Table 1: FLOP measurements and ratios when performing a single iteration of a conventional GD-based optimizer. The columns of the table are organized as follows: net is the reference cost of evaluating $u^{\alpha,\omega}$ over the batch of integration points; loss-trace is the cost of evaluating the loss function within the tf.GradientTape environment; GD-step is the cost of extracting the values of the gradient of the loss with respect to all trainable parameters (α and ω) and applying them on a GD step; and total = loss-trace + GD-step.

Single-iteration cost of our hybrid LS/GD optimizer															
Specifications		FLOPs							Ratios						
Implementation	N	net	vect-net	mat-build	LS-solve	loss-trace	$GD ext{-}step$	total	$C_{net} = \frac{net}{K}$	$\frac{vect-net}{KC_{net}}$	$\frac{mat\text{-}build}{KMN}$	$\frac{LS\text{-}solve}{MN^2}$	$\frac{loss-trace}{KC_{net}}$	$\frac{GD\text{-}step}{loss\text{-}trace}$	$\frac{total}{KC_{net}}$
UltraPINNs	2	1.72e+08	1.72e + 08	1.02e+04	7.67e + 03	1.72e + 08	3.54e + 08	6.97e + 08	8.58e+06	1.00e+00	2.54e+01	1.92e+02	1.00e+00	2.06e+00	4.06e+00
	4	3.43e+08	3.43e + 08	4.03e+04	8.50e + 03	3.43e + 08	6.91e + 08	1.38e + 09	8.58e + 06	1.00e+00	1.26e + 01	2.66e + 01	1.00e+00	2.01e+00	4.01e+00
	8	6.87e + 08	6.87e + 08	1.87e + 05	1.41e + 04	6.87e + 08	1.37e + 09	2.74e + 09	8.59e + 06	1.00e+00	7.30e+00	5.49e+00	1.00e+00	1.99e+00	3.99e+00
	16	1.38e+09	1.38e + 09	9.61e + 05	5.50e + 04	1.38e + 09	2.72e + 09	5.48e + 09	8.61e + 06	1.00e+00	4.69e+00	2.69e+00	1.00e+00	1.97e + 00	3.98e + 00
	32	2.77e+09	2.77e + 09	5.64e + 06	3.70e + 05	2.77e + 09	5.45e + 09	$1.10e{+10}$	8.64e + 06	1.00e+00	3.44e + 00	2.26e+00	1.00e+00	1.97e + 00	3.97e + 00
	64	5.57e + 09	5.57e + 09	3.54e + 07	2.89e + 06	5.59e + 09	$1.10e{+10}$	$2.22e{+10}$	8.70e + 06	1.00e+00	2.70e+00	2.21e+00	1.00e+00	1.96e + 00	3.98e + 00
	128	1.13e+10	1.13e + 10	2.47e + 08	2.27e + 07	$1.14e{+10}$	$2.23e{+}10$	$4.53e{+10}$	8.84e + 06	1.00e+00	2.36e+00	2.17e+00	1.01e+00	1.96e + 00	4.00e+00
	256	2.33e+10	2.33e+10	1.83e + 09	1.75e + 08	2.36e + 10	4.59e + 10	9.50e + 10	9.11e+06	1.00e+00	2.18e+00	2.09e+00	1.01e+00	1.94e + 00	4.07e+00
	512	4.94e+10	$4.94e{+}10$	$1.41e{+10}$	1.40e+09	5.06e + 10	9.72e + 10	2.13e+11	9.64e + 06	1.00e+00	2.09e+00	2.08e+00	1.02e+00	1.92e+00	4.32e+00
VPINNs (forward AD)	2	1.72e+08	5.09e + 08	1.03e+04	7.70e + 03	$5.09e{+08}$	1.05e + 09	2.07e + 09	8.58e + 06	2.97e+00	2.57e + 01	1.92e+02	2.97e + 00	2.06e+00	1.21e+01
	4	3.43e+08	1.02e+09	4.08e + 04	8.53e + 03	1.02e+09	2.06e + 09	4.10e+09	8.58e + 06	2.97e+00	1.28e + 01	2.67e + 01	2.97e + 00	2.02e+00	1.19e + 01
	8	6.87e + 08	2.04e+09	1.88e + 05	1.41e + 04	2.04e+09	4.09e+09	8.17e + 09	8.59e + 06	2.97e + 00	7.34e+00	5.51e+00	2.97e + 00	2.00e+00	1.19e+01
	16	1.38e+09	4.09e+09	9.63e + 05	5.50e + 04	4.09e+09	8.15e + 09	$1.63e{+}10$	8.61e + 06	2.97e + 00	4.70e+00	2.69e+00	2.97e + 00	1.99e + 00	1.19e+01
