Типовой расчет

выполнил ст. гр. ***** Петров Ю.А.

Задача №10

Вариант ХХ

1 Условие

По выборке одномерной случайной величины:

- получить вариационный ряд;
- построить на масштабно-координатной бумаге формата A4 график эмпирической функции распределения $F^*(x)$;
- построить гистограмму равноинтервальным способом;
- вычислить оценки математического ожидания и дисперсии при заданном значении надежности;
- выдвинуть гипотезу о законе распределения случайной величины и проверить её при помощи критерия согласия χ^2 и критерия Колмогорова ($\alpha=0.05$).

Вариационный ряд исходной выборки приведен в таблице 1.

		_		-					
-4.86	-3.7	-2.41	-2.24	-2.12	-2.07	-1.87	-1.57	-1.05	-0.95
-0.86	-0.82	-0.69	-0.56	-0.42	-0.38	-0.14	-0.13	-0.01	0.1
0.13	0.41	0.46	0.53	0.7	0.84	0.99	1.06	1.19	1.21
1.21	1.21	1.23	1.26	1.33	1.47	1.76	1.91	1.94	2.02
2.09	2.12	2.2	2.22	2.24	2.37	2.38	2.45	2.51	2.6
2.6	2.65	2.67	2.69	2.88	3.12	3.15	3.23	3.24	3.24
3.26	3.44	4.09	4.09	4.47	4.79	4.95	5.01	5.03	5.18
5.2	5.21	5.36	5.44	5.44	5.47	5.48	5.64	5.78	5.79
5.81	5.94	5.98	6.11	6.49	6.54	6.63	6.75	7.05	7.13
7.17	7.34	7.51	7.85	7.93	8.7	9.26	9.5	10.95	11.15

2 Решение

2.1 Построение эмпирической функции распределения $F^*(x)$

Для построения эмпирической функции распределения $F^*(x)$ необходимо воспользоваться следующей формулой:

$$F^*(x) = p^*(X < x) = \begin{cases} 0, & x \le \hat{x}_1, \\ \vdots & \\ \frac{i}{n}, & \hat{x}_i < x \le \hat{x}_{i+1}, \\ \vdots & \\ 1, & x > \hat{x}_n. \end{cases}$$
(1)

График эмпирической функции распределения $F^*(x)$ приведен на рисунке 1.

Рисунок 1 – График эмпирической функции распределения $F^*(x)$

2.2 Построение гистограмм

Вычислим значения интервального статистического ряда (таблица 2) для построения равноинтервальной гистограммы (рисунок 2).

Таблица 2 – Равноинтервальный статистический ряд

j	A_{j}	B_{j}	h_j	v_{j}	p_j^*	f_j^*
1	-4.860	-3.259	1.601	2	0.0200	0.0125
2	-3.259	-1.658	1.601	5	0.0500	0.0312
3	-1.658	-0.057	1.601	11	0.1100	0.0687
4	-0.057	1.544	1.601	18	0.1800	0.1124
5	1.544	3.145	1.601	20	0.2000	0.1249
6	3.145	4.746	1.601	9	0.0900	0.0562
7	4.746	6.347	1.601	19	0.1900	0.1187
8	6.347	7.948	1.601	11	0.1100	0.0687
9	7.948	9.549	1.601	3	0.0300	0.0187
10	9.549	11.150	1.601	2	0.0200	0.0125
Всего:			16.010	100	1.0000	

Рисунок 2 — Равноинтервальная гистограмма распределения случайной величины X

Вычислим значения интервального статистического ряда (таблица 3) для построения равновероятностной гистограммы (рисунок 3).

