Creating tables.

```
SQL Query to create a table is given as:

CREATE TABLE Person1

(

PersonID int primary key,
LastName varchar(255) unique,
FirstName varchar(255) not null,
Address varchar(255) default 'balaganj',
City varchar(255) default 91

);
```

Query to get detail of table

Null?		Туре	
NOT	NULL	NUMBER(38)	
		VARCHAR2(255)	
NOT	NULL	VARCHAR2(255)	
		VARCHAR2(255)	
		VARCHAR2(255)	
	NOT	NOT NULL	

Insertion, Deletion, Updation and Retrieval of data.

Query to insert a row in table person2.

insert into person2 (personid1,lastname,firstname, personid) values (113,'dixit','ram',111);

```
SQL> insert into person2 (personid1,lastname,firstname,personid) values (113,'dixt','ram',111);
1 row created.
```

Query to select all row from table person2.

Select * from person2;

Query to update table person1

update person1 set lastname='awast',firstname='atul',address='banpur' where ((personid=111 or address='banpur') and lastname='awasthi');

select * from person1;

Query Output

```
SQL> update person1 set lastname='awast',firstname='atul',address='banpur' where ((personid=111 or address='banpur') and lastname='awasthi');
SQL> update person1 set lastname='awast',firstname='atul',address='banpur' where ((personid=111 or address='banpur') and lastname='awasthi');
0 rows updated.
SQL> select * from person1;
        PERSONID
LASTNAME
FIRSTNAME
ADDRESS
             111
awast
atul
banpur
dix
ram
balaganj
             113
dixy
balaganj
SQL>
```

Query to delete all rows from table 'aa'

delete from aa;

DELETE FROM person1 WHERE ((personid=111 or address='balaganj') and lastname='dixy');

```
SQL> DELETE FROM person1 WHERE ((personid=111 or address='balaganj') and lastname='dixy');
1 row deleted.
SQL> select * from person1;
        PERSONID
LASTNAME
FIRSTNAME
ADDRESS
CITY
             111
awast
atul
banpur
             112
dix
ram
balaganj
```

Arithmetic operations, Logical operations and Pattern matching.

Sql> SELECT * FROM person2 WHERE lastname LIKE 'a%';

SQL> SELECT * FROM person2 WHERE lastname LIKE 'a%' and city like '%o';

SQL> select lastname, personid1, personid from person2 order by personid asc, personid1 asc;

```
SQL> UPDATE person2 SET personid1 = personid1 + 1;

SQL> UPDATE person2 SET personid1 = personid1 - 1;

SQL> UPDATE person2 SET personid1 = personid1 * 1;

SQL> UPDATE person2 SET personid1 = personid1 / 1;
```

```
SQL> UPDATE person2 SET personid1 = personid1 + 1;
3 rows updated.

SQL> UPDATE person2 SET personid1 = personid1 - 1;
3 rows updated.

SQL> UPDATE person2 SET personid1 = personid1 * 1;
3 rows updated.

SQL> UPDATE person2 SET personid1 = personid1 / 1;
3 rows updated.
SQL> UPDATE person2 SET personid1 = personid1 / 1;
3 rows updated.
```

Concept of Grouping (Group by clause, Having Clause).

The GROUP BY statement groups rows that have the same values into summary rows, like "find the number of customers in each country".

The GROUP BY statement is often used with aggregate functions (COUNT(), MAX(), MIN(), SUM(), AVG()) to group the result-set by one or more columns.

SQL> SELECT count(*), address from employee GROUP BY address;

```
SQL> SELECT count(*), address from employee GROUP BY address;

COUNT(*) ADDRESS

1 ab balaganj
1 bb balaganj
1 cb balaganj
1 db balaganj
1 eb balaganj
1 fb balaganj
1 gb balaganj
9 hb balaganj
8 rows selected.
```

SQL> SELECT COUNT(empid), name FROM employee GROUP BY name ORDER BY COUNT(empID) DESC;

```
SQL> SELECT COUNT(empid), name FROM employee GROUP BY name ORDER BY COUNT(empID) DESC;

COUNT(EMPID) NAME

4 jb
2 kb
1 cb
1 db
1 eb
1 lb
1 gb
1 hb
1 ib
1 bb
1 ab
1 fb
```

