4.1 The Basics-Reading

Notebook: Discrete Mathematics [CM1020]

Author: SUKHJIT MANN

Tags: Binding, DeMorgan, Equivalent, Existential, Nested, Predicate, Quantification, Uniquenes...

Cornell Notes

Topic:

4.1 The Basics-Reading

Course: BSc Computer Science

Class: Discrete Mathematics-Reading

Date: November 15, 2019

Essential Question:

What is Quantification and the different kinds of quantifiers used in Predicate Logic?

Questions/Cues:

- What is a predicate?
- What is preconditions/postconditions?
- What is Quantification?
- What is the Universal Quantifier?
- What is the Existential Quantifier?
- What is the Uniqueness Quantifer?
- What is Quantifiers with Restricted Domains?
- What is the Order of Precedence in terms of Quantifiers?
- What is meant by binding variables?
- What does it mean when statements involving predicates & quantifiers are logically equivalent?
- What are the DeMorgan's laws for Quantifiers and how do we negate Quantified expressions?
- What is a nested quantifier?
- What are rules pertaining to the order of quantifiers?
- What is the Quantification of two or more variables?

Notes

- Predicate = refers to property that subject of the statement can have
 - statement "x is greater than 3"; x is subject and "is greater than 3" is predicate, often denoted by P(x) where P denotes predicate "is greater than 3" and x is variable
 - o statement P(x) said to be value of propositional function P at x, once value assigned to variable x, statement P(x) becomes proposition and has a truth value

Let P(x) denote the statement "x > 3." What are the truth values of P(4) and P(2)?

Solution: We obtain the statement P(4) by setting x = 4 in the statement "x > 3." Hence, P(4), which is the statement "4 > 3." is true. However, P(2), which is the statement "2 > 3." is false.

Let A(x) denote the statement "Computer x is under attack by an intruder." Suppose that of the computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are truth values of A(CS1), A(CS2), and A(MATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement "Computer x is under attack by an intruder." Because CS1 is not on the list of computers currently under attack, we conclude that A(CS1) is false. Similarly, because CS2 and MATH1 are on the list of computers under attack, we know that A(CS2) and A(MATH1) are true.

We can also have statements that involve more than one variable. For instance, consider the statement "x = y + 3." We can denote this statement by Q(x, y), where x and y are variables and Q is the predicate. When values are assigned to the variables x and y, the statement Q(x, y) has a truth value.

Let Q(x, y) denote the statement "x = y + 3." What are the truth values of the propositions Q(1, 2) and Q(3, 0)?

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is the statement "1 = 2 + 3," which is false. The statement Q(3, 0) is the proposition "3 = 0 + 3," which is true.

Let A(c, n) denote the statement "Computer c is connected to network n," where c is a variable representing a computer and n is a variable representing a network. Suppose that the computer MATH1 is connected to network CAMPUS2, but not to network CAMPUS1. What are the values of A(MATH1, CAMPUS1) and A(MATH1, CAMPUS2)?

Solution: Because MATH1 is not connected to the CAMPUS1 network, we see that A(MATH1, CAMPUS1) is false. However, because MATH1 is connected to the CAMPUS2 network, we see that A(MATH1, CAMPUS2) is true.

Similarly, we can let R(x, y, z) denote the statement x + y = z. When values are assigned to the variables x, y, and z, this statement has a truth value.

What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the statement R(x, y, z). We see that R(1, 2, 3) is the statement "1 + 2 = 3," which is true. Also note that R(0, 0, 1), which is the statement "0 + 0 = 1," is false.

In general, a statement involving the n variables x_1, x_2, \dots, x_n can be denoted by

$$P(x_1, x_2, ..., x_n)$$
.

A statement of the form $P(x_1, x_2, ..., x_n)$ is the value of the propositional function P at the n-tuple $(x_1, x_2, ..., x_n)$, and P is also called an n-place predicate or a n-ary predicate. Propositional functions occur in computer programs, as Example 6 demonstrates.

```
if x > 0 then x := x + 1.
```

When this statement is encountered in a program, the value of the variable x at that point in the execution of the program is inserted into P(x), which is "x > 0." If P(x) is true for this value of x, the assignment statement x := x + 1 is executed, so the value of x is increased by 1. If P(x) is false for this value of x, the assignment statement is not executed, so the value of x is not changed.