Таблица 3 – Равновероятностный статистический ряд

j	A_j	B_{j}	h_{j}	v_{j}	p_j^*	f_j^*
1	-4.860	-0.905	3.955	10	0.1000	0.0253
2	-0.905	0.115	1.020	10	0.1000	0.0980
3	0.115	1.210	1.095	10	0.1000	0.0913
4	1.210	2.055	0.845	10	0.1000	0.1183
5	2.055	2.600	0.545	10	0.1000	0.1835
6	2.600	3.250	0.650	10	0.1000	0.1538
7	3.250	5.190	1.940	10	0.1000	0.0515
8	5.190	5.800	0.610	10	0.1000	0.1639
9	5.800	7.150	1.350	10	0.1000	0.0741
10	7.150	11.150	4.000	10	0.1000	0.0250
Всего:			16.010	100	1.0000	

Рисунок 3 — Равновероятностная гистограмма распределения случайной величины X

2.3 Вычисление оценок математического ожидания и дисперсии

Запишем формулы для расчета соответствующих оценок:

$$m_X^* = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i, \tag{2}$$

$$I_{\gamma}(m_X) = \left[\overline{x} - z_{\gamma} \frac{S_0}{\sqrt{n}}; \overline{x} + z_{\gamma} \frac{S_0}{\sqrt{n}} \right], \tag{3}$$

$$D_X^* = S_0^2 = \frac{1}{n-1} \sum_{i=1}^n x_i^2 - \frac{n}{n-1} \overline{x}^2, \tag{4}$$

$$I_{\gamma}(D_X) = \left[S_0^2 - z_{\gamma} \sqrt{\frac{2}{n-1}} S_0^2; S_0^2 + z_{\gamma} \sqrt{\frac{2}{n-1}} S_0^2 \right], \tag{5}$$

Результаты вычислений при $\gamma=0.95$:

$$m_X^* = 2.9967, \quad I_{0.95}(m_X) = [2.3605; 3.6329],$$

 $D_X^* = 10.5345, \quad I_{0.95}(D_X) = [7.5998; 13.4692].$

2.4 Выдвижение гипотезы о законе распределения случайной величины X

По виду графика эмпирической функции распределения $F^*(x)$ и гистограмм выдвинем один из следующих вариантов двухальтернативной гипотезы о законе распределения случайной величины:

1. H_0 — величина X распределена по равномерному закону:

$$f(x) = \begin{cases} 0, & x < a, \\ \frac{1}{b-a}, & a \le x \le b, \\ 1, & x > b. \end{cases}$$
 (6)

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x - a}{b - a}, & a \le x \le b, \\ 1, & x > b. \end{cases}$$
 (7)

 H_1 — величина X не распределена по равномерному закону:

$$f(x) \neq f_0(x), \qquad F(x) \neq F_0(x). \tag{8}$$

2. H_0 — величина X распределена по экспоненциальному закону:

$$f(t) = \begin{cases} 0, & t < 0, \\ \lambda e^{-\lambda t}, & a \le x \le b. \end{cases}$$
 (9)

$$F(t) = \begin{cases} 0, & t < 0, \\ 1 - e^{-\lambda t}, & a \le x \le b. \end{cases}$$
 (10)

 H_1 — величина X не распределена по экспоненциальному закону:

$$f(x) \neq f_0(x),$$
 $F(x) \neq F_0(x).$ (11)

3. H_0 — величина X распределена по нормальному закону:

$$f(x) = f_0(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left[-\frac{(x-m)^2}{2\sigma^2}\right],\tag{12}$$

$$F(x) = F_0(x) = 0.5 + \left(\frac{x - m}{\sigma}\right). \tag{13}$$

 H_1 — величина X не распределена по нормальному закону:

$$f(x) \neq f_0(x),$$
 $F(x) \neq F_0(x).$ (14)

В данном примере выдвинем двухальтернативную гипотезу о нормальном законе распределения случайной величины.

Учитывая, что $m^*=\overline{x}=2.9967$ и $\sigma^*=\sqrt{D^*}=3.2457$, получаем гипотетическую функцию распределения:

$$F_0(x) = 0.5 + \Phi\left(\frac{x - \overline{x}}{\sqrt{D^*}}\right) = 0.5 + \Phi\left(\frac{x - 2.9967}{3.2457}\right)$$

Построим график $F_0(x)$ в одной системе координат с эмпирической функцией распределения $F^*(x)$ (рисунок 4).

