Métodos de Otimização de Terceira Ordem

Daiane Gonçalves Ferreira

Orientadora: Profa. Dra. Margarida Pinheiro Mello Co-orientadora: Profa. Dra. Maria Aparecida Diniz Ehrhardt

> Mestrado em Matemática Aplicada IMECC - Unicamp

1 de fevereiro de 2013

- Introdução
- 2 1 variável
- n variáveis
- Otimização
- Testes

Introdução

- Problema: Zero de função ←→ Otimização
- Métodos de 2^a ordem Método de Newton
- Métodos de 3^a ordem Método de Halley
- Custo computacional
 1 variável n variáveis
- Esparsidade

Problema de zero de função

$$f: \mathbb{R}^n \to \mathbb{R}^n \in C^2$$

(P1) Encontrar
$$x^*$$
 tal que $f(x^*) = 0$

Método de Newton

- Newton \rightarrow 1669 Raphson \rightarrow 1690
- Método iterativo: x_0, x_1, x_2, \cdots
- Iteração k:

```
(P1') Encontrar x_{k+1} tal que \ell_k(x_{k+1}) = 0

\ell_k(x) = \text{polinômio grau 1}

grau de contato 1 com f(x) em x = x_k
```

Convergência quadrática

Método de Halley

- Halley → 1694
- Método "descoberto" com frequência
- Método iterativo: x_0, x_1, x_2, \cdots
- Iteração k:

(P1") Encontrar
$$x_{k+1}$$
 tal que $h_k(x_{k+1}) = 0$

$$h_k(x) = \frac{(x - x_k) + c}{a(x - x_k) + b}$$
grau de contato 2 com $f(x)$ em $x = x_k$

Convergência cúbica

Newton

$$\ell_k(x) = f(x_k) + f'(x_k)(x - x_k)$$

Newton

$$\ell_k(x) = f(x_k) + f'(x_k)(x - x_k)$$
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Halley

$$h_k(x) = \frac{(x - x_k) + c}{a(x - x_k) + b},$$

Halley

$$h_k(x) = \frac{(x - x_k) + c}{a(x - x_k) + b}, \qquad \begin{cases} a = \frac{-f''(x_k)}{2f'(x_k)^2 - f(x_k)f''(x_k)} \\ b = \frac{2f'(x_k)}{2f'(x_k)^2 - f(x_k)f''(x_k)} \\ c = \frac{2f(x_k)f'(x_k)}{2f'(x_k)^2 - f(x_k)f''(x_k)} \end{cases}$$

Newton - retas tangentes

Halley - hipérboles tangentes

Convergência

Newton

Se

$$f: \mathbb{R} \to \mathbb{R} \in C^2$$

 $f(x^*) = 0, f'(x^*) \neq 0$
 (x_k) a sequência de Newton
 $x_k \to x^*$

Então

a convergência é quadrática

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = cte$$

Convergência

Newton

Se

$$f: \mathbb{R} \to \mathbb{R} \in C^2$$

 $f(x^*) = 0, f'(x^*) \neq 0$
 (x_k) a sequência de Newton
 $x_k \to x^*$

Então

a convergência é quadrática

$$\lim_{k\to\infty}\frac{|x_{k+1}-x^*|}{|x_k-x^*|^2}=cte$$

Halley

Se

$$f: \mathbb{R} \to \mathbb{R} \in C^3$$

 $f(x^*) = 0, f'(x^*) \neq 0$
 (x_k) a sequência de Halley
 $x_k \to x^*$

Então

a convergência é cúbica

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^3} = cte$$

Testes

- MATLAB
- 30 funções: f₁ · · · f₃₀
- Funções pelo menos C3
- Converge para pelo menos um método
- 20 testes com ponto inicial aleatório
- Testes com falha desconsiderados
- Média aritmética de iterações e tempo

Falhas

- 8 problemas com falhas
- Newton → 86 falhas
- Halley → 8 falhas
- 2 problemas → Newton nunca converge

$$f_{17}(x) = \sqrt[3]{x^2 - 9}$$

$$f_{25}(x) = \frac{x^4 + \sqrt[8]{x^2}}{x^2 + 3}$$

Falhas

Testes com êxito

Tempo

Testes com falha

Tempo

Fórmula iterativa

Newton

$$X_{k+1} = X_k - [F'(X_k)]^{-1}F(X_k)$$

Halley

$$X_{k+1} = X_k - \left[I - \frac{1}{2}F'(X_k)^{-1}F''(X_k)F'(X_k)^{-1}F(X_k)\right]^{-1}F'(X_k)^{-1}F(X_k)$$

