Trabajo de fin de grado

Funciones de distancia con signo

Lukas Häring García

Índice General

- Introducción
- 2 Lenguaje GLSL
 - Vectores
 - Matrices
 - Operadores matemáticos
- 3 Spheremarcher
- Modelo de iluminación
- 5 Funciones de distancia con signo (FDS)
 - Primitivas sobre \mathbb{R}^2
 - Primitivas sobre \mathbb{R}^3
- 6 Resolución de artefactos
- 7 Materiales
- 8 Conclusiones

Introducción

El rápido incremento en potencia de la unidad de procesamiento gráfico (*GPU*) ha permitido utilizar técnicas de renderizado propuestas en los años noventa. Presentaremos el lenguaje *GLSL* del que hace uso la tecnología web y que es utilizado durante todo el desarrollo del proyecto.

Presentaremos las *funciones de distancia con signo*, una serie de funciones del que hace uso la técnica de trazado *spheremarching*, presentada por John C. Hart en 1996 y del que centraremos nuestro trabajo.

Haremos uso del modelo empírico de *iluminación de Phong*, presentado por Thuong Phong en 1975, que es indispensable para dar realismo y sensación tridimensional a una escena, junto a los materiales.

Lenguaje GLSL

Tipos

Mantiene una sintaxis similar a C, encontramos los siguientes tipos más importantes.

- int. Entero con signo.
- float. Número real, con precisión de 32 bits.
- bool. Ocupa un byte, true o false.
- vecN. Vector matemático, N-úpla de floats. Definidos: vec2, vec3, vec4.
- matN. Matriz cuadrada de dimension N. Encontramos: mat2, mat3, mat4.
- matNxM. Matriz de dimensiones N × M. Encontramos: mat2x2, mat2x3, mat2x4, mat3x2, mat3x3, mat3x4, mat4x2, mat4x3, mat4x4.

Vectores

El tipo vector, vecN, definido por una t-úpla: (x, y[, z[, w]]) ó (r, g[, b[, a]]). Utilizaremos el operador «.» para acceder y copiar estas componentes.

Constructores

- vecN(float,···, float)
- vecN(vecM, float)
- vecN(float, vecM)
- vecN(vecP, vecQ)

Funciones

- length(vecN vector)
- distance(vecN p1, vecN p2)
- normalize(vecN vector)
- dot(vecN v1, vecN v2)
- cross(vecN v1, vecN v2)

Matrices

Las matrices matNxM y matN, formadas por $N \times M$ y N^2 componentes flotantes, respectivamente. El operador de acceso a las componentes es similar al lenguaje C, del tal forma que: [j][i] accede a la celda de la fila j-ésima y columna i-ésima.

Constructores

- matNxM(float, · · · , float)
- matNxM(float, · · ·, float)
- matN(vecN,···, vecN)
- matNxM(vecM,···, vecM)
- matN(matM)

Funciones

- transpose(mat matrix)
- matrix1 * matrix2
- determinant(matN matrix)

Operadores matemáticos

Agrupamos *float* y *vecN* con el nombre de *genType* para reunir los tipos de argumentos. Cuando utilizamos un operador sobre el tipo *vecN*, este se aplicará sobre cada una de sus componentes.

- radians(genType var)
- sin(genType var)
- tan(genType var)
- asin(genType var)
- atan(genType var)
- pow(genType a, genType b)
- exp(genType var)
- sqrt(genType var)
- sqrt(genType var)

- abs(genType a)
- sign(genType a)
- min(genType a, genType b)
- max(genType a, genType b)

```
mix(
genType a,
genType b,
(genType ó float ó bool) h
```

Spheremarcher

Spheremarcher

Un fragment shader es aplicado a cada píxel de nuestra pantalla, que es procesado por una hebra de la GPU. «Lanzararemos un rayo», de manera numérica, para cada píxel y se aproxima la intersección, de manera iterativa, desde el ojo en la dirección del píxel dirección.

Spheremarcher 2

Como se ha comentado anteriormente, hacemos uso de las *funciones* de distancia con signo las cuales codifican la escena, $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$. Definimos la posición del «rayo» en la iteración n-ésima, como:

$$\vec{rayo}_n = \vec{ojo} + \vec{direccion} \cdot \vec{d_n}$$

donde d_n es la distancia total recorrida por todas las iteraciones:

$$d_n = d_{n-1} + f(\vec{p}_{n-1}) \text{ con } d_0 = 0$$

Definition

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, una función de distancia con signo, definimos como isoperímetro, $L = \{\vec{p} | f(\vec{p}) = 0\}$.

