12.2 Exercices du chapitre 2

12.2.1 Tribus

Corrigé 9 (Caractérisation d'une tribu)

Soit E un ensemble.

1. Soit T une partie de $\mathcal{P}(E)$ stable par union dénombrable, stable par passage au complémentaire et t.q. $\emptyset \in T$. Montrer que T est une tribu, c'est-à-dire qu'elle vérifie aussi $E \in T$ et qu'elle est stable par intersection dénombrable.

–corrigé–––––

- $E \in T$ car $E = \emptyset^c$ et que T est stable par passage au complémentaire.
- T est stable par intersection dénombrable car, si $(A_n) \subset T$, on a $(\bigcap_{n \in \mathbb{N}} A_n)^c = \bigcup_{n \in \mathbb{N}} A_n^c \in T$ (car T est stable par passage au complémentaire et par union dénombrable) et donc $\bigcap_{n \in \mathbb{N}} A_n \in T$ (car T est stable par passage au complémentaire).
- 2. L'ensemble des parties finies de E est-il une tribu ?

—corrigé———

- Si E est fini, l'ensemble des parties finies de E est une tribu, c'est la tribu $\mathcal{P}(E)$.
- Si *E* est infini, l'ensemble des parties finies de *E* n'est pas une tribu, car il n'est pas stable par passage au complémentaire (le complémentaire d'une partie finie est infinie...).

Corrigé 10 (Tribu engendrée)

Soit E un ensemble.

1. Montrer qu'une intersection quelconque de tribus sur E est une tribu sur E.

----corrigé

Soit $(T_i)_{i\in I}$ une famille de tribus sur I (I est un ensemble quelconque). On pose $T=\{A\subset E; A\in T_i \text{ pour tout } i\in I\}$ (T est bien l'intersection des tribus $T_i, i\in I$). On montre que T est une tribu :

- $\emptyset \in T$ car $\emptyset \in T_i$ pour tout $i \in I$.
- T est stable par complémentaire car, si $A \subset T$, on a $A \in T_i$ pour tout $i \in I$, donc $A^c \in T_i$ pour tout $i \in I$ (car T_i est stable par passage au complémentaire), donc $A^c \in T$.
- T est stable par union dénombrable car, si $(A_n)_{n\in\mathbb{N}}\subset T$, on a $A_n\in T_i$ pour tout $i\in I$ et tout $n\in\mathbb{N}$ donc $\cup_{n\in\mathbb{N}}A_n\in T_i$ pour tout $i\in I$ et tout $n\in\mathbb{N}$ (car T_i est stable par union dénombrable), donc $\cup_{n\in\mathbb{N}}A_n\in T$,

d'après l'exercice précédent, on en déduit que T est une tribu.

2.	Soit $\mathcal{A} \subset \mathcal{P}(E)$. On note $T_{\mathcal{A}}$ l'intersection de toutes les tribus sur E contenant \mathcal{A} (une partie
	de E appartient donc à T_A si et seulement si elle appartient à toutes les tribus contenant A , on
	remarquera qu'il y a toujours au moins une tribu contenant A , c'est la tribu $\mathcal{P}(E)$). Montrer que
	$T_{\mathcal{A}}$ est la plus petite des tribus contenant \mathcal{A} (c'est la tribu engendrée par \mathcal{A}).

corrigé-		

D'après la question précédente, $T_{\mathcal{A}}$ est bien une tribu. La définition de $T_{\mathcal{A}}$ donne que toute tribu contenant \mathcal{A} doit contenir $T_{\mathcal{A}}$. $T_{\mathcal{A}}$ est donc la plus petite tribu contenant \mathcal{A} .

3. Soient \mathcal{A} et $\mathcal{B} \subset \mathcal{P}(E)$ et $T_{\mathcal{A}}$, $T_{\mathcal{B}}$ les tribus engendrées par \mathcal{A} et \mathcal{B} . Montrer que si $\mathcal{A} \subset \mathcal{B}$ alors $T_{\mathcal{A}} \subset T_{\mathcal{B}}$.

 $T_{\mathcal{B}}$ est une tribu contenant \mathcal{B} , donc contenant \mathcal{A} . Donc $T_{\mathcal{A}} \subset T_{\mathcal{B}}$.

Corrigé 11 (Exemples de tribus)

- 1. Tribu trace
 - (a) Soit \mathcal{T} une tribu sur un ensemble E et $F \subset E$. Montrer que $\mathcal{T}_F = \{A \cap F, A \in \mathcal{T}\}$ est une tribu sur F (tribu trace de \mathcal{T} sur F).

-corrigé-

- $\emptyset \in \mathcal{T}_F \text{ car } \emptyset = \emptyset \cap F \text{ et } \emptyset \in \mathcal{T}.$
- Soit $A \in \mathcal{T}_F$. Il existe $B \in \mathcal{T}$ t.q. $A = B \cap F$. On a donc $F \setminus A = (E \setminus B) \cap F \in \mathcal{T}_F$ car $E \setminus B \in \mathcal{T}$. \mathcal{T}_F est donc stable par passage au complémentaire.
- Soit $(A_n)_{n\in\mathbb{N}}\subset \mathcal{T}_F$. Pour tout $n\in\mathbb{N}$, il existe $B_n\in\mathcal{T}$ t.q. $A_n=B_n\cap F$. On a donc $\cup_{n\in\mathbb{N}}A_n=(\cup_{n\in\mathbb{N}}B_n)\cap F\in\mathcal{T}_F$ car $\cup_{n\in\mathbb{N}}B_n\in\mathcal{T}$. \mathcal{T}_F est donc stable par union dénombrable.

Ceci est suffisant pour dire que \mathcal{T}_F est une tribu sur F.

(b) Si E est un espace topologique et $\mathcal{T} = \mathcal{B}(E)$ ($\mathcal{B}(E)$ est la tribu borélienne de E), montrer que la tribu trace sur F, notée T_F , est la tribu engendrée par la topologie trace sur F (tribu borélienne de F, notée $\mathcal{B}(F)$). [Montrer que $\mathcal{B}(F) \subset T_F$. Pour montrer que $T_F \subset \mathcal{B}(F)$, considérer $\mathcal{C} = \{A \in \mathcal{P}(E); A \cap F \in \mathcal{B}(F)\}$ et montrer que \mathcal{C} est une tribu (sur E) contenant les ouverts de E.] Si F est un borélien de E, montrer que T_F est égale à l'ensemble des boréliens de E contenus dans F.

-corrigé-

On note \mathcal{O}_F l'ensemble des ouverts de F, et \mathcal{O}_E l'ensemble des ouverts de E. Par définition de la topologie trace, $\mathcal{O}_F = \{O \cap F, O \in \mathcal{O}_E\}$.

Comme $\mathcal{O}_E \subset \mathcal{B}(E)$, on a $\mathcal{O}_F \subset T_F = \{B \cap F, B \in \mathcal{B}(E)\}$ (Noter que $T_F = \mathcal{B}(E)_F$, avec les notations de la question précédente). On en déduit que $\mathcal{B}(F) \subset T_F$ car T_F est une tribu sur F contenant \mathcal{O}_F qui engendre $\mathcal{B}(F)$.

On montre maintenant que $T_F \subset \mathcal{B}(F)$. On pose $\mathcal{C} = \{A \in \mathcal{P}(E); A \cap F \in \mathcal{B}(F)\}$. $\emptyset \in \mathcal{C}$ car $\emptyset \cap F = \emptyset \in \mathcal{B}(F)$. \mathcal{C} est stable par passage au complémentaire car, si $A \in \mathcal{C}$, on a $(E \setminus A) \cap F = F \setminus A = F \setminus (A \cap F) \in \mathcal{B}(F)$, donc $(E \setminus A) \in \mathcal{C}$. Enfin, pour montrer que \mathcal{C} est stable par union dénombrable, soit $(A_n)_{n \in \mathbb{N}} \subset \mathcal{C}$, on a $(\bigcup_{n \in \mathbb{N}} A_n) \cap F = \bigcup_{n \in \mathbb{N}} (A_n \cap F) \in \mathcal{B}(F)$, ce qui donne $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{C}$ et la stabilité de \mathcal{C} par union dénombrable. \mathcal{C} est donc une tribu. Il est clair que $\mathcal{O}_E \subset \mathcal{C}$ car si $O \in \mathcal{O}_E$, on a $O \cap F \in \mathcal{O}_F \subset \mathcal{B}(F)$. La tribu \mathcal{C} contient \mathcal{O}_E , ce qui prouve que \mathcal{C} contient $\mathcal{B}(E)$ et donc que $A \cap F \in \mathcal{B}(F)$ pour tout $A \in \mathcal{B}(E)$. Ceci donne exactement $T_F \subset \mathcal{B}(F)$. On a bien montré finalement que $T_F = \mathcal{B}(F)$ (on rappelle que $T_F = \mathcal{B}(E)_F$, avec les notations de la question précédente).

On suppose maintenant que F est un borélien de E, c'est-à-dire que $F \in \mathcal{B}(E)$. On a alors $T_F \subset \mathcal{B}(E)$ (car $A \cap F \in \mathcal{B}(E)$ si $A \in \mathcal{B}(E)$). Puis, soit $A \subset F$ t.q. $A \in \mathcal{B}(E)$, on peut écrire $A = A \cap F$, donc $A \in T_F$. On a bien montré que $T_F = \{A \subset F; A \in \mathcal{B}(E)\}$.

2. Soit E un ensemble infini et $S = \{\{x\}, x \in E\}$. Déterminer la tribu engendrée par S (distinguer les cas E dénombrable et non dénombrable).

-corrigé-----

On note T(S) la tribu engendrée par S.

- On suppose que E est au plus dénombrable (c'est-à-dire dire fini ou dénombrable). D'après la stabilité de T(S) par union dénombrable, la tribu T(S) doit contenir toutes les parties au plus dénombrables. Comme toutes les parties de E sont au plus dénombrables, on en déduit $T(S) = \mathcal{P}(E)$.
- On suppose maintenant que E est infini non dénombrable. On note \mathcal{A} l'ensemble des parties de E au plus dénombrables et $\mathcal{B} = \{A^c, A \in \mathcal{A}\}$. D'après la stabilité de T(S) par union dénombrable, la tribu T(S) doit contenir \mathcal{A} . Par stabilité de T(S) par passage au complémentaire, T(S) doit aussi contenir \mathcal{B} .

on va montrer maintenant que $\mathcal{A} \cup \mathcal{B}$ est une tribu (on en déduit que $T(S) = \mathcal{A} \cup \mathcal{B}$). On a $\emptyset \in \mathcal{A} \subset \mathcal{A} \cup \mathcal{B}$ et il est clair que $\mathcal{A} \cup \mathcal{B}$ est stable par passage au complémentaire (car $A \in \mathcal{A}$ implique $A^c \in \mathcal{B}$ et $A \in \mathcal{B}$ implique $A^c \in \mathcal{A}$). Enfin, si $(A_n)_{n \in \mathbb{N}} \subset \mathcal{A} \cup \mathcal{B}$, on distingue 2 cas:

1er cas. Si $A_n \in \mathcal{A}$ pour tout $n \in \mathbb{N}$, on a alors $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A} \subset \mathcal{A} \cup \mathcal{B}$.

2eme cas. Si il existe $n \in \mathbb{N}$ t.q. $A_n \in \mathcal{B}$ on a alors $A_n^c \in \mathcal{A}$, donc A_n^c est au plus dénombrable et $(\cup_{p \in \mathbb{N}} A_p)^c = \cap_{p \in \mathbb{N}} A_p^c \subset A_n^c$ est aussi au plus dénombrable,ce qui donne $(\cup_{p \in \mathbb{N}} A_p)^c \in \mathcal{A}$ et $\cup_{p \in \mathbb{N}} A_p \in \mathcal{B} \subset \mathcal{A} \cup \mathcal{B}$.

On a bien montré que $\cup_{n\in\mathbb{N}}A_n\in\mathcal{A}\cup\mathcal{B}$. Ce qui prouve la stabilité par union dénombrable de $\mathcal{A}\cup\mathcal{B}$. Finalement, $\mathcal{A}\cup\mathcal{B}$ est donc une tribu contenant S et contenu dans T(S), ceci donne $T(S)=\mathcal{A}\cup\mathcal{B}$.

Corrigé 12 (Tribu image)

Soient E et F des ensembles. Pour $\mathcal{A} \subset \mathcal{P}(E)$ (resp. $\mathcal{P}(F)$) on note $T(\mathcal{A})$ la tribu de E (resp. F) engendrée par \mathcal{A} .

Soit $f: E \to F$ une application.

1. Montrer que si \mathcal{T}' est une tribu sur F, alors $f^{-1}(\mathcal{T}') = \{f^{-1}(B); B \in \mathcal{T}'\}$ est une tribu sur E (tribu image réciproque).

-corrigé----

On démontre que $f^{-1}(\mathcal{T}')$ est une tribu sur E en remarquant que $f^{-1}(\emptyset) = \emptyset$, $E \setminus f^{-1}(A) = f^{-1}(F \setminus A)$ (pour tout $A \subset F$) et $f^{-1}(\bigcup_{n \in \mathbb{N}} A_n) = \bigcup_{n \in \mathbb{N}} f^{-1}(A_n)$ (pour toute suite $(A_n)_{n \in \mathbb{N}} \subset \mathcal{P}(F)$).

2. Montrer que si \mathcal{T} est une tribu sur E, alors $\mathcal{T}' = \{B \subset F; f^{-1}(B) \in \mathcal{T}\}$ est une tribu sur F (tribu image directe).

-corrigé-

Ici aussi, on montre que \mathcal{T}' est une tribu sur F en remarquant que $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$ (pour tout $A \subset F$) et $f^{-1}(\bigcup_{n \in \mathbb{N}} A_n) = \bigcup_{n \in \mathbb{N}} f^{-1}(A_n)$ (pour toute suite $(A_n)_{n \in \mathbb{N}} \subset \mathcal{P}(F)$).

Noter que, en général, $\{f(B), B \in \mathcal{T}\}$ n'est pas une tribu sur F (par exemple, si f est non surjective, $F \notin \{f(B), B \in \mathcal{T}\}$).

3. Montrer que pour tout ensemble $\mathcal C$ de parties de F on a : $T(f^{-1}(\mathcal C)) = f^{-1}(T(\mathcal C))$. [Montrer que $T(f^{-1}(\mathcal C)) \subset f^{-1}(T(\mathcal C))$. Puis, pour montrer que $f^{-1}(T(\mathcal C)) \subset T(f^{-1}(\mathcal C))$, montrer que $T = \{G \subset F; f^{-1}(G) \in T(f^{-1}(\mathcal C))\}$ est une tribu contenant $\mathcal C$.]

-corrigé

 $f^{-1}(T(\mathcal{C}))$ est une tribu sur E (d'après la première question) contenant $f^{-1}(\mathcal{C})$ (car $T(\mathcal{C}) \supset \mathcal{C}$), elle contient donc $T(f^{-1}(\mathcal{C}))$, ce qui donne $f^{-1}(T(\mathcal{C})) \supset T(f^{-1}(\mathcal{C}))$.

Pour montrer l'inclusion inverse, c'est-à-dire $f^{-1}(T(\mathcal{C})) \subset T(f^{-1}(\mathcal{C}))$. On pose $T = \{G \subset F; f^{-1}(G) \in T(f^{-1}(\mathcal{C}))\}$. On montre d'abord que T est une tribu :

- $\emptyset \in T$ car $f^{-1}(\emptyset) = \emptyset \in T(f^{-1}(\mathcal{C}))$
- T est stable par passage au complémentaire car, si $A \in T$, on a $f^{-1}(A) \in T(f^{-1}(\mathcal{C}))$ et $f^{-1}(F \setminus A) = E \setminus f^{-1}(A) \in T(f^{-1}(\mathcal{C}))$, donc $(F \setminus A) \in T$.
- T est stable par union dénombrable car, si $(A_n)_{n\in\mathbb{N}}\subset T$, on a $f^{-1}(A_n)\in T(f^{-1}(\mathcal{C}))$ pour tout $n\in\mathbb{N}$ et $f^{-1}(\cup_{n\in\mathbb{N}}A_n)=\cup_{n\in\mathbb{N}}f^{-1}(A_n)\in T(f^{-1}(\mathcal{C}))$, donc $\cup_{n\in\mathbb{N}}A_n\in T$.

On a bien montré que T est une tribu. Il est immédiat que $T \supset \mathcal{C}$ (car $f^{-1}(B) \in T(f^{-1}(\mathcal{C}))$ pour tout $B \in \mathcal{C}$). On en déduit que T contient $T(\mathcal{C})$, c'est-à-dire que $f^{-1}(B) \in T(f^{-1}(\mathcal{C}))$ pour tout $B \in T(\mathcal{C})$. Ceci signifie exactement que $f^{-1}(T(\mathcal{C})) \subset T(f^{-1}(\mathcal{C}))$.

Les 2 inclusions nous donnent bien $f^{-1}(T(\mathcal{C})) = T(f^{-1}(\mathcal{C}))$.

Corrigé 13 (π -système, λ -système)

Soit Ω un ensemble et $\mathcal{F} \subset \mathcal{P}(\Omega)$.

1. Montrer que \mathcal{F} est une tribu si et seulement si \mathcal{F} est un π -système (c'est-à-dire stable par intersection finie) et un λ -système (c'est-à-dire que \mathcal{F} est stable par union dénombrable croissante, $\Omega \in \mathcal{F}$ et $A \setminus B \in \mathcal{F}$ si $A, B \in \mathcal{F}$ avec $B \subset A$).

2. On suppose que \mathcal{F} est un λ -système. Soit $C \in \mathcal{F}$. On pose $\mathcal{G} = \{B \subset \Omega \text{ t.q. } C \cap B \in \mathcal{F}\}$. Montrer que \mathcal{G} est un λ -système.

En attente

Corrigé 14 (Tribu borélienne de \mathbb{R}^2)

On note T la tribu (sur \mathbb{R}^2) engendrée par $\{A \times B; A, B \in \mathcal{B}(\mathbb{R})\}$. On va montrer ici que $T = \mathcal{B}(\mathbb{R}^2)$.

1. Montrer que tout ouvert de \mathbb{R}^2 est réunion au plus dénombrable de produits d'intervalles ouverts de \mathbb{R} . [S'inspirer d'une démonstration analogue faite pour \mathbb{R} au lieu de \mathbb{R}^2 .] En déduire que $\mathcal{B}(\mathbb{R}^2) \subset T$.

----corrigé

On s'inspire ici de la démonstration du lemme 2.1 (on peut reprendre aussi la démonstration de l'exercice 15).

Soit O un ouvert de \mathbb{R}^2 . Pour tout $x=(x_1,x_2)^t\in O$, il existe r>0 t.q. $]x_1-r,x_1+r[\times]x_2-r,x_2+r[\subset O$. Comme les rationnels sont denses dans \mathbb{R} , on peut trouver $y_1\in \mathbb{Q}\cap]x_1-r,x_1[$, $z_1\in \mathbb{Q}\cap]x_1,x_1+r[$, $y_2\in \mathbb{Q}\cap]x_2-r,x_2[$ et $z_2\in \mathbb{Q}\cap]x_2,x_2+r[$. On a donc $x\in [y_1,z_1]\times]y_2,z_2[\subset O$.

On note alors $I = \{(y_1, z_1, y_2, z_2) \in \mathbb{Q}^4; \]y_1, z_1[\times]y_2, z_2[) \subset O\}$. Pour tout $x \in O$, il existe donc $(y_1, z_1, y_2, z_2) \in I$ t.q. $x \in [y_1, z_1[\times]y_2, z_2[$. On en déduit que

$$O = \bigcup_{(y_1, z_1, y_2, z_2) \in I} [y_1, z_1[\times] y_2, z_2[.$$

Comme I est au plus dénombrable (car \mathbb{Q}^4 est dénombrable), on en déduit que $O \in T$. On a ainsi montré que T est une tribu contenant tous les ouverts de \mathbb{R}^2 , et donc contenant la tribu engendrée par les ouverts de \mathbb{R}^2 (c'est-à-dire $\mathcal{B}(\mathbb{R}^2)$). Donc, $\mathcal{B}(\mathbb{R}^2) \subset T$.

2. Soit A un ouvert de \mathbb{R} et $T_1 = \{B \in \mathcal{B}(\mathbb{R}); A \times B \in \mathcal{B}(\mathbb{R}^2)\}$. Montrer que T_1 est une tribu (sur \mathbb{R}) contenant les ouverts (de \mathbb{R}). En déduire que $T_1 = \mathcal{B}(\mathbb{R})$.

-----corrigé-----

- $\emptyset \in T_1$ car $A \times \emptyset = \emptyset \in \mathcal{B}(\mathbb{R}^2)$.
- \bullet On montre ici que T_1 est stable par passage au complémentaire.

Soit $B \in T_1$, on a donc $B^c \in \mathcal{B}(\mathbb{R})$ et $A \times B^c = A \times (\mathbb{R} \setminus B) = (A \times \mathbb{R}) \setminus (A \times B)$. Or, $(A \times \mathbb{R})$ est un ouvert de \mathbb{R}^2 (car A et \mathbb{R} sont des ouverts de \mathbb{R}), on a donc $(A \times \mathbb{R}) \in \mathcal{B}(\mathbb{R}^2)$. D'autre part, $(A \times B) \in \mathcal{B}(\mathbb{R}^2)$ (car $B \in T_1$). Donc, $A \times B^c = (A \times \mathbb{R}) \setminus (A \times B) \in \mathcal{B}(\mathbb{R}^2)$. Ce qui prouve que $B^c \in T_1$ et donc que T_1 est stable par passage au complémentaire.

• Enfin, T_1 est stable par union dénombrable. En effet, si $(B_n)_{n\in\mathbb{N}}\subset T_1$, on a $A\times (\cup_{n\in\mathbb{N}}B_n)=\cup_{n\in\mathbb{N}}A\times B_n\in\mathcal{B}(\mathbb{R}^2)$ (car $A\times B_n\in\mathcal{B}(\mathbb{R}^2)$ pour tout $n\in\mathbb{N}$). Donc, $\cup_{n\in\mathbb{N}}B_n\in T_1$.

On a donc montré que T_1 est une tribu, il reste à montrer que T_1 contient les ouverts de \mathbb{R} .

Soit B un ouvert de \mathbb{R} . On a donc $B \in \mathcal{B}(\mathbb{R})$ et, comme $A \times B$ est un ouvert de \mathbb{R}^2 , on a $A \times B \in \mathcal{B}(\mathbb{R}^2)$. On a donc $B \in T_1$.

 T_1 est donc une tribu contenant les ouverts de \mathbb{R} , donc contenant $\mathcal{B}(\mathbb{R})$. Donc, $T_1 = \mathcal{B}(\mathbb{R})$.

La conséquence de cette question est donc :

A ouvert de
$$\mathbb{R}$$
 et $B \in \mathcal{B}(\mathbb{R}) \Rightarrow A \times B \in \mathcal{B}(\mathbb{R}^2)$. (12.4)

3. Soit $B \in \mathcal{B}(\mathbb{R})$ et $T_2 = \{A \in \mathcal{B}(\mathbb{R}); A \times B \in \mathcal{B}(\mathbb{R}^2)\}$. Montrer que $T_2 = \mathcal{B}(\mathbb{R})$.

On commence par remarquer que la question précédente donne que T_2 contient les ouverts de \mathbb{R} . En effet, soit A un ouvert de \mathbb{R} , la propriété (12.4) donne $A \times B \in \mathcal{B}(\mathbb{R}^2)$, et donc $A \in T_2$.

On montre maintenant que T_2 est une tribu (on en déduira que $T_2 = \mathcal{B}(\mathbb{R})$).

- $\emptyset \in T_2$ car $\emptyset \times B = \emptyset \in \mathcal{B}(\mathbb{R}^2)$.
- On montre ici que T_2 est stable par passage au complémentaire. Soit $A \in T_2$, on a $A^c \in \mathcal{B}(\mathbb{R})$ et $A^c \times B = (\mathbb{R} \times B) \setminus (A \times B)$. La propriété (12.4) donne $(\mathbb{R} \times B) \in \mathcal{B}(\mathbb{R}^2)$ car \mathbb{R} est un ouvert de \mathbb{R} . D'autre part, $(A \times B) \in \mathcal{B}(\mathbb{R}^2)$ (car $A \in T_2$). Donc, $A^c \times B \in \mathcal{B}(\mathbb{R}^2)$. Ce qui prouve que $A^c \in T_2$ et donc que T_2 est stable par passage au complémentaire.
- Enfin, T_2 est stable par union dénombrable. En effet, si $(A_n)_{n\in\mathbb{N}}\subset T_2$, on a $(\cup_{n\in\mathbb{N}}A_n)\times B=\cup_{n\in\mathbb{N}}(A_n\times B)\in\mathcal{B}(\mathbb{R}^2)$ (car $A_n\times B\in\mathcal{B}(\mathbb{R}^2)$ pour tout $n\in\mathbb{N}$). Donc, $\cup_{n\in\mathbb{N}}A_n\in T_2$.

 T_2 est donc une tribu (sur \mathbb{R}) contenant les ouverts de \mathbb{R} , ce qui prouve que $T_2 \supset \mathcal{B}(\mathbb{R})$ et donc, finalement, $T_2 = \mathcal{B}(\mathbb{R})$.

4. Montrer que $T \subset \mathcal{B}(\mathbb{R}^2)$ (et donc que $T = \mathcal{B}(\mathbb{R}^2)$).

La question précédente donne :

$$A, B \in \mathcal{B}(\mathbb{R}) \Rightarrow A \times B \in \mathcal{B}(\mathbb{R}^2).$$

On a donc $\{A \times B; A, B \in \mathcal{B}(\mathbb{R})\} \subset \mathcal{B}(\mathbb{R}^2)$. On en déduit $T \subset \mathcal{B}(\mathbb{R}^2)$. Avec la question 1, on a finalement $T = \mathcal{B}(\mathbb{R}^2)$.

Corrigé 15 (Tribu borélienne sur \mathbb{R}^N)

1. Montrer que la tribu borélienne de \mathbb{R}^N est égale à celle engendrée par l'ensemble de toutes les boules ouvertes de \mathbb{R}^N . [On pourra montrer d'abord que tout ouvert de \mathbb{R}^N est réunion dénombrable de boules ouvertes de \mathbb{R}^N .]

Soit T la tribu engendrée par l'ensemble de toutes les boules ouvertes de \mathbb{R}^N . Comme les boules ouvertes sont des ouverts, on a $T \subset \mathcal{B}(\mathbb{R}^N)$.

On montre maintenant l'inclusion inverse, c'est-à-dire $\mathcal{B}(\mathbb{R}^N) \subset T$. Soit O un ouvert de \mathbb{R}^N . Pour tout $x \in O$, il existe r > 0 t.q. $B(x,r) \subset O$ (où B(x,r) déisgne la boule ouverte de centre x et rayon r). Comme les rationnels sont denses \mathbb{R} , on peut donc trouver $y \in \mathbb{Q}^N$ et $s \in \mathbb{Q}_+^* = \{t \in \mathbb{Q}; t > 0\}$, t.q. $x \in B(y,s) \subset O$. On note alors $I = \{(y,s) \in \mathbb{Q}^N \times \mathbb{Q}_+^*; B(y,s) \subset O\}$. On a alors $O = \bigcup_{(y,s) \in I} B(y,s)$. Comme I est au plus dénombrable (car \mathbb{Q}^{N+1} est dénombrable), on en déduit que $O \in T$ et donc que $\mathcal{B}(\mathbb{R}^N) \subset T$ (car T est une tribu contenant tous les ouverts).

Le raisonnement précédent montre même que $\mathcal{B}(\mathbb{R}^N)$ est aussi la tribu engendrée par l'ensemble des boules ouvertes à rayons rationnels et centre à coordonnées rationnelles.

2. Montrer que la tribu borélienne de \mathbb{R}^N est égale à celle engendrée par l'ensemble des produits d'intervalles ouverts à extrémités rationnelles.

