Neural Networks: Learning Process

Prof. Sven Lončarić

sven.loncaric@fer.hr http://www.fer.hr/ipg

Overview of topics

- Introduction
- Error-correction learning
- Hebb learning
- Competitive learning
- Credit-assignment problem
- Supervised learning
- Reinforcement learning
- Unsupervised learning

- One of the most important ANN features is ability to learn from the environment
- ANN learns through an iterative process of synaptic weights and threshold adaptation
- After each iteration ANN should have more knowledge about the environment

- Definition of learning in the ANN context:
 - Learning is a process where unknown ANN parameters are adapted through continuous process of stimulation from the environment
 - Learning is determined by the way how the change of parameters takes place
- This definition implies the following events:
 - The environment stimulates the ANN
 - ANN changes due to environment
 - ANN responds differently to the environment due to the change

- v_j and v_k are activations of neurons j and k
- x_j and x_k are outputs of neurons j and k
- Let w_{kj}(n) be synaptic weights at time n

Notation

• If in step n synaptic weight $w_{kj}(n)$ is changed by $\Delta w_{ki}(n)$ we get the new weight:

$$w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n)$$

where $w_{kj}(n)$ and $w_{kj}(n+1)$ are old and new weights between neurons k and j

- A set of rules that are solution to the learning problem is called a learning algorithm
- There is no unique learning algorithm, but many different learning algorithms, each with its advantages and drawbacks

Algorithms and learning paradigms

- Learning algorithms determine how weight correction $\Delta w_{ki}(n)$ is computed
- Learning paradigms determine the relation of the ANN to the environment
- Three basic learning paradigms are:
 - Supervised learning
 - Reinforcement learning
 - Unsupervised learning

- According to learning algorithm:
 - Error-correction learning
 - Hebb learning
 - Competitive learning
 - Boltzmann learning
 - Thorndike learning
- According to learning paradigm:
 - Supervised learning
 - Reinforcement learning
 - Unsupervised learning

- Belongs to the supervised learning paradigm
- Let $d_k(n)$ be desired output of neuron k at moment n
- Let y_k(n) be obtained output of neuron k at moment n
- Output $y_k(n)$ is obtained using input vector $\mathbf{x}(n)$
- Input vector $\mathbf{x}(n)$ and desired output $d_k(n)$ represent an example that is presented to ANN at moment n
- Error is the difference between desired and obtained output of neuron k at moment n:

$$e_k(n) = d_k(n) - y_k(n)$$

Error-correction learning

- The goal of error-correction learning is to minimize an error function derived from errors $e_k(n)$ so that the obtained output of all neurons approximates the desired output in some statistical sense
- A frequently used error function is mean square error:

$$J = E \left[\frac{1}{2} \sum_{k} e_k^2(n) \right]$$

where E[.] is the statistical expectation operator, and summation is for all neurons in the output layer

- The problem with minimization of error function J is that it is necessary to know statistical properties of random processes $e_k(n)$
- For this reason an estimate of the error function in step n is used as the optimization function:

$$\mathcal{E}(n) = \frac{1}{2} \sum_{k} e_k^2(n)$$

This approach yields an approximate solution

Delta learning rule

• Minimization of error function J with respect to weights $w_{ki}(n)$ gives Delta learning rule:

$$\Delta w_{kj}(n) = \eta e_k(n) x_j(n)$$

where η is a positive constant determining the learning rate

- Weight change is proportional to error and to the value at respective input
- Learning rate η must be carefully chosen
 - Small η gives stability but learning is slow
 - Large η speeds up learning but brings instability risk

Error surface

- If we draw error value *J* with respect to synaptic weights we obtain a multidimensional error surface
- The learning problem consists of finding a point on the error surface that has the smallest error (i.e. to minimize the error)

Error surface

- Depending on the type of neurons there are two possibilities:
 - ANN consists of linear neurons in this case the error surface is a quadratic function with one global minimum
 - ANN consists of nonlinear neurons in this case the error surface has one or more global minima and multiple local minima
- Learning starts from an arbitrary point on the error surface and through minimization process:
 - In the first case it converges to the global minimum
 - In the second case it can also converge to a local minimum

- Hebbov principle of learning says (Hebb, The Organization of Behavior, 1942):
 - When axon of neuron A is close enough to activate neuron B and it repeats this many times there will be metabolical changes so that efficiency of neuron A in activating neuron B is increased
- Extension of this principle (Stent, 1973):
 - If one neuron does not influence (stimulate) another neuron then the synapse between them becomes weaker or is completely eliminated

 According to Hebb principle weights are changed as follows:

$$\Delta W_{kj}(n) = F(y_k(n), x_j(n))$$

where $y_k(n)$ and $x_j(n)$ are the output and j-th input of k-th neuron

A special case of this prinicple is:

$$\Delta w_{kj}(n) = \eta y_k(n) x_j(n)$$

where constant η determines the learning rate

This rule is called activity product rule

 Weight update is proportional to input value:

$$\Delta w_{kj}(n) = \eta \ y_k(n) \ x_j(n)$$

 Problem: Iterative update with the same input and output causes continuous increase of weight w_{ki}

