

TUGAS AKHIR - EC184801

DETEKSI PEJALAN KAKI PADA ZEBRACROSS UNTUK PERINGATAN DINI PENGENDARA MOBIL MENGGUNAKAN MASK R-CNN

Agung Wicaksono NRP 0721 17 4000 0002

Dosen Pembimbing Prof. Dr. Ir. Mauridhi Hery Purnomo, M.Eng. Dr. Eko Mulyanto Yuniarno, S.T., M.T.

DEPARTEMEN TEKNIK KOMPUTER Fakultas Teknologi ELEKTRO DAN INFORMATIKA CERDAS Institut Teknologi Sepuluh Nopember Surabaya 2021

TUGAS AKHIR - EC184801

DETEKSI PEJALAN KAKI PADA ZEBRACROSS UNTUK PERINGATAN DINI PENGENDARA MOBIL MENGGUNAKAN MASK R-CNN

Agung Wicaksono NRP 0721 17 4000 0002

Dosen Pembimbing Prof. Dr. Ir. Mauridhi Hery Purnomo, M.Eng. Dr. Eko Mulyanto Yuniarno, S.T., M.T.

DEPARTEMEN TEKNIK KOMPUTER Fakultas Teknologi ELEKTRO DAN INFORMATIKA CERDAS Institut Teknologi Sepuluh Nopember Surabaya 2021

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Tugas Akhir sada dengan judul "Deteksi Pejalan Kaki pada Zebracross untuk Peringatan Dini Pengendara Mobil menggunakan Mask R-CNN" adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak diijinkan da bukan karya pihak lain yang saya akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka.

Apabila ternyata pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, 14 Juni 2021

Agung Wicaksono 0721 17 4000 0002

LEMBAR PENGESAHAN

DETEKSI PEJALAN KAKI PADA ZEBRACROSS UNTUK PERINGATAN DINI PENGENDARA MOBIL MENGGUNAKAN MASK R-CNN

Tugas Akhir ini disusun untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik di Institut Teknologi Sepuluh Nopember Surabaya

Oleh: Agung Wicaksono (NRP. 0721 17 4000 0002)

Tanggal Ujian : Juli 2021 Periode Wisuda : September 2021

Disetujui Oleh:

Prof. Dr. Ir. Mauridhi Hery Purnomo, M.Eng. NIP: 19580916 198601 1 001	(Pembimbing I)
Dr. Eko Mulyanto Yuniarno, S.T., M.T. NIP: 19680601 199512 1 009	(Pembimbing II)

 $\label{eq:Mengetahui} \mbox{Mengetahui,}$ Kepala Departemen Teknik Komputer FTEIC - ITS

 $\frac{\text{Dr. Supeno Mardi Susiki Nugroho, ST., MT.}}{\text{NIP. }19700313\ 199512\ 1\ 001}$

ABSTRAK

Nama Mahasiswa : Agung Wicaksono

Judul Tugas Akhir : Deteksi Pejalan Kaki pada Zebracross untuk

Peringatan Dini Pengendara Mobil menggu-

nakan Mask R-CNN

Pembimbing : 1. Prof. Dr. Ir. Mauridhi Hery Purnomo,

M.Eng.

2. Dr. Eko Mulyanto Yuniarno, S.T., M.T.

Dewasa ini, fitur keselamatan pada kendaraan roda empat atau mobil sudah sangat berkembang pesat. Hal tersebut terbukti dengan banyaknya produsen mobil yang menerapkan teknologi seat belt, air bag, adaptive cruise control, electronic stability control, autonomous emergency braking, blind spot monitoring dan lain sebagainya. Namun, fitur yang sudah disebutkan diatas dinilai masih kurang ramah bagi pejalan kaki. Terbukti menurut data dari WHO, terdapat 270.000 pejalan kaki meninggal dunia setiap tahun atau sekitar 22% dari seluruh korban meniggal akibat kecelakan di jalan. Berawal dari permasalahan tersebut, penulis akan melakukan penelitian mengenai pendeteksian pejalan kaki pada zebracross untuk peringatan dini pengendara mobil sebagai topik tugas akhir. Pada tugas akhir ini, terdapat 2 objek yang akan dideteksi yaitu pejalan kaki dan zebracross dengan menggunakan metode Mask R-CNN. Hasil yang diharapkan dari tugas akhir kali ini adalah terdapat model yang memiliki akurasi yang tinggi dari dataset yang tersedia yaitu Caltech Pedestrian Dataset.

