

文本分类

Jwzheng 慧科Aij讲师

第四节课课程计划

- RNN, LSTM算法回顾
- textRNN模型
- textRNN代码实现(基于keras实现lstm,新闻数据集)
- cnn算法回顾
- textCNN模型
- textCNN代码实现(基于keras实现Istm,新闻数据集)

RNN模型 我爸爸是法国人,。。。。,我喜欢(),我们常去法国 我能能

- cbow
- RNN网络结构
 - 不同时刻的参数共享

$$h^{(t)} = \phi(Ux^{(t)} + Wh^{(t-1)} + b)$$

- 双向RNN网络结构
 - 正向和反向不共享参数
 - 双向合并策略
 - 连接求和

RNN模型

- 深度RNN网络结构
- 深度RNN网络中的dropout
 - 在不同层之间使用

RNN模型

• RNN和LSTM的单元对比

$$h^{(t)} = \phi(Ux^{(t)} + Wh^{(t-1)} + b)$$

LSTM模型

• 遗忘门

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

• 输入门

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

• 输出门

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

 C_{t-1}

TextRNN模型

- RNN(LSTM)用于文本分类
- BiRNN(BiLSTM)用于文本分类
 - 最后一个单词的正向和逆向concat
- embedding层

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	300)	0
embedding_1 (Embedding)	(None,	300, 200)	4000000
bidirectional_1 (Bidirection	(None,	100)	100400
dropout_1 (Dropout)	(None,	100)	0
dense_1 (Dense)	(None,	10)	1010
dense_2 (Dense)	(None,	10)	110

Figure 1: Recurrent Neural Network for Classification

TextRNN模型

• RNN文本分类

TextRNN模型

- 为什么使用最后一个向量
 - 整个文本的压缩表示
- 其他方式
 - 使用每个神经元的输出平均后作为文本表示。
- 隐态
 - 计算文档相似度
 - 文档压缩编码
 - 机器翻译
- 端到端的模型
- RNN的文本特征提取

TextRNN模型回顾

- 输入:
 - •一段中文文本(分词)
- 输出:
 - 该文本所属的类别
- 如何表示文本:
 - •词向量表示 word2vec
- 模型:
 - TextRNN,TextBiLSTM

• 卷积层是卷积神经网络的核心

• 作用:局部特征提取

• 如何进行卷积?

● 6*6的图像

1	-1	-1
-1	1	-1
-1	-1	1

卷积核1

-1	1	-1	
-1	1	-1	
-1	1	-1	

卷积核2

● 6*6图像

步长为1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
_					
1	0	0	0	1	0
0	0 1	0	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

卷积核1

● 6*6图像

步长为1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

• 灰度图如何进行卷积?

1	-1	-1
-1	1	-1
-1	-1	1

3	-3	$\left(-1\right)$

(-3)	1	0	-3

-3	-3	0	1

3	_2	_2	J (-1

开课吧 kaikeba.com

• 彩色图如何进行卷积?

• 如何理解卷积?

TextCNN模型

- 输入:
 - 一段中文文本
- 输出:
 - 该文本所属的类别
- •如何表示文本:
 - •词向量表示 word2vec
- 模型:
 - TextCNN

TextCNN模型 7*5d 7*5d 一句话用矩阵来表示

(10 100 1000 1001 1002 1003 1004) 7d

- 输入:
 - 一段中文文本
- 输出:
 - •该文本所属的类别
- 如何表示文本:
 - •词向量表示 word2vec
- 模型:
 - TextCNN
- 卷积核的维度的意义
 - •长宽高

TextCNN模型

- 如何利用多通道
 - 使用多种不同的词向量模型
 - 图像 (RGB)

第五节课课程计划

- attention介绍
- Istm+attention文本分类模型
- 实践:Istm+attention文本分类模型
- 分层注意力网络模型介绍
- 实践:基于分层注意力网络实现文本分类

RNN文本分类模型

- RNN文文分类框架
- 缺点
 - 文本表示的欠缺
- 改进
 - 改进的依据
 - 加权重表示文本

$$s = \sum_t \alpha_t h_t$$

注意力(Attention)

• 如何利用attention进行文本表示

$$u_t = \tanh(W_w h_t + b_w)$$

$$lpha_t = rac{\exp(u_t^T u_w)}{\sum_t \exp(u_t^T u_w)}$$

$$s = \sum_t \alpha_t h_t$$

- 公式的理解
 - 参考上面的公式 ,相当于加了一个attention层 ,用于计算每一个hi的权重,然后加权各个时刻的隐态 ,得到文档的表示。

HAN(Hierarchical Attention Networks)

