Dynamic Programming

Outline

- Introduction
- The resource allocation problem
- The traveling salesperson (TSP) problem
- Longest common subsequence problem
- 0/1 knapsack problem
- The optimal binary tree problem
- Matrix Chain-Products

Fibonacci sequence

■ **Fibonacci sequence**: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

$$F_{i} = i \qquad \text{if } i \leq 1$$

$$F_{i} = F_{i-1} + F_{i-2} \quad \text{if } i \geq 2$$

Solved by a recursive program:

- Much replicated computation is done.
- A simple loop should solve it.

Dynamic Programming

 Dynamic Programming is an algorithm design method that can be used when the solution to a problem may be viewed as the result of a sequence of decisions

DP using The shortest path problem

■ To find the shortest path in a **multi-stage** graph

Apply the greedy method :

The shortest path from S to T:

$$1 + 2 + 5 = 8$$

The shortest path in multistage graphs

- The greedy method can not be applied to this case: (S, A, D, T)1+4+18 = 23.
- The actual shortest path is:

$$(S, C, F, T)$$
 $5+2+2=9$.

Dynamic programming approach

• $d(A,T) = min\{4+d(D,T), 11+d(E,T)\}$ = $min\{4+18, 11+13\} = 22$.

Dynamic programming

- $d(B, T) = min\{9+d(D, T), 5+d(E, T), 16+d(F, T)\}$ = $min\{9+18, 5+13, 16+2\} = 18.$
- $d(C, T) = min\{ 2+d(F, T) \} = 2+2 = 4$
- $d(S, T) = min\{1+d(A, T), 2+d(B, T), 5+d(C, T)\}$ $= min\{1+22, 2+18, 5+4\} = 9.$
- The above way of reasoning is called <u>backward reasoning</u>.

Forward reasoning

Forward reasoning

• d(S, A) = 1 d(S, B) = 2d(S, C) = 5

Principle of optimality

- Principle of optimality: Suppose that in solving a problem, we have to make a sequence of decisions $D_1, D_2, ..., D_n$. If this sequence is optimal, then the last k decisions, 1 < k < n, must be optimal.
- e.g. the shortest path problem
 - If $i_1, i_2, ..., j$ is a shortest path from i to j, then $i_1, i_2, ..., j$ must be a shortest path from i_1 to j
- In summary, if a problem can be described by a multistage graph, it can be solved by dynamic programming.

Dynamic programming

- Forward approach and backward approach:
 - Note that if the recurrence relations are formulated using the forward approach, then the relations are solved backward. i.e., beginning with the last decision
 - On the other hand, if the relations are formulated using the backward approach, they are solved forwards.
- To solve a problem by using dynamic programming:
 - Prove the optimality
 - Find out the recurrence relations.
 - Represent the problem by a multistage graph.

The resource allocation problem

The resource allocation problem

m resources, n projects

profit p(i, j): j resources are allocated to project i. P(i, 0)=0 for each i

maximize the total profit.

Resource			
Project	1	2	3
1	2	8	9
2	5	6	7
3	4	4	4
4	2	4	5

- To make a sequence of decision to determine the number
- \blacksquare Resources to be allocated to project i.

The multistage graph solution

- The resource allocation problem can be described as a multistage graph.
- (i, j): i resources allocated to projects 1, 2, ..., j

e.g. node H=(3, 2): 3 resources allocated to projects 1, 2.

Resource			
Project	1	2	3
1	2	8	9
2	5	6	7
3	4	4	4
4	2	4	5

■To get the maximum profit = find the longest path from S to T.

Backward reasoning approach

2) Having obtained the longest paths from I, J, K and L to T, we can obtain the longest paths from E, F, G and H to T easily. For instance, the longest path from E to T is determined as follows:

$$d(E, T) = \max\{d(E, I) + d(I, T), d(E, J) + d(J, T), d(E, K) + d(K, T), d(E, L) + d(L, T)\}$$

$$= \max\{0 + 5, 4 + 4, 4 + 2, 4 + 0\}$$

$$= \max\{5, 8, 6, 4\}$$

$$= 8.$$

(3) The longest paths from A, B, C and D to T respectively are found by the same method and shown in Figure L.

(4) Finally, the longest path from S to T is obtained as follows:

$$d(S, T) = \max\{d(S, A) + d(A, T), d(S, B) + d(B, T), d(S, C) + d(C, T), d(S, D) + d(D, T)\}$$

$$= \max\{0 + 11, 2 + 9, 8 + 5, 9 + 0\}$$

$$= \max\{11, 11, 13, 9\}$$

$$= 13.$$

The longest path is

$$S \to C \to H \to L \to T$$
.

