DIJKSTRA'S ALGORITHM

Dijkstra's Algorithm solves the single source shortest path problem in O((E + V)logV) time.

We generate a *SPT* (shortest path tree) with given source as root. We maintain two sets, one set contains vertices included in shortest path tree, other set includes vertices not yet included in shortest path tree. At every step of the algorithm, we find a vertex which is in the other set (set of not yet included) and has minimum distance from source.

Below are the detailed steps used in Dijkstra's algorithm to find the shortest path from a single source vertex to all other vertices in the given graph.

Algorithm

- 1) Create a set *sptSet* (shortest path tree set) that keeps track of vertices included in shortest path tree, i.e., whose minimum distance from source is calculated and finalized. Initially, this set is empty.
- **2)** Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE. Assign distance value as 0 for the source vertex so that it is picked first.
- 3) While sptSet doesn't include all vertices
-a) Pick a vertex u which is not there in *sptSet* and has minimum distance value.
-b) Include u to sptSet.
-c) Update distance value of all adjacent vertices of u. To update the distance values, iterate through all adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from source) and weight of edge u-v, is less than the distance value of v, then update the distance value of v.

Let us understand with the following example:

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). The vertex 1 is picked and added to sptSet. So sptSet now becomes {0, 1}. Update the distance values of adjacent vertices of 1. The distance value of vertex 2 becomes 12.

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). Vertex 7 is picked. So sptSet now becomes {0, 1, 7}. Update the distance values of adjacent vertices of 7. The distance value of vertex 6 and 8 becomes finite (15 and 9 respectively).

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 6}. Update the distance values of adjacent vertices of 6. The distance value of vertex 5 and 8 are updated.

We repeat the above steps until *sptSet* doesn't include all vertices of given graph. Finally, we get the following Shortest Path Tree (SPT).

So this way we can find shortest distance from single source to all the vertices using Dijkstra's Algorithm.

Implementation of this algorithm can be found at the link given below.

http://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/

Also link to the video tutorial for Dijkstra's algorithm is given below.

https://www.youtube.com/watch?v=WN3Rb9wVYDY