < a + 1\} = \{f(x) | x \in \mathbb{R}\}$,则 k 的最小值为______.
- 7. 双曲线 C 的方程为 $x^2 \frac{y^2}{3} = 1$, 左、右焦点分别为 F_1, F_2 , 过点 F_2 作一直线与双曲线 C 的右半支交于点 P、Q,使得 $\angle F_1 PQ = 90^\circ$,则 $\triangle F_1 PQ$ 的内切圆半径是_____.
- 8. 设 a_1, a_2, a_3, a_4 是 1~100 中的 4 个互不相同的数,满足 $\left(a_1^2 + a_2^2 + a_3^2\right) \left(a_2^2 + a_3^2 + a_4^2\right) = \left(a_1 a_2 + a_2 a_3 + a_3 a_4\right)^2$,则这样的有序数组 $\left(a_1, a_2, a_3, a_4\right)$ 的个数为______.

二、解答题(本大题共3小题,共56分)

9. (本题满分 16 分) 在 $\triangle ABC$ 中,已知 $\overrightarrow{AB} \cdot \overrightarrow{AC} + 2\overrightarrow{BA} \cdot \overrightarrow{BC} = 3\overrightarrow{CA} \cdot \overrightarrow{CB}$.求 $\sin C$ 的最大值.

- 11. 如图所示,在平面直角坐标系 xOy 中,F 是 x 轴正半轴上的一个动点,以 F 为焦点、O 为顶点作抛物线 C,设 P 是第一象限内 C 上 的一点,Q 是 x 轴负半轴上一点,使得 PQ 为 C 的切线,且 |PQ|=2,圆 C_1 , C_2 均与直线 OP 相切于点 P,且均与 x 轴相切,求点 F 的坐标,使圆 C_1 与 C_2 的面积之和取到最小值.

二试

一、(本题满分 40 分)设实数 $a_1, a_2, \dots, a_{2016}$ 满足 $9a_i > 11a_{i-1}^2$ ($i = 1, 2, \dots, 2015$). 求 $(a_1 - a_2^2)(a_2 - a_3^2) \dots (a_{2015} - a_{2016}^2)(a_{2016} - a_1^2)$ 的最大值.

二、(本题满分 40 分)如图所示,在 $\triangle ABC$ 中,X、Y 是直线 BC 上两点(X、B、C、Y 顺次排列),使得 $BX \cdot AC = CY \cdot AB$. 设 $\triangle ACX$ 、 $\triangle ABY$ 的外心分别为 O_1, O_2 ,直线 O_1O_2 分别与 AB、AC 交于点 U、V. 证明: $\triangle AUV$ 是等腰三角形.

三、(本题满分50分)给定空间中10个点,其中任意四点不在一个平面上,将某些点之间用线段相连,若得到的图形中没有三角形也没有空间四边形,试确定所连线段数目的最大值.

四、(本题满分 50 分)设 p 与 p+2 均是素数, p>3.数列 $\{a_n\}$ 定义为 $a_1=2$, $a_n=a_{n-1}+\left\lceil\frac{pa_{n-1}}{n}\right\rceil$, $n=2,3,\cdots$.这里 $\lceil x \rceil$ 表示不小于实数 x 的最小整数.证明:对 $n=3,4,\cdots,p-1$ 均有 $n\mid pa_{n-1}+1$.

2016 年全国高中数学联合竞赛一试 (A卷) 参考答案及评分标准

说明:

- 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档; 其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.
- 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次.
 - 一、填空题:本大题共8小题,每小题8分,共64分.

答案:
$$a \in \left(-\frac{2\sqrt{3}}{3}, -\frac{\sqrt{10}}{3}\right)$$
.

解:由a<|a|可得a<0,原不等式可变形为

$$1 > \frac{9a^3 - 11a}{a} > \frac{|a|}{a} = -1$$

即
$$-1 < 9a^2 - 11 < 1$$
,所以 $a^2 \in \left(\frac{10}{9}, \frac{4}{3}\right)$.又 $a < 0$,故 $a \in \left(-\frac{2\sqrt{3}}{3}, -\frac{\sqrt{10}}{3}\right)$.

2. 设复数 z, w满足 |z|=3, $(z+\overline{w})(\overline{z}-w)=7+4i$,其中 i 是虚数单位, \overline{z} , \overline{w} 分别表示 z, w 的共轭复数,则 $(z+2\overline{w})(\overline{z}-2w)$ 的模为______.

