

REPORT DOCUMENTATI	ON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	
76-20 V	-	
NISE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
AVERAGE FEATURES OF THE SUI FIELD IN THE CENTRAL PACIFI	SSURFACE THERMAL	
2 2		6. PERFORMING ORG. REPORT NUMBER 76-20
AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
T.P./Barnett # J. D./Ott	(15	N00014-75-C-0152-6043
PERFORMING ORGANIZATION NAME AND ADD	RESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Scripps Institution of Ocea La Jolla, CA 92093	anography V	12 85p.)
CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Office of Naval Research	(H)	November 76
Arlington, VA 22217		19. NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESS(II di	Hazant from Controlling Office)	84 pages 15. SECURITY CLASS. (of this report)
ADDRESS(II di	Tom Controlling Office)	JECONII I CENSS. (of this report)
(M) SIO-Ref.	21-201	Unclassified
y SIU-NET	-10-24	15a. DECLASSIFICATION/DOWNGRADING
Lucian and the second		SCHEDULE
DISTRIBUTION STATEMENT (of the abstract en	tered in Block 20, if different from	n Report)
. SUPPLEMENTARY NOTES		
KEY WORDS (Continue on reverse side if necessary	ary and identify by block number)	
	ry and identity by block number)	
ABSTRACT (Continue on reverse side if necesses	The second secon	cology of subsurface tempera
he purpose of this report is to	o present the climat	
he purpose of this report is to ure in the central Pacific Oce	an. This climatolog	gy provides an in-depth fin sed to the general climatolo
he purpose of this report is to ure in the central Pacific Oce- cale' description of the therm	an. This climatolog al strucure as oppos that it (a) presents	gy provides an in-depth film sed to the general climatolo s finer horizontal and verti
the purpose of this report is to ure in the central Pacific Ocean cale' description of the therm eveloped by Robinson ('76) in	an. This climatolog al strucure as oppos that it (a) presents mperature field. (b)	y provides an in-depth fin sed to the general climatolo finer horizontal and verti utilizes data not included
ABSTRACT (Continue on reverse side if necessaring the purpose of this report is to ure in the central Pacific Occurate description of the therm eveloped by Robinson ('76) in the scale information on the term of the previous climatologies, and	an. This climatolog al strucure as oppos that it (a) presents mperature field, (b) (c) represents actua	gy provides an in-depth finesed to the general climatologs finer horizontal and vertion utilizes data not included all observations as opposed
the purpose of this report is to ture in the central Pacific Ocea- cale' description of the therma- eveloped by Robinson ('76) in tal scale information on the terma on previous climatologies, and	an. This climatologial strucure as opposithat it (a) presents imperature field, (b) (c) represents actual observations	gy provides an in-depth fine sed to the general climatolo finer horizontal and verticular utilizes data not included all observations as opposed. These improvements in the
the purpose of this report is to ure in the central Pacific Ocean cale' description of the therm eveloped by Robinson ('76) in al scale information on the tent on previous climatologies, and o smoother fields derived from limatology will be useful in the	an. This climatologial strucure as opposithat it (a) presents imperature field, (b) (c) represents actual observations in NORPAX project for	gy provides an in-depth fine sed to the general climatolo finer horizontal and verti utilizes data not included all observations as opposed. These improvements in the
ne purpose of this report is to ure in the central Pacific Ocea cale' description of the therm eveloped by Robinson ('76) in al scale inforantion on the term a previous climatologies, and	an. This climatologial strucure as opposithat it (a) presents imperature field, (b) (c) represents actual observations in NORPAX project for assolute	by provides an in-depth fine sed to the general climatolog finer horizontal and vertical utilizes data not included all observations as opposed. These improvements in the

-12-

UNIVERSITY OF CALIFORNIA, SAN DIEGO
Scripps Institution of Oceanography
La Jolla, California

AVERAGE FEATURES OF THE SUBSURFACE
THERMAL FIELD IN THE CENTRAL PACIFIC

T. P. Barnett and J. D. Ott

Sponsored by:

The Office of Naval Research Contract NOOO 14-75-C-0152-6043

1.0 Introduction

ADSTRACT

The purpose of this report is to present the climatology of subsurface temperature in the central Pacific Ocean. This climatology provides an in-depth. 'fine scale' description of the thermal structure as opposed to the general climatology developed by Robinson (1976) in that it (a) presents finer horizontal and vertical scale information on the temperature field, (b) utilizes data not included in previous climatologies, and (c) represents actual observations as opposed to smoother fields derived from actual observations. These improvements in the climatology will be useful in the NORPAX project for determining the depth to which temperature anomalies penetrate in the ocean. Also, the data from which the climatology is developed can be used to study the interannual changes in heat content of the central ocean. It was with these ideas in mind that the present work was undertaken.

2.0 <u>Data Sources/Density</u>

The initial data were supplied by the NORPAX Data Group on 7-track, 800 BPS, character magnetic tape, card image records, and multiple records per BT. There were 5 XBT, 19 MBT, and 2 hydrographic data tapes that represented all of the temperature/depth in a region bounded by latitudes 25°N to 60°N and longitudes 140°W to 180°W for the time period 1942-1974.

Each input record from the raw data tapes was tested for validity and data range on the IBM-1800 computer and then merged into a standard header/data format on a group of 4 working tapes. The data available taken from each observation were:

IBX - Lat-Lon Index: latitude = (IBX=3), longitude = (IBX -1)*4

Itype - 1 = XBT, 2 = MBT, 3 = Hydro for observing system

Lat - 25°N to (but not including) 60°N in degrees

Latm - Fractional latitude, minutes

Lon - 140°W to (but not including) 180°W in degrees

Lonm - Fractional longitude, minutes

Year = 1942 - 1974

Month - 1 - 12

Day - 1 - 31

Hour - 1 - 24

Minute - 1 - 60

Reft - Calibration temp (negative for no data)

Temperature - Data @ 0, 30, 60, 90, 120, 150, 200, 250, 300, 400,

500 meters (see below)

If, in processing the data, a surface temperature was missing, and there was a temperature at 10 meters or less, this temperature was used as a surface temperature. Linear interpolation was used to calculate temperatures at standard depths.

The individual types of instruments used to measure the temperature profile are discussed briefly below (see Wert, 1976 for additional information).

Expendable BT (xBT)

Data are sent to FNWC in the form of strip charts and their accompanying log sheets. These data are usually processed on the semi-automatic Calma (model 403) digitizer. The Calma device records the minimum number of points necessary to reconstruct the original trace. Sometimes an analog digital data system is also used. Regardless of the digitizing device, the data are recorded on magnetic tape. The repeatability of the Calma digitization is stated to be better than 96%. There were 12,639 XBTs available for analysis.

Mechanical BT (MBT)

Data are from the National Oceanographic Data Center. The data base is made up of digitized records obtained from MBT slides and their appropriate log sheets.

Most of the MBT digitization was performed on contract by Scripps Institution of Oceanography with a semi-automatic digitizer. In this system, both the grid and trace,

aligned according to the temperature and depth correction, are projected onto a screen. The trace is followed manually with a stylus and the temperature data suitably digitized. Ancillary information is simultaneously recorded directly on magnetic tape along with the digitized trace data. This digitizing method has the advantages of being faster and somewhat more accurate than reading by eye. In all, there were 57,328 MBTs available for analysis.

Hydrocast Data

All of the hydrocast data are archived by NODC and available on magnetic tape. The data used in this report comes from the 1974 update of the NODC file and provided 7,422 hydrocasts.

Combining all data sources gave 77,389 (raw) observations of temperature vs depth in the region described above. The distribution of these data throughout the historical record (Figure 1) shows the number of observations per month in the entire study region. This distribution is rather uniform in time although a higher observation density exists during summer months. Also, note the phaseout of the MBT in 1966 - 68 and the subsequent phase-in of the XBT. Since these instruments measure to different depths, one may expect the climatology for the greater depth (>150m) to be representative of a shorter base period. This may be important for some uses. Finally, it should be noted that ocean weather ships contribute, on the average, slightly over 100 observations per month to the total data set.

3.0 <u>Data Editing</u>

Review of the space/time density of available data suggested that an appropriate grid for construction of the mean field would be quadrangles 2° of latitude x 10° of longitude. The time interval for the climatology was selected to be 1 month. The latter value was small compared with the time scale of change of the anomalies which it was desired to study. Similarly, the spatial dimensions of the averaging areas were also small compared to the spatial scale of anomalies. Perhaps as important,

the small latitudinal extent of the averaging areas (called 'boxes') allowed us to avoid the spatial aliasing problem that results from taking quasi randomly distributed samples in a high gradient field. Thus, the fact that the sampling centroids for a given box/month do not occur precisely in the middle of the box, will introduce negligible error to estimation of the mean field.

After all of the available BT and hydrocast information had been sorted into appropriate geographical boxes and one-month intervals, it was gridded in the vertical. The standard depths used were 0, 30, 60, 90, 120, 150, 200, 250, 300, 400 and 500 meters. This selection of depths allows us to adequately resolve the seasonal change in the heat content of selected slabs of ocean. Note that it would be somewhat difficult with the coarse grid in the near surface region to determine the "depth of the mixed layer," a nebulous quantity at best.

The data field resulting from the above operations was a series of gridded values in x, y, z and t space. These values were next subjected to two screening procedures to remove data that was clearly incompatible with the main body of information.

Screening Procedure #1

Climatological values of temperature at 0 and 120 meters for each grid location and month were interpolated from the Robinson atlas. These values, which had been carefully scrutinized and smoothed, presented a first guess at the mean field. The individual, raw BT information was compared with this first guess at the two depths indicated above. An individual BT was rejected if it differed from the first guess by more than ± 40%, a value representing very large interannual variations (Ballis, 1973a, b, c). Thus, any BT trace that failed this first screen was eliminated from the data set altogether.

Screening Procedure #2

The remaining data were used to form monthly means on the x, y, z grid system. The standard deviations about these means were also computed. Each observation

belonging to a given grid point and time was checked to see that it was within three standard deviations of the newly computed mean. Values outside of three standard deviations again caused the entire BT to be excluded from the data set. The second screening procedure eliminated only a small fraction of the observations. However, once these had been eliminated a new mean and standard deviation were computed.

The means, standard deviation and number of observations per space/time grid point remaining after the original data had passed through the two screening procedures represent the substance of this atlas. In all there are 71,295 individual observations of temperature versus depth that have gone into the establishment of mean fields shown in Section 5. Approximately 40% of these observations come from standard weathership locations and so the quality of the mean field estimates is quite spatially dependent. Nevertheless, the total field turned out to be rather smooth and very 'reasonable' (see below).

4.0 Verification

A number of methods have been used to verify that the resulting estimate of the climatological thermal structure field in the central Pacific are reasonable. These are enumerated briefly below.

(A) Vertical consistency

Over much of the region of interest one would expect the temperature to decrease as a function of depth. The exception to this lies in the region near latitude 45°N where there is a well known thermal inversion. With the exception of this region, all other data were inspected to insure that temperature did decrease with increasing depth.

(B) Horizontal consistency

One would expect the temperature to increase as latitude decreases. This was numerically checked. With the vast majority of the data this is true. However, there are examples, particularly in the northern part of the study area, where

temperatures at higher latitudes during a selected month are slightly higher than those immediately to the south. This situation occurs where there are a very small number of samples available to estimate the means in a given space/time box. These situations have <u>not</u> been excluded from the tables shown in Section 5. Thus, they can provide the critical reader with an idea of the uncertainty that may be inherent in our climatological field.

(C) Temporal consistency

The annual cycle of the surface and 90 m mean field in each of the given spatial boxes has been plotted and inspected to insure that values obtained during, say, summer are, in fact, greater than those obtained during winter. Examples of these plots for selected latitude bands and depths are given in Figure 2.

(D) Comparison with other data sources

Ideally we would like to compare our observations with the atlas results of Robinson (1976). However, that data source has already been used in our first screening procedure and, therefore, such a check would not be independent. It is possible, however, to compare the surface climatology with the estimates of the mean sea-surface temperature field obtained from Jerome Namias. The comparison is presented in two ways in Figures 3 and 4. The first case shows a scatter plot of SST determined from millions of ship injection temperatures (Namias) versus those obtained from the surface values of the more limited BT/hydro data set. The ship injection temperatures are seen to be warmer, on the average, than those obtained from the BTs, but this effect was expected and has been previously documented (e.g., Robinson, 1976; Saur, 1963). The scatter diagram does have an interesting property in that the two estimates of SST converge where the highest temperature is observed. Comparison with the ship injection temperatures may be presented in another way. Figure 4 shows the frequency distribution of the difference between the two SST fields; one obtained from the BTs, the other obtained from the ship injection temperatures. It is seen that the mean difference between

them is approximately 0.4°C, as expected. Taking this into account, it is abundantly clear that the average difference between the two fields is typically less than a degree centigrade and that the difference is approximately normally distributed. On the basis of the two above curves we may conclude that the SST field derived from the BT information is statistically equivalent to that derived from ship injection temperatures (after allowance is made for the fact that the injection temperatures are known to be higher than the bucket temperatures associated with the BT observations).

(E) At least three different types of instruments have been used to obtain the data that has gone into the mean field. One might well ask, do these instruments bias the quality of measurement; that is, do the mean fields obtainable from the different instruments agree in a statistical sense? This is essentially the Berhens-Fisher problem and can be answered with a version of the Students' 't-test.' Unfortunately the problem is compounded here by the fact that the time interval covered by the mechanical BTs is essentially not the same time interval sampled by the majority of the XBTs (cf Figure 1). Thus the instruments could be returning the same estimates of a field that does not have a stationary mean value since the period of the '50s and early '60s may not be similar to the period of the '60s and early '70s. Hence, the t-test mentioned above not only compares the quality of measurement from the various instrument types, it also says something about the long term stability of the climatological mean field developed in this work. There is a further restriction that the mechanical BTs seldom go below 150 meters. Hence, any comparisons made between the different types of instruments must be made at this depth or shallower.

All combinations of pairs of fields have been examined with the test indicated above. Also, mean field derived from each measurement device has been compared with the grand mean field developed from all of the data. The general conclusion derived from these numerous analyses is that the instruments do not introduce a significant bias in estimates of the mean field, except perhaps at the sea surface where the comparisons are marginal.

5.0 Results/Cautions

Tables 1 through 11 show the estimated mean field for each month for each 2 x 10 degree quadrangle and each depth. Selecting a given time and depth, each box contains three entries. The center value gives the mean temperature in degrees centigrade, the value on the lower right the standard deviation associated with that mean and the number on the lower left in the box gives the number of observations available from which the mean and standard deviation were constructed. The latitude/longitude coordinates of the data field are given along the sides of the printout and indicate the centroid of the sampling regions. All of the data contained in the fields is available on magnetic tape.

The resulting mean fields do have several peculiarities that require caution on the part of the user. The most notable events are:

- (A) In some cases water temperatures are higher at more northerly latitudes than they are at latitudes immediately to the south. This event occurs very infrequently and, when it does, is generally only apparent at the highest latitudes. It can be traced directly to the fact that there is very limited data in the areas where these peculiarities occur. Such situations have been left in the data so that the critical scientist may determine how much faith he wishes to place in regional means.
- (B) Standard deviations, particularly at the surface, are high near 40°N, 175°W. Notice that the standard deviations drop as one moves eastward along latitude 40 and/or with increasing depth. This region is in the vicinity of the subarctic front and one would expect high variability here. Also, since it occurs in the westernmost edge of the study region it may be ascribed to the fact that this region is near the extension of the Kuroshio and Oyashio confluence and thus is an area where high variability is to be expected. Visual inspection of the data that have gone into the calculations for this region show them to be reasonable with respect to all of the verification and screening of standards mentioned above. However, the data appear to characterize two rather distinct oceanic states, i.e., they come from a subtropical

water mass or a subarctic water mass. Thus the estimates of the mean in this region may be somewhat misleading for they describe a situation which physically does not exist. Fortunately this effect appears confined to only one or two of the quadrangles in the vicinity of the region mentioned and does not affect the rest of the mean field calculations. However, the user of these data is forewarned that the mean field estimates given here may not be representative of the actual physical conditions in this region.

- (C) As indicated above, a significant portion of the data come from observations at the ocean weather ships. These regions of high observation density are clearly apparent in the Tables shown below. It is important to note that the estimates of the mean field in the region surrounding the weather ships have in no way been influenced by the weather ship values. On the other hand, if one wanted to construct an areal average in the vicinity of the weather ships, the estimates of the mean field coming from those boxes with a large number of observations probably should be given more weight than their surrounding neighbors.
- (D) The data below 150 m come mainly from XBTs. It is clear from Figure 1 that these data are abundant only <u>after</u> 1968. Hence, the mean field at greater depth is estimated from a relative short record. This depth dependent base period for construction of the means may cause problems in some applications. However, it is the best that can be done with available data. This problem does not generally exist in the vicinity of the weather ships where numerous MBT and hydrographic data extend back into the 1950's.
- (E) The data become increasingly sparse with greater depth. At the greatest depths the data are presented only to give an idea of the total coverage to date rather than as a valid estimate of the mean field. It has been left to the individual scientist to judge the region/depth below which the estimates become meaningless.

nother and it about with to assemble Acknowledgment the state of the same to the

This work has been carried out under contract ONR NO0014-75-C-0152 as part of the NORPAX program. Thanks are due Bonnie Muir for extracting the original data from a large number of magnetic tapes and also) Ron Moe for assistance on some of the computational aspects of the program. Grace Johnston faithfully decoded the verbiage that appeared as the text. Thanks also goes to Buzz Bernstein and Warren White for reviewing the final manuscript.

an area; systage in the vicinity of the weather anter, the estuaces of the stan

lambiging all as the meet and it wheat can all a profit of the action of the bill a so many

References

- Ballis, D. J., 1973a. Monthly mean bathythermograph data from Ocean Weather Station NOVEMBER. SIO Ref. Series 73-7, Scripps Institution of Oceanography, La Jolla, California, pp 121.
- Ballis, D. J., 1973b. Monthly mean bathythermograph data from Ocean Weather Station PAPA. SIO Ref. Series 73-5, Scripps Institution of Oceanography, La Jolla, California, pp. 101.
- Ballis, D. J., 1973c. Monthly mean bathythermograph data from Ocean Weather Station VICTOR. SIO Ref. Series 73-6, Scripps Institution of Oceanography, La Jolla, California, pp 82.
- Robinson, M. K., 1976. Atlas of North Pacific Ocean monthly mean temperatures and mean salinities of the surface layer. NOO RP-2, Naval Oceanographic Office, Washington, D.C.
- Saur, J. F. T., 1963. A study of the quality of sea water temperatures reported in logs of ships' weather observations. J. Appl. Met., 2(3): 417-425.
- Wert, R. T., 1976. The oceanic bathythermograph data set. Fleet Numerical Weather Central, Monterey, California, purchase request #63134-5132-2525.

List of Figures

- Figure 1 Temporal distribution of the subsurface temperature data by month and data type over the study area.
- Figure 2 Seasonal cycle obtained from monthly mean data at depths 0 and 90 m for two typical latitudes.
- Figure 3 Scatter diagram showing the relationship between the sea-surface temperature climatology of Namias (from ship injection temperatures), and the sea-surface temperature climatology developed in this work.

 Data shown for all months in the study region defined in the text.
- Figure 4 Distribution of the number of occurrences of temperature difference obtained by subtracting the BT sea-surface temperature climatology from the sea-surface temperature climatology of Namias. The bias is expected from the results of earlier workers.

List of Tables

1.1 - 1.12	Monthly mean	temperatures	for	the	central	Pacific	at	the sea	sur	rface.
2.1 - 2.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	30 m.
3.1 - 3.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	60 m.
4.1 - 4.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	90 m.
5.1 - 5.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	120 m.
6.1 - 6.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	150 m.
7.1 - 7.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	200 m.
8.1 - 8.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	250 m.
9.1 - 9.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	300 m.
10.1 - 10.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	400 m.
11.1 - 11.12	Monthly mean	temperatures	for	the	central	Pacific	at	a depth	of	500 m.

Temporal distribution of the subsurface temperature data by month and data type over the study area.

Seasonal cycle obtained from monthly mean data at depths 0 and 90 m for two typical latitudes.

Figure 2

TEMPERATURE °C

Figure 3

Scatter diagram showing the relationship between the sea surface temperature climatology of Namias (from ship injection temperatures), and the sea surface temperature climatology developed in this work. Data shown for all months in the study region defined in the text.

Distribution of the number of occurrences of temperature difference obtained by subtracting the BT sea surface temperature climatology from the sea surface temperature climatology of Namias. The bias is expected from the results of earlier workers.

