11) Numéro de publication:

0 076 186

A₁

12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 82401668.7

(5) Int. Cl.3: G 01 B 7/26

(22) Date de dépôt: 14.09.82

30 Priorité: 24.09.81 FR 8118042

(43) Date de publication de la demande: 06.04.83 Bulletin 83/14

84 Etats contractants désignés: DE GB IT NL SE (1) Demandeur: THOMSON-CSF 173, Boulevard Haussmann F-75379 Paris Cedex 08(FR)

(2) Inventeur: Papuchon, Michel
THOMSON-CSF SCPI 173, bld Haussmann
F-75379 Paris Cedex 08(FR)

(72) Inventeur: Bourbin, Yannic THOMSON-CSF SCPI 173, bld Haussmann F-75379 Paris Cedex 08(FR)

(72) Inventeur: Kayoun, Pierre THOMSON-CSF SCPI 173, bld Haussmann F-75379 Paris Cedex 08(FR)

(Sa) Procédé de couplage entre fibres optiques monomodes.

(5) L'invention concerne un procédé de couplage entre deux fibres optiques monomodes F₁ et F₂.

Pour diminuer l'importance pour le couplage de l'erreur transversale, qui est la distance entre les axes z_1 et z_2 des fibres F_1 et F_2 , dans les plans terminaux π_1 , π_2 , on étire les extrémités des deux fibres F_1 et F_2 . On augmente ainsi l'extension des deux modes dans les fibres.

Application aux télécomunications optiques.

FIG.2

EP 0 076 186 A1

PROCEDE DE COUPLAGE ENTRE FIBRES OPTIQUES MONOMODES

L'objet de la présente invention est un procédé de couplage entre fibres optiques monomodes.

Les fibres optiques monomodes sont utilisées pour les télécommunications optiques, parce qu'elles permettent la propagation de signaux avec des bandes passantes dépassant le gigahertz. Pour ces applications, il est nécessaire de pouvoir connecter deux fibres pour réaliser une ligne. Par ailleurs, certains composants utilisés en télécommunications optiques, tels que les modulateurs, ou les détecteurs, ont une terminaison en fibre optique, qu'il faut connecter à une fibre de ligne.

Ces connexions ne doivent introduire que des faibles pertes et il faut donc obtenir un bon couplage entre fibres.

Les dispositifs connus de connexion de fibres optiques monomodes ' permettent de rapprocher les extrémités planes des deux fibres et de les' orienter pour obtenir un bon couplage.

Le rayon du coeur d'une fibre ne propageant qu'un seul mode, n'est que de quelques microns. Le mode fondamental propagé a sensiblement une répartition gaussienne du champ électrique. La distance Wn (paramètre de répartition) par rapport à l'axe de la fibre, pour laquelle ce champ électrique tombe à 1/e par rapport à sa valeur sur l'axe, est également de l'ordre de quelques microns. 20

Pour que deux fibres soient bien couplées il faut rendre minimales trois erreurs possibles: l'erreur transversale, l'erreur longitudinale et l'erreur d'orientation. Or, on maîtrise cette dernière avec une précision surabondante par l'utilisation de dispositifs en forme de V. Il reste donc à rendre les deux autres erreurs inférieures à une valeur de l'ordre du micron-

La présente invention, permet de simplifier le procédé de couplage de deux fibres par rapport à l'art antérieur.

Brièvement c'est un procédé de couplage entre fibres monomodes à variation continue d'indice propageant un mode de répartition de champ 30 électrique sensiblement gaussien de paramètre de répartition W_n, caractérisé en ce qu'il comporte une étape préliminaire au cours de laquelle les fibres sont traitées, sur leurs parties terminales destinées à être couplées, de

5

10

15

façon à obtenir sur leurs faces terminales un paramètre W_0^1 supérieur à W_0 et que ce traitement des parties terminales consiste à les chauffer pour obtenir une migration des dopants ayant pour effet de modifier sur ces parties de façon prédéterminée les valeurs de W_0^1 .

D'autres caractéristiques et avantages ressortiront de la description qui va suivre, illustrée par les figures qui représentent:

- figure 1, deux fibres couplées suivant l'art antérieur;
- figure 2, deux fibres couplées suivant l'invention;
- figure 3 et 4, des schémas montrant l'avantage de l'invention;
- figure 5, une courbe montrant la variation du paramètre de répartition du mode fondamental en fonction du rayon du coeur d'une fibre monomode.

On peut distinguer entre fibres monomodes à indice de réfraction à variation continue ou à variation brusque.

Pour les fibres à indice de réfraction à variation brusque, on a, si r est la distance à l'axe z de la fibre et n(r) l'indice de réfraction:

$$n(r) = n(g)$$
 pour $r \ge a$
 $n(r) = n(g) + \Delta n$ pour $r < a$ (1)
avec $\Delta n = n^{(c)} - n^{(g)}$ et

n(g) et n(r) étant les indices de réfraction de la gaine et du coeur et \underline{a} étant le rayon du coeur, Δn est appelé aussi "saut d'indice".

