Community Detection Problem

Eric Sheng

Supervised by Charilaos Efthymiou

March 05, 2024

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

Overview

- Introduction
 - Community Detection Problem
- Some Progress So Far
 - Spectral Methods
- 3 A Variant of Community Detection Problem
 - Greedy Recovery Algorithm
 - Experimental Results
 - Evaluation
- 4 Future Work
 - Robustness
 - Combined Algorithm
- Project Management

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

Community Detection Problem

- Community detection in graphs is the problem of finding groups of vertices which are more densely connected than they are to the rest of the graph.
- NP-Hard in general (Schaeffer 2007).

Figure: The right graph is the community structrue hidden in the left one

More Formally

• Stochastic Block Model (SBM): For a graph of n vertices and k groups. Each vertex i belongs to a group $\sigma_i \in \{1, \ldots, k\}$; where σ is the planted assignment. $\Pr(i,j) \in E$ depends only on whether i and j are in the same group or different group:

$$\Pr(i,j) \in E = \begin{cases} p_{\text{in}} & \text{if } \sigma_i = \sigma_j \\ p_{\text{out}} & \text{if } \sigma_i \neq \sigma_j \end{cases}$$

More Formally

- c:= the expected degree, $p_{in}=\frac{c_{in}}{n}$, $p_{out}=\frac{c_{out}}{n}$ and $c=\frac{c_{in}+(k-1)c_{out}}{k}$
- $SBM(n, k, c_{in}/n, c_{out}/n) \rightarrow (G, \sigma)$, where G is a SBM with k communities, probability c_{in}/n inside the communities and c_{out}/n aross, σ is the planted assignment.

5 / 27

Eric Sheng March 05, 2024

More Formally

• **Detection:** can we distinguish G generated by SBM from the Erdős-Rényi random graph G(n, c/n) with the same average degree?

• **Recovery:** label the vertices with an assignment τ that is correlated with the planted assignment σ . Better than random guess.

Eric Sheng March 05, 2024

Conjecture

Conjecture (Kesten-Stigum (KS) threshold)

Let (G, σ) be drawn from SBM $(n, k, c_{in}/n, c_{out}/n)$. Define $SNR = \frac{(c_{in} - c_{out})^2}{k(c_{in} + (k-1)c_{out})}$. Then,

- For any k > 2, if SNR > 1 (the KS threshold), detection and weak recovery are possibly solvable in polynomial time.
- If k > 4, detection and weak recovery are possibly information-theoretically solvable (not necessarily in polynomial time) for SNR < 1.

Some Progress So Far

• It was shown that weak recovery can be achieved efficiently for SNR > 1 and k = 2 (Bordenave et al. 2015).

ullet It was proved that weak recovery is not solvable if SNR < 1 (Mossel et al. 2012).

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

8 / 27

Eric Sheng March 05, 2024

Existing Solution (Spectral Algorithms)

The **non-backtracking Matrix** *B* can defined as:

$$B_{(u,v)(w,x)} = \begin{cases} 1 & \text{if } v = w \text{ and } u \neq x \\ 0 & \text{otherwise} \end{cases}$$

This matrix corresponds to a non-backtracking walk, which is a walk that does not repeat a vertex within 2 steps.

4□ > 4□ > 4 = > 4 = > = 90

Eric Sheng March 05, 2024

Non-backtracking Matrix

Claim: the eigenvector λ_{μ} associated with the second largest eigenvalue μ of B is correlated with the true communities whenever it is outside the bulk of spectrum of the B (Krzakala et al. 2013).

Figure: Spectrum Distribution

Non-backtracking Matrix

Properties:

- **1** leading eigenvalue = average degree $c = c_{in} + c_{out}/2$
- 2 second largest eigenvalue μ is approaching to $c_{in} c_{out}/2$
- 3 the bulk of B's spectrum is confined to disk of radius \sqrt{c}

Figure: here, $c_{in} = 5$, $c_{out} = 1$, so c = 3 and $\mu = (c_{in} - c_{out})/2 = 2$

Eric Sheng March 05, 2024

11 / 27

Spectral Algorithm

Spectral Algorithm based on Non-backtracking Operator: at each vertex we sum the eigenvector λ_{μ} of μ over all its incoming edges and label vertices according to the sign of this sum.

Claim: Non-backtracking-based spectral algorithm can succeed all the way down to the KS threshold no matter in sparse or dense graph (Abbe 2018).

