Zusammenfassung Stochastik 3

© M Tim Baumann, http://timbaumann.info/uni-spicker

Hypothesentests mittels Stichprobenfktn

Modell. Gegeben sei ein parametrisches Modell, d. h.eine Zufallsgröße X, deren Verteilungsfunktion $P_X \in \{P_{\vartheta} \mid \vartheta \in \Theta \subset \mathbb{R}^n\}$ von einem Parameter ϑ abhängt.

Problem. Anhand einer **Stichprobe** $x_1, \ldots, x_n \in \mathbb{R}^1$ von X (d. h. x_1, \ldots, x_n sind Realisierung von iid ZGen $X_1, \ldots, X_n \sim P_X$) ist zu entscheiden, ob die sogenannte **Nullhypothese** $H_0: \vartheta \in \Theta_0 \subset \Theta$ oder eine **Gegenhypothese** $H_1: \vartheta \in \Theta_1 = \Theta \setminus \Theta_0$ angenommen oder abgelehnt werden soll.

Def. Der **Stichprobenraum** ist $(\mathbb{R}^n, \mathfrak{B}(\mathbb{R}^n), P_{\vartheta} \times \ldots \times P_{\vartheta})$.

Terminologie. Die Hypothese H_i heißt einfach, falls $|\Theta_i| = 1$, andernfalls zusammengesetzt.

Def. Ein (nichtrandomisierter) **Test** für H_0 gegen H_1 ist eine Entscheidungsregel über die Annahme von H_0 basierend auf einer Stichprobe, die durch eine messbare Abbildung $\varphi: \mathbb{R}^n \to \{0,1\}$ augedrückt wird und zwar durch

$$\varphi(x_1, \dots, x_n) = \begin{cases} 0 & \text{bei Annahme von } H_0, \\ 1 & \text{bei Ablehnung von } H_0. \end{cases}$$

Def. Der Ablehnungsbereich oder kritische Bereich von φ ist

$$K_n := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \varphi(x_1, \dots, x_n) = 1\}.$$

Bem. Es gilt $\varphi = \mathbb{1}_{K_n}$.

Def. Fehler 1. Art: Ablehnung von H_0 , obwohl H_0 richtig ist **Fehler 2. Art:** Annahme von H_0 , obwohl H_0 falsch ist

Def. Die Güte- oder Machtfunktion des Tests φ ist

$$m_{\varphi}: \Theta \to [0,1], \quad m_{\varphi}(\vartheta) := \mathbb{E}_{\vartheta} \varphi(X_1, \dots, X_n)$$

= $\mathbb{P}_{\vartheta}((X_1, \dots, X_n) \in K_n)$
= $(P_{\vartheta} \times \dots \times P_{\vartheta})(K_n)$

Die Gegenwsk. $(1-m_{\varphi}(\vartheta))$ heißt **Operationscharakteristik** von φ .

Bem. Es gilt
$$\mathbb{P}_{\vartheta}(\text{Fehler 1. Art}) = m_{\varphi}(\vartheta)$$
 für $\vartheta \in \Theta_0$, $\mathbb{P}_{\vartheta}(\text{Fehler 2. Art}) = 1 - m_{\varphi}(\vartheta)$ für $\vartheta \in \Theta_1$.

Def. Ein Test $\varphi: \mathbb{R}^n \to \{0,1\}$ mit

$$\sup_{\vartheta \in \Theta_0} m_{\varphi}(\vartheta) \le \alpha$$

heißt α -Test o. Signifikanztest zum Signifikanzniveau $\alpha \in (0,1)$. Ein α -Test φ heißt unverfälscht (erwartungstreu, unbiased), falls

$$\inf_{\vartheta \in \Theta_1} m_{\varphi}(\vartheta) \ge \alpha.$$

Situation. Sei nun eine Stichprobenfunktion oder Teststatistik $T: \mathbb{R}^n \to \mathbb{R}^1$ gegeben. Wir wollen einen Test der einfachen Nullhypothese $H_0: \vartheta \in \Theta_0 = \{\vartheta_0\}$ entwickeln.

Def. $K_n^T \subset \mathbb{R}^1$ heißt kritischer Bereich der Teststatistik, falls

$$K_n = T^{-1}(K_n^T).$$

Bem. Es gilt

$$m_{\varphi}(\vartheta_0) = \mathbb{P}_{\vartheta_0} ((X_1, \dots, X_n) \in K_n) =$$

$$= \mathbb{P}_{\vartheta_0} (T(X_1, \dots, X_n) \in K_n^T) = \int_{K_n^T} f_T(x) \, \mathrm{d}x,$$

wobei f_T die Dichte von $T(X_1, \ldots, X_n)$ unter H_0 ist.

Test. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$, σ bekannt und $\alpha \in (0, 1)$ vorgegeben. Zum Test von $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ wählen wir als Statistik

$$T(X_1,\ldots,X_n) := \frac{\sqrt{n}}{\sigma} (\overline{X}_n - \mu_0) \text{ mit } \overline{X}_n := \frac{1}{n} (X_1 + \ldots + X_n).$$

Unter Annahme von H_0 gilt $T(X_1, ..., X_n) \sim \mathcal{N}(0, 1)$. Der Ablehnungsbereich der Statistik ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > z_{1-\alpha/2} \} \text{ mit } z_{1-\alpha/2} := \Phi^{-1}(1 - \alpha/2).$$

Für $\alpha = 0.05$ gilt beispielsweise $z_{1-\alpha/2} \approx 1.96$.

Bem. Es gilt

$$t \in (K_n^T)^c \iff |t| \le z_{1-\alpha/2} \iff |\overline{X}_n - \mu_0| \le \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}$$
$$\iff \mu_0 \in \left[\overline{X}_n - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \overline{X}_n + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \right].$$

Def. Dieses Intervall heißt Konfidenzintervall für μ_0 zum Konfidenzniveau $1-\alpha$.

Test. Sei wieder $X \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 aber diesmal unbekannt. Zum Testen von $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ verwenden wir

$$\hat{T}(X_1, \dots, X_n) = \frac{\sqrt{n}}{S_n} (\overline{X}_n - \mu_0), \quad S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Dabei ist S_n die (korrigierte) Stichprobenvarianz. Man kann zeigen, dass $\hat{T}(X_1, \ldots, X_n) \sim t_{n-1}$ unter H_0 . Dabei ist t_m die Student'sche t-Verteilung mit m Freiheitsgraden (siehe unten). Der Ablehnungsbereich ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > t_{n-1,1-\alpha/2} \}.$$

Bem. S_n^2 und \overline{X}_n sind unabhängig für $n \geq 2$.

Diskussion. • Je kleiner α ist, desto "nullhypothesenfreundlicher" ist der Test. Häufig verwendet wird $\alpha \in \{10\%, 5\%, 1\%, 0, 5\%\}$.

• Einseitige Tests: Die Gegenhypothese zu $H_0: \mu = \mu_0$ ist $H_1: \mu > \mu_0$. Die Nullhypothese wird nur abgelehnt, falls zu große Stichprobenmittelwerte \overline{x}_n vorliegen. Es ist dann $K_n^T = (z_{1-\alpha}, \infty)$.

Def. Es seien $X_1, \ldots, X_n \sim \mathcal{N}(0, 1)$. Dann heißt die Summe $X_1^2 + \ldots + X_n^2 \sim \chi_n^2$ Chi-Quadrat-verteilt mit n Freiheitsgraden.

Def. Falls $X \sim \mathcal{N}(0,1)$ und $Y_n \sim \chi_n^2$ unabhängig sind, so heißt

$$\frac{X}{\sqrt{\frac{Y_n}{n}}} \sim t_n$$

t-verteilt mit n-Freiheitsgraden.

Lem. $\frac{n-1}{\sigma^2} S_n^2 \sim \chi_{n-1}^2$

Kor. \hat{T} aus dem zweiten obigen Bsp ist tatsächlich t-verteilt.

Def. Seien $Y_{n_i} \sim \chi^2_{n_i}$, i = 1, 2 zwei unabhängige ZGen. Dann heißt

$$\frac{Y_{n_1}/n_1}{Y_{n_2}/n_2} \sim F_{n_1,n_2}$$

F-verteilt (wie Fisher) mit (n_1, n_2) Freiheitsgraden.

Test. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$ mit μ unbekannt. Wir testen $H_0: \sigma = \sigma_0$ vs. $H_1: \sigma \neq \sigma_0$ mit

$$T := \frac{n-1}{\sigma^2} S_n^2$$

Unter Annahme von H_0 gilt $T \sim \chi_{n-1}^2$. Falls μ bekannt ist, muss

$$\widetilde{T} := \frac{n}{\sigma_0^2} \widetilde{S}_n^2, \quad \widetilde{S}_n^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

als Statistik gewählt werden. Unter Annahme von H_0 ist $\widetilde{T} \sim \chi_n^2$.

Test. Seien Stichproben $X_1^{(i)},...,X_{n_i}^{(i)} \sim \mathcal{N}(\mu_i,\sigma_i^2), \ i=1,2$ gegeben. Wir testen $H_0:\sigma_1=\sigma_2$ vs. $H_1:\sigma_1\neq\sigma_2$. Dazu verwenden wir

$$T = \frac{S_{X^{(1)}}^2}{S_{X^{(2)}}^2}, \quad S_{X^{(j)}}^2 := \frac{1}{n-1} \sum_{i=1}^{n_j} \left(X_i^{(j)} - \overline{X}_n^{(j)} \right)^2.$$

Falls H_0 gilt, so ist $T \sim F_{n_1-1,n_2-1}$.

Test. Situation wie im letzten Test mit $\sigma_1 = \sigma_2$. Wir testen $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$ mit

$$T = \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}} \cdot \frac{\overline{X}_{n_1}^{(1)} - \overline{X}_{n_2}^{(2)}}{S_{n_1, n_2}}, \quad S_{n_1, n_2}^2 = \frac{(n_1 - 1)S_{X^{(1)}}^2 + (n_2 - 1)S_{X^{(2)}}^2}{n_1 + n_2 - 2}$$

Unter H_0 gilt $T \sim t_{n_1+n_2-2}$.

Test. Seien $\binom{X_1}{Y_1}, \ldots, \binom{X_n}{Y_n} \sim \mathcal{N}\left(\binom{\mu_1}{\mu_2}, \binom{\sigma_1^2 & \sigma_1 \sigma_2 \rho}{\sigma_1 \sigma_2 \rho & \sigma_2^2}\right)$.

Wir testen $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$ mit

$$T := \frac{\sqrt{n-2} \cdot \hat{\rho}_n}{\sqrt{1-\hat{\rho}_n^2}}, \quad \hat{\rho}_n := \frac{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)(Y_i - \overline{Y}_n)}{S_{X,n} \cdot S_{Y,n}}.$$

Falls H_0 richtig ist, so gilt $T \sim t_{n-2}$.

Um $H_0: \rho = \rho_0 \in (-1,1)$ vs. $H_1: \rho \neq \rho_0$ zu testen, kann man

$$T = \frac{\sqrt{n-3}}{2} \left(\log \frac{1+\hat{\rho}_n}{1-\hat{\rho}_n} - \log \frac{1+\rho_0}{1-\rho_0} \right)$$

verwenden. Für n groß gilt approx. $T \sim \mathcal{N}(0,1)$ unter H_0 .

Lem (Slutzky). Seien (X_n) , (Y_n) Folgen von ZGn über $(\Omega, \mathfrak{A}, \mathbb{P})$ mit $X_n \xrightarrow{\mathbb{P}} c = \text{const}$ (d. h. $\forall \epsilon > 0 : \mathbb{P}(|X_n - c| > \epsilon) \to 0)$ und $Y_n \xrightarrow[n \to \infty]{d} Y$ (d. h. $\mathbb{P}(Y_n \le y) \to \mathbb{P}(Y \le y)$ für alle Stetigkeitspunkte y der VF $y \mapsto \mathbb{P}(Y \le y)$). Dann gilt:

$$X_n + Y_n \xrightarrow{d} c + Y$$
, $X_n \cdot Y_n \xrightarrow{d} c \cdot Y$, $Y_n / X_n \xrightarrow{d} Y / c$ (falls $c \neq 0$)
und allgemeiner $f(X_n, Y_n) \xrightarrow{d} f(c, Y)$ für jede Fkt $f \in \mathcal{C}(\mathbb{R}^2, \mathbb{R})$.

Bem. Unabhängigkeit von (X_n) und (Y_n) wird nicht vorausgesetzt!

