Curs 5

Teoria de numărare a lui Pólya

- În câte feluri pot fi așezați John, Ken, Jim, Jack și Rick la o masă rotundă?
- ② Câte coliere diferite cu *n* mărgele pot fi formate folosind *m* tipuri diferite de mărgele?

- În câte feluri pot fi așezați John, Ken, Jim, Jack și Rick la o masă rotundă?
- ② Câte coliere diferite cu *n* mărgele pot fi formate folosind *m* tipuri diferite de mărgele?

Observații preliminare

 Ambele probleme au legătură cu numărarea permutărilor în prezența unor simetrii.

- În câte feluri pot fi așezați John, Ken, Jim, Jack și Rick la o masă rotundă?
- ② Câte coliere diferite cu *n* mărgele pot fi formate folosind *m* tipuri diferite de mărgele?

Observații preliminare

- Ambele probleme au legătură cu numărarea permutărilor în prezența unor simetrii.
 - Nu există o poziție specifică la o masă rotundă ⇒ nu facem distincție între configurațiile obținute prin mutarea locurilor în ordinea acelor de ceasornic,

- În câte feluri pot fi așezați John, Ken, Jim, Jack și Rick la o masă rotundă?
- ② Câte coliere diferite cu *n* mărgele pot fi formate folosind *m* tipuri diferite de mărgele?

Observații preliminare

- Ambele probleme au legătură cu numărarea permutărilor în prezența unor simetrii.
 - Nu există o poziție specifică la o masă rotundă ⇒ nu facem distincție între configurațiile obținute prin mutarea locurilor în ordinea acelor de ceasornic,
 - În mod asemănător, două coliere se consideră identice dacă unul se obține din celălalt prin rotire sau prin intoarcere pe partea cealaltă.

Exemple de simetrii

Colier cu 5 mărgele

Simetrii Observații preliminare

Simetrii Observații preliminare

 O simetrie este o permutare a elementelor care produce acelaşi obiect (colier);

- O simetrie este o permutare a elementelor care produce acelaşi obiect (colier);
- Simetriile sunt permutări (funcții bijective) care pot fi compuse:

Exemplu:
$$\underbrace{(1,2,3,4,5)}_{\text{rotație cu }2\pi/5} \circ \underbrace{(1,2,3,4,5)}_{\text{rotație cu }2\pi/5} = \underbrace{(1,3,5,2,4)}_{\text{rotație cu }4\pi/5}$$

- O simetrie este o permutare a elementelor care produce acelaşi obiect (colier);
- Simetriile sunt permutări (funcții bijective) care pot fi compuse:

Exemplu:
$$\underbrace{(1,2,3,4,5)}_{\text{rotație cu }2\pi/5} \circ \underbrace{(1,2,3,4,5)}_{\text{rotație cu }2\pi/5} = \underbrace{(1,3,5,2,4)}_{\text{rotație cu }4\pi/5}$$

 Rezultatul compunerii a 2 simetrii este tot o simetrie (adică o permutare care produce același obiect).

- O simetrie este o permutare a elementelor care produce acelaşi obiect (colier);
- Simetriile sunt permutări (funcții bijective) care pot fi compuse:

Exemplu:
$$\underbrace{(1,2,3,4,5)}_{\text{rotație cu }2\pi/5} \circ \underbrace{(1,2,3,4,5)}_{\text{rotație cu }2\pi/5} = \underbrace{(1,3,5,2,4)}_{\text{rotație cu }4\pi/5}$$

- Rezultatul compunerii a 2 simetrii este tot o simetrie (adică o permutare care produce același obiect).
- Cea mai simplă simetrie este funcția identitate care nu permută nici un element.
 - Pentru colierul cu 5 elemente, funcția identitate este permutarea cu structura ciclică (1)(2)(3)(4)(5).

- O simetrie este o permutare a elementelor care produce acelaşi obiect (colier);
- Simetriile sunt permutări (funcții bijective) care pot fi compuse:

Exemplu:
$$\underbrace{(1,2,3,4,5)}_{\text{rotație cu }2\pi/5} \circ \underbrace{(1,2,3,4,5)}_{\text{rotație cu }2\pi/5} = \underbrace{(1,3,5,2,4)}_{\text{rotație cu }4\pi/5}$$

- Rezultatul compunerii a 2 simetrii este tot o simetrie (adică o permutare care produce același obiect).
- Cea mai simplă simetrie este funcția identitate care nu permută nici un element.
 - Pentru colierul cu 5 elemente, funcția identitate este permutarea cu structura ciclică (1)(2)(3)(4)(5).
- Pólya a observat că simetriile unui obiect formează un grup.

