Experiments

Date Preprocessing, Metrics, Model Section, and Ensembling

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2014

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- Cross-Validation
- Ensemble Methods
 - Voting
 - Bagging
 - Boosting

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Inputs and Assumptions

- Elements of the training set $\mathcal{X} = \left\{ \left(\mathbf{x}^{(t)}, r^{(t)} \right) \right\}_{t=1}^{N}$ are assumed to be i.i.d. and drawn from the same (unknown) joint distribution $F(\mathbf{x}, r)$
 - $\mathbf{x}^{(t)} \in \mathbb{R}^d$ and d is called the **input dimension**
- A new pair (x', r') (whose r' is unknown and will be predicted by our model) is also assumed to be drawn from the same distribution
 - If x' is assumed to come from a different distribution, then we call the learning task **transitive learning**

Features

- As we have seen, data may be raised to another space before fed into a learning algorithm
 - E.g., kernelization
- We call the space and dimension of the raised instances the feature space and feature dimension respectively
- Input space \neq feature space

Data Preprocessing

- Examples are usually *preprocessed* before becoming the input
- Why preprocessing?
- Real world data are generally
 - Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - Noisy: containing noises or outliers
 - Noises happen due to imprecision in recording the inputs or latent (or hidden) attributes that affect the actual labeling
 - Outliers happen due to errors in labeling examples
 - Inconsistent: different data sources may use different names, scale, precision, etc.

Tasks in Data Preprocessing

- Data integration: using multiple databases, data cubes, or files
- Data cleaning: fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data transformation: normalization and aggregation
- Data reduction: reducing the volume but producing the same or similar analytical results
 - Discretization: part of data reduction, replacing numerical attributes with nominal ones

Data Integration

- How to correct/merge inconsistent data?
 - No generally good solution
 - Usually rely on domain knowledge or human experts

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Filling Missing Values

- Missing values could be attributes or labels
- How?

● Ignore the instance: usually done when the label is missing 欠不用錢

- Use the attribute mean (or majority nominal value) to fill in the missing value
- Use the attribute mean (or majority nominal value) for all samples belonging to the same class
- Predict the missing value by using a learning algorithm: consider the
 attribute with the missing value as the "label" and run a learning
 algorithm (usually Bayes or decision tree) to predict the missing value
 from other attributes 本末倒置:用其他的Attribute把它Predict出來

Identify Outliers and Smooth-Out Noises

- How? _{首方區}
- Binning (histograms): reducing the number of attribute values by grouping them into intervals (bins) 也是一種(1D的)clustering
 - Sort the attribute values and partition them into bins
- Equal-interval (equiwidth) binning: split the whole range of values in intervals with equal size
- Equal-frequency (equidepth) binning: use intervals containing equal number of values
- Then smooth by bin means, bin median, or bin boundaries
- Clustering: group values in clusters and then detect and remove outliers (automatic or manual) 看看有沒有離太遠的
- Regression: smooth by fitting the data into regression functions
 Regression, 改用Regression的值

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Normalization

- Scaling attribute values to fall within a specified range
 - Example: to transform v in [min, max] to v' in [0,1], apply v' := (v min)/(max min)
- Scaling by using mean and standard deviation
 - Useful when min and max are unknown or when there are outliers
 - Example: Z-normalization: v' := (v mean)/std
- Why normalization?
 - To prevent some attributes from dominating the performance of a learning algorithm 資料尺度原本就不同
 - E.g., those with wide value ranges

Aggregation

- Combing two or more attributes into a single attribute
 - For example, merging daily sales attributes to obtain monthly sales attributes 有時候,特徵並不是互相獨立的
- Why aggregation?
 - Data reduction
 - If done properly, aggregation can act as scope or scale, providing a high level view of data instead of a low level view

Attribute Construction/Augmentation:

- Replacing or adding new attributes inferred by existing attributes
- Why?
- E.g., for social networking data where each instance represents a node in a social graph, it is good to create attributes for each node summarizing the structure of its two or three hops ego network

