Interpretable Machine Learning

Correlation and Dependencies

Learning goals

- Pearson correlation
- Coefficient of determination R²
- Mutual information
- Correlation vs. dependence

Interpretable Machine Learning Correlation and Dependencies

Learning goals

- Pearson correlation
- Coefficient of determination R²
- Mutual information
- Correlation vs. dependence

PEARSON'S CORRELATION COEFFICIENT ρ

Correlation often refers to Pearson's correlation (measures only **linear relationship**)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

Geometric interpretation of ρ :

- Areas enter numerator with positive (+) or negative (-) sign, depending on position
- Denominator scales the sum into the range [-1, 1]

PEARSON'S CORRELATION COEFFICIENT ρ

Correlation often refers to Pearson's correlation (measures only **linear** relationship)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

Geometric interpretation of ρ :

- Areas enter numerator with positive (+) or negative (-) sign, depending on position
- Denominator scales the sum into the range [-1, 1]

Interpretable Machine Learning - 1/8 © -1/8

PEARSON'S CORRELATION COEFFICIENT ρ

Correlation often refers to Pearson's correlation (measures only **linear relationship**)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

Geometric interpretation of ρ :

- Areas enter numerator with positive (+) or negative (-) sign, depending on position
- Denominator scales the sum into the range [-1, 1]

Interpretable Machine Learning - 1/8

- $\rho > 0$ if positive areas dominate negative areas $\rightsquigarrow X_1, X_2$ positive correlated
- ρ < 0 if negative areas dominate positive areas \rightsquigarrow X_1 , X_2 negative correlated
- $\rho = 0$ if area of rectangles cancels out $\rightsquigarrow X_1, X_2$ linearly uncorrelated

PEARSON'S CORRELATION COEFFICIENT ρ

Correlation often refers to Pearson's correlation (measures only **linear** relationship)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

Geometric interpretation of ρ :

- Numerator is sum of rectangle's area with width x₁⁽ⁱ⁾ − x̄₁ and height x₂⁽ⁱ⁾ − x̄₂
- Areas enter numerator with positive (+) or negative (-) sign, depending on position
- Denominator scales the sum into the range [-1, 1]
- $\rho > 0$ if positive areas dominate negative areas $\rightsquigarrow X_1, X_2$ positive correlated
- ρ < 0 if negative areas dominate positive areas $\rightsquigarrow X_1, X_2$ negative correlated
- ...

• $\rho = 0$ if area of rectangles cancels out $\rightsquigarrow X_1, X_2$ linearly uncorrelated

COEFFICIENT OF DETERMINATION R^2

Another method to evaluate **linear dependency** between features is R^2

- Fit a linear model:
- $\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$
- \rightsquigarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence
- $\leadsto \ \text{Large slope} \Rightarrow \text{strong dependence}$

COEFFICIENT OF DETERMINATION R^2

Another method to evaluate **linear dependency** between features is R^2

- Fit a linear model:
- $\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$
- \rightarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence
- \leadsto Large slope \Rightarrow strong dependence

COEFFICIENT OF DETERMINATION R^2

Another method to evaluate **linear dependency** between features is R^2

• Fit a linear model:

$$\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$$

- \rightsquigarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence
- \leadsto Large slope \Rightarrow strong dependence
- Exact θ_1 score problematic
- \rightarrow Re-scaling of x_1 or x_2 changes θ_1

$$ightharpoonup$$
°F $ightharpoonup$ °C $\Rightarrow \theta_1 = 78 \rightarrow \theta_1^* = 141$

COEFFICIENT OF DETERMINATION R^2

Another method to evaluate **linear dependency** between features is R^2

• Fit a linear model:

$$\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$$

$$\rightsquigarrow$$
 Slope $\theta_1 = 0 \Rightarrow$ no dependence

- $\rightsquigarrow \ \, \text{Large slope} \Rightarrow \text{strong dependence}$
- Exact θ_1 score problematic
- \rightsquigarrow Re-scaling of x_1 or x_2 changes θ_1

$$ightsquigarrow \ {}^{\circ}\mathsf{F}
ightarrow \ {}^{\circ}\mathsf{C} \Rightarrow \theta_1 = 78
ightarrow \theta_1^* = 141$$

