워드 임베딩

최 석 재 *lingua@naver.com*

Word Embedding

- Word Embedding은 단어를 숫자로 바꾸는 기법 중 하나이다
- 특정 단어의 주변의 단어를 이용하여 유사도 즉 숫자로 단어를 대체한다
- 컴퓨터와 모니터는 한 문장의 주변에 등장하는 비율이 자전거보다 높으므로 더욱 유사하다
- 어제 컴퓨터와 모니터를 구입했다
- 컴퓨터는 저렴하나, 모니터는 비싸다
- 나는 자전거 타기를 좋아한다
- 동생의 자전거 실력도 좋다

id	단어1	단어2	단어3	단어4
1	어제	컴퓨터	모니터	구입하다
2	컴퓨터	저렴하다	모니터	비싸다
3	나	자전거	타다	좋아하다
4	동생	자전거	실력	좋다

워드 임베딩의 기능

- 워드 임베딩은 그동안 풀기 어려웠던 유사어 찾기 문제를 상당히 해결해 주었다
- 유사어는 물론, 반의어를 찾는 문제에서도 어느 정도 성능을 보여준다
- 워드 임베딩을 분류 문제에 적용시키기도 한다
- 워드 임베딩을 이용하면 유사한 단어들을 같은 부류로 처리할 수 있고,
- 원-핫 인코딩에 비하여 저차원 밀집벡터를 사용하게 되어 공간 효율성이 높아진다
- 그러나 워드 임베딩을 통한 유사어 찾기는 저빈도 어휘에서는 낮은 성능을 보이므로 분류 모델에 적용했을 때 반드시 결과가 좋은 것은 아니다
- 여기서는 유사어 찾기와
- 사전 훈련된 임베딩을 이용한 이진 분류
- 학습 데이터로 훈련된 임베딩을 이용한 이진 분류 세 가지를 다루어본다

차원 이해

- 워드 임베딩은 하나의 단어를 여러 차원을 이용해 표현한다
- 아이폰, 아이패드, 맥북은 하나의 차원을 이용해 다음과 같이 표현할 수 있다
- 아이폰은 아이패드와는 2만큼, 맥북과는 4만큼의 거리에 있고, 아이패드와 맥북은 2만큼의 거리에 있다는 것은 알게 되나, 구조가 단순하여 그 유사도가 정밀히 표현되지 못한다

차원의 표현

• 데이터에 컬럼을 하나 더 추가하면 데이터의 상호 관계는 2차원이 된다 ①이 ③보다는 ②와 더 가깝다는 것이 더 정밀히 표현된다

차원의 의미

- 유사한 단어는 차원의 값이 유사한 패턴을 가지게 된다
- 이를 차원이 단어의 특정 의미를 표현한다고 해석할 수 있다
- 즉, 단어의 특징이 한 개 혹은 복수의 차원을 통하여 표현된다

맥북에어는 맥북프로와 크기는 같으나, 무게는 아이패드에 더 가깝다

차원의 방향성

- 또한 각 컬럼은 2차원부터는 공간에서 방향성을 가질 수 있다
- 아이폰, 아이패드, 맥북은 크기에 따라 무게가 증가하나, 어댑터는 크기는 작아도 무게가 많이 나가 다른 패턴을 보인다

	x	y
① 아이폰	3	1
② 아이패드	5	2
③ 맥북	7	3
④ 어댑터	3	2

고차원 데이터

- 데이터에 컬럼을 하나 더 추가하면 데이터의 상호 관계는 3차원이 된다
- 차원의 증가로 상호 관계가 더욱 정밀히 표현된다

	x	y	z			[3, 1, 5]	
아이폰		3	1	5		[7, 3, 1],	로 표현된다
아이패드		5	2	2	Z	•	
맥북		7	3	1		~ 4 6 y	
						0 2 4 6 8 10 0	
						X	

200차원 임베딩

- 워드 임베딩은 이와 같은 방식으로 대량의 문서를 학습하여 모든 단어의 유사도를 복수의 차원으로 기록한다
- 아래는 200차원으로 표현된 워드 임베딩의 일부이다
- 또한, 이 과정에서 A 컬럼의 내용으로 문자열 1차원 배열이었던 것이 B 컬럼부터 200 개 컬럼으로 구성되는 숫자의 2차원으로 축이 하나 늘게 된다 (행, 열)

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	О	Р	Q	R	S	T	U
1	URL	-3.86028	0.583065	-1.41235	2.2038	2.964935	-2.59431	-4.98975	-0.51422	-4.45136	1.181666	-2.59429	4.103975	0.085348	1.466408	-3.71594	2.197032	-4.81038	-1.45395	4.047212	3.93262
2	지미	-2.4833	-0.83459	0.584627	-1.30425	1.797614	-0.7812	0.26234	-0.68078	0.707399	-2.06565	-1.12579	-1.29772	-0.49523	-2.10672	-0.73768	-0.30362	-0.57012	0.972167	-0.21675	1.375072
3	카터	-0.84035	-0.85469	0.518926	-0.10214	2.211183	0.357932	0.458723	-0.2294	-0.84622	-0.33504	-0.91033	-2.11496	2.195074	-1.51444	-0.2925	-1.05111	0.523236	-0.31038	-0.8907	1.779895
4	제임스	1.079353	-0.19112	1.971397	-1.03508	1.296451	-0.58205	-0.58068	-0.3487	0.645975	-0.48476	-0.79937	-0.57293	0.2104	-2.9712	0.154823	-0.70083	-1 .70367	1.071476	0.787426	1.670715
5	주니어	0.325491	-1.70622	0.820898	-0.39193	0.548579	-0.5329	-1.80435	-0.21155	1.499797	-0.99638	-1.12531	-0.90812	-0.57182	-0.09192	-0.25568	0.853117	-0.82344	1.625719	-1.01259	-0.47477
6	민주당	2.030566	-1.35959	-1.30362	2.160521	2.770621	-0.05779	-0.78674	-0.377	0.682947	0.147156	2.134828	-1.39753	-0.92722	-1.80073	-2.865	1.695083	0.117571	-1.36661	0.530811	-1.4611
7	출신	0.328542	0.770048	-0.53737	-1.46428	2.693913	-0.52029	-1.66589	-1.09863	-1.23919	0.804363	-0.88631	-1.07253	-3.86398	-0.85849	-2.64378	-0.54486	-1.89279	-1.35291	2.743982	1.066437
8	미국	0.597256	-0.8554	1.6305	-1.12239	2.906073	0.567242	-0.85597	-1.52918	-2.50567	-1.18418	-0.64398	0.499129	1.320328	-0.57343	1.454937	1.11668	-1.75524	0.261288	-0.21519	1.270383
9	대통령	-0.56592	0.974382	1.831127	3.519968	1.585229	2.957404	-0.05195	-2.15176	1.724363	-2.90186	-0.14735	-0.74905	0.208048	0.020867	-0.22852	-1.00402	0.657623	0.754875	0.053104	-0.75876
10	조지아	-0.92856	-0.0968	-2.28289	1.691891	1.408141	-1.35763	1.186497	-0.41216	-1.38797	-0.42866	0.13944	-1.44736	1.239586	-1.01874	0.983563	-2.98323	-1.73745	2.013527	0.221758	1.669652
11	카운티	0.948146	-1.20009	-1.70282	-1.50095	1.469536	-0.50986	-0.1954	-0.37929	-2.69791	-0.06652	0.590661	-0.29452	0.525049	-2.3384	0.507214	-0.67282	-2.11047	0.205022	-0.88123	1.603405
12	마을	-0.08796	-1.61017	-0.34371	0.767736	0.301211	0.124322	1.948312	1.056427	3.592736	0.928602	-1.81859	1.668903	1.180285	1.3479	2.00116	-0.68329	-1.72106	-1.35175	1.870628	-2.26757
																					ì

