Spring 2024 Math 584 - Singularity Theory Homework 8 - Milnor Fibration Due: 6/6/2024

MIL: Singular points of complex hypersurfaces

- 1. The Milnor fibration is in fact a mapping torus. For a k-manifold F with boundary (if you are confused take k=2 in this question) and a homeomorphism $\varphi: F \to F$ which is the identity map on ∂F , the mapping torus of F with monodromy φ is the quotient manifold-with-boundary $M(F; \varphi) = (F \times I)/((x, 1) \sim (\varphi(x), 0))$.
 - (a) Recalling HW#7 Q2, show that in case F is oriented and φ is **orientation preserving** then M is orientable. (Recall for an oriented manifold-with-boundary $X \subset R^N$ of dimension m, the corresponding orientation on ∂X is given as follows: Let $p \in \partial X$ and (u_1, \ldots, u_n) be a choice of ordered basis (an orientation) on T_pX such that u_1 is outward directed. Then (u_2, \ldots, u_n) is the induced orientation on $T_p\partial X$.)
 - (b) Show that if $\varphi, \psi : F \to F$ are isotopic homeomorphisms then $M(F; \varphi)$ is homeomorphic to $M(F; \psi)$.
- 2. (a) Show: If 0 is a regular point of $f: \mathbb{C}^{n+1} \to \mathbb{C}$ then the fiber of the Milnor fibration is diffeomorphic to \mathbb{R}^{2n} . More precisely work out the details of the proof of MIL, p. 23, Lemma 2.13, assuming Lemma 2.12, which we have already proven.
 - (b) Then using Q1(b) show that the Milnor fibration in part (a) is trivial, i.e. $S_{\varepsilon} K$ is homeomorphic to $\mathbb{R}^{2n} \times S^1$.
- 3. For a vector space V over \mathbb{C} , a Hermitian inner product $H: V \times V \to \mathbb{C}$ is complex linear in its first parameter, conjugate symmetric (i.e. $H(u,v) = \overline{H(v,u)}$) and positive definite (i.e. $H(u,u) > 0, \forall u \neq 0$). We have observed in the class that the real part of H is a real inner product on the underlying real space $V_{\mathbb{R}}$.
 - Now show that the imaginary part of H is a symplectic form w: $V_{\mathbb{R}} \times V_{\mathbb{R}} \to \mathbb{R}$, i.e. a **skew-symmetric** (w(u,v) = -w(v,u)), **non-degenerate** $(w(u,v) = 0, \forall v \in V_{\mathbb{R}} \Rightarrow u = 0)$ **bilinear** form.