Situation. Sei $T_n = T(X_1, \dots, X_n)$ eine Statistik. Falls der ZGWS für T_n die Form

$$\sqrt{n}(T_n - \vartheta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, g(\vartheta))$$

besitzt, so benötigen wir für Hypothesentests eine Möglichkeit, die Abhängigkeit der Varianz vom Parameter ϑ zu beseitigen. Man sagt man führt eine varianzstabilisierende Transformation durch. Wir suchen dazu eine stetig diff'bare Funktion $f: \Theta \to \mathbb{R}^1$, sodass

$$\sqrt{n}(f(T_n) - f(\vartheta)) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1).$$

Man zeigt mit dem MWS und Slutzky, dass dafür gelten muss:

$$f'(\vartheta) = \frac{1}{\sqrt{g(\vartheta)}}, \text{ also } f(\theta) = \int \frac{d\vartheta}{\sqrt{g(\vartheta)}}.$$

Bspe. • Sei $X \sim \operatorname{Exp}(\mu)$ (also $\mathbb{E}X = \mu^{-1}$). Dann gilt $\sqrt{n}(\overline{X}_n - \frac{1}{\mu}) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, g(\frac{1}{\mu})) \quad \text{mit} \quad g(\vartheta) \coloneqq \vartheta^2.$ $\rightsquigarrow \operatorname{Mit} f(\theta) \coloneqq \int \frac{d\vartheta}{\sqrt{g(\vartheta)}} = \int \frac{d\vartheta}{\vartheta} = \log \theta$

gilt
$$\sqrt{n}(\log(\overline{X}_n - \log(\frac{1}{\mu}))) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1).$$

 Wir wollen eine unbek. Wahrscheinlichkeit p schätzen, etwa durch Wurf einer Münze. Der ZGWS von de-Moirre-Laplace besagt

$$\sqrt{n}(\hat{p}_n - p) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, p(1-p)),$$

wobe
i \hat{p}_n die relative Häufigkeit ist. Zur Stabilisierung der Varianz verwenden wir nun

$$f(\theta) := \int_{0}^{\theta} \frac{\mathrm{d}p}{\sqrt{p(1-p)}} = 2\arcsin(\sqrt{\theta}).$$

Def. Die k-dim (Gaußsche) Normalverteilung $\mathcal{N}_k(m,C)$ mit EW $m \in \mathbb{R}^k$ und einer nichtnegativ-definiten, symmetrischen Kovarianzmatrix $C \in \mathbb{R}^{k \times k}$ ist gegeben durch die Dichte

$$f_{\mathcal{N}_k(m,C)}(x) := \frac{1}{(2\pi)^{k/2} \sqrt{\det(C)}} \exp\left(-\frac{1}{2}(x-m)C^{-1}(x-m)^T\right).$$

Bem. Bei k=2 schreibt man oft

$$C = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{pmatrix} \quad \text{mit} \quad \rho := \text{Cor}(X_1, X_2).$$

Def. Die charakteristische Fkt eines ZV $X = (X_1, \dots, X_k)^T$ ist

$$\varphi: \mathbb{R}^k \to \mathbb{R}, \ t \mapsto \mathbb{E}e^{i\langle t, X \rangle} = \int_{\mathbb{R}^k} e^{i(t_1 x_1 + \dots + t_k x_k)} \, \mathrm{d}F_X(x_1, \dots, x_k).$$

Bem. Die charakteristische Funktion von $\mathcal{N}_k(m,C)$ ist

$$\varphi_{\mathcal{N}_k(m,C)}(t) = \exp\left(i\sum_{i=1}^k t_i m_i - \frac{1}{2}\sum_{i,j=1}^k t_i c_{ij} t_j\right).$$

Satz. Für $A \in \mathbb{R}^{k \times l}$ gilt $\mathcal{N}_k(m, C) \cdot A = \mathcal{N}_l(m \cdot A, A^T C A)$.

Chi-Quadrat-Anpassungstest

Aufgabe. Prüfe, ob eine vorliegende Stichprobe x_1, \ldots, x_n aus einer bestimmten (stetig oder diskret verteilten) Grundgesamtheit gezogen wurde. Wir testen also $H_0: F = F_0$ vs. $H_1: F \neq F_0$.

Verfahren. Wir teilen zunächst \mathbb{R} in Klassen ein,

$$\mathbb{R} = \bigcup_{i=1}^{s+1} I_j \quad \text{mit} \quad I_j \coloneqq (y_{j-1}, y_j], \quad \text{wobei}$$
$$-\infty = y_0 < y_1 < \dots < y_s < y_{s+1} = +\infty.$$

Wir setzen

$$\begin{split} h_{n_j} &:= |\{k \in \{1,\dots,n\} \,|\, X_k \in I_j\}| \quad \text{(absolute Klassenhäufigkeit)} \\ p_j^{(0)} &:= \mathbb{P}(X \in I_j) = F_0(y_j) - F_0(y_{j-1}) \quad \text{(Klassenwktn unter H_0)} \end{split}$$

Die Klassenhäufigkeiten sind multinomialverteilt unter H_0 :

$$\mathbb{P}(h_{n_1} = n_1, ..., h_{n_{s+1}} = n_{s+1}) = \binom{n}{n_1, ..., n_{s+1}} (p_1^{(0)})^{n_1} \cdots (p_{s+1}^{(0)})^{n_{s+1}}.$$

Als (näherungsweises) Maß für die Abweichung einer empirischen Verteilung von F_0 bei gegebener Klasseneinteilung dient

$$T_{n,s+1} := \sum_{j=1}^{s+1} \frac{(h_{n_j} - np_j^{(0)})^2}{np_i^{(0)}}.$$

Satz. $T_{n,s+1} \xrightarrow[n\to\infty]{d} \chi_s^2$

Faustregel. Für $np_j^{(0)} \ge 5$, j = 1, ..., s+1 ist $T_{n,s+1}$ mit guter Näherung χ_s^2 -verteilt.

Entscheidungsregel (χ^2 -Anpassungstest). Die Nullhypothese $H_0: F = F_0$ wird genau dann verworfen, wenn $T_{n,s+1} > \chi_{s,1-\alpha}^2$.

Bemn. • $T_{n,s+1}$ misst eigentlich nicht die Abweichung von der VF F_0 , sondern von der Multinomialverteilung $\mathcal{M}(n,p^{(0)})$.

- Der χ^2 -Anpassungstest gilt als hypothesenfreundlich.
- Es ist üblich, zunächst die Parameter $\vartheta = (\vartheta_1, \dots, \vartheta_r)$ der VF F_0 durch MLE zu schätzen, also durch

$$\begin{split} \hat{\vartheta}_n &:= \arg\max L(h_{n_1},\dots,h_{n_{s+1}};\vartheta), \quad \text{wobei} \\ L(h_{n_1},\dots,h_{n_{s+1}};\vartheta) &:= \prod_{i=1}^{s+1} \left(p_j^{(0)}\right)^{h_{n_j}}. \end{split}$$

Es kann (unter "natürlichen" Bedingungen) gezeigt werden, dass

$$T_{n,s+1}(\hat{\vartheta}_n) = \sum_{j=1}^{s+1} \frac{(h_{n_j} - np_j^{(0)}(\hat{\vartheta}_n))^2}{np_j^{(0)}(\hat{\vartheta}_n)} \xrightarrow[n \to \infty]{d} \chi_{s-r}^2,$$

wobei r die Anzahl der geschätzten Parameter ist.

• Manchmal wird die Parameter-Schätzung auch direkt aus der SP x_1, \ldots, x_n ermittelt (z. B. $\tilde{\mu}_n := \frac{1}{n}(x_1 + \ldots + x_n)$ für den MW einer Normalverteilung). In manchen Fällen kann dann auf die Reduktion der Freiheitsgrade von s auf s-r verzichtet werden.

Chi-Quadrat-Unabhängigkeitstest

Ziel. Überprüfen, ob die Komponenten $X \in \mathbb{R}^{n_1}$ und $Y \in \mathbb{R}^{n_2}$ eines zweidim. Zufallsvektors $(X,Y)^T$ unabhängig sind.

Verfahren. Seien $I_1, \ldots, I_k \subset \mathbb{R}^{n_1}$ und $J_1, \ldots, J_l \subset \mathbb{R}^{n_2}$ jeweils Familien paarweise disjunkter Mengen mit $\mathbb{P}(X \in I_1 \cup \ldots \cup I_k) = 1$ bzw. $\mathbb{P}(Y \in J_1 \cup \ldots \cup J_l) = 1$. Wir setzen

$$p_{ij} := \mathbb{P}((X,Y) \in I_i \times J_j) = \mathbb{P}(\{X \in I_i\} \cap \{X_j \in J_j\}),$$

$$p_{i\bullet} := \sum_{i=1}^l p_{ij} = \mathbb{P}(X \in I_i), \quad p_{\bullet j} := \sum_{i=1}^k p_{ij} = \mathbb{P}(Y \in J_j).$$

Wir wollen nun die Nullhypothese $H_0: \forall (i,j): p_{ij} = p_{i \bullet} \cdot p_{\bullet j}$ gegen $H_1: \exists (i,j): p_{ij} \neq p_{i \bullet} \cdot p_{\bullet j}$ testen. Wir zählen dazu die Häufigkeiten einer Stichprobe $(X_1,Y_1), \ldots, (X_n,Y_n)$:

$$h_{ij}^{(n)} := |\{m \in \{1, \dots, n\} \mid (X_m, Y_m) \in I_i \times J_j\}|,$$

$$h_{i\bullet} := \sum_{j=1}^{l} h_{ij}, \quad h_{\bullet j} := \sum_{i=1}^{k} h_{ij}.$$

Diese Häufigkeiten werden in einer Kontingenztafel dargestellt:

	1	2	 l	
1	$h_{11}^{(n)}$	$h_{12}^{(n)}$	 $h_{1l}^{(n)}$	$h_{1\bullet}^{(n)}$
2	$h_{21}^{(n)}$	$h_{22}^{(n)}$	 $h_{2l}^{(n)}$	$h_{2\bullet}^{(n)}$
:	:	:	:	:
k	$h_{k1}^{(n)}$	$h_{k2}^{(n)}$	 $h_{kl}^{(n)}$	$h_{k\bullet}^{(n)}$
	$h_{\bullet 1}^{(n)}$	$h_{\bullet 2}^{(n)}$	 $h_{\bullet l}^{(n)}$	n

Wir können den Test nun wie folgt als Spezialfall des χ^2 -Anpassungstests verstehen: Die Nullhypothese ist, dass die Verteilung von (X,Y) das Produkt der Verteilungen von X und Y ist. Dabei schätzen wir zunächst die Verteilungen von X und Y mit

$$L(h_{1\bullet}^{(n)}, \dots, h_{k\bullet}^{(n)}, h_{\bullet 1}^{(n)}, \dots, h_{\bullet l}^{(n)}; p_{1\bullet}, \dots p_{k-1, \bullet}, p_{\bullet 1}, \dots, p_{\bullet, l-1})$$

$$:= \prod_{i=1}^{k} (p_{i\bullet})^{h_{i\bullet}^{(n)}} \cdot \prod_{j=1}^{l} (p_{\bullet j})^{h_{\bullet j}^{(n)}}.$$

Diese Funktion wird maximal bei $\hat{p}_{i\bullet}=h_{i\bullet}^{(n)}/n$ und $\hat{p}_{\bullet j}^{(n)}=h_{\bullet j}^{(n)}/n$. Als Test-Statistik verwenden wir

$$\hat{T}_{k,l}^{(n)} := \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(h_{ij}^{(n)} - n\hat{p}_{i\bullet}\hat{p}_{\bullet j})^{2}}{n\hat{p}_{i\bullet}\hat{p}_{\bullet j}} = n \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(h_{ij}^{(n)} - h_{i\bullet}^{(n)} \cdot h_{\bullet j}^{(n)})^{2}}{h_{i\bullet}^{(n)} \cdot h_{\bullet j}^{(n)}}$$

$$\frac{d}{n \to \infty} \chi_{kl-1-(k-1)-(l-1)}^{2} = \chi_{(k-1)(l-1)}^{2}$$

Entscheidungsregel. H_0 wird genau dann abgelehnt, falls

$$\hat{T}_{k,l}^{(n)} > \chi_{(k-1)(l-1),1-\alpha}^2$$

Bemn. • Zum Testen eines höherdim. ZV (X_1, \ldots, X_r) auf Unabhängigkeit aller Komponenten untersuchen wir die Ereignisse

$$(X_1, \dots, X_r) \in I_{i_1}^{(1)} \times \dots \times I_{i_r}^{(r)}$$
 für $(i_1, \dots, i_r) \in \sum_{i=1}^r \{1, \dots, k_j\}$

für eine passende Intervalleinteilung. Wir verwenden dann

$$\hat{T}_{k_{1},...,k_{r}}^{(n)} := n^{r-1} \sum_{i_{1}=1}^{k_{1}} \cdots \sum_{i_{r}=1}^{k_{r}} \frac{\left(h_{i_{1}\cdots i_{r}}^{(n)} - n^{-r+1} \prod_{j=1}^{r} h_{\bullet \cdots i_{j}\cdots \bullet}^{(n)}\right)^{2}}{\prod_{j=1}^{r} h_{\bullet \cdots i_{j}\cdots \bullet}}$$

$$\xrightarrow{d \atop n \to \infty} \chi_{k_{1}\cdots k_{s}-k_{1}-\dots-k_{r}+r-1}^{2}$$

• Im Spezialfall k=l=2 (Vierfeldertafel) hat die Statistik die Form

$$\hat{T}_{2,2}^{(n)} = n \cdot \frac{\left(h_{11}^{(n)} \cdot h_{22}^{(n)} - h_{12}^{(n)} \cdot h_{21}^{(n)}\right)^2}{h_{21}^{(n)} \cdot h_{22}^{(n)} \cdot h_{12}^{(n)} \cdot h_{22}^{(n)}} \xrightarrow[n \to \infty]{d} \chi_1^2 = \mathcal{N}^2(0,1)$$

und wir lehnen H_0 genau dann ab, wenn $\hat{T}_{2,2}^{(n)} > \chi_{1,1-\alpha}^2 = z_{1-\alpha/2}^2$.

