

Description

The VSM80N04 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

● V_{DS} =40V,I_D =80A

 $R_{DS(ON)}\!<\!\!7m\Omega$ @ $V_{GS}\!=\!10V$

 $R_{DS(ON)}$ <15m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- PWM
- Load Switching

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM80N04-T2	VSM80N04	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	40	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	80	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	56	А	
Pulsed Drain Current	I _{DM}	350	А	
Maximum Power Dissipation	P _D	80	W	
Derating factor		0.53	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	750	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	1.88	°C/W	
---	-------------------	------	------	--

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	40	45	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.8	2.5	V
Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =20A	-	5.2	7	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A	-	10	15	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =20A	15	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}		-	2662	3200	PF
Output Capacitance	Coss	$V_{DS}=20V, V_{GS}=0V,$	-	322	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	246	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =20V, R_L =1 Ω	-	12	-	nS
Turn-on Rise Time	t _r		-	11	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	39	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	V -20VI -20A	-	54.3	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=20V, I_{D}=20A,$	-	6.9	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	14.5	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	-	45	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	-	50	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : Tj=25 $^{\circ}$ C,V_{DD}=20V,V_G=10V,L=1mH,Rg=25 Ω , I_{AS}=42A

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

100 90 80 Power Dissipation (W) 70 60 50 40 20 10 0 25 75 125 100 150 175 T_J-Junction Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)