How do we infer galaxy ages?

Closely coupled to concept of "stellar populations*"

*previously discussed in the context of colors

Recent SF: Bright stars are blue & luminous Ancient SF: Bright stars are red & dimmer

How do we infer star formation rates?

Similar principles apply to inferring presence of "recent" star formation

18

Overview: Star formation in Galaxies

- Initial focus will be on global properties
- Not concerned w/ details of how individual gas blobs turn into stars
- Measuring the "instantaneous" star formation rate (in M_☉/yr)
- Variation in SFR within the galaxy population
- Correlation between physical properties & galaxy's global star formation rate (SFR)
- SFR variation with time

Measuring Star Formation (SF)

- Galaxy spectra in the presence of young stars
- The IMF
- Observable consequences of SF
 - –UV emission
 - Recombination lines
 - -Free-Free emission
 - Dust emission
- Wrinkles -- Obscured vs UnObscured, IMF variations
- SF rates
 - -Typical galaxies
 - -ULIRGS
- –Dwarfs

20

Why is measuring SFR important?

- Converting gas into stars is a major evolutionary pathway
- SFR affects SN feedback, production of metals, state of the ISM, galaxy luminosity and color...basically everything!
- Should evolve with redshift
 - Need many indicators that work in different redshift regimes, and that can be checked against each other

(luminosity $M_V = -9$ at age 100 Myr), as functions of the IMF slope Kennicutt IMF α and upper mass limit M_µ, from Kennicutt & Chu (1988).

Back to calculating SFRs...

Convert tracers of >4-20 M_☉ (B & O) stars to quantitative values for the SFR

- Use "stellar population synthesis" models" w/ adopted IMF to calculate mapping from SFR to observables
 - Usually assumes constant SFR for >100 Myr
- Use SFRs derived from older/reliable measurement to calibrate newer/lessreliable method

Most direct constraint on ionizing flux

- Recombination lines of Hydrogen
 - Directly traces the numbers of ionizing photons
 - Effectively "counts" emission from O-stars
 - Lya may have issues with being resonance line...
 - May not be photoionized by O-stars. Can have contributions from other sources of ionization (i.e., AGN, shocks)

For references: Wavelengths of emission lines

Table I. Computed lines: Hydrogen recombination lines (upper pannel), Elium and metal lines (lower pannel)

Lya 1216	Lyβ 1025	Lyy 972	Ly8 949	Ly 937	Ly 930
Ly 926	Ly 922	Ho6563	HS 4861	$H_{\gamma} = 4340$	H8 4102
H 3970	H 3889	H 3835	H 3798	Pac 18752	Paβ 12819
Pay 10939	Paé 10050	Pa 9546	Pn 9229	Pa 9015	Pn 8863
Brox 40515	Br.8 24254	Bry 21657	Br8 19447	Br 18175	Br 17363
Br 16808	Br 16408	Pfo: 74585	P68 46529	Pfy 37398	P68 32964
Pf 30386	Pf 28724	Pf 27577	Pf 26746	Hua 123690	Hu3 75011
Huγ 59071	Hof 51277	Hu 46716	Hu 43756	Hu 41700	Hu 40201
HeII 1640	HeII 1217	HeII 1085	HeII 4686	HeII 3203	HeII 2733
HeII 2511	Hell 4471	HeI 5876	Hell 6678	Hel 10830	Hel 3889
Hell 7065	[CI]9850	[CI]8727	[CI]4621	[CI]609μm	[CI]369µm
(CH]157.7μm	CII]2326	CIII]1908	[NI]5199	[NI]3466	[NI] 10400
NII]6584	[NII]6548	[NII]5755	[NII]122µm	[NII]205µm	NII]2141
NIII 57µm	[OI]6300	[OI]6363	[OI]5577	[OI]63µm	[OI]145µm
OH3727	[OH]7325	[OII]2471	OIII]1663	[OHI]5007	[OIII]4959
OHI]4363	[OIII]2921	$[OIII]88\mu m$	[OIII]52µm	[OIV]26µm	[NeII]13µm
[NeIII]15.5μm	[NeIII]36µm	[NeIII]3869	[NeIII]3967	[NeIII]3343	[NeIII]1815
[NeIV]2424	[NeIV]4720	MgH2800	[SiII]35µm	[SII] 10330	[SII]6731
SII]6717	[SII]4070	[SII]4078	[SIII] 19	[SIII]33.5	[SIII]9532
SHI]9069	[SIII]6312	[SIII]3722	[SIV] 10.4µm	[ArII]69850	[ArIII]7135
ArIII[7751	[ArIII]5192	[ArIII]3109	[ArIII]3005	[ArIII]22µm	[ArIII]9µm

