

FUNCTIONS, SEQUENCES, SUMMATIONS, AND INDUCTION

DR. ISAAC GRIFFITH IDAHO STATE UNIVERSITY

Outline

The lecture if structured as follows:

- Functions
- Sequences and Summations
- Induction
- **Defining Sets Inductively**

#Functions

CS 1187

Functions

- A function from set A to set B is an assignment of exactly one element of B to each element of A
 - We write f(a) = b if b is an unique element of B assigned by the function f to the element a of A.
 - If f is a function from A to B, we write $f: A \rightarrow B$
 - Functions are also called *mappings* or *transformations*
 - Note: a function is a special kind of relation

Functions

- For a function $f: A \rightarrow B$ (read as "f maps A to B")
 - Domain of f is A
 - domain $f = \{x \mid \exists y. (x, y) \in f\}$
 - Codomain of f is B (also called the range or image of f)
- If f(a) = b, we say that
 - b is the image of a and a is the preimage of b
 - image $f = \{y \mid \exists x. (x, y) \in f\}$
 - range or image of f is the set of all images of elements of A

domain

Functions

- Let f_1 and f_2 be functions from A to \mathbb{R} . Then $f_1 + f_2$ and $f_1 \cdot f_2$ are also functions from A to \mathbb{R} defined for all $x \in A$ by:
 - $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
 - $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x)$
- Example: $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ • $f_1(x) = x^2, f_2(x) = x - x^2$ $(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + (x - x^2) = x$ $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x) = x^2(x - x^2) = x^3 - x^4$
- Let $f: A \to B$ and $S \subseteq A$. The **image** of S under f is the subset B that consists of the images of elements of S. We denote the image of S by f(S), so

$$f(S) = \{t \mid \exists s \in S(t = f(s))\}$$

• The shorthand for this is $\{f(s) \mid s \in S\}$ (where f(s) is a set not a function)

Inductively Defined Functions

A function in the following form, where h is a non-recursive function, is inductively defined:

$$f(0) = k$$

 $f(n) = h(f(n-1))$
 $f(n) = n + f(n-1)$

 A function f is primitive recursive if its definition has the following form, where g and h are primitive recursive functions.

$$\begin{array}{lll} f(0,x) & = & g(x) \\ f((k+1,x)) & = & h(f(k,x),kx) \end{array} & \begin{array}{lll} \text{factorial } \texttt{k} = \texttt{f} \texttt{ k} \texttt{ undefined} \\ \text{where } \texttt{f} \texttt{ 0} \texttt{ x} = \texttt{1} \\ & \texttt{f} \texttt{ (k+1)} \texttt{ x} = \texttt{ (k+1)} * \texttt{ (f k x)} \end{array}$$

Primitive Recursion Example


```
factorial 4
= 4 \times f \ 3 \perp
= 4 \times (3 \times f \ 2 \perp)
= 4 \times (3 \times (2 \times f \ 1 \perp))
= 4 \times (3 \times (2 \times (1 \times f \ 0 \perp)))
= 4 \times (3 \times (2 \times (1 \times 1)))
= 4 \times (3 \times (2 \times 1))
= 4 \times (3 \times 2)
= 4 \times 6
= 24
```

One-to-One (Injective)

- A function f is said to be **one-to-one**, or an **injection**, iff f(a) = f(b) implies a = b for all a and b in the domain of f.
 - A function is said to be **injective** if it is one-to-one.
 - We could also say the holds if $f(x) \neq f(y)$ whenever $x \neq y$

Example: Determine whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one.

a b 2 3 4 5

Solution: f is one-to-one since f takes on different values at the four elements of its domain.

