$$\frac{2.}{\sqrt{a \cdot b}} \qquad (or as in 3.)$$

5. Last(S) =
$$\{c, d\}$$

Last (X) = $\{c, d\}$
Last (Y) = $\{d\}$
Last $\{cX\} = \{c, d\}$
Last $\{dY\} = \{d\}$

8. A)
$$S \rightarrow XY$$
 (or $S \rightarrow Sd$ or other equivalent $Y \rightarrow Xc$ $X \rightarrow Xc$ $X \rightarrow Xc$ $Y \rightarrow Yd$ $Y \rightarrow C$

B). $C \neq J \neq J$

五) 9. !(中 & 4 9)

11.
$$b_2 = Shortcircuit (c_2, f, t);$$

 $b_1 = Shortcircuit (C_1, b_2, t);$
return $b_1;$

- IV) 12. A) b
 - b) a+b
 - c) atb
 - 13. It did not preserve the value in 2 rbx.
 - 14. A) No: The caller has to push all registers (that it cares about) to the stack before invoking the caller. This process happens a times whenever 9() is called. It is hard to optimize 9() with registers.
 - Yes: We can make f() inline and there would be no harm to the performance of g().
 - B) No. The callee cannot both update this register with the return value and keep it the same as before entering callee.