MAT1120

Robin A. T. Pedersen

November 19, 2016

Contents

1	For	ord	2	4		
4	Kpt	Kpt.4 - Vektorrom 5				
	4.1^{-1}	Vekto	r rom og underrom	5		
		4.1.1	Definisjon - vektorrom	5		
		4.1.2	Definisjon - underrom	5		
		4.1.3	Teorem 1	5		
	4.2	Nullro	om, kolonnerom og lineærtransformasjoner	5		
		4.2.1	Definisjon - nullrom	5		
		4.2.2	Teorem 2	6		
		4.2.3	Definisjon - kolonnerom	6		
		4.2.4	Teorem 3	6		
		4.2.5	Definisjon - lineærtransformasjon	6		
		4.2.6		6		
	4.3	Lineæ	ert uavhengige mengder: basiser	6		
		4.3.1	Teorem 4	6		
		4.3.2	Definisjon - basis	6		
		4.3.3	Teorem 5 - utspennende mengde teoremet	7		
		4.3.4	Teorem 6	7		
	4.4	Koord	linatsystemer	7		
		4.4.1	Teorem 7 - unik representasjon teoremet	7		
		4.4.2	Definisjon - \mathcal{B} -koordinater	7		
		4.4.3		7		
		4.4.4	Teorem 8	7		
		4.4.5	Begrep - isomorfi	8		
	4.5	Dimer	nsjon av vektorrom	8		
		4.5.1	Teorem 9	8		
		4.5.2	Teorem 10	8		
		4.5.3	Definisjon - dimensjon	8		
		4.5.4	Teorem 11	8		
		4.5.5	Teorem 12 - basisteoremet	8		
		4.5.6	Observasion - DimNul og DimCol	8		

	4.6	Rang	
		4.6.1	Definisjon - radrom
		4.6.2	Teorem 13
		4.6.3	Definisjon - rang
		4.6.4	Teorem 14 - rangteoremet
		4.6.5	Teorem - invertibel matrise teoremet (fortsatt) 9
	4.7		kifte
	1.1	4.7.1	Teorem 15
		4.7.2	Begrep - koordinatskiftematrise
		4.7.2	Observasjon - Invers av koord.skiftematr
	4.8		ksamensrelevant
	_		
4.9 Anvendelser til Markovkjeder			
		4.9.1	Begrep - sannsynlighetsvektor
		4.9.2	Begrep - stokastisk matrise
		4.9.3	Begrep - markovkjede
		4.9.4	Begrep - tilstandsvektor
		4.9.5	Begrep - ekvilibriumsvektor
		4.9.6	Begrep - regulæritet
		4.9.7	Teorem 18
5	V nt	. E TG.	genverdier og Egenvektorer 11
J	5.1		ektor og egenverdier
	5.1	5.1.1	
		5.1.1 $5.1.2$	• 0 0
			0 1 0
		5.1.3	Teorem 1
		5.1.4	Teorem 2
	- 0	5.1.5	
	5.2		arakteristisk ligningen
		5.2.1	Teorem - IMT fortsatt
		5.2.2	Teorem 3 - egenskaper til determinanter
		5.2.3	Begrep - karakteristisk ligning
		5.2.4	Teorem 4
		5.2.5	
	5.3		nalisering
		5.3.1	Teorem 5 - diagonaliseringsteoremet
		5.3.2	Metode - diagonalisering
		5.3.3	Teorem 6
		5.3.4	Teorem 7
	5.4	Egenv	ektorer og lineærtransformasjoner
		5.4.1	Metode - relativ transformasjonsmatrise
		5.4.2	Metode - lin.transformasjon fra V til V
		5.4.3	Teorem 8 - Diagonal matrise representasjon
		5.4.4	
		lekse egenverdier	
		5.5.1	Teorem 9
		5 5 2	Metode - Spesielt tilfelle 14

	5.6	Diskrete dynamiske systemer	15
		5.6.1 Metode - følger	15
			15
			15
	5.7		15
			15
			15
			16
			16
			16
	5.8		17
			17
			17
c	T Z 4	- O	10
6	_		18
	6.1	1 / 0 0	18
			18
		o	18
		3	18
		y 0	19
		1 0	19
		0 1 0 1	19
	c o		19
	6.2		19
			19
			19
			20
			20
			20
	<i>c</i> o		20
	6.3		20
		U 1 V	20
			21
	<i>c</i> 1		21
	6.4	±	21
			21
			21
	6.5	•	22
	0.0		22
	6.6		22
	a -		22
	6.7	1	22
	0.0		22
	6.8	±	22
		6.8.1	22

7	Kpt	t.7 - S	ymmetriske Matriser og Kvadratisk Form	22		
	7.1	Diago	malisering av symmetriske matriser	22		
		7.1.1	Begrep - symmetrisk matrise	22		
		7.1.2	Teorem 1	22		
		7.1.3	Begrep - ortogonalt diagonaliserbar	22		
		7.1.4	Teorem 2	22		
		7.1.5	Teorem 3 - spektralteoremet for symmetriske matriser $$	23		
		7.1.6	Observasjon - spektral dekomposisjon	23		
	7.2	Kvadı	ratisk form	23		
		7.2.1	Definisjon - kvadratisk form	23		
		7.2.2	Metode - koeffisienter fra matrisen	23		
		7.2.3	Metode - kryssproduktledd	23		
		7.2.4	Metode - variabelskifte	24		
		7.2.5	Teorem 4 - prinsipalakseteoremet	24		
		7.2.6	Observasjon - geometrisk tolkning	24		
		7.2.7	Definisjon - definit	24		
		7.2.8	Teorem 5 - kvadratisk form og egenverdier	25		
	7.3		nset optimalisering	25		
		7.3.1	Metode 1	25		
		7.3.2	Teorem 6	25		
		7.3.3	Teorem 7	25		
		7.3.4	Teorem 8	25		
	7.4	_	lærverdidekomposisjon	26		
		7.4.1	Begrep - singulærverdier	26		
		7.4.2	Teorem 9	26		
		7.4.3	Teorem 10 - singulærverdidekomposisjon	26		
		7.4.4	Metode - singulærverdidekomposisjon	26		
		7.4.5	Teorem - IMT konkludert	27		
		7.4.6		27		
	7.5	Ikke p	pensum?	27		
8	Notat 1					
-		8.0.1		27 27		
9	Notat 2					
J	1101	9.0.2		27 27		
		0.0.4				

1 Forord

Dette er en oversikt over alle definisjoner, teoremer og lignende fra læreboka i MAT1120.

