System FOL

Language

$$t ::= x_i \mid c_i \mid f_i(t_1, \dots, t_{a_i})$$

$$\varphi, \psi ::= \perp \mid P_i(t_1, \dots, t_{r_i}) \mid t_1 = t_2 \mid \varphi \to \psi \mid \forall x_i, \varphi$$

$$\Gamma ::= \epsilon \mid \varphi, \Gamma$$

Derivations

$$(assum) \frac{\Gamma \vdash^{\mathsf{FOL}} \varphi}{\Gamma \vdash^{\mathsf{FOL}} \varphi} \varphi \in \Gamma \quad (\neg \neg - E) \frac{\Gamma \vdash^{\mathsf{FOL}} \neg \neg \varphi}{\Gamma \vdash^{\mathsf{FOL}} \varphi}$$

$$(\rightarrow -I) \frac{\Gamma, \varphi \vdash^{\mathsf{FOL}} \psi}{\Gamma \vdash^{\mathsf{FOL}} (\varphi \rightarrow \psi)} \quad (\rightarrow -E) \frac{\Gamma \vdash^{\mathsf{FOL}} (\varphi \rightarrow \psi) \quad \Gamma \vdash^{\mathsf{FOL}} \varphi}{\Gamma \vdash^{\mathsf{FOL}} (\forall x_i. \varphi)}$$

$$(\forall -I) \frac{\Gamma \vdash^{\mathsf{FOL}} \varphi}{\Gamma \vdash^{\mathsf{FOL}} (\forall x_i. \varphi)} x_i \not\in FV(\Gamma) \quad (\forall -E) \frac{\Gamma \vdash^{\mathsf{FOL}} (\forall x_i. \varphi)}{\Gamma \vdash^{\mathsf{FOL}} \varphi[x_i := t]} * * * *$$

$$(refl) \frac{\Gamma \vdash^{\mathsf{FOL}} t = t}{\Gamma \vdash^{\mathsf{FOL}} t = t} \quad (sym) \frac{\Gamma \vdash^{\mathsf{FOL}} t = t'}{\Gamma \vdash^{\mathsf{FOL}} t' = t} \quad (trans) \frac{\Gamma \vdash^{\mathsf{FOL}} t_1 = t_2 \quad \Gamma \vdash^{\mathsf{FOL}} t_2 = t_3}{\Gamma \vdash^{\mathsf{FOL}} t_1 = t_3}$$

$$(= -fun) \frac{\Gamma \vdash^{\mathsf{FOL}} t_1 = t'_1 \quad \cdots \quad \Gamma \vdash^{\mathsf{FOL}} t_{a_i} = t'_{a_i}}{\Gamma \vdash^{\mathsf{FOL}} f_i(t_1, \dots, t_{a_i}) = f_i(t'_1, \dots, t'_{a_i})}$$

$$(= -pred) \frac{\Gamma \vdash^{\mathsf{FOL}} t_1 = t'_1 \quad \cdots \quad \Gamma \vdash^{\mathsf{FOL}} t_{r_i} = t'_{r_i}}{\Gamma \vdash^{\mathsf{FOL}} P_i(t_1, \dots, t_{r_i}) \rightarrow P_i(t'_1, \dots, t'_{r_i})}$$

Semantics

A FOL-model \mathfrak{M} is a tuple $\mathfrak{M} = \langle A, F, P, C \rangle$ with A a set and:

$$- F = \{ [\![f_1]\!]_{\mathfrak{M}}^{\mathsf{FOL}}, \dots, [\![f_n]\!]_{\mathfrak{M}}^{\mathsf{FOL}} \} \text{ with } [\![f_i]\!]_{\mathfrak{M}}^{\mathsf{FOL}} : A^{a_i} \to A;$$

$$- P = \{ [\![P_1]\!]_{\mathfrak{M}}^{\mathsf{FOL}}, \dots, [\![P_m]\!]_{\mathfrak{M}}^{\mathsf{FOL}} \} \text{ with } [\![P_i]\!]_{\mathfrak{M}}^{\mathsf{FOL}} \subseteq A^{r_i};$$

$$- C = \{ [\![c_1]\!]_{\mathfrak{M}}^{\mathsf{FOL}}, \dots, [\![c_k]\!]_{\mathfrak{M}}^{\mathsf{FOL}} \} \subseteq A.$$

A FOL-substitution for \mathfrak{M} is a function ρ that assigns a value in A to each variable x_i .

