## Recomende uma cidade

Observe que este projeto é uma continuação do projeto de limpeza de dados.

## Passo 1: Regressão Linear

## Criando o Modelo

Abaixo está o conjunto de dados final usado para modelo de regressão.

| City            | Census_Population | Household_With_Under_18 | Land_Area   | Padacity_Sales | Population_Density | Total_Families |
|-----------------|-------------------|-------------------------|-------------|----------------|--------------------|----------------|
| Buffalo         | 4585              | 746                     | 3115.5075   | 185328         | 1.55               | 1819.5         |
| Casper          | 35316             | 7788                    | 3894.3091   | 317736         | 11.16              | 8756.32        |
| Cheyenne        | 59466             | 7158                    | 1500.1784   | 917892         | 20.34              | 14612.64       |
| Cody            | 9520              | 1403                    | 2998.95696  | 218376         | 1.82               | 3515.62        |
| Douglas         | 6120              | 832                     | 1829.4651   | 208008         | 1.46               | 1744.08        |
| Evanston        | 12359             | 1486                    | 999.4971    | 283824         | 4.95               | 2712.64        |
| Powell          | 6314              | 1251                    | 2673.57455  | 233928         | 1.62               | 3134.18        |
| Riverton        | 10615             | 2680                    | 4796.859815 | 303264         | 2.34               | 5556.49        |
| Rock<br>Springs | 23036             | 4022                    | 6620.201916 | 253584         | 2.78               | 7572.18        |
| Sheridan        | 17444             | 2646                    | 1893.977048 | 308232         | 8.98               | 6039.71        |

## Selecionando as vereáveis preditoras.

Abaixo está a tabela de correlação Pearson de todas as variáveis.

## Pearson Correlation Analysis

Focused Analysis on Field Total\_Pawdacity\_Sales

|                          | Association Measure | p-value       |
|--------------------------|---------------------|---------------|
| Population_Density       | 0.90618             | 0.00030227*** |
| X2010_Census             | 0.89875             | 0.00040617*** |
| Total_Families           | 0.87466             | 0.00092561*** |
| Households_With_Under_18 | 0.67465             | 0.03235536*   |
| Land_Area                | -0.28708            | 0.42126309    |

## Matrix completa de correlação.

Full Correlation Matrix

|                              | Total_              | X2010_   | Land_    | Households_   | Population_ | Total_   |
|------------------------------|---------------------|----------|----------|---------------|-------------|----------|
|                              | Pawdacity_<br>Sales | Census   | Area     | With_Under_18 | Density     | Families |
| Total_<br>Pawdacity_Sales    | 1.00000             | 0.89875  | -0.28708 | 0.67465       | 0.90618     | 0.87466  |
| X2010_Census                 | 0.89875             | 1.00000  | -0.05247 | 0.91156       | 0.94439     | 0.96919  |
| Land_Area                    | -0.28708            | -0.05247 | 1.00000  | 0.18938       | -0.31742    | 0.10730  |
| Households_<br>With_Under_18 | 0.67465             | 0.91156  | 0.18938  | 1.00000       | 0.82199     | 0.90566  |
| Population_<br>Density       | 0.90618             | 0.94439  | -0.31742 | 0.82199       | 1.00000     | 0.89168  |
| Total_Families               | 0.87466             | 0.96919  | 0.10730  | 0.90566       | 0.89168     | 1.00000  |

## Matrix do p-valores para as variáveis preditoras.

Matrix of Corresponding p-values

|                              | . —             | 010_ Land_<br>nsus Area | _ Households_<br>a With_Under_18 | · -                 |
|------------------------------|-----------------|-------------------------|----------------------------------|---------------------|
| Total_<br>Pawdacity_Sales    | 4.061           | 7e-04 4.2126e<br>0:     |                                  | 3.0227e-049.2561e-0 |
| X2010_Census                 | 4.0617e-04      | 8.8554e<br>0:           |                                  | 3.9116e-053.7983e-0 |
| Land_Area                    | 4.2126e-018.855 | 4e-01                   | 6.0028e-01                       | 3.7148e-017.6796e-0 |
| Households_<br>With_Under_18 | 3.2355e-022.402 | 6e-04 6.0028e<br>0:     |                                  | 3.5227e-033.0884e-0 |
| Population_<br>Density       | 3.0227e-043.911 | 6e-05 3.7148e<br>0:     |                                  | 5.2748e-0           |
| Total_Families               | 9.2561e-043.798 | 3e-06 7.6796e<br>0:     |                                  | 5.2748e-04          |

