## [ALHE] Dylemat ciasteczkowy

Bartosz Świtalski

Marcel Kawski

March 2021

## 1 Wprowadzenie

Rozważamy następujący problem:

Nauczycielka w przedszkolu musi rozdać dzieciom ciastka wg uzyskanych przez nie wyników z testu umiejętności. Dzieci siedzą w linii obok siebie (i nie zmieniają tych pozycji). Zgodnie z przyjętymi zasadami, jeśli dwoje dzieci siedzi obok siebie, dziecko z wyższą oceną musi dostać więcej ciastek. Nauczycielka ma ograniczony budżet i chce rozdać jak najmniej ciastek.

W poniższej pracy, bazując na dwóch wybranych rodzajach algorytmów ewolucyjnych, zaimplementujemy program generujący rozwiązanie takiego problemu, a następnie porównamy te metody do rozwiązania optymalnego, wygenerowanego metodą MIP.

W celu określenia funkcji oceny (ewaluacji) rozwiązania (genotypu) zaproponujemy własną heurystykę.

## 2 Decyzje projektowe

- Wybrany język programowania to Python
- Wybrane rodzaje algorytmów ewolucyjnych do implementacji to:
  - 1. strategia ewolucyjna  $(\mu + \lambda)$
  - 2. klasyczny algorytm genetyczny (Holland, 1975)
- Przyjęty budżet możliwych ewaluacji funkcji celu dla pojedynczej próby optymalizacji wynosi 1000\*D(wymiarowość zadania)
- Będziemy testować różne wymiarowości (zróżnicowane rzędem wielkości)
- Podczas jednego uruchomienia programu będziemy dokonywać uśrednienia wyników z 25 wywołań algorytmu
- Zaimplementujemy kryterium stopu k-iteracji
- W przypadku zajścia kryterium stopu obliczenia w danych kroku rozpoczynają się od nowa (o ile pozwala na to pozostały budżet)
- Ocena możliwa do uzyskania przez *i*-tego ucznia z testu umiejętności to  $g_i \in \{1, 2, 3...10\}$
- Ciastko jest niepodzielną jednostką (nie można dać uczniowi  $1\frac{2}{3}$  ciastka)
- $\bullet\,$  Naszym celem jest minimalizacja funkcji celuq

## 2.1 Generowanie rozwiązań optymalnych metodą MIP

 Cel: minimalizacja sumy przydzielonych ciastek wszystkim uczniom:

$$min(\sum_i c_i)$$

- , gdzie  $c_i$ to liczba ciastek przydzielona  $i\text{-}\mathrm{temu}$ uczniowi.
- Ograniczenia:
  - Dziedzinowe:  $1 \le c_i \le 10$
  - Liniowe: Iterujemy po zbiorze ocen  $G = g_1, g_2, ..., g_i$  uzyskanych przez uczniów, rozpoczynając od oceny drugiego ucznia  $(g_2)$ . W każdym kroku iteracji warunkowo dodajemy następujące ograniczenia liniowe:
    - \* jeśli  $g_i > g_{i-1}$ , to dodajemy ograniczenie  $c_i c_{i-1} >= 1$
    - \* jeśli  $g_i < g_{i-1}$ , to dodajemy ograniczenie  $c_i c_{i-1} <= -1$

#### 2.2 chromosom osobnika

Dla obydwu implementowanych algorytmów ewolucyjnych chromosom osobnika jest listą liczb całkowitych z zakresu [1;10] o długości równej wymiarowości zadania. Jest on reprezentacją proponowanego przydziału ciastek.

