NASA Operational Simulator for Small Satellites (NOS³)

NASA IV&V Independent Test Capability (ITC) Team

Mr. Scott Zemerick Scott.Zemerick@TMCTechnologies.com

Agenda

STF-1 Intro

- ITC Intro
- NASA IV&V CubeSat
- C&DH FSW Architecture

NOS³

- V1.0
- Architecture
- Simulators

Conclusion

Next Steps

Questions

Independent Test Capability (ITC) Introduction

NASA IV&V Independent Test Capability (ITC)

Charter

Acquire, develop, and manage adaptable test environments that enable the <u>dynamic</u> analysis of software behaviors for multiple NASA missions

Dynamic Analysis is performed on flight software to verify software behavior

NASA IV&V Independent Test Capability (ITC) JIST S3

JWST Integrated Simulation & Test

SLS Software-Only-Simulator

QEMU RAD750 Model

Wind River Simics Modeling

Simulation-to-Flight (STF-1) Introduction

NASA IV&V ITC & West Virginia University (WVU) 3U Cubesat

- NASA Cubesat Launch Initiative (CLI) proposal submitted and accepted NASA will pay manifest for future launch
- First WV Cubesat
- ITC is responsible for C&DH hardware/software, integration (hw/sw), and all testing
- WVU is responsible for payload hardware and software
- STF-1 is a "GSFC Cubesat" partnering with GSFC/WFF and Dellingr Cubesat Team
- Current Launch Ready Date is August 2016 not yet manifested prefer polar orbit

Simulation-to-Flight (STF-1)

- Primary Objective Showcase simulation technologies developed at IV&V
- Secondary Objectives WVU Research into space weather, rad-hard materials, navigation instruments (GPS and IMUs), and camera

Sponsored by:

STF-1 Flight Software / Hardware Design

- Working closely with the GSFC Dellingr 6U cubesat team
- FSW is Core Flight System (cFS)
 - Dellingr reuse, specifically on the radio cFS application
- ITC designed solar panel PCBs (Dellingr-based)
- Most hardware same as other GSFC cubesats

Hardware	Status	
Onboard Computer	Received	
Solar Cells	Received	
Power System	Ordered – 10 Week Lead Time	
Chassis	Ordered – Unknown Lead Time	
ITC Designed Solar Panel PCBs	Designed – Out for Quote	
Radio	Ordered – 6 Month Lead Time	
Clean Room	Procured and Setup for Ribbon Cutting	
Deployable Antenna	Ordered – Unknown Lead Time	
Camera	Received	

Anatomy of STF-1 ISISpace UHF/VHF Antennas **CADET Radio** Camera o Deployable antenna system o Mounted to a PC104 o Half duplex UHF o Four alloy tape antennas o Low power design protoboard o Up to 55cm in length Store and Forward architecture o Optional filters to o Includes 30mm diameter o 4GB memory buffer provide earth center through-hole for passo Up to 22 Mbps data rate science data through **ISISpace Chassis** LCSEE o Modular structure o Two PC104 Boards o Each unit can be assembled independently Fits directly into stack without o COTS component modification o Compatible with P-POD Cal-Poly specifications o Three different LED carriers with different shielding levels Inertial Measurement Unit (IMU) o Micro Electro-Mechanical Systems **Physics Payload** o Accounts for errors through calibration o Particle detector o High quality inertial sensing with a o VLF receiver MEMs IMU cluster Plasma Probe GomSpace Nanomind A3200 Novatel OEM625 GPS o High-performance AVR32 o On-orbit reprogrammable o 512KB build-in flash o Precise orbit determination o 125Mb NOR flash o Open loop tracking o 32MB SDRAM o Science data products: 100-Hz phase, TEC, S4 o I2C, UART, CAN-Bus 2 x ClydeSpace Batteries ClydeSpace Electrical Power System (EPS) o Lithium Polymer o10 command-able power switches o 80 Watt Hours Total oProvides 3.3V, 5V, and 12V o Two independent boards oOptimized for Low Earth Orbit (LEO) for redundancy oThree independent battery charge regulators o Internal heaters

NASA Operational Simulator for Small Satellites (NOS³) Introduction

NOS³

What is NOS³?

