60009210033

CSE(Data Science)

Experiment 6

(Dynamic Programming)

Aim: Implementation of coin change problem using dynamic programming.

Theory:

Making Change problem is to find change for a given amount using a minimum number of coins from a set of denominations.

Explanation: If we are given a set of denominations $D = \{d0, d1, d2, ..., dn\}$ and if we want to change for some amount N, many combinations are possible. Suppose $\{d1, d2, d5, d8\}$, $\{d0, d2, d4\}$, $\{d0, d5, d7\}$ all feasible solutions.

The aim of making a change is to find a solution with a minimum number of coins / denominations. Clearly, this is an optimization problem.

This problem can also be solved by using a greedy algorithm. However, greedy does not ensure the minimum number of denominations.

Various denominations for amount 10

General assumption is that infinite coins are available for each denomination. We can select any denomination any number of times.

Mathematical Formulation:

$$C[i,j] = \begin{cases} 1 + C \ [1,j-d_1], & \text{, if } i = j \\ C[i-1,j], & \text{if } j < d_i \\ min \ (C \ [i-1,j], \ 1 + C \ [i,j-d_i]), & \text{otherwise} \end{cases}$$

Pseudocode:

```
Algorithm MAKE_A_CHANGE(d,N)
// d[1...n] = [d1,d2,...,dn] is array of n denominations
// C[1...n, 0...N] is n x N array to hold the solution of sub problems
// N is the problem size, i.e. amount for which change is required
for i \leftarrow 1 to n do
 C[i, 0] \leftarrow 0
end
for i \leftarrow 1 to n do
 for j \leftarrow 1 to N do
  if i = 1 \& \& j < d[i] then
        C[i, j] \leftarrow \infty
  else if i == 1 then
        C[i, j] \leftarrow 1 + C[1, j - d[1])
  else if j < d [i] then
        C[i, j] \leftarrow C[I-1, j]
  else
        C[i, j] \leftarrow \min (C[i-1, j], 1 + C[i, j-d[i])
  end
end
end
return C[n, N]
Algorithm TRACE_MAKE_A_CHANGE(C)
// When table C is filled up, i = n and j = N
Solution = { }
while (j > 0) do
 if (C[i, j] == C[i - 1, j] then
  i \leftarrow i - 1
 else
  j \leftarrow j - di
  Solution = Solution U {d[i] }
 end
```

Complexity:

end

Best Case Time Complexity: O(n)

Lab Assignment:

Write a C Program and consider the set of denominations, D=1,4,6. Achieve the sum of 8 and calculate the number of coins required and the actual denominations needed using dynamic programming.

CODE: #include <stdio.h>

```
#include mits.h>
#define N 3
#define SUM 8
int min(int a, int b) {
return a < b ? a : b;
void findCoins(int coins[], int dp[][SUM+1]) {
int i = N, j = SUM, count = 0;
while (j > 0) {
if (dp[i][j] == dp[i-1][j]) {
i--;
} else {
coins[count++] = i;
i = i;
int main() {
int denominations[N] = \{1, 4, 6\};
int dp[N+1][SUM+1], coins[SUM], count = 0;
for (int i = 0; i \le N; i++) {
for (int j = 0; j \le SUM; j++) {
if (j == 0) {
dp[i][j] = 0;
} else {
dp[i][j] = INT\_MAX;
for (int i = 1; i \le N; i++) {
for (int i = 1; i \le SUM; i++) {
if (j < denominations[i-1]) {
dp[i][j] = dp[i-1][j];
} else {
dp[i][j] = min(dp[i-1][j], 1 + dp[i][j-denominations[i-1]]);
}
printf("60009210033 Jhanvi Parekh\n");
printf("Number of coins required: %d\n", dp[N][SUM]);
findCoins(coins, dp);
printf("Actual denominations needed: ");
for (int i = 0; i < dp[N][SUM]; i++) {
printf("%d ", denominations[coins[i]-1]);
return 0;
```



```
main.c
1 #include <stdio.h>
 2 #include <limits.h>
 3 #define N 3
4 #define SUM 8
 5 - int min(int a, int b) {
6 return a < b ? a : b;
7 }
8 - void findCoins(int coins[], int dp[][SUM+1]) {
9 int i = N, j = SUM, count = 0;
10 - \text{ while } (j > 0)  {
11 - if (dp[i][j] == dp[i-1][j]) {
12 i--;
13 - } else {
14 coins[count++] = i;
15 j -= i;
16 }
17 }
18 }
19 - int main() {
20 int denominations[N] = {1, 4, 6};
21 int dp[N+1][SUM+1], coins[SUM], count = 0;
22 - \text{for (int } i = 0; i \le N; i++)  {
23 - \text{for (int } j = 0; j \le \text{SUM; } j++)  {
24 - if (j == 0) {
25 dp[i][j] = 0;
26 - } else {
27 dp[i][j] = INT_MAX;
28 }
29 }
30 }
31 - for (int i = 1; i \le N; i++) {
32 - \text{for (int } j = 1; j \le \text{SUM; } j++)  {
33 - if (j < denominations[i-1]) {
34 dp[i][j] = dp[i-1][j];
```

