Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 831 910 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 21.11.2001 Bulletin 2001/47
- (21) Application number: 96919170.9
- (22) Date of filing: 05.06.1996

- (51) Int Cl.7: A61K 45/06, A61K 31/585
- (86) International application number: PCT/US96/09335
- (87) International publication number: WO 96/40257 (19.12.1996 Gazette 1996/55)
- (54) EPOXY-STEROIDAL ALDOSTERONE ANTAGONIST AND ANGIOTENSIN II ANTAGONIST COMBINATION THERAPY FOR TREATMENT OF CONGESTIVE HEART FAILURE

EPOXYSTEROIDE ALDOSTERONANTAGONIST UND ANGIOTENSIN II REZEPTOR ANTAGONIST KOMBINATIONSTHERAPIE ZUR BEHANDLUNG VON CONGESTIVEM HERZVERSAGEN

THERAPIE MIXTE A BASE D'UN ANTAGONISTE EPOXY-STEROIDIEN DE L'ALDOSTERONE ET D'UN ANTAGONISTE DE L'ANGIOTENSINE II POUR LE TRAITEMENT DE L'INSUFFISANCE CARDIAQUE GLOBALE

- (84) Designated Contracting States: AT BE CH DE DK ES F! FR GB GR IE IT LI LU NL PT SE
- (30) Priority: 07.06.1995 US 486456
- (43) Date of publication of application: 01.04.1998 Bulletin 1998/14
- (73) Proprietor: G.D. SEARLE & CO. Chicago, IL 60680-5110 (US)
- (72) Inventors:
 - ALEXANDER, John, C. Winnetka, IL 60093 (US)
 - SCHUH, Joseph, R.
 St. Louis, MO 63146 (US)
 - GORCZYNSKI, Richard, J. Boulder, CO 80301 (US)
- (74) Representative: Bell, Hans Christoph, Dr. et al Hansmann & Vogeser, Patent- und Rechtsanwälte, Postfach 80 01 40 65901 Frankfurt (DE)

(56) References cited:

EP-A- 0 122 232 EP-A- 0 628 313 WO-A-94/09778 US-A- 5 049 565 EP-A- 0 481 448 WO-A-92/20662 WO-A-95/15166

- THE JOURNAL OF STEROID BIOCHEMISTRY, vol. 32, no. 1B, 1989, pages 223-227, XP000607722 DE GASPARO ET AL: "ANTIALDOSTERONES: INCIDENCE AND PREVENTION OF SEXUAL SIDE EFFECTS"
- THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, vol. 240, no. 2, 1987, pages 650-656, XP000607709 DE GASPARO ET AL: "THREE NEW EPOXY-SPIROLACTONE DERIVATIVES: CHARACTERIZATION IN VIVO AND IN VITRO"

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

P 0 831 910 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

30

35

45

Field of the Invention

[0001] Combinations of an epoxy-steroidal aldosterone receptor antagonist and an angiotensin II receptor antagonist are described for use in treatment of circulatory disorders, including cardiovascular diseases such as hypertension, congestive heart failure, cardiac hypertrophy, cirrhosis and ascites. Of particular interest are therapies using an epoxy-containing steroidal aldosterone receptor antagonist compound such as epoxymexrenone in combination with an angiotensin II receptor antagonist compound.

Background of the Invention

[0002] Myocardial (or cardiac) failure, whether a consequence of a previous myocardial infarction, heart disease associated with hypertension, or primary cardiomyopathy, is a major health problem of worldwide proportions. The moidenge of symptomatic heart failure has rised steadily even the past several decades.

[0003] In clinical terms, decompensated cardiac failure consists of a constellation of signs and symptoms that arises from congested organs and hypoperfused tissues to form the congestive heart failure (CHF) syndrome. Congestion is caused largely by increased venous pressure and by inadequate sodium (Na*) excretion, relative to dietary Na* intake, and is importantly related to circulating levels of aldosterone (ALDO). An abnormal retention of Na* occurs via tubular epithelial cells throughout the nephron, including the later portion of the distal tubule and cortical collecting ducts, where ALDO receptor sites are present.

[0004] ALDO is the body's most potent mineralocorticoid hormone. As connoted by the term mineralocorticoid, this steroid hormone has mineral-regulating activity. It promotes Na+ reabsorption not only in the kidney, but also from the lower gastrointestinal tract and salivary and sweat glands, each of which represents classic ALDO-responsive tissues. ALDO regulates Na+ and water resorption at the expense of potassium (K+) and magnesium (Mg²⁺) excretion.

[0005] ALDO can also provoke responses in nonepithelial cells. Elicited by a chronic elevation in plasma ALDO level that is inappropriate relative to dietary Na⁺ intake, these responses can have adverse consequences on the structure of the cardiovascular system. Hence, ALDO can contribute to the progressive nature of myocardial failure for multiple reasons.

[0006] Multiple factors regulate ALDO synthesis and metabolism, many of which are operative in the patient with myocardial failure. These include renin as well as non-renin-dependent factors (such as K⁺, ACTH) that promote ALDO synthesis. Hepatic blood flow, by regulating the clearance of circulating ALDO, helps determine its plasma concentration, an important factor in heart failure characterized by reduction in cardiac output and hepatic blood flow.

[0007] The renin-angiotensin-aldosterone system (RAAS) is one of the hormonal mechanisms involved in regulating pressure/volume homeostasis and also in the development of hypertension. Activation of the renin-angiotensin-aldosterone system begins with renin secretion from the juxtaglomerular cells in the kidney and culminates in the formation of angiotensin II, the primary active species of this system. This octapeptide, angiotensin II, is a potent vasoconstrictor and also produces other physiological effects such as stimulating aldosterone secretion, promoting sodium and fluid retention, inhibiting renin secretion, increasing sympathetic nervous system activity, stimulating vasopressin secretion, causing positive cardiac inotropic effect and modulating other hormonal systems.

[0008] Previous studies have shown that antagonizing angiotensin II binding at its receptors is a viable approach to inhibit the renin-angiotensin system, given the pivotal role of this octapeptide which mediates the actions of the renin-angiotensin system through interaction with various tissue receptors. There are several known angiotensin II antagonists, most of which are peptidic in nature. Such peptidic compounds are of limited use due to their lack of oral bioavailability or their short duration of action. Also, commercially-available peptidic angiotensin II antagonists (e.g., Saralasin) have a significant residual agonist activity which further limit their therapeutic application.

[0009] Non-peptidic compounds with angiotensin II antagonist properties are known. For example, early descriptions of such non-peptidic compounds include the sodium salt of 2-n-butyl-4-chloro-1-(2-chlorobenzyl)imidazole-5-acetic acid which has specific competitive angiotensin II antagonist activity as shown in a series of binding experiments, functional assays and in vivo tests [P. C. Wong et al, J. Pharmacol. Exp. Ther., 247(1), 1-7 (1988)]. Also, the sodium salt of 2-butyl-4-chloro-1-(2-nitrobenzyl)imidazole-5-acetic acid has specific competitive angiotensin II antagonist activity as shown in a series of binding experiments, functional assays and in vivo tests [A. T. Chiu et al, European J. Pharmacol., 157, 31-21 (1988)]. A family of 1-benzylimidazole-5-acetate derivatives has been shown to have competitive angiotensin II antagonist properties [A. T. Chiu et al, J. Pharmacol. Exp. Ther., 250(3), 867-874 (1989)]. U.S. Patent No. 4,816,463 to Blankey et al describes a family of 4,5,6,7-tetrahydro-1H-imidazo(4,5-c)-tetrahydro-pyridine derivatives useful as antihypertensives, some of which are reported to antagonize the binding of labelled angiotensin II to rat adrenal receptor preparation and thus cause a significant decrease in mean arterial blood pressure in conscious hypertensive rats. Other families of non-peptidic angiotensin II antagonists have been characterized by molecules

having a biphenylmethyl moiety attached to a heterocyclic moiety. For example, EP No. 253,310, published 20 January 1988, describes a series of aralkyl imidazole compounds, including in particular a family of biphenylmethyl substituted imidazoles, as antagonists to the angiotensin II receptor. EP No. 323,841 published 12 July 1989 describes four classes of angiotensin II antagonists, namely, biphenylmethylpyrroles, biphenylmethylpyrazoles, biphenylmethyl-1,2,3-triazoles and biphenylmethyl 4-substituted-4H-1,2,4-triazoles, including the compound 3,5-dibutyl-4-[(2'-carboxybiphenyl-4-yl)methyl]-4H-1,2,4-triazole. U.S. Patent No. 4,880,804 to Carini et al describes a family of biphenylmethylbenzimidazole compounds as angiotensin II receptor blockers for use in treatment of hypertension and congestive heart failure. [0010] Many aldosterone receptor blocking drugs are known. For example, spironolactone is a drug which acts at the mineralocorticoid receptor level by competitively inhibiting aldosterone binding. This steroidal compound has been used for blocking aldosterone-dependent sodium transport in the distal tubule of the kidney in order to reduce edema and to treat essential hypertension and primary hyperaldosteronism [F. Mantero et al, Clin. Sci. Mol. Med., 45 (Suppl 219s-224s (1973). Spironolactone is also used commonly in the treatment of other hyperaldosterone-related diseases such as liver cirrhosis and congestive heart failure [F.J. Saunders et al, Aldactone; Spironolactone: A Comprenensive Fieview, Searle, New York (1978)]. Progressively-increasing coses of spiroticiactorie from 1 mg to 400 mg per day (i.e., 1 mg/day, 5 mg/day, 20 mg/day] were administered to a spironolactone-intolerant patient to treat cirrhosisrelated ascites [P.A. Greenberger et al, N. Eng. Reg. Allergy Proc., 7(4), 343-345 (Jul-Aug, 1986)]. It has been recognized that development of myocardial fibrosis is sensitive to circulating levels of both Angiotensin II and aldosterone, and that the aldosterone antagonist spironolactone prevents myocardial fibrosis in animal models, thereby linking aldosterone to excessive collagen deposition [D. Klug et al, Am. J. Cardiol., 71 (3), 46A-54A (1993)]. Spironolactone has been shown to prevent fibrosis in animal models irrespective of the development of left ventricular hypertrophy and the presence of hypertension [C.G. Brilla et al, J. Mol. Cell. Cardiol., 25(5), 563-575 (1993)]. Spironolactone at a dosage ranging from 25 mg to 100 mg daily is used to treat diuretic-induced hypokalemia, when orally-administered potassium supplements or other potassium-sparing regimens are considered inappropriate [Physicians' Desk Reference, 46th Edn., p. 2153, Medical Economics Company Inc., Montvale, N.J. (1992)].

[0011] Previous studies have shown that inhibiting ACE inhibits the renin-angiotensin system by substantially complete blockade of the formation of angiotensin II. Many ACE inhibitors have been used clinically to control hypertension. While ACE inhibitors may effectively control hypertension, side effects are common including chronic cough, skin rash, loss of taste sense, proteinuria and neutropenia.

20

35

50

55

[0012] Moreover, although ACE inhibitors effectively block the formation of angiotensin II, aldosterone levels are not well controlled in certain patients having cardiovascular diseases. For example, despite continued ACE inhibition in hypertensive patients receiving captopril, there has been observed a gradual return of plasma aldosterone to baseline levels [J. Staessen et al, J. Endocrinol., 91, 457-465 (1981)]. A similar effect has been observed for patients with myocardial infarction receiving zofenopril [C. Borghi et al, J. Clin. Pharmacol., 33, 40-45 (1993)]. This phenomenon has been termed "aldosterone escape".

[0013] Another series of steroidal-type aldosterone receptor antagonists is exemplified by epoxy-containing spironol-actone derivatives. For example, U.S. Patent No. 4,559,332 Issued to Grob et al describes 9α,11α-epoxy-containing spironolactone derivatives as aldosterone antagonists useful as diuretics. These 9α,11α-epoxy steroids have been evaluated for endocrine effects in comparison to spironolactone [M. de Gasparo et al, J. Pharm. Exp. Ther., 240(2), 650-656 (1987)].

[0014] Combinations of an aldosterone antagonist and an ACE inhibitor have been investigated for treatment of heart failure. It is known that mortality is higher in patients with elevated levels of plasma aldosterone and that aldosterone levels increase as CHF progresses from activation of the Renin-Angiontensin-Aldosterone System (RAAS). Routine use of a diuretic may further elevate aldosterone levels. ACE inhibitors consistently inhibit angiotensin II production but exert only a mild and transient antialdosterone effect.

[0015] Combining an ACE inhibitor and spironolactone has been suggested to provide substantial inhibition of the entire RAAS. For example, a combination of enalapril and spironolactone has been administered to ambulatory patients with monitoring of blood pressure [P. Poncelet et al, Am. J. Cardiol., 65(2), 33K-35K (1990)]. In a 90-patient study, a combination of captopril and spironolactone was administered and found effective to control refractory CHF without serious incidents of hyperkalemia [U. Dahlstrom et al, Am. J. Cardiol., 71, 29A-33A (21 Jan 1993)]. Spironolactone coadministered with an ACE inhibitor was reported to be highly effective in 13 of 16 patients afflicted with congestive heart failure [A.A. van Vliet et al, Am. J. Cardiol., 71, 21A-28A (21 Jan 1993)]. Clinical improvements have been reported for patients receiving a co-therapy of spironolactone and the ACE inhibitor enalapril, although this report mentions that controlled trials are needed to determine the lowest effective doses and to identify which patients would benefit most from combined therapy [F. Zannad, Am. J. Cardiol., 71(3), 34A-39A (1993)].

[0016] Combinations of an angiotensin II receptor antagonist and aldosterone receptor antagonist, are known. For example, PCT Application No. US91/09362 published 25 June 1992 describes treatment of hypertension using a combination of an imidazole-containing angiotensin II antagonist compound and a diuretic such as spironolactone.

Summary of the Invention

5

10

25

35

45

50

55

[0017] A combination therapy comprising a therapeutically-effective amount of an epoxy-steroidal aldosterone receptor antagonist and a therapeutically-effective amount of an angiotensin II receptor antagonist is useful to treat circulatory disorders, including cardiovascular disorders such as hypertension, congestive heart failure, cirrhosis and ascites.

[0018] The phrase "angiotensin II receptor antagonist" is intended to embrace one or more compounds or agents having the ability to interact with a receptor site located on various human body tissues, which site is a receptor having a relatively high affinity for angiotensin II and which receptor site is associated with mediating one or more biological functions or events such as vasoconstriction or vasorelaxation, kidney-mediated sodium and fluid retention, sympathetic nervous system activity, and in modulating secretion of various substances such as aldosterone, vasopressin and renin, to lower blood pressure in a subject susceptible to or afflicted with elevated blood pressure. Interactions of such angiotensin II receptor antagonist with this receptor site may be characterized as being either "competitive" (i.e., "surmountable") or as being "insurmountable". These terms, "competitive" and "insurmountable", characterize the relative rates, tester for the former term and slower for the latter term, at which the antagonist compound dissociates from binding with the receptor site.

[0019] The phrase "epoxy-steroidal aldosterone receptor antagonist" is intended to embrace one or more agents or compounds characterized by a steroid-type nucleus and having an epoxy moiety attached to the nucleus and which agent or compound binds to the aldosterone receptor, as a competitive inhibitor of the action of aldosterone itself at the receptor site, so as to modulate the receptor-mediated activity of aldosterone.

[0020] The phrase "combination therapy", in defining use of an angiotensin II antagonist and an epoxy-steroidal aldosterone receptor antagonist, is intended to embrace administration of each antagonist in a sequential manner in a regimen that will provide beneficial effects of the drug combination, and is intended to embrace co-administration of the antagonist agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of active ingredients or in multiple, separate capsules for each antagonist agent.

[0021] The phrase "therapeutically-effective" is intended to qualify the amount of each antagonist agent for use in the combination therapy which will achieve the goal of reduction of hypertension with improvement in cardiac sufficiency by reducing or preventing, for example, the progression of congestive heart failure.

[0022] Another combination therapy of interest would consist essentially of three active agents, namely, an All antagonist, an aldosterone receptor antagonist agent and a diuretic.

[0023] For a combination of All antagonist agent and an ALDO antagonist agent, the agents would be used in combination in a weight ratio range from about 0.5-to-one to about twenty-to-one of the All antagonist agent to the aldosterone receptor antagonist agent. A preferred range of these two agents (All antagonist-to-ALDO antagonist) would be from about one-to-one to about fifteen-to-one, while a more preferred range would be from about one-to-one to about five-to-one, depending ultimately on the selection of the All antagonist and ALDO antagonist. The diuretic agent may be present in a ratio range of 0.1-to-one to about ten to one (All antagonist to diuretic).

Detailed Description of the Invention

[0024] Epoxy-steroidal aldosterone receptor antagonist compounds suitable for use in the combination therapy consist of these compounds having a steroidal nucleus substituted with an epoxy-type moiety. The term "epoxy-type" moiety is intended to embrace any moiety characterized in having an oxygen atom as a bridge between two carbon atoms, examples of which include the following moieties:

epoxyethyl 1,3-epoxypropyl 1,2-epoxypropyl

The term "steroidal", as used in the phrase "epoxy-steroidal", denotes a nucleus provided by a cyclopentenophenanthrene moiety, having the conventional "A", "B", "C" and "D" rings. The epoxy-type moiety may be attached to the cyclopentenophenanthrene nucleus at any attachable or substitutable positions, that is, fused to one of the rings of the steroidal nucleus or the moiety may be substituted on a ring member of the ring system. The phrase "epoxy-steroidal" is intended to embrace a steroidal nucleus having one or a plurality of epoxy-type moieties attached thereto.