Kolmogorow-Smirnow-1SP-Test

Situation. Sei $X_1, \ldots, X_n \sim F$ eine math. SP. Wir sortieren die dabei gezogenen Werte aufsteigend: $X_{1:n} \leq X_{2:n} \leq \ldots \leq X_{n:n}$.

Dann heißt $\hat{F}_n(x) \coloneqq \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_{i:n})$ empirische VF.

Satz (Gliwenko-Cantelli, Hauptsatz der math. Statistik).

$$\sup_{x \in \mathbb{R}^1} |\hat{F}_n(x) - F(x)| \xrightarrow[n \to \infty]{\mathbb{P}\text{-f. s.}} 0$$

Lem. Sei F stetig. Dann ist die Verteilung von $\sup_x |\hat{F}_n(x) - F(x)|$ nicht von der Verteilungsfunktion F abhängig. Genauer:

$$\sup_{x} |\hat{F}_{n}(x) - F(x)| \stackrel{d}{=} \sup_{0 \le y \le 1} |\hat{G}_{n}(y) - G(y)|,$$

wobei G die Verteilungsfunktion von $\mathcal{R}\left[0,1\right]$ ist (also G(y)=y) und $\hat{G}_n(y) := \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{\left[0,y\right]}(U_i)$ für $U_1,\ldots,U_n \sim \mathcal{R}\left[0,1\right]$ i. i. d.

Kor. Sei F stetig, $n\geq 1$. Dann ist die Verteilungsfunktion $K_n(z):=\mathbb{P}(\sqrt{n}\cdot\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|\leq z)$

unabhängig von F.

Satz. Falls F stetig ist, so gilt für alle $z \in \mathbb{R}^1$:

$$K_n(z) \xrightarrow[n \to \infty]{} K(z) := \sum_{k=-\infty}^{\infty} (-1)^k \exp(-2k^2 z^2).$$

Def. Dabei ist K die VF der Kolmogorow-Verteilung.

Bem. Man zeigt dazu, dass die Folge $X_n: y \mapsto \sqrt{n} \cdot (\hat{G}_n(x) - x)$ gegen die Brownsche Brücke \dot{B} konvergiert. Für diese gilt

$$\sup_{0 \le x \le 1} |\dot{B}(x)| \sim K.$$

Entscheidungsregel (Kolmogorow-(Smirnow-)1SP-Test). Wir testen $H_0: F = F_0$ gegen $H_1: F \neq F_0$. Dabei muss F_0 eine stetige VF sein. Wir verwenden dazu

$$T_n := \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F_0(x)|.$$

Wir lehnen H_0 genau dann ab, wenn $T_n > K_{1-\alpha}$

Bemn. • Für kleine $n \in \mathbb{N}$ sollte man $K_{n,1-\alpha}$ verwenden.

- Für große z ist $K(z) \approx 1 2\exp(-2z^2)$, also $K_{1-\alpha} \approx \sqrt{-1/2 \cdot \log(\alpha/2)}$ für α klein.
- Das Supremum in T_n liegt bei einer Sprungstelle von \hat{F}_n .

Test (einseitiger Kolmogorow-(Smirnow-)1SP-Test). Wir testen $H_0: F = F_0$ gegen $H_1: F > F_0$ mit

$$T_n^+ \coloneqq \sqrt{n} \cdot \sup_{x \in \mathbb{R}} (\hat{F}_n(x) - F(x)).$$

Für alle $z \in \mathbb{R}^1$ gilt

$$K_n^+(z) := \mathbb{P}(T_n^+ \le z) \xrightarrow{r \to \infty} K^+(z) := 1 - \exp(-2\max(0, z)^2).$$

Wir lehnen H_0 ab, falls $T_n^+ > K_{1-\alpha}^+$.

 ${\bf Achtung.}$ Der Kolmogorow-Test kann nicht verwendet werden, wenn die Parameter von F_0 aus der Stichprobe geschätzt werden.

 $Bem.\ \, \mbox{Es}$ gibt keine Entsprechung für mehrdimensionale Z
Ven

Cramér-von-Mises-Test

Def. $\omega_n^2(g) = n \int_{\mathbb{R}^1} g(F(x)) (\hat{F}_n(x) - F(x))^2 dF(x)$

heißt gewichtete Cramér-von-Mises-Statistik oder ω^2 -Statistik. Dabei ist $g:[0,1] \to [0,\infty]$ eine Gewichtsfktn. Häufig verwendet wird g(x) := 1 und die Anderson-Darling-Statistik $g(x) := \frac{1}{x(1-x)}$.

Satz. Sei F stetig. Dann ist

$$\omega_n^2(g) \stackrel{\mathrm{d}}{=} n \int_0^1 g(u) \left(\hat{G}_n(u) - u \right)^2 du \xrightarrow[n \to \infty]{d} \int_0^1 g(u) (\dot{B}(u))^2 du =: \omega^2(g).$$

Entscheidungsregel (CvM-Test). Wir testen $H_0: F = F_0$ vs. $H_1: F \neq F_0$ anhand der CvM-Statistik. Wir lehnen H_0 genau dann ab, wenn $\omega_n^2(g) > \omega_{1-\alpha}^2(g)$.

Bem. Der rechte Wert ist tabelliert für wichtige Funktionen q.

Kolmogorow-Smirnow-2SP-Test

Situation. Gegeben seien zwei unabhängige SPn $X_1, \ldots, X_n \sim F$ i. i. d. und $X_1^*, \ldots, X_m^* \sim F^*$ i. i. d., wobei F und F^* stetig sind. Wir wollen $H_0: F = F^*$ vs. $H_1: F \neq F^*$ testen, indem wir die empirischen VFen \hat{F}_n und \hat{F}_m^* vergleichen. Dazu verwenden wir

$$T_{m,n} := \sqrt{\frac{m \cdot n}{m+n}} \sup_{x \in \mathbb{R}^1} |\hat{F}_n(x) - \hat{F}_n^*(x)|$$

Satz. Falls $F = F^*$ stetig ist, so gilt

$$T_{m,n} \stackrel{\mathrm{d}}{=} \sqrt{\frac{m \cdot n}{m+n}} \sup_{0 \le u \le 1} |\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{[0,u]}(U_i) - \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{[0,u]}(U_j^*)|,$$

wobei $U_k := F(X_k), k = 1, ..., n$ und $U_l^* := F(X_l^*), l = 1, ..., m$ jeweils $\mathcal{R}[0, 1]$ -verteilt sind.

Lem.
$$T_{m,n} \xrightarrow[n\to\infty]{d} \sup_{0\leq u\leq 1} |\dot{B}(u)| \sim K$$

Entscheidungsregel (Kolmogorow-(Smirnow-)2SP-Test). $H_0: F = F^*$ wird genau dann abgelehnt, falls $T_{m,n} > K_{1-\alpha}$.

2SP-Test von Wilcoxon-Mann-Whitney

Situation (2-SP-Test von Wilcoxon-Mann-Whitney, U-Test). Geg. seien zwei unabh. SPn $X_1, \ldots, X_n \sim F$ und $X_1^*, \ldots, X_m^* \sim F^*$, wobei F und F^* stetig sind. Ziel: Prüfen von $H_0: F = F^*$ vs. $H_1: F \neq F^*$. Dazu konstruieren wir eine Rangstatistik für konkrete Stichproben x_1, \ldots, x_n und x_1^*, \ldots, x_m^* :

- 1. Ordnen: $x_{1:n} < \ldots < x_{n:n}$ und $x_{1:m}^* < \ldots < x_{m:m}^*$
- 2. $\nu_1, \ldots, \nu_m \in \{1, \ldots, m+n\}$ seien die Ränge der Werte $x_{i:m}^*$ innerhalb der Gesamtstichprobe, d. h.

$$x_{1:n} < \ldots < x_{\nu_1 - 1:n} < x_1^* < x_{\nu_1 : n} < \ldots < x_{\nu_2 - 2:n} < x_{2:m}^* < x_{\nu_2 - 1:n}$$

$$< \ldots < x_{\nu_m - m:n} < x_{m:m}^* < x_{\nu_m - m + 1:n} < \ldots < x_{n:n}.$$

Heuristik: H_0 wird angenommen, falls sich die x- und x^* -Werte "gut durchmischen", d. h. die Anzahl der x-Werte, die vor bzw. nach den x^* -Werten liegen, darf nicht zu groß werden. Die Testgröße dafür ist

$$W_{m,n} := \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{1}_{\{X_i < X_j^*\}} = |\{(i,j) \mid X_i < X_j^*\}| = \sum_{j=1}^{m} |\{i \mid X_i < X_{j:m}^*\}|$$
$$= \sum_{i=1}^{m} (\nu_j - j) = \nu_1 + \dots + \nu_m - \frac{m(m+1)}{2}$$

Lem. Unter $H_0: F = F^*$ stetig gilt:

a)
$$\mathbb{E}W_{m,n} = \frac{m \cdot n}{2}$$
 b) $\text{Var } W_{m,n} = \frac{m \cdot n}{12}(m+n+1)$

c)
$$g_{m,n}(z) := \sum_{k=0}^{n \cdot m} \mathbb{P}(W_{m,n} = k) \cdot z^k =$$

$$= \frac{z^{-m(m+1)/2}}{\binom{m+n}{m}} \sum_{1 \le \nu_1 < \dots < \nu_m \le m+n} z^{\nu_1 + \dots + \nu_m} = \frac{1}{\binom{m+n}{m}} \prod_{k=1}^m \frac{1 - z^{n+k}}{1 - z^k}$$

Entscheidungsregel. Ablehnung von H_0 , falls $w_{m,n} \leq c_{\alpha/2}$ oder $w_{m,n} \geq m \cdot n - c_{\alpha/2}$, wobei

$$c_{\alpha/2} = \min\{k \ge 0 \mid \mathbb{P}(W_{m,n} \le k) = \mathbb{P}(W_{m,n} \ge m \cdot n - k) \ge \alpha/2\}.$$

Annahme von H_0 genau dann, wenn $|w_{m,n} - \frac{m \cdot n}{2}| < \frac{m \cdot n}{2} - c_{\alpha/2}$.

Satz. Unter $H_0: F = F^*$ stetig gilt

$$T_{m,n} := \frac{W_{m,n} - \frac{m \cdot n}{2}}{\sqrt{\frac{m \cdot n}{2}(m+n+1)}} \xrightarrow{d} \mathcal{N}(0,1).$$

Entscheidungsregel. Man erhält aus dem letzten Satz einen asymptotischen Test, den man für große m, n verwenden kann: Wir lehnen genau dann $H_0: F = F^*$ ab, falls $|T_{m,n}| \ge z_{1-\alpha/2}$.

Kruskal-Wallis-Test

Test (Kruskal-Wallis). Gegeben seien k Messreihen $X_{i,1}, \ldots, X_{i,n_i} \sim F_i, i = 1, \ldots, k$ unabhängige SPn, F_i stetig. Ziel: Testen von $H_0: F_1 = \ldots = F_k$. Vorgehen:

- 1. Ordnen der Beobachtungen der Größe nach
- 2. $\nu_{i,1} < \ldots < \nu_{i,n_i}$ Platznummern der n_i Beobachtungen der i-ten Messreihe in der Gesamt-SP

3.
$$\overline{\nu}_i := \frac{1}{n_i} (\nu_{i,1} + \ldots + \nu_{i,n_i}), \ \overline{\nu} := \frac{1}{n} \sum_{i=1}^k n_i \overline{\nu}_i \ \text{mit } n := n_1 + \ldots + n_k.$$

Heuristik: H_0 ist richtig, falls $\overline{\nu}_i \approx \overline{\nu}$ für alle i. Testgröße:

$$H := \frac{12}{n(n+1)} \sum_{i=1}^{k} n_i (\overline{\nu}_i - \frac{n+1}{2})^2 \xrightarrow[n_i \to \infty]{d} \chi_{k-1}^2$$

Wir lehnen H_0 genau dann ab, wenn $H > \chi^2_{k-1,1-\alpha}$.

Faustregel. Die Approx. ist gut, wenn $\min_{1 \le i \le k} n_i \ge 5$ und $k \ge 4$.

Theorie der U-Statistiken

Situation. Sei $n \geq m, X_1, \ldots, X_n \sim F$ i. i. d., $h : \mathbb{R}^m \to \mathbb{R}^1$ Borel-messbar und symmetrisch, d. h.

$$h(x_1,\ldots,x_m)=h(x_{\sigma(1)},\ldots,x_{\sigma(m)}) \quad \forall \, \sigma \in S_m.$$

Gelte $\mathbb{E}|h(X_1,\ldots,X_m)|<\infty$.

Def. Die U-Statistik der Ordnung m mit Kernfunktion h ist

$$U_n^{(m)} := \frac{1}{\binom{n}{m}} \sum_{1 \le i_1 < \dots < i_m \le n} h(X_{i_1}, \dots, X_{i_m}).$$

Bem. Offenbar: $\mathbb{E}U_n^{(m)} = \mathbb{E}h(X_1, \dots, X_m)$.

