Outils formels de modélisation

Qu'est ce que c'est qu'un outil formel de modélisation?

- spécification formelle exprimée dans une notation mathématique définie précisément au niveau de la syntaxe et de la sémantique
 - exemple: logique des propositions
 - Mais de nombreux autres:
 - Réseaux de Petri, Algèbres de processus, types abstraits algébriques, logique temporelle,
- existence d'un cycle de vie incluant: modélisation, raffinement et vérification
 - modélisation: établir les propriétés nécessaires
 - raffinement: progressivement préciser les aspects concrets
 - vérification: établir que l'implémentation respecte la spécification abstraite.

Pourquoi modéliser formellement ?

- ▲ Permet un approfondissement de la connaissance du cahier des charges du système à développer.
- ▲ Permet de décrire ce que l'on veut faire sans expliquer comment le faire !
- ▲ Pour différer l'étude des aspects algorithmiques
- **▲** Pour exprimer complètement un problème
- ▲ Pour diminuer la complexité
- ▲ Pour avoir un contrôle sur le processus de développement (qualité et fiabilité), découverte d'erreurs
- ▲ Offre des possibilités d'automatisation au moyen d'outils logiciels

Les outils formels et leurs utilisations

- Modélisation:
 - Systèmes informatiques => génie Logiciel
 - Langages/outils informatiques
 - Matériel => conception hardware
- ▲ Sert de réference pour les étapes de validation et de vérification (test)
- Permet la génération rapide de prototypes

Les septs mythes des méthodes formelles

- L'utilisation des méthodes formelles produit un logiciel parfait
 - non-sens, une spécification formelle est un modèle du monde réel et peut donc inclure des erreurs, des omissions et des malentendus.
- Utiliser les méthodes formelles signifie faire de la preuve de programme
 - La spécification formelle d'un système est valable sans vérification formelle des programmes, car elle force rapidement dans le cycle de développement, à une analyse détaillée.
- Les méthodes formelles ne sont justifiables que pour les systèmes critiques
 - L'expérience industrielle montre que les coûts de développement sont réduits pour tous les types de systèmes.

- ▲ Les méthodes formelles sont pour les mathématiciens
 - non-sens, les mathématiques employées sont élémentaires.
- Les méthodes formelles augmentent les coûts de développement
 - Non-prouvé, il y a un déplacement des coûts vers les premières étapes
- Les clients ne peuvent comprendre les spécifications formelles
 - Il faut les paraphraser en langage naturel, ou utiliser le prototypage
- Les méthodes formelles ne sont utilisées que pour les systèmes triviaux
 - Il y a maintenant de nombreux projets industriels concernant des systèmes non-triviaux qui ont été mis en oeuvre.

Classes de méthodes formelles

- ▲ Spécifications orientées propriétés: description données dans un langage permettant d'énoncer les propriétés attendues d'un système.
 - Logique
 - logique temporelle
 - types abstraits algébriques
- ▲ Spécifications orientées modèles: construction d'un système à partir d'objets fondamentaux préétablis.
 - Réseaux de Petri
 - Algèbres de processus

Méthodes hybrides

▲ VDM, Z et B

Théorie des ensembles et systèmes pré, post conditions.

Très utilisées dans l'industrie, manquent de définitions formelles

- ▲ LOTOS (Language of Temporal Ordering)
 Algèbres de processus et types abstraits algébriques.
- A Réseaux de Petri Algébrique (CO-OPN)
 Réseaux de Petri et types abstraits algébriques.

Date Thème du cours Sujet TPs

1	Introduction	Inscriptions
2	Réseaux de Petri	Modélisation
3	RdP Formalisme	Modélisation
4	RdP Présentation des propriétés	Propriétés
5	RdP Vérification des propriétés	Vérification
6	RdP Vérification des propriétés	Vérification
7	RdP Extensions	Modélisation
8	RdP Extensions colorées	Modélisation
9	RdP Extensions colorées	Modélisation
10	RdP Extensions temporelles	Analyse temp.
11	RdP Extensions temporelles	Analyse temp.
12	Logique propositionelle, preuves	logique
13	Logique prédicat, preuves	logique
14	Logique prédicat, preuves	logique