Correction du devoir surveillé 7.

Exercice 1

- 1°) a) Il s'agit d'une famille de polynômes non nuls de $\mathbb{R}_n[X]$, échelonnée en degré, donc elle est libre. Comme elle comporte n+1 vecteurs et que $\dim(\mathbb{R}_n[X]) = n+1$, c'est une base de $\mathbb{R}_n[X]$.
 - **b)** Soit $P \in \mathbb{R}_n[X]$. Alors, par la formule de Taylor, $P = \sum_{k=0}^n \frac{P^{(k)}(1)}{k!} (X-1)^k$.

Par unicité des coordonnées dans la base \mathcal{B} , il vient : pour tout $k \in \{0, \dots, n\}$, $a_k = \frac{P^{(k)}(1)}{k!}$.

- 2°) a) Soit $P \in \mathbb{R}_n[X]$. $\varphi(P) = (X-1)P'-2P$ donc $\deg(\varphi(P)) \leq \max(\deg((X-1)P', \deg(-2P))$. $\deg(P) \leq n$ donc $\deg(P') \leq n-1$, et donc $\deg((X-1)P') = 1 + \deg(P') \leq n$. Comme $\deg(-2P) \leq n$, on a $\deg(\varphi(P)) \leq n$ i.e. $\varphi(P) \in \mathbb{R}_n[X]$.
 - Soit $(P,Q) \in \mathbb{R}_n[X]^2$ et $\lambda \in \mathbb{R}$.

$$\varphi(\lambda.P + Q) = (X - 1)(\lambda.P + Q)' - 2(\lambda.P + Q)$$

$$= (X - 1)(\lambda.P' + Q') - 2\lambda.P - 2Q$$

$$= \lambda(X - 1)P' + (X - 1)Q' - \lambda.2P - 2Q$$

$$= \lambda((X - 1)P' - 2P) + (X - 1)Q' - 2Q$$

$$= \lambda.\varphi(P) + \varphi(Q)$$

Donc φ est linéaire.

- Ainsi φ est un endomorphisme de $\mathbb{R}_n[X]$.
- **b)** On a $\varphi(1) = -2$.

Pour tout $k \in \{1, ..., n\}$, $\varphi((X-1)^k) = (X-1)k(X-1)^{k-1} - 2(X-1)^k = (k-2)(X-1)^k$. La matrice de φ dans la base \mathcal{B} est donc:

$$A = \begin{pmatrix} -2 & 0 & 0 & 0 & \dots & 0 \\ 0 & -1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & n-2 \end{pmatrix}$$

On constate que la matrice A est bien diagonale.

c) La matrice A est diagonale avec un coefficient diagonal qui est nul donc A n'est pas inversible.

Donc, φ n'est pas bijective

d) $\operatorname{Im}(\varphi) = \operatorname{Vect}(\varphi(1), \varphi(X-1), \varphi((X-1)^2, \dots, \varphi((X-1)^n)) \operatorname{car} \mathcal{B} = (1, X-1, \dots, (X-1)^n)$ est une base de $\mathbb{R}_n[X]$.

Ainsi, $\operatorname{Im}(\varphi) = \operatorname{Vect}(-1, -(X-1), 0, (X-1)^3, \dots, (n-2)(X-1)^n).$

Donc, $\text{Im}(\varphi) = \text{Vect}(1, X - 1, (X - 1)^3, \dots, (X - 1)^n).$

La famille $(1, X - 1, (X - 1)^3, \dots, (X - 1)^n)$ est une famille génératrice de $\operatorname{Im}(\varphi)$. De plus elle est échelonnée en degré, formée de polynômes non nuls donc elle est libre. C'est donc une base de $\operatorname{Im}(\varphi)$.

On en déduit que $\dim(\operatorname{Im}(\varphi)) = n$ puisqu'il y a n vecteurs dans la famille.