答案: √65.

解:由运算性质, $7+4i=(z+\overline{w})(\overline{z}-w)=|z|^2-|w|^2-(zw-\overline{zw})$,因为 $|z|^2$ 与 $|w|^2$ 为实数, $\operatorname{Re}(zw-\overline{zw})=0$,故 $|z|^2-|w|^2=7$, $zw-\overline{zw}=-4i$,又|z|=3,所以 $|w|^2=2$.从而

$$(z+2\overline{w})(\overline{z}-2w) = |z|^2 - 4|w|^2 - 2(zw-\overline{zw}) = 9 - 8 + 8i = 1 + 8i.$$
 因此, $(z+2\overline{w})(\overline{z}-2w)$ 的模为 $\sqrt{1^2+8^2} = \sqrt{65}$.

3. 正实数u, v, w均不等于 1,若 $\log_u vw + \log_v w = 5$, $\log_v u + \log_w v = 3$,则 $\log_w u$ 的值为_____.

答案: $\frac{4}{5}$.

解: $\diamondsuit \log_u v = a$, $\log_v w = b$, 则

$$\log_{v} u = \frac{1}{a}, \log_{w} v = \frac{1}{b}, \quad \log_{u} vw = \log_{u} v + \log_{u} v \cdot \log_{v} w = a + ab,$$

条 件 化 为 a+ab+b=5, $\frac{1}{a}+\frac{1}{b}=3$, 由 此 可 得 $ab=\frac{5}{4}$. 因 此 $\log_{w}u=\log_{w}v\cdot\log_{v}u=\frac{1}{ab}=\frac{4}{5}$.

4. 袋子 A 中装有 2 张 10 元纸币和 3 张 1 元纸币,袋子 B 中装有 4 张 5 元纸币和 3 张 1 元纸币.现随机从两个袋子中各取出两张纸币,则 A 中剩下的纸币面值

之和大于 B 中剩下的纸币面值之和的概率为

答案: $\frac{9}{35}$.

解: 一种取法符合要求,等价于从 A 中取走的两张纸币的总面值 a 小于从 B 中取走的两张纸币的总面值 b ,从而 $a < b \le 5 + 5 = 10$.故只能从 A 中取走两张 1 元纸币,相应的取法数为 $\mathbf{C}_3^2 = 3$.又此时 b > a = 2 ,即从 B 中取走的两张纸币不能都是 1 元纸币,相应有 $\mathbf{C}_7^2 - \mathbf{C}_3^2 = 18$ 种取法.因此,所求的概率为 $\frac{3 \times 18}{\mathbf{C}_5^2 \times \mathbf{C}_7^2} = \frac{54}{10 \times 21} = \frac{9}{35}$.

5. 设 P 为一圆锥的顶点,A, B, C 是其底面圆周上的三点,满足 $\angle ABC = 90^\circ$,M 为 AP 的中点.若 AB = 1, AC = 2, $AP = \sqrt{2}$,则二面角 M - BC - A 的大小为______.

答案: $\arctan \frac{2}{3}$.

解:由 $\angle ABC = 90^{\circ}$ 知,AC为底面圆的直径.设底面中心为O,则 $PO \perp$ 平面ABC.易知 $AO = \frac{1}{2}AC = 1$,进而 $PO = \sqrt{AP^2 - AO^2} = 1$.

因
$$MH = AH = \frac{1}{2}$$
,结合 HK 与 AB 平行知, $\frac{HK}{AB} = \frac{HC}{AC} = \frac{3}{4}$,即 $HK = \frac{3}{4}$,这样 $\tan \angle MKH = \frac{MH}{HK} = \frac{2}{3}$.故二面角 $M - BC - A$ 的大小为 $\arctan \frac{2}{3}$.

6. 设函数 $f(x) = \sin^4 \frac{kx}{10} + \cos^4 \frac{kx}{10}$, 其中 k 是一个正整数. 若对任意实数 a ,均有 $\{f(x) | a < x < a + 1\} = \{f(x) | x \in \mathbf{R}\}$,则 k 的最小值为_____. 答案: 16.

