BGGN-213: FOUNDATIONS OF BIOINFORMATICS

The find-a-gene project assignment

Alexander Liu (PID: 69026918)

Q1.

Name: probable ATP-dependent RNA helicase DDX6Organism: Mus musculus

Accession: NP_851841.2 Species: *Mus musculus*

Q2.

Method: TBLASTN search against nematodes ESTs

Database: Expressed Sequence Tags (est)

Organism: Nematodes (Taxid: 6231)

Chosen match: Accession JZ594105.1, H06_f_PDF_8_025 Panagrolaimus davidi 4 degree Panagrolaimus davidi cDNA, mRNA sequence (the fourth hit)

		Description	Scientific Name	Max Score	Total Score		E value	Per. Ident	Acc. Len	Accession
	1	Sr_pAMT7_014o23_T7 S. ratti mixed stage pAMP Strongyloides r	Strongyloi	469	469	61%	2e-164	73.90%	883	FC819473.1
1	2	Sr_pAMT7_016a20_T7 S. ratti mixed stage pAMP Strongyloides r	Strongyloi	447	447	56%	9e-156	75.55%	829	FC819862.1
	1	M13_r_PDT_22_051 Panagrolaimus davidi 20 degree Panagrolai	Panagrola	407	407	57%	1e-139	67.99%	959	JZ675587.1
6	2	H06_f_PDF_8_025 Panagrolaimus davidi 4 degree Panagrolaimu	Panagrola	406	406	58%	2e-139	67.62%	865	JZ594105.1
	2	G21 r PDT 35 089 Panagrolaimus davidi 20 degree Panagrolai	Panagrola	389	389	55%	1e-132	67.79%	958	JZ666706.1

Alignment details:

H06_f_PDF_8_025 Panagrolaimus davidi 4 degree Panagrolaimus davidi cDNA, mRNA sequence

Sequence ID: <u>JZ594105.1</u> Length: 865 Number of Matches: 1

Range 1	l: 26 to	865 <u>Ge</u>	nBank Graphics	i		▼ <u>Ne</u>	xt Match A P	revious
Score 406 bits	s(1043	Expect) 2e-139	Method Compositional	matrix adjust.	Identities 190/281(68%)	Positives 236/281(83%)	Gaps 1/281(0%)	Frame +2
Query	61				VTSTKGNEFEDY VT+T+G +FE++			
Sbjct	26				VTNTRGLDFEEF			
Query	121				YLIPLLERLDLK			
Sbjct	206				Y IP++ERLD YCIPVIERLDTS			
Query	181				MRLDDTVHVVIA			
Sbjct	386				+RL+ VH+++A LRLNSAVHLIVA			
Query	241				NRQILLYSATFP			
Sbjct	563				RQI+LYSATFP GRQIMLYSATFP			
Query	301				SRLQINQSIIFC			
Sbjct	743				+LQINQSIIFC RKLQINQSIIFC			

Q3.

Chosen sequence:

>Panagrolaimus davidi Ddx6 (translated using EMBOSS Transeq, and ORF extracted)

MAVEAQNKTNDDWKAQLQLPAKDMRYKTLDVTNTRGLDFEEFSLSRDLLKGIFEKGWERPSPIQ EASIGIALSGQDILARAKNGTGKTGAYCIPVIERLDTSKDCIQALIIVPTRELALQTSQICVEL GKHIGLKVMVTTGGTDLRDDILRLNSAVHLIVATPGRIIDLMEKGVAEVQDCKMLVLDEADKLL SQDFQGVLDRLVSFLPAGRQIMLYSATFPRTVASFMESHMKNPYEINLMEELTLLGVTQFYAFV TEKOKVHCLNTLFRKLOINOSIIFC

Name: *Panagrolaimus davidi* Ddx6 Species: *Panagrolaimus davidi*

Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Protostomia; Ecdysozoa; Nematoda;

Chromadorea; Rhabditida; Tylenchina; Panagrolaimomorpha; Panagrolaimoidea;

Panagrolaimidae; Panagrolaimus

Q4.

A BLASTP search against NR database yielded a top hit result is to a protein from *Halicephalobus sp. NKZ332*.

Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident
hypothetical protein FO519_002541 [Halicephalobus sp. NKZ332]	Halicephal	497	497	100%	8e-174	85.41%
unnamed protein product [Meloidogyne enterolobii]	Meloidogyn	483	483	96%	4e-168	82.66%
hypothetical protein Mgra_00002596 [Meloidogyne graminicola]	Meloidogyn	479	479	96%	1e-166	82.29%
unnamed protein product [Haemonchus placei]	Haemonch	474	474	97%	1e-164	80.59%
DNA RNA helicase domain containing protein [Haemonchus contortus]	Haemonch	474	474	97%	1e-164	80.59%

Q5.

Re-labeled sequences

>House_mouse_DDX6 | probable ATP-dependent RNA helicase DDX6 [Mus musculus] | NP 851841.2

MSTARTENPVIMGLSSQNGQLRGPVKASAGPGGGGTQPQPQLNQLKNTSTINNGTPQQAQSMAATIKPGD DWKKTLKLPPKDLRIKTSDVTSTKGNEFEDYCLKRELLMGIFEMGWEKPSPIQEESIPIALSGRDILARA KNGTGKSGAYLIPLLERLDLKKDNIQAMVIVPTRELALQVSQICIQVSKHMGGAKVMATTGGTNLRDDIM RLDDTVHVVIATPGRILDLIKKGVAKVDHVQMIVLDEADKLLSQDFVQIMEDIILTLPKNRQILLYSATF PLSVQKFMNSHLQKPYEINLMEELTLKGVTQYYAYVTERQKVHCLNTLFSRLQINQSIIFCNSSQRVELL AKKISQLGYSCFYIHAKMRQEHRNRVFHDFRNGLCRNLVCTDLFTRGIDIQAVNVVINFDFPKLAETYLH RIGRSGRFGHLGLAINLITYDDRFNLKSIEEQLGTEIKPIPSNIDKSLYVAEYHSEPAEDEKP

>Panagrolaimus_davidi_Ddx6 | (translated using EMBOSS Transeq, and ORF
extracted)

MAVEAQNKTNDDWKAQLQLPAKDMRYKTLDVTNTRGLDFEEFSLSRDLLKGIFEKGWERPSPIQEASIGIALSGQDI LARAKNGTGKTGAYCIPVIERLDTSKDCIQALIIVPTRELALQTSQICVELGKHIGLKVMVTTGGTDLRDDILRLNS AVHLIVATPGRIIDLMEKGVAEVQDCKMLVLDEADKLLSQDFQGVLDRLVSFLPAGRQIMLYSATFPRTVASFMESH MKNPYEINLMEELTLLGVTQFYAFVTEKQKVHCLNTLFRKLQINQSIIFC

>African_eye_worm | ATP-dependent RNA helicase cgh-1 [Loa loa] |
XP 020303523.1

MTSKTESQSDQSWKENLNLPAKDLRFKTTDVTDTKGIEFEDFCLKRPLLMGIFEKGWEKPSPIQEASISI ALSGQDILARAKNGTGKTGAYCIPCIDKVDVEKKYPQSLIIVPTRELAFQTSNICVDLSKHMNLKVMVTT GGTELRNDIMRLNGTVHIIVATPGRILDLMDKNVADMSHCTTLVLDEADKLLSQDFQGILDRVIKFLPPD RQIMLYSATFPLTVATFMQKHMRNPYEINLMEELTLVGVTQYYAYVQEKQKVHCLNTLFRKLQINQSIIF

CNSTQRVELLAKKITEIGYSCYYIHSRMAQGHRNRVFHDFRKGACRNLVCSDLLTRGIDIQAVNVVINFD FPRNAETYLHRIGRSGRFGHLGIAINLITYEDRFTLRRIEAELRTRIAPIPKSVDPKLYVAEYQIVDENG SEMVGSSKETAA