- e) Par le théorème du rang appliqué à φ , $\dim(\mathbb{R}_n[X]) = \dim(\operatorname{Ker}(\varphi) + \dim(\operatorname{Im}(\varphi))$. On en déduit que $\dim(\operatorname{Ker}(\varphi)) = n + 1 - n = 1$. Ainsi $\operatorname{Ker}(\varphi)$ est une droite vectorielle. Comme $\varphi((X-1)^2) = 0$, on en déduit : $(X-1)^2 \in \operatorname{Ker}(\varphi)$. Comme $(X-1)^2$ n'est pas le vecteur nul, $((X-1)^2)$ est une base de $\operatorname{Ker}(\varphi)$.
- f) On sait que $\mathcal{B} = (1, X 1, (X 1)^2, \dots, (X 1)^n)$ est une base de $\mathbb{R}_n[X]$ donc, d'après un résultat du cours, en découpant la base en deux sous-familles, on en déduit que : $\text{Vect}((X-1)^2) \oplus \text{Vect}(1, X-1, (X-1)^3, \dots, (X-1)^n) = \mathbb{R}_n[X]$. Ainsi, $\text{Ker}(\varphi) \oplus \text{Im}(\varphi) = \mathbb{R}_n[X]$
- 3°) a) Soit $(P,Q) \in \mathbb{R}_n[X]^2$ et $\lambda \in \mathbb{R}$. $u(\lambda.P+Q) = (\lambda.P+Q)''(1) = \lambda P''(1) + Q''(1) = \lambda.u(P) + u(Q)$ Donc u est linéaire; elle va bien de $\mathbb{R}_n[X]$ dans \mathbb{R} donc c'est une forme linéaire sur $\mathbb{R}_n[X]$.
 - **b)** Soit $a \in \mathbb{R}$. Posons $P = \frac{a}{2}X^2$, alors $P \in \mathbb{R}_n[X]$ puisque $n \geq 3 \geq 2$, et u(P) = a. Donc $a \in \text{Im}(u)$. Ainsi $\mathbb{R} \subset \text{Im}(u)$ donc $\mathbb{R} = \text{Im}(u)$. Ainsi, u est surjective.
 - c) D'après le théorème du rang appliqué à u:

$$\dim\left(\mathrm{Im}(u)\right) + \dim\left(\mathrm{Ker}(u)\right) = \dim\left(\mathbb{R}_n[X]\right)$$
 d'où
$$\dim\left(\mathrm{Ker}(u)\right) = (n+1) - 1 = \boxed{n}$$

- **4°) a)** Soit $P \in \mathbb{R}_n[X]$. $(\varphi(P))' = (X-1)P'' + P' 2P' = (X-1)P'' P'$. Puis $(\varphi(P))'' = (X-1)P^{(3)} + P'' P'' = (X-1)P^{(3)}$. Ainsi $(\varphi(P))''(1) = 0$. Cela signifie que $\varphi(P) \in \text{Ker}(u)$.
 - b) D'après la question précédente, on a $\operatorname{Im}(\varphi) \subset \operatorname{Ker}(u)$. Or d'après la question 2d, $\dim(\operatorname{Im}(\varphi)) = n = \dim(\operatorname{Ker}(u))$. D'où $\overline{\operatorname{Im}(\varphi) = \operatorname{Ker}(u)}$.
- **5°) a)** On sait par 2f que $\operatorname{Im}(\varphi) \oplus \operatorname{Ker}(\varphi) = \mathbb{R}_n[X]$. Or, $\operatorname{Im}(\varphi) = \operatorname{Ker}(u) = \{Q \in \mathbb{R}_n[X] \ / \ Q''(1) = 0\}$ et $\operatorname{Ker}(\varphi) = \{R \in \mathbb{R}_n[X] \ / \ (X - 1)R' - 2R = 0\}$ Il vient donc :

$$\forall P \in \mathbb{R}_n[X], \ \exists ! (Q, R) \in \mathbb{R}_n[X]^2, \begin{cases} P = Q + R \\ Q''(1) = 0 \\ (X - 1)R' - 2R = 0 \end{cases}$$

b) On a $P = \sum_{k=0}^{n} a_k (X-1)^k = \sum_{k=0}^{1} a_k (X-1)^k + \sum_{k=3}^{n} a_k (X-1)^k + a_2 (X-1)^2$, avec, pour tout $k \in \{0, \dots, n\}, \ a_k = \frac{P^{(k)}(1)}{k!}$.

