Parallel-in-time multirate explicit stabilized method for the monodomain model in cardiac electrophysiology

Giacomo Rosilho de Souza, Simone Pezzuto, Rolf Krause Università della Svizzera Italiana

CMBE 2022 - Milano

Contents

- Hybrid Parareal Spectral Deferred Correction,
- Explicit stabilized methods,
- Application to the monodomain model.

Spectral Deferred Correction method¹

Consider

$$y' = f(y), y(0) = y_0$$

and an approximation $\tilde{y}(t)$ to the solution y(t). Let

$$\delta(t) = y(t) - \tilde{y}(t)$$

be the error and

$$\varepsilon(t) = y_0 + \int_0^t f(\tilde{y}(s)) ds - \tilde{y}(t)$$

the residual. Then

$$\delta(t_2) = \delta(t_1) + \int_{t_1}^{t_2} f(\tilde{y}(s) + \delta(s)) - f(\tilde{y}(s)) ds$$
$$+ \varepsilon(t_2) - \varepsilon(t_1).$$

Spectral Deferred Correction (SDC) method:

- Fix collocation points $c_1, ..., c_s$ in $[t_n, t_n + \Delta t]$,
- Compute approximations \tilde{y}_i at c_i ,

Then iterate on:

- Interpolate and form $\tilde{y}(t) = \sum L_i(t)\tilde{y}_i$,
- Approximate $\varepsilon(t)$ with care,
- Compute δ_i and correct $\tilde{y}_i + \delta_i \to \tilde{y}_i$.

¹Dutt, A., Greengard, L., Rokhlin, V. (2000). BIT Numerical Mathematics, 40(2).

Hybrid Parareal Spectral Deferred Correction method² U

Parareal SDC:

² Minion, M., Williams, S. 2008, 2010.

Parareal Spectral Deferred Correction method²

² Minion, M., Williams, S. 2008, 2010.

Parareal Spectral Deferred Correction method²

Parareal SDC:

RK: EE, RK4, IE, IMEX,...

Parareal Spectral Deferred Compation method²

The Second Kind Runge-Kutta-Chebyshev method

One step of RKU is given by

$$k_0 = y_0,$$
 $k_1 = k_0 + \mu_1 \Delta t f(k_0),$ $k_j = \nu_j k_{j-1} + \kappa_j k_{j-2} + \mu_j \Delta t f(k_{j-1}),$ $j = 2,..., s,$ $y_1 = k_s,$

with s satisfying $\Delta t \rho(\partial f/\partial y) \leq (2/3)s(s+2)$.

- No step size restriction: just increase s.
- Fully explicit,
- There is a multirate version³ for

$$y' = f_F(y) + f_S(y).$$

Good for multiscale ionic models or nonuniform grids, for instance.

- Works in mixed-precision arithmetic⁴ (also in multirate). Good for CPU, memory, and energy savings in HPC computations.
- All flavors are straightforward to implement.

³ Abdulle, A., Grote M., Rosilho G. 2022. Math. Comput. (in press). ⁴ Croci M., Rosilho G. 2022. J. Comput. Phys. 464.

The Parareal SDC RKU method

- Fix collocation points $c_1, ..., c_s$ in $[t_n, t_n + \Delta t]$ (Lobatto, Radau,...),
- Compute approximations \tilde{y}_i at c_i with RKU.

Then iterate on:

- Define $\tilde{y}(t) = \sum L_i(t)\tilde{y}_i$,
- Approximate $\varepsilon(t) \approx \sum L_i(t)\varepsilon(c_i)$. $\varepsilon(c_i)$ computed with Lobatto, Radau,.. quadrature rules.
- Compute δ_i at $c_1, ..., c_s$ solving the error equation with RKU

$$\begin{split} d_0 &= \delta_i, \qquad d_1 \, \, \overline{\mathfrak{F}}(d_0) \pm \mu_0(\Delta t) \, (f(\tilde{y}^{j-1} + d_{j-1}) - f(\tilde{y}^{j-1})) \, \, \mathrm{d}s \\ d_j &= \nu_j \, \, d_{j-1} + \kappa_j \, \, d_{j-2} + \mu_j \Delta t \, \, (f(\tilde{y}^{j-1} + d_{j-1}) - f(\tilde{y}^{j-1})) + \varepsilon^j - \nu_j \varepsilon^{j-1} - \kappa_j \varepsilon^{j-2}, \\ \delta_{i+1} &= d_s, \end{split}$$

Consider $\Omega = [0,5]cm$, T = 720ms and

$$\partial_t u = \nu \Delta u - I_{ion}(u, z) + I_s(t), \qquad \text{in } \Omega \times [0, T]$$

$$z' = g(u, z), \qquad \text{in } \Omega \times [0, T]$$

With periodic boundary conditions on u, $\nu = 10^{-3}$, I_{ion} , g an ionic model and z its state variables.

- Discretize with finite differences,
- Solve with Parareal SDC using EE, RKU, and mRKU.

We use $240 \times 3ms$ subintervals (cores)

- 6 Lobatto collocation nodes on coarse grid,
- 40 Lobatto collocation nodes on fine grid.
- 15 Parareal iterations.

Costs per iter per time slice $[t_n, t_n + \Delta t]$

On coarse grid • • •

Cost EE: ≈ 269

Cost RKU: ≈ 58

On fine grid · · · · ·

Cost EE: ≈ 289

Cost RKU: ≈ 149

Multirate RKU method

Consider

$$y' = f_F(y) + f_S(y),$$
 $y(0) = y_0,$

with f_F stiff but cheap and f_S mildly stiff but expensive.

For RKU, the number of costly f_S evaluations is dictated by a few stiff terms in f_F .

We solve the modified problem

$$y'_{\eta} = f_{\eta}(y_{\eta}), \qquad y(0) = y_0,$$

With $\eta \ge 0$ a parameter used to tune the stiffness. For $\eta = \mathcal{O}(\rho_S^{-1})$ and the stiffness of f_{η} is same as f_S .

The averaged force is defined as

$$f_{\eta}(y) = \frac{1}{\eta} \left(u(\eta) - y \right)$$

With auxiliary solution u given by

$$u' = f_F(u) + f_S(y), \qquad u(0) = y.$$

The multirate RKU method is given by:

- Integrate $y'_{\eta} = f_{\eta}(y_{\eta})$ with a RKU method.
- To evaluate f_{η} solve $u' = f_F(u) + f_S(y)$ with another RKU method.

$$f(u,z) = \begin{pmatrix} \nu \Delta u - I_{ion}(u,z) + I_{s}(t) \\ g(u,z) \end{pmatrix}$$

$$f_F(u,z) = \begin{pmatrix} \nu \Delta u \\ 0 \end{pmatrix} \qquad f_S(u,z) = \begin{pmatrix} -I_{ion}(u,z) + I_S(t) \\ g(u,z) \end{pmatrix}$$

Conclusions

F. Eval.	EE	RKU	mRKU
f_{S}	558	207	44
f_F	558	207	207

Bibliography

Thank you!

Funding: This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreements No 955495 (MICROCARD) and No 955701 (TIME-X). The JU receives support from the European Union's Horizon 2020 research and innovation programme and Belgium, France, Germany, Switzerland.