Package 'CTD'

January 26, 2019

Title CTD method for "connecting the dots" in weighted graphs
Version 0.0.0.9000
Date 2017-05-25
Maintainer Lillian Thistlethwaite < lillian.thistlethwaite@bcm.edu>
Description An R package for pattern discovery in weighted graphs. Two use cases are achieved: 1) Given a weighted graph and a subset of its nodes; do the nodes show significant connectedness? 2) Given a weighted graph and two subsets of its nodes; do the subsets show significant similarity?
Depends R (>= 3.3.0), igraph, plotly, gplots, RColorBrewer
License MIT License
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0.9000
R topics documented:
data.surrogateProfiles graph.diffuseP1 graph.diffuseP1Movie mle.getEncodingLength mle.getPermMovie_memory mle.getPermMovie_memoryless mle.getPermN_memory mle.getPermN_memory mle.getPtBSbyK mle.getPtSim mle.getPtSim mle.kraftMcMillian_memoryless plot.hmSim plot.mdsSim stats.entropyFunction

 $stats.iteratedLog 2 \ldots \ldots 13$

2 graph.diffuseP1

Index 14

data.surrogateProfiles

Surrogate profiles

Description

Fill in a data matrix with low n, high p with surrogate profiles.

Usage

```
data.surrogateProfiles(data, sd = 1)
```

Arguments

- Data matrix with observations as rows, features as columns.

- The level of variability (standard deviation) around each feature's mean you

want to add in surrogate profiles.

Value

data_mx - Data matrix with added surrogate profiles.

graph.diffuseP1 Diffuse Probability P1 from a starting node.

Description

Recursively diffuse probability from a starting node based on the connectivity of the background knowledge graph, representing the likelihood that a variable will be most influenced by a perturbation in the starting node.

Usage

```
graph.diffuseP1(p1, startNode, G, visitedNodes, graphNumber = 1,
  verbose = FALSE)
```

Arguments

p1 - The probability being dispersed from the starting node, startNode.

startNode - The first variable drawn in the adaptive permutation node sequence, from

which p1 gets dispersed.

G - A list of probabilities, with names of the list being the node names in the

background knowledge graph.

visitedNodes - The history of previous draws in the permutation sequence.

graphNumber - If testing against multiple background knowledge graphs, this is the index

associated with the adjacency matrix that codes for G. Default value is 1.

verbose - If debugging or tracking a diffusion event, verbose=TRUE will activate print

statements. Default is FALSE.

graph.diffuseP1Movie 3

Value

G - A list of returned probabilities after the diffusion of probability has truncated, with names of the list being the node names in the background knowledge graph.

Examples

```
# Look at main_CTD.r script for full analysis script: https://github.com/BRL-BCM/CTD.
# Read in any network via its adjacency matrix
tmp=matrix(1, nrow=100, ncol=100)
for (i in 1:100) {
  for (j in 1:100) {
    tmp[i, j]=rnorm(1, mean=0, sd=1)
}
colnames(tmp)=sprintf("MolPheno%d", 1:100)
ig=graph.adjacency(tmp, mode="undirected", weighted=TRUE, add.colnames="name")
V(ig)$name=tolower(V(ig)$name)
adjacency_matrix=list(as.matrix(get.adjacency(ig, attr="weight"))) # Must have this declared as a GLOBAL variation.
# Set other tuning parameters
p0=0.1 # 10% of probability distributed uniformly
p1=0.9 # 90% of probability diffused based on edge weights in networks
thresholdDiff=0.01
G=vector(mode="list", length=length(V(ig)$name))
names(G)=V(ig)$name
G=lapply(G, function(i) i[[1]]=0)
startNode=names(G)[1]
visitedNodes=G[1]
probs_afterCurrDraw=graph.diffuseP1(p1, startNode, G, visitedNodes, 1, TRUE)
```

graph.diffuseP1Movie Make a movie of the diffusion of probability, P1, from a starting node.

Description

Recursively diffuse probability from a starting node based on the connectivity of the background knowledge graph, representing the likelihood that a variable will be most influenced by a perturbation in the starting node.

