Perceptrons and stacking

John Paul Gosling

2024-11-21

In this practical, we will be looking at the mechanics behind perceptrons and stacking. We will start by building a simple perceptron model and then move on to stacking multiple models together to improve performance.

Perceptrons

Let's begin by training a perceptron model on the weather_classification_data that we met in Practical 2.

```
# Load the data
weather_full <- read.csv("https://www.maths.dur.ac.uk/users/john.p.gosling/MATH3431_practicals/weather_</pre>
# Display the first few rows
head(weather full)
##
     Temperature Humidity Wind. Speed Precipitation....
                                                            Cloud.Cover
## 1
                        73
                                   9.5
                                                       82 partly cloudy
## 2
               39
                        96
                                   8.5
                                                       71 partly cloudy
## 3
               30
                        64
                                   7.0
                                                       16
                                                                   clear
               38
                                                       82
## 4
                        83
                                   1.5
                                                                   clear
## 5
               27
                        74
                                  17.0
                                                       66
                                                                overcast
## 6
              32
                        55
                                                       26
                                   3.5
                                                                overcast
     Atmospheric.Pressure UV.Index Season Visibility..km. Location Weather.Type
## 1
                   1010.82
                                   2 Winter
                                                         3.5
                                                                inland
                                                                               Rainy
## 2
                   1011.43
                                   7 Spring
                                                        10.0
                                                                inland
                                                                              Cloudy
## 3
                                                         5.5 mountain
                   1018.72
                                   5 Spring
                                                                               Sunny
## 4
                   1026.25
                                   7 Spring
                                                         1.0 coastal
                                                                               Sunny
## 5
                    990.67
                                   1 Winter
                                                         2.5 mountain
                                                                               Rainy
                   1010.03
                                   2 Summer
                                                         5.0
                                                                inland
                                                                              Cloudy
# Select the features of interest
weather <- weather_full[,c(1:6)]</pre>
# Pick 1000 random rows
set.seed(1312)
weather <- weather[sample(1:nrow(weather), 1000),]</pre>
# Convert Cloud.Cover to a binary variable (clear vs not)
weather$Cloud.Cover <- ifelse(weather$Cloud.Cover == "clear", 1, -1)</pre>
# Add in a variable for a constant term
weather <- cbind(weather,1)</pre>
# Summarise the data
```

summary(weather) Humidity ## Temperature Wind.Speed Precipitation.... ## :-22.00 Min. : 20.00 Min. : 0.000 Min. Min. : 0.00 1st Qu.: 4.00 1st Qu.: 58.00 1st Qu.: 20.00 1st Qu.: 5.000 ## Median : 21.00 Median : 70.00 Median : 9.000 Median: 59.00 ## Mean : 18.78 Mean : 68.97 Mean : 9.881 Mean : 53.57 ## 3rd Qu.: 30.00 3rd Qu.: 83.00 3rd Qu.:13.500 3rd Qu.: 80.25 Max. ## Max. : 91.00 :109.00 :44.000 Max. :109.00 Max. ## Cloud.Cover Atmospheric.Pressure 1 ## Min. :-1.000 Min. : 803.3 Min. :1 ## 1st Qu.:-1.000 1st Qu.: 994.3 1st Qu.:1 ## Median :-1.000 Median :1007.3 Median:1 ## Mean :-0.674 Mean :1004.1 Mean ## 3rd Qu.:-1.000 3rd Qu.:1016.1 3rd Qu.:1 ## Max. : 1.000 Max. :1198.4 Max.