NB! Noensteder har jeg skrevet $c \in \mathbb{R}$, men det kan hende at \mathbb{C} hadde fungert like fint. Lignende "feil" kan finnes andre steder.

 $\operatorname{NB!}$ Noen av kapitlene er mangelfulle. Jeg har selv skrevet observasjoner og metoder.

4 Kpt.4 - Vektorrom

4.1 Vektor rom og underrom

4.1.1 Definisjon - vektorrom

Et vektorrom er en ikketom mengde V. Den består av såkalte *vektorer*. Disse vektorene må være beskrevet av 2 operasjoner: Addisjon og skalarmultiplikasjon.

De to operasjonene defineres av følgende aksiomer: La $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

- 1. $u + v \in V$
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. $\exists \mathbf{0} \in Vs.a.\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. $\forall \mathbf{u} \in V, \ \exists -\mathbf{u} \in V s.a.\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V, c \in \mathbb{R}$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u**=**u**

4.1.2 Definisjon - underrom

Et underrom H er en delmengde av V. H er et underrom av V. To egenskaper må være oppfylt:

- 1. H er lukket under addisjon. $\mathbf{u} + \mathbf{v} \in H$, $\forall \mathbf{u}, \mathbf{v} \in H$
- 2. H er lukket under skalarmultiplikasjon. $c\mathbf{u} \in H, \ \forall c \in \mathbb{R}$

4.1.3 Teorem 1

Hvis $\mathbf{v}_1,...,\mathbf{v}_p$ er i et vektorrom V, så er $\mathrm{Span}\{\mathbf{v}_1,...,\mathbf{v}_p\}$ et underrom av V.

4.2 Nullrom, kolonnerom og lineærtransformasjoner

4.2.1 Definisjon - nullrom

Nullromet til en $m \times n$ matrise A, er mengden av alle løsninger av $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} = \mathbf{0} \}$$

4.2.2 Teorem 2

Nullrommet til A $m \times n$, er et underrom av \mathbb{R}^n .

Med andre ord: $A\mathbf{x} = \mathbf{0}$ har m homogene lineære ligninger, med n ukjente. Mengden av løsninger er et underrom av \mathbb{R}^n .

4.2.3 Definisjon - kolonnerom

Kolonnerommet til $m \times n$ matrisen A, er mengden av alle lineærkombinasjoner av kolonnene i A.

$$A = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n]$$

$$\operatorname{Col}(A) = \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

4.2.4 Teorem 3

Kolonnerommet til A $m \times n$, er et underrom av \mathbb{R}^m .

Med andre ord: Kolonnene i A har m elementer i hver vektor. Kolonnerommet er alle lineærkombinasjoner av disse, og har derfor m elementer i hver vektor.

4.2.5 Definisjon - lineærtransformasjon

En lineærtransformasjon T fra et vektorrom V til et annet vektorrom W, er en regel som gir hver \mathbf{x} i V en unik vektor $T(\mathbf{x})$ i W.

To egenskaper må oppfylles

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$$

2.
$$T(c\mathbf{u}) = cT(\mathbf{u}), \ \forall \ c \in \mathbb{R}^n$$

4.2.6 Begrep - kjerne (kernel)

Praktisk talt synonymt med nullrom.

4.3 Lineært uavhengige mengder: basiser

4.3.1 Teorem 4

En mengde $\{\mathbf{v}_1,...,\mathbf{v}_p\}$ (minst 2 vektorer) er lineært avhengig hvis (minst) en vektor kan skrives som en lineærkombinasjon av de andre vektorene.

4.3.2 Definisjon - basis

La H være et underrom av vektorrommet V. En mengde $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_p\}$ i V, er en basis for H hvis:

- 1. \mathcal{B} er lineært uavhengig
- 2. underrommet utspent av \mathcal{B} er det samme som H. Altså, $H = \text{Span}\{\mathbf{b}_1, ..., \mathbf{b}_p\}$

4.3.3 Teorem 5 - utspennende mengde teoremet

La $S = \{\mathbf{v}_1, ..., \mathbf{v}_p\}$ være en mengde i V, og la $H = \text{Span}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$.

- 1. Hvis \mathbf{v}_k er en lin.komb. av de andre vektorene, så kan man fjerne den fra mengden og den vil fremdeles utspenne H.
- 2. Hvis $H \neq \{0\}$, så er en delmengde av S en basis for H.

4.3.4 Teorem 6

Pivotkolonnene til en matrise A, utgjør en basis for Col(A). Man velger altså de kolonnene i A som er lineært uavhengige.

4.4 Koordinatsystemer

4.4.1 Teorem 7 - unik representasjon teoremet

La $\mathcal{B} = \{\mathbf{b}_1,...,\mathbf{b}_n\}$ være en basis for et vektorrom V. Da fins in unik mengde $c_1,...,c_n \in \mathbb{R}$ s.a.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n, \quad \forall \ \mathbf{x} \in V$$

4.4.2 Definisjon - \mathcal{B} -koordinater

Hvis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ er en basis for V, og $\mathbf{x} \in V$. Koordinatene til \mathbf{x} relativt til \mathcal{B} , er vekter $c_1, ..., c_n$ s.a.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

Med andre ord: \mathcal{B} -koordinatene til $\mathbf{x} = [\mathbf{x}]_{\mathcal{B}} = (c_1, ..., c_n)$.

