Confirmatory Factor Analysis Theory Construction and Statistical Modeling

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

SAPI

EFA and CFA

Confirmatory or Exploratory?

CFA in R

Scaling

Extra

South African Personality Inventory Project

Nel, J. A., Valchey, V. H., Rothmann, S., van de Vijver, F. J. R., Meiring, D., & de Bruin, G. P. (2012). Exploring the personality structure in the 11 languages of South Africa. Journal of Personality, 80, 915–948.

SAPI details

- 1216 participants from 11 official language groups
- From about 50,000 descriptive responses to 262 personality items
- Nine personality clusters:
 - Conscientiousness
 - Emotional Stability
 - Extraversion
 - Facilitating
 - Integrity
 - Intellect
 - Openness
 - Relationship Harmony
 - Soft-Heartedness (Ubuntu)
- Our data: selection of 1000 participants

Factor Analysis

Factor Analysis: Modeling measurement of a latent variable

- EFA: Exploratory Factor Analysis.
- CFA: Confirmatory Factor Analysis.

Both EFA and CFA use a "reflective" measurement model, not a "formative" model.

Reflective Constructs

- Items are dependent variables, caused by the factor!
- Latent variable 'extraversion' explains item correlations:
 The factor is the reason for the covariances/correlations.

Reflective Constructs

Thermometer readings are the dependent variables, caused by the temperature!

Reflective Constructs

Symptoms are the dependent variables, caused by the viral infection!

Formative Constructs

SES is an *index* defined as a (weighted) sum of the observed items.

- SES is the (latent) dependent variable, predicted by the items.
- This model is not empirically testable.

Interesting read

Interesting read on theory & latent variables:

Borsboom, D., Mellenbergh, G.J., & Van Heerden, J. (2003). The theoretical status of latent variables. *Psychological review, 110*(2), 203.

CONFIRMATORY OR EXPLORATORY?

Two Subscales of Extraversion

HAVING FUN

- Item 77: I enjoy telling funny stories
- Item 84: I am a good storyteller
- Item 170: I laugh a lot
- Item 196: I make others laugh

BEING LIKED

- Item 44: I am liked by everyone
- Item 63: I chat to everyone
- Item 76: I have many friends
- Item 98: I have good social skills

EFA

- All items load onto all factors
- No hypothesized measurement model
- Estimating latent covariances is optional
 - Oblique factors → Estimated
 - \circ Orthogonal factors \rightarrow Fixed
- Solution is not unique
- Use rotation to improve interpretability

CFA

- The statistical model represents the hypothesized measurement model
- No cross-loadings unless they're predicted by theory
- Almost always estimate the latent covariances
- A unique solution exists

CFA IN R

Example: Estimate a CFA Model

Load the SAPI data.

Specify the **lavaan** model syntax for the SAPI extraversion CFA.

```
mod1 <- '
fun = Q77 + Q84 + Q170 + Q196
liked = Q44 + Q63 + Q76 + Q98
```

Use the cfa() function to estimate the model.

```
library(lavaan)
out1 <- cfa(mod1, data = sapi)</pre>
```

Example: Summarize the Fitted CFA

```
partSummary(out1, 1:4)
lavaan 0.6-18 ended normally after 30 iterations
  Estimator
                                                      MT.
  Optimization method
                                                  NLMINB
  Number of model parameters
                                                      17
                                                    Used
                                                               Total
  Number of observations
                                                     959
                                                                1000
Model Test User Model:
  Test statistic
                                                 130,193
  Degrees of freedom
                                                      19
  P-value (Chi-square)
                                                   0.000
```

Example: Summarize the Fitted CFA

```
partSummary(out1, 5:7)
Parameter Estimates:
  Standard errors
                                             Standard
  Information
                                             Expected
  Information saturated (h1) model
                                           Structured
Latent Variables:
                            Std.Err z-value P(>|z|)
                  Estimate
  fun = 
    077
                     1.000
    084
                     0.761
                              0.051
                                     14.902
                                                0.000
    Q170
                     0.634 0.047
                                     13.558
                                                0.000
    0196
                     0.795
                              0.046
                                      17.381
                                                0.000
  liked =~
    Q44
                     1.000
    063
                     1.512
                              0.147
                                      10.278
                                                0.000
    Q76
                     1.483
                              0.149
                                     9.955
                                                0.000
    098
                     1.243
                              0.119
                                      10.462
                                                0.000
```

