Probability theory

Lecture 5: Expectation

Maksim Zhukovskii

MIPT

Expectation of a discrete r.v.

 ξ — a discrete random variable taking values into a set \boldsymbol{X}

Expectation of a discrete r.v.

 ξ — a discrete random variable taking values into a set \boldsymbol{X}

Expectation

$$\mathsf{E}\xi = \sum_{x \in X} x \mathsf{P}(\xi = x)$$

Expectation of a discrete r.v.

 ξ — a discrete random variable taking values into a set \boldsymbol{X}

Expectation

$$\mathsf{E}\xi = \sum_{x \in X} x \mathsf{P}(\xi = x)$$

If Ω is finite or countably infinite, then $\mathsf{E}\xi = \sum_{\omega \in \Omega} \xi(\omega) \mathsf{P}(\{\omega\})$.

If X is infinite, then $\mathsf{E}\xi$ may be infinite or may not exist.

If X is infinite, then $\mathsf{E}\xi$ may be infinite or may not exist.

If
$$X = \mathbb{N}$$
, $P(\xi = k) = \frac{1}{\zeta(2)k^2}$, then $\mathsf{E}\xi = \infty$.

If X is infinite, then $\mathsf{E}\xi$ may be infinite or may not exist.

If
$$X = \mathbb{N}$$
, $P(\xi = k) = \frac{1}{\zeta(2)k^2}$, then $E\xi = \infty$.

▶ If $X = \mathbb{Z} \setminus \{0\}$, $P(\xi = k) = \frac{1}{2\zeta(2)k^2}$, then $\mathsf{E}\xi$ does not exist.

1. Let $\xi \sim Bern(p)$.

1. Let $\xi \sim Bern(p)$. Then $\mathsf{E}\xi = p$.

- **1.** Let $\xi \sim Bern(p)$. Then $\mathsf{E}\xi = p$.
- **2.** Let $\xi \sim Bin(n, p)$.

- **1.** Let $\xi \sim Bern(p)$. Then $\mathsf{E}\xi = p$.
- **2.** Let $\xi \sim Bin(n, p)$.

Then
$$\mathsf{E}\xi = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} \stackrel{?}{=} np$$
.

- **1.** Let $\xi \sim Bern(p)$. Then $\mathbf{E}\xi = \mathbf{p}$.
 - **2.** Let $\xi \sim Bin(n, p)$.

Then
$$\mathsf{E}\xi = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} \stackrel{?}{=} np$$
.

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \stackrel{?}{=} n p$$
3. Let $\xi \sim U\{1,\ldots,n\}$.

1. Let
$$\xi \sim Bern(p)$$
. Then $\mathsf{E}\xi = p$.

3. Let $\xi \sim U\{1, ..., n\}$.

2. Let $\xi \sim Bin(n, p)$.

Then $E\xi = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}$.

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \stackrel{?}{=} n p$$

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \stackrel{?}{=} np$$
.

1. Let
$$\xi \sim Bern(p)$$
. Then $\mathsf{E}\xi = p$.

2. Let $\xi \sim Bin(n, p)$.

4. Let $\xi \sim Pois(\lambda)$.

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k\binom{n}{k} p^k (1-p)^{n-k} \stackrel{?}{=} np$$

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \stackrel{?}{=} np$$
.

Then
$$\mathsf{E}\xi = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} \stackrel{?}{=} n_{k}$$

3. Let $\xi \sim U\{1, ..., n\}$.

Then $E\xi = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}$.

1. Let
$$\xi \sim Bern(p)$$
. Then $\mathsf{E}\xi = p$.

2. Let
$$\xi \sim Bin(n,p)$$
.

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k\binom{n}{k} p^k (1-p)^{n-k} \stackrel{?}{=} np$$
.

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \stackrel{!}{=} np$$

3. Let
$$\xi \sim U\{1,\ldots,n\}$$
.

Then
$$\mathsf{E}\xi = \frac{1}{n}\sum_{i=1}^n i = \frac{n+1}{2}$$
.

