

Lógica para Programação

Solução do Segundo Teste

11 de Junho de 2012

B. as regras e os factos;C. os objectivos e os factos;

D. as regras, os objectivos e os factos.

18:30-20:00

Nome:	Número:
	Para cada uma das seguintes questões, indique se é verdadeira ou falsa. Cada osta certa vale 0.5 valores e cada resposta errada desconta 0.2 valores.
(a)	Uma interpretação é uma função que tem como domínio as entidades da con ceptualização e como contradomínio as entidades da linguagem. Resposta: Falsa
(b)	A resolução SLD assenta numa estratégia de resolução linear. Resposta: Verdadeira
(c)	Para usar resolução com as cláusulas de Horn, um dos resolventes tem de se necessariamente um objectivo. Resposta: Falsa
(d)	Uma função de selecção permite escolher o literal de uma cláusula objectivo como candidato na aplicação do princípio da resolução. Resposta: Verdadeira
	Escolha a <i>única</i> resposta <i>correcta</i> para as seguintes questões. Cada resposta a vale 1 valor e <i>cada resposta errada desconta 0.4 valores</i> .
(a)	Seja $s_1 = \{f(a)/x, f(y)/y, y/z\}$ e $s_2 = \{b/x, z/y, g(x)/z, b/w\}$. Considerando que x, y, z e w são variáveis, o valor de $s_1 \circ s_2$ é dado por: A. $\{f(a)/x, f(z)/y, b/w\}$
	B. $\{f(a)/x, f(b)/y, b/w\}$ C. $\{f(a)/x, f(z)/y\}$ D. $\{f(a)/x, f(x)/y, y/z, b/x, z/y, g(x)/z, b/w\}$
	Resposta:
(b)	A. Dizem-se cláusulas determinadas
(5)	A. as regras e os objectivos;

Resposta:

В

3. Considere os seguintes predicados

$$Nasceu(x,y)=x$$
 nasceu no país y
$$Joga_Selecc\~ao(x,y)=x \ {\it joga}\ {\it na}\ {\it selecç\~ao}\ {\it do}\ {\it país}\ y$$

$$Igual(x,y)=x\ {\it \'e}\ {\it igual}\ {\it a}\ y,$$

as constantes Portugal, Rui_Patricio e Cristiano_Ronaldo, e a função

$$posic\~ao_de(x)$$
 = a posição de x .

Represente em Lógica de Primeira Ordem as seguintes frases:

(a) (0.5) O Cristiano Ronaldo e o Rui Patrício não jogam na mesma posição.

Resposta:

```
\neg Igual(posic\~ao\_de(Cristiano\_Ronaldo), posic\~ao\_de(Rui\_Patricio))
```

(b) (0.5) Nem todos os jogadores da selecção portuguesa nasceram em Portugal.

Resposta:

```
\exists x[Joga\_Selecc\~ao(x, Portugal) \land \neg nasceu(x, Portugal)]
```

4. **(1.5)** Usando dedução natural, prove que a seguinte *fbf* é um teorema. Esta *fbf* corresponde a uma das regras de De Morgan para quantificadores, também conhecidas por segundas leis de De Morgan.

