Birla Institute of Technology and Science, Pilani

Department of Computer Science and Information Systems Comprehensive Exam, First Semester 2020-21 CS F351, Theory of Computation, Open Book

Date: 14-12-2020 10 to 12 PM **MM: 33**

Note: a) Answer the questions on A4 size sheet of papers (or equivalent), scan them, and upload.

- b) Answer the questions sequentially, legitimately, and to the point without giving any unnecessary details.
- c) #a(x) should be read as number of a's in string x.
- d) Division of marks among parts of each question will depend upon the complexity.

Q1. Answer the following two parts together:

a) Convert the following context free grammar G into an equivalent CFG in Chomsky normal form. Illustrate all the steps in detail.

$$G = (\{S, A, a\}, \{a\}, \{S \rightarrow ASA \mid A \mid \varepsilon, A \rightarrow aa \mid \varepsilon\}, S)$$

b) Construct a pushdown automaton for the language $L = \{w \mid w \in \{0, 1\}^* \text{ and } w \text{ has the same } \}$ number of 01's and 10's}. Give a formal 6-tuple specification of the PDA. [Note: string 101 has one occurrence of 01 and one occurrence of 10.]

Q1 [5 Marks]. (a).

1. Introduce the new start variable "So" and new rule So \rightarrow S, which yields

So
$$\rightarrow$$
 S
S \rightarrow ASA | A | ϵ
A \rightarrow aa | ϵ

- (1 mark)
- 2. Then remove ε -productions/rules.
 - a. Removing A $\rightarrow \epsilon$ yields

So
$$\rightarrow$$
 S
S \rightarrow ASA | AS | SA | S | A | ϵ
A \rightarrow aa

(We can remove $S \rightarrow S$ as S obviously produces itself.)

b. Removing $S \rightarrow \epsilon$ yields

So
$$\rightarrow$$
 S | ϵ
S \rightarrow ASA | AS | SA | A | AA
A \rightarrow aa

(1 mark)

- 3. Then remove unit rules:
 - a. Removing $S \rightarrow A$ yields:

So
$$\rightarrow$$
 S | ϵ
S \rightarrow ASA | AS | SA | aa | AA
A \rightarrow aa

b. Removing So \rightarrow S yields:

So
$$\rightarrow$$
 ASA | AS | SA | aa | AA | ϵ S \rightarrow ASA | AS | SA | aa | AA A \rightarrow aa

(1 mark)

4. Shortening the right hand side of productions yields

So
$$\rightarrow$$
 AA₁ | AS | SA | aa | AA | ϵ S \rightarrow AA₁ | AS | SA | aa | AA A \rightarrow aa

$$A_1 \rightarrow SA$$

(1 mark)

5. Replacing few terminals on the right hand side yields

So
$$\rightarrow$$
 AA₁ | AS | SA | BB | AA | ϵ S \rightarrow AA₁ | AS | SA | BB | AA A \rightarrow BB A₁ \rightarrow SA B \rightarrow a

(1 mark)

Q1. (b) [3 Marks].

The PDA should accept empty string. (0.5 marks)

The PDA should accept just 0 and 1. (0.5 marks)

The PDA should accept strings containing all 0's and all 1's. (0.5 marks)

The PDA should accept the remaining strings in the given language. (1.5 marks)

[8M]

Q2. Answer the following two parts together:

a) Design a Type-3 grammar (with rules as per Chomsky hierarchy of Type-3) generating the following language P over $\Sigma = \{0,1\}$

$$P = \{ x \in \Sigma^* \mid (\#0 (x) - \#1 (x)) \mod 3 = 1 \}$$

b) Construct a minimal DFA which recognizes the following language P: $P = \{ x \in \{l, m, n\}^* \mid x \text{ starts and ends with the same symbol.} \}$

Marking Scheme:

Q2a (5 Marks) Zero marks is given if someone has written the grammar in Type 2 form. Else, full 5 marks.

Q2b (0/5 Marks).

[10M]

Q3. Answer the following three parts together:

- a) [3M] Consider P and Q are two languages over the similar ∑ such that P and P.Q are type-3 languages. Show or contradict the following: Q is also Type-3 language.
 False. It is not necessary. For example, If P = a* (or phi), Q is a^n b^n, then P.Q is a*b* (or phi). Marking: 1M for writing FALSE. 2M for justification.
- **b) [6M]** Prove that the following language L is decidable (by giving a description of TM which decides it):

 $L = \{\text{"M"} \mid M \text{ is a Deterministic Finite Automaton and there exists a string } w \text{ which } M \text{ accepts such that } \#a(w) > \#b(w).\}$

[Hint: Think about theorems proved in class.]

Sol: Let L1 = $\{x \mid x \text{ has more a's than b's}\}\$. We know that L1 is a CFL and we can construct a PDA for L1. Turing Machine M1 to decide L is as follows:

M1 on input "M", where "M" is a DFA:

a. Construct L2 = L1 \cap L(M). We know that language L2 is a CFL. We also know that testing whether the language of a CFL is ϕ or not is decidable.

b. If language of L2 is ϕ , then M1 halts in reject state (i.e. we can conclude that the DFA M does not accept any string with number of a's greater that number of b's). Rather, if language of L2 $\neq \phi$, then M1 halts in accept state.

Marking Scheme: 0/6.

c) [6M] Over ∑ = {a}, consider the task of designing a 3-Tape Turing Machine M which does the following computation. The initial configuration of Tape-1 is ▷ □ x, where x ∈ ∑*, |x| = k, and k > 0. The initial configuration of Tape-2 and Tape-3 is ▷ □, and ▷ □ respectively. Final configuration of Tape-2 is ▷ □ y, y ∈ ∑*, and |y| = ceil (square-root(k)). The following TM claims to do the desired computation. Check it, and correct the mistake (if any).

Sol: Do the following modifications:

a) From last R², the transition of a² should go to R¹ (and not R³). Also, from last R², transition should go to first [move left until a blank is found] on reading blank on tape-2.

Marking Scheme: 3M for each of two modifications

[15M]