§ 2. Динамика

В задачах этого раздела используются данные таблиц 3 — 5 из приложения. Кроме того, следует учесть замечание к § 1.

2.1. Какой массы m_{χ} балласт надо сбросить с равномерно опускающегося аэростата, чтобы он начал равномерно подниматься с той же скоростью? Масса аэростата с балластом m = 1600 кг, подъемная сила аэростата F = 12 кН. Считать силу сопротивления F_{conp} воздуха одной и той же при подъеме и спуске.

Решение:

По второму закону Ньютона $\begin{cases} \vec{F} + m\vec{g} + \vec{F}_{\text{conp}} = 0; \\ \vec{F} + \vec{F}_{\text{conp}} + (m - m_x)\vec{g} = 0, \\ \text{или в проекциях на ось } y \\ \{F - mg + F_{\text{conp}} = 0; \\ F - F_{\text{conp}} - (m - m_x)g = 0. \end{cases}$ Здесь первое уравнение опи-

сывает опускающийся аэростат, второе — поднимающийся. Раскрыв скобки и сложив первое уравнение со вторым, получим $m_x = \frac{2(mg - F)}{2} = \frac{1}{2}$

$$=2\left(m-\frac{F}{g}\right); \ m_x=752 \text{ kg}.$$

2.2. К нити подвешен груз массой m = 1 кг. Найти силу натяжения нити T, если нить с грузом: a) поднимать с ускорением $a = 5 \text{ м/c}^2$; б) опускать с тем же ускорением $a = 5 \text{ м/c}^2$.

В обоих случаях, а и б, применим второй закон Ньютона.

- а) $\vec{T} + m\vec{g} = m\vec{a}$ или T mg = ma, отсюда $T = ma_1 + mg = m(a_1 + g)$; T = 14.8 H. 6) $\vec{T} + m\vec{g} = m\vec{a}$ или $-mg + T = -ma_2$, от
 - куда $T = mg ma_1 = m(g a_2)$; T = 4.8 H.
- 2.3. Стальная проволока некоторого диаметра выдерживает силу натяжения T = 4.4 кH. С каким наибольшим ускорением можно поднимать груз массой m = 400 кг, подвешенный на этой проволоке, чтобы она не разорвалась.

Решение:

ырому закону Ньютона $\vec{T}+m\vec{g}=m\vec{a}$ или T-mg=ma, откуда $a=\frac{T-mg}{m}$; $a=12\,\mathrm{m/c}^2$.

2.4. Масса лифта с пассажирами $m = 800 \, \text{кг.}$ С каким ускорением а и в каком направлении движется лифт, если известно, что сила натяжения троса, поддерживающего лифт: a) T = 12 kH; 6) T = 6 kH.

Решение:

По второму закону Ньютона $\vec{T} + m\vec{g} = m\vec{a}$ или T - mg = ma(см. рис. к задаче 2.3), откуда a = T/m - g. a) $a = 5.2 \text{ m/c}^2$; б) $a = -2.3 \text{ м/c}^2$.

2.5. К нити подвешена гиря. Если поднимать гирю с ускорением $a_1 = 2 \text{ м/c}^2$, то сила натяжения нити T_1 будет вдвое меньше 44

той силы натяжения T_2 , при которой нить разорвется. С каким ускорением а, надо поднимать гирю, чтобы нить разорвалась?

Решение:

Запишем второй закон Ньютона в скалярном виде для двух случаев: $T_1 - mg = ma_1 - (1)$; $T_2 - mg = ma_2 - (2)$ (см. рис. к задаче 2.3). Поскольку $T_2 = 2T_1$, то уравнение (2) можно переписать $2T_1 - mg = ma_2$, откуда $T_1 = ma_2 - ma_1 =$ $= m(a_2 - a_1)$. Подставив выражение для T_1 в (1), получим $m(a_2-a_1)-mg=ma_1$, откуда $a_2=2a_1+g$; $a_2=13.8$ м/с².

2.6. Автомобиль массой $m = 1020 \,\mathrm{kr}$, двигаясь равнозамедленно, остановился через время t = 5 с, пройдя путь s = 25 м. Найти начальную скорость v_0 автомобиля и силу торможения F.

Решение:

По второму закону Ньютона $\vec{F} = m\vec{a}$, или в проекции на ось $\vec{v}_0 \stackrel{\vec{a}}{=} \vec{v} = 0$ x: F = ma — (1). Уравнения $x \stackrel{\vec{F}}{=} \vec{v}$ движения при равнозамедленном автомобиля имеют движении

$$\vec{F} \xrightarrow{\vec{V}_0} \vec{\vec{v}} = 0$$

вид: $S = v_0 t - \frac{at^2}{2}$ — (2); $v = v_0 - at$ — (3). Поскольку конечная скорость автомобиля v = 0, то из (3) начальная скорость автомобиля $v_0 = at$. Подставляя это выражение в (2), найдем $a = \frac{2S}{t^2}$ — (4). Подставив (4) в (1), получим: $F = \frac{2Sm}{r^2}$; F = 2.04 kH.

2.7. Поезд массой m = 500 т, двигаясь равнозамедленно, в времени t = 1 мин уменьшает свою скорость $v_1 = 40 \text{ км/ч до } v_2 = 28 \text{ км/ч}$. Найти силу торможения F.

