Reinforcement Learning Based Autonomous Intersection Management: A Survey

Muntasir Hossain (210041265) Ibrahima (210041259) Kazi Shakkhar Rahman (210041240)

Islamic University of Technology

October 13, 2025

Outline

- 1 Introduction: Heuristic Approaches
- 2018: Navigating Occluded Intersections
- 3 2019: DCL-AIM
- 4 2020: Multi-Task RL
- 5 2022: CAV Collaboration
- 6 2022: Advanced RAIM
- 2022: Real-Time AIM
- 8 2023: V2X Managed Intersections
- 9 2024: Decision-Making with Attention
- 10 2024: LA-SRL Approach
- 1 2025: Centralized Cooperative Control
- 2022: Transfer Learning
- 13 2024: Game Prior Attention
- A Summary and Conclusions

Time to Conflict (TTC) Heuristic

- **Problem:** When should ego vehicle cross intersection?
- Method: Calculate time for cross-traffic to reach ego vehicle
- Decision: Proceed if TTC ¿ threshold for consecutive checks

Fig. 6. Steps for handling a right turn with cross-traffic present. a) Stop sign is taken into account and the AD vehicle gets into STOP state before the intersection. b) Cross-traffic is detected and the AD vehicle waits until TTC algorithm deems the turn safe. c) Cross-traffic vehicle has passed the intersection, and the AD vehicle resumes to the GO state. d) vehicle makes the right turn.

TTC Decision Process

Parameters

• Safety threshold: 3.0 seconds

• Required: 5 consecutive safe checks

• Update rate: 10 Hz

Time (s)	TTC Value	Safe?	Count
0.0	2.5 s	No	0
0.1	3.2 s	Yes	1
0.2	3.1 s	Yes	2
0.3	2.8 s	No	0
0.8	4.0 s	Yes	$5 \rightarrow GO$

2018 - Navigating Occluded Intersections with Deep RL

Main Contributions

- Deep RL outperforms heuristic and rule-based approaches
- RL agents discover extrapolative measures for unforeseen circumstances

Fig. 1: Using creeping behavior to actively sense occluded obstacles. The objective is to determine the acceleration profile along the path while safely avoiding collisions.

Experiment Scenario (2018)

T-Intersection with 5 scenarios:

• Right turn, Left turn (single/double lane), Straight (single/multiple lanes)

State Space (2018)

Representation

- Perspective: Bird's eye view
- Space: Discretized grid (Cartesian coordinates)
- Vehicle Encoding: Heading angle, velocity, occupancy indicator

DQN Time to Go: 18×26 grid **DQN Sequential:** 5×11 grid

Action Space and Rewards (2018)

DQN Time to Go

Actions: {Wait, Go}

DQN Sequential

Actions: {Accelerate, Decelerate, Constant Velocity}

Reward Function

$$R(t) = egin{cases} +1 & ext{success} \ -10 & ext{collision} \ -0.01 & ext{step cost} \end{cases}$$

Algorithm: Standard DQN

2019 - DCL-AIM: Decentralized Coordination Learning

Main Contribution

Multi-agent reinforcement learning for AIM decision-making

State Representation (DCL-AIM)

Individual State Components

- Current position (occupied cells)
- Speed
- Moving intention (reserved cells ahead)
- Queue length of current lane

$$DCs = \begin{cases} max(\lceil V^2/2a \rceil, \lceil V\Delta t + \frac{1}{2}a\Delta t^2 \rceil), & V < V_m \\ max(\lceil V^2/2a \rceil, \lceil V\Delta t \rceil), & V = V_m \end{cases}$$

Action Space and Reward (DCL-AIM)

Current speed	<i>V</i> ₀	V _m
Actions	$\{+a, 0\}$	$\{-a, 0\}$

Reward Function

Minimize intersection delay ightarrow use negative of delay as reward

$$r(S,A) = -\sum_{v_i \in C} \left(\Delta t - \frac{L_i}{V_m}\right)$$

Algorithm: Q-learning with dual Q-table (independent + joint)

2020 - Multi-Task RL for Unsignalized Intersections

Main Contribution

Single unified learning framework for all navigation tasks

Task Representation (2020)

