Inteligência Artificial para Robótica Móvel: CT-213

Instituto Tecnológico de Aeronáutica (ITA)

Relatório do Laboratório 1 - Máquina de Estados Finita e $Behavior\ Tree$

Leonardo Peres Dias

17 de março de 2025

Instituto Tecnológico de Aeronáutica (ITA)

Sumário

1	Breve Explicação em Alto Nível da Implementação		3
	1.1	Máquina de Estados Finita	3
	1.2	Behavior Tree	4
2 Figuras Comprovando Funcionamento do Código		uras Comprovando Funcionamento do Código	5
	2.1	Máquina de Estados Finita	5
	2.2	Behavior Tree	5

1 Breve Explicação em Alto Nível da Implementação

1.1 Máquina de Estados Finita

FiniteStateMachine

Esta classe mantém o estado atual e atualiza o agente executando os métodos check_transition e execute do estado ativo. A transição entre estados é realizada pelo método change state.

MoveForwardState

O agente avança com velocidade constante (FORWARD_SPEED). Em check_transition, se o sensor de colisão (get_bumper_state()) detectar um obstáculo, ocorre a transição para GoBackState; se o número de ciclos (contados por decisions) exceder

$$\frac{\text{MOVE_FORWARD_TIME}}{\text{SAMPLE_TIME}}$$

a transição é para MoveInSpiralState. O contador é incrementado a cada ciclo.

${\bf Move In Spiral State}$

Se houver colisão, a FSM transita para GoBackState; após

$$\frac{\text{MOVE_IN_SPIRAL_TIME}}{\text{SAMPLE TIME}},$$

a máquina retorna para MoveForwardState. Em execute, calcula-se o tempo, o raio (como INITIAL_RADIUS_SPIRAL + SPIRAL_FACTOR \cdot t) e a velocidade angular ($\frac{\text{FORWARD_SPEED}}{r}$).

GoBackState

O agente recua com velocidade BACKWARD SPEED. Após

$$\frac{\text{GO_BACK_TIME}}{\text{SAMPLE TIME}},$$

o estado muda para RotateState.

RotateState

Um ângulo aleatório entre $-\pi$ e π é amostrado e o tempo de rotação é

$$\frac{\text{angle}}{\text{ANGULAR_SPEED}}.$$

Ao completar esse período, o estado retorna para MoveForwardState. Durante a rotação, o agente aplica velocidade angular de ANGULAR_SPEED.

1.2 Behavior Tree

BehaviorTree & TreeNode

A classe BehaviorTree possui uma raiz (do tipo TreeNode) e executa o método execute deste nó. TreeNode é abstrata e define os métodos enter e execute.

RoombaBehaviorTree

Implementa uma árvore para o robô Roomba com um nó seletor contendo duas sequências:

- Sequência 1: MoveForwardNode seguido de MoveInSpiralNode.
- Sequência 2: GoBackNode seguido de RotateNode.

Leaf Nodes

MoveForwardNode: Comanda o robô para avançar com velocidade constante; retorna FAILURE em caso de colisão e SUCCESS após um tempo pré-definido.

MoveInSpiralNode: Executa movimento em espiral calculando o raio e a velocidade angular; falha se houver colisão e retorna SUCCESS após o tempo estipulado.

GoBackNode: Comanda o recuo com velocidade definida; retorna SUCCESS após um período determinado.

RotateNode: Realiza rotação com ângulo aleatório (entre $-\pi$ e π) e retorna SUCCESS após completar o tempo de rotação.

2 Figuras Comprovando Funcionamento do Código

2.1 Máquina de Estados Finita

Figura 1: Máquina de Estados Finita

2.2 Behavior Tree

Figura 2: Behavior Tree