1° Teste 30 · 10 · 2019 Cálculo LCC 2019/2020

Duração: 1 hora e 30 minutos

Nome: Número:

Nas perguntas de verdadeiro/falso cada resposta certa vale 1 valor e cada resposta errada desconta 0.25 valores.

Questão 1 [4 valores] Considere os conjuntos

$$A = \{x \in \mathbb{R} : \frac{x^2 - 5x + 6}{x^2} < 0\}, \ B = \{x \in \mathbb{Z} : |x - 4| \le 1\} \ \text{e} \ C = A \cup B.$$

a) Verifique que $C =]2,3] \cup \{4,5\}.$

b) Determine o conjunto dos minorantes, o conjunto dos majorantes, e, se existirem, o ínfimo, o mínimo, o supremo e o máximo do conjunto ${\cal C}.$

- c) Indique:
 - i. um ponto a tal que $a \in C$ mas $a \notin C'$.
 - ii. um ponto b tal que $b \in C'$ mas $b \notin C$.

Questão 2 [4 valores] Em cada uma das questões seguintes, indique se a afirmação é verdadeira ou falsa:

 \cap

F

- a) Toda a subsucessão de uma sucessão convergente é também convergente.
 - e. O O
- b) Se $(u_n)_n$ e $(v_n)_n$ são divergentes, então $(u_n + v_n)_n$ tammbém é divergente. c) Se $(u_n)_n$ é limitada, então $(u_n)_n$ é convergente.
- \circ
- d) Se $(u_n)_n$ é decrescente e de termos positivos, então $(u_n)_n$ é convergente.

O C

Questão 3 [2 valores] Calcule, se existirem, os seguintes limites.

a)
$$\lim_{n} \left(\frac{n+1}{n}\right)^{3n+1}$$

b)
$$\lim_{n} \left(\sqrt{n^3 + 1} - \sqrt{n^3 + 2} \right)$$

Questão 4 [4 valores] Em cada uma das questões seguintes, indique se a afirmação é verdadeira ou falsa:

a) Se
$$\lim_{n} (u_1 + u_2 + \dots + u_n) = 1$$
, então $\sum_{n=1}^{+\infty} u_n$ é divergente.

b) A série
$$\sum_{n=1}^{+\infty} \frac{2}{\sqrt{n^3}}$$
 é convergente.

c)
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{2}$$

d) Se
$$u_n \leq v_n, \forall n \in \mathbb{N}$$
, e $\sum_{n=1}^{+\infty} v_n$ é convergente, então $\sum_{n=1}^{+\infty} u_n$ é convergente.

Questão 5 [2 valores] observando que

Represente $x={\rm 0.\overline{9}}$ na forma de um quociente entre dois números inteiros,

$$x = \frac{9}{10} + \frac{9}{10^2} + \frac{9}{10^3} + \dots + \frac{9}{10^n} + \dots$$

Questão 6 [2 valores] Mostre que a série

$$\sum_{n=1}^{+\infty} (-1)^n \ \frac{1}{\sqrt{n}}$$

é convergente mas não é absolutamente convergente.

Questão 7 [2 valores] Sejam $(u_n)_n$ e $(v_n)_n$ duas sucessões de termos não nulos, com $(v_n)_n$ convergente para $\ell \neq 0$, tais que

$$|u_n - v_n| < \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$

Mostre que a sucessão $(u_n)_n$ é convergente e que a série $\sum_{n=1}^{+\infty} \frac{u_n}{v_n}$ é divergente.

(FIM)