유사도에 따른 임베딩 값의 차이

• 컴퓨터와 모니터의 임베딩 값은 자전거와 아래와 같은 차이가 있을 수 있다

	1	2	3	4	5	6	7	8	9	10
컴퓨터	0.1	0.2	0.2	0.1	0.3	0.5	0.4	0.1	0.0	0.0
모니터	0.1	0.2	0.3	0.1	0.3	0.6	0.3	0.1	0.0	0.0
자전거	0.7	0.5	0.0	0.0	0.0	0.2	0.3	0.1	0.5	0.4

- 기계는 '컴퓨터'의 의미를 {0.1, 0.2, 0.2, 0.1, 0.3, ..., 0.0}으로 이해한다
- 임베딩(embedding)이란 자연어(自然語)를 기계가 이해할 수 있는 숫자의 나열인 벡터로 바꾼 결과 또는 벡터로 바꾸는 과정을 의미한다
- 단어나 문장을 벡터로 변환하여 벡터 공간으로 끼워 넣는다(embed)는 의미를 갖는다

최적의 Embedding Dimension?

- 한 단어가 몇 개의 컬럼으로 표현되어야 하느냐에 대해서 정답은 없다
- 다만 보통 50~200 차원을 많이 선택하며, 속도가 문제되지 않으면 300 차원을 선택하는 경우도 있다

• 차원을 늘일수록 훈련시간이 늘어나며, 보통 200 차원 이상에서는 훈련 시

간은 커지나 성능 개선은 크지 않다

Jeffrey Pennington et al. (2014), "GloVe: Global Vectors for Word Representation"

Word Embedding을 이용한 모델

- Word Embedding 모델을 이용한다는 것은 첫 노드의 가중치를 단어가 가지고 있는 벡터로 된 의미값을 이용하겠다는 의미
- 따라서 입력층 어휘에 대한 One-Hot Encoding 과정은 없다

maxlen = 3, embedding_dim = 5 인 경우,

Padding 되어 3개 단어만 선택되며, 선택된 3개 단어 각각이 가지고 있는 5차원의 임베딩 값이 첫 번째 가중치로 배당됨이런 식으로 다른 두 단어도 가중치가 배당됨이 가중치는 업데이트하지 않고 동결

2D (batch_size, input_length x feature_dim) =

a2

a1

 원-핫 인코딩에서는 사용할 모든 단어의 종류를 늘어놓고, 0과 1을 통하여 그 단 어가 사용되었는지를 알려주는 방식인 반면, 임베딩에서는 사용한 단어만 제시 하고 그 단어의 의미값을 주는 방식이다

라고 한다

• 원-핫 인코딩은 max_words (10,000)을

다 만들고 문장마다 일부만 사용하여 희 소벡터가 되지만, 워드임베딩은 모든 노

드에 임베딩 값이 들어가므로 밀집벡터

a3

Flatten

Flatten 하게 되면 두 개의 차원으로 있던 embedding 층이 하나의 층, 15노드로 펼쳐짐

각 단어에 대한 5차원의 임베딩 값이 그 단어의 의미 즉 임베딩 값으로 현재 문장에서는 어떠한 단어가 들어가고 있는지를 알려준다

예를 들어, '의자 많이 사' 라는 문장은 {-2.44, 1.32, 0.58, 0.76, 2.44, 3.28, -0.51, 1.24, -1.09, 2.11, 0.24, 1.25, -2.44, 1.82, 2.11}의 15개 가중치 노드로 변환된다

Word2Vec

- Word2Vec은 구글에서 발표한 가장 기본적인 워드 임베딩 기법
- Word2Vec은 CBOW와 Skip-gram이라는 두 개의 하위 모델이 있다
- CBOW는 주변에 있는 문맥 단어(context word)로 타깃 단어(target word) 하나를 예측하는 방법이고,
- Skip-gram은 타깃 단어를 가지고 주변 문맥 단어를 예측한다
- Skip-gram의 임베딩 품질이 CBOW보다 좋은 경향이 있다

좋아 ----- 1

이 W_{in} 행렬로 '식사'라는 출력 노드가 올바르게 선택되도록 학습한다 V는 입력문의 길이, M은 embedding dim. W_{in} 가 임베딩 값이 된다

Word2Vec의 생성과 유사어 찾기

구글 드라이브와 연결

from google.colab import auth
auth.authenticate_user()

- from google.colab import drive
- drive.mount('/content/gdrive')

경로 설정

- pytest_dir = '/content/gdrive/My Drive/pytest/'
- chat_dir = '/content/gdrive/My Drive/pytest/data/'
- print('pytest_dir:', pytest_dir)
- print('chat_dir:', chat_dir)

```
pytest_dir: /content/gdrive/My Drive/pytest/
chat_dir: /content/gdrive/My Drive/pytest/data/
```


형태소 분석기 관련 설치

- !apt-get update
- !apt-get install g++ openjdk-8-jdk
- !pip install JPype1
- !pip install rhinoMorph

학습할 텍스트 읽기

• import os.path

• embedding_dim = 50

임베딩 차원수 설정

os.chdir(pytest_dir)

경로 설정

print("Current Directory:", os.getcwd())

• with open('wiki_test.txt', 'r', encoding='utf-8') as f: # 샘플 파일 읽기 data = f.read()

Current Directory: /content/gdrive/My Drive/pytest

문장단위 분리 및 형태소분석기 기동

- import rhinoMorph
- from nltk.tokenize import sent_tokenize
- import nltk
- nltk.download('punkt')
- sent_data = sent_tokenize(data)
- rn = rhinoMorph.startRhino()
- print('type:', type(sent_data))
- print('length:', len(sent_data))
- print('sentence sample:', sent_data[:20])

- # 문장 단위 분리
- # 형태소분석기 기동

- # 전체 문장의 개수
- # 형태소 분석 전 모습

작업 디렉토리 생성

- import os
- exists = os.path.exists(chat_dir+'word2vec')
- if not exists:
- os.mkdir(chat_dir+'word2vec')
- print('The word2vec directory is created.')

The word2vec directory is created.

