3. PROBLEMS

	If <i>k</i> is a positiv sible value of <i>k</i>	_	sible by 9, and it	f k < 200, what is	the			
(A) 99	(B) 189	(C) 197	(D) 198	(E) 199				
Problem 2 . which of the following numbers can be used to show that the statement below is FALSE? All numbers that are divisible by both 6 and 9 are also divisible by 54.								
(A) 162	(B) 108	(C) 9	(D) 72	(E) 54				
Problem 3 . On a rectangular gameboard that is divided into n rows of m squares each, k of these squares not lie along the boundary of the gameboard. Which of the following is a possible value for k ?								
(A) 15	(B) 25	(C) 35	(D) 49	(E) 52				
Problem 4 . When the positive integer <i>s</i> is divided 12, the remainder is 6. When the positive integer <i>t</i> is divided by 12, the remainder is 9. What is the remainder when the product <i>st</i> is divided by 9? (A) 1 (B) 3 (C) 5 (D) 7 (E) 0								
Problem 5 . If <i>x</i> is an integer and 3 <i>x</i> is divisible by 15, which of the following must be true? I. <i>x</i> is divisible by 15. II. <i>x</i> is divisible by 5. III. <i>x</i> is an odd number.								
(A) I only	(B) II only	(C) III only	(D) I and II on	ly (E) I, II, and	l III			
Problem 6 . If x is divisible by 7 and y is divisible by 8. Which of the following must be divisible by 56?								
I. xy	II. 72	x + 8y	III.	3x + 7y				
(A) I only	(B) III only	(C) I and II	only (D) I and	III only (E) I, II,	and II			

Problem 7. If a , b , c and d are different positive integers such that a is divisible by b , b is divisible by c , and c is divisible by d , which of the following statements must be true?									
I. a is divisible by cd . II. a has at least 4 positive factors. III. $a = bcd$									
(A) I only	(B) II only	(C) I and II	(D) I and III only	(E) I, II, and III					
Problem 8. The four-digit number $\overline{6BB5}$ is divisible by 25. How many such four-digit numbers are there?									
(A) 0	(B) 1	(C) 3	(D) 2	(E) 4					
Problem 9. The five-digit number $\underline{31d26}$ is divisible by 3. Find the sum of all possible values of d .									
(A) 18	(B) 16	(C) 15	(D) 14	(E) 8					
Problem 10 . The three-digit number $\underline{6x4}$ is divisible by 7. What is the value of x ?									
(A) 1	(B) 2	(C) 3	(D) 4	(E) 5					
Problem 11 . When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the remainder be if she multiplies her favorite number by 5 and then divides by 7?									
(A) 4	(B) 3	(C) 2	(D) 1	(E) 0					
Problem 12 . For what digit n is the five-digit number $3n85n$ divisible by 6?									
(A) 0	(B) 1	(C) 2	(D) 3	(E) 4					
Problem 13 . What digit should replace the tens digit d so that the seven-digit									
number 5,376,5d4 is divisible by 24?									
(A) 4	(B) 3	(C) 2	(D) 1	(E) 0					
Problem 14 . How many 2-digit numbers are not divisible by 13? (A) 90 (B) 83 (C) 13 (D) 7 (E) 84									

Problem 15 . If divisible by 45	-	bers less than	100 and divisib	le by 3 are also					
(A) 96	(B) 42	(C) 8	(D) 25	(E) 33					
Problem 16 . There are 24 four-digit numbers which use each of the digits 1, 2, 3, 4. How many of these are divisible by 11?									
(A) 10	(B) 6	(C) 5	(D) 4	(E) 8					
Problem 17 . Find a digit d that makes the three-digit number $2 d 6$ a multiple of 22.									
(A) 1	(B) 4	(C) 5	(D) 8	(E) 2					
Problem 18 . A four-digit number uses each of the digits 1, 2, 3 and 4 exactly once. What is the probability that the number is a multiple of 4? (A) 1/2 (B) 1/3 (C) 1/5 (D) 1/4 (E) 3/8									
Problem 19 . V (A) 999	What is the grea (B) 998	atest three-digit (C) 997	number that is (D) 996	divisible by 6? (E) 993					
Problem 20 . I (A) 4	f the four-digit (B) 3	number <u>5,7<i>d</i> 2</u> (C) 2	is divisible by (D) 1	18, what is <i>d</i> ? (E) 0					
Problem 21 . What digit can replace K in the number $9K73K0$ so that $9K73K0$ will be divisible by 60?									
(A) 4	(B) 3	(C) 2	(D) 1	(E) 0					
Problem 22 . How many different 4-digit numbers can be formed using the digits 2, 4, 5, 6, and 7 such that no digits repeat and the number is divisible by 4? (A) 24 (B) 36 (C) 22 (D) 31 (E) 120									
Problem 23 . Given that m and n are digits, what is the sum of the values for m and n such that the five-digit number $m6,79n$ is divisible by 72?									
(A) 4	(B) 3	(C) 7	(D) 10	(E) 5					
☆Problem 2 4 (A) 0	J. (2011 AMC (B) 1	Problem 22) W (C) 3	That is the tens (D) 4	digit of 7 ²⁰¹¹ ? (E) 7					