MetidaNCA validation report

Vladimir Arnautov

2021-07-11

1 Introduction and package description

Non-compartment analysis software.

See documentation: https://pharmcat.github.io/MetidaNCA.jl/dev/

1.1 Validation purpose

The main validation purpose is confirmation by examination and provision of objective evidence that software specifications conform to user needs and intended uses, and that the particular requirements implemented through software can be consistently fulfilled.

1.2 Requirements

- Julia 1.5.* (or higher) installed
- Julia packages from dependence list installed (see Project.toml)

1.3 Developer software life cycle

- Development stage
- Testing procedures development
- Performing testing procedures on local machine
- Push to master branch
- Performing testing procedures with GitHub Actions
- Make pull request to the official registry of general Julia packages (if nessesary)
- Make release (if previous completed)

1.3.1 Versions

- X.Y.Z patch release (no breaking changes)
- X.Y.# minor release (may include breaking changes)
- X.#.# major release (breaking changes, changes in public API)
- 0.#.# no stable public API
- $\geq 1.\#.\#$ stable public API

1.4 Build support

1.4.1 Tier 1

• julia-version: 1.5, 1.6

• julia-arch: x64

• os: ubuntu-18.04, macos-10.15, windows-2019

2 Installation

2.1 System information

• Julia version: v"1.4.2"

• Current machine: "x86_64-pc-linux-gnu"

2.2 Installation method

MetidaNCA.jl can be installed by executing the following command in REPL.

```
import Pkg; Pkg.add("MetidaNCA")
```

2.3 Version check

The installation process is checking within each testing job via GitHub Actions. Also GitHub Action chek performed before merging into JuliaRegistries/General repository (see Automatic merging of pull requests).

Current package version:

"0.1.2"

3 Operation qualification

This part of validation based on testing procedures entails running software products under known conditions with defined inputs and documented outcomes that can be compared to their predefined expectations. All documented public API included in testing procedures and part of critical internal methods.

3.1 Coverage

Code coverage report available on Codecov.io. Test procedures include all public API methods check.

• Coverage goal: $\geq 90.0\%$

3.2 Data

Validation data available in the repository and included in the package. See Appendix 1.

3.3 Testing results

Pkg.test("MetidaNCA")

```
Test Summary:
                                                             | Pass Total
  Simple test
                                                                  2
Test Summary:
                                                             | Pass
                                                                     Total
 Linear trapezoidal, Dose 100, Dosetime 0, no tau
                                                                 18
                                                                         18
Test Summary:
                                                             | Pass
                                                                     Total
 Linear up Log down, Dose 120, Dosetime 0, tau 12
                                                                 17
                                                                     Total
Test Summary:
                                                             | Pass
 Log trapezoidal ATM, Dose 120, Dosetime 0, tau 12
                                                                  5
Test Summary:
                                                               Pass Total
 Linear up Log down ATM, Dose 120, Dosetime 0, tau 12
Test Summary:
                                                             | Pass
 Linear up Log down, Dose 100, Dosetime 0.25, tau 9
                                                                  8
Test Summary:
                                                               Pass
                                                                     Total
  Linear trapezoidal, Dose 100, Dosetime 2.0, tau 10
                                                                 15
                                                               Pass
Test Summary:
                                                                     Total
  Linear trapezoidal, Dose 100, Dosetime 0.0, tau 100
                                                                 15
                                                               Pass
                                                                    Total
 Linear trapezoidal, Dose 120, Dosetime 0.0, tau 12
Test Summary:
                                                               Pass Total
  set-get*! tests
Test Summary:
  applylimitrule!
                                                               No tests
Test Summary:
  kel
                                                               No tests
Test Summary:
  Output
                                                             | No tests
```

4 Performance qualification

Purpose of this testing procedures to demonstrate performance for some critical tasks.

4.1 Parameter's names description

Ì	Name	Description
	String	String
:		::: Maximum concentration
i	Tmax	Time at Cmax
İ	Cdose	Concentration at dose time
١	Clast	Last non-zero concentration
١	AUClast	AUC to Clast
	AUMClast	AUMC to Clast
1	AUCall	AUC with all values
	Rsq	r square
	ARsq	Adjusted r square
	Kel	Terminal elimination constant
1	HL	Half live or T1/2
	LZint	Intercept
	Clast_pred	Predicted Clast
	AUCinf	AUC extrapolated to infinity
	${ t AUCpct }$	Percentage AUClast from AUCinf
	MRTlast	Mean Residence Time (last)
1	MRTinf	Mean Residence Time (inf)
	Clinf	Clearence
1	Vzinf	Volume of distribution
•	'	

4.2 Results

4.2.1 Linear-trapezoidal rule; Extravascular

Cmax

Subjct Float64	Value Float64	Reference Float64	Difference Float64
1.0	190.869	190.869	0.0
2.0	261.177	261.177	0.0
3.0	105.345	105.345	0.0
4.0	208.542	208.542	0.0
5.0	169.334	169.334	0.0
6.0	154.648	154.648	0.0
7.0	153.254	153.254	0.0
8.0	138.327	138.327	0.0
9.0	167.347	167.347	0.0
10.0	125.482	125.482	0.0

Tmax

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	1.0	1.0	0.0
2.0	1.0	1.0	0.0
3.0	1.5	1.5	0.0
4.0	1.0	1.0	0.0

5.0	4.0	4.0	0.0
6.0	2.5	2.5	0.0
7.0	2.5	2.5	0.0
8.0	4.0	4.0	0.0
9.0	3.0	3.0	0.0
10.0	2.0	2.0	0.0