Interpretation and satisfaction

Validity and consequence

- (i) $\models^{\sf FOL}_{\mathfrak{M}} \varphi$ iff $\models^{\sf FOL}_{\mathfrak{M},\rho} \varphi$ for all FOL-substitutions ρ for \mathfrak{M} .
- (ii) $\models_{\mathfrak{M}}^{\mathsf{FOL}} \Gamma \text{ iff } \models_{\mathfrak{M}}^{\mathsf{FOL}} \varphi \text{ for every } \varphi \in \Gamma.$
- (iii) $\Gamma \models^{\mathsf{FOL}} \varphi$ iff $\models^{\mathsf{FOL}}_{\mathfrak{M}} \varphi$ for all FOL-models \mathfrak{M} such that $\models^{\mathsf{FOL}}_{\mathfrak{M}} \Gamma$.
- (iv) $\models^{\mathsf{FOL}} \varphi \text{ iff } \epsilon \models^{\mathsf{FOL}} \varphi.$

System D

Language

$$\begin{array}{lll} t & ::= & x_i \mid c_i \mid f_i(t_1,\ldots,t_{a_i} \mid \text{if } \varphi \text{ then } t_1 \text{ else } t_2 \\ \varphi,\psi & ::= & \bot \mid P_i(t_1,\ldots,t_{r_i}) \mid t_1=t_2 \mid \varphi \to \psi \mid \forall x_i.\,\varphi \\ \Gamma & ::= & \epsilon \mid \varphi,\Gamma \mid x_i,\Gamma \end{array}$$

Derivations

In system D the following kinds of judgements exist.

- (i) A context Γ is well formed, $\Gamma \vdash^{\mathsf{D}} wf$.
- (ii) A term t is well formed in a context Γ , $\Gamma \vdash^{\mathsf{D}} t \ wf$.
- (iii) A formula φ is well formed in a context Γ , $\Gamma \vdash^{\mathsf{D}} \varphi$ wf.
- (iv) A formula φ is provable from a context Γ , $\Gamma \vdash^{\mathsf{D}} \varphi$.

Contexts:
$$(\epsilon - wf) \frac{\Gamma \vdash^{\mathsf{D}} wf}{\Gamma \vdash^{\mathsf{D}} wf} (decl - wf) \frac{\Gamma \vdash^{\mathsf{D}} wf}{\Gamma \vdash^{\mathsf{D}} wf} (assum - wf) \frac{\Gamma \vdash^{\mathsf{D}} \varphi wf}{\Gamma \vdash^{\mathsf{D}} wf}$$

Terms:
$$(var\text{-}wf) \frac{\Gamma \vdash^{\mathsf{D}} wf}{\Gamma \vdash^{\mathsf{D}} x_i \ wf} x_i \in \Gamma \quad (const\text{-}wf) \frac{\Gamma \vdash^{\mathsf{D}} wf}{\Gamma \vdash^{\mathsf{D}} c_i \ wf}$$

$$(\textit{fun-wf}) \ \frac{\Gamma \vdash^{\mathsf{D}} D_{f_i}(t_1, \dots, t_{a_i})}{\Gamma \vdash^{\mathsf{D}} f_i(t_1, \dots, t_{a_i}) \ \textit{wf}} \quad (\textit{if-wf}) \ \frac{\Gamma, \vartheta \vdash^{\mathsf{D}} t_1 \ \textit{wf} \quad \Gamma, \neg \vartheta \vdash^{\mathsf{D}} t_2 \ \textit{wf}}{\Gamma \vdash^{\mathsf{D}} (\textit{if} \ \vartheta \ \textit{then} \ t_1 \ \textit{else} \ t_2) \ \textit{wf}}$$

Formulas:
$$(\bot - wf) \frac{\Gamma \vdash^{\mathsf{D}} wf}{\Gamma \vdash^{\mathsf{D}} \bot wf} \quad (\to - wf) \frac{\Gamma, \varphi \vdash^{\mathsf{D}} \psi \ wf}{\Gamma \vdash^{\mathsf{D}} (\varphi \to \psi) \ wf} \quad (\forall - wf) \frac{\Gamma, x_i \vdash^{\mathsf{D}} \varphi \ wf}{\Gamma \vdash^{\mathsf{D}} (\forall x_i. \varphi) \ wf}$$

$$(=-wf) \frac{\Gamma \vdash^{\mathsf{D}} t_1 \ wf \quad \Gamma \vdash^{\mathsf{D}} t_2 \ wf}{\Gamma \vdash^{\mathsf{D}} t_1 = t_2 \ wf} \quad (pred-wf) \frac{\Gamma \vdash^{\mathsf{D}} t_1 \ wf \quad \cdots \quad \Gamma \vdash^{\mathsf{D}} t_{r_i} \ wf \quad \Gamma \vdash^{\mathsf{D}} wf}{\Gamma \vdash^{\mathsf{D}} P_i(t_1, \dots, t_{r_r}) \ wf}$$

Proofs:
$$(assum) \frac{\Gamma \vdash^{\mathsf{D}} wf}{\Gamma \vdash^{\mathsf{D}} \varphi} \varphi \in \Gamma \quad (\rightarrow -I) \frac{\Gamma, \varphi \vdash^{\mathsf{D}} \psi}{\Gamma \vdash^{\mathsf{D}} (\varphi \to \psi)} \quad (\rightarrow -E) \frac{\Gamma \vdash^{\mathsf{D}} (\varphi \to \psi) \quad \Gamma \vdash^{\mathsf{D}} \varphi}{\Gamma \vdash^{\mathsf{D}} \psi}$$
$$(\neg \neg -E) \frac{\Gamma \vdash^{\mathsf{D}} \neg \neg \varphi}{\Gamma \vdash^{\mathsf{D}} \varphi} \quad (\forall -I) \frac{\Gamma, x_i \vdash^{\mathsf{D}} \varphi}{\Gamma \vdash^{\mathsf{D}} (\forall x_i, \varphi)} \quad (\forall -E) \frac{\Gamma \vdash^{\mathsf{D}} (\forall x_i, \varphi) \quad \Gamma \vdash^{\mathsf{D}} t \ wf}{\Gamma \vdash^{\mathsf{D}} \varphi [x_i := t]}$$