Bsp. Für m=2 gilt $\sigma^2=\operatorname{Var}(X_1)=\frac{1}{2}\mathbb{E}(X_1-X_2)^2$. Davon inspiriert setzen wir $h(x_1,x_2):=\frac{1}{2}(x_1-x_2)^2$. Damit haben wir

$$U_n^{(2)} = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \frac{1}{2} (X_i - X_j)^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = S_n^2$$

Ziel. Wir würden gerne den ZGWS auf $U_n^{(m)}$ anwenden. Problem dabei: Die Summanden in der Def. von $U_n^{(m)}$ sind nicht unabhängig. Wir approximieren deshalb $U_n^{(m)}$ mit einer Summe von i. i. d. ZGn.

Lem. Sei
$$\tilde{U}_n^{(m)} = \theta + \sum_{i=1}^n (\underbrace{\mathbb{E}(U_n^{(m)}|X_i)}_{i,i-1} - \theta)$$
 mit $\theta := \mathbb{E}U_n^{(m)}$ und

$$g(x) = \mathbb{E}[h(X_1, \dots, X_n)|X_1 = x] = \mathbb{E}h(x, X_2, \dots, X_m)$$
$$= \int \dots \int h(x, x_2, \dots, x_n) \, \mathrm{d}F(x_2) \dots \, \mathrm{d}F(x_n).$$

Falls $\mathbb{E}h^2(X_1,\ldots,X_m)<\infty$, so gilt

- (1) $\operatorname{Var}(U_n^{(m)} \tilde{U}_n^{(m)}) = \operatorname{Var}(U_n^{(m)}) \operatorname{Var}(\tilde{U}_n^{(m)})$
- (2) $\mathbb{E}(U_n^{(m)}|X_i=x) = \theta + \frac{m}{n}(g(x) \theta)$

Lem. (2) $\operatorname{Var}(\tilde{U}_n^{(m)}) = \frac{m^2}{n} \cdot \operatorname{Var}(g(X_1)) = \frac{m^2}{2} (\mathbb{E}g^2(X_1) - \theta^2)$ (3) Falls $\mathbb{E}[h(X_1, \dots, X_m)] < \infty$, so gilt

$$\operatorname{Var}(U_n^{(m)}) = \frac{1}{\binom{n}{m}} \sum_{k=1}^m \binom{m}{k} \binom{n-m}{m-k} \cdot \zeta_k \quad \text{mit}$$
$$h_k(x_1, \dots, x_k) \coloneqq \mathbb{E}(h(x_1, \dots, x_k, X_{k+1}, \dots, X_m)$$
$$\zeta_k \coloneqq \operatorname{Var}(h_k(X_1, \dots, X_k))$$

$$\zeta_k := \text{Var}(h(X_1, \dots, X_k, X_{k+1}, \dots, X_m))
\zeta_k := \text{Var}(h_k(X_1, \dots, X_k))
= \mathbb{E}[h(X_1, \dots, X_k, X_{k+1}, \dots, X_m) \cdot h(X_1, \dots, X_k, X_{m+1}, \dots, X_{2m-k})] - \theta^2$$

Kor. Aus (1), (3) und (4) folgt für m = 2:

$$\operatorname{Var}(U_n - \tilde{U}_n) = \operatorname{Var}(U_n) - \operatorname{Var}(\tilde{U}_n) = \dots = -\frac{4}{n(n-1)} \operatorname{Var}(g(X_1))$$

Für
$$m \ge 2$$
 gilt $\operatorname{Var}(U_n^{(m)} - \tilde{U}_n^{(m)}) \le \frac{c(m)}{n^2} \operatorname{Var}(h(X_1, \dots, X_m))$.

Satz (Hoeffding). Sei $U_n^{(m)}$ eine U-Statistik mit Kern $h: \mathbb{R}^m \to \mathbb{R}$, sodass $\mathbb{E}h^2(X_1, \ldots, X_m) < \infty$ und $\sigma_q^2 \coloneqq \operatorname{Var}(g(X_1)) > 0$. Dann gilt

$$\sqrt{n}(U_n^{(m)} - \theta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \sigma_g^2).$$

Bemn. • Der Fall $Var(g(X_1)) = 0$ (entarteter Fall) zieht eine kompliziertere Asymptotik nach sich.

- $\mathbb{E}g^2(X_1) < \infty$ ist schwächer als $\mathbb{E}h^2(X_1, \dots, X_m) < \infty$.
- Aus $E|h(X_1, \dots, X_m)|^{1+q} < \infty$ für $0 < q \le 1$ folgt

$$\mathbb{E}|\sqrt{n}(U_n^{(m)} - \tilde{U}_n^{(m)})|^{1+q} \le \frac{c(q,m)}{n^{2q}} \mathbb{E}|h(X_1, \dots, X_m)|^{1+q}.$$

Mit einer Abschneidetechnik zeigt man, dass $\mathbb{E}g^2(X^1) < \infty$ und $\mathbb{E}|h(X_1,\ldots,X_m)|^{\frac{4}{3}} < \infty$ schon für $\mathbb{P}(\sqrt{n}|U_n^{(m)} - \tilde{U}_n^{(m)}| < \epsilon) \to 0$ für alle $\epsilon > 0$ ausreichen und damit für den Satz von Hoeffding.

 U-Statistiken erweisen sich (unter gewissen Bedingungen) als suffiziente Schätzer mit minimaler Varianz.

Bsp. Wir betrachten die U-Statistik $S_n^2 = \binom{n}{2}^{-1} \sum_{i < j} \frac{1}{2} (X_i - X_j)^2$.

Dann ist $g(x) = \frac{1}{2}(x - \mathbb{E}X_1)^2 + \frac{1}{2}\sigma^2$ mit $\sigma^2 := \text{Var}(X_1)$. Es gilt

$$\sqrt{n}(S_n^2 - \sigma^2) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 4\sigma_g^2)$$

mit $\sigma_g^2 = \mathbb{E}g^2(X_2) - (\mathbb{E}g(X_2))^2 = \frac{1}{4}\mu_4 - \frac{1}{4}\sigma^4$, $\mu_4 := \mathbb{E}(X_1 - \mathbb{E}X_2)^4$. Spezialfall: Ist $X_i \sim \mathcal{N}(\mu, \sigma^2)$, so gilt $\mu_4 = 3\sigma^4$.

Dann gilt $\sqrt{n}(S_n^2 - \sigma^2) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 2\sigma^4)$. Es folgt

$$\frac{\sqrt{n}(S_n^2-\sigma^2)}{\sqrt{2(S_n^2)^2}}=\sqrt{n/2}\left(1-\frac{\sigma^2}{S_n^2}\right)\xrightarrow[n\to\infty]{d}\mathcal{N}(0,1).$$

Alternativ erhält man durch Anwenden einer varianzstab. Trafo:

$$\sqrt{n/2}(\log S_n^2 - \log \sigma^2) \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1)$$

Def. Die Kumulante oder Semi-Invariante m-ter Ordnung ist $\operatorname{Cum}_m(X) = \frac{1}{m!2^m} \frac{\partial^m}{\partial t^m}|_{t=0} \log \mathbb{E} e^{itX}$.

Bem. Falls X_1, \ldots, X_n unabhängig sind, so gilt

$$\operatorname{Cum}_m(X_1 + \ldots + X_n) = \operatorname{Cum}_m(X_1) + \ldots + \operatorname{Cum}_m(X_n).$$

Für m = 3 gilt $Cum_3(X) = \mathbb{E}X^3 - 3\mathbb{E}X \cdot \mathbb{E}X^2 + 2(\mathbb{E}X)^3$.

$$\begin{split} \widehat{(\operatorname{Cum}_3(X))_n} &\coloneqq \frac{1}{n(n-1)(n-2)} (n^2 \hat{M}_3^{(n)} - 3n \hat{M}_1^{(n)} \hat{M}_2^{(n)} - 2(\hat{M}_1^{(n)})^3) \\ &= \frac{1}{\binom{n}{3}} \sum_{1 \le i < j < j \le n} h(X_i, X_j, X_k) \end{split}$$

mit
$$h(x, y, z) := -\frac{1}{2}(xy^2 + x^2y + xz^2 + x^2z + yz^2 + x^2z + yz^2 + y^2z) + \frac{1}{3}(x^3 + y^3 + z^3) + 2xyz$$

wobei
$$\hat{M}_{j}^{(n)} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}$$

Def. Eine VF F heißt symmetrisch bzgl. $\vartheta_0 \in \mathbb{R}^1$, falls

$$F(\vartheta_0 - x) = 1 - F(\vartheta_0 + x) \quad \forall x \in \mathbb{R}^1.$$

Bsp (Wilcoxon-1-SP-Test auf Symmetrie). Sei $X_1, \ldots, X_n \sim F$ eine mathematische Stichprobe mit stetiger VF F. Wir wollen $H_0: F$ ist symmetrisch bzgl. ϑ_0 testen. Es reicht dazu, die VF der $Z_i = X_i - \vartheta_0$ auf Symmetrie bzgl. 0 zu prüfen. Seien ν_1^+, \ldots, ν_n^+ die Ränge der ZGn $|Z_1|, \ldots, |Z_n|$. Setze

$$T_n^+ = \sum_{i=1}^n \mathbb{1}_{\{Z_i > 0\}} \nu_i^+.$$

Unter $H_0: F$ ist symmetrisch bzgl. ϑ_0 gilt

$$\mathbb{E}T_n^+ = \frac{1}{2} \sum_{i=1}^n \mathbb{E}\nu_i^+ = \frac{n(n+1)}{4}, \quad \text{Var}(T_n^+) = \frac{n}{24}(n+1)(2n+1).$$

Bsp. Alternativ können wir zum Test auf Symmetrie die U-Statistik

$$U_n = \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} \mathbb{1}_{\{Z_i + Z_j > 0\}}.$$

Unter H_0 gilt für $h(x_1, x_2) := \mathbb{1}_{\{x_1 + x_2 > 0\}}$:

$$\mathbb{E}h(Z_i, Z_j) = \mathbb{P}(Z_1 > -Z_2) = \int (1 - F(-z)) \, dF(z) = \int F(z) \, dF(z) = \frac{1}{2}.$$

Aus dem ZGWS für U-Statistiken folgt

$$\sqrt{n}(U_n - \frac{1}{2}) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \frac{1}{3})$$

Entscheidungsregel. Ablehnung von $H_0 \iff |U_n - \frac{1}{2}| > \frac{z_{1-\alpha/2}}{\sqrt{3n}}$.

Def. Sei $h: \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \to \mathbb{R}^1$ Borel-messbar, symmetrisch in den ersten m_1 und den letzten m_2 Argumenten. Seien $X_1, \ldots, X_{n_1} \sim F$ und $X_1^*, \ldots, X_{n_2}^* \sim F^*$ zwei unabh. math. SPn. Dann heißt

$$U_{n_1,n_2}^{(m_1,m_2)} \coloneqq \left(\binom{n_1}{m_1} \binom{n_2}{m_2} \right)^{-1} \sum_{\substack{1 \leq i_1 < \dots < i_{m_1} \leq n_1 \\ 1 \leq j_1 < \dots < j_{m_2} \leq n_2}} h(X_{i_1}, \dots, X_{i_{m_1}}, X_{j_1}^*, \dots, X_{j_{m_2}}^*) \quad \textbf{Satz.} \quad (\textbf{N}) \text{ ist stets lösbar und jede Lsg ist eine MkQ-Schätzung.}$$
 Falls $\text{rk } X = p$, so ist $\hat{\beta}$ eind, bestimmt durch $\hat{\beta} = (X^T X)^{-1} X^T y$

(verallg.) **U-Statistik** der Ordnung (m_1, m_2) mit Kernfunktion h.

Notation. Sei $m_1 = m_2 = 1$. Wir setzen

$$\theta \coloneqq \mathbb{E}h(X_1, X_1^*) = \mathbb{E}U_{n_1, n_2}^{(1, 1)}$$

$$g_1(x) \coloneqq \mathbb{E}(h(X_1, X_1^*) \mid X_1 = x), \quad \sigma_1^2 \coloneqq \operatorname{Var} g(X_1),$$

$$g_2(y) \coloneqq \mathbb{E}(h(X_1, X_1^*) \mid X_1^* = y), \quad \sigma_2^2 \coloneqq \operatorname{Var} g(X_1^*),$$

$$\tilde{U}_{n_1, n_2}^{(1, 1)} \coloneqq \frac{1}{n_1} \sum_{i=1}^{n_1} g_1(X_i) + \frac{1}{n_2} \sum_{j=1}^{n_2} g_2(X_j^*) - \theta$$

Bsp. Schätzung der Kumulante m-ter Ord. mit der SP X_1, \ldots, X_n : Lem. Es seien $\mathbb{E}h^2(X_1, X_1^*) < \infty$ und $\sigma_1^2, \sigma_2^2 \in (0, \infty)$. Dann gilt

$$\sqrt{\frac{n_1 n_2}{n_2 \sigma_1^2 + n_1 \sigma_2^2}} \cdot (U_{n_1, n_2} - \theta) \xrightarrow[n_1, n_2 \to \infty]{d} \mathcal{N}(0, 1).$$

Bsp. Die Wilcoxon-2-SP-Statistik ist eine U-Statistik mit

$$h(x,y) \coloneqq |\{ \heartsuit \mid x < y \}|.$$

Das allgemeine lineare Modell

Modell (allgemein). Für Zufallsgrößen X und Y gilt $Y = g(X) + \epsilon$ mit einer Funktion q, wobei $\mathbb{E}\epsilon = 0$ und $\sigma^2 := \operatorname{Var}(Y - q(X)) = \mathbb{E}\epsilon^2$.

