Operations Research I: Models & Applications Case Study: Call Center Personnel Scheduling

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ▶ Background, motivation, and research objective.
- ▶ Problem description.
- ► Model formulation.
- ► Results.

► In a call center, many customer service representatives (CSR) take turns to serve customers.

- ➤ To meet the desired service level, historical in-coming calls have been analyzed to calculate the **ideal number of CSRs** in every time period.
- ► For example:

Hour	Mon.	Tue.	Wed.	Thu.	Fri.
9	46	36	36	37	35
10	46	36	38	36	35
11	47	37	38	35	11
12	29	23	24	23	22
13	36	31	31	28	29
14	20	35	37	36	35
15	38	35	35	31	35
16	35	32	32	32	30
17	28	23	24	23	7
18	18	18	18	15	15
19	6	5	16	16	5
20	20	4	15	15	4

CSR scheduling

- ► Even though we know the ideal number of CSRs in every time period, scheduling is still difficult:
 - One's work hours should be continuous in each day.
 - ▶ Some people are needed (not allowed) in some periods. E.g., there must be at least one manager in each night shift, pregnant women should not work at night, etc.
 - ► Fairness. E.g., one CSR should work at night for at most once in a week.
- ► Traditionally, CSR scheduling is done by hands.
 - ► Tedious and easy to make errors.
 - ▶ It takes one senior manager one whole day to create a (not so good) schedule: Sometimes there is shortage but sometimes there are extra CSRs.
 - ▶ Difficult to deal with emergent issues and accidents.

Scheduling with Operations Research

- ► This is an **allocation** problem.
 - ▶ The number of CSRs is limited.
 - ▶ Try to meet the demands under resource limitation: Minimizing the total shortage.
 - ightharpoonup Allocation problem \Rightarrow Linear programming.
- ► This is a **selection** problem.
 - ▶ If one works in the morning and afternoon, she/he cannot work in the evening in that day.
 - ▶ If one works at night on Monday, she/he cannot do that from Tuesday to Friday in that week.
 - ightharpoonup Selection problem \Rightarrow Integer programming.
- ► This is unlikely a **balancing** problem.
 - Nonlinear programming will not be used.

Research objective

Research objective

0000

- Let's formulate an **integer program**:
 - To tell each CSR which days to work (in which way) for the next month.
 - ► To minimizing the total shortage for the next month.
 - ▶ While following the scheduling rules set by the company.

Road map

- ▶ Background, motivation, and research objective.
- ▶ Problem description.
- ▶ Model formulation.
- ► Results.

Decision making

- ▶ What exactly is the **decision** we need to make?
 - ► For each CSR, we should tell her/him which days to have days off.
 - ▶ For each work day of each CSR, we should tell her/him when to start work, leave the office, and take a break.
- ▶ In practice, managers list **shifts** to define work hours.
- ► As an example:
 - ▶ Shift 1: 8:00-17:00 with a lunch break at 12:00-13:00.
 - ▶ Shift 2: 8:30-17:30 with a lunch break at 12:30-13:30.
 - ► Shift 3: 8:30-17:30 with a lunch break at 12:00-13:00.
 - **...**
 - Shift 0: a day off.
- ► The decision we need to make is to assign one shift to each CSR for each day (except holidays).

An illustration for shifts

	Time												
Shift													
	9	10	11	12	13	14	15	16	17	18	19	20	
0													
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													

work hour

rest hour

leave hour

Research objective

Objective: minimizing the total shortage

- ightharpoonup The number of CSRs needed (A) in a time period is known.
- \blacktriangleright After assigning shifts to CSRs, we may calculate the number of CSRs being on duty (B) in that period.
- ▶ The amount of **shortage** is thus $\max\{A B, 0\}$ in each period.

CSR S	Shift	Time											
	SIIII	9	10	11	12	13	14	15	16	17	18	19	20
01	0												
02	1												
03	1												
04	4												
05	7												
06	7												
07	15												
Total CSRs		2	3	5	3	4	4	4	5	6	4	3	1
Dem	nand	3	3	4	4	4	4	4	3	3	3	2	2
Shor	tage	1	0	0	1	0	0	0	0	0	0	0	1

Research objective

Hard constraints (must have)

- ► Each CSR should be assigned to exactly one shift per day.
- ► A CSR may require a specific shift on a certain day.
 - ► E.g., a CSR chooses a day off in advance.
- ► Each CSR should be assigned to at most one night shift (a shift that asks a CSR to work after 18:00 for at least one period) per week.
- ▶ There are some requirements regarding some shifts in certain weekdays.
 - ▶ E.g., at most 3 CSRs may have a day off on each Monday.
 - ▶ E.g., a CSR can at most take 2 night shifts on Thursday in a month.
- ▶ There are some requirements regarding CSRs in some shifts.
 - ▶ E.g., at least one manager in every night shift.
 - E.g. CSRs with more than 2 years of experience in the call center should account for more than 50% of the total on-duty CSRs in a night period.

