BACALAUREAT 2006 SESIUNEA SPECIALĂ

M1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

SUBIECTUL I

- a) Să se determine $a, b \in \mathbb{R}$, astfel încât punctele A(1,6) și C(6,1) să se afle pe dreapta de ecuație x + ay + b = 0.
- b) Să se calculeze lungimea segmentului cu capetele în punctele P(5,6,7) și Q(6,5,7).
- c) Să se calculeze suma ctg(-2) + ctg(-1) + ctg(1) + ctg(2).
- d) Să se determine $a, b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $\frac{2-3i}{3-2i} = a+bi$.
- e) Să se calculeze distanța de la punctul B(3,3) la dreapta de ecuație x+y-7=0.
- f) Să se calculeze aria triunghiului cu vârfurile în punctele A(1,6), B(3,3) și C(6,1).

SUBIECTUL II

- 1. a) Să se calculeze suma $\hat{3} + \hat{4} + \hat{5} + \hat{8} + \hat{7} + \hat{9}$ în grupul $(\mathbb{Z}_{12}, +)$.
 - b) Să se determine simetricul față de înmulțire al elementului $\hat{7} \in \mathbb{Z}_{12}$.
 - c) Să se determine inversa funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x 3$.
 - d) Să se rezolve în \mathbb{R} ecuația $25^x = 5$.
 - e) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $n^3 < 2^n$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-5x}$.
 - a) Să se calculeze $f'(x), x \in \mathbb{R}$.
 - **b)** Să se calculeze $\int_0^1 f(x) dx$.
 - c) Să se calculeze $\lim_{x\to 1} \frac{f(x) f(1)}{x-1}$.
 - d) Să se arate că funcția f este convexă pe \mathbb{R} .
 - e) Să se calculeze $\lim_{x\to\infty}\int_0^x f(t)\ dt$.

SUBIECTUL III

Se consideră mulțimea M formată din toate matricele cu 3 linii și 3 coloane, fiecare matrice din M având numai elemente distincte din mulțimea $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

- a) Să se verifice că $\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \in M$ și că $\begin{pmatrix} 1 & 1 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \notin M$.
- **b)** Să se calculeze determinantul matricei $\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$.
- c) Să se găsească o matrice $A \in M$, astfel încât $\det(A) \neq 0$.
- d) Să se arate că, dacă $B \in M$ este o matrice inversabilă, atunci $B^{-1} \notin M$.
- e) Să se arate că dacă $D \in M$, atunci rang $(D) \in \{2, 3\}$.

- f) Să se determine numărul elementelor mulțimii M.
- g) Să se arate că mulțimea M conține cel puțin 18 matrice cu determinantul egal cu 0.

SUBIECTUL IV

Se consideră șirurile
$$(a_n)_{n\geq 2}$$
 și $(b_n)_{n\geq 2}$, definite prin
$$a_n = \sqrt{2+\sqrt[3]{3+\ldots+\sqrt[n-1]{n-1}+\sqrt[n]{n}}}, \ b_n = \sqrt{2+\sqrt[3]{3+\ldots+\sqrt[n-1]{n-1}+\sqrt[n]{n+2}}}, \ (\forall) \ n\in\mathbb{N}, \ n\geq 2.$$

- a) Să se verifice că $a_n < b_n$, (\forall) $n \in \mathbb{N}$, $n \geq 2$.
- Să se calculeze a_2 și b_2 .
- Să se arate că $a_4 > 1, 9$.
- Utilizând metoda inducției matematice, să se arate că $2^{n+1} > n+3$, (\forall) $n \in \mathbb{N}$, $n \geq 2$.
- Să se arate că șirul $(a_n)_{n\geq 2}$ este strict crescător și șirul $(b_n)_{n\geq 2}$ este strict descrescător.
- Să se arate că șirurile $(a_n)_{n\geq 2}$ și $(b_n)_{n\geq 2}$ sunt convergente.
- g) Să se arate că șirurile $(a_n)_{n\geq 2}$ și $(b_n)_{n\geq 2}$ au aceeași limită și limita lor este un număr din intervalul (1,9;2).

SESIUNEA IUNIE-IULIE

M1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

SUBIECTUL I

- a) Să se calculeze distanța dintre punctele A(2,1,-2) și B(3,-3,1).
- **b)** Să se determine raza cercului $(x-2)^2 + (y+2)^2 = 16$.
- c) Să se determine ecuația tangentei la parabola $y^2 = 5x$ în punctul P(5,5).
- **d)** Să se calculeze modulul numărului complex $\frac{5-2i}{2-5i}$.
- e) Să se calculeze aria unui triunghi cu vârfurile în punctele M(2,3), N(2,-2) și P(3,2).
- f) Să se afle $a, b \in \mathbb{R}$ astfel încât să se verifice egalitatea de numere complexe $\left(\cos \frac{3\pi}{10} + i \sin \frac{3\pi}{10}\right)^{10} = a + ib$.

