MC558: Análise de Algoritmos II Lista de Classes de Complexidade – Parte 2

- 1. Dois problemas P e Q são **polinomialmente equivalentes** se $P \propto_{\text{poli}} Q$ e $Q \propto_{\text{poli}} P$. Usando a definição de \mathcal{NP} -completude, mostre que todos problemas em \mathcal{NP} -completo são polinomialmente equivalentes.
- 2. Dê os argumentos que mostram que todos os problemas em $\mathcal P$ são polinomialmente equivalentes.
- 3. Faça um diagrama de Venn que represente a situação atual do conhecimento que se tem sobre as classes de problemas \mathcal{NP} , \mathcal{P} , \mathcal{NP} -completo e \mathcal{NP} -difícil.
- 4. Mostre que a função de redução $\propto_{\mbox{\footnotesize poli}}$ é transitiva.
- 5. Escreva o problema da árvore geradora mínima em suas versões de decisão e de otimização.
- 6. Escreva o problema da cobertura de vértices mínima em suas versões de decisão e de otimização.
- 7. Escreva qual é o problema complementar ao problema da partição (PAR) que foi dado em sala de aula.
- 8. Defina a classe de problemas co- \mathcal{NP} .
- 9. Mostre que $\mathcal{P}=\text{co-}\mathcal{P}$.
- 10. Defina as classes de problemas \mathcal{PSPACE} e $\mathcal{NPSPACE}$.
- 11. Mostre que $\mathcal{P} \subseteq \text{co-}\mathcal{NP} \cap \mathcal{NP}$.
- 12. Desenhe um diagrama de Venn que represente o conhecimento atual sobre a relação existente entre as classes \mathcal{NP} , \mathcal{P} e co- \mathcal{NP} .
- 13. Suponha que você está estudando um certo problema π . Você já conseguiu provar que o problema $\overline{\pi}$ (i.e., o problema complementar de π) está em \mathcal{NP} .

Se você tivesse que investir seus esforços em uma das alternativas abaixo, por qual delas você optaria? Justifique a sua resposta.

Alternativa 1: encontrar um algoritmo determinístico polinomial para π .

Alternativa 2: provar que π é \mathcal{NP} -completo.

14. Suponha que você está estudando um problema π e que você encontrou um algoritmo <u>não</u> <u>determinístico</u> cuja complexidade de espaço é n^2 . Um amigo seu disse ter "provado" que nenhum algoritmo <u>determinístico</u> pode resolver este problema usando menos que $O(n^5)$ de memória. Há alguma contradição entre os dois resultados? Justifique a sua resposta.

- 15. Escreva em um pseudo-código de alto nível um algoritmo **não-determinístico polinomial** que resolve o problema do conjunto dominante visto em aula. Ou seja, mostre que este problema está em \mathcal{NP} . Qual a complexidade do seu algoritmo?
- 16. Considere o problema do empacotamento descrito abaixo e doravante denotado por BIN.

Instância: Um conjunto finito de n objetos com pesos w_1, w_2, \ldots, w_n inteiros positivos. Dois valores inteiros positivos W e k.

Questão: É possível colocar todos os objetos em k caixas cujo limite máximo de peso é W? Escreva em um pseudo-código de alto nível um algoritmo **não-determinístico polinomial** que resolve BIN. Ou seja, mostre que este problema está em \mathcal{NP} . Qual a complexidade do seu algoritmo?

- 17. Considere os problemas P_1 de \mathcal{P} e P_2 de \mathcal{NP} -completo. Indique para cada uma das afirmações abaixo se ela é **verdadeira**, **falsa** ou se **não se sabe**.
 - (a) Existe uma redução polinomial de P_1 para P_2 .
 - Existe uma redução polinomial de P_2 para P_1 .
 - Se existe um algoritmo determinístico polinomial para resolver P_2 então $\mathcal{P} = \mathcal{NP}$.
 - Se P_3 é um problema \mathcal{NP} -difícil, então P_3 pode ser reduzido polinomialmente a P_2 .
 - Se P_4 é um problema em \mathcal{P} , então P_4 não pode ser reduzido polinomialmente a P_1 .
 - Se P_4 é um problema em \mathcal{P} e P_4 pode ser reduzido polinomialmente a P_2 , então $\mathcal{P} = \mathcal{NP}$.
 - Pode-se afirmar que P_1 está em \mathcal{NP} -espaço.
 - Pode-se afirmar que P_2 está em \mathcal{P} -espaço.