# Pitch trajectory density estimation for predicting future outcomes

Scott Powers and Vicente Iglesias

Saberseminar 2023



### Pitch Modeling



https://library.fangraphs.com/pitching/stuff-location-and-pitching-primer/

### The Conundrum



<sup>&</sup>lt;sup>1</sup> fractional contribution of each feature's splits to gradient boosting pitch model

 $<sup>^{2}</sup>$  (between-pitcher variance) / (total variance); varies by pitch type (here: RHB FB)  $\,$ 

## An Example

Pitch A



- Fastball on 0-0 count
- 91 mph w/ 15 inches rise
- located on the edge of the zone
- 68% called strike, 11% foul, 8% ball in play, 8% called ball, 5% swinging strike (-0.04 runs)

#### Pitch B



- Fastball on 0-0 count
- 98 mph w/ 20 inches rise
- located a foot off of the plate
- 99.6% called ball (+0.04 runs)

### Two Sources of Noise

- 1. Random variation in the outcome given the pitch trajectory
  - This is addressed by Pitching+, PitchingBot, etc.
- 2. Random variation in the pitch trajectory itself
  - This is NOT addressed by Pitching+, PitchingBot, etc.

### The Approach

- 1. Fit a model to predict pitch outcome given its trajectory
  - We use gradient boosting, not the focus today
- 2. Estimate the probability distribution over pitch trajectories
  - Depends on pitcher, batter side, count, etc.
- 3. Apply the model 1. to the distribution 2.
  - As opposed to applying the model to the observed pitches

### Bayesian Hierarchical Model

#### Within each pitch type:

- We model each pitch as multivariate normal in 9 dimensions
  - x/y/z release point, x/y/z release velocity, x/y/z acceleration
- Each pitcher has 81 parameters:
  - $9 \times 4 = 36$  parameters for **mean** 
    - Main effect plus interactions w/ balls, strikes, batter side
  - $9 \times 1 = 9$  parameters for **variance**
  - $\binom{9}{2} = 36$  parameters for **correlation** between dimensions
- Each (ball, strike, batter side) combo has 18 parameters:
  - 9 parameters for mean, 9 parameters for variance
- We find the maximum a posteriori (MAP) model fit using the optimize function (automatic differentiation) from cmdstanr

### Dylan Cease's Slider vs RHB in 0-0 Counts

#### Predicted Break Chart

Predicted Plate Location





saberpowers.shinyapps.io/predictive-pitch-score

### Dylan Cease's Slider vs RHB in All Counts



### Does It Work?

#### Out-of-Sample Correlation with Descriptive Model



2021–22 Split Halves

### Does It Work?

#### Out-of-Sample Correlation with Descriptive Model



### Leaderboard

| Pitcher                        | <b>♦ PT</b> | <b># ∜</b> | Stuff  | Desc Score  | Pred Score |
|--------------------------------|-------------|------------|--------|-------------|------------|
| Tyler Glasnow                  | all         | 1087       | -8     | -15         | -18        |
| Zack Wheeler                   | all         | 1912       | -5     | -17         | -16        |
| Spencer Strider                | all         | 2164       | -11    | -14         | -16        |
| Sandy Alcantara                | all         | 2094       | -7     | -12         | -14        |
| Pablo López                    | all         | 1662       | 1      | -10         | -13        |
| Logan Webb                     | all         | 2183       | -8     | -12         | -13        |
| Shane McClanahan               | all         | 1820       | -2     | -11         | -13        |
| Bobby Miller                   | all         | 1067       | -3     | -10         | -13        |
| Hunter Greene                  | all         | 1322       | -8     | -10         | -12        |
| Bryce Miller                   | all         | 1179       | -3     | -12         | -11        |
| Showing 1 to 10 of 140 entries |             |            | Previo | ous 1 2 3 4 | 5 14 Next  |

saberpowers.shinyapps.io/predictive-pitch-score

### Conclusions

### Takeaways:

- 1. Think more about the second source of noise (random variation in the pitch trajectory itself)
- 2. Pitch modeling predictions don't capture *all* of the predictive information in a pitch

#### What's coming up next:

- Better (simpler?) parameterization for distribution model
- Relax Gaussian assumption (unimodal with specific tails)

### Where to Find Us

saberpowers.shinyapps.io/predictive-pitch-score github.com/saberpowers/predictive-pitch-score

linkedin.com/in/saberpowers twitter.com/saberpowers

twitter.com/fiftycente1