Запишем второй закон Ньютона в виде: $\vec{F} = \frac{\Delta \vec{p}}{\Delta t}$, откуда $\Delta \vec{p} = \vec{F} \Delta t$ или $m \Delta \vec{v} = \vec{F} \Delta t$. В проекции на направление движения последнее уравнение можно записать в виде $m(v_2-v_1)=-F\Delta t$. Отсюда, при $\Delta t=t$, $F=m\frac{v_1-v_2}{t}$. Подставляя числовые данные, получим $F = 27.5 \cdot 10^3 \, \text{H}$.

2.8. Вагон массой m = 20 т движется с начальной скоростью $v_0 = 54$ км/ч. Найти среднюю силу \overline{F} , действующую на вагон, если известно, что вагон останавливается в течение времени: a) t = 1 мин 40 c; б) t = 10 c; в) t = 1 c.

Решение:

Имеем $F = m \frac{v_1 - v_2}{t}$ (см. задачу 2.7). В нашем случае $v_1 = v_0$, $v_2 = 0$, т.е. $F = \frac{mv_0}{t}$. Подставляя числовые данные, получим: a) $\overline{F} = 3 \, \text{кH}$; б) $\overline{F} = 30 \, \text{кH}$; в) $\overline{F} = 300 \, \text{кH}$.

2.9. Какую силу F надо приложить к вагону, стоящему на рельсах, чтобы вагон стал двигаться равноускоренно и за время t = 30 с прошел путь s = 11 м? Масса вагона m = 16 т. Во время движения на вагон действует сила трения $F_{\rm TD}$, равная 0,05 действующей на него силы тяжести тад.

Решение:

По второму закону Ньютона $\vec{F} + \vec{F}_{\text{тр}} = m\vec{a}$ или в проекции на $\vec{F} + \vec{F}_{\text{тр}} = m\vec{a}$, откуда $\vec{F} = ma + F_{\text{тр}}$. Поскольку движение равноускоренное и $v_0=0$, то путь $S=at^2/2$, откуда $a=\frac{2S}{t^2}$. По условию $F_{\rm rp}=0.05mg$, тогда $F=m\cdot\frac{2S}{t^2}+0.05mg$; F=8.2 кH.

2.10. Поезд массой m = 500 т после прекращения тяги паровоза под действием силы трения $F_{\tau p} = 98$ кН останавливается через время t = 1 мин. С какой скоростью v_0 шел поезд?

Решение:

Имеем
$$F_{\rm \tau p} = \frac{m v_0}{t}$$
 (см. задачу 2.8), отсюда $v_0 = \frac{F_{\rm \tau p} \cdot t}{m}$; $v_0 = 11,75$ м/с.

2.11. Вагон массой m = 20 т движется равнозамедленно, имея начальную скорость $v_0 = 54$ км/ч и ускорение a = -0.3 м/с². Какая сила торможения F действует на вагон? Через какое время t вагон остановится? Какое расстояние s вагон пройдет до остановки?

Решение:

По второму закону Ньютона $\vec{F}=m\vec{a}$, или в проекции на направление движения -F=-ma, откуда сила торможения по абсолютной величине равна F=6 кН. Ускорение вагона $a=\frac{v-v_0}{t}$, но v=0, следовательно, $a=-\frac{v_0}{t}$, откуда

 $t=-v_0/a$; t=50 с. Пройденный путь, с учетом a<0, найдем по формуле $s=vt-at^2/2$; s=375 м.

2.12. Тело массой m=0.5 кг движется прямолинейно, причем зависимость пройденного телом пути s от времени t дается уравнением $s=A-Bt+Ct^2-Dt^3$, где $C=5\,\mathrm{m/c^2}$ и $D=1\,\mathrm{m/c^3}$. Найти силу F, действующую на тело в конце первой секунды движения.

По второму закону Ньютона F = ma, где $a = d^2s/dt^2$. $\frac{ds}{dt} = -B + 2Ct - 3Dt^2; \quad \frac{d^2s}{dt^2} = 2C - 6Dt = a \quad \text{отсюда} \quad F = m \times (2C - 6Dt); \quad F = 2 \text{ H}.$

2.13. Под действием силы F = 10 Н тело движется прямолинейно так, что зависимость пройденного телом пути s от времени t дается уравнением $s = A - Bt + Ct^2$, где $C = 1 \text{ m/c}^2$. Найти массу m тела.

Решение:

По второму закону Ньютона $\vec{F}=m\vec{a}$ или F=ma, где $a=\frac{d^2s}{dt^2}\cdot\frac{ds}{dt}=-B+2Ct$; $\frac{d^2s}{dt^2}=2C$, отсюда $F=m\cdot 2C$, следовательно, m=F/2C; m=5 кг.

2.14. Тело массой m=0.5 кг движется так, что зависимость пройденного телом пути s от времени t дается уравнением $s=A\sin\omega\cdot t$, где A=5 см и $\omega=\pi$ рад/с. Найти силу F, действующую на тело через время t=(1/6)с после начала движения.