Pour les fibres à indice de réfraction continu, n(r) est donné par la relation suivante (où on suppose que n(r) est gaussien):

$$n(r) = n(g) + \Delta n \exp -r^2/a^2$$
 (2)

Pour simplifier on appellera par la suite a le rayon du coeur et Δ n la variation d'indice pour les deux sortes de fibres, les mêmes lois de propagation s'appliquant pratiquement dans ces deux cas (1) et (2).

Dans le cas où la variation d'indice est discontinue on peut montrer que pour, qu'une fibre soit monomode, il faut que:

30
$$V < 2,4$$
 (3)
avec $V = \frac{a2\pi}{\lambda} \sqrt{2n\Delta n}$ (4)
où λ est la longueur d'onde.

Le mode fondamental, qui seul peut se propager si la relation (3) est remplie, est pratiquement tel que:

5

20

25

$$E(r) = \exp - r^2/W_0^2$$

où E(r) est le champ électrique, W_0 est sensiblement donné, pour une répartition gaussienne par la relation :

$$W_0 = a/(V-1)^{1/2}$$
 (5)

5 où V est donné par (4)

20

Par contre pour une variation brusque de l'indice, \mathbb{W}_0 est donné par :

$$W_0 = \frac{a}{Ln(V^2)}$$

La figure 1 montre deux fibres monomodes F_1 et F_2 , ayant des coeurs C_1 et C_2 de rayons a_1 et a_2 d'axes a_1 et a_2 .

Pour bien coupler les deux fibres F_1 et F_2 il faut que l'angle θ entre les plans terminaux π_1 et π_2 soient faibles et réduire les erreurs longitudinales et transversales.

Si l'on suppose négligeable l'erreur longitudinale, le coefficient de couplage y entre les fibres est donné par la relation:

$$Y = \iint E_1(x,y) E_2(x,y) dxdy|^2$$
 (6)

où E_1 (x,y) et E_2 (x,y) sont les valeurs normalisées des champs électriques des modes dans les deux fibres, l'intégration se faisant dans le plan π_1 .

 \hat{S}_{i} θ est négligeable, les fonctions E_{1} (x, y) et E_{2} (x,y) sont réelles.

A titre d'exemple pour deux fibres identiques ayant toutes les deux le même paramètre W_0 et si l'on suppose θ négligeable, le coefficient de couplage λ donné par (6) est tel que :

 $\gamma = \exp - \alpha^{2}/W_{0}^{2}$ a étant l'erreur de positionnement transversal.

Ainsi si l'on prend $\alpha=1~\mu m$ on trouve pour $W_0=3~\mu m$ et pour $W_0=6~\mu m$, respectivement des valeurs de γ exprimées en dB de 0,48 et de 0,12.

On a illustré les résultats respectifs d'une même erreur α de positionnement transversal à l'aide des figures 3 et 4. Sur la figure 3 on a représenté deux cercles G_1 et G_2 de rayons :

$$W_0 = 3 \mu m$$

dont les centres 0_1 et 0_2 sont séparés par une distance égale à l'erreur α de

positionnement transversal. La surface hachurée est la surface commune aux deux cercles. On matérialise ainsi la portion d'énergie transmise d'une face terminale à celle qui lui est couplée.

Sur la figure 4, on a représenté deux cercles analogues G_1 et G_2 de rayons égaux à :

$$W_0 = 6 \mu m$$

ayant leurs centres 0₁ et 0₂ distants de la même quantité α. La surface hachurée commune aux deux cercles est relativement plus importante, ce qui apparaît mieux en comparant les surfaces des lunules non hachurées.

10 Ceci explique l'amélioration du coefficient de couplage dans le cas de la figure 4.

Selon une première méthode, on étire la fibre optique selon un mode opératoire très proche du tirage de la fibre à partir d'une préforme, celle-ci étant remplacée par la fibre elle-même en amont de la partie terminale

Sur la figure 5 on a représenté la variation de W₀ en sortie en fonction du rayon du coeur de sortie a¹ pour une variation de l'indice conforme à la relation (5).

Les caractéristiques de la fibre optique et de la lumière transmise sont les suivantes :

5

Si l'on fait varier le rayon du coeur, par l'une des méthodes décrites ci-25 après, par exemple entre les valeurs 3 et 1,5 microns correspondant aux abscisses des points M₁ et M₂ de la courbe de la figure 5, seul le segment curviligne M₁ et M₂ de cette courbe correspond à une réalité physique, le reste de la courbe étant théorique.

Typiquement ces parties terminales P₁¹, P₂¹ ont des longueurs de 100λ.