Modell (Lineare Regression). $Y = X\beta + \epsilon$, wobei

$$Y = (Y_1, \dots, Y_n)^T$$
 Beobachtungsvektor,
 $X = (x_{ij}) \in \mathbb{R}^{n \times p}$ Einstellgrößen-, Versuchsplanmatrix,
 $\beta = (\beta_1, \dots, \beta_p)^T$ (unbek.) Parametervektor, Regressionskoeff.,
 $\epsilon = (\epsilon_1, \dots, \epsilon_n)^T$ (nicht beobachtbarer) Fehlervektor heißt.

Bem. Falls Yeine bek. Kovarianzmatrix $K \in \mathbb{R}^{n \times n}$ hat, so können wir $X^* := K^{-1/2}X$, $Y^* := K^{-1/2}Y$, $\epsilon^* := K^{-1/2}\epsilon$ setzen und erhalten $Y^* = X^*\beta + \epsilon^*$ und $Cov(Y^*) = I_n$. Wir dürfen daher annehmen:

Voraussetzung. $Cov(Y_i, Y_i) = Cov(\epsilon_i, \epsilon_i) = \sigma^2 \delta_{ij}$. Dabei heißt σ Modellstreuung. Üblicherweise gilt n > p.

Problem. Gegeben seien $[Y, X\beta, \sigma^2 I_n]$. Gesucht sind Schätzungen $\hat{\beta}(u) = (\hat{\beta}_1(u), \dots, \hat{\beta}_n(u))^T$ für β .

Def. Eine Schätzfunktion $\hat{\beta}(y)$ heißt MkQ-Schätzung (Methode derkleinsten Quadrate) für $\beta,$ falls $S(y,\hat{\beta}) = \min_{\beta \in \mathbb{D}^p} S(y,\beta),$ wobei

$$S(y,\beta) := ||y - X\beta||^2 = \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} x_{ij}\beta_j)^2.$$

Bem. $S(y,\beta)$ besitzt lokale Minima, da

$$\frac{\partial}{\partial \beta}S(y,\beta) = -2X^Ty + 2X^TX\beta, \quad \frac{\partial^2}{\partial \beta^2}S(y,\beta) = 2X^TX.$$

Für die Minima gelten die Normalengleichungen

$$X^T X \beta = X^T Y \iff \sum_{j=1}^p \xi_{ij} \beta_j = \sum_{j=1}^n x_{ji} y_j \text{ mit } (\xi_{ij}) = X^T X. \text{ (N)}$$

Falls rk X = p, so ist $\hat{\beta}$ eind. bestimmt durch $\hat{\beta} = (X^T X)^{-1} X^{T} y$

Bsp (Einfache lineare Regression).

Annahme: $Y_i = \beta_1 + \beta_2 x_i + \epsilon_i$, i = 1, ..., n. Dann ist

$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \qquad \begin{array}{l} X^{\hat{T}}X = n\sum x_i^2 - (\sum x_i)^2 = n \cdot \sum (x_i - \overline{x_n})^2 > 0 \\ \hat{\beta} = \det(XX^T)^{-1} \begin{pmatrix} \sum x_i^2 & -\sum x_i \\ -\sum x_i & n \end{pmatrix} \begin{pmatrix} \sum Y_i \\ \sum x_i Y_i \end{pmatrix} \end{array}$$

Bsp (Multiple lineare Regression).

$$Y_i = \beta_0 + \beta_1 X_1^{(i)} + \ldots + \beta_m X_m^{(i)} + \epsilon_i$$

Bsp (Quasilineare (multiple) Regression).

$$Y_i = \beta_0^{(i)} + \beta_1 f_1(X_1^{(i)}) + \ldots + \beta_m f_m(X_m^{(i)}) + \epsilon_i$$

mit (nichtlinearen) Funktionen f_1, \ldots, f_m

Def. Eine Matrix $A^- \in \mathbb{R}^{n \times m}$ heißt **g-Inverse** (g = generalized)von $A \in \mathbb{R}^{m \times n}$, wenn für jedes $y \in \mathbb{R}^m$, für welches Ax = y lösbar ist, auch $x = A^-y$ eine Lösung ist.

Satz. A^- ist eine g-Inverse von $A \iff AA^-A = A$

Bem. • Falls n = m und A^{-1} existiert, so ist $A^{-} = A^{-1}$ eindeutig.

• A ist im Allgemeinen nicht eindeutig. Man erhält Eindeutigkeit durch Zusatzforderungen:

Def. Eine Moore-Penrose-Inverse A^+ ist eine g-Inverse, welche folgende Bedingungen erfüllt:

$$A^{+}AA^{+} = A^{+}, \quad (AA^{+})^{T} = AA^{+}, \quad (A^{+}A)^{T} = A^{+}A.$$

Satz. Die allgemeine Lösung von (N) lautet mit $S := X^T X$:

$$\beta = S^- X^T y + (S^- S - I_p)z$$
, wobei $z \in \mathbb{R}^p$.

Für die spez. Lsg $\hat{\beta} = S^{-}X^{T}Y$ (mit z = 0) der MkQ-Schätzung gilt

$$\mathbb{E}\hat{\beta} = S^- S \beta$$
 und $\operatorname{Cov}(\hat{\beta}) = \sigma^2 S^- S S^-$.

Bem. Bei Nichteindeutigkeit der Lsg von (N) gilt i. A. $S^-S \neq I_n$. Falls rk X = rk S = p, so gilt $\mathbb{E}\hat{\beta} = \beta$ und $\text{Cov } \hat{\beta} = \sigma^2 S^{-1}$

Schätzbare Funktionen

Def. Eine Linear kombination $\ell(\beta) = c^T \beta$ mit $c \in \mathbb{R}^p, \, \beta \in \mathbb{R}^p$ heißt bzgl. des linearen Modells $[Y, X\beta, \sigma^2 I_n]$ schätzbare Funktion, falls ein $a \in \mathbb{R}^n$ mit $c = X^T a$ existiert.

Satz. Es sind äquivalent:

- $\ell(\beta) = c^T \beta$ ist eine schätzbare Funktion.
- $\hat{\ell} := \ell(\hat{\beta}) := c^T \hat{\beta}$ (wobei $\hat{\beta}$ MkQ-Schätzung) ist eine lineare Funktion von Y und eine erwartungstreue Schätzung für $\ell(\beta)$
- $c \in \operatorname{im}(X^T) = \operatorname{im}(X^T X)$
- $\ell(\hat{\beta}) = c^T \hat{\beta}$ ist konstant für alle $\hat{\beta}$, die Lösung von (N) sind.
- Es existiert ein $a \in \mathbb{R}^n$ mit $\mathbb{E}(a^T Y) = c^T \beta$.

Satz (Gauß-Markov). In einem lin. Modell $[Y, X\beta, \sigma^2 I_n]$ ex. für jede schätzbare (lin.) Funktion $\ell(\beta) = c^T \beta$ eine eindeutig bestimmte, in Y lin. erwartungstreue Schätzung $\hat{\ell} = a_+^T Y$ (für genau ein $a_* \in \operatorname{im}(X) \subset \mathbb{R}^n$) und diese hat die Form $\hat{\ell} = \ell(\hat{\beta}) = c^T \hat{\beta}$, wobei $\hat{\beta}$ eine MkQ-Schätzung ist. Außerdem besitzt $\hat{\ell}$ minimale Varianz in der Klasse aller linearen erwartungstreuen Schätzungen $\hat{\ell} = a^T Y$.

Konstr. $a_* = X(X^TX)^-c$

Def. Der Schätzer heißt Best Linear Unbiased Estimator (BLUE)

Schätzung der Modellstreuung σ^2

Bem. Es gilt

$$\begin{split} S(Y, \hat{\beta}) &= \min_{\beta \in \mathbb{R}^p} \|Y - X\beta\|^2 = \|Y - X\hat{\beta}\|^2 = (Y - X\hat{\beta})^T (Y - X\hat{\beta}) = \\ &= Y^T Y - \underbrace{Y^T X\hat{\beta}}_{=(X\hat{\beta})^T X\hat{\beta}} - (X\hat{\beta})^T Y + \underbrace{(X\hat{\beta})^T X\hat{\beta}}_{=\hat{\beta}^T X^T X\hat{\beta} = \beta^T X^T Y} = \|Y\|^2 - \|X\hat{\beta}\|^2. \end{split}$$

Def. $(Y - X\hat{\beta})$ heißt **Restvektor** oder **Residuum**.

Lem. Für die MkQ-Schätzung $\hat{\beta}$ gilt

- $\bullet \ \mathbb{E}(Y X\hat{\beta}) = 0,$
- $c^T \beta$ ist eine schätzbare Funktion und $\mathbb{E}(c^T \hat{\beta}(Y X \hat{\beta})) = 0$ TODO: Was ist c???.
- $\operatorname{Cov}(Y X\hat{\beta}) = \mathbb{E}S(Y, \hat{\beta}) = \mathbb{E}[\|Y\|^2 \|X\beta\|^2] = \operatorname{Cov}(Y) \operatorname{Cov}(X\hat{\beta}).$

Verfahren (Orthogonale Transformation eines linearen Modells). Sei $[Y, X\beta, \sigma^2 I_n]$ geg. und $r = \operatorname{rk} X \leq p$. Wähle eine orthonormale Basis o_1, \ldots, o_r von $\operatorname{im}(X) \subseteq \mathbb{R}^n$. Ergänze diese zu einer ONB o_1, \ldots, o_n von \mathbb{R}^n . Wir setzen

$$O_1 = (o_1 \cdots o_r), \quad O_2 = (o_{r+1} \cdots o_n), \quad O = (O_1 O_2) = (o_1, \dots, o_n).$$

Wir betrachten nun das lineare Modell $[Z, O^T X \beta, \sigma I_n]$, wobei

$$Z := O^{-1}Y = O^TY = \begin{pmatrix} O_1^T \\ O_2^T \end{pmatrix}.$$

Es gilt
$$\operatorname{Cov}(Z) = \operatorname{Cov}(O^T Y) = O^T \operatorname{Cov}(Y)O = \sigma^2 I$$

 $\mathbb{E} Z = O^T \mathbb{E} Y = O^T X \beta = \begin{pmatrix} O_1^T X \beta \\ O_2^T X \beta \end{pmatrix} = \begin{pmatrix} O_1^T X \beta \\ 0 \end{pmatrix}$

Satz. Sei $[Y, X\beta, \sigma^2 I_n]$ geg., $r := \operatorname{rk} X$ und $\hat{\beta}$ eine MkQ-Schätzung. Dann ist eine erwartungstreue Schätzung für σ^2 gegeben durch

$$\hat{\sigma}^2 = \frac{1}{n-r} S(Y, \hat{\beta}) = \frac{1}{n-r} ||Y - X\hat{\beta}||^2 = \frac{1}{n-r} \sum_{i=1}^n (Y_i - \sum_{j=1}^p x_{ij} \hat{\beta}_j)^2.$$

Normalverteilte lineare Modelle

Satz. Für ein normalverteiltes lineares Modell $[Y, \mathcal{N}_n(X\beta, \sigma^2 I_n)]$ mit rk $X = r \leq p$ gilt:

- Die ML-Schätzung für $\beta \in \mathbb{R}^p$ stimmt mit der MkQ-Schätzung $\hat{\beta}$ überein und es gilt $\hat{\beta} \sim \mathcal{N}_p(\mathbb{E}\hat{\beta}, \text{Cov}(\hat{\beta}))$.
- Die ML-Schätzung für σ^2 lautet $\hat{\sigma}_n^2 = \frac{S(Y,\hat{\beta})}{n} = \frac{n-r}{n}\hat{\sigma}^2$. Es gilt $\mathbb{E}\hat{\sigma}_n^2 = \frac{n-r}{n}\sigma^2 \xrightarrow[n \to \infty]{} \sigma^2$ (asympt. erw.-treu) und $\frac{S(Y,\hat{\beta})}{\sigma^2} \sim \chi_{n-r}^2$.
- Für einen Vektor $\ell^T(\beta) = (\ell_1(\beta), \dots, \ell_q(\beta))$ von $q \leq r$ linear unabhängigen schätzbaren Funktionen $\ell_i(\beta) = c_i^T \beta, c_i \in \mathbb{R}^p$ gilt

$$\hat{\ell} \coloneqq \ell(\hat{\beta}) \sim \mathcal{N}_q(\ell(\beta), \sigma^2 A_* A_*^T) \quad \text{mit } q = \text{rk } A_*.$$

Dabei ist $A_* = (a_{*,1}, \dots, a_{*,q})^T$ mit $a_{*,i} \in L(X)$ optimal gemäß dem Gauß-Markov-Theorem.

- Die Schätzungen $\hat{\ell}=\ell(\hat{\beta})$ und $\hat{\sigma}^2$ (bzw. $\hat{\sigma}_n^2)$ sind unabhängig.

Kor. Für rk X = p gilt $\hat{\beta} \sim \mathcal{N}_p(\beta, \sigma^2(X^TX)^{-1})$ und $\hat{\beta}$ und $\hat{\sigma}^2$ sind unabhängig. (Grund: $\beta_i = e_i^T \beta$ sind schätzbare Funktionen.)