• Find the longest path from S to T :

$$(S, C, H, L, T), 8+5+0+0=13$$

- 2 resources were allocated to Project 1.
- 1 resource was allocated to Project 2.
- 0 resources were allocated to Projects 3 and 4.

Resource			
Project	1	2	3
1	2	(8)	9
2	(5)	6	7
3	4	4	4
4	2	4	5

The Traveling Salesperson Problem (TSP)

The traveling salesperson problem (TSP)

• e.g. a directed graph:

Cost matrix:

	1	2	3	4	
1	∞	2	10	5	1
2	2	∞	9	∞	l
3	4	3	∞	4	l
4	6	8	7	∞	

The multistage graph solution

- A multistage graph can describe all possible tours of a directed graph.
- Find the shortest path:

$$(1, 4, 3, 2, 1)$$
 5+7+3+2=17

The representation of a node

- Suppose that we have six vertices in the graph.
- We can combine $\{1, 2, 3, 4\}$ and $\{1, 3, 2, 4\}$ into one node.

• (3),(4, 5, 6) means that the last vertex visited is 3 and the remaining vertices to be visited are (4, 5, 6).

The dynamic programming approach

- Let **g(i, S)** be the length of the shortest path starting at vertex 1, going through all vertices in S, and terminating at vertex 1.
- The length of an optimal tour :

$$g(1, V \setminus \{1\}) = \min_{2 \le k \le n} \{c_{1k} + g(k, V \setminus \{1, k\})\}$$

The general form:

■ Time complexity:

$$n + \sum_{k=2}^{n} (n-1)\binom{n-2}{n-k} (n-k) \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$= O(n^{-2} 2^{n}) \qquad (n-1)(n-k)$$

The longest common subsequence (LCS) problem

The longest common subsequence (LCS) problem

- A string : A = b a c a d
- A <u>subsequence</u> of A: deleting 0 or more symbols from A (not necessarily consecutive).

e.g. ad, ac, bac, acad, bacad, bcd.

- Common subsequences of A = b a c a d and B = a c c b a d c b : ad, ac, bac, acad.
- The longest common subsequence (LCS) of A and B: a c a d.

Determine the length of the LCS

- Instead of finding the longest common subsequence, let us try to determine the length of the LCS.
- Then, tracking back to find the LCS.
- Consider $a_1 a_2 \dots a_m$ and $b_1 b_2 \dots b_n$.
- Case 1: $a_m = b_n$. The LCS must contain a_m ; we must find the LCS of $a_1 a_2 ... a_{m-1}$ and $b_1 b_2 ... b_{n-1}$.
- Case 2: $a_m \neq b_n$. We have to find the LCS of $a_1 a_2 ... a_{m-1}$ and $b_1 b_2 ... b_n$, and $a_1 a_2 ... a_m$ and $b_1 b_2 ... b_{n-1}$

The LCS algorithm

- Let $A = a_1 a_2 ... a_m$ and $B = b_1 b_2 ... b_n$
- Let $L_{i,j}$ denote the length of the longest common subsequence of $a_1 a_2 \dots a_i$ and $b_1 b_2 \dots b_i$.
- $\begin{array}{c} \blacksquare \quad L_{i,j} = \int\limits_{i-1,j-1} L_{i-1,j-1} + 1 & \text{if } a_i = b_j \\ \max \{ \ L_{i-1,j}, \ L_{i,j-1} \ \} & \text{if } a_i \neq b_j \\ L_{0,0} = L_{0,j} = L_{i,0} = 0 & \text{for } 1 \leq i \leq m, \ 1 \leq j \leq n. \end{array}$

The dynamic programming approach for solving the LCS problem:

■ Time complexity: O(mn)

Tracing back in the LCS algorithm

• e.g. A = b a c a d, B = a c c b a d c b

						В				
			a	c	c	b	a	d	c	b
		0	0	0	0	0	0	0	0	0
	b	0	- 0	0	0	1.	1	1	1	1
	a	0		←1 κ	1	1	2	2	2	2
A	c	0	1	2	2	€2 №	2 2 3	2	3	3
	a	0	1	2	2 2	2	3	3	3	3
	d	0	1	2	2	2	3	4	← 4 <	-4

■ After all L_{i,j}'s have been found, we can trace back to find the longest common subsequence of A and B.

0/1 knapsack problem

0/1 knapsack problem

■ n objects, weight $W_1, W_2, ..., W_n$ profit $P_1, P_2, ..., P_n$ capacity M maximize $\sum_{1 \le i \le n} P_i x_i$ subject to $\sum_{1 \le i \le n} W_i x_i \le M$ $x_i = 0$ or $1, 1 \le i \le n$

• e. g.

i	W_{i}	P_{i}	_
1	10	40	M=10
2	3	20	
3	5	30	

The multistage graph solution

■ The 0/1 knapsack problem can be described by a multistage graph.

