Matriks

Alfi Yusrotis Zakiyyah Bina Nusantara University

November 5, 2020

Contents

1	Jenis-jenis matriks	2
2	Operasi Pada Matriks2.1 Penjumlahan dan Pengurangan2.2 Perkalian Skalar2.3 Perkalian Matriks	4
3	Determinan3.1 Sarrus3.2 Minor dan Kofaktor	
4	Invers matriks	7
5	Latihan	8

Suatu matriks dinotasikan dengan huruf kapital seperti (A, B. ...).

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} . \tag{1}$$

Bilangan-bilangan pada matriks disebut elemen, anggota atau entri matriks. Suatu matriks A dinotasikan dengan $A = (a_{ij})$. Suatu ukuran matriks ditentukan oleh jumlah baris dan kolomnya. Perhatikan contoh berikut :

Misalkan matriks
$$B = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 7 \end{pmatrix}$$
.

Matriks B berukuran 2×3 , yaitu jumlah baris sebanyak dua dan banyaknya kolom yaitu 3. Entri matriks b_{12} menunjukkan entri matriks pada posisi baris kesatu dan kolom kedua yaitu 2, entri $b_{13} = 5$. Diagonal utama matriks yaitu entri matriks pada posisi baris dan kolom sama yaitu i = j. Pada matriks B tersebut diagonal utama matriks yaitu $b_{11} = 1, b_{22} = 4$, dan $b_{33} = 3$

1 Jenis-jenis matriks

Vektor kolom(matriks kolom) dan vektor baris (matriks baris):

Matriks kolom(vektor kolom) yaitu suatu matriks yang memuat satu kolom.

Matriks baris(vektor baris) yaitu suatu matriks yang memuat satu baris.

Misalkan matriks
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
.

Vektor baris dari matriks A yaitu $r_1=(a_{11}\ a_{12}\ \dots\ a_{1n}), r_2=(a_{21}\ a_{22}\ \dots\ a_{2n}),\dots r_m=(a_{m1}\ a_{m2}\ \dots\ a_{mn})$. Ukuran matriks r_1 yaitu $1\times n$

Vektor kolom matriks A yaitu :
$$c_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, c_2 = \begin{pmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots c_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Ukuran matriks c_1 yaitu $m \times 1$

Matriks segiempat (rectangular): pada matriks segiempat jumlah baris dan kolomnya berbeda, misalkan jumlah baris sebanyak n dan jumlah kolom sebanyak m maka ukuran matriks tersebut yaitu $n \times m$.

Transpose matriks: Transpose matriks A dinotasikan dengan A^T . Transpose matriks diperoleh dengan menukar baris dengan kolom bersesuaian yaitu misalkan matriks $A = ((a_{ij}))$, menjadi $A^T = ((a_{ji}))$. Perhatikan contoh berikut:

Misalkan matriks
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
.

Berikut sifat transpose matriks:

- \bullet $(A^T)^T = A$.
- $(A+B)^T = A^T + B^T \operatorname{dan} (A-B)^T = A^T B^T$.
- $(kA)^T = kA^T$, k merupakan skalar
- $\bullet \ (A \times B)^T = B^T \times A^T.$

Matriks nol: yaitu suatu matriks dengan semua entrinya adalah nol. $A = ((a_{ij})) = ((0))$

Persegi (square): Suatu matriks dengan jumlah baris dan kolomnya sama.

Matriks segitiga atas: Matriks persegi dengan semua entri dibawah diagonal utamanya adalah 0

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ 0 & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nm} \end{pmatrix}$$

Matriks segitiga bawah: Matriks persegi dengan semua entri diatas diagonal utamanya adalah 0.

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

Matriks diagonal: Matriks persegi dengan entri pada bagian selain pada diagonal utamanya adalah nol

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nm} \end{pmatrix}$$

 ${\it Matriks~identitas:}$ Matriks persegi dengan entri pada diagonal utamanya adalah satu dan entri selain pada diagonal utama adalah 0

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

 ${f Trace}:$ yaitu penjumlahan semua entri pada diagonal utama. Trace matriks A dinotasikan dengan tr(A). Perhatikan matriks A berikut.

Misalkan matriks
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
.

$$tr(A) = 1 + 5 + 9$$

Matriz simetri: Matriks persegi dengan transpose matriksnya sama dengan matriks asal, yaitu : $A = A^t$.

Matriks antisimetri : $A = -A^t$.

Matriz ortogonal: matriks: $A \times A^t = I$

2 Operasi Pada Matriks

Definisi 2.1. Dua matriks dikatakan sama jika mempunyai ukuran yang sama dan entri-entri matriks yang bersesuaian sama.