4. Let
$$\xi \sim Pois(\lambda)$$
.
Then $\mathsf{E}\xi = \sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^k}{k!} = 1$

1. Let
$$\xi \sim Bern(p)$$
. Then $\mathsf{E}\xi = p$.

2. Let
$$\xi \sim Bin(n, p)$$
.

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \stackrel{?}{=} np$$
.

3. Let
$$\xi \sim U\{1, \dots, n\}$$
.
Then $\mathsf{E}\xi = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}$.

4. Let
$$\xi \sim Pois(\lambda)$$
.
Then $\mathsf{E}\xi = \sum_{k=0}^{\infty} ke^{-\lambda} \frac{\lambda^k}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda$

1. Let
$$\xi \sim Bern(p)$$
. Then $\mathsf{E}\xi = p$.

2. Let
$$\xi \sim Bin(n, p)$$
.

Then $E\xi = \sum_{n=1}^{n} k_n(n) p_n^k (1 - p)^{n-k} \frac{?}{r^n} p_n^n$

Then
$$\mathsf{E}\xi = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \stackrel{?}{=} np$$
.

3. Let
$$\xi \sim U\{1, ..., n\}$$
.

Then
$$\mathsf{E}\xi = \frac{1}{n}\sum_{i=1}^n i = \frac{n+1}{2}.$$
4. Let $\xi \sim Pois(\lambda).$
Then $\mathsf{E}\xi = \sum_{k=0}^\infty ke^{-\lambda}\frac{\lambda^k}{k!} = \lambda e^{-\lambda}\sum_{k=1}^\infty \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda}e^{\lambda} = \lambda.$

Expectation of absolutely continuous r.v.

 ξ — absolutely continuous random variable with a density p

Expectation of absolutely continuous r.v.

 ξ — absolutely continuous random variable with a density p

Expectation

$$\mathsf{E}\xi = \int_{-\infty}^{\infty} x p(x) dx$$

If
$$p = \frac{1}{x^2}I(x > 1)$$
,
then $E\xi = \infty$.

• If
$$p = \frac{1}{x^2}I(x > 1)$$
,
then $\mathsf{E}\xi = \infty$.

• If $p = \frac{1}{2x^2}I(|x| > 1)$, then $\mathsf{E}\xi$ does not exist.

1. Let $\xi \sim U[a, b]$.

1. Let
$$\xi \sim U[a, b]$$
.
Then $\mathsf{E}\xi = \int_a^b \frac{x}{b-a} dx = \frac{a+b}{2}$.

1. Let
$$\xi \sim U[a, b]$$
.
Then $\mathsf{E}\xi = \int_a^b \frac{\mathsf{x}}{b-a} d\mathsf{x} = \frac{\mathsf{a}+b}{2}$.

2. Let $\xi \sim \exp(\lambda)$.

1. Let
$$\xi \sim U[a, b]$$
.
Then $\mathsf{E}\xi = \int_a^b \frac{x}{b-a} dx = \frac{a+b}{2}$.

2. Let $\xi \sim \exp(\lambda)$. Then $\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/\lambda$.

1. Let
$$\xi \sim U[a, b]$$
.
Then $\mathsf{E}\xi = \int_a^b \frac{x}{b-a} dx = \frac{a+b}{2}$.

2. Let $\xi \sim \exp(\lambda)$.

Then
$$\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/\lambda.$$

Then
$$\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/\lambda$$

3. Let $\xi \sim \mathcal{N}(a, \sigma^2)$.

1. Let
$$\xi \sim U[a, b]$$
.
Then $\mathsf{E}\xi = \int_a^b \frac{x}{b-a} dx = \frac{a+b}{2}$.

2. Let $\xi \sim \exp(\lambda)$.

Then
$$\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/\lambda$$
.