Convergência

Newton

Se

$$F: \mathbb{R}^n \to \mathbb{R}^n \in C^2$$

 $F(x^*) = 0$, $F'(x^*)$ não singular
 (x_k) a sequência de Newton
 $x_k \to x^*$

Então

a convergência é quadrática

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} = cte$$

Convergência

Newton

Se

$$F: \mathbb{R}^n o \mathbb{R}^n \in C^2$$

 $F(x^*) = 0, F'(x^*)$ não singular
 (x_k) a sequência de Newton
 $x_k o x^*$

Então

a convergência é quadrática

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} = cte$$

Halley

Se

$$F: \mathbb{R}^n \to \mathbb{R}^n \in C^2$$

 F'' Lipschitz contínua
 $F(x^*) = 0, F'(x^*)$ não singular
 (x_k) a sequência de Halley
 $x_k \to x^*$

Então

a convergência é cúbica

$$\lim_{k\to\infty}\frac{\|x_{k+1}-x^*\|}{\|x_k-x^*\|^3}=cte$$

Condições de Otimalidade

Condição necessária de 1ª ordem

Seja $f: \mathbb{R}^n \to \mathbb{R}$ diferenciável no ponto $x^* \in \mathbb{R}^n$. Se x^* é um minimizador local de f, então

$$\nabla f(x^*) = 0$$

Um ponto $x^* \in \mathbb{R}^n$ que cumpre a condição acima é dito ponto crítico ou ponto estacionário da função f.

Zero de função \longleftrightarrow Otimização

(P2) Encontrar \bar{x} que minimiza f(x)

Zero de função \longleftrightarrow Otimização

(P2) Encontrar \bar{x} que minimiza f(x)

(P3) Encontrar
$$\bar{x}$$
 tal que $F(\bar{x}) = 0$, onde $F(x) = \nabla f(x)$

Método de Newton para o Problema de Otimização

$$X_{k+1} = X_k - [\nabla^2 f(X_k)]^{-1} \nabla f(X_k)$$

Método de Newton para o Problema de Otimização

$$x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$$

Método de Halley para o Problema de Otimização

$$x_{k+1} = x_k - \left[I - \frac{1}{2} \nabla^2 f(x_k)^{-1} \nabla^3 f(x_k) \nabla^2 f(x_k)^{-1} \nabla f(x_k)\right]^{-1} \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

Método de Newton

$$x_{k+1} = x_k - \underbrace{\nabla^2 f(x_k)^{-1} \nabla f(x_k)}_{d}$$

Método de Newton

$$x_{k+1} = x_k - \underbrace{\nabla^2 f(x_k)^{-1} \nabla f(x_k)}_{d}$$

Necessita $\nabla f(x)$ e $\nabla^2 f(x)$

Método de Newton

$$x_{k+1} = x_k - \underbrace{\nabla^2 f(x_k)^{-1} \nabla f(x_k)}_{d}$$

Necessita
$$\nabla f(x)$$
 e $\nabla^2 f(x)$
 $\nabla^2 f(x_k) d = \nabla f(x_k)$

Método de Newton

$$x_{k+1} = x_k - \underbrace{\nabla^2 f(x_k)^{-1} \nabla f(x_k)}_{d}$$

Necessita $\nabla f(x)$ e $\nabla^2 f(x)$ $\nabla^2 f(x_k) d = \nabla f(x_k)$ Resolução de um sistema linear

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} \overbrace{(\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{S}}_{d}$$

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1}}_{d} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{s}$$

Necessita
$$\nabla f(x)$$
, $\nabla^2 f(x)$ e $\nabla^3 f(x)$

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{s}}_{d}$$

$$\nabla^2 f(x_k) s = \nabla f(x_k)$$

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{s}}_{d}$$

$$\nabla^2 f(x_k) s = \nabla f(x_k)$$

Resolução de um sistema linear

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{s}}_{d}$$

$$P = \nabla^3 f(x_k) s$$

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{s}}_{d}$$

$$P = \nabla^3 f(x_k) s$$

Produto tenso · vetor

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{s}}_{d}$$

$$\nabla^2 f(x_k) M = P$$

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{S}}_{d}$$

$$\nabla^2 f(x_k) M = P$$

Resolução de n sistemas lineares

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{S}}_{d}$$

$$[I-\tfrac{1}{2}M]d=s$$

Método de Halley

$$X_{k+1} = X_k - \underbrace{\left[I - \frac{1}{2} (\nabla^2 f(x_k))^{-1} \underbrace{\nabla^3 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{P}\right]^{-1} \underbrace{(\nabla^2 f(x_k))^{-1} \nabla f(x_k)}_{s}}_{d}$$

$$[I-\tfrac{1}{2}M]d=s$$

Resolução de um sistema linear

Análise ingênua

Gundersen e Steihaug (2006)

Testes preliminares no MATLAB

Classe de funções criada → estrutura de esparsidade

$$f_n(x) = \sum_{i=1}^{\frac{n}{2}} e^{x_i} \operatorname{sen}(x_{n-i+1})$$

- Dimensão de 10 a 400
- Ponto inicial → vetor de 'uns'