Perhatikan contoh berikut:

Diketahui matriks A dan matriks B berikut :

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & 0 \\ 1 & 2 & 2 \end{pmatrix} \quad \text{dan} \, B = \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & 0 \\ x & 2 & y \end{pmatrix}.$$

Misalkan matriks A dan matriks B merupakan dua matriks sama, tentukan nilai x dan y.

Berdasarkan definisi kesamaan matriks, maka nilai x=1 dan nilai y=2

2.1 Penjumlahan dan Pengurangan

Definisi 2.2. Misalkan matriks A dan matriks B berukuran sama, maka penjumlahan dua matriks A + B tersebut diperoleh dengan menambahkan setiap anggota matriks A dengan setiap anggota matriks B yang bersesuaian. Demikian juga untuk pengurangan matriks A dan B diperoleh jika kedua matriks tersebut berukuran sama dan setiap anggota A dikurangkan dengan setiap anggota di B yang bersesuaian.

Contoh 1. Misalkan matriks

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & 0 \\ 1 & 2 & 2 \end{pmatrix} \operatorname{dan} B = \begin{pmatrix} 1 & 0 & 5 \\ 7 & 5 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

Tentukan A + B

Jawab

$$\begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & 0 \\ 1 & 2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 5 \\ 7 & 5 & 0 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1+1 & 3+0 & 2+5 \\ 1+7 & 0+5 & 0+0 \\ 1+2 & 2+1 & 2+1 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 7 \\ 8 & 5 & 0 \\ 3 & 3 & 3 \end{pmatrix}$$

2.2 Perkalian Skalar

Definisi 2.3. Misalkan matriks A dan skalar k. Perkalian matriks A dan skalar k diperoleh dengan mengalikan skalar k dengan setiap anggota matriks A

Contoh Misalkan $A \in \mathcal{M}_{2\times 3}(\mathbb{R})$ dan $2 \in \mathbb{R}$

$$2\begin{bmatrix} 1 & 8 & -3 \\ 4 & -2 & 6 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(8) & 2(-3) \\ 2(4) & 2(-2) & 2(6) \end{bmatrix} = \begin{bmatrix} 2 & 16 & -6 \\ 8 & -4 & 12 \end{bmatrix}$$

Sifat

Misalkan matriks A dan Bberukuran $n \times m$ dan λ, μ merupakan skalar, donde $\mathbb K$, maka sifat berikut berlaku pada operasi perkalian skalar

- Asosiatif: $(\lambda \mu)A = \lambda(\mu A)$
- Distributif pada penjumlahan matriks: $\lambda(A+B) = \lambda A + \lambda B$
- Distributif pada penjumlahan skalar: $(\lambda + \mu)A = \lambda A + \mu A$

2.3 Perkalian Matriks

Misalkan matriks A dan matriks B, perkalian matriks A dan B dapat dilakukan jika jumlah kolom matriks A sama dengan jumlah kolom matriks B.

Definisi 2.4. Misalkan matriks A berukuran $m \times r$ dan matriks B berukuran $r \times n$. Entri matriks AB pada baris ke-idan kolom ke-j diperoleh dengan memilih baris kei dari matriks A dan kolom j matriks B. Selanjutnya, kalikan entri yang bersesuaian dari baris dan kolom tersbut kemudian jumlahkan hasil kalinya.

Contoh 2. Misalkan $A \in \mathcal{M}_{2\times 3}(R)$ dan $B \in \mathcal{M}_{3\times 2}(R)$:

$$\begin{array}{cccc}
A & B & AB \\
m \times r & r \times n & m \times n
\end{array}$$

Figure 1: Perkalian Matriks

$$\begin{pmatrix} 2 & 0 & -2 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1(3) + 0(2) + 2(1) & 1(1) + 0(1) + 2(0) \\ -1(3) + 3(2) + 1(1) & -1(1) + 3(1) + 1(0) \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 4 & 2 \end{pmatrix}$$

Sifat

• Asosiatif: A(BC) = (AB)C

• Distributif: A(B+C) = AB + AC

3 Determinan

3.1 Sarrus

Determinan Matriks 2×2 . Determinan matriks A dinotasikan dengan det(A) atau |A|.

