

BUILDING SCALABLE SOLUTION FOR PREDICTING HEART DISEASE USING APACHE SPARK MLLIB IN STANDALONE CLUSTER MODE WITH MONGODB DATABASE

BACKGROUND AND CONTEXT

WHAT IS SPARK?

What is Apache Spark?

- Apache open sourced project originally developed at AMPLab (UC Berkeley)
- Unified general data processing engine that operates varied data workloads and platforms
- Built on top of Hadoop Map Reduce and it extends the MapReduce model to efficiently use more types of computations

Spark features

100x faster than for large scale data processing

Simple programming layer provides powerful caching and disk persistence capabilities

Can be programmed in Scala, Java, Python, and R.

Can be deployed through Mesos, Yarn, EC2 or Sparks standalone cluster manager

Apache Spark Domain scenarios

- Spark core is the underlying general execution engine for the Spark platform that all other functionality is built on top of.
- Provides in-memory computing capabilities to deliver speed, a generalized execution model to support a wide variety of applications, and Java, Python, Scala and R API for ease of development

MLllib GraphX
Machine Graph
Learning computation

Spark Core API

R Scala Python Java

Spark Architecture

CONTEXT

- Big Data analytics
- Faster

- Health care data increasing rapidly
- Problems in health care
 - High cost
 - High waste
 - Low quality

health record, and wearables)

According to AbuKhousa and Campbell, the healthcare system has a massive wealth of information but knowledge poor, "there is a lack of effectual analysis tools to discover knowledge contained in the databases of these systems "

- Health care data increasing rapidly
- Problems in health care
 - High cost
 - High waste
 - Low quality

Overall spending (\$170 billion spend on health in 2015-16)

- Health care data increasing rapidly
- Problems in health care
 - High cost
 - High waste
 - Low quality

Poor quality of health (increasing mortality and morbidity rate on preventable diseases)

- Health care data increasing rapidly
- Problems in health care
 - High cost
 - High waste
 - Low quality

PURPOSE

- Understand big data processing in health care
- Learn factors that contribute to heart disease
- Build machine learning model to predict heart disease.
- Use the Spark framework to implement analysis.
- Find significant risk factors of coronary heart disease

DELIVERABLES

• Build a predictive analytics platform to predict heart disease using Spark's Machine Learning library module in Standalone cluster mode with Mongo DB as the database.

Determine which features or feature subsets contribute to risk of heart disease.

 Analyse result by comparing the ground truth to predicted outcome via graph or table.

PROJECT MANAGEMENT APPROACH

Project Architecture

Installation, set-up and configuration of machine and tools

Virtual-Box/ Ubuntu setup

- Install pymongo
- Install mongo-spark connector

Setup environmental variables/path

Download Spark 2.3.1

- Install Py4j library
- Install pyspark

Project Approach/Methodology: Datasets and MongoDB

Framingham Heart Study datasets

	age	sex	education	currentSmoker	cigsPerDay	heartRate	ВМІ	glucose	diabetes	sysBP	diaBP	BPMeds	prevalentHyp	prevalentStroke	totChol T
0	40	Male	3	Yes	70	98	31.57	80	No	132.0	86.0	No	Yes	No	210.0
1	56	Male	1	Yes	60	70	29.64	85	No	125.0	79.0	No	No	No	246.0
2	59	Male	1	Yes	60	70	25.05	84	No	153.5	105.0	No	Yes	No	298.0
3	58	Male	2	Yes	60	75	32.00	65	No	150.0	97.0	No	Yes	No	250.0
4	39	Male	1	Yes	60	59	23.60	78	No	112.0	65.0	No	No	No	215.0

- csv format
- 4241 records

Project Approach/Methodology: Datasets and MongoDB

Framingham Heart Study datasets

Categorical variables	Numeric/continuous variables					
Sex	age					
Education	cigsPerDay					
currentSmoker	heartrate					
Diabetes	BMI					
BPMeds	Glucose					
prevalentHyp	sysBP					
prevalentStroke	diaBP					
label	totChol					

Project Approach/Methodology: Managing MongoDB

Importing datasets

Project Approach/Methodology: Managing MongoDB

Deployment stage: Starting Mongodb service

Starting Mongodb service

Deployment stage: starting the spark master cluster

Deployment stage: starting 4 worker nodes

Deployment stage: starting 4 worker nodes

Deployment stage:

Deployment stage:

Deployment stage:

Deployment stage: Stopping Spark Session

Stop Spark Session

In [13]: 1 spark.stop()

Project Approach/Methodology

Findings/outcome

Setting Up DataFrame for Machine Learning

```
1 # remove education and id columns
    new data=data.drop('education').drop(' id')
```

Convert independent variables (fields) to features

```
1 features=['sex','age','currentSmoker','cigsPerDay','BPMeds','prevalent
                   'diabetes', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate',
   assembler = VectorAssembler(inputCols=features,outputCol='features')
   transformed data = assembler.transform(new data)
   final=transformed data.select('features','TenYearCHD')
```

Split data training 75%, test 25%

```
In [11]: 1 train data,eval data = final.randomSplit([0.75,0.25], seed=123)
```

Evaluation metrics

evaluation metrics

```
acc evaluator = MulticlassClassificationEvaluator(labelCol="TenYearCHE
               prec_evaluator = MulticlassClassificationEvaluator(labelCol="TenYearCH
               rec_evaluator = MulticlassClassificationEvaluator(labelCol="TenYearCHD
               f1 evaluator = MulticlassClassificationEvaluator(labelCol="TenYearCHD"
In [301]:
              # Decision Tree classifier
               def DecisionTree():
                   dtc = DecisionTreeClassifier(labelCol='TenYearCHD', featuresCol='fe
                   dtc model = dtc.fit(train data)
                   dtc predictions = dtc model.transform(eval data)
                   dtc acc = acc evaluator.evaluate(dtc predictions)
```

dtc prec = prec evaluator.evaluate(dtc predictions) dtc rec = rec evaluator.evaluate(dtc predictions)

dtc f1 = f1 evaluator.evaluate(dtc predictions)

```
1 # 687
        obt = GBTClassifier(labelCol="TenYearCHD",featuresCol="features", maxIter=198, maxDepth=5, maxBins=32, \
                            minInstancesPerNode=1, cacheNodeIds=True)
        gbt_model = gbt.fit(train_data)
        # myaluate model
        gbt_predictions = gbt_model.transform(eval_data)
        gbt acc = acc evaluator.evaluate(gbt predictions)
        gbt prec = prec evaluator.evaluate(gbt predictions)
        gbt rec = rec evaluator.evaluate(gbt predictions)
        gbt f1 = f1 evaluator.evaluate(gbt predictions)
        print("A ensemble using GBT accuracy : (0:2.2f)% precision:(1:2.2f)% recall:(2:2.2f)% f1:(3:2.2f)% .format(gbt
        total=gbt predictions.count()
        POP-gbt predictions.filter(gbt predictions['prediction']=1).count()
38
        PON-gbt predictions.filter(gbt predictions['prediction']==0).count()
19
        CP-gbt predictions.filter(gbt predictions["TenYearCHD"]==1).count()
28
        CN-gbt predictions.filter(gbt predictions[ TenYearCHD ]==0).count()
        TP-gbt predictions.filter(gbt predictions["TenYearCHD"]==1).filter(gbt predictions['prediction']=1).count()
        TN-qbt predictions.filter(qbt predictions[ TenYearCHD ] == 0).filter(qbt predictions[ predictions ] == 0).count()
        FP-gbt predictions.filter(gbt predictions[ TenYear(HD' ]==0).filter(gbt predictions[ predictions ]==1).count()
24
        FN-gbt predictions.filter(gbt predictions[ TenYearOD ] == 1).filter(gbt predictions[ prediction ] == 0).count()
25
26
        Accuracy=(TP+TN)/total
        tpr=TP/CP
        fnr=FN/CP
        fpr=FP/CN
29
        tor-TN/CN
        prev=CP/total
                                                            John Stepry Stonge Environment Evenden SQL
31
        ppv=TP/POP
        fdr=FP/POP
```

10.0 2 15.41785 Active 800

10 0 2 15 35561 Active 535

10 0 Z 15 4000 Oest 0

10/0.2 15 42575 Deal 0

Executors

Summary	
Summery	

fora-FN/PON

nov=TN/PON

48

45

print("total pop!", total) print("CP:",CP) print("CN:",CN) print("POP:", POP print("PON;", PON) print("TP:", TP) print("TN:", TN) print("FP:", FP) print("FN1", FN)

