# PO91Q - Fundamentals in Quantitative Research Methods: Week 5 - Solutions



Dr Florian Reiche

F.Reiche@warwick.ac.uk

# 1 Data Exploration

Before starting, we need to load libraries and install packages if not already installed. In these exercises we will be using the tidyverse package.

- 1. Set your working directory, place the data set in it, and load it into R.
- 2. Create a new RScript for this case study and annotate it as you go through the exercises presented here.
- 3. Load the tidyverse package.

## 1.1 Descriptive Statistics

1. Produce descriptive statistics for all three numerical variables.

```
summary(simd$alc16)
     Min. 1st Qu. Median
                           Mean 3rd Qu.
    48.15 66.83 99.03 98.71 116.07 205.29
##
summary(simd$mortality16)
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                         Max.
   79.04 89.49 94.86 96.72 103.17 126.68
summary(simd$mortality20)
     Min. 1st Qu. Median
                         Mean 3rd Qu.
                                                 NA's
                                         Max.
  79.09 89.82 94.26 95.58 100.79 113.59
```

#### 1.2 Visualisation

Let's visualise the distribution of the variable alc16.



Figure 1: Distribution of Alcohol-Related Hospital Admissions (2011-2014)

- 1. Reproduce Figure 1.
- 2. What does the distribution tell us about alcohol-related admissions to hospital?
  - Not perfectly normally distributed, with a positive skew.
- 3. How does the shape of the distribution in Figure 1 relate to the descriptive statistics calculated in Section 1.1?
  - In a positively skewed distribution the median is larger than the mean which is the case here. The maximum is also well above the third quartile.
- 4. What would happen to the shape of the distribution if the median was smaller than the mean?
  - If they were identical, then this would be a normal distribution. If the median
    was smaller than the mean then we would be dealing with a negatively
    skewed distribution.

### 1.3 Hypothesis

We are interested in how alcohol-related admissions to hospital have affected mortality rates in Scotland. The following scatter plot uses the variables alc16 and mortality20.



Figure 2: Alcohol-Related Hospital Admissions and Mortality

- 1. Reproduce Figure 2.
- 2. Based on this scatter plot, formulate the alternative and the null hypotheses:

**H<sub>0</sub>:** The higher the rate of alcohol-related admissions to hospital between 2011 and 2014, the higher the standardised mortality ratio in 2014-2018

**H<sub>A</sub>:** The rate of alcohol-related admissions to hospital between 2011 and 2014 and the standardised mortality ratio in 2014-2018 are unrelated.

#### 1.4 Sampling

The data frame simd which we have been using so far represents the population. Let us now draw a random sample of 15 councils as follows:

```
set.seed(6)
sample <- sample_n(simd, 15)</pre>
```

- 1. Explain the purpose of the set.seed function.
  - It creates a pseudo-random number.

#### 1.5 Inferential Statistics

Let us now see if the mortality ratio has changed between the two waves of 2016 and 2020. This is the worked example from the lecture, but I am repeating it here deliberately, so that you can carry out the example yourself.

1. As a first step, create a new variable measuring the difference between mortality 20 and mortality 16. Make sure that increases are positive and decreases negative.

```
sample$diff <- with(sample, mortality20-mortality16)</pre>
```

2. What is the sample mean of the differences in mortality rates, variable diff?

```
summary(sample$diff)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -2.9276 -0.1155 1.5762 0.9063 2.2114 2.8747
```

- 3. The sample size of 15 is small. Will it be appropriate to conduct a t-test? Why? Why not?
  - Yes, as the population distribution is likely to be normal.
- 4. Find out whether the difference in mortality rates is significantly different from zero.

- There is no statistically significant difference in mortality ratios between the two waves.
- 5. Draw a graph which depicts the direction of the alternative hypothesis and the p-value. Try not to look at the lecture slides.



Figure 3: Two-Sided Significance Test

6. Suppose the Scottish Government claims that mortality rates have decreased. Test this claim.

- Absolutely not!
- 7. Again, draw a graph which depicts the direction of the alternative hypothesis and the p-value. Try not to look at the lecture slides.



Figure 4: Left-Sided Significance Test

- 8. Drawing on the results from Exercises 5 and 7, reason about the p-value you would obtain if you tested the hypothesis that mortality rates have increased between the waves of 2016 and 2020.
  - Using Figure 4, the p-value for a right-sided test is indicated by the remaining white area. This area must be half of the blue area in Figure 3.  $\frac{0.06909}{2}$  = 0.03454. You can confirm this with:

```
t.test(sample$diff, mu=0,
      data=sample,
       alternative = "greater")
##
   One Sample t-test
##
##
## data: sample$diff
## t = 1.9689, df = 14, p-value = 0.03454
## alternative hypothesis: true mean is greater than o
## 95 percent confidence interval:
                     Inf
## 0.09555077
## sample estimates:
## mean of x
## 0.9062849
```

- This is significant. Mortality rates have indeed increased.

### 1.6 Causality

- 1. Identify the elements of symmetry and asymmetry in the setup of this case study.
  - Symmetry: Alcohol abuse leads to health issues and possibly death. It's not really a theory, but medical reasoning.
  - Asymmetry: I have taken the mortality from a later wave than the alcohol-related admissions to hospital. So, rverse causality is not possible, but bear in mind that a time-lag might be insufficient to justify asymmetry.
- 2. Consider again Figure 5 from the lecture. Which aspects of establishing causality has the case study addressed? What is missing?
  - Practically everything is still missing, bar the theory and historical context, and perhaps asymmetry. We have not touched anything else in this graph, yet.



Figure 5: Causality Framework