Soft constraints (nice to have)

- ▶ In many cases, managers also have some **soft constraints** in mind: They may be violated if needed, but hopefully they are satisfied.
- ► Fairness among periods: It is good to have similar extra on-duty CSRs for every period.
 - ▶ Rather than having 5 extra CSRs in period 1 and only 1 extra CSR in period 2, it is better to have 3 extra CSRs in each period.
- ► Fairness among CSRs: It is good to have similar numbers of night shifts for every CSR.
 - ▶ Rather than letting CSR A have 4 night shifts and CSR B have 2 night shifts, it is better to assign 3 night shifts to each of them.

- ▶ Background, motivation, and research objective.
- ▶ Problem description.
- ► Model formulation.
- ► Results.

Sets, indices, and variables

- Let I, J, K, and T be the **sets** of CSRs, days in which the call center is open, shifts, and periods in a day.
- ▶ Let $i \in I$ denote the *i*th CSR, $j \in J$ denote the *j*th day, $k \in K$ denote the *k*th shift, and $t \in T$ denote the *t*th period. i, j, k, and t are the indices.
- ► The core decision variable:

$$x_{ijk} = \begin{cases} 1 & \text{if CSR } i \text{ is assigned to shift } k \text{ in day } j \\ 0 & \text{otherwise} \end{cases}, i \in I, j \in J, k \in K.$$

One derived decision variable:

 y_{jt} = the number of CSR shortage in period t of day $j, t \in T, j \in J$.

Research objective

Objective function

- ► The objective function should include the major **objective** (minimizing the total lack of CSRs) and two **soft constraints** (fairness among periods and fairness among CSRs).
 - Let w_1 be the maximum number of extra on-duty CSRs among all periods.
 - Let w_2 be the maximum number of night shifts among all CSRs.
- ► A weighted average form is often adopted.
- ► The objective function is

$$\min P_0 \sum_{j \in J} \sum_{t \in T} y_{jt} + P_1 w_1 + P_2 w_2,$$

where P_0 , P_1 , and P_2 are the weights to be determined by the manager.

Constraints

- ▶ While there are many constraints to be formulated, here we only take four sets of constraints as an example:
 - For each CSR and each day, she/he can only be assigned to one shift.
 - ▶ There should be some constraints to calculate the total shortage (i.e., to link x_{ijk} and y_{jt}).
 - There should be some constraints to calculate the maximum number of extra on-duty CSRs among periods (i.e., to link x_{ijk} and w_1).
 - ▶ There should be some constraints to calculate the maximum number of night shifts among CSRs (i.e., to link x_{ijk} and w_2).
- ► How will you formulate these constraints?
- ▶ We will formulate them and define **parameters** when necessary.

Model formulation 000000

Constraints

Research objective

▶ For each CSR and each day, one CSR can only be assigned to one shift:

$$\sum_{k \in K} x_{ijk} = 1 \quad \forall i \in I, j \in J.$$

► To calculate the total shortage:

$$y_{jt} \ge D_{jt} - \sum_{k \in K} A_{kt} \sum_{i \in I} x_{ijk} \quad \forall j \in J, t \in T.$$

 $y_{jt} \ge 0 \quad \forall j \in J, t \in T.$

- \triangleright D_{jt} is the number of CSRs needed in period t of day j.
- $ightharpoonup A_{kt}$ is 1 if shift k covers period t or 0 otherwise.

Constraints

▶ To calculate the maximum number of extra on-duty CSRs:

$$\begin{aligned} w_1 &\geq \sum_{k \in K} A_{kt} \sum_{i \in I} x_{ijk} - D_{jt} & \forall j \in J, t \in T. \\ w_1 &\geq 0 & \forall j \in J, t \in T. \end{aligned}$$

► To calculate the maximum number of night shifts:

$$w_2 \ge \sum_{j \in J} \sum_{k \in K^N} x_{ijk} \quad \forall i \in I.$$

$$w_2 \ge 0 \quad \forall j \in J, t \in T.$$

Let K^N be the set of night shifts.

- ▶ Background, motivation, and research objective.
- ▶ Problem description.
- ► Model formulation.
- ► Results.

Performance evaluation (for one past month)

More benefits from the study

- ▶ With the shift scheduling system, one may better evaluate:
 - ▶ Whether to recruit more CSRs.
 - ▶ The impact of adjusting shift setting.
 - ▶ The impact of adjusting some policies.
- ► In general, being able to do better **operational** decisions helps us do better **strategic** decisions.