Pervulescu Auisia CTi englesa An I grupa 3.1

The spring elastic constant evaluation

1. Purpose

The objective of the experiment is to determine the spring constant of a spiral spring using Hooke's law and the period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights, a weight hanger, a stop watch, and a lab scale.

2. Theory

A. Static method

We use a spiral spring with elastic constant k and undeformed length l_o and bodies with different mass.

Fig. 1.

When a spring is stretched, according to Hooke's law, a restoring force F proportional to its elongation, x (or $\Delta l = l - l_o$) appears. Every spring obeys the Hooke's law if the deformation is not too great.

$$\vec{F} = -k\vec{\Lambda}\vec{I} \tag{1}$$

For the equilibrium

$$\Rightarrow mg = k\Delta l \tag{2}$$

$$k = \frac{mg}{\Delta l} \tag{3}$$

B. Dynamic method

When we move the body connected to a spring from its equilibrium position it starts to oscillate around the equilibrium position under the action of restoring (elastic) force. With x the distance from equilibrium position the Newton's second law is:

$$ma = -kx$$
 (4)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{k}{m} x = 0 \tag{5}$$

We note $\omega = \sqrt{\frac{k}{m}}$ and we call it the natural angular frequency. The second Newton law for the spring (5) is a differential equation having the solution

Pirvulesa Ausia Siz cTi englesa An I grupa 3, s.

$$x(t) = A\sin(\omega t + \varphi) \tag{7}$$

The period for the harmonic oscillation is connected to the natural angular frequency throught:

$$\omega = \frac{2\pi}{T} \tag{8}$$

$$k = m\omega^2 = 4\pi^2 \frac{m}{T^2} \tag{9}$$

3. What to do

Static method

1) We measure the undeformed spring length lo.

2) We hang the weight hanger with mass m_1 on the spring and we measure the deformed spring length l_1 . We calculate the spring elongation Δl_1 .

3) Successively we hang weights (m_i) and we calculate corresponding spring elongations Δl_i.

4) Use the Table 1. for experimental data and calculate elastic constant using relation (3).

5) Plot the graph of force (the deformative force) produced by different masses $(F=m \cdot g)$ as a function of the displacement from equilibrium Δl : $F(\Delta l)$. The data should be linear. Hence, the slope of the line will be equal to the spring constant k according to the relation 2.

6) Final result: $k_{true} = \vec{k} \pm \sigma_{\vec{k}}$, where \vec{k} is the arithmetic mean and $\sigma_{\vec{k}}$ is the standard deviation of the mean.

$$\Delta k_{\ell} = k_{\ell} - \bar{k} \qquad \qquad \overline{\Delta k} = \frac{\sum |\Delta k_{\ell}|}{n} \qquad \qquad \sigma_{\bar{k}} = \sqrt{\frac{\sum_{1}^{n} (\Delta k_{\ell})^{2}}{n(n-1)}}$$

Table 1. $l_0 = 4/4$ cm

Nr. crt	m [kg]	l [cm]	Δ <i>l</i> [m]	<i>F</i> [N]	k [N/m]	k [N/m]	Δk . [N/m]	σ _k [N/m]	k _{true} [N/m]
1	0.05	50.5	0.065	0.49	7,538		0.4097	1 100	
2	0,066	53.5	0.095	0.64	30F. D		-0,3923		Ktone, 7,196
3	0.083	55	0.11	0.81	7.36		0.2317		~pae,
4	1,000	56.5	0 125	0.89	7.134	7,1283	0.0057	00000	Charles of Latitude
5	0.099	54.5	0.135	0.97	7.186	1,120-	0.0544	0,0686	1. 4 MO
6	0.105	58.5	0.145	1.029	7.006		-0.032		Kung 7,0599
7	0.154	62.5	0.185	1.313	4,0983	1 1 1 1 1 1	-0.00		2
8	0.178	68.5	0.245	1.744	7.12		-0.083		and the same of
9	0.207	73	0.20	2,028	6.995		-0:133	3, 198	Distriction of man
10	0.24	44.5	0,335	2.352	7.02		-0:1083	5324 4	W. A. P. P.

