## Monday Reading Assessment: Unit 4, Forces

Prof. Jordan C. Hanson October 16, 2019

## 1 Memory Bank

- Force of friction:  $f = \mu N$ , where N is the normal force, and  $\mu$  is the coefficient of friction.
- Weight force: w = mg.



Figure 1: An x-ray of the results of a knee-replacement surgery.

## 2 Chapter 5 - Friction

- 1. The coefficient of friction for a joint comprised of bone and tissue in the human body is about  $\mu = 0.015$ . If a person has a mass of 60 kg, what is the (maximum) force of friction on this joint?
- 2. Suppose as the person gets older, the joint "wears down" by providing less and less synovial fluid. If  $\mu$  doubles in value, what is the new force of friction?
- 3. Suppose the person decides to have a knee replacement surgery (see Fig. 1). The new  $\mu$  value is back to 0.015, but the mass of the person has decreased to 55.0 kg for other reasons. What is the new force of friction in the knee joint?