

CSSE 230 Day 12

Height-Balanced Trees

After today, you should be able to...

- ...give the minimum number of nodes in a height-balanced tree
- ...explain why the height of a height-balanced trees is O(log n)
- ...help write an induction proof

Today's Agenda

- Announcements
 - EditorTrees team preferences due tonight
 - Exam 2 (programming only) in class on Monday (day 14)

- Another induction example
- Recap: The need for balanced trees
- Analysis of worst case for height-balanced (AVL) trees

A useful result... by way of induction

- Recall our definition of the Fibonacci numbers:
 - $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$
- Prove the closed form:
- 7.8 Prove by induction the formula

$$F_N = \frac{1}{\sqrt{5}} \left(\left(\frac{(1+\sqrt{5})}{2} \right)^N - \left(\frac{1-\sqrt{5}}{2} \right)^N \right)$$

Recall: How to show that property P(n) is true for all $n \ge n_0$:

- (1) Show the base case(s) directly
- (2) Show that if P(j) is true for all j with $n_0 \le j < k$, then P(k) is true also

Details of step 2:

- a. Fix "arbitrary but specific" $k \ge$ _____.
- b. Write the induction hypothesis: assume P(j) is true $\forall j : n_0 \le j < k$
- c. Prove P(k), using the induction hypothesis.

4	Α	В	С	D	E
1		1/SQRT(5) =	0.447213595		
2		(1 + SQRT(5))/2 =	1.618033989		
3		(1 - SQRT(5))/2 =	-0.618033989		
4					
5			Fibonacci		Fibonacci
6			Open Form		Closed Form
7	n	f _n =	$f_{n-1} + f_{n-2}$		C\$1*(POWER(C\$2,n) - POWER(C\$3,n))
8					
9	0	f0 =	0		0
10	1	f1 =	1		1
11	2	f2 =	1		1
12	3	f3 =	2		2
13	4	f4 =	3		3
14	5	f5 =	5		5
15	6	f6 =	8		8
16	7	f7 =	13		13
17	8	f8 =	21		21
18	9	f9 =	34		34
19	10	f10 =	55		55
20	11	f11 =	89		89
21	12	f12 =	144		144
22	13	f13 =	233		233
23	14	f14 =	377		377
24	15	f15 =	610		610
25	16	f16 =	987		987
26	17	f17 =	1597		1597
27	18	f18 =	2584		2584
28	19	f19 =	4181		4181
29	20	f20 =	6765		6765

Review: The number of nodes in a tree with height h(T) is bounded

Review: The number of nodes in a tree with height h(T) is bounded

$$N(T) \ge h(T) + 1$$

$$N(T) \le 2^{h(T)+1} - 1$$

Review: Therefore the height of a tree with N(T) nodes is also bounded

We want to keep trees balanced so that the run time of BST algorithms is minimized

- BST algorithms are O(h(T))
- Minimum value of h(T) is $\lceil \log(N(T) + 1) \rceil 1$
- Can we rearrange the tree after an insertion to guarantee that h(T) is always minimized?

But keeping complete balance is too expensive!

- · Consider inserting 1 in the following tree.
- · What does it take to get back to complete balance?
- Keeping completely balanced is too expensive:
 - O(N) to rebalance after insertion or deletion

Solution: Height Balanced Trees (less is more)

Height-Balanced Trees have subtrees whose heights differ by at most 1

More precisely, a binary tree T is height balanced if

T is empty, or if $| height(T_L) - height(T_R) | \le 1$, and T_L and T_R are both height balanced.

What is the tallest height-balanced tree with N nodes?

Is it taller than a completely balanced tree?

 Consider the dual concept: find the minimum number of nodes for height h.

```
A binary search tree T is height balanced if
```

```
T is empty, or if | height(T_L) - height(T_R) | \le 1, and T_L and T_R are both height balanced.
```

An AVL tree is a height-balanced BST that maintains balance using "rotations"

- Named for authors of original paper,
 Adelson-Velskii and Landis (1962).
- Max. height of an AVL tree with N nodes is: $H < 1.44 \log (N+2) - 1.328 = O(\log N)$

Our goal is to rebalance an AVL tree after insert/delete in O(log n) time

- · Why?
- Worst cases for BST operations are O(h(T))
 - find, insert, and delete
- h(T) can vary from O(log N) to O(N)
- Height of a height-balanced tree is O(log N)
- So if we can rebalance after insert or delete in O(log N), then all operations are O(log N)