>dog_roundworm | ATP-dependent RNA helicase cgh-1 [Toxocara canis] |
KHN80260.1

MSSEAVSHSDHSWKEGLKVPAKDMRYKTADVTDTKGIEFEDFCLKRDLLMGIFEKGWEKPSPIQEASIAI ALSGQDILARAKNGTGKTGAYCIPCIEKIDPELKKIQALIIVPTRELALQTSQICVELSKHLKLKVMVTT GGTDLRDDIMRLNGIVHLVVATPGRILDLMDKGVADMSRCATLVLDEADKLLSQDFQGILDRVIKFLPPE RQIMLYSATFPLTVATFMQKHMRNPYEINLMEELTLLGVTQFYAYVQEKQKVHCLNTLFRKLQINQSIIF CNSTQRVELLAKKITEIGYSCYYIHSRMAQNHRNRVFHDFRQGNCRNLVCSDLLTRGIDIQAVNVVINFD FPRNAETYLHRIGRSGRFGHLGIAINLITYEDRFTLRRIEAELRTHIAPIPKSVDPKLYVAEHQLVDENA ENENSVGSSSSKPVAVA

>large_cabbage_white | ATP-dependent RNA helicase me31b isoform X2 [Pieris brassicae] | XP 045532384.1

MMTENRISAINHVGNSINNQKGDVDKTVDDMGWKSKLKLPPKDRRMKTSDVTDTRGNEFEEFCLKREILM GIFEKGWEKPSPIQEASIPIALSGKDVLARAKNGTGKTGAYCIPVIEQVDPKKDCIQALIVVPTRELALQ TSQICIELAKHTDIRVMVTTGGTNLRDDIMRIYQNVQVIIATPGRIIDLMDKQVAKMDQCRMLVLDEADK LLSQDFKGMLDLVISRLPKERQILLFSATFPLSVKQFMEKHLREPYEINLMEELTLKGVTQYYAFVQERQ KVHCLNTLFSKLQINQSIIFCNSTQRVELLAKKITELGYCCYYIHARMAQAHRNRVFHDFRAGLCRNLVC SDLFTRGIDVQAVNVVINFDFPRMAETYLHRIGRSGRFGHLGIAINLITYEDRFALHRIERELGTEIKPI PKVIDPALYVARVSEEDDGADK

>western_flower_thrips | ATP-dependent RNA helicase me31b [Frankliniella occidentalis] | XP 026291730.1

MTEVHSNHVIGGISMNKDLDDGIGWKSKLKIPPKDQRIKTSDVTDTRGNEFEEFCLKRELLMGIFEKGWE KPSPIQEASIPIALSGKDVLARAKNGTGKTGAYSIPVLEQVDPKKDCIQALVIVPTRELALQTSQICIEL AKHMDVKVMVTTGGTNLRDDIMRIYQKVHIIIATPGRILDLMDKNVANMENCRILVLDEADKLLSQDFKG MLDHVISRLPKERQILLYSATFPLTVKQFMEKHLKEPYEINLMEELTLKGVTQYYAFVQERQKVHCLNTL FSKLQINQSIIFCNSTQRVELLAKKITELGYCCYYIHAKMAQAHRNRVFHDFRNGLCRNLVCSDLFTRGI DVQAVNVVINFDFPKMAETYLHRIGRSGRFGHLGIAINLITFDDRFALHRIEQELGTEIKPIPKVIDPAL YVAKSLDDSHAIEEANNVSK

>pink_bollworm | ATP-dependent RNA helicase me31b [Pectinophora gossypiella] | XP_049868573.1

MMTENRISSSNHVGNSMNNQKGDVDKTIDDIGWKSKLKIPAKDRRIKTSDVTDTRGNEFEEFCLKRELLM GIFEKGWEKPSPIQEASIPIALSGKDVLARAKNGTGKTGAYCIPVLEQVDPKKDCIQALVVVPTRELALQ TSQICIELAKHTDIRVMVTTGGTNLRDDIMRIYQNVQVIIATPGRMIDLMDKQVAKMDQCRMLVLDEADK LLSQDFKGMLDMVISRLPKERQILLFSATFPLSVKQFMEKHLREPYEINLMEELTLKGVTQYYAFVQERQ KVHCLNTLFSKLQINQSIIFCNSTQRVELLAKKITELGYCCYYIHARMAQAHRNRVFHDFRAGLCRNLVC SDLFTRGIDVQAVNVVINFDFPRMAETYLHRIGRSGRFGHLGIAINLITYEDRFALHRIEQELGTEIKPI PKVIDPALYVARPDEDDGADK