8.349 %

진행 정도 확인을 위해 1000번째 문장마다 확인

16.699 % 25.048 %

텍스트의 형태소 분석

print(round(cnt/total_lines * 100, 3), '%')

print('Morphological Analysis Completed.')

cnt += 1

if (cnt % 1000) == 0:

```
33.397 %
                                                                                                  41.747 %
                                                                                                  50.096 %
                                                                                                  58.445 %

    total lines = len(sent data)

                                                                                                  66.795 %
                                                                                                  75.144 %
• cnt = 0
                                                                                                  83.493 %
                                                                                                  91.843 %

    with open(chat_dir+'word2vec/wiki_test_morphed.txt', 'w', encoding='utf-8') as f:

                                                                                                  Morphological Analysis Completed.
   for data each in sent data:
       morphed_data_each = rhinoMorph.onlyMorph_list(rn, data_each, pos=['NNG', 'NNP', 'NP', 'VV', 'VA', 'XR', 'IC', 'MM', 'MAG', 'MAJ'])
      joined_data_each = ' '.join(morphed_data_each)
      if joined data each:
          f.write(joined_data_each + '₩n')
```

※ 전체 말뭉치 사용을 위해서는 pytest_자료실.zip 안에 있는 wiki_data.txt 를 사용

형태소 분석 결과를 읽어 리스트로 만들기

```
• def read_data(filename, encoding='utf-8'): # 읽기 함수 정의 with open(filename, 'r', encoding=encoding) as f: data = [line.split(' ') for line in f.read().splitlines()] return data
```

- data=read_data(chat_dir+"word2vec/wiki_test_morphed.txt", 'utf-8')
- print(len(data))
- print(type(data))
- print(data[:3])

임베딩 구성

- from gensim.models import Word2Vec
- os.chdir(chat_dir+'word2vec/')

size: 차원, window: 컨텍스트 윈도우의 크기, min_count: 단어 최소 빈도, workers: 학습을 위한 프로세스 수, sg: 0은 CBOW, 1은 skip-gram

- model = Word2Vec(sentences=data, size=embedding_dim, window=10, min_count=5, workers=4, sg=1)
- model.save('embedding_window10_mincnt5_skipgram.model')
- print('Completed.')

※ 이 작업의 결과가 매우 큰 경우, 분산 저장을 위하여 위와 같은 이름의 .model 파일 외에도 .npy 파일이 여러 개 나타난다 새로 생성된 파일들은 항상 같은 위치에 있도록 한다

Word2Vec - 임베딩 값 저장

- words = list(model.wv.vocab)
- with open('embedding_window10_mincnt5_skipgram.txt', 'w') as f: for word in words:

```
data = model.wv[word].tolist()
print('data_pre:', data)
```

data.insert(0, word)
print('data_after:', data)

for item in data: f.write("%s " % item) f.write("₩n") # 현재 단어의 임베딩 값을 가져온다

현재 단어의 임베딩 값을 출력해본다

시작 부분에 해당 단어를 넣는다

현재 단어의 이름과 함께 임베딩 값을 출력해본다

단어 이름부터 시작하여 각 벡터의 값을 저장한다

data_after: ['민변', -0.18343858420848846, 0.05710616707801819, 0.14069104
data_pre: [0.2339920550584793, 0.03272222727537155, -0.23398496210575104,
data_after: ['안산시', 0.2339920550584793, 0.03272222727537155, -0.23398496
data_pre: [-0.2361794412136078, 0.033876944333314896, 0.15530338883399963,
data_after: ['무효화', -0.2361794412136078, 0.033876944333314896, 0.1553033
The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.
To change this limit, set the config variable
`--NotebookApp.iopub_data_rate_limit`.

Current values:

NotebookApp.iopub_data_rate_limit=1000000.0 (bytes/sec) NotebookApp.rate limit window=3.0 (secs)

Word2Vec - 유사어 찾기

- model = Word2Vec.load('embedding_window10_mincnt5_skipgram.model')
- print('--- 유사단어 출력 ---')
- similarWords = model.wv.most_similar(positive=['행복', '웃음', '밝', '기쁨'], topn=5)
- print(similarWords)
- word = []
- for similarWord in similarWords: # 유사도값을 제외하고 단어만 모은다 word.append(similarWord[0])
- print(word)

```
--- 유사단어 출력 ---
[('깜짝', 0.9827515482902527), ('숙연', 0.9785732626914978), ('어지럽', 0.9750159382820129), ('살아가', 0.9729760885238647), ('맴돌
['깜짝', '숙연', '어지럽', '살아가', '맴돌']
```

Word2Vec - 두 단어 사이의 유사도 계산

- print('--- 두 단어의 유사도 계산 ---')
- print('한국과 일본:', model.wv.similarity('한국', '일본'))
- print('한국과 미국:', model.wv.similarity('한국', '미국'))
- print('한국과 중국:', model.wv.similarity('한국', '중국'))

--- 두 단어의 유사도 계산 ---

한국과 일본: 0.64371276 한국과 미국: 0.7646677 한국과 중국: 0.81528336

기 생성된 워드임베딩 사용

※ 여기서부터는 미리 만들어놓은 워드 임베딩(_big)을 사용한다 한글위키피디아, 국립국어원 말뭉치, 네이버영화평 파일로 만들었다

- pytest_big 폴더에 있는 다음의 3개 파일을
- Google Drive의 pytest₩data₩word2vec 폴더에 업로드한다

- embedding_window10_mincnt5_skipgram_big.model
- embedding_window10_mincnt5_skipgram_big
- wiki202003_nationalcorpus_naverratings_morphed_big

Word2Vec - 유사어 찾기

- model = Word2Vec.load('embedding_window10_mincnt5_skipgram_big.model')
- print('--- 유사단어 출력 ---')
- similarWords = model.wv.most_similar(positive=['행복', '웃음', '밝', '기쁨'], topn=5)
- print(similarWords)
- word = []
- for similarWord in similarWords: # 유사도값을 제외하고 단어만 모은다 word.append(similarWord[0])
- print(word)

```
--- 유사단어 출력 ---
[('흐뭇', 0.8909333348274231), ('마음', 0.8865163326263428), ('기쁘', 0.8699381351470947), ('마음속', 0.8504815101623535),
['흐뭇', '마음', '기쁘', '마음속', '즐겁']
```

Word2Vec - 두 단어 사이의 유사도 계산

- print('--- 두 단어의 유사도 계산 ---')
- print('한국과 일본:', model.wv.similarity('한국', '일본'))
- print('한국과 미국:', model.wv.similarity('한국', '미국'))
- print('한국과 중국:', model.wv.similarity('한국', '중국'))

--- 두 단어의 유사도 계산 ---

한국과 일본: 0.85150576

한국과 미국: 0.7342306

한국과 중국: 0.6941229

말뭉치에 따른 결과 비교

['깜짝', '숙연', '어지럽', '살아가', '맴돌']

--- 두 단어의 유사도 계산 ---

한국과 일본: 0.64371276

한국과 미국: 0.7646677

한국과 중국: 0.81528336

['흐뭇', '마음', '기쁘', '마음속', '즐겁']

--- 두 단어의 유사도 계산 ---

한국과 일본: 0.85150576

한국과 미국: 0.7342306

한국과 중국: 0.6941229

샘플 데이터

국립국어원 말뭉치 + 한글 위키피디아

사전 훈련된 임베딩을 이용한 이진 분류

읽기와 쓰기 함수 정의 및 데이터 로딩

os.chdir(pytest_dir)

```
    def read_data(filename, encoding='cp949'): # 읽기 함수 정의 with open(filename, 'r', encoding=encoding) as f:
        data = [line.split('₩t') for line in f.read().splitlines()]
        data = data[1:] # 첫 행은 헤더(id document label)일 수 있으므로 제외 return data
```

- def write_data(data, filename, encoding='cp949'): # 쓰기 함수 정의 with open(filename, 'w', encoding=encoding) as f: f.write(data)
- data = read_data('ratings.txt', encoding='cp949') # (긍정 10만, 부정 10만)