2.5 Проверка гипотезы о нормальном законе распределения случайной величины X с помощью критерия Пирсона

Вычислим значение критерия χ^2 на основе равноинтервального статистического ряда (таблица 2) по следующей формуле:

$$\chi^2 = n \sum_{j=1}^{10} \frac{(p_j - p_j^*)^2}{p_j}.$$
 (15)

Теоретические вероятности p_j попадания в интервалы равноинтервального статистического ряда нормальной случайной величины с параметрами m*, σ^* вычислим по следующей формуле:

$$p_j = F_0(B_j) - F_0(A_j) = \Phi\left(\frac{B_j + (2.9967)}{3.2457}\right) - \Phi\left(\frac{A_j + (2.9967)}{3.2457}\right).$$

Результаты расчетов приведены в таблице 4.

Таблица 4 – Результаты расчетов значений слагаемых критерия χ^2

	'	1			I	- r /t	
j	A_j	B_{j}	$F_0(A_j)$	$F_0(B_j)$	p_{j}	p_j^*	$\frac{(p_j^* - p_j)^2}{p_j}$
1	$-\infty$	-3.259	0.0000	0.0269	0.0269	0.0200	0.0018
2	-3.259	-1.658	0.0269	0.0757	0.0487	0.0500	0.0000
3	-1.658	-0.057	0.0757	0.1732	0.0975	0.1100	0.0016
4	-0.057	1.544	0.1732	0.3268	0.1536	0.1800	0.0045
5	1.544	3.145	0.3268	0.5188	0.1921	0.2000	0.0003
6	3.145	4.746	0.5188	0.7055	0.1866	0.0900	0.0500
7	4.746	6.347	0.7055	0.8492	0.1438	0.1900	0.0149
8	6.347	7.948	0.8492	0.9365	0.0873	0.1100	0.0059
9	7.948	9.549	0.9365	0.9783	0.0418	0.0300	0.0033
10	9.549	$+\infty$	0.9783	1.0000	0.0217	0.0200	0.0001
				Всего:	1.0000	1.0000	0.0826

Проверим выполнение контрольного соотношения для p_j :

$$\left| 1 - \sum_{j=1}^{10} p_j \right| = value \le 0.01. \tag{16}$$

В соответствии с формулой (15) получаем $\chi^2 = 100 \cdot 0.0826 = 8.2554$. Вычислим число степеней свободы: k = M - 1 - s = 10 - 1 - 2 = 7.

По заданному уровню значимости ($\alpha=0.05$) из таблицы распределения χ^2 выбирем критическое значение:

$$\chi_{\alpha;k}^2 = \chi_{0.05;7}^2 = 14.07.$$

Вывод: так как $\chi^2 = 8.2554 < sign > \chi^2_{0.05;7}$, то гипотеза H_0 о нормальном законе распределения принимается (отклоняется).

2.6 Проверка гипотезы о нормальном законе распределения случайной величины X с помощью критерия Колмогорова

По рисунку 4 определим максимальное по модулю отклонение между функциями $F^*(x)$ и $F_0(x)$:

$$Z = \max_{i=1}^{n} \left| F^*(x_i) - F_0(x_i) \right| = 0.0777.$$
 (17)

Вычислим значение критерия Колмогорова по формуле:

$$\lambda = \sqrt{n} \cdot Z,$$

$$\lambda = \sqrt{100} \cdot 0.0777 = 0.7767.$$
(18)

Из таблицы «критических значений» для критерия Колмогорова по заданному уровню значимости ($\alpha=0.05$) выбираем критическое значение $\lambda_{\gamma}=\lambda_{1-\alpha}=\lambda_{0.95}=1.36.$

Вывод: так как $\lambda = 0.7767 < notation > \lambda_{0.95}$, то гипотеза H_0 о нормальном законе распределения принимается (отклоняется).

Рисунок 4 – График гипотетической и эмпирической функций распределения случайной величины X