Opium Tutorial 4: Titanium

Goal: The purpose of this tutorial is to demonstrate the construction of a pseudopotential with semicore states.

In many atoms, especially towards the left of the periodic table, there are significant interactions between the valence and near-valence core states. These high-lying core states are often referred to as *semicore* states. Significant errors will occur in the target calculation if these orbitals are simply incorporated into the pseudopotential core. Therefore, it is necessary to explicitly include these states as part of the valence.

We will now demonstrate how to construct a semicore pseudopotential. Let's begin with the following param file:

```
[Atom]
Τi
8
100 2.00 -
200 2.00 -
210 6.00 -
300 2.00 -
310 6.00 -
320 0.00 -
400 0.00 -
410 0.00 -
[Pseudo]
5 1.7 1.6 1.9 1.7 1.6
opt
[XC]
lda
[Optinfo]
7.0 10
7.5 10
7.8 10
7.0 10
7.5 10
[Configs]
300
    2.00
    6.00
310
320
    2.00
    2.00
400
    0.00
410
300
    2.00
    6.00
310
    2.00
320
    1.00
400
410
    0.00
300
    2.00
310
    6.00
320
    2.00
400
    0.00
410
    0.00
300
    2.00
   6.00
320 1.00
```

400 0.00 -

410 0.00 -

Here we have specified five valence states: 3s,3p,3d,4s, and 4p. Unlike other potentials, there are two s and two p states. The 3s and 3p are the semicore orbitals, the rest are valence.

We will construct one pseudopotential for each angular momentum *type*, not for each valence orbital. Currently, OPIUM's functionality is limited to what is termed *single* projector pseudopotentials. Constructing multiple projectors per angular momentum type can be done, but the target solid-state program must allow for this type of pseudopotential; not all do.

To clarify, the 4s and 4p orbitals are not used when constructing the pseudopotential. This is why these orbitals have no population in the reference state. The inclusion of these orbitals allows them to be considered in the transferability tests. Just as in the solid-state code, the 4s and 4p states will use the 3s and 3p potentials for transferability testing.

We have specified five cutoff radii as well as five entries in the [Optinfo] keyblock even though only three (one for s, p, and d) potentials will be constructed. These extra two entries are used for plotting and other output features. To reduce confusion, just keep the entries for a particular l value the same (notice that the reference state defines the order of the rest of the keyblocks).

Let's run this param file to see if we can continue onto transferability testing:

```
%> ./opium ti ti.log ae ps nl rpt
%> cat ti.rpt
```

======Optimized pseudopotential method=======

	Pseud	lopotential con	vergence error		
Orbital	[mRy/e]	[meV/e]	[mRy]	[meV]	Ghost
300	0.014566	0.198176	0.029131	0.396352	no
310	0.009667	0.131528	0.058003	0.789168	no
320	0.018412	0.250510	0.000000	0.000000	no
	Tot. error	· =	0.087134	1.185520	

Ghost
no

====== No ghosts in potential!!======

```
E_tot = -109.3857318047 Ry
```

As we see, the potential is well converged for the given cutoff wavevectors and there are no ghosts at all. Let's move onto the transferability testing:

```
\%> ./opium ti ti.log ae ps nl tc rpt \%> grep AE-NL ti.rpt
```