The dynamic programming approach

The longest path represents the optimal solution:

$$x_1=0, x_2=1, x_3=1$$

 $\sum P_i x_i = 20+30 = 50$

- Let f_i(Q) be the value of an optimal solution to objects 1, 2, 3,..., i with capacity Q.
- $f_i(Q) = \max\{f_{i-1}(Q), f_{i-1}(Q-W_i)+P_i\}$ = $\max\{\Re i @ 不選獲利,第i@必選獲利\}$
- The optimal solution is $f_n(M)$.

$$f_n(M) = \max\{f_{i-1}(M), f_{i-1}(M-W_i) + P_i\}$$

Optimal binary search trees

Optimal binary search trees

• e.g. binary search trees for 3, 7, 9, 12;

$(a_i \rightarrow a_j)$ denote the optimal binary tree containing identifiers a_i to a_i .

 $(a_k, a_i \rightarrow a_j)$ denote an optimal binary tree containing the identifier a_i to a_j and a_k as its root.

$$(1, 1 \rightarrow 2) \quad (2, 1 \rightarrow 2)$$

$$(1 \rightarrow 2)$$

$$1, 2 = \min \left\{ \begin{array}{c} 1 \\ 2 \\ 2 \end{array}, 1 \right\}$$

$$(2 \rightarrow 3)$$

$$2, 3 = \min \left\{ \begin{array}{c} 2 \\ 3 \\ 3 \end{array}, 2 \right\}$$

$$(3, 3 \rightarrow 4) \quad (4, 3 \rightarrow 4)$$

$$3, 4 = \min \left\{ \begin{array}{c} 3 \\ 4 \end{array}, 3 \right\}$$

$$(2, 2 \rightarrow 3) \quad (3, 2 \rightarrow 3)$$

$$(2, 2 \rightarrow 3) \quad (3, 2 \rightarrow 3)$$

Optimal binary tree

- Identifiers stored close to the root of the tree can be searched rather quickly.
- For each identifier a_i , associated with probability P_i .
- For each identifier not stored in tree also given probability Q_i.

Optimal binary search trees

- n identifiers : $a_1 < a_2 < a_3 < ... < a_n$ P_i, $1 \le i \le n$: the probability that a_i is searched.
- Q_i , $0 \le i \le n$: the probability that x is searched where $a_i < x < a_{i+1}$ $(a_0 = -\infty, a_{n+1} = \infty)$.

$$\sum_{i=1}^{n} P_i + \sum_{i=1}^{n} Q_i = 1$$

- Identifiers: 4, 5, 8, 10, 11, 12, 14
- Internal node : successful search, P_i
- External node: unsuccessful search, Qi

• The expected cost of a binary tree:

$$\sum_{i=1}^{n} P_i * level(a_{i}) + \sum_{i=0}^{n} Q_i * (level(E_{i}) - 1)$$
•The level of the root : 1

- The optimal binary tree is a tree with minimal cost.

n	n
$\sum P_i * level(a_i) +$	$\sum Q_i * (level(E_i) - 1)$
n=1	n=0

Node	level	probability	cost
		·	
k1	2	0.15	0.30
k2	1	0.10	0.10
k3	3	0.05	0.15
k4	2	0.10	0.20
K5	3	0.20	0.60
d0	3	0.05	0.10
d1	3	0.10	0.20
d2	4	0.05	0.15
d3	4	0.05	0.15
d4	4	0.05	0.15
d5	4	0.10	0.30

i	0	1	2	3	4	5
P _i		0.15	0.10	0.05	0.10	0.20
Q _i	0.05	0.10	0.05	0.05	0.05	0.10

Total cost=2.4

Node	level	probability	cost
k1	2	0.15	0.30
k2	1	0.10	0.10
k3	4	0.05	0.20
k4	3	0.10	0.30
K5	2	0.20	0.40
d0	3	0.05	0.10
d1	3	0.10	0.20
d2	5	0.05	0.20
d3	5	0.05	0.20
d4	4	0.05	0.15
d5	3	0.10	0.20

i	0	1	2	3	4	5
P _i		0.15	0.10	0.05	0.10	0.20
Q _i	0.05	0.10	0.05	0.05	0.05	0.10

Total cost=2.35

The dynamic programming approach

- Select an identifier, a_k , to be the root of the tree, all identifier a_k (> a_k) will constitute the left (right) descendant.
- Let C(i, j) denote the cost of an optimal binary search tree containing $a_i, ..., a_i$.
- The cost of the optimal binary search tree with a_k as its root:

$$C(1,n) = \min_{1 \le k \le n} \left\{ P_k + \left[Q_0 + \sum_{i=1}^{k-1} (P_i + Q_i) + C(1,k-1) \right] + \left[Q_k + \sum_{i=k+1}^n (P_i + Q_i) + C(k+1,n) \right] \right\}$$