對於每個人,紀錄他的朋友、朋友的朋友、朋友的朋友的朋友, 的某些特徵,可以做為這個人的某種意義上的特徵

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Reducing the Number of Instances

Sampling

就 這樣 重點是要留下有代表性的資料

Reducing the Number of Attributes

- Data cube aggregation: applying roll-up, slice or dice operations
- Removing irrelevant attributes: attribute selection
 - Filtering and wrapper methods; e.g., forward/backward attribute selection 去除一個Attribute,看看預測準確度(emp error)有沒有下降,如果沒有,就代表它不重要,就真的把它拿掉
- Principle component analysis (numeric attributes only) PCA降維
 - Searching for a lower dimensional space that can best represent the data

Reducing the Number of Attribute Values

- Discretization: round the values to their "representative" ones
- Unsupervised discretization (labels are not used)
 - Binning (histograms): reducing the number of attributes by grouping them into intervals (bins)
 - Eequiwidth or equidepth
 - Clustering: grouping values in clusters
- Supervised discretization
 - Discretization based on *concept hierarchies*

由下往上聚類,越底層越細節 由上往下分類則為Decision tree

Concept Hierarchies based on Class Boundaries

- Three steps:
 - Sort values 只記分界(如正→負的分界或負→正的分界)
 - Place breakpoints between values belonging to different classes
 - If too many intervals, merge intervals with equal or similar class distributions
 - Repeat the above steps to create a concept hierarchy

反過來就是Decision Tree

- 1. 把一些資料放左邊,一些放右邊
- 2. 看看哪種放法有最高的Entropy
- 3. 就決定這樣切
- 4. 回到1,繼續切下去

Information-based Concept Hierarchies (1)

- Information in a class distribution:
 - Denote a set of five values occurring in instances belonging to two classes (+ and -) as [+,+,+,-,-]; that is, the first 3 belong to "+" tuples and the last 2 to "-" tuples
 - Then, Info([+,+,+,-,-]) = -(3/5) * log(3/5) (2/5) * log(2/5)
 - log's are base 2
 - 3/5 and 2/5 are relative frequencies (probabilities)
- Information after a split
 - Info([+,+],[+,-,-]) = (2/5) * Info([+,+]) + (3/5) * Info([+,-,-])
 - 2/5 and 3/5 are weight coefficients

Information-based Concept Hierarchies (2)

- Method:
 - Sort the values
 - Calculate information in all possible splits
 - No need to consider split points between values belonging to the same class as it will increase information
 - Choose the split that minimizes information
 - Apply the same to the resulting intervals until some stopping criterion is satisfied
 - E.g., there's no split that leads to enough reduction in information

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

False Positives and Negatives (1/2)

- A negative instance which is wrongly predicted as positive is called the *false positive*; and a positive instance which is wrongly predicted as negative is called the *false negative*
 - They are all errors, why distinguished?
 - Depending on applications, they may not be equally serious
 - E.g., spam filtering, cancer detection, etc.

寧可錯喵(False Positive)一萬,不可錯放一喵(False Negative)

False Positives and Negatives (2/2)

- Unfortunately, we don't know C
- We can estimate the false positive/negative rate by a testing set
 - Remove certain examples in the training set and put them into the testing set
 - Examples in the testing set do not participate in the training process
 - After training, use the classifier to predict the labels of the instances in the testing set and compare with their actual label to obtain the confusion matrix:

	Predicted Class		
True Class	Positive	Negative	Total
Positive	tp 🚜	u ±: fn	р
Negative	fp 157	tn tn	n
Total	p'	n'	T

Performance Measures

Name	Formula	
Error	f(fp+fn)/T	
Accuracy	1 — error	
FP-Rate	fp/n 放掉的neg占neg	
FN-Rate	fn/p 放掉的pos占pos	
Precision	tp/p' predict 的pos對多	少
Recall (TP-Rate)	tp/p predict 的neg對多	少
Sensitivity (TP-Rate)	tp/p 多少pos正確找出來	ξ
Specificity	tn/n 多少neg正確找出來	₹

