

Nemko Test Re	port:	1026738RUS1		
Applicant:		Nokia Siemens Networks 6000 Connection Drive Irving, TX 75039 USA	5	
Equipment Und (E.U.T.)	der Test:	FXFA		
FCC ID:		VBNFXFA-01		
In Accordance	With:	CFR 47, Part 24, Subpa Broadband PCS Base St		
Tested By:		Nemko USA, Inc. 802 N. Kealy Lewisville, TX 75057-313	36	
TESTED BY:	David Light, Senior	Wireless Engineer	DATE:	4-May-2011
APPROVED BY:	Michael Mike Cantwell, Gen	eral Manager	DATE:	7-Jun-2011

Number of Pages: 47

Table of Contents

Section 1.	Summary of Test Results	3
	,	
Section 2.	General Equipment Specification	5
Section 3.	RF Power Output	6
Section 4.	Occupied Bandwidth	8
Section 5.	Spurious Emissions at Antenna Terminals	. 13
Section 6.	Field Strength of Spurious	. 34
Section 7.	Frequency Stability	. 35
Section 8.	Test Equipment List	. 37
ANNEX A -	· TEST DETAILS	. 38
ANNEX B -	TEST DIAGRAMS	44

EQUIPMENT: FXFA

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 1026738RUS1

Section 1.	Summary of Test Results

Manufacturer: Nokia Siemens Networks

Model No.: FXFA

Serial No.: L9111201162

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 24, Subpart E.

\boxtimes	New Submission	\boxtimes	Production Unit
	Class II Permissive Change		Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety, for use by the company's employees only.

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

EQUIPMENT: FXFA

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 1026738RUS1

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
RF Power Output	24.232	1640 W	Complies
Occupied Bandwidth	24.238		Complies
Spurious Emissions at Antenna Terminals	24.238(a)	-13 dBm	Complies
Field Strength of Spurious Emissions	24.238(a)	-13 dBm E.I.R.P.	Complies
Frequency Stability	24.235	Must stay in block	Complies

Footnotes For N/A's:

Section 2. General Equipment Specification

Supply Voltage Input:	-48 Vdc nominal				
Frequency Band:	1930 to 1990 MHz				
Type of Modulation and Designator:		GE QPSK G7W 5M00D7W	16QAM 5M00D7W		
Maximum No. of Carriers:	6				
Output Impedance:	50 ohms				
RF Output (Rated):	60 W				
Band Selection:	Software	Duplexer	Fullband		

System Description

The FXFA is a 1900 MHz multistandard multicarrier radio module that consists of three individual transceivers designed to support GSM/EDGE, WCDMA and LTE in dedicated or concurrent mode. Each module supports upto six GSM/EDGE carriers in GSM/EDGE dedicated mode, upto four WCDMA carriers in WCDMA dedicated mode and upto four 5 MHz LTE carriers in LTE dedicated mode with one radio branch. In concurrent mode, a combination of all three radio technologies is supported with a single radio branch. Each module is capable to serve three radio branches with multiradio multicarrier radios of upto 60 Watts output power per branch. The LTE modulation and concurrent mode operation were not tested under this effort.

The transmitter test setup for GSM/EDGE dedicated mode provided GMSK and 8PSK modulation types for both single and multicarrier operation. The transmitter WCDMA dedicated mode provided QPSK and 16QAM modulation types for both single and multicarrier operation.

BROADBAND PCS BASE STATIONS EQUIPMENT: FXFA PROJECT NO.: 1026738RUS1

CFR 47, PART 24, SUBPART E

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

TESTED BY: David Light DATE: 21 April 2011

Test Results: Complies.

Measurement Data: Refer to table on next page.

Equipment Used: 2071-2072-1082-1054-1064-1065

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

Test Data – RF Power Output

Modulation Type	Frequency	Frequency Measured Output Power	
	(MHz)	(dBm)	Power (W)
GMSK	1930.2	35.0	3.2
GMSK	1930.4	48.6	72.4
GMSK	1960	49.1	81.3
GMSK	1989.6	48.8	75.9
GMSK	1989.8	34.7	3.0
8PSK	1930.2	33.1	2.0
8PSK	1930.4	48.9	77.6
8PSK	1960	49.2	83.2
8PSK	1989.6	48.9	77.6
8PSK	1989.8	32.7	1.9
QPSK	1932.4	34.2	2.6
QPSK	1932.6	46.4	43.6
QPSK	1960	49.2	83.2
QPSK	1987.4	47.1	51.3
QPSK	1987.6	34.0	2.5
16QAM	1932.4	34.2	2.6
16QAM	1932.6	48.7	74.1
16QAM	1960	49.2	83.2
16QAM	1987.4	48.4	69.2
16QAM	1987.6	33.9	2.5

Note: The power needs to be lowered at the lowest and highest frequencies per above to ensure compliance at the band edges.

The FXFA is compliant at the other frequencies operating at full power.

Supply voltage was varied +/- 15%. No fluctuation in output power resulted.