SUBIECTUL II

- 1. a) Să se calculeze suma primilor 8 termeni dintr-o progresie aritmetică în care primul termen este 1 și rația este 3.
 - b) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $2^n \le 3 + \log_2 n$.
 - c) Să se calculeze suma elementelor din grupul $(\mathbb{Z}_{11}, +)$.
 - **d)** Să se calculeze expresia $E = C_5^1 C_5^2 + C_5^3 C_5^4$.
 - e) Să se rezolve în mulțimea numerelor reale ecuația $x^3 x^2 + x 1 = 0$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^{2006} + 1.$
 - a) Să se calculeze $f'(x), x \in \mathbb{R}$.
 - **b)** Să se calculeze $\int_0^1 f(x) dx$.
 - c) Să se arate că funcția f este convexă pe \mathbb{R} .
 - **d)** Să se calculeze $\lim_{x\to 0} \frac{f(x) f(0)}{x}$.
 - e) Să se calculeze $\lim_{n\to\infty}\frac{1}{n}\int_0^n\sin x\ dx$.

SUBIECTUL III

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ și $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Convenim că $\operatorname{rang}(O_2) = 0$.

- a) Să se calculeze determinanții matricelor J și I_2 .
- b) Să se calculeze matricea J^2 .
- c) Să se arate că, dacă $A \in \mathcal{M}_2(\mathbb{C}), A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, atunci $A^2 (a+d)A + (ad-bc)I_2 = O_2$.
- d) Să se găsească o matrice $M \in \mathscr{M}_2(\mathbb{C})$ pentru care $\operatorname{rang}(M) \neq \operatorname{rang}(M^2)$.
- e) Să se arate că, dacă matricea $B \in \mathscr{M}_2(\mathbb{C})$ este inversabilă, atunci matricea B^n este inversabilă, (\forall) $n \in \mathbb{N}^*$.
- f) Utilizând eventual metoda inducției matematice, să se arate că, dacă matricea $C = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \mathscr{M}_2(\mathbb{C})$ nu este inversabilă, atunci $C^n = (p+s)^{n-1}C$, (\forall) $n \in \mathbb{N}^*$.

g) Să se arate că, dacă matricea $D \in \mathcal{M}_2(\mathbb{C})$ verifică $\operatorname{rang}(D) = \operatorname{rang}(D^2)$, atunci $\operatorname{rang}(D) = \operatorname{rang}(D^n)$, $(\forall) \ n \in \mathbb{N}^*$.

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x - \ln(e^x + 1)$ și șirul $(a_n)_{n \ge 1}$, definit prin $a_n = \frac{1}{e+1} + \frac{1}{e^2 + 1} + \ldots + \frac{1}{e^n + 1}$, $(\forall) \ n \in \mathbb{N}^*$.

- a) Să se verifice că $f'(x) = \frac{1}{e^x + 1}, x \in \mathbb{R}$.
- b) Să se arate că funcția f' este strict descrescătoare pe \mathbb{R} .
- c) Utilizând teorema lui Lagrange, să se arate că (\forall) $k \in [0, \infty)$, există $c \in (k, k+1)$, astfel încât $f(k+1) f(k) = \frac{1}{e^c + 1}$.
- **d)** Să se arate că $\frac{1}{e^{k+1}+1} < f(k+1) f(k) < \frac{1}{e^k+1}, \ (\forall) \ k \in [0,\infty).$
- e) Să se arate că șirul $(a_n)_{n\geq 1}$ este strict crescător.
- f) Să se arate că $f(n+1) f(1) < a_n < f(n) f(0), (\forall) n \in \mathbb{N}^*.$
- **g**) Să se arate că șirul $(a_n)_{n\geq 1}$ este convergent și are limita un număr real din intervalul $\left[\ln\left(1+\frac{1}{e}\right), \ln 2\right]$.

M1

Filiera teoretică, specializarea Științe ale naturii; Filiera tehnologică, profil Tehnic, toate specializările

SUBIECTUL I

- a) Să se calculeze modulul numărului complex 2-i.
- b) Să se calculeze lungimea segmentului cu capetele în punctele A(-1,4) și C(4,-1).
- c) Să se calculeze suma de numere complexe $S = i + i^4 + i^7 + i^{10}$.
- d) Să se determine $a, b \in \mathbb{R}$, astfel încât punctele A(-1,4) şi C(4,-1) să fie pe dreapta de ecuație x+by+a=0.
- e) Să se calculeze aria triunghiului cu vârfurile în punctele A(-1,4), B(2,2) și C(4,-1).
- **f)** Să se determine $a, b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $\frac{5+6i}{6-5i} = a+bi$.

