OpenStack 기반의 Kubernetes

어디까지 해봤니?

그리고 어디로 갈 것인가

Jin Gi KONG Bluemix Technical Evangelist, IBM

Outline

- 1.Overview
 Why Integrate OpenStack and Kubernetes
- 2.How it's Done Integration Plug Points
- 3.Integrating Kubernetes with OpenStack's IAM (Keystone)
- 4. Enabling Kubernetes to work with OpenStack networking (Neutron)
- 5. Utilizing Openstack storage services with Kubernetes (Cinder, Manila ...)

Overview

Why integrating Kubernetes with OpenStack

Kubernetes is quickly becoming a popular approach for managing and scheduling containers across clusters

- Operating Kubernetes requires support from the underlying infrastructure
 - Provision manually or through the Cloud
 - Automation needed
 - Need access to storage and networking resources
- OpenStack is a great platform for deploying Kubernetes
 - Supports multi-tenancy
 - Has options for providing security, authentication/authorization, network and storage virtualization readily available
 - OpenStack provides excellent horizontal scaling support
 - Many companies have already deployed OpenStack to managing their infrastructure naturally making it a readily available option

How it's done

The code: Kubernetes plugin for OpenStack

- Kubernetes plugin is how Kubernetes interfaces to laaS layer
 - Supports plugging into many Cloud providers: OpenStack, GCE, AWS, Azure, ...
 - Easily configurable for each Cloud
 - Leveraged by key Kube components: kube-apiserver, kube-controllermanager, kubelet
- Kubernetes plugin for OpenStack supports:
 - OpenStack Identity
 - OpenStack Networking
 - OpenStack Storage
- Code:
 - gophercloud repo: https://github.com/rackspace/gophercloud
 - Kubernetes repo: https://github.com/kubernetes/kubernetes
 - pkg/cloudprovider/providers/openstackpkg/volume/cinder
 - OpenStack repo: http://git.openstack.org/cgit/openstack/k8s-cloud-provider
 - Magnum project delivers the integration of Kubernetes and OpenStack

Integrating with Identity Management

Identity Management Integration

Keystone:

- Robust identity service already in place, fully populated by Cloud provider
- Already provides multiple LDAPs and MS ADs integration and federated identity support
- How Kubernetes services access OpenStack services
 - Code: gophercloud package
 - Establish session to access neutron, cinder, ...
 - User credential: multi-tenancy in OpenStack
 - Keystone trust id for better security: automated by Magnum

Future consideration

- Multi-tenancy support within Kubernetes:
 - Proceed with caution: current container is not as secure and isolated as a Virtual Machine
- Keystone for projects, users?

Integrating Networking

Networking Integration

Networking: create network interfaces

- What needs to be done:
 - Set up and tear down network interface, assigns IP
 - Done by kubelet when pod is created/deleted
- Current options in OpenStack
 - Network driver for kubelet: Kubenet, CNI
 - Kuryr CNI driver: neutron native support, plugin optimized for network provider
 - VM, pods on same network
 - Future considerations
 - Kuryr: performance improvement
 - Development in alpha, many changes expected

Networking: routing

- What needs to be done:
 - Pods from any node can reach pods on any other nodes
 - Routing set up when the cluster is deployed and when a new node is added
- Current options in OpenStack:
 - Overlay network: Flannel
 - Possible to avoid encapsulation overhead: hostgw mode
 - Others: Calico, ...
- Future consideration
 - Leverage neutron routing: similar to native routing in GCE

Networking: external access

- What needs to be done:
 - Different from load balancer in Kubernetes service
 - Allow service to be accessible from external internet: get an external IP by neutron
- Current options in OpenStack:
 - Support for LBaaS v1 and v2
 - Automated by Magnum
- Future consideration
 - Add support for region: default to current region
 - Add floating IP automation

Networking: demo

- Kubernetes 1.5.2
 - 1 master, 2 nodes
- Nova VM's
- Private Neutron network
- Deployed by Magnum
- Code from Master

Integrating Storage

Storage: High Level

- Persistent Storage:
 - Cinder Volume: supports 50+ different storage drivers from numerous vendors
 - Connect to individual storage driver directly
- Raw Device
- Integrating with Cinder giving users convenience and wide range of storage options

Is Fuxi slow creating and attaching volume?