Kata Kunci: Pejalan Kaki, Zebracross, Mask R-CNN, Pengolahan Citra.

ABSTRACT

Name : Elon Reeve Musk

Title : Anti-Gravity Based Energy Calculation on Outer

Space Rockets

Advisors: 1. Nikola Tesla, S.T., M.T.

2. Wernher von Braun, S.T., M.T.

In this research, we proposed Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, conque eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords: Rocket, Anti-gravity, Energy, Space.

KATA PENGANTAR.

Puji dan syukur kehadirat Allah SWT atas segala limpahan berkah, rahmat, serta ridho-Nya, penulis dapat menyelesaikan penelintian ini dengan judul **Deteksi Pejalan Kaki pada** Zebracross untuk Peringatan Dini Pengendara Mobil menggunakan Mask R-CNN.

Penelitian ini disusun dalam rangka pemenuhan bidang riset di Departemen Teknik Komputer ITS, sera digunakan sebagai persyaratan menyelesaikan pendidikan Sarjana. Penelitian ini dapat diselesaikan tidak lepas dari bantuan berbagai pihak. Oleh karena itu, penulis mengucapkan terimakasih kepada:

1. Keluarga, Ibu, Bapak dan Saudara tercinta yang telah memberikan dorongan baik secara spiritual dan material dalam penyelesaian buku penelitian ini.

Surabaya, Juni 2021

Agung Wicaksono

DAFTAR ISI

A	BST	RAK	i
\mathbf{A}	BST	RACT	iii
K	ATA	PENGANTAR	\mathbf{v}
D.	AFT	AR ISI	vii
D.	AFT	AR GAMBAR	ix
D.	AFT	AR TABEL	xi
1	PE	NDAHULUAN	1
	1.1	Latar Belakang	1
	1.2	Permasalahan	2
	1.3	Tujuan	2
	1.4	Batasan Masalah	2
	1.5	Sistematika Penulisan	3
2	TIN	NJAUAN PUSTAKA	5
	2.1	Roket Luar Angkasa	5
	2.2	Gravitasi	6
		2.2.1 Hukum Newton	7
		2.2.2 Anti Gravitasi	7
3	\mathbf{DE}	SAIN DAN IMPLEMENTASI	9
	3.1	Deskripsi Sistem	9

	3.2	Pengumpulan Dataset Gambar	10
	3.3	Pemisahan Data	11
	3.4	Pre-Processing	12
	3.5	Implementasi Alat	14
4	PE	NGUJIAN DAN ANALISIS	17
	4.1	Skenario Pengujian	17
	4.2	Evaluasi Pengujian	18
5	PE	NUTUP	21
	5.1	Kesimpulan	21
	5.2	Saran	21
D.	AFT	AR PUSTAKA	23
B]	[OG]	RAFI PENULIS	25

DAFTAR GAMBAR

2.1	Peluncuran roket luar angkasa Discovery [1]	5
3.1	Blok Diagram Metodologi	9
3.2	Contoh Gambar dari Caltech Pedestrian Database $$.	10
3.3	Contoh Pembuatan dataset dari Screenshot Youtube	11
3.4	Visualisasi Pembagian Data	11
3.5	Diagram Alir Pre Processing	13
3.6	Contoh Image Resizing	14

DAFTAR TABEL

4.1	Hasil	Pengukuran	Energi d	an Kecepatan				1	8

BAB I PENDAHULUAN

Penelitian ini di latar belakangi oleh berbagai kondisi yang menjadi acuan. Selain itu juga terdapat beberapa permasalahan yang akan dijawab sebagai luaran dari penelitian.

