National University of Computer and Emerging Sciences, Lahore Campus

Course: Advance Computer Architecture Program: MS(Computer Science)

75 mins 14-03-2017

Section: A Exam: Mid

Duration

Date:

Course Code: EE502 Semester: Spring 2017

Total Marks: 50
Weight 20
Page(s): 2

Marks 5

Question1: True/False

1. Pipelining increases the latency of a single instruction.

- 2. Machine cycle is determined by the time required for the fastest pipeline stage.
- 3. A single memory port is accessed for instruction fetch and data read in the same clock cycle would be a data hazard.
- 4. Ideal Speedup from pipelining is equal to the number of pipeline stages.
- 5. Pipelined implementation increases the clock frequency of the processor over single-cycle implementation.

Question2: Marks 5

What is the difference between static and dynamic branch prediction? Explain at least one technique from both types of predictions.

	onsider the following code sequence lw R1,20(R3) mul R3,R4,R1 add R1, R1, 4 sw R3, 20(R1) onsider the following clock cycle times		1				
	Without Forwarding	With ALU-ALU forwarding	With Full Forwarding				
	400ps	only 500ps	(ALU-ALU and MEM-ALU) 600ps				
a.	What is the total execution time of used? [5] Answer: Rough work:	of the above code sequence when pi	peline without forwarding is				
b.	What is the total execution time of the above code sequence when pipeline with ALU-ALU forwarding is used? [5] Answer:						
	Rough work:						

Marks 15

Question3:

	Rough work:
	Answer:
	used? [5]
c.	What is the total execution time of the above code sequence when pipeline with full forwarding is

Question4: Marks 10

The table below describes the performance of two processors, the rAlpha and the c86 with a compiler for a common program.

		Compiler				
	GHz	Instructions	Average CPI			
rAlpha	3.4	7000	1.2			
c86	2.6	1500	2.2			

Which is the best compiler-machine combination that provides better performance?

Question 5: Marks 15

Consider the following MIPS assembly code to be executed on a pipelined CPU with frequency of 1 GHz.

```
Loop: ld R2, 100 (R4)
addi R2, R2, 4
ld R3, 200 (R4)
addi R3, R3, 4
add R5, R2, R3
sw R5, 300 (R4)
addi R4, R4, 4
beq R4, R6, Loop
```

Your task is to do dynamic scheduling based on Tomasulo algorithms. There are:

- ➤ 2 LOAD/STORE Functional Units (LDU1, LDU2) with latency of 2 cycles
- ➤ 2 ALU/BR Function Units (ALU1, ALU2) with latency 1 cycle
- ➤ 2 RESERVATION STATIONS (RS1, RS2) for ALU/BR operation
- ➤ 2 Buffers for LOAD/STORE (LDST1, LDST2)

Moreover you have to identify:

- > Structural hazards for RS in ISSUE phase
- ➤ RAW hazards and Structural hazards for FUs in START EXECUTE phase

Assume static branch prediction (backward taken) is used.

- a) Show a single iteration of the loop using tomasulo
- b) If the clock frequency is 1GHz, what would be average CPI.

Write Exec ExecInstruction status: Start Result Issue Comp Instruction Loop: ld R2, 100 (R4) addi R2, R2, 4 ld R3, 200 (R4) addi R3, R3, 4 add R5, R2, R3 sw R5, 300 (R4) addi R4, R4, 4 beg R4, R6, Loop

Reservation Stat	tions:		SI	S2	RS	RS		Busy	Address
Time Name	Busy	Op	Vj	Vk	Qj	Qk	LDST1	No	
RS1	No						LDST2		
RS2	No								

Register result status:

R0 R1 R3 R4 R5 R6 R7 ...