Package 'BayesNSGP'

April 5, 2019

Title Bayesian Analysis of Non-Stationary Gaussian Process Models
Description MARK: UP FOR FILLING THIS IN? ONE SHORT PARAGRAPH.
Version 0.1.0
Date 2019-01-20
Maintainer Daniel Turek <dbt1@williams.edu></dbt1@williams.edu>
Author Mark Risser, Daniel Turek
Depends R (>= 3.4.0)
Imports FNN,Matrix,methods,nimble,StatMatch
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
R topics documented:
calcOE

and OE	2
calcQF	
calculateAD_ns	2
calculateU_ns	3
conditionLatentObs	4
determineNeighbors	5
dmnorm_nngp	5
dmnorm_sgv	6
inverseEigen	7
matern_corr	7
nsCorr	8
nsCrosscorr	9
nsCrossdist	10
nsCrossdist3d	11
nsDist	11
nsDist3d	12
NSGP-class	13
nsgpModel	13
orderCoordinatesMMD	14
sgvSetup	15
	16

Index

2 calculateAD_ns

	_		_	_
ca	П	0	n	F

Calculate the Gaussian quadratic form for the NNGP approximation

Description

calcQF calculates the quadratic form in the multivariate Gaussian based on the NNGP approximation, for a specific parameter combination. The quadratic form is $t(u)C^{-1}v$.

Usage

```
calcQF(u, v, AD, nID)
```

Arguments

u	Vector; left product.
V	Vector; right product
AD	N x (k+1) matrix; the first k columns are the 'A' matrix, and the last column is the 'D' vector. Represents the Cholesky of C^{-1} .
nID	N x k matrix of neighbor indices.

Value

A list with two components: (1) an N x 2 array containing the same spatial coordinates, ordered by MMD, and (2) the same thing, but with any NA values removed.

Examples

TODO

calculateAD_ns

Calculate A and D matrices for the NNGP approximation

Description

 ${\tt calculateAD_ns}\ calculates\ A\ and\ D\ matrices\ (the\ Cholesky\ of\ the\ precision\ matrix)\ needed\ for\ the\ NNGP\ approximation.$

Usage

```
calculateAD_ns(dist1_3d, dist2_3d, dist12_3d, Sigma11, Sigma22, Sigma12,
  log_sigma_vec, log_tau_vec, nID, N, k, nu, d)
```

calculateU_ns 3

Arguments

dist1_3d	N x $(k+1)$ x $(k+1)$ array of distances in the x-coordinate direction.
dist2_3d	N x $(k+1)$ x $(k+1)$ array of distances in the y-coordinate direction.
dist12_3d	N x (k+1) x (k+1) array of cross-distances.
Sigma11	N-vector; 1-1 element of the Sigma() process.
Sigma22	N-vector; 2-2 element of the Sigma() process.
Sigma12	N-vector; 1-2 element of the Sigma() process.
log_sigma_vec	N-vector; process standard deviation values.
log_tau_vec	N-vector; nugget standard deviation values.
nID	N x k matrix of neighbor indices.
N	Scalar; number of data measurements.
k	Scalar; number of nearest neighbors.
nu	Scalar; Matern smoothness parameter.
d	TODO

Value

A N x (k+1) matrix; the first k columns are the 'A' matrix, and the last column is the 'D' vector.

Examples

TODO

|--|

Description

calculateU_ns calculates the (sparse) matrix U (i.e., the Cholesky of the inverse covariance matrix) using a nonstationary covariance function. The output only contains non-zero values and is stored as three vectors: (1) the row indices, (2) the column indices, and (3) the non-zero values. NOTE: this code assumes the all inputs correspond to the ORDERED locations.

Usage

```
calculateU_ns(dist1_3d, dist2_3d, dist12_3d, Sigma11, Sigma22, Sigma12,
  log_sigma_vec, log_tau_vec, nu, nID, cond_on_y, N, k, d, M = 0)
```

dist1_3d	N x (k+1) x (k+1) array of distances in the x-coordinate direction.
dist2_3d	N x (k+1) x (k+1) array of distances in the y-coordinate direction.
dist12_3d	N x (k+1) x (k+1) array of cross-distances.
Sigma11	N-vector; 1-1 element of the Sigma() process.
Sigma22	N-vector; 2-2 element of the Sigma() process.

