SAMPLE MIDTERM 2, STOCHASTIC PROCESSES

PIERRE C BELLEC

- This document in PDF: https://github.com/bellecp/CC-BY-SA-teaching-material/blob/master/stochastic_processes/midterm-sample-exam-2.pdf
- Source code (markdown/latex): https://github.com/bellecp/CC-BY-SA-teaching-material/blob/master/stochastic_processes/midterm-sample-exam-2.md
- License: CC-BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/

Length: 1h and 20 minutes.

Contraction in expectation. Let \mathcal{X} be the set of functions from $\{1,...,n\}$ to $\{0,1\}$, and for any two functions $x,y \in \mathcal{X}$, let $\rho(x,y)$ be the number of disagreements,

$$\rho(x,y) = |\{i = 1, ..., n : x(i) \neq y(i)\}| = \sum_{i=1}^{n} I_{x(i) \neq y(i)}.$$

Consider a transition matrix $P(\cdot,\cdot)$ on \mathcal{X} and a random mapping representation, given by a deterministic function $f: \mathcal{X} \times [0,1] \to \mathcal{X}$ and a random variable $Z \sim Unif[0,1]$ with $\mathbf{P}(f(x,Z)=y)=P(x,y)$. We also consider an iid sequence $(Z_t)_{t\geq 0}$ of independent copies of Z and the Grand Coupling defined by $X_0^x=x$ and $X_t^x=f(X_{t-1}^x,Z_t)$ for all $x\in\mathcal{X}$ and all $t\geq 0$.

For the first four questions, we assume that there exists some a > 0 such that for all x, y with $\rho(x, y) = 1$ we have $\mathbf{E}[\rho(f(x, Z), f(y, Z))] \leq e^{-a}$.

- 1. Prove that ρ satisfies the triangle inequality $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$ for any states $x,y,z \in \mathcal{X}$.
- 2. Prove that $\mathbf{E}[\rho(f(x,Z),f(y,Z))] \leq \rho(x,y)e^{-a}$ for all $x,y \in \mathcal{X}$.
- 3. Prove that $\mathbf{E}[\rho(X_t^x, X_t^y)] \leq \rho(x, y)e^{-at}$ for any $t \geq 1$ and all $x, y \in \mathcal{X}$. Clearly explain in words every steps of your reasoning.
- 4. Provide an upper bound on the mixing time $t_{mix}(\epsilon)$ for any $\epsilon \in (0,1)$.

Lower bound on the mixing time for a lazy random walk on regular graph. Let $d \geq 3$. Consider an undirected connected graph G = (V, E) such that each vertex has **exactly** d neighbors. Let P be the lazy random walk on V (the chain stays on the current vertex with probability 1/2, and jumps to a neighbor with probability 1/(2d)).

- 1. Draw such a graph for d = 3 and |V| = 8 (these values of d and |V| apply ONLY to this question).
- 2. Prove that the uniform distribution is stationary.
- 3. Why is the stationary distribution unique? Denote by π the stationary distribution.

- 4. Let V_t^x = {y ∈ V : P^t(x,y) > 0} be the subset of V of states accessible from x after t steps. Show that |V_t^x| ≤ (d+1)^t.
 5. Prove that ||P^t(x,·) π||_{TV} ≥ 1 (d+1)^t/|V|.
 6. Prove a lower bound on t_{mix}(1/4). Clearly explain your reasoning.