Un grup este o mulțime G dotată cu o operație binară \circ care satisface 4 proprietăți:

Închidere: $a \circ b \in G$ pentru toți $a, b \in G$.

Asociativitate: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$

Identitate: Există $e \in G$ astfel încât $e \circ a = a \circ e = a$ pentru toți $a \in G$. Elementul e se numește identitate sau element

neutru al lui G.

Inversă: Pentru fiecare $a \in G$ există $b \in G$ astfel încât

 $a \circ b = b \circ a = e$. Elementul b se numește inversul lui a.

Un grup este o mulțime G dotată cu o operație binară \circ care satisface 4 proprietăți:

Închidere: $a \circ b \in G$ pentru toți $a, b \in G$.

Asociativitate: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$

Identitate: Există $e \in G$ astfel încât $e \circ a = a \circ e = a$ pentru toți $a \in G$. Elementul e se numește identitate sau element

neutru al lui G.

Inversă: Pentru fiecare $a \in G$ există $b \in G$ astfel încât

 $a \circ b = b \circ a = e$. Elementul b se numește inversul lui a.

Un grup este o mulțime G dotată cu o operație binară \circ care satisface 4 proprietăți:

Închidere: $a \circ b \in G$ pentru toți $a, b \in G$.

Asociativitate: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$

Identitate: Există $e \in G$ astfel încât $e \circ a = a \circ e = a$ pentru toți $a \in G$. Elementul e se numește identitate sau element neutru al lui G.

Inversă: Pentru fiecare $a \in G$ există $b \in G$ astfel încât $a \circ b = b \circ a = e$. Elementul b se numește inversul lui a.

- **1** Mulțimea numerelor reale \mathbb{R} cu operația de adunare (+) este grup:
 - Elementul neutru este 0, inversul lui $r \in \mathbb{R}$ este -r.

Un grup este o mulțime G dotată cu o operație binară \circ care satisface 4 proprietăți:

Închidere: $a \circ b \in G$ pentru toți $a, b \in G$.

Asociativitate: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$

Identitate: Există $e \in G$ astfel încât $e \circ a = a \circ e = a$ pentru toți

 $a \in G$. Elementul e se numește identitate sau element

neutru al lui G.

Inversă: Pentru fiecare $a \in G$ există $b \in G$ astfel încât

 $a \circ b = b \circ a = e$. Elementul b se numește inversul lui a.

- **1** Mulțimea numerelor reale \mathbb{R} cu operația de adunare (+) este grup:
 - Elementul neutru este 0, inversul lui $r \in \mathbb{R}$ este -r.
- 2 Mulțimea S_n a tuturor permutărilor $\langle a_1, \ldots, a_n \rangle$ ale lui $\{1, \ldots, n\}$, împreună cu operația de compoziție \circ este grup.

Subgrupuri. Grupuri de permutări

- Un subgrup al unui grup (G, \circ) cu element neutru e este o submulțime nevidă H a lui G astfel încât
 - $a \circ b \in H$ pentru toți $a, b \in H$ (închidere)
 - *e* ∈ *H*, și
 - Pentru fiecare $a \in H$ există $b \in H$ astfel încât $a \circ b = b \circ a = e$.
- Un grup of permutări este un subgrup al mulțimii S_n a tuturor permutărilor lui $\{1, \ldots, n\}$.
- Pentru a permutare $\pi \in S_n$ se definesc puterile
 - $\pi^0 = \langle 1, 0, \ldots, n \rangle = (1)(2) \ldots (n),$
 - $\pi^1 = \pi$, și
 - $\pi^n = \pi \circ \pi^{n-1}$ dacă n > 1.

Exemplu

Dacă $\pi = (2,3)(1,4,5,6)$ atunci

$$\Rightarrow \pi^0 = (1)(2)(3)(4)(5)(6), \ \pi^1 = \pi = (2,3)(1,4,5,6),$$

$$\Rightarrow \pi^2 = \pi \circ \pi = (1,5)(2)(3)(4,6), \ \pi^3 = \pi \circ \pi^2 = (1,6,5,4)(2,3),$$

$$\Rightarrow \pi^4 = \pi \circ \pi^3 = (1)(2)(3)(4)(5)(6) = \pi^0.$$

Grupuri ciclice de permutări. Reflecții

Pentru orice π permutare din S_n se definește mulțimea de permutări $\langle \pi \rangle = \{\pi^m \mid m \geq 0\}$. Se observă că $\langle \pi \rangle$ este un subgrup al lui S_n . $\langle \pi \rangle$ se numește subgrupul ciclic generat de π în S_n .

