

尚德机构商学院内部教材

数学公式手册

尚德机构教研中心 组编

尚德机构出品 WWW.SUNLANDS.COM

数学基础知识必备手册

第一章 实数及其运算

一、实数及其运算

1.实数的分类

2.实数相关概念

(1) 自然数:我们把 $0,1,2,3,\cdots$ 等非负整数叫做自然数.

(2)奇数与偶数

①能被 2 整除的整数叫做偶数,常表示成 2k (k 为整数);不能被 2 整除的整数叫做奇数,常表示成 2k-1 (k 为整数).

②奇数与偶数的运算性质:

偶数±偶数=偶数; 奇数±偶数=奇数;

奇数 ± 奇数 = 偶数 ; 奇数 * 奇数 * 奇数 = 奇数 ;

奇数*偶数=偶数; 偶数*偶数=偶数.

(3) 质数与合数

①质数:如果一个大于1的整数,只能被1和它本身整除,那么这个正整数叫做质数(或素数).例如:2、3、5、7......

②合数:一个大于1的正整数,除了能被1和本身整除外,还能被其他正整数整除,这样的正整数叫做合数.例如:4、6、9......

【注意】1 既不是质数也不是合数,2 是最小的质数,也是唯一的偶质数.

 $(4) 数的整除: 设 \forall a,b \in Z \ \underline{l} \ b \neq 0 \ , \ \exists p \in Z \ \text{使} \ a = pb \ \text{成立} \ , \ \text{则称} \ b \ \text{能整除} \ a \ , \ \text{或} \ a \ \text{能被} \ b$ 整除,记作 $b|_a$,此时我们把 b 叫做 a 的因数,把 a 叫做 b 的倍数.

【注意】关于整除,掌握以下几个规律:

- ①被2整除的数,个位数是偶数;
- ②被3整除的数,各位数之和为3的倍数;
- ③被4整除的数,末两位数是4的倍数;
- ④被5整除的数,个位数是0或5;
- ⑤被6整除的数,既能被2整除又能被3整除;
- ⑥被8整除的数,末三位数之和是8的倍数;
- ⑦被9整除的数,各位数之和为9的倍数;
- ⑧被10整除的数,个位数为0.

(5)公约数与公倍数

①公约数:如果一个整数同时是几个整数的约数,则称这个整数为它们的公约数;所有公约数中最大的,称为这些整数的最大公约数,比如 20 和 50 的公约数有 1、2、5、10,但是 10是它们的最大公约数.

②公倍数:如果几个整数有相同的倍数,则称这个倍数是它们的公倍数;所有公倍数中最小的,称为这些整数的最小公倍数,比如 25 和 5 的公倍数有 25、50 等,但是 25 是它们的最小公倍数.

(6)有理数与无理数

①有理数:我们把整数、分数、有限小数和无限循环小数,统称为有理数.

②无理数;无限不循环小数叫做无理数.

(7) 实数:有理数和无理数统称为实数,实数集用 R 表示.

3.实数的运算

(1) 实数的加、减、乘、除四则运算符合加法和乘法运算的交换律,结合律和分配律.

(2) 乘方运算:当
$$a\in R, a\neq 0$$
 时,
$$a^0=1, a^{-n}=\frac{1}{a^n} \text{ }$$
 负实数的奇数次幂为负数;负实数的偶数次幂

为正数.

(3) 开方运算:在实数范围内,负实数无偶次方根;0 的偶次方根是 0;正实数的偶次方根有两个,它们互为相反数,其中正的偶次方根称为算术平方根.在运算有意义时, $a^{\frac{n}{m}}=\sqrt[m]{a^n}$

二、绝对值

1.实数 a 的绝对值定义为: $|a| = \begin{cases} a & (a \ge 0) \\ -a & (a < 0) \end{cases}$

2.绝对值的几何意义

实数 a 在数轴上对应一点,这个点到原点的距离就是 a 的绝对值(如下图).