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

```
main.c
15 j -= i;
16 }
17 }
18 }
19 - int main() {
20 int denominations[N] = {1, 4, 6};
21 int dp[N+1][SUM+1], coins[SUM], count = 0;
22 - \text{for (int } i = 0; i \le N; i++)  {
23 - \text{for (int } j = 0; j \le SUM; j++)  {
24 - if (j == 0) {
25 dp[i][j] = 0;
26 - } else {
27 dp[i][j] = INT_MAX;
28 }
29 }
30 }
31 - for (int i = 1; i \le N; i++) {
32 - \text{for (int } j = 1; j \le \text{SUM; } j++)  {
33 - if (j < denominations[i-1]) {
34 dp[i][j] = dp[i-1][j];
35 - } else {
36 dp[i][j] = min(dp[i-1][j], 1 + dp[i][j-denominations[i-1]]);
37 }
38 }
39 }
40 printf("60009210033 Jhanvi Parekh\n");
41 printf("Number of coins required: %d\n", dp[N][SUM]);
42 findCoins(coins, dp);
43 printf("Actual denominations needed: ");
44 - \text{for (int } i = 0; i < dp[N][SUM]; i++) {
45 printf("%d ", denominations[coins[i]-1]);
46 }
47 return 0;
48 }
```


Output

/tmp/gJE9jFWs5r.o

60009210033 Jhanvi Parekh Number of coins required: 2

Actual denominations needed: 4 4

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING
(Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

