Summary of Halmos' Naive Set Theory

Robin Adams

August 22, 2023

Contents

T	Primitive Terms and Axioms	2
2	The Subset Relation	3
3	Comprehension Notation	4
4	Unordered Pairs	5
5	Unions	6
6	Intersections	7
7	Unordered Triples	9
8	Relative Complements	10
9	Symmetric Difference	13
10	Power Sets	14
11	Ordered Pairs	16
12	Relations	18
13	Functions	20
14	Families	22
15	Inverses and Composites	24

Primitive Terms and Axioms

Let there be sets. We assume that everything is a set.

Let there be a binary relation of membership, \in . If $x \in A$ we say that x belongs to A, x is an element of A, or x is contained in A. If this does not hold we write $x \notin A$.

Axiom 1.1 (Axiom of Extensionality). Two sets are equal if and only if they have the same elements.

Axiom 1.2 (Axiom of Comprehension, Aussonderungsaxiom). To every set A and to every condition S(x) there corresponds a set B whose elements are exactly those elements x of A for which S(x) holds.

Axiom 1.3. A set exists.

Axiom 1.4 (Axiom of Pairing). For any two sets, there exists a set that they both belong to.

Axiom 1.5 (Union Axiom). For every set A, there exists a set that contains all the elements that belong to at least one element of A.

Definition 1.6 (Subset). Let A and B be sets. We say that A is a *subset* of B, or B includes A, and write $A \subseteq B$ or $B \supseteq A$, iff every element of A is an element of B.

Axiom 1.7 (Power Set Axiom). For any set A, there exists a set that contains all the subsets of A.

The Subset Relation

Theorem 2.1. For any set A, we have $A \subseteq A$.

PROOF: Every element of A is an element of A. \square

Theorem 2.2. For any sets A, B and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

PROOF: If every element of A is an element of B, and every element of B is an element of C, then every element of A is an element of C. \Box

Theorem 2.3. For any sets A and B, if $A \subseteq B$ and $B \subseteq A$ then A = B.

PROOF: If every element of A is an element of B, and every element of B is an element of A, then A and B have the same elements, and therefore are equal by the Axiom of Extensionality. \square

Definition 2.4 (Proper Subset). Let A and B be sets. We say that A is a proper subset of B, or B properly includes A, and write $A \subseteq B$ or $B \supseteq A$, iff $A \subseteq B$ and $A \neq B$.

Comprehension Notation

Definition 3.1. Given a set A and a condition S(x), we write $\{x \in A : S(x)\}$ for the set whose elements are exactly those elements x of A for which S(x) holds.

PROOF: This exists by the Axiom of Comprehension and is unique by the Axiom of Extensionality. \Box

Theorem 3.2. There is no set that contains every set.

```
Proof:
```

```
⟨1⟩1. Let: A be a set.

PROVE: There exists a set B such that B \notin A.

⟨1⟩2. Let: B = \{x \in A : x \notin x\}

⟨1⟩3. If B \in A then we have B \in B if and only if B \notin B.

⟨1⟩4. B \notin A
```

Unordered Pairs

Theorem 4.1. There exists a set with no elements.
PROOF: Pick a set A by Axiom 1.3. Then the set $\{x \in A: x \neq x\}$ has no elements. \square
Definition 4.2 (Empty Set). The <i>empty set</i> \varnothing is the set with no elements.
Theorem 4.3. For any set A we have $\varnothing \subset A$.
Proof: Vacuous.
Definition 4.4 ((Unordered) Pair). For any sets a and b , the (unordered) pair $\{a,b\}$ is the set whose elements are just a and b .
PROOF: This exists by the Axioms of Pairing and Comprehension, and is unique by the Axiom of Extensionality. \Box
Definition 4.5 (Singleton). For any set a , the <i>singleton</i> $\{a\}$ is defined to be $\{a, a\}$.

Unions

Definition 5.1 (Union). For any set C, the *union* of C, $\bigcup C$, is the set whose elements are the elements of the elements of C.

