Introduction to Information Security 14-741/18-631 Fall 2021 Unit 3: Lecture 2: Multilevel and Multilateral Security

Hanan Hibshi

hhibshi@cmu.edu

This Lecture's Agenda

Outline

- Multilevel security (MLS)
- **▼** Multilateral security
- Inference control

Objective

- Expose you to information security access control problems outside of operating systems security
- Make you aware that there is much more to access control than ACLs and capabilities
- Give you examples of security policies

Multilevel Security (MLS): Basic Problem

- Clearance: Level of permission required to view classified information
- How do you ensure proper security at each level?
 - What is a meaningful policy?
 - What are meaningful mechanisms?

Importance of MLS

- Used in military security
- Used in modern operating systems
 - **▼** SELinux
 - Mandatory access control to shield processes
 - Labels are in the format user:role:type:level (level is optional)
 - **▼** Vista
 - Internet explorer runs at "Low" so as not to tamper integrity of "High" files (e.g. system files)

The Bell-LaPadula Model

Consists of two simple properties

- Thought extremely useful formalism at the time
- Enthusiasm has faded a bit since then (multilevel security is very hard) but still very useful model

The Simple security property

- No process may read data at a higher level
- **No read up** (NRU)
- The *-property (strong star)
 - No process may write data at a lower level
 - **No write down** (NWD)

Top secret
Secret
Confidential
Open (unclassified)

Simple Security Property (No read-up)

- Common sense: someone with no clearance shouldn't be able to read classified info!
- On the other hand, nothing prevents someone with a topsecret clearance to read secret or confidential materials

*-property (No write-down)

- Common sense again: prevent information leaks
- Much harder to implement in practice than it sounds
 - E.g., when an attacker puts in a guessed password, the server always tells the attacker whether the password is correct or not (1 bit of information)

Improvements on BLP

How do you deal with changes?

- Declassification: when data is no longer classified
 - Once declassified to public domain, information cannot be erased
- Change in clearance level: when an entity gains or loses clearance

Security Properties of BLP

- Noninterference: information at a higher level is invisible at a lower level
 - E.g., Homer doesn't know any upcoming military operations
- (Probabilistic) Nondeducibility: someone at a low level cannot deduct with 100% probability what happens at a high level
 - E.g., Homer cannot deduce any information about military operations
 - by activities of a base
 - a military family in the neighborhood
 - Used in anonymous systems
 - What about 99% probability? 90%?

The Biba Model

- BLP was good for confidentiality, avoided integrity
- Biba model deals with integrity only

The Biba Model

■ "BLP upside down"

- Integrity is the dual of confidentiality
- Only read up
 - E.g., a user process can read calibration data
- Only write down
 - Calibration process can write user data, but not the other way around
- No read-down or write-up to prevent contamination of "High" objects with "Low" objects
 - High = trusted/high integrity
 - **■** Low = untrusted/low integrity

Used in Linux for protecting against malicious code

- LOMAC extensions
- System files are "High", Network is "Low"
- As soon as a prog receives network traffic, prog downgraded to Low
- This is precisely what Windows Vista implements

Biba Examples

Windows Vista

- By default, everything is Medium
- Admin files are High
- Internet Explorer + downloaded files are Low
- System files are System
- Biba: Only read-up, only write down
 - **▼** <u>Vista</u> is read-down, write-down
 - **▼** Possible issue?

■ SE Linux

■ Embedded Systems

- Meters are observed but are not influenced by billing systems
- Systems that can observe everything but not alter anything
- Dispatching systems can read-up

The Naval Research Lab (NRL) Pump

- BLP or Biba model require one-way communications
- Impractical in many applications
 - ▼ E.g., server/password example
- Instead, rate limit traffic that can go from high to low (if implementing a BLP policy) or low to high (if implementing Biba)
 - ▼ Timing randomization of ACKs
- With the cost of hardware going down, data diodes are more feasible

(from Anderson)

Theoretical Difficulties in MLS

- Composability
- The Cascade Problem
- Covert Channels
- The Threat from Malware
- Polyinstantiation

Difficulties in MLS: Composability

- How do we compose two or more secure components into a secure system?
- Most problems arise when feedback is introduced

Difficulties in MLS: Composability

- How do we compose two or more secure components into a secure system?
- Most problems arise when feedback is introduced

- Assume you have a system that can only manage securely interaction between two neighboring levels
 - Don't want "Unclassified" and "Top secret" handled by the same machine
- Interconnecting two such systems breaks the policy!