>migratory_locust | DEAD-box DDX6 [Locusta migratoria] | QOS47384.1 MMTETHVNSNHVSLLPPVNSINNQKMDMDVTDDKGWKSKLKIPPKDRRIQTSDVTDTRGNEFEEFCLKRE LLMGIFEKGWEKPSPIQEASIPIALSGKDVLARAKNGTGKTGAYSIPVLEQVDPKKDCIQALIIVPTREL ALQTSQICIELAKHMKVKVMVTTGGTNLRDDIMRIYQTVHVVIATPGRILDLMDKHVANMEHCRMLVLDE ADKLLSQDFKGMLDHVIAQLPSERQILLYSATFPLSVKQFMEKHLRKPYEINLMEELTLKGVTQYYAFVQ ERQKVHCLNTLFSKLQINQSIIFCNSTQRVELLAKKITELGYCCYYIHAKMAQAHRNRVFHDFRAGLCRN LVCSDLFTRGIDVQAVNVVINFDFPKMAETYLHRIGRSGRFGHLGIAINLITYEDRFALHRIEQELGTEI KPIPKVIDPSLYVATKIEDAOGIDESNVSK

>bovine lungworm | DEAD/DEAH box helicase [Dictyocaulus viviparus] | KJH46407.1

MSAADAKVTVTTDENWKSSLVIPAKDKRFKTADVTDTKGVEFEDFCLSRDLLMGIFEKGWEKPSPIOEAS IGVALSGODILARAKNGTGKTGAYCIPVIEKINPAIKKIOALVIVPTRELALOTSOICVELSKHIKLKIM VTTGGTDLRDDIMRLNGSVHMVIATPGRILDLMEKGVADMSHCKMLVLDEADKLLSQDFQGILDRLISFL LKERQIMLYSATFPMTVTEFMQKHMRKPYEINLMEELTLLGVTQYYAFVQEKQKVHCLNTLFRKLQINQS IIFCNSTQRVELLAKKITEIGYSCYYIHSKMAQNHRNRVFHDFRQGNCRNLVCSDLLTRGIDIQAVNVVI NFDFPRNSETYLHRIGRSGRFGHLGVAINLITFEDRHTFRRIEQELRTQIEPIPKAIDPKLYFFCSSVLP CDLLCVLWMNLCVS

>New World hookworm | DEAD/DEAH box helicase [Necator americanus] | XP 013307512.1

MLEIQDKRFKTAVLIFCPLGDASKIWIRDYQEIDLRTLQDVTDTKGVEFEDFCLSRDLLMGIFEKGWEKP SPIQEASIGVALSGQDILARAKNGTGKTGAYCIPVIEKINPAIKKIQALVIVPTRELALQTSQICVELSK HIKLKIMVTTGGTDLRDDIMRLNGSVHMVIATPGRILDLMEKGVADMSNCKMLVLDEADKLLSQDFQGIL DRLISYLPKERQIMLYSATFPMTVTEFMOKHMRKPYEINLMEELTLLGVTQYYAYVQEKQKVHCLNTLFR KLQINQSIIFCNSTQRVELLAKKITEIGYSCYYIHSKMAQNHRNRVFHDFRQGNCRNLVCSDLLTRGIDI QAVNVVINFDFPRNAETYLHRIGRSGRFGHLGVAINLITYEDRHTLRRIEQELRTQIEPIPKAVDPKLYV ADFQIVEDEDNNKTNAN

>barber pole worm | DNA RNA helicase domain containing protein [Haemonchus contortus] | CDJ84064.1

MSVADTKVAAVTTDENWKAGLVLPAKDKRFKTADVTDTKGVEFEDFCLSRDLLMGIFEKGWEKPSPIOEA SIGVALSGQDILARAKNGTGKTGAYCIPVIEKINPSIKKIQALVIVPTRELALQTSQICVELSKHIKLKI MVTTGGTDLRDDIMRLNGSVHMVIATPGRILDLMEKGVADMSNCKMLVLDEADKLLSQDFQGILDRLISF LPKERQIMLYSATFPMTVTEFMQKHMRKPYEINLMEELTLLGVTQYYAYVQEKQKVHCLNTLFRKLQINQ SIIFCNSTQRVELLAKKITEIGYSCYYIHSKMAQNHRNRVFHDFRQGNCRNLVCSDLLTRGIDIQAVNVV INFDFPRNAETYLHRIGRSGRFGHLGVAINLITYEDRHTLRRIEQELRTQIEPIPKAVDPKLYVADFQIV DDEDNNRANAN

