4 – Linguagens Enumeráveis Recursivamente e Sensíveis ao contexto

Aula 17

Sumário

Capítulo 4 – Linguagens Enumeráveis Recursivamente e Sensíveis ao contexto

- 4.1. Introdução
- 4.2. Maquina de Turing

Hierarquia de Chomsky

Tipo 0. Gramáticas com estruturas de frase

Tipo 1. Gram. Sensíveis ao contexto

- Nenhuma das regras de produção pode reduzir o comprimento da forma sentencial que for substituida
- Se $\alpha \rightarrow \beta$ então $|\alpha| <= |\beta|$

<u>Tipo 2.</u> Gram. Livres de contexto

- As regras tem apenas uma Variavel do lado esquerdo
- Não pode ter terminal do lado esquerdo
- Ex:
 - $A \rightarrow \beta$
 - Aa → β, não pode

Tipo 3. Gram. Regulares

- Deve ser Linear à direita ou à esquerda
- Ex:
 - A → aB | a
 - B → Ba | a
 - A → ABa, Não pode

- Alan Turing Londres 1912
- Matemático, considerado o Pai da Computação
- 1938 Maquina de Turing

- Alan Turing Londres 1912
- Matemático, considerado o Pai da Computação
- 1938 Maquina de Turing
- 2^a guerra mundial
 - Centro especializado em quebra de códigos
 - Criptoanálise
 - Desenvolveu o sistema chamado "Bombe": para quebrar códigos alemães

Bombe:

- Traduzia os codigo produzidos pela "Enigma" (Maq. alemã de codificação)
- Transformava as mensagem alemãs em verdadeira e compreensível.

- Maquina de turing
 - Fita
 - Usada como
 - Entrada
 - Saida
 - Memória

- Maquina de turing
 - Fita
 - Usada como
 - Entrada
 - Saida
 - Memória

Na prática:

- Maquina de turing
 - Unidade de controle
 - *Cabeça*: acessa uma célula de cada vez e move-se para direita ou esquerda

- Maquina de turing
 - Unidade de controle
 - *Cabeça*: acessa uma célula de cada vez e move-se para direita ou esquerda

- Maquina de turing
 - Função de Transição
 - Comanda:
 - Leitura
 - Escrita
 - Sentido
 - Novo estado

- Maquina de turing
 - Função de Transição
 - Comanda:
 - Leitura
 - Escrita
 - Sentido
 - Novo estado

• É definida matemáticamente como uma 7-Tupla

$$M = (\sum, Q, \delta, f, V, \beta, *)$$

• É definida matemáticamente como uma 7-Tupla

$$M = (\sum, Q, \delta, f, V, \beta, *)$$

• É definida matemáticamente como uma 7-Tupla

$$M = (\sum, Q, \delta, f, V, \beta, *)$$

É definida matemáticamente como uma 7-Tupla

$$M = (\sum, Q, \delta, f, V, \beta, *)$$

Exemplo: L = {anbn}

- Exemplo: $L = \{a_nb_n\}$
- Função de transição

δ		а	b	Α	В	β
q ₀	(q ₀ , •, D)	(q ₁ , A, D)			(q ₃ , B, D)	(q ₄ , β, D)
q 1		(q ₁ , a, D)	(q ₂ , B, E)		(q ₁ , B, D)	
q ₂		(q ₂ , a, E)		(q ₀ , A, D)	(q ₂ , B, E)	
q ₃					(q ₃ , B, D)	(q ₄ , β, D)
q 4						

- Exemplo: L = {anbn}
- Comentários
 - Qual foi a estratégia utilizada?
 - Achou uma ocorrência de "a"
 - Procura o "b" correspondentes
 - Depois reinicia o processo

- Exercício: $L = \{a^nb^{2n}\}$
- Construa a máquina de turing e a tabela de transição

- Exercício: L = {anbnc²n}
- Construa a máquina de turing e a tabela de transição

- Exercício: L = {anbn-1}
- Construa a máquina de turing e a tabela de transição

(y, y, D)

 (β, β, D)

(y, y, D) (a, a, D) (b, y, E) (a, a, E) (y, y, E)

- Exercício: L = { ww | w é palavra em {a,b}}
- Construa a máquina de turing e a tabela de transição

- Construa uma MT padrão com alfabeto de entrada {0,1} que apague todos os 1s e substitua todos os 0s por 1s.
- Exemplo:
 - Se a fita contiver a entrada <0011010#..., no final deverá conter <1111#.