Difficulties in MLS: Covert Channels

- MSL Secrecy Goal: prevent unauthorized communication among processes
- Protection models we discussed so far are not sufficient, processes can leak information through covert channels
- Examples:
 - System status checks: ps, time, netstat, ...
 - **▼** File system
 - **▼**Write (temporary) files, directories
 - **▼**Test presence of files
 - **■** Network
 - **▼**Sockets, DNS, HTTP GET, ...
 - Cache, pipelining (Spectre, Meltdown)

(Adapted from Adrian Perrig)

Dealing with Covert Channels

- Confined program shall be memory-less
 - no persistent storage across invocations
- Total isolation: a confined program shall make no calls to another program
- Transitivity: if a confined program calls an untrusted program, untrusted program must also be confined
- Masking: caller can determine all inputs into legitimate and covert channels
- Enforcement: ensure that input into covert channel conforms to caller's specification

Even More Problematic Covert Channels

- **■** Magnetic emanations
 - E.g., coming from monitors (CRT),
- Acoustic emanations
- •••

Covert Channels in Practice

- Extremely hard to deal with
 - See previous slides
- Most of the decisions involve a trade-off between convenience/ease and amount of leakage
- Covert channels also apply outside of computer systems
 - Example in Anderson

Difficulties in MLS: Threat from Malware

- First virus in 1983 by Fred Cohen to penetrate MLS
 - Wasn't a trojan, took 8 hours to write!
- Malware can break access controls
 - By corrupting reference monitor or TCB
 - ▼ TPM was suggested
 - Malware to copy itself from low to high (BLP won't prevent)
 - Use covert channel for leakage

Difficulties in MLS: Polyinstantiation

- High user creates agent file, system blocks low users from creating the same file
 - Information is now leaked!
- Naming conventions helps (e.g. user directories)
 - What about systems with databases?
- Other solutions:

Level	Cargo	Destination
Secret	Missiles	Iran
Restricted	-	-
Unclassified	Engine spares	Cyprus

Level	Cargo	Destination
Secret	Missiles	Iran
Restricted	Classified	Classified
Unclassified	_	_

US solution (Anderson)

UK solution (Anderson)

Practical Difficulties in MLS

- Built in small volumes; require high standards of robustness
- Require extensive training on tools and procedures
- Might require applications to be re-written
- Over classification can lead to a bigger TCB
- Classification can get complex
 - ▼ Conflict; downgrade information when needed; nonmonotonic; volume of information; composability
- Might prevent desired actions
- Can impair operations
 - Lead to insecure trade-offs for usability

Multilateral security

Multilateral Security

- Also known as compartmentation in the US
- The idea is that you may want to prevent information from flowing across domains
- E.g., hospital
 - Alice, Bob, Charlie are doctors

Alice's patients info	Bob's patients info	Charlie's patients info		
shared data (e.g., pharmacy phone number,)				

Multilateral Security

- Also known as compartmentation in the US
- The idea is that you may want to prevent information from flowing across domains
- E.g., hospital
 - Alice, Bob, Charlie are doctors

Violation of doctor-patient privilege!

The Lattice Model

- Generalizes the BLP model by adding codewords to security levels
 - arrow represents allowed direction of information flow

Medical Records

- BMA is British Medical Association
- Implemented access control policy in 1995
- Common issue: consistent classification
 - ▼ People with a lethal disease "Secret"
 - Prescriptions at "Restricted"
 - Possibly easy to infer the disease with a "Restricted" clearance
 - Should everything be "Secret"?
 - Tough access control problem

BMA: Principles (1/3)

Access control

■ Every record needs a complete ACL. Default is deny access

Record opening

■ Doctors can open records where they, the patient, and possibly the referring doctor are on the ACL

Control

- One of the physicians on the ACL is responsible ('owner')
 - only one who can modify the ACL

BMA: Principles (2/3)

Consent and notification

- Physician must inform patient of initial ACL and of subsequent modifications
- Consent is needed (unless emergency)

Persistence

Can't delete any medical information before a (predetermined) time period has expired

