Report

2022-05-20

Executive Summary

TBD

Introduction

In the bank industry many bankers have to decided whether or not they should issue a loan to a new coming applicant. In this report, we will use the data set called **German Credit data** which was given to us.

The German credit data set contains 1000 observations of past credit applicants, described by 30 variables. The applicants are described as **Good Credit** risk or **Bad Credit** risk: Therefore, the response variable, studied, is the credit rating.

Response variable: **RESPONSE** in the dataset:

- 0: Bad credit. In case of bad credit, the banker would not want to issue loan to this person.
- 1 : Good credit. In case of good credit, the banker will want to issue loan to this applicant as it is more likely that the company will benefit from it.

All the other observations are features of the applicants that are going to be studied. It will allow us to perform several machine learning models and deploy a CRISP-DM model to come up with the best classifying model with the highest accuracy as possible. We want to determine whether the new applicant has a 'Good' credit risk, in which case the loan should be issued, or a 'Bad' credit risk, in which case it is not advisable to give him a loan.

The tasks required to perform our analysis is stated as follow.

- 1/ We first proceeded to some data cleaning, meaning that we sorted the dataset to make it ready for the analysis.
- 2/ Then we followed by an exploratory data analysis (EDA) where we studied the dataset and the different variables, one by one, and we made an principal component analysis.
- 3/ Next, came the models analysis, the steps are listed below:
 - a) Splitting the dataset
 - b) Balancing the data
 - c) Fitting the models
 - d) Accuracy study (scoring)
 - e) Variable selection and importance
 - f) Cross-validation / Bootstrap
 - g) Final Best model

Our very first steps once we received the **German Credit data** was to dig into it and get to know the observations and features we were going to work with.

Get to know the data

The title of the dataset is German credit data and the name of the file is GermanCredit.cvs.

As said in the introduction, the German Credit data has data on 1000 observations on past credit applicants and it is described by 30 attributes. Each applicant is rated as "Good" or "Bad" credit (encoded as 1 and 0 respectively in the **RESPONSE** variable).

We looked at the attribute Information:

```
1000 obs. of 32 variables:
##
   'data.frame':
##
    $ OBS.
                       : int
                              1 2 3 4 5 6 7 8 9 10 ...
##
    $ CHK_ACCT
                               0 1 3 0 0 3 3 1 3 1 ...
                         int
##
    $ DURATION
                               6 48 12 42 24 36 24 36 12 30 ...
                         int
##
    $ HISTORY
                               4 2 4 2 3 2 2 2 2 4 ...
                         int
    $ NEW CAR
                               0 0 0 0 1 0 0 0 0 1 ...
##
                         int
##
    $ USED_CAR
                               0 0 0 0 0 0 0 1 0 0 ...
                         int
                               0 0 0 1 0 0 1 0 0 0 ...
##
    $ FURNITURE
                         int
                       : int
                               1 1 0 0 0 0 0 0 1 0 ...
##
    $ RADIO.TV
##
    $ EDUCATION
                       : int
                               0 0 1 0 0 1 0 0 0 0 ...
##
    $ RETRAINING
                         int
                               0 0 0 0 0 0 0 0 0 0 ...
##
    $ AMOUNT
                       : int
                               1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
##
    $ SAV_ACCT
                               4 0 0 0 0 4 2 0 3 0 ...
                       : int
##
    $ EMPLOYMENT
                       : int
                               4 2 3 3 2 2 4 2 3 0 ...
                               4 2 2 2 3 2 3 2 2 4 ...
##
    $ INSTALL_RATE
                         int
##
    $ MALE_DIV
                               0 0 0 0 0 0 0 0 1 0 ...
                       : int
##
    $ MALE_SINGLE
                       : int
                               1 0 1 1 1 1 1 1 0 0 ...
##
    $ MALE_MAR_or_WID : int
                               0 0 0 0 0 0 0 0 0 1 ...
##
    $ CO.APPLICANT
                       : int
                               0 0 0 0 0 0 0 0 0 0 ...
##
    $ GUARANTOR
                       : int
                               0 0 0 1 0 0 0 0 0 0 ...
##
    $ PRESENT RESIDENT: int
                               4 2 3 4 4 4 4 2 4 2 ...
##
    $ REAL ESTATE
                       : int
                               1 1 1 0 0 0 0 0 1 0 ...
##
    $ PROP UNKN NONE
                       : int
                               0 0 0 0 1 1 0 0 0 0 ...
##
    $ AGE
                               67 22 49 45 53 35 53 35 61 28 ...
                       : int
##
    $ OTHER INSTALL
                               0 0 0 0 0 0 0 0 0 0 ...
                       : int
##
    $ RENT
                               0 0 0 0 0 0 0 1 0 0 ...
                       : int
##
    $ OWN RES
                       : int
                               1 1 1 0 0 0 1 0 1 1 ...
##
    $ NUM CREDITS
                       : int
                               2 1 1 1 2 1 1 1 1 2 ...
##
    $ JOB
                       : int
                               2 2 1 2 2 1 2 3 1 3 ...
##
    $ NUM_DEPENDENTS
                       :
                               1 1 2 2 2 2 1 1 1 1 ...
                         int
##
    $ TELEPHONE
                       : int
                               1 0 0 0 0 1 0 1 0 0 ...
##
    $ FOREIGN
                               0 0 0 0 0 0 0 0 0 0 ...
                       : int
##
    $ RESPONSE
                       : int
                              1 0 1 1 0 1 1 1 1 0 ...
##
         OBS.
                         CHK_ACCT
                                           DURATION
                                                           HISTORY
                                                               :0.000
##
    Min.
                1.0
                      Min.
                              :0.000
                                       Min.
                                               : 4.0
                                                       Min.
##
    1st Qu.: 250.8
                      1st Qu.:0.000
                                       1st Qu.:12.0
                                                       1st Qu.:2.000
                      Median :1.000
##
    Median : 500.5
                                       Median:18.0
                                                       Median :2.000
##
    Mean
           : 500.5
                      Mean
                              :1.577
                                       Mean
                                               :20.9
                                                       Mean
                                                               :2.545
##
    3rd Qu.: 750.2
                      3rd Qu.:3.000
                                       3rd Qu.:24.0
                                                       3rd Qu.:4.000
##
    Max.
           :1000.0
                      Max.
                              :3.000
                                       Max.
                                               :72.0
                                                       Max.
                                                               :4.000
##
       NEW_CAR
                        USED CAR
                                        FURNITURE
                                                           RADIO.TV
##
           :0.000
                             :0.000
                                              :0.000
    Min.
                     Min.
                                      Min.
                                                       Min.
                                                               :0.00
##
    1st Qu.:0.000
                     1st Qu.:0.000
                                      1st Qu.:0.000
                                                       1st Qu.:0.00
##
    Median :0.000
                     Median : 0.000
                                      Median :0.000
                                                       Median:0.00
##
    Mean
           :0.234
                     Mean
                             :0.103
                                      Mean
                                              :0.181
                                                       Mean
                                                               :0.28
```

```
3rd Qu.:0.000
                     3rd Qu.:0.000
                                       3rd Qu.:0.000
                                                         3rd Qu.:1.00
##
            :1.000
                             :1.000
                                               :1.000
    Max.
                     Max.
                                       Max.
                                                         Max.
                                                                :1.00
      EDUCATION
                         RETRAINING
##
                                             AMOUNT
                                                             SAV ACCT
                              :0.000
            :-1.000
                                                   250
                                                                  :0.000
##
    Min.
                       Min.
                                        Min.
                                                :
                                                          Min.
##
    1st Qu.: 0.000
                       1st Qu.:0.000
                                        1st Qu.: 1366
                                                          1st Qu.:0.000
    Median : 0.000
                       Median : 0.000
                                        Median: 2320
                                                          Median : 0.000
##
##
    Mean
           : 0.048
                       Mean
                              :0.097
                                        Mean
                                                : 3271
                                                          Mean
                                                                  :1.105
##
    3rd Qu.: 0.000
                       3rd Qu.:0.000
                                        3rd Qu.: 3972
                                                          3rd Qu.:2.000
##
    Max.
            : 1.000
                       Max.
                              :1.000
                                        Max.
                                                :18424
                                                          Max.
                                                                  :4.000
##
      EMPLOYMENT
                       INSTALL_RATE
                                          MALE_DIV
                                                         MALE_SINGLE
                                                                         MALE_MAR_or_WID
##
    Min.
            :0.000
                     Min.
                             :1.000
                                       Min.
                                               :0.00
                                                        Min.
                                                               :0.000
                                                                         Min.
                                                                                 :0.000
    1st Qu.:2.000
                      1st Qu.:2.000
##
                                       1st Qu.:0.00
                                                        1st Qu.:0.000
                                                                         1st Qu.:0.000
##
    Median :2.000
                     Median :3.000
                                       Median:0.00
                                                        Median :1.000
                                                                         Median : 0.000
    Mean
                             :2.973
                                       Mean
                                                                                 :0.092
##
            :2.384
                     Mean
                                               :0.05
                                                        Mean
                                                                :0.548
                                                                         Mean
##
    3rd Qu.:4.000
                     3rd Qu.:4.000
                                       3rd Qu.:0.00
                                                        3rd Qu.:1.000
                                                                         3rd Qu.:0.000
##
    Max.
            :4.000
                     Max.
                             :4.000
                                       Max.
                                               :1.00
                                                        Max.
                                                               :1.000
                                                                         Max.
                                                                                 :1.000
##
     CO.APPLICANT
                        GUARANTOR
                                       PRESENT_RESIDENT
                                                          REAL_ESTATE
##
    Min.
            :0.000
                             :0.000
                                               :1.000
                                                                  :0.000
                     Min.
                                       Min.
                                                          Min.
                     1st Qu.:0.000
##
    1st Qu.:0.000
                                       1st Qu.:2.000
                                                          1st Qu.:0.000
##
    Median :0.000
                     Median : 0.000
                                       Median :3.000
                                                          Median : 0.000
##
    Mean
            :0.041
                     Mean
                             :0.053
                                       Mean
                                               :2.845
                                                          Mean
                                                                  :0.282
##
    3rd Qu.:0.000
                     3rd Qu.:0.000
                                       3rd Qu.:4.000
                                                          3rd Qu.:1.000
##
    Max.
            :1.000
                             :2.000
                                               :4.000
                                                          Max.
                                                                  :1.000
                     {\tt Max.}
                                       Max.
    PROP UNKN NONE
                                       OTHER INSTALL
##
                           AGE
                                                              RENT
##
    Min.
            :0.000
                     Min.
                             : 19.0
                                       Min.
                                               :0.000
                                                         Min.
                                                                 :0.000
##
    1st Qu.:0.000
                     1st Qu.: 27.0
                                       1st Qu.:0.000
                                                         1st Qu.:0.000
##
    Median :0.000
                     Median: 33.0
                                       Median : 0.000
                                                         Median : 0.000
##
    Mean
            :0.154
                     Mean
                             : 35.6
                                       Mean
                                               :0.186
                                                         Mean
                                                                 :0.179
                                       3rd Qu.:0.000
##
    3rd Qu.:0.000
                     3rd Qu.: 42.0
                                                         3rd Qu.:0.000
                                               :1.000
##
    Max.
            :1.000
                             :125.0
                                                                 :1.000
                     Max.
                                       Max.
                                                         Max.
##
       OWN_RES
                       NUM_CREDITS
                                             J<sub>0</sub>B
                                                         NUM_DEPENDENTS
##
    Min.
            :0.000
                     Min.
                             :1.000
                                               :0.000
                                                         Min.
                                                                 :1.000
                                       Min.
##
    1st Qu.:0.000
                      1st Qu.:1.000
                                       1st Qu.:2.000
                                                         1st Qu.:1.000
    Median :1.000
                     Median :1.000
                                       Median :2.000
##
                                                         Median :1.000
##
            :0.713
                             :1.407
                                               :1.904
                                                                 :1.155
    Mean
                     Mean
                                       Mean
                                                         Mean
    3rd Qu.:1.000
                     3rd Qu.:2.000
                                       3rd Qu.:2.000
##
                                                         3rd Qu.:1.000
##
    Max.
            :1.000
                     Max.
                             :4.000
                                       Max.
                                               :3.000
                                                         Max.
                                                                 :2.000
##
      TELEPHONE
                         FOREIGN
                                          RESPONSE
            :0.000
                             :0.000
                                               :0.0
##
    Min.
                     Min.
                                       Min.
##
    1st Qu.:0.000
                     1st Qu.:0.000
                                       1st Qu.:0.0
    Median : 0.000
                     Median : 0.000
##
                                       Median:1.0
            :0.404
                             :0.037
##
    Mean
                     Mean
                                       Mean
                                               :0.7
##
    3rd Qu.:1.000
                     3rd Qu.:0.000
                                       3rd Qu.:1.0
##
    Max.
            :1.000
                             :1.000
                     Max.
                                       Max.
                                               :1.0
```