4 conditionLatentObs

Sigma12 N-vector; 1-2 element of the Sigma() process.

log_sigma_vec N-vector; process standard deviation values.

log_tau_vec N-vector; nugget standard deviation values.

nu Scalar; Matern smoothness parameter.

N x k matrix of (ordered) neighbor indices.

cond_on_y A matrix indicating whether the conditioning set for each (ordered) location is

on the latent process (y,1) or the observed values (z,\emptyset) . Calculated in sgvSetup.

N Scalar; number of data measurements.k Scalar; number of nearest neighbors.

d TODO M TODO

Value

TODO

Examples

TODO

conditionLatentObs Assign conditioning sets for the SGV approximation

Description

conditionLatentObs assigns $q_y(i)$ vs $q_z(i)$ following Section 5.1 in Katzfuss and Guinness (2018). This function only needs to be run once per SGV analysis.

Usage

```
conditionLatentObs(nID, locs_ord, N)
```

Arguments

nID N x k matrix of neighbor indices.

locs_ord N x 2 matrix of locations.

N Scalar; number of locations (observed only!).

Value

A matrix indicating whether the conditioning set for each location is on the latent process (y, 1) or the observed values (z, 0).

Examples

determineNeighbors 5

determineNeighbors Determine the k-nearest neighbors for each spatial coordinate.	ineNeighbors Determine the k-nearest neighbors for e	ach spatial coordinate.
---	--	-------------------------

Description

determineNeighbors returns an N x k matrix of the nearest neighbors for spatial locations s, with the ith row giving indices of the k nearest neighbors to the ith location, which are selected from among the 1,...(i-1) other spatial locations. The first row is -1's, since the first location has no neighbors. The i=2 through i=(k+1) rows each necessarily contain 1:i.

Usage

```
determineNeighbors(s, k)
```

Arguments

s N x 2 array of N 2-dimensional (x,y) spatial coordinates.

k Scalar; number of neighbors

Value

An N x k matrix of nearest neighbor indices

Examples

TODO

dmnorm_nngp Function for the evaluating the NNGP approximate density.

Description

dmnorm_nngp (and rmnorm_nngp) calculate the approximate NNGP likelihood for a fixed set of parameters (i.e., A and D matrices). Finally, the distributions must be registered within nimble.

Usage

```
dmnorm_nngp(x, mean, AD, nID, N, k, log)
```

X	N-vector of data.
mean	N-vector with current values of the mean
AD	N x $(k+1)$ matrix; the first k columns are the 'A' matrix, and the last column is the 'D' vector.
nID	N x k matrix of neighbor indices.
N	Scalar; number of data measurements.
k	Scalar; number of nearest neighbors.
log	Scalar; should the density be on the log scale (1) or not (0).

6 dmnorm_sgv

Value

The NNGP approximate density.

Examples

TODO

dmnorm_sgv

Function for the evaluating the SGV approximate density.

Description

dmnorm_sgv (and rmnorm_sgv) calculate the approximate SGV likelihood for a fixed set of parameters (i.e., the U matrix). Finally, the distributions must be registered within nimble.

Usage

```
dmnorm_sgv(x, mean, U, N, k, log = 1)
```

Arguments

Χ	TODO
mean	TODO
U	TODO
N	TODO
k	TODO
log	TODO

Value

TODO

Examples

inverseEigen 7

ir	nverseEigen	Calculate covariance elements based on eigendecomposition components
ır	nverseEigen	

Description

inverseEigen calculates the inverse eigendecomposition – in other words, the covariance elements based on the eigenvalues and vectors (see Paciorek and Schervish, 2006, for details on the parameterization). The function is coded as a nimbleFunction (see the nimble package) but can also be used as a regular R function.

Usage

```
inverseEigen(eigen_comp1, eigen_comp2, eigen_comp3, which_Sigma)
```

Arguments

eigen_comp1	N-vector; contains values of the log of the second anisotropy eigenvalue for a set of locations.
eigen_comp2	N-vector; contains values of the first eigenvector component for a set of locations.
eigen_comp3	N-vector; contains values of the second eigenvector component for a set of locations.
which_Sigma	Scalar; one of (1,2,3), corresponding to which covariance component should be calculated (Sigma11, Sigma22, or Sigma12, respectively).

