On the definition of higher order differential operators in noncommutative geometry

G. Sardanashvily

Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia

E-mail: sard@grav.phys.msu.su

URL: http://webcenter.ru/~sardan/

Abstract. Several definitions of differential operators on modules over a noncommutative ring are discussed.

Let \mathcal{K} be a commutative ring and \mathcal{A} a \mathcal{K} -ring (a unital algebra with $1 \neq 0$). Two-sided \mathcal{A} -modules throughout are assumed to be (central) bimodules over the center $\mathcal{Z}_{\mathcal{A}}$ of \mathcal{A} . Let P and Q be two-sided \mathcal{A} -modules. We discuss the notion of a \mathcal{K} -linear higher order Q-valued differential operator on P. If a ring \mathcal{A} is commutative, there is the standard definition (up to an equivalence) of a differential operator on \mathcal{A} -modules [3, 5]. However, there exist its different generalizations to modules over a noncommutative ring [1, 2, 6]. At the same time, derivations of a noncommutative ring and the differential of a differential calculus over a noncommutative ring are defined in a standard way. It seems reasonable to regard them as differential operators.

Let \mathcal{A} be a commutative \mathcal{K} -ring. Let P and Q be \mathcal{A} -modules (central bimodules). The \mathcal{K} -module $\operatorname{Hom}_{\mathcal{K}}(P,Q)$ of \mathcal{K} -linear homomorphisms $\Phi:P\to Q$ is endowed with the two different \mathcal{A} -module structures

$$(a\Phi)(p) := a\Phi(p), \qquad (\Phi \bullet a)(p) := \Phi(ap), \qquad a \in \mathcal{A}, \quad p \in P.$$
 (1)

We will refer to the second one as the \mathcal{A}^{\bullet} -module structure. Let us put

$$\delta_a \Phi := a \Phi - \Phi \bullet a, \qquad a \in \mathcal{A}. \tag{2}$$

Definition 1. An element $\Delta \in \operatorname{Hom}_{\mathcal{K}}(P,Q)$ is an r-order Q-valued differential operator on P if $\delta_{a_0} \circ \cdots \circ \delta_{a_r} \Delta = 0$ for any tuple of r+1 elements a_0, \ldots, a_r of \mathcal{A} .

This definition is equivalent to the following one.

Definition 2. An element $\Delta \in \operatorname{Hom}_{\mathcal{K}}(P,Q)$ is a zero order differential operator if $\delta_a \Delta = 0$ for all $a \in \mathcal{A}$, and Δ is a differential operator of order r > 0 if $\delta_a \Delta$ for all $a \in \mathcal{A}$ is an (r-1)-order differential operator.

In particular, zero order differential operators coincide with A-module morphisms $P \to Q$. A first order differential operator Δ satisfies the condition

$$\delta_b \circ \delta_a \, \Delta(p) = ba \Delta(p) - b\Delta(ap) - a\Delta(bp) + \Delta(abp) = 0, \qquad \forall a, b \in \mathcal{A}. \tag{3}$$

The set Diff $_r(P,Q)$ of r-order Q-valued differential operators on P inherits the A- and A•-module structures (1).

Remark 1. Let $P = \mathcal{A}$. Any zero order Q-valued differential operator Δ on \mathcal{A} is uniquely defined by its value $\Delta(\mathbf{1})$. As a consequence, there is an isomorphism Diff $_0(\mathcal{A}, Q) = Q$ via the association $Q \ni q \mapsto \Delta_q$, where Δ_q is given by the equality $\Delta_q(\mathbf{1}) = q$. A first order Q-valued differential operator Δ on \mathcal{A} fulfils the condition

$$\Delta(ab) = b\Delta(a) + a\Delta(b) - ba\Delta(1), \quad \forall a, b \in \mathcal{A}.$$

