1

GATE ASSIGNMENT 4

Ananthoju Pranav Sai AI20BTECH11004

Download all python codes from

https://github.com/Ananthoju-Pranav-Sai/EE3900/blob/main/Gate Assignment 2/codes

and latex-tikz codes from

https://github.com/Ananthoju-Pranav-Sai/EE3900/ tree/main/Gate_Assignment_2/ Gate Assignment 2.tex

1 GATE EC 2010 Q.16

For an N-point FFT Algorithm with $N = 2^m$ which one of the following statements is TRUE?

- A It is not possible to construct a signal flow graph with both input and output in normal order
- B The number of butterflies in the m^{th} stage in N/m
- C In-place computation requires storage of only 2N node data
- D computation of a butterfly requires only one complex multiplication.

2 Solution

The FFT algorithm decomposes the DFT into $\log_2 N$, each of which consists of N/2 butterfly computations.

Each butterfly computes 2 complex numbers $p+\alpha q$ and $p-\alpha q$ where α is a complex number.

The number of butterflies in m^{th} stage is N/2. So, option (B) is incorrect.

There are $\log_2 N$ stages and each stage consists of N/2 butterflies and each butterfly consists 2 nodes. So computation requires storage $N \log_2 N$ node data. So, option (C) is incorrect

Each butterfly computes 2 complex numbers $p+\alpha q$ and $p-\alpha q$ where α is a complex number.

As each butterfly computes 2 complex number $p+\alpha q$ and $p-\alpha q$, so it requires one complex multiplication (αq) and 2 complex additions. So, option (D) is correct.

It is possible to construct a signal flow graph with input and output in normal. Example for m=3.

Fig. 4: Signal flow graph for m=3