전체 데이터 형태소 분석

```
import rhinoMorph
rn = rhinoMorph.startRhino()
morphed_data = "
for data_each in data:
   morphed_data_each = rhinoMorph.onlyMorph_list(rn, data_each[1],
     pos=['NNG', 'NNP', 'VV', 'VA', 'XR', 'IC', 'MM', 'MAG', 'MAJ'])
  joined_data_each = ' '.join(morphed_data_each) # 문자열을 하나로 연결
  if joined_data_each:
                                              # 내용이 있는 경우만 저장하게 함
     morphed_data += data_each[0]+"\text{\psi}t"+joined_data_each+"\text{\psi}t"+data_each[2]+"\text{\psi}n"
# 형태소 분석된 파일 저장
write_data(morphed_data, 'ratings_morphed.txt', encoding='cp949')
```


형태소 분석된 데이터 로딩

```
data = read_data('ratings_morphed.txt' , encoding='cp949')
print(type(data))
print(len(data))
print(len(data[0]))
print(data[0])
```

```
<class 'list'>
197559
3
```

['8132799', '디자인 배우 학생 외국 디자이너 일구 전통 통하 발전 문화 산업 부럽 사실 우리나라 그 어렵 시절 끝 열정 지키 노라노 같 전통

데이터 줄이기

무료 Colab에서 실행하기에는 데이터가 너무 많아 1/3로 줄인다

- import random
- import math
- import numpy as np
- random.shuffle(data)
- part_num = math.floor(len(data) * 1/3)
- data = data[:part_num]
- print(len(data))

data를 랜덤하게 섞음

data의 1/3을 정수로 얻음

앞에서부터 1/3 크기의 데이터만 선택

65853

데이터 분리

```
# 훈련데이터와 테스트데이터 분리
```

- data_text = [line[1] for line in data] # 데이터 본문
- data_senti = [line[2] for line in data] # 데이터 긍부정 부분
- from sklearn.model_selection import train_test_split
- train_data_text, test_data_text, train_data_senti, test_data_senti = train_test_split(data_text, data_senti, stratify=data_senti)

분리된 데이터 확인

Counter 클래스를 이용해 train과 test 데이터의 비율을 확인한다

- from collections import Counter
- train_data_senti_freq = Counter(train_data_senti)
- print('train_data_senti_freq:', train_data_senti_freq)
- test_data_senti_freq = Counter(test_data_senti)
- print('test_data_senti_freq:', test_data_senti_freq)

```
train_data_senti_freq: Counter({'0': 24721, '1': 24668})
test_data_senti_freq: Counter({'0': 8241, '1': 8223})
```

Data Tokenizing

단어에 숫자 기호를 배당하는 Tokenizing

- from keras.preprocessing.text import Tokenizer
- from keras.preprocessing.sequence import pad_sequences
- import numpy as np
- import math

```
• max_words = 10000 # 데이터셋에서 가장 빈도 높은 10,000 개의 단어만 사용
```

- maxlen = 20 # 20개 이후의 단어는 버려 각 문장의 길이를 고정
- tokenizer = Tokenizer(num_words=max_words) # 상위빈도 10,000 개 단어를 추려내는 Tokenizer 객체 생성
- tokenizer.fit_on_texts(train_data_text) # 단어 인덱스를 구축한다
- word_index = tokenizer.word_index # 단어 인덱스만 가져온다

Tokenizer 결과 확인

- # Tokenizing 결과 확인
- print('전체에서 %s개의 고유한 토큰을 찾았습니다.' % len(word_index))
- print('word_index type: ', type(word_index))
- print('word_index: ', word_index)

```
전체에서 21947개의 고유한 토큰을 찾았습니다.
```

word_index type: <class 'dict'>

word_index: {'영화': 1, '하': 2, '보': 3, '없': 4, 'ㅋㅋ': 5, '재미있': 6, '좋': 7, '너무': 8, '되': 9, '정말': 10, '있': 11,

Data Sequencing

```
# 텍스트를 숫자로 변환
# 상위 빈도 max_words 개의 단어만 추출하여 word_index의 숫자 리스트로 변환
```

- data = tokenizer.texts_to_sequences(train_data_text) # 데이터에 Tokenizer 적용
- print('data 0:', data[0])
- print('texts 0:', train_data_text[0])

```
data 0: [668, 7, 1]
texts 0: 훈훈 좋 영화 ^^
```

Data Padding

- data = pad_sequences(data, maxlen=maxlen)
- print('data:', data)
- print('data 0:', data[0])
- print('data 0의 길이:', len(data[0]))

```
data: [[ 0 0 0 0... 668 7 1]
[ 0 0 0 0... 158 8108 119]
[ 0 0 0 0... 583 15 1452]
...
[ 0 0 0 0... 399 7257 5]
[ 0 0 0 0... 19 8 147]
[ 0 0 0 0... 8 204 69]]
data 0: [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 668
7 1]
data 0의 길이: 20
```


Data Type 확인

- print(type(train_data_text))
- print(type(data))
- print(data.shape)

```
<class 'list'>
<class 'numpy.ndarray'>
(49389, 20)
```

One-Hot Encoding (불필요)

- def to_one_hot(sequences, dimension):
- results = np.zeros((len(sequences), dimension))
- for i, sequence in enumerate(sequences):
- results[i, sequence] = 1.
- return results

```
# 워드 임베딩을 사용할 때는 본문에 원-핫 인코딩을 하지 않는다
# 현재는 이진분류이므로 Label에도 원-핫 인코딩을 할 필요가 없다
# data = to_one_hot(data, dimension=max_words)
```

labels = np.asarray(train_data_senti).astype('float32')

Data 확인

- print(type(train_data_text))
- print(type(data))
- print(data.shape)
- print('데이터 텐서의 차원:', data.ndim)
- print('레이블 텐서의 차원:', labels.ndim)
- print('데이터 텐서의 크기:', data.shape)
- print('레이블 텐서의 크기:', labels.shape)

```
<class 'list'>
<class 'numpy.ndarray'>
(49389, 20)
데이터 텐서의 차원: 2
레이블 텐서의 차원: 1
데이터 텐서의 크기: (49389, 20)
레이블 텐서의 크기: (49389,)
```


검증 데이터 분리

y_val = labels[:validation_len]

```
• validation_ratio = 0.3 # 30%는 검증데이터로 사용한다. 나머지는 훈련데이터
```

훈련데이터의 30%는 검증데이터 Label

validation_len = math.floor(len(train_data_text) * validation_ratio)

```
    x_train = data[validation_len:] # 훈련데이터의 70%는 훈련데이터
    y_train = labels[validation_len:] # 훈련데이터의 70%는 훈련데이터 Label
    x_val = data[:validation_len] # 훈련데이터의 30%는 검증데이터
```

임베딩 딕셔너리 로딩-Word2Vec Embedding (1)

```
# 단어와 임베딩 값의 딕셔너리 로딩

• embeddings_index = {}

• f = open(os.path.join(chat_dir+'word2vec', 'embedding_window10_mincnt5_skipgram_big.txt'), encoding='cp949')

• for line in f:

values = line.split() # 텍스트 파일의 각 행을 분리

word = values[0] # 각 행의 단어

coefs = np.asarray(values[1:], dtype='float32') # 각 단어의 임베딩값

embeddings_index[word] = coefs
```

