$\begin{array}{c} {\rm Universit\acute{e}\ Toulouse\ III-Paul\ sabatier} \\ {\rm L2\ Informatique} \end{array}$

Architecture des systèmes Informatiques — TD

Semestre 3

Table des matières

Chapitre

1

Numérotation et codage TD optionnel

1.1 Numérotation

1.1.1 Réaliser l'opération suivante en binaire : $(1101011 - 10110) \times 11001$

$$(110\ 1011)_2 = (107)_{10}$$

$$(1\ 0110)_2 = (22)_{10}$$

$$(1\ 1001)_2 = (22)_{10}$$

$$- \frac{1}{1} \frac{1}{0} \frac{1}{1} \frac$$

1.1.2 Réaliser les opérations suivantes en hexadécimal : (389A+7293)-EB2

$$\begin{array}{rcrrr}
 & 3 & 6 & 3 & A \\
 & + & 7 & 2 & 9 & 3 \\
\hline
 & A & B & 2 & B \\
 & - & E & B & 2 & B \\
\hline
 & 9 & C & 7 & B \\
\end{array}$$

$$(389A)_{16} = (0011 \ 1000 \ 1001 \ 1010)_{2} \\
(7293)_{16} = (0111 \ 0010 \ 1001 \ 0011)_{2} \\
(AB2B)_{16} = (1010 \ 1011 \ 0010 \ 1101)_{2} \\
(EB2B)_{16} = (0000 \ 1110 \ 1011 \ 0010)_{2}$$

 $(9C7B)_{16} = (1001\ 1100\ 0111\ 1011)_2$

1.1.3 Effectuer les conversions ci-dessous

1.1.3.1
$$(1447.140625)_{10} = (??)_2 = (??)_{16}$$

$$1447 \div 16 = 90 R = 7$$

$$90 \div 16 = 5 R = A$$

$$5 \div 16 = 0 R = 5$$

$$(1447)_{10} = (5A7)_{16}$$

$$0.140625 \times 16 = 2.25$$

$$0.25 \times 16 = 4.00$$

$$(0.140625)_{10} = (0.24)_{16}$$

$$(1447.140625)_{10} = (5A7.24)_{16} = (0101\ 1010\ 0111.0010\ 0100)_{2}$$

1.1.3.2 $(1111100101.01011)_2 = (??)_{10} = (??)_{16}$

$$(11\ 1110\ 0101.0\ 1011)_2 = (3E5; 58)_{16}$$

$$3E5 = (3 \times 16^2 + 14 * 16 + 5 + 5 \times 16^{-1} + 8 \times 16^{-2}$$

$$= (997, 34375)_{10}$$

1.2 Codage

1.2.1 Codage de nombres entiers relatifs

On veut coder des entiers relatifs sur 16 chifffres binaires (deux octets).

	Valeur absolue		Valeur relative		
Base 10	Base 2	Base 16	Valeur absolue +	Complément à 2	
			signe		
35671	10000 010 0101 0111	75B8	Hors intervalle	Hors intervalle	
-32768	1000 0000 0000 0000	8000	Hors intervalle	1000 0000 0000	
46443	1011 0101 0110 1011	B56B	Hors intervalle	Hors intervalle	
-19536	0100 1100 0110 0100	4C64	1100 1100 0110 0100	1011 0011 1001 1100	
-19040	0100 1010 0110 0000	4A60	1100 1010 0110 0000	1011 0101 1010 0000	

1.2.1.1 Calcul de la valeur absolue en base 2

$$3567 \div 16 = 229 \text{ et reste } 7$$

 $2229 \div 16 = 139 \text{ et reste } 5$
 $139 \div 16 = 8 \text{ et reste } 8$
 $8 \div 16 = 0 \text{ et reste } 8$

$$\Rightarrow (35671)_{10} = (8B57)_{16} = (1000\ 1010\ 0101\ 0111)_2$$

Afin de pouvoir représenter un nombre celui-ci ne doit pas dépasser un certain intervalle :

Entier naturel $[0; 2^{16-1}] = [0; 65535]$

Valeur absolue + signe $[-2^{15-1}; 2^{15-1}] = [-16384; 16384]$

Complément à deux $[-2^{15}; 2^{15}] = [-32768; 32768]$

1.2.2 Convertir un nombre flottant en décimal

$$C = E + biais$$

En simple précision biais = 127.

$$S = 0 \rightarrow \text{ positif}$$
 $C = 129$
 $E = C - 127 = 2$
 $1.M = 1.111 \Rightarrow 1.111 \times 2^2 = 111.1 \times 2^0 = (7.5)_{10}$

