

UiO • Fysisk institutt

Det matematisk-naturvitenskapelige fakultet

Predicting Frictional Properties of Graphene Kirigami Using Molecular Dynamics and Neural Networks

Designs for a negative friction coefficient

Mikkel Metzsch Jensen

Juni 02, 2023

Outline

- 1 Introduction
 - Thesis overview
 - Motivation
- Creating a graphene Kirigami system
 - System setup
 - Kirigami
- 3 Pilot study
 - Friction metrics
 - Out-of-plane buckling
 - Friction-strain profiles
 - Negative friction coefficient
- 4 Kirigami configuration search
 - Machine learning
 - Accelerated search
- 5 Summary and outlook

Overview

Three main parts

- Sheet kirigami: Alter a graphene sheet using atomic scale cuts and stretching
- 2 Forward simulation: Calculate the frictional properties of the sheet using MD simulations
- 3 Accelerated search: Use machine learning to replace the MD simulations and perform an accelerated search for new designs

Can we control the frictional properties of a graphene sheet using this technique?

Motivation

- Kirigami: Variation of origami with cuts permitted
- Macroscale designs → nanoscale

Figure: Example of macroscale Kirigami designs implemented on a nanoscale using a focused ion-beam (FIB). Black scale bars: 1

m. Reproduced from [Li and Zhiguang, 2018].

References

Li, J. and Zhiguang, L. (2018).

Focused-ion-beam-based nano-kirigami: From art to photonics. *Nanophotonics*, 7.

UiO: Fysisk institutt

Det matematisk-naturvitenskapelige fakultet