Then
$$\mathsf{E}\xi=\int_0^\infty \lambda x e^{-\lambda x} dx=1/\lambda.$$

3. Let
$$\xi \sim \mathcal{N}(a, \sigma^2)$$
.
Then $\mathsf{E}\xi = \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = 0$

1. Let
$$\xi \sim U[a, b]$$
.
Then $\mathsf{E}\xi = \int_a^b \frac{x}{b} dx = \frac{a+b}{2}$.

Then
$$\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/\lambda$$
.

Then E $\xi=\int_{-\infty}^{\infty}rac{x}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-a)^2}{2\sigma^2}}dx=$

Then
$$\mathsf{E}\xi=\int_0^\infty \lambda x e^{-\lambda x} dx=1/\lambda.$$

 $\int_{-\infty}^{\infty} \frac{x - a + a}{\sqrt{2 - a^2}} e^{-\frac{(x - a)^2}{2\sigma^2}} dx =$

2. Let
$$\xi \sim \exp(\lambda)$$
.
Then $\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 0$
3. Let $\xi \sim \mathcal{N}(a, \sigma^2)$.

1. Let
$$\xi \sim U[a, b]$$
.
Then $\mathsf{E}\xi = \int_a^b \frac{x}{b-a} dx = \frac{a+b}{2}$.

Then
$$\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/\lambda$$
.

Then
$$\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/\lambda$$
.

2. Let
$$\xi \sim \exp(\lambda)$$
.
Then $\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/2$
3. Let $\xi \sim \mathcal{N}(a, \sigma^2)$.
Then $\mathsf{E}\xi = \int_{-\infty}^\infty \frac{x}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx$

$$\int_{-\infty}^\infty \frac{x-a+a}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx =$$

Then
$$\mathsf{E}\xi = \int_0^\infty \lambda x e^{-\lambda x} dx = 1/\lambda$$
.

3. Let $\xi \sim \mathcal{N}(a, \sigma^2)$.

Then $\mathsf{E}\xi = \int_{-\infty}^\infty \frac{x}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \int_{-\infty}^\infty \frac{x-a+a}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \sqrt{\frac{\sigma^2}{2\pi}} \int_{-\infty}^\infty e^{-\frac{(x-a)^2}{2\sigma^2}} d\left(\frac{(x-a)^2}{2\sigma^2}\right) + a = a$.

General case

$$\mathsf{E}\xi=\int_{\Omega}\xi d\mathsf{P}$$
, if the Lebesgue integral exists.

Simple random variables

If ξ is a random variable taking values in a finite set $\{x_1, \ldots, x_n\}$,

Simple random variables

If ξ is a random variable taking values in a finite set $\{x_1, \ldots, x_n\}$, then $\xi = \sum_{i=1} x_i I_{A_i}$ for a certain decomposition $\Omega = A_1 \sqcup \ldots \sqcup A_n$.

Simple random variables

If ξ is a random variable taking values in a finite set $\{x_1, \ldots, x_n\}$, then $\xi = \sum_{i=1} x_i I_{A_i}$ for a certain decomposition $\Omega = A_1 \sqcup \ldots \sqcup A_n$.

Lebesgue integral

$$\int_{\Omega} \xi d\mathsf{P} = \sum_{i=1}^{n} x_i \mathsf{P}(A_i)$$

Non-negative random variables

Theorem

If $\xi \geq 0$, then there exists a sequence of simple random variables $\xi_n \geq 0$ such that

Non-negative random variables

Theorem

 $n \to \infty$.

If $\xi > 0$, then there exists a sequence of simple random variables $\xi_n > 0$ such that

simple random variables
$$\xi_n \geq 0$$
 such the for every $\omega \in \Omega$, $\xi_n(\omega) \to \xi(\omega)$ as

Non-negative random variables

Theorem

If $\xi > 0$, then there exists a sequence of simple random variables $\xi_n > 0$ such that

- for every $\omega \in \Omega$, $\xi_n(\omega) \to \xi(\omega)$ as
- $n\to\infty$.
- $\xi_{n+1}(\omega) \geq \xi_n(\omega)$ for every $n \in \mathbb{N}$ and $\omega \in \Omega$

The proof

$$\xi_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} I\left(\frac{k-1}{2^n} \le \xi < \frac{k}{2^n}\right)$$

The integral of a non-negative r.v.