30 Pour réaliser ces parties P₁¹ et P₂¹, on utilise le dispositif de traction de la machine de tirage, en chauffant la fibre optique à une certaine distance de sa partie terminale, par exemple à l'aide d'un chalumeau oxhydrique. A titre d'exemple, le dispositif de traction est réglé à une vitesse très lente de 80μmpar seconde.En cinq secondes, on obtient un cône de 400μm de

longueur, le diamètre externe de la fibre passant par exemple de 125 µm à environ 60 µm. Le rayon du coeur, qui lui est homothétique, passe de 3 à environ 1,5 microns. On sectionne la fibre au point de diamètre correspondant à la valeur désirée pour le rayon de coeur.

Selon une deuxième méthode, on chauffe la partie terminale de la fibre optique à une température de 800°C à 1200°C pendant une durée de 24 à 48 heures. La durée optimale peut être déterminée par tâtonnements, le résultat étant contrôlable puisqu'on sait mesurer sur une face terminale de fibre optique l'intensité de lumière en différents points et par conséquent en déduire la valeur du paramètre W_0 . L'explication théorique de l'efficacité de cette deuxième méthode est la suivante : le chauffage à une température, de l'ordre de celles qui ont été indiquées ci-avant, produit une migration d'une partie du dopant du coeur vers la périphérie de la fibre. Il en résulte une modification du gradient d'indice aboutissant à une augmentation de la valeur du rayon du coeur de la fibre optique. On sectionne la fibre au point de chauffage pour obtenir la face terminale de paramètre désiré.

5

REVENDICATIONS

1. Procédé de couplage entre fibres monomodes (F_1, F_2) à variation continue d'indice propageant un mode de répartition de champ électrique sensiblement gaussien de paramètre de répartition W_0 , caractérisé en ce qu'il comporte une étape préliminaire au cours de laquelle les fibres (F_1, F_2) sont traitées, sur leurs parties terminales (P_1^1, P_2^1) destinées à être couplées, de façon à obtenir sur leurs faces terminales un paramètre W_0^t supérieur à W_0 et que ce traitement des parties terminales (P_1^1, P_2^1) consiste à les chauffer pour obtenir une migration des dopants ayant pour effet de modifier sur ces parties de façon prédéterminée les valeurs de W_0^t .

FIG.3

FIG. 4

F16.5

RAPPORT DE RECHERCHE EUROPEENNE

0.04261266

EP 82 40 1668

Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes			endication ncernée	CLASSEMENT DE LA DEMANDE (Int. Cl. ²)		
х			1.	, 2	G 02	В	7/26
Х		= 2, ligne 56 - ne 26; colonne 3,	1	-3			,
х	13-23,32-44; co.	(R.B.DYOTT et nne 2, lignes lonne 2, ligne 55 ligne 31; figures	1	,2	DOMAIN! RECHEF		
A	GB-A-2 033 099 *Résumé; page figure 3*	- (S.T.C.LTD.) 1, lignes 93-101;	1		G 02 H 04		7/26 9/00
P,A	connectors: 1 still a challe "Figures" "Trans	1981, pages Mn, (USA); us on fiber-optic ow-cost linking nge". *Page 257, fer molded align- jewel alignment"*	1				
L	e present rapport de recherche a été é						
	Lieu de la recherche LA HAYE	Date d'achèvement de la recherche 01–12–1982		Examinateur BEAVEN G.L.			

: 0 Form 1503 03

X : particulièrement pertinent à lui seul
Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
A : arrière-plan technologique
O : divulgation non-écrite
P : document intercalaire

E: document de brevet anterieur, ma date de dépôt ou après cette date D: cité dans la demande L: cité pour d'autres raisons

& : membre de la même famille, document correspond:

RAPPORT DE RECHERCHE EUROPEENNE

QQZ£12£

EP 82 40 1668

	DOCUMENTS CONS			ITS	Page 2
Catègorie	Citation du document des pa	avec indication, en cas arties pertinentes	de besoin,	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl. ²)
A	APPLIED OPTICS, juin 1976, page York (USA); E.GARMIRE et a two-dimensional waveguides in *Page 1394, cligne 4 - pag gauche, ligne 7	s 1394-139 1.: "Zinc- n-type clonne de e 1395, co	7, New divvused optical GaAs". droite,	1,3	
А	US-A-3 802 761 et al.) *Résumé; colonn figures 1-5*			1,3	
					•
					DOMAINES TECHNIQUE RECHERCHES (Int. CL.)
					·
					•
Le p	resent rapport de recherche a ete é	tabli pour toules les rev	endications		
	Lieu de la recherche LA HAYE	Date d achévemen		BEAUEN	Examinateur
Y : parti	CATEGORIE DES DOCUMEN iculièrement pertinent à lui set iculièrement pertinent, en comi e document de la même catego tre-plan technologique	IS CITES	T: théorie ou pr E: document de	e brevet anterie it ou après cetti temande	e de l'invention ur, mais publié à la

	•			•
•				*
		•	•	
				1 1 2
				·
				·
			·	
				•
				,