4.4.3 Begrep - koordinatskiftematrise

Koordinatskiftematrisen $P_{\mathcal{B}}$, tar en vektor fra \mathcal{B} til standardbasis i \mathbb{R} ,

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Hvor $P_{\mathcal{B}}$ lages enkelt ved

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$$

4.4.4 Teorem 8

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ være en basis for vektorrommet V. Da er koordinatavbildningen $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ en-til-en lineærtransformasjon fra V $p\mathring{a} \mathbb{R}^n$.

4.4.5 Begrep - isomorfi

En isomorfi er en en-til-en og på lineærtransformasjon. Altså: den dekker hele V og enhver \mathbf{x} har en unik $T(\mathbf{x})$.

4.5 Dimensjon av vektorrom

4.5.1 Teorem 9

Hvis et vektorrom V har en basis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$, så er alle mengder i V med fler enn n vektorer lineært avhengig.

4.5.2 Teorem 10

Hvis et vektorrom V har en basis med n vektorer, så må alle basiser for V ha nøyaktig n vektorer.

4.5.3 Definisjon - dimensjon

Hvis V er utspent av en endelig mengde, så er V endelig-dimensjonalt. Dimensjonen til V, Dim V, er antall vektorer i en basis for V.

Hvis V ikke er utspent av en endelig mengde, så er V uendelig-dimensjonalt. Dimensjonen til nullvektorrommet $\{\mathbf{0}\}$ er null.

4.5.4 Teorem 11

La H være et underrom av et endelig-dimensjonalt vektorrom V. Alle lineært uavhengige mengder i V kan utvides, hvis nødvendig, til en basis for H.

H er også endelig-dimensjonalt.

 $\dim H \leq \dim V$

4.5.5 Teorem 12 - basisteoremet

La V være et p-dimensjonalt vektorrom, $p \ge 1$.

Alle lin.uavh. mengder med nøyaktig p elementer i V, er en basis for V. Alle mengder som spenner V med nøyaktig p elementer, er en basis for V.

4.5.6 Observasjon - DimNul og DimCol

Dimensjonen til Nul(A) er antall fri variable i $A\mathbf{x} = \mathbf{0}$. Dimensjonen til Col(A) er antall pivot-kolonner i A.

4.6 Rang

4.6.1 Definisjon - radrom

Radrommet til A, Row(A), er mengden av alle lineærkonbinasjoner av radvektorene i A.

4.6.2 Teorem 13

A og B er radekvivalente hvis Row(A) = Row(B).

Hvis B er på trappeform, så er ikkenull radene i B en basis for både $\mathrm{Row}(A)$ og $\mathrm{Row}(B).$

4.6.3 Definisjon - rang

Rangen til A er dimensjonen til kolonnerommet til A.

$$rank(A) = dim(Col(A))$$

4.6.4 Teorem 14 - rangteoremet

Kolonne-rang er det samme som rad-rang:

$$\dim(\operatorname{Col}(A)) = \dim(\operatorname{Row}(A))$$

Rangen til A er lik antall pivotelementer i A.

Rangen til A oppfyller:

$$rank(A) + dim(Nul(A))$$

4.6.5 Teorem - invertibel matrise teoremet (fortsatt)

Med $An \times n$, så er følgende påstander ekvivalente

- 1. A er invertibel.
- 2. Kolonnene i A er en basis for \mathbb{R}^n .
- 3. $Col(A) = \mathbb{R}^n$.
- 4. $\dim(\operatorname{Col}(A)) = n$.
- 5. rank(A) = n.
- 6. Nul(A) = 0.
- 7. $\dim(\text{Nul}(A)) = 0$.

4.7 Basisskifte

4.7.1 Teorem 15

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ og $\mathcal{C} = \{\mathbf{c}_1, ..., \mathbf{c}_n\}$ være basiser for V. Da finnes en unik $n \times n$ matrise $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ s.a.

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}}$$

Hvor

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = [\ [\mathbf{b}_1]_{\mathcal{C}} \quad \dots \quad [\mathbf{b}_n]_{\mathcal{C}} \]$$

4.7.2 Begrep - koordinatskiftematrise

Matrisen $\mathop{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ kalles for koordinatskiftematrisen fra \mathcal{B} til $\mathcal{C}.$

4.7.3 Observasjon - Invers av koord.skiftematr.

$$\binom{P}{\mathcal{C} \leftarrow \mathcal{B}}^{-1} = \Pr_{\mathcal{B} \leftarrow \mathcal{C}}$$

4.8 Ikke eksamensrelevant

Ikke eksamensrelevant.

4.9 Anvendelser til Markovkjeder

4.9.1 Begrep - sannsynlighetsvektor

En sannsynlighetsvektor: har ikkenegative elementer, og summerer til 1.

4.9.2 Begrep - stokastisk matrise

En stokastisk matrise: en kvadratisk matrise med sannsynlighetsvektorer som kolonner.

4.9.3 Begrep - markovkjede

En markovkjede er en følge av sannsynlighetsvektorer, sammen med en stokastisk matrise ${\bf P}$ s.a.

$$\mathbf{x}_{k+1} = P\mathbf{x}_k, \quad k = 0, 1, 2, \dots$$

4.9.4 Begrep - tilstandsvektor

Et element \mathbf{x}_k i markovkjeden.

4.9.5 Begrep - ekvilibriumsvektor

Tilstandsvektorene i markovkjeden forandres for hver iterasjon, men hvis man finner en vektor som ikke endres, er det en ekvilibriumsvektor.

$$P\mathbf{q} = \mathbf{c}$$

Alle stokastiske matriser har en ekvilibriumsvektor.

4.9.6 Begrep - regulæritet

Hvis en potens av stokastisk matrise P^k kun inneholder positive elementer, så er den regulær.

