Problem Set #4 Solutions

11.9 The first iteration can be implemented as

$$\begin{aligned} c_1 &= \frac{3800 + 3c_2 + c_3}{15} = \frac{3800 + 3(0) + 0}{15} = 253.3333 \\ c_2 &= \frac{1200 + 3c_1 + 6c_3}{18} = \frac{1200 + 3(253.3333) + 6(0)}{18} = 108.8889 \\ c_3 &= \frac{2400 + 4c_1 + c_2}{12} = \frac{2350 + 4(253.3333) + 108.8889}{12} = 289.3519 \end{aligned}$$

Second iteration:

$$\begin{split} c_1 &= \frac{3300 + 3c_2 + c_3}{15} = \frac{3800 + 3(108.8889) + 289.3519}{15} = 294.4012 \\ c_2 &= \frac{1200 + 3c_1 + 6c_3}{18} = \frac{1200 + 3(294.4012) + 6(289.3519)}{18} = 212.1842 \\ c_3 &= \frac{2400 + 4c_1 + c_2}{12} = \frac{2350 + 4(294.4012) + 212.1842}{12} = 311.6491 \end{split}$$

The error estimates can be computed as

$$\varepsilon_{a,1} = \left| \frac{294.4012 - 253.3333}{294.4012} \right| \times 100\% = 13.95\%$$

$$\varepsilon_{a,2} = \left| \frac{212.1842 - 108.8889}{212.1842} \right| \times 100\% = 48.68\%$$

$$\varepsilon_{a,3} = \left| \frac{311.6491 - 289.3519}{311.6491} \right| \times 100\% = 7.15\%$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	\mathcal{E}_{a}	maximum $arepsilon_a$
1	C ₁	253.3333	100.00%	
	c_2	108.8889	100.00%	
	C ₃	289.3519	100.00%	100.00%
2	C ₁	294.4012	13.95%	
	c_2	212.1842	48.68%	
	C ₃	311.6491	7.15%	48.68%
3	C ₁	316.5468	7.00%	
	c_2	223.3075	4.98%	
	C ₃	319.9579	2.60%	7.00%
4	C ₁	319.3254	0.87%	
	c_2	226.5402	1.43%	
	C ₃	321.1535	0.37%	1.43%

Thus, after 4 iterations, the maximum error is 1.43% and we arrive at the result: $c_1 = 319.3254$, $c_2 = 226.5402$ and $c_3 = 321.1535$. Note that after 11 iterations, the process would converge on $c_1 = 320.2073$, $c_2 = 227.2021$ and $c_3 = 321.5026$.

11.13 The equations must first be rearranged so that they are diagonally dominant

$$-8x_1 + x_2 - 2x_3 = -20$$
$$2x_1 - 6x_2 - x_3 = -38$$
$$-3x_1 - x_2 + 7x_3 = -34$$

(a) The first iteration can be implemented as

$$x_1 = \frac{-20 - x_2 + 2x_3}{-8} = \frac{-20 - 0 + 2(0)}{-8} = 2.5$$

$$x_2 = \frac{-38 - 2x_1 + x_3}{-6} = \frac{-38 - 2(2.5) + 0}{-6} = 7.166667$$

$$x_3 = \frac{-34 + 3x_1 + x_2}{7} = \frac{-34 + 3(2.5) + 7.166667}{7} = -2.761905$$

Second iteration:

$$x_1 = \frac{-20 - 7.166667 + 2(-2.761905)}{-8} = 4.08631$$

$$x_2 = \frac{-38 - 2x_1 + x_3}{-6} = \frac{-38 - 2(4.08631) + (-2.761905)}{-6} = 8.155754$$

$$x_3 = \frac{-34 + 3x_1 + x_2}{7} = \frac{-34 + 3(4.08631) + 8.155754}{7} = -1.94076$$

The error estimates can be computed as

$$\varepsilon_{a,1} = \left| \frac{4.08631 - 2.5}{4.08631} \right| \times 100\% = 38.82\%$$

$$\varepsilon_{a,2} = \left| \frac{8.155754 - 7.166667}{8.155754} \right| \times 100\% = 12.13\%$$

$$\varepsilon_{a,3} = \left| \frac{-1.94076 - (-2.761905)}{-1.94076} \right| \times 100\% = 42.31\%$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

-	iteration	unknown	value	\mathcal{E}_{a}	maximum $arepsilon_a$
	0	<i>x</i> 1	0		
		x2	0		
		<i>x</i> 3	0		
	1	<i>x</i> 1	2.5	100.00%	
		x2	7.166667	100.00%	
		x 3	-2.7619	100.00%	100.00%
	2	<i>x</i> 1	4.08631	38.82%	
		x2	8.155754	12.13%	
		<i>x</i> 3	-1.94076	42.31%	42.31%
	3	<i>x</i> 1	4.004659	2.04%	
		x2	7.99168	2.05%	
		<i>x</i> 3	-1.99919	2.92%	2.92%

Thus, after 3 iterations, the maximum error is 2.92% and we arrive at the result: $x_1 = 4.004659$, $x_2 = 7.99168$ and $x_3 = -1.99919$.

