中 国 科 学 技 术 大 学 2016 - 2017**学年第二学期期终考试试卷**(A)

考试科目:	线性代数(B)	得分:

题号	_	=	三	四	五	六	总分
得分							
复查							

【共25分】填空题:

一、【共25分】項2 趣:
1. 向量组 $\alpha_1, \alpha_2, \alpha_3$ 是线性空间V的一组基,线性变换 ${\cal A}$ 在此基下的矩阵是 $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$,

则 \mathbf{A} 在基(α_1 , $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_3$)下的矩阵为__

2. 设 \mathbf{A} 是3维复线性空间V上的线性变换, $\alpha_1, \alpha_2, \alpha_3$ 是V中3个线性无关的向量,且

$$\mathcal{A}\alpha_1 = \alpha_1, \ \mathcal{A}\alpha_2 = -\alpha_3, \ \mathcal{A}\alpha_3 = \alpha_2 + 2\alpha_3,$$

那么 \boldsymbol{A} 的三个特征值为 .

- 3. 在n维欧氏空间V中,向量x在标准正交基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的坐标是 (x_1, x_2, \cdots, x_n) ,
- 5. 已知二次型 $Q(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + ax_3^2 + 4x_1x_3 + 2tx_2x_3$ 经正交变换x = Py可 化为标准型 $y_1^2 + 2y_2^2 + 7y_3^2$,则t =______.

二、【共20分】判断题:判断下列命题是否正确,并简要说明理由或举出反例.
1. 有限维实线性空间 V 上总可以定义适当的内积,使之成为欧氏空间.
2. n 维欧氏空间上的任意 n 个非零向量,都可经Schmidt正交化方法得到一组标准证
交基.
3. n阶方阵 A, B 有相同的特征值、迹、秩、行列式,则 A, B 相似.
$4.$ 若对称阵 A 正定,则对任意正整数 k 有 A^k 正定.

- 三、【20分】设 $V = \{c_1e^x + c_2x + c_3: c_1, c_2, c_3 \in \mathbb{R}\}$,按照函数的加法与数乘构成 \mathbb{R} 上的线性空间. $\mathcal{D} = \frac{d}{dx}$ 为求导运算.
- (1) 证明: \mathcal{D} 为V上的线性变换;
- (2) 求 \mathcal{D} 在基 $(1, x, e^x)$ 下的矩阵;
- (3) 求D的特征值与特征向量;
- (4) 是否存在V的一组基,使得D在该基下的矩阵为对角阵?若存在,则给出这样的一组基;反之,证明不存在.

- 四、【15分】已知二次型 $Q(x_1,x_2,x_3)=3x_1^2+8x_2^2-x_3^2-12x_2x_3$.
- (1). 写出二次型 $Q(x_1, x_2, x_3)$ 的矩阵A.
- (2). 求正交变换y = Px,将二次型 $Q(x_1, x_2, x_3)$ 化为标准型,并指出矩阵A是否正定.

五、【10分】设有分块对角矩阵

$$A = \left(\begin{array}{cccc} A_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & A_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & A_s \end{array}\right),$$

其中 A_i $(i=1,2,\cdots,s)$ 为方阵,证明**:**A可对角化的充分必要条件是每个 A_i 皆可对角化.

六、【10分】A为n阶可逆实方阵,证明:

(1)
$$A$$
可以分解为 $A=QR$,其中 Q 为正交阵, $R=\left(egin{array}{cccccc} r_{11} & r_{12} & r_{13} & \cdots & r_{1n} \\ 0 & r_{22} & r_{23} & \cdots & r_{2n} \\ 0 & 0 & r_{33} & \cdots & r_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & r_{nn} \end{array}\right)$ 为实

上三角阵且 $r_{ii} > 0$.

(2) 满足(1)中条件的分解是唯一的.