Grupuri ciclice de permutări. Reflecții

Pentru orice π permutare din S_n se definește mulțimea de permutări $\langle \pi \rangle = \{\pi^m \mid m \geq 0\}$. Se observă că $\langle \pi \rangle$ este un subgrup al lui S_n . $\langle \pi \rangle$ se numește subgrupul ciclic generat de π în S_n .

Exemplu

Grupul ciclic C_n este subgrupul ciclic $\langle (1,2,\ldots,n) \rangle$ al lui S_n generat de ciclul $(1,2,\ldots,n)$. C_n conține n elemente:

$$(1,2,\ldots,n)^{0} = \langle 1,2,\ldots,n \rangle = (1)(2)\ldots(n)$$

$$(1,2,\ldots,n)^{1} = \langle 2,3,\ldots,n,1 \rangle$$

$$(1,2,\ldots,n)^{2} = \langle 3,4,\ldots,1,2 \rangle$$

$$\ldots$$

$$(1,2,\ldots,n)^{n-1} = \langle n,1,\ldots,n-1 \rangle$$

$$(1,2,\ldots,n)^{n} = \langle 1,2,\ldots,n \rangle$$

Reflecția unei permutări $\langle a_1, a_2, \dots, a_n \rangle$ este permutarea $\langle a_n, \dots, a_2, a_1 \rangle$.

Grupuri ciclice

 C_n poate fi identificat cu grupul de simetrii rotaționale ale unui poligon regulat cu n muchii.

Exemplu

 $C_4 = \{(1)(2)(3)(4), (1,2,3,4), (1,3)(2,4), (1,4,3,2)\}$ corespunde permutărilor nodurilor din figura de mai jos, care se obțin prin rotirea pătratului cu 90° , 180° sau 270° .

Figure: C₄ ca grup de rotații ale unui pătrat.

Grup diedral

• Grupul diedral D_n cuprinde elementele lui C_n precum și reflecțiile elementelor lui C_n . De exemplu:

$$\begin{split} D_4 = & \{ \langle 1,2,3,4 \rangle, \langle 2,3,4,1 \rangle, \langle 3,4,1,2 \rangle, \langle 4,1,2,3 \rangle \} \cup \\ & \{ \langle 4,3,2,1 \rangle, \langle 1,4,3,2 \rangle, \langle 2,1,4,3 \rangle, \langle 3,2,1,4 \rangle \} \\ = & \{ (1)(2)(3)(4), (1,2,3,4), (1,3)(2,4), (1,4,3,2) \} \cup \\ & \{ (1,4)(2,3), (1)(2,4)(3), (1,2)(3,4), (1,3)(2)(4) \}. \end{split}$$

- D_n are $2 \cdot n$ elemente.
- D_n poate fi identificat cu grupul de simetrii rotaționale și de reflecții ale unui poligon regulat cu n elemente.

D_4 ca grup de simetrii ale unui pătrat

Grup alternant

Noțiuni preliminare

- O transpoziție este un ciclu cu lungimea 2.
- Fiecare ciclu (a_1, a_2, \ldots, a_p) de lungime p > 1 al unei n-permutări poate fi scris ca o compoziție de transpoziții:
 - $(a_1, a_2, \ldots, a_p) = (a_1, a_2)(a_2, a_3) \ldots (a_{p-1}, a_p).$
- Fiecare n-permutare este o compoziție de cicluri (vezi curs 4) ⇒ fiecare n-permutare este o compoziție de transpoziții.
- O *n*-permutare este
 - pară dacă este compoziția unor cicluri de lungime 1 cu un număr par de transpozi
 - impară dacă este compoziția unor cicluri de lungime 1 cu un număr impar de transpoziții.
- Se poate demonstra că orice *n*-permutare este fie pară, fie impară.

Grupul alternant A_n este format din permutările pare ale lui S_n .

Colorări

O colorare de n obiecte $\{1, 2, ..., n\}$ este o funcție $c: \{1, 2, ..., n\} \rightarrow K$ unde $K = \{k_1, ..., k_m\}$ conține m culori.

