	Qual das opções a seguir não é verdadeira sobre Machine Learning?	1 / 1 ponto
	O aprendizado de máquina dá aos computadores a capacidade de tomar decisões, anotando regras e métodos e sendo explicitamente programados.	
	Os modelos de Machine Learning aprendem iterativamente com os dados e permitem que os computadores encontrem insights ocultos.	
	Os modelos de Machine Learning nos ajudam em tarefas como reconhecimento, resumo e recomendação de objetos.	
	O Machine Learning foi inspirado no processo de aprendizagem dos seres humanos.	
	Correto Correct! Machine learning can learn without explicitly being programmed to do so.	
2.	Qual das opções a seguir é uma técnica de aprendizado de máquina?	1 / 1 ponto
	Agrupamento	
	○ Classificação	
	O Regressão/Estimativa	
	Tudo o que precede	
	 Correto Correct! All of the above are considered machine learning techniques 	

. Qual das seguintes opções é verdadeira para Regressão Linear Múltipla?	1 / 1 ponto
Múltiplas variáveis independentes são usadas para prever uma variável dependente.	
Dados observacionais são modelados por uma função que é uma combinação não linear dos parâmetros do modelo e depende de uma ou mais variáveis independentes.	
Uma variável independente é usada para prever uma variável dependente.	
A relação entre a variável independente x e a variável dependente y é modelada como um polinômio de grau enésimo em x.	
 Correto Correct! This contrasts simple linear regression, which only uses one independent variable. 	
. Qual das opções abaixo é um exemplo de problema de classificação?	1 / 1 ponto
Prevendo se um e-mail é spam ou não.	
Prever se um cliente comprará um determinado item com base em uma campanha publicitária.	
Prever se um cliente compraria um produto associado com base em compras anteriores.	
Tudo o que precede.	
 Correto Correct! All of these can be phrased as a classification task. 	

5.	Quais das seguintes afirmações são VERDADEIRAS sobre Regressão Logística? (selecione dois)	1 / 1 ponto
	A regressão logística pode ser usada tanto para classificação binária quanto para classificação multiclasse.	
	Correto Almost correct! There are other true statements about Logistic Regression	
	A regressão logística encontra uma linha de regressão através dos dados para prever a probabilidade de um ponto pertencer a uma classe.	
	A regressão logística é análoga à regressão linear, mas usa um campo de destino categórico/discreto em vez de um numérico.	
	Correto Almost correct! There are other true statements about Logistic Regression.	
	■ Na regressão logística, a variável dependente é sempre binária.	
6.	Qual afirmação é FALSA sobre o agrupamento k-means?	0 / 1 ponto
	Ocomo k-means é um algoritmo iterativo, ele garante que sempre convergirá para o ótimo global.	
	k-means divide os dados em clusters não sobrepostos sem nenhuma estrutura interna de cluster.	
	O objetivo do k-means é formar clusters de forma que amostras semelhantes entrem em um cluster e amostras diferentes caiam em clusters diferentes.	

\sim		
(\vee)	Incor	+-
ハヘノ	HICOI	rec

Incorrect. Please review video Intro to k-Means.

7.		ual deles descreve melhor o processo de agrupamento para rupamento k-means?	1 / 1 ponto
	0	k-means cria clusters agrupando pontos de dados com rótulos semelhantes.	
	0	O clustering k-means cria uma árvore de clusters.	
	•	O objetivo do k-means é formar clusters de forma que amostras semelhantes entrem em um cluster e amostras diferentes caiam em clusters diferentes.	
	0	k-means divide os dados em clusters com sobreposição mínima, de modo que haja poucas chances de amostras diferentes no mesmo cluster.	
	(Correto Correct! K-Means seeks to create non-overlapping clusters.	
8.	Qι	uais são algumas vantagens da regressão logística sobre o SVM?	0 / 1 ponto
	0	Ele se concentra em encontrar a melhor margem para separar classes em uma iteração.	
	0	Ele se concentra em atingir a probabilidade certa para cada classe de saída.	
	0	Funciona bem com dados de alta dimensão, como texto ou imagem.	
	0	Pode ser usado para dados linearmente separáveis.	

$\overline{}$	_	
(\times)	Incorre	tc

Você não selecionou uma resposta.

9.	Em comparação com o erro absoluto médio, o erro quadrático médio:	0 / 1 ponto
	Concentra-se mais em grandes erros.	
	C Evita o cancelamento de erros.	
	Pesa erros pequenos e grandes igualmente.	
	É mais interpretável tomando a mesma unidade da resposta.	
	Incorreto Incorrect. Please review video Evaluation Metrics in Regression Models.	
10	. Qual dos seguintes é mais adequado para resolver com uma árvore de decisão?	0 / 1 ponto
	Para prever se a pessoa vai gostar de um determinado filme com base na idade, atores favoritos e gênero.	
	O Para prever a probabilidade de chuva com base na temperatura e umidade atuais.	
	Segmentar os clientes em grupos com características semelhantes.	
	Prever o salário de um jogador de beisebol com base no número de home runs e anos na liga.	
	Incorreto Incorrect. Please review video Introduction to Decision Trees.	