

Non-convex Finite-Sum Optimization Via SCSG Methods

Lihua Lei, Cheng Ju, Jianbo Chen & Michael I. Jordan

Problem Setup

Unconstrained Finite-sum Objective:

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Assumptions

A1 $\nabla f_i(x)$ is uniformly bounded by \mathcal{H}^* for all $i \in [n]$ and $x \in \mathbb{R}^d$;

A2 $\nabla f_i(x)$ is L-Lipschitz for all $i \in [n]$.

A3 (Polyak-Lojasiewicz condition, optional):

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - \min f(x)).$$

Goal: Find an ϵ -approximate first-order stationary point y such that $\mathbb{E}\|\nabla f(y)\|^2 \le \epsilon.$

SCSG

Outer-Loop Update

Inputs: Initial value \tilde{x}_0 , number of epochs T, step-sizes $\{\eta_j\}_{j=1}^T$, block sizes $\{B_j\}_{j=1}^T$, mini-batch sizes $\{b_j\}_{j=1}^T$.

Procedure:

- 1: **for** t = 1, 2, ..., T **do**
- $\tilde{x}_j \leftarrow \text{SCSGepoch}(\tilde{x}_{j-1}; B_j, b_j, \eta_j)$

3: end for

Output: Sample \tilde{x}_T^* from $(\tilde{x}_j)_{j=1}^T$ with $P(\tilde{x}_T^* = \tilde{x}_j) \propto \eta_j B_j/b_j$

Inner-Loop/Within-Epoch Update (no mini-batch, i.e. $b_i \equiv 1$)

SVRGepoch

- 1: Input: x_0, η
- 2: $\mathcal{I} \leftarrow [n]$
- 3: $g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$
- 4: Generate $N \leftarrow n$
- 5: **for** $k = 1, 2, \dots, N$ **do**
- Randomly pick $i \in [n]$
- $\nu \leftarrow f_i'(x) f_i'(x_0) + g$
- $x \leftarrow x \eta \nu$
- 9: end for
- 10: Output: x_N

SCSGepoch

- 1: Input: x_0, η, B
- 2: Randomly pick \mathcal{I} with size B
- 3: $g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$
- 4: Gen. $N \sim \text{Geo with } \mathbb{E}N = B$
- 5: **for** $k = 1, 2, \cdots, N$ **do**
- Randomly pick $i \in [n]$
- 7: $\nu \leftarrow f_i'(x) f_i'(x_0) + g$
- 8: $x \leftarrow x \eta \nu$
- 9: end for
- 10: Output: x_N

Theoretical Results

Theorem 1. Let $\eta_j L = \gamma (B_j/b_j)^{-\frac{2}{3}}$. Suppose $\gamma \leq \frac{1}{6}$ and $B_j \geq 9$ for all j, then under Assumption A1,

$$\mathbb{E}\|\nabla f(\tilde{x}_j)\|^2 \leq \frac{5L}{\gamma} \cdot \left(\frac{b_j}{B_i}\right)^{\frac{1}{3}} \mathbb{E}(f(\tilde{x}_{j-1}) - f(\tilde{x}_j)) + \frac{6I(B_j < n)}{B_i} \cdot \mathcal{H}^*.$$

Magic of the geometric distribution

$$N \sim \text{Geo}(\gamma) \Longrightarrow \mathbb{E}(W_N - W_{N+1}) = \frac{1 - \gamma}{\gamma} (W_1 - \mathbb{E}W_N), \quad \forall W_1, W_2, \dots$$

Main challenge in the analysis: ν is no longer unbiased:

$$\mathbb{E}\nu = \nabla f(x) + e, \quad e = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \nabla f_i(x) - \nabla f(x).$$

Parameter settings analyzed in the paper:

$\overline{\eta_{j}}$	B_{j}	$ b_j $	Type of Objectives	Computation Cost
$\frac{1}{2LB^{2/3}}$	$O\left(\frac{1}{\epsilon} \wedge n\right)$	1	Smooth	$O\left(\frac{1}{\epsilon^{5/3}} \wedge \frac{n^{2/3}}{\epsilon}\right)$
$\frac{1}{2LB_j^{2/3}}$	$j^{rac{3}{2}}\wedge n$	1	Smooth	$\tilde{O}\left(\frac{1}{\epsilon^{5/3}} \wedge \frac{n^{2/3}}{\epsilon}\right)$
$\frac{1}{2LB_i^{2/3}}$	$O\left(\frac{1}{\mu\epsilon} \wedge n\right)$	1	Polyak-Lojasiewicz	$\tilde{O}\left(\left(\frac{1}{\mu\epsilon}\wedge n\right) + \frac{1}{\mu}\left(\frac{1}{\mu\epsilon}\wedge n\right)^{2/3}\right)$

Comparison With Other First-Order Methods

P-L		Smooth						
eneral	$\epsilon \sim n^{-1}$	$\epsilon \sim n^{-1/2}$	General					
Gradient Methods								
$\widetilde{O}\left(\frac{n}{\mu}\right)$	$O\left(n^2\right)$	$O\left(n^{3/2}\right)$	$O\left(\frac{n}{\epsilon}\right)$	GD				
-	$ ilde{O}\left(n^{11/6} ight)$	$\tilde{O}\left(n^{17/12}\right)$	$\widetilde{O}\left(rac{n}{\epsilon^{5/6}} ight)$	Best available				
_	$\tilde{O}\left(n^{11/6}\right)$	$\left \tilde{O}\left(n^{17/12} ight) ight $		Best available Stochastic Gra				

Stochastic Gradient Methods

SGD	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n\right)$	$O\left(n^2\right)$	$O\left(\frac{1}{\mu^2\epsilon}\right)$
Best available	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$	$O\left(n^{7/6}\right)$	$O\left(n^{5/3}\right)$	$\tilde{O}\left(n+\frac{n^{2/3}}{\mu}\right)$
SCSG	$\tilde{O}\left(\frac{1}{\epsilon^{5/3}} \wedge \frac{n^{2/3}}{\epsilon}\right)$	$ ilde{O}\left(n^{5/6} ight)$	$\tilde{O}\left(n^{5/3} ight)$	•••

- SCSG is the first algorithm that is provably better than SGD;
- SCSG is never worse than any stochastic gradient method in all regimes;
- SCSG is never worse than any gradient method in practical regimes;
- \bullet SCSG is the only algorithm that has sub-linear (to n) complexity in the practical regime $\epsilon \sim n^{-1/2}$.

Experiments

- MNIST dataset (50000 training, 10000 testing);
- A three-layer fully-connected neural network (FCN for short);
- A standard convolutional neural network LeNet (CNN for short).

Comparison of # Grad. Evaluation

Comparison of Wall Clock Time:

SCSG for Stochastic Optimization

It is almost direct to extend SCSG to the general stochastic optimization where the objective is

$$f(x) = \mathbb{E}_{\xi \sim G} F(x; \xi).$$

Modify the algorithm by

- Line 2: Gen. $\xi_1^*, \ldots, \xi_R^* \stackrel{i.i.d.}{\sim} G$;
- Line 3: $g \leftarrow \frac{1}{B} \sum_{i=1}^{B} \nabla F(x_0; \xi_i^*);$
- Line 6: Gen. $\xi_k \in [n]$;
- Line 7: $\nu \leftarrow F(x; \xi_k) F(x_0; \xi_k) + g$.

Complexity results:

- Smooth Case (Assumptions A1 A2): $\tilde{O}\left(\frac{1}{\epsilon^{5/3}}\right)$;
- P-L Case (Assumptions A1 A3): $\tilde{O}\left(\frac{1}{\mu\epsilon} + \frac{1}{\mu^{5/3}\epsilon^{2/3}}\right)$