_____corrigé_____

On reprend le même raisonnement que dans la question précédente en remplaçant B(x,r) par $P(x,r) = \prod_{i=1}^{N}]x_i - r, x_i + r[$, avec $x = (x_1, \dots, x_N)^t$.

3. Montrer que la tribu borélienne de \mathbb{R} est engendrée par les intervalles [a,b] où $a,b\in\mathbb{R},\ a< b$.

-corrigé-----

Soit $\mathcal{C} = \{ [a,b], \ a,b \in \mathbb{R}, \ a < b \}$ et $T(\mathcal{C})$ la tribu engendrée par \mathcal{C} . Comme $[a,b] = \bigcap_{n>0} [a,b+\frac{1}{n}[$, on voit que $[a,b] \in \mathcal{B}(\mathbb{R})$ pour tout $a,b \in \mathbb{R}, \ a < b$. Donc, on a $\mathcal{C} \subset \mathcal{B}(\mathbb{R})$ et donc $T(\mathcal{C}) \subset \mathcal{B}(\mathbb{R})$.

On montre maintenant l'inclusion inverse, c'est-à-dire $\mathcal{B}(\mathbb{R}) \subset T(\mathcal{C})$. Soit I =]a,b[avec $a,b \in \mathbb{R}$, a < b. On peut écrire $I = \bigcup_{n \geq n_0}]a,b - \frac{1}{n}]$, avec n_0 t.q. $\frac{1}{n_0} < b - a$. On en déduit que $I \in T(\mathcal{C})$. Puis, comme tout ouvert non vide peut s'écrire comme réunion dénombrable d'intervalles ouverts à extrémités finies (voir le lemme 2.1 page 20), on obtient que tout ouvert appartient à $T(\mathcal{C})$. Ceci permet de conclure que $\mathcal{B}(\mathbb{R}) \subset T(\mathcal{C})$ et finalement que $\mathcal{B}(\mathbb{R}) = T(\mathcal{C})$.

4. Soit S un sous ensemble dense de \mathbb{R} . Montrer que $\mathcal{B}(\mathbb{R}^N)$ est engendrée par la classe des boules ouvertes (ou bien fermées) telles que les coordonnées du centre et le rayon appartiennent S.

----corrigé-

On reprend le même raisonnement que dans la première question en remplaçant \mathbb{Q}^N par S^N (qui est dense dans \mathbb{R}^N) et \mathbb{Q}_+^* par $S_+^* = \{s \in S; s > 0\}$ (qui est dense dans \mathbb{R}_+^*).

Corrigé 16

Soit E un ensemble et $\mathcal{A} \subset \mathcal{P}(E)$.

1. Montrer que \mathcal{A} est une algèbre (cf. définition 2.4) si et seulement si \mathcal{A} vérifie les deux propriétés suivantes :

 $\begin{array}{ll} \text{(a)} & E \in \mathcal{A}, \\ \text{(b)} & A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}. \end{array}$

- On suppose que A est une algèbre. Il est clair que (a) est vérifiée. Pour montrer (b) il suffit d'utiliser la stabilité par intersection finie et par passage au complémentaire, cela donne bien que A \ B = A ∩ B^c ∈ A si A, B ∈ A.
- On suppose maintenant que A vérifie (a) et (b).

On a alors $\emptyset = E \setminus E \in \mathcal{A}$, et donc $\emptyset, E \in \mathcal{A}$.

On remarque ensuite que, grâce à (b), $A^c = E \setminus A \in E$ si $A \in \mathcal{A}$. On a donc la stabilité de \mathcal{A} par passage au complémentaire.

Soit maintenant $A_1, A_2 \in \mathcal{A}$. On a $A_1 \cap A_2 = A_1 \setminus A_2^c$, on en déduit que $A_1 \cap A_2 \in \mathcal{A}$ par (b) et la stabilité de \mathcal{A} par passage au complémentaire. Une récurrence sur n donne alors que \mathcal{A} est stable par intersection finie.

Enfin, la stabilité de \mathcal{A} par union finie découle de la stabilité de \mathcal{A} par intersection finie et par passage au complémentaire car $(\bigcup_{p=0}^{n} A_p)^c = \bigcap_{p=0}^{n} A_p^c$.

On a bien montré que \mathcal{A} est une algèbre.

2. Soit $(A_i)_{i \in I}$ une famille d'algèbres (sur E). Montrer que $\cap_{i \in I} A_i = \{A \in \mathcal{P}(E); A \in \mathcal{A}_i \text{ pour tout } i \in I\}$ est encore une algèbre.

–corrigé—

On peut montrer que $\cap_{i \in I} \mathcal{A}_i$ est une algèbre en utilisant diretement la définition d'une algèbre. Onb peut aussi le montrer en utilisant la première question, ce que nous faisons ici. On montre donc que $\cap_{i \in I} \mathcal{A}_i$ vérifie (a) et (b):

- $E \in \bigcap_{i \in I} A_i$ car $E \in A_i$ pour tout $i \in I$.
- Soit $A, B \in \cap_{i \in I} A_i$. Pour tout $i \in I$, on a $A, B \in A_i$. On en déduit $A \setminus B \in A_i$ (car A_i est une algèbre) et donc $A \setminus B \in \cap_{i \in I} A_i$.

On a bien montré que $\cap_{i \in I} A_i$ est une algèbre.

Si $\mathcal{C} \subset \mathcal{P}(E)$, la deuxième question permet donc de définir l'algèbre engendrée par \mathcal{C} comme l'intersection de toutes les algèbres sur E contenant \mathcal{C} .

Corrigé 17

Soit E un ensemble et C un ensemble de parties de E. On suppose que \emptyset , $E \in C$, que C est stable par intersection finie et que le complémentaire de tout élément de C est une union finie disjointe d'éléments de C, c'est-à-dire :

$$C \in \mathcal{C} \Rightarrow \text{ il existe } n \in \mathbb{N}^* \text{ et } C_1, \dots, C_n \in \mathcal{C} \text{ t.q. } C^c = \bigcup_{p=1}^n C_p \text{ et } C_p \cap C_q = \emptyset \text{ si } p \neq q.$$

On note \mathcal{B} l'ensemble des réunions finies disjointes d'éléments de \mathcal{C} . Une partie de E est donc un élément de \mathcal{B} si et seulement si il existe $n \in \mathbb{N}^*$ et $(A_p)_{p=1,\ldots,n} \subset \mathcal{C}$ t.q. $A_p \cap A_q = \emptyset$ si $p \neq q$ et $A = \bigcup_{p=1}^n A_p$.

1. Montrer que ${\mathcal B}$ est stable par intersection finie et par passage au complémentaire.

–corrigé

On montre tout d'abord la stabilité de \mathcal{B} par intersection finie. Soit $A, B \in \mathcal{B}$. Il existe $A_1, \ldots, A_n \in \mathcal{C}$ et $B_1, \ldots, B_m \in \mathcal{C}$ t.q. $A_i \cap A_j = \emptyset$ si $i \neq j$, $B_i \cap B_j = \emptyset$, si $i \neq j$, $A = \bigcup_{i=1}^n A_i$ et $B = \bigcup_{j=1}^m B_j$.

On a alors $A \cap B = (\bigcup_{i=1}^n A_i) \cap (\bigcup_{j=1}^m B_j) = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j)$. Comme $A_i \cap B_j \in \mathcal{C}$ (car \mathcal{C} est stable par intersection finie) pour tout i, j et que $(A_i \cap B_j) \cap (A_k \cap B_l) = \emptyset$ si $(i, j) \neq (k, l)$, on en déduit que $A \cap B \in \mathcal{B}$.

Une récurrence sur n donne alors la stabilité de \mathcal{B} par intersection finie.

On montre maintenant la stabilité de \mathcal{B} par passage au complémentaire. Soit $A \in \mathcal{B}$. Il existe $A_1, \ldots, A_n \in \mathcal{C}$ t.q. $A_i \cap A_j = \emptyset$ si $i \neq j$ et $A = \bigcup_{i=1}^n A_i$. On a alors $A^c = \bigcap_{i=1}^n A_i^c$. Comme A_i^c est une réunion finie disjointe d'éléments de \mathcal{C} , on a bien $A_i^c \in \mathcal{B}$. La stabilité de \mathcal{B} par intersection finie donne alors que $A^c \in \mathcal{B}$. On a donc bien montré la stabilité de \mathcal{B} par passage au complémentaire.

2. Montrer que l'algèbre engendrée par $\mathcal C$ est égale à $\mathcal B.$

-corrigé

On note \mathcal{A} l'agèbre engendrée par \mathcal{C} . Comme \mathcal{A} est stable par union finie et contient \mathcal{C} , il est clair que $\mathcal{A} \supset \mathcal{B}$. Comme \mathcal{B} contient \mathcal{C} , pour montrer l'inclusion inverse, il suffit de montrer que \mathcal{B} est une algèbre (car \mathcal{A} est l'intersection de toutes les algèbres contenant \mathcal{C}). On montre donc maintenant que \mathcal{B} est une algèbre.

Pour montrer que \mathcal{B} est une algèbre, on montre que \mathcal{B} vérifie les quatre propriétés d'une algèbre.

- $E, \emptyset \in \mathcal{B}$ car $\mathcal{C} \subset \mathcal{B}$ et $E, \emptyset \in \mathcal{C}$.
- ullet La question précédente montre que $\mathcal B$ est stable par par intersection finie et par passage au complémentaire.
- La stabilité de \mathcal{B} par union finie découle facilement de la stabilité de \mathcal{B} par intersection finie et par passage au complémentaire, car $\bigcup_{i=1}^{n} A_i = (\bigcap_{i=1}^{n} A_i^c)^c$.

On a bien montré que \mathcal{B} est une algèbre. Comme $\mathcal{B} \supset \mathcal{C}$, on a donc $\mathcal{B} \supset \mathcal{A}$ et finalement $\mathcal{B} = \mathcal{A}$.

Corrigé 18

Soit E un ensemble. Pour $\Sigma \subset \mathcal{P}(E)$, on dit que Σ est une classe monotone (sur E) si Σ vérifie les deux propriétés suivantes (de stabilité par union croissante dénombrable et par intersection décroissante dénombrable) :

- $(A_n)_{n\in\mathbb{N}}\subset\Sigma$, $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}\Rightarrow\cup_{n\in\mathbb{N}}A_n\in\Sigma$,
- $(A_n)_{n\in\mathbb{N}}\subset\Sigma$, $A_n\supset A_{n+1}$ pour tout $n\in\mathbb{N}\Rightarrow\cap_{n\in\mathbb{N}}A_n\in\Sigma$.
- 1. Soit $\Sigma \subset \mathcal{P}(E)$. Montrer que Σ est une tribu si et seulement si Σ est une classe monotone et une algèbre (cf. exercice 2.9).

-corrigé—

- Si Σ est une tribu, Σ est stable par union dénombrable et intersection dénombrable. On en déduit immédiatement que Σ est une algèbre et une classe monotone.
- On suppose maintenant que Σ est une algèbre et une classe monotone. Comme Σ est une algèbre, pour montrer que Σ est une tribu, il suffit de montrer que Σ est stable par union dénombrable.

Soit donc $(A_n)_{n\in\mathbb{N}}\subset\Sigma$ et $A=\cup_{n\in\mathbb{N}}A_n$. On veut montrer que $A\in\Sigma$. On remarque que $A=\cup_{n\in\mathbb{N}}B_n$ avec $B_n=\cup_{p=0}^nA_n$. Comme Σ est une algèbre, on a $B_n\in\Sigma$ pour tout $n\in\mathbb{N}$. Puis, comme Σ est de stable par union croissante (noter que $B_n\subset B_{n+1}$) dénombrable, on en déduit que $A\in\Sigma$. On a bien montré que Σ est stable par union dénombrable et donc que Σ est une tribu.

Noter que l'hypothèse de stabilité de Σ par intersection décroissante dénombrable n'a pas été utilisé. Elle sera utile à la question 4.

2. Donner un exemple, avec $E = \mathbb{R}$, de classe monotone qui ne soit pas une tribu.

–corrigé–

Il y a beaucoup d'exemples de classes monotones qui ne sont pas des tribus. En voici un : $\Sigma = \{\mathbb{R}\}.$

3. Soit $(\Sigma_i)_{i\in I}$ une famille de classes monotones (sur E). Montrer que $\cap_{i\in I}\Sigma_i=\{A\in\mathcal{P}(E);\ A\in\Sigma_i$ pour tout $i\in I\}$ est encore une classe monotone.

-corrigé-

- Soit $(A_n)_{n\in\mathbb{N}}\subset \cap_{i\in I}\Sigma_i$ t.q. $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$. On a donc, pour tout $i\in I$, $(A_n)_{n\in\mathbb{N}}\subset\Sigma_i$ et donc, puisque Σ_i est une classe monotone, $\cup_{n\in\mathbb{N}}A_n\in\Sigma_i$. On en déduit que
- Soit $(A_n)_{n\in\mathbb{N}}A_n\subset \cap_{i\in I}\Sigma_i$. • Soit $(A_n)_{n\in\mathbb{N}}\subset \cap_{i\in I}\Sigma_i$ t.q. $A_n\supset A_{n+1}$ pour tout $n\in\mathbb{N}$. On a donc, pour tout $i\in I$, $(A_n)_{n\in\mathbb{N}}\subset \Sigma_i$ et donc, puisque Σ_i est une classe monotone, $\cap_{n\in\mathbb{N}}A_n\in\Sigma_i$. On en déduit que $\cap_{n\in\mathbb{N}}A_n\subset \cap_{i\in I}\Sigma_i$.

Ceci montre bien que $\cap_{i \in I} \Sigma_i$ est une classe monotone.

Si $\mathcal{C} \subset \mathcal{P}(E)$, cette question permet donc de définir la classe monotone engendrée par \mathcal{C} comme l'intersection de toutes les classes monotones sur E contenant \mathcal{C} .

- 4. (Lemme des classes monotones) Soit \mathcal{A} une algèbre sur E. On note Σ la classe monotone engendrée par \mathcal{A} et on note T la tribu engendrée par \mathcal{A} .
 - (a) Montrer que $\Sigma \subset T$.

—corrigé-

 Σ est l'intersection de toutes les classes monotones sur \mathcal{A} . Une tribu étant aussi une classe monotone, la tribu T (engendrée par \mathcal{A}) est donc une classe monotone contenant \mathcal{A} . On en déduit que $\Sigma \subset T$.

(b) Soit $A \subset E$. On pose $\Sigma_A = \{B \subset E; A \setminus B \in \Sigma \text{ et } B \setminus A \in \Sigma\}$. Montrer que Σ_A est une classe monotone.

-corrigé-

• Soit $(B_n)_{n\in\mathbb{N}}\subset\Sigma_A$, $B_n\subset B_{n+1}$ pour tout $n\in\mathbb{N}$. On pose $B=\cup_{n\in\mathbb{N}}B_n$. On va montrer que $B\in\Sigma_A$.

On a $A \setminus B = A \setminus \bigcup_{n \in \mathbb{N}} B_n = \bigcap_{n \in \mathbb{N}} (A \setminus B_n)$. La suite $(A \setminus B_n)_{n \in \mathbb{N}}$ est une suite décroissante de Σ . Comme Σ est une classe monotone, on en déduit $A \setminus B = \bigcap_{n \in \mathbb{N}} (A \setminus B_n) \in \Sigma$.

On montre aussi que $B \setminus A \in \Sigma$. En effet, $B \setminus A = \bigcup_{n \in \mathbb{N}} B_n \setminus A = \bigcup_{n \in \mathbb{N}} (B_n \setminus A) \in \Sigma$ par la stabilité de Σ par union croissante dénombrable.

On a donc bien montré que $B \in \Sigma_A$. Ce qui donne la stabilité de Σ par union croissante dénombrable.

• De manière analogue, on va montrer la stabilité de Σ par intersection décroissante dénombrable. Soit $(B_n)_{n\in\mathbb{N}}\subset\Sigma_A,\,B_n\supset B_{n+1}$ pour tout $n\in\mathbb{N}$. On pose $B=\cap_{n\in\mathbb{N}}B_n$.

Comme $A \setminus B = \bigcup_{n \in \mathbb{N}} (A \setminus B_n)$, on obtient $A \setminus B \in \Sigma$ en utilisant la stabilité de Σ par union croissante dénombrable.

Comme $B \setminus A = \bigcap_{n \in \mathbb{N}} (B_n \setminus A)$, on obtient $B \setminus A \in \Sigma$ en utilisant la stabilité de Σ par intersection décroissante dénombrable.

On a donc $B \in \Sigma_A$. Ce qui donne la stabilité de Σ par intersection décroissante dénombrable.

On a bien montré que Σ_A est une classe monotone.

(c) (Question plus difficile.) Montrer que Σ est une algèbre. [Utiliser la question (b) et la première question de l'exercice 2.9.] En déduire que $T = \Sigma$.

–corrigé-

Pour montrer que Σ est une algèbre, il suffit de montrer que Σ vérifie les propriétés (a) et (b) de la première question de l'exercice 2.9. Il est immédiat que la propriété (a) est vérifiée car $E \in \mathcal{A} \in \Sigma$. Pour montrer (b), on utilise la classe monotone Σ_A définie à la question 4 pour $A \subset E$.

Soit $A \in \mathcal{A}$. Comme \mathcal{A} est une algèbre, on a donc $\mathcal{A} \subset \Sigma_A$. La classe monotone Σ_A contient \mathcal{A} , elle contient donc Σ qui est l'intersection de toutes les classes monotones contenant \mathcal{A} . On a donc :

$$A \in \mathcal{A}, B \in \Sigma \Rightarrow B \in \Sigma_A.$$
 (12.5)

On remarque maintenant que, pour tout $A, B \in \mathcal{P}(E)$, on a :

$$A \in \Sigma_B \Leftrightarrow B \in \Sigma_A$$
.

On déduit donc de (12.5):

$$A \in \mathcal{A}, B \in \Sigma \Rightarrow A \in \Sigma_B$$
.

Si $B \in \Sigma$, la classe monotone Σ_B contient donc \mathcal{A} . Elle contient alors aussi Σ (qui est l'intersection de toutes les classes monotones sur E contenant \mathcal{A}). On a donc montré :

$$B \in \Sigma, A \in \Sigma \Rightarrow A \in \Sigma_B$$
.

On en déduit que $A \setminus B \in \Sigma$ si $A, B \in \Sigma$.

On a bien montré que Σ vérifie la propriété (b) de la première question de l'exercice 2.9 et donc que Σ est une algèbre.

Pour conclure, on remarque Σ est une classe monotone et une algèbre. C'est donc une tribu (par la question 1) contenant \mathcal{A} . Elle contient donc T (qui est l'intersection de toutes les tribus contenant \mathcal{A}) et on a bien, finalement, $\Sigma = T$.

Corrigé 19 (Caractérisation de la tribu engendrée)

Soit E un ensemble et $\mathcal{A} \subset \mathcal{P}(E)$. On dit que \mathcal{A} est stable par intersection finie si $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$. On dit que \mathcal{A} est stable par différence si :

$$A, B \in \mathcal{A}, B \subset A \Rightarrow A \setminus B = A \cap B^c \in \mathcal{A}.$$

On dit que A est stable par union dénombrable disjointe si :

$$(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}, A_n\cap A_m=\emptyset \text{ pour } n\neq m\Rightarrow \cup_{n\in\mathbb{N}}A_n\in\mathcal{A}.$$

Soit $\mathcal{C} \subset \mathcal{P}(E)$.

1. On note \mathcal{Z} l'ensemble des parties de $\mathcal{P}(E)$ stables par différence et stables par union dénombrable disjointe. Montrer qu'il existe $\mathcal{D} \in \mathcal{Z}$ t.q. $\mathcal{C} \subset \mathcal{D}$ et :

$$\mathcal{A}\in\mathcal{Z},\ \mathcal{C}\subset\mathcal{A}\Rightarrow\mathcal{D}\subset\mathcal{A}.$$

----corrigé-----

On note \mathcal{Z}_r l'ensemble des éléments de \mathcal{Z} contenant \mathcal{C} . On remarque tout d'abord que $\mathcal{Z}_r \neq \emptyset$ car $\mathcal{P}(E) \in \mathcal{Z}_r$. Puis, on note \mathcal{D} l'ensemble des parties de E appartenant à tous les éléments de \mathcal{Z}_r (c'est-à-dire que, pour $A \in \mathcal{P}(E)$, on a $A \in \mathcal{D}$ si, pour tout $\mathcal{B} \in \mathcal{Z}_r$, $A \in \mathcal{B}$).

Il est facile de voir que \mathcal{D} est stable par différence, stable par union dénombrable disjointe et que \mathcal{D} contient \mathcal{C} (car tous les éléments de \mathcal{Z}_r vérifient ces trois propriétés). Enfin, $\mathcal{A} \in \mathcal{Z}_r \Rightarrow \mathcal{D} \subset \mathcal{A}$, ce qui est bien la propriété demandée.

Dans la suite, on note toujours \mathcal{D} cette partie de $\mathcal{P}(E)$. On suppose maintenant que \mathcal{C} est stable par intersection finie et que $E \in \mathcal{C}$.

- 2. Pour $A \in \mathcal{P}(E)$, on note $\mathcal{D}_A = \{D \in \mathcal{D} \text{ t.q. } A \cap D \in \mathcal{D}\}.$
 - (a) Soit $A \in \mathcal{P}(E)$. Montrer que \mathcal{D}_A est stable par union dénombrable disjointe et stable par différence.

-corrigé

Soit $(D_n)_{n\in\mathbb{N}}\subset\mathcal{D}_A$ avec $D_n\cap D_m=\emptyset$ si $n\neq m$. On va montrer que $\cup_{n\in\mathbb{N}}D_n\in\mathcal{D}_A$. On remarque tout d'abord que $\cup_{n\in\mathbb{N}}D_n\in\mathcal{D}$ car $D_n\in\mathcal{D}$, pour tout $n\in\mathbb{N}$, et \mathcal{D} est stable par union dénombrable disjointe. Puis, $A\cap(\cup_{n\in\mathbb{N}}D_n)=\cup_{n\in\mathbb{N}}(D_n\cap A)\in\mathcal{D}$ car $D_n\cap A\in\mathcal{D}$, pour tout $n\in\mathbb{N}$, $(D_n\cap A)\cap(D_m\cap A)=\emptyset$, si $n\neq m$, et \mathcal{D} est stable par union dénombrable disjointe. On a donc montré que $\cup_{n\in\mathbb{N}}D_n\in\mathcal{D}_A$. Ce qui prouve que \mathcal{D}_A est stable par union dénombrable disjointe.

Soit maintenant $D_1, D_2 \in \mathcal{D}_A$, avec $D_1 \subset D_2$. On va montrer que $D_2 \setminus D_1 \in D_A$. Pour cela, on remarque que $D_2 \setminus D_1 \in \mathcal{D}$ car $D_1, D_2 \in \mathcal{D}$ et que \mathcal{D} est stable par différence. Puis, $A \cap (D_2 \setminus D_1) = (A \cap D_2) \setminus (A \cap D_1) \in \mathcal{D}$ car $A \cap D_1, A \cap D_2 \in D, (A \cap D_1) \subset (A \cap D_2)$ et \mathcal{D} est stable par différence. On a donc montré que $D_2 \setminus D_1 \in D_A$. Ce qui prouve que \mathcal{D}_A est stable par différence.

(b) Soit $A \in \mathcal{C}$. Montrer que $\mathcal{C} \subset \mathcal{D}_A$. En déduire que $\mathcal{D}_A = \mathcal{D}$.

Soit $B \in \mathcal{C}$. On a $B \in \mathcal{D}$ (car $\mathcal{D} \supset \mathcal{C}$) et $A \cap B \in \mathcal{C}$ (car \mathcal{C} est stable par intersection finie), donc $A \cap B \in \mathcal{D}$. Ceci montre que $B \in \mathcal{D}_A$ et donc $\mathcal{C} \subset \mathcal{D}_A$.

Comme \mathcal{D}_A est stable par différence, stable par union dénombrable disjointe et que \mathcal{D}_A contient \mathcal{C} , la question 1 donne $\mathcal{D}_A \supset \mathcal{D}$ et, finalement, $\mathcal{D}_A = \mathcal{D}$.

Soit $B \in \mathcal{C}$. On a $B \in \mathcal{D}$ (car $\mathcal{D} \supset \mathcal{C}$). Comme $B \in \mathcal{C}$, la question précédente donne $\mathcal{D} = \mathcal{D}_B$ et donc $A \in \mathcal{D}_B$. On a donc $A \cap B \in \mathcal{D}$. Ceci montre que $B \in \mathcal{D}_A$ et donc $\mathcal{C} \subset \mathcal{D}_A$.

On en déduit, comme à la question précédente, que $\mathcal{D}_A = \mathcal{D}$.

Soit maintenant $B \in \mathcal{D}$. Comme $\mathcal{D} = \mathcal{D}_A$, on a $B \in \mathcal{D}_A$ et donc $A \cap B \in \mathcal{D}$. L'intersection de deux éléments de \mathcal{D} est donc aussi dans \mathcal{D} . Ceci prouve bien la stabilité de \mathcal{D} par intersection finie (une récurrence facile donne que l'intersection d'un nombre fini d'éléments de \mathcal{D} est aussi dans \mathcal{D}).

On remarque que $E \in \mathcal{D}$ (car $E \in \mathcal{C} \subset \mathcal{D}$) et que \mathcal{D} est stable par complémentaire car, si $A \in \mathcal{D}$, on a $E \setminus A \in \mathcal{D}$ car \mathcal{D} est stable par différence (et $E, A \in \mathcal{D}$ avec $A \subset E$). Pour montrer que \mathcal{D} est une tribu, il suffit de montrer que \mathcal{D} est stable par union dénombrable (non nécessairement disjointe).

Soit $(A_n)_{n\in\mathbb{N}}\subset\mathcal{D}$. Comme \mathcal{D} est stable par complémentaire, on aussi $A_n^c\in\mathcal{D}$, pour tout $n\in\mathbb{N}$. Pour tout $n\in\mathbb{N}$, on pose :

$$B_n = A_n \cap (\bigcap_{i=0}^{n-1} A_i^c).$$

On a $B_n \in \mathcal{D}$ car \mathcal{D} est stable par inteserction finie et $B_n \cap B_m = \emptyset$ si $n \neq m$ (en notant que $B_n \subset A_n$ et $B_m \subset A_n^c$ si m > n). Comme \mathcal{D} est stable par union dénombrable disjointe, on en déduit $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{D}$ et donc $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{D}$ (car $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$). Ceci prouve que \mathcal{D} est stable par union dénombrable et donc que \mathcal{D} est une tribu.

On a ainsi montré que \mathcal{D} est une tribu contenant \mathcal{C} et donc contenant la tribu engendrée par \mathcal{C} , notée $\tau(\mathcal{C})$. D'autre part, il est facile de voir que toute tribu contenant \mathcal{C} appartient à \mathcal{Z}_r (défini à la question 1) et donc que $\tau(\mathcal{C})$ contient \mathcal{D} . On a bien montré finalement que $\mathcal{D} = \tau(\mathcal{C})$.

Remarque : l'hypothèse " $E \in \mathcal{C}$ " n'a été utilisée qu'une seule fois. Elle n'a été utilisée que pour montrer que $E \in \mathcal{D}$ (dans la question 3). On peut remplacer cette hypothèse par "il existe une suite $(E_n)_{n \in \mathbb{N}} \subset \mathcal{C}$ t.q. $E_n \cap E_m = \emptyset$, si $n \neq m$, et $E = \bigcup_{n \in \mathbb{N}} E_n$ ". En effet, de cette hypothèse, on déduit aussi $E \in \mathcal{D}$ car \mathcal{D} est stable par union dénombrable disjointe et $\mathcal{C} \subset \mathcal{D}$. La suite du raisonnement de la question 3 donne alors aussi que \mathcal{D} est la tribu engendrée par \mathcal{C} .