Attribution

- All accesses shall be marked and timestamped
- Audit trail for deletions

BMA: Principles (3/3)

Information flow

■ Info derived from record A may be appended to record B only if B's ACL is a subset of A's

Aggregation control

■ Prevent aggregation; e.g., special notification is required when an element that has access to a large number of records is added to the ACL

■ Trusted Computing Base (TCB)

■ Computer systems that implement the policy should be reviewed by independent experts

Issues with BMA

- Emergency care
- Resilience
- Secondary Uses
- Confidentiality
- Ethics
- Social care and Education

The Chinese Wall

- Initially used in banking to prevent conflicts of interests
 - Two or more of the bank's customers may be competing with each other
 - Isolation is necessary
- A mix of free choice and Mandatory Access Control
 - A partner can choose the sector, but after that constraints apply

The Chinese Wall

- S is a subject (e.g., one of the bankers)
- C is a customer
- X(C) is C's competitors
- Y(C) is C's own company
- Simple security property read policy
 - S can read C if and only if for any C' that S can read, either Y(C') = Y(C) or Y(C') is not in X(C)
- *-property write policy
 - S can write to C only if S can read C, and
 - Only if S cannot read any C' for which X(C') is not empty and Y(C)≠Y(C')

The Chinese Wall: Example

- S = Scrooge is a banker
- Simple security property
 - C = Donald Duck
 - ▼ Y(C) = Disney Ducks (C's own company)
 - Daisy Duck in Y(C)
 - $\mathbf{X}(C)$ = All other Disney characters (C's competitors)
 - The two customers that Scrooge can read are Daisy Ducks and Hello Kitty
 - Can scrooge read Donald Duck?
 - Scrooge can read Donald Duck's account if and only if for any C' that S can read either C' is part of Disney Ducks (e.g., C' = Daisy Duck...) or Y(C') is not in X(C), e.g. C' = Hello Kitty

*-property

- Can Scrooge write to Hello Kitty? (Y(Hello Kitty) = Sanrio)
 - Scrooge can write to Hello Kitty account only if Scrooge can read it, and
 - Only if Scrooge cannot read any account C' which has competitors and who is not part of Sanrio
- Star property prevents Scrooge from passing information to Rockerduck about Donald Duck through the Hello Kitty account, if Rockerduck is in charge of Mickey Mouse's account

Comparison

Lattice model

■ Describes compartmentation, but doesn't say how to manage information flows

■ Chinese Wall and BMA

- Say how to manage information flows
- ▼ Chinese Wall = centralized
- BMA = decentralized

Inference Control: Problem

Even anonymized data can reveal too much

AOL searcher No. 4417749 (among 20 million search

queries)

Inference Control: Solutions

Restrict size of query set

Reject queries that return less than N returns (where N is small, e.g.,6)

Reject extreme values in statistical data

- If you see that the average height in a particular village is 1m95,
- If you see that, for many smaller groups, the average falls to 1m72
- ▼ You can easily figure that Yao Ming or Shaquille O'Neal probably lives in the village

Cell suppression

- ▼ Conceal records that allow individual data to be reverse-engineered
- May result in obfuscating large parts of a database
- Only use random samples in aggregate reports
- •••

Solution: Differential Privacy Solution

- Add noise to prevent disclosure of sensitive information
- Limit the probability of of disclosure
 - Even if adversary has unlimited computational power
- Can be used in
 - Statistical database security
 - Anonymization

Take Away Slide

Multilevel security is a very hard problem

- Preventing flows of information can be done in theory
- Harder to do in practice
 - Most communications are two-way
- Derived from the military but extremely useful for networked systems, for instance

Multilateral security is an equally hard problem

- Setting up interfaces (ACL) is the easiest part
- Statistical problems are much harder to deal with (inference control)
- The interplay between inference control and proper ACL is even harder to figure out
- Privacy concerns
- Access control is an issue that far exceeds computer systems
- Problem is complicated by the notion of information flows

Multilevel and Multilateral Summary

Multilevel Security(MLS)	Multilateral Security
Security Levels are used for decisions	Define Security policies according to some rules
BLP: Confidentiality Biba: Integrity	Security between different actors (agents). Actors can have the same clearance level
Enforces access control up and down	Enforces access control by compartments. Compartments can be at the same level