Diffusivity in Cr2O3

Saturday, February 13, 2016 7:23 PM

Oxygen diffusivity

Oxygen diffusion by the isotopic exchange method at 1100°C.

p _{O2} (atm)	t (s)	D (cm ² s ⁻¹)	(cm s ⁻¹)	H (cm ⁻¹)
10-9	8·64 × 10 ⁴	8.4×10^{-18}	4.9×10^{-12}	1·071 × 10 ⁵
3.7×10^{-12}	1.775×10^{5}	4.4×10^{-18}	2.2×10^{-12}	2.045×10^{5}
3.7×10^{-14}	1.75×10^{5}	3.8×10^{-18}	4.22×10^{-12}	1.394×10^{5}
1.6×10^{-16}	8.64×10^{4}	7.4×10^{-18}	2.7×10^{-12}	1.351×10^{5}
1.6×10^{-16}	1.728×10^{5}	3.2×10^{-18}	1.78×10^{-12}	2.531×10^{5}

ACSSABION PMA 1992 1 paper

Fig. 4. Comparison of oxygen diffusivities determined in the present studies with literature data for chromia grown on Fe–Cr based alloys.

Diffusion of Cations in Chromia Layers

Table III. Values of the Lattice-Diffusion Coefficient D, of the Product of Grain-Boundary-Diffusion Coefficient D' and Grain-Boundary Width δ , and Grain-Size Parameter b^{29}

Base alloy	Sample	Tracer	Annealing time	$D/\mathrm{cm}^2\mathrm{s}^{-1}$	$D'\delta/\mathrm{cm}^3\mathrm{s}^{-1}$	$b/\mu\mathrm{m}$
Fe-20Cr	1	⁵⁴ Fe	15 min	2×10 ⁻¹⁴	1×10^{-16}	0.11
	2		4 hr	3×10^{-15}		0.21
	3	⁵³ Cr	15 min	1×10^{-14}	1×10^{-16}	0.09
	4		4 hr	4×10^{-16}	2×10^{-17}	0.06
	5	Ni	10 min	3×10^{-15}	2×10^{-19}	0.20
	6		17 min	6×10^{-15}	3×10^{-18}	0.29
	7		4 hr	8×10^{-16}	2×10^{-19}	0.58
	8	Mn	10 min	2×10^{-14}	2×10^{-17}	0.07
	9		17 min	6×10^{-14}	5×10^{-17}	0.55
	10		4 hr	2×10^{-15}	5×10^{-18}	0.20
Fe-20Cr-12Ni	11	⁵⁴ Fe	15 min	4×10^{-15}	1×10^{-17}	0.12
	12		4 hr	7×10^{-16}		0.13
	13	⁵³ Cr	15 min	7×10^{-15}	2×10^{-17}	0.08
	14		4 hr	8×10^{-16}	5×10^{-18}	0.10
	15	⁶² Ni	15 min	5×10^{-15}	5×10^{-19}	0.16
	16		4 hr	4×10^{-16}	1×10^{-19}	0.32
	17	Mn	15 min	2×10^{-13}	_	0.39
	18		4 hr	1×10^{-14}		1.19

Sabioni_MSEA_2005

Table 4 Chromium diffusion in chromia polycrystals and in chromia films [7,8,15,16]

T(°C)	pO ₂ (atm)	Cr ₂ O ₃ polycrystals		Cr ₂ O ₃ films	
		$\overline{D_{b}}$	D_{gb}	D_b	D_{gb}
700 [6]	0.1	4.2×10^{-19}	4.4×10^{-13}	2.9×10^{-18}	5.1 × 10 ⁻¹³
[6] 008	0.1	4.6×10^{-18}	7.7×10^{-13}	5.9×10^{-18}	1.1×10^{-12}
900 [6]	0.1	2.1×10^{-17}	2.9×10^{-12}	2.0×10^{-17}	9.3×10^{-12}
900 [7]	10^{-15}			7×10^{-15} , 8×10^{-16}	2×10^{-10} , 5×10^{-11}