Números naturais, racionais, e reais

Sebastián Urrutia, Mário S. Alvim (Jeroen van de Graaf)

DCC - UFMG

2015/01

Definição dos números naturais

- O conjunto dos números naturais \mathbb{N} é $\{1, 2, 3 \ldots\}$.
- N pode ser definido através de dois axiomas:
 - N1 1 é um número natural.
 - N2 Cada número natural tem um sucessor.
- Reescrevendo de maneira mais formal:

$$N1'$$
 $1 \in \mathbb{N}$ $N2'$ $k \in \mathbb{N} \implies s(k) \in \mathbb{N}$, onde $s(\cdot)$ é a função sucessor.

- Exemplos:
 - ullet $1\in\mathbb{N}$, por causa de $\mathit{N}1$ '.
 - $s(0) \in \mathbb{N}$, por causa de N2'. Notação: s(1) = 2.
 - $s(s(s(s(s(1))))) = 6 \in \mathbb{N}$.
 - ullet Para obter-se o número natural n, aplica-se N2' n-1 vezes.

Números naturais na representação decimal

•
$$723 = 7 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 = 700 + 20 + 3 = 723$$

$$\bullet \ 8007 = 8 \cdot 10^3 + 0 \cdot 10^2 + 0 \cdot 10^1 + 7 \cdot 10^0$$

Números naturais na representação binária

• Exemplos:

- $1010 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 8 + 2 = 10$
- $110111 = 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$
- Método rápido:

dígito binário	1	1	0	1	1	1	
equivalente decimal	32	16	8	4	2	1	
contribuição de cada dígito	32	16	0	4	2	1	55

Operação inversa:

$$77 \xrightarrow[resto=1]{\text{div2}} 38 \xrightarrow[resto=0]{\text{div2}} 19 \xrightarrow[resto=1]{\text{div2}} 9 \xrightarrow[resto=1]{\text{div2}} 4 \xrightarrow[resto=0]{\text{div2}} 2 \xrightarrow[resto=0]{\text{div2}} 1 \xrightarrow[resto=1]{\text{div2}} 0$$

Os bits são produzidos do menos significativo para o mais significativo, portanto a representação binária é obtida invertendo-se a ordem dos bits produzidos:

$$77 = 1001101$$

Definição de número real

- Exemplos:
 - $\pi = 3.14159265359...$
 - e = 2.71828182846...
 - $\sqrt{2} = 1.41421356237...$
 - $\ln 2 = 0.6931471805...$
- Definição: Um número real é uma soma infinita:

$$d_k d_{k-1} \dots d_1 d_0 \cdot d_{-1} d_{-2} d_{-3} \dots = \sum_{i=-\infty}^k d_i 10^i$$

Definição de número real

- Se um número real termina numa sequência infinita de 9s, substituem-se todos os 9s por 0 e incrementa-se o decimal antes do primeiro 9.
- Não se escreve uma sequência infinita de 0s:

$$0.99999999 \cdots = 1.00000000 \cdots = 1.$$

Esta regra faz sentido porque:

$$1 = 3 * \frac{1}{3} = 3 * 0.3333333... = 0.99999999...$$

Definição de número racional

• **Definição:** Um número **racional** é um numero real x tal que existam $p,q\in\mathbb{Z}$, com $q\neq 0$, tais que

$$x=\frac{p}{q}$$

- Exemplos:
 - $\begin{array}{ll}
 \bullet & \frac{1}{2} \\
 \bullet & \frac{-1}{2} = \frac{1}{-2} = -\frac{1}{2}
 \end{array}$
 - 5677327569219559
 - 676576576329756

Definição de racional e irracional

- 10/3 é racional? Sim. Quociente de inteiros.
- 0.281 é racional? Sim. Número na notação decimal que representa 281/1000.
- Qualquer número representado numa calculadora tradicional é racional? Sim. O "display" da calculadora é finito e por essa razão todos os números representados são racionais.
- 0.121212 ... é racional? Sim: Seja x = 0.121212... e 100x = 12.121212...100x - x = 12.121212... - 0.121212...99x = 12

Definição de racional e irracional

Teorema

Um número real x é racional sse (se, e somente se,) há periodicidade na sua representação decimal: $\exists j, k : \forall i > j : d_i = d_{i+k}$

• Exemplo: 1/5 = 0.2000000000...; 1/7 = 0.142857142857...

Números reais na representação binária

• Exemplos:

•
$$1010 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 8 + 2 = 10$$

•
$$0.1 = 1 \cdot 2^{-1} = 1/2$$

•
$$0.01 = 1 \cdot 2^{-2} = 1/4$$

• $0.11 = 1 \cdot 2^{-1} + 1' \cdot 2^{-2} = 3/4$

• Definição Um número real é uma soma infinita:

$$b_k b_{k-1} \dots b_1 b_0 \cdot b_{-1} b_{-2} b_{-3} \dots = \sum_{i=-\infty}^k b_i 2^i$$

Aviso:

Se um real termina numa sequência infinita de 1s, substituem-se todos os 1s por 0s, e incrementa-se o bit antes do primeiro 1, de 0 para 1.

$$0.1111111111 \cdots = 1.000000000 \cdots = 1$$

Definição de número racional

• **Definição:** Um número **racional** é um numero real x tal que existam $p,q\in\mathbb{Z}$, com $q \neq 0$, tais que

$$x=\frac{p}{q}$$

• Equivalência:

$$\frac{p}{q} \equiv \frac{r}{s} \Longleftrightarrow ps = qr.$$

Representação única:

Uma fração simplificada em que o mdc(p, q) = 1.

Existem números irracionais

Teorema

O $\sqrt{2}$ não é racional.

Prova. Por contradição.

Suponha o contrário do que queremos provar, ou seja, que $\sqrt{2}$ é racional. Neste caso, existem $p, q \in \mathbb{Z}$, com mdc(p, q) = 1, tais que $\sqrt{2} = p/q$.

Elevando os dois lados ao quadrado, obtemos $2 = p^2/q^2$, ou seja, $p^2 = 2q^2$. Note que $2q^2$ é par, portanto pela igualdade acima p^2 também tem que ser par. Isto implica que p deve ser par.

Agora, já que p é par, existe algum $s \in \mathbb{Z}$ tal que p=2s. Isso implica que $2q^2=p^2=(2s)^2=4s^2$, o que resulta em $q^2=2s^2$. Note que então q^2 é par, portanto q deve ser par.

Mas se ambos p e q são pares, isto contradiz a suposição de que o mdc(p,q)=1: encontramos uma contradição.

Conclusão: não existem $p, q \in \mathbb{Z}$, com $q \neq 0$ e mdc(p, q) = 1, tais que $\sqrt{2} = p/q$, portanto $\sqrt{2}$ não é racional.

Racionais versus irracionais

- Existem números irracionais, por exemplo $\sqrt{2}$.
- A soma de dois números racionais é racional (Rosen 1.6 Exemplo 7).
- A soma de um racional e um irracional é irracional (Rosen 1.6 Exercício 9).
- A soma de dois irracionais: não se sabe se $\pi + e \in \mathbb{Q}$ ou se $\pi + e \notin \mathbb{Q}$.
- Existem números irracionais $x \in y$ tal que x^y é racional (Rosen 1.7 Exemplo 11).
- Entre dois números racionais sempre existe um número irracional.
- Entre dois números irracionais sempre existe um número racional.
- Spoiler alert! A cardinalidade dos naturais e dos racionais é a mesma, mas a dos reais é maior. (Vamos aprofundar nisto posteriormente neste curso!)