Advanced ML, IDC

Final projects presentation – Spring 2021

Project structure, requirements, and time line

- A project consist of a subject, an anchor paper and innovative part
 - Anchor paper
 - Understand the paper
 - Find relevant related studies (travel the river of citations)
 - The basic (foundation) work
 - Most recent studies learn what is interesting, don't reinvent an existing result
 - Implementation
 - Reconstruct (validate) the paper's results
 - Apply the paper's method on a related task check robustness
 - Innovative part (one of the following)
 - Improve Improve the existing method
 - Compete Suggest an alternative approach
 - Inspire Apply in a different domain / for a different task
- Time line (due by ...)
 - Select a project 17.06.2021
 - Project proposal approval 01.07.2021
 - Anchor paper missions 01.08.2021
 - Innovative part & Final report 05.09.2021

Project proposals - Avrahami

Index	Paper Name	Subject	Link	Innovation ideas	Comments
1	STANCY: Stance Classification Based on Consistency Cues	Stance detection	https://www.aclweb.org/anthology/D 19-1675.pdf	 Improve results with newer BERT models Use the method over other datasets (communities?) to establish a measure over user pairs/whole community 	EMNLP 2019
2	Neural Coreference Resolution for Arabic	Coreference Resolution	https://arxiv.org/pdf/2011.00286.pdf https://github.com/juntaoy/aracoref	1. Use advanced BERT models and not only ARABert	
3	Word embeddings quantify 100 years of gender and ethnic stereotypes	Word embeddings + biases	https://www.pnas.org/content/pnas/ 115/16/E3635.full.pdf Git is available	 Design a method to test biases in other languages (rather than English) Check the method over different communities datasets 	PNAS 2018
4	tBERT: Topic Models and BERT Joining Forces for Semantic Similarity Detection	Word embeddings + topic models	https://www.aclweb.org/anthology/2 020.acl-main.630.pdf https://github.com/wuningxi/tBERT	 Using the method suggested to compare between documents / communities Try it over Hebrew/Arabic Use a more sophisticated topic models (taken from their article) 	ACL 2020
5	Sentiment after Translation: A Case- Study on Arabic Social Media Posts	Sentiment analysis + translation	https://www.aclweb.org/anthology/N 15-1078.pdf	1. Build an ability to estimate how well the proposed method in the paper will work on a given tweet	
6	Sentiment and Emotion help Sarcasm? A Multi-task Learning Framework for Multi-Modal Sarcasm, Sentiment and Emotion Analysis	Sentiment, Sarcasm	https://www.aclweb.org/anthology/2 020.acl-main.401.pdf	Test it over another dataset, improve results over another dataset Arabic?	ACL 2020
7	Dialog Based Relation Extraction		https://arxiv.org/pdf/2004.08056.pdf		2020
			https://github.com/nlpdata/dialogre		

Project proposals - Yuval

Index	Paper Name	Subject	Link	Innovation ideas	Comments
1	Grammar Variational Autoencoder.	Variational Autoencoder, Parse Trees, Grammar	https://drive.google.com/file/d/1p-d15gszQTEgtyZmlEdgG0tl0s2V9g0z/view?usp=sharing	1. Use another grammar.	They propose a variational autoencoder which directly encodes from and decodes to parse trees, ensuring the generated outputs are always syntactically valid.
2	A Hierarchical Neural Autoencoder for Paragraphs and Documents.	LSTM auto-encoder	https://drive.google.com/file/d/1LU 12M8mM0fWKXWV1vUECm- IQOtXs-IO7/view?usp=sharing	1. Use another language.	Training an LSTM auto- encoder to preserve and reconstruct multi- sentence paragraphs.
3	Deep Variational Information Bottleneck.	Variational Inference	https://arxiv.org/abs/1612.00410	 Discriminative VAE. Learning smooth representation with side information. 	

Project proposals – Shai

Index	Paper Name	Subject	Link	Innovation ideas	Comments
1	Time-series clustering – A decade review • Aghabozorgi, Shirkhorshidi, Wah	Time series clustering	https://wiki.smu.edu.sg/18191isss608g1 /img_auth.php/f/fd/Time_Series_Cluste ring_A_Decade_Review.pdf	 Compression-based methods Model-based – RNN Hierarchical (multi-resolution) modelling 	Genomic dataDisease ProgressionFinancial data
2	GP-VAE - Deep Probabilistic Time Series Imputation • Fortuin, Baranchuk, Rätsch, Mandt	Time series – handling missing values	https://arxiv.org/pdf/1907.04155.pdf	 Incorporate additional generative models to impute Integrate with the paper: "MIWAE - Deep Generative Modelling and Imputation of Incomplete Data Sets" Mattei, Frellsen 	Need to understand Gaussian Processes
3	Order matters - Sequence to sequence for sets • Vinyals, Bengio, Kudlur	Embeddings of sets	https://arxiv.org/abs/1511.06391	 Integrate with graph neural networks (GNN) Applications in healthcare, bioinformatics and drug discovery 	
4	Information Theoretic Analysis of DNN-HMM Acoustic Modeling • Dighe, Asaei, Bourlard	Hybrid HMM- DNN	https://arxiv.org/abs/1709.01144	A non-trivial combination of generative (HMM) and discriminative (DNN) models. Innovation can tackle • Suggest a different approximation to P(x q) • A different approach – DNN "master", HMM "slave"	 Speech-based Emotion Recognition Word spotting in handwritten documents
5	WiFi CSI based passive human activity recognition using attention based BLSTM Chen , Zhang , Jiang , Cao, Cui AttnSense: Multi-level Attention Mechanism For Multimodal Human Activity Recognition Ma, Li, Zhang, Gao, Lu	Attention- based Human Activity Recognition (HAR)	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514811 https://www.ijcai.org/Proceedings/2019/0431.pdf	 Relatively new field. Innovation can tackle Adapt additional advanced NLP methods (transformers?) HAR domain Improve the models to better match HAR assumptions Multimodality 	 HAR Datasets: Extrasensory dataset WISDM dataset Clinical data Sleep-wake: Mesa dataset Depression: Proprietary
6	Algorithms and Theory for Multiple-Source Adaptation • Hoffman, Mohri, Zhang	Domain Adaptation	https://papers.nips.cc/paper/8046-algorithms-and-theory-for-multiple-source-adaptation.pdf	 Information theoretic learning Unsupervised Domain Adaptation Supervised, DNN Discriminative Active Learning for Domain Adaptation Zhou, Shui, Huang, Wang, Chaib-draa 	_

5