

Wydział					
Wydział Informatyki	Imię i nazwisi 1. Kawa Mic 2. Smyda To	chał	Rok: II	Grupa: 5	Zespół:
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Ćwiczenie z	Nr ćwiczenia:			
Data wykonania:	Data oddania:	Zwrot do popr.:	Data oddania:	Data zaliczenia:	OCENA:
08-10-2023	09-10-2023				

1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie wartości przyspieszenia ziemskiego na podstawie pomiaru okresu drgań wahadła matematycznego oraz wyznaczenie zależności okresu drgań wahadła od jego długości. Wahadło matematyczne to ciało o masie punktowej, zawieszone na cienkiej, nieważkiej, nierozciągliwej nici. Wahadło o długości L odchylone o niewielki kąt od pionu i puszczone swobodnie zacznie wykonywać drgania harmoniczne - ich okres T jest dany zależnością $T=2\pi\sqrt{\frac{L}{g}}$ Wykonując pomiar długości L oraz czasu T można wyznaczyć wartość g: $g=\frac{4\pi^2L}{T^2}$

2 Potrzebne przyrządy

Do wykonania ćwiczenia potrzebowaliśmy:

- wahadła matematycznego (rysunek obok)
- linijki
- stopera

3 Wykonywanie ćwiczenia

3.1 Pomiar okresu drgań przy ustalonej długości wahadła

Długość wahadła L=19 cm, ilość okresów n=10

Numer pomiaru	Czas 10 okresów [s]	Okres T [s]
1.	8,62	0,862
2.	8,59	0,859
3.	9,01	0,901
4.	8,44	0,844
5.	8,53	0,853
6.	8,50	0,850
7.	8,76	0,876
8.	8,51	0,851
9.	8,57	0,857
10.	8,71	0,871

Niepewność pomiaru okresu:

$$u(x) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n(n-1)}}$$

Gdzie:

n - ilość pomiarów

 x_i - wykonany pomiar

 \overline{x} - średnia arytmetyczna wszystkich pomiarów

Zatem dla danych z ćwiczenia mamy:

$$\overline{x} = \frac{0,862 + 0,859 + 0,901 + 0,844 + 0,853 + 0,85 + 0,876 + 0,851 + 0,857 + 0,871}{10} = 0,8624 \text{ [s]}$$

$$u(x) \stackrel{\text{n=10}}{=} \sqrt{\frac{\sum_{i=1}^{10} (x_i - \overline{x})^2}{10 \cdot (10 - 1)}} = \sqrt{\frac{0,0025004}{90}} \approx 5,27 \cdot 10^{-3} \quad [s]$$

Niepewność pomiaru długości wahadła:

Niepewność pomiaru długości wahadła zależy od urządzenia pomiarowego, jakiego użyliśmy do wykonania ćwiczenia. W naszym przypadku wynosi ona 1 mm.

Obliczanie wartości przyspieszenia ziemskiego:

Do wyliczenia wartości przyspieszenia ziemskiego użyjemy wzoru na okres dla wahadła matematycznego, którego używaliśmy.

$$T = 2\pi \sqrt{\frac{L}{g}}$$

2

Po przeszktałceniu otrzymujemy:

$$g = \frac{4\pi^2 L}{T^2}$$

Zatem:

$$g = \frac{4\pi^2 \cdot 0.19 \text{ m}}{(0.8624 \text{ s})^2} \approx 10.09 \frac{\text{m}}{\text{s}^2}$$

Obliczyliśmy wartość przyspieszenia ziemskiego, teraz należy oszacować niepewność tej wartości. Użyjemy do tego prawa przenoszenia niepewności, co opisuje poniższy wzór:

$$u(g) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i)}$$

Dla przyspieszenia ziemskiego przyjmuje on postać:

$$u_c(g) = \sqrt{\left[\frac{\partial g}{\partial L} \cdot u(L)\right]^2 + \left[\frac{\partial g}{\partial T} \cdot u(T)\right]^2}$$

Zatem:

$$u_c(g) = \sqrt{\left[\frac{4\pi^2}{T^2} \cdot u(L)\right]^2 + \left[\frac{-2 \cdot 4\pi^2 \cdot L}{T^3} \cdot u(T)\right]^2}$$

Gdzie:

T = 0.8624 s

L = 0.19 m

 $u(T) = 5.27 \cdot 10^{-3} \text{ s}$

u(L) = 0,001 m Po podstawieniu tych wartości do wyżej podanego wzoru otrzymujemy:

$$u_c(g) = \sqrt{\left[\frac{4\pi^2}{(0.8624 \text{ s})^2} \cdot 0.001 \text{ m}\right]^2 + \left[\frac{-2 \cdot 4\pi^2 \cdot 0.19 \text{ m}}{(0.8624 \text{ s})^3} \cdot 5.27 \cdot 10^{-3} \text{ s}\right]^2} \approx 0.13 \frac{\text{m}}{\text{s}^2}$$

Niepewność rozszerzona: Niepewność rozszerzoną $U_p(g)$ policzymy ze wzoru $U_p(g)=k_p\cdot u_c(g)$, gdzie k jest współczynnikiem rozszerzenia. Przyjmujemy $k_p=2$. Zatem nasza niepewność rozszerzona jest równa $U_p(g)=2\cdot u_c(g)=0.26\,\frac{\mathrm{m}}{\mathrm{s}^2}$

Korzystając z wartości tabelarycznych przyspieszenia ziemskiego dla polskich miast możemy zaobserwować, że uzyskana przez nas wartość równa $g=10,09\,\frac{\mathrm{m}}{\mathrm{s}^2}$ różni się od wartości tabelarycznej dla Krakowa, która wynosi $g=9,811\,\frac{\mathrm{m}}{\mathrm{s}^2}$. Co więcej, niestety nasza wartość nie mieści się w zakresie wyilczonej niepewności rozszerzonej, według której powinniśmy uzyskać wynik z przedziału $[9,551;10,071]\,\frac{\mathrm{m}}{\mathrm{s}^2}$.

3.2 Pomiar zależności okresu drgań od dlugości wahadła

Numer pomiaru	Długość wahadła [cm]	Czas 10 okresów [s]	Okres T [s]
1.	7,5	5,28	0,528
2.	11,5	6,25	0,625
3.	15,4	7,44	0,744
4.	19	8,64	0,864
5.	22	9,18	0,918
6.	25	10,03	1,003
7.	28	10,5	1,05
8.	33,5	11,28	1,128
9.	40	12,37	1,237
10.	52	14,12	1,412

Wykres zależności okresu od długości wahadła

Wykres zależności kwadratu okresu od długości wahadała

Na wykresie zależności kwadratu okresu od długości wahadła linia trendu ma współczynnik kierunkowy równy 3,902. Z zależności $a=\frac{4\pi^2}{g}$ otrzymujemy, że wartość przyspieszenia ziemskiego można policzyć korzystając ze wzoru $g=\frac{4\pi^2}{a}$. Po podstawieniu za zmienną a wartość wyznaczonego wspołczynnika kierunkowego, przyspieszenie ziemskie wyniesie $g=\frac{4\pi^2}{3,902}\approx 10,12\,\frac{\mathrm{m}}{\mathrm{s}^2}$

4 Wnioski

Uzyskane przez nas wyniki odbiegają od wartości rzeczywistej oraz nie mieszczą się w wyliczonym zakresie niepewności rozszerzonej. Wpływ na to mogło mieć m.in. brak uwzględnienia błędu pomiaru czasu wynikającego z czasu reakcji człowieka oraz wahadło odbiegające od cech wahadła matematycznego.