3.绝对值性质

(1) 对称性: 互为相反的两个数的绝对值相等,即 $\left|-a\right|=\left|a\right|$;

(2) 自反性:
$$\frac{|x|}{x} = \frac{x}{|x|} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$
;

(3)等价性: ①
$$|a| = \sqrt{a^2}$$
,② $|a|^2 = a^2$;

(4) 非负性:任何实数 a 的绝对值非负,即 $|a| \ge 0$ ·

【归纳】其他非负性的变量:

①正的偶数次方(根式): $a^2, a^4, \cdots, a^{\frac{1}{2}}, a^{\frac{1}{4}} \ge 0$;

②负的偶数次方(根式): $a^{-2}, a^{-4}, \dots, a^{-\frac{1}{2}}, a^{-\frac{1}{4}} > 0$

规则:若干个具有非负性质的数之和等于零时,则每个非负数必然为零.

4.绝对值运算法则和三角不等式

- (1) $|a| \le b$ $(b > 0) \Leftrightarrow -b \le a \le b$;
- (2) $|a| \ge b(b > 0) \Leftrightarrow a \le -b$ 或 $a \ge b$;

(4)三角不等式

- ① $|a+b| \le |a| + |b|$ ($ab \ge 0$ 时等号成立);
- ② $|a+b| \ge |a|-|b|$ ($ab \le 0$,且 $|a| \ge |b|$ 时等号成立);
- ③ $|a-b| \le |a| + |b|$ ($ab \le 0$ 时等号成立);
- ④ $|a-b| \ge |a|-|b|$ ($ab \ge 0$,且 $|a| \ge |b|$ 时等号成立)

三、平均数

1. (算术)平均数:

(1) 定义:设 x_1, x_2, \cdots, x_n 为 n 个实数,称 $\frac{x_1 + x_2 + \cdots + x_n}{n}$ 为这 n 个数的(算术)平均数,记

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i (i = 1, 2, \dots, n)$$

(2) 算术平均值常用下面方法计算: $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$;

2.几何平均数:设 $_{x_1,x_2,\cdots,x_n}$ 为 $_n$ 个正实数,称 $_{\sqrt[n]{x_1x_2\cdots x_n}}$ 为这 $_n$ 个数的几何平均数.

四、比和比例

1.比和比例的定义

(1) 比:a 除以b 的商,叫做a,b 这两个数的比,记做a:b、即 $a:b=\frac{a}{b}$,其中 a 叫做比的前

项,b 叫做比的后项,若 $\frac{a}{b}$ 的商为k,则称k为a:b的值.

(2)比例:如果a:b和c:d的比值相等,就称a,b,c,d成比例,记作a:b=c:d或 $\frac{a}{b}=\frac{c}{d}$

a 和 d 叫做比例的外项, b 和 c 叫做比例的内项;当 a:b=b:d 时,称 b 为 a 和 d 的比例中项,即 $b^2=ad$ 。

2.比和比例的性质

(1)比的基本性质

①
$$a:b=k \Leftrightarrow a=kb$$
; ② $a:b=ma:mb(m \neq 0)$.

(2)比例的基本性质

①更比定理:
$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a}{c} = \frac{b}{d}$$

②反比定理:
$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{b}{a} = \frac{d}{c}$$

③合比定理:
$$\frac{a}{b} = \frac{c}{d} = \frac{a \pm mc}{b + md} = \frac{a \pm c}{b + d}$$
;

④等比定理:
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f}$$
。(注意!等比定理的使用条件: $b+d+f\neq 0$)

第二章 整式与分式

-、整式及其运算

1.常用乘法公式(逆运算就是因式分解)

$$(1) (a \pm b)^2 = a^2 \pm 2ab + b^2$$
:

(2)
$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2ac+2bc$$
;

(3)
$$(a-b)(a+b) = a^2 - b^2$$
;

$$(4) (a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$
;

$$(5) (a \pm b)(a^2 \mp ab + b^2) = a^3 \pm b^3$$
;

技巧提示:公式扩展① $\frac{1}{\sqrt{n+1} \pm \sqrt{n}} = \frac{(\sqrt{n+1} \mp \sqrt{n})}{(\sqrt{n+1} \pm \sqrt{n})(\sqrt{n+1} \mp \sqrt{n})} = \sqrt{n+1} \mp \sqrt{n}$

公式扩展②
$$(a \pm \frac{1}{a})^2 = a^2 + \frac{1}{a^2} \pm 2 \Leftrightarrow a^2 + \frac{1}{a^2} = (a \pm \frac{1}{a})^2 \mp 2$$
;

公式扩展③
$$a^2 + b^2 + c^2 \pm ab \pm ac \pm bc = \frac{1}{2}(a \pm b)^2 + \frac{1}{2}(b \pm c)^2 + \frac{1}{2}(a \pm c)^2$$

2.整式除法定理:若整式 F(x) 除以 x-a 的余式为 r(x) ,则 $F(x)=(x-a)\cdot g(x)+r(x)$,故 r(a) = F(a) 成立.

