

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICS 0625/62

Paper 6 Alternative to Practical

October/November 2012

1 hour

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
Total	

This document consists of 12 printed pages.

1 The IGCSE class is carrying out refraction experiments using a rectangular glass block and optical pins.

For Examiner's Use

(a) In the middle of the space below, draw a line, 10 cm long, across the page and label it AB. This line represents one side of the glass block.

[1]

(b) Draw a normal to this line at the centre of AB.

[1]

- (c) Draw a line at 30° to the normal to represent an incident ray. This line should be at least 6 cm long. Label this line EF. [1]
- (d) Mark the positions of two pins P₁ and P₂ on line EF. They should be positioned at suitable places on the line in order carry out a ray-tracing experiment as accurately as possible.
 [1]

(e)	A student finds that his completed results from the refraction experiment do not quite match the theory. The student carried out the experiment correctly and with reasonable care.	For Examiner's Use
	Suggest a practical reason why the results could differ slightly from the results expected from the theory.	
	[1]	
	[Total: 5]	

2 An IGCSE class is investigating the rate of cooling of water.

The apparatus is shown in Fig. 2.1.

For Examiner's Use

Fig. 2.2

(a) Record room temperature $\theta_{\rm R}$ as shown on the thermometer in Fig. 2.2.

$$\theta_{\mathsf{R}}$$
 =[2]

(b) A student pours 200 cm 3 of hot water into a beaker. She records the temperature θ_0 of the water.

She starts a stopclock and records the temperature θ_1 of the water at time t = 100 s.

$$\theta_1 = \frac{72 \, ^{\circ}\text{C}}{}$$

(i) Calculate the temperature difference $\theta_{\rm A}$ between θ_0 and room temperature $\theta_{\rm R}$ using the equation $\theta_{\rm A}$ = $(\theta_0 - \theta_{\rm R})$.

$$\theta_{A} = \dots$$

(ii) Calculate the temperature fall $\theta_{\rm H}$ of the hot water using the equation $\theta_{\rm H}$ = $(\theta_0 - \theta_1)$.

$$\theta_{\mathsf{H}}$$
 =

[1]

For Examiner's Use

(c)	The student empties the beaker. She pours 100 cm ³ of hot water into the beaker, adds 100 cm ³ of cold water to the beaker, and stirs.										
	She	records the te	emperature $ heta_2$ o	f the	warm v	vater.					
						θ_2	=		59°C		
	She	starts the sto	pclock and reco	rds tl	ne temp	oeratu	e^{θ_3} o	f the wa	ater at ti	me <i>t</i> =	100s.
						θ_3	=		44°C		
			temperature dif $\theta_{\rm B} = (\theta_2 - \theta_{\rm R})$.	feren	ice $ heta_{B}$ b	etwe	en $ heta_2$ ar	nd room	tempe	rature	$ heta_{R}$ using
						θ_{B}	=				
	(ii)	Calculate the $\theta_{\rm W} = (\theta_2 - \theta_3)$	e temperature).	fall	θ_{W} of	the	warm	water	using	the e	equation
						θ_{W}	=				[1]
(d)	betw $\frac{\theta_{A}}{\theta_{H}} =$	ween the start $=\frac{\theta_{\rm B}}{\theta_{\rm W}}$.	ests that the rate ting temperatur results support	e and	d room	temp	perature	e. This	can be	expre	ssed as
	state	ement									
	justi	fication				•••••					
											[2]
(e)		s experiment rol the condition	were to be repe ons.	ated	in orde	r to c	heck re	sults, it	would b	oe imp	ortant to
	Sug	gest two such	conditions that	shou	ıld be c	ontrol	lled.				
	2					•••••					[2]
											[Total: 8]

3 The IGCSE class is investigating current and potential difference using identical lamps in a circuit.

For Examiner's Use

The circuit is shown in Fig. 3.1.

