Data loading and processing

```
setwd("C:/Stats/R")
library(caret)

trainURL <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-trainin
g.csv"

testURL <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.
csv"

training <- read.csv(url(trainURL))

testing <- read.csv(url(testURL))

lbl <- createDataPartition(training$classe , p = 0.7, list = FALSE)

train <- training[lbl, ]

test <- training[-lbl, ]</pre>
```

Removing columns that contains NA values and irrelevant variables

```
NZeroV <- nearZeroVar(train)
train <- train[ ,-NZeroV]

test <- test[ ,-NZeroV]

lbl <- apply(train, 2, function(x) mean(is.na(x))) > 0.95
train <- train[, -which(lbl, lbl == FALSE)]
test <- test[, -which(lbl, lbl == FALSE)]
train <- train[, -(1:5)]
test <- test[ , -(1:5)]
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
set.seed(1704)</pre>
```

Building model and cross validation

Modelling with regression tree ("rpart")

```
f1 <- train(classe ~ ., method="rpart", data=train)</pre>
v1 <- predict(fit1, validation)</pre>
confusionMatrix(validation$classe, v1)
## Confusion Matrix and Statistics
           Reference
## Prediction A B C
                               Ε
         A 1530 21 120
                                3
          в 456 425 258
         C 452 36 538 0 0
##
         D 429 165 370
##
         E 154 150 291 0 487
## Overall Statistics
                Accuracy: 0.5064
##
                  95% CI: (0.4935, 0.5192)
    No Information Rate: 0.5133
##
     P-Value [Acc > NIR] : 0.8604
##
                  Kappa: 0.3554
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                    Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                      0.5065 0.53325 0.34115 NA 0.99388
## Specificity
                      0.9497 0.85967 0.88672 0.8362 0.88971
                      0.9140 0.37313 0.52437 NA 0.45009
## Pos Pred Value
                      0.6459 0.92162 0.78617
## Neg Pred Value
                                                   NA 0.99938
## Prevalence
                      0.5133 0.13543 0.26797 0.0000 0.08326
## Detection Rate
                      0.2600 0.07222 0.09142 0.0000 0.08275
## Detection Prevalence 0.2845 0.19354 0.17434 0.1638 0.18386
## Balanced Accuracy 0.7281 0.69646 0.61394 NA 0.94180
```

random forest ("rf")

```
set.seed(14807)
control <- trainControl(method = "cv", number = 3, verboseIter=FALSE)</pre>
modelRF <- train(classe ~ ., data = train, method = "rf", trControl = contr</pre>
ol)
modelRF$finalModel
predictRF <- predict(modelRF, test)</pre>
## Confusion Mtrx and Statis
##
##
          Reference
## Prediction A B C D
         A 1674 0 0 0 0
                      4
         в 14 1121
##
##
          C 0 3 1015 3
         D 0 0 11 952
         E 0 0 1 3 1078
##
## Overall Statistics
##
               Accuracy: 0.9921
##
                 95% CI : (0.991, 0.9953)
##
     No Information Rate: 0.2867
##
##
     P-Value [Acc > NIR] : < 2.2e-16
##
##
                  Kappa : 0.9916
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                    Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                      0.9917 0.9973 0.9846 0.9937 1.0000
## Specificity
                      1.0000 0.9962 0.9988 0.9978 0.9992
## Pos Pred Value
                      1.0000 0.9842 0.9942 0.9886 0.9963
## Neg Pred Value
                      0.9967 0.9994 0.9967 0.9988 1.0000
                      0.2868 0.1910 0.1760 0.1630 0.1832
## Prevalence
## Balanced Accuracy 0.9959 0.9968 0.9917 0.9958 0.9996
```

The above result show that the random forest model has the highest accuracy in cross validation. Therefore, we will use the random forest model for predicting test samples.

Prediction

We used the random forest model for prediction

```
pred <- predict(fit2, newdata=testing)
pred

## [1] B A B A A E D B A A B C B A E E A B B B

## Levels: A B C D E</pre>
```