AMATH 561 Autumn 2024 Problem Set 1

Due: Mon 10/7 at 10am

Note: Submit electronically to Canvas.

- 1. Describe the probability space for the following experiments: a) a biased coin is tossed three times; b) two balls are drawn without replacement from an urn which originally contained two blue and two red balls.
- a) Solution

Actual math here

b) Solution

Actual math here

2. (No translation-invariant random integer). Show that there is no probability measure P on the integers \mathbb{Z} with the discrete σ -algebra $2^{\mathbb{Z}}$ with the translation-invariance property P(E+n)=P(E) for every event $E\in 2^{\mathbb{Z}}$ and every integer n. E+n is obtained by adding n to every element of E. Solution

Show by contradiction, eventually $P(\Omega) = 0$ but it should be 1

3. (No translation-invariant random real). Show that there is no probability measure P on the reals $\mathbb R$ with the Borel σ -algebra $\mathcal B(\mathbb R)$ with the translation-invariance property P(E+x)=P(E) for every event $E\in\mathcal B(\mathbb R)$ and every real x. Borel σ -algebra $\mathcal B(\mathbb R)$ is the σ -algebra generated by intervals $(a,b]\subset\mathbb R$.

Solution

Also show by contradiction but it is a little trickier. It has to composing the right x s.t. E + x is outside the interval (a, b].

4. Let $\Omega = \mathbb{R}$, $\mathcal{F} =$ all subsets of \mathbb{R} so that A or A^c is countable. Let P(A) = 0 in the first case and P(A) = 1 in the second. Show that (Ω, \mathcal{F}, P)

is a probability space. Solution

We want to prove something is a probability space. Therefore, we need to prove the following:

- (1) prove fancy \mathcal{F} is a σ -algebra which includes that it contains the compliments of each set and that it contains the union of two sets.
- (2) prove cap P is a probability measure which includes proving $P(\Omega) = 1$, $P(A) \geq P(\emptyset) = 0 \quad \forall A \in \mathcal{F}$, and that $P(\cup_i A_i) = \sum_i P(A_i)$ for $A_i \in \mathcal{F}$ that is a countable sequence of disjoint sets.