HDO BIO	cks. Storage Hemory	Disk used	Cores.	Active Twaks	Failed Tasks	Complete tasts	Total Tasks	Task Time (GC Time)	Input	Shuffly Read	Shaffe Witte	Blacklisted
Active(6) 2012	454.7 MH (3.9 GH	0.08			(0)	9440	8467	8.8 min (4.4)	3.0 08	100.9 549	LISTAN	
Dead(28) II	888/7768	0.68	300	9	127	M ann	857	43 9 (3 %)	8.08	25.1 MB	59.5	0
Totaliza) 2012	:454.2 MILES 0.0 GB	0.0 H	-24	4	No.	8292	9279	4,5 min (5 ii)	19.08	LZE MB	ETH MIT	0.7

SparkDetto Decision/Trees Framingh, applica

color: Divisi Dura

moone - Throad Dome

other Thread Done

other Trees During

SEEME

0.55

702.9 33.6 MB

12 GB 315 MB

E00 125 0 80

E00 00E

1.5 mm (0.4 s)

2.5 mm (2.6)

0.7 ± (57 ms)

24 (75 m)

print("FN:", FP) print("FN:", FN) print("Accurecy:(8:2.2f)%".format(print("Socoll/True positive rate:(A promot													Seath:		
print("False negative rate:(0:2.2f)	Executor (D)	Address	304944	RDD Blocks	Storage Meestry	Disk Load	Cores	Active Tanks	Failed Tanks	Complete fanks	Your Tasks	Task Time (GC Time)	Haput	Muffle Read	Shuffle Write	Logic	Thread Dump
<pre>print("False positive rate:(0:2.2f) print("True negative rate:(0:2.2f) print("Prevalence:(0:2.2f)5".forma</pre>	0	10.0.2 (5.4549)	Active	1857	327.4 MB F 394.1 MB	0.0 H	1.	0	п	3254	5254	1.0 min (1.4)	1.9 GB	10.7 6/8	58.5 MB	nobad solen	Thread During
print("Precision/Positive predicted		many- Virginitaria: mema	Active		0.0 B / 364.1 MB	0.08		0	0	u .	0	0 ms (0 ms)	8.0.0	0.05	11.08		Thread Dung
	1:	10.0.2.15.44061	Oned	9	50573M1M6	0.01	1.:	0.	D)	367	300	14 x (0.2 s)	60.0	52.948	10.0	(10mg)	Throad Done

82 5 MB / 384 1 0.0 B

1AL2 ME7 SM 1 CC S

BOBINSLMB 0.08

0.0 0 / 304.1 ME 0.0 0

Findings/outcome

Accuracy	Precision	Recall	f1
85.08%	81.30%	85.08%	81.59%

Age, body mass index, blood sugar level, systolic blood pressure and cholesterol are the most important determining factor to assess risk of having coronary heart disease

Findings/outcome

		Ground	Truth		
	Total Population 905	Condition Positive 135	Condition Negative 770	Prevalence 14.92%	
Prediction	Predictive Outcome Positive 135	True Positive 114	False Positive 21	Positive Predictive Value 84.44%	False Discovery Rate 15.5%
Predi	Predictive Outcome Negative 770	False Negative 21	True Negative 749	False Omission Rate 2.72%	Negative Predictive Value 97.27%
Accuracy 85.08%		True Positive Rate 85.08%	False Positive Rate 2.73%		
		False Negative Rate 15%	True Negative Rate 97.27%		

Digest features and determine which specific subsets or range is likely contributing to coronary heart disease.

Findings/outcome: Age group

Findings/outcome: by Glucose level

```
Here are the results!
A single decision tree accuracy: 85.41% precision:73.16% recall:85.41% f1:78.82%
A randomForestEnsemble accuracy: 85.55% precision:73.18% recall:85.55% f1:78.88%
A ensemble using GBT accuracy : 85.41% precision:73.16% recall:85.41% f1:78.82%
risk features
0 0.255947 125-174
 0.182892 100-124
          40-99
  0.139361
  0.124695 275-324
  0.113635 325-399
  0.098622 225-274
 0.084848 175-224
  0.000000
           400+
Blood sugar level relevance
```


Findings/outcome: by Glucose level

Implications

- Health care authorities may use the findings to focus their health education not only to elderly but also the young individuals as the risk for heart disease increased significantly higher as they grow older.
- Regulatory commissions to study sugar content of consumable goods and reduce use of sugar.
- Promote healthy lifestyle by quitting cigarette smoking as oppose to cutting down.
- Although the dataset is not a big data, the framework could work using the big data.
 Thus, applicable for scalable projects in predicting heart disease.

THANK YOU FOR LISTENING