1.1 Latar Belakang

Mobil merupakan salah satu jenis kendaraan bermotor yang banyak terdapat di Indonesia. Pada tahun 2018 Badan Pusat Statistik mencatat terdapat 16.440.987 mobil penumpang yang berada di Indonesia. Dengan bertambahnya jumlah mobil di Indonesia dari tahun ke tahun, meningkatkan juga jumlah kecelakaan mobil. Fitur keselamatan dan keamanan pada mobil sangat penting bagi para pengendara dan penumpang, sehingga para produsen mobil berusaha meningkatkan teknologi keselamatan dan keamanan pada mobil buatannya. Sebagai contoh beberapa fitur keselamatan dan keamanan yang terdapat pada mobil antara lain, adaptive cruise control, hill strat assist, blind spot monitoring, electronic stability control dan lain sebagainya.

Menurut data dari WHO, terdapat 270.000 pejalan kaki meninggal dunia setiap tahun atau sekitar 22% dari seluruh korban meniggal akibat kecelakan di jalan. Melihat kegiatan para pejalan kaki yang jarang berada di badan jalan, angka tersebut tentu cukup tinggi. Para pejalan kaki hanya menggunakan badan jalan ketika hendak menyebrang jalan lewat zebracross. Kelalaian dari pejalan kaki maupun pengendara mobil merupakan faktor utama mengapa angka kematian pejalan kaki cukup tinggi. Salah satu contoh kelalaian pejalan kaki adalah pada saat menyebrang jalan tidak memperhatikan kendaraan yang akan lewat dan atau melihat rambu serta lampu lalu lintas. Di sisi pengendara mobil, kelelahan, kurangnya fokus saat berkendara dan tidak memperhatikan rambu maupun marka dapat berakibat fatal baik kepada pejalan kaki dan

pengendara lain.

Teknologi artificial intelligent sudah banyak disematkan pada mobil pada masa kini, dibuktikan dengan adanya teknologi adaptive cruise control, hill start assist dan lain sebagainya. Artificial intelligent khususnya deep learning tentu dapat digunakan untuk deteksi pejalan kaki di zebracross guna mengurangi jumlah korban akibat kecelakaan. Deteksi pejalan kaki dapat digabungkan dengan buzzer dan atau LED sebagai komponen output untuk mengingatkan kepada pengendara bahwa ada pejalan kaki yang sedang menyebrangi jalan serta mengembalikan fokus untuk berkendara.

1.2 Permasalahan

Cukup tingginya angka kematian pejalan kaki akibat kecelakaan lalu lintas dan belum adanya deteksi pejalan kaki di zebracross untuk peringatan dini kepada pengendara mobil. Oleh karena itu, diperlukan sebuah sistem yang mampu mendeteksi adanya pejalan kaki yang berada disekitar jalan raya untuk selanjutnya dapat digunakan sebagai peringatan kepada pengendara mobil.

1.3 Tujuan

Berdasarkan rumusan permasalahan di atas, tujuan dari penelitian ini adalah untuk mendeteksi adanya pejalan kaki di zebracross untuk peringatan dini kepada pengendara mobil guna mengurangi angka kematian pejalan kaki akibat kecelakaan lalu lintas

1.4 Batasan Masalah

Batasan-batasan dari Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. adalah:

- 1. Mempermudah Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.
- Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus

adipiscing semper elit.

 Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst.

