

Beijing-Dublin International College

	_
SEMESTER I FINAL EXAMINATION - 2016/2017	

MODULE CODE: BDIC2002J
MODULE TITLE: Discrete Mathematics

Time Allowed: 95 minutes

Instructions for Candidates

The distribution of marks in the right margin shown as a percentage gives an approximate indication of the relative importance of each part of the question.

BJUT Student ID: UCD Student ID:
I have read and clearly understand the Examination Rules of both Beijing University of
Technology and University College Dublin. I am aware of the Punishment for Violating the
Rules of Beijing University of Technology and/or University College Dublin. I hereby
promise to abide by the relevant rules and regulations by not giving or receiving any help
during the exam. If caught violating the rules, I accept the punishment thereof.
Honesty Pledge: (Signature)

Instructions for Invigilators

Non-programmable calculators are permitted.

No rough-work paper is to be provided for candidates.

Answer ALL seven questions.

The Full Score of All Items of the Exam Paper

Item	1	2	3	4	5	6	7	Full
Full score	14	14	14	16	14	14	14	100

Obtained score

Question 1: Let A,B,C be three sets. Prove the following identity

$$(A-B)\cup (B-C)\cup (C-A)=(A\cup B\cup C)-(A\cap B\cap C)$$

Obtained score

Question 2: Prove the following tautological implication

$$\forall x (A(x) \leftrightarrow B(x)) \Rightarrow \forall x A(x) \leftrightarrow \forall x B(x)$$

Obtained score

Question 3: Compute the Principle Disjunctive Normal Form of $(P \land Q) \leftrightarrow R$.

Obtained score

Question 4: Let (A, \preceq) be a poset, with $A = \{2, 3, 4, 6, 8, 9, 12, 16, 18\}$.

Let \leq be the division relation (i.e. $a \leq b$ iff b = ma for some integer m).

- (1) Draw the Hasse diagram of the poset (A, \preceq)
- (2) List the greatest element and the least element of the poset (A, \preceq) (if it exists)
- (3) List all maximal elements and all minimal elements of the poset (A, \preceq)

Obtained score

Question 5: Denote $G:=\{(a,b)|a\in\mathbb{R},b\in\mathbb{R},a\neq 0\}$. The operator * is defined by: (a,b)*(c,d)=(ac,ad+b). Prove that (G,*) is a group.

Obtained score

Question 6: Let $G=\{1,-1,\frac{1+\sqrt{3}i}{2},\frac{-1+\sqrt{3}i}{2},\frac{1-\sqrt{3}i}{2},\frac{-1-\sqrt{3}i}{2}\}$ be a collection of six complex numbers, and let \times be the complex product operator. Prove that (G,\times) is a cyclic group.

Obtained score

Question 7:

- (1) Write down the Kuratowski theorem.
- (2) Using this theorem, show that the following graph is a non-planar graph.