It is a Q-valued derivation of A if $\Delta(1) = 0$, i.e., the Leibniz rule

$$\Delta(ab) = \Delta(a)b + a\Delta(b), \quad \forall a, b \in \mathcal{A},$$
 (4)

holds. The set $\mathfrak{d}(\mathcal{A}, Q)$ of derivations of \mathcal{A} is an \mathcal{A} -module, but not an \mathcal{A}^{\bullet} -module. Any first order differential operator on \mathcal{A} is split into the sum

$$\Delta(a) = a\Delta(\mathbf{1}) + [\Delta(a) - a\Delta(\mathbf{1})]$$

of the zero order differential operator $a\Delta(\mathbf{1})$ and the derivation $\Delta(a) - a\Delta(\mathbf{1})$. As a consequence, there is the \mathcal{A} -module decomposition

Diff
$$_1(\mathcal{A}, Q) = Q \oplus \mathfrak{d}(\mathcal{A}, Q)$$
.

If P and Q are two-sided A-modules over a noncommutative K-ring A, the K-module $\operatorname{Hom}_{\mathcal{K}}(P,Q)$ can be provided with the left A- and right A^{\bullet} -module structures (1) and the similar right and left structures

$$(\Phi a)(p) := \Phi(p)a, \qquad (a \bullet \Phi)(p) := \Phi(pa), \qquad a \in \mathcal{A}, \qquad p \in P. \tag{5}$$

For the sake of convenience, we will refer to the $\mathcal{A} - \mathcal{A}^{\bullet}$ structures (1) and (5) as the left and right $\mathcal{A} - \mathcal{A}^{\bullet}$ structures, respectively. Let us put

$$\overline{\delta}_a \Phi := \Phi a - a \bullet \Phi, \qquad a \in \mathcal{A}, \qquad \Phi \in \operatorname{Hom}_{\mathcal{K}}(P, Q). \tag{6}$$

It is readily observed that $\delta_a \circ \overline{\delta}_b = \overline{\delta}_b \circ \delta_a$ for all $a, b \in \mathcal{A}$.

The left A-module homomorphisms $\Delta : P \to Q$ obey the conditions $\delta_a \Delta = 0$, $\forall a \in A$, and, consequently, they can be regarded as left zero order Q-valued differential operators on P. Similarly, right zero order differential operators are defined.

Utilizing the condition (3) as a definition of a first order differential operator in noncommutative geometry, one however meets difficulties. If $P = \mathcal{A}$ and $\Delta(\mathbf{1}) = 0$, the condition (3) does not lead to the Leibniz rule (4), i.e., derivations of the \mathcal{K} -ring \mathcal{A} are not first order differential operators. In order to overcome these difficulties, one can replace the condition (3) with the following one [2].

Definition 3. An element $\Delta \in \operatorname{Hom}_{\mathcal{K}}(P,Q)$ is called a first order differential operator on a two-sided module P over a noncommutative ring \mathcal{A} if it obeys the relations

$$\delta_a \circ \overline{\delta}_b \Delta = \overline{\delta}_b \circ \delta_a \Delta = 0, \quad \forall a, b \in \mathcal{A}, a\Delta(p)b - a\Delta(pb) - \Delta(ap)b + \Delta(apb) = 0, \quad p \in P.$$
 (7)

First order Q-valued differential operators on P make up a $\mathcal{Z}_{\mathcal{A}}$ -module Diff $_1(P,Q)$.

If P is a bimodule over a commutative ring A, then $\delta_a = \overline{\delta}_a$ and Definition 3 comes to Definition 1 for first order differential operators.

Remark 2. Let P = A. Any left or right zero order Q-valued differential operator Δ is uniquely defined by its value $\Delta(1)$. As a consequence, there are left and right A-module isomorphisms

$$\begin{split} Q\ni q\mapsto \Delta_q^{\mathrm{R}} \in \mathrm{Diff}\,_0^{\mathrm{R}}(\mathcal{A},Q), & \Delta_q^{\mathrm{R}}(a)=qa, \qquad a\in\mathcal{A}, \\ Q\ni q\mapsto \Delta_q^{\mathrm{L}} \in \mathrm{Diff}\,_0^{\mathrm{L}}(\mathcal{A},Q), & \Delta_q^{\mathrm{L}}(a)=aq. \end{split}$$

