RESPONSE OF A TROPICAL LEGUME-GRASS ASSOCIATION
TO SYSTEMS OF GRAZING MANAGEMENT AND LEVELS OF
PHOSPHORUS FERTILIZATION

BY

RAUL ALONSO SANTILLAN

A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

Dedicated to my wife, Maggie, my daughters, Alexandra and Carolina, my father and to the memory of my mother

1000000

ACKNOWLEDGMENTS

The author expresses his sincere thanks and appreciation to Dr. Gerald O. Mott, chairman of the supervisory committee, for his understanding, deep concern and wise guidance throughout the field work and graduate program. Special thanks are given to Dr. W. R. Ocumpaugh, Dr. J. E. Moore, Dr. O. C. Ruelke, and Dr. L. R. McDowell, who willingly served as members of the committee.

Special appreciation is due to Dr. Raul de la Torre, General Coordinator for Animal Production Research at INIAP-Ecuador, who helped design and advise during the field experiment. The author also expresses his gratitude to Ing. Carlos Cortaza, former Director of E. E. T. Pichilingue and to Ecuador's Instituto Nacional de Investigaciones Agropecuarias for the physical and financial support of this study, especially to the staff of the Programa de Pasto y Ganaderia in the E. E. T. Pichilingue. Outstanding among those whose friendship and physical labors are responsible for this study are Ing. Carlos Cadene, Agr. Jorge Molina, and Senores Cerapio Diaz, Emilio Ortega, Jorge Benitez, Alejo Briones and the late Maximo Soria.

Special appreciation is due to Dr. A. I. Khuri, Dr. Michael
Conlon and to the graduate student Jose M. Gallo for their outstanding
contributions and help in the statistical analyses of the results of
this research.

Special thanks are offered to both Dr. and Mrs. G. O. Mott for their generosity to the author and his family throughout their stay in Gainesville. The author is indebted to graduate students, Mr. Luis R. Rodriguez and his wife, Teresinha Rodriguez for their friendship and hospitality. Thanks are also due to graduate student Juan Herbas and his wife for their friendship.

The author wishes to thank Mrs. Pat French for typing the final copy of this manuscript.

Special acknowledgment is due to the author's wife, Maggie, and their two daughters, Alexandra and Carolina, for their invaluable help, love and devotion and finally to my parents and dear sisters, Cecilia and Lucy, for their love and financial help.

TABLE OF CONTENTS

	F	AGE
ACKNOWLEDGE	MENTS	iii
LIST OF TAI	BLES	vii
LIST OF FIG	GURES	хí
ABSTRACT	2	iii
CHAPTER I	INTRODUCTION	1
CHAPTER II	LITERATURE REVIEW	3
	The Tropical Forages	3
	tions	6
	Response to Nutrients	10
	Animal Productivity	14
	Pasture Evaluation	16
	Grazing Systems	19
	Estimates of Dry Matter Production and Yield	20
	Measuring Botanical Composition Effect of the Grazing Animal on Botanical	22
	Composition	22
	Response Surface Methodology	25
CHAPTER III	MATERIALS AND METHODS	28
	Legume-Grass Mixture	33
	Experimental Variables	33
	Experimental Design	35
	Field Plan of the Experiment	35
	Land Preparation and Pasture Establishment	40
	Construction of Physical Facilities Collection of Data in the Three Experimental	43
	Years Pasture Measurements	43 44
CHAPTER IV	RESULTS AND DISCUSSION	48
	Effect of Lengths of Rest Period and Levels of Grazing Pressure on Aerial Biomass (DM)	48
	Effect of Lengths of Rest Period and Levels Grazing Pressure on the Available Forage (DM).	57
	Effect of Lengths of Rest Period and Levels of Grazing Pressure on Grass Yield (DM)	65
	Grazing riessure on Grass fleid (DM)	0.0

	PAGE
Effect of Lengths of Rest Period and Levels of Grazing Pressure Upon Legume Yield (DM) Effect of Lengths of Rest Period and Levels of Grazing Pressure on the Yield of Weeds (DM) Visual Estimation of Forage Compone	76 91 103
CHAPTER V SUMMARY AND CONCLUSIONS	122
APPENDIX	126
LITERATURE CITED	161
BTOGRAPHICAL SKETCH	170

LIST OF TABLES

TABLE		PAGE
1	Soil analysis of experimental site (1978)	34
2	Modified central composite non-rotatable design with four experimental (X) variables, at five levels each, and 41 design points	36
3	Modified central composite non-rotatable design with four experimental (X) variables, at five levels each, 41 design points, 51 experimental units with their respective area	38
4	Aerial biomass production (DM) by year, season, and treatment	49
5	Available forage (DM) by year, season, and treatment combination	58
6	Grass yields (DM) by year, season, and treatment combination	66
7	Legume yields (DM) by year, season, and treatment combination	78
8	Yields of weed (DM) by year, season, and treatment combination	92
9	Visual estimation of grass percentage by year, season and treatment combination	104
10	Visual estimation of legume percentage by year, season, and treatment combination	113
11	Analysis of variance, regression coefficients and probabilities for aeiral biomass (g $\mathrm{DM/m}^2$) for the wet season of 1978.	126
12	Analysis of variance, regression coefficients and probabilities for aerial biomass (g ${\rm DM/m^2}$) for the dry season of 1978	127
13	Analysis of variance, regression coefficients and probabilities for aerial biomass (g $\rm DM/m^2$) for the wet season of 1979	128
14	Analysis of variance, regression coefficients and probabilities for aerial biomass (g DM/m $^{\circ}$) for the dry season of 1979.	129

TABLE		PAGE
15	Analysis of variance, regression coefficients and probabilities for aerial biomass (g DM/m 2) for the wet season of 1980	130
16	Analysis of variance, regression coefficients and probabilities for available forage (g ${\rm DM/m}^2$) for the wet season of 1978	131
17	Analysis of variance, regression coefficients and probabilities for aerial biomass (g DM/m 2) for the dry season of 1978	132
18	Analysis of variance, regression coefficients and probabilities for available forage (g ${\rm DM/m^2}$) for the wet season of 1979	133
19	Analysis of variance, regression coefficients and probabilities for aerial biomass (g ${\rm DM/m}^2$) for the dry season of 1979	134
20	Analysis of variance, regression coefficients and probabilities for available forage (g ${\rm DM/m^2}$) for the wet season of 1980	135
21	Analysis of variance, regression coefficients and probabilities for grass yield (g DM/m 2) for the wet season of 1978	136
22	Analysis of variance, regression coefficients and probabilities for grass yield (g DM/m 2) for the dry season of 1978	137
23	Analysis of variance, regression coefficients and probabilities for grass yield (g DM/m 2) for the wet season of 1979	138
24	Analysis of variance, regression coefficients and probabilities for grass yield (g DM/m 2) for the dry season of 1979	139
25	Analysis of variance, regression coefficients and probabilities for grass yield (g $\rm DM/m^2)$ for the wet season of 1980	140
26	Analysis of variance, regression coefficients and probabilities for legume yield (g DM/m^2) for the	1/1

TABLE		PAGE
27	Analysis of variance, regression coefficients and probabilities for legume yield (g $\rm DM/m^2$) for the dry season of 1978	142
28	Analysis of variance, regression coefficients and probabilities for legume yield (g DM/m 2) for the wet season of 1979	143
29	Analysis of variance, regression coefficients and probabilities for legume yield (g ${\rm DM/m}^2$) for the dry season of 1979	144
30	Analysis of variance, regression coefficients and probabilities for legume yield (g $\rm DM/m^2)$ for the wet season of 1980	145
31	Analysis of variance, regression coefficients and probabilities for yield of weeds (g DM/m 2) for the wet season of 1978	146
32	Analysis of variance, regression coefficients and probabilities for yield of weeds (g DM/m^2) for the dry season of 1978	147
33	Analysis of variance, regression coefficients and probabilities for yield of weeds (g DM/m 2) for the wet season of 1979	148
34	Analysis of variance, regression coefficients and probabilities for yield of weeds (g DM/m^2) for the dry season of 1979	149
35	Analysis of variance, regression coefficients and probabilities for yield of weeds (g DM/ m^2) for the wet season of 1980	150
36	Analysis of variance, regression coefficients and probabilities for visual estimation grass (%) for the wet season of 1978	151
37	Analysis of variance, regression coefficients and probabilities for visual estimation grass (%) for the dry season of 1978	152
38	Analysis of variance, regression coefficients and probabilities for visual estimation grass (%) for the wet season of 1979	153
39	Analysis of variance, regression coefficients and probabilities for visual estimation grass (%) for the dry season of 1979	154

TABLE		PAGE
40	Analysis of variance, regression coefficients and probabilities for visual estimation grass (%) for the wet season of 1980	155
41	Analysis of variance, regression coefficients and probabilities for visual estimation legume (%) for the wet season of 1978	156
42	Analysis of variance, regression coefficients and probabilities for visual estimation legume (%) for the dry season of 1978	157
43	Analysis of variance, regression coefficients and probabilities for visual estimation legume (%) for the wet season of 1979	158
44	Analysis of variance, regression coefficients and probabilities for visual estimation legume (%) for the dry season of 1979	159
45	Analysis of variance, regression coefficients and probabilities for visual estimation legume (%) for the wet season of 1980	160

LIST OF FIGURES

FIGURE		PAGE
1	Profile of three natural regions of Ecuador, showing the main vegetative zones in relation to rainfall and temperature	29
2	Rainfall recorded at Estacion Experimental Pichilingue during the period 1978-1980	30
3	Temperature recorded at Estacion Experimental Pichilingue during the period 1978-1980	31
4	Solar radiation recorded at Estacion Experimental Pichilingue during the period 1978-1980	32
5	Field plan of the experimental pastures	41
6	Effect of rest period and grazing pressure upon grass yield (DM) for the wet season of 1978	73
7	Contours of grass yield (DM) as affected by length of rest period and levels of grazing pressure in the wet season of 1980	74
8	Effect of rest period and grazing pressure upon grassyield (DM) for the wet season of 1980	
9	Effect of rest period and grazing pressure upon legume yield (DM) for the wet season of 1978	84
10	Contours of legume yield (DM) as affected by length of rest period and levels of grazing pressure in the wet season of 1980	88
11	Effect of rest period and grazing pressure upon legume yield (DM) for the wet season of 1980	89
12	Effect of rest period and grazing pressure upon yield of weed (DM) for the wet season of 1978	98
13	Contours of yield of weed (DM) as affected by length of rest period and levels of grazing pressure in the wet season of 1980	
14	Effect of rest period and grazing pressure upon yield of weed (DM) for the wet season of 1980	d 101
15	Effect of rest period and grazing pressure upon grass percentage for the wet season of 1978	

FIGURE PAGE

16	Contours of grass percentage as affected by length of rest periods and levels of grazing pressure in the wet season of 1980	109
17	Effect of rest period and levels of grazing pressure upon grass percentage for the wet season of 1980	110
18	Effect of rest period and grazing pressure upon legume percentage for the wet season of 1978	119
19	Contours of legume percentage as affected by length of rest period and levels of grazing pressure in the wet season of 1980	120
20	Effect of rest period and grazing pressure upon legume percentage for the wet season of 1980	121

Abstract of Dissertation Presented to the Graduate Council of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

RESPONSE OF A TROPICAL LEGUME-GRASS ASSOCIATION
TO SYSTEMS OF GRAZING MANAGEMENT AND LEVELS OF
PHOSPHORUS FERTILIZATION

Bv

RAUL ALONSO SANTILLAN

April 1983

Chairman: Dr. G. O. Mott Major Department: Agronomy

A legume-grass pasture composed of glycine [Neonotonia wightii (R. Grah ex Wightii and Arn.) Lackey], centro (Centrosema pubescens Benth.), guineagrass (Panicum maximum Jacq.), and elephantgrass (Pennisetum purpureum Schumach.) was evaluated in a grazing trial from May 1978 to June 1980 at the Estacion Experimental Tropical Pichilingue, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quevedo, Ecuador.

The main objectives of the study were (a) to determine the effects of length of grazing period (X_1) , length of rest period (X_2) , grazing pressure (X_3) , and levels of P fertilization (X_4) upon the pasture mixture; (b) to determine the proper grazing management to attain the optimum legume contribution; and (c) to measure the pasture response in terms of dry matter production and botanical composition.

Grazing periods studied were 1, 7, 14, 21, and 28 days; rest periods were 0, 14, 28, 42, and 56 days; grazing pressures were 1.6, 3.3, 5.0, 6.6, and 8.3 kg DM on offer/100 kg body weight; and levels of fertilizer were 0, 100, 200, 300, and 400 kg ha^{-1} of superphosphate. To cover the five levels of the complete factorial (5^4) , a modified non-rotatable central composite design made up of 41 treatment combinations was used.

The response variables included aerial biomass (DM), available forage (DM), grass yield (DM), legume yield (DM), yield of weeds (DM), percentage grass, and percentage legume. A double-sampling procedure was used for estimating pasture production and botanical composition.

Rest periods and grazing pressures had the greatest effects on all response variables. Aerial biomass, available forage, grass yield and grass percentage were increased by longer rest periods and by lower grazing pressure. Legume yield and legume percentage were decreased by long rest periods and by low grazing pressure. Short rest periods and high grazing pressures resulted in high yields of weeds. Medium levels of both rest periods and grazing pressure were required for high forage dry matter production and for high legume yield.

The other two variables, days grazing and levels of phosphorus fertilization, had negligible effects upon the response of the pasture sward.

CHAPTER I INTRODUCTION

Ecuador, with an area of $273,670 \text{ km}^2$ is located in the northwestern part of the South American continent. The dominant topographical features are two parallel ranges of the lofty Andes mountains that separate the fertile littoral lowland on the west and the more extensive and less fertile lowland of the Amazon Basin on the east.

The diversity of natural features of the littoral region is very great due to its multiple climatic conditions, soils, forms of vegetation, and settlement patterns which set it apart from the more homogeneous Sierra and Oriente regions.

In the littoral, about 2,500,000 ha are considered as pasture land, supporting 2,875,000 head of cattle giving a carrying capacity of 1.12 animals ha $^{-1}$.

The seasonal pattern of rainfall distribution and the low soil N levels are factors restricting forage production and quality during the wet-dry seasons. It is well known that cattle production is limited by the feed supply during the dry season, while in the wet season, there is abundance of forage.

Pastures are mainly planted to guineagrass (<u>Panicum maximum</u> Jacq.) or elephantgrass (<u>Pennisetum purpureum</u> Schumach.), with other species making up a very small portion of the total hectarage.

At present, there is a growing interest in the establishment and utilization of tropical grass-legume mixtures for animal production. There are many advantages to having legume components in the pasture. They increase or maintain soil fertility due to their ability to fix N, improve the quality of the diet grazed by the animals, provide better seasonal distribution of the forage throughout the year, especially where alternate wet-dry seasons occur. Therefore, a system which combines adequate grazing management practices with high-yielding grasses and legumes growing in mixtures which provide feed during the whole year is needed to increase carrying capacity and the final output of the land.

The objectives of this research were

- To determine the response of a tropical legume-grass mixture to various treatment combinations of grazing management factors length of grazing period, length of rest period, grazing pressure, and levels of phosphorus fertilization.
- To determine the proper management strategy for adapted forage species to attain the optimum legume contribution as a component in the mixture, and
- To measure the results of legume-grass mixture in terms of aerial biomass, available forage, and botanical composition of the forage on offer.

CHAPTER II LITERATURE REVIEW

In tropical regions animal production on pastures is dependent upon the quality and quantity of forage available throughout the year. In the humid tropics the seasonal growth of pastures is greatly influenced by the wet and dry periods. At the beginning of the wet season very rapid growth occurs and frequently a large amount of forage accumulates. As the season progresses the rate of growth decreases rapidly and approaches zero during the dry season. The concentration of nitrogen and minerals is relatively high at the beginning of the wet season and also falls rapidly as the season progresses. In addition there is a progressive increase in fiber and decrease in digestibility from the beginning of the wet season through the remainder of the year (Paladine's and de Alba, 1963).

Some tropical pasture species seem to be well adapted to extreme environmental conditions; however, their potential to supply feed for cattle production may be limited not only by seasonal changes but also by soil fertility (Tergas, 1968), mechanisms of adaptation (Gartner et al., 1974), and grazing management (Mott, 1960; Evans, 1970; Stobbs, 1969).

The Tropical Forages

Panicum maximum Jacq. has been described by Humphreys (1980) and Bogdan (1977) as a densely tufted perennial grass with relative drought and poor soil tolerance. It is of high nutritive value when young and combines well with other tropical pasture species (Hudgens, 1973;

Chavez, 1974; Rolando, 1974). It is indigenous to tropical Africa where it is dominant over large areas, particularly under humid and subhumid conditions. In the coastal area of Ecuador it is known as guinea, cauca, saboya, chilena. Betancourt (1969) indicated that guineagrass was the most widespread pasture grass in the lowlands of Ecuador. Acosta-Soliz (1967) reported that this grass grows from sea level up to 1400 m.

Guineagrass is very popular because of its adaptation to the dry season, resistance to fire, high production of forage, capability of establishment by seed or by division of plant crowns, and finally due to its ability to persist under heavy use and abuse (INIAP, 1980).

Recently the Instituto Nacional de Investigaciones Agropecuarias (INIAP) of Ecuador has tested 124 introductions of guineagrass in small grazing trials, mainly for adaptation and persistence. New cultivars will be released to the farmers as soon as sufficient seed is available for large scale use (INIAP, 1979).

<u>Pennisetum purpureum</u> Schumach, elephantgrass, is a tall-growing species, up to 5 m in height. It has been described by Bogdan (1977), Correa (1926), and McIlroy (1972).

Acosta-Soliz (1967) and INIAP (1980) stated that elephantgrass grows from sea level up to 2200 m in the warm valleys of the Sierra region. In Ecuador it is mainly used as a pasture grass with some farmers reporting pastures up to 40 years old still under grazing conditions. Under cutting frequencies of 45 days it produces up to 80 tons DM ha $^{-1}$ yr $^{-1}$ when receiving 400 kg of N and irrigation during the dry season (INIAP, 1972). There are three cultivars which are

in widespread use in the lowlands of Ecuador. They are 'common' for grazing, 'Hybrid 534' and 'Mexican' for cutting.

Centrosema pubescens Benth, centro, a true tropical legume has been described by Humphreys (1980) as a creeping, twining perennial legume native of South America. Grof (1970) reported that the genus Centrosema contains about 70 species growing naturally in the tropical areas of Central and South America. Moore (1962) stated that this tropical legume grows well in humid areas and must be considered as a basic component of pastures under these conditions. Studies conducted at Pichilingue, Ecuador, by Hudgens (1973), Chavez (1974), Rolando (1974) and INIAP (1980) indicated that this legume performs well in association with guineagrass and it is also highly persistent under grazing and produces large amounts of seed (Farfan, 1974). In the last few years 132 native ecotypes of Centrosema have been selected and tested in Equador. A few of these have been distributed to farmers and are showing some advantages over the Australian commercial cultivars such as higher DM yield, better tolerance to insects and disease, and better adaptation to Ecuador conditions (INIAP, 1979).

Neonotonia wightii (R. Grah. ex Wight and Arn.) Lackey, glycine, also known as perennial soybeans, has been described by Humphreys (1980) as a perennial plant, slender, twining, and with long stems having some capacity for rooting at the nodes.

Glycine was first introduced into Ecuador in 1966, but it was not used in pastures until 1973 when it was shown to be one of the best legumes for humid and subhumid areas. Three cultivars have been distributed to farmers and these were selected for persistence,

adaptability, seed production and disease and insect resistance. These cultivars are 'Malawi' for lower altitudes, 'Cooper' for medium altitudes up to 1200 m and 'Tinaroo' the highest forage yielder grows well from 50 to 1800 m of altitude, producing large amounts of seed from 800-1500 m (INIAP, 1979).

Persistence of Tropical Legume-Grass Associations

Serrao (1976) suggested that the first requirement for successful use of high-vielding pasture legumes was their adaptation to local climatic conditions. Secondly, nutrient requirements must be met to insure high yield and maintenance. And finally, they must persist under heavy grazing to secure a long lasting beneficial contribution to the companion grass, to the soil, and to the grazing animal. Gomez (1978) has suggested some other factors which can affect the persistence of tropical legumes when they are growing in association with grasses. Among the most important are (1) environmental factors such as light, temperature and moisture; (2) growth habits of each species growing in the mixture; (3) nodulation ability and capacity for nitrogen fixation; (4) edaphic factors such as pH, nutrient availability, form of supply; (5) frequency and intensity of defoliation by grazing animals; (6) ability to survive during long drought periods; (7) seed production capacity; and (8) pest and disease tolerance. Ludlow and Wilson (1970) reported that tropical grasses achieve up to three times the photosynthetic rate when compared with tropical legumes. This characteristic obviously gives ecological advantages to C-4 grasses, affording them the opportunity to grow faster, dominate and even exclude the C-3 legumes from the mixture. Tow (1967) showed that green panic (Panicum maximum var trichoglume) was much more productive at all light intensities and higher root temperatures than glycine when both species were tested under controlled environmental conditions. Roberts (1974) also studied some of the above factors and included some others which are associated with the stability of legume-grass mixtures. These were palatability of the grass and legume, maximum height of the grass, legume ability to grow under the shade projected by the companion vegetation, and the capacity to withstand trampling. He also suggested that continuous grazing helps the legume to compete more effectively with the grass due to more frequent defoliation than under a rotational grazing system. Kretschmer (1974) reported that in general grasses have a better range of adaptation and also a more vigorous growth habit that allows them to compete always at an advantage over most tropical forage legumes. Lack of legume persistence is attributed to the use of unadapted species and cultivars, improper or no fertilization, incorrect rhizobium and overgrazing (t'Mannetje, 1978).

Growth habit and leaf morphology of species that compose a mixture are important characteristics which have direct effects upon compatibility and persistence, due especially to light interception ability of each individual species. Santhirasegaram (1976) in the humid tropic of Peru reported that in a well-managed guineagrass-centro pasture, the persistence of the legume was due to its viney growth habit enabling it to climb the stems and leaves of this tall and aggressive grass. Thus, the legume can intercept sufficient

solar radiation. They also suggested that the ideal type of twining tropical legume should have a strong stoloniferous or rhizomatous growth habit in order to withstand frequent defoliation and heavy damage by grazing animals. Whiteman (1969) pointed out that frequent defoliation results in low yields of twining legumes such as glycine and Siratro, whereas slight defoliation or absence of defoliation results in a higher contribution of the legumes to the total pasture production. In Africa, Draolu and Nabusin-Napulu (1980) studied the effect of cutting intervals of 3, 6, 12, and 24 weeks and cutting heights of 3.8, 7.5, 15.0, and 30.0 cm in mixed swards of guineagrass and Stylosanthes guianensis. They concluded that DM production was greatly reduced under the lowest and most frequent cutting treatment. The amount of legume in the mixture also decreased as the cutting intervals were increased and the legume was particularly sensitive to close defoliation. In Australia, McIvor et al. (1981) found the same linear tendency with Desmodium intortum and Setaria sphacelata mixtures under different cutting heights of 8 and 20 cm and cutting intervals of 3, 6, and 9 weeks. The growth response of desmodium was markedly depressed at the lowest cutting height of 8 cm and the shortest cutting interval of 3 weeks. They concluded that cutting at the height of 20 cm at intervals of 6 to 9 weeks was necessary for the persistence of the desmodium in the mixture. Bryan et al. (1971) indicated that the short growth habit of the tropical legumes Stylosanthes humilis and Lotononis bainesii, which may be shaded by taller companion grasses, benefits from heavy grazing pressure which allows light penetration into the canopy. They also

concluded that the dominance of climbing legumes such as glycine and Siratro is generally enhanced by light grazing pressure and also by long intervals between grazing periods.

Grazing experiments conducted in the wet tropics of Ecuador by Berrezueta (1975), Chavez (1974), INIAP (1979) and Zapata (1981) showed that guineagrass-centro pastures and guineagrass-glycine pastures are very persistent and productive mixtures even if heavy grazing pressures are applied. They also observed that rest periods of over 28 days during the wet season favored the companion grass and reduced drastically the amount of legume. Finally they concluded that the guineagrass is dominant, especially at the beginning of the wet season, probably due to the large amount of nitrogen stored in the organic matter during the six to seven months dry season. The high growth rate of this grass decreases slowly and reaches the lowest rate of growth at the end of the dry season while the legumes appeared to be more productive during the dry season. The legumes are the main source of feed for the grazing animals during the dry season. A study of eight grass-legume associations was also made from 1971 through 1973 using grazing animals. Paragrass (Brachiaria mutica)-glycine and guineagrass-centro mixtures were shown to be the most compatible and the best accepted by the grazing animals, while tropical kudzu (Pueraria phaseoloides) and Calopogonium mucunoides were unpalatable species, a characteristic that could determine the dominance of this species over the companion grasses (INIAP, 1974).

Response to Nutrients

Legumes are generally more sensitive to soil factors than other pasture plants, particularly grasses. This sensitivity of legumes emphasizes the importance of understanding the effects of these limitations in tropical conditions. Russell (1978) suggested that improving the growth of legumes in low fertility soils could be approached in two ways: (1) by amelioration of soil conditions through the use of fertilizers or amendments, and (2) by the selection of legume cultivars or genera which are more tolerant to the limiting conditions. There seems to be a general consensus that N and P, in that order, are the plant nutrients that are more often deficient in the tropics (Fox, 1979).

The amount of N fixation, nodulation, persistence, and yield of tropical forage legumes may be affected by the soil pH and also by the availability of plant nutrients. Manhaes and Dobereiner (1968) and Fox et al. (1974) reported that for good legume establishment, adequate amounts of available P were required, especially during the nodulation stages. These authors determined that glycine required 60 ppm of P_2O_5 in the soil solution during the establishment phase. This requirement decreased after the second cutting. In Australia, Andrew and Robins (1969) determined the critical P concentration in the tops associated with maximum plant growth as being the critical levels. These were 0.16 and 0.23% for centro and glycine, respectively. For adequate plant uptake, H_2PO_4 ions in the soil solution should be between 0.07 to 0.2 ppm. According to Sanchez (1977) some

tropical legumes tolerant to low available soil P either absorb P at a faster rate or are able to tranlocate it to the tops more rapidly than do species not tolerant to low P availability (Salinas and Sanchez, 1976: Andrew, 1978). Considerable yield response to P fertilizers was reported by Jones and Freitas (1970) with four tropical legumes (Stylosanthes guianensis, centro, glycine, and Siratro). Similar results were obtained by Franca and Carvalho (1970) in greenhouse studies, using five tropical legumes (glycine var 'Common,' glycine var 'Tinaroo,' Siratro, centro, and Pueraria phaseoloides var 'Javanica' Benth.). In both cases the P deficiency was reflected in decreased nodule weight and N fixation capability. Snyder and Kretschmer (1974) obtained small linear increases in dry matter yields of Siratro, 'Cook' stylo, centro, and Desmodium heterocarpon (L.) DC when lime was applied in 500 kg ha increments up to 3000 kg ha⁻¹ without P fertilization. When the same levels of lime were used together with 45 kg ha^{-1} of P the response in yield was linear up to 2000 kg ha⁻¹ of lime and curvilinear thereafter. Estimation of P requirements for plant growth should be based on the amount of P needed to give at least 95% of maximum growth (Ozanne and Shaw, 1976). Neme and Lovadini (1967) working with glycine found that a combination of 120 kg of P_2O_5 plus 6 metric tons of lime ha⁻¹ gave a large increase in yield. Werner (1979) reported substantially increased yields of centro to P and K fertilization. Palacios (1976) in Ecuador found that centro responded positively to P fertilization during the establishment period, but yield response was not related to the amount of P applied to the soil during the sowing time. Falade (1975), comparing six levels of P (0, 15, 30, 60, 120, and 180 mg/
2 kg of soil/pot), found that P concentration in guineagrass and
elephantgrass was increased with the addition of P. The same response
was reported by Vicente-Chandler (1975) from Puerto Rico, where 80%
of the maximum dry matter production of pearl millet [Pennisetum americanum (L.) K. Schum.] was obtained when soil pH was raised to 5.5 and
115 ppm of P were added. At a pH of 4.8, twice as much P was needed
to produce the same forage yield. Fox (1979) reported that the standard
P requirement was a relative soil requirement, not an absolute plant
requirement. Fox et al. (1974) from Hawaii reported large increases
in P uptake by several pasture species, once soils which had high
P-fixing capacities were limed to pH 5.0 and 6.0. Phosphorus requirements of soils can range from zero to more than 2220 kg P ha⁻¹.

After N and P, S is considered by many as the next most important element needed for tropical legume growth. Tergas (1977) noted the significance of S on the growth and nodulation of several different tropical forage legumes. Siratro and centro dry matter and nodule weight increased as S was increased. Sanchez (1977) mentioned that S deficiencies are widespread throughout the tropics and that some pasture legumes are more susceptible to S deficiency than most grasses.