$$\neg \exists x [P(x)] \leftrightarrow \forall x [\neg P(x)]$$

Número: _____ Pág. 3 de 7

1
$$\neg \exists x[P(x)]$$
 Hyp

2 $x_0 \mid P(x_0)$ Hyp

3 $\exists I, 2$

4 $\neg \exists x[P(x)]$ Rei, 1

5 $\neg P(x_0)$ $\neg I, (1, (2, 3))$

6 $\forall x[\neg P(x)]$ $\forall I, (2, 5)$

7 $\neg \exists x[P(x)] \rightarrow \forall x[\neg P(x)]$ Hyp

9 $\exists x[P(x)]$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

11 $x_0 \mid P(x_0)$ Hyp

12 $x_0 \mid P(x_0)$ Hyp

13 $x_0 \mid P(x_0)$ Hyp

14 $x_0 \mid P(x_0)$ Hyp

15 $x_0 \mid P(x_0)$ Hyp

16 $x_0 \mid P(x_0)$ Hyp

17 $x_0 \mid P(x_0)$ Hyp

18 $x_0 \mid P(x_0)$ Hyp

19 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

11 $x_0 \mid P(x_0)$ Hyp

12 $x_0 \mid P(x_0)$ Hyp

13 $x_0 \mid P(x_0)$ Hyp

14 $x_0 \mid P(x_0)$ Hyp

15 $x_0 \mid P(x_0)$ Hyp

16 $x_0 \mid P(x_0)$ Hyp

17 $x_0 \mid P(x_0)$ Hyp

18 $x_0 \mid P(x_0)$ Hyp

19 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

11 $x_0 \mid P(x_0)$ Hyp

12 $x_0 \mid P(x_0)$ Hyp

13 $x_0 \mid P(x_0)$ Hyp

14 $x_0 \mid P(x_0)$ Hyp

15 $x_0 \mid P(x_0)$ Hyp

16 $x_0 \mid P(x_0)$ Hyp

17 $x_0 \mid P(x_0)$ Hyp

18 $x_0 \mid P(x_0)$ Hyp

19 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

11 $x_0 \mid P(x_0)$ Hyp

12 $x_0 \mid P(x_0)$ Hyp

13 $x_0 \mid P(x_0)$ Hyp

14 $x_0 \mid P(x_0)$ Hyp

15 $x_0 \mid P(x_0)$ Hyp

16 $x_0 \mid P(x_0)$ Hyp

17 $x_0 \mid P(x_0)$ Hyp

18 $x_0 \mid P(x_0)$ Hyp

19 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

11 $x_0 \mid P(x_0)$ Hyp

12 $x_0 \mid P(x_0)$ Hyp

13 $x_0 \mid P(x_0)$ Hyp

14 $x_0 \mid P(x_0)$ Hyp

15 $x_0 \mid P(x_0)$ Hyp

16 $x_0 \mid P(x_0)$ Hyp

17 $x_0 \mid P(x_0)$ Hyp

18 $x_0 \mid P(x_0)$ Hyp

19 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

11 $x_0 \mid P(x_0)$ Hyp

12 $x_0 \mid P(x_0)$ Hyp

13 $x_0 \mid P(x_0)$ Hyp

14 $x_0 \mid P(x_0)$ Hyp

15 $x_0 \mid P(x_0)$ Hyp

16 $x_0 \mid P(x_0)$ Hyp

17 $x_0 \mid P(x_0)$ Hyp

18 $x_0 \mid P(x_0)$ Hyp

19 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

10 $x_0 \mid P(x_0)$ Hyp

11 $x_0 \mid P(x_0)$ Hyp

12 $x_0 \mid P(x_0)$ Hyp

13 $x_0 \mid P(x_0)$ Hyp

14 $x_0 \mid P(x_0)$ Hyp

15 $x_0 \mid P(x_0)$ Hyp

16 $x_0 \mid P(x_0)$ Hyp

17 $x_0 \mid P(x_0)$ Hyp

18 $x_0 \mid P(x_0)$ Hyp

19 x_0

5. **(1.0)** Transforme a seguinte *fbf* da lógica de primeira ordem em forma clausal.

$$\exists x [A(x)] \land \forall x, y [B(x) \to (\exists w [C(y, x, w)] \land \exists z [D(z, x)])] \land \exists x [E(x) \lor F(x)]$$

- (a) Eliminação de \rightarrow : $\exists x[A(x)] \land \forall x, y[\neg B(x) \lor (\exists w[C(y, x, w)] \land \exists z[D(z, x)])] \land \exists x[E(x) \lor F(x)]$
- (b) Redução do domínio de ¬: já está.
- (c) Normalização de variáveis: $\exists x[A(x)] \land \forall z, y[\neg B(z) \lor \exists w[C(y,z,w)] \land \exists r[D(r,z)])] \land (\exists s[E(s) \lor F(s)]$
- (d) Eliminação de \exists : $A(sk_1) \wedge \forall z, y[\neg B(z) \vee (C(y,z,skf_1(z,y)) \wedge D(skf_2(z,y),z))] \wedge (E(sk_2) \vee F(sk_2))$
- (e) Mover \forall para esquerda: $\forall z, y[A(sk_1) \land (\neg B(z) \lor (C(y, z, skf_1(z, y)) \land D(skf_2(z, y), z))) \land (E(sk_2) \lor F(sk_2))]$
- (f) Eliminação de \forall : $A(sk_1) \wedge (\neg B(z) \vee (C(y,z,skf_1(z,y)) \wedge D(skf_2(z,y),z))) \wedge (E(sk_2) \vee F(sk_2))$
- (g) Obtenção da forma conjuntiva normal: $A(sk_1) \wedge (\neg B(z) \vee C(y,z,skf_1(z,y))) \wedge (\neg B(z) \vee D(skf_2(z,y),z)) \wedge (E(sk_2) \vee F(sk_2))$
- (h) Eliminação de \land : $\{A(sk_1), \neg B(z) \lor C(y, z, skf_1(z, y)), \neg B(z) \lor D(skf_2(z, y), z), (E(sk_2) \lor F(sk_2))\}$