Example: Determine whether $f(x^2)$ is one-to-one function x^2

One-to-One Conditions

For some function f whose domain and codomain are subsets of \mathbb{R} where x and y are in the domain of f, we call f:

- Increasing: if $f(x) \le f(y)$: $\forall x \forall y (x < y \rightarrow f(x) \le f(y))$
- Strictly Increasing: if f(x) < f(y): $\forall x \forall y (x < y \rightarrow f(x) < f(y))$
- Decreasing: if $f(x) \ge f(y)$: $\forall x \forall y (x < y \rightarrow f(x) \ge f(y))$
- Strictly Decreasing: if f(x) > f(y): $\forall x \forall y (x < y \rightarrow f(x) > f(y))$

Example: Although $f(x) = x^2$ where $f: \mathbb{R} \to \mathbb{R}$ is not one-to-one. When $f: \mathbb{R}^+ \to \mathbb{R}^+$ it is strictly increasing and thus *one-to-one*

Onto (Surjective)

- A function $f: A \to B$ is called **onto**, or a **surjection**, iff for every element $b \in B$ there is an element $a \in A$ with f(a) = b.
 - such a function is called surjective
 - $\forall y \exists x (f(x) = y)$
 - Every y in the range has a corresponding x in the domain
- Example: Determine whether the following function is onto

YES!

 Haskell Examples: The following are surjective functions

```
not :: Bool -> Bool
member v :: [Int] -> Bool
increment :: Int -> Int
id :: a -> a
```

Onto and One-to-One (Bijective)

- The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto
 - such a function is called bijective
- Example: Determine whether the following function is a bijection

YES!

Proofs about functions

Suppose we have function: $f: A \rightarrow B$

- To show that f is injective: show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y
- To show that f is not injective: find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y)
- To show that f is surjective: Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y
- To show that f is not surjective: Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$

Evaluate Functions

- The Stdm provides some tools to explore the properties of functions
 - isSurjective which takes a domain and codomain and the graph representation of a function and determines if it is surjective
 - isInjective which takes a domain and codomain and the graph representation of a function and determines if it is injective
 - isBijective which takes a domain and codomain and the graph representation of a function and determines if it is bijective
 - functionComposition takes graph representations of two functions and returns the graph representation of their composition

```
fun domain = [1.2.3]
fun codomain = [4.5.6]
fun1 = [(1, Value 4), (2, Value 6), (3, Value 5)]
fun2 = [(1, Value 4), (2, Value 4), (3, Value 5)]
fun3 = [(1, Value 4), (2, Undefined), (3, Value 5)]
isInjective fun domain fun codomain
    (functionalComposition fun1 fun2)
isSurjective fun domain fun codomain
    (functionalComposition fun1 fun2)
isBijective fun domain fun codomain
    (functionalComposition fun1 fun2)
```


Inverse Functions

- Let $f: A \to B$ be a bijective. The inverse function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that $\overline{f(a)} = b$.
 - We denote the inverse of f as f^{-1} .
 - When f(a) = b then $f^{-1}(b) = a$

- Example: $f(x) = x^2$, is f invertible?
 - Answer: No, since $f(x) = x^2$ is not one-to-one

Example:

Haskell Example

increment, decrement :: Integer -> Integer increment x = x + 1decrement x = x - 1

Composition of Functions

• Let $g: A \to B$ and let $f: B \to C$. The **composition** of the functions f and g, denoted $\forall a \in A$ as $f \circ g$, is the function from A to C defined by:

$$(f \circ g) = f(g(a))$$

Example:
$$f(x) = 2x + 3$$
 and $g(x) = 3x + 2$

$$(f \circ g)(x) = f(g(x))$$

= $f(3x + 2)$
= $2(3x + 2) + 3$
= $6x + 7$

$$(g \circ f)(x) = g(f(x))$$

= $g(2x_3)$
= $3(2x+3)+2$
= $6x+11$

Functional Composition

- We can often think of function composition as setting up a processing pipeline.
- Additionally, Functional composition (\circ) is associative. That is for all functions $h: a \to b$. $\overline{a:b} \rightarrow c.f:c \rightarrow d$

$$f \circ (g \circ h) = (f \circ g) \circ h$$

The Haskell function composition operator is:

```
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
(f.g) x = f (g x)
```

Example

```
-- we could write:
map increment (map snd lstpairs)
-- but it often clearer to write
map (increment.snd) lstpairs
```

Graphs of Functions

• Application of the function f to the argument x, provided that $f: A \to B$, is written as f(x), and its value is y if the ordered pair (x, y) is in the graph of f, otherwise the application is undefined:

$$f(x) = y \leftrightarrow (x, y) \in f$$

- We denoted 'f is undefined' as $f(x) = \bot$
- Graph of a Function: the set of ordered pairs $\{(a,b) \mid a \in Aandf(a) = b\}$ for a function $f:A \rightarrow B$

