14 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2072 Ashwin

Exam.		THE SECOND	
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT, B. Agri, BGE	Pass Marks	32
Year / Part	II/II	Time	3 hrs.

Subject: - Numerical Method (SH553)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

(1:no)+4

[4]

[4]

8

[8]

[8]

[8]

[8]

- 1. Discuss the difference between Absolute error and Relative error with examples.
- 2. Derive Newton Raphson interative formula for solving nonlinear equation, using Taylor series.
- 3. Using the Bisection method, find a real root of the equation $f(x) = 3x \sqrt{1 + \sin x}$ correct up to three decimal points.
- 4. Develop pseudocode to solve a system of linear equations using Gauss Jordan method. [8]
- 5. Find the largest Eigen value and the corresponding Eigen vector of the following matrix using the power method with an accuracy of 2 decimal points.

[1	2	1
$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	1	1) 2 -1
1.1	2	-1

6. Using appropriate Newton's Interpolation Techniques, estimate y(15) and y(85) from the following data:

X	10	30	50	70	90
y	34	56	45	23	36 -

7. Fit the following data in to $y = a + b\sqrt{x}$

X	500	1000	2000	4000	6000
Y	0.20	0.33	0.38	0.45	0.51

- 8. Write an algorithm to calculate the definite integral $\int_{1}^{b} f(x)dx$ using composite simpson's 1/3 rule.
- 9. The distance travelled by a vehicle at intervals of 2 minutes are given as follows: [6]
 - Time (min): 2 4 6 8 10 12
 - Distance (km): 0.25 1 2.2 4 6.5 8.5
 - Evaluate the velocity and acceleration of the vehicle at t = 3 minutes.
- Solve the following by RK-2 method for x = 0 (0.1) 0.2

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0; \ y(0) = 1, y'(0) = 0$$

[10]

Derive Euler's formula for solving initial value problem.

[4]

x 10 30 50 70 90						
	00	Tor	1. 158	TOF	To	
			72 8	1 33		J .

it the following data in to y = a + ba/x: X = 500 = 1000 = 2000 = 4000 = 6000

Write an algorithm to calculate the definite integral [f(x)dx using composite simpson

The distance travelled by a vehicle at intervals of 2 minutes are given as follows:

Distance (km): 0.25 1 2.2 4 6.5 8.5

Evaluate the velocity and acceleration of the vehicle at t = 3 minute.) Solve the following by RL-2 method for x = 0 (0.1) 0.2

 $\frac{d^2y}{d^2y} + x\frac{dy}{dy} + y = 0; \ y(0) = 1, y'(0) = 0$