We noticed that the variable **EDUCATION** has a minimum value of '-1' but it should be '0' since there are only 2 levels (0 and 1). Indeed, the observation 37 indicate a value of '-1' for **EDUCATION**. We notice another strange value, in the variable **GUARANTOR**, the maximum value is of '2' while it does not mean anything in our data set.

After discussion with the Banker, he gave us the correct values to these 2 mistakes. Observation 37 of **EDUCATION** and observation 234 of **GUARANTOR** should be equal to 1. We corrected these two values

We also saw that the variable **AGE** has a maximum of 125. This is strange because it is very unlikely that

someone lives to the age of 125. We talked to the banker again and he confirmed our doubts by telling us that a mistake has been made. At the observation 537, the correct age of the client is 75 years old. He asked us to correct this value in our data set.

After looking at the different attributes, we concluded that there were no missing values.

The response variable is identified as being the column named '**Response**' and it apprears to be the last column on the data.

It is a dummy variable with 0/1.

- 1. 0: No, the credit rating is bad.
- 2. 1: Yes, the credit rating is good.

We had to make sure that the class of the variables are correct. As described above, all the variables are defined as *integer* but we know that we should have numerical and categorical variables in our dataset. Therefore, we have to transform the class of some of them.

```
'data.frame':
                    1000 obs. of 32 variables:
##
    $ OBS.
                       : Factor w/ 1000 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
##
    $ CHK ACCT
                      : Factor w/ 4 levels "0","1","2","3": 1 2 4 1 1 4 4 2 4 2 ...
    $ DURATION
                             6 48 12 42 24 36 24 36 12 30 ...
##
                      : Factor w/ 5 levels "0","1","2","3",...: 5 3 5 3 4 3 3 3 5 ....
##
    $ HISTORY
##
    $ NEW CAR
                      : Factor w/ 2 levels "0", "1": 1 1 1 1 2 1 1 1 1 2 ...
    $ USED CAR
                      : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 2 1 1 ...
##
                      : Factor w/ 2 levels "0", "1": 1 1 1 2 1 1 2 1 1 1 ...
##
    $ FURNITURE
                      : Factor w/ 2 levels "0"."1": 2 2 1 1 1 1 1 1 2 1 ...
##
    $ RADIO.TV
                      : Factor w/ 2 levels "0", "1": 1 1 2 1 1 2 1 1 1 1 ...
##
    $ EDUCATION
##
    $ RETRAINING
                      : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
##
    $ AMOUNT
                             1169 5951 2096 7882 4870
    $ SAV_ACCT
                      : Factor w/ 5 levels "0","1","2","3",..: 5 1 1 1 1 5 3 1 4 1 ...
##
##
                      : Factor w/ 5 levels "0","1","2","3",..: 5 3 4 4 3 3 5 3 4 1 ...
    $ EMPLOYMENT
##
    $ INSTALL_RATE
                             4 2 2 2 3 2 3 2 2 4 ...
                      : num
##
    $ MALE_DIV
                      : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 2 1 ...
##
    $ MALE_SINGLE
                      : Factor w/ 2 levels "0", "1": 2 1 2 2 2 2 2 1 1 ...
##
    $ MALE_MAR_or_WID : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 2 ...
                      : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
##
    $ CO.APPLICANT
##
    $ GUARANTOR
                      : Factor w/ 2 levels "0", "1": 1 1 1 2 1 1 1 1 1 1 ...
##
    $ PRESENT_RESIDENT: Factor w/ 4 levels "1","2","3","4": 4 2 3 4 4 4 4 2 4 2 ...
##
    $ REAL ESTATE
                      : Factor w/ 2 levels "0", "1": 2 2 2 1 1 1 1 1 2 1 ...
##
    $ PROP UNKN NONE
                      : Factor w/ 2 levels "0","1": 1 1 1 1 2 2 1 1 1 1 ...
    $ AGE
                             67 22 49 45 53 35 53 35 61 28 ...
##
##
                      : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
    $ OTHER_INSTALL
                      : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 2 1 1 ...
##
    $ RENT
    $ OWN RES
                       : Factor w/ 2 levels "0", "1": 2 2 2 1 1 1 2 1 2 2 ...
##
##
    $ NUM CREDITS
                             2 1 1 1 2 1 1 1 1 2 ...
                       : Factor w/ 4 levels "0", "1", "2", "3": 3 3 2 3 3 2 3 4 2 4 ...
##
    $ JOB
##
    $ NUM_DEPENDENTS
                      : num
                             1 1 2 2 2 2 1 1 1 1 ...
                       : Factor w/ 2 levels "0", "1": 2 1 1 1 1 2 1 2 1 1 ...
##
    $ TELEPHONE
##
    $ FOREIGN
                       : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
                       : Factor w/ 2 levels "0", "1": 2 1 2 2 1 2 2 2 1 ...
    $ RESPONSE
```

The binomial data are set as factors and the others as numerical.