Alignment:

CLUSTAL multiple sequence alignment by MUSCLE (3.8)

House mouse DDX6 large cabbage white pink_bollworm migratory_locust western flower thrips Panagrolaimus davidi Ddx6 bovine lungworm New World hookworm barber pole worm African_eye_worm dog roundworm

New World hookworm

MSTARTENPVIMGLSSQNGQLRGPVKASAGPGGGGTQPQPQLNQLKNTSTINNGTPQQAQ
MMTENRISAINHVGNSINNQ
MMTENRISSSNHVGNSMNNQ
MMTETHVNS-NHVSLLPPVNSINNQ
MTEVHS-NHVIGGI
MAVEAQNK
MSAADAKVTVT
KTAV
MSVADTKVAAVT
MTSKTESQ
MSSEAVSH

```
House_mouse_DDX6

$\text{large_cabbage_white} & \text{KGDVDKTVDDMGWKSLKLEPPKDLRIKT-SDVTSTKGNEFEDYCLKRELLMGIFEMGWEK} & \text{KGDVDKTVDDMGWKSKLKLPPKDRRMKT-SDVTDTRGNEFEEFCLKREILMGIFEKGWEK} & \text{KGDVDKTIDDIGWKSKLKIPAKDRRIKT-SDVTDTRGNEFEEFCLKREILMGIFEKGWEK} & \text{KGDVDKTIDDIGWKSKLKIPAKDRRIKT-SDVTDTRGNEFEEFCLKRELLMGIFEKGWEK} & \text{KMDMDVT-DDKGWKSKLKIPPKDRRIQT-SDVTDTRGNEFEEFCLKRELLMGIFEKGWEK} & \text{SMNKDLD-DGIGWKSKLKIPPKDQRIKT-SDVTDTRGNEFEEFCLKRELLMGIFEKGWEK} & \text{Panagrolaimus_davidi_Ddx6} & \text{------TDENWKAQLQLPAKDMRYKT-LDVTNTRGLDFEEFSLSRDLLKGIFEKGWER} & \text{DAVAGUEREPECLSRDLIMGIFEKGWEK} & \text{TDENWGNETED-FCLSRDLIMGIFEKGWEK} & \text{TDENWGNETED-FCLSRDLIMGIFEKGWEK}
                                                                                                                                                                                                                                                                                                                                                                                                                                  LIFCPLGDASKIW----IRDYQEIDLRTLQDVTDTKGVEFEDFCLSRDLLMGIFEKGWEK
```

barber_pole_worm
African_eye_worm
dog roundworm

House_mouse_DDX6
large_cabbage_white
pink_bollworm
migratory_locust
western_flower_thrips
Panagrolaimus_davidi_Ddx6
bovine_lungworm
New_World_hookworm
barber_pole_worm
African_eye_worm
dog_roundworm

House_mouse_DDX6
large_cabbage_white
pink_bollworm
migratory_locust
western_flower_thrips
Panagrolaimus_davidi_Ddx6
bovine_lungworm
New_World_hookworm
barber_pole_worm
African_eye_worm
dog_roundworm

House_mouse_DDX6
large_cabbage_white
pink_bollworm
migratory_locust
western_flower_thrips
Panagrolaimus_davidi_Ddx6
bovine_lungworm
New_World_hookworm
barber_pole_worm
African_eye_worm
dog_roundworm

House_mouse_DDX6
large_cabbage_white
pink_bollworm
migratory_locust
western_flower_thrips
Panagrolaimus_davidi_Ddx6
bovine_lungworm
New_World_hookworm
barber_pole_worm
African_eye_worm
dog_roundworm