Medina (1969) reported S deficiencies in some crops growing in the littoral region of Ecuador. Also, a strong response from guineagrass, paragrass, glycine, and centro was observed when S was applied alone or supplied by the ordinary superphosphate or by ammonium sulphate (INIAP, 1980). In the tropics, where there are well defined wet and dry seasons, rainfall plays an important role in the uptake and nutrient content of tropical forage species. Blue and Tergas (1969) reported a drop in N, P, and K contents during the dry season; likewise a decrease of nutrient content during the wet season was found and it was postulated to be due to translocation of nutrients to the roots. Rapid growth during wet seasons may result in trace mienrals being translocated to plant tops where they are rapidly diluted with aerial tissue causing deficiency symptoms in older tissues (Reuter, 1975).

Micronutrients can play an important role in tropical legume pastures growth, mainly because of their function in several enzyme systems and in N-fixation by rhizobium-legume associations. Werner et al. (1975) studied tropical legume response to the micronutrients Mo, Cu, Zn, B, Mn, and Co in the form of FTE BR-10 and also in the salt form. Using three tropical legumes planted in pots, they observed visible symptoms of Mn toxicity on glycine and B toxicity on stylo. This work emphasizes that there is a narrow range between deficient and toxic levels of some micronutrients.

Medina (1969) found some micronutrient deficiency symptoms in some tropical crops growing in the Quevedo area. He reported that B, Zn, and Fe were the most deficient elements. INIAP (1978) found that at the beginning of the rainy season, the period of most rapid growth for grasses, such as paragrass, Zn deficiency symptoms were evident but these disappear in two or three weeks. Molybdenum also has been recognized as an essential element for legume growth especially for establishment and maintenance. Some authors have suggested that this

element is necessary for development of enzymes related to N fixation, nitrate reduction and legume nodulation (Andrew, 1978; Epstein, 1972).

Animal Productivity

In Pichilingue, Ecuador, Zapata (1981) observed that liveweight gain of steers grazing on common guineagrass, improved Guineagrass Brachiaria humidicola, and improved guineagrass-glycine pastures were, in the order given, 0.645, 0.678, 0.741. and 0.857 kg animal $^{-1}$ day $^{-1}$ and an annual liveweight gain of 338.9, 421.9, 458.3, and 540.4 kg ha^{-1} , respectively. The same author also noted a difference in liveweight gain due to the breed of animal, being 0.598, 0.691, and 0.903 kg an $^{-1}$ day for red criollo, braham, and braham x holstein crosses, respectively. Similar results were found at 700 m altitude by Cowan et al. (1974), but in this case milking cows were grazed on guineagrassglycine and kikuygrass (Pennisetum clandestinum) pastures without any supplementation. Milk production averaged 9.06 and 12.54 kg cow 1 day 1 for jersey and holstein cows, respectively. In Australia, Grof and Harding (1970) found that a guineagrass-centro pasture yielded 36% more liveweight than Guineagrass alone, over a two year period. Hall (1970) reported that animal production on unimproved native grass was less than 9 kg ha -1 when compared to guineagrass-Siratro mixture which yielded 112 kg liveweight ha⁻¹.

In Costa Rica, Kretschmer (1971) reported that centro in mixtures with guineagrass increased forage yield by 20% during the dry season and by 30% during the wet season, when compared with grass alone.

Tergas (1976) reported that centro increased total forage production

by 40% when it was grown in mixtures with guineagrass, and the amount of N fixed by the legume was estimated to be 100 kg N ha^{-1} yr⁻¹. In northern Australia, Norman (1970) showed that gain per animal grazing legume-grass mixtures was linearly related to the proportion of legume in the pasture. Also, animal liveweight gain during the dry season was related to the number of days during which the animals had been grazing the legumes. He also reported that animals grazing on grass pastures gained 60 kg head -1, while those allowed to graze grass-legume pastures gained 280 kg head 1. During the period of 112 days of the dry season, the first group on grass pastures lost almost 40 kg animal $^{-1}$, while the second gained 60 kg animal -1, due to the companion legume, Stylosanthes humilis. In Ecuador, Chavez (1974) reported that a guineagrass-centro mixture produced 536.5 kg liveweight gain ha^{-1} year $^{-1}$ with the beneficial effect of the legume being more apparent during the dry season, when crude protein content of the guineagrass alone was below 7% and crude protein content for the grass-legume pastures over 10%. Similar results were reported by INIAP (1979) on guineagrass-glycine var 'Tinaroo' mixture, which produced 458 kg of liveweight ha^{-1} vear $^{-1}$. In both cases the results were obtained under rotational grazing using the put-and-take technique developed by Mott (1960).

According to Minson and Milford (1967), tropical legumes maintain adequate nutritive values for a longer period of time than most tropical grasses, when each were under the same management system. The critical level of crude protein required in a pasture before intake is reduced by protein deficiency is estimated to lie between 6.0 and 8.5%. Even highly N-fertilized tropical grasses at late growth stages may have

values below these points (Ventura et al., 1975). Tropical forage legumes, on the other hand, retain higher crude protein levels during the dry season, even in advanced maturity stages (Milford and Haydock, 1965). Selectivity by grazing animals is a possible explanation for higher performance of grazing cattle during the dry-season periods in tropical regions, especially when available forage meets or exceeds animal requirements (t'Mannetje, 1974).

Pasture Evaluation

Mott and Moore (1970) developed a five-phase scheme for forage evaluation. Such a scheme involves quantity and quality determinations. Phase: I. Introduction and breeder's lines.

- II. Small plot clipping trials,
- III. Mob grazing experiments, forage response to grazing animals,
- IV. Animal response, effect of forage on animal output,
 - V. Forage-livestock feeding systems.

Forage quality, $\underline{\text{in vitro}}$ organic matter digestibility (IVOMD) is taken into consideration in the first three phases, while phases IV and V involve animal response in nutrient digestibility, performance per animal and production per hectare.

Definitions for stocking rate, grazing pressure, and carrying capacity were given by Mott (1960). Stocking rate is defined as the number of animals per unit area of land, the term bearing no relationship to the amount of forage. Grazing pressure is the amount of forage dry matter on offer per animal per day and carrying capacity, also called grazing capacity, is defined as the stocking rate at the

optimum grazing pressure. McMeekan (1956) considered the stocking rate as the most powerful factor, influencing the efficiency of pasture conversion to animal products on a per unit area basis. Petersen et al. (1965) developed quantitative expressions which related grazing pressure and carrying capacity with output per animal. Their quantitative theory suggests that animal gain is constant as the stocking rate is increased up to a "critical point," where the grazeable forage is equal to the amount of forage consumed by grazing animals. If the stocking rate is increased beyond the critical point, then the gain per animal decreases, and the animal gain per unit area also decreases. Conway (1965), using three stocking rates, 1.0, 1.75, and 2.5 animals per acre, found that by increasing the stocking rate from 1.0 to 1.75 animals per acre, liveweight gain per animal decreased. However, with 2.5 animals per acre, the liveweight per animal was drastically reduced resulting also in a reduction of liveweight per acre. Jones (1979) in Australia studied the effect of five stocking rates, namely 0.8, 1.3, 1.8, 2.3, and 2.8 an ha⁻¹ in combination with three resting periods of 17, 39, and 50 days using a randomized complete block design with two replications. The area allocated to each treatment varied from 0.02 to 0.24 ha, using just one animal per experimental unit. Increasing the stocking rate had the greatest influence upon the persistence of the legume which in this case was Siratro. Also, the resting period became important to the legume productivity under heavy grazing pressure conditions. Results suggest that under heavy grazing pressure a longer rest period would allow the legume to increase or maintain its reserves of nutrients for subsequent growth. Echandi (1956) suggested that carrying capacity

should be determined taking into consideration the amount of litter left in the field as residue after each grazing period. Mott (1973) emphasized the use of variable stocking rates in grazing experiments by maintaining the number of animals in equilibrium with the available forage. He noted that the important advantage of the system was that it permits estimation of the carrying capacity of the pasture and the seasonal changes which occur. Evans and Bryan (1973) pointed out the need for more studies to evaluate different grazing pressures in order to measure the yield of the pasture and persistence of tropical legumes.

According to Mott (1973) the optimum grazing pressure must be considered as an optimum range instead of a "critical point" and that such an optimum relates only to animal output and may or may not be the optima for plant species in the pasture. Mott and Lucas (1952), Mott (1960), and Matches (1970) described the put-and-take technique for grazing trials. They suggest that the stocking rate must be variable in which the grazing pressure is maintained at a constant level and the stocking rate adjusted as the availability of forage changes. These authors also distinguish the terms "testers" for animals which should remain in the pasture throughout the grazing experiment and "grazer," or put-and-take animals, as those used to maintain the grazing pressure at the optimum. Mott pointed out that "if the number of animals per unit area is to give an accurate appraisal of carrying capacity, then this unit of measure must not be fixed but be subject to adjustment, so that the number of animals per unit of forage is maintained at an equivalent level for

all treatments" (1960, p. 601-602). Serrao (1976) suggested that variable or fixed stocking rates can be used in continuous or rotational grazing systems. He concludes that the put-and-take system is more appropriate when plant and animal relationships are to be measured.

Grazing Systems

Continuous Grazing

Heady (1970) noted there is much confusion in the definition of grazing systems which are used for describing the day to day provision of livestock feed from a wide variety of sources such as conserved forage and by direct use of pasture by grazing animals. He also defined continuous grazing as a grazing system in which the animals have unrestricted access to any part of the pasture through a grazing period, which can be a season, a year or more. Spedding (1965) suggested a pasture under a continuous grazing system could be called correctly grazed when the amount of removed forage by the grazing animals was equal to the amount of forage daily yield. Continuous grazing is the most commonly used system in the tropics, especially on vast areas, far away from the main consumer centers and in many cases areas without any suitable highway system (Chaverra, 1979).

Rotational Grazing

A rotational grazing system is defined by Heady (1970) and Heath (1978) as a system in which the animals are allowed to graze the pasture for variable periods of time, normally with a heavy stocking rate, during which the pasture is grazed and ungrazed several times during a grazing season or year.

The terms grazing period and rest period are commonly used in the rotational grazing system (Heady, 1970). According to Heady (1970) the grazing period is the portion of the grazing time during which grazing takes place and rest period is the time during which the pasture is not grazed. Comparing both continuous and rotational grazing systems on animal production, Stobbs (1969), in Africa, found that animal production was slightly higher for rotational grazing when it was carried out in three paddocks, but it was lower than continuous grazing when it was done in six paddocks. From Australia, Grof and Harding (1970) reported that a mixed Guineagrass-centro pasture with a carrying capacity of 3.5 an ha -1 produced a liveweight gain of 934 kg ha^{-1} for 2 years and 1075 kg ha^{-1} for 2 years for continuous and rotational grazing, respectively. From Pichilingue, Ecuador, Paredes (1974) reported that during the rainy season there were no differences in stocking rate between continuous and rotational grazing, but during the dry season continuous grazing under variable stocking rate was superior to rotational grazing with fixed or variable stocking rate. He also found that continuous grazing with variable stocking rates gave the highest average daily gain of 0.457 kg an $^{-1}$ day $^{-1}$.

Estimates of Dry Matter Production and Yield

Estimation of production and yield are major problems in grazing experiments, because of the heterogeneity of the pasture sward and the amount of time required to obtain an adequate sample. One must decide the number of samples, the area to be sampled, and choose an adequate technique for sampling a highly variable population where cover, density,

height, weight, and other factors differ from one species to another (Kennedy, 1972). For many years, hand cutting and weighing of above-ground vegetative parts has been the most popular and useful method for estimating forage yield (Heady, 1970) and for estimating grazing pressure (Mott, 1960). Other methods, such as the simple disk meter, described by Bransby (1975), work on the principle of measuring the height of a disk supported by the resistance and compression of the vegetation. Santillan (1976) proved that the simple disk meter was very satisfactory for use in tropical species.

Mott (1974) suggested that estimation of total yield or yield of components is based upon the following relationship: yield per unit area = f (density, height). The total yield of an area of vegetation is related to the density and height of individual components. Ground cover and sward height have been used on different types of grassland to estimate dry matter yield.

Where pasture vegetation is utilized by grazing animals, the amount of feed present at any one time may be only one of the factors associated with the intake by the grazing animals. Of interest to the pasture scientist is an estimate of that portion of the pasture which is consumed by the grazing animal since they are very selective of plant species and plant parts, which makes for a more complex situation (t'Mannetje, 1978).

A double sampling technique is probably one of the best ways to ensure a more precise yield determination. Eye-estimation in combination with a few harvested samples which act as a control on the observer's accuracy is one of the simplest forms of estimating total forage present or annual production potential of a pasture (t'Mannetje, 1978).

Measuring Botanical Composition

Botanical composition is a very essential measurement, especially in pastures subjected to grazing conditions, because the number of samples and yield of individual species may vary over a wide range depending upon environmental conditions and management factors.

T'Mannetje et al. (1976) indicated that botanical composition can be measured in terms of the yield of component species, the number of plants covering the area and also the frequency of occurrence.

Determination of botanical composition and sampling techniques are difficult tasks in pasture research. Some methods have been developed to determine botanical composition; the most common are visual estimation and hand separation of harvested material into component species (Gardner, 1972). Visual estimation is a reliable method for studying pasture species, but in some cases it may be difficult to relate dry matter production of each of the component species, especially when growth habit and density differ widely. Tothill and Petersen (1962) indicated that the weight in situ, as well as the estimation of weight of each individual species, and visual estimation are the most useful methods for surveying vegetation of pasture species.

Effect of the Grazing Animal on Botanical Composition

There are at least three factors that are known to affect the balance of the grass-legume mixtures in the tropics once the pasture has been established. They are stocking rate or grazing pressure, frequency of defoliation, and fertilization. The grazing animal has a direct effect on pasture species due mainly to selectivity, deposition of feces and trampling, and an indirect effect on the soil due to the removal of nutrients by the removal of harvested forage. The animal alters the physical and chemical properties such as structure, texture, porosity, water retention, and in some cases, the accumulation of organic matter at certain points due to fecal deposits. All of these changes have a direct consequence, first on the botanical composition and subsequently on the final performance of that grazing animal (Alarcon and Lotero, 1970).

Research workers such as Davis (1967) and Wells (1967) agreed that grazing affects the soil cover and botanical composition which results in (1) a reduction of the basal cover, (2) a reduction of height of species, (3) a loss of soil cover and severe erosion, (4) a reduction of root systems, (5) a reduction in the emergence of new shoots, and (6) weed invasion.

Bryan and Evans (1973) found that the proportion of legumes Stylosanthes guianensis, Centrosema pubescens, and Pueraria phaseoloides on the dry matter basis was not affected by stocking rates during the first and second year. In the third year a marked reduction took place on the high stocking rate of 6 animals ha⁻¹, in which the proportion of the legumes fell from 22 to 12%, while the companion grass (Panicum maximum) was more affected by the high stocking rate. In this case the reduction was significant since it went from 78 to 65% and to 38% in the first, second and third year, respectively. The other two stocking rates of 2 and 4 animals ha⁻¹ had little effect on the grass and legume during the three experimental years. Similar results were reported from Africa by Stobbs (1969).

Cowan et al. (1975), in the Atherton Tableland, Queensland, Australia, found a highly significant correlation coefficient between milk yield ha⁻¹ and the amount of the legume glycine present in the pasture. They studied four stocking rates, 1.3, 1.6, 1.9, and 2.5 cows ha⁻¹. On the other hand, while stocking rate was increased the milk production ha⁻¹ also was increased but the percentage of dry matter of legume present in the pasture decreased when the stocking rate increased. Cowan and O'Grady (1976) reported the same trend under similar conditions in another study carried out later at the same location.

Some investigations carried out in Cuba have shown that under heavy stocking rates the legumes fail to persist in the mixture.

Febles and Padilla (1972), using a stocking rate of 4 cows ha⁻¹, found that a mixture of guineagrass and the legumes glycine, Siratro, Stylosanthes guianensis, Desmodium intortum, and Desmodium uncinatum, did not persist more than 36 weeks. Funes and Perez (1976), using six animals ha⁻¹, also found that the three commercial cultivars of glycine (Tinaroo, Cooper, and Clarence) failed to persist under those conditions and that at 36 weeks the proportion of weedy species was drastically increased. Their final conclusion was that it is better to use light stocking rates and that the legumes are useful in those areas in which the grazing management is extensive. On the other hand, there are some results that show a positive effect of stocking rate upon the proportion of legume in the pasture. Vilela (1979), in Brazil, found that

the legume percentage was 8.7, 10.5, and 15.6 for the 0.5, 1.0, and $1.5 \text{ animals ha}^{-1}$, respectively, when it was measured with the point quadrat method.

Jensen and Schumacher (1970) observed that the percentage of botanical species is not only affected by grazing animals, but also by environmental conditions such as season, precipitation, rain distribution, temperature, and solar radiation. Taking into consideration most of the above factors, Tothill (1978) noted that if the primary objective of the investigation is to obtain an estimate of botanical composition of pastures in assessing animal production, weight of species is the most suitable value to measure. If rainfall interception or photosynthesis are under study, then cover may be the more appropriate parameter. He also mentioned that the importance of this distinction is that number, weight and cover measurements are comparable in time and space, but are independent of the mode of sampling since they are measured directly and expressed in relation to a unit area. Shaw and Bryan (1976) mentioned that the proportion of species on a weight basis is generally the most useful where the main interest is in pasture production and where samples are cut for yield determination, and botanical composition can be determined by hand-separating the sample into component species. They also added that this is the most precise and satisfactory method for yield and botanical composition determinations.

Response Surface Methodology

Littell and Mott (1975) indicated that the purpose of response surface methodology is to estimate the functional relationship between a response variable such as yield and an experimental variable or control variables, such as rates of P. They also suggested that the range of values determines the experimental region, and the functional relationship is called the response surface.

Factorial arrangements of treatments provide good information, but they require greater numbers of experimental units and more physical resources; with the same amount of resources using response surface methodology, it is possible to obtain results from a much greater number of variables and levels within each variable. These designs, such as the rotatable central composite, non-rotatable central composite and San Cristobal, have been used in grazing trials and have proved their usefulness in obtaining valuable data (Maraschin, 1975; Mott, 1977; Serrao, 1976; Villasmil et al., 1975).

Maraschin (1975) and Serrao (1976), both using a central composite design, studied the effect of three variables: grazing days (1, 3.5, 7, 10.5, and 14), resting periods (0, 14, 28, 42, and 56 days), and dry matter residue left after grazing (500, 1000, 1500, 2000, and 2500 kg DM ha⁻¹) upon the botanical composition of Cynodon dactylon-Desmodium intortum-Macroptilium atropurpureum-Lotononis bainesit-Trifolium repens mixture. The great advantage of this design is that it used only 24 treatments instead of 125 that the complete factorial would have required for a single replication, to obtain the coefficients needed to evaluate the grazing management systems. Serrao (1976) reported that the most important factors in determining dry matter yield from pasture and also legume percentage maintained in the mixture were grazing pressure and rest periods. He found that the legume content of the mixture was increased with an increase in length of rest period

and that heavy grazing pressure and short rest periods almost eliminated the legumes from the pasture.

CHAPTER III MATERIALS AND METHODS

This research was conducted at Estacion Experimental Tropical Pichilingue, belonging to INIAP and located 7 km from Canton Quevedo, Procincia de los Rios, at 1°06' S Lat. and 79°29' W Long. Altitude at the site is 64 m above sea level. The average minimum and maximum temperatures are 17.3 and 35.6°C, respectively, having a mean annual temperature of 24.3°C. Annual precipitation is 2152 mm. About 82% of the yearly rainfall occurs during the warmer months from December through June. The months of February and March have the highest rainfall intensity. By contrast, October and November are the driest months, often registering no rainfall. Annual mean relative humidity is 84% and mean sunlight is 846.2 hours per year, 66% of which occurs during the December to May period (Servicio Nacional de Hidrologia y Meterologia del Ecuador, 1980). Holdridge (1967) located Pichilingue in the tropical moist forest zone (Fig. 1).

Figures 2, 3, and 4 present the monthly rainfall range, average temperature and average solar radiation for the years 1978, 1979, and 1980.

The soils are classified as Torripsamments. Hardy (1960) states that the chemical analysis of this Pichilingue loam reveals a marked deficiency in available P, but an abundance of available K. The soil N status is fair to medium in recently cleared land, but declines rapidly with cultivation. More recent soil analyses at the experimental site revealed that the amount of P is medium, while B, S, Zn and Mo are low (INIAP, 1979).

Profile of the three natural regions of Ecuador, showing the main vegetative zones in relation to rainfall and temperature. Fig. 1.

Rainfall recorded at Estacion Experimental Pichilingue during the period of 1978-1980. 2 . Fig.

Temperature recorded at Estacion Experimental Pichilingue during the period 1978-1980. ٠ د Fig.

Solar radiation at Estacion Experimental Pichilingue during the period of 1978-1980. , 4 Fig.

Table 1 presents the soil analysis on the experimental site used in this research.

Legume-Grass Mixture

The legume-grass mixture selected for the experiment consisted of Malawi glycine [Neonotonia wightii (R. Grah x Wightii and Arn.)

Lackey], commercial centro (Centrosema pubescens Benth.), guineagrass (Panicum maximum Jacq.), and Hybrid 534 elephantgrass (Pennisetum purpureum Schumach.).

Guineagrass and elephantgrass were considered because both are very common and useful grass species in the littoral region of Ecuador, and also because of their high-yielding capacity, drought tolerance, and ability to grow in mixture with some tropical legumes. Centro is a native legume and may be the most widespread in the lowlands extending from dry tropical forest to wet tropical forest (600-2500 mm of rainfall). Glycine had been selected from previous experiments as a very persistent and productive legume.

Experimental Variables

The experimental variables were

- (1) Days grazing (X₁)--1, 7, 14, 21, 28;
- (2) Days rest (X₂)--0, 14, 28, 42, 56;
- (3) Grazing pressure (X_3) --dry matter on offer per 100 kg body weight (BW); and
- (4) Phosphorus (P_2^{0}) levels (X_4) .

Table 1. Soil analysis of experimental site (1978).

Depth of sample: 0-25 cm

pH: 6.30

Percent organic matter: 4.96

Element	ppm
Phosphorus	62.5
Potassium	598.8
Sulfur	18.4
Zinc	13.2
Manganese	258.5
Copper	20.9
Boron	12.6

For this experiment grazing pressure was expressed as the amount of dry matter on offer per 100 kg body weight (BW) and by the residual dry matter in kg ${\rm ha}^{-1}$ left after each grazing.

Each experimental variable was studied at five levels. Therefore, the treatments comprised a factorial type of experiment of four factors, each at five levels (5^4 factorial) (Table 2).

Experimental Design

Due to the large number of experimental units required to conduct a 5⁴ factorial (626 treatment combinations without replications), a response surface design, namely, a modified central composite non-rotatable design was used. The number of design points (treatment combinations) was determined from the following formula: (see Table 2)

No. of design points = 2^4 (±1) + 2^4 (±2) + (2 x 4) + 1 = 41 Certain treatments were replicated twice (central point was replicated thrice) and these are indicated in Table 2. The total number of experimental units was 51.

Field Plan of the Experiment

In order to estimate the size of experimental units for each treatment, the following formula was used: (see Table 3)

$$S = \frac{NdR}{DG}$$

where S = size of experimental unit in m^2 ,

N = kg body weight/pasture/day (assumed 300 kg BW),

d = number of days pasture is grazed during cycle,

Modified central composite non-rotatable design with four experimental (X) variables, at five levels each, and 41 design points. Table 2.

1					11	rrearments	1			
		,			Days	Days	Grazing	rertilizer		Down in
No.	x	X ₂	x ₃	X ₄	Grazing (X ₁)	(x ₂)	(X ₃) % BW R	(X ₄) kg ha ⁻¹	Reps	cycle
	7	7	7	7	7	14	3,3	100	1	21
	1	7	7	-1	21	14	3.3	100	П	35
	7	1	7	-1	7	42	3.3	100	1	65
	T	П	-	7	21	42	3,3	100	1	63
	7	T	П	-	7	14	9.9	100	1	21
	Т	7	П	7	21	14	9.9	100	1	35
	-	П	П	-1	7	42	9.9	100	1	67
	Т	П	-	7	21	42	9.9	100	1	63
	7	-	T	Н	7	14	3,3	300	1	21
	1	-1	7	1	21	14	3,3	300	T	35
	-1	1	7	П	7	42	3,3	300	1	65
	1	1	-	П	21	42	3,3	300	1	63
	7	7	П	Н	7	14	9.9	300	1	21
	П	ī	П	П	21	14	9.9	300	Т	35
	7	Н	1	Н	7	42	9.9	300	1	65
	П	П	Н	Н	21	42	9.9	300	П	63
	-2	-2	-2	-2	1	0	1.6	0	Т	Cont
	2	-2	-2	-2	28	0	1.6	0	1	Cont
	-2	2	-2	-2	1	26	1.6	0	2	99
	2	2	-2	-2	28	99	1.6	0	2	84
	-5	-2	2	-2	П	0	8.3	0	1	Cont
	2	-2	2	-2	28	0	8.3	0	1	Cont
23	-2	2	2	-2	1	26	8,3	0	2	99
		•	•	•	000	,	c	c	c	78

Table 2.--continued.

	ļu	le .	t	t.			t	t.					t						
	Days	cycle	Con	Con	26	84	Cont	Con	26	84	28	99	Con	70	99	26	26	26	26
		Reps	1	П	2	2	1	1	2	2	1	1	1	1	1	1	1	1	c
	Fertilizer Level	(X ₄) kg ha ⁻¹	400	400	400	400	400	400	400	400	200	200	200	200	200	200	0	400	200
ø	Grazing	(x_3) % BW R	1.6	1.6	1.6	1.6	8.3	8,3	8.3	8,3	5.0	5.0	5.0	5.0	1.6	8,3	5.0	5.0	2.0
Treatments	Days	(x ₂)	0	0	99	99	0	0	26	99	28	28	0	26	28	28	28	28	28
T	Days	(x ₁)	1	28	1	28	1	28	1	28	1	28	14	14	14	14	14	14	1.4
		X ₄	2	2	2	2	2	2	2	2	0	0	0	0	0	0	-2	2	C
	Coded	x ₃	-2	-2	-2	-2	2	2	2	2	0	0	0	0	-2	2	0	0	0
	သိ	x ₂	-2	-2	2	2	-2	-2	2	2	0	0	-2	7	0	0	0	0	0
		x ₁	-2	7	-2	2	-2	2	-5	2	-2	2	0	0	0	0	0	0	0
		No.	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41

at five levels each, 41 design points, 51 experimental units with their respective area. Modified central composite non-rotatable design with four experimental (X) variables, Table 3.

No. Pasture Days Pays No. No. (71) (72) 1 18	Treatments	nts				Total
21 21 21 21 21 21 21 21 21 21 21 21 21 2		Grazing Pressure (X ₃) % BW	Fertilizer Level (X_4) kg ha ⁻¹	Reps	Size of Exp. Unit	Area Required per Treat.
21 21 21 21 21 21 21 21 21 28 28	7 14	3.3	100	1	750	750
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	21 14	3,3	100	1	1500	1500
21 21 21 21 22 21 23 24 28 18 28 18	7 42	3.3	100	1	200	200
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	21 42	3.3	100	П	750	750
21 21 21 21 21 21 28 11 28 11 28	7 14	9.9	100	1	1500	1500
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	21 14	9.9	100	1	2000	2000
21 21 21 22 21 28 28 11 28 11 28	7 42	9.9	100	1	1000	1000
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	21 42	9.9	100	1	1500	1500
21 21 27 27 28 28 1 28 1 28	7 14	3,3	300	1	750	750
2 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9		3,3	300	1	1500	1500
21 27 7 27 28 1 28 1 28 1 1		3,3	300	1	200	200
2 7 7 7 7 7 8 8 8 8 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1		3,3	300	1	750	750
21 21 28 28 1 28 1 28		9.9	300	1	1500	1500
2 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9.9	300	1	2000	2000
21 28 1 28 1 28 1		9.9	300	1	1000	1000
28 28 28 28 1		9.9	300	1	1500	1500
28 28 28 1	1 0	1.6	0	1	2000	2000
1 28 1 28		1.6	0	1	2000	2000
28 1 28 1		1,6	0	2	200	200
28 1		1.6	0	2	750	750
28		8,3	0	1	4000	4000
1		8.3	0	1	4000	4000
		8,3	0	2	200	1000
28		8,3	0	2	2000	2000

Table 3.--continued.