Figure: Accuracy of spectral algorithm

Community Detection with Partial Pre-defined Assignment

Problem Statement

Let (G, σ) be drawn from SBM $(n, k, c_{in}/n, c_{out}/n)$. Given a subset $R \subset V$ where the community assignment σ_i for $i \in R$ is known, our task is to recover the complete assignment σ . Furthermore, $|R| = \alpha |V|$ for some $\alpha \in (0,1)$

Greedy Recovery Algorithm

```
Algorithm 1 Greedy Recovery Algorithm
```

Input: Graph G = (V, E); the set R of vertices with pre-defined assignments.

Output: R, a set of vertices for which the assignment has been determined. **procedure** GreedyRecovery(G, R)

if |R| = |V| then return R

end if

for all $v \in V \setminus R$ do

if $\exists u \in N(v) : u \in R$ then

 $R[v] \leftarrow$ the majority assignment of v's neighbors

end if

end for

GREEDYRECOVERY(G, R) until no new assignment can be made

return R

end procedure

4 D > 4 D > 4 E > 4 E > E *) Q (*

14 / 27

Example

Example

Experimental Results

Figure: Average accuracy over 10 instance with SNR ranges from $\bf 0$ to $\bf 0.9$ and Fraction α ranges from $\bf 0.01$ to $\bf 0.05$

Eric Sheng March 05, 2024 17 / 27

Experimental Results

Figure: Average accuracy over 10 instance with SNR ranges from ${\bf 0}$ to ${\bf 0.1}$ and Fraction $\alpha=0.01$

Eric Sheng March 05, 2024 18 / 27

Experimental Results

Figure: Average accuracy over 10 instance with SNR ranges from ${\bf 0}$ to ${\bf 0.01}$ and Fraction $\alpha=0.01$

Evaluation

Pros

- simple and fast
- good accuracy, achieve the aim of this project

Cons

- don't have time to generalise it to case k > 2
- don't have time to delve deeply into and analyse the relationship between SNR, fraction value and accuracy.

4□ > 4□ > 4 = > 4 = > = 90

Eric Sheng March 05, 2024

Future Work

- lacktriangledown the inital R also contains some noise (Robustness).
- ${f 2}$ combine spectral algorithm with our greedy recovery algorithm for ${\it SNR} > 1$
- 3 generalise it to more communities, particularly $K \geq 4$.
- In-depth analysis of the relationship between SNR, fraction value and accuracy.

Eric Sheng March 05, 2024 21 / 27

Robustness

Figure: Accuracy difference when |R| is small

Figure: Accuracy difference when |R| is large

Eric Sheng March 05, 2024 22 / 27

Some Preliminary Results

Figure: Accuracy Comparison: Spectral Algorithm vs. Combined Algorithm

Eric Sheng March 05, 2024 23 / 27

Project Management

- Behind schedule in Term 1.
- All primary objectives are complete on time.
- Allows me to have a try for the further works.

Thank You!

Eric Sheng March 05, 2024 25 / 27

References I

Abbe, Emmanuel (2018). "Community Detection and Stochastic Block Models: Recent Developments". In: *Journal of Machine Learning Research* 18.177, pp. 1–86. URL:

http://jmlr.org/papers/v18/16-480.html.

- Bordenave, Charles et al. (2015). Non-backtracking spectrum of random graphs: community detection and non-regular Ramanujan graphs. arXiv: 1501.06087 [math.PR].
 - Krzakala, Florent et al. (Nov. 2013). "Spectral redemption in clustering sparse networks". In: *Proceedings of the National Academy of Sciences* 110.52, pp. 20935–20940. ISSN: 1091-6490. DOI: 10.1073/pnas.1312486110. URL:

http://dx.doi.org/10.1073/pnas.1312486110.

References II

Moore, Cristopher (2017). "The Computer Science and Physics of Community Detection: Landscapes, Phase Transitions, and Hardness". In: Bull. EATCS 121. URL:

https://api.semanticscholar.org/CorpusID:1213533.

Mossel, Elchanan et al. (2012). "Reconstruction and estimation in the planted partition model". In: *Probability Theory and Related Fields* 162, pp. 431–461. URL:

https://api.semanticscholar.org/CorpusID:120425378.

- Nadakuditi et al. (May 2012). "Graph Spectra and the Detectability of Community Structure in Networks". In: Physical Review Letters 108.18. ISSN: 1079-7114. DOI: 10.1103/physrevlett.108.188701. URL: http://dx.doi.org/10.1103/PhysRevLett.108.188701.
- Schaeffer, Satu Elisa (2007). "Graph clustering". In: Computer Science Review 1.1, pp. 27–64. ISSN: 1574-0137.