Computer Systems & Introduction to PCI

CPE 186 Computer Hardware Handout

Professor Pang

Processors

Figure 1. The organization of a simple computer with one CPU and two I/O devices.

CPU Organization

Figure 2. The data path of a typical von Neumann machine.

Design Principles for Modern Computers

- All instructions directly executed by hardware
- Maximize rate at which instructions are issued
- Instructions should be easy to decode
- Only loads and stores should reference memory
- Provide plenty of registers

Pipelining

Figure 3. (a) A five-stage pipeline. (b) The state of each stage as a function of time. Nine clock cycles are illustrated

Superscalar Architectures (1)

Figure 4. Dual five-stage pipelines with a common instruction fetch unit.

Superscalar Architectures (2)

Figure 5. A superscalar processor with five functional units.

Data Parallel Computers

Figure 6. The SIMD core of the graphics processing unit.

Multiprocessors (1)

Figure 7. (a) A single-bus multiprocessor.

Multiprocessors (1)

Figure 7(b). A multicomputer with local memories.

Buses

Figure 8. Logical structure of a simple personal computer.

PCI Bus

Figure 9. A typical PC built around the PCI bus

PCI

- PCI (Peripheral Component Interconnect)
- Developed by Intel(1993)
- Used for interfacing processor with its chipset
- Synchronous Bus Architecture.
- > PCI operates at 66MHz and at 33MHz.
- Plug-and-Play(PnP).

PCI

Bus Type	Bus Width	Bus Speed	MB/sec
PCI	32 bits	33 MHz	132 MBps
PCI	64 bits	33 MHz	264 MBps
PCI	64 bits	66 MHz	512 MBps
PCI	64 bits	133 MHz	1 GBps

PCI Signal Groups

Typical PCI Transaction

Clock and Reset

CLK

- PCI input clock
- All signals sampled on rising edge
- 33MHz is really 33.33333MHz (30ns clk. period)
- The clock is allowed to vary from 0 to 33 MHz

RST#

- Asynchronous reset
- PCI device must tri-state all I/Os during reset

The revision 2.1 specification: support clk frequency up to 66 MHz.

- TRDY# I/O
 - "T-Ready"
 - When the target asserts this signal, it tells the initiator that it is ready to send or receive data
- STOP# I/O
 - Used by target to indicate that it needs to terminate the
 - transaction

- DEVSEL# I/O
 - Device select
 - Part of PCI's distributed address decoding
 - Each target is responsible for decoding the address associated with each transaction
 - When a target recognizes its address, it asserts DEVSEL# to claim the corresponding transaction

- FRAME# I/O
 - Signals the start and end of a transaction
- IRDY# I/O
 - "I-Ready"
 - Assertion by initiator indicates that it is ready to send receive data

IDSEL

- Individual device select for configuration
 - one unique IDSEL line per agent

- AD[31:0] I/O
 - 32-bit address/data bus
 - PCI is little endian (lowest numeric index is LSB)
- C/BE#[3:0] I/O
 - 4-bit command/byte enable bus
 - Defines the PCI command during address phase
 - Indicates byte enable during data phases
 - Each bit corresponds to a "byte-lane" in AD[31:0] for example, C/BE#[0] is the byte enable for AD[7:0]

- PAR I/O
 - Parity bit
 - Used to verify correct transmittal of address/data and command/byte-enable
 - The XOR of AD[31:0], C/BE#[3:0], and PAR should return zero (even parity)
 - In other words, the number of 1's across these 37 signals should be even

REQ# – 0

- Asserted by initiator to request bus ownership
- Point-to-point connection to arbiter each initiator has its own REQ# line

GNT# – I

- Asserted by system arbiter to grant bus ownership to the initiator
- Point-to-point connection from arbiter each initiator has its own GNT# line

PERR# – I/O

- Indicates that a data parity error has occurred
- An agent that can report parity errors can have its PERR# turned off during PCI configuration

SERR# – I/O

Indicates a serious system error has occurred

Intro to PCI Bus Operation

Example Burst Data Transfer

Intro to PCI Bus Operation

- Initiator
- Or Master
- Owns the bus and initiates the data transfer
- Every Initiator must also be a Target
- Target
- Or Slave
- Target of the data transfer (read or write)
- Agent
- Any initiator/target or target on the PCI bus

Single vs. Multi-Function PCI Devices

- A package containing one function is referred to as a single-function PCI device,
- while a package containing two or more PCI functions is referred to as a multi-function PCI device.