§1-4 對數函數

(甲)對數函數的意義

 $\overline{(1)}$ 定義:設 a>0, $a\neq 1$, x>0, $f(x)=\log_a x$ 稱為一個以 a 為底數的對數函數。

定義域: $\{x|x>0\}$ 值 域: $\{y|y\in R\}$

(2)對數函數 $f(x)=\log_a x$ 具有 f(xy)=f(x)+f(y)的性質。x,y 為任意正實數。

(乙)對數函數的圖形

(1)描點畫圖:

X	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	4
$y = \log_2 x$	-2	-1.5850	-1	0	1	1.5850	2

結論:

- (a) $y=\log_a x$ 的圖形都在 y 軸的右方。(即 x>0)
- $(b)y=\log_a x$ 的圖形與 x 軸交於點(1,0)。
- (c)平行 x 軸的直線都恰與 $y=\log_a x$ 的圖形交於一點。
- $(d)y = \log_a x$ 與 $y = \log_1 x$ 的圖形對稱於 x 軸。

- ① 當 a>1 時,
- $f(x) = \log_a x$ 的圖形向右上升
- ⇔f(x)=logax 為遞增函數
- $\Leftrightarrow x_1 > x_2 \Leftrightarrow \log_a x_1 > \log_a x_2$

- ② 當 0<a<1 時,
- $f(x)=\log_a x$ 的圖形向右下降
- ⇔f(x)=logax 為遞減函數
- $\Leftrightarrow x_1 > x_2 \Leftrightarrow \log_a x_1 < \log_a x_2$

(2)對數函數與指數函數圖形的關係:

① 對數函數與指數函數有以下的關係: $y=\log_{a}x \Leftrightarrow x=a^{y}$ 。 換句話說,以a 為底數的對數函數,其**自變數**x 及**應變數**v 分別是以a 為底 數的指數函數的**應變數**及**自變數**。我們稱有這種特殊關係的兩個函數互為**反** 函數,即同底的對數函數與指數函數互為反函數。

符號: f(x)的反函數為 $f^{-1}(x)$ 。

②圖形關係:

如果考慮兩個反函數的圖形,根據反函數的意義:

點 (x_0, y_0) 在 $y=\log_a x$ 的圖形上 \Leftrightarrow 點 (y_0, x_0) 在 $y=a^x$ 的圖形上 而點 (x_0, y_0) 與 (y_0, x_0) 對稱於直線 x=y,

因此 $y=\log_a x$ 的圖形與 $y=a^x$ 的圖形對稱於直線 x=y。

如下兩圖所示:

(3)對數函數圖形的凹凸性:

(a)當 a>1 時 $f(x)=\log_a x$ 的圖形為凹向下 , 即圖形上任兩點 A,B 的連線在 A,B兩點間的圖形下方。

因此
$$\frac{1}{2}(\log_a x_1 + \log_a x_2) \le \log_a \frac{x_1 + x_2}{2}$$
 , x_1, x_2 為任意的正實數。

(b)當 0 < a < 1 時 $f(x) = \log_a x$ 的圖形為凹向上 , 即圖形上任兩點 A,B 的連線在 A,B 兩點間的圖形上方。

因此
$$\frac{1}{2}(\log_a x_1 + \log_a x_2) \ge \log_a \frac{x_1 + x_2}{2}$$
, x_1, x_2 為任意的正實數。

對數函數的圖形

[**例題1**] 設 $y=\log_2 x$ 之圖形為右圖,

試利用對稱的性質作下列各圖形。

 $y = \log_2 x$

結論:

(1)y=f(x)的圖形與 y=f(-x)的圖形對稱於 y 軸。

(2)y=f(x)的圖形與 y=-f(x)的圖形對稱於 x 軸。

[**例題2**] 利用 $y=\log_2 x$ 的圖形作下列各函數的圖形:

 $(1)y = f(x) = |\log_2 x|$ $(2)y = f(x) = |\log_2 x|$

結論: 將 y=f(x) 圖形中在 x 軸下方的部分對稱 x 軸形成的圖形為 y=|f(x)|的圖形

(練習1) 設 a > 1,則下列那一個選項,表示函數 $y = \log_a x$ 與 $y = a^{-x}$ 的圖形?