Esparsidade dos problemas

Hessiana da função f₁₀

Característica dos Problemas

- Estrutura de esparsidade comum na prática
- Aproveitar a esparsidade dos problemas podem tornar Halley competitivo com Newton
- Hessiana e Tensor simétricos
- Hessiana e o tensor programados no MATLAB
- Resolução dos sistemas → LDL

Implementação densa

$$f_n(x) = \sum_{i=1}^{\frac{n}{2}} e^{x_i} \operatorname{sen}(x_{n-i+1})$$

n	Método de Newton		Método de Halley		
''	iterações	tempo (s)	iterações	tempo (s)	
10	21	1.003	11	1.457	
20	21	1.627	11	5.960	
30	21	2.632	11	17.560	
40	21	3.867	11	39.470	
50	22	5.599	11	78.170	
100	22	16.630	11	948.600	

Implementação esparsa

$$f_n(x) = \sum_{i=1}^{\frac{n}{2}} e^{x_i} \operatorname{sen}(x_{n-i+1})$$

n	Método de Newton		Método de Halley	
"	iterações	tempo (s)	iterações	tempo (s)
10	21	3.697	11	2.181
20	21	2.556	11	4.054
30	21	3.939	11	6.306
40	21	4.969	11	8.562
50	22	6.620	11	11.580
100	22	17.00	11	33.760
200	22	67.230	11	142.100
300	22	132.700	11	302.00
400	23	215.900	12	473.900

Hessiana simbólica

$$H(x + ts), t \in \mathbb{R}$$

Hessiana simbólica

$$H(x + ts), t \in \mathbb{R}$$

derivar com relação t

$$\frac{\partial H(x+ts)}{\partial t} = T(x+ts)s$$

Hessiana simbólica

$$H(x + ts), t \in \mathbb{R}$$

derivar com relação t

$$\frac{\partial H(x+ts)}{\partial t} = T(x+ts)s$$

$$t = 0$$

$$T(x+ts)s|_{t=0} = T(x)s$$

Hessiana simbólica

$$H(x + ts), t \in \mathbb{R}$$

derivar com relação t

$$\frac{\partial H(x+ts)}{\partial t} = T(x+ts)s$$

$$t = 0$$

$$T(x+ts)s|_{t=0} = T(x)s$$

Produto tensor · vetor

Implementação modificada

$$f_n(x) = \sum_{i=1}^{\frac{n}{2}} e^{x_i} \operatorname{sen}(x_{n-i+1})$$

n	Método de Newton		Método de Halley		
	iterações	tempo (s)	iterações	tempo (s)	
10	21	1.138	11	1.397	
20	21	2.144	2.144 11		
30	21	3.298	11	3.599	
40	21	4.632	11	5.038	
50	22	6.252	11	6.626	
100	22	16.170	11	16.990	
200	22	65.490	11	67.870	
300	22	127.600	11	131.100	
400	23	207.800	12	213.100	

Problemas

CUTEr

	DODTIO	NONDQUAR		
ARWHEAD	LUCHIC		HING-VALL	IJIXIVIAANE
/ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Dairio	11011000111		

• Andrei (2008)

TRIDIAG1	HIMMELBLAU	PSC1	QF2	LIARWHD

ARWHEAD

Iteração

Tempo

DQRTIC

Iteração

Tempo

NONDQUAR

Iteração

Tempo

ENGVAL1

Iteração

Tempo

DIXMAANE

Iteração

TRIDIAG1

HIMMELBLAU

PSC₁

QF2

LIARWHD

Considerações Finais

- Ordem de convergência × Custo computacional
- Modificação de implementação
- Melhora significativa no método de Halley
- Limitações do MATLAB

Referências

- **Geir Gundersen e Trond Steighaus.** Sparsity in higher order methods in optimization. Technical Report 327, Department of Informatics, University of Bergen, June 2006.
- **Geir Gundersen e Trond Steighaus.** On large-scale unconstrained optimization problems and higher order methods. *Optimization Methods & Software, Vol. 25, No. 3, June 2010, 337-358*
- **T. R. Scavo e J. B. Thoo.** On the geometry of Halley's method. *American Mathematical Manthly, 102 (5) (1995) 417–426*
- **Neculai Andrei.** An unconstrained optimization test functios collection. *Advanced Modeling and Optimization, Vol. 10, No 1, 2008*
- I. Bongartz, A. R. Conn, Nick Gould, and Ph. L. Toint. "CUTE: constrained and unconstrained testing environment". In: ACM Trans. Math. Softw. 21.1 (1995), pp. 123.
- Richard L. Burden e J. Douglas Faires. Análise Numérica. *Pioneira Thomson Learning, 2003.*
- **G.H. Brown Jr.** On Halley's variation of Newton's method. *American Mathematical Monthly, 84(9):726–728, 1977.*