Examples

• Example: $\mathbb{N} \to \mathbb{N}$, f(n) = 2n + 1

• Example: $\mathbb{Z} \to \mathbb{Z}$, $f(n) = n^2$

Floor and Ceiling

- floor(): assigns to the real number x the largest integer that is less than or equal to x. Denoted |x|
- ceil(): assigns to the real number x the smallest integer that is greater than or equal to x. Denoted [x]
- Example:
 - Floor: $\lfloor 2.7 \rfloor = 2$, $\lfloor -1/2 \rfloor = -1$
 - Ceiling: [2.7] = 3, [-1/2] = 0

```
ceiling 2.7
> 3
floor 2.7
> 2
```

• Useful properties of the Floor and Ceiling

```
• (n is an integer, x is a real number)
```

Floor and Ceiling Graphs

Partial Functions

- Partial Function: a function f: A → B that is an assignment to each element a in a subset of A, called the domain of definition of f. of a unique element b ∈ B.
 - A is the domain of f
 - B is the codomain of f
 - We say f is undefined for elements in A that are not in the domain of definition of f
- Total Function: when the domain of definition of f equals A
- Example: $f: \mathbb{Z} \to \mathbb{R}$ where $f(n) = \sqrt{n}$
 - \bullet Partial function since the domain of definition is \mathbb{Z}^+
 - f is undefined for negative integers

Haskell Example

```
f :: Integer -> Char
f 1 = 'a'
```

$$f 2 = 'b'$$

$$f 3 = 'c'$$

CS 1187

Sequences

- Sequence: a function from a subset of the set of integers (usually the set $\{0, 1, 2, ...\}$) or the set $\{1, 2, 3, ...\}$) to the set S.
 - We use a_n to denote the image of the integer n. a_n is called a term
- Example: $\{a_n\}$ where $a_n = \frac{1}{n}$

The sequence $a_1, a_2, a_3, a_4, \ldots$ begins with $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$

Geometric Progression: a sequence of the form

$$a, ar, ar^2, \ldots, ar^n$$

Where the *initial term a* and *common ratio r* are real numbers

- Examples: $\{b_n\}$ with $b_n = (-1)^n$ and $\{c_n\}$ with $c_n = 2 \cdot 5^n$
 - $b_0, b_1, b_2, b_3, b_4, \ldots \rightarrow 1, -1, 1, -1, 1, \ldots$
 - $c_0, c_1, c_2, c_3, c_4, \ldots \rightarrow 2, 10, 50, 250, 1250, \ldots$

Arithmetic Progression: a sequence of the form

$$a, a + d, a + 2d, \dots, a + nd$$

Where the *initial term a* and the *common difference d* are real numbers

- Examples: $\{s_n\}$ with $s_n = -1 + 4n$ and $\{t_n\}$ with $t_n = 7 3n$
 - $s_0, s_1, s_2, s_3, \ldots \to -1, 3, 7, 11, \ldots$
 - $t_0, t_1, t_2, t_3, \ldots \to 7, 4, 1, -2, \ldots$

Strings

- Strings: sequences of the form a_1, a_2, \ldots, a_n
 - may also be denoted $a_1 a_2 \dots a_n$
- Length: a string's length is simply the number of terms in the string.
- Empty String (λ): is the string that has no terms
 - Length of λ is 0

Examples

- Example: find the formulas for the following sequences with the first five terms
 - $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \longrightarrow a_n = (\frac{1}{2})^{n-1}$
 - 1. 3. 5. 7. 9 \longrightarrow $a_n = 2n 1$
 - 1, -1, 1, -1, 1 \longrightarrow $a_n = (-1)^{n-1}$ or $(-1)^{n+1}$
- Example: $5.11.17.23.29.35.41.47 \longrightarrow a_n = 6n 1$

Recurrence Relations

- A Recurrence Relation: for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, \ldots, a_n 1$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.
 - A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
 - A recurrence relation recursively defines a sequence
- Initial Conditions specify the terms that precede the first term where the recurrence relation takes effect.
- Closed Formulat: an explicit formula for the terms in the sequence
- Example: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 1, 2, 3, ... and suppose that $a_0 = 2$.

$$a_1 = a_0 + 3 = 2 + 3 = 5$$

$$a_2 = 5 + 3 = 8$$

$$a_3 = 8 + 3 = 11$$

Fibonacci Sequence

• Fibonacci sequence: f_0, f_1, f_2, \ldots is defined by the initial conditions $f_0 = 0, f_1 = 1$, and the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$

for n = 2, 3, 4, ...