	MONTH JAN DEPTH	NETERS NUM	MER OF OBSERVATIONS	4462 TABLE	1
534	, , ,	3 4.1	17 .4	16 1.0	534
514	3 4.7	5 3,8	15 ,5	4 5.9	·
4911	9 3.9 ,>	20 .0	14 .4	1482 .5	40.
47N	125 5.1	4 5.3 .2	5,8 14 .6	7.3	471
454	24 ,4	4 6,4 ,5	7,3	13 .e.	451
03N	9 7.6	3 1.1	A.A .A	6 A.7	43.
414	19 4.9 .7	10.1	17 1.2	5 °.2	anv
30N	164 11.3	7 11.7	13 1.0	2 ,2	30.
374	14.1	11 1.6	15.9	9 14.0	374
35N	7 .8	10 1.2	15.1	12 15.7	354
13N	15.9	16.5	16.1 50 ,8	16.7	331
314	17.A 39 1.1	17.3	18.5 25 .A	213	31"
294	17 1.0	19,1	19.5	1144 1.0	29K
27N	59 21.2	37 1.2	22,3	8, 6,151	271
254	51 1,1	22.3 38 1.6	22,3	21,6	254

MONTH PER DEPTH	0 HETERS 165H	NUMBER OF OBSERVATIONS	4809 TABLE
11 .3	19 3.4	.5 19 .6	25 4.2
19 3,1	47	.3 13 .4	5.1
19 .6	67 3.8	.5 11 4.2	1312 5,3
31 .4	25	.n 10 1.2	18 6.3
48 4.6	18 6.8	.6 12 1.0	5 7.8 .8
12 7.5	10 4.2	.9 12 .5	11 .6
34 1,2	12 9,8	.9 8 1.1	34 10.3
30 .9	10.9	.7 10.8	11.9
40 .9		.0 25 .6	13.5
13.9 8 1.1	5 12.9	.4 178 .7	26 14.8
15.3	15.5	.8 99 15.8 .A	37 16.4
16.7	9 17,3	.2 50 1.2	132 18,3
21 16.3	15 19.3	.8 50 1.1	1287 18.6
20.1 47 1.6	20.4	.A 105 .9	187 .7
47 1.1	40 21.9	.2 130 .7	21.0

The state of the s

* 1	HONTH WAR DEPTH	O METERS NUM	BER OF ORSERVATIONS	5128 TARLE	1
55N [10 .3	10 2.5	21 ,6	13 ,6	53
51N	41 .4	5 5.2	18 ,3	5.0	5,,
1011	24 .1	4 .1	15 .5	1429 .6	49
174	63 .4	7 4.5	11 .5	5 5,5	47
1511	22 5.2 .7	9 1.0	5 .4	3 7,5	45
134	62 6.9 .7	9 7.7	16 1.0	5 4.4 .3	43
114	30 .4	1 0	47 ,4	10,1	41
ION	67 1.4	5 1.1	11,4	A 11.A .9	39
71:	28 13.4	7 .5	12.5	15 1 ₀ 1	37
SN	56 .6	13.6	13,9	15,1	35
3N	82 .7	32 1.1	47 .9	46 1.1	33
114	71 1.1	17.4	16,4 58 1,3	60 1.0	31
ON	62 .9	19,4	93 .4	18.4	29
7N	77 1.3	21.1	133 1.0	19.9	21
5N	77 1.3	155 .9	21,5	S, 15 PR	25

	175W	FPTH 0 ME 1		BER OF ORSERVATIONS	SOTE TABLE
	15 2.8	3 34	.2	70 .6	39 .0
	3.4	7 12 3	.6	4.0 52 .5	36 4.9
100	7 4.0	5 28	.1	37 .7	1748 .6
	114 4.5		.7	5.8 27 .6	7.0
	21 1.		.7	7.0	29 7.9
	21 7.3		.3	6,5 53 .6	41 1.0
	21 9.3	9 45	.7	9.4	31 .6
	48 1.	1 54	.6	11.3	22 .9
	41 1.	3 41		13.0	13,8 17 1,3
	37 15.5	9 21	, s.	15.3 1.5 17 1.5	41 .7
	36 1.	1 20 15	1,1	16.5	43 .8
	55 1.	1 32 17	1.0	14.4	61 .6
	A1 1.	1 42 19	.5	19.7	1598 .9
	124 1.0	4 4 21	1.3	PO.A .7	20.1
	64 22.3	166	.7. (1)	172 21.9	102 21.1

	MONTH MAY DEPTH	0 METERS NUM 165#	BER OF ORSERVATIONS	4340 TABLE
	53 .6	97 1.0	65 1.0	AB .9
	63 4,7	5.0 .A	65 .8	51 1.0
STATE OF THE PARTY	73 4,6	56 .7	74 5.6	2004 6.7
	124 5.3	6 5,5	72 .4	115 ,9
	17 0.6	7.4	7.1	35 4.6 .7
8	14 1.0	7 1.6	34 .6	2 .5
	5 11.4	11.0	9.7 75 1.2	12,2
	54 1.2	12.4	12.4	13.4
	14.5	14.2	18 1,7	26 1.1
	24 1.0	15.9 17 1.5	15.A 31 1.7	57 1,1
	36 1.7	17.3	17.5	17.6
	19.0	19.3	20.0	18.6 59 1.3
	95 .0	14 1.4	21.2	1419 1.1
	21.7	21.8	36 .6	157 1.0
	A4 1.0	23.2	124 .7	22.0

5.5	5.4	4.5	9.1
105 .9	154 1.2	170 1.3	68 7.1
337 5.7	62 1.1	7.5	62 .4
112 6.6	37 1.0	7.6 69 .A	1803 1.1
94 .4	7,5	70 1.0	37 1.2
7.3	27 1.1	52 ,0	77 10.8
87 .8	e. 10.1	10.2	11.5
32 11.1	11.3	11.3 · 58 1.3	14.0
14.5 51 1.3	15.5	13.A 48 1.3	70 1.7
16.6	30 1.3	15.2	33 1.2
9 17.2	23 .9	17.4 17 1.6	14.2
19.9	19,4	19.9	50 1.0
21.0	39 1.7	21.5	37 1.3
88 1.3	23.5	32 .6	1619 1,2
173 1.3	37 24.0	25.3	22.0
25.7	24.6	23.9	23.0

これがないない。

	175W	O METERS NUM	1954	7392 TABLE
1	115 ,9	161 1.5	237 1.4	63 1.0
T	316 7.5	154 .8	10.2	73 1.0
1	191 1,1	104 1.1	78 1.0	1936 1,1
Ī	6.34	33 1.A	11.1 39 1.5	40 1.1
T	10.3	20 2.1	12.8	61 .8
	11.0	12.9	12,8	15,5
	130 1.2	14.3	15.3	63 1,3
	96 7.4	107 3.4	19.3	1A,8 80 1,3
	15 2,9	30 1.9	34 2.1	19,5
	6 1.7	21.9 18 1.4	35 2.0	39 1.1
T	6 1,3	27 .9	34 1,6	39 1.3
	25.1	24.0	23,3	57 1.0
	25.6	24.3 5 1.1	24.0	21,5
-	101 .9	8, 6,	24,3	146 1.0
	26.5	39 .6	170 .5	23.7

			HER OF OBSERVATIONS	8498 TABLE 1454
1	118 1.0	219 1.6	11.A 174 .9	12.9
T	511 1.7	265 1.1	11.1	102 1.1
	323 1.3	193 1.2	11.5 113 1.0	13.0
	15.5	13,2	12.5	29 1.4
	14.5	98 2.2	13.8	70 1.0
	16.8	15.4	15.7 91 2.0	16,4
	92 17.9	27 2.3	17.9	67 1.0
	109 2.5	78 2.7	20.9	67 1.2
	23.5	17 22.3	22.6	21.5
	12 1.4	9 .4.2	23.7	51 1.2
	25,5	24.8	20.9	22.3
	26.0	25.3	25,4	22.4
1	26.4 .9	4 25.3 A	25.1 74 1.6	1516 1.2
	26.6	25.6	26.2	23.3
	52 .7	26.3	26.0	133 1,2

•		P DEPTH	0 METER	4 1114	PFR OF ORSE	RVATIONS	7235 145	TABLE
4	A.9	10.0	124	1.1	72	1.0	27 12.2	
11	3 6.5	1.7	10.7	1.2	91	• .7	63 12.2	1.0
	10.8		61 11.7	1.3	43	1,1	2143	1.0
,	11.7	1.1	37 14.1	2.2	12.1		13,6	1.2
5	13.7	1.4	53	2.0	37	.4	16 13.1	1.2
3	15.5	1,2	27 15.8	2.5	16.5		15.7	٠
	18.0		47	2.4	72 19.0	2.1	19.8	
5	20.7 A	1.8	131	2.0	81.8 82	1.0	34 20.5	.0
3	3 22.7	1.7	67 21.3	1.5	41 22.4	1.0	21.2	.0
3	23,3	1.7	22 23.6	1.3	A9 23.	.7	34 25.0	1.0
	24.8		32 24.5		72 24.4	.8	23.1	5.4
4	26.1	, а	35 25.2		A7 .4.0	.7	47 23.4	.6
6	26.7		31 25.7	. A	97 25.	.,	1472 22.A	
12	6 27.1	. А	26.5	.8	133	, А	132	.0
7	27.2	.,	90 26.7	.5	25.0	•	120 24.7	

HONTH OCT DEPTH	0 METERS NUM	BER OF OBSERVATIONS	7023 TABLE
7.0	23 1.3	8.4 30 1.6	7 9.4 1.8
39 1.0	7.6	8.7 23 1.4	9.2 8.3
P.5	9.5 80 1.7	9,2	11.0
125 9.2	10.0	10.2	11.5
10.9	15.2 2.3	12.2	13,1
12.A A5 1.0	13.4	14.7	14.4
13.3	50 1.1	15.7	17.0 4A 1.0
17.7	17.6	15.2	19.0
56 2.1	19.7	19.4 35 1.6	20.0
6,1 7,9	20.9	21.7	75 -1,1
76 7.1	33 1.5	23.1 PA 1.0	97 22.2
24.2	24.3	23,A 43 .7	93 .7
25,5	55.5	24.5	8. 72.1
24.6	25.7	74.9 80 .7	173 23.3
75 .8	26.1	25.5	149 .9

MONTH NOV DEPTH		0 METER 165W	METERS NUMBER OF ORSERVATIONS 4929 TA 165M 155M 145M				
5 3.	. o	3 6.1	.1	1.5	.6	5 7.7	.5
4 7.	۰. ۰	3, 5.9	.1	10	1.2	3 9.7	
2A 7.	.4	13 7.5	.9	11.	.6	1319 6.1	1,1
104 7.	.5	10 9.0	.4	12 4.	1.2	10.4	.5
25 8.		13, 9.9	.8	16		10,9	1.0
29 11.	۶. ۶	6 10.9	.5	A8 10.	.7	9 12.9	1.6
12.	4 .9	7 12.5	1.1	63	1.6	6 14.3	1.4
197	9 1.4	15.1	1.3	12	1,6	19 15.8	1.4
71 16.		4 16.9	.9	14		12 17.4	1,2
17.		18.9	1.4	24	1.1	29	1.2
24 20.		12 20.1		51	1,2	19.7	1.2
30.	7	25, 21.3	1.1	28.		56 21.1	.7
45 22.	6 1.2	21 22.8	1.0	64 23.	.3	1500 21.6	
124.	.9	24.3	.7	109	.1.	114 22.6	
84 25.	1.1	135	.7	104	.4 .0	107	1.0

	MONTH DEC DEPTH	O METERS NUMB	TER OF OBSERVATIONS	3577 TABLE 145W
3N	0 0	0 0	5 4.9 .6	0 0
1 ~	5.6	9 5,5	5,2	0 0
	3 .4	16 .4	5.8	1395 .7
·	31 .7	4 .5	7,1	2 ,5
sn [6.1 11 1.1	7.8	4 1.0	2 10.5
	9.5	4 7.5	10.3	1 8.9
N	10.2	38 .7	11.3	13.7
	13.0	12.2	2 2.0	8 1.1
N	12.2	12.4	15.2	16.0
	14.6	13.9	17.5	17.6
" [16.2	16.8	17.9	18.4
N [18,5	8 1.5	19.9	19.5
N [21,3	1.1	2, 55, 6	1.05
	32 1,3	2,55	63 ,6	56 6
SN	19 .7	23.3	63 7	64 22.4

HONTH JAN DEPTH		30 METERS NUMBER OF DASERVATIONS				4517 TABLE		
MONEY AND	• •	0	5 4.1	.47	17 3	.5	15 4.7	
A Charles	3 4.2		5 4.0		15	٠٠ ,٠	7 5.9	.5
SALING SALING	5. 4.0	.912	20 4.1	.4	14	.6	1536	.5
	125 5.1	.6	4 5.3		14	.4.	1 7.5	o
-	24 5,5		4 6,3		13	.3	13 8,1	
	, 7.6	1.0	3 7,6		50 2	.0.	6 9.0	.5
	19 9,0	.,	10.1	1.1	17	.0 1.2	5 10.A	,,
	164 11.3		7 11.5	.6	13 12		12.4	.1
	14.1	.6	11 13.4	1.4	12	1.0	9 14.0	.7
	7 14.5	.6	10 14.0	1.2	94	۸.	12 15.7	.7
	11-16.0	1.5	15 16.6	1.4	50	۰° .	16.7	1.0
	39 17.A	1.0	17,2	1.4	25	۰.4	213	.5
	17.19.5	1.0	12 19,1	1.4	27	1.0	1145	1.0
	50 21.0	1.2	37 21.3	1.0	111	.5	20,5	
	51.25.5	1.1	21,9	1.1	116	.1 · · · ·	115	.6

\$1.5	HONTH FER PEPTH 1758	30 METERS 1	NIMARER OF OBSERVATIONS	4921 TABLE	2 2
53N	11 2.9	23 3.4	19 .5	20 4.2	53N
51N	46 .2	55 3.4	3.0	15 .5	51N
494	28 3.5	79 3.9	11 4.3 .4	1352 5,3	2911
474	35 4,4	35 .4	4 4.7	14 .5	a7:
45N	40 .6	21 6.7	12 6.9	5 7.8	45N
43N	7.5	10 ^.2 .0	12 4,5	11 4,8	a3N
414	34 1,1	12 4,8	P 1,2	34 .6	414
39M	30 .9	10.9	7 1.0	22 1,1	394
37N	40 .9	19 1.0	12.4	13,5	37N
35N	15.0	s 12.A .u	15,3 178 .7	14.7 26 1.0	3511
33H	15,3	15.4 12 .A	99 15.6	37 .8	33N
314	16.7	9 17.2	49 1,2	152 ,7	314
San	25 .0	19.1	19.0	18.6	504
274	19.9	20.2 17 .8	19,9 105 .P	187 .7	27N
254	27.2	40 1.2	21.4	20.8	254

	MONTH MAR DEPTH		30 METER	METERS NUMBER OF CREENVATIONS		10NS 5	5219 TABLE		
	10 2.7	.3	10 2,6	.5	28	3.4	. 13	3.6	.0
	40 3.4	.3	2 2.5	.2	26	****		4,0	.7
	24 3.4	.3	4 3,7	.1	54	4.4	5 1477	5.2	
	63 4.0	.4	7 4.5	.6	18	5.3	. 5	5.5	.4
-	25 5,3		9 6.0	۰,۰	•	6.5	4 1	7.4	.4
-	66 4.9	.7	, 7.7	1.2	16	۸.4	• 5	B.4	.4
	34	1.0	1 0.4	0	47	۰.۸	A 8	10.1	.6
	67 11.5	1.4	5 10.8	1.1	55	11.3		11.7	.,
-	13.3		7 12.6	.5	54	1.4	0 13	13.7	1.1
	56	.6	13.5		56	13.9	2 52	15.0	
	15.0	.7	32 15.1	1.1	47	15.1	9 46	16.0	1.1
	71 16.1	1.1	17.2	1.2	5A	16.4	3 60	17.6	1.0
	62 18.0		58	1.4	93	18.7	8 1270	18.3	.,
	77 20.0	1,3	8,05	1.3	133		0 136	19.7	
	77 21.6	1.4	155		145	21.5	8 19	21.0	.7

	MONTH APR DEPTH	30 METERS 1654	NUMBER OF OBSERVATIONS 1554	6098 TABLE 145#	5
3N	15 .1	3.2	70 .A	39 4.6	,
1 1	3,7	3.6	52 .5	36 4,7	,
2	3.9	38 4.1	37 .7	1810 .5	4
	114 .5	8 5.2 ·	77 .6	17 1.0	4
5 N	5,2	18 .0	7,0	32 ,6	4
SN	7.3	31 6,1	53 .7	9.3 41 1.0	4
. [9,3	45 .1	9,2 42 ,A	31 .7] 4
, N	12.3	54 11.4	11.2 A	22 .7	3
, N	14.0	12.8	12,7	17,5] ,
5N	15.3	14.0	15.0	14.8	,
SH .	15.3 38 1.1	20 15.1	16,0	15.9	3
14	17,2	32 1.	16,1	61 .6	3
. N	14,5	19,0	19,3	18,4	,
,, [124 1.4	20.6	20.4	19,9	,
SN	64 1,1	21.4	172 -A	102 20.9	,

は代に対象という。

	HONTH MAY DEPTH	30 METERS 165W	NUMBER OF CASER	VATIONS	1454	TABLE
N [53 .6	105 4.5	,R 66 4.R		5.4	.•
	94 4.3	104	.0 65	.7	51	
. [A3 4.5	70 4.7	,6 7A 5.3	.6	2077 5.4	.7
	130 .7	11 5.2	,7 72 6.2	. А	115	.1
	1.1	7.3	9 56	.5	35 A.5	.1
	7.9	7 9.0 1	,7 3A F.1	.5	, "."	.•
	5 .5	10.7	.7 25 9.5	1,2	3 11.1	
	12.3	19 1	.0 15		11 12.7	
	14.0	19 13,5	.7 1A 13.4	1.0	25	1.5
	15.1	17 1	.2 31		15,6	1.1
	36 1.9	18 1	.3 13 16.7		69 17,1	1,2
	18.1 16 1.6	24 1	.4 15 1A.R	1.1	18,1	1.0
	95 1.1	20.3	.2 25		1418	1.0
	20.6	21.4 25 1	.2 35 21.6	.•	157	1.0
	84 1.2	22.5 64 1	.2 124 22.5	.7	150 21.7	

MONTH JUN DEPTH		30 METER 1654			DBSERVATIONS		7496 TABLE 1454		
160	u.A	.7	187		170	6.4		7.1	1.0
376	4.9	.,	76 5.7		100	6.3	.,	63	
143	5.4	. А	5.7 54	.,	69	6.6	.4	1889	. •
111	4.2	.,	19 6.8	1.3	70	7.4	. А	57 8.6	1,1
. 39	7.0	.•	7,9		52	8,5	.•	77 10.1	1.1
67	A,6	.7	28 9.7	۰.	61	9.6	.•	54 10.6	1.1
32	10.9	.9	47 10.9		58	10.8	1.2	12.1	1.2
50	13.5	1.0	13.3		48	13.2	12	70 13.7	
19	15.9	1,5	30		10	14.6		14.A	1.1
٨	16.5	1.3	23 16.3	.•	17	16.3	1.5	29 15.4	1.2
15	18.0	1,6	17.9		14	14.0	f.f	18.3	1,1
26	19.4	1.4	39 19,5	1.5	18	20.7	1.1	37 19.7	1.1
86	19.6	1,5	46 21.8	1.4	35	21.1	.,	1617	1.0
173	22.1	1.4	36 25.5		21	22.4	.4	21.6	1.0
•4	24.1	1.4	A5 23,3	1,3	100	23.4		169 22.5	.,

TABLE	2 7
.5	534
.1,2,	51^
.6	agh
•0	47%
1.1	450
.3	450
.^ 1.7	41*
1.5	301
1.5	37.
.4	35.
1.9	334
1.5	314
1.4	201
	27N
.3 .6	251
	1.6 .7 1.9 .1 1.5 .1 1.4

	MONTH AUG DEPTH		ETERS NUMBER OF ORSERVATIONS 8709 TABLE 1654 1554 1454		
1	122 1,2	231 4.4 2.0	170 1.9	114 1.9	1
	557 1,5	262 1.6	169 1.A	101 2.0	1
	354 1.0	207 1.6	113 1,6	11.5	
	231 1.4	57 1.5	103 1.6	29 1.4	
	9.9	98 1.0	73 1,3	67 1.2	
	11.8	30 2.1	12.6	12.6	
	93 1,6	15.4 27 2.3	13,7	67 1.6	
	110 2,5	7A 2.1	15,9	67 2.3	
	19.4	17 1.4	17.A 43 1.6	18.7	
	13 1.9	91.0	19,3 69 1.A	54 1.8	
	21.6	51.9 5.2	21.9	20.3	
	15 1.6	16 1.7	53 1,5	81.9	
	20.4	24.3	73 1.2	1515 21.9	
	25,0 A5 1,2	24.9	25.A 1.2	505 1.5	
	52 .9	34 1.0	25.8 143 1.0	133 1,1	1

	SEP DEPTH	30 METER 165W		HER OF ORS	ERVATIONS 54	7345	
45	1.7	124 6.7	1.7	72 9.	1.6	27 11.0	1,7
123	1.9	107	1.4	90 10.	4 .0	63 11.6	
86 10	1.4	10.3	1.4	10.		2215	1.2
	1.5	37 11.6	1.7			31	1,2
50 17	1.5	53 15.1	1.5	37 12.	1.5	16 12.3	, i
33	1,9	27 14.7	2.0	63	7	11.6	
55 10	2,2	47 16.4	1.4	72 16.	6 2.1	19,1	.2
61 10	1.9	131	1.7	62 15.	2.7	1P.R	1.7
13 20	1.7	67	2.5	41	7 2.2	20.6	1,1
35 27	2,5	55 55'3	2.0	A9 21.	2,3	21.6	1,2
50 20	1,1	32 23.5	1.6	73 22.	8.0	14 22.9	2.6
50 25	1,5	35 24,5	1.5	A7 24.	1.1	47 22.9	۰,۸
61	1,3	31 25,5	.7	98 25.		1471 72.5	
126	.4	26,2	.0	133	· .•	132 23.6	.9
79 20		26.4	.,	187	A .A	120	.9

MONTH OCT DEPTH			METERS NUMBER OF OBSERVATIONS 7074 TASH 145W				
, 6	.6	23 7.3	1.2	30	1.9	7 9.4	1.6
39 6	., .,	13 7.7	.5	53	1.4	. •.1	2,3
50	.5	P9 9,5	1.7	19	9.1	1552	1.0
126	.1	10 0.4	1.6	20 1	1.4	7 11.4	1.6
74 10	.0	11,8	1,9	30	2.1	11 13.1	.5
65 12	۰۰ .۰	a2 13.1	.•	70	4.4	14.4	1.0
65 13	1.2	50 15.6	1.4	40	5.5	48 17.1	.0
115	.5 .0	17,5	5.0	27 1	1.9	79 19.0	1.6
56 17	.6 2.0	19,5	1.5	35	9.2	20.0	1,1
65 20	.9	27 20.8	1.5	16	1.6	75 21.2	.1
76 22	1.5	33 25,1	2.0	54 5	1,2	97 22.2	.,
A4 24	.1	24.2	. 0	43	3.7	93 25.5	۸,
75 29	1.3	52 24,1		44 2	4.5	2353	,,
544 54	1.9	14 25,6	.3	40 5	4.8	173 23.2	1.0
75 26	.6	5A 25.0	1.0	120 2	5.3	149 24.2	