[0025] Epoxy-steroidal aldosterone receptor antagonists suitable for use in combination therapy include a family of compounds having an epoxy moiety fused to the "C" ring of the steroidal nucleus. Especially preferred are 20-spiroxane compounds characterized by the presence of a 9α , 11α -substituted epoxy moiety. Table I, below, describes a series of 9α , 11α -epoxy-steroidal compounds which may be used in the combination therapy. These epoxy steroids may be prepared by procedures described in U.S. Patent No. 4,559,332 to Grob et al issued 17 December 1985.

5

10

15

20

25

30

35

40

45

50

55

TABLE I: Aldosterone Receptor Antagonist

Name

Compound # Structure

Pregn-4-ene-7,21-dicarboxylic a

Pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy-17-hydroxy-3-oxo-, y-lactone, methyl ester, (7\alpha,11.\alpha,17\alpha)-

Pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy-17-hydroxy-3-oxo-dimethyl ester, (7a,11a,17a)-

~

5

10

15

20

25

30

35

40

45

50

55

TABLE I: Aldosterone Receptor Antagonist

Compound # Structure

Мале

3'H-cyclopropa(6,7) pregna-4,6-diene-21carboxylic acid, 9,11-epoxy-6,7-dihydro-17hydroxy-3-oxo-,γ-lactone, (5β,7β,11β,17β)- Pregn-4-ene-7,21-dicarboxylic acid,9,11epoxy-17-hydroxy-3-oxo-,7-(1-methylethyl) ester,
monopotassium salt,(7a,11a,17a)-

m

TABLE 1: Aldosterone Receptor Antagonist

Compound # Structure

Name

Pregn-4-ene-7,21-dicarboxylic acid,9,11,-epoxy17-hydroxy-3-oxo-,7-methyl ester, monopotassium
salt, (7a,11a,17a)-

Ŋ

3'H-cyclopropa[6,7]pregna-1,4,6-triene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-,g-lactone(6a,7a,11.a)-

TABLE 1: Aldosterone Receptor Antagonist

5

10

15

20

25

30

35

40

45

50

55

Compound # Structure

Name

~

9

3'H-cyclopropa[6,7]pregna-4,6-diene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-, methyl ester, (6a,7a,11a,17a)-

œ

3'H-cyclopropa[6,7]pregna-4,6-diene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-, monopotassium salt, (6a,7a,11a,17a)-

TABLE I: Aldosterone Receptor Antagonist

5

10

H

20

25

30

35

40

45

55

Compound # Structure

σ

Name

3'H-cyclopropa[6,7]pregna-4,6-diene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-,g-lactone, (6a,7a,11a.,17a)-

10

Pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy17-hydroxy-3-oxo-,g-lactone, ethyl ester,
(7a,11a,17a)-

ester, (7a, 11a, 17a)-

Pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy-17-hydroxy-3-oxo-,g-lactone, 1-methylethyl TABLE I: Aldosterone Receptor Antagonist Name Structure Compound #

[0026] Angiotensin II receptor antagonist compounds suitable for use in the combination therapy are described in Table II, below. Preferred compounds for use in the combination therapy may be generally characterized structurally as having two portions. A first portion constitutes a mono-aryl-alkyl moiety, or a bi-aryl-alkyl moiety, or a mono-heteroaryl-alkyl moiety. A second portion constitutes a heterocyclic moiety or an open chain hetero-atom-containing moiety.

[0027] Typically, the first-portion mono/bi-aryl/heteroaryl-alkyl moiety is attached to the second portion heterocyclic/open-chain moiety through the alkyl group of the mono/bi-aryl/heteroaryl-alkyl moiety to any substitutable position on the heterocyclic/open-chain moiety second portion. Suitable first-portion mono/bi-aryl/heteroaryl-alkyl moieties are defined by any of the various moieties listed under Formula I:

Ar-Alk-L
Ar-L-Ar-Alk-L
Het-L-Ar-Alk-L
Het-L-Het-Alk-L
Ar-L-Het-Alk-L
Het-L-Alk-L

wherein the abbreviated notation used in the moieties of Formula I is defined as follows:

10

15

20

25

30

35

45

50

55

"Ar" means a five or six-membered carbocyclic ring system consisting of one ring or two fused rings, with such ring or rings being typically fully unsaturated but which also may be partially or fully saturated. "Phenyl" radical most typically exemplifies "Ar".

"Het" means a monocyclic or bicyclic fused ring system having from five to eleven ring members, and having at least one of such ring members being a hetero atom selected from oxygen, nitrogen and sulfur, and with such ring system containing up to six of such hetero atoms as ring members.

"Alk" means an alkyl radical or alkylene chain, linear or branched, containing from one to about five carbon atoms. Typically, "Alk" means "methylene", i.e., - CH_2 -.

"L" designates a single bond or a bivalent linker moiety selected from carbon, oxygen and sulfur. When "L" is carbon, such carbon has two hydrido atoms attached thereto.

[0028] Suitable second-portion heterocyclic moieties of the angiotensin II antagonist compounds, for use in the combination therapy, are defined by any of the various moieties listed under Formula IIa or IIb:

 $\begin{array}{c} X^1 \\ \\ X^2 \end{array}$

10

20

40

45

50

wherein each of X¹ through X6 is selected from -CH=, -CH2-, -N=, -NH-, 0, and S, with the proviso that at least one of X¹ through X6 in each of Formula IIa and Formula IIb must be a hetero atom The heterocyclic molety of Formula IIa or IIb may be attached through a bond from any ring member of the Formula IIa or IIb heterocyclic molety having a substitutable or a bond-forming position.

[0029] Examples of monocyclic heterocyclic moleties of Formula IIa include thienyl, furyl, pyranyl, pyrrolyl, imidazolyl, triazolyl, pyrazolyl, pyrazolyl, pyrrolyl, pyrimidinyl, pyridazinyl, isothiazolyl, isoxazolyl, furazanyl, pyrrolidinyl, pyrrolinyl, furanyl, thiophenyl, isopyrrolyl, 2-isoimidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2-dithiolyl, 1,3-dithiolyl, 1,2,3-oxathiolyl, oxazolyl, thiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,3-oxathiolyl, 1,2-pyranyl, 1,2-pyranyl, 1,2-pyronyl, 1,4-pyronyl, pyridinyl, piperazinyl, s-triazinyl, v-triazinyl, 1,2,4-oxazinyl, 1,3,2-oxazinyl, 1,3,6-oxazinyl, 1,2,6-oxazinyl, 1,4-oxazinyl, 0-isoxazinyl, pisoxazinyl, 1,2,5-oxathiazinyl, 1,2,6-oxathiazinyl, 1,4,2-oxadiazinyl, 1,3,5,2-oxadiazinyl, morpholinyl, azepinyl, oxepinyl, thiepinyl and 1,2,4-diazepinyl

[0030] Examples of bicyclic heterocyclic moieties of Formula IIb include benzo[b]thienyl, isobenzofuranyl, chromenyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, peridinyl, isochromanyl, chromanyl, thieno[2,3-b]furanyl, 2H-furo[3,2-b]pyranyl, 5H-pyrido [2,3-d][1,2]oxazinyl, IH-pyrazolo[4,3-d]oxazolyl, 4H-imidazo[4,5-d]thiazolyl, pyrazino[2,3-d]pyridazinyl, imidazo[2,1-b] thiazolyl, cyclopenta[b]pyranyl, 4H-[1,3]oxathiolo-[5,4-b]pyrrolyl, thieno[2,3-b]furanyl, imidazo[1,2-b][1,2,4]triazinyl and 4H-1,3-dioxolo[4,5-d]imidazolyl.

[0031] The angiotensin II receptor antagonist compounds, as provided by the first-and-second-portion moieties of Formula I and II, are further characterized by an acidic moiety attached to either of said first-and-second-portion moieties. Preferably this acidic moiety is attached to the first-portion moiety of Formula I and is defined by Formula III:

wherein n is a number selected from zero through three, inclusive, and wherein A is an acidic group selected to contain at least one acidic hydrogen atom, and the amide, ester and salt derivatives of said acidic moieties; wherein U is a spacer group independently selected from one or more of alkyl, cycloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, aralkyl and heteroaryl having one or more ring atoms selected from oxygen, sulfur and nitrogen atoms.

[0032] The phrase "acidic group selected to contain at least one acidic hydrogen atom", as used to define the -UnA molety, is intended to embrace chemical groups which, when attached to any substitutable position of the Formula I-Ila/b moiety, confers acidic character to the compound of Formula I-IIa/b. "Acidic character" means proton-donor capability, that is, the capacity of the compound of Formula I-IIa/b to be a proton donor in the presence of a protonreceiving substance such as water. Typically, the acidic group should be selected to have proton-donor capability such that the product compound of Formula I-IIa/b has a pK_a in a range from about one to about twelve. More typically, the Formula I-IIa/b compound would have a pK_a in a range from about two to about seven. An example of an acidic group containing at least one acidic hydrogen atom is carboxyl group (-COOH). Where n is zero and A is -COOH, in the -UnA moiety, such carboxyl group would be attached directly to one of the Formula I-lla/b positions. The Formula I-lla/b compound may have one -UnA moiety attached at one of the Formula I-IIa/b positions, or may have a plurality of such -U_nA moieties attached at more than one of the Formula I-IIa/b positions. There are many examples of acidic groups other than carboxyl group, selectable to contain at least one acidic hydrogen atom. Such other acidic groups may be collectively referred to as "bioisosteres of carboxylic acid" or referred to as "acidic bioisosteres". Specific examples of such acidic bioisosteres are described hereinafter. Compounds of Formula I-IIa/b may have one or more acidic protons and, therefore, may have one or more pK_a values. It is preferred, however, that at least one of these pK_a values of the Formula I IIa/b compound as conferred by the -U_nA moiety be in a range from about two to about seven. The -U_nA moiety may be attached to one of the Formula I-IIa/b positions through any portion of the -U_nA moiety which results in

a Formula I-IIa/b compound being relatively stable and also having a labile or acidic proton to meet the foregoing pK_a criteria. For example, where the -U_nA acid moiety is tetrazole, the tetrazole is typically attached at the tetrazole ring carbon atom.

[0033] For any of the moieties embraced by Formula I and Formula II, such moieties may be substituted at any substitutable position by one or more radicals selected from hydrido, hydroxy, alkyl, alkenyl, alkynyl, aralkyl, hydroxyalkyl, haloalkyl, halo, oxo, alkoxy, aryloxy, aralkoxy, aralkylthio, alkoxyalkyl, cycloalkyl, cycloalkyl, aryl, aroyl, cycloalkenyl, cyano, cyanoamino, nitro, alkylcarbonyloxy, alkoxycarbonyloxy, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, carboxyl, mercapto, mercaptocarbonyl, alkylthio, arylthio, alkylthiocarbonyl, alkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, aralkylsulfinyl, aralkylsulfinyl, arylsulfinyl, arylsulfonyl, heteroaryl having one or more ring atoms selected from oxygen, sulfur and nitrogen atoms, and amino and amido radicals of the formula

$$\begin{array}{c} W \\ \parallel \\ -C-R^1 \end{array}, \begin{array}{c} -N \\ -R^2 \end{array} \qquad \text{and} \begin{array}{c} W \\ \parallel \\ -NC-R^4 \end{array}$$

wherein W is oxygen atom or sulfur atom; wherein each of R¹ through R⁵ is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, YR⁶ and

$$-N \stackrel{R^7}{\underset{R^8}{\swarrow}}$$

wherein Y is selected from oxygen atom and sulfur atom and R⁶ is selected from hydrido, alkyl, cycloalkyl, lalkyl, aralkyl and aryl; wherein each of R¹, R², R³, R⁴, R⁵, R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, cyano, hydroxyalkyl, haloalkyl, cycloalkyl, alkoxyalkyl, alkylcarbonyl, alkoxycarbonyl, carboxyl, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, haloalkylsulfinyl, haloalkylsulfonyl, aralkyl and aryl, and wherein each of R¹, R², R³, R⁴, R⁵, R⁷ and R⁸ is further independently selected from amino and amido radicals of the formula

$$-N$$
 R^{9}
 R^{10}
 R^{10}
 R^{11}
 R^{12}
 R^{12}
 R^{14}

wherein W is oxygen atom or sulfur atom;

10

15

25

30

35

40

45

50

55

wherein each of R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ is independently selected from hydrido, alkyl, cycloalkyl, cyano, hydroxyalkyl, cycloalkylalkyl, alkoxyalkyl, haloalkylsulfinyl, haloalkylsulfonyl, aralkyl and aryl, and wherein each of R² and R³ taken together and each of R⁴ and R⁵ taken together may form a heterocyclic group having five to seven ring members including the nitrogen atom of said amino or amido radical, which heterocyclic group may further contain one or more hetero atoms as ring members selected from oxygen, nitrogen and sulfur atoms and which heterocyclic group may be saturated or partially unsaturated; wherein each of R² and R³ taken together and each of R⁷ and R⁸ taken together may form an aromatic heterocyclic group having five ring members including the nitrogen atom of said amino or amido radical and which aromatic heterocyclic group may further contain one or more hetero atoms as ring atoms selected from oxygen, nitrogen and sulfur atoms; or a tautomer thereof or a pharmaceutically-acceptable sait thereof.

(0034) The combination therapy of the invention would be useful in treating a variety of circulatory disorders, including cardiovascular disorders, such as hypertension, congestive heart failure, myocardial fibrosis and cardiac hypertrophy. The combination therapy would also be useful with adjunctive therapies. For example, the combination therapy may be used in combination with other drugs, such as a diuretic, to aid in treatment of hypertension.

[0035] Table II, below, contains description of angiotensin II antagonist compounds which may be used in the combination therapy. Associated with each compound listed in Table II is a published patent document describing the chemical preparation of the angiotensin II antagonist compound as well as the biological properties of such compound. The content of each of these patent documents is incorporated herein by reference.

TABLE II: Angiotensin II Antagonists

20 25 26 27 28 29 20 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	5	Compound	#	Structure	Source
25 2 WO #91/17148 pub. 14 Nov 9 36 40 3 WO #91/17148 pub. 14 Nov 9		•		CH ₂	MO #91/17148 pub. 14 Mov 91
WO #91/17148 pub. 14 Nov 9 WO #91/17148 pub. 14 Nov 9 WO #91/17148 pub. 14 Nov 9	20				
3 WO #91/17148 pub. 14 Nov 9		2			WO #91/17148 pub. 14 Nov 91
3 WO #91/17148 pub. 14 Nov 9	35				·
		3		2 - d.	WO #91/17148 pub. 14 Nov 91
N	50				

5	Compound #	Structure	Source
10	4	Z-G-H ₂	WO =91/17148
20			
25		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
30	5		WO #91/17148 pub. 14 Nov 91
35		CHNSCF,	· ·
40			
45	6		WO'#91/17148 pub. 14 Nov 91
50		COLH	
55			

5	Compound #	Structure	Source
10 15	7	2; Z - H - Z - Z - Z - Z - Z - Z - Z - Z -	%O ≈ 31/17148 pub. 14 Nov 91
20			
25	. 8	CH ₂	WO #93/774/A
30			WO #91/17148 pub. 14 Nov 91
35		СОДН	
40			
45 50	9 c		WO #91/17148 pub. 14 Nov 91

5	Compound #	Structure	Source
10	20		WO =91/17148 pub. 14 Nov 91
20			
25	11	N N N N N N N N N N N N N N N N N N N	WO #91/1714p
30		P COM	WO #91/17148 pub. 14 Nov 91
35			
40			
45	12	N N N CH ₂	WO #91/17148 pub. 14 Nov 91
50		N- N	·
55			

		a: imgaoconomi 11 Ant.	agomists
5	Compound #	Structure	Source
10	13		NO #91/17148 Sub. 14 Nov 91
20			
25		CH4	
30	14		WO #91/17148 pub. 14 Nov 91
35			pub. 14 Nov 91
40			
45 50	15		WO ±91/17148 pub. 14 Nov 91
55			•

5	Compound #	Structure	Source
10	15	2-0-2- 2-4-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	70 =91/17148 Pub. 14 Nov 91
20		н	
25			·
<i>30</i>	17	GH ₂	WO #91/17148 pub. 14 Nov 91
35		, in the second	
40			
45	18	N N	WO #91/17148 Pub. 14 Nov 91
50		OH OH	
55			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	19		WO #91/17148 pub. 14 Nov 91
20			
25 30	20	C ₃ F ₇	WO #91/17148 pub. 14 Nov 91
35			
40			
45	21		WO #91/17148
50		H N N N N N N N N N N N N N N N N N N N	pub. 14 Nov 91

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	22		%C ≠91/17148 Sub. 14 Nov 91
20			
25 30	23	CH ₃ O	WO #91/17148 pub. 14 Nov 91
35		•	
40 45 50	24	OCH, OCH,	WO #91/17148 pub. 14 Nov 91