We will also split the data into a training and testing set (70/30).

```
# Set the seed
set.seed(141)

# Split the data
train_indices <- sample(1:nrow(weather), 0.7 * nrow(weather))
train_data <- weather[train_indices, ]
test_data <- weather[-train_indices, ]</pre>
```

Task 1.1 - Build your own perceptron

Build a perceptron model that predicts the class variable using the other variables as predictors. You should use the base R strategy given in the notes.

```
# Initialise the weights to zero
weights <- rep(0, ncol(weather) - 1)</pre>
# Set the learning rate
alpha <- 0.1
# Set the maximum number of iterations
max_iter <- 30</pre>
# Repeat the following steps until the maximum number of
# iterations is reached
for (i in 1:max_iter) {
  # For each input in the training data
 for (j in 1:nrow(train_data)) {
    # Compute the predicted class label
    predicted <- ifelse(sum(weights * train_data[j, -5]) > 0,
                         1, -1)
    # Update the weights based on the classification error
    weights <- weights + alpha * (train_data[j, 5] - predicted) *</pre>
      train_data[j, -5]
  }
}
```

Visualise the weights.

Make predictions on the test data and evaluate the model's performance using accuracy.

Task 1.2 - Perceptron using standardised data

[1] 0.63

Create a standardised version of the five explanatory variables and repeat the above steps.

```
# Standardise the data by subtracting the mean
# and dividing by the standard deviation
standardised_weather <- scale(weather[, -c(5,7)])

# Combine the standardised data with the class variable
# and the constant term
standardised_weather <- cbind(standardised_weather, weather[, c(5,7)])

# Split the data
set.seed(141)
train_indices <- sample(1:nrow(standardised_weather), 0.7 * nrow(standardised_weather))</pre>
```

```
train_data <- standardised_weather[train_indices, ]</pre>
test_data <- standardised_weather[-train_indices, ]</pre>
# Initialise the weights to zero
weights <- rep(0, ncol(standardised_weather) - 1)</pre>
# Set the learning rate
alpha <- 0.1
# Set the maximum number of iterations
max_iter <- 30</pre>
# Repeat the following steps until the maximum number of
# iterations is reached
for (i in 1:max_iter) {
  # For each input in the training data
 for (j in 1:nrow(train_data)) {
    # Compute the predicted class label
   predicted <- ifelse(sum(weights * train_data[j, -6]) > 0,
                        1, -1)
    # Update the weights based on the classification error
   weights <- weights + alpha * (train_data[j, 6] - predicted) *</pre>
      train_data[j, -6]
 }
}
# Make predictions
predictions <- NULL
for (j in 1:nrow(test_data)) {
 predictions[j] <- ifelse(sum(weights * test_data[j, -6]) > 0,
                           1, -1)
}
# Calculate the accuracy
std_accuracy <- sum(predictions == test_data[,6]) / nrow(test_data)</pre>
std_accuracy
## [1] 0.8133333
Is this transformation necessary? Is it beneficial?
weights
        Temperature Humidity Wind. Speed Precipitation.... Atmospheric. Pressure
-0.3669384
                                                                        0.2171479
## 1471 -1
barplot(as.numeric(weights), names.arg = colnames(train_data)[-6])
```


It is probably worthwhile to standardise the data as it makes the weights more interpretable. In this case, the accuracy has also improved.

Task 2 - Changing the parameters

Repeat the above steps for the original data but try different learning rates and maximum iterations.

```
# Set the seed
set.seed(141)
# Split the data
train_indices <- sample(1:nrow(weather), 0.7 * nrow(weather))</pre>
train_data <- weather[train_indices, ]</pre>
test_data <- weather[-train_indices, ]</pre>
# Initialise the weights to zero
weights <- rep(0, ncol(weather) - 1)</pre>
# Set the learning rate
alpha <- 0.01
# Set the maximum number of iterations
max iter <- 100
# Repeat the following steps until the maximum number of
# iterations is reached
for (i in 1:max_iter) {
  # For each input in the training data
  for (j in 1:nrow(train_data)) {
    # Compute the predicted class label
    predicted <- ifelse(sum(weights * train_data[j, -5]) > 0,
                         1, -1)
    # Update the weights based on the classification error
    weights <- weights + alpha * (train_data[j, 5] - predicted) *</pre>
      train_data[j, -5]
```

```
}
}
# Make predictions
predictions <- NULL
for (j in 1:nrow(test_data)) {
  predictions[j] <- ifelse(sum(weights * test_data[j, -5]) > 0,
                            1, -1)
}
# Calculate the accuracy
accuracy_try <- sum(predictions == test_data[,5]) / nrow(test_data)</pre>
Have things improved?
accuracy_try
## [1] 0.88
weights
        Temperature Humidity Wind. Speed Precipitation.... Atmospheric. Pressure
##
## 1471
              391.9
                      -178.3
                                 -236.67
                                                    -171.16
                                                                             3.62
##
## 1471 -1.48
barplot(as.numeric(weights), names.arg = colnames(train_data)[-6])
300
200
100
0
                              Wind.Speed
                                                      Cloud.Cover
      Temperature
                                                                        1
```

