### DM865 – Spring 2018 Heuristics and Approximation Algorithms

# (Stochastic) Local Search Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

# Outline

1. Definitions

2. Local Search Algorithms

3. Local Search Revisited Components

## Outline

1. Definitions

2. Local Search Algorithms

3. Local Search Revisited Components

# Definitions Neighborhood function

### Neighborhood function $N: S_{\pi} \rightarrow 2^{S}$

Also defined as:  $\mathcal{N}: S \times S \to \{T, F\}$  or  $\mathcal{N} \subseteq S \times S$ 

- ▶ neighborhood (set) of candidate solution  $s: N(s) := \{s' \in S \mid \mathcal{N}(s, s')\}$
- ▶ neighborhood size is |N(s)|
- ▶ neighborhood is symmetric if:  $s' \in N(s) \Rightarrow s \in N(s')$
- ▶ neighborhood graph of  $(S, N, \pi)$  is a directed graph:  $G_N := (V, A)$  with V = S and  $(uv) \in A \Leftrightarrow v \in N(u)$  (if symmetric neighborhood  $\leadsto$  undirected graph)

A neighborhood function is also defined by means of an operator (aka move).

An operator  $\Delta$  is a collection of operator functions  $\delta: S \to S$  such that

$$s' \in N(s) \implies \exists \delta \in \Delta, \delta(s) = s'$$

### Definition

k-exchange neighborhood: candidate solutions s, s' are neighbors iff s differs from s' in at most k solution components

### Examples:

 2-exchange neighborhood for TSP (solution components = edges in given graph)

## **Definitions**

### Definition:

- ▶ Local minimum: search position without improving neighbors wrt given evaluation function f and neighborhood function N, i.e., position  $s \in S$  such that  $f(s) \le f(s')$  for all  $s' \in N(s)$ .
- ▶ Strict local minimum: search position  $s \in S$  such that f(s) < f(s') for all  $s' \in N(s)$ .
- ▶ Local maxima and strict local maxima: defined analogously.

## Outline

1. Definitions

2. Local Search Algorithms

Local Search Revisited Components

### Local Search

- Model
  - ► Variables → solution representation, search space
  - Constraints:
    - implicit
    - one-way defining invariants
    - soft
  - evaluation function
- Search (solve an optimization problem)
  - Construction heuristics
  - ▶ Neighborhoods, Iterative Improvement, (Stochastic) local search
  - Metaheuristics: Tabu Search, Simulated Annealing, Iterated Local Search
  - Population based metaheuristics

# Local Search Algorithms

Given a (combinatorial) optimization problem  $\Pi$  and one of its instances  $\pi$ :

- 1. search space  $S(\pi)$ 
  - specified by the definition of (finite domain, integer) variables and their values handling implicit constraints
  - all together they determine the representation of candidate solutions
  - common solution representations are discrete structures such as: sequences, permutations, partitions, graphs

Note: solution set  $S'(\pi) \subseteq S(\pi)$ 

# Local Search Algorithms (cntd)

- 2. evaluation function  $f_{\pi}: S(\pi) \to \mathbb{R}$ 
  - ▶ it handles the soft constraints and the objective function
- 3. neighborhood function,  $N_{\pi}: S \to 2^{S(\pi)}$ 
  - ▶ defines for each solution  $s \in S(\pi)$  a set of solutions  $N(s) \subseteq S(\pi)$  that are in some sense close to s.

# Local Search Algorithms (cntd)

Further components [according to [HS]]

- 4. set of memory states  $M(\pi)$  (may consist of a single state, for LS algorithms that do not use memory)
- 5. initialization function init :  $\emptyset \to S(\pi)$  (can be seen as a probability distribution  $\Pr(S(\pi) \times M(\pi))$  over initial search positions and memory states)
- 6. step function step :  $S(\pi) \times M(\pi) \to S(\pi) \times M(\pi)$  (can be seen as a probability distribution  $\Pr(S(\pi) \times M(\pi))$  over subsequent, neighboring search positions and memory states)
- 7. termination predicate terminate :  $S(\pi) \times M(\pi) \to \{\top, \bot\}$  (determines the termination state for each search position and memory state)

# Local search — global view





### Neighborhood graph

- vertices: candidate solutions (search positions)
- vertex labels: evaluation function
- edges: connect "neighboring" positions
- ▶ s: (optimal) solution
- c: current search position

# Local Search Algorithms

#### Note:

- ► Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.

► Local search algorithms can be described as Markov processes: behavior in any search state {s, m} depends only on current position s higher order MP if (limited) memory m.

# Local Search (LS) Algorithm Components Step function

```
Search step (or move): pair of search positions s, s' for which s' can be reached from s in one step, i.e., s' \in N(s) and step(\{s, m\}, \{s', m'\}) > 0 for some memory states m, m' \in M.
```

- ▶ Search trajectory: finite sequence of search positions  $\langle s_0, s_1, \ldots, s_k \rangle$  such that  $(s_{i-1}, s_i)$  is a search step for any  $i \in \{1, \ldots, k\}$  and the probability of initializing the search at  $s_0$  is greater than zero, i.e.,  $\operatorname{init}(\{s_0, m\}) > 0$  for some memory state  $m \in M$ .
- Search strategy: specified by init and step function; to some extent independent of problem instance and other components of LS algorithm.
  - ▶ random
  - based on evaluation function
  - based on memory

