Le problème du rectangle inscrit

Emanuel Morille

Table des matières

Introduction	2
1. Homologie singulière	3
1.1. Simplexes	3
1.2. Chaînes singulières · · · · · · · · · · · · · · · · · · ·	3
1.3. Définition et principales propriétés · · · · · · · · · · · · · · · · · · ·	4
1.3.1. Homotopie · · · · · · · · · · · · · · · · · · ·	5
The state of the s	6
1.3.3. Calculs d'homologie · · · · · · · · · · · · · · · · · · ·	6
2. Le plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$	10
2.1. Représentations	10
2.2. Non-plongement dans \mathbb{R}^3	11
Conclusion	13
Annexe	15
Bibliographie	15

Introduction

L'origine de ce sujet est le *problème du carré inscrit*, énoncé par Otto Toeplitz en 1911 :

« Toute courbe de Jordan admet-elle un carré inscrit ? »

Cette question fut l'objet de nombreuses recherches, mais elle n'est toujours pas résolue, en revanche nous sommes capables de répondre à une version simplifiée :

« Toute courbe de Jordan admet-elle un carré rectangle inscrit ? »

Nous l'appellerons le problème du rectangle inscrit.

Dans le cas d'un cercle, on trouve une infinité de carrés inscrits, le problème est plus difficile lorsque la courbe est quelconque :

Dans la suite, nous allons étudier l'homologie singulière et le plan projectif réel. Commençons par définir les notions du sujet.

Définition. *Une courbe de Jordan* est une partie C de \mathbb{R}^2 pour laquelle il existe une application continue $\gamma:[0,1]\to\mathbb{R}^2$ telle que :

- C est une courbe : $im(\gamma) = C$.
- C est fermée : $\gamma(0) = \gamma(1)$.
- C est simple : γ est injective sur [0, 1[.

Exemple. Le cercle *C* de la Fig. 1 est une courbe de Jordan. On pose :

$$\gamma: [0,1] \to \mathbb{R}^2; t \mapsto (\cos(2\pi t), \sin(2\pi t))$$

Alors γ est continue et :

- On a im(γ) = C.
- On a $\gamma(0) = (1,0) = \gamma(1)$.
- Pour $x \in [0, 1[$, on a $2\pi x \in [0, 2\pi[$, donc γ est injective sur [0, 1[.

Définition. Un rectangle (a, b, c, d) de \mathbb{R}^2 est inscrit dans une courbe de Jordan C si $a, b, c, d \in C$.

Exemple. Le carré $((\sqrt{2}/2, \sqrt{2}/2), (-\sqrt{2}/2, \sqrt{2}/2), (-\sqrt{2}/2, -\sqrt{2}/2), (\sqrt{2}/2, -\sqrt{2}/2))$ est inscrit dans le cercle *C* de la Fig. 1 :

- On a $(\sqrt{2}/2, \sqrt{2}/2) = \gamma(1/8) \in C$.
- On a $\left(-\sqrt{2}/2, \sqrt{2}/2\right) = \gamma(3/8) \in C$.
- On a $\left(-\sqrt{2}/2, -\sqrt{2}/2\right) = \gamma(5/8) \in C$.
- On a $(\sqrt{2}/2, -\sqrt{2}/2) = \gamma(7/8) \in C$.

Théorème. Toute courbe de Jordan admet un rectangle inscrit.

1. Homologie singulière

Dans cette partie:

- $n \in \mathbb{N}$ est un entier naturel.
- E est un \mathbb{R} -espace vectoriel, A une partie de E et $f_0, ..., f_n$ des points de A.
- $X, Y \text{ et } Z \text{ sont trois espaces topologiques}, f: X \to Y \text{ et } g: Y \to Z \text{ deux applications continues}.$

1.1. Simplexes

Définition 1.1. *A* est *convexe* si :

$$\forall p, q \in A, [p, q] := \{(1 - t)p + tq \mid t \in [0, 1]\} \subset A.$$

Définition 1.2. Une *combinaison convexe* est une combinaison linéaire de la forme $t_0 f_0 + \cdots + t_n f_n$ où $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 1.3. Si A est convexe, toute combinaison convexe de $f_0, ..., f_n$ est dans A.

Démonstration. Soit $t_0, ..., t_n \in [0, 1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0 f_0 + \cdots + t_n f_n \in A$. Pour n = 1. On pose $t := t_1$, par convexité on a $t_0 f_0 + t_1 f_1 = (1 - t) f_0 + t f_1 \in A$.

Soit n > 1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 1$, et on pose :

$$f := \frac{t_0}{1 - t_n} f_0 + \dots + \frac{t_{n-1}}{1 - t_n} f_{n-1}$$

d'après H(n-1) on a $f \in A$. Par convexité on a $t_0 f_0 + \cdots + t_n f_n = (1-t_n)f + t_n f_n \in A$.

Définition 1.4. L'enveloppe convexe de A est l'ensemble Conv(A) des combinaisons convexes de points de A.

Proposition 1.5. Conv(A) est le plus petit convexe contenant A.

Démonstration. Soit $p, q \in \text{Conv}(A)$ et $t \in [0, 1]$. Alors p et q sont des combinaisons convexes d'éléments de A, d'après la Proposition 1.3 on a $(1 - t)p + tq \in \text{Conv}(A)$.

Soit B un convexe contenant A. Soit $x \in \text{Conv}(A)$. Alors x est une combinaison convexe d'éléments de $A \subset B$, d'après la Proposition 1.3 on a $x \in B$.

Définition 1.6. Si $F := (f_0, ..., f_n)$ est libre, le *n-simplexe généré par F* est l'ensemble Conv(F).

Notation 1.7. Le *n-simplexe standard* Δ^n est le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Définition 1.8. Si $F := (f_0, ..., f_n)$ et $G := (g_0, ..., g_m) \subset F$ sont libres. On dit que Conv(G) est une m-face de Conv(F).

1.2. Chaînes singulières

Définition 1.9. Un *n*-simplexe singulier sur X est une application continue $\sigma: \Delta^n \to X$.