Test $(\sigma^2$ -Streuungstest im Modell $[Y, \mathcal{N}_n(X\beta, \sigma^2 I_n)]$). Wir testen $H_0: \sigma^2 = \sigma_0^2$ vs. $H_1: \sigma^2 \neq \sigma_0^2$. Wir verwenden dazu

$$T := \frac{\|Y - X\hat{\beta}\|^2}{\sigma_0^2}$$

Unter H_0 gilt $T \sim \chi_{n-r}^2$, wobei $r := \operatorname{rk} X \leq p$.

Entscheidungsregel. Wir lehnen H_0 genau dann ab, falls

$$T \in K^* = \left[0, \chi^2_{n-r,\alpha/2}\right] \cup \left[\chi^2_{n-r,1-\alpha/2}, \infty\right).$$

Bem. Sei $\ell(\beta) = (\ell_1(\beta), \dots, \ell_q(\beta))^T$ ein Vektor von linear unabh. schätzbaren Fktn, wobei $1 \le q \le r \le p < n$. Setze $w := \ell(\hat{\beta}) - \ell(\beta)$. Die Konfidenzschätzung für $\ell(\beta)$ ist dann

$$\mathbb{P}(w^{T}(A_{*}A_{*}^{T})^{-1}w \leq \frac{q}{n-r}\|Y - X\hat{\beta}\|^{2} \cdot F_{q,n-r,1-\alpha}) = 1 - \alpha.$$

Anwendung auf das Modell I der Varianzanalyse

Bsp. Ziel ist der Vergleich von Erwartungswerten von p Stufen (Populationen), je $\mathcal{N}(\mu_i, \sigma^2)$ -verteilter unabhängiger Beobachtungen (i=2 y21 y22 \cdots y2, n2 $1, \ldots, p$). Für alle Populationen i=1 i=

$$Y_{ik} = \mu_i + \epsilon_{ik}, \ \epsilon_{ik} \sim \mathcal{N}(0, \sigma^2) \ (\text{i.i.d.}) \quad \text{für } n = 1, \dots, n_i, \ i = 1, \dots, p.$$

(Wichtig ist, zu prüfen, ob tatsächlich die Varianz der ϵ_{ik} gleich ist, etwa mit dem Bartlett-Test.) Die Transponierte X^T der Versuchsplanmatrix $X \in \mathbb{R}^{n \times p}, n := n_1 + \ldots + n_p$, ist in Zeilenstufenform, wobei die *i*-te Zeile aus genau n_i Einsen besteht. Es gilt

$$X^{T}X = \begin{pmatrix} n_{1} & 0 \\ & \ddots \\ 0 & & n_{p} \end{pmatrix}, \quad X^{T}Y = \begin{pmatrix} Y_{1\bullet} = \sum_{k=1}^{n_{1}} Y_{1k} \\ \vdots \\ Y_{p\bullet} = \sum_{k=1}^{n_{p}} Y_{pk} \end{pmatrix}$$

Aus der Normalengleichung $X^T X \beta = X^T Y$ folgt

$$\hat{\mu}_i = \overline{Y}_{i\bullet} = \frac{1}{n_i} \sum_{k=1}^{n_i} Y_{ik}$$
 für $i = 1, \dots, p$.

Die Schätzung der Modellstreuung ist

$$\hat{\sigma}^2 = \frac{1}{n-p} \|Y - X\hat{\beta}\|^2 = \frac{1}{n-p} \sum_{i=1}^p \sum_{k=1}^{n_i} (Y_{ik} - \overline{Y}_{i\bullet})^2.$$

Es gilt $(n-p)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-p}^2$.

Test. Wir testen $H_0: \mu_1 = \mu_2 = \ldots = \mu_p$ **vs.** $H_1: \exists i, j: \mu_i \neq \mu_j$. Als Testgröße verwenden wir

$$T \coloneqq \frac{n-p}{p-1} \cdot \frac{S_1^2 - S_0^2}{S_0^2} \quad \text{mit} \ S_0^2 \coloneqq \|Y - X\hat{\beta}\|^2 = \sum_{i=1}^p \sum_{k=1}^{n_i} (Y_{ik} - \overline{Y}_{i\bullet})^2,$$

$$S_1^2 := \sum_{i=1}^p \sum_{k=1}^{n_i} (Y_{ik} - \overline{Y}_{\bullet \bullet})^2 \quad \rightsquigarrow S_1^2 - S_0^2 = \dots = \sum_{i=1}^p n_i (\overline{Y}_{i \bullet} - \overline{Y}_{\bullet \bullet})^2$$

Unter H_0 gilt $T \sim F_{p-1,n-p}$.

Entscheidungsregel. Ablehnung von $H_0 \iff T \geq F_{p-1,n-p,1-\alpha}$

Sprechweise. Die üblichen Bezeichnungen sind

$$S_1^2 = \text{SQG} = \text{S. d. Q. d. A.}$$
 in der Gesamtheit
 $S_1^2 - S_0^2 = \text{SQA} = \text{S. d. Q. d. A.}$ zwischen den Stufen des Faktors A
 $S_0^2 = \text{SQR} = \text{S. d. Q. d. A.}$ innerhalb der Stufen des Faktors A
 $= \text{Restquadratesumme},$

wobei "S. d. Q. d. A." = "Summe der Quadrate der Abweichungen".

Test (Bartlett). Seien $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2), i = 1, \ldots, p$, unabh. ZGn. Wir prüfen $H_0: \sigma_1^2 = \ldots = \sigma_p^2 = \sigma^2$ vs. $H_1: \exists i, j: \sigma_i^2 \neq \sigma_j^2$. Dazu verwenden wir die Testgröße

$$T_{n_1,\dots,n_p} := \frac{1}{D} \left((n-p) \log S^2 - \sum_{i=1}^p (n_i - 1) \log S_i^2 \right),$$

$$D := 1 + \frac{1}{3(-1)} \left(\sum_{i=1}^p \frac{1}{n_i - 1} - \frac{1}{n - p} \right)$$

$$S_i^2 := \frac{1}{n_i - 1} \sum_{k=1}^{n_i} (X_{ik} - \overline{X}_{i\bullet})^2$$

$$S^2 := \frac{1}{n - p} \sum_{i=1}^p (n_i - 1) S_i^2$$

Unter H_0 gilt $T_{n_1,...,n_p} \xrightarrow{d} \xrightarrow{\min(n_1,...,n_p) \to \infty} \chi_{p-1}^2$.

Faustregel. Die Näherung ist gut, falls $\min(n_1, \ldots, n_n) > 5$.

Entscheidungsregel. Ablehnung v. $H_0 \Leftrightarrow T_{n_1,\dots,n_p} > \chi^2_{p-1,1-\alpha}$.

Zweifache Varianzanalyse (Zweiwegklassifikation, Kreuzwegkassifikation)

Wirkung eines Faktors A in p Stufen und Wirkung eines Faktors B in q Stufen mit s Wiederholungen in jdeder Stufe von Faktor A und B

Bsp. Faktor A: Düngemittel Faktor B: Bodenart Y_{ijk} : Ernteertrag in Stufe i von Faktor A, in Stufe j von Faktor B in k-ter Wiederholung. Es geht um den Vergleich von Mittelwerten bei eventueller Wechselwirkung zwischen den Stufen der Faktoren.

Modell. $Y_{ijk} = \mu_0 + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk} \ \alpha_i$: mittlerer Effekt in Stufe i von Faktor A β_j : mittlerer Effekt in Stufe j von Faktor B γ_{ij} : mittlerer Effekt aus Wechselwikrung von Stufe i und Stufe j Voraussetzung: Alle Beobachtungen sind normalverteilt und unabhängig mit $\mathbb{E}\epsilon_{ijk} = 0$, $\mathbb{E}\epsilon_{ijk}^2 = \sigma^2$ (eventuell Prüfung mit Bartlett-Test)

Prüfen der folgenden Hypothese: $H_A: \alpha_1 = \ldots = \alpha_p = 0$, $H_B: \beta_1 = \ldots = \beta_q = 0, H_{AB}: \gamma_{11} = \ldots = \gamma_{pq} = 0$

Schreibweise als lineares Modell:

$$Y = X\beta$$
 mit dim $Y = p \dots q \cdot s, X \in \mathbb{R}^{pqs \times (1+p+q+pq)}$.

$$(p+1)\cdot(q+1)$$
 Parameter,

$$\beta = (\mu_0, \alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q, \gamma_{11}, \dots, \gamma_{pq})$$

$$\operatorname{rk} X = pq - 1 < \min\{pqs, (p+1) \cdot (q+1)\}\$$

Reparametrisierung ist notwendig, d. h. es werden Gleichungen zwischen den Parametern hinzugefügt, die die eindeutige Lösbarkeit von (N) garantieren:

$$\alpha_{\bullet} = 0, \quad \beta_{\bullet} = 0, \quad \gamma_{1\bullet} = \dots = \gamma_{p\bullet} = 0, \quad \gamma_{\bullet 1} = \dots = \gamma_{\bullet q} = 0.$$

Wegen $pq - 1 + (2 + p + q) = (p + 1) \cdot (q + 1)$ kann die Eindeutigkeit der MkQ-Schätzung gesichtert werden. Diese Bedingungen bedeuten keine Einschränkung der Allgemeinheit der Darstellung $Y_{ijk} = \mu_0 + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$ denn:

$$\begin{array}{l} \mu_0^* = \mu_0 + \overline{\alpha}_{\bullet} + \overline{\beta}_{\bullet} + \overline{\gamma}_{\bullet}, \; \alpha_i^* = \alpha_i - \overline{\alpha}_{\bullet} + \overline{\gamma}_{i\bullet} - \overline{\gamma}_{\bullet\bullet}, \\ \beta_j^* = \beta_j - \overline{\beta}_{\bullet} + \overline{\gamma}_{\bullet j} - \overline{\gamma}_{\bullet\bullet} \; \text{und} \; \gamma_{ij}^* = \gamma_{ij} - \overline{\gamma}_{i\bullet} - \overline{\gamma}_{\bullet j} + \overline{\gamma}_{\bullet\bullet} \; \text{für} \\ i = 1, \dots, p, \; j = 1, \dots, q. \end{array}$$

Es ergeben sich die Gleichungen

$$Y_{ijk} = \mu_0^* + \alpha_i^* + \beta_j^* + \gamma_{ij}^* + \epsilon_{ijk}$$
 für $i = 1, \dots, p, j = 1, \dots, q, k = 1, \dots, s$

Bezeichnungen für Mittelwert:

$$\hat{\mu}_0 = \overline{Y}_{\bullet\bullet\bullet}, \, \hat{\alpha}_i = \overline{Y}_{i\bullet\bullet} - \overline{Y}_{\bullet\bullet\bullet}, \, \hat{\beta}_j = \overline{Y}_{\bullet j\bullet} - \overline{Y}_{\bullet\bullet\bullet}$$

$$\hat{\gamma}_{ij} = \overline{Y}_{ij\bullet} - \overline{Y}_{i\bullet\bullet} - \overline{Y}_{\bullet j\bullet} + \overline{Y}_{\bullet\bullet\bullet}$$

Zum Prüfen der Hypothese H_A , H_B , H_{AB} verwendet man folgende Testgrößen:

$$S_{pqs}^{2} \coloneqq \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{s} (Y_{ijk} - \overline{Y}_{ij\bullet})^{2},$$

$$F_{A} \coloneqq \frac{pq \cdot (s-1)}{p-1} \frac{qs \sum_{i=1}^{p} (\overline{Y}_{i\bullet\bullet} - \overline{Y}_{\bullet\bullet\bullet})^{2}}{S_{pqs}^{2}} \sim F_{p-1,pq(s-1)}$$

$$F_{B} \coloneqq \frac{pq \cdot (s-1)}{q-1} \frac{ps \sum_{i=1}^{q} (\overline{Y}_{\bullet j\bullet} - \overline{Y}_{\bullet\bullet\bullet})^{2}}{S_{pqs}^{2}} \sim F_{q-1,(pq(s-1))}$$

$$F_{AB} \coloneqq \frac{pq(s-1)}{(p-1)(q-1)} \frac{s\sum\limits_{i=1}^{p}\sum\limits_{j=1}^{q}(\overline{Y}_{ij\bullet} - \overline{Y}_{i\bullet\bullet} - \overline{Y}_{\bullet j\bullet} + \overline{Y}_{\bullet\bullet\bullet})^{2}}{S_{pqs}^{2}} \\ \times F_{pqs} \xrightarrow{Falls} \mathcal{F} = \sigma(X) = \text{von } X \text{ erzeugte } \sigma\text{-Algebra, so schreiben wir} \\ \mathbb{E}(Y|X) \text{ anstelle } \mathbb{E}(Y|\sigma(X)) \text{ und es gilt: eine Borel-messbare Funktion} \\ \times F_{(p+1)\not [q+\frac{1}{2}],pq} \mathbb{E}^{-1}\{\pm\infty\} \text{ mit } \mathbb{E}(Y|X) = g(X) \text{ (Faktorisierungslemma). Wir} \\ \text{können dann schreiben: } q(x) = \mathbb{E}(Y|X = x) = \int u f_{Y|X}(u|x) \, du$$

Entscheidungsregel: Die Hypothesen H_A , H_B bzw. H_{AB} werden

$$F_A > F_{p-1,pq(s-1),1-\alpha}, \quad F_B > F_{q-1,pq(s-1),1-\alpha} \ \text{bzw. } F_{AB} > F_{(p-1),pq(s-1),1-\alpha}$$

Bem. Die Anzahl der Wiederholungen kann auch in den einzelnen Stufen variieren.

