COMPLEX ANALYSIS

- 1. ANALYTIC FUNCTIONS, HARMONIC FN
- 2. COMPLEX INTEGRATION
- 3. CAUCHY INTEGRAL FORMULA
- 4. SINGULARITIES, TAYLOR'S AND LAURENT'S SERIES
- 5. RESIDUES, CAUCHY'S RESIDUE THEOREM
- **6. CONTOUR INTEGRATION**
- 7. CONFORMAL MAPPINGS & BILINEAR TRANSFORMATIONS

1. ANALYTIC FUNCTIONS, HARMONIC FN

1. 4a 2020

If
$$v(r, \theta) = \left(r - \frac{1}{r}\right) \sin \theta$$
, $r \neq 0$,

then find an analytic function $f(z) = u(r, \theta) + iv(r, \theta)$

15

15

2. 1d 2019

Suppose f(z) is analytic function on a domain D in \mathfrak{C} and satisfies the equation $Im f(z) = (Re f(z))^2$, $Z \in D$. Show that f(z) is constant in D.

3. 2c 2019 IFoS

If f(z) is analytic in a domain D and |f(z)| is a non-zero constant in D, then show that f(z) is constant in D.

4. 1c 2018

Prove that the function: $u(x, y) = (x - 1)^3 - 3xy^2 + 3y^2$ is harmonic and find its harmonic conjugate and the corresponding analytic function f(z) in terms of z. 10

5. 1c 2018 IFoS

(c) If $u = (x-1)^3 - 3xy^2 + 3y^2$, determine v so that u + iv is a regular function of x + iy.

6. 3b 2017

Let f = u + iv be an analytic function on the unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$. Show that

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} \ = \ \mathbf{0} \ = \ \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2}$$

at all points of D.

15

7. 1c 2017 IFoS

If f(z) = u(x, y) + iv(x, y) is an analytic function of z = x + iy and $u + 2v = x^3 - 2y^3 + 3xy(2x - y)$ then find f(z) in terms of z.

8. 1d 2016

Is $v(x, y) = x^3 - 3xy^2 + 2y$ a harmonic function? Prove your claim. If yes, find its conjugate harmonic function u(x, y) and hence obtain the analytic function whose real and imaginary parts are u and v respectively.

9. 1d 2016 IFoS

Find the analytic function of which the real part is

$$e^{-x} \left\{ \left(x^2 - y^2 \right) \cos y + 2xy \sin y \right\}.$$

8

10

10, 1d 2015

Show that the function $v(x, y) = \ln(x^2 + y^2) + x + y$ is harmonic. Find its conjugate harmonic function u(x, y). Also, find the corresponding analytic function f(z) = u + iv in terms of z.

11. 1c 2015 IFoS

Let $u(x, y) = \cos x \sinh y$. Find the harmonic conjugate v(x, y) of u and express u(x, y) + i v(x, y) as a function of z = x + iy.

12. 1c 2014

Prove that the function f(z) = u + iv, where

$$f(z) = \frac{x^3 (1+i) - y^3 (1-i)}{x^2 + y^2}, \ z \neq 0; \ f(0) = 0$$

satisfies Cauchy-Riemann equations at the origin, but the derivative of f at z = 0 does not exist.

13. 2e 2014 IFoS

Find the constants a, b, c such that the function

$$f(z) = 2x^2 - 2xy - y^2 + i(ax^2 - bxy + cy^2)$$

is analytic for all z = x + iy and express f(z) in terms of z.

14. 1c 2013 IFoS

Construct an analytic function

$$f(z) = u(x, y) + iv(x, y)$$
, where

$$v(x, y) = 6xy - 5x + 3.$$

Express the result as a function of z.

15. 1c 2012

(c) Show that the function defined by

$$f(z) = \begin{cases} \frac{x^3 y^5 (x + iy)}{x^6 + y^{10}}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

is not analytic at the origin though it satisfies Cauchy-Riemann equations at the origin. 12

16. 3b 2012 IFoS

Show that the function

$$u(x, y) = e^{-x} (x \cos y + y \sin y)$$

is harmonic. Find its conjugate harmonic function v(x, y) and the corresponding analytic function f(z).

