MiniF2F in Rocq

Automatic Translation Between Proof Assistants — A Case Study

Jules Viennot, Guillaume Baudart, Emilio Jesùs Gallego Arias, Marc Lelarge

IRIF, Université Paris Cité, Inria, CNRS DI ENS, PSL University, Inria

2025-04-07

Introduction

Large Language Models and Reasoning

Use Large Language Models (LLMs) to generate reasoning in natural language or proof assistants (Rocq, Lean or Isabelle)

```
Question: If a>1, then the sum of the real solutions of \sqrt{a-\sqrt{a+x}}=x is equal to Response: <think>
To solve the equation \sqrt{a-\sqrt{a+x}}=x, let's start by squaring both \cdots \left(\sqrt{a-\sqrt{a+x}}\right)^2=x^2\implies a-\sqrt{a+x}=x^2. Rearrange to isolate the inner square root term: (a-x^2)^2=a+x\implies a^2-2ax^2+(x^2)^2=a+x\implies x^4-2ax^2-x+(a^2-a)=0 ...

Wait, wait. Wait. That's an aha moment I can flag here. Let's reevaluate this step-by-step to identify if the correct sum can be \cdots We started with the equation: \sqrt{a-\sqrt{a+x}}=x First, let's square both sides: a-\sqrt{a+x}=x^2\implies \sqrt{a+x}=a-x^2 Next, I could square both sides again, treating the equation: \cdots
```

DeepSeek-R1-Zero reasoning

```
Lemma ffx_eq_x_inj{A}:
    forall f:A->A,
    (forall x:A, f (f x) = x) ->
    forall x y:A, f x = f y -> x = y.

Proof.
    { intros f H1 x y H2.
        rewrite <- (H1 x).
        rewrite H2.
        reflexivity. }

Qed.
```

NLIR Rocq proof generation

Large Language Models and Reasoning

Use Large Language Models (LLMs) to generate reasoning in natural language or proof assistants (Rocq, Lean or Isabelle)

```
Question: If a > 1, then the sum of the real solutions of \sqrt{a - \sqrt{a + x}} = x is equal to Response: <think>
To solve the equation \sqrt{a - \sqrt{a + x}} = x, let's start by squaring both \cdots \left(\sqrt{a - \sqrt{a + x}}\right)^2 = x^2 \implies a - \sqrt{a + x} = x^2. Rearrange to isolate the inner square root term: (a - x^2)^2 = a + x \implies a^2 - 2ax^2 + (x^2)^2 = a + x \implies x^4 - 2ax^2 - x + (a^2 - a) = 0 ...

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be \cdots We started with the equation: \sqrt{a - \sqrt{a + x}} = x

First, let's square both sides: a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2

Next, I could square both sides again, treating the equation: \cdots ...
```

```
DeepSeek-R1-Zero reasoning
```

```
Lemma ffx_eq_x_inj{A}:
    forall f:A->A,
    (forall x:A, f (f x) = x) ->
    forall x y:A, f x = f y -> x = y.

Proof.
    { intros f H1 x y H2.
        rewrite <- (H1 x).
        rewrite H2.
        reflexivity. }

Qed.
```

NLIR Rocq proof generation

How to evaluate code generation methods?

Large Language Models and Reasoning

Use Large Language Models (LLMs) to generate reasoning in natural language or proof assistants (Rocq, Lean or Isabelle)

```
Question: If a > 1, then the sum of the real solutions of \sqrt{a - \sqrt{a + x}} = x is equal to Response: <think>
To solve the equation \sqrt{a - \sqrt{a + x}} = x, let's start by squaring both \cdots \left(\sqrt{a - \sqrt{a + x}}\right)^2 = x^2 \implies a - \sqrt{a + x} = x^2. Rearrange to isolate the inner square root term: (a - x^2)^2 = a + x \implies a^2 - 2ax^2 + (x^2)^2 = a + x \implies x^4 - 2ax^2 - x + (a^2 - a) = 0 ...

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be \cdots We started with the equation: \sqrt{a - \sqrt{a + x}} = x

First, let's square both sides: a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2

Next, I could square both sides again, treating the equation: \cdots ...
```

```
DeepSeek-R1-Zero reasoning
```

```
Lemma ffx_eq_x_inj{A}:
    forall f:A->A,
    (forall x:A, f (f x) = x) ->
    forall x y:A, f x = f y -> x = y.

Proof.
    { intros f H1 x y H2.
        rewrite <- (H1 x).
        rewrite H2.
        reflexivity. }

Qed.
```

NLIR Rocq proof generation

How to evaluate code generation methods? ⇒ benchmark datasets

MiniF2F

Introduction

What is it?

Popular benchmark for ML based code generation in proof assistants

MiniF2F

What is it? Popular benchmark for ML based code generation in proof assistants

What is it made of?

