

Aplicação de Técnicas de Aprendizagem de Máquina utilizando R

Mário de Noronha Neto e Richard Demo Souza

1

Alguns tipos de aprendizado de máquina

Aprendizagem
Supervisionadas
(Supervised Learning)

Aprendizagem não supervisionadas (Unsupervised Learning)

Aprendizagem por reforço (Reinforcement Learning)

O processo de treinamento do modelo é realizado com um conjunto de dados em que as entradas e saídas são conhecidas

O processo de treinamento do modelo é realizado com um conjunto de dados em que apenas as entradas são fornecidas

O processo de treinamento é realizado a partir de recompensas nas interações com o ambiente

Técnicas de Aprendizagem não Supervisionada abordadas neste curso

Associação - Market Basket Analysis

Utilizada para identificar associações úteis nos dados

Agrupamento (Clustering)

Utilizada para segmentação de grupos com algumas semelhanças

Clustering

A técnica de *Clustering* busca dividir automaticamente o conjunto de dados em grupos de itens similares. Esta técnica não é utilizada para predições, mas sim para extrair conhecimento que podem fornecer informações relevantes sobre o agrupamento natural encontrado nos dados.

É baseada no princípio de que itens/elementos dentro de um mesmo grupo devem ser muito similares entre si, mas bem distintos dos itens/elementos que não estão no mesmo grupo.

Este processo cria um "novo dado" em que exemplos não rotulados recebem o rótulo de um *cluster*. Por esta razão, esta técnica também pode ser entendida como uma técnica de classificação não supervisionada pelo fato de classificar exemplos não rotulados.

Clustering

Alguns exemplos de aplicações da técnica de Clustering:

- Segmentação de clientes em grupos com dados demográficos ou padrões de compra semelhantes para campanhas de marketing direcionadas
- Detecção de comportamento anômalo, como intrusões de rede não autorizadas, identificando padrões de uso que estão fora dos clusters conhecidos
- Simplificação de conjuntos de dados extremamente grandes através do agrupamento de características com valores semelhantes em um conjunto menor de categorias.

Considerações - Algoritmo k-means

O k-means normalmente utiliza a distância Euclidiana para ajustar definir os cluster, embora outras distâncias possam ser utilizadas.

Distância Euclidiana

$$dist(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Esta técnica é muito sensível aos posicionamentos dos pontos centrais iniciais.

Da mesma forma, o número de *cluster* influencia bastante o desempenho. Para a definição do número de *clustes* é importante que se tenha uma noção dos possíveis grupos que o conjunto possui.

Exemplo: Identificando segmentos de mercado para adolescentes utilizando o k-means

Passo 1: Coleta de dados

Dataset utilizado:

O dataset utilizado neste exemplo representa uma amostra aleatória de 30.000 estudantes de *High School* dos Estados Unidos, os quais possuíam seu perfis publicados em uma rede social bem conhecida no ano de 2006. Os dados foram amostrados uniformemente nos quatro anos da *High School*. Portanto, podemos supor que este conjunto de dados seja representativo para avaliar o comportamento dos adolescentes naquela época. Usando um processo automatizado, o texto completo dos perfis pode-se registrar o sexo, a idade e o número de amigos do SNS de cada adolescente. Uma ferramenta de mineração foi utilizada para dividir o conteúdo restante das páginas em palavras. Das 500 palavras que mais apareceram em todas as páginas, 36 foram escolhidas para representar 5 categorias de interesse: **Atividades extracurriculares**, **modas, religião, romance e comportamento antissocial**. Estas palavras incluem termos como *futebol, sexy, beijo, bíblia, compra, morte e drogas*. Este conjunto de dados foi compilado por *Brett Lantz*.

