Bayesian Networks

Discussion: Practice with Bayesian Networks

ECE/CS 498 DS University of Illinois

Agenda

- Joint probability distribution
- Information vs causal flow
- Inferencing with Bayesian Networks
- Calculating parameters required for computations

ICA 2 Example

- Virus (V) ∈ {Yes, No}
- Spam (S) ∈ {Yes, No}
- Warning from Antivirus Software (W) ∈ {Yes, No}
- Configuration (C) ∈ {High, Medium, Low}
- Resource Utilization (R) ∈ {High, Low}
- Speed of Bayes Engine (B) ∈{Fast, Slow}

Joint Probabilities

Joint Probability Distribution

- In general, a joint probability distribution describes the probability of multiple events happening at the same time
 - This is very useful when trying to predict outcomes in systems with multiple variables
 - Conditional probabilities can be derived using joint probabilities
- To specify arbitrary joint distribution, we need many parameters
 - Parameter = known probability value from existing data
 - # parameters required= (# unique combinations of variable values) -1
 - "-1" comes from the fact that all joint probability values sum to 1
 - If we enumerate *n* combinations of variable values, and we know the first *n-1*, then

$$parameter_n = 1 - \sum_{k=1}^{n-1} parameter_k$$

- Sometimes, these are just found empirically with data

Joint Probability Distribution

- Example: calculate number of parameters (without Bayesian Network) for joint distribution P(V, S, W, C, R, B)
 - $-\{V,S,W,R,B\}$ can all take on 2 values, while C takes on 3 values
 - Thus, to specify P(V, S, W, C, R, B), we need (2^{5*}3) -1 = 95 parameters!

Information vs Causal Flow

Causal Flow

- So far, we have just studied causal flow in Bayesian Networks
- <u>Causal flow</u> defines the path of causality between variables in a Bayesian Network
 - For example, a directed edge from V to S indicates that the presence of a virus (V) causes some change in behavior of the spam messages (S)

Information Flow

- In addition to causal flow, we can also track <u>information flow</u>, which describes how variables provide information about one another
- For example,
 - Does knowing something about V change your belief about R?
 - Given B, does knowing something about W change your belief about C?

Trail Review

- A trail is a sequence of vertices/edges in a graph where no edge is repeated
 - e.g. $W \leftarrow V \rightarrow B \leftarrow R$ and $S \leftarrow V \rightarrow B$ are trails
 - Arrows must match directed edges in graph
- A v-structure is a specific trail with three nodes consisting of two parents and a common child
 - e.g. $V \rightarrow B \leftarrow R$ and $C \rightarrow B \leftarrow R$ are two v-structures
 - Can you find the last v-structure?

- Suppose that '—' represents an arbitrary directional arrow...
- A given trail $X_1 ... X_n$ is said to be <u>active</u> if there is influence between X_1 and X_n
 - Only 1 active trail is needed for there to be probabilistic influence between X_1 and X_n
- A trail $X_1 ... X_n$ is active if:
 - It has no v-structures
- A trail $X_1 ... X_n$ is active given $Z = \{Z_1, Z_2, ..., Z_l\}$ if:
 - For every v-structure $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, the collider node X_i or any of its descendants are in Z
 - No non-collider node X_i on the trail is in Z

Reference: Koller, Probabilistic Graphical Models https://www.youtube.com/watch?v=JSrNWurmyLU

- Is $S \perp B$?
 - The only trail between S and B is $S \rightarrow V \rightarrow B$. There are no v-structures on this trial. Thus, this is an active trail, and the independence relationship does not hold (i.e. there is probabilistic influence between S and B).

- Is $V \perp R$?
 - The only trail between V and R is $V \rightarrow B \leftarrow R$. Since B is a collider node in a v-structure, this trail isn't active. Therefore, the independence relationship holds.

- Is $V \perp R \mid B$?
 - The only trail between V and R is $V \to B \leftarrow R$. Since B is a collider node in a v-structure, and since B is observed, the trail is active. Therefore, the independence relationship does not hold (i.e. there is probabilistic influence between V and R).