4.9.7 Teorem 18

Hvis P er regulær og stokastisk, så vil markovkjeden konvergere mot den unike ekvilibriumsmatrisen.

$$\{\mathbf{x}_k\} \to \mathbf{q}$$
 når $k \to \infty$

5 Kpt.5 - Egenverdier og Egenvektorer

5.1 Egenvektor og egenverdier

5.1.1 Definisjon - egenvektor og egenverdi

En egenvektor til matrisen A, er en ikkenul vektor \mathbf{x} s.a.

$$A\mathbf{x} = \lambda \mathbf{x}$$

Hvor λ er en egenverdi til A hvis det finnes en ikketriviell løsning.

5.1.2 Begrep - egenrom

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$A\mathbf{x} - \lambda\mathbf{x} = 0$$

$$(A - \lambda I)\mathbf{x} = 0$$

Mengden av alle løsninger kalles egenrommet til A for λ .

5.1.3 Teorem 1

Egenverdiene til en triangulær matrise er elementene langs hoveddiagonalen.

5.1.4 Teorem 2

Hvis $\mathbf{v}_1,...,\mathbf{v}_r$ er egenvektorer til $\lambda_1,...,\lambda_r$, for en matrise A, så er mengden $\{\mathbf{v}_1,...,\mathbf{v}_r\}$ lineært uavhengig.

5.1.5

TODO Egenvektorer og differensligninger

5.2 Den karakteristisk ligningen

5.2.1 Teorem - IMT fortsatt

Invertibel matrise teoremet:

Følgende er ekvivalent:

- 1. A er invertibel.
- 2. 0 er ikke en egenverdi til A.
- 3. $det(A) \neq 0$.

For A 3 imes 3, så er $|\det(A)|$ volumet utspent av kolonnene. Hvis volumet er null, så har kolonnene kollapset inn i hverandre og er lineært avhengige.

5.2.2 Teorem 3 - egenskaper til determinanter

La A og B være $n \times n$ matriser. Da gjelder følgende:

- 1. A er invertibel \iff det $(A) \neq 0$.
- 2. det(AB) = (det(A))(det(B)).
- 3. $det(A^T) = det(A)$.
- 4. A triangulær \implies det(A) = produktet av diagonalelementene.
 - a Radmultippel endrer ikke determinanten.
 - b Radbytte endrer determinantens fortegn.
 - c Radskalering, skalerer determinanten.

5.2.3 Begrep - karakteristisk ligning

 λ er en egenverdi for A \iff $\det(A - \lambda I) = 0$.

5.2.4 Teorem 4

Hvis Matrisene A,B $n \times n$ har samme karakteristiske polynom, altså samme egenverdier med lik multiplisitet, så er de similære.

$$B = P^{-1}AP$$

5.2.5

TODO Anvendelse til dynamiske systemer

5.3 Diagonalisering

5.3.1 Teorem 5 - diagonaliseringsteoremet

A $n \times n$ er diagonaliserbar \iff A har n lin.uavh. egenvektorer.

$$A = PDP^{-1} \iff P = n \text{ lin.uavh. egenvek. til A, og D} = \text{diag}(\text{egenverdiene})$$

Altså: A diagonaliserbar hhvis nok egenvek, til en basis for \mathbb{R}^n .

5.3.2 Metode - diagonalisering

- 1. Finn egenverdiene til A.
- 2. Finn lineært uavhengige egenvektorer.
- 3. Lag $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n].$
- 4. Lag $D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.

5.3.3 Teorem 6

En $n \times n$ matrise med n distinkte egenverdier er diagonaliserbar.

Merk: Det trenger ikke finnes n distinkte egenverdier.

5.3.4 Teorem 7

La A være en $n \times n$ matrise, med distinkte egenverdier $\lambda_1, ..., \lambda_p$. Da gjelder følgende:

- 1. Dimensjonen til en egenverdis egenrom, er mindre eller lik multiplisiteten.
- 2. A diagonaliserbar \iff sum av dimensjon til egenrommene er lik n. Det er kun tilfellet hhvis:
 - a Karakteristisk polynom kan faktoriseres til lineære faktorer.
 - b Dimensjonen til egenrom er lik tilsvarende multiplisitet.
- 3. Hvis A er diag.bar og \mathcal{B}_k er basis for egenrom til λ_k : Så er $\mathcal{B}_1,...,\mathcal{B}_p$ egenvektorbasis for \mathbb{R}^n .

5.4 Egenvektorer og lineærtransformasjoner

5.4.1 Metode - relativ transformasjonsmatrise

La V være n-dimensjonalt vektorrom, W et m-dimensjonalt vektorrom, \mathcal{B} basis for V, og \mathcal{C} basis for W, og $T:V\to W$.

Da kan man finne en matrise M s.a.

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}}$$

ved at

$$M = [[T(\mathbf{b}_1)]_{\mathcal{C}} \quad [T(\mathbf{b}_2)]_{\mathcal{C}} \quad \dots \quad [T(\mathbf{b}_n)]_{\mathcal{C}}$$

M kalles for: Matrisen til T relativ til basisene \mathcal{B} og \mathcal{C} .

5.4.2 Metode - lin.transformasjon fra V til V

Matrisen M for T relativ til \mathcal{B} kalles her for $[T]_{\mathcal{B}}$.

$$[T(\mathbf{x})]_{\mathcal{B}} = M[\mathbf{x}]_{\mathcal{B}}$$

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

 $[T]_{\mathcal{B}}$ er \mathcal{B} -matrisen til T.