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	23	The state of the s	WO =91/17148 Pub. 14 Nov 91
20		N	
25	26		WO #01 10 TO . T
30			WO #91/17148 pub. 14 Nov 91
35			
40	27	N N N N N N N N N N N N N N N N N N N	
45	٤,	N. N	WO #91/17148 pub. 14 Nov 91
50		Ĥ	

TABLE II: Angiotensin II Antagonists

		Anglotensin II Antagonists			
5	Compound #	Structure	Source		
10 15	28		WO =91/17148 Pub. 14 Nov 91		
20					
25					
30	29		WO #91/17148 Pub. 14 Nov 91		
35					
40					
45	30		O #91/17148 ub. 14 Nov 91		
50					

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
10	31		%O #91/17148 pub. 14 Nov 91
20			
25 30 35	32		WO #91/17148 pub. 14 Nov 91
40		N N	
45	33	N—N	WO #91/17148 pub. 14 Nov 91
50		J., N	

5	Compound #	Structure	Source
10	34		WO #91/17148 Pub. 14 Nov 91
25	35	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WO #91/17148 Pub. 14 Nov 91
35			
40			
45	36	NH3 NN	WO #91/17148 Pub. 14 Nov 91
50			

		TABLE II: Anglotensin II Antag	gonists .
5	Compound #	Structure	Source
10	37		WO =3 -/17148
15			pub. 14 Nov 91
20			
25	38		WO =03 (00)
30			WO ≅91/17148 Pub. 14 Nov 91
35		The state of the s	
40			
45	39		WO #91/17148 Pub. 14 Nov 91
50 55			

		Anglotensin II Anta	gonists
5	Compound #	Structure	Source
10	40		WO #91/17148 pub. 14 Nov 91
20		н	
25	41	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·
30	41		WO #91/17148 pub. 14 Nov 91
35			
40			
45	42		WO #91/17148 Pub. 14 Nov 91
50			
<i>55</i>			

	_	Antagonists	
5	Compound #	Structure	Source
10 15	1 3		₩O #91/17148 Pub. 14 Nov 91
20		4	
25	44		
30			WO #91/17148 pub. 14 Nov 91
35			
40			
45	45	OH OH	₩0 #91/1714e
50			WO #91/17148 pub. 14 Nov 91
55		*	

		Angiotensin II Ant	agonists
5	Compound #	Structure	Source
10	46	HO	WO # 6 *
15			WC #91/17148 Pub. 14 Nov 91
20		н	
25	47	F	
30	••	N N N N	WO #91/17148 Pub. 14 Nov 91
35			
40			
45	48	F N N	WO #91/17148 pub. 14 Nov 91
50			
55		H	

	Compound #	Structure	Source
5 10	4 y	N II N	
15			WO =91/17148 pub. 14 Nov 91
25	50		•
30			WO #91/17148 pub. 14 Nov 91
40	51	¥ F. F. ∕≕	
45 50			WO #91/17148 pub. 14 Nov 91
5 5			

TABLE II: Angiotensin II Antagonists

		Secondari 11 Mil	agonists
5	Cómpound #	Structure	Source
10 15	52	A STATE OF THE STA	WO #91/17148 pub. 14 Nov 91
20			
25	53		
30			WO #91/17148 pub. 14 Nov 91
35		The state of the s	
40		,~	
45	54		WO #91/17148 pub. 14 Nov 91
50			

			maroceusiu I	I Antagonists
5	Compound #	,	Structure	Source
10	55			NO #91/17148 Pub. 14 Nov 91
20				
25	56	~~	A CONTRACTOR OF THE PARTY OF TH	
30				WO #91/17148 pub. 14 Nov 91
35				
40				
45 50	57			WO #91/17148 pub. 14 Nov 91
55				

			cagonists
5	Compound #	Structure	Source
10	58		WO #91/17148 pub. 14 Nov 91
20			
25			
30	59	N. N.	WO #91/17148 Pub. 14 Nov 91
35			
40			
45	60	F N N	WO #91/17148 pub. 14 Nov 91
50			74 MOV 91
5 5			

TABLE II: Angiotensin II Antagonists

		TABLE II: Angiotensin II Ant	agonists
5	Compound #	Structure	Source
10	61		WO ======
15			WO #11/17148 pub. 14 Nov 91
20		H H	
25	62		
30			WO #91/17148 pub. 14 Nov 91
35			
40			
45	63	OH OH	WO #91/17148 Pub. 14 Nov 91
50			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15 20	64	HO NAME OF THE PARTY OF THE PAR	%0 #91/17148 pub. 14 Nov 91
25 30 35	65		WO #91/17148 Pub. 14 Nov 91
40			
45 50	6€		WO #91/17148 pub. 14 Nov 91
		H	

5	Compound #	Structure	Source
10 15 20	67	×	WO #91/17148 pub. 14 Nov 91
25 30 35	68		WO #91/17148 pub. 14 Nov 91
40 45	69	C ₂ F ₄	WO ≑91/1714 8
50 55			WO #91/17148 pub. 14 Nov 91

		The state of t	gonists :
_	Compound #	Structure	Source
5 10	70	C ₃ F ₇ (n)	%O ∉91/17148 pub. 14 Nov 91
20			·
25	71	NH2 NH2	
30		CH,	WO #91/17148 Pub. 14 Nov 91
35		N. N	
40	~~		
45	72	CH ₃	WO #91/17148 pub. 14 Nov 91
50 55			
		**	

	_	Antagonists	
5	Compound #	Structure	Source
10	73	CH ₂	WO #91/140
15			NO ≠91/17148 Pub. 14 Nov 91
20		н	
25	74		
30		Corr.	WO #91/17148 Pub. 14 Nov 91
35		H N N N N N N N N N N N N N N N N N N N	
40			
45	75	V N CH2	WO #91/17148 Pub. 14 Nov 91
50	·	COTH	
55			· .

TABLE II: Angiotensin II Antagonists

	Antagonists			
5	Compound #	Structure	Source	
10	76	CH2 NN	WO =91/17148 pub. 14 Nov 91	
15		COSH	9404 Nov 31	
20				
25	77 .	N. W.	WO #91/17148 Pub. 14 Nov 91	
30		CH.	Pub. 14 Nov 91	
35		CO³H		
40				

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10		N-N	
15	78	TO COL	WO #91/18888 Pub.
20			
25	79	N-N-N-H	WO #91/18888 Pub.
30			<u>. — .</u>
35			
40	80		WO #91/18888 Pub.
45			
50		~	

5	Compound #	Structure	Source
10		N-N Ph	
15	81	N- N- H	₩0 #91/18888 ₽ ਘ b.
20 25	82	N ² N	
30			WO #91/18888 pub.
35		New New N	
40	83	N-N-OCH	WO #91/18888 pub.
45 50			

TABLE II: Angiotensin II Antagonists

		Imglocensin il Antagonists		
5	Compound #	Structure	Source	
10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
15	84	N-N-H	WO #91/18888 pub.	
20		() " " " " " " " " " " " " " " " " " " "		
25	85	N-N-O	WO #91/18888	
30			pub.	
35		OT "A		
40	86	CH ₂	WO #91/18888 Pub.	
45		No. W.	,	
50				

			ogonia ca
5	# bnuagmoD	Structure	Source
10		N- M- CO ₂ M	
15	87	CH2	₩O #91/18888 pub.
20 25		O NªN	
30	88		WO #91/18888 pub.
35	•		
40	89	N-N	WO #91/18888 Pub.
45		CH ₂	pub.
50		N-N-H	
55		9	

TABLE II: Angiotensin II Antagonists

		II. Anglotensin II Antag	Jonists
5	Compound #	Structure	Source
10		N I O	
15	90		WO #91/18888 Pub.
20		(C) *"	
25	91	N-N-CH2 CO2H	WO #91/18888 pub.
30			pub.
35		N-N-N	
40	92	N-N-	WO #91/18888 Pub.
45			
50		O No.	

5	Compound #	Structure	Source
10		N-N-0-91	
15	93	CH ²	WO ≑91/18888 pub.
20			
25	94 .	└ -₽1	
<i>30</i>		OH, OO	WO #91/18888 pub.
35		N-N-H N-N-H	
40		•	
	95	0	
45		CH2	WO #91/18888 pub.
50			
55			

5	Compound	#	TABLE II:	Structure	Source
10				N-N-	
15		96	~	CH ₂	. WO #91/18888 pub.
20				N. N.	
25		97	~	N-N-O-Ph	WO #91/18888 pub.
30					
35					·
40		98		II-N QIMO	WO #91/18888 pub.
45			~	CH _B	
50			·		
<i>55</i>					

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10		~/,100	
15	99		WO #91/18888 pub.
20			
25	100	CH2 CO2CH3	WO #91/18888 pub.
30			pub.
35		•	
40	101	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	₩O #91/18888 pub.
45			
50		O *	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	102	CH2	
15		CH2 N-K ^H	WO #91/18888 pub.
20		O "	
25	103	CH3 CO3H	WO #91/18888 pub.
30			
35			
40	104	Chy Chy	WO #91/18888 pub.
45			
50		(
	•		

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	105		WO #91/18888 Pub.
20			
25 30	106		WO #91/18888 pub.
35		0 0 0	
40	107	N-N CO ₂ EI	WO #91/18888 pub.
45		N-N-H	
50		O N-in	

	TAB		Source
	Compound #	Structure	502200
5			
10	108	Соэн	WO #91/19715 pub. 36 Dec 91
JF			
20		·	
25		N N N	
30	109	он созн	WO #91/19715 pub. 26 Dec 91
35			
40			
45	110	N N N	₩O #91/19715 pub. 26 Dec 91
50		N=N N=N	pub. 26 Dec 91
55			

	Compound #	Structure	Source
5		он	
10	111	OH N=N	WO #91/19715 pub. 26 Dec 91
20			
25	112	OC ₂ H ₅	WO #91/19715 pub. 26 Dec 91
30		OC2HS NEW WH	pas. 26 Dec 91
35		•	
40	113	N N	
45		n-butyl OH	WO #91/19715 Pub. 26 Dec 91
50		n'n'n	
55		n	

	TABLE 11		Source
	Compound #	Structure	Source
5	•		
10	114	nC4H9 N C2N	WO #91/19715 pub. 26 Dec 91
20	[N-N N-N	
25		N H	
30	115	nc,H9 OR	WO #91/19715 pub. 26 Dec 91
35		H N N N N N N N N N N N N N N N N N N N	
40		ю	
45	116	п-с,н, — й	WO #91/19715 pub. 26 Dec 91
50		N.'N	·
55		N-N	

	Compound #	Structure	Source
5			
10	117	nC ₄ H ₉ N N N	
15			WO #91/19715 pub. 26 Dec 91
20		N-N N,N	
25		. 0	
30	118	nc, H, N N N	WO #91/19715 pub. 26 Dec 91
35			
40		N-N	
45	119	иС*н° — и — и О-С-Сн (Сн²) ³ О	WO #91/19715
50		OH	pub. 26 Dec 91
55		N-N	

TABLE II: Angiotensin II Antagonists

	Compound #	TABLE II:	Structure	Source
5			Ŷ-Ç - ⟨	
10		120	nC, H, OH	₩O #91/19715
15			N.N.	WO ∰91/19715 pub. 26 Dec 91
20			й. и	
25		121	nC ₄ H ₉ -(N N N N N N N N N N N N N N N N N N N	WO 491/14715
30			N.W	WO #91/19715 pub. 26 Dec 91
35			ห้-ห	
40		122	UC'H' - N N N N N N N N N N N N N N N N N N	WO #91/19715
45		۳	OH	pub. 26 Dec 91
50		L	n-n n'n	

5	Compound #	Structure	Source
10 15 20	123	N-N NC4H9 - N OHC-C (CH1);	₩O #91/19715 pub. 26 Dec 91
25 30 35	124	UC'H' OH OH OCC-CH3-C*F2	WO #91/19715 pub. 26 Dec 91
40	•		
45 50	125	DC4H3 O-C-CH3	₩O #91/19715 pub. 26 Dec 91
55		й-и Д.й	

			TABLE II	I:	Structure	Source
5	Compound	#			5024544-3	
10				\	N=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
15		12	26		CO ² H	WO #92/05161 pub. 2 Apr 92
20						
25				/	NAN	
30		1	27		CH ₂	WO #92/05161 pub. 2 Apr 92
35					CO ₂ H	
40				_	N=N N=N	
45		1	L28		N-M	WO #92/05161 pub. 2 Apr 92
50					H H	
55						

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	129	N N N N N N N N N N N N N N N N N N N	WO #92/05161 pub. 2 Apr 92
20			
25	<u> </u>	N= N= N	
30	130		WO #92/05161 pub. 2 Apr 92
35		H-H	
40		N=	
45	131	CH ₂	WO #92/05161 pub. 2 Apr 92
50		N-W N-W	

5	Compound #	Structure	Source
10 15	132	H N-N N-N	WO ±92/07834 pub. 14 May 92
25 30		N CE1	
35	133	N N N N N N N N N N N N N N N N N N N	WO #92/07834 pub. 14 May 92
40			
45	134	CH ³	₩O #92/07834 pub. 14 May 92
50		H H N-N	
55			

	Compound # .	Structure	Source
5			
10			
15	135	V _N → oc1	WO #92/07834 pub. 14 May 92
20		H.N.	
25			
30	136	N O	
35		H H N - N N - N N - N N - N N N N N N N	WO #92/07834 pub. 14 May 92
40		k k	
45		N CH2	
50	137	N-N N-N	WO #92/07834 pub. 14 May 92
55		A. W.	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	138	N-M	WO #92/07834 pub. 14 May 92
20		H N N N	
25		и	
30	139	M HO O	WO #92/11255 pub. 9 Jul 92
35			
40			
45	140	M-N-N-N	WO #92/11255 pub. 9 Jul 92
50			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	:41	N N N N N N N N N N N N N N N N N N N	WO #92/11255 pub. 3 Jul 921
20			
25 30	142		WO #92/11255 pub. 9 Jul 92
35		MA MAN MAN MAN MAN MAN MAN MAN MAN MAN M	
40	. 143	C1 C1	WO #92/11255 pub. 9 Jul 92
45			
50			

	Compound	#	Structure	Source
5				
10		144	N N N N N N N N N N N N N N N N N N N	₩O =92/11255 pub. 9 Jul 92
. 15			CF3	
20				
25		145	HN N- N	WO #92/11255 pub. 9 Jul 92
30			NO2	
35		146	N-T	
40			HN N N N	WO #92/11255 pub. 9 Jul 92
45			F)=>>	
50				
55				

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	1 47	C4H; — (TC1 HO)	₩O #92/15577 pub. 17 Sep 92
20			
25 30	148	nC4H9—NC1	WO #92/15555
<i>30</i> 35		№ Созн	WO #92/15577 pub. 17 Sep 92
40			
45 50	149	C4H ² CO ² H	WO #92/15577 pub. 17 Sep 92
		~	

5	Compound #	Structure	Source
10 15 20	150	H N CH ² N	WO #92/16523 pub. 1 Oct 92
25			
30	151	CH ⁵	
35		Ä, N-Ä	WO #92/16523 pub. 1 Oct 92
40			
45		N=\N\N\CH2	
50	152	N-H	WO #92/16523 pub. 1 Oct 92
55		A A	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15 20	153	N= N-N N-N N-N N-N N-N	WO #92/16523 pub. 1 Oct 92
25		N=	
30	154	CH ₂	tin # 44
35		N-N	WO #92/16523 pub. 1 Oct 92
40		N	
45		CH ₂	
50	155	N-N N-N N-N	WO #92/16523 pub. 1 Oct 92

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
15	156	N-N	WO #92/16523 Pub. 1 Oct 92
20		H N N N N N N N N N N N N N N N N N N N	
25		N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	
30	157	N-W	WO #92/16523 Pub. 1 Oct 92
35		H N	
40		N= N C1	
45	158	CH ₂	
50		H N-N	WO #92/16523 pub. 1 Oct 92

5	Compound #	Structure	Source
10 15	159	M-M CH ³ OH OH OH OH OH OH OH OH OH O	₩O #92/16523 pub. 1 Oct 92
25 30 35	160	H N-ii N-ii	WO #92/16523 pub. 1 Oct 92
45 50 55	161	N N N N N N N N N N N N N N N N N N N	WO #92/16523 pub. 1 Oct 92

5	Compound #	Structure	Source
10 15 20	. 162	N CH2 N-N N-N N-N N-N N-N N N N N N	WO ≑92/16523 pub. 1 Oct 92
25 30 35	163	N CH2 CH2 N - H N - H N - H N - H	WO #92/16523 pub. 1 Oct 92
40 45 50	164	F F F CH ₂ N N N N N N N N N N N N N N N N N N N	WO #92/16523 pub. 1 Oct 92
55			

5	Compound #	Structure	Source
10	165	N=N N N-N N-N	₩O =92/16523 pub. 1 Oct 92
20		N N	
25		N=FF	
30	166	N N N	WO #92/16523 pub. 1 Oct 92
35		N.N N-N	
40		F_F	
45	167	N N N CE2	WO #92/16523 pub. 1 Oct 92
50 55		N-N N-N	
33		- п	

	TABLE II.		Source
	Compound #	Structure	
5 10 15	168	N=V N=V N-N N-N N-N	WO #92/16523 pub. 1 Oct 92
20		F, F	
25 30	169	N CH ₂	WO #92/16523 pub. 1 Oct 92
35 40		H N-W N-W	
45		N= F	
50	170	CH ₂ N-N N-N N-N	WO #92/16523 pub. 1 Oct 92
55		M. H.	

