1、当
$$x \to 0$$
时, $x - \tan x$ 与 x^k 是同阶无穷小,则 $k =$ ____.

B. 2 C. 3 D. 4

2、
$$f(x) = 1 - e^{\tan x}$$
 是 $\arcsin \frac{x}{2}$ ($x \to 0$ 时)的().

A. 等价无穷小 B. 同阶但非等价无穷小 C. 低阶无穷小 D. 高阶无穷小

3.
$$x = 0$$
 是 $f(x) = x^2 \sin \frac{1}{x}$ 的A间断点.

A. 可去

B. 跳跃

C. 振荡

D. 无穷

4. 曲线
$$\sin(xy) + \ln(y-x) = x$$
 在点 (0,1) 的切线方程为 $y = x+1$

5. 设
$$y = y(x)$$
 由方程 $e^{xy} + y^3 - 5x = 0$ 所确定,求 $\frac{dy}{dx}|_{x=0}$ 及 $\frac{d^2y}{dx^2}|_{x=0}$.

6、求由参数方程
$$\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$$
 所确定的函数的二阶导数
$$\frac{d^2 y}{dx^2}.$$

7. 已知
$$f(x) = \begin{cases} (1+3x)^{\frac{1}{x}}, x > 0 \\ B, x = 0 \end{cases}$$
 , 问 A, B 取何值时, $f(x)$ 在 $x = 0$ 连续。
$$\frac{A\sin 3x}{x}, x < 0$$

解: 因为
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (1+3x)^{\frac{1}{x}} = e^3$$
, $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} \frac{A\sin 3x}{x} = 3A$, 所以 $f(x)$ 在 $x = 0$ 连续等价于 $e^3 = 3A = B$,即 $A = \frac{1}{3}e^3$, $B = e^3$ 。

8. 证明: 函数
$$f(x) = \begin{cases} \frac{\sqrt{1+x}-1}{\sqrt{x}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
 在点 $x = 0$ 处连续,但不可导.

$$\lim_{x \to 0^{-}} f(x) = 0 \qquad f(0) = 0$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{1+x} - 1}{\sqrt{x}} = \lim_{x \to 0^{+}} \frac{\sqrt{x}}{\sqrt{1+x} + 1} = 0$$

 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$ f(x) $\hat{\pi} x = 0$ $\hat{\pi}$ $\hat{\pi}$ $\hat{\pi}$ $\hat{\pi}$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) \quad f(x) \times x = 0$$
点处连续.
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\sqrt{1 + x} - 1}{x\sqrt{x}} = \lim_{x \to 0^{+}} \frac{1}{\sqrt{x}(\sqrt{1 + x} + 1)} = \infty$$
故 $x = 0$ 处不可导

9. 求函数
$$y = (\sin x)^{\ln x}$$
 的导数 $\frac{dy}{dx}$

$$\ln y = \ln x \ln \sin x \qquad \frac{1}{y}y' = \frac{1}{x}\ln \sin x + \frac{\cos x}{\sin x}\ln x$$

$$y' = (\sin x)^{\ln x} \left[\frac{\ln \sin x}{x} + \frac{\cos x \ln x}{\sin x} \right]$$

$$y' = (\sin x)^{\ln x} \left[\frac{\ln \sin x}{x} + \frac{\cos x \ln x}{\sin x} \right]$$
10. 求函数 $y = e^{\sin^2 x}$ 的微分 $\sqrt{\frac{1}{2}}$ こ $e^{\sin^2 x}$ の微分

解:
$$y^{(50)}(0) = \sum_{k=0}^{50} C_{50}^k (x^2)^{(k)} \big|_{x=0} \cdot (\sin 2x)^{(50-k)} \big|_{x=0} = C_{50}^2 (x^2)'' \big|_{x=0} \cdot (\sin 2x)^{(48)} \big|_{x=0}$$

$$= \frac{50 \cdot 49}{2} \cdot 2 \cdot 2^{48} \sin(2x + 48 \cdot \frac{\pi}{2}) \big|_{x=0} = 0.$$

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)} \qquad C_n^r = \frac{n!}{r!(n-r)!}$$