Value

A correlation matrix for a fixed set of stations and fixed parameter values.

Examples

TODO

matern corr	Calculate a stationary Matern correlation matrix
matern_corr	Calculate a stationary Matern correlation matrix

Description

matern_corr calculates a stationary Matern correlation matrix for a fixed set of locations, based on a range and smoothness parameter. This function is primarily used for the "npGP" and "approxGP" models. The function is coded as a nimbleFunction (see the nimble package) but can also be used as a regular R function.

Usage

```
matern_corr(dist, rho, nu)
```

8 nsCorr

Arguments

dist	N x N matrix; contains values of pairwise Euclidean distances in the x-y plane.
rho	Scalar; "range" parameter used to rescale distances
nu	Scalar; Matern smoothness parameter. nu = 0.5 corresponds to the Exponential

Scalar; Matern smoothness parameter. nu = 0.5 corresponds to the Exponential correlation; nu = Inf corresponds to the Gaussian correlation function.

Value

A correlation matrix for a fixed set of stations and fixed parameter values.

Examples

TODO

nsCorr	Calculate a nonstationary Matern correlation matrix	

Description

nsCorr calculates a nonstationary correlation matrix for a fixed set of locations, based on vectors of the unique anisotropy parameters for each station. Since the correlation function uses a spatiallyvarying Mahalanobis distance, this function requires coordinate- specific distance matrices (see below). The function is coded as a nimbleFunction (see the nimble package) but can also be used as a regular R function.

Usage

```
nsCorr(dist1_sq, dist2_sq, dist12, Sigma11, Sigma22, Sigma12, nu, d)
```

dist1_sq	N x N matrix; contains values of pairwise squared distances in the x-coordinate.
dist2_sq	N x N matrix; contains values of pairwise squared distances in the y-coordinate.
dist12	$N \times N$ matrix; contains values of pairwise signed cross- distances between the x- and y-coordinates. The sign of each element is important; see nsDist function for the details of this calculation. in the x-coordinate.
Sigma11	Vector of length N; contains the 1-1 element of the anisotropy process for each station.
Sigma22	Vector of length N; contains the 2-2 element of the anisotropy process for each station.
Sigma12	Vector of length N; contains the 1-2 element of the anisotropy process for each station.
nu	Scalar; Matern smoothness parameter. $nu = 0.5$ corresponds to the Exponential correlation; $nu = Inf$ corresponds to the Gaussian correlation function.
d	TODO

nsCrosscorr 9

Value

A correlation matrix for a fixed set of stations and fixed parameter values.

Examples

TODO

nsCrosscorr	Calculate a nonstationary Matern cross-correlation matrix	

Description

nsCrosscorr calculates a nonstationary cross-correlation matrix between two fixed sets of locations (a prediction set with M locations, and the observed set with N locations), based on vectors of the unique anisotropy parameters for each station. Since the correlation function uses a spatially-varying Mahalanobis distance, this function requires coordinate- specific distance matrices (see below). The function is coded as a nimbleFunction (see the nimble package) but can also be used as a regular R function.

Usage

```
nsCrosscorr(Xdist1_sq, Xdist2_sq, Xdist12, Sigma11, Sigma22, Sigma12,
   PSigma11, PSigma22, PSigma12, nu, d)
```

Xdist1_sq	\boldsymbol{M} x N matrix; contains values of pairwise squared cross-distances in the x-coordinate.
Xdist2_sq	$\boldsymbol{M} \times \boldsymbol{N}$ matrix; contains values of pairwise squared cross-distances in the y-coordinate.
Xdist12	M x N matrix; contains values of pairwise signed cross/cross- distances between the x- and y-coordinates. The sign of each element is important; see nsDist function for the details of this calculation. in the x-coordinate.
Sigma11	Vector of length N; contains the 1-1 element of the anisotropy process for each observed location.
Sigma22	Vector of length N; contains the 2-2 element of the anisotropy process for each observed location.
Sigma12	Vector of length N; contains the 1-2 element of the anisotropy process for each observed location.
PSigma11	Vector of length N; contains the 1-1 element of the anisotropy process for each prediction location.
PSigma22	Vector of length N; contains the 2-2 element of the anisotropy process for each prediction location.
PSigma12	Vector of length N; contains the 1-2 element of the anisotropy process for each prediction location.
nu	Scalar; Matern smoothness parameter. $nu = 0.5$ corresponds to the Exponential correlation; $nu = Inf$ corresponds to the Gaussian correlation function.
d	TODO

nsCrossdist

Value

A cross-correlation matrix for two fixed sets of stations and fixed parameter values.

