COM 5120 Communication Theory Homework #5 Solution

1.

To achieve 8000 bps with the symbol rate R = 1/T = 2000 symbols per second, the number of information bits per symbol should be:

$$k = \frac{8000}{2000} = 4$$

Hence, a $2^4 = 16$ QAM signal constellation is needed. The carrier frequency is the mid-frequency of the frequency band, which is

$$f_c = \frac{500 + 3500}{2} = 2000 Hz$$

To apply the raised cosine pulse shaping with bandwidth W=3500-500=3000Hz, the roll-off factor can be computed as

$$\frac{1}{2T}(1+\beta) = \frac{W}{2} = 1500 \Longrightarrow \beta = 0.5$$

And the sketch of the spectrum of the transmitted signal pulse is shown below:

2.

(a)

Data sequence D_n		1	0	0	1	0	1	1	0	0	1
Precoded sequence P_n	0	1	1	1	0	0	1	0	0	0	1
Transmitted sequence I_n	-1	1	1	1	-1	-1	1	-1	-1	-1	1
Received sequence B_n		0	2	2	0	-2	0	0	-2	-2	0
Decoded sequence D_n		1	0	0	1	0	1	1	0	0	1

(b)

Data sequence D_n			1	0	0	1	0	1	1	0	0	1
Precoded sequence P_n	0	0	1	0	1	1	1	0	0	0	0	1
Transmitted sequence I_n	-1	-1	1	-1	1	1	1	-1	-1	-1	-1	1
Received sequence B_n			2	0	0	2	0	-2	-2	0	0	2
Decoded sequence D_n			1	0	0	1	0	1	1	0	0	1

3.

(a) No. R=2500>2W=2400Hz, ISI will happen

(b)
$$T = \frac{1}{R} = \frac{1}{800} \Rightarrow \frac{1}{2T} (1+\beta) = \frac{W}{2} = 600 \Rightarrow \beta = 0.5$$

4.

$$\begin{aligned} y_k &= (I_{k-1} + I_{k+1}) + v_k \\ \rightarrow b_n &= Tx(-nT) = \begin{cases} T & , n = 0, -1 \\ 0 & , \text{otherwise} \end{cases} \\ \rightarrow B(f) &= \sum_{m=-\infty}^{\infty} X(f + \frac{m}{T}) = \sum_{m=-\infty}^{\infty} b_n e^{j2\pi n f T} = T + Te^{-j2\pi f T} \\ \text{For } \frac{1}{T} &= 2W \\ X(f) &= \begin{cases} T + Te^{-j2\pi f T} & , |f| \leq W \\ 0 & , \text{otherwise} \end{cases} \\ &= \begin{cases} \frac{1}{2W} e^{-j\pi f \frac{1}{2W}} (e^{j\pi f \frac{1}{2W}} + e^{-j\pi f \frac{1}{2W}}), & |f| \leq W \\ 0 & , \text{otherwise} \end{cases} \\ &= \begin{cases} \frac{1}{W} e^{-j\pi f \frac{1}{2W}} \cos(\frac{\pi f}{2W}) & , |f| \leq W \\ 0 & , \text{otherwise} \end{cases} \end{aligned}$$

$$y_k = (I_{k-1} - I_{k+1}) + v_k$$

$$\rightarrow b_n = Tx(-nT) = \begin{cases} -T & , n = -1 \\ T & , n = 1 \\ 0 & , \text{otherwise} \end{cases}$$

$$\rightarrow B(f) = \sum_{m=-\infty}^{\infty} X(f + \frac{m}{T}) = \sum_{m=-\infty}^{\infty} b_n e^{j2\pi nfT} = Te^{j2\pi fT} - Te^{-j2\pi fT}$$
For $\frac{1}{T} = 2W$

$$X(f) = \begin{cases} Te^{j2\pi fT} - Te^{-j2\pi fT} & , |f| \le W \\ 0 & , \text{otherwise} \end{cases}$$

$$= \begin{cases} j2T\sin(2\pi fT) & , |f| \le W \\ 0 & , \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{j}{W}\sin(\frac{\pi f}{W}) & , |f| \le W \\ 0 & , \text{otherwise} \end{cases}$$