General formula

$$C(i, j) = \min_{i \le k \le j} \left\{ P_k + \left[Q_{i-1} + \sum_{m=i}^{k-1} (P_m + Q_m) + C(i, k-1) \right] + \left[Q_k + \sum_{m=k+1}^{j} (P_m + Q_m) + C(k+1, j) \right] \right\}$$

$$= \min_{i \le k \le j} \left\{ C(i, k-1) + C(k+1, j) + Q_{i-1} + \sum_{m=i}^{j} (P_m + Q_m) \right\}$$

$$P_1 \dots P_{k-1}$$

$$Q_0 \dots Q_{k-1}$$

$$Q_k \dots Q_n$$

$$Q_k \dots Q_n$$

$$C(1, k-1)$$

$$C(k+1, n)$$

$$Q_1 \dots Q_n$$

Computation relationships of subtrees

■ e.g. n=4

Time complexity: O(n³)
 when j-i=m, there are (n-m) C(i, j)'s to compute.
 Each C(i, j) with j-i=m can be computed in O(m) time.

$$O(\sum_{1 \le m \le n} m(n-m)) = O(n^3)$$

Find the optimal binary search tree for N = 6, having keys $k_1 \dots k_6$ and weights $p_1 = 10$, $p_2 = 3$, $p_3 = 9$, $p_4 = 2$, $p_5 = 0$, $p_6 = 10$; $q_0 = 5$, $q_1 = 6$, $q_2 = 4$, $q_3 = 4$, $q_4 = 3$, $q_5 = 8$, $q_6 = 0$. The following figure shows the arrays as they would appear after the initialization and their final disposition.

Index	0	1	2	3	4	5	6
k		3	7	10	15	20	25
р	-	10	3	9	2	0	10
q	5	6	4	4	3	8	0

R	0	1	2	3	4	5	6
0		1					
1			2				
2				3			
3					4		
4						5	
5	2						6
6							

W	0	1	2	3	4	5	6
0	5	21	28	41	46	54	64
1		6	13	26	31	39	49
2			4	17	22	30	40
3				4	9	17	27
4					3	11	21
5						8	18
6							0

С	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

- To help our discussion, we define
- C_{ij} = expected time searching keys in $(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j)$
- W_{ij} = sum of the probabilities of keys in in $(k_i, k_{i+1}, ..., k_i; d_{i-1}, d_i, ..., d_i)$

$$w_{i,j} = \sum_{s=i+1}^{j} P_s + \sum_{t=i}^{j} Q_t$$

$$C_{i,j} = \min_{i < k \le j} \{ C_{1,k-1} + C_{k,j} \} + w_{i,j}$$

$$C_{i,i} = w_{i,i}$$

Notations for example

- OBST(i, j) denotes the optimal binary search tree containing the keys ki, ki+1, ..., kj;
- $W_{i,j}$ denotes the weight matrix for OBST(i, j)
- $W_{i,j}$ can be defined using the following formula:

$$W_{i,j} = \sum_{k=i+1}^{j} p_k + \sum_{k=i}^{j} q_k$$

- $C_{i,j}$, $0 \le i \le j \le n$ denotes the cost matrix for OBST(i, j)
- $C_{i,j}$ can be defined recursively, in the following manner:

$$C_{i, i} = W_{i, j}$$

 $C_{i, j} = W_{i, j} + \min_{i < k \le j} (C_{i, k-1} + C_{k, j})$

- $R_{i,j}$, $0 \le i \le j \le n$ denotes the root matrix for OBST(i, j)

The values of the weight matrix have been computed according to the formulas previously stated, as follows:

W
$$(0, 0) = q0 = 5$$

W $(1, 1) = q1 = 6$
W $(2, 2) = q2 = 4$
W $(3, 3) = q3 = 4$
W $(4, 4) = q4 = 3$
W $(5, 5) = q5 = 8$
W $(6, 6) = q6 = 0$