A CAMPAGE AND A

	MONTH NOV DEPTH	30 METERS NIJM	REP OF ORSERVATIONS	145h
" [3.8	3 6,1	12. 6.6	5 7.4
.	4 7.4	30:	10 7.2	3, 9,7
.	2A .4	7,5	7.7	1356 1.1
	104 .5	10 .6	12 1,2	10.3
. [25 1.0	10.0	9.6 16 .A	10.8
	29 11.2	11.0	10.7	12.9
.	12.4	7 1.3	11.9 63 1.6	14.3
,	197 1.4	15.2	15.6	15.8
, [71 .7	17.0	17.7	17.3
88	8 2,1	18.9 5 1.4	18.6	16.7
. [20.0	12 .6	20.3	19.7
. [38 1.3	21.3	22.0	56 .7
. [22.6	21 1.0	64 .9	21.5
	124 .0	24.3	109 .9	114 .9
•	24.9	24.8	24.3	107 1.0

	MONTH DEC DEPTH	30 METERS NU	MRER OF DRSERVATIONS	3628 TABLE	2 12
53N	0 0	0 0	5 .7	0 0	53N
51N	1 6.2	9 ,3	4 5.3	0 0	51N
491	3	16 .4	5.0	1445 .7	49N
47N	31 .7	4 .4 .4	7.1	2 7.4	47N
45N	11 1.1	7.7	4 9.2	2 10,5	454
45N	32 4.5	4 .4 .7	10.1	1 0.0	43N
414	10.3	38 10.6	35 1,1	16 1,0	41N
304	13.0	12.2	2 1,0	8 1.1	39N
17N	10 1.2	4 12.4	3 15,2	11 16.1	37N
194	10 1.6	4 13.0	4 17,6	11 17.5	354
354	7 16.2	10 1.4	13 1,6	18.5	33N
31N	20 1,1	19,6	15 10.0	A3 1.0	31N
204	25 21.1	15 1.0	20,2	1250 0,0	29N
27%	32 1,1	21 25.5	63 25,0	50 21,4	274
250	19 24.2	21 27.4	61 25,4	** 55'2	254

THE RESERVE TO THE PARTY OF THE

	JAN DEPTH	60 METER 165H		PER OF O		14514	
•	•	5 4,3	.5(17.	.4	15 4,7	.,
3. 4	.2.	5. 4.0		19.		7, 5,7	.6
•	.0.0	20 4.1		14	.4	1533 5.6	.5
125. 5	.1.55	4 5.3	.2	14	.6	1, 7,3	•
24 5	.5, HI	4 6.3	.4	18	.3 .4	15 6.1	
• 7	1.0	3 0,0	1.2	20	٠,٩	6 9.0	.5
19	.0 ,7	12.01		17	1.2	5 10.7	.3
164	.3	7 11.5		13	1,0	2 12,4	.3
14	.0.	11 13.4		12	1,0	9 14.0	
7 14	.5	10 14.0	1.2	04	.4	12 15.6	
11 16	1.5	15	1.4	50	۰,۰	16 16.7	1.0
39 17	1,0	13 17.2	1.4	25	3.4	213 18,6	.5
17. 19	.2	18.9	1.4	27	1.0	1145	1.0
50 20	9.1	37 21.2	1.1	111	1.2	121	,8
51 25	1.1	81.8	1.2	116	2.0	115	

	HONTH FEB DEPTH	60 METERS	NUMBER OF ORSERVATI	ONS 4917 TABLE	3 5
53N	11 ,3	23 1,5	.5 19 .5	24 4.2 .6	93N
514	46 ,2	55 3,4	.3 11 3.9	15 .4	514
491	28 ,5	79 3.9	.5 10 4.2 .2	1352 5,3	49N
471	35 4.4	35	,5 4 1.0	10 .0	47%
45N	4,7	21 6.7	.6 11 6.9	5 7.8 .6	45N
45H	12 1.7	10 0.2	.9 12 0,5	11 7,6	43N
41N	34 1,1	12 4.4	,A A 10.0 1.3	33 ,5	41W
39N	30 11,1	14 10.4	7 7 10.9	12,0	39N
37N	40 .8	12,3	.0 25 .0	30 .6	37N
35N	A 1,1	12.6	4 178 15.1	14,7	354
33N	16 1,2	15,3	,9 99 ,6	16,3	33N
314	16,7	9 17,1 1	1 49 10.4	152 .7	31N
24M	25 16,0	18,6	19.2	1865	291
274	47 1,4	20.0	,A 105 .A	19,8	271
294	47 1,0	21.4 40 1	,1 130 ,7	210 20.7	25N

	MONTH MAR REPTH	60 METERS NUM	AFR OF ORSERVATIONS	5216 TABLE	5
53N	10 .3	18 .4	24 ,6	13 3,6	534
514	40 .5	3.2 .2	26 .4	4.9	51~
491	24 3.4	3.7	26 .5	1477 .6	491
47N	63 4.0	7 4.6	5,3	5 .4	474
45N	25 5.3	9 6.0	6 .4 .5	3 7.4	450
430	66 7.0	9 7,7	16 1,0	5	434
414	33 ,0	1 9.5	47 .A	10.1	411
394	67 1.4	10,A 5 1,1	55 .8	8 .8	100
374	28 .9	7 .4	12.4	13.7	374
454	14.0	14 13,3	13.8	14.9	354
33N	82 .6	32 1.0	15.0	16.0	33N
514	71 1.2	16.A 50 f.1	16.2 58 1.4	17.6	311
294	62 17.6	18,6 56 1.5	93 1.0	1870 .7	204
274	77 1.1	66 1.4	153 1,1	136 .7	274
25N	77 1.4	21.4 155 1.0	145 .9	8, 6,05	251

	75H	165H	, NUM		SERVATIONS 55H	145	TARLE
15	.7	43	. a	70	.5	39	
15 3	.6	24 3.6	.2	52	.8	36 4.6	.•
19	.5	34 4.1	.4	37	.5	1810	.5
114	.5 .5	, 5.2	٠,	27 5	., .,	17 0.8	1.0
21 5	1,5	16 6.4	.0	30		32 7.6	.6
21 7	.3	31		55	.0	41 9,1	.•
21 9	.2	45 9.2	٠.	42 9	.0	31 9.9	,6
46 12	1.0	11.2	٠	15 11	.1	22 11.0	.6
41	1.5	41 12.6		17	.3	17 13,4	1.4
37	1.0	21 13.7	•	17	.5	41	.7
38	1.2	20 14.5	1.0	21 21	.5	43	
55 16		32 16.4	1.2	PO 17	.5	61 17.4	.0
61	1.0	42 10.5	.0	68	.6	1597	
124	1.5	20.0	1.2	19 A4	.7	141	
64 21	.4	166	1.1	172 21	.2	102 20.6	

	MAY DEPTH	60 METER		AFP OF THE	ERVATTONS	145	TARLE
53.	1 _{6,8}	102 4.0	.6	46	.7.	AA 5,0	
97. 4.	·	104	·•.	65	5 .5	51 5,2	.,
A3 ".	· .s.	70 4.5	.,	78	.4	2077 5.4	
130 5.	٠	11. 5,1	•	72 5.	1.0	115 6,6	
22 5.	7 1.2	24 7.2		56.	.6	35 7.9	
14 7.	4 .7	7 8.5	1.5	10.		5 8.4	.7
, °	.4	14 9.8		25	1,3	3 9,0	.,
54 11.	5 .0	19 11.4	1.0	11,		11.7	1.6
19 13.	1.5	19 12.7	.6	18	,7 .e	25 14.0	1.2
24 14.	۰, ۰	17 13,6	1.2	31	1.0	14.8	. 9
36	1.5	15.0		. 13	1.3	16.1	1.0
18	1.2	16.3	1.0	15	1.3	17.5 59	1.1
95 17.	7	14.3	1.2	25	1. A. J. J. B.	1417	1.0
235	1.0	25 20.4	1.4		1.1	20.1	.•
34 20.	1.3	20.9	1.3	124	A	150 21.1	

	MONTH JU 1758		60 MPTERS		IMBER OF	DRSER 155W		7491	
	160 3.9	.6	187 4.2	.7	170	4.6	.,	6A 5.1	.7
	176 4.3	.5	74 4.5	.4	100	4.5	.7	63	
Day State	143 4.2		3A 4.7		60	4.7		1889	.,
	110 5.1	.,	19 6.1	1.1	70	6,1	.7	37 7.0	1.0
	54 5.4	.,	27 7.2		55	7.1	.0	77 6.	
00	A7 7.6	.•	>0.0		61	A.4	1.0	54	.7
	32 10.5		47 10.1	1.2	58	9.4	1.1	81	.7
	50 12.0		30 17.5		48	11.7	1.2	70 12.	
	19 14.6	1.5	13.5	1.1	10	13.1		13.1 33	1.0
200	4 14.5	1.1	23 14.6		17	14.6	1.7	29 15.	1,3
	15.7	1.2	41	1.2	16	15.9	.6	50	1,3
	17.0	1.3	39 17,3	1.3	14	10,7	1.0	36	
	A6 17.9	1.2	46 10.7	1.6	35	19.1	.,	1617	
	172	1,5	36 20.5	1.1	21	20.9	1.0	205	
	94 22.0	1.5	A5 21.6	1.4	100	21.9	1.0	169	٠.,

	MONTH JUL DEPTH		IMBER OF OBSERVATIONS	7706 TABLE
[144 .5	192 4,7	238 4.5	63 5,1
	4.7	174 .6	4.9 125 ,A	75 5.7
	25A 4.6 .7	119 .8	79 .A	1990 6.3
	5.1	42 6.0	38 6.8	40 .7
	9 6.0	20 6.5	34 7.8	60 1,1
	5 6.3	16 1.4	P3 A.A ,A	53 9.2
	130 1.2	18 .8	112 1.3	63 1,2
	96 1,0	107 1.2	12.6	12.4
	15 .9	30 1.3	13.0	13.6
	6 1,5	14.5	35 .8	15.4 38 1.2
	6 1,3	27 1.3	15.7 34 1.2	39 1,5
	20 1.0	16.9	35 1.1	18.6 57 1.1
	44 1.4	18.9	19.9	19,6
	101 1,3	21.6 8 1.9	105 .9	20.9
	76 22.3	39 1,5	170 1.0	166 .9

	MONTH AUG DEPTH	60 METERS NIM	HER OF DESERVATIONS	A705 TABLE	3 8
93N	122 4.2	231 1.0	170 1.0	114 1.0	53N
51N	557 4.9	8. SAS	169 .9	101 1.3	51N
404	354 4.5	207 5.2	112 .9 .9	1762 6.4	49N
07%	231 6.4	6.5 57 1.0	102 1.1	7.5 29 .A	47N
45*	93 1.2	98 1.1	7,3	67 8.5	451
434	9.1	30 1.5	91 .9	60 9.3	43N
41N	93 11.2	27 1.2	10.1 76 .A	10.5	414
394	110 1,7	7A 1.5	11.8	67 1,3	39N
37N	15.3	17 1.1	13.5	50 1.5	374
35N	13 1.6	9 15.0	14,6	16.2	35N
33N	16.6	23 1.2	16.8	16.8	33N
31N	18.4	17.6	16,8	19,6	314
29N	27 1,6	19,9	19,5 73 1,1	1514 1.1	20N
27N	85 1,6	21.7	22.4	20.9	27N
254	92 1,6	23.5	23.4	133 1,0	25N

4.6	5.5	4.6	145#
45	124 1.1	72 1.0	27 1.3
123 1.0	107 .8	91 4.7	43 .9
85 1.5	64 .8	5.5	2215 0.5
79 6.0	37 6,3	4, 5,	7,9
58 1.5	53 7.2	7,5	16 1.0
33 1,5	27 1.9	63 .9	9.2
11.6	47 1.2	11.1	5 .5
13.4	130 1.2	12.6	13.2
33 1,3	67 1.1	14.0	15.1
35 1.4	16.0	15.2 A9 1.0	16.0
17.7	17.1	73 1,1	1A.3 14 2.4
18.6	35 1.3	10.0 A7 1.3	19.5
20.1	20.8	20.9	1470 1.0
21.7	23.4	153 1.4	132 1,1
79 1.6	24.1	23.7	1.1
	90 1.5		7067 TABLE
5.2	25 4.4	5.1	7 1.1
5.6	5,5	5.1	5.7

MONTH OCT DEPTH	60 METERS NUME	TER OF ORSERVATIONS	7067 TABLE
5 1,3	23 4.4	30 1.5	7 5.6
5.6	5.5 13 1.7	5,1 23 1,3	9 1.1
40 1.5	A9 1,2	19 1.4	7,5
7.4	6.7	7.6	5 1,6
74 1.7	7,3	8.7	9.2
85 1,5	42 1.3	70 1.3	10.8
12.4	11.3	11.4	15,1 48 2,0
115 1.5	17.9	13.6	79 1.1
15.7	14.1	14.7 35 1.1	15.4
65 1.6	27 1,3	16.0	75 1.0
76 1.5	16.9 33 1.6	17.7	97 1.4
19.8	19.0 25 1.5	19.A 43 1.7	93 1.4
75 20.7	20.3	22.0	2349 1.2
240 21.3	24.1	23,4 80 1.1	1.5 25.5
75 1.5	58 1.9	24.3	23.3

The state of the s

	175	M DELLA	165		WEN OF	1554	14	SH
	2 3.A	.0	3 6,1	.2	12	5.9	5 6.	1.1
	4 7.7	.5	3 5,9	•0		5.9	7.	1.1
•	28 7.4	1,3	13 6.7	1.1		6.9	1 135A 7.	1.1
		.5	10 8.5	1.0			, .	1.5
•	25 7.0	1.4	13 4,5	2.1	16	9.0	9.	1.2
	29 11.1	.9	6 10.4			10.3	11,	1.3
	12.1	1.1	7 11.7			11.3	, 13.	1.3
	197	1.4	15.4	1.6		15.5	19	2,1
	71 16.4	.7	14.7	1.4		15.1	12	
	8 17.1	1.7	5 16.6	1.3	24	16.4	17.	1.3
	19.4		12 19,1		21	18.2	18	1,6
	38 20.1	1.3	20.6	1.3	28	21.0	56 20.	7
•	21.5	1.6	22,3	1.4	64	21.6		
	124 23.2	1.4	25.9			23.1	114 22.	3 .9
	24.3	1.2	136	1.0	105	23.9	107	1,1

	MONTH DEC DEPTH	60 METERS NUMP	AFR OF OBSERVATIONS	3627 TARLE 1454
[0 0	0 0	5.1	0 0
	1 6.3	5.6	5,5	0 0
	5.4	16 .4	9 .5	1445 6.4
	31 .7	6.5	7.1	2 1,3
	11 1,1	7.7	9.3	10.5
	9,5	9.4	10.0	1 0
	10.4	10.5°	11.1	16 1.5
	13.0 A .A	12.2	13.2	13.7
	12.2	12.4	15.1 3 1.4	15.9
	14.5	13.8	4 17.6	17,4
	7 2.0	16.8	17.9	18.5
	1A.3 29 1.3	19.6	19.8	19.5 83 1.0
	20.7	21.0	1,55	1249 .4
	32 1.8	21.9	63 .7	56 .6
	19 1.0	22.7	63 .7	52.2

	175	N DEPTH	165	i VIII	BEN DE DE	SERVATION	4513	
	0		5 4.3	.5	17	.4	15	.4
	3 4.2		5 4.1	.4	15	.3	, 5.6	.6
	5 4.1	.2	20 4.1	.3	14		1533	
1	25 5.1	.6	4 5.2	•5	14	.6	7.3	•
	24 5.5	.6	4 6.3	.4	13	.4	13 4.0	, а
	9 7.7	1.0	3 9,1	1.1	su ,		6.9	.5
	10 9.0	.7	12 10.2			1,1	5 10.6	.3
1	11.3	1.0	7 11.4	.6	13	1.0	12.5	.>
	14.0	.,	11.	.5	12		9 13.0	1,5
	7 14.4		10 13.4	1.0	94	۰. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲.	15,1	1.0
	15.9		15.8	1.5	50	1.0	16.5	
	39 17.5	1.0	13 16.7	1.3	25	1.0	213	.6
	17 18.1	1.2	12 18.6	1.5	27	1.0	1145	1.0
	20.3	1.3	37 20.6	1.3	111	1.3	121	
	51 21.7	1.2	38 21.5	1.3	115	. A. I	115	.7

	MONTH PEB DEPTH	90 METERS 165H	NUMBER OF OBSERVATIONS 155H	4917 TABLE	
3N	3.0	25 3.7	3.5	24 .6	7
111	3,5	55 3,5	3.9	5.0	
, N	24 ,5	79 .5	20 4.1	1352 5.2	
· · [34 .4	35 5.0	A 1.0	15 .6	
N [4.7	21 4.8	11 .4	7.8	
N	12 1,4	10 .8	12 .6	8.7 11 .6	
"	8.A 1.1	P. 9.9	9,9	33 .5	
~	30 .4	14 .6	7 10.7	22 1.1	
] ،	12.8	19 1.0	12,3	13,3	
. [13.8	5 12.6	178 14.7	26 1.0	
. [16 1.3	12 1.0	15.0	37 .6	
, [16.5	9 16.8	16,7	182 ,7	
. [23 .9	15 1.1	19.1 - 1.1	18.4	
• [19.0	17 1.0	19.5 105 .A	19.7	
	47 1.0	40 21.0	130 21.1	A. 0.15	

	175H	90 METERS NUM	BER OF ORSERVATIONS	521A TABLE 1454	4
s" [10 2.7	3,1	3,4	13 .7	7,
	40 3.5	5 ,3	3.4	4 .8 .6	,
~	24 .3	3.A .1	26 .5	1477 .5	7.
. [43 .4 .4	7 4.7	18 .5	5 .4	7
~	25 ,7	9 6.0	6.4	7.4	7
2	7.0 66 .8	9 1.3	A.3 16 1.0	5 .4	7.
,	33 .A	1 9,5	9.6	10.0 A .6	1
•	67 1.4	5 1.2	11.2	5 11.4	7
•	28 .9	7 .4	12.2	13,5	1
•	13.9	13.1	13.6	52 1.0	1
• [14.7 R2 .7	32 1.0	14,8	15.9	
"	15.8 71 1.2	50 1.1	16.0 5A 1.4	60 17.5	7
× [62 17.3	17.9 58 1.5	93 1,1	1270 14.2	7
N	77 1.1	66 1.4	18.6	136 .7	
~	77 1.3	155 1.1	20.5	89 .8	7

MONTH A	PR DEPTH	90 METER 165		BER OF			6093	
15	.3	45	.4	70	3,6	.7	39	3 ,8
15	.5	24 3.7	.3	52	3.8	.5	36	4 .5
19	٠. ٢	37 4.0	.3	37	4.4	.7	1810 5.	3 ,5
114		A 5.2	.6	27	5.5	.7	17 6.	6 .9
21 5.1	1,3	18	.0	30	6.6	.8	32 7.	6 .7
21 7.0	.6	7.9	.9	53	8.0		41 9.	0 .9
21 9.2	.4	9.1 45	1.0	42	A.A	1.0	9. 31	7 ,5
48 11.7		54 11.1			10.9	.0	55 10.	7 .7
13.5		41	.7	17	12.0	.•	17 13.	1 1,6
37 14.7	1.1	21 13,3			14.1	1.9	41	۰.,
36 14.6	1,3	20 14.3	1.1	50	15.1	1.2	43	7 1.1
16.3 55	.0	32 16.3	1.1	19	17.0	1,5	61	3 ,7
A1 17.2		17.9	.9		18.0	1.2	1597 16.	1.0
184	1,3	19.4	1.3	A 4	19.0	1.1	141	
64 20.6	1.4	165	1.2	172	50.0	1.1	105 50.	3 .4

	175	Y DEPTH	90 HETER		er ur	155W			145W
•	3.0	,5	101 3.9		65	4.1		46	4,5
•	7 1.9	°	103	.5	65	4.2	.,	S1.	4.7
•	3.7	.912	70 4,1	*	74	4.5	.,	2077	5.4
11	0 4.6	.5	11 4.6	••	72	5.3		115	۰,3
2	2 5.4	1.2	24 6.5	.,	56	5.0		35	7.4
,	4 7.1	.,	7 0.0	1.4	38	7.2	.,	2	7.7.
	5 9.4		14 *.*		25	9,1	1.3		9.6
•	11.1		19 10.9	1.0	15	11.1	.6	11 1	1.4
١	12,5	1.6	19.2	.1	19	17.2		25	3.5
2	13.6	.•	17 13,1	1.1	31	13.4	1.1	56	1.0
,	15.2	1.4	18.2		13	15.4	1.6	68	5,5
,	A 15.8	1.1	15,5	.•		10.5	1.4	50 1	7,0
•	16.4	.,,	14 17.0	1.2	25	14.3		1417	1,1
57	18.2	.9	25	1.5	35	19.4		155	•.5
	19.6	1.4	19,6	1.4	124	20.9		150	0.6

HONTH JU		90 METERS 1654	NUM		BBERVATIONS 1554	7480	TABLE
160 3.4	.5	183	.7	170	4.3.	6A 4.7	
375	.5	74	.5	100	٠.٥	63 5.1	.,
143	.4	36 4.2		69	4.0	1469	,5
110	.6	18 5.5	•	70	5.3.1	37.	
39 5.2		27 6.5	.6		1.0	7,7	
87 6.9	1.0	28 8,3	•	41	1.0	A,7	.0
32 9.9	.9	47	1.5	58	1.0	81 10.1	. 9
50 11.1		11.7 30	.1	48	1.1	70 11.4	1.0
19 13.4	1.4	30 12.6	٠,٩	10	2.4 ()	12.5 33	1,2
8 13.A		23 13.9		17	1.4	29	1,2
15.0	1.2	40	1.0	18	4.8	15.4	1,1
26 16,0	1.1	39 16.1	1.2	16	7.7	36	1.0
AA 16.9	1.0	14,5	1.7	32	1.25.	1617	,,
172	1.3	19.3	1.0	21	9.8	204	.,
93 20.5	1.4	A5 20.4	1.4	100	1.1	169 20.5	.,

	MONTH JI		90 METER 1651		BER OF	DASERY 1554	VAT10NS	7701 145×	
Same and	144 3.7	.5	190 4.3	.,	234	4.0		4.4	.,
The Contract of	412 4.3		174	.5	125	4.1		73 4.7	.6
A OCCUPATION	234 3.4		119 4,2	.6	79	4,5	.,	1990 5,3	.6
	64 4.1	.,	42 5,2	1.1		6.0		40 5.4	.7
	* 2.5	.0	20 5.0	.,	34	5.9		60 7.9	.0
S. offsetting	5 5.7	.4	16 4.7	1.5		P.1	1.0	53 6.6	.9
CONTRACTOR OF	130 4.0		18 10.0	.,		9.4	1,1	63	1.0
No. of Second Confession Second	94 13.7	1.6	107 11.9	1.0	90	11.6	.7	11,5	
	15 13.3	1.0	30 11.9		33	12.0	.,	12,5	1,5
	6 14.3		18 13,5	1.0		13.0		38	1.3
- Charles	6 15,3		27 14.6	1.2	33	14.5	1.2	39	1,6
The second second	20 16.6		14 15.4	1.1		16.4	1.1	57	.0
-	17.9	1,3	5 17.2	1.2		18.2	1,3	1316	1.2
	101	1.2	\$ 50.0	1.9		19.6		146	
	20.5	1.4	39 21.0	1.6	170	8.05	.0	20.6	.7

	MONTH AUG DEPTH	90 METERS NUM	MER OF OBSERVATIONS	A696 TABLE	•
~ [122 3.6	230 4.5	170 .8	114 4.0	5
. [556 4.4	3.9 .6	169 .6	100 4.6	,
, [350 3.7	207 4.2	112 .7	1762 5,3	
	231 1.0	56 1.0	101 1.0	2, 0,5 A, 20	
, [93 1.2	6.7 9A .9	6.5 73 .A	67 .7	
. [50 8.6	30 A.1	91 .9	60 67	1
·	93 .9	27 1.2	9.5	67 9,5	7.
	12.4	11.6	10.8 85 .9	67 1.2	٦,
. [13.9	17 1.0	12.4	12.5	٦,
. [13 1,6	9 .4	13,3	54 1.7	7
. [15,3	23 1,1	15.3	15,7	,
7.0	16.4	16 1.0	17.2 53 .A	17.8],
. [27 1.5	4 17.8 .P	73 .4	1514 .8],
. [19,3	10.6	20.4	19,4],
	92 1.6	21.3	143 t.0	20.5	,

	MONTH SEP DEPTH	90 METERS	NUMBER OF OBSERVATIONS	7330 TABLE	4
• [45 ,9	124 4.8	0 72 4.2	27 4.4	53
	123 4.7	107	6 99 .4	63 4.7	51
,	A5 1.0	64	6 43 .6	2215 5.1	"0
, [79 1.1	37 5.4	5 41 .6	31 4.6	47
. [5R 1.3	53 6.2	7 37 6.9	7.1	45
, [33 1,5	27 1.	2 63 .6	1 **1 0	43
.	10.6	47	9 72 1.0	11,3	41
. [12.2	11.8	1 62 .4	34 .9	30
	33 .9	67 12.8	7 41 .8	13.4	31
, [35 1.0	13.9	7 89 .9	34 1.4	3.
. [15.5	31 1.	n 73 1,1	14 2.0	31
	16.5	16,6 35 1,	1 87 1.0	17.A 47 .A	31
. [17.8	16,0	2 9R 1.0	18.4	20
	19.1	20,5	4 133 1.4	132 .9	21
	79 1,5	21.5	4 195 1.2	114 .9	2.