Examples

TODO

nsCrossdist	Calculate coordinate-specific cross-distance matrices	
nsCrossdist	Calculate coordinate-specific cross-distance matrices	

Description

nsCrossdist calculates coordinate-specific cross distances in x, y, and x-y for use in the nonstationary cross-correlation calculation. This function is useful for calculating posterior predictions.

Usage

```
nsCrossdist(coords, Pcoords, scale_factor = NULL, isotropic = FALSE)
```

Arguments

coords N x 2 matrix; contains x-y coordinates of station (observed) locations.

Pcoords M x 2 matrix; contains x-y coordinates of prediction locations.

scale_factor Scalar; optional argument for re-scaling the distances.

isotropic TODO

Value

A list of distances matrices, with the following components:

dist1_sq	M x N matrix; contains values of pairwise squared cross- distances in the x-coordinate.
dist2_sq	M x N matrix; contains values of pairwise squared cross- distances in the y-coordinate.
dist12	$M \times N$ matrix; contains values of pairwise signed cross- distances between the x - and y -coordinates.
scale factor	Value of the scale factor used to rescale distances.

Examples

nsCrossdist3d

nsCrossdist3d	Calculate coordinate-specific distance matrices, only for nearest
	neighbors and store in an array

Description

nsCrossdist3d generates and returns new 3-dimensional arrays containing the former dist1_sq, dist2_s1, and dist12 matrices, but only as needed for the k nearest-neighbors of each location. these 3D matrices (dist1_3d, dist2_3d, and dist12_3d) are used in the new implementation of calculateAD_ns().

Usage

```
nsCrossdist3d(coords, predCoords, P_nID, scale_factor = NULL,
isotropic = FALSE)
```

Arguments

coords N x 2 matrix; contains the x-y coordinates of stations.

predCoords TODO

P_nID N x k matrix; contains indices of nearest neighbors. scale_factor Scalar; optional argument for re-scaling the distances.

isotropic Logical; indicates whether distances should be calculated separately for each

coordinate dimension (FALSE) or simultaneously for all coordinate dimensions (TRUE). isotropic = TRUE can only be used for two-dimensional coordinate

systems.

Value

Arrays with nearest neighbor distances in each coordinate direction.

Examples

TODO

nsDist	Calculate coordinate-specific distance matrices
nsuist	Calculate coordinate-specific distance matrices

Description

nsDist calculates x, y, and x-y distances for use in the nonstationary correlation calculation. The sign of the cross-distance is important. The function contains an optional argument for re-scaling the distances such that the coordinates lie in a square.

Usage

```
nsDist(coords, scale_factor = NULL, isotropic = FALSE)
```

12 nsDist3d

Arguments

coords N x 2 matrix; contains the x-y coordinates of stations scale_factor Scalar; optional argument for re-scaling the distances.

isotropic Logical; indicates whether distances should be calculated separately for each

coordinate dimension (FALSE) or simultaneously for all coordinate dimensions (TRUE). isotropic = TRUE can only be used for two-dimensional coordinate

systems.

Value

A list of distances matrices, with the following components:

dist1_sq N x N matrix; contains values of pairwise squared distances in the x-coordinate.

N x N matrix; contains values of pairwise squared distances in the y-coordinate.

N x N matrix; contains values of pairwise signed cross- distances between the

x- and y-coordinates.

scale_factor Value of the scale factor used to rescale distances.

Examples

TODO

nsDist3d	Calculate coordinate-specific distance matrices, only for nearest
	neighbors and store in an array
	·

Description

nsDist3d generates and returns new 3-dimensional arrays containing the former dist1_sq, dist2_s1, and dist12 matrices, but only as needed for the k nearest-neighbors of each location. these 3D matrices (dist1_3d, dist2_3d, and dist12_3d) are used in the new implementation of calculateAD_ns().

