

Resolução Exercícios

Celso Rocha

Mestrando EPUSP - Enerq

Paulo Radatz

Mestrando EPUSP - Enerq

VII Simpósio Brasileiro de Sistemas Elétricos

Niterói - RJ

13/05/2018

Questão 1

1.1 e 1.2

```
(Power Flow into element from indicated Bus)
Power Delivery Elements
                    Phase
                              kW
                                                       kVA
                                                                   PF
 Bus
                                     +i
                                          kvar
ELEMENT = "Vsource.SOURCE"
SOURCEBUS
                              -4109.2 +j -658.1
                                                      4161.5
                                                                   0.9874
SOURCEBUS
                        2
                              -3767.2 +i
                                          -462.8
                                                     3795.6
                                                                   0.9925
SOURCEBUS
                              -4107.3 +j
                                         -264.3
                                                  4115.8
                                                                   0.9979
  TERMINAL TOTAL .....-11983.7 +j -1385.2
                                                     12063.5
                                                                   0.9934
SOURCEBUS
                        0
                                  0.0 + i
                                              0.0
                                                         0.0
                                                                   1.0000
SOURCEBUS
                                  0.0 + j
                                              0.0
                                                         0.0
                                                                   1.0000
                        0
SOURCEBUS
                                  0.0 + i
                                              0.0
                                                         0.0
                                                                   1.0000
  TERMINAL TOTAL .....
                                  0.0 + i
                                              0.0
                                                         0.0
                                                                   1.0000
```

```
ELEMENT = "Load.2224500658A0"
SX3784018A
                                 1.8 +j
                                                       1.8
                                                                 0.9700
                         1
                                          0.4
                                 1.8 + j
SX3784018A
                                           0.4
                                                       1.8
                                                                 0.9700
SX3784018A
                                 0.0 + j
                                                       0.0
                                                                 1.0000
                                           0.0
 TERMINAL TOTAL
                                   3.6 + j
                                               0.9
                                                           3.7
                                                                     0.9700
```

Total Circuit Losses = 1210.3 +j 2768.3

"Transformer.VREG4_A	0.00523,	0.00	0.03//429
"Transformer.VREG4_C" LINE LOSSES=	0.00387, 1034.7	0.00	0.0386604
TRANSFORMER LOSSES=	175.6		
TOTAL LOSSES=	1210.3	kW	
TOTAL LOAD POWER = Percent Losses for Circuit =	10773.2 11.23 %	kW	

LINE.LN6379462-3

CONTROLLED TRANSFORMER TAP SETTINGS

Name	Tap	Min	Max	Step	Position
feeder_rega	1.01250	0.90000	1.10000	0.00625	2
feeder_regb	1.01250	0.90000	1.10000	0.00625	2
feeder_regc	1.00625	0.90000	1.10000	0.00625	1

MarkerCode:

0	8.5	10		20	A .	30.	•	40	⊲
1	2.5	11	0	21	^	31	•	41	4
2	+	12		22	< · ·	32	~	42	⊲
3	+	13		23		31 32 33	V	41 42 43	4
234567	×	14	•	24	•	34	•	44	D-
5	×	11 12 13 14 15 16	•	21 22 23 24 25 26 27	×	34 35 36 37	Δ	45	
6	×	16	0	26	•	36	A	46	D
7		17	0	27	•	37	1	47	-
8		18	**	28		38	I		
9		19	\Q	29	(*)	39	⊕		

File Edit View About


```
! Questao 1 - Simulacao no modo SnapShot
```

Compile (master.dss)

New Energymeter.m1 Line.In5815900-1 1

Set Maxiterations=50 ! Sometimes the solution takes more than the default 15 iterations

set loadmult=1.1

Solve

New Capacitor.MeuCap phases=1 kvar=200 bus1=l3232902.1 kv=7.2

Questão 2

Compile (master.dss)

New Energymeter.m1 Line.