- f.close()
- print('%s개의 단어 벡터를 찾았습니다.' % len(embeddings_index)) # 143775

임베딩 행렬 구성 - Word2Vec Embedding (2)

```
# 임베딩 행렬 구성
embedding_matrix = np.zeros((max_words, embedding_dim)) # 0으로 채워진 빈 행렬 구성
for word, i in word_index.items(): # word_index의 word와 index 추출
   if i < max_words: # max_words 이하의 범위에서 순회
        embedding_vector = embeddings_index.get(word) # 해당 단어의 임베딩 벡터 추출
   if embedding_vector is not None:
        embedding_matrix[i] = embedding_vector # 임베딩 값을 행렬의 해당 word_index 위치에 주입
```

파라미터 설정

- class_number = 1
- epochs = 5
- batch_size = 32
- embedding_dim = 50
- model_name = 'text_binary_model.h5'
- tokenizer_name = 'text_binary_tokenizer.pickle'

임베딩층쌓기 - Word2Vec Embedding (3)

- from keras import models
- from keras import layers
- model = models.Sequential()

모델을 새로 정의

- # 임베딩을 하게 되면 embedding_dim을 값으로 갖는 층이 하나 늘게 된다(2D -> 3D)
- # 따라서 다음에 Dense와 같이 2D를 입력으로 받는 층을 사용하려면 Flatten()을 통해 다시 2D로 차원을 축소한다
- # 만약 다음에 3D(batch_size, input_length, feature_dim)를 입력으로 받는 순환신경망을 이용할 때는 Flatten() 없이 바로 사용하면 된다
- # input_length(=maxlen)은 나중에 임베딩된 입력을 Flatten 층에서 펼치기 위해 필요한 것이며, Flatten 하지 않는다면 생략 가능하다
- # Flatten 하게 되면 3D 임베딩 텐서를 (batch_size, input_length * output_dim) 크기의 2D 텐서로 펼쳐 Dense 층의 입력이 될 수 있게 된다
- model.add(layers.Embedding(input_dim=max_words, output_dim=embedding_dim, input_length=maxlen))
- model.add(layers.Flatten())
- model.add(layers.Dense(units=64, activation='relu')) # 은닉층
- model.add(layers.Dense(units=32, activation='relu')) # 은닉층
- model.add(layers.Dense(units=class_number, activation='sigmoid')) # 출력층

모델 요약 출력

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 20, 50)	500000
flatten (Flatten)	(None, 1000)	0
dense (Dense)	(None, 64)	64064
dense_1 (Dense)	(None, 32)	2080
dense_2 (Dense)	(None, 1)	33

Total params: 566,177

Trainable params: 566,177 Non-trainable params: 0

Layer 1 (embedding, 20, 50 node)

Layer 2 (Flatten, 1000 node)

Layer 3 (dense 0, 64 node)

Layer 4 (dense 1, 32 node)

Layer 5 (dense 2, 1 node)

임베딩 행렬의 값 주입 - Word2Vec Embedding (4)

```
# 임베딩 층에 사전 훈련된 임베딩값 주입
# 그리고 이 층은 훈련되지 못하도록 동결한다
```

- model.layers[0].set_weights([embedding_matrix])
- model.layers[0].trainable = False

Compile Model

- # 신경망의 출력이 확률이므로 오차값 계산은 crossentropy를 사용하는 것이 최선이다
- # 가중치 업데이트는 RMSprop을 사용하였다.
- # crossentropy는 원본의 확률 분포와 예측의 확률 분포를 측정하여 조절해 간다
- # 또한 다중 분류이므로 binary_crossentropy를 사용한다
- model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])

Train Model

- # 32개씩 미니 배치를 만들어 10번의 epoch로 훈련
- # 훈련데이터로 훈련하고, 검증데이터로 검증한다
- # 반환값의 history는 훈련하는 동안 발생한 모든 정보를 담고 있는 딕셔너리이다
- history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_val, y_val), verbose=1)
- history_dict = history.history

Save Model

- # 만들어진 모델을 이후에 재사용할 수 있도록 저장한다
- import pickle
- model.save(model_name)
- # 훈련데이터에서 사용된 상위빈도 max_words 개의 단어로 된 Tokenizer도 저장 (같은 단어 추출)
- with open(tokenizer_name, 'wb') as file:
- pickle.dump(tokenizer, file, protocol=pickle.HIGHEST_PROTOCOL)

Accuracy & Loss 확인

history 딕셔너리 안에 있는 정확도와 손실값을 가져와 본다

- acc = history.history['acc']
- val_acc = history.history['val_acc']
- loss = history.history['loss']
- val_loss = history.history['val_loss']
- print('Train accuracy of each epoch:', np.round(acc, 3))
- print('Validation accuracy of each epoch:', np.round(val_acc, 3))
- epochs = range(1, len(val_acc) + 1)

```
Train accuracy of each epoch: [0.721 0.757 0.773 0.79 0.806] Validation accuracy of each epoch: [0.745 0.748 0.756 0.754 0.756]
```


Plotting Accuracy

- # 정확도와 손실값의 변화를 보고, epoch를 어디에서 조절해야 할 지를 가늠한다.
- # 정확도가 떨어지는 구간, 손실값이 높게 나타나는 구간을 확인한다
- # 데이터가 큰 경우 대개 epoch를 늘려야 최적값에 도달한다
- import matplotlib.pyplot as plt

정확도 그리기

- plt.plot(epochs, acc, 'bo', label='Training Acc')
- plt.plot(epochs, val_acc, 'b', label='Validation Acc')
- plt.title('Training and validation accuracy')
- plt.xlabel('Epochs')
- plt.ylabel('Accuracy')
- plt.legend()
- plt.show()

Plotting Loss

• plt.figure()

새로운 그림을 그린다

손실값 그리기

- plt.plot(epochs, loss, 'bo', label='Training Loss')
- plt.plot(epochs, val_loss, 'b', label='Validation Loss')
- plt.title('Training and validation loss')
- plt.xlabel('Epochs')
- plt.ylabel('loss')
- plt.legend()
- plt.show()

Load Model

- from keras.models import load_model
- loaded_model = load_model(model_name)
- with open(tokenizer_name, 'rb') as handle:
- loaded_tokenizer = pickle.load(handle)

※ 로컬 컴퓨터에서 현재 파일의 폴더를 가져오기 # 현재 파일이 있는 폴더를 가져온다. 폴더에 한글이 있으면 안됨 filepath = os.path.dirname(os.path.realpath(__file__))

테스트 데이터 Sequencing

- # 문자열을 word_index의 숫자 리스트로 변환
- data = loaded_tokenizer.texts_to_sequences(test_data_text)
- # padding으로 문자열의 길이를 고정시킨다
- data = pad_sequences(data, maxlen=maxlen)

```
# 원-핫 인코딩은 하지 않는다
# x_test = to_one_hot(data, dimension=max_words)
x_test = data
```

- # test_data_senti를 list에서 넘파이 배열로 변환
- y_test = np.asarray(test_data_senti).astype('float32')

테스트 데이터 평가

- # 모델에 분류할 데이터와 그 정답을 같이 넣어준다
- test_eval = loaded_model.evaluate(x_test, y_test)
- # 모델이 분류한 결과와 입력된 정답을 비교한 결과
- print('prediction model loss & acc:', test_eval)

1개 데이터 예측

- # 형태소분석을 포함하여 이제까지의 과정을 모두 진행해주어야 한다
- text = ["재미있게 잘 봤습니다"] # 데이터를 list 타입으로 만든다
- import rhinoMorph
- rn = rhinoMorph.startRhino()
- # 리스트 컴프리헨션으로 실질형태소만을 리스트로 가져온다
- text=[rhinoMorph.onlyMorph_list(m, sentence, pos=['NNG', 'NNP', 'NP', 'VV', 'VA', 'XR', 'IC', 'MM', 'MAG', 'MAJ'], eomi=False) for sentence in text]