A matriz de correlação mostra boa correlação entre as variáveis preditivas, 2010\_Census, Census\_Population, Households\_with\_Under\_18, Population\_Density e Total\_Families. Podendo haver alguma multicolinearidade.

A Land\_Area não mostra grande correlação com as outras variáveis preditivas, portanto, começarei executando uma regressão linear com Land\_Area e ir adicionando as outras variáveis preditoras à regressão.

## 1. New Store LM - 1 Sales VS Land

## Report for Linear Model New\_Store\_LM\_\_\_1\_Sales\_VS\_Land

**Basic Summary** 

Call:

Im(formula = Total\_Pawdacity\_Sales ~ Land\_Area, data = the.data)

### Residuals:

| Min     | 1Q      | Median | 3Q    | Max    |
|---------|---------|--------|-------|--------|
| -158398 | -110852 | -78938 | 39381 | 539607 |

#### Coeficientes:

|             | Estimate  | Std. Error | t value | Pr(> t ) |
|-------------|-----------|------------|---------|----------|
| (Intercept) | 432401.73 | 146208.93  | 2.9574  | 0.01822* |
| Land_Area   | -36.07    | 42.56      | -0.8477 | 0.42126  |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Erro padrão residual: 217368 em 8 graus de liberdade

R quadrada múltipla: 0.08241, R quadrada ajustada: -0.03228

F estatístico: 0.7185 em 1 e 8 graus de liberdade (DF), valor p 0.4213

Type II ANOVA Analysis

Response: Total\_Pawdacity\_Sales

|           | Sum Sq          | DF | F value | Pr(>F)  |
|-----------|-----------------|----|---------|---------|
| Land_Area | 33949588837.33  | 1  | 0.72    | 0.42126 |
| Residuals | 377992295324.27 | 8  |         |         |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Basic Diagnostic Plots

R quadrada do modelo linear para Total\_Pawdacity\_Sales X Land\_Area = 0.08241

## 2. New Store LM - 2 Sales VS Land VS Census

Report for Linear Model New\_Store\_LM\_\_\_2\_Sales\_VS\_Land\_VS\_Census Basic Summary

Call:

Im(formula = Total\_Pawdacity\_Sales ~ X2010\_Census + Land\_Area, data = the.data)
Residuals:

| Min     | 1Q     | Median | 3Q    | Max    |
|---------|--------|--------|-------|--------|
| -164955 | -28633 | -9045  | 30193 | 120319 |

#### Coeficientes:

|              | Estimate  | Std. Error | t value | Pr(> t )   |
|--------------|-----------|------------|---------|------------|
| (Intercept)  | 210872.04 | 69180.625  | 3.048   | 0.01863*   |
| X2010_Census | 11.03     | 1.728      | 6.383   | 0.00037*** |
| Land Area    | -30.23    | 17.443     | -1.733  | 0.12668    |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Erro padrão residual: 88974 em 7 graus de liberdade R quadrada múltipla: 0.8655, R quadrada ajustada: 0.827

F estatístico: 22.52 em 2 e 7 graus de liberdade (DF), valor p 0.0008928

Type II ANOVA Analysis

Response: Total\_Pawdacity\_Sales

|              | Sum Sq          | DF | F value | Pr(>F)     |
|--------------|-----------------|----|---------|------------|
| X2010_Census | 322578046861.07 | 1  | 40.75   | 0.00037*** |
| Land_Area    | 23777499407.94  | 1  | 3       | 0.12668    |
| Residuals    | 55414248463.21  | 7  |         |            |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Basic Diagnostic Plots