- A software test bed for small satellites
- Based upon STF-1 hardware, but sufficiently generic
- Easily-interfaces to cFS FSW, but cFS not required
- Currently open-loop, closed loop planned
- Openly distributed solution Ready-to-Run (RTR) Looking for Users!
- A collection of Linux executable and libraries

What is it used for?

- FSW early-development NOS³ provides real-world inputs to FSW
- FSW V&V Testing FSW, invalid inputs, behavior, stress conditions
- FSW Integration Used for early-app development and payload team integration
- Mission Planning Example: power analysis

NOS³ Ready-to-Run (RTR)

Leverage ITC virtual deployment technologies

- ITC does NOT distribute virtual machines
- Virtual machines are built on-the-fly by the user
- Deployment Steps
 - Obtain files ITC
 - Install virtual machine provisioner such as Virtual Box
 - Run 1 Command generates virtual machine
 - Login to virtual machine and build cFS with RTR script

Ready-to-Run (RTR) for...

- cFS development environment
- NOS³ environment
- Ground system software
- Software integration testing

NOS³

Linux Software Architecture

NOS³

NOS³ v1 Included Simulators

Simulator	Hardware Modeled	Sim Usage	
Magnetometer	Honeywell HMC5843	FSW data source for development	
Electrical Power System (EPS)	Clydespace Gen III	Power analysis – software control of switches	
GPS	Novatel	FSW data source for development and software commanding of GPS	
Camera	ArduCam Mini OV2640 SPI/I2C	FSW data source for development and large data packet handling	

NOS³ Components

Component	What is it?	How is it used?	
NASA Operational Simulator (NOS) Engine	Engine is ITC-developed message passing middleware designed specifically for use in simulation. Includes time synchronization, data manipulation, and fault injection.	Serves as the NOS ³ glue to tie all components together into a common interface to FSW	
Hardware Model	A model for a specific piece of flight hardware, often focusing on the inputs/outputs of the device from the FSW perspective.	Serves as virtual hardware in order to provide FSW with an accurate representation of its data	
42	42 is an open-source general purpose simulator developed at NASA Goddard Space Flight Center for spacecraft attitude and orbit dynamics.	Serves as an <i>Environment Data Provider</i> – chosen to provide magnetic field data and positional data as inputs to the magnetometer and GPS simulators	

Hardware

time

time, input bytes

NOS Engine

NOS Engine

Message

STF-1 FSW + NOS³

STF-1 FSW + NOS³

STF-1 FSW + NOS³

Future Plans – NOS³ v2

Capability	Description
3 Axis Gyroscope Simulator (In Progress)	InvenSense MPU-3300
Temperature Sensors (In Progress)	I2C Temperature Sensors
Electrical Power System (EPS) Sim Maturity (In Progress)	Add battery sim to Clydespace Simulator
UHF Radio Simulator (under consideration)	L3 Cadet Radio
Visualization / User Interface	Provide the user with a generic NOS ³ user-interface.
Integrate with Ground System Software	Currently looking into COSMOS and ITOS.
Tighter 42 Integration	Programmatically sync FSW time to 42 time so that NOS ³ hardware models and FSW are in sync

NOS³ Work In Progress

NOS³ Work in Progress

NOS³ Visualization

NOS³ Ground System Integration

Questions?

Backup Slides

NOS³ FSW Architecture

NOS³ FSW Architecture

NOS³ 42 Integration

EPS Simulator

STF-1 EPS Simulator – ×

Firmware 1
Revision 2
Cmd Invalid Cmd O
Data O
POR O
Last Reset BOR O
WDT O

Battery Charge Regulator				
	Va	20.25	20.25	
BCR1	la	2.25	2.25	
	Ib	2.75	2.75	
	Ta	5	5	
	Tb	10	10	
	SDa	100	100	
	SDb	775	775	
BCR2		19.5	19.5	
		1.75	1.75	
	lb		2	
	Ta	7.5	7.5	
	Tb		15	
	SDa	600	600	
	SDb	300	300	
BCR3	Va		6	
		0.25	0.25	
		0.75	0.75	
	Ta	20.5	20.5	
	Tb	21.75	21.75	
	SDa	511	511	
	SDb	512	512	
		Reset	Update	