Proposition 1.10. Soit $\sigma : \Delta^n \to X$ un *n*-simplexe singulier. Alors $f \circ \sigma : \Delta^n \to Y$ est un *n*-simplexe singulier.

Démonstration. Par composition $f \circ \sigma : \Delta^n \to Y$ est continue.

Définition 1.11. Le *groupe des n-chaînes singulières de X* est le groupe abélien libre $C_n(X)$ engendré par les *n*-simplexes singuliers sur X.

Définition 1.12. L'application induite par f est le morphisme de groupes :

$$C_n(f): C_n(X) \to C_n(Y); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k (f \circ \sigma_k).$$

Proposition 1.13. On a $C_n(g \circ f) = C_n(g) \circ C_n(f)$.

Démonstration. Les *n*-chaînes singulières sont engendrées par les *n*-simplexes singuliers, il suffit de montrer le résultat pour un *n*-simplexe singulier $\sigma: \Delta^n \to X$:

$$C_n(g\circ f)(\sigma)=(g\circ f)\circ\sigma=g\circ (f\circ\sigma)=g\circ C_n(f)(\sigma)=C_n(g)(C_n(f)(\sigma))$$

Définition 1.14. Soit $\sigma: \Delta^n \to X$ un n-simplexe singulier. Le *bord de* σ est la (n-1)-chaîne singulière :

$$d_n \sigma := \sum_{k=0}^n (-1)^k \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ... e_n \right\rangle \right).$$

où $\widehat{\cdot}$ signifie que l'élément est retiré. Par convention on pose $d_0 := 0$.

 $\textbf{D\'efinition 1.15.} \ \text{Le } \textit{morphisme bord } \text{est le morphisme de groupes}:$

$$d_n: C_n(X) \to C_{n-1}(X); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k d_n \sigma_k.$$

Proposition 1.16. On a $d_n C_n(f) = C_{n-1}(f) d_n$.

Démonstration. On montre le résultat pour un *n*-simplexe singulier $\sigma: \Delta^n \to X$:

$$d_n C_n(f)(\sigma) = \sum_{k=0}^n (-1)^k \left((f \circ \sigma) \circ \left\langle e_0, ..., \widehat{e_k}, ..., e_n \right\rangle \right) = C_{n-1}(f)(d_n \sigma).$$

Proposition 1.17. On a $d_n d_{n+1} = 0$.

Démonstration. On montre le résultat pour un (n + 1)-simplexe singulier $\sigma : \Delta^{n+1} \to X$:

$$\mathbf{d}_{n+1}\sigma = \sum_{k=0}^{n+1} (-1)^k \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ..., e_{n+1} \right\rangle \right)$$

puis en appliquant d_n , on sépare en deux selon les éléments retirés :

$$\begin{split} \mathbf{d}_{n}\mathbf{d}_{n+1}\sigma &= \sum_{k=0}^{n+1} (-1)^{k} \mathbf{d}_{n} \Big(\sigma \circ \left\langle e_{0}, ..., \overrightarrow{e_{k}}, ..., e_{n+1} \right\rangle \Big) \\ &= \sum_{0 \leq k < l \leq n+1} (-1)^{k+l} \Big(\sigma \circ \left\langle e_{0}, ..., \overrightarrow{e_{k}}, ..., \overrightarrow{e_{l}}, ..., e_{n+1} \right\rangle \Big) \\ &+ \sum_{0 \leq l < k \leq n+1} (-1)^{k+l-1} \Big(\sigma \circ \left\langle e_{0}, ..., \overrightarrow{e_{l}}, ..., \overrightarrow{e_{k}}, ..., e_{n+1} \right\rangle \Big) \\ &= \sum_{0 \leq k < l \leq n+1} \Big((-1)^{k+l} + (-1)^{k+l+1} \Big) \Big(\sigma \circ \left\langle e_{0}, ..., \overrightarrow{e_{k}}, ..., \overrightarrow{e_{l}}, ..., e_{n+1} \right\rangle \Big) \\ &= 0 \end{split}$$

car les puissances de -1 s'annulent :

1.3. Définition et principales propriétés

Définition 1.18.

- Un *n-cycle singulier sur X* est un élément de $Z_n(X) := \ker(d_n)$.
- Un *n-bord singulier sur X* est un élément de $B_n(X) := \operatorname{im}(d_{n+1})$.

Proposition 1.19. On a $B_n(X) \subset Z_n(X)$.

Démonstration. On a $d_n d_{n+1} = 0$, donc $B_n(X) = \operatorname{im}(d_{n+1}) \subset \ker(d_n) = Z_n(X)$.

Définition 1.20. Le n^e groupe d'homologie singulière de X est le quotient $H_n(X) := Z_n(X)/B_n(X)$.

Proposition 1.21. $C_n(f)$ induit un morphisme $H_n(f): H_n(X) \to H_n(Y)$.

Démonstration. Soit $z \in Z_n(X)$. On a $d_n C_n(f)(z) = C_{n-1}(f)(d_n z) = 0$, donc $C_n(f)(z) \in Z_n(Y)$. Réciproquement, soit $b \in B_n(X)$. Alors par définition il existe $c \in C_{n+1}(X)$ tel que $b = d_{n+1}c$, et on a $C_n(f)(b) = C_n(f)(d_{n+1}c) = d_{n+1}C_{n+1}(f)(c)$ donc $C_n(f)(b) \in B_n(X)$.

On considère $\overline{C_n(f)}: Z_n(X) \to H_n(Y)$, alors $B_n(X) \subset \ker(\overline{C_n(f)})$ et d'après la propriété universelle du groupe quotient le morphisme $\overline{C_n(f)}$ induit un morphisme $H_n(f): H_n(X) \to H_n(Y)$.

1.3.1. Homotopie

Définition 1.22. f et g sont *homotopes* s'il existe une application $h: X \times [0,1] \to Y$ continue telle que pour tout $x \in X$, on a f(x) = h(x,0) et g(x) = h(x,1).

Théorème 1.23. Si f et g sont homotopes, on a $H_n(f) = H_n(g)$.