More Practice

- Is $W \perp C|S$?
- Is $V \perp B$?
- Is $S \perp R \mid B$?

Inference Example

Inference Task

- Given the following information, you need to use the provided CPTs to decide if there is a virus in the system
 - Configuration (C) = High
 - Resource Utilization (R) = High
 - Spam Message (S) = Yes
 - Anti-virus Warning (W) = Yes
 - Bayes Speed (B) = Slow

Inference Task

In other words,

Is P(V=Yes | C=High, R=High, S=Yes, W=No, B=Slow) > P(V=No | C=High, R=High, S=Yes, W=No, B=Slow)?

- Alternatively, is Is P(V=Yes | C=High, R=High, S=Yes, W=No, B=Slow) > 0.5?
- We generally don't use the latter approach as it requires computing the normalizing factor for the posterior...

Conditional Probability Tables

P(V,S,W,B,C,R) = P(S|V)P(W|V)P(B|V,C,R)P(C)P(V)P(R)

V (Virus)	C (Configuration)	R (Utilization)	P(B=Slow V,C,R)
Yes	Low	Low	0.8
Yes	Low	High	0.9
Yes	Medium	Low	0.5
Yes	Medium	High	0.75
Yes	High	Low	0.4
Yes	High	High	0.6
No	Low	Low	0.25
No	Low	High	0.4
No	Medium	Low	0.1
No	Medium	High	0.35
No	High	Low	0.05
No	High	High	0.2

Configuration (C) = High
Resource Utilization (R) = High
Spam Message (S) = Yes
Anti-virus Warning (W) = Yes
Bayes Speed (B) = Slow

V (Virus)	P(W=Yes V)	
Yes	0.7	
No	0.2	

V (Virus)	P(S=Yes V)	
Yes	0.6	
No	0.2	

P(V=Yes) = 0.2 P(C=High) = 0.25 P(R=High) = 0.4

```
P(V = Yes | C = High, R = High, S = Yes, W = No)

\propto P(S = Yes | V = Yes) * P(W = No | V = Yes)

* P(B = Slow | V = Yes, C = High, R = High) * P(C = High)

* P(R = High) * P(V = Yes)

= 0.6 * 0.3 * 0.6 * 0.25 * 0.4 * 0.2 = \mathbf{0.00216}

P(V = No | C = High, R = High, S = Yes, W = No)

\propto P(S = Yes | V = No) * P(W = No | V = No)

* P(B = Slow | V = No, C = High, R = High) * P(C = High)

* P(R = High) * P(V = No)

= 0.2 * 0.8 * 0.2 * 0.25 * 0.4 * 0.8 = \mathbf{0.00256}
```

Thus, using MAP rule, we decide that there is no virus in the system.

Counting Required

Parameters

 After factorizing the joint distribution per the Bayesian Network, we arrive at

$$P(V, S, W, B, C, R) = P(S|V)P(W|V)P(B|V, C, R)P(C)P(V)P(R)$$

 How do we calculate the number of required parameters for this factorization?

$$P(V,S,W,B,C,R) = P(S|V)P(W|V)P(B|V,C,R)P(C)P(V)P(R)$$

Consider P(R)

P(R = Low)	P(R = High)
k	1-k

• We only need 1 parameter in order to fully determine P(R)

$$P(V,S,W,B,C,R) = P(S|V)P(W|V)P(B|V,C,R)P(C)P(V)P(R)$$

• Consider P(W|V)

Virus	P(W = Yes V)	P(W = No V)
V=Yes	k_1	$1 - k_1$
V=No	k_2	$1 - k_2$

• We only need 2 parameters in order to fully determine P(W|V)

P(V,S,W,B,C,R) = P(S|V)P(W|V)P(B|V,C,R)P(C)P(V)P(R)

Now, how many total parameters are required?

- P(C): 2, P(R): 1, P(V): 1, P(B|V,C,R): 12, P(W|V): 2, P(S|V): 2
- Total = 2 + 1 + 1 + 12 + 2 + 2 = 20