Or on a vu à la question 2 que $(1, X-1, (X-1)^3, \dots, (X-1)^n)$ était une base de $\text{Im}(\varphi)$ et que $((X-1)^2)$ était une base de $\text{Ker}(\varphi)$, donc $\sum_{k=0}^{1} a_k (X-1)^k + \sum_{k=2}^{n} a_k (X-1)^k \in \text{Im}(\varphi)$

et $a_2(X-1)^2 \in \operatorname{Ker}(\varphi)$.

Par unicité de l'écriture de P dans $\operatorname{Im}(\varphi) \oplus \operatorname{Ker}(\varphi)$:

$$Q = \sum_{k=0}^{1} a_k (X-1)^k + \sum_{k=3}^{n} a_k (X-1)^k \in \text{Im}(\varphi) \text{ et } R = a_2 (X-1)^2. \text{ Ainsi, } \boxed{R = \frac{P''(1)}{2} (X-1)^2}.$$

Exercice 2

- 1°) Soit $x \in \text{Ker}(v)$. On a v(x) = 0. Donc v(v(x)) = v(0) = 0 puisque v est linéaire. Ainsi $v^2(x) = 0$ i.e. $x \in \text{Ker}(v^2)$. On a donc bien $Ker(v) \subset \text{Ker}(v^2)$.
- 2°) D'après le résultat de la question précédente, $\dim (\operatorname{Ker}(v)) \leq \dim (\operatorname{Ker}(v^2))$. Si on avait $\dim (\operatorname{Ker}(v^2)) = \dim (\operatorname{Ker}(v))$, comme on a l'inclusion $\operatorname{Ker}(v) \subset \operatorname{Ker} v^2$, on en déduirait : $\operatorname{Ker}(v) = \operatorname{Ker}(v^2)$. Exclu par hypothèse. Donc $\dim (\operatorname{Ker}(v)) < \dim (\operatorname{Ker}(v^2))$.

Par le théorème du rang appliqué à $v:\dim(E)=\dim \mathrm{Ker}(v)+\mathrm{rg}(v),$ et par hypothèse, $\mathrm{rg}(v)=2,$ donc $\dim \mathrm{Ker}(v)=1.$

Ainsi $2 \le \dim (\operatorname{Ker}(v^2))$.

De plus, $Ker(v^2)$ est un sous-espace vectoriel de E donc $\dim(Ker(v^2)) \leq \dim(E) = 3$, et si on avait $\dim(Ker(v^2)) = 3$, on aurait $Ker(v^2) = E$ et donc $v^2 = 0_{L(E)}$: exclu par hypothèse.

Finalement, $\overline{\dim \left(\operatorname{Ker}(v^2)\right)} = 2$.

- 3°) Vérifions que $v(x) \in \text{Ker}(v^2)$. $v^2(v(x)) = v^3(x) = v(v^2(x)) = v(0)$ car $x \in \text{Ker}(v^2)$. D'où, puisque v est linéaire, $v^2(v(x)) = 0$. Ainsi on a bien $v(x) \in \text{Ker}(v^2)$.
 - Montrons que la famille (x, v(x)) est libre. Soit λ et μ des réels. Supposons que : $\lambda x + \mu v(x) = 0$. Montrons que : $\lambda = \mu = 0$. Alors $v(\lambda x + \mu v(x)) = v(0) = 0$ d'où, par linéarité de $v : \lambda v(x) + \mu v^2(x) = 0$. Or $x \in \text{Ker}(v^2)$ donc $v^2(x) = 0$. Ainsi, $\lambda v(x) = 0$. Comme $x \notin \text{Ker}(v), v(x) \neq 0$. Il vient alors : $\lambda = 0$.

D'où $\mu v(x) = 0$. Donc, toujours avec $v(x) \neq 0$, on obtient : $\mu = 0$.

Ainsi, la famille (x, v(x)) est une famille libre de $Ker(v^2)$.