A first order Q-valued differential operator Δ on $\mathcal A$ fulfils the condition

$$\Delta(ab) = \Delta(a)b + a\Delta(b) - a\Delta(1)b. \tag{8}$$

It is a derivation of \mathcal{A} if $\Delta(\mathbf{1}) = 0$. One obtains at once that any first order differential operator on \mathcal{A} is split into the sums

$$\Delta(a) = a\Delta(\mathbf{1}) + [\Delta(a) - a\Delta(\mathbf{1})], \qquad \Delta(a) = \Delta(\mathbf{1})a + [\Delta(a) - \Delta(\mathbf{1})a]$$

of the derivations $\Delta(a) - a\Delta(1)$ or $\Delta(a) - \Delta(1)a$ and the left or right zero order differential operators $a\Delta(1)$ and $\Delta(1)a$, respectively. If u is a Q-valued derivation of A, then au (1) and ua (5) are so for any $a \in \mathcal{Z}_A$. Hence, Q-valued derivations of A constitute a \mathcal{Z}_A -module $\mathfrak{d}(A,Q)$. There are two \mathcal{Z}_A -module decompositions

$$\mathrm{Diff}\,_1(\mathcal{A},Q)=\mathrm{Diff}\,_0^{\mathrm{L}}(\mathcal{A},Q)\oplus\mathfrak{d}(\mathcal{A},Q),\qquad \mathrm{Diff}\,_1(\mathcal{A},Q)=\mathrm{Diff}\,_0^{\mathrm{R}}(\mathcal{A},Q)\oplus\mathfrak{d}(\mathcal{A},Q).$$

They differ from each other in the inner derivations $a \mapsto aq - qa$.

Let $\operatorname{Hom}_{\mathcal{A}}^{\mathbb{R}}(P,Q)$ and $\operatorname{Hom}_{\mathcal{A}}^{\mathbb{L}}(P,Q)$ be the modules of right and left \mathcal{A} -module homomorphisms of P to Q, respectively. They are provided with the left and right $\mathcal{A} - \mathcal{A}^{\bullet}$ -module structures (1) and (5), respectively.

Proposition 4. An element $\Delta \in \operatorname{Hom}_{\mathcal{K}}(P,Q)$ is a first order Q-valued differential operator on P in accordance with Definition 3 iff it obeys the condition

$$\Delta(apb) = (\overrightarrow{\partial} a)(p)b + a\Delta(p)b + a(\overleftarrow{\partial} b)(p), \qquad \forall p \in P, \qquad \forall a, b \in \mathcal{A}, \tag{9}$$

where $\overrightarrow{\partial}$ and $\overleftarrow{\partial}$ are $\operatorname{Hom}_{\mathcal{A}}^{R}(P,Q)$ - and $\operatorname{Hom}_{\mathcal{A}}^{L}(P,Q)$ -valued derivations of \mathcal{A} , respectively. Namely, $(\overrightarrow{\partial} a)(pb) = (\overrightarrow{\partial} a)(p)b$ and $(\overleftarrow{\partial} b)(ap) = a(\overleftarrow{\partial} b)(p)$.

Proof. It is easily verified that, if Δ obeys the equalities (9), it also satisfies the equalities (7). Conversely, let Δ be a first order Q-valued differential operator on P in accordance with Definition 3. One can bring the condition (7) into the form

$$\Delta(apb) = [\Delta(ap) - a\Delta(p)]b + a\Delta(p)b + a[\Delta(pb) - \Delta(p)b],$$

and introduce the derivations

$$(\stackrel{\rightarrow}{\partial} a)(p) := \Delta(ap) - a\Delta(p), \qquad (\stackrel{\leftarrow}{\partial} b)(p) := \Delta(pb) - \Delta(p)b.$$