Lebesgue integral

$$\int_{\Omega} \xi d\mathsf{P} = \lim_{n \to \infty} \int_{\Omega} \xi_n d\mathsf{P}$$

If ξ is an arbitrary random variable,

If ξ is an arbitrary random variable, then $\xi = \xi^+ - \xi^-$, where

If ξ is an arbitrary random variable, then $\xi = \xi^+ - \xi^-$, where $\xi^+ = \max\{\xi, 0\}, \ \xi^- = \max\{-\xi, 0\}.$

If ξ is an arbitrary random variable, then $\xi = \xi^+ - \xi^-$, where $\xi^+ = \max\{\xi,0\}, \ \xi^- = \max\{-\xi,0\}.$

Lebesgue integral

$$\int_{\Omega} \xi d\mathsf{P} = \int_{\Omega} \xi^{+} d\mathsf{P} - \int_{\Omega} \xi^{-} d\mathsf{P}$$

If ξ is an arbitrary random variable, then $\xi = \xi^+ - \xi^-$, where $\xi^+ = \max\{\xi, 0\}, \ \xi^- = \max\{-\xi, 0\}.$

Lebesgue integral

$$\int_{\Omega} \xi d\mathsf{P} = \int_{\Omega} \xi^{+} d\mathsf{P} - \int_{\Omega} \xi^{-} d\mathsf{P}$$

The expectation does not exist, if both $\int_{\Omega} \xi^+ dP$, $\int_{\Omega} \xi^- dP$ are infinite.

1) If $\xi \geq \eta$, then $\mathsf{E}\xi \geq \mathsf{E}\eta$.

- 1) If $\xi \geq \eta$, then $E\xi \geq E\eta$.
- **2)** If $\xi \geq 0$, then $E\xi \geq 0$.

- 1) If $\xi \geq \eta$, then $\mathsf{E}\xi \geq \mathsf{E}\eta$.
 - 2) If $\xi \ge 0$, then $\mathsf{E}\xi \ge 0$. If $\xi \ge 0$ and $\mathsf{E}\xi = 0$, then $\mathsf{P}(\xi = 0) = 1$.

1) If
$$\xi \geq \eta$$
, then $\mathsf{E}\xi \geq \mathsf{E}\eta$.

2) If
$$\xi \geq 0$$
, then $\mathsf{E}\xi \geq 0$.
 If $\xi \geq 0$ and $\mathsf{E}\xi = 0$, then $\mathsf{P}(\xi = 0) = 1$.

3) If
$$P(\xi = 0) = 1$$
, then $E\xi = 0$.

4) $|E\xi| \le E|\xi|$.

1) If
$$\xi \geq \eta$$
, then $\mathsf{E}\xi \geq \mathsf{E}\eta$.

2) If
$$\xi \ge 0$$
, then $\mathsf{E}\xi \ge 0$.
If $\xi \ge 0$ and $\mathsf{E}\xi = 0$, then $\mathsf{P}(\xi = 0) = 1$.

If
$$\xi \geq 0$$
 and $\mathsf{E}\xi = 0$, then $\mathsf{P}(\xi = 0) = 1$
3) If $\mathsf{P}(\xi = 0) = 1$, then $\mathsf{E}\xi = 0$.

4) $|E\xi| \leq E|\xi|$.

5) $E(c\xi) = cE\xi$.

1) If
$$\xi \geq \eta$$
, then $\mathsf{E}\xi \geq \mathsf{E}\eta$.