12.2.2 Mesures

Corrigé 20 (Exemples de mesures)

Soit E un ensemble infini non dénombrable. Pour toute partie A de E, on pose m(A) = 0 si A est au plus dénombrable, et $m(A) = +\infty$ sinon. L'application m est-elle une mesure sur $\mathcal{P}(E)$?

-corrigé

Oui, l'application m est une mesure sur $\mathcal{P}(E)$. En effet, on a bien $m(\emptyset) = 0$ et si $(A_n)_{n \in \mathbb{N}} \subset \mathcal{P}(E)$ on a $m(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n=0}^{+\infty} m(A_n) = 0$ si A_n est au plus dénombrable pour tout $n \in \mathbb{N}$ (car une réunion d'ensembles au plus dénombrables est au plus dénombrable) et $m(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n=0}^{+\infty} m(A_n) = \infty$ si il existe $n \in \mathbb{N}$ t.q. A_n est infini non dénombrable. On a donc toujours $m(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n=0}^{+\infty} m(A_n)$ (noter d'ailleurs qu'il est inutile de supposer les A_n disjoints 2 à 2).

Corrigé 21 (Mesure trace et restriction d'une mesure)

Soit (E, T, m) un espace mesuré

1. Soit $F \in T$. Montrer que la tribu trace de T sur F, notée T_F , est incluse dans T (cette tribu est une tribu sur F). Montrer que la restriction de m à T_F est une mesure sur T_F . On l'appellera la trace de m sur F. Si $m(F) < \infty$, cette mesure est finie.

-corrigé-----

Soit $B \in T_F$, il existe donc $A \in T$ t.q. $B = A \cap F$. Comme $F \in T$, on a donc aussi $B \in T$.

On note m_F la restriction de m à T_F , on a donc $m_F(B) = m(B)$ pour tout $B \in T_F$. Il est alors immédiat de voir que $m_F(\emptyset) = 0$ et que m_F est σ -additive sur T_F , m_F est donc une mesure sur T_F . Si $m(F) < \infty$, on a $m_F(F) = m(F) < \infty$, la mesure m_F est donc finie (mais la mesure m peut ne pas être finie, c'est-à-dire que l'on peut avoir $m(E) = \infty$).

2. Soit \mathcal{A} une tribu incluse dans T. La restriction de m à \mathcal{A} est une mesure. Est-elle finie (resp. σ -finie) si m est finie (resp. σ -finie) ?

–corrigé—

On note m_a la restriction de m à \mathcal{A} , on a donc $m_a(B) = m(B)$ pour tout $B \in \mathcal{A}$. Il est clair que m_a est une mesure sur \mathcal{A} .

- Si m est finie, on a $m_a(E) = m(E) < \infty$, m_a est donc aussi une mesure finie.
- Si m est σ -finie, il existe une suite $(A_n)_{n\in\mathbb{N}}\subset T$ t.q. $\cup_{n\in\mathbb{N}}A_n=E$ et $m(A_n)<\infty$ pour tout $n\in\mathbb{N}$. Mais, comme les A_n ne sont pas nécessairement dans \mathcal{A} , la mesure m_a peut ne pas être σ -finie. On peut construire un exemple facilement de la manière suivante :

On suppose que m est σ -finie mais n'est pas finie (on peut prendre, par exemple $(E,T,m)=(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$) et on prend $\mathcal{A}=\{\emptyset,E\}$. La mesure m_a n'est pas σ -finie...

Corrigé 22

Soit (E,T,m) un espace mesuré fini ("fini" signifie que $m(E)<\infty$) et $(A_n)_{n\in\mathbb{N}}$, $(B_n)_{n\in\mathbb{N}}$ des suites d'ensembles mesurables tels que $B_n\subset A_n$ pour tout $n\in\mathbb{N}$.

1. Montrer que $(\bigcup_{n\in\mathbb{N}}A_n)\setminus\bigcup_{n\in\mathbb{N}}B_n\subset\bigcup_{n\in\mathbb{N}}(A_n\setminus B_n)$.

Soit $x \in (\bigcup_{n \in \mathbb{N}} A_n) \setminus \bigcup_{n \in \mathbb{N}} B_n$, on a donc $x \in \bigcup_{n \in \mathbb{N}} A_n$ et $x \notin \bigcup_{n \in \mathbb{N}} B_n$, c'est-à-dire qu'il existe $p \in \mathbb{N}$ t.q. $x \in A_p$ et que, pour tout $n \in \mathbb{N}$, $x \notin B_n$. On a donc $x \in A_p \setminus B_p$, ce qui prouve que $x \in \bigcup_{n \in \mathbb{N}} (A_n \setminus B_n)$ et donc que $(\bigcup_{n \in \mathbb{N}} A_n) \setminus \bigcup_{n \in \mathbb{N}} B_n \subset \bigcup_{n \in \mathbb{N}} (A_n \setminus B_n)$.

2. Montrer que $m(\bigcup_{n\in\mathbb{N}}A_n)-m(\bigcup_{n\in\mathbb{N}}B_n)\leq \sum_{n\in\mathbb{N}}(m(A_n)-m(B_n))$.

Puisque $m(E) < \infty$, on a, pour tout $A, B \in T$ t.q. $B \subset A$, $m(A \setminus B) = m(A) - m(B)$. La monotonie de m, la σ -sous additivité de m (et la question précédente) nous donne alors :

$$m(\cup_{n\in\mathbb{N}}A_n)-m(\cup_{n\in\mathbb{N}}B_n)=m((\cup_{n\in\mathbb{N}}A_n)\setminus(\cup_{n\in\mathbb{N}}B_n))\leq m(\cup_{n\in\mathbb{N}}(A_n\setminus B_n))\\ \leq \sum_{n=0}^{+\infty}m(A_n\setminus B_n)=\sum_{n=0}^{+\infty}(m(A_n)-m(B_n)).$$

Corrigé 23

Soit (E,T,m) un espace mesuré fini et $(A_n)_{n\in\mathbb{N}}\subset T$ t.q., pour tout $n\in\mathbb{N}, m(A_n)=m(E)$. Montrer que $m(\cap_{n\in\mathbb{N}}A_n)=m(E).$

–corrigé–

Comme $m(E) < \infty$, on a $m(A^c) = m(E) - m(A)$ pour tout $A \in T$. De $m(A_n) = m(E)$, on déduit alors $m(A_n^c) = 0$ pour tout $n \in \mathbb{N}$. Par σ -sous additivité de m, on a alors $m(\bigcup_{n \in \mathbb{N}} A_n^c) = 0$. Comme $\cup_{n\in\mathbb{N}}A_n^c=(\cap_{n\in\mathbb{N}}A_n)^c, \text{ on a donc } m((\cap_{n\in\mathbb{N}}A_n)^c)=0 \text{ et donc } m(\cap_{n\in\mathbb{N}}A_n)=m(E).$

Corrigé 24 (Sur la mesure d'une union...)

Soit (Ω, \mathcal{A}, m) un espace mesuré et $n \in \mathbb{N}^*$. Soit $A_1, \ldots, A_n \in \mathcal{A}$ et $B \in \mathcal{A}$. On suppose que $m(A_p) < \infty$ pour tout p. Montrer que $m(\bigcup_{p=1}^{n}(B\cap A_p))=\sum_{k=1}^{n}(-1)^{k+1}\left(\sum_{1\leq i_1<\ldots< i_k\leq n}m(B\cap (\bigcap_{j=1}^{k}A_{i_j}))\right)$.

——corrigé—

En attente

Corrigé 25 (Contre exemples...)

1. Soit λ la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R})$ et $A \in \mathcal{B}(\mathbb{R})$ t.q. $\lambda(A) = 0$. A-t-on nécessairement A fermé?

-corrigé-

Non, A n'est pas nécessairement fermé. On peut prendre, par exemple $A = \{\frac{1}{n}, n \geq 1\}$. On a $\lambda(A) = 0$ et A n'est pas fermé (car 0 appartient à l'adhérence de A sans être dans A).

2. Soit (E,T) un espace mesurable et $\mathcal{C} \subset \mathcal{P}(E)$ qui engendre T. On considère m_1 et m_2 des mesures sur T. Montrer que $m_1(A) = m_2(A)$ pour tout $A \in \mathcal{C}$ n'implique pas que $m_1 = m_2$ sur T. [On pourra trouver un exemple (facile) avec $(E,T)=(\mathbb{R},\mathcal{B}(\mathbb{R}))$ et m_1, m_2 non finies. Un exemple avec $(E,T)=(\mathbb{R},\mathcal{B}(\mathbb{R}))$ et m_1, m_2 finies est aussi possible mais plus difficile à trouver...]

on prend $(E,T)=(\mathbb{R},\mathcal{B}(\mathbb{R})).$

- Exemple "facile" (avec m_1, m_2 non finies). On prend $C_1 = \{]a, \infty[, a \in \mathbb{R}\}$. On a bien $T(C_1) = \mathcal{B}(\mathbb{R})$, c'est-à-dire que C_1 engendre $\mathcal{B}(\mathbb{R})$ (voir la proposition 2.2). On prend alors $m_1 = \lambda$ et $m_2 = 2\lambda$ (c'est-à-dire $m_2(B) = 2\lambda(B)$ pour tout $B \in \mathcal{B}(\mathbb{R})$). On a bien $m_1(B) = m_2(B)$ pour tout $B \in C_1$ (car on a alors $m_1(B) = m_2(B) = \infty$). Mais $m_1 \neq m_2$ puisque, par exemple, $m_1([0,1]) = 1$ et $m_2([0,1]) = 2$.
- Exemple "difficile" (avec m₁, m₂ finies).
 On prend maintenant C₂ = {B ∈ B(ℝ); {-1,0,1} ∩ B = ∅} ∪ {{-1,0}} ∪ {{0,1}} (un élément de C₂ est donc un borélien ne contenant ni −1 ni 0 ni 1, ou bien la partie {-1,0}, ou bien la partie {0,1}. On montre d'abord que T(C₂) = B(ℝ). Il est clair que T(C₂) ⊂ B(ℝ) car C₂ ⊂ B(ℝ). Pour montrer l'inclusion inverse, c'est-à-dire B(ℝ) ⊂ T(C₂), on remarque que {0} = {-1,0} ∩ {0,1} ∈ T(C₂) et donc que {-1} = {-1,0} \ {0} ∈ T(C₂), {1} = {0,1} \ {0} ∈ T(C₂). Finalement on voit alors que B(ℝ) ⊂ T(C₂) car tout borélien s'écrit comme un borélien ne contenant ni −1 ni 0 ni 1 (qui appartient donc à T(C₂)), auquel on ajoute éventuellement 1, 2 ou 3 autre(s) élément(s) de T(C₂) (qui sont les parties {0}, {-1} et {1}, on conclut alors avec la stabilité par union finie de la tribu T(C₂)).

On rappelle que, pour $a \in \mathbb{R}$, on note δ_a la mesure de dirac sur $\mathcal{B}(\mathbb{R})$. On a donc, pour $B \in \mathcal{B}(\mathbb{R})$, $\delta_a(B) = 1$ si $a \in B$ et $\delta_a(B) = 0$ si $a \notin B$. On prend alors $m_1 = \delta_{-1} + \delta_0 + \delta_1$ et $m_2 = 2\delta_{-1} + 2\delta_1$. On a clairement $m_1 = m_2$ sur \mathcal{C}_2 car $m_1(B) = m_2(B) = 0$ si $B \in \mathcal{B}(\mathbb{R})$ est t.q. $\{-1,0,1\} \cap B = \emptyset$ et $m_1(\{-1,0\}) = m_2(\{-1,0\}) = m_1(\{0,1\}) = m_2(\{0,1\}) = 2$. Enfin, on a $m_1 \neq m_2$ puisque, par exemple, $m_1(\{0\}) = 1$ et $m_2(\{0\}) = 0$.

Corrigé 26 (Résultat d'unicité)

Soit (E,T) un espace mesurable et m, μ deux mesures sur T. Soit $\mathcal{C} \subset \mathcal{P}(E)$. On suppose que \mathcal{C} engendre T et que \mathcal{C} est stable par intersection finie.

On suppose que $m(A) = \mu(A)$ pour tout $A \in \mathcal{C}$.

1. On suppose que $E \in \mathcal{C}$ et que $m(E) < \infty$. Montrer que $m(A) = \mu(A)$ pour tout $A \in T$. [On pourra introduire $\mathcal{D} = \{A \in T, m(A) = \mu(A)\}$ et utiliser l'exercice 2.14.]

-corrigé

On pose $\mathcal{D}=\{A\in T,\,m(A)=\mu(A)\}$. La σ -additivité de m et μ montre que \mathcal{D} est stable par union dénombrable disjointe. Comme $m(E)<\infty$, on peut aussi montrer que \mathcal{D} est stable par différence (au sens de l'exercice 2.14). En effet, si $A,B\in\mathcal{D}$, avec $B\subset A$, on a (par additivité de m et μ) $m(B)+m(A\setminus B)=m(A)$ et $\mu(B)+\mu(A\setminus B)=\mu(A)$. Comme $m(A)<\infty$ et $\mu(A)<\infty$, on a donc $m(A\setminus B)=m(A)-m(B)$ et $\mu(A\setminus B)=\mu(A)-\mu(B)$, ce qui prouve que $m(A\setminus B)=\mu(A\setminus B)$ et donc que $A\setminus B\in\mathcal{D}$.

On utilise maintenant l'exercice 2.14. Comme $\mathcal{D} \supset \mathcal{C}$, \mathcal{C} est stable par intersection finie et $E \in \mathcal{C}$, la question 3 de l'exercice 2.14 permet de montrer $\mathcal{D} = \tau(\mathcal{C}) = T$. (Plus précisément, comme $\mathcal{D} \supset \mathcal{C}$, on a $\mathcal{D} \in \mathcal{Z}_r$, où \mathcal{Z}_r est défini dans le corrigé 19. Puis, en utilisant que \mathcal{C} est stable par intersection finie et que $E \in \mathcal{C}$, la dernière question de l'exercice 2.14 donne que $\mathcal{D} \supset \tau(\mathcal{C})$.)

On a donc bien montré que $m(A) = \mu(A)$ pour tout $A \in T$.

2. (Généralisation de la question précédente). On suppose qu'il existe une suite $(E_n)_{n\in\mathbb{N}}\subset\mathcal{C}$ t.q. $E_n\cap E_m=\emptyset$ si $n\neq m,\ m(E_n)<\infty$ pour tout $n\in\mathbb{N}$ et $E=\cup_{n\in\mathbb{N}}E_n$. Montrer que $m(A)=\mu(A)$ pour tout $A\in T$.

–corrigé-

Soit $n \in \mathbb{N}$. Pour $A \in T$, on pose $m_n(A) = m(A \cap E_n)$ et $\mu_n(A) = \mu(A \cap E_n)$ (noter que $A \cap E_n \in T$, car $A, E_n \in T$). On obtient ainsi deux mesures sur T, m_n et μ_n . Ces deux mesures sont égales sur C (car $A \cap E_n \in C$ puisque C est stable par intersection finie).

On raisonne alors comme à la question précédente. On pose $\mathcal{D} = \{A \in T, m_n(A) = \mu_n(A)\}$ et le raisonnement de la question récédente donne que \mathcal{D} est stable par union dénombrable disjointe et (grâce à $m_n(E) < \infty$) que \mathcal{D} est stable par différence (au sens de l'exercice 2.14). On utilise maintenant la remarque de la fin de la question 3 de l'exercice 2.14. Comme $\mathcal{D} \supset \mathcal{C}$, \mathcal{C} est stable par intersection finie et E est une union dénombrable disjointe d'éléments de \mathcal{C} , cette remarque donne $\mathcal{D} = \tau(\mathcal{C}) = T$. On a donc, pour tout $A \in T$ et tout $n \in \mathbb{N}$:

$$m(A \cap E_n) = m_n(A) = \mu_n(A) = \mu(A \cap E_n).$$

On en déduit que $m(A) = \mu(A)$, pour tout $A \in T$, car, par σ -additivité de m et μ , $m(A) = \sum_{n \in \mathbb{N}} m(A \cap E_n) = \sum_{n \in \mathbb{N}} \mu(A \cap E_n) = \mu(A)$.

3. Avec $(E,T)=(\mathbb{R},\mathcal{B}(\mathbb{R}),$ donner un exemple pour lequel $E\in\mathcal{C}$ et $m\neq\mu$.

Un exemple simple est obtenu en prenant pour \mathcal{C} lensemble des ouverts de \mathbb{R} , $\mu = 2m$ et m définie sur T par $m(A) = \operatorname{card}(A)$ si A a un nombre fini d'éléments et $m(A) = +\infty$ sinon.

Corrigé 27 (Mesure atomique, mesure diffuse)

Soit (E,T) un espace mesurable t.q. $\{x\} \in T$ pour tout $x \in E$. Une mesure m sur T est diffuse si $m(\{x\}) = 0$ pour tout $x \in E$. Une mesure m sur T est purement atomique si il existe $S \in T$ t.q. $m(S^c) = 0$ et $m(\{x\}) > 0$ si $x \in S$.

1. Montrer qu'une mesure purement atomique et diffuse est nulle. Donner, pour $(E,T)=(\mathbb{R},\mathcal{B}(\mathbb{R}))$ un exemple de mesure purement atomique et un exemple de mesure diffuse. [Montrer que la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R})$ est diffuse.]

-corrigé--

Soit m une mesure purement atomique et soit $S \in T$ t.q. $m(S^c) = 0$ et $m(\{x\}) > 0$ si $x \in S$. Si m est diffuse, on a $m(\{x\}) = 0$ pour tout $x \in E$, donc $S = \emptyset$ et m = 0.

On rappelle que, pour $a \in \mathbb{R}$, on note δ_a la mesure de dirac sur $\mathcal{B}(\mathbb{R})$. On a donc, pour $B \in \mathcal{B}(\mathbb{R})$, $\delta_a(B) = 1$ si $a \in B$ et $\delta_a(B) = 0$ si $a \notin B$. La mesure δ_a est (pour tout $a \in \mathbb{R}$) purement atomique, il suffit de prendre $S = \{a\}$, on a bien $\delta_a(S^c) = 0$ et $\delta_a(\{a\}) = 1 > 0$.

Un exemple de mesure diffuse sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ est donné par la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R})$.

2. Soit m une mesure diffuse sur T. Montrer que tous les ensembles dénombrables sont de mesure nulle.

-corrigé

Soit A une partie dénombrable de E. Il existe donc une suite $(x_n)_{n\in\mathbb{N}}\subset E$ t.q. $A=\{x_n,\,n\in\mathbb{N}\}$ = $\cup_{n\in\mathbb{N}}\{x_n\}$. On a donc $A\in T$ (car $\{x_n\}\in T$ pour tout $n\in\mathbb{N}$ et que T est stable par union dénombrable) et $m(A)\leq \sum_{n=0}^{+\infty}m(\{x_n\})=0$ car m est diffuse.

- 3. Soit m une mesure sur T. On suppose que m est σ -finie, c'est à dire qu'il existe $(E_n)_{n\in\mathbb{N}}\subset T$ t.q. $E=\cup_{n\in\mathbb{N}}E_n$ et $m(E_n)<+\infty$ pour tout $n\in\mathbb{N}$.
 - (a) Montrer que l'ensemble des $x \in E$ t.q. $m(\{x\}) > 0$ (de tels x sont appelés "atomes" de m) est au plus dénombrable. [On pourra introduire l'ensemble $A_{n,k} = \{x \in E_n; m(x) \ge \frac{1}{k}\}$.]

–corrigé-

On pose $A = \{x \in E; m(\{x\}) > 0\}$. Si $x \in A$, il existe $n \in \mathbb{N}$ t.q. $x \in E_n$ et il existe $k \in \mathbb{N}^*$ t.q. $m(\{x\}) \geq \frac{1}{k}$. On a donc $x \in A_{n,k}$. Ceci montre que $A = \bigcup_{(n,k) \in \mathbb{N} \times \mathbb{N}^*} A_{n,k}$. Pour montrer que A est au plus dénombrable, il suffit de montrer que $A_{n,k}$ est au plus dénombrable (car une réunion dénombrable d'ensembles au plus dénombrables est au plus dénombrable). Soit donc $n \in \mathbb{N}$ et $k \in \mathbb{N}^*$. Soit x_1, \ldots, x_p p éléments distincts de $A_{n,k}$. Par monotonie et additvité de m, on a $\frac{p}{k} \leq \sum_{n=1}^{p} m(\{x_n\}) = m(\{x_1, \ldots, x_p\}) \leq m(E_n) < \infty$. On en déduit que $p \leq km(E_n) < \infty$ et donc que $A_{n,k}$ a un nombre fini d'éléments (ce nombre est inférieur ou égal à $km(E_n)$). On en déduit donc que A est au plus dénombrable.

(b) Montrer qu'il existe une mesure diffuse m_d et une mesure purement atomique m_a sur T telles que $m = m_d + m_a$. Montrer que m_d et m_a sont étrangères, c'est à dire qu'il existe $A \in T$ t.q. $m_d(A) = 0$ et $m_a(A^c) = 0$.

-corrigé-

On considère toujours $A = \{x \in E; m(\{x\}) > 0\}$. On remarque tout d'abord que $A \in T$ (car A est au plus dénombrable, d'après la question précédente, et que les singletons, c'est-à-dire les parties réduites à un seul élément, sont dans T). On pose alors, pour tout $B \in T$:

$$m_a(B) = m(B \cap A), \quad m_d(B) = m(B \cap A^c).$$

Il est facile de voir que m_d et m_a sont des mesures sur T et que, par additivité de m, on a bien $m=m_a+m_d$.

La mesure m_d est diffuse car, si $x \in E$, on a $m_d(\{x\}) = m(\{x\}) = 0$ si $x \in A^c$ (car A contient tous les points t.q. $m(\{x\}) > 0$) et $m_d(\{x\}) = m(\emptyset) = 0$ si $x \in A$ (car $\{x\} \cap A^c = \emptyset$).

La mesure m_a est purement atomique. Il suffit de prendre S=A, on a bien $m_a(S^c)=m(A^c\cap A)=0$ et $m_a(\{x\})=m(\{x\})>0$ si $x\in S=A$.

Enfin, m_a et m_d sont étrangères car $m_d(A) = 0$ et $m_a(A^c) = 0$.

(c) Montrer que si m est finie il existe un singleton dont la mesure est supérieure ou égale à la mesure de tous les autres singletons. Montrer que ceci peut-être inexact si m n'est que σ -finie.

-corrigé-

On suppose que m est finie. Soit $M = \sup\{m(\{x\}), x \in E\}$. On veut montrer qu'il existe $x \in E$ t.q. $M = m(\{x\})$. On suppose M > 0 (sinon, il suffit de prendre n'importe quel $x \in E$

pour avoir $m(\{x\}) = M$). On va raisonner par l'absurde, on suppose donc que $m(\{x\}) < M$ pour tout $x \in E$. Par définition de M, Il existe une suite $(x_n)_{n \in \mathbb{N}} \subset E$ t.q. $m(\{x_n\}) \to M$ quand $n \to \infty$. Comme $m(\{x_n\}) < M$ pour tout $n \in \mathbb{N}$, on peut même supposer (quitte à extraire une sous suite) que $m(\{x_n\}) < m(\{x_{n+1}\}) < M$ pour tout $n \in \mathbb{N}$. Quitte à supprimer les premiers termes de la suite, on peut aussi supposer que $m(\{x_0\}) > \frac{M}{2}$. Les points x_n sont alors tous distincts, ce qui donne $\sum_{n=0}^{+\infty} m(\{x_n\}) = m(\{x_n, n \in \mathbb{N}\}) \le m(E)$. Ceci est impossible car $m(E) < \infty$ et $m(\{x_n\}) > \frac{M}{2}$ pour tout $n \in \mathbb{N}$ (donc $\sum_{n=0}^{+\infty} m(\{x_n\}) = \infty$).

Exemple de mesure σ -finie pour laquelle M n'est pas atteint.

Sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ on définit m par $m(B) = \sum_{n=2}^{\infty} (1 - \frac{1}{n}) \delta_n(B)$ (où δ_n est le mesure de Dirac au point $n \in \mathbb{N}$).

Pour montrer que m est une mesure, on peut remarquer, en posant $\mathbb{N}_2=\{n\in\mathbb{N};\,n\geq 2\}$, que $m(B)=\sum_{n\in\mathbb{N}_2;n\in B}(1-\frac{1}{n}).$ Si $B=\cup_{p\in\mathbb{N}}B_p$ avec $B_p\cap B_q=\emptyset$ si $p\neq q$, on a $\sum_{p\in\mathbb{N}}m(B_p)=\sum_{p\in\mathbb{N}}\sum_{n\in\mathbb{N}_2;n\in B_p}(1-\frac{1}{n})=\sum_{(n,p)\in\mathbb{N}_2\times\mathbb{N};n\in B_p}(1-\frac{1}{n})$ (on utilise ici le lemme 2.3 page 30). Comme les B_p sont disjoints 2 à 2, n appartient à B_p pour au plus 1 p, et comme $B=\cup_{p\in\mathbb{N}}B_p$, on obtient $\sum_{(n,p)\in\mathbb{N}_2\times\mathbb{N};n\in B_p}(1-\frac{1}{n})=\sum_{n\in\mathbb{N}_2\times\mathbb{N};n\in B}(1-\frac{1}{n})=m(B)$. Ceci prouve la σ -additivité de m. Le fait que $m(\emptyset)=0$ est immédiat. On a donc bien montré que m est une mesure.

La mesure m est bien σ -finie, il suffit de remarquer que $m([-n,n]) < \infty$ pour tout $n \in \mathbb{N}$ et que $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n,n]$. enfin, pour cette mesure m, on a $M = \sup\{m(\{x\}), x \in E\} = 1$ et il n'existe pas de $x \in \mathbb{R}$ t.q. $m(\{x\}) = 1$. En fait, m est purement atomique car $m((\mathbb{N}_2)^c) = 0$ et on a $0 < m(\{x\})$, pour tout $x \in \mathbb{N}_2$.

4. Pour $(E,T) = (\mathbb{R},\mathcal{B}(\mathbb{R}))$, donner un exemple de mesure purement atomique finie dont l'ensemble des atomes est infini.

----corrigé

Un tel exemple est obtenu en modifiant légérement la mesure construite à la question précédente. Sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ on définit m par $m(B) = \sum_{n=1}^{\infty} \frac{1}{n^2} \delta_n(B)$. Une démonstration analogue à celle faite à la question précédente montre que m est bien une mesure sur $\mathcal{B}(\mathbb{R})$, m est finie (on a $m(\mathbb{R}) = \frac{\pi^2}{6} < \infty$), m est atomique car $m((\mathbb{N}^*)^c) = 0$ et $0 < m(\{x\}) < 1$, pour tout $x \in \mathbb{N}^*$. L'ensemble des atomes de m est infini, c'est \mathbb{N}^* .

Corrigé 28 (limites sup et inf d'ensembles)

Soit (E,T,m) un espace mesuré et $(A_n)_{n\in\mathbb{N}}\subset T$. On rappelle que $\limsup_{n\to\infty}A_n=\cap_{n\in\mathbb{N}}\cup_{p\geq n}A_p$ et $\liminf_{n\to\infty}A_n=\cup_{n\in\mathbb{N}}\cap_{p\geq n}A_p$.

1. On suppose qu'il existe $n_0 \in \mathbb{N}$ t.q. $m(\bigcup_{p \geq n_0} A_p) < \infty$. Montrer que $m(\liminf_{n \to \infty} A_n) \leq \liminf_{n \to \infty} m(A_n) \leq \limsup_{n \to \infty} m(A_n) \leq m(\limsup_{n \to \infty} A_n)$.