Component	Meaning	Values
gı	Turn Left	0 or 1
gr	Turn Right	0 or 1
g_s	Go Straight	0 or 1
Вc	Minimize Delay	Always 1

Table: Task Vector $G = [g_l, g_r, g_s, g_c]$

State and Action Space (2020)

State

$$S = [S_e, S_1, \dots, S_5]$$

Ego vehicle: $S_e = [V_e]$

Each social vehicle: $S_i = [X_i, Y_i, V_i, \cos \theta_i, \sin \theta_i]$

Action Space

$$A = [0, 3, 6, 9] \text{ m/s}$$

Reward

$$R(t) = egin{cases} +50 & ext{success} \ -500 & ext{collision} \ -0.15 & ext{step cost} \end{cases}$$

Algorithm: Multi-task DQN

2022 - Deep RL for CAV Collaboration

Main Contributions

- Modeled as partially observable stochastic game
- Cooperative multi-agent PPO algorithm

State and Action Space (2022 - CAV)

Observation Space

$$O_i = \{S_{own}, S_i, S_{i+1}, \dots, S_m\}$$

$$S_{own/i} = \{v, x, y, \sin \theta, \cos \theta\}$$

Action Space

Acceleration: $a_i \in \{-a_{max}, +a_{max}\}$

Position and heading control calculated automatically

Reward Function (2022 - CAV)

Centralized Reward

$$r_k = w_1 R_v + w_2 R_c + w_3 R_t$$

- Efficiency: $R_{v} = \sum_{i}^{N} -(\Delta t \frac{v^{i} \Delta t}{V_{m}})$
- Comfort: $R_c = \sum_{i \in N} \frac{\|a_i^k\|^2}{\|a_{max}\|}$
- **Terminal:** $R_t = \begin{cases} +2 & \text{all success} \\ -5 & \text{collision} \\ 0 & \text{otherwise} \end{cases}$

Algorithm: Cooperative Multi-Agent PPO

2022 - Multi-Agent DRL for CAV Management

Main Contribution

Advanced Reinforced AIM (adv.RAIM) system

Action and Reward (2022 - adv.RAIM)

Action Space

Normalized speed: $a \in [0, 1]$

Denormalized to max road speed of 13.9 m/s (50 km/h)

Reward (Individual)

Algorithm: Twin Delayed DDPG (TD3)

2022 - Real-Time Intelligent AIM

Main Contribution

Polling-based controller + RL agents for scheduled arrivals

Two tasks:

- Reach intersection at scheduled time
- Maintain safe distance from front vehicle

State, Action, and Reward (2022 - Real-Time)

State Space

- Current speed, distance to intersection, remaining time
- Front vehicle: speed, distance, acceleration

Action Space

$$a = [-1, 0, 1]$$

Multi-Objective Reward

 $\mathbf{r} = \{r_1, r_2\}$ where r_1 for timing, r_2 for safety gap

Algorithm: Multi-Discount DQN

2023 - Deep RL for V2X Managed Intersections

Main Contribution

Centralized solution using CNNs

State representation: Picture-like 2D grid

- Color → vehicle route
- ullet Luminosity o vehicle speed

Design Rationale (2023)

Why Picture Grid?

- Fixed state size regardless of vehicle count
- Conveys road geometry information

Action Space

For each lane: Issue ROW for 2 closest vehicles

Reward

$$r(s, a) = 100 \times T_{\mathsf{avg\ wait}} + 10 \times n_{\mathsf{out}}$$

Algorithm: DQN with CNN

2024 - Decision-Making with Attention Mechanism

Main Contributions

- Mix-Attention neural network filters relevant information
- New state input for driving task differentiation

24 / 37

Improved State Space (2024)

Standard State

$$S_{ego} = \{p_{ego}, x_{ego}, y_{ego}, v_{x,ego}, v_{y,ego}, \phi_{ego}\}$$

Improved State (with driving intention)

$$S_{ego} = \{p_{ego}, x_{ego}, y_{ego}, v_{x,ego}, v_{y,ego}, \phi_{ego}, \mu_{ego}\}$$

$$\mu_{ego} = egin{cases} |\phi_{ego} - heta_{ego}| & ext{turn} \\ ext{arctan}(rac{d_{ego}}{d_{total}}) & ext{straight} \end{cases}$$

