COMP9332 Network Routing and Switching www.cse.unsw.edu.au/~cs9332

Routing for Delay Tolerant Networks (DTNs)

Lecture overview

This lecture examines the routing concepts for delivering packets even if no path exists between source and destination.

Topics to be covered

- Applications of DTN routing
- Basic DTN routing strategies
- RFC 6693

Connectivity at time TO

- Can A send a packet to E using traditional routing protocols?
- No, because no path exists between A and E

Connectivity at time T1

- Can A send a packet to E?
- Yes, because A is directly connected to E

What did we observe?

- Time-varying connectivity
- Just because no path exists NOW, does not mean there will be no path in the near future

■ This is the motivation for DTN routing

Contact Schedule

- For DTN routing to work, we have to have some prospect of future contacts between different nodes
- Contact schedule refers to how two nodes may come to contact in time
- Can be completely predictable or completely random and in-between

The time when two planets will come to within certain distance from each other is completely predictable

DTN Applications

■ Off-Earth

- Inter-planetary communication
- Inter-satellite inter-space-station data transfer

■ On-Earth

- Internet access for remote regions
- Internet access to cars
- Data collection from sensors deployed in remote regions
- ZebraNet, and FlyingFoxNet

DTN Routing Strategies

- Direct contact (Single-hop delivery)
- 2-hop relay
- Tree-based flooding
- Epidemic routing

Direct Contact

- Source must come in contact with destination (single-hop delivery)
- Simplest, smallest cost
- Long delay
- Delivery probability = probability of source coming into contact with destination (p)

Example of Direct Contact Delivery

2-hop Relay

- Source copies message to *n* nodes it comes to contact with (none of these are destinations)
- These n nodes are called relays (relays are not allowed to copy the message to any other nodes except the destination)
- Source and n relays deliver the message to destination if they come in contact with the destination
- Delivery probability = $1 (1-p)^{n+1}$ (assuming each node contacts destination with an independent probability p)
 - Approx (n+1)p for small p (delivery prob. increases with n)

Example of 2-hop Relay (n=1)

T0: S copies to A. Cannot yet deliver because A is not connected to D.

B

A works as a relay

T1: Can deliver now.

Tree-based Flooding

- Extends 2-hop relay to n-hop (n > 2)
- Relays can copy to other relays (tree depth = n-1)
- Both breadth and depth can be controlled
- Breadth=m if each node is allowed to make a maximum of m copies n-1
- Max copies = $\sum_{i=0}^{\infty} m^i$

Example of Tree-based Flooding n=3 (depth = 2),m=2

A to F are relays

Epidemic Routing

- Replicate and synchronize when two nodes come in contact
 - Step 1: exchange only the summary vectors
 - Step 2: exchange only the messages that they do not have
 - Outcome: both nodes have identical database (synchronized)
- Eventually all nodes will receive every message!
- High message overhead, but high delivery probability, and low delay

RFC 6693, August 2012

Probabilistic Routing

Motivation

- Epidemic routing has too much redundancy
- Contact probabilities could be learned and used to reduce redundant copies
- RFC 6693 Probabilistic Routing Protocol for Intermittently Connected Networks
 - released in August 2012
 - Relays are selected based on their probabilities to deliver the message to the destination

Delivery Predictability Metric

- It is a probability (a fraction between 0 and 1) assigned to each (relay) node
- Same node has different probabilities for different destinations
 - P(A,B) is the delivery predictability for A delivering a message to B
 - P(A,C) is the delivery predictability for A delivering a message to C
- It could be asymmetric
 - P(A,B) could be different than P(B,A)

Reducing Relaying Overhead with Delivery Predictability

 If D has a message to send to B, it would select C as the relay node (message will NOT be copied to A saving overhead)

Delivery Predictability Vector

- Each node maintains a delivery predictability for each destination
- If it does not have any current estimate for a given destination, it is assumed zero
- Delivery predictability to itself is 1
- Example of delivery predictability vector for node A
 - B=0.1, C=0.6, D=0.7 (currently it has estimates for three destinations, B, C, and D)

Delivery Predictability Exchange and Update

- When two nodes come in contact, they first exchange their delivery predictability vectors and then update them for each other
- Nodes that often encounter each other, should have high delivery predictability for each other, and vice versa

Delivery Predictability Update for First Time Encounters

- When meeting for the first time, or after a long time, the delivery predictability is set to 0.5
 - If P(A,B) < threshold, P(A,B) = 0.5
- There is an aging process, which would reduce this value (0.5) to a small value (smaller than the threshold) if not encountered for a long time.