			Treatments	ts				Total
		Days	Days	Grazing	Fertilizer		Size of	Area
No.	Pasture No.	Grazing (x_1)	Rest (x_2)	Pressure (x_3) % BW	Level (x_4) kg ha	Reps	Exp. Unit	Required per Treat.
25	10	-	0	1.6	400	1	2000	2000
26	29	28	0	1.6	400	1	2000	2000
27	12,47	1	99	1.6	400	2	200	200
28	7,40	28	26	1.6	400	2	750	750
29	14	1	0	8,3	400	П	4000	4000
30	64	28	0	8.3	400	1	4000	4000
31	28,46	1	99	8,3	400	2	200	1000
32	3,21	28	99	8,3	400	2	2000	2000
33	. 5	1	28	5.0	200	1	200	200
34	51	28	28	5.0	200	П	2000	2000
35	42	14	0	5.0	200	П	3000	3000
36	17	14	99	5.0	200	1	750	750
37	11	14	28	1.6	200	1	750	750
38	2	14	28	8,3	200	1	1500	1500
39	П	14	28	5.0	0	1	750	750
40	6	14	28	5.0	400	1	750	750
41	19,39,41	14	28	5.0	200	3	750	2250

+Total area = 73000 m2.

R = kg dry matter offered/kg body weight/day,

D = number of days in cycle, and

 $G = \text{growth rate in kg/m}^2/\text{day (assumed .04 kg/m}^2/\text{day)}$.

As an example, treatment 14 days of grazing, 28 days of rest, and 5.0 kg DM on offer/100 kg BW/day is calculated as follows:

$$S = \frac{300 \times 14 \times .05}{42 \times 0.004} = 1250 \text{ m}^2$$

This figure was rounded to 1500 m² to avoid the inconvenience of odd pasture sizes. All pastures were 500 m² or some multiple (Table 3). In making this calculation it was assumed that one animal weighing approximately 300 kg was used to graze the pasture during the allotted grazing period and designated grazing pressure. It was also assumed that the growth rate was $4 \text{ g/m}^2/\text{day}$. In estimating the size (S) of the experimental unit the smallest was set at 500 m^2 in order to avoid difficulty in handling the steers in units of smaller size. A total of 7.3 hectares were required for the 51 experimental units in this study (Table 3). These pastures were randomly distributed as shown in Fig. 5. The sizes of the experimental pastures varied from 500 m^2 to 4000 m^2 ; the larger areas were for the continuously grazed treatments (Fig. 5).

Land Preparation and Pasture Establishment

Land preparation of the experimental area began in May 1977, after the existing vegetation (common guineagrass) was partially eliminated by an application of a grass killer herbicide (Glyfosate[®]). At the beginning of July the 6-year-old guineagrass pasture was plowed under.

Fig. 5. Field plan of the experimental pastures.

In August the complete area was cross-disced in order to eliminate some weeds and obtain a good seedbed. The area was disced again in late September to eliminate the new growth and some weeds. In the same month, 20 small soil samples were taken from the whole area and mixed together for soil analysis; the samples were taken at 25 cm depth (see Table 1).

The next step was to prepare the legume seeds. Glycine and centro seeds were scarified using sulfuric acid for a time of 6 and 8 minutes, respectively. After the seeds were washed and shade dried, they were inoculated using an appropriate Rhizobium strain obtained from CIAT (Centro Internacional de Agricultura Tropical). In early October of 1977, a mixture of glycine and centro was sown using a small grain seeder with a four row capacity at the rates of 3.0 and 6.0 kg ha⁻¹, respectively. The mixture was sown in rows spaced 1.4 m apart. A day after the sowing, a mixture of preemergence herbicides was applied (Linuron® 0.75 kg ha $^{-1}$ + 2 L ha $^{-1}$ of Laso®) to control both grasses and broadleaf weeds coming from seed. Two weeks after the legumes were sown, the grasses were planted vegetatively, using plant divisions for guineagrass and small pieces of stems with two or three buds for elephantgrass. Both grasses were planted alternatively between the rows of the legumes, so that the distance between grasses and legumes was 0.70 m. It was necessary to make one hand weeding using machetes. Four irrigations of 4 mm each were necessary at 12 day intervals. The first irrigation was immediately after the legumes were sown.

In early January of 1978, the P fertilizer was applied taking into consideration the respective levels of simple superphosphate kg ha $^{-1}$ (whose composition was 18.2% P $_2$ 0 $_5$ and 14% elemental S); at the same time a mixture of micronutrients was applied to the whole area. The composition of this mixture was 3 kg Zn chelate, 4 kg Fe chelate, 3 kg CuSO $_4$, 3 kg Borax, and 0.8 kg Molybdenum nitrate ha $^{-1}$.

Construction of Physical Facilities

In February, the total area was surveyed for the purpose of locating the fence lines, and four-strand wire fences were built. During the second half of March, the entire area was moderately grazed and the remaining vegetation was moved at 15 cm height. Wooden mineral boxes were built which were used to supply the following formula: 50% of sodium chloride + 50% of mineralized salt containing 7% P as dicalcium phosphate, 0.48% Zinc sulfate, 0.12% manganese carbonate, 0.14% copper sulfate, 0.32% ferrous sulfate, and 0.006% cobalt chloride. Water tanks were provided in each experimental pasture. An area of approximately 10 ha adjacent to the experiment was available as reserve pasture for 50 animals used for adjusting the stocking rates in the experiment.

Collection of Data in the Three Experimental Years

On May 12, 1978, experimental grazing was initiated. Fifty-six Criollo and Holstein/Brahman steers were used to graze the experimental pastures. At the start of the experimental period, the animals were 16 months old and their average weight was 268 kg. Every 28 days all animals were removed from the pastures and from the reserve pasture. They were taken to the main corral for tick treatments and every 56 days they were weighed in order to have a basis for estimating stocking rates for the next grazing cycle.

At the end of the first experimental year, the pool of animals was removed from all the pastures and showed average weights of 428 kg. A new pool of younger animals replaced the first group for the second year, having an average weight of 302 kg. The animals for the second experimental year were from the same herds as those of the first year and were 18 months old.

Pasture Measurements

Dry Matter Determination Before and After Grazing

Dry matter ha⁻¹ estimates before (on offer) and after (residual) each grazing period were made in order to apply the required grazing pressure and to determine the net dry matter production.

Stocking rate was determined for grazing pressure-grazing period combination on the basis of the total dry matter available before each grazing plus the estimated growth rate during the grazing period. Growth rate during the grazing period was assumed to be the same as that of the previous rest period. The accuracy of this technique for determining stocking rate was checked, using the residual dry matter left on the field after each grazing period. Grazing pressure was also based on visual observations of the amount of dry matter during each grazing period, in order to add or remove animals from pastures

depending on the specified dry matter on offer and days of grazing.

In order to estimate the grazing pressure, the following formula
was used:

$$G/P = \frac{(A - r + gd) S}{RNd}$$

where G/P = grazing pressure in terms of 100 kg BW,

- A = available forage before grazing,
- r = residue for a specified grazing pressure,
- g = growth rate-preceding rest period,
- d = number of days for grazing period,
- $S = \text{size of the experimental unit in m}^2$,
- R = kg dry matter offered/kg body weight/day, and
- N = kg body weight/pasture/day.

A double sampling technique was employed. As soon as possible, before and after each grazing (during the first 3 1/2 months only), 15 areas measuring 1.0 m 2 were randomly selected. From September 30, area measurements of the same size were taken, corresponding to the circular frame of a forage disk meter (one m 2) similar to the one described by Bransby (1975) and used in double-sampling measurements. In each sampling unit the percent dry matter yield of each component of the mixture was visually estimated, followed by an estimate of the dry matter yield $\frac{1}{10}$ $\frac{1}{10}$. The disk meter was lowered on the forage and after a settling time of approximately 5 to 10 seconds, the disk height (in centimeters) was read off a graduated scale mounted on the center shaft of the disk meter and recorded.

During the first three and one-half months, from the 15 sampling units, three were randomly selected and clipped at ground level for

dry matter yield and botanical composition. In September, five sampling units out of 30 disk readings were randomly selected and clipped for the above determinations. These samples were later hand separated into their components, placed inside cloth bags properly identified and dried for 20 hours at 72°C. The sum of the dry weights of the components yielded the total dry weight of the sample. Sickles were used for harvesting the forage samples. The clipped samples were used to adjust through regression analysis the 15 or 30 disk-meter readings of dry matter yield. The forage meter readings and visual estimates of dry weight were used as independent variables in regression equations to generate the regression coefficients needed for calibration of the disk meter and for adjustment of the visual sample estimation. The visual estimate of percent yield was made for the component grasses (guineagrass and elephantgrass), legumes (centro and glycine), and weeds. Although the above grasses and others such as Paspalum fasciculatum, P. paniculatum and Eleusine indica were present in scattered, small patches in some pastures, they were included in the weed components. Likewise, some native Desmodiums were accounted for in the legume component.

The response of the pasture mixture to the experimental variables was measured in terms of the following parameters:

- (1) Aerial biomass (DM) kg ha⁻¹ = grass (DM) + legume (DM) + weeds (DM),
- (2) Available forage (DM) kg ha⁻¹ = grass (DM) + legume (DM),
- (3) Grass yield (DM),

- (4) Legume yield (DM),
- (5) Yield of weeds (DM),
- (6) Grass percentage, and
- (7) Legume percentage.

The above parameters were statistically analyzed for the partial wet season (May-June) of 1978, the dry season of 1978, wet and dry seasons of 1979, and wet season of 1980. The data were processed using the programs RSREG for response surface design, and 63D for plotting the three-dimensional graphs of the Statistical Analysis System of the Northeast Regional Data Center of the University of Florida.

CHAPTER IV RESULTS AND DISCUSSION

Only two of the four experimental variables included in this experiment, namely, lengths of rest period and levels of grazing pressure are discussed in this section. The other two variables, days grazing and fertilizer level had negligible effects upon the response of the pasture sward. Each of the response variables will be discussed in a separate section beginning in the wet season of 1978 and ending in the wet season of 1980.

Effect of Lengths of Rest Periods and Levels of Grazing Pressure on Aerial Biomass (DM)

The effect of the lengths of rest period and levels of grazing pressure on the aerial biomass is presented for each of the five seasons in Table 4. The total biomass is the average amount of dry matter present before each grazing period for the rotational grazing treatment combinations, and for each grazing period of 56 days for continuous grazing.

Biomass Production (DM) for the Wet Season of 1978

During the first wet season only lengths of rest periods indicated an effect (P < 0.01) on the aerial biomass produced (Appendix Table 11). The linear components of the model accounted for 20% of the total variation, while the quadratic effects and interactions represented only 4 and 13% of the total variation, respectively (Appendix Table 11).

Table 4. Aerial biomass production (DM) by year, season, and treatment.

No. (x_1) (x_2)	rearments			1	100	0 1	0	
(X) 21 21 21 21 21 21 21 21 21 21 21 21 21	G/P†	12		1978	1978	1979	1979	1980
	(x ₃) % BW	kg ha	Reps	W/S‡	D/S‡	W/S‡	D/S‡	W/S‡
						- kg ha-1		
	3,3	100	1	1790	2410	3090		2470
	3,3	100	1	1960	2730	3210	2530	3360
	3,3	100	1	2630	2760	3850	2650	3140
	3,3	100	1	1890	2530	3490	1860	3940
	9.9	100	1	2360	3690	4830	4460	4500
	9*9	100	1	2170	3050	3120	2880	2760
	9.9	100	1	2710	4020	4240	3050	3980
	9*9	100	1	1940	4640	5830	4720	5770
	3,3	100	1	3150	1910	3320	2530	2970
	3,3	300	1	2850	2920	4440	3230	4020
	3.3	300	1	2300	2880	3610	2710	3830
	3,3	300	1	1590	2230	4430	2500	5740
	9.9	300	1	2290	2620	2850	3010	2550
	9.9	300	1	3150	2940	2690	2310	2410
	9.9	300	1	1870	4400	6130	5980	7240
	9.9	300	1	3050	3100	3740	2780	3680
	1.6	0	1	1750	1240	1210	1480	1920
	1.6	0	1	1990	1120	1760	1270	1460
	1.6	0	2	3750	3620	5760	3670	7510
	1.6	0	2	2430	2260	4060	2790	3820
	8,3	0	1	2280	3540	3940	4090	6270
1 50	8,3	0	1	1800	3580	3910	3960	4870
	8.3	0	2	3380	4800	6630	3850	5450
24 28 56	8.3	0	2	3460	5750	5940	4450	6620

Table 4.--continued.

J		Treatments	nts							
	D/G	D/R†	G/P†	F†		1978	1978	1979	1979	1980
No.	(x ₁)	(x ₂)	(X_3) % BW	kg ha_1	Reps	#S/M	‡s/q	#S/M	‡s/q	‡S/M
								- kg ha-1		
25	П	0	1.6	400	1	2030	1220	1390	2130	3010
26	28	0	1.6	400	1	1900	790	1220	1090	2820
27	1	26	1.6	400	2	2350	2450	4280	2150	3550
28	28	26	1.6	400	2	2700	2630	4090	2560	4030
29	1	0	8,3	400	1	1690	2620	3160	2650	3680
30	28	0	8.3	400	1	2440	2520	3600	3150	4160
31	1	26	8.3	400	2	2470	4870	6870	3690	7540
32	28	26	8.3	400	2	3730	4880	6350	5830	6160
33	1	28	5.0	200	1	2570	2710	3090	2780	2960
34	28	28	5.0	200	1	1570	2470	3490	2900	3420
35	14	0	5.0	200	1	2690	1720	1820	1650	1830
36	14	26	5.0	200	1	3130	3760	4450	3320	4030
37	14	28	1.6	200	1	1840	1910	2180	3360	2190
38	14	28	8,3	200	1	2530	2900	3660	3210	3560
39	14	28	5.0	0	1	1860	2550	3230	2730	3190
40	14	28	5.0	400	1	1960	2110	2420	2810	2560
41	14	28	5.0	200	n	2360	2370	3000	2420	2900

 † D/G = days grazing, D/R = days rest, G/P = grazing pressure as % body weight, F = fertilizer. † TW/S = wet season, D/S = dry season.

The biomass production varied from 1570 kg DM ha⁻¹ for treatment 17 (1 day grazing, 0 days rest, 1.6 kg DM on offer/100 kg BW, and 0 kg ha⁻¹ superphosphate) to 3750 kg DM ha⁻¹ for treatment 19 (1 day grazing, 56 days rest, 1.6 kg DM on offer/100 kg BW, and 0 kg ha⁻¹ superphosphate).

The aerial biomass production response to lengths of rest periods can only be explained by the management imposed during the first grazing season. All of the experimental pastures were grazed at a medium grazing pressure for 15 days during the latter part of March of 1978, after which they were mowed at about 15 cm above ground level. The wet season of 1978 was represented by a growth period of about 3 months from the first of April until June 30 when the wet season ended. The production data were obtained during this 3 month period beginning on May 12 after only about a month of regrowth. The pastures with short rest periods were included in the first sampling date and for some of these pastures the length of the grazing cycle was only 21 days which means that they had the opportunity to be sampled twice between May 12 and June 30. Pastures with a longer rest period accumulated more dry matter during the growth periods and, thus, showed a higher amount of dry matter produced. The analysis of variance for the wet season of 1978 is presented in Appendix Table 11.

Biomass Production (DM) for the Dry Season of 1978

The biomass production during the dry season of 1978 is also presented in Table 4. The biomass production varied from 790 to $4880\ \text{kg}\ \text{DM}\ \text{ha}^{-1}$, corresponding to treatments 26 (28 days grazing,

0 days rest period, 1.6 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate) and 32, respectively (28 days grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 400 kg of simple superphosphate). In general, the lowest values of biomass production corresponded to treatment combinations of short rest periods and high levels of grazing pressure, while the highest levels of biomass production corresponded to the treatment combinations with long rest periods and low levels of grazing pressure.

The linear components of the model accounted for 74% of the total variation, while the quadratic effects and interactions represented only 1 and 2%, respectively (Appendix Table 12). The experimental variables, length of rest period ($\rm X_2$) and level of grazing pressure ($\rm X_3$) each showed a linear effect upon biomass production (P < 0.01). There was a suggestion that levels of superphosphate ($\rm X_4$) might be having some effect (P < 0.10) but the effects of days grazing ($\rm X_1$) was nil. In all cases individual quadratic effects or interactions were not significant. The lack of interactions between $\rm X_2$ and $\rm X_3$ indicated that both variables were behaving independently. The biomass production was increased as the lengths of the rest period were increased and as grazing pressure was reduced. The analysis of variance for the dry season of 1978 is presented in Appendix Table 12.

Biomass Production (DM) for the Wet Season of 1979

The biomass production during the wet season of 1979 for each treatment combination is given in Table 4. Biomass production varied

from 1210 to 6630 kg DM ha⁻¹, corresponding to the treatments 17 [1 day grazing, 0 rest period (continuous grazing), 1.6 kg DM on offer/loo kg BW, and 0 kg ha⁻¹ of superphosphate] and 31, respectively (1 day grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate).

During the wet season of 1979 both length of rest period and level of grazing pressure had an effect upon biomass production (P < 0.01), while no quadratic effects and interactions were noted. The linear components of the model accounted for 67% of the total variation, and only 2 and 1% of the total variation was represented by the quadratic and interactions. As is evident, the biomass production is increased as the length of the rest period is increased. The higher grazing pressures also decrease the biomass production and the greatest biomass production was reached when a long rest period and low grazing pressure were imposed. The analysis of variance for the wet season of 1979 is presented in Appendix Table 13.

Biomass Production (DM) for the Dry Season of 1979

Biomass production during the dry season of 1979 for each treatment combination is presented in Table 4. Biomass production varied from 1090 to 5980 kg DM ha⁻¹, corresponding to treatments 26 [28 days grazing, 0 days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate] and 32 (28 days grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate). Again, the lowest values of biomass on offer ha⁻¹ corresponded to treatment combinations of short rest periods or continuous grazing

with the highest grazing pressure, but both experimental variables acted independently from each other.

The linear components of the model accounted for 45% of the total variation, while the quadratic effects and interactions represented only 1 and 6% of the total variation, respectively (Appendix Table 14).

An examination of the individual linear effects showed that only the experimental variables, days rest (\mathbf{X}_2) and grazing pressure (\mathbf{X}_3) were affecting biomass production (P < 0.01). The number of days grazing (\mathbf{X}_1) and fertilizer (\mathbf{X}_4) had no effect upon biomass production. For each 14 days increase in the number of days rest there was a biomass production increase of 230 kg (DM) ha⁻¹, while for each unit (1.6 kg DM) decrease in level of grazing pressure there was an increase of 480 kg ha⁻¹ in biomass production. The analysis of variance for the dry season of 1979 is presented in Appendix Table 14.

Biomass Production (DM) for the Wet Season of 1980

The lengths of rest period and levels of grazing pressure had a direct effect upon biomass production for the wet season of 1980 (Table 4). There was no interaction between these two experimental variables during this wet season.

The linear components of the model accounted for 43% of the total variation, while the quadratic effects and interactions represented only 8 and 1% of the total variation, respectively (Appendix Table 15). The total biomass production varied from 1460 to 7540 kg DM ha $^{-1}$ for treatments 18 [28 days grazing, 0 days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 0 kg ha $^{-1}$ of superphosphate] and 31

(1 day grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 400 kg ha $^{-1}$ of superphosphate). During this particular season, the amount of biomass production was again most affected by the length of rest period and by the levels of grazing pressure. The highest values of biomass production corresponded to the treatment combinations of long rest periods and low grazing pressures. For each 14 days increase in rest period, there was an increase of 550 kg DM ha $^{-1}$ of biomass production, while for each unit (1.6 kg DM) decrease in grazing pressure there was a 450 unit increase in biomass production. The analysis of variance for the wet season of 1980 is presented in Appendix Table 15.

Summary of Biomass Production (DM)

' In comparison of aerial biomass production (DM) among seasons and years, large differences, especially between wet and dry seasons, are observed. The principal environmental factors involved in these differences between seasons are precipitation, temperature, and solar radiation (see Fig. 2 of Materials and Methods). Every year the rainy season begins in the second half of December, initially with light showers and then increasing in amount and intensity reaching the highest peak of precipitation in February or March. After this time the amount and duration of the showers decreases until it reaches almost zero during the second half of June. About 90% of the total precipitation falls from December to June with the remaining months almost completely dry. The second important factor is temperature which is always higher during the rainy season reaching an average of 26°C during the wet season, while the average during the dry season

is 22° C. The third important factor is solar radiation which is also higher during the rainy season, reaching values of 500-600 hours of sunlight while from July to November this value averages 350-400 hours of sunlight. These three factors acting together are the main determinants of total aerial biomass production.

Another very important factor which must be taken into consideration is nitrogen. This element, at the beginning of the wet season, is rapibly mobilized from the soil organic matter, which has accumulated in the soil during the dry season. Sanchez (1977) has indicated that N in the tropics is rapidly utilized by actively growing plants with the occurrence of the first rains at the beginning of the wet season but that the remaining N is slowly released during the rest of the season. These three environmental factors plus the availability of N have a great impact upon the aerial biomass production.

The most important experimental variables influencing the aerial biomass production were days of rest (\mathbf{X}_2) and grazing pressure (\mathbf{X}_3) . Each variable behaved independently and there was a direct relationship between the number of days rest which permitted the plants a better opportunity to accumulate reserves for more rapid regrowth and development after each grazing period.

A similar trend was also found for grazing pressure which was directly related to the amount of forage removed by the grazing animals which in turn was related to the high removal and damage to the growing points and axillary buds. Grazing pressure was related to the rate of recovery and subsequently the final production. Hodgson and Ollerenshaw (1969) mentioned that if grazing pressure is increased while resting

periods are decreased, the frequency and severity of defoliation is increased affecting directly the subsequent regrowth and the total dry matter yields. Harris (1978) reported that although the function of reserves, availability of growing points, and uptake characteristics are influenced by the level of stubble biomass, the relationship between stubble biomass and growth rate relates to the amount of photosynthetic tissues.

Effect of Lengths of Rest Period and Levels of Grazing Pressure Upon Available Forage (DM)

Available forage in this context represents the sum of the grass and legume component but is exclusive of the weeds.

The effect of the lengths of the rest period and grazing pressure upon available forage is presented in Table 5 for the five seasons of this experiment. The available forage is the average of the estimated amount of dry matter present before each grazing for the rotational grazing treatment combinations and for 56 days for the continuous treatment.

Available Forage for the Wet Season of 1978

During the first wet season, only the length of the rest period had an effect on available forage (P < 0.01). The linear components of the model accounted for only 20% of the total variation, while the quadratic effects and interactions represented 5 and 12%, respectively (Appendix Table 16).

The means of total available forage varied from 1420 kg DM ${\rm ha}^{-1}$ to 3720 kg DM ${\rm ha}^{-1}$ (Table 5) for treatments 34 (28 days grazing, 28 days

Table 5. Available forage (DM) by year, season, and treatment combination.

		Treatments	ts							
	D/G	D/R†	G/P†	FF		1978	1978	1979	1979	1980
No.	(x)	(x ₂)	(x_3) % BW	kg ha	Reps	W/S‡	‡S/Q	#S/M	p/s‡	#S/M
								- kg ha-1		
Т	7	14	3,3	100	1	1640	2270	2230	2080	1550
2	21	14	3,3	100	1	1950	2720	3120	2380	3150
3	7	42	3,3	100	П	2590	2760	3850	2650	3140
4	21	42	3,3	100	П	1830	2510	3360	1800	3920
2	7	14	9.9	100	-	2330	3600	4660	4210	4070
9	21	14	9.9	100	П	2130	2990	3070	2870	2750
7	7	42	9.9	100	П	2620	4020	4240	3050	3970
00	21	42	9.9	100	1	1910	4640	5810	4720	5720
6	7	14	3,3	300	П	3150	1860	3100	2430	2540
10	21	14	3,3	300	П	2730	2810	4230	3030	3540
11	7	42	3,3	300	Н	2300	2820	3610	2710	2830
12	21	42	3,3	300	Н	1520	2230	4440	2470	5940
13	7	14	9.9	300	1	2290	2620	2840	3000	2520
14	21	14	9.9	300	1	2960	2870	2600	2260	2320
15	7	42	9.9	300	Н	1790	4370	6130	5980	7230
16	21	42	9.9	300	Т	3030	3000	3680	2720	3680
17		0	1.6	0	1	1650	1200	830	069	650
18	28	0	1.6	0	1	1990	1070	1380	160	260
19	1	99	1.6	0	2	3720	3600	5750	3670	7510
20	28	99	1.6	0	2	2390	2260	4040	2760	3820
21	1	0	8.3	0	-	2280	3500	3930	4640	6120
22	28	0	8.3	0	1	1800	3530	3810	3940	4840
23	-	99	8,3	0	2	3380	4790	6620	3820	5450
24	28	99	8.3	0	2	3400	5700	2900	4440	6620

Table 5.--continued.

		Treatments	nts			1078	1079	1070	1070	1000
	D/G	D/R+	4d/5	F+		19/0	1970	1979	1919	1900
No.	(x ₁)	(x ₂)	(x_3) % BW	kg ha	Reps	#S/M	p/s‡	M/S‡	p/s‡	#S/M
								- kg ha -1 -		
25	П	0	1.6	400	1	1990	1130	950		410
26	28	0	1.6	400	1	1810	790	066	840	340
27	Т	26	1.6	400	2	2320	2450	4260	2080	3360
28	28	26	1.6	400	2	2700	2630	4090	2560	4030
29	1	0	8.3	400	1	1690	2610	3140	3620	5530
30	28	0	8.3	400	1	2350	2420	3530	3110	4040
31	1	26	8.3	400	2	2410	4840	6870	3660	7510
32	28	26	8,3	400	2	2540	4880	6330	5830	6160
33	1	28	5.0	200	1	2460	2660	3070	2760	2890
34	28	28	5.0	200	1	1420	2280	3160	2650	3220
35	14	0	5.0	200	1	2640	1700	1790	1650	1820
36	14	26	5.0	200	1	3130	3710	4410	1300	4030
37	14	28	1.6	200	1	1760	1850	1970	1860	1360
38	14	28	8.3	200	1	2460	2730	3550	3170	3470
39	14	28	5.0	0	1	2860	2550	3130	2720	3150
40	14	28	5.0	400	1	1920	2070	3390	2800	2500
41	14	28	5.0	200		2290	2340	2950	2380	2800

 $\dagger D/G$ = days grazing, D/R = days rest, G/P = grazing pressure, and F = fertilizer. $\sharp N/S$ = wet season, D/S = dry season.

rest, 5.0 kg DM on offer/100 kg BW, and 200 kg ha⁻¹ of superphosphate) and 19 (1 day grazing, 56 days rest, 1.6 kg DM on offer/100 kg BW, and 0 kg ha⁻¹ of superphosphate), respectively.

Considering the individual linear effects, days rest (\mathbf{X}_2) was the only experimental variable affecting available forage (P < 0.01). The other three experimental variables did not affect the available forage. Individual quadratic effects or interactions were not significant. The lack of interaction indicates days rest is acting independently over available forage, which means that the amount of available forage increases as the length of the rest period increases.

For each 14 days of increase in days rest $({\rm X_2})$, there was 190 kg ha $^{-1}$ increase in the available forage.

Available Forage for the Dry Season of 1978 (DM)

Available forage varied from 790 kg DM ha⁻¹ to 4880 kg DM ha⁻¹, corresponding to treatment combinations 26 [28 days grazing, 0 days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate] and 32 (28 days grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate), respectively. During the first dry season, the lowest values of available forage were found in those treatment combinations of short rest periods or continuous grazing with the highest grazing pressure, while the highest values were the longest rest periods and the lowest grazing pressures.

The linear components of the model accounted for 74% of the total variation, while the quadratic effects and interactions represented only 1 and 1% of the total variation, respectively (Appendix Table 17).

An examination of the individual linear effects reveals that only the experimental variables days rest (X_2) and grazing pressure (X_3) had any effect upon available forage (P < 0.01).

The length of rest period increased the available forage as was also the case with a decrease in grazing pressure. For each increase of 14 days in the rest period there was an increase of 440 kg ha $^{-1}$ of available forage and for each unit (1.6 kg DM) decrease in grazing pressure there was a 500 kg ha $^{-1}$ increase in available forage. The analysis of variance for the dry season of 1978 is presented in Appendix Table 17.

Available Forage for the Wet Season of 1979 (DM)

During the wet season of 1979 the available forage (DM) varied from 830 kg DM ha $^{-1}$ to 6630 kg DM ha $^{-1}$, corresponding to the treatment combinations 17 [1 day grazing, o days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 0 kg ha $^{-1}$ of superphosphate] and 23 (1 day grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 0 kg ha $^{-1}$ of superphosphate), respectively. The treatment combinations with the shortest rest periods and lowest grazing pressure levels yielded the lowest values of available forage for this season; also it was noted that in this case both variables $\rm X_2$ and $\rm X_3$ were acting independently. There was no evidence of any interactions occurring.

