Corso di Laurea: Ingegneria Informatica

Testo n.44 - Esame di Fisica Generale sessione del 03/07/2020

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

Una sfera omogenea di massa m=10.0 kg e raggio r=166 cm rotola senza strisciare con velocità $v_{cm}=8.1$ ms⁻¹ lungo un piano orizzontale. La sfera urta inelasticamente uno scalino di altezza h=56 cm nel punto P come mostrato in Figura.

Rispondere nell'ipotesi che la sfera non slitti e rimanga in contatto con il punto P dove urta lo scalino:

1) Calcolare l'energia cinetica di rotazione della sfera \mathbf{E}_k un istante prima dell'urto:

$$E_k =$$

2) Calcolare la velocità angolare della sfera ω_f un istante dopo l'urto:

$$\omega_f = \dots$$

3) Trovare la minima velocità v^* che permette alla sfera di superare il gradino:

$$v^* =$$

(Figura qualitativa a solo scopo illustrativo)

ESERCIZIO.2 - Elettromagnetismo

Un avvolgimento è realizzato con N=16 strati di un filo conduttore di resistività $\rho=5.9\ 10^{-3}\ \Omega$ m disposti lungo due semi-circonferenze di raggio r=31.4 cm e ortogonali come rappresentato in Figura. Nell'avvolgimento scorre una corrente $i=6.9\ \Lambda$

1) Determinare le componenti del momento di dipolo magnetico $(\vec{\mu})$ su questo avvolgimento

$$\vec{\mu} = \dots$$

L'avvolgimento viene immerso in una regione nella quale è presente un campo magnetico $\vec{B} = (2.1 \ \hat{i} + 5.8 \ \hat{j}) \ T$

2) Determinare il modulo del momento torcente $|\vec{\tau}|$ che agisce sull'avvolgimento

$$|\vec{\tau}| = \dots$$

Si mantiene l'avvolgimento immerso nel campo magnetico e la corrente in esso cirolante. Per t=0 s si mette in rotazione l'avvolgimento con velocità angolare $\vec{\Omega}=0.769~\hat{\bf k}$ rad/s

3) Determinare la corrente i_{rot} che circola nell'avvolgimento al tempo $t^*=5.5 \text{ s}$

$$i_{rot}(t^*) = \dots$$

(Figura qualitativa e non in scala a scopo illustrativo)