Analiza teksta za detekciju lažnih vesti

Tamara Džambić, SV43/2020 Softversko inženjerstvo i informacione tehnologije

UVOD

U eri digitalnih medija, širenje lažnih vesti predstavlja ozbiljan izazov sa štetnim posledicama po društvo. Razvoj efikasnih sistema za detekciju lažnih vesti postaje neophodan radi suzbijanja ovog problema i očuvanja integriteta informacija.

PODACI

Koristila sam skup podataka sa Kaggle platforme koji se sastoji od lažnih i istinitih vesti. Skup je balansiran i sadrži informacije o naslovu, tekstu, temi i datumu vesti. Za analizu koristimo samo naslov i tekst.

Pre analize, tekstualni podaci su podvrgnuti nizu pretprocesiranja radi pripreme za modeliranje. Ovi koraci uključuju tokenizaciju, uklanjanje interpunkcijskih znakova, normalizaciju teksta pretvaranjem svih karaktera u mala slova, uklanjanje stop-words i lematizaciju. Nakon ovih koraka, tekst je vektorizovan pomoću TF-IDF (Term Frequency-Inverse Document Frequency) tehnike, što je omogućilo reprezentaciju teksta vektorima pogodnim za dalju analizu i klasifikaciju.

Skup sam delila u odnosu 80/20 za trening i testiranje, što je standardna praksa koja omogućava pouzdanu evaluaciju performansi modela.

METODOLOGIJA

Za detekciju lažnih vesti koristila sam konvolutivnu neuronsku mrežu (CNN). Model ima ulazni sloj za tekstualne podatke, Conv1D slojeve sa ReLU aktivacijom, MaxPooling1D slojeve za smanjenje dimenzionalnosti, Dropout slojeve za regularizaciju, i potpuno povezane slojeve sa ReLU aktivacijom. Izlazni sloj koristi sigmoid aktivaciju za binarnu klasifikaciju. Konvolutivna neuronska mreža (CNN) je izabrana zbog svoje sposobnosti da efikasno radi sa tekstualnim podacima i izdvaja relevantne karakteristike. Model sam obučavala na trening skupu podataka i evaluirala na testnom skupu.

REZULTATI

Nakon obučavanja na uravnoteženom skupu podataka koji sadrže naslove i tekstove vesti, model je postigao visoku preciznost od 0.9964 i F1 meru od 0.9942.

Tokom 10 epoha, tačnost modela na trening skupu postepeno je rasla, dostižući vrednost od 99.83% u poslednjoj epohi. Slično, na validacionom skupu, tačnost modela bila je visoka, sa vrednostima od 99.39% u poslednjoj epohi. Ovi rezultati ukazuju na efikasnost modela u klasifikaciji lažnih i istinitih vesti.

Gubitak modela na trening i validacionom skupu bio je nizak, što dodatno potvrđuje dobru generalizaciju modela. Grafikoni ispod prikazuju promene tačnosti i gubitka tokom treniranja modela, što može pružiti dodatni uvid u njegovo ponašanje tokom obučavanja.

ZAKLJUČAK

Primećujem da postoji prostor za poboljšanje mog modela. Promenom parametara modela, kao što su broj slojeva ili veličina filtera u konvolutivnim slojevima, može se postići bolja performansa u detekciji lažnih vesti. Takođe, eksperimentisanje sa drugačijim pristupom pretprocesiranja teksta, kao što su dodatne tehnike normalizacije ili korišćenje drugačijih stop-words lista, može doprineti poboljšanju rezultata.