Techniques de Classification

© LOTFI BEN ROMDHANE, PH.D.
ISITCOM/U. DE SOUSSE/ TN

3DNI

Sommaire

- Concepts de base
- Mesures de Distance
- Classification hiérarchique
- Algorithme K-Moyenne
- Algorithme K-Medoides
- Discussion

© L. B. Romdhane; ISITCom

Concepts de Base (1)

- Plusieurs noms: *clustering, classification, classement,* ...
- Un ensemble de méthodes permettant de créer des groupes à partir d'un ensemble de données tels que:
 - les données qui appartiennent au même groupe sont similaires
 - les données appartenant à des groupes différents
 sont dissimilaires

© L. B. Romdhane; ISITCom

Concepts de Base (2)

- Plusieurs applications en pratique
- Les données de puces ADN
 - les gènes qui sont similaires admettent dans l'organisme des fonctions identiques
- Compression des données
 - Les données qui se trouvent dans un groupe sont similaires et peuvent être remplacées par une seule valeur
- Segmentation des Images: diviser une image en un ensemble de régions homogènes
 - Compression des images pour la transmission: représenter chaque région par un seul point (pixel)
 - Reconnaissance des formes: appariement d'une forme (par exemple le visage d'une personne) avec les régions de l'image (ensembles des visages dans l'image)

Concepts de Base (3)

Approches existantes

Formulation du problème

- On considère $D = \{X_1, X_2, ..., X_n\}$ un ensemble de n points (données)
- $Xi = \{x_{i,1}, x_{i,2}, ..., x_{i,l}\}$ une donnée vecteur de dimension I, c'est-à-dire possédant l'attributs participant à sa définition
- La classification consiste à trouver un ensemble de groupes {C1,C2, ..., Cc }; dits aussi clusters; tel que la distance entre des données du même groupe est plus petite que la distance entre deux données appartenant à deux groupes différents.
- Ces groupes peuvent être
 - disjointes: chaque donnée appartient à un et un seul groupe
 - chevauchantes : chaque donnée peut appartenir à plus d'un groupe

Fonction de distance (1)

- Une distance défini sur un ensemble E est une fonction : d : E×E→ℜ+ possédant les propriétés suivantes
 - Symétrie

$$\forall x, y \in E; d(x, y) = d(y, x)$$

Séparabilité

$$\forall x, y \in E; d(x, y) = 0 \Leftrightarrow x = y$$

Inégalité triangulaire

$$\forall x, y, z \in E; d(x, z) \le d(x, y) + d(y, z)$$

Fonction de distance (2)

Distance Euclidienne

$$dist(X_i, X_j) = \sqrt{\sum_{k=1}^{l} (x_{i,k} - x_{j,k})^2}$$

Distance de Manhattan

$$dist(X_i, X_j) = \sum_{k=1}^{l} |x_{i,k} - x_{j,k}|$$

Distance de Jaccard (pour les ensembles)

$$dist(A,B)^{2} = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}$$

nombre d'opérations élémentaires (insertions, suppression, ...)
 pour changer un objet (chaîne de caractères, graphe) vers un autre

Classification hiérarchique

Notions de base (1)

- La classification hiérarchique permet de produire une hiérarchie de groupes
 - chaque niveau de la hiérarchie représente un partitionnement différent
 - o peut-être modélisé à l'aide d'un arbre hiérarchique appelé dendrogramme

Notions de base (2)

La coupure du dendrogramme à un niveau particulier génère un partitionnement différent

Partitionnement = { {x1, x3}; {x2, x5}; {x4}; {x6} }

Question 1: Comment générer cet arbre à partir d'un ensemble de données ?

Question 2: Comment déterminer la coupure optimale ?

Génération du dendrogramme (1)

APPROCHE ASCENDANTE (BOTTOM-UP)

- dite aussi agglomérative
- partir d'un partitionnement dans lequel chaque donnée forme un groupe à part
- à chaque étape (niveau du dendrogramme), fusionner les deux groupes les plus proches
- s'arrêter lorsqu'on obtient un seul groupe

APPROCHE DESCENDANTE (TOP-DOWN)

- dite aussi divisive
- partir avec un seul groupe contenant toutes les données
- à chaque étape, diviser le groupe le plus mauvais
- s'arrêter lorsque chaque donnée est dans un groupe à part

Génération du dendrogramme (2)

Méthodes descendantes (1)

 Il y a plusieurs méthodes de classification qui diffèrent par le choix du groupe à diviser

• DAA: Deterministic Annealing Algorithms

SPC: Super-Paramagnetic Clustering

SOTA: Self-Organizing Tree Algorithm

DIANA : Divisive ANAlysis

Algorithme de base

DEBUT

- mettre toutes les données dans un seul groupe
- Répéter
 - diviser en deux le groupe le plus mauvais
 - pour cela on peut utiliser un autre algorithme tel que Kmoyenne
 - mettre à jour la matrice des distances entre les groupes
- Jusqu'à (chaque donnée est dans un groupe à part)

FIN.