• La propriété de continuité croissante d'une mesure (voir la proposition 2.3) donne :

$$m(\liminf_{n\to\infty} A_n) = \lim_{n\to\infty} m(\cap_{p\geq n} A_p).$$

La monotonie de m donne $m(\cap_{p\geq n}A_p)\leq m(A_q)$ pour tout $q\geq n$. On a donc $m(\cap_{p\geq n}A_p)\leq \inf_{p\geq n}m(A_p)$ et donc $\lim_{n\to\infty}m(\cap_{p\geq n}A_p)\leq \lim_{n\to\infty}(\inf_{p\geq n}m(A_p))$, c'est-à-dire :

$$m(\liminf_{n\to\infty} A_n) \le \liminf_{n\to\infty} m(A_n).$$

- De $\inf_{p\geq n} m(A_p) \leq \sup_{p\geq n} m(A_p)$, on déduit $\liminf_{n\to\infty} m(A_n) \leq \limsup_{n\to\infty} m(A_n)$.
- Comme il existe $n_0 \in \mathbb{N}$ t.q. $m(\cup_{p \geq n_0} A_p) < \infty$, la propriété de continuité décroissante d'une mesure (voir la proposition 2.3) donne $m(\limsup_{n \to \infty} A_n) = \lim_{n \to \infty} m(\cup_{p \geq n} A_p)$. La monotonie de m donne $m(\cup_{p \geq n} A_p) \geq m(A_q)$ pour tout $q \geq n$. On a donc $m(\cup_{p \geq n} A_p) \geq \sup_{p > n} m(A_p)$ et donc $\lim_{n \to \infty} m(\cup_{p \geq n} A_p) \geq \lim_{n \to \infty} (\sup_{p > n} m(A_p))$, c'est-à-dire :

$$m(\limsup_{n\to\infty} A_n) \ge \limsup_{n\to\infty} m(A_n).$$

2. Donner un exemple (c'est-à-dire choisir (E,T,m) et $(A_n)_{n\in\mathbb{N}}\subset T$) pour lequel :

$$\limsup_{n \to \infty} m(A_n) > m(\limsup_{n \to \infty} A_n).$$

—corrigé-

On prend $(E, T, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ et $A_n = [n, n+1[$, pour tout $n \in \mathbb{N}$. On obtient alors :

$$\limsup_{n \to \infty} m(A_n) = 1 > 0 = m(\emptyset) = m(\limsup_{n \to \infty} A_n).$$

3. Donner un exemple avec mfinie (c'est-à-dire $m(E)<\infty)$ pour lequel

$$m(\liminf_{n\to\infty}A_n)<\liminf_{n\to\infty}m(A_n)<\limsup_{n\to\infty}m(A_n)< m(\limsup_{n\to\infty}A_n).$$

-corrigé-

On prend $(E,T,m)=([0,4],\mathcal{B}([0,4]),\lambda)$ (plus précisément, λ est ici la restriction à $\mathcal{B}([0,4])$ de λ qui est une mesure sur $\mathcal{B}(\mathbb{R})$) et $A_{2n}=[0,2],\ A_{2n+1}=[1,4]$ pour tout $n\in\mathbb{N}$. On obtient $\limsup_{n\to\infty}A_n=[0,4]$ et $\liminf_{n\to\infty}A_n=[1,2]$. On a ainsi:

$$m(\liminf_{n\to\infty}A_n)=1,\, \liminf_{n\to\infty}m(A_n)=2,\, \limsup_{n\to\infty}m(A_n)=3 \text{ et } m(\limsup_{n\to\infty}A_n)=4.$$

4. (*) (Lemme de Borel-Cantelli) On suppose que $\sum_{n\in\mathbb{N}} m(A_n) < \infty$.

Montrer que $m(\limsup_{n\to\infty} A_n) = 0$.

–corrigé-

De $\sum_{n\in\mathbb{N}} m(A_n) < \infty$ on déduit que $\sum_{p=n}^{\infty} m(A_p) \to 0$ quand $n \to \infty$ et donc que $m(\bigcup_{p\geq n} A_p) \to 0$ quand $n \to \infty$ (car, par σ -sous additivté de m, on a $m(\bigcup_{p\geq n} A_p) \leq \sum_{p=n}^{\infty} m(A_p)$). Par continuité décroissante de m, on en déduit alors $m(\limsup_{n\to\infty} A_n) = 0$.

Corrigé 29 (Petit ouvert dense...) (**)

On considère ici l'espace mesuré $(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$. Soit $\varepsilon>0$, peut-on construire un ouvert dense dans \mathbb{R} de mesure inférieure à ε ? [On rappelle qu'une partie A de R est dense dans \mathbb{R} si $\overline{A}=\mathbb{R}$ ou encore si, pour tout $x\in\mathbb{R}$ et pour tout $\varepsilon>0$, il existe $a\in A$ t.q. $|x-a|<\varepsilon$.]

-corrigé—

La réponse est "oui".... Soit $\varepsilon > 0$. Comme $\mathbb Q$ est dénombrable, il existe $\varphi : \mathbb N \to \mathbb Q$, bijective. On considère alors $O = \cup_{n \in \mathbb N}] \varphi(n) - \frac{\varepsilon}{2^{n+2}}, \varphi(n) + \frac{\varepsilon}{2^{n+2}}[$. O est bien un ouvert (comme réunion d'ouverts), dense dans $\mathbb R$ (car $O \supset \mathbb Q$ et $\mathbb Q$ est dense dans $\mathbb R$) et, par σ -sous additivité d'une mesure, on a $\lambda(O) \le \varepsilon \sum_{n=0}^{+\infty} \frac{1}{2^{n+1}} = \varepsilon$.

Corrigé 30 (Non existence d'une mesure sur $\mathcal{P}(\mathbb{R})$ exprimant la longueur) (***)

On définit la relation d'équivalence sur $[0,1[:xRy\,\text{si}\,x-y\in\mathbb{Q}.$ En utilisant l'axiome du choix, on construit un ensemble $A\subset[0,1[$ tel que A contienne un élément et un seul de chaque classe d'équivalence. Pour $q\in\mathbb{Q}\cap[0,1[$, on définit $A_q=\{y\in[0,1[;y=x+q\,\,\text{ou}\,\,y=x+q-1,x\in A\},\,\text{c'est-à-dire}\,\,A_q=\{y\in[0,1[;y-q\in A\,\,\text{ou}\,\,y-q+1\in A\}.$

1. Montrer que $\bigcup_{q\in\mathbb{O}\cap[0,1]}A_q=[0,1[$.

-corrigé-

Soit $y \in [0, 1[$, il existe $x \in A$ t.q. yRx (car A contient un élément dans chaque classe d'équivalence), c'est-à-dire $y - x \in \mathbb{Q}$. Comme $y - x \in]-1,1[$ (car $x,y \in [0,1[$), on a donc $y - x = q \in \mathbb{Q} \cap [0,1[$ ou $y - x + 1 = q \in \mathbb{Q} \cap]0,1[$. Ceci donne $y \in A_q$. On a donc $[0,1[\subset \cup_{q \in \mathbb{Q} \cap [0,1[}A_q]]]$. Comme $A_q \subset [0,1[$ pour tout $q \in \mathbb{Q} \cap [0,1[$, on a finalement $[0,1[\subset \cup_{q \in \mathbb{Q} \cap [0,1[}A_q]]]]$.

Il est important aussi de remarquer que les A_q sont disjoints 2 à 2. En effet, si $y \in A_q \cap A_{q'}$, il existe $x, x' \in A$ t.q. y-x=q ou (q-1) et y-x'=q' ou (q'-1). On en déduit $x-x' \in \mathbb{Q}$ et donc x=x' (car A contient un seul élément de chaque classe d'équivalence). Ceci donne q=q'=y-x (si $y-x \in [0,1[)$ ou q=q'=y-x+1 (si $y-x \in [-1,0[)$).

2. Montrer que si m est une application de $\mathcal{P}(\mathbb{R})$ dans $\overline{\mathbb{R}}_+$, invariante par translation et vérifiant $m([0,1[)=1,\ m$ ne peut pas être σ - additive. En déduire la non-existence d'une mesure m, sur $\mathcal{P}(\mathbb{R})$, invariante par translation et t.q. m([a,b])=b-a pour tout $a,b\in\mathbb{R},\ a< b$. En particulier, montrer que l'application λ^* , définie en cours, ne peut pas être une mesure sur $\mathcal{P}(\mathbb{R})$.

-corrigé-

On suppose que m est une mesure sur $\mathcal{P}(\mathbb{R})$ vérifiant m([0,1])=1. La σ - additivité de m donne alors, avec la première question,

$$1 = \sum_{q \in \mathbb{Q} \cap [0,1[} m(A_q). \tag{12.6}$$

Pour $x \in \mathbb{R}$ et $B \in \mathcal{P}(\mathbb{R})$, on note $B + x = \{y + x, y \in B\}$. On suppose que m est invariante par translation, on a donc m(B + x) = m(B) pour tout $B \in \mathcal{P}(\mathbb{R})$ et tout $x \in \mathbb{R}$.

On remarque maintenant que $A_q = ((A+q) \cap [0,1[) \cup ((A+q-1) \cap [0,1[) \text{ pour tout } q \in \mathbb{Q} \cap [0,1[] \text{ De plus, si } y \in ((A+q) \cap [0,1[) \cap ((A+q-1) \cap [0,1[), \text{ il existe } x,x' \in A \text{ t.q. } y = x+q = x'+q-1, \text{ donc } x'-x=1, \text{ ce qui est impossible. Ceci montre que } ((A+q) \cap [0,1[) \cap ((A+q-1) \cap [0,1[) = \emptyset. \text{ On } x'-x' = 1, \text{ ce qui est impossible.})$

a donc, en utilisant l'additivité de m, l'invariance par translation de m et le fait que $A+q\subset [0,2[$, $m(A_q)=m((A+q)\cap [0,1[)+m((A+q-1)\cap [0,1[)=m((A+q)\cap [0,1[)+m((A+q)\cap [1,2[)=m(A+q)=m(A),$ pour tout $q\in \mathbb{Q}\cap [0,1[$. On en déduit $\sum_{q\in \mathbb{Q}\cap [0,1[}m(A_q)=0$ si m(A)=0 et $\sum_{q\in \mathbb{Q}\cap [0,1[}m(A_q)=\infty$ si m(A)>0, et donc $\sum_{q\in \mathbb{Q}\cap [0,1[}m(A_q)\neq 1$, en contradiction avec (12.6). Il n'existe donc pas de mesure sur $\mathcal{P}(\mathbb{R})$, invariante par translation et t.q. m([0,1[)=1.

Si m est une mesure sur $\mathcal{P}(\mathbb{R})$, invariante par translation et t.q. m([a,b]) = b-a pour tout $a,b \in \mathbb{R},\ a < b$. On montre que m[0,1[=1 en utilisant la continuité croissante de m et le fait que $[0,1[=\cup_{n\geq 1}[0,1-\frac{1}{n}]]$. Il est donc impossible de trouver une telle mesure.

L'application λ^* définie en cours sur $\mathcal{P}(\mathbb{R})$ (à valeurs dans $\overline{\mathbb{R}}_+$) est invariante par translation et vérifie $\lambda^*([a,b]) = b-a$ pour tout $a,b \in \mathbb{R}$, a < b. Elle n'est donc pas σ -additive sur $\mathcal{P}(\mathbb{R})$.

Corrigé 31

Soit m une mesure sur $\mathcal{B}(\mathbb{R})$ t.q. pour tout intervalle I et tout $x \in \mathbb{R}$ on ait m(I) = m(I+x) (avec $I+x=\{a+x, a \in I\}$) et m([0,1])=1. Montrer que pour tout $x \in \mathbb{R}$, $m(\{x\})=0$ (i.e. m est diffuse). En déduire que m est la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R})$. [On pourra découper [0,1[en q intervalles de longueur 1/q.]

-corrigé-

On pose $m(\{0\}) = \alpha$. Soit $x \in \mathbb{R}$. On prend $I = \{0\}$ (I est bien un intervalle) de sorte que $I + x = \{x\}$. On a alors $\alpha = m(\{0\}) = m(I) = m(I + x) = m(\{x\})$. On a donc montré que $m(\{x\}) = \alpha$ pour tout $x \in \mathbb{R}$. Pour montrer que $\alpha = 0$, il suffit, par exemple, de remarquer que, en utilisant la σ -additivité de m:

$$1 = m([0,1]) \ge \sum_{n=1}^{\infty} m(\{\frac{1}{n}\}) \ge \sum_{n=1}^{\infty} \alpha.$$

On en déduit $\alpha = 0$ (sinon, le membre de droite de la précédente inégalité est égal à $+\infty$ et l'inégalité est alors fausse).

On a donc bien montré que $m(\{x\}) = 0$ pour tout $x \in \mathbb{R}$. Ceci donne, en particulier que $1 = m([0,1]) = m([0,1]) + m(\{1\}) = m([0,1])$.

Soit maintenant $q \in \mathbb{N}^*$. On a $m([\frac{i}{q}, \frac{i+1}{q}[) = m([0, \frac{1}{q}[) \text{ pour tout } i \in \{0, \dots, q-1\}, \text{ car } [\frac{i}{q}, \frac{i+1}{q}[= [0, \frac{1}{q}[+\frac{i}{q}, \frac{i+1}{q}[] = [0, \frac{1}{q}[+\frac{i}{q}]] = [0, \frac{1}{q}[+\frac{i}{q}]] = [0, \frac{1}{q}[+\frac{i}{q}]]$

$$1 = m([0,1[) = \sum_{i=0}^{q-1} m([\frac{i}{q}, \frac{i+1}{q}[) = qm([0, \frac{1}{q}[),$$

et donc $m([0, \frac{1}{q}]) = \frac{1}{q}$. Ceci donne aussi, pour tout $x \in \mathbb{R}$, $m([x, x + \frac{1}{q}]) = \frac{1}{q}$, car $[x, x + \frac{1}{q}] = [0, \frac{1}{q}] + x$. En utilisant l'additivité de m, on a donc, pour tout $p \in \mathbb{N}^*$:

$$m([0, \frac{p}{q}]) = \sum_{i=0}^{p-1} m([\frac{i}{q}, \frac{i+1}{q}]) = \frac{p}{q}.$$
 (12.7)

De (12.7), on va déduire $m([\alpha,\beta[)=\beta-\alpha \text{ pour tout }\alpha,\beta\in\mathbb{R}\text{ t.q. }\alpha<\beta.$ En effet, soit $\alpha,\beta\in\mathbb{R}$ t.q. $\alpha<\beta.$ Comme $[\alpha,\beta[=[0,\gamma[+\alpha,\text{ avec }\gamma=\beta-\alpha,\text{ on a }m([\alpha,\beta[)=m([0,\gamma[).\text{ Il existe alors deux suites }(r_n)_{n\in\mathbb{N}}\subset\mathbb{Q}_+^\star\text{ et }(s_n)_{n\in\mathbb{N}}\subset\mathbb{Q}_+^\star\text{ t.q. }r_n\uparrow\gamma\text{ et }s_n\downarrow\gamma\text{ quand }n\to\infty.$ Comme $[0,r_n[\subset[0,\gamma[\subset[0,s_n[,\text{ on a, grâce à (12.7)},\ r_n=m([0,r_n[)\leq m([0,\gamma[)\leq m([0,s_n[)=s_n.\text{ Eh faisant }n\to\infty,\text{ on en déduit que }m([0,\gamma[)=\gamma\text{ et donc }m([\alpha,\beta[)=\beta-\alpha.$

Enfin, comme $m(\{\alpha\}) = 0$, on a aussi

$$m(\alpha, \beta) = \beta - \alpha$$
, pour tout $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$.

La partie "unicité" du théorème de Carathéodory donne alors $m = \lambda$.

Corrigé 32 (Support d'une mesure sur les boréliens de \mathbb{R}^d)

Soit m une mesure sur $\mathcal{B}(\mathbb{R}^d)$. Montrer qu'il existe un plus grand ouvert de mesure nulle pour m. L'ensemble fermé complémentaire de cet ouvert s'appelle le support de m. [On pourra, par exemple, considérer les pavés à extrémités rationnelles qui sont de mesure nulle pour m.]

-corrigé

On note A l'ensemble des ouverts de \mathbb{R}^d de mesure nulle pour m. L'ensemble A est non vide (car l'ensemble vide est un ouvert de \mathbb{R}^d de mesure nulle). On pose :

$$O = \bigcup_{\omega \in A} \omega.$$

L'ensemble O est donc la réunion de tous les ouverts de \mathbb{R}^d de mesure nulle. Il est clair que O est ouvert (car c'est une réunion d'ouverts) et qu'il contient tous les ouverts de \mathbb{R}^d de mesure nulle. Pour montrer que O est le plus grand ouvert de mesure nulle, il suffit donc de montrer que O est de mesure nulle. Pour cela, on va montrer que O est une réunion dénombrable d'ouverts de mesure nulle.

Soit $x = (x_1, \dots, x_d)^t \in O$. Il existe $\omega \in A$ t.q. $x \in \omega$. Comme ω est ouvert, il existe $\varepsilon > 0$ t.q.:

$$\prod_{i=1}^{d}]x_i - \varepsilon, x_i + \varepsilon [\subset \omega.$$

Pour tout $i \in \{1, ..., d\}$ il existe $\gamma_{i,x} \in]x_i - \varepsilon, x_i[\cap \mathbb{Q} \text{ et } \delta_{i,x} \in]x_i, x_i + \varepsilon[\cap \mathbb{Q}.$ On a donc :

$$x \in \prod_{i=1}^{d}]\gamma_{i,x}, \delta_{i,x} [\subset \omega \subset O.$$

Par monotonie d'une mesure, on a $m(\prod_{i=1}^d]\gamma_{i,x}, \delta_{i,x}[) \leq m(\omega) = 0$, et donc $m(\prod_{i=1}^d]\gamma_{i,x}, \delta_{i,x}[) = 0$. Comme $O = \bigcup_{x \in O} \{x\}$, on a aussi :

$$O = \bigcup_{x \in O} \prod_{i=1}^{d} \gamma_{i,x}, \delta_{i,x} [= \bigcup_{x \in O} P_{\gamma_x, \delta_x},$$

$$(12.8)$$

en posant $\gamma_x = (\gamma_{1,x}, \dots, \gamma_{d,x})^t$, $\delta_x = (\delta_{1,x}, \dots, \delta_{d,x})^t$ et $P_{\gamma,\delta} = \prod_{i=1}^d]\gamma_i, \delta_i [$ (si $\gamma = (\gamma_1, \dots, \gamma_d)^t$ et $\delta = (\delta_1, \dots, \delta_d)^t$).

On remarque maintenant que, pour tout $x \in O$, $\gamma_x, \delta_x \in \mathbb{Q}^d$. L'égalité (12.8) donne donc :

$$O = \cup_{(\gamma,\delta)\in B} P_{\gamma,\delta},$$

où B est une partie de \mathbb{Q}^{2d} et $m(P_{\gamma,\delta})=0$ pour tout $(\gamma,\delta)\in B$. Comme \mathbb{Q}^{2d} est dénombrable, la partie B est au plus dénombrable et la σ -sous additivité d'une mesure donne alors que m(O)=0.

Corrigé 33 (Ensemble de Cantor)

On considère l'espace mesuré $([0,1],\mathcal{B}([0,1]),\lambda)$.

On pose $C_0 = [0,1]$, $a_1^0 = 0$, $b_1^0 = 1$, et $\alpha_0 = 1$. Pour $n \ge 0$, on construit $C_{n+1} \subset [0,1]$ de la manière suivante : on suppose $C_n = \bigcup_{p=1}^{2^n} [a_p^n, b_p^n]$ connu, et on définit $C_{n+1} = \bigcup_{p=1}^{2^{n+1}} [a_p^{n+1}, b_p^{n+1}]$ où, pour $p = 1, \ldots, 2^n$, $a_{2p-1}^{n+1} = a_p^n$, $b_{2p-1}^{n+1} = a_p^n + \alpha_{n+1}$, $a_{2p}^{n+1} = b_p^n - \alpha_{n+1}$ et $b_{2p}^{n+1} = b_p^n$, avec $\alpha_{n+1} = \frac{\rho_n \alpha_n}{2}$, et $0 < \rho_n < 1$. On pose $C = \bigcap_{n \ge 0} C_n$ (C s'appelle "ensemble de Cantor", l'exemple le plus classique est obtenu avec $\rho_n = \frac{2}{3}$ pour tout $n \in \mathbb{N}$).

1. Montrer que $C_{n+1} \subset C_n$.

Pour tout $n \in \mathbb{N}$ et $p \in \{1,\ldots,2^n\}$, la longueur de l'intervalle $[a_p^n,b_p^n]$ est α_n . Comme $\alpha_{n+1}<\frac{\alpha_n}{2}$ et que $a_{2p-1}^{n+1}=a_p^n$ et $b_{2p}^{n+1}=b_p^n$, on a $[a_{2p-1}^{n+1},b_{2p-1}^{n+1}]\cup[a_{2p}^{n+1},b_{2p}^{n+1}]\subset[a_p^n,b_p^n]$, pour tout $n\in\mathbb{N}$ et $p\in\{1,\ldots,2^n\}$. En prenant l'union sur $p\in\{1,\ldots,2^n\}$, on en déduit $C_{n+1}\subset C_n$.

2. Montrer que C est compact et $\stackrel{\circ}{C} = \emptyset$.

-corrigé---

L'ensemble C est fermé (dans \mathbb{R}) car c'est une intersection de fermés (chaque C_n est fermé). D'autre part $C \subset [0, 1]$, C est donc compact (car fermé et borné dans \mathbb{R}).

Comme $\alpha_{n+1} < \frac{\alpha_n}{2}$, on a toujours $b_p^n < a_{p+1}^n$ (pour tout $n \in \mathbb{N}$ et $p \in \{1, \dots, 2^n - 1\}$). Les intervalles composant C_n sont donc disjoints 2 à 2 et de longueur α_n . Ceci montre que $x, y \in [0, 1]$, $(y-x) > \alpha_n$ implique $]x, y[\not\subset C_n$. Comme $\alpha_n \to 0$ quand $n \to \infty$ (noter que $\alpha_n \le \frac{1}{2^n}$), on en déduit que $C = \bigcap_{n \in \mathbb{N}} C_n$ ne contient aucun intervalle ouvert (non vide) et donc que $\overset{\circ}{C} = \emptyset$.

3. Montrer que C est non dénombrable.

-corrigé

On commence par définir, par récurrence sur $n \in \mathbb{N}^*$, des points x_c pour $c \in \{1, 2\}^n$.

Pour n = 1, $x_{(1)} = a_1^0$ et $x_{(2)} = b_1^0$.

Soit $n \geq 1$. Supposons que x_c est construit pour tout $c \in \{1,2\}^n$ et que pour chaque $c \in \{1,2\}^n$, $x_c \in \{b_p^{n-1}, p = 1, \dots, 2^{n-1}\} \cup \{a_p^{n-1}, p = 1, \dots, 2^{n-1}\}$. On construit maintenant x_c pour $c \in \{1,2\}^{n+1}$. Soit donc $c \in \{1,2\}^{n+1}$, on pose $c = \{\overline{c},b\}$ avec $\overline{c} \in \{1,2\}^n$ et $d \in \{1,2\}$ et on distingue 4 cas :

- (a) $x_{\overline{c}} = b_p^{n-1}$, avec $p \in \{1, \dots, 2^{n-1}\}$, d = 1. On pose alors $x_c = a_{2p}^n$,
- (b) $x_{\overline{c}} = b_p^{n-1}$, avec $p \in \{1, \dots, 2^{n-1}\}$, d = 2. On pose alors $x_c = b_{2p}^n$,
- (c) $x_{\overline{c}} = a_p^{n-1}$, avec $p \in \{1, \dots, 2^{n-1}\}$, d = 1. On pose alors $x_c = a_{2p-1}^n$,
- (d) $x_{\overline{c}} = a_p^{n-1}$, avec $p \in \{1, \dots, 2^{n-1}\}$, d = 2. On pose alors $x_c = b_{2n-1}$.

Il est intéressant de noter, avec ces formules, que $|x_c - x_{\overline{c}}| \le \alpha_n \le \frac{1}{2^n}$ et que $x_c \in C$.

On note S l'ensemble des suites indéxées par \mathbb{N}^* , prenant leurs valeurs dans $\{1,2\}$. Si $c \in S$, on note c_n l'élément de $\{1,2\}^n$ formé par les n premiers termes de la suite et on note $x_n = x_{c_n}$. La

suite $(x_n)_{n\in\mathbb{N}}$ est de Cauchy (car $|x_{n+1}-x_n|\leq \frac{1}{2^n}$) et incluse dans C, elle converge donc vers un point $x_c\in C$. On remarque que si c et c' sont deux suites différentes, alors $x_c\neq x_{c'}$. En effet soit $n\in\mathbb{N}$ t.q. $c_n=c'_n$ et $c_{n+1}\neq c'_{n+1}$, on alors $|x_{c_m}-x_{c'_m}|\geq (1-\rho_n)\alpha_n$ pour tout m>n et donc, en passant à la limite quand $m\to\infty$, $|x_c-x_{c'}|\geq (1-\rho_n)\alpha_n$, ce qui donne $x_c\neq x_{c'}$. L'application $c\mapsto x_c$ est donc une injection de S dans C. Ceci montre que C est infini non dénombrable (car S est infini non dénombrable).

4. Montrer que si ρ_n ne dépend pas de n, alors $\lambda(C)=0$. En déduire que si $A\in\mathcal{B}([0,1]), \lambda(A)=0$ n'entraı̂ne pas que A est dénombrable.

-corrigé-

La construction des points a_p^n et b_p^n donne $\lambda([a_{2p-1}^{n+1},b_{2p-1}^{n+1}]\cup[a_{2p}^{n+1},b_{2p}^{n+1}])=2\alpha_{n+1}=\rho_n\alpha_n=\rho_n\lambda([a_p^n,b_p^n])$. En prenant l'union sur $p\in\{1,\ldots,2^n\}$, on en déduit $\lambda(C_{n+1})=\rho_n\lambda(C_n)$.

Si ρ_n ne dépend pas de n, c'est-à-dire $\rho_n = \rho$ pour tout $n \in \mathbb{N}$ et $0 < \rho < 1$, on a donc $\lambda(C_{n+1}) = \rho\lambda(C_n)$. Ceci donne, comme $\lambda(C_0) = 1$, $\lambda(C_n) = \rho^n$ pour tout $n \in \mathbb{N}$. Par continuité décroissante de λ , on en déduit $\lambda(C) = \lim_{n \to \infty} \lambda(C_n) = 0$.

5. Soit $0 < \epsilon < 1$. Montrer qu'il existe une suite $(\rho_n)_{n > 0} \subset]0,1[$ t.q. $\lambda(C) = \epsilon$.

—corrigé—

Soit $(\varepsilon_n)_{n\in\mathbb{N}}\subset]\varepsilon,1]$ t.q. $\varepsilon_0=1,\ \varepsilon_{n+1}<\varepsilon_n$ pour tout $n\in\mathbb{N}$ et $\varepsilon_n\to\varepsilon$ quand $n\to\infty$ (on peut prendre, par exemple, $\varepsilon_n=\varepsilon-\frac{1-\varepsilon}{n+1}$).

On prend $\rho_n = \frac{\varepsilon_{n+1}}{\varepsilon_n}$ pour tout $n \in \mathbb{N}$. On a bien $0 < \rho_n < 1$ et, comme $\lambda(C_{n+1}) = \rho_n \lambda(C_n)$ (ceci a été démontré à la question précédente), on adonc $\lambda(C_n) = \varepsilon_n$ pour tout $n \in \mathbb{N}$. Par continuité décroissante de λ , on en déduit $\lambda(C) = \lim_{n \to \infty} \lambda(C_n) = \varepsilon$.

6. Soit f lipschitzienne de \mathbb{R} dans \mathbb{R} . Montrer que si A est un compact de [0,1] t.q. $\lambda(A) = 0$, alors f(A) est un compact de \mathbb{R} t.q. $\lambda(f(A)) = 0$.

---corrigé-

Comme f est continue, f transforme les compacts en compacts. Donc, f(A) est bien un compact de \mathbb{R} (et donc appartient à $\mathcal{B}(\mathbb{R})$).

On montre maintenant que $\lambda(f(A)) = 0$.

