

PSC 40A Xecture 17 Naïve Bayes, PII

Sentiment Analysis

Goal: given a tweet, determine if it is positive, negative, or neutral.

Classification

We have collected data:

Sentiment	"Love"	"Hate"	"Good"
positive	yes	no	yes
positive	no	no	yes
positive	yes	yes	no
negative	yes	yes	no
negative	no	no	yes
neutral	no	no	no
neutral	no	no	no

We want to classify a new tweet as **positive**, **negative**, or **neutral**:

Conditional Probabilities for Classification

We will calculate:

```
P(positive | love=no & hate=yes & good=yes)
P(negative | love=no & hate=yes & good=yes)
P(neutral | love=no & hate=yes & good=yes)
```

We will classify the tweet as whichever sentiment whose conditional probability is largest.

Approximating Probabilities with a Sample

P(positive | love=no & hate=yes & good=yes)

of positive tweets in sample with hate and good, but not love
of tweets in sample with hate and good, but not love

$$P(A|C, nC_2, nC_3) = \frac{P(A, nC, nC_2, nC_3)}{P(C, nC_2, nC_3)}$$

The Curse of Dimensionality

P(positive | love=no & hate=yes & good=yes)

=
$$\frac{0}{D}$$
 = undefined

Sentiment	"Love"	"Hate"	"Good"
positive	yes	no	yes
positive	no	no	yes
positive	yes	yes	no
negative	yes	yes	no
negative	no	no	yes
neutral	no	no	no
neutral	no	no	no

$$P(A|B) = P(B|A)P(A)$$
 $P(B)$

To approximate *P*(**positive** | love=no & hate=yes & good=yes):

Start with Bayes' Theorem:

$$= \frac{P(\text{love=no \& hate=yes \& good=yes } | \text{ positive}) \cdot P(\text{positive})}{P(\text{love=no \& hate=yes \& good=yes})}$$

Then assume conditional independence of features given class:

```
P(love=no & hate=yes & good=yes | positive)
= P(love=no | positive) · P(hate=yes | positive) · P(good=yes | positive)
```

```
P(positive | love=no & hate=yes & good=yes)

= \frac{P(\text{love=no & hate=yes & good=yes } | \text{ positive}) \cdot P(\text{positive})}{P(\text{love=no & hate=yes & good=yes})}
= \frac{P(\text{love=no | positive}) \cdot P(\text{hate=yes | positive}) \cdot P(\text{good=yes | positive}) \cdot P(\text{positive})}{P(\text{love=no & hate=yes & good=yes})}
```

We are able to estimate P(love=no | positive), P(hate=yes | positive), and P(good=yes | positive) from the data.

We want to find the biggest out of:

$$P(\textbf{positive} \mid \textbf{love=no \& hate=yes \& good=yes})$$

$$= \frac{P(\textbf{love=no} \mid \textbf{positive}) \cdot P(\textbf{hate=yes} \mid \textbf{positive}) \cdot P(\textbf{good=yes} \mid \textbf{positive}) \cdot P(\textbf{positive})}{P(\textbf{love=no \& hate=yes \& good=yes})}$$

$$P(\textbf{negative} \mid \textbf{love=no \& hate=yes \& good=yes})$$

$$= \frac{P(\textbf{love=no} \mid \textbf{negative}) \cdot P(\textbf{hate=yes} \mid \textbf{negative}) \cdot P(\textbf{good=yes} \mid \textbf{negative}) \cdot P(\textbf{negative})}{P(\textbf{love=no \& hate=yes \& good=yes})}$$

$$P(\textbf{neutral} \mid \textbf{love=no \& hate=yes \& good=yes})$$

$$= \frac{P(\textbf{love=no} \mid \textbf{neutral}) \cdot P(\textbf{hate=yes} \mid \textbf{neutral}) \cdot P(\textbf{good=yes} \mid \textbf{neutral}) \cdot P(\textbf{neutral})}{P(\textbf{love=no \& hate=yes \& good=yes})}$$

