

GEOMETRÍA

Capítulo 5

3th SECONDARY

TRIÁNGULO

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales, que nos permite comprender las demás figuras geométricas que estudiaremos posteriormente., aplicando los axiomas, postulados, lemas, teoremas y corolarios, estudiados en los capítulos anteriores, en nuestra vida cotidiana podemos encontrar muchos objetos de forma de triángulo como podemos observar en los siguientes gráficos.

TRIÁNGULO

Es la reunión de los segmentos determinados al unir tres puntos no colineales.

NOTACIÓN: AABC

Se lee: triángulo ABC

ELEMENTOS

VÉRTICES: A; B y C

• LADOS: AB, BC y CA

CLASIFICACIÓN DE LOS TRIÁNGULOS

Por las longitudes de sus lados.

Por las medidas de sus ángulos.

∆Isósceles

△Equilátero

TEOREMAS FUNDAMENTALES EN EL TRIÁNGULO

La suma de las medidas de los ángulos internos de un triángulo es 180°.

$$\alpha + \beta + \theta = 180^{\circ}$$

La suma de las medidas de los ángulos externos, considerando uno por vértice, es 360°.

La medida de un ángulo externo de un triángulo es igual a la suma de las medidas de los ángulos internos no i adyacentes.

En todo triángulo, la longitud de un lado es menor que la suma de las longitudes de los otros dos lados y mayor que la diferencia de los mismos.

Si: a > b

Entonces:
$$a - b < x < a + b$$

En todo triángulo, al lado de mayor longitud se opone el ángulo interno de mayor medida y viceversa.

Si:

a > b

Entonces: $\alpha > \beta$

$$\alpha > \beta$$

TEOREMAS ADICIONALES

$$\alpha + \beta = x + 180^{\circ}$$

HELICO | THEORY

$$\alpha + \beta = \theta + \phi$$

$$\phi + \theta = \alpha + \beta$$

1. En la figura, halle el valor de x.

2. Se tiene un triángulo ABC, donde la m∢A = 60°, la medida del ángulo exterior de B es 5x y la medida del ángulo exterior de C es 7x. Halle el valor de x.

RESOLUCIÓN

- Piden: x.
- En ∆ ABC:

$$5x + 7x + 120^{\circ} = 360^{\circ}$$

 $12x = 360^{\circ} - 120^{\circ}$
 $12x = 240^{\circ}$

 $x = 20^{\circ}$

3. En la figura, halle el valor de x.

RESOLUCIÓN

- Piden: x
- En ∆ ABC:

$$3\alpha + 3\beta + 60^{\circ} = 180^{\circ}$$
$$3\alpha + 3\beta = 120^{\circ}$$
$$\alpha + \beta = 40^{\circ}$$

• En △ ADC:

$$x = \alpha + \beta$$

$$x = 40^{\circ}$$

4. Halle el menor valor entero de x.

RESOLUCIÓN

- Piden: x_{mín}
- Aplicando el teorema de existencia.

$$4x - 3x < 21 < 4x + 3x$$

 $x < 21 < 7x$

$$x = 4; 5; 6; ...; 20$$

5. En la figura, halle el valor de x, si AB = BC = CD.

RESOLUCIÓN

- Piden: x
- Δ BCD: Isósceles
- A ABC: Isósceles

$$6x + 6x + 36^{\circ} = 180^{\circ}$$

$$12x = 144^{\circ}$$

$$x = 12^{\circ}$$

6. En la figura, ¿cuál de los dos canes se encuentra más cerca a la comida?.

RESOLUCIÓN

Aplicando teorema

$$30^{\circ} + 70^{\circ} + m \triangleleft B = 180^{\circ}$$

 Aplicando teorema de la correspondencia:

El can ubicado en el vértice B

7. Un terreno que está determinado por un triángulo ABC, se divide con 2 cercas (DE y EF) para hacer un jardín.

Halle el valor de x, si $\alpha + \beta = 130^{\circ}$.

RESOLUCIÓN

- Piden: x
- En ∆ ABC: teorema

$$\frac{\alpha + \beta + m \angle C = 180^{\circ}}{130^{\circ} + m \angle C = 180^{\circ}}$$

$$m \angle C = 50^{\circ}$$

En DCFE: teorema

$$5x = 35^{\circ} + 30^{\circ} + 50^{\circ}$$

 $5x = 115^{\circ}$

$$x = 23^{\circ}$$