USA ANALYSIS

Obesity Trends Vs. The Number of Fast Food Restaurants

2014-2019

OBJECTIVES

- Our team mission aims to explore the *potential* association between the density of fast food restaurants and the prevalence of obesity in the USA.
- This analysis will use publicly available data sets (Kaggle and CDC).
- Lastly, the mortality rates of obesity relative to other causes of mortality for USA citizens.

Q DATA ANALYSIS

- U.S OBESITY RATES
 BETWEEN 2014-2019
- NUMBER OF FAST FOOD RESTAURANTS IN THE U.S BETWEEN 2014–2019

- 3 U.S GDP BETWEEN 2014-2019
- U.S OBESITY
 MORTALITY RATE
 DURING 2014–2019

TECHNICAL SKILLS

JUPYTER NOTEBOOK

SQLITE

JAVASCRIPT

PYTHON FLASK API

OBESITY SNAPSHOT

- BMI (Body Mass Index) of 30 or higher.
- Multitude of health risks,
- Prevalence is annually increasing!

DATA PIPELINE

OBESITY VISUALISATION ANALYSIS

DATA PREP

- Research data source
- Conduct CSV data cleaning.
- Test data through Juypter Notebook.

VISUALISATION

- Identify focus questions.
- Plan visualisations to use.
- Formatting is correct.

QUERIES

- Create Flask API's
- Querying merged database
- Creation of multitude of charts.

DASHBOARD

- Design Dashboard through visualisations.
- Create HTML & CSS

DATA CLEANING

```
[2]: # Store filepath in a variable
     file_one = Path("Resources/BRFSS__Table_of_Overweight_and_Obesity__BMI__20231102.csv")
[3]: # Read our Data file with the pandas library
     # Not every CSV requires an encoding, but be aware this can come up
     file_one_df = pd.read_csv(file_one, encoding="ISO-8859-1")
[4]: # Show just the header
     file_one_df.head()
        Year Locationabbr Locationdesc
                                                                            Response Break_Out Break_Out_Category Sam
                                                                Question
                                         Overweight
                                                              classification
                                                                          Underweight
                                              and
     0 2020
                                                                           (BMI 12.0-
                                                                                          45-54
                                                                                                          Age Group
                                                                 by Body
                                            Obesity Categories
                                                               Mass Index
                                             (BMI)
                                                                  (BMI)..
                                        Overweight
                                                             classification
                                              and
     1 2019
                                Alabama
                                                                 by Body
                                                                           (BMI 12.0-
                                                                                         35-44
                                                                                                          Age Group
                                            Obesity Categories
                                                               Mass Index
                                                                  (BMI)..
                                                                   Weight
                                         Overweight
                                                              classification
                                              and
     2 2019
                                                                                                       Race/Ethnicity
                                                                 by Body
                                                                           (BMI 12.0-
                                                                                           non-
                                            Obesity Categories
                                                               Mass Index
                                                                                        Hispanic
                                             (BMI)
                                                                  (BMI)..
                                         Overweight
                                                              classification Underweight
                                              and
     3 2019
                                                                 by Body
                                                                           (BMI 12.0-
                                                                                                       Race/Ethnicity
                                                                                          non-
                                            Obesity Categories
                                                               Mass Index
                                                                                       Hispanic
```

```
# Export file as a CSV, without the Pandas index, but with the header
cleaned_columns_df.to_csv("clean_data/BRFSS__Table_of_Overweight_and_Obesity__BMI__20231102_cleaned.csv

# Filter Response to "Obese" only to filter out the Data_value with entries
cleaned_columns_df['Response'] = cleaned_columns_df['Response'].astype(str)
print(cleaned_columns_df.dtypes)
cleaned_columns_df = cleaned_columns_df.loc[(cleaned_columns_df["Response"].str.contains("Obese")) | (c
print(cleaned_columns_df.count())
cleaned_columns_df

unique_years = cleaned_columns_df['Year'].unique()
count = len(unique_years)
print(f"Number of unique_years: {count}")
```

4	Α	В	С	D	Е	F	G	Н		J
1	address	city	country	keys	latitude	longitude	name	postalCod	province	websites
2	324 Main 9	Massena	US	us/ny/ma	44.9213	-74.8902	McDonald	13662	NY	http://mcd
3	530 Clinto	Washingto	US	us/oh/wa	39.53255	-83.4453	Wendy's	43160	ОН	http://ww
4	408 Marke	Maysville	US	us/ky/ma	38.62736	-83.7914	Frisch's Bi	41056	KY	http://ww
5	6098 State	Massena	US	us/ny/ma	44.95008	-74.8455	McDonald	13662	NY	http://mcd
6	139 Colum	Athens	US	us/oh/ath	39.35155	-82.0973	OMG! Rot	45701	ОН	http://ww
7	4182 Tony	Hamilton	US	us/oh/har	39.4176	-84.4764	Domino's	45011	ОН	https://wv
8	590 S Mair	Englewoo	US	us/oh/eng	39.86969	-84.2936	Domino's	45322	ОН	https://wv
9	401 N Jenr	Saluda	US	us/sc/salu	34.00598	-81.7704	McDonald	29138	SC	http://ww
10	205 W Chւ	Batesburg	US	us/sc/bate	33.91335	-81.5333	Wendy's	29006	SC	http://ww

```
restaurants_count_df = restaurants_count_df.rename(columns={'State': 'state_code'})
restaurants_count_df.head()

state_code counts

O CA 1201

1 TX 811

2 FL 621

3 OH 522

4 GA 420
```