We write $\bigcup_{X \in \mathcal{A}} t[X]$ for $\bigcup \{t[X] \mid X \in \mathcal{A}\}.$

PROOF: This exists by the Union Axiom and Comprehension Axiom, and is unique by the Axiom of Extensionality. \Box

Proposition 5.2.

$$\bigcup \varnothing = \varnothing$$

PROOF: There is no set that is an element of an element of \emptyset . \square

Proposition 5.3. For any set A, we have $\bigcup \{A\} = A$.

PROOF: For any x, we have x is an element of an element of $\{A\}$ if and only if x is an element of A. \square

Definition 5.4. We write $A \cup B$ for $\bigcup \{A, B\}$.

Proposition 5.5. For any set A, we have $A \cup \emptyset = A$.

PROOF: $x \in A \cup \emptyset$ iff $x \in A$ or $x \in \emptyset$, iff $x \in A$. \square

Proposition 5.6 (Idempotence). For any set A, we have $A \cup A = A$.

PROOF: $x \in A$ or $x \in A$ is equivalent to $x \in A$. \square

Proposition 5.7. For any sets A and B, we have $A \subseteq B$ if and only if $A \cup B = B$.

PROOF: For any x, the statement "if $x \in A$ then $x \in B$ " is equivalent to " $x \in A$ or $x \in B$ if and only if $x \in B$ ". \square

Proposition 5.8. For any sets a and b, we have $\{a\} \cup \{b\} = \{a, b\}$.

Proof: Immediate from definitions. \square

Intersections

Definition 6.1 (Intersection). For any sets A and B, the *intersection* $A \cap B$ is defined to be $\{x \in A : x \in B\}$.

Proposition 6.2. For any set A, we have $A \cap \emptyset = \emptyset$.

PROOF: There is no x such that $x \in A$ and $x \in \emptyset$. \square

Proposition 6.3. For any set A, we have

$$A \cap A = A$$
.

PROOF: We have $x \in A$ and $x \in A$ if and only if $x \in A$. \square

Proposition 6.4. For any sets A and B, we have $A \subseteq B$ if and only if $A \cap B = A$.

PROOF: For any x, the statement "if $x \in A$ then $x \in B$ " is equivalent to " $x \in A$ and $x \in B$ if and only if $x \in A$ ". \square

Proposition 6.5. For any sets A, B and C, we have $C \subseteq A$ if and only if $(A \cap B) \cup C = A \cap (B \cup C)$.

PROOF: The statement "if $x \in C$ then $x \in A$ " is equivalent to the statement " $((x \in A \land x \in B) \lor x \in C) \Leftrightarrow (x \in A \land (x \in B \lor x \in C))$ ". \square

Definition 6.6 (Disjoint). Two sets A and B are disjoint if and only if $A \cap B = \emptyset$.

Definition 6.7 (Pairwise Disjoint). Let A be a set. We say the elements of A are *pairwise disjoint* if and only if, for all $x, y \in A$, if $x \cap y \neq \emptyset$ then x = y.

Definition 6.8 (Intersection). For any nonempty set \mathcal{C} , the *intersection* of \mathcal{C} , $\bigcap \mathcal{C}$, is the set that contains exactly those sets that belong to every element of \mathcal{C}

We write $\bigcap_{X \in \mathcal{A}} t[X]$ for $\bigcap \{t[X] \mid X \in \mathcal{A}\}.$

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{C} be a nonempty set.
- $\langle 1 \rangle 2.$ There exists a set I whose elements are exactly the sets that belong to every element of $\mathcal{C}.$

PROOF: Pick $A \in \mathcal{C}$, and take $I = \{x \in A : \forall X \in \mathcal{C}.x \in X\}$.

 $\langle 1 \rangle 3$. For any sets I, J, if the elements of I and J are exactly the sets that belong to every element of C then I = J.

PROOF: Axiom of Extensionality.

8

Unordered Triples

Definition 7.1 ((Unordered) Triple). Given sets a_1, \ldots, a_n , define the (unordered) n-tuple $\{a_1, \ldots, a_n\}$ to be

$$\{a_1,\ldots,a_n\} := \{a_1\} \cup \cdots \cup \{a_n\}$$
.

Relative Complements

Definition 8.1 (Relative Complement). For any sets A and B, the difference or relative complement A-B is defined to be

$$A - B := \{x \in A : x \notin B\} .$$

Proposition 8.2. For any sets A and E, we have $A \subseteq E$ if and only if

$$E - (E - A) = A$$

Proof:

 $\langle 1 \rangle 1$. Let: A and E be sets.

 $\langle 1 \rangle 2$. If $A \subseteq E$ then E - (E - A) = A

 $\langle 2 \rangle 1$. Assume: $A \subseteq E$

 $\langle 2 \rangle 2$. $E - (E - A) \subseteq A$

PROOF: If $x \in E$ and $x \notin E - A$ then $x \in A$.

 $\langle 2 \rangle 3$. $A \subseteq E - (E - A)$

PROOF: If $x \in A$ then $x \in E$ and $x \notin E - A$.

 $\langle 1 \rangle 3$. If E - (E - A) = A then $A \subseteq E$.

PROOF: Since $E - (E - A) \subseteq E$.

П

Proposition 8.3. For any set E we have

$$E - \emptyset = E$$

PROOF: $x \in E$ if and only if $x \in E$ and $x \notin \emptyset$. \square

Proposition 8.4. For any set E we have

$$E - E = \emptyset$$
.

PROOF: There is no x such that $x \in E$ and $x \notin E$. \square

Proposition 8.5. For any sets A and E, we have

$$A \cap (E - A) = \emptyset$$
.

PROOF: There is no x such that $x \in A$ and $x \in E - A$. \square

Proposition 8.6. Let A and E be sets. Then $A \subseteq E$ if and only if

$$A \cup (E - A) = E$$
.

Proof:

- $\langle 1 \rangle 1$. Let: A and E be sets.
- $\langle 1 \rangle 2$. If $A \subseteq E$ then $A \cup (E A) = E$.
 - $\langle 2 \rangle 1$. Assume: $A \subseteq E$
 - $\langle 2 \rangle 2$. $A \cup (E A) \subseteq E$

PROOF: If $x \in A$ or $x \in E - A$ then $x \in E$.

 $\langle 2 \rangle 3. \ E \subseteq A \cup (E - A)$

PROOF: If $x \in E$ then either $x \in A$ or $x \notin A$. In the latter case, $x \in E - A$.

 $\langle 1 \rangle 3$. If $A \cup (E - A) = E$ then $A \subseteq E$

PROOF: Since $A \subseteq A \cup (E - A)$.

Proposition 8.7. Let A, B and E be sets. Then:

- 1. If $A \subseteq B$ then $E B \subseteq E A$.
- 2. If $A \subseteq E$ and $E B \subseteq E A$ then $A \subseteq B$.

Proof:

- $\langle 1 \rangle 1$. Let: A, B and E be sets.
- $\langle 1 \rangle 2$. If $A \subseteq B$ then $E B \subseteq E A$.

PROOF: If $A \subseteq B$, $x \in E$ and $x \notin B$, then we have $x \in E$ and $x \notin A$.

- $\langle 1 \rangle 3$. If $A \subseteq E$ and $E B \subseteq E A$ then $A \subseteq B$.
 - $\langle 2 \rangle 1$. Assume: $A \subseteq E$
 - $\langle 2 \rangle 2$. Assume: $E B \subseteq E A$
 - $\langle 2 \rangle 3$. Let: $x \in A$
 - $\langle 2 \rangle 4. \ x \in E$
 - $\langle 2 \rangle$ 5. $x \notin E A$
 - $\langle 2 \rangle 6. \ x \notin E B$
 - $\langle 2 \rangle 7. \ x \in B$

П

Example 8.8. We cannot remove the hypothesis $A \subseteq E$ in item 2 above. Let $E = \emptyset$, $A = \{\emptyset\}$ and $B = \emptyset$. Then $E - B = E - A = \emptyset$ but $A \nsubseteq B$.

Proposition 8.9 (De Morgan's Law). For any sets A, B and E, we have $E - (A \cup B) = (E - A) \cap (E - B)$.

PROOF: $(x \in E \land \neg (x \in A \lor x \in B)) \Leftrightarrow (x \in E \land x \notin A \land x \in E \land x \notin B)$. \square

Proposition 8.10 (De Morgan's Law). For any sets A, B and E, we have $E - (A \cap B) = (E - A) \cup (E - B)$.

PROOF: $(x \in E \lor \neg (x \in A \land x \in B)) \Leftrightarrow (x \in E \land x \notin A) \lor (x \in E \land x \notin B)$. \square

Proposition 8.11. For any sets A, B and E, if $A \subseteq E$ then

$$A - B = A \cap (E - B) .$$

PROOF: If $A \subseteq E$ then we have $(x \in A \land x \notin B) \Leftrightarrow (x \in A \land x \in E \land x \notin B)$. \square

Proposition 8.12. For any sets A and B, we have $A \subseteq B$ if and only if $A - B = \emptyset$.

PROOF: Both are equivalent to the statement that there is no x such that $x \in A$ and $x \notin B$. \square

Proposition 8.13. For any sets A and B, we have

$$A - (A - B) = A \cap B .$$

PROOF: $(x \in A \land \neg (x \in A \land x \notin B)) \Leftrightarrow x \in A \land x \in B$. \square

Proposition 8.14. For any sets A, B and C, we have

$$A \cap (B - C) = (A \cap B) - (A \cap C) .$$

PROOF: $(x \in A \land x \in B \land x \notin C) \Leftrightarrow (x \in A \land x \in B \land \neg (x \in A \land x \in C))$.

Proposition 8.15. For any sets A, B, C and E, if $(A \cap B) - C \subseteq E$ then we have

$$A \cap B \subseteq (A \cap C) \cup (B \cap (E - C))$$
.

Proof:

 $\langle 1 \rangle 1$. Let: $x \in A \cap B$

PROVE: $x \in (A \cap C) \cup (B \cap (E - C))$

 $\langle 1 \rangle 2$. Case: $x \in C$

PROOF: Then $x \in A \cap C$.

 $\langle 1 \rangle 3$. Case: $x \notin C$

PROOF: Then $x \in E$ and so $x \in B \cap (E - C)$.

П

Proposition 8.16. For any sets A, B, C and E, we have

$$(A \cup C) \cap (B \cup (E - C)) \subseteq A \cup B$$
.

PROOF: The statement $(x \in A \lor x \in C) \land (x \in B \lor (x \in E \land x \notin C))$ implies $x \in A \lor x \in B$. \square

Proposition 8.17 (De Morgan's Law). Let E be a set and C a nonempty set. Then

$$E - \bigcup \mathcal{C} = \bigcap_{X \in \mathcal{C}} (E - X) .$$

Proof: Easy.

Proposition 8.18 (De Morgan's Law). Let E be a set and $\mathcal C$ a nonempty set. Then

$$E - \bigcap \mathcal{C} = \bigcup_{X \in \mathcal{C}} (E - X) .$$

Proof: Easy. \square

Symmetric Difference

Definition 9.1 (Symmetric Difference). For any sets A and B, the *symmetric difference* A+B is defined to be

$$A+B:=(A-B)\cup(B-A).$$

Proposition 9.2. For any sets A and B, we have

$$A + B = B + A$$

PROOF: From the commutativity of union. \Box

Proposition 9.3. For any sets A, B and C, we have

$$A + (B + C) = (A + B) + C$$
.

PROOF: Each is the set of all x that belong to either exactly one or all three of $A,\,B$ and C. \Box

Proposition 9.4. For any set A, we have

$$A + \emptyset = A$$
.

Proof:

$$A + \emptyset = (A - \emptyset) \cup (\emptyset - A)$$
$$= A \cup \emptyset$$
$$= A$$

Proposition 9.5. For any set A we have

$$A + A = \emptyset$$
.

Proof:

$$A + A = (A - A) \cup (A - A)$$
$$= \emptyset \cup \emptyset$$
$$= \emptyset$$

Power Sets

Definition 10.1 (Power Set). For any set A, the *power set* of A, $\mathcal{P}A$, is the set whose elements are exactly the subsets of A.

PROOF: This exists by the Power Set Axiom and Axiom of Comprehension, and is unique by the Axiom of Extensionality. \Box

Proposition 10.2.

$$\mathcal{P}\emptyset = \{\emptyset\}$$

PROOF: The only subset of \emptyset is \emptyset . \square

Proposition 10.3. For any set a, we have

$$\mathcal{P}\{a\} = \{\emptyset, \{a\}\} .$$

PROOF: The only subsets of $\{a\}$ are \emptyset and $\{a\}$. \square

Proposition 10.4. For any sets a and b, we have

$$\mathcal{P}\{a,b\} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\} .$$

PROOF: The only subsets of $\{a,b\}$ are \emptyset , $\{a\}$, $\{b\}$ and $\{a,b\}$. \square

Proposition 10.5. For any nonempty set C we have

$$\bigcap_{X \in \mathcal{C}} \mathcal{P}X = \mathcal{P}\left(\bigcap \mathcal{C}\right) \ .$$

Proof:

$$x \in \bigcup_{X \in \mathcal{C}} \mathcal{P}X \Leftrightarrow \forall X \in \mathcal{C}.x \subseteq X$$

$$\Leftrightarrow \forall X \in \mathcal{C}.\forall y \in x.y \in X$$

$$\Leftrightarrow \forall y \in x.\forall X \in mathcalC.y \in X$$

$$\Leftrightarrow x \subseteq \bigcap \mathcal{C}$$

Proposition 10.6. For any set C we have

$$\bigcup_{X \in \mathcal{C}} \mathcal{P}X \subseteq \mathcal{P} \bigcup \mathcal{C} .$$

PROOF: If there exists $X \in \mathcal{C}$ such that $x \subseteq X$ then $x \subseteq \bigcup \mathcal{C}$. \square

Proposition 10.7. For any set E, we have

$$\bigcap \mathcal{P}E = \varnothing \ .$$

PROOF: Since $\emptyset \in \mathcal{P}E$. \square

Proposition 10.8. For any sets E and F, if $E \subseteq F$ then $\mathcal{P}E \subseteq \mathcal{P}F$.

PROOF: If $E \subseteq F$ and $X \subseteq E$ then $X \subseteq F$. \square

Ordered Pairs

Definition 11.1 (Ordered Pair). For any sets a and b, the ordered pair (a,b) is defined by

$$(a,b) := \{\{a\}, \{a,b\}\}\$$
.

Proposition 11.2. For any sets a, b, x and y, if (a,b) = (x,y) then a = x and b = y.

Proof:

 $\langle 1 \rangle 1$. Let: a, b, x and y be sets.

 $\langle 1 \rangle 2$. Assume: (a,b) = (x,y)

 $\langle 1 \rangle 3. \ a = x$

PROOF: $\{a\} = \bigcap (a, b) = \bigcap (x, y) = \{x\}.$

 $\langle 1 \rangle 4. \ \{a,b\} = \{x,y\}$

 $\langle 1 \rangle$ 5. Case: a = b

 $\langle 2 \rangle 1. \ x = y$

PROOF: Since $\{x, y\} = \{a, b\}$ is a singleton.

 $\langle 2 \rangle 2$. b = y

PROOF: b = a = x = y

 $\langle 1 \rangle 6$. Case: $a \neq b$

 $\langle 2 \rangle 1. \ x \neq y$

PROOF: Since $\{x, y\} = \{a, b\}$ is not a singleton.

 $\langle 2 \rangle 2$. b = y

PROOF: $\{b\} = \{a, b\} - \{a\} = \{x, y\} - \{x\} = \{y\}.$

Definition 11.3 (Cartesian Product). For any sets A and B, the Cartesian product $A \times B$ is

$$A \times B := \{ p \in \mathcal{PP}(A \cup B) : \exists a \in A. \exists b \in B. p = (a, b) \}$$
.

Proposition 11.4. For any sets A, B and X, we have

$$(A - B) \times X = (A \times X) - (B \times X) .$$

Proof: Easy.
Proposition 11.5. For any sets A and B, we have $A \times B = \emptyset$ if and only if $A = \emptyset$ or $B = \emptyset$.
Proof: Easy. \square
Proposition 11.6. For any sets A , B , X and Y , if $A \subseteq X$ and $B \subseteq Y$ then $A \times B \subseteq X \times Y$. The converse holds assuming $A \neq \emptyset$ and $B \neq \emptyset$.
Proof: Easy.

Relations

Definition 12.1 (Relation). A *relation* is a set of ordered pairs.

If R is a relation, we write xRy for $(x,y) \in R$.

Given sets X and Y, a relation between X and Y is a subset of $X \times Y$.

Given a set X, a relation on X is a relation between X and X.

Definition 12.2 (Domain). The *domain* of a relation R is the set

$$dom R := \{x \in \bigcup \mid R : \exists y . (x, y) \in R\} .$$

Definition 12.3 (Range). The range of a relation R is the set

$$\operatorname{ran} R := \{ y \in \bigcup \bigcup R : \exists x. (x, y) \in R \} \ .$$

Definition 12.4 (Reflexive). Let R be a relation on X. Then R is *reflexive* iff, for all $x \in X$, we have xRx.

Definition 12.5 (Symmetric). Let R be a relation on X. Then R is *symmetric* iff, whenever xRy, then yRx.

Definition 12.6 (Transitive). Let R be a relation on X. Then R is transitive iff, whenever xRy and yRz, then xRz.

Definition 12.7 (Equivalence Relation). Let R be a relation on X. Then R is an *equivalence relation* iff it is reflexive, symmetric and transitive.

Definition 12.8 (Partition). Let X be a set. A partition of X is a pairwise disjoint set of nonempty subsets of X whose union is X.

Definition 12.9 (Equivalence Class). Let R be an equivalence relation on X. Let $x \in X$. The *equivalence class* of x with respect to R is

$$x/R := \{ y \in X : xRy \} .$$

We write X/R for the set of all equivalence classes with respect to R.

Definition 12.10 (Induced). Let P be a partition of X. The relation *induced* by P is X/P where x(X/P)y iff there exists $X \in P$ such that $x \in X$ and $y \in X$.

Theorem 12.11. Let R be an equivalence relation on X. Then X/R is a partition of X that induces the relation R.

Proof: Easy. \square

Theorem 12.12. Let P be a partition of X. Then X/P is an equivalence relation on X, and P = X/(X/P).

Proof: Easy. \square

Functions

Definition 13.1 (Function). Let X and Y be sets. A function, map, mapping, transformation or operator f from X to Y, $f: X \to Y$, is a relation f between X and Y such that, for all $x \in X$, there exists a unique $f(x) \in Y$, called the value of f at the argument x, such that $(x, f(x)) \in f$.

Definition 13.2 (Onto). Let $f: X \to Y$. We say f maps X onto Y iff ran f = Y.

Definition 13.3 (Image). Let $f: X \to Y$ and $A \subseteq X$. The *image* of A under f is

$$f(A) := \{ f(x) : x \in A \}$$
.

Definition 13.4 (Inclusion Map). Let Y be a set and $X \subseteq Y$. Then the inclusion map $i: X \hookrightarrow Y$ is the function defined by i(x) = x for all $x \in X$.

Definition 13.5 (Identity Map). For any set X, the *identity map* on X is the inclusion map of X into X.

Definition 13.6 (Restriction). Let $f: Y \to Z$ and $X \subseteq Y$. The restriction of f to X is the function $f \upharpoonright X : X \to Z$ defined by

$$(f \upharpoonright X)(x) = f(x) \qquad (x \in X)$$
.

Given sets X, Y and Z with $X \subseteq Y$, if $f: X \to Z$ and $g: Y \to Z$, we say g is an *extension* of f to Y iff $f = g \upharpoonright X$.

Definition 13.7 (Projection). Given sets X and Y, the *projection* maps π_1 : $X \times Y \to X$ and $\pi_2 : X \times Y \to Y$ are defined by

$$\pi_1(x, y) = x, \qquad \pi_2(x, y) = y \qquad (x \in X, y \in Y).$$

Definition 13.8 (Canonical Map). Let X be a set and R an equivalence relation on X. The *canonical map* $\pi: X \to X/R$ is the map defined by $\pi(x) = x/R$.

Definition 13.9 (One-to-One). A function $f: X \to Y$ is one-to-one, or a one-to-one correspondence, iff, for all $x, y \in X$, if f(x) = f(y) then x = y.

Definition 13.10.

$$0 = \emptyset$$

Definition 13.11.

$$1 = \{\emptyset\}$$

Definition 13.12.

$$2 = \{\emptyset, \{\emptyset\}\}$$

Definition 13.13 (Characteristic Function). Let X be a set and $A \subseteq X$. The characteristic function of A is the function $\chi_A: X \to 2$ defined by

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Families

Definition 14.1 (Family). Let I and X be sets. A family of elements of X indexed by I is a function $a: I \to X$. We write a_i for a(i), and $\{a_i\}_{i \in I}$ for a.

Proposition 14.2 (Generalized Associative Law for Unions). Let $\{I_j\}_{j\in J}$ be a family of sets. Let $K = \bigcup_{j\in J} I_j$. Let $\{A_k\}_{k\in K}$ be a family of sets indexed by K. Then

$$\bigcup_{k \in K} A_k = \bigcup_{j \in J} \bigcup_{i \in I_j} A_i .$$

Proof: Easy.

Proposition 14.3 (Generalized Commutative Law for Unions). Let $\{I_j\}_{j\in J}$ be a family of sets. Let $f: J \to J$ be a one-to-one correspondence from J onto J. Then

$$\bigcup_{j\in J} I_j = \bigcup_{j\in J} I_{f(j)} .$$

Proof: Easy. \square

Proposition 14.4 (Generalized Associative Law for Intersections). Let $\{I_j\}_{j\in J}$ be a nonempty family of nonempty sets. Let $K = \bigcup_{j\in J} I_j$. Let $\{A_k\}_{k\in K}$ be a family of sets indexed by K. Then

$$\bigcap_{k \in K} A_k = \bigcap_{j \in J} \bigcap_{i \in I_j} A_i .$$

Proof: Easy. \square

Proposition 14.5 (Generalized Commutative Law for Intersections). Let $\{I_j\}_{j\in J}$ be a nonempty family of sets. Let $f: J \to J$ be a one-to-one correspondence from J onto J. Then

$$\bigcap_{j \in J} I_j = \bigcap_{j \in J} I_{f(j)} .$$

Proof: Easy. \square

Proposition 14.6. Let B be a set and $\{A_i\}_{i\in I}$ a family of sets. Then

$$B\cap\bigcup_{i\in I}A_i=\bigcup_{i\in I}(B\cap A_i)$$

Proof: Easy.

Proposition 14.7. Let B be a set and $\{A_i\}_{i\in I}$ a nonempty family of sets. Then

$$B \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \cup A_i)$$

Proof: Easy.

Definition 14.8 (Cartesian Product of a Family of Sets). Let $\{A_i\}_{i\in I}$ be a family of sets. The *Cartesian product* $\times_{i\in I} A_i$ is the set of all families $\{a_i\}_{i\in I}$ such that $\forall i\in I.a_i\in A_i$.

We write A^I for $\times_{i \in I} A$.

Theorem 14.9. Let X be a set. The function $\chi : \mathcal{P}X \to 2^X$ that maps a subset A of X to χ_A is a one-to-one correspondence.

Proof: Easy. \square

Definition 14.10 (Projection). Let $\{A_i\}_{i\in I}$ be a family of sets and $i\in I$. The projection function $\pi_i: \times_{i\in I} A_i \to A_i$ is defined by $\pi_i(a) = a_i$.

Proposition 14.11. Let $\{A_i\}_{i\in I}$ and $\{B_j\}_{j\in J}$ be families of sets. Then

$$\left(\bigcup_{i \in I} A_i\right) \times \left(\bigcup_{j \in J} B_j\right) = \bigcup_{i \in I} \bigcup_{j \in J} (A_i \times B_j) .$$

Proof: Easy. \square

Proposition 14.12. Let $\{A_i\}_{i\in I}$ and $\{B_j\}_{j\in J}$ be nonempty families of sets. Then

$$\left(\bigcap_{i\in I} A_i\right) \times \left(\bigcap_{j\in J} B_j\right) = \bigcap_{i\in I} \bigcap_{j\in J} (A_i \times B_j) .$$

Proof: Easy.

Proposition 14.13. Let $f: X \to Y$. Let $\{A_i\}_{i \in I}$ be a family of subsets of X. Then

$$f\left(\bigcup_{i\in I}A_i\right) = \bigcup_{i\in I}f(A_i)$$
.

Proof: Easy.

Example 14.14. It is not true in general that, if $f: X \to Y$ and $\{A_i\}_{i \in I}$ is a nonempty family of subsets of X, then $f(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} f(A_i)$.

Take $X = \{a, b\}$ and $Y = \{c\}$ where $a \neq b$. Take $I = \{i, j\}$ with $i \neq j$. Let $A_i = \{a\}$ and $A_j = \{b\}$. Let f be the unique function $X \to Y$. Then $f(\bigcap_{i \in I} A_i) = f(\emptyset) = \emptyset$ but $\bigcap_{i \in I} f(A_i) = \{c\}$.

Inverses and Composites

Definition 15.1 (Inverse). Given a function $f: X \to Y$, the *inverse* of f is the function $f^{-1}: \mathcal{P}Y \to \mathcal{P}X$ defined by

$$f^{-1}(B) = \{x \in X : f(x) \in B\}$$
.

We call $f^{-1}(B)$ the inverse image of B under f.

Proposition 15.2. Let $f: X \to Y$. Then f maps X onto Y if and only if the inverse image of any nonempty subset of Y is nonempty.

Proof: Easy.

Proposition 15.3. Let $f: X \to Y$. Then f is one-to-one if and only if the inverse image of any singleton subset of Y is a singleton.

Proof: Easy.

Proposition 15.4. Let $f: X \to Y$. Let $B \subseteq Y$. Then

$$f(f^{-1}(B)) \subseteq B$$
.

Proof: Easy.

Proposition 15.5. Let $f: X \to Y$. Let $A \subseteq X$. Then

$$A \subseteq f^{-1}(f(A))$$
.

Equality holds if f is one-to-one.

Proof: Easy.

Proposition 15.6. Let $f: X \to Y$. Let $\{B_i\}_{i \in I}$ be a family of subsets of Y. Then

$$f^{-1}\left(\bigcup_{i\in I}B_i\right)=\bigcup_{i\in I}f^{-1}(B_i)$$
.

Proof: Easy. \square

Proposition 15.7. Let $f: X \to Y$. Let $\{B_i\}_{i \in I}$ be a nonempty family of subsets of Y. Then

$$f^{-1}\left(\bigcap_{i\in I} B_i\right) = \bigcap_{i\in I} f^{-1}(B_i) .$$

Proof: Easy. \square

Proposition 15.8. Let $f: X \to Y$ and $B \subseteq Y$. Then $f^{-1}(Y - B) = X - f^{-1}(B)$.

Proof: Easy.

Definition 15.9. Let $f: X \to Y$ be one-to-one. Then we write f^{-1} for the function $f^{-1}: \operatorname{ran} f \to X$ defined by: $f^{-1}(y)$ is the unique x such that f(x) = y.

Definition 15.10 (Composite). Let $f: X \to Y$ and $g: Y \to Z$. The *composite* $g \circ f = gf: X \to Z$ is the function defined by

$$(g \circ f)(x) = g(f(x)) \qquad (x \in X) .$$

Proposition 15.11. Let $f: X \to Y$, $g: Y \to Z$ and $h: Z \to W$. Then

$$h(gf) = (hg)f .$$

Proof: Easy.

Example 15.12. Function composition is not commutative in general.

Let $X = \{a, b\}$ where $a \neq b$. Define $f: X \to Y$ by f(a) = f(b) = a, and g by g(a) = g(b) = b. Then gf = g but fg = f.

Proposition 15.13. Let $f: X \to Y$ and $g: Y \to Z$. Then

$$(qf)^{-1} = f^{-1}g^{-1} : \mathcal{P}Z \to \mathcal{P}X$$
.

Proof: Easy.

Definition 15.14 (Inverse). Let R be a relation between X and Y. The *inverse* or *converse* R^{-1} is the relation between Y and X defined by

$$yR^{-1}x \Leftrightarrow xRy$$
.