Aprendizado de Máquina: RNAs Profundas (Deep Learning)

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Redes convolucionais

Completamente conectada:

 Parcialmente conectada:

Localmente conectada:

Redes convolucionais (2)

- Até o momento estudamos redes MLP completamente conectadas
 - Os neurônios de cada camada se comunicam com todos os neurônios das camadas vizinhas
- Redes Convolucionais (CNNs) são redes MLP parcialmente conectadas (localmente conectadas)
 - Estão revolucionando a área de Visão Computacional

Redes convolucionais (3)

Exemplo: convolução
 1D

$$v_1 = w_1x_1 + w_2x_2 + b_1$$
; $h_1 = f(v_1)$
 $v_2 = w_1x_2 + w_2x_3 + b_1$; $h_2 = f(v_2)$
 $v_3 = w_1x_3 + w_2x_4 + b_1$; $h_3 = f(v_3)$
 $v_4 = w_3h_1 + w_4h_2 + b_2$; $y_1 = f(v_4)$
 $v_5 = w_3h_1 + w_4h_2 + b_2$; $y_2 = f(v_5)$

Redes convolucionais (4)

- Vantagens da camada convolucional em relação a totalmente conectada:
 - Menos pesos (localmente conectada)
 - Repetição (compartilhamento de pesos)
 - Resultado: treinamento mais eficiente
- n₁, n₂ e n₃ podem ser pensados como clones que analisam diferentes partes da entrada
 - Um objeto pode estar em qualquer parte da imagem

Redes convolucionais (5)

Convolução 2D:

Redes convolucionais (6)

 Camadas convolucionais 2D preservam a estrutura bidimensional da entrada (ideal para imagens)

 Importante: a camada de exemplo usa um kernel 2x2 (tamanho do quadrado)

Redes convolucionais (7)

- A camada de exemplo usa apenas um filtro: faz apenas uma operação de convolução
- Camadas reais usam vários filtros. Exemplo com com 4 filtros:

• Obs: não há pesos repetidos em filtros diferentes

Redes convolucionais (8)

- Exemplos de tarefas dos filtros por camada (hierarquias de conceitos das CNNs):
 - bordas
 - formas simples
 - (...)
 - olhos, naris, boca
 - faces

Redes convolucionais (9)

- Os kernels em cada filtro
 - Simplificam a entrada
 - Extraem características
 - Exemplo: kernel 3x3

Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

Redes convolucionais (10)

- O parâmetro stride (passo) determina o pulo do kernel. No primeiro exemplo foi usado stride 1
- Exemplo: stride 2 (com kernel 2x2)

Redes convolucionais (11)

- Padding: consiste em aumentar a borda
- Faz a camada focar mais nas bordas
- Útil para preservar o tamanho da entrada na saída da camada
 - Exemplo: zero padding (kernel 2x2 e stride 1)
- 000()() X_3 X_1 X_2 $X_{\underline{4}}$ \mathbf{O} X_{5} X_6 X_7 X_8 0 0 X₁₂ X_9 X₁₀ X₁₁ \mathbf{O} X₁₆ X₁₄ X₁₃ X₁₅ 0 0 0 ()()0

Redes convolucionais (12)

- Pooling: reduz o volume de dados que uma camada seguinte precisa processar
 - Combate a maldição da dimensionalidade
 - Dá uma ideia aproximada da posição de uma forma dentro da imagem
 - Exemplo: max-pooling 2x2 comstride 2

Redes convolucionais (13)

- No exemplo, o padrão de interesse do filtro está na segunda linha, na segunda coluna
 - Por isso, o neurônio (2, 2) é o que reage com mais intensidade
 - Contudo, dentro do filtro, todos os neurônios da vizinhança reagem fortemente ao padrão de interesse

Avançado: redes famosas

Avançado: AlexNet (classificação)

Avançado: redes famosas (2)

Avançado: GoogLenet ou Inception (classificação)

- Repete a camada de saída 3 vezes para lidar com o gradiente que desaparece (roxo)
- Usa vários tamanhos de kernel e concatena o resultado (vermelho)

Redes convolucionais (16)

- Avançado: outras
 - Highway Network (classicação)
 - DenseNet (classicação)
 - Google Deep Dream (gerativa)
 - YOLO (identificação de objetos)

Redes recorrentes

Rede feedforward:
 não existem loops
 de conexões

 Rede recorrentes: loops conferem uma forma de memória à rede

Redes recorrentes (2)

- 1→1: redes MLP sem recorrência
- n→1: rede vista no exemplo
- 1→n: a seguir
- m→n: combina as duas anteriores

Redes recorrentes (3)

- Estão revolucionando as áreas de:
 - Séries temporais
 - Processamento de sinais
 - Processamento de língua natural
 - Entre outras
- Exemplo: análise na bolsa de valores das três últimas cotações (x₁, x₂ e x₃) de uma ação para prever o preço (x₄)

Redes recorrentes (4)

Representação compacta:

 Representação detalhada:

Redes recorrentes (5)

A rede recorrente pode ser pensada como: feedforward
 + skip conections + compartilhamento de pesos

Redes recorrentes (6)

 Avançado: como fica uma rede com dois neurônios ocultos e memória de duas posições?

Redes recorrentes (7)

Exemplo de uma rede 1-n

Redes recorrentes (8)

- Redes reais costumam ter vários neurônios ocultos e podem ter várias entradas e saídas
- Além disso, redes podem ter saída de tamanho variável
 - Nelas, um neurônio de saída especial "fim de sequência" é usado
 - Quando a rede deseja terminar a saída, ativa esse neurônio

Redes recorrentes (9)

- Redes recorrentes sofrem do problema da dissipação do gradiente. Quanto maior a memória, mais grave o problema
- Redes com portas surgiram para resolver esse problema
 - São mais inspiradas em circuitos digitais do que no cérebro
 - LSTM Long Short Term Memory (a seguir): uma das mais populares

Redes recorrentes (10)

- σ: ativação sigmoide logística
- tanh: tangente hiperbólica
- +: soma
- x: produto

Redes recorrentes (11)

Redes recorrentes (12)

- Exemplo com tradução neural para criar intuição: "Mary is very smart"
 - Entrada "Mary" (embedding): neurônio recorrente memoriza "gênero feminino" e continua a tradução normalmente
 - Entrada "smart": memória ajuda a escolher tradução adequada
 - "esperta" (correta)
 - "esperto" (incorreto)

Redes recorrentes (13)

- No exemplo intuitivo:
 - Um valor positivo na memória pode indicar "feminino"
 - Um valor negativo pode indicar "masculino"
 - Um valor próximo a zero pode indicar "gênero neutro" / "desconhecido"

Redes recorrentes (14)

- Porta do esquecimento usa multiplicação: valor 0 (esquecer tudo) ou 1 (não esquecer nada) ou intermediário (esquecer parcialmente)
- Porta da entrada usa soma: 0 é para não armazenar nada; outros valores permitem armazenar informações.
- Porta de saída: repassa a análise para a próxima camada