

(19) RU (11) 2 146 909 (13) C1

^{(51) Int. Cl.7} A 61 F 9/00, A 61 N 5/067, 1/36

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 98122440/14, 17.12.1998

(24) Effective date for property rights: 17.12.1998

(46) Date of publication: 27.03.2000

(98) Mail address: 123308, Moskva, prosp.Marshala Zhukova, 8, kor.3, kv.43, Gus'kovoj O.Ju. (71) Applicant: Gogiashvili Marina Akakievna

(72) Inventor: Gogiashvili M.A.

(73) Proprietor: Gogiashvili Marina Akakievna

(54) METHOD FOR TREATMENT OF PARTIAL ATROPHY OF OPTIC NERVE

(57) Abstract:

FIELD: ophthalmology. SUBSTANCE: method involves electric stimulation of nasal and temporal regions of eye by means of pulse current, exposition of retina to

wavelength of 650 and 910 nm every other day, and application of electromagnetic field to both eyes which should be closed by eyelids. EFFECT: persistent improvement of perception.

2

9

ത

ဖ

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 146 909 ⁽¹³⁾ C1

(51) MПK⁷ A 61 F 9/00, A 61 N 5/067, 1/36

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 98122440/14, 17.12.1998 (71) Заявитель: Гогиашвили Марина Акакиевна (24) Дата начала действия патента: 17.12.1998 (72) Изобретатель: Гогиашвили М.А. (46) Дата публикации: 27.03.2000 (73) Патентообладатель: (56) Ссылки: RU 2086216 C1, 10.08.97. RU 2020908 Гогиашвили Марина Акакиевна C1, 27.01.98. RU 2103039 C1, 27.01.98. ХАЦЕНКО И.Е. и др. Опыт применения электростимуляции для лечения амблиопии в детском глазном санатории. Возрастные особенности органа зрения в норме и တ припатологии. - М., 1992, Вып.4, с.87-88. (98) Адрес для переписки: 123308, Москва, просп.Маршала Жукова, 8, ത кор.3, кв.43, Гуськовой О.Ю. (54) СПОСОБ ЛЕЧЕНИЯ ЧАСТИЧНОЙ АТРОФИИ ЗРИТЕЛЬНОГО НЕРВА сетчатку излучением на длинах волн 650 и (57) Реферат: 910 нм через день. Затем воздействуют на Изобретение относится к офтальмологии. область обоих глаз электромагнитным полем Способ включает электростимуляцию импульсным током на назальную и при закрытых веках. Способ позволяет стабильно повысить зрительные функции. темпоральную области глаза. Затем облучают

Изобретение относится к офтальмологии и может быть использовано для лечения частичной атрофии эрительного нерва.

Известен "Способ лечения заболеваний зрительного тракта посредством электростимуляции и устройство для его осуществления" по патенту РФ N 2054909, А 61 F 9/00, заключающийся в воздействии импульсным электромагнитным полем на область глаза.

Однако данный способ обладает существенным недостатком, он не является достаточно эффективным.

Технической задачей, решаемой изобретением, является повышение эффективности путем повышения зрительных функций.

Указанная техническая задача решается тем, что в способе лечения частичной атрофии зрительного нерва, заключающемся осуществлении воздействия электромагнитным полем, первоначально накладывают электроды на темпоральную и назальную области глаза и производят электростимуляцию импульсным током с амплитудой от 40 до 100 мкА, длительностью импульса 30 - 60 мкс, частотой 60 Гц, с числом импульсов в пакче 4-6, частота спедования пачке импульсов 7-8 в сек, длительность воздействия 12 - 14 сек, далее облучают сетчатку излучением Nd: YAG с плотностью выходной мощности от 3 - 5 мВт с частотой 60 Гц, длительностью воздействия от 5 до 7 минут, попеременно: на длинах волн с λ = 650 нм и λ = 910 нм, через день, далее воздействуют одновременно на область обоих глаз при закрытых веках импульсным электромагнитным полем с напряжением 0,8 до 0,9 Тл. длительностью импульса 25 - 38 мкс, при количестве импульсов от 70 до 95 с длительностью паузы от 0.6 до 0.8 мкс и длительностью воздействия от 4 до 7 минут.

Предпоженная автором совокупность существенных отличительных признаков данного изобретения является необходимой и достаточной для однозначного положительного решения заявленной технической задачи.

Автором проведена большая научно-исследовательская работа по оптимизации интервалов заявленных параметров. Эта работа показала, что при величинах параметров, меньших указанных или больших, чам указанные в интервалах параметров, рост положительного эффекта не происходит.

Изобретение осуществляется следующим образом.

