(X_1, X_2, \dots, X_n) i.i.d., θ parameter of interest.

Instead of estimating heta by a single number :

→ better to provide interval estimates

$$\mathrm{P}\left(\theta \in \left[\widehat{m}, \ \widehat{M}\right]\right) = 1 - \alpha, \quad \alpha \in [0, 1]$$

 $\widehat{m} = \widehat{m}(X_1, \dots, X_n), \ \widehat{M} = \widehat{M}(X_1, \dots, X_n)$: the interval is random

$$\hookrightarrow$$
 Notation : $\operatorname{CI}_{1-\alpha}(\theta) = \left[\widehat{m}, \ \widehat{M}\right]$

If $\alpha = 0.05$, 95% confidence interval. $1 - \alpha$: confidence level

Interpretation : If a large number of independent 95% intervals are constructed then approximately 95% of them will contain θ .

1/9

Gaussian model

$$(X_1, X_2, \ldots, X_n) \sim \mathcal{N}(\mu, \sigma^2)$$

 \hookrightarrow estimators of (μ, σ^2) : \overline{X} , $S^2 = \frac{\sum_i (X_i - X)^2}{n-1}$

Theorem: in the Gaussian model,

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right), \quad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1), \quad \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

t(n-1): Student law with (n-1) degrees of freedom (df).

 \hookrightarrow estimated Standard Error of \overline{X} :

$$SE_{\overline{X}} = \frac{S}{\sqrt{n}}$$

$$\frac{\overline{X} - \mu}{\mathrm{SE}_{\overline{\mathbf{x}}}} \sim t(n-1)$$

2/9

CI for the mean

$$ext{CI}_{1-lpha}(\mu) = \overline{X} \pm t_{1-lpha/2,n-1} SE_{\overline{X}}$$

Why?

$$P\left(\chi^2_{\alpha/2,n-1} \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi^2_{1-\alpha/2,n-1}\right) = 1 - \alpha$$

 $\chi^2_{\alpha,n-1}$ quantile of the $\chi^2(n-1)$ distribution.

 \hookrightarrow

$$\operatorname{CI}_{1-\alpha}(\sigma^2) = \left[\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}, \; \frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \right]$$

where
$$S^2 = \frac{\sum_i (X_i - X)^2}{n - 1}$$
.

CI: general case

 $(X_1, X_2, \dots, X_n) \sim F$ where F is an unknown distribution function. θ parameter of interest, estimated by $\widehat{\theta}$.

To compute a confidence interval for θ we need

- a formula to calculate the standard error of $\widehat{\theta}$,
- information about the sampling distribution of $\widehat{\theta}$.

We have a formula for $SE(\overline{X})$ and \overline{X} is normally distributed by the central limit theorem (n reasonably large)

- \hookrightarrow what about the other estimators?
 - We have a simple method to compute the SE of Maximum Likelihood Estimators (MLE)!
 - Moreover we know their approximate law!

Fisher information and SE

 θ is one-dimensional, $\log L(\theta)$ is the log-likelihood of the sample, $\widehat{\theta}$ MLE

The Fisher information of the sample is defined as

$$I(\theta) = -\mathbb{E}\left[(\log L)''(\theta)\right].$$

The standard error of $\widehat{\theta}$ can be approximated by the inverse square root of the Fisher information $1/\sqrt{I(\theta)}$ and estimated by

$$SE(\widehat{\theta}) = \frac{1}{\sqrt{\widehat{I}}}$$

where \widehat{I} is a consistent estimator of $I(\theta)$. For example $\widehat{I} = -(\log L)''(\widehat{\theta})$.

multi-dimensional case

 θ is a *p*-dimensional parameter vector.

The Fisher information is a $p \times p$ square matrix :

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \log L(\theta)\right].$$

The standard errors of the $\widehat{\theta}_j$ are the square roots of the diagonal entries of $I^{-1}(\theta)$ and they are estimated by

$$\operatorname{SE}(\widehat{\theta}_j) = \frac{1}{\sqrt{\widehat{l}_{jj}}}$$

- There is an explicit method of calcultating standard errors for MLEs
- The calculation of standard errors of MLEs is programmed in statistical software.

Approximate law of MLEs

Theorem

In "regular parametric models", the MLE of θ is approximately normally distributed

$$\widehat{\theta} \sim \mathcal{N}\left(\theta, I^{-1}(\theta)\right)$$

The approximation is still true if $I^{-1}(\theta)$ is estimated by \widehat{I}^{-1} with $\widehat{I} = -H(\widehat{\theta})$, where H is the hessian of the log-likelihood.

Thus, if θ is a real parameter,

$$\mathrm{CI}_{1-lpha}(heta) = \widehat{ heta} \pm q_{1-lpha/2} \mathrm{SE}_{\widehat{ heta}}$$

is an approximate $(1 - \alpha)$ confidence interval for θ , with $SE_{\widehat{\theta}} = \frac{1}{\sqrt{\widehat{I}}}$.

8/9

Example : MLE of the Pareto index

Assume that X_1, \ldots, X_n are i.i.d. Pareto(a, c).

$$CDF(x) = 1 - \left(\frac{c}{x}\right)^a, \quad x > c.$$

This distribution modelizes the income distribution and the parameter c is the minimum income, which is often known. The tail index a can be estimated by maximum likelihood.

- Find the MLE of a.
- Find a confidence interval for a.