We then described the variables one more time and we should get better results.

```
## vars n mean sd median trimmed mad min max
## OBS.* 1 1000 500.50 288.82 500.5 500.50 370.65 1 1000
```

```
## CHK ACCT*
                           2 1000
                                      2.58
                                               1.26
                                                        2.0
                                                               2.60
                                                                         1.48
                                                                                       4
                                                                                 1
                                                                                      72
## DURATION
                           3 1000
                                     20.90
                                              12.06
                                                       18.0
                                                              19.47
                                                                         8.90
                                                                                 4
## HISTORY*
                           4 1000
                                      3.54
                                               1.08
                                                        3.0
                                                                3.59
                                                                         0.00
                                                                                       5
## NEW_CAR*
                                                                                       2
                          5 1000
                                                                         0.00
                                      1.23
                                               0.42
                                                        1.0
                                                                1.17
                                                                                 1
## USED CAR*
                           6 1000
                                      1.10
                                               0.30
                                                        1.0
                                                                1.00
                                                                         0.00
                                                                                 1
                                                                                       2
                                                                                       2
## FURNITURE*
                           7 1000
                                      1.18
                                               0.39
                                                        1.0
                                                                1.10
                                                                         0.00
                                                                                 1
                                                                                       2
## RADIO.TV*
                           8 1000
                                      1.28
                                               0.45
                                                        1.0
                                                                1.23
                                                                         0.00
## EDUCATION*
                           9 1000
                                      1.05
                                               0.22
                                                        1.0
                                                                1.00
                                                                         0.00
                                                                                 1
                                                                                       2
## RETRAINING*
                         10 1000
                                      1.10
                                               0.30
                                                        1.0
                                                                1.00
                                                                         0.00
                                                                                 1
                                                                                       2
## AMOUNT
                         11 1000
                                  3271.26 2822.74 2319.5 2754.57 1627.15
                                                                              250 18424
## SAV_ACCT*
                         12 1000
                                      2.10
                                               1.58
                                                        1.0
                                                                1.88
                                                                         0.00
                                                                                 1
                                                                                       5
                                                                                       5
## EMPLOYMENT*
                         13 1000
                                      3.38
                                               1.21
                                                        3.0
                                                               3.43
                                                                         1.48
                                                                                 1
                         14 1000
## INSTALL_RATE
                                      2.97
                                                        3.0
                                                               3.09
                                                                         1.48
                                                                                       4
                                               1.12
                                                                                 1
                                                                                       2
## MALE_DIV*
                         15 1000
                                      1.05
                                               0.22
                                                        1.0
                                                                1.00
                                                                         0.00
## MALE_SINGLE*
                                                        2.0
                                                                                       2
                         16 1000
                                      1.55
                                               0.50
                                                                1.56
                                                                         0.00
                                                                                 1
## MALE_MAR_or_WID*
                         17 1000
                                      1.09
                                               0.29
                                                        1.0
                                                                1.00
                                                                         0.00
                                                                                       2
                                                                                       2
## CO.APPLICANT*
                                      1.04
                                               0.20
                                                        1.0
                                                                1.00
                                                                         0.00
                         18 1000
                                                                                 1
## GUARANTOR*
                                      1.05
                                               0.22
                                                                1.00
                                                                         0.00
                                                                                       2
                         19 1000
                                                        1.0
## PRESENT_RESIDENT*
                                                        3.0
                                                                                       4
                         20 1000
                                      2.85
                                               1.10
                                                               2.93
                                                                         1.48
                                                                                 1
## REAL ESTATE*
                         21 1000
                                      1.28
                                               0.45
                                                        1.0
                                                                1.23
                                                                         0.00
                                                                                       2
## PROP_UNKN_NONE*
                         22 1000
                                      1.15
                                               0.36
                                                        1.0
                                                                1.07
                                                                         0.00
                                                                                 1
                                                                                       2
                                                       33.0
                                                                               19
                                                                                      75
## AGE
                         23 1000
                                     35.55
                                              11.38
                                                              34.17
                                                                        10.38
                                                                                       2
## OTHER_INSTALL*
                         24 1000
                                      1.19
                                               0.39
                                                        1.0
                                                                1.11
                                                                         0.00
                                                                                 1
                                                                                       2
## RENT*
                         25 1000
                                      1.18
                                               0.38
                                                        1.0
                                                               1.10
                                                                         0.00
                                                                                 1
                                                                                       2
## OWN RES*
                         26 1000
                                      1.71
                                               0.45
                                                        2.0
                                                                1.77
                                                                         0.00
                                                                                 1
  NUM CREDITS
                         27 1000
                                      1.41
                                               0.58
                                                        1.0
                                                                1.33
                                                                         0.00
                                                                                 1
                                                                                       4
                         28 1000
                                      2.90
                                                               2.91
                                                                                       4
##
   JOB*
                                               0.65
                                                        3.0
                                                                         0.00
                                                                                 1
                                                                                       2
##
   NUM_DEPENDENTS
                         29 1000
                                      1.16
                                               0.36
                                                        1.0
                                                                1.07
                                                                         0.00
                                                                                 1
                                                                                       2
  TELEPHONE*
                         30 1000
                                      1.40
                                               0.49
                                                        1.0
                                                                1.38
                                                                         0.00
                                                                                 1
                                                                1.00
## FOREIGN*
                         31 1000
                                      1.04
                                               0.19
                                                                         0.00
                                                                                       2
                                                        1.0
                                                                                 1
## RESPONSE*
                         32 1000
                                      1.70
                                               0.46
                                                        2.0
                                                                1.75
                                                                         0.00
                                                                                 1
                                                                                       2
##
                               skew kurtosis
                       range
                                                  se
## OBS.*
                         999
                               0.00
                                        -1.20
                                                9.13
## CHK_ACCT*
                            3
                               0.01
                                        -1.66
                                                0.04
## DURATION
                           68
                               1.09
                                         0.90
                                                0.38
## HISTORY*
                            4 - 0.01
                                        -0.59
                                                0.03
## NEW CAR*
                               1.25
                                        -0.43
                                                0.01
## USED_CAR*
                               2.61
                                         4.81
                                                0.01
                            1
                            1
                               1.65
                                         0.74
                                                0.01
## FURNITURE*
## RADIO.TV*
                            1
                               0.98
                                        -1.04
                                                0.01
## EDUCATION*
                            1
                               4.12
                                        15.02
                                                0.01
## RETRAINING*
                               2.72
                                         5.40
                                                0.01
                            1
## AMOUNT
                       18174
                               1.94
                                         4.25 89.26
## SAV_ACCT*
                            4
                               1.01
                                        -0.69
                                                0.05
## EMPLOYMENT*
                            4 -0.12
                                        -0.94
                                                0.04
                            3 - 0.53
                                        -1.21
## INSTALL_RATE
                                                0.04
## MALE_DIV*
                            1
                               4.12
                                        15.02
                                                0.01
## MALE_SINGLE*
                            1 - 0.19
                                        -1.96
                                                0.02
## MALE_MAR_or_WID*
                               2.82
                                         5.95
                                                0.01
                            1
## CO.APPLICANT*
                            1
                               4.62
                                        19.39
                                                0.01
## GUARANTOR*
                               4.03
                                        14.25
                                                0.01
                            1
## PRESENT RESIDENT*
                            3 - 0.27
                                        -1.38
                                                0.03
## REAL_ESTATE*
                               0.97
                                        -1.07
                                                0.01
                            1
## PROP UNKN NONE*
                               1.91
                                         1.67
                                                0.01
```

```
## AGE
                            1.02
                                       0.58 0.36
                             1.61
## OTHER_INSTALL*
                                       0.60
                                             0.01
                                       0.80
## RENT*
                             1.67
                                             0.01
## OWN_RES*
                          1 -0.94
                                      -1.12
                                             0.01
## NUM CREDITS
                          3
                             1.27
                                       1.58
                                             0.02
## JOB*
                          3 - 0.37
                                       0.49
                                             0.02
## NUM DEPENDENTS
                             1.90
                                       1.63
                                             0.01
                          1
## TELEPHONE*
                             0.39
                                             0.02
                          1
                                      -1.85
## FOREIGN*
                          1
                             4.90
                                      22.02
                                             0.01
## RESPONSE*
                                      -1.24 0.01
                          1 - 0.87
     rows columns discrete_columns continuous_columns all_missing_columns
               32
## 1 1000
##
     total_missing_values complete_rows total_observations memory_usage
## 1
                                                        32000
                                                                     237424
                     Memory Usage: 231.9 Kb
                                                            81%
     Discrete Columns -
   Continuous Columns -
                              19%
                                                                              Dimension
                                                                                  column
   All Missing Columns - 0%
                                                                                  observation
                                                                                  row
                                                                     100%
       Complete Rows -
  Missing Observations -
                      0%
                                 25%
                                              50%
                                                          75%
                                                                     100%
                                             Value
```

The plot helps us to see the percentage of continuous variable, the percentage of discrete variables and whether or not some observations are missing.

