College of Engineering Pune Ordinary Differential Equations and Multivariate Calculus Tutorial-3 (2019-2020)

- 1. Find the steady state and transient state motion of the mass-spring system with mass 4 kg, damping constant c = 8 kg/sec, spring constant $k = 3 kg/sec^2$, and driving force $r(t) = 425 \sin 2t \ newton$, where y(0) = -16 and y'(0) = -26.
- 2. Find the steady state and transient state motion of the mass-spring system with mass m=4~kg, damping constant c=4~kg/sec, spring constant $k=17~kg/sec^2$, and the driving force $r(t)=202~\cos 3t~newton$.
- 3. In L-R-C circuit the charge Q on the plate is given by $L \frac{d^2Q}{dt^2} + R \frac{dQ}{dt} + \frac{Q}{C} = E \sin pt$. The circuit tuned to resonance so that $p^2 = \frac{1}{LC}$. If initially the current i(t) and the charge Q(t) be zero, then show that for small values of $\frac{R}{L}$, the current in time t is given by $\frac{E}{2L} \sin pt$.
- 4. Find the current in L-R-C circuit when $L=0.1~H,~R=20~\Omega,~C=2\times 10^{-4}~F$ and $E(T)=110~\sin 314t~V.$
- 5. State the theorem on conversion of an n^{th} order ODE to a system of equations.
- 6. Find the general solution of the given ODE by first converting it to a system of equations.

a)
$$y'' - 4y = 0$$

b)
$$y'' + 2y' - 24y = 0$$

c)
$$y'' + 15y' + 50y = 0$$

7. Find the real general solution of the following system of homogeneous and non-homogeneous differential equations / initial value problems:

a)
$$y_1' = 9y_1 + 13.5y_2$$
, $y_2' = 1.5y_1 + 9y_2$

b)
$$y_1' = y_2$$
, $y_2' = 6y_1 - 5y_2$

c)
$$y_1' = 8y_1 - y_2$$
, $y_2' = y_1 + 10y_2$

d)
$$y'_1 = 2y_1 + 8y_2 - 4y_3$$
, $y'_2 = -4y_1 - 10y_2 + 2y_3$, $y'_3 = -4y_1 - 4y_2 - 4y_3$

e)
$$y_1' = 4y_2 + 9t$$
, $y_2' = -4y_1 + 5$

f)
$$y_1' = 4y_1 + y_2 + \sin t$$
, $y_2' = -4y_1 + y_2$

g)
$$y_1' = y_1 - 2y_2 - \sin t$$
, $y_2' = -3y_1 - 4y_2 - \cos t$

h)
$$y_1' = y_1 + 2y_2 + t^2$$
, $y_2' = 2y_1 + y_2 - t^2$

i)
$$y_1' = -2y_2 + 4t$$
, $y_2' = 2y_1 - 2t$, $y_1(0) = 4$, $y_2(0) = 0.5$

j)
$$y_1' = y_1 + 2y_2 + e^{2t} - 2t$$
, $y_2' = -y_2 + 2t + 1$, $y_1(0) = 1$, $y_2(0) = -4$

1

8. Solve the followingby the method of variation of parameters:

$$y_{1}^{'} = -3y_{1} + y_{2} - 6e^{-2t}$$
, $y_{2}^{'} = y_{1} - 3y_{2} + 2e^{-2t}$

9. Find the currents in the electrical network when $R=2.5~\Omega,~L=1~H,~C=0.04~F,~E(t)=845\sin t~V,~{\rm and}~I_1(0)=0,~I_2(0)=0.$

10. Find the currents in the electrical network when $R_1 = 2 \Omega$, $R_2 = 8 \Omega$, L = 1 H, C = 0.5 F, E(t) = 200 V.

11. In given Fig each of the two tanks contains 200 gal of water, in which initially 100 lb of fertilizer in Tank T_1 and 200 lb of fertilizer in Tank T_2 are dissolved. The inflow and outflow circulation are as shown in fig. The mixture is kept uniform by stirring, then find the fertilizer contents $\mathbf{y_1}(\mathbf{t})$ in T_1 and $\mathbf{y_2}(\mathbf{t})$ in T_2 .

 $\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$