•			
•			

AE-NL:Orbital	Filling	Eige	envalues[mRy]	Norm[1e-3]
AE-NL				
AE-NL- 100	2.000		.9266724784	-0.2337222836
AE-NL- 210	6.000		. 2842382626	-0.0115419383
AE-NL- 320	2.000		.4340328700	8.6274515531
AE-NL- 200	2.000		. 1027002621	29.6167845983
AE-NL- 310	0.000		. 3867989655	2.4042003989
	error =		. 1344428385	40.8937007721
AE-NL:Orbital	Filling	Eige	envalues[mRy]	Norm[1e-3]
AE-NL				
AE-NL- 100	2.000		.6395070140	0.1101722815
AE-NL- 210	6.000		.7153937207	0.7725263942
AE-NL- 320	2.000		.0256058946	14.2604867865
AE-NL- 200	1.000		. 5827899427	39.0560422065
AE-NL- 310	0.000		.9784019867	6.7445401387
AE-NL- total			.9416985587	60.9437678073
AE-NL:Orbital	Filling	Eige	envalues[mRy]	Norm[1e-3]
AE-NL				
AE-NL- 100	2.000		.5397990237	0.8249290981
AE-NL- 210	6.000		.0810962346	2.3654124477
AE-NL- 320	2.000		.3855119642	18.6077250860
AE-NL- 200	0.000		. 3677820294	52.7043374015
AE-NL- 310	0.000		. 1488582095	11.8748045916
AE-NL- total			.5230474615	86.3772086249
AE-NL:Orbital	Filling	Eige	envalues[mRy]	Norm[1e-3]
AE-NL				
AE-NL- 100	2.000		. 2278000049	0.5877158002
AE-NL- 210	6.000		.8743404960	1.6243663443
AE-NL- 320	1.000	44	.3311725724	8.1294589295
AE-NL- 200	0.000	148	.0416011340	79.1457976352
AE-NL- 310	0.000		.7399072857	21.6667024658
AE-NL- total			.2148214930	111.1540411750
AE-NL- i	j [D[mRy]	DD[meV]	
AE-NL				
AE-NL- O	1 -157	7.894305	-2148.262545	
AE-NL- O	2 -131	.483983	-1788.931632	
AE-NL- O	3 -73	3.502902	-1000.058437	
AE-NL- O	4 -26	3.474957	-360.210323	
AE-NL- 1	2 26	3.410322	359.330913	
AE-NL- 1	3 84	1.391403	1148.204109	
AE-NL- 1	4 131	.419348	1788.052223	
AE-NL- 2	3 57	7.981081	788.873196	
AE-NL- 2	4 105	.009026	1428.721309	
AE-NL- 3	4 47	.027945	639.848114	

The transferability tests considered here cover a range of 0 to +3 oxidation states, with the reference state being +4. An ionic reference state is *necessary* since the 4s and 4p states must be empty in the reference configuration. The transferability is quite dissapointing. Let's try pulling in the cutoff radii.

```
[Atom]
Ti
8
100 2.00 -
200 2.00 -
210 6.00 -
300 2.00 -
```

```
310 6.00 -
320 0.00 -
400 0.00 -
410 0.00 -
[Pseudo]
5 1.3 1.3 1.3 1.3 1.3 0pt

[XC]
Ida

[Optinfo]
7.0 10
7.5 10
7.8 10
7.0 10
7.5 10
.
```

Again, we run the first section to check for ghosts and q-space convergence:

```
%> ./opium ti ti.log ae ps nl rpt
%> cat ti.rpt
```

 $\hbox{\tt ======0ptimized pseudopotential method========}}$

	Pseu	dopotential con	vergence error	<u>:</u>	
Orbital	[mRy/e]	[meV/e]	[mRy]	[meV]	Ghost
300	0.735787	10.010899	1.471574	20.021799	no
310	0.027017	0.367589	0.162104	2.205537	no
320	14.397956	195.894267	0.000000	0.000000	no
	Tot. erro	r =	1.633678	22.227336	

NL:Orbital	Filling	Eigenvalues[Ry]	Norm	Ghost
100 210 320 200	2.000 6.000 0.000 0.000	-8.2870763205 -6.5662526202 -3.8784059830 -2.8110650044	0.1863245872 0.2353338125 0.3323409071 0.8812522328	no no no
310	0.000	-2.2765746078	0.9043194766	no

====== No ghosts in potential!!======

```
E_{tot} = -109.1470757437 \text{ Ry}
```

.

Again, there are no ghosts. The convergence looks good, but it is a little misleading. The first two columns of errors

in the PS report is the convergence error per electron the next two are absolute convergence errors. Therefore, the last two columns are weighted by the occupation of the reference state. So, as long as the d-occupation is strictly zero in the target calculation, the pseudopotential may do quite well with respect to convergence. However, any significant d-character will be unconverged at the estimated energy cutoff (61 Ry).

