Data

IT 326: Data Mining

First semester 2021

- Data Objects and Attribute Types
- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets

Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: termfrequency vector
- Transaction data
- □ Spatial, image and multimedia:
 - Spatial data: maps
 - Image data
 - Video data

Tid	Items bought			
10	Tea, Nuts, Water			
20	Tea, Coffee, Water			
30	Tea, Water, Eggs			
40	Nuts, Eggs, Milk			
50	Nuts, Coffee, Water, Eggs, Milk			

Transaction data

Ordered

- Video data: sequence of images
- Temporal data: time-series
- Sequential Data: transaction sequences
- 🗖 Genetic sequence data تسلسل جيني
- Graph and network
 - World Wide Web
 - Social or information networks
 - تراكيب جزيئية Molecular Structures

m	-	team	coach	pla y	ball	score	game	⇒ ≦.	lost	timeout	seas on
	Document 1	3	0	5	0	2	6	0	2	0	2
	Document 2	0	7	0	2	1	0	0	3	0	0
	Document 3	0	1	0	0	1	2	2	0	3	0

Document data

Graph

of Itam as in Sin is

- Data sets are made up of data objects.
- A data object represents an entity.
 - Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses

Also called samples, examples, instances, data points, objects, tuples.

Objects

Data objects	are described l	oy attributes.
--------------------------------	-----------------	----------------

- Attributes also called dimensions, features, variables.
- □ Database: rows → data objects; columns → attributes.

AIII	IDUI	es

A ttributos

Student	ID	Name	GPA	Age
Student 1	8000	Sam	3.45	19
Student 2	5001	Jill	2.65	21

Relational records

Attributes

- Attribute: a data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- The type of an attribute is determined by the set of possible values the attribute can have.

Attribute Types (Qualitative)

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

□ Ordinal:

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- □ Size = {small, medium, large}, grades, army rankings

Attribute Types (Qualitative)

□ Binary:

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Attribute Types (Quantitative)

- Numeric: a measurable quantity, represented in integer or real values.
 - Numeric attributes can be further categorized into (interval or ratio)

Interval

- Measured on a scale of equal-sized units
- Values have order
- No true zero-point
- o e.g., temperature in C° or F°, calendar dates

Ratio

- Inherent zero-point
- we can speak of a value as being a multiple (or ratio) of another value
- e.g., counts(years of experiences, number of words),
 monetary quantities

Proximity

Similarity and Dissimilarity

- Proximity refers to a similarity or dissimilarity
- Similarity
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies

Data Matrix and Dissimilarity Matrix

 Data matrix: stores the n data objects in the form of a relational table.

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

n-by-p matrix (n objects $\times p$ attributes)

- Dissimilarity matrix: This structure stores a collection of proximities that are available for all pairs of *n* objects.
 - A triangular matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \cdots & \cdots & 0 \end{bmatrix}$$

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states

Example:

Obj	Color	
1	Red	
2	Yel	\rightarrow
3	Red	
4	Green	

Obj	col-red	col-yel	col_blue	col_green
1	1	0	0	0
2	0	1	0	0
3	1	0	0	0
4	0	0	0	1

Object

Example: Nominal attributes

A Sample Data Table Containing Attributes of Mixed Type

test-l

	ldentifler	(nominal)	(ordinal)	(numeric)	
4	1	code A	excellent	45	
	2	code B	fair	22	
\	3	code C	good	64	
\	4	code A	excellent	28	

test-2

test-3

normal
$$S=1$$
 $d=0=0$ $d=1=1$ $d=0$ $d=1=1$ $d=0$ $d=1=1$ $d=0$ $d=1=1$

Dissimilarity matrix

"test-1"

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ d(4,1) & d(4,2) & d(4,3) & 0 \end{bmatrix}.$$

Proximity Measure for Binary Attributes

5 222

A(contingency table, for binary attributes: >>

	Object j				
		1	0	sum	
	1	\overline{q}	r	q+r	
Object i	0	S	t	s+t	
	sum	q + s	r+t	p	

