Analízis 1.

Adja meg az e számot definiáló sorozatot!

2. Tétel (Az e szám értelmezése). Az

$$a_n := \left(1 + \frac{1}{n}\right)^n \quad (n \in \mathbb{N}^+)$$

sorozat szigorúan monoton növekvő és felülről korlátos, tehát konvergens. Legyen

$$e := \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

Fogalmazza meg a sorozatokra vonatkozó közrefogási elvet!

- 7. Tétel (A közrefogási elv). Tegyük fel, hogy az (a_n) , (b_n) és (c_n) sorozatokra teljesülnek a következők:
 - $\exists N \in \mathbb{N}, \ \forall n > N : a_n \leq b_n \leq c_n$
 - az (a_n) és a (c_n) sorozatnak van határértéke, továbbá

$$\lim(a_n) = \lim(c_n) = A \in \overline{\mathbb{R}}.$$

Ekkor a (b_n) sorozatnak is van határértéke és $\lim(b_n) = A$.

Milyen tételt ismer monoton sorozatok határértékével kapcsolatban?

- 5. Tétel. $Minden (a_n) monoton sorozatnak van határértéke.$
 - 1. a) Ha $(a_n) \nearrow \acute{e}s$ felülről korlátos, akkor (a_n) konvergens $\acute{e}s$

$$\lim(a_n) = \sup\{a_n \mid n \in \mathbb{N}\}.$$

b) Ha $(a_n) \searrow$ és alulról korlátos, akkor (a_n) konvergens és

$$\lim(a_n) = \inf\{a_n \mid n \in \mathbb{N}\}.$$

- 2. a) Ha $(a_n) \nearrow \text{\'es fel\"ulr\'ol nem korl\'atos, akkor } \lim(a_n) = +\infty.$
 - b) Ha $(a_n) \searrow \text{\'es alulr\'ol nem korl\'atos, akkor} \lim(a_n) = -\infty.$

Igaz-e az, hogy ha az (x_n) és a (y_n) sorozatoknak van határértéke és $x_n > y_n$ minden n-re, akkor $\lim(x_n) > \lim(y_n)$?

8. Tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozatnak van határértéke és

$$\lim(a_n) = A \in \overline{\mathbb{R}}, \qquad \lim(b_n) = B \in \overline{\mathbb{R}}.$$

Ekkor:

- 1. $A < B \implies \exists N \in \mathbb{N}, \ \forall n > N : a_n < b_n$.
- 2. $\exists N \in \mathbb{N}, \ \forall n > N : a_n \leq b_n \implies A \leq B$.

Fogalmazza meg egy valós szám m-edik gyökének a létezésére vonatkozó tételt, és adjon olyan eljárást, amivel ezek a számok nagy pontossággal előállíthatók!

4. Tétel (Newton-féle iterációs eljárás m-edik gyökök keresésére). Legyen A>0 valós szám és $m\geq 2$ természetes szám. Ekkor az

$$\left\{ \begin{array}{ll} a_0>0 \ tets z \Holeges \ val \'os \ sz \Ham, \\ \\ a_{n+1}:=\frac{1}{m}\left(\frac{A}{a_n^{m-1}}+(m-1)a_n\right) \quad (n\in \mathbb{N}) \end{array} \right.$$

rekurzióval értelmezett (a_n) sorozat konvergens, és az $\alpha := \lim(a_n)$ határértékére igaz, hogy $\alpha > 0$ és $\alpha^m = A.$

Hogyan szól a Bolzano-Weierstraß-féle kiválasztási tétel?

5. Tétel (A Bolzano–Weierstrass-féle kiválasztási tétel). Minden korlátos valós sorozatnak van konvergens részsorozata.

Mikor nevez egy sorozatot Cauchy-sorozatnak?

1. Definíció. $Az(a_n)$ valós sorozatot Cauchy-sorozatnak nevezzük, ha

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall m, n > n_0 \colon |a_n - a_m| < \varepsilon.$

Mi a kapcsolat a konvergens sorozatok és a Cauchy-sorozatok között?

6. Tétel (A Cauchy-féle konvergenciakritérium). Legyen (a_n) egy valós sorozat. Ekkor

$$(a_n)$$
 konvergens \iff (a_n) Cauchy-sorozat.