Set Maxiterations=20

Set mode=daily Set stepsize=1h Set Number = 24 Solve

Hours

// Redirect Loads.dss

Redirect Capacitors.dss
Redirect CapControls.dss

```
Redirect Regulators.dss

New Loadshape.industrial npts=24 interval=1 mult=(0.1 0.1 0.11 0.15 0.18 0.21 0.32 0.61 0.9 0.92 0.96 1 1.3 0.88 0.87 0.85 0.8 0.6 0 0.33 0.25 0.20 0.1 0.1) action=normalize

New Loadshape.residencial npts=24 interval=1 mult=(0.2 0.2 0.2 0.2 0.3 0.6 0.7 0.6 0.5 0.45 0.4 0.4 0.3 0.3 0.4 0.7 0.88 0.9 1.3 0.8 0.6 0.6 0.5 0.3) action=normalize

Redirect new_loads.dss !arquivo com o loadshape

! Let DSS estimate the voltage bases
Set voltagebases=[115, 12.47, 0.48, 0.208]
Calcvoltagebases ! This also establishes the bus list
! Load in bus coordintes now that bus list is established
Buscoords Buscoords.dss
```

: Balanced Loads


```
New Monitor.Monitor_V_I element=Line.In5815900-1 terminal=1 mode=0 vipolar=yes New Monitor.Monitor_P_Q element=Line.In5815900-1 terminal=1 mode=1 ppolar=no
```

set mode=daily set stepsize=1h set number=24 Solve

Export monitors monitor_v_i

Plot monitor object= monitor_v_i channels=(1 3 5)

Export monitors monitor_v_i

Plot monitor object= monitor_v_i channels=(7 9 11)

Export monitors monitor_p_q

Plot monitor object= monitor_p_q channels=(1 3 5)

ENERGY METER VALUES

Registers:							
Reg 1 = kWh							
Reg 2 = kvarh							
Reg 3 = Max kW							
Reg 4 = Max kVA							
Reg 5 = Zone kWh							
Reg 6 = Zone kvarh							
Reg 7 = Zone Max kW							
Reg 8 = Zone Max kVA							
Reg 9 = Overload kWh Normal							
Reg 10 = Overload kWh Emerg							
Reg 10 = Overload kWh Emerg Reg 11 = Load EEN							
_							
Reg 11 = Load EEN							
Reg 11 = Load EEN Reg 12 = Load UE							
Reg 11 = Load EEN Reg 12 = Load UE Reg 13 = Zone Losses kWh							
Reg 11 = Load EEN Reg 12 = Load UE Reg 13 = Zone Losses kWh Reg 14 = Zone Losses kvarh							
Reg 11 = Load EEN Reg 12 = Load UE Reg 13 = Zone Losses kWh Reg 14 = Zone Losses kvarh Reg 15 = Zone Max kW Losses							
Reg 11 = Load EEN Reg 12 = Load UE Reg 13 = Zone Losses kWh Reg 14 = Zone Losses kvarh Reg 15 = Zone Max kW Losses Reg 16 = Zone Max kvar Losses							

CONTROLLED TRANSFORMER TAP SETTINGS

Name	Tap	Min	Max	Step	Position
feeder_rega	1.00000	0.90000	1.10000	0.00625	0
feeder_regb	1.00000	0.90000	1.10000	0.00625	0
feeder_regc	1.00625	0.90000	1.10000	0.00625	1

Export monitors monitor_v_i

Plot monitor object= monitor_v_i channels=(1 3 5)

Export monitors monitor_v_i

Plot monitor object= monitor_v_i channels=(7 9 11)

Export monitors monitor_p_q

Plot monitor object= monitor_p_q channels=(1 3 5)

Export monitors monitor_v_i_328365b0
Plot monitor object= monitor_v_i_328365b0 channels=(1 3) base=[120 120]

New Monitor_Monitor_P_Q element=Line.In5815900-1 terminal=1 mode=1 ppolar: New Monitor_Woll_32836580 element=Load.32836580 terminal=1 mode=

New Capacitor.cap phases=2 kvar=100 bus1=sx3179646b.1.2 kv=0.208

set mode=daily set stepsize=1h

Capacitor.cap.enabled=no set number=18 Solve

Capacitor.cap.enabled=yes set number=1 Solve

Capacitor.cap.enabled=no set number=5 Solve

Questão 3

Arquivo PVSystem.dss

ENERGY METER VALUES

Registers:

Reg 1 = kWh

Reg 2 = kvarh

Reg 3 = Max kW

Reg 4 = Max kVA

Reg 5 = Zone kWh

Reg 6 = Zone kvarh

Reg 7 = Zone Max kW

Reg 8 = Zone Max kVA

Reg 9 = Overload kWh Normal

Reg 10 = Overload kWh Emerg

Reg 11 = Load EEN

Reg 12 = Load UE

Reg 13 = Zone Losses kWh

Reg 14 = Zone Losses kvarh

Reg 15 = Zone Max kW Losses

Reg 16 = Zone Max kvar Losses

Reg 17 = Load Losses kWh

Reg 18 = Load Losses kvarh

Reg 19 = No Load Losses kWh

Obrigado! Dúvidas?

