베이지안통계학 과제7 solution

Jieun Shin

Spring 2022

문제 8-2. (15점)

- 사후확률 p₀ = 0.8618 (5점)
- 베이즈 상수 B₀₁(20) = 9.1234 (5점)
- 사후비 $\frac{p_0}{p_1}=1.0692$ (5점, 사후분포에서 구한 사후비도 정답으로 인정)

하루 동안 들르는 손님의 수 X는 평균이 θ 인 포아송 분포를 따른다. 10일 간 216명의 손님이 가게를 방문하였으므로 $\sum_{i=1}^{10} X_i = 216$ 이다. 그리고 θ 의 사전분포를 $\theta \sim Gamma(2,0.1)$ 이라 하자. $H_0: \theta > 20$ 와 $H_1: \theta \leq 20$ 을 검정해보자.

- (1) θ 의 사후분포는 $\theta|X_1,\dots,x_{10}\sim Gamma(216+2,10+0.1)$ 이 된다. $H_0:\theta>20$ 일 사후확률을 p_0 라 하자. p_0 은 θ 의 사후분포로부터 귀무가설이 발생할 확률과 같다. 즉, 계산하면 $p_0=\mathbb{P}(\theta>20|X_1,\dots,x_{10})=1-\mathbb{P}(\theta\leq 20|X_1,\dots,x_{10})=1-F_{\theta|X_1,\dots,x_{10}}(20)=1-0.1382=0.8618$. H_0 과 H_1 의 위험도를 동등하게 본다면 0.8618>0.5이므로 귀무가설을 채택한다.
- (2) 대립가설이 발생할 사후확률을 p_1 라 하자. 그리고 귀무가설이 발생할 사전확률을 π_0 , 대립가설이 발생할 사후확률을 π_1 라 하자. 여기서 $p_0+p_1=1,\pi_0+\pi_1=1$ 을 만족한다. 베이즈 상수 $B_{01}(x)$ 는 $B_{01}(x)=\frac{p_0/p_1}{\pi_0/\pi_1}$ 로 나타내어진다.

사전확률이 $\pi_0 = \mathbb{P}(\theta > 20) = 1 - F_{\theta}(20) = 1 - 0.5940 = 0.4060$ 이므로 베이즈상수는 $B_{01}(20) = \frac{0.8618/0.1382}{0.4060/0.5940} = 9.1234$ 이다. 즉, 자료관측 이후 H_1 에 대한 H_0 의 지지도가 사전확률에 비해 사후확률이 9.1234배 상승했다.

(3) 사전분포로 $\theta^* \sim Gamma(15,1)$ 을 고려하자. 이 때 θ^* 의 사전분포를 각 π_0^*, π_1^* 라 하자. 그러면 $\pi_0^* = \mathbf{P}(\theta^* > 20) = 1 - F_{\theta^*}(20) = 1 - 0.8951 = 0.1049$ 이므로 사후비는 $\frac{p_0}{p_1} = B_{01}(20)\frac{\pi_0^*}{\pi_1^*} = 9.1234 \times \frac{0.1049}{0.8951} = 1.0692$ 이다.

문제 8-3. (10점)

- 사후확률 p₀ = 0.8507 (10점)
- 부분점수: 베이즈 상수가 옳은 경우 5점, m₁ 값만 옳은 경우 2점.

관측된 데이터는 $X|\theta \sim B(30,\theta)$ 를 따르고 합성 사전분포 $\pi(\theta)$ 는 $\theta=3/16$ 일 때 $0.5, \theta \neq 3/16$ 일 때 $0.5g(\theta)$ 를 따른다. 다음의 가설 $H_0: \theta=3/16$ 과 $H_1: \theta \neq 3/16$ 을 검정하자.

귀무가설이 발생할 사후확률은 $p_0=rac{\pi_0 f(x| heta_0)}{\pi_0 f(x| heta_0)+\pi_1\int_{ heta
eq heta_0}f(x| heta)g(heta)d heta}$ 이다. 여기서 $m_1(x):=\int_{ heta
eq heta_0}f(x| heta)g(heta)d heta$ 라 놓으면 $p_0=rac{\pi_0 f(x| heta)}{\pi_0 f(x| heta)+\pi_1 m_1(x)}$ 이다.

문제에 의해 x=5이므로 $\pi_0=\pi_1=0.5, f(5|\theta_0=\frac{3}{16})=\binom{30}{5}\left(\frac{3}{16}\right)^5\left(\frac{13}{16}\right)^{25},$ 그리고 $m_1(x)=\int_{\theta}\theta^5(1-\theta)^{25}d\theta=\frac{\Gamma(6)\Gamma(26)}{\Gamma(6+26)}$ (베타분포 pdf이용)이다.

사후확률 식에 대입하면 $p_0=\frac{\pi_0f(x|\theta_0)}{\pi_0f(x|\theta_0)+\pi_1m_1(x)}=0.8507$ 이다. H_0 과 H_1 의 위험도를 동등하게 본다면 0.8507>0.5이므로 귀무가설을 채택한다.

또는 사후확률을 베이즈 상수를 이용하여 $p_0=\frac{\pi_0 f(x|\theta_0)}{\pi_0 f(x|\theta_0)+\pi_1 m_1(x)}=\frac{B_{01}}{B_{01}+1}=\frac{5.6988}{5.6988+1}=0.8507$ 로 계산할 수 있음.