W
$$(0, 1) = q0 + q1 + p1 = 5 + 6 + 10 = 21$$

W $(0, 2) = W(0, 1) + q2 + p2 = 21 + 4 + 3 = 28$
W $(0, 3) = W(0, 2) + q3 + p3 = 28 + 4 + 9 = 41$
W $(0, 4) = W(0, 3) + q4 + p4 = 41 + 3 + 2 = 46$
W $(0, 5) = W(0, 4) + q5 + p5 = 46 + 8 + 0 = 54$
W $(0, 6) = W(0, 5) + q6 + p6 = 54 + 0 + 10 = 64$
W $(1, 2) = W(1, 1) + q2 + p2 = 6 + 4 + 3 = 13$

until we reach: W (5, 6) = a5 + a6 + p6 = 18

--- and so on ---

$$W(5, 6) = q5 + q6 + p6 = 18$$

$$C(0, 0) = W(0, 0) = 5$$

 $C(1, 1) = W(1, 1) = 6$
 $C(2, 2) = W(2, 2) = 4$
 $C(3, 3) = W(3, 3) = 4$
 $C(4, 4) = W(4, 4) = 3$
 $C(5, 5) = W(5, 5) = 8$
 $C(6, 6) = W(6, 6) = 0$

C	0	1	2	3	4	5	6
0	5						
1		6					
2			4				
3				4			
4					3		
5						8	
6							0

rigure 3. Cost maura arter mot step

$$C(0, 1) = W(0, 1) + (C(0, 0) + C(1, 1)) = 21 + 5 + 6 = 32$$

 $C(1, 2) = W(0, 1) + (C(1, 1) + C(2, 2)) = 13 + 6 + 4 = 23$
 $C(2, 3) = W(0, 1) + (C(2, 2) + C(3, 3)) = 17 + 4 + 4 = 25$
 $C(3, 4) = W(0, 1) + (C(3, 3) + C(4, 4)) = 9 + 4 + 3 = 16$
 $C(4, 5) = W(0, 1) + (C(4, 4) + C(5, 5)) = 11 + 3 + 8 = 22$
 $C(5, 6) = W(0, 1) + (C(5, 5) + C(6, 6)) = 18 + 8 + 0 = 26$

^{*}The bolded numbers represent the elements added in the root matrix.

C	0	1	2	3	4	5	6	R	0	1	2	3	4	5	6
0	5	32						0		1					
1		6	23					1			2				
2			4	25				2				3			
3				4	16			3					4		
4					3	22		4						5	
5						8	26	5							6
6							0	6	6						

$$C(0, 2) = W(0, 2) + min(C(0, 0) + C(1, 2), C(0, 1) + C(2, 2)) = 28 + min(28, 36) = 56$$

 $C(1, 3) = W(1, 3) + min(C(1, 1) + C(2, 3), C(1, 2) + C(3, 3)) = 26 + min(31, 27) = 53$
 $C(2, 4) = W(2, 4) + min(C(2, 2) + C(3, 4), C(2, 3) + C(4, 4)) = 22 + min(20, 28) = 42$
 $C(3, 5) = W(3, 5) + min(C(3, 3) + C(4, 5), C(3, 4) + C(5, 5)) = 17 + min(26, 24) = 41$
 $C(4, 6) = W(4, 6) + min(C(4, 4) + C(5, 6), C(4, 5) + C(6, 6)) = 21 + min(29, 22) = 43$

C	0	1	2	3	4	5	6	R	0	1	2	3	4	5	6
0	5	32	56					0		1	1				
1		6	23	53				1			2	3			
2			4	25	42			2				3	3		
3				4	16	41		3					4	5	
4					3	22	43	4						5	6
5						8	26	5							6
6							0	6							

Final array values:

C	0	1	2	3	4	5	6	R	0	1	2	3	4	5	6
0	5	32	56	98	118	151	188	0	0	1	1	2	3	3	3
1		6	23	53	70	103	140	1		0	2	3	3	3	3
2			4	25	42	75	108	2			0	3	3	3	4
3				4	16	41	68	3				0	4	5	6
4					3	22	43	4					0	5	6
5						8	26	5						0	6
6							0	6							0

The resulting optimal tree is shown in the bellow figure and has a weighted path length of 188.

Computing the node positions in the tree:

- The root of the optimal tree is R(0, 6) = k3;
- The root of the left subtree is R(0, 2) = k1;
- The root of the right subtree is R(3, 6) = k6;
- The root of the right subtree of k1 is R(1, 2) = k2
- The root of the left subtree of k6 is R(3, 5) = k5
- The root of the left subtree of k5 is R(3, 4) = k4

http://software.ucv.ro/~cmihaescu/ro/laboratoare/SDA/docs/arboriOptimali_en.pdf

Matrix Chain-Products

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm.
 - Rather than give the general structure, let us first give a motivating example:
 - Matrix Chain-Products
- Review: Matrix Multiplication.
 - C = A *B
 - $A ext{ is } d ext{ } xe ext{ and } B ext{ is } e ext{ } xf$