SQLITE DATA RETRIVING & MERGING

```
# Python SQL toolkit and Object Relational Mapper
import sqlalchemy
from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine, inspect
import sqlite3
import pandas as pd

# Create engine using the sqlite database file
engine = create_engine("sqlite:///./database/project3_group6.sqlite")

# Reflect Database into ORM classes
Base = automap_base()
Base.prepare(autoload_with=engine)
Base.classes.keys()

['death_rates', 'fast_food', 'us_states', 'gdp_state', 'overweight_obesity']
```

	<pre>merged_df_with_avg_obesity_2019 = pd.merge(final_merged_df, overall_average_ merged_df_with_avg_obesity_2019</pre>										
	ID	state_code	counts	state_name	latitude	longitude	data_value				
0	1	CA	1201	California	37.638640	-121.000000	30.958333				
1	2	TX	811	Texas	31.827240	-99.426770	34.583333				
2	3	FL	621	Florida	28.932040	-81.928961	31.441667				
3	4	ОН	522	Ohio	40.060210	-82.404260	34.141667				
4	5	GA	420	Georgia	32.839681	-83.627580	33.091667				
5	6	IL	405	Illinois	40.485010	-88.997710	32.275000				

Round columns to the specified number of decimals
<pre>location_gdp_df['amount_2014'] = location_gdp_df['amount_2014'].round(decimals)</pre>
<pre>location_gdp_df['amount_2015'] = location_gdp_df['amount_2015'].round(decimals)</pre>
<pre>location_gdp_df['amount_2016'] = location_gdp_df['amount_2016'].round(decimals)</pre>
<pre>location_gdp_df['amount_2017'] = location_gdp_df['amount_2017'].round(decimals)</pre>
<pre>location_gdp_df['amount_2018'] = location_gdp_df['amount_2018'].round(decimals)</pre>
<pre>location_gdp_df['amount_2019'] = location_gdp_df['amount_2019'].round(decimals)</pre>
location_gdp_df

	ID	state_name	description	amount_2014	amount_2015	amount_2016	amount_2017	amount_2018	amount_2019	state_code	latitude	longitude
0	2	Alabama	GDP (Billions of Dollars)	189.89	191.34	194.28	196.97	200.37	203.43	AL	32.840571	-86.631861
1	3	Alaska	GDP (Billions of Dollars)	54.19	54.74	54.25	54.28	53.33	53.43	AK	64.845080	-147.722059
2	4	Arizona	GDP (Billions of Dollars)	276.95	282.58	291.28	303.61	314.83	325.40	AZ	34.865970	-111.763811
3	5	Arkansas	GDP (Billions of Dollars)	111.73	112.35	112.80	113.85	115.89	117.13	AR	34.748650	-92.274491
4	6	California	GDP (Billions of Dollars)	2256.05	2357.45	2427.89	2538.20	2644.06	2729.23	CA	37.638640	-121.000000
5	7	Colorado	GDP (Billions of Dollars)	298.66	312.41	318.95	329.91	342.73	358.44	со	38.843841	-106.133611

VISUALISATIONS USING HTML AND JAVASCRIPT

```
visualisation > JS script_for_restaurant_barchart.js > ...
     // Function to create a bar chart using D3.js
     function createBarChart(data) {
          const chartContainer = d3.select("#chartContainer");
         chartContainer
              .selectAll(".bar")
              .data(data)
              .enter()
              .append("div")
              .attr("class", "bar")
              .style("height", d => d.counts + "px")
              .attr("title", d => `${d.state name}: ${d.counts} counts`)
              .text(d => d.counts);
     // Use d3.json to load the data from the JSON file
      d3.json("savedata_records.json").then(data => {
          // Call the function with the loaded data
          createBarChart(data);
```

```
<!DOCTYPE html>
     <html lang="en">
     <head>
         <meta charset="UTF-8">
         <meta name="viewport" content="width=device-width, initial-scale=1.0">
         <title>Fastfood Restaurant Counts Horizontal Bar Chart</title>
         <style>
             body {
                 font-family: Arial, sans-serif;
11
             .chart-container {
                 width: 80%;
12
13
                 margin: 50px auto;
14
             .bar-container {
                 display: flex;
                 align-items: center;
                 margin-bottom: 5px;
```


GDP VS. OBESITY RATES

Comparison of GDP to Obesity Rate per State

DEATH RATES RELATED to OBESITY

Death Rates related to Obesity

CONCLUSION

Limitations

- In the analysis, we only covered the United States. If we covered other countries, we would be able to investigate other factors that affect obesity rates worldwide i.e physical activity.
- Another limitation was that our number of fast-food restaurants, we were only able to find data for 2019.

Conclusions

- Our analysis concluded that there was no strong correlation between GDP and obesity.
- There was also no direct link between the number of fast-food restaurants and obesity and overweight.
- We did find that there was a higher rate of obesity and overweight rate in the eastern state of the USA rate.

DEMONSTRATION

THANK YOU! ANY QUESTION?

