Алгебра. КТ. Весенний семестр

II. Подпространства, связанные с эндоморфизмом

- $1. \ \mathscr{A} \in \operatorname{End} V, \ V \geqslant U = \langle x_1, \dots, x_k \rangle.$ Докажите, что U инвариантно относительно \mathscr{A} тогда и только тогда, когда $\mathscr{A}(x_1), \dots, \mathscr{A}(x_k) \in U.$
- 2. Инвариантно ли подпространство U пространства V относительно \mathscr{A} ? Если да, найдите матрицу оператора $\mathscr{A}|_U$ в каком-нибудь базисе:
 - a) $V=M_2(\mathbb{R}),\, U=M_2^+(\mathbb{R}),\, \mathscr{A}\colon X\mapsto X-X^{\mathrm{T}};$
 - 6) $V = M_2(\mathbb{R}), \ U = M_2^-(\mathbb{R}), \ \mathscr{A} \colon X \mapsto X X^{\mathrm{T}};$
 - в) $V = \{ f \in \mathbb{R}[x] \mid f''' = 0 \}, \ U = \{ f \in V \mid f(1) = 0 \}, \ \mathscr{A} \colon f \mapsto f(1-x) ;$
 - г) $V = \{f \in \mathbb{R}[x] \, | \, f''' = 0\}, \, U = \{f \in V \, | \, f(0) = f(1)\}, \, \mathscr{A} \colon f \mapsto f(1-x);$
- 3. Инвариантно ли подпространство U пространства \mathbb{R}^n относительно оператора \mathscr{A} , заданного в стандартном базисе матрицей:

a)
$$n=3,\ U\colon x_1+2x_2-x_3=0, \quad egin{pmatrix} 2 & -3 & 1 \ -2 & 1 & 0 \ 0 & 3 & -1 \end{pmatrix};$$

$$6) \,\, n=4, \,\, U=\langle (4,0,-1,1)^{\mathrm{T}}, \, (-2,2,3,1)^{\mathrm{T}}, \, (0,4,5,3)^{\mathrm{T}} \rangle, \quad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix};$$

$$\texttt{B)} \,\, n = 4, \, U = \langle (1,1,1,1)^{\mathrm{T}}, \, (1,-1,3,5)^{\mathrm{T}}, \, (3,2,4,5)^{\mathrm{T}} \rangle, \quad \begin{pmatrix} 1 & 3 & 1 & 2 \\ 2 & 2 & 3 & 1 \\ 2 & 5 & 2 & 3 \\ 3 & 2 & 1 & 1 \end{pmatrix}.$$

- 4. Найдите все инвариантные подпространства оператора $\mathscr{A}(f) = e^{-1} \cdot f(x+1)$ в вещественном пространстве $V = \langle e^x \cos x, \, e^x, \, e^x \sin x, \, e^{2x} \rangle$.
- 5. Найдите собственные значения и собственные подпространства линейных операторов в вещественном пространстве \mathbb{R}^n , заданных в стандартном базисе матрицами:

a)
$$\begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
; 6) $\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$; B) $\begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$;

$$\text{r)} \begin{pmatrix} 7 & -12 & 6 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{pmatrix}; \quad \text{A)} \begin{pmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{pmatrix}; \quad \text{e)} \begin{pmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{pmatrix}.$$

6. Найдите собственные значения и собственные векторы линейных операторов в трёхмерном пространстве геометрических векторов:

б)
$$x \mapsto (x, \mathbf{i})\mathbf{i}$$
;

в)
$$x \mapsto \mathbf{i} \times x$$
.

7. Найдите собственные значения и собственные векторы линейных операторов в пространстве $\mathbb{R}[x]_n$:

a)
$$f\mapsto xf';$$
 6) $f\mapsto rac{1}{x}\int\limits_0^x f(t)dt.$

- 8. Пусть f произвольный фиксированный вещественный многочлен, отличный от константы. Преобразование $\mathscr A$ пространства $\mathbb R[x]$ сопоставляет произвольному многочлену его остаток от деления на f.
 - а) Докажите, что Я является линейным оператором, причём проектором. Проектором на какое подпространство?
 - б) Найдите все собственные значения и собственные векторы оператора \mathscr{A} ;
 - в) В подпространстве $\mathbb{R}[x]_3$ найдите собственный базис и запишите матрицу оператора $\mathscr A$ в этом базисе, если 1) f=x, 2) $f=x^2+1,$ 3) $f=(x-1)^3.$
- 9. Операторы заданы матрицами в стандартном базисе. Выясните, какие из них диагонализируемы над полем $\mathbb R$ или над полем $\mathbb C$. Если оператор диагонализируем над \mathbb{R} , найдите собственный базис, соответствующую диагональную матрицу и спектральное разложение оператора:

- $10^* \mathscr{A} \in \operatorname{End} V$, $\dim V < \infty$. Докажите, что если $\operatorname{Ker} \mathscr{A} \neq \operatorname{Ker} \mathscr{A}^2$, то \mathscr{A} не диагонализируем.
- 11. Найдите (n-1)-мерные инвариантные подпространства оператора $\mathscr{A} \in \operatorname{End} \mathbb{R}^n$, заданного матрицей в стандартном базисе:

a)
$$n=3$$
, $\begin{pmatrix} 6 & -1 & 1 \\ 5 & -5 & 5 \\ 4 & -9 & 9 \end{pmatrix}$; 6) $n=3$, $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -3 & -3 & -3 \end{pmatrix}$; B) $n=4$, $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 4 & 0 & 0 \\ -1 & -1 & 0 & 0 \end{pmatrix}$.

 $У \kappa a s a \pi u e$: вспомните о связи U, U^0 и инвариантности.

12* Последовательность (x_n) задана рекуррентно $x_{n+1}=rac{2}{3}x_n+rac{1}{3}x_{n-1},\ x_0=a\in\mathbb{R}$, $x_1 = b \in \mathbb{R}$. Докажите, что последовательность сходится и найдите её предел.