5	Compound #	Structure	Source
10	171	N=\N C(CH ₁);	
15 20	•/•	H.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N	WO #92/16523 pub. 1 Oct 92
25		Ö CH,	
<i>30</i>		N H H	
35	172	H N-W	WO #92/16523 pub. 1 Oct 92
40		9	
45		N N H CH2	
50 55	173	N-H N-H	WO #92/16523 pub. 1 Oct 92

	Compound #	Structure	Source
5			
10	174	N OCH;	
15		N-#	WO #92/16523 pub. 1 Oct 92
20		N N	
25	_	N OCH;	
30	175	CH ₂	WO #92/16523 pub. 1 Oct 92
35	·	H N-H	
40		,oc₁H²	
45	176	N=CE2	
50		H N-H N-H	WO #92/16523 pub. 1 Oct 92
55		H H	

TABLE II: Angictensin II Antagonists

5	Compound #	Structure	Source
10	177	CC; H- OC; H- OC; H- N-N N-N N-N N-N N-N N-N N N-N N N-N N N-N N N N N N N N N N N N N N N N N N N N	WO #92/16523 pub. 1 Oct 92
25		N=\ OCH(CH ₃);	·
30	178	CR ₂	
35		N-W	WO #92/16523 pub. 1 Oct 92
40		N=CHO	
45		CH2	
50	179	H N N N N N N N N N N N N N N N N N N N	WO #92/16523 pub. 1 Oct 92

	Compound #	Structure	Source
5 10 15	180	N N N N N N N N N N N N N N N N N N N	WO #92/16523 pub. 1 Oct 92
20		CH;	
25		N=CH3	
30 35	181	CH ₂ N-N N-N N-N H	WO #92/16523 pub. 1 Oct 92
40		CH1O OCH1	
45 50	182	CH ³	WO #92/16523 pub. 1 Oct 92
55		N-W H	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15	183	N N N N N N N N N N N N N N N N N N N	₩O #92/16523 pub. 1 Oct 92
25	·	N N N	
30	184	n n-ři	WO #92/16523 pub. 1 Oct 92
35		H N N	,
40			
45	185	CH ₂	WO #92/17469 pub. 15 Oct 92
50		H N-W	pub. 15 OCE 92

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
10 15	786	H H H H H H H H H H H H H H H H H H H	%O ≑92/17469 pub. 15 Oct 92
20			
25		√ N O O O O O O O O O O O O O O O O O O	
30	187		WO #92/17469 pub. 15 Oct 92
35		H	
40			
45	188	CH ₂	W∩ ±02/17464
50		H N N N N N N N N N N N N N N N N N N N	WO #92/17469 pub. 15 Oct 92

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15	189	N-W"N N-W"N	WO #92/17469 pub. I5 Oct 92
25 30 35	190	N-CH ² N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	WO #92/17469 pub. 15 Oct 92
40 45 50	191	CH ₂	WO #92/17469 pub. 15 Oct 92

55

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
5			Source
10	192	N-W N-W N-W	WO #92/17469 9ub. 15 Oct 92
20		н	
25 30	193	N-H2 N-H2 N-H2 N-H2 N-H2 N-H2 N-H2 N-H2	WO #92/17469 Pub. 15 Oct 92
35		н	
40		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
45	194	N-W	WO #92/17469 pub. 15 Oct 92
50		N N	

5	Compound #	Structure	Source
10	195	N CH2	WO #92/17469 pub. 15 Oct 92
20		N-W N-W	
25			
30	196	N CH ₂	WO #92/17469 pub. 15 Oct 92
35		H N-W	P. 13 OCE 92
40			
45		N CH2	
50	197	N. N	WO #92/17469 pub. 15 Oct 92
55			

5	Compound #	Structure	Source
10	198	No CE3	.WO #92/17469 pub. 15 Oct 92
25			
30 35	199	H CH3	WO #92/17469 pub. 15 Oct 92
40			
45		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
50	200	N-N N-N	WO #92/17469 pub. 15 Oct 92
55		Ĥ	

		Anglotensin II Ant	agonists
5	Compound #	Structure	Source
10			
15	201	N N-N	₩0 #92/17469 Pub. 15 Oct 92
20		N-W	
25		_	
30	202	CH ₂	WO #92/17469 Pub. 15 Oct 92
35		N N N N N N N N N N N N N N N N N N N	Pub. 15 Oct 92
40			
45		O N O O	
50	203	N-W N-W	WO #92/17469 pub. 15 Oct 92
55		L, h, ,,	

5	Cempound #	Structure	Source
10 15 20	204	N O CH2	WO ≢92/17469 pub. 15 Oct 92
<i>30 35</i>	205	N-H ² CH ² N-H ²	WO #92/17469 pub. 15 Oct 92
40		H N N	
45	206	W CE3	WO #92/17469 pub. 15 Oct 92
50 55		N-N N-N	pub. 15 Oct 92

TABLE II: Anglotensin II Antagonists

5	Compound #	Structure	Source
10 15 20	207	N N C H2	WO #92/17469 9ub. 15 Oct 92
20		# # # # # # # # # # # # # # # # # # #	
25			
30	208	CH ₂	WO #92/17469 .
35		H-W-H	WO #92/17469 Pub. 15 Oct 92
40			·
45		N O CH ₁	
50	209	N - M	WO #92/17469 Pub. 15 Oct 92

		glotensin il Antag	chists .
5	Compound #	Structure	Source
10	210	CH ³ O	
15			WO ≠92/17469 pub. 15 Oct 92
20		H N-W N-W	
25			
30	211	N CH2	WO #92/17469
35		N-N N-N	pub. 15 Oct 92
40			
45		N CH ₃	
50	212 	M.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N	WO #92/17469 pub. 15 Oct \$2
55			

		as ar. Anglocensin II A	ntagonists
5	Compound #	Structure	Source
10	213		
15	213	N O	₩0 ∰92/17469 pub. 15 Oct 92
20		# N N - N N - N N - N N - N N - N N - N N N - N N N - N	
25		~	
30	214	CH ₃	₩0 #92/17 46 9 pub. 15 Oct 92
35		H, N-W,	pub. 15 Oct 92
40		•	
45	215	VN O	WD 507 (2500)
50 55		N-N N-N N	WO #92/17469 pub. 15 Oct 92

5	Compound #	Structure	Source
10 15	216	CH ₂	WO #92/17469 pub. 15 Oct 92
25			
30	217	CH ₂	WO #92/17469 pub. 15 Oct 92
35		N-W	pub. 15 Oct 92
40			
45		CH3 OCH3	
50	218	N N-Ñ	WO #92/17469 pub. 15 Oct 92
55		A A	

	Compound	#	Structure	Source
5				
10				
15		219	CH ₂	WO #92/17469 pub. 15 Oct 92
20			H N N	
25			FN	
30	2	20	MY OF	WO #92/17464
35	·		N-N N-N	WO #92/17469 pub. 15 Oct 92
40			CI	
45			V CEL CI	
50	22	1	N-Ñ	WO #92/17469 pub. 15 Oct 92
55			H	

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
5			
10	222	CH2	WO =92/17469
15		N-W	pub. 15 Oct 92
20		A h	
25		N CHI'S	
30	223	N-N N-N	WO #92/17469 pub. 15 Oct 92
35		H, H	
40		CH ³	
45	224	N-W	WO #92/17469 pub. 15 Oct 92
50		H N N	

TABLE II: Angiotensin II Antagonists

			migrocensin i	Antagoniacs
5	Compound #		Structure	Source
10	225	~	N O CH2	
15			N H N-N	₩0 ±92/17469 pub. 15 Oct 92
20				
25	226	<u>~</u>	N CH2	
30	220		м. и и-й	WO #92/17469 pub. 15 Oct 92
35				
40	227	~	N CH2	WO #92/17469 pub. 15 Oct 92
45			N-W N-W	pub. 15 Oct 92
50				

		and the second s	
5	Compound #	Structure	Source
10			
15	228	CH ₂	
20		N-N N-N	
25		Y	
<i>30</i>	229	CH ²	
35		N N N N N N N N N N N N N N N N N N N	
40		H ₃ CO	
45	230	CH2 O OCH1	
50			
55		H. W. W	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15	231	N CH2	
20		N-W N-W	
25		~ i	
30	232	CB ₂	
35		M. M. M. M.	
40		\ak	
45	233	VI CH2	
50		н и. и и. и	

5	Compound #	Structure	Source
10	. 234		
15		CH ₂	
20		N-W N-W N-W	
25		4	
<i>30</i>	235	CH2	
35		N- N	
40			
45	236	CH ³	
50		N-W N-W	
55		H	

		BLE II: Angiotensin II Ant	agonists
5	Compound #	Structure	Source
10		N N N N N N N N N N N N N N N N N N N	
15	237	M. M	
20		N. N	
25			
30	238	CH ₂	
35		h h h h	
40	•	н	
45		N-H2	
50 55	239	н и-й и	WO #92/18092 Pub. 29 Oct 92

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15	240	N.N. CH2 CH2 CO2H	WO #92/18092 pub. 29 Oct 92
20			
25	241	M.M.	WD #92/18092
30		N-M N-M	pub. 29 Oct 92
35		H N	
40		N.N.	
45	242	M-M CH ³	WO #92/18092 pub. 29 Oct 92
50			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	243	CH ²	
15 20		N-W N-W	₩O #92/18092 pub. 29 Oct 92
25		N-N N-N CH ₂	
30	244	N-W N-W	WO #92/18092 pub. 29 Oct 92
35		N H	
40 45		N N N CH2	
50	245	H N-Ñ	WO #92/18092 pub. 29 Oct 92

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	246	CH2 N-H2 N-H2 N-H2 N-H2 N-H2 N-H2 N-H2 N-	WO #92/18092 pub. 29 Oct 92
25 30	247	N N N N CH ₂	
35	247	H N N N N N N N N N N N N N N N N N N N	WO #92/18092 pub. 29 Oct 92
40		F F CH ₂	
45	248	H N-W N	WO #92/18092 pub. 29 Oct 92

5	Compound #	Structure	Source
10 15	249	M N N N N N N N N N N N N N N N N N N N	₩O #92/18092 Pub. 29 Oct 92
25 30 35	2 5 0	CH ₂ N-N N-N N-N N N N N N N N N	₩O #92/18092 pub. 29 Oct 92
40		N———	
45 50	251	M-H M-H	WO #92/18092 pub. 29 Oct 92
<i>55</i>		H. IN	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15 20	252	N N N N N N N N N N N N N N N N N N N	₩O #92/18092 pub. 29 Oct 92
25		N-W-	
30 35	253	N-H2	WO #92/18092 pub. 29 Oct 92
40		n—	
4 5		CH2	
50	254	N-N N-N	WO #92/18092 pub. 29 Oct 92

5	Compound # -	Structure	Source
10 15	255	CH ² CH	₩O #92/18092 _pub. 29 Oct 92
25 30 35	256	(CH ³) ² C N CH ³	WO #92/18092 pub. 29 O⊂t 92
40	•	N CH,	
45 50	257	H H H	WO #92/18092 pub. 29 Oct 92

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	258	Hard Market Mark	₩O ÷92/18092 pub. 29 Oct 92
25 30	259	N.N.	
35		H N-M N-M	₩O #92/18092 pub. 29 Oct 92
40		N N	
45		N-W	
50	260	N N	WO #92/18092 pub. 29 Oct 92

		II: Anglocensin II /	Antagonists
5	Compound #	Structure	Source
10	261	N CH ₂	
15		CH ₂	WO ∉92/18092 Pub. 29 Oct 92
20		H N-W N-W	
25		ÇH ₂ N	
30	262	CH ₂	₩O #92/18092 Pub. 29 Oct 92
35		N. N	
40			
45	262	CH2 N CH(CH3):	
50	263	H, W, W	WO #92/18092 pub. 29 Oct 92
<i>55</i>		- **	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	
			Source
10	264	CH ²) ² HC N-N N-N N-N H	WO #92/18092 pup. 29 Oct 92
20			
25	· .	CH3 OCH	
30			
	265	N N N N N N N N N N N N N N N N N N N	
35		N N N N N N N N N N N N N N N N N N N	₩О #92/18092 рир. 29 Ост 92
40		OCH3 N	
4 5	266	N CHI	WO #92/18092 pub. 29 Oct 92

104

		Angiote.sin II	Antagonists
5	Compound #	Structure	Source
10	267	N C1	WO =92/18092 pub. 29 Oct 92
20		N-W N-W	
25		ėı N—	
30	268	N N CH ₂	WO #92/18092 pub. 29 Oct 92
35		N-W N-W	·
40			
45	269	N.W. E	WO #92/18092 Pub. 29 Oct 92
50		N-W	
55		H	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	270	FCH2 N-H2 N-H2 N-H2 N-H2 N-H2 N-H2 N-H2 N-	WO #92/18092 pub. 29 Oct 92
25 30	271	N-W N-W	PCT/US95/02156 filed 8 Mar 94
40 45	272	N. T.	PCT/IIS94/02186
50		n.n n-ñ	PCT/US94/02156 filed 8 Mar 94

		ingrotensin il An	tagonists
5	Compound #	Structure	Source
10	273	CH2 SCH3	PCT/US94/02156 filed 8 Mar 94
20		# N- N	riled 8 Mar 94
25		H ₃ C	
30 ·	274	N C1	PCT/US94/02156 filed 8 Mar 94
35		й-и	
40		H N N	
45	27 5		DCD (trans
50		N-N	PCT/US94/02156 filed 8 Mar 94
5 5		N.W.	

5	Compound #	Structure	Source
10 15	276	N-N CH2	PCT/US94/02156 filed 8 Mar 94
25 30 35	277	N-W	PCT/US94/02156 filed 8 Mar 94
40 45	278	N CEE 2	PCT/US94/02156 filed 8 Mar 94
50 55		N-H N-H N-H	

TABLE II: Angiotensin II Antagonists

			Angrotensin	11 Antagonists
5	Compound #		Structure	Source
10	279	\		
15			, in ,	PCT/US94/02156 filed 8 Mar 94
20			N.W. W.W.	
25				
30	280	~~		WO #81 /172 40
35			COAN	WO #91/17148 pub. 14 Nov 91
40		Į.		

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	281	CH OH	EP =475,306 pub. 18 Mar 92
20 25	282	HE NAME OF THE PARTY OF THE PAR	WO #93/18035 pub. 16 Sep 93
<i>30</i>	283	H,C HN-N	₩O ±93/17628 pub. 16 Sep 93
40	284	HO HM — M	WO #93/17681 pub. 16 Sep 93
45		HC N	pub. 16 Sep 93
50			
55			

TABLE II: Angiotensin II Antagonists

		Jees and an Amengo	117262
5	Compound #	Structure	Source
10	285	NO OH	EP +513,533
15		₩, œ, ĸ	pub. 13 Nov 92
20 25		н,с он	
30	286	MV.—WM	EP #535.463 Pub. 07 Apr 93
35			·
40	287	H,C CH,	FD 4545
45			EP #535.465 Pub. 07 Apr 93
50		N-WH	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15 20	286	H,C OH	EP #539,713 pub. 05 May 93
25 30	289	H,c O O N = N	EP #542,059 pub. 19 May 93
40 45 50	290	H,C COOCH	EP #05 557,843 pub. 01 Sep 93

TABLE II: Angiotensin II Antagonists

	Anglotensin II Antagonists				
5	Compound #	Structure	Source		
10	291	H,C	L		
15 20		He	t 2P #363,705 pub.)6 Oct 93		
20	292				
25	232		EP #562.261 pub. 29 Sep 93		
30		CH,			
35	н,с	ON ON			
40	293		EP #05 557,843 pub. 15 Sep 93		
45		HN			
50					

TABLE II: Angiotensin II Antagonists

5	Compound	# Structure	Source
10	294	HC N H	
15 20		OM CR.	EP #560,163 pub. 15 Sep 93
25	295	He N N N N N N N N N N N N N N N N N N N	EP #564, 788 pub. 13 oct 93
30		O COL	pub. 13 Oct 93
35			
40	296	OH	
45		н,с	EP #563,986 pub. 20 Oct 93
50			

TABLE II: Angiotensin II Antagonists

5	Compound	#	Structure	Source
10			GH.	
15	297		L N. C. C.	
20				
25	298			EP #0.569,794 pub. 18 Nov 93
30			/=/NH	pub. 18 Nov 93
35				
40		H,C N	ОН	
45	299		OH OH	EP #0,578,002 pub. 12 Jan 94
50			Ċ °	

TABLE II: Angiotensin II Antagonists

Compound # Structure Source

TABLE II: Angiotensin II Antagonists

5	Compound	Structure	Source
10		CH, CH,	
15	303	но	EP #502.314 pub. 09 Sep 92
20			
25			
30	304	NO N	EP #468,740 pub. 29 Jan 92
35		OH	
40		H, CO	
45	305	Соон	EP #470,543 Pub. 12 Feb 92
50			

