## MAC 0460 / 5832 Introduction to Machine Learning

09 - Is learning feasible ? (Replacing <math>M)

• •

IME/USP (12/05/2021)

## **RECAP**

**Our question:** Does  $E_{in}(h)$  say anything about  $E_{out}(h)$ ?

"bad" event (we would like to avoid it)

$$|E_{in}(h) - E_{out}(h)| > \epsilon$$

#### **RECAP** – Bounds

Probability of a "bad" event (fixed h)

(Hoeffding)

$$P(|E_{in}(h) - E_{out}(h)| > \epsilon) \le 2e^{-2\epsilon^2 N}$$

Probability of a "bad" event (g selected from a set of M hypothesis)

$$P(|E_{in}(g) - E_{out}(g)| > \epsilon) \le 2Me^{-2\epsilon^2N}$$

## RECAP - Our current discussion

$$P(\left|E_{in}(g) - E_{out}(g)\right| > \epsilon) \le 2Me^{-2\epsilon^2N}$$

<u>M</u> appears because of the <u>union bound</u>, which does not take the overlaps among the "bad" events into consideration

Can we find another bound that takes the overlaps into consideration?

(and also works for inifinite Hypothesis set?)

## **RECAP – 3 concepts**

Dicothomies /

Growth function /

Break point /

## **RECAP – Dicothomies**

- $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$  (N points)
- $oldsymbol{\cdot}$   $\mathcal{H}$  : a hypothesis space

## Dichotomies generated by $\mathcal{H}$ :

any bipartition of X as  $X_{-1} \cup X_{+1}$  that agrees with a hypothesis  $h \in \mathcal{H}$ 

$$\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N) = \left\{ \left( h(\mathbf{x}_1),h(\mathbf{x}_2),\ldots,h(\mathbf{x}_N) \right) \mid h \in \mathcal{H} \right\}$$

We know that  $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)| \leq 2^N$ 

## **RECAP – Growth function**

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \cdots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \cdots, \mathbf{x}_N)|$$

Perceptron 2D: 
$$m_{\mathcal{H}}(3) = 8 = 2^3$$
,  $m_{\mathcal{H}}(4) = 14 < 2^4$ 

Positive rays:  $m_{\mathcal{H}}(N) = N + 1$ 

Positive intervals:  $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ 

Convex sets:  $m_{\mathcal{H}}(N) = 2^N /$ 

## **RECAP** – Break point

If no dataset of size k can be shattered by  $\mathcal H$  then k is a break point for  $\mathcal H$ 

Perceptron 2D: k = 4 is a break point

14<2

**Positive rays**:  $m_{\mathcal{H}}(N) = N + 1$ , break point k = 2

**Positive intervals**:  $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ , break point k = 3

Convex sets:  $m_{\mathcal{H}}(N) = 2^N$ , break point  $k = +\infty$ 

#### Outline

ullet Proof that  $m_{\mathcal{H}}(N)$  is polynomial

• Proof that  $m_{\mathcal{H}}(N)$  can replace M

## Bounding $m_{\mathcal{H}}(N)$

To show: 
$$m_{\mathcal{H}}(N)$$
 is polynomial

We show: 
$$m_{\mathcal{H}}(N) \leq \cdots \leq \cdots \leq$$
 a polynomial

## Key quantity:

$$B(N,k)$$
: Maximum number of dichotomies on  $N$  points, with break  $oxdot{ ext{point }k}$ 

B(N, k): Maximum number of dichotomies on N points, with break point k

Example of last meeting: Supposing k=2 is a break point, we computed B(3, k=2)=4  $x_1 x_2 x_3$   $x_2 x_3$   $x_3 x_2 x_3$   $x_4 x_2 x_3$   $x_5 x_4 x_5$   $x_5 x_5 x_5$ 

(If we know k = 2 is a break point, then for N = 3 only 4 dicothomies out of  $2^3$  can be generated)

Computing B(N, k) is too troublesome

Let us bound B(N, k)!

## Recursive bound on B(N, k)

Consider the following table:



$$B(N, 2) = \alpha + 2\beta = \alpha + \beta + \beta \leq \beta + \beta$$

## Estimating $\alpha$ and $\beta$

Focus on  $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{N-1}$  columns:

$$\alpha + \beta \leq B(N-1,k)$$

$$\alpha + \beta > B(N-1, 2)$$

|  |  | N         |                |                |   |                    |     |
|--|--|-----------|----------------|----------------|---|--------------------|-----|
|  |  | # of rows | $\mathbf{x}_1$ | $\mathbf{x}_2$ |   | $\mathbf{x}_{N-1}$ |     |
|  |  | œ         | +1             | +1             |   | +1                 | +1  |
|  |  |           | -1             | +1             |   | +1                 | -1  |
|  |  |           | :              | 1              | 1 | : 1                |     |
|  |  |           | +1             | -1             |   | -1                 |     |
|  |  |           | -1             | +1             |   | -1                 | +1  |
|  |  | β         | +1             | -1             |   | +1                 | +1  |
|  |  |           | -1             | -1             |   | +1                 | +1  |
|  |  |           | :              | 1              | 1 | 1                  | - 1 |
|  |  |           | +1             | -1             |   | +1                 | +1  |
|  |  |           | -1             | -1             |   | -1                 | +1  |
|  |  | β         | +1             | -1             |   | +1                 | -1  |
|  |  |           |                |                |   |                    |     |
|  |  |           |                |                |   |                    |     |
|  |  |           |                |                |   |                    |     |
|  |  |           |                |                |   |                    |     |

