ÁRVORES BALANCEADAS

Balanceamento AVL

<u>1</u>

Árvores Balanceadas

- Árvores Binárias de Busca
 - Utilização
 - Minimizar o número de comparações efetuadas, no pior caso, para uma busca com chaves de probabilidades de ocorrência idênticas.
 - Restrições
 - Aplicações estáticas ⇒ Ideal
 - Aplicações dinâmicas \Rightarrow Desaconselhável

- Árvores Binárias de Busca
 - Problema
 - Sucessivas inserções e retiradas de nós em uma ABB fazem com que existam diferenças sensíveis entre os níveis das suas folhas, o que acarreta grandes diferenças de performance no acesso às informações.
 - Pior caso: Árvores assimétricas.

3

Árvores Balanceadas

- Árvores Binárias de Busca
 - Problema (cont.)
 - <u>Pior caso</u>: Árvores assimétricas(semelhante a uma lista linear).

• Árvores Binárias de Busca

- Alternativa
 - Tornar a árvore novamente completa, tão logo tal característica seja perdida após uma inclusão ou remoção.
 - Balanceamento.

<u>5</u>

Árvores Balanceadas

- <u>Definição</u> (*Rigorosa*)
 - Uma árvore é dita balanceada quando, para qualquer nó, as suas sub-árvores à esquerda e à direita possuem a mesma altura;
 - Isso equivale a dizer que todas as suas folhas estão no mesmo nível;
 - Ou seja, que a árvore está completa.

- Definição (Rigorosa)
 - Problema
 - Alto custo de reestruturação da árvore.
 - Solução pouco eficiente e, na maioria das vezes, impossível.

<u>7</u>

Árvores Balanceadas

- <u>Definição</u> (Menos rigorosa)
 - Uma árvore é considerada balanceada quando, para cada nó n, as alturas das sub-árvores à direita e à esquerda diferem, no máximo, de um.
 - Essa diferença é chamada de "fator de balanceamento" do nó n (FatBal(n)).

- <u>Definição</u> (Menos rigorosa)
 - Conceito introduzido em 1962 pelos matemáticos russos <u>A</u>delson-<u>V</u>elskii e <u>L</u>andis.
 - Conhecidas como árvores AVL.

9

<u>Árvores AVL</u>

- Características Básicas
 - O fator de balanceamento deve constar em cada nó de uma árvore AVL.
 - FatBal(n) = Negativo ⇒ sub-árvore à esquerda mais alta.
 - FatBal(n) = Positivo ⇒ sub-árvore à direita mais alta.
 - FatBal(n) = Zero ⇒ sub-árvores à esquerda e à direita com mesma altura.

• Exemplos de Árvores Balanceadas

<u>11</u>

Árvores AVL

• Exemplos de Árvores Não Balanceadas

<u>12</u>

- Exemplos de aplicações de árvores AVL
 - Redes de comunicação de dados
 - Envio de pacotes ordenados e/ou redundantes
 - Codificação de Huffman
 - Compressão e descompressão de arquivos

<u>13</u>

<u>Árvores AVL</u>

- Operações específicas
 - Inserção
 - Remoção

- Inserção
 - Sempre ocorre nas folhas;
 - Pode ocasionar:
 - o aumento da altura da sub-árvore onde o nó foi inserido;
 - a alteração dos fatores de balanceamento dos nós daquela sub-árvore.

<u> 15</u>

<u>Árvores AVL</u>

- Algoritmo de Inserção
 - Efetuar a inserção
 - Ajustar os fatores de balanceamento
 - Verificar a quebra do equilíbrio
 - Se a árvore não estiver balanceada,
 corrigir a estrutura através de movimentações dos nós (*Rotações*).

<u>16</u>

- Rotação
 - Principais nós envolvidos:
 - Nó A: Nó ancestral mais próximo do nó inserido que possuía fator de balanceamento diferente de zero antes da inserção.
 - **Nó B**: Filho de A na sub-árvore onde ocorreu a inserção.
 - Tipos de Rotação
 - Simples
 - Dupla

<u>17</u>

<u>Árvores AVL</u>

- Rotação Simples
 - Utilizada quando a inserção ocorre do "lado de fora".
 - − Dado um nó A, podemos ter:
 - <u>Caso 1</u>: Inserção na sub-árvore à esquerda do filho à esquerda de A

 Rotação simples à direita.
 - <u>Caso 2</u>: Inserção na sub-árvore à direita do filho à direita de A ⇒ Rotação simples à esquerda.

• Rotação Simples à Direita

OBS: O nó foi inserido na sub-árvore T1

<u>19</u>

<u>Árvores AVL</u>

• Rotação Simples à Direita - Exemplo

<u>20</u>

• Rotação Simples à Direita - Exemplo (cont.)

<u>21</u>

<u>Árvores AVL</u>

• Rotação Simples à Esquerda

OBS: O nó foi inserido na sub-árvore T3

<u>22</u>

• Rotação Simples à Esquerda - Exemplo

<u>23</u>

Árvores AVL

• Rotação Simples à Esquerda - Exemplo (cont.)

<u>24</u>

- Rotação Dupla
 - Utilizada quando a inserção ocorre do "lado de dentro".
 - Dado um nó A, podemos ter:
 - <u>Caso 3</u>: Inserção na sub-árvore à direita do filho à esquerda de A ⇒Rotação dupla à direita.
 - <u>Caso 4</u>: Inserção na sub-árvore à esquerda do filho à direita de A ⇒Rotação dupla à esquerda.

<u>25</u>

Árvores AVL

- Rotação Dupla
 - Principais nós envolvidos:
 - Nó A: Nó ancestral mais próximo do nó inserido que possuía fator de balanceamento diferente de zero antes da inserção.
 - **Nó B**: Filho de A na sub-árvore onde ocorreu a inserção.
 - Nó C: Filho de B na sub-árvore onde ocorreu a inserção.

• Rotação Dupla à Direita

 ${\color{red} {\bf OBS}}$: O nó foi inserido na sub-árvore de raiz ${\color{red} {\bf C}}$

<u>27</u>

Árvores AVL

• Rotação Dupla à Direita - Exemplo

<u> 28</u>

<u>Árvores AVL</u>

• Rotação Dupla à Direita - Exemplo(cont.)

<u>29</u>

<u>Árvores AVL</u>

- Rotação Dupla à Direita Observações
 - Uma rotação dupla à direita é equivalente à uma rotação simples à esquerda seguida de uma rotação simples à direita.

• Rotação Dupla à Esquerda

 \overline{OBS} : O nó foi inserido na sub-árvore de raiz \underline{C} .

<u>31</u>

Árvores AVL

• Rotação Dupla à Esquerda - Exemplo

<u>32</u>

• Rotação Dupla à Esquerda - Exemplo(cont.)

<u>33</u>

Árvores AVL

- Rotação Dupla à Esquerda Observações
 - Uma rotação dupla à esquerda é equivalente à uma rotação simples à direita seguida de uma rotação simples à esquerda.

<u>34</u>