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish the correctness of computer programs, that is, to show that computer programs always produce the desired output when given valid input. (Note that unless the correctness of a computer program is established, no amount of testing can show that it produces the desired output for all input values, unless every input value is tested.) The statements that describe valid input are known as preconditions and the conditions that the output should satisfy when the program has run are known as postconditions. As Example 7 illustrates, we use predicates to describe both preconditions and postconditions. We will study this process in greater detail in Section 5.5.

Consider the following program, designed to interchange the values of two variables x and y.

```
temp := x
x := y
y := temp
```

Find predicates that we can use as the precondition and the postcondition to verify the correctness of this program. Then explain how to use them to verify that for all valid input the program does what is intended.

Solution: For the precondition, we need to express that x and y have particular values before we run the program. So, for this precondition we can use the predicate P(x, y), where P(x, y) is the statement "x = a and y = b," where a and b are the values of x and y before we run the program. Because we want to verify that the program swaps the values of x and y for all input values, for the postcondition we can use Q(x, y), where Q(x, y) is the statement "x = b and y = a."

To verify that the program always does what it is supposed to do, suppose that the precondition P(x, y) holds. That is, we suppose that the statement "x = a and y = b" is true. This means that x = a and y = b. The first step of the program, temp := x, assigns the value of x to the variable temp, so after this step we know that x = a, temp = a, and y = b. After the second step of the program, x := y, we know that x = b, temp = a, and y = b. Finally, after the third step, we know that x = b, temp = a, and y = a. Consequently, after this program is run, the postcondition Q(x, y) holds, that is, the statement "x = b and y = a" is true.

- Quantification = extent to which a predicate is true over range of elements.
 - o In English, words all, some, many, none, and few are used in quantifications
 - Universal Quantification, which tells us that a predicate is true for every element under consideration.
 - Existential Quantification, which tells us that there is one or more element under consideration for which the predicate is true
 - Area of logic that deals with predicates and quantifiers called the predicate calculus

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a property is true for all values of a variable in a particular domain, called the domain of discourse (or the universe of discourse), often just referred to as the domain. Such a statement is expressed using universal quantification. The universal quantification of P(x) for a particular domain is the proposition that asserts that P(x) is true for all values of x in this domain. Note that the domain specifies the possible values of the variable x. The meaning of the universal quantification of P(x) changes when we change the domain. The domain must always be specified when a universal quantifier is used; without it, the universal quantification of a statement is not defined.

The universal quantification of P(x) is the statement

"P(x) for all values of x in the domain."

The notation $\forall x P(x)$ denotes the universal quantification of P(x). Here \forall is called the universal quantifier. We read $\forall x P(x)$ as "for all x P(x)" or "for every x P(x)." An element for which P(x) is false is called a counterexample of $\forall x P(x)$.

TABLE 1 Quantifiers.			
Statement	When True?	When False?	
$\forall x P(x)$	P(x) is true for every x .	There is an x for which $P(x)$ is false.	
$\exists x P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x .	

Let P(x) be the statement "x + 1 > x." What is the truth value of the quantification $\forall x P(x)$, where the domain consists of all real numbers?

Solution: Because P(x) is true for all real numbers x, the quantification

 $\forall x P(x)$

is true.

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers are nonempty. Note that if the domain is empty, then $\forall x P(x)$ is true for any propositional function P(x) because there are no elements x in the domain for which P(x) is false.

Besides "for all" and "for every," universal quantification can be expressed in many other ways, including "all of," "for each," "given any," "for arbitrary," "for each," and "for any."

Remark: It is best to avoid using "for any x" because it is often ambiguous as to whether "any" means "every" or "some." In some cases, "any" is unambiguous, such as when it is used in negatives, for example, "there is not any reason to avoid studying."

A statement $\forall x P(x)$ is false, where P(x) is a propositional function, if and only if P(x) is not always true when x is in the domain. One way to show that P(x) is not always true when x is in the domain is to find a counterexample to the statement $\forall x P(x)$. Note that a single counterexample is all we need to establish that $\forall x P(x)$ is false. Example 9 illustrates how counterexamples are used.

Let Q(x) be the statement "x < 2." What is the truth value of the quantification $\forall x Q(x)$, where the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is, x = 3 is a counterexample for the statement $\forall x Q(x)$. Thus

$$\forall x Q(x)$$

is false.

Suppose that P(x) is " $x^2 > 0$." To show that the statement $\forall x P(x)$ is false where the universe of discourse consists of all integers, we give a counterexample. We see that x = 0 is a counterexample because $x^2 = 0$ when x = 0, so that x^2 is not greater than 0 when x = 0.

