

National University of Computer & Emerging Sciences MT2008 - Multivariate Calculus

15.1 VECTOR FIELDS

In this section we will consider functions that associate vectors with points in 2-space or 3-space. We will see that such functions play an important role in the study of fluid flow, gravitational force fields, electromagnetic force fields, and a wide range of other applied problems.

VECTOR FIELDS

15.1.1 DEFINITION A *vector field* in a plane is a function that associates with each point P in the plane a unique vector $\mathbf{F}(P)$ parallel to the plane. Similarly, a vector field in 3-space is a function that associates with each point P in 3-space a unique vector $\mathbf{F}(P)$ in 3-space.

$$\mathbf{F}(x,y) = f(x,y)\mathbf{i} + g(x,y)\mathbf{j}$$

Similarly, in 3-space with an xyz-coordinate system, a vector field $\mathbf{F}(P)$ can be expressed as

$$\mathbf{F}(x, y, z) = f(x, y, z)\mathbf{i} + g(x, y, z)\mathbf{j} + h(x, y, z)\mathbf{k}$$

DIVERGENCE AND CURL

We will now define two important operations on vector fields in 3-space—the *divergence* and the *curl* of the field. These names originate in the study of fluid flow, in which case the divergence relates to the way in which fluid flows toward or away from a point and the curl relates to the rotational properties of the fluid at a point. We will investigate the physical interpretations of these operations in more detail later, but for now we will focus only on their computation.

15.1.4 DEFINITION If $\mathbf{F}(x, y, z) = f(x, y, z)\mathbf{i} + g(x, y, z)\mathbf{j} + h(x, y, z)\mathbf{k}$, then we define the *divergence of* \mathbf{F} , written div \mathbf{F} , to be the function given by

$$\operatorname{div} \mathbf{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z} \tag{7}$$

15.1.5 DEFINITION If $\mathbf{F}(x, y, z) = f(x, y, z)\mathbf{i} + g(x, y, z)\mathbf{j} + h(x, y, z)\mathbf{k}$, then we define the *curl of* \mathbf{F} , written curl \mathbf{F} , to be the vector field given by

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z}\right) \mathbf{i} + \left(\frac{\partial f}{\partial z} - \frac{\partial h}{\partial x}\right) \mathbf{j} + \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) \mathbf{k}$$
(8)

OR

$$\operatorname{curl} \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f & g & h \end{vmatrix}$$

THE ▼ OPERATOR

Thus far, the symbol ∇ that appears in the gradient expression $\nabla \phi$ has not been given a meaning of its own. However, it is often convenient to view ∇ as an operator

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$
 (11)

The del operator allows us to express the divergence of a vector field

$$\mathbf{F} = f(x, y, z)\mathbf{i} + g(x, y, z)\mathbf{j} + h(x, y, z)\mathbf{k}$$

in dot product notation as

$$\operatorname{div} \mathbf{F} = \mathbf{\nabla} \cdot \mathbf{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z}$$
 (12)

and the curl of this field in cross-product notation as

$$\operatorname{curl} \mathbf{F} = \mathbf{\nabla} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f & g & h \end{vmatrix}$$
 (13)

Example 4 Find the divergence and the curl of the vector field

$$\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + 2y^3 z \mathbf{j} + 3z \mathbf{k}$$

Solution. From (7)

div
$$\mathbf{F} = \frac{\partial}{\partial x}(x^2y) + \frac{\partial}{\partial y}(2y^3z) + \frac{\partial}{\partial z}(3z)$$

= $2xy + 6y^2z + 3$

and from (9)

curl
$$\mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 y & 2y^3 z & 3z \end{vmatrix}$$

$$= \left[\frac{\partial}{\partial y} (3z) - \frac{\partial}{\partial z} (2y^3 z) \right] \mathbf{i} + \left[\frac{\partial}{\partial z} (x^2 y) - \frac{\partial}{\partial x} (3z) \right] \mathbf{j} + \left[\frac{\partial}{\partial x} (2y^3 z) - \frac{\partial}{\partial y} (x^2 y) \right] \mathbf{k}$$

$$= -2y^3 \mathbf{i} - x^2 \mathbf{k} \blacktriangleleft$$

Example 5 Show that the divergence of the inverse-square field

$$\mathbf{F}(x, y, z) = \frac{c}{(x^2 + y^2 + z^2)^{3/2}} (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$$

is zero.

