EEL 4930 Lecture 8

Introduction to Conditional Probability

EEL 4930 Lecture 8

Introduction to Conditional Probability

(See the Jupyter notebook)

EX EX Defective computers in a lab

EX EX Defective computers in a lab

A computer lab contains

EX Defective computers in a lab

A computer lab contains

 two computer from manufacturer A, one of which is defective

EX Defective computers in a lab

A computer lab contains

- two computer from manufacturer A, one of which is defective
- three computers from manufacturer B, two of which are defective

EX Defective computers in a lab

A computer lab contains

- two computer from manufacturer A, one of which is defective
- three computers from manufacturer B, two of which are defective

A user sits down at a computer at random.

EEL 4930

Let the properties of the computer he sits down at be denoted by a two letter code, where the first letter is the manufacturer and the second letter is D for a defective computer and N for a non-defective computer. (We add a subscript to differentiate computers with the same two-letter code.)

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

Let the properties of the computer he sits down at be denoted by a two letter code, where the first letter is the manufacturer and the second letter is D for a defective computer and N for a non-defective computer. (We add a subscript to differentiate computers with the same two-letter code.)

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

EEL 4930 L8-3

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

Let

 E_A be the event that the selected computer is from manufacturer A

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

Let

- E_A be the event that the selected computer is from manufacturer A
- E_B be the event that the selected computer is from manufacturer B

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

Let

- E_A be the event that the selected computer is from manufacturer $A = \{AD, BN\}$
- E_B be the event that the selected computer is from manufacturer B = $\{BD, BD_2, B_N\} \mid E_B \mid = 3$
- E_D be the event that the selected computer is defective = $\{AD, RD, RD, RD\}$

Find

$$P(E_A) = \frac{2/5}{5}$$
 $P(E_B) = \frac{3/5}{5}$ $P(E_D) = \frac{3/5}{5}$

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

Find

$$P(E_A) = \underline{\hspace{1cm}} P(E_B) = \underline{\hspace{1cm}} P(E_D) = \underline{\hspace{1cm}}$$

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

 Now, suppose that I select a computer and tell you its manufacturer. Does that influence the probability that the computer is defective?

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

 $\frac{1}{2}$

We denote this prob. as $P(E_D|E_A)$

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

 $\frac{1}{2}$

We denote this prob. as $P(E_D|E_A)$ (means: the conditional probability of event E_D given that event E_A occured)

EEL 4930

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

$$S = \{AD,AN,BD_1,BD_2,BN\}$$

Find

$$-P(E_D|E_B) = \frac{7}{3}$$

$$-P(E_A|E_D) = \frac{\sqrt{3}}{}$$

$$-P(E_B|E_D) = \frac{7}{3}$$

$$S = \{AD, AN, BD_1, BD_2, BN\}$$

Find

$$-P(E_D|E_B) =$$

$$- P(E_A|E_D) =$$

$$-P(E_B|E_D) =$$

We need a systematic way of determining probabilities given additional information about the experiment outcome.

FORMALLY DEFININING CONDITIONAL PROBABILTY

Consider the Venn diagram:

EEL 4930 L8-8

If we condition on B having occurred, then we can form the new Venn diagram:

If we condition on *B* having occurred, then we can form the new Venn diagram:

This diagram suggests that if $A \cap B = \emptyset$ then if B occurs, A could not have occurred.

If we condition on B having occurred, then we can form the new Venn diagram:

This diagram suggests that if $A \cap B = \emptyset$ then if B occurs, A could not have occurred.

Similarly if $B \subset A$, then if B occurs, the diagram suggests that A must have occurred.

A definition of conditional probability that agrees with these and other observations is:

A definition of conditional probability that agrees with these and other observations is:

For $A \in \mathcal{F}$, $B \in \mathcal{F}$, the *conditional probability* of event *A given* that event *B* occurred is

A definition of conditional probability that agrees with these and other observations is:

For $A \in \mathcal{F}$, $B \in \mathcal{F}$, the *conditional* probability of event A given that event B occurred is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, for $P(B) > 0$.

 $(S, \mathscr{F}, P(\cdot|B))$

$$(S, \mathscr{F}, P(\cdot|B))$$

Check the axioms:

$$(S, \mathscr{F}, P(\cdot|B))$$

Check the axioms:

1.

$$P(S|B) =$$

$$(S, \mathscr{F}, P(\cdot|B))$$

Check the axioms:

1.

$$P(S|B) = \frac{P(S \cap B)}{P(B)}$$

$$(S, \mathscr{F}, P(\cdot|B))$$

Check the axioms:

1.

$$P(S|B) = \frac{P(S \cap B)}{P(B)} = \frac{P(B)}{P(B)}$$

Claim: If P(B) > 0, the conditional probability P(|B) satisfies the axioms on the original sample space

$$(S, \mathscr{F}, P(\cdot|B))$$

Check the axioms:

1.