Generalized activity product rule

- To overcome the problem of weight saturation modifications are porposed that are aimed at limiting the increase of weight w_{ki}
- Non-linear limiting factor (Kohonen, 1988):

$$\Delta w_{kj}(n) = \eta \ y_k(n) \ x_j(n) - \alpha \ y_k(n) \ w_{kj}(n)$$

where α is a positive constant

This expression can be written as:

$$\Delta w_{kj}(n) = \alpha \ y_k(n)[cx_j(n) - w_{kj}(n)]$$
 where $c = \eta/\alpha$

Generalized activity product rule

- In generalized Hebb rule all inputs such that x_j(n)<w_{kj}(n)/c result in reduction of weight w_{kj}
- Inputs for which $x_j(n)>w_{kj}(n)/c$ increase weight w_{kj}

- Unsupervised learning
- Neurons compete to get opportunity to become active
- Only one neuron can be active at any time
- Useful for classification problems
- Three elements of competitive learning:
 - A set of neurons having randomly selected weights, so they have different response for a given input
 - Limited weight of each neuron
 - Mechanism for competition of neurons so that only one neuron is given at any single time (winner-takes-all neuron)

 An example network with a single neuron layer

- In order to win, activity v_j of neuron x must be the largest of all neurons
- Output y_j of the winning neuron j is equal to 1; for all other neurons the output is 0
- The learning rule is defined as:

$$\Delta w_{ji} = \begin{cases} \eta(x_i - w_{ji}) & \text{if neuron j won} \\ 0 & \text{if neuron j lost} \end{cases}$$

 The learning rule has effect of shifting the weight vector w_i towards the vector x

An example of competitive learning

- Let us assume that each input vector has norm equal to one – so that the vector can be represented as a point on N-dimensional unit sphere
- Let us assume that weight vectors have norm equal to one – so they can also be represented as points on unit N-dimensional sphere
- During training, input vectors are input to the network and the winning neuron weight is updated

An example of competitive learning

 The learning process can be represented as movement of weight vectors along unit sphere

- Credit-assignment problem is an important issue in learning algorithms
- Credit-assignment problem is in assignment of credit/blame for the overall learning outcome that depends on a large number of internal decisions of the learning system

 Supervised learning is characterized by the presence of a teacher

- Teacher has knowledge in the form of input-output pairs used for training
- Error is a difference between desired and obtained output for a given input vector
- ANN parameters change under the influence of input vectors and error values
- The learning process is repeated until ANN learns to imitate the teacher
- After learning is completed, the teacher is no longer required and ANN can work without supervision

- Error function can be mean square error and it depends on the free parameters (weights)
- Error function can be represented as a multidimensional error surface
- Any ANN configuration is defined by weights and corresponds to a point on the error surface
- Learning process can be viewed as movement of the point down the error surface towards the global minimum of the error surface

- A point on error surface moves towards the minimum based on gradient
- The gradient at any point on the surface is a vector showing the direction of the steepest ascent

- Examples of supervised learning algorithms are:
 - LMS (least-mean-square) algorithm
 - BP (back-propagation) algorithm
- A disadvantage of supervised learning is that learning is not possible without a teacher
 - ANN can only learn based on provided examples

- Suppervised learning can be implemented to work offline or online
- In offline learning:
 - ANN learns first
 - When learning is completed ANN does not change any more
- In online learning:
 - ANN learns during exploitation phase
 - Learning is perfored in real-time ANN is dynamic

- Reinforcement learning is of an online character
- Input-output learning mapping is learned through the iterative process where a measure of learning quality is maximized
- Reinforcement learning overcomes the problem of supervised learning where training examples are required

- In reinforcement learning the teacher does not present input-output training examples, but only gives a grade representing a measure of learning quality
- The grade is a scalar value (a number)
- Error function is unknown in reinforcement learning
- Learning algorithm must determine direction of motion in the learning space through a trial-anderror approach

- Reinforcement learning principle:
 - If learning system actions result in positive grade then there is higher likelihood that the system will take similar actions in the future
 - Otherwise the likelihood of taking such actions is reduced

- In unsupervised learning there is no teacher assisting the learning process
- Competitive learning is an example of unsupervised learning

- A layer of neurons compete for a chance to learn (to modify their weights based on the input vector)
- In the simplest approach the winner-takes-all strategy is used

Comparison of supervised and unsupervised learning

- The most popular algorithm for supervised learning is error-backpropagation algorithm
- A disadvantage of this algorithm is bad scaling learning complexity grows exponentially with the number of layers

- Problem 2.1.
 - Delta rule and Hebb rule are two different learning algorithms. Describe differences between these rules.
- Problem 2.5.
 - Input of value 1 is connected to the input of synaptic weight with initial value equal to 1. Calculate weight update using:
 - Basic Hebb rule with learning rate parametrom h=0.1
 - modified Hebb rule with h=0.1 and c=0.1