[§6.3] 28.
$$\binom{40}{17} = 88,732,378,800 \text{ keys}$$

33.
$$\binom{10}{3}\binom{15}{3} = 54,600$$
 committees

- 37. Length-10 bit strings of at least three of both ① and ② must be comprised of either
 - $3 \times (1)$ and $7 \times (0)$,
 - $4 \times (1)$ and $6 \times (0)$,
 - $5 \times \textcircled{1}$ and $5 \times \textcircled{0}$,
 - $6 \times (1)$ and $4 \times (0)$, or
 - $7 \times \textcircled{1}$ and $3 \times \textcircled{0}$;

thus there are
$$\sum_{3 \le k \le 7} {10 \choose k} = \boxed{912 \text{ strings}}$$
.

- [§6.4] 2. (a) $(x+y)^5 = (x+y)(x+y)(x+y)(x+y)(x+y)$ gives rise to six terms:
 - i. x^5 , obtainable $\binom{5}{5} = 1$ way (viz. xxxxx)
 - ii. x^4y , obtainable $\binom{5}{4} = 5$ ways $(xxxxy, xxxyx, \ldots)$
 - iii. x^3y^2 , obtainable $\binom{5}{3} = 10$ ways
 - iv. x^2y^3 , obtainable $\binom{5}{2} = 10$ ways
 - v. xy^4 , obtainable $\binom{5}{1} = 5$ ways
 - vi. y^5 , obtainable $\binom{5}{0} = 1$ way

Therefore, $(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$.

(b) Using the binomial theorem,

$$(x+y)^5 = \sum_{0 \le j \le 5} {5 \choose j} x^{5-j} y^j$$

$$= {5 \choose 0} x^5 + {5 \choose 1} x^4 y + {5 \choose 2} x^3 y^2 + {5 \choose 3} x^2 y^3 + {5 \choose 4} x y^4 + {5 \choose 5} y^5$$

$$= x^5 + 5x^4 y + 10x^3 y^2 + 10x^2 y^3 + 5xy^4 + y^5.$$

- 4. The coefficient of x^5y^8 is $\binom{13}{8} = \boxed{1287}$.
- 7. The coefficient of x^9 is $(-1)\binom{19}{9}2^{(19-9)} = \boxed{-94,595,072}$
- 12. Row 11 is 1 11 55 165 330 462 462 330 165 55 11 1
- 15. Using the binomial theorem with $x = y = 1, 2^n$ can be expressed as

$$(1+1)^n = \sum_{0 \le k \le n} \binom{n}{k} 1^k 1^{n-k} = \sum_{0 \le k \le n} \binom{n}{k},$$

and since $\left(\sum \binom{n}{k}\right) \ge \binom{n}{k}$, it follows that $\binom{n}{k} \le 2^n$. \square

19. Pascal's Identity is

$$\binom{n}{r-1} + \binom{n}{r} = \frac{n!}{(r-1)!(n-(r-1))!} + \frac{n!}{r!(n-r)!}$$

$$= \frac{n!(r+(n-r+1))}{r!(n-r+1)!}$$

$$= \frac{(n+1)!}{r!(n+1-r)!}$$

$$= \binom{n+1}{r}.$$

 $[\S 6.5] \ 1. \ 3^5 = 243$

3.
$$26^6 = 308, 915, 776$$

6.
$$\binom{3+5-1}{5} = 21$$

8.
$$\binom{21+12-1}{12} = 225,792,840$$

- 11. The number of pennies and nickels is irrelevant as long as there are at least eight of each. There are $\binom{2+8-1}{8} = \boxed{9 \text{ ways to choose eight coins}}$.
- 17. $\frac{10!}{2!3!5!} = 2,520 \text{ strings}$