$$(refl) \frac{\Gamma \vdash^{\mathsf{D}} t \ wf}{\Gamma \vdash^{\mathsf{D}} t = t} \quad (sym) \frac{\Gamma \vdash^{\mathsf{D}} t_1 = t_2}{\Gamma \vdash^{\mathsf{D}} t_2 = t_1} \quad (trans) \frac{\Gamma \vdash^{\mathsf{D}} t_1 = t_2}{\Gamma \vdash^{\mathsf{D}} t_1 = t_3}$$

$$(=-fun) \frac{\Gamma \vdash^{\mathsf{D}} t_1 = t_1' \quad \cdots \quad \Gamma \vdash^{\mathsf{D}} t_{a_i} = t_{a_i}' \quad \Gamma \vdash^{\mathsf{D}} D_{f_i}(t_1, \dots, t_{a_i}) \quad \Gamma \vdash^{\mathsf{D}} D_{f_i}(t_1', \dots, t_{a_i}')}{\Gamma \vdash^{\mathsf{D}} f_i(t_1, \dots, t_{a_i}) = f_i(t_1', \dots, t_{a_i}')}$$

$$(=-pred) \frac{\Gamma \vdash^{\mathsf{D}} t_1 = t_1' \quad \cdots \quad \Gamma \vdash^{\mathsf{D}} t_r = t_{r_i}' \quad \Gamma \vdash^{\mathsf{D}} wf}{\Gamma \vdash^{\mathsf{D}} P_i(t_1, \dots, t_{r_i}) \rightarrow P_i(t_1', \dots, t_{r_i}')}$$

$$(=-if-true) \frac{\Gamma \vdash^{\mathsf{D}} \vartheta \quad \Gamma, \vartheta \vdash^{\mathsf{D}} t_1 \ wf \quad \Gamma, \neg\vartheta \vdash^{\mathsf{D}} t_2 \ wf}{\Gamma \vdash^{\mathsf{D}} (\text{if } \vartheta \text{ then } t_1 \text{ else } t_2) = t_1}$$

$$(=-if-false) \frac{\Gamma \vdash^{\mathsf{D}} \neg\vartheta \quad \Gamma, \vartheta \vdash^{\mathsf{D}} t_1 \ wf \quad \Gamma, \neg\vartheta \vdash^{\mathsf{D}} t_2 \ wf}{\Gamma \vdash^{\mathsf{D}} (\text{if } \vartheta \text{ then } t_1 \text{ else } t_2) = t_2}$$

Semantics

A D-model \mathfrak{M} is a tuple $\mathfrak{M} = \langle A, F, P, C \rangle$ where:

- -A, P and C are as in FOL;
- $F = \{ [\![f_1]\!]_{\mathfrak{M}}^{\mathsf{D}}, \dots, [\![f_n]\!]_{\mathfrak{M}}^{\mathsf{D}} \} \text{ with } [\![f_i]\!]_{\mathfrak{M}}^{\mathsf{D}} : A^{a_i} \not\to A;$
- if $e_1, \ldots, e_{a_i} \in A$, then $(e_1, \ldots, e_{a_i}) \in \llbracket D_{f_i} \rrbracket_{\mathfrak{M}}^{\mathsf{D}}$ iff $f_i(e_1, \ldots, e_{a_i})$ is defined.

A D-substitution for \mathfrak{M} is a partial function that assigns values in A to some variables x_i .

Interpretation and satisfaction

(i) Rules for interpreting terms.

(ii) Rules for weak well-formation of terms and formulas.

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} x_i \ wwf \ \text{iff} \quad \rho(x_i) \text{ is defined}$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} c_i \ wwf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} f_i(t_1,\ldots,t_{a_i}) \ wwf \ \text{iff} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_1 \ wwf,\ldots,\models_{\mathfrak{M},\rho}^{\mathsf{D}} t_{a_i} \ wwf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} \text{ if } \vartheta \text{ then } t_1 \text{ else } t_2 \ wwf \ \text{iff} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} \vartheta \ wwf,\models_{\mathfrak{M},\rho}^{\mathsf{D}} t_1 \ wwf \text{ and} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_2 \ wwf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} \bot \ wwf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} P_i(t_1,\ldots,t_{r_i}) \ wwf \ \text{iff} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_1 \ wwf,\ldots,\models_{\mathfrak{M},\rho}^{\mathsf{D}} t_{r_i} \ wwf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} t_1 = t_2 \ wwf \ \text{iff} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_1 \ wwf \text{ and} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_2 \ wwf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} (\varphi \to \psi) \ wwf \ \text{iff} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} \varphi \ wwf \text{ and} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} \psi \ wwf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} (\forall x_i,\varphi) \ wwf \ \text{iff} \quad \models_{\mathfrak{M},\rho[x_i:=a]}^{\mathsf{D}} \varphi \ wwf \text{ for all } a \in A$$

(iii) For any term t, $\models_{\mathfrak{M},\rho}^{\mathsf{D}} t \ wf \ \text{iff} \ \llbracket t \rrbracket_{\mathfrak{M},\rho}^{\mathsf{D}} \ \text{is defined.}$

(iv) Rules for well formation of formulas.