Visualization of the data

First, we plot all the continuous variables into histograms and their corresponding density plots.

Our first notice is that the data are not really normally distributed. Some of them are right-tailed. We can look at the tails and outliers more carefully through boxplots.

Side-by-side boxplots

This seems not to be disturbing. It makes sense that only a few people has a big credit amount. However it seems that the 'bad' clients tends to ask for bigger credit amount than 'good' clients.

Now, we can make some barplots of the categorical variables.

From those barplots we can see:

- The majority of people do not check their account status. (CHK_ACCT)
- Most people have an average balance of less than < 100 DM in their saving account. (SAV_ACCT)
- Most of the applicants has its own residence. (OWN_RES)
- Almost none of the applicants is a foreign worker. (FOREIGN)
- We have more information on people that are 'good' applicants and less information on 'bad' applicants. It would be better to have more information on 'bad' applicants as well in order to make good predictions with models. We will have to take this into account later. (RESPONSE)

A general summary can be done.

##] ##] ##	Data Frame Summary Dimensions: 1000 x 32 Duplicates: 0				
## ## ##	No	Variable	Stats / Values	Freqs (% of Valid)	Graph
## ## ## ## ## ## ## ##	1 	OBS. [factor]	1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8 9. 9 10. 10 [990 others]	1 (0.1%) 1 (0.1%)	
## ## ## ## ## ##	 	CHK_ACCT [factor] DURATION [numeric]	1. 0 2. 1 3. 2 4. 3 Mean (sd) : 20.9 (12.1) min < med < max:	+	+
## ## ##	 	[Inmmeric]	4 < 18 < 72 IQR (CV) : 12 (0.6)	 	 . : : : : : : : : : : . :
## ## ## ## ##	+ 4	HISTORY [factor]	1. 0 2. 1 3. 2 4. 3 5. 4	40 (4.0%) 49 (4.9%) 530 (53.0%) 88 (8.8%) 293 (29.3%)	
## ##	5 	NEW_CAR [factor]	1. 0 2. 1	766 (76.6%) 234 (23.4%)	IIII IIII
##	6 6	USED_CAR [factor]	1. 0 2. 1	897 (89.7%) 103 (10.3%)	
## ##	7	FURNITURE	+ 1. 0	+ 819 (81.9%)	+

##		[factor]	2. 1	181 (18.1%)	III
##	8	RADIO.TV	2. 1	720 (72.0%) 280 (28.0%)	IIIII
##	9	EDUCATION	1. 0	950 (95.0%)	
## ##	10 	RETRAINING [factor]	1. 0	903 (90.3%) 97 (9.7%)	I
## ## ## ##	11 	AMOUNT [numeric]	Mean (sd) : 3271.3 (2822.7)	921 distinct values 	
	 		2. 1 3. 2 4. 3	63 (6.3%) 48 (4.8%)	III II II
## ## ## ##	13 		2. 1 3. 2 4. 3 5. 4	172 (17.2%) 339 (33.9%) 174 (17.4%)	IIIII IIII IIIIIII
## ## ##	 	INSTALL_RATE [numeric]	Mean (sd) : 3 (1.1) min < med < max: 1 < 3 < 4 IQR (CV) : 2 (0.4)	2 : 231 (23.1%) 3 : 157 (15.7%)	IIII
## ##	15 	MALE_DIV [factor]	1 1. 0	950 (95.0%) 50 (5.0%)	I
## ##	16 	MALE_SINGLE [factor]	1.0	452 (45.2%) 548 (54.8%)	
##	17	MALE_MAR_or_WID	1.0	908 (90.8%)	IIIIIIIIIIIIII
##	18	CO.APPLICANT		959 (95.9%)	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
## ##	19 	GUARANTOR [factor]	1.0	948 (94.8%) 52 (5.2%)	
## ## ##	20 	PRESENT_RESIDENT [factor]	1. 1 2. 2 3. 3	130 (13.0%) 308 (30.8%) 149 (14.9%) 413 (41.3%)	II IIIIII

##	I	REAL_ESTATE [factor]			11111
##	22	PROP_UNKN_NONE	1. 0	846 (84.6%) 154 (15.4%)	
## ## ## ##	23 	AGE [numeric] 	Mean (sd) : 35.5 (11.4) min < med < max: 19 < 33 < 75 IQR (CV) : 15 (0.3)	 	: : . : : : : : : : : :
##	24	OTHER_INSTALL	1. 0	814 (81.4%) 186 (18.6%)	
##	25	RENT	1. 0	821 (82.1%) 179 (17.9%)	III III
## ##	26 	OWN_RES [factor]	1. 0 2. 1	287 (28.7%)	IIIII IIIIIIIIIIIII
## ## ## ##	27 	NUM_CREDITS [numeric] 	Mean (sd) : 1.4 (0.6) min < med < max: 1 < 1 < 4	1 : 633 (63.3%) 2 : 333 (33.3%) 3 : 28 (2.8%) 4 : 6 (0.6%)	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
##	 	JOB [factor] 	2. 1		 IIII IIIIIIIIIIII
## ## ##	29 	NUM_DEPENDENTS [numeric]	Min : 1 Mean : 1.2 Max : 2	1 : 845 (84.5%) 2 : 155 (15.5%) 	
##	I	TELEPHONE		596 (59.6%) 404 (40.4%)	
##	31 		1. 0 2. 1	963 (96.3%) 37 (3.7%)	
##	32		1. 0 2. 1	300 (30.0%) 700 (70.0%)	+ IIIIII IIIIIIIIIIIIII

 ${\bf Correlation} \ {\bf Analysis}: \ \ {\bf Correlation} \ {\bf plot} \ {\bf between} \ {\bf continuous} \ {\bf variables}:$

There are little correlation between the continuous variables. We can notice that there is a correlation of 62% between the variable **DURATION** and **AMOOUNT**. This makes sense and is known by the bankers that the bigger the amount of credit, the longer the duration of the credit in months will last.

Correlation Meter

-1.0 -0.5 0.0

Correlation plot between categorical variables :

It is difficult to look at the correlation since there are a lot of variables on the graph. We can still see higher correlation between **RESPONSE 1**:

- and people that do not check their account (CHK_ACCT_3)
- and people that have a critical historical account (HISTORY 4)
- and the variable *REAL_ESTATE* (REAL_ESTATE)
- and applicant that does not have their own property (PROP UNKN NONE 0)
- and applicant that have their own residence (OWN_RES_1)

We can also see some correlation between **RESPONSE 0**:

- and people that have a checking account status < 0 DM (CHK_ACCT_0)
- and people that have an average balance in savings account $<100~\mathrm{DM}~(\mathrm{SAV_ACCT_0})$
- and the variable *REAL_ESTATE* (REAL_ESTATE)

Principal Component Analysis Exploration: It is good to perform a PCA Exploration in order to reduce the dimensions or/and see which variables to select.

We start by selecting the numerical values because the PCA only works on numerical variables.

```
## Importance of components:
##
```

PC1 PC2 PC3 PC4 PC5 PC6 ## Standard deviation 1.2873 1.1208 1.0443 0.9318 0.9193 0.53164

Proportion of Variance 0.2762 0.2094 0.1818 0.1447 0.1409 0.04711

Cumulative Proportion 0.2762 0.4856 0.6673 0.8120 0.9529 1.00000

From the PCA summary we can see 4 principal components should be taken into account in order to explain approximately 81% of the variation of the data.

Eigenvalue analysis:

```
eigenvalue variance.percent cumulative.variance.percent
         1.6570953
                            27.618256
                                                          27.61826
## Dim.1
## Dim.2
          1.2562810
                            20.938016
                                                          48.55627
## Dim.3
          1.0906419
                            18.177365
                                                          66.73364
          0.8682109
                            14.470181
                                                          81.20382
## Dim.4
## Dim.5
          0.8451277
                            14.085462
                                                          95.28928
## Dim.6
                                                         100.00000
          0.2826431
                             4.710719
```

Then from this eigenvalues table, we know that we need to choose 3 dimensions because the first 3 dimensions are higher than the value 1.

From this circle of correlations, we see that:

- The first principal component PC1 is strongly positively correlated with the variables **AMOUNT** and **DURATION**. So the larger PC1, the larger these features. It is also a little bit negatively correlated with **INSTALL_RATE**.
- The second principal component PC2 is strongly positively correlated with AGE, NUM_DEPENDENTS
 and NUM CREDITS.

From this biplot, we can see some characteristics of the observations.

Here, we can see the distribution of the response variables (0-1) according to the reduced dimension. What we can observe, is that the Bad credits: 0, look a little bit more positively correlated of dimension 1. Therefore, more correlated to Amount and Duration. Compared to Good Credits, it looks positively correlated to dimesion 2; AGE, NUM_CREDITS, NUM_DEPENDENTS.

