Autonomous Driving: Overview

Jan 6th, 2018 Sahil Narang

University of North Carolina, Chapel Hill

Autonomous Driving

- **↑** Autonomous vehicle: a motor vehicle that uses artificial intelligence, sensors and global positioning system coordinates to drive itself without the active intervention of a human operator
- → Focus of enormous investment [80+ bn USD as of 2017]

Autonomous Driving: Motivation

- → Cars are ubiquitous
 - 1 bn vehicles for a global population of ~7 bn [est. 2010]
- → Car accidents can result in catastrophic costs [NHTSA study 2010]
 - © 94% serious crashes are due to human error
 - © 594 bn USD due to loss/decrease in life quality
 - © 242 bn USD in economic activity
- **→** Health costs
 - → 33k fatalities, 2 million+ injuries in 5.4 million crashes in U.S. [2010]
 - → Premature deaths due to pollution inhalation

Autonomous Driving: Levels of Autonomy

- → 0: Standard Car
- → 1: Assist in some part of driving
 - Cruise control
- → 2: Perform some part of driving
 - O Adaptive CC + lane keeping
- → 3: Self-driving under ideal conditions
 - Human must remain fully aware
- → 4: Self-driving under near-ideal conditions
 - Human need not remain constantly aware
- → 5: Outperforms human in all circumstances

Autonomous Driving

→ Urban driving is particularly challenging

Figure 1. Complexity and operating velocity for various driving scenarios.

Structure

→ History of Autonomous Driving

→ Main Components

→ Other Approaches

→ Other Issues

Autonomous Driving: 1980's - 2010

- + 1980's
 - © Ernst Dickmann's VaMoRs
 - **©** CMU NavLab
- + 1990's
 - PROMETHEUS project: VaMP car
- +2000's
 - DARPA Grand Challenge 2004: 150 mile offroad coarse
 - DARPA Grand Challenge 2005: 132 mile offroad coarse
 - DARPA Grand Challenge 2007: 60 miles urban driving

Autonomous Driving: State of the Art Today

- → Mercedes Benz historic Bertha route in Germany
- **→** Tesla Autopilot System
- → Google's self-driving car (WayMo)

Structure

- **→** History of Autonomous Driving
- **→** Main Components
 - Perception
 - Planning
 - Control
- **→** Other Approaches
- **→** Other Issues

Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.

→ Perception

© collect information and extract relevant knowledge from the

environment.

Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.

→ Planning

• Making purposeful decisions in order to achieve the robot's higher order

goals

Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.

- **+** Control
 - © Executing planned actions

Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.

Structure

- **→** History of Autonomous Driving
- **→** Main Components
 - Perception
 - Planning
 - Control
- **→** Other Approaches
- **→** Other Issues

Autonomous Driving: Perception

- **→** Sensing Challenges
 - Sensor Uncertainty
 - Sensor Configuration
 - Weather / Environment

Autonomous Driving: Challenges in Perception

- **→** Sensor Misclassification
 - "When is a cyclist not a cyclist?"
 - When is a sign a stop sign?
 - Whether a semi or a cloud?

Autonomous Driving: Perception

- **→** Environmental Perception
 - **10** LIDAR
 - Cameras
 - Other approaches
 - **→**RADAR, Ultrasonic sensors
 - Fusion

→ Light Detection and Ranging

• Illuminate target using pulsed laser lights, and measure reflected pulses

using a sensor

- **→** LIDAR Challenges
 - Scanning sparsity
 - Missing points
 - Unorganized patterns
 - Knowledge gathering can be difficult

- **→** Data Representation
 - Point clouds
 - Features: lines, surfaces etc
 - © Grid based approaches

- **→** Knowledge Extraction
 - - **→**Edge based
 - **→**Region based
 - **→** Model based
 - **★**Attribute based
 - **→**Graph based
 - Classification

- **→** LIDAR in practice
 - Velodyne 64HD lidar

Autonomous Driving: Perception

- **→** Environmental Perception
 - **10** LIDAR
 - Cameras
 - Fusion
 - Other approaches
 - **→**RADAR, Ultrasonic sensors

- **→** Camera based vision
 - Road detection
 - **★**Lane marking detection
 - **→** Road surface detection
 - On-road object detection

→ Challenges in Lane Detection

- **→** Camera based vision
 - Road detection
 - **★**Lane marking detection
 - **→** Road surface detection
 - On-road object detection