Remark 3. Let P be a differential calculus over a K-ring A provided with an associative multiplication \circ and a coboundary operator d. Then d exemplifies a P-valued first order differential operator on P by Definition 3. It obeys the condition (9) which reads

$$d(apb) = (da \circ p)b + a(dp)b + a((-1)^{|p|}p \circ db).$$

For instance, let $\mathfrak{d}\mathcal{A}$ be the Lie \mathcal{K} -algebra of \mathcal{A} -valued derivations of a \mathcal{K} -ring \mathcal{A} . Let us consider the Chevalley–Eilenberg complex of the Lie \mathcal{K} -algebra $\mathfrak{d}\mathcal{A}$ with coefficients in the ring \mathcal{A} , regarded as a $\mathfrak{d}\mathcal{A}$ -module. This complex contains a subcomplex $\mathcal{O}^*[\mathfrak{d}\mathcal{A}]$ of $\mathcal{Z}_{\mathcal{A}}$ -multilinear skew-symmetric maps $\phi: \stackrel{k}{\times} \mathfrak{d}\mathcal{A} \to \mathcal{A}$ with respect to the Chevalley–Eilenberg coboundary operator

$$d\phi(u_0, \dots, u_k) = \sum_{i=0}^k (-1)^i u_i(\phi(u_0, \dots, \widehat{u_i}, \dots, u_k)) + \sum_{i < j} (-1)^{i+j} \phi([u_i, u_j], u_0, \dots, \widehat{u_i}, \dots, \widehat{u_j}, \dots, u_k).$$

Its terms $\mathcal{O}^k[\mathfrak{d}\mathcal{A}]$ are two-sided \mathcal{A} -modules. In particular,

$$(da)(u) = u(a), \qquad a \in \mathcal{A}, \qquad u \in \mathfrak{d}\mathcal{A},$$
 (10)

$$\mathcal{O}^1[\mathfrak{d}\mathcal{A}] = \operatorname{Hom}_{\mathcal{Z}_A}(\mathfrak{d}\mathcal{A}, \mathcal{A}). \tag{11}$$

The graded module $\mathcal{O}^*[\mathfrak{d}\mathcal{A}]$ is provided with the product

$$\phi \wedge \phi'(u_1, ..., u_{r+s}) = \sum_{i_1 < \cdots < i_r; j_1 < \cdots < j_s} \operatorname{sgn}_{1 \cdots r+s}^{i_1 \cdots i_r j_1 \cdots j_s} \phi(u_{i_1}, ..., u_{i_r}) \phi'(u_{j_1}, ..., u_{j_s}).$$

This product obeys the relation

$$d(\phi \wedge \phi') = d(\phi) \wedge \phi' + (-1)^{|\phi|} \phi \wedge d(\phi'), \qquad \phi, \phi' \in \mathcal{O}^*[\mathfrak{d}\mathcal{A}],$$

and makes $\mathcal{O}^*[\mathfrak{d}\mathcal{A}]$ to a graded differential calculus over \mathcal{A} . This contains the graded differential subalgebra $\mathcal{O}^*\mathcal{A}$ generated by the elements da, $a \in \mathcal{A}$. One can show that

$$\mathfrak{d}\mathcal{A} = \operatorname{Hom}_{\mathcal{A}}(\mathcal{O}^*\mathcal{A}, \mathcal{A}). \tag{12}$$

In view of the relations (11) and (12), one can think of elements of $\mathcal{O}^1\mathcal{A}$ and $\mathfrak{d}\mathcal{A}$ in Remark 3 as being differential one-forms and vector fields in noncommutative geometry. A problem is that $\mathfrak{d}\mathcal{A}$ is not an \mathcal{A} -module. One can overcome this difficulty as follows [1].

Given a noncommutative K-ring A and a two-sided A-module Q, let d be a Q-valued derivation of A. One can think of Q as being a first degree term of a differential calculus over A. Let Q_R^* be the right A-dual of Q. It is a two-sided A-module:

$$(bu)(q) := bu(q), \qquad (ub)(q) := u(bq), \qquad \forall b \in \mathcal{A}, \qquad q \in Q.$$

One can associate to each element $u \in Q_{\mathbb{R}}^*$ the \mathcal{K} -module morphism

$$\widehat{u}: \mathcal{A} \in a \mapsto u(da) \in \mathcal{A}. \tag{13}$$

This morphism obeys the relations

$$\widehat{(bu)}(a) = bu(da), \qquad \widehat{u}(ba) = \widehat{u}(b)a + \widehat{(ub)}(a).$$
 (14)

One calls $(Q_R^*, u \mapsto \hat{u})$ the \mathcal{A} -right Cartan pair, and regards \hat{u} (13) as an \mathcal{A} -valued first order differential operator on \mathcal{A} [1]. Note that \hat{u} (13) need not be a derivation of \mathcal{A} and fails to satisfy Definition 3, unless u belongs to the two-sided \mathcal{A} -dual $Q^* \subset Q_R^*$ of Q.

