Techniques for Feature Selection and Parameter Optimization

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

In [2]: import pandas as pd import numpy as np

import matplotlib.pyplot as plt

Import titanic data using pandas

Modified version of the "Titanic" data can be found at:

http://facweb.cs.depaul.edu/mobasher/classes/csc478/Data/titanic-trimmed.csv (http://facweb.cs.depaul.edu/mobasher/classes/csc478/Data/titanic-trimmed.csv). Original unmodified Titanic data is available at CMU StatLib

(http://lib.stat.cmu.edu/S/Harrell/data/ascii/titanic.txt).

In [3]:

url = "http://facweb.cs.depaul.edu/mobasher/classes/csc478/Data/titanic-trim
titanic = pd.read_csv(url)
titanic.head(10)

Out[3]:

	pid	pclass	survived	sex	age	sibsp	parch	fare	embarked
0	1	1st	1	female	29.0	0	0	211.337494	Southampton
1	2	1st	1	male	NaN	1	2	151.550003	Southampton
2	3	1st	0	female	2.0	1	2	151.550003	Southampton
3	4	1st	0	male	30.0	1	2	151.550003	Southampton
4	5	1st	0	female	25.0	1	2	151.550003	Southampton
5	6	1st	1	male	48.0	0	0	26.549999	Southampton
6	7	1st	1	female	63.0	1	0	77.958298	Southampton
7	8	1st	0	male	39.0	0	0	0.000000	Southampton
8	9	1st	1	female	53.0	2	0	51.479198	Southampton
9	10	1st	0	male	71.0	0	0	49.504200	Cherbourg

In [4]:

titanic.describe(include="all")

Out[4]:

	pid	pclass	survived	sex	age	sibsp	parch	
count	1309.000000	1309	1309.000000	1309	1045.000000	1309.000000	1309.000000	1308
unique	NaN	3	NaN	2	NaN	NaN	NaN	
top	NaN	3rd	NaN	male	NaN	NaN	NaN	
freq	NaN	709	NaN	843	NaN	NaN	NaN	
mean	655.000000	NaN	0.381971	NaN	29.908852	0.498854	0.385027	33
std	378.020061	NaN	0.486055	NaN	14.392485	1.041658	0.865560	51
min	1.000000	NaN	0.000000	NaN	0.166700	0.000000	0.000000	0
25%	328.000000	NaN	0.000000	NaN	21.000000	0.000000	0.000000	7
50%	655.000000	NaN	0.000000	NaN	28.000000	0.000000	0.000000	14
75%	982.000000	NaN	1.000000	NaN	39.000000	1.000000	0.000000	31
max	1309.000000	NaN	1.000000	NaN	80.000000	8.000000	9.000000	512

Handling missing variables

```
In [5]: titanic[titanic.age.isnull()].shape
```

Out[5]: (264, 9)

In [6]: age_mean = titanic.age.mean()
 titanic.age.fillna(age_mean, axis=0, inplace=True)
 titanic.dropna(axis=0, inplace=True)

In [7]: titanic.shape

Out[7]: (1306, 9)

Out[8]:

	pclass	survived	sex	age	sibsp	parch	fare	embarked
pid								
1	1st	1	female	29.000000	0	0	211.337494	Southampton
2	1st	1	male	29.908852	1	2	151.550003	Southampton
3	1st	0	female	2.000000	1	2	151.550003	Southampton
4	1st	0	male	30.000000	1	2	151.550003	Southampton
5	1st	0	female	25.000000	1	2	151.550003	Southampton