二、指数和对数的运算性质

1.指数运算性质:

(1)
$$a^0 = 1(a \neq 0)$$
; (2) $a^m \cdot a^n = a^{m+n}$;

(3)
$$a^m \div a^n = a^{m-n}$$
; (4) $(a^m)^n = a^{mn}$;

(5)
$$(ab)^m = a^m b^m$$
; (6) $a^m = \frac{1}{a^m} (a \neq 0)$.

2.对数运算性质:

(1)
$$\log_a(MN) = \log_a M + \log_a N$$
; (2) $\log_a(\frac{M}{N}) = \log_a M - \log_a N$;

(3)
$$\log_a(M^n) = n \log_a M$$
; $\log_a M = \frac{\log_b M}{\log_b a}$;

$$(5) \log_a 1 = 0, \log_a a = 1.$$

三、分式运算性质:

$$\frac{A}{B} = \frac{A \times M}{B \times M}; \frac{A}{B} = \frac{A \div M}{B \div M} (M \neq 0)$$

第三章 方程与不等式

一、函数

1.一次函数 $y = kx + b(k \neq 0)$ 的图象及性质:

一次	$y = kx + b(k \neq 0)$		
k < 0	b > 0	b < 0	b = 0
图象	<i>o x</i>	Av x	O x
性质	y 随 x 的增大而减小		

2.二次函数 $y = ax^2 + bx + c$ 的图象和性质

顶点坐标	顶点坐标 $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$	-)
值域	$(\frac{4ac-b^2}{4a}, +\infty)$	$(-\infty, \frac{4ac-b^2}{4a})$
与り轴交	(0,c)	
点		
与 <i>x</i> 轴交	$(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, 0)(\Delta > 0), (-\frac{b}{2a}, 0)(\Delta = 0)$	
点		

3. 指数函数 $y = a^x$ (a > 0 , 且 $a \neq 1$) 的图象和性质:

<i>a</i> > 1	0 < a < 1
y	y = a' 0
	定义域 <i>R</i>
	值域 y > 0
x 越大 , ^y 越大	x 越大, y 越小
函数图象都过定点(0,1)	函数图象都过定点(0,1)

4.对数函数 $y = \log_a x$ ($_{a > 0}$,且 $_{a \neq 1}$)的图象与性质:

二、方程

1.一元一次方程
$$ax + b = 0$$
 $(a \neq 0)$ 解法: $x = -\frac{b}{a}$

2.二元一次方程
$$\begin{cases} a_1x+b_1y=c_1, & \text{解法:加减消元法,代入消元法等.} \\ a_2x+b_2y=c_2 \end{cases} (a_1b_2-a_2b_1\neq 0)$$

3.一元二次方程 $ax^2 + bx + c = 0 (a \neq 0)$

(1)解法:①分解因式:若 $ax^2 + bx + c = a(x - x_1)(x - x_2) = 0 (a \neq 0)$,则 $x = x_1$ 或 $x = x_2$.

②公式法:方程两根为
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

- (2)根的判别式($\Delta=b^2-4ac$:①当 $\Delta>0$ 时,方程有两相异的实数根;②当 $\Delta=0$,方程有两相等的实数根;③当 $\Delta<0$ 时,方程没有实数根.)
 - (3)根与系数的关系(韦达定理)

①设方程 $ax^2 + bx + c = 0 (a \neq 0)$ 的两个根为 x_1 和 x_2 ,则

$$\begin{cases} x_1 + x_2 = -\frac{b}{a}, \\ x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$

②韦达定理的应用:利用韦达定理求关于两个根的代数式的数值:

1)
$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$$
;

2)
$$x_1^3 + x_2^3 = (x_1 + x_2)(x_1^2 - x_1x_2 + x_1^2)$$

= $(x_1 + x_2)[(x_1 + x_2)^2 - 3x_1x_2]$;

3)
$$\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 x_2}$$
;

4)
$$\frac{1}{x_1^2} + \frac{1}{x_2^2} = \frac{(x_1 + x_2)^2 - 2x_1x_2}{(x_1x_2)^2}$$
;

5)
$$|x_1 - x_2| = \sqrt{(x_1 - x_2)^2} = \sqrt{(x_1 + x_2)^2 - 4x_1x_2}$$
.