SUBIECTUL II

- 1. a) Să se calculeze determinantul $\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$.
 - **b)** Să se calculeze rangul matricei $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.
 - c) Să se rezolve în mulțimea numerelor reale strict pozitive ecuația $\log_3 x = -1$.
 - d) Să se rezolve în mulțimea numerelor reale ecuația $9^x 27 = 0$.
 - e) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $n^3 < 2^n$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 + 2x 2$.
 - a) Să se calculeze $f'(x), x \in \mathbb{R}$.
 - **b)** Să se calculeze $\int_0^1 f(x) dx$.
 - c) Să se calculeze $\lim_{x\to 0} \frac{f(x) f(0)}{x}$.
 - d) Să se arate că funcția f este strict crescătoare pe \mathbb{R} .
 - e) Să se calculeze $\lim_{n\to\infty} \frac{7n^2+3}{3n^2-2}$.

SUBIECTUL III

Se consideră numărul real $\omega=1+\sqrt{2}$ și mulțimea $H=\{a+b\sqrt{2}\,|\,a,b\in\mathbb{Z}\}$. Notăm $\overline{\omega}=1-\sqrt{2}$ și cu $G=\{z\in H\,|\,(\exists)y\in H \text{ astfel încât }y\cdot z=1\}$.

5

- a) Să se verifice că $0 \in H$, $1 \in H$, $\omega \in H$ și $\overline{\omega} \in H$.
- **b)** Să se verifice că $\omega^2 = 2\omega + 1$.
- c) Să se arate că, dacă $z, y \in H$, atunci $z + y \in H$ și $z \cdot y \in H$.
- **d)** Să se arate că $\omega \cdot (-\overline{\omega}) = 1$.
- e) Să se arate că $\omega \in G$.
- \mathbf{f}) Să se arate că mulțimea G are cel puțin 2006 elemente.
- g) Să se arate că $\omega^{2006} \notin \mathbb{Q}$.

SUBIECTUL IV

Se consideră funcțiile $f, g: (0, \infty) \to \mathbb{R}, f(x) = e^x$ și $g(x) = \frac{1}{x}$

- a) Să se calculeze f'(x) şi g'(x), $x \in (0, \infty)$.
- **b)** Să se calculeze $\int_1^2 f^2(x) dx$.
- c) Să se calculeze $\int_1^2 g^2(x) \ dx$.
- d) Să se determine ecuația asimptotei verticale la graficul funcției g.
- e) Să se arate că $t^2e^{2x} 2t\frac{e^x}{x} + \frac{1}{x^2}$, (\forall) $t \in \mathbb{R}$, (\forall) x > 0.
- **f)** Integrând inegalitatea de la punctul **e)** , să se arate că $t^2 \int_1^2 e^{2x} \ dx 2t \int_1^2 \frac{e^x}{x} \ dx + \int_1^2 \frac{1}{x^2} \ dx \ge 0$, (\forall) $t \in \mathbb{R}$.
- $\mathbf{g)} \quad \text{Să se arate că} \left(\int_1^2 \frac{e^x}{x} \ dx \right)^2 \leq \int_1^2 e^{2x} \ dx \cdot \int_1^2 \frac{1}{x^2} \ dx.$

Filiera tehnologică: profil: Servicii, toate specializările, profil Resurse naturale și protecția mediului, toate specializările

SUBIECTUL I

- a) Să se calculeze distanța de la punctul A(0,2) la punctul B(2,0).
- **b)** Să se calculeze $\cos^2 101 + \sin^2 101$.
- c) Să se calculeze aria unui triunghi echilateral cu latura de lungime 6.
- d) Să se calculeze conjugatul numărului complex 2 + 5i.
- e) Să se determine $a, b \in \mathbb{R}$ astfel încât punctele A(0,2) și B(2,0) să fie pe dreapta de ecuație x + ay + b = 0.
- f) Dacă în triunghiul ABC, AB = 8, AC = 8 și $m(\triangleleft BAC) = \frac{\pi}{2}$, să se calculeze BC.

SUBIECTUL II

- **1.** a) Să se calculeze determinantul $\begin{vmatrix} 10 & 5 \\ 4 & 2 \end{vmatrix}$.
 - b) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $4^n < 20$.
 - c) Să se rezolve în mulțimea numerelor reale ecuația $4^x 4 = 0$.
 - d) Să se rezolve în mulțimea numerelor reale strict pozitive ecuația $\log_9 x = 1$.
 - e) Să se calculeze expresia $E = C_7^2 C_7^2$.
- **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\frac{1}{x^2+3}$
 - a) Să se calculeze $f'(x), x \in (0, \infty)$.
 - **b)** Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
 - c) Să se arate că funcția f este strict descrescătoare pe intervalul $(0, \infty)$.
 - **d)** Să se calculeze $\int_{1}^{2} f'(x) dx$.
 - e) Să se calculeze $\lim_{n\to\infty} \frac{2n+3}{3n+2}$

SUBIECTUL III

Se consideră polinoamele $f = X^2 + 5X + 7$ și $g = X^2 + 5X + 6$.