House_mouse_DDX6
large_cabbage_white
pink_bollworm
migratory_locust
western_flower_thrips
Panagrolaimus_davidi_Ddx6
bovine_lungworm
New_World_hookworm
barber_pole_worm
African_eye_worm
dog_roundworm

```
-----TDENWKAGLVLPAKDKRFKT-ADVTDTKGVEFEDFCLSRDLLMGIFEKGWEK
-----SDQSWKENLNLPAKDLRFKT-TDVTDTKGIEFEDFCLKRPLLMGIFEKGWEK
-----SDHSWKEGLKVPAKDMRYKT-ADVTDTKGIEFEDFCLKRDLLMGIFEKGWEK
                              PSPIQEESIPIALSGRDILARAKNGTGKSGAYLIPLLERLDLKKDNIQAMVIVPTRELAL
PSPIQEASIPIALSGKDVLARAKNGTGKTGAYCIPVIEQVDPKKDCIQALIVVPTRELAL
 PSPIQEASIPIALSGKDVLARAKNGTGKTGAYCIPVLEQVDPKKDCIQALVVVPTRELAL
  PSPIQEASIPIALSGKDVLARAKNGTGKTGAYSIPVLEQVDPKKDCIQALIIVPTRELAL
  PSPIQEASIPIALSGKDVLARAKNGTGKTGAYSIPVLEQVDPKKDCIQALVIVPTRELAL
  PSPIQEASIGIALSGQDILARAKNGTGKTGAYCIPVIERLDTSKDCIQALIIVPTRELAL
  PSPIQEASIGVALSGQDILARAKNGTGKTGAYCIPVIEKINPAIKKIQALVIVPTRELAL
  PSPIOEASIGVALSGODILARAKNGTGKTGAYCIPVIEKINPAIKKIOALVIVPTRELAL
  PSPIQEASIGVALSGQDILARAKNGTGKTGAYCIPVIEKINPSIKKIQALVIVPTRELAL
  PSPIQEASISIALSGQDILARAKNGTGKTGAYCIPCIDKVDVEKKYPQSLIIVPTRELAF
  PSPIQEASIAIALSGQDILARAKNGTGKTGAYCIPCIEKIDPELKKIQALIIVPTRELAL
  QVSQICIQVSKHMGGAKVMATTGGTNLRDDIMRLDDTVHVVIATPGRILDLIKKGVAKVD
  QTSQICIELAKHT-DIRVMVTTGGTNLRDDIMRIYQNVQVIIATPGRIIDLMDKQVAKMD
  QTSQICIELAKHT-DIRVMVTTGGTNLRDDIMRIYQNVQVIIATPGRMIDLMDKQVAKMD
  OTSOICIELAKHM-KVKVMVTTGGTNLRDDIMRIYOTVHVVIATPGRILDLMDKHVANME
  QTSQICIELAKHM-DVKVMVTTGGTNLRDDIMRIYQKVHIIIATPGRILDLMDKNVANME
  QTSQICVELGKHI-GLKVMVTTGGTDLRDDILRLNSAVHLIVATPGRIIDLMEKGVAEVQ
  QTSQICVELSKHI-KLKIMVTTGGTDLRDDIMRLNGSVHMVIATPGRILDLMEKGVADMS
  QTSQICVELSKHI-KLKIMVTTGGTDLRDDIMRLNGSVHMVIATPGRILDLMEKGVADMS
  OTSOICVELSKHI-KLKIMVTTGGTDLRDDIMRLNGSVHMVIATPGRILDLMEKGVADMS
  QTSNICVDLSKHM-NLKVMVTTGGTELRNDIMRLNGTVHIIVATPGRILDLMDKNVADMS
 QTSQICVELSKHL-KLKVMVTTGGTDLRDDIMRLNGIVHLVVATPGRILDLMDKGVADMS
                * . * : * * : : . * *