488 exercises from olympiads (AMC, AIME, IMO) + high-school & undergraduate maths classes

```
mathd_numbertheory_227: Angela's problem

{
    "problem_name": "mathd_numbertheory_227",
    "informal_statement": "One morning each member of Angela's family drank an 8-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero.
Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family? Show that it is 5.",
    "informal_proof": "..."
}
```

MiniF2F

What is it? Popular benchmark for ML based code generation in proof assistants

What is it made of? 488 high-school level maths exercises

What languages are supported?

Lean, Isabelle and Metamath ⇒ not Rocq

Angela's problem in Isabelle theorem mathd_numbertheory_227: fixes x y n ::nat assumes "x / 4 + y / 6 = (x + y) / n" and "n\<noteq>0" and "x\<noteq>0" and "y\<noteq>0" shows "n = 5" sorry end

```
heorem mathd_numbertheory_227
  (x y n : N+)
  (ho : fx / (4:R) + y / 6 = (x + y) / n) :
  n = 5 :=
begin
  sorry
end
```

Our Goal Introduction

Our Goal

Introduction

Our Goal

Methodology

Models

Which models?

providers	models	open weights	chain of thought
OpenAl	GPT-4o mini	X	X
	o1-mini	X	0
	01	X	0
Anthropic	Claude 3.5 Sonnet	X	X

GPT-40 mini < Claude 3.5 Sonnet < o1-mini < o1

Models

Which models?

providers	models	open weights	chain of thought
OpenAl	GPT-4o mini	X	X
	o1-mini	X	0
	01	X	0
Anthropic	Claude 3.5 Sonnet	X	X

GPT-40 mini < Claude 3.5 Sonnet < o1-mini < o1

No open weights models ⇒ use them as **black boxes**

Strategy

Strategy

Strategy

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

At the end of each step, a **human** ensures all translated theorems are correct

```
Rocq example 1
Require Import Coq.Reals.Reals.
Require Import Coq. ZArith. ZArith.
Open Scope R scope.
Open Scope Z scope.
Parameter Rfloor: R -> Z.
Parameter big sum : forall (m n : nat) (f : nat -> Z), Z.
Theorem aime 1991 p6 : forall (r : R),
    (big sum 19 91 (fun k => Rfloor (r + (IZR (Z.of nat k) / 100)))) = 546\%Z ->
    Rfloor (100 * r) = 743\%Z.
Proof.
Admitted.
```

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

At the end of each step, a **human** ensures all translated theorems are correct

```
Rocq example 1
Require Import Cog.Reals.Reals.
Require Import Coq.ZArith.ZArith.
Open Scope R scope.
Open Scope Z scope.
Parameter Rfloor : R > 7.
Parameter big sum : forall (m n : nat) (f : nat \rightarrow Z), Z.
Theorem aime 1991 p6 : forall (r : R),
    (big sum 19 91 (fun k => Rfloor (r + (IZR (Z.of nat k) / 100)))) = 546\%Z ->
    Rfloor (100 * r) = 743\%Z.
Proof.
Admitted.
```

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

At the end of each step, a **human** ensures all translated theorems are correct

If a theorem is considered incorrect, it is **put back** with the untranslated theorems

Stage 1: one-shot prompting

Pipeline

Stage 1: one-shot prompting

Stage 1: one-shot prompting

Example

```
Informal description

{
    "problem_name": "mathd_numbertheory_227",
    "informal_statement": "One morning each member of Angela's family drank an 8-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero.
Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family? Show that it is 5.",
    "informal_proof": "..."
}
```

```
theorem mathd_numbertheory_227:
  fixes x y n ::nat
  assumes "x / 4 + y / 6 = (x + y) / n"
    and "n\<noteq>0"
    and "x\<noteq>0"
    and "y\<noteq>0"
    shows "n = 5"
    sorry
end
```

```
theorem mathd_numbertheory_227
  (x y n : N+)
  (h0 : 1x / (4:R) + y / 6 = (x + y) / n) :
  n = 5 :=
begin
  sorry
end
```

Example

```
Informal description
...
```

```
Isabelle version
```

```
Lean version
```


Stage 2: multi-turn with errors

Example

```
Require Import Arith.

Theorem imo_1964_p1_1:
    forall n : nat,
        (7 | (2^n - 1)%nat) -> (3 | n).

Proof.
Admitted.

Require Import Arith.

Errors:
Syntax error: ',' or ')' expected after [term level 200] (in [term]).
```

Require Import Arith. Theorem imo_1964_p1_1: forall n : nat, (Nat.divide 7 (2^n - 1)) -> (Nat.divide 3 n). Proof. Admitted.

Stage 3: refined prompt

Introduction

Rocq example 3 : before stage 3

```
Require Import Coq.Complex.Reals.
```

Theorem mathd_algebra_302 : (Caux.I / 2)^2 = -(1 / 4).