What is the truth value of $\forall x P(x)$, where P(x) is the statement " $x^2 < 10$ " and the domain consists of the positive integers not exceeding 4?

Solution. The statement $\forall x P(x)$ is the same as the conjunction

$$P(1) \wedge P(2) \wedge P(3) \wedge P(4)$$
,

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement " $4^2 < 10$," is false, it follows that $\forall x P(x)$ is false.

What does the statement $\forall x N(x)$ mean if N(x) is "Computer x is connected to the network" and the domain consists of all computers on campus?

Solution: The statement $\forall x N(x)$ means that for every computer x on campus, that computer x is connected to the network. This statement can be expressed in English as "Every computer on campus is connected to the network."

As we have pointed out, specifying the domain is mandatory when quantifiers are used. The truth value of a quantified statement often depends on which elements are in this domain, as Example 13 shows.

What is the truth value of $\forall x(x^2 \ge x)$ if the domain consists of all real numbers? What is the truth value of this statement if the domain consists of all integers?

Solution: The universal quantification $\forall x(x^2 \ge x)$, where the domain consists of all real numbers, is false. For example, $(\frac{1}{2})^2 \ne \frac{1}{2}$. Note that $x^2 \ge x$ if and only if $x^2 - x = x(x-1) \ge 0$. Consequently, $x^2 \ge x$ if and only if $x \le 0$ or $x \ge 1$. It follows that $\forall x(x^2 \ge x)$ is false if the domain consists of all real numbers (because the inequality is false for all real numbers x with 0 < x < 1). However, if the domain consists of the integers, $\forall x(x^2 \ge x)$ is true, because there are no integers x with 0 < x < 1.

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an element with a certain property. Such statements are expressed using existential quantification. With existential quantification, we form a proposition that is true if and only if P(x) is true for at least one value of x in the domain.

The existential quantification of P(x) is the proposition

"These exists an element x in the domain such that P(x)."

We use the notation $\exists x P(x)$ for the existential quantification of P(x). Here \exists is called the existential quantifier.

A domain must always be specified when a statement $\exists x P(x)$ is used. Furthermore, the meaning of $\exists x P(x)$ changes when the domain changes. Without specifying the domain, the statement $\exists x P(x)$ has no meaning.

Besides the phrase "there exists," we can also express existential quantification in many other ways, such as by using the words "for some," "for at least one," or "there is." The existential quantification $\exists x P(x)$ is read as

"There is an x such that P(x),"

"There is at least one x such that P(x),"

OF

"For some x P(x)."

Let P(x) denote the statement "x > 3." What is the truth value of the quantification $\exists x P(x)$, where the domain consists of all real numbers?

Solution: Because "x > 3" is sometimes true—for instance, when x = 4—the existential quantification of P(x), which is $\exists x P(x)$, is true.

Observe that the statement $\exists x P(x)$ is false if and only if there is no element x in the domain for which P(x) is true. That is, $\exists x P(x)$ is false if and only if P(x) is false for every element of the domain. We illustrate this observation in Example 15.

EXAMPLE 15 Let Q(x) denote the statement "x = x + 1." What is the truth value of the quantification $\exists x Q(x)$, where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x), which is $\exists x Q(x)$, is false.

Remember that the trein value of 31 P is a dependa on the descord.

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers are nonempty. If the domain is empty, then $\exists x Q(x)$ is false whenever Q(x) is a propositional function because when the domain is empty, there can be no element x in the domain for which Q(x) is true.

When all elements in the domain can be listed—say, $x_1, x_2, ..., x_n$ —the existential quantification $\exists x P(x)$ is the same as the disjunction

$$P(x_1) \vee P(x_2) \vee \cdots \vee P(x_n)$$
,

because this disjunction is true if and only if at least one of $P(x_1)$, $P(x_2)$, . . . , $P(x_n)$ is true,

What is the truth value of $\exists x P(x)$, where P(x) is the statement " $x^2 > 10$ " and the universe of discourse consists of the positive integers not exceeding 4?

Solution: Because the domain is $\{1, 2, 3, 4\}$, the proposition $\exists x P(x)$ is the same as the disjunction

$$P(1) \vee P(2) \vee P(3) \vee P(4)$$
.

Because P(4), which is the statement " $4^2 > 10$," is true, it follows that $\exists x P(x)$ is true.