Interpretable Machine Learning - 2/8

© - 2/8

COEFFICIENT OF DETERMINATION R²

Another method to evaluate **linear dependency** between features is R^2

- Fit a linear model: $\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$
- \rightarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence
- → Large slope ⇒ strong dependence
- Exact θ_1 score problematic
- \rightarrow Re-scaling of x_1 or x_2 changes θ_1
- Set SSE_{IM} in relation to SSE of a constant model $\hat{f}_c = \bar{x}_2$ $SSE_{LM} = \sum_{i=1}^{n} (x_2^{(i)} - \hat{f}_{LM}(x_1^{(i)}))^2$

$$SSE_{LM} = \sum_{i=1}^{n} (x_2^{(i)} - \hat{f}_{LM}(x_1^{(i)}))^2$$

$$SSE_c = \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2$$

$$\Rightarrow$$
 Measure of fitting quality of LM: $R^2 = 1 - \frac{SSE_{LM}}{SSE_o} \in [0, 1]$

$$\Rightarrow \rho(X_1, X_2) = R$$

COEFFICIENT OF DETERMINATION R²

Another method to evaluate **linear dependency** between features is R^2

- Fit a linear model:
- $\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$ \rightsquigarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence
- → Large slope ⇒ strong dependence
- Exact θ_1 score problematic
- \rightarrow Re-scaling of x_1 or x_2 changes θ_1
- Set SSE_{LM} in relation to SSE of a constant model $\hat{f}_c = \bar{x}_2$

$$SSE_{LM} = \sum_{i=1}^{n} (x_{2}^{(i)} - \hat{f}_{LM}(x_{1}^{(i)}))^{2}$$

$$SSE_{c} = \sum_{i=1}^{n} (x_{2}^{(i)} - \bar{x}_{2})^{2}$$

$$\Rightarrow$$
 Measure of fitting quality of LM: $R^2 = 1 - \frac{SSE_{LM}}{SSE} \in [0, 1]$

$$\Rightarrow$$
 Measure of fitting quality of LM: $R^2 = \Rightarrow \rho(X_1, X_2) = R$

Interpretable Machine Learning - 2 / 8 - 2/8

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

 p_{X_1,X_2}

 $\mathbb{P}(X_1 = 0)$

 $\mathbb{P}(X_1=1)$

 $\mathbb{P}(X_2=0) \quad \mathbb{P}(X_2=1) \quad p_{X_1}$

0.4

0.7

0.5

0.2

0.3

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1, X_2 = x_2)$$

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

Joint distribution	p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
	$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
- (v v) TD(V v V v)	$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$	p_{X_2}	0.3	0.7	1

Interpretable Machine Learning - 3/8 - 3/8

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

Marginal distribution

$$p_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum p(x_1, x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

→ In continuous case with integrals

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_0}	0.3	0.7	1

Marginal distribution

$$p_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2) \begin{vmatrix} p_{X_1, x_2} & \mathbb{P}(X_2 = 0) & \mathbb{P}(X_2 = 1) & p_{X_1} \\ \mathbb{P}(X_1 = 0) & 0.2 & 0.3 & 0.5 \\ \mathbb{P}(X_1 = 1) & 0.1 & 0.4 & 0.5 \\ \mathbb{P}(X_1 = 0) & 0.3 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\ \mathbb{P}(X_1 = 0) & 0.7 & 0.7 & 1 \\$$

→ In continuous case with integrals

Interpretable Machine Learning - 3/8

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

 p_{X_1,X_2}

 $\mathbb{P}(X_1 = 0)$

 $\mathbb{P}(X_1=1)$

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$$

1)	p_{X_1}	
	0.5	
	0.5	
	1	

Marginal distribution

$$p_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{i=1}^{n} p(x_1, x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_0}	0.3	0.7	1

 $\mathbb{P}(X_2=0) \mid \mathbb{P}(X_2=$

0.2

0.3

→ In continuous case with integrals

Conditional distribution

$$p_{X_1|X_2}(x_1|x_2) = \mathbb{P}(X_1 = x_1|X_2 = x_2)$$

$$= \frac{p_{X_1,X_2}(x_1,x_2)}{p_{X_2}(x_2)}$$

	$x_2 = 0$	$x_2 = 1$
$\mathbb{P}(X_1=0 X_2=x_2)$	0.67	0.43
$\mathbb{P}(X_1=1 X_2=x_2)$	0.33	0.57
\sum	1	1