After having cleaned the dataset and looked at all the different features, we created a new dataset that contains our modifications in order to use it for our analysis.

Methodology

In this section we will talk about the methodology that has been used and the different models analysis that has been conducted.

Traning set and Test set

First of all we started by splitting our dataset into 2 sets: **training set** (German_credit.tr) and **test set** (German_credit.te). We do not forget to take the first variable **OBS**. out as it represents the index number for each observation. These two sets will allow us to train some models on the **training set** and then test the accuracy of the model fit on the **test set**.

Balancing the dataset

Then, we applied the balancing data technique in order to improve the predictions of **Good Credit** and **Bad Credit**, since we have more observations on the **Good Credit**.

The table below reveals the unbalanced problem.

Indeed, we observe that the "Good Credit" (1) response appears **527** times in the training set and "Bad Credit" (0) **223**, two times less. Since there are many more "Good Credit" than "Bad Credit", any model favors the prediction of the "Good Credit". It results a good accuracy but the specificity is low, as well as the balanced accuracy.

Sub-sampling Balancing using sub-sampling consists of taking all the cases in the smallest class (here "Bad Credit") and extract at random the same amount of cases in the largest category (here "Good").

The **training set** is now balanced, we have 223 observations for both "Good Credit" (1) and "Bad Credit" (0). The new balanced training set is called German_Credit.tr.subs.

Models Fitting

Once we had our training set and test set, we could fit some models and compare them with together to choose the best model.

1. Classification Tree (Decision Tree) We first started with a decision tree and more specifically we chose the classification tree as we want to classify the applicants. The model was build on our previously balanced training set German_Credit.tr.subs. We used the R function rpart.

We obtained the following large tree.

We could see that among the 31 explanatory variables, this model uses 6 of them: CHK_ACCT, AMOUNT, HISTORY, DURATION, GUARANTOR and EMPLOYMENT.

```
##
             Reference
##
  Prediction
##
               58
                    70
##
               19 103
##
            Sensitivity
                                   Specificity
                                                      Pos Pred Value
##
              0.7532468
                                     0.5953757
                                                            0.4531250
##
         Neg Pred Value
                                     Precision
                                                               Recall
               0.8442623
                                     0.4531250
                                                            0.7532468
##
##
                      F1
                                    Prevalence
                                                      Detection Rate
               0.5658537
                                     0.3080000
                                                            0.2320000
##
  Detection Prevalence
                             Balanced Accuracy
##
               0.5120000
                                     0.6743112
##
```

We first have an insight on how well it predict the test set (German_credit.te). We recall that 0 means a "Bad Credit" risk and 1 means a "Good Credit" risk. It seems that it has difficulty to predict the "Bad Credit" risk applicants.

As the tree is quite big and we want to know if we can prune it. To do so, we decided to use the printcp and plotcp commands and choose the best **cp** (complexity parameter) value to prune our tree.

Pruning the tree

```
## Root node error: 223/446 = 0.5
##
##
  n = 446
##
##
           CP nsplit rel error
                                xerror
                                            xstd
## 1 0.399103
                   0
                        1.00000 1.08520 0.047179
## 2 0.022422
                   1
                        0.60090 0.63677 0.044117
## 3 0.014574
                        0.57848 0.66816 0.044668
                   2
## 4 0.011958
                   7
                        0.48430 0.69058 0.045028
## 5 0.011211
                   10
                        0.44843 0.67265 0.044742
## 6 0.010000
                  12
                        0.42601 0.67265 0.044742
```

size of tree

From the list of \mathbf{cp} (complexity parameter), we would choose the line that has the lowest cross validation error. This can be seen on the column **xerror**. So the best cp would be 0.022422 with one split.

From the graph, we can identify that, according to the 1-SE rule, the tree with 2 and 3 are equivalent. The tree with 3 nodes should be preferred. It appears below the dotted-line.

The value of cp can be chosen arbitrarily between 0.018 and 0.095. So we decided to go with the suggested cp of 0.022 from the summary.

With these value, we obtain a very small tree.

This pruned decision tree with a cp of 0.022 uses the variables $\mathbf{CHK_ACCT}$ and $\mathbf{HISTORY}$.

Using this pruned tree, we can computed the prediction and build a confusion matrix to see the performance of the model.

##	Reference		
##	Prediction 0 1		
##	0 63 95		
##	1 14 78		
##	Sensitivity	Specificity	Pos Pred Value
##	0.8181818	0.4508671	0.3987342
##	Neg Pred Value	Precision	Recall
##	0.8478261	0.3987342	0.8181818
##	F1	Prevalence	Detection Rate
##	0.5361702	0.3080000	0.2520000
##	Detection Prevalence	Balanced Accuracy	
##	0.6320000	0.6345244	

We also decided to look at what would an automatically pruned using 1-SE rule would give us and whether or not it is better than the pruned tree we made by looking at the cp.

Here, only the variable CHK_ACCT is used. As we prune the tree more information are lost.

```
Reference
## Prediction 0 1
            0 61 88
##
            1 16 85
##
##
            Sensitivity
                                  Specificity
                                                    Pos Pred Value
                                    0.4913295
##
              0.7922078
                                                          0.4093960
##
         Neg Pred Value
                                    Precision
                                                             Recall
##
              0.8415842
                                    0.4093960
                                                          0.7922078
                                   Prevalence
                                                    Detection Rate
##
                     F1
              0.5398230
                                    0.3080000
                                                          0.2440000
##
## Detection Prevalence
                           Balanced Accuracy
              0.5960000
                                    0.6417686
##
```

varImp(german.ct.prune)

Variable importance of the classification tree

##		Overall
##	AMOUNT	17.947179
##	CHK_ACCT	37.098755
##	DURATION	11.073258
##	EMPLOYMENT	4.645266
##	HISTORY	18.840050
##	OTHER_INSTALL	3.216630
##	RETRAINING	3.509915
##	SAV_ACCT	9.538067
##	NEW_CAR	0.000000
##	USED_CAR	0.000000
##	FURNITURE	0.000000
##	RADIO.TV	0.000000
##	EDUCATION	0.000000
##	INSTALL_RATE	0.000000
##	MALE_DIV	0.000000
##	MALE_SINGLE	0.000000
##	MALE_MAR_or_WID	0.000000
##	CO.APPLICANT	0.000000
##	GUARANTOR	0.000000

```
## PRESENT_RESIDENT 0.000000
## REAL_ESTATE
                     0.000000
## PROP_UNKN_NONE
                     0.000000
## AGE
                     0.00000
## RENT
                     0.000000
## OWN RES
                     0.000000
## NUM_CREDITS
                     0.000000
## JOB
                     0.000000
## NUM_DEPENDENTS
                     0.000000
## TELEPHONE
                     0.000000
## FOREIGN
                     0.000000
```

vip(german.ct.prune)

From this plot, we see that the variables that influences the most are CHK_ACCT, HISTORY, SAV_ACCT, DURATION, AMOUNT and REAL_ESTATE. They are not exactly the same as the one we saw above.

The variable CHK_ACCT and HISTORY were noticed though.