R quadrada ajustada do modelo linear para Total\_Pawdacity\_Sales X Land\_Area X 2010\_Census = **0.827** 

## 3. New\_Store\_LM - 3\_Sales\_VS\_Land\_VS\_Households\_w/u\_18

## Report for Linear Model New\_Store\_LM\_\_\_3\_Sales\_VS\_Land\_VS\_ Households\_w\_u\_18

Basic Summary

Call:

Im(formula = Total\_Pawdacity\_Sales ~ Land\_Area + Households\_With\_Under\_18, data = the.data)

#### Residuals:

| Min     | 1Q     | Median | 3Q    | Max    |
|---------|--------|--------|-------|--------|
| -260680 | -50922 | -1834  | 47389 | 249780 |

### Coeficientes:

|                          | Estimate  | Std. Error | t value | Pr(> t ) |
|--------------------------|-----------|------------|---------|----------|
| (Intercept)              | 297611.68 | 107140.63  | 2.778   | 0.02739* |
| Land_Area                | -54.07    | 29.28      | -1.847  | 0.10727  |
| Households_With_Under_18 | 63.09     | 19.44      | 3.245   | 0.01415* |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Erro padrão residual: 146831 em 7 graus de liberdade R quadrada múltipla: 0.6336, R quadrada ajustada: 0.529

F estatístico: 6.054 em 2 e 7 graus de liberdade (DF), valor p 0.02976

Type II ANOVA Analysis

Response: Total\_Pawdacity\_Sales

|                          | Sum Sq          | DF | F value | Pr(>F)   |
|--------------------------|-----------------|----|---------|----------|
| Land_Area                | 73529107680.71  | 1  | 3.41    | 0.10727  |
| Households_With_Under_18 | 227077058908.59 | 1  | 10.53   | 0.01415* |
| Residuals                | 150915236415.68 | 7  |         |          |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Basic Diagnostic Plots

R quadrada ajustada do modelo linear para Total\_Pawdacity\_Sales X Land\_Area X Housesholdes W/u 18 = **0.529** 

## 4. New\_Store\_LM - 4\_Sales\_VS\_Land\_VS\_Pop\_Density

## Report for Linear Model New\_Store\_LM\_\_\_4\_Sales\_VS\_Land\_VS\_Pop\_ Density

Basic Summary

Call:

Im(formula = Total\_Pawdacity\_Sales ~ Land\_Area + Population\_Density, data =
the.data)

### Residuals:

| Min     | 1Q     | Median | 3Q    | Max    |
|---------|--------|--------|-------|--------|
| -177058 | -13382 | 17904  | 34966 | 134588 |

#### Coeficientes:

|                    | Estimate  | Std. Error | t value  | Pr(> t )  |
|--------------------|-----------|------------|----------|-----------|
| (Intercept)        | 1.435e+05 | 87450.27   | 1.641189 | 0.14476   |
| Land_Area          | 7.846e-02 | 21.18      | 0.003704 | 0.99715   |
| Population_Density | 3.145e+04 | 5848.33    | 5.377362 | 0.00103** |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Erro padrão residual: 102588 em 7 graus de liberdade R quadrada múltipla: 0.8212, R quadrada ajustada: 0.7701

F estatístico: 16.07 em 2 e 7 graus de liberdade (DF), valor p 0.002419

Type II ANOVA Analysis

Response: Total\_Pawdacity\_Sales

|                    | Sum Sq         | DF | F value | Pr(>F)    |
|--------------------|----------------|----|---------|-----------|
| Land_Area          | 144414.54      | 1  | 0       | 0.99715   |
| Population_Density | 304321939965.4 | 1  | 28.92   | 0.00103** |
| Residuals          | 73670355358.88 | 7  |         |           |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Basic Diagnostic Plots

R quadrada ajustado do modelo linear para Total\_Pawdacity\_Sales X Land\_Area X Population\_Density = **0.7701** 