- 网络结构
 - 词序列编码器
 - •基于词级的注意力层
 - 句子编码器
 - •基于句子级的注意力层
- 分层注意力网络用于文本分类
 - 文章由若干个句子组成
 - 句子有若干个单词组成
- GRU作为循环神经网络的每个单元

HAN(Hierarchical Attention Networks) 具類解析

1) 词序列编码器

给定一个句子中的单词 w_{it} , 其中 i 表示第 i 个句子, t 表示第 t 个词。通过一个词嵌入矩阵 W_{ρ} 将单词转换成向量 表示, 具体如下所示:

$$x_{it} = W_e; w_{it}$$

接下来看看利用双向GRU实现的整个编码流程:

$$\begin{aligned} x_{it} = & W_e w_{it}, t \in [1, T], \\ \overrightarrow{h}_{it} = & \overrightarrow{\text{GRU}}(x_{it}), t \in [1, T], \\ \overleftarrow{h}_{it} = & \overleftarrow{\text{GRU}}(x_{it}), t \in [T, 1]. \end{aligned}$$

最终的 $h_{it} = [\rightarrow h_{it}, \leftarrow h_{it}]$ 。

2) 词级的注意力层

注意力层的具体流程如下:

$$u_{it} = \tanh(W_w h_{it} + b_w)$$

$$\alpha_{it} = \frac{\exp(u_{it}^\top u_w)}{\sum_t \exp(u_{it}^\top u_w)}$$

$$s_i = \sum_t \alpha_{it} h_{it}.$$

上面式子中, u_{it} 是 h_{it} 的隐层表示, a_{it} 是经 softmax 函数处理后的归一化权重系数, u_{iv} 是一个随机初始化的向 量,之后会作为模型的参数一起被训练, s_i 就是我们得到的第i 个句子的向量表示。

HAN(Hierarchical Attention Networks) 間意的

3) 句子编码器

也是基于双向GRU实现编码的,其流程如下,

$$\overrightarrow{h}_i = \overrightarrow{\text{GRU}}(s_i), i \in [1, L],$$

$$\overleftarrow{h}_i = \overleftarrow{\text{GRU}}(s_i), t \in [L, 1].$$

公式和词编码类似,最后的 h_i 也是通过拼接得到的

4) 句子级注意力层

注意力层的流程如下,和词级的一致

$$u_i = \tanh(W_s h_i + b_s),$$

$$\alpha_i = \frac{\exp(u_i^\top u_s)}{\sum_i \exp(u_i^\top u_s)},$$

$$v = \sum_{i} \alpha_i h_i,$$

最后得到的向量 v 就是文档的向量表示,这是文档的高层表示。接下来就可以用可以用这个向量表示作为文

注意力机制的解释

• 源和目标

机器翻译中的Attention

• 源和目标

机器翻译中的Attention

attention

- encoder-decoder框架
- 机器翻译
- 编码

对于一个传统的 Encoder-Decoder 模型,定义输入数据为 $X=(x_1,x_2,x_3,...,x_i)$,输出数据为 $Y=(y_1,y_2,y_3,...,y_j)$,C 为编码后的中间语义,则 Encoder 过程可以表示为:

$$C = E(x_1, x_2, x_3, ..., x_i)$$
(4-6)

•解码

Decoder 过程可以看作是对中间语义 C 进行解码操作,表示为:

$$y_i = D(C, y_1, y_2, y_3, ..., y_{i-1})$$
 (4-7)

编码

机器翻译中的Attention

attention

在基于 Attention 机制的 Encoder-Decoder 模型中,解码操作在计算输出数据 y_j 的方式可以表示为:

$$y_j = D(C_j, y_1, y_2, y_3, ..., y_{j-1})$$

• Cj如何计算

$$C_j = \sum_{i=1}^{T} a_{ij} S(x_i)$$

注意力机制 (attention)

• attention的计算

•

Attention层 a_{1j} a_{2j} ... a_{ij} 输入层 h_1 h_2 ... h_i H_j X_1 X_2 X_2 X_i X_j

图 4-5 Attention 概率分布的计算示意图

根据图 4-5 中所示,输出值 Y_j 对应输入数据 X_i 的 Attention 概率分布 a_{ij} 的计算方法可以表示为:

$$a_{ii} = F(h_i, H_i) \tag{4-10}$$

其中, h_i 表示输入数据 X_i 在 Encoder 中隐藏层状态, H_j 表示输出数据 Y_j 在 Decoder 中隐藏层状态,F 用于计算两种状态相符合的概率。

注意力机制 (attention)

- attention
 - encoder-decoder框架
 - 机器翻译 人机对话
- Istm+attention作文本分类
- bilstm+attention的论文如下:
- Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification

注意力机制(attention)

- Attention原理
 - •计算当前输入序列与输出向量的匹配程度,匹配度高也就是注意力集中点其相对的得分越高。