- Elle a de plus 2 éléments et $2 = \dim \operatorname{Ker}(v^2)$ donc (x, v(x)) est une base de $\operatorname{Ker}(v^2)$
- $\mathbf{4}^{\circ}$) a) Soit $\lambda \in \mathbb{R}$.

$$\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 1 & -1 \\ 1 & 2 - \lambda & -1 \\ 2 & 1 & 1 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 2 - \lambda & 0 & \lambda - 2 \\ 1 & 2 - \lambda & -1 \\ 2 & 1 & 1 - \lambda \end{vmatrix} \quad L_1 \leftarrow L_1 - L_3$$

$$= (2 - \lambda) \begin{vmatrix} 1 & 0 & -1 \\ 1 & 2 - \lambda & -1 \\ 2 & 1 & 1 - \lambda \end{vmatrix} \quad \text{par linéarité par rapport à la première ligne}$$

$$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 - \lambda & 0 \\ 2 & 1 & 3 - \lambda \end{vmatrix} \quad C_3 \leftarrow C_3 + C_1$$

$$= (2 - \lambda)^2 (3 - \lambda) \quad \text{car on a reconnu un déterminant triangulaire}$$

Or on a : $A - \lambda I$ est inversible $\iff \det(A - \lambda I) \neq 0$. Ainsi $A - \lambda I$ est inversible ssi $\lambda \neq 2$ et $\lambda \neq 3$.

b) Par la question précédente, A-0I=A est inversible donc f est un automorphisme de \mathbb{R}^3

$$\mathbf{5}^{\circ}) \ A - 2I = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \\ 2 & 1 & -1 \end{pmatrix}.$$

On constate que $C_2 - C_3 = C_1$, donc $rg(A - 2I) = rg(C_1, C_2, C_3) = rg(C_2, C_3)$.

Les deux colonnes C_2 et C_3 ne sont pas colinéaires donc forment une famille libre, donc $\lceil \operatorname{rg}(A-2I)=2 \rceil$.

$$A - 3I = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 2 & 1 & -2 \end{pmatrix}.$$

On constate que $C_3 = -C_1$, donc $rg(A - 3I) = rg(C_1, C_2, C_3) = rg(C_1, C_2)$.

Les deux colonnes C_1 et C_2 ne sont pas colinéaires donc forment une famille libre, donc rg(A-3I)=2.

Après calculs,
$$(A - 2I)^2 = \begin{pmatrix} 3 & 1 & -2 \\ 0 & 0 & 0 \\ 3 & 1 & -2 \end{pmatrix}$$
.

Comme les colonnes de cette matrice sont colinéaires, $\operatorname{rg}((A-2I)^2) = \operatorname{rg}(C_1, C_2, C_3) = \operatorname{rg}(C_1)$, donc $\operatorname{rg}((A-2I)^2) = 1$, car la famille (C_1) est libre, étant constituée d'une colonne non nulle.

6°) a) On a déjà : $\{0\} \subset \operatorname{Ker}((f-2\operatorname{id})^2) \cap \operatorname{Ker}(f-3\operatorname{id})$, puisque $\operatorname{Ker}((f-2\operatorname{id})^2) \cap \operatorname{Ker}(f-3\operatorname{id})$ est un sous-espace vectoriel de \mathbb{R}^3 .

Réciproquement, soit $u \in \text{Ker}((f-2\operatorname{id})^2) \cap \text{Ker}(f-3\operatorname{id})$. Montrons que u=0.

$$(f-2id)^2 = f^2 - 4f + 4id$$
. On a alors : $f^2(u) - 4f(u) + 4u = 0$.

On a aussi : (f - 3 id)(u) = 0 donc f(u) = 3u.

Donc
$$f^2(u) = f(f(u)) = f(3u) = 3f(u) = 9u$$
.

D'où, 9u - 12u + 4u = 0 ie u = 0.