Proof.

Admitted.

Errors:

Cannot find a physical path bound to logical path Stdlib.Complex.Reals.

Introduction

```
Rocq example 4: before stage 3
Require Import Reals.
                                                           Frrors :
Require Import Coquelicot.Coquelicot.
                                                           In environment
Require Import QArith.
                                                           a : 0
Require Import ZArith.
Require Import List.
                                                           S: list R
                                                           x : R
Open Scope R scope.
                                                           The term "x" has type "R" while it is
                                                           expected to have type "positive".
Theorem amc12a 2020 p25 :
 forall (a : Q) (S : list R),
  (forall x : R, In x S <->
    (IZR (floor x) * (x - IZR (floor x))
     = (02R a) * (x^2)
    -> NoDup S
    -> fold left Rplus S 0 = 420
    -> (Qnum a + Qden a)%Z = 929.
Proof.
Admitted.
```

Pipeline

Pipeline

Pipeline

Proof.

Admitted.

Require Import Coq.Complex.Reals. Errors: Cannot find a physical path bound to logical path Stdlib.Complex.Reals. Theorem mathd_algebra_302: (Caux.I / 2)^2 = -(1 / 4).

```
Require Import Reals.
Require Import Coquelicot.Coquelicot.

Open Scope C_scope.

Theorem mathd_algebra_302:
(Ci / 2)^2 = - (1 / 4).
Proof.
Admitted.
```

```
Rocq example 4: before stage 3
Require Import Reals.
                                                           Errors:
Require Import Coquelicot.Coquelicot.
                                                           In environment
Require Import QArith.
                                                           a : 0
Require Import ZArith.
Require Import List.
                                                           S: list R
Open Scope R scope.
                                                           x : R
                                                           The term "x" has type "R" while it is
Theorem amc12a 2020 p25 :
                                                           expected to have type "positive".
 forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (floor x) * (x - IZR (floor x))
         = (Q2R a) * (x ^ 2))
    -> NoDup S
    -> fold left Rplus S 0 = 420
    -> (Qnum a + Qden a)%Z = 929.
Proof.
Admitted.
```

```
Rocq example 4 : after stage 3
Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.
Open Scope R scope.
Theorem amc12a 2020 p25 :
  forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int part x) * (x - IZR (Int part x))
          = Q2R a * Rpower x 2))
    -> NoDup S
    -> fold left Rplus S 0 = 420
    -> (Z.pos (Qden a) + Qnum a = 929)%Z.
Proof.
Admitted.
```


Evaluation

RQ1 Does a better model really performs better?

RQ2 Does changing the amount of information on a theorem changes the performance of the model?

RQ3 Does the translated statement of the theorem make the proof harder to write?

RQ1 - Models comparison

RQ1: Does a better model really performs better?

→ **GPT-40 mini** vs **01-mini**

Select 100 theorems, 50 of which GPT-40 mini translated at stage 1

RQ1 - Models comparison

RQ1: Does a better model really performs better?

→ **GPT-40 mini** vs **01-mini**

Comparison: pass@1 = one one-shot prompting (stage 1) on the 100 theorems

	o1-mini success	o1-mini fail	Total
GPT-4o mini success	28	22	50
GPT-4o mini fail	10	40	50
Total	38	62	100

 \Rightarrow GPT-40 mini > o1-mini?

RQ1 - Models comparison

RQ1: Does a better model really performs better?

→ **GPT-40 mini** vs **01-mini**

Comparison: pass@3 = three one-shot prompting (stage 1) on the 100 theorems

	o1-mini success	o1-mini fail	Total
GPT-4o mini success	58	7	65
GPT-4o mini fail	6	29	35
Total	64	36	100

- \Rightarrow GPT-40 mini \approx 01-mini
- ⇒ notion of **easy** and **hard** translations

RQ2 - Ablation study

RQ2: Does changing the amount of information on a theorem changes the performance of the model?

Comparison: one and three one-shot prompting on the 100 theorems with o1-mini

RQ2 - Ablation study

RQ2: Does changing the amount of information on a theorem changes the performance of the model?

Comparison: one and three one-shot prompting on the 100 theorems with o1-mini

Information in the prompt	Pass@1	Pass@3
informal description + isabelle version + lean version	38%	64%
informal description	51%	75%
isabelle version + lean version	41%	62%
lean version	42%	60%

- ⇒ only informal description > rest
- \Rightarrow all information \approx only code versions \approx only lean version

RQ3 - Audit: introduction

RQ3: Does the translated statement of the theorem make the proof harder to write?

Method: ask Rocq users to review batch of 25 translated theorems

RQ3 - Audit: introduction

RQ3: Does the translated statement of the theorem make the proof harder to write?

⇒ hard question: what does it really mean?