JOINT. MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$$
 $p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$
 $p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$

Marginal distribution

$$\rho_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{x_2 \in \mathcal{X}_2} \rho(x_1, x_2) \begin{vmatrix} \rho_{X_1, X_2} & \mathbb{P}(X_2 = 0) & \mathbb{P}(X_2 = 1) & \rho_{X_1} \\ \mathbb{P}(X_1 = 0) & 0.2 & 0.3 & 0.5 \\ \mathbb{P}(X_1 = 1) & 0.1 & 0.4 & 0.5 \end{vmatrix}$$

→ In continuous case with integrals

Conditional distribution

$$\rho_{X_1|X_2}(x_1|X_2) = \mathbb{P}(X_1 = x_1|X_2 = x_2) \\
= \frac{\rho_{X_1,X_2}(x_1,x_2)}{\rho_{X_2}(x_2)}$$

	$x_2 = 0$	$x_2 = 1$
$\mathbb{P}(X_1=0 X_2=x_2)$	0.67	0.43
$\mathbb{P}(X_1=1 X_2=x_2)$	0.33	0.57
Σ	1	1

Interpretable Machine Learning - 3/8 - 3/8

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

DEPENDENCE

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

• Equivalent definition (knowledge of X_k says nothing about X_i and vice versa):

$$\mathbb{P}(X_i|X_k) = \mathbb{P}(X_i)$$
 and $\mathbb{P}(X_k|X_i) = \mathbb{P}(X_k)$ (follows from cond. probability)

DEPENDENCE

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

• Equivalent definition (knowing X_k gives no info about X_i and vice versa):

$$\mathbb{P}(X_i|X_k)=\mathbb{P}(X_i)$$
 and $\mathbb{P}(X_k|X_i)=\mathbb{P}(X_k)$ (follows from cond. probability)

Interpretable Machine Learning - 4 / 8 © - 4/8

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

• Equivalent definition (knowledge of X_k says nothing about X_i and vice versa):

$$\mathbb{P}(X_i|X_k) = \mathbb{P}(X_i)$$
 and $\mathbb{P}(X_k|X_i) = \mathbb{P}(X_k)$ (follows from cond. probability)

- Measuring complex dependencies is difficult but different measures exist, e.g.,
 - → Spearman correlation (measures monotonic dependencies via ranks)
 - → Information-theoretical measures like mutual information

DEPENDENCE

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

$$\mathbb{P}(X_i, X_k) = \mathbb{P}(X_i) \cdot \mathbb{P}(X_k)$$

• Equivalent definition (knowing X_k gives no info about X_i and vice versa):

$$\mathbb{P}(X_i|X_k)=\mathbb{P}(X_i)$$
 and $\mathbb{P}(X_k|X_i)=\mathbb{P}(X_k)$ (follows from cond. probability)

- Measuring complex dependencies is difficult but different measures exist Examples
- Spearman correlation (measures monotonic dependencies via ranks)
- → Information-theoretical measures like mutual information

Interpretable Machine Learning - 4/8 © - 4/8

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_i, X_k) = \mathbb{P}(X_i) \cdot \mathbb{P}(X_k)$$

• Equivalent definition (knowledge of X_k says nothing about X_i and vice versa):

$$\mathbb{P}(X_i|X_k) = \mathbb{P}(X_i)$$
 and $\mathbb{P}(X_k|X_i) = \mathbb{P}(X_k)$ (follows from cond. probability)

- Measuring complex dependencies is difficult but different measures exist, e.g.,
 - → Spearman correlation (measures monotonic dependencies via ranks)
 - → Information-theoretical measures like mutual information
 - → Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)
- **N.B.:** X_j , X_k independent $\Rightarrow \rho(X_j, X_k) = 0$ **but** $\rho(X_j, X_k) = 0 \Rightarrow X_j$, X_k indep. Equivalency holds if distribution is jointly normal

