Resumen: Requisitos Funcionales vs No Funcionales

El análisis de requisitos es clave para el éxito de un sistema o software. Estos requisitos se dividen en dos tipos principales:

¿Qué son los Requisitos Funcionales?

Son las funciones específicas que el sistema debe realizar. Representan lo que el usuario espera que haga el sistema (por ejemplo: iniciar sesión, procesar pagos, enviar notificaciones).

- Se enfocan en: Comportamientos visibles, operaciones del sistema.
- Ejemplos: Autenticación de usuarios, consultar saldo, hacer pedidos.

¿Qué son los Requisitos No Funcionales?

Son características de calidad que determinan *cómo* debe funcionar el sistema. Se centran en atributos como rendimiento, seguridad y usabilidad.

- También llamados: Requisitos no conductuales.
- **Ejemplos:** Tiempo de respuesta, escalabilidad, facilidad de mantenimiento, disponibilidad del sistema.

¿Qué son los Requisitos Extendidos?

Son requisitos deseables, pero que pueden estar fuera del alcance inicial del proyecto.

• **Ejemplos:** Registrar métricas, monitorear el rendimiento del sistema.

Ejemplos Comparativos

1. Sistema Bancario Online

- o Funcionales: Login, ver saldo, recibir notificaciones.
- No funcionales: Encriptación, respuesta en menos de 2 segundos, alta disponibilidad.

2. App de Entrega de Comida

o Funcionales: Ver menú, hacer pedidos, rastrear entregas.

 No funcionales: Carga rápida, interfaz intuitiva, soportar pedidos simultáneos.

Diferencias Clave

Aspecto Requisitos Funcionales Requisitos No Funcionales

Qué describe Lo que hace el sistema Cómo lo hace

Enfocado en Funciones del sistema Rendimiento y calidad

Ejemplos Login, reportes, procesos Seguridad, usabilidad, escalabilidad Medición Fácil de probar Más difícil, requiere benchmarks

Evaluación Pruebas funcionales Pruebas de rendimiento, seguridad, etc.

Importancia del Equilibrio

Equilibrar ambos tipos de requisitos es crucial para:

- Mejorar la experiencia del usuario.
- Evitar cuellos de botella y fallos.
- Aumentar la eficiencia y seguridad del sistema.
- Reducir costos a largo plazo.
- Facilitar la evolución del sistema.

Desafíos Comunes

- Ambigüedad en la definición de requisitos.
- Cambios frecuentes durante el proyecto.
- Dificultad para priorizar entre requisitos funcionales y no funcionales.
- Complejidad al medir requisitos no funcionales.
- Requisitos que pueden superponerse o entrar en conflicto.

Cómo Recopilar Requisitos

Funcionales:

• Entrevistas, encuestas, talleres con usuarios o interesados.

No funcionales:

• Pruebas de rendimiento, estándares de seguridad, tests de usabilidad.

Aspecto	Requisitos Funcionales	Requisitos No Funcionales
Definición	Qué debe hacer el sistema (funciones, comportamientos).	Cómo debe comportarse el sistema (calidad, atributos).
Objetivo	Satisfacer necesidades específicas del usuario.	Garantizar rendimiento, seguridad, usabilidad, etc.
Ejemplos	Login, registro de usuarios, hacer pagos.	Tiempo de respuesta, cifrado de datos, alta disponibilidad.
Forma de prueba	Pruebas funcionales (unitarias, de integración).	Pruebas de rendimiento, seguridad, usabilidad.
Documentación	Casos de uso, especificaciones funcionales.	Criterios de rendimiento, especificaciones técnicas.
Medición	Fácil de medir (se ven en la salida del sistema).	Más difícil de medir, requiere benchmarks o acuerdos de nivel de servicio (SLA).
Impacto	Diseño de funcionalidades del sistema.	Arquitectura y calidad general del sistema.
Enfoque del usuario	Directamente relacionado con las tareas que realiza el usuario.	Relacionado con la experiencia del usuario y el rendimiento del sistema.

REQUISITOS DEL SISTEMA

¿Qué son los requisitos?

Según el IEEE, un **requisito** es:

- 1. Una condición o capacidad que un usuario necesita para resolver un problema o alcanzar un objetivo.
- 2. Una condición que debe cumplir un sistema para satisfacer un contrato o estándar.
- 3. Una representación documentada de (1) o (2).

En resumen, los requisitos reflejan las **expectativas y necesidades de los usuarios o stakeholders** para un sistema o producto. Estos pueden ser funcionales, no funcionales, historias de usuario, diagramas, etc.

Tipos de requisitos

1. Requisitos de negocio

 Definen los objetivos y métricas empresariales que debe cumplir el sistema.

2. Requisitos de usuario (o stakeholders)

 Especifican las funciones y características necesarias para satisfacer a los usuarios.

3. Requisitos del sistema (técnicos)

 Detallan la tecnología subyacente necesaria para que el sistema funcione correctamente.

