

Representación de datos en la computadora. Aritmética.

Prof. Silvana Panizzo

Primera parte

Introducción

✓ CPU formada por:

- CU o Unidad de control: emite ordenes para llevar a cabo en forma secuencial y sincrónica para ejecutar una instrucción.
- ALU o Unidad aritmético lógica: es la unidad encargada de procesar datos.
- ✓ T: Rutinas de conversión

Algunas definiciones

- ✓ Código alfanumérico: es una convención que determina una combinación binaria para cada símbolo que se quiera representar.
- ✓ Formato: de una entidad binaria es la estructura y la cantidad de bits de un determinado tipo de dato para su tratamiento dentro de la computadora.
- ✓ Datos primitivos en C:

Tipo	Descripción	Bytes	Rango
char	Caracter	1	-128 a 127
int	Entero con signo	2	-32768 a 32767
float	Flotante simple	4	$-3,4.10^{-38}$ a $3,4.1038$
double	Flotante doble	8	-1,7.10 ⁻³⁰⁸ a 1,7 .10308
long	Entero largo con signo	4	-2147483648 a 2147483647
short	Entero corto con signo	2	-32768 a 32767
long double	Flotante extendido	10	$-3,4.10^{-4932}$ a 1,1 $.10^{4932}$
unsigned	Entero sin signo	2	0 a 65535

Tipos de formato de datos

Representaciones alfanuméricas	ASCII 🗯 UNICODE 🗮					
Representaciones decimales (BCD)	BCD puro o natural (8421) BCD exceso tres BCD 2421 o AIKEN					
Representaciones binarias	Números enteros	Coma o punto fijo sin signo (enteros-positivos) Coma o punto fijo con signo (enteros) Coma o punto fijo con complemento a la base (enteros) Coma o punto fijo con complemento restringido (enteros)				
	Números reales	Coma o punto flotante (entera y fraccionaria) Coma o punto flotante con mantisa normalizada Coma o punto flotante IEEE P754 Coma o punto flotante "exceso 64" Coma o punto flotante "exceso 64"				
Representaciones redundantes (detección de errores)	Códigos de paridad	Paridad vertical o a nivel carácter Paridad vertical o a nivel bloque Paridad entrelazada Código de Hamming				

- ✓ Resumen de la representación de los distintos tipos de datos para poder ser procesados por el computador.
- ✓ Quedarán representados según el tipo de variables que un programador defina en las aplicaciones

Códigos de representación de caracteres alfanuméricos

- ✓ Uno de los códigos de representación de caracteres más usado es el "ASCII" (Código estándar americano para intercambio de información)
- ✓ Código ASCII de 7 bits permite determinar 128 combinaciones posibles que representan 128 símbolos distintos.
 - 1 carácter se representa con 7 bits
 - Permite $2^7 = 128$ combinaciones distintas
- ✓ Código ASCII de 8 bits ó ASCII extendido surge debido a la necesidad de agregar caracteres
 - 1 carácter se representa con 8 bit
 - Permite $2^8 = 256$ combinaciones distintas

Tabla Ascii

Tabla ASCII 128 caracteres

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	0	1	2	3	4	5	6	7	8	9	LF 10	11	12	CR 13	14	15
0001	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0010	SP 32	! 33	" 34	# 35	\$ 36	% 37	& 38	, 39	(40) 41	* 42	+ 43	44	- 45	• 46	/ 47
0011	0 48	1 49	2 50	3 51	4 52	5 53	6 54	7 55	8 56	9 57	: 58	; 59	< 60	= 61	> 62	? 63
0100	@ 64	A 65	B	C 67	D 68	E 69	F 70	G 71	H 72	I 73	J 74	K 75	L 76	M 77	N 78	O 79
0101	P 80	Q 81	R 82	S 83	T 84	U 85	V 86	W 87	X 88	Y 89	Z 90	[91	\ 92] 93	^ 94	- 95
0110	, 96	a 97	b 98	c 99	d 100	e 101	f 102	g 103	h 104	i 105	j 106	k 107	1 108	m 109	n 110	o 111
0111	p 112	q 113	r 114	s 115	t 116	u 117	v 118	w 11	X 120	y 121	z 122	{ 123	 124	} 125	~ 126	127

Bits de digitos: Los últimos 4 bits (3, 2, 1 y 0) en cada combinación se denominan bits de **dígito** y en la **tabla numeran las columnas de**

Ejemplo: "A" = 0100 0001 = $41_{(h)}$ = $65_{(d)}$

0 a 15, o de 0 a F en hexadecimal.