© L. B. Romdhane; ISITCom

Méthodes descendantes (3)

- On a besoin d'un critère pour choisir le groupe à diviser
 - le plus large : admettant les points les plus éloignés (plus distants)
 - le plus dense : contenant le maximum de points
- Pour diviser *un groupe de n éléments* en deux, il y a un grand nombre de possibilités à tester :

$$\left(2^{n-1}-1\right)$$

• On doit utiliser une **heuristique** pour réduire le nombre de possibilités

Méthodes descendantes (4)

DIANA (Divisive ANAlysis)

- on divise le groupe admettant le plus grand rayon
 - Méthode de division d'un groupe G
 - 1. trouver P_0 , le point admettant la plus grande dissimilarité moyenne (distance) avec le reste des points du groupe G
 - 2. P_0 va initier la formation d'un nouveau groupe $G_{new} = \{P_0\}$
 - 3. Pour chaque point $i \notin G_{new}$ calculer

$$Diff_i = \overline{d(i,j)}/j \notin G_{new} - \overline{d(i,j)}/j \in G_{new}$$

- Cette formule estime la différence entre la distance moyenne d'une donnée i par rapport à « l'ancien groupe » et la distance moyenne de la même donnée au « nouveau groupe »

- $Diff_i > 0$: la donnée est plus proche du nouveau groupe que de l'ancien et inversement

Méthodes descendantes (5)

- 4. Trouver un point $h/D_h = \max \{D_i\} ET D_h > 0$
 - Le point h est plus proche du nouveau groupe G_{new} que du reste des points de G
 - $\circ \qquad G_{new} \leftarrow G_{new} \cup \{h\}; G \leftarrow G \setminus \{h\}$
- 5. Répéter les étapes 3) et 4) jusqu'à ce que tous les points i de G admettent un $D_i < 0$
- on vient de terminer la division du groupe initial G en deux groupes
- Maintenant, on devra reprendre le même processus avec le plus mauvais groupe

Méthodes descendantes (6)

Considérons un ensemble de villes italiennes et la matrice des distances entre elles

Initialement: $G_{new} = \{\}; G_{old} = \{BA, FI, MI, VO, RM, TO\}$

	ВА	FI	MI	vo	RM	ТО
ВА	0	662	877	255	412	996
FI	662	0	295	468	268	400
MI	877	295	0	754	564	138
vo	255	468	754	0	219	869
RM	412	268	564	219	0	669
ТО	996	400	138	869	669	0
Moyenne	533,6	348,8	438	427,5	355,3	512

$$G_{new}$$
 = {BA}
 G_{old} = {FI, MI, VO, RM, TO}

Méthodes descendantes (7)

	FI	MI	VO	RM	ТО
D(Gnew)	662	877	255	412	996
D(G\Gnew)	357,75	437,75	577,5	430	519
D_i	-304,25	-439,25	322,5	18	-477

$$G_{new}$$
 = {BA; VO}; G_{old} = {FI, MI, RM, TO}

	FI	MI	RM	ТО
Gnew	565	815,5	315,5	932,5
G\Gnew	321	332,3	500,3	402,3
D_i	-244	-483,16	184,83	-530,16

$$G_{new}$$
 = {BA; VO; RM}; G_{old} = {FI, MI, TO}

	FI	MI	TO
Gnew	466	731,66	844,66
G\Gnew	347,5	216,5	269
D _i	-118,5	-515,16	-575,66

Tous les D_i sont négatifs : arrêt de la division et on obtient les deux groupes

- G_1 = { FI; MI; TO }
- G₂= { BA; VO; RM }
- $Rayon(G_1)$ = distance(FI; TO) = 400
- $Rayon(G_2)$ = distance(BA,RM) = 412

Prendre G2 et le diviser selon le même principe ...

© L. B. Romdhane; ISITCom 3 DNI - DATA MINING 20

Méthodes ascendantes (1)

- Le calcul des distances entre les groupes est un point central qui permet de distinguer la majorité des algorithmes existants
 - UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
 - CHAMELEON
 - ROCK (RObust Clustering using linKs)
 - CURE (Clustering Using REpresentatives)

Algorithme de base

DEBUT

- mettre chaque donnée dans un groupe à part
- Répéter
- fusionner les deux groupes les plus proches
 - mettre à jour la matrice des distances entre les groupes
- Jusqu'à (la formation d'un seul groupe)

FIN.

