Convergencia en Redes

Jose Antonio Lorencio Abril

Vamos a estudiar el concepto de **red**, que es la generalización del concepto de sucesión, como veremos. Primero, unas definiciones previas:

Definition 1. Una relación binaria \geq dirige un conjunto D si es no vacía y verifica:

- 1. Transitividad: si $m, n, p \in D$ tales que $m \ge n$ y $n \ge p$, entonces $m \ge p$
- 2. Reflexividad: si $m \in D \implies m \ge m$
- 3. si $m, n \in D$, entonces existe $p \in D$ tal que $p \ge m$ y $p \ge n$

Y decimos que m sucede a n en el orden \geq y que n precede a m si, y solo si, $m \geq n$. Un conjunto dirigido es un par (D, \geq) de tal forma que \geq dirige D.

Y ya podemos definir las redes:

Definition 2. Una **red** es un par (S, \geq) de tal forma que S es una función $y \geq$ dirige el dominio de S.

Si S es una función cuyo dominio contiene a D y D es dirigido por \geq , entonces el conjunto $\{S_n, n \in D, \geq\}$ es la red $(S|D, \geq)$ donde S|D es S restringido a D.

Definition 3. Una red $(S|D, \geq)$ **está en un conjunto A** si, y solo si, $S_n \in A, \forall n \in D$. Se dice que **está finalmente en A** si, y solo si, existe un elemento m de D tal que, si $n \in D$ y $n \geq m$, entonces $S_n \in A$.

La red está frecuentemente en A si, y solo si, para cada $m \in D, \exists n \in D : n \geq m \ y \ S_n \in A$.

Si $(S|D, \geq)$ está frecuentemente en A, entonces el conjunto E de todos los $n \in D$ tales que $S_n \in A$ tiene la siguiente propiedad: para cada $m \in D, \exists p \in E: p \geq m$. Tales subconjuntos de D se denominan **cofinales**. Cada subconjunto cofinal E de D también es dirigido por \geq porque para elementos $m, n \in E, \exists p \in D | p \geq m, p \geq n$ y entonces $\exists q \in E | q \geq p$.

Y estamos ya en condiciones de definir el concepto de convergencia para redes, de forma similar a como se define para sucesiones en espacios topológicos:

Definition 4. Una red (S, \geq) en un espacio topológico (X, \mathcal{F}) converge a s relativamente a \mathcal{F} si, y solo si, está finalmente en cualquier \mathcal{F} -entorno de s.

El siguiente teorema es una generalización de una caracterización que ya conocemos usando sucesiones:

Theorem 5. Sea X un espacio topológico. Entonces

- 1. $s \in X$ es un punto de acumulación de un subconjunto A de X si, y solo s, hay una red en $A \setminus \{s\}$ que converge a s
- 2. $s \in X$ pertenece a la clausura de un subconjunto A de X si, y solo si, existe una red en A convergente a s
- 3. $A \subset X$ es cerrado si, y solo si, ninguna red de A converge a un punto de $X \setminus A$

Hay espacios en los que la convergencia es única, en el sentido de que si una red converge a s y también converge a t, entonces s=t. Un espacio topológico es un **espacio de Hausdorff** si, y solo si, cada vez que $x \neq y$, existen entornos $U \in \varepsilon(x)$, $V \in \varepsilon(y)$ tales que $U \cap V = \emptyset$.

Theorem 6. Un espacio topológico es de Hausdorff si, y solo si, cada red en el espacio converge, a lo sumo, a un punto.

Proof. $[\Longrightarrow]$ Si $x \neq y$, entonces $\exists U \in \varepsilon(x), V \in \varepsilon(y)$ tales que $U \cap V = \emptyset$. Como una red no puede estar finalmente en cada uno de los dos conjuntos disjuntos, entonces ninguna red en X puede converger a ambos $x \in y$.

[\iff] Supongamos que X no es de Hausdorff. Entonces $\exists x, y \in X | \forall U \in \varepsilon(x), V \in \varepsilon(y), U \cap V \neq \emptyset$. Notemos que $\varepsilon(x)$ y $\varepsilon(y)$ están dirigidos por \subset . Ordenamos, entonces, su producto cartesiano $\varepsilon(x) \times \varepsilon(y)$ definiendo que $(U, V) \geq (U', V') \iff U \subset U', V \subset V'$. Entonces el producto cartesiano está dirigido por \geq . Para cada (U, V) la intersección $U \cap V \neq \emptyset$, y entonces podemos tomar $S_{U,V} \in U \cap V$. Y si $(U, V) \geq (U', V')$ entonces $S_{(U,V)} \in U \cap V \subset U' \cap V'$ y por tanto la red $\{S_{U,V}, (U, V) \in \varepsilon(x) \times \varepsilon(y), \geq\}$ converge tanto a s como a t, y hemos probado el contrarrecíproco del resultado.

Hemos visto en esta prueba cómo la noción de ordenar el producto cartesiano puede ser útil. Este tipo de construcciones se denominan **productos dirigidos**, y pueden extenederse al producto de familias enteras de conjuntos dirigidos.

