

"Mastering the game of Go with deep neural networks and tree search"

What is the game of Go?

• **Objective:** Surround a larger area of the board with your own stone than your opponent.

Rules:

- 1. Flow of the game black moves first
- 2. Capture Rule capturing stones of your opponent by surrounding all liberties
- 3. Eternity/Ko Rule player is not allowed to make a move that returns the game to the previous state of the game
- **4. Scoring** helps in evaluating points at the end of the game.

Capture Rule

Ko Rule

Scoring Rule

Can you think of similar games as "Go"?

What do these games have in Common?

Two-Player

Two players involved

Sequential

- Players take turns to move (take actions)
- Act alternately

Zero-sum

 Utility values of the two players at the end of the game have equal absolute value and opposite sign

Perfect Information

Each player can fully observe what actions other agents have taken

Problem Setting

To build Als that can play any of these "two-player sequential zero-sum perfect-information games."

Planning and its role in Al

Fundamental Question:

What is the optimal sequence of actions to achieve a goal?

Simple case: planning

The rules of the game(model) are given

Computer Go: drosophila of this kind of planning algorithm

Simple rules/model

Can be simulated very efficiently

Objective measure of progress

Define a two-player sequential zero-sum perfect-information games as a "Search Problem"

Game Tree of Go

Search space

	b = breadth	d = depth	Configurations = b ^d
Tic-Tac-Toe	9	9	9 ⁹
Chess	≈35	≈80	35 ⁸⁰
Go	≈250	≈150	250 ¹⁵⁰

Go possesses more configurations than the number of atoms in the Universe!!

Early Awakening

Evolving state-of-the-art approaches (1/2)

Existing program based on "Monte Carlo Tree Search"

Progress in Computer Go (2000 – 2015)

Evolving state-of-the-art approaches (2/2)

Convolutional Neural Networks

AlphaGo offline training pipeline

Back to how to reduce this search space?

Reducing Depth with Value Network

Reducing breadth with Policy Network

Basic Monte Carlo Tree Search

AlphaGo Monte Carlo Tree Search

Presented by: **Shubham Kamble**Supervisor: **Friedrich Solowjow**

RWTHAACHEN UNIVERSITY

Evaluating AlphaGo against computers

AlphaGo against humans

AlphaGo from DeepMind

2015: defeats a European Go Champion (Fan Hui, 2-dan professional) on a 19x19 board without handicap. It used both human and machine training.

Deep Mind's AlphaGo 2016:

Defeats former world champion Lee Sedol by 4-1.

DeepMind's AlphaGo Master 2017:

Defeats current world champion Ke Jie (also beat a 5-person team). Commentators noted that Ke appeared to borrow moves from AlphaGo 2016. But Ke noted that "AlphaGo is improving too fast" and is a different player from last year.

Progress in Computer Go (2000 – 2017)

Why is AlphaGo considered the state-of-the-art?

References

- Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree search. *Nature* **529**, 484–489 (2016).
- Schrittwieser, J., Antonoglou, I., Hubert, T. et al. Mastering Atari, Go, chess and shogi by planning with a learned model. *Nature* **588**, 604–609 (2020).
- Gelly, S. & Silver, D. Combining online and offline learning in UCT. In 17th International Conference on Machine Learning, 273–280 (2007).
- Maddison, C. J., Huang, A., Sutskever, I. & Silver, D. Move evaluation in Go using deep convolutional neural networks. 3rd International Conference on Learning Representations (2015).
- Sutton, R. & Barto, A. Reinforcement Learning: an Introduction (MIT Press, 1998).
- Gelly, S. et al. The grand challenge of computer Go: Monte Carlo tree search and extensions. Commun. ACM 55, 106–113 (2012).
- KGS. Rating system math. http://www.gokgs.com/help/rmath.html.
- AlphaGo The Movie | Full award-winning documentary -https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind
- ICML 2017: Test of Time Award (Sylvain Gelly & David Silver) https://www.youtube.com/watch?v=Bm7zah_LrmE&t=448s&ab_channel=DeepMind
- Tesla's Al Day video https://youtube.com/watch?v=j0z4FweCy4M

Questions ???