Result: [[0.95765877]]

- print('형태소 분석 결과:', text)
- data = loaded_tokenizer.texts_to_sequences(text)
- data = pad_sequences(data, maxlen=maxlen)
- # x test = to one hot(data, dimension=max words)
- x_test = data
- prediction = loaded_model.predict(x_test)
- print("Result:", prediction)

```
filepath: /usr/local/lib/python3.7/dist-packages classpath: /usr/local/lib/python3.7/dist-packages/rhinoMorph/lib/rhino.jar JVM is already started~ RHINO started! 형태소 분석 결과: [['재미있', '잘', '보']]
```

1(긍정)일 확률 출력

학습 데이터 임베딩을 이용한 이진 분류

※ 기본적으로 앞의 것과 모두 같고, 다만 Word2Vec Embedding (1), (2), (4)가 없다

읽기와 쓰기 함수 정의

os.chdir(pytest_dir)

```
    def read_data(filename, encoding='cp949'): # 읽기 함수 정의
    with open(filename, 'r', encoding=encoding) as f:
    data = [line.split('\text{\psi}t') for line in f.read().splitlines()]
    data = data[1:] # 첫 행은 헤더(id document label)일 수 있으므로 제외
    return data
```

- def write_data(data, filename, encoding='cp949'): # 쓰기 함수 정의
 with open(filename, 'w', encoding=encoding) as f:
- f.write(data)

형태소 분석된 데이터 로딩

```
data = read_data('ratings_morphed.txt' , encoding='cp949')
print(type(data))
print(len(data))
print(len(data[0]))
```

```
<class 'list'>
197559
3
```

print(data[0])

['8132799', '디자인 배우 학생 외국 디자이너 일구 전통 통하 발전 문화 산업 부럽 사실 우리나라 그 어렵 시절 끝 열정 지키 노라노 같 전통

데이터 줄이기

- import random
- import math
- import numpy as np
- random.shuffle(data)
- part_num = math.floor(len(data) * 1/2)
- data = data[:part_num]
- print(len(data))

data를 랜덤하게 섞음

data의 1/2을 정수로 얻음

앞에서부터 절반 크기의 데이터만 선택

98779

※ 여기서부터는 데이터의 절반을 이용해본다 메모리 문제가 발생하면 1/3로 줄인다

데이터 분리

```
# 훈련데이터와 테스트데이터 분리
```

- data_text = [line[1] for line in data] # 데이터 본문
- data_senti = [line[2] for line in data] # 데이터 긍부정 부분
- from sklearn.model_selection import train_test_split
- train_data_text, test_data_text, train_data_senti, test_data_senti = train_test_split(data_text, data_senti, stratify=data_senti)

분리된 데이터 확인

Counter 클래스를 이용해 train과 test 데이터의 비율을 확인한다

- from collections import Counter
- train_data_senti_freq = Counter(train_data_senti)
- print('train_data_senti_freq:', train_data_senti_freq)
- test_data_senti_freq = Counter(test_data_senti)
- print('test_data_senti_freq:', test_data_senti_freq)

```
train_data_senti_freq: Counter({'1': 37068, '0': 37016})
test_data_senti_freq: Counter({'1': 12356, '0': 12339})
```

Data Tokenizing

단어에 숫자 기호를 배당하는 Tokenizing

- from keras.preprocessing.text import Tokenizer
- from keras.preprocessing.sequence import pad_sequences
- import numpy as np
- import math

```
• max_words = 10000 # 데이터셋에서 가장 빈도 높은 10,000 개의 단어만 사용
```

- maxlen = 20 # 20개 이후의 단어는 버려 각 문장의 길이를 고정
- tokenizer = Tokenizer(num_words=max_words) # 상위빈도 10,000 개 단어를 추려내는 Tokenizer 객체 생성
- tokenizer.fit_on_texts(train_data_text) # 단어 인덱스를 구축한다
- word_index = tokenizer.word_index # 단어 인덱스만 가져온다

Tokenizer 결과 확인

- # Tokenizing 결과 확인
- print('전체에서 %s개의 고유한 토큰을 찾았습니다.' % len(word_index))
- print('word_index type: ', type(word_index))
- print('word_index: ', word_index)

```
전체에서 25771개의 고유한 토큰을 찾았습니다.
word_index type: <class 'dict'>
word_index: {'영화': 1, '하': 2, '보': 3, '없': 4, 'ㅋㅋ': 5, '재미있': 6, '너무': 7, '좋': 8, '되': 9, '있': 10, '정말': 11,
```

Data Sequencing

```
# 텍스트를 숫자로 변환
# 상위 빈도 10,000(max_words)개의 단어만 추출하여 word_index의 숫자 리스트로 변환
```

- data = tokenizer.texts_to_sequences(train_data_text) # 데이터에 Tokenizer 적용
- print('data 0:', data[0])
- print('texts 0:', train_data_text[0])

```
data 0: [564, 29, 38, 89, 1698, 69, 431, 20]
texts 0: 헐 주 아깝 한국 영화계 이렇게 망하 ㅋ
```

Data Padding

- data = pad_sequences(data, maxlen=maxlen)
- print('data:', data)
- print('data 0:', data[0])
- print('data 0의 길이:', len(data[0]))

```
data: [[ 0 0 0 ... 69 431 20]
[ 0 0 0 ... 0 0 7]
[ 0 0 0 ... 41 7019 33]
...
[ 0 0 0 ... 193 443 233]
[ 334 3 199 ... 936 2991 1657]
[ 0 0 0 ... 75 29 3190]]
data 0: [ 0 0 0 0 0 0 0 0 0 0 564 29
38 89 1698 69 431 20]
data 0의 길이: 20
```


Data Type 확인

- print(type(train_data_text))
- print(type(data))
- print(data.shape)

```
<class 'list'>
<class 'numpy.ndarray'>
(74084, 20)
```

One-Hot Encoding (불필요)

- def to_one_hot(sequences, dimension):
- results = np.zeros((len(sequences), dimension))
- for i, sequence in enumerate(sequences):
- results[i, sequence] = 1.
- return results

```
# 워드 임베딩을 사용할 때는 본문에 원-핫 인코딩을 하지 않는다
# 현재는 이진분류이므로 Label에도 원-핫 인코딩을 할 필요가 없다
# data = to_one_hot(data, dimension=max_words)
• labels = np.asarray(train_data_senti).astype('float32')
```

Data 확인

- print(type(train_data_text))
- print(type(data))
- print(data.shape)
- print('데이터 텐서의 차원:', data.ndim)
- print('레이블 텐서의 차원:', labels.ndim)
- print('데이터 텐서의 크기:', data.shape)
- print('레이블 텐서의 크기:', labels.shape)

```
<class 'list'>
<class 'numpy.ndarray'>
(74084, 20)
데이터 텐서의 차원: 2
레이블 텐서의 차원: 1
데이터 텐서의 크기: (74084, 20)
레이블 텐서의 크기: (74084,)
```


검증 데이터 분리

y_val = labels[:validation_len]

```
• validation_ratio = 0.3 # 30%는 검증데이터로 사용한다. 나머지는 훈련데이터
```