	32	2.77e+09	8.21e+09	5.64e + 06	3.70e + 05	8.22e + 09	$1.63e{+}10$	$3.28e{+10}$	8.64e + 06	2.97e+00	3.44e + 00	2.26e+00	2.97e + 00	1.99e+00	1.18e + 01
	64	5.57e + 09	$1.65e{+10}$	3.54e + 07	2.89e + 06	$1.66e{+10}$	$3.29e{+10}$	6.60e + 10	8.70e + 06	2.97e+00	2.70e+00	2.21e+00	2.97e + 00	1.99e+00	1.19e + 01
	128	1.13e+10	3.36e + 10	2.47e + 08	2.27e + 07	3.37e + 10	$6.68e{+10}$	$1.34e{+11}$	8.84e + 06	2.97e+00	2.36e+00	2.17e+00	2.98e + 00	1.98e + 00	1.19e + 01
	256	2.33e+10	6.92e + 10	1.83e + 09	1.75e + 08	6.95e + 10	1.38e + 11	2.79e + 11	9.11e+06	2.97e + 00	2.18e+00	2.09e+00	2.98e + 00	1.98e + 00	1.19e+01
	512	4.94e+10	1.47e + 11	$1.41e{+10}$	1.40e + 09	$1.48e{+11}$	$2.92e{+11}$	6.02e + 11	9.64e + 06	2.97e+00	2.09e+00	2.08e+00	2.99e+00	1.97e+00	1.22e+01
VPINNs (backward AD)	2	1.72e+08	5.09e + 08	1.03e+04	5.94e + 03	$3.40\mathrm{e}{+08}$	7.04e + 08	1.55e + 09	8.58e + 06	2.97e + 00	2.57e + 01	1.48e + 02	1.99e+00	2.07e+00	9.06e + 00
	4	3.43e + 08	1.70e + 09	4.08e + 04	6.77e + 03	6.81e + 08	1.38e + 09	3.76e + 09	8.58e + 06	4.94e+00	1.28e + 01	2.11e+01	1.99e+00	2.02e+00	1.09e+01
	8	6.87e + 08	6.10e+09	1.88e + 05	1.23e+04	1.36e + 09	2.73e + 09	1.02e + 10	8.59e + 06	8.88e + 00	7.34e+00	4.82e+00	1.99e+00	2.00e+00	1.48e + 01
	16	1.38e+09	$2.31e{+10}$	9.63e + 05	5.33e + 04	2.74e + 09	5.44e + 09	$3.13e{+10}$	8.61e + 06	1.67e + 01	4.70e+00	2.60e+00	1.99e+00	1.99e+00	2.27e+01
	32	2.77e+09	$8.99e{+10}$	5.64e + 06	3.68e + 05	5.49e + 09	$1.09e{+10}$	$1.06e{+11}$	8.64e + 06	$3.25e{+01}$	3.44e + 00	2.25e+00	1.99e+00	1.98e + 00	$3.84e{+01}$
	64	5.57e + 09	3.57e + 11	3.54e + 07	2.89e + 06	$1.11e{+10}$	2.19e + 10	$3.90e{+11}$	8.70e+06	6.40e + 01	2.70e+00	2.21e+00	1.99e+00	1.98e + 00	7.00e+01
	128	1.13e+10	$1.44e{+12}$	2.47e + 08	2.27e + 07	$2.25e{+}10$	$4.46e{+10}$	$1.50e{+12}$	8.84e + 06	1.27e + 02	2.36e+00	2.17e+00	1.99e+00	1.98e + 00	1.33e+02
	256	2.33e+10	5.90e + 12	1.83e + 09	1.75e + 08	$4.66e{+10}$	$9.18e{+10}$	$6.04e{+12}$	9.11e+06	2.53e + 02	2.18e+00	2.09e+00	2.00e+00	1.97e + 00	2.59e + 02
	512	4.94e+10	2.49e + 13	$1.41e{+10}$	1.40e + 09	$9.92e{+10}$	$1.94e{+11}$	$2.53e{+13}$	9.64e + 06	5.05e + 02	2.09e+00	2.08e+00	2.01e+00	1.96e + 00	5.12e+02

Table 2: FLOP measurements and ratios when performing a single iteration of our hybrid LS/GD optimizer. The columns of the table are organized as follows: net is the reference cost of evaluating $u^{\alpha,\omega}$ over the batch of integration points; vect-net is the cost of evaluating the vector-valued neural network (\mathbf{u}^{α} in UltraPINNs and $\nabla \mathbf{u}^{\alpha}$ in VPINNs) over the batch of integration points; mat-build is the cost of constructing matrix \mathbf{B}^{α} given the values of vect-net; LS-solve is the cost of computing ω^{α} via the LS solver; loss-trace is the cost of evaluating the loss function within the tf. cradient cra