TABLE II: Angiotensin II Antagonists

5	Compound	Structure	Source
10	306	H ₁ C HDN	EP #502.314 pub. 09 Sep 92
<i>20</i>	307	N HC OH	EP #529,253 pub. 03 Mar 93
30			
35	308		EP =543.263 pub. 26 May 93
45	309	OH OH	
50			EP #552,765 pub. 28 Jul 93

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
5		N CIK	
10	310	K,C N	
15			EP #555,825 pub. 18 Aug 93
20		о́к	
25	311	CH, HN-N	
30	H,C		EP #556,789 pub. 25 Aug 93
35		қ ç	•
40	312 ×		EP #560 220
45			EP #560,330 pub. 15 Sep 93
50		rov-	}

TABLE II: Angiotensin II Antagonists

	Anglotensin II Antagonists				
5	Compound #	Structure	Source		
10	316	o-Be OH NEW NH	EP =253.310 pub. 20 Jan 88		
20		No. of Fr.			
25	317	COOH N=N	EP #324,377 pub. 19 Jul 89		
30					
35	318	C C C C C C C C C C C C C C C C C C C	US #5,043,349		
40		CIL	issued 27 Aug 91		
45		N = N			
50	319		WO #91/00281 Pub. 10 Jan 91		
55		a, a,			

TABLE II: Angiotensin II Antagonists

		TABLE II: Anglotensin II Antagoni	
	Compound #	Structure	Source
5		HC O Y Y CH	
10	320	To our	US #5,015,651 pub. 14 May 91
15			
20	321	(n)H ₇ C ₃ - N - CH ₂	
25			
<i>30</i>	322	HO	₩O #92/00 97 7
35		H,c' N	pub. 23 Jan 92
40		N	
4 5	323	CO ₂ H N N N N N N N N N N N N N N N N N N N	
50		N C4H4(U)	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	324	H,C N N N N N N N N N N N N N N N N N N N	WO #93/04046 pub. 04 Mar 93
20		, = N	
25	325	pub.	WO #93/10106 27 May 93
30			
35	÷		
40	326	,	US #5,219,856 pub. 15 Jun 93
45		H,C RN	pub. 25 Jun 93
50			

TABLE II: Angiotensin II Antagonists

		TABLE II:	Aligi De Cinoza	_	
	Compound #		Structure	S [,]	ource
5	Compound #				
10 15	327	H,C	OH OH	N=X	US #5,260,325 pub. 09 Nov 93
20			,a		
25	328	қс~~~	NH NH	OH.	US #5,264,581 pub. 23 Nov 93
<i>30</i> <i>35</i>					yan. 10 1104 33
40		ل			
45	329	цс		5	EP #400,974 pub. 05 Dec 90
50					

TABLE II: Angiotensin II Antagonists

		TABLE 11: Angrotomen	
5	Compound #	Structure	Source
10		H,C CH,	
15	330		ED #411 766
20		N N N N N N N N N N N N N N N N N N N	EP #411,766 pub. 06 Feb 91
25			
30		н,с Д	
35	331	NR.	EP #412,594 pub. 13 Feb 91
40		2—R	
45		H'c N=X	FD #419 NAR
50	332		EP #419,048 pub. 27 Mar 91

TABLE II: Angiotensin II Antagonists

		. JRDEN 11grovens	
	Compound #	Structure	Source
5		0	
10	333	HC N N N N N N N N N N N N N N N N N N N	WO #91/12,001 pub. 22 Aug 91
15		cst,	pas. 22 Aug 91
20		K'C N CH'	
		→ ° → °×	
25	334		WO #91/11,999 pub. 22 Aug 91
		He H	
30		a	
35	335	H,C OH	WO ≠91/11,909 pub. 22 Aug 91
40			Pan. 22 Adg 91
45	336	ST. S.C.	WO #91/12,002 pub. 22 Aug 91
50			pub. 22 Aug 91
		OH	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	340	H,C NH	EP =456 510
¹⁵	3.0		EP =456,510 pub. 13 Nov 91
25		H'C N N N N N N N N N N N N N N N N N N N	
30	341	KO SOOH	EP #467,715 pub. 22 Jan 92
35		OR NEEDN	
40			Ħ
45	342	H,c	us #5,087,702 pub.: 11 Feb 92
50			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	343	H'C O NH	EP #479,479 pub. 08 Apr 92
25 30	344	(n)H ₉ C ₄ ·C-N-CH ₂	
35			
40	345	N N N N N N N N N N N N N N N N N N N	TD 4404
45		N CEL	EP #481,614 pub. 22 Apr 92
50			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	346	OR CH,	EP #490,587 pub. 17 Jun 92
20	·	CEL CEL	
25	347		US #5,128,327 pub. 07 Jul 92
30		N N N N N N N N N N N N N N N N N N N	pub. 07 Jul 92
35		R.C. N. CR.	
40	348		US #5,132.216 Pub. 21 Jul 92
45			
50		N-MH	

TABLE II: Angiotensin II Antagonists

		TABLE II. ANGIOCCHEIN II IMCOGO	
5	Compound #	Structure	Source
10	349	R _i c N	
15	349		EP #497,516 pub. 05 Aug 92
20		J.,	
25	350		
30		אי-א"	EP #502,725 pub. 09 Sep 92
35	-		
40		NOW AND ADDRESS OF THE PARTY OF	
45	351		EP #502,575 pub. 09 Sep 92
50			
55		He	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15	352	CH, CH,	EP #503,838 pub. 16 Sep 92
20		1 1 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
25 30	353	H,C OH,	EP #505,111 pub. 23 Sep 92
35		NH	
40		CH, ON	
45	354	NOW SECOND SECON	EP #505,098 pub. 23 Sep 92
50			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	355	HC KC	EP =507,594 Pub. 07 Oct 92
15 20			Pub. 07 Oct 92
25		H,C N CH,	
30	356		EP #508,723 pub. 14 Oct 92
35 40			
45	357	E.C. CO⁵H N=(N°N°H	
50		F _g C ₂ N - CH ₂ C ₄ H _g (n)	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	358	CITY.	TD -512 676
15 20			EP #512,675 pub. 11 Nov 92
25 30	359	H,C CH,	EP #512,676 pub. 11 Nov 92
35		CR. R.C	
40 45	360	HM H,c	EP #512,370 pub, 11 Nov 92
50			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10			
15	361	H,C NO CH NOW O	EP #513,979 pub. 19 Nov 92
20			
25	362		
30	0		WO #92/20,660 pub. 26 Nov 92
35			
40		COR,	
4 5	363 ^K ,		WO #92,20,661 pub. 26 Nov 92
50		ОН	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	364	H,C CH,	WO #92/20,662 pub. 26 Nov 92
25 30 35	365	H,C CH, O = 1 = 0 NH NH NH NH NH NH NH NH NH N	WO #92/20,687 pub. 26 Nov 92
40 45 50	366	HC CCH	EP #517,357 pub. 09 Dec 92

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10		F F	
15	367	N-X N-X N-X N-X N-X N-X N-X N-X N-X N-X	₩0 #93/01177 pub. 21 Jan 93
20			-
25		CH,	
30	368	H,c	US ≑5,187,159 pub. 16 Feb 93
35		OH OH	
40	369	CH,	
45		I ()	US #5,198,438 pub. 30 Mar 93
50		0 = 5 S	

TABLE II: Angiotensin II Antagonists

5	Compound	# Structure	Source
10			
15	370	0====0	US #5,202,322 pub. 13 Apr 93
20		H,ć	
25		N. T. T.	
30	371	H,C NO HO PO	EP #537,937 pub. 21 Apr 93
35			
40		N OH	
45	372	H's No OH OH	US #5,217,882 pub. 08 Jun 93
50		COOCH	

TABLE II: Angiotensin II Antagonists

5	Compound	# Structure	Source
10		HO	
15	373	но	US #5,214,153 pub. 25 May 93
20 25		HO	
30	374	но	US #5,218,125 pub. 08 Jun 93
35			
40 45	3 75	HIN 5	US #5,236,928 pub. 17 Aug 93
50			, 17 AUG 93
55			

TABLE II: Anglotensin II Antagonists

	Compound #	Structure	Source
5 10	376	H,C N CH,	
20		CT CH,	US #5,240,938 pub. 31 Aug 93
25	377	H,C HO N QH,	GB #2,264,709 pub. 08 Sep 93
30 35		NH NH	pub. 08 Sep 93
40			
45	378	N.N	GB #2,264,710 pub. 08 Sep 93
50		•	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	ң с		
15	379		US #5,356,667 pub. 26 Oct 93
25	қ.c _N		
3 <i>0</i>	380		US #5.525,574 pub. 12 Oct 93
35		H,C S NH O	CK,
40	H,C NO	CEI, NRIE, NO	\bigcirc
45	381		WO #93/23,399 pub. 25 Nov 93
50			

TABLE II: Angiotensin II Antagonists

5	Compound	#	Structure	Source
10		a,	Î a,	
15	382	H,C N-H	NA CONTRACTOR OF THE PARTY OF T	US #5,262,412 pub. 16 Nov 93
20		F		
25	383	H,C	ОН	US #5,264.447
30		on I		US #5,264,447 pub. 23 Nov 93
35			,cak	
40	384	HO NO		US #5,266,583 pub. 01 Sep 92
45		ii L		pun. or sep 92
50			OH	

TABLE II: Angiotensin II Antagonists

Compound #

Structure

Source

R,C

но

385

386

US #5,276,054 pub. 04 Jan 94

15

20

5

10

25

30

40

45

50

35

H'C H'C OH

US #5,278,068 pub. 11 Jan 94

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	ңс ~	CCH,	
15	387		WO =94/02142 pub. 03 Feb 94
20 25		0 0 0 0	
30	388	NO N	WO #94/02467 pub. 03 Feb 94
35		H,c	
40 45		H,C OR	
50	389	OH.	EP #403,159 pub. 19 Dec 90
		_	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15	390		EP =425,311 pub. 32 May 91
20		CH,	
25 30	391	HEN CER'	EP #427,463 pub 15 May 91
35			
40	392	H'C. C. C	WO #92/00068 pub. 09 Jan 92
45		-	
50			

TABLE II: Angiotensin II Antagonists

		TABLE 11. IMPOU	Source
	Compound #	Structure	Source
5		ON	
10	393		₩O #92/02,510 pub. 20 Feb 92
15			
20	394		WO #92/09278 pub. 11 Jun 92
25		H,C	pas. II dun 92
30		R,c	
35	395	OH SH	%O ∉92/10181 pub. 25 Jun 92
40			
45	396	O CO2H N N-H	
50		N-CH ₂ C ₄ H ₂ (n)	

TABLE II: Angictensin II Antagonists

5	Compound #	Structure	Source
10	397	CI CONH ₂ Br	
20		C ₂ H ₅ (n)	
25			
30	398	N O - CH2 - ()	
35		и ^{*, И} •и−н iv=(
40	·		
45	399	N O-CH ₂	•
50		H ² C ² , N−H	

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10		$0 > 0 \cdot C^{2}H_{5} \qquad \underset{N = N}{\overset{N}{=}} N - H$	
1,5	400	H ₅ C ₂ CH ₃ O	
20			
25		о и=(и°м.и-н	
30	401	C _e H _g (n)	
35		C ₄ rig(n)	
40		CO2H	
45	402	0-C ₂ H ₃ N - H	
50		O-C ₂ H ₃ N N H	

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
5		о	
10	403	но	₩Q =9271000 2
15			WO #92/10097 pub. 25 Jun 92
20			
25	404	CF3 N=N.N-H	·
30		$C_4H_9(n)$	
35			
40	405	(n)H ₁₁ C ₅ - NH-C-NH-CH ₃	
45		N - CH ₂ - N-C HO ₂ C	
50		· ·	

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
5			
10		H-M ~ NO N K-	
15	406	N CF ₃	
20			
25		K,c OH	wn #92/20651
30	407	OH S	WO #92/20651 pub. 26 Nov 92
35		·	
40	408	H'c H'N	WO #93/03018 pub. 18 Feb 93
45		NOW	
50			
55			

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
10	409	OH OH	WO #94/00120 pub. 06 Jan 94
20		N. co.	
25	410	H ₂ C O N COOCH(CH ₃)OCOO	EP #459,136 pub. 04 Dec 91
30		N N N N N N N N N N N N N N N N N N N	
35			
40	411		EP #411,507 pub. 05 Feb 91
45		HEM COR,	pub. 05 Feb 91
50			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	412	HM HM	EP #425,921 pub. 08 May 91
20			
25 30	413	RIC N N N N N N N N N N N N N N N N N N N	EP #430,300 pub. 05 Jun 91
35			
40			
45	414	No. of the state o	EP #434,038 pub. 26 Jun 91
50			

TABLE II: Angiotensin II Antagonists

	Compound #	Structure	Source
5			
10	415	H,C,	EP #442,473 pub. 21 Aug 91
20			
25	416	CH, STORY OF THE S	TD 5442 564
<i>30</i>			EP #443,568 pub. 28 Aug 91
35		N-NH	
40		H,C O	
45	417		EP #459,136 pub. 04 Dec 91
50			
55			

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10	418	HC HC	EP ≑483,683 pub. 05 May 92
15		H,C N S CK,	pub. 03 May 32
20		н'с	
25		OH OH	
30	419	101	EP #518,033 pub. 16 Dec 92
35			
40			
45	420	HOOON	EP #520,423 pub. 30 Dec 92
50			2

TABLE II: Angiotensin II Antagonists

5	Compound #	Structure	Source
10 15	421	OH NH	ΣP #546,358 pub. 16 Jun 93
<i>25</i> <i>30</i>		H,C	
35	422	HEN N	WO #93/00341 pub. 07 Jan 93
40			
45 50	423	H.N. OH	%O #92/06081 pub. 16 Apr 92

TABLE II: Angiotensin II Antagonists

	Compound #	Strycture	Source
5 10	424	H ₃ C OH	%O ≜93/00341 pub. 07 Jan 93
20			
25 30	425	H,C NEL	US #5,210,204 pub. 11 May 93
35		CK,	
40		R,C HO H,C	, са,
45	426	OH OH	EP #343,654 pub. 29 Nov 89
50		•	

TABLE II: Angiotensin II Antagonists

	aaa. #	Structure	Source
5	Compound #	щс_o	
10	427		WO #93/13077 pub. 08 Jul 93
15		H,C CH,	
20			
25		H,C N OH	
30	428		WO #93/15734 pub. 19 Aug 93
35			
40			
45	429	и,с он	US #5,246,943 pub. 21 Sep 93
50			
55			

[0036] The term "hydride" denotes a single hydrogen atom (H). This hydrido group may be attached, for example,

to an oxygen atom to form a hydroxyl group; or, as another example, one hydrido group may be attached to a carbon atom to form a

