

Bridging the gap between plasma physics and H transport in tokamak components

R. Delaporte-Mathurin^{1,2}

¹ CEA, IRFM/GCFPM, F-13108 Saint-Paul-lez-Durance, France

² Université Sorbonne Paris Nord, Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, UPR 3407. F-93430. Villetaneuse. France

Let's bridge the gap!

We know about that!

Ouaras et al, JNM (2015)

Hydrogen induced cracks (HIC)

Gao et al, Nucl Fusion (2019)

We need to keep track of hydrogen in materials!

$$\begin{cases} \frac{\partial c_{\text{m}}}{\partial t} = \boxed{\nabla (D \cdot \nabla c_{\text{m}})} - \sum_{i} \frac{\partial c_{\text{t},i}}{\partial t} \\ \frac{\partial c_{\text{t},i}}{\partial t} = \boxed{k \cdot c_{\text{m}} (n_{i} - c_{\text{t},i})} - \boxed{p \cdot c_{\text{t},i}} \\ \text{trapping} \end{cases}$$

McNabb & Foster -Trans. Metall. Soc Trans. Metall. Soc. (1963)

- $ightharpoonup c_{
 m m}$, $c_{
 m t,}$ mobile and trapped H concentration
- D diffusion coefficient
- \triangleright k, p trapping and detrapping rates
- \triangleright n_i trap density

Images: ITER Organization

FESTIM

- ► Finite Element Simulation of Tritium In Materials
- Finite Element Methods
- ► 1/2/3D
- Multiphysics
 - Hydrogen transport
 - Heat transfer
- Multi-materials

For more info:

Delaporte-Mathurin et al, NME (2019)

Temperature

Higher retention in cold regions

Inventory [H] = \int concentration dV

Influence of surface temperature and concentration

- 600+ computation points
- inventory = $f(T_{\text{surface}}, c_{\text{surface}})$

Can this be applied to the whole divertor?

$$T_{\text{surface}} = 1.1 \times 10^{-4} \, \varphi_{\text{heat}} + 323$$

$$c_{\text{surface}} = (1 - r_{\text{atoms}}) \frac{R_{p \text{ atoms}} \varphi_{\text{atoms}}}{D(T_{\text{surface}})} + (1 - r_{\text{ions}}) \frac{R_{p \text{ ions}} \varphi_{\text{ions}}}{D(T_{\text{surface}})}$$

Where R_n , r depend on particle energy

inventory = $f(T_{\text{surface}}, c_{\text{surface}})$

- Max T_{surface} at strike points
- Lower inventory at strike point
- 14 g of H in ITER divertor after 25 000 pulses

Paper to be submitted...

Not your cup of tea? Don't worry...

DIVHRETENTION PYTHON PACKAGE

- Python
- Open source
- divhretention.readthedocs.io/en/latest/
- github.com/IRFM/divHretention
- Missing a feature?
- → Contributions are most welcome!

To use, please cite:

Delaporte-Mathurin et al, Nature Scientific Reports (2020)

pip install divHretention

CO TUTORIAL

```
import matplotlib.pyplot as plt
import numpy as np
from divHretention import compute inventory
x = np.linspace(0, 0.6, num=500) # arc length (m)
T = 320 + 1000*np.exp(-50*x) # surface temperature (K)
concentration = 5e21*np.exp(-50*x) # surface concentration(Hm-3)
inv, sig = compute inventory(T, concentration, time=1e4)
plt.plot(x, inv)
plt.yscale("log")
plt.xlabel("Distance along divertor (m)")
plt.ylabel("Inventory per unit thickness (H/m)")
plt.show()
```



```
from divHretention import Exposition
import matplotlib.pyplot as plt
filename = "2399_outer_target.csv"
res = Exposition(filename, filetype="ITER")
plt.plot(res.arc_length, res.inventory)
plt.xlabel("Distance along divertor (m)")
plt.ylabel("Inventory per unit thickness (H/m)")
plt.yscale("log")
plt.show()
```



```
from divHretention import Exposition
import matplotlib.pyplot as plt
filename = "West-LSN-P3.58e+21-IP2.5MW.csv"
res = Exposition(filename, filetype="WEST")
plt.plot(res.arc_length, res.inventory)
plt.xlabel("Distance along divertor (m)")
plt.ylabel("Inventory per unit thickness (H/m)")
plt.yscale("log")
plt.show()
```


 A new method has been developed to estimate the inventory of H in tokamak divertors

Based on Finite Element simulations of monoblocks with FESTIM

divHretention: an open-source tool written in python and easy to use

github.com/IRFM/divHretention

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

remi.delaporte-mathurin@cea.fr

remi.delaporte-mathurin@lspm.cnrs.fr

linkedin.com/in/remidelaportemathurin