Cdose

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	0.0	0.0	0.0
2.0	0.0	0.0	0.0
3.0	0.0	0.0	0.0
4.0	0.0	0.0	0.0
5.0	0.0	0.0	0.0
6.0	0.0	0.0	0.0
7.0	0.0	0.0	0.0
8.0	0.0	0.0	0.0
9.0	0.0	0.0	0.0
10.0	0.0	0.0	0.0

Clast

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	112.846	112.846	0.0
2.0	85.241	85.241	0.0
3.0	67.901	67.901	0.0
4.0	97.625	97.625	0.0
5.0	110.778	110.778	0.0
6.0	69.501	69.501	0.0
7.0	58.051	58.051	0.0
8.0	74.437	74.437	0.0
9.0	93.44	93.44	0.0
10.0	42.191	42.191	0.0

AUClast

Subjct Float64	Value Float64	Reference Float64	Difference Float64
1.0	9585.42	9585.42	0.0
2.0	10112.2	10112.2	0.0
3.0	5396.55	5396.55	0.0
4.0	9317.84	9317.84	0.0
5.0	9561.26	9561.26	0.0
6.0	6966.6	6966.6	0.0
7.0	7029.57	7029.57	0.0
8.0	7110.67	7110.67	0.0
9.0	8315.08	8315.08	0.0
10.0	5620.89	5620.89	0.0

AUMClast

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	333582.0	333582.0	0.0
2.0	298701.0	298701.0	0.0
3.0	186032.0	186032.0	0.0
4.0	313956.0	313956.0	0.0
5.0	315182.0	315182.0	0.0
6.0	226977.0	226977.0	0.0
7.0	219798.0	219798.0	0.0
8.0	240526.0	240526.0	0.0
9.0	277614.0	277614.0	0.0
10.0	154893.0	154893.0	0.0

AUCall

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	9585.42	9585.42	0.0
2.0	10112.2	10112.2	0.0
3.0	5396.55	5396.55	0.0
4.0	9317.84	9317.84	0.0
5.0	9561.26	9561.26	0.0
6.0	6966.6	6966.6	0.0
7.0	7029.57	7029.57	0.0
8.0	7110.67	7110.67	0.0
9.0	8315.08	8315.08	0.0
10.0	5620.89	5620.89	0.0

Rsq

Difference	Reference	Value	Subjct
Float64	Float64	Float64	Float64
0.0	0.786077	0.786077	1.0
0.0	0.992764	0.992764	2.0
0.0	0.813589	0.813589	3.0
0.0	0.918859	0.918859	4.0
0.0	0.85336	0.85336	5.0
0.0	0.950119	0.950119	6.0
0.0	0.970312	0.970312	7.0
0.0	0.947969	0.947969	8.0
0.0	0.947538	0.947538	9.0
0.0	0.880923	0.880923	10.0

ARsq

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	0.714769	0.714769	0.0
2.0	0.990351	0.990351	0.0
3.0	0.776307	0.776307	0.0

4.0	0.837717	0.837717	0.0
5.0	0.82892	0.82892	0.0
6.0	0.925179	0.925179	0.0
7.0	0.960416	0.960416	0.0
8.0	0.921954	0.921954	0.0
9.0	0.921307	0.921307	0.0
10.0	0.863912	0.863912	0.0

Kel

Subjct Float64	Value Float64	Reference Float64	Difference Float64
1100004	1100004	1100004	1100004
1.0	0.00338474	0.00338474	0.0
2.0	0.0141063	0.0141063	0.0
3.0	0.00329143	0.00329143	0.0
4.0	0.00769534	0.00769534	0.0
5.0	0.00681333	0.00681333	0.0
6.0	0.00769228	0.00769228	0.0
7.0	0.012459	0.012459	0.0
8.0	0.00893008	0.00893008	0.0
9.0	0.00564586	0.00564586	0.0
10.0	0.0171897	0.0171897	0.0

HL

Subjet	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	204.786	204.786	0.0
2.0	49.1374	49.1374	0.0
3.0	210.591	210.591	0.0
4.0	90.0736	90.0736	0.0
5.0	101.734	101.734	0.0
6.0	90.1095	90.1094	0.0001
7.0	55.6345	55.6345	0.0
8.0	77.6194	77.6194	0.0
9.0	122.771	122.771	0.0
10.0	40.3233	40.3233	0.0

Clast_pred

Subjct Float64	Value Float64	Reference Float64	Difference Float64
1.0	117.306	117.306	0.0
2.0	82.5367	82.5367	0.0
3.0	66.9311	66.9311	0.0
4.0	100.768	100.768	0.0
5.0	105.298	105.298	0.0
6.0	71.9399	71.9399	0.0
7.0	61.1727	61.1727	0.0
8.0	75.6043	75.6043	0.0
9.0	93.7618	93.7618	0.0
10.0	38.8109	38.8109	0.0

AUCinf

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	42925.0	42925.0	0.0
2.0	16154.9	16154.9	0.0
3.0	26026.2	26026.2	0.0
4.0	22004.1	22004.1	0.0
5.0	25820.3	25820.3	0.0
6.0	16001.8	16001.8	0.0
7.0	11689.0	11689.0	0.0
8.0	15446.2	15446.2	0.0
9.0	24865.2	24865.2	0.0
10.0	8075.32	8075.32	0.0

AUCpct

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	77.6694	77.6694	0.0
2.0	37.405	37.405	0.0
3.0	79.2649	79.2649	0.0
4.0	57.6541	57.6541	0.0
5.0	62.97	62.97	0.0
6.0	56.4636	56.4636	0.0
7.0	39.8614	39.8614	0.0
8.0	53.9649	53.9649	0.0
9.0	66.5594	66.5594	0.0
10.0	30.3942	30.3942	0.0