(A)

Ans: (A)

(練習2) 設 a > 0 且 a = 1,試問下列何者可能為 $y = a^x$ 為 $y = \log_a x$ 之圖形 ?

(練習3) 比較 $y=\log_2 x$, $y=\log_3 x$ 的圖形 , $y=\log_{\frac{1}{2}} x$ 與 $y=\log_{\frac{1}{2}} x$ 的圖形

(練習4) 下圖中, $y = \log_a x$ 與 $y = \log_d x$ 兩圖形對稱於 x 軸

 $y = \log_b x$ 與 $y = \log_c x$ 兩圖形對稱

則下列何者為真?

(A) a > b > c > d

(B) b > a > c > d(C) b > a > d > c

(D) ad = 1

(E) $abcd = 1_{\circ}$

Ans: (C)(D)(E)

(練習5) 試畫出 $(1)y = \log_2 x^2 (x \neq 0)$ $(2)|y|=\log_2|x|$ 的圖形。

圖形交點與方程式的實根個數

[例題3] 求下列方程式之實根個數:

 $(1)x-\log x=0$ $(2)x-1=\log_2 x_0$ Ans: (1)0 (2)2

(練習6) 下列何者與 y=x 恰交於一點?

 $(A)y=2^{|x|}$ $(B)y=(\frac{1}{2})^{|x|}$ $(C)y=\log|x|$ $(D)y=|\log x|_{\circ}$ Ans: (B)(C)(D)(E)

(練習7) 由作 $y=\log_{\frac{1}{2}}x$ 與 $y=x^2$ 之圖形可知方程式 $\log_{\frac{1}{2}}x=x^2$ 之實數解的個數為? Ans:1

(練習8) 方程式 x-1=|log₂x|有______個實根。 Ans: 2

(練習9) 方程式 $|\log_2 x| = (\frac{1}{2})^{|x|}$ 之實數解有多少個? Ans: 2

對數比大小

[例題4] 設 $a=\frac{3}{2}$, $b=\log_4 9$, $c=\log_9 25$, 試比較 a,b,c 的大小。 Ans: b>a>c

(練習10) 設 $a=\log_{0.2}0.2, b=\log_{0.3}0.2, c=\log_20.2, d=\log_32$ 。 請比較 a,b,c,d 的大小。

(練習11) 下列何者之值大於 $1?(A)\log_{\frac{1}{3}}\frac{1}{4}$ (B) $\log_{1.4}1.7$ (C) $\log_{0.3}0.8$ (D) $\log_{0.7}0.3$ Ans: (A)(B)(D)

(練習12) 設 x,y,z 為正數,且 $2^x=3^y=5^z$,比較 2x,3y,5z 的大小。 Ans: 5z>2x>3y [提示:可令 $2^x=3^y=5^z=K$,則 $x=\log_2K$, $y=\log_3K$, $z=\log_5K$,再比較 2x,3y,5z 的大小]

對數函數的定義域問題

[例題5] (1)log₂(1+2x-3x²)有意義,求x的範圍。

 $(2)\log_{(2x-1)}(-3x^2+11x-6)$ 有意義,求x的範圍。

Ans: $(1)\frac{-1}{3} < x < 1$ $(2)\frac{2}{3} < x < 3$, $\not\sqsubseteq x \ne 1$

(練習13) 若 $\log_a x > 0$, 試就 a 討論 x 的範圍。

Ans: a>1 時, x>1; 0<a<1 時, 0<x<1

(練習14) 求下列函數的定義域:

$$(1)f(x) = \log_{(x^2 - 3x + 2)}(x^2 + 2x - 3) \qquad (2)f(x) = \log_2(\log_{\frac{1}{3}}x)$$

Ans:
$$(1)\{x|x<-3 \stackrel{\checkmark}{=} x>2 \stackrel{\prime}{=} x\neq \frac{3+\sqrt{5}}{2}\}$$
 $(2)\{x|0< x<1\}$

(1)提示:
$$\log_{(x^2-3x+2)}(x^2+2x-3)$$
有意義 \Leftrightarrow
$$\begin{cases} x^2+2x-3>0\\ x^2-3x+2>0\\ x^2-3x+2\neq 1 \end{cases}$$