- 1.Create volume: Cinder api, RESTful
- 2.Fetch volume info, Cinder api, reserve the volume
- 3. Nova gets host Connector info
- 4. Nova calls Cinder api, init connection, call storage RESTful api volume mapping
- 5.Nova uses
 LibvirtISCSVolumeDriver:
 "connect_volume", to let
 host scan the disk and attach
 the volume to the host
- 6.Nova call Cinder API "attach" to set volume status

Is Fuxi slow creating and attaching volume?

ENV	OpenStack: 24 cores 24GB							
	Host: 8 cores 8GB							
Steps	docker run -itdvolume-driver fuxi -v test-fuxi1:/data ubuntu /bin/bash							
	(with pulled images)							
Time/Op		8.333	8.424	9.130	8.156	8.146		
Get		0.070	0.149	0.285	0.071	0.074		
Create	Total	5.602	6.051	5.999	5.863	5.900		
	create_volume	1.510	1.598	1.506	1.521	1.589	•	
	reserve	0.213	0.211	0.292	0.275	0.189	2	
	initialize_connection	0.634	1.054	0.671	0.774	0.742	4)
	os_brick.connect_volume	2.404	2.453	2.676	2.547	1.621		6
	make line file	0.023	0.010	0.009	0.007	0.007		
	attach	0.748	0.653	0.769	0.672	0.780		6
Path		0.090	0.008	0.220	0.088	0.186		
Mount	Total	1.903	1.260	1.690	1.160	1.132		
	mount	1.745	1.094	1.542	1.012	0.985		

Time spent:

Longest:

- (5) The host attaches the volume
- related to volume size

2nd:

(1) create volume

3rd:

(4) volume mapping

Is Fuxi slow?

- PV/PVC
 - What is solved and what is not
 - Create volume separately save ¾ of the time
 - Still need about 2 seconds to mount the volume to the container
 - Don't need to talk to Nova in bare metal case
 - Manila:
 - File Level Storage can help
 - Don't need to attach the volume to the host

Storage: demo

- Mount Cinder volume to k8s pod
- Create dynamic PVC/PV from Cinder

Storage: stateful container and data protection

- Integration with Karbor
 - What is Karbor:
 - Protect the Data and Meta-Data that comprises an OpenStack-deployed Application.
 - Provide a standard framework of APIs and services that enables vendors to introduce various data protection services into a coherent and unified flow for the user.
 - Snapshot:
 - For rollback
 - During upgrade:
 - Replication:
 - Protecting Data and Meta-Data
 - Working with application level data replication and protection

Storage: working with OpenSDS

- OpenSDS helps OpenStack and K8S with:
 - Storage discovery
 - 2. Storage lifecycle management
 - 3. data protection

Repo: https://github.com/opensds

Slack: opensds.slack.com

Mailing list: https://groups.google.com/forum/?hl=en#!forum/opensds-dev

Conclusion

Conclusion

- Presented how OpenStack is an excellent laaS option for Kubernetes and enables more efficient multi-tenant utilization of resources
- Provides out of the box options for security, authentication/authorization, network and storage virtualization
- Combination is a great example of leveraging the best technology from multiple open source communities
- Provided an overview of the benefits of integrating OpenStack and Kubernetes
- Described the integration: code is available, active development
- Many improvements are possible in the near future

Thank You

Research based on:

Brad Topol

btopol@us.ibm.com
@bradtopol

Ton Ngo
ton@us.ibm.com
@tango245

Yin Ding
Yin.Ding@huawei.com