HVQMIVLDEADKLLSQDFVQIMEDIILTLPKNRQILLYSATFPLSVQKFMNSHLQKPYEI
QCRMLVLDEADKLLSQDFKGMLDLVISRLPKERQILLFSATFPLSVKQFMEKHLREPYEI
  QCRMLVLDEADKLLSQDFKGMLDMVISRLPKERQILLFSATFPLSVKQFMEKHLREPYEI
  \verb|HCRMLVLDEADKLLSQDFKGMLDHVIAQLPSERQILLYSATFPLSVKQFMEKHLRKPYEI|
  NCRILVLDEADKLLSQDFKGMLDHVISRLPKERQILLYSATFPLTVKQFMEKHLKEPYEI
  DCKMLVLDEADKLLSQDFQGVLDRLVSFLPAGRQIMLYSATFPRTVASFMESHMKNPYEI
  HCKMLVLDEADKLLSQDFQGILDRLISFLLKERQIMLYSATFPMTVTEFMQKHMRKPYEI
  NCKMLVLDEADKLLSQDFQGILDRLISYLPKERQIMLYSATFPMTVTEFMQKHMRKPYEI
  NCKMLVLDEADKLLSQDFQGILDRLISFLPKERQIMLYSATFPMTVTEFMQKHMRKPYEI
 HCTTLVLDEADKLLSQDFQGILDRVIKFLPPDRQIMLYSATFPLTVATFMQKHMRNPYEI
  RCATLVLDEADKLLSQDFQGILDRVIKFLPPERQIMLYSATFPLTVATFMQKHMRNPYEI
      :**********
 NLMEELTLKGVTQYYAYVTERQKVHCLNTLFSRLQINQSIIFCNSSQRVELLAKKISQLG
 NLMEELTLKGVTQYYAFVQERQKVHCLNTLFSKLQINQSIIFCNSTQRVELLAKKITELG
  NLMEELTLKGVTQYYAFVQERQKVHCLNTLFSKLQINQSIIFCNSTQRVELLAKKITELG
  {\tt NLMEELTLKGVTQYYAFVQERQKVHCLNTLFSKLQINQSIIFCNSTQRVELLAKKITELG}
  \verb|NLMEELTLKGVTQYYAFVQERQKVHCLNTLFSKLQINQSIIFCNSTQRVELLAKKITELG|
  NLMEELTLLGVTQFYAFVTEKQKVHCLNTLFRKLQINQSIIFC-----
  NLMEELTLLGVTQYYAFVQEKQKVHCLNTLFRKLQINQSIIFCNSTQRVELLAKKITEIG
  NLMEELTLLGVTQYYAYVQEKQKVHCLNTLFRKLQINQSIIFCNSTQRVELLAKKITEIG
  {\tt NLMEELTLLGVTQYYAYVQEKQKVHCLNTLFRKLQINQSIIFCNSTQRVELLAKKITEIG}
  NLMEELTLVGVTQYYAYVQEKQKVHCLNTLFRKLQINQSIIFCNSTQRVELLAKKITEIG
  NLMEELTLLGVTQFYAYVQEKQKVHCLNTLFRKLQINQSIIFCNSTQRVELLAKKITEIG
  *******
 YSCFYIHAKMRQEHRNRVFHDFRNGLCRNLVCTDLFTRGIDIQAVNVVINFDFPKLAETY
  YCCYYIHARMAOAHRNRVFHDFRAGLCRNLVCSDLFTRGIDVOAVNVVINFDFPRMAETY
  \verb|YCCYYIHARMAQAHRNRVFHDFRAGLCRNLVCSDLFTRGIDVQAVNVVINFDFPRMAETY|
  YCCYYIHAKMAQAHRNRVFHDFRAGLCRNLVCSDLFTRGIDVQAVNVVINFDFPKMAETY
  YCCYYIHAKMAQAHRNRVFHDFRNGLCRNLVCSDLFTRGIDVQAVNVVINFDFPKMAETY
 YSCYYIHSKMAQNHRNRVFHDFRQGNCRNLVCSDLLTRGIDIQAVNVVINFDFPRNSETY
```