MRTlast

Subjct Float64	Value Float64	Reference Float64	Difference Float64
1.0	34.801	34.801	0.0
2.0	29.5388	29.5388	0.0
3.0	34.4724	34.4724	0.0
4.0	33.6941	33.6941	0.0
5.0	32.9644	32.9644	0.0
6.0	32.5808	32.5808	0.0
7.0	31.2676	31.2676	0.0
8.0	33.8261	33.8261	0.0
9.0	33.3868	33.3868	0.0
10.0	27.5567	27.5567	0.0

MRTinf

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	293.162	293.162	0.0
2.0	71.9379	71.9379	0.0

3.0	305.041	305.041	0.0
4.0	130.7	130.7	0.0
5.0	149.967	149.967	0.0
6.0	128.241	128.241	0.0
7.0	79.4983	79.4983	0.0
8.0	114.857	114.857	0.0
9.0	176.978	176.978	0.0
10.0	58.7464	58.7464	0.0

Clinf

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	0.00232964	0.00232964	0.0
2.0	0.00619006	0.00619006	0.0
3.0	0.00384228	0.00384228	0.0
4.0	0.00454461	0.00454461	0.0
5.0	0.00387293	0.00387293	0.0
6.0	0.00624931	0.00624931	0.0
7.0	0.00855509	0.00855509	0.0
8.0	0.00647408	0.00647408	0.0
9.0	0.00402168	0.00402168	0.0
10.0	0.0123834	0.0123834	0.0

Vzinf

Subjct	Value	Reference	Difference
Float64	Float64	Float64	Float64
1.0	0.688278	0.688278	0.0
2.0	0.438815	0.438815	0.0
3.0	1.16736	1.16736	0.0
4.0	0.590566	0.590566	0.0
5.0	0.568434	0.568434	0.0
6.0	0.812414	0.812414	0.0
7.0	0.686662	0.686662	0.0
8.0	0.724974	0.724974	0.0
9.0	0.712323	0.712323	0.0
10.0	0.720395	0.720395	0.0

5 Glossary

- Installation qualification (IQ) Establishing confidence that process equipment and ancillary systems are compliant with appropriate codes and approved design intentions, and that manufacturer's recommendations are suitably considered.
- Operational qualification (OQ) Establishing confidence that process equipment and sub-systems are capable of consistently operating within established limits and tolerances.
- Product performance qualification (PQ) Establishing confidence through appropriate testing that the finished product produced by a specified process meets all release requirements for functionality and safety.

- $\bullet \ \ {\rm Repository:\ https://github.com/PharmCat/MetidaNCA.jl}$
- Master branch main branch on GitHub (link).
- Current machine pc that used for validation report generating.

6 Reference

- General Principles of Software Validation; Final Guidance for Industry and FDA Staff
- Guidance for Industry Process Validation: General Principles and Practices
- Glossary of Computer System Software Development Terminology

7 Appendix 1

					٠.
ı	U	Formulation		Concentration	İ
	Int64	String	Float64	Float64	١
:		+		 	:
		T	0.0	0.0	1
-	_	l T		178.949	1
-	1	T	1.0	190.869	1
-	1	l T	1.5	164.927	1
	1	I T	2.0	139.962	
	1	I T	2.5	129.59	
	1	l T	3.0	131.369	
	1	l T	4.0	150.854	
-	1	l T	5.0	121.239	
	1	l T	6.0	139.229	
-	1	T	8.0	128.52	
-	1	T	10.0	143.243	
	1	T	12.0	144.964	
-	1	T	24.0	133.16	1
	1	T	48.0	137.271	1
	1	T	72.0	112.846	1
-	2	l R	0.0	0.0	1
-	2	l R	0.5	62.222	1
-	2	l R	1.0	261.177	1
-	2	l R	1.5	234.063	1
-	2	l R	2.0	234.091	1
-	2	l R	2.5	222.881	1
	2	l R	3.0	213.896	1
	2	l R	4.0	196.026	1
	2	l R	5.0	199.634	1
	2	l R	6.0	196.037	1
	2	l R	8.0	213.352	1
-	2	l R	10.0	200.088	١
	2	l R	12.0	196.035	1
-	2	l R	24.0	160.338	1
-	2	l R	48.0	110.28	١
-	2	l R	72.0	85.241	١
-	3	l R	0.0	0.0	١
ĺ	3	l R	0.5	49.849	1
ĺ	3	l R	1.0	77.367	Ī
					•

1	3	R	1.5	105.345
i I		•		
	3	R	2.0	100.943
	3	R	2.5	72.746
	3	R	3.0	69.985
	3	R	4.0	93.565
	3	R	5.0	91.981
	3	R	6.0 l	82.71
	3	R	8.0	84.205
1	3	R	10.0	85.342
i	3	R	12.0	76.027
i	3	R I	24.0	81.259
i	3	R I	48.0	70.107
1	3	R I	72.0	67.901
i I		•		
	•	R	0.0	0.0
	4	R	0.5	52.421
1	4	R	1.0	208.542
1	4	R	1.5	188.923
	4	R	2.0	165.177
	4	R	2.5	146.996
	4	R	3.0	152.701
	4	R	4.0	154.345
	4	R	5.0	128.398
1	4	R	6.0	149.807
i	4	R	8.0	151.066
i	4	R I	10.0	136.819
i	4	R	12.0	132.257
i	4	R	24.0	141.247
1	4	R I	48.0	129.138
i I	•	•		
1	4	R	72.0	97.625
l	5	ΤΙ	0.0	0.0
1	5	T	0.5	0.0
	5	T	1.0	9.545
	5	Τ	1.5	153.964
	5	ΤΙ	2.0	152.34
	5	ΤΙ	2.5	151.452
	5	ΤΙ	3.0	161.312
	5	ΤΙ	4.0	169.334
	5	ΤΙ	5.0	162.907
1	5	ΤΙ	6.0	166.651
i	5	Τİ	8.0	168.668
i	5	т i	10.0	155.103
i	5	T	12.0	154.066
İ	5	T	24.0	162.974
1	5	T	48.0	102.974
1	5	T	72.0	110.778
1				
1	6	T	0.0	0.0
1	6	T	0.5	57.882
1	6	T	1.0	100.498
1	6	T	1.5	138.651
	6 l	Τ	2.0	147.287
1	6	Τļ	2.5	154.648
	6	ΤΙ	3.0	122.316
1	6 l	ΤΙ	4.0	132.857
	6	ΤΙ	5.0	126.067
1	6	ΤΙ	6.0	140.466
1	6	т i	8.0	115.542
Ī	6	T	10.0	102.16
i	6	T	12.0	113.751
İ	6	T	24.0	101.049
1	U 1	1 1	2 1 .0	101.043

