BIOLOGY Chapter 2

5TO SM

PROTEÍNAS Y ÁCIDOS NUCLEICOS

https://www.youtube.com/watch?v=EIWIbTUBrNg

PROTEÍNAS

Son biomoléculas orgánicas cuaternarias formados por: C,H,O y N. A veces S. Sus unidades son los aminoácidos.

Aminoácidos:

Unidades de las proteínas. Moléculas

Enlace Peptídico:

Une a los aminoácidos, para formar a las proteínas.

Figure 3-13
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Clasificación de los Aminoácidos

AMINOÁCIDOS NEUTROS			
Nombre	Símbolo		
Glicina	Gly		
Alanina	Ala		
Serina	Ser		
Cisteína	Cys		
Cistina	CiSSCi		
Treonina	Thr		
Valina	Val		
Metionina	Met		
Leucina	Leu		
Isoleucina	Ile		
Fenilalanina	Phe		
Tirosina	Tyr		
Prolina	Pro		
Hidroxiprolina	Hipro		
Triptofano	Trp		

AMINOÁCIDOS	ÁCIDOS
Ácido aspártico	Asp
Ácido glutámico	Glu

AMINOÁCIDOS	BÁSICOS
Arginina	Arg
Lisina	Lis
Histidina	Hys

A) ESTRUCTURALES

F) DE DEFENSA

Anticuerpos o inmunoglobulinas

FUNCIONES

B) CONTRÁCTILES

- Actina
- Miosina

C) TRANSPORTE

- •Hemoglobina
- •Mioglobina
- Hemocianina

D) DE RESERVA

- Ovoalbúmina
- Lactoalbúmina

E) HORMONAL

- Insulina
- Hormona del crecimiento

F) ENZIMAS

Catalizadores biológicos

CENTRO ACTIVO DE UN ENZIMA

- cada enzima tiene una forma única, con un sitio o centro activo en el que se une al sustrato
- después de la reacción, enzimas y productos se separan.

Las moléculas enzimáticas no han cambiado después de participar en la reacción

CLASES DE ENZIMAS	TIPO DE REACCIONES		
Oxiderreductasas	Reacción de oxidorreducción		
Transferasas	Reacción de transferencia de grupo funcionales		
Hidrolasas	Reacción de hidrólisis		
Liasas	Reacción de adición a los dobles enlaces		
Isomerasas	Reacción de isomeración		
Ligasas	Reacción de formación de enlaces con gasto de		
	adenosín trifosfato ATP		

Clasificación de las Proteínas:

1. Por su composición:

A. Simples (holoproteínas)
Formadas solo por
aminoácidos. Entre estos
están la albúmina, insulina,
miosina, fibrina, histonas, etc.

B. Conjugadas (heteroproteínas) Formadas por aminoácidos unidos a algún componente orgánico o inorgánico, al que se le llama grupo prostético.

2. Por su forma:

- A. Fibrosas (insolubles en agua) Son de forma alargada, a modo de filamentos. Entre estas tenemos el colágeno, queratina y elastina.
- B. Globulares (solubles en agua) Son de forma redondeada y compacta. Entre estas tenemos las enzimas, globulinas y albúminas.

3. Por el número de aminoácidos:

- A. Oligopéptidos: Tienen 2 a 10 aminoácidos: Ejemplo: Antidiurética, oxitocina, etc.
- B. Polipéptidos: Tienen más de 10 aminoácidos, hasta 50 aa's. Ejemplos: Parathormona.

ESTRUCTURA DE LAS PROTEÍNAS

Estructura primaria de proteínas

ESTRUCTURA PRIMARIA

Es la secuencia específica de aminoácidos que forman las cadenas polipeptídicas de la proteína, es decir, el número, tipo y orden de colocación de sus aminoácidos.

Una simple alteración en la estructura de la proteína causa daño en el organismo.

La **estructura secundaria** de una proteína es la resultante del retorcimiento sobre sí misma, que se produce al formarse puentes de hidrógeno entre aminoácidos próximos en la secuencia de polipéptidos (estructura primaria de la proteína).

La **estructura terciaria** tridimensional de una proteína resulta de la interacción entre aminoácidos de diferentes puntos de la estructura secundaria enrollada.

Cuando dos o más cadenas de polipéptidos se entrelazan para formar una molécula de proteína, se da la **estructura cuaternaria**.

ÁCIDOS NUCLEICOS

FUNCIONES DE LOS ÁCIDOS NUCLEICOS

- Almacenar y transmitir información genética.
- Mantienen la identidad de las especies.
- Mantienen las diferencias individuales dentro de la especie y un individuo no es exactamente igual a otro de su misma especie.
- Responsables de la diferenciación de tejidos y células dentro del organismo. (estructura y función determinada por la expresión selectiva de ciertos genes).
- Realizan la síntesis proteica.
- La secuencia de cada proteína está programada en los ác. Nucleicos de la propia célula.
- Han permitido la evolución por mutaciones.

NUCLEÓTIDO

Unidad de los ácidos nucleicos. Formado por:

1.PENTOSA (AZÚCAR)

2.GRUPO FOSFATO

3.BASE NITROGENADA

Purinas

Pirimidinas

Enlace Fosofodiéster: Une a los nucleótidos.