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} \perp wf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} P_{i}(t_{1},\ldots,t_{r_{i}}) \ wf \ \text{iff} \ \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_{1} \ wf,\ldots,\models_{\mathfrak{M},\rho}^{\mathsf{D}} t_{r_{i}} \ wf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} t_{1} = t_{2} \ wf \ \text{iff} \ \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_{1} \ wf \ \text{and} \ \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_{2} \ wf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} (\varphi \to \psi) \ wf \ \text{iff} \ \models_{\mathfrak{M},\rho}^{\mathsf{D}} \varphi \ wf \ \text{and} \ \left\{ \begin{array}{c} \models_{\mathfrak{M},\rho}^{\mathsf{D}} \varphi, \ \models_{\mathfrak{M},\rho}^{\mathsf{D}} \psi \ wf \\ \not\models_{\mathfrak{M},\rho}^{\mathsf{D}} \varphi, \ \models_{\mathfrak{M},\rho}^{\mathsf{D}} \psi \ wwf \end{array} \right.$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{D}} (\forall x_{i}.\varphi) \ wf \ \text{iff} \ \models_{\mathfrak{M},\rho[x_{i}:=a]}^{\mathsf{D}} \varphi \ wf \ \text{for all} \ a \in A$$

(v) Rules for satisfaction of formulas.

$$\begin{split}
& \not\models_{\mathfrak{M},\rho}^{\mathsf{D}} \perp \\
& \models_{\mathfrak{M},\rho}^{\mathsf{D}} P_{i}(t_{1},\ldots,t_{r_{i}}) \quad \text{iff} \quad \left(\llbracket t_{1} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{D}},\ldots,\llbracket t_{r_{i}} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{D}}\right) \in \llbracket P_{i} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{D}} \\
& \models_{\mathfrak{M},\rho}^{\mathsf{D}} t_{1} = t_{2} \quad \text{iff} \quad \llbracket t_{1} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{D}} = \llbracket t_{2} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{D}} \\
& \models_{\mathfrak{M},\rho}^{\mathsf{D}} \varphi \to \psi \quad \text{iff} \quad \models_{\mathfrak{M},\rho}^{\mathsf{D}} (\varphi \to \psi) \text{ wf and } \not\models_{\mathfrak{M},\rho}^{\mathsf{D}} \varphi \text{ or } \models_{\mathfrak{M},\rho}^{\mathsf{D}} \psi \\
& \models_{\mathfrak{M},\rho}^{\mathsf{D}} \forall x_{i}. \varphi \quad \text{iff} \quad \models_{\mathfrak{M},\rho[x_{i}:=a]}^{\mathsf{D}} \varphi \text{ for all } a \in A
\end{split}$$

Validity and consequence

- (i) Well-formation of contexts.
 - (a) $\epsilon \models_{\mathfrak{M},\rho}^{\mathsf{D}} wf;$
 - (b) $\varphi, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{D}} wf \text{ iff } \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \varphi wf \text{ and } \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{D}} wf$
 - (c) $x_i, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{D}} wf \text{ iff } \Gamma \models_{\mathfrak{M}, \rho[x_i := a]}^{\mathsf{D}} wf \text{ for all } a \in A.$
- (ii) Let \mathcal{X} stand for t wwf or ψ wwf.
 - (a) $\epsilon \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \mathcal{X} \text{ iff } \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \mathcal{X};$
 - (b) $\varphi, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \mathcal{X} \text{ iff } \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \varphi \text{ wwf and } \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \mathcal{X};$
 - (c) $x_i, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \mathcal{X}$ iff $\Gamma \models_{\mathfrak{M}, \rho[x_i:=a]}^{\mathsf{D}} \mathcal{X}$ for all $a \in A$.
- (iii) Let \mathcal{X} stand for t wf or ψ wf.
 - (a) $\epsilon \models_{\mathfrak{M},\rho}^{\mathsf{D}} \mathcal{X} \text{ iff } \models_{\mathfrak{M},\rho}^{\mathsf{D}} \mathcal{X};$
 - (b) $\varphi, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \mathcal{X} \text{ iff } (1) \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \varphi \text{ and } \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \mathcal{X} \text{ or } (2) \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \neg \varphi \text{ and } \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \mathcal{X}' \text{ (where } \mathcal{X}' \text{ stands for } t \text{ } wwf \text{ or } \psi \text{ } wwf);$
 - (c) $x_i, \Gamma \models^{\mathsf{D}}_{\mathfrak{M}, \rho} \mathcal{X}$ iff $\Gamma \models^{\mathsf{D}}_{\mathfrak{M}, \rho[x_i := a]} \mathcal{X}$ for all $a \in A$.
- (iv) Consequence.
 - (a) $\epsilon \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \psi \text{ iff } \models_{\mathfrak{M}, \rho}^{\mathsf{D}} \psi;$
 - (b) $\varphi, \Gamma \models^{\mathsf{D}}_{\mathfrak{M}, \rho} \psi$ iff (1) $\models^{\mathsf{D}}_{\mathfrak{M}, \rho} \varphi$ and $\Gamma \models^{\mathsf{D}}_{\mathfrak{M}, \rho} \psi$ or (2) $\models^{\mathsf{D}}_{\mathfrak{M}, \rho} \neg \varphi$ and $\Gamma \models^{\mathsf{D}}_{\mathfrak{M}, \rho} \psi$ wwf;
 - (c) $x_i, \Gamma \models^{\mathsf{D}}_{\mathfrak{M}, \rho} \psi$ iff $\Gamma \models^{\mathsf{D}}_{\mathfrak{M}, \rho[x_i := a]} \psi$ for all $a \in A$.
- (v) Let \mathcal{X} stand for wf, t wwf, ψ wwf, t wf, ψ wf or ψ . Then $\Gamma \models_{\mathfrak{M}}^{\mathsf{D}} \mathcal{X}$ iff $\Gamma \models_{\mathfrak{M},\emptyset}^{\mathsf{D}} \mathcal{X}$ and $\Gamma \models^{\mathsf{D}} \mathcal{X}$ iff $\Gamma \models_{\mathfrak{M}}^{\mathsf{D}} \mathcal{X}$ for all D -models \mathfrak{M} .
- (vi) In particular, a formula φ is valid (denoted $\models^{\mathsf{D}} \varphi$) iff $\epsilon \models^{\mathsf{D}} \varphi$.