Первоначально накладывают электроды на темпоральную и назальную области глаза производят электростимуляцию импульсным током с амплитудой от 40 до 100 мкА, длительностью импульса 30 - 60 мкс, частотой 60 Гц, с числом импульсов в пачке 4-6, частота следования пачек импульсов 7 -8 в сек, длительность воздействия 12 - 14 сек. Далее облучают сетчатку излучением Nd:YAG с плотностью выходной мощности от 3 - 8 мВт с частотой 60 Гц, длительностью воздействия от 5 до 7 минут. Облучение производят попеременно, один день на длине волны с λ = 650 нм, другой день на длине волны с χ = 910 нм. Далее это чередование продолжается аналогично. Далее воздействуют одновременно на область обоих глаз при закрытых веках импульсным электромагнитным полем с напряжением 0,8 до 0,9 Тл, длительностью импульса 25 - 38 мкс, при количестве импульсов от 70 до 95 с длительностью паузы от 0,6 до 0,8 мкс илительностью воздействия от 4 до 7 минут. Указанные действия представляют собой один ежедневный цикл воздействия на пациента. Количество подобных циклов воздействия лежит в интервале от 10 до 15. Возможно повторение этих циклов через 3 - 6 месяцев.

Способ поясняется спедующими клиническими примерами.

Пример 1. Больной Б., 32 года, находился в клинике с диагнозом: частичная атрофия зрительного нерва. Три года назад попал в автокатастрофу, получил контузию головного мозга, тупую черепную травму и открытую рану левой стороны черепа. После травмы потерял зрение на левом глазу. В результате консервативного нейрохирургической клинике через полтора месяца зрение левого глаза повысилось от 0,01 н/к до 0,04 н/к, зрение правого глаза 1,0, внутриглазное давление в норме. Глазное дно левого глаза: диск зрительного нерва бледный, с сероватым оттенком, макулярная область и периферия без патологии, поле зрения правого глаза не изменено, поле зрения левого глаза сужено до точки фиксации с назальной стороны и до 30° в нижневнутреннем квадранте. Пороги злектрической чувствительности электрическую лабильность определить не удалось из-за самопроизвольного фосфена. Диагноз: посттравматическая нисходящая атрофия зрительного нерва левого глаза. Больному проведено лечение предложенным автором способом. После первого курса лечения, который включал в себя 15 сеансов, имело место улучшение зрения от исходного от 0,04 до 0,4. Расширились периферические границы поля зрения на 70 °. Порог электрической чувствительности на левом глазу 120 мкА, электрическая лабильность 27 При повторном контрольном обследовании через три месяца зрение повысилось до 0,5. Пациенту были проведены второй и третий курсы лечения с интервалом 3 и 6 месяцев. Зрение левого глаза после окончания лечения составляло 0,85. Через полтора года зрение осталось на данном уровне без изменения. Таким образом способа использование предлагаемого повышает эффективность лечения путем устойчивого повышения зрительных функций.

Пример 2. Больная Р., 58 лет, находилась на лечении с диагнозом: частичная атрофия зрительного нерва после нарушения кровообращения. При поступлении зрение правого глаза 0,7, зрение левого глаза 0,06 н/к. Глазное дно правого глаза в норме. Глазное дно левого глаза: диск зрительного нерва бледный, незначительный экскавация, артерии узкие и извилистые. В макулярной области: незначительные дистрофические очаги. Поле левого глаза концентрически сужено до 20°. Порог электрической чувствительности 40 мкА, электрическая лабильность 16 Гц. Проведено лечение предложенным автором способом. Проведено три курса с интервалом в 3 месяца. После лечения острота зрения левого глаза повысилась до 0,3. Порог электрической

-3-

78 мкА, чувствительности порог 30 электрической лабильности Периферическая граница поля зрения расширилась на 20°. Вывод: имеет место положительная динамика устойчивая в отмечается төчөниө одного года, значительное поветтение зрительных функций.

Использование предложенного способа при предварительной клинической апробации при лечении 102 пациентов с частичной атрофией зрительного нерва показало его высокую эффективность и однозначное достижение повышения эрительных функций.

Формула изобретения:

Способ лечения частичной атрофии зрительного нерва, заключающийся в осуществлении воздействия электромагнитным полем, отличающийся тем, что первоначально накладывают электроды на темпоральную и назальную области глаза и производят электростимуляцию импульсным током с амплитудой 40 - 100 мкА, длительностью импульса 30 - 60 мкс, частотой 60 Гц, с числом импульсов в пачке 4 - 6, частота спедования пачек импульсов 7 - 8 в секунду, длительность воздействия 12 - 14 с, далее облучают сетчатку излучением Nd : YAG с плотностью выходной мощности 3 - 5 мВт с частотой 60 Гц, длительностью воздействия 5 - 7 мин, попеременно, на длинах волн с λ = 650 нм и λ = 910 нм, через день, далее воздействуют одновременно на область обоих глаз при закрытых веках импульсным электромагнитным полем с напряженностью (3,8 о,8 о,9 Тл, длительностью импульсов 70 - 95 с длительностью паузы 0,6 - 0,8 мкс и длительностью паузы 0,6 - 0,8 мкс и длительностью паузы 0,6

20

30

40

35

45

50

55

60

H

2146909