Dans ces algorithme, on a besoin d'estimer la distance entre deux groupes (ensembles) de données ; en plus de la distance entre les données

© L. B. Romdhane; ISITCom

Distance (1)

- On rappelle que la distance entre les données est calculée en utilisant une fonction de distance dont la nature et la formulation dépend des données
- single-linkage : MIN

Distance (2)

complete-linkage : MAX

Distance (3)

average-linkage : MOYENNE

Distance (4)

- centroid-linkage : centre des classes
 - o définir le centroide de chaque groupe (moyenne des données qu'elle contient)
 - prendre la distance entre les centroides

UPGMA (1)

- UPGMA: Unweighted pair group method with arithmetic mean
- Utilise la moyenne (average-linkage)

•
$$dist(A,B), C = (distAC + distBC) / 2 = 4$$

- dist(A,B),D = (distAD + distBD)/2 = 6
- dist(A,B),E = (distAE + distBE)/2 = 6
- dist(A,B), F = (distAF + distBF) / 2 = 8

étape 2

	AB	С	D	Е	F
AB	0				
С	4	0			
D	6	6	0		
Е	6	6	4	0	
F	8	8	8	8	0

<u>étape 1</u>

	Α	В	С	D	Е	F
A	0					
В	2	0				
C	4	4	0			
D	6	6	6	0		
E	6	6	6	4	0	
F	8	8	8	8	8	0

UPGMA (2)

<u>étape 3</u>

	AB	С	DE	F
AB	0			
C	4	0		
DE	6	6	0	
F	8	8	8	0

	ABC	DE	F
ABC	0		
DE	6	0	
F	8	8	0

<u>étape 5</u>

	ABCDE	F
ABCDE	0	
F	8	0

Single-Linkage (Min)

Agrégation selon le lien minimum

	а	b	С	d	e
а	0	23	35	43	50
ь	23	0	21	32	45
c	35	21	0	11	25
d	43	32	11	0	17
е	50	45	25	17	0

$$G_1 = \{c, d\} \implies$$

	a	ь	e	G_1
а	0	23	50	35
b	23	0	45	21
e	50	45	0	17
G_1	35	21	17	0

Tableau des dissimilarités

$$G_2 = \{e, G_1\} \implies$$

	а	b	G_2
а	0	23	35
b	23	0	21
G_2	35	21	0

$$G_3 = \{b, G_2\} \Rightarrow \begin{bmatrix} a & a \\ a & 0 \\ G_2 & 23 \end{bmatrix}$$

Analyse de complexité

- La matrice des distances occupe un espace de O(N²)
- La complexité temporelle est de O(N³)
 - on a besoin de mettre à jour une matrice de O(N2) pendant N itérations
 - pour certains algorithmes, la complexité temporelle peut-être de O(N² log(N))

Méthodes par Partitionnement

Concepts de base (1)

- Essayer de diviser directement l'ensemble des données en des groupes homogènes
- K-Moyenne est le premier algorithme qui a été proposé dans les méthodes par partitionnement
- Plusieurs autres algorithmes ont été dérivés
 - FCM, PCM, P3M, ...
- Une difficulté intrinsèque: étant l'ensemble D, quel est le nombre de groupes existants dans D?

Concepts de base (2)

© L. B. Romdhane; ISITCom 3 DNI - DATA MINING 3

Concepts de base (3)

- La plupart des approches supposent un nombre prédéfini de classes
 - L'algorithme accepte comme paramètre le nombre de groupes à générer
- On peut utiliser un critère qui permet d'estimer le nombre optimal de groupe:
 - entropie, gain informationnel, ...
 - classer pour plusieurs valeurs du nombre de classes et choisir le partitionnement optimal selon le critère choisi
 - très coûteuse sur le plan temps d'exécution

K-Moyenne

Source: K-Means Clustering in action

Algorithme (1)

Algorithm: *k*-means. The *k*-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.

Input:

- k: the number of clusters,
- \blacksquare D: a data set containing n objects.

Output: A set of k clusters.

Method:

- (1) arbitrarily choose k objects from D as the initial cluster centers;
- (2) repeat
- (3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
- (4) update the cluster means, that is, calculate the mean value of the objects for each cluster;
- (5) until no change;

Algorithme (2)

- L'algorithme K-moyenne est simple et efficace pour classer de grands volumes de données
- Il a une complexité temporelle de O(nkt)
 - on : le nombre de données, k: nombre de classe, t: nombre de cycles d'exécution
 - ∘ généralement: k <<n, t << n
- Plusieurs critères d'arrêt sont utilisés en pratique et modélisent le même concept: « stabilité des classes »
 - Critère 1: les centres de classes deviennent stables d'une itération T à la suivante

$$\sum_{j=1}^{k} \left\| m_j(T+1) - m_j(T) \right\| / k < \varepsilon$$

Critère 2 : le contenu des classes devient stable

Valeur de K (1)?