The SQL HAVING Clause

EMPID NAME	ADDRESS	SAL	A
1 ab	ab balaganj	1000	
2 bb	bb balaganj	2000	
3 cb	cb balaganj	3000	
4 db	db balaganj	4000	
5 eb	eb balaganj	5000	
6 fb	fb balaganj	6000	
7 gb	gb balaganj	7000	
8 hb	hb balaganj	8000	
9 ib	hb balaganj	8000	
10 jb	hb balaganj	8000	
10 jb	hb balaganj	8000	
11 jb	hb balaganj	8000	
12 jb	hb balaganj	8000	
12 kb	hb balaganj	8000	
	hb balaganj	8000	
13 kb			
14 lb ows selected.	hb balaganj	8000	
14 lb ows selected. SELECT count(empid), name from employee	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME	hb balaganj		
14 lb DWS selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab	hb balaganj		
14 lb DWS selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb 1 cb	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb 1 cb 1 db	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb 1 cb 1 db 1 db 1 eb	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb 1 cb 1 db 1 db 1 eb 1 fb	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb 1 cb 1 db 1 db 1 eb	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb 1 cb 1 db 1 eb 1 fb 1 fb 1 gb	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb 1 cb 1 db 1 eb 1 fb 1 gb 1 hb	hb balaganj		
14 lb ows selected. SELECT count(empid), name from employee COUNT(EMPID) NAME 1 ab 1 bb 1 cb 1 db 1 eb 1 fb 1 gb 1 fb 1 gb 1 hb 1 ib	hb balaganj		

The HAVING clause was added to SQL because the WHERE keyword cannot be used with aggregate functions.

SQL> SELECT COUNT(empID), name FROM employee GROUP BY name HAVING COUNT(empID) >=4;

SQL> SELECT COUNT(empID), name FROM employee GROUP BY name HAVING COUNT(empID) >=1;

SQL> SELECT COUNT(empID), name FROM employee GROUP BY name HAVING COUNT(empID) >=2;

```
SQL> SELECT COUNT(empID), name FROM employee GROUP BY name HAVING COUNT(empID) >=4;
    COUNT(EMPID) NAME
               4 jb
SQL> SELECT COUNT(empID), name FROM employee GROUP BY name HAVING COUNT(empID) >=1;
    COUNT(EMPID) NAME
               1 ab
               1 bb
               1 cb
               1 db
               1 eb
               1 fb
               1 gb
               1 hb
               1 ib
               4 jb
               2 kb
               1 lb
12 rows selected.
SQL> SELECT COUNT(empID), name FROM employee GROUP BY name HAVING COUNT(empID) >=2;
    COUNT(EMPID) NAME
               4 jb
               2 kb
```

Use Aggregate function in query.

```
SQL>SELECT SUM(personid1) FROM person2;
SQL>SELECT count(personid1) FROM person2;
SQL>SELECT avg(personid1) FROM person2;
SQL> SELECT min(personid1) FROM person2;
SQL> SELECT max(personid1) FROM person2;
```

```
SQL> select * from person2;
       PERSONID1
LASTNAME
FIRSTNAME
ADDRESS
CITY
        PERSONID
             113
dixt
ram
balaganj
             111
             121
awas
rahu
banpu
hardo
             111
             122
awast
rahul
banpur
hardoi
             112
SQL> SELECT SUM(personid1) FROM person2;
  SUM(PERSONID1)
             356
SQL> SELECT avg(personid1) FROM person2;
 AVG(PERSONID1)
118.66666666667
SQL> SELECT count(personid1) FROM person2;
COUNT(PERSONID1)
               3
```

Write commands for Union and Intersection.

Union and intersection

SQL> select name from employee where age >= 20

- 2 union
- 3 select name from employee where age \geq 22;

SQL> select name from employee where age >= 22

- 2 intersect
- 3 select name from employee where age \geq 20;

```
SQL> select name from employee where age >= 20
  2 union
    select name from employee where age >= 22;
NAME
cb
db
eb
fb
gb
hb
ib
jЬ
kb
lb
10 rows selected.
SQL> select name from employee where age >= 22
  2 intersect
    select name from employee where age >= 20;
NAME
eb
fb
gb
hb
ib
jЬ
kb
lb
8 rows selected.
```

Concept of Sub-query.