l 6	l T	48.0	92.55
l 6	l T	72.0	69.501
7	l R		0.0
7	l R		19.95
7	l R		128.405
7	R R		136.807
7	R R		113.109
1 7			153.254
	R	2.5	
7	R	3.0	123.606
1 7	R .	•	142.655
7	R	5.0	112.347
7	l R	6.0	139.919
7	l R		105.513
7	l R	10.0	134.408
1 7	l R	12.0	123.37
7	l R	24.0	110.511
7	l R	48.0	90.291
7	l R	72.0	58.051
8	l R	0.0	0.0
l 8	l R		136.91
l 8	l R		126.646
8	l R		118.5
1 8	l R		134.926
1 8	R R		113.213
1 8	R R		130.896
1 8	l R		138.327
-	•		
8	R		22.724
8	R		53.774
8	R .		55.107
8	l R		102.871
1 8	l R		134.133
8	l R		108.021
8	l R	48.0	98.466
1 8	l R	72.0	74.437
9	T	0.0	0.0
J 9	T	0.5	113.362
J 9	T	1.0	128.273
J 9	T	1.5	125.395
	l T		
9	Т		140.559
J 9	T		167.347
i 9	I T		157.504
1 9	T		141.35
1 9	T		140.282
1 9	T		105.438
1 9	T		164.843
1 9	T		
-			
9	T		117.125
9	T		109.745
9	T		93.44
	R		0.0
	l R		13.634
	l R		62.561
10	l R	1.5	112.655
10	l R	2.0	125.482
10	l R	2.5	116.255
	l R		112.674
	l R		
	l R		
			1

1	10	R	6.0	107.557
1	10	R	8.0	120.479
1	10	R	10.0	124.171
1	10	R	12.0	106.476
1	10	R	24.0	116.508
	10	R	48.0	45.204
1	10	R	72.0	42.191
1			1	1

8 Appendix 2

8.1 Reference values 1: Linear-trapezoidal rule; Extravascular

WinNonlin 8.0.0.3176 Subject=1,Formulation=T

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

Time	Conc.	Pred.	Residual	AUC	AUMC	Weight
0.0000	0.0000			0.0000	0.0000	
0.5000	178.9			44.74	22.37	
1.000	190.9			137.2	92.45	
1.500	164.9			226.1	202.0	
2.000	140.0			302.4	333.8	
2.500	129.6			369.8	484.8	
3.000	131.4			435.0	664.3	
4.000	150.9			576.1	1163.	
5.000	121.2			712.1	1768.	
6.000	139.2			842.4	2489.	
8.000	128.5			1110.	4352.	

10.00 *	143.2	144.7	-1.453	1382.	6813.	1.000
12.00 *	145.0	143.7	1.244	1670.	9985.	1.000
24.00 *	133.2	138.0	-4.840	3339.	3.960e+04	1.000
48.00 *	137.3	127.2	10.04	6584.	1.570e+05	1.000
72.00 *	112.8	117.3	-4.460	9585.	3.336e+05	1.000

*) Starred values were included in the estimation of Lambda_z.

N_Samples	16
Dose	100.0000
Rsq	0.7861
Rsq_adjusted	0.7148
Corr_XY	-0.8866
No_points_lambda_z	5
Lambda_z	0.0034
Lambda_z_intercept	5.0085
Lambda_z_lower	10.0000
Lambda_z_upper	72.0000
HL_Lambda_z	204.7857
Span	0.3028
Tlag	0.0000
Tmax	1.0000
Cmax	190.8690
Cmax_D	1.9087
Tlast	72.0000
Clast	112.8460
Clast_pred	117.3058
AUClast	9585.4218
AUClast_D	95.8542
AUCall	9585.4218
AUCINF_obs	42925.0191
AUCINF_D_obs	429.2502
AUC_%Extrap_obs	77.6694
Vz_F_obs	0.6883
Cl_F_obs	0.0023
AUCINF_pred	44242.6313
AUCINF_D_pred	442.4263
AUC_%Extrap_pred	78.3344
Vz_F_pred	0.6678
Cl_F_pred	0.0023
AUMClast	333582.4808
AUMCINF_obs	12583994.9366
AUMC_%Extrap_obs	97.3492
AUMCINF_pred	13068142.7409
AUMC_%Extrap_pred	97.4474

 MRTlast
 34.8010

 MRTINF_obs
 293.1622

 MRTINF_pred
 295.3744

WinNonlin 8.0.0.3176 Subject=2,Formulation=R

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda z method: Find best fit for lambda z, Log regression

