DA-IICT, B.Tech, winter 2024

1. Prove that if H and K are subgroups of a group G then $H \cap K$ is also a subgroup of G.

Is $H \bigcup K$ always a subgroup of G?

soln:

Let $g_1, g_2 \in H \cap K$. Then $g_1, g_2 \in H$, $\Longrightarrow g_1g_2 \in H$, by closure of H under the group operation.

Similarly $g_1g_2 \in K$. So $g_1g_2 \in H \cap K$.

Also $\forall g \in H \cap K$, $g^{-1} \in H$ and $g^{-1} \in K$.

 $g^{-1} \in H \cap K$.

So by lemma $3 H \cap K$ is a subgroup of G.

 $H \bigcup K$ is not always a subgroup of G. We consider a case to justify this. Let $h \in H$ but $h \notin K$ and $k \in K$ but $k \notin H$. Then we can't have $hk \in H \bigcup K$.

Let us assume $hk \in H \bigcup K$. Then $hk \in H$ or $hk \in K$.

If $hk \in H$ then $h^{-1}hk = k \in H$ since H is closed under the group operation. This is a contradiction to our consideration that $k \notin H$.

We will arrive at a similar contradiction if we let $hk \in K$.

- \therefore $H \bigcup K$ is not a subgroup of G in general.
- 2. Let S be a subset of a group G. Let $N(S) = \{g \in G | gs = sg \ \forall \ s \in S\}$. Prove that N(S) is a subgroup of G.

soln:

Consider $g_1, g_2 \in N(S)$. Then $g_1s = sg_1$ and $g_2s = sg_2 \ \forall \ s \in S$.

- $\therefore g_1g_2s = g_1sg_2 = sg_1g_2 \ \forall \ s \in S.$
- $\therefore g_1g_2 \in N(S).$

Also $gs = sg \implies sg^{-1} = g^{-1}s$ by multiplying g^{-1} from left and from the right.

 $\therefore \quad \forall \ g \in N(S), g^{-1} \in N(S).$

By lemma 3, N(S) is a subgroup of G.

3. Let H and K be subgroups of a group G.

Define HK as $HK = \{x \in G | x = hk, h \in H, k \in K\}$.

Show that HK is a subgroup of G if and only if HK = KH.

soln:

if part:

Suppose HK = KH. Let h_1k_1 and $h_2k_2 \in HK$.

Consider $h_1k_1(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} = h_1k_3h_2^{-1}$, where $k_3 = k_1k_2^{-1} \in K$.

Since HK = KH, $k_3h_2^{-1} = h_3k_4 \in HK$.

Hence $h_1k_1(h_2k_2)^{-1} = h_1h_3k_4 = h_4k_4 \in HK$.

We have proved earlier that if $a, b \in H \Rightarrow ab^{-1} \in H$ then H is a subgroup of G.

So HK is a subgroup of G.

only if part:

Let it be given that HK is a subgroup. We will first prove the following:

Given a group A let us define a set A^{-1} as $A^{-1} = \{x^{-1} | x \in A\}$. We will show that $A^{-1} = A$.

$$x \in A \ \Rightarrow \ x^{-1} \in A \ \Rightarrow \ x \in A^{-1} \ \Rightarrow \ A \subseteq A^{-1} \ .$$

 $x \in A^{-1} \implies x^{-1} \in A \implies x \in A \implies A^{-1} \subseteq A$. So we have proved that $A^{-1} = A$.

Since HK is a group this result implies that $(HK)^{-1} = HK$.

$$(HK)^{-1} = \{(hk)^{-1} = k^{-1}h^{-1}|h \in H, k \in K\} = K^{-1}H^{-1} = KH.$$

Hence KH = HK. This completes the proof.

- 4. Write out all the right and left cosets of H in G where
 - (a) $G = \langle a \rangle$ is a cyclic group of order 10 and $H = \langle a^2 \rangle$ is the subgroup of G generated by $\langle a^2 \rangle$.

soln:

o(H) = 5. H has only two cosets in G. The left and right cosets are same since the group operation is abelian. The cosets are $\{H = \{e, a^2, a^4, a^6, a^8\}, Ha = \{a, a^3, a^5, a^7, a^9\}\}$.

(b) G as in part (a), $H = \langle a^5 \rangle$ is the subgroup generated by a^5 .

soln

$$H = \{e, a^5\}. \ o(H) = 2 \implies [G:H] = 5.$$

The five cosets are $\{H, Ha^2 = \{a, a^6\}, Ha^2 = \{a^2, a^7\}, Ha^3 = \{a^3, a^8\}, Ha^4 = \{a^4, a^9\}\}.$

5. If N is normal in G and $a \in G$ is of order o(a). Prove that the order, m of Na in G/N is a divisor of o(a).

soln

Let o(a) = k. Since N is a normal subgroup of G, $(Na)^k = N(a^k) = Ne = N$. So o(Na) divides k = o(a).

6. Let o(a) be finite in G. If $b \in C(a)$ in G then show that o(b) = o(a).

soln

Let o(a) = k and o(b) = l. $b = gag^{-1}$ where $g \in G$. So $b^k = (gag^{-1})^k = g^k a^k g^{-k} = e$. This implies l divides k. Similarly k divides l.

$$\therefore$$
 $k = l$, i.e, $o(b) = o(a)$.

7. N and M are two normal subgroups of G such that $N \cap M = \langle e \rangle$. Show that nm = mn, $\forall n \in \mathbb{N}$ and $m \in M$

soln

Consider $nm \in nM$.

Since M is a normal subgroup, $nM = Mn \ \forall \ n \in N$.

So $\exists m' \in M \text{ such that } nm = m'n.$

Now $nm \in Nm$ and $m'n \in m'N = Nm' \Rightarrow Nm = Nm' \Rightarrow N = Nm'm^{-1}$. This implies $m'm^{-1} \in N \Rightarrow m'm^{-1} \in N \cap M \Rightarrow m'm^{-1} = e \Rightarrow m' = m$. So $nm = mn \ \forall \ n \in N$ and $m \in M$

- 8. If H is a subgroup of G, let $N(H) = \{g \in G | gHg^{-1} = H\}$. Prove
 - (a) N(H) is a subgroup of G.
 - (b) H is normal in N(H).
 - (c) H is normal in G iff N(H) = G.