(2)提示:
$$\log_2(\log_{\frac{1}{3}}x)$$
有意義 \Leftrightarrow
$$\begin{cases} \log_{\frac{1}{3}}x > 0\\ x > 0 \end{cases}$$

對數不等式

[例題6] 解下列不等式:

$$(1)\log_{0.5}(2x-3) > 0 \quad (2)(5^{-x})(\log_{\frac{1}{2}}x) > 0$$

$$(3)\log_2(\log_{\frac{1}{3}}x)<1 \quad (4)\log(6x-x^2)<1+\log(5-x)$$

Ans:
$$(1)\frac{3}{2} < x < 2$$
 (2)0<<1 (3) $\frac{1}{9} < x < 1$ (4)0< $x < 8 - \sqrt{14}$

[例題7] 解 $\log_3(3^x+8) < \frac{x}{2} + 1 + \log_3 2$ 。 Ans: $\log_3 4 < x < \log_3 16$

(練習15) 解下列不等式:

 $(1)\log(x^2-4x+3) \ge \log(2x-1)^2 + \log 3 \quad (2) \quad \log_{\frac{1}{2}}\log_2\log_{\frac{1}{3}}x > 1$

Ans: $(1)0 \le x \le \frac{8}{11}$, $x \ne \frac{1}{2}$ (2) $(\frac{1}{3})^{\sqrt{2}} < x < \frac{1}{3}$

(練習16) 不等式 $\log_{0.5}(x-2) > \log_{0.25}(4x^2-17x+4)$ 的 解 為 (A)4<x (B)2<x<4 (C)4<x< $\frac{13}{3}$ (D) $\frac{13}{3}$ <x (E)以上皆非 Ans: (D)

(練習17) 解 $\log_2(2^x+16) < \frac{x}{2} + 1 + \log_2 5$ 。 Ans: 2 < x < 6

求反函數

 $(a)y=\log_a x$ 與 $y=a^x$ 互為反函數。 $[y=\log_a x \Leftrightarrow x=a^y \xrightarrow{x \text{與}y \text{ \subseteq} x} y=a^x]$

(b)點 (x_0,y_0) 在 $y=\log_a x$ 圖形上 \Leftrightarrow 點 (y_0,x_0) 在 $y=a^x$ 圖形上。

(c) $y=\log_a x$ 與 $y=a^x$ 兩圖形對稱於直線 x-y=0。

(d)求反函數的法則:

已知函數 f(x), 求反函數 $f^{-1}(x)=$?

令 y=f(x), 用 x 解出 y, (即表成 y 是 x 的函數), 再將 x 與 y 互換, 即求得 $f^{-1}(x)$

[例題8] 求下列各函數的反函數:

- (1)y=f(x)=3x+5 $(2)y=f(x)=\log_2(x-2)$ $(3)y=3^{x+2}-5$
- Ans: $(1)f^{-1}(x) = \frac{x-5}{3}$ $(2)f^{-1}(x) = 2^x + 2$ $(3)f^{-1}(x) = \log_3(x+5) 2$

(練習18) 求下列各函數之反函數:

$$(1)f(x) = \log_2(x-3) , x > 3$$

$$(2)f(x) = \frac{2^x + 2^{-x}}{2^x - 2^{-x}} , x \neq 0$$

$$(3)f(x) = (0.2)^{-x} + 1$$

Ans:
$$(1)f^{-1}(x)=2^x+3$$
, $x \in \mathbb{R}$ $(2)f^{-1}(x)=\frac{1}{2}\log_2\frac{x+1}{x-1}$, $x < 1$ \mathfrak{Q} $x > 1$ $(3)f^{-1}(x)=\log_5(x-1)$ $x > 1$

綜合練習

(1) 右圖為函數 $y = \log_b ax$ 的部分圖形,其中 a , b 皆為常數且 a > 0 , b > 0 , 則下列何者為真 ?

$$(A)a > 1$$
, $b > 1(B)0 < a < 1$, $b > 1$

$$(C)a = 1$$
, $b > 1(D)a > 1$, $0 < b < 1$

$$(E)0 < a < 1$$
, $0 < b < 1$

(2) 右圖為函數 $y=a+\log_b x$ 之部分圖形,其中 a,b 為常數則下列何者為真?

