3D Reconstruction on an IMU enabled Mobile Device Summer Undergraduate Research Award - 2015

Kartikeya Gupta Prateek Kumar Verma

Department of Computer Science and Engineering IIT Delhi

Under supervision of **Prof. Subhashis Banerjee**Department of Computer Science and Engineering

March 19, 2015

Objectives

3D reconstruction on an IMU enabled mobile device.

What is 3D reconstruction?

(a) Sparse reconstruction

(b) Dense reconstruction

Intrinsic Camera Parameters

• Internal calibration matrix K is internal to the camera itself and is defined in terms of the camera focal length f and the principal points c_x and c_y defined as image centers in pixels.

$$\mathbf{K} = \begin{bmatrix} f & 0 & c_{x} \\ 0 & f & c_{y} \\ 0 & 0 & 1 \end{bmatrix} \tag{1}$$

Extrinsic Camera Parameters

• External calibration matrix $[R|\mathbf{t}]$ constitute the rigid transformations viz. the rotation and translation between the camera coordinate system and the world coordinate system.

Figure: External calibration

• Together they form the projection matrix P

$$P = K[R|\mathbf{t}]$$

s.t.

$$\mathbf{x} = P\mathbf{X}$$

Stereo Correspondence Generation

 Use image descriptors like SIFT for finding set of matching feature points x' and x in between a pair of images.

Lots of false matches

Triangulation

Present Pipeline

Proposed Framework

Phases of the Project

1) Position and structure estimation

- Smoothening the raw sensor output data.
- Incorporating gyroscope reading to reduce drift.
- Using the camera feed to obtain displacement and orientation from visual tracking.

Phases of the Project

2) 3D Reconstruction

- Obtain sparse 3D reconstruction based on camera parameters obtained previously.
- Use tracking methods for dense correspondence of points.
- Use guided matching by indirect computation of fundamental matrix from estimated camera motion from sensor data to enrich the correspondences.
- Triangulate dense correspondences and do global refinement.

Our experience so far

(a) Accuracy of accelerometer data across different devices (scale cm)

(b) Obtaining velocity and displacement from static accelerometer data

Figure: Applying smoothening techniques

More Applications

- Quick 3D printable file
- Field of medical science
- Archaeological application
- Localization of tourist sites

Budget

Budget

Rs. 25000 to purchase an android smart phone having high quality sensors and a high resolution camera.

Thank You