Regressionskurvenschätzer

Problem der Ausgleichsrechnung:

Zu *n* Messwerten $(x_1, y_1), \ldots, (x_n, y_n)$ soll eine Funktion $\mu(x)$ gefunden werden, deren Funktionswerte $\mu(x_i)$ die y_i möglichst gut approximieren. Wir betrachten ein nichtparametrisches Regressionsmodell (Modell I)

$$Y_i = \mu(x_i) + \epsilon_i, \quad i = 1, \dots, n(*)$$

mit unbekannter Regressionsfunktion $\mu:[a,b]\to\mathbb{R}^1$. (Im Modell II werden die x_i 's druch ZGn X_i ersetzt)

Annahme: $a \le x_1 < x_2 < \ldots < x_n \le b$ (bewählte Messstellen) und $\mathbb{E}\epsilon_i = 0, i = 1, \dots, n, \mathbb{E}\epsilon_i\epsilon_j = \sigma^2\delta_{ij} \text{ für } i, j = 1, \dots, n.$

Kernschätzer für $\mu(x)$, a < x < b

Kernfunktion: $K \in L^1(\mathbb{R})$, $\int K(x) dx = 1$, K(-x) = K(x), supp K beschränkt, $\sup |K(x)| < \infty$. Bandweite: $h_n \to 0$, $h \cdot n \to \infty$.

$$\hat{\mu}_1(x) = \frac{1}{nh_n} \sum_{i=1}^n Y_i \int_{s_{i-1}}^{s_i} K(\frac{x-s}{h_n}) ds$$

mit $s_0 = a$, $s_{i-1} < x_i \le s_i$, $s_n = b$. heißt Gasser-Müller-Schätzer. Verbessert: $\hat{\mu}_n(x) = \frac{b-a}{nh_n} \sum_{i=1}^n Y_i K(\frac{x-x_i}{h_n}).$

$$\mathbb{E}\hat{\mu}_{n}(x) = \frac{1}{nh_{n}} \sum_{i=1}^{n} \mathbb{E}Y_{i} \int_{s_{i-1}}^{s_{i}} K(\frac{x-s}{h_{n}}) \, ds = \frac{1}{n} \sum_{i=1}^{n} \mu(x_{i}) \int_{s_{i-1}/h_{n}}^{s_{i}/h_{n}} K(\frac{x}{h_{n}} - t) \, dt = \frac{1}{h} \sum_{i=1}^{n} \mu(x_{i}) \int_{(x-s_{i-1})/h_{n}}^{(x-s_{i})/h_{n}} K(y) \, dy \approx \mu(x)$$

Kernschätzer für Modell II: $(X_1, Y_1), \ldots, (X_n, Y_n)$ i. i. d. mit Dichte $MASE(\hat{\mu}_n) = \frac{1}{n} \sum_{i=1}^n MSE(\hat{\mu}_n(x_i)),$ $f_{(X,Y)}, K$ sei eine Kernfunktion wie oben und (h_n) eine Bandbreitenfolge.

$$\hat{\mu}_n(x) = \frac{\sum_{i=1}^n K(\frac{x - X_i}{h_n})}{\sum_{i=1}^n K(\frac{x - X_i}{h_n})}, \quad a \le x \le b$$

Nadarava-Watson-Schätzer.

Bedingte Erwartung:
$$\mathbb{E}(Y - \mathbb{E}(Y|\tilde{\sigma}))^2 = \min_{\substack{Z \text{ \mathcal{F}-messbar}, \mathbb{E}Z^2 < \infty}} \mathbb{E}(Y - Z)^2, \ \mathcal{F} \subseteq \mathfrak{A}, \ (\Omega, \mathfrak{A}, \mathbb{P})$$

können dann schreiben: $g(x) = \mathbb{E}(Y|X=x) = \int y f_{Y|X}(y|x) dy$, wobei $f_{Y|X}(y|x)$ = bedingte Dichte von Y bei gegebenen X=xabgelehnt, falls $= \frac{f_{(X,Y)}(x,y)}{f_X(x)} \text{ mit } f_X(x) = \int f_{(X,Y)}(x,y) \, \mathrm{d}y.$ $F_A > F_{p-1,pq(s-1),1-\alpha}, \quad F_B > F_{q-1,pq(s-1),1-\alpha} \text{ bzw. } F_{AB} > F_{(p-1),pq(s-1),1-\alpha}.$ Motivation für (i_1) :

$$\mu(x) = \mathbb{E}(Y|X = x) = \int y \frac{f_{(X,Y)}(x,y)}{f_{X}(x)} dy \cdot f_{X}(x) = \int f_{(X,Y)}(x,y) dy$$

Schätzung von f(x,y) mittels Produktkern: $K(x,y) = K1(x) \cdot K_2(y)$ mit K_1 , K_2 wie oben.

$$\hat{f}_n(x,y) \coloneqq \frac{1}{nh_\tau^2}$$

$$\hat{f}_n(x) = \frac{1}{nh_\tau}$$

$$\hat{\mu}_n = \int y \frac{\hat{f}_n(x,y)}{\hat{f}_n(x)} \, dy = \frac{1}{\hat{f}_n(x)} \frac{1}{nh_n^2} \sum_{i=1}^n K_1(\frac{x-X_i}{h_n}) \int y K_2(\frac{y-Y_i}{h_n}) \, dy \xrightarrow[n \to \infty]{}$$

Eigenschaften des Gasser-Müller-Schätzers:

$$MASE(\hat{\mu}_n) = \frac{1}{n} \sum_{i=1}^{n} MSE(\hat{\mu}_n(x_i)),$$

$$MSE(\hat{\theta}_n) = \mathbb{E}(\hat{\theta}_n - \theta)^2 = Var(\hat{\theta}_n) + (\mathbb{E}(\hat{\theta} - \theta))^2$$

Satz. Unter den Bedingungen (*), (**), K(x) = 0 für |x| > 1, a = 0, $b = 1, |K(x) - K(x')| \le L|x - x'|, h_n \downarrow 0, nh_n \to \infty, \mu \in \mathcal{C}^2([0, 1]),$ $x = (i - \frac{1}{2})/n, i = 1, ..., n.$ Dann gilt:

$$\mathbb{E}\hat{\mu}_n(x) = \mu(x) + \frac{h_n^2}{2} \int_0^1 x^2 K(x) \, \mathrm{d}x \mu''(x) + o(h_n^2) + O(\frac{1}{n})$$

$$MSE(\hat{\mu}(\mathbf{x})) = \frac{\sigma^2}{nh_n} \int_0^1 K^2(x) \, dx + \frac{h_n^4}{4} \int x^2 K(x) \, dx (\mu''(x))^2 + o(\frac{1}{nh_n}) + o(h_n^4)$$

Dichteschätzungen

Notation. Sei $\mathcal P$ die Menge aller bezüglich des Lebesgue-Maß λ_1 absolut stetigen Wahrscheinlichkeitsmaße auf $\mathbb R^1$ und

$$\mathcal{F}_c := \{ f \in \mathcal{C}(\mathbb{R}^1) \mid f = dP/d\lambda_1 \text{ für ein } P \in \mathcal{P} \}$$

die Menge der stetigen W-Dichtefunktionen.

Ziel. Finden einer "guten" Dichteschätzung $\hat{f}_n(X,-): \mathbb{R}^1 \to \mathbb{R}^1$, wobei $X = (X_1, \dots, X_n)$ eine math. Stichprobe ist, in Form einer Borel-messbaren Abbildung $\hat{f}_n(-,-): \mathbb{R}^n \times \mathbb{R}^1 \to \mathbb{R}^1$.

Notation. $\hat{f}_n(t) := \hat{f}_n(X_1, \dots, X_n, t)$

Lem. Es gibt keinen Dichteschätzer $\hat{f}_n(-)$ mit

$$\mathbb{E}_f \hat{f}_n(t) = f(t)$$
 für λ_1 -fast alle t für alle $f \in \mathcal{F}_c$.

Def. Sei $x_0 \in \mathbb{R}$ und h > 0 fest. Setze $I_j := [x_0 + jh, x_0 + (j+1)h)$ für $j \in \mathbb{Z}$. Das **Histogramm** ist der (naive) Dichte-Schätzer

$$\hat{f}_n(t) := \frac{1}{nh} \sum_{i=1}^n \mathbbm{1}_{I_j}(X_i), \quad \text{wobei } j \in \mathbb{Z} \text{ so ist, dass } t \in I_j.$$

Bem. Der Graph der geschätzten Histogramm-Dichte ist ein Säulendiagramm. Verbindet man die Mitten der Säulen mit einer Linie, so bekommt man einen Häufigkeitspolygonzug.

Bem. Nach dem Gesetz der großen Zahlen gilt

$$\hat{f}_n(t) \xrightarrow[n \to \infty]{\mathbb{P}_f \text{-f.s.}} h^{-1} \int_{I_j} f(x) \, \mathrm{d}x \quad \text{für } t \in I_j.$$

Def. Sei $\hat{f}_n(-)$ ein Dichteschätzer und $f \in \mathcal{F}_c$. Dann heißt

$$\begin{aligned} \text{MISE}(\hat{f}_n) &\coloneqq \Delta_n \coloneqq \mathbb{E}_f \int_{\mathbb{R}} (\hat{f}_n(t) - f(t))^2 \, \mathrm{d}t \\ &= \int_{\mathbb{R}} \underbrace{\mathbb{E}_f (\hat{f}_n(t) - f(t))^2}_{=: \text{MSE}(\hat{f}_n(t))} \, \mathrm{d}t \end{aligned}$$

MISE (mean integrated squared error) von \hat{f}_n bzgl. f.

 \mathbf{Satz} (Freedman, Diaconis). Sei $f:\mathbb{R}^1\to\mathbb{R}^1$ eine Dichtefkt mit

- (i) $f\in L^2(\mathbb{R}^1)$ und f absolut stetig, d. h. f. ü. differenzierbar
- (ii) $f' \in L^2(\mathbb{R}^1)$ und f' absolut stetig, d. h. f. ü. differenzierbar
- (iii) $f'' \in L^p(\mathbb{R}^1)$ für ein $p \in [1, 2]$

Wir schreiben

$$\alpha \coloneqq \sqrt[3]{6} \cdot \gamma^{-1/3}, \quad \beta \coloneqq \frac{3}{2\sqrt[3]{6}} \gamma^{1/3}, \quad \gamma \coloneqq \int\limits_{\mathbb{P}^1} (f'(t))^2 \, \mathrm{d}t.$$

Dann gilt $\min_{h=h_n>0} \Delta_n^2 = \frac{\beta}{n^{2/3}} + O\left(\frac{1}{n^{2/3}}\right)$

Das Minimum wird angenommen für $h_n = \frac{\alpha}{\sqrt[3]{n}} + O\left(\frac{1}{\sqrt[3]{n}}\right)$. Falls nur (i) und $\gamma > 0$ erfüllt ist, so gilt $\min_{h=h_n>0} \Delta_n^2 = \frac{\beta}{n^{2/3}} + o\left(\frac{1}{n^{2/3}}\right)$ und das Minimum wird bei $h_n = \frac{\alpha}{\sqrt[3]{n}} + o\left(\frac{1}{\sqrt[3]{n}}\right)$ angenommen.

Def. Sei $K \in L^1(\mathbb{R})$ eine F
ktn mit $\int K(t) \, \mathrm{d}t = 1$ und $(h_n)_{n \in \mathbb{N}}$ eine Folge in
 $(0, \infty)$ mit $h_n \downarrow 0$. Dann heißt

$$\hat{f}_n(t) = \hat{f}_n(X_1, \dots, X_n; t) := \frac{1}{n \cdot h_n} \sum_{i=1}^n K\left(\frac{X_i - t}{h_n}\right)$$

Kerndichteschätzer für f mit Kernfunktion K.

Bspe. Mit der **empirischen Dichte** $K(x) := \frac{1}{2} \mathbb{1}_{(-1,1]}(x)$ gilt

$$\hat{f}_n(t) = \frac{1}{2h_n} \left(\hat{F}_n(t + h_n) - \hat{F}_n(t - h_n) \right),$$

mit dem Gauß-Kern $K(x) := \frac{1}{\sqrt{2\pi}} \exp(\frac{-x^2}{2})$ gilt $\hat{f}_n(-) \in \mathcal{C}^{\infty}(\mathbb{R})$.

