

planetmath.org

Math for the people, by the people.

$|\langle Tv, v \rangle| \le \mu \|v\|^2$ for all v implies $\|T\| \le \mu$

 $Canonical\ name \quad \ \, vertlangle Tvvranglevert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert leq muVert VVert 2 For All VImplies Vert TVert 2 For All VImplies Vert 2 For All VImplies Vert 2 For All VIMP 2 For A$

Date of creation 2013-03-22 15:25:33 Last modified on 2013-03-22 15:25:33 Owner Gorkem (3644) Last modified by Gorkem (3644)

Numerical id 16

Author Gorkem (3644)

Entry type Theorem Classification msc 46C05

Theorem. Let H be a unitary space, T be a self-adjoint linear operator and $\mu \geq 0$. If $|\langle Tv, v \rangle| \leq \mu ||v||^2$ for all $v \in H$ then T is a bounded operator and $||T|| \leq \mu$.

Proof. We will show that $||Tv|| \le \mu ||v||$ for all $v \in H$. This is trivial if ||Tv|| or ||v|| is zero, so assume they are not. Let λ be any positive number.

$$\begin{aligned} \left\| Tv \right\|^2 &= \langle Tv, Tv \rangle \\ &= \frac{1}{4} \left[\left\langle T \left(\lambda v + \frac{1}{\lambda} Tv \right), \left(\lambda v + \frac{1}{\lambda} Tv \right) \right\rangle - \left\langle T \left(\lambda v - \frac{1}{\lambda} Tv \right), \left(\lambda v - \frac{1}{\lambda} Tv \right) \right\rangle \right] \\ &\leq \frac{\mu}{4} \left[\left\| \lambda v + \frac{1}{\lambda} Tv \right\|^2 + \left\| \lambda v - \frac{1}{\lambda} Tv \right\|^2 \right] \\ &\leq \frac{\mu}{2} \left[\lambda^2 \left\| v \right\|^2 + \frac{1}{\lambda^2} \left\| Tv \right\|^2 \right] \end{aligned}$$

Now if we put
$$\lambda^2 = \frac{\|Tv\|}{\|v\|}$$
 we get $\|Tv\|^2 \le \mu \|Tv\| \|v\|$ hence $\|Tv\| \le \mu \|v\|$.

Reference:

F. Riesz and B. Sz-Nagy, Functional Analysis, F. Ungar Publishing, 1955, chap VI.