2) If
$$\xi \geq 0$$
, then $\mathsf{E}\xi \geq 0$.
If $\xi \geq 0$ and $\mathsf{E}\xi = 0$, then $\mathsf{P}(\xi = 0) = 1$.

If
$$\xi \geq 0$$
 and $\mathsf{E}\xi = 0$, then $\mathsf{P}(\xi = 0) = 1$

3) If
$$P(\xi = 0) = 1$$
, then $E\xi = 0$.

3) If
$$P(\xi = 0) = 1$$
, then $E\xi = 0$.

- 1) If $\xi > \eta$, then $\mathsf{E}\xi > \mathsf{E}\eta$.
- 2) If $\xi \ge 0$, then $\mathsf{E}\xi \ge 0$. If $\xi > 0$ and $\mathsf{E}\xi = 0$, then $\mathsf{P}(\xi = 0) = 1$.
- 3) If $D(\zeta = 0) = 1$ then $F\zeta = 0$
 - 3) If $P(\xi = 0) = 1$, then $E\xi = 0$.
 - **4)** $|E\xi| \le E|\xi|$.
 - 5) $E(c\xi) = cE\xi$.
 - **6)** $E(\xi + \eta) = E\xi + E\eta$.

Counting expectation of a binomial r.v.

If $\xi \sim \text{Bin}(n, p)$, then $\xi \stackrel{d}{=} \xi_1 + \ldots + \xi_n$, where ξ_1, \ldots, ξ_n are independent Bernoulli random variables with parameter p.

Counting expectation of a binomial r.v.

If $\xi \sim \text{Bin}(n, p)$, then $\xi \stackrel{d}{=} \xi_1 + \ldots + \xi_n$, where ξ_1, \ldots, ξ_n are independent Bernoulli random variables with parameter p.

$$\mathsf{E}\xi=\mathsf{E}(\xi_1+\ldots+\xi_n)=np$$

Theorem

Let ξ_1, ξ_2, \dots be a sequence of random variables such that

Theorem

Let ξ_1, ξ_2, \dots be a sequence of random variables such that

• there exists η with $\mathsf{E}\eta < \infty$ such that for all $i \in \mathbb{N}, \omega \in \Omega$, $|\xi_i(\omega)| \leq \eta(\omega)$;

Theorem

Let ξ_1, ξ_2, \ldots be a sequence of random variables such that

- variables such that $\blacktriangleright \ \, \text{there exists} \, \, \eta \, \, \text{with } \mathsf{E} \eta < \infty \, \, \text{such that for } \, \,$
 - all $i \in \mathbb{N}, \omega \in \Omega$, $|\xi_i(\omega)| \leq \eta(\omega)$; $\mathsf{P}(\xi_n \to \xi) = 1.$

Theorem

Let ξ_1, ξ_2, \dots be a sequence of random variables such that

variables such that
$$\blacktriangleright \ \, \text{there exists} \,\, \eta \,\, \text{with } \mathsf{E}\eta < \infty \,\, \text{such that for } \,\,$$

There exists
$$\eta$$
 with $\exists \eta < \infty$ such that for all $i \in \mathbb{N}, \omega \in \Omega$, $|\xi_i(\omega)| \leq \eta(\omega)$;
$$P(\xi_n \to \xi) = 1.$$

Theorem

Then $E|\xi| < \infty$,

Let ξ_1, ξ_2, \dots be a sequence of random variables such that

- there exists η with $\mathsf{E}\eta < \infty$ such that for
 - all $i \in \mathbb{N}, \omega \in \Omega$, $|\xi_i(\omega)| \leq \eta(\omega)$;
- $ightharpoonup P(\xi_n \to \xi) = 1.$

Theorem

Let ξ_1, ξ_2, \dots be a sequence of random variables such that

variables such that
$$\blacktriangleright \ \, \text{there exists} \, \, \eta \, \, \text{with E} \eta < \infty \, \, \text{such that for }$$

all
$$i \in \mathbb{N}, \omega \in \Omega$$
, $|\xi_i(\omega)| \leq \eta(\omega)$;
 $P(\xi_n \to \xi) = 1$.

