Trabalho 3 - Modelos Lineares Generalizados

Vítor Pereira

1 Modelando o banco de dados

Modelares o banco de dados de um experimento para avaliar o desempenho de cinco tipos de turbinas de alta velocidade, levando em consideração 10 motores dos 5 tipos avaliados, analisando o tempo (em unidades de milhões de ciclos) até a perda da velocidade.

1.1 Utilizando a Distribuição Gamma

Começaremos com a Distribuição Gamma, que é utilizada para modelar valores de dados positivos que são assimétricos à direita e maiores que 0.

1.1.1 Primeiro Ajuste

Então começaremos a análise da Distribuição Gamma, considerando todos os tipos variáveis dummies e analisaremos sua significância:

Estimativa Desvio padrão Estatística t P.valor 2.3700.144 16.422 < 0.001* (Intercept) tipo2 -0.5700.204 -2.7910.008* -0.2140.204 tipo3 -1.0470.301 -0.0870.204 -0.4280.67 tipo4 tipo5 0.319 0.204 1.562 0.125

Tabela 1: Primeiro Ajuste - Gamma

Notamos, que os tipos não são completamente significativos, assim realizaremos junções buscando que as variáveis dummies sejam significativas.

1.1.2 Segundo Ajuste

Iremos aglutinar os grupos 3 e 4 em um só, visto que foram os grupos que obtiveram maior p-valor na tabela anterior, assim temos:

Tabela 2: Segundo Ajuste - Gamma

	Estimativa	Desvio padrão	Estatística t	P.valor
(Intercept)	2.370	0.145	16.318	<0.001*
tipo2	-0.570	0.205	-2.773	0.008*
tipo4	-0.149	0.178	-0.835	0.408
tipo5	0.319	0.205	1.552	0.128

Percebe-se que ainda não obtivemos significância em todos os tipos.

1.1.3 Terceiro Ajuste

Agora iremos juntar os tipos 3 e 4 com o tipo 1, logo obtêm-se:

Tabela 3: Terceiro Ajuste - Gamma

	Estimativa	Desvio padrão	Estatística t	P.valor
(Intercept)	2.273	0.083	27.308	<0.001*
tipo2	-0.473	0.166	-2.841	0.007*
tipo5	0.415	0.166	2.494	0.016*

Desse modo conseguimos significância em todas as variáveis e ficamos com 3 grupos, sendo 1 aglomerados, os grupos são: Tipo 1, 3 e 4, Tipo 2 e Tipo 5.

1.2 Utilizando a Distribuição Normal Inversa

Agora utilizaremos a Distribuição Normal Inversa (NI), que também é utilizada para modelar valores de dados positivos e maiores que 0, analisaremos ao mesmo tempo a NI com ligação canônica $\frac{1}{\mu^2}$ e com a ligação log.

1.2.1 Primeiro ajuste

Considerando todos os tipos variáveis dummies, a significância fica:

Tabela 4: Primeiro Ajuste - NI - Canônica

	Estimativa	Desvio padrão	Estatística t	P.valor
(Intercept)	0.009	0.003	3.155	0.003*
tipo2	0.019	0.007	2.624	0.012*
tipo3	0.005	0.005	0.988	0.328
tipo4	0.002	0.004	0.397	0.693
tipo5	-0.004	0.003	-1.264	0.213

Tabela 5: Primeiro Ajuste - NI - log

	Estimativa	Desvio padrão	Estatística t	P.valor
(Intercept)	2.370	0.158	14.951	<0.001*
tipo2	-0.570	0.198	-2.872	0.006*
tipo3	-0.214	0.213	-1.003	0.321
tipo4	-0.087	0.219	-0.398	0.692
tipo5	0.319	0.244	1.305	0.199

Notamos, que os tipos não são completamente significativos, assim realizaremos agregações em ambos modelos, buscando que as variáveis dummies sejam significativas.