Second constraint on ionizing flux

- Free-free bremsstrahlung emission from electrons
 - Easy to measure from the ground (1.4 GHz, 4.3 GHz widely used)
 - Unaffected by dust

46

VLA map at 20cm

Fig. 1.— 20 cm BC intensity contours of the Cartwheel superimposed on (a) an Ha image (gray scale), which has been smoothed to the solution of the 20 cm BC image, and (b) the BST B-band image. The boxest contour leavest correction to 00 µhy beams ⁻¹ (n. 2r), and he subsequent contour leavest leavesse by a factor of V_c. The ellipse at the bottom-eight course indicates the BC beam size. In (a) must be excellent positional correspondence between radio posits and Bit completes, which have been labeled by their B95 numbers. Straight non-zer drawn connecting the filamentary structures or apolice to the geometrical center of teng. Unlike the optical spatial spatial subscript, the latter ring to the center ring in (b)), the BC spokes are straight and short. The position of the nucleus is marked by a cons-

Mayva et al 2005

Free-Free emission caveat

 Contaminated by non-thermal emission (synchrotron), which also depends on SFR, but in an unpredictable way.

Direct constraints on UV flux

- Measure the UV flux directly
 - Shorter wavelengths more sensitive to recent SF (higher mass stars), but requires space
 - Strongly affected by dust

Indirect constraints on UV flux

- Measure mid- and far-IR (FIR) emission from dust to track reprocessed UV flux
 - depends on metallicity, dust optical depth
 - must avoid contamination from cold dust

Tuffs & Popescu 2005

At fixed SFR, FIR emission varies with amount of dust, so 24µm not perfect SFR indicator on its own

alized to the flux density at 0.17 µm. The infrared SED is schematically represented by a single-temperature dust component with (a) T = 50 K an

= 2 and (8) T=40 K and c=1.5 to highlight differences in the long-wavelength regime.

Indirect constraints on UV flux

- Measure FIR [CII] cooling line
 - If cooling = heating, should constrain UV
 - Potential method w/ ALMA

Calibrate w/ KINGFISH Herschel survey of nearby galaxies

> Herrera-Camus et al

Obscured vs Unobscured SF

Total SF requires "counting" all photons

from O-stars.

Need to sum up SF inferred from both obscured and unobscured UV photons.

$$L_{\rm UV}({\rm corr}) = L_{\rm UV}({\rm observed}) + \eta L_{\rm IR}$$

Summary of corrections:

Table 2 Multiwavelength dust corrections for normal galaxies

Composite tracer	Reference	
$L(FUV)_{corr} = L(FUV)_{clss} + 0.46 L(TIR)$	Hao et al. (2011)	
$L(FUV)_{corr} = L(FUV)_{chn} + 3.89 L(25 \mu m)$	Hao et al. (2011)	
$L(FUV)_{corr} = L(FUV)_{clm} + 7.2 \times 10^{14} L(1.4 \text{ GHz})^a$	Hao et al. (2011)	
$L(NUV)_{corr} = L(NUV)_{cln} + 0.27 L(TIR)$	Hao et al. (2011)	
$L(NUV)_{corr} = L(NUV)_{cln} + 2.26 L(25 \mu m)$	Hao et al. (2011)	
$L(NUV)_{totr} = L(NUV)_{tdn} + 4.2 \times 10^{14} L(1.4 \text{ GHz})^a$	Hao et al. (2011)	
$L(H\alpha)_{corr} = L(H\alpha)_{cbs} + 0.0024 L(TIR)$	Kennicutt et al. (2009)	
$L(Ha)_{corr} = L(Ha)_{cbc} + 0.020 L(25 \mu m)$	Kennicutt et al. (2009)	
$L(Ha)_{corr} = L(Ha)_{chc} + 0.011 L(8 \mu m)$	Kennicutt et al. (2009)	
$L(Ha)_{corr} = L(Ha)_{dis} + 0.39 \times 10^{13} L(1.4 \text{ GHz})^a$	Kennicutt et al. (2009)	

"Radio luminosity in units of ergs s" Hz".

Abbreviations: FUV, for ultraviolet; NUV, near ultraviolet; TIR, total infrared.

Kennicutt & Evans 2012

What fraction of star formation is obscured?

