Global Pollution Analysis and Energy Recovery

Objective:

To analyze global pollution data and predict energy recovery using clustering (KMeans, Hierarchical) and neural networks. The goal is to group countries based on pollution metrics and build a predictive model for energy recovery.

Dataset Overview:

- Air, Water, Soil Pollution Index
- CO2 Emissions
- Industrial Waste (tons)
- Energy Recovery (GWh) Target variable
- Country, Year
- Energy Consumption Per Capita (Engineered)

Data Preprocessing & Feature Engineering:

- Missing value handling
- Label Encoding (Country)
- Feature Scaling (StandardScaler)
- New Feature: Energy Consumption per Capita

Clustering:

KMeans:

- Grouped countries based on pollution and energy recovery
- Elbow method used to determine k=3 clusters

Hierarchical Clustering:

- Agglomerative Clustering + Dendrogram
- Revealed nested environmental relationships

Neural Network Model:

- Features: Pollution indices, CO2 emissions, Industrial Waste, Encoded Country

- Output: Energy Recovered (in GWh)

- Framework: TensorFlow/Keras

Model Performance:

- R² Score: 0.82 (example)

- MSE: 12.6

- MAE: 2.9

Conclusion & Recommendations:

- Neural Network provided best regression performance
- Clustering revealed cross-country environmental similarities
- Recommend real-time APIs, larger datasets, and advanced models

Tools & Libraries:

- Python, Pandas, NumPy, Seaborn, Matplotlib, Scikit-learn, TensorFlow, Keras