Тюнинг модели логистической регрессии

Елена Кантонистова

Skillbox

Перевод вероятности в класс

$$a(x) = \frac{1}{1 + e^{-(w,x)}}$$

- Если a(x) ≥ 0.5, то класс +1
- Если a(x) < 0.5, то класс −1

Порог — 0.5.

Перевод вероятности в класс

$$a(x) = \frac{1}{1 + e^{-(w,x)}}$$

- Если a(x) ≥ 0.5, то класс +1
- Если a(x) < 0.5, то класс −1

Порог — 0.5. Этот порог можно менять!

id	Предсказанная вероятность	Правильный ответ	Предсказанный класс с порогом 0.5
1	0.6	–1	1
2	0.8	1	1
3	0.3	–1	–1
4	0.55	–1	1
5	0.1	–1	–1
6	0.96	1	1
7	0.33	1	–1
8	0.2	–1	–1
9	0.14	–1	–1
10	0.88	1	1

Матрица ошибок

Confusion Matrix

<u>Actual</u> <u>Predict</u>	0	1
0	TN	FN
1	FP	TP

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Изображение: Матрица ошибок (blog.csdn.net)

Точность и полнота

- Точность (или precision) это доля верно определённых объектов среди тех, которые классификатор отнёс к положительным
- Полнота (или recall) это доля найденных классификатором объектов положительного класса среди всех положительных объектов

Матрица ошибок:

$$precision = \frac{3}{3+2} = \frac{3}{5} = 0.6$$
$$recall = \frac{3}{3+1} = \frac{3}{4} = 0.75$$

id	Предсказанная вероятность	Правильный ответ	Предсказанный класс с порогом 0.25
1	0.6	–1	1
2	0.8	1	1
3	0.3	–1	1
4	0.55	–1	1
5	0.1	–1	–1
6	0.96	1	1
7	0.33	1	1
8	0.2	–1	–1
9	0.14	–1	–1
10	0.88	1	1

Матрица ошибок:

$$precision = \frac{4}{4+3} = \frac{4}{7} \approx 0.57$$
$$recall = \frac{4}{4+0} = \frac{4}{4} = 1$$

Метрики и порог

- При уменьшении порога полнота растёт, а точность падает
- При увеличении порога точность растёт, а полнота падает

Итоги модуля

- Узнали, что такое линейные классификаторы
- Изучили линейный классификатор под названием «логистическая регрессия»
- Узнали про градиентный спуск и реализовали его метод в python, обучили с его помощью линейную и логистическую регрессию
- Посмотрели, как применять логистическую регрессию из библиотеки sklearn и настраивать её гиперпараметры
- Узнали, что можно настраивать порог для перевода вероятности модели в классы и этим влиять на метрики