Решение:

По второму закону Ньютона F=ma, где $a=\frac{d^2s}{dt^2}$. Первая производная $\frac{ds}{dt}=A\omega\cos\omega t$; вторая производная $\frac{d^2s}{dt^2}=$ $=-A\omega^2\sin\omega t=a$, отсюда $F=-mA\omega^2\sin\omega t$; F=-0.125 H.

2.15. Молекула массой $m = 4,65 \cdot 10^{-26}$ кг, летящая по нормали к стенке сосуда со скоростью v = 600 м/с, ударяется о стенку и упруго отскакивает от нее без потери скорости. Найти импульс силы $F\Delta t$, полученный стенкой во время удара.

По закону сохранения импульса $F\Delta t = (mv + 0) - (-mv + 0)$, откуда $F\Delta t = 2mv$; $F\Delta t = 5.6 \cdot 10^{-23} \, \text{H·c}$.

2.16. Молекула массой $m = 4,65 \cdot 10^{-26} \, \mathrm{kr}$, летящая со скоростью $v = 600 \, \mathrm{m/c}$, ударяется о стенку сосуда под углом $\alpha = 60^{\circ}$ к нормали и упруго отскакивает от нее без потери скорости. Найти импульс силы $F\Delta t$, полученный стенкой во время удара.

Решение:

По второму закону Ньютона $F\Delta t = m\Delta v$. Считая положительным направление нормали, внешней к стенке, получим: $\Delta v = v_2 \cos \alpha - (-v_1 \cos \alpha)$; $\Delta v = v_2 \cos \alpha + v_1 \cos \alpha$. Таким образом, получим $F\Delta t = 2mv\cos \alpha$; $F\Delta t = 2.8 \cdot 10^{-23} \, \text{H·c}$.

2.17. Шарик массой m = 0,1 кг, падая с некоторой высоты, ударяется о наклонную плоскость и упруго отскакивает от нее без потери скорости. Угол наклона плоскости к горизонту $\alpha = 30^{\circ}$. За время удара плоскость получает импульс силы $F\Delta t = 1,73 \text{ H} \cdot \text{c}$. Какое время t пройдет от момента удара шарика о плоскость до момента, когда он будет находиться в наивысшей точке траектории?

Решение:

По закону сохранения импульса $F\Delta t = m\Delta v$, где $\Delta v = v_1 \cos \alpha - (-v_2 \cos \alpha);$ $\Delta v = \cos \alpha (v_1 + v_2);$ $v_1 = v_2 = v$, отсюда $\Delta v = 2v \cos \alpha$. Тогда $F\Delta t = 2mv \cos \alpha$ — (1). Из рисунка видно, что $v_y = v \sin \left(\frac{\pi}{2} - 2\alpha\right) - gt =$

 $=v\cos 2\alpha-gt$; $v_y=0$ в верхней точке, следовательно, $v\cos 2\alpha=gt$, откуда $t=v\cos 2\alpha/g$. Из (2) найдем $v=\frac{F\Delta t}{2m\cos\alpha}$, тогда $t=\frac{F\Delta t\cos 2\alpha}{2mg\cos\alpha}$; t=0.51 с.

2.18. Струя воды сечением $S = 6 \text{ см}^2$ ударяется о стенку под углом $\alpha = 60^\circ$ к нормали и упруго отскакивает от нее без потери скорости. Найти силу F, действующую на стенку, если известно, что скорость течения воды в струе v = 12 м/c.

Решение:

(См. рис. к задаче 2.16) За время Δt о стенку ударяется масса воды $m = lS\rho = Sv\Delta t\rho$ — (1), где S — поперечное сечение струи, ρ — плотность воды. По закону сохранения импульса $F\Delta t = m\Delta v$, откуда $F = \frac{m\Delta v}{\Delta t}$ — (2). Имеем $\Delta v = v_1 \cos\alpha - (-v_2 \cos\alpha) = \cos\alpha(v_1 + v_2)$ (см. задачу 2.16). По условию $v_1 = v_2 = v$, отсюда $\Delta v = 2v\cos\alpha$ — (3). Подставляя (1) и (3) в (2), получим $F = \frac{Sv\Delta t\rho \cdot 2v\cos\alpha}{\Delta t} = 2Sv^2\rho\cos\alpha$; F = 86 H.

2.19. Трамвай, трогаясь с места, движется с ускорением $a = 0.5 \text{ м/c}^2$. Через время t = 12 с после начала движения мотор выключается и трамвай движется до остановки равнозамедленно. Коэффициент трения на всем пути k = 0.01. Найти наибольшую скорость v и время t движения трамвая. Каково его ускорение a при его равнозамедленном движении? Какое расстояние s пройдет трамвай за время движения?

Решение:

Очевидно, что наибольшей скорости трамвай достигнет в момент времени $t_1 = 12\,\mathrm{c}$, его скорость: v = at; $v = 0.5 \cdot 12 = 6\,\mathrm{m/c}$. Пройденный путь при равноускоренном

лвижении: $s_1 = \frac{a_1 t_1^2}{2}$ — (1), а при равнозамедленном $s_2 = v t_2 - \frac{a_2 t_2^2}{2}$ — (2). Согласно второму закону Ньютона

$$-F_{\text{TP}} = kmg = ma_2$$
; $a_2 = \frac{-kmg}{m} = kg$; $a_2 = -0.098 \text{ m/c}^2$. Ha

втором участке пути: $v = -a_2 t_2$, отсюда $t_2 = \frac{-v}{a_2}$; $t_2 = 61.2$ с.