Número: Pág. 4 de 7

(i) Eliminação de
$$\vee$$
: $\{\{A(sk_1)\}, \{\neg B(z), C(y,z,skf_1(z,y))\}, \{\neg B(z), D(skf_2(z,y),z)\}, \{E(sk_2), F(sk_2)\}\}$

6. **(1.0)** Sabendo que $\{\{\neg F(x), G(x)\}, \{\neg G(y), H(x)\}, \{F(a)\}, \{\neg H(a)\}\}\$ é a forma clausal da fórmula $\neg \alpha$, recorrendo ao que aprendeu relativamente ao Universo de Herbrand, prove que α é um teorema.

Resposta:

Para provar que α é um teorema há que provar que a sua negação não é satisfazível. Ora de acordo com o teorema de Herbrand, um conjunto de cláusulas não é satisfazível se e só se um conjunto finito de instâncias das suas cláusulas não for satisfazível. Assim sendo, uma solução passaria por transformar $\neg \alpha$ num conjunto de cláusulas (o conjunto dado) e, de seguida, provar que existe um conjunto finito das suas instâncias que não é satisfazível. Tendo em conta a forma clausal dada, como $\{\{\neg F(a), G(a)\}, \{\neg G(a), H(a)\}, \{\neg H(a)\}\}$ não é satisfazível está concluída a demonstração.

7. (1.0) Considerando o programa em lógica

$$A(f(g(x))) \leftarrow A(g(x)), A(f(x))$$

 $A(f(0)) \leftarrow$
 $A(g(y)) \leftarrow$

e o objectivo $\leftarrow A(f(g(x)))$, desenhe a árvore SLD parcial usando a função de selecção que escolha para unificar o primeiro literal do objectivo. A árvore SLD parcial que se pretende deve conter no máximo três nós bem sucedidos. Indique as respostas representadas nesta árvore.

Resposta:

A árvore SLD:

As respostas correspondentes são x = 0, x = g(0) e x = g(g(0)).

- 8. Implemente em PROLOG os seguintes predicados:
 - (a) (1.5) nth (Pos, Lista, Elem) o qual afirma que Elem é o elemento que ocupa a posição Pos da lista Lista. Por exemplo:

Número: _____ Pág. 5 de 7

false.

Resposta:

```
nth(1, [Elem|_], Elem1) :-
     !, Elem = Elem1.
nth(Pos, [_|Tail], Elem) :-
     Pos_1 is Pos - 1,
     nth(Pos_1, Tail, Elem).
```

(b) (1.0) menorPosLista (Pos, Comp, Lista) o qual afirma que o elemento que ocupa a posição Pos em Lista é menor que Comp. Deve usar o predicado nth definido anteriormente (se não o implementou, suponha-o definido). Por exemplo:

9. Considere o seguinte programa em PROLOG:

```
serie(grimm).
serie(galáctica).
serie('csi NY').
canalTV(axn).
canalTV(mov).
policial('csi NY').
passa1(S, C) :- !, serie(S), canalTV(C).
passa2(S, C) :- serie(S), !, canalTV(C).
passa3(S, C) :- serie(S), canalTV(C), !.
gosta1('Alberto', S) :- serie(S), not(policial(S)).
gosta2('Alberto', S) :- not(policial(S)), serie(S).
```

(a) (1.5) Considerando que escreveu ";" as vezes necessárias, indique todos os valores devolvidos para cada um dos objectivos passa1 (X, Y), passa2 (X, Y) e passa3 (X, Y). Justifique a sua resposta.

```
?- passal(X, Y).
X = grimm,
Y = axn;
X = grimm,
Y = mov;
X = 'galáctica',
Y = axn;
X = 'galáctica',
Y = mov;
```