- → Approaches to road surface detection
 - Feature-based
 - Deep learning
 - Direct pixel/block labelling
 - → High memory and computation
 - requirements
 - **→** Requires annotated data
 - **→**Black box

- **→** Camera based vision
 - Road detection
 - **★**Lane marking detection
 - **→** Road surface detection
 - On-road object detection

- → On-road object detection
 - Pedestrian, cyclists, other cars
- → Challenging due to the various types, appearances, shapes, and sizes of the objects

- → On-road object detection
 - Pedestrian, cyclists, other cars
- → Challenging due to the various types, appearances, shapes, and sizes of the objects
- → Deep learning methods are far superior

→ Mobileye

Autonomous Driving: Perception using Sensor Fusion

+ LIDAR

- 3D measurements
- Impervious to illumination changes
- Prone to noise
- Hard to extract knowledge
- **+** Cameras
 - Provide rich appearance details in 2D
 - Affected by illumination/ weather

Autonomous Driving: Vehicle Localization

- → Determining the pose of the ego vehicle and measuring its own motion
- **→** Fusing data
 - Satellite-based navigation system
 - Inertial navigation system
- → Map aided localization
 - **©** SLAM

Structure

- **→** History of Autonomous Driving
- **→** Main Components
 - Perception
 - Planning
 - Control
- **→** Other Approaches
- **→** Other Issues

→ Planning

• Making purposeful decisions in order to achieve the robot's higher order

goals

Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.

Autonomous Driving: Planning

- **→** Compare to Pedestrian Techniques:
 - Route Planning: road selection (global)
 - Path Planning: preferred lanes (global)
 - Maneuver-search: high level maneuvers (local)
 - Trajectory planning: Lowest level of planning (local)

Fig. 2. A flow chart of planning modules.

Autonomous Driving: Planning

Fig. 3. (a) Path planning, (b) manoeuvre planning and (c) trajectory planning (adapted from Lee and Vasseur (2014)).

Structure

- **→** History of Autonomous Driving
- **→** Main Components
 - Perception
 - Planning
 - Control
- **→** Other Approaches
- **→** Other Issues

Autonomous Driving: Control Planning

- **→** Convert plans into actions
 - Provide inputs to the hardware level to generate the desired motion
- **→** Common Approaches
 - Proportional-Integral-Derivative (PID) controller
 - Model Predictive Control (MPC)

Structure

→ History of Autonomous Driving

→ Main Components

♦ Other Approaches

→ Other Issues

Autonomous Driving: End-End Approaches

→ Nvidia PilotNet

Deep learning to directly map video frames to control

Structure

→ History of Autonomous Driving

→ Main Components

→ Other Approaches

♦ Other Issues

Autonomous Driving: Other Issues

- **→** Other challenges:
 - **10** Communication
 - Coordination
 - © Ethical Issues
 - **→**Trolley Problem

Autonomous Driving: Other Issues

- **→** Other challenges:
 - MIT "Moral Machine" [https://goo.gl/RL4pr5]

Autonomous Driving: Other Issues

- → Civil Engineering / Ethics
 - Traffic impacts?
 - → Pro: Vehicles should respond appropriately to traffic reducing jams
 - **→**Con: Many more vehicles per person possible
 - People may not own cars?
 - **→** Pro: Less emission? Less Traffic?
 - **→**Con: Less access?

Next Lecture

- → Modeling a car kinematics & dynamics
- **→** Motion Planning
- **→** Control
- → Modeling interactions with other vehicles
- → AutonoVi: simulation platform for autonomous driving

References

- ★ Katrakazas, C., Quddus, M., Chen, W. H., & Deka, L. (2015). Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. *Transportation Research Part C: Emerging Technologies*, 60, 416-442.
- → Pendleton, S. D., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y. H., ... & Ang, M. H. (2017). Perception, Planning, Control, and Coordination for Autonomous Vehicles. *Machines*, *5*(1), 6.
- → Paden, B., Čáp, M., Yong, S. Z., Yershov, D., & Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles. *IEEE Transactions on Intelligent Vehicles*, 1(1), 33-55.
- → Urmson, C., Baker, C., Dolan, J., Rybski, P., Salesky, B., Whittaker, W., ... & Darms, M. (2009). Autonomous driving in traffic: Boss and the urban challenge. AI magazine, 30(2), 17.
- ◆ Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L., & Muller, U. (2017). Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car. arXiv preprint arXiv:1704.07911.
- → MIT moral machine: http://moralmachine.mit.edu/
- → U.S. National Highway Transfprotation Safety Administration: https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