Can characterize with
$$IRX = log \left(\frac{L(TIR)}{L(FUV)_{obs}} \right)$$

IR luminosity is defined from Spitzer (SIRTF)

Where the total fluxes. A simple combination of SIRTF Multiband Imaging Photometer fluxes recovers the total 3–1100 µm flux (TIR) for the full range of normal galaxy infrared SED shapes,

$$L_{TIR} = \zeta_1 \nu L_{\nu} (24 \mu m) + \zeta_2 \nu L_{\nu} (70 \mu m) + \zeta_3 \nu L_{\nu} (160 \mu m)$$
,
where $[\zeta_1, \zeta_2, \zeta_3] = [1.559, 0.7686, 1.347]$ for $z = 0$. (4)

Def'n from Dale & Helou 2002

Figure 10. The star formation rate volume density function as a function of SFR (Fig. 5), further expanded in a second dimension (along the ordinate) to show the breakdown with IRX. The 'z' axis represents $\psi \Phi(\psi)$. The dotted line shows the IRX-SFR relationship derived from the L_{IR} vs. E(B-V) relationship given by Hopkins et al. (2001). E(B – V) was converted into Apply using the Cardelli (1989) extinction law with $R_V = 3.1$, which gives $A_{FUV} = 8.0 \text{ E(B - V)}$. IRX and ψ were obtained from A_{FUV} and Lin as above. Bothwell et al 2011

IRX is correlated with SFR: More obscuration when SFR is high

Figure 13. Infrared-to-far-ultraviolet ratio as a function of ultraviolet spectral slope. Normal star-forming and starburst galaxies from Kong et al. (2004) and Calzetti et al. (1995) are plotted in addition to the LVL data points. The dotted curve is that for starburst galaxies from Kong et al. (2004) and the solid curve is applicable to normal star-forming galaxies (Dale et al. 2007). The reddening vector assumes the reddening curve of Li & Draine (2001) and the fau-ultraviolet extinction prescription used for the right-hand-side axis is from 90 are et al. (2005).

IRX also correlates with UV spectral slope

- Tight correlation for high SFR galaxies
- Way worse if normal galaxies are included

See Munoz-Mateos et al 2009b for modelling...

Global Measures of Star Formation

- Star formation rates (SFR)
- Specific star formation rates (sSFR)
- Star Formation intensity (S_{SFR})
- Star Formation efficiency

Figure 20. The contribution to the total number, mass and star formation density as a function of various galaxy parameters. The SF density is shown in this, the most density in tol and the number density in black. Top left: The contribution to the different densities as a function of the concentration of the galaxies. Every left: The assum, but as a function of the left left radio of the galaxies are supported by the contributions as a function of log stellar mass and Lover raph: The density contributions as a function of log of the stellar unifor density in M₁/kpc².

Massive galaxies dominate the current production of stars, since they own most of the baryons

2. Specific SFR = SFR / stellar mass

Relative importance of current to past SF

Units of inverse time (i.e., How long would it take to make the current stellar mass, at the current SFR)

2. sSFR shows two sequences

"Red" and "Blue"

Blue SF sequence

"Green Valley"

Red SF sequence

Related def'n of sSFR Scalo Birthrate Parameter: Ratio of Current to Past SFR

 $b = SFR_{now} / < SFR >$

b < 1: SFR greater in the past

b = 1: SFR \sim constant

b > 1: SFR higher today than in past

b > 2-3: Classified as Starburst

Note: b alone does not distinguish between a steady increase in SF to the present day, or an episodic burst

4. SFR Efficiency: Milky Way

First Order:

$$\begin{aligned} &\text{M}_{\text{stars,spiral}} = 10^{10}\,\text{M}_{\odot} \\ &\text{t}_{\text{universe}} = 10^{10}\,\text{yrs} \end{aligned}$$

So, average: <SFR> \sim 1 M $_{\odot}$ /yr

How long can this go on?

First Order:

$$M_{gas} = 10^9 M_{\odot}$$

SFR ~ 1 M_{\tilde{\tilde{N}}}/yr

So, average:

 $t_{gasconsumption} \sim 10^9 \text{ yrs}$

So either we live in a special time where the MW is about to run out of gas, or there is on-going gas accretion to fuel continuing SF

Systems with High Star Formation

- High Star formation rates (SFR)
- High Star Formation intensity (S_{SFR})
- High Specific star formation rates (sSFR)
- Useful as probes of extreme conditions
- 2. Important phases in build-up of stars

ULIRGs have extremely high gas surface densities (10²-10⁵ M_☉/pc² within R<0.1-1kpc)