> teens <- read.csv("snsdata.csv")</pre>

```
> str(teens)
'data.frame':
             30000 obs. of 40 variables:
$ gradyear
                  : Factor w/ 2 levels "F", "M": 2 1 2 1 (NA) 1 1 2 1 1 ...
$ gender
$ age
                  19 18.8 18.3 18.9 19 ...
$ friends
                 7 0 69 0 10 142 72 17 52 39 ...
$ basketball
$ football
$ soccer
$ softball
            : int
                  0 0 0 0 0 0 0 1 0 0 ...
$ volleyball
            : int
                  0000000000...
```

Observe que o conjunto de dados possui 4 variáveis indicando características pessoais e 36 palavras indicando interesse.


```
> table(teens$gender)
    F
          M
22054
       5222
> table(teens$gender, useNA = "ifany")
    F
             <NA>
22054 5222
             2724
> summary(teens$age)
  Min. 1st Qu.
                Median
                          Mean 3rd Qu.
                                                  NA's
                                          Max.
        16.310
                                18.260 106.900
                17.290 17.990
                                                  5086
```

Observe que aproximadamente 9% não cadastraram a opção *gênero* e 17% a opção *idade*.

Observe também que os valores mínimo e máximo estão estranhos.

> summary(teens\$age)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
13.03 16.30 17.26 17.25 18.22 20.00 5523
```

Todas as idades que estiverem fora deste intervalo serão tratadas com o valores NA.

Uma solução fácil para tratar os dados sem valor (NA) é excluí-los do conjunto de dados. Entretanto, eles podem representar uma parcela significativa do *dataset*, principalmente se consideramos que os NAs de uma variável podem ser diferentes dos NAs de outra. Uma outra solução é utilizar o conceito de *dummy coding* para criar valores binários para cada nível da variável.

13.03

16.28

17.24

Passo 2: Explorando e preparando os dados

Para o caso da variável numérica, como é o caso da variável *idade*, não faz sentido criar uma nova categoria com valores desconhecidos. Neste caso, uma alternativa seria identificar a idade típica do estudante no ano de graduação que ele está cursando e atribuir este valor aos respectivos valores NAs.

17.24

18.21

20.00

Passo 3: Treinando o modelo

Clustering syntax

using the kmeans() function in the stats package

Finding clusters:

myclusters <- kmeans(mydata, k)

- mydata is a matrix or data frame with the examples to be clustered
- k specifies the desired number of clusters

The function will return a cluster object that stores information about the clusters.

Examining clusters:

- myclusters\$cluster is a vector of cluster assignments from the kmeans() function
- myclusters\$centers is a matrix indicating the mean values for each feature and cluster combination
- myclusters\$size lists the number of examples assigned to each cluster

Example:

```
teen_clusters <- kmeans(teens, 5)
teens$cluster_id <- teen_clusters$cluster</pre>
```


São José

Passo 3: Treinando o modelo

A função *kmeans()* requer que o *dataframe* contenha apenas variáveis numéricas e um parâmetro especificando o número de *clusters*. Para evitar que uma variável se sobressaia sobre outra por ter uma escala maior, vamos utilizar a função *scale()* para aplicar uma padronização *z-score*. Desta forma, todas as variáveis terão média zero e desvio padrão unitário.

z-score:
$$X_{new} = \frac{X - \mu}{\sigma} = \frac{X - \text{Mean}(X)}{\text{StdDev}(X)}$$

- > interests <- teens[5:40]
- > interests z <- as.data.frame(lapply(interests, scale))</pre>

Como mencionado anteriormente, a definição do número de *cluster* pode ser feita com base em informações *a priori* do que se deseja analisar. Neste estudo, foi escolhido inicialmente um k = 5.

- > set.seed(2345)
- > teen_clusters <- kmeans(interests_z, 5)</pre>

Passo 4: Analisando o modelo

Exemplo: O cluster 3 é o cluster que tem mais interesse em futebol

Passo 4: Analisando o modelo

Analisando se o *cluster* fica acima ou abaixo do valor médio de cada categoria de interesse, ou analisando os valores máximo e mínimo de cada categoria, podemos notar determinados comportamentos que diferenciam os grupos