解: 由条件知,
$$f(x) = \left(\sin^2\frac{kx}{10} + \cos^2\frac{kx}{10}\right)^2 - 2\sin^2\frac{kx}{10}\cos^2\frac{kx}{10}$$

$$= 1 - \frac{1}{2}\sin^2\frac{kx}{5} = \frac{1}{4}\cos\frac{2kx}{5} + \frac{3}{4},$$

其中当且仅当 $x = \frac{5m\pi}{k} (m \in \mathbb{Z})$ 时,f(x)取到最大值.根据条件知,任意一个长为1的开区间(a, a+1)至少包含一个最大值点,从而 $\frac{5\pi}{k} < 1$,即 $k > 5\pi$.

反之,当 $k > 5\pi$ 时,任意一个开区间(a, a+1)均包含f(x)的一个完整周期,此时 $\{f(x) | a < x < a+1\} = \{f(x) | x \in \mathbf{R}\}$ 成立.

综上可知,正整数k的最小值为 $[5\pi]+1=16$.

7. 双曲线 C 的方程为 $x^2 - \frac{y^2}{3} = 1$,左、右焦点分别为 F_1 、 F_2 . 过点 F_2 作一直线与双曲线 C 的右半支交于点 P, Q,使得 $\angle F_1 PQ = 90^\circ$,则 $\Delta F_1 PQ$ 的内切圆半径是

<u>--</u> 答案: √7 -1.

解: 由双曲线的性质知, $F_1F_2 = 2 \times \sqrt{1+3} = 4$, $PF_1 - PF_2 = QF_1 - QF_2 = 2$.

因之
$$F_1PQ = 90^\circ$$
,故 $PF_1^2 + PF_2^2 = F_1F_2^2$,因此
$$PF_1 + PF_2 = \sqrt{2(PF_1^2 + PF_2^2) - (PF_1 - PF_2)^2}$$
$$= \sqrt{2 \times 4^2 - 2^2} = 2\sqrt{7}.$$

从而直角 $\Delta F_1 PQ$ 的内切圆半径是

$$r = \frac{1}{2}(F_1P + PQ - F_1Q) = \frac{1}{2}(PF_1 + PF_2) - \frac{1}{2}(QF_1 - QF_2) = \sqrt{7} - 1.$$

8. 设 a_1, a_2, a_3, a_4 是 1, 2, …,100 中的 4 个互不相同的数,满足 $(a_1^2 + a_2^2 + a_3^2)(a_2^2 + a_3^2 + a_4^2) = (a_1a_2 + a_2a_3 + a_3a_4)^2 ,$

则这样的有序数组 (a_1, a_2, a_3, a_4) 的个数为______

答案: 40.

解:由柯西不等式知, $(a_1^2+a_2^2+a_3^2)(a_2^2+a_3^2+a_4^2) \geq (a_1a_2+a_2a_3+a_3a_4)^2$,等号成立的充分必要条件是 $\frac{a_1}{a_2} = \frac{a_2}{a_3} = \frac{a_3}{a_4}$,即 a_1, a_2, a_3, a_4 成等比数列.于是问题等价于计算满足 $\{a_1, a_2, a_3, a_4\} \subseteq \{1, 2, 3, \cdots, 100\}$ 的等比数列 a_1, a_2, a_3, a_4 的个数.设等比数列的公比 $q \neq 1$,且q为有理数.记 $q = \frac{n}{m}$,其中m,为互素的正整数,且 $m \neq n$.

先考虑n > m的情况.

此时 $a_4 = a_1 \cdot \left(\frac{n}{m}\right)^3 = \frac{a_1 n^3}{m^3}$,注意到 m^3 , n^3 互素,故 $l = \frac{a_1}{m^3}$ 为正整数.相应地, a_1, a_2, a_3, a_4 分别等于 $m^3 l$, $m^2 n l$, $m n^2 l$, $n^3 l$,它们均为正整数.这表明,对任意给定的 $q = \frac{n}{m} > 1$,满足条件并以 q 为公比的等比数列 a_1, a_2, a_3, a_4 的个数,即为满足不等式 $n^3 l \leq 100$ 的正整数 l 的个数,即 $\left[\frac{100}{n^3}\right]$.