Soit $L \in \mathbb{R}$ t.q. $|f(y) - f(x)| \le L|y - x|$ pour tout $x, y \in \mathbb{R}$. On commence par montrer un petit résultat préliminaire. Soit I = [a, b] un intervalle fermé de [0, 1] (I est donc compact). Comme f est continue sur [a, b], il existe $x, y \in [a, b]$ t.q. $f(x) = m = \min\{f(z), z \in [a, b]\}$ et $f(y) = M = \max\{f(z), z \in [a, b]\}$. On a donc $f(I) \subset [m, M]$ (en fait, f(I) = [m, M]), d'où :

$$\lambda(f(I)) \le M - m = f(y) - f(x) \le L|y - x| = L\lambda(I). \tag{12.9}$$

Soit $\eta > 0$. Comme $A \in \mathcal{B}(\mathbb{R})$, d'après la régularité de λ (voir le théorème 2.3), il existe O, ouvert de \mathbb{R} , t.q. $A \subset O$ et $\lambda(0) \leq \eta$. D'après le lemme 2.4 page 35, O est une union dénombrable d'intervalles

ouverts disjoints 2 à 2. En prenant éventuellement la restriction à [0,1] de ces intervalles, on obtient donc une famille dénombrable, notée $(I_n)_{n\in\mathbb{N}}$, d'intervalles inclus dans [0,1], disjoints 2 à 2 t.q. $A\subset \cup_{n\in\mathbb{N}}I_n\subset O$. On en déduit $\sum_{n=0}^{+\infty}\lambda(I_n)=\lambda(\cup_{n\in\mathbb{N}}I_n)\leq \eta$ et $f(A)\subset \cup_{n\in\mathbb{N}}f(I_n)\subset \cup_{n\in\mathbb{N}}f(\overline{I}_n)$. On a donc $\lambda(f(A))\leq \sum_{n=0}^{+\infty}\lambda(f(\overline{I}_n))$. En utilisant (12.9), on a donc $\lambda(f(A))\leq L\sum_{n=0}^{+\infty}\lambda(\overline{I}_n)=L\sum_{n=0}^{+\infty}\lambda(I_n)\leq L\eta$. Comme η est arbitrairement petit, on a donc $\lambda(f(A))=0$.

7. Construire une fonction continue de \mathbb{R} dans \mathbb{R} t.q. si A est un compact de [0,1] t.q. $\lambda(A) = 0$, on n'a pas forcément $\lambda(f(A)) = 0$ (mais f(A) est un compact de \mathbb{R}). [Utiliser un ensemble de Cantor de mesure nulle (cf question 4) et un ensemble de Cantor de mesure $\epsilon > 0$ (cf question 5).]

-corrigé-

On note C l'ensemble obtenu dans la question 4, c'est-à-dire avec $\rho_n = \rho$ pour tout $n \in \mathbb{N}$ et $0 < \rho < 1$ (par exemple, $\rho = \frac{2}{3}$). On note a_n^p , b_n^p , C_n les points et ensembles utilisés pour construire C et on note aussi $D = \{a_n^p, n \in \mathbb{N}, p \in \{1, \dots, 2^n\}\} \cup \{b_n^p, n \in \mathbb{N}, p \in \{1, \dots, 2^n\}\}$. (Noter que $D \subset C$.)

Soit $\varepsilon > 0$. On note \tilde{C} l'ensemble C obtenu à la question 5. On a donc $\lambda(C) = \varepsilon$. On note \tilde{a}_n^p , \tilde{b}_n^p , \tilde{C}_n les points et ensembles utilisés pour construire \tilde{C} et on note aussi $\tilde{D} = \{\tilde{a}_n^p, n \in \mathbb{N}, p \in \{1, \dots, 2^n\}\} \cup \{\tilde{b}_n^p, n \in \mathbb{N}, p \in \{1, \dots, 2^n\}\}$. (Noter que $\tilde{D} \subset \tilde{C}$.)

Soit $n \in \mathbb{N}$ et $p \in \{1, \dots, 2^n\}$. On construit f sur l'intervalle $[b_{2p-1}^{n+1}, a_{2p}^{n+1}]$ en prenant f affine et t.q. $f(b_{2p-1}^{n+1}) = \tilde{b}_{2p-1}^{n+1}$ et $f(a_{2p-1}^{n+1}) = \tilde{a}_{2p-1}^{n+1}$. On remarque que f est ainsi contruit de $(\cup_{n \in \mathbb{N}} C_n^c) \cup D$ dans $(\cup_{n \in \mathbb{N}} \tilde{C}_n^c) \cup \tilde{D}$ et est strictement croissante. Comme $(\cup_{n \in \mathbb{N}} C_n^c)^c = C$ et que C est d'intérieur vide, f est définie sur une partie dense de [0,1] et, comme $(\cup_{n \in \mathbb{N}} \tilde{C}_n^c)^c = \tilde{C}$ et que \tilde{C} est d'intérieur vide, l'image de f est dense dans [0,1].

Il est maintenant facile de définir f par densité sur tout [0,1]. En effet, soit $x \in [0,1] \setminus (\cup_{n \in \mathbb{N}} C_n^c) \cup D$, il existe une suite de points de $(\cup_{n \in \mathbb{N}} C_n^c) \cup D$, notée $(y_n)_{n \in \mathbb{N}}$, convergeant en croissant vers x et une suite de points de $(\cup_{n \in \mathbb{N}} C_n^c) \cup D$, notée $(z_n)_{n \in \mathbb{N}}$, convergeant en décroissant vers x (en fait, ces points peuvent même être pris dans D). Comme f et croissante, la suite $(f(y_n))_{n \in \mathbb{N}}$ converge donc en croissant vers un certain $\gamma \in [0,1]$ et la suite $(f(z_n))_{n \in \mathbb{N}}$ converge en décroissant vers un certain $\delta \in [0,1]$ (la croissance de f donne aussi que ces limites ne dépendent que du choix de x et non du choix des suites $(y_n)_{n \in \mathbb{N}}$ et $(z_n)_{n \in \mathbb{N}}$). Comme f est croissante, on a $\gamma \leq \delta$ et comme l'image de f (définie pour l'instant seulement sur $(\cup_{n \in \mathbb{N}} C_n^c) \cup D$) est dense dans [0,1], on a nécessairement $\gamma = \delta$ (l'intervalle γ, δ ne rencontre pas l'image de f). On peut donc poser $f(x) = \gamma = \delta$.

La fonction f est donc maintenant définie sur tout [0,1] à valeurs dans [0,1]. Elle est strictement croissante et son image est dense dans [0,1], elle est donc continue (par le même raisonnement que celui fait pour définir f(x) en tout point $x \in [0,1] \setminus (\cup_{n \in \mathbb{N}} C_n^c) \cup D$). Comme une application continue transforme un compact en compact, on a donc f([0,1]) = [0,1] et ceci prouve en particulier que $f([0,1] \setminus (\cup_{n \in \mathbb{N}} C_n^c) \cup D) = [0,1] \setminus (\cup_{n \in \mathbb{N}} \tilde{C}_n^c) \cup \tilde{D}$. Comme $f(D) = \tilde{D}$, on a aussi $f(C) = \tilde{C}$. Pour que f soit définie sur \mathbb{R} et continue, on ajoute f(x) = 0 pour x < 0 et f(x) = 1 pour x > 1. On a toujours $f(C) = \tilde{C}$. Ceci donne bien le résultat désiré car $\lambda(C) = 0$ et $\lambda(\tilde{C}) = \varepsilon > 0$.

Corrigé 34 (Mesure complète)

Soit (\bar{E}, T, m) un espace mesuré. Une partie B de E est dite "négligeable" si elle est incluse dans un élément de T de mesure nulle. On note \mathcal{N}_m l'ensemble des parties négligeables. On pose $\overline{T} = \{A \cup N; A \in T, N \in \mathcal{N}_m\}$.

1. Montrer que \overline{T} est une tribu et que $T \cup \mathcal{N}_m \subset \overline{T}$.

-corrigé

- (a) On montre d'abord que \overline{T} est une tribu.
 - $\emptyset \in \overline{T}$ car $\emptyset = \emptyset \cup \emptyset$ et \emptyset appartient à T et \mathcal{N}_m (car il est de mesure nulle).
 - \overline{T} est stable par passage au complémentaire : Soit $C \in \overline{T}$ Il existe $A \in T$ et $N \in M$ to $C = A \sqcup N$ Co

Soit $C \in \overline{T}$. Il existe $A \in T$ et $N \in \mathcal{N}_m$ t.q. $C = A \cup N$. Comme $N \in \mathcal{N}_m$, il existe $B \in T$ t.q. $N \subset B$ et m(B) = 0.

On remarque alors que $C^c = (A \cup N)^c = A^c \cap N^c = (A^c \cap B^c) \cup (A^c \cap N^c \cap B)$. Comme $A^c \cap B^c \in T$ (par les propriétés de stabilité de T) et $(A^c \cap N^c \cap B) \in \mathcal{N}_m$ (car inclus dans B), on en déduit que $C^c \in \overline{T}$. Donc, \overline{T} est stable par passage au complémentaire.

• \overline{T} est stable par union dénombrable : Soit $(C_n)_{n\in\mathbb{N}}\subset\overline{T}$. Il existe $(A_n)_{n\in\mathbb{N}}\subset T$ et $(N_n)_{n\in\mathbb{N}}\subset\mathcal{N}_m$ t.q. $C_n=A_n\cup N_n$ pour tout $n\in\mathbb{N}$. Comme, pour tout $n\in\mathbb{N}$, $N_n\in\mathcal{N}_m$, il existe $B_n\in T$ t.q. $N_n\subset B_n$ et $m(B_n)=0$. On a alors $\cup_{n\in\mathbb{N}}C_n=(\cup_{n\in\mathbb{N}}A_n)\cup(\cup_{n\in\mathbb{N}}N_n)$. On remarque que $\cup_{n\in\mathbb{N}}N_n\subset B=\cup_{n\in\mathbb{N}}B_n\in T$ et m(B)=0 par σ -sous additivité de m. Donc, $\cup_{n\in\mathbb{N}}N_n\in\mathcal{N}_m$. comme $\cup_{n\in\mathbb{N}}A_n\in T$, on a finalement $\cup_{n\in\mathbb{N}}C_n\in\overline{T}$. Ce qui prouve bien que \overline{T} est stable par union dénombrable.

On a bien montré que \overline{T} est une tribu sur E.

- (b) On montre maintenant que $T \cup \mathcal{N}_m \subset \overline{T}$.
 - Si $A \in T$, on a $A = A \cup \emptyset$. Comme $\emptyset \in \mathcal{N}_m$, on en déduit $A \in \overline{T}$. Donc, $T \subset \overline{T}$.
 - Si $N \in \mathcal{N}_m$, on a $N = \emptyset \cup N$. Comme $\emptyset \in T$, on en déduit $N \in \overline{T}$. Donc, $\mathcal{N}_m \subset \overline{T}$.

Finalement, on a bien $T \cup \mathcal{N}_m \subset \overline{T}$.

2. Soit $A_1, A_2 \in T$ et $N_1, N_2 \in \mathcal{N}_m$ t.q. $A_1 \cup N_1 = A_2 \cup N_2$. Montrer que $m(A_1) = m(A_2)$.

-----corrigé------

Soit $B_2 \in T$ t.q. $N_2 \subset B_2$ et $m(B_2) = 0$. On a :

$$A_1 \subset A_1 \cup N_1 = A_2 \cup N_2 \subset A_2 \cup B_2.$$

Donc, par monotonie et sous additivité de m, $m(A_1) \le m(A_2 \cup B_2) \le m(A_2) + m(B_2) = m(A_2)$. En changeant les rôles de A_1 et A_2 , on a aussi $m(A_2) \le m(A_1)$. On a donc $m(A_1) = m(A_2)$.

Pour $B \in \overline{T}$, soit $A \in T$ et $N \in \mathcal{N}_m$ t.q. $B = A \cup N$, on pose $\overline{m}(B) = m(A)$. (La question précédente montre que cette définition est cohérente.)

3. Montrer que \overline{m} est une mesure sur \overline{T} et $\overline{m}_{|_T}=m$. Montrer que \overline{m} est la seule mesure sur \overline{T} égale à m sur T.

-corrigé-----

(a) On montre d'abord que \overline{m} est une mesure sur \overline{T} .

Comme $\emptyset = \emptyset \cup \emptyset$ et $\emptyset \in T \cap \mathcal{N}_m$, on a $\overline{m}(\emptyset) = m(\emptyset) = 0$.

Soit maintenant $(C_n)_{n\in\mathbb{N}}\subset \overline{T}$ t.q. $C_n\cap C_m=\emptyset$ si $n\neq m$. Il existe $(A_n)_{n\in\mathbb{N}}\subset T$ et $(N_n)_{n\in\mathbb{N}}\subset \mathcal{N}_m$ t.q. $C_n=A_n\cup N_n$ pour tout $n\in\mathbb{N}$. Comme, pour tout $n\in\mathbb{N},\ N_n\in\mathcal{N}_m$, il existe $B_n\in T$ t.q. $N_n\subset B_n$ et $m(B_n)=0$.

On a donc $\cup_{n\in\mathbb{N}}C_n=(\cup_{n\in\mathbb{N}}A_n)\cup(\cup_{n\in\mathbb{N}}N_n)$. On a déjà vu que $\cup_{n\in\mathbb{N}}N_n\in\mathcal{N}_m$. Par définition de \overline{m} , on a donc $\overline{m}(\cup_{n\in\mathbb{N}}C_n)=m(\cup_{n\in\mathbb{N}}A_n)$. Comme $C_n\cap C_m=\emptyset$ si $n\neq m$, on a aussi $A_n\cap A_m=\emptyset$ si $n\neq m$ (car $A_p\subset C_p$ pour tout p). La σ -additivité de m (et la définition de $\overline{m}(C_n)$) donne(nt) alors :

$$\overline{m}(\cup_{n\in\mathbb{N}}C_n)=m(\cup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}m(A_n)=\sum_{n\in\mathbb{N}}\overline{m}(C_n).$$

Ce qui prouve la σ -additivité de \overline{m} .

(b) On montre maintenant que $\overline{m}_{|_T} = m$.

Si $A \in T$, on a $A = A \cup \emptyset$. Comme $\emptyset \in \mathcal{N}_m$, on a donc $(A \in \overline{T}, \text{ on le savait déjà, et)}$ $\overline{m}(A) = m(A)$. Donc, $\overline{m}_{|_T} = m$.

(c) Enfin, on montre que \overline{m} est la seule mesure sur \overline{T} égale à m sur T.

Soit \tilde{m} une mesure sur \overline{T} égale à m sur T.

Soit $C \in \overline{T}$. Il existe $A \in T$ et $N \in \mathcal{N}_m$ t.q. $C = A \cup N$. Comme $N \in \mathcal{N}_m$, il existe $B \in T$ t.q. $N \subset B$ et m(B) = 0. On a alors $A \subset C \subset A \cup B$. La monotonie de \tilde{m} , le fait que $\tilde{m} = m$ sur T et la sous additivité de m donnent :

$$m(A) = \tilde{m}(A) \le \tilde{m}(C) \le \tilde{m}(A \cup B) = m(A \cup B) \le m(A) + m(B) = m(A).$$

On a donc $\tilde{m}(C) = m(A) = \overline{m}(C)$. Ce qui prouve que $\tilde{m} = \overline{m}$.

4. Montrer que $\mathcal{N}_{\overline{m}} = \mathcal{N}_m \subset \overline{T}$.

---corrigé------

On a déjà vu (à la question 1) que $\mathcal{N}_m \subset \overline{T}$.

- Il est facile de voir que $\mathcal{N}_m \subset \mathcal{N}_{\overline{m}}$. En effet, soit $N \in \mathcal{N}_m$. Il existe $B \in T$ t.q. $N \subset B$ et m(B) = 0. Comme $T \subset \overline{T}$ et que $\overline{m} = m$ sur T, on a donc aussi $B \in \overline{T}$ et $\overline{m}(B) = 0$. Ce qui prouve que $N \in \mathcal{N}_{\overline{m}}$.
- Soit maintenant $N \in \mathcal{N}_{\overline{m}}$. Il existe $C \in \overline{T}$ t.q. $N \subset C$ et $\overline{m}(C) = 0$. Comme $C \in \overline{T}$, il existe $A \in T$, $M \in \mathcal{N}_m$ et $B \in T$ t.q. m(B) = 0 et $C = A \cup M \subset A \cup B$. la définition de \overline{m} donne que $\overline{m}(C) = m(A)$, on a donc m(A) = 0. On en déduit $m(A \cup B) \leq m(A) + m(B) = 0$, et donc, comme $C \subset A \cup B$, on a bien $C \in \mathcal{N}_m$.

On a bien montré que $\mathcal{N}_{\overline{m}} = \mathcal{N}_m \subset \overline{T}$.

L'exercice 4.18 page 104 montre la différence "dérisoire", du point de vue de l'intégration, entre (E, T, m) et son complété $(E, \overline{T}, \overline{m})$.

Corrigé 35 (Série commutativement convergente dans R)

Soit $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Le but de l'exercice est de montrer que si la série $\sum_{n\in\mathbb{N}}a_{\varphi(n)}$ est convergente pour toute bijection $\varphi:\mathbb{N}\to\mathbb{N}$, alors la série $\sum_{n\in\mathbb{N}}a_n$ est absolument convergente.

Pour montrer ce résultat, on suppose, par exemple, que $\sum_{n\in\mathbb{N}}a_n^+=\infty$. Montrer qu'il existe $\varphi:\mathbb{N}\to\mathbb{N}$, bijective, t.q. $\sum_{p=0}^n a_{\varphi(p)}\to\infty$ quand $n\to\infty$. Conclure.

-corrigé

On suppose que la série $\sum_{n\in\mathbb{N}}a_n$ n'est pas absolument convergente. La suite $(\sum_{p=0}^n|a_p|)_{n\in\mathbb{N}}$ converge donc en croissant vers ∞ . Comme $|a_p|=a_p^++a_p^-$ et que $a_p^+=\max\{a_p,0\}\geq 0$ et $a_p^-=\max\{-a_p,0\}\geq 0$, les deux suites $(\sum_{p=0}^na_p^+)_{n\in\mathbb{N}}$ et $(\sum_{p=0}^na_p^-)_{n\in\mathbb{N}}$ sont donc aussi croissantes et l'une des deux, au moins, converge vers ∞ . On suppose que la suite $(\sum_{p=0}^na_p^+)_{n\in\mathbb{N}}$ converge vers ∞ (un raisonnement analogue à ce qui suit permettrait de traiter le cas où la suite $(\sum_{p=0}^na_p^-)_{n\in\mathbb{N}}$ converge vers ∞). On va construire ci-après une bijection φ de \mathbb{N} dans \mathbb{N} t.q. $\sum_{p=0}^na_{\varphi(p)}\to\infty$ quand $n\to\infty$. Ceci prouvera que la série $\sum_{n\in\mathbb{N}}a_{\varphi(n)}$ est non convergente pour au moins une bijection de \mathbb{N} dans \mathbb{N} .

On note $P = \{n \in \mathbb{N}, a_n \ge 0\}$ et $N = \{n \in \mathbb{N}, a_n < 0\}$ (de sorte que $P \cap N = \emptyset$ et $P \cup N = \mathbb{N}$). Soit φ_1 et φ_2 les deux applications strictement croissantes de \mathbb{N} dans \mathbb{N} t.q. $P = \{\varphi_1(n), n \in \mathbb{N}\}$ et $N = \{\varphi_2(n), n \in \mathbb{N}\}$.

On commence par montrer qu'il existe une suite strictement croissante $(a_n)_{n\in\mathbb{N}}\subset\mathbb{N}$ t.q. $a_0=0$ et :

$$a_{\varphi_2(n)} + \sum_{p=a_n}^{a_{n+1}-1} a_{\varphi_1(p)} \ge 1. \tag{12.10}$$

Pour montrer l'existence d'une telle suite $(a_n)_{n\in\mathbb{N}}$, on pose $a_0=0$. Puis, on raisonne par récurrence sur n. Si a_0,\ldots,a_n sont contruits, l'existence de a_{n+1} découle du fait que $\sum_{p=a_n}^{\infty}a_{\varphi_1(p)}=\sum_{p=\varphi_1(a_n)}^{\infty}a_p^+=\infty$.

la construction de la suite $(\varphi(n))_{n\in\mathbb{N}}$ se fait alors en prenant $\varphi_1(a_0),\ldots,\varphi_1(a_1-1)$ puis $\varphi_2(0)$ puis $\varphi_1(a_1),\ldots,\varphi_1(a_2-1)$ puis $\varphi_2(1)\ldots$ puis $\varphi_1(a_n),\ldots,\varphi_1(a_{n+1}-1)$ puis $\varphi_2(n)\ldots$

Pour décrire précisément cette application φ , on pose $b_0 = 0$ et, pour $n \in \mathbb{N}$, $b_{n+1} = b_n + a_{n+1} - a_n + 1$ (la suite $(b_n)_{n \in \mathbb{N}}$ est strictement croissante et tend donc vers ∞ quand $n \to \infty$). On définit alors, pour tout $n \in \mathbb{N}$, $\varphi(q)$ losrque $q \in \{b_n, \dots b_{n+1} - 1\}$ par :

$$\varphi(b_n + p) = \varphi_1(a_n + p) \text{ pour } p \in \{0, \dots, a_{n+1} - a_n - 1\},$$

 $\varphi(b_{n+1} - 1) = \varphi_2(n).$

On a bien ainsi défini une application de \mathbb{N} dans \mathbb{N} car $b_{n+1}-1=b_n+p$, pour $p=a_{n+1}-a_n$. L'application φ est surjective car $\{\varphi(q), q \in \mathbb{N}\} = P \cup N\}$. Elle est injective car chaque valeur de φ_1 et φ_2 n'est prise qu'une seule fois par φ . Enfin, on a bien $\sum_{p=0}^n a_{\varphi(p)} \to \infty$ quand $n \to \infty$. En effet, on remarque que, grâce à (12.10):

$$\sum_{q=0}^{b_{n+1}-1+p} a_{\varphi(q)} \geq \sum_{q=0}^{b_{n+1}-1} a_{\varphi(q)} \geq n,$$

pour tout $p \geq 0$ et tout $n \in \mathbb{N}$. Ce qui donne, pour tout $n \in \mathbb{N}$, $\liminf_{p \to \infty} \sum_{q=0}^p a_{\varphi(q)} \geq n$, et donc $\sum_{q=0}^p a_{\varphi(q)} \to \infty$, quand $p \to \infty$.

Corrigé 36 (Mesure sur S^1)

On considère $S^1 = \{(x,y)^t \in \mathbb{R}^2, |x|^2 + |y|^2 = 1\}$ (S^1 est donc le cercle unité de \mathbb{R}^2). Pour $z = (x,y)^t \in S^1$, il existe un unique $\theta_z \in [0,2\pi[$ t.q. $x = \cos(\theta_z)$ et $y = \sin(\theta_z)$. Pour $\alpha \in [0,2\pi[$ et $z \in S^1$ on pose $R_{\alpha}(z) = (\cos(\theta_z + \alpha), \sin(\theta_z + \alpha))^t$. Noter que R_{α} est une bijection de S^1 sur S^1 (c'est la rotation d'angle α).

Définir une tribu T sur S^1 , t.q. T contienne les parties de la forme $\{(\cos(\theta),\sin(\theta))^t, \theta \in]\alpha,\beta[\}$ avec $-\infty < \alpha < \beta < \infty$, et une mesure μ sur T de sorte que (S^1,T,μ) soit un espace mesuré avec $\mu(S^1)=1$ et t.q. μ soit invariante par rotation (c'est à dire que, pour tout $A \in T$ et $\alpha \in [0,2\pi[$, on ait $R_{\alpha}(A)=\{R_{\alpha}(z),z\in A\}\in T$ et $\mu(R_{\alpha}(A))=\mu(A)$). [On pourra utiliser la tribu borélienne de \mathbb{R} , notée $\mathcal{B}(\mathbb{R})$, et la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R})$.]

–corrigé-

On note Θ l'application $z \mapsto \theta_z$ de S^1 dans \mathbb{R} (cette application est bijective de S^1 dans $[0, 2\pi[)$. On prend alors $T = \{\Theta^{-1}(B), B \in \mathcal{B}(\mathbb{R})\}$. C'est bien une tribu sur S^1 (voir l'exercice 2.4).

Soit $-\infty < \alpha < \beta < \infty$ et $E = \{(\cos(\theta), \sin(\theta))^t, \theta \in]\alpha, \beta[\}$. On a $E \subset S^1$ et, si $z \in S^1$, on a $z \in E$ si et seulement si il existe $k \in \mathbb{Z}$ t.q. $\theta_z + 2k\pi \in]\alpha, \beta[$. Ceci prouve que

$$E = \bigcup_{k \in \mathbb{Z}} \Theta^{-1}([\alpha - 2k\pi, \beta - 2k\pi[),$$

et donc que $E \in T$ car $\Theta^{-1}(]\alpha - 2k\pi, \beta - 2k\pi[) \in T$ pour tout $k \in \mathbb{Z}$.

On définit maintenant μ . Soit $A \in T$. On pose $\Theta_A = \{\theta_z, z \in A\}$. Comme $A \in T$, il existe $B \in \mathcal{B}(\mathbb{R})$ t.q. $A = \Theta^{-1}(B)$, et donc $A = \Theta^{-1}(B \cap [0, 2\pi[)$. Comme Θ est une bijection de S^1 dans $[0, 2\pi[$, on a alors $\Theta_A = B \cap [0, 2\pi[\in \mathcal{B}(\mathbb{R})]$. On pose $\mu(A) = \frac{1}{2\pi}\lambda(\Theta_A)$, où λ est la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R})$.

 μ est bien une mesure sur T. En effet, on a $2\pi\mu(\emptyset) = \lambda(\Theta_{\emptyset}) = \lambda(\emptyset) = 0$. Puis, si $(A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de T, disjoints 2 à 2, la suite $(\Theta_{A_n})_{n\in\mathbb{N}}$ est une suite d'éléments de $\mathcal{B}(\mathbb{R})$, disjoints 2 à 2. La σ -additvité de μ découle alors de celle de λ .

Il reste à montrer que μ est invariante par rotation. Soit $\alpha \in [0, 2\pi[$ et $A \in T$. Comme on l'a vu précédemment, il existe $B \in \mathcal{B}(\mathbb{R})$ t.q. $A = \Theta^{-1}(B \cap [0, 2\pi[)$. On a donc $A = \{(\cos(\theta), \sin(\theta))^t, \theta \in B \cap [0, 2\pi[]\}$. Pour $\beta \in \mathbb{R}$, on note $B_{\beta} = \{\theta + \beta, \theta \in B\}$. On a alors :

$$\begin{split} R_{\alpha}(A) &= \{ (\cos(\theta + \alpha), \sin(\theta + \alpha))^t, \, \theta \in B \cap [0, 2\pi[\} = \{ (\cos(\theta), \sin(\theta))^t, \, \theta \in B_{\alpha} \cap [\alpha, 2\pi + \alpha[\} \\ &= \{ (\cos(\theta), \sin(\theta))^t, \, \theta \in B_{\alpha} \cap [\alpha, 2\pi[\} \cup \{ (\cos(\theta), \sin(\theta))^t, \, \theta \in B_{\alpha - 2\pi} \cap [0, \alpha[\} \\ &= \Theta^{-1}(B_{\alpha} \cap [\alpha, 2\pi[) \cup \Theta^{-1}(B_{\alpha - 2\pi} \cap [0, \alpha[). \end{split}$$

La propriété d'invariance par translation de λ permet de dire que $B_{\beta} \in \mathcal{B}(\mathbb{R})$ pour tout $\beta \in \mathbb{R}$. On a donc $R_{\alpha}(A) \in T$ et, par additivité d'une mesure et définition de μ ,

$$2\pi\mu(R_{\alpha}(A)) = \lambda(B_{\alpha} \cap [\alpha, 2\pi[) + \lambda(B_{\alpha-2\pi} \cap [0, \alpha[).$$

L'invariance par translation de λ donne $\lambda(B_{\alpha-2\pi}\cap[0,\alpha])=\lambda(B_{\alpha}\cap[2\pi,\alpha+2\pi])$ et donc :

$$2\pi\mu(R_{\alpha}(A)) = \lambda(B_{\alpha} \cap [\alpha, 2\pi[) + \lambda(B_{\alpha} \cap [2\pi, \alpha + 2\pi[) = \lambda(B_{\alpha} \cap [\alpha, \alpha + 2\pi[) = \lambda(B \cap [0, 2\pi[).$$

Ce qui donne bien $\mu(R_{\alpha}(A)) = \mu(A)$.