Тогда время движения $t = t_1 + t_2$; t = 73.2 с. Из уравнения (1) $s_1 = 36$ м. Из уравнения (2) $s_2 = 183.7$ м. Весь путь $s = s_1 + s_2$; s = 219.7 м.

2.20. На автомобиль массой m=1 т во время движения действует сила трения $F_{\tau p}$, равная 0,1 действующей на него силе тяжести mg. Какова должна быть сила тяги F, развиваемая мотором автомобиля, чтобы автомобиль двигался: а) равномерно; б) с ускорением a=2 м/с?

Решение:

- а) Движение равномерное a=0, следовательно уравнение движения в соответствии со вторым законом Ньютона: $F-F_{\rm rp}=0$, отсюда $F-F_{\rm rp}=0.1mg$; $F=980\,{\rm H}.$ б) По второму закону Ньютона: $F-F_{\rm rp}=ma$, отсюда $F=ma+F_{\rm rp}=m\cdot (a+0.1g)$; $F=2.98\,{\rm kH}.$
- **2.21.** Какой угол α с горизонтом составляет поверхность бензина в баке автомобиля, движущегося горизонтально с ускорением $a = 2,44 \text{ m/c}^2$?

Решение:

В неинерциальных системах отсчета (НИСО) второй закон Ньютона не выполняется. Запишем уравнение движения бензина в баке в НИСО

$$0 = m\vec{g} + \vec{N} + \vec{F}_i$$
, где $F_i = -ma$. В проекции на ось x : $0 = N \sin \alpha - ma$. В проекции на ось y : $0 = mg - N \cos \alpha$, отсюда $mg = N \cos \alpha$; $N = \frac{mg}{\cos \alpha}$; $\frac{mg \sin \alpha}{\cos \alpha} = ma$, следовательно, $a = g \cdot tg\alpha$; $\alpha = arctg \frac{a}{g}$; $\alpha = arctg \frac{2.44}{9.8} \approx 14^\circ$.

2.22. Шар на нити подвешен к потолку трамвайного вагона. Вагон тормозится, и его скорость за время t = 3 с равномерно уменьшается от $v_1 = 18 \text{ км/ч}$ до $v_2 = 6 \text{ км/ч}$. На какой угол отклонится при этом нить с шаром?

Решение:

Рассмотрим положение шара отнотассмотрим положение сительно системы отсчета, связанной с потолком вагона. Поскольку вагон движется с ускорением, то система ремнершивльной. Уравнеявляется неинерциальной. Уравне-

ние движения в векторной форме: $\vec{T} + m\vec{g} + \vec{F}_{\mu} = 0$ — (1), где $F_{u} = -ma$, тогда уравнение (1) в проекциях на ось x: $T \sin \alpha = ma$ — (2) и на ось y: $T \cos \alpha - mg = 0$ — (3).

Разделив (2) на (3), получим $tg\alpha = \frac{a}{g}$, откуда $\alpha = arctg\frac{a}{g}$

или, учитывая, что $a = \frac{\Delta v}{t}$, $\alpha = arctg(\Delta v/gt)$. Подставляя числовые данные, получим $\alpha = 6^{\circ}30'$.

2.23. Вагон тормозится, и его скорость за время t = 3.3 с равномерно уменьшается от $v_1 = 47.5 \text{ км/ч}$ до $v_2 = 30 \text{ км/ч}$. Каким должен быть предельный коэффициент трения к между чемоданом и полкой, чтобы чемодан при торможении начал скользить по полке?

Решаем задачу в неинерциальной системе отсчета. Уравнение движения $0 = \vec{F}_{\rm rp} + \vec{F}_i$ или в проекции на ось x: $0 = F_{\rm rp} - ma$, где $a = (v_1 - v_2)/t$; $F_{\rm rp} = kmg$. Тогда $kmg = \frac{m(v_1 - v_2)}{t}$; $k = \frac{v_1 - v_2}{gt}$. Подставляя числовые данные, получим: k = 0.15. Т.е. при $k \le 0.15$ чемодан начнет скользить по полке.

2.24. Канат лежит на столе так, что часть его свешивается со стола, и начинает скользить тогда, когда длина свешивающийся части составляет 1/4 его длины. Найти коэффициент трения k каната о стол.

Решенне:

Обозначим силу тяжести, действующую на единицу длины каната, через $m_l g$. Тогда сила тяжести свешивающейся части каната равна $\frac{m_l g}{4}$. Эта сила тяжести уравновешивается силой трения $F_{\rm tp}$, действующей на ту часть каната, которая лежит на столе: $F_{\rm tp} = \frac{3km_l gl}{4}$. Таким образом, $\frac{m_l gl}{4} = \frac{3km_l gl}{4}$, откуда k = 0.33.

2.25. На автомобиль массой m=1 т во время движения действует сила трения $F_{\tau p}$, равная 0,1 действующей на него силы тяжести mg. Найти силу тяги F, развиваемую мотором автомобиля, если автомобиль движется с постоянной скоростью: а) в гору с уклоном 1 м на каждые 25 м пути; б) под гору с тем же уклоном.

