

Gestão/Management

Management of Local and Global Networks Concepts and Protocols

Learning outcomes

- Understand the need for professional automated management
- Understand the concept of policy-based management
- Realize the challenges of management in telecommunications, and the CMIS and TMN models.

- Lower Cost Manual management is costly
- More efficient Automatic systems allow an efficient planning, and mechanisms to predict the utilization trends: lower errors and faster actuation
- Better service The manager is informed at the same time the (client) is, and can make an automatic check of the situation
- Greater knowledge more information exists about the network, allowing better decisions and planning
- Why not human intervention?
 - Difficult to describe responsabilities
 - Technology rapidly evolves
 - Mangement systems rapidly evolve
 - Lack of technical resources

- Problems need to be quickly solved
- Management systems simplify the work of multi-functional networks (e.g. VoIP in multiple networks)
- Persons better used they do not need to perform repetitive tasks
- Companies need to optimze their structures, and network management allow resources optimization

12

Network management

- · ISO defined five areas for network management
 - Fault management detection, isolation, and correction of anomaly behaviors

Fault

 Configuration management – control data for the network elements / colect data from network elements

Configuration

- Accounting management - measure network utilization and determine network costs and user accountings

Performance management – evaluate/report network equipment behavior/efficiency erformance

Security management—support communications network secure management
 Security

universidade de aveiro

13

Network management

- · ISO defined five areas for network management
 - Fault management detection, isolation, and correction of anomaly behaviors

Paul

Configues olating the management etwork elements / colect data from network elements problems in distinct areas, ISO

onfiguration odel allows conceptual Accounting management – measure network infization and

According to specific problems in each functional area

Performance management – evaluate/report network equipment behavior/efficiency erformance

Security management—support communications network secure management

ecurity

16

Aspects of Network Management

- What to manage?
 - Network, equipment, systems, users, services, applications
- How to manage?
 - Interfaces, actions, abstractions
- What protocol(s) format(s)?
 - Protocol abstraction, formats, messages
- What information format(s)?
 - Information type

Standards for all this – including global frameworks

17

Management protocols

- Methods to monitor and configure network equipments
- Do not describe how to achieve management objectives

<u>Simple protocols</u> ⇒ common data and parameters formats allowing easy information transfer

Complex protocols ⇒ add flexibility and security capacity
Advanced protocols ⇒ remotely execute network
management tasks, without depending on specific protocol layers

Tools for network management

- WAN/LAN monitoring and analyzers
- Software monitors
- Security managers
- Documents, presentations and administrative instruments
- Tools for cross-analysis
- Databases, tools for information management
- Console emulator
- Tools for systems modelling
- Toolkits for development

universidade Network management standardization global models

- Internet Engineering Task Force (IETF)
 - Simple Network Management Protocol
 - SNMP, disman
 - Operations and Management Area
- **International Telecommunications Union (ITU-T)**
 - **Telecommunications Management Network**
 - SG IV
- International Standard Organization (ISO)
 - OSI, CMIP-CSIS
 - ISO-IEC/JTC 1/WG 4
- Others
 - DMTF, TM FORUM, OMG, IEEE, ...

Early discussions across bodies. Now cooperation is the normal across bodies.

30

Policies - Example

- Network with multiple services support
 - Differentiated QoS
 - Additional requirements in AAA functions
 - · Different levels
 - User
 - Service
 - OoS
- Service authorized
 - only to some users
 - between authorized network points
 - with specific QoS requirements
 - between specific time intervals
- User also needs to be charged according to the service characteristics being received

37

Management based on Policies

- <u>Objective</u>: globally manage the network and not its elements.
- Mechanism:
 - Define policies (rules) to inform the network of what to do – e.g:
 - Operation center should have access to all routers
 - Charging department has priority in the last 3 months of each year
 - In the maximum, only 10% of each link can transport video.
 - The policy rules are translated in equipment configuration changes

de avei Elements of systems based on policies

Conceptual parts:

- Management policy tools:
 - Used to create the policy rules
- Policies repository
 - Store the policy rules
- Policy consumers policy decision points, PDP
 - Make decisions and transfer the policy rules (eventually translated) to the policy targets.
- Policy targets, policy enforcement points, PEP
 - Functional elements affected by the policy rules.

Processing rules - sequence

- Rules definition
 - Verify internal conflicts
 - Include in a repository (e.g. with LDAP)
- Get policies from policy consumers
 - Take decisions based on policies
 - Processed to create configurations in policy targets
 - May use temporal restrictions
- Send policies to policy targets
 - Can be "pushed" or "pulled" (e.g. by COPS or SNMP)
- Policy targets
 - Instal configurations

COPS – Common Open Policy ⁴² Service

- Question/answer protocol to PDP-PEP interaction
- Based on TCP
- Maintains state synchronization
 - Recovers from fault
 - State maintenance with keep-alive
- PDP can send notifications to PEP
 - Default concept was for QoS support/control
- PDP can receive policies through LDAP and SNMP
- Supports two types of clients
 - RSVP, outsourcing model
 - Diff-serv, configuration model

43

PDP-PEP Interactions

- Outsourcing (RSVP)
 - PEP contacts PDP when a decision is needed
 - Request contains relevant elements for the policy, and admission control information (e.g. flowspec)
 - Best match for RSVP-based QoS systems
- Configuration requests (Diffserv)
 - PDP configures PEP with specific equipment information
 - Considers a PIB (policy information base) that maintains provisioning information
 - Best match for DiffServ-based QoS systems

universidade de aveiro. I Management architecture		
ITU-1		Title
X.701		System Management Overview
X.710	CMIS	Common Management Information Service
X.711	CMIP	Common Management Information Protocol
X.712	CMIP-PICS	CMIP Protocol Implementation Conformance State Proforma
X.720	MIM	Management Information Model (defines fundamental concepts of the objects)
X.721	DMI	Definition of Management Information
X.722	GDMO	Guideline for Definition of Management Objects (techniques for specification of objects)

CMIS/CMIP

· Approach object-oriented - objects

- Have attributes
- Generate events/notifications (reliably)
- Execute operations
- Objects with same attributes, notifications and operations belong to the same class
- Objects inserted in multiples hierarchies, with different inherits and containers
- · Intelligent agents
 - Can use rules or policies defined by the manager
 - Can be changed on-line
- Actions (verbs)

GET, SET, CREATE, DELETE, ACTION, NOTIFICATION, CANCEL_GET

• Capacity of CMIP actions is related to scoping and filtering capacities - through GDMOs

CMIP - GDMOs

- Guideline for the Definition of Managed Objects
 - The equipment through which the agent operates
- Model objects inside the equipment
 - Instantiation of GDMOs is called MIB
- Do not have well-defined behaviors, with large implementation freedom
 - Flexibility
 - Problem (complexity)
- CMIP is not polling oriented
 - Better scalability is achieved
- There are not so many defined GDMOs as MIBs

18

CMIP: pros and cons

CMIP advantages

- Object-oriented approach is flexible and extensible
- Support from telecommunications industry and international vendors
- Support of manager-manager interaction
- Support of automation environments
- Imposed in some industrial areas

CMIP disadvantages

- Complex and multi-layer
- Large management overhead
- Few management systems based on CMIP
- Few CMIP agents in use
- Generally rejected in the Internet.

universidade Frameworks: SNMP and CMIS **CMIS SNMP** Static MIBs Dynamic MIBs Concepts of limited models **Object-oriented models** Non-connection oriented Connection-oriented protocol protocol Polling model Event-oriented model Implementation-oriented Specification-oriented Heavy Limited functionalities Functionalities until the system management level · Bulk capcacity only in new Bulk capacity with scope and versions filtering Completely dominating the Some relevance in the telecommunications market Many SNMP-based products Some CMIP-based products in the market

TMN

Telecomunications Management Network

59

What is TMN?

- Objective
 - -Support the management of the telecommunication networks and services
- Concept
 - Create an organized structure to allow the interconnection of several operating systems and telecommunications equipments, using a well-defined architecture, with normalized protocols and interfaces

TMN and OSI

7

- TMN adds-on to OSI management
- Information model new network
- Organization model extension through the concept of functional block
- Communication model Correspondence between interface protocol
- Functional model new management functions (network)
 - Interworking TMN with other OSI systems
- Atenuate differences between protocols
- Services functionalities and complementaring functions
- Increase the OSI management potentialities or restrict the TMN management potentialities