Detection: 9 closest vehicles within 48m radius

Action and Reward (2024)

Action Space

```
\{ 	ext{accelerate}, 	ext{idle}, 	ext{decelerate} \}
v_{\mathsf{target}} = v_{\mathsf{dis}} + \{1, 0, -1\}
```

Reward

$$R = egin{cases} 30 & \text{reached destination} \ -120 & \text{collision} \ 0.1 & \text{reached target speed} \end{cases}$$

Algorithm: Soft Actor-Critic (SAC)

2024 - Local Attention Safety RL (LA-SRL)

Main Contribution

Ego-attention model in actor network captures interdependencies

State, Action, and Reward (LA-SRL)

State

$$S = [s_e, s_1, \ldots, s_5]$$

 $S_{e/i} = [v_x, v_y, x, y, \cos \theta, \sin \theta, d]$ where d = distance from risk area

Action (Continuous)

2D vector: (a_{accel}, a_{brake}) normalized to [0, 1]

Reward

 $R = \mu_r R_{risk} + \mu_a R_{avail} + R_e$ (safety + availability + events)

Algorithm: TD3

2025 - Centralized Cooperative Control

Main Contribution

Constrained Policy Optimization (CPO) ensures safety while optimizing performance

Three networks: Policy, Reward, Safety

State and Action (2025)

State

$$S_i = \{d_i, v_i, \delta_i, I_i, k_i\}$$

- d_i : distance to exit
- δ_i : current lane
- *l_i*: driving direction
- k_i: communication delay

$$S = \prod_{i=1}^{n} S_i$$

Action

 $A_i = [v_i, \Delta \omega_i]$ (velocity and heading change)

Algorithm: MAPCPO (Multi-Agent Proximal CPO)

2022 - Driving Tasks Transfer using Deep RL

Main Contribution

Decision-making framework based on transfer learning + Dueling DQN

State, Action, and Reward (Transfer Learning)

State

$$s_i = \{x, y, v_x, v_y\}$$

State: $[s_{ego}, s_1, \dots, s_n]$

Action

$$a_t \in [-5,0,5] \text{ m/s}^2$$

Reward

$$r = egin{cases} 1 \cdot \mathsf{highest}\text{-speed} - 5 \cdot \mathsf{collision} & \mathsf{not} \ \mathsf{reached} \\ 1 & \mathsf{reached} \ \mathsf{endpoint} \end{cases}$$

Algorithm: Dueling DQN

2024 - Cooperative Decision-Making with Game Priors

Main Contribution

Multi-Agent Game Prior Attention DDPG (MAGPA-DDPG)

33 / 37

Summary of Approaches

Year	Method	Algorithm	Key Feature
2018	Single Agent	DQN	Occluded intersections
2019	Multi-Agent	Q-learning	Decentralized coordination
2020	Single Agent	Multi-task DQN	Unified framework
2022	Multi-Agent	MA-PPO	CAV collaboration
2022	Multi-Agent	TD3	Conflict encoding
2023	Centralized	CNN + DQN	V2X communication
2024	Single Agent	SAC	Attention mechanism
2024	Single Agent	TD3	Ego-attention safety
2025	Centralized	CPO	Safety constraints

Key Trends and Insights

Evolution of Approaches

- ullet From single-agent o multi-agent coordination
- ullet From discrete o continuous action spaces
- ullet From simple grids o attention mechanisms
- ullet From unconstrained o safety-constrained optimization

Common Elements

- State: Position, velocity, heading of ego + surrounding vehicles
- Rewards: Balance efficiency, safety, and comfort
- Increasing use of neural attention for relevant information filtering

Future Directions

- Robustness: Handling sensor noise and communication delays
- Scalability: Managing high-density traffic scenarios
- Generalization: Transfer learning across different intersection types
- Safety: Formal verification and guaranteed safety bounds
- Human-AV Interaction: Mixed traffic scenarios
- Real-world Deployment: Bridging sim-to-real gap

Thank You! Questions?