```
> teen clusters$centers
  basketball
               football
                                      softball
                                               volleyball
                                                             swimming
                            soccer
  0.16001227
              0.2364174
                        0.10385512
                                    0.07232021
                                               0.18897158
                                                           0.23970234
2 -0.09195886
              0.0652625 -0.09932124 -0.01739428 -0.06219308
                                                           0.03339844
   0.52755083
              0.4873480
                        0.29778605
                                    0.37178877
                                               0.37986175
                                                           0.29628671
  0.34081039
              0.3593965
                        0.12722250
                                    0.16384661
                                               0.11032200
                                                           0.26943332
5 -0.16695523 -0.1641499 -0.09033520 -0.11367669 -0.11682181 -0.10595448
  cheerleading
                 baseball.
                              tennis
                                          sports
                                                       cute
                                                                     sex
    0.3931445
               0.02993479
                                      0.10257837
                                                 0.37884271
                          0.13532387
                                                             0.020042068
    -0.1101103 -0.11487510
                          0.04062204
                                     -0.09899231 -0.03265037 -0.042486141
3
    0.3303485
               0.35231971 0.14057808
                                      0.32967130
                                                 0.54442929
                                                             0.002913623
    0.1856664
               0.27527088 0.10980958
                                      0.79711920
                                                 0.47866008
                                                            2.028471066
    -0.1136077 -0.10918483 -0.05097057 -0.13135334 -0.18878627 -0.097928345
        sexy
                     hot
                             kissed
                                          dance
                                                      band
                                                              marching
                                                                           music
  0.11740551 0.41389104 0.06787768 0.22780899 -0.10257102 -0.10942590
                                                                       0.1378306
2 -0.04329091 -0.03812345 -0.04554933
                                     0.04573186
                                                4.06726666
                                                            5.25757242
                                                                       0.4981238
   0.24040196
              0.2844999
  0.51266080
              0.31708549 2.97973077 0.45535061 0.38053621 -0.02014608
                                                                       1.1367885
5 -0.09501817 -0.13810894 -0.13535855 -0.15932739 -0.12167214 -0.11098063 -0.1532006
```


A tabela abaixo mostra o interesse dominante em cada *cluster*. Observe que o *cluster* 5 não possui nenhuma categoria de interesse que predominante.

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
(N = 3,376)	(N = 601)	(N = 1,036)	(N = 3,279)	(N = 21,708)
swimming cheerleading cute sexy hot dance dress hair mall hollister abercrombie shopping clothes	band marching music rock	sports sex sexy hot kissed dance music band die death drunk drugs	basketball football soccer softball volleyball baseball sports god church Jesus bible	???

Passo 4: Analisando o modelo

Colocando a identificação dos *clusters* na sequencia de dados original (teens)

```
> teens$cluster <- teen_clusters$cluster
```

```
> teens[1:5, c("cluster", "gender", "age", "friends")]
  cluster gender age friends
              M 18.982
                              7
1
              F 18.801
        5
3
              M 18.335
                             69
4
        5
               F 18.875
                              0
5
        4
            <NA> 18.995
                             10
```


5

5 27.70052

Passo 4: Analisando o modelo


```
> aggregate(data = teens, age ~ cluster, mean)
  cluster
               age
1
        1 16.86497
2
        2 17.39037
                                         > aggregate(data = teens, female ~ cluster, mean)
3
        3 17.07656
                                           cluster
                                                       female
4
        4 17, 11957
                                         1
                                                  1 0.8381171
5
        5 17,29849
                                          2
                                                  2 0.7250000
                                         3
                                                  3 0.8378198
                                                  4 0.8027079
                                         4
                                                  5 0.6994515
                                          5
> aggregate(data = teens, friends ~ cluster, mean)
  cluster friends
        1 41.43054
1
        2 32.57333
3
        3 37.16185
        4 30.50290
```