## 5. New\_Store\_LM - 5\_Sales\_VS\_Land\_VS\_T\_Families

# Report for Linear Model New\_Store\_LM\_\_\_5\_Sales\_VS\_Land\_VS\_T\_ Families

Basic Summary

Call:

Im(formula = Total\_Pawdacity\_Sales ~ Land\_Area + Total\_Families, data = the.data)

Residuals:

| Min     | 1Q    | Median | 3Q    | Max   |
|---------|-------|--------|-------|-------|
| -121261 | -4453 | 8418   | 40491 | 75205 |

### Coeficientes:

|                | Estimate  | Std. Error | t value | Pr(> t ) |
|----------------|-----------|------------|---------|----------|
| (Intercept)    | 197330.41 | 56449.000  | 3.496   | 0.01005* |
| Land_Area      | -48.42    | 14.184     | -3.414  | 0.01123* |
| Total_Families | 49.14     | 6.055      | 8.115   | 8e-05*** |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Erro padrão residual: 72030 em 7 graus de liberdade

R quadrada múltipla: 0.9118, R quadrada ajustada: 0.8866

F estatístico: 36.2 em 2 e 7 graus de liberdade (DF), valor p 0.0002035

Type II ANOVA Analysis

Response: Total\_Pawdacity\_Sales

|                | Sum Sq          | DF | F value | Pr(>F)   |
|----------------|-----------------|----|---------|----------|
| Land_Area      | 60473052720.43  | 1  | 11.66   | 0.01123* |
| Total_Families | 341673845917.83 | 1  | 65.85   | 8e-05*** |
| Residuals      | 36318449406.44  | 7  |         |          |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Basic Diagnostic Plots

R quadrada ajustado do modelo linear para Total\_Pawdacity\_Sales X Land\_Area X Total\_Families = **0.8866** 

6. New Store LM - 6 Sales VS Land VS T Families VS Census.

# Report for Linear Model New\_Store\_LM\_\_\_6\_Sales\_VS\_Land\_VS\_T\_ Families\_VS\_Census

Basic Summary

Call:

Im(formula = Total\_Pawdacity\_Sales ~ X2010\_Census + Land\_Area + Total\_Families,
data = the.data)

#### Residuals:

| Min     | 1Q    | Median | 3Q    | Max   |
|---------|-------|--------|-------|-------|
| -110035 | -4750 | 10184  | 41556 | 75241 |

#### Coeficientes:

|                | Estimate  | Std. Error | t value | Pr(> t ) |
|----------------|-----------|------------|---------|----------|
| (Intercept)    | 196536.22 | 60172.001  | 3.2662  | 0.01711* |
| X2010_Census   | -3.21     | 7.855      | -0.4087 | 0.69697  |
| Land_Area      | -53.55    | 19.644     | -2.7262 | 0.03436* |
| Total_Families | 62.78     | 33.998     | 1.8465  | 0.11434  |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Erro padrão residual: 76741 em 6 graus de liberdade R quadrada múltipla: 0.9142, R quadrada ajustada: 0.8713

F estatístico: 21.32 em 3 e 6 graus de liberdade (DF), valor p 0.001335

Type II ANOVA Analysis

Response: Total\_Pawdacity\_Sales

|                | Sum Sq         | DF | F value | Pr(>F)   |
|----------------|----------------|----|---------|----------|
| X2010_Census   | 983564136.27   | 1  | 0.17    | 0.69697  |
| Land_Area      | 43768907210.74 | 1  | 7.43    | 0.03436* |
| Total_Families | 20079363193.04 | 1  | 3.41    | 0.11434  |
| Residuals      | 35334885270.17 | 6  |         |          |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Basic Diagnostic Plots

R quadrada ajustado do modelo linear para Total\_Pawdacity\_Sales X Land\_Area X Total\_Families X 2010 Census = **0.8713** 

Abaixo estão os Scatterplot para todas as variáveis preditoras X variável alvo (Total\_Pawdacity\_Sales).