12.2.3 Probabilités

Corrigé 37 (Lemme de Borel-Cantelli)

Soient (E,T,p) un espace probabilisé et $(A_n)_{n\in\mathbb{N}}\subset T$. On pose $B_n=\cup_{k\geq n}A_k$ et $A=\cap_{n\in\mathbb{N}}B_n$ (on rappelle que $A=\limsup_{n\to\infty}A_n$).

1. Montrer que si $\sum_{n\in\mathbb{N}} p(A_n) < +\infty$ alors p(A) = 0.

Cette question a été corrigée dans le corrigé 28.

2. On suppose que, pour tout $n \in \mathbb{N}^*$, les événements A_1, \ldots, A_n sont indépendants. On suppose aussi que $\sum_{n \in \mathbb{N}} p(A_n) = \infty$. Montrer que p(A) = 1.

-corrigé

Comme cela a été vu dans le corrigé 28, la propriété de continuité décroissante d'une mesure (voir la proposition 2.3) domme $p(A) = \lim_{n \to \infty} p(B_n)$. Il suffit donc de montrer que $p(B_n) = 1$ pour tout $n \in \mathbb{N}$.

Soit $n \in \mathbb{N}$. Si il existe $k \geq n$ t.q. $p(A_k) = 1$, on a, par monotonie de p, que $p(B_n) \geq p(A_k) = 1$ et donc $p(B_n) = 1$. On suppose maintenant que $p(A_k) < 1$ pour tout $k \geq n$. Comme $B_n^c = \bigcap_{k \geq n} A_k^c$, la continuité décroissante de p et l'indépendance des A_k donne :

$$p(B_n^c) = \lim_{m \to \infty} \prod_{k=n}^m p(A_k^c) = \lim_{m \to \infty} \prod_{k=n}^m (1 - p(A_k)).$$

Comme $\ln(1-x) \le -x$ pour tout x < 1 (ou, de manière équivalente, $\ln(u) \le u - 1$ pour tout u > 0, ceci est une conséquence, par exemple, de la concavité de la fonction \ln), on a, pour m > n:

$$\ln(\prod_{k=n}^{m}(1-p(A_k))) = \sum_{k=n}^{m}\ln(1-p(A_k)) \le -\sum_{k=n}^{m}p(A_k).$$

De l'hypothèse $\sum_{n\in\mathbb{N}} p(A_n) = \infty$, on déduit $\lim_{m\to\infty} \ln(\prod_{k=n}^m (1-p(A_k))) = -\infty$, et donc $p(B_n^c) = 0$. Ceci donne bien $p(B_n) = 1$ et termine la démonstration.

12.3 Exercices du chapitre 3

12.3.1 Fonctions mesurables

Corrigé 38 (Caractérisation des fonctions mesurables) (*)

Soient (E,T) un espace mesurable et f une application de E dans \mathbb{R} ;

Cette question est un cas particulier (avec $F = \mathbb{R}$) de la question 2 de l'exercice 2.4, voir le corrige 12 page 285.

- 2. Soit \mathcal{C} un ensemble qui engendre $\mathcal{B}(\mathbb{R})$, montrer que les deux assertions suivantes sont équivalentes :
 - (i) f est mesurable,
 - (ii) $f^{-1}(C) \in T$, pour tout $C \in \mathcal{C}$.

----corrigé

On remarque que f mesurable signifie simplement que T_f (définie à la question précédente) contient $\mathcal{B}(\mathbb{R})$.

Le sens (i) \Rightarrow (ii) est immédiat car $\mathcal{C} \subset \mathcal{B}(\mathbb{R})$.

Pour le sens (ii) \Rightarrow (i), on remarque que T_f est une tribu. Donc, si T_f contient \mathcal{C} , on a aussi T_f contient $T(\mathcal{C}) = \mathcal{B}(\mathbb{R})$. Ceci donne f mesurable. Donc, on a bien (ii) \Rightarrow (i)

Corrigé 39 (Composition de fonctions mesurables)

Soit (E,T) et (F,S) deux espaces mesurables. Soit $f:E\to F$ et $\varphi:F\to \mathbb{R}$ (\mathbb{R} est muni, comme toujours, de la tribu borélienne). On suppose que f et φ sont mesurables. Montrer que $\varphi\circ f$ est mesurable (de E dans \mathbb{R}).

_____corrigé_____

E est muni de la tribu T, F est muni de la tribu S et \mathbb{R} est muni de la tribu borélienne.

Soit $B \in \mathcal{B}(\mathbb{R})$, on remarque que $(\varphi \circ f)^{-1}(B) = f^{-1}(\varphi^{-1}(B))$. Comme $\varphi^{-1}(B) \in S$ car φ est mesurable (de F dans \mathbb{R}), on a donc $f^{-1}(\varphi^{-1}(B)) \in T$ car f est mesurable (de E dans F). Ceci montre bien que $\varphi \circ f$ est mesurable (de E dans \mathbb{R}).

Corrigé 40 (\mathbb{R} ou $\overline{\mathbb{R}}_+$...)

Soit $\varphi: \mathbb{R} \to \mathbb{R}$, $\varphi \geq 0$. On munit \mathbb{R} (au départ et à l'arrivée) de la tribu borélienne. Montrer que φ est mesurable (on dit aussi borélienne) si et seulement si φ est mesurable quand on la considère comme une application de \mathbb{R} dans $\overline{\mathbb{R}}_+$ ($\overline{\mathbb{R}}_+$ étant aussi muni de la tribu borélienne).

-----corrigé

On suppose φ mesurable de \mathbb{R} dans \mathbb{R} . Soit B un borélien de $\overline{\mathbb{R}}_+$, on a donc $B \cap \mathbb{R} \in \mathcal{B}(\mathbb{R})$ (voir la définition 3.1 page 53). Comme φ prend ses valeurs dans \mathbb{R} et que φ est mesurable de \mathbb{R} dans \mathbb{R} , on a donc $\varphi^{-1}(B) = \varphi^{-1}(B \cap \mathbb{R}) \in \mathcal{B}(\mathbb{R})$. Ceci donne donc que φ est mesurable de \mathbb{R} dans $\overline{\mathbb{R}}_+$.

Réciproquement, on suppose maintenant φ mesurable de \mathbb{R} dans $\overline{\mathbb{R}}_+$ (mais φ ne prend jamais la valeur
∞ , on peut donc la considérer comme étant de \mathbb{R} dans \mathbb{R}). Soit $B \in \mathcal{B}(\mathbb{R})$. On a donc aussi $B \in \mathcal{B}(\overline{\mathbb{R}}_+)$
et donc $\varphi^{-1}(B) \in \mathcal{B}(\mathbb{R})$ car φ est mesurable de \mathbb{R} dans $\overline{\mathbb{R}}_+$. Ceci prouve que φ est mesurable de \mathbb{R} dans
$\mathbb{R}.$

Corrigé 41 (Stabilité de \mathcal{M})

1.	Soient (E,T) , (E',T') , (E'',T'') des espaces	s mesurables,	f (resp. g)	une application de	$E ext{ dans}$
	E' (resp. de E' dans E''). On suppose que	e f et g sont	mesurables.	Montrer que $g \circ f$	est une
	application mesurable de E dans E'' .				

Cette question est identique à celle de l'exercice 3.3 (voir le corrigé 39) avec E'' au lieu de \mathbb{R} . La démonstration est semblable :

Soit $B \in T''$, on remarque que $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$. Comme $g^{-1}(B) \in T'$ car g est mesurable (de E' dans E''), on a donc $f^{-1}(g^{-1}(B)) \in T$ car f est mesurable (de E dans E'). Ceci montre bien que $g \circ f$ est mesurable (de E dans E'').

- 2. Soit (E,T) un espace mesurable, on munit $\mathbb R$ de la tribu des boréliens $\mathcal B(\mathbb R)$; soient f et g des fonctions mesurables de E dans $\mathbb R$.
 - (a) Montrer que $f^+(=\sup(f,0))$, $f^-(=-\inf(f,0))$ sont des fonctions mesurables de E dans \mathbb{R} .

---corrigé-----

Cette question est démontrée dans la proposition 3.7 page 60.

(b) Montrer que f + g, fg et |f| sont des fonctions mesurables de E dans \mathbb{R} .

-----corrigé

Le fait que f+g, $fg \in \mathcal{M}$ est démontré dans la proposition 3.5 et le fait que $|f| \in \mathcal{M}$ est démontré dans la proposition 3.7 (car |f| prend ses valeurs dans \mathbb{R} et $|f| \in \mathcal{M}_+$, on conclut avec l'exercice 3.4, corrigé 40).

3. Soient (E,T) un espace mesurable, $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{R} . On suppose que la suite $(f_n(x))_{n\in\mathbb{N}}$ converge (dans \mathbb{R}) pour tout $x\in E$. On pose $f(x)=\lim_{n\to+\infty}f_n(x)$ (pour tout $x\in E$). Montrer que f est une fonction mesurable de E dans \mathbb{R} .

-----corrigé

La démonstration de cette question est donnée dans la proposition 3.5 page 58 (propriété 3).

4. Soit (E,T) un espace mesurable, on suppose qu'il existe $A \in T$ dont les sous-ensembles ne soient pas tous mesurables. Il existe donc $B \subset A$ t.q. $B \notin T$. Montrer que $h = 1_B - 1_{A \setminus B}$ n'est pas mesurable (de E dans \mathbb{R}), alors que |h| l'est.

-----corrigé------

 $\{1\} \in \mathcal{B}(\mathbb{R})$ alors que $h^{-1}(\{1\}) = B \notin T$, donc h n'est pas mesurable. Par contre $|h| = 1_A$ est mesurable car $A \in T$.

Corrigé 42 (Mesurabilité des fonctions continues)

Soit f une application de $\mathbb R$ dans $\mathbb R$. On munit $\mathbb R$ (au départ et à l'arrivée) de la tribu borélienne

1. On suppose f continue. Montrer que f est mesurable (on dit aussi que f est borélienne).

Soit O un ouvert de \mathbb{R} . Comme f est continue, $f^{-1}(O)$ est aussi un ouvert de \mathbb{R} , donc $f^{-1}(O) \in \mathcal{B}(\mathbb{R})$. Comme l'ensemble des ouverts des ouverts engendre $\mathcal{B}(\mathbb{R})$, on en déduit que f est mesurable (on utilise ici le caractérisation de la mesurabilité donnée à la proposition 3.2 page 56).

2. On suppose f continue à droite (resp. gauche). Montrer que f est mesurable.

On suppose f continue à droite. Pour $n \in \mathbb{N}^*$, on définit f_n par :

$$f_n(x) = \begin{cases} 0 & \text{si} & x \le -n, \\ f(\frac{p}{n}) & \text{si} & \frac{p-1}{n} < x \le \frac{p}{n}, \ p \in \{-n^2 + 1, \dots, n^2\} \\ 0 & \text{si} & x > n, \end{cases}$$

de sorte que

$$f_n = \sum_{p=-n^2+1}^{n^2} f(\frac{p}{n}) 1_{\left[\frac{p-1}{n}, \frac{p}{n}\right]}.$$

On a $f_n \in \mathcal{E}$ car $]\frac{p-1}{n}, \frac{p}{n}] \in \mathcal{B}(\mathbb{R})$ pour tout n et p. Soit $x \in \mathbb{R}$. Pour n > |x|, on a $f_n(x) = f(\frac{p}{n})$ avec $\frac{p}{n} - \frac{1}{n} \le x \le \frac{p}{n}$ (p dépend de n, x est fixé). Comme f est continue à droite en x, on a donc $f_n(x) \to f(x)$ quand $n \to \infty$ (car $\frac{p}{n} \to x$, avec $\frac{p}{n} \ge x$). La deuxième caractérisation de la mesurabilité (proposition 3.6 page 60) donne alors $f \in \mathcal{M}$.

3. On suppose f croissante. Montrer que f est mesurable.

—corrigé–

Soit $\alpha \in \mathbb{R}$. On pose $A = f^{-1}([\alpha, \infty[)$. On suppose $A \neq \emptyset$ (si $A = \emptyset$, on a bien $A \in \mathcal{B}(\mathbb{R})$). Si $x \in A$, on a $f(x) \geq \alpha$ et, comme f est croissante, on a aussi $f(y) \geq \alpha$ pour tout $y \geq x$. Donc, $[x, \infty[\subset A]$. En posant $a = \inf A \in \mathbb{R} \cup \{-\infty\}$, on en déduit que $[a, \infty[\subset A]]$. $A \in \mathbb{R}$ est donc nécessairement un intervalle (dont la borne supérieure est ∞), ce qui prouve que $A \in \mathcal{B}(\mathbb{R})$. Comme $\{[\alpha, \infty[, \alpha \in \mathbb{R}]\}$ engendre $\mathcal{B}(\mathbb{R})$, on en déduit que f est mesurable. (On a utilisé ici de nouveau la caractérisation de la mesurabilité donnée à la proposition 3.2 page 56).

Corrigé 43 (Egalité presque partout)

1. Soient f et g des fonctions continues de \mathbb{R} dans \mathbb{R} et λ la mesure de Lebesgue ; montrer que f = g λ p.p. si et seulement si f = g.

-corrigé-

Si f = g (c'est-à-dire f(x) = g(x) pour tout $x \in \mathbb{R}$), on a bien f = g λ p.p. car f = g sur \emptyset^c et $\lambda(\emptyset) = 0$.

Pour la réciproque, on va utiliser le fait qu'un ouvert non vide est toujours de mesure de Lebesgue strictement positive. En effet, si O est un ouvert non vide, il existe $\alpha, \beta \in \mathbb{R}$ t.q. $\alpha < \beta$ et $]\alpha, \beta[\subset O,$ on a donc $0 < \beta - \alpha = \lambda(|\alpha, \beta|) \le \lambda(O)$.

On suppose maintenant que $f = g \ \lambda$ p.p., il existe $A \in \mathcal{B}(\mathbb{R})$ t.q. $\lambda(A) = 0$ et f = g sur A^c . On a alors $\{f(x) \neq g(x)\} \subset A$. Or, $\{f(x) \neq g(x)\} = (f-g)^{-1}(\mathbb{R}^*)$ est un ouvert car (f-g) est continue (de \mathbb{R} dans \mathbb{R}) et \mathbb{R}^* est un ouvert de \mathbb{R} . Donc $\{f(x) \neq g(x)\} \in \mathcal{B}(\mathbb{R})$ et la monotonie de λ donne $\lambda(\{f(x) \neq g(x)\}) \leq \lambda(A) = 0$. On en déduit que $\{f(x) \neq g(x)\} = \emptyset$ (car un ouvert non vide est toujours de mesure de Lebesgue strictement positive) et donc f = g.

2. Soient f et g des fonctions de \mathbb{R} dans \mathbb{R} et δ_0 la mesure de Dirac en 0; montrer que f=g δ_0 p.p. si et seulement si f(0)=g(0).

–corrigé–

Si f(0) = g(0), on prend $A = \{0\}^c$. On a bien $A \in \mathcal{B}(\mathbb{R})$, $\delta_0(A) = 0$ et f = g sur A^c car $A^c = \{0\}$. Donc, f = g δ_0 p.p..

Réciproquement, on suppose maintenant que f = g δ_0 p.p., il existe donc $A \in \mathcal{B}(\mathbb{R})$ t.q. f = g sur A^c et $\delta_0(A) = 0$. Comme $\delta_0(A) = 0$, on a donc $0 \notin A$, c'est-à-dire $0 \in A^c$ et donc f(0) = g(0).

Corrigé 44

Soit $f: \mathbb{R}^N \times \mathbb{R}$ dans \mathbb{R} . On munit \mathbb{R}^p de sa tribu borélienne (pour tout $p \in \mathbb{N}^*$), on suppose que f est mesurable par rapport à $x \in \mathbb{R}^N$, pour tout $y \in \mathbb{R}$, et que f est continue a gauche par rapport a $y \in \mathbb{R}$, pour tout $x \in \mathbb{R}^N$.

Pour n > 1 et $p \in \mathbb{Z}$, on pose : $a_p^n = \frac{p}{n}$, $p \in \mathbb{Z}$; on définit la fonction f_n , n > 1, de $\mathbb{R}^N \times \mathbb{R}$ dans \mathbb{R} par :

$$f_n(x,y) = f(x, a_p^n), \text{ si } y \in [a_p^n, a_{p+1}^n[$$

On se limite à N=1.

1. Montrer que f_n converge simplement vers f lorsque $n \to +\infty$.

—corrigé—

Soit $(x,y)^t \in \mathbb{R}^2$. Pour tout $n \in \mathbb{N}^\star$, on a donc $f_n(x,y) = f(x,\frac{p}{n})$ avec $\frac{p}{n} \le y < \frac{p}{n} + \frac{1}{n}$. Noter que x et y sont fixés et que p dépend de n. Quand $n \to \infty$, on a donc $\frac{p}{n} \to y$ avec $\frac{p}{n} \le y$. Comme $f(x,\cdot)$ est continue à gauche en y, on a donc $f(x,\frac{p}{n}) \to f(x,y)$ quand $n \to \infty$, c'est-à-dire $f_n(x,y) \to f(x,y)$ quand $n \to \infty$.

2.	Montrer que f_n est mesurable.	[On pourra utiliser, sans le démontrer, le fait que $A \times B \in \mathcal{B}(\mathbb{R}^2)$ si
$A, B \in \mathcal{B}(\mathbb{R})$. Ceci est démontré dans l'exercice 2.6 page 42.		

Soit $n \in \mathbb{N}^*$. Pour $p \in \mathbb{Z}$, on pose $g_p = f(\cdot, \frac{p}{n})$. On a donc, par hypothèse, g_p mesurable de \mathbb{R} dans \mathbb{R} .

Soit $C \in \mathcal{B}(\mathbb{R})$. Soit $(x,y)^t \in \mathbb{R}^2$. Il existe donc $p \in \mathbb{Z}$ t.q. $y \in [\frac{p}{n}, \frac{p+1}{n}[$. On a alors $f_n(x,y) = g_p(x)$ et donc $f_n(x,y) \in C$ si et seulement $g_p(x) \in C$. On en déduit que :

$$f_n^{-1}(C) = \bigcup_{p \in \mathbb{Z}} (g_p^{-1}(C) \times [\frac{p}{n}, \frac{p+1}{n}]).$$

Comme g_p est mesurable, on a $g_p^{-1}(C) \in \mathcal{B}(\mathbb{R})$. On a aussi $[\frac{p}{n}, \frac{p+1}{n}[\in \mathcal{B}(\mathbb{R}) \text{ et donc } g_p^{-1}(C) \times [\frac{p}{n}, \frac{p+1}{n}[\in \mathcal{B}(\mathbb{R}^2) \text{ (ceci est démontré dans l'exercice 2.6 page 42). Comme } \mathcal{B}(\mathbb{R}^2)$ est stable par union dénombrable, on en déduit $f_n^{-1}(C) \in \mathcal{B}(\mathbb{R}^2)$ et donc f_n mesurable de \mathbb{R}^2 dans \mathbb{R} .

3. Montrer que f est mesurable.

Comme f_n mesurable pour tout $n \in \mathbb{N}^*$ et que $f_n(x,y) \to f(x,y)$, quand $n \to \infty$, pour tout $(x,y)^t \in \mathbb{R}^2$, la propriété 3 de la proposition 3.5 donne que f est mesurable (de \mathbb{R}^2 dans \mathbb{R}).

Corrigé 45 (Tribu de Borel sur $\mathcal{B}(\overline{\mathbb{R}}_+))$

1. Montrer que $\{[0,\beta],\beta\in\mathbb{R}_+^*\}$ engendre $\mathcal{B}(\overline{\mathbb{R}}_+)$.

-----corrigé

On note $C_1 = \{[0, \beta[, \beta \in \mathbb{R}_+^*]\}.$

- Comme $[0, \beta[$ est un ouvert de $\overline{\mathbb{R}}_+$ pour tout $\beta \in \mathbb{R}_+^*$, on a $\mathcal{C}_1 \subset \mathcal{B}(\overline{\mathbb{R}}_+)$ et donc $T(\mathcal{C}_1) \subset \mathcal{B}(\overline{\mathbb{R}}_+)$.
- Par stabilité d'une tribu par passage au complémentaire, on a $\{[\beta,\infty],\beta\in\mathbb{R}_+^*\}\subset T(\mathcal{C}_1)$. Comme $[0,\infty]=[0,1[\cup[1,\infty]\in T(\mathcal{C}_1),$ on a aussi $\{[\alpha,\infty],\alpha\in\mathbb{R}_+\}\subset T(\mathcal{C}_1).$ Par stabilité d'une tribu par intersection, on a alors $\{[\alpha,\beta[,\alpha,\beta\in\mathbb{R}_+,\alpha<\beta\}\subset T(\mathcal{C}_1).$ Par stabilité d'une tribu par union dénombrable, on montre alors que $\{]\alpha,\beta[,\alpha,\beta\in\mathbb{R}_+,\alpha<\beta\}\subset T(\mathcal{C}_1)$.

Comme tout ouvert de $\overline{\mathbb{R}}_+$ est une réunion au plus dénombrable d'intervalles du type $]\alpha, \beta[$ (avec $\alpha, \beta \in \mathbb{R}_+ \cap \mathbb{Q}$), $[0, \beta[$ (avec $\beta \in \mathbb{R}_+ \cap \mathbb{Q}$) et $]\beta, \infty[$ (avec $\beta \in \mathbb{R}_+ \cap \mathbb{Q}$), on en déduit que tout ouvert de $\overline{\mathbb{R}}_+$ est dans $T(\mathcal{C}_1)$ et donc $\mathcal{B}(\overline{\mathbb{R}}_+) \subset T(\mathcal{C}_1)$.

On a bien montré que $\mathcal{B}(\overline{\mathbb{R}}_+) = T(\mathcal{C}_1)$.

2. Montrer que $\{[0,\beta[,\beta\in\mathbb{Q}\cap\mathbb{R}_+^\star\} \text{ engendre } \mathcal{B}(\overline{\mathbb{R}}_+).$

----corrigé------

On note $C_2 = \{[0, \beta[, \beta \in \mathbb{Q} \cap \mathbb{R}_+^*]\}$. Si $\beta \in \mathbb{R}_+^*$, on remarque que $[0, \beta[= \cup_{\alpha \in \mathbb{Q} \cap \mathbb{R}_+^*, \alpha < \beta}[0, \alpha[$. On en déduit que $[0, \beta[\in T(C_2)]$. On a donc $C_1 \subset T(C_2)$ et $T(C_1) \subset T(C_2)$.

Comme $T(\mathcal{C}_1) = \mathcal{B}(\overline{\mathbb{R}}_+)$, on a aussi $T(\mathcal{C}_2) = \mathcal{B}(\overline{\mathbb{R}}_+)$.

3. Montrer que $\{]0, \beta[, \beta \in \mathbb{R}_+^*\}$ n'engendre pas $\mathcal{B}(\overline{\mathbb{R}}_+)$.

–corrigé

On prend un ensemble E (ayant au moins 2 éléments) et une tribu T sur E différente de $\mathcal{P}(E)$ (par exemple, $T = \{\emptyset, E\}$). Soit alors $A \subset E$, $A \notin T$. On définit f de E dans $\overline{\mathbb{R}}_+$ par $f(x) = \infty$ si $x \in A$ et f(x) = 0 si $x \notin A$. Comme $A \notin T$, la fonction f est non mesurable. On a pourtant $f^{-1}(]0, \beta[] = \emptyset \in T$ pour tout $\beta \in \mathbb{R}_+^*$. Ceci montre que $\{]0, \beta[, \beta \in \mathbb{R}_+^*\}$ n'engendre pas $\mathcal{B}(\overline{\mathbb{R}}_+)$.

Corrigé 46

Soit f une fonction mesurable de \mathbb{R} dans \mathbb{R} (\mathbb{R} est muni de sa tribu borélienne, notée $\mathcal{B}(\mathbb{R})$). On se propose de montrer que le graphe de f est un borélien de \mathbb{R}^2 . On admettra le résultat suivant, vu en TD :

$$A, B \in \mathcal{B}(\mathbb{R}) \Rightarrow A \times B \in \mathcal{B}(\mathbb{R}^2).$$
 (12.11)

On munit aussi \mathbb{R}^2 de sa tribu borélienne. Pour $x,y\in\mathbb{R}$, on pose F(x,y)=f(x) et H(x,y)=y.

1. Montrer que F et H sont mesurables de \mathbb{R}^2 dans \mathbb{R} .

—corrigé-

Soit $A \in \mathcal{B}(\mathbb{R})$. On a $F^{-1}(A) = f^{-1}(A) \times \mathbb{R}$. Comme f est mesurable, $f^{-1}(A) \in \mathcal{B}(\mathbb{R})$. Comme $\mathbb{R} \in \mathcal{B}(\mathbb{R})$, (12.11) donne $f^{-1}(A) \times \mathbb{R} \in \mathcal{B}(\mathbb{R}^2)$ et donc $F^{-1}(A) \in \mathcal{B}(\mathbb{R}^2)$. On a donc F mesurable de \mathbb{R}^2 dans \mathbb{R} .

Le fait que H est mesurable se démontre de manière semblable en remarquant que $H^{-1}(A) = \mathbb{R} \times A$ (ou en utilisant la continuité de H).

2. On pose $G(f) = \{(x,y)^t \in \mathbb{R}^2; y = f(x)\}$ (G(f) est donc le graphe de f). Montrer que $G(f) \in \mathcal{B}(\mathbb{R}^2)$.

–corrigé–

L'ensemble de fonctions mesurables est un espace vectoriel, on a donc F-H mesurable. On en déduit que $G(f) \in \mathcal{B}(\mathbb{R}^2)$ en remarquant que $G(f) = (F-H)^{-1}(\{0\})$ et $\{0\} \in \mathcal{B}(\mathbb{R})$.

Corrigé 47 (mesurabilité au sens de Lusin)

Soit m une mesure sur $\mathcal{B}(\mathbb{R}^N)$, finie sur les compacts de \mathbb{R}^N . On rappelle (cf. cours) que m est nécessairement régulière (c'est-à-dire que pour tout $A \in \mathcal{B}(\mathbb{R}^N)$ et pour tout $\varepsilon > 0$, il existe F fermé et O ouvert t.q. $F \subset A \subset O$ et $m(O \setminus F) < \varepsilon$).

Soit $f \in \mathbb{R}^N \to \mathbb{R}$. On dit que f est "mesurable au sens de Lusin" si pour tout compact K et pour tout $\varepsilon > 0$, il existe K_1 compact, $K_1 \subset K$, t.q. $m(K \setminus K_1) \le \varepsilon$ et $f_{|K_1|} \in C(K_1, \mathbb{R})$.

1. On suppose, dans cette question, que $f = 1_A$ avec $A \in \mathcal{B}(\mathbb{R}^N)$. Montrer que f est mesurable au sens de Lusin. [Construire K_1 avec K, F et O, où F et O sont donnés par la régularité de m appliquée à l'ensemble A.]

Soit K compact et $\varepsilon > 0$. Par la régularité de m, il existe F fermé et O ouvert t.q. $F \subset A \subset O$ et $m(O \setminus F) < \varepsilon$. On prend $K_1 = (K \cap F) \cup (K \cap O^c)$.