Usage

```
graph.diffuseP1Movie(p1, startNode, G, visitedNodes, ig,
  recursion_level = 1, output_dir = getwd())
```

Arguments

The probability being dispersed from the starting node, startNode.
 The first variable drawn in the adaptive permutation node sequence, from which p1 gets dispersed.
 A list of probabilities, with names of the list being the node names in the background knowledge graph.
 A character vector of node names, storing the history of previous draws in the permutation sequence.

graphNumber

- If testing against multiple background knowledge graphs, this is the index associated with the adjacency matrix that codes for G. Default value is 1.

Value

G - A list of returned probabilities after the diffusion of probability has truncated, with names of the list being the node names in the background knowledge graph.

```
mle.getEncodingLength Minimum encoding length (MLE)
```

Description

This function calculates the minimum encoding length associated with a subset of variables given a background knowledge graph.

Usage

```
mle.getEncodingLength(bs, pvals, ptID, G)
```

Arguments

bs	- A list of bitstrings associated with a given patient's perturbed variables.
pvals	- The matrix that gives the perturbation strength significance for all variables (columns) for each patient (rows)
ptID	- The row name in data.pvals corresponding to the patient you specifically want encoding information for.
G	- A list of probabilities with list names being the node names of the background graph.

Value

df - a data.frame object, for every bitstring provided in bs input parameter, a row is returned with the following data: the patientID; the bitstring evaluated where T denotes a hit and 0 denotes a miss; the subsetSize, or the number of hits in the bitstring; the individual p-values associated with the variable's perturbations, delimited by '/'; the combined p-value of all variables in the set using Fisher's method; Shannon's entropy, IS.null; the minimum encoding length IS.alt; and IS.null-IS.alt, the d.score.

```
# Look at main_CTD.r script for full analysis script: https://github.com/BRL-BCM/CTD.
# Identify the most significant subset per patient, given the background graph
data_mx.pvals = t(apply(data_mx, c(1,2), function(i) 2*pnorm(abs(i), lower.tail = FALSE)))
for (pt in 1:ncol(data_mx)) {
   ptID = colnames(data_mx)[pt]
   res = mle.getEncodingLength(ptBSbyK[[ptID]], data_mx.pvals, ptID, G)
   res = res[order(res[,"d.score"], decreasing=TRUE),]
   print(res)
}
```

```
mle.getPermMovie_memory
```

Capture the movement of the adaptive walk of the diffusion probability method.

Description

Make a movie of the adaptive walk the diffusion probability method makes in search of a given patient's perturbed variables.

Usage

```
mle.getPermMovie_memory(subset.nodes, ig, output_filepath, movie = TRUE,
    subset = FALSE)
```

Arguments

- The subset of variables, S, in a background graph, G.
 - The igraph object associated with the background knowledge graph.
 - If you want to make a movie, set to TRUE. This will produce a set of still images that you can stream together to make a movie. Default is TRUE. Alternatively (movie=FALSE), you could use this function to get the node labels

returned for each permutation starting with a perturbed variable.

```
 \verb|# Look at main_CTD.r script for full analysis script: \verb|https://github.com/BRL-BCM/CTD.| \\
# Read in any network via its adjacency matrix
tmp = matrix(1, nrow=100, ncol=100)
for (i in 1:100) {
  for (j in 1:100) {
    tmp[i, j] = rnorm(1, mean=0, sd=1)
}
colnames(tmp) = sprintf("MolPheno%d", 1:100)
ig = graph.adjacency(tmp, mode="undirected", weighted=TRUE, add.colnames="name")
V(ig)$name = tolower(V(ig)$name)
# Set other tuning parameters
p0=0.1 # 10% of probability distributed uniformly
p1=0.9 # 90% of probability diffused based on edge weights in networks
thresholdDiff=0.01
subset.nodes = names(G)[sample(1:length(G), 3)]
mle.getPermMovie_memory(subset.nodes, ig, output_filepath = getwd(), movie=TRUE)
```

```
mle.getPermMovie_memoryless
```

Capture the movement of the adaptive walk of the diffusion probability method.

Description

Make a movie of the adaptive walk the diffusion probability method makes in search of a given patient's perturbed variables.