由于 $5^3 > 100$,故仅需考虑 q = 2, 3, $\frac{3}{2}$, 4, $\frac{4}{3}$ 这些情况,相应的等比数列的个数为 $\left|\frac{100}{8}\right| + \left|\frac{100}{27}\right| + \left|\frac{100}{64}\right| + \left|\frac{100}{64}\right| = 12 + 3 + 3 + 1 + 1 = 20$.

当n < m时,由对称性可知,亦有20个满足条件的等比数列 a_1, a_2, a_3, a_4 :综上可知,共有40个满足条件的有序数组 (a_1, a_2, a_3, a_4) .

二、解答题:本大题共 3 小题,共 56 分.解答应写出文字说明、证明过程或演算步骤.

9.(本题满分 16 分)在 $\triangle ABC$ 中,已知 $\overrightarrow{AB} \cdot \overrightarrow{AC} + 2\overrightarrow{BA} \cdot \overrightarrow{BC} = 3\overrightarrow{CA} \cdot \overrightarrow{CB}$.求 sin C 的最大值.

解: 由数量积的定义及余弦定理知, $\overrightarrow{AB} \cdot \overrightarrow{AC} = cb \cos A = \frac{b^2 + c^2 - a^2}{2}$.

同理得,
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \frac{a^2 + c^2 - b^2}{2}$$
, $\overrightarrow{CA} \cdot \overrightarrow{CB} = \frac{a^2 + b^2 - c^2}{2}$. 故已知条件化为
$$b^2 + c^2 - a^2 + 2(a^2 + c^2 - b^2) = 3(a^2 + b^2 - c^2)$$
,

由余弦定理及基本不等式,得

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{a^2 + b^2 - \frac{1}{3}(a^2 + 2b^2)}{2ab}$$

$$= \frac{a}{3b} + \frac{b}{6a} \ge 2\sqrt{\frac{a}{3b} \cdot \frac{b}{6a}} = \frac{\sqrt{2}}{3},$$

$$\sin C = \sqrt{1 - \cos^2 C} \le \frac{\sqrt{7}}{3}, \qquad \dots 12$$

所以

等号成立当且仅当 $a:b:c=\sqrt{3}:\sqrt{6}:\sqrt{5}$. 因此 $\sin C$ 的最大值是 $\frac{\sqrt{7}}{3}$.

.....16 分

10. (本题满分 20 分) 已知 f(x) 是 **R** 上的奇函数, f(1)=1,且对任意 x<0,均有 $f\left(\frac{x}{x-1}\right) = xf(x)$.

求
$$f(1)f\left(\frac{1}{100}\right)+f\left(\frac{1}{2}\right)f\left(\frac{1}{99}\right)+f\left(\frac{1}{3}\right)f\left(\frac{1}{98}\right)+\cdots+f\left(\frac{1}{50}\right)f\left(\frac{1}{51}\right)$$
的值.

解: 设
$$a_n = f\left(\frac{1}{n}\right) (n = 1, 2, 3, \dots)$$
,则 $a_1 = f(1) = 1$.

在
$$f\left(\frac{x}{x-1}\right) = xf(x)$$
 中取 $x = -\frac{1}{k}(k \in \mathbf{N}^*)$, 注意到 $\frac{x}{x-1} = \frac{-\frac{1}{k}}{-\frac{1}{k}-1} = \frac{1}{k+1}$, 及

f(x) 为奇函数,可知

$$\sum_{i=1}^{50} a_i a_{101-i} = \sum_{i=1}^{50} \frac{1}{(i-1)! \cdot (100-i)!} = \sum_{i=0}^{49} \frac{1}{i! \cdot (99-i)!}$$

$$= \frac{1}{99!} \cdot \sum_{i=0}^{49} C_{99}^{i} = \frac{1}{99!} \cdot \sum_{i=0}^{49} \frac{1}{2} \left(C_{99}^{i} + C_{99}^{99-i} \right) = \frac{1}{99!} \times \frac{1}{2} \times 2^{99} = \frac{2^{98}}{99!}.$$
.....20 \(\frac{1}{2}\)

11. (本题满分 20 分) 如图所示,在平面直角坐标系 xOy 中,F 是 x 轴正半轴上的一个动点.以 F 为焦点、O 为顶点作抛物线 C.设 P 是第一象限内 C 上的一点,Q 是 x 轴负半轴上一点,使得 PQ 为 C 的切线,且 |PQ|=2.圆 C_1 , C_2 均与直线 OP 相切于点 P,且均与 x 轴相切.求点 F 的坐标,使圆 C_1 与 C_2 的面积之和取到最小值.