Démonstration. Il existe une application $h: X \times [0,1] \to Y$ continue telle que f(x) = h(x,0) et g(x) = h(x,1). Pour tout n-simplexe singulier $\sigma: \Delta^n \to X$, on pose :

$$h_n(\sigma) := \sum_{k=0}^n (-1)^k (h \circ (\sigma \times id) \circ \langle f_0, ..., f_k, g_k, ..., g_n \rangle) \in C_{n+1}(Y)$$

où $(f_0, ..., f_n) := (e_0 \times \{1\}, ..., e_n \times \{1\})$ et $(g_0, ..., g_n) := (e_0 \times \{0\}, ..., e_n \times \{0\})$. Calculons :

$$\begin{split} h_{n-1}(\mathbf{d}_n\sigma) &= h_n \bigg(\sum_{l=0}^n (-1)^l \Big(\sigma \circ \Big\langle e_0, ..., \overleftarrow{e_l}, ..., e_n \Big\rangle \Big) \bigg) \\ &= \sum_{0 \leq k < l \leq n} (-1)^{k+l} \Big(h \circ (\sigma \times \mathrm{id}) \circ \Big\langle f_0, ..., f_k, g_k, ..., \overleftarrow{g_l}, ..., g_n \Big\rangle \Big) \\ &+ \sum_{0 \leq l < k \leq n} (-1)^{k+l-1} \Big(h \circ (\sigma \times \mathrm{id}) \circ \Big\langle f_0, ..., \overleftarrow{f_l}, ..., f_k, g_k, ..., g_n \Big\rangle \Big) \\ \mathbf{d}_n h_n(\sigma) &= \sum_{0 \leq l \leq k \leq n} (-1)^{k+l} \Big(h \circ (\sigma \times \mathrm{id}) \circ \Big\langle f_0, ..., \overleftarrow{f_l}, ..., f_k, g_k, ..., g_n \Big\rangle \Big) \\ &+ \sum_{0 \leq k \leq l \leq n} (-1)^{k+l-1} \Big(h \circ (\sigma \times \mathrm{id}) \circ \Big\langle f_0, ..., f_k, g_k, ..., \overleftarrow{g_l}, ..., g_n \Big\rangle \Big) \end{split}$$

en faisant la somme des deux expressions les termes d'indices différents s'annulent deux à deux :

$$h_{n-1}(\mathbf{d}_{n}\sigma) + \mathbf{d}_{n}h_{n}(\sigma) = \sum_{k=0}^{n} (h \circ (\sigma \times \mathrm{id}) \circ \langle f_{0}, ..., f_{k-1}, g_{k}, ..., g_{n} \rangle)$$

$$- \sum_{k=0}^{n} (h \circ (\sigma \times \mathrm{id}) \circ \langle f_{0}, ..., f_{k}, g_{k+1}, ..., g_{n} \rangle)$$

$$= (h \circ (\sigma \times \mathrm{id}) \circ \langle g_{0}, ..., g_{n} \rangle) - (h \circ (\sigma \times \mathrm{id}) \circ \langle f_{0}, ..., f_{n} \rangle)$$

$$= (h \circ (\sigma \times \{0\})) - (h \circ (\sigma \times \{1\}))$$

$$= (f \circ \sigma) - (g \circ \sigma)$$

$$= C_{n}(f)(\sigma) - C_{n}(g)(\sigma)$$

Alors pour tout $z \in Z_n(X)$, on a :

$$C_n(f)(z) - C_n(g)(z) = h_{n-1}(d_n z) + d_n h_n(z) = d_n h_n(z) \in B_n(X)$$
 on en déduit $H_n(f)(\overline{z}) - H_n(f)(\overline{z}) = 0 \in H_n(X)$. Donc $H_n(f) = H_n(g)$.

Définition 1.24. X et Y sont homotopiquement équivalents s'il existe deux applications continues $a: X \to Y$ et $b: Y \to X$ telles que $b \circ a$ est homotope à id_X et $a \circ b$ est homotope à id_Y .

Corollaire 1.25. Si *X* et *Y* sont homotopiquement équivalents, on a $H_n(X) \simeq H_n(Y)$.

Démonstration. Il existe deux applications continues $a: X \to Y$ et $b: Y \to X$ telles que $b \circ a$ est homotope à id_X et $a \circ b$ est homotope à id_Y . D'après le Théorème 1.23 on a $H_n(b) \circ H_n(a) = \mathrm{id}_{H_n(X)}$ et $H_n(a) \circ H_n(b) = \mathrm{id}_{H_n(Y)}$. Donc $H_n(X) \simeq H_n(Y)$. □

1.3.2. Connexité par arcs

Proposition 1.26. Soit $(X_i)_{i \in I}$ les composantes connexes par arcs de X. On a $H_n(X) \simeq \bigoplus_{i \in I} H_n(X_i)$.

Démonstration. Toute *n*-chaîne singulière $\sigma: \Delta^n \to X$ est continue et Δ^n est convexe, en particulier connexe par arcs, donc il existe un unique $i \in I$ tel que $\operatorname{im}(\sigma) \subset X_i$.

On en déduit que $C_n(X) \simeq \bigoplus_{i \in I} C_n(X_i)$, de plus d_n préserve cette décomposition et par passage au quotient on a $H_n(X) \simeq \bigoplus_{i \in I} H_n(X_i)$.

Proposition 1.27. Soit $(X_i)_{i \in I}$ les composantes connexes par arcs de X. On a $H_0(X) \simeq \bigoplus_{i \in I} \mathbb{Z}$.

Démonstration. On a $\ker(d_0) = C_0(X)$. Supposons que X est non-vide et connexe par arcs. Alors on pose $\varphi: C_0(X) \to \mathbb{Z}; \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k$. Alors φ est un morphisme de groupes surjectif.

Pour tout 1-simplexe singulier $\sigma: \Delta^1 \to X$, on a $\varphi(d_1\sigma) = \varphi(\sigma \circ \langle \overline{e_0}, e_1 \rangle - \sigma \circ \langle e_0, \overline{e_1} \rangle) = 1 - 1 = 0$, donc im $(d_1) \subset \ker(\varphi)$.