# Iterative Improvement

# Iterative Improvement (II): determine initial candidate solution s while s has better neighbors do

choose a neighbor s' of s such that f(s') < f(s)

 $\_s := s'$ 

- ► If more than one neighbor has better cost then need to choose one (heuristic pivot rule)
- ► The procedure ends in a local optimum  $\hat{s}$ : Def.: Local optimum  $\hat{s}$  w.r.t. N if  $f(\hat{s}) \leq f(s) \ \forall s \in N(\hat{s})$
- Issue: how to avoid getting trapped in bad local optima?
  - use more complex neighborhood functions
  - ▶ restart
  - allow non-improving moves

### Metaheuristics

- "Restart" + parallel search
   Avoid local optima
   Improve search space coverage
- Variable Neighborhood Search and Large Scale Neighborhood Search diversified neighborhoods + incremental algorithmics ("diversified" ≡ multiple, variable-size, and rich).
- ▶ Tabu Search: Online learning of moves Discard undoing moves, Discard inefficient moves Improve efficient moves selection
- Simulated annealing Allow degrading solutions

# Summary: Local Search Algorithms

### For given problem instance $\pi$ :

- 1. search space  $S_{\pi}$ , solution representation: variables + implicit constraints
- 2. evaluation function  $f_{\pi}: S \to \mathbb{R}$ , soft constraints + objective
- 3. neighborhood relation  $\mathcal{N}_{\pi} \subseteq \mathcal{S}_{\pi} \times \mathcal{S}_{\pi}$
- 4. set of memory states  $M_{\pi}$
- 5. initialization function init :  $\emptyset \to S_\pi \times M_\pi$
- 6. step function step :  $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$
- 7. termination predicate terminate :  $S_{\pi} \times M_{\pi} \rightarrow \{\top, \bot\}$

### **Decision vs Minimization**

```
LS-Decision(\pi)
input: problem instance \pi \in \Pi
output: solution s \in S'(\pi) or \emptyset
(s, m) := init(\pi)
while not terminate (\pi, s, m) do
(s,m) := step(\pi,s,m)
if s \in S'(\pi) then
    return s
else
   return Ø
```

```
LS-Minimization(\pi')
input: problem instance \pi' \in \Pi'
output: solution s \in S'(\pi') or \emptyset
(s,m) := init(\pi'):
s_b := s:
while not terminate (\pi', s, m) do
    (s,m) := step(\pi',s,m);
 if f(\pi',s) < f(\pi',s_b) then S_b := s;
if s_b \in S'(\pi') then
    return Sh
else
 return 0
```

However, the algorithm on the left has little guidance, hence most often decision problems are transformed in optimization problems by, eg, couting number of violations.

## Outline

1. Definitions

- 2. Local Search Algorithms
- 3. Local Search Revisited Components

# LS Algorithm Components Search space

### Search Space

Solution representations defined by the variables and the implicit constraints:

- permutations (implicit: alldiffrerent)
  - ► linear (scheduling problems)
  - circular (traveling salesman problem)
- ► arrays (implicit: assign exactly one, assignment problems: GCP)
- ▶ sets (implicit: disjoint sets, partition problems: graph partitioning, max indep. set)
- → Multiple viewpoints are useful in local search!

# LS Algorithm Components

### Evaluation (or cost) function:

- ▶ function  $f_{\pi}: S_{\pi} \to \mathbf{Q}$  that maps candidate solutions of a given problem instance  $\pi$  onto rational numbers (most often integer), such that global optima correspond to solutions of  $\pi$ ;
- used for assessing or ranking neighbors of current search position to provide guidance to search process.

### Evaluation vs objective functions:

- ▶ Evaluation function: part of LS algorithm.
- Objective function: integral part of optimization problem.
- ▶ Some LS methods use evaluation functions different from given objective function (e.g., guided local search).

# **Constrained Optimization Problems**

### Constrained Optimization Problems exhibit two issues:

- feasibility eg, treveling salesman problem with time windows: customers must be visited within their time window.
- optimization minimize the total tour.

### How to combine them in local search?

- sequence of feasibility problems
- staying in the space of feasible candidate solutions
- considering feasible and infeasible configurations

# Constraint-based local search

From Van Hentenryck and Michel

If infeasible solutions are allowed, we count violations of constraints.

What is a violation? Constraint specific:

- decomposition-based violations number of violated constraints, eg: alldiff
- ▶ variable-based violations min number of variables that must be changed to satisfy c.
- value-based violations for constraints on number of occurences of values
- arithmetic violations
- combinations of these

# Constraint-based local search

From Van Hentenryck and Michel

### Combinatorial constraints

▶ alldiff( $x_1, ..., x_n$ ):

Let a be an assignment with values  $V = \{a(x_1), \dots, a(x_n)\}$  and  $c_v = \#_a(v, x)$  be the number of occurrences of v in a.

Possible definitions for violations are:

- $viol = \sum_{v \in V} I(max\{c_v 1, 0\} > 0)$  value-based
- $viol = \max_{v \in V} \max\{c_v 1, 0\}$  value-based
- $viol = \sum_{v \in V} max\{c_v 1, 0\}$  value-based
- # variables with same value, variable-based, here leads to same definitions as previous three

### Arithmetic constraints

- ▶  $l \le r \rightsquigarrow \text{viol} = \max\{l r, 0\}$
- $I = r \rightsquigarrow \text{viol} = |I r|$
- ▶  $l \neq r \rightsquigarrow \text{viol} = 1$  if l = r, 0 otherwise