解:设抛物线 C 的方程是 $y^2 = 2px (p > 0)$,点 Q 的坐标为 (-a,0)(a > 0),并设 C_1 , C_2 的圆心分别为 $O_1(x_1,y_1)$, $O_2(x_2,y_2)$.

设直线 PQ 的方程为 x = my - a(m > 0),将其与 C 的方程联立,消去 x 可知 $y^2 - 2pmy + 2pa = 0$.

因为PQ与C相切于点P,所以上述方程的判别式为 $\Delta = 4p^2m^2 - 4 \cdot 2pa = 0$,

解得
$$m = \sqrt{\frac{2a}{p}}$$
. 进而可知,点 P 的坐标为 $(x_p, y_p) = (a, \sqrt{2pa})$. 于是

$$|PQ| = \sqrt{1+m^2} \cdot |y_p - 0| = \sqrt{1+\frac{2a}{p}} \cdot \sqrt{2pa} = \sqrt{2a(p+2a)}.$$

由|PQ|=2可得

$$4a^2 + 2pa = 4$$
. ①

注意到OP与圆 C_1 , C_2 相切于点P,所以 $OP \perp O_1O_2$. 设圆 C_1 , C_2 与x轴分别相切于点M, N,则 OO_1 , OO_2 分别是 $\angle POM$, $\angle PON$ 的平分线,故 $\angle O_1OO_2 = 90^\circ$. 从而由射影定理知

 $y_1 y_2 = O_1 M \cdot O_2 N = O_1 P \cdot O_2 P = OP^2$

 $=x_{P}^{2}+y_{P}^{2}=a^{2}+2pa$. 结合①,就有

$$y_1 y_2 = a^2 + 2 pa = 4 - 3a^2$$
. 2

由 O_1 , P, O_2 共线, 可得

$$\frac{y_1 - \sqrt{2pa}}{\sqrt{2pa} - y_2} = \frac{y_1 - y_P}{y_P - y_2} = \frac{O_1 P}{P O_2} = \frac{O_1 M}{O_2 N} = \frac{y_1}{y_2},$$

化简得

$$y_1 + y_2 = \frac{2}{\sqrt{2pa}} \cdot y_1 y_2$$
.

.....15 分

令 $T = y_1^2 + y_2^2$,则圆 C_1 , C_2 的面积之和为 πT .根据题意,仅需考虑T取到最小值的情况。

根据②、③可知,

$$T = (y_1 + y_2)^2 - 2y_1y_2 = \frac{4}{2pa}y_1^2y_2^2 - 2y_1y_2$$

$$= \frac{4}{4 - 4a^2}(4 - 3a^2)^2 - 2(4 - 3a^2) = \frac{(4 - 3a^2)(2 - a^2)}{1 - a^2}.$$
作代换 $t = 1 - a^2$. 由于 $4t = 4 - 4a^2 = 2pa > 0$,所以 $t > 0$. 于是
$$T = \frac{(3t + 1)(t + 1)}{t} = 3t + \frac{1}{t} + 4 \ge 2\sqrt{3}t \cdot \frac{1}{t} + 4 = 2\sqrt{3} + 4.$$
上式等号成立当且仅当 $t = \frac{\sqrt{3}}{3}$,此时 $a = \sqrt{1 - t} = \sqrt{1 - \frac{1}{\sqrt{3}}}$. 因此结合①得,
$$\frac{p}{2} = \frac{1 - a^2}{a} = \frac{t}{\sqrt{1 - \frac{1}{\sqrt{3}}}} = \frac{\sqrt{3}t}{\sqrt{3 - \sqrt{3}}} = \frac{1}{\sqrt{3 - \sqrt{3}}}$$
从而 f 的坐标为 $\left(\frac{p}{2}, 0\right) = \left(\frac{1}{\sqrt{3 - \sqrt{3}}}, 0\right)$.

2016 年全国高中数学联合竞赛加试(A卷) 参考答案及评分标准

说明:

- 1. 评阅试卷时,请严格按照本评分标准的评分档次给分.
- 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.

一、(本题满分 40 分)设实数
$$a_1, a_2, \dots, a_{2016}$$
满足 $9a_i > 11a_{i+1}^2 (i = 1, 2, \dots, 2015)$.

