Week 7 – part 1: Models and data

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 7 – Optimizing Neuron Models For Coding and Decoding

Wulfram Gerstner EPFL, Lausanne, Switzerland

7.1 What is a good neuron model?

- Models and data

7.2 AdEx model

- Firing patterns and adaptation

7.3 Spike Response Model (SRM)

- Integral formulation

7.4 Generalized Linear Model

- Adding noise to the SRM

7.5 Parameter Estimation

- Quadratic and convex optimization

7.6. Modeling in vitro data

- how long lasts the effect of a spike?

7.7. Helping Humans

Week 7 – part 1: Models and data

7.1 What is a good neuron model?

- Models and data

7.2 AdEx model

- Firing patterns and adaptation

7.3 Spike Response Model (SRM)

- Integral formulation

7.4 Generalized Linear Model

- Adding noise to the SRM

7.5 Parameter Estimation

- Quadratic and convex optimization

7.6. Modeling in vitro data

- how long lasts the effect of a spike?

7.7. Helping Humans

Neuronal Dynamics – 7.1 Neuron Models and Data

- -What is a good neuron model?
- -Estimate parameters of models?

Neuronal Dynamics – 7.1 What is a good neuron model?

- A) Predict spike times
- B) Predict subthreshold voltage
- C) Easy to interpret (not a 'black box')
- D) Flexible enough to account for a variety of phenomena
- E) Systematic procedure to 'optimize' parameters

(1)
$$\tau \frac{du}{dt} = f(u) + RI(t)$$
 (2) If $u = \theta_{reset}$ then reset to $u = u_r$

What is a good choice of *f*?

- (i) Extract f from more complex models
- (ii) Extract f from data

(i) Extract f from more complex models

$$\tau \frac{du}{dt} = f(u) + RI(t)$$

A. detect spike and reset resting state

Separation of time scales: Arrows are nearly horizontal

Spike initiation, from rest

See week 4: 2dim version of Hodgkin-Huxley

$$\tau \frac{du}{dt} = F(u, w) + RI(t) \qquad \qquad w \approx w_{rest}$$

Hodgkin-Huxley
$$\tau_w \frac{dw}{dt} = G(u, w)$$
 B. Assume w=Wrest

(i) Extract f from more complex models $\tau \frac{du}{dt} = f(u) + RI(t)$

See week 4: 2dim version of Hodgkin-Huxley

$$\tau \frac{du}{dt} = F(u, w_{rest}) + RI(t)$$
 Separation of time scales
$$\tau_{w} \frac{dw}{dt} = G(u, w) \xrightarrow{w} w \approx w_{rest}$$

(ii) Extract f from data Badel et al. (2008)

$$\tau \frac{du}{dt} = f(u) + RI(t)$$

$$\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

$$\int_{0}^{\vartheta} (u) dt = \int_{0}^{\vartheta} (u) dt = \int_{0}^{$$

Exp. Integrate-and-Fire, Fourcaud et al. 2003

(1)
$$\tau \frac{du}{dt} = f(u) + RI(t)$$

(2) If $u = \theta_{reset}$ then reset to $u = u_r$

Best choice of *f*: linear + exponential

$$\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

BUT: Limitations – need to add

- -Adaptation on slower time scales
- -Possibility for a diversity of firing patterns
- -Increased threshold ${\cal P}$ after each spike
- -Noise

Neuronal Dynamics – Quiz 7.1.

The exponential integrate-and-fire model [] can be extracted from data [] can be extracted from two-dimensional neuron model under the assumption of a separation of time scales [] has a linear and an exponential term in the voltage equation [] accounts for adaptation [] accounts for bursting