1.5 Sistematika Penulisan

Laporan penelitian tugas akhir ini tersusun dalam sistematika dan terstruktur sehingga mudah dipahami dan dipelajari oleh pembaca maupun seseorang yang ingin melanjutkan penelitian ini. Alur sistematika penulisan laporan penelitian ini yaitu:

1. BAB I Pendahuluan

Bab ini berisi uraian tentang latar belakang permasalahan, penegasan dan alasan pemilihan judul, sistematika laporan, tujuan dan metodologi penelitian.

2. BAB II Tinjauan Pustaka

Pada bab ini berisi tentang uraian secara sistematis teori-teori yang berhubungan dengan permasalahan yang dibahas pada penelitian ini. Teori-teori ini digunakan sebagai dasar dalam penelitian, yaitu informasi terkait pejalan kaki, zebracross, algoritma Mask RCNN, dan teori-teori penunjang lainya.

3. BAB III Desain dan Implementasi Sistem

Bab ini berisi tentang penjelasan-penjelasan terkait eksperimen yang akan dilakukan dan langkah-langkah pengambilan data jalan raya serta proses deteksi pejalan kaki pada zebracross. Guna mendukung hal tersebut, digunakanlah blok diagram atau work flow agar sistem yang akan dibuat dapat terlihat dan mudah dibaca untuk implentasi pada pelaksanaan tugas akhir.

4. BAB IV Pengujian dan Analisa

Bab ini menjelaskan tentang pengujian eksperimen yang dilakukan terhadap citra jalan raya, proses klasifikasi pejalan kaki dan *zebracross*. Serta terkait tingkat akurasi keberhasilan pengujian yang dilengkapi dengan analisanya.

5. BAB V Penutup

Bab ini merupakan penutup yang berisi kesimpulan yang di ambil dari penelitian dan pengujian yang telah dilakukan. Saran dan kritik yang membangun untuk pengembangkan lebih lanjut juga dituliskan pada bab ini.

BAB II TINJAUAN PUSTAKA

Demi mendukung penelitian ini, Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

2.1 Roket Luar Angkasa

Gambar 2.1: Peluncuran roket luar angkasa Discovery [1].

Roket luar angkasa merupakan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristi-

que senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Discovery, Gambar 2.1, merupakan Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.2 Gravitasi

Gravitasi merupakan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.2.1 Hukum Newton

Newton [2] pernah merumuskan bahwa Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. Kemudian menjadi persamaan seperti pada persamaan 2.1.

$$\sum \mathbf{F} = 0 \iff \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = 0. \tag{2.1}$$

2.2.2 Anti Gravitasi

Anti gravitasi merupakan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

BAB III DESAIN DAN IMPLEMENTASI

Penelitian ini dilaksanakan sesuai dengan sistem berikut dengan implementasinya. Desain sistem merupakan konsep dari pembuatan dan perancangan infrastruktur dan kemudian diwujud kan dalam bentuk blok-blok alur yang harus dikerjakan. Pada bagian implementasi merupakan pelaksanaan teknis untuk setiap blok pada desain sistem.

3.1 Deskripsi Sistem

Sistem pada tugas akhir ini merupakan implementasi dari salah satu disiplin ilmu *Deep Learning* dan pengolahan citra yang berfungsi untuk mendeteksi adanya pejalan kaki yang berada di pinggir jalan, trotoar dan jalur penyebrangan. Selain pejalan kaki, deteksi juga dilakukan pada jalur penyebrangan atau *zebracross* dengan tujuan untuk memberi informasi bahwa disekitar area tersebut terdapat banyak aktivitas pejalan kaki yang menyebrang jalan. Blok diagram metodologi sistem yang digunakan pada penelitian ini dapat dilihat pada Gambar 3.1.