Because of the d-state convergence, we must either pull out the cutoff radius or increase the cutoff wavevector. Let's try pulling the d cutoff radius back out to 1.5 a.u. and check the convergence and the transferability:

```
%> ./opium ti ti.log ae ps nl tc rpt
%> cat ti.rpt
```

```
[Atom]
Τi
8
100
    2.00
200
    2.00
210
    6.00
300
    2.00
310
    6.00
320
    0.00
    0.00
    0.00
[Pseudo]
5 1.3 1.3 1.5 1.3 1.3
```

=======Optimized pseudopotential method==========

Pseudopotential convergence error [mRy/e] [meV] Orbital [meV/e] [mRy] Ghost 10.010899 300 0.735787 1.471574 20.021799 no 310 0.027017 0.367589 0.162104 2.205537 no 26.080804 0.000000 320 1.916903 0.000000 no Tot. error = 1.633678 22.227336

NL:Orbital	Filling	Eigenvalues[Ry]	Norm	Ghost
100	2.000	-8.2870763203	0.1863245871	no
210	6.000	-6.5662526201	0.2353338125	no
320	0.000	-3.8784059828	0.2242218457	no
200	0.000	-2.8110650044	0.8812522328	no
310	0.000	-2.2765746077	0.9043194766	no

======= No ghosts in potential!!======

```
E_{tot} = -109.1470757449 \text{ Ry}
```

 $\%\!\!>$ grep AE-NL ti.rpt

_					
AE-NL:	Orbital	Filling	Eige	envalues[mRy]	Norm[1e-3]
AE-NL-					
AE-NL-	100	2.000	-24	.7244298191	-0.1495660753
AE-NL-	210	6.000	-23	.0161219713	0.3511027409
AE-NL-	320	2.000	-9	. 4245259552	9.0408510715
AE-NL-		2.000	5	.5851171878	8.6187475392
AE-NL-	310	0.000	-5	.8114572216	1.0370541139
AE-NL-	total	error =	68	.5616521549	19.1973215408
AE-NL:	Orbital	Filling	Eige	envalues[mRy]	Norm[1e-3]
AE-NL-					
AE-NL-	100	2.000	-11	.2205015171	0.1503201208
AE-NL-	210	6.000	-10	. 1367218648	0.8111021861
AE-NL-	320	2.000	2	.0207343089	11.4303655192
AE-NL-	200	1.000	15	.3860880889	11.2619929252
AE-NL-	310	0.000	-2	. 4945207785	2.7473131360
AE-NL-	total	error =	41	.2585665582	26.4010938873
AE-NL:	Orbital	Filling	Eige	envalues[mRy]	Norm[1e-3]
AE-NL-					
AE-NL-	100	2.000	11	.3650120939	0.7781255405
AE-NL-	210	6.000	11	. 2088392994	1.7610572012
AE-NL-	320	2.000	21	. 1532184971	13.9555742514
AE-NL-	200	0.000	32	.0592951281	14.9981107470
AE-NL-	310	0.000	6	. 1742508854	4.6961382631
AE-NL-	total	error =	81	.9606159039	36.1890060032
AE-NL:0	Orbital	Filling	Eig	envalues[mRy]	Norm[1e-3]
AE-NL-					
AE-NL-	100	2.000	15	.3070242896	0.6687820200
AE-NL-	210	6.000	15	.3141640096	1.3752676394
AE-NL-	320	1.000	23	.9941052750	7.6638939553
AE-NL-	200	0.000	62	. 9879355577	23.1727245012
AE-NL-	310	0.000	20	. 1828734229	8.5532727132
AE-NL-	total	error =	137	.7861025548	41.4339408292
AE-NL-	i	j	DD[mRy]	$\mathtt{DD} [\mathtt{meV}]$	
AE-NL-					
AE-NL-	0	1	-71.869310	-977.832270	
AE-NL-			-61.761760	-840.311982	
AE-NL-	0	3	-39.010837	-530.769739	
AE-NL-			-14.745177	-200.618449	
AE-NL-		2	10.107550	137.520288	
AE-NL-		3	32.858473	447.062531	
AE-NL-	1	4	57.124133	777.213821	
AE-NL-	2	3	22.750924	309.542242	
AE-NL-	2	4	47.016584	639.693533	
AE-NL-	3	4	24.265660	330.151290	

We could continue the process of pulling descreasing the cutoff radii and increasing the cutoff wavevectors and obtain an even more accurate pseudopotential, at the cost of a harder pseudopotential. However, better results can be obtained by invoking the designed non-local approach [1] which will be left to a later tutorial.

[1] N. J. Ramer and A. M. Rappe, Phys. Rev. B ${\bf 59},\,12471$ (1999).