Valeur de K (2)?

Valeur de K (3)?

Sensibilité au bruit ?

- Il est très sensible au bruit (outliers)
 - un bruit est un signal qui vient de s'ajouter aux données d'origine
 - Puisque toutes les points (données et bruit)
 participent également à la formation des classes

K-Medoides

© L. B. Romdhane; ISITCom

Principe de Base

- Comment peut-on modifier le K-Means pour qu'ils deviennent moins sensible au bruit?
- Au lieu de prendre le centroïde (valeur moyenne) comme un point de référence dans une classe, on peut choisir une donnée pour représenter la classe
- Ce représentant de classe est appelé le médoïde

Un médoïde est le la « donnée la plus centrale dans le cluster »

K-Medoides

Algorithm: *k***-medoids.** PAM, a *k*-medoids algorithm for partitioning based on medoid or central objects.

Input:

- \blacksquare k: the number of clusters,
- \blacksquare *D*: a data set containing *n* objects.

Output: A set of *k* clusters.

Method:

- (1) arbitrarily choose k objects in D as the initial representative objects or seeds;
- (2) repeat
- assign each remaining object to the cluster with the nearest representative object;
- (4) randomly select a nonrepresentative object, *o_{random}*;
- (5) compute the total cost, S, of swapping representative object, o_i , with o_{random} ;
- (6) if S < 0 then swap o_j with o_{random} to form the new set of k representative objects;
- (7) until no change;

Total Cost:

 $S = \sum_{i=1}^{k} \sum_{p \in C_i} dist((p, o_i))$ $C_i: un \ cluster$ $o_i: le \ m\'edoide \ deC_i$

Exemple (1)

Cet exemple se trouve sur le lien suivant : https://en.wikipedia.org/wiki/K-medoids

X ₁	2	6
X ₂	3	4
X ₃	3	8
X ₄	4	7
X ₅	6	2
X ₆	6	4
X ₇	7	3
X ₈	7	4
X ₉	8	5
X ₁₀	7	6

- On désire classer les données suivantes en deux classes
- Deux médoïdes: **m1**=x2=(3,4)} et **m2**=x8=(7,4)} sont choisis d'une manière arbitraire.
- On utilise la distance de Manhattan

$$X = (x_1, x_2, ..., x_n); Y = (y_1, y_2, ..., y_n), alors$$

$$Manhatten(X,Y) = \sum_{i=1}^{n} |x_i - y_i|$$

Exemple (2)

Données		m1={3,4}	m2=(7,4)
1	(2, 6)	3	7
2	(3, 4)	0	4
3	(3, 8)	4	8
4	(4, 7)	4	6
5	(6, 2)	5	3
6	(6, 4)	3	1
7	(7, 3)	5	1
8	(7, 4)	4	0
9	(8, 5)	6	2
10	(7, 6)	6	2
Cost		11	9

Cluster1 =
$$\{(2,6); (3,4); (3,8); (4,7)\}$$

Cluster2 = $\{(7,4); (6,2); (6,4); (7,3); (8,5); (7,6)\}$
Total Cost S = $(3 + 0 + 4 + 4) + (3 + 1 + 1 + 0 + 2 + 2) = 11 + 9 = 20$

Etape 2: choisissons un point non-médoide Supposons d=(7,3)

Exemple (3)

i		m1	Data	objects (X _i)	Cost (distance)
1	3	4	2	6	3
3	3	4	3	8	4
4	3	4	4	7	4
5	3	4	6	2	5
6	3	4	6	4	3
8	3	4	7	4	4
9	3	4	8	5	6
10	3	4	7	6	6

i		d	Data (objects (X _i)	(d	Cost listance)
1	7	3	2	6	8	
3	7	3	3	8	9	• Tota
4	7	3	4	7	7	• =11
5	7	3	6	2	2	• Coû
6	7	3	6	4	2	• Coû
8	7	3	7	4	1	• Don
9	7	3	8	5	3	éch
10	7	3	7	6	3	

Propriétés

- La complexité temporelle pour le K-Médoids est :
- A chaque itération on : $O(k(n-k)^2) \approx O(n^2)$ puisque en général k est négligeable devant n
- Ce qui donne une complexité globale pour t itérations: $O(tn^2)$
- Dans le cas ou un remplacement est effectué, on doit réaffecter certaines données à d'autres clusters, c'est-à-dire que les données peuvent bouger d'un cluster vers un autre.