求
$$(a_1-a_2^2)\cdot(a_2-a_3^2)\cdot\cdots\cdot(a_{2015}-a_{2016}^2)\cdot(a_{2016}-a_1^2)$$
的最大值.

$$\mathbf{P} = (a_1 - a_2^2) \cdot (a_2 - a_3^2) \cdot \dots \cdot (a_{2015} - a_{2016}^2) \cdot (a_{2016} - a_1^2).$$

由已知得,对 $i=1,2,\cdots,2015$,均有 $a_i-a_{i+1}^2>\frac{11}{9}a_{i+1}^2-a_{i+1}^2\geq 0$.

以下考虑 $a_{2016}-a_1^2>0$ 的情况.约定 $a_{2017}=a_1$.由平均不等式得

$$P^{\frac{1}{2016}} \leq \frac{1}{2016} \sum_{i=1}^{2016} (a_i - a_{i+1}^2) = \frac{1}{2016} \left(\sum_{i=1}^{2016} a_i - \sum_{i=1}^{2016} a_{i+1}^2 \right)$$

$$= \frac{1}{2016} \left(\sum_{i=1}^{2016} a_i - \sum_{i=1}^{2016} a_i^2 \right) = \frac{1}{2016} \sum_{i=1}^{2016} a_i (1 - a_i) \qquad 20 \%$$

$$\leq \frac{1}{2016} \sum_{i=1}^{2016} \left(\frac{a_i + (1 - a_i)}{2} \right)^2 = \frac{1}{2016} \cdot 2016 \cdot \frac{1}{4} = \frac{1}{4},$$

$$P \leq \frac{1}{4^{2016}}. \qquad 30 \%$$

所以

当 $a_1=a_2=\cdots=a_{2016}=\frac{1}{2}$ 时,上述不等式等号成立,且有 $9a_i>11a_{i+1}^2$ $(i=1,2,\cdots,2015)$,此时 $P=\frac{1}{4^{2016}}$.

二、(本题满分 40 分) 如图所示,在 \triangle ABC 中, X,Y 是直线 BC 上两点 (X,B,C,Y 顺次排列),使得 $BX \cdot AC = CY \cdot AB$.

设 \triangle *ACX* , \triangle *ABY* 的外心分别为 O_1,O_2 ,直线 O_1O_2 与 *AB*, *AC* 分别交于点U,V .

证明: $\triangle AUV$ 是等腰三角形.

证法一 作 $\angle BAC$ 的内角平分线交 BC 于点 P. 设三角形 ACX 和 ABY 的外接圆分别为 ω_1 和 ω_2 . 由内角平分线的性质知, $\frac{BP}{CP} = \frac{AB}{AC}$. 由条件可得 $\frac{BX}{CY} = \frac{AB}{AC}$. 从而

$$\frac{PX}{PY} = \frac{BX + BP}{CY + CP} = \frac{AB}{AC} = \frac{BP}{CP},$$

即 $CP \cdot PX = BP \cdot PY$.

·····20 分

故 P 对圆 ω_1 和 ω_2 的幂相等,所以 P 在 ω_1 和 ω_2 的根轴上. ·············30 分于是 $AP \perp O_1O_2$,这表明点 U,V 关于直线 AP 对称,从而三角形 AUV 是等腰三角形. ···············40 分

证法二 设 \triangle *ABC* 的外心为O,连接 OO_1,OO_2 . 过点O, O_1 ,O2 分别作直线BC 的垂线,垂足分别为D,D1,D2. 作 $O_1K \perp OD$ 于点K.

我们证明 $OO_1 = OO_2$. 在直角三角形 OKO_1 中,

$$OO_1 = \frac{O_1K}{\sin \angle O_1OK}$$
.

由外心的性质, $OO_1 \perp AC$. 又 $OD \perp BC$, 故 $\angle O_1OK = \angle ACB$.

而 D, D₁ 分别是 BC, CX 的中点,所以 DD₁ = CD₁ -CD = $\frac{1}{2}CX$ $-\frac{1}{2}BC$ = $\frac{1}{2}BX$. 因此

$$OO_1 = \frac{O_1K}{\sin \angle O_1OK} = \frac{DD_1}{\sin \angle ACB} = \frac{\frac{1}{2}BX}{\frac{AB}{2R}} = R \cdot \frac{BX}{AB},$$

由于 $OO_1 \perp AC$,所以 $\angle AVU = 90^{\circ} - \angle OO_1O_2$. 同理 $\angle AUV = 90^{\circ} - \angle OO_2O_1$.

