

E_{x} . 2. Prove $\lim_{x \to 0} x^2 + 6x - 9 = -9$
Let E>0 be given, let 8= Then if 0< x <8, we get
$ x^2 + 6x - 9 - (-9) = x^2 + 6x = x \cdot x + 6 $ $(8 x + 6 $
Say 8 & 1 : x & 8 & 1 -> - 1 & x & 1
Then 5 < x+6 < 7
Since 8 ± 1 $8 \times 161 \le 78 \le 7 \left(\frac{4}{7}\right) = 9$
$E_{x}.3$, $\lim_{x\to 3} \frac{x^2-6x+20}{x-5} = -11$
Let 9:0 be given Let 8 = min {1, 29/13} then if
0 < (x-3) < 8 we get
Then $9 \in 2x + 5 \le 13$ and $-3 \le x - 5 \le -1 \to 1 \le x - 5 \le 3$
$\frac{5 2x+5 }{2 x-5 } \le \frac{138}{2 x-5 } \le \frac{138}{2 x-5 } = \frac{138}{2} = \frac{13(29)}{2} = 9$