Уравнение движения автомобиля в векторной форме $m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{\text{тр}} + \vec{F}$; v = const, следовательно a = 0. а) В проекции на ось x: $0 = -mg \, sin \, \alpha - F_{\text{тр}} + F$, на ось y:

 $0=N-mg\cos\alpha$, где $\sin\alpha=\frac{h}{l}=$ =0.04, $\cos\alpha=0.999$, откуда $N=mg\cos\alpha$. $F_{\rm Tp}=kN=kmg\times \times \cos\alpha$; $F=mg\sin\alpha+kmg\cos\alpha$; $F=mg(\sin\alpha+k\cos\alpha)$ или F=1.37 кН. б) В проекции на ось x: $0=F+mg\sin\alpha-F_{\rm Tp}$, на ось

y: $N = mg \cos \alpha$. $F = F_{\tau p} - mg \sin \alpha$; $F = kmg \cos \alpha - mg \times \sin \alpha$; $F = mg(k \cos \alpha - \sin \alpha)$. F = 590 H.

2.26. На автомобиль массой m=1 т во время движения действует сила трения $F_{\tau p}$, равная 0,1 действующей на него силе тяжести mg. Какова должна быть сила тяги F, развиваемая мотором автомобиля, если автомобиль движется с ускорением a=1 м/с² в гору с уклоном 1 м на каждые 25 м пути.

Решение:

Зададим направление оси x вдоль наклонной плоскости и запишем второй закон Ньютона в проекции на эту ось: $F-mg\sin\alpha-F_{\rm rp}=$ = ma— (1), где $\sin\alpha=h/l$ — (2). Из уравнения (1) $F=ma+mg\times s\sin\alpha+F_{\rm rp}$ или, с учетом уравне-

ния (2), сила тяги, развиваемая мотором автомобиля равна $F = m \left(a + \frac{hg}{l} + 0.1g \right); \ F = 2.37 \ \text{кH}.$

2.27. Тело лежит на наклонной плоскости, составляющей с горизонтом угол $\alpha = 4^{\circ}$. При каком предельном коэффициенте трения k тело начнет скользить по наклонной плоскости? С каким ускорением a будет скользить тело по плоскости, если коэффициент трения k = 0.03? Какое время t потребуется для прохождения при этих условиях пути s = 100 м? Какую скорость v будет иметь тело в конце пути?

Решение:

Для покоящегося тела по второму закону Ньютона в проекции на ось x имеем $mg \sin \alpha - F_{\rm tp} = 0$, где

rде \ddot{a} \ddot{F}_{π} \ddot{g}

 $F_{Tm} \ge kmg$. Отсюда $mg \sin \alpha = kmg$; $k = \sin \alpha$; $k \le 0.07$. При равноуско-

ренном движении по второму закону Ньютона: $mg \sin \alpha - F_{\tau p} = ma$ или $\sin \alpha - kmg = ma$, откуда $a = g(\sin \alpha - k)$;

 $a=0.39 \text{ м/c}^2$. Пройденный путь $s=\frac{at^2}{2}$, откуда $t=\sqrt{\frac{2s}{a}}$; t=22.6 c. Скорость v=at; v=8.8 м/c.

2.28. Тело скользит по наклонной плоскости, составляющей с горизонтом угол $\alpha = 45^{\circ}$. Пройдя путь s = 36.4 см, тело приобретает скорость v = 2 м/с. Найти коэффициент трения k тела о плоскость.

Решение:

См. рисунок к задаче 2.27. Запишем второй закон Ньютона в проекциях на ось $x: mg \sin \alpha - F_{\rm rp} = ma$, или

$$mg \sin \alpha - kmg \cos \alpha = ma$$
, откуда $k = \frac{g \sin \alpha - a}{g \cos \alpha}$ — (1).

Скорость
$$v = at$$
, откуда $t = \frac{v}{a}$ — (2). Пройденный путь $s = \frac{at^2}{2}$, с учетом (2) $s = \frac{av^2}{2a^2} = \frac{v^2}{2a}$, откуда $a = \frac{v^2}{2 \cdot s}$ — (3). Подставив (3) в (1) получим $k = \frac{g \sin \alpha - v^2 / 2s}{g \cos \alpha}$; $k = \frac{2gs \cdot \sin \alpha - v^2}{2gs}$; $k = tg\alpha - \frac{v^2}{2gs \cdot \cos \alpha}$; $k = 0,2$.

2.29. Тело скользит по наклонной плоскости, составляющей с горизонтом угол $\alpha=45^\circ$. Зависимость пройденного пути s от времени t дается уравнением $s=Ct^2$, где C=1,73 м/с². Найти коэффициент трения k тела о плоскость.

Решение:

См. рисунок к задаче 2.27. Ускорение можно найти как вторую производную пути по времени. $a=\frac{d^2s}{dt^2}=3,46$. По второму закону Ньютона $mg\sin\alpha-F_{\rm tp}=ma$. Поскольку $F_{\rm tp}=kmg\cos\alpha$, то $mg\sin\alpha-kmg\cos\alpha=ma$ откуда $k=\frac{mg\sin\alpha-ma}{mg\cos\alpha}$; $k=\frac{g\sin\alpha-a}{g\cos\alpha}$; k=0,5.