Creating dummy variables for categorical features

```
In [9]:
               titanic_ssf = pd.get_dummies(titanic)
               titanic_ssf.head(10)
Out[9]:
                     survived
                                                            fare pclass_1st pclass_2nd pclass_3rd sex_f
                                   age sibsp parch
                pid
                  1
                           1
                             29.000000
                                            0
                                                     211.337494
                                                                         1
                                                                                     0
                                                                                                0
                  2
                           1
                             29.908852
                                            1
                                                     151.550003
                                                                         1
                                                                                     0
                                                                                                0
                  3
                              2.000000
                                                     151.550003
                                                                                     0
                                                                                                0
                  4
                             30.000000
                                                     151.550003
                                                                         1
                                                                                     0
                                                                                                0
                  5
                             25.000000
                                                     151.550003
                                                                                                0
                                                                         1
                                                                                     0
                  6
                              48.000000
                                                       26.549999
                                                                         1
                                                                                     0
                                                                                                0
                  7
                              63.000000
                                                   0
                                                       77.958298
                                                                         1
                                                                                     0
                                                                                                0
                  8
                              39.000000
                                                       0.000000
                                                                         1
                                                                                     0
                                                                                                0
                  9
                              53.000000
                                            2
                                                   0
                                                       51.479198
                                                                         1
                                                                                     0
                                                                                                0
                           0 71.000000
                                                       49.504200
                                                                                                0
                 10
                                            0
                                                                         1
                                                                                     0
In [10]:
               titanic_names = titanic_ssf.columns.values
               print(titanic names)
               ['survived' 'age' 'sibsp' 'parch' 'fare' 'pclass 1st' 'pclass 2nd'
                 'pclass 3rd' 'sex female' 'sex male' 'embarked Cherbourg'
                'embarked_Queenstown' 'embarked_Southampton']
               y = titanic_ssf['survived']
In [11]:
               X = titanic_ssf[titanic_names[1:]]
               X.head()
Out[11]:
                          age sibsp parch
                                                  fare pclass_1st pclass_2nd pclass_3rd sex_female sex
                pid
                  1 29.000000
                                   0
                                            211.337494
                                                                1
                                                                            0
                                                                                       0
                                                                                                   1
                  2 29.908852
                                                                1
                                                                                       0
                                                                                                   0
                                           151.550003
                                                                            0
                     2.000000
                                            151.550003
                                                                1
                                                                                       0
                                                                                                   1
                    30.000000
                                            151.550003
                                                                1
                                                                            0
                                                                                       0
                                                                                                   0
                  5 25.000000
                                         2 151.550003
                                                                1
                                                                            0
                                                                                       0
                                                                                                   1
```

In [12]:

titanic_ssf.describe().T

Out[12]:

	count	mean	std	min	25%	50%	75%	
survived	1306.0	0.381317	0.485896	0.0000	0.0000	0.000000	1.000	1
age	1306.0	29.854661	12.812320	0.1667	22.0000	29.908852	35.000	80
sibsp	1306.0	0.500000	1.042580	0.0000	0.0000	0.000000	1.000	8
parch	1306.0	0.385911	0.866357	0.0000	0.0000	0.000000	0.000	9
fare	1306.0	33.223956	51.765986	0.0000	7.8958	14.454200	31.275	512
pclass_1st	1306.0	0.245789	0.430719	0.0000	0.0000	0.000000	0.000	1
pclass_2nd	1306.0	0.212098	0.408950	0.0000	0.0000	0.000000	0.000	1
pclass_3rd	1306.0	0.542113	0.498414	0.0000	0.0000	1.000000	1.000	1
sex_female	1306.0	0.355283	0.478782	0.0000	0.0000	0.000000	1.000	1
sex_male	1306.0	0.644717	0.478782	0.0000	0.0000	1.000000	1.000	1
embarked_Cherbourg	1306.0	0.206738	0.405121	0.0000	0.0000	0.000000	0.000	1
embarked_Queenstown	1306.0	0.094181	0.292192	0.0000	0.0000	0.000000	0.000	1
embarked_Southampton	1306.0	0.699081	0.458833	0.0000	0.0000	1.000000	1.000	1

Build the training and testing dataset

A versatile function to measure performance of a calssification model

```
In [15]: from sklearn import metrics

def measure_performance(X, y, clf, show_accuracy=True, show_classification_r
    y_pred = clf.predict(X)
    if show_accuracy:
        print("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)),
    if show_classification_report:
        print("Classification report")
        print(metrics.classification_report(y, y_pred),"\n")

if show_confussion_matrix:
    print("Confussion matrix")
    print(metrics.confusion_matrix(y, y_pred),"\n")
```

In [16]: from sklearn import metrics

measure_performance(X_test, y_test, dt, show_confussion_matrix=False)

Accuracy:0.744

Classification report

	precision	recall	f1-score	support
0	0.79	0.80	0.79	161
1	0.67	0.66	0.67	101
avg / total	0.74	0.74	0.74	262

