1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
160	18.2	18.2
136	-5.80000000000001	5.8
136	-5.80000000000001	5.8
146	4.19999999999999	4.2
131	-10.8	10.8
======	======	=======
$\sum x = 709$		$\sum x - \bar{x} = 44.8$
$\bar{x} = 141.8$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{44.8}{5}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
203	6	36
196	-1	1
193	-4	16
187	-10	100
201	4	16
192	-5	25
207	10	100
======	=======	=======
$\sum x = 1379$		$\sum (x - \bar{x})^2 = 294$
$\bar{x} = 197$		

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{294}{7 - 1}}$$
$$= \sqrt{49}$$
$$= \boxed{7}$$