

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Apr 2020 1 of 4

Indicated Contraindicated

Sample Information

Patient Name: 張鈺淇 Gender: Female ID No.: N220474939 History No.: 45973704

Age: 48

Ordering Doctor: DOC8339B 劉松鈞

Ordering REQ.: 0ARLLFP Signing in Date: 2020/04/30

Path No.: \$109-99419 **MP No.:** F2018

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: C109-12279 Percentage of tumor cells: 60%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page	Report Highlights
Variant Details	2	1 Relevant Biomarkers
Biomarker Descriptions	2	0 Therapies Available
Relevant Therapy Summary	3	12 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	Not detected	NTRK1	Not detected
BRAF	Not detected	NTRK2	Not detected
EGFR	Not detected	NTRK3	Not detected
ERBB2	Not detected	RET	Not detected
KRAS	Not detected	ROS1	Not detected
MET	Not detected		

Relevant Biomarkers

Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
FGFR1 amplification fibroblast growth factor receptor 1	None	None	12
Tier: IIC			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 30 Apr 2020

2 of 4

Variant Details

DNA Sequence Variants								
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
JAK1	p.(=)	c.2199A>G		chr1:65310489	59.29%	NM_002227.3	synonymous	1997
ALK	p.(D1529E)	c.4587C>G		chr2:29416366	99.90%	NM_004304.4	missense	1999
ALK	p.(I1461V)	c.4381A>G		chr2:29416572	99.70%	NM_004304.4	missense	1997
ALK	p.(=)	c.3375C>A		chr2:29445458	99.90%	NM_004304.4	synonymous	1992
FGFR3	p.(=)	c.1953G>A		chr4:1807894	99.90%	NM_000142.4	synonymous	1994
PDGFRA	p.(=)	c.1701A>G		chr4:55141055	99.85%	NM_006206.5	synonymous	2000
KIT	p.(=)	c.1638A>G		chr4:55593481	42.96%	NM_000222.2	synonymous	1997
FGFR4	p.(P136L)	c.407C>T		chr5:176517797	99.75%	NM_213647.2	missense	2000
FGFR4	p.(=)	c.483A>G		chr5:176517985	28.79%	NM_213647.2	synonymous	1997
RET	p.(=)	c.2307G>T		chr10:43613843	99.70%	NM_020975.4	synonymous	1994
RET	p.(=)	c.2712C>G		chr10:43615633	77.94%	NM_020975.4	synonymous	1999

Copy Number Variations					
Gene	Locus	Copy Number			
FGFR1	chr8:38271445	5.88			

Biomarker Descriptions

FGFR1 (fibroblast growth factor receptor 1)

Background: The FGFR1 gene encodes fibroblast growth receptor 1, a member of the fibroblast growth factor receptor (FGFR) family that also includes FGFR2, 3, and 4. These proteins are single transmembrane receptors composed of three extracellular immunoglobulin (Ig)-type domains and an intracellular kinase domain. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{1,2,3}.

Alterations and prevalence: Recurrent somatic alterations common to the FGFR family include gene amplification, mutation, and chromosomal translocations leading to FGFR fusions⁴. Amplification of FGFR1 is observed in 15-20% of squamous lung cancer, 10-15% of breast cancer, 8% of bladder cancer, and 2-5% of uterine cancer cases^{5,6,7,8,9,9}. The most common recurrent mutations, N546K and K656E, are relatively infrequent (<1%); they activate mutations in the kinase domain and are distributed in diverse cancer types¹⁰. FGFR1 translocations giving rise to expressed fusions are common in certain hematological cancers, but less common in solid tumors^{11,12,13}.

Potential relevance: The FDA has granted fast track designation to Debio 1347¹⁴ (2018) for solid tumors harboring aberrations in FGFR1, FGFR2, or FGFR3. FDA has approved multi-kinase inhibitors, including regorafenib, ponatinib, lenvatinib, nintedanib, and pazopanib, that are known to inhibit FGFR family members. These inhibitors have demonstrated anti-tumor activity in select cancer types with FGFR alterations^{15,16,17,18,19,20,21}. In a phase II clinical trial, dovitinib, a multi-tyrosine kinase inhibitor (TKI), exhibited an overall response rate (ORR) of 11.5% and a disease control rate (DCR) of 50% in patients with advanced squamous cell lung cancer

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Apr 2020 3 of 4

Biomarker Descriptions (continued)

possessing FGFR1 amplification. The patients had a median overall survival (OS) of 5 months and progression-free survival (PFS) of 2.9 months²². Likewise, in a phase Ib study testing the FGFR inhibitor AZD4547, median OS was 4.9 months in patients with FGFR1-amplified advanced squamous cell lung cancer. One of 13 (8%) patients achieved a partial response, 4 (31%) exhibited stable disease, and 2 (13.3%) demonstrated PFS at 12 weeks²³.

