CHAPITRE

14

GROUPE SYMÉTRIQUE

GROUPES DES PERMUTATIONS D'UN ENSEMBLE

Soit X un ensemble et $\mathcal{S}(X)$ l'ensemble des permutations de X.

Si f,g sont des permutations de X, il en est de même de $f \circ g$; $(f,g) \mapsto f \circ g$ définit donc une loi de composition interne sur l'ensemble $\mathcal{S}(X)$; cette loi de composition interne est associative; elle admet un élément neutre, à savoir l'application identique Id_X ; enfin, si f est une permutation de X, il en est de même de l'application réciproque f^{-1} et celle-ci est évidemment inverse de f pour la loi de composition interne considérée.

Théorème 1

 $(\mathcal{S}(X), \circ)$ est un groupe.

Le groupe $\mathcal{S}(X)$ s'appelle le groupe des permutations de l'ensemble X ou groupe symétrique de X.

C'est l'étude de ces groupes par Galois (lorsque *X* est un ensemble fini) qui a conduit, historiquement, à la notion générale et «abstraite» de groupe.

Supposons maintenant X fini de cardinal $n \ge 1$ et donnons nous un bijection

$$\varphi: \quad \llbracket 1, n \rrbracket \quad \to \quad X \quad .$$

$$i \quad \mapsto \quad x_i$$

Alors

sont des isomorphismes de groupes, réciproque l'un de l'autre.

Cela justifie qu'en pratique, nous n'étudierons que le groupe des permutations des [1, n].

14.1 PERMUTATIONS

§1 Définitions

Définition 2

Soit $n \in \mathbb{N}^*$.

- On appelle **permutation** de [1, n] toute bijection de [1, n] dans [1, n].
- Le groupe des permutations de [1, n] est noté S_n .

Remarque

- **1.** $\mathcal{S}_n = \mathcal{S}([[1, n]]).$
- **2.** (\mathcal{S}_n, \circ) est un groupe.
- 3. card $(\mathcal{S}_n) = n!$.

Notation

Soit $\sigma \in \mathcal{S}_n$. On note

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}.$$

Exemple 3

Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{pmatrix}$$
 et $\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 3 & 5 & 4 & 1 \end{pmatrix}$. Alors

$$\sigma' \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 4 & 5 & 1 \end{pmatrix} \qquad \sigma \circ \sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 4 & 5 & 2 \end{pmatrix}$$
$$\sigma^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 4 & 6 \end{pmatrix} \qquad \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 4 & 5 & 6 \end{pmatrix}.$$

Définition 4

Soit $\sigma \in \mathcal{S}_n$ et $x \in [1, n]$.

• L'orbite de $x \in [1, n]$ pour σ est l'ensemble

$$\operatorname{orb}(x) = \left\{ \left. \sigma^k(x) \mid k \in \mathbb{N} \right. \right\}.$$

- On dit que x est un **point fixe** pour σ si $\sigma(x) = x$.
- Le **support** de σ est l'ensemble des éléments de E qui ne sont pas fixes pour σ :

$$\operatorname{supp}(\sigma) = \{ i \in [1, n] \mid \sigma(i) \neq i \}.$$

• L'ordre de σ est le plus petit entier k tel que $\sigma^k = \text{Id}$. C'est aussi l'ordre du sous-groupe monogène engendré par σ .

Exemple 5

Le support de
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{pmatrix}$$
 est $\{1, 2, 3, 4, 5\}$.

Cette permutation a trois orbites : celle du point fixe $\{6\}$ et deux autres $\{1,2,3\}$ et $\{4,5\}$. Cette permutation est d'ordre 6.

§2 Cycles

Définition 6

Soit $p \in [\![2,n]\!]$. Un **cycle de longueur** p est un élément σ de \mathcal{S}_n tel qu'il existe p éléments distincts de $x_1, x_2, \ldots, x_p \in [\![1,n]\!]$ vérifiant

$$\begin{split} &\sigma(x_1)=x_2,\quad \sigma(x_2)=x_3,\quad \dots\quad \sigma(x_{p-1})=x_p,\quad \sigma(x_p)=x_1\\ &\text{et } \forall j\in [\![1,n]\!]\setminus \{\,x_1,\dots,x_p\,\}\,, \sigma(j)=j. \end{split}$$

- L'ensemble $\{x_1, \dots, x_p\}$ est le **support** du cycle σ .
- Ce cycle se note également $(x_1 \ x_2 \ \dots \ x_p)$.
- Un cycle de longueur 2 est une transposition.

Exemple 7

On considère la permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

La permutation σ est un cycle de longueur 4. On a $\sigma = \begin{pmatrix} 1 & 5 & 2 & 3 \end{pmatrix}$ mais aussi $\sigma = \begin{pmatrix} 2 & 3 & 1 & 5 \end{pmatrix}$.

