Digital Logic Design

By

Dr. Sadiq Ahmad
Lecturer COMSATS University
Islamabad

1-7. Binary codes

- Digital systems use signals that have two distinct values and circuit elements that have two stable states.
- Any discrete element of information that is distinct among a group of quantities can be represented with a binary code (i.e., a pattern of 0's and 1's).
- An n-bit binary code is a group of n bits that assumes up to 2ⁿ distinct combinations of 1's and 0's, with each combination representing one element of the set that is being coded.

BCD code

- We are more accustomed to the decimal system, and is straight binary assignment as listed in Table1-4. this is called binary coded decimal(BCD).
- 1010~1111 are not used and have no meaning in BCD code.

$$Ex:(185)_{10} = (1011001)_2$$

$$= (0001 \ 1000 \ 0101)_{BCD}$$

Decimal symbol	BCD digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD Addition

• When the binary sum is greater than or equal to 1010, the addition of 6 to the binary sum converts it to the correct digit and also produces a carry as required.

One digit addition:

two digits addition:

BCD carry	1] 1⁴		
		1000		184
	+0101	0111	0110	+576
Binary sum	0111	10000	1010 >9	
Add 6		0110	0110+6	
BCD sum	0111	0110	0000	760

BCD Subtraction

Consider the addition

(+375)+(-240)=+135, done in the signed-complement system: 10's complement of 240 is 760 while +9 represent that it is -ve

(+3470) + (-8750) = +5280, done in the signed-complement system: 10's complement of 8750 is 1250 while +9 represent that it is -ve

So taking again 10's complements and put minus due to 0's remainder so the final answer is (-5280)

Other Decimal Codes

- The BCD,8-4-2-1, and the 2-4-2-1 codes are examples of weighted codes.
- The excess-3 codes are examples of selfcomplementing codes.

Ex.
$$(395)_{10} = (0110 \ 1100 \ 1000)_{\text{excess-3}}$$

9's complement self-complementing
 $(604)_{10} = (1001 \ 0011 \ 0111)_{\text{excess-3}}$

it is obviously to know the self-complementing that the excess-3 code of 9's complement of 395 is complementing the excess-3 of 395 directly. So does the 2421 code.

Other Decimal Codes

Table1-5
Four Different Binary Codes for the Decimal Digits

Decimal	BCD			
Digit	8421	2421	Excess-3	8 4-2-1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
$2 \longrightarrow 8 \times 0 + 4 \times 1 + (-2) \times 1 + (-1) \times 0 = 2$	0010	0010	0101	0 1 1 0
3	0011	0011	0110	0 1 0 1
4	0100	0100	0111	0 1 0 0
⁵ weight	0101	1011	1000	1011
6	0110	1100	1001	1010
$7 \longrightarrow 2 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 7$	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused bit	1011	0110	0001	0010
Combinations	1100	0111	0010	0011
	1101	1000	1101	1 1 0 0
	1110	1001	1110	1 1 0 1
	1111	1010	1111	1110

Gray Code

The advantage of the Gray code over the straight binary number sequence is that only one bit in the code group changes when one number to the next.

EX: from 7 to 8
Gray code changes from 0100 to 1100.

Gray code	de se sip	Decimal equivalent
0000	$(0\ 1\ 1\ 1)_2$	0
0001	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1
0011	xor	2
0010	++++	3
0110	$(01\ 0\ 0)_{Gra}$	y 4
0111	1 1 1	5
0101	/ / / xor	6
0100	(01 1 1)	7
1100	$(01\ 1\ 1)_2$	8
1101		9
1111		10
1110		11
1010		12
1011		13
1001		14
1000		15