Fig. 3.1

- (a) On Fig. 3.1, draw the symbol for a voltmeter connected to measure the potential difference *V* across the combination of lamps. [1]
- **(b)** On Fig. 3.2, draw a pointer showing the voltmeter reading V = 1.9 V.

Fig. 3.2

[1]

(c) (i) A student measures the current at positions 1, 2 and 3 in the circuit. Record the current at each position as shown on the ammeters in Fig. 3.3.

	(ii)	Calculate the total current $I_{\rm C}$ in the combination of lamps using the equation $I_{\rm C} = I_2 + I_3$.	For Examiner's Use
	/:::\	$I_{\rm C} =$	
	(iii)	Theory indicates that $I_1 = I_C$. Suggest why a student may find the two values to be different in this experiment.	
		[1]	
(d)		student decides to investigate the effect of changing the current I_1 , using a variable stor (rheostat).	
		ne space below, copy the diagram shown in Fig. 3.1, but with the addition of a variable stor connected at a suitable position for the investigation.	
		[2]	
(e)		sudent sets up the circuit as shown in Fig. 3.1. Neither of the two lamps in series vs. He suspects that one of the lamps is faulty.	
	Sug	gest how the apparatus may be used to find out which lamp is faulty.	
		[1]	
		[Total: 7]	

4 The IGCSE class is determining the focal length of a lens.

The apparatus is shown in Fig. 4.1.

Fig. 4.1

A student places a lens at a distance $u = 30.0 \,\mathrm{cm}$ from an illuminated object. She moves the screen until a sharply focused image of the object is seen on the screen.

She measures the distance v between the centre of the lens and the screen. She calculates d, using the equation d = u + v.

She repeats the procedure using a range of values of u. The values of u, v and d are shown in Table 4.1.

Table 4.1

u/cm	v/cm	uv/	d/
30.0	29.8		59.8
45.0	22.0		67.0
50.0	21.8		71.8
55.0	21.0		76.0
60.0	19.9		79.9

- (a) (i) Calculate the value of *uv* for each set of readings and enter the values in the table.
 - (ii) Complete the column headings in the table by inserting the units for *uv* and *d*.

[2]

(b) Complete the labelling of the axes below, and plot the graph using data from the table. You do **not** need to begin the axes at the origin (0,0).

For Examiner's Use

uv/

d/

[4]

- (c) The gradient of the graph is numerically equal to the focal length of the lens.
 - (i) Determine the gradient *G* of the graph. Show clearly on the graph how you obtained the necessary information.

(ii) State a value for the focal length *f* of the lens, giving your answer to a suitable number of significant figures for this experiment.

$$f = \dots [2]$$

[Total: 10]

5 The IGCSE class is investigating a pendulum.

The apparatus is shown in Fig. 5.1.

For Examiner's Use

Fig. 5.1

(a) On Fig. 5.1, measure the length l of the pendulum.

$$l = \dots [1]$$

(b) The diagram is drawn 1/5th actual size.

Calculate the actual length *L* of the pendulum.

[2]

(c)	the centre of		b. Describe how y	ou would judg	m mark is vertically below ge that the 50.0 cm mark is v a diagram.	For Examiner's Use
					[1]	
(d)	He releases of the pendu	rule. He has move the pendulum bob	ed the pendulum loo, then measures	bob a horizont the time <i>t</i> tak	ertically above the 52.0 cm ral distance $d = 2.0$ cm. en for 12 complete swings d values. The values of d	
			Table 5.1			
		d/	<i>t</i> /	T/		
		2.0	17.4			
		3.0	17.6			
		4.0	17.2			
		5.0	17.3			
		6.0	17.5			
	table. Th		time taken for one	e complete sw	f <i>d</i> . Enter the values in the ing of the pendulum. [2]	
(e)	Using the ev	idence in the tab	le, describe the	effect on the p	period <i>T</i> of increasing the	
` ,	-	ustify your answer			, and the second	
	description					
	justification					

For Examiner's Use	Suggest why the student measures the time taken for twelve swings of the pendulum rather than for one swing.	(f)
	[1]	
	[Total: 10	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.