17. 1c 2011

If f(z) = u + iv is an analytic function of

$$z = x + iy$$
 and $u - v = \frac{e^y - \cos x + \sin x}{\cos hy - \cos x}$, find $f(z)$

subject to the condition,
$$f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$$
. 12

18. 1e 2010

Show that

 $u(x, y) = 2x - x^3 + 3xy^2$ is a harmonic function.

Find a harmonic conjugate of u(x, y). Hence find the analytic function f for which u(x, y) is the real part.

19. 1d 2010 IFoS

Determine the analytic function
$$f(z) = u + iv$$
 if $v = e^{x}(x \sin y + y \cos y)$.

2. COMPLEX INTEGRATION

1. 1d 2020

Evaluate the integral $\int_C (z^2 + 3z) dz$ counterclockwise from (2, 0) to (0, 2) along the curve C, where C is the circle |z|=2.

2. 3c 2019

Evaluate the integral $\int_{C} Re(z^{2})dz$ from 0 to 2 + 4*i* along the curve *C* where *C* is a parabola $y = x^{2}$.

3. 1e 2019 IFoS

Evaluate the integral $\int_C \operatorname{Re}(z^2) dz$ from 0 to 2+4i along the curve $C: y = x^2$.

4. 1c 2012 IFoS

Evaluate the integral

$$\int_{2-i}^{4+i} (x + y^2 - ixy) \, dz$$

along the line segment AB joining the points A(2, -1) and B(4, 1).

5. 4a 2010

(i) Evaluate the line integral $\int_{c} f(z) dz$ where $f(z) = z^{2}$, c is the boundary of the triangle with vertices A(0, 0), B(1, 0), C(1, 2) in that order.

3. CAUCHY INTEGRAL FORMULA

1. 2c 2020 IFoS

Using Cauchy theorem and Cauchy integral formula, evaluate the integral

$$\oint_C \frac{e^z}{z^2(z+1)^3} \, dz$$

where C is |z|=2.

15

2. 1d 2019 IFoS
Using Cauchy's Integral formula, evaluate the integral $\oint \frac{dz}{(z^2+4)^2}$ where c : |z - i| = 2.

3. 1c 2014 IFoS

Using Cauchy integral formula, evaluate

$$\int_C \frac{z+2}{(z+1)^2(z-2)} \, dz$$

where C is the circle |z-i|=2.

8

4. 2c 2012

(c) Use Cauchy integral formula to evaluate

$$\int_{c}^{\infty} \frac{e^{3z}}{(z+1)^4} dz$$
, where c is the circle $|z| = 2$.

4. SINGULARITIES, TAYLOR'S AND LAURENT'S SERIES

1.4b 2019

Obtain the first three terms of the Laurent series expansion of the function $f(z) = \frac{1}{(e^z - 1)}$ about the point z = 0 valid in the region $0 < |z| < 2\pi$.

2. 4b 2019 IFoS

Classify the singular point z = 0 of the function $f(z) = \frac{e^z}{z + \sin z}$ and obtain the principal part of the Laurent series expansion of f(z).

3.4b 2018

Find the Laurent's series which represent the function $\frac{1}{(1+z^2)(z+2)}$ when

- (i) |z| < 1
- (ii) 1 < |z| < 2
- (iii) |z|>2

15

10

4. 1d 2017

Determine all entire functions f(z) such that 0 is a removable singularity of $f\left(\frac{1}{z}\right)$.

5. 4a 2017

For a function $f: \mathbb{C} \to \mathbb{C}$ and $n \ge 1$, let $f^{(n)}$ denote the n^{th} derivative of f and $f^{(0)} = f$. Let f be an entire function such that for some $n \ge 1$, $f^{(n)}\left(\frac{1}{k}\right) = 0$ for all k = 1, 2, 3, Show that f is a polynomial.

6. 4c 2016

Prove that every power series represents an analytic function inside its circle of convergence.

