Géométrie différentielle et théorie de jauge, 11/02/2020

Connections and curvature

1. Let *E* be a rank *r* vector bundle with connection ∇ . In a local trivialisation $(s_1, ..., s_r)$ of *E*, one has $\nabla = d + a_i dx^i$. Prove that in the trivialization $(s_1 \wedge \cdots \wedge s_r)$ of $\det(E) := \Lambda^r E$, the induced connection is $\nabla^{\det(E)} = d + \operatorname{tr}(a_i) dx^i$.

We define a $SL(r, \mathbb{C})$ - bundle as a rank r bundle E with a given isomorphism $\det(E) \simeq \mathbb{C}$, and a $SL(r, \mathbb{C})$ -connection on E as a connection ∇ on E such that $\nabla^{\det(E)} = d$ the trivial connection on \mathbb{C} . This means that in any trivialization $(s_1, ..., s_r)$ of E such that $s_1 \wedge \cdots \wedge s_r = 1$ one has $\nabla = d + a_i dx^i$ with $\operatorname{tr}(a_i) = 0$.

- **2.** Calculate the curvature of the bundle $\mathcal{O}(-1)$ on $\mathbb{C}P^1$ and check that $\frac{i}{2\pi}\int_{\mathbb{C}P^1}F=-1$. Check that this result actually does not depend on the chosen connection, it is the *first Chern number* of $\mathcal{O}(-1)$. In particular, the bundle $\mathcal{O}(-1)$ is topologically non trivial.
- **3.** Prove that the curvature $F^{\text{End}(E)}$ of the endomorphism bundle of E is given in terms of F^E by $F^{\text{End}(E)}(u) = [F^E, u]$.
- **4.** Let us calculate the curvature of the sphere S^n in the following way. We take standard coordinates $x^0,...,x^n$ on \mathbb{R}^{n+1} . Near the north pole, we take coordinates $y=(y^1,...,y^n)$ on S^n parametrizing the point $f(y)=(\sqrt{1-|y|^2},y)\in S^n\subset\mathbb{R}^{n+1}$. Prove the development

$$d_y f(\frac{\partial}{\partial y^i}) = \frac{\partial}{\partial x^i} - y^i \frac{\partial}{\partial x^0} + O(|y|^2),$$

and deduce a development at the origin of the Christoffel symbols $\Gamma_{ij}^k = \delta_{ij}y^k + O(|y|^2)$. Deduce that the curvature at y = 0 is given by $R_{ijk}^\ell = \delta_i^\ell \delta_{jk} - \delta_{ik}\delta_j^\ell$. Prove that the sphere has constant sectional curvature equal to +1.

5. (i) Let (M, g) be a Riemannian manifold, and E be a Hermitian bundle with unitary connection $\nabla : \Gamma(E) \to \Omega^1(E)$. Prove that if $\alpha \in \Omega^1(E)$ then $\nabla^* \alpha = -\operatorname{tr}^g(\nabla \alpha)$, that is $\nabla^* \alpha = -\sum i(e_i) \nabla_{e_i} \alpha$ for any orthonormal basis (e_i) of TM.

Hint. Take an orthonormal frame (e_i) of TM such that at the point p we have $\nabla e_i(p) = 0$, and show that $(d^{\nabla} * (\alpha_i e^i))(p) = \sum_{i=1}^{n} (\nabla_{e_i} \alpha_i)(p) e^1 \wedge \cdots \wedge e^n$.

(ii) For $d^{\nabla}: \Omega^p(E) \to \Omega^{p+1}(E)$, deduce from the Maurer-Cartan formula the identity

$$d^{\nabla}\alpha(X_0,...,X_p) = \sum_{i=0}^{p} (\nabla_{X_i}\alpha)(X_0,...,\widehat{X}_i,...,X_p).$$

This means that $d^{\nabla}\alpha = \frac{1}{p+1}\mathbf{a}(\nabla\alpha)$, where \mathbf{a} is the antisymmetrization $\Omega^1 \otimes \Omega^p \to \Omega^{p+1}$. (iii) Be careful that the norms on Ω^p and $\otimes^p\Omega^1$ do not coincide, $|\cdot|_{\Omega^p}^2 = p!|\cdot|_{\otimes^p\Omega^1}^2$ (think for example that $e^1 \wedge e^2 = e^1 \otimes e^2 - e^2 \otimes e^1$). Deduce from (ii) that $(d^{\nabla})^* : \Omega^{p+1}(E) \to \Omega^p(E)$ is the restriction of ∇^* to antisymmetric tensors $\Omega^{p+1}(E) \subset \Omega^1\Omega^p(E)$. Apply (i) to get for any p the formula

$$(d^{\nabla})^*\alpha = -\sum i(e_i)\nabla_{e_i}\alpha.$$

6. Let (M, g) be a Riemannian manifold (or Lorentzian, etc., but let's say Riemannian for simplicity). We define the divergence $\delta \alpha$ of a symmetric 2-tensor α by $\delta \alpha = -\sum i(e_i)\nabla_{e_i}\alpha$ for any orthonormal basis of TM (equivalently, $(\delta \alpha)_k = -g^{ij}\alpha_{ik,j}$). Prove that the Einstein tensor $r = \text{Ric} -\frac{1}{2} \text{Scal } g$ is divergence free: $\delta r = 0$. (Calculate at a point p in a basis such that $\nabla e_i(p) = 0$ and use Bianchi differential identity).

