1 Différences finies

1.1 Différences finies progressives (downwind)

1.1.1 f'(x)

Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
1	-1	1					
2	-3/2	2	-1/2				
3	-11/6	3	-3/2	1/3			
4	-25/12	4	-3	4/3	1/4		
5	-137/60	5	-5	10/3	-5/4	1/5	
6	-49/20	6	-15/2	20/3	-15/4	6/5	-1/6

$$n = 2$$

$$f'(x) = \frac{-\frac{3}{2}f(x) + 2f(x+h) - \frac{1}{2}f(x+2h)}{h} + \mathcal{O}(h^2)$$

1.1.2 f''(x)

Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
1	1	-2	1				
2	2	-5	4	-1			
3	35/12	-26/3	19/2	-14/3	11/12		
4	15/4	-77/6	107/6	-13	61/12	-5/6	
5	203/45	-87/5	117/4	-254/9	33/2	-27/5	137/180

n = 3

$$f''(x) = \frac{-\frac{26}{3}f(x+h) + \frac{19}{2}f(x+2h)}{-\frac{14}{3}f(x+3h) + \frac{11}{12}f(x+4h)} + \mathcal{O}(h^3)$$

1.1.3 f'''(x)

Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
1	-1	3	-3	1			
2	-5/2	9	-12	7	-3/2		
3	-17/4	71/4	-59/2	49/2	-41/4	7/4	
4	-49/8	29	-461/8	62	-307/8	13	-15/8

n = 1

$$f'''(x) = \frac{-f(x) + 3f(x+h)}{-3f(x+2h) + f(x+3h)} + \mathcal{O}(h^{1})$$

1.2 Différences finies rétrogrades (upwind)

- 1. Remplacer x + kh par x kh
- 2. Si dérivée paire : Pas de changement de coefficient
- 3. Si dérivée impaire : Changement du signe

1.3 Différences finies centrées

1.3.1 f'(x)

Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
2				-1/2	0	1/2			
4			1/12	-2/3	0	2/3	-1/12		
6		-1/60	3/20	-3/4	0	3/4	-3/20	1/60	
8	1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280

n = 2

$$f'(x) = \frac{-\frac{1}{2}f(x-h) + \frac{1}{2}f(x+h)}{h^1} + \mathcal{O}(h^2)$$

1.3.2 f''(x)

Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
2				1	-2	1			
4			-1/12	4/3	-5/2	4/3	-1/12		
6		1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90	
8	-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560

n = 2

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \mathcal{O}(h^2)$$

1.3.3 f'''(x)

Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
2			-1/2	1	0	-1	1/2		
4		1/8	-1	13/8	0	-13/8	1	-1/8	
6	-7/240	3/10	-169/120	61/30	0	-61/30	169/120	-3/10	7/240

n = 2

$$f'''(x) = \frac{-\frac{1}{2}f(x-2h) + f(x-h)}{-f(x+h) + \frac{1}{2}f(x+2h)} + \mathcal{O}(h^2)$$

1.4 Différences finies pour EDP elliptiques + Dirichlet

$$-u''(x) = f(x)$$
 $u(0) = \alpha$ $u(L) = \beta$

,

$$u''(x_j) \approx \frac{u(x_j - h) - 2u(x_j) + u(x_j + h)}{h^2}$$

Ce qui donne un système d'équations linéaires

$$\frac{1}{h^2} \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & -1 \\ 0 & 0 & 0 & \cdots & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} f(x_1) + \frac{\alpha}{h^2} \\ f(x_2) \\ \vdots \\ f(x_n) + \frac{\beta}{h^2} \end{pmatrix}$$

$$A_h \vec{x} = \vec{f}$$

les valeurs sont inversées car -u''(x).

1.4.1 2D

$$u_{xx}(x_i, y_j) \approx \frac{u(x_i - h, y_j) - 2u(x_i, y_j) + u(x_i + h, y_j)}{h^2}$$
$$u_{yy}(x_i, y_j) \approx \frac{y(x_i, y_j - h) - 2u(x_i, y_j) + u(x_i, y_j + h)}{h^2}$$

1.5 Différences finies pour EDP paraboliques

- 1. Discrétiser l'espace (sous-intervalles de largeur h)
- 2. Application des conditions aux bords puis recherche des valeurs aux nœuds en fonction du temps

$$x_i \to u_i(t)$$

$$u_i(t) \approx u(x_i, t)$$

3. On applique les conditions initiales

$$u_i(0) = u_0(x_i)$$

4. Résoudre le problème de Cauchy ($\frac{du}{dt}=g(x,t)$ en matrices)

1.6 Méthode d'Euler explicite

$$\frac{du}{dt} = F(t_0, u_0)$$

Vu d'un autre angle, on veut approcher

$$\frac{d}{dt}\vec{u}(t) \approx \frac{u(t_i + \tau) - u(t_i)}{\tau}$$

1.7 Relation entre le pas de temps et le pas temporel

$$\tau \le \frac{h^2}{2\mu}$$

Avec μ la constante de l'équation $u_t - \mu u_{xx} = f(x,t)$

1.8 Équation de transport

$$v \le \frac{h}{\tau} \longleftrightarrow \frac{v\tau}{h} = r \le 1$$

C'est la condition CFL : avec downwind c'est impossible de résoudre le problème. Avec les upwind on peut y arriver parce qu'on utilise les valeurs précédentes (la condition sur v reste valable).

L'analyse de Von Neumann montre que le schéma centré n'est pas stable (même si la condition CFL est vérifiée).

1.9 Exemple Différences finies

$$-u''(x) = f(x) = (3x + x^2)e^x$$
Avec CB (D) = 0
$$h = 1/5 \to 0\frac{1}{5}\frac{2}{5}\frac{3}{5}\frac{4}{5}1$$

1.10 méthode d'Euler

$$\vec{u}_{k+1} = \vec{u}_k + \tau \left(-A\vec{u}_k + \vec{b}(t_k) \right)$$

1.11 Méthode d'Euler implicite

$$\vec{u}_{k+1} = \vec{u}_k + \tau \left(-A\vec{u}_{k+1} + \vec{b}(t_{k+1}) \right)$$

Vérifier les formules... c'est illisible sur le polycop