To get a handle on what is going on, consider the interplay between alpha and the standardisation being performed on the data.

Stacking

Let's go back to the Glass dataset that we first met in Practical 1. We will use this dataset to build a stacking model for the RI response variable.

```
# Load in the data
Glass <- read.csv("https://www.maths.dur.ac.uk/users/john.p.gosling/MATH3431_practicals/Glass.csv")
# Look at the first few rows
head(Glass)
##
          RΙ
                Na
                     Mg
                          Al
                                Si
                                       K
                                           Ca Ba
                                                   Fe Type
## 1 1.52101 13.64 4.49 1.10 71.78 0.06 8.75 0 0.00
## 2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0 0.00
## 3 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0.00
## 4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0 0.00
                                                         1
## 5 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0 0.00
## 6 1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26
# Let's split the data into a training and testing set (70/30)
set.seed(123)
train_indices <- sample(1:nrow(Glass), 0.7 * nrow(Glass))</pre>
train_data <- Glass[train_indices, ]</pre>
test_data <- Glass[-train_indices, ]</pre>
```

Task 3 - Building poor models

Let's start by building four weak learners.

- Model 1 A linear regression utilising just Na and Mg as predictors.
- Model 2 A linear regression utilising just Al as a predictor with no intercept term.
- Model 3 A 1-NN model utilising just Ca, Ba and Fe.
- Model 4 A decision tree model utilising all variables but with a maximum depth of 2.

Task 3.1 - Model 1 Build the model and evaluate its performance on the test data (MSE and MAE).

Task 3.2 - Model 2 Build the model and evaluate its performance on the test data (MSE and MAE).

Task 3.3 - Model 3 Build the model and evaluate its performance on the test data (MSE and MAE).

Task 3.4 - Model 4 Build the model and evaluate its performance on the test data (MSE and MAE).

Which model is best so far?

Model	MSE	MAE
1	9.4×10^{-6}	0.00225
2	0.1947849	0.34292
3	3.2×10^{-6}	0.00121
4	4.9×10^{-6}	0.00152

Task 4 - Stacking models

Now we will stack the models together to see if we can improve performance.

Task 4.1 - Build the meta-model Build a decision tree model that takes the predictions from the four weak learners as input. We want the possibility of a more detailed model so set the maximum depth to 5.

Plot the tree.

```
library(rpart.plot)
rpart.plot(stacking_model)
```


What is notable about the tree?

It ignores the predictions from model 1 and model 4.

Task 4.2 - Evaluate the meta-model Make predictions using the meta-model and evaluate its performance on the test data (MSE and MAE).

```
newdata = stacking_test_data)

# Calculate the MSE and MAE
stacking_mse <- mean((test_data$RI - stacking_predictions)^2)
stacking_mae <- mean(abs(test_data$RI - stacking_predictions))</pre>
```

How does the meta-model perform compared to the individual models?

Model	MSE	MAE
1	9.4×10^{-6}	0.00225
2	0.1947849	0.34292
3	3.2×10^{-6}	0.00121
4	4.9×10^{-6}	0.00152
Stacking	4.3×10^{-6}	0.00144

Given these results, what model would you recommend using for this dataset?

It would seem that the stacked model is very close to the performance of models 3 and 4. Given this, I would recommend using model 3 as it is the simplest model of the three.