······30 分

三、(本题满分 50 分) 给定空间中 10 个点, 其中任意四点不在一个平面上. 将某些点之间用线段相连, 若得到的图形中没有三角形也没有空间四边形, 试确定所连线段数目的最大值.

解 以这 10 个点为顶点, 所连线段为边, 得到一个 10 阶简单图G. 我们证明 G 的边数不超过 15.

设 G 的顶点为 v_1, v_2, \dots, v_{10} , 共有 k 条边,用 $\deg(v_i)$ 表示顶点 v_i 的度. 若 $\deg(v_i) \le 3$ 对 $i = 1, 2, \dots, 10$ 都成立,则

$$k = \frac{1}{2} \sum_{i=1}^{10} \deg(v_i) \le \frac{1}{2} \times 10 \times 3 = 15$$
.

假设存在 v_i 满足 $\deg(v_i) \ge 4$. 不妨设 $\deg(v_1) = n \ge 4$,且 v_1 与 v_2 ,…, v_{n+1} 均相邻. 于是 v_2 ,…, v_{n+1} 之间没有边,否则就形成三角形. 所以, v_1 , v_2 ,…, v_{n+1} 之间恰有n条边. ………10 分

在 v_{n+2}, \dots, v_n 这9-n 个顶点之间,由于没有三角形,由托兰定理,至多

$$\left[\frac{(9-n)^2}{4}\right]$$
条边. 因此 G 的边数

$$k \le n + (9 - n) + \left\lceil \frac{(9 - n)^2}{4} \right\rceil = 9 + \left\lceil \frac{(9 - n)^2}{4} \right\rceil \le 9 + \left\lceil \frac{25}{4} \right\rceil = 15 . \dots 30$$

如图给出的图共有 15 条边,且满足要求. 综上所述,所求边数的最大值为 15.

.....50 分

四、(本题满分 50 分) 设 p 与 p+2 均是素数,p>3.数列 $\{a_n\}$ 定义为 $a_1=2$, $a_n=a_{n-1}+\left\lceil\frac{pa_{n-1}}{n}\right\rceil$, $n=2,3,\cdots$.这里 $\lceil x\rceil$ 表示不小于实数 x 的最小整数.

证明: 对 $n = 3, 4, \dots, p-1$ 均有 $n \mid pa_{n-1} + 1$ 成立.

证明 首先注意, $\{a_n\}$ 是整数数列.

对 n 用数学归纳法. 当 n=3 时,由条件知 $a_2=2+p$,故 $pa_2+1=\left(p+1\right)^2$. 因 p 与 p+2 均是素数,且 p>3,故必须 3|p+1. 因此 $3|pa_2+1$,即 n=3 时结论成立.

对
$$3 < n \le p-1$$
,设对 $k = 3, \cdots, n-1$ 成立 $k \mid pa_{k-1} + 1$,此时 $\left\lceil \frac{pa_{k-1}}{k} \right\rceil = \frac{pa_{k-1} + 1}{k}$,

故

$$pa_{k-1} + 1 = p\left(a_{k-2} + \left\lceil \frac{pa_{k-2}}{k-1} \right\rceil\right) + 1 = p\left(a_{k-2} + \frac{pa_{k-2} + 1}{k-1}\right) + 1$$

$$= \frac{(pa_{k-2} + 1)(p+k-1)}{k-1}.$$

故对 $3 < n \le p-1$,有

因此

$$pa_{n-1} + 1 = \frac{2n(p+1)}{(p+n)(p+2)}C_{p+n}^{n}.$$

由此知(注意 C_{p+n}^n 是整数) $n|(p+n)(p+2)(pa_{n-1}+1)$. ①40 分

因 n < p , p 素数,故 (n, n+p) = (n, p) = 1 ,又 p+2 是大于 n 的素数,故 (n, p+2) = 1 ,从而 n = (p+n)(p+2) 互素,故由①知 $n \mid pa_{n-1} + 1$. 由数学归纳 法知,本题得证.