

Art of Problem Solving 2014 USA Team Selection Test

USA Team Selection Test 2014

_	December TST
1	Let ABC be an acute triangle, and let X be a variable interior point on the minor arc BC of its circumcircle. Let P and Q be the feet of the perpendiculars from X to lines CA and CB , respectively. Let R be the intersection of line PQ and the perpendicular from B to AC . Let ℓ be the line through P parallel to XR . Prove that as X varies along minor arc BC , the line ℓ always passes through a fixed point. (Specifically: prove that there is a point F , determined by triangle ABC , such that no matter where X is on arc BC , line ℓ passes through F .) Robert Simson et al.
2	Let a_1, a_2, a_3, \ldots be a sequence of integers, with the property that every consecutive group of a_i 's averages to a perfect square. More precisely, for every positive integers n and k , the quantity
	$\frac{a_n + a_{n+1} + \dots + a_{n+k-1}}{k}$
	is always the square of an integer. Prove that the sequence must be constant (all a_i are equal to the same perfect square).
	Evan O'Dorney and Victor Wang
3	Let n be an even positive integer, and let G be an n -vertex graph with exactly $\frac{n^2}{4}$ edges, where there are no loops or multiple edges (each unordered pair of distinct vertices is joined by either 0 or 1 edge). An unordered pair of distinct vertices $\{x,y\}$ is said to be <i>amicable</i> if they have a common neighbor (there is a vertex z such that xz and yz are both edges). Prove that G has at least $2\binom{n/2}{2}$ pairs of vertices which are amicable.
	Zoltn Fredi (suggested by Po-Shen Loh)
_	January TST
1	Let n be a positive even integer, and let c_1,c_2,\ldots,c_{n-1} be real numbers satisfying $\sum_{i=1}^{n-1} c_i-1 <1.$

Art of Problem Solving

2014 USA Team Selection Test

Prove that

$$2x^{n} - c_{n-1}x^{n-1} + c_{n-2}x^{n-2} - \dots - c_{1}x^{1} + 2$$

has no real roots.

Let ABCD be a cyclic quadrilateral, and let E, F, G, and H be the midpoints of AB, BC, CD, and DA respectively. Let W, X, Y and Z be the orthocenters of triangles AHE, BEF, CFG and DGH, respectively. Prove that the quadrilaterals ABCD and WXYZ have the same area.

For a prime p, a subset S of residues modulo p is called a *sum-free multi*plicative subgroup of \mathbb{F}_p if \bullet there is a nonzero residue α modulo p such that $S = \{1, \alpha^1, \alpha^2, \dots\}$ (all considered mod p), and \bullet there are no $a, b, c \in S$ (not necessarily distinct) such that $a + b \equiv c \pmod{p}$.

Prove that for every integer N, there is a prime p and a sum-free multiplicative subgroup S of \mathbb{F}_p such that $|S| \geq N$.

Proposed by Noga Alon and Jean Bourgain

These problems are copyright © Mathematical Association of America (http://maa.org).