(A)a<0 , b>1 (B)a>0 , b>1 (C)a=0 , b>1 (D)a>0 , 0<b<1

(E)a<0, 0<b<1

(88 社)

(3) 設 0 < a < 1,則下列那一個選項,表示函數 $y = \log_a x$ 與 y = (1 - a)x的圖形?

(A)

(C)

(E)

(4) 設 $y=3^x$, $y=3^{-x}$, $y = \log_2 x$, $y = \log_2 (-x)$, $y = -\log_2 x$ 的圖形皆在右圖中,A,B,C,D,E 何者是 $y = -\log_2 x$ 的圖形?
(A)A (B)B (C)C (D)D (E)E。

- (5) 右圖中,A,B,C,D,E 何者為 y= log₂ 2x 之圖形? (A)A (B)B (C)C (D)D (E)E。
- (6) 若函數 $y=a^x$ 之圖形右圖,則下列圖形何者(以 A、B、....G、H 表示)是下列函數的圖形。

(a) $y = (\frac{1}{a})^x$ (b) $y = \log_a x$ (c) $y = a^{-|x|}$ (d) $y = \log_{\frac{1}{a}}(-x)$ (e) $y = |\log_a x|$

- (7) 試求方程式 $x^2 + \log|x| = 0$ 有_____ 個實數解。
- (8) 請問 $2^x = \log_{0.5} |x|$ 的實數解有______個。
- (9) 下列各值最小的是

- (10) 若 $a=\log_2 3, b=\log_4 3, c=3^{\log_3 \sqrt{5}}, d=\log_{0.5} 3$,則四數的大小為何?
- (11) 對函數 f 而言,若 a,b 為正數,且 $a\neq b$ 若 $f(\frac{a+b}{2})>\frac{1}{2}(f(a)+f(b))$,則 f(x)的圖形為凹向下。

若 $f(\frac{a+b}{2}) > \frac{1}{2} (f(a)+f(b))$,則 f(x)的圖形為凹向下。 若 $f(\frac{a+b}{2}) < \frac{1}{2} (f(a)+f(b))$,則 f(x)的圖形為凹向上。

設 $f(x)=\log_m x (m>0$,且 $m\neq 1$)試證:

- (a)當 m>1 時 f(x)的圖形為凹向下。
- (b)當 0 < m < 1 時 f(x)的圖形為凹向上。

(12) 設
$$a > b > 1000$$
 , 令 $p = \sqrt{\log_7 a \cdot \log_7 b}$, $q = \frac{1}{2}(\log_7 a + \log_7 b)$, $r = \log_7(\frac{a+b}{2})$, 則下列敘述何者正確?

(A)
$$q = \log_7 \sqrt{ab}$$
 (B) $q > r$ (C) $r (D) $p < q < r$ (E) $q$$

- (13) 設 $f(x) = \log_3(\log_{0.3}(\log_9 x))$, 試求 $(a) f(3^{0.054}) = ?$ (b)x 的範圍。
- (14) 解下列不等式:

(a)
$$\log_{x}(x-1) > 0$$
 (b) $\log_{a}(x-7) + \log_{a}(x+3) < \log_{a}(2x-5)$

 $(c)\log_{\frac{1}{3}}(\log_4 x) \ge -1$ (d)x 為不等於 1 的正數,解 $\log_3 x + \log_x 3 < \frac{10}{3}$

(e)
$$2\log_{\frac{1}{4}}(3-x) \ge \log_{\frac{1}{2}}(x-2) - 1$$

- (15) 求解 $\log_{1.5}(x+1) > \log_{2.25}(x^2-x-1)$
- (16) (a)設 $y=f(x)=\frac{x}{10^x-1}-1+\frac{x}{2}$, x 為不等於 0 的實數,試證明:f(x)=f(-x)。 (b)設 $y=f(x)=x\cdot\log_{10}(x+\sqrt{x^2+1})$, x 為實數,試證明:f(x)=f(-x)。
- (17) 求 $f(x) = x^{1-\log x}$, $1 \le x \le 100$, 之最大值與最小值。