SELECT personid, firstname, address,city FROM person1 WHERE personid= (SELECT MAX(personid) FROM person1);

SQL>	SELECT	personid,	firstname,	address,city	FROM	person1	WHERE	personid=	(SELECT	MAX(personid)	FROM	person1);
	RSONID													
FIRS	TNAME													
ADDRI	ESS													
CITY														
	112													
ram bala	ganj													

Concept of Data constraints (Unique Key, Primary Key, Foreign Key).

```
CREATE TABLE Person2 (
PersonID1 int ,

LastName varchar(255) unique,

FirstName varchar(255) not null,

Address varchar(255) default 'balaganj',

City varchar(255) default 91,

PersonID int,

primary key(PersonID1),

foreign key(PersonID) references person1(PersonID)

);
```

```
SQL> CREATE TABLE Person2 (
                            PersonID1 int ,
  2
  3
                           LastName varchar(255) unique,
                          FirstName varchar(255) not null,
  4
  5
                            Address varchar(255) default 'balaganj',
                         City varchar(255) default 91,
  6
     PersonID int,
     primary key(PersonID1),
      foreign key(PersonID) references person1(PersonID)
  9
 10
               );
Table created.
SQL> desc person2;
 Name
                                            Null?
                                                     Type
 PERSONID1
                                            NOT NULL NUMBER(38)
 LASTNAME
                                                     VARCHAR2(255)
                                            NOT NULL VARCHAR2(255)
 FIRSTNAME
 ADDRESS
                                                     VARCHAR2(255)
                                                     VARCHAR2(255)
 CITY
                                                     NUMBER(38)
 PERSONID
```

Creating Views and Indexes.

SQL> create view vperson as select personid, firstname, address from person1; SQL> select * from vperson;

```
SQL> create index indxp on person1(firstname);
Index created.
```

```
SQL> create view vperson as
  2 select personid, firstname, address
  3 from person1;
View created.
SQL> select * from vperson;
 PERSONID
FIRSTNAME
ADDRESS
       111
atul
banpur
       112
ram
balaganj
 PERSONID
FIRSTNAME
ADDRESS
SQL> create view vper as
 2 select personid, firstname, address
 3 from person1;
View created.
SQL> drop view vper;
View dropped.
```

Library Management System

Library Books(Accession No, Title, Author, Department, Purchase Date, Price)
Issued Books(Accession No, Borrower)

SQL> create table library_books(acc_no number(4)primary key,title varchar(10),author varchar(15),department varchar(10),p_date date,price number(5,2));

SQL> create table issued_books(acc_no ,borrower varchar(50),foreign key(acc_no)references library_books(acc_no));

- ❖ Identify Primary key and Foreign keys, Create the tables and insert at least 5 records in each table.
 - Primary keys for library_books are Acc_no
 - Foreign key for issued_books is Acc_no

```
SQL> insert into library_books(101,'DBMS','A W,'C.S','01-JUL-2022',750);

SQL> insert into library_books values(102,'SE','K Pressman','C.S','02-JUL-2022,800);

SQL> insert into library_books values(103,'MM,'Mcgrew ','C.S','03-JUL-2022',900);

SQL> insert into library_books values(104,'DM Manohar','C.S','04-JUL2022',900);

SQL> insert into library_books values(105,'BE ','D.N Divedi','C.S','05-JUL-2022',850);
```

```
QL> SELECT * FROM LIBRARY_BOOKS;
 ACC_NO TITLE AUTHOR DEPARTME P_DATE
                                       PRICE
              A.W C.S 01-JUL-22 750
    101 DBMS
    102 S E
              K.PRESSMAN C.S
                            02-JUL-22
                                         800
              Mcgrew C.S
    103 M M
                            03-JUL-22
                                         900
              R MANOHAR C.S
    104 D D
                            04-JUL-22
                                         900
    105 B E
              D N C.S 06-JUL-22
```

```
SQL> insert into issued_books values(101,'Pradeep');
SQL> insert into issued_books values(102,'Amit');
SQL> insert into issued_books values(103,'Sujeet');
SQL> insert into issued_books values(104,'Anujt');
SQL> insert into issued_books values(105,'Aditi');
```

```
SQL> select * from issued_books;

ACC_NO BORROWER

101 Sujeet

102 Amit

103 Pradeep

104 Anup

SQL>
```

❖ Delete the record of book Title "DBMS".

SQL> delete from library_books where Title="Business Econnomics";

❖ Change the Department of the book Titled "Discrete Mathematics" to "CSE".