System T

Language

$$\begin{array}{lll} t & ::= & x_i \mid c_i \mid f_i(t_1,\ldots,t_{a_i} \mid \text{if } \varphi \text{ then } t_1 \text{ else } t_2 \\ \varphi,\psi & ::= & \bot \mid P_i(t_1,\ldots,t_{r_i}) \mid t_1 = t_2 \mid \varphi \rightarrow \psi \mid \forall x_i.\,\varphi \\ \Gamma & ::= & \epsilon \mid \varphi,\Gamma \mid x_i,\Gamma \end{array}$$

Derivations

The same judgements as above.

Contexts:
$$(\epsilon \text{-}wf) \frac{\Gamma \vdash^{\mathsf{T}} wf}{\epsilon \vdash^{\mathsf{T}} wf} \quad (decl\text{-}wf) \frac{\Gamma \vdash^{\mathsf{T}} wf}{\Gamma, x_i \vdash^{\mathsf{T}} wf} \quad (assum\text{-}wf) \frac{\Gamma \vdash^{\mathsf{T}} \varphi wf}{\Gamma, \varphi \vdash^{\mathsf{T}} wf}$$

$$(var\text{-}wf) \frac{\Gamma \vdash^{\mathsf{T}} wf}{\Gamma \vdash^{\mathsf{T}} x_i wf} x_i \in \Gamma \quad (const\text{-}wf) \frac{\Gamma \vdash^{\mathsf{T}} wf}{\Gamma \vdash^{\mathsf{T}} c_i wf}$$

$$(fun\text{-}wf) \frac{\Gamma \vdash^{\mathsf{T}} t_1 wf \cdots \Gamma \vdash^{\mathsf{T}} t_{a_i} wf \Gamma \vdash^{\mathsf{T}} wf}{\Gamma \vdash^{\mathsf{T}} t_i (t_1, \dots, t_{a_i}) wf} \quad (if\text{-}wf) \frac{\Gamma \vdash^{\mathsf{T}} \psi wf}{\Gamma \vdash^{\mathsf{T}} (if \vartheta \text{ then } t_1 \text{ else } t_2) wf}$$
 Formulas:
$$(\bot \cdot wf) \frac{\Gamma \vdash^{\mathsf{T}} wf}{\Gamma \vdash^{\mathsf{T}} \bot wf} \quad (\to \cdot wf) \frac{\Gamma \vdash^{\mathsf{T}} \varphi wf}{\Gamma \vdash^{\mathsf{T}} (\varphi \to \psi) wf} \quad (\forall \vdash wf) \frac{\Gamma, x_i \vdash^{\mathsf{T}} \varphi wf}{\Gamma \vdash^{\mathsf{T}} (\forall x_i, \varphi) wf}$$

$$(=-wf) \frac{\Gamma \vdash^{\mathsf{T}} t_1 wf \Gamma \vdash^{\mathsf{T}} t_2 wf}{\Gamma \vdash^{\mathsf{T}} t_1 = t_2 wf} \quad (pred\text{-}wf) \frac{\Gamma \vdash^{\mathsf{T}} t_1 wf \cdots \Gamma \vdash^{\mathsf{T}} t_r_i wf \Gamma \vdash^{\mathsf{T}} wf}{\Gamma \vdash^{\mathsf{T}} t_i (t_1, \dots, t_{r_i}) wf}$$
 Proofs:
$$(assum) \frac{\Gamma \vdash^{\mathsf{T}} wf}{\Gamma \vdash^{\mathsf{T}} \varphi} \varphi \in \Gamma \quad (\to \cdot I) \frac{\Gamma, \varphi \vdash^{\mathsf{T}} \psi}{\Gamma \vdash^{\mathsf{T}} (\varphi \to \psi)} \quad (\to \cdot E) \frac{\Gamma \vdash^{\mathsf{T}} (\varphi \to \psi) \Gamma \vdash^{\mathsf{T}} \varphi}{\Gamma \vdash^{\mathsf{T}} \psi}$$

