Algorytmy Metaheurystyczne - lab 2

Jakub Musiał 268442

Listopad 2023

1 Opis problemu

Wyznaczyć cykl komiwojażera dla grafu pełnego używając algorytmów Simulated Annealing oraz Taboo Search.

W implementacji algorytmów stosowałem otoczenie invert:

$$N(\pi) = \{ \pi' \in S(P) : (\exists i \neq j) (\pi' = invert(\pi, i, j)) \}$$

gdzie P - wejściowy zbiór punktów.

2 Symulowane wyżarzanie

2.1 Dobór parametrów

By określić najlepsze parametry przeprowadziłem eksperyment polegający na sprawdzeniu wyników kombinacji z losowej próbki wszystkich możliwych kombinacji poniżej określonych parametrów, a następnie znajdując taką, która generuje najmniejszy błąd względny.

Badane parametry:

- T_0 temperatura początkowa: $\{10, 50, 100\}$
- T_k temperatura minimalna: $\{0.9, 0.95, 0.99\}$
- α współczynnik zmiany temperatury: $\{0.01, 0.1, 1.0\}$
- it_{max} maxymalna liczba iteracji (jako procent liczby wierzchołków grafu): $\{0.1, 0.2, 0.3\}$

Najlepszą znalezioną kombinacją parametrów jest: $T_0 = 100$, $T_k = 0.1$, $\alpha = 0.99$, $it_{max} = 0.3$, dla której otrzymałem następujące wyniki:

Dane wejściowe	$min_c(\delta w)$	$avg_c(\delta w)$
xqf131	0.000000	0.015957
xqg237	0.003925	0.019627
pma343	0.002924	0.006579
pka379	0.004505	0.008258
bcl380	0.016656	0.025293
pbl395	0.014052	0.018735
pbk411	0.009680	0.022338
pbn423	0.004396	0.024908
pbm436	0.018018	0.024255
xql662	0.015519	0.02865

Table 1: Wyniki eksperymentów dla algorytmu symulowanego wyżarzania

2.2 Pseudokod algorytmu

Algorithm 1 Symulowane wyżarzanie

```
1: procedure simulated\_annealing(\pi_0)
                                                                                                               ▶ Best permutation
 2:
          \pi_b \leftarrow \pi_0
          T \leftarrow T_0
 3:
 4:
          while T > T_k do
 5:
               \pi \leftarrow \pi_b
 6:
               (i,j) \leftarrow (0,0)
 7:
 8:
               while it < it_{max} do
 9:
                    (i, j) \leftarrow random\_element(N(\pi))
10:
                    \Delta w \leftarrow invert\_wdiff(\pi, i, j)
11:
                   if \Delta w < 0 \vee random\_prob() < e^{\frac{-\Delta w}{T}} then
12:
                        invert(\pi, i, j)
13:
                        it \leftarrow it + 1
14:
                        if w(\pi) < w(\pi_b) then
15:
16:
                             \pi_b \leftarrow \pi
               T \leftarrow \alpha T
17:
18:
          return \pi_b
```

2.3 Wyniki

Poniższa tabela oraz wykresy przedstawiają wyniki uzyskane dla wszystkich grafów testowych dla znalezionej kombinacji parametrów.

Dane wejściowe	V	avg(w(TSC))	min(w(TSC))	$w(TSC_{opt})$	$avg_{ls}(w(TSC))$
xqf131.tsp	131	576	569	564	621
xqg237.tsp	237	1049	1031	1019	1118
pma343.tsp	343	1380	1372	1368	1497
pka379.tsp	379	1341	1333	1332	1450
bcl380.tsp	380	1663	1635	1621	1817
pbl395.tsp	395	1312	1296	1281	1456
pbk411.tsp	411	1380	1362	1343	1489
pbn423.tsp	423	1403	1385	1365	1533
pbm436.tsp	436	1481	1470	1443	1629
xql662.tsp	662	2583	2567	2513	2822
xit1083.tsp	1083	3655	3621	3558	4021
icw1483.tsp	1483	4532	4506	4416	4986
djc1785.tsp	1785	6273	6244	6115	6878
dcb2086.tsp	2086	6810	6776	6600	7463
pds2566.tsp	2566	7898	7861	_	8695

Table 2: Wyniki dla wszystkich danych wejściowych dla algorytmu symulowanego wyżarzania wraz z wagą optymalnych ścieżek oraz wynikami algorytmu local search z listy 1

Figure 3: Symulowanego wyżarzanie: wizualizacja wyznaczonych cykli komiwojażera

3 Taboo search

3.1 Dobór parametrów

By określić najlepsze parametry przeprowadziłem eksperyment polegający na sprawdzeniu wyników wszystkich możliwych kombinacji poniżej określonych parametrów, a następnie znajdując taką, która generuje najmniejszy błąd względny.