YSCYYIHSKMAQNHRNRVFHDFRQGNCRNLVCSDLLTRGIDIQAVNVVINFDFPRNAETY

YSCYYIHSKMAQNHRNRVFHDFRQGNCRNLVCSDLLTRGIDIQAVNVVINFDFPRNAETY
YSCYYIHSRMAQGHRNRVFHDFRKGACRNLVCSDLLTRGIDIQAVNVVINFDFPRNAETY
YSCYYIHSRMAQNHRNRVFHDFRQGNCRNLVCSDLLTRGIDIQAVNVVINFDFPRNAETY

large_cabbage_white
pink_bollworm
migratory_locust
western_flower_thrips
Panagrolaimus_davidi_Ddx6
bovine_lungworm
New_World_hookworm
barber_pole_worm
African_eye_worm
dog_roundworm

House_mouse_DDX6
large_cabbage_white
pink_bollworm
migratory_locust
western_flower_thrips
Panagrolaimus_davidi_Ddx6
bovine_lungworm
New_World_hookworm
barber_pole_worm
African_eye_worm
dog_roundworm

LHRIGRSGRFGHLGIAINLITYEDRFALHRIERELGTEIKPIPKVIDPALYVARVSEEDD
LHRIGRSGRFGHLGIAINLITYEDRFALHRIEQELGTEIKPIPKVIDPALYVA-RPDEDD
LHRIGRSGRFGHLGIAINLITYEDRFALHRIEQELGTEIKPIPKVIDPSLYVATKIEDAQ
LHRIGRSGRFGHLGIAINLITFDDRFALHRIEQELGTEIKPIPKVIDPALYVAKSLDDSH

LHRIGRSGRFGHLGVAINLITFEDRHTFRRIEQELRTQIEPIPKAIDPKLYFFCSSVLPC
LHRIGRSGRFGHLGVAINLITYEDRHTLRRIEQELRTQIEPIPKAVDPKLYVADFQIVED
LHRIGRSGRFGHLGVAINLITYEDRHTLRRIEQELRTQIEPIPKAVDPKLYVADFQIVDD
LHRIGRSGRFGHLGIAINLITYEDRFTLRRIEAELRTHIAPIPKSVDPKLYVAEYQIVDE
LHRIGRSGRFGHLGIAINLITYEDRFTLRRIEAELRTHIAPIPKSVDPKLYVAEHQLVDE

Q6.

Phylogenetic tree (created by MEGA11):

Analysis summary:

Name	
Application Information	
Version	11.0.13
Build	11220621-x86_64
User Interface	Graphical
Operating System	mac
Data Information	
Data Type	amino acid
No. of Taxa	11
No. of Sites	499
Data File	
Analysis Settings	
Scope	All Selected Taxa
Statistical Method	Neighbor-joining
Test of Phylogeny	Bootstrap method
No. of Bootstrap Replications	500
Substitutions Type	Amino acid
Model/Method	p=distance
Rates among Sites	Uniform Rates
Pattern among Lineages	Same (Homogeneous)
Gaps/Missing Data Treatment	Pairwise deletion
Number of Threads	8
Analysis Statistics	
Start Time	7-12-23 14:01:42
End Time	7-12-23 14:01:43
Execution Time	1.815 (seconds)
Peak Memory Used(Working Set)	Not Available
Sum of branch lengths	0.919

Q8.

The consensus sequence of the 11 proteins of interest contained too many gaps. Among the 11 proteins of interest, the one with the highest average similarity to all the others is calculated to be "barber pole worm" protein.

The top 3 proteins yielded from BLAST research against this "barber pole worm" protein are as follow.

ID	Technique	Resolution	Source	Identity	Evalue
4CT4	X-RAY DIFFRACTION	2.3	Homo sapiens	73	0.0
1S2M	X-RAY DIFFRACTION	2.1	Saccharomyces cerevisiae	68	0.0
7DTK	X-RAY DIFFRACTION	1.85	Caenorhabditis elegans	90	5e-135

Q9.The novel *Panagrolaimus davidi* Ddx6 protein predicted by AlphaFold2.

Rank 1 prediction with pLDDT quality socre:

Top five predictions superposed:

Q10.

CHEMBL shows two binding assays (CHEMBL4118655 and CHEMBL3991690) and one ligand efficiency data (CHEMBL2165191).

https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL4105783/

Some of the compounds used in the two binding assays shown below may act as a potential inhibitor for the novel *Panagrolaimus davidi* Ddx6 protein.

ChEMBL ID	Assay Type	Description	Organism	Compounds	Document ChEMBL ID	BAO Format	Source
CHEMBL3991690	В	Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.	Homo sapiens	236	CHEMBL3991601	subcellular format	Kuster lab chemical proteomics drug profiling
CHEMBL4118655	В	Binding affinity to DDX6 in human NCI-H23 cells at 1 uM by mass spectrometry based pull down assay	Homo sapiens	1	CHEMBL4118021	cell-based format	Scientific Literature