- a) Să se determine rădăcinile complexe ale polinomului f.
- b) Să se rezolve în mulțimea numerelor reale inecuația $x^2 + 5x + 6 < 0$.
- c) Să se verifice identitatea $\frac{1}{g(n)} = \frac{1}{n+2} \frac{1}{n+3}$, (\forall) $n \in \mathbb{N}^*$.
- **d)** Să se calculeze suma $\frac{1}{g(1)} + \frac{1}{g(2)} + \ldots + \frac{1}{g(2006)}$.
- e) Să se verifice că $f = \left(X + \frac{5}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2$.
- f) Să se arate că pentru orice două polinoame $s, t \in \mathbb{R}[X]$, avem relația $g \neq s^2 + t^2$.

7

g) Să se găsească două polinoame $u, v \in \mathbb{C}[X]$, astfel încât să avem $g = u^2 + v^2$.

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$.

- a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- **b)** Să se verifice că f(x) > 0, (\forall) $x \in \mathbb{R}$ și f'(x) > 0, (\forall) $x \in \mathbb{R}$.
- c) Să se determine ecuația asimptotei către $-\infty$ la graficul funcției f.
- **d)** Să se calculeze $\int_0^1 f(x) \ dx$.
- e) Să se arate că funcția f este strict crescătoare pe \mathbb{R} .
- f) Să se rezolve în \mathbb{R} ecuația f(x) + f(x+1) = 1 + e.
- g) Să se arate că există două funcții $g: \mathbb{R} \to \mathbb{R}$ și $h: \mathbb{R} \to \mathbb{R}$, strict crescătoare, astfel încât f(x) = g(x) h(x), (\forall) $x \in \mathbb{R}$.

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- a) Să se rezolve în mulțimea numerelor reale ecuația $x^2 + 7x 8 = 0$.
- b) Să se rezolve în mulțimea numerelor reale inecuația $x^2 + 7x 8 < 0$.
- c) Să se rezolve în mulțimea numerelor reale și strict pozitive ecuația $\log_3 x = 3$.
- d) Să se rezolve în multimea numerelor reale ecuația $5^x = 125$.
- e) Dacă $\frac{1}{11} = 0, a_1 a_2 \dots a_n \dots$, să se calculeze a_{2006} .
- f) Să se determine cel mai mare număr real a pentru care funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 6x + 1$ este strict descrescătoare pe intervalul $(-\infty, a]$.

SUBIECTUL II

- **1.** a) Să se determine toate numerele $n \in \mathbb{N}^*$, care verifică relația $n! \leq 100$.
 - b) Să se scrie toate elementele din mulțimea {10, 11, 12, ..., 35} care se divid cu 5.
 - c) Dacă $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}, C = \{6, 7, 8\},$ să se determine mulțimea $A \cup (B \cap C)$.
 - d) Să se calculeze produsul primelor 10 zecimale ale numărului $\sqrt{170}$.
 - e) Să se scrie toate elementele din şirul C_4^0 , C_4^1 , C_4^2 , C_4^3 , C_4^4 care se divid cu 3.
- 2. Se consideră triunghiurile asemenea ABC și DEF astfel încât $\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = \sqrt{3}$.
 - a) Să se calculeze raportul dintre perimetrul triunghiului ABC și perimetrul triunghiului DEF.
 - b) Să se calculeze aria triunghiului DEF, știind că aria triunghiului ABC este egală cu 10.
 - c) Dacă înălțimea din A a triunghiului ABC are lungimea 7, să se calculeze lungimea înălțimii din D a triunghiului DEF.
 - d) Dacă măsura unghiului A al triunghiului ABC este 50° , să se calculeze măsura unghiului D al triunghiului DEF.
 - e) Dacă lungimea laturii AC este 10, să se calculeze lungimea laturii DF.

SUBIECTUL III

Într-un plan se consideră un triunghi ABC şi L un punct pe segmentul (BC). Înălțimea din vârful A al triunghiului ABC cade în $K \in (BL)$. Se mai consideră patrulaterul convex MNPQ, iar R şi S sunt mijloacele diagonalelor MP şi NQ.