The linear components of the model accounted for 69% of the total variation, while the quadratic effects and interactions represented only 2 and 1% of the total variation, respectively (Appendix Table 18). Only the linear effects of the experimental variables \mathbf{X}_2 and \mathbf{X}_3 had

an effect upon the available forage (P < 0.01). Increasing the days of rest and decreasing the grazing pressure increased the available forage during the wet season of 1979. For 14 days increase in rest period there was an increase of 750 kg ha⁻¹ of available forage and for each unit (1.6 kg DM) decrease in grazing pressure there was a 500 kg ha⁻¹ increase in available forage. The analysis of variance for the wet season of 1979 is presented in Appendix Table 18.

Available Forage for the Dry Season of 1979 (DM)

For the second dry season, the available forage for each treatment combination is presented in Table 5. The available forage varied from 400 kg DM ha⁻¹ to 5980 kg DM ha⁻¹, corresponding to the following treatment combinations: 25 [1 day grazing, 0 days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate] and 15 (7 days grazing, 42 days rest, 6.6 kg DM on offer/100 kg BW, and 300 kg ha⁻¹ of superphosphate), respectively. Only days rest (χ_2) and grazing pressure (χ_3) showed any effect upon available forage (P 0.01). Each of these two experimental variables was acting independently because no interactions were found.

The linear components of the model accounted for 54% of the total variation, while the quadratic effects and interactions represented less than 1 and 6% of the total variation, respectively (Appendix Table 19). For each 14 day increase in the rest period, there was an increase of 320 kg ha^{-1} of available forage and for each unit (1.6 kg DM) decrease in grazing pressure, an increase of 570 kg ha^{-1} of available forage was realized. The analysis of variance for the dry season of 1979 is presented in Appendix Table 19.

Available Forage for the Wet Season of 1980 (DM)

The average amount of available forage (DM) for each treatment combination during the wet season of 1980 is presented in Table 5.

The available forage varied from 340 kg DM ha⁻¹ to 7510 kg DM ha⁻¹, corresponding to treatments: 26 [28 days grazing, 0 days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate], and 31 (1 day grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate), respectively. Only the two experimental variables days rest ($\rm X_2$) and grazing pressure ($\rm X_3$) were found to be affecting the available forage (P <0.01). The other two variables and the interactions were not significant.

The linear components of the model accounted for 57% of the total variation, while the quadratic effects and interactions represented only 3 and 4% of the total variation, respectively (Appendix Table 20). The other experimental variables, \mathbf{X}_1 and \mathbf{X}_4 , had no significant effect upon the available forage.

As the rest period was increased by 14 days there was an increase of 760 kg ${\rm ha}^{-1}$ of available forage. On the other hand, each unit (1.6 kg DM) decrease in grazing pressure resulted in an increase of 650 kg ${\rm ha}^{-1}$ of available forage. The analysis of variance for the wet season of 1980 is presented in Appendix Table 20.

Summary of Available Forage (DM)

Available forage may be considered a more important response variable than aerial biomass since available forage takes into consideration only the components of the vegetation considered edible by the grazing animal. The available forage was estimated by determining the botanical composition of the total aerial biomass and summing the grass and legume components. Over the five seasons during which this study was conducted the available forage was greatly influenced by the environmental factors which are discussed in the aerial biomass section. The experimental variables, days rest (X2) and grazing pressure (X_3) , each had a highly significant effect upon the available forage. The response of available forage to these two experimental variables was essentially linear over the range which was studied. The longer rest period permitted an accumulation of reserves for pasture regrowth and the lower grazing pressure retained more of the aerial parts of both the grasses and legumes affecting mainly the growing points, axillary buds, and traditional leaf area for the production of photosynthate which stimulated subsequent regrowth. It is significant that these two variables seem to act independently as no interactions between them were found within the range of levels in this experiment.

Similarities in responses to the same lengths of rest period and with the same grazing pressures were observed by Maraschin (1975) and Serrao (1976). In each of these two cases interactions were found between these two variables where maximum yields were obtained at high grazing pressures in combination with long rest periods and low grazing pressures with short rest periods. The above studies were conducted with Cynodon dactylon and Desmodium intortum which have quite different growth habits than the grasses and legumes included in this study. Cynodon dactylon is a stoloniferous grass with the

growing points close to the soil surface as compared with guineagrass and elephantgrass, each of which has apical meristems and lateral buds located much higher from the crown. The two grasses included in the current study are more sensitive to levels of defoliation and short rest periods because these grasses do not have rhizomes or stolons to store reserves. The legumes included in the current study are climbing and twining tropical legumes which no doubt are more sensitive to close defoliation than many other species.

Effect of Lengths of Rest Period and Levels of Grazing Pressure on Grass Yield (DM)

The effects of lengths of rest period and levels of grazing pressure on grass yield are presented in Table 6. The grass yield is that available before each grazing cycle and each 56 days for the continuous grazing treatments.

Grass Yield (DM) for the Wet Season of 1978

During this first experimental season no significant effects were shown by any of the four variables $(X_1,\ X_2,\ X_3,\ X_4)$ (Table 6 and Appendix Table 21).

Grass Yield (DM) for the Dry Season of 1978

The grass yield for the dry season of 1978 for each treatment combination is given in Table 6. The grass yield varied from 400 kg DM $\rm ha^{-1}$ to 4550 kg DM $\rm ha^{-1}$, which was found on treatments 26 [28 days grazing, 0 days rest (continuous grazing), 1.6 kg DM on

Table 6. Grass yields (DM) by year, season, and treatment combination.

		Treatments	nts			0101	0101	0101	000	000
	D/G	D/R‡	G/P†	11		1970	1970	1979	1979	1980
No.	(x)	(x ₂)	(X ₃) % BW	kg ha ⁻¹	Reps	‡S/M	‡s/q	#S/M	‡s/q	‡S/M
								- kg ha-1		
1	7	14	3.3	100	1	066	1650	1670	1560	1060
2	21	14	3,3	100	1	1540	2130	2600	2050	2720
3	7	42	3,3	100	П	1340	2160	3590	1930	2980
4	21	42	3,3	100	1	1240	2100	3080	1440	3780
2	7	14	9.9	100	1	1810	2930	3760	3570	3500
9	21	14	9.9	100	1	1130	2940	2410	1950	2020
7	7	42	9.9	100	1	1460	3340	4010	2940	3950
8	21	42	9.9	100	1	1240	3770	5490	4400	5440
6	7	14	3,3	300	1	1940	1270	2590	1720	2110
10	21	14	3,3	300	П	1950	2130	3330	2250	2590
11	7	42	3,3	300	П	1290	2170	3270	2390	3750
12	21	42	3,3	300	П	920	1750	3910	2260	5900
13	7	14	9*9	300	1	1400	1970	2440	2220	2000
14	21	14	9.9	300	1	1630	2020	1790	1600	1720
15	7	42	9.9	300	1	980	3380	5750	5510	6760
16	21	42	9*9	300	1	1790	2460	3490	2560	3680
17	П	0	1.6	0	1	1000	260	260	420	350
18	28	0	1.6	0	П	1380	940	910	390	300
19	1	99	1.6	0	2	1860	3060	5560	3620	7150
20	28	99	1.6	0	2	1470	1720	3920	2570	3820
21	П	0	8.3	0	1	1400	2640	3310	4010	5750
22	28	0	8.3	0	1	1090	2600	3320	3570	4730
23	П	99	8.3	0	2	2080	3370	6530	3790	5440
24	28	99	8,3	0	2	2070	4550	0767	4140	6370

Table 6.--continued.

		Treatments	nts			1978	1978	1979	1979	1980
	n/G+	D/R+	td/5	14		TOTO	2010	2017	7117	7700
No.	(x ₁)	(x ₂)	(x_3) % BW	kg ha	Reps	#S/M	‡s/q	‡S/M	ts/q	#S/M
								- kg ha-1-		
25	-	0	1.6	400	-	1180	670	490		220
26	28	0	1.6	400	-	1110	400	740	390	120
27	1	56	1.6	400	2	1320	2040	4120	2040	3330
28	28	56	1.6	400	2	1520	2250	3890	2410	4010
29	-	0	8.3	400	1	1160	2040	2480	2970	2890
30	28	0	8.3	400	1	1300	1510	2620	2460	3060
31	1	26	8.3	400	2	1440	4260	6530	3580	7480
32	28	26	8.3	400	2	1590	4180	5780	5720	6160
33	1	28	5.0	200	П	1130	1900	2580	2270	2210
34	28	28	5.0	200	1	860	1490	2250	1860	2450
35	14	0	5.0	200	1	1500	1140	1380	1080	1500
36	14	99	5.0	200	П	1930	2870	3760	3300	4040
37	14	28	1.6	200	1	1140	1060	1230	1220	780
38	14	28	8.3	200	1	1390	2010	2750	2470	2600
39	14	28	5.0	0	1	1710	1700	2610	1930	2630
40	14	28	5.0	400	1	1470	1420	2780	2280	2080
41	14	28	5.0	200	e	1270	1780	2370	1640	2290

 $\dagger D/G$ = days grazing, D/R = days rest, G/P = grazing pressure, F = fertilizer. $\sharp \pi/S$ = wet season, D/S = dry season.

offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate] and 24 (28 days grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 0 kg ha⁻¹ of superphosphate), respectively. Both rest period (\mathbf{X}_2) and grazing pressure (\mathbf{X}_3) had an effect upon the grass yield (P < 0.01). The application of superphosphate (\mathbf{X}_4) also had a significant effect at the 10% level of significance. Each of these variables acted independently for grass yield since no interactions occurred.

The linear components of the model accounted for 74% of the total variation, while the quadratic effects and interactions represented only 2 and 1% of the total variation, respectively (Appendix Table 22).

An examination of the individual linear effects shows that the experimental variable, days grazing (X_1) , did not have any effect on the amount of grass produced. The greatest effects were obtained from days rest (X_2) and grazing pressure (X_3) . As the length of rest period increased from zero days (continuous grazing) the amount of grass yield tends to increase, whereas, when the grazing pressure is decreased from 1.6 to 8.3 kg DM on offer/100 kg BW, the grass yield was increased. For each 14 days increase in rest period, there was an increase of 440 kg ha⁻¹ of grass yield. For each increment of decrease in the grazing pressure, there was an increase of 430 kg ha⁻¹ of grass yield. The analysis of variance is presented in Appendix Table 22.

Grass Yield (DM) for the Wet Season of 1979

The grass yield for the wet season of 1979 for all treatment combinations is presented in Table 6. During this season the grass yield varied from 560 kg DM ha $^{-1}$ to 6530 kg DM ha $^{-1}$ for treatment combinations 17 [1 day grazing, 0 days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 0 kg ha $^{-1}$ of superphosphate] and 23 (1 day grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 0 kg ha $^{-1}$ of superphosphate), respectively. Grass yield was again influenced by days rest (X2) and grazing pressure (X3) (P < 0.01), while the experimental variables days grazing and fertilizer level were not significant. There were no interactions between experimental variables during this season.

The linear components of the model accounted for 72% of the total variation, while the quadratic and interaction effects represented only 2 and 3%, respectively (Appendix Table 23). The grass yield was positively related to increasing lengths of rest period and negatively related to increasing amounts of forage on offer to the grazing animals. For each 14 days increase in the rest period, there was an increase of 800 kg ha $^{-1}$ of grass yield; on the other hand, for each unit (1.6 kg DM) decrease in grazing pressure, there was an increase of 430 kg of grass yield. The analysis of variance is presented in Appendix Table 23.

Grass Yield (DM) for the Dry Season of 1979

The grass yield for the dry season of 1979 for each treatment combination is presented in Table 6. Grass yield varied from 210 kg DM ha⁻¹ to 572 kg DM ha⁻¹ for the following treatment combinations: 25 [1 day grazing, 0 days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate] and 32 (28 days grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate), respectively. Again the grass yield was increased by increasing the days of rest and decreasing the grazing pressure (P < 0.01). The variables X_1 and X_4 were not significant and no interactions were found between the experimental variables. The linear components of the model accounted for 57% of the total variation, while the quadratic and interaction effects represented only 2 and 5% of the total variation, respectively (Appendix Table 24).

For each 14 days increase in rest period, there was a corresponding increase of 420 kg ha $^{-1}$ of grass yield, while each unit (1.6 kg DM) decrease in grazing pressure increased the grass yield by 540 kg ha $^{-1}$. The analysis of variance is presented in Appendix Table 24.

Grass Yield (DM) for the Wet Season of 1980

The grass yield (DM) for the wet season of 1980 for each treatment combination is presented in Table 6. Grass yield varied from 120 kg DM ha⁻¹ to 7150 kg DM ha⁻¹ for treatments 26 [28 days grazing, 0 days rest (continuous grazing), 1.6 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate] and 19 (1 day grazing, 56 days rest, 1.6 kg DM on offer/100 kg BW, and 0 kg ha⁻¹ of superphosphate), respectively. Grass dry matter yield was again affected by increasing the number of days rest and decreasing the grazing pressure (P < 0.01).

The other two experimental variables, $\rm X_1$ and $\rm X_4$, were not significant and no interactions were found between the experimental variables. The linear components of the model accounted for 59% of the total variation, while the quadratic and interaction effects represented only 5 and 3% of the total variation, respectively (Appendix Table 25). An increase of one unit (14 days) of rest increased the grass dry matter yield by 870 kg ha⁻¹, while a decrease in the grazing pressure increased the grass dry matter yield by 610 kg ha⁻¹. The analysis of variance is presented in Appendix Table 25.

Summary of Grass Yield (DM)

During the first rainy season (1978), with less than 2 months duration from May 12 to June 30, the experimental variables had no effect upon grass yield.

Beginning with the dry season of 1978 through the last wet season of 1980, the grass yield was positively related to increasing lengths of rest period. The two grasses, guineagrass and elephant-grass, used in this experiment are tall growing species with a high capacity for dry matter production and each of them are favored by long rest periods. As the length of the rest period was increased the dominance of each of these grasses was evident, leaving very little space for other species, such as legumes and weeds. The grass yield also increased with time as these two species of grasses became securely established. The mean grass yield for the wet season of 1978 was 1530 kg DM ha⁻¹, while for the last wet season of 1980, the grass yield was 3630 kg DM ha⁻¹. It is evident that the amount

of grass increased considerably from 1978 to 1980 (Figs. 6, 7, and 8), due mainly to its rapid growth capacity and ability to eliminate the other companion species. Vicente-Chandler (1975) reported that elephantgrass and guineagrass are the most productive tropical grasses reaching values of 78 and 45 tons DM ha $^{-1}$ year $^{-1}$. INIAP (1980) reported that under a cutting system, the rate of growth for elephantgrass and guineagrass is in the order of 166 kg and 149 kg DM ha $^{-1}$ day $^{-1}$, respectively. These values corresponded to those obtained in this experiment during the wet season of 1979 but as the year progressed, these values decreased and reached the lowest rate at the end of the dry season of that particular year, being in the order of 32 and 28 kg DM ha $^{-1}$ day $^{-1}$ for elephantgrass and guineagrass, respectively.

Grazing pressure expressed as the amount of forage offered per 100 kg BW increased the grass yield as the grazing pressure was decreased. The lowest yields were obtained under the highest grazing pressure and the highest yields were obtained in the treatments with the lowest grazing pressure. If the two experimental variables, rest period and grazing pressure are considered in combination, then the lowest grazs yields were obtained under continuous grazing and the highest grazing pressure, while the highest yields were observed on treatment combinations having the longest rest period with the lowest grazing pressure. As the grazing pressure was increased, the amount of plant shoots that were removed by the grazing animal also increased and when this was accompanied by an increase in frequency of defoliation (short rest periods or continuous grazing), the

Effect of rest period and grazing pressure upon grass yield (DM) for the wet season of 1978. Fig. 6.

Contours of grass yield (DM) as affected by length of rest period and levels of grazing pressure in the wet season of 1980. Fig. 7.

Effect of rest period and grazing pressure upon grass yield (DM) for the wet season of 1980. Fig. 8.

intensity of plant removal was the major determinant of grass yield. This was true for both guineagrass and elephanatgrass and the effect of severe defoliation was to reduce the vigor and the regrowth capacity of these two species. At this point, some bare soil areas were observed and weed invasion occurred. This was very evident under short rest periods when combined with high grazing pressure.

The animals had a tendency to selectively graze the grass species during the wet seasons and to selectively graze the legumes during the dry seasons. Similar results have been reported by Humphreys (1978) who observed a selective consumption of Panicum maximum in preference to Stylosanthes guianensis while in the dry season, S. guianensis was well-consumed.

It is well known that tall-growing grasses are very susceptible to a higher degree of defoliation, especially if these species are subjected to low cutting heights or high grazing pressures. Most of the leaves, growing points, and axillary buds are located much higher than on short-growing species. The two tall-growing species in this study have long internodes with the axillary buds located far apart on the stem so they are very vulnerable to intense defoliation.

Effects of Lengths of Rest Period and Levels of Grazing Pressure Upon Legume Yield (DM)

Since one of the main objectives of this research was to determine the optimum combinations of the components of grazing management which would favor the legume component of the pasture and permit a higher order of persistence, the legume yield and the changes which occurred during the five seasons are of primary interest.

Legume Yield (DM) for the Wet Season of 1978

Legume yields for the wet season of 1978 for each treatment combination are presented in Table 7. Legume yield varied from 410 kg DM ha $^{-1}$ to 1380 kg DM ha $^{-1}$ for treatments 2 (21 days grazing, 14 days rest, 3.3 kg DM on offer/100 kg BW, and 100 kg ha $^{-1}$ of superphosphate) and 14 (21 days grazing, 14 days rest, 6.6 kg DM on offer/100 kg BW, and 300 kg ha $^{-1}$ superphosphate), respectively.

Length of rest period was the only factor which appeared to have much effect upon legume yield (P < 0.01). The other three experimental variables, \mathbf{X}_1 , \mathbf{X}_3 , and \mathbf{X}_4 , and all of the interactions were not significant. The linear components of the model accounted for 16% of the total variation, while the quadratic and interaction components represented only 4 and 8% of the total variation, respectively (Appendix Table 26). For each unit (14 days) increase in the rest period, there was an increase of only 60 kg of legume yield. The analysis of variance is presented in Appendix Table 26.

This lack of response to the experimental variables was expected since the wet season of 1978 was very short, so the experimental variables did not have time to create differences in response.

Legume Yield (DM) for the Dry Season of 1978

Legume yield for each treatment combination during the dry season of 1978 is presented in Table 7. The legume yields varied from 380 kg DM ha⁻¹ to 1160 kg DM ha⁻¹ for treatments 28 (28 days grazing, 56 days rest, 1.6 kg DM on offer/100 kg BW, and 400 kg ha⁻¹ of superphosphate) and 24 (28 days grazing, 56 days rest, 8.3 kg DM on offer/

Table 7. Dry matter means for legume by year, season, and treatment combination.

No. (X ₁) No. (X ₁) 2 2 3 3 3 4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ar In	Trending.			1978	1978	1979	1979	1980
	11/18	G/P	ţr.		TOLO	1710	TOLO	1717	1700
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(x ₂)	(x_3) % BW	kg ha-1	Reps	M/S	D/S	N/S	s/q	M/S
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							- kg ha-1		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17	5	100	_	640	620	260	510	480
3 3 7 7 8 9 9 7 7 9 9 9 9 7 9 9 9 7 9 9 9 7 9 9 9 9 7 9 9 9 9 7 9	14	3,3	100	7	410	590	510	330	420
21 6 6 6 7 7 7 7 7 8 2 9 9 7 1 11 1 11 1 2 1 2 1 2 1 2 1 2 1	42	3,3	100	1	1240	590	250	710	150
5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	42	3,3	100	1	580	410	280	350	130
21 21 21 21 21 21 22 23 24 24 24 25 26 27 27 27 27 27 27 27 27 27 27	14	9.9	100	1	520	670	900	049	260
7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	14	9.9	100	1	066	740	099	910	730
21 21 21 21 21 21 21 21 21 21	42	9.9	100	1	1150	680	220	110	20
9 9 7 7 11.1 21.1 21.1 21.1 21.1 21.1 21.1	42	9.9	100	7	029	870	320	310	280
111 7 7 112 21 21 21 21 21 21 21 21 21 21 21 21	14	3,3	300	1	1210	590	200	700	430
111 7 7 113 7 7 114 21 7 7 115 11 11 11 11 11 11 11 11 11 11 11 11	14	3.3	300	1	780	680	006	770	940
12 21 13 7 14 21 15 7 16 21 17 1 18 28 19 28	42	3,3	300	П	1010	650	340	320	80
13 7 14 21 15 17 11 11 11 11 11 11 11 11 11 11 11 11	42	3,3	300	1	009	470	200	210	30
21 5.5 7 7 7 1.7 1 1.8 28 28 28 29 1 10 28	14	9.9	300	1	890	049	400	770	520
25 7 6 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14	9.9	300	1	1380	840	810	650	009
21 27 28 28 28 28 20 28 21 21 21 21 21 21 21 21 21 21 21 21 21	42	9.9	300	1	810	066	350	470	470
28 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42	9.9	300	1	1240	530	190	150	0
18 28 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	1.6	0	1	650	440	270	270	300
19 1 20 28 21 1	0	1.6	0	1	610	430	760	370	260
20 28	56	1.6	0	2	860	240	190	40	0
21 1	26	1.6	0	2	850	240	490	190	0
00	0	8.3	0	1	870	850	620	630	370
72 78	0	8.3	0	1	710	930	490	370	110
1 1	26	8.3	0	2	1150	420	80	40	20
24 28	26	8.3	0	2	1320	1160	950	300	09

Table 7.--continued.

		Treatments	ts			1978	1978	1979	1979	1980
	D/G+	١.	4d/5			7710	7710	7777	7777	7700
No.	(x ₁)	(x ₂)	(X ₃) % BW	kg ha-1	Reps	#8/M	‡s/q	18/M	‡s/q	W/S‡
								- kg ha-1		
25	1	0	1.6	400	1	810	450	450	180	180
56	28	0	1.6	400	1	700	380	240	440	220
2.7	1	99	1.6	400	2	1000	400	140	40	30
28	28	99	1.6	400	2	1180	380	190	150	30
59	1	0	8.3	400	1	530	570	650	640	630
30	28	0	8.3	400	1	1040	890	910	640	980
31	Т	99	8.3	400	2	006	570	420	100	0
32	28	99	8.3	400	2	980	680	260	110	0
33	1	28	5.0	200	1	1330	730	480	490	680
34	28	28	5.0	200	1	260	780	970	780	770
35	14	0	5.0	200	П	1130	260	410	570	320
36	14	99	5.0	200	П	1200	830	650	0	0
37	14	28	1.6	200	1	620	780	740	640	580
38	14	28	8.3	200	1	076	720	800	069	870
39	14	28	5.0	0	П	1140	850	510	780	510
0.	14	28	5.0	400	1	440	650	610	520	420
7	14	28	5.0	200	3	1020	540	580	740	530

 $^+\!D/G$ = days grazed, D/R = days rest, G/P = grazing pressure, F = fertilizer. $^+\!M/S$ = wet season, D/S = dry season.

100 kg BW, and 0 kg ha⁻¹ of superphosphate), respectively. The legume yield was increased as the result of reducing the grazing pressure (P < 0.01). There was an interaction between days grazing (\mathbf{X}_1) and grazing pressure (\mathbf{X}_3) but this interaction did not occur again during the remaining three seasons. There appeared to be no linear effect for days grazing (\mathbf{X}_1), days rest (\mathbf{X}_2), and fertilizer level (\mathbf{X}_4). The linear components of the model accounted for only 31% of the total variation, while the quadratic effects represented only 1% and the interactions 12% (Appendix Table 27).

During the dry season of 1978, there was a tendency for the legume yield to increase as the grazing pressures decreased.

Legume Yield (DM) for the Wet Season of 1979

The legume yield for the wet season of 1979 for each treatment combination is presented in Table 7. The legume yield during the second wet season varied from 80 kg DM ha⁻¹ to 970 kg DM ha⁻¹ for treatments 23 (1 day grazing, 56 days rest, 8.3 kg DM on offer/100 kg BW, and 0 kg ha⁻¹ of superphosphate) and 34 (28 days grazing, 28 days rest, 5.0 kg DM on offer/100 kg BW, and 200 kg ha⁻¹ of superphosphate), respectively.

Only the length of rest period (${\rm X_2}$) and grazing pressure (${\rm X_3}$) were found to have an effect upon legume yield (P < 0.01). There were no effects of ${\rm X_1}$ and ${\rm X_4}$ nor any of the interactions between the experimental variables.

The linear components of the model accounted for 34% of the total variation, while the quadratic and interaction effects represented

only 6 and 7% of the total variation, respectively (Appendix Table 28). During the 1979 wet season, the yield of legumes began to show a pattern associated with the length of the rest period. For each 14 days increase in rest period, there was a decrease of 56 kg ha $^{-1}$ of legume yield. Also, during this season, grazing pressure began to show an effect upon legume yield. For each unit (1.6 kg DM) decrease in grazing pressure, there was an increase of 65 kg ha $^{-1}$ of legume yield. The analysis of variance is presented in Appendix Table 28.

Legume Yield (DM) for the Dry Season of 1979

The legume yield for the dry season of 1979 for each treatment combination is presented in Table 7. Legume yield varied from 0 kg DM ha $^{-1}$ to 910 kg DM ha $^{-1}$ for treatments 36 (14 days grazing, 56 days rest, 5.0 kg DM on offer/100 kg BW, and 200 kg ha $^{-1}$ of superphosphate) and 6 (21 days grazing, 14 days rest, 6.6 kg DM on offer/100 kg BW, and 100 kg ha $^{-1}$ of superphosphate), respectively.

Legume yield was affected by length of rest period (\mathbf{X}_2) (P < 0.01) and by grazing pressure (\mathbf{X}_3) (P < 0.05). Days grazing and fertilizer levels had no significant effect and there were no interactions among the experimental variables. For length of rest period (\mathbf{X}_2) there was both a linear and quadratic effect upon legume yield (P < 0.01). The linear and quadratic components of this experimental variable accounted for 43 and 27% of the total variation, while the interactions among the experimental variables accounted for only 3%, respectively (Appendix Table 29).

The quadratic effect of length of rest period (X_2) strongly suggests that the range of rest periods included in this experiment may have adequately covered the point of maximum legume yield. The highest legume yields were obtained in the region of 14 to 28 days rest and the yields decreased when the rest periods were reduced to zero or increased up to 56 days. The effect of grazing pressure (X_3) appears to be almost linear. For each unit (1.6 kg DM) that grazing pressure was reduced from 1.6 to 8.3 kg DM on offer/100 kg BW, the amount of legume yield increased by 31 kg DM ha⁻¹. The analysis of variance is presented in Appendix Table 29.

Legume Yield (DM) for the Wet Season of 1980

The legume yield for the wet season of 1980 for each species combination is given in Table 7. Legume yields varied from 0 kg DM $\rm ha^{-1}$ for treatments with the longest rest period (56 days) to 980 kg DM $\rm ha^{-1}$ for treatment 30 [28 days grazing, 0 rest period (continuous grazing), 3.3 kg DM on offer/100 kg BW, and 400 kg $\rm ha^{-1}$ of superphosphate].

There was both a linear and quadratic effect of length of rest period (X_2) upon legume yield (P < 0.01). There was a linear effect of grazing pressure (P < 0.05). The effects of days grazing and fertilizer level were not significant and neither were any of the interactions of the experimental variables.

The linear and quadratic effects accounted for 45 and 24% of the total variation, respectively, while the interactions represented only 5% (Appendix Table 30). The quadratic effect of rest period (X_2) gives a better representation of the legume yield which maximizes within the range of 14 and 28 days. As the length of the rest period is either decreased or increased, the legume yield is decreased.

As the grazing pressure decreases, the amount of legume yield increased by $37~\mathrm{kg~ha}^{-1}$. The analysis of variance is presented in Appendix Table 30.

Observations and Summary of Legume Yield (DM)

Some very significant changes occurred in the legume population of these experimental pastures, some of which were recorded and subjected to analysis, whereas others were observations made over the five seasons of this trial. Drastic changes occurred as a result of the treatments imposed from the end of the wet season of 1978 to the end of the wet season of 1980. Some of these observations are recorded here.

When the experiment was initiated on May 12 of 1978, the average legume yield for the period until June 30 was about 928 kg ha $^{-1}$. During this initial period, only rest period showed any effect (P < 0.01) upon legume yield. It is difficult to find any satisfactory explanation for the effect of any experimental variable over this short period of time, but differences in the growth rate of grasses and legumes or the short-term effects of insects like red spider on centro could be a partial explanation (Fig. 9).

