解:

(1) 由
$$\rho^2 = x^2 + y^2$$
, $\rho \cos \theta = x$
故 $C : \rho^2 = 2\sqrt{2}\cos \theta$
 $x^2 + y^2 = 2\sqrt{2}x$
即: $(x - \sqrt{2})^2 + y^2 = 2$

(2) 设
$$P(x,y), M(2\sqrt{2}\cos^2\theta, 2\sqrt{2}\sin\theta\cos\theta)$$
 由题意: $\overrightarrow{AM} = (\sqrt{2}\cos 2\theta + \sqrt{2} - 1, \sqrt{2}\sin 2\theta)$ 则 $\overrightarrow{AP} = (x-1,y) = \sqrt{2}\overrightarrow{AM} = (2\cos 2\theta + 2 - \sqrt{2}, 2\sin 2\theta)$ 故: $C_1: \begin{cases} x = 2\cos 2\theta - \sqrt{2} + 3 \\ y = 2\sin 2\theta \end{cases}$ 由 (1) 得: C 为圆,圆心在 $(\sqrt{2},0)$,半径为 $\sqrt{2}$ $C_1: (x-3+\sqrt{2})^2 + y^2 = 4$ 也是圆 故 C_1 圆心在 $(3-\sqrt{2},0)$,半径为 2 两圆圆心距 $d = |\sqrt{2} - 3 + \sqrt{2}| = 3 - 2\sqrt{2} < r_1 - r_C = 2 - \sqrt{2}$ 故 C 内含于 C_1