Usage

```
nsDist3d(coords, nID, scale_factor = NULL, isotropic = FALSE)
```

Arguments

coords N x 2 matrix; contains the x-y coordinates of stations.

nID N x k matrix; contains indices of nearest neighbors.

scale_factor Scalar; optional argument for re-scaling the distances.

isotropic Logical; indicates whether distances should be calculated separately for each

coordinate dimension (FALSE) or simultaneously for all coordinate dimensions (TRUE). isotropic = TRUE can only be used for two-dimensional coordinate

systems.

Value

Arrays with nearest neighbor distances in each coordinate direction.

NSGP-class 13

Examples

TODO

NSGP-class

NSGP class

Description

TODO: more detailed description here

Fields

A A is a field

nsgpModel

NIMBLE code for a generic nonstationary GP model

Description

TODO: add documentation

Usage

```
nsgpModel(tau_model = "constant", sigma_model = "constant",
   Sigma_model = "constant", mu_model = "constant",
   likelihood = "fullGP", returnModelComponents = FALSE,
   constants = list(), z, ...)
```

Arguments

tau_model Character; specifies the model to be used for the log(tau) process. Options are

"logLinReg" (log-linear regression), "mixComp" (mixture component representation), "GP" (stationary Gaussian process), and "approxGP" (approximation to

a Gaussian process).

sigma_model Character; specifies the model to be used for the log(sigma) process. See tau_model

for options.

Sigma_model Character; specifies the model to be used for the Sigma anisotropy process. Op-

tions are "covReg" (covariance regression), "compReg" (componentwise regression), "npMixComp" (nonparameteric regression via the mixture component approach), "npGP" (nonparameteric regression via a stationary Gaussian process), or "npApproxGP" (nonparameteric regression via an approximation to a station-

ary Gaussian process).

z TODO

... TODO

14 orderCoordinatesMMD

Value

A nimbleCode object.

Examples

TODO

orderCoordinatesMMD

Order coordinates according to a maximum-minimum distance criterion

Description

orderCoordinatesMMD orders an array of (x,y) spatial coordinates according to the "maximum minimum distance" (MMD), as described in Guinness, 2018. (Points are selected to maximize their minimum distance to already- selected points).

Usage

```
orderCoordinatesMMD(s, exact = FALSE)
```

Arguments

s N x 2 array of N 2-dimensional (x,y) spatial coordinates.

exact Logical; FALSE uses a fast approximation to MMD ordering (and is almost al-

ways recommended), while TRUE uses exact MMD ordering but is infeasible for

large number of locations.

Value

A list with two components: (1) an N x 2 array containing the same spatial coordinates, ordered by MMD, and (2) the same thing, but with any NA values removed.

Examples

sgvSetup 15

sgvSetup	One-time setup wrapper function for the SGV approximation	

Description

sgvSetup is a wrapper function that sets up the SGV approximation. Three objects are required: (1) ordering the locations, (2) identify nearest neighbors, and (3) determine the conditioning set. This function only needs to be run once per SGV analysis.

Usage

```
sgvSetup(locs, locs_pred = NULL, k = 15, seed = NULL)
```

Arguments

locs Matrix of observed locations.

locs_pred Optional matrix of prediction locations.

k Number of neighbors.

seed TODO

Value

A list with the following components:

ord A vector of ordering position for the observed locations.

ord_pred A vector of ordering position for the prediction locations (if locs_pred is pro-

vided).

ord_all A concatenated vector of ord and ord_pred.

locs_ord A matrix of ordered locations (observed and prediction), included for conve-

nience.

nID_ord A matrix of (ordered) neighbor indices.

condition_on_y_ord

A matrix indicating whether the conditioning set for each (ordered) location is

on the latent process (y, 1) or the observed values (z, 0).

Examples

Index

```
calcQF, 2
calculateAD_ns, 2
calculateU_ns, 3
{\tt conditionLatentObs, 4}
determineNeighbors, 5
dmnorm_nngp, 5
dmnorm\_sgv, 6
inverseEigen, 7
matern_corr, 7
nsCorr, 8
nsCrosscorr, 9
nsCrossdist, 10
{\tt nsCrossdist3d}, {\color{red}11}
\mathsf{nsDist}, 11
nsDist3d, 12
NSGP (NSGP-class), 13
NSGP-class, 13
nsgpModel, 13
orderCoordinatesMMD, 14
sgvSetup, 15
```