Réciproquement on considère $\sum_{k=0}^m \lambda_k \sigma_k \in \ker(\varphi)$. Pour tout $k \in \{0,...,n\}$, on note $\gamma_k : \Delta^1 \to X$ un chemin d'un point $x \in X$ au point $\sigma_k(e_1) \in X$ et on considère $\sigma : \Delta^0 \to X$ un 0-simplexe singulier d'image x, on a $\mathrm{d}_1 \gamma_k = \sigma_k - \sigma$. Alors en considérant la n-chaîne singulière $\sum_{k=0}^m \lambda_k \gamma_k$, on a $\mathrm{d}_1 \sum_{k=0}^m \lambda_k \gamma_k = \sum_{k=0}^m \lambda_k \sigma_k - \sum_{k=0}^m \lambda_k \sigma_k = \sum_{k=0}^m \lambda_k \sigma_k$, donc $\ker(\varphi) \subset \mathrm{im}(\mathrm{d}_1)$.

D'après le premier théorème d'isomorphisme on a $H_0(X) = C_0(X)/\ker(\varphi) \simeq \mathbb{Z}$.

Dans le cas général, d'après la Proposition 1.26 on a $H_0(X) \simeq \bigoplus_{i \in I} H_n(X_i) \simeq \bigoplus_{i \in I} \mathbb{Z}$.

1.3.3. Calculs d'homologie

Théorème 1.28 (Théorème de Mayer-Vietoris). Soit U et V deux parties de X tels que $\mathring{U} \cup \mathring{V} = X$. Il existe un morphisme de groupes $\partial_n : H_n(U \cup V) \to H_{n-1}(U \cap V)$ tel que la suite suivante est exacte :

où $i: U \cap V \to U$, $j: U \cap V \to V$, $k: U \to U \cup V$ et $l: V \to U \cup V$ sont les inclusions canoniques.

Démonstration. Temporairement admise.

Proposition 1.29. Soit *P* un espace topologique constitué d'un point. On a :

$$H_n(P) \simeq \begin{cases} \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$$

Démonstration. Il existe un unique *n*-simplexe singulier $\sigma_n : \Delta^n \to P$ et on a :

$$d_n \sigma_n = \sum_{k=0}^n (-1)^k \sigma_{n-1} = \begin{cases} 0 & \text{si } n = 0 \text{ ou } n \text{ est impair} \\ \sigma_{n-1} & \text{si } n \neq 0 \text{ et } n \text{ est pair} \end{cases}$$

si n = 0, on a $H_0(P) = \langle \sigma_0 \rangle / 0 \simeq \mathbb{Z}$,

si $n \neq 0$ et n est impair, on a $H_n(P) = \langle \sigma_n \rangle / \langle \sigma_n \rangle \simeq 0$,

si $n \neq 0$ et n est pair, on a $H_n(P) = 0/0 \simeq 0$.

Remarque 1.30. On note \mathbb{B}^n une boule fermé de dimension n et \mathbb{S}^n une sphère de dimension n.

Proposition 1.31. On a:

$$H_n(\mathbb{S}^0) \simeq \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & \text{si } n = 0\\ 0 & \text{sinon} \end{cases}$$

Démonstration. \mathbb{S}^0 est composé de deux points et a donc deux composantes connexes par arcs, il suffit d'appliquer les Proposition 1.26 et Proposition 1.29.

Proposition 1.32. On a:

$$H_n(\mathbb{S}^1) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0, 1\} \\ 0 & \text{sinon} \end{cases}$$

Démonstration. On recouvre \mathbb{S}^1 par deux arcs ouverts U et V recouvrant chacun un demi-cercle :

Fig. 3. – Recouvrement de \mathbb{S}^1 .

Les arcs U et V sont homotopiquement équivalents à un point, et l'intersection $U \cap V$ est homotopiquement équivalente à \mathbb{S}^0 . D'après le Corollaire 1.25, les Proposition 1.29 et Proposition 1.31 on a :

$$H_n(U)\simeq H_n(V)\simeq \begin{cases} \mathbb{Z} \text{ si } n=0\\ 0 \text{ sinon} \end{cases} \quad \text{et} \quad H_n(U\cap V)\simeq \begin{cases} \mathbb{Z} \oplus \mathbb{Z} \text{ si } n=0\\ 0 \text{ sinon} \end{cases}$$

et d'après le Théorème de Mayer-Vietoris la suite suivante est exacte :

$$\cdots \to 0 \to H_1(\mathbb{S}^1) \stackrel{\partial_1}{\to} \mathbb{Z} \oplus \mathbb{Z} \stackrel{\varphi_0}{\to} \mathbb{Z} \oplus \mathbb{Z} \stackrel{\psi_0}{\to} H_0(\mathbb{S}^1) \to 0$$

On en déduit directement que si $n \ge 2$, on a $H_n(\mathbb{S}^1) \simeq 0$.

En étudiant $\varphi_0 := (H_0(i), H_0(j)) : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ où $i : U \cap V \to U$ et $j : U \cap V \to V$ sont les inclusions canoniques, on trouve que $\varphi_0(1,0) = \varphi_0(0,1) = (1,1)$.

Alors $\ker(\varphi_0) = \{(a, -a) \mid a \in \mathbb{Z}\} \simeq \mathbb{Z}$ et $\operatorname{im}(\varphi_0) = \{(a + b, a + b) \mid a, b \in \mathbb{Z}\} \simeq \mathbb{Z}$. Par exactitude ∂_1 est injective et on a $H_1(\mathbb{S}^1) \simeq \operatorname{im}(\partial_1) = \ker(\varphi_0) \simeq \mathbb{Z}$. De même, par exactitude ψ_0 est surjective et on a $H_0(\mathbb{S}^1) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \ker(\psi_0) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \operatorname{im}(\varphi_0) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \mathbb{Z} \simeq \mathbb{Z}$.

Proposition 1.33. On a:

$$H_n(\mathbb{S}^2) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0, 2\} \\ 0 & \text{sinon} \end{cases}$$

Démonstration. On recouvre \mathbb{S}^2 par deux ouverts U et V recouvrant chacun un hémisphère :

Fig. 4. – Recouvrement de \mathbb{S}^2 .

Alors on peut calculer $H_n(\mathbb{S}^2)$ de la même manière que dans la Proposition 1.31.

