

프론트 엔드 개발자가 알아야 하는 컴퓨터 공학 지식 컴퓨터 구조

컴퓨터 구조 | 프론드 엔드 개발자가 알아야 하는 CS 지식

강사 나동빈

프론트 엔드 개발자가 알아야 하는 컴퓨터 공학 지식 컴퓨터 구조 컴퓨터 공학 지식

컴퓨터 구조

중앙처리 장치(CPU)

컴퓨터 공학 지식 컴퓨터 구조

- 메인 보드에 가장 먼저 연결하는 장치 중 하나다.
- CPU는 컴퓨터의 구성 요소 중에서 <u>인간의 뇌와 같은 역할을 수행</u>한다.
- ① 연산(computation)과 ② 제어(control)를 담당한다.

중앙처리 장치(CPU)

- 일반적인 CPU는 기본적으로 3가지 모듈로 구성되며, 서로 내부 버스로 연결되어 있다.
- 1. 산술/논리 장치(Arithmetic Logic Unit, **ALU**)
- 2. 제어장치(Control Unit)
- 3. 레지스터(Register)

컴퓨터 공학 지식 컴퓨터 구조

일반적인 하드웨어 구성요소

레지스터(Register)

- 기본적으로 프로세스는 메인 메모리에 적재된다.
- 실제 연산은 CPU 내부에서 수행되므로, 데이터를 CPU로 가져와 처리해야 한다.
- 1. 데이터를 일시적으로 CPU 내부에 저장할 공간이 **레지스터(register)**다.
- 2. 레지스터는 CPU의 현재 상태(state)를 저장할 공간으로 사용되기도 한다.

산술/논리 연산 장치(ALU)

컴퓨터 공학 지식 컴퓨터 구조

- CPU가 실질적으로 연산을 처리할 수 있도록 한다.
- 산술 연산(+, -, *, / 등) 및 논리 연산(AND, OR, XOR 등)을 수행할 수 있다.
- 컴퓨터 내에서 매우 빠른 연산 장치다.

제어 장치(Control Unit)

- 메인 메모리에 적재된 처리해야 할 **데이터를 해석**하고, 적절한 <u>제어 신호를 생성</u>한다.
- ALU에게 연산 수행을 명령할 수 있다.
- 메인 메모리에 대한 **읽기(read)/쓰기(write) 등의 제어 명령을** 내린다.

프로그램 수행 절차

- 프로그램을 실행한 상황을 가정하자.
- 보조 기억 장치(하드 디스크)에 있는 프로그램이 메인 메모리로 적재된다.
- 메인 메모리로 올라간 프로그램의 코드(code) 영역의 명령어를 읽어 명령을 수행한다.
- 일반적으로 아래의 명령어 수행 사이클(cycle)을 반복하게 된다.
- 1. 명령어 인출(fetch): 메인 메모리에서 수행할 명령어를 레지스터로 가져온다.
- 2. 명령어 해석(decode): 명령어 정보를 해석한다.
- 3. 명령어 실행(execute): 제어 장치가 명령어 수행을 위한 적절한 제어 신호를 보내 실행하도록 한다.