Summary Table

_____ AUC Time Conc. Pred. Residual AUMC Weight ______ 0.0000 0.0000 0.0000 0.0000 0.5000 62.22 7.778 15.56 1.000 261.2 96.41 80.85 1.500 234.1 220.2 233.9 2.000 234.1 337.3 438.7 2.500 222.9 451.5 695.1 3.000 213.9 560.7 994.8 4.000 765.7 196.0 1708. 5.000 963.5 2599. 199.6 6.000 196.0 1161. 3686. 8.000 213.4 1571. 6569. 10.00 * 200.1 197.9 2.174 1984. 1.028e+04 1.000 196.0 12.00 * 192.4 3.626 2380. 1.463e+04 1.000 24.00 * 160.3 162.4 -2.108 4519. 5.183e+04 1.000 48.00 * 115.8 -5.512 7766. 1.615e+05 110.3 1.000 72.00 * 82.54 2.704 1.011e+04 2.987e+05 85.24 1.000 *) Starred values were included in the estimation of Lambda_z.

N_Samples	16
Dose	100.0000
Rsq	0.9928
Rsq_adjusted	0.9904
Corr_XY	-0.9964
No_points_lambda_z	5
Lambda_z	0.0141
Lambda_z_intercept	5.4289
Lambda_z_lower	10.0000
Lambda_z_upper	72.0000
HL_Lambda_z	49.1374
Span	1.2618
Tlag	0.0000
Tmax	1.0000
Cmax	261.1770
Cmax_D	2.6118
Tlast	72.0000
Clast	85.2410
Clast_pred	82.5367
AUClast	10112.1755
AUClast_D	101.1218
AUCall	10112.1755
AUCINF_obs	16154.9301
AUCINF_D_obs	161.5493
AUC_%Extrap_obs	37.4050
Vz_F_obs	0.4388
Cl_F_obs	0.0062
AUCINF_pred	15963.2209
AUCINF_D_pred	159.6322
AUC_%Extrap_pred	36.6533
Vz_F_pred	0.4441
Cl_F_pred	0.0063
AUMClast	298701.3885
AUMCINF_obs	1162152.0263
AUMC_%Extrap_obs	74.2976
AUMCINF_pred	1134758.6551
AUMC_%Extrap_pred	73.6771
MRTlast	29.5388
MRTINF_obs	71.9379
MRTINF_pred	71.0858

WinNonlin 8.0.0.3176 Subject=3,Formulation=R

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

Time	Conc.	Pred.	Residual	AUC	AUMC	Weight
0.0000	0.0000			0.0000	0.0000	
0.5000	49.85			12.46	6.231	
1.000	77.37			44.27	31.80	
1.500	105.3			89.94	90.65	
2.000	100.9			141.5	180.6	
2.500	72.75			184.9	276.6	
3.000	69.99			220.6	374.5	
4.000	93.57			302.4	666.6	
5.000	91.98			395.2	1084.	
6.000 *	82.71	83.17	-0.4609	482.5	1562.	1.000
8.000 *	84.21	82.63	1.580	649.4	2732.	1.000
10.00 *	85.34	82.08	3.259	819.0	4259.	1.000
12.00 *	76.03	81.54	-5.518	980.3	6024.	1.000
24.00 *	81.26	78.39	2.872	1924.	2.320e+04	1.000
48.00 *	70.11	72.43	-2.326	3740.	8.698e+04	1.000
72.00 *	67.90	66.93	0.9699	5397.	1.860e+05	1.000

*) Starred values were included in the estimation of Lambda_z.

Final Parameters

N 0 1	4.0
N_Samples	16
Dose	100.0000
Rsq	0.8136
Rsq_adjusted	0.7763
Corr_XY	-0.9020
No_points_lambda_z	7
Lambda_z	0.0033
Lambda_z_intercept	4.4406
Lambda_z_lower	6.0000
Lambda_z_upper	72.0000
HL_Lambda_z	210.5915
Span	0.3134
Tlag	0.0000
Tmax	1.5000
Cmax	105.3450
Cmax_D	1.0535
Tlast	72.0000
Clast	67.9010
Clast_pred	66.9311
AUClast	5396.5498
AUClast_D	53.9655
AUCall	5396.5498
AUCINF_obs	26026.1826
AUCINF_D_obs	260.2618
AUC_%Extrap_obs	79.2649
Vz_F_obs	1.1674
Cl_F_obs	0.0038
AUCINF_pred	25731.4952
AUCINF_D_pred	257.3150
AUC_%Extrap_pred	79.0275
Vz_F_pred	1.1807
Cl_F_pred	0.0039
AUMClast	186032.0553
AUMCINF_obs	7939045.7669
AUMC_%Extrap_obs	97.6567
AUMCINF_pred	7828296.5609
AUMC_%Extrap_pred	97.6236
MRTlast	34.4724
MRTINF_obs	305.0407
MRTINF_pred	304.2301

WinNonlin 8.0.0.3176 Subject=4,Formulation=R

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176

Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

Time	Conc.	Pred.	Residual	AUC	AUMC	Weight
0.0000	0.0000			0.0000	0.0000	
0.5000	52.42			13.11	6.553	
1.000	208.5			78.35	65.24	
1.500	188.9			177.7	188.2	
2.000	165.2			266.2	341.7	
2.500	147.0			344.3	516.1	
3.000	152.7			419.2	722.5	
4.000	154.3			572.7	1260.	
5.000	128.4			714.1	1890.	
6.000	149.8			853.2	2660.	
8.000	151.1			1154.	4768.	
10.00	136.8			1442.	7344.	
12.00	132.3			1711.	1.030e+04	
24.00 *	141.2	145.8	-4.547	3352.	4.016e+04	1.000
48.00 *	129.1	121.2	7.930	6597.	1.552e+05	1.000
72.00 *	97.63	100.8	-3.143	9318.	3.140e+05	1.000

*) Starred values were included in the estimation of Lambda_z.