훈련데이터의 30%는 검증데이터 Label

validation_len = math.floor(len(train_data_text) * validation_ratio)

```
    x_train = data[validation_len:] # 훈련데이터의 70%는 훈련데이터
    y_train = labels[validation_len:] # 훈련데이터의 70%는 훈련데이터 Label
    x_val = data[:validation_len] # 훈련데이터의 30%는 검증데이터
```

파라미터 설정

- class_number = 1
- epochs = 5
- batch_size = 32
- embedding_dim = 50
- model_name = 'text_binary_model.h5'
- tokenizer_name = 'text_binary_tokenizer.pickle'

[0 0 0 ... 0 0 0]

[0 0 0 ... 0 0 0]

모델 정의하기 – Embedding

- from tensorflow.keras import models
- from tensorflow.keras import layers
- embedding_dim = 50
- model = models.Sequential()

임베딩의 차원을 설정한다. 보통 50~200까지에서 적절히 설정한다

모델을 새로 정의

- # 임베딩을 하게 되면 embedding_dim을 값으로 갖는 층이 하나 늘게 된다(2D -> 3D)
- # 따라서 다음에 Dense와 같이 2D를 입력으로 받는 층을 사용하려면 Flatten()을 통해 다시 2D로 차원을 축소한다
- # 만약 다음에 3D(batch_size, input_length, feature_dim)를 입력으로 받는 순환신경망을 이용할 때는 Flatten() 없이 바로 사용하면 된다
- # input_length(=maxlen)은 나중에 임베딩된 입력을 Flatten 층에서 펼치기 위해 필요한 것이며, Flatten 하지 않는다면 생략 가능하다
- # Flatten 하게 되면 3D 임베딩 텐서를 (batch_size, input_length * output_dim) 크기의 2D 텐서로 펼쳐 Dense 층의 입력이 될 수 있게 된다.
- model.add(layers.Embedding(input_dim=max_words, output_dim=embedding_dim, input_length=maxlen))
- model.add(layers.Flatten())
- model.add(layers.Dense(units=32, activation='relu')) # 은닉층
- model.add(layers.Dense(units=class number, activation='sigmoid')) # 출력층

모델 요약 출력

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 20, 50)	500000
flatten (Flatten)	(None, 1000)	0
dense (Dense)	(None, 64)	64064
dense_1 (Dense)	(None, 32)	2080
dense_2 (Dense)	(None, 1)	33

Total params: 566,177 Trainable params: 566,177 Non-trainable params: 0 Layer 1 (embedding, 200, 50 node)

Layer 2 (Flatten, 10000 node)

Layer 3 (dense 0, 64 node)

Layer 4 (dense 1, 32 node)

Layer 5 (dense 2, 1 node)

Compile Model

- # 신경망의 출력이 확률이므로 오차값 계산은 crossentropy를 사용하는 것이 최선이다
- # 가중치 업데이트는 RMSprop을 사용하였다.
- # crossentropy는 원본의 확률 분포와 예측의 확률 분포를 측정하여 조절해 간다
- # 또한 다중 분류이므로 binary_crossentropy를 사용한다
- model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])

Train Model

- # 32개씩 미니 배치를 만들어 n번의 epoch로 훈련
- # 훈련데이터로 훈련하고, 검증데이터로 검증한다
- # 반환값의 history는 훈련하는 동안 발생한 모든 정보를 담고 있는 딕셔너리이다
- history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_val, y_val), verbose=1)
- history_dict = history.history

Save Model

- # 만들어진 모델을 이후에 재사용할 수 있도록 저장한다
- import pickle
- model.save(model_name)
- # 훈련데이터에서 사용된 상위빈도 1,000개의 단어로 된 Tokenizer 저장(같은 단어를 추출하게 한다)
- with open(tokenizer_name, 'wb') as file:
- pickle.dump(tokenizer, file, protocol=pickle.HIGHEST_PROTOCOL)

Accuracy & Loss 확인

history 딕셔너리 안에 있는 정확도와 손실값을 가져와 본다

- acc = history.history['acc']
- val_acc = history.history['val_acc']
- loss = history.history['loss']
- val_loss = history.history['val_loss']
- print('Train accuracy of each epoch:', np.round(acc, 3))
- print('Validation accuracy of each epoch:', np.round(val_acc, 3))
- epochs = range(1, len(val_acc) + 1)

Train accuracy of each epoch: [0.79 0.84 0.863 0.888 0.905]

Validation accuracy of each epoch: [0.828 0.828 0.823 0.808 0.81]

Plotting Accuracy

- # 정확도와 손실값의 변화를 보고, epoch를 어디에서 조절해야 할 지를 가늠한다.
- # 정확도가 떨어지는 구간, 손실값이 높게 나타나는 구간을 확인한다
- # 데이터가 큰 경우 대개 epoch를 늘려야 최적값에 도달한다
- import matplotlib.pyplot as plt

정확도 그리기

- plt.plot(epochs, acc, 'bo', label='Training Acc')
- plt.plot(epochs, val_acc, 'b', label='Validation Acc')
- plt.title('Training and validation accuracy')
- plt.xlabel('Epochs')
- plt.ylabel('Accuracy')
- plt.legend()
- plt.show()

Plotting Loss

• plt.figure()

새로운 그림을 그린다

손실값 그리기

- plt.plot(epochs, loss, 'bo', label='Training Loss')
- plt.plot(epochs, val_loss, 'b', label='Validation Loss')
- plt.title('Training and validation loss')
- plt.xlabel('Epochs')
- plt.ylabel('loss')
- plt.legend()
- plt.show()

Load Model

- from keras.models import load_model
- loaded_model = load_model(model_name)
- with open(tokenizer_name, 'rb') as handle:
- loaded_tokenizer = pickle.load(handle)

※ 로컬 컴퓨터에서 현재 파일의 폴더를 가져오기 # 현재 파일이 있는 폴더를 가져온다. 폴더에 한글이 있으면 안됨 filepath = os.path.dirname(os.path.realpath(__file__))

테스트 데이터 Sequencing

- # 문자열을 word_index의 숫자 리스트로 변환
- data = loaded_tokenizer.texts_to_sequences(test_data_text)
- # padding으로 문자열의 길이를 고정시킨다
- data = pad_sequences(data, maxlen=maxlen)

```
# 원-핫 인코딩은 하지 않는다
# x_test = to_one_hot(data, dimension=max_words)
x_test = data
```

- # test_data_senti를 list에서 넘파이 배열로 변환
- y_test = np.asarray(test_data_senti).astype('float32')

테스트 데이터 평가

```
# 모델에 분류할 데이터와 그 정답을 같이 넣어준다
```

test_eval = loaded_model.evaluate(x_test, y_test)

모델이 분류한 결과와 입력된 정답을 비교한 결과

print('prediction model loss & acc:', test_eval)

1개 데이터 예측

- # 형태소분석을 포함하여 이제까지의 과정을 모두 진행해주어야 한다
- text = ["재미있게 잘 봤습니다"] # 데이터를 list 타입으로 만든다
- import rhinoMorph
- rn = rhinoMorph.startRhino()
- # 리스트 컴프리헨션으로 실질형태소만을 리스트로 가져온다
- text=[rhinoMorph.onlyMorph_list(m, sentence, pos=['NNG', 'NNP', 'NP', 'VV', 'VA', 'XR', 'IC', 'MM', 'MAG', 'MAJ'], eomi=False) for sentence in text]