4. 一元 n 次方程

形如 $a(x-x_1)(x-x_2)\cdots(x-x_n)=0$ 的方程称为一元 n 次方程 x_1,x_2,\cdots,x_n 是它的 n 个根.

三、不等式

1.不等式的基本性质

- (1) 如果a > b,那么b < a;如果b < a,那么a > b,即 $a > b \Leftrightarrow b < a$;
- (2)如果a>b,b>c,那么a>c,即 $a>b,b>c\Leftrightarrow a>c$;
- (3) 如果a > b,那么a + c > b + c;
- (4)如果 $_{a>b.c>0}$,那么 $_{ac>bc}$;如果 $_{a>b.c<0}$,那么 $_{ac<bc}$;
- (5)如果a > b.c > d,那么a + c > b + d;
- (6)如果a > b > 0, c > d > 0,那么ac > bd;
- (7)如果a > b > 0,那么 $a^n > b^n, (n \in N, n \ge 2)$;
- (8) 如果a > b > 0 ,那么 $\sqrt[n]{a} > \sqrt[n]{b}, (n \in N, n \ge 2)$

2.不等式的求解

- (1)一元一次不等式 ax > b (或 ax < b):解不等式时,运用不等式的性质,去分母,去括号,移项,合并同类项,最后变为 x > c 或 x < c .
- (2)一元一次不等式组:每个一元一次不等式的解集的公共部分(交集)叫做一元一次不等式组的解集.
 - (3)绝对值不等式的解法

$$\left(\left| f(x) \right|^2 > a \Leftrightarrow \left[f(x) \right]^2 > a$$

$$\Im |f(x)| = \begin{cases} f(x) & f(x) \ge 0, \\ -f(x) & f(x) < 0 \end{cases}$$
;

④设 f(x) = |x-a| + |x-b| ,函数的特点为: x 在区间 [a,b] 上取得最小值.

$$f(x)$$
有最小值 $|a-b|$, 无最大值.;

⑤设 f(x) = |x-a| - |x-b| , 函数的特点为: f(x) 有最大值 |a-b| , 最小值 -|a-b| , 且最大

值与最小值互为相反数.

(4) 一元二次不等式 $ax^2 + bx + c > (<)0 (a > 0)$,一元二次不等式的解法如下表,设 $f(x) = ax^2 + bx + c (a > 0)$:

$\Delta = b^2 - 4ac$	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
方程	有两相异实根	有两相等实根	
f(x) = 0	$x_1, x_2(x_1 < x_2)$	$x_1 = x_2 = -\frac{b}{2a}$	无实根
f(x) > 0的	$\left\{ x \middle x < x_1 \stackrel{\text{id}}{=} x > x_2 \right\}$	$\left\{x \mid x \neq -\frac{b}{2}\right\}$	R
解集	(1 2)	(2a)	
f(x) < 0的	$\left\{ x x_1 < x < x_2 \right\}$	φ	φ
解集	(,

(5)指数、对数不等式:不等号两边同时取指数或同时取对数,变成相同的形式后,再换元成有理不等式求解:

	指数不等式	对数不等式
a > 1	$a^{f(x)} > a^{g(x)}$ $\Leftrightarrow f(x) > g(x)$	$\log_a f(x) > \log_a g(x)$ $\Leftrightarrow \begin{cases} f(x) > 0 \\ g(x) > 0 \\ f(x) > g(x) \end{cases}$
0 < a < 1	$a^{f(x)} > a^{g(x)} \mathbf{a}$ $\Leftrightarrow f(x) < g(x)$	$\log_a f(x) > \log_a g(x)$ $\Leftrightarrow \begin{cases} f(x) > 0 \\ g(x) > 0 \\ f(x) < g(x) \end{cases}$