Proposition 1.34. Soit X un sous-espace de \mathbb{S}^p homéomorphe à \mathbb{B}^q . On a :

$$H_n(\mathbb{S}^p \setminus X) \simeq \begin{cases} \mathbb{Z} \text{ si } n = 0\\ 0 \text{ sinon} \end{cases}$$

Démonstration. Soit $f: \mathbb{B}^q \to X$ un homéomorphisme, on raisonne par récurrence sur q < p avec :

$$P(q): H_n(\mathbb{S}^p \setminus f(\mathbb{B}^q)) \simeq \begin{cases} \mathbb{Z} \text{ si } n = 0\\ 0 \text{ sinon} \end{cases}$$

Pour q=0. L'espace \mathbb{B}^0 est réduit à un unique point, par projection stéréographique $\mathbb{S}^p \setminus f(\mathbb{B}^0)$ est homéomorphe à \mathbb{R}^p , qui est homotopiquement équivalent à un point. D'après le Corollaire 1.25 et la Proposition 1.29 on a :

$$H_n(\mathbb{S}^p \setminus f(\mathbb{B}^0)) \simeq H_n(\mathbb{R}^p) \simeq \begin{cases} \mathbb{Z} \text{ si } n = 0\\ 0 \text{ sinon} \end{cases}$$

Soit q > 0. On suppose que P(q-1) est vérifiée. L'espace \mathbb{B}^q est homéomorphe à $\mathbb{B}^{q-1} \times [0,1]$. On recouvre $\mathbb{B}^{q-1} \times [0,1]$ par deux fermés $\mathbb{B}^- := \mathbb{B}^{q-1} \times [0,1/2]$ et $\mathbb{B}^+ := \mathbb{B}^{q-1} \times [1/2,1]$, ils sont homéomorphes à \mathbb{B}^q , et l'intersection $\mathbb{B}^- \cap \mathbb{B}^+ = \mathbb{B}^{q-1} \times \{1/2\}$ est homéomorphe à \mathbb{B}^{q-1} . Alors on recouvre $\mathbb{S}^p \setminus f(\mathbb{B}^{q-1} \times \{1/2\})$ par les ouverts $U := \mathbb{S}^p \setminus f(\mathbb{B}^-)$ et $V := \mathbb{S}^p \setminus f(\mathbb{B}^+)$, et l'intersection vaut $U \cap V = \mathbb{S}^p \setminus f(\mathbb{B}^q)$. D'après le Théorème de Mayer-Vietoris la suite suivante est exacte :

$$\cdots \xrightarrow{\psi_{n+1}} H_{n+1}(U \cup V) \xrightarrow{\partial_{n+1}} H_n(U \cap V) \xrightarrow{\varphi_n} H_n(U) \oplus H_n(V) \xrightarrow{\psi_n} H_n(U \cup V) \xrightarrow{\partial_n} \cdots$$

où $\varphi_n := (i_0, j_0) : H_n(U \cap V) \to H_n(U) \oplus H_n(V)$ est induite par les inclusions canoniques.

Si n = 0. $\mathbb{S}^p \setminus f(\mathbb{B}^q)$ est connexe par arcs, d'après la Proposition 1.27 on a $H_0(\mathbb{S}^p \setminus f(\mathbb{B}^q)) \simeq \mathbb{Z}$.

Si $n \ge 1$. On suppose par l'absurde qu'il existe $\alpha_0 \in H_n(U \cap V)$ non-nul. D'après P(q-1) on a $H_n(U \cup V) \simeq 0$, par exactitude φ_n est injective et on peut supposer sans perte de généralité qu'il existe $\alpha_1 \in H_n(U)$ non-nul tel que $i_0(\alpha_0) = \alpha_1$ (sinon on prend $\alpha_1 \in H_n(V)$ et $j_0(\alpha_0) = \alpha_1$).

Puisque \mathbb{B}^- est homéomorphe à \mathbb{B}^q , on peut refaire le même raisonnement avec $\mathbb{S}^p \setminus f(\mathbb{B}^-)$ à la place de $\mathbb{S}^p \setminus f(\mathbb{B}^q)$, alors il existe $\alpha_2 \in H_n(\mathbb{S}^p \setminus f(\mathbb{B}^{q-1} \times [0,1/4]))$ non-nul tel que $i_1(\alpha_1) = \alpha_2$, où $i_1: H_n(\mathbb{S}^p \setminus f(\mathbb{B}^-)) \to H_n(\mathbb{S}^p \setminus f(B \times [0,1/4]))$ est induite par l'inclusion canonique.

En itérant ce raisonnement on obtient une suite $(\alpha_k)_{k\in\mathbb{N}}$ où pour tout $k\in\mathbb{N}$, on a $\alpha_k\in H_n(A_k):=H_n(\mathbb{S}^p\setminus f(\mathbb{B}^{q-1}\times \left[0,1/2^k\right]))$ non-nul tel que $i_k(\alpha_k)=\alpha_{k+1}$, où $i_k:H_n(A_k)\to H_n(A_{k+1})$ est induite par l'inclusion canonique.

Soit $\sigma: \Delta^n \to A_0$ un *n*-cycle singulier représentant α_0 . Puisque pour tout $k \in \mathbb{N}$, on a $i_k(\alpha_k) = \alpha_{k+1}$, on en déduit que σ est un représentant de tous les α_k .

On note $Y\coloneqq\bigcup_{k\in\mathbb{N}}A_k=\mathbb{S}^p\setminus f\big(\mathbb{B}^{q-1}\times\{0\}\big)$. Alors puisque $\mathbb{B}^{q-1}\times\{0\}$ est homéomorphe à \mathbb{B}^{q-1} , d'après P(q-1) on a $H_n(Y)\simeq 0$. De plus $\sigma\in Z_n(Y)$ et $\overline{\sigma}=0\in H_n(Y)$.