Les ensembles $K \cap F$ et $K \cap O^c$ sont fermés (car l'intersection d'un compact et d'un fermé est un compact). L'ensemble K_1 est donc compact car il est l'union de deux compacts. Comme $K_1 = K \setminus (O \setminus F)$, on a bien $K_1 \subset K$ et $(K \setminus K_1) \subset (O \setminus F)$. On en déduit $m(K \setminus K_1) \leq m(O \setminus F) \leq \varepsilon$.

On montre maintenant que $f_{|K_1} \in C(K_1, \mathbb{R})$. Soit $x \in K_1$. On distingue deux cas :

Premier cas. Si $x \in K \cap F$, on a alors $x \in O$. Comme O est ouvert il existe δ t.q. $B(x, \delta) \subset O$ (où $B(x, \delta)$ est la boule ouverte de centre x et de rayon δ). On a donc $K_1 \cap B(x, \delta) \subset K \cap F \subset A$. Ce qui prouve que $f_{|K_1}$ est constante et égale à 1 sur $K_1 \cap B(x, \delta)$ et donc $f_{|K_1}$ est continue en x (car constante dans un voisinage de x).

Deuxième cas. Si $x \in K \cap O^c$, on raisonne de manière similaire. On a $x \in F^c$. Comme F^c est ouvert il existe δ t.q. $B(x,\delta) \subset F^c$. On a donc $K_1 \cap B(x,\delta) \subset K \cap O^c \subset A^c$. Ce qui prouve que $f_{|_{K_1}}$ est constante et égale à 0 sur $K_1 \cap B(x,\delta)$ et donc $f_{|_{K_1}}$ est continue en x.

2. On suppose, dans cette question, que f est étagée (c'est-à-dire $f \in \mathcal{E}(\mathbb{R}^N, \mathcal{B}(\mathbb{R}^N))$). Montrer que f est mesurable au sens de Lusin.

-corrigé

Il existe $n \in \mathbb{N}^*$, $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R}^N)$ et $a_1, \ldots, a_n \in \mathbb{R}$ t.q. $f = \sum_{i=1}^n a_i 1_{A_i}$. On pose $f_i = 1_{A_i}$, de sorte que $f = \sum_{i=1}^n a_i f_i$.

Soit K compact et $\varepsilon > 0$. Par la question 1, pour tout $i \in \{1, \ldots, n\}$, il existe $K_1^{(i)}$ compact, $K_1^{(i)} \subset K$, t.q. $m(K \setminus K_1^{(i)}) \le \varepsilon/n$ et $(f_i)_{|_{K_i^{(i)}}} \in C(K_1^{(i)}, \mathbb{R})$. On prend alors :

$$K_1 = \bigcap_{i=1}^n K_1^{(i)}.$$

On a bien K_1 compact (car intersection de compacts), $K_1 \subset K$. On a aussi $(K \setminus K_1) = \bigcup_{i=1}^n (K \setminus K_1^{(i)})$ et donc :

$$m(K \setminus K_1) \le \sum_{i=1}^n m(K \setminus K_1^{(i)}) \le \varepsilon.$$

Enfin, $f_{|K_1}$ est continue car $f_{|K_1} = \sum_{i=1}^n a_i(f_i)_{|K_1}$ et $(f_i)_{|K_1}$ est continue (puisque $(f_i)_{K_1^{(i)}}$ est continue et $K_1 \subset K_1^{(i)}$).

3. On suppose que f est mesurable (c'est-à-dire $f \in \mathcal{M}(\mathbb{R}^N, \mathcal{B}(\mathbb{R}^N))$). Montrer que f est mesurable au sens de Lusin. [On rappelle qu'une fonction mesurable est limite simple de fonctions étagées. On pourra utiliser le théorème d'Egorov, Théorème 3.2, et la question précédente.]

–corrigé–––

Comme $f \in \mathcal{M}(\mathbb{R}^N, \mathcal{B}(\mathbb{R}^N))$, il existe $(f_n)_{n \in \mathbb{N}} \subset \mathcal{E}(\mathbb{R}^N, \mathcal{B}(\mathbb{R}^N))$ t.q. $f_n \to f$ p.p..

Soit K compact et $\varepsilon > 0$. Par la question 2, pour tout $n \in \mathbb{N}$, il existe $K_1^{(n)}$ compact, $K_1^{(n)} \subset K$, t.q. $m(K \setminus K_1^{(n)}) \leq 2^{-n}$ et $(f_n)_{|_{K_1^{(n)}}} \in C(K_1^{(n)}, \mathbb{R})$. On prend tout d'abord :

$$K_2 = \cap_{n \in \mathbb{N}} K_1^{(n)}.$$

On a bien K_2 compact (car intersection de compacts), $K_2 \subset K$. On a aussi $(K \setminus K_2) = \bigcup_{n \in \mathbb{N}} (K \setminus K_1^{(n)})$ et donc $m(K \setminus K_2) \leq \sum_{n \in \mathbb{N}} m(K \setminus K_1^{(n)}) \leq 2\varepsilon$. Enfin, $(f_n)_{|_{K_2}}$ est continue pour tout $n \in \mathbb{N}$.

Pour trouver K_1 , on utilise maintenant théorème d'Egorov. Comme $f_n \to f$ p.p. sur K_2 et que $m(K_2) < \infty$, il existe $A \in \mathcal{B}(\mathbb{R}^n)$ t.q. $A \subset K_2$, $m(K_2 \setminus A) \le \varepsilon$ et $f_n \to f$ uniformément sur A. En utilisant la régularité de m, on trouve aussi $F \subset A$, F fermé et $m(A \setminus F) \le \varepsilon$. On prend alors $K_1 = F$.

On a bien K_1 compact (car K_1 est fermé dans le compact K_2), $K_1 \subset K$. On a $(K \setminus K_1) = (K \setminus K_2) \cup (K_2 \setminus A) \cup (A \setminus F)$ et donc $m(K \setminus K_1) \leq 4\varepsilon$. Enfin $f_{|K_1}$ est continue car $f_{|K_1}$ est limite uniforme de la suite de fonctions continues $((f_n)_{|K_1})_{n \in \mathbb{N}}$.

Corrigé 48 (V.a. mesurable par rapport à une autre v.a.)

Dans cet exercice, on démontre le théorème 3.1. Soit X et Y deux variables aléatoires réelles définies sur un espace de probabilités (Ω, \mathcal{A}, P) . On veut veut montrer que Y est mesurable par rapport à la tribu engendrée par X (notée $\tau(X)$ si et seulement si il existe une fonction borélienne f de \mathbb{R} dans \mathbb{R} telle que Y = f(X) (c'est-à-dire, plus précisément, que $Y = f \circ X$).

1. Montrer que si Y est de la forme Y = f(X) où f est une fonction borélienne de \mathbb{R} dans \mathbb{R} , alors Y est $\tau(X)$ -mesurable.

–corrigé–

On rappelle que la tribu engendrée par X est $\tau(X)=\{X^{-1}(B),\,B\in\mathcal{B}(\mathbb{R})\}.$

Soit $B \in \mathcal{B}(\mathbb{R})$, on a $Y^{-1}(B) = X^{-1}(f^{-1}(B))$. Comme f est borélienne (c'est-à-dire mesurable de \mathbb{R} dans \mathbb{R} , où \mathbb{R} est muni de la tribu borélienne), on a $f^{-1}(B) \in \mathcal{B}(\mathbb{R})$ et donc $X^{-1}(f^{-1}(B)) \in \tau(X)$. Ce qui prouve que T est $\tau(X)$ -mesurable.

On suppose maintenant que Y est $\tau(X)$ -mesurable.

2. On suppose, dans cette question, qu'il existe une suite de réels (a_j) tels que $a_j \neq a_k$ pour $j \neq k$ et une suite d'événements (A_j) disjoints deux à deux tels que

$$Y = \sum_{j} a_j 1_{A_j}.$$

On suppose aussi que $\cup_j A_j = \Omega$. Montrer que, pour tout $j, A_j \in \tau(X)$ et qu'il existe une fonction borélienne $f : \mathbb{R} \to \mathbb{R}$ telle que Y = f(X).

-corrigé-

Soit $j \in \mathbb{N}$. Comme les A_i sont disjoints deux à deux, $a_i \neq a_k$ si $i \neq k$ et $\bigcup_i A_i = \Omega$, on a $A_j = Y^{-1}(\{a_j\})$. Comme $\{a_j\} \in \mathcal{B}(\mathbb{R})$ et Y est τ -mesurable, on en déduit que $A_j \in \tau(X)$. (On rappelle aussi que $\tau(X) \subset \mathcal{A}$ car X est une v.a. sur (Ω, \mathcal{A}, P) .)

Pour tout i, il existe $B_i \in \mathcal{B}(\mathbb{R})$ t.q. $A_i = X^{-1}(B_i)$ (car $A_i \in \tau(X)$). Comme les A_i sont disjoints deux à deux, on a, si $i \neq j$, $B_i \cap B_j \cap \operatorname{Im}(X) = \emptyset$ (avec $\operatorname{Im}(X) = \{X(\omega), \omega \in \Omega\}$). On peut donc supposer les B_i disjoints deux à deux en remplaçant chaque B_i (i > 0) par $B_i \setminus \bigcup_{j < i} B_j$.

On pose $f = \sum_i a_i 1_{B_i}$. La fonction f est bien une fonction borélienne de \mathbb{R} dans \mathbb{R} . Si $\omega \in \Omega$, il existe i t.q. $\omega \in A_i$ (car $\Omega = \cup_i A_i$), on a donc $X(w) \in B_i$ et donc $f(X(\omega)) = a_i = Y(\omega)$. Ce qui donne bien f(X) = Y.

- 3. Soit n un entier. On définit la fonction $\phi_n : \mathbb{R} \to \mathbb{R}$ par: $\phi_n(x) = \frac{1}{n}[nx]$ où $[\cdot]$ désigne la partie entière. ([x] est le plus grand entier inférieur ou égal à x.)
 - (a) Montrer que, pour tout $x \in \mathbb{R}$, $\phi_n(x)$ converge vers x, quand $n \to \infty$.

–corrigé–

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, on a $0 \le nx - [nx] < 1$ et donc $0 \le x - \phi_n(x) < \frac{1}{n}$. Ce qui prouve que $\phi_n(x) \to x$ quand $n \to \infty$.

(b) On pose $Y_n = \phi_n(Y)$. Montrer que Y_n est $\tau(X)$ mesurable.

-corrigé

On remarque tout d'abord que ϕ_1 est borélienne. En effet, pour $p \in \mathbb{Z}$, on a $\phi_1^{-1}(\{p\}) = [p, p+1] \in \mathcal{B}(\mathbb{R})$. Puis, pour $B \in \mathcal{B}(\mathbb{R})$, on a $\phi_1^{-1}(B) = \bigcup_{p \in \mathbb{Z} \cap B} [p, p+1] \in \mathcal{B}(\mathbb{R})$.

Soit $n \in \mathbb{N}^*$. Comme $x \mapsto nx$ est continue, c'est une application borélienne. Par composition (et produit par (1/n)), on en déduit que la fonction ϕ_n est borélienne. On montre alors que Y_n est $\tau(X)$ -mesurable, comme dans la première question car, pour $B \in \mathcal{B}(\mathbb{R})$, on a $Y_n^{-1}(B) = Y^{-1}(\phi_n^{-1}(B)) \in \tau(X)$.

4. Terminer la preuve du théorème.

–corrigé-

Soit $n \in \mathbb{N}^*$. Comme l'ensemble des valeurs prises par Y_n (définie dans la troisième question) est au plus dénombrable, on peut appliquer la deuxième question. On obtient l'existence de $f_n : \mathbb{R} \to \mathbb{R}$, borélienne, t.q. $Y_n = f_n(X)$.

On note A l'ensemble des réels x pour lesquels la suite $(f_n(x))_{n\in\mathbb{N}^*}$ est convergente. A est donc aussi l'ensemble des réels x pour lesquels la suite $(f_n(x))_{n\in\mathbb{N}^*}$ est de Cauchy. On en déduit que $A \in \mathcal{B}(\mathbb{R})$ car A peut s'écrire :

$$A = \cap_{n \in \mathbb{N}^*} \cup_{N \in \mathbb{N}^*} \cap_{p,q \ge N} (f_p - f_q)^{-1} ([-\frac{1}{n}, \frac{1}{n}]).$$

On pose maintenant $f(x) = \lim_{n\to\infty} f_n(x)$ si $x \in A$ et f(x) = 0 si $x \in A^c$. La fonction f est borélienne car f est limite simple des fonction boréliennes $f_n 1_{A^c}$ quand $n \to \infty$.

Enfin, si $\omega \in \Omega$, on a $Y_n(\omega) = f_n(X(\omega))$. La troisième question donne que $Y_n(\omega) = \phi_n(Y(\omega)) \to Y(\omega)$. On a donc $X(\omega) \in A$ et donc $f_n(X(\omega)) \to f(X(\omega))$. Ceci donne $Y(\omega) = f(X(\omega))$. On a bien montré que Y = f(X) avec f borélienne.

Maintenant, on se demande dans quelle mesure la fonction f est unique. On note P_X la loi de X.

5. Soit f et g deux fonctions boréliennes t.q. Y = f(X) = g(X). Montrer que

$$P_X(f=g)=1.$$

-corrigé----

Soit $B = \{x \in \mathbb{R}, f(x) = g(x)\}$. On a $B = (f - g)^{-1}(\{0\}) \in \mathcal{B}(\mathbb{R})$. Si $\omega \in \Omega$, on a $f(X(\omega)) = g(X(\omega)) = Y(\omega)$ et donc $X(\omega) \in B$. Ceci prouve que $X^{-1}(B) = \Omega$ et donc que $P_X(B) = P(X^{-1}(B)) = 1$, c'est-à-dire $P_X(f = g) = 1$.

Corrigé 49 (Composition de v.a.)

Soit (Ω, \mathcal{A}, P) un espace probabilisé. Soit N une variable aléatoire à valeurs dans \mathbb{N}^* et $(Y_n)_{n\in\mathbb{N}}$ une suite de variables alélatoires réelles. (c'est-à-dire à valeurs dans \mathbb{R} , muni de la tribu des boréliens). On définit Z par

$$\forall \omega \in \Omega, \ Z(\omega) = Y_{N(\omega)}(\omega).$$

Montrer que Z est une variable aléatoire.

—corrigé————————

Soit $B \in \mathcal{B}(\mathbb{R})$. Pour $n \in \mathbb{N}$, on pose :

$$A_n = \{N = n\} = \{\omega \in \Omega, N(\omega) = n\}$$

 et

$$B_n = Y_n^{-1}(B) = \{Y_n \in B\} = \{\omega \in \Omega, Y_n(\omega) \in B\}.$$

(Notre que l'ensemble des A_n , $n \in \mathbb{N}^*$, forme une partition de Ω .) On va montrer que $Z^{-1}(B) = \bigcup_{n \in \mathbb{N}^*} (A_n \cap B_n)$.

En effet, pour tout $\omega \in \Omega$, on a $\omega \in A_{N(\omega)}$ et, si $\omega \in Z^{-1}(B)$, on a $Z(\omega) = Y_{N(\omega)}(\omega) \in B$. On a donc $\omega \in A_{N(\omega)} \cap B_{N(\omega)}$, ce qui donne bien $\omega \in \bigcup_{n \in \mathbb{N}^*} (A_n \cap B_n)$.

Réciproquement, si $\omega \in \bigcup_{n \in \mathbb{N}^*} (A_n \cap B_n)$, il existe $n \in \mathbb{N}^*$ t.q. $\omega \in A_n \cap B_n$. On a donc $Z(\omega) = Y_n(\omega) \in B$. On a bien montré que $Z^{-1}(B) = \bigcup_{n \in \mathbb{N}^*} (A_n \cap B_n)$.

Comme N et Y_n sont des v.a.r., on a $A_n, B_n \in \mathcal{A}$, pour tout $n \in \mathbb{N}^*$. On en déduit que $Z^{-1}(B) \in \mathcal{A}$. Ceci donne bien que Z est mesurable.

N.B. : Une autre démonstration possible est de remarquer que $Z = \sum_{n \in \mathbb{N}^\star} 1_{A_n} Y_n$.

Corrigé 50 (Evénements, tribus et v.a. indépendantes)

Soit (E, A, P) un espace probabilisé.

1. (Indépendance de 2 évènements) Soit $A_1, A_2 \in \mathcal{A}$. Montrer que A_1 et A_2 sont indépendants (c'est-à-dire $P(A_1 \cap A_2) = P(A_1)P(A_2)$) si et seulement si les tribus $\tau(\{A_1\})$ et $\tau(\{A_2\})$ sont indépendantes (c'est-à-dire $P(B_1 \cap B_2) = P(B_1)P(B_2)$ pour tout $B_1 \in \tau(\{A_1\})$ et $B_2 \in \tau(\{A_2\})$).

On a
$$\tau(\{A_1\}) = \{\emptyset, A_1, A_1^c, E\}$$
 et $\tau(\{A_2\}) = \{\emptyset, A_2, A_2^c, E\}$.

Si les tribus $\tau(\{A_1\})$ et $\tau(\{A_2\})$ sont indépendantes on donc :

$$P(B_1 \cap B_2) = P(B_1)P(B_2)$$
 pour tout $B_1 \in \{\emptyset, A_1, A_1^c, E\}$ et tout $\{\emptyset, A_2, A_2^c, E\}$. (12.12)

En prenant, dans (12.12), $B_1 = A_1$ et $B_2 = A_2$, on en déduit que A_1 et A_2 sont indépendants.

Réciproquement, on suppose que A_1 et A_2 sont indépendants. Pour montrer que $\tau(\{A_1\})$ et $\tau(\{A_2\})$ sont indépendantes, il suffit de montrer (12.12). On remarque tout d'abord que (12.12) est vraie si $B_1 = \emptyset$ ou E et si $B_2 = \emptyset$ ou E (l'hypothèse d'indépendance de A_1 et A_2 est même inutile). Puis, on remarque que l'hypothèse d'indépendance de A_1 et A_2 donne que (12.12) est vraie si $A_1 = A_1$ et $A_2 = A_2$. Enfin, on remarque que $A_1 = A_2 = A_3$. Enfin, on remarque que $A_1 = A_3 = A_4 = A_4$. Enfin, on remarque que $A_1 = A_3 = A_4 = A_4$. Enfin, on remarque que $A_1 = A_2 = A_3 = A_4 = A_4 = A_4$. Enfin, on remarque que $A_1 = A_4 =$

$$P(C_1 \cap C_2^c) = P(C_1 \setminus (C_1 \cap C_2)) = P(C_1) - P(C_1 \cap C_2).$$

Comme C_1 et C_2 sont indépendants, on en déduit :

$$P(C_1 \cap C_2^c) = P(C_1) - P(C_1)P(C_2) = P(C_1)(1 - P(C_2)) = P(C_1)P(C_2^c)$$

En appliquant cette propriété avec $C_1 = A_1$ et $C_2 = A_2$, on montre donc que A_1 et A_2^c sont indépendants. En prenant maintenant $C_1 = A_2^c$ et $C_2 = A_1$, on montre alors que A_1^c et A_2^c sont indépendants. Enfin, En prenant $C_1 = A_2$ et $C_2 = A_1$, on montre que A_1^c et A_2 sont indépendants. On a ainsi montré que (12.12) est vraie, c'est-à-dire que les tribus $\tau(\{A_1\})$ et $\tau(\{A_2\})$ sont indépendantes.

2. (Indépendance de n évènements, $n \geq 2$) Soit $n \geq 2$, $A_1, \ldots, A_n \in \mathcal{A}$. Montrer que les événements A_1, \ldots, A_n vérifient " $P(\cap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$ pour tout $I \subset \{1, \ldots, n\}$ " si et seulement si les tribus $\tau(\{A_1\}), \ldots, \tau(\{A_n\})$ sont indépendantes (c'est-à-dire $P(\cap_{i=1}^n B_i) = \prod_{i=1}^n P(B_i)$ pour tout $B_i \in \tau(\{A_i\}), i \in \{1, \ldots, n\}$).

Pour $p \in \{0, ..., n\}$, on introduit la propriété \mathcal{P}_p suivante :

$$P(\cap_{i=1}^n B_i) = \prod_{i=1}^n P(B_i) \text{ si } B_i \in \tau(\{A_i\}) \text{ pour } i \le p \text{ et } B_i \in \{\emptyset, A_i, E\} \text{ pour } i > p.$$

Il est facile de voir que la propriété \mathcal{P}_0 est équivalente à " $P(\cap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$ pour tout $I \subset \{1, \dots, n\}$ ". La propriété \mathcal{P}_n signifie que les tribus $\tau(\{A_1\}), \dots, \tau(\{A_n\})$ sont indépendantes.

Le fait que \mathcal{P}_n implique \mathcal{P}_0 est immédiat. On suppose maintenant que \mathcal{P}_0 est vérifiée et va montrer que \mathcal{P}_n est vérifiée. Pour cela, on raisonne par récurrence sur p. On suppose donc que \mathcal{P}_{p-1} est vérifiée pour un $p \in \{1, \ldots, n\}$ et on doit montrer que \mathcal{P}_p est vérifiée. Pour montrer que \mathcal{P}_p est vérifiée, il suffit de prendre les B_i t.q. $B_i \in \tau(\{A_i\})$ pour $i \leq p-1$, $B_p = A_p^c$ et $B_i \in \{\emptyset, A_i, E\}$

pour i < p et de montrer que $P(\cap_{i=1}^n B_i) = \prod_{i=1}^n P(B_i)$ (car les autres choix de B_p sont directement donnés par \mathcal{P}_{p-1}). Or, on a, pour ce choix des B_i :

$$P(\cap_{i=1}^{n} B_i) = P(\cap_{i=1}^{n} C_i) - P(\cap_{i=1}^{n} D_i),$$

avec $C_i = D_i = B_i$ si $i \neq p$, $C_p = E$ et $D_p = A_p$. En utilisant \mathcal{P}_{p-1} on a $P(\cap_{i=1}^n C_i) = \prod_{i=1}^n P(C_i)$ et $P(\cap_{i=1}^n D_i) = \prod_{i=1}^n P(D_i)$ et donc :

$$P(\cap_{i=1}^{n} B_{i}) = \left(\prod_{i \neq p} P(B_{i})\right) (P(E) - P(A_{p})) = \left(\prod_{i \neq p} P(B_{i})\right) P(A_{p}^{c}) = \prod_{i=1}^{n} P(B_{i}).$$

On a ainsi montré que \mathcal{P}_p est vérifiée. Par récurrence (finie) sur p, on montre donc que \mathcal{P}_n est vérifiée, ce qui prouve que les tribus $\tau(\{A_1\}), \ldots, \tau(\{A_n\})$ sont indépendantes.

3. En donnant un exemple (avec $n \geq 3$), montrer que l'on peut avoir n évévements, notés A_1, \ldots, A_n , indépendants deux à deux, sans que les événements A_1, \ldots, A_n soient indépendants.

-corrigé

On prend, par exemple, $E = \{1, 2, 3, 4\}$, $A = \mathcal{P}(E)$ et P donnée par $P(\{i\}) = \frac{1}{4}$, pour $i \in \{1, 2, 3, 4\}$. Puis, on choisit $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$ et $A_3 = \{2, 3\}$. Les trois évévements A_1, A_2, A_3 sont bien indépendants deux à deux (car $P(A_i \cap A_j) = P(A_i)P(A_j) = \frac{1}{4}$ si $i, j \in \{1, 2, 3\}$, $i \neq j$) mais ne sont pas indépendants car $0 = P(A_1 \cap A_2 \cap A_3) \neq \frac{1}{8} = P(A_1)P(A_2)P(A_3)$.

- 4. Soit $A \in \mathcal{A}$.
 - (a) On suppose que $A \in \mathcal{A}_1$ et $A \in \mathcal{A}_2$ et que \mathcal{A}_1 et \mathcal{A}_2 sont deux tribus indépendantes (et contenues dans \mathcal{A}). Montrer que $P(A) \in \{0,1\}$.

-corrigé

Comme $A \in \mathcal{A}_1$, $A \in \mathcal{A}_2$ et que \mathcal{A}_1 et \mathcal{A}_2 sont deux tribus indépendantes, on doit avoir $P(A \cap A) = P(A)P(A)$, c'est-à-dire P(A)(1 - P(A)) = 0 et donc $P(A) \in \{0, 1\}$.

(b) Montrer que $P(A) \in \{0,1\}$ si et seulement si A est indépendant de tous les éléments de A.

-----corrigé-----

Si A est indépendant de tous les éléments de A, A est indépendant avec lui même. On en déduit, comme à la question précédente que $P(A) \in \{0, 1\}$.

Réciproquement, on suppose maintenant que $P(A) \in \{0,1\}$ et on distingue deux cas.

Premier cas. On suppose que P(A) = 0. On a alors pour tout $B \in \mathcal{A}$, $A \cap B \subset A$ et donc (par monotonie de P) $0 \le P(A \cap B) \le P(A) = 0$. On en déduit $P(A \cap B) = 0 = P(A)P(B)$. Ce qui prouve que A est indépendant de tous les éléments de \mathcal{A} .

Deuxième cas. On suppose que P(A) = 1. On a alors $P(A^c) = 0$ et, pour tout $B \in \mathcal{A}$, $P(A \cap B) = 1 - P((A \cap B)^c) = 1 - P(A^c \cup B^c)$. Or (par monotonie et σ -sous addivité de P) $P(B^c) \leq P(A^c \cup B^c) \leq P(A^c) + P(B^c) = P(B^c)$. Donc, $P(A^c \cup B^c) = P(B^c)$ et donc $P(A \cap B) = 1 - P(B^c) = P(B) = P(A)P(B)$. Ce qui prouve que A est indépendant de tous les éléments de A.

5. Soit $n \geq 1$ et $A_1, \ldots, A_n \in \mathcal{A}$. Montrer que les événements A_1, \ldots, A_n sont indépendants si et seulement si les v.a. $1_{A_1}, \ldots, 1_{A_n}$ sont indépendantes.

-corrigé

Si X est une v.a.r., la tribu engendrée par X est $\tau(X) = \{X^{-1}(B), B \in \mathcal{B}(\mathbb{R})\}$. Pour $A \in \mathcal{A}$, on a donc $\tau(1_A) = \{\emptyset, A, A^c, E\}$, c'est-à-dire $\tau(1_A) = \tau(\{A\})$. L'indépendance des événements A_1, \ldots, A_n correspond (par la définition 2.25) à l'indépendance des tribus $\tau(\{A_1\}), \ldots, \tau(\{A_1\})$. L'indépendance des v.a.r. $1_{A_1}, \ldots, 1_{A_n}$ correspond (par la définition 3.12)) à l'indépendance des tribus $\tau(1_{A_1}), \ldots, \tau(1_{A_n})$. Comme $\tau(\{A_i\}) = \tau(1_{A_i})$, pour tout i, on en déduit que les événements A_1, \ldots, A_n sont indépendants si et seulement si les v.a. $1_{A_1}, \ldots, 1_{A_n}$ sont indépendantes.

Corrigé 51 (Convergence en mesure) (**)

Soient (E,T,m) un espace mesuré, $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{R} .

1. Montrer que si il existe f et g fonctions mesurables de E dans \mathbb{R} telles que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers f et g, alors f=g p.p..

[On pourra commencer par montrer que, pour tout $\delta > 0$, $m(\{x \in E : |f(x) - g(x)| > \delta\}) = 0$].

