

The Numerical Stability of Hyperbolic Representation Learning

Gal Mishne¹, Zhengchao Wan¹, Yusu Wang¹, and Sheng Yang²

¹University of California San Diego ²Harvard University

Introduction

- Distances grow exponentially in hyperbolic spaces \mathbb{H}^n
- Finite trees can be embedded into \mathbb{H}^n with arbitrarily low distortion¹
- Motivates hyperbolic embeddings for hierarchical datasets such as words and images
- Problem: highly <u>numerically unstable</u>; mysteriously better performance of Lorentz than Poincaré despite being isometric.

Poincaré vs Lorentz

- Identify the source of numerical instability in two popular isometric hyperbolic models, Lorentz \mathbb{L}^n and Poincaré \mathbb{B}^n
- Clarify comparative advantage of \mathbb{L}^n and \mathbb{B}^n
 - In **representation**, \mathbb{B}^n has a larger representation diameter: Poincaré can represent points accuately in a ball with radius of 38 whereas Lorentz has a radius of 19.
 - In **optimization**, \mathbb{L}^n suffers less severe gradient vanishing problem: for any small δ and $x \in \mathbb{B}^n : ||x|| = 1 - \delta$, we then have

$$\|\nabla_{\mathbb{B}^n} f(x)\| = \Omega\left(\delta^2 \|\nabla f(x)\|\right),$$

$$\|\nabla_{\mathbb{L}^n} g(\tilde{x})\| = O\left(\|\nabla f(x)\|\right).$$

Regions of Accurate Representation/Optimization

Euclidean Parametrization

- The exponential map is a natural parameterization of hyperbolic model
- No representation limitation
- Optimization performance is similar to the Lorentz model

$$\|\nabla h(z)\| = \Omega(\delta \|\nabla f(x)\|)$$

- Propose a new hyperbolic SVM method
- Lorentz SVM from [3] (LSVM)

$$\min_{w \in \mathbb{R}^{n+1}} \frac{1}{2} \|w\|_{\mathbb{L}^n}^2 + C \sum_{i=1}^n l_{\mathbb{L}^n} (-y_i[w, x_i])$$
s.t. $[w, w] > 0$

Proposed hyperbolic SVM (LSVMPP)

Image from [4]: exp/log map

Results

• Tree Embeddings: reparametrized model has the lowest distortion and largest diameter.

• SVM: parametrized model boosts genearlization performance in classification.

	~		
	algorithm	accuracy (%)	F1
CIFAR-10	ESVM	91.88 ± 0.00	0.9191 ± 0.00
	LSVM	91.88 ± 0.00	0.9189 ± 0.00
	PSVM	91.81 ± 0.00	0.9182 ± 0.00
	LSVMPP	91.96 ± 0.00	0.9197 ± 0.00
fashion-MNIST	ESVM	86.37 ± 0.00	0.8665 ± 0.00
	LSVM	71.59 ± 0.07	0.6588 ± 0.08
	PSVM	86.57 ± 0.00	0.8665 ± 0.00
	LSVMPP	$ 89.49 \pm 0.00 $	$\textbf{0.8955} \pm \textbf{0.00}$
paul	ESVM	55.05 ± 0.00	0.4073 ± 0.00
	LSVM	58.36 ± 0.07	0.4517 ± 0.00
	PSVM	55.25 ± 0.00	0.3802 ± 0.00
	LSVMPP	$\textbf{62.64} \pm \textbf{0.05}$	$\textbf{0.5024} \pm \textbf{0.00}$
krumsiek	ESVM	82.19 ± 0.00	0.6770 ± 0.00
	LSVM	85.62 ± 0.39	0.6933 ± 0.92
	PSVM	84.06 ± 0.00	0.6908 ± 0.00
	LSVMPP	$\textbf{86.25} \pm \textbf{0.00}$	$\textbf{0.7079} \pm \textbf{0.00}$

Acknowledgement

This work is partially supported by NSF under grants CCF-2112665, CCF- 2217058, and by NIH under grant RF1MH125317.

References

- Sarkar, Rik. "Low distortion delaunay embedding of trees in hyperbolic plane." International Symposium on Graph Drawing. Springer, Berlin, Heidelberg, 2011.
- Nickel, Maximillian, and Douwe Kiela. "Learning continuous hierarchies in the lorentz model of hyperbolic geometry." ICML. PMLR,
- Cho, H., DeMeo, B., Peng, J., and Berger, B. "Large-margin classification in hyperbolic space." AISTATS 2019.
- Simeoni, Matthieu Martin Jean-Andre. "Statistics on manifolds applied to shape theory." No. STUDENT. 2013.