Chapter 6 - Math and Logic Puzzles

// Prime Numbers every positive integer can be decomposed into a product of primes gcd(x, y) * lcm(x, y) = x * y checking for primality // Naive implementation checking if a number is prime boolean primeNaive(int n) { if (n < 2) { return false; for (int i = 2; i < n; i++) { if (n % i == 0) { return false; } } return true; } // A small improvement is to iterate only up through the square root of n boolean primeSlightlyBetter(int n) { if (n < 2) { return false; int sqrt = (int) Math.sqrt(n); for (int i = 2; $i \le sqrt$; i++) { if (n % i == 0) {

// In reality we only need to check if n is divisible by a prime number

return false;

}

return true;

}

}

// The Sieve of Eratosthenes → generate a list of primes → it works by recognizing that all non-prime numbers are divisible by a prime number

```
boolean[] sieveOfEratosthenes(int max) {
        boolean[] flags = new boolean[max + 1];
        int count = 0;
        init(flags); // Set all flags to true other than 0 and 1;
        int prime = 2;
        while (prime <= Max.sqrt(max)) {</pre>
                crossOff(flags, prime);
                prime = getNextPrime(flags, prime);
       }
        return flags;
}
void crossOff(boolean[] flags, int prime) {
        for (int i = prime * prime; i < flags.length; i += prime) {
                flags[i] = false;
       }
}
int getNextPrime(boolean[] flags, int prime) {
        int next = prime + 1;
        while (next < flags.length && !flags[next]) {
                next++;
       }
        return next;
}
// Probability of A and B \rightarrow two events A and B \rightarrow overlapping area is the event {A and B} \rightarrow
what is the probability you would land in the intersection between A and B? → if you knew the
odds of landing in A and the percent of A that's also in B (the odds of being in B given that you
were in A) \rightarrow P(A and B) = P(B given A) * P (A)
eg. What is the probability of picking an even number and a number between 1 and 5?
P (x is even and x <= 5) = P (x is even given x <= 5) * P(x <= 5)
                          = (2/5) * (5/10) = \frac{1}{5}
\rightarrow since P(A and B) = P(B given A) * P(A) = P(A given B) * P(B) \rightarrow P(A given B) = P(B given A)
* P(A) / P(B) → Bayes' Theorem
// Probability of A or B \rightarrow P(A or B) = P(A) + P(B) - P(A and B)
```

eg. We pick a number between 1 and 10 (inclusive). What is the probability of picking an even number or a number between 1 and 5

P(x is even or x <= 5) = P(x is even) + P(x <= 5) - P(x is even and x <=5)
=
$$5/10 + 5/10 - \% = \frac{1}{2} + \frac{1}{2} - \% = \frac{4}{3}$$

// Independence \rightarrow P(A and B) = P(A) * P(B)

// **Mutual Exclusivity** \rightarrow if A and B are mutually exclusive (if one happens then the other one can't happen) \rightarrow P(A or B) = P(A) + P(B) \rightarrow because P(A and B) = 0

// As long as two events have non-zero probabilities they will never be both mutually exclusive and independent

// If one or both events have a probability of 0 (impossible) then the events are both independent and mutually exclusive

// Ropes \rightarrow You have two ropes and each takes exactly one hour to burn. How would you time 15 mins

 $x, y \rightarrow time to burn ropes$

x + y = 120

if we light a rope at both ends we can time 30 mins

x / 2 = 30

y - x/2

// The Heavy Pill \rightarrow You have 20 bottles of pills, 19 have 1.0 gram pills and 1 has pills of 1.1 grams. You can only use the scale once

take 1 pill from bottle #1, 2 pills from bottle #2 ... 20 pills from bottle #20

 \rightarrow weight - 210 grams (if all pills weighed 1.0 grams) / 0.1 grams = # bottle

// **Basketball** \rightarrow you can play 2 games: #1 \rightarrow one shot to make the hoop, #2 \rightarrow 3 shots to make 2 out of 3. Which game should you play?

P(#1) = p

s(k, n) = probability pf making k shots out of n

 $P(#2) = s(2, 3) + s(3, 3) \rightarrow mutually exclusive$

 $s(3, 3) = p^3$ (probability of making one shot is 3) \rightarrow independence of each shot

→ the probability of making exatly two shots is:

P(making 1 and 2, missing 3) + P(making 1 and 3, missing 2) + P(making 2 and 3, missing 1) = $p * p * (1 - p) * 3 = 3 * (1 - p) * p ^ 2$

p = probability of making a shot \rightarrow 1 - p = probability of mising the shot

$$\rightarrow$$
 P(winning #2) = p^3 + 3p^2 - 3p^3 = 3p^2 - 2p^3

you should play game 1 if P(#1) > P(#2)

$$p > 3p^2 - 2p^3 \rightarrow solve inequality$$

// **Dominos** \rightarrow 8 x 8 chessboard with 2 diagonally opposite corners cut off. Can you cover it with 31 dominoes considering 1 domino covers 2 squares?