									10	
	coin cuang		aul 113	ing D	P					
-8	coin change	e Probl	etti et				,			
			i i - di	1	ib i=	=1, (=	1			
	cci,j]=f	+ cc.	.;7		1605	di				
	cci,j) = f	intel	1-13	· j] ,		otherwi	se.			
	· ·	l l	+ 0[i, j-di			and the			
	where di	: 1	ue ith	dellon	ninatio	n,	- 8			
		- HII	ciae of	- elle	ruo pr					1
	070	. N] -	tulaz =	uon of	Tu	TODICO	= 1/1	: 32		1
	u	110010	n = n	umber	of de	nomina	tious	35		1
		+5	NEC	moun	t for	which +	ue chai	ige is	requ	ur
	PAE			E 121	- 1018	13 -	FILE	1 3		
Q1.	consider the	- set	of der	iomiua	tions	where	D = 1	14,6	> 100	يك
	the sum of	10)	T							
	(2,8	and	calculo	ite the	e www	be of	coir	ls .	
	required o				ite th	e uuu	be of	coir		
	required o				ite th	e uuu	be of	coir		
	required o				ite th	e uuu	be of	coir		
	required of idilj	0		ial d	ite the	iations	ber of	DP	-	
	required of idilj i=0 i=1, di=1	0 0	u actu	2 0 2	te the enough	nations 4	ber of using	OP 6	7 0 7	
	regulated of i = 0 $i = 0$ $i = 0$ $i = 1$, $di = 1$ $i = 2$, $di = 4$	0 0	u acti	2 0 2 2	usui	ations 4	ber of using	6 0 6	7 0	
	required of idilj i=0 i=1, di=1	0 0	u acti	2 0 2 2	usui	ations 4	ber of using	6 0 6	7 0 7	
	regulated of i = 0 $i = 0$ $i = 1$, $di = 1$ $i = 2$, $di = 4$ $i = 3$, $di = 6$	0 0 0	le acti	2 0 2 2 2	3 0 3 3	ations 4	ber of using	6 0 6	7 0 7 4	
	required of idilj i=0 i=1, di=1 i=2, di=4 i=3, di=6 c[111] =	0 0 0 0 0	le acti	2 2 2 2	3 0 3 3	ations 4	ber of using	6 0 6	7 0 7 4	
	required of i dilj i = 0 i = 1, di = 1 i = 2, di = 4 i = 3, di = 6 c [1] 1] = case 1 acc	0 0 0 0 0 i=1,	le acti	2 2 2 2 2	3 3 3 3	ations 4	ber of using	6 0 6	7 0 7 4	
	required of idilj i=0 i=1, di=1 i=2, di=4 i=3, di=6 c[1,1] = case 1 acc c[1,1] = 1+	0 0 0 0 0 i=1,	di =	2 2 2 2 1 j = j ,	the the enomination of 3 3 3 $i = = 1$	ations 4	ber of using	6 0 6	7 0 7 4	
	required of idilj i=0 i=1, di=1 i=2, di=4 i=3, di=6 c[1,1] = case 1 acc c[1,1] = 1+ = 1+	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	di = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 1 1 j = 1	the the enomination of 3 3 3 $i = = 1$	ations 4	ber of using	6 0 6	7 0 7 4	
	required of idilj i=0 i=1, di=1 i=2, di=4 i=3, di=6 C[1,1] = case 1 acc C[1,1] = 1 + = 1 +	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	di = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 1 1 j = 1 j	3 3 3 3 i==)	ations 4	ber of using	6 0 6	7 0 7 4	
	required of i = 0 i = 1, di = 1 i = 2, di = 4 i = 3, di = 6 $C[1,1] = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	0 0 0 0 0 0 i=1, epted c[1, -[1,0]	di = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 1 1 j = 1	3 0 3 3 3 i==)	ations 4	ber of using	6 0 6	7 0 7 4	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

$c[211] = i = 2$, $d_2 = 4$, $d_3 = 1$ $case 2$ accepted $c[211] = c[2-i]$ $= c[111] = 1$ $c[211] = i = 3$, $j = 1$, $d_1 = 6$ $case 2$; $c[i-1]$	3 to 1
case 2 accepted $c[2,1] = c[2-i,1]$ $= c[1,1] = 1$ $c[3,1] = i = 3, j = 1, di = 6$ $case 2 : c[i-1,j]$	3 /- 1
c[2,1] = c[2-c,1] $= c[1,1] = 1$ $c[3,1] = c = 3, j = 1, d = 6$ $case$	3 /- 1
c[3 1] = i = 3, j = 1, di = 6 $case$	
c[311] = i = 3, j = 1, d1 = 6 $case 2 : c[i-1,j]$	e + f
case 2 : c[i-1,j]	8 (1)
c [3-1,1]	
e [211]	
(E,1-0	
(8)	(3.5
c[1,2] = i = 1, di = 1, j = 2	
Case 1: 1+C[1,2-1]	
= 1+001111	
1+1	
2 (8,1-8	
(818)	
c[2,2]: i=2,j=2, di=4	
case 2 : c [i-11j]	- C
c[2-1/2]	
C[1,2]	
2	
Carl Ja	
c[3,2]: i=3, j=2, d3=6	
couse 2: c[i-1,j]	
c[2-1,2] 1 = ch 1 = 1 = 2	
(F) b - C[112] - 1 ([1-1])	
(EU-1127) +1 [11-2307	
(EDIESO #1, [HII])	
(0+1, 1)	russ

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING
(Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