$$P(S|B) = \frac{P(S \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

2. Given $A \in \mathscr{F}$,

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

2. Given $A \in \mathscr{F}$,

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

and $P(A \cap B) \ge 0$, $P(B) \ge 0$

2. Given $A \in \mathscr{F}$,

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

and
$$P(A \cap B) \ge 0$$
, $P(B) \ge 0$

$$\Rightarrow P(A|B) \ge 0$$

$$P(A \cup C|B) =$$

$$P(A \cup C|B) = \frac{P[(A \cup C) \cap B]}{P[B]}$$

$$P(A \cup C|B) = \frac{P[(A \cup C) \cap B]}{P[B]}$$
$$= \frac{P[(A \cap B) \cup (C \cap B)]}{P[B]}.$$

$$P(A \cup C|B) = \frac{P[(A \cup C) \cap B]}{P[B]}$$
$$= \frac{P[(A \cap B) \cup (C \cap B)]}{P[B]}.$$

Note that $A \cap C = \emptyset \Rightarrow (A \cap B) \cap (C \cap B) = \emptyset$,

$$P(A \cup C|B) = \frac{P[(A \cup C) \cap B]}{P[B]}$$

$$= \frac{P[(A \cap B) \cup (C \cap B)]}{P[B]}.$$

Note that $A \cap C = \emptyset \Rightarrow (A \cap B) \cap (C \cap B) = \emptyset$, so

$$P(A \cup C|B) = \frac{P[A \cap B]}{P[B]} + \frac{P[C \cap B]}{P[B]}$$

$$P(A \cup C|B) = \frac{P[(A \cup C) \cap B]}{P[B]}$$

$$= \frac{P[(A \cap B) \cup (C \cap B)]}{P[B]}.$$

Note that $A \cap C = \emptyset \Rightarrow (A \cap B) \cap (C \cap B) = \emptyset$, so

$$P(A \cup C|B) = \frac{P[A \cap B]}{P[B]} + \frac{P[C \cap B]}{P[B]}$$
$$= P(A|B) + P(C|B)$$

Check prev. example: $S = \{AD, AN, BD, BD, BN\}$

Check prev. example: $\{AD,AN,BD,BD,BN\}$

 $P(E_D|E_A)$

Check prev. $\{AD,AN,BD,BD,BN\}$

example:

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)}$$

Check prev. example: $\{AD,AN,BD,BD,BN\}$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{P(E_A)}$$

Check prev. example: $\{AD,AN,BD,BD,BN\}$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B)$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{2}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D)$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D) = \frac{P(E_A \cap E_D)}{P(E_D)}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D) = \frac{P(E_A \cap E_D)}{P(E_D)} = \frac{1/5}{1}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D) = \frac{P(E_A \cap E_D)}{P(E_D)} = \frac{1/5}{3/5}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D) = \frac{P(E_A \cap E_D)}{P(E_D)} = \frac{1/5}{3/5} = \frac{1}{3}$$

$$P(E_B|E_D)$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D) = \frac{P(E_A \cap E_D)}{P(E_D)} = \frac{1/5}{3/5} = \frac{1}{3}$$

$$P(E_B|E_D) = \frac{P(E_B \cap E_D)}{P(E_D)}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D) = \frac{P(E_A \cap E_D)}{P(E_D)} = \frac{1/5}{3/5} = \frac{1}{3}$$

$$P(E_B|E_D) = \frac{P(E_B \cap E_D)}{P(E_D)} = \frac{2/5}{2}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D) = \frac{P(E_A \cap E_D)}{P(E_D)} = \frac{1/5}{3/5} = \frac{1}{3}$$

$$P(E_B|E_D) = \frac{P(E_B \cap E_D)}{P(E_D)} = \frac{2/5}{3/5}$$

$$P(E_D|E_A) = \frac{P(E_D \cap E_A)}{P(E_A)} = \frac{1/5}{2/5} = \frac{1}{2}$$

$$P(E_D|E_B) = \frac{P(E_D \cap E_B)}{P(E_B)} = \frac{2/5}{3/5} = \frac{2}{3}$$

$$P(E_A|E_D) = \frac{P(E_A \cap E_D)}{P(E_D)} = \frac{1/5}{3/5} = \frac{1}{3}$$

$$P(E_B|E_D) = \frac{P(E_B \cap E_D)}{P(E_D)} = \frac{2/5}{3/5} = \frac{2}{3}$$

and

and

Which of the following statements are true?

and

Which of the following statements are true?

(a)
$$P(A|B) \ge P(A)$$

and

Which of the following statements are true?

(a)
$$P(A|B) \ge P(A)$$

(b)
$$P(A|B) \leq P(A)$$

and

Which of the following statements are true?