BROADBAND PCS BASE STATIONS

EQUIPMENT: FXFA PROJECT NO.: 1026738RUS1

CFR 47, PART 24, SUBPART E

Section 4. **Occupied Bandwidth**

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

TESTED BY: David Light DATE: 21 April 2011

Test Results: Complies.

Test Data: See attached plot(s).

Equipment Used: 1767-1054-1082-1065-1064

Measurement Uncertainty: +/- 1.6 dB

Temperature: 22 °C

Relative Humidity: 35 %

Date:

21.APR.2011 10:01:03

Test Data - Occupied Bandwidth

Test Data - Occupied Bandwidth

Test Data - Occupied Bandwidth

Date: 21.APR.2011 14:26:55

Test Data – Occupied Bandwidth

Date: 21.APR.2011 14:31:47

BROADBAND PCS BASE STATIONS EQUIPMENT: FXFA PROJECT NO.: 1026738RUS1

CFR 47, PART 24, SUBPART E

Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna PARA. NO.: 2.1051

Terminals

TESTED BY: David Light DATE: 21 April 2011

Test Results: Complies.

Test Data: Refer to plots below

Equipment Used: 1767-1082-1064-1065-1054-1054-1058

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

Test Data - Spurious Emissions

Low Band Edge 8PSK (EDGE)

Transmit Frequency: 1930.2 MHz

Transmit power reduced

Test Data – Spurious Emissions

Low Band Edge Intermodulation 8PSK (EDGE)

Transmit power maximum

Test Data – Spurious Emissions

Upper Band Edge 8PSK (EDGE)

Date:

Transmit Frequency: 1989.8 MHz

21.APR.2011 12:37:04

Transmit power reduced

Test Data – Spurious Emissions

Upper Band Edge Intermodulation 8PSK (EDGE)

Transmit power maximum

Test Data - Spurious Emissions

8PSK (EDGE)

Spurs

Test Data - Spurious Emissions

GMSK (GSM) Lower Edge

Transmit 1930.2 MHz reduced power

Test Data – Spurious Emissions

GMSK (GSM) Lower band edge Intermodulation Maximum power

Test Data – Spurious Emissions

GMSK (GSM) Upper band edge Transmit 1989.8 MHz reduced power

Test Data – Spurious Emissions

GMSK (GSM) Upper band edge intermodulation Transmit maximum power

Stop 20 GHz

EQUIPMENT: FXFA

Test Data – Spurious Emissions

GMSK (GSM)

-20

-30

-40

-50

-60

1.997 GHz/

Start 30 MHz
Date: 21.APR.2011 09:48:14

Test Data – Spurious Emissions

QPSK (WCDMA) Lower band edge Transmit 1932.4 MHz reduced power

Test Data – Spurious Emissions

QPSK (WCDMA) Lower band edge intermodulation Transmit maximum power

Test Data – Spurious Emissions

QPSK (WCDMA) Upper band edge Transmit 1987.6 MHz reduced power

Test Data – Spurious Emissions

QPSK (WCDMA) Upper band edge Intermodulation Transmit maximum power

Test Data - Spurious Emissions

QPSK (WCDMA)

Transmit Spurs

Test Data – Spurious Emissions

16QAM (WCDMA) Lower band edge Transmit 1932.4 MHz reduced power

Test Data – Spurious Emissions

16QAM (WCDMA) Lower band edge intermodulation Transmit maximum power

Test Data – Spurious Emissions

16QAM (WCDMA) Upper band edge Transmit 1987.6 MHz reduced power

Test Data – Spurious Emissions

16QAM (WCDMA) Upper band edge intermodulation Transmit maximum power

Test Data - Spurious Emissions

16QAM (WCDMA)

Transmit spurs

BROADBAND PCS BASE STATIONS EQUIPMENT: FXFA PROJECT NO.: 1026738RUS1

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 2.1051

TESTED BY: David Light DATE: 21 April 2011

Test Results: Complies.

Test Data: The spectrum was searched from 30 MHz to the tenth

harmonic of the carrier. There were no emissions detected above the noise floor which was at least 20

CFR 47, PART 24, SUBPART E

dB below the specification limit.

RBW/VBW=1 MHz Detector = Peak Sweep Time = Auto

.