# 3 Zastosowane rodzaje algorytmów ewolucyjnych

### 3.1 strategia ewolucyjna $(\mu + \lambda)$

- Strategia elitarna
- Populacja bazowa ma  $\mu$  osobników, a potomna  $\lambda$  osobników
- Osobnik zawiera 2 chromosomy. Ten dodatkowy zawiera wartości  $\sigma$ używane do mutacji
- Krzyżowanie uśredniające z losową wagą:  $y=w\cdot x_1+(1-w)\cdot x_2$ , gdzie w jest losowane z rozkładu jednostajnego U(0,1)
- Mutacja ma 3 etapy. Dla każdego osobnika:
  - 1.  $a = N(0,1); b_j = N(0,1)_j, j \in 1...J,$  gdzie J to liczba cech osobnika
  - 2.  $\sigma_j \leftarrow \sigma_j \exp(\tau' a + \tau b_j)$ , gdzie  $\tau = \frac{1}{\sqrt{2n}}$ , a  $\tau' = \frac{1}{\sqrt{2\sqrt{n}}}$
  - 3.  $O_j = T_j + \sigma_j N(0, 1)_j$

### 3.2 algorytm genetyczny (Holland, 1975)

- Selekcja ruletkowa prawdopodobieństwo wyboru osobnika jest wprost proporcjonalne do wartości funkcji przystosowania:  $p_s(P(t,i)) = \frac{q(P(t,i))}{\sum_j q(P(t,j))}$  (wzór dotyczy maksymalizacji, przy minimalizacji należy go przekształcić)
- Krzyżowanie jednopunktowe wybieramy losowo punkt przecięcia genotypu, z dwóch osobników rodzicielskich powstają dwa osobniki potomne przez prostą wymianę części genotypów rodziców



- Sukcesja generacyjna
- Duży rozmiar populacji
- Duże prawdopodobieństwo krzyżowania, bardzo małe prawdopodobieństwo mutacji
- Mutacja Gaussowska: jeśli dla danego osobnika zachodzi mutacja, to do każdej z wartości w chromosomie jest dodawana losowa wartość z rozkładu normalnego

### 4 Heurystyka funkcji oceny

W celu oceny osobnika zastosujemy następującą heurystykę:

- Jeżeli rozwiązanie jest niedopuszczalne, to funkcja kara w dużym stopniu tak, że bardziej opłaca się przydzielić więcej ciastek, aniżeli nagiąć choć trochę zasady:
  - ocena =  $\sum_{j=1}^{D-1} 10$ ·(różnica ciastek w niedozwolonym przydziałe między uczniami  $u_j$  i  $u_{j+1} + 1$ ) +  $\sum_{j=1}^{D}$ (liczba przydzielonych ciastek dla j-tego ucznia  $u_j$ )
- Jeżeli rozwiązanie jest dopuszczalne, to im mniejsza suma przydzielonych ciastek, tym lepsza ocena (mniejsza wartość funkcji celu q):
  - ocena =  $\sum_{j=1}^{D} (\text{liczba przydzielonych ciastek dla } j$ tego ucznia)



Testowaliśmy na wybranych ustawieniach początkowych:

- 1. strategia ewolucyjna  $(\mu + \lambda)$ :
  - $\mu = 20$
  - $\lambda = 7 \cdot \mu$
  - $\sigma_0 \in (0.9; 1.1)$
- 2. algorytm genetyczny
  - rozmiar populacji = 10\*wymiarowość
  - prawdopodobieństwo krzyżowania = 0.9
  - prawdopodobieństwo mutacji = 0.01

## 6 Wyniki

Testowaliśmy następujące wymiarowości zadania:  $\{5, 10, 20, 40, 80, 160\}.$ 

# 6.1 Przykłady działania strategii ewolucyjnej $(\mu + \lambda)$



Rysunek 1: Dopasowanie najlepszego osobnika populacji w zależności od liczby ewaluacji funkcji celu dla wymiarowości D=50.



Rysunek 2: Dopasowanie średniego osobnika populacji w zależności od liczby ewaluacji funkcji celu dla wymiarowości D=50.

## 6.2 Przykłady działania algorytmu genetycznego



Rysunek 3: Dopasowanie najlepszego osobnika populacji w zależności od liczby ewaluacji funkcji celu dla wymiarowości D=40.



Rysunek 4: Dopasowanie średniego osobnika populacji w zależności od liczby ewaluacji funkcji celu dla wymiarowości D=40.