## Estimating $\beta$ by itself

Now, focus on the  $S_2 = S_2^+ \cup S_2^-$  rows:

$$\beta \leq B(N-1,k-1)$$



|                       |   | $\mathbf{x}_1$       |                           | $\mathbf{x}_{N-1}$            |                           |     |
|-----------------------|---|----------------------|---------------------------|-------------------------------|---------------------------|-----|
|                       | α | +1<br>-1<br>-1<br>-1 | +1<br>b-1<br>-1<br>-1     | <br>+1<br>+1<br>:<br>-1<br>-1 | +1<br>-1<br>-1<br>+       | ×μ  |
| $\int\limits_{S_2^+}$ | ß | +1<br>-1<br>+1<br>-1 | -1<br>-1<br>:<br>-1<br>-1 | <br>+1<br>+1<br>:<br>+1<br>-1 | +1<br>+1<br>:<br>+1<br>+1 | ( ) |
| $S_2^-$               | β | +1<br>-1<br>+1<br>-1 | -1<br>-1<br>-1<br>-1      | <br>+1<br>+1<br>:<br>+1<br>-1 | -1<br>-1<br>:<br>-1<br>-1 |     |

6/18

## Putting it together

$$B(N,k) = \alpha + 2\beta$$

$$\alpha + \beta \le B(N-1,k)$$

$$\beta \le B(N-1,k-1)$$

| $B(N,k) \le$          |   |
|-----------------------|---|
| B(N-1,k) + B(N-1,k-1) | , |

|   |       |         | # of rows | $\mathbf{x}_1$ | $\mathbf{x}_2$ |   | $\mathbf{x}_{N-1}$ | $\mathbf{x}_N$ |
|---|-------|---------|-----------|----------------|----------------|---|--------------------|----------------|
|   |       |         |           | +1             | +1             |   | +1                 | +1             |
|   |       |         |           | -1             | +1             |   | +1                 | -1             |
|   |       | $S_1$   | $\alpha$  | ÷              | 1              | 1 | 1                  | 1              |
|   |       |         |           | +1             | -1             |   | -1                 | -1             |
|   |       |         |           | -1             | +1             |   | -1                 | +1             |
|   |       |         |           | +1             | -1             |   | +1                 | +1             |
|   |       |         |           | -1             | -1             |   | +1                 | +1             |
|   |       | $S_2^+$ | β         | :              |                | 1 |                    | 1              |
| 7 |       |         |           | +1             | -1             |   | +1                 | +1             |
| ı | $S_2$ |         |           | -1             | -1             |   | -1                 | +1             |
| ı | ~2    |         |           | +1             | -1             |   | +1                 | -1             |
| ı |       |         |           | -1             | -1             |   | +1                 | -1             |
| ı |       | $S_2^-$ | β         | 1              | 1              | 1 | 1                  | 1              |
| ١ |       |         |           | +1             | -1             |   | +1                 | -1             |
| ı |       |         |           | -1             | -1             |   | -1                 | -1             |
| • |       |         |           |                |                |   |                    |                |

# Numerical computation of B(N, k) bound



B(N, K=1)

8/18

## Analytic solution for B(N,k) bound

$$B(N,k) \le B(N-1,k) + B(N-1,k-1)$$

Theorem:



1. Boundary conditions: easy



## 2. The induction step

$$\sum_{i=0}^{k-1} \binom{N}{i} = \sum_{i=0}^{k-1} \binom{N-1}{i} + \sum_{i=0}^{k-2} \binom{N-1}{i}$$

$$= 1 + \sum_{i=1}^{k-1} \binom{N-1}{i} + \sum_{i=1}^{k-1} \binom{N-1}{i-1}$$

$$= 1 + \sum_{i=1}^{k-1} \left[ \binom{N-1}{i} + \binom{N-1}{i-1} \right]$$

$$= 1 + \sum_{i=1}^{k-1} \binom{N}{i} = \sum_{i=1}^{k-1} \binom{N}{i}$$

## It is polynomial!

For a given  $\mathcal{H}$ , the break point k is fixed



C P Creator: Yaser Abu-Mostafa - LFD Lecture 6

#### Three examples

$$\sum_{i=0}^{k-1} \binom{N}{i} \quad \blacktriangleleft$$

•  $\mathcal{H}$  is **positive rays**: (break point k=2)

$$m_{\mathcal{H}}(N) = N + 1 \le N + 1$$

ullet  ${\cal H}$  is positive intervals: (break point k=3)