3.常用的基本不等式

$$(1) a^2 + b^2 \ge 2ab(a, b \in R)$$
,

$$(2) \frac{a+b}{2} \ge \sqrt{ab} (a,b \in R^+)$$

$$(3) \frac{b}{a} + \frac{a}{b} \ge 2(ab > 0)$$

$$(4)$$
 $\frac{1}{a} + a \ge 2(a \in R^+), \frac{1}{a} + a \le -2(a \in R^-)$

第四章 应用题

一、增长率问题

1.设原值为 a ,变化率为 p% ,若上升 p% ⇒ 现值 = a(1+p%) ,若下降 p% ⇒ 现值 = a(1-p%) ·

2.利润问题

$$=\frac{\text{$\frac{\pm \% - \text{$\text{id}$}}{\text{$\text{id}$}}}}{\text{$\text{id}$}} \times 100\% = (\frac{\text{$\frac{\pm \%}{\text{$\text{id}$}}}}{\text{$\text{id}$}} - 1) \times 100\%$$
;

售价=成本+利润=成本×(1+利润率):

二、行程问题

1.基本公式:路程=速度×时间.

2.相遇及追击问题

(1)直线运动:

①两人相向而行,在中途相遇,则
$$t = \frac{S_1 + S_2}{v_1 + v_2}$$
:

②甲乙两人从同一起点行走,甲先走了一段路程 $_S$ 后,乙沿同样的路程去追甲,乙追上甲所用时间

$$t = \frac{S}{v_{\text{Z}} - v_{\text{PP}}}.$$

(2) 圆周运动(设圆周长为S)

①同向运动:相遇一次: $S_{\mathbb{H}} - S_{\mathbb{Z}} = S$.若相遇 n 次 ,则 $S_{\mathbb{H}} - S_{\mathbb{Z}} = n \cdot S$;

②相背运动:相遇一次: $S_{\mathbb{H}}+S_{\mathbb{Z}}=S$.若相遇 n 次,则 $S_{\mathbb{H}}+S_{\mathbb{Z}}=n\cdot S$.

3.流水问题: $v_{\text{\tiny M}} = v_{\text{\tiny H}} + v_{\text{\tiny X}}, v_{\text{\tiny \'e}} = v_{\text{\tiny H}} - v_{\text{\tiny X}}, v_{\text{\tiny \'e}} + v_{\text{\tiny \'e}} = 2v_{\text{\tiny H}}$:

三、溶液浓度问题

1.常用公式:浓度 = $\frac{溶质}{溶液} \times 100\%$,溶液 = 溶剂+溶质;

2.设 x 克浓度为 a% 的 A 溶液与 y 克浓度为 b% 的 B 溶液混合,混合后的 C 溶液浓度为 c% ,则

 $\frac{x}{y} = \frac{\left|c\% - b\%\right|}{a\% - c\%}$,可用下面十字交叉法求 $_A$ 和 $_B$ 溶液的质量:

四、工程问题

计算公式:工作效率=完成的工作量÷工作时间,总量=部分量÷部分量所占的比例·

五、集合问题

 $m(A \cup B) = m(A) + m(B) = m(AB)$

 $m(A \cup B \cup C) = m(A) + m(B) + m(C) - m(AB) - m(AC) - m(BC) + m(ABC)$

第五章 数列

一、基本概念

$$a_n = \begin{cases} S_1 & (n=1) \\ S_n - S_{n-1} & (n \ge 2, n \in N^*) \end{cases}$$

二、等差数列

1.通项公式: $a_n = a_1 + (n-1)d$.

2.前 n 项和公式:
$$S_n = \frac{n(a_1+a_n)}{2} = na_1 = \frac{1}{2}n(n-1)d$$

$$= \frac{d}{2} \cdot n^2 + (a_1 - \frac{d}{2})n$$
 ,它可以抽象成关于 n 的二次函数

$$f(x) = \frac{d}{2}x^2 + (a_1 - \frac{d}{2})x, S_n = f(n)$$

3.等差中项:若 $_{a,\,A,\,b}$ 成等差数列,则 $_A$ 叫做 $_a$ 与 $_b$ 的等差中项,且 $_{A=\displaystyle\frac{a+b}{2}}$.