- Orice colorare c poate fi reprezentată ca o permutare cu repetiție $\langle c(1), \ldots, c(n) \rangle$.
- Sunt *m*ⁿ colorări posibile.

Exemplu

Colorarea $c:\{1,2,3,4\}$ care mapează $1\mapsto r, 2\mapsto g, 3\mapsto r, 4\mapsto r$ este reprezentată de $\langle r,g,r,r\rangle$.

• Fie C mulțimea tuturor colorărilor $c:\{1,\ldots,n\}\to K$. Dacă π este o permutare și $c=\langle c(1),\ldots,c(n)\rangle$ este o colorare, definim funcția $\pi^*:C\to C$ definită astfel: $\pi^*(\langle c(1),\ldots,c(n)\rangle):=\langle c(\pi(1)),\ldots,c(\pi(n))\rangle$.

Dacă
$$\pi = (1, 2, 3, 4)$$
, atunci $\pi^*(\langle r, g, r, r \rangle) = \langle g, r, r, r \rangle$.

G: grup de n-permutări $c_1, c_2: \{1, 2, \ldots, n\} o K$ colorări

• c_1 și c_2 sunt echivalente în raport cu G, și scriem $c_1 \sim_G c_2$ dacă există $\pi \in G$ astfel încât $c_2 = \pi^*(c_1)$.

$$G = C_4$$
, $c = \langle g, g, g, r \rangle$

- $C_4 = \langle \pi \rangle = \{ \pi^n \mid n \ge 0 \}$ unde $\pi = (1, 2, 3, 4)$.
- $\bullet \ \ \textit{C}_{4} = \{\langle 1,2,3,4 \rangle, \langle 2,3,4,1 \rangle, \langle 3,4,1,2 \rangle, \langle 4,1,2,3 \rangle\}$
- ⇒ colorările echivalente cu *c* sunt:

$$\langle c(1), c(2), c(3), c(4) \rangle = \langle g, g, g, r \rangle$$

$$\langle c(2), c(3), c(4), c(1) \rangle = \langle g, g, r, g \rangle$$

$$\langle c(3), c(4), c(1), c(2) \rangle = \langle g, r, g, g \rangle$$

$$\langle c(4), c(1), c(2), c(3) \rangle = \langle r, g, g, g \rangle$$

G: grup de n-permutări C: mulțime de colorări $c:\{1,2,\ldots,n\} \to \{k_1,\ldots,k_m\}$ astfel încât $\pi^*(c) \in C$ pentru orice colorare $c \in C$ OBSERVAȚII:

• \sim_G este o relație de echivalență (reflexivă/simetrică/tranzitivă) \Rightarrow C poate fi partiționată în clase de echivalență

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

G: grup de n-permutări C: mulțime de colorări $c:\{1,2,\ldots,n\} \to \{k_1,\ldots,k_m\}$ astfel încât $\pi^*(c) \in C$ pentru orice colorare $c \in C$ OBSERVAȚII:

• \sim_G este o relație de echivalență (reflexivă/simetrică/tranzitivă) \Rightarrow C poate fi partiționată în clase de echivalență

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

② \bar{c} este clasa de echivalență a colorării c în raport cu relația de echivalență \sim_G . În literatură, \bar{c} se numește orbita lui c sub acțiunea grupului G.

G: grup de n-permutări C: mulțime de colorări $c:\{1,2,\ldots,n\} o \{k_1,\ldots,k_m\}$ astfel

încât $\pi^*(c) \in C$ pentru orice colorare $c \in C$

Observații:

• \sim_G este o relație de echivalență (reflexivă/simetrică/tranzitivă) \Rightarrow C poate fi partiționată în clase de echivalență

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

- ② \bar{c} este clasa de echivalență a colorării c în raport cu relația de echivalență \sim_G . În literatură, \bar{c} se numește orbita lui c sub acțiunea grupului G.
- 3 Numărul $|\bar{c}|$ de elemente al mulțimii \bar{c} reprezintă numărul de colorări echivalente cu c în raport cu G.