Problem. The (non commutative) field of quaternions is defined as the real algebra

$$\mathbb{H} = \{q := x_0 + x_1 i + x_2 j + x_3 k, x_i \in \mathbb{R}\}\$$

where $i^2 = j^2 = k^2 = -1$ and ij = k = -ji, jk = i = -kj, ki = j = -ik. One can realize \mathbb{H} as a space of 2x2 matrices, with

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad k = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

There is an identification $\mathbb{H} = \mathbb{C} \oplus \mathbb{C} j$ by writing $q = (x_0 + ix_1) + (x_2 + ix_3)j$.

One has a conjugation $\bar{q} = x_0 - x_1 i - x_2 j - x_3 k$. One has $q\bar{q} = \bar{q}q = x_0^2 + \cdots + x_3^2 = |q|^2$, and therefore $q^{-1} = q/|q|^2$. One can define a real part $\Re(q) = \frac{q+\bar{q}}{2} = x_0$ and an imaginary part $\Im(q) = \frac{q-\bar{q}}{2} = x_1 i + x_2 i + x_3 k$. As is clear from the matrix description, the space $\Im(\mathbb{H})$ of imaginary quaternions, equipped with the bracket [q, q'] = qq' - q'q, is a Lie algebra isomorphic to $\Im(2)$.

The projective space $\mathbb{H}P^1$ of quaternionic lines in \mathbb{H}^2 has homogeneous coordinates $[q_0:q_1]=[q_0\lambda:q_1\lambda]$ for any $\lambda\in\mathbb{H}$. Similarly to $\mathbb{C}P^1=S^2$, one has $\mathbb{H}P^1=S^4$, with $[q:1]\mapsto q\in\mathbb{H}=\mathbb{R}^4$.

There is a tautological quaternionic line bundle E over $\mathbb{H}P^1$, given by $E_{[q_0:q_1]}=(q_0,q_1)\mathbb{H}$. This is in particular a Hermitian rank 2 vector bundle (the complex structure comes from the right multiplication by i). By orthogonal projection, E gets a unitary connection that we will now calculate:

- Prove that the orthogonal projection of (x_0, x_1) on $(q_0, q_1)\mathbb{H}$, where $|q_0|^2 + |q_1|^2 = 1$, is $(q_0, q_1)(\bar{q}_0x_0 + \bar{q}_1x_1)$.
- For $x \in \mathbb{H} = \mathbb{R}^4$ we consider the (normed) section of E given by $s(x) = \frac{(x,1)}{\sqrt{1+|x|^2}}$ (this gives a complex orthonormal trivialization (s, sj)). Local sections of E are given by $s(x)\lambda(x)$ for $\lambda(x) \in \mathbb{H}$. Prove that the connection on E is given by

$$\nabla(s\lambda) = s(d\lambda + A\lambda), \quad A = \frac{\Im(\bar{x}\,dx)}{1+|x|^2}.$$

Since $\mathfrak{I}(\mathbb{H})=\mathfrak{su}(2)$, the 1-form A with values in $\mathfrak{I}(\mathbb{H})$ is a SU(2) connection matrix. Be careful here that the bundle is quaternionic for the right multiplication by \mathbb{H} , but the $\mathfrak{su}(2)$ is given by *left* multiplication on the coefficient λ (this of course depends on the choice of basis s).

Deduce the curvature

$$F = \frac{d\bar{x} \wedge dx}{(1+|x|^2)^2}.$$

Check that F is actually an antiselfdual form on \mathbb{R}^4 , that is *F = -F. Therefore the connection is an *instanton* on \mathbb{R}^4 .

- Check that $\frac{1}{8\pi^2} \int_{\mathbb{R}^4} \operatorname{tr}(F \wedge F) = 1$ (the *instanton number*).
- We say that two Riemannian metrics g and g' are conformally equivalent if there exists a function f>0 such that g'=fg. Prove that if we have two conformally equivalent metrics g and g' on M^{2n} and $\alpha,\beta\in\Omega^n(M)$, then $\langle\alpha,\beta\rangle_{g'}$ $\operatorname{vol}_{g'}=\langle\alpha,\beta\rangle_g\operatorname{vol}_g$, and deduce that $*_{g'}\alpha=*_g\alpha$.
- Prove that in the \mathbb{R}^4 chart given by stereographic projection one has $g_{S^4} = \frac{4|dx|^2}{(1+|x|^2)^2}$ which is conformal to $g_{\mathbb{R}^4}$. Deduce that the connection A is also an instanton on E over S^4 , that is the connection has antiselfdual curvature.