ROC Curves (1)

- If a classifier gives soft values (e.g., [-1,1]) rather than the hard ones $\{-1,1\}$, its performance varies with a threshold θ
 - Instances with scores larger/smaller than θ is predicted as positive/negative respectively
- The Receiver Operating Characteristics (ROC)
 curve measures the performance of a classifier at
 different thresholds
 - Rank the T instances from the highest to the lowest score
 - For each threshold $\theta \in \{0,1,\cdots,T\}$, predict those instances before (inclusive)/after (exclusive) θ as positive/negative respectively, and then calculate tp_{θ} and fp_{θ}
 - Connect the pairs (tp_0, fp_0) , (tp_1, fp_1) , \cdots , (tp_T, fp_T) and we obtain an ROC curve

ROC Curves (2)

- What does the diagonal line means?
 - The ROC curve of pure guesses
- How should the line given by a good classifier look like?
 - The more a classifier gets closer to the upper-left corner the better

ROC Curves (3)

- Which one is the best?
 - Classifiers B and C are better than A
 - B and C are preferred under different loss conditions: if you want 60% of the true positives from the predictions you should pick B at $\theta = 0.15T$; if you want 90% then pick C at $\theta = 0.4T$

AUC

- We can reduce an ROC curve to a single value by calculating the Area Under the Curve (AUC)
 - An ideal classifier has AUC 1, and the pure guess has 0.5
- What does AUC mean?
 - AUC is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one [Homework: By partitioning the AUC horizontally]

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Measuring the Regression Performance

- One common measure is the *coefficient of determination*: $R^2 = 1 E_{RSF}$
- $E_{RSE} = \frac{\sum_{t=1}^{N} (r^{(t)} h(x^{(t)}; \theta))^2}{\sum_{t=1}^{N} (r^{(t)} \overline{r})^2}$ is called the **relative square error**
 - What doe it mean?
 - Indicates how good our prediction is as compared to the naive prediction by <u>averaging</u> 你的predictor和亂猜(猜平均)的predictor
 - The smaller the E_{RSE} the better 兩者的Error Rate相比,你的好多少
- A good regression function h should have R^2 close to 1

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Generalization Performance

- Assuming a hypothesis class \mathcal{H} , let $h \in \mathcal{H}$ be the hypothesis trained from the dataset $\mathcal{X} = \{(\mathbf{x}^{(t)}, r^{(t)})\}_{t=1}^N$ by minimizing the empirical error: $R_{emp}[h] := \frac{1}{N} \sum_{t=1}^N I(h(\mathbf{x}^{(t)}), r^{(t)})$
 - I is the loss function
- Generalization error of h:

$$R[h] := \int p(\mathbf{x}, r) I(h(\mathbf{x}), r) d(\mathbf{x}, r) = E_{\mathfrak{I} \times \mathcal{L}} [I(h(\mathbf{x}), r)]$$

- Let $h^* := \operatorname{arginf}_{g \in \mathcal{H}} R[g]$ and $R^* := \operatorname{inf}_{f: \mathcal{X} \to \mathbb{R}} R[f]$
- Our ultimate goal:

$$R[h] \rightarrow R^*$$

- $R[h] R^* = R[h] R[h^*] + R[h^*] R^*$
 - $R[h] R[h^*]$ is called the **estimation error**
 - $R[h^*] R^*$ is called the **approximation error**

Model Selection

- We need to pick H with right complexity to prevent both underfitting and overfitting
- In the context of kernelized and regularized linear models, we need to pick good hyperparameters
 - E.g., γ in the Gaussian RBF kernel, and the coefficient λ of a regularization term
- How to determine good hyperparameters?