Badane parametry:

- S_{max} maksymalny rozmiar listy wykluczeń: $\{10, 20, 50, 100\}$
- \bullet it_{max} maxymalna liczba iteracji bez poprawy rozwiązania: $\{5,10,20,50\}$

Najlepszą znalezioną kombinacją parametrów jest: $S_{max}=100,\,it_{max}=5$

Dane wejściowe	$min_c(\delta w)$	$avg_c(\delta w)$
xqf131	0.023050	0.079787
xqg237	0.067713	0.098135
pma343	0.070906	0.070906
pka379	0.054054	0.084835
bcl380	0.080814	0.104874
pbl395	0.096019	0.117096
pbk411	0.097543	0.107223
pbn423	0.090842	0.112821
pbm436	0.082467	0.119889
xql662	0.095901	0.126940

Table 3: Wyniki eksperymentów dla algorytmu taboo search

3.2 Pseudokod algorytmu

Algorithm 2 Taboo search

```
1: procedure simulated\_annealing(\pi_0)
                                                                                                          ▶ Best permutation
 2:
          \pi_b \leftarrow \pi_0
         T \leftarrow \{\}
                                                                                                                    ▶ Taboo list
 3:
         it \leftarrow 0
 4:
                                                              ▶ Number of iterations without updating the result
 5:
          while it < it_{max} do
 6:
 7:
              \pi \leftarrow \pi_b
 8:
              w_{bc} \leftarrow \infty
                                                                                                   ▷ Best candidate weight
              (i_b, j_b) \leftarrow null
 9:
10:
              for (i, j) \in N(\pi) do
11:
                   \Delta w \leftarrow invert \ wdiff(\pi, i, j)
12:
                   if \Delta w \geq 0 \land (i,j) \in T \land then
13:
                       continue
14:
                   if w(\pi) + \Delta w < w_{bc} then
15:
                       (i_b, j_b) \leftarrow (i, j)
16:
                       w_{bc} \leftarrow w(\pi) + \Delta w
17:
18:
              push(T,(i_b,j_b))
19:
              if |T| > T_{mp} then
20:
                   remove\_first(T)
21:
22:
              if w_{bc} < w(\pi_b) then
23:
                   invert(\pi_b, i_b, j_b)
24:
                   it \leftarrow 0
25:
26:
         return \pi_b
```

3.3 Wyniki

Poniższa tabela oraz wykresy przedstawiają wyniki uzyskane dla wszystkich grafów testowych dla znalezionej kombinacji parametrów.

Dane wejściowe	V	avg(w(TSC))	min(w(TSC))	$w(TSC_{opt})$	$avg_{ls}(w(TSC))$
xqf131.tsp	131	614	586	564	621
xqg237.tsp	237	1108	1076	1019	1118
pma343.tsp	343	1485	1452	1368	1497
pka379.tsp	379	1447	1423	1332	1450
bcl380.tsp	380	1802	1770	1621	1817
pbl395.tsp	395	1431	1395	1281	1456
pbk411.tsp	411	1485	1444	1343	1489
pbn423.tsp	423	1528	1510	1365	1533
pbm436.tsp	436	1611	1571	1443	1629
xql662.tsp	662	2816	2779	2513	2822
xit1083.tsp	1083	3936	3976	3558	4021
icw1483.tsp	1483	4886	4885	4416	4986
djc1785.tsp	1785	6837	6820	6115	6878
dcb2086.tsp	2086	7342	7329	6600	7463
pds2566.tsp	2566	8685	8622	-	8695

Table 4: Wyniki dla wszystkich danych wejściowych dla algorytmu symulowanego wyżarzania wraz z wagą optymalnych ścieżek oraz wynikami algorytmu local search z listy 1

Figure 6: Taboo search: wizualizacja wyznaczonych cykli komiwojażera