Example: Summarize the Fitted CFA

partSummary(out1,	8:9)				
Covariances:					
	Estimate	Std.Err	z-value	P(> z)	
fun ~~					
liked	0.231	0.025	9.234	0.000	
Variances:					
	Estimate	Std.Err	z-value	P(> z)	
.Q77	0.548	0.038	14.389	0.000	
.Q84	0.727	0.039	18.703	0.000	
.Q170	0.687	0.035	19.572	0.000	
.Q196	0.364	0.025	14.731	0.000	
.Q44	0.662	0.034	19.291	0.000	
.Q63	0.807	0.048	16.943	0.000	
.Q76	0.966	0.054	17.931	0.000	
.Q98	0.469	0.029	16.121	0.000	
fun	0.627	0.056	11.303	0.000	
liked	0.182	0.029	6.290	0.000	

Example: Model Fit Statistics

Example: Model Fit Statistics

fitMeasures(out1)

npar	fmin	chisq
17.000	0.068	130.193
df	pvalue	baseline.chisq
19.000	0.000	1574.886
baseline.df	baseline.pvalue	cfi
28.000	0.000	0.928
tli	nnfi	rfi
0.894	0.894	0.878
nfi	pnfi	ifi
0.917	0.622	0.929
rni	logl	unrestricted.logl
0.928	-10147.587	-10082.491
aic	bic	ntotal
20329.175	20411.895	959.000
bic2	rmsea	rmsea.ci.lower
20357.903	0.078	0.066
rmsea.ci.upper	rmsea.ci.level	${\tt rmsea.pvalue}$
0.091	0.900	0.000
rmsea.close.h0	<pre>rmsea.notclose.pvalue</pre>	rmsea.notclose.h0
0.050	0.421	0.080

Example: Visualize the Fitted CFA

Example: Visualize the Fitted CFA

Error in path.expand(path): invalid 'path' argument

Latent variable scaling

Latent variables are not observed, thus no inherent scale.

Latent variable scaling Ctd.

Therefore, set up model such that scale of latent variable is clear.

Three common ways

- 1. Marker-variable method
 Constrain one of the factor loadings (default).
- 2. Reference group method: Constrain the factor variance.
- 3. Effect coding: Constrain the average of the loadings.

1. Marker-variable method (default)

Default parameterization:

- First factor loading constrained at 1.
- Factor mean constrained at 0.

Other defaults:

- Mean of residuals is by definition 0.
- Residuals have a loading of 1.

Estimated:

- factor variance (Ψ),
- 'other' factor loadings (λ_2 , λ_3),
- all item intercepts (v₁, v₂, v₃),
- all residual variances (ϵ_1 , ϵ_2 , ϵ_3).

1. Default marker-variable method - lavaan

First factor loading constrained at 1:

```
Extraversion = 1.000
```

• Factor mean constrained at 0:

Extraversion 0.000

Default marker-variable method - lavaan Ctd

```
parameterEstimates(fit_1CFA)[1:4,-c(5,6,7)]
Error in eval(expr, envir, enclos): object 'fit_1CFA' not found
```

Factor loading of first indicator fixed to 1. all other loadings are relative to that.

If reference category changed, other loadings also change.

2. Reference-group method

Parameterization:

- Factor variance constrained at 1.
- Factor mean constrained at 0.

Defaults:

- Mean of residuals is by definition 0.
- Residuals have a loading of 1.

Estimated:

- all factor loadings (λ_1 , λ_2 , λ_3),
- all item intercepts (v₁, v₂, v₃),
- all residual variances (ϵ_1 , ϵ_2 , ϵ_3).