MONTH OCT DEPTH	90 METERS NUM	RER OF ORSERVATIONS	7061 TABLE
5 .6	22 4.6	3.9	7 4.2
3A .9	3.9	23 .7	9 4.4
59 1.0	Av 4.5	1.5	1552 5,1
176 .6	10 .6	20 .7	5 4.1
74 1.2	5.9 15 1.2	29 1.0	7.7
8,3	42 1.0	70 1.1	14 6.8
65 .9	50 1.4	40 1.0	11.5
13.0	11.6	P. 11.4	79 .9
15,3	12.5	12.A 35 .A	13.2
65 1.3	13.6	13.7	75 1.0
15.3	14.4 33 1.3	28 1.1	16.4 97 1.0
16.9	16.2	17.3	93 .9
74 1.2	17,5 52 1,3	19,0	2349 14.3
248 2.1	20,7	8. 6.05 A. 08	19.6
75 1.7	51.0 5A 1.A	120 1.1	9.09

	75H	1654			55h	14964	
2 3	.0	3 6.0	.3	12	.7.	5 5.2	1,2
4,	.3 .8	3 4.9	.1	10	.5	3 4.4	.1
	1.7	13		11 .	.7	1358	
100	.7	10		12.	1.1	. 5.9	.6
	1.2	13 6.6	1.1	16		19 7.8	.0
29 10	1,3	6 4.2		88	1.2	• 9.1	.7
44	1.0	7 10.7	.,	62	1,1	5 0.0	.7
	1.1	11.2	.7	11	.6	19 10.7	
71	.5	12.7		14		15.9	1.0
0 15	1.6	13,6		24	.9	29 14.7	1.4
24 17	.5	12 15,1	.,	21.	.7	15 16.7	1.7
	1.2	25	.9	2A 11	1.2	56 17,9	1.1
	1.7	14.2			1.2	1495	1.2
	1.6	20.3	1.2	109	1.3	114 20.0	1.1
A4 21	1.6	136	1.7	105	1.4	107	1,2

MON	175W	C DEPTH	•0	METER 165H			ISS:	VATIONS	36		
•	0	•	0	0	n	5	4.1	۹.	0	0	0
1	6.0	0	•	4.7	.41	4	3.9	.9	0	0	0
,	5.4	.6	16	4.9		,	4.9	.,	1445	6.0	.0
31	6.8	.7	4	r.4	1.0	10	6.5	1.3	s	7.1	.3
11	6.1	1.0	4	7.6	.4	4	8.1	.5	s	7,5	.2
35	9.5	.5	4	9.3	.7	>4	9.4	.4	1	A,3	0
11	10.3	1.0	34	10.1	.9	33	10.1			10.9	1.2
8	12.4	.7	4	12.1	1.1		12.2	.4		12.9	1.6
10	12.1	1,3	4	12.3	٠,٠	3	13.0	.2	11	14.6	1.3
10	14.1	1.3	4	13.7	.6	4	15.6	1.0	11	16,3	1.4
7	15.8	2.0	10	15.1	.7	13	16.2		12	16.7	1.0
29	17.5	1.1	A	17.7	1.7	13	17.6	1.0	63	10.2	1.0
25	18.2	2.0	15	19.2	1.3	26	20.1	1.5	1249	18.9	1.4
35	20.1	2,3	21	20.3	1.4	63	51.8	1.1		20.5	1.1
19	55.0	2.1	21	21.4	1.9		21.9		64	21.5	

HONTH 17	JAN DEPTH	120 METERS 165H	NU	HER OF HOSE	RVATIONS	1451	
0.	0	5 4.4	.4	17 4.0		15 4.9	1.7
3 . 4.	2 . 4	5	.4	14 4.1		5.3	.5
5, 4		14 3.9	.1	14 4.3		1526	.1
122 4.	.5	5.1		14		1. 6.7	0
25 5.		4 6.3	.6	13	.5	13 7.4	
• . °	.0	3 8.7	,5	20 4.1			.4
18.		9.5	.7	17 9.7		5 9.4	.,
153	1.0	11.2	,5	13.	.4	11.6	.4
14 13,	.6	17	.6	11.9		9 11,3	
7 13.	.5	12.6	.9	93 12.6		12 13.6	2.2
11 14,		14.2	.6	13.7	1.0	14.6	1.6
33 16.	1.1	15.4	.0	25 16.0	1.1	18.3	٠,٠
16.	1.0	17.0	1.3	27 17.6	1.15	1064	1.1
18,	1.5	37	1.5	111		100	1.0
20,	1.7	37 20.2	1.3	20.5	1.2	19,9	1.0

	HONTH PER DEPTH	120 HFTER8	NUMBER OF	ORSERVATIONS 155H	4671 TABLE 1454	5 2
53N	3.0	25 4.2	.4 19	3.9	24 .5	53N
51N	45 .3	4.0	.3 11	3.9	15 .5	514
491	3,6	76	.4 10	4.0	1340 .5	4911
47N	33 .6	15, 5,0	.4	5.2	16 6.2 .5	474
45N	45 .5	21	.6 8	7.0	7.5	45N
43N	10 1.4	. 9.5	.5 12	8,5	10 .6	43K
41N	27 1.1	12	.7 6	9.5	32 .5	414
39N	10.9	10.9	6	10.3	20 1.0	39N
37N	33 .6	12.0	.1 25	12.0	12,5	37N
35N	13.5	17.4	.7 176	13.0	25 1,3	35N
33N	16 1,3	14.5		13.6	32 1,3	33N
31H	16.2	9 15,6	.3 48	16,1	18,2	314
San	17.1	17,8	.3 45	17.6	18.2	29N
27N	33 1,2	18.4	.4 100	18.9	19,1	27N
25N	39 1.2	20.0	.2 125	20,5	19,9	25N

	1754 PEPTH	120 METERS ME 1054	195m	149# TABLE	
. [10 2.4	, 3.4	27 3.0 .7	11 4.0 .5	7
. [37 3.6	5 3.7 .4	26 .4	. 4.7 .5	1
	24 3.6	4 3.4	20 3.0 .0	1457 4.8	1
T	62 3.9	7 4.0	10 .0	5 5.4	1
T	24 5.2 .6	, 6.5 ,	• 6.1 .7	3 7.5	1
T	64 7.1	, 4,2	16	4 4.2 ,3	1
T	29 9.6 ,4	1 9.2 1	44 1.2		1
T	63 11.1	4.0.6	54 11.0	10.5	1
T	24 13.0	7 12.2	55 11.7	13 1.2	1
-	55 ,5	13 .7	12,5	13.9	1
	A2 .7	20 14.1	14.0	14.A 46 1.3	1
	70 .9	15.8	54 1.3	56 1.4	1
T	P. 16.0	55 1.4	92 1.2	1178 .7	1
	67 1.2	63 1,3	130 1.2	18,9	
	19.6 6A 1.3	143 1.2	19.6	19,9	

	MONTH APP DEPTH	120 METERS NU	MBER OF ORSERVATIONS	5735 TABLE	•
534 F	2.7	24 3.8	4.2	36 4,2	53
51N	3,9	24 .4	52 .4	20 .3	51
19N	19 .1	35 4,1	34 .7	1771 4,9	40
17N	111 .5	4.9	74 .6	17 .7	47
15N	19 1.2	17 1.0	20 6.2	31 1.0	45
3N	7.5	7.8 .A	7,9 53 .A	41 .A	43
111	9.0 21 .7	45 .9	42 .0	31 ,5	41
94	11.3	53 11.0	12 .4	22 .6	39
7N	13.2 39 1.1	12.0	17 .4	1,51	37
5N	14.3 36 1.0	21 12.9	17 1.5	41 .7	15
5N	37 1.2	20 1.0	19 1,1	14.9	33
14	15,0 45 ,A	32 15.7	16.0	16,9	31
۹4 [76 .7	42 ,1.0	17.2	1462 1.0	20
7N	17.9	18.7 48 1.4	14.2	18,6 131 ,A	27
5N	50 1.5	154 1.2	19,7	19.7	25

ME	175	Y DEPTH	120 MFTER		BER OF THE	ERVATIONS Se	6026	
51	2.6	.5	4,1	.,	50 4.	3 .4	4.4	.,
71	3.0	.4	103 4.1	.56	57 4.	3 .5	50 4.5	
A	3.7	.4 9 9	69 3.9		4.	1	2023 4.9	.5
121	4.4	.5	11 4,5	.6	55 5.	1) i	114 5,6	.7
22	2.5	1.0	54 6.4		40 5.	• .,	33 ^.9	.7
	7.2		6, 4,3	1.4	21 7.	4 .,	2 7.5	
•	•.1	.4	13 9,5	.•	10 0.	7	3 0,1	.7
41	10.4	.,	17 10.9	.7	15	•	9 11.4	
15	12.4	1.3	18 11,0	.1	17 11.	• .,	12,5	1.1
52	13.4		14		31	7 .0	13,6	1.0
34	14.6	1.4	16 13.0	.7	9 14.	1 .9	65	
10	15.4	1.0	21 15.0		15. 15	1,3	16,5	1.4
90	16.2		11	1.3	25 17.		1301	
55,	17,3		18,1	1.6	33 19.	4,0	18,8 138	
7	18.5	1.4	43	1.4	122 20.	1,0	127	.,

	JUN NEPTH	120 METER:			BERVAT FINS	6052	TARLE
153		155	.7	154	,	57 4.8	
354	.0	61 4.3		•3	.0	61 4.7	
141	.5	28 4.0		60 3	.7	1779 5.0	.5
104 3.		15 5.0			٠.	5,5	.,
36	.2	>a *•1	.0	44 6	.1 .7	6.7	
AS 7	.1 .0	25 4,3		54	.5	50 0.1	.5
28 9	•• .•	43 4.5	1.2	47		,	
30	.7	26 11.3	.6	42	.7	64 10.8	
17 13	1.4	26		a 12	·1.:::	33 11.5	
5 13	1.1	23 13.4	.5	15 12	1.3	26 13.0	1,5
15 14	1,3	18.9		16	.6	50 15.4	1.0
25 15	.5	38 15.3	1.2	18 16	.9 1.0	36 17.1	1,0
75 16	.7	45 17.5	1.6	32 17	.2, 11	1466	.,
	.3	33	1.2	20 1A	.7	18,6	
78 19	.5	76 19.3	1.6	100	. 1.1	142	

40	175	L DEPTH	120	165W	NijM	RFH OF	155		7326	
140	3.5	.5	166	4.2	.6	551	4.2	.5	67 4.	3 .6
300	4.5		164	4.0	.4	120	4.2	.5	60 4.	
235	3.8	.5	110	3.9	.5	79	4.2	.5	1916	٠.,
51	4.0	.,	39	4.8		36	5.5		39	• ,5
,	5.0	٠,٩	19	5.5		AF	6.4	.4	57 7.	3 ,,
,	5.5	.4	12	*.3	.6	95	7.7	.7	51 4.	. A
129	R.4	1.0	15	0,5	۰.	112	9.2	1.1	65 9.	3 ,0
92	13,3	1.4	106	1.4	۰.	91	11.3	.7	Po 10.	1.0
19	12.7	1.0	29	1.5	.0	33	11.5	.6	80 11,	1,1
	13.6	1.3	10	15.1	.0	35	12.3	.5	17 13.	1,2
	14.7	1.3	26	13.9	.1	33	13.6	1.0	37	1,4
15	15.9	.7	12	14.4	۰۰	35	15.5	1.1	56	1.0
39	16.0	1,1		6,3	٠.	48	17.2	1,3	1253	1,3
A	18.1	1.0	,	18.6	۹.	104	14.5	.•	131	9 .8
43	19.0	1.4	28	9.8	۸.	166	19.4		139	7 .7

MONT	175W	G DEPTH	120	METERS 1654	MINE	ER OF	155W		8117 145	
120	3,4		192	4.3		134	4.2	.6	4.2	.,
536	4.3	.,	274	4.0	.5	156	3.9	.5	86 4.5	, 8
346	3.6	.6	193	3,8		100	3,9	.5	1707 4.9	.,5
221	4.7	.,	47	4.9	.•	101	5.0	JA.	29 0.0	.0
81	5.0	1.5	71	6.3	.0	73	6.3	۰.۰	66 6,8	.6
47	8.2	1.2	56	7.0	1.5	85	7.9	.,	53	.6
84	0.0	.•	24	10.1	1.1	67	9.4		65 9,1	.7
109	1.9	1.2	64	11.3	1.0	81	10.5	1.0	10.0	1.1
47	3.3	1.5	14	11.5	1.0	42	11.7	.7	49 11,5	1.1
12		1.5	•	13.0	.6	64	12.6	.,	13.4 50	1,3
17	4.5	1,6	21	14.3	1.0	49	14.4	1.4	14,3	.5
	5.0		16	14.9	1.0	52	16.3	.•	17,0 48	.6
20	6.6	1.5	3	16,5	.6	69	16.4		1407	
66	r.0	1,2		17.6	2.8	111	14.9	1.4	192	
49	9.7	1.5	24	50.0	1.6	139	19.9	1.0	108	

175W	EPTH 120	METERS NUM 165H	NER OF ORSERVATION	5 6803 TABLE
40 3,5	• 100	4.6	61 4,3	25 4.3 ,7
106		4.0	01 4.1	55 4.5
67 4.1	7 56	3,9	43 4,3	2137 4.7
69 4.6	8 36	5.0	41 5.4	27 4.2 .6
50 6.1	3 49	6.0	57 A.A .7	16 .9
27 6.6	2 26	*.4	61 .4	1 7.6 0
49 1.	n 39	4.6	70 9.4	5 10.2
52 11.6	9 107	11.4	73 11.2	34 .7
29 13.2	A 62	12.3	39 .6	35 1,0
32 13.6	0 21	13,1	A7 12,7	53 13,1
44 1.	1 30	13.7	72 14,0	13 1,6
45	6 34	15.3	A7 1.0	40 10.9
	,1 30	16.5	96 1.0	1368 17.5
	2 35	19.0	130 1.4	120 18.6
67 1,4	4 77	19.9	161 1.2	103 .4

	MONTH OCT DEPTH	120 METERS 1	NUMBER OF COSERVATIONS	4501 TARLE	5 1
534 F	5 .6	18 4.5	20 ".1 .^	7 4.4 .4	53N
514	37 4.6	13 4.1	21 .5	7 4.1	51%
494	43 .4	41 4.6	18 .7	1493 4,6	494
474	125 .4	. 4.5	20 5.7	5 5,5	471
45N	59 1.0	11 .A	29 6,5	7,0	45N
434	A1 .9	41 6,5	70 1.1	14 7.9 .9	434
414	42 4.7	49 9.4 1.2	40 .9	10,5	414
39N	113 .8	14 11.0	25 .7	59 .6	39N
374	12,5	12.0	12,5	12.0	374
354	13,6	15 13.1 .7	12.7	74 1.1	39N
33N	67 .6	22 13.6	25 1.1	15.2	33N
314	15.8	17 .6	16.0	16.7	314
29N	14.5	47 16.0	17.6	2205 17.5	50M
27N	16.2	12 10.7	70 .7	18,5	27"
25N	20.0	19.7	117 1,0	127 ,4	25N

MONTH	NOV DEPTH	120 METE 165	RS AUM	PER OF DE	SERVATIONS 55m	4583 149	
, 3	.3	2 5.4		12 4	.6	4 5,0	.5
3	.3	0	0,	10	.5	0	0
23 4		8.8	.5	11		1351 4,5	.6
98	.7	10 4.8	.7	12	1.0	, 5.6	.6
17	.4	13 6,3		16		10	.4
27 3	.7	, 1.2	.9	A1 7	.5	, 8.0	.,
34	۰, ۰	7 9.9	.4	50	1.0	5 9,5	
178	1.0	15	,,	12	.5	19 10.6	,5
30 13	.3	12.5	1.6	14	.6	12	1,6
4 14	7 1.2	12.8	.5	24 12	.4, 11	13,	, 0
18	۰, د.	9 14,3	.5	20 13	.6.	15,0	1.3
35	.7	25 15,2	24	2A 16	1.0	44 16.1	1,0
45	1.2	16,5	1.3	64 17	•1, #/ 1•1	1354	1,0
102 17	1.2	26 18,5	1.0	109	.8 1.2	106	
75 19	1.5	19,8	1.6	105	.6.	19,	.,

	MONTH DEC DEPTH	120 METERS 165H	NUMBER OF	ORSERVATIONS 155H	3427 TABLE 145H	5
, [0 0	0	0 4	4.1	0 0	5
. [1 0	4.5	.3 4	3.7	0 0	,
,	2 4.4	14 4.2		4.1	1431 .6	4
, [23 .4	5.0	. 9 10	5.6	2 4.6	4
•	9 1,1	4 6.8	.1 4	7.6	2 7,5	
. [9.5	4 6.9	.2 24	6,7	1 7.7	
.[10 .7	34 9.3	.7 32	9.4	16 1.0] .
	12.1	3 11.5	.2 2	11.7	8 1,0	,
.[10 .0	4 11.8	.9 3	12.1	12,6],
] ،	13,5 , , o	12,0	.6 4	13.5	14.0],
.[14.7	7 13.7	.5 10	14.4	15.0 12 1.5],
.[15.9	7 15.2	.0 12	15.7	18,3],
. [16.7	17.3	1.4 23	19.0	17.5],
. [27 1,6		1.8 63	19.3	10.8],
	16 2,3	20 19.1	2.3 62	5.05	19.4	

MONTH JAN DEPTH		TH 150	150 METERS NUM			155#	VATIONS	2946 TAHLE 1454			
	•	0-		4.3	.e	17	4.1	.,	15	4.8	٠,
	, '	.2 .4		4.5	.5	14	4.0	.3		5,1	
	3 4	.1	11	3.9	.3	14	4.1	.,	107Å	4,4	.5
	117. 3	.,	4	4.9		14	5.1	.7	0	0	1
	Su a	۰. ۰.		6.2	.,	13	0.6	.,	13	7.1	.5
	4. 7		•	•.1	.5	50	7.9	.5		7.4	.7
	15	.4		9.2	.8	16	9.5		3	0.1	.1
	104	.6	١.,	10.9	.3	13	10.6		1	10.1	n
	3 12	.5	10	11.7		12	11.5	.5	,	11,1	.6
	13	.2	10	12.2		93	12.1	. u	11	12.3	1.1
	n 14	.1		13.3		50	12.8	.6	14	13.1	1.1
	10.15	.c .a		14.3		25	14.4	.7	23	15.4	1.3
	14	.5 ,7	11	15.7	1.1	27	16.2	1.1	518	16.3	1,2
	40 16	1.0		17.4	1.3	111	18.3	1.8	67	17.6	.9
	31	.7		14.9	1.2	110	18.9	1.2	73	18.6	.9