1.2.3 Convertir un nombre décimal en flottant

$$(35.5)_{10} = ?$$
 $100011.1 = 10000111 \times 2^{5}$

Nombre positif donc $S = 0$

$$E = 5$$

$$C = E + 127 = 132 = 128 + 4 = (10000100)_{2}$$

$$1.M = 1.00011$$

$$M = 0011$$

Algèbre de Bool

2.1 Table de vérité des opérateurs classiques

2.1.1 Exercice 1

2.1.1.1 A – Démontrer que les opérateurs NAND et NOR sont des opérateurs complets

$$\bar{A} = A|A$$

$$A.B = \overline{\overline{A.B}} = \overline{\overline{A} + \overline{B}} = \overline{A/B} = (A|B)|(A|B)$$

$$A + B = \overline{\overline{A} + \overline{B}} = \overline{\overline{A} + \overline{B}} = (A|B)|(B|B)$$

$$\bar{A} = \overline{\overline{A + A}} = A \downarrow A$$

$$A.B = \overline{\overline{A.B}} = \overline{\overline{A} + \overline{B}} = A \downarrow B \downarrow (\downarrow B \downarrow B)$$

2.1.1.2 B-

1.
$$f(A,B,C,D) = \bar{A}B\bar{D} + B\bar{C} + A\bar{C}D = \overline{\bar{A}B\bar{D} + B\bar{C} + A\bar{C}D} = (\bar{B}\bar{D}).(\overline{A\bar{C}D}) = ((A|A)|B((D|D)))|(B|(C|C))|(A|(C|C)|D)$$

2.
$$\underline{f(A,B,C,D) = (A+B)(\bar{C}+\bar{D})(\bar{A}+\bar{B}+\bar{C})} = \overline{(A+B)(\bar{C}+\bar{B})(\bar{A}+\bar{B}+\bar{C})} = \overline{(A+B)(\bar{C}+\bar{B})(\bar{A}+\bar{B}+\bar{C})} = \overline{(A|A)(B|B)|(C|D)|(A|B|C)} = ((A|A)(B|B)|(C|D)|(A|B|C))|((A|A)(B|B)|(C|D)|(A|B|C)) = ((A\downarrow B)\downarrow (C\downarrow C)\downarrow (D\downarrow D)\downarrow (A\downarrow A)\downarrow (B\downarrow B)\downarrow (C\downarrow C))$$

2.1.2 Exercice 3

2.1.2.1 1

2.1.2.2 2

00	1	1	1	
01				1
11		1	1	
10		1		

2.1.2.3 3

 $f(w, x, y, z) = \sum m(0, 1, 5, 7, 8, 10, 14, 15) = \bar{w}\bar{x}\bar{y} + \bar{w}xz + wxy + w\bar{x}\bar{z}$

		00	01	11	10
_	00	1	1		
	01		1	1	
	11			1	1
	10	1			1

2.1.3 4

00 | 01 | 11 | 10 |

2.1.4 5

00 | 01 | 11 | 10 |

2.1.5 9

 $f(w,x,y,z) = \Pi M(1,3,4,9,11,14) CI(w,x,y,z) = (x+\bar{z})(\bar{x}+z)$

	00	01	11	10
00		0	0	
01	0			*
11	*	*		0
10		0	0	

2.1.6 11

 $f(w,x,y,z) = \sum m(0,1,3,5,6,7,11,13,14,15)CI(w,x,y,z) = 4$ $f(w,x,y,z) = \bar{y}\bar{w} + yz + xy + xz$

	00	01	11	10
00	1	1	1	
01	*	1	1	1
11		1	1	1
10			1	

Fonctions logiques

3.1 Exercice 1 : Simplifications algébriques

3.1.1

$$F_{1} = (x + y + z).(\bar{x} + \bar{y} + z + xy + \bar{x}\bar{y})$$

$$= (x + y + z).(\bar{x} + \bar{y} + z + xy + \bar{x}\bar{y})$$

$$= (x + y + z)(\bar{x} + \bar{y}(1 + \bar{x}) + z + xy)$$

$$= (x + y + z)(\bar{x} + \bar{y} + z + xy)$$

$$= (x + y + z)(\bar{x}\bar{y} + xy + z)$$

$$= (x + y + z)(1 + z)$$

$$F_{1} = x + y + z$$

3.1.2

$$F_{2} = \sum_{\bar{x}y\bar{z}\bar{w} + \bar{x}y\bar{z}\bar{w} + \bar{x}yz\bar{w} + \bar{x}yz\bar{w} + \bar{x}yz\bar{w} + xyz\bar{w} + xyz\bar{w} + xyz\bar{w}$$

$$= \bar{x}\bar{z}\bar{w}(y+\bar{y}) + \bar{x}yz(w+\bar{w}) + xyz(w+\bar{w})$$

$$= \bar{x}\bar{z}\bar{w} + \bar{x}yz + xyz$$

$$= \bar{x}\bar{z}\bar{w} + xy(x+\bar{x})$$

$$F_{2} = \bar{x}\bar{z}\bar{w} + xy$$

3.2 Exercice 2 : Formes canoniques

3.2.1

$$G_1 = I_1 + I_2$$
 avec $I_1 = \sum m(0,4,6)$ et $I_2 = \prod M(1,4,5)$
$$G_1 = \sum m(0,4,6) + \prod M(1,4,5)$$

$$= \sum m(0,4,6) + \sum m(0,2,3,6,7)$$

$$G_1 = \sum m(0,2,3,4,6,7) \Rightarrow \text{ Forme canonique Disjonctive }$$

$$G_1 = \prod M(1,5) \Rightarrow \text{ Forme Canonique Conjonctive }$$