

Bernhard Haslhofer AIT - Austrian Institute of Technology

DIL breakfast talk 2016-04-21

Overview

- What is Apache Spark?
- Common Operations
- SparkR Bitcoin Demo
- Outlook and Discussion (cluster @ DIL)

What is Apache Spark?

- Technology used for Google file system (gs://...)
- Two key capabilities:
 - HDFS Distributed Storage
 - MapReduce Distributed Computing

HDFS

Distributed storage

HDFS Architecture

MapReduce

Distributed compute

MapReduce Data and Process Flow of Word Count

Ecosystem

Apache Hadoop Ecosystem

Ambari

Provisioning, Managing and Monitoring Hadoop Clusters

Machine Learning

Hbase

Log Collector

Flume

Zookeeper Coordination Workflow

Scripting

Mahout

R Connectors Statistics

SQLQuery

YARN Map Reduce v2

Distributed Processing Framework

HDFS

Hadoop Distributed File System

Hadoop Shortcomings

- Interactive querying
 - ask another question once we have an answer
 - requires reloading data from disk
- Iterative algorithms
 - e.g.: machine learning (Gradient descent)
 - requires series of MapReduce jobs
 - requires reloading data from disk

- Spark runs on a cluster of commodity hardware
- Key abstraction: Resilient Distributed Dataset (RDD)
 - distributed in-memory collections of elements
 - fault-tolerant
 - parallel operation

Architecture

Diff Spark Hadoop

Hadoop

Spark

Diff Iterative Computing

Ecosystem

Common Operations

Spar V

map / reduceByKey

```
val sentence = Array("A","soup", "can", "can", "can-can", ";", "can", "you", "?")
val r = sc.parallelize(sentence)
val m = r.map(x => (x, 1))
m.foreach(println(_))
val wordcount = m.reduceByKey((a, b) => a + b)
wordcount.foreach(println(_))
```


map / reduce

wordcount.reduce((a,b) \Rightarrow if (a._2 \Rightarrow b._2) a else b)

filter

r.filter(term => term.startsWith("c"))

Transformations

- map, flatMap, mapPartitions, mapPartitionsWithIndex
- filter, distinct
- sample
- union, intersection, cartesian
- groupByKey, aggregateByKey, join, cogroup
- coalesce, repartition
- sortByKey

Actions

- reduce
- collect
- count, countByKey
- first, take, takeSample, takeOrdered
- foreach
- saveAsTextFile, saveAsObjectFile

SparkR - Bitcoin Demo

Goal: plot such a figure...

Datasets

small blockchain dataset: large blockchain dataset:

180 K blocks 380 K blocks

3.14 M transactions 95 M transactions

3 CSVs (~ 630 MB) 3 CSVs (~ 17 GB)

Data Structure

blocks.csv

- block_hash (String)
- height (Integer)
- timestamp (Integer)

transactions.csv

```
|- tx_hash (String)
```

|- is_coinbase (Boolan)

```
rel_blocks_tx.csv
```

|- block_hash (String)

|- tx_hash (String)

Scenario

- Aggregate number of transactions per day and plot using standard R
- Aggregate number of transactions per day and plot using SparkR locally (single node)
- Aggregate number of transactions per day and plot using SparkR on a cluster

Outlook and Discussion

Status

- Latest release: Apache Spark 1.6.1
 - Apache Spark 2.0 expected in May 2016
- GraphX scalability issues for certain algorithms
 - connected components
 - Spark GraphFrames API coming soon