	40NTH FE		150 METER 165M		BER OF	DBSERVAT TONS	3372 1454	TABLE
	10 3.2	.4	23 4.4	.4	19	4.0	24 4.4	,,
	45 3.7	.4	53	.3	11	3.9	15	.3
	24 3.7	.1	66 4.0	.4	10	3.0	1028	.5
	19 3.4	.0	35 4.9	.5	A	0.9	16 5.8	.4
	27 4.2	.7	20 6.7	,5		6.7	2 7.0	.4
	. 8.6	.7	9 8,2	.5	11	A.3	8.6	,5
	16 9,5		12 9.7	.6		9.1	10.0	.5
	10.9		10,7	.7		5.01	17 10.5	,5
	18 12.5	1.2	11.6	1.2	53	11.4	2A 11.3	.•
	3 12.9		12,0	.9	172	12.3	23 12,5	1,3
	8 14.3	.0	13,6	.7	93	12.4	32 13,9	1.4
	6 16.1	.6	9 14.4	.7	01	14.7	39 15.5	1.4
	9 16.4	1.6	13 17,1	1.3	91	16.0	611	1,2
	16 17.1	1.4	17.3	1.7	95	17.5	134	1.0
•	24 19,5	1.5	19.1	1.4	107	19,3	10.7	1,2

	MONTH MAR DEPTH	150 METERS 165W	NUMBER OF	OBSERVATIONS 155W	3736 TABLE 145#	•
SN	10 .5	4 3.5	.5 24	4,3	11 .4	53
14	36 ,3	3.8	.1 26	3,9	4 .1 .3	51
,	24 .3	3 4.4	.4 26	3.9	1183 .5	49
, N	43 .5	4 5.0	.5 18	4.7 .A	5 5,2	47
N	55 .0	7 6,7	.9 4	6.1	, 7,4	49
	33 7.5	A 0.7	.5 9	6.0	7.8	43
N	25 .7	1 9,1	0 28	9,4	7 9.1	41
~	20 .7	4 9.8		10.6	10.0	39
,	18.6	7 11.8		11.3	13 ,7	31
~	13,5	13 12,7	.6 45	11.9	12,2	3
2	61 .7	22 13.7		13.0	13.3 45 1.1	3:
	15.3	14.6		13.9	39 1.4	3
~	50 .0	16.1		16.0	544 1.4	2
	17.4 54 1.1	10.2	1.3 117	16,7	17.9	2
2	18.A 58 1,4	19,2		18.4	18.6	21

	75W	DEPTH	150	METERS 165H	NUMBER	OF	155W	VATIONS	39	145W	TABLE
13		.3	16	4.1		24	4.4	.5	17	4.3	.6
11	.•	.5	21	4.1	.2	31	3.9	.3	13	4,3	.5
18	0.0	.>	53	4.1	.2	?>	4.1	.3	1237	4.6	.5
92 (**	.6		4,7	.3	13	5.3	.,		5,5	.4
15	.1	1.4	11	6.6		21	6.4	.a	16	6.4	.,
20	.5	.3	19	7.5		46	8.2	.4	25	8.1	,5
•	1.1	.6	40	A,9		36	5.9	.,	59	0,5	,,
39 11	.1	.•	47	10.9	.7		10.6	.6	50	10.2	.5
31	.,9	.0	34	11.7		12	11.3	.0	15	11.0	
28 14	.319		17	12.5	.7	15	12.5	1.4		12.9	
21 1		.4	16	13.5	1.0	19	12.9	.6	42	13.4	1,4
50 15	.5	.,	20	15.1		18	14.2	.0	49	15,3	1,1
72 16	٠.٠	.,	42	16.2	1.2	65	16.2	1,4	597	16.3	1.3
77 17			48	17.8	1.7	79	17.2	1,3	115		.9
36	1.7	1.1	145	14.5	1.2	158	18.7	1.1	64	18.8	1.2

	MONTH -4	DEPTH	150 METER:		PER OF OR	SERVATIONS	4354	TARLE
	5.9	.,	77 4.3	.7	26	,2	35 4.1	.8
A Contract of	76 3.4	.5	99 4.3		32 4	.5	14 4,1	.,
	77 3.4	.3	64 3.7	.5	40	.,3	1516	
	95 3.7	.6	11	.•	32	•	57 5.1	.6
	20 5.6	1.0	23 6.1	٠.	18	1.2	30 0.5	.5
	15 7.1	.6	5 7.7	.6	16		2 *.1	.0
	5 9.0	٠,٠	12 9.2	٠,٥	14	5 .6	3 9,1	.3
	28 10.5	.,	15	.4	15	۰, د	7 10.4	.7
	12 11.5		15	.7	17 11	.4	2" 11.6	1.1
	11 12.0	1.0	12.6	٠.	12.		50 12.6	1.1
	26 14.9	1.1	13.3	.5	13. A		62 13.6	1.4
	15.1		14.3	.4	15	.5	15.1	1.5
	15.7	.7	15.3	1.4	24	.7	672	1.1
	16.7	.7	17.2	1.6	30	1.0	17.9	1.0
	18.0	1.2	18.2	1.3	112	.0	112	.0

	MONTH JUI	N DEPTH	150 METER 165H		BER OF	OBSER 1554	VATIONS		145%	TABLE
	146	.5	136	.7	62	4.5	.6	35	4.8	,,
	327	.5	56	.5	44	4.0	.6	34	4.5	.,
	136	.5	9 4.4	1.0	24	3.4	.4	1157	4.8	.6
	45 3.7	.,	11 4.6	.7	24	5.1	.я	51	5.7	٠,٩
	14	.7	16	.8	22	6.6		25	6.5	.6
	75 7.1		19	.9	40	7.6		28	8.0	.4
	20 9.8	.3	32 4.9	1.1	37	8.7		41	۰.۱	,6
11	21 10.7	.7	25	.6	55	10.7		40	10.0	.4
E MANUEL P	4 11.6	.3	12.1		5	11.5	.5	27	10.6	.•
1	12.4		21 13,1	• 4		12.7	1.2	27	11.7	.,
200	14,6	.0	33 13.4	.7	13	12.8	.4	48	10.2	1,1
San Hone	15.1	1.0	14.7 33	1.3	17	16.0	.9	31	15.9	1,1
	15.7	.7	16.7	1.6	20	16.1	.,	574	16.6	
	123		17.8 31	1.3		18.0	1.1	171	17.7	.•
	63 18.6	1.3	14.3	1.6	96	14.4	1.2	127	16.7	.•

Line of the Contract

175	N DEPTH	150 METER	NUM	BER OF C	1554	ONS 5374	TABL
134 3.4	.5	141	.6	174	4.3	4.2	.7
3A3 4.1	.5	148 4.1	• 4	64	4.0	39 4.3	.,
214 3.4	.5	89	.4	54	3.9	1135	.6
22 4.1	1,1	22 4.3	.4	27	5.2	36 5.6	.4
4 5.4	.3	3	.4	25	6,5	42 7.2	.5
1 6.4	n	7 7.4	1.4	69	7.9	36 7.1	.7
7.9	۰,۰	11	.6	95	9.1	49 9.1	.7
13.3 An	1.0	A1 11.4	.7	49	.7	77 10.1	.7
14 12.0		28 11.1		33	5,1	72 10.6	.8
5 13.1	1.2	18.6	1.0	33	11.9	33 11.0	.9
6 14.3	1.3	23 13,3	.7		1,0	24 13.5	1.1
15.3		10 13.7	.•	35	14.5	52 15.4	1.4
36 16.3	1.0	2 15.9	1.0		1,3	16.5	
74 17.2	.9	6 17.0		103	17.4	119	.•
17.A	1.2	14.7	1.9	165	18.7	124	.7

	MU	1754	G DEPTH	150	METERS 165H	NU	MBFR OF	ORSER 155H	VATIONS	57	1454	TABLE
	107	3.3	.6	165	4.2	.5	112	4.2	.6	68	4.4	
	510	4.2	.6	240	4.0	.5	121	4.0	.4	65	4,4	.6
	323	3.5	.6	154	3.7	.6	QA.	3.8	.4	1138	4,7	,5
	170	4.5	.7	32	4.6	.7	A7	٠.٠	.7	25	5.0	.,
	67	5.7	1,6	25	6,3	.6	55	6.4		40	6.0	,5
The second second	41	8.3	1.0	18	7.9	1.2	76	8.0		37	7,9	.6
	61	9.6	.7	,	9.7	1.0	50	9.3	.6	50	9,0	.6
	80	11.7	1.2	35	11.6	.6	64	10.6	.7	36	10,2	.7
	35	12.4	1.1	13	11.0	1.0	35	11.5	.4	30	10.7	.9
	,	12.7	.•		12.6	.6	53	12.1	.5	28	11.8	1.7
	14	13.9	1.5	19	13,8	1.0	44	13,6	1.2	16	12,8	.,
	•	14.9	.7	15	14.1	.•	47	15.4	.0	38	15,9	1,1
	16	15,9	1.5	3	15.2	.7	43	15.5	.,	580	16.9	.4
	43	16.7	.•	•	17.4	2.1	103	17.6	1.1	161	17,6	,7
	10	18,6	1.4	10	17.7	1.2	110	18.6	1,0	86	10,6	.0

	175		150 METER			155H	145	
	37 3.3		93 4.5		4.6	4.3	25 4.3	.6
2	99 4.5	. 7	73 3.0	.5,	7.0	4.2	51 4.5	.7.
	54 3.9	. Mess	41 3.7	.6	36	4.3	1292 4.6	,5
1 CC 1 1 1 CM	53 4.5		32 4.6	.5	34	5.6	21 4.2	.5
THE STREET	35 6.1	1.2	38 4.3	.,	34	6.8	16 6.7	
POSSULTINE	55 4.9	••	24 P.4	.,	58	3.4	1 8.2	0
10 Per 10	30, 9,9	1.0	33 9.4	.7	45	۸. ۵۰۰	4 10.1	.4
	28 11.5		30 11.0	.6	65	.7	35	,5
	15 13.0		36 11.7	۸,	33	.5	30	.7
	25 13.1	1.0	18.6	.5	76	2.2	30 12.1	.7
	37 14.3	1.1	27 13.1		54	3.3	12 13,1	.0
	34 15.0	.6	26 14.5		77 1	4.5	15.5	1.1
AL SOMMER	34 16.0	.0	27 15.4	٠,٨	85	1.0	658	.8
	51 16.8	.9	31 17.8	1.2	122	1.4	104	
1	18.2	1.3	18.8	1.3	169	1.1	18.5	. 9

	MONTH OC 1754	-	150 METER 1654	8 NUP	MER OF	DHSERVATIONS	4739	
	5 3.7	.5	12 4.5	.5	24	4.3	5 4.6	.4
1000	36 4.4	.,	9 4.1	.3	21	4.7	5 4.1	.2
	4.1 21	.4	4 4.4	.3	1.7	4.2	1018	.4
	121	, a	7 4.9		Su	5.6	· · ·	د.
	29 5.5	1.2	10 6.1	.4	29	6.4	7.0	.4
	59 7.7		41 A.3		70	1.0	7.4	.6
	5.9	1.1	49 9.2	1.1	34	9.2	10.0	.4
	36	1.1	15 10,6	.7	>2	.5	10.6 59	.6
	33 12.3	1.0	13 11,3	,5	13	.4	10,9	.,
	13,1 57		10.6	.,	•	.5	72 11.9	
	63 13.A	.,	17	1.1	23	13.4	92	1.0
	39 14.9	.•	16 14.4	.1	39	.0	87 15,3	1.3
	54 15.8	.5	37 14.9		44	1.1	1363	
	214 15,2	1,7	17.4	.•	65	0.81	17.4	.0
	56	1.3	31 10.3	1.6	110	1.1	98 18,6	

	MONTH NOV DEPTH	150 METERS NUM 1654	REP OF DOSERVATIONS	3154 TABLE 1454	6 11
534	2 3,2	2 .1	10 .5	4.6	43A
514	3 ,3 ,2	0 0	10 .4	0 0	51A
4911	13 .2	4 .0 .2	11 2 ,4	1036 4.4	29.
474	A6 4.1	10 4.9	12 .9	9 5.5	47.
454	10 .2	12 6.6	15 .4	10 7.0	45N
434	26 9.5	6 8.1	7,9	9 4.3	430.
411	9.0	7 9.4	53 A.5	5 9.4	411
39N	97 1.1	15 .7	10,5	19 .4	300
37N	15.5	2 11.1	11.4	7 10.3	374
35N	14.0	12.2	21 .4	12.2	35~
334	14.4	13,8	19.8	13,6 1A 1,2	33N
314	15.1	20 .6	15.1 25 1.0	15.5 38 1.1	31×
San	15.A 39 1.0	20 1.2	15,A 54 .9	503 1.0	29N
27N	16.8	22 17.1	17.5 9A 1.2	86 ,9	27N
25N	18.1	116 1.5	18,5	18.2	251

•		75 W	C DEPTH	150	METERS 165H	NUI	HER OF	ORSER 155H	VATIONS	214	145	TABLE
	0	n	0	0	0	0	,	4.7	.3	0	0	0.11
	0	1	0		0	0	4	4.0	.1	0	0	0
	0	0	•	5	4,3	••		4.0	. 2	1016	4.4	,5
	0	0	•	,	5.0		•	5.4		,	5.6	.1
	s 6	۹.	1.0		6.7	.4	4	7.1	.3	,	6.8	.0
		.6	.,		9,6	.2	24	8.5	.,	1	7.0	0
	, ,	.5	.7	30	9.0	.5	35	9.1		16	9,5	1.0
	4 11	۰.	.1	3	11.0	.,	,	11.3	0		0.5	.,
	6 11	۰۰		,	11,3	.1	2	11.6	.3	•	11.6	
	4 12		.7	,	12,3	.4	3	12.6	.6	11	2,5	1.0
	, 17	• "	1.2		13.0	.4		13.2	.,	12	3.9	1,2
	. "	.5			14.3		11	10.3	*/	13	5.8	1.0
1	, 15	•		11	16,1	1.1	23	16.6	1.2	517	6.2	1.3
,	, 17	.2	1.0	14	17.1	1.0	63			**	7.5	.,
1	, 10	.5	1.4	10	18.4		60	14.0		30	0,6	

175m	145"	AFR OF CASFRVATIONS	1454
0 - 1	4,3	17 .3	15 4,5
3 4.6	9 4.4 .4	3.9	. 4.7
3 4.3	11 .5	3.4	1068
113 .6	4 .7 .6	14 .6	0 0
15 .8	4 5,7	15 .3	13 6.0
7.2 1 n	3	20 7.7	, 7.4
11 .6	7	16 .7	1 4.5 .1
100 .5	10,2	10.2	10.2
3 1,2	10.9	10.0	, 10.5
3 .4	11.4 10 .A	93 .4	11 .6
12.9	17.4	12.1	14 .7
10 .7	13,2	13.0	A. 15.4
14.5	14.1	27 1.2	490 1,1
15.4 35 ,A	15.4 36 1.0	110 1.6	15.2
16.4	29 14.4	107 1.5	65 1,1

	MONTH FEB DEPTH	200 METERS NIME	AFR OF ORSERVATIONS	3217 TABLE	,
3N	3.7	19 4.5	10 .4	23 .6	53
14	3.7	4.0	3,9	12 4.0	51
•N	3.7	3,8	3,8	995 .5	49
,	18 .6	- 35 .5	4.4	5.4	27
5N	24 .6	6,1	7 6.3	2 6.7	49
IN	8.5	9 7.7	7.9	8.4	43
N	16 .9	12 .5	A.5	32 .4	4,
	10.2	10.2 .A	6 .2	9,5	30
N	11.A 1A 1.3	11.2	23 .4	26 .3	3
	11.A 3 .A	5 .6	11.7	21 .7	3
IN	6 .6	12,9	17.1	11.6	3
N [6 .5	0 13.2	13.0	37 12.9	31
N	7 1.4	15.0	13.A 39 .9	13,6	,
· [15.6	15.7	92 1.2	118 1,1	
N	21 1,3	17 1.5	104 1.2	129 1.5	,

	40NTH 440 NEPTH	200 METERS NUM 165W	PER OF OPSERVATIONS	3605 TABLE 145#
	10 .3	3.5	24 .4	11 4,1
T	3.7	3.7	3.A 26 ,4	3 3,6
	3.9	3 ,3	26 .5	1179 4.0
1	3.7	4.7	18 .6	4 4.6 .3
1	4.9	7 .8	5.7	3 6.8
-	32 .7	8 .8	9 7.5	7.8
1	A.9 .9	1 0	3.7	7 4,8 ,5
	9.9 18 .7	9.2	10.0	s. 4.6
-	12.0	11.1	10.7 38 .6	17.3
-	13.0	12,1	11.2	10.8
-	13.4	12.A 8. 25	11.9	11.4
-	14.5	13.4	12.6	12.5
+	14,9	14,3	14.0	13,6
-	16.1	16.2	14.7	15,1
+	17.0	16.8	16.3	16,2
L	MONTH APR DEPTH		125 1.4 RER OF OBSERVATIONS	54 1.3 3694 TABLE
	175W	165#	1554	145W
_	13 .4	15 .5	16 ,4	12 .7
	10 4.1	21 4.0	3.9	13 .6
9 3				
	4.0	25 4.1	22 .7	1194 .5
-	4.0	4.1		
	4.0 18 .2	4,1 23 .2	4.9	5.1
	4.0 4.5 86 4.3	4,1 25 .2 4,8 6 .3	12 .6	5.1
	4.5 86 .7 4.3 13 1.0	4.1 .2 4.8 .3 10 .8	22 ,2 12 ",9 ,6 21 ",6	5.1 9 5.1 16 6.2 16 .5
	4.0 16 .2 A.5 .7 4.3 13 1.0 20 7.1 20 .5	4.1 23 4.1 6 4.8 .3 10 4.4 10 .8	22 ,2 12 ",9 ,6 21 ",6 7,9 ,4	1194 .5 9 5.1 .6 16 6.2 .5 7.9 .5 9,2
	4.0 16 .2 86 .7 4.3 13 1.0 20 7.1 20 .5	4.1 25 4.8 6 .3 10 6.8 10 7.6 19 7.6 19 6	22 ,2 12 ",9 ,6 21 ",0 ,6 7,9 ,4 8,7 ,7 10,5	1194 .5 9 5.1 .6 16 6.2 .5 25 7.9 .5 29 9.2 .6
	16 4.0 16 .2 86 4.5 13 1.0 20 7.1 20 7.1 5 7 .6 30 10.7 9 113.8	4.1 25 4.8 6 3 10 4.8 .3 10 4.8 .6 .6 .6 .6 .6 .6 .6 .6 .6 .7 .6 .6 .6 .7 .6 .6 .7 .6 .6 .7 .7 .6 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	22 ,2 12 ",9 ,6 21 ",0 ,6 7,9 ,4 36 ",7 10,5 ,6 11,8	1194 .5 9 5.1 0 6.2 16 6.2 15 7.9 25 7.9 25 9.2 0 0 20 9.7 20 .5
	4.0 16 .2 86 .7 4.3 13 1.0 20 7.1 5 7 .6 30 10.7 9 10.7 9 12.3 9 26 13.8 14.6	4.1 25 4.8 6 3 10 7.6 6 40 7.6 6 40 40 40 40 40 40 40 40 40 40	22 ,2 12 ",9 ,6 21 ",0 ,6 7,9 ,4 36 ",7 10,5 ,6 11 ",7 11,8 1,4 11,9	1194 .5 9 5.1 .6 16 6.2 .5 25 7.9 .5 29 9.2 .6 20 9.7 .5 15 10.1 .4 11.5
	18 4.0 18 4.5 86 7 13 1.0 20 7.1 20 7.1 5 7 .6 30 10.7 9 112.3 112.3 9 28 13.8 21 14.6 110 14.7	4.1 23 4.1 4.8 5.3 10 6.4 10 7.6 10 7.6 10 7.6 10 7.6 10 7.6 11 0 .6 11 0 .5 11 0 .5	22 ,2 12 ",9 ,6 21 ",0 ,6 21 ",0 ,6 3 7,9 ,4 3 8,7 ,7 10,5 ,6 11,8 ,7 11,8 1,4 11,9 ,5 12,9	1194 .5 9 5.1 .6 16 6.2 .5 25 7.9 .5 29 9.2 .6 20 9.7 .5 15 10.1 .4 36 11.2 .8
	18 4.0 18 4.5 86 7.7 13 1.0 20 7.1 .5 7 .6 10.7 .9 12.3 .9 13.8 .8 21 14.6 21 1.0 48 7 .7	4.1 25 4.8 6 3 10 7.6 6 40 40 40 40 40 40 40 40 40 40	22 ,2 12 ",9 ,6 21 ",0 ,6 21 "	1194 .5 9 5.1 .6 16 6.2 .5 25 7.9 .5 29 9.2 .6 20 9.7 .5 15 10.1 .4 36 11.2 .8 40 11.5 .9
	18 4.0 .2 86 4.5 .7 13 1.0 20 7.1 .5 7 8.7 .6 30 10.7 .9 12.3 .9 28 13.8 .8 21 14.6 .8 21 14.7 .7 15.2 .6	4.1 25 4.1 25 4.8 5 10 6 37 10 7.6 6 40 40 40 40 40 40 40 40 40 40 40 40 40	22	1194 .5 9 5.1 .6 16 6.2 .5 25 7.9 .5 29 9.2 .6 20 9.7 .5 15 10.1 .4 36 11.2 .A 40 11.5 .9 47 1.0 529 1.2
	18 4.0 18 4.5 86 7.7 13 1.0 20 7.1 .5 7 .6 10.7 .9 12.3 .9 13.8 .8 21 14.6 21 1.0 48 7 .7	4.1 25 4.8 6 3 10 7.6 6 40 40 40 40 40 40 40 40 40 40	22 .7 12 ".9 .6 21 ".0 .6 21 "	1194 .5 9 5.1 0 6.2 16 6.2 5 7.9 5 29 9 2 6 20 9.7 15 15 10.1 40 11.5 40 11.5 40 12.8 41 1.0 13.3 11.2