Сн-

15

group; or, as another example, two hydrido atoms may be attached to a carbon atom to form a -CH2- group. Where the term "alkyl" is used, either alone or within other terms such as "haloalkyl" and "hydroxyalkyl", the term "alkyl" embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about five carbon atoms. The term "cycloalkyl" embraces cyclic radicals having three to about ten ring carbon atoms, preferably three to about six carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "haloalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with one or more halo groups, preferably selected from bromo, chloro and fluoro. Specifically embraced by the term "haloalkyl" are monohaloalkyl, dihaloalkyl and polyhaloalkyl groups. A monohaloalkyl group, for example, may have either a bromo, a chloro, or a fluoro atom within the group. Dihaloalkyl and polyhaloalkyl groups may be substituted with two or more of the same halo groups, or may have a combination of different halo groups. A dihaloalkyl group, for example, may have two fluoro atoms, such as diffuoromethyl and diffuorobutyl groups, or two chloro atoms, such as a dichloromethyl group, or one fluoro atom and one chloro atom, such as a fluoro-chloromethyl group. Examples of a polyhaloalkyl are trifluoromethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, perfluoroethyl and 2,2,3,3-tetrafluoropropyl groups. The term "difluoroalkyl" embraces alkyl groups having two fluoro atoms substituted on any one or two of the alkyl group carbon atoms. The terms "alkylol" and "hydroxyalkyl" embrace linear or branched alkyl groups having one to about ten carbon atoms any one of which may be substituted with one or more hydroxyl groups. The term "alkenyl" embraces linear or branched radicals having two to about twenty carbon atoms, preferably three to about ten carbon atoms, and containing at least one carbon-carbon double bond, which carbon-carbon double bond may have either cis or trans geometry within the alkenyl moiety. The term "alkynyl" embraces linear or branched radicals having two to about twenty carbon atoms, preferably two to about ten carbon atoms, and containing at least one carbon-carbon triple bond. The term "cycloalkenyl" embraces cyclic radicals having three to about ten ring carbon atoms including one or more double bonds involving adjacent ring carbons. The terms "alkoxy" and "alkoxyalkyl" embrace linear or branched oxy-containing radicals each having alkyl portions of one to about ten carbon atoms, such as methoxy group. The term "alkoxyalkyl" also embraces alkyl radicals having two or more alkoxy groups attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl groups. The "alkoxy" or "alkoxyalkyl" radicals may be further substi-tuted with one or more halo atoms, such as fluoro, chloro or bromo, to provide haloalkoxy or haloalkoxyalkyl groups. The term "alkylthio" embraces radicals containing a linear or branched alkyl group, of one to about ten carbon atoms attached to a divalent sulfur atom, such as a methythio group. Preferred aryl groups are those consisting of one, two, or three benzene rings. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl and biphenyl. The term "aralkyl" embraces aryl-substituted alkyl radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenyl-ethyl, phenylbutyl and diphenylethyl. The terms "benzyl" and "phenylmethyl" are interchangeable. The terms "phenalkyl" and "phenylatkyl" are interchangeable. An example of "phenalkyi" is "phenethyl" which is interchangeable with "phenylethyl". The terms "alkylaryl", "alkoxyaryl" and "haloaryl" denote, respectively, the substitution of one or more "alkyl", "alkoxy" and "halo" groups, respectively, substituted on an "aryl" nucleus, such as a phenyl moiety. The terms "aryloxy" and "arylthio" denote radicals respectively, provided by aryl groups having an oxygen or sulfur atom through which the radical is attached to a nucleus, examples of which are phenoxy and phenylthio. The terms "sulfinyl" and "sulfonyl", whether used alone or linked to other terms, denotes, respectively, divalent radicals SO and SO2. The term "aralkoxy", alone or within another term, embraces an aryl group attached to an alkoxy group to form, for example, benzyloxy. The term "acyl" whether used alone, or within a term such as acyloxy, denotes a radical provided by the residue after removal of hydroxyl from an organic acid, examples of such radical being acetyl and benzoyl. "Lower alkanoyl" is an example of a more prefered sub-class of acyl. The term "amido" denotes a radical consisting of nitrogen atom attached to a carbonyl group, which radical may be further substituted in the manner described herein. The term "monoalkylaminocarbonyl" is interchangeable with "N-alkylamido". The term "dialkylaminocarbonyl" is interchangeable with "N,N-dialkylamido". The term "alkenylalkyl" denotes a radical having a double-bond unsaturation site between two carbons, and which radical may consist of only two carbons or may be further substituted with alkyl groups which may optionally contain additional double-bond unsaturation. The term "heteroaryl", where not otherwised defined before, embraces aromatic ring systems containing one or two hetero atoms selected from oxygen, nitrogen and sulfur in a ring system having five or six ring members, examples of which are thienyl, furanyl, pyridinyl, thiazolyl, pyrimidyl and isoxazolyl. Such heteroaryl may be attached as a substituent through a carbon atom of the heteroaryl ring system, or may be attached through a carbon atom of a moiety substituted on a heteroaryl ring-member carbon atom, for example, through

the methylene substituent of imidazolemethyl moiety. Also, such heteroaryl may be attached through a ring nitrogen atom as long as aromaticity of the heteroaryl moiety is preserved after attachment. For any of the foregoing defined radicals, preferred radicals are those containing from one to about ten carbon atoms.

[0037] Specific examples of alkyl groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, methylbutyl, dimethylbutyl and neopentyl. Typical alkenyl and alkynyl groups may have one unsaturated bond, such as an allyl group, or may have a plurality of unsaturated bonds, with such plurality of bonds either adjacent, such as allene-type structures, or in conjugation, or separated by several saturated carbons.

[0038] Also included in the combination of the invention are the isomeric forms of the above-described angiotensin If receptor compounds and the epoxy-steroidal aldosterone receptor compounds, including diastereoisomers, regioisomers and the pharmaceutically-acceptable salts thereof. The term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, provided that it is pharmaceutically-acceptable. Suitable pharmaceutically-acceptable acid addition salts may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, hydrolodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, example of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, p-hydroxybenzoic, salicyclic, phenylacetic, mandelic, embonic (pamoic), methansulfonic, ethanesulfonic, 2-hydroxyethanesulfonic, pantothenic, benzenesulfonic, toluenesulfonic, sulfanilic, mesylic, cyclohexylaminosulfonic, stearic, algenic, β-hydroxybutyric, malonic, galactaric and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts include metallic salts made from aluminium, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of these salts may be prepared by conventional means from the corresponding compound by reacting, for example, the appropriate acid or base with such compound.

BIOLOGICAL EVALUATION

25

30 .

40

55

[0039] Human congestive heart failure (CHF) is a complex condition usually initiated by vascular hypertension or a myocardial infarction (MI). In order to determine the probable effectiveness of a combination therapy for CHF, it is important to determine the potency of individual components of the combination therapy. Accordingly, in Assays "A" through "C", the angiotensin II receptor antagonist profiles were determined for many of the compounds described in Table II, herein. In Assays "D" and "E", there are described methods for evaluating a combination therapy of the invention, namely, an angiotensin II receptor antagonist of Table II and an epoxy-steroidal aldosterone receptor antagonist of Table I. The efficacy of the individual drugs, epoxymexrenone and the angiotensin II receptor blocker, and of these drugs given together at various doses, are evaluated in rodent models of hypertension and CHF using surgical alterations to induce either hypertension or an MI. The methods and results of such assays are described below.

Assay A: Antiotensin II Binding Activity

[0040] Compounds were tested for ability to bind to the smooth muscle angiotensin II receptor using a rat uterine membrane preparation. Angiotensin II (All) was purchased from Peninsula Labs. 125I-angiotensin II (specific activity of 2200 Ci/mmol) was purchased from Du Pont-New England Nuclear. Other chemicals were obtained from Sigma Chemical Co. This assay was carried out according to the method of Douglas et al [Endocrinology, 106, 120-124 (1980) 1. Rat uterine membranes were prepared from fresh tissue. All procedures were carried out at 4°C. Uteri were stripped of fat and homogenized in phosphate-buffered saline at pH 7.4 containing 5 mM EDTA. The homogenate was centrifuged at 1500 x g for 20 min., and the supernatant was recentrifuged at 100,000 x g for 60 min. The pellet was resuspended in buffer consisting of 2 mM EDTA and 50 mM Tris-HCI (pH 7.5) to a final protein concentration of 4 mg/ml. Assay tubes were charged with 0.25 ml of a solution containing 5 mM MgCl₂, 2 mM EDTA, 0.5% bovine serum albumin, 50 mM Tris-HCl, pH 7.5 and ¹²⁵I-All (approximately 10⁵ cpm) in the absence or in the presence of unlabelled ligand, The reaction was initiated by the addition of membrane protein and the mixture was incubated at 25°C for 60 min. The incubation was terminated with ice-cold 50 mM Tris-HCl (pH 7.5) and the mixture was filtered to separate membranebound labelled peptide from the free ligand. The incubation tube and filter were washed with ice-cold buffer. Filters were assayed for radioactivity in a Micromedic gamma counter. Nonspecific binding was defined as binding in the presence of 10 µM of unlabelled All. Specific binding was calculated as total binding minus nonspecific binding. The receptor binding affinity of an AII antagonist compound was indicated by the concentration (IC50) of the tested AII antagonist which gives 50% displacement of the total specifically bound ¹²⁵I-All from the angiotensin II AT₁ receptor. Binding data were analyzed by a nonlinear least-squares curve fitting program. Results are reported in Table III.

Assay B: In Vitro Vascular Smooth Muscle-Response for All

10

20

30

50

55

[0041] Compounds were tested for antagonist activity in rabbit aortic rings. Male New Zealand white rabbits (2-2.5 kg) were sacrificed using an overdose of pentobarbital and exsanguinated via the carotid arteries. The thoracic aorta was removed, cleaned of adherent fat and connective tissue and then cut into 3-mm ring segments. The endothelium was removed from the rings by gently sliding a rolled-up piece of filter paper into the vessel lumen. The rings were then mounted in a water-jacketed tissue bath, maintained at 37°C, between moveable and fixed ends of a stainless steel wire with the moveable end attached to an FT03 Grass transducer coupled to a Model 7D Grass Polygraph for recording isometric force responses. The bath was filled with 20 ml of oxygenated (95% oxygen/5% carbon dioxide) Krebs solution of the following composition (mM): 130 NaCl, 15 NaHCO₃, 15 KCl, 1.2 NaH₂PO₄, 1.2 MgSO₄, 2.5 CaCl₂, and 11.4 glucose. The preparations were equilibrated for one hour before approximately one gram of passive tension was placed on the rings. Angiotensin II concentration-response curves were then recorded (3 X 10⁻¹⁰ to 1 X 10⁻⁵ M). Each concentration of All was allowed to elicit its maximal contraction, and then All was washed out repeatedly for 30 minutes before rechallenging with a higher concentration of All. Aorta rings were exposed to the test antagonist at 10.5 M for 5 minutes before challenging with All. Adjacent segments of the same aontairing were used for all concentration-response curves in the presence or absence of the test antagonist. The effectiveness of the test compound was expressed in terms of pA2 values and were calculated according to H.O. Schild [Br. J. Pharmacol. Chemother., 2, 189-206 (1947)]. The pA2 value is the concentration of the antagonist which increases the EC50 value for All by a factor of two. Each test antagonist was evaluated in aorta rings from two rabbits. Results are reported in Table III.

Assay C: In Vivo Intragastric Pressor Assay Response for All Antagonists

[0042] Male Sprague-Dawley rats weighing 225-300 grams were anesthetized with methohexital (30 mg/kg, i.p.) and catheters were implanted into the femoral artery and veln. The catheters were tunneled subcutaneously to exit dorsally, posterior to the head and between the scapulae. The catheters were filled with heparin (1000 units/ml of saline). The rats were returned to their cage and allowed regular rat chow and water ad libitum. After full recovery from surgery (3-4 days), rats were placed in Lucite holders and the arterial line was connected to a pressure transducer. Arterial pressure was recorded on a Gould polygraph (mmHg). Angiotensin II was administered as a 30 ng/kg bolus via the venous catheter delivered in a 50 μl volume with a 0.2 ml saline flush. The pressor response in mm Hg was measured by the difference from pre-injection arterial pressure to the maximum pressure achieved. The All injection was repeated every 10 minutes until three consecutive injections yielded responses within 4 mmHg of each other. These three responses were then averaged and represented the control response to All. The test compound was suspended in 0.5% methylcellulose in water and was administered by gavage. The volume administered was 2 ml/kg body weight. The standard dose was 3 mg/kg. Angiotensin II bolus injections were given at 30, 45, 60, 75, 120, 150, and 180 minutes after gavage. The pressor response to All was measured at each time point. The rats were then returned to their cage for future testing. A minimum of 3 days was allowed between tests. Percent inhibition was calculated for each time point following gavage by the following formula: [(Control Response - Response at time point)/Control Response] X 100. Results are shown in Table III.

Assay "D": Hypertensive Rat Model

[0043] Male rats are made hypertensive by placing a silver clip with an aperture of 240 microns on the left renal artery, leaving the contralateral kidney untouched. Sham controls undergo the same procedure but without attachment of the clip. One week prior to the surgery, animals to be made hypertensive are divided into separate groups and drug treatment is begun. Groups of animals are administered vehicle, All antagonist alone, epoxymexrenone alone, and combinations of All antagonist and epoxymexrenone at various doses:

		Combination of All Antagonist & Epoxymexrenone	
All Antagonist (mg/kg/day)	Epoxymexrenone (mg/kg/day)	(mg/kg/day)	(mg/kg/day)
3	5 20 50 100 200	3 3 3 3	5 20 50 100 200

(continued)

		Combination of All Antagonist & Epoxymexren			
All Antagonist (mg/kg/day)	Epoxymexrenone (mg/kg/day)	(mg/kg/day)	(mg/kg/day)		
10	5	10	5		
	20	10	20		
	50	10	50		
	100	10	100		
	200	10	200		
30	5	30	5		
	20	30	20		
	50	30	50		
	100	30	100		
	200	30	200		

[0044] After 12 to 24 weeks, systolic and diastolic blood pressure, left ventricular end diastolic pressure, left ventricular dP/dt, and heart rate are evaluated. The hearts are removed, weighed, measured and fixed in formalin. Collagen content of heart sections are evaluated using computerized image analysis of picrosirius stained sections. It would be expected that rats treated with a combination therapy of All antagonist and epoxymexrenone components, as compared to rats treated with either component alone, will show improvements in cardiac performance.

Assay *E*: Myocardial Infarction Rat Model:

ç

E=

[0045] Male rats are anesthetized and the heart is exteriorized following a left sided thoracotomy. The left anterior descending coronary artery is ligated with a suture. The thorax is closed and the animal recovers. Sham animals have the suture passed through without ligation. One week prior to the surgery, animals to undergo infarction are divided into separate groups and drug treatment is begun. Groups of animals are administered vehicle, All antagonist alone, epoxymexrenone alone, and combinations of All antagonist and epoxymexrenone, at various doses, as follow:

		Combination of All Antagonist & Epoxymexrenone				
All Antagonist (mg/kg/day)	Epoxymexrenone (mg/kg/day)	(mg/kg/day)	(mg/kg/day)			
3	5	3	5			
_	20	3	20			
	50	3	50			
	100	3	100			
	200	3	200			
10	5	10	5			
	20	10	20			
	50	10	50			
	100	10	100			
	200	10	200			
30	5	30	5			
	20	30	20			
	50	30	50			
	100	30	100			
	200	30	200			

[0046] After six weeks, systolic and diastolic blood pressure, left ventricular end diastolic pressure, left ventricular dP/dt, and heart rate are evaluated. The hearts are removed, weighed, measured and fixed in formalin. Collagen

content of heart sections are evaluated using computerized image analysis of picrosirius stained sections. It would be expected that rats treated with a combination therapy of All antagonist and epoxymexrenone components, as compared to rats treated with either component alone, will show improvements in cardiac performance.

TABLE III

	In Vivo and	In Vitro Angiotensin		Southoones		
Test Compound	¹ Assay A IC ₅₀	² Assay B pA ₂	Dose	³ Assay C		
Example #	(nM)		(mg/kg)	Inhibition (%)	Duration (min.)	
		NT	NT	NT	NT	
1	NT	7,37/7.59	10	95	60	
2	95	7.577.50	30	98	90-120	
			10	50	>180	
.3	54	8.70 ± 0.2	30	100	200+	
		QA.		NT	NT	
4	NT	NT	NT	38	20-30	
5	200	7.48/6.91	30	90	120	
6	1300	6.55/6.82	100	1	130	
7	84	8.01/8.05	30	90	NT	
8	17,000	NT	NT	NT	75	
9	700	6.67/6.12	30	80	130	
			100	100	100	
10	4.9	8.19/7.59	3	86	240	
10			30	100	NT	
11	160	6.45/6.77	NT	NT		
12	6.0	8.66/8.59	NT	NT	NT	
10	17	8.70/8.85	NT	NT	NT	
i	7.2	8.84/8.71	NT	NT	NT	
14	16	8.31/8.30	NT	NT	NT	
15	6.4	8,95/9.24	NT	NT	NT	
16	4.0	8.64/8.40	NT	NT	NT	
17	970	6.14/6.09	NT	NT	NT	
10	12,000	5.18/5.35	NT	NT	NT	
19	78,000	5.89/5.99	100	10	45	
20		7.71.7.21	NT	NT	NT	
21	87	6.60/6.46	NT	NT	NT	
0 22	460	6.48/7.15	NT	NT	NT	
23	430	7.56/7.73	NT	NT	NT	
24	10	6.80/6.73	NT	NT	NT	
25	480	9.83/9.66	10	50	>180	
26	3.2	NT	NT	NT	NT	
27	180	5.57/6.00	NT	NT	NT	
28	570	l.	NT	NT	NT	
29	160	NT 7.72/7.98	30	50	>180	
30	22	7,73/7.88	NT	NT	NT	
50 31	14	NT - 00/7 00	NT	NT	NT NT	
32	16	7.68/7.29	NT	NT	NT	
33	630	6.73/6.36	NT	NT	NT	
34	640	5.34/5.69	L .	NT	NT	
35	41	7.25/7.47	NT	NT	NT	
55 36	1400	5.92/5.68	NT	141	<u> </u>	

1Assay A: Angiotensin II Binding Activity

2Assay B: In Vitro Vascular Smooth Muscle Response

TABLE III (continued)

Test Compound Example #	¹ Assay A IC ₅₀	² Assay B pA ₂	Dose	³ As	say C
Zampio ii	(nM)	-	(mg/kg)	Inhibition (%)	Duration (min.
37	340	6.90/6.85	NT	NT	NT
38	10	7.82/8.36	NT	NT	NT
39	10	7.88/7.84	NT	NT	NT
40	83	7.94/7.61	NT	NT	NT
41	3700	5.68/5.96	NT	NT	NT
42	370	6.56/6.26	NT	NT	NT
43	19	8.97/8.61	i NT	NT	NT
44	16	8.23/7.70	NT	NT	NT
45	4.4	8.41/8.24	NT	NT	NT
46	110	6.80/6.64	NT	NT	NT
47	21	7.85/7.58	NT	NT	NT
48	680	6.27/6.75	NT	NT	NT
49	120	7.06/7.07	NT	NT	NT
50	54	7.71/7.89	NT	NT	NT
50 51	8.7	8.39/8.51	NT	NT	NT
52	100	8.14/8.12	NT	NT	NT
53	65	7.56/7.83	NT	NT	NT
55 54	3100	6.02	NT	NT	NT
54 55	80	6.56/7.13	NT	NT	NT
56	5.0	9.04/8.35	NT	NT	NT
57	2300	6.00	NT	NT	NT
58	140	6.45/6.57	NT	NT	NT
59	1.20	7.23/7.59	NT	NT	NT
60	2200	6.40/6.03	NT	NT	NT
61	110	7,29/7.70	NT	NT	NT
62	26	8.69/8.61	NT	NT	NT
63	61	7.77/7.67	NT	NT	NT
64	54	7.00/6.77	NT	NT	NT
65	23	7.85/7.75	NT	NT	NT
66	12	9.34/8.58	NT	NT	NT
67	3100	5.88/5.78	NT	NT	l NT
68	8.6	8.19/8.65	NT	NT .	NT
69	15	7,80/8.28	NT	NT	NT
70	44	7.71/8.05	NT	NT	NT
71	12,000	•	NT	NT	NT
72	83	6.11/6.10	NT	NT	NT
73	790	7.65/7.46	NT	NT	NT
74	6.5	8.56/8.39	NT	NT	NT
	570	6.00/5.45	NT	NT	NT
75 76	5400	5.52/5.78	NT	NT	NT
76 77	15,000	5.77	NT	NT	NT
77	101	7.0	'''	93	60-100

^{*}Antagonist Activity not observed up to 10 µM of test compound.