Definition

Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$, una función de distancia con signo, definimos como isosuperficie, $S = \{\vec{p} | f(\vec{p}) = 0\}$.

Condiciones de parada

Al tratarse de un método numérico, vamos a definir las condiciones de parada:

- **Primera condición**. Utilizaremos una variable de control, ϵ que relajará la restricción de la definición de *isosuperficie*, haciendo $f(\vec{p}_n) < \epsilon$, ya que, si $\epsilon = 0$, trataríamos de un modelo analítico.
- 2 Segunda condición. Superar una cierta distancia recorrida, d_n ≥ MAXIMO, creando una esfera de trazado sobre el punto de la cámara.
- **Tercera condición**. Superar el número de iteraciones máximas, $n \ge PASOS$. PASOS es una constante fijada.

Este algoritmo devolverá d_n , cuando el algoritmo finaliza debido a la **segunda o tercera condición**, devolverá, $d_n = MAXIMO$, recibiendo el nombre de «fallo». Un fallo, representando un pixel vacío, sin superficie trazada, pudiéndose considerar el fondo de la escena.

Modelo de iluminación

Normal de una isosuperficie

Para un modelo de iluminación es indispensable el cálculo de la normal de una isosuperficie, por ello, vamos a presentar el siguiente teorema:

Theorem

El vector gradiente $\nabla f(x_0, y_0, z_0)$ es perpendicular a la curva de la tangente de una isosuperficie en el punto $\vec{p} = (x_0, y_0, z_0)$.

En realidad, nos quiere decir que la normal de una *isosuperficie* es proporcional a su gradiente o exacta en caso de su posterior normalización:

$$ec{n} = norm(\nabla f(x, y, z)) pprox norm \left(\left\langle \begin{array}{c} \dfrac{f(x + 0.001, y, z) - f(x, y, z)}{0.001} \\ \langle \dfrac{f(x, y + 0.001, z) - f(x, y, z)}{0.001} \\ \dfrac{f(x, y, z + 0.001) - f(x, y, z)}{0.001} \end{array} \right)$$

Intensidad lumínica

Para cada luz $\vec{l_i} \in L$, definimos el vector director de la luz hasta el punto \vec{p} como $\vec{d_i} = \text{norm}(\vec{l_i} - \vec{p})$, la intensidad es un factor multiplicativo.

Intensidad ambiental Intensidad mínima sobre la isosuperficie.

 $I_a \in [0, 1]$

Intensidad difusa

Intensidad por la luz refractada por la superficie.

$$I_d = \sum_{\vec{l}_i \in I} \vec{n} \cdot \vec{d}_i$$

Intensidad especular

Intensidad por la incidencia en el ojo de la luz reflectada.

$$I_{\mathsf{e}} = \sum_{ec{l}_i \in L} ec{ojo} \cdot \left(ec{d}_i \veebar ec{n}
ight)$$

Modelo de Iluminación de Phong

Presentado por Thuong Phong en 1975 como un modelo empírico, resultado de las sumas de las intensidades anteriores, además, utiliza un *homeomorfismo* como factor de brillo para la intensidad especular:

$$I_{Phong} = I_a + \sum_{\vec{l_i} \in L} \vec{n} \cdot [0,1] \cdot (\vec{l_i} - \vec{p}) + \underbrace{h_k \left(\vec{ojo} \cdot [0,1] \cdot \left((\vec{l_i} - \vec{p}) \vee \vec{n} \right) \right)}_{\text{Intensidad Difusa}}$$
Intensidad Especular

Umbra

Dado un punto punto \vec{p} sobre la superficie, lanzaremos otro rayo hacia la luz para ver si este es ocluido, en caso de trazar otro punto \vec{q} en esa dirección, la intensidad se mantendrá constante.

Al lanzar el rayo desde la una isosuperficie, las primeras iteraciones resultan de bolas pequeñas, por ello, separaremos el punto \vec{p} de la superficie haciendo uso de la normal de la superficie y un factor de empuje $k \in \mathbb{R}_0^+$.

$$\vec{p'} = \vec{p} + \vec{n} \cdot k$$

signo (FDS)

Funciones de distancia con

Primitivas sobre \mathbb{R}^2


```
float SDFCircunsferencia(vec2 p, float
    return length(p) - r;
}
```

```
float SDFRectangulo(vec2 p, vec2 s){
   vec2 a = abs(p) - s;
   return length(max(a, 0.0)) + min(max(a.x,
}
```


Primitivas sobre \mathbb{R}^3

Resolución de artefactos

Materiales

Conclusiones