Distance measure for symmetric binary variables:

Distance measure for asymmetric binary variables:

istance measure to asymmetric binary variables:
$$\frac{d(i,j) = \frac{r+s}{q+r+s}}{d(i,j) = \frac{r+s}{q+r+s}}$$

Jaccard coefficient: similarity measure for asymmetric binary variables.

$$sim(i, j) = \frac{q}{q+r+s} = 1 - d(i, j).$$

Example: Binary Attributes

Relational Table Where Patients Are Described by Binary Attributes

name	gender	fever	cough	test-I	test-2	test-3	test-4
Jack	M	YIJ	$\begin{pmatrix} N & O \\ Y & I \end{pmatrix}$	P /	Νο٦	Non	No
Jim	M		Y	NO)	$N \cup J$	$N \circ \mathcal{I}$	NGJ
Mary	F	Y	N P	P	NO	P \	N 6
:	:	:	:	:	:	:	:

- Gender is a symmetric attribute
- □ The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0

have 2 possible viole

No possib

$$d(Jack, Jim) = \frac{1+1}{1+1+1} = 0.67,$$

$$d(Jack, Mary) = \frac{0+1}{2+0+1} = 0.33,$$

$$d(Jim, Mary) = \frac{1+2}{1+1+2} = 0.75.$$

Distance on Numeric Data: Minkowski Distance

2 object iii

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h},$$

Where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are be two objects described by p numeric attributes, and h is the order (the distance so defined is also called L-h norm)

Properties:

- □ d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
- \square d(i, j) = d(j, i) (Symmetry) + (2)
- □ $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Distance on Numeric Data: Special cases

- h = 1: 1 Manhattan (city block, L1 norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|.$$

h = 2: (L2 norm) Euclidean distance

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})_{\frac{2}{5}}^2}.$$

Data Matrix

object

point	attribute 1	attribute 2
x1	1	_ 2
x2	3	5
х3	2	0
x4	4	5

Dissimilarity Matrices:

Euclidean distance = $(2^2 + 3^2)^{1/2} = 3.61$

Manhattan distance = 2 + 3 = 5

Manhattan	/I \	11-3	4 /8	2-5
Manhattan	(L_1)	= _	^ \^ \ \	

1x2-X11

1	1				
			x ₂	x ₄	
4					
2		x ₁			
			x ₃		
0			2	4	-

_					
	${f L}$	x1	x2	х3	x4
	x1	0			
	x2	5	0		
	x 3	3	6	0	
Ī	x4	6	1	7	0

Euclidean (L₂)

)	L2	x1	x2	х3	x4
	x1	0			
	x2	3.61	0		
	х3	2.24	5.1	0	
	x4	4.24	1	5.39	0

$$= \sqrt{(1-3)^2 + (2-5)^2}$$

$$= \sqrt{9+9} = \sqrt{9+9} = 3.61$$

Proximity Measure for Ordinal Attributes =>

 $\frac{2}{1-\frac{1}{3}} = 0$

- Order is important, e.g., rank
- Can be treated like interval-scaled:
 - Replace x_{if} by their rank $r_{if} \in \{1, ..., M_f\}$
- 2. Map the range of each variable onto [0, 1] by replacing i^{th} object in the f^{th} variable by:

$$Z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

$$M_{f}: \text{ number of possible values for variable } f.$$

3. Compute the dissimilarity using methods for numeric variables.

$$M = 3$$

Example: Ordinal Attributes

A Sample Data Table Containing Attributes of Mixed Type

Object Identifier	test-l (nominal)	test-2 (ordinal)	test-3 (numeric)
1	code A	excellent	45
2	code B	fair	22
3	code C	good	64
4	code A	excellent	28

Obj ID	Test-2	rank	normalize
1	Excellent	3	(3-1)/(3-1) = 1
2	Fair	1	0
3	Good	2	0.5
4	Excellent	3	1