Finalement : $\left[\operatorname{Ker}((f-2\operatorname{id})^2) \cap \operatorname{Ker}(f-3\operatorname{id}) = \{0\} \right]$

- **b)** \star Par le théorème du rang appliqué à l'endomorphisme $(f-2\operatorname{id})^2$: $\dim(\mathbb{R}^3) = \dim(\operatorname{Ker}((f-2\operatorname{id})^2)) + \operatorname{rg}((f-2\operatorname{id})^2)$. D'où, puisque $\operatorname{rg}((f-2\operatorname{id})^2) = \operatorname{rg}((A-2I)^2) = 1$ par la question 5, on en déduit : $\dim\operatorname{Ker}((f-2\operatorname{id})^2) = 2$.
 - ★ Par le théorème du rang appliqué à l'endomorphisme f 3 id : $\dim \mathbb{R}^3 = \dim(\operatorname{Ker}(f 3 \operatorname{id})) + \operatorname{rg}(f 3 \operatorname{id}).$ Comme $\operatorname{rg}(f - 3 \operatorname{id}) = \operatorname{rg}(A - 3I) = 2$ par 5, il vient : $\dim(\operatorname{Ker}(f - 3 \operatorname{id})) = 1$.
 - ★ On a alors, $\dim(\mathbb{R}^3) = \dim(\operatorname{Ker}((f-2\operatorname{id})^2)) + \dim(\operatorname{Ker}(f-3\operatorname{id})).$ De plus, $\operatorname{Ker}((f-2\operatorname{id})^2) \cap \operatorname{Ker}(f-3\operatorname{id}) = \{0\}$ par la question a. On en déduit que $\operatorname{Ker}((f-2\operatorname{id})^2)$ et $\operatorname{Ker}(f-3\operatorname{id})$ sont supplémentaires dans \mathbb{R}^3 .

7°) a)
$$A - 3I = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 2 & 1 & -2 \end{pmatrix}$$
.

Soit $u = (x, y, z) \in \mathbb{R}^3$.

$$u \in \operatorname{Ker}(f - 3\operatorname{id}) \iff (f - 3\operatorname{id})(u) = 0$$

$$\iff (A - 3I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} x + y - z = 0 \\ x - y - z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

$$\iff \begin{cases} x + y - z = 0 \\ -2y = 0 \\ -y = 0 \end{cases}$$

$$\iff y = 0, x = z$$

Donc, $\operatorname{Ker}(f - 3 \operatorname{id}) = \operatorname{Vect}((1, 0, 1))$. On choisit $\varepsilon_3 = (1, 0, 1)$.

Autre méthode : $A - 3I = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 2 & 1 & -2 \end{pmatrix}$. A - 3I représente g = f - 3 id dans la base

canonique $\mathcal{B} = (e_1, e_2, e_3)$.

On remarque que $g(e_1) + g(e_3) = 0$ ie $g(e_1 + e_3) = 0$.

Ainsi, $e_1 + e_3 = (1, 0, 1) \in \text{Ker}(g) = \text{Ker}(f - 3 \text{ id}).$

b)
$$(A-2I)^2 = \begin{pmatrix} 3 & 1 & -2 \\ 0 & 0 & 0 \\ 3 & 1 & -2 \end{pmatrix}$$
.
Soit $u = (x, y, z) \in \mathbb{R}^3$.

$$u \in \text{Ker}((f - 2 \text{id})^2) \iff (f - 2 \text{id})^2(u) = 0$$

$$\iff (A - 2I)^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff 3x + y - 2z = 0$$

On choisit $\varepsilon_2 = (1, 1, 2)$

Autre méthode : $(A - 2I)^2 = \begin{pmatrix} 3 & 1 & -2 \\ 0 & 0 & 0 \\ 3 & 1 & -2 \end{pmatrix}$. $(A - 2I)^2$ représente $h = (f - 2id)^2$ dans la

base canonique $\mathcal{B} = (e_1, e_2, e_3)$.

On remarque que $h(e_1) + h(e_2) + 2h(e_3) = 0$ donc $h(e_1 + e_2 + 2e_3) = 0$.

Ainsi, $e_1 + e_2 + 2e_3 = (1, 1, 2) \in \text{Ker}(h) = \text{Ker}((f - 2 \text{id})^2).$

c) On a $\varepsilon_1 = (f - 2id)(\varepsilon_2)$ donc ses coordonnées sont données par :

$$(A-2I)$$
 $\begin{pmatrix} 1\\1\\2 \end{pmatrix} = \begin{pmatrix} 2&1&-1\\1&0&-1\\2&1&-1 \end{pmatrix} \begin{pmatrix} 1\\1\\2 \end{pmatrix} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$. Donc $\varepsilon_1 = (1,-1,1)$.