• Example:

$$egin{array}{lll} f_2 &=& f_1 + f_0 = 1 + 0 = 1, \\ f_3 &=& f_2 + f_1 = 1 + 1 = 2, \\ f_4 &=& f_3 + f_2 = 2 + 1 = 3, \\ f_5 &=& f_4 + f_3 = 3 + 2 = 5, \\ f_6 &=& f_5 + f_4 = 5 + 3 = 8 \\ \end{array}$$

Iteration

 Iteration: The successive application of the recurrence relation to solve the recurrence and identify the closed formula.

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for $n = 1, 2, 3, \dots$ and suppose that $a_0 = 2$.

Forward Substitution:

$$\mathbf{a}_2 = 2+3$$

 $\mathbf{a}_3 = (2+3)+3=2+3\cdot 2$
 $\mathbf{a}_4 = (2+2\cdot 3)+3=2+3\cdot 3$
 \vdots
 $\mathbf{a}_n = \mathbf{a}_{n-1}+3=(2+3\cdot (n-2))+3$

=2+3(n-1)

Backward Substitution:

$$a_n = a_{n-1} + 3$$

 $= (a_{n-2} + 3) = a_{n-2} + 3 \cdot 2$
 $= (a_{n-3} + 3) + 3 \cdot 2 = a_{n-3} + 3 \cdot 3$
 \vdots

$$\begin{array}{rcl}
 & \bullet & \bullet \\
 & = & \mathbf{a}_2 + 3(\mathbf{n} - 2) = (\mathbf{a}_1 + 3) + 3(\mathbf{n} - 2) \\
 & = & 2 + 3(\mathbf{n} - 1)
\end{array}$$

Summations

- Summation Notation: provides a concise notation for describing the sum of a sequence.
 - Given the sequence a_m, a_{m+1}, \dots, a_n from the sequence $\{a_n\}$ we can describe the summation using:

$$\sum_{j=m}^n a_j, \quad \sum_{m \le j \le n} a_j$$

- or $\sum_{j=m}^n a_j$ • Read as the sum from j=m to j=n of a_j to represent $a_m+a_{m+1}+\ldots+a_n$
- j is the index of summation which starts from the lower limit m and runs up through and ends with the upper limit n.

Ex: What is the value of $\sum_{j=1}^{5} j^2$

$$\sum_{j=1}^{5} j^{2} = 1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2}$$

$$= 1 + 4 + 9 + 16 + 25$$

$$= 55$$

Ex: What is the value of $\sum_{k=0}^{8} (-1)^k$

$$\sum_{k=4}^{8} (-1)^{k} = (-1)^{4} + (-1)^{5} + (-1)^{6}$$

$$+ (-1)^{7} + (-1)^{8}$$

$$= 1 + (-1) + 1 + (-1) + 1$$

$$= 1$$

ROAF

Useful Summation Formulae

Sum	Closed Form
$\sum_{k=0}^{n} ar^{k} (r \neq 0)$	$rac{a r^{n+1}-a}{r-1}$, $r eq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum\limits_{k=1}^{n}k^{2}$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum\limits_{{m k}=0}^{\infty} {m x}^{m k}$, $ {m x} < 1$	$\frac{1}{1-x}$
$\sum_{k=0}^{\infty} k x^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

• Converting from from an index of k = 1 to $\mathbf{k} = 0$

$$\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2$$

- Double summations arise in many contexts
 - We evaluate them by first expanding the inner summation, then computing the out summation:

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i+2i+3i)$$

$$= \sum_{i=1}^{4} 6i$$

$$= 6 + 12 + 18 + 24$$

$$= 60$$

Examples

- Evaluate $\sum_{S \in 0.2.4} S = 0 + 2 + 4 = 6$
- Find $\sum_{k=50}^{100} k^2$: $\sum_{k=50}^{100} k^2 = \sum_{k=50}^{50} k^2 - \sum_{k=50}^{49} k^2$ $= \frac{100 \cdot 101 \cdot 201}{6} - \frac{49 \cdot 50 \cdot 99}{6}$ = 338350 - 40425

297925

- Product Notation: provides a concise notation for describing the product of a sequence.
 - Given the sequence $a_m, a_{m+1}, \ldots, a_n$ from the sequence $\{a_n\}$, the product can be denoted:

$$\prod_{j=m}^{n} a_{j}, \quad \prod_{m \leq j \leq n}$$

or
$$\prod_{j=m}^n a_j$$

• Read as the product from j = m to j = n of a_j

Finite and Infinite Sets

- Bijections are a tool for reasoning about the sizes of tests.
 - We can use these to count a set of objects
 - That is, we associate a number to each element of a set, with the number n associated with the last one, and n is the number of objects
 - Thus, if there is a bijection $f: \{1, 2, \dots, n\} \to S$, n is the size of the set (aka its *cardinality*)
- Finite Set: A set S is *finite* iff there is a natural number n such that there is a bijection mapping the natural number $\{0, 1, \ldots, n-1\}$ to S.
 - The cardinality of S is n, and is written as |S|
- Infinite Set: A set A is infinite if there exists an injective function $f:A \to B$ such that $B \subset A$
- We can use function properties for a function f over a finite domain A and result type B to determine relative cardinalities
 - If f is a surjection then $|A| \ge |B|$
 - If f is an injection then $|A| \leq |B|$

Integers are Countable

- Equinumerous: Two sets A and B have the same cardinality if there is a bijection $f: A \to B$
- We can place the set Z of integers into one-to-one correspondence with the set N of natural numbers:

- Countable: A set S is countable iff there is a bijection $f: \mathbb{N} \to S$
 - That is a set is countable if it has the same cardinality as $\mathbb N$
 - Thus, if a set can be *enumerated* (even if it is infinite) it is countable
 - Countably infinite sets are said to be in \aleph_0

The Rational Numbers are Countable

- Rational Number: a fraction of the form x/y, where x and y are integers.
 - We can represent a ratio as a pair of integers
 - First number is numerator
 - Second number is denominator
- We setup a correspondence between \mathbb{Q}^+ and \mathbb{N} as follows
 - 1. We create a series of columns, each having an index n indicating its place in the series
 - each column gives all possible fractions with *n* as the numerator
 - 2. Since every line in this sequence is finite, it can be printed completely before the next line is started
 - 3. Each line makes progress in all columns before another row is added

• Every ratio will eventually appear. Thus \mathbb{Q}^+ is in one-to-one correspondence with \mathbb{N} and is countable

Real Numbers are Not Countable

- Some infinite sets are not countable.
 - Such sets are so much larger than N that there is no way to make a one-to-one correspondence.
 - We can prove this using an approach called *diagonalization* and a proof by contradiction.

• Proof:

- Suppose the set of real numbers is countable. Then the real numbers between 0 and 1 is countable.
- Therefore, all the real numbers between 0 and 1 can be listed as follows:

$$\textit{d}_{\textit{ij}} \in \{0,...,9\}$$

- We can form a new real number r as follows:
 - 1. select the first digit from the first row, and change it to it's 9's complement.
 - 2. Take the second digit from the second row and change it to its 9's complement and so on. $0 \leftrightarrow 9 \ 1 \leftrightarrow 8 \ 2 \leftrightarrow 7 \ 3 \leftrightarrow 6 \ 4 \leftrightarrow 5$

Real Numbers are Not Countable

- We claim that r is not listed on the original table
 - Because r differs at least one digit from any row
 - We assumed that we listed all real numbers, but we found a new one $r \Rightarrow$ Contradiction
 - Therefore, the set of real numbers is uncountable

For Next Time

- Review DMUC Chapter 11
- Review DMA Chapters 2.3 2.5
- Review this Lecture
- Read DMUC Chapter 4, 9
- Read DMA Chapters 5.1 5.2

Are there any questions?