Diabetes Prediction Application

Report on the project done as part of Gurucool Program by IBM in association with Smart Internz from 28th Sep, 2020 to 6th Oct, 2020.

1. Introduction

This Diabetes prediction application is built by using IBM Watson Studio associated with Machine Learning service to perform the prediction task and Node-Red is used to build the web application.

2. Dataset collection

Pima Indians Diabetes dataset was collected from Kaggle.

•	Dataset description		
1.	No. of Pregnancies	-	Number of times pregnant
2.	Random Glucose	-	Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3.	Blood Pressure	-	Diastolic blood pressure (mm Hg)
4.	Skin Thickness	-	Triceps skin fold thickness (mm)
5.	Insulin	-	2-Hour serum insulin (mu U/ml)
6.	Body Mass Index	-	Body mass index (weight in kg/(height in m)^2)
7.	Diabetes Pedigree Function	-	A function which scores the likelihood of diabetes based on family history. It provided some data on diabetes mellitus history in relatives and the genetic relationship of those relatives to the patient

8. Age - Age (in years)

9. Outcome - The outcome label 1 for Yes (for chances of acquiring diabetes and 0 for No (for no chances of acquiring diabetes)

3. Data Visualization

Exploratory data analysis and visualization helps us to understand the characteristics and distribution of the data that enable us to take informed decisions.

i. Five-point summary

	BloodPressure	Glucose	Insulin	SkinThickness	Pregnancies	ВМІ	DiabetesPedigreeFunction	Age
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	69.105469	120.894531	79.799479	20.536458	3.845052	31.992578	0.471876	33.240885
std	19.355807	31.972618	115.244002	15.952218	3.369578	7.884160	0.331329	11.760232
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000
25%	62.000000	99.000000	0.000000	0.000000	1.000000	27.300000	0.243750	24.000000
50%	72.000000	117.000000	30.500000	23.000000	3.000000	32.000000	0.372500	29.000000
75%	80.000000	140.250000	127.250000	32.000000	6.000000	36.600000	0.626250	41.000000
max	122.000000	199.000000	846.000000	99.000000	17.000000	67.100000	2.420000	81.000000

ii. Correlation map

iii. Histogram to depict frequency of number of pregnancies

iv. Age – BMI plot

BMI in the younger age women is more than in the older age

v. Age – Blood Pressure plot

Average blood pressure is slightly higher in the older age women compared to the younger age

vi. Check for missing values, maximum and minimum values for each feature

	<pre>#To check presence of features_data.isna().</pre>	
Bloo	odPressure	0
Glu	cose	0
Inst	ulin	0
Skir	nThickness	0
Pregnancies		0
BMI		0
Dial	petesPedigreeFunction	0
Age		0
dty	pe: int64	

```
1 #To check max value of the features
 2 features_data.max()
BloodPressure
                            122.00
Glucose
                            199.00
Insulin
                            846.00
SkinThickness
                             99.00
Pregnancies
                             17.00
BMI
                             67.10
DiabetesPedigreeFunction
                              2.42
                             81.00
dtype: float64
    #To check min value of the features
    features data.min()
BloodPressure
                             0.000
Glucose
                             0.000
Insulin
                             0.000
SkinThickness
                             0.000
Pregnancies
                             0.000
                             0.000
DiabetesPedigreeFunction
                             0.078
Age
                             21.000
dtype: float64
```

4. Steps followed to build the project

- a) Create a project in Watson Studio DiabetesPrediction
- b) Add Auto AI experiment
- c) Create a Machine Learning instance
- d) Associate ML instance to the project
- e) Load the dataset to cloud object storage
- f) Select the target variable (prediction parameter) in the dataset
- g) Train the model
- h) Deploy
- i) Build web application using Node-Red

5. Auto AI Experiment Results

XGBoost Classifier is selected by the Auto AI experiment as the best performing model after fine tuning all the hyper-parameters.

i. ROC Curve:

ii. Model Evaluation Measures

Model Evaluation Measures

	Holdout Score	Cross Validation Score
Accuracy	0.779	0.770
Area Under ROC Curve	0.836	0.811
Precision	0.708	0.665
Recall	0.630	0.681
F ₁ Measure	0.667	0.673
Average Precision	0.789	0.695
Log Loss	0.478	0.523

6. Node Red Flow

7. Demonstration of the application with the screenshots

This application predicts the chance of acquiring diabetes based on the features/information the user enters through the user interface.

i. Home page of the application

Fig 1. Home page

ii. Reset button can be pressed to clear the previous input and enter fresh details

Fig 2. Reset button usage

iii. Fresh details entry and submit button

Fig 3. Submit button usage

iv. Prediction display

Fig 4. Prediction display as 1

v. Additional features available with the application

Fig 5. Additional Features

• Diabetes diet plan link (Source: Healthifyme.com)

Fig 6. Diabetes diet plan

• Suggested exercises to fight diabetes link (Source: Healthline.com)

Fig 7. Exercises to fight diabetes

• Patient support community on Facebook link (Source: Facebook.com)

Fig 8. Diabetes community on Facebook

More information about the details to be entered

Fig 9. More information on the details to be entered

8. Conclusion and Future Work

The application developed is useful to get predictions about chances of acquiring diabetes based on certain features. Further enhancements can be done w.r.t. user interface to make it more attractive. The auto AI model can be trained on both male and female diabetes patients' data to make the application unbiased.

Acknowledgement

I thank all the faculty members and mentors who provided me with the knowledge to complete the project. I once again quote the continuous and constructive support given by the mentors in completing the project. Thank you everyone.

Change is the end result of all true learning.

— Leo Buscaglia

Learning is not attained by chance, it must be sought for with ardour and attended to with diligence.

— Abigail Adams