It is sometimes helpful to think in terms of looping and searching when determining the truth value of a quantification. Suppose that there are n objects in the domain for the variable x. To determine whether $\forall x\,P(x)$ is true, we can loop through all n values of x to see whether P(x) is always true. If we encounter a value x for which P(x) is false, then we have shown that $\forall x\,P(x)$ is false. Otherwise, $\forall x\,P(x)$ is true. To see whether $\exists x\,P(x)$ is true, we loop through the n values of x searching for a value for which P(x) is true. If we find one, then $\exists x\,P(x)$ is true, If we never find such an x, then we have determined that $\exists x\,P(x)$ is false. (Note that this searching procedure does not apply if there are infinitely many values in the domain. However, it is still a useful way of thinking about the truth values of quantifications.)

THE UNIQUENESS QUANTIFIER We have now introduced universal and existential quantifiers. These are the most important quantifiers in mathematics and computer science. However, there is no limitation on the number of different quantifiers we can define, such as "there are exactly two," "there are no more than three," "there are at least 100," and so on. Of these other quantifiers, the one that is most often seen is the uniqueness quantifier, denoted by $\exists !$ or \exists_1 . The notation $\exists !x P(x)$ [or $\exists_1 x P(x)$] states "There exists a unique x such that P(x) is true." (Other phrases for uniqueness quantification include "there is exactly one" and "there is one and only one.") For instance, $\exists !x (x-1=0)$, where the domain is the set of real numbers, states that there is a unique real number x such that x-1=0. This is a true statement, as x=1 is the unique real number such that x-1=0. Observe that we can use quantifiers and propositional logic to express uniqueness (see Exercise 52 in Section 1.5), so the uniqueness quantifier can be avoided. Generally, it is best to stick with existential and universal quantifiers so that rules of inference for these quantifiers can be used.

Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier. In this notation, a condition a variable must satisfy is included after the quantifier. This is illustrated in Example 17. We will also describe other forms of this notation involving set membership in Section 2.1.

What do the statements $\forall x < 0 \ (x^2 > 0)$, $\forall y \neq 0 \ (y^3 \neq 0)$, and $\exists z > 0 \ (z^2 = 2)$ mean, where the domain in each case consists of the real numbers?

Solution: The statement $\forall x < 0 \ (x^2 > 0)$ states that for every real number x with x < 0, $x^2 > 0$. That is, it states "The square of a negative real number is positive." This statement is the same as $\forall x (x < 0 \rightarrow x^2 > 0)$.

The statement $\forall y \neq 0$ ($y^3 \neq 0$) states that for every real number y with $y \neq 0$, we have $y^3 \neq 0$. That is, it states "The cube of every nonzero real number is nonzero." Note that this statement is equivalent to $\forall y (y \neq 0 \rightarrow y^3 \neq 0)$.

Finally, the statement $\exists z > 0$ ($z^2 = 2$) states that there exists a real number z with z > 0

Finally, the statement $\exists z > 0$ ($z^2 = 2$) states that there exists a real number z with z > 0 such that $z^2 = 2$. That is, it states "There is a positive square root of 2." This statement is equivalent to $\exists z (z > 0 \land z^2 = 2)$.

Note that the restriction of a universal quantification is the same as the universal quantification of a conditional statement. For instance, $\forall x < 0 \ (x^2 > 0)$ is another way of expressing $\forall x (x < 0 \rightarrow x^2 > 0)$. On the other hand, the restriction of an existential quantification is the same as the existential quantification of a conjunction. For instance, $\exists z > 0 \ (z^2 = 2)$ is another way of expressing $\exists z (z > 0 \land z^2 = 2)$.

Precedence of Quantifiers

The quantifiers \forall and \exists have higher precedence than all logical operators from propositional calculus. For example, $\forall x P(x) \lor Q(x)$ is the disjunction of $\forall x P(x)$ and Q(x). In other words, it means $(\forall x P(x)) \lor Q(x)$ rather than $\forall x (P(x) \lor Q(x))$.

Binding Variables

When a quantifier is used on the variable x, we say that this occurrence of the variable is bound. An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be free. All the variables that occur in a propositional function must be bound or set equal to a particular value to turn it into a proposition. This can be done using a combination of universal quantifiers, existential quantifiers, and value assignments.

The part of a logical expression to which a quantifier is applied is called the scope of this quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the formula that specify this variable.

In the statement $\exists x(x + y = 1)$, the variable x is bound by the existential quantification $\exists x$, but the variable y is free because it is not bound by a quantifier and no value is assigned to this variable. This illustrates that in the statement $\exists x(x + y = 1)$, x is bound, but y is free.