Teorem 8 - Diagonal matrise representasjon

Hvis $A = PDP^{-1}$, og \mathcal{B} formes fra kolonnene i P til å være en basis for \mathbb{R}^n . Da er D \mathcal{B} -matrisen til $\mathbf{x} \mapsto A\mathbf{x}$.

$$D = [T]_{\mathcal{B}}$$

5.4.4

TODO Similaritet av matriserepresentasjoner

5.5 Komplekse egenverdier

Teorem 9

A 2×2 reell matrise, med kompleks egenverdi $\lambda = a - bi, b \neq 0$, og tilhørende

Da er

$$A = PCP^{-1}, \quad P = [\text{Re } \mathbf{v} \quad \text{Im } \mathbf{v}], \quad C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

5.5.2 Metode - Spesielt tilfelle

Hvis $C=\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, hvor $a,b\in\mathbb{R}$ og $a,b\neq 0$. Så vil egenverdine til C være $\lambda=a\pm bi$.

La
$$r = |\lambda| = \sqrt{a^2 + b^2}$$
. Da er

$$C = r \begin{bmatrix} a/r & -b/r \\ b/r & a/r \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

5.6 Diskrete dynamiske systemer

5.6.1 Metode - følger

For systemer av typen $\mathbf{x}_{k+1} = A\mathbf{x}_k$:

Anta at A er diag.bar med n lin.uavh. egenvek. $\mathbf{v}_1,...,\mathbf{v}_n$ med tilsvarende (ordnede) egenverdier $|\lambda_1| \geq ... \geq |\lambda_n|$.

Initialvektor egenvektordekomposisjon:

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

Iterasjon:

$$\mathbf{x}_1 = A\mathbf{x}_0 = \dots = c_1\lambda_1\mathbf{v}_1 + \dots + c_n\lambda_n\mathbf{v}_n$$

Generelt:

$$\mathbf{x}_k = c_1(\lambda_1)^k \mathbf{v}_1 + \dots + c_n(\lambda_n)^k \mathbf{v}_n$$

5.6.2 Observasjon - origos natur

- 1. Alle $|\lambda| < 1 \implies$ origo er attraktor.
- 2. Alle $|\lambda| > 1 \implies$ origo er frastøter.
- 3. Minst én $|\lambda| > 1$ og én $|\lambda| < 1 \implies$ origo er sadelpunkt.

5.6.3

TODO bytte av variabel, komplekse egenverdier

5.7 Anvendelser til differensialligninger

5.7.1 Repetisjon - Diffligninger

La x(t) være en funksjon og $a \in \mathbb{R}$. Gitt ligningen

$$x'(t) = a \cdot x(t)$$

 ${\rm S} \mathring{\rm a}$ er

$$x(t) = c \cdot e^{a \cdot t}$$

5.7.2 Metode - initialverdiproblem

Gitt egenverdier λ_1, λ_2 , og egenvektorer $\mathbf{v}_1, \mathbf{v}_2$, og initialverdi $\mathbf{x}(0)$: Løs ligningen $\mathbf{x}'(t) = A\mathbf{x}$.

Løsning

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$$

5.7.3 Observasjon - frastøter, sadel, attraktor

Hvis egenverdiene er positive, så er origo en frastøter.

Hvis egenverdiene er negative, så er origo en attraktor.

Hvis egenverdiene er blandet, så er origo et sadelpunkt.

5.7.4 Metode - avkobling av dynamiske systemer

Når vi har $\mathbf{x}' = A\mathbf{x}$, med A diagonaliserbar $A = PDP^{-1}$. Så kan vi gjøre et variabelskifte $\mathbf{y} = P^{-1}\mathbf{x}$.

$$x' = \frac{d}{dt}(P\mathbf{y}) = A(p\mathbf{y}) = (PDP^{-1})P\mathbf{y} = PD\mathbf{y}$$

Venstremultipliser med P^{-1} og få

$$\mathbf{y}' = D\mathbf{y}$$

Det er mye enklere å løse.

5.7.5 Komplekse egenverdier

Hvis matrisen A har komplekse egenverdier λ og egenvektorer ${\bf v}$, så kan vi finne generelle løsninger.

Kompleks generell løsning

På vanlig vis:

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$$

Reell generell løsning

$$\mathbf{x}(t) = c_1 \mathbf{y}_1(t) + c_2 \mathbf{y}_2(t)$$
$$\mathbf{y}_1 = \operatorname{Re} \ \mathbf{x}_1 = ([\operatorname{Re} \ \mathbf{v}] \cos bt - [\operatorname{Im} \ \mathbf{v}] \sin bt)e^{at}$$
$$\mathbf{y}_2 = \operatorname{Re} \ \mathbf{x}_2 = ([\operatorname{Re} \ \mathbf{v}] \sin bt + [\operatorname{Im} \ \mathbf{v}] \cos bt)e^{at}$$

hvor $\lambda_1 = a + bi$ og $\mathbf{x}_1 = \mathbf{v}_1 e^{\lambda_1 t}$.

5.8 Iterative estimater for egenverdier

5.8.1 Metode - potensmetoden

Teori

Potensmetoden gjelder $n \times n$ matriser A med en Strengt dominant egenverdi.

$$|\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_n|$$

Vis ser på **x** skrevet som

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

$$A^k \mathbf{x} = c_1(\lambda_1)^k \mathbf{v}_1 + \dots + c_n(\lambda_n)^k \mathbf{v}_n$$

Vi deler på den største egenverdien

$$\frac{1}{(\lambda_1)^k} A^k \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \left(\frac{\lambda_2}{\lambda_1}\right)^k \mathbf{v}_2 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1}\right)^k \mathbf{v}_n$$

Fordi λ_1 er størst får man

$$(\lambda_1)^{-k} A^k \mathbf{x} \to c_1 \mathbf{v}_1, \quad k \to \infty$$

Altså har vi at $A^k \mathbf{x}$ går i ca samme retning som \mathbf{v}_1 .