Morphisms \hat{u} (13) are called into play in order to describe (left) vector fields in noncommutative geometry [1, 4].

For instance, if $Q = \mathcal{O}^1 \mathcal{A}$ in Remark 3, then au for any $u \in \mathfrak{d} \mathcal{A}$ and $a \in \mathcal{A}$ is a left noncommutative vector field in accordance with the relation (10).

Similarly the \mathcal{A} -left Cartan pair is defined. For instance, ua for any $u \in \mathfrak{d}\mathcal{A}$ and $a \in \mathcal{A}$ is a right noncommutative vector field.

If \mathcal{A} -valued derivation $u_1, \ldots u_r$ of a noncommutative \mathcal{K} -ring \mathcal{A} or the above mentioned noncommutative vector fields $\hat{u}_1, \ldots \hat{u}_r$ on \mathcal{A} are regarded as first order differential operators on \mathcal{A} , it seems natural to think of their compositions $u_1 \circ \cdots \circ u_r$ or $\hat{u}_1 \circ \cdots \circ \hat{u}_r$ as being particular higher order differential operators on \mathcal{A} . Turn to the general notion of a differential operator on two-sided \mathcal{A} -modules.

Let P and Q be regarded as left \mathcal{A} -modules [6]. Let us consider the \mathcal{K} -module $\operatorname{Hom}_{\mathcal{K}}(P,Q)$ provided with the left $\mathcal{A} - \mathcal{A}^{\bullet}$ module structure (1). We denote \mathcal{Z}_0 its center, i.e., $\delta_a \Phi = 0$ for all $\Phi \in \mathcal{Z}_0$ and $a \in \mathcal{A}$. Let $\mathcal{I}_0 = \overline{\mathcal{Z}}_0$ be the $\mathcal{A} - \mathcal{A}^{\bullet}$ submodule of $\operatorname{Hom}_{\mathcal{K}}(P,Q)$ generated by \mathcal{Z}_0 . Let us consider: (i) the quotient $\operatorname{Hom}_{\mathcal{K}}(P,Q)/\mathcal{I}_0$, (ii) its center \mathcal{Z}_1 , (iii) the $\mathcal{A} - \mathcal{A}^{\bullet}$ submodule $\overline{\mathcal{Z}}_1$ of $\operatorname{Hom}_{\mathcal{K}}(P,Q)/\mathcal{I}_0$ generated by \mathcal{Z}_1 , and (iv) the $\mathcal{A} - \mathcal{A}^{\bullet}$ submodule \mathcal{I}_1 of $\operatorname{Hom}_{\mathcal{K}}(P,Q)$ given by the relation $\mathcal{I}_1/\mathcal{I}_0 = \overline{\mathcal{Z}}_1$. Then we define the $\mathcal{A} - \mathcal{A}^{\bullet}$ submodules \mathcal{I}_r , $r = 2, \ldots$, of $\operatorname{Hom}_{\mathcal{K}}(P,Q)$ by induction as follows:

$$\mathcal{I}_r/\mathcal{I}_{r-1} = \overline{\mathcal{Z}}_r,\tag{15}$$

where \overline{Z}_r is the $A-A^{\bullet}$ module generated by the center Z_r of the quotient $\operatorname{Hom}_{\mathcal{K}}(P,Q)/\mathcal{I}_{r-1}$.

Definition 5. Elements of the submodule \mathcal{I}_r of $\operatorname{Hom}_{\mathcal{K}}(P,Q)$ are said to be left r-order Q-valued differential operators on a two-sided \mathcal{A} -module P [6].