Dissimilarity matrix "test-2"

$$M = \begin{cases} 1 - 0 \\ 1 - 0 \\ 0 - 0.5 \\ 0$$

Dissimilarity for Attributes of Mixed Types

- A database may contain all attribute types:
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; otherwise, $d_{ij}^{(f)} = 1$.
- \blacksquare f is numeric: use the normalized distance $d_{ij}^{(f)} = \frac{|x_{if} x_{jf}|}{\max_h x_{hf} \min_h x_{hf}}$
- $\square f$ is ordinal:
 - Compute ranks r_{if} and $z_{if} = \frac{r_{if}-1}{M_{f}-1}$
 - \blacksquare Treat z_{if} as numeric

$$\delta_{ij}$$
 = 0 IF either

- (1) x_{if} or x_{jf} is missing OR
- (2) $x_{if} = x_{jf} = 0$ and attribute f is asymmetric binary; Otherwise, $\delta_{ij} = 1$.

Example: Mixed Attributes

□ Calculate d(3,1).

Obj ID	Test-1 (nominal)	Test-2 (ordinal)	Test-3 (numeric)
1	Code A	Excellent > 1	45
2	Code B	Fair	22 ← min
3	Code C	Good → 0.5	64 ← max
4	Code A	Excellent	28

$$d_{3,1}^{Test-1} = 1$$

$$d_{3,1}^{Test-2} = 0.5$$

$$d_{3,1}^{Test-1} = 1$$
 $d_{3,1}^{Test-2} = 0.5$ $d_{3,1}^{Test-3} = \frac{|64-45|}{64-22} = 0.45$

$$d(3,1) = \frac{1(1) + 1(0.5) + 1(0.45)}{1 + 1 + 1} = 0.65$$

Mixed Attributes

Nominal matrix (only for test#1)

0			
1	0		
1	1	0	
1 0	1	1	0

Ordinal matrix (only for test#2)

0 1 0 0.5 0.5 0 0 1 0.5 0

Numeric matrix (only for test#3)

Mixed variables matrix

$$d(4,3) = \frac{(1*1) + (0.5*1) + (36/42*1)}{1+1+1} = \frac{1+0.5+0.86}{3} = 0.79$$

Cosine Similarity

Cosine similarity measures the similarity between two vectors by the cosine of the angle between them.

Θ	0	22.5	45	67.5	90
cos(⊙)≈	1	0.92	0.71	0.38	0

Cosine Similarity

Cosine measure: If x and y are two vectors (e.g., termfrequency vectors), then

$$sim(x, y) = cos(x, y) = \frac{x \cdot y}{\|x\| \|y\|}$$

where \bullet indicates vector dot product, and ||x|| is the length of vector x.

$$x \cdot y = \sum_{i} x_{i} \cdot y_{i}$$
 $||x|| = \sqrt{\sum_{i} x_{i}^{2}}$

Example: Cosine Similarity

 A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Term-frequency vectors are very long and sparse (contains many zeros).
- Traditional distance measures are not suitable;
 - Many zero-matches between two documents does not mean that they are similar.
- \square Must ignore zero-matches \rightarrow cosine similarity.

Example: Cosine Similarity

- Ex: Find the similarity between documents 1 and 2.
- \square d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)
- \square d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

$$d1 \cdot d2 = (5 \times 3) + (0 \times 0) + (3 \times 2) + (0 \times 0) + (2 \times 1) + (0 \times 1) + (0 \times 0) + (2 \times 1) + (0 \times 0) + (0 \times 1)$$

$$= 25$$

$$||d1|| = \sqrt{5^2 + 0^2 + 3^2 + 0^2 + 2^2 + 0^2 + 0^2 + 2^2 + 0^2 + 0^2} = 6.48$$

$$||d2|| = \sqrt{3^2 + 0^2 + 2^2 + 0^2 + 1^2 + 1^2 + 0^2 + 1^2 + 0^2 + 1^2} = 4.12$$

$$\cos(d1, d2) = \frac{25}{6.48 \times 4.12} = 0.94$$

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- Measure data similarity and dissimilarity