

ALGEBRA Chapter 8

PRODUCTOS NOTABLES I

MOTIVATING STRATEGY

DIFERENCIA DE CUADRADOS

$$\therefore a^2 - b^2 = (a+b)(a-b)$$

IDENTIDAD DE STEVEN:

$$(x+a)(x+b) \equiv x^2 + (a+b)x + ab$$

Ejemplos:

Efectúe en cada caso:

$$(x+4)(x+5)=x^2+9x+20$$

$$(x-3)(x+9) = x^2 + 6x - 27$$

$$| = x^2 + 9x + 20 > (x + 5)(x - 7) = x^2 - 2x - 35$$

$$(x-6)(x-8) = x^2-14x+48$$

SUMA Y DIFERENCIA DE CUBOS:

$$(a+b)(a^2-ab+b^2) \equiv a^3+b^3$$

Ejemplo:

$$(x+2)(x^2-2x+2^2) \equiv x^3+2^3$$

$$\equiv x^3 + 8$$

$$(a-b)(a^2+ab+b^2) \equiv a^3-b^3$$

Ejemplo:

$$(x-5)(x^2+5x+5^2) \equiv x^3-5^3$$

$$\equiv x^3 - 125$$

<u>IGUALDADES</u> CONDICIONALES:

$$Si \quad a+b+c=0$$

$$a^3 + b^3 + c^3 = 3abc$$

Ejemplo:

Si
$$m+n+p=0$$

Calcule
$$P = \frac{mn + np + mp}{m^2 + n^2 + p^2}$$

Resolución:

$$P = \frac{mn + np + mp}{m^2 + n^2 + p^2} = \frac{mn + np + mp}{-2(mn + np + mp)}$$

Ejemplo:

Si
$$m+n+p=0$$

Calcule
$$P = \frac{15mnp}{m^3 + n^3 + p^3}$$

Resolución:

$$P = \frac{15mnp}{m^3 + n^3 + p^3} = \frac{15mnp}{3mnp}$$

$$P = 5$$

DESARROLLO DEL TRINOMIO AL CUADRADO:

$$(a+b+c)^2 \equiv a^2 + b^2 + c^2 + 2(ab+bc+ac)$$

Ejemplo:

$$x + y + z = 10$$

$$xy + yz + xz = 15$$

calcule
$$x^2 + y^2 + z^2$$

Resolución:

$$(x + y + z)^2 = (10)^2$$

$$x^2 + y^2 + z^2 + 2(xy + yz + xz) = 100$$

$$x^2 + y^2 + z^2 + 2(15) = 100$$

$$x^2 + y^2 + z^2 = 70$$

DESARROLLO DEL TRINOMIO AL CUBO:

$$(a+b+c)^3 \equiv a^3+b^3+c^3+3(a+b)(b+c)(a+c)$$

Ejemplo:

$$(x+y+2)^3 = x^3 + y^3 + 2^3 + 3(x+y)(y+2)(x+2)$$

$$\therefore (x+y+2)^3 = x^3 + y^3 + 8 + 3(x+y)(y+2)(x+2)$$

HELICO PRACTICE

Reduzca

$$E = (x+3)(x-9) - (x+2)(x-8)$$

Recordemos:

IDENTIDAD DE STEVEN:

$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

E = (x+3)(x-9) - (x+2)(x-8)

$$E = x^2 + (3-9)x + (3)(-9) - (x^2 + (2-8)x + (2)(-8))$$

$$E = x^2 - 6x - 27 - (x^2 - 6x - 16)$$

$$E = x^2 - 6x - 27 - x^2 + 6x + 16$$

$$E = -27 + 16$$

$$E = -11$$

Respuesta: -11

Calcule el resultado de

$$Q = (x+2)(x^2-2x+4) - (x-3)(x^2+3x+9)$$

Recordemos:

SUMA Y DIFERENCIA DE CUBOS:

$$(a+b)(a^2-ab+b^2)=a^3+b^3$$

$$(a-b)(a^2+ab+b^2)=a^3-b^3$$

$Q = (x^3 + 2^3) - (x^3 - 3^3)$

 $Q = (x+2)(x^2-2x+4) - (x-3)(x^2+3x+9)$

$$Q = (x^3 + 8) - (x^3 - 27)$$

$$Q = x^3 + 8 - x^3 + 27$$

$$\therefore Q = 35$$

Respuesta: 35

Si
$$x + y + z = 0$$
 , simplifique

$$T = \frac{x^3 + y^3 + z^3}{xyz}$$

Recordemos:

IGUALDADES CONDICIONALES:

$$Si: a+b+c=0$$

$$a^3 + b^3 + c^3 = 3abc$$

$$x + y + z = 0 \implies x^3 + y^3 + z^3 = 3xyz$$

Reemplazando en:

Resolución:

$$T = \frac{x^3 + y^3 + z^3}{xyz}$$

$$T = \frac{3xyz}{xyz}$$

$$T = 3$$

01

Problema 4

Si
$$x + y + z = 0$$
 , determine

$$P = \frac{6x^2 + 6y^2 + 6z^2}{-xy - yz - xz}$$

Recordemos:

IGUALDADES CONDICIONALES:

Si:
$$a+b+c=0$$

$$a^2 + b^2 + c^2 = -2(ab + bc + ac)$$

x + y + z = 0

$$x^2 + y^2 + z^2 = -2(xy + yz + xz)$$

$$P = \frac{6x^2 + 6y^2 + 6z^2}{-xy - yz - xz}$$

$$P = \frac{6(x^2 + y^2 + z^2)}{-(xy + yz + xz)}$$

$$P = \frac{6[-2(xy + yz + xz)]}{-(xy + yz + xz)}$$

$$P = 12$$

Respuesta: 12

Simplifique

$$E = (x+13)(x-3) - (x+5)^2$$

Recordemos:

IDENTIDAD DE STEVEN:

$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

Resolución:

$$E = (x + 13)(x - 3) - (x + 5)^2$$

$$E = x^2 + (13 - 3)x + (13)(-3) - (x^2 + 2(5)x + 52)$$

$$E = x^2 + 10x - 39 - (x^2 + 10x + 25)$$

$$E = x^2 + 10x - 39 - x^2 - 10x - 25$$

$$E = -39 - 25$$

$$E = -64$$

$$\therefore T = -64$$

Respuesta: 64

Si a= $\sqrt[6]{31}$, el valor de

$$M = (a^2 - 1)(a^4 + a^2 + 1) + 3$$

Representa la cantidad de alumnos del 3°C. ¿Cuántos alumnos son?

Recordemos:

TRINOMIO AL CUADRADO:

$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac)$$

Resolución:

$$M = (a^{2} - 1)(a^{4} + a^{2} + 1) + 3$$

$$M = (a^{2})^{3} - (1)^{3} + 3$$

$$M = a^{6} - 1 + 3$$

$$M = a^{6} + 2$$

Reemplazamos

$$M = a^{6} + 2$$

$$M = (\sqrt[6]{31})^{6} + 2$$

$$= 31 + 2$$

$$= 33$$

Son 33 alumnos

তিয়

ALGEBRA

Débora es una profesora de Saco Oliveros, un día por salir rápido se olvida el almuerzo en su casa entonces ella decide almorzar en el colegio, al llegar la 1 pm va a la cafetería y se compra un menú, si el precio del almuerzo es equivalente a M = (x+4)(x+3)(x+1)(x+6), además $x^2 + 7x = -4$, ¿Cuánto le costó dicho almuerzo?

Recordemos:

IDENTIDAD DE STEVEN:

$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

$$M = (x+4)(x+3)(x+1)(x+6)$$

$$M = (x^2 + 7x + 12)(x^2 + 7x + 6)$$

$$M = (-4 + 12)(-4 + 6)$$

$$M = (8) (2)$$

$$M=16$$

M = 16 : Le costó 16 soles.