\overline{NSCC} , CLIQUE

5.37 atleast_nvalue

DESCRIPTION GRAPH LINKS Origin [341] Constraint atleast_nvalue(NVAL, VARIABLES) Synonym k_diff. **Arguments** NVAL : dvar VARIABLES : collection(var-dvar) Restrictions required(VARIABLES, var) $\mathtt{NVAL} \geq 0$ $NVAL \le |VARIABLES|$ The number of distinct values taken by the variables of the collection VARIABLES is Purpose greater than or equal to NVAL.

Example

```
(2, \langle 3, 1, 7, 1, 6 \rangle) 
 (4, \langle 3, 1, 7, 1, 6 \rangle) 
 (5, \langle 3, 1, 7, 0, 6 \rangle)
```

The first atleast_nvalue constraint holds since the collection (3, 1, 7, 1, 6) involves at least 2 distinct values (i.e., in fact 4 distinct values).

All solutions

Figure 5.105 gives all solutions to the following non ground instance of the atleast_nvalue constraint: NVAL \in [3,4], $V_1 \in$ [1,2], $V_2 = 3$, $V_3 \in$ [3,4], $V_4 \in$ [2,3], atleast_nvalue(NVAL, $\langle V_1, V_2, V_3, V_4 \rangle$).

```
 \begin{array}{c|c} \textcircled{0} \ (\textbf{3}, \langle 1, 3, 3, 2 \rangle) \\ \textcircled{2} \ (\textbf{3}, \langle 1, 3, 4, 2 \rangle) \\ \textcircled{3} \ (\textbf{4}, \langle 1, 3, 4, 2 \rangle) \\ \end{array}   \begin{array}{c|c} \textcircled{\textbf{(3,}} \ \langle 1, 3, 4, 3 \rangle) \\ \textcircled{\textbf{(5)}} \ (\textbf{3}, \langle 2, 3, 4, 2 \rangle) \\ \textcircled{\textbf{(6)}} \ (\textbf{3}, \langle 2, 3, 4, 3 \rangle) \\ \end{array}
```

Figure 5.105: All solutions corresponding to the non ground example of the atleast_nvalue constraint of the **All solutions** slot

```
\begin{array}{ll} \textbf{Typical} & \textbf{NVAL} > 0 \\ \textbf{NVAL} < | \textbf{VARIABLES}| \\ \textbf{NVAL} < \underset{\textbf{range}}{\textbf{range}} (\textbf{VARIABLES.var}) \\ | \textbf{VARIABLES}| > 1 \end{array}
```

20050618 651

Symmetries

- NVAL can be decreased to any value ≥ 0 .
- Items of VARIABLES are permutable.
- All occurrences of two distinct values of VARIABLES.var can be swapped; all
 occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties

Extensible wrt. VARIABLES.

Remark

The atleast_nvalue constraint was first introduced by J.-C. Régin under the name k_diff in [341]. Later on the atleast_nvalue constraint was introduced together with the atmost_nvalue constraint by C. Bessière *et al.* in an article [62] providing filtering algorithms for the nvalue constraint.

Algorithm

[62] provides a sketch of a filtering algorithm enforcing arc-consistency for the atleast_nvalue constraint. This algorithm is based on the maximal matching in a bipartite graph.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	24	212	2470	35682	614600	12286024	279472266

Number of solutions for atleast_nvalue: domains 0..n

Solution density for atleast_nvalue

 $\overline{\textbf{NSCC}}, CLIQUE$

Solution density for atleast_nvalue

Length (n)		2	3	4	5	6	7	8
Total		24	212	2470	35682	614600	12286024	279472266
Parameter value	0	9	64	625	7776	117649	2097152	43046721
	1	9	64	625	7776	117649	2097152	43046721
	2	6	60	620	7770	117642	2097144	43046712
	3	-	24	480	7320	116340	2093616	43037568
	4	-	-	120	4320	97440	1992480	42550704
	5	-	-	-	720	42840	1404480	37406880
	6	-	-	-	-	5040	463680	21530880
	7	-	-	-	-	-	40320	5443200
	8	-	-	-	-	-	-	362880

Solution count for atleast_nvalue: domains 0..n

Solution density for atleast_nvalue

Parameter value as fraction of length

Solution density for atleast_nvalue

Parameter value as fraction of length

See also

comparison swapped: atmost_nvalue.

implied by: and, equivalent, imply, nand, nor, nvalue (\geq NVAL replaced by = NVAL), nvisible_from_end, nvisible_from_start, or, size_max_seq_alldifferent,

 \overline{NSCC} , CLIQUE

size_max_starting_seq_alldifferent, xor.
uses in its reformulation: not_all_equal.

Keywords

constraint type: counting constraint, value partitioning constraint.

filtering: bipartite matching, arc-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values.

20050618 655

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

 $\begin{aligned} & \textbf{Graph property(ies)} & & \textbf{NSCC} \geq \texttt{NVAL} \\ & \textbf{Graph class} & & \textbf{EQUIVALENCE} \end{aligned}$

Graph model

Parts (A) and (B) of Figure 5.106 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **NSCC** graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to a specific value that is assigned to some variables of the VARIABLES collection. The 4 following values 1, 3, 6 and 7 are used by the variables of the VARIABLES collection.

 $\overline{\textbf{NSCC}}, CLIQUE$

Figure 5.106: Initial and final graph of the atleast_nvalue constraint

20050618 657