Three-Way Data Splits

- Idea1: try out all possible combinations of hyperparameters and pick the one which gives the least testing error
- Good idea?
 - Problem 1: in practice, we may not have time to try out all possible combinations
 - Global search techniques such as the grid search can be used speed up try outs
 其實就爆搜
 - Problem2: testing instances are revealed in the training process, so you
 cannot report the generalization performance of the learned hypothesis
 anymore
- Idea 2: in addition to the testing set, we can split a validation set
 from the training set and then choose the combination that results in the least validation error
 - Testing set is used only for the evaluation of generalization performance

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- **5** Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Problems of Holdout Methods

- We holdout the validation and testing sets for the model selection and performance evaluation respectively
- Drawbacks?
- Given a small dataset, we may not afford the "luxury" of setting aside
 a portion of the dataset from training
 Dataset小、就比較窘迫
- The holdout estimate of error rate will be misleading if we happen to get an "unfortunate" split
- Improvement?

Cross-Validation (1) 好習慣 重複利用

- We usually perform *K-fold cross-validation* to exploit the labeled data both for training and other holdout tasks
 - Applicable to either model selection or generalization performance evaluation
- For example, for model selection:
 - Split the training set evenly into K subsets (folds)
 - Given a particular combination of hyperparameters, train K hypotheses h_1, \dots, h_K where each h_i is trained on all but the ith fold
 - Calculate error of each h_i made on the *i*th fold, and average the errors of h_i 's to obtain the *cross-validation error*
 - Pick the combination of hyperparameters that results in the least cross-validation error
- Similar for generalization performance evaluation

Cross-Validation (2)

- How many folds (K) we need?
- The cross-validation error is an average of the estimators of the true errors on different folds
 - The mean square error between each estimator and its true error can be expressed as $(bias)^2 + variance$ (see appendix: Statistics)
- With a large K, the cross-validation error tends to have a small bias but large variance
 - Small bias since each h_i is trained on more examples
 - Large variance because training samples are more similar and the h_i 's are more positively correlated
- Conversely, with a small K, the cross-validation error tends to have a large bias but small variance
- Usually, K = 5 or 10

非常窘迫的時候

• For very small dataset (where error is dominated by bias), we can choose K = N, which we call the *leave-one-out cross-validation* K = N-1

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Rationale

- There is no single learning algorithm that in any domain always induces the most accurate learner.
- By suitably combining multiple base-learners, the accuracy can be improved.

用很多Leaners 組合出更強大的Learner

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Voting

 The simplest way to combine multiple classifiers is by voting, which corresponds to taking a linear combination of the learners:

$$y_i = \sum_j w_j d_{ji}$$
 where $w_j \geqslant 0$, $\sum_j w_j = 1$.

• In the simplest case, all learners are given equal weight $w_j = 1/L$ and we have simple voting called **plurality voting** that corresponds to taking an average. 平均、中位數、眾數...

Rule	Fusion function $f\left(\cdot\right)$
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \geqslant 0, \sum_j w_j = 1$
Median	$y_i = median_j d_{ji}$
Minimum	$y_i = \min_j d_{ji}$
Maximum	$y_i = \max_j d_{ji}$
Product	$y_i = \prod_j d_{ji}$

Table: Classifier combination rules

Expected Value and Variance (1/2)

• Let's assume that d_j are i.i.d. with expected value $E[d_j]$ and variance $Var(d_j)$. When $w_j=1/L$, the expected value and variance of the output are

$$E\left[y\right] = E\left[\sum_{j} \frac{1}{L}d_{j}\right] = \frac{1}{L}LE\left[d_{j}\right] = E\left[d_{j}\right]$$

$$Var\left(y\right) = Var\left(\sum_{j} \frac{1}{L}d_{j}\right) = \frac{1}{L^{2}}Var\left(\sum_{j} d_{j}\right) = \frac{1}{L^{2}}L \times Var\left(d_{j}\right) = \frac{1}{L}Var\left(d_{j}\right)$$

- We see that the expected value doesn't change, so the bias doesn't change.
- But variance, and therefore mean square error, decreases as the number of independent voters, *L*, increases.