$$P(\xi_n \to \xi) = 1.$$

Then $E|\xi| < \infty$,

 $\lim E\xi_n = E\xi$,

Theorem

Let ξ_1, ξ_2, \ldots be a sequence of random variables such that

variables such that there exists
$$η$$
 with $Εη < ∞$ *such that*

 $\lim |\mathsf{E}|\xi_n - \xi| = 0.$

all
$$i \in \mathbb{N}, \omega \in \Omega$$
, $|\xi_i(\omega)| \leq \eta(\omega)$;
• $\mathsf{P}(\xi_n \to \xi) = 1$.

Integration by substitution

Given a random variable ξ and a Borel function φ , find $E\varphi(\xi)$.

Integration by substitution

Given a random variable ξ and a Borel function φ , find $E\varphi(\xi)$.

If $E\varphi(\xi)$ exists, then

$$\mathsf{E}\varphi(\xi) = \int_{\mathbb{R}} \varphi d\mathsf{P}_{\xi}$$

Let $\varphi(x) = I_B(x)$, $B \in \mathcal{B}(\mathbb{R})$.

Let
$$\varphi(x) = I_B(x)$$
, $B \in \mathcal{B}(\mathbb{R})$.

$$\mathsf{E}\varphi(\xi) = \mathsf{E}I_{\mathsf{B}}(\xi) =$$

Let
$$\varphi(x) = I_B(x)$$
, $B \in \mathcal{B}(\mathbb{R})$.

$$\mathsf{E}\varphi(\xi) = \mathsf{E}I_{\mathsf{B}}(\xi) =$$

$$\mathsf{P}(\xi \in B) =$$

Let
$$\varphi(x) = I_B(x)$$
, $B \in \mathcal{B}(\mathbb{R})$.

$$\mathsf{E} arphi(\xi) = \mathsf{E} \mathit{I}_{\mathit{B}}(\xi) =$$

$$\mathsf{P}(\xi \in B) = \mathsf{P}_{\xi}(B) =$$

Let
$$\varphi(x) = I_B(x)$$
, $B \in \mathcal{B}(\mathbb{R})$.

Then

$$\mathsf{E}\varphi(\xi)=\mathsf{E} I_{\mathcal{B}}(\xi)=$$

 $P(\xi \in B) = P_{\xi}(B) = \int_{\mathbb{T}} I_B dP_{\xi}.$

Let $\varphi = \sum_{i=1}^n b_i I_{B_i}$.

 $\mathsf{E}\varphi(\xi)=\mathsf{E}(b_1I_{B_1}(\xi)+\ldots+b_nI_{B_n}(\xi))=$

Let
$$\varphi = \sum_{i=1}^n b_i I_{B_i}$$
.

 $\sum_{i=1}^n b_i \mathsf{E} I_{B_i}(\xi) =$

 $\mathsf{E}\varphi(\xi) = \mathsf{E}(b_1 I_{B_1}(\xi) + \ldots + b_n I_{B_n}(\xi)) =$

Let
$$\varphi = \sum_{i=1}^n b_i I_{B_i}$$
.

 $\mathsf{E}\varphi(\xi) = \mathsf{E}(b_1 I_{B_1}(\xi) + \ldots + b_n I_{B_n}(\xi)) =$

 $\sum_{i=1}^n b_i \mathsf{E} I_{B_i}(\xi) = \sum_{i=1}^n b_i \int_{\mathbb{R}} I_{B_i} d\mathsf{P}_{\xi} = 0$

Let
$$\varphi = \sum_{i=1}^n b_i I_{B_i}$$
.