Lem. Sei zusätzlich $K \in L^2(\mathbb{R})$. Dann gilt:

- $\mathbb{E}_f \hat{f}_n(t) = \int K(x) f(t + h_n x) dx$
- $\operatorname{Var}_f(\hat{f}_n(t)) = \frac{1}{n \cdot h_n} \cdot \int K^2(x) \cdot f(t + h_n x) \, \mathrm{d}x$ $-\frac{1}{n} \cdot \left(\int K(x) \cdot f(t + h_n x) \, \mathrm{d}x\right)^2$

Satz. Sei f eine beschränkte W-Dichtefktn, $\forall x \in \mathbb{R}: f(x) \leq M$, mit Stetigkeitsstellen $C \subseteq \mathbb{R}$. Sei $K \in L^2(\mathbb{R})$ und $(h_n)_{n \in \mathbb{N}}$ eine Folge mit $h_n \downarrow 0$ für $n \to \infty$. Angenommen, $n \cdot h_n \xrightarrow[n \to \infty]{} \infty$. Dann gilt:

- $\mathbb{E}_f \hat{f}_n(t) \xrightarrow[n \to \infty]{} f(t) \quad \forall t \in C,$
- $n \cdot h_n \cdot \operatorname{Var}_f(\hat{f}_n(t)) \xrightarrow[n \to \infty]{} f(t) \cdot \int K^2(x) \, \mathrm{d}x \quad \forall \, t \in C,$
- $\sup_{t \in \mathbb{R}} \mathbb{E}_f \left(\hat{f}_n(t) f(t) \right)^2 \xrightarrow[n \to \infty]{} 0$, falls f glm. stetig auf \mathbb{R} .

Satz. Sei $f \in C^2(\mathbb{R}^1)$, $f, |f'|, |f''| \le M < \infty$ und $\int x^2 |K(x)| dx < \infty$. Dann gilt für alle $t \in \mathbb{R}^1$:

$$\mathbb{E}_f \hat{f}_n(t) = f(t) + h_n f'(t) \int x K(x) \, dx + \frac{1}{2} h_n^2 f''(t) \int x^2 K(x) \, dx + o(h_n^2).$$

wobei die Konvergenz von o(-) sogar gleichmäßig in abgeschlossenen t-Intervallen ist.

Ziel. Bestimmung einer optimalen Bandbreite h_n

Satz. Sei $f \in \mathcal{C}^2(\mathbb{R}^1)$ mit $f'' \in L^2(\mathbb{R}^1)$ und $f, |f'| \leq A < \infty$. Für K gelte $0 \leq K(x) \leq B$, K(-x) = K(x) und $\int x^2 K(x) dx < \infty$. Dann gilt für $(h_n)_{n \in \mathbb{N}}$ mit $h_n \downarrow 0$ und $nh_n \xrightarrow[n \to \infty]{} \infty$:

MISE
$$(\hat{f}_n) = \frac{1}{nh_n} \int K^2(x) dx + \frac{h_n^4}{4} (\int x^2 K(x) dx)^2 \int (f''(t))^2 dt + o(h_n^4) + o(\frac{1}{nh_n})$$
 für $n \to \infty$.

Optimale Wahl von h_n :

Gleichsetzen der beiden echten Fehlerterme:

$$\frac{1}{nh_n} \int K^2(x) \, dx = \frac{h_n^4}{4} \left(\int x^2 K(x) \, dx \right) \int (f''(t))^2 \, dt$$

Es folgt
$$h_n^* = \frac{c^*}{n^{1/5}}$$
 mit $c^* := \left(\frac{4\int K(x)^2 dx}{(\int x^2 K(x) dx)^2 \int (f''(t))^2 dt}\right)^{1/5}$

und MISE (\hat{f}_n) =

$$\frac{\sqrt[5]{8}}{n^{4/5}} \left(\int (f''(t))^2 dt \right)^{1/5} \left(\int x^2 K(x) dx \right)^{2/5} \left(\int K(x)^2 dx \right)^{4/5} + o(n^{-4/5})$$

Optimale Wahl der Kernfunktion K:

$$\int x^2 K(x) dx \left(\int K(x)^2 dx \right)^2 \to \text{Min}$$

unter der Nebenbedingung $\int K(x) dx = 1$ und $K(x) \ge 0$.

Satz. Sei K eine Kernfunktion mit $\int K(x) dx = 1$. Dann gilt für $\alpha > 0$:

$$\left(\int K(x)^2 dx\right)^{\alpha} \int |x|^{\alpha} |K(x)| dx \ge \frac{1}{2\alpha + 1} \left(\frac{\alpha + 1}{2\alpha + 1}\right)^{\alpha}$$

Gleichheit gilt für $K_0(x) = \frac{\alpha+1}{2\alpha} (1-|x|^{\alpha}) \mathbb{1}_{[-1,1]}(x)$

Def. Für $\alpha = 2$ heißt $K_0(x) := \frac{3}{4}(1-x^2)\mathbb{1}_{[-1,1]}(x)$ **Epanetschnikow-Kern**.

Bem. Wichtige Kerne neben dem Epanetschnikow-Kern:

- $K_N(x) = \frac{1}{2} \sum_{k=-N}^{N} e^{i2\pi kx} = \frac{\sin((2N+1)\pi x)}{2\sin(\pi x)}$ für $|x| \le 1$ heißt Dirichlet-Kern.
- $K_N(x) = \frac{1}{2N} |\sum_{k=0}^N e^{ik\pi x}|^2 = \frac{\sin^2((2N+1)\pi x)}{2N\sin^2(\pi x)}$ für $|x| \le 1$ heißt Feiér-Kern
- $K(x) = (1 |x|)\mathbb{1}_{[-1,1]}(x)$ heißt **Dreieckskern**.
- $K(x) = \begin{cases} \frac{\pi}{4}\cos(\frac{\pi}{2}x) & |x| \le 1\\ 0 & |x| > 1 \end{cases}$
- $K_{\epsilon}(x) = c_d \epsilon^{-d} \exp\left(-\frac{\epsilon^2}{\epsilon^2 \|x\|^2}\right) \mathbbm{1}_{B_{\epsilon}(0)}(x)$ heißt Sobolev-Kern. Es gilt $K_{\epsilon} \in \mathcal{C}^{\infty}(\mathbb{R}^d)$.
- Kerne mit der Eigenschaft $\int x^k K(x) dx = 0$ für k = 1, ..., m-1 und $\int |x|^m K(x) dx < \infty$.

Bem. Beachte den Satz von H. Müntz:

Sei $K: \mathbb{R} \to \mathbb{R}$ eine Funktion mit $\int x^{n_i} K(x) \, \mathrm{d}x = 0$ für

 $0 < n_1 < n_2 < \dots$ mit $\sum_{i=1}^{\infty} \frac{1}{n_i} = \infty$, supp $(K) = [a, b], K \in \mathcal{C}[a, b]$. Dann gilt $K \equiv 0$.

Bem. Es gibt Kerne mit $\int_{-\infty}^{\infty} x^n K(x) dx = 0$ für alle (geraden) $n \in \mathbb{N}$, z. B.

$$K(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(tx)g(t) dt \quad \text{mit} \quad g(t) := \begin{cases} 1 - e^{-1/t^2} & \text{falls } t \neq 0, \\ 1 & \text{falls } t = 0 \end{cases}$$

Sei M = [a, b] mit $-\infty < a < b < \infty$. Der Hilbertraum $L^2(M)$ besitzt **Lem.** Sei $f \in L^2(M)$. Dann gilt für ON-Schätzer eine abzählbare ONB e_1, e_2, \ldots , sodass für alle $f \in L^2(M)$ gilt:

$$f(x) = \sum_{k=1}^{\infty} \alpha_k e_k(x)$$
 mit $\alpha_k = \langle f, e_k \rangle$ für $x \in [a, b]$

Statistisches Problem: Für eine math. SP X_1, \ldots, X_n aus einer Grundgesamtheit für ein zuf. Merkmal mit Dichte $f \in L^2(M)$ Schätzung von f erfolgt in zwei Schritten:

1. Wähle einen Parameter $N = N_n$. Sei f_N die Projektion von f auf $L(e_1,\ldots,e_N)\subset L^2(M),$

$$f_N(x) = \sum_{k=1}^N \alpha_k e_k(x), \ x \in M \text{ mit } \alpha_k = \langle f, e_k \rangle$$

2. Schätzung der Koeffizienten:

$$\hat{\alpha}_k = \hat{\alpha}_{k,n} = \frac{1}{n} \sum_{k=1}^n e_k(X_i), \ k = 1, \dots, N_n$$

Der ON-Schätzer (Projektionsschätzer)

$$\hat{f}_n(x) = \hat{f}_{n,N}(x) := \sum_{k=1}^N \hat{\alpha}_{k,n} e_k(x) = \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^N e_k(X_i) e_k(x).$$

Eigenschaften des Schätzers \hat{f}_n :

Lem. Für
$$f \in L^2(M)$$
 und $e_1(x) \equiv \text{const} = \frac{1}{\sqrt{|M|}}, |M| = b - a$ gilt

$$\int\limits_{M} \hat{f}_{n}(x) \, \mathrm{d}x = 1 \quad \text{und} \quad \mathbb{E}\hat{f}_{n}(x) f_{N}(x), x \in M$$

Kor. Für $N_n \xrightarrow[n \to \infty]{} \infty$ gilt $\mathbb{E}\hat{f}_n(x) \xrightarrow[n \to \infty]{} f(x)$ (fast-überall), falls $f_N(x) \xrightarrow[N \to \infty]{f} (x).$

$$\|\hat{f}_n - f\|_2 = \sum_{k=1}^{N} (\hat{\alpha}_{k,n} - \alpha_k)^2 + \sum_{k=N+1}^{\infty} \alpha_k^2$$

Satz.
$$J_n = \mathbb{E} \|\hat{f}_{n,N_n} - f\|_2^2 = \mathbb{E} \int_M (\hat{f}_{n,N_n}(x) - f(x))^2 dx \xrightarrow[n \to \infty]{} 0 \iff \frac{1}{n} \sum_{i=1}^{N_n} \int_M e_k^2(x) f(x) dx \xrightarrow[n \to \infty]{} 0$$

Kor. Aus $J_n \xrightarrow[n \to \infty]{} 0$ folgt $\|\hat{f}_{n,N_n} - f\|_2 \xrightarrow[n \to \infty]{} 0$.

Simulation von Zufallszahlen und Simulationstests

1. Möglichkeit: Quantilfunktionen, Inversionsmethode

Sei F eine VF auf \mathbb{R}^1 . Dann heißt die Funktion $F^-:[0,1]\to[-\infty,\infty)$ mit $F^-(y)\coloneqq\min\{x\in\mathbb{R}^1\,|\,F(x)\geq y\}$ für $y\in(0,1],\,F^-(0)=\lim_{y\downarrow0}F^-(y)$ Quantilfunktion oder (verallgemeinerte) **Pseudo-Inverse** zu F.

Eigenschaften:

- F⁻ ist monoton und linksseitig stetig
- $F(F^{-}(y)) > y$ für alle $y \in [0, 1]$
- $U \sim \mathcal{R}[0,1] \implies F^{-}(U) \sim F$. Falls $(U_i)_{i \in \mathbb{N}}$ eine Folge unabhängiger gleichverteilter Zufallszahlen auf [0, 1] sind, dann ist $(F^-(U_i))_{i\in\mathbb{N}}$ eine Folge F-verteilter Zufallszahlen.

1. Verwerfungsmethode (rejection method)

Voraussetzung: X besitze eine Dichte f mit einem beschränkten Träger $\subseteq [a, b]$ und $f(x) \leq M$ für alle $x \in [a, b]$. Wir erzeugen Zufallszahlen $V_1 = a + (b - a)U_1 \sim \mathcal{R}[a, b]$ und $V_2 = MU_2$. Wir nehmen $X := V_1$ falls $(V_1, V_2) \in \operatorname{Graph}(f) \iff V_2 \leq f(V_1)$, andernfalls wiederholen wir das Verfahren mit neuen Werten V_1 und V_2 .

2. Box-Muller-Verfahren

Seien
$$U_1, U_2 \sim \mathcal{R}\left[0,1\right]$$
 unabhängig. Dann sind $X_1 := g_1(U_1, U_2) := \sqrt{-2\log U_1} \sin(2\pi u_2) \sim \mathcal{N}(0,1),$ $X_2 := g_2(U_1, U_2) := \sqrt{-2\log U_1} \cos(2\pi U_2) \sim \mathcal{N}(0,1)$ unabhängig.

Allgemein sei
$$h=\binom{h_1}{h_2}$$
 die Umkehrfunktion von $g=\binom{g_1}{g_2}$), also $\binom{u_1}{u_2}=\binom{h_1(X_1,X_2)}{h_2(X_1,X_2)}$). Dann gilt
$$f_{(X_1,X_2)}(x_1,x_2)=\frac{f_{U_1,U_2}(h_1(x_1,x_2),h_2(x_1,x_2))}{\det(J_g(h_1(x_1,x_2),h_2(x_1,x_2)))},$$
 wobei $J_g(x,y)$ die Jacobi-Matrix von g im Punkt (x,y) ist.

Erzeugung eines n-dim. ZV $\mathcal{N}(n)(m,S), m \in \mathbb{R}^n, S \in \mathbb{R}^{n \times n}$ Kovarianzmatrix, positiv semidefinit und symmetrisch, Mit Cholesky-Zerlegung bekommt man eine untere Dreiecksmatrix $L \in \mathbb{R}^{n \times n} \text{ mit } S = L \cdot L^T.$

$$Y = (Y_1, \dots, Y_n)^T := m + X \cdot XL^T, X = (X_1, \dots, X_n),$$

 $X_1, \dots, X_n \sim \mathcal{N}(0, 1)$ i. i. d.. Dann ist
 $Cov(Y) = Cov(XL^T) = L Cov(X)L^T = LL^T = S.$