SQL> update library_books set department="CSE" where Title ="DM ";

```
SQL> update library_books set department ='CSE' where acc_no=101;
 row updated.
SQL> select *from library_books;
   ACC_NO TITLE
                    AUTHOR
                              DEPARTME P_DATE
                                                     PRICE
      101 DBMS
                    A.W
                              CSE
                                       01-JUL-22
                                                       750
                    K.PRESSMAN C.S
      102 S E
                                       02-JUL-22
                                                       800
                                       03-JUL-22
                                                       900
      103 M M
                    Mcgrew
      104 D D
                    R MANOHAR C.S
                                                       900
      105 B E
                    DN
                                       06-JUL-22
                                                       850
```

❖ List all books that belong to "CSE" department

SQL> select *from library books where department ="CSE';

```
SQL> select *from library_books WHERE AUTHOR='A.W';

ACC_NO TITLE AUTHOR DEPARTME P_DATE PRICE

101 DBMS A.W CSE 01-JUL-22 750

SQL>
```

❖ List all books that belong to "CSE" department and are written by author "A.W".

```
SQL> select *from library_books WHERE AUTHOR='A.W';

ACC_NO TITLE AUTHOR DEPARTME P_DATE PRICE

101 DRMS A.W CSE 01-JUL-22 750

SQL> _
```

❖ List all books which have a price less than 900 or purchased between "12/12/2022".

SQL> select * from library_books where (price<900 or p_date>="01-JUL-2022" and p_date <="05-JUL-2022");

```
SQL> select * from library_books where price<900 and P_date<='05-jul-2022';
   ACC_NO TITLE
                     AUTHOR
                               DEPARTME P_DATE
                                                       PRICE
                                        01-JUL-22
      101 DBMS
                     A.W
                               CSE
                                                         750
      102 S E
                     K.PRESSMAN C.S
                                        02-JUL-22
                                                         800
                                        05-JUL-22
      105 B E
                     D N
                               C.S
                                                         850
SQL> _
```

Student Management System

Student (College_roll_no,Std_name,Dob,Address,Marks(Round off to whole number) in Percentage at 10+2 phone no)

Paper Details(Paper code, Name of paper)

Academic Details(College roll no, Paper code, Attendance, Marks n home examination)

Identify primary key and foreign keys.create the table and insert at least 5 records in each table

SQL> create table student(Std_roll_no number(4) primary key,std_name varchar(15),dob date,address varchar(15),marks number(8,2));

```
SQL> desc student;
Name
                                             Null?
                                                       Type
STD_ROLL_NO
                                             NOT NULL NUMBER(4)
STD_NAME
                                                       VARCHAR2(15)
DOB
                                                       DATE
ADDRESS
                                                       VARCHAR2(15)
MARKS
                                                       NUMBER(8,2)
PHONE NO
                                                       NUMBER (10)
```

SQL> create table paper details(paper code number(8) primary key ,name of paper varchar(25));

```
SQL> desc paper_details;

Name

PAPER_CODE

NOT NULL NUMBER(8)

NAME_OF_PAPER

VARCHAR2(25)

SQL>
```

SQL> create table academic_details(std_roll_no number(4),paper_code number(8),attendance varchar(8),marks number(10),foreign key (std_roll_no) references student(std_roll_no),foreign key(paper_code) references paper_details(paper_code));

Primary key: For Student std roll no, for paper details paper code.

Foreign key: std roll no ,paper code for academic details.

Sql>insert into students values ('11','sujeet','03-feb-2002','lucknow','369','79058014')

Sql>insert into students values ('12','Amit','05-may-2003','Piparsand','340','89245364')

Sql>insert into students values ('13','Pradeep','15-aug-2004','Malihabad','524','76549809')

Sql>insert into students values ('14','Anuj','12-apr-2001','Malihabad','349','98759876')

```
SQL> select *from students;
STD ROLL NO STD NAME
                           DOB
                                      ADDRESS
                                                           MARKS
                                                                   PHONE_NO
        11 sujeet
                           03-FEB-02 lucknow
                                                             369
                                                                   79058014
        12 Amit
                           05-MAY-03 Piparsand
                                                             340
                                                                   89245364
                           15-AUG-04 Malihabad
        13 Pradeep
                                                             524
                                                                   76549809
                           12-APR-01 Malihabad
                                                                   98759876
         14 Anuj
                                                             349
```

Sql>insert into paper details values ('101','Paper1')

Sql>nsert into paper_details values ('102','Paper2')

Sql>insert into paper_details values ('103','Paper3')