Final Parameters

N_Samples Dose Rsq Rsq_adjusted

Corr_XY -0.9586

No_points_lambda_z 3

16

100.0000 0.9189

0.8377

Lambda_z	0.0077
Lambda_z_intercept	5.1669
Lambda_z_lower	24.0000
Lambda_z_upper	72.0000
HL_Lambda_z	90.0736
Span	0.5329
Tlag	0.0000
Tmax	1.0000
Cmax	208.5420
Cmax_D	2.0854
Tlast	72.0000
Clast	97.6250
Clast_pred	100.7679
AUClast	9317.8358
AUClast_D	93.1784
AUCall	9317.8358
AUCINF_obs	22004.0779
AUCINF_D_obs	220.0408
AUC_%Extrap_obs	57.6541
Vz_F_obs	0.5906
Cl_F_obs	0.0045
AUCINF_pred	22412.4980
AUCINF_D_pred	224.1250
AUC_%Extrap_pred	58.4257
Vz_F_pred	0.5798
Cl_F_pred	0.0045
AUMClast	313955.9048
AUMCINF_obs	2875926.0451
AUMC_%Extrap_obs	89.0833
AUMCINF_pred	2958405.9609
AUMC_%Extrap_pred	89.3877
MRTlast	33.6941
MRTINF_obs	130.6997
MRTINF_pred	131.9980

WinNonlin 8.0.0.3176 Subject=5,Formulation=T

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

Time	Conc.	Pred.	Residual	AUC	AUMC	Weight
0.0000	0.0000			0.0000	0.0000	
0.5000	0.0000			0.0000	0.0000	
1.000	9.545			2.386	2.386	
1.500	154.0			43.26	62.51	
2.000	152.3			119.8	196.4	
2.500	151.5			195.8	367.2	
3.000	161.3			274.0	582.9	
4.000	169.3			439.3	1164.	
5.000 *	162.9	166.2	-3.309	605.4	1909.	1.000
6.000 *	166.7	165.1	1.563	770.2	2817.	1.000
8.000 *	168.7	162.9	5.815	1106.	5166.	1.000
10.00 *	155.1	160.6	-5.546	1429.	8066.	1.000
12.00 *	154.1	158.5	-4.409	1738.	1.147e+04	1.000
24.00 *	163.0	146.0	16.94	3641.	4.603e+04	1.000
48.00 *	109.8	124.0	-14.19	6914.	1.562e+05	1.000
72.00 *	110.8	105.3	5.480	9561.	3.152e+05	1.000

*) Starred values were included in the estimation of Lambda_z.

N_Samples	16
Dose	100.0000
Rsq	0.8534
Rsq_adjusted	0.8289
Corr_XY	-0.9238
No_points_lambda_z	8
Lambda_z	0.0068
Lambda_z_intercept	5.1474
Lambda_z_lower	5.0000
Lambda_z_upper	72.0000
HL_Lambda_z	101.7340
Span	0.6586

Tlag	0.5000
Tmax	4.0000
Cmax	169.3340
Cmax_D	1.6933
Tlast	72.0000
Clast	110.7780
Clast_pred	105.2983
AUClast	9561.2600
AUClast_D	95.6126
AUCall	9561.2600
AUCINF_obs	25820.2749
AUCINF_D_obs	258.2027
AUC_%Extrap_obs	62.9700
Vz_F_obs	0.5684
Cl_F_obs	0.0039
AUCINF_pred	25016.0160
AUCINF_D_pred	250.1602
AUC_%Extrap_pred	61.7794
Vz_F_pred	0.5867
Cl_F_pred	0.0040
AUMClast	315181.5625
AUMCINF_obs	3872185.0137
AUMC_%Extrap_obs	91.8604
AUMCINF_pred	3696236.3722
AUMC_%Extrap_pred	91.4729
MRTlast	32.9644
MRTINF_obs	149.9668
MRTINF_pred	147.7548

WinNonlin 8.0.0.3176 Subject=6,Formulation=T

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

${\tt Settings}$

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

Time	Conc.	Pred.	Residual	AUC	AUMC	Weight
0.0000	0.0000			0.0000	0.0000	
0.5000	57.88			14.47	7.235	
1.000	100.5			54.07	39.60	
1.500	138.7			113.9	116.7	
2.000	147.3			185.3	242.4	
2.500	154.6			260.8	412.6	
3.000	122.3			330.1	601.0	
4.000	132.9			457.6	1050.	
5.000	126.1			587.1	1631.	
6.000	140.5			720.4	2368.	
8.000	115.5			976.4	4135.	
10.00	102.2			1194.	6081.	
12.00 *	113.8	114.1	-0.3825	1410.	8467.	1.000
24.00 *	101.0	104.1	-3.021	2699.	3.121e+04	1.000
48.00 *	92.55	86.53	6.024	5022.	1.136e+05	1.000
72.00 *	69.50	71.94	-2.439	6967.	2.270e+05	1.000

*) Starred values were included in the estimation of Lambda $_{\tt z}.$

N_Samples	16
Dose	100.0000
Rsq	0.9501
Rsq_adjusted	0.9252
Corr_XY	-0.9747
No_points_lambda_z	4
Lambda_z	0.0077
Lambda_z_intercept	4.8297
Lambda_z_lower	12.0000
Lambda_z_upper	72.0000
HL_Lambda_z	90.1095
Span	0.6659
Tlag	0.0000
Tmax	2.5000
Cmax	154.6480
Cmax_D	1.5465
Tlast	72.0000
Clast	69.5010