	MONTH MAY DEPTH	200 METERS NI 165P	IMBER OF ORSERVATIONS	4140 TABLE	7
. [50 .3	70 4.3	23 4.0	35 4.2	5
	71 .5	99 .6	32 .6	14 .4	51
2	77 .3	62 5	34 .3	1492 .6	1
N	87 .9	10 4.2	21 1.0	5,5	41
•	20 .4	23 1.0	16 1.3	24 .5	
~	13 .4	5 7.4	16 .4	2 ,6	4
•	5 .4	12 .9	14 .5	3 .6	4
. [20.1	14 .7	15 .5	7 .7	3
.	10.6	13 .7	11.0	10.5	3
. [11 1.0	12 .9	27 .5	10.9	١,
. [14.2	17.5	12.0	11.6	3
. [14.4	15.3	13.0	12,9	,
.	14.A A3 ,6	10 1,3	21 .0	13,3	,
.	178 .7	15.7	26 1.2	15.5	2
.	16,5	16.7	107 1.2	16,9	2

	MONTH JUN 175H	DEPTH	200 METER 1654	-	BER OF OR	SERVATIONS	4259	PABLE	7
	142 3.6	.4	129 3.8	.5	54	.5	32 4.6	.6	5
	297 3.9	.5	54	.6	3.	.5	33	.5	5
	135	.4	g 4.4	.0	24	.7	1129 4.2	.5	a
	3.7	.6	10	٠.	25	.7	20 5.4		
	14 5.2	.,	16		20	.3	24 6.7	.,	4
	71 6.3		7,6	۰,۸	37	.3	7.9	.4	4
	20 9.6	.3	20 8.4		36	.3	41	.5	
I	20 10.3	,6	25	1,3	21	.5	9,6	.4	3
	4 10.9	,5	22 11,5	.7	5	.6	9.7	.6	3
	3 12.4	,5	19.6	.5	7 12	.0	10.7	,5	3
	13.7	.5	33 12.8	.7	13	.0	11.7	1.0	3
	14.2	1.0	33 15.7	1.1	16	.0	30	1.2	,
	14.7	.6	15,1	1.2	29 13	.7	13.6	1,2	2
	96 15.3	.,	30 16.0	1.2	16	1,5	165	1.2	2
	53 16.7	1.1	54 16.1	1.6	90 16	.5	185	1.1	2

175		200 METER 165-	S NUM	BER OF URS	SERVATIONS 55W	145	TABLE
135 3.6	.4	124 4.1		164	.5	36 4.2	.7
35A 4.1	.,	140	.,	62 4.		35 4.2	.5
212 3.6	.4	A7 5.7	.4	52 3.	.,	1110 4.3	.5
25 4.0	1.0	19 4.1	.5	25		30 5.2	."
4 5.1		, 5.0	.,	25 ^.	.6	36 6.8	.6
, 6.	•	7 7.4	1,1	67		30 7.5	
125 7.5		11 6.7	.3	92 *.	A .7	40 5.6	.,
74 17.6	1,0	76	.6	10.		67 9,6	
10 11.5	.7	20.7	٠,٩	10.	٠. ٩	65 9,9	.,
5 12.5	1.2	19.0	,•	27	.4	29 10.9	.,
6 13.5	1.2	21 12.4		25	1.1	28 11,5	.7
11 14.7	.,	12.9	.,	13, 34	.6	12,9	
30	1.1	2 14.3	,,	45	1.2	629	1.6
63	.,	4 15.0	.•	102	5 1,2	15,7	1,2
31	1.1	16,9		163	1.2	114 16.7	1.1

	MONTH AUG DEPTH	200 METERS NO 1654	UMBER OF OBSERVATIONS	5509 TABLE 145W	7
. [103 .5	150 4.0	101 .5	61 4.3	531
. [479 .6	236 .5	3.9	60 4.1	51
. [3.4	156 3.7	93.A .4	1124 4.3	40
~	166 .6	32 ".2	4.7	22 5,2	47
~	61 1,3	24 .7	52 .6	43 6,9	45
٠ [39 .9	18 7.7	73 .6	32 ,5	43
. [61 .6	a 9.1	9.0	44 8.7	41
,	77 11.0	29 11.1	10.1	32 9,8	39
, [27 1,2	10.5	32 .5	26 9,9	37
, [12.0	9 11.9	11.3	22 1.4	35
. [13.2	18 1.1	12.6	11.3	33
. [5 .5	15.2 ,4	13.3	12.6	31
. [14.9	3 13.8	37 13.5	559 1.1	20
. [35 .9	3 2.1	16.0	15,2	27
. [35 1.2	6 1.1	119 1.3	83 1,2	25

	MONTH SEP DEPTH	200 METERS 165W	NUMBER OF DASERVATIONS	4400 TARLE	7
43N	3,5	62 4.4	4.1	25 .6	934
514	92 .6	72 3,7	68 4.1	45 .6	51*
49N	54 .4	41 .0	36 4.2	1257 4.2	491
47N	52 4,2	31 4,3	34 5.2	21 ,5	47.
45N	35 5.7	37 6,1	34 6.5	15 .4	451.
43N	22 A.4 .A	23 ^.0	56 A.2	7.5	434
414	34 .9	32 4.8	40 41 ,7	3 .6	01~
39N	26 .6	27 10.5	10.3	33 9,9	30"
37N	15.7	33 11,1	33 10.0	29 .6	374
3511	25 .4	16 11.9	77 11.6	28 11.0	351
354	36 1.1	22 12.3	12,4	12 11.1	334
314	33 4.2	24 .1	71 15.2	40 A. A.	31N
San	30 ,8	24 .0	76 14.0 .A	615 1,0	201
27N	15.4	29 1.1	115 1.3	15.1	271.
25N	46 1.0	10.5	16.2	62 16.1	254

MONTH OCT 1754	DEPTH 200 METER 165		OF DRSERVATIONS	4550 TABLE
4 3.5	.2 11 4,2	.4	24.2	4.1
29 4.3	.6 4 4.1		20 4.1	5 4,0
18 4.1	.1 4.3		17 .4	994 4,1 ,4
119 4.0	.4 7 4.6	.,	20 5.3	5 5,6 ,3
29 5.0	.1 • 6.0		27 6.3	10 7.1
5A 7.3	.8 40	.,	70 4.3	• 7.7
18 8.6	.1 49 9.8	1.0	34 4.4	44 .5
36 10.7	.0 15		21 .5	50 9.6 .5
35 11,5	.0 13	.5	10.9	64 10,1
56 12.3	.4 10 12.0		11.4	72 10.7
63 13.0	,6 16 12,1	.0	25 25	11.6
35	.6 16 13,4	.7	13.1	A7 12.6
51	.5 25		14.1	1272 1.0
210 14.0	.5 10 15.7		15.6	150 141
52 16.6	. 27 16.3	1.3	16.3	16,5

	175	DEPTH	200 METERS		HER OF DE		2905	
	2 3.A	.,	0 0	0	10	.4 ,5	4.2	.2
	3 5.2	.,	0 0	2	10	٠. د.	•	n
	13 5.2	.,	4 3.0	.2	11 4	.0	909 4.0	. a
	56 4.0	.6	10 4.7		15	.,	9 5.1	.5
¥.	9 3.2	.2	12 6.3	.,	14	.5	10 6.6	.4
	26 9.1	.2	6 7.6	.5	79	.,	9 1.1	.,
	23 6.5	.6	7 8.6	.4	52	.5	5 4.9	
	11.4	.•	15	.,	11	.5	16	.4
STATE OF STA	1 12.2	•	5 10.5	.2	14	۸.	4.8	.0
10 mm	1 15.0	•	4 11.4	.5	21 11	.3	10 11.0	.,
	1 13,6	0	6 13.0	.5	19	۰، ۵	13	,5
	14.2	.,	20 13.4	.6	24	3.4	35	.•
No. of the last	32 14.6	.,	16.2	1.0	53	3.9	13,6 517	1,1
	65		15.2	٠.		1,1	14.8	1,2
	40 16.4	1,2	16.4	1.4	98	1.1	15.9	1.3

	HONTH DEC DEPTH	200 METERS NUM 165#	HER OF OBSERVATIONS	2076 TABLE 145%	7 18
53N	0 0	0 0 0	3 .3	0 0	534
51N	0 0	0 0	4.0	0 0	51%
49"	0	4.2	9 4.0	998 .0	491
474	0 0	3 .7	9.1	, 5,4 ,2	474
45N	2 6.0	4 6.3	6.7	e 6,3	45%
434	7.7	4 7.8	24 4.3	1 7.2	43N
41"	6 .6	A.A .5	29 4.7	16 1.0	-1"
39N	4 10.0	3 10.2	10.2	A 9.9	39N
374	6 10.1	2 10.5	10.7	9 .5	37N
354	4 11.7	2 11.6	3 .4	10 11.0	3511
334	ə 11.7	6 12.5	12.2	11.0	150
11N	6 13.5	6 13.2	10 13.1	13,2	314
294	17 .5	11 .4	23 14.7	484 1,1	2011
27N	15.7	16 1.1	15,4	43 1,0	274
25N	11 1.3	13 .6	16.6	36 1.1	25N

	MONTH JAN CEPTI		NIMBER OF OBSERVATIONS	2490 TAPLE	•
s. [0 0 0	3 4,4	.4 17 .2	15 4,3	53
1.	3 4,7 ,7	9 4.1	.2 14 3,9	3 4.4	511
••	• • •	A 3.7	.3 14 .>	491 3.4	40
,,,	92 3,3	4 4.4	.5 13 4.4 .6	, , ,	471
5N	3 4.5	4 5.1	.4 9 5.5 .4	17 6.3	45
34	0 0	3 7.7	.7 20 7.2	^ °.° .5	43
IN	6 7.8 .7	7 8,0	.5 14 .6	3 7.7	01
• T	79 9.5	•••	.4 12 9.7 .4 12 .A	1 0.2	30
, T	2 1.3	10,3	.6 • 10.1	4 9.7	37
in	3 .4	10.7	.7 A9 10.9	10.1	35
SN T	4 15.5	11,7	.5 49 11.4	10.6	33
,,	13.0	12,3	.5 24 .5	21 .4	31
••	13.4	13.0	.6 25 .A	434 11.3	7.
,,	30 .9	34 0	.9 104 1.3	12,5 A2 ,A	27
SN	15.3	21 14.1	.7 103 1.3	13,3 54 -1,1	25

	MONTH FER DEPTH 175H	250 METERS NO. 165M	UMBER OF DESERVATIONS	2759 TARLE	•
53N	9 3.4 ,2	19 4.4	16 .1	22 4.0	53N
51N	42 3,6 ,2	50 .3	3,4	11 3.0	514
49N	25 3.7	45 3,A ,2	3,6	3,6 A39 ,3	494
47N	15 .7	35 4.3	4.5	15 4.9	474
45N	15 4.1	20 5.5	7 6.0	2 6,1	45N
43N	a 7.7	7.1	7.4	7 7.8 .6	43h
41N	16 0,3	12 ,5	9.1	24 .5	41N
39N	16 ,5	12 4,5	6 9.2	15 15	39N
37N	17 1,2	15 10,6	17 .3	9,5	37N
35N	3 11.0	5 10.6	11.0	10,4	35N
33N	5 ,6	, 12,3	11.5 A7 .4	23 10.4	13N
31N	6 14.1	7 12.3	31 12.0	22 11.3	314
294	7 14.0	6 13.7	12.2	502 11.4	291
27N	12 14,1	13,4	72 .6	97 12.6	27N
25N	15,3	10 14.5	110,2	99 13,3	25N

Contract of the Contract of th

	HONTH MAR DEPTH	250 METERS NUM 165M	REP OF OBSERVATIONS	3078 TABLE 145"	• 1
43N	3.6	3 .5	24 .0	9 4.0	53N
514	29 ,3	3,8	25 ,3	3 3.8	51^
494	23 .2	2 .3	26 .4	969 3.8	49.
474	3.7	4.5	18 .5	4.4	27.
05 V	21 4.6	7 5,7	3 .2	3 6,2	45.
434	26 6.5	7.6	4 6.6	5 7,1	45%
01N	A, PS	0 0	14 .6	7 .5	41.
59N	8 1.0	4 .3	14 .0	s. °e	391:
37N	16 1,3	5 10.2	20 .5	9.6	37%
ISN	12.2	9 11.3	17 .6	30 .5	35%
53N	78 .8	11.9	11.2	10.4	33%
31N	13.5	12.4	25 ,5	34 11,7	31N
PON	13.6	12.8 36 .8	12.6	486 .7	291
27N	14.5	51 .9	92 .4	12.5	27N
25N	15.5	14.6	13.9	60 1.0	25N

	HONTH APR DEP		NUMBER	OF ORSE		3184 145*	TABLE
	13 .3	13	.3	15 4.1	.3	11	.4
	9 3.7	3.9	.2	27 3.8	.2	13 4.0	. 4
	18 3.9	23 3.9	.2	17 4.0		1901 3.8	.4
	54 4.5	0.4		. 4.5		9 4.6	.5
The second second	11 4.1	10 5.7	.7	12 5.3	.5	5.5	.5
	18 .6	19 7.2	.6	38 7.2	.4	17 7,2	.4
	7 6.0	40 8.1	.5	7,9	.4	29 8,6	.6
	37 1.0	46 9.7	.6	4 9.3	.4	9.1	.5
	31 .4	31		, º.º	.3	15	,5
	28 13.1	11,2	.,	11 10.8	.6	10.3	.5
	18 .6	12,1		14 11.1	.6	10,5	
The second second	47 13.7 .A	12.9		14 11.9	.4	45	.5
	64 14.1	39 13,2	1.1	58 12.7		459	
	59 .7	14,5	1.6	65 13,5		12.6	
	28 .4	128 14,1	1.3	14.1	1.1	13,3	1.2

175W	DEPTH	250 MFTERS 165H	NUM	ER OF DASE	RVATIONS	3534	TABLE
49 3.6	.2	65 4.2	.,	19 4.0		20 4.1	1.5
65 4.0	.5	94 4.1		29 4.2	.,	17 4.0	
71 3.8	.3	57 3.7	.3	32	.2	1239 3,8	.5
66 3.1		10 4.0		21	۰,۵	43 5.0	.5
20 4,9	.,	17 5,3	,8	15	1.3	21 6.0	.6
12 5.9	.,	5 6.7	.6	16	7.5	2 7.0	۸.
5 7.6	.6	10 8.1	.,	14	.5	3 6.4	,5
26 9.3		13 9.2	.,	15	.4	7 9.4	
12 10.2	.9	13	.,	16.3		16 9,7	,8
11.4	٠.	11.0	1.0	23 10.7		40 10.0	
22 13.4	1.0	• 11.7	.6	7 11.3	.4	53	1,2
15 13.6		13 12,6		13	.6	34	.,
74 13.9	.6	9 13.1	1.1	12.3		493	1,1
161	.7	13	1,1	13,2	.,	119 12.6	1.0
25 15.0		17	1.1	14,0	1,1	80 14.0	1.0

MONTH JU	IN DEPTH	250 METER 165W	S NUM	155 155		3520 145	
125 3.6	.3	114	.4	52	.5	29 4.4	.7
240 4.0	.4	47 4.2	.6	38 3.9	.3	33 4,1	
124 3.7	.3	A 4.3		3.7	de2.3	879	
45 3.6	.,	10 4.2		7.5		5,1 17	
18 4.7	.7	11	.6	19	.5	24 6,1	Talk,
16 6,5	1.5	16 7.2	.6	36	.7	7.3 2A	.4
20 9.1	,3	27 7.A		7.8	.6	41 A.3	.5
. 0.5	.7	22 10.0	.6	19		9,0 36	. 5
4 10.2	,5	7 10.1	.7	5 10.1	. 4	18 8.7	.6
3 12.0	.7	• 11.8	.6	6 10.9	1776	20 9.9	.6
4 12.9	.4	27 11.8	.6	13 11.1	.3	46 10.7	.6
15.4	1.0	26 12.7	1.1	16	18.0	23 11.1	.5
46 13.4	.6	36		12.5		514 11.7	
64 14.2	.7	13		14.2	1.4	140	١,٠
39	1.0	17 14.2	1.5	13.9	1,2	95 13,7	1.0

	MONTH JUL DEPTH	250 METERS NUM	REP OF OBSERVATIONS	4228 TABLE	A 1
53N	125 .3	105 4.1	141 .4	18 4.3	53N
51N	308 .4	3.9	5A .3	27 4.1	51*
494	3.6	3.7 .3	42 .3	993 4.0	49.1
47N	22 .7	19 .3	22 .5	21 .3	47-
45N	5.3	2 5.1 5 6	22 ,5	27 6.1	451
43N	5.9	7 6.8 1.2	7.3	7.0	43%
41N	125 .6	11 6.2	79 .4	34 8.1	41"
39N	20 1.5	45 .4	64 .6	47 .6	394
37N	n 10.7	26 .7	27 .6	34 9,3	371
35N	5 1.1	18 .8	10.A 25 .3	10.1	354
33N	5 1.1	18 .5	21 ,5	8. 15	334
314	7 13.2	7 12.1	12.0	11.4	311
San	17 .9	12.5	12.7	11.5	59%
274	49 .9	13,1 3 ,5	13.6 AB 1.0	12.9	271
254	25 .7	13 1.5	138 1.0	89 1.0	251

	MONTH AUG DEPTH	250 METERS 165H	NUMBER OF DESERVATIONS	4708 TABLE	٩
53N	3.7 83 .4	120	.4 AB 4.0	4.1	534
***	410 .5	218 3.0	.5 93 .4	51 .4	51N
ION	284 .4	133	.5 72 .4	926 4.0	USN
7N	147 .4	23 4.0	.5 50 .5	8. 05	47
151	5,3	18	.6 38 .5	32 ,5	45N
43N	7.4 33 .R	14 6.9	.9 56 7.3	26 .5	434
414	55 .6	6 8,5	.4 49 .7	31 .6	41N
39N	67 1.0	26 10.4	.7 51 .5	17 9,3	39N
37N	10.9	13 9,8	.A 26 .a	20 9.3	37M
35N	11.3	11,2	.6 42 .5	17 1,6	15N
33N	12.6	17 12.3	.3 44 1.1	10.5	33N
31N	13.0	12.3	.7 46 .5	10.9	314
29M	7 1.6	3 12.7	.7 37 .6	511 .6	29N
27M	14.5	3 13.9	.4 97 1.2	127 .8	271
ISN	31 1.0	14,5	.7 119 13.4	67 1.0	25%

	MONTH SEP DEPTH	250 METERS 165H	NIMBER OF	1554	3797 TARLE 145W	•
93N	36 3,7	69 4.3	.6 40	4.0	20 4.0 .5	53N
51N	79 4.0	64 3.7	.4 62	4.0	42 4.^ ,5	511
49N	4.1	3.5	.4 35	4.0	1041 .4	491
47N	4.1	4.1 25	.5 12	4.0	17 .5	U7".
45N	32 5.1	5.4 28	.6 32	5.9	14 5.9	454
43N	7.5	7.3	.A 50	7.5	1 6.8	43%
01N	31 .9	24 4.3	.9 47	1.5	4 .7 .7	41%
3911	10.1	23 9.9	.7 51	°.6	33 9,2	394
37N	11.4	27		10.3	9. AS	374
35N	25 .8	11.1		10.9	29 .4	35^
33N	12.A 35 1.0	11.6	.6 45	11.6	12 .7	33N
31N	13,3	13 12.4		12.2	11.2	316
29N	23 .0	17 12.8	.4 70	12,6	515 .7	501
27N	30 .7	13.0	.9 105	13.5	96 .5	274
25 N	38 .0	39		13.4	13.2	25N

175W	1659	155#	145%
4 3.5	9 4.2	24 4.2	5 4.2
24 .5	5 .4	20 .3	5 7 1
14 4.0	a.1 .2	4.0	3.8 .4
3.A 101 .4	7 .5	a.A .5	5.1
26 4.6	5,6	5,8	9 .4
28 6.4	7.2	7.7	6.9
16 7.6	45 .7	34 .6	12 8.6
32 1.0	13 .6	9.5	9.1 56 .4
26 1.0	17.1	17 .2	9,3 55 ,5
42 11.6	11.4	10.7	66 9.9
54 12.2	11.5	11.4	86 .5
15.2	12.5	12.0	75 .6
45 .4	12,8	12.3	943 .6
203 1.3	10 .6	13.4	12.5
42 15.0	14.2	13.7	78 13.6

	HONTH NOV DEPTH		BER OF DESERVATIONS	2485 TABLE	A 11
53N	2 3.7	0 0	10 4.2	3 4.0	55N
514	5.2	0 0	9 4.1	0 0	51N
491.	5 .0	4 3.9	10 .3	A33 3,A	491
474	3,9	10 .6	4.6	. 4.7	474
45N	3,3	5.7	5.8	10 .4	45*
43N	25 6,3	7.0	7.2	7.4	434
414	7.7	7 6.1	48 7.7	5 4.5	41"
39N	73 10.6	15 .6	10 .4	16 ,3	39N
37N	11.4	2 9.6	10.2	5 8.8	37,
35N	12.3	10.7	10.6	10.3	35%
33N	12.6	12.2	11,2 19 ,8	12 .4	334
31 W	15 ,6	18 .6	12.3	34 .6	31%
29N	13.5	18.0 .A	12.4	436 .7	Son
27N	33 ,6	18.6	13.7	79 .8	27N
25N	20 15.2	14.5 A1 1.2	96 1.1	13,2	25N

	HONTH DEC 1754	DEPTH	250 MFTERS 165W	NUME	ER OF ORSER	VATTONS	1805 TAR 145W	LE 8 18
53M	0	•	0 0	0	3 4.1	.,	0	n 53N
91N	0	•	0 0	•	4 4.0	.,	0	0 51N
49N		•	1 4.1	0	, 3.0	.2	3.7 Aug	4 491
47N	0 0	,	3 4.5	.,	9 4.4	.5	5.n	3 471
45N	2 5.4	.6	4 5.6	.2	6.0	. a	2 5.8	1 45%
43N	7.0	.6	4 6.9	.2	24 7.7	.7	1 6.6	0 43N
414	6 6.3	.,	37 A.3	.6	29 4.1	.6	16 6.1	9 41N
39N	4 9.1	.0	3 9.5	.3	1 9.5	•	8 9.2	7 39N
37N	6 9.4	.7	5 9.6	.3	2 9.9	.0	• •••	5 37N
35N	4 10.9	.6	2 10.9	٠٤	3 10.9	.3	9 10.3	6 35N
33N	2 11.5	1,3	5 11.8	.5	7 11.6	.4	10.9 12 1.	5 33N
31N	12.7	.6	6 12.2	.3	10 12.1	. 4	12 11.3	7 31N
294	13.7		11 13.1		13.0	.5	405	7 29N
,,, [15	,8	13,5	3.8	13,9	.,	12.4	5 27N
>5×	15.6		13		14.0		13,2	9 254