Alors $\sigma \in B_n(Y)$ et il existe une (n+1)-chaîne singulière $\tau : \Delta^{n+1} \to Y$ telle que $d_{n+1}\tau = \sigma$. Puisque τ est continue et Δ^{n+1} est compact, $\operatorname{im}(\tau)$ est compacte. Or $Y := \bigcup_{k \in \mathbb{N}} A_k$ est un recouvrement ouvert de $\operatorname{im}(\tau)$, donc par définition il existe $k_0 \in \mathbb{N}$ tel que $\operatorname{im}(\tau) \subset A_{k_0}$.

Enfin $\sigma = d_{n+1}\tau \in B_{n+1}(A_{k_0})$ et $a_{k_0} = \overline{\sigma} = 0 \in H_n(A_{k_0})$, d'où une contradiction.

Donc
$$H_n(\mathbb{S}^p \setminus f(\mathbb{B}^q)) \simeq 0.$$

Proposition 1.35. Soit X un sous-espace de \mathbb{R}^3 homéomorphe à \mathbb{B}^2 . On a :

$$H_n(\mathbb{R}^3 \setminus X) \simeq H_n(\mathbb{S}^2) \simeq \begin{cases} \mathbb{Z} \text{ si } n \in \{0, 2\} \\ 0 \text{ sinon} \end{cases}$$

Démonstration. Par projection stéréographique et compactification d'Alexandrov $\mathbb{R}^3 \cup \{\infty\}$ est homéomorphe à \mathbb{S}^3 , en particulier la restriction $(\mathbb{R}^3 \setminus X) \cup \{\infty\}$ est homéomorphe à $\mathbb{S}^3 \setminus X$. On recouvre $(\mathbb{R}^3 \setminus X) \cup \{\infty\}$ par deux ouverts $U := \mathbb{R}^3 \setminus X$ et V une boule au voisinage de ∞ qui n'intersecte pas X (qui est compact).

Alors on peut calculer $H_n(\mathbb{S}^3 \setminus X)$ de la même manière que dans la Proposition 1.32.

Proposition 1.36. Soit X un sous-espace de \mathbb{S}^3 homéomorphe à \mathbb{S}^1 . On a :

$$H_n(\mathbb{S}^3 \setminus X) \simeq H_n(\mathbb{S}^1) \simeq \begin{cases} \mathbb{Z} \text{ si } n \in \{0, 1\} \\ 0 \text{ sinon} \end{cases}$$

Démonstration. On recouvre \mathbb{S}^1 par deux arcs fermés A_+ et A_- , ils sont homéomorphes à \mathbb{B}^1 , et leur intersection vaut $A_+ \cap A_- = \mathbb{S}^0$. On considère un homéomorphisme $f: \mathbb{S}^1 \to X$ et on pose deux ouverts $U := \mathbb{S}^3 \setminus f(A_+)$ et $V := \mathbb{S}^3 \setminus f(A_-)$. Par projection stéréographique $U \cup V = \mathbb{S}^3 \setminus f(\mathbb{S}^0)$ est homéomorphe à $\mathbb{R}^3 \setminus \{0\}$, qui est homotopiquement équivalent à \mathbb{S}^2 .

Alors on peut calculer $H_n(\mathbb{S}^3 \setminus X)$ de la même manière que dans la Proposition 1.32.

Proposition 1.37. Soit X un sous-espace de \mathbb{R}^3 homéomorphe à \mathbb{S}^1 . On a :

$$H_n(\mathbb{R}^3 \setminus X) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0, 1, 2\} \\ 0 & \text{sinon} \end{cases}$$

Démonstration. On peut recouvrir de la même manière que dans la Proposition 1.35 et calculer $H_n(\mathbb{S}^3 \setminus X)$ de la même manière que dans la Proposition 1.32

2. Le plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$

2.1. Représentations

Définition 2.1. Le *plan projectif réel* $\mathbb{P}^2_{\mathbb{R}}$ est le quotient de $\mathbb{R}^3 \setminus \{0\}$ par la relation d'équivalence $\sim_{\mathbb{P}^2}$, muni de la topologie quotient, où pour tout $u, v \in \mathbb{R}^3 \setminus \{0\}$, on a $u \sim_{\mathbb{P}^2} v$ s'il existe $\lambda \in \mathbb{R} \setminus \{0\}$ tel que $u = \lambda v$.

Soit $(x, y, z) \in \mathbb{R}^3 \setminus \{0\}$. Les *coordonnées homogènes de* (x, y, z) sont celles du point associé sur le plan projectif réel $[x:y:z] \coloneqq \overline{(x,y,z)} \in \mathbb{P}^2_{\mathbb{R}}$.

Proposition 2.2. $\mathbb{P}^2_{\mathbb{R}}$ est homéomorphe au quotient de \mathbb{S}^2 par la relation d'équivalence $\sim_{\mathbb{S}^2}$ où pour tout $u, v \in \mathbb{S}^2$, on a $u \sim_{\mathbb{S}^2} v$ si $u = \pm v$.

Démonstration. On pose $i: \mathbb{S}^2 \to \mathbb{P}^2_{\mathbb{R}}; (x,y,z) \mapsto [x:y:z]$. Alors i est bien définie, de plus pour tout $u,v \in \mathbb{S}^2$, si $u \sim_{\mathbb{S}^2} v$, on a $u=\pm v$, d'où i(u)=i(v), et i est continue. Donc i passe au quotient et induit une application continue $I: \mathbb{S}^2/\sim_{\mathbb{S}^2} \to \mathbb{P}^2_{\mathbb{R}}$.

On pose $j: \mathbb{R}^3 \setminus \{0\} \to \mathbb{S}^2 / \sim_{\mathbb{S}^2}; u \mapsto \overline{u/\|u\|}$. Alors j est bien définie, de plus pour tout $u, v \in \mathbb{R}^3 \setminus \{0\}$, si $u \sim_{\mathbb{P}^2} v$, alors il existe $\lambda \in \mathbb{R} \setminus \{0\}$ tel que $u = \lambda v$, d'où $j(u) = j(\lambda v) = j(v)$, et j est continue par composition d'applications continues. Donc j passe au quotient et induit une application continue $J: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{S}^2 / \sim_{\mathbb{S}^2}$.

