SUMMARY SHEET

EXPERIMENT 2

Is the total momentum conserved?

Accuracy of computer calculation

(RMS velocity = 0.1)

YES /NO $100 \frac{0.0000018}{0.1} \approx 0.002\% \ 0.1$

Time	Total Energy	
0	-1.61499	
2	-1.62886	
4	-1.62878	
6	-1.62301	
12	-1.62882	
18	-1.62599	
24	-1.62796	
30	-1.62703	
50	-1.62753	
70	-1.62676	
90	-1.62580	
130	-1.62713	
180	-1.62409	

Does the system conserve energy?

YES/NO (~±1%)

Equilibrium value of E_k * (Average 24 to 180) = 0.534 ±0.05

Equilibrium time SD (see Fig. E 2.1) $\approx (10 \text{ to } 20) \times 0.1$

Value of S recorded > 20, e.g. 60

Value of α

(for SD=60) (see Fig. E2.2) = 0.503

Accuracy of $\alpha = \pm 0.02$

For what time number range is graph, obtained using first value of SR, linear? SZ = 18 to 24

Gradient of this graph in linear region	≈ 0.027 to 0.47
Accuracy of gradient	= 0.002
Gradient of AVERAGE $\langle R^2 \rangle$ in linear region	= 0.035
Accuracy of this gradient	$= \pm 0.01$
* delete as appropriate	

Is the system a liquid/solid? Liquid/Solid*

Mean Momentum of the system at requested steps (S)

S	< <i>VX</i> , <i>1</i> >	< <i>VY</i> , <i>1</i> >	< <i>PX</i> >	< <i>PY</i> >
0	0.0000000	0.0000000	0.000000	0.000000
40	0.0000010	0.0000016	0.000048	0.000077
80	0.0000018	0.0000001	0.000086	0.000005
120	0.0000014	0.0000007	0.000067	0.000034
160	0.0000016	0.0000010	0.000077	0.000048

Energy of the system at requested steps (S)

S	< <i>VX</i> ,2>	< <i>VY</i> ,2>	$\langle KE \rangle = T^*$	< U>	<e>= Total Energy</e>
0	0.0173874	0.0142851	0.760140	-4.7502660	-1.61499
2	0.0162506	0.0131025	0.704474	-4.6666675	-1.62886
4	0.0124966	0.0089562	0.514867	-4.2873015	-1.62878
6	0.0077405	0.0039113	0.279643	-3.8053113	-1.62301
12	0.0118740	0.0120959	0.575278	-4.4081878	-1.62882
18	0.0099579	0.0075854	0.421039	-4.0940627	-1.62599
24	0.0108577	0.0116978	0.541332	-4.3385782	-1.62796
30	0.0126065	01000340	0.543372	-4.3407997	-1.62703
50	0.0127138	0.0103334	0.553133	-4.3613165	-1.62753
70	0.0088657	0.0158292	0.592678	-4.4388669	-1.62676
90	0.0107740	0.0076446	0.442087	-4.1357699	-1.62580
130	0.0073008	0.0177446	0.601090	-4.4564333	-1.62713
180	0.0097161	0.0096426	0.464609	-4.1773882	-1.62409

All values are in reduced units. $\langle KE \rangle$ is the mean kinetic energy per atom. $\langle U^* \rangle$ is twice the potential energy. $\langle VX, 2 \rangle$ and $\langle VY, 2 \rangle$ are the mean values of the squares of the X and Y velocity components, as described in the question. Similarly $\langle VX, 1 \rangle$ and $\langle VY, 1 \rangle$ are the mean values of the velocity components. $\langle PX \rangle$ and $\langle PY \rangle$ are the mean momentum per particle.

Variation of K.E and P.E.

< R z > curves as a function of time

Time Number SZ - S-SR	$SR = 261$ $\langle R^2 \rangle$	$SR = 301$ $\langle R^2 \rangle$	$SR = 334$ $\langle R^2 \rangle$	$SR = 370$ $\langle R^2 \rangle$	AVERAGE <r<sup>2></r<sup>
0	0	0	0	0	0
2	0.00088	0.00067	0.00091	0.00079	0.00081
4	0.00287	0.00276	0.00382	0.00298	0.00311
6	0.00523	0.00628	0.00858	0.00623	0.00658
8	0.00797	0.01101	0.01449	0.01039	0.01097
10	0.01143	0.01656	0.02095	0.01523	0.01604
12	0.01528	0.02235	0.02768	0.02022	0.02138
14	0.01874	0.02845	0.03453	0.02564	0.02684
16	0.02184	0.03539	0.04157	0.03160	0.03260
18	0.02526	0.04293	0.04902	0.03833	0.03889
20	0.02979	0.05080	0.05718	0.04532	0.04577
22	0.03538	0.05918	0.06605	0.0510	0.05303
24	0.04063	0.06784	0.07533	0.05569	0.05987