1611.01779 - Learning to Act by Predicting the Future

RL DL AI

• Author: Yunqiu Xu

1. Introduction

- https://zhuanlan.zhihu.com/p/23454387
 - 。 给定当前图像,当前的各游戏数据(血量,子弹数和分数)及提高这些数据的迫切程度的权值(Goal
 - 对每个动作输出一个提高值f(比如说做这个动作之后,血量提高了多少,或者又杀死了几个敌人)
 - 。 然后用最高的提高值来选下一步动作
 - 。 这个实际上是Q值网络的变种
 - 。 他们生成了各种类型的地图做了训练,效果比DQN及A3C都要好些
 - 因为迫切程度的权值是一个输入,所以这个模型具有在线改变目标的能力,比如说可以 先让它去加血,加完了再去杀敌
- Highlights:
 - High-dim sensory stream + low-dim measurement stream → train a sensorimotor control model by interacting with the environment
 - o Supervised learning without extraneous supervision
 - o Learn without a fixed goal at training time
 - Pursue dynamically changing goals at test time
 - The Track 2 (full deathmatch with unknown maps) champion of ViZDoom AI Competition 2016
- Challenges of RL:
 - Sensorimotor control from raw sensory input in complex and dynamic threedimensional environments, learned directly from experience

 The acquisition of general skills that can be flexibly deployed to accomplish a multitude of dynamically specified goals

The paper:

- Propose an approach to sensorimotor control → assist progress towards overcoming these challenges
- Use monilithic state and a scalar reward to replace reward-based formalisation
- High/multi-dim sensory stream: more appropriate for an organism that is learning to function in an immersive environment
- Low-dim measurement stream: provides rich and temporally dense supervision
 → stabilize and accelerate training.
- Given present sensory input, measurements, and goal, the agent can be trained to predict the effect of different actions on future measurements
- o Reduces sensorimotor control to supervised learning,
 - → can learn from raw experience and without extraneous data

2. Model

Figure 1: Network structure. The image s, measurements m, and goal g are first processed separately by three input modules. The outputs of these modules are concatenated into a joint representation \mathbf{j} . This joint representation is processed by two parallel streams that predict the expected measurements $E(\mathbf{j})$ and the normalized action-conditional differences $\{\overline{A^i}(\mathbf{j})\}$, which are then combined to produce the final prediction for each action.

3. Result

Figure 3: Performance of different approaches during training. DQN, A3C, and DFP achieve similar performance in the Basic scenario. DFP outperforms the prior approaches in the other three scenarios, with a multiplicative gap in performance in the most complex ones (D3 and D4).

_		Train				
		D3	D4	D3-tx	D4-tx	D4-tx-L
Test	D3	33.6	17.8	29.8	20.9	22.0
	D4	1.6	17.1	5.4	10.8	12.4
	D3-tx	3.9	8.1	22.6	15.6	19.4
	D4-tx	1.7	5.1	6.2	10.2	12.7

Table 2: Generalization across environments.