 $\varepsilon_2 \in \text{Ker}((f-2id)^2)$ par construction, et $(f-2id)(\varepsilon_2) = \varepsilon_1 \neq 0_{\mathbb{R}^3}$, donc $\varepsilon_2 \notin \text{Ker}(f-2id)$.

Donc $|\operatorname{Ker}((f-2\operatorname{id})^2) \neq \operatorname{Ker}(f-2\operatorname{id})|$.

- d) On pose : v = f 2 id.
 - v est un endomorphisme de \mathbb{R}^3 qui est dimension 3.
 - Puisque A-2I est la matrice de v dans la base canonique, rg(v)=rg(A-2I)=2 d'après la question 5.
 - $(A-2I)^2 \neq 0$ donc $v^2 \neq 0_{\mathcal{L}(\mathbb{R}^3)}$.
 - $\operatorname{Ker}(v^2) \neq \operatorname{Ker}(v)$ d'après la question c.

Toutes les hypothèses de la partie 1 sont vérifiées, et nous avons vu à la question c que ε_2 est dans $\operatorname{Ker}(v^2)$ mais pas dans $\operatorname{Ker}(v)$.

Donc, la famille $(\varepsilon_2, v(\varepsilon_2))$ est une base de $\operatorname{Ker}(v^2) = \operatorname{Ker}((f - 2\operatorname{id})^2)$, donc $(v(\varepsilon_2), \varepsilon_2) = (\varepsilon_1, \varepsilon_2)$ aussi.

De plus, ε_3 est un vecteur non nul de Ker(f-3 id), donc il forme une famille libre de ce sous-espace vectoriel, qui est de dimension 1. Donc (ε_3) est une base de Ker(f-3 id).

On a $\mathbb{R}^3 = \text{Ker}((f-2\operatorname{id})^2) \oplus \text{Ker}(f-3\operatorname{id})$ donc, en réunissant deux bases de chacun de ces sous-espaces vectoriels, on obtient une base de \mathbb{R}^3 .

Ainsi, la famille $\mathcal{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 .

8°)
$$\varepsilon_1 = f(\varepsilon_2) - 2\varepsilon_2 = (f - 2\operatorname{id})(\varepsilon_2).$$

D'où
$$(f-2\operatorname{id})(\varepsilon_1)=(f-2\operatorname{id})^2(\varepsilon_2)=0$$
, car $\varepsilon_2\in\operatorname{Ker}((f-2\operatorname{id})^2)$.

Donc
$$f(\varepsilon_1) = 2\varepsilon_1$$
.

$$f(\varepsilon_2) = \varepsilon_1 + 2\varepsilon_2 \operatorname{car} \varepsilon_1 = f(\varepsilon_2) - 2\varepsilon_2.$$

$$\varepsilon_3 \in \text{Ker}(f - 3 \text{ id}) \text{ donc } f(\varepsilon_3) = 3\varepsilon_3.$$

On en déduit que :
$$T = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

9°) a) $A = PTP^{-1}$ par les formules de changements de bases.

$$\mathbf{b)} P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}.$$

Calculons P^{-1} :

$$P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

$$L_2 \leftrightarrow L_3$$

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

$$L_3 \leftrightarrow L_3 - 2L_2$$

$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

$$\begin{pmatrix} -2 & -1 & 2 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

$$I_3 \qquad L_1 \leftarrow L_1 - L_2$$

$$P^{-1} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

10°) a) Posons, pour tout
$$n \in \mathbb{N} : H_n : \exists \alpha_n \in \mathbb{R}, \ T^n = \begin{pmatrix} 2^n & \alpha_n & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}$$
.

- \star H_0 est vraie avec $\alpha_0 = 0$.
- ★ Soit $n \in \mathbb{N}$. Supposons que H_n est vraie. Montrons que H_{n+1} est vraie.

$$T^{n+1} = T^n \times T = \begin{pmatrix} 2^n & \alpha_n & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 2^{n+1} & 2^n + 2\alpha_n & 0 \\ 0 & 2^{n+1} & 0 \\ 0 & 0 & 3^{n+1} \end{pmatrix}$$

Ainsi, H_{n+1} est vraie en posant $\alpha_{n+1} = 2^n + 2\alpha_n$

- \star Par principe de récurrence, la propriété est démontrée pour tout $n \in \mathbb{N}$.
- **b)** Pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{\alpha_{n+1}}{2^{n+1}} = \frac{2^n + 2\alpha_n}{2^{n+1}} = \frac{1}{2} + \frac{\alpha_n}{2^n} = u_n + \frac{1}{2}$.