Result: [[0.9743759]]

- print('형태소 분석 결과:', text)
- data = loaded_tokenizer.texts_to_sequences(text)
- data = pad_sequences(data, maxlen=maxlen)
- # x test = to one hot(data, dimension=max words)
- x_test = data
- prediction = loaded_model.predict(x_test)
- print("Result:", prediction)

```
filepath: /usr/local/lib/python3.7/dist-packages
classpath: /usr/local/lib/python3.7/dist-packages/rhinoMorph/lib/rhino.jar
JVM is already started~
RHINO started!
형태소 분석 결과: [['재미있', '잘', '보']] 1(긍정)일 확률 출력
```


검증 데이터 성능 비교

※ 모두 데이터를 1/2로 줄여 새로 모델링한 결과

Embedding 없는 모델

Train accuracy of each epoch: [0.806 0.839 0.848 0.854 0.864]

Validation accuracy of each epoch: [0.823 0.829 0.831 0.828 0.832]

사전학습된 임베딩 모델

Train accuracy of each epoch: [0.734 0.764 0.78 0.794 0.81] Validation accuracy of each epoch: [0.746 0.756 0.751 0.762 0.761]

학습데이터 임베딩 모델

Train accuracy of each epoch: [0.791 0.841 0.865 0.89 0.906] Validation accuracy of each epoch: [0.822 0.823 0.819 0.806 0.807]

테스트 데이터 성능 비교

Embedding 없는 모델

사전학습된 임베딩 모델

학습데이터 임베딩 모델

부록

말뭉치 수집 방법

한국어 위키피디아

- 한국어 위키피디아는 500MB 정도의 한국어 자료를 보유한다
- 이는 국립국어원에서 구축한 한국어 형태분석 말뭉치의 크기와 비슷하다
- 다음의 사이트에서 한국어 위키피디아 덤프 파일을 받는다
- https://dumps.wikimedia.org/kowiki/latest/

<pre>kowiki-latest-pages-articles-multistream5.xml-p> kowiki-latest-pages-articles-multistream6.xml-p> kowiki-latest-pages-articles-multistream6.xml-p></pre>	03-Mar-2020 08:43 10-Mar-2020 05:38	868 159872671 871
kowiki-latest-pages-articles.xml.bz2	02-Mar-2020 22:43	663870976 791
kowiki-latest-pages-articles1.xml-p1p76864.bz2		60452380
<pre>kowiki-latest-pages-articles1.xml-p1p76864.bz2> kowiki-latest-pages-articles2.xml-p76865p239412></pre>		811 89389424
kowiki-latest-pages-articles2.xml-p76865p239412>	09-Mar-2020 12:47	826
<pre>kowiki-latest-pages-articles3.xml-p239413p51243> kowiki-latest-pages-articles3.xml-p239413p51243></pre>		101347581 829
kowiki-latest-pages-articles4.xml-p512440p91564>	02-Mar-2020 22:01	123787883
kowiki-latest-pages-articles4.xml-p512440p91564> kowiki-latest-pages-articles5.xml-p915642p16267>		829 145872627
kowiki-latest-pages-articles5.xml-p915642p16267>	09-Mar-2020 12:47	832
<u>kowiki-latest-pages-articles6.xml-p1626758p2652></u> kowiki-latest-pages-articles6.xml-p1626758p2652>		1 42 43 43 73 835

- 많은 종류가 있지만 항상 다음만 필요하다
- kowiki-latest-pages-articles.xml.bz2
- 그 외의 파일은 편집 역사, 편집 내역, 권한 기록 등 실제 내용과는 다른 부분이 포함된 파일이다

- 압축 파일은 xml 형식으로 되어 있기 때문에 일반 텍스트 파일로 변환한다
- 아래의 위키피디아 extractor를 이용하여 간단히 변환할 수 있다
- https://github.com/attardi/wikiextractor

extract language and revion from cirrus search

minimized complexity

cirrus-extract.py

extract.sh

A tool for extracting plain text from Wikipedia dumps 0 releases -0- 189 commits 2 branches 1 0 packages **17** contributors Branch: master ▼ Find file Clone or download -New pull request attardi Update WikiExtractor.py ... Latest commit 16186e2 on 2 Mar Merge branch 'add_extra_fields_to_cirrus_output' of https://github.co... gitignore 12 months ago README.md log save to file; log page statistic info; 3 years ago ■ WikiExtractor.py Update WikiExtractor.py last month filter categories use depth 4 under Health acategories.filter 3 years ago

download

12 months ago

2 years ago

- Extractor의 압축을 푼 뒤, 위키피디아 파일과 한 폴더에 둔다
- 여기서는 extractor 폴더에 위키피디아 xml 파일을 두었다

- 그리고 콘솔 창에서 다음의 명령어로 xml을 텍스트 파일로 변환한다
- python WikiExtractor.py kowiki-latest-pages-articles.xml.bz2

• 변환이 완료되면 text 폴더에 AA~AG까지의 폴더가 생성된다

```
INFO: Finished 7-process extraction of 486040 articles in 572.9s (848.4 art/s) INFO: total of page: 835085, total of articl page: 486040; total of used articl page: 486040
 ):#Downloads#wikiextractor-master#wikiextractor-master>
```


변환이 완료된 모습

- 각 폴더에는 wiki_00, wiki_01, ... 과 식으로 많은 파일들이 존재한다
- 작업의 편의를 위하여 이 파일들을 모두 하나의 파일로 합친다
- 먼저 cmd에서 다음의 명령어로 각 폴더의 파일들을 하나로 합친다

AA 폴더 안에 있는 wiki 로 시작하는 파일(모든 파일)을 wikiAA.txt로 합침

copy D:\Downloads\wikiextractor-master\wikiextractor-wikiextractor-wikiextractor-wikiextractor-wikie

D:#Downloads#wikiextractor-master#wikiextractor-master#text>copy D:#Downloads#wikiextractor-master#wikiextractor-master# text#AA#wiki* wikiAA.txt

D:#Downloads#wikiextractor-master#wikiextractor-master#text#AA#wiki_95 D:#Downloads#wikiextractor-master#wikiextractor-master#text#AA#wiki_96 D:#Downloads#wikiextractor-master#wikiextractor-master#text#AA#wiki_97 D:#Downloads#wikiextractor-master#wikiextractor-master#text#AA#wiki_98 D:#Downloads#wikiextractor-master#wikiextractor-master#text#AA#wiki_99 1개 파일이 복사되었습니다. • 이와 같은 식으로 AA ~ AG의 폴더 파일들을 모두 하나로 만든다

- 이제 wikiAA.txt ~ wikiAG.txt의 7개 파일을 다시 하나의 파일로 합친다
- copy D:\Downloads\wikiextractor-master\wikiextractor-master\wikiA* wiki_data.txt

```
D:#Downloads#wikiextractor-master#wikiextractor-master#text>copy D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAA.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAA.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAB.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAC.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAD.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAD.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAE.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAF.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAF.txt
D:#Downloads#wikiextractor-master#wikiextractor-master#text#wikiAG.txt
1개 파일이 복사되었습니다.
```


국립국어원 말뭉치

• 국립국어원 - 자료 - 모두의 말뭉치 - 말뭉치 신청

- 형태 분석 말뭉치 (형태소 분석 말뭉치 약 300만 어절)
- 문어 말뭉치 (원시 말뭉치 약 10GB)