 $\operatorname{Enfin} J \circ I = \operatorname{id}_{\mathbb{S}^2/\sim_{\mathbb{S}^2}} \operatorname{et} I \circ J = \operatorname{id}_{\mathbb{P}^2_{\mathbb{D}}}, \operatorname{donc} I \operatorname{est} \operatorname{un} \operatorname{hom\'{e}omorphisme} \operatorname{de} \mathbb{P}^2_{\mathbb{R}} \operatorname{dans} \mathbb{S}^2/\sim_{\mathbb{S}^2}.$

Proposition 2.3. $\mathbb{P}^2_{\mathbb{R}}$ se décompose en une union $M \cup D$ tels que M est homéomorphe une bande de Möbius, D est homéomorphe à \mathbb{B}^2 , et l'intersection $M \cap D = \partial M = \partial D$ est homéomorphe à \mathbb{S}^1 .

Démonstration. D'après la Proposition 2.2 $\mathbb{P}^2_{\mathbb{R}}$ est homéomorphe à $\mathbb{S}^2/\sim_{\mathbb{S}^2}$, puisque l'on identifie les points antipodaux de \mathbb{S}^2 , on peut considérer seulement l'hémisphère nord en identifiant les points antipodaux du cercle de l'équateur :

Fig. 5. – Passage de la sphère à la demi-sphère.

On peut déformer continûment cette demi-sphère sur un disque en identifiant les points antipodaux du cercle :

Fig. 6. – Passage de la demi-sphère au disque.

On peut déformer continûment ce disque sur le carré en identifiant les points sur le bord du carré et en conservant l'orientation :

Fig. 7. – Passage du disque au carré.

On peut extraire dans ce carré une bande de Möbius :

Fig. 8. – Découpage d'une bande de Möbius.

On peut recoller les parties restantes en suivant l'orientation des flèches bleues, puis celle des flèches rouges pour vérifier que D est homéomorphe à \mathbb{B}^2 :

Fig. 9. - Recollage du disque fermé.

De plus $M \cap D = \partial M = \partial D$ est homéomorphe à $\partial \mathbb{B}^2 = \mathbb{S}^1$.

Puisque les déformations à chaque étapes sont continues et préservent les points identifiés, on a décomposé $\mathbb{P}^2_{\mathbb{R}}$ comme une union $M \cup D$ tels que M est homéomorphe à une bande de Möbius, D est homéomorphe à \mathbb{B}^2 et $M \cap D$ est homéomorphe à \mathbb{S}^1 .

Remarque 2.4. Même si les figures de la démonstration précédente ne semblent pas rigoureuses, les flèches qui indiquent l'orientation et la continuité réciproque des déformations effectuées permettent de s'assurer que l'on a bien construit un homéomorphisme.

2.2. Non-plongement dans \mathbb{R}^3

Définition 2.5. Soit X et Y deux espaces topologiques, $f: X \to Y$ une application. On dit que f est un *plongement de* X *dans* Y si elle induit un homéomorphisme de X dans f(X).

Théorème 2.6. Il n'existe pas de plongement de $\mathbb{P}^2_{\mathbb{R}}$ dans \mathbb{R}^3 .

Démonstration. Supposons par l'absurde qu'il existe un plongement $f: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{R}^3$. D'après la Proposition 2.3 $\mathbb{P}^2_{\mathbb{R}} = M \cup D$ où M est homéomorphe à une bande de Möbius, D est homéomorphe à \mathbb{B}^2 et $M \cap D = \partial M = \partial D$ est homéomorphe à \mathbb{S}^1 , on identifie $\mathbb{P}^2_{\mathbb{R}}$, M et D avec leurs images $f(\mathbb{P}^2_{\mathbb{R}})$, f(M) et f(D) dans \mathbb{R}^3 .

L'espace $\mathbb{R}^3 \setminus M$ est homotopiquement équivalent à $\mathbb{R}^3 \setminus C$ où C le cercle central de M est homéomorphe à S¹. D'après le Corollaire 1.25 et la Proposition 1.37 on a :

$$H_1(\mathbb{R}^3 \setminus M) \simeq H_1(\mathbb{R}^3 \setminus C) \simeq \mathbb{Z}$$

et on déduit des propositions menant à la Proposition 1.37 qu'un générateur de $H_1(\mathbb{R}^3 \setminus M)$ est donné par un 1-simplexe singulier $\sigma: \Delta^1 \to \mathbb{R}^3 \setminus M$ dont l'image est un cercle enlacé autour de M.

De plus ∂M est homéomorphe à \mathbb{S}^1 . D'après la Proposition 1.37 on a :

$$H_1(\mathbb{R}^3 \setminus \partial M) \simeq \mathbb{Z}$$

de la même manière un générateur de $H_1(\mathbb{R}^3 \setminus \partial M)$ est donné par un 1-simplexe singulier $\tau : \Delta^1 \to \mathcal{O}$ $\mathbb{R}^3 \setminus \partial M$ dont l'image est un cercle enlacé autour de ∂M avec la même orientation que σ .

Soit $i: \mathbb{R}^3 \setminus M \to \mathbb{R}^3 \setminus \partial M$ l'inclusion canonique. Alors $i \circ \sigma$ est homotope à deux cercles enlacés autour de ∂M avec la même orientation que σ et qui s'intersectent en un point :

Fig. 10. – Homotopie de $i \circ \sigma$.

Puisque leur orientation est la même, la classe des deux cercles dans $H_1(\mathbb{R}^3 \setminus \partial M)$ est $\overline{\tau}$, on en déduit que $H_1(i)(\overline{\sigma}) = 2\overline{\tau}$, donc $H_1(i)$ est la multiplication par 2.

Enfin D est homéomorphe à \mathbb{B}^2 . D'après la Proposition 1.35 on a :

$$H_1(\mathbb{R}^3 \setminus D) \simeq H_1(\mathbb{S}^2) \simeq 0$$

et d'après le Théorème de Mayer-Vietoris la suite suivante est exacte en $H_1(\mathbb{R}^3 \setminus \partial M)$:

$$\mathbb{Z} \simeq H_1(\mathbb{R}^3 \setminus M) \oplus 0 \simeq H_1(\mathbb{R}^3 \setminus D) \xrightarrow{H_1(i)} \mathbb{Z} \simeq H_1(\mathbb{R}^3 \setminus \partial M) \xrightarrow{\partial_0} H_0(\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}})$$

Par exactitude $\ker(\partial_0) = \operatorname{im}(H_1(i)) \simeq 2\mathbb{Z}$, d'où $\partial_0(1) \neq 0$ et $2\partial_0(1) = \partial_0(2) = 0$, donc $\partial_0(1)$ est nonnul et d'ordre 2 dans $H_0(\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}})$.