Proposition 6. An element $\Delta \in \operatorname{Hom}_{\mathcal{K}}(P,Q)$ is a differential operator of order r in accordance with Definition 5 iff it is brought into a finite sum

$$\Delta(p) = b_i \Phi^i(p) + \Delta_{r-1}(p), \qquad b_i \in \mathcal{A}, \tag{16}$$

where Δ_{r-1} and $\delta_a \Phi^i$ for all $a \in \mathcal{A}$ are left (r-1)-order differential operators if r > 0 and they vanish if r = 0.

Proof. If r = 0, the statement is a straightforward consequence of Definition 5. Let r > 0. The representatives Φ_r of elements of \mathcal{Z}_r obey the relation

$$\delta_c \Phi_r = \Delta'_{r-1}, \quad \forall c \in \mathcal{A},$$
 (17)

where Δ'_{r-1} is an (r-1)-order differential operator. Then representatives $\overline{\Phi}_r$ of elements of $\overline{\mathcal{Z}}_r$ take the form

$$\overline{\Phi}_r(p) = \sum_i c_i' \Phi^i(c_i p) + \Delta_{r-1}''(p), \qquad c_i, c_i' \in \mathcal{A},$$

where Φ^i satisfy the relation (17) and Δ''_{r-1} is an (r-1)-order differential operator. Due to the relation (17), we obtain

$$\overline{\Phi}_r(p) = b_i \Phi^i(p) + \Delta'''_{r-1}(p), \qquad b_i = c_i c'_i, \qquad \Delta'''_{r-1} = -\sum_i c'_i \delta_{c_i} \Phi^i + \Delta''_{r-1}.$$
 (18)

Hence, elements of \mathcal{I}_r modulo elements of \mathcal{I}_{r-1} take the form (18), i.e., they are given by the expression (16). The converse is obvious.

If \mathcal{A} is a commutative ring, Definition 5 comes to Definition 2. Indeed, the expression (16) shows that $\Delta \in \operatorname{Hom}_{\mathcal{K}}(P,Q)$ is an r-order differential operator iff $\delta_a \Delta$ for all $a \in \mathcal{A}$ is a differential operator of order r-1.

Proposition 7. The set \mathcal{I}_r of r-order Q-valued differential operators on P is provided with the left and right $\mathcal{A} - \mathcal{A}^{\bullet}$ module structures.

Proof. This statement is obviously true for zero order differential operators. Using the expression (16), one can prove it for higher order differential operators by induction.

Let $P = Q = \mathcal{A}$. Any zero order differential operator on \mathcal{A} in accordance with Definition 5 takes the form

$$a \mapsto \sum_{i} c_i a c'_i, \quad c_i, c'_i \in \mathcal{A}.$$

Proposition 8. Let Δ_1 and Δ_2 be n- and m-order \mathcal{A} -valued differential operators on \mathcal{A} , respectively. Then their composition $\Delta_1 \circ \Delta_2$ is an (n+m)-order differential operator.

Proof. The statement is proved by induction as follows. If n=0 or m=0, it issues from the fact that the set of differential operators possesses both left and right $\mathcal{A} - \mathcal{A}^{\bullet}$ structures. Let us assume that $\Delta \circ \Delta'$ is a differential operator for any k-order differential operators Δ and s-order differential operators Δ' such that k+s < n+m. Let us show that $\Delta_1 \circ \Delta_2$ is a differential operator of order n+m. Due to the expression (16), it suffices to prove this fact when $\delta_a \Delta_1$ and $\delta_a \Delta_2$ for any $a \in \mathcal{A}$ are differential operators of order n-1 and m-1, respectively. We have the equality

$$\delta_a(\Delta_1 \circ \Delta_2)(b) = a(\Delta_1 \circ \Delta_2)(b) - (\Delta_1 \circ \Delta_2)(ab) = \Delta_1(a\Delta_2(b)) + (\delta_a\Delta_1 \circ \Delta_2)(b) - (\Delta_1 \circ \Delta_2)(ab) = (\Delta_1 \circ \delta_a\Delta_2)(b) + (\delta_a\Delta_1 \circ \Delta_2)(b),$$

whose right-hand side, by assumption, is a differential operator of order n + m - 1.