(b) The same computation can be developed with relaxation where $\lambda = 1.2$.

First iteration:

$$x_1 = \frac{-20 - x_2 + 2x_3}{-8} = \frac{-20 - 0 + 2(0)}{-8} = 2.5$$

Relaxation yields: $x_1 = 1.2(2.5) - 0.2(0) = 3$

$$x_2 = \frac{-38 - 2x_1 + x_3}{-6} = \frac{-38 - 2(3) + 0}{-6} = 7.333333$$

Relaxation yields: $x_2 = 1.2(7.333333) - 0.2(0) = 8.8$

$$x_3 = \frac{-34 + 3x_1 + x_2}{7} = \frac{-34 + 3(3) + 8.8}{7} = -2.3142857$$

Relaxation yields: $x_3 = 1.2(-2.3142857) - 0.2(0) = -2.7771429$

Second iteration:

$$x_1 = \frac{-20 - x_2 + 2x_3}{-8} = \frac{-20 - 8.8 + 2(-2.7771429)}{-8} = 4.2942857$$

Relaxation yields: $x_1 = 1.2(4.2942857) - 0.2(3) = 4.5531429$

$$x_2 = \frac{-38 - 2x_1 + x_3}{-6} = \frac{-38 - 2(4.5531429) - 2.7771429}{-6} = 8.3139048$$

Relaxation yields: $x_2 = 1.2(8.3139048) - 0.2(8.8) = 8.2166857$

$$x_3 = \frac{-34 + 3x_1 + x_2}{7} = \frac{-34 + 3(4.5531429) + 8.2166857}{7} = -1.7319837$$

Relaxation yields: $x_3 = 1.2(-1.7319837) - 0.2(-2.7771429) = -1.5229518$

The error estimates can be computed as

$$\begin{split} \varepsilon_{a,1} &= \left| \frac{4.5531429 - 3}{4.5531429} \right| \times 100\% = 34.11\% \\ \varepsilon_{a,2} &= \left| \frac{8.2166857 - 8.8}{8.2166857} \right| \times 100\% = 7.1\% \\ \varepsilon_{a,3} &= \left| \frac{-1.5229518 - (-2.7771429)}{-1.5229518} \right| \times 100\% = 82.35\% \end{split}$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	relaxation	\mathcal{E}_{0}	maximum $arepsilon_a$
1	<i>x</i> 1	2.5	3	100.00%	
	x2	7.3333333	8.8	100.00%	
	x 3	-2.314286	-2.777143	100.00%	100.000%
2	<i>x</i> 1	4.2942857	4.5531429	34.11%	
	x2	8.3139048	8.2166857	7.10%	
	<i>x</i> 3	-1.731984	-1.522952	82.35%	82.353%
3	<i>x</i> 1	3.9078237	3.7787598	20.49%	
	x2	7.8467453	7.7727572	5.71%	
	x 3	-2.12728	-2.248146	32.26%	32.257%
4	<i>x</i> 1	4.0336312	4.0846055	7.49%	
	x2	8.0695595	8.12892	4.38%	
	<i>x</i> 3	-1.945323	-1.884759	19.28%	19.280%
5	<i>x</i> 1	3.9873047	3.9678445	2.94%	
	x2	7.9700747	7.9383056	2.40%	
	x3	-2.022594	-2.050162	8.07%	8.068%
6	<i>x</i> 1	4.0048286	4.0122254	1.11%	
	x2	8.0124354	8.0272613	1.11%	
	<i>x</i> 3	-1.990866	-1.979007	3.60%	3.595%

Thus, relaxation actually seems to retard convergence. After 6 iterations, the maximum error is 3.595% and we arrive at the result: $x_1 = 4.0122254$, $x_2 = 8.0272613$ and $x_3 = -1.979007$.

11.18 Define the quantity of transistors, resistors, and computer chips as x_1 , x_2 and x_3 . The system equations can then be defined as

$$4x_1 + 3x_2 + 2x_3 = 960$$

$$x_1 + 3x_2 + x_3 = 510$$

$$2x_1 + x_2 + 3x_3 = 610$$

The solution can be implemented in Excel as shown below:

	Α	В	С	D
1	A:			B:
3	4	3	2	960
3	1	3	1	510
4	2	1	3	610
5				
6	Al:			X:
7	0.421053	-0.36842	-0.15789	120
8	-0.05263	0.421053	-0.10526	100
9	-0.26316	0.105263	0.473684	90