ZHENGXIANG WANG

Computational Linguistics Ph.D. Candidate

@ zhengxiang.wang@stonybrook.edu

J 631-739-7389

Stony Brook, NY

EDUCATION

Ph.D. in Computational Linguistics

Stony Brook University

Sep 2022 - Present

Stony Brook, NY

Advisor: Owen Rambow

<u>Selected Courses</u>: CSE 548 Analysis of Algorithms, A-; CSE 538 Natural Language Processing, A; AMS 580 Machine Learning, A.

M.A. in Applied Linguistics

University of Saskatchewan

Sep 2019 - May 2021

Saskatoon, Canada

B.A. in Chinese Language and Literature

Hunan University

Sep 2015 - June 2019

Changsha, China

EMPLOYMENT

Ph.D. Data Science Intern

The Home Depot

May 2024 - Aug 2024

Hybrid

- Developed a clustering-based topic modeling pipeline reducing LLM runtime and API calls by 90+%. Further eliminated redundancy in the raw identified topics by 80+%.
- Finetuned SBERT embeddings to build an efficient semantic search network (with Faiss) to select most likely customer pain points
- Fine-tuned BERT-like models and LLMs (e.g., full fine-tuning and PEFT) to predict customer pain points
- Built various LLM-based autonomous validation systems (e.g., multiagent debating), saving up to 24% in manual annotation efforts

PUBLICATIONS

- Wang, Z., Kodner, J. & Rambow, O. (2024). Exploring the Zero-Shot Capabilities of LLMs Handling Multiple Problems at once. Preprint arXiv 2406.10786. PDF | Code
- Wang, Z. & Rambow, O. (2024). Clustering Document Parts: Detecting and Characterizing Influence Campaigns From Documents.
 Proceedings of the 6th Workshop on Natural Language Processing and Computational Social Science. (At NAACL 2024) PDF | Code
- Wang, Z. (2023). Probabilistic Linguistic Knowledge and Token-level Text Augmentation. In Practical solutions for Diverse Real-World NLP Applications. Book: Signals and Communication Technology. PDF
- Wang, Z. (2023). Learning Transductions and Alignments with RNN Seq2seq Models. Proceedings of the 16th International Conference on Grammatical Inference. In PMLR, volume 217. PDF | Code
- Hao, H., Cui, Y., Wang, Z. & Kim, Y. (2022). Thirty-Two Years of IEEE VIS: Authors, Fields of Study and Citations. *IEEE Transactions on Visualization and Computer Graphics*. PDF | Code | Website
- Wang, Z. (2022). Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching. Proceedings of the 5th International Conference on Natural Language and Speech Processing. PDF | Code

RECOGNITIONS

- IACS Junior Researcher Award (\$37,000), 2024
- NSF BIAS-NRT Research Traineeship, 2023
- SBU Distinguished Travel Award (\$1,750), 2023
- Globalink Graduate Fellowship (\$15,000), 2019
- Chinese Government Scholarship (\$7,000), 2018
- Chinese National Student Innovation Training Program Grant (¥10,000), 2017
- Chinese National Scholarship (¥8,000), 2016

PROJECTS

Analytic Assessment Capabilities of LLMs

- Examined the capabilities of LLMs providing multidimensional analytic scoring and feedback jointly for graduate-level academic English writing
- Created a multi-LLM debating framework to compare the quality of human- and LLM-generated feedback on multiple evaluation criteria

Multi-problem Evaluation of LLMs

- Comprehensively evaluated the capabilities of 7 LLMs from 4 model families concurrently handling multi-problem prompts constructed based on 6/12 classification/reasoning benchmarks
- Proposed multi-problem prompting, which can save up to 82% LLM inference cost per problem

Influence Campaigns Modeling (DARPA INCAS)

- Created and deployed an end-to-end generative LLM-based clustering pipeline to detect and characterize influence campaigns from documents
- Pipeline included spaCy preprocessing, Flan-T5 fine-tuning, and SBERT/UMAP/HDBSCAN for text embedding, embedding reduction, and clustering

TUTORIAL

Notes for Stanford CS224N Natural Language Processing with Deep Learning

2021

 Covered the conceptual and mathematical basics of word embedding, neural networks, deep learning models. [GitHub] 63 stars and 32 forks.

SKILLS

- Programming: Python, R, LTEX, Bash, Git, SQL
- *Tools*: OpenAl API, LangChain, Transformers, Py-Torch, TensorFlow, NumPy, Pandas, scikit-learn
- Cloud Platforms: Google Cloud Platform, AWS
- · Languages: English, Mandarin, Fuging Dialect