Measuring the cosmological parameters with machine learning techniques.

Martín de los Rios & Mariano Domínguez

October 3, 2018

Table of contents

- What is Machine Learning.

 Supervised learning.
- Measuring the Cosmological Parameters.
 - The training sample.Applications.
- 3 Final Remarks.

- What is Machine Learning.
 - Supervised learning.
- - The training sample.
 - Applications.

- 1 What is Machine Learning.
 - Supervised learning.
- 2 Measuring the Cosmological Parameters.
 - The training sample.
 - Applications.
- Final Remarks.

The Standard model.

Homogeneous and isotropic Universe \rightarrow FRW metric $ds^2=dt^2-a^2(t)[\frac{dr^2}{1-kr^2}+r^2(d\theta^2+sin^2\theta d\phi^2)]$ $(\frac{H}{H_0})^2=\Omega_{rad}a^{-4}+\Omega_ma^{-3}+\Omega_{\Lambda}-Kc^2a^{-2}$

Planck Collaboration 2015 (1502.01589)

The training sample.

CAMB: Code for Anisotropies in the Cosmic Background

Studying different Machine Learning algorithms.

Measuring the cosmological parameters angular distributions.

Measuring the cosmological parameters angular distributions.

Denoising Autoencoders

Denoising Autoencoders

Denoising Autoencoders

Measuring the cosmological parameters angular distributions.

$$\chi = rac{\sum_{i=1}^{npix} |C_{l,real} - C_{l,rec}|}{npix}$$

- What is Machine Learning.
 - Supervised learning.
- Measuring the Cosmological Parameters.
 - The training sample.
 - Applications.
- Final Remarks.

Final Remarks

- We developed a machine learning technique that estimate the cosmological parameters in a more efficient way withouth losing precision.
- This technique can be easily extended to use more cosmological information as features (BAO, correlation function, SZ emission, etc.).
- As a first application we are studying the angular distribution of the cosmological parameters.
- We do not found any significant curvature departure from what is expected in an homogeneous and isotropic univese, with the exception of some pixels that are in the galactic plane.
- We will extend the parameters space and add polarization information in a forthcoming work.
- We will analyze the correlations between the angular distribution of the cosmological parameters and the large scale structure (voids, filaments, etc.)

Changing the minimum mutipole.