Consideremos ahora la clase de todas las funciones S tales que S(m,n) está definida siempre que m pertenece a un conjunto dirigido D y n pertenece a un conjunto dirigido E_m . Queremos encontrar una red R con valores en este dominio, de forma que $S \circ R$ converja a $\lim_m S(m,n)$ siempre que S sea una función a un espacio topológico y este límite iterado exista. Para solventar esta cuestión, tenemos el siguiente teorema:

Theorem 7. Teorema de los límites iterados

Sea D un conjunto dirigido, sea E_m un conjunto dirigido para cada $m \in D$, sea $F = D \times (\prod_{m \in D} E_m)$ y para cada $(m, f) \in F$ sea R(m, f) = (m, f(m)).

Si S(m,n) es un miembro de un espacio topológico para cada $m \in D, n \in E_m$, entonces $S \circ R$ converge a $\lim_m \lim_n S(m,n)$ siempre que este límite iterado exista.

Proof. Supongamos que $\lim_{m} \lim_{n} S(m, n) = s$ y que $U \in \varepsilon(s)$. Debemos encontrar $(m, f) \in F$: $(p, g) \ge (m, f) \implies S \circ R(p, g) \in U$.

Sea $m \in D$ tal que $\lim_n S(p,n) \in U, \forall p \geq m$ y entonces, para cada p sea $f(p) \in E_p$ tal que $S(p,n) \in U, \forall n \geq f(p)$.

Si $p \in D$ no sucede a m, sea f(p) un elemento arbitrario de E_p . Si $(p,g) \ge (m,f)$, entonces $p \ge m$ y por tanto $\lim_n S(p,n) \in U$ y como $g(p) \ge f(p)$, entonces $S \circ R(p,g) = S(p,g(p)) \in U$.

Y al igual que en el estudio de sucesiones es muy útil el concepto de subsucesión, vamos a definir el de subred:

Definition 8. Una red $\{T_m, m \in E\}$ es una subred de una red $\{S_n, n \in D\}$ si, solo si, existe una función $N: E \to D$ tal que

- 1. $T = S \circ N$ o equivalentemente, $T_i = S_{N_i}, \forall i \in E$
- 2. $\forall m \in D, \exists n \in E : p \ge n \implies N_p \ge m$

Esta segunda condición, intuitivamente, nos dice que cuando crece p, también lo hace N_p .

Es obvio que si S está finalmente en A, entonces la subred $S \circ N$ también está finalmente en A. Notemos también que cada subconjunto cofinal $E \subset D$ es dirigido por el mismo orden, y que $\{S_n, n \in E\}$ es una subred suya.

Supongamos ahora que $N: E \to D$ con E, D dirigidos, es una función isotona, es decir, que $i \ge j \Longrightarrow N_i \ge N_j$ y tal que la imagen de N es cofinal en D. Entonces $S \circ N$ es una subred de S, para cada red S.

Lemma 9. Sea S una red y A una familia de conjuntos tal que S está frecuentmente en cada miembro de A, y de tal forma que A es cerrada para intersecciones. Entonces hay una subred de S que está finalmente en cada miembro de A.

Este lema lo vamos a aplicar a la convergencia en espacios topológicos. Decimos que s es un **punto** de acumulación de la red S si, y solo si, S está frecuentemente en cada entorno de s. Nótese que una red puede tener uno, muchos, o ningún punto de acumulación. Aunque si una red converge a un punto, entonces este podemos asegurar que es un punto de acumulación. No obstante, una red puede tener un punto de acumulación. pero no converger a este.

Theorem 10. Un punto s en un espacio topológico es un punto de acumulación de una red S si, y solo si, alguna subred de S converge a s

Proof. [\Longrightarrow] Sea s un punto de acumulación de S y sea \mathcal{U} la familia de sus entornos. Entonces \mathcal{U} es cerrado para intersecciones y S está frecuentemente en cada miembro de \mathcal{U} por la definición de punto de acumulación. Por tanto, podemos aplicar el lema y hay una subred de S que está finalmente en cada miembro de \mathcal{U} , por lo que esta subred converge a S.

[\Leftarrow] Supongamos que s no es un punto de acumulación de S, entonces hay un entorno U de s tal que S no está frecuentemente en U, y entonces S está frecuentemente en el complementario de U. Por tanto, cada subred de S está frecuentemente en el complementario de U y no puede converger a s. \square

Por último, establecemos una caracterización de los puntos de acumulación en términos de la clausura. Esta caracterización, de nuevo, ya la conocíamos en el contexto de las sucesiones.

Theorem 11. Sea $\{S_n, n \in D\}$ una red en un espacio topológico y para cada $n \in D$ sea A_n el conjunto de todos los puntos S_m , para $m \ge n$.

Entonces s es un punto de acumulación de $\{S_n, n \in D\}$ si, y solo si, s pertenece a la clausura de $A_n, \forall n \in D$.

Proof. [\Longrightarrow] Para cada n, A_n intersecta cada entorno de s por que S está frecuentemente en cada entorno. Por tanto, s está en la clausura de cada A_n .

 $[\Leftarrow]$ Si s no es un punto de acumulación de S, entonces hay un entorno U de s tal que S no está frecuentemente en U. Por tanto, para algún $n \in D$, si $m \ge n$, entonces $S_m \notin U$, por lo que $U \cap A_n = \emptyset$ y por tanto s no pertenece a la clausura de A_n .