G: grup de n-permutări C: mulțime de colorări $c:\{1,2,\ldots,n\} \to \{k_1,\ldots,k_m\}$ astfel încât $\pi^*(c) \in C$ pentru orice colorare $c \in C$ OBSERVAȚII:

• \sim_G este o relație de echivalență (reflexivă/simetrică/tranzitivă) \Rightarrow C poate fi partiționată în clase de echivalență

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

- ② \bar{c} este clasa de echivalență a colorării c în raport cu relația de echivalență \sim_G . În literatură, \bar{c} se numește orbita lui c sub acțiunea grupului G.
- 3 Numărul $|\bar{c}|$ de elemente al mulțimii \bar{c} reprezintă numărul de colorări echivalente cu c în raport cu G.
- Vrem să numărăm câte colorări neechivalente există, adică

G: grup de n-permutări C: mulțime de colorări $c:\{1,2,\ldots,n\} \to \{k_1,\ldots,k_m\}$ astfel încât $\pi^*(c) \in C$ pentru orice colorare $c \in C$ OBSERVAȚII:

① \sim_G este o relație de echivalență (reflexivă/simetrică/tranzitivă) \Rightarrow C poate fi partiționată în clase de echivalență

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

- ② \bar{c} este clasa de echivalență a colorării c în raport cu relația de echivalență \sim_G . În literatură, \bar{c} se numește orbita lui c sub acțiunea grupului G.
- 3 Numărul $|\bar{c}|$ de elemente al mulțimii \bar{c} reprezintă numărul de colorări echivalente cu c în raport cu G.
- Vrem să numărăm câte colorări neechivalente există, adică câte clase de echivalență are C?

Caz concret

Exemplu (Colorarea cu cel mult 2 culori a vârfurilor unui pătrat)

 $S = \{1, 2, 3, 4\}$ este mulţimea vârfurilor unui pătrat şi C este mulţimea tuturor colorărilor posibile ale acestor noduri cu roşu (r) şi galben (g):

$$C = \{ \langle g, g, g, g \rangle, \langle g, g, g, r \rangle, \langle g, g, r, g \rangle, \langle g, g, r, r \rangle, \\ \langle g, r, g, g \rangle, \langle g, r, g, r \rangle, \langle g, r, r, g \rangle, \langle g, r, r, r \rangle, \\ \langle r, g, g, g \rangle, \langle r, g, g, r \rangle, \langle r, g, r, g \rangle, \langle r, g, r, r \rangle, \\ \langle r, r, g, g \rangle, \langle r, r, g, r \rangle, \langle r, r, r, g \rangle, \langle r, r, r, r \rangle \}$$

Considerăm două colorări echivalente dacă putem obține una din cealaltă rotind pătratul \Rightarrow considerăm $G=C_4\Rightarrow 6$ clase de echivalență ale lui C:

Exemple de probleme similare

 Problema mesei rotunde: S este mulţimea celor n locuri la o masă rotundă, G este Cn, iar C este mulţimea celor n! alocări de locuri la n persoane diferite.

Exemple de probleme similare

- **Problema mesei rotunde:** S este mulțimea celor n locuri la o masă rotundă, G este C_n , iar C este mulțimea celor n! alocări de locuri la n persoane diferite.
- **Problema colierului:** S este mulțimea celor n poziții ale mărgelelor, G este D_n , iar C este mulțimea celor m^n aranjamente possible de m feluri de mărgele pe colier.

Exemple de probleme similare

- **Problema mesei rotunde:** S este mulțimea celor n locuri la o masă rotundă, G este C_n , iar C este mulțimea celor n! alocări de locuri la n persoane diferite.
- **Problema colierului:** S este mulțimea celor n poziții ale mărgelelor, G este D_n , iar C este mulțimea celor m^n aranjamente possible de m feluri de mărgele pe colier.
- Vom prezenta o metodă generală de calcul al colorărilor neechivalente.

Noțiuni auxiliare utile

G: grup de n-permutări

 ${m C}$: mulțimea tuturor colorărilor $c:\{1,2,\ldots,n\} o \{k_1,\ldots,k_m\}$ ${m \pi} \in {m G}$

Mulțimea invariantă a lui π în C:

$$C_{\pi}:=\{c\in C\mid \pi^*(c)=c\}$$

Stabilizatorul lui c în G:

$$G_c := \{\pi \in G \mid \pi^*(c) = c\}$$

 G_c este întotdeauna un subgrup al lui G.

