3

SUPERVISOR'S USE ONLY

91390

Level 3 Chemistry, 2015

91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances

2.00 p.m. Wednesday 11 November 2015 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of thermochemical principles and the properties of particles and substances.	Demonstrate in-depth understanding of thermochemical principles and the properties of particles and substances.	Demonstrate comprehensive understanding of thermochemical principles and the properties of particles and substances.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L3–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL

QUESTION ONE

ASSESSOR'S USE ONLY

(a) Complete the following table.

Symbol	Electron configuration
Al	
Cu ²⁺	
Sc	

	11 \	D C (1)	1	1.0	•	. , .	
- (h	Define the terms e	dectronegativity	zand firet	100	igation i	enerou
١	$\boldsymbol{\nu}$		need one gall vit	and mist	1011	isation '	chich gy.

Electronegativity:		
First ionisation energy:		

(c) The following table shows the first ionisation energy values for elements in the third period of the periodic table.

Element	First ionisation energy/kJ mol ⁻¹
Na	502
Al	584
Si	793
Ar	1 527

Justify the periodic trend of first ionisation energies shown by the data in the table above, and relate this to the expected trend in atomic radii across the third period.

ASSESSOR'S USE ONLY

QUESTION TWO

ASS	SES	ssc	R	'S
110	25	ON	ı٧	,

The equation for $\Delta_{\rm f} H^{\circ}$ of ${\rm H_2O}(\ell)$ is:

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell)$$
 -286 kJ mol⁻¹

(a) (i) Write the equation for $\Delta_c H^{\circ}$ (H₂(g)).

(ii)	Using the equations above, explain why $\Delta_c H^{\circ}$ (H ₂) and $\Delta_f H^{\circ}$ (H ₂ O) have the same
	value of -286 kJ mol^{-1} .

- (b) The enthalpy of formation would change if the water was formed as a gas rather than a liquid.
 - (i) Circle the correct phrase to complete the sentence below.

$$\Delta_{\rm f} H^{\circ} ({\rm H_2O}(g))$$
 is:

(ii)

less negative than / the same as / more negative than $\Delta_{\rm f} H^{\circ} ({\rm H_2O}(\ell)).$

ustify your choice.		

ASSESSOR'S USE ONLY

Calculate the $\Delta_{\mathrm{f}}H^{\circ}$ for $\mathrm{B_{2}H_{6}}(g)$	g), given the following	ng data:	
$\Delta_{\mathrm{f}}H^{\circ}\left(\mathrm{B_{2}O_{3}}(s)\right)$		$=-1255 \text{ kJ mol}^{-1}$	
$\Delta_{\mathrm{f}}H^{\circ}\left(\mathrm{H_{2}O}(\ell)\right)$		$= -286 \text{ kJ mol}^{-1}$	
$B_2H_6(g) + 3O_2(g) \rightarrow B_2$ The melting point of box		$\Delta_{\rm r} H^{\circ} = -2148 \text{ kJ mol}^{-1}$	

QUESTION THREE

(a) Complete the following table.

	AsF ₅	SeF ₆
Lewis diagram		
Name of shape		

(b) The Lewis diagrams and shapes for XeO_2F_2 and GeH_4 are shown below.

see-saw

tetrahedral

compare and contrast the polarities and shapes of these two molecules.				

Question Three continues on the following page.

ASSESSOR'S USE ONLY (c) The two molecules below have the same molecular formula ($C_5H_{12}O$) but have different boiling points.

ASSESSOR'S USE ONLY
USE ONLY

Name	Pentan-1-ol	Dimethylpropan-1-ol
Structure	$\mathrm{CH_3}\mathrm{-CH_2}\mathrm{-CH_2}\mathrm{-CH_2}\mathrm{-CH_2}\mathrm{-OH}$	$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3} - \operatorname{C} - \operatorname{CH_2} - \operatorname{OH} \\ \operatorname{CH_3} \end{array}$
Boiling point	138°C	113°C

		these molecules in each of their liquid stat
and dimeth	ormation above to explain the ylpropan-1-ol by comparing orces between the molecules	e difference in the boiling points of pentan and contrasting the relative strengths of th involved.

		9			
(d)	The equation for the combus $C_5H_{12}O(\ell) + 7\frac{1}{2}O_2(g)$	ation of pentan-1-ol is: $\rightarrow 5CO_2(g) + 6H_2O(\ell)$			
	Calculate $\Delta_{\rm c} H^{\circ}$ for pentan-1-ol, given the following data:				
	$\Delta_{\mathrm{f}}H^{\circ}\left(\mathrm{C_{5}H_{12}O}(\ell)\right)$	$= -295 \text{ kJ mol}^{-1}$			
	$\Delta_{\mathrm{f}}H^{\circ}\left(\mathrm{CO}_{2}(g)\right)$	$= -394 \text{ kJ mol}^{-1}$			
	$\Delta_{\mathrm{f}} H^{\circ} \left(\mathrm{H_2O}(\ell) \right)$	$= -286 \text{ kJ mol}^{-1}$			

	Extra paper if required.	
QUESTION NUMBER	Write the question number(s) if applicable.	

AS	SE	SSC	DR.	S
U	SE	ON	ILY	

ASSESSOR'S USE ONLY

		Extra paper if required.	
0115051011	ı I	Write the question number(s) if applicable.	
QUESTION NUMBER		TTTTC tile queetien nameer(e) ii applicable	