很多Voter一致認為是這個答案: 那就應該要有更多信心

Expected Value and Variance (2/2)

• In the general case where d_i are **not** i.i.d.,

$$Var\left(y\right) = \frac{1}{L^{2}} Var\left(\sum_{j} d_{j}\right) = \frac{1}{L^{2}} \left[\sum_{j} Var\left(d_{j}\right) + 2\sum_{j} \sum_{i < j} Cov\left(d_{j}, d_{i}\right)\right]$$

which implies that if learners are positively correlated, variance increases.

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- 3 Generalizability and Model Selection
- 4 Cross-Validation
- Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Bagging

- **Bagging** is a voting method whereby base-learners are made different by training them over slightly different training sets.
- Generating L slightly different samples from a given sample is done by bootstrap, where given a training set X of size N, we draw N instances randomly from X with replacement
 - Because sampling is done with replacement, it is possible that some instances are drawn more than once and that certain instances are not drawn at all. 可能會有點不公平(資料的利用率沒有保證)
- ② When L samples $\mathcal{X}_j, j=1,\ldots,L$, are generated, the base-learners d_j are trained with these L samples in \mathcal{X}_j .

- Data Preprocessing
 - Why?
 - Data Cleaning
 - Data Transformation
 - Data Reduction
- Performance Measures
 - Metrics for Classification
 - Metrics for Regression
- Generalizability and Model Selection
- 4 Cross-Validation
- Ensemble Methods
 - Voting
 - Bagging
 - Boosting

Boosting

- In bagging, generating complementary base-learners is left to chance and to the unstability of the learning method.
- In boosting, we actively try to generate complementary base-learners by training the next learner on the mistakes of the previous learners.
- The original boosting algorithm combines three weak learners to generate a strong learner.
 - A weak learner has error probability less than 1/2, which makes it better than random guessing on a two-class problem, and a **strong** learner has arbitrarily small error probability.

只要投票者有一定素質,那麼越多人來投票,就越容易選出理想的人選

The Original Boosting Algorithm

- Given a large training set, randomly divide it into three. X₁, X₂, X₃
- ② Use X_1 to train d_1 and feed X_2 to d_1 for validation
- **3** Use all instances misclassified by d_1 and also as many instances on which d_1 is correct from \mathcal{X}_2 to train d_2 . Then feed \mathcal{X}_3 to d_1 and d_2 .
- Use the instances on which d_1 and d_2 disagree to train d_3 .
- **3** During testing, given an instance, give it to d_1 and d_2 . If they agree, that is the response, otherwise the response of d_3 is taken.
 - The disadvantage is that it requires a very large training sample.

AdaBoost (1/2)

- We can instead use *AdaBoost* which uses the same training set over and over and thus need not be large.
- The idea is to modify the probabilities of drawing the instances as a function of the error.
- Let p_j^t denote the probability that the instance pair (x^t, r^t) is drawn to train the jth base-learner and let ϵ_j denote the error rate of d_j on the dataset used at step j.

AdaBoost (2/2)

- Training
- 1 Initialize $p_1^t = 1/N$, $t = 1, \dots, N$.
- ② Start from j = 1:
 - Randomly draw X_j from X with probabilities p_i^t to train d_j .
 - ② Since AdaBoost requires $\epsilon_j < 1/2$, we stop adding new base-learners if not.
 - **9** Define $\beta_j = \epsilon_j/(1-\epsilon_j) < 1$ and set $p_{j+1}^t = \beta_j p_j^t$ if d_j correctly classifies x^t . Otherwise, $p_{j+1}^t = p_j^t$.

 - Testing
- Given x, calculate $d_j(x)$ for all j.
- ② Calculate class outputs, $i=1,\cdots,K$: $y_i=\sum_j \left(\log\frac{1}{\beta_j}\right) d_{ji}(x)$.

Example

Large Margin Perspective

- When adding a new base-learner, we increase the probability of drawing a misclassified instance. Thus d_{j+1} focuses more on instances misclassified by d_j .
- Given an instance, all d_j take a weighted vote where $w_j = \log(1/\beta_j)$ is proportional to the base-learner's accuracy.
- It can been shown that AdaBoost can increase the margin, whose aim is similar to that of the SVM.

C4.5 decision trees (Schapire et al., 1998).