Aging Delivery Predictability

- Last encounter time is saved
- When encountering the same node next time, the time difference is used to age the delivery predictability first before exchanging it with the peer
- Aging formula (P'(A,B)) is the old value of P(A,B)
 - $P(A,B) = P'(A,B) \times y^k$
 - Where k is time units passed since last encounter and 0<y<1

Increasing Delivery Predictability with New Encounters

$$P(A,B) = P'(A,B) + r[1 - \delta - P'(A,B)]$$

- 0<r<1 is a scaling rate for increase
- Delta provides an upper bound for P(A,B) and is recommended a small value $\delta=0.01$
- **Example** (assume r=0.3 and $(1-\delta)$ =0.99)
- Encounter 1: P(A,B)=0.5
- Encounter 2: P(A,B) = 0.5 + 0.3(0.99 0.5) = 0.5 + 0.147 = 0.647
- Encounter 3: P(A,B) = 0.647 + 0.3(0.99 0.647) = 0.647 + 0.1029 = 0.7499

Use of Transitivity for Updating Delivery Predictability

- If A frequently encounters B, and B frequently encounters C, then B is a good choice for A to forward a message destined for C
- Therefore, when A meets B, A should also update P(A,C) based on what B says about P(B,C)

$$P(A,C) = \max[P'(A,C), P(A,B)P(B,C)\beta]$$

 $0 \le \beta \le 1$ is a scaling factor to control the impact of transitivity on delivery probability

- Each nodes carries a number of messages for different destinations
- When A meets B, which messages it should forward to B
- A forwarding strategy is needed to make the forwarding decisions
- We shall examine three different forwarding strategies (taken from RFC 6693)
 - Assume that A meets B and A is making the forwarding decision

- Forward the message only if P(B,D) > P(A,D)
 - D is the destination of the message
- Note that this decision will be made for any node A encounters with
- Example: A encounters B, C, and F, where P(A,D)=0.5, P(B,D)=0.6, P(C,D)=0.4, and P(F,D)=0.45
- Question: A will forward the message to which node(s)?

- Forward the message only if P(B,D) > P(A,D) AND $R < R_{max}$
 - R is the number of relays A has copied the message to so far
 - R_{max} is the maximum relays allowed
- Example: A encounters B, C, F, and G in order, where P(A,D)=0.5, P(B,D)=0.6, P(C,D)=0.65, P(F,D)=0.52, and P(G,D)=0.45 [$R_{max}=2$]
- Question: A will forward the message to which node(s)?

- Forward the message only if P(B,D) > P(A,D) OR P(B,D) > threshold
- This is similar to strategy 1 except the message is forwarded epidemically among nodes with very high delivery predictability (higher than a threshold)
- Example: A encounters B, C, and F, where P(A,D)=0.5, P(B,D)=0.6, P(C,D)=0.4, and P(F,D)=0.45 [threshold=0.43]
- Question: A will forward the message to which node(s)?

Queuing Policy

- A node may have to drop a message due to storage limitation
- Which message to drop?
- We need a queuing policy
- We shall examine two different queuing policies

First in First out (FIFO)

- The message that was queued first will be dropped
- Simple to implement
- May not be the best strategy in terms of optimising the delivery rates
- Let us look at a slightly more complicated strategy that has a better prospect in improving delivery rate

Evict Most Forwarded First (MOFO)

- The message that has been forwarded (copied to another relay node) the most number of times should be dropped first
- It would improve delivery rate, but it requires the node keep track of the number of times each message has been forwarded (one counter for each message)

Bibliography

- Jones and Ward, "Routing Strategies for Delay-Tolerant Networks," (available from course website)
- RFC 6693, August 2012