Solution. The computations can be simplified by letting $r = (x^2 + y^2 + z^2)^{1/2}$, in which case **F** can be expressed as

$$\mathbf{F}(x, y, z) = \frac{cx\mathbf{i} + cy\mathbf{j} + cz\mathbf{k}}{r^3} = \frac{cx}{r^3}\mathbf{i} + \frac{cy}{r^3}\mathbf{j} + \frac{cz}{r^3}\mathbf{k}$$

We leave it for you to show that

$$\frac{\partial r}{\partial x} = \frac{x}{r}, \quad \frac{\partial r}{\partial y} = \frac{y}{r}, \quad \frac{\partial r}{\partial z} = \frac{z}{r}$$

Thus

$$\operatorname{div} \mathbf{F} = c \left[\frac{\partial}{\partial x} \left(\frac{x}{r^3} \right) + \frac{\partial}{\partial y} \left(\frac{y}{r^3} \right) + \frac{\partial}{\partial z} \left(\frac{z}{r^3} \right) \right]$$
 (10)

But

$$\frac{\partial}{\partial x} \left(\frac{x}{r^3} \right) = \frac{r^3 - x(3r^2)(x/r)}{(r^3)^2} = \frac{1}{r^3} - \frac{3x^2}{r^5}$$
$$\frac{\partial}{\partial y} \left(\frac{y}{r^3} \right) = \frac{1}{r^3} - \frac{3y^2}{r^5}$$
$$\frac{\partial}{\partial z} \left(\frac{z}{r^3} \right) = \frac{1}{r^3} - \frac{3z^2}{r^5}$$

Substituting these expressions in (10) yields

div
$$\mathbf{F} = c \left[\frac{3}{r^3} - \frac{3x^2 + 3y^2 + 3z^2}{r^5} \right] = c \left[\frac{3}{r^3} - \frac{3r^2}{r^5} \right] = 0$$

17–22 Find div **F** and curl **F**. ■

17.
$$\mathbf{F}(x, y, z) = x^2 \mathbf{i} - 2 \mathbf{j} + yz \mathbf{k}$$

18.
$$\mathbf{F}(x, y, z) = xz^3\mathbf{i} + 2y^4x^2\mathbf{j} + 5z^2y\mathbf{k}$$

19.
$$\mathbf{F}(x, y, z) = 7y^3z^2\mathbf{i} - 8x^2z^5\mathbf{j} - 3xy^4\mathbf{k}$$

20.
$$\mathbf{F}(x, y, z) = e^{xy}\mathbf{i} - \cos y\mathbf{j} + \sin^2 z\mathbf{k}$$

21.
$$\mathbf{F}(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$$

22.
$$\mathbf{F}(x, y, z) = \ln x \mathbf{i} + e^{xyz} \mathbf{j} + \tan^{-1}(z/x) \mathbf{k}$$

23–24 Find $\nabla \cdot (\mathbf{F} \times \mathbf{G})$.

23.
$$F(x, y, z) = 2xi + j + 4yk$$

 $G(x, y, z) = xi + yj - zk$

24.
$$\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$$

 $\mathbf{G}(x, y, z) = xy\mathbf{j} + xyz\mathbf{k}$

25–26 Find $\nabla \cdot (\nabla \times \mathbf{F})$.

25.
$$\mathbf{F}(x, y, z) = \sin x \mathbf{i} + \cos (x - y) \mathbf{j} + z \mathbf{k}$$

26.
$$\mathbf{F}(x, y, z) = e^{xz}\mathbf{i} + 3xe^{y}\mathbf{j} - e^{yz}\mathbf{k}$$

27–28 Find $\nabla \times (\nabla \times \mathbf{F})$.

27.
$$F(x, y, z) = xy j + xyz k$$

28.
$$\mathbf{F}(x, y, z) = y^2 x \mathbf{i} - 3yz \mathbf{j} + xy \mathbf{k}$$