#### 6.3 Wyniki testowe

#### objaśnienia:

- D wymiarowość zadania
- best fit najlepsze znalezione rozwiązanie
- best fit mean średnia najlepszych znalezionych rozwiązań
- best fit std. deviation odchylenie standardowe najlepszych znalezionych rozwiązań

## 6.3.1 losowa inicjacja osobników z wartościami w chromosomie z zakresu [1;5], krzyżowanie dwupunktowe w algorytmie genetycznym

|     |         | strategia ewolucyjna $(\mu + \lambda)$ |          |                | algorytm genetyczny |          |                |
|-----|---------|----------------------------------------|----------|----------------|---------------------|----------|----------------|
| D   | optimum | best fit                               | best fit | best fit       | best fit            | best fit | best fit       |
|     |         |                                        | mean     | std. deviation |                     | mean     | std. deviation |
| 5   | 7       | 7                                      | 7        | 0              | 7                   | 7.84     | 0.54           |
| 10  | 15      | 15                                     | 15.16    | 0.37           | 19                  | 22.6     | 2.06           |
| 20  | 34      | 37                                     | 40.56    | 2.35           | 67                  | 82.04    | 8.99           |
| 40  | 70      | 91                                     | 102.96   | 6.02           | 198                 | 234.64   | 16.24          |
| 80  | 139     | 261                                    | 303.48   | 20.45          | 547                 | 665.04   | 34.12          |
| 160 | 239     | 864                                    | 980.36   | 46.57          | 1565                | 1657.4   | 44.35          |

### 7 Wnioski

Zauważyliśmy, że algorytm genetyczny zdecydowanie gorzej rozwiązuje nasz dylemat rozdawania ciastek. Dla wymiarowości > 10 zauważalne są różnice między obydwoma algorytmami. Jedną z przyczyn takiego stanu sytuacji może być fakt, że w naszej wersji algorytmu genetycznego przyjmujemy, że mutacja występuje bardzo sporadycznie ( $\approx 1\%$ ), a głównym mechanizmem napędzającym ewolucję jest krzyżowanie (jednopunktowe,  $\approx 90\%$  przypadków). W takim wypadku, jeśli wśród populacji nie ma takiego osobnika, który posiada w swoim genotypie optymalną dla danego problemu wartość jednej z cech (pojedyncza cecha=liczba rozdanych ciastek jednemu dziecku), szansa na uzyskanie optimum globalnego, czy też lokalnego, jest niska. Jeśli populacja bazowa zostanie wylosowana niekorzystnie (co jest bardzo prawdopodobne z uwagi na naturę problemu), to nawet przy dłuższym działaniu algorytmu (większej liczbie pokoleń) nie następuje poprawa.

Z drugiej strony mamy do czynienia ze strategią ewolucyjną, czyli z podejściem z sukcesją elitarną. Jak widać w wynikach strategia ta jest zdecydowanie bardziej skuteczna, a dla małych wymiarowości znajduje optimum globalne z bardzo wysokim prawdopodobieństwem. Jest to prawdopodobnie spowodowane dużym prawdopodobieństwem mutacji, która w różnych strategiach ewolucyjnych jest uznawana jako kluczowy element ewolucji (w przeciwieństwie do algorytmów genetycznych).

#### 7.1 krzyżowanie wielopunktowe

Z uwagi na początkowo słabe działanie algorytmu genetycznego zdecydowaliśmy zwiększyć prawdopodobieństwo wystąpienia krzyżowania z 0.7 na 0.9 oraz przetestować krzyżowanie wielopunktowe (> 1). Testowaliśmy krzyżowanie dwupunktowe oraz trzypunktowe. Wyniki dla krzyżowania dwupunktowego zostały przedstawione w punkcie 6.3.1.

#### 8 Podsumowanie

Projekt poruszający tematykę algorytmów heurystycznych. Dzięki własnej implementacji strategii ewolucyjnej i algorytmu genetycznego poznano istotę algorytmów ewolucyjnych. Zastosowanie autorskiej heurystyki funkcji oceny pozwoliło na dokonanie porównania pomiędzy tymi konkretnymi typami algorytmów ewolucyjnych.