Feature Selection

Select the top 30% of the most important features, using a chi2 test

```
In [17]:
             from sklearn import feature_selection
             fs = feature selection.SelectPercentile(feature selection.chi2, percentile=
In [18]:
             X_train_fs = fs.fit_transform(X_train, y_train)
In [19]:
             np.set printoptions(suppress=True, precision=2, linewidth=120)
             print(list(X.columns))
             print(fs.get support())
             print(fs.scores_)
             ['age', 'sibsp', 'parch', 'fare', 'pclass_1st', 'pclass_2nd', 'pclass_3rd'
             [False False False True False False True True False False]
               17.19
                               22.34 5185.44
                         0.
                                               61.98
                                                        1.28
                                                               35.15
                                                                      189.1
                                                                              102.94
```

```
In [20]:
              print(X.columns[fs.get support()].values)
              ['fare' 'pclass_1st' 'sex_female' 'sex_male']
In [21]:
              for i in range(len(X.columns.values)):
                  if fs.get_support()[i]:
                      print("%10s %3.2f" % (X.columns.values[i], fs.scores_[i]))
                    fare
                          5185.44
              pclass_1st 61.98
              sex_female 189.10
                sex_male 102.94
In [22]:
              print(X_train_fs)
              [[31.39
                       0.
                             0.
                                        1
                                    1.
               [15.05]
                                        ]
                       0.
                             0.
                                    1.
               [91.08 1.
                             0.
                                   1.
                                        1
               . . .
               [21.
                       0.
                             1.
                                   0.
               [31.5
                       0.
                             0.
                                   1.
                                       1
               7.9
                       0.
                             0.
                                        ]]
              Evaluate performance with the new feature set on test data
In [23]:
              dt = tree.DecisionTreeClassifier(criterion='entropy')
              dt.fit(X_train_fs, y_train)
              X test fs = fs.transform(X test)
              measure performance(X test fs, y test, dt, show confussion matrix=False)
              Accuracy:0.821
              Classification report
                           precision
                                         recall f1-score
                                                             support
                                0.86
                                           0.84
                                                     0.85
                        0
                                                                 161
                        1
                                0.76
                                           0.78
                                                     0.77
                                                                 101
```

To do feature selection more systematically, we need to find the best percentile using cross-validation

0.82

262

0.82

avg / total

0.82

```
In [24]:
             from sklearn.model selection import cross val score
             dt = tree.DecisionTreeClassifier(criterion='entropy')
             percentiles = range(1, 100, 5)
             results = []
             for i in range(1, 100, 5):
                 fs = feature selection.SelectPercentile(feature selection.chi2, percenti
                 X train fs = fs.fit transform(X train, y train)
                 scores = cross_val_score(dt, X_train_fs, y_train, cv=5)
                 print("%2d %0.4f" % (i, scores.mean()))
                 results = np.append(results, scores.mean())
              1 0.7012
              6 0.7012
             11 0.7614
             16 0.7614
             21 0.7614
             26 0.7614
             31 0.7585
             36 0.7585
             41 0.7681
             46 0.7643
             51 0.7643
             56 0.7605
             61 0.7605
             66 0.7529
             71 0.7510
             76 0.7509
             81 0.7528
             86 0.7529
             91 0.7547
             96 0.7519
```

```
In [25]:
```

```
optimal_percentile_ind = np.where(results == results.max())[0][0]
print(optimal_percentile_ind)
```

8

Optimal percentile of features:41

Optimal number of features:4

Out[26]: [<matplotlib.lines.Line2D at 0x15bb88ccda0>]

Evaluate our best number of features on the test set

```
fs = feature_selection.SelectKBest(feature_selection.chi2, optimal_num_feature_selection.chi2, op
```

Accuracy:0.821

Classificati	on report			
	precision	recall	f1-score	support
	•			• • •
0	0.86	0.84	0.85	161
1	0.76	0.78	0.77	101
avg / total	0.82	0.82	0.82	262

Model selection

Exploring and comparing model parameters

Gini criterion accuracy on cv: 0.758

Let's first focus on "criterion' parameter and find the best one

In [30]:

```
# Now we can fit the model to the full training data usign the optimal featu
# and apply the model to the set-aside test data
dt = tree.DecisionTreeClassifier(criterion='entropy')
dt.fit(X_train_fs, y_train)
X_test_fs = fs.transform(X_test)
measure_performance(X_test_fs, y_test, dt, show_confussion_matrix=False, show_confusion_matrix=False)
```

Accuracy:0.821

Classification report

support	f1-score	recall	precision	(1833111686101
161	0.85	0.84	0.86	0
101	0.77	0.78	0.76	1
262	0.82	0.82	0.82	avg / total

Another parameter of decision tree that can have an impact on accuracy is 'max-depth'

```
In [31]:
```

