ProbLimI: Pset I

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set I.

Question 1.

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $A \in \mathcal{F}$ and $A_k \in \mathcal{F}$ $(k \ge 1)$.
 - (i) Prove the sub-additivity property: $\mathbb{P}(\bigcup_k A_k) \leq \sum_k \mathbb{P}(A_k).$
 - (ii) Prove the *continuity* property: If $A_k \uparrow A$ (i.e. $A_k \subseteq A_{k+1}$ for all k and $\cup_k A_k = A$) then $\mathbb{P}(A_k) \uparrow \mathbb{P}(A)$, and if $A_k \downarrow A$ (i.e. $A_k \supseteq A_{k+1}$ for all k and $\cap_k A_k = A$) then $\mathbb{P}(A_k) \downarrow \mathbb{P}(A)$.

Question 2.

- 2. Let \mathcal{F} be a field.
 - (i) Show that if $\{\mathcal{G}_{\alpha}\}$ is a (possibly uncountable) family of σ -fields then $\bigcap_{\alpha} \mathcal{G}_{\alpha}$ is also a σ -field. Conclude that $\sigma(\mathcal{F}) = \bigcap \{\mathcal{G} \supseteq \mathcal{F} : \mathcal{G} \text{ is a } \sigma\text{-field}\}.$
 - (ii) Prove that if \mathcal{M} is a monotone class and $\mathcal{F} \subseteq \mathcal{M}$ then $\sigma(\mathcal{F}) \subseteq \mathcal{M}$. Conclude that $\sigma(\mathcal{F})$ is equal to $m(\mathcal{F}) := \bigcap \{\mathcal{M} \supseteq \mathcal{F} : \mathcal{M} \text{ is a monotone class}\}.$

Question 3.

3. Prove that if $f:\mathbb{R}^n \to [-\infty,\infty]$ is lower semi-continuous (that is, $\liminf_{\|x-x_0\|\downarrow 0} f(x) \ge f(x_0)$ for every $x_0 \in \mathbb{R}^n$) then it is a Borel function, and conclude that continuous functions are Borel measurable. (*Hint: first show every set of the form* $\{x: f(x) \le a\}$ $(a \in \mathbb{R})$ is closed.)

Question 4.

- 4. Let $m\mathcal{F}$ denote the set of measurable functions from $(\Omega,\mathcal{F}) \to ([-\infty,\infty],\mathcal{B}_{[-\infty,\infty]})$, where $\mathcal{B}_{[-\infty,\infty]} = \sigma([-\infty,a]:a\in\mathbb{R})$. Prove that
 - (a) every simple function $f:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ belongs to $m\mathcal{F}$.
 - (b) if $X_n \in m\mathcal{F}$ $(n \geq 1)$ then $\liminf_{n \to \infty} X_n$ and $\limsup_{n \to \infty} X_n$ also belong to $m\mathcal{F}$.

Conclude that $m\mathcal{F}$ is the smallest class of functions satisfying properties (a) and (b).