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] * B[k, j]$$

O(def) time

Matrix-chain multiplication

- n matrices $A_1, A_2, ..., A_n$ with size
 - $p_1 \times p_2$, $p_2 \times p_3$, ..., $p_{n-1} \times p_n$, $p_n \times p_{n+1}$
- A_i with size $p_i \times p_{i+1}$
- To determine the multiplication order such that # of scalar multiplications is minimized.
- To compute $A_i \times A_{i+1}$, we need $p_i p_{i+1} p_{i+2}$ scalar multiplications.
- e.g. n=4, A_1 : 3 × 5, A_2 : 5 × 4, A_3 : 4 × 2, A_4 : 2 × 5 (($A_1 \times A_2$) × A_3) × A_4 , # of scalar multiplications: 3 * 5 * 4 + 3 * 4 * 2 + 3 * 2 * 5 = 114 ($A_1 \times (A_2 \times A_3)$) × A_4 , # of scalar multiplications: 3 * 5 * 2 + 5 * 4 * 2 + 3 * 2 * 5 = 100 (optimal) ($A_1 \times A_2$) × ($A_3 \times A_4$), # of scalar multiplications:

3*5*4+3*4*5+4*2*5=160

- ♦ Note: n個matrix相乘有 $C_{n-1} = \binom{2(n-1)}{n-1} / n$ 種可能的配對組合 (括號方式)
 - Ex: 以下有四個矩陣相乘:

$$A \times B \times C \times D$$

 $20 \times 2 \quad 2 \times 30 \quad 30 \times 12 \quad 12 \times 8$

由Note得知共有五種不同的相乘順序,不同的順序需要不同的乘法 次數:

其中,以第三組是最佳的矩陣相乘順序。

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize $A=A_1*A_2*...*A_n$
- Calculate number of operations for each one
- Pick the one that is best

Running time:

- The number of paranethesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4ⁿ.
- This is a terrible algorithm!

The *n*th Catalan number can be expressed directly in terms of the central binomial coefficients by

$$C_n = rac{1}{n+1}inom{2n}{n} = rac{(2n)!}{(n+1)!\, n!} = \prod_{k=2}^n rac{n+k}{k} \qquad ext{for } n \geq 0.$$

Catalan number

$$C_n = rac{1}{n+1} inom{2n}{n} = rac{(2n)!}{(n+1)!n!}$$

Recursive formula

$$C_0=1 \quad ext{and} \quad C_{n+1}=\sum_{i=0}^n C_i \ C_{n-i} \quad ext{for } n\geq 0.$$

它也滿足

$$C_0 = 1 \quad ext{and} \quad C_{n+1} = rac{2(2n+1)}{n+2} C_n,$$

這提供了一個更快速的方法來計算卡塔蘭數。

卡塔蘭數的漸近增長為

$$C_n \sim rac{4^n}{n^{3/2}\sqrt{\pi}}$$
 https://en.wikipedia.org/wiki/Catalan_number

Examples of Catalan number

• C_n is the number of Dyck words^[4] of length 2n. A Dyck word is a string consisting of n X's and n Y's such that no initial segment of the string has more Y's than X's. For example, the following are the Dyck words up to length 6:

•Re-interpreting the symbol X as an open parenthesis and Y as a close parenthesis, C_n counts the number of expressions containing n pairs of parentheses which are correctly matched:

$$((()))$$
 $(()())$ $(())()$ $()(())$

• C_n is the number of different ways n+1 factors can be completely parenthesized (or the number of ways of associating n applications of a binary operator, as in the matrix chain multiplication problem). For n=3, for example, we have the following five different parenthesizations of four factors:

$$((ab)c)d$$
 $(a(bc))d$ $(ab)(cd)$ $a((bc)d)$ $a(b(cd))$

Examples of Catalan number

• Successive applications of a binary operator can be represented in terms of a full binary tree, by labeling each leaf a,b,c,d. It follows that C_n is the number of full binary trees with n+1 leaves, or, equivalently, with a total of n internal nodes:

• C_n is the number of non-isomorphic ordered (or plane) trees with n+1 vertices.^[5] See encoding general trees as binary trees. For example, C_n is the number of possible parse trees for a sentence (assuming binary branching), in natural language processing.

Examples of Catalan number

•A convex polygon with n + 2 sides can be cut into triangles by connecting vertices with non-crossing line segments (a form of polygon triangulation). The number of triangles formed is n and the number of different ways that this can be achieved is C_n . The following hexagons illustrate the case n = 4:

◆ 六個矩陣相乘的最佳乘法順序可以分解成以下的其中一種 型式:

$$A = A_1 * (A_2 * A_3 * A_4 * A_5 * A_6)$$

$$A = (A_1 * A_2) * (A_3 * A_4 * A_5 * A_6)$$

$$A = (A_1 * A_2 * A_3) * (A_4 * A_5 * A_6)$$

$$A = (A_1 * A_2 * A_3 * A_4) * (A_5 * A_6)$$

$$A = (A_1 * A_2 * A_3 * A_4) * (A_5 * A_6)$$

$$A = A_1 * (A_2 * A_3 * A_4 * A_5 * A_6)$$

◆ 第k個分解型式所需的乘法總數,為前後兩部份 (一為A₁, A₂, ..., A_k和A_{k+1}, ..., A₆) 各自所需乘法數目的最小值相加,再加上相乘這前後兩部份矩陣所需的乘法數目。

$$M_{1,6} = \min_{1 \le k \le 6} \{ M_{1,k} + M_{k+1,6} + p_1 p_k p_7 \}$$

A "Recursive" Approach

- Define subproblems:
 - Find the best parenthesization of $A_i * A_{i+1} * ... * A_j$.
 - Let M_{i,j} (or M[i][j]) denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is $M_{1,n}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say the final multiply is at index i: $(A_1^*...*A_i)^*(A_{i+1}^*...*A_n)$.
 - Then the optimal solution $M_{1,n}$ is the sum of two optimal subproblems, $M_{1,i}$ and $M_{i+1,n}$ plus the time for the last multiply.
 - If the global optimum did not have these subproblems, we could define an even better "optimal" solution.

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $p_i \times p_{i+1}$ dimensional matrix.
 - So, a characterizing equation for $M_{i,j}$ is the following:

$$M_{i,j} = \min_{i \le k < j} \{ M_{i,k} + M_{k+1,j} + p_i p_{k+1} p_{j+1} \}$$

 Note that subproblems are not independent--the subproblems overlap.

A Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- M_{i,i}'s are easy, so start with them
- Then do length 2,3,... subproblems, and so on.
- Running time: O(n³)

```
Algorithm matrixChain(S):
    Input: sequence S of n matrices to be multiplied
    Output: number of operations in an optimal
         paranethization of S
    for i \leftarrow 1 to n do
         M_{i,i} \leftarrow 0
    for b \leftarrow 1 to n do
         for i \leftarrow 1 to n-b do
            j \leftarrow i+b
             M_{i,i} \leftarrow + \text{infinity}
             for k \leftarrow i to j-1 do
                 M_{i,j} \leftarrow \min\{M_{i,j}, M_{i,k} + M_{k+1,j} + p_i p_{k+1} p_{j+1}\}
```

A Dynamic Programming Algorithm Visualization

$$M_{i,j} = \min_{1 \le k < j} \{ M_{i,k} + M_{k+1,j} + p_i p_{k+1} p_{j+1} \}$$

- The bottom-up construction fills in the M array by diagonals
- M_{i,j} gets values from pervious entries in i-th row and j-th column
- Filling in each entry in the M table takes O(n) time.
- Total run time: O(n³)
- Getting actual parenthesization can be done by remembering "k" for each M entry

Let M_{i,j} denote the minimum cost for computing

$$A_{i} \times A_{i+1} \times ... \times A_{j}$$

$$M_{i,j} = \begin{cases} 0 & \text{if } i = j \\ M_{i,j} = \min_{1 \le k < j} \{M_{i,k} + M_{k+1,j} + p_{i}p_{k+1}p_{j+1}\} & \text{if } i < j \end{cases}$$

Computation sequence :

Time complexity : O(n³)

♦ Matrix Chain的遞迴式

$$\mathsf{M}_{ij} = \begin{cases} 0, \ if \ i = j \\ \min_{1 \leq k < j} \{ M_{i,k} + M_{k+1,j} + p_i p_{k+1} p_{j+1} \}, \ if \ i < j \end{cases}$$
◆ Example: $\mathsf{A}^1_{3 \times 3}$, $\mathsf{A}^2_{3 \times 7}$, $\mathsf{A}^3_{7 \times 2}$, $\mathsf{A}^4_{2 \times 9}$, $\mathsf{A}^5_{9 \times 4}$, 求此五矩陣的最小乘

法次數。

Sol:

建立兩陣列 M[1...5, 1...5]及P[1...4, 2...5]

М	1	2	3	4	5
1					
2					
3					
4					
5					

Case ① (When diagonal = 1)

- diagonal = 1 , ∴ 只有1個矩陣 , ∴ 不會執行乘法動作
- 陣列M的中間對角線為o,陣列P則不填任何數值

Case ② (When diagonal > 1)

- diagonal = 2,有2個矩陣相乘
- 當 i = 1及 j = 2, 爲A¹及A²矩陣 相乘,此時:

M[1, 2] = M[1,1]+M[2,2]+3×3×7 = 63, 其中 A¹ 及A² 的分割點 k 如下:

$$A_{3\times3'}^{1}$$
 $A_{3\times7'}^{2}$ $A_{7\times2'}^{3}$ $A_{2\times9'}^{4}$ $A_{9\times4'}^{5}$