In the statement $\exists x(P(x) \land Q(x)) \lor \forall x R(x)$, all variables are bound. The scope of the first quantifier, $\exists x$, is the expression $P(x) \land Q(x)$ because $\exists x$ is applied only to $P(x) \land Q(x)$, and not to the rest of the statement. Similarly, the scope of the second quantifier, $\forall x$, is the expression R(x). That is, the existential quantifier binds the variable x in $P(x) \land Q(x)$ and the universal quantifier $\forall x$ binds the variable x in R(x). Observe that we could have written our statement using two different variables x and y, as $\exists x(P(x) \land Q(x)) \lor \forall y R(y)$, because the scopes of the two quantifiers do not overlap. The reader should be aware that in common usage, the same letter is often used to represent variables bound by different quantifiers with scopes that do not overlap.

Statements involving predicates and quantifiers are *logically equivalent* if and only if they have the same truth value no matter which predicates are substituted into these statements and which domain of discourse is used for the variables in these propositional functions. We use the notation $S \equiv T$ to indicate that two statements S and T involving predicates and quantifiers are logically equivalent.

Negating Quantified Expressions

We will often want to consider the negation of a quantified expression. For instance, consider the negation of the statement

"Every student in your class has taken a course in calculus."

This statement is a universal quantification, namely,

$$\forall x P(x)$$
.

where P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class. The negation of this statement is "It is not the case that every student in your class has taken a course in calculus." This is equivalent to "There is a student in your class who has not taken a course in calculus." And this is simply the existential quantification of the negation of the original propositional function, namely,

$$\exists x \neg P(x).$$

This example illustrates the following logical equivalence:

$$\neg \forall x P(x) = \exists x \neg P(x).$$

To show that $\neg \forall x P(x)$ and $\exists x P(x)$ are logically equivalent no matter what the propositional function P(x) is and what the domain is, first note that $\neg \forall x P(x)$ is true if and only if $\forall x P(x)$ is false. Next, note that $\forall x P(x)$ is false if and only if there is an element x in the domain for which P(x) is false. This holds if and only if there is an element x in the domain for which $\neg P(x)$ is true. Finally, note that there is an element x in the domain for which $\neg P(x)$ is true. Putting these steps together, we can conclude that $\neg \forall x P(x)$ is true if and only if $\exists x \neg P(x)$ is true. It follows that $\neg \forall x P(x)$ and $\exists x \neg P(x)$ are logically equivalent.

Suppose we wish to negate an existential quantification. For instance, consider the proposition "There is a student in this class who has taken a course in calculus." This is the existential quantification

$$\exists x Q(x),$$

where Q(x) is the statement "x has taken a course in calculus." The negation of this statement is the proposition "It is not the case that there is a student in this class who has taken a course in calculus." This is equivalent to "Every student in this class has not taken calculus," which is just the universal quantification of the negation of the original propositional function, or, phrased in the language of quantifiers,

$$\forall x \neg Q(x)$$
.

This example illustrates the equivalence

$$\neg \exists x \, Q(x) = \forall x \, \neg Q(x).$$

To show that $\neg \exists x \, Q(x)$ and $\forall x \, \neg \, Q(x)$ are logically equivalent no matter what Q(x) is and what the domain is, first note that $\neg \exists x \, Q(x)$ is true if and only if $\exists x \, Q(x)$ is false. This is true if and

only if no x exists in the domain for which Q(x) is true. Next, note that no x exists in the domain for which Q(x) is true if and only if Q(x) is false for every x in the domain. Finally, note that Q(x) is false for every x in the domain if and only if $\neg Q(x)$ is true for all x in the domain, which holds if and only if $\forall x \neg Q(x)$ is true. Putting these steps together, we see that $\neg \exists x \, Q(x)$ is true if and only if $\forall x \neg Q(x)$ is true. We conclude that $\neg \exists x \, Q(x)$ and $\forall x \neg Q(x)$ are logically equivalent.

The rules for negations for quantifiers are called De Morgan's laws for quantifiers. These rules are summarized in Table 2.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive integer greater than one, the rules for negating quantified statements are exactly the same as De Morgan's laws discussed in Section 1.3. This is why these rules are called De Morgan's laws for quantifiers. When the domain has n elements x_1, x_2, \ldots, x_n , it follows that $\neg \forall x P(x)$ is the same as $\neg (P(x_1) \land P(x_2) \land \cdots \land P(x_n))$, which is equivalent to $\neg P(x_1) \lor \neg P(x_2) \lor \cdots \lor \neg P(x_n)$ by De Morgan's laws, and this is the same as $\exists x \neg P(x)$. Similarly, $\neg \exists x P(x)$ is the same as $\neg (P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n))$, which by De Morgan's laws is equivalent to $\neg P(x_1) \land \neg P(x_2) \land \cdots \land \neg P(x_n)$, and this is the same as $\forall x \neg P(x)$.