Número: _____ Pág. 6 de 7

```
X = 'csi NY',
Y = axn;
X = 'csi NY',
Y = mov.
?- passa2(X, Y).
X = grimm,
Y = axn;
X = grimm,
Y = mov.
?- passa3(X, Y).
X = grimm,
Y = axn.
```

No primeiro caso o corte impediria apenas unificações com outro passal (caso existisse); no segundo caso, as alternativas à primeira série encontrada já não são exploradas; no último caso são cortadas também as alternativas ao primeiro canalTV.

(b) (1.0) Considerando que escreveu ";" as vezes necessárias, indique todos os valores devolvidos para cada um dos objectivos gostal ('Alberto', S) e gostal ('Alberto', S). Justifique a sua resposta.

Resposta:

```
?- gosta1('Alberto', S).
S = grimm;
S = 'galáctica';
false.
?- gosta2('Alberto', S).
false.
```

No primeiro caso apenas S = 'csi NY' não é solução, dado que o Alberto não gosta de policiais e surge na base de conhecimento que esta série é um policial. No segundo caso, dado que surge em primeiro lugar o literal negado, este é resolvido não tendo a variável instanciada. Ora como existe um policial, not (policial(S)) vai ser avaliado como false, logo é este o resultado devolvido.

- 10. Considere o projecto que implementou este ano em LP.
 - (a) (1.0) Suponha que em vez de um tabuleiro com 9 posições, tem em mãos um tabuleiro com 4 posições (top, left), (top, right), (bottom, left), (bottom, right) e que qualquer tipo de peça pode ser usado. Defina o predicado coloca/4, em que, tal como no projecto, o seu primeiro argumento indica a peça em jogo, o segundo e o terceiro a posição ocupada no tabuleiro (linha e coluna, respectivamente); o último argumento representa o tabuleiro em questão. Assuma também, tal como no projecto, que o tabuleiro é representado por uma lista cujas posições correspondem à da matriz, percorrendo-a da esquerda para a direita e de cima para baixo.

```
coloca(Peca, top, left, [Peca, _, _, _]).
coloca(Peca, top, right, [_, Peca, _, _]).
coloca(Peca, bottom, left, [_, _, Peca, _]).
coloca(Peca, bottom, right, [_, _, _, Peca]).
```

Número: _____ Pág. 7 de 7

(b) (1.0) Considere agora o predicado linhaDuplaVertical/3, em que o primeiro argumento representa a peça a colocar, o segundo a linha onde deve ser colocada (top ou bottom) e, o terceiro, o tabuleiro. Implemente este predicado em PROLOG, tendo em conta a matriz de quatro posições.

Resposta:

(c) (1.0) Considere agora a versão negada do predicado anterior que indica onde não deve ser colocada a peça no tabuleiro (linhaDuplaVerticalNeg/3). Ao contrário do predicado definido no projecto, assuma que este recebe na segunda posição a linha onde a peça não deve ser colocada (top ou bottom) e não uma lista com posições onde a peça não pode ser colocada. Implemente este predicado tendo em conta o tabuleiro de 4 posições. Deve usar o predicado linhaDuplaVertical/3.

Resposta:

(d) (1.0) Imagine a pista pares/2 que recebe uma peça e um tabuleiro e indica que esta pode ser colocada numa das posições pares desse tabuleiro (isto é, posição 2, 4, 6, etc. da lista que representa o tabuleiro). Supondo o tabuleiro de 4 posições, implemente este predicado em PROLOG.

Resposta:

11. **(1.5)** Determine o unificador mais geral para o seguinte conjunto de *fbfs*. Apresente todos os passos intermédios.

$$\Delta = \{ P(a, f(x), g(z)), P(x, f(a), y) \}$$

Resposta:

Conjunto	Conjunto de desacordo	Substituição
$\{P(a, f(x), g(z)), P(x, f(a), y)\}$	$\{a,x\}$	$\{a/x\}$
$\{P(a, f(a), g(z)), P(a, f(a), y)\}$	$\{g(z),y\}$	g(z)/y
$\{P(a, f(a), g(z))\}$		

O unificador mais geral é $\{a/x, g(z)/y\}$.