SNR-dependent compression of enhanced Mel sub-band energies for compensation of noise effect on MFCC feature

Author: Babak Nasersharif*, Ahmad Akbari

Professor:陳嘉平

Reporter:葉佳璋

Outline

- Introduction
- Compensating of noise effects on MFCC features
- Mel sub-band spectral subtraction
- SNR-dependent compression of Mel sub-band energies
- Experiments and results

Introduction

- Current automatic speech recognition (ASR) systems are not robust in adverse acoustic conditions.
 - -back ground noise .
 - -channel distortion.
 - -unwanted sounds.
- For these reason, there is demand for techniques to compensate for the effects of such interfering signals.

Introduction(cont.)

- Several technique have been proposed to reduce sensitivity of feature to external noise.
- A group of methods work at spectral level.
 - Spectral subtraction.
 - -Wiener filtering.
- Another robust speech recognition techniques work at feature level.
 - cepstral mean normalization.(CMN)
 - SNR-dependent cepstral mean normalization.(SDCMN)

Introduction(cont.)

 In this paper, we propose a transformation for applying to Mel sub-bands energies in order to remove noise from MFCC feature.

-First step, we apply sub-band spectral subtraction.

-second step, we define an SNR-dependent root function in place of log function and we use it for compressing Mel sub-band energies.

Compensating of noise effects on MFCC features

- To overcome MFCC have poor performance in noisy condition, we propose a framework to compensate additive noise.
- First discuss the general process of MFCC feature extraction
 - -assume that x(n) represents a speech signal .
 - -pre-emphasize.
 - -multiplied by a Hamming window with length N.
 - -applying an N-point fast Fourier transform(FFT).
 - -the resulting amplitude spectrum is shown by |X(k)|, where k is frequency index.

Compensating of noise effects on MFCC features (cont.)

• Then the filter bank energy E_i^x passing through ith Mel band-pass filter $\psi_i(k)$, is calculate as follows:

$$E_i^x = \sum_{k=1}^N |X(k)|^2 \cdot \psi_i(k)$$

 After, a discrete cosine transform(DCT) is applied to log of filter bank energies.

$$c_{t}^{x} = \sum_{i=1}^{M} \log(E_{i}^{x}) \cos[l \cdot \frac{(2i-1)\pi}{2M}]$$

Compensating of noise effects on MFCC features (cont.)

 Assuming that x(n) is noisy speech, we define our noise compensation framework based on filter bank energies.

$$\hat{E}_{i}^{x} = F(E_{i}^{x}, w_{i}, b_{i}) = (E_{i}^{x} - b_{i})^{w_{i}}$$

where \hat{E}_i^x is compensated Mel filter bank output, w_i and b_i are compensation parameters. The parameter w_i is the compression factor and the bias b_i depends on noise spectral characteristics.

Including two steps:

- -Subtraction: reduce the filter bank energy increase due to present of additive noise.
- -Energy compression: emphasize those filter bank energies less affected by noise and distortion.

Compensating of noise effects on MFCC features (cont.)

 After these two steps, we can calculate the compensated MFCC using the following equation.

$$\hat{c}_{l}^{x} = \sum_{i=1}^{M} \hat{E}_{i}^{x} \cos[l \cdot \frac{(2i-1)\pi}{2M}]$$

$$= \sum_{i=1}^{M} (E_{i}^{x} - b_{i})^{w_{i}} \cos[l \cdot \frac{(2i-1)\pi}{2M}]$$

Fig. 1. Block diagram of proposed method for compensation of noise effects on MFCC features.

Mel sub-band spectral subtraction

Conventional power spectral subtraction is defined as follows:

$$|\hat{S}(k)|^{2} = \begin{cases} |X(k)|^{2} - \alpha + N(k)|^{2} & \text{if } |X(k)|^{2} > \frac{\alpha}{1 - \beta} + N(k)|^{2} \\ \beta + S(k)|^{2} & \text{otherwise} \end{cases}$$

Where $|\hat{S}(k)|^2$, $|X(k)|^2$ and $|N(k)|^2$ are the power spectral of enhanced speech, noisy speech, and estimate noise. α is an over-estimation factor and β is a spectral flooring parameter.

In this paper, we use Mel sub-band spectral subtraction

$$E_{i}^{ss} = E_{i}^{x} - b_{i} = \begin{cases} E_{i}^{x} - \alpha_{i} E_{i}^{N} & E_{i}^{x} > \frac{\alpha_{i}}{1 - \beta_{i}} E_{i}^{N} \\ \beta_{i} E_{i}^{x} & otherwise \end{cases}$$

where E_i^{ss} is enhanced filter bank energy after Mel sub-band spectral subtraction. E_i^N is the output of ith triangular Mel-scaled filter, assuming that estimated noise $|N(k)|^2$ is passed through Mel filter bank.

Mel sub-band spectral subtraction(cont.)

• E_i^N can be computed as follows:

$$E_i^N = \sum_{k=1}^N |N(k)|^2 \cdot \psi_i(k)$$

And we can compute parameter

$$b_{i} = \begin{cases} \alpha_{i} E_{i}^{N} & E_{i}^{x} > \frac{\alpha_{i}}{1 - \beta_{i}} E_{i}^{N} \\ (1 - \beta_{i}) E_{i}^{x} & otherwise \end{cases}$$

Mel sub-band spectral subtraction(cont.)

