Reverse Mathematics of Maximal and Perfect Matchings

Oscar Levin

University of Northern Colorado

2019 SIU Pure Mathematics Conference

Joint work with Stephen Flood, Matthew Jura, and Tyler Markkanen.

Definition

A *matching* in a graph G = (V, E) is a subset $M \subseteq E$ for which each vertex is incident to at most one edge in M.

Definition

A *matching* in a graph G = (V, E) is a subset $M \subseteq E$ for which each vertex is incident to at most one edge in M.

Definition

A *matching* in a graph G = (V, E) is a subset $M \subseteq E$ for which each vertex is incident to at most one edge in M.

Definition

A *matching* in a graph G = (V, E) is a subset $M \subseteq E$ for which each vertex is incident to at most one edge in M.

Not every graph contains a perfect matching.

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Definition

▶ A matching M is (weakly) maximal provided there is no matching N with $M \subset N$.

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Definition

- A matching M is (weakly) maximal provided there is no matching N with M ⊂ N.
- A matching M is maximal provided there is no matching N with $V(M) \subset V(N)$.
 - (V(M)) is the set of vertices incident M.)

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Definition

- A matching M is (weakly) maximal provided there is no matching N with M ⊂ N.
- ▶ A matching M is maximal provided there is no matching N with $V(M) \subset V(N)$.

(V(M)) is the set of vertices incident M.)

How can you augment a matching?

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M-augmenting* path is an *M-*alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

Theorem (Steffens)

A graph has a perfect matching iff for any matching M and unmatched v, there is an M-augmenting path starting at v.

Theorem (Steffens)

A graph has a perfect matching iff for any matching M and unmatched v, there is an M-augmenting path starting at v.

Condition (A)

Theorem (Steffens)

A graph has a perfect matching iff for any matching M and unmatched v, there is an M-augmenting path starting at v.

Condition (A)

Corollary (MaxM)

Every graph has a maximal matching.

Theorem (Steffens)

A graph has a perfect matching iff for any matching M and unmatched v, there is an M-augmenting path starting at v.

Condition (A)

Corollary (MaxM)

Every graph has a maximal matching.

Really, maximality seems to be a corollary to the <u>proof</u> of this theorem.

Our goal

Use Reverse Mathematics to understand the strength of both of these theorems.

Our goal

Use Reverse Mathematics to understand the strength of both of these theorems.

The plan:

1. Complete classification for locally finite graphs.

Our goal

Use Reverse Mathematics to understand the strength of both of these theorems.

The plan:

- 1. Complete classification for locally finite graphs.
- 2. Get a sense why the general case is much much much much harder to classify (probably).

Definition

- A graph is *locally finite* provided every vertex has finite degree.
- ▶ A graph is *bounded* provided there is a function $h: V \to \mathbb{N}$ s.t. $\forall x, y \in V(\{x, y\} \in E \to h(x) \ge y)$.

Definition

- A graph is *locally finite* provided every vertex has finite degree.
- ▶ A graph is *bounded* provided there is a function $h: V \to \mathbb{N}$ s.t. $\forall x, y \in V(\{x, y\} \in E \to h(x) \ge y)$.

Think: bounded = highly computable.

Theorem

The following are equivalent over RCA₀:

- 1. Every locally finite graph has a maximal matching.
- 2. A locally finite graph has a perfect matching iff it satisfies condition (A).
- **3**. ACA₀.

Theorem

The following are equivalent over RCA₀:

- 1. Every locally finite graph has a maximal matching.
- 2. A locally finite graph has a perfect matching iff it satisfies condition (A).
- **3**. ACA₀.

Theorem

The following are equivalent over RCA₀:

- Every bounded graph has a maximal matching.
- 2. A bounded graph has a perfect matching iff it satisfies condition (A).
- 3. WKL₀.

Proofs

Idea: Build a tree whose paths give perfect matchings.

Proofs

Idea: Build a tree whose paths give perfect matchings.

 $\langle a_0, a_1, \dots, a_n \rangle \in T$ iff $\{(0, a_0), (1, a_1), \dots, (n, a_n)\}$ is a matching.

Proofs

Idea: Build a tree whose paths give perfect matchings.

$$\langle a_0, a_1, \dots, a_n \rangle \in T$$
 iff $\{(0, a_0), (1, a_1), \dots, (n, a_n)\}$ is a matching.

