COMPREHENSIVE DIODE CIRCUIT FORMULA LIST

1. BASIC VOLTAGE RELATIONSHIPS

- Peak Voltage: Vm = Vrms × √2
- RMS Voltage: Vrms = Vm/√2
- Input AC: Vrms = Vm/√2

2. FIRST APPROXIMATION (IDEAL DIODE)

Forward Bias:

- Voltage Drop = 0V
- Resistance = 0Ω
- Current = Vin/RL
- Power Loss = 0W

Reverse Bias:

- Current = 0A
- Resistance = ∞
- Voltage = Vin
- Power = OW

3. SECOND APPROXIMATION (CONSTANT VOLTAGE DROP)

Forward Bias:

- Silicon: Vd = 0.7V
- Germanium: Vd = 0.3V
- Current = (Vin Vd)/RL
- Power Loss = Vd × I

Reverse Bias:

- Current = 0A
- Resistance = ∞
- Voltage = Vin
- Power = 0W

4. HALF-WAVE RECTIFIER

First Approximation:

- DC Voltage: Vdc = Vm/π
- RMS Voltage: Vrms = Vm/2
- DC Current: Idc = Im/π
- RMS Current: Irms = Im/2
- PIV = Vm
- Ripple Factor = 1.21 = 1/2*root3*f*L*r

Second Approximation:

- DC Voltage: $Vdc = (Vm Vd)/\pi$
- RMS Voltage: Vrms = (Vm Vd)/2
- DC Current: $Idc = (Im Id)/\pi$
- RMS Current: Irms = (Im Id)/2
- PIV = Vm
- Efficiency = $[2/\pi][1 Vd/Vm] \times 100\%$
- TUF = 0.287

5. FULL-WAVE RECTIFIER

First Approximation:

- DC Voltage: $Vdc = 2Vm/\pi$
- RMS Voltage: Vrms = Vm/√2
- DC Current: $Idc = 2Im/\pi$
- RMS Current: Irms = $Im/\sqrt{2}$
- PIV = 2Vm
- Form Factor = 1.11
- Ripple Factor = 0.482

Second Approximation:

- DC Voltage: $Vdc = 2(Vm Vd)/\pi$
- RMS Voltage: Vrms = (Vm Vd)/√2
- DC Current: $Idc = 2(Im Id)/\pi$
- RMS Current: Irms = $(Im Id)/\sqrt{2}$
- PIV = 2Vm
- Efficiency = $[4/\pi][1 Vd/Vm] \times 100\%$
- TUF = 0.693

6. BRIDGE RECTIFIER

First Approximation:

- DC Voltage: Vdc = 2Vm/π
- RMS Voltage: Vrms = Vm/√2
- PIV = Vm
- TUF = 0.812

Second Approximation:

- DC Voltage: Vdc = $2(Vm 2Vd)/\pi$
- RMS Voltage: Vrms = (Vm 2Vd)/√2
- PIV = Vm
- Efficiency = $[4/\pi][1 2Vd/Vm] \times 100\%$

7. RIPPLE CALCULATIONS

Without Filter:

- Half-Wave: $\gamma = 1.21$
- Full-Wave: y = 0.482

With Capacitor Filter:

- Ripple Voltage: Vr = Idc/2fC
- Ripple Factor: $\gamma = Vr/Vdc$
- Capacitance: C = Idc/2fVr

8. EFFICIENCY CALCULATIONS

Power Efficiency:

- $\eta = (Pout/Pin) \times 100\%$
- $\eta = (Vdcldc)/(Vrmslrms) \times 100\%$

Rectification Efficiency:

- Half-Wave: $\eta = [2/\pi][1 Vd/Vm] \times 100\%$
- Full-Wave: η = [4/ π][1 Vd/Vm] × 100%
- Bridge: $\eta = [4/\pi][1 2Vd/Vm] \times 100\%$

10. SHOCKLEY EQUATION

- I = Is(e^(V/nVT) 1)
- VT = $kT/q \approx 26mV$ at 300K
- Dynamic Resistance: rd = nVT/ID

11. POWER CALCULATIONS

- AC Power: Pac = VrmsIrms
- DC Power: Pdc = Vdcldc
- Diode Power: Pd = Vdld
- Power Loss: Ploss = Pin Pout

13. TEMPERATURE EFFECTS

- VT = kT/q
- Is doubles for every 10°C rise
- Vd decreases by 2mV/°C

14. FILTER DESIGN

- Capacitor: C = Idc/2fVr
- Inductor: $L = RL/2\pi f$
- RC Time Constant: τ = RC

15. RECTIFIERS

A. Half-Wave Rectifier

- Vdc = Vm/ π (First Approx)
- Vdc = $(Vm-Vd)/\pi$ (Second Approx)
- lrms = lm/2
- Form Factor = 1.57
- Ripple Factor = 1.21
- PIV = Vm
- Efficiency = $(2/\pi)(1-Vd/Vm) \times 100\%$

B. Full-Wave Rectifier

- Vdc = $2Vm/\pi$
- Vdc = $2(Vm-Vd)/\pi$
- Irms = $Im/\sqrt{2}$
- Form Factor = 1.11

- Ripple Factor = 0.482
- PIV = 2Vm-Vk
- Efficiency = $(4/\pi)(1-Vd/Vm) \times 100\%$

C. Bridge Rectifier

- Vdc = $2Vm/\pi$
- Vdc = $2(Vm-2Vd)/\pi$
- PIV = Vm 2Vk
- Efficiency = $(4/\pi)(1-2Vd/Vm) \times 100\%$

16. FILTERS

A. Shunt Capacitor Filter

- Ripple Voltage: Vr = Idc/2fC
- Capacitance: C = Idc/2fVr
- Peak-to-Peak Ripple: Vr(p-p) = Idc/fC
- Ripple Factor: γ = Vr/Vdc
- Time Constant: $\tau = RC$

17. ZENER DIODE APPLICATIONS

A. Voltage Regulator

- Series Resistor: Rs = (Vin-Vz)/Iz
- Power Rating: Pz = VzIz
- Load Current: IL = (Vin-Vz)/RL
- Regulation: %Reg = [(VNL-VFL)/VFL] × 100%

B. Different Cases:

Case 1: Normal Operation

- Iz = (Vin-Vz)/Rs IL
- Vout = Vz

Case 2: Below Knee

- Iz ≈ 0
- Vout < Vz

Case 3: Maximum Power

- Pz(max) = VzIz(max)
- Rs(min) = (Vin(max)-Vz)/Iz(max)

19. RIPPLE FACTOR CALCULATIONS

A. Without Filter

- Half-Wave: $\gamma = 1.21$
- Full-Wave: y = 0.482
- Bridge: $\gamma = 0.482$

B. With Capacitor Filter

- $\gamma = 1/2\sqrt{3}fCRL$
- %Ripple = (Vr/Vdc) × 100%

21. VOLTAGE REGULATION

A. Line Regulation

• %LR = [(Vout1-Vout2)/Vout(nom)] × 100%

B. Load Regulation

• %LR = [(VNL-VFL)/VFL] × 100%

22. TEMPERATURE EFFECTS

A. Zener Voltage

• Temperature Coefficient = $\Delta Vz/\Delta T$

B. Forward Voltage

• $\Delta VF = -2mV/^{\circ}C$