	-
Section 8.4	
INVERSE TRIG FUNCTIONS	
1	
-	
	1
Arcsine	
Definition: The arcsine function, written as $\arcsin(x)$ or $\sin^{-1}x$ is the inverse of sine, restricted to the domain of $[-\frac{\pi}{2},\frac{\pi}{2}]$ Why this domain?	
wny tnis domain?	
	-
In other words, $rcsin(x) = ext{if and only if } \sin(heta) = ext{AND}$	-
2	
Example: Finding inverse sine values	
Determine the exact value of the following	
(1) $\sin^{-1}(\frac{1}{2}) =$	
$(2) \sin^{-1}(-\frac{\sqrt{2}}{2}) =$	
7 2*	

Example: Function composition	
Determine the exact value of the following	
$(1) \sin \left(\arcsin \left(\frac{1}{2} \right) \right) =$	
$(2)\sin^{-1}(\sin\left(\frac{\pi}{4}\right)) =$	
Example continued	
(3) $\sin(\sin^{-1}(\frac{4\pi}{3})) =$	
Notice that $\sin(\arcsin(x)) = x$ for	
$\arcsin(\sin(x)) = x$ for	
	\neg
Arccosine	
Definition: The arccosine function, written as $\arccos(x)$ or $\cos^{-1} x$ is the inverse of sine,	
Definition: The arccosine function, written as $\arccos(x)$ or $\cos^{-1}x$ is the inverse of sine, restricted to the domain of $[0,\pi]$	
Definition: The arccosine function, written as $\arccos(x)$ or $\cos^{-1} x$ is the inverse of sine,	
Definition: The arccosine function, written as $\arccos(x)$ or $\cos^{-1}x$ is the inverse of sine, restricted to the domain of $[0,\pi]$	
Definition: The arccosine function, written as $\arccos(x)$ or $\cos^{-1}x$ is the inverse of sine, restricted to the domain of $[0,\pi]$ Why this domain?	
Definition: The arccosine function, written as $\arccos(x)$ or $\cos^{-1}x$ is the inverse of sine, restricted to the domain of $[0,\pi]$	
Definition: The arccosine function, written as $\arccos(x)$ or $\cos^{-1}x$ is the inverse of sine, restricted to the domain of $[0,\pi]$ Why this domain?	

Example: Finding inverse sine values Determine the exact value of the following	
(1) $\cos^{-1}(\frac{1}{2}) =$	
$(2)\arccos\left(-\frac{\sqrt{2}}{2}\right) =$	
Example: Function composition	
Determine the exact value of the following	
(1) $\cos\left(\arccos\left(\frac{1}{2}\right)\right) =$	
. (7)	-
(2) $\cos^{-1}(\cos\left(\frac{\pi}{3}\right)) =$	
Example continued	
(3) $\cos^{-1}(\cos(\frac{7\pi}{6})) =$	
Notice that $\cos(\arccos(x)) = x$ for	
arccos(cos(r)) = r for	
$\arccos(\cos(x)) = x$ for	

Arctangent Definition: The arctangent function, written as $\arctan(x)$ or $\tan^{-1}x$ is the inverse of tangent, restricted to the domain of $(-\frac{\pi}{2}, \frac{\pi}{2})$ Why this domain?

In other words, $\arctan(x) = \inf$ and only if $\tan(\theta) = AND$

Example: Other inverses

Determine the exact value of the following (1) $\arctan(-\sqrt{3}) =$

(2) arccsc(-2) =

14

Example: More function compositions

Determine the exact value of the following (1) $\sin\left(\arccos\left(-\frac{1}{2}\right)\right) =$

(2) $\operatorname{arccot}\left(\tan\left(-\frac{\pi}{3}\right)\right) =$

	Example: Trig Equations			
	Find the solutions of the below equations on the interval $[0,2\pi]$ (1) $\sin(x)=-\frac{1}{\sqrt{3}}\cos(x)$			
	(2) $\arctan(x) = \frac{\pi}{4}$			
16		_		
	Example: Application			
	The rim of a standard basketball goal is 10 feet high. A point guards eyes are 6 feet above the floor. She stands 25 feet from a point directly below the front of the rim. At what angle t (measured in degrees) must she incline her eyes to look directly at the front of the rim?	,		
17				