Clast pred	71.9399
	
AUClast	6966.5980
AUClast_D	69.6660
AUCall	6966.5980
AUCINF_obs	16001.7597
AUCINF_D_obs	160.0176
AUC_%Extrap_obs	56.4636
Vz_F_obs	0.8124
Cl_F_obs	0.0062
AUCINF_pred	16318.8233
AUCINF_D_pred	163.1882
AUC_%Extrap_pred	57.3094
Vz_F_pred	0.7966
Cl_F_pred	0.0061
AUMClast	226977.0608
AUMCINF_obs	2052083.8596
AUMC_%Extrap_obs	88.9392
AUMCINF_pred	2116130.8466
AUMC_%Extrap_pred	89.2740
MRTlast	32.5808
MRTINF_obs	128.2411
MRTINF_pred	129.6742

WinNonlin 8.0.0.3176 Subject=7,Formulation=R

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

	Time	Conc.	Pred.	Residual	AUC	AUMC	Weight
-	0.0000	0.0000			0.0000	0.0000	
	0.5000	19.95			4.988	2.494	
	1.000	128.4			42.08	37.09	
	1.500	136.8			108.4	120.5	
	2.000	113.1			170.9	228.3	
	2.500	153.3			237.4	380.7	
	3.000	123.6			306.7	569.2	
	4.000	142.7			439.8	1040.	
	5.000	112.3			567.3	1606.	
	6.000	139.9			693.4	2307.	
	8.000	105.5			938.9	3990.	
	10.00 *	134.4	132.4	1.964	1179.	6178.	1.000
	12.00 *	123.4	129.2	-5.814	1437.	9003.	1.000
	24.00 *	110.5	111.2	-0.7336	2840.	3.380e+04	1.000
	48.00 *	90.29	82.49	7.798	5249.	1.176e+05	1.000
	72.00 *	58.05	61.17	-3.122	7030.	2.198e+05	1.000

^{*)} Starred values were included in the estimation of Lambda_z.

N_Samples	16
Dose	100.0000
Rsq	0.9703
Rsq_adjusted	0.9604
Corr_XY	-0.9850
No_points_lambda_z	5
Lambda_z	0.0125
Lambda_z_intercept	5.0107
Lambda_z_lower	10.0000
Lambda_z_upper	72.0000
HL_Lambda_z	55.6345
Span	1.1144
Tlag	0.0000
Tmax	2.5000
Cmax	153.2540
Cmax_D	1.5325
Tlast	72.0000
Clast	58.0510
Clast_pred	61.1727
AUClast	7029.5735
AUClast_D	70.2957
AUCall	7029.5735
AUCINF_obs	11688.9527
AUCINF_D_obs	116.8895

AUC_%Extrap_obs	39.8614
Vz_F_obs	0.6867
Cl_F_obs	0.0086
AUCINF_pred	11939.5116
AUCINF_D_pred	119.3951
AUC_%Extrap_pred	41.1234
Vz_F_pred	0.6723
Cl_F_pred	0.0084
AUMClast	219797.7073
AUMCINF_obs	929251.3075
AUMC_%Extrap_obs	76.3468
AUMCINF_pred	967402.2944
AUMC_%Extrap_pred	77.2796
MRTlast	31.2676
MRTINF_obs	79.4983
MRTINF_pred	81.0253

WinNonlin 8.0.0.3176 Subject=8,Formulation=R

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

Time	Conc.	Pred.	Residual	AUC	AUMC	Weight
0.0000	0.0000			0.0000	0.0000	
0.5000	136.9			34.23	17.11	
1.000	126.6			100.1	65.89	
1.500	118.5			161.4	142.0	

2.00	00	134.9			224.8	253.9	
2.50	00	113.2			286.8	392.1	
3.00	00	130.9			347.8	561.0	
4.00	00	138.3			482.4	1034.	
5.00	00	22.72			563.0	1368.	
6.00	00	53.77			601.2	1586.	
8.00	00	55.11			710.1	2349.	
10.0	00	102.9			868.1	3819.	
12.0)0 *	134.1	129.2	4.939	1105.	6457.	1.000
24.0)0 *	108.0	116.1	-8.045	2558.	3.167e+04	1.000
48.0)0 *	98.47	93.68	4.791	5036.	1.195e+05	1.000
72.0)0 *	74.44	75.60	-1.167	7111.	2.405e+05	1.000

*) Starred values were included in the estimation of Lambda_z.

N_Samples	16
Dose	100.0000
Rsq	0.9480
Rsq_adjusted	0.9220
Corr_XY	-0.9736
No_points_lambda_z	4
Lambda_z	0.0089
Lambda_z_intercept	4.9685
Lambda_z_lower	12.0000
Lambda_z_upper	72.0000
HL_Lambda_z	77.6194
Span	0.7730
Tlag	0.0000
Tmax	4.0000
Cmax	138.3270
Cmax_D	1.3833
Tlast	72.0000
Clast	74.4370
Clast_pred	75.6043
AUClast	7110.6745
AUClast_D	71.1067
AUCall	7110.6745
AUCINF_obs	15446.2103
AUCINF_D_obs	154.4621
AUC_%Extrap_obs	53.9649
Vz_F_obs	0.7250
Cl_F_obs	0.0065
AUCINF_pred	15576.9232
AUCINF_D_pred	155.7692
AUC_%Extrap_pred	54.3512

Vz_F_pred	0.7189
Cl_F_pred	0.0064
AUMClast	240526.0538
AUMCINF_obs	1774106.9508
AUMC_%Extrap_obs	86.4424
AUMCINF_pred	1798155.6519
AUMC_%Extrap_pred	86.6237
MRTlast	33.8261
MRTINF_obs	114.8571
MRTINF_pred	115.4372

WinNonlin 8.0.0.3176 Subject=9,Formulation=T

> Date: 9/09/2019 Time: 18:03:23

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

Pred. Residual AUC AUMC Time Conc. Weight 0.0000 0.0000 0.0000 0.0000 0.5000 113.4 28.34 14.17 1.000 88.75 128.3 60.41 1.500 152.2 125.4 139.5 2.000 146.9 220.2 260.0 2.500 292.1 421.3 140.6 369.1 3.000 167.3 634.7 4.000 531.5 157.5 1201. 5.000 141.4 681.0 1869. 6.000 140.3 821.8 2643.