- a) Să se arate că $AL^2 = AK^2 + KL^2$
- b) Să se arate că $AL^2 = AB^2 + BL^2 2BK \cdot BL$.
- c) Să se arate că $AC^2 = AB^2 + BC^2 2BK \cdot BC$.
- d) Utilizând relațiile de la punctele b) și c), să se arate că $AL^2 \cdot BC = AB^2 \cdot LC + AC^2 \cdot LB BL \cdot CL \cdot BC$.
- e) Să se arate că, dacă D este mijlocul laturii BC, atunci $4AD^2 = 2(AB^2 + AC^2) BC^2$.
- **f)** Să se arate că $4SR^2 = 2MS^2 + 2SP^2 MP^2$.
- g) Utilizând relația de la punctul e) în triunghiurile MNQ și PNQ și relația de la punctul f), să se arate că: $4SR^2 = MN^2 + NP^2 + PQ^2 + QM^2 (MP^2 + QN^2).$

9

SUBIECTUL IV

Se consideră mulțimea $A = \{3^i, 2 \cdot 3^i \mid i \in \mathbb{N}\}$. Pentru fiecare submulțime finită și nevidă a mulțimii A, considerăm suma tuturor elementelor sale, iar rezultatele acestor sume vor forma o mulțime pe care o notăm cu B. (De exemplu $1 \in B$, deoarece $\{1\} \subset A$, iar $7 \in B$, deoarece $\{1,6\} \subset A$).

- a) Să se verifice că $1 \in A$, $2 \in A$, $3 \in A$ și $6 \in A$.
- b) Să se verifice că $4 \notin A$ și $7 \notin A$.
- c) Să se arate că $4 \in B$ și $5 \in B$.
- d) Să se arate că, dacă $n \in B$, atunci $3n \in B$.
- e) Să se calculeze numărul de elemente din mulțimea $A \cap \{1, 2, 3, \dots, 20\}$.
- f) Să se arate că, dacă $n \in \mathbb{N}^*$, atunci există $p \in \mathbb{N}$, astfel încât $3^p \le n < 3^{p+1}$.
- g) Să se arate că $n \in B$, (\forall) $n \in \mathbb{N}^*$.

SESIUNEA AUGUST

M1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

SUBIECTUL I

- a) Să se calculeze modulul numărului complex $(2+3i)^2$.
- Să se calculeze distanța de la punctul C(-1, -1) la dreapta x + y = 0.
- Să se determine ecuația tangentei la hiperbola $\frac{x^2}{5} \frac{y^2}{4} = 1$, dusă prin punctul P(-5,4).
- Să se determine a > 0, astfel încât punctul P(-4, -3) să se afle pe cercul $x^2 + y^2 = a$.
- Să se calculeze aria triunghiului cu vârfurile în punctele A(-3,3), B(-5,5) și C(-1,-1).
- Să se calculeze produsul (tg 1° tg 7°) · (tg 2° tg 6°) · . . . · (tg 7° tg 1°).

SUBIECTUL II

- a) Să se rezolve în mulțimea numerelor reale ecuația $25^x + 4 \cdot 5^x 5 = 0$.
 - **b)** Să se calculeze expresia $C_6^1 C_6^2 + C_6^4$.
 - c) Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este $f(x) = x^4 x$, să se calculeze $(f \circ f)(0)$.
 - d) Să se calculeze probabilitatea ca un element $n \in \{1, 2, ..., 5\}$, să se verifice relația $3^n \ge 8n$.
 - e) Să se calculeze suma elementelor din grupul $(\mathbb{Z}_{18}, +)$.
- Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = 1 + \ln(x^2 + 1)$
 - a) Să se calculeze $f'(x), x \in \mathbb{R}$.
 - **b)** Să se calculeze $\int_{a}^{1} f'(x) dx$.
 - c) Să se determine intervalele de monotonie ale funcției f.

 - d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.

 e) Să se calculeze $\lim_{n \to \infty} \frac{\sin n \cos n}{n}$

SUBIECTUL III

Se consideră matricele $E = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $F = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{5} \end{pmatrix}$ şi $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ şi mulţimile $H = \{X \in \mathcal{M}_2(\mathbb{R}) \mid X^2 = X\}$ şi $M = \{aA + bB + cC + dD \mid (\forall) \ a, b, c, d \in \mathbb{R}; (\forall) \ A, B, C, D \in H\}.$

- a) Să se verifice că $E \in H$ şi $I_2 \in H$.
- Să se găsească o matrice $P \in H$, astfel încât rang(P) = 1 și o matrice $Q \in H$, astfel încât rang(Q) = 2.
- Să se verifice că, (\forall) $a, b \in \mathbb{R}$ matricele $\begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix}$ şi $\begin{pmatrix} 1 & 0 \\ b & 0 \end{pmatrix}$ sunt din mulţimea H.
- Să se arate că, dacă $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H$, atunci $a + d \in \{0, 1, 2\}$.
- Să se arate că, dacă $B \in H$ este o matrice inversabilă, atunci $B = I_2$.
- Să se arate că $M = \mathcal{M}_2(\mathbb{R})$.

g) Să se arate că matricea F nu se poate scrie ca o sumă finită de matrice din mulțimea H.

