BIOS 6612 Homework 1: Likelihood theory

1. (35 points) Consider the Poisson distribution with mass function

$$f(y) = \frac{\lambda^y \exp(-\lambda)}{y!}, \lambda > 0, y \in \{0, 1, 2, \ldots\}$$

You have a sample of size n = 50 from this distribution with the following summary statistics:

• the sample mean of Y_1, \ldots, Y_n , i.e.,

$$\frac{1}{n} \sum_{i=1}^{n} Y_i = 1.3$$

• the sample mean of Y_1^2, \dots, Y_n^2 , i.e.,

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2} = 2.62$$

• the sample mean of $\log(Y_1!)$, $\log(Y_2!)$, ..., $\log(Y_n!)$, i.e.,

$$\frac{1}{n} \sum_{i=1}^{n} \log(Y_i!) = 0.4148$$

Assume we are interested in making inferences about λ .

- (a) Derive the log-likelihood and score functions for this problem. (5 points)
- (b) Compute $\hat{\lambda}$, the maximum likelihood estimator of λ . (5 points)
- (c) Derive the expected information about λ for this problem. (5 points)
- (d) Construct a 95% Wald confidence interval for λ . (2 points)
- (e) Test $H_0: \lambda = 1$ versus a two-sided H_1 using the score test. Give the test statistic, null distribution, and p value. (6 points)
- (f) Repeat question 1e using the likelihood ratio test. (6 points)
- (g) Repeat question 1e using the Wald test. (6 points)

- 2. (20 points) Suppose now we only are able to observe $Y_i^* = \mathbb{1}(Y_i > 0)$, i.e., a value of 1 if $Y_i > 0$ and 0 if $Y_i = 0$. As before, assume that Y_i has the Poisson distribution with mean λ .
 - (a) Give the likelihood function required to estimate λ based on a sample of $Y_1^*, Y_2^*, \dots, Y_n^*$. (4 **points**)
 - (b) Find the MLE of λ based on this likelihood function. *Hint: Your answer should* be a function of the sample mean of the Y_i^* 's. (6 points)
 - (c) Derive the information about λ based on this sample and hence find the variance of the MLE. (6 points)
 - (d) Using the invariance property of MLEs, explain an easier method for finding the MLE of λ in this problem. Recall that this property states that the MLE of a function $g(\theta)$ is the function applied to the MLE of θ , i.e., $g(\hat{\theta})$. (4 points)
- 3. (20 points) Now consider estimation of $\zeta = P(Y_1 = 0) = \exp(-\lambda)$ based on Y_1, \ldots, Y_n .
 - (a) One possible estimator is the proportion of 0's in the sample, i.e.,

$$\tilde{\zeta} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(Y_i = 0).$$

Find the variance of this estimator. (10 points)

(b) Another possible estimator is a transformation of the MLE, i.e.,

$$\hat{\zeta} = \exp(-\hat{\lambda}).$$

Find the approximate variance of this estimator. *Hint: Use the delta method.* (10 points)