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which	P(x) is true for every x

What are the negations of the statements "There is an honest politician" and "All Americans eat cheeseburgers"?

Solution: Let H(x) denote "x is honest." Then the statement "There is an honest politician" is represented by $\exists x H(x)$, where the domain consists of all politicians. The negation of this statement is $\neg \exists x H(x)$, which is equivalent to $\forall x \neg H(x)$. This negation can be expressed as "Every politician is dishonest." (*Note:* In English, the statement "All politicians are not honest" is ambiguous. In common usage, this statement often means "Not all politicians are honest," Consequently, we do not use this statement to express this negation.)

Let C(x) denote "x eats cheeseburgers." Then the statement "All Americans eat cheeseburgers" is represented by $\forall x C(x)$, where the domain consists of all Americans. The negation of this statement is $\neg \forall x C(x)$, which is equivalent to $\exists x \neg C(x)$. This negation can be expressed in several different ways, including "Some American does not eat cheeseburgers" and "There is an American who does not eat cheeseburgers."

What are the negations of the statements $\forall x(x^2 > x)$ and $\exists x(x^2 = 2)$?

Solution: The negation of $\forall x(x^2 > x)$ is the statement $\neg \forall x(x^2 > x)$, which is equivalent to $\exists x \neg (x^2 > x)$. This can be rewritten as $\exists x(x^2 \le x)$. The negation of $\exists x(x^2 = 2)$ is the statement $\neg \exists x(x^2 = 2)$, which is equivalent to $\forall x \neg (x^2 = 2)$. This can be rewritten as $\forall x(x^2 \ne 2)$. The truth values of these statements depend on the domain.

Show that $\neg \forall x (P(x) \rightarrow Q(x))$ and $\exists x (P(x) \land \neg Q(x))$ are logically equivalent.

Solution: By De Morgan's law for universal quantifiers, we know that $\neg \forall x (P(x) \rightarrow Q(x))$ and $\exists x (\neg (P(x) \rightarrow Q(x)))$ are logically equivalent. By the fifth logical equivalence in Table 7 in Section 1.3, we know that $\neg (P(x) \rightarrow Q(x))$ and $P(x) \land \neg Q(x)$ are logically equivalent for every x. Because we can substitute one logically equivalent expression for another in a logical equivalence, it follows that $\neg \forall x (P(x) \rightarrow Q(x))$ and $\exists x (P(x) \land \neg Q(x))$ are logically equivalent.

Express the statement "Every student in this class has studied calculus" using predicates and quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the appropriate quantifiers to use. Doing so, we obtain:

"For every student in this class, that student has studied calculus."

Next, we introduce a variable x so that our statement becomes

"For every student x in this class, x has studied calculus."

Continuing, we introduce C(x), which is the statement "x has studied calculus." Consequently, if the domain for x consists of the students in the class, we can translate our statement as $\forall x C(x)$.

However, there are other correct approaches; different domains of discourse and other predicates can be used. The approach we select depends on the subsequent reasoning we want to carry out. For example, we may be interested in a wider group of people than only those in this class. If we change the domain to consist of all people, we will need to express our statement as

"For every person x, if person x is a student in this class then x has studied calculus."

If S(x) represents the statement that person x is in this class, we see that our statement can be expressed as $\forall x(S(x) \rightarrow C(x))$. [Caution! Our statement cannot be expressed as $\forall x(S(x) \land C(x))$ because this statement says that all people are students in this class and have studied calculus!]

Finally, when we are interested in the background of people in subjects besides calculus, we may prefer to use the two-variable quantifier Q(x, y) for the statement "student x has studied subject y." Then we would replace C(x) by Q(x) calculus in both approaches to obtain $\forall x Q(x)$ calculus or $\forall x (S(x)) \rightarrow Q(x)$ calculus).

• Nested Quantifier= where one quantifier is within the scope of another

Assume that the domain for the variables x and y consists of all real numbers. The statement

$$\forall x \forall y (x + y = y + x)$$

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition of real numbers. Likewise, the statement

$$\forall x \exists y (x + y = 0)$$

says that for every real number x there is a real number y such that x + y = 0. This states that every real number has an additive inverse. Similarly, the statement

$$\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$$

is the associative law for addition of real numbers.

