

Studio delle leggi dei Gas

G. Galbato Muscio

L. Gravina

L. Graziotto

Gruppo B

Esperienza di laboratorio 6 novembre 2017 15 novembre 2017

Consegna della relazione 19 novembre 2017

Sommario

Mediante un sistema pistone-cilindro, collegabile ad una camera di espansione, si studiano le dipendenze di volume, pressione e temperatura di un gas (l'aria) dalle altre variabili di stato, al fine di verificare la validità delle Leggi di Boyle, Gay-Lussac e Charles. Si realizza quindi un ciclo termico.

Indice

0	Scopo e descrizione dell'esperienza	
1	Apparato Sperimentale 1.1 Strumenti	
2	Sequenza Operazioni Sperimentali 2.1 Misura del calore specifico del campione di metallo	
3	Considerazioni finali	

Elenco delle tabelle

Elenco delle figure

O Scopo e descrizione dell'esperienza

Per l'analisi dati si utilizzerà un notebook in linguaggio Python.

1 Apparato Sperimentale

1.1 Strumenti

- Pistone in grafite libero di scorrere con attrito trascurabile in un cilindro in pyrex [diametro $\Phi = (32.5 \pm 0.1) \text{ mm}$];
- Camera di espansione metallica chiusa da tappo in gomma;
- Termometro a mercurio [risoluzione: 0.2 °C, incertezza: 0.03 °C];
- 2 Calorimetri Dewar;
- Tappo per calorimetro;
- Bilancia [portata: 8000 g, risoluzione: 0.1 g, incertezza: 0.03 g].

1.2 Sensori

I seguenti sensori utilizzati sono interfacciati con il software DataStudio.

- Sensore di posizione angolare, che registra quindi lo spostamento del pistone [risoluzione: 1.0×10^{-5} m];
- Sensore di bassa pressione [risoluzione: 0.01 kPa];
- Sensore di temperatura [risoluzione: 1.0×10^{-5} °C].

2 Sequenza Operazioni Sperimentali

- 2.1 Costante di tempo del termometro
- 2.2 Verifica della Legge di Boyle
- 2.3 Verifica della Legge di Gay-Lussac
- 2.4 Verifica della Legge di Charles
- 2.5 Realizzazione di un ciclo termico
- 3 Considerazioni finali