三、等比数列

1.通项公式: $a_n = a_1 q^{n-1} (n \in N)$:

2.前 n 项和公式: $S_n = \begin{cases} na_1 & (q=1) \\ \frac{a_1(1-q^n)}{1-q} = \frac{a_1 - a_n q}{1-q} (q \neq 1) \end{cases}$

3.等比中项:若 $_{a,\,A,\,b}$ 成等比数列,那么 $_A$ 叫做 $_a$ 与 $_b$ 的等比中项,且 $_{A=\sqrt{ab}}$.

四、等差、等比数列性质总结

等差数列	等比数列
若 $m+n=p+q$,则 $a_m+a_n=a_p+a_q$	若 $m+n=p+q$,则 $a_ma_n=a_pa_q$.
若 $_{\{k_{n}\}}$ 成等差数列(其中 $_{k_{n}}\in N$),	若 $_{\{k_{n}\}}$ 成等差数列(其中 $_{k_{n}}\in N$),
则 $\{a_{k_n}\}$ 成等差数列.	则 $\{a_{k_n}\}$ 成等比数列.
$S_n, S_{2n} - S_n, S_{3n} - S_{2n}$ 成等差数	$S_n, S_{2n} - S_n, S_{3n} - S_{2n}$ 成等比数
列.	列.
a _k ,a _{k+m} ,a _{k+2m} ,也成等差数	$a_k, a_{k+m}, a_{k+2m}, \dots$ 也成等比数列,其
列,其公差 $d' = md$.	公比 q' = q'''·

第六章 初等几何

一、平行直线

- 1.两直线平行,内(外)错角相等,同位角相等,同旁内角互补.
- 2.两条直线被一组平行线截得的线段成比例,如下图,a:b=c:d.

二、三角形的性质

1.三角形的基本性质:

三角形内角和定理: $\angle A + \angle B + \angle C = 180^{\circ}$

三角形三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.

三角形的任意一个外角等于与它不相邻的两个内角的和.

三角形的面积: $S = \frac{1}{2}ah = \frac{1}{2}ab\sin C = \sqrt{p(p-a)(p-d)(p-c)}$ (海仑公式), 其中 p 为周长的一

半。

2.三角形的四心

(1) 重心:三条中线的交点,将中线分成1:2两段;

(2) 垂心:三条高的交点;

(3)内心:内切圆圆心,三条角平分线交点,角平分线上的点到角两边的距离相等;

(4)外心:外接圆圆心,三条边的中垂线交点.

3.三角形的全等与相似

(1)两个几何图形全等,全等的图形对应角相等,对应的线段长度也相等.

(2)两个几何图形相似,似的图形对应角相等,对应的线段长度成比例,比值称为相似比.如果两个相

似图形的相似比为k,则面积比为 k^2

4.特殊三角形

- (1)等腰三角形的性质:两底角相等,底边上的中线,底边上的高及顶角的角平分线重合,两腰上的中线相等,两腰上的高相等,两底角的角平分线相等.
- (2)等边三角形的性质:三个角都为 60° ,等边三角形的重心,垂心,内心,外心重合,称此点为它的中心.边长和高的比为 $2:\sqrt{3}$,边长等于 a 的等边三角形的面积为 $\sqrt{3}$ a^2 .
- (3) 直角三角形的性质:直角边的平方和等于斜边的平方(充分必要条件).斜边上的中线长度等于斜边的一半(充分必要条件).
 - ①记住几组常用的勾股数: 3,4,5;6,8,10;7,24,25;8,15,17;9,12,15;9,40,41.
 - ②两类特殊的直角三角形(两块三角尺):
 - 1) 等腰直角三角形:两底角都为 45° .直角边和斜边的长度比为 $1\cdot\sqrt{2}$.
 - 2) $30^{\circ}.60^{\circ}.90^{\circ}$ 直角三角形:斜边的长度是短直角边的 2倍,长直角边长度是短直角边的 $\sqrt{3}$ 倍.

三、四边形的性质

1.平行四边形:两对边都相等(充分必要条件);两对角都相等;两条对角线互相平分.

2.矩形: 4个角都是直角的四边形.