Caracteres 0-31: no imprimibles (p.e. 10: LF, fin de línea; 13:CR, "retorno de carro")

Caracter 32: "Espacio en blanco" (SP) Caracter 127: no imprimible (DEL) Bits de zona: Los primeros 4 bits de mayor significación en cada combinación se denominan bits de **zona** y en la tabla de

doble entrada *numeran las filas 0 a 7*.

Tabla Ascii extendido

(teres ASCII control		The Park	STARTING	res A mible	described in				AS (Págir	والأوافية	xtend códig		7)	
00	NULL	(carácter nulo)	32	espacio	64	@	96	- 7	128	Ç	160	á	192	L	224	Ó
01	SOH	(inicio encabezado)	33	1	65	A	97	a	129	ū	161	í	193	1	225	ß
02	STX	(inicio texto)	34		66	В	98	b	130	é	162	Ó	194	т	226	Ô
03	ETX	(fin de texto)	35	#	67	C	99	С	131	â	163	ú	195	-	227	Ô
04	EOT	(fin transmisión)	36	\$	68	D	100	d	132	ä	164	ñ	196	-	228	õ
05	ENQ	(consulta)	37	%	69	E	101	е	133	à	165	Ñ	197	+	229	Õ
06	ACK	(reconocimiento)	38	&	70	F	102	1	134	á	166		198	ä	230	ш
07	BEL	(timbre)	39	•	71	G	103	g	135	C	167	0	199	Â	231	þ
80	BS	(retroceso)	40	(72	Н	104	h	136	ê	168	i	200	L	232	P
09	HT	(tab horizontal)	41)	73	- 1	105	i	137	ë	169	(B)	201	P	233	Ú
10	LF	(nueva línea)	42		74	J	106	j	138	è	170	7	202	1	234	Û
11	VT	(tab vertical)	43	+	75	K	107	k	139	T	171	1/2	203	75	235	Ù
12	FF	(nueva página)	44		76	L	108	1	140	ī	172	1/4	204	-	236	ý
13	CR	(retorno de carro)	45	1.0	77	M	109	m	141	i	173	i	205	-	237	Ý
14	SO	(desplaza afuera)	46		78	N	110	n	142	Ā	174	46	206	ė.	238	
15	SI	(desplaza adentro)	47	1	79	0	111	0	143	A	175	>>	207		239	*
16	DLE	(esc.vinculo datos)	48	0	80	P	112	p	144	É	176	- TE	208	ð	240	=
17	DC1	(control disp. 1)	49	1	81	Q	113	q	145	æ	177		209	Đ	241	±
18	DC2	(control disp. 2)	50	2	82	R	114	r	146	Æ	178		210	Ê	242	
19	DC3	(control disp. 3)	51	3	83	S	115	S	147	ô	179	T	211	Ë	243	3/4
20	DC4	(control disp. 4)	52	4	84	T	116	t	148	Ö	180	+	212	Ė	244	1
21	NAK	(conf. negativa)	53	5	85	U	117	u	149	ò	181	Á	213	1	245	§
22	SYN	(inactividad sinc)	54	6	86	V	118	V	150	û	182	Â	214	i	246	÷
23	ETB	(fin bloque trans)	55	7	87	W	119	w	151	ù	183	À	215	i	247	,
24	CAN	(cancelar)	56	8	88	Х	120	х	152	Ÿ	184	©	216	Ī	248	0
25	EM	(fin del medio)	57	9	89	Y	121	y	153	Ö	185	4	217	1	249	
26	SUB	(sustitución)	58	1	90	Z	122	Z	154	Ü	186	i i	218	г	250	
27	ESC	(escape)	59		91	1	123	{	155	6	187	71	219		251	4
28	FS	(sep. archivos)	60	<	92	i	124	i	156	£	188	j.	220		252	3
29	GS	(sep. grupos)	61	-	93	1	125	3	157	Ø	189	¢	221	1	253	2
30	RS	(sep. registros)	62	>	94	٨	126	~	158	×	190	¥	222	i	254	
31	US	(sep. unidades)	63	?	95				159	f	191	7	223		255	nbsr
127	DEL	(suprimir)		- 100	-	-				-						

Actividad

- ✓ Escriba su nombre en binario según la tabla ascii.
- ✓ Leer apunte subido al campus sobre Unicode.

