

AB Testing for Process Versions with Contextual Multi-armed Bandit Algorithms

Suhrid Satyal (presenter),

Ingo Weber, Hye-young Paik, Claudio Di Ciccio, Jan Mendling June 2018

Outline

- Motivation
- AB Testing, AB-BPM approach, and their limitations
- Requirements
- **Proposed Solution**
 - **System Architecture**
 - ProcessBandit Algorithm
 - Reward Design
- **Evaluation**
- Conclusion

Motivation

Business Process

- Chain of Events, Activities, and Decisions
- Expressed as Process Models
- Instantiated and Executed by a Process Engine

Improvement Approach

AB Testing

- Randomized Experiment in production A vs B vs ...
- Used to test micro-changes in web applications
- Test fairly, fail fast
- What if the test is risky?

Example of risk management

Thompson Sampling in Clinical trials

Icons made by Freepik from www.flaticon.com

AB-BPM Architecture

Source: Satyal et. al. (2017)

Routing with multi-armed bandits

- Contextual multi-armed bandit
- Based on LinUCB (Li et. al. 2010)
- Arm = Process Version

- Phase 1 (P1) Experimentation (or exploration)
 - Instantiate some process versions at random (decay fxn + LinUCB approach)
 - Observe rewards only for processes instantiated during this phase
- Phase 2 (P2) Exploitation
 - Do not observe rewards

LTAvgR Algorithm and Rewards

- Designed for long running business processes
- One performance indicator (e.g. duration)

Source: Satyal et. al. (2017)

LTAvgR Algorithm and Rewards

- Designed for long running business processes
- One performance indicator (e.g. duration)

What about complex scenarios?

Source: Satyal et. al. (2017)

General BPM Scenarios

- Performance is determined by multiple Process Performance Indicators (PPIs) e.g. profit margin & user satisfaction
- Individual PPIs are available at different times

- Most process instances do not provide all PPIs e.g. user satisfaction
- Performance is affected by factors external to the process e.g. Weather Conditions (van der Aalst, et. al. 2007)

Instance Router Architecture

Instance Router Architecture

Identifies ext. contextual factors Asynchronous Task Queue Context Module schedule instantiate Tasks Rewards Controller Module Module Manages Rewards Routing Algorithm Chooses process version

ProcessBandit Algorithm

Fetch reward asynchronously

Apply partial rewards

• Limit no. of incomplete rewards

Average Reward

Complete
Reward

(moving average)

• 3 Phased approach

P1A Collect external contextual data, use only request information

P1B Reset algorithm & use contextual data (if necessary)

P2 Send requests to version with best performance

Reward Design

 $P_i = (pr. margin, user sat.)$

 P_{ideal} = (best pr. margin, best user sat.)

 P_{ref} = (assumed pr. margin, assumed user sat.)

Distance based – implicit, too fine grained What does dist. P1 vs dist. P2 indicate?

Classification based – Explicit, coarse grained e.g. C1 is x times better than C2

Experiment Setup

- Regret
 - reward from best version observed reward
 - Zero-regret strategy
 avg. regret per request tends to 0

 Best version can be found only if all PPIs, request context, and external contextual factors are available

	Contextual Factor $f=1$				Contextual Factor $f=2$			
	Profit Margin		User Satisfaction		Profit Margin		User Satisfaction	
Req. Context	Version A	Version B	Version A	Version B	Version A	Version B	Version A	Version B
X	9	11	3	2.5	11	9	2.5	3
Y	11	9	2.5	3	9	11	3	2.5

Distributed Application: Python + Nginx + Redis + Docker

Convergence Characteristics

All PPIs are available

All PPIs are available Only for px instances

Scalability

Throughput

Phase-Configuration

Horizontal Scalability

i = alg. Server, r = redis server

Pilot Licensing Scenario

Version A

Version B

Pilot Licensing Scenario

Conclusion

- AB Testing system and algorithm for generalized BPM scenarios
 - Modular architecture
 - ProcessBandit algorithm
- Part of AB-BPM approach for business process improvement
- Extension of our previous work (BPM 2017)
- Future work Real world studies, Extension of AB-BPM methodology

Researchgate Project

Thank you

Suhrid Satyal

PhD Candidate Architecture and Analytics Platforms Team (AAP), Data61 Computer Science and Engineering, UNSW

e Suhrid.Satyal@data61.csiro.au Australian Technology Park, LvI 5, 13 Garden Street, Eveleigh, NSW 2015 | Locked Bag 9013, Alexandria NSW 2015 www.data61.csiro.au

