3D Gaussian Splatting for Real-Time Radiance Field Rendering

16 (23) октября, 2023 Александр Демин, Артём Бекян

План

- В двух словах о самой статье (докладчик)
- Несколько экспериментов (хакер)

Bird's eye view

- Имеем съемку объекта с нескольких фиксированных ракурсов
- Хотим научиться строить изображение объекта с любого ракурса

Bird's eye view

Основные компоненты:

- 3D сцена
- растерайзер (проектор из 3D в 2D)

Bird's eye view

Идея из статьи: зададим 3D сцену набором маленьких эллипсов – Гауссиан

Иначе говоря, "a bunch of blobs in space"

Про Гауссианы

Зададим каждую Гауссиану несколькими параметрами:

- **М** позиция в пространстве (вектор в R^3)
- **S** растяжение и поворот (матрица в R^3x3)
- A прозрачность (число в R)
- **С** цвет, или, условно, функция из сферы в пространство цветов

Хотим создать много Гауссиан, и у каждой выучить **M**, **S**, **A**, **C**

Инициализация Гауссиан

- Можно инициализировать M, S, A, C случайно
- Structure from motion: Реконструирует позиции Гауссиан **М** из позиций камер

Пригодится реконструировать ground-truth позиции и углы обзора, с которых делали съемку (COLMAP)

Рендеринг Гауссиан

- Угол обзора камеры в пространстве задается аффинной плоскостью
- Для отрисовки Гауссиан на экране, будем проецировать 3D Гауссианы на 2D плоскость (используя растерайзер)

Алгоритм

алгоритм

Algorithm 1 Алгоритм

Input: Датасет с позицииями камер и изображениями

Output: Набор Гауссиан, заданных M, S, C, A;

- (i) Инициализировать M, S, C, A
- (ii) Пока нет сходимости:
 - (a) Сэмплировать позицию камеры V и ground-truth изображение \hat{I} из датасета
 - (b) Спроецировать Гауссианы на V и получить изображение I (rasterizer)
 - (c) **Найти лосс** $\mathcal{L}(I,\hat{I})$ и сделать шаг $\mathbf{M},\mathbf{S},\mathbf{C},\mathbf{A}$ по $\nabla\mathcal{L}$

Лосс

Blurred

$$\mathcal{L} = (1 - \lambda)\mathcal{L}_1 + \lambda\mathcal{L}_{\text{D-SSIM}}$$

SSIM - структурное сходство

Images with different visual quality but almost the same SSIM score

Increase in brightness

Adaptive Density Control

Если у Гауссианы большой градиент по М, то поправим ее:

- Under-Reconstruction: клонируем Гауссиану с небольшим S
- Over-Reconstruction: делим пополам Гауссиану с большим S

Adaptive Density Control

- Раз в 3,000 итераций уменьшаем прозрачность **А** у всех Гауссиан
- Удаляем прозрачные Гауссианы (с небольшой А)
- Удаляем слишком плотные Гауссианы, которые заслоняют остальных

Rasterizer

- Изображение разбивается на тайлы 16 х 16
- Гауссианы проецируются на плоскость
- В каждом тайле, Гауссианы сортируются по расстоянию до камеры
- Отсортированные Гауссианы комбинируются, чтобы получить итоговый цвет
- Rasterizer полностью дифференцируемый по M, S, C, A

Результаты

- Ни одного нейрона!
- Быстрый rasterizer, быстрое обучение
- Real-time рендер сцены: рендер 30+ кадров в секунду, < 0.03 секунды на кадр
- Качество на уровне со state-of-the-art

Результаты

- Большое потребление GPU памяти при обучении (> 20 GB)
- В труднодоступных местах есть артефакты, особенно, если мало итераций

Бенчмарки

Сравнением с NeRF архитектурами:

- Mip-Nerf360 state-of-the-art по качеству
- InstantNGP state-of-the-art по скорости рендера
- Plenoxels довольно быстрый рендеринг

Метрики:

- SSIM
- PSNR зашумленность изображений
- LPIPS perceptual similarity

Dataset	Mip-NeRF360						Tanks&Temples						Deep Blending					
Method Metric	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.626	23.08	0.463	25m49s	6.79	2.1GB	0.719	21.08	0.379	25m5s	13.0	2.3GB	0.795	23.06	0.510	27m49s	11.2	2.7GB
INGP-Base	0.671	25.30	0.371	5m37s	11.7	13MB	0.723	21.72	0.330	5m26s	17.1	13MB	0.797	23.62	0.423	6m31s	3.26	13MB
INGP-Big	0.699	25.59	0.331	7m30s	9.43	48MB	0.745	21.92	0.305	6m59s	14.4	48MB	0.817	24.96	0.390	8m	2.79	48MB
M-NeRF360	0.792	27.69	0.237	48h	0.06	8.6MB	0.759	22.22	0.257	48h	0.14	8.6MB	0.901	29.40	0.245	48h	0.09	8.6MB
Ours-7K	0.770	25.60	0.279	6m25s	160	523MB	0.767	21.20	0.280	6m55s	197	270MB	0.875	27.78	0.317	4m35s	172	386MB
Ours-30K	0.815	27.21	0.214	41m33s	134	734MB	0.841	23.14	0.183	26m54s	154	411MB	0.903	29.41	0.243	36m2s	137	676MB

Источники картинок:

- A Short 170 Year History Of Neural Radiance Fields (NeRF), Holograms, And Light Fields | Neural Radiance Fields
- PSNR and SSIM: application areas and criticism (videoprocessing.ai)
- Roundabout at night gsplat
- Orthogonal projection of an ellipsoïd from N to 2 dimensional space Mathematics Stack Exchange
- Introduction | 3D Modelling For Programmers (gitbooks.io)