$$f(x) = |x|^{x}$$

$$= \frac{1}{2} \left(\frac{1}{2} \right)^{x} = \frac{1}{2} \left$$

$$f(-\frac{1}{e}) = |-\frac{1}{e}|^{-\frac{1}{e}} = (\frac{1}{e})^{-\frac{1}{e}} = e^{\frac{1}{e}} \sim 1/4.$$

$$|\text{WTGRVALLI DI MONOTONIA} \quad f(x) > 0$$

$$|\chi|^{\times} \cdot (1 + \log |x|) > 0$$

$$|\chi|^{\times} = 0 \quad \text{Surpre rere}$$

(2)
$$1 + \log |x| > 0 - \log |x| > -1$$

 $2 \log |x| > e^{-1}$ $|x| > e$

$$X < -\frac{1}{e}$$
 V $X > \frac{1}{e}$

$$\frac{+1-1-1+}{+1-1-1+} = \frac{1}{x} = \frac{$$

$$\lim_{x \to 0^{\pm}} f(x) = \lim_{x \to 0^{\pm}} |x|^{x} |x|^{x} + \log |x| = -\infty$$

quind le rette tangent tendomo a divertare Verticali "Ruotando in senso Dranio "

$$f(x) = |X|^{\frac{1}{x}}$$

$$f(x) = C \xrightarrow{\log x}$$

$$f(x) = \log \cos x$$

$$\operatorname{Sen}_{x}$$

FUNZIONI IPERBOLICHE

Souh(x) = "sour i perbolico di x"

Cosh(x)

tah(x)

rettrenh(x) = arcrenh(x)

"rettorereno i perbolico" "arcoreno i perblico"

Sendix:=
$$\frac{e^{x}-e^{-x}}{2}$$

Domino: R

sinuetrie:

 $sub(-x) = \frac{e^{-x}-e^{-(-x)}}{2}$

$$\frac{1}{2} = \frac{e^{-x} - e^{x}}{2}$$

$$= \frac{e^{-x} - e^{x}}{2}$$

$$= -\frac{e^{x} - e^{x}}{2}$$

$$= -\frac{e^{x}$$

nt ar lan

f'(x) = 0
$$\Rightarrow$$
 x = 0 pto di flena

f'(x) > 0 senh x > 0 \Rightarrow x > 0

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 1 +

- 2 +

- 2 +

- 2 +

- 2 +

- 2 +

- 2 +

- 2 +

- 2 +

- 3 +

- 3 +

- 4 +

- 3 +

- 4 +

- 3 +

- 4 +

- 5 +

- 5 +

- 6 +

- 6 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

- 7 +

$$C = y + \sqrt{y^2 + 1}$$

$$\times = \log \left(y + \sqrt{y^2 + 1} \right) = 2$$

$$\text{cambriands i normi si ha}$$

$$\text{arcsenh} x = \log \left(x + \sqrt{x^2 + 1} \right)$$

$$\mathbb{R} \rightarrow \mathbb{R}$$

$$\left(\text{arcsenh} x \right)^{\frac{1}{2}} = \frac{1}{x + \sqrt{x^2 + 1}} \cdot \left(1 + \frac{1}{x^2 + 1} \cdot 2x \right)$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \cdot \left(\frac{1}{x^2 + 1} + \frac{1}{x^2 + 1} \cdot 2x \right)$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \cdot \left(\frac{1}{x^2 + 1} + \frac{1}{x^2 + 1} \cdot 2x \right)$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \cdot \left(\frac{1}{x^2 + 1} + \frac{1}{x^2 + 1} \cdot 2x \right)$$

0)s:
$$arcsenh x \in dispari!$$
 Verificare $f(-x) = -f(x)$

$$\log\left(-x + \sqrt{x^2 + 1}\right) = \log\left(x + \sqrt{x^2 + 1}\right)$$

VALR IDENTITA:

$$\cosh^2 x - \sinh^2 x = 1$$

Valgoro anche le forme di duplicazione e bisszione (e altre...)

 $Slnh(2x) = 2 Senhx \cdot coshx$ $\frac{e^{2x} - e^{-2x}}{2} = 2 \cdot \frac{e^{x} - e^{-x}}{2} \cdot \frac{e^{x} + e^{-x}}{2}$ Varilicare - ...

 $csh(2x) = csh^{2}x + senh^{2}x$ $= 2csh^{2}x - 1$ $= 2senh^{2}x + 1$

$$crsh^{2} = \frac{1 + crsh \times}{2}$$

$$senh^2 x = \frac{\cosh x - 1}{2}$$

Cosh
$$x = \frac{e^x + e^{-t}}{2}$$

Deminio = \mathbb{R} , e^x page

Panhivo , $\cosh(o) = 1$, $(\cosh x)' = \sinh x$
 $\frac{1}{\sqrt{2}}$

Non e^x invuhibile on \mathbb{R} , man e^x defining e^x arccosh e^x = e^x (e^x)

Per e^x = e^x

A port derivable in e^x = e^x
 e^x + e^x
 e^x + e^x
 e^x + e^x

$$toh x := \frac{Nenh x}{cnh x} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - x}}}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

 $\operatorname{orctgh}_{x} = \frac{1}{2} \operatorname{bg} \left(\frac{1+x}{1-x} \right)$ $\left(\operatorname{orctgh}_{x} \right)' = \frac{1}{1-x^{2}}$ $\int A L U I I o$