Usage

```
mle.getPermMovie_memoryless(subset.nodes, ig, output_filepath,
  movie = TRUE, subset = FALSE)
```

Arguments

- The subset of variables, S, in a background graph, G.
 - The igraph object associated with the background knowledge graph.
 - If you want to make a movie, set to TRUE. This will produce a set of still images that you can stream together to make a movie. Default is TRUE. Alternatively (movie=FALSE), you could use this function to get the node labels returned for each permutation starting with a perturbed variable.

```
# Look at main_CTD.r script for full analysis script: https://github.com/BRL-BCM/CTD.
# Read in any network via its adjacency matrix
tmp = matrix(1, nrow=100, ncol=100)
for (i in 1:100) {
  for (j in 1:100) {
    tmp[i, j] = rnorm(1, mean=0, sd=1)
  }
}
colnames(tmp) = sprintf("MolPheno%d", 1:100)
ig = graph.adjacency(tmp, mode="undirected", weighted=TRUE, add.colnames="name")
V(ig)$name = tolower(V(ig)$name)
# Set other tuning parameters
p0=0.1 # 10% of probability distributed uniformly
p1=0.9 # 90% of probability diffused based on edge weights in networks
thresholdDiff=0.01
subset.nodes = names(G)[sample(1:length(G), 3)]
mle.getPermMovie_memoryless(subset.nodes, ig, output_filepath = getwd(), movie=TRUE)
mle.getPermMovie_memory(subset.nodes, ig, output_filepath = getwd(), movie=TRUE)
```

mle.getPermN_memory

Generate the "adaptive walk" node permutations, starting from a given perturbed variable

Description

This function calculates the node permutation starting from a given perturbed variable in a subset of variables in the background knowledge graph.

Usage

```
mle.getPermN_memory(S, G)
```

Arguments

S

- A character vector of the node names for the subset of nodes you want to encode.

Value

current_node_set - A character vector of node names in the order they were drawn by the probability diffusion algorithm.

Examples

```
# Look at main_CTD.r script for full analysis script: https://github.com/BRL-BCM/CTD.
# Get node permutations for graph
perms = list()
for (n in 1:length(G)) {
   print(sprintf("Generating node permutation starting with node %s", names(G)[n]))
   perms[[n]] = mle.getPermN_memory(n, G)
}
names(perms) = names(G)
```

```
mle.getPermN_memoryless
```

Generate the "adaptive walk" node permutations, starting from a given perturbed variable

Description

This function calculates the node permutation starting from a given perturbed variable in a subset of variables in the background knowledge graph.

Usage

```
mle.getPermN_memoryless(n, G, S = NULL, misses.thresh = NULL)
```

8 mle.getPtBSbyK

Arguments

n	- The index (out of a vector of node names) of the permutation you want to calculate.
G	- A list of probabilities with list names being the node names of the background graph.

Value

current_node_set - A character vector of node names in the order they were drawn by the probability diffusion algorithm.

Examples

```
# Look at main_CTD.r script for full analysis script: https://github.com/BRL-BCM/CTD.
# Get node permutations for graph
perms = list()
for (n in 1:length(G)) {
   print(sprintf("Generating node permutation starting with node %s", names(G)[n]))
   perms[[n]] = mle.getPermN(n, G)
}
names(perms) = names(G)
```

mle.getPtBSbyK

Generate patient-specific bitstrings from adaptive network walk.

Description

This function calculates the bitstrings (1 is a hit; 0 is a miss) associated with the adaptive network walk made by the diffusion algorithm trying to find the variables in the encoded subset, given the background knowledge graph.

Usage

```
mle.getPtBSbyK(S, perms)
```

Arguments

perms	- The list of permutations calculated over all possible nodes, starting with each node in subset of interest.
data_mx	- The matrix that gives the perturbation strength (z-score) for all variables (rows) for each patient (columns).
ptID	- The identifier associated with the patient being processed.
kmx	- The maximum size of variable sets for which you want to calculate probabilities.

Value

pt.byK - a list of bitstrings, with the names of the list elements the node names of the encoded nodes

mle.getPtSim 9

Examples

```
# Look at main_CTD.r script for full analysis script: https://github.com/BRL-BCM/CTD.
# Get bitstrings associated with each patient's top kmx variable subsets
kmx = 15
ptBSbyK = list()
for (pt in 1:ncol(data_mx)) {
   S = data_mx[order(abs(data_mx[,pt]), decreasing=TRUE),pt][1:kmx]
   ptBSbyK[[ptID]] = mle.getPtBSbyK(S, perms)
}
```

mle.getPtSim

Patient similarity using mutual information MLE metric of patients' most modular, perturbed subsets.