DEPENDENCE

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_i, X_k) = \mathbb{P}(X_i) \cdot \mathbb{P}(X_k)$$

• Equivalent definition (knowing X_k gives no info about X_i and vice versa):

$$\mathbb{P}(X_i|X_k) = \mathbb{P}(X_i)$$
 and $\mathbb{P}(X_k|X_i) = \mathbb{P}(X_k)$ (follows from cond. probability)

- Measuring complex dependencies is difficult but different measures exist Examples
- → Spearman correlation (measures monotonic dependencies via ranks)
- → Information-theoretical measures like mutual information
 → Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)
- **N.B.:** X_j , X_k indep. $\Rightarrow \rho(X_j, X_k) = 0$ **but** $\rho(X_j, X_k) = 0 \Rightarrow X_j$, X_k indep. Equivalency holds if distribution is jointly normal

Interpretable Machine Learning - 4/8 © -4/8

MUTUAL INFORMATION

MI describes expected amount of information shared by two random variables:

$$extit{MI}(X_1,X_2) = \mathbb{E}_{p(x_1,x_2)}\left[log\left(rac{p(x_1,x_2)}{p(x_1)p(x_2)}
ight)
ight]$$

 MI measures amount of "dependence" between features by looking how different the joint distribution is from pure independence $p(x_1, x_2) = p(x_1)p(x_2)$ $ightharpoonup MI(X_1, X_2) = \mathbb{E}_{p(x_1, x_2)} \left[log \left(\frac{p(x_1, x_2)}{p(x_1, x_2)} \right) \right] = \mathbb{E}_{p(x_1, x_2)} \left[log(1) \right] = 0$

$$\rightsquigarrow MI(X_j, X_k) = 0$$
 if and only if the features are independent

Unlike (Pearson) correlation, MI can also be computed for categorical features

MUTUAL INFORMATION

• MI describes expected amount of information shared by two RVs:

$$MI(X_1, X_2) = \mathbb{E}_{p(x_1, x_2)} \left[log \left(\frac{p(x_1, x_2)}{p(x_1)p(x_2)} \right) \right]$$

$$\rightsquigarrow MI(X_1, X_2) = \mathbb{E}_{\rho(X_1, X_2)} \left[log \left(\frac{\rho(X_1, X_2)}{\rho(X_1, X_2)} \right) \right] = \mathbb{E}_{\rho(X_1, X_2)} \left[log(1) \right] = 0$$

 $\rightsquigarrow MI(X_i, X_k) = 0$ if and only if the features are independent

• Unlike (Pearson) correlation, MI is also defined for categorical features

Interpretable Machine Learning - 5 / 8 - 5/8

MUTUAL INFORMATION: EXAMPLE

For two discrete RV X_1 and Y:

$$\mathit{MI}(X_1;Y) = \mathbb{E}_{p(x_1,y)}\left[log\left(\frac{p(x_1,y)}{p(x_1)p(y)}\right)\right] = \sum_{x_1 \in \mathcal{X}_1} \sum_{y \in \mathcal{Y}} p(x_1,y)log\left(\frac{p(x_1,y)}{p(x_1)p(y)}\right)$$

X ₁	 Y
yes	 yes
yes	 no
no	 yes
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p _Y
$\mathbb{P}(Y = \text{yes})$	0.25	0.25	0.5
$\mathbb{P}(Y = no)$	0.25	0.25	0.5
p_{X_1}	0.5	0.5	1

MUTUAL INFORMATION: EXAMPLE

For two discrete RV X_1 and Y:

$$\mathit{MI}(X_1;Y) = \mathbb{E}_{p(x_1,y)}\left[log\left(\frac{p(x_1,y)}{p(x_1)p(y)}\right)\right] = \sum_{x_1 \in \mathcal{X}_1} \sum_{y \in \mathcal{Y}} p(x_1,y)log\left(\frac{p(x_1,y)}{p(x_1)p(y)}\right)$$

1	
yes	 yes
yes	 no
no	 yes
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p _Y
$\mathbb{P}(Y = \text{yes})$	0.25	0.25	0.5
$\mathbb{P}(Y = no)$	0.25	0.25	0.5
p_{X_1}	0.5	0.5	1