8.000	105.4			1067.	4328.	
10.00	164.8			1338.	6820.	
12.00 *	135.6	131.6	4.014	1638.	1.010e+04	1.000
24.00 *	117.1	122.9	-5.823	3154.	3.672e+04	1.000
48.00 *	109.7	107.4	2.377	5877.	1.337e+05	1.000
72.00 *	93.44	93.76	-0.3218	8315.	2.776e+05	1.000

*) Starred values were included in the estimation of Lambda_z.

N_Samples	16
Dose	100.0000
Rsq	0.9475
Rsq_adjusted	0.9213
Corr_XY	-0.9734
No_points_lambda_z	4
Lambda_z	0.0056
Lambda_z_intercept	4.9473
Lambda_z_lower	12.0000
Lambda_z_upper	72.0000
HL_Lambda_z	122.7708
Span	0.4887
Tlag	0.0000
Tmax	3.0000
Cmax	167.3470
Cmax_D	1.6735
Tlast	72.0000
Clast	93.4400
Clast_pred	93.7618
AUClast	8315.0803
AUClast_D	83.1508
AUCall	8315.0803
AUCINF_obs	24865.2460
AUCINF_D_obs	248.6525
AUC_%Extrap_obs	66.5594
Vz_F_obs	0.7123
Cl_F_obs	0.0040
AUCINF_pred	24922.2366
AUCINF_D_pred	249.2224
AUC_%Extrap_pred	66.6359
Vz_F_pred	0.7107
Cl_F_pred	0.0040
AUMClast	277613.9778
AUMCINF_obs	4400604.1747
AUMC_%Extrap_obs	93.6915
AUMCINF_pred	4414801.7328

AUMC_%Extrap_pred	93.7117
MRTlast	33.3868
MRTINF_obs	176.9781
MRTINF_pred	177.1431

WinNonlin 8.0.0.3176 Subject=10,Formulation=R

> Date: 9/09/2019 Time: 18:03:24

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM 8.0.0.3176 Core Version 22August2017

Settings

Model: Plasma Data, Extravascular Administration

Number of nonmissing observations: 16

Dose time: 0.00
Dose amount: 100.00

Calculation method: Linear Trapezoidal with Linear Interpolation

Weighting for lambda_z calculations: Uniform weighting

Lambda_z method: Find best fit for lambda_z, Log regression

Summary Table

Time	Conc.	Pred.	Residual	AUC	AUMC	Weight
 0.0000	0.0000			0.0000	0.0000	
0.5000	13.63			3.409	1.704	
1.000	62.56			22.46	19.05	
1.500	112.7			66.26	76.93	
2.000	125.5			125.8	181.9	
2.500	116.3			186.2	317.3	
3.000	112.7			243.5	474.5	
4.000 *	117.0	124.9	-7.925	358.3	877.5	1.000
5.000 *	119.8	122.8	-2.972	476.7	1411.	1.000
6.000 *	107.6	120.7	-13.13	590.4	2033.	1.000
8.000 *	120.5	116.6	3.868	818.4	3642.	1.000
10.00 *	124.2	112.7	11.50	1063.	5848.	1.000
12.00 *	106.5	108.9	-2.386	1294.	8367.	1.000
24.00 *	116.5	88.57	27.94	2632.	3.281e+04	1.000
48.00 *	45.20	58.63	-13.43	4572.	9.240e+04	1.000
72.00 *	42.19	38.81	3.380	5621.	1.549e+05	1.000

*) Starred values were included in the estimation of Lambda_z.

N_Samples	16
Dose	100.0000
Rsq	0.8809
Rsq_adjusted	0.8639
Corr_XY	-0.9386
No_points_lambda_z	9
Lambda_z	0.0172
Lambda_z_intercept	4.8964
Lambda_z_lower	4.0000
Lambda_z_upper	72.0000
HL_Lambda_z	40.3233
Span	1.6864
Tlag	0.0000
Tmax	2.0000
Cmax	125.4820
Cmax_D	1.2548
Tlast	72.0000
Clast	42.1910
Clast_pred	38.8109
AUClast	5620.8945
AUClast_D	56.2089
AUCall	5620.8945
AUCINF_obs	8075.3242
AUCINF_D_obs	80.7532
AUC_%Extrap_obs	30.3942
Vz_F_obs	0.7204
Cl_F_obs	0.0124
AUCINF_pred	7878.6869
AUCINF_D_pred	78.7869
AUC_%Extrap_pred	28.6570
Vz_F_pred	0.7384
Cl_F_pred	0.0127
AUMClast	154893.0605
AUMCINF_obs	474396.5944
AUMC_%Extrap_obs	67.3495
AUMCINF_pred	448799.4879
AUMC_%Extrap_pred	65.4872
MRTlast	27.5567
MRTINF_obs	58.7464
MRTINF_pred	56.9637