Description

This function calculates the universal distance between patients, using a mutual information metric, where self-information comes from the minimum encoding length of each patient's encoded modular perturbations in the background knowledge graph.

Usage

```
mle.getPtSim(p1.optBS, ptID, p2.optBS, ptID2, data_mx, perms)
```

Arguments

p1.optBS - The optimal bitstring associated with patient 1.

ptID - The identifier associated with patient 1's sample.

p2.optBS - The optimal bitstring associated with patient 2.

data_mx - The matrix that gives the perturbation strength (z-scores) for all variables (columns) for each patient (rows).

ptID - The identifier associated with patient 2's sample.

Value

patientSim - a similarity matrix, where row and columns are patient identifiers.

for (i in 1:(kmx-1)) {

```
res[[i]] = t
for (pt in 1:ncol(data_mx)) {
  print(pt)
  ptID = colnames(data_mx)[pt]
  for (pt2 in pt:ncol(data_mx)) {
   ptID2 = colnames(data_mx)[pt2]
   for (k in 1:(kmx-1)) {
    tmp = mle.getPtSim(ptBSbyK[[ptID]][k], ptID, ptBSbyK[[ptID2]][k], ptID2, data_mx, perms)
      res[[k]]$ncd[ptID, ptID2] = tmp$NCD
      res[[k]]$dir[ptID, ptID2] = tmp$dirSim
      res[[k]]$ncd[ptID2, ptID] = tmp$NCD
      res[[k]]$dir[ptID2, ptID] = tmp$dirSim
    p1.sig.nodes = rownames(data_mx)[order(abs(data_mx[,ptID]), decreasing = TRUE)][1:k]
    p2.sig.nodes = rownames(data_mx)[order(abs(data_mx[,ptID2]), decreasing = TRUE)][1:k]
     p1.dirs = data_mx[p1.sig.nodes, ptID]
      p1.dirs[which(!(p1.dirs>0))] = 0
      p1.dirs[which(p1.dirs>0)] = 1
      p2.dirs = data_mx[p2.sig.nodes, ptID2]
      p2.dirs[which(!(p2.dirs>0))] = 0
      p2.dirs[which(p2.dirs>0)] = 1
      p1.sig.nodes = sprintf("%s%d", p1.sig.nodes, p1.dirs)
     p2.sig.nodes = sprintf("%s%d", p2.sig.nodes, p2.dirs)
    res[[k]]$jac[ptID, ptID2] = 1 - (length(intersect(p1.sig.nodes, p2.sig.nodes))/length(union(p1.sig.node
    res[[k]]$jac[ptID2, ptID] = 1 - (length(intersect(p1.sig.nodes, p2.sig.nodes))/length(union(p1.sig.node
  }
}
```

mle.kraftMcMillian_memoryless

Apply the Kraft-McMillian Inequality using a specific encoding algorithm.

Description

A power analysis of the encoding algorithm using to encode subsets of S in G.

Usage

```
mle.kraftMcMillian_memoryless(G, k)
```

Arguments

- G A character vector of all node names in the background knowledge graph.
- k The size of the node name subsets of G.

Value

IA - a list of bitlengths associated with all outcomes in the N choose K outcome space, with the names of the list elements the node names of the encoded nodes

plot.hmSim 11

plot.hmSim Generate heatmap plot of patient similarity matrix.	
--	--

Description

This function plots a heatmap of a patient similarity matrix.

Usage

```
## S3 method for class 'hmSim'
plot(simMat, path, diagnoses = NULL)
```

Arguments

simMat - The patient similarity matrix.

- The filepath to a directory in which you want to store the .png file.

diagnoses - A character vector of diagnostic labels associated with the rownames of sim-

Mat.

Examples

```
# Look at main_CTD.r script for full analysis script: https://github.com/BRL-BCM/CTD.
plot.hmSim(patientSim, path=getwd(), diagnoses)
```

plot.mdsSim View patient clusters using multi-dimensional scaling.

Description

This function plots the provided patient similarity matrix in a lower dimensional space using multidimensional scaling, which is well suited for similarity metrics.

Usage

```
## S3 method for class 'mdsSim'
plot(patientSim, diagnoses, k, diag)
```

Arguments

diagnoses - A character vector of diagnostic labels associated with the rownames of sim-

Mat.

k - The number of dimension you want to plot your data using multi-dimensional

scaling.

- The diagnosis associated with positive controls in your data.

simMat - The patient similarity matrix.