 $\sum_{i=1}^n b_i \mathsf{E} I_{B_i}(\xi) = \sum_{i=1}^n b_i \int_{\mathbb{R}} I_{B_i} d\mathsf{P}_{\xi} = 0$

 $\int_{\mathbb{R}} \left(\sum_{i=1}^n b_i I_{B_i} \right) d\mathsf{P}_{\xi} =$

Let
$$\varphi = \sum_{i=1}^n b_i I_{B_i}$$
.

$$\mathsf{E} arphi(\xi) = \mathsf{E}(b_1 I_{B_1}(\xi) + \ldots + b_n I_{B_n}(\xi)) =$$

Let
$$\varphi = \sum_{i=1}^n b_i I_{B_i}$$
.

Then

 $\mathsf{E}\varphi(\xi) = \mathsf{E}(b_1 I_{B_1}(\xi) + \ldots + b_n I_{B_n}(\xi)) =$

 $\sum_{i=1}^n b_i \mathsf{E} I_{B_i}(\xi) = \sum_{i=1}^n b_i \int_{\mathbb{R}} I_{B_i} d\mathsf{P}_{\xi} = 0$

 $\int_{\mathbb{R}} \left(\sum_{i=1}^n b_i I_{B_i} \right) d\mathsf{P}_{\xi} = \int_{\mathbb{R}} \varphi d\mathsf{P}.$

Let $\varphi \geq 0$.

Let $\varphi \geq 0$. Then there exist $0 \leq \varphi_n \uparrow \varphi$.

Let $\varphi \geq 0$. Then there exist $0 \leq \varphi_n \uparrow \varphi$.

Fatou's Lemma (Corollary)

If $0 \le f_n \uparrow f$ and $\lim_{n \to \infty} \int f_n d\mu < \infty$,

Let $\varphi \geq 0$. Then there exist $0 \leq \varphi_n \uparrow \varphi$.

Fatou's Lemma (Corollary)

If $0 \le f_n \uparrow f$ and $\lim_{n \to \infty} \int f_n d\mu < \infty$, then $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$.

Let $\varphi \geq 0$. Then there exist $0 \leq \varphi_n \uparrow \varphi$.

Fatou's Lemma (Corollary)

If $0 \le f_n \uparrow f$ and $\lim_{n \to \infty} \int f_n d\mu < \infty$, then $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$.

$$\mathsf{E} arphi(\xi) = \lim_{n o \infty} \mathsf{E} arphi_n(\xi) =$$

Let $\varphi \geq 0$. Then there exist $0 \leq \varphi_n \uparrow \varphi$.

Fatou's Lemma (Corollary)

If $0 \le f_n \uparrow f$ and $\lim_{n \to \infty} \int f_n d\mu < \infty$, then $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$.

$$\mathsf{E} arphi(\xi) = \lim_{n o \infty} \mathsf{E} arphi_n(\xi) = \ \lim_{n o \infty} \int_{\mathbb{D}} arphi_n d\mathsf{P}_{\xi} = \int_{\mathbb{D}} arphi d\mathsf{P}_{\xi}.$$

Let φ be an arbitrary Borel function.

Let φ be an arbitrary Borel function. Then $\varphi=\varphi^+-\varphi^-.$

Let φ be an arbitrary Borel function. Then $\varphi = \varphi^+ - \varphi^-$.

Then
$$arphi=arphi^{\scriptscriptstyle +}-arphi^{\scriptscriptstyle -}$$
 .

$$\mathsf{E}\varphi(\xi)=\mathsf{E}(\varphi^+(\xi){-}\varphi^-(\xi))=\mathsf{E}\varphi^+(\xi){-}\mathsf{E}\varphi^-(\xi)$$

Let φ be an arbitrary Borel function. Then $\varphi = \varphi^+ - \varphi^-$.

Then
$$\varphi=\varphi^+-\varphi^-$$
 .