- 11	MONTH JAN DEPTH		MER OF OBSERVATIONS		٠
ssn [0 0	3 4.3	3,0	12 4.2	53.
514	1 3.7	5 4.0	3.8	2 4.0	514
194	0 8,50	7 3.7	14 .2	51 3.7	491
174	0 1 0	4 4.2	134	0 0	474
15N	0 0	4.7	9 5.0	6 5.7	454
134	0	3 6.7	19 .5	6.3	45%
114	3 6.0	7.3	7.8	7,0	411
19N	7.6	3 .5	A ₄ 8	1 4.5	301
17N	2 1,2	9,5	9,5	5 .4	371
SN	3 11,1 5 E,0,4	10.0	10.1 A3 .4	9.3	35N
13N	11.7	11.0	10.6	9.7	334
35 N	12.2	11.4	11.0	20 .6	31+
•••	12.5	11.9	11.5	10.3	29"
7N	29 1,0	33 12.6	97 1,0	71 .5	27%
25N	14.1	12,3	12.4	11.2	25N

\$1.7	MONTH FEB DEPTH	300 METERS N	IMBER OF DESERVATIONS	1275 TABLE	• 1
53N	3 .0	15 4.2	3,8	15 4.0	53H
514	35 .1	3,8	10 .1	7 3.9	51N
٠٠, [3.7	55 3,4	9 3.0	49 .2	491
4711	5 3.6	33 4.1	4.2	, 4.0	471.
45~	4.1	15 .4	5.3	2 5.6	451
43N	A 6.9	6.5 A	0 0.0	7,2	434
41N	7,5	12 4,0	7.5	9 8.1	414
394	16 0.5	12 6.6	5 6.4	15 6.2	391
37N	10.3	12 9,5	14 0.4	16 .5	37N
35N	3 1.0	, ***	162 .4	9,5	35N
33N	11.7	6 11.3	76 10.6	19 9.8	33N
51N	13.2	6 11.5	11.2	10.2	31N
2911	7 12.9	5 12.8	11.4	131 246	San
27N	10 12.0	9 12.5	62 11.7	62 11.0	271
2911	13.5	5 12.8	37 17.0	60 11.4	25N

Market Section of the Section of the

	MONTH MAR DEPTH	300 METERS NUMBER 1654	REP OF ORSERVATIONS	1321 TABLE 145H	9 3
53N	10 3.A .2	3 3.5	20 .3	8 .2	53%
514	15 .2	3.8	21 .1	3 3.7 .0	514
491	3,7	3.7	23 .0	90 3,4	49.
47N	7 3.6	4.5	15 .3	3 4.4	471-
45N	9 .6	5.1	3 .2	3 5,6	451.
434	5.4	2 6.8	3 .3	5 6.4	434
414	7.0	0 0	7.5	7,5	010
394	7.5	4 .3	4 7.7	P.3	391.
37N	17 1.4	9,5	11 9,2	12 ,5	37*
354	42 .7	10.4	10.0	15 9.1	354
334	63 .5	7 11.1	5 ,3	30 .5	53N
31N	50 .6	17 .6	22 .4	32 .4	311
20N	31 17,3	11,6	11.3	144 .5	291
27N	26 13.4	23 .7	79 .6	76 .5	27N
254	19 1,3	12.8	87 .9	50 .7	25N

	MONTH APR DEPTH	300 METERS 165H	NIMBER I	F DBSERVATIONS	1487 TABLE	•
3N	3,4	13	.3	4.0	11 4.0	53N
	. 3.7	3,4	.2	5.6	13 .2	51N
١٠٠. [3.9	22 3.9	.2	17 .2	83 83 ,3	491
174	9 .5	4.2	.3	4 4.5	5 ,3	47N
15N	3 .9	5.2	.6	5.0	5 ,2	45N
13N	18 .0	19 6.5	.5	58 6.5	16 6.4	43N
.,, [7.3	7.4	.5	7.2	29 7.8	41N
ION	11 .0	45	.6	4 .5	20 0.2	391
7N	10.1	31 9,6	.6	6 9.0	15 .5	37N
554	7 1.1	10.4	.6	9 10,1	17 9,5	35N
3N	11.6	8 11.1	.0	10.3	34 9.6	33N
51 N	18.6	17 11.7	.4	11,1	37 .6	31N
94	23 .4	28 11.9	.,	11.4	140 .6	294
7N	18 13.2		1.6	12.0	70 .6	27%
154	11 .5	11.6	.6	12.1	24 11.3	251

	MONTH MAY DEPTH	300 METERS NUM	MER OF ORSERVATIONS	1370 TABLE 145W	• •
53N T	3,6	a5 4.1 .5	10 3.9	16 4.0	550
514	33,7	65 3.9	13 .2	3.9	513
40N	50 .3 .	38 3,7	22 3.9	oo 3,A	4911
47N	15	A 3.9	9 4.3	17 4.5	47%
45N	14 .5	7 5.3	5,3	15 5.4	451
43N	5 .6	4 5.9 .5	15 .4	1 5.4	43.
414	1 6.2	a 7.6	14 .5	2 7.2	01%
39N	5 4.3	11	14 .4	7 6.7	391
37N	9.3	9,6	13 .5	16 .7	37~
354	10.9 8	7 1.0	9.9	36 9,3	351
33N	12.1	6 .3	7 .5	41 9.7	334
314	7 1.1	10 1.4	11.2	29 .6	31N
SON	12.5	6 .9	13 .7	158 .5	291
27N	176	12.5	11.9	110 11.1	274
25N	15 .6	12.7	12.1 A9 .A	11.A 68 .A	25N

	MONTH JUN DEPTH	300 METERS NIME 165H	HER OF ORSERVATIONS	1629 TARLE	•
53N	3.A 70 .2	79 3.7	23 4.0	16, 4.2	534
51N	3.A 113 .3	20 .2	18, .2,	19 4.0 .3	514
294	3.6	3.8	3.4	78 4.0	494
47N	22 3.7	4. S. A	14 .3	13 4.7	471
45N	4 4.6	9 5.0	12 .5	17 5,3	45%
43N	9 1.1	7 6.1	20 6.2	22 4.5	431
41N	12 0.2	7.0	7.0	32 7.5	414
39N	4 .7	7 8.8 .4	11 .4	21 6.2 ,5	300
37N	4 .4	6 .6	5 .4	12 7.9 .A	374
35N	3 11.1	5 10.7	6 10.2	11 4.2 ,7	354
33N	12.0	15 .6	13 .3		334
31M	12.7	16 1.3	11.6	22 10.0	31~
291	7 13.0	12,3	29 11.6	195 10.6	201
274	13,3	7 12.3	12.5	120 11.2 ,7	271
29N	13.4	13.1	15.1	74 11.7	25.

175¥	1654	155#	1454
63 ,2	47 4.0	43 .3	13 .4
160 .4	53 .3	37 .3	22 4.0
115 ,3	30 .3	23 .2	75 3.7
3.9	3,6	13 .4	6 4.6
4.R 4 .4	1 0	5.0 15 .3	10 5.5
0 0	7,1	58 .5	7 6.0
125 .6	7,5 11 ,3	7.2	7.6 18 .4
3 .0	4 .5	25 .5	22 .5
5 ,9	12 .3	25 ,5	25 6,7
10.6	10.1	9.9	9.1
5 1,0	11.1	10.5	15 .9
3 .8	5 .5	31 ,5	34 .7
6 .6	11.6	11.7 34 .7	10.5
19 ,9	12,3	12.2	11.3
13,3	7 13.7	12.1	11.6

	MONTH AU 1754		300 METER 1654	S NUM	BER OF	ORSER!	VATIONS	2050 145		•
T	3.6	.5	42 3,8	.4	43	4.1	.5	30 4.1	.4	5
I	258 3.9	.3	A1 3.9	.2	48	3.9	.3	3.9	.2	5
	A9 3.A	.2	3,7	٠.	45	3.7	.2	95 3.9	.3	-
	30 3.6	.2	15		3A	4.1	.4	15	.3	4
	16	.6	4.1	.3	24	4.9	.3	15 2.2	3	4
	5 5.6	.2	5 4.0	٠,	40	6.5		19 6.3	.5	4
	, 7.3	.6	7,5	.4	33	7.2	.6	26 7.4	.7	
	. 4.6	1.0	6 4.6	.3	37	P.4	.5	11	.,	3
	13 9.0	1.3	10	.6	55	4.2	.4	16 8.6	1,5	,
	4 10.4	.0	7 10.2	.3	39	9,8	.5	12 9.4	2.0	3
E	11 12.0	1,6	11.5			10,9	1.1	13 9.7	.5	3
	5 12,3	.5	11,4	.4	42	11.1	.6	10.2	,5	3
	15.2	1.4	2 11.3	.0		11.2		184		,
	24 13.2		3 12.2	.9	45	12.5		91 11.0],
	23 13.4	, 0	3 12.9	.,	113	11.6		61 11.4		,

	MONTH SEP PEPTH	300 METERS	NUMBER OF DRSERVATIONS	145W	•
34	30 41	44	.3 31 .3	9.9 ,2	534
11	50 3.4	3.6	.1 46 3.A	25 .5	514
۰. ا	9 3,6	17 3,6	.2 32 4.0	, 94 3,A ,a	491.
74	n 3.6	13	.5 29 4.5	15 .4	47-
54	9 4.5	12 4.8	.5 31 .7	14 .4	454
34	5 6.7	0 6.4	.5 48 6.6	1 0	434
1 1	7.1	7.5	.9 43 7.6	4 4.2	411
•n	A 9.7	9.3	.7 42 A.B	33 4.6	394
7N	10.5 A 1.1	22 9.6	.7 23 .3	14 .7	37+
5N	13 .6	10.3	.5 50 .4	22 9,4	354
3N	24 11.7	10.7	.6 39 .4	9.9	33N
14	20 20	7 11.4	.6 41 .3	10.2	31~
9N	14 .6	11 11.4	,a 50 .a	224 10.4	291
71	15 .7	13 12.4	.A 90 .7	92 10.9	27N
54	26 .7	28 12.4	.4 130 .7	11,2	25N

MONTH OCT DE 1754	PTH 300 METERS 1654	NUMBER O	F OBSERVATIONS	1759 TABLE
3.4	6 4.2	.2 2	3 .3	5 4.1
18 4.1	3 4,3	.3 2	0 .0	5 4.0
15 3.9	4.0	.1 1	4 4.0	59 3,8
15 4.7	7 4.4	.4 1	6 4.4	4 .4 .4
17 4.8	5,5	.3 ?	5.3	1 5.7
27 5.8	10	.7 3	5 6.9	A 6.2
14 6.8	29 7.4	.7 3	7.6	7.9
14 A.4	9,1	.7	o ^.P .4	53 6,5
11 1.0	• 9.6	.6 1	9,5	49 .5
27 1.1	10.0	.5 1	3 9.9	58 4.0
40 11.4	15	.8 2	3 .4	/63 °.6 .5
15.5	11.6	,6 3	2 11.2	63 ,4
20 12.7	25 11,9	,	11.5	10.3
177 11.9	a 12.7	.6 4	2 11.9	95 10.A
14 13.2	25 12,4		11.6	11.5

	MONTH MOV DEPTH	300 METERS NUM	HER OF MRSERVATIONS	1196 TABLE 1454	• 1
55"	2 3.7 .1	o ° o	10 4.1 .3	3 ,1	53A
51N	0 0	0 0	9 4.1	0 0	514
49N	0 0	3 3.0	10 4.0	42 3,7	491
47N	0 0	10 4.3	12 .5	4.4	474
45N	0 0	11 .6	5.3	9 5.4	45.
454	6.8	6.0	77 6.5 .4	9 6.7	434
41N	9 .4	7 7.3	47 .6	4 4.1 .2	414
304	11 9.1	15 .6	10 .5	15 ,3	391
37N	0 0	2 .0	14 .6	5 1,1	374
35N	11.5	4 .4	21 9,8	17 .9	354
33N	11.7	6 .5	10.3	11 ,5	334
31N	12.3	17 .5	11.4	33 .6	314
291	12.5	16.1	11.3	10.1	500
27N	13.2	12,2	12.1	77 10.9	274
25N	13.6	71 1,0	12,1	11,2	25.

12.7

	MONTH DEC PEPTH	300 METERS 165W	NUMBER OF ORSERVATIONS	704 TABLE	• 12
53N	0 0	0 0	0 3 .1	0. 0	53N
51N	0 0	0	0 4 .1	0 0 0	51N
491	0 0	4,3	3.9	51 3.0	491
47N	0 0	3 4.5	.6 9 4.5	2 4.0	470
45N	2 .6	5.3	.3 4 .7	2 5,3	45N
43N	6.2	4 6.2	.3 24 7.6	1 6.1	ASN
41N	6 7.3	37 7.5	.6 27 7.4	15 7.6	414
39N	8.6	3 10.9	.4 1 0.0	8 8,5	39N
37N	. 1.6	2 1.9	.2 9.2 .0	, 8,8	374
39N	10.2	2 10.0	.4 3 10.2	7 *.6	35N
33N	2 3,0	5 11.0	.5 7 10.8	12 1.6	334
31N	6 .5	6 11,3	.3 10 .4	11 ,5	31N
29N	14 .7	11 12.0	.5 23 .4	111 10.2	244
27N	13.3	15 12.0	.7 60 12.1	36 11.0	27N
25N	14.2	13 12.4	,5 93 ,7	25 11.4	25N

	404TH	IAN DEPTH	400 METERS	Mile	NEW OF ORS		102	TARLE
[•	•	3 4.0	.3	17 3,	.1	12 4.9	
T	•	•	5 5.4	.1	11 3.	7 .,	, 3.4	.0
	•	,	6 3.7	.,	14	•	49 3.7	.1
		•	4.0	.3 .	12 3,	1.10	0	,
	•	,	4.5	.6	• •	4 .3	. 4.5	.2
T	•	• •	, 5.7	.3	,, ⁵ .	.3	6 5.3	.4
	2 5.0		• 5.•	.3	11 6.	.1	3 5.6	.2
	5 6.	.3	3 7.2	.,	10 7.	.1	1 7.0	0
T	2 6.	1.0	7 0.1	.5		.4	5 7.3	.5
	3 0.	٠.,	10 6.3	.4	92 0.	.5	7.3	
T	. •.	٠.,	9.3	.6	45		11 7.0	.,
	10		12 9,6	.1	10	.1	10 4.2	1.50
T	12 10.	• .5	10.0	.4	10 0,	.5	130 4.1	
	24 11.	1 1.3	10.4	.6	43	.0 1.2	en 8.5	5
	18 11.	.,,	15 9.7	.0	A4 9,	.0	49 4.6	

	MONTH FER DEPTH	400 METERS 165H	NUMBER OF	ORSERVATIONS 155H	1230 TABLE	10 2
53N	3.4	14 3.9		3.7	15 3.9 .3	55N
514	33 .2	3.7		3.A .1	, 3.0 .2	51N
49N	12 3,6	55 3.7	.,	3.7	45 .2	400
47N	5 3,6	31	.1 1	4.0	7 4.4 .6	47+
45N	3 3,6	15 4,3	.3 4	4,6	2 5,0	451
434	5,8	5.4	.5 •	5,5	5 6.1	434
41N	15 .5	11	.0 0	6.2		41N
39N	15 .6	7.3	.5 5	6.6	15 .5	394
574	13 1,3	12 7.9	.3 12	7.7	7.1	37N
35N	3 0.0	5 0.4	.3 162	1.6	10 7.6	35N
33N	5 .6	6 4.5	.6 76	n. 9	18 7.9	33N
31N	6 11.3		.4 23	7.4	16 .6	314
294	7 10.9	5 10.6	.A 16	*.4	127 .5	5411
274	10.8	10.2	.7 50	9,5	62 6,6	274
254	5 11.0	5 10.4	. 36	9,3	50 6,8	254

	HINTH MAR DEF	TH 400 METERS 165W		OBSERVATIONS 155H	1225 TARLE 1454	10 3
53N	10 3.7	3 3.5	.1 10	3,7	, 3.7 .2	53N
514	3.9 14.2	4 3.7	.1 21	3,7	3 .7	514
494	9 3,6	1 3.7	0 55	3,7 .>	91 3.7	401
47N	7 3.6	4 4.3	.6 13	4.0	3 4.0 .0	47~
45N	9 .4	4 4.5	.5 2	4.4	1 4.6	454
43N	9 4.9 .4	, 5.4	0 1	5.0	5 5,1	430
41N	9 5.6	0 0		6.1	7 6.0	41%
39N	5.9	4 6.7	.4	6.4	6 6,6	300
37N	12 0.5	5 6.1	.2 11	7.6	12 7,2	37N
35N	42 9.5	5 ^.7	.7 11	1.4	7,4	35N
334	43 ,5	, °.3	1.0 4	6.6	30 7.7	334
31N	49 10.4	17 9.6	.5 22	9.0	32 4,7	31%
29N	30 .6	11 ***	.3 52	9.1	142 4,5	200
27N	26 .8	5 9.9	.0 62	9,2	72 0,6	27N
25N	18 1.2	50 0.0	.9 70	9.1	49 0.6	25N

V8.0

	MONTH APR DEPTH	400 METERS 165H	NUMBER OF ORSERVATIONS	1307 TARLE	10 .
534	3.7	13 3.6	3.9 .2	10 3.4	534
51N	3.7	20 3.7	.1 23 .2	3,6	514
494	3,6	3.4	2 16 .2	74 3.7	49N
474	3.6	. 3.9	1 4 4.1	4.1	47N
454	3 1,0	10 4.5	3 A 4.4 .2	5 ,1	45N
43N	18 .3	19 5.3	4 37 .3	16 ,3	43N
414	7 6.0	40 .0	3 31 .4	26 6,2	41N
39N	11 .6	7.4	7.0	19 6,6	394
174	4 1.2	30 0.1	5 6 7.2	7,0	374
35H	7 9.7	14 7.9	5 7 4,5	7,8	35N
33N	1	. *.3	. 10 0.0	31 7.9	334
314	15 1,6	17 9.9	4 14 9.2	37 1,3	314
244	25 ,5	18 10.1	5 53 .6	137 ,5	294
27N	10 11.2	7 10.1	4 16 .5	5	274
254	11 .2 .5	70 9.1	7 65 9.4 .7	20 0.7 .5	254

	MONTH MAY DEPTH	400 MFTFRS	NUMBER OF	DRSFRVATIONS 1554	1319 TAHLE	16 5
55N	5,6 45 ,1	43 3,6	.3 10	3.6	16 .4	534
51%	33,7	54 3.6	.2 13	3.9	10 .2	514
404	58 .2	37 3.7	.1 22	3.4	A2 3,7	491
474	3,7	3,6	.3 9	4.0	16 .2	474
45N	14 .5	6 4.5	.4 11	4.6	14 .5	454
434	5 4.9	4 4.8	.2 14	5.2	1. 4.5	454
414	6.5	. ^.5	.7 13	5.4	2 5.0	414
39N	5	11 7.2	.7 14	7.0	7 7.0	394
37H	6. 7.5	. 6.0	.6 11	7.6	14 7.1	374
35N	9.0	7 4.4	.0 21	A.3	35 7,5	35A
334	10.3	6 9,1	.5 7	1,9	40 7.0	150
314	7 1.1	. •.•	1.0 13	9.5	2A P.3	31~
204	13 .4	10.2	.4 12	9.5	154 8,3	294
274	11.2	10.4	.5 15	9,5	107 8.6	274
25N	11.2	10.2	.4 66	9,3	46 9.0	25N

	MONTH JUN DEPTH	400 METERS NUMB	HER OF OBSERVATIONS	1542 TABLE	10
34	5.7	73 .2	3.9	13 4.0	3.
	3.8	27 3.6	3.7 · .2	16 .2	511
,,,	67 1	3.7	3,0	3.6	40
,,,	3,6	8 4.1	14 .2	4,3	47
N	4.2	9 4.7	12 .4	154	45
IN	, 5.4	7 .3	5,2 °,5	5,2	43
	12 6.6	20 .3	5.7	30 6.1	41
, N	7.0	7,2	7,0	20 6.5	30
	6.1	6 7.7	7.A 5 .2	9 6.7	37
	9,5	4 8.8	A.3 9 .7	7.6	35
. [10.3	13 ,4 .	13 .4	7.9	33
. [11.0	10.3	10.0	8.0	31
. [7 1,0	5.01	24 9.6	192 8,4	,,
. [11.1 A	9.8	10.1	127 0,7	27
	20 1.0	10.0	62 9.4 A	72 .0	25

	HONTH JUL DEPTH	400 METERS NI 165H	JMBER OF ORSERVATIONS	1817 TABLE 145H	10
٠ [50 .1	41 .3	3.8 .2	12 4.0	43M
~	146 .4	29 3,7	3,8	22 3,9	514
	106 .4	29 3.7	22 3,7	59 .2	494
~	21 ,4	6 3.8	12 4,1	. 4.2	478
*	4 4.4	1 4.6	15 4.5	10 4.6	451
*	0 0	4 5.6	57 5.4	7 4.9 .3	434
• [125 .6	11 .3	60 .4	17 .2	415
~	3 .5 .6	4 7.4 .7	24 7.1	20 6.5	301
• [9 9.1 .0	12 7.8	22 7,4 ,5	24 7.0 .5	37.
*	3 9,3 1,2	10 0.5	24 4.3 .4	20 7.4	354
~	5 1,0	16 .6	21 4.7 .6	13 0,1 ,7	334
. [3 10.7	, 9,3	30 0.7	36 0.4 ,7	314
~ [6 10.4	1 10.0	33 *.* .*	144 4,5	500
	14 11.5 ,8	3 10.2	72	es °.° .5	27%
	19 10,0	, 10.7 .A	111 9.5	., 1,0	25"