$$(\neg \neg \cdot E) \frac{\Gamma \vdash^{\mathsf{T}} \neg \neg \varphi}{\Gamma \vdash^{\mathsf{T}} \varphi} \quad (\forall \cdot \cdot I) \frac{\Gamma, x_i \vdash^{\mathsf{T}} \varphi}{\Gamma \vdash^{\mathsf{T}} (\forall x_i, \varphi)} \quad (\forall \cdot \cdot E) \frac{\Gamma \vdash^{\mathsf{T}} (\forall x_i, \varphi) \Gamma \vdash^{\mathsf{T}} t wf}{\Gamma \vdash^{\mathsf{T}} \psi}$$

$$(reft) \frac{\Gamma \vdash^{\mathsf{T}} t wf}{\Gamma \vdash^{\mathsf{T}} t ef} \quad (sym) \frac{\Gamma \vdash^{\mathsf{T}} t_1 = t_2}{\Gamma \vdash^{\mathsf{T}} t_2 ef} \quad (trans) \frac{\Gamma \vdash^{\mathsf{T}} t_1 t_2}{\Gamma \vdash^{\mathsf{T}} t_1 = t_3}$$

$$(=-fun) \frac{\Gamma \vdash^{\mathsf{T}} t_1 = t_1' \cdots \Gamma \vdash^{\mathsf{T}} t_a}{\Gamma \vdash^{\mathsf{T}} t_1 (t_1, \dots, t_{r_i})} \to P_i(t_1', \dots, t_{r_i}')}$$

$$(=-if\text{-}false) \frac{\Gamma \vdash^{\mathsf{T}} t_1 \psi f \Gamma \vdash^{\mathsf{T}} t_2 wf}{\Gamma \vdash^{\mathsf{T}} (if \vartheta \text{ then } t_1 \text{ else } t_2) = t_1}$$

$$(=-if\text{-}false) \frac{\Gamma \vdash^{\mathsf{T}} t_1 \psi f \Gamma \vdash^{\mathsf{T}} t_2 wf}{\Gamma \vdash^{\mathsf{T}} (if \vartheta \text{ then } t_1 \text{ else } t_2) = t_2}$$

Semantics

A T-model \mathfrak{M} is a FOL-model. A T-substitution for \mathfrak{M} is a function ρ that assigns a value in A to each variable x_i .

Interpretation and satisfaction

(i) Rules for interpreting terms.

- (ii) For any term t, $\models_{\mathfrak{M},\rho}^{\mathsf{T}} t \ wf \ \text{iff} \ \llbracket t \rrbracket_{\mathfrak{M},\rho}^{\mathsf{T}} \ \text{is defined.}$
- (iii) Rules for well formation of formulas.

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} \perp wf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} P_{i}(t_{1},\ldots,t_{r_{i}}) \ wf \ \text{iff} \ \models_{\mathfrak{M},\rho}^{\mathsf{T}} t_{1} \ wf,\ldots,\models_{\mathfrak{M},\rho}^{\mathsf{T}} t_{r_{i}} \ wf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} t_{1} = t_{2} \ wf \ \text{iff} \ \models_{\mathfrak{M},\rho}^{\mathsf{T}} t_{1} \ wf \ \text{and} \ \models_{\mathfrak{M},\rho}^{\mathsf{T}} t_{2} \ wf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} (\varphi \to \psi) \ wf \ \text{iff} \ \models_{\mathfrak{M},\rho}^{\mathsf{T}} \varphi \ wf \ \text{and} \ \models_{\mathfrak{M},\rho}^{\mathsf{T}} \psi \ wf$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} (\forall x_{i}.\varphi) \ wf \ \text{iff} \ \models_{\mathfrak{M},\rho[x_{i}:=a]}^{\mathsf{T}} \varphi \ wf \ \text{for all} \ a \in A$$

(iv) Rules for satisfaction of formulas.