Tipos de Ácidos Nucleicos:

ADN: ÁCIDO DESOXIRRIBONUCLEICO

- Bicatenariedad:
 Constituido por dos cadenas de nucleótidos.
- Antiparalelismo:
 Cadenas en dirección opuesta
- Helicoidalidad:
 Doble espiral

El modelo de estructura en doble hélice fue propuesto en 1953 por James Watson y Francis Crick.

Estructura del ADN

ARN: ÁCIDO RIBONUCLEICO

ARN mensajero (ARN_m)

Lleva la información del ADN a los ribosomas. Determina la secuencia de los aminoácidos de la proteína. Cada 3 bases nitrogenadas forman un codón.

ARN de transferencia (ARN_t).

Se encarga de transportar los aminoácidos libres del citoplasma al lugar de síntesis proteica. Presenta 3 bases nitrogenadas complementarias al codón, el anticodón.

ARN ribosomal (ARN_r)

Una vez transcripto, pasa al nucléolo donde se une a proteínas, para formar a los ribosomas.

PRÁCTICA PARA LA CLASE

1. Para la síntesis de proteínas, que es un proceso endergónico, la energía proviene principalmente de la hidrólisis o degradación del :

- A) CTP
-) GTP
- C) UTP
- D) TTP

Tercera letra

Segunda letra

- 2. El código genético está compuesto de:
- A) 64 codones con sentido y 3 codones de terminación
- B) 60 codones con sentido y 4 codones de terminación
- 61 codones con sentido y 3 codones de terminación
- D) 60 codones con sentido y 3 codones de terminación

Primera letra

	U	С	Α	G	
U	UUU } Phe UUA } Leu	UCU UCC UCA UCG	UAU Tyr UAC Alto UAG Alto	UGU Cys UGC Alto UGG Trp	DOAG
С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG	CGU CGC CGA CGG	DOAG
A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU } Asn AAC } Lys AAG } Lys	AGU Ser AGC AGA Arg	UCAG
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	UCAG

3. Claudia es una reconocida bióloga especializada en biología molecular; ella está analizando el material genético de un caracol y en una muestra obtenida de la rádula de este animal, llega a contabilizar 24% de nucleótidos de timina. Inferir que porcentaje hay de citosina en dicha muestra.

- A) 12%
- B) 48%
- **26** %
- D) 24%

4. Los ácidos nucleicos son de 2 tipos, el ácido desoxirribonucleico (ADN o DNA) y el ácido ribonucleico (ARN o RNA). El ADN almacena la información genética y el ARN tiene la función de expresar la información genética mediante la síntesis de proteínas. De las siguientes combinaciones, ¿cuáles se encuentran en el ácido nucleico que hace la traducción?

- 1. Timina ribosa
- 2. Citosina desoxirribosa
- 3. Guanina ribosa
- 4. Uracilo desoxirribosa
- 5. Adenina ribosa
- A) 2 y 4
- B) 1, 3 y 5
- C) 3, 4 y 5
- 3 y 5

5. La imagen que se encuentra sombreada corresponde a un

- enlace peptídico.
- B) enlace glucosídico.
- C) disacárido.
- D) enlace ester

- 6. Los codones están constituidos por 3 bases nitrogenadas consecutivas y cada uno corresponde a un aminoácido. Estos codones se encuentran en _____.
- A) ADN
- B) ARNt
- C) ARNr
- ARNm

7. Unas muestras de ácidos nucleicos son analizadas para determinar los porcentajes de nucleótidos, obteniéndose los siguientes resultados

MUESTRA	Adenina	Citosina	Guanina	Timina	Uracilo
A	40 %	10 %	10 %	40 %	
В	30 %	20 %	20 %		30 %
С	26 %	24 %	26 %	24 %	
D	26 %	13 %	33 %		28 %

Según la tabla, podríamos afirmar que:

- a) La muestra A es ARN
- 📗 La muestra B presenta ribosa en su constitución
- c) La muestra C está formada por una cadena de nucleótidos.
- d) La muestra D presenta desoxirribosa en su constitución.

Responda las preguntas 8 y 9 teniendo en cuenta lo siguiente: El esquema a continuación muestra

un dinucleótido de ARN

- 8. En el esquema, los círculos representan
- grupos fosfato.
- B) desoxirribosas.
- C) sacáridos.
- D) bases nitrogenadas
- 9. En el esquema, las pentosas representan:
- A) grupos fosfato.
- B) desoxirribosas.
-) ribosas
- D) bases nitrogenadas

10. Un investigador analizó una muestra de ADN bacteriano y estableció que el 24% de los nucleótidos correspondía a timina. ¿Cuál es el porcentaje de citosina presente en la muestra de ADN analizada?

- A) 24%
- B) 48%
- C) 52%
- 26%

Ley de Chargaff

En 1940, Erwin Chargaff descubrió que en el ADN, el porcentaje de adenina era igual al de guanina y que el de citosina era igual al de timina.

Propuso:

(La suma de las purinas es igual a la suma de las pirimidinas).

A = T Unido por dos puentes de hidrógeno. (Menos estable) $G \equiv C$ Unido por tres puentes de hidrógeno. (Más estable)

SAYURI DE LA CRUZ