chessboard has 64 squares → 32 black and 32 white

if we remove diagonally opposite corners we are removing 2 squares from the same color

- → let's say we have 30 B squares and 32 W squares
- \rightarrow each domino we set on the board will take up 1 B square and 1 W square regardless how we place them
- \rightarrow 31 dominoes will take up 31 B and 31 W \rightarrow wo you can't cover the board

// Ants on a Triangle → find the probability of collision

- → the ants will collide if any of them are moving towards each other
- → they wont' collide if all of them are moving in the same direction (clockwise or counterclockwise)
- \rightarrow P(clockwise) = $\frac{1}{2}$ ^ 3 \rightarrow $\frac{1}{2}$ is the probability of one ant moving clockwise
- \rightarrow P(counterclockwise) = $\frac{1}{2}$ ^ 3
- \rightarrow P(same direction) = P(C) + P(CC) = 2 * $\frac{1}{2}$ ^3 = $\frac{1}{4}$
- → P(collision) = the probability of the ants not moving in the same direction
- \rightarrow P(collision) = 1 P(same direction) = 1 $\frac{1}{4}$ = $\frac{3}{4}$
- → replace 3 (the number of vertices) with n and you can generalize the probabilities

// **Jugs of Water** \rightarrow if the two jug sizes are relatively prime (or mutually prime \rightarrow if the only positive integer that divides both of them is 1) you can measure any value between 1 and the sum of the jug sizes

// Blue-Eyed Island

- \rightarrow assuming there are n people on the island and b of them have blue eyes \rightarrow b > 0
- \rightarrow case #1 \rightarrow b = 1 \rightarrow 1 evening as the blue eyed person can look around and see no-one has blue eyes therefore they must be the ones with blue eyes

```
\rightarrow case #2 \rightarrow b = 2 \rightarrow second night, the blue eyed people would see each other and assume
that if b = 1 they would have left the first night
\rightarrow case #3 \rightarrow b > 2 \rightarrow using induction if b people have blue eyes it will take b nights (all people
would leave same night)
// The Apocalypse → G indicates a girl and B indicates a boy
→ sequences of children will look like G, BG, BBG, BBBBBG ...
→ Work out the probabilities for each gender sequence
\rightarrow P(G) = \frac{1}{2} \rightarrow P(BG) = \frac{1}{2} * \frac{1}{2} (independence)
\rightarrow P(BBG) = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}
→ how many boys does each family have on average?
→ the expected value of the number of boys is the probability of each sequence multiplied by
the number of boys in that sequence
\rightarrow sum(i=0 to inf) = i/2^i \rightarrow close to 1
→ gender ratio remains 50% girls 50% boys
// Simulation
public class Simulation {
        public static double runNFamilies(int n) {
                int boys = 0;
                int girls = 0;
                for (int i = 0; i < n; i++) {
                         int[] genders = runOneFamily();
                         girls += genders[0];
                         boys += genders[1];
                return girls / (double) (boys + girls);
        }
        public static int[] runOneFamily() {
                Random random = new Random();
                int boys = 0;
                int girls = 0;
                while (girls == 0) {
                         if (random.nextBoolean()) {
                                 girls += 1;
                         } else {
                                 boys += 1;
                         }
```

}

```
int[] genders = {girls, boys};
               return genders;
       }
}
// The Egg Drop Problem
public class Question {
       private static int breakingPoint = 43;
        private static int countDrops = 0;
        public static boolean drop(int floor) {
               countDrops++;
               return floor >= breakingPoint;
       }
       public static int findBreakingPoint(int floors) {
               int interval = 14;
               int previousFloor = 0;
               int egg1 = interval;
               while (!drop(egg1) && egg1 <= floors) {
                       interval -= 1;
                       previousFloor = egg1;
                       egg1 += interval;
               }
               int egg2 = previousFloor + 1;
               while (egg2 < egg1 && egg2 <= floors && !drop(egg2)) {
                       egg2 += 1;
               return egg2 > floors ? -1: egg2;
       }
}
// 100 Lockers → a door n is toggled once for each factor of n including itself and 1
\rightarrow a door is left open if the number of factors (x) is odd
\rightarrow when would x be odd?
→ x is odd if n is a perfect square (if you pair factors the square root of a perfect square only
contributes once → odd numbers of factors)
→ there are 10 perfect squares from 1 to 100
```

// **Poison** → naive approach (28 days)

- \rightarrow divide the bottles across the 10 test strips first in groups of 100 wait 7 days and repeat for the group that came positive \rightarrow 9 strips left 100/9 is the next size of groups (~12) \rightarrow 8 strips \rightarrow groups of 2 \rightarrow 7 strips groups of 1 \rightarrow 4 rounds * 7 days = 28 days
- // Optimized approach (7 days) → each strip is a binary indicator for poisoned or unpoisoned
- \rightarrow we can map 1000 keys to 10 binary values such that each key is mapped to a unique configuration of values