3.菱形:各边相等的四边形.其中两条对角线互相垂直平分,两条对角线都平分所在角.

4.正方形: 4个角都是直角,并且各边相等的四边形.

四、圆的性质

1.关于圆周角

- (1)命题:一条弧所对应的圆心角等于这段弧所对应的圆周角的2倍.
- (2)推论1:圆的内接四边形对角和等于180°.
- (3)推论2:半圆所对应的的圆周角是直角.

2.关于弦和切线:

- (1)垂直于弦的直径平分此弦.
- (2)如果直线和圆相切,则经过切点的半径和切线垂直.
- (3)经过圆外一点的圆的切线有两条,两个切点到此点的距离相等.
- (4)推论:圆的外切四边形两双对边长度之和相等.
- 3.直线与圆的位置关系:设圆半径为 r ,圆心到直线的距离为 d ,直线与圆的位置关系分为有三种:直线与圆相离 (d>r) 、直线与圆相切 (d=r) 、直线与圆相割 (d<r) ·

4.两个圆的位置关系:设两个圆半径分别为 r_1, r_2 ,两个圆心的距离为 d ,两个圆的位置关系有五种:两圆外离 $(d>r_1+r_2)$ 、 两圆外切 $(d=r_1+r_2)$ 、 两圆相割 $(|r_1-r_2|< d< r_1+r_2)$ 、 两圆内切 $(d=|r_1-r_2|)$ 、 两圆内匀 $(d<|r_1-r_2|)$ 、 两圆内匀 $(d<|r_1-r_2|)$ 、 两圆内匀 $(d<|r_1-r_2|)$ 、 两圆内含 $(d<|r_1-r_2|)$ 、 两

五、特殊的三角函数值

几个常用的角: $360^{\circ} = 2\pi,180^{\circ} = \pi,90^{\circ} = \frac{\pi}{2},60^{\circ} = \frac{\pi}{3},30^{\circ} = \frac{\pi}{6},45^{\circ} = \frac{\pi}{4}$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞
$\tan \alpha$	U	$\sqrt{3}$	1	V 3	∞

六、常用几何体的周长、面积与体积

1.三角形

三角形的面积
$$S = \frac{1}{2}bh = \frac{1}{2}ab\sin C = \sqrt{p(p-a)(p-b)(p-c)} \quad (其中 p = \frac{a+b+c}{2} , 为三角形的半$$

周长);

直角三角形两直角边为
$$a,b$$
 ,则 $S=\frac{1}{2}ab$; 等边三角形面积 $S=\frac{\sqrt{3}}{4}a^2$; 高 $h=\frac{\sqrt{3}}{2}a$;

外接圆半径
$$\frac{\sqrt{3}}{3}a$$
 ; 内切圆半径 $r = \frac{\sqrt{3}}{6}a$

2.四边形

平行四边形的面积 S = ah;

长方形的周长 L = 2(a+b);

长方形的面积 S = ab;

正方形的周长 L=4a;

正方形的面积 $S=a^2$;

梯形的面积
$$S = \frac{1}{2}(a+b)h$$

3.圆

圆的周长 $l = 2\pi r = \pi d$;

圆的面积
$$S = \pi r^2 = \frac{\pi}{4} d^2$$

设扇形的圆心角为 α ,半径为 r ,则它的弧长 $l=r\theta$,面积 $S=\frac{1}{2}rl=\frac{1}{2}\alpha r^2$

4.空间几何体

- (1)长方体的表面积 S=2(ab+bc+ac) ;长方体的 V=abc ;正方体的表面积 $S=6a^2$;正方体的体 $V=a^3$.
 - (2)圆柱的侧面积 $S = 2\pi rh$;

圆柱的表面积 $S = 2\pi r h + 2\pi r^2$;

圆柱的体积 $V = \pi r^2 h$.

(3) 球的表面积
$$S=4\pi r^2$$
 ; 球的体积 $V=\frac{4}{3}\pi r^3$.