Algoritme

- 1. Vel initialvektor \mathbf{x}_0 med største komponent 1.
- 2. For k = 0, 1, ...
 - a Beregn $A\mathbf{x}_k$
 - b La μ_k være komponenten i $A\mathbf{x}_k$ med størst abs.
 - c Beregn $\mathbf{x}_{k+1} = (1/\mu_k)A\mathbf{x}_k$
- 3. For nesten alle \mathbf{x}_0 vil $\mu_k \to \lambda_1$ og $\mathbf{x}_k \to \mathbf{v}_1$

5.8.2 Metode - invers potensmetode

Teori

Metoden tilnærmer hvilkensomhelst egenverdi, gitt at initialgjetning α er nærme nok λ .

La $B = (A - \alpha I)^{-1}$ og bruk potensmetoden på B.

Egenverdiene til A er $\lambda_1,...,\lambda_n$, og egenverdiene til B er $\frac{1}{\lambda_1-\alpha},...,\frac{1}{\lambda_n-\alpha}$.

Egenverdiene til A vil ligge innenfor $[-|\lambda_1|, |\lambda_1|]$.

Algoritme

- 1. Velg initialgjetning α nærme λ
- 2. Velg initialvektor \mathbf{x}_0 med største komponent 1.
- 3. For k = 0, 1, ...
 - a Beregn $(A \alpha I)\mathbf{y}_k = \mathbf{x}_k$
 - b La μ_k være komponent i \mathbf{y}_k med størst abs.
 - c Beregn $v_k = \alpha + (1/\mu_k)$
 - d Beregn $\mathbf{x}_{k+1} = (1/\mu_k)\mathbf{y}_k$
- 4. $v_k \to \lambda \text{ og } \mathbf{x}_k \to \mathbf{v}$

6 Kpt.6 - Ortogonalitet og Minstekvadrater

6.1 Indre produkt, lengde og ortogonalitet

6.1.1 Teorem 1

For $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, og $c \in \mathbb{R}$ så gjelder

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- 3. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
- 4. $\mathbf{u} \cdot \mathbf{u} \ge 0$, $\mathbf{u} \cdot \mathbf{u} = 0 \iff \mathbf{u} = 0$

6.1.2 Definisjon - norm

Lengden (normen) til en vektor er en skalar gitt ved

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

6.1.3 Definisjon - distanse

Avstanden mellom to vektorer, skrevet $dist(\mathbf{u}, \mathbf{v})$, er lengden av vektoren $\mathbf{u} - \mathbf{v}$.

$$\mathrm{dist}(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$

6.1.4 Definisjon - ortogonalitet

To vektorer i \mathbb{R}^n er ortogonale hvis

$$\mathbf{u} \cdot \mathbf{v} = 0$$

6.1.5 Teorem 2 - pytagoras teorem

To vektorer er ortogonale $\iff ||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$

6.1.6 Begrep - ortogonalt komplement

For et underrom W, finnes det vektorer som står normalt på dette underrommet. Spennet av et utvalg slike vektorer utgjør da W^{\perp} .

F.eks. i R^3 kan ${\bf u},{\bf v}$ utspenne W, og en vektor som står normalt på ${\bf u}-{\bf v}$ utstpenner $W^\perp.$

6.1.7 Teorem 3

Ortogonale komplement

$$(\operatorname{Row}(A))^{\perp} = \operatorname{Nul}(A)$$

$$(\operatorname{Col}(A))^{\perp} = \operatorname{Nul}(A^T)$$

6.2 Ortogonale mengder

6.2.1 Teorem 4

Hvis $S = \{\mathbf{u}_1, ..., \mathbf{u}_p\}$ er en ortogonal mengde, hvor $\mathbf{u}_i \neq 0 \in \mathbb{R}^n$, så er S lineært uavhengig og derfor en basis for underrommet Span $\{S\}$.

6.2.2 Teorem 5

La $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ være ortogonal basis for W i \mathbb{R}^n .

$$\forall \mathbf{y} \in W, \qquad \mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

Vektene bestemmes ved

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}, \qquad j = 1, ..., p$$

Altså er ${\bf y}$ summen av komponenten langs hver av de ortogonale vektorene i basisen.

6.2.3 Metode - ortogonal projeksjon

Gitt en basis $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ for et underrom W. En vektor $\mathbf{y} \in \mathbb{R}^n$ kan dekomponeres til en sum av vektorkomponent langs \mathbf{u}_i pluss en vektor \mathbf{z} ortogonal på en utvidelse av basisen til \mathbb{R}^n .

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

 $\hat{\mathbf{y}}$ er projeksjonen av \mathbf{y} langs W.

$$\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

TODO feil seksjon?

6.2.4 Teorem 6

U $m\times n$ har ortonormale kolonner $\iff U^TU=I$

6.2.5 Teorem 7

La U $m \times n$ med ortonormale kolonner, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Da er

- 1. $||U\mathbf{x}|| = ||\mathbf{x}||$
- 2. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- 3. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0 \iff \mathbf{x} \cdot \mathbf{y} = 0$

6.2.6

TODO ortogonal basis def

6.3 Ortogonal projeksjon

6.3.1 Teorem 8 - ortogonal dekomposisjon

La W være underrom av \mathbb{R}^n . Da kan alle $\mathbf{y} \in \mathbb{R}^n$ skrives unikt som

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

Hvor $\hat{\mathbf{y}} \in W$ og $\mathbf{z} \in W^{\perp}$.

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \ldots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

for en basis $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ for W.

$$z = y - \hat{y}$$

 $\hat{\mathbf{y}}$ er en ortogonal projeksjon på W, og skrives proj $_{W}\mathbf{y}$.

6.3.2 Teorem 9 - beste approksimasjon

Hvis W underrom av \mathbb{R}^n , $\mathbf{y} \in \mathbb{R}^n$, $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$. Da er $\hat{\mathbf{y}}$ punktet på W som ligger nærmest \mathbf{y} .

$$||\mathbf{y} - \hat{\mathbf{y}}|| < ||\mathbf{y} - \mathbf{v}||, \quad \forall \mathbf{v} \neq \hat{\mathbf{y}} \in W$$

6.3.3 Teorem 10

For en orto*normal* basis $\{\mathbf{u}_1,...,\mathbf{u}_p\}$, fungerer ortogonal projeksjon likt som vanlig, men litt enklere fordi lengden av hver vektor er 1.

