FONCTIONS PART2 E03

EXERCICE N°1

Les fonctions suivantes sont définies et dérivables sur \mathbb{R} . Calculer leur fonction dérivée.

1)
$$f_1(x)=5$$
; $f_2(x)=\frac{15}{7}$; $f_3(x)=\sqrt{3}$; $f_4(x)=2\pi$; $f_5(x)=-3\pi+5\sqrt{3}$

2)
$$g_1(x)=x+2$$
; $g_2(x)=x+3\pi\sqrt{7}$

3)
$$g_3(x) = 4x + 5$$
; $g_4(x) = \sqrt{7}x + 8.5$; $g_5(x) = \frac{4}{3}x - 8\sqrt{3}$; $g_6(x) = \frac{8}{7} - 4x$

4)
$$h_1(x)=3x^2-4$$
; $h_2(x)=4x^2+5x-1$; $h_3(x)=-2.5x^2+6x+\sqrt{3}$

5)
$$h_4(x) = \frac{5}{2}x^3 - 4x^2 + 3x - 7\sqrt{11}$$
 ; $h_5(x) = -\pi x^3 + \sqrt{5}x^2 - \frac{14}{3}x + 33$

6)
$$h_6(x) = (3x+4)(2x-7)$$
; $h_7(x) = (7-2x)^2$

EXERCICE N°2

Soit f la fonction définie sur \mathbb{R} par $f(x) = -6x^2 + 4x + 1$. On note C_f sa courbe représentative.

- 1) Calculer f'(2).
- 2) Déterminer le nombre dérivé de f en a := 3
- 3) Déterminer le coefficient directeur de la tangente à la courbe C_f au point d'abscisse 1.

EXERCICE N°3

Pour chacune des fonctions f_i suivantes, déterminer une équation de la tangente (d_i) à la courbe représentative C_{f_i} au point d'abscisse a puis la tracer d'un repère orthonormé.

- 1) Soit f_1 la fonction définie sur \mathbb{R} par $f_1(x) = -x^2 x + 2$ et a := -2
- 2) Soit f_2 la fonction définie sur \mathbb{R} par $f_2(x) = x^3 3x + 2$ et a := 0.5

EXERCICE N°4

Le plan est muni du repère orthonormal $(O; \vec{i}, \vec{j})$ (unité: 1 cm).

Soit f la fonction définie sur l'intervalle [-1;3] dont on donne la courbe représentative C_f ci-contre.

- 1) Reproduire soigneusement cette figure sur votre cahier.
- 2) On admet que la courbe C_f admet la tangente T_1 au point $O(0\;;0)$ et que f'(0) = -2 .

Construire la tangente T_1 .

Construire la tangente T_2 .

Construire la tangente T_3 .

FONCTIONS PART2 E03

EXERCICE N°1

Les fonctions suivantes sont définies et dérivables sur \mathbb{R} . Calculer leur fonction dérivée.

1)
$$f_1(x)=5$$
; $f_2(x)=\frac{15}{7}$; $f_3(x)=\sqrt{3}$; $f_4(x)=2\pi$; $f_5(x)=-3\pi+5\sqrt{3}$

2)
$$g_1(x)=x+2$$
; $g_2(x)=x+3\pi\sqrt{7}$

3)
$$g_3(x) = 4x + 5$$
; $g_4(x) = \sqrt{7}x + 8.5$; $g_5(x) = \frac{4}{3}x - 8\sqrt{3}$; $g_6(x) = \frac{8}{7} - 4x$

4)
$$h_1(x)=3x^2-4$$
; $h_2(x)=4x^2+5x-1$; $h_3(x)=-2.5x^2+6x+\sqrt{3}$

5)
$$h_4(x) = \frac{5}{2}x^3 - 4x^2 + 3x - 7\sqrt{11}$$
 ; $h_5(x) = -\pi x^3 + \sqrt{5}x^2 - \frac{14}{3}x + 33$

6)
$$h_6(x) = (3x+4)(2x-7)$$
; $h_7(x) = (7-2x)^2$

EXERCICE N°2

Soit f la fonction définie sur \mathbb{R} par $f(x) = -6x^2 + 4x + 1$. On note C_f sa courbe représentative.

- 1) Calculer f'(2).
- 2) Déterminer le nombre dérivé de f en a := 3
- 3) Déterminer le coefficient directeur de la tangente à la courbe C_f au point d'abscisse 1.

EXERCICE N°3

Pour chacune des fonctions f_i suivantes, déterminer une équation de la tangente (d_i) à la courbe représentative C_{f_i} au point d'abscisse a puis la tracer d'un repère orthonormé.

- 1) Soit f_1 la fonction définie sur \mathbb{R} par $f_1(x) = -x^2 x + 2$ et a := -2
- 2) Soit f_2 la fonction définie sur \mathbb{R} par $f_2(x) = x^3 3x + 2$ et a := 0.5

EXERCICE N°4

Le plan est muni du repère orthonormal $(O; \vec{i}, \vec{j})$ (unité: 1 cm).

Soit f la fonction définie sur l'intervalle [-1;3] dont on donne la courbe représentative C_f ci-contre.

- 1) Reproduire soigneusement cette figure sur votre cahier.
- 2) On admet que la courbe C_f admet la tangente T_1 au point $O(0\;;0)$ et que f'(0) = -2 .

Construire la tangente T_1 .

Construire la tangente T_2 .

Construire la tangente T_3 .