Interpretable Machine Learning - 6/8

MUTUAL INFORMATION: EXAMPLE

For two discrete RV X_1 and Y:

$$MI(X_1; Y) = \mathbb{E}_{p(x_1, y)} \left[log \left(\frac{p(x_1, y)}{p(x_1)p(y)} \right) \right] = \sum_{x_1 \in \mathcal{X}_1} \sum_{y \in \mathcal{Y}} p(x_1, y) log \left(\frac{p(x_1, y)}{p(x_1)p(y)} \right)$$

X ₁	 Υ
yes	 yes
yes	 no
no	 yes
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p _Y
$\mathbb{P}(Y = \text{yes})$	0.25	0.25	0.5
$\mathbb{P}(Y = no)$	0.25	0.25	0.5
p_{X_1}	0.5	0.5	1

$$MI(X_1; Y) = 0.25 \log \left(\frac{0.25}{0.5 \cdot 0.5}\right) + 0.25 \log \left(\frac{0.25}{0.5 \cdot 0.5}\right)$$

$$= 0.25 \log \left(\frac{0.25}{0.25}\right) \cdot 4$$

$$= 0.25 \log (1) \cdot 4 = 0$$

MUTUAL INFORMATION: EXAMPLE

For two discrete RV X_1 and Y:

For two discrete RV
$$X_1$$
 and Y

$$MI(X_1; Y) = \mathbb{E}_{p(x_1, y)} \left[log \left(\frac{p(x_1, y)}{p(x_1)p(y)} \right) \right] = \sum_{x_1 \in \mathcal{X}_1} \sum_{y \in \mathcal{Y}} p(x_1, y) log \left(\frac{p(x_1, y)}{p(x_1)p(y)} \right)$$

- 6/8

1		
yes	 yes	
yes	 no	
no	 yes	
no	 no	

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p _Y
$\mathbb{P}(Y = \text{yes})$ $\mathbb{P}(Y = \text{no})$	0.25	0.25	0.5
$\mathbb{P}(Y = no)$	0.25	0.25	0.5
p_{X_1}	0.5	0.5	1

$$MI(X_1; Y) = 0.25 \log \left(\frac{0.25}{0.5 \cdot 0.5}\right) + 0.25 \log \left(\frac{0.25}{0.5 \cdot 0.5}\right)$$

$$= 0.25 \log \left(\frac{0.25}{0.25}\right) \cdot 4$$

$$= 0.25 \log (1) \cdot 4 = 0$$

DEPENDENCE AND INDEPENDENCE

Example:

Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$

 $\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$

DEPENDENCE AND INDEPENDENCE

Example:

Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$
$$\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$$

DEPENDENCE AND INDEPENDENCE

Example:

Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$
$$\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$$

Conditional distributions do not match their marginal distributions

DEPENDENCE AND INDEPENDENCE

Example:

Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$

$$\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$$

- 7/8

Conditional distributions do not match their marginal distributions

CORRELATION VS. DEPENDENCE

Illustration of bivariate normal distribution with different correlations X_1 , $X_2 \sim N(0,1)$

$$\rho(X_1,X_2)=0 \\ \text{(independent)} \qquad \qquad \rho(X_1,X_2)=0.8 \qquad \qquad \rho(X_1,X_2)=-0.8$$

CORRELATION VS. DEPENDENCE

Illustration of bivariate normal distribution with different correlations $X_1, X_2 \sim N(0, 1)$

$$ho(X_1, X_2) = 0$$
 $ho(X_1, X_2) = 0.8$ $ho(X_1, X_2) = -0.8$ (independent)

CORRELATION VS. DEPENDENCE

Illustration of bivariate normal distribution with different correlations X_1 , $X_2 \sim N(0,1)$

$$\rho(X_1, X_2) = 0 \qquad \rho(X_1, X_2) = 0.8 \qquad \rho(X_1, X_2) = -0.8$$
 (independent)

Examples with Pearson's correlation $\rho \approx 0$ but non-linear dependencies (MI $\neq 0$):

CORRELATION VS. DEPENDENCE

Illustration of bivariate normal distribution with different correlations $X_1, X_2 \sim N(0, 1)$

Examples with Pearson's corr. $\rho \approx 0$ but non-linear dependencies (MI $\neq 0$):