Condition (A) guarantees the tree will be infinite.

PM for locally finite graphs implies ACA₀:

PM for locally finite graphs implies ACA₀:

PM for locally finite graphs implies ACA₀:

PM for locally finite graphs implies ACA₀:

PM for locally finite graphs implies ACA₀:

PM for bounded graphs implies WKL $_0$:

Why is this messy?

The problem: To use a larger matching, you must abandon a smaller matching.

Definition

A matching M is *independent* provided there is no **proper** M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Definition

A matching M is *independent* provided there is no **proper** M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma

Every graph has has a maximal independent matching (MaxInd).

Definition

A matching M is *independent* provided there is no **proper** M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma

Every graph has has a maximal independent matching (MaxInd).

Proof.

Zorn's lemma.

Definition

A matching M is *independent* provided there is no **proper** M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma

Every graph has has a maximal independent matching (MaxInd).

Proof.

Work in a countably coded β_2 -model; build an increasing sequence of independent matchings; argue that the union is maximal.

Definition

A matching M is *independent* provided there is no **proper** M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma

Every graph has has a maximal independent matching (MaxInd).

Proof.

Work in a countably coded β_2 -model; build an increasing sequence of independent matchings; argue that the union is maximal.

Note: this is a proof in Π_2^1 -CA.

Suppose *G* satisfies condition (A)

ightharpoonup Take a maximal independent matching M.

- ► Take a maximal independent matching M.
- ▶ If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.

- ► Take a maximal independent matching M.
- ▶ If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- ▶ Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).

- ► Take a maximal independent matching M.
- ▶ If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- ▶ Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

- ► Take a maximal independent matching M.
- ▶ If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- ▶ Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

Suppose G satisfies condition (A)

- ► Take a maximal independent matching M.
- ▶ If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- ▶ Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

Note: we potentially need the MaxInd lemma infinitely often,...

Suppose G satisfies condition (A)

- ightharpoonup Take a maximal independent matching M.
- ▶ If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- ▶ Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

Note: we potentially need the MaxInd lemma infinitely often,.....but actually, exactly once.

Take a maximal independent subgraph H of G.

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.

 $G\setminus (H\cup N)$ satisfies condition (A), so by PM, has a perfect matching.

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.

 $G \setminus (H \cup N)$ satisfies condition (A), so by PM, has a perfect matching.

But the perfect matching would be independent in G, giving a larger independent matching. So any perfect matching of H is a maximal matching of G.

Take a maximal independent subgraph H of G.

Take a maximal independent subgraph H of G.

 $G\setminus H$ satisfies condition (A), but cannot have any non-empty independent matchings. Clearly this is impossible, unless $G\setminus H$ is empty.

Take a maximal independent subgraph H of G.

 $G\setminus H$ satisfies condition (A), but cannot have any non-empty independent matchings. Clearly this is impossible, unless $G\setminus H$ is empty.

Lemma

If a graph contains an edge, then the graph contains a non-empty independent matching.

Take a maximal independent subgraph H of G.

 $G\setminus H$ satisfies condition (A), but cannot have any non-empty independent matchings. Clearly this is impossible, unless $G\setminus H$ is empty.

Lemma

If a graph contains an edge, then the graph contains a non-empty independent matching.

What is the strength of this lemma? No idea!

Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition

MaxM implies Π_1^1 -CA₀. *PM implies* Σ_1^1 -AC₀.

Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition

MaxM implies Π_1^1 -CA₀. *PM implies* Σ_1^1 -AC₀.

Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition

MaxM implies Π_1^1 -CA₀. *PM implies* Σ_1^1 -AC₀.

Can we do better?

For any computable ordinal α , there is a computable graph G that satisfies condition (A), any perfect matching of which computes $\mathbf{0}^{(\alpha)}$.

Can we do better?

For any computable ordinal α , there is a computable graph G that satisfies condition (A), any perfect matching of which computes $\mathbf{0}^{(\alpha)}$.

This would be enough to prove ATR $_0$ from PM, except we don't know how to prove G satisfies condition (A) without using Π^1_1 -TI $_0$. (Σ^1_1 -DC $_0$)

The current picture

The End

Thanks!