T1. $\Box(F \Rightarrow G) \Rightarrow \Box(\Diamond F \Rightarrow \Diamond G)$ T2. $\Box(F \Rightarrow G) \Rightarrow \Box(\Box F \Rightarrow \Box G)$

temporal formulas.

T3. $\Box(F \Rightarrow G \lor H) \Rightarrow \Box(\Box F \Rightarrow \Box G \lor \Diamond H)$ T4. $\Box(F \land G \Rightarrow H) \Rightarrow \Box(\Box F \land \Box \Diamond G \Rightarrow \Box \Diamond H)$

The proof uses the following tautologies, where F, G, and H are arbitrary

and τ a suffix of σ

Soundness Proof of Rule WF2

? ←
C Here is an informal proof of T1. Ι

 \mathbf{S}

1. Suffices Assume: σ a behavior all of whose suffixes satisfy $F \Rightarrow G$, Prove: τ satisfies $\Diamond F \Rightarrow \Diamond G$ PROOF: By simple logic and definition of \Box .

2. It suffices to show that if ρ_1 is a suffix of τ satisfying F, then there is a suffix ρ_2 of τ satisfying G. PROOF: By step 1 and the definitions of \diamondsuit and \Rightarrow . 3. Q.E.D. PROOF: By step 2, since ρ_1 is also a suffix of σ , so step 1 implies that we can take ρ_2 to equal ρ_1 .

Proofs of T2–T4 are left to the reader. To save space in the proof of WF2, let's define $EB \stackrel{\triangle}{=} \overline{\text{ENABLED } \langle B \rangle_{av}}$

formula, and expressed for convenience as an ASSUME/PROVE:

Assume: A1. $\square(\langle \mathcal{N} \wedge C \rangle_v \Rightarrow \langle \overline{B} \rangle_w)$

A2. $\square(P \wedge P' \wedge \langle \mathcal{N} \wedge A \rangle_v \wedge EB \Rightarrow C)$ A3. $\Box(P \land EB \Rightarrow \text{ENABLED } \langle A \rangle_v)$ $\Box[\mathcal{N}]_v \wedge \mathrm{WF}_v(A) \Rightarrow \overline{\mathrm{WF}_w(B)}$ Prove:

Here is its proof. Note that all the assumptions in Assume clauses are \Box formulas. 1. Suffices Assume: 1. $\square[\mathcal{N}]_v$ 2. $WF_v(A)$ 3. $\Diamond \Box EB$

Here is the statement of WF2 written in the form $TR_{\Rightarrow}^{\square}$ as an illegal temporal

A4. $\Box(\Box[\mathcal{N} \land \neg C]_v \land \mathrm{WF}_v(A) \land \Box EB \Rightarrow \Diamond \Box P)$

PROOF: Since $\overline{\mathrm{WF}_w(B)}$ is equivalent to $\Diamond \Box EB \Rightarrow \Box \Diamond \langle \overline{B} \rangle_w$, it suffices to prove $\Box \Diamond \langle \overline{B} \rangle_{w}$ under these assumptions. The result then follows from the rule $F \parallel - \Box F$. 2. $\Box [\mathcal{N} \land \neg C]_{v} \lor \Diamond \langle \mathcal{N} \land C \rangle_{v}$ 2.1. $[\mathcal{N}]_v \Rightarrow [\mathcal{N} \wedge \neg C]_v \vee \langle \mathcal{N} \wedge C \rangle_v$ PROOF: This follows from the definitions of $[\ldots]_v$ and $\langle \ldots \rangle_v$ and the propositional logic tautology: $(U \lor V) \Rightarrow ((U \land \neg W) \lor V) \lor (U \land W \land \neg V)$ 2.2. Q.E.D. By step 2.1, T3, and the rule $F \parallel - \Box F$. 3. $\Diamond \langle \mathcal{N} \wedge C \rangle_v \Rightarrow \Diamond \langle \overline{B} \rangle_{\overline{B}}$ Proof: By T1 and assumption A1. 4. Assume: $\Box [\mathcal{N} \land \neg C]_v$ PROVE: $\Diamond \langle \overline{B} \rangle_{av}$ 4.1. $\Box [\mathcal{N} \land \neg C]_v \land \mathrm{WF}_v(A) \land \Diamond \Box EB \Rightarrow \Diamond \Box P$ PROOF: A4 and T1 imply $\Diamond \Box [\mathcal{N} \land \neg C]_v \land \Diamond \mathrm{WF}_v(A) \land \Diamond \Box EB \Rightarrow \Diamond \Diamond \Box P$ Step 4.1 follows from this and the tautologies $F \Rightarrow \Diamond F$ and $\Diamond \Diamond F \equiv \Diamond F$. $4.2. \diamondsuit \Box P$ PROOF: By 4.1, the steps 1 and 4 assumptions. 4.3. $\Diamond \Box$ Enabled $\langle A \rangle_v$ PROOF: From A3, using T1 and T2 and the tautology $\Diamond \Box (F \land G) \equiv$ $\Diamond \Box F \land \Diamond \Box G$, we obtain $\Diamond \Box P \land \Diamond \Box EB \Rightarrow \Diamond \Box \text{ENABLED } \langle A \rangle_v$ Step 4.3 follows from this, 4.2, and assumption 3 of step 1. 4.4. $\Box \Diamond \langle \mathcal{N} \wedge A \rangle_v$ PROOF: Step 4.3, assumption 2 of step 1, and the definition of WF imply $\Box \Diamond \langle A \rangle_v$. The result follows from this by T4 and assumption 1 of step 1, since $[N]_v \wedge \langle A \rangle_v$ implies $\langle \mathcal{N} \wedge A \rangle_v$. 4.5. $\Box \Diamond \langle \mathcal{N} \wedge C \rangle_{n}$ 4.5.1. $\square(P \wedge P' \wedge \langle \mathcal{N} \wedge A \rangle_v \wedge EB \Rightarrow \langle \mathcal{N} \wedge C \rangle_v)$ PROOF: By A2, since $\langle \mathcal{N} \wedge A \rangle_v \wedge C$ implies $\langle \mathcal{N} \wedge C \rangle_v$ by definition of $\langle \ldots \rangle_n$. 4.5.2. $\Diamond \Box (P \land P' \land EB) \land \Box \Diamond \langle \mathcal{N} \land A \rangle_v \Rightarrow \Box \Diamond \langle \mathcal{N} \land C \rangle_v$ Proof: By 4.5.1 and T4 2

Prove: $\Diamond \langle \overline{B} \rangle_{\overline{B}}$

- 4.5.3. $\Diamond \Box (P \wedge P') \wedge \Diamond \Box EB \wedge \Box \Diamond \langle \mathcal{N} \wedge A \rangle_v \Rightarrow \Box \Diamond \langle \mathcal{N} \wedge C \rangle_v$ PROOF: By 4.5.2 and the tautology $\Diamond \Box (F \wedge G) \equiv \Box \Diamond F \wedge \Box \Diamond G$.
- $4.5.4. \ Q.E.D.$

PROOF: By 4.2, 4.4, 4.5.3, assumption 3 of step 1, and the tautology $\Diamond \Box P \Rightarrow \Diamond \Box (P \wedge P')$.

5. Q.E.D.

PROOF: By steps 2, 3, and 4.