La suite $(u_n)_{n\in\mathbb{N}}$ est donc une suite arithmétique de raison $\frac{1}{2}$.

Donc, pour tout $n \in \mathbb{N}$, $u_n = u_0 + n\frac{1}{2} = n\frac{1}{2} = \frac{n}{2}$ puisque $\alpha_0 = 0$.

On en tire que pour tout $n \in \mathbb{N}$, $\alpha_n = u_n 2^n = |n2^{n-1}|$

- 11°) a) Posons, pour tout $n \in \mathbb{N}$, $H_n : f^n(\varepsilon_1) = 2^n \varepsilon_1$ et $f^n(\varepsilon_3) = 3^n \varepsilon_3$. On a $f^0 = \operatorname{id} \operatorname{donc} f^0(\varepsilon_1) = \varepsilon_1 = 2^0 \varepsilon_1$, et $f^0(\varepsilon_3) = \varepsilon_3 = 3^0 \varepsilon_3$. Ainsi H_0 est vraie.
 - Supposons H_n vraie pour un $n \in \mathbb{N}$ fixé. Nous avons déjà vu que $f(\varepsilon_1) = 2\varepsilon_1$, donc $f^{n+1}(\varepsilon_1) = f^n(f(\varepsilon_1)) = f^n(2\varepsilon_1) = 2f^n(\varepsilon_1)$. Donc, avec l'hypothèse de récurrence, $f^{n+1}(\varepsilon_1) = 22^n \varepsilon_1 = 2^{n+1} \varepsilon_1$. Comme $f(\varepsilon_3) = 3\varepsilon_3$, on montre de même que $f^{n+1}(\varepsilon_3) = 3^{n+1}\varepsilon_3$. Ainsi H_{n+1} est vraie.
 - Conclusion: pour tout $n \in \mathbb{N}$, $f^n(\varepsilon_1) = 2^n \varepsilon_1$ et $f^n(\varepsilon_3) = 3^n \varepsilon_3$.
 - b) On a f = v + 2id. v et 2id commutent, donc par la formule du binôme, pour tout $n \in \mathbb{N}$:

$$f^{n} = (v + 2id)^{n} = \sum_{k=0}^{n} \binom{n}{k} v^{k} \circ (2id)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} v^{k} \circ 2^{n-k}id$$
$$f^{n} = \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} v^{k}$$

c) Comme $T = \underset{\mathcal{C}}{\text{mat}} f$, pour tout $n \in \mathbb{N}$, $T^n = \underset{\mathcal{C}}{\text{mat}} f^n$.

Nous avons déjà calculé, pour tout $n \in \mathbb{N}$, $f^n(\varepsilon_1)$ et $f^n(\varepsilon_3)$ en fonction des éléments de \mathcal{C} , intéressons-nous à $f^n(\varepsilon_2)$.

On a $v^0(\varepsilon_2) = \varepsilon_2$, $v^1(\varepsilon_2) = \varepsilon_1$ par construction de ε_1 , et $v^2(\varepsilon_2) = 0$ puisque $\varepsilon_2 \in \text{Ker}(v^2)$. Ainsi, pour tout $k \geq 2$, $v^k(\varepsilon_2) = 0$.