解析几何

一、直线

1.直线的方程

(1) 点斜式: $y-y_{\circ} = k(x-x_{\circ})$;

(2)斜截式: y=kx+b;

(3) 截距式: $\frac{x}{a} + \frac{y}{b} = 1$;

(4) 一般式: *Ax+By+C*=0

2.两条直线的位置关系

		1
直线方程	平行的充要条件	垂直的充要条件
$l_1: y = k_1 x + b_1$ $l_2: y = k_2 x + b_2$	$k_1 = k_2, b_1 \neq b_2$	$k_1 \cdot k_2 = -1$
$l_1: A_1 x + B_1 y + C_1 = 0$ $l_2: A_2 x + B_2 y + C_2 = 0$	$A_1B_2 = A_2B_1$, 且 $B_1C_2 \neq B_2C_1$	$A_1 A_2 + B_1 B_2 = 0$

3.距离公式

(1)两点间的距离公式:设两点的坐标为 $P_1(x_1,y_1),P_2(x_2,y_2)$,则这两点间的距离

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
;

(2) 点
$$P(x_0.y_0)$$
 到直线 $Ax + By + C = 0$ 的距离:
$$d = \frac{\left|Ax_0 + By_0 + C\right|}{\sqrt{A^2 + B^2}}$$
 ;

(3) 两条平行线
$$Ax + By + C_1 = 0$$
 与 $Ax + By + C_2 = 0$ 的距离是
$$d = \frac{\left|C_1 - C_2\right|}{\sqrt{A^2 + B^2}}.$$

二、圆

1.圆的方程

(1)标准方程: $(x-a)^2+(y-b)^2=r^2.(a,b)$ 圆心,r为半径.特别地:当圆心为(0,0)时,方程为 $x^2+y^2=r^2$

2.点、直线与圆的位置关系(见第六章)

第七章 数据分析

一、计数原理

1.加法 (分类) 原理 : $N=m_1+m_2+\cdots+m_n$.

2.乘法 (分步)原理: $N = m_1 \cdot m_2 \cdots m_n$.

3.排列: $P_n^m = n(n-1)(n-2)\cdots(n-m+1)$; 当m = n时, $P_n^m = n!$

4.组合: $C_n^m = \frac{P_n^m}{P_m^m} = \frac{n!}{m!(n-m)!}$.

组合数的几个公式:① $C_n^m = C_n^{n-m}$; ② $C_{n+1}^m = C_n^m + C_n^{m-1}$ ·

二、概率基本概念

1.事件间的关系与运算

(1) A,B的和: $A \cup B$ 或A+B,如图(1);

(2) A,B的积: $A \cap B$ 或AB, 如右图(2);

(3) A, B 互不相容: $AB = \phi$, 如右图(3);

(4) 对立事件: $\overline{A} \cup A = \Omega, \overline{A} \cap A = \phi$,如右图(4).

2.事件的概率及其性质

(1) 概率的性质: $0 \le P(A) \le 1, P(\Omega) = 1, P(\phi) = 0$...

(2) 加法公式: $P(A \cup B) = P(A) + P(B) - P(AB)$.

推广: $P(A \cup B \cup C) = P(A) + P(B) + P(C) - [P(AB) + P(BC) + P(AC)] + P(ABC)$.

- (3) 对立事件公式:对任意事件 $_{A,P(A)=1-P(A)}$.
- 3.古典概型的概率计算公式 $P(A) = \frac{A \odot 2}{A \odot 2} \circ A \odot 3$ 总的基本事件个数 ·
- 4. 事件的独立性: P(AB)=P(A)P(B) . 如果事件 $A_1, \cdots A_n$ 相互独立,则 $P(A_1+\cdots+A_n)=1-P(\overline{A_1})\cdots P(\overline{A_n})$
 - 5.在 n 次试验中事件 A 恰好发生 $k(0 \le k \le n)$ 次的概率为 $P_n(k) = C_n^k P^k (1-p)^{n-k}$
- 6.独立地做一系列的贝努利试验,直到第 $_{k(k=1,2,\cdots,n)}$ 次试验时事件 $_A$ 才首次发生的概率 $P_{_k}=\left(1-p\right)^{_{k-1}}p^{\cdot}$
- 三、统计中常用的特征数

1.平均数 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i (i = 1, 2, \dots, n)$ (计算方法请见第一章).

2.方差:
$$S^2 = \frac{1}{n}[(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2].$$

3.标准差:
$$s = \sqrt{\frac{1}{n}[(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2]}.$$