1.2.2 Segundo Ajuste

Iremos unir os grupos 3 e 4 em um só, visto que foram os grupos que obtiveram maior p-valor na tabela anterior, assim temos:

Tabela 6: Segundo Ajuste - NI - Canônica

	Estimativa	Desvio padrão	Estatística t	P.valor
(Intercept)	0.009	0.003	3.121	0.003*
tipo2	0.019	0.007	2.596	0.013*
tipo4	0.003	0.004	0.809	0.423
tipo5	-0.004	0.003	-1.250	0.218

Tabela 7: Segundo Ajuste - NI - log

	Estimativa	Desvio padrão	Estatística t	P.valor
(Intercept)	2.370	0.160	14.793	<0.001*
tipo2	-0.570	0.200	-2.841	0.007*
tipo4	-0.149	0.192	-0.775	0.442
tipo5	0.319	0.247	1.291	0.203

Nota-se que ainda não obtivemos significância em todos os tipos, em nenhuma das distribuições NI.

1.2.3 Terceiro Ajuste

Agora iremos juntar os tipos 3 e 4 com o tipo 1, logo obtêm-se:

Tabela 8: Terceiro Ajuste - NI - Canônica

	Estimativa	Desvio padrão	Estatística t	P.valor
(Intercept)	0.011	0.002	5.740	<0.001*
tipo2	0.017	0.007	2.470	0.017*
tipo5	-0.006	0.003	-2.372	0.022*

Tabela 9: Terceiro Ajuste - NI - log

	Estimativa	Desvio padrão	Estatística t	P.valor
(Intercept)	2.273	0.087	26.095	<0.001*
tipo2	-0.473	0.148	-3.206	0.002*
tipo5	0.415	0.205	2.024	0.049*

Desse modo conseguimos significância em todas as variáveis e ficamos com 3 grupos, sendo 1 aglomerados, os grupos são: Tipo 1, 3 e 4, Tipo 2 e Tipo 5, tanto na Normal Inversa com ligação canônica, quanto na com ligação log.

2 Análise de Influência

Nesta seção será realizada uma busca de observações atípicas no banco de dados, que assim possam estar influenciado a análise, também influenciado pelas junções de tipos realizados anteriomente, assim utilizaremos 5 análises para a verificação de pontos de influência: Análise de Resíduos Deviance, Envelope Simulado, Distância de Cook, Alavancagem e DFFits.

2.1 Ajuste com a Gamma

Começaremos a análise de influência com a distribuição Gamma.

2.1.1 Resíduos deviances vs indices

Não observa-se algum resíduo fora dos limites especificados, indicando que não exista pontos de influência.

2.1.2 Envelope Simulado

Todos os pontos estão dentro das bandas simuladas, indicando que a distribuição é adequada.

2.1.3 Distância de Cook

Distância do Modelo Gamma

Nota-se que as observações 47 e 49 ficam fora dos limites estipulados, mas sem achatar o gráfico da distância de cook, indicam que são potenciais pontos de influência, assim iremos tomar a decisão sobre a sua remoção posteriomente.

2.1.4 Alavancagem

Observamos basicamente duas retas para a medida de alavancagem, mas nenhum delas fora dos limites estipulados, então não indicando pontos de influência.

2.1.5 **DFFits**

Observamos que os pontos 5, 47 e 49 ficam fora dos limites estipulados, assim são candidatos a pontos de influência.

2.1.6 Conclusão

Não iremos retirar nenhum dos candidatos a pontos influentes, pois são baixas as evidências, já que em apenas duas medidas são considerados pontos influentes, também não há o embasamento teórico para a realização dessa operação e ao que aparenta mesmo nas medidas em que são considerados pontos influentes, não há um achatamento acentuado do gráfico, como é visto em outros casos de pontos influentes, assim não parecem causar grande distorção nas estimativas da modelagem.