2. Reference-group method - lavaan

```
# Model
model.1CFA_RefGr <- '
  # Free first factor loading, using: NA*
  Extraversion = ^{\sim} NA*Q77 + Q84 + Q170 + Q196
  # Set factor variance to 1, using: 1*
  Extraversion ~~ 1*Extraversion
# Fit model
fit_1CFA_RefGr <- cfa(model.1CFA_RefGr, data=data_sapi,
                missing='fiml', fixed.x=F) # use FIML
Error in eval(sc, parent.frame()): object 'data_sapi' not found
```

• Factor variance constrained at 1:

Extraversion 1.000

Factor mean constrained at 0:

Extraversion

0.000

2. Reference-group method - lavaan Ctd

```
parameterEstimates(fit_1CFA_RefGr)[1:4,-c(5,6,7)]
Error in eval(expr, envir, enclos): object 'fit_1CFA_RefGr' not found
```

Advantage:

All factor loadings and scores on standardized metric.

Which method to choose?

1. Marker-variable method

2. Reference-group method

Does not matter for substantive conclusions. Sometimes, pragmatic reasons.

3. Effects-coding method

Parameterization:

- Constrain the average of the factor loadings to 1: $\frac{1}{3} \sum_{i=1}^{3} \lambda_i = 1$.
- Constrain the average of the item intercepts to 0: $\frac{1}{3} \sum_{i=1}^{3} v_i = 0$.

Defaults:

- Mean of residuals is by definition 0.
- Residuals have a loading of 1.

Estimated (subject to the constraints):

- factor variance (Ψ).
- factor mean (α),
- all factor loadings (λ_1 , λ_2 , λ_3),
- all item intercepts (v₁, v₂, v₃),
- all residual variances (ϵ_1 , ϵ_2 , ϵ_3).

3. Effects-coding method Ctd

Interpretations can be intuitive:

- Factor on similar scale as the indicators.
- Factor variance (Ψ): average variance of each indicator that can be explained by the factor.
- Factor mean (α): weighted mean of the indicator means

3. Effects-coding method - lavaan model

```
# Model
model.1CFA_EffC <- '
 # Label parameters, such that they can be constrained
 Extraversion = lambda1*077 + lambda2*084 +
                  lambda3*Q170 + lambda4*Q196
 # intercepts
 Q77 ~ nu1*1
 Q84 ~ nu2*1
 0170 ~ nu3*1
 Q196 ~ nu4*1
 # Constrain average of loadings to 1, i.e., set sum to 4
 lambda1 == 4 - lambda2 - lambda3 - lambda4
 # Constrain average of item intercepts to 0,
 # i.e., set sum to 0
 nu1 == 0 - nu2 - nu3 - nu4
```

3. Effects-coding method - fit lavaan model

Now, use the lavaan() function:

3. Effects-coding method - lavaan outpu

• Constrain the average of the factor loadings to 1: $\frac{1}{4}\sum_{i=1}^4 \lambda_i = 1$.

```
parameterEstimates(fit_1CFA_EffC)[1:4,1:5]
Error in eval(expr, envir, enclos): object 'fit_1CFA_EffC' not found
```

• Constrain the average of the item intercepts to 0: $\frac{1}{4} \sum_{i=1}^4 v_i = 0$.

```
parameterEstimates(fit_1CFA_EffC)[5:8,1:5]
Error in eval(expr, envir, enclos): object 'fit_1CFA_EffC' not found
```


Extra:

Categorical/Ordinal or continuous indicators?

Note: in cfa() you can, for example use 'ordered = TRUE' for endogenous variable.

Default then: estimator = "WLSMV".

More information on: https://lavaan.ugent.be/tutorial/cat.html

Remark!

Do NOT use a χ^2 test or IC (AIC or BIC) to compare categorical and continuous models:

- Obviously not nested (so, no χ^2 test anyway).
- AND likelihoods of categorical and continuous indicator models are incomparable!

Note: χ^2 test and IC are based on (log) likelihood (= fit).

Interesting Reading

https://lavaan.ugent.be/tutorial/cat.html

Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrica, 49(1), 115-132.

Rhemtulla, M., Brosseau-Liard, P.É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354-373.

Sventina, D., Rutkowski, D. (2020). Multiple group invariance with categorical outcomes using updated guidelines: an illustration using Mplus and the lavaan/semtools packages. Structural Equational Modelling: A Multidisciplinary Journal, 27(1), 111-130