Lab5 Solution

YAO ZHAO

Lab5.A Shopping

- Festival is coming and Andrea decides to buy n gifts for her friends. However, n gifts are sold on different days. So Andrea will buy them **in order**. For the i^{th} gift, the price is c_i .
- In her city, there are only 1 dollar coins and 100 dollar notes. Before shopping, Andrea prepares m coins and plenty of notes (you can assume that she always has enough notes to buy gifts).
- There is only one cashier in the store and his efficiency depends on the gift he sells. For the i^{th} gift, his efficiency is w_i and he needs $x * w_i$ seconds to check out where x is the total number of the notes and coins he needs to give Andrea. The cashier always minimizes x.
- Andrea wants to pay in such a way that the total time she needs to check out should be as small as possible.
- Please help her to find out the minimum time she needs!

price	15	760	755	411	950
weight	2	2	2	2	2
3	4 −-15 1	9 +40 5	9 -55	4 +89	3 -50 43

total time:
40*2+89*2 = 258

	price	15	760	755	411	950	
	weight	2	2	2	2	2	
$34 \xrightarrow{-15} 19 \xrightarrow{+40} 59 \xrightarrow{+45} 104 \xrightarrow{-11} 93 \xrightarrow{-50} 43$							43

total time: 40*2+45*2 = 170

Output:

170

Input:

5 193 178 887 466 475 10 816 136 880 340 800

price	178	887	466	475	10
weight	816	136	880	340	800
1	93 -78 1	15 +13 12	28 -66	±25 +25 × 8	37 -10 77

total time: 13*136+25*340=10268

Output:

10268

for testcase 1

assume the initial coins is 234

each time the cashier the coin, means the coin increase 100

Here, the remaining coins equal the case of initial coins = 234

If you want to minimize the total time spent checking out, choose the gifts that take the least time to check out.

Always choose the smallest costs?

price	15	760	755	411	950
weight	2	2	2	2	2

price	15	760	755	411	950
weight	2	2	2	2	2
		40			

$$0 \xrightarrow{+85} 85 \xrightarrow{+40} 125 \xrightarrow{-55} 70 \xrightarrow{-11} 59 \xrightarrow{-50} 9\sqrt{}$$
You must check out coins here

You can trace the remaining coins:

price	178	887	466		475	10
weight	816	136	880		340	800
193 $\stackrel{-78}{\longrightarrow}$ 115 $\stackrel{-87}{\bigcirc}$ (28 128) $\stackrel{-66}{\bigcirc}$ (62 162) $\stackrel{-75}{\longrightarrow}$ 87 $\stackrel{-10}{\longrightarrow}$ Here, the remaining coins are not enough. 28 < 66 Choose the check out with the					naining coins are 62 < 75	
		1	transaction. 13*136 and 34*880 total cost += 13* the remaining co	< 22*816 136	transaction. 2 and 34*880 total cost	25*340 < 22*816 += 25*340 ining coins +=100

Lab5.B Voting

- A monitor election is going to be held in your class. There are (n + 1) students in your class. And you want all your n classmates to vote for you.
- There exist two ways to convince each of your classmates to vote for you. The first way to convince your i^{th} classmate is to pay him/her c_i coins. The other way is to make m_i other classmates vote for you, and the i^{th} classmate will vote for you for free.
- It should be noticed that the voting takes places in several steps. For example, if you have four classmates with $m_1 = 1, m_2 = 2, m_3 = m_4 = 3, m_5 = 5$, then if you buy the vote of the 5^{th} classmate, then all your classmates will vote for you. And the set of classmates vote for you changes as: $\{5\} \rightarrow \{5,1\} \rightarrow \{5,1,2\} \rightarrow \{5,1,2,3,4\}$.
- Please calculate the minimum coins you need to spend so that all your classmates will vote for you.

Test case 1

Test case 2

Test case 3

Give priority to m? Give priority to c?

Consider both.

How to implement greedy strategy?

Lazy to make choice, buy a vote when you have to, and buy the smallest c in your choice.

First, consider (5, 5), Let's start with the optimistic hypothesis, if s/he doesn't vote, the rest of classmates will vote, putting (5, 5) to a set S.

Now the size of S is 1, and the total number of classmates is 6. If everyone else is going to vote except for the classmates in S, then the number of votes will be 6 — the size of S = 5, equal to m = 5. So you don't have to buy votes.

Continue to consider (4,4), put (4,4) to S 6-2=4, equal to m=4. So you don't have to buy votes n yet.

Then put (2 6) (2 3) (2 8) (2 7) to S together, because all the classmates have the same m value.

Now, 6 - 6 = 0, but m = 2, 0 < 2, you have to buy 2 votes. you can buy the 2 votes with the least cost in the S.