Value

p - a plotly scatter plot colored by provided diagnostic labels.

12 stats.fishersMethod

Examples

```
# Look at main_CTD.r script for full analysis script: https://github.com/BRL-BCM/CTD.
# if you have diagnostic labels associated with the colnames(data_mx), send them using diagnoses parameter
p = plot.mdsSim(patientSim, diagnoses, k=2, diag="diseased")
p
p = plot.mdsSim(patientSim, diagnoses, k=3, diag="diseased")
p
```

stats.entropyFunction Entropy of a bit-string

Description

The entropy of a bitstring (ex: 1010111000) is calculated.

Usage

```
stats.entropyFunction(bitString)
```

Arguments

Х

- A vector of 0's and 1's.

Value

e - a floating point percentage, between 0 and 1.

Examples

```
 \begin{array}{l} stats.entropyFunction(c(1,0,0,0,1,0,0,0,0,0,0,0,0)) \\ > 0.6193822 \\ stats.entropyFunction(c(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)) \\ > 1 \\ stats.entropyFunction(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)) \\ > 0 \\ \end{array}
```

 ${\tt stats.fishersMethod}$

Fisher's Combined P-value

Description

Fisher's combined p-value, used to combine the results of individual statistical tests into an overall hypothesis.

Usage

```
stats.fishersMethod(x)
```

Arguments

Х

- A vector of p-values (floating point numbers).

stats.iteratedLog2

Value

a floating point number, a combined p-value using Fisher's method.

Examples

```
stats.fishersMethod(c(0.2,0.1,0.3)) > 0.1152162
```

stats.iteratedLog2

Iterated Logarithm (Base 2)

Description

This function calculates the number of times the logarithm function (base 2) must be iteratively applied before the result is less than or equal to 1.

Usage

```
stats.iteratedLog2(num)
```

Arguments

num

- An integer.

```
iteratedLogarithm(4)
2
```

Index

```
*Topic adaptive
                                                   mle.getPermN_memory, 7
    mle.getPermMovie_memory, 5
                                                   mle.getPermN_memoryless, 7
                                               *Topic walk
    mle.getPermMovie_memoryless, 6
                                                   mle.getPermMovie_memory, 5
*Topic algorithm
                                                   mle.getPermMovie_memoryless, 6
    mle.getPermN_memory, 7
    mle.getPermN_memoryless, 7
                                               data.surrogateProfiles, 2
*Topic diffusion
    graph.diffuseP1, 2
                                               graph.diffuseP1,2
    graph.diffuseP1Movie, 3
                                               graph.diffuseP1Movie, 3
    mle.getPermMovie_memory, 5
    mle.getPermMovie_memoryless, 6
                                               mle.getEncodingLength, 4
    mle.getPermN_memory, 7
                                               mle.getPermMovie_memory, 5
    mle.getPermN_memoryless, 7
                                               mle.getPermMovie_memoryless, 6
*Topic encoding
                                               mle.getPermN_memory, 7
    mle.getEncodingLength, 4
                                               mle.getPermN_memoryless, 7
*Topic event
                                               mle.getPtBSbyK, 8
    graph.diffuseP1, 2
                                               mle.getPtSim, 9
    graph.diffuseP1Movie, 3
                                               mle.kraftMcMillian_memoryless, 10
    mle.getPermMovie_memory, 5
                                               plot.hmSim, 11
    mle.getPermMovie_memoryless, 6
*Topic generative
                                               plot.mdsSim, 11
    graph.diffuseP1, 2
                                               stats.entropyFunction, 12
    graph.diffuseP1Movie, 3
                                               stats.fishersMethod, 12
*Topic length
                                               stats.iteratedLog2, 13
    mle.getEncodingLength, 4
*Topic methods
    graph.diffuseP1, 2
    graph.diffuseP1Movie,3
*Topic minimum
    mle.getEncodingLength, 4
*Topic network
    graph.diffuseP1, 2
    graph.diffuseP1Movie, 3
    mle.getPermN_memory, 7
    mle.getPermN_memoryless, 7
*Topic probability
    mle.getPermMovie_memory, 5
    mle.getPermMovie_memoryless, 6
    mle.getPermN_memory, 7
    mle.getPermN_memoryless, 7
*Topic walker
    graph.diffuseP1, 2
    graph.diffuseP1Movie,3
```