M 383: Assignment 3

Nathan Stouffer

Exercises 2.2.4 — Problem 3

Problem. If x is a real number, show that there exists a Cauchy sequence of rationals x_1, x_2, \ldots representing x such that $x_n < x$ for all n.

Proof.

Exercises 2.2.4 — Problem 7

Problem. Prove that $|x-y| \ge |x| - |y|$ for any real numbers x and y.

Proof. We must show that $|x-y| \ge |x| - |y|$ holds for all real numbers x and y. We take $|x+y| \le |x| + |y|$ (the triangle inequality) to be true. Then let x and y be any real numbers. Certainly it is true that |x| = |x-y+y| since $\mathbb R$ is an ordered field. Also, by the triangle inequality, $|x-y+y| \le |x-y| + |y|$. Since |x-y+y| = |x|, we can say that $|x-y| + |y| \ge |x|$ which we can reorder to be $|x-y| \ge |x| - |y|$. So we have shown the desired inequality for all real numbers x and y.

Exercises 2.3.3 — Problem 1

Problem. Write out a proof that $\lim_{k\to\infty}(x_k+y_k)=x+y$ if $\lim_{k\to\infty}x_k=x$ and $\lim_{k\to\infty}y_k=y$ for sequences of real numbers.

Proof.

Exercises 2.3.3 — Problem 3

Problem. Let $x_1, x_2, ...$ be a sequence of real numbers such that $|x_n| \le 1/2^n$, and set $y_n = x_1 + x_2 + \cdots + x_n$. Show that the sequence $y_1, y_2, ...$ converges.

Proof. We must show that y_1, y_2, \ldots converges. To this end, we introduce the following result: $1/n = \sum_{k=n}^{\infty} 1/2^k$ for all natural numbers. Let's now prove this result. First note that $x_{k+1} = 1/2 * x_k$.