Gambar 3.1: Blok Diagram Metodologi

3.2 Pengumpulan Dataset Gambar

Pada tugas akhir ini, *dataset* yang digunakan didapatkan dengan beberapa cara, antara lain:

1. Caltech Pedestrian Database, merupakan kumpulan gambar yang diambil dari sudut pandang pengendara mobil di California Amerika Serikat dengan ukuran 640 x 480 pixel. Terdapat sekitar 250.000 gambar dengan 350.000 bounding boxes dan sekitar 2.300 pejalan kaki dengan kriteria unik diberi tanda. Namun, pada dataset ini hanya pejalan kaki saja yang diberi label, sehingga perlu dilakukan proses pelabelan ulang sesuai kelas yang diinginkan. Tidak semua gambar pada dataset ini diambil untuk digunakan, gambar yang mempunyai objek berupa pejalan kaki dan zebracross saja yang akan digunakan. Gambar 3.2 merupakan contoh dari gambar yang terdapat pada Caltech Pedestrian Database.

Gambar 3.2: Contoh Gambar dari Caltech Pedestrian Database

- 2. Tangkapan layar dari beberapa video online Youtube. Pada cara ini, penulis mencari video yang berada pada salah satu website video streaming yaitu Youtube dengan persyaratan video diambil dari sudut pandang pengendara mobil yang berkendara pada jalan raya dengan ukuran gambar 1360x768 px. Pada frame-frame tertentu dilakukan screenshot dan disimpan untuk selanjutnya dilakukan proses pemberian label pada objek-objek yang diinginkan seperti pada Gambar 3.3.
- 3. Pengambilan gambar secara mandiri menggunakan kamera *smartphone* yang diambil dari sudut pandang pengendara motor dengan ukuran gambar yang diambil sebesar 1280x720 px. Pengambilan gambar dilakukan di jalan-jalan Surabaya. Setelah dilakukan pengambilan gambar, proses selanjutnya adalah pemberian label pada objek-objek yang ingin dideteksi.

Gambar 3.3: Contoh Pembuatan dataset dari Screenshot Youtube

3.3 Pemisahan Data

Dalam *machine learning* pemisahan data ke beberapa *subset* merupakan suatu hal yang sangat penting. Hal ini dikarenakan setiap *subset* memiliki fungsi masing-masing. Gambar 3.4 merupakan rasio pembagian data ke masing-masing subset.

Gambar 3.4: Visualisasi Pembagian Data

1. Training Sets

Training Sets merupakan sampel data yang digunakan untuk melatih model yang sudah kita buat, dalam bidang Neural Network bisa disebut juga bobot dan bias. Model yang sudah kita buat mempelajari pola masukan dan keluaran dari data ini.

2. Validation Sets

Validation Sets merupakan sampel data yang digunakan untuk mengevaluasi model yang sudah dilatih menggunakan tra-

ining sets. Selain itu, data ini digunakan untuk memperbarui dan menyempurnakan hyperparameter dari model ke tingkat yang lebih tinggi.

3. Test Sets

Test Sets merupakan sampel data yang digunakan untuk mengevaluasi model akhir setelah melalui proses training dan validation. Apabila pengujian model pada data ini sudah sesuai dengan yang diinginkan, maka proses learning sudah selesai. Namun apabila pengujian tidak sesuai dengan yang diharapkan maka diperlukan pengaturan ulang mulai dari proses training.

3.4 Pre-Processing

Pada tahap ini, gambar-gambar dari dataset akan mengalami proses penyesuaian sebelum masuk ke proses data training. Setiap gambar yang akan dijadikan bahan pembelajarnan model harus memiliki dimensi dan kedalaman yang sama. Tujuan dari pre processing adalah perbaikan data gambar dengan menekan distorsi yang tidak diinginkan atau meningkatkan beberapa fitur gambar yang relevan untuk pemrosesan lebih lanjut. Gambar 3.5 merupakan tahapan dari pre-processing gambar dataset yang dilakukan.

