1

Assignment 16

Jayati Dutta

Abstract—This is a simple document explaining how to determine whether a set of polynomials are linearly independent or not.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let S be a set of non-zero polynomials over a field F. If no two elements of S have the same degree, show that S is an independent set in F[x].

2 Solution

Given	S be a set of non-zero polynomial over a field F
	No two elements of S have the same degree
To prove	S is an independent set in F[x]
Linear	
Independency	Let $f_1, f_2,, f_n$ are the
	polynomials and they will be
	linearly independent if
	$a_1 f_1 + a_2 f_2 + \dots + a_n f_n = \theta$
	for $a_1 = a_2 = \dots = a_n = 0$
	where $a_1, a_2,, a_n$ are
	scalars from field F

Hence, it is proved that S is an independent set in F[x].

D C	
Proof	Let the degrees of $f_1, f_2,, f_n$ are
	$d_1, d_2,, d_n$ respectively such that
	the degree of $f_i = d_i \neq d_j$
	for $j=1,2,,n$ and $i \neq j$
	and $d_1 < d_2 < < d_n$
	so d_n is the largest degree
	Now, let $a_1 f_1 + a_2 f_2 + + a_n f_n = \theta$
	where $f_1 = \sum_{i=0}^{d_1} k_{1i} x^i$
	$f_2 = \sum_{i=0}^{d_2} k_{2i} x^i$ $\mathbf{or}, f_2 = \sum_{i=0}^{d_1} k_{2i} x^i + \sum_{i=d_1+1}^{d_2} k_{2i} x^i$
	Similarly, $f_{n-1} = \sum_{i=0}^{d_{n-1}} k_{(n-1)i} x^i$ $\implies f_{n-1} = \sum_{i=0}^{d_{n-2}} k_{(n-1)i} x^i + \sum_{i=d_{n-2}+1}^{d_{n-1}} k_{(n-1)i} x^i$
	$\implies f_{n-1} = \sum_{i=0}^{a_{n-2}} k_{(n-1)i} x^i + \sum_{i=d_{n-2}+1}^{a_{n-1}} k_{(n-1)i} x^i$
	and $f_n = \sum_{i=0}^{d_{n-1}} k_{ni} x^i + \sum_{i=d_{n-1}+1}^{d_n} k_{ni} x^i$ Now,
	Now,
	$= \sum_{i=0}^{d_1} (a_1 k_{1i} + a_2 k_{2i} + + a_n k_{ni}) x^i$
	$+\sum_{i=d_1+1}^{d_2} (a_2 k_{2i} + + a_n k_{ni}) x^i + + \sum_{i=d_{n-1}+1}^{d_n} a_n k_{ni} x^i$
	$\Delta t = d_{n-1} + 1$
	Now, as $a_1 f_1 + a_2 f_2 + + a_n f_n = \theta$
	for $d_{n-1} + 1 \le i \le d_n$, $k_{ni} \ne 0$
	so a_n must be 0
	Now, discarding a_n associated term, we get
	$\sum_{i=0}^{d_1} (a_1 k_{1i} + a_2 k_{2i} + + a_n k_{ni}) x^i$
	$+\sum_{i=d_1+1}^{d_2} (a_2 k_{2i} + + a_n k_{ni}) x^i$
	$+ + \sum_{i=d_{n-2}+1}^{d_{n-1}} a_{n-1} k_{(n-1)i} x^{i} = 0$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	so, for $d_{n-2} + 1 \le i \le d_{n-1}$, $k_{(n-1)i} \ne 0$ $\implies a_{n-1} = 0$
	n 1

Proof	Similarly, for $d_1 + 1 \le i \le d_2$ $\sum_{i=0}^{d_1} (a_1 k_{1i} + a_2 k_{2i}) x^i + \sum_{i=d_1+1}^{d_2} a_2 k_{2i} x^i$ $\implies a_2 = 0 \text{ as } k_{2i} \ne 0$ $\implies \sum_{i=0}^{d_1} a_1 k_{1i} x^i = 0$ $\implies a_1 = 0 \text{ as } k_{1i} \ne 0$
	In this way, it can be proved that $a_1 = a_2 = \dots = a_{n-1} = a_n = 0 \text{ for}$ $a_1 f_1 + a_2 f_2 + \dots + a_n f_n = \theta$ $\implies f_1, f_2, \dots, f_n \text{ are}$ linearly independent