Method: ask Rocq users to review batch of 25 translated theorems

RQ3 - Audit: introduction

RQ3: Does the translated statement of the theorem make the proof harder to write?

⇒ hard question: what does it really mean?

Method: ask Rocq users to review batch of 25 translated theorems

⇒ relying on their judgement: from **no** badly written theorems for some to **half** the badly written theorems for others

Finding unnoticed errors

```
Rocq example 4: before the audit
Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.
Open Scope R scope.
Theorem amc12a 2020 p25 :
  forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int part x) * (x - IZR (Int part x)) = Q2R a * Rpower x 2))
    -> NoDup S
    -> fold left Rplus S 0 = 420
    -> (Z.pos (Qden a) + Qnum a = 929)%Z.
Proof.
Admitted.
```

Finding unnoticed errors

```
Rocq example 4: after the audit
Require Import Reals.
Require Import List.
Open Scope R scope.
Theorem amc12a 2020 p25 :
  forall (p q : nat), Nat.gcd p q = 1%nat ->
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int part x) * (x - IZR (Int part x)) = INR p / INR q * Rpower x 2))
    -> NoDup S
    -> fold left Rplus S 0 = 420
    -> (p + q = 929)%nat.
Proof.
Admitted.
```

Admitted.

- Finding unnoticed errors
- Better alignment with the informal description

```
Informal description
{ "informal statement": "What is the maximum value of (2^t - 3t) * t / 4^t for real values of t?
Show that it is 1 / 12." }
```

```
Rocq example 6: before the audit
Require Import Cog.Reals.Reals.
Open Scope R scope.
Theorem amc12b 2020 p22 : forall t : R,
  ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) <= 1 / 12.
Proof.
```

- Finding unnoticed errors
- Better alignment with the informal description

```
Informal description
{ "informal_statement": "What is the maximum value of (2^t - 3t) * t / 4^t for real values of t?
Show that it is 1 / 12." }
```

Rocq example 6 : after the audit

```
Require Import Coq.Reals.Reals.
Open Scope R_scope.

Theorem amc12b_2020_p22 : forall t : R,
    ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) <= 1 / 12 /\
    exists t, ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) = 1 / 12.
Proof.
Admitted.</pre>
```

- Finding unnoticed errors
- Better alignment with the informal description
- Removing useless content or write better syntax (e.g. currying)

```
Require Import PeanoNat.

Theorem aime_1991_p1:
    forall (x y : nat), (0 < x)%nat -> (0 < y)%nat ->
        (x * y + x + y = 71) ->
        (x^2 * y + x * y^2 = 880) ->
        (x^2 + y^2 = 146).

Proof.

Admitted.
```

- Finding unnoticed errors
- Better alignment with the informal description
- Removing useless content or write better syntax (e.g. currying)

Theorem aime_1991_p1 : forall (x y : nat), (x * y + x + y = 71) -> (x*x * y + x * y*y = 880) -> (x*x + y*y = 146). Proof. Admitted.

RQ3 - Audit: results

Audit so far: 150 problems \approx 31% of the dataset

Results so far:

Answers	Percentages
Error	2%
Reformulation	4%
Syntax	17.3%
Valid	76.7%
Proof	18.7%

Conclusion

Main Lessons

- Feedback importance:
 - big improvement by adding previous failed attempts
 - final errors are often due to the incapacity to correctly use previous attempts

```
Rocq example 5: unproven
Require Import Reals.
                                                                         Errors:
                                                                         In environment
Theorem aime 1988 p8:
                                                                         f : nat -> nat -> R
  forall (f : nat -> nat -> R),
  (forall x, (0 < x)%nat -> f x x = INR x) ->
                                                                         x : nat
  (forall x y, (0 < x)%nat /\ (0 < y)%nat -> f x y = f y x) ->
                                                                         v : nat
                                                                         The term "INR (x + y)"
  (forall x y, (0 < x)%nat /\ (0 < y)%nat ->
                                                                         has type "R" while it
    (INR (Nat.add x y)) * (f x y) = (INR y) * (f x (Nat.add x y))) ->
                                                                         is expected to have
 f 14 52 = TNR 364.
                                                                         type "nat".
Proof.
Admitted.
```

Main Lessons

- Feedback importance:
 - big improvement by adding previous failed attempts
 - final errors are often due to the incapacity to correctly use previous attempts

Indications importance:

- the fewer the examples on internet, the worst the LLMs
 - \rightarrow scraping on github:

Domains	Number of files
nat	~ 80k
reals	~ 8k
complex numbers	~ 500

LLMs struggle with types and scopes

Thank you!

Help us by participating to the theorems audit!

Contact us at llm4coq@gmail.com

The dataset is available at https://github.com/LLM4Rocq/miniF2F-rocq and on HuggingFace at https://huggingface.co/datasets/LLM4Rocq/miniF2F-rocq