Código de representación decimal (BCD)

- ✓ Es una convención que permite la representación de números entre 0 y 9 en bloques de binarios de 4 bits
- ✓ BCD puro o natural o 8421

Valor decimal	BCD puro 8421	Valor decimal	BCD puro 8421
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

✓ Ejemplos

Valor decimal	Binario puro	BCD puro
15 ₍₁₀₎	1111 ₍₂₎	0001 0101 _(BCD)
256 ₍₁₀₎	$2^8 = 100000000_{(2)}$	0010 0101 0110 _(BCD)
1(10)	1(2)	0001 _(BCD)

Suma en BCD 8421

Si el resultado es mayor a $9_{(10)}$ entonces se suma $6_{(10)}$ en binario 0110

Sumar 6₍₁₀₎ en binario me permite volver al rango de representación del código

Decimal	Binario
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Resta en BCD 8421

Ejemplo: $99_{(10)} - 1_{(10)} = 98_{(10)}$

Se C1 el valor negativo para realizar una suma $99_{(10)} + (-1_{(10)}) = 98_{(10)}$

Se suma 0110 y se invierten los bit para obtener C1

Si el resultado es mayor a $9_{(10)}$ entonces se suma $6_{(10)}$ en binario 0110

Sumar 6₍₁₀₎ en binario me permite volver al rango de representación del código

Decimal	Binario
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Se desprecia por exceso de 10ⁿ

Sumo 0001 por uso de C1

Actividad

Ejercicios:

Realizar las siguientes operaciones por BCD:

- a) 25 + 2
- b) 662 + 1045
- c) 234 152
- d) 348 216
- e) 483 + 257
- f) 599 + 345
- g) 3482 638

Coma fija o punto fijo sin signo para representar números enteros positivos

- Se representan como número binario.
- ✓ Como este formato sólo permite números sin signo, para la representación de un número se utiliza la totalidad de bits del formato.

Rango de representación:

$$(0, 2^n - 1)$$

✓ Ejemplo: si quiero representar en un formato de n = 8 el valor $25_{(10)}$

n = 8 bits de formato

Rango de representación:

$$(0, 2^n - 1) = (0, 255)$$

Es decir, 256 combinaciones de 0 y 1 que me permiten almacenar valores entre 0 y 255 en decimal.

Coma fija o punto fijo con signo para representar números enteros positivos y negativos en C2

Convenio de representación:

Para poder representar magnitudes enteras positivas y negativas, lo primero que se debe definir es como se representa el signo. Este convenio adopta que el bit mas significativo (MSB) se lo utilice para identificar el signo, siendo 0 para los positivos y 1 para los negativos.

Ejemplo:

Por lo tanto, si una variable está definida como entera todo número positivo comenzará de izquierda a derecha con 0 y todo número negativo comenzará con 1.

Coma fija o punto fijo con signo para representar números enteros positivos y negativos en C2

Convenio de representación continuación:

Es de pensar que, si tenemos formato n = 3 las posibles combinaciones serán 8 desde 000 hasta 111, por lo tanto las siguientes combinaciones 000, 001, 010, 011 representarán números positivos y las combinaciones 100, 101, 110 y 111 representarán números negativos.

Existen diferentes formas de poder representar los valores y esto dependerá del convenio elegido, pudiendo ser Signo y Magnitud, Complemento a 1 ó **Complemento a 2**.

Para el convenio coma fija o punto fijo con signo, vamos a definir la utilización del Complemento a 2, que enuncia que los números positivos estarán representados por su magnitud binaria en los n-1 bits restantes del formato (excluye el bit de signo) y los números negativos estarán representados por el complemento a 2 de la magnitud binaria en los n-1 bits restantes del formato.

Coma fija o punto fijo con signo para representar números enteros positivos y negativos en C2

- ✓ Se representan como número binario.
- ✓ Como este formato permite números con signo, para la representación de un número se utilizan los n 1 bits del formato.

Rango de representación:

$$(-2^{n-1}, 2^{n-1}-1)$$

✓ Ejemplo: si quiero representar en un formato de n = 8 el valor $+25_{(10)}$

Rango de representación:

Es decir, 128 combinaciones de 0 y 1 que me permiten almacenar valores negativos y 127 combinaciones que permiten almacenar valores positivos.

Actividad

Ejercicios:

- ✓ Leemos de la Memoria el siguiente dato: 10010100
- Calcular el valor del mismo suponiendo que se trabaja con un micro de 8 bits (n=8) para los siguientes casos:
- a) Suponiendo que dicha variable fue definida como Entera sin signo
- b) Suponiendo que dicha variable fue definida como Entera bajo el convenio de Complemento a 2
- Respuestas
- a) 148
- b) Hacemos C2 –(01101100) resultando -108
- Ahora realizar el mismo ejercicio pera lo que leemos de la memoria es 00010011