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \dots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$

Hvis $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ ... \ \mathbf{u}_p]$ så er

$$\operatorname{proj}_{W} \mathbf{y} = UU^{T} \mathbf{y}, \quad \forall \ \mathbf{y} \in \mathbb{R}^{n}$$

6.4 Gram-Schmidt prosessen

6.4.1 Teorem 11

En enkel algoritme for å lage ortogonal eller ortonormal basis.

Gitt en basis $\mathbf{x}_1,...,\mathbf{x}_p$ for et underrom W.

$$\begin{aligned} \mathbf{v}_2 &= \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 \\ \mathbf{v}_3 &= \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 \\ &\vdots \\ \mathbf{v}_p &= \mathbf{x}_p - \frac{\mathbf{x}_p \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_p \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \dots - \frac{\mathbf{x}_p \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1} \end{aligned}$$

Nå er $\mathbf{v}_1, ..., \mathbf{v}_p$ en ortogonal basis for W.

$$\operatorname{Span}\{\mathbf{v}_1,...,\mathbf{v}_n\} = \operatorname{Span}\{\mathbf{x}_1,...,\mathbf{x}_n\}$$

6.4.2 Teorem 12

Hvis A $m \times n$ har lineært uavhengige kolonner, så kan A faktoriseres

$$A = QR$$

Hvor Q $m \times n$ har kolonner fra en ortonormal basis for $\operatorname{Col}(A)$. Og R $n \times n$ er øvretriangulær invertibel matrise med positive elementer på diagonalen.

6.5 Minstekvadraters problem

6.5.1 Definisjon - minste kvadraters løsning

TODO

6.5.2

TODO

6.6 Anvendelser til lineære modeller

6.6.1

TODO

6.7 Indreproduktrom

6.7.1

TODO

6.8 Anvendelser til indreproduktrom

6.8.1

TODO

7 Kpt.7 - Symmetriske Matriser og Kvadratisk Form

7.1 Diagonalisering av symmetriske matriser

7.1.1 Begrep - symmetrisk matrise

Hvis A er s.a. $A = A^T$, så er den symmetrisk.

7.1.2 Teorem 1

Hvis A er symmetrisk, så er egenvektorer fra ulike egenrom ortogonale mot hverandre.

7.1.3 Begrep - ortogonalt diagonaliserbar

A $n \times n$ er ortogonalt diag.bar hvis det fins: ortogonal matrise P s.a. $P^{-1} = P^T$, og en diagonal matrise D s.a.

$$A = PDP^{-1} = PDP^{T}$$

7.1.4 Teorem 2

A $n \times n$ er ortogonalt diag.bar \iff A er symmetrisk matrise.

7.1.5 Teorem 3 - spektralteoremet for symmetriske matriser

For A $n \times n$ gjelder:

- 1. A har n reelle egenverdier, med multiplisitet.
- 2. Dimensjon til egenrom er lik multiplisiteten til dets egenverdi.
- 3. Egenvektorer fra ulike egenrom er ortogonale på hverandre.
- 4. A er ortogonalt diagonaliserbar.

7.1.6 Observasjon - spektral dekomposisjon

$$A = PDP^{T} = \lambda_{1}\mathbf{u}_{1}\mathbf{u}_{1}^{T} + \dots + \lambda_{n}\mathbf{u}_{n}\mathbf{u}_{n}^{T}$$

7.2 Kvadratisk form

7.2.1 Definisjon - kvadratisk form

En kvadratisk form på \mathbb{R}^n er en funksjon Q s.a.

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

Hvor A er en symmetrisk matrise.

7.2.2 Metode - koeffisienter fra matrisen

Forholdet mellom A og kvadratisk form:

$$A = \begin{bmatrix} a & d/2 & e/2 \\ d/2 & b & f/2 \\ e/2 & f/2 & c \end{bmatrix}$$

$$ax_1^2 + bx_2^2 + cx_3^2 + dx_1x_2 + ex_1x_3 + fx_2x_3$$

7.2.3 Metode - kryssproduktledd

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

For å se hvilken koeffisent som går til hvilken $x_j x_k$ kan man se på tabellen:

	x1	x2	x3
x1			
x2			
x3			

7.2.4 Metode - variabelskifte

Hvis A ikke er diagonal kan det være lurt med variabelskifte.

$$\mathbf{x} = P\mathbf{y}, \qquad \mathbf{y} = P^{-1}\mathbf{x}$$

Her er \mathbf{y} koordinatvektor til \mathbf{x} for en basis \mathcal{B} , slik som i kpt 4.4.

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}, \qquad P = [\mathbf{b}_1 \dots \mathbf{b}_n]$$

Kvadratisk form blir nå enklere

$$\mathbf{x}^T A \mathbf{x} = (P \mathbf{y})^T A (P \mathbf{y}) = \mathbf{y}^T P^T A P \mathbf{y} = \mathbf{y}^T (P^T A P) \mathbf{y}$$

Men A er symmetrisk så

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y}$$

7.2.5 Teorem 4 - prinsipalakseteoremet

Hvis A $n \times n$ er symmetrisk, så fins et ortogonalt variabelskifte $\mathbf{x} = P\mathbf{y}$ s.a.

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y}$$

uten kryssproduktledd.

Kolonnene i P kalles prinsipalaksene til den kvadratiske formen.

7.2.6 Observasjon - geometrisk tolkning

For invertibel A $n \times n$ og kvadrtisk form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, kan man velge en konstant c og se på

$$\mathbf{x}^T A \mathbf{x} = c$$

Det tilsvarer ligningen for enten en hyperbel, ellipse, to kryssende linjer, et punkt, eller ingen punkter.