SUBIECTUL IV

Se consideră funcțiile continue $f:[a,b]\to\mathbb{R}$ și $g:[a,b]\to\mathbb{R}$ și funcția $h:[0,1]\to\mathbb{R},\ h(x)=\sqrt{1-x^9},$ unde $a,b\in\mathbb{R},\ a< b.$

- a) Să se arate că $h(x) \ge 1 x^9$, $(\forall) x \in [0, 1]$.
- **b)** Să se calculeze $\int_0^1 h^2(x) dx$.
- c) Să se verifice că $t^2f^2(x) 2tf(x)g(x) + g^2(x) \ge 0$, $(\forall) \ t \in \mathbb{R}$ și $(\forall) \ x \in [a, b]$.
- d) Integrând inegalitatea de la punctul c), să se arate că $t^2 \int_a^b f^2(x) \ dx 2t \int_a^b f(x)g(x) \ dx + \int_a^b g^2(x) \ dx \ge 0$, $(\forall) \ t \in \mathbb{R}$.
- e) Să se deducă inegalitatea $\left(\int_a^b f(x)g(x)\ dx\right)^2 \le \left(\int_a^b f^2(x)\ dx\right) \cdot \left(\int_a^b g^2(x)\ dx\right)$.
- f) Utilizând inegalitatea de la punctul e) să se arate că, dacă $u:[0,1]\to\mathbb{R}$ este o funcție continuă, atunci $\left(\int_0^1 u(x)\ dx\right)^2 \le \int_0^1 u^2(x)\ dx.$
- g) Să se arate că aria suprafeței plane cuprinsă între graficul funcției h, axa Ox și dreptele x = 0 și x = 1, este un număr real din intervalul (0, 90; 0, 95).

M1

Filiera teoretică, specializarea Științe ale naturii; Filiera tehnologică, profil Tehnic, toate specializările

SUBIECTUL I

- a) Să se calculeze modulul numărului complex -7 + 3i.
- b) Să se calculeze lungimea segmentului cu capetele în punctele A(2,1) și C(1,2).
- c) Să se calculeze suma $S=1+z^3+z^6+z^9$, unde $z=-i\in\mathbb{C}$.
- **d)** Să se determine $a, b \in \mathbb{R}$, astfel încât punctele A(2,1) și C(1,2) să fie pe dreapta de ecuație x + ay + b = 0.
- e) Să se calculeze aria triunghiului cu vârfurile în punctele A(2,1), B(1,1) şi C(1,2).
- **f)** Să se determine $a, b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $\frac{2+5i}{5-2i} = a+bi$.

SUBIECTUL II

- **1.** a) Să se calculeze elementul $\hat{3}^{2006}$ în (\mathbb{Z}_6,\cdot) .
 - **b)** Să se calculeze expresia $E = C_9^3 C_9^6 + C_9^9$
 - c) Să se rezolve în mulțimea numerelor reale strict pozitive ecuația $\log_4 x = -1$.
 - d) Să se rezolve în mulțimea numerelor reale ecuația $8^x 2 = 0$.
 - e) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $2^n \le 22$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 + 2x + 1$.
 - a) Să se calculeze $f'(x), x \in \mathbb{R}$
 - **b)** Să se calculeze $\int_0^1 f(x) dx$.
 - c) Să se calculeze $\lim_{x\to 0} \frac{f(x) f(0)}{x}$.
 - d) Să se arate că funcția f este strict crescătoare pe \mathbb{R} .
 - e) Să se calculeze $\lim_{n\to\infty} \frac{3n+3}{2n-3}$

SUBIECTUL III

Se consideră M mulțimea matricelor cu două linii și două coloane și toate elementele numere naturale și matricele $E = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

13

- a) Să se verifice că $E \in M$ și că $I_2 \in M$.
- b) Să se arate că, dacă $A, B \in M$, atunci $A + B \in M$.
- c) Să se arate că, dacă $A, B \in M$, atunci $A \cdot B \in M$.
- d) Să se găsească o matrice $C \in M$, astfel încât rang(C) = 1.
- e) Să se găsească o matrice $D \in M$, astfel încât $\det(D) = 2006$.
- f) Să se arate că matricea E este inversabilă și $E^{-1} \notin M$.
- g) Să se determine toate matricele $X \in M$, inversabile, cu proprietatea că $X^{-1} \in M$.

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = e^{x^2}$.

a) Să se calculeze $f'(x), x \in \mathbb{R}$.