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} \perp$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} P_{i}(t_{1},\ldots,t_{r_{i}}) \quad \text{iff} \quad (\llbracket t_{1} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{T}},\ldots,\llbracket t_{r_{i}} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{T}}) \in \llbracket P_{i} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{T}}$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} t_{1} = t_{2} \quad \text{iff} \quad \llbracket t_{1} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{T}} = \llbracket t_{2} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{T}}$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} \varphi \to \psi \quad \text{iff} \quad \models_{\mathfrak{M},\rho}^{\mathsf{T}} (\varphi \to \psi) \text{ wf and } \not\models_{\mathfrak{M},\rho}^{\mathsf{T}} \varphi \text{ or } \models_{\mathfrak{M},\rho}^{\mathsf{T}} \psi$$

$$\models_{\mathfrak{M},\rho}^{\mathsf{T}} \forall x_{i}. \varphi \quad \text{iff} \quad \models_{\mathfrak{M},\rho[x_{i}:=a]}^{\mathsf{T}} \varphi \text{ for all } a \in A$$

Validity and consequence

- (i) Well-formation of contexts.
 - (a) $\epsilon \models_{\mathfrak{M},\rho}^{\mathsf{T}} wf;$
 - (b) $\varphi, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} wf \text{ iff } \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \varphi wf \text{ and } \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} wf;$
 - (c) $x_i, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} wf \text{ iff } \Gamma \models_{\mathfrak{M}, \rho[x_i:=a]}^{\mathsf{T}} wf \text{ for all } a \in A.$
- (ii) Let \mathcal{X} stand for t wf or ψ wf.
 - (a) $\epsilon \models_{\mathfrak{M},\rho}^{\mathsf{T}} \mathcal{X} \text{ iff } \models_{\mathfrak{M},\rho}^{\mathsf{T}} \mathcal{X};$
 - (b) $\varphi, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \mathcal{X} \text{ iff } \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \varphi \text{ wf and } \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \mathcal{X};$
 - (c) $x_i, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \mathcal{X} \text{ iff } \Gamma \models_{\mathfrak{M}, \rho[x_i:=a]}^{\mathsf{T}} \mathcal{X} \text{ for all } a \in A.$
- (iii) Consequence.
 - (a) $\epsilon \models_{\mathfrak{M},\rho}^{\mathsf{T}} \psi \text{ iff } \models_{\mathfrak{M},\rho}^{\mathsf{T}} \psi;$
 - (b) $\varphi, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \psi$ iff (1) $\models_{\mathfrak{M}, \rho}^{\mathsf{T}} \varphi$ and $\Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \psi$ or (2) $\models_{\mathfrak{M}, \rho}^{\mathsf{T}} \neg \varphi$ and $\Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \psi$ wf ;
 - (c) $x_i, \Gamma \models_{\mathfrak{M}, \rho}^{\mathsf{T}} \psi$ iff $\Gamma \models_{\mathfrak{M}, \rho[x_i:=a]}^{\mathsf{T}} \psi$ for all $a \in A$.
- (iv) Let \mathcal{X} stand for wf, t wf, ψ wf or ψ . Then $\Gamma \models_{\mathfrak{M}}^{\mathsf{T}} \mathcal{X}$ iff $\Gamma \models_{\mathfrak{M},\emptyset}^{\mathsf{T}} \mathcal{X}$ and $\Gamma \models^{\mathsf{T}} \mathcal{X}$ iff $\Gamma \models_{\mathfrak{M}}^{\mathsf{T}} \mathcal{X}$ for all T -models \mathfrak{M} .
- (v) In particular, a formula φ is valid (denoted $\models^{\mathsf{T}} \varphi$) iff $\epsilon \models^{\mathsf{T}} \varphi$.

Auxiliary functions

From T to FOL: \cdot°

From T to D: the *-functions

This function is extended trivially to contexts: $\epsilon^* = \epsilon$, $(\Gamma, x_i)^* = \Gamma^*$, x_i and $(\Gamma, \varphi)^* = \Gamma^*$, φ^* .

 $\forall x_i. \varphi \mapsto \forall x_i. \varphi^*$

Let $\mathfrak{M} = \langle A, F, P, C \rangle$ be a D-model. Then \mathfrak{M}_* is the T-model defined by $\mathfrak{M}_* = \langle A, F_*, P, C \rangle$, where $F_* = \{ \llbracket f_1 \rrbracket_{\mathfrak{M}_*}^\mathsf{T}, \dots, \llbracket f_n \rrbracket_{\mathfrak{M}_*}^\mathsf{D} \}$ with

$$\llbracket f_i \rrbracket_{\mathfrak{M}_*}^{\mathsf{T}}(e_1, \dots, e_{a_i}) = \left\{ \begin{array}{ll} \llbracket f_i \rrbracket_{\mathfrak{M}}^{\mathsf{D}}(e_1, \dots, e_{a_i}) & \text{ if } \llbracket f_i \rrbracket_{\mathfrak{M}}^{\mathsf{D}}(e_1, \dots, e_{a_i}) \text{ is defined otherwise} \\ \llbracket c_1 \rrbracket_{\mathfrak{M}}^{\mathsf{D}} & \text{ otherwise} \end{array} \right.$$

From **D** to **T**: \cdot

Let $\mathfrak{M} = \langle A, F, P, C \rangle$ be a T-model. Then $\mathfrak{M}_{|}$ is the D-model defined by $\mathfrak{M}_{|} = \langle A, F_{|}, P, C \rangle$, where $F_{|} = \{ \llbracket f_{1} \rrbracket_{\mathfrak{M}_{|}}^{\mathsf{D}}, \dots, \llbracket f_{n} \rrbracket_{\mathfrak{M}_{|}}^{\mathsf{D}} \}$ with

$$[\![f_i]\!]_{\mathfrak{M}_1}^{\mathsf{D}}(e_1,\ldots,e_{a_i}) = [\![f_i]\!]_{\mathfrak{M}}^{\mathsf{T}}(e_1,\ldots,e_{a_i}) \text{ if } [\![f_i]\!]_{\mathfrak{M}}^{\mathsf{T}}(e_1,\ldots,e_{a_i}) \in [\![D_{f_i}]\!]_{\mathfrak{M}}^{\mathsf{T}}$$

Notice that, again by definition, a T-substitution for \mathfrak{M} is a D-substitution for \mathfrak{M}_{\parallel} and vice-versa.