2.2 Ajuste com a Normal inversa com link $\frac{1}{\mu^2}$ e link \log

2.2.1 Resíduos deviances vs indices

Resíduos do Modelo Normal Inversa Canônico Resíduos do Modelo Normal Inversa log 2 2 Resíduo -2 -2 0 50 10 40 10 20 30 40 30 50 Índice Índice

Para ambos resíduos que se assemelham muito, podemos concluir que não há sugestão de pontos de influentes.

2.2.2 Envelope Simulado

Todos os pontos estão dentro das bandas simuladas, indicando que a distribuição é adequada, mas nota-se também que apenas o envelope simulado da Normal Inversa log possui um ponto no limite da banda simulada.

2.2.3 Distância de Cook

Assim como para a distribuição Gamma, percebe-se que as observações 47 e 49 ficam fora dos limites estipulados, mas sem achatar o gráfico da distância de cook, indicam que são potenciais pontos de influência em ambos os modelos.

2.2.4 Alavancagem

Observamos basicamente duas retas nos dois modelos para a medida de alavancagem, mas nenhum delas fora dos limites estipulados, então não indicando pontos de influência.

2.2.5 **DFFits**

Ao contrário da distribuição Gamma que tinha o ponto 49 como possível ponto influente, nos dois modelos temos que os pontos 1,2, 5 e 47 ficam fora dos limites estipulados, assim são candidatos a pontos de influência.

2.2.6 Conclusão

A Justificativa para a não exclusão dos candidatos a pontos influentes é a mesma da Distribuição Gamma, acrescentando o fato que mesmo entre as duas medidas que possuem pontos influentes, apenas a observação 47 se repete, com as outras observações alternando, assim não iremos retirar nenhuma observação na modelagem da Normal Inversa.

3 Comparação dos Modelos

3.1 Média Gamma

Tabela 10: Médias da Distribuição Gamma

Tipos	Média	Variação.à.B0
1, 3 e 4	9.70848	0.0000
2	6.04965	-37.6870
5	14.70224	51.4371

Percebemos que os Tipos possuem médias bem diferentes matematicamente.

3.2 Média Normal inversa com ligação canônica

Tabela 11: Médias da Distribuição NI canônica

Tipos	Média	Variação.à.B0
1, 3 e 4	9.53463	0.0000
2	5.97614	-37.3217
5	14.14214	48.3240

Médias semelhantes ao da distribuição Gamma, porém o grupo dos Tipos 1,3 e 4 e o Tipo 2 diminuiram a média, assim o Tipo 5 aumentou, a variação teve pequena alteração.

3.3 Média Normal inversa com ligação log

Tabela 12: Médias da Distribuição NI log

Tipos	Média	Variação.à.B0
1, 3 e 4	9.70848	0.0000
2	6.04965	-37.6870
5	14.70224	51.4371

Exatamente iguais aos valores da Distribuição Gamma.

3.4 Medidas de seleção

Tabela 13: Medidas de Seleção de Modelo

Distribuição	null.deviance	AIC	BIC	deviance
Gamma	12.9654	283.227	290.875	9.09062
Normal Inversa Canônica	1.5052	284.379	292.027	1.09413
Normal Inversa log	1.5052	284.379	292.027	1.09413

Assim, verificamos que com os modelos ajustados, temos que o melhor modelo para ser utilizado é o que contém a Distribuição Gamma, pois possuem menores valores no critério de AIC e BIC, assim perdendo mais informação, mas sendo extremamente próximos.

4 Conclusão

Caso tivessemos que escolher algum desses modelos para estudar os dados escolheríamos o modelo que possui a distribuição Gamma, por possuir menor AIC e BIC. Nota-se alguns pontos interessantes, as médias dos modelos Gamma e Normal Inversa com ligação log são iguais, mas diferem nos critérios de seleção e nos critérios de seleção temos que a Distribuição Normal Inversa são iguais independente da função de ligação escolhida, assim optaríamos pelo modelo que possui a função de ligação canônica, pois possui melhores propriedades, principalmente assintoticamente.