Accuracy:0.794

But, again, we need a more systematic way to explore the space of values for each parameter. The following is a general function that performs cross-validation using a range of values for a specified parameter of a model

```
In [32]:
             from sklearn.model selection import KFold
             def calc_params(X, y, clf, param_values, param_name, K):
                 # Convert input to Numpy arrays
                 X = np.array(X)
                 y = np.array(y)
                 # initialize training and testing score arrays with zeros
                 train_scores = np.zeros(len(param_values))
                 test scores = np.zeros(len(param values))
                 # iterate over the different parameter values
                 for i, param value in enumerate(param values):
                     print(param_name, ' = ', param_value)
                     # set classifier parameters
                     clf.set params(**{param name:param value})
                     # initialize the K scores obtained for each fold
                     k train scores = np.zeros(K)
                     k_test_scores = np.zeros(K)
                     # create KFold cross validation
                     cv = KFold(n splits=K, shuffle=True, random state=0)
                     # iterate over the K folds
                     j = 0
                     for train, test in cv.split(X):
                         # fit the classifier in the corresponding fold
                         # and obtain the corresponding accuracy scores on train and test
                          clf.fit(X[train], y[train])
                          k train scores[j] = clf.score(X[train], y[train])
                          k_test_scores[j] = clf.score(X[test], y[test])
                          j += 1
                     # store the mean of the K fold scores
                     train_scores[i] = np.mean(k_train_scores)
                     test scores[i] = np.mean(k test scores)
                 # plot the training and testing scores in a log scale
                 plt.plot(param values, train scores, label='Train', alpha=0.4, lw=2, c='
                 plt.plot(param_values, test_scores, label='X-Val', alpha=0.4, lw=2, c='&
                 plt.legend(loc=7)
                 plt.xlabel(param name + " values")
                 plt.ylabel("Mean cross validation accuracy")
                 # return the training and testing scores on each parameter value
                 return train scores, test scores
```

Now we can explore the impact of max-depth more systematically

```
In [33]:
               # Let's create an evenly spaced range of numbers in a specified interval
               md = np.linspace(1, 40, 20)
               md = np.array([int(e) for e in md])
               print(md)
               [ 1
                          7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 40]
               train_scores, test_scores = calc_params(X_train, y_train, dt, md, 'max_depth
In [34]:
               max_depth
                              1
              max_depth
                               3
                               5
              max depth
              max depth
                              7
              max depth
                              9
              max_depth
                              11
              max_depth
                               13
              max depth
                               15
              max_depth
                               17
              max_depth
                               19
              max depth
                               21
              max_depth
                               23
                               25
              max_depth
                               27
              max depth
              max depth
                               29
              max_depth
                               31
              max depth
                               33
              max_depth
                               35
                               37
              max_depth
              max depth
                               40
                  0.95
               Mean cross validation accuracy
                  0.90
                                                                  Train
                                                                  X-Val
                  0.85
                  0.80
                  0.75
                             Ś
                                  10
                                        15
                                             20
                                                   25
                                                         30
                                                               35
                                                                    40
                       Ó
```

max_depth = 3 seems to work best; larger values seem to lead to over-fitting.

max_depth values

Accuracy:0.798

Another parameter of decision tree that's important is the min number of samples allowed at a leaf node

```
In [36]:
             msl = np.linspace(1, 30, 15)
             msl = np.array([int(e) for e in msl])
             dt = tree.DecisionTreeClassifier(criterion='entropy')
             train scores, test scores = calc params(X train, y train, dt, msl, 'min samp
             min samples leaf
                                   1
             min samples leaf
                                   3
             min samples leaf
                                   5
             min samples leaf
                                   7
             min samples leaf
                                   9
             min samples leaf
                                   11
             min samples leaf
                                   13
             min samples leaf
                                   15
             min samples leaf
                                   17
             min samples leaf
                                   19
             min samples leaf
                                   21
             min samples leaf
                                   23
             min samples leaf
                                   25
             min_samples_leaf
                                   27
             min samples leaf
                                   30
```


Looks like min_samples_leaf around 11 seems like a good choice. Let's now combine these optimal parameter values in our final model to fit the full training data.

```
In [37]:
             dt = tree.DecisionTreeClassifier(criterion='entropy')
             dt.set_params(min_samples_leaf=11, max_depth=3)
             dt.fit(X train, y train)
             measure_performance(X_test, y_test, dt, show_confussion_matrix=False)
             Accuracy:0.798
             Classification report
                           precision
                                        recall f1-score
                                                            support
                                0.83
                                          0.85
                                                     0.84
                        0
                                                                161
                        1
                                0.75
                                          0.71
                                                     0.73
                                                                101
```

0.80

0.80

Grid Search allows us to more systematically explore different combinations of multiple parameters

0.80

262

```
In [38]: from sklearn.model_selection import GridSearchCV

dt = tree.DecisionTreeClassifier()

parameters = {
        'criterion': ['entropy','gini'],
        'max_depth': np.linspace(1, 20, 10, dtype=int),
        'min_samples_leaf': np.linspace(1, 30, 15, dtype=int),
        'min_samples_split': np.linspace(2, 20, 10, dtype=int)
}

gs = GridSearchCV(dt, parameters, verbose=1, cv=5)
```

avg / total

Accuracy:0.798

Classification report

	precision	recall	f1-score	support
0	0.83	0.85	0.84	161
1	0.75	0.71	0.73	101
avg / total	0.80	0.80	0.80	262

In []: