Supplementary Materials

Table 1. Detailed structure and parameters of our DeepGF. Note that w and h are width and height of the feature maps, s is the stride of the convolution operation, $c_{\rm in}$ and $c_{\rm out}$ are the channel numbers of input and output for the building block

Layers		Feature size $(w \times h \times c)$		V
		Attention	Polar	Kernel size, Stride
Input		224x224x3	224x224x3	
Convolution		112x112x64	112x112x32	[7x7], 2
Max pooling		56x56x64	56x56x32	[3x3], 2
Building block1		56x56x64	56x56x32	$[\cdot], s = 1$
Building block2		28x28x128	28x28x32	$[\cdot], s = 2$
Building block3		14x14x128	14x14x64	$[\cdot], s = 2$
Building block4		7x7x256	7x7x64	$[\cdot], s = 2$
Concatenation		7x7x320		
Global average pooling		1x1x320		[7x7]
VTI-LSTM1 & VTI-LSTM2		320 & 320		
FC1 & FC2		256 & 2		
Building block	Convolution	$\frac{w}{s} \times \frac{h}{s} \times c_{\text{in}}$		[3x3], s [5x1], s [7x1], s
		$\frac{w}{s} \times \frac{h}{s} \times c_{\rm in}$		[3x3], s $ [3x3], 1 [1x5], 1 [1x7], 1$
	Concatenation	$\frac{w}{s} \times \frac{h}{s} \times 2c_{\rm in}$		
	Convolution	$\frac{w}{s} \times \frac{h}{s} \times c_{\text{out}}$		[1x1], 1

 ${\bf Fig.~1.}$ Sequential fundus images in the SIGF database.

Algorithm 1: Details of the AC training strategy.

```
Input: The training DeepGF network; the training set of the fundus image sequences
                  \{\mathbf{I}^s\}_{s=1}^S and their corresponding glaucoma labels \{l_{t+1}^s\}_{t=1,s=1}^{T,S}, where \mathbf{I}^s is the
     training sequence (\mathbf{I}^s = \{\mathbf{I}_t^s\}_{t=1}^T) and S is the number of the training sequences. Output: Learned parameters \omega of the DeepGF.
  1 Initialize: Maximum number of the training epoches N; the batch size number B; the
     training iteration j=1; the learning rate \alpha; the discarding rate \beta; the discarding epoch
     interval \delta; the maximum discarding times M; the discarding time m=1; the threshold of
     the loss gap th_g; the threshold of convergence loss th_c.
  2 Run the DeepGF with the initial parameters \omega^0.
      while n < N do
            n \,\leftarrow\, n{+}1.
            for i=1 
ightarrow rac{S}{B} do
 5
                   Randomly sample B image sequences \{\mathbf{I}^b\}_{b=1}^B from \{\mathbf{I}^s\}_{s=1}^S.
Calculate \mathcal{L}_f(\omega^j) with the input of \{\mathbf{I}^b\}_{b=1}^B according to (\ref{I}^s).
Calculate \nabla_\omega \mathcal{L}_f(\omega) by \nabla_\omega \mathcal{L}_f(\omega) = -\frac{1}{T}\sum_{t=1}^T \left(\frac{1}{1+e^{-z_t}} - l_{t+1}\right) \cdot \nabla_\omega z(\omega).
  6
  7
  8
                   \omega^{j+1} \leftarrow \omega^j - \alpha \cdot \nabla_\omega \mathcal{L}_f(\omega).
  9
                   j \leftarrow j{+}1.
10
11
            end
            if \mathcal{L}_f(\omega^j) < \mathrm{th}_c then
12
                   Break from the while loop.
13
14
            end
            else if |\mathcal{L}_f(\omega^j|l_{t+1}=0) - \mathcal{L}_f(\omega^j|l_{t+1}=1)| < \mathrm{th}_g then | Break from the current loop.
15
16
17
            else if mod(n, \delta) = 0 and m \le M then
18
                   Calculate the forecast loss across the whole training set: \{\mathcal{L}_f^s(\omega^j)\}_{s=1}^S.
19
                   Sort \{\mathbf{I}^s\}_{s=1}^S according to the value of \{\mathcal{L}_f^s(\omega^j)\}_{s=1}^S in descending order.
20
                   Update the training set to \{\mathbf{I}^s\}_{s=1}^{S-\beta S} by discarding the last \beta S sequences from
21
                   \{\mathbf{I}^s\}_{s=1}^S, which rank the lowest in terms of \mathcal{L}_f(\omega^j). S \leftarrow S - \beta S.
22
23
                   m \leftarrow m+1.
24
            end
25 end
26 return Trained parameters \omega^j.
```

Table 2. Implementation details of training our DeepGF. Note that the hyperparameters of the AP-CNN and VTI-LSTM are tuned to minimize the divergence between forecast and groundtruth labels over the validation set.

p and q in the VTI gate	-0.4 and 0.5
$\triangle y_t$ at the first time step in the VTI gate	0
Time step T of the VTI-LSTM	5
Learning rate α for Adam optimization	1×10^{-4}
Exponential decay rate β_1 and β_2 for Adam optimization	0.9 and 0.99
Epsilon ϵ for Adam optimization	1×10^{-8}
Training epoches N	300
Batch size	4
Classification threshold ξ	0.5
Discarding rate β	0.5
Discarding epoch interval	3
Total discarding times M	6
GPU	Nvidia GTX 1080 Ti
Forecast speed	107 image sequences per second