2. Logistic Regression The next model we performed is a logistic regression.

```
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      1.1911402 1.7958756
                                              0.663 0.507161
## CHK ACCT1
                      0.5692882
                                 0.3363406
                                              1.693 0.090533
## CHK ACCT2
                      0.8404451
                                 0.5339512
                                             1.574 0.115485
## CHK ACCT3
                      2.4337691
                                 0.3770606
                                             6.455 1.09e-10 ***
## DURATION
                     -0.0123731
                                 0.0142153
                                            -0.870 0.384078
## HISTORY1
                     -1.0734853
                                 0.8514386
                                            -1.261 0.207384
## HISTORY2
                      0.0865599
                                 0.6747882
                                             0.128 0.897930
## HISTORY3
                     -0.0598560
                                 0.7410028
                                            -0.081 0.935619
## HISTORY4
                      1.1072483
                                 0.6576414
                                             1.684 0.092246
## NEW_CAR1
                                            -0.775 0.438096
                     -0.4538649
                                 0.5853211
## USED_CAR1
                      1.6322817
                                 0.7540134
                                             2.165 0.030404 *
                                              0.082 0.934305
## FURNITURE1
                      0.0509645
                                 0.6182782
## RADIO.TV1
                      0.5261147
                                 0.5896893
                                              0.892 0.372291
## EDUCATION1
                      0.5441469
                                 0.7499724
                                              0.726 0.468111
                                 0.6787931
                                             -0.632 0.527080
## RETRAINING1
                     -0.4293160
## AMOUNT
                     -0.0002155
                                             -2.916 0.003550 **
                                 0.0000739
## SAV ACCT1
                      0.6181742
                                 0.4475399
                                             1.381 0.167195
## SAV_ACCT2
                     -0.2531524
                                 0.5541205
                                            -0.457 0.647776
## SAV ACCT3
                      0.7292579
                                 0.6813687
                                             1.070 0.284492
## SAV_ACCT4
                                 0.4243610
                                             3.351 0.000804 ***
                      1.4221687
## EMPLOYMENT1
                      0.7574673
                                 0.7956778
                                              0.952 0.341108
## EMPLOYMENT2
                      1.4785839
                                 0.7640267
                                              1.935 0.052959
## EMPLOYMENT3
                      1.9691166
                                 0.7947873
                                              2.478 0.013229 *
## EMPLOYMENT4
                      1.8560330
                                 0.7511387
                                              2.471 0.013475 *
                                            -2.386 0.017035 *
## INSTALL_RATE
                     -0.3367533
                                 0.1411404
## MALE_DIV1
                     -0.5653453
                                 0.5705857
                                            -0.991 0.321775
                                 0.3327207
## MALE_SINGLE1
                      0.1618525
                                             0.486 0.626647
## MALE_MAR_or_WID1
                    -0.5551862
                                 0.5312986
                                            -1.045 0.296041
## CO.APPLICANT1
                     -0.6994379
                                 0.6920599
                                             -1.011 0.312179
## GUARANTOR1
                      1.7126786
                                 0.6556150
                                             2.612 0.008993 **
## PRESENT_RESIDENT2 -1.1195205
                                            -2.345 0.019008
                                 0.4773294
## PRESENT RESIDENT3 -0.2590309
                                 0.5313455
                                             -0.487 0.625904
## PRESENT_RESIDENT4 -0.9082582
                                 0.4793144
                                            -1.895 0.058104
## REAL ESTATE1
                     -0.0137202
                                 0.3384983
                                             -0.041 0.967669
## PROP_UNKN_NONE1
                     -1.4578770
                                 0.6505748
                                            -2.241 0.025032 *
## AGE
                      0.0167050
                                 0.0141041
                                             1.184 0.236255
## OTHER_INSTALL1
                     -0.6758552
                                            -1.985 0.047113 *
                                 0.3404321
## RENT1
                     -1.2066453
                                 0.8244600
                                            -1.464 0.143315
## OWN RES1
                     -0.4707135
                                 0.7665544
                                            -0.614 0.539173
## NUM CREDITS
                     -0.3634820
                                 0.3011721
                                            -1.207 0.227474
                                            -0.637 0.524069
## JOB1
                     -0.7402802
                                 1.1619781
## JOB2
                     -1.2142377
                                 1.1317833
                                            -1.073 0.283337
## JOB3
                     -1.4358446
                                 1.1604352
                                             -1.237 0.215964
                      0.1270172
## NUM_DEPENDENTS
                                 0.3832474
                                              0.331 0.740325
## TELEPHONE1
                      0.6259633
                                 0.3143236
                                              1.991 0.046430 *
## FOREIGN1
                      1.2496315 0.8543880
                                             1.463 0.143576
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
## Null deviance: 618.29 on 445 degrees of freedom
## Residual deviance: 390.97 on 400 degrees of freedom
## AIC: 482.97
##
## Number of Fisher Scoring iterations: 5
```

We see that a lot of variables are not statistically significant for the model so we can think of a model reduction.

Before doing a reduction of the model, we fitted the model and predicted on the test set.

```
##
             Reference
## Prediction
                 0
                     1
##
                49
                    46
##
                28 127
             1
##
                                                       Pos Pred Value
             Sensitivity
                                   Specificity
##
               0.6363636
                                     0.7341040
                                                            0.5157895
##
         Neg Pred Value
                                     Precision
                                                               Recall
##
               0.8193548
                                     0.5157895
                                                            0.6363636
##
                                    Prevalence
                                                       Detection Rate
                      F1
##
               0.5697674
                                      0.3080000
                                                            0.1960000
## Detection Prevalence
                             Balanced Accuracy
               0.3800000
                                     0.6852338
##
```

Variable selection and interpretation with step method (AIC criteria) In order to reduce the logistic regression we used a stepwise variable selection. This has been done with the command step.

The final reduced model is as follow.

```
summary(mod.logreg.sel)
```

```
##
## Call:
   glm(formula = RESPONSE ~ CHK_ACCT + HISTORY + NEW_CAR + USED_CAR +
##
       RETRAINING + AMOUNT + SAV_ACCT + EMPLOYMENT + INSTALL_RATE +
##
       GUARANTOR + PRESENT_RESIDENT + PROP_UNKN_NONE + AGE + OTHER_INSTALL +
       RENT + TELEPHONE + FOREIGN, family = binomial, data = German_Credit.tr.subs)
##
##
## Deviance Residuals:
##
        Min
                   10
                         Median
                                        30
                                                 Max
## -2.39343 -0.68768 -0.02628
                                   0.71315
                                             2.60726
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -0.6339113
                                 1.1570626
                                            -0.548 0.583786
## CHK_ACCT1
                      0.5970566
                                 0.3291383
                                              1.814 0.069678
## CHK_ACCT2
                      1.1123874
                                 0.5042812
                                              2.206 0.027392 *
## CHK_ACCT3
                      2.4109175
                                 0.3597629
                                              6.701 2.06e-11 ***
## HISTORY1
                     -0.6393459
                                 0.8007632
                                             -0.798 0.424626
## HISTORY2
                      0.3153810
                                 0.6295178
                                              0.501 0.616379
## HISTORY3
                                 0.7411154
                                              0.033 0.973541
                      0.0245812
## HISTORY4
                      1.0638624
                                 0.6476870
                                              1.643 0.100475
## NEW CAR1
                                             -2.279 0.022678 *
                     -0.7159178
                                 0.3141611
## USED_CAR1
                      1.3489217
                                 0.5579072
                                              2.418 0.015614 *
## RETRAINING1
                                            -1.838 0.066072 .
                     -0.8489518
                                 0.4619050
## AMOUNT
                     -0.0002631 0.0000595 -4.421 9.81e-06 ***
```

```
## SAV ACCT1
                     0.5675624 0.4173990
                                            1.360 0.173906
## SAV_ACCT2
                    -0.0693577
                                0.5399345 -0.128 0.897788
## SAV ACCT3
                                            0.871 0.384011
                     0.5603771
                                0.6437202
## SAV_ACCT4
                     1.3592948
                                0.4069584
                                            3.340 0.000837 ***
## EMPLOYMENT1
                     0.5542570
                                0.6967423
                                            0.795 0.426324
## EMPLOYMENT2
                     1.2338686 0.6524020
                                            1.891 0.058588
## EMPLOYMENT3
                     1.7999683 0.6887566
                                            2.613 0.008966 **
## EMPLOYMENT4
                     1.5521376 0.6518729
                                            2.381 0.017264 *
## INSTALL RATE
                     -0.3278020
                                0.1249721
                                           -2.623 0.008716 **
## GUARANTOR1
                     1.6927223
                                0.6068573
                                            2.789 0.005282 **
## PRESENT_RESIDENT2 -1.1117822
                                0.4641005 -2.396 0.016595 *
## PRESENT_RESIDENT3 -0.3408387
                                0.5041109
                                           -0.676 0.498966
## PRESENT RESIDENT4 -0.7613632
                                0.4531619 -1.680 0.092935
## PROP_UNKN_NONE1
                    -1.0532655
                                           -2.737 0.006203 **
                                0.3848454
## AGE
                     0.0181856
                                0.0128738
                                            1.413 0.157769
## OTHER_INSTALL1
                     -0.6281982
                                0.3256821
                                           -1.929 0.053747 .
## RENT1
                    -0.8736712
                                0.3412119 -2.560 0.010452 *
## TELEPHONE1
                     0.5251823
                                0.2863172
                                            1.834 0.066614
## FOREIGN1
                     1.2896516 0.8049248
                                            1.602 0.109111
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 618.29
                             on 445
                                     degrees of freedom
## Residual deviance: 403.37 on 415 degrees of freedom
  AIC: 465.37
## Number of Fisher Scoring iterations: 5
```

The variables that have been removed are: FURNITURE, RADIO.TV, EDUCATION, RETRAINING, MALE_DIV, MALE_SINGLE, MALE_MAR_or_WID, CO.APPLICANT, REAL_ESTATE, OWN_RES, NUM_CREDITS, JOB and NUM_DEPENDENTS

In the end, we get the most significant model:

 $RESPONSE = -0.6339113 + 0.5970566 * CHK_{ACCT1} + 1.1123874 * CHK_{ACCT2} + 2.4109175 * CHK_{ACCT3} - 0.6393459 * HISTOCOMBOUNDED FOR A CHRONIC AND A CHRO$

$$p = (e^{RESPONSE})/(1 + e^{RESPONSE})$$

It means that:

- The predicted probability of being a good applicant for CHCK_ACCT3 is higher than for CHK_ACCT0 (and also higher than for CHK_ACCT1 and CHK_ACCT2).
- The predicted probability of being a good applicant for **HISTORY1** is lower than for **HISTORY0**.
- The predicted probability of being a good applicant for **HISTORY4** is higher than for **HISTORY0** (and also higher than for **HISTORY2** and **HISTORY3**).
- The predicted probability of being a good applicant for NEW_CAR1 is lower than for NEW_CAR0.
- The predicted probability of being a good applicant for USED_CAR1 is higher than for USED CAR0.
- The predicted probability of being a good applicant for RETRAINING1 is lower than for RETRAINING0.
- AMOUNT is negatively associated with RESPONSE.