Then
$$\varphi=\varphi^--\varphi^-$$
 .

$$\mathsf{E}\varphi(\xi) = \mathsf{E}(\varphi^{+}(\xi) - \varphi^{-}(\xi)) = \mathsf{E}\varphi^{+}(\xi) - \mathsf{E}\varphi^{-}(\xi)$$
$$= \int \varphi^{+} d\mathsf{P}_{\xi} - \int \varphi^{-} d\mathsf{P}_{\xi} = \int (\varphi^{+} - \varphi^{-}) d\mathsf{P}_{\xi}$$

$$=\int_{\mathbb{D}}arphi^+d\mathsf{P}_{\xi}-\int_{\mathbb{D}}arphi^-d\mathsf{P}_{\xi}=\int_{\mathbb{D}}(arphi^+-arphi^-)d\mathsf{P}_{\xi}$$

Let φ be an arbitrary Borel function. Then $\varphi = \varphi^+ - \varphi^-$.

Then
$$\varphi = \varphi$$

$$\mathsf{E}\varphi(\xi) = \mathsf{E}(\varphi^{+}(\xi) - \varphi^{-}(\xi)) = \mathsf{E}\varphi^{+}(\xi) - \mathsf{E}\varphi^{-}(\xi)$$
$$= \int \varphi^{+}d\mathsf{P}_{\xi} - \int \varphi^{-}d\mathsf{P}_{\xi} = \int (\varphi^{+} - \varphi^{-})d\mathsf{P}_{\xi}$$

$$egin{aligned} &= \int_{\mathbb{R}} arphi^+ d\mathsf{P}_\xi - \int_{\mathbb{R}} arphi^- d\mathsf{P}_\xi = \int_{\mathbb{R}} (arphi^+ - arphi^-) d\mathsf{P}_\xi \ &= \int_{\mathbb{R}} arphi d\mathsf{P}_\xi. \end{aligned}$$

1.
$$\xi \sim \mathcal{N}(0, 1)$$
.

$$\mathsf{E}\xi^2 = \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \dots$$

1.
$$\xi \sim \mathcal{N}(0, 1)$$
.

$$\mathsf{E}\xi^2 = \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \dots$$

...integration by parts (twice)...

1.
$$\xi \sim \mathcal{N}(0, 1)$$
.

$$\mathsf{E}\xi^2 = \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \dots$$

...integration by parts (twice)...

$$= 1.$$

1.
$$\xi \sim \mathcal{N}(0,1)$$
. $\mathsf{E}\xi^2 = \int\limits_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \dots$

$$\mathsf{L}\zeta = \int_{-\infty}^{\infty} x \, \frac{1}{\sqrt{2\pi}} e^{-2t} \, dx = \dots$$

$$=1.$$
 2. $\varepsilon \sim Pois(\lambda)$.

2.
$$\xi \sim Pois(\lambda)$$
. $\mathsf{E} e^{\xi} = \sum_{k=0}^{\infty} e^k \frac{\lambda^k e^{-\lambda}}{k!} = e^{\lambda(e-1)}$.

Expectation of a product of two r.v.

Theorem

Let ξ, η be independent random variables, $\mathsf{E}|\xi\eta| < \infty$. Then $\mathsf{E}\xi\eta = \mathsf{E}\xi\mathsf{E}\eta$.

Expectation of a product of two r.v.

Theorem

Let ξ, η be independent random variables, $\mathsf{E}|\xi\eta| < \infty$. Then $\mathsf{E}\xi\eta = \mathsf{E}\xi\mathsf{E}\eta$.

$$\mathsf{E} \xi \eta = \int_{\mathbb{R}^2} xyd\mathsf{P}_{(\xi,\eta)} = \int_{\mathbb{D}} xd\mathsf{P}_{\xi} imes \int_{\mathbb{D}} yd\mathsf{P}_{\eta} = \mathsf{E} \xi \mathsf{E} \eta.$$

The proof in the discrete case

Let ξ, η be independent discrete random variables taking values from sets X, Y respectively.

The proof in the uniform case

Let ξ, η be independent absolutely continuous random variables with densities p_{ξ}, p_{η} respectively.