2.30. Две гири с массами $m_1 = 2$ кг и $m_2 = 1$ кг соединены нитью и перекинуты через невесомый блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити T. Трением в блоке пренебречь.

Решение:

Предположим, что нить невесома и нерастяжима. Выберем элемент нити Δm и запишем уравнение движения в проекции на ось $y:\Delta ma=T-T_x$. Поскольку $\Delta m=0$, то $T=T_x$, т. е. сила натяжения нити во всех точках ее одинакова. Ускорения движения грузов тоже одинаковы, т. к. из-за 56

нерастяжимости нити за одно и то же время грузы проходят

один путь, т. е.
$$S_1 = \frac{a_1 t^2}{2}$$
;

$$S_2 = \frac{a_2 t^2}{2}$$
; $S_1 = S_2$, следова-

тельно, $a_1 = a_2$. Но направление векторов \vec{a}_1 и \vec{a}_2

противоположны. Запишем второй закон Ньютона для первой и второй гири в проекциях на ось y:

$$\begin{cases}
 m_1 g - T = m_1 a & -(1); \\
 m_2 g - T = -m_2 a & -(2).
\end{cases}$$
Вычтем (2) из (1):

$$a(m_1 + m_2) = g(m_1 - m_2)$$
, отсюда $a = \frac{g(m_1 - m_2)}{m_1 + m_2}$ — (3).

Подставим (3) в (1) $\frac{m_1 g(m_1 - m_2)}{m_1 + m_2} = m_1 g - T$, следовательно,

$$T = m_1 g \cdot \left(1 - \frac{m_1 - m_2}{m_1 + m_2}\right);$$
 $T = m_1 g \cdot \left(\frac{m_1 + m_2 - m_1 + m_2}{m_1 + m_2}\right);$

$$T = m_1 g \cdot \left(\frac{2m_2}{m_1 + m_2}\right) = \frac{2gm_1 m_2}{m_1 + m_2}$$
. Подставляя числовые дан-

ные, получим: T = 13 H; $a = 3.27 \text{ м/c}^2$.

2.31. Невесомый блок укреплен на конце стола. Гири 1 и 2 одинаковой массы $m_1 = m_2 = 1\,\mathrm{kr}$ соединены нитью и перекинуты через блок. Коэффициент трения гири 2 о стол k = 0,1. Найти ускорение a, с которым движутся гири, и силу натяжения нити T. Трением в блоке пренебречь.

Решение:

Запишем второй закон Ньютона для обоих тел в проекциях на направление их движения: $mg - T_1 = m_1 a$ — (1);

$$T_2 - F_{\text{тр}} = m_2 a$$
 — (2). Имеем $T_1 = T_2 = T$ (см. задачу 2.30). Сложив (1) и (2), с учетом того, что $F_{\text{тр}} = km_2 g$, получим $m_1 g - kmg = a(m_1 + m_2)$, откуда найдем $a = g \frac{m_1 - km_2}{m_1 + m_2}$ — (3); $a = 4.4 \text{ м/c}^2$. Подставим (3) в (1) и выразим $T: T = m_1 (g - a);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right);$ $T = m_1 g \times \left(1 - \frac{m_1 - km_2}{m_1 + m_2}\right)$

 $\times \frac{m_2(1+k)}{m_1+m_2}$; $T=g\frac{m_1m_2(1+k)}{m_1+m_2}$. Подставив числовые дан-

ные, получим: $T_1 = T_2 = \frac{m_1 m_2 (1+k)g}{m_1 + m_2} = 5.4$ H.

2.32. Невесомый блок укреплен в вершине наклонной плоскости, составляющей с горизонтом угол $\alpha=30^\circ$. Гири 1 и 2 одинаковой массы $m_1=m_2=1$ кг соединены нитью и перекинуты через блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити T. Трением гири о наклонную плоскость и трением в блоке пренебречь.

Решение:

Пусть $m_1 = m_2 = m$. Запишем уравнение второго закона Ньютона для первой и второй гири в проекциях на направление их движения с учетом $T_1 = T_2 = T$ (см. задачу 2.30): $\begin{cases} mg - T = ma & -(1); \\ T - mg \sin \alpha = ma & -(2). \end{cases}$ (1)

имеем: T = m(g - a) — (3). Подставив (3) в (2), получим: $g(1 - \sin \alpha) = 2a$, откуда $a = g(1 - \sin \alpha)/2$. Подставив числовые значения, получим: $a = 2.45 \text{ m/c}^2$ и T = 7.35 H.

2.33. Решить предыдущую задачу при условии, что коэффициент трения гири 2 о наклонную плоскость k=0,1.

Решение:

Пусть при данном значении k тело скользит. Уравнение второго закона Ньютона для первой гири останется неизменным, а в уравнении для второй появится сила трения: $F_{Tm} = kmg \cos \alpha$;

$$\begin{cases} mg - T = m\alpha & -(1); \\ T - mg \sin \alpha - F_{\tau p} = m\alpha & -(2). \end{cases}$$

Выразим из (1) T: T = mg - ma — (3). Подставив (3) в (2), найдем $a: mg - ma - mg(\sin\alpha + k\cos\alpha) = ma$; $g(1 - \sin\alpha - k\cos\alpha) = 2a$; $a = g(1 - \sin\alpha - k\cos\alpha)/2$. Из (3) T = m(g - a). Подставив числовые значения, получим: $a = 2.02 \text{ м/c}^2$; T = 1(9.8 - 2.02) = 7.78 H.