- We estimate the noise power spectrum using 300ms of noisy speech signal where only the noise is present.
- We use following smoothing equation for the noise power spectrum estimation.

$$|N(k)|^2 = P_t(k) = \lambda P_{t-1}(k) + (1-\lambda)|B_t(k)|^2$$

where $P_{t-1}(k)$ and $|B_t(k)|^2$ are estimated noise power spectral in previous t-1 frames and current frame. λ is a forgetting factor and k is the frequency index.

SNR-dependent compression of Mel sub-band energies

- For MFCC computation, a logarithm function applied to Mel filter bank energies in order to compress their dynamic range.
- This reduction has two drawbacks in presence of addictive noise.
 - It can not highlight sub-bands energies that are less affected by noise.
 - some distortions that ate negligible in power spectrum domain become important after the logarithmic compression of Mel filter bank energies.

SNR-dependent compression of Mel sub-band energies (cont.)

 DCT that is utilized in MFCC computation is a linear transform that gives equal weight to all compressed subband energies.

 Equal weight of DCT and drawbacks of logarithmic compression make MFCC feature highly sensitive to additive noise.

SNR-dependent compression of Mel sub-band energies (cont.)

• We propose a compression function that is computed based on SNR in Mel sub-bands. This function replaces w_i in before equation.

$$w_i = \gamma \cdot \left[1 - \exp(-\frac{SNR_i}{\xi_i}) \right] = \gamma \cdot G(SNR_i, \xi_i)$$

where γ is a constant root and ξ_i is a parameter that controls the steepness of the compression function. G is an SNR-dependent function with values between 0 and 1.

• SNR_i is signal to noise ration ith Mel frequency sub-band that can be estimated as in:

$$SNR_{i} = (1 + \frac{E_{i}^{ss}}{E_{i}^{N}})^{0.5}$$

where square root has been used for reducing the dynamic rage of energy ration.

SNR-dependent compression of Mel sub-band energies (cont.)

• We need more compression at sub-bands with low SNR_i value while we need less compression or equalization at sub-bands with high SNR_i value.

$$\xi = 1 - \frac{1}{1 + \exp(-\frac{SNR - \mu SNR}{\sigma SNR})} = 1 - f(SNR)$$

where μ_{SNR} and ρ_{SNR} are mean and standard deviation of SNR_i computed from all Mel subbands of a speech frame.

 Function f was chosen as a sigmoid function, because a sigmoid function f satisfies asymptotic behavior of being zero at low SNR, and one at high SNR.

Fig. 2. SNR_i , ξ_i and $G(SNR_i, \xi_i)$ values in different Mel sub-bands for a noisy speech frame in presence of white noise with SNR = 0 dB.

Experiments and results

- TIMIT database for isolated word recognition.
 - -two sentences spoken by speakers from two dialect regions were selected and were segmented into words.
 - had 21 words spoken by 151 speakers including 49 females and 102 males.
 - -training set contains 2349 utterances spoken by 114 speakers.
 - -the testing set including 777 utterances spoken by 37 speakers.
 - -recognizer is CDHMM with 6 states and 8 Gaussian mixture per state.
- Three type of additive noises were used: white, pink, factory noise selected from NOISEX92 database.

 For evaluating our proposed compensation method, we have tested Mel sub-band spectral subtraction in company with conventional log function.

$$sc_t^x = \sum_{i=1}^{M} \log(E_i^{ss}) \cos\left[l \cdot \frac{(2i-1)\pi}{2M}\right]$$

Denote this features by LMSBS.

• CMSBS which stands for Compression and Mel Sub-Band Spectral subtraction show our proposed features. We have chosen $\alpha_i = 1$, $\beta_i = 0.1$ for all Mel sub-bands.

$$\hat{c}_{t}^{x} = \sum_{i=1}^{M} (E_{i}^{ss})^{w_{i}} \cos[l \cdot \frac{(2i-1)\pi}{2M}]$$

 Moreover, we compare CMSBS with constant root where we choose the constant root equal to 0.5

$$rc_{t}^{x} = \sum_{i=1}^{M} (E_{i}^{X})^{0.5} \cos[l \cdot \frac{(2i-1)\pi}{2M}]$$

Denote this features by RMFCC.

 Furthermore, we have performed Mel spectral subtraction together with constant root 0.5 that can be shown by:

$$src_{t}^{x} = \sum_{i=1}^{M} (E_{i}^{ss})^{0.5} \cos[l \cdot \frac{(2i-1)\pi}{2M}]$$

Denote this features by RSMFCC.

Table 1
Word error rates for conventional MFCC features in presence of white, pink and factory noises for different SNR values

Noise	SNR				
	20 dB	15 dB	10 dB	5 dB	0 dB
White (%)	4.00	10.94	26.90	50.52	81.39
Pink (%)	4.63	12.10	29.67	63.72	90
Factory (%)	2.90	8.76	22.14	53.13	85.84

Fig. 3. Word error rates in presence of white, pink and factory noises for different SNR values: (a) SNR = 20 dB, (b) SNR = 15 dB, (c) SNR = 10 dB, (d) SNR = 5 dB, (e) SNR = 0 dB.

B. Nasersharif, A. Akbari | Pattern Recognition Letters 28 (2007) 1320-1326

Fig. 4. Average word error rate on five SNR values (20, 15, 10, 5, 0 dB) for three noise types: (a) white noise, (b) pink noise, (c) factory noise.