

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL ESCOLA POLITÉCNICA

Aprendizado de Máquina

Aprendizado Supervisionado IV Avaliação de Desempenho de Modelos Supervisionados

Prof. Me. Otávio Parraga

MALTA

Machine Learning Theory and Applications Lab

Aula Passada

Comp. da antena

Aula de Hoje

- Protocolos para Avaliação de Desempenho
 - Holdout
 - Random Subsampling
 - Cross-Validation
 - Bootstrap
- Medidas para Avaliação de Classificadores
 - Matriz de Confusão
 - Curvas ROC

Desempenho de Modelos Supervisionados

- Espera-se de um classificador/regressor que ele apresente desempenho adequado para dados não vistos
 - Poder de generalização
- Para estimarmos de maneira correta o desempenho do modelo, precisamos seguir um <u>protocolo bem definido</u>
 - Separar dados cujo atributo alvo é conhecido em dois conjuntos mutuamente exclusivos: treinamento e teste
 - Jamais avaliar o desempenho de um modelo em dados utilizados para seu treinamento, sob pena de <u>superestimar</u> o desempenho do modelo

Protocolos para Avaliação de Desempenho

- Existem diferentes protocolos para realizar a separação dos dados disponíveis em conjuntos de treinamento e teste
 - Holdout
 - Random Subsampling
 - Cross-Validation
 - Leave-one-out

Holdout

- Também conhecido como split-sample
- Técnica mais simples para divisão de dados
- Faz uma única divisão (aleatória) da amostra em:
 - Conjunto de treinamento
 - Geralmente 1/2 ou 2/3 dos dados
 - Conjunto paras teste
 - Dados restantes

Atenção: em problemas de classificação, recomenda-se que $p_{tr}(C_j) \approx p_{test}(C_j) \ \forall C_j \in Y \ (holdout \ estratificado)$

Holdout

- Não é recomendado se dados não forem abundantes (ex: milhares de objetos)
- Caso aplicado em pequenos volumes de dados:
 - Poucos objetos são utilizados no treinamento
 - Modelo torna-se sensível à divisão realizada
 - Quanto menor o conjunto de treinamento, maior a variância (instabilidade / sensibilidade) do modelo obtido
 - Quanto menor o conjunto de teste, menos confiável é a estimativa de desempenho preditivo sobre dados não vistos
 - A solução para este cenário é utilizar métodos de re-amostragem

Métodos de Re-Amostragem

- Utilizam várias divisões do conjunto original de dados para criar os conjuntos de treinamento e de teste
 - Random subsampling
 - Cross-validation
 - Leave-one-out
 - Bootstrap

Random Subsampling

- Múltiplas execuções de holdout
 - Várias partições (p) de treinamento e teste são escolhidas de maneira aleatória
 - $-X_{tr} \cap X_{test} = \emptyset$
 - Medida de erro é calculada para cada partição
 - Erro de generalização estimado é a média dos erros para as diferentes partições
- Permite uma estimativa de erro mais realista
 - Porém, não há controle do número de vezes que cada objeto é utilizado nos conjuntos de treinamento e teste

Random Subsampling

Exemplo

 Suponha a existência dos seguintes objetos com valores de atributo alvo conhecido

$$X = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}, \mathbf{x}^{(6)}, \mathbf{x}^{(7)}, \mathbf{x}^{(8)}\}$$

• Random subsampling com p=3 e divisão 50%

	Treinamento	Teste	Erro
P_1	$\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}, \mathbf{x}^{(7)}$	$\mathbf{x}^{(5)}, \mathbf{x}^{(8)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}$	e_1
P_2	$\mathbf{x}^{(5)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(8)}$	$\mathbf{x}^{(1)}, \mathbf{x}^{(7)}, \mathbf{x}^{(6)}, \mathbf{x}^{(2)}$	e_2
P_3	$\mathbf{x}^{(3)}, \mathbf{x}^{(7)}, \mathbf{x}^{(5)}, \mathbf{x}^{(4)}$	$\mathbf{x}^{(2)}, \mathbf{x}^{(8)}, \mathbf{x}^{(1)}, \mathbf{x}^{(6)}$	e_3
	Erro de g	eneralização estimado:	$\underline{e_1 + e_2 + e_3}$
			p

- Validação cruzada
- Classe de métodos para estimativa da taxa de erro de generalização
 - k-fold cross-validation
 - Cada objeto participa o mesmo número de vezes do treinamento (k-1 vezes)
 - Cada objeto participa o mesmo número de vezes do teste (1 vez)

- O conjunto de dados é dividido em k partições mutuamente exclusivas
 - A cada iteração, k-1 partições são utilizadas para treinar o modelo
 - A partição restante é utilizada para testar o modelo
 - Erro estimado é a média dos erros das partições
 - Exemplo típico: 10-fold cross-validation

• Ex: 5-fold cross-validation

Disponíveis

Dados

Ex: 5-fold cross-validation

Para classificação, recomendado que seja estratificado!

Leave-one-out Cross-Validation

- Leave-one-out (LOO)
 - Caso particular de CV onde k = N
 - Cada iteração utiliza (N-1) objetos para treinar e apenas 1 objeto para teste
 - Assim como em k-fold CV, o erro estimado é dado pela média dos (N) erros de teste
 - Computacionalmente caro!!
 - Geralmente utilizado para pequenos conjuntos de objetos
 - Inviável para grandes conjuntos de dados
 - Gera estimativa de erro não-tendenciosa
 - Média das estimativas tende ao verdadeiro erro de generalização
 - Artigos científicos indicam que 10-fold CV aproxima LOO

Bootstrap

- Funciona melhor que *cross-validation* para conjuntos muito pequenos
- Forma mais simples de bootstrap:
 - Em vez de usar sub-conjuntos dos dados, usa subamostras
 - Cada sub-amostra é amostrada com reposição do conjunto total de objetos
 - Cada sub-amostra tem o mesmo número de objetos do conjunto original e é utilizada para treinamento
 - Objetos restantes (não amostrados) são utilizados no teste

Procedimento Padrão

Idealmente dividimos o nosso conjunto em três porções

- Conjunto P1 é utilizado para treinar o modelo
- Conjunto P2 é onde avaliamos o modelo
 - Procuramos por melhores hiper-parâmetros, técnicas e variáveis
- Conjunto P3 é onde apresentamos o resultado

Procedimento Padrão

- No cenário ideal
- Impraticável para muitos dados (Deep Learning)

Estimativa de Erro de Classificação

- Principal objetivo de um modelo supervisionado é prever com sucesso o valor de saída para objetos ainda não vistos
 - Errar o mínimo possível
- Para quantificar o desempenho preditivo (estimado) do modelo criado, existem diversas medidas na literatura
 - Cada medida tem um viés... (Teorema do NFL)
 - Para problemas de <u>regressão</u>:
 - Erro quadrático médio (com ou sem raiz)
 - Erro absoluto médio
 - ...
 - Para problemas de <u>classificação</u>:
 - Acurácia/Erro
 - Matriz de Confusão
 - Curvas PR e ROC
 - Kappa
 - ...

Taxa de Classificação Incorreta

- A medida clássica para estimar a taxa de erro de um classificador é denominada de taxa de classificação incorreta (misclassification rate), ou simplesmente erro de classificação
 - Proporção dos objetos de teste que são classificados incorretamente pelo classificador

$$erro = \frac{\#erros}{N_{teste}}$$

 Usualmente é medida de forma indireta através do seu complemento, a taxa de classificação correta:

$$acuracia = \frac{\#acertos}{N_{teste}}$$

- Acurácia
- acuracia = (1 erro)

Acurácia

- Do inglês, Accuracy
 - Dá tratamento igual a todas as classes do problema
 - Não é uma medida adequada para medir problemas com classes desbalanceadas
 - A medida privilegia a classe majoritária
 - Na vasta maioria dos problemas desbalanceados, a classe interessante (prioritária) é a classe rara =(
 - Ex: considere um problema de 2 classes
 - Classe 1 = 9990 objetos
 - Classe 2 = 10 objetos
 - Se modelo prevê apenas classe 1, acurácia será de 9990/10000 = 99.9%
 - Note que tal modelo n\u00e3o \u00e9 sequer inteligente!!!

Tipos de Erros

- Em classificação binária, é comum nomear os objetos da classe de maior interesse de positivos (+)
 - Normalmente a classe rara ou minoritária
 - Demais objetos são nomeados negativos (-)
- Em alguns casos, os erros têm igual importância
- Em muitos casos, no entanto, erros têm prioridades distintas (custos!) considerando as possíveis consequências
 - Ex: diagnóstico negativo para indivíduo doente

Tipos de Erros

- Existem dois tipos de erro em classificação binária:
 - Classificar objeto negativo como positivo
 - Falso Positivo (FP), Alarme Falso
 - Erro do Tipo I
 - Ex: paciente diagnosticado como doente, embora esteja saudável
 - Classificar objeto positivo como negativo
 - Falso Negativo (FN)
 - Erro do Tipo II
 - Ex: paciente diagnosticado como saudável, mas está doente

- Também chamada de Tabela de Contingência
 - Permite a extração de diversas medidas de desempenho preditivo
 - Pode ser utilizada para distinguir os tipos de erros
 - Pode ser utilizada para problemas binários ou multi-classe

Classe	Classe Verdadeira		
Prevista	Α	В	С
Α	25	10	0
В	0	40	0
С	5	0	20

- Também chamada de Tabela de Contingência
 - Permite a extração de diversas medidas de desempenho preditivo
 - Pode ser utilizada para distinguir os tipos de erros
 - Pode ser utilizada para problemas binários ou multi-classe

Classe	Classe Verdadeira		
Prevista	Α	В	С
Α	25	10	0
В	0	40	0
С	5	0	20

Diagonal principal: acertos!

- Também chamada de Tabela de Contingência
 - Permite a extração de diversas medidas de desempenho preditivo
 - Pode ser utilizada para distinguir os tipos de erros
 - Pode ser utilizada para problemas binários ou multi-classe

Classe	Classe Verdadeira		
Prevista	Α	В	С
Α	25	10	0
В	0	40	0
С	5	0	20

Valores fora da diagonal principal: erros!

- Também chamada de Tabela de Contingência
 - Permite a extração de diversas medidas de desempenho preditivo
 - Pode ser utilizada para distinguir os tipos de erros
 - Pode ser utilizada para problemas binários ou multi-classe

Classe Prevista	Classe Verdadeira		
	Α	В	С
Α	25	10	0
В	0	40	0
С	5	0	20

Acurácia:
$$\frac{25+40+20}{25+40+20+10+5} = \frac{85}{100} = 0.85 \text{ ou } 85\%$$

Matriz de Confusão Binária

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	VP	FP
Negativa	FN	VN

Matriz de Confusão Binária

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Matriz de Confusão Binária

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe Verdadeira	
Positiva	Negativa
VP	FP
FN	VN
	VP

Acurácia:

$$\frac{VP + VN}{VP + VN + FP + FN}$$

Erro:
$$\frac{FP + FN}{VP + VN + FP + FN} = (1 - acurácia)$$

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	VP	FP
Negativa	FN	VN

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	VP	FP
Negativa	FN	VN

Exercício

Avalie os 3 classificadores abaixo:

Classe	Classe Verdadeira	
Prevista	Р	N
Р	25	10
N	45	60

Classe	Classe Verdadeira	
Prevista	Р	N
Р	70	20
N	15	30

Classe	Classe Ve	erdadeira
Prevista	Р	N
Р	70	95
N	30	5

Classificador 1	
Acurácia =	
Erro =	
TFN =	
TFP =	

Classificador 2		
Acurácia =		
Erro =		
TFN =		
TFP =		

Classificador 3	
Acurácia =	
Erro =	
TFN =	
TFP =	

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	VP	FP
Negativa	FN	VN

Especificidade:
$$VN$$
 $= (1 - TFP)$ $FP + VN$

Classe	Classe Verdadeira		
Prevista	Positiva	Negativa	
Positiva	70	40	
Negativa	30	60	

Classe	Classe Verdadeira		
Prevista	Positiva	Negativa	
Positiva	VP	FP	
Negativa	FN	VN	

Sensibilidade:
$$\frac{VP}{FN + VP} = (1 - TFN)$$

(Recall, Revocação, Benefício)

Classe	Classe Verdadeira		
Prevista	Positiva	Negativa	
Positiva	70	40	
Negativa	30	60	

Classe	Classe Verdadeira		Classe Verdadeira	
Prevista	Positiva	Negativa		
Positiva	VP	FP		
Negativa	FN	VN		

Precision x Recall

Precisão: $\frac{VP}{FP + VP}$

O que acontece se um modelo classificar todos exemplos como sendo positivos?

Classe Verdadeira		
Positiva	Negativa	
VP	FP	
FN	VN	
	Positiva VP	

Revocação: $\frac{VP}{FN + VP}$

Precision x Recall

Precisão: $\frac{VP}{FP + VP}$

O que acontece se um modelo classificar todos exemplos como sendo positivos?

Classe Verdadeira		
Positiva	Negativa	
VP	FP	
FN	VN	
	Positiva VP	

Revocação: $\frac{VP}{\cancel{F}\cancel{N} + VP}$ máximo

Precision x Recall

O que acontece se um modelo classificar todos exemplos como sendo positivos?

Prevista Positiva Negati Positiva VP FP	Classe Verdadeira		
Positiva VP FP	va		
Negativa FN VN			

Revocação: $\frac{VP}{\cancel{F}\cancel{N} + VP}$ máximo

F-Measure

- Média harmônica de precision e recall
 - Também conhecida como F_1 score ou F-score

$$F_1 = 2 \times \frac{precision \times recall}{precision + recall} = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

Resumo das Medidas Apresentadas

$$Acurácia = \frac{VP + VN}{VP + FP + VN + FN}$$

Especificidade (TVN,
$$1 - TFP$$
) = $\frac{VN}{FP + VN}$

$$\frac{Recall}{\text{(TVP, Sensibilidade,}} = \frac{VP}{FN + VP}$$
Benefício)

$$Precision = \frac{VP}{VP + FP}$$

$$Acur\'{a}cia = \frac{VP + VN}{VP + FP + VN + FN} \qquad \qquad \frac{Erro}{(1 - Acur\'{a}cia)} = \frac{FP + FN}{VP + FP + VN + FN}$$

(Erro tipo I, Custo)
$$=\frac{FP}{FP+VN}$$

TFN (Erro tipo II,
$$=\frac{FN}{FN+VP}$$
 $1-Recall$)

Precision =
$$\frac{VP}{VP + FP}$$
 $F_1 = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$

Estimativa de Erro de Regressão

 Para problemas de Regressão, não podemos considerar se um valor é exato ou não

Valor Real	Valor Predito	
100	100.01	
200	345	

100 != 100.01

200 != 345

Ambos não são exatos, porém um é bem mais próximo do outro!

Estimativa de Erro de Regressão

Extraímos medidas baseadas no erro que temos:

Valor Real	Valor Predito	Erro	
100	100.01	- 0.01	+ Próximo
200	345	- 145	+ Distante
124	90	34	

$$RMSE = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2}$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y^{(i)} - \hat{y}^{(i)}|$$

Sugestão de Leituras

- Seções 4.5, 4.6 (Tan et al., 2006)
- Capítulo 9 (Faceli et al., 2011)

Créditos e Referências

Slides adaptados dos originais gentilmente cedidos por:

- Rodrigo Coelho Barros (PUCRS)
- André Carvalho (ICMC-USP)
- Ricardo Campello (ICMC-USP)
- Tan, P. N., Steinbach, M., Kumar, V. Introduction to Data Mining. Addison-Wesley, 2005. 769 p.
- Faceli et al. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina. LTC, 2011. 378 p.