7.2.7 Definisjon - definit

Kvadratisk form Q er:

- 1. Positiv definit hvis $Q(\mathbf{x}) > 0$, $\forall \mathbf{x} \neq \mathbf{0}$.
- 2. Negativ definit hvis $Q(\mathbf{x}) < 0$, $\forall \mathbf{x} \neq \mathbf{0}$.
- 3. Indefinit hvis $Q(\mathbf{x})$ har både pos. og neg. tall.

7.2.8 Teorem 5 - kvadratisk form og egenverdier

Kvadratisk form er

- 1. Positiv definit \iff egenverdiene til A er kun positive.
- 2. Negativ definit \iff egenverdiene til A er kun negative.
- 3. Indefinit \iff A har både pos. og neg. egenverdier.

7.3 Begrenset optimalisering

7.3.1 Metode 1 -

En vanlig begrensning er $\mathbf{x}^T \mathbf{x} = 1$.

Anta at Q ikke har kryssproduktledd, og at $a \ge b \ge c$:

$$Q = ax_1^2 + bx_2^2 + cx_3^2 \le ax_1^2 + ax_2^2 + ax_3^2 = a(x_1^2 + x_2^2 + x_3^2) = a \cdot \mathbf{x}^T \mathbf{x} = a$$

Så vi fant en maksimumsverdi

$$Q \leq a$$

7.3.2 Teorem 6

La A være symmetrisk og

$$m = \min\{\mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1\}$$

$$M = \max\{\mathbf{x}^T A \mathbf{x} : ||\mathbf{x}|| = 1\}$$

Da er $M=\lambda_1$ største egenverdi til A, og $Q(\mathbf{x})=M$ når \mathbf{x} er en enhetsvektor \mathbf{u}_1 tilsvarende M.

Tilsvarende er m minste egenverdi til A, og $Q(\mathbf{x}) = m$ når \mathbf{x} er en enhetsvektor tilsvarende m.

7.3.3 Teorem 7

La $A, \lambda_1, \mathbf{u}_1$ være som i teorem 6. Maksimum av Q under begrensningene

$$\mathbf{x}^T \mathbf{x} = 1, \quad \mathbf{x}^T \mathbf{u}_1 = 0$$

er den nest største egenverdien λ_2 . Den verdien fåes når $\mathbf{x}=\mathbf{u}_2$ egenvektor tilsvarende λ_2 .

7.3.4 Teorem 8

A $n \times n$, ortog.diag. $A = PDP^{-1}$, $D = \text{diag}(\lambda_1 \ge ... \ge \lambda_n)$, kolonner i P er tilsvarende enhetsegenvektorer $\mathbf{u}_1, ..., \mathbf{u}_n$.

Da vil max av Q under begrensningene være

$$\mathbf{x}^T \mathbf{x} = 1$$
, $\mathbf{x}^T \mathbf{u}_1 = 0$, ..., $\mathbf{x}^T \mathbf{u}_{k-1} = 0$

egenverdi λ_k , og maks gitt ved $\mathbf{x} = \mathbf{u}_k$.

7.4 Singulærverdidekomposisjon

7.4.1 Begrep - singulærverdier

For en ikkekvadratisk A $m \times n$, så kan vi regnu ut $A^T A$. Videre kan vi regne ut egenverdiene λ_i til $A^T A$. Singulærverdiene σ til A er da

$$\sigma_i = \sqrt{\lambda_i}$$

Vanligvis sorteser de s.a.

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n$$

7.4.2 Teorem 9

Hvis egenvektorene til A^TA kan gjøres til en ortonormal basis $\mathbf{v}_1,...,\mathbf{v}_n$, ordnet slik at $\lambda_1 \geq ... \geq \lambda_n$. Og hvis A har r ikkenull singulærverdier.

Så er $\{A\mathbf{v}_1, ..., A\mathbf{v}_r\}$ en ortogonal basis for $\operatorname{Col}(A)$, og $\operatorname{rank}(A) = r$.

7.4.3 Teorem 10 - singulærverdidekomposisjon

La A være $m \times n$ med rang r.

Da fins det en Σ $m \times n$ på formen

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$$

hvor $D = \operatorname{diag}(\sigma_1 \ge \dots \ge \sigma_r \ge 0)$.

Og det fins også en ortogonal U $m \times m$, og en ortogonal V $n \times n$ s.a.

$$A = U\Sigma V^T$$

U og V er ikke unikt bestemt.

7.4.4 Metode - singulærverdidekomposisjon

Ortogonalt diagonaliser A^TA

Finn egenverdiene og tilsvarende ortonormal mengde egenvektorer.

Konstruer V

Sorter egenverdiene til $A^T A$ i synkende rekkefølge, og bruk tilsvarende egenvektorer som kolonner i V

$$V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n]$$

Konstruer Σ

Bruk singulærverdiene og la $D={\rm diag}(\sigma_1\geq ...\geq \sigma_r\geq 0)$. Konstruer Σ til å være $m\times n$

 $\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$

Konstruer U

Enten kan man bruke matrisemultiplikasjon og inverse for å finne U, eller så kan man bruke

$$U = [\mathbf{u}_1 \ \mathbf{u}_2 \dots \mathbf{u}_n]$$
$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$$

7.4.5 Teorem - IMT konkludert

For A $n \times n$ er følgende ekvivalent

- 1. A er invertibel.
- 2. $(Col(A))^{\perp} = \{ \mathbf{0} \}$
- 3. $(\operatorname{Nul}(A))^{\perp} = \mathbb{R}^n$
- 4. $\operatorname{Row}(A) = \mathbb{R}^n$
- 5. A har n ikkenull singulærverdier.

7.4.6

TODO condition number, basis for fundamentale underrom, redusert SVD, pseudoinvers av A, minste kvadrater.

7.5 Ikke pensum?

TODO Ikke pensum?

8 Notat 1

8.0.1

TODO

9 Notat 2

9.0.2

TODO TODO egenfunksjon