

Arhitecturi Paralele Abordarea algoritmilor în mod paralel

Lect. Dr. Ing. Cristian Chilipirea cristian.chilipirea@mta.ro

Curs susținut în parteneriat cu Prof. Florin Pop

Cristian Chilipirea - Arhitecturi Paralele

Câte numere sunt mai mici decât mine?

Câte numere sunt mai mici decât mine?

Cristian Chilipirea - Arhitecturi Paralele

Răspunsul la toate întrebările poate fi determinat în paralel

Avem ca intrare două liste **sortate** dorim să le unim într-o listă **sortată**

1 2 2 3 4 4 4 5 6 7

Soluție:

Se extrage mereu cel mai mic element (Garantat să fie pe prima poziție în una din cele două liste)

Complexitate: O(N)

1 2 2 3 4 4 4 5 6 7

 2
 3
 4
 5
 7

 1
 2
 4
 4
 6

1 2 2 3

5 7

4 6

5 7 6

7

6

7

1 2 2 3 4 4 4 5 6 7

Folosim acest semn pentru a reprezenta operația MERGE /

2 3 4 5 7

1 2 4 4 6

1 2 2 3 4 4 5 7

Complexitate:

 $O(N * log_2N)$

3

4

5 7

1 [

] [4

4 |

Operația

depinde de rezultatul operațiilor

Merge sort paralel - complexitate

Merge sort paralel - complexitate

Complexitate paralelă:

$$O\left(\sum_{i=1}^{\log_2 N} 2^i\right) = O(N)$$

Dacă P = N

Atenție: mai rapid decât cea mai bună implementare secvențială

Merge sort paralel - complexitate

Cea mai bună soluție paralelă: paralelizează și operația merge

Articol

<u>Parallel Merge Sort – Richard Cole</u>

Parallel Merge Sort

Richard Cole
New York University

Abstract. We give a parallel implementation of merge sort on a CREW PRAM that uses n processors and $O(\log n)$ time; the constant in the running time is small. We also give a more complex version of the algorithm for the EREW PRAM; it also uses n processors and $O(\log n)$ time. The constant in the running time is still moderate, though not as small.

1. Introduction

1975]; this procedure merges two sorted arrays, each of length at most n, in time $O(\log \log n)$ using a linear number of processors. When used in the obvious way, Valiant's procedure leads to an implementation of merge sort on n processors using $O(\log n \log \log n)$ time. More recently, Kruskal [K, 1983] improved this sorting algorithm to obtain a sorting algorithm that

Căutăm 3

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 1
 1
 2
 3
 5
 5
 6
 6
 7
 7
 7
 8
 8
 9
 9
 9

Căutăm 3

Între pozițiile

Căutăm 3

Între pozițiile

Căutăm 3

Între pozițiile

Căutăm 3

Între pozițiile

3 3

Complexitate $O(log_2(N))$

Căutăm 3

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 1
 1
 2
 3
 5
 5
 6
 6
 7
 7
 7
 8
 8
 9
 9
 9

Căutare paralelă – implementare naivă

Căutăm 3

Între pozițiile

0 15

Fiecare thread este responsabil de o zonă

Căutăm

3

Între pozițiile

0 15

Elementul căutat este în bucata mea

Căutăm (

Între pozițiile

0 15

Elementul nu este la mine, mă opresc

Căutăm 3

Între pozițiile

0 15

Elementul nu este la mine, mă opresc

Căutăm

3

Între pozițiile

1 4

Căutăm (

Între pozițiile

1 4

Complexitate: $O(log_2(N))$ la fel ca secvențial

Căutăm 3

Între pozițiile

0 15

Fiecare thread este responsabil de o zonă. Când trecem la pasul următor toate thread-urile se mută în noua zonă

Căutăm 3

Între pozițiile

0 15

Elementul căutat este în bucata mea

Căutăm 3

Între pozițiile

1 4

Am găsit elementul

Toate thread-urile caută în noua zonă

Operațiile aceste **NU** pot executa paralel

Mai greu de implementat Mai puține thread-uri

Căutăm 3

Între pozițiile

0 15

Căutăm 3

Între pozițiile

0 3

Căutare paralelă - Complexitate

 $O(log_p(N))$

Speedup?

Căutare paralelă - Complexitate

$$O(log_p(N))$$

Speedup?

$$S = \frac{log_2(N)}{log_p(N)}$$

Căutare paralelă - Complexitate

$$O(log_p(N))$$

Speedup?

$$S = \frac{log_2(N)}{log_p(N)} = \frac{log(P)}{log(2)} = log_2(P)$$

Merge sort paralel - idee

Operația de merge poate și ea fi paralelizată.

