School of Mathematics and Statistics

MT5836 Galois Theory

Problem Sheet III: Splitting Fields and Normal Extensions

- 1. For each of the following polynomials f(X) and given base field F, determine the splitting field K of f(X) over F and calculate the degree |K:F| of the extension:
 - (a) $X^2 + 1$ over \mathbb{Q} ;
 - (b) $X^2 + 1$ over \mathbb{R} ;
 - (c) $X^2 4$ over \mathbb{Q} ;
 - (d) $X^4 + 4$ over \mathbb{Q} ;
 - (e) $X^4 1$ over \mathbb{Q} ;
 - (f) $X^4 + 1$ over \mathbb{Q} ;
 - (g) $X^6 1$ over \mathbb{O} :
 - (h) $X^6 + 1$ over \mathbb{Q} ;
 - (i) $X^6 27$ over \mathbb{Q} .
- 2. For each of the following polynomials f(X) and given base field F, determine the degree of the splitting field of f(X) over F:
 - (a) $X^3 2$ over \mathbb{F}_5 ;
 - (b) $X^3 3$ over \mathbb{F}_{13} .
- 3. Let p be a prime and $f(X) = X^p 2$. Find the splitting field of f(X) over \mathbb{Q} and show that the degree of this extension is p(p-1).
- 4. Let f(X) be a polynomial over a field F and let K be the splitting field of f(X) over F. If L is an intermediate field (that is, $F \subseteq L \subseteq K$), show that K is the splitting field of f(X) over L.
- 5. Let ϕ be an automorphism of a field F. Show that the set of fixed-points of ϕ ,

$$Fix_F(\phi) = \{ a \in F \mid a\phi = a \},\$$

is a subfield of F. Hence deduce that ϕ is a P-isomorphism where P is the prime subfield of F.

- 6. (a) Determine all automorphisms of \mathbb{Q} .
 - (b) Determine all automorphisms of $\mathbb{Q}(\sqrt{2})$.
 - (c) Determine all \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - (d) Show that the only automorphism of \mathbb{R} is the identity.
- 7. Suppose that f(X) is an arbitrary polynomial over a field F, K is the splitting field for f(X) over F, and α and β are roots of f(X) in K. Does there exist an automorphism of K that maps α to β ?

- 8. Which of the following fields are normal extensions of \mathbb{Q} ? [As always, justify your answers.]
 - (a) $\mathbb{Q}(\sqrt{2})$;
 - (b) $\mathbb{Q}(\sqrt[4]{2});$
 - (c) $\mathbb{Q}(\sqrt{2},\sqrt{3});$
 - (d) $\mathbb{Q}(\theta)$, where $\theta^4 10\theta^2 + 1 = 0$.
- 9. Let $F \subseteq K \subseteq L$ be field extensions where L is a finite extension of F. Prove, or give a counterexample, to each of the following assertions:
 - (a) If L is a normal extension of K, then L is a normal extension of F.
 - (b) If L is a normal extension of F, then L is a normal extension of K.
 - (c) If L is a normal extension of F, then K is a normal extension of F.