7. 4b 2016 IFoS

Find the Laurent series for the function $f(z) = \frac{1}{1-z^2}$ with centre z = 1.

8, 2c 2015

Find all possible Taylor's and Laurent's series expansions of the function $f(z) = \frac{2z-3}{z^2-3z+2}$ about the point z=0.

9. 1d 2014

20

15

Expand in Laurent series the function $f(z) = \frac{1}{z^2(z-1)}$ about z = 0 and z = 1.

10. 4b 2014 IFoS

Find the Laurent series expansion at z = 0 for the function

$$f(z) = \frac{1}{z^2(z^2 + 2z - 3)}$$

in the regions (i) 1 < |z| < 3 and (ii) |z| > 3.

11. 1d 2013

Prove that if $b e^{a+1} < 1$ where a and b are positive and real, then the function $z^n e^{-a} - b e^z$ has n zeroes in the unit circle.

12. 4b 2013 IFoS

Find Laurent series about the indicated singularity. Name the singularity and give the region of convergence.

$$\frac{z-\sin z}{z^3}; \ z=0.$$

13. 3c 2012

(c) Expand the function $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for

(i)
$$|z| < 3$$
 (ii) $|z| > 3$ (iii) $0 < |z+1| < 2$ (iv) $|z| < 1$

14. 3d 2011

Find the Laurent series for the function

$$f(z) = \frac{1}{1 - z^2}$$
 with centre $z = 1$. 15

15, 2c 2011

If the function f(z) is analytic and one valued in |z-a| < R, prove that for 0 < r < R, $f'(a) = \frac{1}{\pi r} \int_{0}^{2\pi} P(\theta) e^{-i\theta} d\theta$, where $P(\theta)$ is the real part of $f(a + re^{i\theta})$. 15

16. 1d 2011 IFoS

Expand the function

$$f(z) = \frac{2z^2 + 11z}{(z+1)(z+4)}$$

in a Laurent's series valid for 2 < |z| < 3. 10

17. 4b 2010

Find the Laurent series of the function

Find the Laurent series of the function
$$f(z) = \exp\left[\frac{\lambda}{2}\left(z - \frac{1}{z}\right)\right] \text{ as } \sum_{n = -\infty}^{\infty} C_n z^n$$
for $0 < |z| < \infty$

where
$$C_n = \frac{1}{\pi} \int_0^{\pi} \cos(n\phi - \lambda \sin\phi) d\phi$$
,
 $n = 0, \pm 1, \pm 2, \dots$

with λ a given complex number and taking the unit circle C given by $z = e^{i\phi}(-\pi \le \phi \le \pi)$ as contour in this region. 15

18. 4b 2010 IFoS

Obtain Laurent's series expansion of the function

$$f(z) = \frac{1}{(z+1)(z+3)}$$

in the region 0 < |z+1| < 2.

5. RESIDUES, CAUCHY'S RESIDUE THEOREM

1. 2d 2019

Show that an isolated singular point z_0 of a function f(z) is a pole of order m if and

only if
$$f(z)$$
 can be written in the form $f(z) = \frac{\phi(z)}{(z-z_0)^m}$

where $\phi(z)$ is analytic and non zero at z_0 .

Moreover Res
$$z = z_0$$
 $f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$ if $m \ge 1$.

15

2, 3b 2018

Show by applying the residue theorem that
$$\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2} = \frac{\pi}{4a^3}, \ a > 0.$$

3. 2c 2018 IFoS

Prove that
$$\int_0^\infty \cos x^2 dx = \int_0^\infty \sin x^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$$
.

10

4. 3c 2018 IFoS

Evaluate the integral $\int_0^{2\pi} \cos^{2n} \theta \ d\theta$, where n is a positive integer.

10

5. 4b 2017 IFoS

Find the sum of residues of
$$f(z) = \frac{\sin z}{\cos z}$$
 at its poles inside the circle $|z| = 2$.