2.34. Невесомый блок укреплен в вершине двух наклонных плоскостей, составляющих с горизонтом углы $\alpha=30^\circ$ и $\beta=45^\circ$. Гири 1 и 2 одинаковой массы $m_1=m_2=1\,\mathrm{kr}$ соединены нитью и перекинуты через блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити T. Трением гирь 1 и 2 о наклонные плоскости, а также трением в блоке пренебречь.

Решение:

Пусть $m_1 = m_2 = m$. Тогда по второму закону Ньютона в проекциях на направления движения гирь имеем:

$$\begin{cases} mg \sin \beta - T = ma & -(1); \\ T - mg \sin \alpha = ma & -(2). \end{cases}$$
 Сложив (1) и (2), получим:
$$mg(\sin \beta - \sin \alpha) = 2ma, \text{ откуда } a = \frac{g(\sin \beta - \sin \alpha)}{2}. \text{ Из (2):}$$

$$T = ma + mg \sin \alpha; \qquad T = \frac{mg(\sin \beta - \sin \alpha)}{2} + mg \sin \alpha;$$

$$T = mg \frac{(\sin \beta + \sin \alpha)}{2}. \text{ Подставив числовые значения, получим: } a = 1,03 \text{ м/c}^2 \text{ и } T = 5,9 \text{ H.}$$

2.35. Решить предыдущую задачу при условии, что коэффициенты трения гирь 1 и 2 о наклонные плоскости $k_1 = k_2 = 0,1$. Показать, что из формул, дающих решение этой задачи, можно

получить, как частные случаи, решения задач 2.30 — 2.34.

Решение:

Пусть при данном значении k гири скользят. С учетом силы трения уравнение второго закона Ньютона в проекциях на направление их движения запишется в виде:

$$\begin{cases} m_1 g \sin \beta - T_1 - F_{\tau p} = m_1 a, \\ T_2 - m_2 g \sin \alpha - F_{\tau p} = m_2 a; \end{cases}$$

или
$$\begin{cases} m_1 g \sin \beta - T_1 - k m_1 g \cos \beta = m_1 a - (1), \\ T_2 - m_2 g \sin \alpha - k m_2 g \cos \alpha = m_2 a - (2). \end{cases}$$
 Так как
$$T_1 = T_2, \quad \text{то сложив } (1) \quad \text{и } (2) \quad \text{получим:}$$

$$m_1 g \sin \beta - m_2 g \sin \alpha - k m_1 g \cos \beta - k m_2 g \cos \alpha = a (m_1 + m_2);$$

$$m_1 g (\sin \beta - k \cos \alpha) - m_2 g (\sin \beta + k \cos \alpha) = a (m_1 + m_2),$$
 откуда
$$a = g \frac{m_1 (\sin \beta - k \cos \beta) - m_2 (\sin \alpha + k \cos \alpha)}{m_1 + m_2} - (3).$$

Из (2) найдем: $T_2 = m_2 a + m_2 g \sin \alpha + k m_2 g \cos \alpha$, подставив 60

в это выражение (3), получим:
$$T_2 = m_2 g \times \frac{m_1 \left(\sin \beta - k \cos \beta \right) - m_2 \left(\sin \alpha + k \cos \alpha \right)}{m_1 + m_2} + m_2 g \left(\sin \alpha \cos \alpha \right);$$

$$T_2 = m_2 g \frac{m_1 \left(\sin \beta - k \cos \beta \right) - \left(\sin \alpha + k \cos \alpha \right) \left(m_2 - m_1 - m_2 \right)}{m_1 + m_2};$$

$$T_2 = g m_1 m_2 \frac{\sin \beta - k \cos \beta + \sin \alpha + k \cos \alpha}{m_1 + m_2};$$

$$T_2 = g m_1 m_2 \frac{\sin \alpha + \sin \beta + k \left(\cos \alpha - \cos \beta \right)}{m_1 + m_2};$$

$$T_2 = \frac{m_1 m_2 \left(\sin \alpha + \sin \beta + k \left(\cos \alpha - \cos \beta \right) \right)}{m_1 + m_2}g.$$
Подставляя числовые данные, получим: $T_1 = T_2 = 6$ Н. $\alpha = 0.244$ м/с².

2.36. При подъеме груза массой m = 2 кг на высоту h = 1 м сила F совершает работу A = 78,5 Дж. С каким ускорением a поднимается груз?

Решение:

По второму закону Ньютона в проекции на направление движения груза имеем ma = F - mg, откуда F = ma + mg. По условию работу A совершает сила F, следовательно, $A = Fh\cos 0 = Fh = mah + mgh$ — (1), т.е. работа A идет на увеличение потенциальной энергии груза и на сообщение ему ускорения. Из уравнения (1) найдем $a = \frac{A - mgh}{hm}$; $a = 29.4 \,\mathrm{m/c}^2$.