- The predicted probability of being a good applicant for SAV_ACCT4 is higher than for SAV_ACCT0 (and also higher than for SAV_ACCT1 and SAV_ACCT3).
- The predicted probability of being a good applicant for SAV_ACCT2 lower than for SAV_ACCT0.
- The predicted probability of being a good applicant for **EMPLOYMENT3** is higher than for **Employment0** (and also higher than for **EMPLOYMENT1**, **EMPLOYMENT2** and **EMPLOYMENT4**).
- INSTALL_RATE is negatively associated with RESPONSE.
- The predicted probability of being a good applicant for GUARANTOR1 is higher than for GUARANTOR0.
- The predicted probability of being a good applicant for PRESENT_RESIDENT2 is lower than for PRESENT_RESIDENT0 (and also lower than PRESENT_RESIDENT3 and PRESENT_RESIDENT4).
- The predicted probability of being a good applicant for PROP_UNKN_NONE1 is lower than for PROP_UNKN_NONE0.
- AGE is positively associated with RESPONSE.
- The predicted probability of being a good applicant for **OTHER_INSTALL1** is lower than for **OTHER_INSTALL0**.
- The predicted probability of being a good applicant for **RENT1** is lower than for **RENT0**.
- The predicted probability of being a good applicant for TELEPHONE1 is higher than for TELE-PHONE0.
- The predicted probability of being a good applicant for FOREIGN1 is higher than for FOREIGN0.

```
##
             Reference
## Prediction
                0
                    1
##
            0 50 52
            1 27 121
##
##
            Sensitivity
                                  Specificity
                                                     Pos Pred Value
##
              0.6493506
                                    0.6994220
                                                           0.4901961
##
         Neg Pred Value
                                    Precision
                                                              Recall
##
              0.8175676
                                    0.4901961
                                                           0.6493506
##
                                   Prevalence
                                                     Detection Rate
                      F1
##
              0.5586592
                                    0.3080000
                                                           0.2000000
## Detection Prevalence
                            Balanced Accuracy
##
              0.4080000
                                    0.6743863
```

Variable importance for logistic regression

```
## Preparation of a new explainer is initiated
##
    -> model label
                         : AIC reduced Logistic Regression
##
    -> data
                            446 rows 30 cols
##
    -> target variable
                            446 values
##
    -> predict function :
                            yhat.glm will be used ( default )
                        : No value for predict function target column. ( default )
##
    -> predicted values
##
    -> model info
                            package stats , ver. 4.1.3 , task classification ( default )
    \rightarrow predicted values : numerical, min = 0.007541882 , mean = 0.5 , max = 0.9975191
##
##
    -> residual function : difference between y and yhat ( default )
                         : numerical, min = 0.05702613, mean = 1, max = 1.96659
##
    -> residuals
```

A new explainer has been created!

importance_logreg <- calculate_importance(explainer_logreg)
plot(importance_logreg)</pre>

vip(mod.logreg.sel)

Listed above are the most important variables for the logarithmic regression we reduced.

3. K-Nearest Neighbor To perform a k-nearest neighbor method, we do not need to balance the data so we will use the unbalanced training set.

We first try to model it using a 2-NN (with Euclidean distance). Note that the model is fitting on the training set and the predictions are computed on the test set.

##	Reference		
##	Prediction 0 1		
##	0 21 45		
##	1 56 128		
##	Sensitivity	Specificity	Pos Pred Value
##	0.2727273	0.7398844	0.3181818
##	Neg Pred Value	Precision	Recall
##	0.6956522	0.3181818	0.2727273
##	F1	Prevalence	Detection Rate
##	0.2937063	0.3080000	0.0840000
##	Detection Prevalence	Balanced Accuracy	
##	0.2640000	0.5063058	

The table is read as follow:

- We predicted 21 Bad credits and there were indeed 21 observed Bad credits. But the prediction misjudges 45 good credits by predicting bad credits.
- We predicted 128 Good credits as it was in fact a Good credits but 56 where predicted as Good while it
 was in fact Bad.

The prediction is not perfect. We need to try to improve the prediction by changing K at that point. Therefore, we use K=3.

```
##
             Reference
## Prediction
                0
                     1
##
            0
               14 28
            1 63 145
##
##
            Sensitivity
                                   Specificity
                                                      Pos Pred Value
##
               0.1818182
                                     0.8381503
                                                           0.3333333
         Neg Pred Value
##
                                     Precision
                                                              Recall
##
               0.6971154
                                     0.3333333
                                                           0.1818182
                      F1
##
                                    Prevalence
                                                      Detection Rate
##
               0.2352941
                                     0.3080000
                                                           0.0560000
## Detection Prevalence
                            Balanced Accuracy
##
               0.1680000
                                     0.5099842
```

The table is read as follow:

- We predicted 14 Bad credits and they were indeed observed Bad credits. But the prediction misjudges 28 good credits by predicting bad credits.
- We predicted 145 Good credits as it was in fact a Good credits but 6 where predicted as Good while it
 was in fact Bad.
- 4. Linear Support Vector Machine The next model is the linear Support Vector Machine.

```
##
## Call:
## svm(formula = RESPONSE ~ ., data = German_Credit.tr.subs, kernel = "linear")
##
##
## Parameters:
##
      SVM-Type: C-classification
##
    SVM-Kernel:
                 linear
##
          cost:
                 1
##
## Number of Support Vectors:
                                246
##
             Reference
## Prediction
                0
                    1
               50 50
##
            1 27 123
##
                                                     Pos Pred Value
##
            Sensitivity
                                  Specificity
##
              0.6493506
                                     0.7109827
                                                           0.5000000
##
         Neg Pred Value
                                     Precision
                                                              Recall
              0.8200000
                                     0.5000000
##
                                                           0.6493506
##
                      F1
                                   Prevalence
                                                      Detection Rate
##
              0.5649718
                                     0.3080000
                                                           0.2000000
                            Balanced Accuracy
## Detection Prevalence
##
              0.4000000
                                     0.6801667
```

Tunning the hyperparameters of Linear SVM We want to select the good hyperparameters for our linear SVM.

```
## Support Vector Machines with Linear Kernel
##
## 446 samples
```

```
30 predictor
##
    2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 402, 400, 402, 401, 402, 402, ...
## Resampling results:
##
##
     Accuracy
                Kappa
##
     0.7264361 0.4530209
## Tuning parameter 'C' was held constant at a value of 1
We see that we have a good accuracy (0.72).
## Support Vector Machines with Linear Kernel
##
## 446 samples
  30 predictor
##
    2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 402, 400, 402, 401, 402, 402, ...
## Resampling results across tuning parameters:
##
##
            Accuracy
                       Kappa
##
     1e-02 0.7264339 0.4532044
##
     1e-01 0.7286056 0.4575791
##
     1e+00 0.7264361 0.4530209
##
     1e+01 0.7108278 0.4216992
##
     1e+02 0.7130501 0.4261940
##
     1e+03 0.7197672 0.4397558
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was C = 0.1.
```



```
Reference
##
## Prediction
                 0
                     1
                49
                   49
##
##
             1
                28 124
##
             Sensitivity
                                   Specificity
                                                      Pos Pred Value
##
               0.6363636
                                     0.7167630
                                                            0.5000000
##
         Neg Pred Value
                                     Precision
                                                               Recall
               0.8157895
                                     0.5000000
                                                            0.6363636
##
##
                      F1
                                    Prevalence
                                                       Detection Rate
##
               0.5600000
                                     0.3080000
                                                            0.1960000
## Detection Prevalence
                             Balanced Accuracy
               0.3920000
                                     0.6765633
##
```