Misalkan matriks
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Penentuan determinan dengan Metode Sarrus untuk matriks berukuran 2×2 yaitu :

$$det(A) = ad - bc$$

Contoh 3. Tentukan determinan dari

$$A = \begin{pmatrix} 3 & 1 \\ 4 & -2 \end{pmatrix}$$

Penyelesaian Dengan menggunkana Metode Sarrus diperoleh determinan matriks A yaitu :

$$det(A) = 3(-2) - (1)(4)$$

$$= -6 - 4 = -10$$
(2)

Determinan Matriks 3×3

Misalkan matriks
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

Penentuan determinan dengan Metode Sarrus untuk matriks berukuran 3×3 yaitu :

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} = a_{23} \\ a_{31} & a_{32} \end{pmatrix}$$

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12})$$

Contoh 4. Tentukan determinan dari

$$B = \begin{pmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{pmatrix}$$

 ${f Penyelesaian}$ Dengan menggunkana Metode Sarrus diperoleh determinan matriks A yaitu :

$$det(B) = 45 + 84 + 96 - (105 - 48 - 72)$$

= 225 - (-15) = 240

Catatan:

Penentuan de
terminan dengan metode Sarrus hanya bisa digunakan untuk matriks berukuran
 2×2 dan $3\times 3.$

3.2 Minor dan Kofaktor

Jika A adalah suatu matriks persegi, maka minor anggota a_{ij} dinyatakan oleh M_{ij} dan didefinisikan sebagai determinan submatriks yang masih tersisa setelah baris ke-i dan kolom ke-j dihilangkan dari A. Bilangan $(-1)^{i+j}M_{ij}$ dinyatakan oleh C_{ij} dan disebut kofaktor anggota a_{ij}

Contoh 5. Contoh berikut tentang penentuan minor dan kofaktor suatu matriks Misalkan

$$A = \begin{pmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{pmatrix}$$

Minor M_{11} dan kofaktor C_{11} yaitu :

$$M_{11} = \begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix} = \begin{vmatrix} 5 & 6 \\ 4 & 8 \end{vmatrix} = 16$$

$$C_{11} = -1^{(1+1)}M_{11} = M_{11} = 16$$

Definisi 3.1. Determinan matriks A berukuran $n \times n$ diperoleh dengan mengalikan entri-entri dalam suatu baris (atau kolom) dengan kofaktor yang bersesuaian dan menambahkan hasil-hasil kali yang dihasilkan.

$$det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

(Perluasan kofaktor sepanjang kolom ke-j)

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}$$

(Perluasan kofaktor sepanjang baris ke-j)

Contoh 6. Misalkan

$$A = \begin{pmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{pmatrix}$$

 ${\it Tentukan determinan matriks}$ ${\it A}$ dengan menggunakan perluasan kofaktor sepanjang baris pertama.

Penyelesaian

$$det(A) = \begin{vmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{vmatrix} = 3 \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} - (1) \begin{vmatrix} -2 & 3 \\ 5 & -2 \end{vmatrix} + 0 \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix}$$
$$= 3(-4) - (1)(-11) + 0 = -1$$

Adjoin

Jika A adalah suatu matriks $n \times n$ dan C_{ij} adalah kofaktor dari a_{ij} maka matriks

$$C_{ij} = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{21} & \dots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{pmatrix}$$

disebut matriks kofaktor dari A. Transpos matriks C_{ij} dinotasikan dengan C_{ij}^{T} , disebut adjoin A. Adj(A) menotasikan adjoin A.

4 Invers matriks

Definisi 4.1. Diketahui matriks A dan B berukuran $n \times n$ I merupakan matriks identitas. Misalkan AB = BA = I, maka A disebut bisa dibalik (invertibel) dan matriks B merupakan invers dari A.

Contoh 7. Diektahui matriks

$$A = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} \operatorname{dan} B = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$

Perkalian matriks AB dan BA yaitu

$$AB = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \text{ (Matriks Identitas)}$$

dan

$$BA = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \text{ (Matriks Identitas)}$$

, maka matriks B merupakan invers matriks A.

Invers Matriks 2×2

Teorema berikut tentang penentuan invers matriks 2×2

Teorema 4.2. Misalkan matriks

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Matriks A invertible jika ad $-bc \neq 0$, dengan penentuan invers sebagai berikut

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Contoh 8. Misalkan matriks

$$A = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix},$$

maka

$$A^{-1} = \frac{1}{2 \cdot 3 - (-5)(-1)} \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$
(4)

5 Latihan

Kerjakan soal berikut dengan baik dan benar! Perhatikan matriks A.B, C, Ddan, E berikut :

$$A = \begin{pmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & -1 \\ 0 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix}, \quad E = \begin{pmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{pmatrix}$$

- $2A^T + C$
- $(D-E)^T$
- *C*(*BA*)
- $tr(DE^T)$
- Tentukan determinan dan invers dari matriks berikut :

$$B = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$

• Hitunglah determinan matriks berikut

$$A = \begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

Referensi

Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version. John Wiley and Sons, 2013.