Pentru a o paraleliza ne bazăm pe cătare binară (sau chiar paralelă) și pe rank sort.

- Pipeline de instrucțiuni CPU
- Pipeline grafic (randare, antialiasting)
- Diferiţi algoritmi

Un **pas** poate fi un:

- thread
- proces
- element hardware

Task 1

 $total_execution_time = task_execution_time * number_of_tasks$

Task 6
Task 4
Task 4
Task 3
Task 2
Task 2
Task 1

Task 6
Task 5
Task 4
Task 3
Task 3

Task 6
Task 5
Task 4
Task 4

Task 6 Task 5 Task 4

Task 6 Task 5

Task 6

Task 2

Task 2
Task 1

Task 4
Task 3
Task 2
Task 1

Ideal: $step_execution_time = \frac{task_execution_time}{number_of_steps}$

După avem mai mult decât *number_of_steps* tasks timpul devine: $total_execution_time = number_of_tasks * step_execution_time$

Un task se termină la fiecare "step tick"

Pipeline – ghid programare


```
Iniţializare

for(un număr de pași) {
    primește date de la Pas(i-1)
    procesează
    trimite date la Pas(i+1)
}
Finalizare
```


12456679

9 4 2 7 6 5 6 1

9 4 2 7 6 5 6

Sorting with pipeline

9 4 2 7 6 5

9 4 2 7 6

9 4 2 7

Sortare cu pipeline - complexitate

O(N)

pentru P=N

Dar comunicația e foarte lentă

Pipeline – ghid programare


```
Iniţializare

for(un număr de pași) {
    primește date de la Pas(i-1)
    procesează
    trimite date la Pas(i+1)
}
Finalizare
```


Sortare cu Pipeline – ghid programare

noop;

```
for(fiecare face cu o operație mai puțin decât pasul precedent) {
    primește număr de la Pas(i-1)
    ține local numărul minim între cel primit sau cel avut
    trimite numărul mai mare la Pas(i+1)
```

Scrie numărul la poziția i

$$P(x) = \sum_{i=0}^{n} a_i x^i = a_0 x^0 + a_1 x^1 + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n, n \ge 0$$

Se dorește să calculăm valoarea lui P pentru diverși x. Use case: desenarea graficului aferent polinomului.

$$P(x) = 1 + 8x + (-4)x^3 + x^4$$

$$P(x) = 1 + 8x + (-4)x^3 + x^4$$

 x_1 x_2 x_3 x_4 x_5

 x_1 x_2 x_3 x_4

 x_1 x_2 x_3

 $x_1 x_2$

 x_1

$$1 + 8x_5 + (-4)x_5^3 + x_5^4$$

$$1 + 8x_4 + (-4)x_4^3 + x_4^4$$
$$1 + 8x_5 + (-4)x_5^3 + x_5^4$$

$$1 + 8x_3 + (-4)x_3^3 + x_3^4$$

$$1 + 8x_4 + (-4)x_4^3 + x_4^4$$

$$1 + 8x_5 + (-4)x_5^3 + x_5^4$$

$$1 + 8x_3 + (-4)x_3^3 + x_3^4$$

$$1 + 8x_4 + (-4)x_4^3 + x_4^4$$

$$1 + 8x_2 + (-4)x_2^3 + x_2^4$$

$$1 + 8x_5 + (-4)x_5^3 + x_5^4$$

$$1 + 8x_3 + (-4)x_3^3 + x_3^4$$

$$1 + 8x_1 + (-4)x_1^3 + x_1^4$$

$$1 + 8x_4 + (-4)x_4^3 + x_4^4$$

$$1 + 8x_2 + (-4)x_2^3 + x_2^4$$

$$1 + 8x_5 + (-4)x_5^3 + x_5^4$$

Pipeline – ghid programare


```
Iniţializare

for(un număr de pași) {
    primește date de la Pas(i-1)
    procesează
    trimite date la Pas(i+1)
}
Finalizare
```


Pipeline – ghid programare

Primește coeficientul potrivit pasului

for(un număr de pași egal cu numărul de valori) {

primește de la Pas(i-1): polinom parțial calculat

valoarea originală

valoare originală ^ (i-1)

Calculează (valoarea originală ^ i) și adaugă la polinom parțial calculat produsul dintre coeficient și aceasta.

trimite spre Pas(i+1): noul polinom parţial calculat, valoarea originală și valoare originală ^ i)

}

