Relational Algebra

Overview

- □ Relational algebra offers a concise way to express queries.
 - Form the basis for "real" query languages (SQL).
 - Much more concise than SQL.
- □ It is widely used by database professionals.

Role of Relational Algebra

- □ How does a relational DBMS work?
 - Queries are expressed by users in a language, e.g. SQL;
 - The DBMS translates an SQL query into *relational algebra*, and meanwhile looks for other algebra expressions that produce the same answers but saving the computational costs.
 - Based on the relational algebra, DBMS calculates the query results.

Basic operations

- □ Selection
- Projection
- □ Union
- □ Difference
- □ Rename
- □ Cartesian product
- □ Natural join

Example Tables

 sid
 bid
 day

 22
 101
 10/10/96

 58
 103
 11/12/96

□ "Sailors" and "Reserves" relations are used for our examples.

<i>S</i> 1	sid	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

R1

*S*2 sid rating age sname 28 35.0 yuppy lubber 55.5 31 35.0 44 guppy 58 10 35.0 rusty

Selection

- \square Notation: $\sigma_p(r)$
- □ p is called the **selection predicate**, r is a relation
- Defined as:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of **terms** connected by : \land (and), \lor (or), \neg (not)

Each **term** is one of:

<attribute> op <attribute> or <constant>

where *op* is one of: =, \neq , >, \geq . <. \leq

Selection (1/3)

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

Selection (2/3)

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

$$\sigma_{rating > 8 \land sid > 40}(S2)$$

sid	sname	rating	age
58	rusty	10	35.0

∧ means logical AND.

Selection (3/3)

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

$$\sigma_{rating>8 \lor sid>40}(S2)$$

sid	sname	rating	age
28	yuppy	9	35.0
44	guppy	5	35.0
58	rusty	10	35.0

V means logical OR.

Question 1

S

sid	sname	gpa	age
42	David	4.0	21
15	Louis	2.8	19
98	Amy	1.7	20

- What are the results for the following queries?
 - $\bullet \quad \mathbf{O}_{gpa > 2.6 \land gpa \le 4.0} \left(\mathbf{O}_{age \ge 19 \land age \le 20} \left(S \right) \right)$
 - $\mathbf{O}_{age \ge 19 \land age \le 20} \left(\mathbf{O}_{gpa > 2.6 \land gpa \le 4.0} \left(S \right) \right)$
 - $\bullet \quad \mathbf{G}_{age \leq 19} \left(\mathbf{G}_{gpa > 2.8} \left(\mathbf{S} \right) \right)$

Projection

- □ Notation: $\pi_{A_1,A_2,...,A_k}(r)$ where A_1, A_2 are attributes and r is a relation.
- The result is defined as the relation of k columns obtained by erasing the columns that are not listed.
- Duplicate rows are removed from result, since relations are sets.

Projection

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

$$\pi_{age}(S2)$$

age

35.0

55.5

Duplicate rows are removed.

Operator composition

 sid
 sname
 rating
 age

 28
 yuppy
 9
 35.0

 31
 lubber
 8
 55.5

 44
 guppy
 5
 35.0

 58
 rusty
 10
 35.0

$$\pi_{sname, rating}(\sigma_{rating} > 8^{(S2)})$$

sname	rating
yuppy	9
rusty	10

Composition of Selection and Projection.

Question 2

S

sid	sname	gpa	age
42	David	4.0	21
15	Louis	2.8	19
98	Amy	1.7	20

■ What is the result for the following query?

$$\pi_{age}(\sigma_{gpa>2.6 \land gpa \le 4.0}(S))$$

Union

- □ Two input relations must be *union-compatible*.
 - Same number of attributes.

*S*1

*S*2

• 'Corresponding' attributes have the same type.

$S1 \cup S2$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Intersection and Difference

*S*1

 $S1 \cap S2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

S1-S2

sid	sname	rating	age
22	dustin	7	45.0

 sid
 sname
 rating
 age

 22
 dustin
 7
 45.0

 31
 lubber
 8
 55.5

 58
 rusty
 10
 35.0

rating sid age sname 28 35.0 9 yuppy 31 lubber 55.5 8 35.0 44 guppy 58 35.0 rusty 10

Renaming

sid sname rating age *S*1 dustin 45.0 22 lubber 55.5 31 8 35.0 58 10 rusty

 $\rho_{My\text{-table}(id, name, level, age)}(S1)$

My-table

<u>id</u>	name	level	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Cartesian Product

R1

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

■ Each row of S1 is <u>paired</u> with each row of R1.

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \times R1 =$

		<u> </u>				-
S1.				R1.		
sid	sname	rating	age	sid	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Natural Join Operation

- \Box R = (A, B, C, D), S = (E, B, D)
- □ Equal on *all common* attributes

$$r \bowtie s = \prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s))$$

Result schema = (A, B, C, D, E)

Natural Join Operation

S1.				R1.		
sid	sname	rating	age	sid	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

$$\sigma_{S1.sid=R1.sid}(S1\times R1)$$

S1.				R1.		
sid	sname	rating	age	sid	bid	day
22	dustin	7	45.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Question 3

S

sid	sname	gpa	age
42	David	4.0	21
15	Louis	2.8	19
98	Amy	1.7	20

E

sid	cid	day
15	2016	01/09/18
15	2006	12/01/18
42	4035	11/01/20

□ What are the results for the following queries?

•
$$S \bowtie_{S.sid = E.sid} E$$

• S
$$\bowtie_{\text{S.sid} = \text{E.sid}} (\sigma_{\text{cid} = 4035}(E))$$

Solution to Question 1

sidsnamegpaage15Louis2.819

sidsnamegpaage15Louis2.819

□ Empty

Solution to Question 2

age
21
19

Solution to Question 3

sid cid day sname age gpa 42 David 4.0 21 4035 | 11/01/20 15 2.8 2016 01/09/18 Louis 19 2.8 2006 | 12/01/18 15 Louis 19

sid	sname	gpa	age	cid	day
42	David	4.0	21	4035	11/01/20