On a aussi

$$\sigma^{2} = \sigma \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 3 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 5 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$\sigma^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 5 \end{pmatrix}$$

$$\sigma^{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \operatorname{Id}_{[1,5]}$$

$$\sigma^{-1} = \begin{pmatrix} 3 & 2 & 5 & 1 \end{pmatrix}.$$

Test 8

Conjugaison

Soit σ un élément de \mathcal{S}_n et $\sigma' = \begin{pmatrix} x_1 & x_2 & \dots & x_p \end{pmatrix}$ un cycle de longueur p. Alors

$$\sigma \circ \begin{pmatrix} x_1 & x_2 & \dots & x_p \end{pmatrix} \circ \sigma^{-1} = \begin{pmatrix} \sigma(x_1) & \sigma(x_2) & \dots & \sigma(x_p) \end{pmatrix}.$$

14.2 DÉCOMPOSITION DES PERMUTATIONS

Proposition 9

Deux cycles à supports disjoints commutent.

Théorème 10

Toute permutation de [1, n] distincte de $Id_{[1,n]}$ peut s'écrire comme composée de cycles de supports deux à deux disjoints. Cette décomposition est unique à l'ordre près.

Démonstration. Non exigible.

Exemple 11

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 5 & 1 & 4 & 6 & 8 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 5 & 4 \end{pmatrix} \circ \begin{pmatrix} 7 & 8 \end{pmatrix} = \begin{pmatrix} 7 & 8 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 & 5 & 4 \end{pmatrix}.$$

Remarque

Cette décomposition permet de calculer facilement les puissance d'une permutation.

Théorème 12

Toute permutation de [1,n] peut s'écrire comme composée de transposition. Cette décomposition n'est pas unique.

Démonstration. Il suffit de montrer que tout cycle est composée de transposition. Soit $(x_1 \ x_2 \ \dots \ x_p)$ un cycle de longueur p, alors

$$(x_1 \quad x_2 \quad \dots \quad x_p) = (x_1 \quad x_2) \circ (x_2 \quad x_3) \circ \dots \circ (x_{p-1} \quad x_p).$$

Remarque

• $(1 \ 2 \ 3) = (1 \ 2) \circ (2 \ 3) = (1 \ 3) \circ (1 \ 2).$

14.3 SIGNATURE D'UNE PERMUTATION

Définition 13

Soit $\sigma \in \mathcal{S}_n$ $(n \ge 2)$. Soit $(i, j) \in [[1, n]]^2$. On dit que (i, j) est une **inversion** pour σ si

$$i < j$$
 et $\sigma(i) > \sigma(j)$.

La **signature** de σ est $(-1)^p$ où p est le nombre d'inversions de σ . On la note $\varepsilon(\sigma)$.

- Si $\varepsilon(\sigma) = 1$, on dit que σ est une **permutation paire**.
- Si $\varepsilon(\sigma) = -1$, on dit que σ est une **permutation impaire**.

Exemple 14

Avec
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}$$
.

$$1 < 2$$
 et $\sigma(1) = 5 > \sigma(2) = 1$.

Donc le couple (1, 2) est une inversion pour σ .

Exemple 15

On a
$$\varepsilon$$
 (Id_[1,n]) = $(-1)^0 = 1$.

Proposition 16

Soit $\sigma \in \mathcal{S}_n$, alors

$$\varepsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i} = \prod_{\{i, j\}} \frac{\sigma(j) - \sigma(i)}{j - i},$$

où la notation $\prod_{\{i,j\}}$ est le produit sur toutes les paires $\{i,j\} \subset [\![1,n]\!]$ (donc avec $i \neq j$).

Démonstration. Une paire $\{i, j\}$ est une inversion si, et seulement si $\frac{\sigma(j) - \sigma(i)}{i - j} < 0$. On a donc

$$\prod_{\{i,j\}} \frac{\sigma(j) - \sigma(i)}{j-i} = (-1)^p \prod_{\{i,j\}} \frac{|\sigma(j) - \sigma(i)|}{|j-i|},$$

où p désigne le nombre d'inversion de σ .

Or σ est une permutation de [1, n] donc $\{\sigma(i), \sigma(j)\}$ décrit l'ensemble des paires de [1, n] lorsque $\{i, j\}$ décrit l'ensemble des paires de [1, n]. Ainsi

$$\prod_{\{i,j\}} |\sigma(j) - \sigma(i)| = \prod_{\{i,j\}} |j - i|$$

et donc

$$\prod_{\{i,j\}} \frac{\sigma(j) - \sigma(i)}{j - i} = (-1)^p = \varepsilon(\sigma).$$

Théorème 17

Soit $n \in \mathbb{N}^*$ et $(\sigma, \sigma') \in \mathcal{S}_n^2$. Alors

$$\varepsilon \left(\sigma \circ \sigma'\right) = \varepsilon(\sigma)\varepsilon(\sigma').$$

En d'autres termes,

$$\varepsilon : (\mathcal{S}_n, \circ) \rightarrow (\{-1, 1\}, \times)$$

 $\sigma \mapsto \varepsilon(\sigma)$

est un morphisme de groupes.

- C'est le seul morphisme non identiquement égal à 1.
- C'est le seul morphisme envoyant toute transposition sur -1.

Démonstration. Non exigible.

Proposition 18

Soit $\sigma \in \mathcal{S}_n$.

- 1. La signature d'une transposition est toujours -1.
- **2.** On peut écrire $\sigma = \tau_1 \circ \dots \circ \tau_q$ où les τ_i sont des transpositions. Alors $\varepsilon(\sigma) = (-1)^q$.
- 3. La signature d'une cycle de longueur p est $(-1)^{p-1}$.