Development of a Monte Carlo algorithm for optimal control problems

Semester thesis by Stefano Weidmann Supervised by Prof. Patrick Jenny, Taha Koltukluoglu and Prof. Ralf Hiptmair

Description

We applied a Monte Carlo algorithm for solving the discretized adjoint equation of a quarter five spot configuration

in petroleum engineering, where a 2D oilfield is filled with water from a drill to drive the oil out of a well:

Minimize

$$\sum_{i=0}^{T} (p_{\text{drill, measured}}(i\Delta t) - p_{\text{drill, computed}}^{(i)})^2$$

subject to the differential equations

$$\operatorname{div}(\lambda_{\text{tot}} \operatorname{grad}(p)) = -q_{\text{tot}}$$
$$\phi \partial_t (S_{\mathbf{w}}) + \operatorname{div}(\vec{v}_{\mathbf{w}}) = q_{\mathbf{w}}$$

by controlling the log permeabilities ln(k). Boundary conditions are

- Initial values for $S_{\rm w}$ are given
- No flow boundary conditions on the boundary except at the drill and well

p	pressure
$\lambda_{ m tot}$	proportionality factor
	from Darcy's law $\vec{v} \propto -\operatorname{grad}(p)$
	for both oil and water together
$q_{ m tot}$	sink term for oil and water together
ϕ	porosity, fraction of a cell which
	can be filled by a liquid
$S_{ m w}$	water saturation,
	how much of the liquid is water in a cell
$ec{v}_{ m w}, ec{v}_{ m tot}$	flow rate per unit area (Darcy velocity)
k	permeability, higher values mean
	more flow with the same pressure gradient

Results

The adjoints corresponding to pressure states can be well approximated by Monte Carlo (the discrepancy in the gray value is a artifact of the discretization and unimportant).

	Monte Carlo	Traditional
$\begin{pmatrix} \psi^{(1)} \\ \psi^{(2)} \\ \psi^{(3)} \\ \psi^{(4)} \\ \psi^{(5)} \\ \psi^{(6)} \\ \psi^{(7)} \\ \psi^{(8)} \\ \end{pmatrix}$	$\begin{pmatrix} -0.201 \\ -0.267 \\ -0.333 \\ -0.134 \\ -0.201 \\ -0.267 \\ -1.4 \cdot 10^{-16} \\ -0.134 \\ 0.201 \end{pmatrix}$	$\begin{pmatrix} -0.201 \\ -0.267 \\ -0.325 \\ -0.134 \\ -0.201 \\ -0.267 \\ -0.424 \\ -0.134 \end{pmatrix}$
$\psi^{(9)}$	\setminus -0.201	$\setminus -0.201$

On the other hand, the adjoints corresponding to saturation states are completely off without a good preconditioner.

	Monte Carlo	Traditional
$\begin{pmatrix} \psi^{(10)} \\ \psi^{(11)} \\ \psi^{(12)} \\ \psi^{(13)} \\ \psi^{(14)} \\ \psi^{(15)} \\ \psi^{(16)} \\ \psi^{(17)} \\ \psi^{(18)} \end{pmatrix}$	$\begin{pmatrix} -3.33 \cdot 10^{5} \\ 3.84 \cdot 10^{8} \\ -1.26 \cdot 10^{11} \\ -3933.0 \\ 2.14 \cdot 10^{5} \\ -1.87 \cdot 10^{10} \\ 6.05 \cdot 10^{6} \\ 5.77 \cdot 10^{4} \end{pmatrix}$	$ \begin{pmatrix} 33.7 \\ 47.2 \\ 0.0223 \\ 47.1 \\ 55.6 \\ 47.2 \\ 37.7 \\ 47.1 \end{pmatrix} $
$\psi^{(18)}$	$\begin{pmatrix} -1.95 \cdot 10^5 \end{pmatrix}$	\setminus 33.7

We haven't found a good preconditioner. Our best try leads to poor results even for small timelevels and small grid sizes which is easy