Scatterplot of Land Area versus Pawdacity Sales



Scatterplot of Householdes\_w/u 18 versus Pawdacity Sale



## Scatterplot of Pop. Density versus Pawdacity Sales



## Scatterplot of T\_Families versus Pawdacity Sales



## Scatterplot of Census 2010 versus Pawdacity Sales



Os gráficos de dispersão acima fornecem uma boa representação da linearidade entre a variável alvo (Total Pawdacity sales) e sua respectiva variável preditora.

Começando com Land\_Area como uma variável preditora (R-quadrado = 0,08241) e adicionando outras variáveis, possível ver uma maior diferença no R-quadrado quando estão sendo usadas as variáveis Land Area e Total Families (R-quadrado ajustado = 0,8866).

Usarei Land\_Area e Total\_Families como minhas variáveis preditoras para o meu modelo linear.

Abaixo o resumo do modelo de regressão multilinear.

# Report for Linear Model New\_Store\_LM\_\_\_5\_Sales\_VS\_Land\_VS\_T\_ Families

**Basic Summary** 

Call:

Im(formula = Total\_Pawdacity\_Sales ~ Land\_Area + Total\_Families, data = the.data)

Residuals:

| Min     | 1Q    | Median | 3Q    | Max   |
|---------|-------|--------|-------|-------|
| -121261 | -4453 | 8418   | 40491 | 75205 |

#### Coeficientes:

|                | Estimate  | Std. Error | t value | Pr(> t ) |
|----------------|-----------|------------|---------|----------|
| (Intercept)    | 197330.41 | 56449.000  | 3.496   | 0.01005* |
| Land_Area      | -48.42    | 14.184     | -3.414  | 0.01123* |
| Total_Families | 49.14     | 6.055      | 8.115   | 8e-05*** |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Erro padrão residual: 72030 em 7 graus de liberdade

R quadrada múltipla: 0.9118, R quadrada ajustada: 0.8866

F estatístico: 36.2 em 2 e 7 graus de liberdade (DF), valor p 0.0002035

Type II ANOVA Analysis

Response: Total\_Pawdacity\_Sales

|                | Sum Sq          | DF | F value | Pr(>F)   |
|----------------|-----------------|----|---------|----------|
| Land_Area      | 60473052720.43  | 1  | 11.66   | 0.01123* |
| Total_Families | 341673845917.83 | 1  | 65.85   | 8e-05*** |
| Residuals      | 36318449406.44  | 7  |         |          |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Basic Diagnostic Plots

A equação do modelo de regressão linear é:

Y (Total\_Pawdacity\_Sales) = 1973330.41 - 48.42 (Land\_area) + 49.12 (Total\_Families).

## Análise – Recomendação.

Esses são os critérios para a escolha da nova cidade:

- 1. A nova loja deve estar localizada em uma nova cidade. Isso significa que não deve haver lojas existentes na nova cidade.
- 2. O total de vendas para toda a competição na nova cidade deve ser inferior a US \$ 500.000
- 3. A nova cidade onde você deseja construir sua nova loja deve ter uma população superior a 4.000 pessoas (com base na estimativa do Censo dos EUA em 2014).
- 4. As vendas anuais previstas devem ser superiores a US \$ 200.000.
- 5. A cidade escolhida tem as vendas previstas mais altas do conjunto previsto.

Com os critérios acima, recomendo a Laramie City, que atualmente não contém uma loja e tem uma população estimada em 2014 de 32.081 habitantes e previsão de vendas é de US \$ 305.013,88.

Abaixo esta um resumo das 6 possíveis cidades para abertura da 14° loja, em destaque está minha recomendação.

| City        | 2014_Census | Total_Families | Score_Pawdacity_sales |
|-------------|-------------|----------------|-----------------------|
| Laramie     | 32081.00    | 4668.93        | 305013.88             |
| Torrington  | 6736.00     | 2548.50        | 245081.79             |
| Jackson     | 10449.00    | 2313.08        | 225870.82             |
| Lander      | 7642.00     | 3876.81        | 225751.40             |
| Green River | 12630.00    | 3977.40        | 224372.00             |
| Worland     | 5366.00     | 1364.32        | 201700.33             |

# **Alterxy Workflow**

