Chiffrement multimédia

Pauline PUTEAUX

Chargée de recherche CNRS, CRIStAL (Lille)

Besoin important en sécurité

- Besoin grandissant en cybersécurité
- Vidéo-surveillance, visioconférence, réseaux sociaux, cloud...
- Sécuriser la donnée elle-même, ou son support physique ?
 - Préservation de la vie privée
 - Respect des droits d'auteur
 - Véracité des données

Protection des données multimédia

- D'après CISCO, les données multimédia > 80% du trafic global sur internet
 - o Intérêt de mettre au point des méthodes efficaces pour sécuriser les données multimédia!
- Différentes pistes de recherche
 - Chiffrement
 - Stéganographie
 - Tatouage
 - Analyse forensique
 - Biométrie

Chiffrement

Stéganographie

Tatouage

Analyse forensique

Biométrie

Principe de Kerckhoffs

- Le secret ne devrait pas se trouver dans la méthode de protection :
 mais dans la clé utilisée!
 - "La sécurité ne devrait pas dépendre de paramètre qu'il n'est pas aisé de modifier."
- Sans la clé, il ne doit pas être possible de déduire l'information secrète à partir de la donnée sécurisée.
- Avec la clé, il doit être possible de déduire l'intégralité de l'information secrète.

A. Kerckhoffs, *La cryptographie militaire*, Journal des sciences militaires, 1883.

Qu'est-ce qu'une image?

- Représentation classique
 - Tableau à deux dimensions
 - Un élément = un pixel
 - Chaque pixel est encodé avec :
 - 8 bits pour une image en niveaux de gris : valeurs comprises entre 0 et 28
 - 24 bits pour une image couleur : valeurs entre 0 et 2²⁴

Qu'est-ce qu'une image?

Plans binaires

- Ensemble de bits à une position donnée pour tous les pixels
- Plan binaire le plus significatif : plan MSB
- Plan binaire le moins significatif : plan LSB

Mesures de la qualité d'une image

- Mesure en prenant une image comme référence
- PSNR (Peak Signal to Noise Ratio)
 - Basée sur l'erreur quadratique moyenne
 - Différence pixel à pixel
 - Ne prend pas en compte le système visuel humain
 - ~10 dB : images complètement différentes → +∞: images identiques
- SSIM (Structural SIMilarity)
 - Mesure subjective
 - Basée sur le système visuel humain
 - 0 : images complètement différentes → 1: images identiques
- Reconnaissabilité
 - Peut-on prédire le contenu de l'image ?

Mesures de la qualité d'une image

"Ceci est un chat"

"Ceci est un chien" ("Ceci n'est pas un chat")

PSNR = 10.66 dBSSIM = 0.126

Chiffrement d'images

- But : Préserver la sécurité visuelle / vie privée
- Impossible de deviner le contenu original
 - Le contenu chiffré doit être très différent de sa version originale
- Rendre aléatoire l'information à protéger
 - Équiprobabilité des valeurs
 - Distribution uniforme
 - Maximisation de l'Entropie de Shannon
- Comment peut-on faire cela?

C. E. Shannon, *A mathematical theory of communication*, The Bell system technical journal 27(3), 1948.

Chiffrement d'images

Comment peut-on faire cela?

- Même clé secrète utilisée comme paramètre = même séquence binaire pseudo-aléatoire générée
- Utilisation de cette séquence binaire pour modifier un plan binaire
 - Addition (ou-exclusif)
 - Permutation (mélange)
- Pour le déchiffrement = application de l'opération inverse avec la même clé secrète

Chiffrement d'images

- En fonction de l'application, différents niveaux de sécurité :
 - Transparent
 - Haute définition protégée, mais une version dégradée pour toujours être visualisée
 - Suffisant
 - Le contenu est sécurisé, mais certains contours ou formes sont toujours visibles
 - Confidentiel
 - Aucune information visuelle ne peut être extraite
- Comment peut-on utiliser la structure intrinsèque de l'image pour retrouver ces différents niveaux de sécurité visuelle ?