- **b)** Să se arate că, dacă $x \in [1, e]$, atunci $(x 1) \left(\frac{1}{x} \frac{1}{e}\right) \ge 0$.
- c) Utilizând inegalitatea de la punctul b), să se arate că, dacă $x \in [1, e]$, atunci $\frac{1}{x} + \frac{x}{e} \le \frac{1+e}{e}$.
- **d)** Să se verifice că $\frac{1}{f(x)} + \frac{f(x)}{e} \le \frac{1+e}{e}$, $(\forall) \ x \in [0,1]$.
- e) Să se arate că, dacă $u, v \in \mathbb{R}$, atunci $(u+v)^2 \ge 4uv$.
- $\textbf{f)} \quad \text{Integrând inegalitatea de la punctul } \textbf{d)} \ , \ \text{să se arate că} \ \int_0^1 \frac{1}{f(x)} \ dx + \frac{1}{e} \int_0^1 f(x) \ dx \leq \frac{1+e}{e} \cdot$
- $\mathbf{g)} \quad \text{Utilizând inegalitatea de la punctul } \mathbf{e)} \ , \ \text{să se arate că} \ \left(\int_0^1 e^{x^2} \ dx \right) \cdot \left(\int_0^1 e^{-x^2} \ dx \right) \leq \frac{(e+1)^2}{4e} \cdot \frac{(e$

M2

Filiera tehnologică: profil: Servicii, toate specializările, profil Resurse naturale și protecția mediului, toate specializările

SUBIECTUL I

- a) Să se calculeze distanța de la punctul A(5, -2) la punctul B(-2, 5).
- **b)** Să se calculeze $\cos^2 211 + \sin^2 211$.
- c) Să se calculeze aria unui triunghi echilateral cu latura de lungime $\sqrt{6}$.
- d) Să se calculeze conjugatul numărului complex -4 + 3i.
- e) Să se determine $a, b \in \mathbb{R}$ astfel încât punctele A(5, -2) și B(-2, 5) să fie pe dreapta de ecuație x + ay + b = 0.
- f) Dacă în triunghiul ABC, AB = 4, AC = 6 și $m(\triangleleft BAC) = \frac{\pi}{2}$, să se calculeze BC.

SUBIECTUL II

- 1. a) Să se calculeze determinantul $\begin{vmatrix} 7 & 1 \\ 6 & 0 \end{vmatrix}$.
 - b) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $3^n < 32$.
 - c) Să se rezolve în mulțimea numerelor reale ecuația $4^x + 1 = 0$.
 - d) Să se rezolve în mulțimea numerelor reale strict pozitive ecuația $\log_8 x = -2$.
 - e) Să se calculeze expresia $E = C_5^1 C_5^4 + C_5^5$.
- **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=4+\frac{1}{x^3}$
 - a) Să se calculeze $f'(x), x \in (0, \infty)$.
 - **b)** Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
 - c) Să se arate că funcția f este strict descrescătoare pe intervalul $(0, \infty)$.
 - **d)** Să se calculeze $\int_1^2 f(x) \ dx$.
 - e) Să se calculeze $\lim_{n\to\infty}\frac{n+3}{3n+2}$

SUBIECTUL III

Se consideră numărul real $\omega=2-\sqrt{5}$ și mulțimea $M=\{a+b\omega\ |\ a,b\in\mathbb{Z}\}$. Notăm $\overline{\omega}=2+\sqrt{5}$ și cu $G=\{z\in M\ |\ (\exists)y\in M\ \text{ astfel încât}\ y\cdot z=1\}$.

- a) Să se verifice că $0 \in M$ și $1 \in M$.
- b) Să se verifice că $\omega^2 = 4\omega + 1$.
- c) Să se arate că, dacă $z, y \in M$, atunci $z + y \in M$ şi $z \cdot y \in M$.
- **d)** Să se arate că $(a + b\omega)(a + b\overline{\omega}) \in \mathbb{Z}$.
- e) Să se arate că $\omega \in G$.
- \mathbf{f}) Să se arate că mulțimea G are cel puțin 2006 elemente.
- g) Să se arate că $\omega^{2006} \notin \mathbb{Q}$.

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = 5 + 4^x$.

- a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- **b)** Să se verifice că f(x) > 0, (\forall) $x \in \mathbb{R}$ și f'(x) > 0, (\forall) $x \in \mathbb{R}$.
- c) Să se determine ecuația asimptotei către $-\infty$ la graficul funcției f.
- d) Să se calculeze $\int_0^1 f(x) dx$.
- e) Să se arate că $t^2+t+1>0$, (\forall) $t\in\mathbb{R}$ şi $t^2-t+1>0$, (\forall) $t\in\mathbb{R}$.
- **f)** Să se verifice identitatea $f'(x) = \frac{1}{2} \left((f'(x))^2 + f'(x) + 1 \right) \frac{1}{2} \left((f'(x))^2 f'(x) + 1 \right), \ (\forall) \ x \in \mathbb{R}.$
- g) Să se arate că există două funcții $g: \mathbb{R} \to \mathbb{R}$ și $h: \mathbb{R} \to \mathbb{R}$ strict crescătoare, astfel încât f(x) = g(x) h(x), (\forall) $x \in \mathbb{R}$.