Dynamic method

1) Hang the weight hanger with several weights (mass m₁) on the spring and set the equilibrium position of the system.

2) Pull the system out of its equilibrium position to make oscillations with 1-2cm amplitude.

3) Record the time for n=20 oscilations and find the period: T = t/n.

4) Repeat 1), 2) and 3) for different masses.

5) Complete the Table 2 using relation (9) for elastic constant.

6) Plot the graph of $T^2(s^2)$ as function of m(kg). The data should be linear. Find elastic constant from the slope (i.e. $T^2 = \frac{4\pi^2}{k} m \iff y = \text{slope} \cdot x$).

7) Final result: $k_{true} = \overline{k} \pm \sigma_{\overline{k}}$, where \overline{k} is the arithmetic mean and $\sigma_{\overline{k}}$ is the standard deviation of the mean.

$$\Delta k_i = k_i - \bar{k}$$
 $\overline{\Delta k} = \frac{\sum |\Delta k_i|}{n}$ $\sigma_{\bar{k}} = \sqrt{\frac{\sum_{1}^{n} (\Delta k_i)^2}{n(n-1)}}$

Privalesar Ausia Asy cti engleso Au I grupa 3. S.

Nr. crt.	m [kg]	t [s]	п	T [s]	T ² (s ²)	k [N/m]	k [N/m]	Δk [N/m]	σ _k [N/m]	k _{true} [N/m]
1	0.06	6.834	12	0569	0.323	7,326		0,222		
2	0.09	2.602	12	10,716	0.512	6.932	1	-0, 1t2		K= 7/1
3	0.12	2. FH	12	0809	0.654	7,236	. /	0,132	0.0531	Moura!
4	0.15	11.1	12	0925	0.855	6,919	7,104	-0.185	01 001	У.
5	0.18	11.994	12	0.994	0.988	7.185		0,081		4mil to
6	0.21	12.885	12	1.073	1.151	7.195		0.001		2
7	0.24	13.955	12	1,162	1.35	7.011		-0,093		
8	0.2,7	14,77	12	1.231	1.515	4,028		1-0,076		

Compare the results obtained by the 2 methods, respectively by arithmetic and graphic mediation!!

Pinvuloren Anisia The dynamic method - calculus. 1) $T_1 = \frac{\pm 1}{m} = \frac{6,934}{12} = 0,5695$ 2) 1,2 = 0,569 · 0,569 = 0,3235 3) $\omega_0^2 = \frac{k_e}{m}$ $\omega_0 = \frac{2\pi}{7}$ $73r m_1 = 0.06 = k_1 = \frac{4\pi^2 m_1}{7^2} = \frac{4\cdot 3.14 \cdot 3.14 \cdot 0.06}{0.323} =$ 4) = 7,326 + 6,932 + 7,236 + 6,919 + 7,185 + 7,195 + 4,011 + 7,000 = 7,104 N/m 5) $\Delta k_1 = k_1 - k = 4,326 - 4,104 = 0,222 N/m$ 6) $\sqrt{k} = \sqrt{\frac{\sum_{i=0}^{m} (\Delta ki)^{2}}{m(m-i)}}$ $\sum_{i=0}^{m} (\Delta ki)^{2} = \frac{0,049 + 0,029 + 0,0174 + 0,034 + 0,0665 + 0,0082 + 0,0086}{7.8}$ 7.8 = 0,1584 = 0,00282 N/m => T== \q 00282 = 0,0531 N/m *) ktrae = K ± TE Kenne, = K + TE = 7,104 + 0,0531 = 7,1571 N/m K truez = K - TE = 7,104 - 0,0531 = 7,0509 N/m

