

SMLab short talk on

LARGE CONCEPT MODELS

ADHILSHA ANSAD

05.02.2025

Large Concept Models:

Language Modeling in a Sentence Representation Space

The LCM team, Loïc Barrault*, Paul-Ambroise Duquenne*, Maha Elbayad*, Artyom Kozhevnikov*, Belen Alastruey[†], Pierre Andrews[†], Mariano Coria[†], Guillaume Couairon^{+†}, Marta R. Costa-jussà[†], David Dale[†], Hady Elsahar[†], Kevin Heffernan[†], João Maria Janeiro[†], Tuan Tran[†], Christophe Ropers[†], Eduardo Sánchez[†], Robin San Roman[†], Alexandre Mourachko[‡], Safiyyah Saleem[‡], Holger Schwenk[‡]

FAIR at Meta

MOTIVATION

- Humans understand in different level of abstractions
- Input \rightarrow hierarchical understanding \rightarrow abstract ideas (concepts) \rightarrow add details \rightarrow Output
- Abstract Ideas independent of language and modality

SONAR EMBEDDING SPACE

- encoder-decoder architecture
- Tasks/losses: Machine Translation (MT), Auto-encoding (AE) and denoising auto-encoding (DAE) (pre-training), Multi-lingual Representation learning (MSE loss), Representations for speech (MSE loss)
- SONAR sentence embedding used as concepts for LCM

TEXT SEGMENTATION

- SpaCy segmenter (rule-based approach) and SaT segmenter (predict sentence boundaries at the token level)
- maximum sentence length cap in characters avoid long and complex sentences (SaT-Capped and SpaCy-Capped)
- AutoBLEU score between decoded text and the reference segment used as input.

BASE-LCM

decoder-only Transformer on next concept prediction

$$x^{n} = f(x < n; \theta) \quad \text{MSE}(\hat{x}_{n}, x_{n}) = ||\hat{x}_{n} - x_{n}||^{2}$$
$$\mathcal{L}_{\text{BASE-LCM}}(\theta) = \mathbb{E}_{X \sim q} \left[\sum_{n=1}^{|x|} \text{MSE}(f(x_{< n}; \theta), x_{n}) \right]$$

DIFFUSION MODELS

- Fixed forward diffusion by adding noise over several steps noise schedules: Linear, Cosine, Quadratic etc.
- Generative reverse denoising process (NOTE: entire noise to be removed is predicted each step, but partially removed)
- New noise schedule: Sigmoid [from LCM]

$$\alpha_t^2 = \frac{f(t)}{f(0)}, \text{ where } f(t) = \sigma(\delta - \gamma \cdot \text{logit}(t))$$
 $x_t = \alpha_t x_0 + \sigma_t \epsilon, \text{ where } \epsilon \sim \mathcal{N}(0, I)$

Fixed forward diffusion process

Data

Noise

Generative reverse denoising process

DIFFUSION-BASED LCMs

- Noisy input $x_{n'}^t$ previous clean sentence embeddings $x_{< n'}^0 \to \text{clean next sentence embedding } x_0$
- self-attention can be dropped with a certain probability for unconditional training.

$$\nabla_x \log_\gamma p(x|y) = (1 - \gamma)\nabla_x \log p(x) + \gamma \nabla_x \log p(x|y)$$

• Two-Tower LCM: contextualizer having casual self-attention, denoiser having cross attention (with encoded context) and Adaptive Layer Norm (AdaLN) modulator.

QUANTIZED SONAR EMBEDDINGS

- Quantization of SONAR space: Residual Vector Quantization (RVQ)
 - o continuous input embeddings → nearest entry in a learnt codebook
 - o iteratively quantize residual errors using additional codebooks
- Finetuning the SONAR decoder on quantized representations.
 - Also on residual representations from intermediate codebooks with probability p=0.3

QUANTIZED LCM

- Compared to diffusion LCM,
 - \circ Denoising task X; iterative generation of SONAR embeddings based on intermediate quantized representations $\sqrt{}$
 - o input representations → intermediate quantized representations
 - \circ diffusion timestep embeddings \rightarrow codebook index embeddings
 - o intermediate representation: 0 += predicted residual centroid embeddings , iteratively for all codebooks
- Quant-LCM-D training to predict the unit from the next codebook
 - $\circ n_{
 m codebooks} \cdot n_{
 m units-per-codebook}$ outputs X ; $n_{
 m units-per-codebook}$ outputs $\sqrt{n_{
 m units-per-codebook}}$
 - given cumulative sum of centroid embeddings of the first k-1 codebooks as input
 - o unit from codebook *k* of the target embedding as target index for cross entropy loss computation
- Quant-LCM-C training to predict residual embedding

CONTRIBUTIONS / ADVANTAGES

Language- and Modality-agnostic

- Cam encompass underlying reasoning process.
- Can be trained on all languages and modalities at once, hence unbiased.

Unparalleled zero-shot generalization

• Can be applied to any language and modality supported by the SONAR encoders, independent of training.

Long context and long-form output

 Works with shorter 'tokens' compared to vanilla attention with quadratic complexity

Modularity and extensibility

- New languages or modalities can be easily added.
- Concept encoders and decoders can be independently developed and optimized, bypassing modality competition.

LIMITATIONS AND FUTURE RESEARCH

Choice of the embedding space

 Possible research into other Language and modality agnostic embedding spaces, even beyond sentences.

Concept granularity

- Possible one-to-many mapping of sentence and concepts, to encompass complexity.
- Alternative to 'Prediction' of sentences since the sentence space is virtually unlimited.

Continuous versus discrete

• Build representation space for text capable of using modeling power of Diffusion model on continuous data.

Modularity

 Define Concepts in image space as well as how to predict and use it.

Papers

- LCM team, Barrault, L., Duquenne, P.-A., Elbayad, M., Kozhevnikov, A., Alastruey, B., Andrews, P., Coria, M., Couairon, G., Costa-jussà, M. R., Dale, D., Elsahar, H., Heffernan, K., Janeiro, J. M., Tran, T., Ropers, C., Sánchez, E., San Roman, R., Mourachko, A., Saleem, S., & Schwenk, H. (2024).
 Large Concept Models: Language Modeling in a Sentence Representation Space. arXiv. arxiv.org/abs/2412.08821
- Duquenne, Paul-Ambroise, Holger Schwenk, and Benoit Sagot. SONAR: Sentence-Level
 Multimodal and Language-Agnostic Representations. arXiv, 2023, arxiv.org/abs/2308.11466.

Figures

- [Slides 3,5,6,8,9] LCM paper
- [Slide 4] SONAR paper
- [Slide 7] Vahdat, A., & Kreis, K. (2022, April 26). <u>Improving Diffusion Models as an Alternative To GANs, Part 1</u>| NVIDIA Technical Blog. NVIDIA Technical Blog.

Codes

- https://github.com/facebookresearch/large_concept_model
- https://github.com/facebookresearch/SONAR

THANK YOU...