Aula 04

Funções e portas Lógicas

Aula 04: Continuação da última aula

- Circuitos obtidos de Expressões Booleanas
- Tabelas Verdade Obtidas de Expressões Booleanas
- Expressões Booleanas Obtidas de Tabela Verdade
- Bloco OU EXCLUSIVO
- Bloco COINCIDÊNCIA

$$\circ$$
 S = (A+B) . C . (B+D)

$$\circ$$
 S = (A+B) . C . (B+D)

$$\circ$$
 S = (A+B) . C . (B+D)

$$\circ$$
 S = (A+B) . C . (B+D)

$$\circ$$
 S = A.B.C + (A+B) . C

$$\circ S = [\overline{(\overline{A} + B)} + (\overline{\overline{C} \cdot D})].D$$

$$\circ S = [(\overline{(\overline{A}.B)} + \overline{(C.\overline{D})})].E + \overline{A}.(A.\overline{D}.\overline{E} + C.D.E)$$

$$\circ$$
 S = A.B.C + (A+B) . C

$$S = \underbrace{A.B.C + (A + B) \cdot C}_{(1)}$$

$$\underbrace{(2)}_{(3)}$$

$$\underbrace{(3)}_{(4)}$$

$$\circ$$
 S = A.B.C + (A+B) . C

$$S = \underbrace{A.B.C + (A + B) . C}_{(1)} \underbrace{(2)}_{(3)}$$
(4)

$$\circ S = [\overline{(\overline{A} + B)} + (\overline{\overline{C} \cdot D})].D$$

$$S = \underbrace{[(\overline{A} + B) + (\overline{C}, D)]}_{(1)} \cdot D$$

$$\underbrace{(1)}_{(3)}$$

$$\underbrace{(3)}_{(4)}$$

$$\circ S = [(\overline{(\overline{A}.B)} + \overline{(C.\overline{D})})].E + \overline{A}. (A.\overline{D}.\overline{E} + C.D.E)$$

$$S = \overline{[(\overline{A}.B) + (\overline{C}.\overline{D})]}.E + \overline{A}.(A.\overline{D}.\overline{E} + C.D.E).$$

$$(5) \qquad (6) \qquad (8)$$

$$(9)$$

$$\circ S = [(\overline{(\overline{A}.B)} + \overline{(C.\overline{D})})].E + \overline{A}.(A.\overline{D}.\overline{E} + C.D.E)$$

$$\circ$$
 S = A. \overline{B} .C + A. \overline{D} + \overline{A} .B.D

A	В	C	$\overline{\mathbf{D}}$	1° membro A.B. C	2" membro A.D	3" membro A.B.D	Resultado final S
0	0	0	0	0	0	0	0
0	0	0	ì	. 0 -	0	0	0
0 -	0	1	0	0	0	Ö	0
0	0.	1	1	0	0	0	0
0	1	0	0	0	0	0	0
.0	1.	0	1.	ō	0	1	Ĺ×
0	I	1	. 0	0	0	0	0
0	1	1	1	0	0.	1	1 .
1	0	0	0	0	.1	0	1
1	0	0	1 .	.0	Ó	0.	0
1	0	1	0	Ĭ.	1	0	1'
1	0	1	1	1	0	0	1
1	1	0	0	0 -	1	0	_ 1
1	1	0	1	. 0	0	0	0
1	1	1	o	0	1	0	1
1	1	1	1.	0	0	0	0

$$\circ$$
 S = \overline{A} + B + A. \overline{B} . \overline{C}

A	ι,В	C	· · S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1.	0	1	
1	1	0	
1	1	1	

$$\circ$$
 S = \overline{A} + B + A. \overline{B} . \overline{C}

i,				
	A	В	C	· S
	0	0	0	
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	1.	0	1	
	1	1	0	
	1	1	1	