(a)
$$P(A|B) \ge P(A)$$

(b)
$$P(A|B) \leq P(A)$$

(c) Not necessarily (a) or (b)

$$A \cap B = \emptyset$$

$$P(A|B) = P(A\cap B)$$

$$P(B) = P(B)$$

$$P(B) = P(B)$$

$$P(B) = P(B)$$

$$P(B) = P(B)$$

EEL 4930

CONDITIONAL PROBABILITY FOR DISCRETE SAMPLE SPACES WITH EQUAL PROBABILITIES

CONDITIONAL PROBABILITY FOR DISCRETE SAMPLE SPACES WITH EQUAL PROBABILITIES

Conditional probability, independence, and mutually exclusive events for discrete sample spaces with equal probabilities:

EEL 4930

Take 2: XOR of Two Independent Binary EX Values

Flip a fair coin with sides labeled '0' and '1' two times. Let E_i denote a '1' on the top face on flip i. Let F denote the event that the XOR of the values observed on the top faces on the two flips is '1'.

L8-18

$$P(E_1) = P(E_2) = P(F) = \frac{1}{2}$$

$$P(E_1|E_2) = \frac{1}{2} \quad P(E_2|E_1) = \frac{1}{2} \quad P(F|E_1) = \frac{1}{2}$$

$$P(F) = \frac{1}{2} \quad P(F) = \frac{1}{2} \quad P(F) = \frac{1}{2} \quad P(F) = \frac{1}{2}$$

$$P(F) = \frac{1}{2} \quad P(F) = \frac{1}{2} \quad P(F)$$

EEL 4930 L8-20

USING CONDITIONAL PROBABILITY TO DECOMPOSE EVENTS: CHAIN RULES, PARTITIONS, AND TOTAL PROBABILITY

CHAIN RULES

EEL 4930

Note that
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Note that
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 $\Rightarrow P(A \cap B) = P(A|B)P(B)$

Note that
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 $\Rightarrow P(A \cap B) = P(A|B)P(B)$ (1)

and
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Note that
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 $\Rightarrow P(A \cap B) = P(A|B)P(B)$ (1)

and
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

 $\Rightarrow P(A \cap B) = P(B|A)P(A)$

Note that
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 $\Rightarrow P(A \cap B) = P(A|B)P(B)$ (1)

and
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

 $\Rightarrow P(A \cap B) = P(B|A)P(A)$ (2)

 Eqns. (1) and (2) are <u>chain rules</u> for expanding the probability of the intersection of two events

$$P(A \cap B \cap C) = P(A \cap B \cap C)$$

$$P(A \cap B \cap C) = \frac{P(A \cap B \cap C)}{P(B \cap C)} \cdot \frac{P(B \cap C)}{P(B \cap C)}$$

$$P(A \cap B \cap C) = \frac{P(A \cap B \cap C)}{P(B \cap C)} \cdot \frac{P(B \cap C)}{P(C)} \cdot P(C)$$

$$P(A \cap B \cap C) = \frac{P(A \cap B \cap C)}{P(B \cap C)} \cdot \frac{P(B \cap C)}{P(C)} \cdot P(C)$$
$$= P(A|B \cap C)$$

$$P(A \cap B \cap C) = \frac{P(A \cap B \cap C)}{P(B \cap C)} \cdot \frac{P(B \cap C)}{P(C)} \cdot P(C)$$
$$= P(A|B \cap C)P(B|C)$$

Ex: Intersection of 3 events

$$P(A \cap B \cap C) = \frac{P(A \cap B \cap C)}{P(B \cap C)} \cdot \frac{P(B \cap C)}{P(C)} \cdot P(C)$$
$$= P(A|B \cap C)P(B|C)P(C)$$

EEL 4930

STATISTICAL INDEPENDENCE

• In the last example, we had several probabilities of the form P(A|B) = P(A)

STATISTICAL INDEPENDENCE

- In the last example, we had several probabilities of the form P(A|B) = P(A)
- In this case, we say that A is statistically independent (s.i.) of B, since the probabilities of A are not affected by knowledge of A having occurred

EEL 4930 L8-24

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
$$= \frac{P(A|B)P(B)}{P(A)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$= \frac{P(A|B)P(B)}{P(A)}$$

$$= \frac{P(A)P(B)}{P(A)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$= \frac{P(A|B)P(B)}{P(A)}$$

$$= \frac{P(A)P(B)}{P(A)}$$

$$= P(B)$$

EEL 4930

 So, if A is statistically independent of B, then B is statistically independent of A

- So, if A is statistically independent of B, then B is statistically independent of A
- Thus, we can write $P(A \cap B) = P(A)P(B)$, and we use this for our definition of statistical independence because it works even when one of P(A) = 0 or P(B) = 0

- So, if A is statistically independent of B, then B is statistically independent of A
- Thus, we can write $P(A \cap B) = P(A)P(B)$, and we use this for our definition of statistical independence because it works even when one of P(A) = 0 or P(B) = 0

Events A and B are statistically independent (s.i.) if and only if (iff)

$$P(A \cap B) = P(A)P(B)$$
.

EEL 4930

 Events that arise from completely separate random phenomena are statistically independent. Events that arise from completely separate random phenomena are statistically independent.

Take 3: A fair six-sided die is rolled twice. What is the probability of observing a 1 or a 2 on the top face on either roll of the die?

EEL 4930

EEL 4930 L8-28