Logistic Regression for Imbalanced Dataset

Why Logistic Regression?

Logistic Regression is a well-established linear model widely used in text classification tasks due to its simplicity, efficiency, and solid theoretical grounding. It is especially effective when paired with TF-IDF vectorized data, as it can handle high-dimensional, sparse feature spaces often found in natural language processing (NLP) tasks. It also offers probabilistic outputs and interpretable coefficients.

We selected Logistic Regression as a baseline algorithm to classify product review ratings (1 to 5 stars) based on review text. It is scalable and offers good performance with appropriate preprocessing and hyperparameter tuning.

Model Training Logic

The pipeline followed was:

- 1. Text Preprocessing:
 - Lowercasing
 - Punctuation removal
 - Stopword removal (NLTK/spaCy)
 - Lemmatization
- 2. **Vectorization**: TF-IDF (max features=5000)
- 3. **Model**: LogisticRegression trained using GridSearchCV for hyperparameter optimization.
- 4. **Data Split**: Stratified 80/20 train-test split to preserve rating distribution.
- 5. **Scoring Metric**: f1_macro chosen to give equal weight to all classes, especially for imbalanced datasets.

Hyperparameter Tuning Details

• **C** controls regularization: lower = stronger regularization.

- **penalty** '12' helps prevent overfitting in high-dimensional text data.
- solver options tested for stability and speed.
- **GridSearchCV** used 3-fold cross-validation to select the best combination.

Evaluation Result

After hyperparameter tuning and training, the best model achieved:

Metric	Value
Accuracy	43%
Macro F1	42%
Support	2000 test samples

Detailed classification report:

precision	recall	f1-score	support		
1				0.44	200
2		_		0.31 0.39	300 500
4				0.48	600
5	0.	.51 0	.45	0.47	400
accuracy			(0.43	2000
macro avg	0.	.45 0	.40	0.42	2000
weighted avg	0.	.44 0	.43	0.42	2000

- Class 4 & 5 performed better, likely due to more representation in training data.
- Class 1 & 2 showed lower recall, suggesting the model struggles with minority classes in imbalanced settings

Interpretation

- The model demonstrates **moderate performance**, with higher confidence in predicting frequent ratings.
- It **fails to generalize** well on underrepresented ratings (like 1 and 2 stars), a common issue in imbalanced datasets.
- **Macro F1-score** of 0.42 highlights the need for more advanced balancing or feature techniques for improvement.

When to Use Logistic Regression

- High-dimensional, sparse feature space (like TF-IDF)
- Need for interpretable models
- Binary or multiclass classification with linearly separable data
- As a **baseline model** for text classification tasks

Limitations

- Assumes linear decision boundaries
- Sensitive to correlated features
- Struggles with imbalanced classes without tuning or sampling
- Less powerful than tree-based models or deep learning in non-linear settings

Confusion matrix

