

University of Chittagong

Department of Computer Science & Engineering

Assignment on Intelligent Agent (Chapter 2)

Artificial Intelligence

CSE 714

Submitted To

Dr. Mohammad Shahadat Hossain

Professor

Department of Computer Science & Engineering
University of Chittagong

Submitted By

Jannatul Maoua Saima

ID: 20701081

Department of Computer Science and Engineering
University of Chittagong

Submission Date: August 22, 2025

1 Mars Rovers

1.1 PAGE Description

• Percept: Detect terrain, atmospheric conditions, and chemical composition

• Action: Navigating terrain, collecting samples, transmitting data

• Goal: Explore Martian surface and gather scientific data

• Environment: Extraterrestrial landscape (Mars)

1.2 Environmental Characteristics Analysis

Characteristic	Classification	Argument
Accessible vs In-	INACCESSIBLE	The sensors cannot provide complete
accessible		state information about the vast Mar-
		tian environment. Hidden obstacles,
		subsurface conditions, and distant ter-
		rain remain unknown. Weather condi-
		tions and dust storms can obscure visi-
		bility.
Deterministic	NON-	Weather patterns (dust storms) are un-
vs Non-	DETERMINISTIC	predictable. Equipment failures can
deterministic		occur randomly. Terrain conditions
		may change due to weather or seismic
		activity. Communication success de-
		pends on atmospheric conditions.
Episodic vs Non-	NON-EPISODIC	Current actions affect future capabili-
episodic		ties (battery usage, equipment wear).
•		Sample collection locations influence
		future exploration paths. Previous ex-
		ploration data guides subsequent mis-
		sion decisions.
Static vs Dy-	DYNAMIC	Weather conditions change continu-
namic		ously. Dust accumulation affects so-
		lar panel efficiency. Temperature vari-
		ations affect equipment performance.
		Terrain may change due to dust storms.
Discrete vs Con-	CONTINUOUS	Infinite possible positions and orien-
tinuous		tations. Continuous sensor readings
		(temperature, pressure, etc.). Contin-
		uous motion control and navigation.
		Analog sensor data processing.
With/Without	WITHOUT AD-	No intelligent opponents on Mars.
Adversaries	VERSARIES	Challenges come from environmental
		factors, not strategic opponents.

Table 1: MARS Robot Environmental Characteristics

1.3 Recommended Agent Architecture

GOAL-BASED AGENT

Rationale:

- Mars robots must work toward specific scientific objectives (goals)
- Must plan complex sequences of actions for sample collection and analysis
- Need to consider future consequences of current actions
- Must adapt plans based on changing environmental conditions
- Communication delays prevent real-time human control, requiring autonomous goaldirected behavior

2 Obstacle Avoidance Robot

2.1 PAGE Description

• Percept: Recognizes obstacles

• Action: Moving left, right, forward.

• Goal: Avoiding obstacles

• Environment: Room

2.2 Environmental Characteristics Analysis

Characteristic	Classification	Argument
Accessible vs In-	INACCESSIBLE	Sensors have limited range and field of
accessible		view. Obstacles may be hidden behind
		other objects. Cannot simultaneously
		monitor all directions. Some obstacles
		may be outside sensor detection range.
Deterministic	NON-	Dynamic obstacles (people, animals)
vs Non-	DETERMINISTIC	move unpredictably. Sensor readings
deterministic		may have noise and uncertainty. Envi-
		ronmental conditions (lighting) can af-
		fect sensor performance.
Episodic vs Non-	EPISODIC	Each obstacle avoidance action is rel-
episodic		atively independent. Previous obsta-
		cle encounters don't significantly im-
		pact current decisions. Each moment
		of navigation can be treated as a sepa-
		rate episode.
Static vs Dy-	DYNAMIC	Moving obstacles change positions
namic		continuously. People and animals
		move unpredictably. Lighting condi-
		tions may change. Environmental lay-
		out may be modified.
Discrete vs Con-	CONTINUOUS	Infinite possible positions and orien-
tinuous		tations. Continuous sensor readings
		(distance, speed). Smooth motor con-
		trol and movement. Analog sensor
		data processing.
With/Without	WITHOUT AD-	Obstacles are not trying to strategically
Adversaries	VERSARIES	interfere with the robot. People and
		animals move for their own purposes,
		not to challenge the robot.

Table 2: Obstacle Avoidance Robot Environmental Characteristics

2.3 Recommended Agent Architecture

SIMPLE REFLEX AGENT with INTERNAL STATE

Rationale:

- Obstacle avoidance primarily requires immediate reactive responses
- Fast reaction time is crucial for safety

- Simple condition-action rules are sufficient: "If obstacle detected at distance X, then move(left, right, forward)/turn/stop"
- Internal state needed to track current position and recent movements to avoid getting stuck
- Episodic nature means complex long-term planning is unnecessary
- Real-time response requirements favor simple, fast decision-making over complex reasoning

References

- [1] Hossain, M. S. (2025). *Introduction to AI*. Course slides ch01-02.pdf, Department of Computer Science & Engineering, University of Chittagong.
- [2] Hossain, M. S. (2025). *Robot 1.mp4*. Google Classroom. Retrieved from https://drive.google.com/file/d/1EfICM63kbDPTtrnUf2qH1wcesBlO9pZe/view
- [3] NASA Jet Propulsion Laboratory. (2021, February 18). *How does a Mars Rover work?* (*Perseverance*). YouTube. Retrieved from https://youtu.be/0-oQRSViZQE?si=tdu7xAf7pZRNjbRf