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- a) Să se rezolve în mulțimea numerelor reale ecuația $x^2 + 16x 17 = 0$.
- b) Să se rezolve în mulțimea numerelor reale inecuația $x^2 + 16x 17 < 0$.
- c) Să se rezolve în mulțimea numerelor reale și strict pozitive ecuația $\log_7 x = 2$.
- d) Să se rezolve în mulțimea numerelor reale ecuația $32^x = 16$.
- e) Dacă $\frac{1}{37} = 0, a_1 a_2 \dots a_n \dots$, să se calculeze a_{2006} .
- f) Să se determine cel mai mare număr real a pentru care funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 4x + 1$ este strict crescătoare pe intervalul $(-\infty, a]$.

SUBIECTUL II

- 1. a) Să se determine toate numerele $n \in \mathbb{N}^*$, care verifică relația $n^3 \leq 1000$.
 - b) Să se scrie toate elementele din mulțimea $\{10, 11, 12, \dots, 95\}$ care se divid cu 13.
 - c) Dacă $A = \{a, b, c, d\}, B = \{c, d, e, f\}$. Să se determine multimea $A \cup B$.
 - d) Să se calculeze produsul primelor 4 zecimale ale numărului $\sqrt{290}$.
 - e) Să se scrie toate elementele din şirul C_4^0 , C_4^1 , C_4^2 , C_4^3 , C_4^4 care sunt numere impare.
- 2. a) Să se calculeze perimetrul unui triunghi echilateral cu aria de $2\sqrt{3}$.
 - b) Să se calculeze aria unui triunghi echilateral cu latura de $\sqrt{10}$.
 - c) Să se calculeze înălțimea unui triunghi echilateral cu latura de 7.
 - d) Să se calculeze perimetrul unui triunghi dreptunghic isoscel cu aria de 1.
 - e) Să se calculeze aria unui pătrat cu perimetrul de 16.

SUBIECTUL III

Se consideră triunghiul ABC şi punctele $D \in (BC)$, $E \in (AC)$ şi $F \in (AB)$. Notăm $\{M\} = BE \cap AD$, $\{N\} = BE \cap CF$ şi $\{P\} = CF \cap AD$. Punctul P este pe segmentul (AM), iar punctul M este pe segmentul (BN). Dacă XYZ este un triunghi, notăm cu S_{XYZ} aria sa. Să se arate că:

- a) $S_{ABC} = S_{ABM} + S_{BCN} + S_{CAP} + S_{MNP}$.
- b) dacă $S_{ABC} = S_{ABD} + S_{BCE} + S_{CAF}$, atunci $S_{MNP} = S_{FAP} + S_{BDM} + S_{CEN}$.
- c) dacă $S_{MNP} = S_{FAP} + S_{BDM} + S_{CEN}$, atunci $S_{ABC} = S_{ABD} + S_{BCE} + S_{CAF}$.
- $\mathbf{d)} \quad \frac{S_{BAD}}{S_{ABC}} = \frac{BD}{BC} \cdot$
- e) dacă $S_{MNP} = S_{FAP} + S_{BDM} + S_{CEN}$, atunci $\frac{BD}{BC} + \frac{CE}{AC} + \frac{AF}{AB} = 1$.
- f) dacă $\frac{BD}{BC} + \frac{CE}{AC} + \frac{AF}{AB} = 1$, atunci $S_{MNP} = S_{FAP} + S_{BDM} + S_{CEN}$.
- g) dacă triunghiul ABC este echilateral și $S_{MNP} = S_{FAP} + S_{BDM} + S_{CEN}$, atunci BD + CE = BF.

SUBIECTUL IV

Se consideră mulțimea $A = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{10}\}.$

- a) Să se calculeze numărul de elemente din mulțimea $A \cap \{1, 2, 3, \dots, 10\}$.
- b) Să se calculeze numărul de elemente din mulțimea $\{(a,b) | a \in A, b \in A\}$.

- c) Să se determine cea mai mare valoare a raportului $\frac{a}{b}$, unde $a, b \in A$.
- d) Să se determine cea mai mare valoare a produsului $a \cdot b$, unde $a, b \in A$.
- e) Să se determine câte elemente de forma $\frac{a}{b}$, unde $a, b \in A$ sunt numere raționale.
- ${f f}$) Să se arate că produsul tuturor elementelor mulțimii A este un număr irațional.
- \mathbf{g}) Să se determine numărul de submulțimi ale mulțimii A care au numai elemente naturale.