Orbita lui c sub acțiunea grupului G:

$$\bar{c} := \{ \pi^*(c) \mid \pi \in G \}$$

Exemplu (Colorarea vârfurilor unui pătrat cu 2 culori)

Considerăm

$$C = \{ \langle g, g, g, g \rangle, \langle g, g, g, r \rangle, \langle g, g, r, g \rangle, \langle g, g, r, r \rangle, \\ \langle g, r, g, g \rangle, \langle g, r, g, r \rangle, \langle g, r, r, g \rangle, \langle g, r, r, r \rangle, \\ \langle r, g, g, g \rangle, \langle r, g, g, r \rangle, \langle r, g, r, g \rangle, \langle r, g, r, r \rangle, \\ \langle r, r, g, g \rangle, \langle r, r, g, r \rangle, \langle r, r, r, g \rangle, \langle r, r, r, r \rangle \}.$$

și grupul diedral $G=D_4$. Atunci

$$\overline{\langle g, g, g, r \rangle} = \{\langle g, g, g, r \rangle, \langle g, g, r, g \rangle, \langle g, r, g, g \rangle, \langle r, g, g, g \rangle\}
G_{\langle g, g, g, r \rangle} = \{(1)(2)(3)(4), (1,3)(2)(4)\}
\overline{\langle g, r, g, r \rangle} = \{\langle g, r, g, r \rangle, \langle r, g, r, g \rangle\}
G_{\langle g, r, g, r \rangle} = \{(1)(2)(3)(4), (1,3)(2,4), (1,3)(2)(4), (1)(2,4)(3)\}$$

Observație.
$$|G_{\langle g,g,g,r\rangle}| \cdot |\overline{\langle g,g,g,r\rangle}| = 2 \cdot 4 = 8 = |G|$$
 și $|G_{\langle g,r,g,r\rangle}| \cdot |\overline{\langle g,r,g,r\rangle}| = 4 \cdot 2 = 8 = |G|$.

Mulțimi invariante, stabilizatori și orbite Useful properties

Lemă

Fie G un grup care acționează pe o mulțime de colorări C. Pentru orice colorare $c \in C$ are loc egalitatea $|G_c| \cdot |\overline{c}| = |G|$.

Lema lui Burnside

Numărul N de clase de echivalență ale mulțimii de colorări C în prezența simetriilor lui G este

$$N = \frac{1}{|G|} \sum_{\pi \in G} |C_{\pi}|.$$

Numărare în prezența simetriilor Lema lui Burnside: demonstratie

$$\frac{1}{|G|} \sum_{\pi \in G} |C_{\pi}| = \frac{1}{|G|} \sum_{\pi \in G} \sum_{c \in C} [\pi^*(c) = c]$$

$$= \frac{1}{|G|} \sum_{c \in C} \sum_{\pi \in G} [\pi^*(c) = c]$$

$$= \frac{1}{|G|} \sum_{c \in C} |G_c|$$

$$= \sum_{c \in C} \frac{1}{\overline{c}} = \sum_{\overline{c}} \sum_{c \in \overline{c}} \frac{1}{\overline{c}}$$

$$= \sum_{\overline{c}} 1 = N$$

unde
$$[\pi^*(c) = c] := \begin{cases} 1 & \text{dacă } \pi^*(c) = c \\ 0 & \text{în caz contrar} \end{cases}$$

Lema lui Burnside Observații

- Ca să putem aplica Lemma lui Burnside la numărarea claselor de echivalență ale unei mulțimi de colorări C, trebuie să calculăm mărimea mulțimii invariante C_{π} pentru orice permutare $\pi \in G$.
- Calculul mărimii mulțimiii C_{π}
 - Dacă colorarea c este invariantă sub acțiunea lui π și π conține un ciclu (i_1, \ldots, i_p) , atunci obiectele i_1, \ldots, i_p trebuie să aibă aceeași culoare.
 - ▶ Dacă π are k cicluri disjuncte atunci numărul de colorări invariante sub acțiunea lui π este $|C_{\pi}| = m^k$, unde m este nr. total de culori disponibile.

Exemplu

Dacă S este mulțimea vârfurilor unui pătrat și $G=D_4$ atunci $|C_{(1,2,3,4)}|=m, |C_{(1,2)(3,4)}|=m^2, |C_{(1)(2,4)(3)}|=m^3$ și $|C_{(1)(2)(3)(4)}|=m^4$.

Bibliografie

- J. M. Harris, J. L. Hirst, M. J. Mossinghoff. Combinatorics and Graph Theory, Second Edition. Springer 2008. §2.7. Pólya's Theory of Counting.
- Q. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen, Acta Math. 68 (1937), 145–254; English transl. in G. Polýa and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (1987).