¹Assay A: Angiotensin II Binding Activity

²Assay B: In Vitro Vascular Smooth Muscle Response

³Assay C: In Vivo Pressor Response

TABLE III (continued)

L			In Vitro Angiotensin	Dose	³ As	say C	
	est Compound	¹Assay A IC ₅₀	Assay b ph2	1 5036			
E	xample #	(.50)	-	(mg/kg)	Inhibition (%)	Duration (min.	
1		(nM)	9.2		100 -	>200	
	79	4.9	9.2	1	50	>180	
1			8.1	- [NT	NT	
İ	80	25	8.0	1	40	180	
	81	18			20	180	
1	82	7.9	8.5		15	>180	
	83	3.6	8.3		20	30	
1	84	16	7.1		NT	NT	
	85	67	8.9		NT	NT	
1	86	9	7.8		NT	NT	
	87	91	7.8		NT	NT	
1	88	50	7.7		NT	NT	
	89	18	7.9	1	NT	NT	
İ	90	5.6	9.0	ŀ	40	>180	
	91	30	8.6		NT	NT	
- 1	92	35	7.9	- 1	NT	NT	
-	93	480	NT		NT	NT	
	94	5,800	NT		NT	NT	
-	95	66	8.2	1	NT	NT	
	96	21	8.0	ţ	1 1	NT	
ļ	97	280	7.7		NT	NT	
١	98	22	8.1		NT	NT	
	99	280	6.5		NT	NT	
	100	4.4	9.4		NT	NT	
	101	36	7.8		NT	NT	
	102	43	7.7		NT	NT	
	103	12	8.0	i	NT	NT	
	104	15	8.0	1	NT	NT	
	105	290	6.6	1	NT	NT	
	106	48	7.7	•	NT	NT	
	107	180	8.3		NT	90	
	108	720	5.3	100	45	30	
	109	250	7.3	30	50	NT	
	110	590	6.4		NT	160	
	111	45	9.0	30	87	NT	
	112	2000	5.2		NT	1	
	113	12	8.4	10	60	180	
	114	400	6.4		NT	040	
	115	11	8.2	3	40	>240	
	116	230	6.5		NT		
)	117	170	6.5	Ì	NT		
	118	37	9.21/9.17	10	70	120	
	119	16	9.21/9.00	3	20	60	
	120	25	9.05/8.77	10	80	240	

2Assay B: In Vitro Vascular Smooth Muscle Response

TABLE III (continued)

-		¹ Assay A IC ₅₀	² Assay B pA ₂	Dose		С	
1	Test Compound Example #	Assay A 1050	-Assay & pag	Dose			
		(nM)		(mg/kg)	Inhibition (%)		Duration (min.
-	121	46	NT		NT		
1	122	46	NT		NT	1	
	123	50	NT	<u> </u>	NT		
	124	40	9.42/9.12	3	45		>180
	125	40	9.25/8.80	3	35		>240
- 1	126	240	7.20/7.05			NT	
	127	12,000	4.96	i		NT	
- 1	128	16	8.63/8.40			NT	
- 1	129	6,700	5.30			NT	
	130	40	8.10/7.94		1	NT	
	131	9.5	7.53/8.25	ł			
1	132	12	8.6			NT	
	133	10	8.7	3	20		180
- 1	100	, ,		ŧ			90-120
ļ	134	22	9.3	3	35		180
1	135	16	8.5	3	35		>180
	136	NT	NT	- 1		NT	
-	137	220	8.3			NT	
	138	130	8.2	-		NT	
	139	0.270	6.3			NT	
]	140	0.031	8.1	1	100		160
	141	0.110	8.02		NT	•	NT
1	142	2.000	NA		NT	1	NT
	143	0.052	7.7		85		75
	144	0.088	7.7		50		125
	145	0.480	6.7		NT		NT
	146	0.072	6.4		NT		NT
ļ	147	5.8	5.6	3	74		5-10
ļ	148	0.87	5.8	3	92		20-30
	149	1.1	6.1	3	NT		NT
	150	14	8.03/7.80	3	25		>180
	151	17	7.76/7.97	3	15		180
	152	150	7.46/7.23	3	10	1	140
	153	13	8.30/7.69	3	25		>180
	154	97	8.19/8.38			NA	
	155	86	7.60/7.14			NA	
	156	78	8.03/7.66			NA	
	157	530	- /6.22			NA	
	158	54	8.23/8.14	3	30		>180
	159	21	7.92/7.56	3	10	1	150
	160	64	7.87/7.71	1			
	161	28				NA	
	162	380	6.21/6.55			NA	

2Assay B; In Vitro Vascular Smooth Muscle Response

TABLE III (continued)

Ĺ			In Vitro Angiotensin I	Dose	³ Assay C		
	Test Compound	1Assay A IC ₅₀	² Assay B pA ₂	Dose			
	Example #		4	(mg/kg)	Inhibition (%)		Duration (min.)
- 1	<u>l</u> _	(nM)		(mg/kg/		NA	
F	163	420	7.42/6.75		Ì	NA	
l	164	1700				NA	
- 1	165	410	6.90/7.18			NA	!
	166	160	7.57/7.74	Į.		NA	
1	167	370	7.08/7.11	į.	1	NA	
	168	420	7.69/7.58		15	`**`	180
-	169	150	7.78/7.58	3	40	Ì	>180
- {	170	26	7.08/7.77	3		1	0
- 1	171	28	7.52/7.11	3	0	NA	
- 1	172	70	7.15/7.04		ļ	NA	
	173	90	7.49/6.92	l l		1	
- 1	174	180	7.29/7.02] _	NA	0
	175	27	NA	3	0		150
- 1	176	9.8	7.69/7.55	3	10	i	180
İ	177	26	7.41/7.85	3	15	1	180
- 1	178	88	7,54/7.47	1		NA	
	179	310	6.67/ -			NA	100
	180	20	7.56/7.15	3	25	1	180
	181	21	7,70/7.12	3	20	1	180
	182	59	NA		•	NA	1
	183	390	NA			NA	
1	184	1100	6.78/ -	1		NA	100
	185	6.5	8.82/8.53	3	50		> 180
	186	38	8.13/7.40	3	25		180
	187	770	7.46/6.95	1		NA	
5	188	140	7.72/7.09		1	NA NA	
	189	29	8.64/8.23			NA.	
	190	10	7.87/7.89	3	10	ļ	180
	191	81	7.75/7.76	3	10	Į	180
	192	140		ļ		NA	
0	193	11	9.27/8.87	3	10		180
	194	47	7.64/7.35			NA	1
	195	34	8.44/8.03			NA	
	196	31	7,68/8.26	ļ.	Į	NA	
_	l .	14	8.03/8.60	l	İ	NA	
5	197	7.6	8.76/8.64	3	35		> 180
	198	10	8.79/8.85	3	60		> 180
	199	20	8.42/8.77	3	45	l	> 180
	200	17	8.78/8.63	3	10	1	180
i0	201	12	8.79/8.64	3	65	}	> 180
	202	9.2	8.43/8.36	3	50	ļ	> 180
	203	1	9.17/8.86	3	75	- 1	> 180
	204	16	9,14/9.15	3	40		> 180
	205	20	3.1-7.5.13				

55 1Assay A: Angiotensin II Binding Activity

2Assay B: In Vitro Vascular Smooth Muscle Response

TABLE III (continued)

Test Compound Example #	¹ Assay A IC ₅₀	² Assay B pA ₂	Dose		³ Assay	C
	(nM)		(mg/kg)	Inhibition (%)		Duration (min
206	5.4	8.75/8.89	3	30		> 180
207	99	9.04/8.60			NA	
208	22	9.19/8.69	3	50		> 180
209	5.0	9.41/9.16	3	25		> 180
210	3.6	8.36/8.44	3	15		180
211	18	8.74/8.67	3	35	j	> 180
212	23	8.85/8.25	j 3	ĺ 15		180
213	51	NA			NA	
214	65	NA	ł		NA	1
215	45	NA			NA	
216	5.4	8.80/9.04	3	50		> 180
217	9.4	NA	3	65		> 180
218	9.0	NA			NA	
219	14	NA			NA	
220	7.0	NA	3	75		120
221	4.8	NA	3	25		> 180
222	5.0	NA			NA	
223	14	7.45/7.87	3	20		> 180
224	91	NA	1		NA	
225	160	NA			NA	
226	93	NA	1		NA	
227	89	7.55/7.67	ł		NA	
228	4.5	9.17/8.25	3	80		>180
229	19	NT	3	40		>180
230	2.6	8.23/8.69	3	25		>180
231	3.6	NT	3	75	1	>180
232	4.4	8.59/8.89	3	70		>180
233	84	8.51/8.78			NT	
234	5.0	8.49/9.00	3	20		-
235	34	7.14/7.07			NT	1
236	4.9	NC	3	70		>180
237	3.6	NT	ļ		NT	
238	1.7	NT	3	15		>180
239	6.8	7.88/8.01	3	20		>180
240	120	NA		1	NA	i
241	6.9	8.57/8.24	3	40		>180
242	110	7.11/6.60			NA	
243	250	NA			NA	
244	150	7.17/7.17			NA	
245	98	6.64/7.04			NA	1
246	72	7.46/7.59			NA	
247	9.4	8.26/8.41	3	20		180
248	20	7.68/7.50	3	10	1	

1Assay A: Angiotensin II Binding Activity
2Assay B: In Vitro Vascular Smooth Muscle Response

TABLE III (continued)

Test Compou	nd Assay A IC ₅₀	¹ Assay A IC ₅₀ ² Assay B pA ₂		³ Assay C		
Example #	ample # (nM)		(mg/kg)	Inhibition (%)		Duration (min.)
	4.4	NA NA	3	20		>180
249	43	NA	3	0		
250	25	NA			NA	
251	13	NA NA	l		NA	
252		NA NA	1		NA	
253	2.6	NA NA	•	ł	NA	
254	72	7,61/7.46	3	20	ļ	>180
255	12	8.43/7.78	. 3	30		>180
256	4.1	6.63/6.68		1	NA	ļ
257	160	6.84/6.84			NA	
258	350	0.84/0.84 NA	[NA	
259	54	i	1		NA	
260	220	NA			NA	ļ
261	18	NA (2.00		Ì	NA	
262	530	-/6.22	1	Ì	NA	
263	57	NA	1		NA	
264	11	NA	1		NA	
265	110	NA NA	ŀ		NA	
266	290	NA	١ ـ ـ	25	1	>180
267	25	NA NA	3	0]
268	520	NA	3	0	NA.	
269	9.7	NA	ĺ	Į.	NA NA	
270	21	NA		000/	I IVA	<u> </u>
271	14	NC	3	20%	1	>180 min.
272	97	NC	3	70%	ļ	>180 min.
273	9.8	8.53/8.61	3	25%		>180 min.
274	l	9,06/8.85	3	35%	Ì	>180 min.
275	1	9.07/	3	40%	- }	> 100 11111.
276	1	8.71/8.64	3	<20%		
277		/6.54			NT	>180 min.
278		8.49/8.51	3	50%	١	>100 min.
279		8.06/8.25			NT	NIT
280		6.41/6.35	NT	NT		NT
1	NOT TESTED					
	Non-Competitive antage	onist				

1 Assay A: Anglotensin II Binding Activity

2Assay B: In Vitro Vascular Smooth Muscle Response

3Assay C: In Vivo Pressor Response

[0047] Test Compounds administered intragastrically, except for compounds of examples #1-#2, #4-#25, #27-#29, #30-#79, #108-#109, #111, #118 and #139-#149 which were given intraduodenally.

[0048] Administration of the angiotensin II receptor antagonist and the aldosterone receptor antagonist may take place sequentially in separate formulations, or may be accomplished by simultaneous administration in a single formulation or separate formulations. Administration may be accomplished by oral route, or by intravenous, intramuscular or subcutaneous injections. The formulation may be in the form of a bolus, or in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more pharmaceutically-acceptable carriers or diluents, or a binder such as gelatin or hydroxypropyl-methyl cellulose, together with one or more of a lubricant, preservative, surface-active or dispersing

agent.

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, [0049] suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. These may with advantage contain an amount of each active ingredient from about 1 to 250 mg, preferably from about 25 to 150 mg. A suitable daily dose for a mammal may vary widely depending on the condition of the patient and other factors. However, a dose of from about 0.01 to 30 mg/kg body weight, particularly from about 1 to 15 mg/kg body weight, may be appropriate.

[0050] The active ingredients may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier. A suitable daily dose of each active component is from about 0.01 to 15 mg/kg body weight injected per day in multiple doses depending on the disease being treated. A preferred daily dose would be from about 1 to 10 mg/kg body weight. Compounds indicated for prophylactic therapy will preferably be administered in a daily dose generally in a range from about 0.1 mg to about 15 mg per kilogram of body weight per day. A more preferred dosage will be a range from about 1 mg to about 15 mg per kilogram of body weight. Most preferred is a dosage in a range from about 1 to about 10 mg per kilogram of body weight per day. A suitable dose can be administered, in multiple sub-doses per day. These sub-doses may be administered in unit dosage forms. Typically, a dose or sub-dose may contain from about 1 mg to about 100 mg of active compound per unit dosage form. A more preferred dosage will contain from about 2 mg to about 50 mg of active compound per unit dosage form. Most preferred is a dosage form containing from about 3 mg to about 25 mg of active compound per unit dose.

[0051] In combination therapy, the aldosterone receptor antagonist may be present in an amount in a range from about 5 mg to about 400 mg, and the All antagonist may be present in an amount in a range from about 1 mg to about 800 mg, which represents aldosterone antagonist-to-All antagonist ratios ranging from about 400:1 to about 1:160. [0052] In a preferred combination therapy, the aldosterone receptor antagonist may be present in an amount in a range from about 10 mg to about 200 mg, and the All antagonist may be present in an amount in a range from about 5 mg to about 600 mg, which represents aldosterone antagonist-to-All antagonist ratios ranging from about 40:1 to about 1:60.

[0053] In a more preferred combination therapy, the aldosterone receptor antagonist may be present in an amount in a range from about 20 mg to about 100 mg, and the All antagonist may be present in an amount in a range from about 10 mg to about 400 mg, which represents aldosterone antagonist-to-All antagonist ratios ranging from about 10:1 to about 1:20.

[0054] The dosage regimen for treating a disease condition with the combination therapy of this invention is selected in accordance with a variety of factors, including the type, age, weight, sex and medical condition of the patient, the severity of the disease, the route of administration, and the particular compound employed, and thus may vary widely. [0055] For therapeutic purposes, the active components of this combination therapy invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered per os, the components may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The components may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

[0056] Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

Claims

40

- 1. A combination comprising a therapeutically-effective amount of an angiotensin II receptor antagonist and a therapeutically-effective amount of an epoxy-steroidal aldosterone receptor antagonist.
- The combination of Claim 1 wherein said epoxy-steroidal aldosterone receptor antagonist is selected from epoxy-55 containing compounds.
 - 3. The combination of Claim 2 wherein said epoxy-containing compound has an epoxy moiety fused to the "C" ring

of the steroidal nucleus of a 20-spiroxane compound.