Sql>insert into paper details values ('104','Paper4')

Sql>insert into paper_details values ('105','Paper5')

```
SQL> select * from paper_details;

PAPER_CODE NAME_OF_PAPER

101 Paper1
102 Paper2
103 Paper3
104 Paper4
105 Paper5
```

insert into academic details values('11','101','p','369')

insert into academic details values('12','102','p','340')

insert into academic details values('13','103','p','524')

insert into academic details values('14','104','p','341')

```
SQL> select * from academic_details;

STD_ROLL_NO PAPER_CODE ATTENDAN MARKS

11 101 p 369
12 102 p 340
13 103 p 524
14 104 p 341
```

Design a query that will return the records (from the second table along with the name of student from the first table, related to students who have more than 75% attendance and more than 60% marks in paper 2.

Sql> select paper_code,name_of_paper,std_name,from paper_detials,students,academic_details

Where paper_details.paper_code=academic_details.paper_code and academic_details.std_roll_no=students.std_roll_no and academic_details.attendance>75 and academic_details.marks>75 and paper_details.name_of_paper='Paper2';

List all students who live in "Lucknow" and have marks greater than 60 in paper 1.

Sql> select std_name from paper_details,students,academic_details where paper_details.paper_code=academic_details.paper_code and students.std_roll_no=academic_details.std_roll_no and academic_details.marks>60 and paper_details.name_of_paper='Paper1';

Select sum(marks)from academic_details.

Sql>Select sum(marks) from academic details.

```
SQL> select sum(marks) from academic_details;
SUM(MARKS)
------
1150
SQL>
```

Customer Management System

Customer(Cust_id,Email,Name,Phone,Referrer_id).

Bicycle(Bicycle_id,Date_purchased,Color,Cust_id, Model_no).

Bicycle model(Model no, Manufacture, Style).

Service(Start date,Bicycle id,End date).

A) Identify primary and foreign keys. Create the tables and insert at least 5 records in each table.

SQL> create table Bicycle(Bicycle_id int primary key,Date_of_purchased date,Color varchar(20),Cust_id int,Model_no int,foreign key (Cust_id) references Customer(cust_id),foreign key(Model_no)references Bicycle_model(Model_no));

SQL> create table Bicycle_model(Model_no int primary key, Manufacturer varchar(50),Style varchar(35));

create table Customer(Cust_id int primary key ,Email varchar(30) unique ,Name varchar(25),Phone int,Referrerid int);

- **Primary key**:- Bicycle_id for Bicycle and Cust_id for Customer and Model_no for cycle_model.
- Foreign Key: Cust id ,Model_no for Bicycle.

```
SQL> insert into Customer values (212,'sujeet7@gmail.com','Sujeet',790580,20); SQL> insert into Customer values (213,'tut7@gmail.com','Ajeet',980580,10); SQL> insert into Customer values (214,'rut7@gmail.com','Amit',890580,15); SQL> insert into Customer values (215,'st7@gmail.com','Smit',832580,85); SQL> insert into Customer values (205,'stt7@gmail.com','Satu',832380,715);
```

SQL> select *from Customer;									
CUST_ID		NAME	PHONE						
REFERRERID									
212 20	sujeet7@gmail.com	Sujeet	790580						
213 10	tut7@gmail.com	Ajeet	980580						
214 15	rut7@gmail.com	Amit	890580						
CUST_ID		NAME	PHONE						
REFERRERID									
215 85	st7@gmail.com	Smit	832580						
205 715	stt7@gmail.com	Satu	832380						

SQL> insert into Bicycle_model values (77,'Honda','Ranger'); SQL> insert into Bicycle_model values (87,'Honda','Ranger'); SQL> insert into Bicycle_model values (87,'Honda','Ranger'); SQL> insert into Bicycle_model values (197,'Anvo',' Sports'); SQL> insert into Bicycle_model values (117,'Hero',' Sports');

Create the new table Service Start date and End date of the Service.

```
SQL> create table Service(Start_date date,Bicycle_id int primary key,End_date date);
SQL> insert into Service values('12/jan/2000',100,'12/jan/2001');
SQL> insert into Service values('13/jan/2000',101,'13/jan/2001');
SQL> insert into Service values('14/jan/2000',102,'14/jan/2001');
SQL> insert into Service values('15/jan/2000',103,'15/jan/2001');
SQL> insert into Service values('16/jan/2000',104,'16/jan/2001');
```