Detecting Context Misinformation in Text and Images

Deepika SIVASANKARAN, Mohd AAMIR

SUPERVISORS: Raphael Troncy, Paolo Papotti, Youri Peskine

27, June 2022

Introduction

- Why Fake news is a problem?
 - Fake news brings **panic and misunderstanding against truth** among the people.
 - Has an adverse effect on the society and manipulates public opinion.

Objective

Verification of any information found online needs to be done to avoid the aftermath occurring after believing online news which are fake.

Thus a machine learning model is created to analyze such news in relation to image contexts and classify them to the various levels of misclassifications.

Example of a misleading image

Maryland drive gets probation for Delaware crash that killed 5 NJ family members

New 'Natural Feeding' trend has parents puking on babies

Says Doing This 1 Thing Makes You Just as Happy as Eating 2,000 Chocolate Bars

Misleading

Content

Bowl of mussels

I just thought that was sitting in the deli

True

Satire/Paroday

Manipulated Content

orca right after

takeoff

False Connection Imposter Content

Dataset

- a small part of Fakeddit dataset which contains text and images along with 3 types of labels for each sample.
- -for **2-way:** classified into **True, False**
- -for **3 way**: classified into **True**, **False**, **Partially True/False**

And 6-way: classified into True, Satire, Misleading, Manipulated, False Connection, Imposter

Dataset

– The subset of data contains 17622 rows and 16 columns given in the following distribution:

author	16096
clean_title	17622
created_utc	17622
domain	16750
hasImage	17622
id	17622
image_url	17603
linked_submission_id	872
num_comments	16750
score	17622
subreddit	17622
title	17622
upvote_ratio	16750
2_way_label	17622
3_way_label	17622
6_way_label	17622
dtype: int64	

Problem With the Dataset

The dataset contains no null values in both sentences and images.

Although the dataset contains no null values or missing images, in the case of images, there are around 300 to 400 images which does not contain any meaningful information.

An example of one is shown:

Dataset distribution

2_way_label Data Distribution

Dataset distribution

3_way_label Data Distribution

Dataset distribution

6_way_label Data Distribution

Experiment Setup

- For text, S-BERT was used to generate text embeddings
- For **images**, ResNet was used to extract the features

<u>Preprocessing:</u> Images are resized to 224x224 since the dimensions differ in both height and width

Experimental Setup

Fig. Model Architecture

Experimental Setup

Fig: MLP Architecture

For TEXT Only

For each of the classification, 2 models of SBERT were used.

- 1. paraphrase-MiniLM-L6-v2
- 2. all-mpnet-base-v2

Model	2_way_label	3_way_label	6_way_label
S-BERT (paraphrase-MiniLM-L6-v2)	0.80	0.79	0.73
S-BERT (all-mpnet-base-v2)	0.84	0.82	0.75

For IMAGE only

FLOW: Image input — Pretrained Model — MLP — Classification Embeddings

For each of the classification, 5 pretrained models were used.

Pretrained models: ResNet18, ResNet50, ResNet101, VGG16, EfficientNet_B0

Model	2_way_label	3_way_label	6_way_label
ResNet18	0.75	0.76	0.76
ResNet50	0.80	0.80	0.81
ResNet101	0.77	0.61	0.60
VGG16	0.78	-	-
EfficientNet_b0	0.76	0.80	0.75

Text + Image

FLOW:

The best performing models for text and images are used to extract features.

The embeddings are combined using minpooling, maxpooling, append and average pooling

Classifiers such as MLP and SVM are used.

Text + Image

Model	2_way_label	3_way_label	6_way_label
SBERT+ResNet by concat	0.82	0.79	0.61
SBERT+ResNet by maxpool	0.80	0.79	0.62
SBERT+ResNet by Minpool	0.82	0.82	0.76
SBERT+ResNet by avgpool	0.80	0.80	0.61
SBERT+ResNet by minpool on SVM	0.84	0.83	0.81

Graph Comparison of Best models

Comparison of MLP vs SVM

SVM better than MLP?

We observe the SVM is better than the MLP in terms of accuracy since it adjusts its own hyperplane to establish the boundaries between classes

RESULT

Best combination: SBERT (all-mpnet-base-v2) + ResNet50 on SVM

Areas of improvement / Drawbacks in the system:

- Accuracy not reliable
- Dataset is imbalanced
- Biased model

Further Improvements

- Train with more data to address imbalance in distribution.
- Extend project to verify accuracy of generated text in image and video captioning.
- Using comments upvotes, downvotes the dataset could be further made more informative to train better models.
- Since the dataset is imbalanced, a penalty based point system can be included to overcome this.

THE END!

Thank you