5

10

15

20

25

30

35

40

- The combination of Claim 3 wherein said 20-spiroxane compound is characterized by the presence of a 9α -, 11α substituted epoxy moiety.
- 5. The combination of Claim 2 wherein said epoxy-containing compound is selected from the group consisting of

pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy-17-hydroxy-3-oxo, γ -lactone, methyl ester, (7 α ,11 α ,17 α)-;

pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy-17-hydroxy-3-oxo-dimethyl ester,(7α ,11 α ,17 α)-;

3'H-cyclopropa[6,7] pregna-4,6-diene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-,γ-lactone,(6β,7β,11β,17β)-;

pregn-4-ene-7,21-dicarboxylic acid,9,11-epoxy-17-hydroxy-3-oxo-,7-(1-methylethyl) ester, monopotassium salt, $(7\alpha, 11\alpha, 17\alpha)$ -;

pregn-4-ene-7,21-dicarboxylic acid,9,11,-epoxy-17-hydroxy-3-oxo-,7-methyl ester, monopotassium salt, (7a, 11α,17α)-;

3'H-cyclopropa[6,7]pregna-1,4,6-triene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-,γ-lactone(6α , 7α , $11.\alpha$)-;

3'H-cyclopropa[6,7]pregna-4,6-diene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-,methyl ester, $(6\alpha,7\alpha,11\alpha,17\alpha)$ -;

3'H-cyclopropa[6,7]pregna-4,6-diene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-, monopotassium salt, $(6\alpha, 7\alpha, 11\alpha, 17\alpha)$ -;

3'H-cyclopropa[6,7]pregna-4,6-diene-21-carboxylic acid, 9,11-epoxy-6,7-dihydro-17-hydroxy-3-oxo-, y-lactone, $(6\alpha,7\alpha,11\alpha,17\alpha)$ -;

pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy-17-hydroxy-3-oxo-, γ -lactone, ethyl ester, $(7\alpha,11\alpha,17\alpha)$ -; and

pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy-17-hydroxy-3-oxo-, γ -lactone, 1-methylethyl ester,(7 α ,11 α , 17α)-.

- The combination of Claim 1 wherein said angiotensin II receptor antagonist is 5-[2-[5-[(3,5-dibutyl-1 H-1,2,4-triazol-1-yl)methyl]-2-pyridiny(phenyl-1H-tetrazole or a pharmaceutically-acceptable salt thereof and said epoxy-steroidal aldosterone receptor antagonist is 9α -, 11α -epoxy- 7α -methoxycarbonyl-20-spirox-4-ene-3,21-dione or a pharmaceutically-acceptable salt thereof.
- 7. The combination of Claim 6 further characterized by said angiotensin II receptor antagonist and said epoxysteroidal aldosterone receptor antagonist being present in said combination in a weight ratio range from about one-to-one to about twenty-to-one of said angiotensin II receptor antagonist to said aldosterone receptor antago-45 nist.
 - 8. The combination of Claim 7 wherein said weight ratio range is from about five-to-one to about fifteen-to-one.
- 9. The combination of Claim 8 wherein said weight ratio range is about ten-to-one. 50
 - 10. The combination of Claim 1 wherein said angiotensin II receptor antagonist is selected from the group consisting of: saralasin acetate, candesartan cilexetil, CGP-63170,

EMD-66397, KT3-671, LR-B/081, valsartan, A-81282,

BIBR-363, BIBS-222, BMS-184698, candesartan, CV-11194, EXP-3174, KW-3433, 55 -

L-161177, L-162154, LR-B/057,

LY-235656, PD-150304, U-96849, U-97018, UP-275-22,

WAY-126227, WK-1492.2K, YM-31472, losartan potassium,

E-4177, EMD-73495, eprosartan, HN-65021, irbesartan, L-159282, ME-3221, SL-91.0102, Tasosartan, Telmisartan, UP-269-6, YM-358, CGP-49870, GA-0056, L-159689, L-162234, L-162441, L-163007, PD-123177, A-81988, BMS-180560, CGP-38560A, CGP-48369, DA-2079, DE-

3489, DuP-167, EXP-063, EXP-6155, EXP-6803, EXP-7711, EXP-9270, FK-739, HR-720, ICI-D6888, ICI-D7155, ICI-D8731, isoteoline, KRI-1177, L-158809, L-158978, L-159874, LR B087, LY-285434, LY-302289, LY-315995, RG-13647, RWJ-38970, RWJ-46458, S-8307, S-8308, saprisartan, saralasin, Sarmesin, WK-1360, X-6803, ZD-6888, ZD-7155, ZD-8731, BIBS39, CI-996, DMP-811, DuP-532, EXP-929, L-163017, LY-301875, XH-148, XR-510, zolasartan and PD-123319.

11. The combination of Claim 10 wherein said angiotensin It receptor antagonist is selected from the group consisting 10

saralasin acetate, candesartan cilexetil, CGP-63170,

EMD-66397, KT3-671, LR-B/081, valsartan, A-81282,

BIBR-363, BIBS-222, BMS-184698, candesartan, CV-11194, EXP-3174, KW-3432,

L-161177, L-162154, LR-B/057, 15

LY-235656, PD-150304, U-96849, U-97018, UP-275-22,

WAY-126227, WK-1492.2K, YM-31472, losartan potassium,

E-4177, EMD-73495, eprosartan, HN-65021, irbesartan,

L-159282, ME-3221, SL-91.0102, Tasosartan, Telmisartan, UP-269-6, YM-358, CGP-49870, GA-0056, L-159689,

L-162234, L-162441, L-163007 and PD-123177. 20

Patentansprüche

5

30

35

45

50

55

- 1. Kombination, die eine therapeutisch wirksame Menge eines Angiotensin-II-Rezeptorantagonisten und eine thera-25 peutisch wirksame Menge eines epoxysteroidalen Aldosteronrezeptorantagonisten enthält.
 - Kombination nach Anspruch 1, worin der epoxysteroidale Aldosteronrezeptorantagonist aus Epoxy enthaltenden Verbindungen ausgewählt ist.
 - 3. Kombination nach Anspruch 2, worln die Epoxy enthaltende Verbindung eine an den "C"-Ring des steroidalen Kerns einer 20-Spiroxan-Verbindung gebundene Epoxyeinheit aufweist.
 - 4. Kombination nach Anspruch 3, worin diese 20-Spiroxan-Verbindung durch die Gegenwart einer 9α , 11α -substituierten Epoxyeinheit gekennzeichnet ist.
 - 5. Kombination nach Anspruch 2, worin die Epoxy enthaltende Verbindung ausgewählt ist aus der Gruppe bestehend
- Pregn-4-en-7,21-dicarbonsāure, 9,11-Epoxy-17-hydroxy-3-oxo, γ-Lacton, Methylester, (7α,11α,17α)-; 40

Pregn-4-en-7,21-dicarbonsäure, 9,11-Epoxy-17-hydroxy-3-oxo-dimethylester, $(7\alpha,11\alpha,17\alpha)$ -;

3'H-Cyclopropa[6,7]pregna-4,6-dien-21-carbonsäure, 9,11-Epoxy-6,7-dihydro-17-hydroxy-3-oxo-, y-Lacton, $(6\beta,7\beta,11\beta,17\beta)$ -:

Pregn-4-en-7,21 -dicarbonsäure, 9,11-Epoxy-17-hydroxy-3-oxo-, 7-(1-Methylethyl)ester, Monokaliumsalz, $(7\alpha,11\alpha,17\alpha)$ -;

Pregn-4-en-7,21-dicarbonsaure, 9,11-Epoxy-17-hydroxy-3-oxo-, 7-Methylester, Monokaliumsalz, $(7\alpha,11\alpha,$ 17α)-:

3'H-Cyclopropa[6,7]pregna-1,4,6-trien-21-carbonsaure, 9,11-Epoxy-6,7-dihydro-17-hydroxy-3-oxo-, γ-Lacton (6α.7α.11α)-:

3'H-Cyclopropa[6,7]pregna-4,6-dien-21-carbonsaure, 9,11-Epoxy-6,7-dihydro-17-hydroxy-3-oxo-, Methylester, $(6\alpha, 7\alpha, 11\alpha, 17\alpha)$ -;

3'H-Cyclopropa[6,7]pregna-4,6-dien-21-carbonsäure, 9,11-Epoxy-6,7-dihydro-17-hydroxy-3-oxo-, Monokaliumsalz, (6α,7α,11α,17α)-;

3'H-Cyclopropa[6,7]pregna-4,6-dien-21-carbonsaure, 9,11-Epoxy-6,7-dihydro-17-hydroxy-3-oxo-, γ-Lacton, (6α,7α,11α,17α)-;

Pregn-4-en-7,21-dicarbonsäure, 9,11-Epoxy-17-hydroxy-3-oxo-, γ -Lacton, Ethylester, (7 α ,11 α ,17 α)-; und Pregn-4-en-7,21-dicarbonsäure, 9,11-Epoxy-17-hydroxy-3-oxo-, γ-Lacton, 1-Methylethylester, (7α,11α,17α)-.

6. Kombination nach Anspruch 1, worin der Angiotensin-II-Rezeptorantagonist 5-[2-[5-[(3,5-Dibutyl-1H-1,2,4-triazol-1-yl)methyl]-2-pyridinyl]phenyl-1H-tetrazol oder ein pharmazeutisch unbedenkliches Salz davon und der epoxysteroidale Aldosteronrezeptorantagonist 9α-,11α-Epoxy-7α-methoxycarbonyl-20-spirox-4-en-3,21-dion oder ein pharmazeutisch unbedenkliches Salz davon ist.

EP 0 831 910 B1

- 7. Kombination nach Anspruch 6, weiter dadurch gekennzeichnet, dass der Angiotensin-II-Rezeptorantagonist und der epoxysteroidale Aldosteronrezeptorantagonist in der Kombination in einem Gewichtsverhältnisbereich von etwa 1:1 bis etwa 20:1 des Angiotensin-II-Rezeptorantagonisten zum Aldosteronrezeptorantagonisten vorhanden sind.
- 8. Kombination nach Anspruch 7, worin der Gewichtsverhältnisbereich etwa 5:1 bis etwa 15:1 beträgt.
- 9. Kombination nach Anspruch 8, worin der Gewichtsverhältnisbereich etwa 10:1 beträgt.
- - 11. Kombination nach Anspruch 10, worin der Angiotensin-II-Rezeptorantagonist ausgewählt ist aus der Gruppe bestehend aus:
- Saralasinacetat, Candesartan-Cilexetil, CGP-63170, EMD-66397, KT3-671, LR-B/081, Valsartan, A-81282, BIBR-363, BIBS-222, BMS-184698, Candesartan, CV-11194, EXP-3174, KW-3433, L-161177, L-162154, LR-B/057, LY-235656, PD-150304, U-96849, U-97018, UP-275-22, WAY-126227, WK-1492.2K, YM-31472, Losartan-Kalium, E-4177, EMD-73495, Eprosartan, HN-65021, Irbesartan, L-159282, ME-3221, SL-91.0102, Tasosartan, Telmisartan, UP-269-6, YM-358, CGP-49870, GA-0056, L-159689, L-162234, L-162441, L-163007 und PD-123177.

Revendications

35

40

45

5

- Combinaison comprenant une quantité efficace, du point de vue thérapeutique, d'un antagoniste de récepteur de l'angiotensine II et une quantité efficace, du point de vue thérapeutique, d'un antagoniste de récepteur de l'aldostérone époxy-stéroïde.
- Combinaison selon la revendication 1, dans laquelle ledit antagoniste de récepteur de l'aldostérone époxy-stéroïde est choisi parmi les composés époxydés.
- Combinaison selon la revendication 2, dans laquelle ledit composé époxydé a un fragment époxy condensé au cycle "C" du noyau stéroïde d'un composé 20-spiroxane.
- Combinaison selon la revendication 3, dans laquelle ledit composé 20-spiroxane est caractérisé par la présence
 d'un fragment époxy à substitution 9α,11α.
 - Combinaison selon la revendication 2, dans laquelle ledit composé époxydé est choisi dans l'ensemble constitué par les suivants :
- ester méthylique de γ-lactone d'acide (7α,11α,17α)-9,11-époxy-17-hydroxy-3-oxo-prégn-4-ène-7,21-dicarboxylique; ester diméthylique d'acide (7α,11α,17α)-9,11-époxy-17-hydroxy-3-oxo-prégn-4-ène-7,21-dicarboxylique; γ-lactone d'acide (6β,7β,11β,17β)-9,11-époxy-6,7-dihydro-17-hydroxy-3-oxo-3'H-cyclopropa[6,7]-prégna-

sel monopotassique d'ester 7-(1-méthyléthylique) d'acide $(7\alpha,11\alpha,17\alpha)$ -9,11-époxy-17-hydroxy-3-oxo-prégn-

5

10

15

35

40

45

50

sel monopotassique d'ester 7-méthylique d'acide $(7\alpha,11\alpha,17\alpha)$ -9,11-époxy-17-hydroxy-3-oxo-prégn-4-ène-7,21-dicarboxylique;

 $(6\alpha,7\alpha,11\alpha)$ -9,11-époxy-6,7-dihydro-17-hydroxy-3-oxo-3'H-cyclopropa[6,7]prégnad'acide γ-lactone

1,4,6-triène-21-carboxylique; ester méthylique d'acide $(6\alpha,7\alpha,11\alpha,17\alpha)$ -9,11-époxy-6,7-dihydro-17-hydroxy-3-oxo-3'H-cyclopropa[6,7]pré-

sel monopotassique d'acide (6α,7α,11α,17α)-9,11-époxy-6,7-dihydro-17-hydroxy-3-oxo-3'H-cyclopropa[6,7]

prégna-4,6-diène-21-carboxylique; γ -lactone $(6\alpha,7\alpha,11\alpha,17\alpha)$ -9,11-époxy-6,7-dihydro-17-hydroxy-3-oxo-3'H-cyclopropa[6,7]prégna-4,6-diène-

d'acide $\sim (7\alpha, 11\alpha, 17\alpha)$ -9,11-époxy-17-hydroxy-3-oxo-prégn-4-ène-21-carboxylique; d'ester éthylique γ-lactone

 γ -lactone d'ester 1-méthyléthylique d'acide (7α , 11α , 17α)-9, 11-époxy-17-hydroxy-3-oxo-prégn-4-ène-7, 21-di-7,21-dicarboxylique; et carboxylique.

- 6. Combinaison selon la revendication 1, dans laquelle ledit antagoniste de récepteur de l'angiotensine II est le 5-[2-[5-[(3,5-dibutyl-IH-1,2,4-triazol-1-yl)méthyl]-2-pyridinyl]phényl-1H-tétrazole ou un de ses sels acceptables en pharmacie et ledit antagoniste de récepteur de l'aldostérone époxy-stéroïde est la 9α,11α-époxy-7α-méthoxycar-20 bonyl-20-spirox-4-ène-3,21-dione ou un de ses sels acceptables en pharmacie.
- 7. Combinaison selon la revendication 6, caractérisée en outre en ce que ledit antagoniste de récepteur de l'angiotensine il et ledit antagoniste de récepteur de l'aldostérone époxy-stéroïde sont présents dans ladite combinaison en un rapport en poids situé dans la plage allant d'environ un pour un à environ vingt pour un dudit antagoniste 25 de récepteur de l'angiotensine II audit antagoniste de récepteur de l'aldostérone.
- Combinaison selon la revendication 7, dans laquelle ladite plage de rapport en poids va d'environ cinq pour un à environ quinze pour un. 30
 - .. 9. Combinaison selon la revendication 8, dans laquelle ladite plage de rapport en poids est d'environ dix pour un.
 - 10. Combinaison selon la revendication 1, dans laquelle ledit antagoniste de récepteur de l'angiotensine II est choisi dans l'ensemble constitué par les suivants :

acétate de saralasin, candesartan cilexetil, CGP-63170, EMB-66397, KT3-671, LR-B/081, valsartan, A-81282, BIBR-363, BIBS-222, BMS-184698, candesartan, CV-11194, EXP-3175, KW-3433, L-161177, L-162154, LR-B/057, LY-235656, PD-150304, U-96849, U-97018, UP-275-22, WAY-126227, WK-1492.2K, YM-31472, losartan potassique, E-4177, EMD-73495, éprosartan, HN-65021, irbesartan, L-150292, ME-3221, SL-91.0102, Tasosartan, Telmisartan, UP-269-6, YM-358, CGP-49870, GA-0056, L-159689, L-162234, L-162441, L-163007, PD-123177, A-81988, BMS-180560, CGP-38560A, CGP-48369, DA-2079, DE-3489, DuP-167, EXP-063, EXP-6155, EXP-6803, EXP-7711, EXP-9270, FK-739, HR-720, ICI-D6888, ICI-D7155, ICI-D8731, isotéoline, KRI-1177, L-158809, L-158978, L-159874, LR B098, LY-285434, LY-302289, LY-315995, RG-13647, RWJ-38970, RWJ-46458, S-8307, S-8308, saprisartan, saralasin, Sarmesin, WK-1360, X-6803, ZD-6888, ZD-7155, ZD-8731, BIBS39, CI-996, DMP-811, DuP-532, EXP-929, L-163017, LY-301875, XH-148, XR-510, zolasartan et PD-123319.

11. Combinaison selon la revendication 10, dans laquelle ledit antagoniste de récepteur de l'angiotensine II est choisi dans l'ensemble constitué par les suivants :

acétate de saralasin, candesartan cilexetil, CGP-63170, EMB-66397, KT3-671, LR-B/081, valsartan, A-81282, BIBR-363, BIBS-222, BMS-184698, candesartan, CV-11194, EXP-3175, KW-3433, L-161177, L-162154, LR-B/057, LY-235656, PD-150304, U-96849, U-97018, UP-275-22, WAY-126227, WK-1492.2K, YM-31472, losartan potassique, E-4177, EMD-73495, éprosartan, HN-65021, irbesartan, L-150292, ME-3221, SL-91.0102, Tasosartan, Telmisartan, UP-269-6, YM-358, CGP-49870, GA-0056, L-159689, L-162234, L-162441, L-163007 et PD-123177.