WEATHER DATA ANALYSIS

from google.colab import files
df=files.upload
import numpy as np
import pandas as pd
df=pd.read_csv('/content/weather_Nexus_phase1.csv')

df.shape

(366, 22)

df.head()

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm	WindSpeed9am
0	8.0	24.3	0.0	3.4	6.3	NW	30.0	SW	NW	6.0
1	14.0	26.9	3.6	4.4	9.7	ENE	39.0	Е	W	4.0
2	13.7	23.4	3.6	5.8	3.3	NW	85.0	N	NNE	6.0
3	13.3	15.5	39.8	7.2	9.1	NW	54.0	WNW	W	30.0
4	7.6	16.1	2.8	5.6	10.6	SSE	50.0	SSE	ESE	20.0

5 rows × 22 columns

df.tail()

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Winc	
361	9.0	30.7	0.0	7.6	12.1	NNW	76.0		
362	7.1	28.4	0.0	11.6	12.7	N	48.0		
363	12.5	19.9	0.0	8.4	5.3	ESE	43.0		
364	12.5	26.9	0.0	5.0	7.1	NW	46.0		
365	12.3	30.2	0.0	6.0	12.6	NW	78.0		
5 rows × 22 columns									

df.dtypes

MinTemp float64 float64 MaxTemp float64 Rainfall Evaporation float64 Sunshine float64 WindGustDir object WindGustSpeed float64 WindDir9am object WindDir3pm object WindSpeed9am float64 WindSpeed3pm int64 Humidity9am int64 Humidity3pm int64 Pressure9am float64 Pressure3pm Cloud9am float64 int64 Cloud3pm int64 float64 Temp9am Temp3pm float64 RainToday object RISK_MM float64 RainTomorrow object dtype: object

df.isnull().sum()

MinTemp 0 MaxTemp 0 0 Rainfall Evaporation 0 Sunshine 3 WindGustDir 3 WindGustSpeed 2 WindDir9am 31 WindDir3pm 1 WindSpeed9am 7 WindSpeed3pm 0 Humidity9am 0 Humidity3pm 0 Pressure9am 0 Pressure3pm

```
2/10/24, 11:13 PM
```

```
Cloud9am 0
Cloud3pm 0
Temp9am 0
Temp3pm 0
RainToday 0
RISK_MM 0
RainTomorrow 0
dtype: int64
```

df.nunique()

```
MinTemp
                 180
{\tt MaxTemp}
                 187
Rainfall
                  47
Evaporation
                  55
Sunshine
                 114
WindGustDir
                  16
WindGustSpeed
                  35
WindDir9am
                  16
WindDir3pm
                  16
WindSpeed9am
                  22
WindSpeed3pm
                  26
Humidity9am
                  60
Humidity3pm
                  74
Pressure9am
                 190
Pressure3pm
                 193
                 9
Cloud9am
Cloud3pm
                   9
                 178
Temp9am
                 200
Temp3pm
                   2
{\tt RainToday}
RISK MM
                  47
RainTomorrow
                   2
dtype: int64
```

df=df.drop_duplicates()

df.describe()

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	WindSp
count	366.000000	366.000000	366.000000	366.000000	363.000000	364.000000	359.
mean	7.265574	20.550273	1.428415	4.521858	7.909366	39.840659	9.
std	6.025800	6.690516	4.225800	2.669383	3.481517	13.059807	7.
min	-5.300000	7.600000	0.000000	0.200000	0.000000	13.000000	0.
25%	2.300000	15.025000	0.000000	2.200000	5.950000	31.000000	6.
50%	7.450000	19.650000	0.000000	4.200000	8.600000	39.000000	7.
75%	12.500000	25.500000	0.200000	6.400000	10.500000	46.000000	13.
max	20.900000	35.800000	39.800000	13.800000	13.600000	98.000000	41.

df.columns

df=df.fillna('N/A')

df.isnull().sum()

```
MinTemp
MaxTemp
Rainfall
Evaporation
                 0
Sunshine
                 0
WindGustDir
                 0
WindGustSpeed
                 0
WindDir9am
                 0
WindDir3pm
                 0
WindSpeed9am
                 0
WindSpeed3pm
                 0
Humidity9am
                 0
                 0
Humidity3pm
Pressure9am
                 0
Pressure3pm
Cloud9am
Cloud3pm
                 0
Temp9am
                 0
Temp3pm
                 0
{\tt RainToday}
```

RISK_MM 0 RainTomorrow 0 dtype: int64

To find outlier thresholds

```
# Outlier using IQR
Q1=df['Humidity9am'].quantile(0.25)
print(Q1)
Q3=df['Humidity9am'].quantile(0.75)
print(Q3)
     64.0
     81.0
IQR=Q3-Q1
IQR
     17.0
# To find outlier thresolds
lower\_bound = Q1-1.5*IQR
upper_bound = Q3+1.5*IQR
print(lower_bound)
print(upper_bound)
     38.5
     106.5
upper_array = np.where(df['Humidity9am']>=upper_bound)[0]
lower\_array = np.where(df['Humidity9am'] <= lower\_bound)[0]
print(upper_array)
print(lower_array)
     [332 361]
#To Remove outliers
df.drop(index=upper_array, inplace=True)
df.drop(index=lower_array, inplace=True)
print("New Shape of the test data: ", df.shape)
     New Shape of the test data: (364, 22)
# To find out correlation
corr=df[['Rainfall','Evaporation']].corr()
corr
                   Rainfall Evaporation
                                            \blacksquare
```



```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(5, 4))
sns.heatmap(corr, annot=True)
plt.title('Correlation between Rainfall and Evaporation')
plt.show()
```


To find out Regression

cross_tab=pd.crosstab(index=df['WindGustDir'],columns=[df['RainToday'],df['RainTomorrow']])
cross_tab

RainToday	No		Yes		
RainTomorrow	No	Yes	No	Yes	ıl.
WindGustDir					1
E	30	4	3	0	
ENE	25	0	3	2	
ESE	14	4	3	2	
N	18	1	1	1	
NE	12	2	1	1	
NNE	6	1	1	0	
NNW	28	7	4	5	
NW	45	11	12	5	
s	13	2	5	2	
SE	12	0	0	0	
SSE	6	2	3	1	
ssw	3	2	0	0	
sw	1	2	0	0	
W	9	5	4	2	
WNW	28	2	5	0	
wsw	2	0	0	0	

import matplotlib.pyplot as plt
import seaborn as sns
sns.heatmap(cross_tab,annot=True,fmt='d')
plt.show()