6. 3a 2015

State Cauchy's residue theorem. Using it, evaluate the integral

$$\int_C \frac{e^z + 1}{z(z+1)(z-i)^2} dz; C: |z| = 2$$

7. 2c 2015 IFoS

Evaluate the integral
$$\int_{\mathbf{r}} \frac{z^2}{(z^2+1)(z-1)^2} dz, \quad \text{where r is the circle}$$

$$|z|=2.$$

8. 3c 2014

Evaluate the integral
$$\int_0^{\pi} \frac{d\theta}{\left(1 + \frac{1}{2}\cos\theta\right)^2}$$
 using residues.

20

9. 2c 2014 IFoS

Evaluate:

 $\int\limits_{|z|=1}^{\infty} \frac{z}{z^4 - 6z^2 + 1} dz$

10, 4b 2013

Using Cauchy's residue theorem, evaluate the integral

$$I = \int_{0}^{\pi} \sin^4 \theta \, d\theta \tag{15}$$

11. 3c 2013 IFoS

Evaluate $\int_{C} \frac{e^{2z}}{(z+1)^4} dz$ where c is the circle |z| = 3.

12. 4a 2012 IFoS

Using the Residue Theorem, evaluate the integral

$$\int_{C} \frac{e^{z}-1}{z(z-1)(z+i)^{2}} dz,$$

where C is the circle |z| = 2.

13

13

13. 4b 2011 IFoS

State Cauchy's residue theorem. Using it, evaluate the integral

$$\int_C \frac{e^{z/2}}{(z+2)(z^2-4)} dz$$

counterclockwise around the circle C: |z+1| = 4.

15

6. CONTOUR INTEGRATION

1. 2c 2020

Using contour integration, evaluate the integral $\int_{0}^{2\pi} \frac{1}{3 + 2\sin\theta} d\theta.$ 20

2. 2b 2017

Using contour integral method, prove that

$$\int_0^\infty \frac{x \sin mx}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma}.$$
 15

3. 4a 2017 IFoS

Prove by the method of contour integration that $\int_{0}^{\pi} \frac{1 + 2\cos\theta}{5 + 4\cos\theta} d\theta = 0.$ 12

4. 3c 2016

Let

 $\gamma:[0,1]\to\mathbb{C}$ be the curve

$$\gamma(t)=e^{2\pi it},\ 0\leq t\leq 1.$$

Find, giving justifications, the value of the contour integral

 $\int_{\gamma} \frac{\mathrm{dz}}{4z^2 - 1}$

5. 4c 2016 IFoS

Evaluate by Contour integration $\int_{0}^{\pi} \frac{d\theta}{\left(1 + \frac{1}{2}\cos\theta\right)^{2}}.$

6. 4b 2015 IFoS

Show that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$ by using contour integration and the

residue theorem.

7. 3d 2012

(d) Evaluate by contour integration

$$I = \int_{0}^{2\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2}, \ a^2 < 1.$$
 15

8. 3c 2011

Evaluate by Contour integration,

$$\int_{0}^{1} \frac{dx}{(x^2 - x^3)^{1/3}}$$

9. 2c 2010 IFoS

Using the method of contour integration, evaluate

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)^2 (x^2+2x+2)}$$
 14

7. CONFORMAL MAPPINGS & BILINEAR TRANSFORMATIONS

1. 4a 2020 IFoS

Show that the bilinear transformation

$$w = e^{i\theta_0} \left(\frac{z - z_0}{z - \overline{z}_0} \right)$$

 z_0 being in the upper half of the z-plane, maps the upper half of the z-plane into the interior of the unit circle in the w-plane. If under this transformation, the point z = i is mapped into w = 0 while the point at infinity is mapped into w = -1, then find this transformation.

2. 3c 2014 IFoS

Find the bilinear transformations which map the points -1, ∞ , i into the points—

(i) i, 1, 1+i

(ii) ∞, i, 1

(iii) 0, ∞, 1

3. 2c 2011 IFoS

Sketch the image of the infinite strip 1 < y < 2 under the transformation $w = \frac{1}{z}$.

4. 4a 2010

(ii) Find the image of the finite vertical strip R: x = 5 to x = 9, $-\pi \le y \le \pi$ of z-plane under exponential function.

10

15