D'après la Proposition 1.27 $H_0(\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}})$ est un groupe abélien libre, il n'existe aucun élément nonnul d'ordre 2, d'où une contradiction.

Donc il n'existe pas de plongement de $\mathbb{P}^2_{\mathbb{R}}$ dans \mathbb{R}^3 .

Conclusion

Démonstration du Théorème. Soit C une courbe de Jordan.

On représente un rectangle par 2 paires de sommets formant les diagonales :

Fig. 11. – 2 paires de sommets formant un rectangle.

On note $P := C \times C$. Cette représentation nous permet de caractériser un rectangle de la manière suivante : 2 paires <u>non-ordonnées</u> de P forment un rectangle si et seulement si elles sont distinctes, ont le même milieu et ont la même distance.

2 paires ordonnées pourraient être distinctes et décrire la même diagonale. On étudie Q le quotient de P par la relation d'équivalence \sim où pour tout $(u, v) \in P$, on a $(u, v) \sim (v, u)$.

Alors on définit l'application :

$$f: P \to \mathbb{R}^2 \times \mathbb{R}; (u, v) \mapsto \left(\frac{u+v}{2}, d(u, v)\right)$$

elle décrit une surface dans $\mathbb{R}^2 \times \mathbb{R} \simeq \mathbb{R}^3$:

Fig. 12. – Image d'une paire par l'application f.

Pour tout $(u, v) \in P$, on a f(u, v) = f(v, u), de plus f est continue, donc f passe au quotient pour \sim et induit une application continue $\varphi : Q \to \mathbb{R}^3$.

Alors $p, q \in Q$ forment un rectangle si et seulement si $p \neq q$ et $\varphi(p) = \varphi(q)$. Il existe un rectangle inscrit dans C si et seulement φ n'est pas injective.

Supposons par l'absurde que φ est injective.

Alors Q est compact et la restriction $\varphi: Q \to \varphi(Q)$ est une bijection continue, d'après le Théorème A $\varphi: Q \to \varphi(Q)$ est un homéomorphisme.

Puisque C est paramétrée par une application continue $\gamma:[0,1]\to\mathbb{R}^2$, on peut paramétrer Q par l'application $\mu:=\overline{(\gamma,\gamma)}:[0,1]^2\to (\mathbb{R}^2\times\mathbb{R}^2)/\sim$. Mais par définition $\gamma(0)=\gamma(1)$, pour tout $t\in[0,1]$, on a $\mu(0,t)=\mu(1,t)$ et $\mu(t,0)=\mu(t,1)$, de plus pour tout $(a,b)\in[0,1]^2$, on a $\mu(a,b)=\mu(b,a)$.

13

Pour éviter ça, on étudie le quotient de $[0,1]^2$ par la relation d'équivalence \sim_1 où pour tout $t \in [0,1]$, on a $(0,t) \sim_1 (1,t)$ et $(t,0) \sim_1 (t,1)$, et par la relation d'équivalence \sim_2 où pour tout $(a,b) \in [0,1]^2$, on a $(a,b) \sim_2 (b,a)$:

Fig. 13. – Quotient de $[0,1]^2$ par \sim_1 et \sim_2

On découpe le triangle pour recoller les flèches et obtenir une bande de Möbius M:

Fig. 14. – Recollement d'une bande de Möbius.

Alors μ passe au quotient pour \sim_1 et \sim_2 , et la déformation est continue, donc μ induit un homéomorphisme $\lambda: M \to Q$. Par composition $\varphi \circ \lambda: M \to \varphi(Q)$ est un homéomorphisme.

Il vérifie $(\varphi \circ \lambda)(\partial M) = C \subset \mathbb{R}^3$. En effet ∂M est identifié avec la diagonale de $[0,1]^2$, donc avec les points $(a,a) \in [0,1]^2$, ils sont envoyés sur $\overline{(u,u)} \in Q$ par μ , puis sur les $(u,0) \in C \subset \mathbb{R}^3$ par φ .

D'après le théorème de Jordan C est homéomorphe à \mathbb{S}^1 et D la partie de \mathbb{R}^2 délimitée par C est homéomorphe à \mathbb{B}^2 , d'après la Proposition 2.3 en collant M à D le long de leur bord $\partial M = \partial D = C$, on obtient $\mathbb{P}^2_{\mathbb{R}}$. Donc $\varphi \circ \lambda$ induit un plongement de $\mathbb{P}^2_{\mathbb{R}}$ dans \mathbb{R}^3 .

Mais d'après le Théorème 2.6 il n'existe pas de plongement de $\mathbb{P}^2_{\mathbb{R}}$ dans \mathbb{R}^3 , d'où une contradiction.

Donc φ n'est pas injective et il existe un rectangle inscrit dans C.

Annexe

Théorème A. Soit K un compact de \mathbb{R}^n , L une partie de \mathbb{R}^p et $f:K\to L$ une bijection continue. Alors f est un homéomorphisme.

Démonstration. Notons $g := f^{-1}$. Soit F un fermé de K. Puisque K est compact et F est fermé, F est compact. Puisque f est continue et F est compact, $g^{-1}(F) = f(F)$ est compact. Puisque $g^{-1}(F)$ est compact, $g^{-1}(F)$ est fermé. Donc $f^{-1} = g$ est continue et f est un homéomorphisme.

Bibliographie

- [1] Eduard Looijenga, Algebraic Topology an introduction. 2010.
- [2] Allen Hatcher, Algebraic Topology. 2001.
- [3] Grégory Ginot, Topologie Algébrique. 2019.
- [4] Vaughan, Rectangles and simple closed curves. 1977.

Document contenant 19873 caractères.