The domain conditions

The syntactic domain conditions

$$\begin{array}{rclcrcl} \mathcal{DC}_{\Gamma}(x_i) = \mathcal{DC}_{\Gamma}(c_i) & = & \emptyset \\ & \mathcal{DC}_{\Gamma}(f_i(t_1,\ldots,t_{a_i})) & = & \mathcal{DC}_{\Gamma}(t_1) \cup \ldots \cup \mathcal{DC}_{\Gamma}(t_{a_i}) \cup \left\{\Gamma \vdash^{\mathsf{T}} D_{f_i}(t_1,\ldots,t_{a_i})\right\} \\ \mathcal{DC}_{\Gamma}(\text{if } \vartheta \text{ then } t_1 \text{ else } t_2) & = & \mathcal{DC}_{\Gamma}(\vartheta) \cup \mathcal{DC}_{\Gamma,\vartheta}(t_1) \cup \mathcal{DC}_{\Gamma,\neg\vartheta}(t_2) \\ & \mathcal{DC}_{\Gamma}(\bot) & = & \emptyset \\ & \mathcal{DC}_{\Gamma}(P_i(t_1,\ldots,t_{r_i})) & = & \mathcal{DC}_{\Gamma}(t_1) \cup \ldots \cup \mathcal{DC}_{\Gamma}(t_{r_i}) \\ & \mathcal{DC}_{\Gamma}(t_1 = t_2) & = & \mathcal{DC}_{\Gamma}(t_1) \cup \mathcal{DC}_{\Gamma}(t_2) \\ & \mathcal{DC}_{\Gamma}(\varphi \to \psi) & = & \mathcal{DC}_{\Gamma}(\varphi) \cup \mathcal{DC}_{\Gamma,\varphi}(\psi) \\ & \mathcal{DC}_{\Gamma}(\forall x_i.\varphi) & = & \mathcal{DC}_{\Gamma,x_i}(\varphi) \\ & \mathcal{DC}(\epsilon) & = & \emptyset \\ & \mathcal{DC}(\Gamma,\varphi) & = & \mathcal{DC}(\Gamma) \cup \mathcal{DC}_{\Gamma}(\varphi) \\ & \mathcal{DC}(\Gamma,x_i) & = & \mathcal{DC}(\Gamma) \end{array}$$

The semantic domain conditions

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(x_{i}) = \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(c_{i}) = \mathsf{T}$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(f_{i}(t_{1},\ldots,t_{a_{i}})) = \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(t_{1}) \wedge \ldots \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(t_{a_{i}}) \wedge (\llbracket t_{1} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{T}},\ldots,\llbracket t_{a_{i}} \rrbracket_{\mathfrak{M},\rho}^{\mathsf{T}}) \in \llbracket \mathcal{D}f_{i} \rrbracket_{\mathfrak{M}}^{\mathsf{T}}$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(if\ \vartheta\ then\ t_{1}\ else\ t_{2}) = \begin{cases} \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\vartheta) \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(t_{1})\ if\ \models_{\mathfrak{M},\rho}^{\mathsf{T}}\vartheta$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(if\ \vartheta\ then\ t_{1}\ else\ t_{2}) = \begin{cases} \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\vartheta) \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(t_{2})\ if\ \models_{\mathfrak{M},\rho}^{\mathsf{T}}\vartheta$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(L) = \mathsf{T}$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(P_{i}(t_{1},\ldots,t_{r_{i}})) = \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(t_{1}) \wedge \ldots \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(t_{r_{i}})$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(P_{i}(t_{1},\ldots,t_{r_{i}})) = \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(t_{1}) \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(t_{2})$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\varphi) = \begin{cases} \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\varphi) \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\psi)\ if\ \models_{\mathfrak{M},\rho}^{\mathsf{T}}\varphi$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\varphi) = \begin{cases} \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\varphi) \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\psi)\ if\ \models_{\mathfrak{M},\rho}^{\mathsf{T}}\varphi \end{cases}$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\mathcal{X}) = \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\mathcal{X})$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\mathcal{X}) = \begin{cases} \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\varphi) \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\mathcal{X})\ if\ \models_{\mathfrak{M},\rho}^{\mathsf{T}}\varphi \end{cases}$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\mathcal{X}) = \bigwedge_{a\in A} \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\varphi) \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\mathcal{X})\ if\ \models_{\mathfrak{M},\rho}^{\mathsf{T}}\varphi$$

$$\overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\mathcal{X}) = \bigwedge_{a\in A} \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\varphi) \wedge \overline{\mathcal{D}C}^{\mathfrak{M},\rho}(\mathcal{X})$$