2.37. Самолет поднимается и на высоте h=5 км достигает скорости v=360 км/ч. Во сколько раз работа A_1 , совершаемая при подъеме против силы тяжести, больше работы A_2 , идущей на увеличение скорости самолета?

Работа A_1 идет на увеличение потенциальной энергии самолета, а работа A_2 — на увеличение его кинетической энергии. Тогда при $A_1 = mgh$ и $A_2 = mv^2/2$ получим: $\frac{A_1}{A_2} = \frac{2mgh}{mv^2} = \frac{2gh}{v^2}; \frac{A_1}{A_2} = 9.8.$

2.38. Какую работу A надо совершить, чтобы заставить движущееся тело массой m=2 кг: а) увеличить скорость c $v_1=2$ м/с до $v_2=5$ м/с; б) остановиться при начальной скорости $v_0=8$ м/с?

Решение:

Совершенная работа пойдет на приращение кинетической энергии: а) $A_1 = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$; $A_1 = \frac{m\left(v_2^2 - v_1^2\right)}{2}$; $A_1 = 21$ Дж.

- б) $A_2 = W_{\kappa 2} W_{\kappa 1}$. Т.к. $W_{\kappa 2} = 0$, то $A_2 = -W_{\kappa 1} = -mv_0^2/2$; $A_2 = -64$ Дж. Знак «—» говорит о том, что работа совершается силой трения.
- **2.39.** Мяч, летящий со скоростью $v_1 = 15$ м/с, отбрасывается ударом ракетки в противоположном направлении со скоростью $v_2 = 20$ м/с. Найти изменение импульса $m\Delta v$ мяча, если известно, что изменение его кинетической энергии $\Delta W = 8,75$ Дж.

Решение:

том (1): $m\Delta v = \frac{2\Delta W(v_1 + v_2)}{v_2^2 - v_1^2} = \frac{2\Delta W}{v_2 - v_1}$. Подставив числовые ланные, получим: $m\Delta v = 3.5$ кг·м/с.

2.40. Камень, пущенный по поверхности льда со скоростью v = 3 м/с, прошел до остановки расстояние s = 20,4 м. Найти коэффициент трения k камня о лед.

Решение:

Работа силы трения при скольжении камня по льду равна $A = F_{\rm rp} s \cos \alpha$, где $F_{\rm rp} = kmg$, $\cos \alpha = \cos 180^{\circ} = -1$, т.е. $F_{\rm rp} = kmg$ — (1). С другой стороны, работа силы трения равна приращению кинетической энергии камня $A = W_2 - W_1$, поскольку $W_2 = 0$, то $A = -W_1 = -\frac{mv^2}{2}$ — (2). Приравнивая правые части уравнений (1) и (2), получим $k = \frac{v^2}{2 \pi s}$; k = 0.02.

2.41. Вагон массой m=20 т, двигаясь равнозамедленно с начальной скоростью $v_0=54$ км/ч, под действием силы трения $F_{\rm rp}=6$ кН через некоторое время останавливается. Найти работу A сил трения и расстояние s, которое вагон пройдет до остановки.

Решение:

Работа силы трения $A = -\frac{mv_0^2}{2}$ (см. задачу 2.40). Подставляя числовые данные, получим A = -2.25 МДж. По второму закону Ньютона: $F_{\rm rp} = ma$, откуда $a = \frac{F_{\rm rp}}{m}$ — (1). При равнозамедленном движении путь, пройденный до

остановки: $s = \frac{at^2}{2}$, где $t = \frac{v_0}{a}$, тогда $s = \frac{v_0^2}{2a}$ — (2). Подставляя уравнение (1) в (2), получим $s = \frac{v_0^2 m}{2 \cdot F_{\tau p}}$; $s = 375 \,\mathrm{M}$.

2.42. Шофер автомобиля, имеющего массу m=1 т, начинает тормозить на расстоянии $s=25\,\mathrm{m}$ от препятствия на дороге. Сила трения в тормозных колодках автомобиля $F_{\mathrm{тp}}=3,84\,\mathrm{kH}$. При какой предельной скорости v движения автомобиль успеет остановиться перед препятствием? Трением колес о дорогу пренебречь.

Решение:

Задача аналогична 2.41. Воспользуемся полученной в предыдущей задаче формулой: $s=\frac{v_0^2 m}{2 \cdot F_{\scriptscriptstyle TD}}$, откуда

$$v = \sqrt{\frac{2sF_{\rm тp}}{m}}$$
. Подставив числовые значения, получим: $v = 13.9$ м/с; $v = 50$ км/ч.

2.43. Трамвай движется с ускорением a = 49.0 см/с. Найти коэффициент трения k, если известно, что 50% мощности мотора идет на преодоление силы трения и 50% — на увеличение скорости движения.

Решение:

Мощность мотора $N = F \cdot v$. По условию половина мощности идет на преодоление силы трения, т.е. $\frac{N}{2} = kmg \cdot v$, а вторая половина — на увеличение скорости

движения, т.е. $\frac{N}{2} = ma \cdot v$. Отсюда $kmg \cdot v = ma \cdot v$, следовательно, k = a/g; $k \approx 0.05$.