During the first dry season (July to December, 1978), the legume yield declined from $640~{\rm kg~ha}^{-1}$ which indicated a linear response to

Effect of rest period and grazing pressure upon legume yield (DM) for the wet season of 1978. Fig. 9.

grazing pressure resulting in various degrees of defoliation, selectivity, and effect of trampling. Defoliation and selectivity were probably the main determinants on the amount of both legumes. A small difference is also recorded in the behavior of these two species in that centro appeared to be more tolerant of heavy grazing pressure and the area covered by glycine increased as the grazing pressure decreased. During the dry season of 1979, it was also observed that the grazing animals were selectively consuming more legumes than during the wet season, probably because of the lower quality and reduced quantity of grass for that period. Humphreys (1978) and Norman (1970) observed similar preferences of animals grazing tropical grass-legume pastures.

During the wet season of 1979 (January-June), the average legume yield was 473 kg ha $^{-1}$ which was considerably lower when compared with the predecing dry season (1978) which can be explained by the much greater rate of growth by both of these companion grasses and by their stronger competitive ability which shaded the legumes, especially in the treatment with long rest periods. During the 1979 wet season, some environmental factors such as humidity, temperature, light, and N played a very important role in the high growth rates of the tropical grasses. The dominance of the C_4 grass species began to manifest itself over the C_3 tropical legumes. Mott stated that "physiological differences between tropical grasses and legumes have important implications for legume-grass associations. Since their optima for light, temperature, and moisture differ, it is much more difficult to select compatible grasses and legumes in the tropics than among temperate species where the responses to

environmental factors are similar." (1981, p. 35-41). He also added that the viney growth habit of several genera of tropical legumes (Calopogonium, Centrosema, some species of Desmodium, Neonotonia, Macroptilium, and Pueraria); they confer an advantage over C₄ tropical grasses in that they are able to climb to the top of the canopy. Devising defoliation strategies that will maintain the regrowth potential of viney legumes is very important.

The advantage of short rest periods during the wet seasons in terms of legume population was evident, giving these species more opportunity to survive, persist, bloom, and produce some seed, even at heavy grazing pressures. Under high levels of defoliation, the competitive and shading effects from both of the grasses was greatly limited. Each of the tropical legumes bloomed profusely at the beginning of the dry season (July-August).

During the dry season of 1979 (July-December), the mean legume yield was 397 kg ha⁻¹. During this second dry season a few pastures with the longest rest periods were almost 100% grass with no legumes nor weeds being observed. The decrease in legume yield may be partly explained by the excessive compititive ability of the grasses and also by the selective pressure on the legumes during this season. Pastures subjected to continuous grazing or short rest periods showed a greater proportion of legume dry matter in the total amount of available forage. Both legume species, centro and glycine, survived the effect of frequency and severity of defoliation when short rest periods were combined with high grazing pressures.

During the month of June and part of July of 1979, a severe attack of red spider was observed, especially on centro, while glycine appeared to be more tolerant and was damaged less than centro which led to the dominance of glycine during this whole season. Linear and quadratic effects of rest period (\mathbf{X}_2) were observed (P < 0.01) while the linear effect of grazing pressure (\mathbf{X}_3) was noted (P < 0.05). Field observations suggested that rest period was a greater determinant of legume survival, productivity, and persistence than was grazing pressure.

For the wet season of 1980 (January-June), there was also a decrease in the average legume yield at 294 kg ha $^{-1}$. In the Jast wet season, some pastures showed a complete dominance of grass, completely excluding both legumes and weeds. These changes were observed on treatments with the longest rest period which was confirmed by the analysis which showed rest period (\mathbf{X}_2) with both linear and quadratic effects (P < 0.01). The effect of grazing pressure (\mathbf{X}_3) was linear (P < 0.05) which suggested that rest period was the major determinant for the survival and productivity of the legumes (Figs.10 and 11).

The treatments with continuous grazing or short rest periods in combination with the highest grazing pressures drastically affected the yields of legumes, grasses, and weeds. This was especially true for the planted grasses and legumes, which were in some cases almost completely eliminated by the close and frequent defoliation which removed the major portion of the young active leaf material and apical meristems leading to a reduction in rate of recovery and ability to

Contours of legume yield (DM) as affected by length of rest period and levels of grazing pressure in the wet season of 1980. Fig. 10.

Effect of rest period and grazing pressure upon legume yield (DM) for the wet season of 1980. Fig. 11.

compete with the invading weed species. At the end of the wet season of 1980, some pasture which were subjected to the most intensive systems of grazing were almost completely invaded by weed species. Whether the lower survival under heavy grazing regimes was due to selective pressure by the animals, trampling, or the competitve advantage of the weeds, the final result was a steady decline in the density of sown species. Pastures which were subjected to moderate levels of rest period and grazing pressures had a higher survival rate, greater vigor, density, and a better legume-grass balance. On the other hand, long rest periods and light grazing pressure permitted the grasses to increase in dominance eliminating other species with a lower growth rate and ability to compete for space, environmental factors, and pressure of the grazing animals. The main concern of tropical legumes is whether they can persist and produce efficiently under the unfavorable effects of the tropical environnent. Some native legumes that appeared on the pastures were included as part of the available forage and of the legume yield. The most important of these were: Desmodium triflorum, D. canum, D. barbatum, and lesser amounts of Calopogonium mucunoides, Phaseolus sp. and Vigna luteola. The following legumes were recorded as part of the weed components since they were almost completely rejected by the grazing animals: Mimosa pudica, Mucuna pruriens, Cassia tora, and C. occidentalis.

Effect of Lengths of Rest Period and Levels of Grazing Pressure on the Yield of Weeds (DM)

The incidence of weed populations would be expected to be related to the seed reserves of different weed species in an experimental site. Whether weeds appear under certain environmental circumstances will to a great extent be determined by the presence and abundance of seed of the different weed species. The results of this experiment appear to be no exception to this rule as the effect of the various grazing management systems was not nearly as consistent as for the two species of grasses and legumes. This will become evident as the results and the analyses are examined.

Yield of Weeds (DM) for the Wet Season of 1978

The yield of weeds for the wet season of 1978 for each treatment combination is presented in Table 8. The yield of weeds varied from 0 kg DM ha $^{-1}$ to 210 kg DM ha $^{-1}$ during the first one and one-half months of this trial.

During the first few weeks of the trial there appeared to be an effect of fertilizer upon the weed population (P < 0.05), but there was no linear effect of days grazing, days rest, and grazing pressure during this period upon the yield of weeds. The quadratic effects of days rest (\mathbf{X}_2) and fertilizer level (\mathbf{X}_4) was also apparent during this period (P < 0.05). An interaction between \mathbf{X}_2 and \mathbf{X}_3 also appeared (P < 0.05) and \mathbf{X}_3 and \mathbf{X}_4 (P < 0.01). These differences in interactions were probably due to seed reserves in the soil over which we exerted very little control at the beginning of the experiment.

Table 8. Dry matter means for weeds for year, season, and treatment combination.

		Treatments	nts							
	D/G	D/RT		F		1978	1978	1979	1979	1980
No.	(x ₁)	(x ₂)	(x_3) % BW	kg ha-1	Reps	‡s/M	‡s/q	ts/M	‡s/a	‡s/M
								- kg ha		
1	7	14	3,3	100	1	150	130	860	790	920
2	21	14	3.3	100	1	10	0	06	140	210
3	7	42	3.3	100	1	40	0	0	0	0
4	21	42	3.3	100	1	09	10	130	09	20
2	7	14	9.9	100	1	30	80	170	250	420
9	21	14	9.9	100	1	40	20	40	10	10
7	7	42	9.9	100	1	06	0	0	0	10
œ	21	42	9.9	100	1	30	0	10	0	40
6	7	14	3,3	300	1	0	40	220	100	420
10	21	14	3,3	300	1	110	110	200	200	480
11	7	42	3,3	300	1	0	09	0	0	0
12	21	42	3,3	300	1	70	0	20	30	0
13	7	14	9.9	300	1	0	0	10	10	30
14	21	14	9.9	300	1	180	70	80	40	06
15	7	42	9.9	300	1	70	20	0	0	10
16	21	42	9.9	300	1	40	90	20	09	0
17	1	0	1.6	0	1	90	40	380	790	1260
18	28	0	1.6	0	1	0	20	370	510	890
19	7	99	1.6	0	2	20	10	10	0	0
20	28	26	1.6	0	2	09	0	0	30	0
21	П	0	8.3	0	7	0	40	10	40	140
22	28	0	8,3	0	1	0	40	100	20	20
23	1	26	8.3	0	2	0	0	10	10	0
24	28	99	8.3	0	2	09	30	40	10	0

Table 8.--continued.

		Treatments	ts			1070	1070	1070	1070	1000
	D/G	D/R‡	G/P‡	F+		1270	1310	12/12	T2/2	1200
No.	(x ₁)	(x ₂)	(x_3) % BW		Reps	#S/M	ts/q	#S/M		M/S‡
								- kg ha -1		
25	1	0	1.6	400	1	40	80	440		2600
56	28	0	1.6	400	1	90	0	220	240	2470
27	П	26	1.6	400	2	30	0	10	09	190
28	28	99	1.6	400	2	0	0	0	0	0
59	1	0	8,3	400	1	0	10	20	30	150
30	28	0	8,3	400	1	90	100	09	40	110
31	1	99	8,3	400	2	120	30	0	20	0
32	28	26	8,3	400	2	130	0	10	0	0
33	1	28	5.0	200	1	100	40	20	20	70
34	28	28	5.0	200	1	150	190	320	240	200
35	14	0	5.0	200	1	20	10	20	0	10
36	14	99	5.0	200	1	0	40	30	20	0
37	14	28	1.6	200	1	70	20	200	200	830
38	14	28	8,3	200	1	210	160	100	30	80
39	14	28	5.0	0	П	0	0	100	10	40
0,	14	28	5.0	400	1	40	30	20	0	09
7	14	28	5.0	200		70	30	20	30	100

 $^4\mathrm{D}/G$ = days grazing, D/R = days rest, G/P = grazing pressure, F = fertilizer. $^4\mathrm{D}/S$ = wet season, D/S = dry season.

During the first season a significant linear, quadratic, and interaction effects were found which accounted for 16, 14, and 23% of the total variation, respectively (Appendix Table 31).

Yield of Weeds (DM) for the Dry Season of 1978

The yield of weeds for the dry season of 1978 is presented in Table 8 for all the treatment combinations. The yield of weeds varied from 0 kg DM ha $^{-1}$ to 190 kg DM ha $^{-1}$. There is a linear effect of days rest ($\rm X_2$) on the yield of weeds (P < 0.01), but the linear effects of $\rm X_1$, $\rm X_3$, and $\rm X_4$ were not significant. A quadratic effect of $\rm X_2$ was also noted (P < 0.06) and no interactions between the experimental were found. The linear and quadratic components of the model accounted for 16 and 22% of the total variation, respectively, while the interaction effects represented only 3% of the total variation (Appendix Table 32). The yield of weeds tended to decrease as the length of the rest period was increased from 0 to 56 days, but this response was very small.

Yield of Weeds (DM) for the Wet Season of 1979

The yield of weeds for the wet season of 1979 for each treatment combination is presented in Table 8. The yield of weeds varied from 0 to 860 kg DM ha $^{-1}$. It was during this period that the effects of rest period and grazing pressure upon the yield of weeds began to emerge. There was a linear effect of rest period (X $_2$) and grazing pressure (X $_3$) upon the yield of weeds (P < 0.01). There was also a significant interaction of X $_2$ and X $_3$ (P < 0.01). The length of

grazing period and fertilizer level had no effect upon the yield of weeds. The linear and interactions components of the model accounted for 35 and 17% of the total variation, respectively (Appendix Table 33).

The yield of weeds tended to decrease as the length of the rest period increased from continuous grazing to 56 days of rest, and a similar trend was observed as the grazing pressure increased from 8.3 to 1.6 kg DM on offer/100 kg BW. Each unit of rest (14 days) decreased the yield of weeds by 50 kg ha $^{-1}$ and for each unit increase in grazing pressure the yield of weeds was decreased by 43 kg ha $^{-1}$. The analysis of variance is presented in Appendix Table 33.

Yield of Weeds (DM) for the Dry Season of 1979

The yield of weeds during this season varied from 0 to 1730 kg $\,$ DM $\,{\rm ha}^{-1}$ (see Table 8).

The number of days grazing (X_1) , days rest (X_2) , and grazing pressure (X_3) affected the yield of weeds (P < 0.01). There were also significant interactions between $X_1 \times X_2$, $X_2 \times X_3$, and $X_1 \times X_3$. The linear and the interaction components of the model accounted for 35 and 30% of the total variation, respectively, while the quadratic component represented only 6% (Appendix Table 34). The yield of weeds decreased as the length of grazing period, length of rest period, and the grazing pressure was increased.

Yield of Weeds (DM) for the Wet Season of 1980

The yield of weeds for the 1980 wet season is presented in Table 8. The yield of weeds varied from 0 to 2600 kg DM ha⁻¹. The yield of weeds was affected by days rest (X_2) , grazing pressure (X_3) , and fertilizer level (X_4) (P < 0.01). There was also a quadratic component for grazing pressure (X_3) (P < 0.01). The interactions between $X_2 \times X_3$, $X_2 \times X_4$, and $X_3 \times X_4$ were also significant at the 1% level of probability. The linear, quadratic, and interaction components of the model accounted for 45, 9, and 30% of the total variation, respectively (Appendix Table 35). The yield of weeds tends to decrease as the length of the grazing period and rest period increases, as was also the case with increasing grazing pressure. A positive trend was also observed as the fertilizer level was increased.

Observations and Summary of Yield of Weeds

During the five seasons during which this experiment was conducted from May, 1978 to May, 1980, some of the most drastic changes which occurred were observed in the yield of weeds.

During the first wet season (May-June, 1978), the main effects and interactions which occurred can probably be explained on the basis of the seed reserves of certain species of weeds at the experimental site. The fact that the application of fertilizer appeared to have an effect while no other experimental variable manifested itself is significant. It is quite well known that certain weed species respond readily to fertilizer treatments and although

the yields of weeds were low during the first season, there presence in response was noteworthy. During the dry season of 1978, there was a quadratic response to P fertilizer and it appeared that some species of weeds were the only species which responded positively to P. There was also some evidence that the yield of weeds was responding during the first dry season to the length of rest period (X_2) , since there was a decline in the weed population as the length of rest period increased. This may have been due to the competition from the small-growing tropical grasses (Fig. 12).

During the wet season of 1979, the effect of days rest (\mathbf{X}_2) and grazing pressure (\mathbf{X}_3) resulted in a decline of the yield of weeds $(\mathbf{P} < 0.01)$. There was also a strong interaction between these two variables $(\mathbf{P} < 0.01)$. This interaction suggests that the yield of weeds is reduced by increasing the length of the rest period in association with low grazing pressures. When shorter rest periods or continuous grazing are combined with high grazing pressure, there was an increase in the yield of weeds. It was evident that short rest periods and high grazing pressures had a detrimental effect upon the pasture. Weeds were encouraged due to the opening of the sward and by the selective grazing of the more palatable species. Most of the weedy species were not consumed nor were they much affected by the trampling by the grazing animals. The mean dry matter yield for the weeds was 94 kg ha $^{-1}$.

During the dry season of 1979, increases in the days grazing (\mathbf{X}_1) , days rest (\mathbf{X}_2) , and grazing pressure (\mathbf{X}_3) resulted in a decline in the yield of weeds (P < 0.01). The experimental variables, \mathbf{X}_2 and \mathbf{X}_3 ,

Effect of rest period and grazing pressure upon yield of weed (DM) for the wet season of 1978. Fig. 12.

appeared to be the principal determinants of the yield of weeds. There were also interactions between $X_1 \times X_2$, $X_1 \times X_3$, and $X_2 \times X_3$, which indicated that the yield of weeds was reduced by increasing the rest period with short grazing period and also by increasing the rest period with low grazing pressure. When long grazing periods are combined with short rest periods, there is an increase in the yield of weeds and this also occurred with short rest periods and high grazing pressure. These last two interactions depressed the amount of grass and legume dry matter which favored the weeds. There was an increase in the average yield of weeds to 125 kg DM ${
m ha}^{-1}$ which suggested that the weed problem was increasing with time. During the wet season of 1980, the linear effects of rest period (X_2) , grazing pressure (X_3) , and P fertilizer $(X_{\underline{\lambda}})$ were very evident (P < 0.01). There was also a quadratic effect of $\rm X_{\rm q}$ (P < 0.01). The interactions between $X_2 \times X_3$, $X_2 \times X_4$, and $X_3 \times X_4$ were also significant (P < 0.01). From the results of these analyses, it appeared that days rest and grazing pressure were the principal determinants of the yield of weeds (see Figs. 13 and 14). The interactions indicate that the yield of weeds declined as the rest period increased in combination with low grazing pressures, while the yield of weeds increased when short rest periods were combined with high grazing pressures. Weeds apparently respond positively to increasing levels of P. It was also observed that when short rest periods were combined with high fertilizer levels and high grazing pressures, that the vield of weeds increased considerably reaching values of 2600 and $2470 \text{ kg DM ha}^{-1}$. Near zero levels of weeds were found with treatments

Contours of yield weed (DM) as affected by length of rest period and levels of grazing pressure in the wet season of 1980.

Effects of rest period and grazing pressure upon yield of weed (DM) for the wet season of 1980. Fig. 14.

with long rest periods and/or low grazing pressures with low P levels. It is well known that tall-growing grasses and climbing legumes have the potential to exploit the soil and aerial environments which may limit the growth of companion or invading species, especially when the management practices favor their maximum production. Frequent and intensive defoliation of the two species may be highly detrimental to their vigor and regrowth capacity, so that the sward can easily be dominated by undesirable species.

Maraschin (1976) reported similar results with weeds which were affected by the rest period and grazing pressure and he concluded that short rest periods and high grazing pressure create the most favorable conditions for weeds invasion.

Jensen and Schumacher (1970) reported that the botanical composition is not only affected by the grazing animal, but also by some environmental factors such as the season, rainfall, temperature, and soil nutrients which may allow certain weedy species to invade the pasture sward.

The predominant weed species in this study were: Sida acuta,

Solanum carolinensis, Amaranthus sp., Capsicum sp., Aescplepias sp.,

Mimosa pubica, Cassia tora, C. occidentalis (broadleaf weeds);

Paspalum fasciculatum, P. paniculatum, P. conjugatum, Digitaria

sanguinalis, Eleusine indica (Grasses); and Cyperus rotundus (Sedge).

Some of these weeds were also reported by Santillan (1971) growing
in Jaraguagrass (Hyparrhenia rufa).

Visual Estimation of Forage Components

Visual estimations of forage components were made as part of a double sampling procedure which was checked against the botanical separations. This section presentes the results for the visual estimations of the percentage grass and the percentage legume. These estimations were made and adjusted statistically with the use of a linear regression model for each of the 41 treatments and for each of the five seasons.

Visual Estimation of Percentage Grass

The visual estimations of the percentage grass on a dry matter basis are given in Table 9 for each treatment combination and for each season. In the wet season of 1978, the percentage grass varied from 50 to 80% which represented the variation that occurred during the first two and one-half months of the experiment. There were no significant effects of treatment during this first season. The analysis of variance is presented in Appendix Table 36.

In the dry season of 1978, the visual estimates are also presented in Table 9, and the percentage grass varied from 52 to 89%. The linear effects of rest period and grazing pressure (P < 0.01) became evident during the first dry season, but the effects of days grazing and fertilizer level were not significant. Also there were no interactions between the experimental variables. The linear components of the model accounted for 64% of the total variation, while the quadratic and interaction effects represented 1 and 6% of the total variation, respectively (Appendix Table 37). During the 1979 season,

Visual estimation of dry matter grass percent for year, season, and treatment combination. Table 9.

		Treatments				1078	1070	1070	1070	1000
	D/G	D/R‡	P.	F+ .		7310	7210	1212	12/2	1900
No.	(x ₁)	(x ₂)	(X ₃) % BW	kg ha_1	Reps	ts/M	‡s/q	#S/M	‡s/q	‡S/M
								%		
1	7	14	3.3	100	1	58	69	53	53	45
2	21	14	3.3	100	1	80	78	78	81	77
3	7	42	3,3	100	1	20	77	90	70	93
4	21	42	3,3	100	П	70	80	87	82	95
2	7	14	9*9	100	1	9/	78	92	79	75
9	21	14	9.9	100	1	20	89	72	89	69
7	7	42	9.9	100	1	51	81	91	94	98
8	21	42	9.9	100	1	99	79	88	91	90
6	7	14	3.3	300	1	63	99	72	65	67
10	21	14	3,3	300	П	65	89	73	67	61
11	7	42	3,3	300	1	09	9/	98	84	95
12	21	42	3,3	300	1	20	80	87	89	98
13	7	14	9*9	300	1	63	72	80	69	74
14	21	14	9.9	300	П	20	63	63	99	69
15	7	42	9.9	300	1	20	89	91	88	88
16	21	42	9.9	300	1	55	75	92	90	100
17	1	0	1.6	0	1	99	59	94	27	16
18	28	0	1.6	0	1	29	57	65	30	26
19	1	26	1.6	0	2	69	82	95	97	100
20	28	99	1.6	0	2	63	77	91	90	100
21	1	0	8.3	0	1	63	69	81	82	88
22	28	0	8.3	0	1	09	99	81	88	96
23	1	99	8,3	0	2	70	89	96	86	66
54	28	26	8.3	0	2	54	75	78	06	86

Table 9.--continued.

No. (x_1)					00000	0 8 9 8	4844		
	D/R‡	G/P†	F		1978	1978	1979	1979	1980
	(x ₂)	(x ₃) % BW	kg	Reps	#S/M	‡s/d	‡s/M	‡s/q	#S/M
							6%		
Н	0	1.6	400	П	09	52	34	1.5	7
28	0	1.6	400	-1	53	54	61	35	10
	26	1.6	400	2	57	83	96	95	91
28 28	99	1.6	400	2	09	82	94	16	66
1	0	8,3	400	I	73	77	78	79	92
28	0	8,3	400	I	53	58	71	77	70
Т	26	8,3	400	2	26	85	92	96	100
28	99	8,3	400	2	26	83	06	94	100
П	28	5.0	200	1	40	69	81	80	71
28	28	5.0	200	I	26	99	09	19	9
14	0	5.0	200	1	53	63	74	62	81
	99	5.0	200	П	63	77	84	66	100
37 14	28	1.6	200	1	09	55	58	52	29
14	28	8,3	200	1	20	29	73	75	63
14	28	5.0	0	П	26	62	74	99	92
14	28	5.0	400	1	9/	29	79	81	80
14	28	5.0	200	3	55	72	74	62	73

the percentage grass tended to increase as the length of rest period increased and to decrease as the grazing pressure increased. The analysis of variance is presented in Appendix Table 37.

For the wet season of 1979, the percentage grass varied from 34 to 96%. Again the length of the rest period (\mathbf{X}_2) and grazing pressure (\mathbf{X}_3) affected the percentage grass $(\mathbf{P} < 0.01)$ and there were also significant interactions for $\mathbf{X}_1 \times \mathbf{X}_3$ and $\mathbf{X}_2 \times \mathbf{X}_3$ $(\mathbf{P} < 0.01)$. The linear components of the model accounted for 61% of the total variation, while the quadratic and interaction effects represented 2 and 20% of the total variation, respectively (Appendix Table 38). Again, the percentage grass tended to increase as the length of the rest period increased, while increases in grazing pressure tended to reduce the percentage grass. The analysis of variance is presented in Appendix Table 38.

During the dry season of 1979, the spread in the percentage grass has now increased from 15 to 99%. The days rest (X_2) and grazing pressure (X_3) were even more evident during the fourth season and there were also significant interactions between $X_2 \times X_3$ (P < 0.01). The effect upon percentage grass of days grazing and fertilizer level were nil.

The linear components of the model in the dry season of 1979 accounted for 68% of the total variation, while the quadratic and interaction effects represented 1 and 17%, respectively (Appendix Table 39). Again the percentage grass tended to increase as the length of rest period increased, and to decrease as the grazing pressure was increased.

During the wet season of 1980, which was the final season of the experiment, the percentage grass ranged from 7 to 100%. The linear and quadratic effects of days rest (\mathbf{X}_2) and grazing pressure (\mathbf{X}_3) were very evident $(\mathbf{P} < 0.01)$ and there was also a strong interaction between $\mathbf{X}_2 \times \mathbf{X}_3$. Again days grazing (\mathbf{X}_1) and level of fertilizer (\mathbf{X}_4) had no effect. The linear components of the model accounted for 64% of the total variation, while the quadratic and interaction effects represented 7 and 19%, respectively (Appendix Table 40).

Visual estimation of percentage grass was recorded on the same dates that grass yields were taken. Some rather drastic changes occurred over time and the effects of treatments from the beginning of the experiment through the last grazing season are summarized below.

During the first wet season (May-June) of 1978, no effects of treatments were recorded, whereas in the last wet season of 1980, both linear and quadratic effects (P < 0.01) of days rest (X_2) and grazing pressure (X_3) as well as a significant interaction between $X_2 \times X_3$ were very evident. While it is not certain that two years are sufficient to produce stable associations, it is clear that both grasses (elephantgrass and Guineagrass) are very responsive to days rest and to grazing pressure. The relationship of these two experimental variables is obviously curvilinear (see Figs. 15, 16, and 17). Low rest periods resulted in swards with 100% grass, whereas these tall-growing grasses almost eliminated under continuous, intensive grazing. Each of these species has a high growth capacity and the ability to

Effect of rest period and grazing pressure upon grass percentage for the wet season of 1978. Fig. 15.

Contours of grass percentage as affected by levels of rest periods and levels of grazing pressure in the wet season of 1980. Fig. 16.

Effect of rest period and grazing pressure upon grass percentage for the wet season of 1980. Fig. 17.

use more efficiently the environmental factors such as light, temperature, moisture, nutrients, and space, producing a highly competitive situation, and finally eliminating the less agressive or unadapted companion species.

The degree of defoliation as represented in this experiment by the intensity of grazing pressure also had a marked effect upon the percentage grass. Again the relationship is quadratic as shown by Figs. 15, 17, and 18.

Harris (1978) mentioned that close, continuous defoliation leads to a more species-rich association dominated by species with prostrate, rhizomatous, stoloniferous or basal rosette habit, while tall species tend to disappear. The dominance or suppression of tall-growing species could largely be controlled by the degree of defoliation permitting or not permitting light penetration to levels where prostrate species dispose their leaf canopies.

The percentage grass at the beginning of the experiment was about 60%, while during the last wet season (1980), the mean percentage grass was 79% which included a spread of from 7 to 100% grass, depending upon the treatment combination. Low grazing pressure in combination with long rest periods produced swards with almost 100% grass, whereas combinations of high grazing pressure and short rest periods or continuous grazing resulted in almost a complete elimination of the grass component. These results were obtained notwithstanding that it is well known that these two species are very well adapted to the environmental conditions of the region.

It is also of interest to note that the experimental variables included in the model accounted for over 90% of the total variability in the percentage of grass in the mixture.

Visual Estimation of Percentage Legume

The visual estimate of percentage of legumes in the mixture is found in Table 10 for each treatment combination and for the five seasons during which this experiment was conducted.

For the first experimental season (May-June of 1978), no significant effects due to the treatments were found. The analysis of variance is presented in Appendix Table 41. As expected, the second order model accounted for only about 12% of the total variability in percentage legume.

During the dry season of 1978, the percentage legume varied from 10 to 45%. Linear effects of days grazing (X_1) (P < 0.05) and days rest (X_2) and grazing pressure (X_3) (P < 0.01) began to appear in the percentage legume. The effect of X_4 was nil and no interactions among the experimental variables were found. The linear components of the model accounted for 62% of the total variation, while the quadratic and interaction effects represented 1 and 5%, respectively (Appendix Table 42).

The percentage legume tended to increase with increasing length of grazing period while a negative relationship was observed as the length of the rest period increased. The percentage legume also decreased as the grazing pressure decreased. The analysis of variance is presented in Appendix Table 42.

Table 10. Visual estimation of dry matter legume percent for year, season, and treatment combinations.

		Treatments	nts			1070	0101	0201	0101	0001	
	D/G	D/R‡	G/P†	F		1978	19/8	1979	1979	1980	- 1
No.	(x ₁)	(x ₂)	(X ₃) % BW	k 8	Reps	ts/M	‡s/q	#S/M	‡s/q	‡S/M	
								%			1 1
П	7	14	3.3	100	П	33	24	19	18	20	
2	21	14	3,3	100	1	18	22	18	15	15	
e	7	42	3,3	100	1	97	23	10	30	7	
4	21	42	3.3	100	1	25	19	6	14	4	
2	7	14	9*9	100	П	21	19	19	13	13	
9	21	14	9.9	100	1	97	27	25	31	29	
7	7	42	9.9	100	П	43	19	6	9	П	
œ	21	42	9.9	100	1	30	20	11	6	00	
6	7	14	3,3	300	П	36	32	19	30	20	
10	21	14	3,3	300	1	2.7	26	21	25	26	
11	7	42	3,3	300	П	40	22	14	16	2	
12	21	42	3,3	300	1	43	20	12	6	2	
13	7	14	9.9	300	1	36	27	19	28	24	
14	21	14	9.9	300	1	40	30	32	30	25	
15	7	42	9.9	300	1	43	30	6	11	11	
16	21	42	9.9	300	1	42	20	9	7	0	
17	1	0	1.6	0	П	38	36	23	18	16	
18	28	0	1.6	0	1	32	38	28	26	18	
19	П	99	1.6	0	2	38	17	2	e	0	
20	28	99	1.6	0	2	32	23	6	00	0	
21	1	0	8.3	0	1	36	28	18	16	80	
22	28	0	8.3	0	1	40	32	15	11	e	
23	1	99	8.3	0	2	29	10	8	2	П	
24	28	26	8.3	0	2	42	23	21	6	2	1
								-			T

Table 10. -- continued.