5. Radial Basis Support Vector Machine We try now with a radial basis kernel (the default).

```
German_credit.rbsvm <- svm(RESPONSE ~ ., data=German_Credit.tr.subs, kernel="radial")
German_credit.rbsvm</pre>
```

```
##
## svm(formula = RESPONSE ~ ., data = German_Credit.tr.subs, kernel = "radial")
##
##
##
  Parameters:
##
      SVM-Type:
                 C-classification
##
    SVM-Kernel:
                 radial
##
          cost:
##
## Number of Support Vectors:
```

```
German_credit.rbsvm.pred <- predict(German_credit.rbsvm,</pre>
                                    newdata = German_credit.te)
cm_rbsvm <- confusionMatrix(data=German_credit.rbsvm.pred,</pre>
                            reference = German_credit.te$RESPONSE )
cm_rbsvm$table
##
             Reference
## Prediction
               0
               54 52
            1 23 121
##
cm_rbsvm$byClass
##
            Sensitivity
                                 Specificity
                                                   Pos Pred Value
##
              0.7012987
                                   0.6994220
                                                         0.5094340
##
                                   Precision
         Neg Pred Value
                                                            Recall
##
              0.8402778
                                   0.5094340
                                                         0.7012987
##
                     F1
                                  Prevalence
                                                    Detection Rate
##
              0.5901639
                                   0.3080000
                                                         0.2160000
## Detection Prevalence
                           Balanced Accuracy
              0.4240000
                                   0.7003603
Tunning the hyperparameters of Radial basis SVM
## Support Vector Machines with Radial Basis Function Kernel
##
## 446 samples
##
   30 predictor
##
     2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 402, 400, 402, 401, 402, 402, ...
## Resampling results across tuning parameters:
##
##
     sigma C
                  Accuracy
                             Kappa
##
     0.01
                  0.7309289
                             0.4618150
               1
##
     0.01
              10 0.6971476 0.3942416
##
     0.01
             100
                  0.6907708 0.3814209
##
     0.01
             500
                  0.6975889
                             0.3950572
##
     0.01
            1000
                  0.6975889 0.3950572
##
     0.02
                  0.7309816 0.4620420
               1
##
     0.02
             10
                  0.6972925 0.3946754
##
     0.02
             100
                  0.7064273
                             0.4127482
##
     0.02
             500
                  0.7064273 0.4127482
##
     0.02
            1000
                  0.7064273 0.4127482
##
                  0.7038647 0.4085756
     0.05
               1
##
     0.05
              10
                  0.6860299
                             0.3726705
##
     0.05
                  0.6860299 0.3726705
             100
##
     0.05
             500 0.6860299 0.3726705
##
     0.05
            1000
                  0.6860299
                             0.3726705
##
     0.10
              1
                  0.6588603
                             0.3190546
```

##

0.10

10 0.6611792 0.3234506

```
100 0.6611792 0.3234506
##
     0.10
##
     0.10
             500
                   0.6611792 0.3234506
     0.10
##
             1000 0.6611792 0.3234506
##
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.02 and C = 1.
                                              Sigma
   0.01
          0
                            0.02
                                                     0.05
                                                                              0.1
                                                                                   0
Accuracy (Cross-Validation)
    0.72
    0.70
    0.68
    0.66
              0
                           200
                                        400
                                                      600
                                                                    800
                                                                                 1000
                                              Cost
     sigma C
## 6 0.02 1
German_credit.rbsvm.tuned <- svm(RESPONSE ~ .,data = German_Credit.tr.subs,</pre>
                                   kernel = "radial",
                                   gamma = svm_Radial_Grid$bestTune$sigma,
                                   cost = svm_Radial_Grid$bestTune$C)
German_credit.rbsvm.tuned.pred <- predict(German_credit.rbsvm.tuned,</pre>
                                             newdata = German_credit.te)
cm_rbsvm_tuned <- confusionMatrix(data=German_credit.rbsvm.tuned.pred,</pre>
                                    reference = German_credit.te$RESPONSE)
cm_rbsvm_tuned$table
              Reference
##
## Prediction
                 0
                    1
##
                54 53
                23 120
```

Sensitivity Specificity Pos Pred Value

cm_rbsvm_tuned\$byClass

##	0.7012987	0.6936416	0.5046729
##	Neg Pred Value	Precision	Recall
##	0.8391608	0.5046729	0.7012987
##	F1	Prevalence	Detection Rate
##	0.5869565	0.3080000	0.2160000
##	Detection Prevalence	Balanced Accuracy	
##	0.4280000	0.6974702	

6. Neural Network - Simple hyperparameter tuning To select the good parameters, we build a search grid and fit the model with each possible value in the grid. This is brute force and time consuming. The best model is selected among all the possible choices.

best Neural Networks parameters would be to choose 3 hidden layers, with a decay of 0.4.

The

##	Reference		
##	Prediction 0 1		
##	0 52 53		
##	1 25 120		
##	Sensitivity	Specificity	Pos Pred Value
##	0.6753247	0.6936416	0.4952381
##	Neg Pred Value	Precision	Recall
##	0.8275862	0.4952381	0.6753247
##	F1	Prevalence	Detection Rate
##	0.5714286	0.3080000	0.2080000
##	Detection Prevalence	Balanced Accuracy	
##	0.4200000	0.6844831	

7. Gradient Boosting The Gradient Boosting model accepts only numerical values so we have some transformation to do on our data in order to use it.

```
## ##### xgb.Booster
## raw: 31.2 Mb
## call:
##
     xgb.train(params = xgb_params, data = xgb_train, nrounds = 5000,
##
       verbose = 1)
## params (as set within xgb.train):
     booster = "gbtree", eta = "0.01", max_depth = "8", gamma = "4", subsample = "0.75", colsample_bytr
## xgb.attributes:
##
    niter
## callbacks:
     cb.print.evaluation(period = print_every_n)
## # of features: 46
## niter: 5000
## nfeatures : 46
Here we have an accuracy of 68.4%. It is good but there is room for improvement.
##
             Reference
## Prediction
                0
                    1
##
            0 57 59
            1 20 114
##
                                  Specificity
                                                     Pos Pred Value
##
            Sensitivity
##
              0.7402597
                                    0.6589595
                                                          0.4913793
##
         Neg Pred Value
                                    Precision
                                                             Recall
##
              0.8507463
                                    0.4913793
                                                          0.7402597
##
                                   Prevalence
                                                     Detection Rate
              0.5906736
                                    0.3080000
##
                                                          0.2280000
## Detection Prevalence
                            Balanced Accuracy
##
              0.4640000
                                    0.6996096
Cross-validation with caret The 10-CV can be easily obtained from caret.
First, set up the splitting data method using the trainControl function.
## Generalized Linear Model with Stepwise Feature Selection
##
## 750 samples
##
  30 predictor
     2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 674, 676, 675, 675, 675, 675, ...
## Resampling results:
##
##
     Accuracy
                Kappa
##
     0.7479834 0.3632119
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction
               0
                    1
            0 35 23
            1 42 150
##
```

Accuracy: 0.74

##

```
95% CI: (0.681, 0.7932)
##
##
       No Information Rate: 0.692
       P-Value [Acc > NIR] : 0.05592
##
##
##
                     Kappa: 0.3452
##
   Mcnemar's Test P-Value: 0.02557
##
##
##
               Sensitivity: 0.4545
               Specificity: 0.8671
##
##
            Pos Pred Value: 0.6034
            Neg Pred Value: 0.7812
##
##
                Prevalence: 0.3080
            Detection Rate: 0.1400
##
##
      Detection Prevalence: 0.2320
##
         Balanced Accuracy: 0.6608
##
##
          'Positive' Class: 0
##
```

Bootstrap with 10 replicates We now apply the bootstrap with 10 replicates. Like for CV, we use caret.

The approach is the same as before. We only need to change the method in the **trainControl** function. The corresponding method is "boot632".

100 replicates is veryyyy long to run... can do that on less sample?? I put 10, takes 3 minutes for me

```
## Generalized Linear Model with Stepwise Feature Selection
##
## 750 samples
##
   30 predictor
     2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Bootstrapped (10 reps)
## Summary of sample sizes: 750, 750, 750, 750, 750, 750, ...
## Resampling results:
##
##
     Accuracy
                Kappa
     0.7544188 0.3893564
##
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                0
               35
                   23
##
##
               42 150
##
##
                  Accuracy: 0.74
                    95% CI: (0.681, 0.7932)
##
       No Information Rate: 0.692
##
##
       P-Value [Acc > NIR] : 0.05592
##
##
                     Kappa: 0.3452
##
   Mcnemar's Test P-Value: 0.02557
##
```

Table 2: Scores of the models

Table 3: Scores of the KNN models

	2-Nearest neighbor	3-Nearest neighbor
Accuracy	0.5960	0.6360
Kappa	0.0131	0.0229
AccuracyLower	0.5323	0.5730
AccuracyUpper	0.6574	0.6957
AccuracyNull	0.6920	0.6920
AccuracyPValue	0.9995	0.9752
McnemarPValue	0.3197	0.0004

Sensitivity: 0.4545 ## Specificity: 0.8671 ## Pos Pred Value: 0.6034 Neg Pred Value: 0.7812 ## Prevalence: 0.3080 ## ## Detection Rate: 0.1400 ## Detection Prevalence : 0.2320 Balanced Accuracy: 0.6608 ## ## ## 'Positive' Class : 0

Review of statistics

Once all the models were modelized we have to compare them according to their scores and metrics. Below we summarized all their accuracy into one table.

Another table is done to compare the KNN because they were not performed on the balanced dataset.

Conclusion

Our recommendations/Suggestions

References

Annexes