An introduction to survival analysis

Georg Wölflein

School of Computer Science, University of St Andrews

April 11, 2022

Contents

1 Time-to-event data

2 Survival function

We can measure time in:

- years
- months
- seconds

We can measure time in:

- years
- months
- seconds

The **event** could be:

- death from disease
- product failure
- losing a customer

We can measure time in:

- years
- months
- seconds

The **event** could be:

- death from disease
- product failure
- losing a customer

must be a binary variable

We can measure time in:

- years
- months
- seconds

The **event** could be:

- death from disease
 product failure
 loging a customer
- losing a customer

yes/no

TTE data consists of (time, event) tuples.

Time-to-event (TTE) data

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

Time-to-event (TTE) data

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

Use cases for TTE analysis:

TODO

A randomised controlled trial (n = 4) was conducted to assess the efficacy of drug ABC in treating Covid-19. This is what happened to the patients:

A randomised controlled trial (n = 4) was conducted to assess the efficacy of drug ABC in treating Covid-19. This is what happened to the patients:

patient	received ABC?	outcome
1	yes	died from Covid-19 on day 15
2	no	dropped out of the study after day 3
3	yes	died by a lightning stroke on day 5
4	no	survived the study (30 days)

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

Time-to-event data			
	patient	time	event
	1	15	yes
	2	?	?
	3	?	?
	4	?	no

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

Time-to-event data				
	patient	time	event	
	1	15	yes	
	2	[0, 3]	no	
	3	[0, 5)	no	
	4	[0, 30]	no	

Censoring

We just saw examples of **right-censored** data. TODO

Survival function

Let T be a continuous random variable representing survival time. The **survival function** S(t) is the probability that an individual will survive past time t.

Survival function

Let T be a continuous random variable representing survival time. The **survival function** S(t) is the probability that an individual will survive past time t.

Survival function

$$S(t) = \Pr(T > t)$$

Survival curve

Modelling the survival function

The **Kaplan-Meier estimator** provides a non-parametric estimate of the survival function S(t) using the survival curve.

Modelling the survival function

The **Kaplan-Meier estimator** provides a non-parametric estimate of the survival function S(t) using the survival curve.

Kaplan-Meier estimator

$$\hat{S}(t) = \prod_{i:t_i \le t} \left(1 - \frac{d_i}{n_i}\right)$$

where

- t_i is an event time
- d_i is the number of deaths at time t_i
- n_i is the number of individuals known to have survived until t_i

Survival curve and Kaplan-Meier estimator

- When there is no censoring, $S(t) = \hat{S}(t)$.
- Commonly used to compare two study populations.
- Does not control for covariates.

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(|)$$

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(t \le T \le t + dt|)}{|t|}$$

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(t \leq T \leq t + dt | T \geq t)}{|T|}$$

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(t \leq T \leq t + dt | T \geq t)}{dt}$$

The **hazard function** expresses the *instantaneous rate* of occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr\left(t \le T \le t + dt | T \ge t\right)}{dt}$$

The **hazard function** expresses the *instantaneous rate of* occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt | T \ge t)}{dt}$$
$$= \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt)}{dt \cdot \Pr(T \ge t)}$$

The **hazard function** expresses the *instantaneous rate of* occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt | T \ge t)}{dt}$$
$$= \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt)}{dt \cdot \frac{S(t)}{s}}$$

Cox proportional hazards model