Exercise 1 (1.6.D Vakil). Show that a map of complexes induces a map of homology $H^i(A^{\bullet}) \to H^i(B^8)$ and furthermore, H^i is a covariant functor from $\mathsf{Com}_{\mathsf{C}} \to \mathsf{C}$. [Feel free to deal with the special case Mod_A .]

Answer

We will work inside the category of modules in this case. Consider two complexes A^{\bullet}, B^{\bullet} with a map of complexes $\varphi: A^{\bullet} \to B^{\bullet}$ where $\varphi^i: A^i \to B^i$. To define a map between homology, we will first show that the chain map preserves cycles and boundaries.

 \diamond Suppose $z \in A^i$ is a cycle, then $f^i(z) = 0$. Composing with φ^{i+1} we still get 0. However, by commutativity we have

$$0 = \varphi^{i+1}(f^i(z)) = g(\varphi^i(z)) \Rightarrow g(\varphi^i(z)) = 0$$

which means that $\varphi^i(z)$ is a cycle in B^i . The following diagram represents the previous situation:

$$z \in A^{i} \xrightarrow{f^{i}} 0 \in A^{i+1}$$

$$\varphi^{i} \downarrow \qquad \qquad \downarrow \varphi^{i+1}$$

$$\varphi^{i}(z) \in B^{i} \xrightarrow{q^{i}} 0 \in B^{i+1}$$

 \diamond On the other hand suppose $y \in A^i$ is a boundary. Then

$$\exists x (x \in A^{i-1} \land f^{i-1}(x) = y).$$

We wish to find an $\widetilde{x} \in B^{i-1}$ such that $g^{i-1}(\widetilde{x}) = \varphi^i(y)$, so we claim that such \widetilde{x} is $\varphi^{i-1}(x)$. By diagram commutativity we have that

$$g^{i-1}(\varphi^{i-1}(x)) =$$