On a donc, grâce à la question précédente, pour tout $n \geq 1$:

$$f^{n}(\varepsilon_{2}) = \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} v^{k}(\varepsilon_{2}) = \binom{n}{0} 2^{n} v^{0}(\varepsilon_{2}) + \binom{n}{1} 2^{n-1} v^{1}(\varepsilon_{2})$$
$$f^{n}(\varepsilon_{2}) = 2^{n} \varepsilon_{2} + n 2^{n-1} \varepsilon_{1}.$$

Cette formule est encore valable pour n=0

Ainsi, on a, pour tout
$$n \in \mathbb{N}$$
:
$$T^n = \begin{pmatrix} 2^n & n2^{n-1} & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}.$$

- 12°) $A = PTP^{-1}$.
 - Pour n = 0, on a $PT^0P^{-1} = PIP^{-1} = PP^{-1} = I = A^0$.
 - Supposons que $A^n=PT^nP^{-1}$ pour un certain $n\in\mathbb{N}$: $A^{n+1}=A^nA=PT^nP^{-1}PTP^{-1}=PT^nTP^{-1}=PT^{n+1}P^{-1}$
 - Ainsi, on a montré par récurrence que pour tout $n \in \mathbb{N}$, $A^n = PT^nP^{-1}$. D'où, pour tout $n \in \mathbb{N}$:

$$A^{n} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2^{n} & n2^{n-1} & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 3^{n} \end{pmatrix} \begin{pmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{n} & n2^{n-1} + 2^{n} & 3^{n} \\ -2^{n} & -n2^{n-1} + 2^{n} & 0 \\ 2^{n} & n2^{n-1} + 2^{n+1} & 3^{n} \end{pmatrix} \begin{pmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} -2^{n+1} - n2^{n-1} + 3^{n+1} & 3^{n} - 2^{n} & 2^{n+1} + n2^{n-1} - 2 \cdot 3^{n} \\ n2^{n-1} & 2^{n} & -n2^{n-1} \\ -3 \cdot 2^{n} - n2^{n-1} + 3^{n+1} & 3^{n} - 2^{n} & 3 \cdot 2^{n} + n2^{n-1} - 2 \cdot 3^{n} \end{pmatrix}$$

Exercice 3

1°) On note $A = (a_{i,j})$. Pour tout $x \in \mathbb{R}$,

$$f(x) = \begin{vmatrix} a_{1,1} + x & a_{1,2} + x & \dots & a_{1,2n} + x \\ \vdots & \vdots & & \vdots \\ a_{2n,1} + x & a_{2n,2} + x & \dots & a_{2n,2n} + x \end{vmatrix}$$

$$= \begin{vmatrix} a_{1,1} + x & a_{1,2} - a_{1,1} & \dots & a_{1,2n} - a_{1,1} \\ \vdots & \vdots & & \vdots \\ a_{2n,1} + x & a_{2n,2} - a_{2n,1} & \dots & a_{2n,2n} - a_{2n,1} \end{vmatrix}$$
 en effectuant
$$\begin{cases} C_2 \leftarrow C_2 - C_1 \\ \vdots \\ C_n \leftarrow C_n - C_1 \end{cases}$$

On développe le déterminant par rapport à sa première colonne : il existe des scalaires $\lambda_1, \ldots, \lambda_{2n}$ (indépendants de x) tel que :

$$\forall x \in \mathbb{R}, \ f(x) = \lambda_1(a_{1,1} + x) + \dots + \lambda_{2n}(a_{2n,2n} + x).$$

Ainsi, f est une combinaison linéaire de fonctions polynomiales de degré 1. On en déduit que f est une fonction polynomiale de degré inférieur ou égal à 1

 2°) Soit $x \in \mathbb{R}$.

$$f(-x) = \det(A - xJ)$$

$$= \det((A - xJ)^T)$$

$$= \det(A^T - xJ^T) \quad \text{par linéarité de la transposition}$$

$$= \det(-A - xJ) \quad \text{car } A \text{ est antisymétrique et } J \text{ est symétrique}$$

$$= \det(-(A + xJ))$$

$$= (-1)^{2n} \det(A + xJ) \quad \text{car } A + xJ \text{ est d'ordre } 2n$$

$$= \det(A + xJ) \quad \text{car } 2n \text{ est pair}$$

$$= f(x)$$

Ainsi, f est paire

3°) f est une fonction polynomiale de degré au plus 1 et f est paire donc l'expression f(x) ne contient pas de puissance impaire. Ainsi, f est constante donc, pour tout $x \in \mathbb{R}$, f(x) = f(0). On en déduit que : $\forall x \in \mathbb{R}$, $\det(A + xJ) = \det(A)$.