Case ② (When diagonal > 1)

$$: A_{3\times3'}^{1} A_{3\times7'}^{2} A_{7\times2'}^{3} A_{2\times9'}^{4} A_{9\times4'}^{5}$$

- diagonal = 3,有3個矩陣相乘
- 當 i = 2及 j = i+diagnal-1 = 2+3-1=4,爲A²至A⁴間的所有矩陣相乘,此時:

$$M[2,4] = min$$
 $M[2,2] + M[3,4] + 3 \times 7 \times 9 = 315$, 分割點 $k = 2$ $M[2,3] + M[4,4] + 3 \times 2 \times 9 = 96$, 分割點 $k = 3$

$$: A_{3\times3}^{1}, A_{3\times7}^{2}, A_{7\times2}^{3}, A_{2\times9}^{4}, A_{9\times4}^{5}$$

- diagonal = 4,有4個矩陣
- 當 i = 1及 j = 4, 爲A'至A'間的所有矩陣相乘,此時:

M	1	2	3	4	5	-	P	2	3	4	5
1	0	63	60	114			1	1	1	. 3	
2		0	42	96	138		2	5	2	3	3
3			0	126	128	*	3			3	3
4				0	72	diagonal = 4	4				4
5					0		8				

$$M[1,1]+M[2,4]+3\times3\times9=177$$
,分割點 $k=1$ $M[1,4]=min$ $M[1,2]+M[3,4]+3\times7\times9=378$,分割點 $k=2$ $M[1,3]+M[4,4]+3\times2\times9=114$,分割點 $k=3$

Case ② (When diagonal > 1)

$$: A_{3\times3}^{1}, A_{3\times7}^{2}, A_{7\times2}^{3}, A_{2\times9}^{4}, A_{9\times4}^{5}$$

- diagonal = 5,有5個矩陣
- 當 i = 1及 j = 5, 爲A¹至A⁵間所有矩陣相乘,此時:

М	1	2	3	4 🔪	5	
1	0	63	60	114	156	
2		0	42	96	138	
3			0	126	128	diagonal = 5
4				0	72	
5					0	

Р	2	3	4	5	
1	1	1	3	3	
2		2	з	3	
3			з	3	
4				4	

◆[Note]此演算法的概念如下: 'A¹_{3×3}, A²_{3×7}, A³_{7×2}, A⁴_{2×9}, A⁵_{9×4},

Easy:

- Fibonacci numbers
- nth Catalan Number
- Bell Numbers (Number of ways to Partition a Set)
- Binomial Coefficient
- Coin change problem
- Subset Sum Problem
- Compute nCr % p
- Cutting a Rod

• Easy:

- Painting Fence Algorithm
- Longest Common Subsequence
- Longest Increasing Subsequence
- Longest subsequence such that difference between adjacents is one
- Maximum size square sub-matrix with all 1s
- Min Cost Path
- Minimum number of jumps to reach end
- Longest Common Substring (Space optimized DP solution)
- Count ways to reach the nth stair using step 1, 2 or 3
- Count all possible paths from top left to bottom right of a mXn matrix
- Unique paths in a Grid with Obstacles

1. Medium:

- Floyd Warshall Algorithm
- 2. Bellman-Ford Algorithm
- 0-1 Knapsack Problem
- 4. Printing Items in 0/1 Knapsack
- 5. Unbounded Knapsack (Repetition of items allowed)
- 6. Egg Dropping Puzzle
- 7. Word Break Problem
- 8. Vertex Cover Problem
- 9. Tile Stacking Problem
- 10. Box-Stacking Problem

- Partition Problem
- Travelling Salesman Problem | Set 1 (Naive and Dynamic Programming)
- 3. Longest Palindromic Subsequence
- 4. Longest Common Increasing Subsequence (LCS + LIS)
- 5. Find all distinct subset (or subsequence) sums of an array
- Weighted job scheduling
- 7. Count Derangements (Permutation such that no element appears in its original position)
- 8. Minimum insertions to form a palindrome
- Wildcard Pattern Matching
- 10. Ways to arrange Balls such that adjacent balls are of different types

Hard:

- Palindrome Partitioning
- Word Wrap Problem
- The painter's partition problem
- Program for Bridge and Torch problem
- Matrix Chain Multiplication
- Printing brackets in Matrix Chain Multiplication Problem
- Maximum sum rectangle in a 2D matrix
- Maximum profit by buying and selling a share at most k times
- Minimum cost to sort strings using reversal operations of different costs
- Count of AP (Arithmetic Progression) Subsequences in an array
- Introduction to Dynamic Programming on Trees
- Maximum height of Tree when any Node can be considered as Root
- Longest repeating and non-overlapping substring