Berikut merupakan penjelasan mengenai tahapan *pre-processing* yang dilakukan pada tugas akhir kali ini:

1. Image resizing

Langkah awal dari proses pre-processing adalah memastikan semua gambar dalam dataset kita memiliki ukuran yang sama. Selain itu, sama seperti sebagian besar model dari neural network lainnya, metode yang dilakukan penulis juga mengasumsikan gambar input berbentuk persegi. Jadi diperlukan pemeriksaan gambar di awal, apakah gambar sudah berbentuk persegi atau belum. Berbeda dari metode image resizing pada model neural network lainnya yang menggunakan teknik cropping untuk membuat aspek rasio gambar input menjadi persegi, penulis menggunakan metode yang sudah terdapat pada Mask R-CNN.

Gambar 3.5: Diagram Alir Pre Processing

Ukuran gambar yang penulis pilih pada tugas akhir kali ini adalah 512x512 pixel. Pemilihan ukuran gambar ini dilakukan untuk mengurangi beban dan waktu saat training data. Apabila terdapat gambar pada dataset dengan ukuran baik panjang maupun lebar lebih dari 512 pixel. maka gambar akan di down scaling sampai ukuran 512 pixel. Sebaliknya, apabila ada gambar pada dataset dengan ukuran lebih kecil dari 512 pixel maka akan dilakukan up scaling sampai gambar berukuran 512 pixel. Aspek rasio gambar yang sudah melalui proses scaling tetap dipertahankan, namun diperlukan penambahan zero padding untuk membuat gambar input menjadi persegi seperti yang diinginkan.

Gambar 3.6: Contoh Image Resizing

Gambar 3.6 merupakan salah satu contoh image resizing yang dilakukan. Gambar input (gambar sebelah kiri) mempunyai ukuran 768x1360 dengan kedalaman 3 atau mempunyai format warna RGB. Setelah mengalami image resizing (gambar sebelah kanan) ukuran gambar menjadi 290x512. Namun untuk membuat gambar memiliki aspek rasio 1:1 (berbetuk persegi) maka diperlukan penambahan zero padding pada bagian atas gambar sebesar 111 pixel dan pada bagian bawah gambar sebesar 111 pixel. Dengan penambahan padding seperti itu membuat gambar input berbentuk persegi namun tidak mengurangi informasi gambar.

2. Image Augmentation

3.5 Implementasi Alat

Alat diimplementasikan dengan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean fauci-

bus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Listing 3.1: Program halo dunia.

```
#include <iostream>

int main() {
    std::cout << "Halo Dunia!";
    return 0;
}</pre>
```

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Listing 3.2: Program perhitungan bilangan prima.

```
1 def apakahBilanganPrima(nilai):
2    if nilai > 1:
3        for i in range(2,nilai):
4        if (nilai % i) == 0:
5        return False
```

```
6 else:
7 return True
8 else:
9 return False
```

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

BAB IV PENGUJIAN DAN ANALISIS

Pada penelitian ini dipaparkan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

4.1 Skenario Pengujian

Pengujian dilakukan dengan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

4.2 Evaluasi Pengujian

Dari pengujian yang Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Tabel 4.1: Hasil Pengukuran Energi dan Kecepatan

Energi	Jarak Tempuh	Kecepatan
10 J	1000 M	$200 \mathrm{\ M/s}$
20 J	2000 M	$400 \mathrm{\ M/s}$
30 J	4000 M	$800 \mathrm{M/s}$
40 J	8000 M	$1600 \; { m M/s}$

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing sem-

per elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan hasil pengujian yang Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. sebagai berikut:

- 1. Pembuatan Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.
- 2. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa.
- 3. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.

5.2 Saran

Untuk pengembangan lebih lanjut pada Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. antara lain:

- 1. Memperbaiki Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.
- 2. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa.
- 3. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.

DAFTAR PUSTAKA

- [1] Roket luar angkasa discovery, 2021. URL https://airandspace.si.edu/explore-and-learn/topics/discovery/about.cfm.
- [2] Isaac Newton. Axioms or laws of motion. *Philosophiæ Naturalis Principia Mathematica*, 1687.

BIOGRAFI PENULIS

Elon Reeve Musk, lahir pada Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravi-

da placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