Translate into English the statement

$$\forall x \forall y ((x > 0) \land (y < 0) \rightarrow (xy < 0)).$$

where the domain for both variables consists of all real numbers.

Solution: This statement says that for every real number x and for every real number y, if x > 0 and y < 0, then xy < 0. That is, this statement says that for real numbers x and y, if x is positive and y is negative, then xy is negative. This can be stated more succinctly as "The product of a positive real number and a negative real number is always a negative real number."

THINKING OF QUANTIFICATION AS LOOPS In working with quantifications of more than one variable, it is sometimes helpful to think in terms of nested loops. (Of course, if there are infinitely many elements in the domain of some variable, we cannot actually loop through all values. Nevertheless, this way of thinking is helpful in understanding nested quantifiers.) For example, to see whether $\forall x \forall y P(x, y)$ is true, we loop through the values for x, and for each x we loop through the values for y. If we find that P(x, y) is true for all values for x and y, we have determined that $\forall x \forall y P(x, y)$ is true. If we ever hit a value x for which we hit a value y for which P(x, y) is false, we have shown that $\forall x \forall y P(x, y)$ is false.

Similarly, to determine whether $\forall x \exists y P(x, y)$ is true, we loop through the values for x. For each x we loop through the values for y until we find a y for which P(x, y) is true. If for every x we hit such a y, then $\forall x \exists y P(x, y)$ is true; if for some x we never hit such a y, then $\forall x \exists y P(x, y)$ is false.

To see whether $\exists x \forall y P(x, y)$ is true, we loop through the values for x until we find an x for which P(x, y) is always true when we loop through all values for y. Once we find such an x, we know that $\exists x \forall y P(x, y)$ is true. If we never hit such an x, then we know that $\exists x \forall y P(x, y)$ is false.

Finally, to see whether $\exists x \exists y P(x, y)$ is true, we loop through the values for x, where for each x we loop through the values for y until we hit an x for which we hit a y for which P(x, y) is true. The statement $\exists x \exists y P(x, y)$ is false only if we never hit an x for which we hit a y such that P(x, y) is true.

The Order of Quantifiers

Many mathematical statements involve multiple quantifications of propositional functions involving more than one variable. It is important to note that the order of the quantifiers is important, unless all the quantifiers are universal quantifiers or all are existential quantifiers.

Let P(x, y) be the statement "x + y = y + x." What are the truth values of the quantifications $\forall x \forall y P(x, y)$ and $\forall y \forall x P(x, y)$ where the domain for all variables consists of all real numbers?

Solution: The quantification

 $\forall x \forall y P(x, y)$

denotes the proposition

"For all real numbers x, for all real numbers y, x + y = y + x."

Because P(x, y) is true for all real numbers x and y (it is the commutative law for addition, which is an axiom for the real numbers—see Appendix 1), the proposition $\forall x \forall y P(x, y)$ is true. Note that the statement $\forall y \forall x P(x, y)$ says "For all real numbers y, for all real numbers x, x + y = y + x." This has the same meaning as the statement "For all real numbers x, for all real numbers y, x + y = y + x." That is, $\forall x \forall y P(x, y)$ and $\forall y \forall x P(x, y)$ have the same meaning, and both are true. This illustrates the principle that the order of nested universal quantifiers in a statement without other quantifiers can be changed without changing the meaning of the quantified statement.

Let Q(x, y) denote "x + y = 0." What are the truth values of the quantifications $\exists y \forall x \, Q(x, y)$ and $\forall x \exists y \, Q(x, y)$, where the domain for all variables consists of all real numbers?

Solution: The quantification

$$\exists y \forall x Q(x, y)$$

denotes the proposition

"There is a real number y such that for every real number x, Q(x, y)."

No matter what value of y is chosen, there is only one value of x for which x + y = 0. Because there is no real number y such that x + y = 0 for all real numbers x, the statement $\exists y \forall x \, Q(x, y)$ is false.

The quantification

$$\forall x \exists y Q(x, y)$$

denotes the proposition

"For every real number x there is a real number y such that Q(x, y)."

Given a real number x, there is a real number y such that x + y = 0; namely, y = -x. Hence, the statement $\forall x \exists y Q(x, y)$ is true.

Example 4 illustrates that the order in which quantifiers appear makes a difference. The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent. The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes P(x, y) true for every x. So, for this statement to be true, there must be a particular value of y for which P(x, y) is true regardless of the choice of x. On the other hand, $\forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which P(x, y) is true. So, for this statement to be true, no matter which x you choose, there must be a value of y (possibly depending on the x you choose) for which P(x, y) is true. In other words, in the second case, y can depend on x, whereas in the first case, y is a constant independent of x.