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \le \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

ullet  $\mathcal H$  is 2D perceptrons: (break point k=4)

$$m_{\mathcal{H}}(N) = ? \le \frac{1}{6}N^3 + \frac{5}{6}N + 1$$

When there is a break point k, the effective number of hypothesis is bounded by a polynomial of order  $N^{k-1}$ 

#### Outline

ullet Proof that  $m_{\mathcal{H}}(N)$  is polynomial

ullet Proof that  $m_{\mathcal{H}}(N)$  can replace M

#### What we want

Instead of:

$$\mathbb{P}[\;|E_{ ext{in}}(g)-E_{ ext{out}}(g)|>\epsilon\;]\;\leq\;2$$
  $M$   $e^{-2\epsilon^2N}$ 

We want:

$$\mathbb{P}[\;|E_{\mathrm{in}}(g)-E_{\mathrm{out}}(g)|>\epsilon\;]\not=2\underbrace{\begin{array}{c}m_{\mathcal{H}}(N)\\ & \end{array}}e^{-2\epsilon^2N}$$

## Pictorial proof @

ullet How does  $m_{\mathcal{H}}(N)$  relate to overlaps?

ullet What to do about  $E_{
m out}$ ?

• Putting it together





- The canvas is the space of all possible datasets of size N
- Each point in the canvas is a dataset of size N
- Given a hypothesis h, one can compute  $E_{in}(h)$  with respect to each dataset
- The red points are the "bad" events for h (i.e.,  $|E_{in}(h) E_{out}(h)| > \epsilon$ )
- According to Hoeffding the probability of "bad" event of h is bounded (thus only a small area of the canvas is painted red)

## **Union Bound**



- When we have multiple hypothesis, we should consider the probability of "bad" events associated to all of them
- Each color in the canvas corresponds to points that are the "bad" events for a specific h (i.e.,  $|E_{in}(h) E_{out}(h)| > \epsilon$ )
- Since we are considering the union bound (no overlaps between "bad" events) a large area of the canvas is colored (as "bad" events)

12



 It is very reasonable to think that one dataset corresponds to a "bad" event for multiple hypothesis

• For instance, the two separating lines could have  $E_{in} = 0$  and both have large error (the same dataset corresponds to a "bad" event for both)



 Considering the overlaps, the canvas painting should look like the one at the left, suggesting a bound larger than the original Hoeffding bound but much smaller than the union bound Many hypotheses share the same dichotomy on a given  $\mathcal{D}$ , since there are finitely many dichotomies even with an infinite number of hypotheses. Any statement based on  $\mathcal{D}$  alone will be simultaneously true or simultaneously false for all the hypotheses that look the same on that particular  $\mathcal{D}$ . What

The growth function "groups hypotheses" according to their behavior on D

This establishes the link between overlaps and dicothomies



The event  $|E_{in}(h) - E_{out}(h)| > \epsilon$  depends not only on D, but also on the entire space  $\mathcal{X}$ 

Since we are "grouping" hypotheses based on their behavior on D, how do we deal with  $E_{out}(h)$  ??

## D'D'

## What to do about $E_{ m out}$



## **VC** inequality

$$P(|E_{in}(g) - E_{out}(g)| > \varepsilon) \le 2 \, \underline{m_{\mathcal{H}}(N)} \, e^{-2\varepsilon^2 N}$$

$$P(|E_{in}(g) - E_{out}(g)| > \varepsilon) \le 4 \, \underline{m_{\mathcal{H}}(2N)} \, e^{-\frac{1}{8}\varepsilon^2 N}$$

## 2**N**:

- hypotheses are grouped based on their behavior on D, but their behavior outside D is not the same
- to track  $|E_{in}(h) E_{out}(h)| > \epsilon$ , we track  $|E_{in}(h) E'_{in}(h)| > \epsilon$  (relative to D and D', both of size N)

## 4 and $\frac{1}{8}$ :

• these are factors to account for the uncertainties added when we replace  $|E_{in}(h)-E_{out}(h)|>\epsilon$  with  $|E_{in}(h)-E'_{in}(h)|>\epsilon$ ,

## **Summary**

- The growth function (counts number of dichotomies) is polynomially bounded if  ${\cal H}$  has a break point
- ullet The growth function can replace M
- Main result: VC inequality

$$P(|E_{in}(g) - E_{out}(g)| > \varepsilon) \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\varepsilon^2 N}$$

Again, we have a bound that can be made small enough by taking a sufficiently large  ${\it N}$ 

Next meeting: (i) Do we need to have the growth function?
 (ii) Sample complexity