	MONTH AUG DE	TH 400 MPTER	NUMBE	R OF ORSER		1755	TABLE	10 (
	36 3.7 ,3	30 3.7	.3	36 4.0	.5	20 3.0	.3	53N
	20 3.0 .2	17 1.7	.1	39 3.4		31 3,8	.2	51%
T	42 3.5	17 1.0	.2	36 3.4		62 3.4	,2	490
	2A 1.6 .7	14 3.4	.2	30		15 4.2	,,	471
	16 4.2 .4	. 3.0	.1	14.3	.2	12 4.7	,,	454
	5 4.7 ,2	5 4.6	.4	29 5.2	.4	16 5.2	,5	454
	7 5.7 .5	5 6.0	.3	15 6.0		26 6,0		414
	6 7.1	. 7.1	.3	7,1	.5	11 4,8	,0	394
	13 0.1	10 7.9		11 7.4		15 7.3		374
2000	. 4.5 .7	, •.•	.5	13 6.0		12 4.7	1.7	354
	11 10.3	10 4.6	1.5	17 ***	1,4	13 7.4	,5	334
	5 10.5	, *.*	.2	10 9,5		. 0.5		\$14
	, 12,9 ,n	2 1.3	.1	10	.9	145 4.1		2011
281	21 1.0	, 10.0	.5	70 10,1		*1 ***	,5	274
	23 11.1 ,7	, 10.2		•0 ••1	.,	.,		254

	40NTH 8E	OFPTH			MEP OF ORSE		1707		10
· [10 3.6	.1	41		19	.2	3,6	1.2	534
14	50 3.7		41	.1	35	1,11	3.8	.2	514
••	9 3,5	.1	16	.6	55 2.0	1.87	83	1.72	40.
74	A 3.5	.2	13	.0	14	•.	15 4.5	.4	47.
54	• 4.3	.5	15	.5	23 4.1	.,	13	,3	454
34	5 5.2		•	.4	3A	.4	5.0	1	434
,,	5.7	5	18	.1	34		3 7.1	.,	414
911	6.9		13	.6 .7	33	1/34	7.0	.5	39.
74	6 8.7		55	.7	7.1 19	.3	7,3		371
5M	13 8.6	.,		.7	39	1000	1,6	.5	35*
34	23 9.9	.7	12.0	۰.0	31	.4	7,9	.7	33*
14	10.2	.5	7	.7	32		32 ^,2	.5	311
••	10.7	.6	11	•1 •a	39	.4	224 6.3		291
7N	11.0	.,	13	.6	75		91 7.5	.5	27.
54	26 11.3		27	.6	113	.,	62 6.6	0.34	251

	MONTH OCT DEPTH	400 METERS 165W	NUMBER OF ORSERVATIONS	1694 TABLE	10 10
934	2 .0	6 4.0	2 20 .4	4 4.0	534
514	13 4.0	3 4.1	3 20 .2	5 3,A	41N
494	12 3.0	4 3.9	1 14 .2	4A 3.7	094
471	13 .4	4 4.5	4 15 .5	4 4.5	47
45N	16 ,5	5 4.9	3 19 .4	7 4.6	454
43N	25 ,4	10 .	5 35 .8	7 5.1	436
41N	13 ,6	29 6.0	5 31 .6	10 6.5	415
39N	14 ,4	, 7.7	6 19 .4	7.0	394
374	11 1,0	. 0.2	, 13 .2	7.0	37"
35N	27 1,1	10 9.1	6 13 .4	7.2	354
33N	39 9.6 ,7	15 9.3	n 23 8,9	63 7.9	334
31N	13 .9	15	6 32 9,3	62 .4	314
29N	20 .5	21 10.0	7 22 9.5 .5	221 0.1	501:
27N	10.0	A 10.4	5 42 9.5	94 46	271
254	10.7	24 9.7	e 63 °.1	61 6,8	254

	MONTH NOV	PEPTH	400 METERS 165m	NIIM	ER OF	ORSERVA 1554	TTONS	11	57 1 1454	ABLE	10 1
53N	2 3.7	.1	0 1,0	,	10	4,0	.2	3	3,8	,1	534
51N	0	n	0	0		4.0	.2	,	0	,	511
49N	0	0	2 3.7	.1	10	4.0	.,	35	3,7	.2	491
474	0	n	n 4.2	.5	12	4.2	.4		4,1	.2	471
450	0 0	0	9 4.7	.5	13	4.7	.3	7	4.6	.,	450
434	2 6.1	.2	6 5.2	.5	12	5.3	.3	,	5,3	.4	43N
411	5,3	.2	7 6.1	.3	42	5.6	.6	4	6.5	.2	41N
39N	• 7.4	.,	7,1 15	.6	10	7.3	.5	14	6,6		391
37N	0 0	•	2 7.8	.,	14	7,8	.5		6.8		37N
35N	9.6	0	4 9.5	.2	21	8,1	.1	17	7.5	.,	35N
33N	1 9.8	0	6 9.8	.5	19	3,6	,A	11	7,7	.5	334
314	10.4	.6	17 9.8	.5	54	9.6	.5	33	A.4	.7	314
294	23	.6	10.1	.6	52	9.3	.4	126	8.0	.6	291
27N	27 11.1	.6	10.0	,3	93	9.7	.5	75	8.5	.5	27N
25N	11.0	.5	10.1	,,	87	9.4	.7	46	8.6	.,	254

	MONTH DEC 175W	DEPTH	400 METERS 165H	NUMB		ASERVATIONS	640 TARLE 145H	10 12
43N	0	•	0	0	3	4.0	0 0	53N
51N	0 0			0	4	3.A .1	0 0	51N
49N	0	n	1 4.1	,	•	3.0 .2	40 3.7	49N
47N	0	0	3 4.2		٠	4,2	2 4.2	47N
45N	2 4.3	.5	4 4.6	.2	3	4.7	2 4.6	45N
43N	5.4	.5	4 5.3	.2	24	5.8	1 4.9	43N
414	6 5.9	.,	37 6.1	.5	27	6.0	15 6,2	414
39N	4 6.6	.1	3 7.2	.3	1	7.7	7 6.0	39N
37N	6 7.1	.,	2 7.2	.2	,	7.8	7 7.2 .6	37N
35N	4 1.6		, 0.3	.1	3	6.6	7 .7	35N
334	1 ^.1		5 *.4	.7	. 6	9.1	12 1.7	33N
314	10.2		6 9.7	.4		9.6	10 .5	318
2911	12 11.1	1.0	10.0	.5	-	9.8	111 0,0	50N
274	13 11.2	.,	7 10.2	.3	48	•.•	34 1.0	27N
25N	, 11.6	.,	, 10.1	.,		9,3	23 ,1	25N

	175	0,000	500	1654	MU-105 P	588	1554	VATIONS	67 Hz	145-	AHLE	11
. [0 0	0	,	3,9	.1	14	5.5	ħ.,	7	3.4	.3	7 5
.	0 0		4	3,7	.1	10	3,5	.1	2	3,7	٠٠	,
, [0 0	n	4	3.4	••	12	3.5	7.7	40	3,6	.1	4
, [0	0	4	3.6	.,	10	3,6	3.1	n	0	0	u
	• •	•	a	4.2	.4	7	4,0	.2	2	4.1	.1	_ u
, [0 0	0	s	4.9	,3	10	4.4	.2	n	0	r	a
. [0	0.0	1	5.2	n	A	5.0	.,	1	4,6	n	a
. [0	•	,	6.0	٠,٠	,	5.7	.2	6	0	0	,
	0 0	0	5	h.5	,3	4	6.1	٠,>	0	•	,	,
. [1 6.7	•	5	6.8	,,	43	7.0		1	5.4	•	,
	1 7.4	0	4	1,2	,5	29	7.1	1.0	1	6.4	0	3
. [0 0	0	5	7.6	.5	12	7.0	.4	10	6.3	.3	3
	0	n	4	۸.0	.1	7	7.2	.2	111	6.3	.3	,
. [0	•		8,3	.4	26	7.9	2.7	51	6.6	.3	2
. [0 0	0	- 5	7,6	.5	40	6.9		16	6.5		2

61		PER DEPTI	1 500	METERS 1654	NUM	MER OF	1554		69 A	145*	TARLE	11
. [, 3.	6 ,	10	3.7	.1		3,6	.,]		3.4	.2],
. [33	' .·	35	1,5	.1	,	3.6			3.6	.1	١,
	12 3.	٠.,	24	3,5	.,	5	1.5		31	3.6	.1	
. [3.	4 .1	21	3,6	.1	,	1,8	1.5	3	3.6	.2	-
	2 3.	۶, ه	15	4.0	.,	0	n		n	0	0	1
	. 5.	١ ,۵		4,5	.2	3	0,6	.1	1	4.7	,	1
I	f# 5.	, ,		4,6	.,	2	4.6	.,	,	5.2	.5	1
	6 5.	,4	3	6.2	.2	3	5,4	.,	-,	5,4	,3],
I	16 7.	1 1.2	•	6.4	.3	•	6,3		10	5,6	.4] ,
	,	1.0	s	6,4	.2	130	7.0	.,	.,	5,9	,] ,
	1 7.	,	5	7,2	.1	54	7.1	.4		4.0	.,] ,
	٠, ٠.	4 ,3		7,9	n	14	7,3	.4	15	6,5	,5] ,
	٠, ٠,	.,	4	A,8		15	7.3	,,	110	A.3	, a],
	, *•	, a	1	7,9	0	87	7.2		39	6.5	,1] ;
Γ	, ,,	2 ,3	3	7.9	.4	25	7.1	.5	30	٠,٥] ,

	MONTH MAR DEPT	H 500 METERS A	UMBER OF OBSERVATIONS	760 TARLE	11 3
ſ	7 3.6	2 3,5	13 .6	3 .0	53N
Ī	13 .2	3.6	15 3.5	3.5	51N
Ī	5 .1	0 0	14 .2	57 .1	49N
	6 3.5	0 0	3.7	3.0	474
Ī	5 .1	1 4.5	1 4,0	1 4.0	#5N
	6 4.3	0 0	3 .1	4 4.3	434
	5 .2	0 0	3 5.2	? 4.9	41N
Ī	0 0	1 0 0 0	1 4.3	2	394
	6 7.3	0 0	2 0.0	4 ,3	37N
119 3	35 7.7	0 0	a 5.4	5,7	351.
13 2	7.5	2 .1	6.5	16 6.0	33N
	42 A.3	5 7.9	7,2	19 6,2	314
	15 .5	7.6	13 7.0	122 6,3	190
Ī	5 8,8	2 1.1	7.0	48 6.6	27N
11 11	3 .1	50 7.2	55 .4	24 6,8	25N

4. (MONTH APR	DEPTH	500	467ER8	NUMBER	nF	085ERVA	TIONS	7	145=	TABLE	11 4
53N	7 3.6	.0	10	3.6	.1	•	3.7	,5	3	3,8	.0	53N
51N	7 3.6	.1	16	3,5	.1	15	3,6	.1	4	3,8	.2	51N
9N	15 3.6	.,	11	3,6	.1	A	3.6	.3	5A	3.6	.,	491
7N	1 3.6	00	5	3.7	.2	3	3.9	.1	n	0	0	47N
SN	0	0	, 5	4,3	.1	4	4.1	.3	3	4.0	.1	45N
3N	16	.2	15	4,6	.3	30	4.6	.2	,	4.4		43N
۱ ۱۰	6 5.1	.2	50	4.9	.1	23	4.9	.3	19	4.9	.3	41N
941	10 5.7	.4	32	5.7	.4	4	5.8	.4	A	5.3	.4	39N
7N	3 6.8	.5	Su	4.3	.2	2	5.7	.1		5.3	.1	37N
5N	5 4.5			6.6	.3	3	6.9		4	5.9	.4	35N
34	1 7.7	0	2	7.1	.1	,	6.8			6.1	.2	334
14	2 *.4	.1	5	7.9	.,	,	7.2	.,	16	6.3		311
94	4	.1	10	A.0	.5	13	7.3	.6.	116	6.4	.4	50N
711	6 8.7	.5	3	4.2	.4		7.4	.6	45	6.6	,3	27N
SN	0	•		7.9	.6	46	7.0	.5	17	6,6	.3	251

3,5	5.7				3,6	
	JS	4.5	4	* a K . n	5	.,
12 3.6	> 55 3,6	•1	5 3.6	0.4.2	3.6	¥.,,
40 3.5	2 30 3,6	4.4.	12 3.6	•1	60 3.7	· /.1
3.4	1 6 1.7	· 1.2	4 3.9	.1	. 3.0	.1
7 3.7	2 4 4.0	E, 0,2	4,5	2		.,1
2 4.5	3 2 4.1	A. a. a.	5 4.7		0	0
0	0 2 4.5		4.9	.1	0	A. A. C
> 5.2	6 5 2.5	* .1 ,	5.6	.1	1, 5,5	٥ ٨
0, 0, 0	n 3 6.6	1.0.3	1 4.1	.2	5.5	F. 1.3
≥ ^{7.0} 1.	n ? 7.6	.2	4, 6.1	• • •	21, 5,4	. , 3
2 0.0	1 0	0	7,2	.3	25 6.3	1.3
2 6.5	9 1 7.0	0.	3, 7.4	-T.5	17 6,5	, × , A
1 4.5	n 2 A.7	4.1.0	9 7.5	.,,	146	.4
3 9.1	1 8.8	6,1,3 ₆₉	7.1		75 6,6	.4
9.0	5 1 7.8	F. B. 0	7.0	11,5	7.0	

4.1	MONTH JUH DEPTH	500 METERS NUM	MER OF ORSERVATIONS	906 TABLE
N [52 3,6	51, 3,5	15, 3,7	3,4,
23 27	80 .5	14 3.6	3,6	3,6
	61 1.4	1, 3.6	10 3.6	41 .2
	3.5	7 1.6	11 .1	7, 1.9, 1
	3 3.7	0 0	7 .1	9 4.2 .3
	2 5.0	2 4.3	11, 4,5	9 4.5
	11 5.3	5 4.7	5.0	10 5,1
	2 .4	4 6.0	5.5	7 5.4
	, 6.7	2 6.4	3 6.1	4 5,7
	1 7.4 0	0 0	3 6.8	6.0
	0 0	a 7.6	3 0.6	21 6.2
		7 .4	7.5	15 6.5
		. ^.3	20 7.7	151 6,5
	, •	1 4.0	7.6	6,6
		1 7.7 .6	40 7.3	31 .4

	MUN	TH JUL 1754	DEPTH	500 H	FTERS 165#	NUM	RER OF	1554	VATTONS		7 TAU	LE
1000000	56	3.6		29	1,6	.2	56	3,6	7., 14	,	3.6	2
	1 36	3.6	.4	24	3,6	A.1	16	3,5	,1	•	3,8	1
	94	1.5	.4	10	3,5	.1	13	3.5	.1	53	3.6	.1
Section 2	16	3.5	.2	a ⁿ	3.6	.1	6	3.6	.1	4	3.8	1
NATIONAL COMPANIES	2	4,1	.0	1	4.2	o	- 11	4.1	.,	٠	4.2	1
17 C - 18 1/2	• •	0	•	4 "	4.7	.1	25	4.6	.2		4.4	1
A STATE OF THE PARTY OF THE PAR	155	4.3	.3	,	5.0	.e *	21	4.9	.3	6	5.1	1
Section Section	3	5.6	.5	1	5,5	0 1 6	15	5.9	.4	10	5.0	,3
Service Service	3	6.3		•	6.3	٠,	11	6.2	.4	19	5.5	, 3
The second	1	9.1	•	4	6.8	.3	11	6.5		13	5.A	, 4
The same	s	7.2	.1	10	7.8	.7	11	6.4	.5	,	٠.3	, 3
Section 1999	,	9.0	.2	u	7.6	.4	50	7.2	.5	14	6.5	,5
- Contract Contract	3	8.4	.3	1	7.8	0	18	7.4	.6	109	6,4	,4
Secretary of the last	,	4,5	.,	0	0	n	38	7.7	.6	51	6.7	. 4
No. of Concession, Name of Street, or other Persons and Street, or other P	A	8.5	.4	1	A.6	0	50	7.0	,5	\$0	6.8	.4

	MONTH AUG DEPTH	500 METERS NUMBER	OF OBSERVATIONS	1285 TABLE	11 6
53N	3.5	3.5	27 .4	24 3.7	534
51N	3.6	51 .1	27 3.5	25 3.7	51N
494	3.4	3,5	3,4	69 3.7	491
47N	3.6	14 ,2	3.7 2A .3	3.9	47%
45N	3.6	3.7	13 .1	12 4.2	45%
43N	4.2	5 .3	22 .3	9 4.7	43N
414	7 .2	3 .2	9 .1	9 4.6	411
39N	5.6	5,6	5,6	5,2 ,3	39N
37N	7.4	4 .4	6.5	6 5.7	37N
35N	3 6.8	5 4.9 .3	11 6.2	9 5,1	354
3341	6 4.7	2 7.6	9 7.1	7 6.1	33N
31N	2 8.6	2 7.9	16 7.4	7 6.4 .6	31N
294	1 9.0	7.8	12 6.9	159 6.4	29N
274	4 .4	3 7.7	7.A 66 .6	43 4.7	27N
2511	7 9.0	2 *.2 .3	7.0	17 .4	25N

T N	MONTH SEP	DEPTH	500 METERS 165"	Minute		SERVATIONS 55H	1003	TABLE 11
34	19 5,5	.0	27 3.6	.1	12 3	.6	3.5	.3
14	3.5	.2	3,5	.1	14 3	.6	3.7	.1
911	9 3.4	.0	14 3,5	.,	11 3	.7	3.6	.>
711	A 3.5	1,1	6 3.6		6	.0	2 4.1	.>
5N	4 3.6	.1	11	.2	13	.3	1 0	0 1
3N	4.3	.3	7 4.4	.3	25	.5	1, 4.6	1
14	5 4.5	.1	11 , 5.3 ;	.6	10	۰۰. ۱.	0	
9N	5.4	.3	10 5.0	.5	23 5	۰۹ .6	29 5.4	.2
7N	1/7.1	0	14 6.4	.4		1	11 5.6	1
54	A 6.6	,5	> 6.9	.4	17 6	.,,	10 5.4	,
3N .	1 6.6	0	7.2	.2	17 7	.0	A 6,3	
111	5 7.9	.3	7.9	.6	14 7	.2	22 6.5	.5
9N	1, 9.4	0	10 4.2	.4	11 , 7	.4	193	.5
7N	0 0	0	7.6	.6	4A 7	.4	60 6.5	.3
5N .	10 9.1	.6	5 8.3	.4	54	·1	22 6.7	.5

A	MONTH OCT DEPTH	500 METERS NU 1654	HRER OF ORSERVATIONS	1107 TABLE 145#	11 10
53H	0 0	3.6	5.0	0 0 n	534
51N	3.4	1 4.2	3.7	4 3,7	51~
19N	A 3.7	2 3.8	3.7	3,6	40.
07N	7 3.7	4.0	4.0	, ° ,	471
45N	9 4.0	3 4,2	4.2	, 0	451
43N	55 4.4 .5	7 4.5	19 5.4	0 0	430
414	13 ,5	22 4.9	5.2	A 5.4	41N
39N	10 .2	5 6.6 .5	11 6.0	5.6	39N
37N	7.0	4 4.3	10 6.4	39 5.5	374
35N	27 7.0	6 7.2	6.5	5.7	351
55N	7.4 26 .5	e 7.2	13 7.2	6.1	33N
31N	5 6.2	4 *** .5	9 7.6	115 6.4	314
29N	5 5.6	12 7.8	7 7.4	204 4.3	San
274	7.4	6 4,1	7.3	54 6.5	>7~
251	, ,	7 4.0 .4	32 .4	19 6,7	254

	MONTH NOV	DEPTH	500	METERS 165H	Num	FP OF	155W	VATIONS	٠	145#	TABLE	11 1
53N	0 0	n	0	0		,	3.6	.2	3	3,7	.1	53N
51N	0 0	0	n	0	•	٨	5.8	.2	•	0	0	510
49N	0 0	0	1	3,5	0	10	3.A	.3	27	5.6	.1	494
47N	0	0	4	4.4		٠	3.0	.2	٨	3,9	.2	471
45N	0	n	2	4.6		9	4.3	.3	,	4.2	.2	45"
43N	0	n	u	4.4	.2	61	4.5	.>	5	u . u	.0	431.
414	1 4.7	n	n	o	n	25	4.7		0	n	n	41%
39N	0 0	0	1	5.7	0	,	5.4	.3	4	5.1	.1	39N
37N	0	0	0	0	0	3	5.A	.2	0	0	0	371
35N	0	,	1	6.2	0	6	6.8	. u	4	5.7	.5	35N
33N	0 0	0	n	0	0 /	•	6.6	.е	5	6.1	.1	334
31N	2 6.1	.2	,	7.2	n	,	7.5	٠,٠	11	6.2	,3	311
29N	5 8.4	.0	3	7,9	.3	25	7.0	. 4	108	6.2	.4	294
27N	12 5.7	.6	5	7.5	.2	74	7.4	.6	53	6.5	.3	274
25N	7 8.4	.>	27	7.4	٠,	53	7.0	.5	24	6.7	. 4	254
	MONTH DEC 175W	пертн	500	METERS 165#	NUM	MER NE	155%	VATIONS	,	1454	TARLE	_ ,, ,
53N	0	1	•	0	0	3	4.0	.5	0	0	0	53N
51H	0	0	0	0	0	4	3,7	.>	0	0	0	51%
49N	0	0	0.	0	n	5	3.9	.1	32	3,6	•1	491
47N	• •	0	1	4.0	n	5	4.0	.2	n	n	n	474
454	0 0	0	s	4.2	.1	2	4.3	.1	0	0	0	45N
43N	0	0	5	4.6	•1	12	5.2	.3	0	0	0	43N
41N	, , ,	0	50	5,3	.5	,	5.3	.3	3	5.3	.>	DIN
					-10.15			E CONTRACTOR OF			A STATE	

5.8

5.4

5.4

6.1

6.5

95 6.3

6.6

27

..

.3

.2

.3

.3

.

. 4

39N

37N

35N

33N

314

294

271

6.0

5.1

6.9

7.1

7.A

7.5

7.5

7.1

10

41

.0

. 2

. 4

.3

.5

.5

.1

. n

5,9

6.6

7.1

7.4

...

A.0

7.7

39"

37N

354

334

31N

29N

274

0

6.7

9.1

9.0

.1