Departm	nent of Computer Science and Engineering (Data Science)
	PAGE: DATE:
	o [1,3]: i=1, j=3, di=1
	1 1 1 1
	1 + c[12]
	1+2
	3
	100,1-3150
	c[2:3]: i=2, j=3, d2=4
	case a: c[i-1,j]
	c[2-1,3]
	c [113]
	3 0-1-10-10-1-3-00-10-1
	. [1-0,1] 3 +1 (1)
	$c[3,3] = c=3, j=3, d_3 = 6/11/3 = 1$
	case 2: c[i-1,j]
	c[3-1,3]
	C[2 3]
	3 1 - 20 2 - 212 - 2 2 5 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2
	e[1,4]: i=1; j=4, d,=1 [201-2]
	case 1: 1+ c[1,j-di]
	1+0[1,4-1]
	1+ c[1,3]
	4
	C[2,4]: $i=2,j=4,d2=4$
	case 3: min (c[i-1,j], 1+c[i,j-di])
	12 + 1 1 1 1 1 1 1 1 1 1
	(4,1+0)

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

	PAGE: DATE: / /
ct	3,47: 1=3, j=4, d3=6
	se a le cti-i, journale de la company
1 1 1	1100 F (C C 21 4) 1 , C 311 1 3 7 mins
	1
	1,5]: i=1, j=5, d1=1
ceu	el: 1+c[1],j-di]
	1+0 [1,5-1] (312)) ana
	1+0[114] (018) 11110
	1+4
	5
	1 · 10 1 F = 1 1 = 3 : (F,17)
c E	215] : i=2, j=5, d2=41] >+1
case	3 = min(c[2-1,5],[1+,c[211])
	min (c[1,5], 1+c[211])
	min (5 , 1+1)
	2
	H= (b), #= (1.5 =): [F(5)] 5
cat 3	15]: i=8, j=5[, d3=6]] om
cas	e 2 : c ((()=1,1)) ([[[]]) dins
	c [3-1,5] (8+1, 12) ana
	c[215]
	2
	0 1 2 0 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1
	167 ; i=1), j=6 [d, =1] 0) nim
casi	21: (16+CEP, -j-diffelo) nous
	1+ c [115] (141,0) min
	1+5
	6

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING
(Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

	PAGE: DATE: / /
e[118]: i=1 1j=8	, d, =1
case 1: 1+c [1,j-	ai 7
1+ c[1,8-	
17 0 [1] 7	
1+7	
8	4 - 1 h - 3 custs
c[218]: [-2, j=8]	, d2 = 4
cases: min (c[i-1,	i], [+c[i,j-ai])
min (c [1,8	7,1+0[214])
min (8, 1+	
2	at a street of the
	ch - j - t - j - 1
c[3,8]: i=3, j=8,	013=6
case 2: c[i-1,j]	
c [2,8]	In in militages but any sal
2	fr. 43 wa assista
from the last cell of to	ble
i=3, j=8	
check c[i,j] = c[i-	-1,33
as nothing is added in .	the previous solution go to the
previous step by reducin	g the value of i by 1
i = i-1	•
= 3-1	
i = 2	
Now , i= 2 , j=8	
check cli, j] = cli-	1,;]
as the condition is balle	
Denomination di = d2 = .	4 was added in the provious
solution	
Add di en solution set	4 suduce the problem size
di L (j-di)	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

	DATE
	4
ace set - 8	3 1 3 4 1
j=8, d2=4	3-4-4
j - j-d2	2+1
- ij=4	8
i=2, i=	= c[i-1,j] as the condition is to de = 4 was added in the previous
Now clinia	de = 4 was added in the previous de = 4 was added in the previous est 4 wednes the problem size j-di
Senomination	n. set 4 meduce the problem size j-di
1 -12 in CON	n . See
sol. set = f	4,43
j= 4, d2 > 4	
j = j-d2	100000000000000000000000000000000000000
= 4-4	F: 1-413 PF
= 0	in the final to the
At j=0 the a	Igorithm will stop and final denomina
cheasen are &	4,4].
	from the ract cell of table
	8 = 7
	CHECK CELLIT = CIC-1117
scientina as es -	Monera ut ai bobba & printon in
1 22 1 20	with the reducing the value
The state of the s	