		Treatments	ts							
	D/G		G/P+	+4		1978	1978	1979	1979	1980
No.	(x ₁)	(x ₂)	(X ₃) % BW	kg ha_1	Reps	‡S/M	‡s/q	‡s/M	‡s/q	ts/M
								%		
25	1	0	1.6	400	1	33	41	34	6	6
56	28	0	1.6	400	1	38	45	24	43	13
27	1	26	1.6	400	2	35	17	2	3	2
28	28	26	1.6	400	2	40	18	9	6	1
29	1	0	8.3	400	1	22	26	21	19	18
30	28	0	8,3	400	1	07	38	26	21	26
31	1	26	8.3	400	2	38	14	7	3	0
32	28	99	8.3	400	2	40	17	6	9	0
33	1	28	5.0	200	1	53	28	17	18	26
34	28	28	5.0	200	1	33	29	28	30	25
35	14	0	5.0	200	1	43	36	24	37	18
36	14	99	5.0	200	1	36	21	14	0	0
37	14	28	1.6	200	1	33	29	30	27	30
38	14	28	8,3	200	1	36	26	23	23	32
39	14	28	5.0	0	1	43	38	21	33	22
40	14	28	5.0	400	1	21	31	20	19	17
41	14	28	5.0	200	e	37	25	24	21	23

 $\dagger D/G$ = days grazing, D/R = days rest, G/P = grazing pressure, and F = fertilizer rate. $\sharp M/S$ = wet season, D/S = dry season.

During the wet season of 1979, the percentage of legume varied from 3 to 34%. The linear effect of days rest (\mathbf{X}_2) and for the interaction of \mathbf{X}_2 x \mathbf{X}_3 was significant. There were no direct effects of days grazing (\mathbf{X}_1) , grazing pressure (\mathbf{X}_3) , and fertilizer level (\mathbf{X}_4) . The linear components of the model accounted for 61% of the total variation, while the quadratic and interaction effects represented 4 and 9% of the total variation, respectively (Appendix Table 43). Again the percentage of legume tended to decrease with increasing lengths of rest period.

During the dry season of 1979, the percentage legume varied from 2 to 43%. The number of days grazing (X_1) had a linear effect $(P \le 0.05)$ upon the percentage legume and the length of the rest period (X_2) also had an effect upon percentage legume $(P \le 0.01)$. The experimental variables X_3 and X_4 had no effect and there were no interactions among the experimental variables. The linear components of the model accounted for 48% of the total variation, while the quadratic and interaction effects represented 16 and 3% of the total variation, respectively (Appendix Table 44). Again the legume percentage tended to increase with increasing lengths of grazing period while the reverse was true for increasing lengths of rest period.

During the wet season of 1980, the percentage legume had begun to stabilize and varied from 0 to 32%. The length of rest period (X_2) showed both a strong linear and quadratic effect upon the percentage legume in the mixture. There appeared to be little effect of days grazing (X_1) , grazing pressure (X_3) , and fertility level (X_4)

upon percentage legume. No interactions among the experimental variables were observed. The linear and quadratic components of the model accounted for 46 and 27% of the total variation, respectively, while the interaction effects represented only 2% (Appendix Table 45).

The percentage of legume tended to decrease up to a certain length of rest period and then increased again. The analysis of variance is presented in Appendix Table 45.

A summary of the effects of the experimental variables upon percentage legume is discussed below.

The overall percentage of legume in the mixtures decreased with time but the effect of the experimental variables appeared to reach some stability by the end of the fifth grazing period. The experimental variable having the greatest effect upon the percentage legume was the length of rest period (X_2) if we examine the trends from the wet season of 1978 through the wet season of 1980.

During the wet season of 1980, it is clearly evident that the length of rest period is the factor most influential in determining the percentage legume. The highest percentage legume appears to occur during rest periods of 14 to 28 days and under moderate conditions of grazing pressure. Both extremely short or long rest periods were highly detrimental to the legume population with the greatest destruction occurring for rest periods of 42 days or more. This situation can probably best be explained by the aggressiveness of both of the companion grasses especially during the wet season when the environmental conditions were more favorable for maximum grass

growth. Rest periods of 28 days appeared to be most appropriate for grass-legume yield and balance because the higher values for legume percentage at the end of the wet season of 1980 were recorded on pastures with 28 days rest followed by those which had a rest period of 14 days or continuous grazing. Pastures with 42 or 56 days rest showed zero or very low legume percentages. These results are somewhat contrary to those found by Maraschin (1975) and Serrao (1976) who reported that Desmodium intortum increased with the length of rest period when grown in association with Cynodon dactylon. The results obtained by these authors can probably be explained by the fact that the competitive grass is a low-growing species which did not have nearly the destructive effect upon the associated legume. Zapata (1981) and INIAP (1980) reported that guineagrass-glycine pastures with more than six years maintained an acceptable balance of both species with 25% or more of legume when these pastures were subjected to a rotational grazing system of 28 days grazing and 28 days rest.

In this experiment, the percentage legume was also responsive to length of grazing (P < 0.05) for the dry season of 1978 and the wet and dry season of 1979, but this effect disappeared during the last season of 1980. Both of the legumes in this study, centro and glycine, tended to increase as the length of grazing was increased especially under the continuous grazing where due to frequent defoliation, the grass-legume percentage was more stable but declined during the entire course of the experiment.

Grazing pressure appeared as a significant factor (P < 0.01) only during the dry season of 1978 where legume percentage was more responsive to higher levels of grazing pressure. While the grazing pressure decreased, the legume percentage also showed a declining trend. During the remaining four seasons of the experiment, no significant effects of this variable were observed.

The effects of rest period (X_2) and grazing pressure (X_3) on legume percentage is presented in Figs. 18 and 20 for the wet season of 1978 and the wet season of 1980, respectively. The contours of the response surface of percentage legume appears in Fig. 19 for the wet season of 1980.

Percentage legume appears to be always higher than the actual legume yield. This may be explained by the plants growth habit, distribution on the soil surface and upon the associated grases, and finally by their morphological characteristics (broadleaves) which leads the observer to overestimate the actual percentage of tropical legumes. This is evident if we compare the response surfaces for legume yield and percentage legume in Figs. 11 and 20.

Effect of rest period and grazing pressure upon legume percentage for the wet season of 1978. Fig. 18.

Contours of legume percentage as affected by length of rest period and levels of grazing pressure in the wet season of 1980. Fig. 19.

Effect of rest period and grazing pressure upon legume percentage for the wet season of 1980. Fig. 20.

CHAPTER V SUMMARY AND CONCLUSIONS

A grazing trial was conducted at the Estacion Experimental Tropical Pichilingue, belonging to Instituto Nacional de Investigaciones Agropecuarias (INIAP) and located 7 km from Canton Quevedo, at 1° 06' S Lat. and 79° 21' W Long. The soil is classified as Torripsamments. The experiment covered an area of 7.3 ha, which was subdivided into 51 individual pastures, each large enough to be grazed by at least one animal during the designated grazing period. Pasture sizes ranged from 500 to 4000 m²; the larger area provided for the continuous grazing treatments.

Land preparation for the experimental area began in May of 1977, after existing vegetation was eliminated and plowed under. In early October of the same year, a mixture of glycine and centro was sown at the rates of 3.0 and 6.0 kg ha⁻¹ in rows spaced 1.4 m apart. Two weeks later guineagrass and elephantgrass were planted vegetatively between the rows of the legumes.

Four experimental variables were studied at each of five levels, namely, days grazing: 1, 7, 14, 21, and 28 days; days rest: 0, 14, 28, 42, and 56 days; grazing pressure: 1.6, 3.3, 5.0, 6.6, and 8.3 kg dry matter on offer/100 kg BW; and levels of phosphorus fertilization: 0, 100, 200, 300, and 400 kg ha $^{-1}$ of superphosphate.

A modified non-rotatable central composite response surface design was used which included 41 selected treatment combinations.

Certain treatments were replicated which accounted for the 51 experimental units.

The collection of data started in May 1978 and ended in June 1980. Aerial biomass (DM), available forage (DM), grass yield (DM), legume yield (DM), yield of weeds (DM), grass percentage and legume percentage were estimated for each grazing cycle by a double-sampling procedure. During the first 3 1/2 months, 15 random observations of one m each were taken with a forage disk meter. From these sampling units three were randomly selected and clipped at ground level for actual yield determinations (DM) and percent composition. From September 1978 the number of samples taken was increased to 30 units of the same size and five sampling units out of the 30 were randomly selected and clipped for the above determinations. These samples were later hand separated into their components and dried for 20 hours. The sum of the dry weights of the components yielded the total dry weight of the sample. These values were used for aerial biomass (DM), available forage (DM), and for the individual component yields (DM). Estimations for growth during grazing were made to achieve the total available forage (DM).

Visual estimates of botanical composition were also taken in order to determine the amount of the individual components in terms of percentage. The visual estimate of percent yield was made for the components grasses, legumes, and weeds.

From the results of this experiment based on the information obtained from the responses which were measured, the following conclusions appear to be justified.

' Aerial biomass (DM) and available forage (DM) were increased as the rest periods increased and grazing pressure decreased (forage

dry matter on offer was increased). No interactions between these two factors were found, suggesting that longer rest periods and lower grazing pressures independently were required to maintain high dry matter production.

Grass (DM) yield and grass percentage appeared to be highly sensitive to short rest periods and high grazing pressures. The negative influence of increased grazing pressure upon the grass component was partially offset by increasing the rest periods.

Legume (DM) yields and legume percentages were highly sensitive to lengths of rest period and less sensitive to high grazing pressures. Short rest periods favored legume content, but its greatest contribution appeared to be near the middle range of rest periods. This response apparently is independent of length of grazing period.

Legume (DM) yield and legume percentage showed a slight decline during the five experimental seasons, while grass yield (DM) and grass percentage increased during the same period of time.

The weed component was reduced by long rest periods and by low grazing pressures. Interactions occurred between these two variables. Both high grazing pressures and short rest periods were responsible for increasing the yield of weeds (DM). The results of this study suggest that a grazing management system which combines a moderate rest period and a moderate level of grazing pressure would be an optimum management strategy to maintain a low amount of weeds, a large amount of legumes and high yields of available forage. The other two variables, days grazing and levels of phosphorus fertilization had negligible effects upon the response of the pasture sward.

APPENDIX

Analysis of varjance, regression coefficients and probabilities for aerial biomass (g $\mathrm{DM/m}^2)$ for the wet season of 1978. Table 11.

	-RATIO PRUB 0, 58 0, 6746 1, 29 0, 2873 1, 58 0, 1327	F-RATIO PRUB 0.224 0.9990	PR08 1-2-60 0-0001 1-2-60 0-0001 1-2-60 1-0001 1-2-60 1-00	F-RATIO PRUB 1.30 0.2861 2.29 0.2861 0.93 0.4758 1.14 0.3584
	R-SQUARE F 0. 2076 0. 0401 0. 1330 0. 3807	MEAN SQUARE F 2706. 2494 12075. 9974 5308. 9572	STD DEV 18. 4280 5. 59548 6. 59548 11. 2784 11. 2784 11. 2784 11. 2784 11. 2784 11. 2784	MEAN SRUARE 6895, 7765 12180, 5832 4913, 8862 6040, 0834
252. 2075 72. 0626 0. 38071262 0. 28889736	TYPE I SS 64066. 7074 12387. 0554 41038. 5274 117494	SS 70362, 4838 120760 191122	EBTIMATE 222 237 14 15 15 15 15 15 15 15 15 15 15 15 15 15	35 34478. (1823 60902. 9158 24569. 4311 30200. 4168
	DF 4	DF 26 10 36	L emandedededed A	
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSIDN LINEAR GUADRATIC CROBSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TUTAL ERRUR		FACTOR X1 X2 X3 X3

Analysis of variance, regression coefficients and probabilities for aerial biomass (g DM/m²) for the dry season of 1978. Table 12.

	PRUB 0. 0001 0. 8224 0. 0001	PROB 0. 9924	PROB 0.000000 0.000000 0.000000 0.000000 0.000000	PRUB 0. 8731 0. 0001 0. 5485
	F-RATIO 28. 16 0. 40 0. 47 8. 36	F-RATIO 0. 308	T-RA 11 15 A 12 16 A 17 A 16 A 17 16 A 17 A	F-RATIO 0.36 8.24 13.40 0.81
	R-SQUARE 0. 7357 0. 0103 0. 0184 0. 7648	MEAN SQUARE 3184. 2959 10336. 5794 5171. 0413	STD DEV 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.	MEAN SQUARE 1855,6456 42589,0883 69311,4215 4202,1360
304, 9018 71, 9100 0, 76482482 0, 23584627	TYPE 1 SS 582507 8183.1417 14735.0435 605425	58 82791, 6925 103366 184157	ESTIMALE 274. 4606 12. 7416 12. 7416 12. 7476 14. 7477 14. 7477 14. 7477 15. 7478 15. 7478 15. 7478 15. 7478 15. 7478 17. 7478 17	SS 9278. 2281 212945 346557 21010. 6802
	DF 4 6 14	26 10 36	L dedededededed Q	U Truncur
RESPONSE MEAN ROOT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	P P P P P P P P P P P P P P P P P P P	FACTOR XX X2 X3 X4

Analysis of variance, regression coefficients and probabilities for aerial biomass (g ${\rm DM/m}^2)$ for the wet season of 1979. Table 13.

	PROB 0. 0001 0. 6033 0. 9365 0. 0001	PR()B	PR	PRUB 0. 7545 0. 0001 0. 9509
	F-RATIO 20. 23 0. 69 6. 10	F-RATIO 0.346	T-RA-110 - 10 - 10 - 10 - 10 - 10 - 10 - 10	F-RATIO 0. 53 10. 00 4. 71 0. 22
	R-SQUARE 0. 6664 0. 0227 0. 0145 0. 7036	MEAN SQUARE 7172 2821 20719 6250 10935 4329	26. 49477777777777777777777777777777777777	MEAN SQUARE 5759, 8829 109375 51537, 6265 2422, 9838
403. 2542 104. 5726 0. 70358547 0. 25732185	TYPE I SS 885040 30205.4977 19204.3230 934450	35 186479 207196 393676	ESTIMATE 345. 3004 6-6. 6046 6-6. 60	SS 28799. 4146 546874 257688 12114. 9188
	DF 4 4 14	DF 26 10 36	L ————————————————————————————————————	70 52 53
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	P A A A A A A A A A A A A A A A A A A	FACTOR XI XZ X3 X3

Analysis of varjance, regression coefficients and probabilities for aerial blomass (g DM/m²) for the dry season of 1979. Table 14.

	PRDB 0. 0001 0. 9056 0. 5396 0. 0047	PROB 0. 9043	PROB	0.0001 0.0001 0.001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000000	PROB 0. 4998 0. 1412 0. 0005 0. 8964
	F-RATIO 8. 71 0. 25 0. 85 2. 93	F-RA110	T-RATIO	10000000000000000000000000000000000000	F-RATIO 0.89 1.78 5.78 0.32
	R-SAUARE 0. 4528 0. 0132 0. 0663 0. 5323	MEAN SQUARE 7683. 7481 14433. 0972 9558. 5673	STD DEV	4000000000400040040 20000000000400040040 20000000000	MEAN BQUARE 8477,9925 17041,9982 55278,6810 3077,8109
311, 3759 97, 7679 0, 53228424 0, 31396663	TYPE J SS 333107 9693.7000 48811.8681 371613	58 199777 144331 344108	ESTIMATE	20.4 - 1.0 -	88 42399. 9627 85209. 9709 276393 15387. 0544
	DF 44 14	DF 26 10 36	DF.	ને ને ને	10 10 10 10 10 10 10 10 10 10 10 10 10 1
RESPONSE MEAN ROOT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	PARAMETER	XXXXXXXXXXXXXXX	FACTOR X2 X3 X3 X4

Table 15. Analysis of variance, regression coefficients and probabilities for aerial biomass (g ${\rm DM/m}^2)$ for the wet season of 1980.

	PRUB 0. 0001 0. 2135 0. 9727 0. 0054	PROB 0. 7235	PRUB 0.000000	0. 8365 0. 0172 0. 0679 0. 9534
	F-RATIO 8. 22 1. 53 0. 21 2. 87	F-RATIO 0.763	T-R-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-	F-RATIO 0.41 3.20 2.27 0.22
	R-SQUARE 0. 4312 0. 0804 0. 0162 0. 5278	MEAN SQUARE 19983.6280 26174.7819 21703.3929	9TD DEV 37. 72. 72. 72. 72. 72. 72. 72. 72. 72. 7	MEAN SQUARE B966.4710 69401.6054 49326.5173 4686.9346
417. 1836 147. 3207 0. 5277 0332 0. 35313162	713378 713378 131039 26824, 4504 873262	55 517574 261748 781322	ESTIMATE 10. 72 68 10. 475 4 10. 475	55 44832. 3549 347008 246633 23434. 6732
	DF:	DF 26 10 36		
RESPONSE MEAN ROOT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSEPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FACTOR X1 X2 X3 X4

Table 16. Analysis of variance, regression coefficients and probabilities for available forage (g DM/m^2) for the wet season of 1978.

	PRDB 0. 0316 0. 5717 0. 3317 0. 1343	PROB 0. 9986	PROB 0.00000000000000000000000000000000000	PRUB 0.3138 0.5725 0.3404
	F-RATIO 2: 97 0: 74 1: 19 1: 58	F-RAT10	T-R-A-10 10 10 10 10 10 10 10 10 10 10 10 10 1	F-RATIO 1.23 2.34 0.78 1.18
	R-SQUARE 0. 2057 0. 0509 0. 1234 0. 3799	MEAN SQUARE 2750. 5807 11746. 8008 5249. 5309	8TD DEV 18 3246 6 9394 6 93997 6 93997 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	MEAN SQUARE 6474.6963 12281.6755 4080.6882 6168.6062
246, 0856 72, 4536 0. 37994512 0. 29442454	TYPE I SS 62685.3379 15514.7602 37601.2802 115801	SS 71515.1042 117468 188983	ESTIMATE -0. 225. 2200 17. 5203 -1. 3. 2304 -1. 3. 2304 -1. 3. 2304 -1. 4002 -1	55 32373. 4814 61408. 3773 20403. 4411 30843. 0311
	DF 4	DF 26 10 36		70 50 50 50
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRAIIC CROSSPRODUCT TOTAL REGRESS	REBIDUAL LACK OF FIT PURE ERROR TUTAL ERRUR	PARXXXXXXXXX	FACTOR XXI XXI XXXX XXX

Table 17. Analysis of variance, regression coefficients and probabilities for available forage (g DM/m^2) for the dry season of 1978.

	PRUB 0. 0001 0. 7691 0. 8460 0. 0001	PROB 0.9921	PRUB 0.00000 0.00001 0.00001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000	PRUB 0. 8987 0. 0001 0. 5459
	F-RATIU 28. 26 0. 45 0. 44 8. 39	F-RATIO 0. 310	T-RATIO 14.73 6.04.72 10.0001933 10.000100 10.0000 10.000100 10.000100 10.000100 10.000100 10.000100 10.000100 10.000100 10.000100 10.000100 10.000100 10.000100 10.000100 10.0000 10.000100 10.000100 10.00000 10.00000 10.00000 10.00000 10.0000000 10.000000 10.00000000	F-RATIO 0.322 0.322 13.07
	R-SQUARE 0. 7364 0. 0118 0. 0173 0. 7655	MEAN SQUARE 3225. 3407 10398. 9430 5218. 0280	STD DEV 18. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	MEAN SQUARE 1660.9917 44591.1075 68195.9001 4260.5272
301. 0755 72. 2359 0. 76545926 0. 23992627	TYPE 1 SS 589779 9468.3109 13826.8157 613074	35 83859, 3783 103990 187849	268 8889 268 8889 27. 1259 10. 04082451 0. 04082451 0. 35127037 0. 35127037 1. 2795 1.	8304, 7583 222756 340780 21302, 6361
	DF 4 14	DF 26 10 36	<u>u</u>	10 55 55 5
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TUTAL ERROR	P ARAXXXXXXXXXX	FACTUR X1 X3 X4 X4

Analysis of variance, regression coefficients and probabilities for available forage (g DM/m^2) for the wet season of 1979. Table 18.

	PROB 0. 0001 0. 6021 0. 9061 0. 0001	PROB 0. 9880	PROB PROB PROB PROB PROB PROB PROB PROB	PRUB 0. 7355 0. 0001 0. 9575
	F-RATIO 23.20 0.67 0.35 6.98	F-RATIO 0. 334	11 A M	F-RATID 0.55 11.65 5.44 0.21
	RSQUARE 0. 6943 0. 0207 0. 0156 0. 7306	MEAN SQUARE 6988. 2905 20896. 2721 10851. 6187	BTD DEV 26. 39. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30	MEAN SQUARE 5973, 5220 124433 59028, 9042 2242, 5041
393.8455 104.1711 0.73064654 0.26449741	TYPE I 5S 1004749 30055, 6043 22692, 5744 1059697	38 181696 206963 390658	ESTINALE 33.4. 7751 -5. 6777 -6. 7818 -6. 1826 -6. 1826 -6. 1826 -7. 1826 -	58 29967, 6100 632164 295145 11212, 5205
	DF 4 14	DF 26 10 36	<u> </u>	50 50 50 50 50 50 50 50 50 50 50 50 50 5
RESPONSE MEAN ROOT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FACTOR X1 X2 X3 X4

Analysis of variance, regression coefficients and probabilities for available forage (g DM/m^2) for the dry season of 1979. Table 19.

	PRUB 0. 0001 0. 9845 0. 4825 0. 0004	PR0B 0. 9027	PR (1975) PR (19	PROB 0. 7069 0. 0203 0. 0001 0. 7794
	12. 40 0. 093 0. 93 3. 97	F-RATIO 0. 535	10 E 40 00 00 00 00 00 00 00 00 00 00 00 00	F-RATIO 0. 59 3. 08 7. 74 0. 49
	R-50UARE 0.5416 0.00412 0.6012	MEAN GQUARE 7742. 3085 14471. 9289 9611. 6475	24. 74. 24. 24. 24. 24. 24. 24. 24. 24. 24. 2	MEAN SQUARE 5679, 6393 29650, 2621 74350, 6865 4737, 0374
298. 8490 98. 0390 0. 60679481 0. 32805537	TYPE 1 SS 3527, 1872 53887, 8220 533977	58 201300 144719 346019	ESTIMATE 0. 278. 0.988 0. 352.3622 37. 187.4 -57. 187.4 -7. 187.4 -7. 187.6 -1. 1	SS 28398. 1963 140251 371753 23685. 1872
	DF 44 44 14 14 14 14 14 14 14 14 14 14 14	DF 26 10 36	<u> </u>	70 60 60 60
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	P ARAMETER N A A A A A A A A A A A A A A A A A A	FACTOR X1 X3 X4

Analysis of variance, regression coefficients and probabilities for available forage (g DM/m²) for the wet season of 1980. Table 20.

	PROB 0. 0001 0. 5264 0. 6153 0. 0001	PR())9	PRDB 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	PROB 0. 8826 0. 0002 0. 0023 0. 7888
	F-RATIO 14. 21 0. 81 0. 75 4. 61	F-RATIO 0.759	T A B O B 4 - 100 000 - 100 000 000 000 000 000 000	F-RATIO 0.34 6.65 4.61 0.48
	R-SQUARE 0. 5652 0. 0323 0. 0446 0. 6421	MEAN SQUARE 19411. 6913 25586. 2299 21126. 8409	9TD DEV 36. 74 13.8738 113.8738 113.8738 113.8738 12.24435 12.2443 12.	MEAN SQUARE 7270. 3301 140658 97497. 2963 10139. 4989
392, 8684 145, 3508 0, 64206735 0, 36995478	1201016 48540.3440 94763.7556 1364320	58 504704 2559852 760564	23.4. 6.188 24. 6.188 7-7. 6.541 7-7. 6.541 7-7. 6.541 11. 77,512 11. 77,512 11. 77,512 12. 74,713 13. 76,63 14. 65,72 14. 65,72 15. 71,08 16. 67,713 17. 71,08 18. 67,713 19. 71,08 19. 71,08	95 36351, 6503 703288 487486 50697, 4944
	DF 4 6 14	DF 26 10 36	T addeddadadadadad	10 55 55
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	XXXXXXXXXXI N PARAMENTAL COLUMN	FACTOR X1 X2 X3 X4

Analysis of variance, regression coefficients and probabilities for grass yield (g $\rm DM/m^2)$ for the wet season of 1978. Table 21.

PROB 0. 1201 0. 3599 0. 3878 0. 2874	PR0B 1. 0000	PROB 0.00000000000000000000000000000000000	PRUB 0. 3714 0. 2342 0. 7622 0. 2625
F-RATIO 1. 97 0. 76 1. 09 1. 25	F-RATIO 0. 165	T	F-RATIO 1.11 1.44 0.52 1.31
RSQUARE 0.1474 0.0567 0.1222 0.3263	MEAN SQUARE 1624, 7073 9830, 8216 3904, 1835	STD DEV 19. 960-10 19.	MEAN SQUARE 4340, 4359 5616, 5364 2015, 7111 5105, 6576
TYPE I SS 30758 8278 11826.1364 25478 2358 68083.2000	55 72242. 3704 78308. 2164 140551	ESTIMATE 133 4364 1133 4364 12 8676 13 12 8676 14 12 8676 15 12 8676 17 12 877 17 12 877 17 12 877 17 12 877 17 12 877 17 12 877 18 12 877 18 12 877 19 12 877 19 12 877 19 12 877 19 12 877 10 12 877 1	55 21702, 1795 26082, 4622 10078, 5555 25528, 2977
DE- 44 14	76 10 10 36	-	<u> </u>
REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FACTOR X1 X2 X3 X4
	DN DF TYPE 1 SS R-SQUARE F-RATID 1 ST 1 ST	DN DF TYPE 1 SS R-SQUARE F-RATID 1 97 0.	TYPE 1 SS

Analysis of variance, regression coefficients and probabilities for grass yield (g $DM/m^2)$ for the dry season of 1978. Table 22.

	9. 0001 0. 5194 0. 8527 0. 0001	PROB 0. 9946	PROBE 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRUB 0. 8818 0. 0001 0. 6273
	F-RATIO 27.95 0.82 0.43 8.98	F-RATIO 0. 290	T	F-RATIO 0.35 10.74 11.94 0.70
	RSQUARE 0. 7410 0. 0203 0. 0160 0. 7774	NEAN SRUARE 2547, 2849 8782, 4153 4279, 2656	STD DEV 16. 3447 6. 22440 6. 22440 6. 22440 10. 1238 10. 1238 10. 1238 10. 1238 10. 1238 10. 1238 10. 1238 10. 1238 10. 1238 10. 1238 10. 1238	MEAN SQUARE 1477, 7760 45966, 2935 51074, 9679 2993, 9938
236. 9873 65. 4161 0. 77736794 0. 27603208	TYPE I SS 512740 14080, 7664 11090, 4024 537911	8527. 4086 87824. 1534 154054	ESTIMATE 200. 2190 -5.7008 -6.1517 -10.6732 -0.61525684 -0.61527688 -0.7008 -1.7508 -1.7508	55 7388, 8802 227831 255375 14769, 9691
	E 6405	DF 26 10 36	·	50 50 50 50
RESPONSE MEAN ROOT MSE R-SQUARE COEF OF VARIATION	REGREBBION LINEARTIC GUADRATIC CROSSPRODUCT TOTAL REGRESB	RESIDUAL LACK OF FIT PURE ERROR TUTAL ERROR	PARAMETER NI TERMETER NI TERME	FACTOR X1 X2 X3 X4

Analysis of variance, regression coefficients and probabilities for grass yield (g $DM/m^{\perp})$ for the wet season of 1979, Table 23.