Pour $h : E \to \mathbb{R}$ et $\delta > 0$, on note toujours $\{h > \delta\} = \{x \in E; h(x) > \delta\}, \{h \ge \delta\} = \{x \in E; h(x) \ge \delta\}, \{h < \delta\} = \{x \in E; h(x) < \delta\}$ et $\{h \le \delta\} = \{x \in E; h(x) \le \delta\}.$

Soit $\delta > 0$. Pour tout $x \in E$ et tout $n \in \mathbb{N}$, on a $|f(x) - g(x)| \le |f(x) - f_n(x)| + |f_n(x) - g(x)|$. On en déduit $\{|f - f_n| \le \frac{\delta}{2}\} \cap \{|f_n - g| \le \frac{\delta}{2}\} \subset \{|f - g| \le \delta\}$ et donc, en passant au complémentaire,

$$\{|f-g| > \delta\} \subset \{|f-f_n| > \frac{\delta}{2}\} \cup \{|f_n-g| > \frac{\delta}{2}\}.$$
 (12.13)

Par sous additivité de m, on a donc $m(\{|f-g|>\delta\}) \le m(\{|f-f_n|>\frac{\delta}{2}\}) + m(\{|f_n-g|>\frac{\delta}{2}\})$. En passant à la limite quand $n\to\infty$, on en déduit $m(\{|f-g|>\delta\})=0$.

On remarque maintenant que $\{x \in E; f(x) \neq g(x)\} = \{|f-g| > 0\} = \bigcup_{n \in \mathbb{N}^*} \{|f-g| > \frac{1}{n}\}$ et donc, par σ -sous additivité de m, on obtient $m(\{x \in E; f(x) \neq g(x)\}) \leq \sum_{n=1}^{\infty} m(\{|f-g| > \frac{1}{n}\}) = 0$ et donc f = g p.p..

2. Montrer que si $(f_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers $f\in\mathcal{M}$ et $(g_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers $g\in\mathcal{M}$, alors $(f_n+g_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers $f+g\in\mathcal{M}$.

corrigé-

Soit $\delta > 0$. En reprenant la démonstration de (12.13), on montre que

$$\{|f+g-(f_n+g_n)|>\delta\}\subset \{|f-f_n|>\frac{\delta}{2}\}\cup \{|g-g_n|>\frac{\delta}{2}\}.$$

Par sous additivité de m, ceci donne $m(\{|f+g-(f_n+g_n)|>\delta\}) \le m(\{|f-f_n|>\frac{\delta}{2}\})+m(\{|g-g_n|>\frac{\delta}{2}\})$ et donc que $m(\{|f+g-(f_n+g_n)|>\delta\})\to 0$ quand $n\to\infty$. On a bien montré que $f_n+g_n\to f+g$ en mesure quand $n\to\infty$.

3. On suppose maintenant que m est une mesure finie. Montrer que si $(f_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers $f\in\mathcal{M}$ et $(g_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers g, alors $(f_n\,g_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers $fg\in\mathcal{M}$.

[On pourra commencer par montrer que, si $(f_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers $f\in\mathcal{M}$, alors, pour tout $\varepsilon>0$, il existe n_0 et $k_0\in\mathbb{N}$ tels que, si $n\geq n_0$ et $k\geq k_0$, on a $m(\{x\in E\,;\,|f_n(x)|\geq k\})\leq \varepsilon$]. Donner un contre-exemple au résultat précédent lorsque $m(E)=\infty$.

Pour $k \in \mathbb{N}$ et $n \in \mathbb{N}$, la démonstration de (12.13) donne ici $\{|f_n| > k\} \subset \{|f| > \frac{k}{2}\} \cup \{|f_n - f| > \frac{k}{2}\}$ et donc

$$m(\{|f_n| > k\}) \le m(\{|f| > \frac{k}{2}\}) + m(\{|f_n - f| > \frac{k}{2}\}).$$
 (12.14)

On pose $A_k = \{|f| > \frac{k}{2}\}$. On a $(A_k)_{k \in \mathbb{N}} \subset T$, $A_{k+1} \subset A_k$ pour tout $k \in \mathbb{N}$ et $\bigcap_{k \in \mathbb{N}} A_k = \emptyset$ (car f prend ses valeurs dans \mathbb{R}). Comme E est de mesure finie, on a $m(A_k) < \infty$ (pour tout k) et on peut appliquer la continuité décroissante de m. Elle donne :

$$m(A_k) \to 0$$
, quand $n \to \infty$. (12.15)

Soit $\varepsilon > 0$. Par (12.15), il existe $k_0 \in \mathbb{N}$ t.q. $m(A_{k_0}) \leq \frac{\varepsilon}{2}$. Par la convergence en mesure de f_n vers f, il existe alors n_0 t.q. $m(\{|f_n - f| > \frac{k_0}{2}\} \leq \frac{\varepsilon}{2}$ pour tout $n \geq n_0$ et l'inégalité (12.14) donne $m(\{|f_n| > k_0\}) \leq \varepsilon$ si $n \geq n_0$. On en déduit (comme $\{|f_n| > k\} \subset \{|f_n| > k_0\}$ si $k \geq k_0$):

$$n \ge n_0, \ k \ge k_0 \Rightarrow m(\{|f_n| > k\}) \le \varepsilon. \tag{12.16}$$

On montre maintenant que $f_n g_n \to fg$ en mesure.

Soit $\delta > 0$, on veut montrer que $m(\{|f_n g_n - fg| > \delta\} \to 0$ quand $n \to \infty$. Pour cela, on remarque que $|f_n g_n - fg| \le |f_n||g_n - g| + |g||f_n - f|$. Pour $k \in \mathbb{N}^*$, on a donc

$$\{|f_n| \le k\} \cap \{|g_n - g| \le \frac{\delta}{2k}\} \cap \{|g| \le k\} \cap \{|f_n - f| \le \frac{\delta}{2k}\} \subset \{|f_n g_n - fg| \le \delta\}$$

et, en passant au complémentaire,

$$\{|f_ng_n - fg| > \delta\} \subset \{|f_n| > k\} \cup \{|g_n - g| > \frac{\delta}{2k}\} \cup \{|g| > k\} \cup \{|f_n - f| > \frac{\delta}{2k}\},$$

ce qui donne

$$m(\{|f_n g_n - fg| > \delta\}) \le m(\{|f_n| > k\}) + m(\{|g_n - g| > \frac{\delta}{2k}\}) + m(\{|g| > k\}) + m(\{|f_n - f| > \frac{\delta}{2k}\}).$$

$$(12.17)$$

Soit $\varepsilon > 0$. Il existe k_0 et n_0 de manière à avoir (12.16). En utilisant (12.15) avec g au lieu de f, il existe aussi k_1 t.q. $m(\{|g| > k\}) \le \varepsilon$ pour $k \ge k_1$. On choisit alors $k = \max\{k_0, k_1\}$. En utilisant

la convergence en mesure de f_n vers f et de g_n vers g, il existe n_1 t.q. $m(\{|g_n-g|>\frac{\delta}{2k}\})\leq \varepsilon$ et $m(\{|f_n-f|>\frac{\delta}{2k}\})\leq \varepsilon$ pour $n\geq n_1$. Finalement, avec $n_2=\max\{n_0,n_1\}$ on obtient :

$$n \ge n_2 \Rightarrow m(\{|f_n g_n - fg| > \delta\}) \le 4\varepsilon.$$

Ce qui prouve la convergence en mesure de $f_n g_n$ vers fg, quand $n \to \infty$.

Pour obtenir un contre-exemple à ce résultat si $m(E) = \infty$, on prend $(E, T, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$. Pour $n \geq 1$ on définit f_n par $f_n(x) = \frac{1}{n}$ pour tout $x \in \mathbb{R}$ et on définit g_n par $g_n(x) = x$ pour tout $x \in \mathbb{R}$. Il est clair que $f_n \to 0$ en mesure, $g_n \to g$ en mesure, avec g(x) = x pour tout $x \in \mathbb{R}$, et $f_n g_n \neq 0$ en mesure car $m(\{|f_n g_n| > \delta\}) = \infty$ pour tout $n \in \mathbb{N}^*$ et tout $\delta > 0$.

Corrigé 52 (Convergence presque uniforme et convergence p.p.)

Soient (E,T,m) un espace mesuré, $(f_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ (c'est-à-dire une suite de fonctions mesurables de E dans \mathbb{R}) et $f\in\mathcal{M}$. On suppose que $f_n\to f$ presque uniformément (c'est à dire que pour tout $\varepsilon>0$ il existe $A\in T$ t.q. $m(A)\leq \varepsilon$ et $f_n\to f$ uniformément sur A^c). Montrer que $f_n\to f$ p.p., quand $n\to\infty$.

—corrigé-

Soit $A_n \in T$ t.q. $m(A_n) \leq \frac{1}{n}$ et $f_n \to f$ uniformément sur A_n^c . On pose $A = \bigcap_{n \in \mathbb{N}^*} A_n$, de sorte que $A \in T$ et m(A) = 0 car $m(A) \leq m(A_n) \leq \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$.

Soit $x \in A^c$, il existe $n \in \mathbb{N}^*$ t.q. $x \in A_n$ et on a donc $f_n(x) \to f(x)$ quand $n \to \infty$. Comme m(A) = 0, ceci donne bien $f_n \to f$ p.p., quand $n \to \infty$.

Corrigé 53 (Théorème d'Egorov) (**)

Soient (E,T,m) un espace mesuré fini, $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{R} , et f une fonction mesurable de E dans \mathbb{R} . On suppose que $f_n \to f$ p.p., lorsque $n \to +\infty$. Pour $j \in \mathbb{N}^*$ et $n \in \mathbb{N}$, on définit :

$$A_{n,j} = \{x : |f(x) - f_n(x)| \ge \frac{1}{j}\}, \text{ et } B_{n,j} = \bigcup_{p \ge n} A_{p,j}$$
 (12.18)

1. Montrer que à j fixé, $\lim_{n \to +\infty} m(B_{n,j}) = 0$.

–corrigé——

On remarque d'abord que $A_{n,j}=(|f-f_n|)^{-1}([\frac{1}{j},\infty[)\in T \text{ car } |f-f_n|\in\mathcal{M}.$ On a donc aussi $B_{n,j}\in T.$

D'autre part, comme $f_n \to f$ p.p., lorsque $n \to +\infty$, il existe $C \in T$ t.q. m(C) = 0 et $f_n(x) \to f(x)$, quand $n \to \infty$, pour tout $x \in C^c$.

On va montrer que $m(B_{n,j}) \to 0$, quand $n \to \infty$ (on rappelle que $j \in \mathbb{N}^*$ est fixé), en utilisant la continuité décroissante de m. On remarque en effet que $m(B_{n,j}) < \infty$ (pour tout $n \in \mathbb{N}$) car $m(E) < \infty$ (et c'est seulement ici que cette hypothèse est utile), puis que $B_{n+1,j} \subset B_{n,j}$ pour tout $n \in \mathbb{N}$. La continuité de décroissante de m donne donc

$$m(B_{n,j}) \to m(\cap_{n \in \mathbb{N}} B_{n,j}).$$

Or, si $x \in \cap_{n \in \mathbb{N}} B_{n,j}$, on a $x \in B_{n,j}$ pour tout $n \in \mathbb{N}$. Donc, pour tout $n \in \mathbb{N}$, il existe $p \geq n$ t.q. $x \in A_{n,j}$, c'est-à-dire $|f(x) - f_n(x)| \geq \frac{1}{j}$. Comme j est fixé, ceci montre que $f_n(x) \not\to f(x)$ quand $n \to \infty$, et donc que $x \in C$. On en déduit que $\cap_{n \in \mathbb{N}} B_{n,j} \subset C$ et donc que $m(\cap_{n \in \mathbb{N}} B_{n,j}) = 0$ et finalement que $m(B_{n,j}) \to 0$, quand $n \to \infty$.

2. Montrer que, pour tout $\varepsilon > 0$, il existe A tel que $m(A) \le \varepsilon$ et $f_n \to f$ uniformément sur A^c lorsque $n \to +\infty$. En déduire le théorème d'Egorov (théorème 3.2).

 $[\mathit{On\ cherchera\ }A\ \mathit{sous\ }la\ \mathit{forme}\ :\ \bigcup_{j\in\mathbb{N}^{\star}}B_{n_{j},j},\ \mathit{avec\ un\ choix\ judicieux\ }de\ n_{j}.]$

-corrigé

Soit $\varepsilon > 0$. pour tout $j \in \mathbb{N}^*$, la question précédente donne qu'il existe $n(j) \in \mathbb{N}$ t.q. $m(B_{n,j}) \leq \frac{\varepsilon}{2^j}$. On pose $B = \bigcup_{j \in \mathbb{N}^*} B_{n(j),j}$, de sorte que $B \in T$ et, par σ -sous additivité de m:

$$m(B) \le \sum_{j=1}^{\infty} m(B_{n(j),j}) \le \sum_{j=1}^{\infty} \frac{\varepsilon}{2^j} = \varepsilon.$$

On montre maintenant que $f_n \to f$ uniformémement sur B^c (ce qui conclut la question en prenant A = B).

Comme $B = \bigcup_{j \in \mathbb{N}^*} (\bigcup_{p \geq n(j)} A_{p,j})$, on a, en passant au complémentaire, $B^c = \bigcap_{j \in \mathbb{N}^*} (\bigcap_{p \geq n(j)} A_{p,j}^c)$.

Soit $\eta > 0$. Il existe $j \in \mathbb{N}^*$ t.q. $\frac{1}{j} \leq \eta$. Soit $x \in B^c$, comme $x \in \bigcap_{p \geq n(j)} A^c_{p,j}$, on a donc $x \in A^c_{p,j}$ pour tout $p \geq n(j)$, c'est-à-dire :

$$p \ge n(j) \Rightarrow |f_n(x) - f(x)| \le \frac{1}{j} \le \eta.$$

Comme n(j) ne dépend que de j (et donc que de η) et pas de $x \in B^c$, ceci prouve la convergence uniforme de f_n vers f sur B^c .

3. Montrer, par un contre exemple, qu'on ne peut pas prendre $\varepsilon = 0$ dans la question précédente.

-corrigé-----

On prend, par exemple, $(E, T, m) = (]0, 1[, \mathcal{B}(]0, 1[, \lambda)$ (plus précisément, λ est ici la restriction à $\mathcal{B}(]0, 1[)$ de λ , qui est une mesure sur $\mathcal{B}(\mathbb{R})$).

Pour $n \in \mathbb{N}^*$, on prend $f_n = 1_{]0,\frac{1}{n}[}$, de sorte que $f_n \to 0$ p.p., quand $n \to \infty$ (et même, $f_n(x) \to 0$ pour tout $x \in]0,1[$).

Soit maintenant $B \in \mathcal{B}(]0,1[)$ t.q. $\lambda(B)=0$. On va montrer que f_n ne peut pas tendre uniformément vers 0 sur B^c (ceci prouve bien qu'on ne peut pas prendre $\varepsilon=0$ dans la question précédente, c'est-à-dire $\varepsilon=0$ dans le théorème d'Egorov).

Soit $n \in \mathbb{N}^*$, Il est clair que $B^c \cap]0, \frac{1}{n} [\neq \emptyset \text{ (car sinon, }]0, \frac{1}{n} [\subset B \text{ et donc } \frac{1}{n} = \lambda(]0, \frac{1}{n}[) \leq \lambda(B) = 0)$. Il existe donc $x \in B^c$ t.q. $f_n(x) = 1$. On a donc

$$\sup_{x \in B^c} |f_n(x)| = 1,$$

ce qui prouve bien que f_n ne tends pas uniformément vers 0 sur B^c , quand $n \to \infty$.

4. Montrer, par un contre exemple, que le résultat du théorème d'Egorov est faux lorsque $m(E) = +\infty$.

-corrigé-

On prend, par exemple, $(E, T, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R})\lambda)$.

Pour $n \in \mathbb{N}$, on prend $f_n = 1_{]n,n+1[}$, de sorte que $f_n \to 0$ p.p., quand $n \to \infty$ (et même, $f_n(x) \to 0$ pour tout $x \in \mathbb{R}$).

Soit maintenant $0 < \varepsilon < 1$ et $B \in \mathcal{B}(\mathbb{R})$ t.q. $\lambda(B) \leq \varepsilon$. On va montrer que f_n ne peut pas tendre uniformément vers 0 sur B^c (ceci prouve bien que théorème d'Egorov peut être mis en défaut si $m(E) = \infty$).

Soit $n \in \mathbb{N}$, Il est clair que $B^c \cap]n, n+1 \ne \emptyset$ (car sinon, $]n, n+1 [\subset B$ et donc $1=\lambda(]n, n+1 [) \le \lambda(B) \le \varepsilon$, en contradiction avec $\varepsilon < 1$). Il existe donc $x \in B^c$ t.q. $f_n(x) = 1$. On a donc

$$\sup_{x \in B^c} |f_n(x)| = 1,$$

ce qui prouve bien que f_n ne tends pas uniformément vers 0 sur B^c , quand $n \to \infty$.

Corrigé 54 (Convergence en mesure et convergence p.p.)

Soient (E,T,m) un espace mesuré, $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{R} , et f une fonction mesurable de E dans \mathbb{R} . On rappelle que, par définition, la suite $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers f si :

$$\forall \varepsilon > 0, \lim_{n \to +\infty} m(\{x \in E; |f_n(x) - f(x)| > \varepsilon\}) = 0.$$
(12.19)

- 1. On suppose ici que $m(E) < +\infty$.
 - (a) Montrer que si $(f_n)_{n\in\mathbb{N}}$ tend vers f presque partout, alors $(f_n)_{n\in\mathbb{N}}$ tend vers f en mesure [Utiliser le théorème d'Egorov.]

Soit $\varepsilon > 0$, on veut montrer que $m(\{|f_n - f| > \varepsilon\}) = m(\{x \in E; |f_n(x) - f(x)| > \varepsilon\}) \to 0$, quand $n \to \infty$, c'est-à-dire que

$$\forall \delta > 0, \ \exists n_0, \ \text{t.q.}$$

$$n \ge n_0 \Rightarrow m(\{|f_n - f| > \varepsilon\}) \le \delta.$$

$$(12.20)$$

Soit donc $\delta > 0$. D'après le théorème d'Egorov (théorème 3.2 page 64), il existe $A \in T$ t.q. $m(A) \leq \delta$ et $f_n \to f$ uniformément sur A^c . La convergence uniforme sur A^c nous donne donc l'existence de n_0 t.q., $|f_n(x) - f(x)| \leq \varepsilon$ pour tout $x \in A^c$, si $n \geq n_0$. On a donc, pour $n \geq n_0$, $\{|f_n - f| > \varepsilon\} \subset A$, et donc $m(\{|f_n - f| > \varepsilon\}) \leq m(A) \leq \delta$. On a bien montré (12.20) et donc la convergence en mesure de f_n vers f, quand $n \to \infty$.

(b) Montrer par un contrexemple que la réciproque de la question précédente est fausse.

-corrigé-

On reprend ici un exemple vu au début de la section 4.7 pour montrer que la convergence dans L^1 n'entraı̂ne pas la convergence presque partout.

On prend $(E,T,m)=([0,1[,\mathcal{B}([0,1[),\lambda)$ (on a bien $m(E)<\infty)$ et on construit ainsi la suite $(f_n)_{n\in\mathbb{N}}$:

Soit $n \in \mathbb{N}$. Il existe un unique $p \in \mathbb{N}^*$ et $\frac{(p-1)p}{2} \le n < \frac{p(p+1)}{2}$. On pose alors $k = n - \frac{(p-1)p}{2}$ et on prend $f_n = 1_{\left[\frac{k}{2}, \frac{k+1}{2}\right]}$. Il faut noter ici que $k+1 \le \frac{p(p+1)}{2} - \frac{(p-1)p}{2} = p$ et donc $\frac{k+1}{p} \le 1$.

Lorsque $n \to \infty$, on a $p \to \infty$ et donc $m(\{|f_n| > 0\}) = \frac{1}{p} \to 0$. Ce qui prouve, en particulier, que $f_n \to 0$ en mesure, quand $n \to \infty$.

Enfin, on remarque que, pour tout $x \in [0, 1[$, $f_n(x) \neq 0$ quand $n \to \infty$. En effet, soit $x \in [0, 1[$. Soit $n \in \mathbb{N}$. On choisit $p \in \mathbb{N}^*$ t.q. $\frac{(p-1)p}{2} \geq n$, il existe alors $k \in \mathbb{N}$ t.q. $0 \leq k \leq p-1$ et $x \in [\frac{k}{p}, \frac{k+1}{p}[$, de sorte que $f_{\varphi(n)}(x) = 1$ en choisissant $\varphi(n) = \frac{(p-1)p}{2} + k$. On a ainsi construit $(f_{\varphi(n)})_{n \in \mathbb{N}}$, sous suite de $(f_n)_{n \in \mathbb{N}}$ (car $\varphi(n) \geq n$ pour tout $n \in \mathbb{N}$) t.q. $f_{\varphi(n)}(x) \neq 0$ quand $n \to \infty$. ceci montre bien que $f_n(x) \neq 0$ quand $n \to \infty$.

Corrigé 55 (Essentiellement uniforme versus presque uniforme)

Soit (E, T, m) un espace mesuré. Pour $f \in \mathcal{M}$, on pose $A_f = \{C \in \mathbb{R}, |f| \leq C \text{ p.p.}\}$. Si $A_f \neq \emptyset$, on pose $||f||_{\infty} = \inf A_f$. Si $A_f = \emptyset$, on pose $||f||_{\infty} = \infty$.

1. Soit $f \in \mathcal{M}$ t.q. $A_f \neq \emptyset$. Montrer que $||f||_{\infty} \in A_f$.

corrigé—

Comme $A_f \neq \emptyset$ et $||f||_{\infty} = \inf A_f$, il existe une suite $(a_n)_{n \in \mathbb{N}} \subset A_f$ t.q. $a_n \downarrow ||f||_{\infty}$ quand $n \to \infty$.

Soit $n \in \mathbb{N}$, de $a_n \in A_f$ on déduit qu'il existe $B_n \in T$ t.q. $m(B_n) = 0$ et $|f(x)| \leq a_n$ pour tout $x \in B_n^c$.

On pose $B = \bigcup_{n \in \mathbb{N}} B_n$. On a donc $B \in T$ et, par σ -additivité de m, m(B) = 0 (car $m(B) \leq \sum_{n \in \mathbb{N}} m(B_n)$). Enfin, pour tout $x \in B^c = \bigcap_{n \in \mathbb{N}} B_n^c$, on a $|f(x)| \leq a_n$ pour tout $n \in \mathbb{N}$. En faisant $n \to \infty$, on en déduit que $|f(x)| \leq ||f||_{\infty}$. On a donc $|f| \leq ||f||_{\infty}$ p.p., c'est-à-dire $||f||_{\infty} \in A_f$.

- 2. Soient $(f_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ et $f\in\mathcal{M}$.
 - (a) On suppose, dans cette question, que $||f_n f||_{\infty} \to 0$ quand $n \to \infty$ (on dit que $f_n \to f$ essentiellement uniformément). Montrer que $f_n \to f$ presque uniformément.

–corrigé-

Pour tout $n \in \mathbb{N}$, il existe $A_n \in T$ t.q. $m(A_n) = 0$ et $|(f_n - f)(x)| \le ||f_n - f||_{\infty}$ pour tout $x \in A_n^c$. On pose $A = \bigcup_{n \in \mathbb{N}} A_n$. On a donc $A \in T$, m(A) = 0, $|(f_n - f)(x)| \le ||f_n - f||_{\infty}$ pour tout $x \in A^c$. Comme $||f_n - f||_{\infty} \to 0$ quand $n \to \infty$, on en déduit que $f_n \to f$ uniformément sur A^c . Enfin, comme $m(A) \le \varepsilon$ pour tout $\varepsilon > 0$, on a bien montré la convergence presque uniforme de f_n vers f.

(b) En donnant un exemple (c'est-à-dire en choisissant convenablement $(E,T,m), (f_n)_{n\in\mathbb{N}}$ et f), montrer qu'on peut avoir $f_n \to f$ presque uniformément, quand $n \to \infty$, et $||f_n - f||_{\infty} \to 0$.

—corrigé-

On prend, par exemple, $(E,T,m)=(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda), f=0$ et $f_n=1_{[0,\frac{1}{n}]}$ pour tout $n\in\mathbb{N}^*$.

Soit $\varepsilon > 0$. On choisit $A = [0, \varepsilon]$, de sorte que $m(A) = \varepsilon$. On a bien $f_n \to 0$ uniformément sur A^c , quand $n \to \infty$, car $f_n = 0$ sur A^c pour tout n t.q. $\frac{1}{n} < \varepsilon$. Donc, $f_n \to f$ presque uniformément quand $n \to \infty$.

Mais f_n ne tends pas vers 0 essentiellement uniformément, quand $n \to \infty$, car $||f_n||_{\infty} = 1$ pour tout $n \in \mathbb{N}^*$ (en effet, $f_n \le 1$ sur tout \mathbb{R} , $f_n = 1$ sur $[0, \frac{1}{n}]$) et $\lambda([0, \frac{1}{n}]) > 0$, pour tout $n \in \mathbb{N}^*$).

Corrigé 56 (Mesurabilité des troncatures)

Soit (X, \mathcal{T}) un espace mesurable et f une fonction mesurable de X dans \mathbb{R} (\mathbb{R} est muni, comme toujours quand on ne le précise pas, de la tribu borélienne). Pour a > 0, on définit la fonction "tronquée" :

$$f_a(x) = \begin{cases} a & \text{si} \quad f(x) > a \\ f(x) & \text{si} \quad |f(x)| \le a \\ -a & \text{si} \quad f(x) < -a \end{cases}$$

Montrer que f_a est mesurable.

–corrigé–

Soit a > 0. On définit T_a de \mathbb{R} dans \mathbb{R} par :

$$T_a(s) = \begin{cases} a & \text{si } s > a \\ s & \text{si } |s| \le a \\ -a & \text{si } s < -a \end{cases}$$

La fonction T_a peut aussi s'écrire $T_a(s) = \max\{-a, \min\{a, s\}\}$ pour $s \in \mathbb{R}$. On remarque que la fonction T_a est continue de \mathbb{R} dans \mathbb{R} . Elle est donc borélienne (c'est-à-dire mesurable de \mathbb{R} dans \mathbb{R} , avec \mathbb{R} muni de sa tribu borélienne).

Comme $f_a = T_a \circ f$, on en déduit que f_a est mesurable car c'est la composée d'applications mesurables.

Corrigé 57 (Exemple de tribu engendrée)

Dans cet exercice, on s'intéresse à la tribu $\tau(X)$ engendrée par la variable aléatoire X définie sur Ω , muni de la tribu \mathcal{A} , à valeurs dans \mathbb{R} , muni de la tribu borélienne.

- 1. (Cas d'un lancer de dé) Dans cette question, $\Omega = \{1, 2, 3, 4, 5, 6\}$, $\mathcal{A} = \mathcal{P}(\Omega)$) et X est la variable aléatoire définie par $X(\omega) = 1$ lorsque ω est pair, $X(\omega) = 0$ sinon. Montrer que $\tau(X)$ est formé de 4 éléments.
- 2. (Cas de n tirages à pile ou face) Soit $n \in \mathbb{N}^*$, $\Omega = \{0,1\}^n$, $\mathcal{A} = \mathcal{P}(\Omega)$) et $k \in \{1, \dots, n\}$. La variable aléatoire X représente le k-ième tirage, X est donc l'application $\omega = (\omega_1, \dots, \omega_n) \mapsto \omega_k$. Montrer que $\tau(X)$ est ici aussi formé de 4 éléments.
- 3. Dans cette question, on prend $\Omega = \mathbb{R}$, $\mathcal{A} = \mathcal{B}(\mathbb{R})$ et, pour tout $\omega \in \Omega$, $X(\omega) = \omega [\omega]$, où $[\omega]$ désigne la partie entière de ω (c'est-à-dire $[\omega] = \max\{n \in \mathbb{Z}, \text{ t.q. } n \leq \omega\}$. Si C est un borélien inclus dans [0,1[(ce qui est équivalent à dire $C \in \mathcal{B}([0,1[))$, on pose $\varphi(C) = \bigcup_{k \in \mathbb{Z}} C_k$, avec $C_k = \{x+k, x \in C\}$. Montrer que $\tau(X) = \{\varphi(C), C \in \mathcal{B}([0,1[))\}$.