Equipment Used: 1783-1763-1025-1016-993-1767

Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C

Relative Humidity: 40 %

BROADBAND PCS BASE STATIONS EQUIPMENT: FXFA PROJECT NO.: 1026738RUS1

CFR 47, PART 24, SUBPART E

Section 7. Frequency Stability

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

TESTED BY: David Light DATE: : 25 April 2011

Test Results: Complies

Measurement Data: Standard Test Frequency: 1960 MHz

Standard Test Voltage: -48 Vdc

Equipment Used: 1767-1082-1064-1065

Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C

Relative Humidity: 40 %

Test Data – Frequency Stability

Temp	Measured	Rho	Test	Freqeuncy	Limit	Error	
(°C)	Frequency (MHz)		Voltage	Error (Hz)	(+/-Hz)	(ppm)	Comment
20	1960.000161	0.9999	-48.0	161	1960.0	0.1	
20	1960.000183	0.9999	-55.2	183	1960.0	0.1	
20	1960.000160	0.9999	-40.8	160	1960.0	0.1	
50	1960.000103	0.9999	-48.0	103	1960.0	0.1	
40	1960.000121	0.9999	-48.0	121	1960.0	0.1	
30	1960.000115	0.9999	-48.0	115	1960.0	0.1	
10	1960.000105	0.9999	-48.0	105	1960.0	0.1	
0	1960.000101	0.9999	-48.0	101	1960.0	0.1	
-10	1960.000099	0.9999	-48.0	99	1960.0	0.1	
-20	1960.000112	0.9999	-48.0	112	1960.0	0.1	
-30	1960.000103	0.9999	-48.0	103	1960.0	0.1	
Notes:					_		

Section 8. Test Equipment List

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
993	Antenna, Horn	A.H. Systems	SAS-200/571	162	09-Sep-2009	09-Sep-2011
1016	Preamplifier	Hewlett Packard	8449A	2749A00159	19-Jun-2010	19-Jun-2011
1025	Preamplifier, 25dB	Nemko USA, Inc.	LNA25	399	23-Feb-2011	23-Feb-2012
1054	Directional Coupler, Dual	Narda	3020A	34366	N/R	
1064	Attenuator	Narda	776B-20		N/R	
1065	Attenuator	Narda	776B-10		N/R	
1082	Cable, 2m	Astrolab	32027-2- 29094-72TC		N/R	
1763	Antenna, Bilog	Schaffner	CBL 6111D	22926	11-Feb-2011	11-Feb-2012
1767	Receiver,	Rohde & Schwartz	ESIB26	837491/0002	01-Dec-2010	01-Dec-2011
1783	Cable Assy, 3m Chamber	Nemko	Chanmber		04-Oct-2010	04-Oct-2011
2071	Power Sensor	Agilent	E9304A	MY41495174	12-Oct-2010	12-Oct-2011
2072	Power Meter	Hewlett Packard	E4418B	GB39401848	23-Sep-2010	23-Sep-2011

EQUIPMENT: FXFA

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 1026738RUS1

ANNEX A - TEST DETAILS

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 1026738RUS1

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No.24.232. Base stations with an emission bandwidth

of 1 MHz or less are limited to 1640 watts equivalent

isotropically radiated power (EIRP) with an antenna height up

to 300 meters HAAT.

Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter or a spectrum analyzer.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where.

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

EQUIPMENT: FXFA

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 1026738RUS1

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

Minimum Standard: Para. No. 24.238(b). The emission bandwidth is defined as

the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at

least 26 dB.

Method Of Measurement:

CDMA Per ANSI/J-STD-014

Spectrum analyzer settings:

RBW: 30 kHz VBW: ≥ RBW Span: 5 MHz Sweep: Auto

GSM Per ANSI/J-STD-010

RBW: 3 kHz VBW: ≥ RBW Span: 2 MHz Sweep: Auto

NADC Per IS-136

RBW: 1 kHz VBW: ≥ RBW Span: 1 MHz Sweep: Auto

EQUIPMENT: FXFA

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 1026738RUS1

NAME OF TEST: Spurious Emission at Antenna PARA. NO.: 2.1051

Terminals

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

CDMA Per ANSI/J-STD-014 GSM Per ANSI/J-STD-010

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: 6 Sweeps Video Avg: Disabled

NADC Per IS-136

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 kHz (< 1 MHz from Band Edge)

VBW: ≥ RBW Sweep: Auto

Video Avg: Disabled

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Calculation Of Field Strength Limit

An example of attenuation requirement of 43 + 10 Log P is equivalent to -13 dBm (5 x 10^{-5} Watts) at the antenna terminal. We determine the field strength limit by using the plane wave relation.

$$GP/4\pi R^2 = E^2/120\pi$$

For emissions \leq 1 GHz:

G = 1.64 (Dipole Gain)

P = 10⁻⁵ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R}$$

$$E = \frac{\sqrt{30 \times 1.64 \times 5 \times 10^{-5}}}{3} = 0.016533 \text{ V / m} = 84.4 \text{ dB}\mu\text{V / m}$$

For emissions > 1 GHz:

G = 1 (Isotropic Gain)

 $P = 1 \times 10^{-5}$ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = 84.4 - 20 Log \sqrt{1.64} = 82.3 dB \mu V / m@3m$$

EQUIPMENT: FXFA

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 1026738RUS1

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient

to ensure that the fundamental emission stays within the

authorized frequency block.

Method Of Measurement:

Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

EQUIPMENT: FXFA

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 1026738RUS1

ANNEX B - TEST DIAGRAMS

Para. No. 2.985 - R.F. Power Output

Para. No. 2.989 - Occupied Bandwidth

Para. No. 2.991 Spurious Emissions at Antenna Terminals

Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

