Recall: New "ring" $\mathbb{Z}_n = \{[0]_n, [1]_n, [2]_n, ..., [n-1]_n \}$ or simply $\mathbb{Z}_n = \{0,1,2,...,n-1\}$

with 2 operations: +, X:

e.g $[3]_s + [4]_s = [3+4]_s = [7]_s = [2]_s$

 \mathcal{X} we write $\mathbb{Z}_n = \{0,1,2,...,n-1\}$ then 3+4=2 in \mathbb{Z}_5 .

Recall: $a \in \mathbb{Z}_n$ has inverse $b \in \mathbb{Z}_n$ if $a \cdot b = 1$ in \mathbb{Z}_n (i.e. $[a]_n \cdot [b]_n = [1]_n \Leftrightarrow ab = 1$ mod $n \Leftrightarrow n \mid ab - 1$)

<u>Proposition 2.15</u>: $a \in \mathbb{Z}_n$ is invertible \iff gcd (a.n) = 1 (i.e a and n are coprime)

Corollary 2.16: If n is prime (n=p) then all non-zero elements of \mathbb{Z}_p are invertible. Thus, $\mathbb{Z}_p = \{0,1,2,3,...,p-1\}$ is a field.

Note: $\frac{1+1+\cdots+1}{\sqrt{p}} = 0$ in \mathbb{Z}_p , so \mathbb{Z}_p has characteristic p

R. C. D. all have chandenistic zero

Remark 2.17: \mathbb{Z}_p is an example of a finite field (i.e. a field with finitely many elements).

Proof of 2.15: (\Rightarrow) suppose a is invent. \Rightarrow ab = 1 for some $b \in \mathbb{Z}_n$ $\Rightarrow ab = 1 \mod n \Rightarrow n \mid ab - 1 \Rightarrow ab - 1 = nc \ (c \in \mathbb{Z})$ $\Rightarrow ab - nc = 1 \Rightarrow by 1.9 \ \gcd(a,n) = 1.$ $(\Leftarrow) \gcd(a,n) = 1 \Rightarrow by 1.9 \ acc + ny = 1 \ (x,y \in \mathbb{Z}) \Rightarrow acc - 1 = ny$ $\Rightarrow n \mid acc - 1 \Rightarrow acc - 1 = 0 \ mod \ n \Rightarrow acc = 1 \ mod \ n$ $\Rightarrow [a]_n[x]_n = [1]_n \Rightarrow acc = 1 \ in \mathbb{Z}_n \Rightarrow x \ is \ inv. \ in \mathbb{Z}_n.$

Executible 2.18: N=83, $\Delta=13$, find $\begin{bmatrix} 13 \end{bmatrix}_{83}$. In eac.1.6 we found $\gcd(13,83)=1$ by doing backwards calculations, we get $32\cdot13-5\cdot83=1$. hence $32\cdot13=1$ mod 83, so $32\cdot13=1$ in \mathbb{Z}_{83} , so $\begin{bmatrix} 13 \end{bmatrix}_{83}^{-1}=\begin{bmatrix} 32 \end{bmatrix}_{83}$

Definition 2.20: Suppose a is invertible in \mathbb{Z}_n . Then the <u>multiplicative order</u> of a in \mathbb{Z}_n is $\min |K| > 1$ s.t. $a^k = 1$ in \mathbb{Z}_n (we write $O(\alpha) = k$).

Note: 0(1)=1 (as 1'=1);

to find order of a we simply calculate a, a^2 , a^3 ,... until we get $a^k = 1$.

Example 2.21: 0(2) = ? in $\mathbb{Z}_7 = \{0, 1, 2, ..., 6\}$ 2' = 2, $2^2 = 4$, $2^3 = 8 = 1$ (mod 7) so 0(2) = 33' = 3, $3^2 = 2$, $3^3 = 3^2 \cdot 3 = 2 \cdot 3 = 6$, $3^4 = 6 \cdot 3 = 4$, $3^5 = 4 \cdot 3 = 5$, $3^6 = 1$ so 0(3) = 6.

Lemma 2.22: Let $a \in \mathbb{Z}_n$ with O(a) = m. Let $x, y \in \mathbb{Z}$. Then $a^x = a^y$ in $\mathbb{Z}_n \iff x \equiv y \mod m$. In particular, the elements $a^0 = 1$, a^1 , a^2 , ..., a^{m-1} are all distinct in \mathbb{Z}_n .

Proof: Exerc.

Rest of section (primitive roots) in N/W, also in Number M. in Y3.

3 Mays

<u>Nefinition 3.1:</u> Let X, Y be sets. A <u>map</u> (or <u>mapping</u>, or <u>function</u>) $f: X \rightarrow Y$ is a rule which assigns to each $z \in X$ an element $f(z) \in Y$ (f(z) is the image of z).

The image of f is imf= f(X)= {f(x)|xeX} \(\) \(\) \(\)

Y = Y = X = X = X = X = X

Example 3.2: $X = \{1, 2, 3\}, Y = \{a, b, c\}$ $f: X \to Y$

images: f(1) = A, f(2) = b, f(3) = c

primages: $f^{-1}(a) = \{1, 2\}, f^{-1}(b) = \emptyset, f^{-1}(c) = \{3\}$ $im f = {a,c}$

<u>Definition 3.3:</u> $f: X \to Y$ is <u>injective</u> if distinct elements one mapped to distinct elements, i.e. if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$ or equivalently if $f(x_1) = f(x_2)$ then $x_1 = x_2$.