También se clasifican en tres categorías clave:

Requisitos funcionales

Se refieren a lo que el sistema **debe hacer**. Son medibles y esenciales. *Ejemplo: El sistema debe permitir iniciar sesión con una cuenta.*

• Requisitos no funcionales

Se refieren a **cómo** debe comportarse el sistema (rendimiento, seguridad, etc.).

Ejemplo: La app debe cargar en menos de 3 segundos.

Requisitos del dominio

Son reglas específicas del sector que deben cumplirse.

Ejemplo: Cumplir con HIPAA en una app médica.

Importancia de la gestión de requisitos

- Ayuda a cumplir las expectativas del usuario.
- Reduce riesgos, errores y costos.
- Facilita el desarrollo ágil y continuo (especialmente en entornos complejos como IoT).
- Evita fallos como: retrasos, sobrecostos y baja calidad del producto.

¿Qué es un plan de gestión de requisitos (RMP)?

Es un documento que describe **cómo se capturan, analizan, documentan y gestionan** los requisitos durante el ciclo de vida del proyecto. Incluye:

- Visión general del proyecto
- Proceso de recopilación
- Responsabilidades
- Herramientas
- Trazabilidad

Proceso de gestión de requisitos

- 1. Elicitación: Recoger necesidades de stakeholders.
- 2. **Análisis**: Asegurar que se comprenden los requisitos.
- 3. **Definición**: Documentarlos de forma clara.
- 4. Priorización: Ordenarlos según valor.
- 5. Aprobación: Validarlos con stakeholders.
- 6. Trazabilidad: Relacionarlos con tareas o funcionalidades.
- 7. **Gestión de cambios**: Evaluar y aplicar cambios necesarios.

- 8. Validación y verificación: Comprobar que los requisitos se cumplen.
- 9. Actualización: Reflejar cambios en los documentos (SRS, PRD, RTM).

Requisitos digitales y uso de IA

Las herramientas tradicionales (Excel, correos) son insuficientes para sistemas complejos. Las **soluciones digitales e IA** permiten:

- Colaboración en tiempo real y desde cualquier lugar.
- Consistencia, evitando errores manuales al copiar información.
- Trazabilidad completa entre requisitos, diseño, pruebas y arquitectura.
- Reutilización de requisitos en varios proyectos o versiones.
- **Mejora de calidad**, usando procesamiento de lenguaje natural (NLP) y aprendizaje automático (ML) para detectar ambigüedades.

Tipos de requisitos

Existen tres tipos principales:

1. Requisitos de negocio

 Definen los objetivos, métricas y necesidades empresariales que el sistema debe cumplir.

2. Requisitos de usuario o stakeholders

 Describen funciones y características necesarias para satisfacer las expectativas de los usuarios finales.

3. Requisitos del sistema o técnicos

 Detallan la tecnología y aspectos técnicos que aseguran el funcionamiento del producto.

Además, los requisitos se clasifican en:

- Funcionales: Qué debe hacer el sistema (ej. permitir inicio de sesión).
- No funcionales: Cómo debe comportarse el sistema (ej. velocidad, seguridad, usabilidad).

• **Del dominio:** Normas y regulaciones específicas del sector (ej. cumplir con HIPAA en salud).

Importancia de la gestión de requisitos

La gestión de requisitos es clave para:

- Alinear el producto con las expectativas de stakeholders.
- Reducir errores, costos y retrasos.
- Aumentar la calidad, trazabilidad y reutilización.

Esto es especialmente importante en productos complejos o conectados (como IoT), donde los requisitos evolucionan continuamente.

Plan de gestión de requisitos (RMP)

El RMP define cómo se recopilan, documentan, gestionan y trazan los requisitos durante el proyecto. Incluye:

- Visión general del proyecto
- Proceso de recolección
- Roles y herramientas
- Trazabilidad de requisitos

Proceso de gestión de requisitos

- 1. Elicitación Recolección inicial de requisitos
- 2. **Análisis** Entender y validar necesidades
- 3. **Definición** Documentar requisitos claramente
- 4. **Priorización** Ordenar por valor
- 5. **Aprobación** Validación con stakeholders
- 6. **Trazabilidad** Relación con tareas y entregables
- 7. **Gestión de cambios** Solicitudes y análisis de impacto

- 8. **Verificación y validación** Asegurar que se cumplen
- 9. Revisión y actualización de documentos

Gestión digital e inteligencia artificial (IA)

Tradicionalmente se usaban herramientas como Excel o correos. Hoy, las herramientas digitales e IA ofrecen:

- Colaboración: Trabajo en tiempo real desde cualquier lugar.
- Consistencia: Plantillas y estructuras claras para evitar errores.
- Trazabilidad: Seguimiento automático de cambios y relaciones.
- Reutilización: Uso del mismo requisito en varios contextos.
- Calidad: Uso de NLP e IA para escribir requisitos más claros, completos y sin ambigüedades.

Estas herramientas mejoran la eficiencia, reducen ciclos de desarrollo y ayudan a cumplir normativas y estándares.