- 1. No caso onde A = 0 (\overline{A} = 1), temos S=1, pois, sendo \overline{A} = 1, temos na expressão: S = 1+ B + A. \overline{B} . \overline{C} =1 (qualquer que sejam os valores assumidos pela variável B ou pelo termo A. \overline{B} . \overline{C})
- 2. Nos casos remanescentes onde B=1, temos S=1, pois da mesma forma que nos casos anteriores S = \overline{A} +1+ A. \overline{B} . \overline{C} =1
- 3. O termo A. \overline{B} . \overline{C} será igual a 1, somente no caso remanescente 100.
- 4. Por exclusão, ou ainda, por substituição dos valores, concluímos que no último caso 101, temos a saída S=0

$$\circ$$
 S = \overline{A} + B + A. \overline{B} . \overline{C}

- 1. No caso onde A = 0 (\overline{A} = 1), temos S=1, pois, sendo \overline{A} = 1, temos na expressão: S = 1+ B + A. \overline{B} . \overline{C} =1 (qualquer que sejam os valores assumidos pela variável B ou pelo termo A. \overline{B} . \overline{C})
- 2. Nos casos remanescentes onde B=1, temos S=1, pois da mesma forma que nos casos anteriores S = \overline{A} +1+ A. \overline{B} . \overline{C} =1
- 3. O termo A. \overline{B} . \overline{C} será igual a 1, somente no caso remanescente 100.
- 4. Por exclusão, ou ainda, por substituição dos valores, concluímos que no último caso 101, temos a saída S=0

Tabelas Verdades Obtidas de Expressões Booleanas Exercícios

- 1. Prove as identidades abaixo relacionadas:
- a) $\overline{A} \cdot \overline{B} \neq \overline{A \cdot B}$
- b) $\overline{A} + \overline{B} \neq \overline{A + B}$
- c) $\overline{A} \cdot \overline{B} = \overline{A + B}$
- d) $\overline{A} + \overline{B} = \overline{A \cdot B}$
- 2. Levante a tabela verdade das expressões:
- a) $S = (A + B) \cdot (\overline{B \cdot C})$
- b) $S = [\overline{(A + B) \cdot C}] + [\overline{D \cdot (B + C)}]$

Expressões Booleanas Obtidas de Tabelas Verdade

Α	В	S
0	0	1
0	1	0
1	0	1
1	1	1

Observando a tabela, notamos que a expressão é verdadeira (S=1) nos casos onde A = 0 e B =0 ou A = 1 e B = 0 ou A = 1 e B = 1. Logo:

Caso 00: S=1 quando, A=0 e B=0 (
$$\overline{A}$$
=1 e \overline{B} =1) =>) \overline{A} . \overline{B}

Caso 10: S=1 quando, A=1 e B=0 (A=1 e
$$\overline{B}$$
=1) =>) A . \overline{B}

$$\therefore$$
 S = \overline{A} . \overline{B} + A . \overline{B} + A.B

Expressões Booleanas Obtidas de Tabelas Verdade Exercício

Determine a expressão que executa a seguinte tabela, e desenhe o circuito lógico:

Α	В	S
0	0	1
0	0	0
0	1	1
0	1	0
1	0	0
1	0	0
1	1	1
1	1	1

Expressões Booleanas Obtidas de Tabelas Verdade Exercício

Obtenha a expressão booleanas da tabela:

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Bloco Ou EXCLUSIVO

A função que ele executa, como o próprio nome diz, consiste em fornecer 1 à saída quando as variáveis de entrada forem diferentes entre si.

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

$$S = A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$

Bloco COINCIDÊNCIA

A função que ele executa, como o próprio nome diz, é a de fornecer 1 à saída quando houver uma coincidência nos valores das variáveis de entrada.

A	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Se compararmos as tabelas verdade dos blocos OU EXCLUSIVO e COINCIDÊNCIA iremos concluir que estes são complementares, ou seja, teremos a saída de um invertida em relação à saída do outro. Assim sendo, podemos escrever:

$$A \oplus B = \overline{A \odot B}$$

Quadro resumo

BLOCOS LÓGICOS BÁSICOS						
Porta	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão		
OU EXCLUSIVO EXCLUSIVE OR	^s	A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função OU Exclusivo: assume 1 quando as variáveis assumirem valores diferentes entre si.	S-A.B+A.B S-A⊕B		
NOU EXCLUSIVO EXCLUSIVE NOR COINCIDÊNCIA	A	A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função Coincidência: assume 1 quando houver coincidência entre os valores das variáveis.	S=A@B		

Exercícios

1 - A partir dos sinais aplicados às entradas da porta da figura 2.37, desenhe a forma de onda na saída S.

Exercícios

2 - Determine a expressão e a tabela da verdade do circuito visto na figura