進階問題

- (18) 令 $S_n = \log_a \sqrt{3} + \log_a \sqrt{\sqrt{3}} + \log_a \sqrt{\sqrt{\sqrt{3}}} + \cdots + (共 n 項)$, (a)請問若 $\lim_{n\to\infty} S_n$ 存在時,a 的範圍為何? (b)此時 $\lim_{n\to\infty} S_n = ?$ 。
- (19) 設 $f(x) = \frac{10^x 10^{-x}}{10^x + 10^{-x}}$, x 為實數
 (a)證明:若 $x_1 > x_2$, 則 $f(x_1) > f(x_2)$ 。 (b)y = f(x) , 則 y 之範圍為何? (c)求 $f^{-1}(x) = ?$
- (20) 求解下列不等式:

(a)
$$\frac{1}{2}\log_{\sqrt{10}}(x+1) + 2\log_{100}(x-2) \ge 1$$
 (b) $\log_{\frac{1}{2}}(3-x) \ge \log_{\frac{1}{4}}|x-2| - 1$ (c)

- (21) 求 $f(x) = \frac{10^x 10^{-x}}{2}$, (x 為實數)的反函數。
- (22) 設 x 為型如 $3^m(m$ 為正整數)的數,且滿足 $-1 < \log_3(\log_9(\log_{27}x)) < 1$,則此種 x 共有多少個?
- (23) 若方程式 $x^4 + 2\sqrt{3}$ $(\log_2 k)x^2 + 1 (\log_2 k)^2 = 0$ 有兩相異實根及兩共軛虚根 , 則實數 k 的範圍為何 ?
- (24) 設 x>0, y>0 若 x+2y=12, 則 log₂x+log₂y 之最大值為_____。
- (25) 求滿足 $n^4 < 10^6 < (n+1)^4$ 的正整數 n。
- (26) 對任意實數 x , $\log(x^2+2x+a)>0$ 恆成立 , 求 a 的範圍。

綜合練習解答

- **(1)** (A)
- **(2)** (E)
- (**3**) (C)
- (4) (A)
- (**5**) (D)
- (6) (a)(A)(b)(C)(c)(F)(d)(D)(e)(G)
- **(7)** 2
- **(8)** 2
- **(9)** (B)
- **(10)** *d*<*b*<*a*<*c*
- (11) [提示:請利用算幾不等式]
- (12) (A)(D)
- (13) (a)1 (b)1 < x < 9
- (14) (a)x>2 (b)a>1 時 , 7<x<8 ; 0<a<1 時 , x>8 (c) $1<x\le64$ (d)0<x<1 或 $\sqrt[3]{3} < x < 27$ (e) $\frac{7}{3} \le x < 3$
- (16) 略
- (17) $\sqrt[4]{10}$, $\frac{1}{100}$ [提示: $\log f(x) = (1 \log x) \cdot \log x$ $= -(\log x)^2 + \log x = -(\log x \frac{1}{2})^2 + \frac{1}{4}$,因為 $1 \le x \le 100$,所以 $0 \le \log x \le 2$,所以 $\log f(x)$ 的 最大值為 $\frac{1}{4}$,最小值為-2。]
- (18) (a) $\frac{1}{\sqrt{3}} < a < \sqrt{3}$, $a \ne 1$ 時 , 所求值存在 ; (b) $\log_a 3$ [考慮公比 $\frac{1}{2} \log_a 3$ 絕對值小於 1]
- (19) (a)略 (b)-1<y<1 (c) $f^{-1}(x) = \log_{10} \sqrt{\frac{1+x}{1-x}}$
- **(20)** (a) $x \ge 4$ (b) x = 1 或 $5 2\sqrt{2} \le x < 3$
- (21) $f^{-1}(x) = \log(x + \sqrt{x^2 + 1})$
- **(22)** 17
- (23) $0 < k < \frac{1}{2}$ 或 k > 2
- (24) 1+log₂9 (Hint:利用算術平均數大於幾何平均數)

- **(25)** 31
- **(26)** *a*>2