From these observations, it follows that if $\exists y \forall x P(x, y)$ is true, then $\forall x \exists y P(x, y)$ must also be true. However, if $\forall x \exists y P(x, y)$ is true, it is not necessary for $\exists y \forall x P(x, y)$ to be true. (See Supplementary Exercises 30 and 31.)

Table 1 summarizes the meanings of the different possible quantifications involving two variables.

Statement	When True?	When False?
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

Let Q(x, y, z) be the statement "x + y = z." What are the truth values of the statements $\forall x \forall y \exists z Q(x, y, z)$ and $\exists z \forall x \forall y Q(x, y, z)$, where the domain of all variables consists of all real numbers?

Solution: Suppose that x and y are assigned values. Then, there exists a real number z such that x + y = z. Consequently, the quantification

$$\forall x \forall y \exists z Q(x, y, z),$$

which is the statement

"For all real numbers x and for all real numbers y there is a real number z such that x + y = z,"

is true. The order of the quantification here is important, because the quantification

$$\exists z \forall x \forall y Q(x, y, z),$$

which is the statement

"There is a real number z such that for all real numbers x and for all real numbers y it is true that x + y = z."

is false, because there is no value of z that satisfies the equation x + y = z for all values of x and y.

Translate the statement "Every real number except zero has a multiplicative inverse." (A multiplicative inverse of a real number x is a real number y such that xy = 1.)

Solution: We first rewrite this as "For every real number x except zero, x has a multiplicative inverse." We can rewrite this as "For every real number x, if $x \neq 0$, then there exists a real number y such that xy = 1." This can be rewritten as

$$\forall x((x \neq 0) \rightarrow \exists y(xy = 1)).$$

Use quantifiers to express the statement "There is a woman who has taken a flight on every airline in the world."

Solution: Let P(w, f) be "w has taken f" and Q(f, a) be "f is a flight on a." We can express the statement as

$$\exists w \forall a \exists f (P(w, f) \land Q(f, a)).$$

where the domains of discourse for w, f, and a consist of all the women in the world, all airplane flights, and all airlines, respectively.

The statement could also be expressed as

$$\exists w \forall a \exists f R(w, f, a),$$

where R(w, f, a) is "w has taken f on a." Although this is more compact, it somewhat obscures the relationships among the variables. Consequently, the first solution is usually preferable.

Express the negation of the statement $\forall x \exists y (xy = 1)$ so that no negation precedes a quantifier.

Solution: By successively applying De Morgan's laws for quantifiers in Table 2 of Section 1.4, we can move the negation in $\neg \forall x \exists y (xy = 1)$ inside all the quantifiers. We find that $\neg \forall x \exists y (xy = 1)$ is equivalent to $\exists x \neg \exists y (xy = 1)$, which is equivalent to $\exists x \forall y \neg (xy = 1)$. Because $\neg (xy = 1)$ can be expressed more simply as $xy \neq 1$, we conclude that our negated statement can be expressed as $\exists x \forall y (xy \neq 1)$.

Use quantifiers to express the statement that "There does not exist a woman who has taken a flight on every airline in the world."

Solution: This statement is the negation of the statement "There is a woman who has taken a flight on every airline in the world" from Example 13. By Example 13, our statement can be expressed as $\neg\exists w \forall a \exists f (P(w,f) \land Q(f,a))$, where P(w,f) is "w has taken f" and Q(f,a) is "f is a flight on a." By successively applying De Morgan's laws for quantifiers in Table 2 of Section 1.4 to move the negation inside successive quantifiers and by applying De Morgan's law for negating a conjunction in the last step, we find that our statement is equivalent to each of this sequence of statements:

$$\forall w \neg \forall a \exists f (P(w, f) \land Q(f, a)) = \forall w \exists a \neg \exists f (P(w, f) \land Q(f, a))$$

 $= \forall w \exists a \forall f \neg (P(w, f) \land Q(f, a))$
 $= \forall w \exists a \forall f (\neg P(w, f) \lor \neg Q(f, a)).$

This last statement states "For every woman there is an airline such that for all flights, this woman has not taken that flight or that flight is not on this airline."

Summary

In this week, we learned about what is a predicate is and quantification is. Alongside this, we learned about the different types of quantifiers, order of quantifiers, quantification involving two or more variables, nested quantifiers, negation of quantified expressions and much more.