## Schema Design

schema, n. — a representation of a plan or theory in the form of an outline or model.

## Schemas

- Table Schema (i.e. relation schema)
  - What is the table called?
  - What columns does it have? What are their data types?
- Database Schema
  - What tables are in the database?
  - How are tables related?

## Data Modeling

- How do we represent real world relationships and properties in our program?
  - ...in a way that makes writing the program easy
  - ...while remaining flexible for future changes
  - ...oh, it also has to be fast (enough).

#### Analysis

- What does my program need to output?
- What data will I need to produce that output?

### Conceptual Design

Conceptual entities and their relationships

### Logical Design

- In a SQL database: What are my tables, attributes, and relationships?
- In a program: What are my functions and data structures?

### Physical Design

What we'll focus on today

### Analysis

- What does my program need to output?
- What data will I need to produce that output?

### Conceptual Design

- Conceptual entities and their relationships
- Logical Design
  - In a SQL database: What are my tables, attributes, and relationships?
  - In a program: What are my functions and data structures?

### Physical Design

#### Analysis

- What does my program need to output?
- What data will I need to produce that output?

### Conceptual Design

Conceptual entities and their relationships

### Logical Design

- In a SQL database: What are my tables, attributes, and relationships?
- In a program: What are my functions and data structures?

### Physical Design

## Example: A Journal Analysis

- I want a program to keep my journal in.
- I want to be able to enter the text of each journal entry.
- I want to be able to see journal entries chronologically.

#### Analysis

- What does my program need to output?
- What data will I need to produce that output?

#### Conceptual Design

Conceptual entities and their relationships

### Logical Design

- In a SQL database: What are my tables, attributes, and relationships?
- In a program: What are my functions and data structures?

### Physical Design

## Entity Relationship Diagram (ERD) Conceptual Design



#### Analysis

- What does my program need to output?
- What data will I need to produce that output?

### Conceptual Design

- Conceptual entities and their relationships
- Logical Design
  - In a SQL database: What are my tables, attributes, and relationships?
  - In a program: What are my functions and data structures?

### Physical Design

## Entity Relationship Diagram (ERD) Logical Design

| entries      |                  |  |
|--------------|------------------|--|
| id           | int, primary key |  |
| date_created | date             |  |
| text         | text             |  |

## All done!

- Oh wait, I forgot a couple of things
  - I want to be able to have multiple journals
  - I want to be able to #tag entries and find all entries with a particular #tag
- Take 2...

## Example: A Journal Conceptual Design, Take 2



# Example: A Journal Logical Design: Take 2



## But Wait!! Normalization

- Organization that minimizes data redundancy and improves data integrity
- How do I change the name of "happy times" to "sadness"?

| select * from entries; |              |                    |                    |
|------------------------|--------------|--------------------|--------------------|
| id                     | date_created | text               | journal_title      |
| 0                      | 2016-04-01   | l am happy         | happy times        |
|                        | 2016-04-02   | I am very happy    | happy times        |
| 2                      | 2016-04-03   | Despair fills me   | happy times        |
| 3                      | 2016-04-03   | Sadness is my life | an anatomy of pain |

## Conceptual Design, Take 3



## Logical Design, Take 3

- Eliminate repeating groups in individual tables
- Create a separate table for each set of related data
- Identify each set of related data with a primary key



## But what about tags?!?



## Conceptual Design, Take 4



## Logical Design, Take 4



## Has vs. Belongs To

If rows in table A "belong to" rows in table B, that means A contains a foreign key for B

 If rows in table A "have" one or many rows in table B, that means table B is responsible for keeping track of the foreign key

Think: the "owner" has less to worry about

## Normalized Databases

- Focus on optimal storage often at odds with retrieval speed due to complex queries using complicated joins
- Work best when the application is write-intensive and write-load is more than read-load
  - Tables are usually smaller as data is divided vertically (fast reads on single tables)
  - Updates and Inserts are fast because there are no duplicates to update
  - Data is not duplicated so there is less of a need for process intensive group by or distinct queries
- Normalized tables mean join tables, which mean read operations on multiple tables suffer (indexing strategies don't work as well with joins)

## Denormalized

- Works best when the application is read-intensive
  - The data is present in the same table (no need for joins)
  - A single table with all required data allows for efficient index usage
- Data is duplicated which means that updates and inserts become complex and costly

### What Do I Do?!

- Real world applications will most likely have both read-loads and write-loads
- Utilize both approaches depending on the situation!
- Befriend your local DBA

## Steps for Developing your ERD

- 1. Identify Entities
- 2. Define Relationships
- 3. Draw Rough-Draft ERD
- 4. Fill in Cardinality/Modality (arrows with relationship type)
- 5. Define Primary Keys
- 6. Label Foreign Keys
- 7. Identify and Map Attributes

## Design one!

- Twitter
- Gmail
- Facebook
- Instagram
- Wordpress
- Wikipedia
- AirBnB

- GitHub
- Youtube
- Spotify
- Slack
- Google (search)