Since they all have the same denominator, we can just pick that with the largest numerator:

```
 P(\text{love=no} \mid \textbf{positive}) \cdot P(\text{hate=yes} \mid \textbf{positive}) \cdot P(\text{good=yes} \mid \textbf{positive}) \cdot P(\textbf{positive}) \\ P(\text{love=no} \mid \textbf{negative}) \cdot P(\text{hate=yes} \mid \textbf{negative}) \cdot P(\text{good=yes} \mid \textbf{negative}) \cdot P(\textbf{negative}) \\ P(\text{love=no} \mid \textbf{neutral}) \cdot P(\text{hate=yes} \mid \textbf{neutral}) \cdot P(\text{good=yes} \mid \textbf{neutral}) \cdot P(\textbf{neutral}) \\ P(\textbf{neutral}) \cdot P(\textbf{neutral}) \cdot P(\textbf{neutral}) \cdot P(\textbf{neutral}) \\ P(\textbf{neut
```

This is Naïve Bayes classification.

Running Naïve Bayes

P(love=no | positive) · P(hate=yes | positive) · P(good=yes | positive) · P(positive) = $\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{3}{34}$

Sentiment	"Love"	"Hate"	"Good"
positive	yes	no	yes
positive	no	no	yes
positive	yes	yes	no
negative	yes	yes	no
negative	no	no	yes
neutral	no	no	no
neutral	no	no	no

Running Naïve Bayes

 $P(love=no \mid negative) \cdot P(hate=yes \mid negative) \cdot P(good=yes \mid negative) \cdot P(negative)$

Sentiment	"Love"	"Hate"	"Good"
positive	yes	no	yes
positive	no	no	yes
positive	yes	yes	no
negative	yes	yes	no
negative	no	no	yes
neutral	no	no	no
neutral	no	no	no

Running Naïve Bayes

 $P(\text{love=no} \mid \text{neutral}) \cdot P(\text{hate=yes} \mid \text{neutral}) \cdot P(\text{good=yes} \mid \text{neutral}) \cdot P(\text{neutral})$ $O \qquad O \qquad 2/7 = O$

Sentiment	"Love"	"Hate"	"Good"
positive	yes	no	yes
positive	no	no	yes
positive	yes	yes	no
negative	yes	yes	no
negative	no	no	yes
neutral	no	no	no
neutral	no	no	no

The Classification

We have:

$$P(\text{love=no} \mid \textbf{positive}) \cdot P(\text{hate=yes} \mid \textbf{positive}) \cdot P(\text{good=yes} \mid \textbf{positive}) \cdot P(\textbf{positive})$$

$$\approx \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{3}{4} = \frac{2}{9 \cdot 7}$$

$$P(\text{love=no} \mid \textbf{negative}) \cdot P(\text{hate=yes} \mid \textbf{negative}) \cdot P(\text{good=yes} \mid \textbf{negative}) \cdot P(\textbf{negative})$$

$$\approx (1/2)^3 \cdot \frac{2}{7} = \frac{1}{2} \cdot \frac{1}{7} \cdot \frac{1}{7} = \frac{1}{28}$$

$$P(\text{love=no} \mid \textbf{neutral}) \cdot P(\text{hate=yes} \mid \textbf{neutral}) \cdot P(\text{good=yes} \mid \textbf{neutral}) \cdot P(\textbf{neutral})$$

$$\approx 0$$

So we classify the tweet as: positive, negative, neutral.

Since
$$\frac{1}{28} > \frac{2}{9.7}$$

Example

Suppose that today's humidity is > 50%, the temperature is hot, and the air pressure is low. Use Naïve Bayes to predict whether tomorrow will be rainy, cloudy, or sunny.

Next Day's Weather	Humidity	Temperature	Air Pressure
Rainy	> 50%	Cool	Low
Rainy	> 50%	Hot	Low
Rainy	> 50%	Cool	Low
Rainy	25%-50%	Hot	High
Rainy	25%-50%	Hot	Low
Rainy	25%-50%	Cool	Low
Rainy	25%-50%	Cool	Low
Rainy	< 25%	Cool	Low
Rainy	< 25%	Hot	Low
Rainy	< 25%	Hot	High
Cloudy	> 50%	Cool	Low
Cloudy	> 50%	Cool	Low
Cloudy	25%-50%	Hot	High
Cloudy	< 25%	Cool	High
Cloudy	< 25%	Cool	Low
Sunny	> 50%	Cool	Low
Sunny	> 50%	Hot	High
Sunny	> 50%	Cool	High
Sunny	25%-50%	Hot	High
Sunny	< 25%	Hot	High