PROB 0. 0001 0. 3011 0. 7153 0. 0001	PROB 0. 9712	PRUB 0.0001 0.02931 0.0001 0.0001 0.05336 0.0521 0.	PRDB 0. 3502 0. 0001 0. 0518 0. 8540
F-RATIO 28.60 1.27 0.62 8.80	F-RATIO 0.398	T-RATIO 11. 35 11. 35 1	F-RATIO 1.15 15.81 4.82 0.37
R-SQUARE 0. 7187 0. 0318 0. 0233 0. 7738	MEAN SQUARE 6569. 3116 16509. 2395 9330. 5471	91D DEV 24, 24002 25, 2400	MEAN SQUARE 10772.1988 147530 44950.5041 3616.7627
TYPE I SS 1067382 47265.5552 34536.8369 1149185	55 170807 165092 335900	EST IMATE 277. 3786 19. 8872 19. 8872 19. 8872 19. 972 19. 972	53860, 9942 737651 224753 18083, 8137
DF-	DF 26 10 36		0 0 0 0
REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	D	FACTOR X1 X3 X3 X4
	DI: TYPE I SS R-SQUARE F-RATIO 1 1067382 0.7187 28.60 0. 4 47265.5552 0.0238 1.27 0. 6 34354.8369 0.0233 0.62 0.62 0. 14 1149185 0.7738 8.80 0.	B	By Type I ss R-square F-ratio 2

Analysis of variance, regression coefficients and probabilities for grass yield (g $DM/m^{\perp})$ for the dry season of 1979. Table 24.

PROB	0. 0001 0. 7083 0. 5480 0. 0001	PROB	0. 9072	PROB	0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000	PROB 0. 7107 0. 0023 0. 0001 0. 7499
F-RATIO	14. 26 0. 54 0. 84 4. 59	F-RATIO	0.528	T-RATIO	80-4-20-00-00-1-1-1-20-00-0-1-1-1-20-00-0-1-1-1-20-00-0-1-1-1-20-0-1-1-1-20-0-1-1-1-1	F-RATIO 0.59 4.63 6.95 0.53
R-SOUNRE	0, 5690 0, 0215 0, 0502 0, 6408	MEAN SQUARE	7763, 4236 14704, 9388 9691, 6223	STD DEV	2.4 8984 9. 3967 9. 3967 9. 3967 9. 3967 9. 3967 9. 3967 9. 3968 9. 39	MEAN SQUARE 5677, 4753 44850, 7307 67370, 5397 5164, 7879
TYPE I 58	552655 20881, 1498 48803, 8361 622340	88	201649 147049 348098	ESTINATE	11.0 C C C C C C C C C C C C C C C C C C C	55 28387, 3765 224254 336953 25823, 9396
DE	444	DE	25 10 36	10		_
REGRESSION	LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL	LACK OF FIT PURE ERROR TOTAL ERROR	PARAMETER	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FACTOR X13 X33 X43
	DF TYPE I SS R-SQUARE F-RATIO	PF TYPE I 55 R-SQUARE F-RATIO 552.659 0.0215	BF TYPE I SS R-SQUARE F-RATIO 1550 14,26 0. 1550 14,26 0. 1540 14,26 0.	BF TYPE I SS R-SQUARE F-RATIO 1 208B1. 1478 0.05470 14.26 0.054 0.05470 14 208B1. 1478 0.05470 14.26 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.055 0.054 0.055 0.055 0.054 0.055	17PE 1 55	PF TYPE I SS R-SRUARE F-RATIO 1

Analysis of variance, regression coefficients and probabilities for grass yield (g DM/m^2) for the wet season of 1980. Table 25.

	PROB 0. 0001 0. 2506 0. 7373 0. 0001	PROD 0. 6968	PROB 0.0001 0.5437 0.0001 0.0001 0.2511 0.2511 0.7052 0.7054 0.70	PROB 0. 9108 0. 0001 0. 0056 0. 7688
	F-RATIO 16, 47 1, 41 0, 59 5, 36	F-RATIO 0. 795	T-RATIO 7 7 12 7 12 10 14 1-10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	F-RATIO 0.30 8.38 3.99 0.51
	RSQUARE 0. 5933 0. 0507 0. 0318 0. 6759	MEAN SQUARE 20175, 5288 25380, 5708 21621, 3738	STD DEV 37. 1891 14. 00352 114. 00352 114. 00352 12. 26007 27. 26007	MEAN SQUARE 6441.9738 181225 86234.3239 10967.1381
363, 4776 147, 0421 0, 67586055 0, 40454239	1424838 121867 76325,8509 1623031	52,456,4 253806 778369	264, 8106 264, 8106 81, 527 61, 277 61, 277 10, 377 10, 377 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,	55 32209, 8692 906124 431172 54835, 6907
	DF 4 4 14 5	75 10 35 35		50 50 50 50 50
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDVAL LACK OF FIT PURE ERROR TUTAL ERRUR	P	FACTOR X1 X2 X3 X4

Table 26. Analysis of variance, regression coefficients and probabilities for legume yield (g DM/m^2) for the wet season of 1978.

	PRUB 0. 1007 0. 6571 0. 6296 0. 4000	PROB 0. 6019	PROB 0.00001 0.15182 0.15182 0.75182 0	PRUB 0. 8443 0. 1478 0. 3323 0. 5994
	F-RATIO 2. 10 0. 61 0. 73 1. 09	F-RATIO 0. 909	T-RATIO 12. B7 20. 004 20. 004 11. 037 11. 037 11. 037 11. 014 11. 014	F-RATIO 0.40 1.75 1.19 0.74
	R-SQUARE 0. 1642 0. 0477 0. 0853 0. 2972	MEAN SQUARE 774, 1172 851, 5887 795, 6370	STD DEV 7. 1340 PEV 7. 1340 PE	MEAN SQUARE 319, 7603 1394, 1766 948, 6772 587, 8389
92. 7595 20. 2070 0. 29723352 0. 30408795	1YPE I 58 6690, 6737 1945, 7639 3478, 0272 12114, 4649	59 20127. 0462 8515. 8874 28642. 9336	ESTIMATE -0. 171, 7844 -0. 1058056 -0. 86,5506 -0. 186,2507 -0. 107,17 -0. 009,147 -0. 009	55 1598. 8015 6970. 8828 4743. 3862 2939. 1746
	70 44 45 47	26 10 36		_ _ _ _ _ _ _ _ _ _ _ _
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TUTAL ERRUR	P	FACTOR X1 X3 X3 X4

Table 27. Analysis of variance, regression coefficients and probabilities for legume yield (g DM/m²) for the dry season of 1978.

	PRUB 0. 0021 0. 8657 0. 2426 0. 0308	PRUB 0. 9803	PRUB 0.00000000000000000000000000000000000	PRUB 0. 9343 0. 9343 0. 5037
	F-RATIO 5. 19 0. 32 1. 40 2. 17	F-RATID 0.368	T-RATIO 1.3. 1.0. 1.3. 1.0. 1.0. 1.0. 1.0. 1.0.	F-RATIO 2. 16 0. 26 4. 23 0. 88
	RSQUARE 0. 3125 0. 0190 0. 1262 0. 4578	MEAN SQUARE 259. 4811 705. 3423 383. 3314	5TD DEV 4. 9518 1. 18288 1. 18288 3. 18286 3. 18286 0. 97897297 0. 97897296 0. 97897296	MEAN SQUARE B28, 9394 97, 9177 1621, 4709 337, 6946
64, 0982 19, 5789 0, 45776632 0, 30549855	TYPE 1 SS 7953.3839 483.9329 3212.9068 11650.2236	55 6746. 5079 7053. 4233 13799. 9312	ESTIMATE 68 6699 -0.317123340 -0.317172340 -0.55606110 0.65606110 -0.577172 -0.170721419772	58 4144, 6972 489, 5885 8107, 3546 1688, 4728
	DF 4	DF 25 10 36	L Q	70 50 50 50
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	P AR AMETER A A A A A A A A A A A A A A A A A A A	FACTOR X1 X3 X3

Table 28. Analysis of variance, regression coefficients and probabilities for legume yield (g DM/m^2) for the wet season of 1979.

	PROB 0. 0008 0. 3981 0. 5259		PA CO	PRDB 0. 1036 0. 1466 0. 0323 0. 8516
	6.07 1.04 0.87	. i- i-		F-RATIO 1.99 1.76 2.77 0.39
	R5QUARE 0, 3483 0, 0600 0, 0750 0, 4835		5TD DEV 19460 195 19460 195 195 195 195 195 195 195 195 195 195	MEAN SQUARE 1063, 4354 1063, 4354 1480, 5257 208, 9563
47, 3703 23, 1144 0, 48320832 0, 48795267	12962, 1104 2231, 4555 2790, 5191 17984, 0851	240	ESTIMATE 57. 394.6 57. 394.6 56. 1333 6. 5521 0. 5007593 1. 3007593 1. 3007593 0. 304.11686 0. 304.11686 0. 46. 1686 0. 66. 16	55 5317, 1780 4695, 2836 7402, 6295 1044, 7816
	10	DF 28 36 36		_ _ _ _ _ _ _
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GVADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	P AR ARM XXXXXXXXXX	FACTOR X1 X2 X3 X4

Analysis of variance, regression coefficients and probabilities for legume yield (g $\rm DM/m^2)$ for the dry season of 1979. Table 29.

	PRUB 0.0001 0.5293 0.0001	PROB 0, 0532	PROB PROB PROB PROB PROB PROB PROB PROB	PROB 0. 7842 0. 0001 0. 3122 0. 9469
	F-RATIO 15. 47 9. 68 0. 87 7. 56	F-RATIO 2. 671	T + R + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	F-RATIO 0.49 11.46 0.23
	RSAUARE 0. 4365 0. 2727 0. 0366 0. 7461	MEAN SQUARE 325.5022 121.8816 268.9409	STD DEV 4. 1.726 1. 5553 1. 5553 1. 5553 1. 5553 0. 8973 0.	MEAN SQUARE 130, 7766 3080, 7555 332, 7173 61, 8783
39, 7357 16, 3994 0, 74611796 0, 41271244	1YPE 1 5S 16647, 0788 10408, 5734 1376, 9917 26452, 6830	55 8463. 0577 1218. 8161 9681. 8738	62. 4435 1. 6614 1. 6614 1. 6614 1. 1317 1. 13	553, 0830 15403, 7776 1643, 5866 309, 3916
	£ 7505	25 10 35		_ _ _ _ _
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDVAL LACK OF FIT PURE ERROR TOTAL ERROR	P	FACTOR XX XX XX X4

Table 30. Analysis of variance, regression coefficients and probabilities for legume yields (g DM/m²) for the wet season of 1980.

	PRUB 0. 0001 0. 2916 0. 0001	PROB 0, 0027	PROB 0. 93061 0. 93061 0. 93061 0. 93061 0. 93069 0. 93069 0. 93069 0. 93669 0. 93699 0. 93699 0. 93699 0. 93699 0. 93699 0. 93699 0. 936999 0. 93699 0. 93699 0. 93699 0. 93699 0. 93699 0. 93699 0. 9369	PROB 0. 7990 0. 0001 0. 1285 0. 2777
	F-RATIO 16.33 8.65 1.28 7.69	F-RATIO 5. 964	T-RATIO 111.00.00.00.00.00.00.00.00.00.00.00.00.	F-RATIO 0.47 13.52 1.85 1.32
	RSQUARE 0. 4549 0. 2410 0. 0534 0. 7493	MEAN SQUARE 395.0804 66.2467 303.7377	STD DEV 1. 46218 1. 66218 1. 66218 1. 66218 1. 66218 0. 91143977 0. 9114397 0. 9114397 0. 9114397	MEAN SQUARE 141. 5262 4105. 6735 560, 7485 400, 9057
29. 4109 17. 4281 0. 74933003 0. 59257268	TYPE 1 SS 19844, 5450 10512, 2713 2329, 9597 32686, 7769	58 10272, 0912 662, 4674 10934, 5587	ESTIMATE 49. 8082 -11. 02140 -13. 7253 -0. 41336785 0. 1128-4063 0. 1128-4063 0. 13. 37. 37. 37. 37. 37. 37. 37. 37. 37. 3	55 20528, 3472 2803, 7424 2004, 5285
	F 440E	DF 26 10 36	<u>.</u>	<u> </u>
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDVAL LACK OF FIT PURE ERROR TOTAL ERROR	PARANXXXXXXXXXX	FACTUR X1 X3 X3 X4

Table 31. Analysis of variance, regression coefficients and probabilities for yield of weeds (g DM/m²) for the wet season of 1978.

PRUB 0.0213 0.0389 0.0153 0.0034	PROB 0. 2689	PRUB 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	PRDB 0. 1504 0. 0904 0. 0012 0. 0066
F-RATJO 3. 29 3. 09 3. 07	F-RATIO 1. 466	T-RATIO 1.052 1.132 1.132 1.132 1.132 1.132 1.143 1.14	F-RATIO 1. 74 2. 09 5. 11 3. 87
R-SQUARE 0. 1657 0. 1431 0. 2344 0. 5412	MEAN SRUARE 25, 2254 17, 2056 22, 9977	STD DEV 1.2129 0.05774109 0.05774109 0.05774109 0.05774109 0.057774109 0.057774109 0.0577	MEAN SQUARE 40.0211 47.8676 117.4129 88.9309
302. 7852 259. 8503 425. 8630 988. 5385	55 655, 8601 172, 0561 827, 9162	ESTIMATE 7 0163 0.6953608 0.29535999 0.41486273 0.04785564 0.047862399 0.047862399 0.04786399 0.04786399 0.04086999	55 200. 1056 239. 3380 587. 0646 444. 6547
14 ce 2	DF 26 10 36		_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
REGRESSION LINEAR GUADBATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	A X X X X X X X X X X X X X X X X X X X	FACTOR X2 X3 X3
	B 17PE I SS R -500ARE F-RATIO 7 202, 7452 0, 16457 3, 29 0, 4 259, 8903 0, 2431 2, 83 0, 5 425, 8630 0, 2444 3, 09 0, 5 425, 8630 0, 5442 3, 07 0,	B 17	BY TYPE I ES R-560/ARE F-RATIO 1 202, 7952 1 4 229, 89703 0 14431 2 893 0. 1 425 8430 0 2444 3 07 0. 2 942 1 466 0. 2 655 8601 1 655 8601 1 655 8601 1 7, 0163 1 0 67978688 0 64978688 0 64978688 0 64978689 0 62978689 0 62978689 0 6297874109 1 36 0 0 25952599 0 64978689 0 64978689 0 6497874109 1 1 66978689 0 6497874109 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Analysis of variance, regression coefficients and probabilities of weeds (g DM/m²) for the dry season of 1978. Table 32.

	PRUB 0. 0537 0. 7040 0. 0653	PRUB 0. 0004	PRDB 0.00001 0.45633 0.05644 0	
	E-RATIO 2. 38 3. 44 0. 35 1. 87	F-RATIO 9. 400	TAN - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	E E
	RSQUARE 0.1659 0.0340 0.4211	MEAN SQUARE 21, 0477 2, 2391 15, 8231	STD DEV 279669 279689 279689 279689 279689 279689 279689 279689 279689 279689 279689 27960 27960 27960 27960 27960 27960 27960 27960 27960 27960 27960 27960	AN SG 17. 333. 15.
3. 8263 3. 9778 0. 42106917 1. 0396	TYPE I SS 163.2320 217.6507 33.4224 414.3050	547, 2393 22, 3915 569, 6308	ESTIMATE 0.2895717 0.33927573 0.163427573 0.163427573 0.16342757 0.2462889 0.04528899 0.04528899	-1, 4476 -1, 4476 85 87, 7077 169, 8434 76, 5836 91, 6502
	E 448E	26 10 36		
RESPONSE MEAN RODT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TUTAL ERROR	PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAME	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Analysis of variance, regression coefficients and probabilities for yield of weeds (g DM/m^2) for the wet season of 1979. Table 33.

0.00038 0.8867 0.8867
6. 04 0. 34 0. 34
992, 7313 646, 9189 51, 2191
4963, 6565 3234, 5947 256, 0955
nnn
387 387 387 387 387 387 387 387 387 387
C VE T T T T T T T T T T T T T T T T T T

Table 34. Analysis of variance, regression coefficients and probabilities for yield of weeds (g DM/m²) for the dry season of 1979.

	PRUB 0. 0001 0. 1058 0. 0001	PROB 0. 0001	PRUB 0. 1639 0. 00031 0. 52173 0. 53376 0. 00031 0. 00031 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001	PROB 0.0088 0.0001 0.0001 0.7203
	F-RATIO 11.91 2.07 6.78 6.90	F-RATIO 26.345	1.4841.00.00.00.00.00.00.00.00.00.00.00.00.00	F-RATIO 3.66 12.81 10.46
	R-SQUARE 0. 3573 0. 0623 0. 3069 0. 7285	MEAN SQUARE 442, 9374 16, 8128 324, 5694	9TD DEV 4 596.5 1 7296.1 176.9 1 176.9	MEAN SQUARE 1188.6192 4156.2418 3394.9821 185.9310
12. 5469 18. 0158 0. 72851147 1. 4359	TYPE I SS 15464, 2724 2681, 7238 13208, 1525 31354, 1488	55 11516. 3712 168. 1283 11684. 4995	6. 4747 6. 4747 6. 4747 6. 4746 7. 5765 7. 5765 7. 6779 7.	5943. 0961 20781. 2088 16974. 9107 929. 6552
	F 4485	DF: 26 10 36	<u>L</u>	_ _ _ _ _ _ _
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GADRATIC GROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	PARA A MANA WAY WAY WAY WAY WAY WAY WAY WAY WAY WA	FACTOR XI XZ X3 X3

Analysis of variance, regression coefficients and probabilities for yield of weed $(kg\,DM/m^2)$ for the wet season of 1980. Table 35,

	PRUB 0.0001 0.0005 0.0001 0.0001	PROB 0. 0003	PROB 0. 2443 0. 21543 0. 21543 0. 60022 0. 6434 0. 6634 0. 6634 0. 6634 0. 6634 0. 6636 0. 663	PRUB 0. 7666 0. 0001 0. 0001
	F-RATIO 29. 91 6. 49 13. 54 16. 20	F-RATIO 9.991	1-RA 110-11-11-11-11-11-11-11-11-11-11-11-11-	F-RATIO 0.51 31.26 24.72
	R - SQUARE 0. 4552 0. 0987 0. 9630 0. 8630	MEAN SQUARE 751.5670 75.2240 563.6940	5TD DEV 6 0004 2 000	MEAN SQUARE 287, 6209 17620, 0538 13933, 7625 2441, 9138
24. 2952 23. 7422 0. 86301666 0. 97724156	17PE J SS 67440, 2148 14622, 7175 45786, 0679 127849	19540, 7432 752, 2400 20292, 9832	ESTIMATE 7. 1080 -2. 8148 -2. 11080 -19. 7445	55 1438 1045 88100 2689 69668 8126 12309 5691
	E 5635	DF 26 10 36	<u> </u>	_ _ _ _ _ _
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FACTOR XX2 X43

Table 36. Analysis of variance, regression coefficients and probabilities for visual estimation grass for the wet season of 1978.

	PROB 0. 9228 0. 9306 0. 9310 0. 9736	PROB 0. 7076	PROB 0.0001 0.6277 0.63767 0.63767 0.20164 0.2987 0.2987 0.2987 0.05982 0.05982 0.05982 0.05982 0.05982 0.05982 0.05982	PROB 0. 6809 0. 9853 0. 8696 0. 5300
	6.38 0.38 1.15 0.30 0.57	F-RATIO	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	F-RATIO 0. 63 0. 13 0. 36 0. 84
	R-SQUARE 0. 0344 0. 1044 0. 0415	MEAN SQUARE 95. 8470 122. 5310 103. 2593	STD DEV 25 5700 0.0 96,93462 0.0 971,93462 0.0 971,93462 0.0 971,93762 0	MEAN SQUARE 14.6505 13.1413 37.6113 86.7836
60, 1105 10, 1617 0, 18028747 0, 16904973	TYPE I SS 156.1627 473.4330 187.7941 817.5898	88 2492, 0233 1225, 3102 3717, 3335	ESTIMATE 37.8547 -0.077738047 -0.077738047 -0.0773804	55 323. 2526 65. 7067 188. 0564 433. 9179
	14 44 14	DF 26 10 36	2	70 80 80
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TUTAL ERROR	P AR APPETER I N X X X X X X X X X X X X X X X X X X	FACTOR X1 X2 X3 X43

Table 37. Analysis of variance, regression coefficients and probabilities for visual estimation grass for the dry season of 1978.

RESPONSE MEAN		73, 4756			
SE RE VARIATION		6, 0578 0, 72630395 0, 08247307			
REGRESSION	DF.	TYPE I SS	RSQUARE	F-RATIO	PROB
LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	5635	3107. 5442 93. 2107 308. 6814 3509. 4392	0, 6432 0, 0193 0, 0639 0, 7264	21, 16 0, 63 1, 40 6, 83	0.0001 0.6411 0.2410 0.0001
ESIDUAL	10	88	MEAN SQUARE	F-RATIO	PROB
OF FIT ERROR . ERROR	28 10 36	1016. 3421 305. 6046 1321. 9467	39, 0901 30, 5605 36, 7207	1.279	0.3544
PARAMETER	Ė	ESTIMATE	STD DEV	T-RATIO	PROB
**************************************	कर्म कर्म कर्म कर्म कर्म कर्म कर्म कर्म	71. 13133 4. 18137 4. 18137 6. 0. 13137 6. 0. 13137 6. 0. 1702 6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 974/01/29 0. 974/01/29 0. 974/01/29 0. 974/01/17 0. 974/01/29 0. 974/92/85 0. 974/92/85	3-180000-1-1-0-00 800000-1-1-0-00 800000000000000000000000000000000	0.000100000000000000000000000000000000
CTDR	70 60 60	271. 3877 2859. 9234 446. 7100 85. 1464	MEAN SQUARE 54. 2775 571. 9847 89. 3420 17. 0293	F-RATIO 1.48 15.58 2.43 0.46	PROB 0. 2211 0. 0001 0. 0534 0. 8005

Analysis of variance, regression coefficients and probabilities for visual estimation grass for the wet season of 1979. Table 38.

	PROB 0. 0001 0. 0001 0. 0001	PROB 0.0131	PR CO	PRUB 0. 0486 0. 0001 0. 0001 0. 7807
	33.82 1.13 7.42 13.16	F-RATIO 3.999	T-R A T10 4.4. 1.00.4.0.944911.1.1.0.9737.2.1.1.1.681.1.1.1.681.1.1.1.1.1.1.1.1.1.1	F-RATIO 2.50 31.84 10.18 0.49
	RSQUARE 0. 6140 0. 0205 0. 2021 0. 8366	MEAN SQUARE 59, 9894 14, 9996 47, 4922	STD DEV 1. 7427 0. 659774293 0. 657774293 0. 657774293 0. 367779293 0. 36677 0. 3667 0. 3667	MEAN SOUARE 118.5183 1512.2430 463.5516 23.3231
79, 8126 6, 8915 0, 83658645 0, 08634547	TYPE I SS 6424,3479 214,1237 2114,3441 8752,8157	1559, 7237 149, 9963 1709, 7201	ESTIMATE 77.4709 -0.378449 -0.00971149 -0.63475009 -0.00771149 -0.00449583	952. 5914 7561. 2152 2417. 7582 116. 6154
	DF 44 146 141	Dt. 26 10 36	<u> </u>	E E E E E E E E
RESPONSE MEAN RODT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	PARAMETER IN 1EE CEPT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FACTOR X1 X2 X3 X43

Table 39. Analysis of variance, regression coefficients and probabilities for visual estimation grass for the dry season of 1979.

	PRUB 0. 0001 0. 3604 0. 0001 0. 0001	PROB 0. 0263	PRUB 0 00001 0 00001 0 00001 0 00001 0 0001 0 00001 0 0001 0 0001 0 0001 0 0001 0 0001 0 0001 0 0001 0 0001 0 00001 0 0001 0 0001 0 0001 0 0001 0 00001 0 00001 0 00001 0 00000 0	0. 7355 0. 0001 0. 9368 0. 9368
	F-RATIO 47, 21 1, 12 8, 59 18, 06	F-RATIO 3. 297	1-R 4110 34. 50.010 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	F-RATIO 0.55 40.72 17.90 0.25
	RSAUARE 0. 6814 0. 0156 0. 1784 0. 8754	MEAN SQUARE 86. 0699 26. 1084 69. 4140	STD DEV 2. 1072 0. 7795234888 0. 779524889 0. 779524889 0. 77952488 0. 4157248 0. 4157489 0. 4157489 0. 4157489 0. 4157489 0. 4157489 0. 4157489	MEAN SQUARE 38.3306 2826.4713 1242.7111 17.3926
77, 7099 8, 3315 0, 87537383 0, 10721296	179PE I 58 13642, 9551 312, 1462 3577, 1864 17552, 2877	55 2237, 8187 2491, 0844 2498, 9031	ESTIMATE 73. 887.3 0. 2.48.5152 4.64.5152 4.64.5152 4.64.5152 4.64.5152 4.64.5152 4.64.64.183	191. 6928 14132. 3564 6213. 5553 86. 9630
	10 44 11 44 14 14 14 14 14 14 14 14 14 14	DF 26 10 36	<u>.</u>	_ _ _ _ _
RESPONSE MEAN ROOT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	A A A A A A A A A A A A A A A A A A A	FACTOR X1 X3 X3 X4

Table 40. Analysis of variance, regression coefficients and probabilities for visual estimation grass for the wet season of 1980.

	PRUB 0.0001 0.0001 0.0001	PR0B 0. 0006	PRDB 0.0001 0.0001 0.0001 0.0001 0.0019 0.0019 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	PRUB 0. 8952 0. 0001 0. 0001 0. 3426
	F-RATIO 64. 20 7. 07 12. 60 25. 76	F-RATIO 8. 612	0.11 P. 1.00 P	F-RATIO 0.32 58.65 28.73 1.17
	R-SQUARE 0.6474 0.0712 0.1907 0.9092	MEAN SQUARE 102.8542 11.9435 77.6012	STD DEV 2. 7220 0. 642013744 0. 64083794 0. 64083794 0. 44083794 0. 44083794 0. 4408399 0. 440	MEAN SQUARE 25.1467 4551.1636 2229.4329 90.8254
79, 6997 8, 8092 0, 90924908 0, 11052931	TYPE I SS 19927, 9405 2193, 1120 5868, 9576 27990, 0101	2674, 2102 119, 4346 2793, 6449	ESTIMATE 0. 78, 3331 0. 78, 3331 1. 26,662 1. 26,643 1. 52,843 0. 130,873 1. 52,83 0. 130,873 0. 130,873 0. 130,873 0. 742,631 0. 742,631 0. 742,631 0. 742,631 0. 742,631 0. 742,631	22755. 7336 22755. 8180 11147. 1645 454. 1268
	5 cc34	DF 26 10 36		F00000
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADBATIC CROSSPRODUCT TOTAL REGRESS	RESIDVAL LACK OF FIT PURE ERROR TOTAL ERROR	T	FACTOR XX2 XX3 XX4

Table 41. Analysis of variance, regression coefficients and probabilities for visual estimation legume for the wet season of 1978.

	PRUB 0. 9714 0. 7631 0. 8161 0. 9737	PROB 0. 7852	PR CO	PROB 0. 8374 0. 9865 0. 7556 0. 6863
	F-RATIO 0. 13 0. 46 0. 48 0. 38	F-RATIO 0. 690	TARATIO	F-RATIO 0. 41 0. 12 0. 53 0. 53
	RSQUARE 0, 0124 0, 0448 0, 1275	MEAN SQUARE 75.7438 109.7222 85.1823	STD DEV 80.3823333 0.8821864233 0.8821864233 0.8823233 0.8823233 0.8823431417 0.48244117 0.48254233	MEAN SQUARE 35.0816 10.4392 44.7380 52.7012
36, 2464 9, 2274 0, 12747715 0, 25463003	17PF I 55 43.4822 157.4084 247.1394 448.0301	58 1969, 3390 1097, 2922 3066, 5612	ESTIMATE 37. 281 5 0. 04864547 0. 188746597 0. 289738299 0. 043738299 0. 045738299 0. 045738299 0. 045738299 0. 045738299 0. 045738299 0. 05787874 0. 057878774	55 175. 4082 52. 1761 223. 4876 263. 5057
	E 4434	DF 26 10 36	5	70 20 20 20
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TOTAL ERROR	P AR AMETER XXXXXXXXX	FACTOR X1 X2 X3 X4

Table 42. Analysis of variance, regression coefficients and probabilities for visual estimation legume for the dry season of 1978.

