Feuille d'exercices nº 2

Sous-groupes distingués

Exercice 1. Prouver les affirmations suivantes concernant un groupe G.

- (1) Soient $H \triangleleft G$ et $K \triangleleft G$. Alor $H \cap K \triangleleft G$.
- (2) Si H < G et $K \triangleleft G$, alors $H \cap K \triangleleft H$.
- (3) Si G est abélien et $H \triangleleft G$, alors G/H est abélien.
- (4) Si G est cyclique et $H \triangleleft G$, alors G/H est cyclique.

Exercice 2. Soit G un groupe et H un sous-groupe.

- (1) On suppose $H \lhd G$. Montrer que pour tout G-ensemble X, le sous-ensemble X^H est stable par l'action de G.
- (2) Réciproquement : Montrer que si $(G/H)^H$ est stable par l'action de G, alors $H \triangleleft G$.

Exercice 3. Soient G et G' des groupes. Soient $H \triangleleft G$ et $H' \triangleleft G'$. Montrer que $H \times H' \triangleleft G \times G'$ et construire un isomorphisme

$$\phi: \frac{G\times G'}{H\times H'} \longrightarrow \frac{G}{H}\times \frac{G'}{H'}.$$

Exercice 4. Soient G un groupe, H un sous-groupe de G et K un sous-groupe de H. Donner un exemple où $K \triangleleft H$ et $H \triangleleft G$, mais K n'est pas distingué dans G.

Exercice 5. Soit $\mathcal{V} \subset \mathcal{S}_4$ le sous-ensemble $\{id, (12)(34), (13)(24), (14)(23)\}.$

- 1) Montrer que $\mathscr V$ est un sous-groupe de $\mathscr A_4$ isomorphe à $\mu_2 \times \mu_2$. Il s'agit du "Groupe de Klein".
- 2) Montrer que $\mathscr{V} \lhd \mathscr{S}_4$.
- 3) Que pouvez-vous dire sur le groupe quotient $\mathscr{S}_4/\mathscr{V}$? Et $\mathscr{A}_4/\mathscr{V}$?

Exercice 6 (Groupes projectifs linéaires). Soit \mathbf{K} un corps, et n un entier strictement positif. Dans la suite, en parlant d'un groupe linéaire général ou spécial, on omettra la référence à \mathbf{K} .

(1) On désigne par $Z < \operatorname{GL}_n$ le sous-groupe des multiples non-nuls de la matrice identité. Montrer que $Z \lhd \operatorname{GL}_n$ et $Z \cap \operatorname{SL}_n \lhd \operatorname{SL}_n$. Montrer que $Z \cap \operatorname{SL}_n$ est fini et calculer le cardinal de $Z \cap \operatorname{SL}_n$ dans le cas $\mathbf{K} = \mathbf{C}$.

- (2) Soient PGL_n et PSL_n les quotients GL_n/Z et $SL_n/Z \cap SL_n$. (Ils sont respectivement un groupe linéaire projectif et linéaire projectif spécial.) Utiliser la projection canonique $\pi: GL_n \to PGL_n$ pour construire un isomorphisme entre PSL_n et un sous-groupe distingué de PGL_n . On identifiera PSL_n avec son image dans PGL_n .
- (3) On désigne par $(\mathbf{K}^*)^n$ le sous-groupe de \mathbf{K}^* formé par les éléments c^n où $c \in \mathbf{K}^*$. Montrer que $\mathrm{PGL}_n/\mathrm{PSL}_n \simeq (\mathbf{K}^*)/(\mathbf{K}^*)^n$ en étudiant le morphisme composé

$$\operatorname{GL}_n \xrightarrow{\operatorname{det}} \mathbf{K}^* \xrightarrow{\operatorname{canonique}} \mathbf{K}^*/(\mathbf{K}^*)^n.$$

En déduire que $\operatorname{PSL}_n(\mathbf{C}) = \operatorname{PGL}_n(\mathbf{C})$ mais que l'inclusion $\operatorname{PSL}_2(\mathbf{R}) \to \operatorname{PGL}_2(\mathbf{R})$ n'est pas un isomorphisme.

(4) Soit $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ la sphère de Riemann. On se rappelle qu'une transformation de Möbius de $\hat{\mathbf{C}}$ est une bijection définie par

$$z \longmapsto \frac{az+b}{cz+d}$$

où, par convention, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{C})$ et

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (-d/c) = \infty$$
 ainsi que $\begin{pmatrix} a & b \\ c & d \end{pmatrix} (\infty) = a/c$.

Montrer que le groupe des transformations de Möbius \mathcal{M} est isomorphe à $\operatorname{PGL}_2(\mathbf{C}) \simeq \operatorname{PSL}_2(\mathbf{C})$.

Exercice 7. Soit p > 0 un premier et n un entier strictement positif.

(1) Calculer le cardinal des groupes $SL_n(\mathbf{F}_p)$ et $PGL_n(\mathbf{F}_p)$ en fonction de p et n. Indication: On pourra utiliser le calcul déjà fait

$$|\mathrm{GL}_n(\mathbf{F}_p)| = \prod_{i=0}^{n-1} (p^n - p^i) = p^{\frac{n(n-1)}{2}} \prod_{i=0}^{n-1} (p^{n-i} - 1).$$

- (2) Calculer le cardinal de $PSL_2(\mathbf{F}_p)$. (Le calcul de $|PSL_n(\mathbf{F}_p)|$ est plus complexe.)
- (3) Soit $\mathbf{P}^1(\mathbf{F}_p)$ l'ensemble des droites vectorielles de \mathbf{F}_p^2 . En considérant la pente d'une droite, montrer que $|\mathbf{P}^1(\mathbf{F}_p) {\mathbf{F}_p \vec{e}_2}| = p$. En déduire que $|\mathbf{P}^1(\mathbf{F}_p)| = p + 1$. Ceci permet de voir $\mathbf{P}^1(\mathbf{F}_p) = \mathbf{F}_p \cup {\infty}$ comme la sphère de Riemann sur \mathbf{F}_p .
- (4) On suppose p=3. En faisant $GL_2(\mathbf{F}_3)$ agir sur $\mathbf{P}^1(\mathbf{F}_3)$, montrer que $PGL_2(\mathbf{F}_3) \simeq \mathscr{S}_4$ et $PSL_2(\mathbf{F}_3) \simeq \mathscr{A}_4$.

Exercice 8. Soit G un groupe tel que son quotient par le centre Z soit un groupe cyclique. Montrer que G est abélien. Utiliser ce résultat pour montrer que si p est un premier, alors tout groupe d'ordre p^2 est abélien.