Any derivation $u \in \mathfrak{d}\mathcal{A}$ of a \mathcal{K} -ring \mathcal{A} is a first order differential operator in accordance with Definition 5. Indeed, it is readily observed that

$$(\delta_a u)(b) = au(b) - u(ab) = -u(a)b, \qquad b \in \mathcal{A},$$

is a zero order differential operator for all $a \in \mathcal{A}$. The compositions au, $u \bullet a$ (1), ua, $a \bullet u$ (5) for any $u \in \mathfrak{d}\mathcal{A}$, $a \in \mathcal{A}$ and the compositions of derivations $u_1 \circ \cdots \circ u_r$ are also differential operators on \mathcal{A} in accordance with Definition 5.

At the same time, noncommutative vector fields do not satisfy Definition 5 in general. First order differential operators by Definition 3 also need not obey Definition 5, unless P = Q = A.

By analogy with Definition 5 and Proposition 6, one can define right differential operators on a two-sided A-module P as follows.

Definition 9. Let P and Q be seen as right A-modules over a noncommutative K-ring A. An element $\Delta \in \operatorname{Hom}_{K}(P,Q)$ is said to be a right zero order Q-valued differential operator

on P if it is a finite sum $\Delta = \Phi^i b_i$, $b_i \in \mathcal{A}$, where $\overline{\delta}_a \Phi^i = 0$ for all $a \in \mathcal{A}$. An element $\Delta \in \operatorname{Hom}_{\mathcal{K}}(P,Q)$ is called a right differential operator of order r > 0 on P if it is a finite sum

$$\Delta(p) = \Phi^{i}(p)b_{i} + \Delta_{r-1}(p), \qquad b_{i} \in \mathcal{A}, \tag{19}$$

where Δ_{r-1} and $\overline{\delta}_a \Phi^i$ for all $a \in \mathcal{A}$ are right (r-1)-order differential operators.

Definition 5 and Definition 9 of left and right differential operators on two-sided Amodules are not equivalent, but one can combine them as follows.

Definition 10. Let P and Q be two-sided modules over a noncommutative K-ring A. An element $\Delta \in \operatorname{Hom}_{K}(P,Q)$ is a two-sided zero order Q-valued differential operator on P if it is either a left or right zero order differential operator. An element $\Delta \in \operatorname{Hom}_{K}(P,Q)$ is said to be a two-sided differential operator of order r > 0 on P if it is brought both into the form $\Delta = b_{i}\Phi^{i} + \Delta_{r-1}$, $b_{i} \in \mathcal{A}$, and $\Delta = \overline{\Phi}^{i}\overline{b}_{i} + \overline{\Delta}_{r-1}$, $\overline{b}_{i} \in \mathcal{A}$, where Δ_{r-1} , $\overline{\Delta}_{r-1}$ and $\delta_{a}\Phi^{i}$, $\overline{\delta}_{a}\overline{\Phi}^{i}$ for all $a \in \mathcal{A}$ are two-sided (r-1)-order differential operators.

One can think of this definition as a generalization of Definition 3 to higher order differential operators.

It is readily observed that two-sided differential operators described by Definition 10 need not be left or right differential operators, and *vice versa*. At the same time, \mathcal{A} -valued derivations of a \mathcal{K} -ring \mathcal{A} and their compositions obey Definition 10.

References

- [1] A.Borowiec, Vector fields and differential operators: Noncommutative case, Cech. J. Phys. 47 (1997) 1093; E-print arXiv: q-alg/9710006.
- [2] M.Dubois-Violette and T.Masson, On the first-order operators on bimodules, *Lett. Math. Phys.* **37** (1996) 467.
- [3] A.Grothendieck, *Eléments de Géométrie Algébrique IV*, Publ. Math. **32** (IHES, Paris, 1967).
- [4] P.Jara and D.Llena, Lie bracket of vector fields in noncommutative geometry, *E-print* arXiv: math.RA/0306044.
- [5] I.Krasil'shchik, V.Lychagin and A.Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations (Gordon and Breach, Glasgow, 1985).

[6] V.Lunts and A.Rosenberg, Differential operators on noncommutative rings, *Selecta Mathematica*, *New Series* **3** (1997) 335.