	PROB 0. 0001 0. 8108 0. 3521 0. 0001	PRUB 0. 4558	PRDB 000000000000000000000000000000000000	PRUB 0. 2547 0. 0001 0. 1028 0. 6674
	F-RATIO 18.15 0.40 1.15 5.79	F-RATIO 1. 108	7	F-RATID 1.37 13.13 2.00 0.64
	RSQUARE 0. 6199 0. 0135 0. 6591 0. 6726	MEAN SQUARE 32, 6176 29, 4502 31, 7378	STD DEV 1. 12.246 0.53874255 0.53874255 0.53772529 0.53772529 0.53772529 0.53772529 0.537629	MEAN SQUARE 43. 6318 416. 6853 63. 3449 20. 4509
24. 7270 5. 6336 0. 69257255 0. 2278308	TYPE I SS 2304.0419 50.1519 219.7669 2573.7669	55 878, 0583 274, 5023 1172, 5606	ESTIMATE 26.1128 1.0483 -1.1708 -1.170	218. 1588 2083. 4268 316. 7246 102. 2545
	70 44 54	DF 26 10 36	<u>.</u>	10 10 10 10 10 10 10 10 10 10 10 10 10 1
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR QUADRATIC CROSSPRODUCT TUTAL REGRESS	RESIDUAL LACK DF FIT PURE ERROR TUTAL ERROR	PARAMETER INTERACEPT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FACTOR X1 X2 X3 X43

Analysis of variance, regression coefficients and probabilities for visual estimation legume for the wet season of 1979, Table 43.

F-RAT 22. 16. 1.
MEAN SQUAR 59, 769 446, 460, 52, 996, 26, 0701
2288. 8451 2232. 3011 2243. 3011 134. 3538
50000
FACTUR X1 X2 X4 X4

Analysis of variance, regression coefficients and probabilities for visual estimation legume for the dry season of 1979. Table 44.

	PRUB 0. 0001 0. 6735 0. 6735	PROB 0. 0071	PRUB 0.05477 0.05470 0.05473 0.5738 0.5738 0.57484 0.54844 0.54844 0.54844 0.54844 0.54844 0.54844 0.54844 0.54844 0.54844 0.54844 0.54844 0.54844	PRDB 0. 3605 0. 0001 0. 6691 0. 6891
	F-RATIO 13. 54 4. 54 0. 67 5. 45	F-RATIO 4. 694	T-RATIO 12.2 27 1.1.2 27 1.1.60 1.00 1.0	F-RATIO 1. 13 8. 24 0. 64 0. 33
	R-SQUARE 0. 4821 0. 1616 0. 0358 0. 6796	MEAN SQUARE 81. 8086 17. 4296 63. 9295	STD DEV 2. 0221 0. 76315706 0. 76315706 0. 76315706 0. 76315706 0. 11,5376 0. 394,5376 0. 394,5376 0. 394,5376 0. 394,5376 0. 317,5376 0. 317,5376 0. 317,5376 0. 317,5376 0. 317,5376 0. 317,5376 0. 317,5376 0. 317,5376	MEAN SQUARE 72. 4598 526. 5236 41. 0302 21. 4086
16. 2682 7. 9953 0. 67957192 0. 49147010	1YPE I SS 3462 5520 1160 7140 257 4282 4880 6941	2127.0230 174.2956 2301.3185	ESTIMATE 24. 8118 -4. 51458 -4. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458 -6. 51458	362. 2990 2632. 6178 205. 2511 107. 0429
	5 4485	26 10 36		Footo
RESPONSE MEAN ROOT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR (UADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TUTAL ERROR	P ARAMETER AXXXXXXXXXXX A APPER A A A A A A A A A A A A A A A A A A A	FACTOR XXX XX3 XX4 X4

Analysis of variance, regression coefficients and probabilities for visual estimation legume for the wet season of 1980. Table 45.

	PRUB 0.0001 0.7740 0.0001	PRDB 0. 0009	PR CO	PRUB 0. 9670 0. 0001 0. 4484 0. 4739
	F-RATIO 16, 76 9, 77 0, 54 7, 81	F-RATIO 7.720	T-RA 110 12.000000000000000000000000000000000	F-RATIO 0. 18 13. 10 0. 97 0. 90
	RSAUARE 0. 4612 0. 2689 0. 0223 0. 7524	MEAN SQUARE 53.2492 6.8976 40.3738	STD DEV 1. 60747772 0. 607474772 0. 607474772 0. 607474772 0. 607477772 0. 607477772 0. 607477772 0. 607477777777777777777777777777777777777	MEAN SQUARE 7,4077 529,0622 39,2142 36,1963
11. 1137 6. 3540 0. 75238183 0. 57173128	TYPE 1 5S 2707, 3383 1578, 0867 130, 8678 4416, 2930	55 1384, 4804 68, 9763 1453, 4567	ESTIMATE 19. 3163 0. 11.737 0. 11.737 0. 52489522 0. 52489522 0. 524873234 0. 524873234 0. 0. 524873234 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	37, 0387 2645, 3108 196, 0710 180, 9817
	146 146 146 146	DF 26 10 36	2	20 20 20 20 20 20 20 20 20 20 20 20 20 2
RESPONSE MEAN ROUT MSE R-SQUARE COEF OF VARIATION	REGRESSION LINEAR GUADRATIC CROSSPRODUCT TOTAL REGRESS	RESIDUAL LACK OF FIT PURE ERROR TUTAL ERROR	P ARAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FACTOR XX2 XX3 X43

LITERATURE CITED

- Acosta-Soliz, M. 1967. Divisions fitogeograficas y formaciones geobotanicas del Ecuador. Instituto Ecuatoriano de Ciencias Naturales, Quito, Ecuador. 271 p.
- Alarcon, E., and J. Lotero. 1970. Establecimiento, fertilizacion y manejo de las principales gramineas y leguminosas forrajeras en dos pisos termicos de Colombia. Instituto Colombiano Agropecuario (ICA), Colombia. 31 p. (mimeo).
- Andrew, C. S. 1978. The effect of sulfur on the growth, sulfur and nitrogen concentrations, and critical sulfur concentrations of some tropical and temperatre pasture legumes. Aust. J. Agric. Res. 28:807-809.
- , and M. F. Robins. 1969. The effect of phosphorus on the growth and chemical composition of some tropical pasture legumes.

 1. Growth and phosphorus critical percentages. Aust. J. Agric. Res. 20:665-674.
- Berrezueta, L. G. 1975. Evaluacion de gramineas solas y asociadas con leguminosas, sometidas a pastoreo, en Sando Domingo de los Colorados. Tesis Ingeniero Agronomo. Universidad Tecnica de Manabi, Portoviejo, Manabi, Ecuador. 42 p.
- Betancourt, J. R. 1969. Respuesta del pasto guinea (<u>Panicum maximum</u> Jacq.) a la fertilizacion nitrogenada. Tesis Ingeniero Agronomo. Universidad de Guayaquil, Guayaquil, Guayaq, Ecuador. 40 p.
- Blue, W. G., and L. EL Tergas. 1969. Dry season deterioration of forage quality in the wet-dry tropic. Soil Crop Sci. Soc. Fla. Proc. 29:224-227.
- Bogdan, A. V. 1977. Tropical pasture and fodder plants. <u>In</u> Tropical Agricultural Series. Longman Croup Limited, London. 475 p.
- Bransby, D. I. 1975. A simple instrument for standing pasture yield in situ. M. S. Thesis. University of Missouri, Columbia, Missouri. 33 p.
- Bryan, W. W., and T. R. Evans. 1973. Effects of soil fertilizers and stocking rate on pastures and beef production on the Wallum of Southeastern Queensland. I. Botanical composition and chemical effects on plants and soils. Aust. J. Exp. Agric. Anim. Husb. 13:516-529.

- ______, J. P. Sharpe, and K. P. Haydock. 1971. Some factors affecting the growth of Lotononis (<u>Lotononis bainesii</u>). Aust. J. Exp. Agric. Anim. Husb. 11:29-34.
- Chaverra, H. 1979. Manejo de potreros. Pastos y ganado para la costa Atlantíca. Instituto Colombiano Agropecuario (ICA), Colombia. 138 p.
- Chavez, J. E. 1974. Evaluación de la associación guinea-centrosema sometida a pastoreo en epocas seca y humeda en Pichilingue. Tesis Ingeniero Agronomo. Unviversidad Central del Ecuador, Quito, Pichincha, Ecuador. 47 p.
- Correa, M. P. 1926. Dicdionario de plantas uteis do Brasil a das exoticas cultivadas. Rio de Janeiro, Imprensa Nacional Brasil. 5:552-554.
- Conway, A. 1965. Grazing management in relation to beef production. 8th Proc. Int. Grassld. Cong., Sao Paulo, Brasil. P. 1601-1607.
- Cowan, R. T., I. J. R. Bayford, and T. G. Stobbs. 1975. Effects of stocking rates and energy supplementation on milk production from tropical-grass-legume pasture. Aust. J. Exp. Agric. Anim. Husb. 15:740-744.
- , and P. O-Grady. 1976. Effects of presentation yield of a tropical grass-legume pasture on grazing time and milk yield of Freisian cows. Trop. Grassld. 10:213-212.
- , R. J. Moss, and I. J. R. Bayford. 1974. Milk and fat yields of Jersey and Freisian cows grazing tropical grass-legume pastures. Trop. Grassld. 8:177-179.
- Davis, H. 1967. Influence of soil and management on the botanical composition of 20 years-old releaimed bill pastures in mid Walls. J. Range Manage. 20:241-247.
- Draolu, E. A., and G. W. Nabusin-Napalu. 1980. Response of pure and mixed swards of stylo and panicum to frequency and height of cutting. East. Afr. Agric. For. J. 42:559-563.
- Echandi, O. 1956. Utilizacion de los potreros a travez del pastoreo y del corte para alimentacion en establo. Mesa Redonda Regional Sobre Forrajes en Centro America. Turrialba, Costa Rica. 1:52-54.
- Epstein, E. 1972. Mineral nutrition of plants: Principles and perspectives. John Wiley and Sons, New York. 432 p.
- Evans, T. R. 1970. Some factors affecting beef production from subtropical pastures in the coastal lowland of Southeast Queensland. XI Int. Grassld. Cong. Proc., Surfer's Paradise, Australia. P. 803-807.

- and W. W. Bryan. 1973. Effects of soils, fertilizers, and stocking rates on pastures and beef production. Aust. J. Exp. Agric. Anim. Husb. 13:530-533.
- Falade, J. A. 1975. The effect of phosphorus on growth and mineral composition of five tropical grasses. East Afr. Agric. For. J. 40:342-350.
- Farfan, C. 1974. Efecto de practicas culturales en la produccion de semillas de plantas forrajeres tropicales. Tesis Ingeniero Agronomo. Universidad Technica de Manabi. Portoviejo, Manabi, Ecuador. 33 p.
- Febles, G., and C. Padilla. 1972. Efecto del pastoreo en asociaciones de gramineas y leguminosas tropicales. Revista Cubana de Ciencias Agricolas. 6:450-408.
- Fox, R. H. 1979. Soil pH, aluminum saturation, and corn grain yield. Soil Sci. 127:330-334.
- Fox, R. L., N. K. Nishimoro, S. R. Thompson, and J. R. de la Pena. 1974. Comparative external phosphorus requirements of plants growing in tropical soils. X Int. Cong. Soil Sci. 4:232-239.
- Franca, G. E., and M. M. Carvalho. 1970. Ensayo exploratorio da fertilizacao da cinco leguminosas tropicales en un solo do cerrado. Pesquisa Agropecuaria Brasileira. 5:147-153.
- Funes, F., and C. Perez. 1976. Estudios agronomicos en soya perenne. I. Comparacion de variedades de <u>Glycine</u> <u>wightii</u> y <u>Teramnus</u> <u>labialis</u> en condiciones de corte y pastoreo. Revista Cubana de Ciencias Agricolas. 10:205-209.
- Gardner, A. L. 1972. Estudio sobre los metodos agronomicos para la evaluación de pasturas. Centro de Investigaciónes y Ensenanza para la zona templada. Instituto Interamericano de Ciencias Ágricolas (ITCA), Montevideo, Uruguay. 48 p.
- Gartner, J. A., J. E. Ferguson, R. W. Walker, and E. A. Goward. 1974. Evaluating perennial grass-legume on the Atherton tableland of North Queensland. Queensl. J. Agric. Anim. Sci. 1:1-17.
- Gomez, D. T. 1978. Establishment methods and comparative persistence of five tropical legumes in grass sods. Ph.D. Dissertation. University of Florida, Gainesville, Florida. 143 p.
- Grof, B. 1970. Yield attributes of some species and ecotypes of centrosema in north Queensland. Queensl. J. Agric. Anim. Sci. 4:85-89.
- _____, and W. A. T. Harding. 1970. Dry matter yields and animal production on guineagrass (Panicum maximum) on the humid tropical coast of North Queensland. Trop. Grassld. 1:77-84.
- Hall, R. L. 1970. Pasture development in the spear grass region at Westwood in Fitzroy Basin. Trop. Grassld. 4:77-84.

- Hardy, F. 1960. Report on a visit to the Riverine belt of Ecuador. Inter-American Institute of Agricultural Science. Turrialba, Costa Rica. Rpt. No. 37. 112 p.
- Harris, W. 1978. Defoliation as a determinant of the growth, persistence and composition of pasture. <u>In J. R. Wilson</u> (ed.) Plant relations in pastures. CSIRO, Brisbane, Australia. P. 67-84.
- Heady, H. F. 1970. Grazing systems: Therms and definitions. J. Range Manage. 23:81-86.
- Heath, M. E. 1978. Grassland agriculture. <u>In</u> M. E. Heath, D. S. Metcalfe, and R. F. Barnes (eds.) Forages. Iowa State University Press, Ames, Iowa. P. 13-20.
- Hodgson, J., and J. H. Ollerenshaw. 1969. The frequency and severity of defoliation of individual tillers in serstocket swards. J. Br. Grassld. Soc. 24:81-86.
- Holdridge, L. R. 1967. Life zone ecology. Tropical Science Center, San Jose, Costa Rica. 86 p.
- Hudgens, R. E. 1973. The compatibility, persistence and nutritive value of grass-legume associations in the wet-dry tropics of coastal Ecuador. M. S. Thesis. University of Florida, Gainesville, Florida. 120 p.
- Humphreys, L. R. 1978. Tropical pasture and fodder crops. <u>In</u> W. J. A. Payne (ed.) Intermediate tropical agriculture series. Longman Group Limited, London. P. 7-78.
- . 1980. A guide to better pasture for the tropics and sub-tropics. Wright Stephenson and Co., Australia. 96 p.
- INIAP (Instituto Nacional de Investigaciones Agropecuarias). 1972-1980. Informes tecnicos anuales del programa de pastos y ganaderia de la Estacion Experimental Tropical Pichilingue. Quito, Ecuador.
- Jensen, P. N., and C. M. Schumacher. 1970. Changes in prairie plant composition. J. Range Manage. 22:57-60.
- Jones, R. M. 1979. Effect of stocking rate and grazing frequency on a Siratro (Macroptilium atropurpureum)/Setaria anceps cv Nandy pasture. Aust. J. Exp. Agric. Anim. Husb. 19:318-320.
- Jones, M. B., and L. M. M. de Freitas. 1970. Respostas de quatro leguminosas tropicais a fostoro, potassio e calcarío num Latossolo Vermelho-Amarelo de campo cerrado. Pesquisa Agropecuaria Brasileira. Seríe Agr. 5:91-99.
- Kennedy, R. K. 1972. The sickledrat: a circular quadrat modification useful in grassland studies. J. Range Manage. 25:312-313.

- Kretschmer, A. E. 1971. New legumes for the Latin American tropics. Agric. Res. Center, Fort Pierce, Florida Rpt. P. 11-31.
- . 1974. Distribution, introduction and evaluation of tropical pasture species. Agric. Res. Center Rpt. FL-1974-8, Fort Pierce, Florida. P. 4-10.
- Littell, R. C., and G. O. Mott. 1975. Computer assisted design and analysis of response surface experiments in agronomy. Soil Crop Sci. Soc. Fla. Proc. 34:94-97.
- Ludlow, M. M., and G. L. Wilson. 1970. Studies on the productivity of tropical pasture plants. II. Growth analysis, photosynthesis, and respiration of 20 species of grasses and legumes in a controlled environment. Aust. J. Agric. Res. 21:183-194.
- Manhaes, S. S., and J. Dobereiner. 1968. Effeito do fosforo, temperatura, a unidade do solo na nodulacao e no desmvolvimiento de dua variedade de soya perene (Glycine wightii). Pesquisa Agropecuaria Brasileira. 3:215-221.
- Maraschin, G. E. 1975. Response of a complex tropical pasture mixture to different grazing management systems. Ph.D. Dissertation. University of Florida, Gainesville, Florida. 148 p.
- Matches, A. G. 1970. Pasture research methods. Proc. Nat. Conf. Forage Quality, Evaluation and Utilization, University of Nebraska, Lincoln, Nebraska.
- McIlroy, R. J. 1972. Introduction al cultivo de los pastos tropicales. (Trad. de al 2a. Ed. Inglesa), UTEHA, Mexico. 168 p.
- McIvor, J. G., R. J. Jones, C. J. Gardiner, and W. H. Winter. 1981. Development of legume based pastures for beef production in dry tropical areas of Northern Australia. XIV Int. Grassld. Cong. Proc., University of Kentucky, Lexington, Kentucky. 491 p.
- McMeeckan, C. P. 1956. Grazing management and animal production. VII Int. Grassld. Cong. Proc., New Zealand. 145:156.
- Medina, K. D. 1969. Estudio de la disponibilidad de hierro, manganeso y zinc de la zona de Quevedo, Ecuador. Tesis Ingeniero Agronomy, Universidad de Guayaquil, Guayaquil, Guayos, Ecuador. 95 p.
- Milford, R., and K. P. Haydock. 1965. The nutritive value of protein in subtropical pasture species grown in southeast Queensland. Aust. J. Exp. Agric. Anim. Husb. 5:13-17.
- Minson, D. J., and R. Milford. 1967. The voluntary intake and digestibility of diets containing different proportions of legumes and mature pangolagrass (<u>Digitaria decumbens</u>). Aust. J. Exp. Agric. Anim. Husb. 7:546-551.

- Moore, A. W. 1962. Symbiotic nitrogen fixation in a grazed tropical grass-legume pasture. Nature. 185:638-640.
- Mott, G. 0. 1960. Grazing pressure and the management of pasture production. VIII Int. Grassld. Cong. Proc., University of Reading, England. P. 601-611.
- ____. 1973. Evaluating forage production. <u>In</u> M. E. Heath, D. E. Metcalfe, and R. F. Barnes (eds.) Forages. Towa State University Press, Ames, Iowa. P. 126-147.
- . 1974. Nutrient recycling in pastures. <u>In</u> O. A. Mays (ed.) Forage fertilization. The American Society of Agronomy, Madison, Wisconsin. P. 47-54.
- . 1977. Grazing management of tropical legume-grass associations. 11th Ann. Conf. on Livestock and Poultry in Latin America. University of Florida, Gainesville, Florida. A-35.
- . 1981. Potential productivity of temperate and tropical grassland systems. XIV Int. Grassld. Cong. Proc., University of Kentucky, Lexington, Kentucky. P. 35-41.
- , and H. L. Lucas. 1952. The design, conduct and interpretation of grazing trials on cultivated and improved pastures. VI Int. Grassld. Cong. Proc., Pennsylvania State University, State College, Pennsylvania. P. 1380-1385.
- _____, and J. E. Moore. 1970. Forage evaluation in perspective.
 Proc. Nat. Cong. Forage Quality, Evaluation and Utilization.
 University of Nebraska, Lincoln, Nebraska.
- Neme, N. A., and L. A. C. Lovadini. 1967. Efeito de adubos fosfatados e calcario na producao de forragem de soja perene (Glycine javanica L.) em "terra de Cerrado." Bragantía. 26:365-371.
- Norman, M. J. T. 1970. Relationships between liveweight gain of grazing beef steers and availability of Townsville lucerne. XI Int. Grassld. Cong. Proc., Surfer's Paradise, Australia. P. 829-832.
- Ozanne, P. G., and T. C. Shaw. 1976. Phosphate sorption by soils as a measure of the phosphate requirement for pasture growth. Aust. J. Agric. Res. 8:601-612.
- Palacios, C. 1976. Efectos de la nodulacion, pepetizacion y nutricion mineral en la fifacion de nitrogeno por <u>Centrosema pubescens</u> Benth. a nevel de invernadero. Tesis Ingeniero Agronomo. <u>Uni-</u> versidad de Guayaquil, Guayaquil, Guayas, Ecuador. 31 p.
- Paladines, O. L., and J. de Alba. 1963. Aceptacion de forrajes tropicales por el ganado. Turrialba. 13:194-196.
- Paredes, O. 1974. Evalucaion de diferentes sistemas de pastoreo con bovinos en pasto guinea (<u>Panicum maximum Jacq.</u>). Tesis Ingeniero Agronomo. Universidad de Guayaquil, Guayaquil, Guayas, Ecuador. 37 p.

- Petersen, R. G., H. L. Lucas, and G. O. Mott. 1965. Relationship between rate of stocking and per animal and per acre performance on pasture. Agron. J. 57:27-30.
- Reuter, D. J. 1975. The recognition and correlation of trace element deficiencies. In D. J. D. Nichlas and A. R. Egan (eds.) Trace elements in soil-plant-animal systems. Academic Press, New York.
- Roberts, C. R. 1974. Some problems of establishment and management of legume-based tropical pastures. Trop. Grassld. 8:61-67.
- Rolando, C. X. 1974. Comportamiento al pastoreo de tres gramineas forrajeras, con fertilización nitrogenada y en asociación con centrosema, bajo cinco periodos de descanso. Tesis Ingeniero Agronomo. Universidad de Guayaquil, Guayaquil, Guayas, Ecuador. 46 p.
- Russell, J. S. 1978. Comparative soil tolerance of some tropical and temperate legumes and tropical grasses. Aust. J. Exp. Agric. Anim. Husb. 16:103-106.
- Salinas, J. G., and P. A. Sanchez. 1976. Soll-plant relationships affecting varietal difference in tolerances to low available soil phosphorus. Ciencia e Cultura. 28:156-168.
- Sanchez, P. A. 1977. Properties and management of soils in the tropics. John Wiley and Sons, New York.
- Santhirasegaram, K. 1976. Manejo de praderas de leguminosas y gramineas en un ecosistema de selva illuviosa tropical en Peru. In E. Bornemisza and A. Alvarado (eds.) Manejo de suelos en la America tropical. North Carolina State University, Raleigh, North Carolina. P. 455-466.
- Santillan, R. A. 1971. Capacidad de carga en el pasto puntero [Hyparrhenia rufa (Nees) Stapf.] sometido a pastoreo continuo. Tesis Ingeniero Agronomo. Universidad de Guayaquil, Guayaquil, Guayas, Ecuador. 31 p.
- ______. 1976. Estimating forage yield with a disk meter. M.S.
 Thesis. University of Florida, Gainesville, Florida, 43 p.
- Serrao, E. A. 1976. The use of response surface design in the agronomic evaluation of a grass-legume mixture under grazing. Ph.D. Dissertation. University of Florida, Gainesville, Florida. 232 p.
- Servicio Nacional de Hidrologia y Meterologia del Ecuador. 1980. Boletines climatologicos. Ano 19, No. 209-220, Quito, Ecuador.
- Shaw, N. H., and W. W. Bryan. 1976. Tropical pasture research: Principles and methods. Commonwealth Agric. Bureax. Alden Press, Oxford, England.

- Snyder, G. H., and A. E. Kretschmer. 1974. Tropical legume response to lime and superphosphate in oldsmar fine sand. Soil Crop Sci. Soc. Fla. Proc. 34:63-66.
- Spedding, C. R. W. 1965. The physiological basis of grazing management. J. Br. Grassld. Soc. 24:81-86.
- Stobbs, T. H. 1969. Beef production from pastures: Leys in Uganda. J. Br. Grassld. Soc. 24:87-91.
- Tergas, L. E. 1968. The effect of nitrogen fertilization on the movements of nutrients from a tropical grass under soil moisture stress in a hot savanna. Ph.D. Dissertation. University of Florida, Gainesville, Florida. 118 p.
 - . 1976. Factores que afectan la persistencia de las leguminosas en associaciones con gramineas tropicales. <u>In</u> Conferencia Anual Sobre Ganaderia y Avicultura en America Latina. University of Florida, Gainesville, Florida.
- _____. 1977. Importancia del azufre en la nutricion mineral de leguminosas forraheras tropicales. Turrialba. 27:63-69.
- t'Mannetje, L. 1974. Relations between pastures attributes and live weight gains on a subtropical pasture. XII Int. Grassld. Cong. Proc., Moscow, Russia. P. 299-304.
- . 1976. An introduction to grassland vegetation and its measurement. In L. t'Mannetje (ed.) Measurement of grassland vegetation and animal production. Commonwealth Agric. Bureaux. Farnhan Royal, Bucks, England. P. 1-7.
- . 1978. The role of a legume based pasture for beef production in the tropics. IV World Conf. Anim. Prod., Buenos Aires, Argentina.
- Tothill, J. C. 1978. Comparative aspects of the ecology of pastures. $\underline{\text{In}}$ J. R. Wilson (ed.) Plant relations in pastures. Commonwealth Scientific and Industrial Research Organization, Brisbane, Australia. P. 385-404.
- and M. L. Petersen. 1962. Botanical analysis and sampling:
 Tame pastures. In Pasture and range research techniques. Ithaca,
 New York. P. 109-134.
- Tow, P. G. 1967. Controlled climate comparisons of a tropical grass and legume. Neth. J. Agric. Sci. 15:141-154.
- Ventura, M., J. E. Moore, O. C. Ruelke, and D. E. Franke. 1975. Effect of maturity and protein supplementation of voluntary intake and nutrient digestibility of pangola digitgrass hays. J. Anim. Sci. 40:769-774.

- Vicente-Chandler, J. 1975. Intensive management of pastures and forages in Puerto Rico. In E. Bornemisza and A. Alvarado (eds.) Soil management in tropical America. North Carolina State University, Raleigh, North Carolina. P. 409-433.
- Vilela, L. A. 1979. Efeito de taxa de lotacoo e de alimentacao suplementar sobre a producao de leite durante o periodo de seca. Revista de la Sociedade Brasileira de Zootechnia. 8:681-685.
- Villasmil, I. J. J. Atencio, J. Barcenas, A. Casanova, M. Urdaneta, and D. H. Timm. 1975. Response surface designs and linear programming applied to cattle-forage-feeding systems in the tropics. In E. C. Doll and G. O. Mott (eds.) Tropical forages in livestock production systems. ASA Special Publ. No. 24. P. 53-70.
- Wells, T. C. 1967. Changes in the botanical composition of a sown pasture on a chalk in Kent 1956-1964. J. Br. Grassld. Soc. 22:277-281.
- Werner, J. C. 1979. Response of two species of <u>Stylosanthes</u> sp. to levels of lime, phosphorus, potassium and boron on three mineral soils. Ph.D. Dissertation, University of Florida, Gainesville, Florida. 205 p.
- , F. A. Monteiro, and H. B. Mattos. 1975. The use of trace elements as FTE on forage tropical legumes. Br. Industr. Anim. 32:347-361.
- Whiteman, P. C. 1969. Seasonal changes in growth and nodulation of perennial tropical pasture legume in the field. II. Effects of controlled defoliation levels on nodulation of <u>Desmodium intortum</u> and Phaseolus atropurpureum. Aust. J. Agric. Res. 21:207-214.
- Zapata, C. 1981. Respuesta de cuatro pasturas tropicales en termino de ganancia de peso vivo en tres grupos raciales de bovinos. Tesis Ingeniero Agronomo. Universidad de Guayaquil, Guayaquil, Guayas, Ecuador. 34 p.

BIOGRAPHICAL SKETCH

Raul A. Santillan was born December 6, 1943, in Riobamba,
Chimborazo province, Ecuador, to Rigoberto and Itala Santillan.
From May 1962 to January 1968 he attended the Universidad de
Guayaquil, Ecuador, and received the Ingeniero Agronomo degree.
For six months he worked in the Programa Nacional del Banano and
in August of 1968 he joined the Instituto Nacional de Investigaciones Agropecuarias (INIAP), working in tropical pastures at
the Extacion Experimental Pichilingue. In 1972 he was awarded
a grant to receive a year's training in cattle production at the
Centro Internacional de Agricultural Tropical (CIAT) in Cali,
Colombia. In 1974 he received the Master of Science degree in
agriculture. In 1981 he continued his studies toward the degree
of Doctor of Philosophy in agronomy.

Raul A. Santillan is married to the former Maggie Moreno and they have two daughters, Alexandra and Carolina. The author is a member of the Asociacion Ecuatoriana de Produccion Animal and Asociacion Latinoamericana de Produccion Animal. I certify that I have read this study and that in my opinion it conforms to acceptable standards of shcolarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

G. O. Mott, Chairman Professor of Agronomy

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

J. E. Moore
Professor of Animal Science

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

O. C. Ruelke

O. C. Ruelke

Professor of Arronau

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I. R McDowell

Professor of Animal Science

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

W. R. Ocumpaugh Associate Professor of Agronomy

This dissertation was submitted to the Graduate Faculty of the College of Agriculture and to the Graduate Council, and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

April 1983

Dean, College of Agriculture

Dean for Graduate Studies and Research