Relevant Therapy	Summary					
In this cancer type	In other cancer type	In this cancer type and other cancer types	Contraindicated	Both for use and contraindicated	1 🗶	No evidence
FGFR1 amplifica	tion					
Relevant Therapy		FDA	NCCN	EMA I	ESMO	Clinical Trials*
erdafitinib		×	×	×	×	(II)
futibatinib		×	×	×	×	(II)
nintedanib		×	×	×	×	(II)
ponatinib		×	×	×	×	(II)
sunitinib		×	×	×	×	(II)
pemigatinib, pembroliz chemotherapy, INCMG/		ab,	×	×	×	(1/11)
CPL-304-110		×	×	×	×	(I)
Debio 1347		×	×	×	×	(I)
pemigatinib		×	×	×	×	(I)
* Most advanced phase (Signatures Testing Personnel:	IV, III, II/III, II, I/II,	I) is shown and multiple c	linical trials may be a	available.		
Laboratory Supervisor: Pathologist:						

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Apr 2020 4 of 4

References

- Babina et al. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017 May;17(5):318-332. PMID: 28303906
- 2. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta. 2012 Apr;1823(4):850-60. PMID: 22273505
- Sarabipour et al. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ ncomms10262. PMID: 26725515
- 4. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 2016 Jan 1;22(1):259-67. PMID: 26373574
- 5. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015 Oct 8;163(2):506-19. PMID: 26451490
- 7. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Lew et al. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci Signal. 2009 Feb 17;2(58):ra6. PMID: 19224897
- 11. Jackson et al. 8p11 myeloproliferative syndrome: a review. Hum. Pathol. 2010 Apr;41(4):461-76. PMID: 20226962
- 12. Li et al. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer. 2012 Sep;51(9):890-7. PMID: 22619110
- 13. Wasag et al. The kinase inhibitor TKI258 is active against the novel CUX1-FGFR1 fusion detected in a patient with T-lymphoblastic leukemia/lymphoma and t(7;8)(q22;p11). Haematologica. 2011 Jun;96(6):922-6. PMID: 21330321
- 14. https://www.debiopharm.com/drug-development/press-releases/fda-grants-fast-track-designation-to-debiopharm-internationals-debio-1347-for-the-treatment-of-patients-with-unresectable-or-metastatic-tumors-with-a-specific-fgfr-gene-alteration/
- 15. Cha et al. FGFR2 amplification is predictive of sensitivity to regorafenib in gastric and colorectal cancers in vitro. Mol Oncol. 2018 Jun;12(7):993-1003. PMID: 29573334
- 16. Chae et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 2017 Feb 28;8(9):16052-16074. PMID: 28030802
- 17. Porta et al. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit. Rev. Oncol. Hematol. 2017 May;113:256-267. PMID: 28427515
- 18. Gozgit et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther. 2012 Mar;11(3):690-9. PMID: 22238366
- 19. Yamamoto et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014 Sep 6;6:18. doi: 10.1186/2045-824X-6-18. eCollection 2014. PMID: 25197551
- 20. Kim et al. Pazopanib, a novel multitargeted kinase inhibitor, shows potent in vitro antitumor activity in gastric cancer cell lines with FGFR2 amplification. Mol. Cancer Ther. 2014 Nov;13(11):2527-36. PMID: 25249557
- 21. Hibi et al. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib. Cancer Sci. 2016 Nov;107(11):1667-1676. PMID: 27581340
- 22. Lim et al. Efficacy and safety of dovitinib in pretreated patients with advanced squamous non-small cell lung cancer with FGFR1 amplification: A single-arm, phase 2 study. Cancer. 2016 Oct;122(19):3024-31. PMID: 27315356
- 23. Paik et al. A Phase Ib Open-Label Multicenter Study of AZD4547 in Patients with Advanced Squamous Cell Lung Cancers. Clin. Cancer Res. 2017 Sep 15;23(18):5366-5373. PMID: 28615371