Century 21 Ames: Analyzing Sales Price Relationships in Different Neighborhoods and Predictive Modeling for Future Prices

Southern Methodist University
DS-6371 Statistical Foundations for Data Science
Pejal Rath & Kyle Kuberski
August 6, 2023

Introduction:

We are attempting to provide thorough analysis for Century 21 Ames by detailing two distinct analyses. These analyses are designed to provide valuable insights and aid in overall decision-making processes for the real estate company in Ames, Iowa.

Our first analysis centers on the relationship between house sales prices and square footage of living areas within specific neighborhoods. Furthermore, we seek to estimate the impact of the living areas on sales price considering the influence of each neighborhood. Our goal is to construct a model that accurately quantifies these relationships.

In our second analysis, we focus on developing the most predictive model for sales prices for homes across all neighborhoods in Ames, Iowa. To address this, we implement various cross-validation models as well as custom-built models for the purpose of identifying the most appropriate forecast. The forecast relates to future sales prices that may assist in guiding future strategic decisions for Century 21 Ames.

Data Description:

Our data comes from Kaggle (by Dean De Cock) and is a compilation of many housing statistics from various neighborhoods in Ames, Iowa. There are 1,460 observations across all neighborhoods, and these can be found from the <u>linked website on Kaggle</u> for more information. With respect to this analysis, the main variables used are as follows: GrLivArea, SalePrice, Neighborhood, OverallQual, TotRmsAbvGrd, BsmtExposure, PoolArea, KitchenQual, Fireplaces, GarageCars, BldgType, FullBath, BsmtFinType1, BsmtQual, and SaleCondition

Analysis 1: Relationship Between Home Sales Price and Square Footage in Ames, Iowa

Problem: The real estate company Century 21 Ames seeks to obtain a robust estimate of the relationship between sales prices of houses and the square footage of their living areas. Additionally, the company aims to investigate how this relationship varies across different neighborhoods where the houses are situated.

Approach: We will proceed with two competing models: our first model uses a log-log transformation of the dataset and includes the full scope. Our second model shares the log-log transformation, however, we will be narrowing our data's scope to only include square footage where GrLivArea >= 1000 and GrLivArea <= 3250 and SalePrice is SalePrice >= 75000 and SalePrice <= 150000. We will provide the fitted models and models broken out by neighborhood and here on name these models "Unrestricted Model" and "Restricted Model"

Unrestricted Model (Figure 2.17):

log_SalePrice = 5.9129 + 0.8196 * logGrLiv + 2.0935 * Edwards + 2.5798 * NAmes - 0.2999 * (logGrLiv * Edwards) - 0.3466 * (logGrLiv * NAmes)

Model by Neighborhood:

BrkSide (reference): Predicted SalePrice = 5.9129 + 0.8196 * logGrLiv

Edwards: Predicted SalePrice = 7.0064 + 0.8196 * logGrLiv + 2.0935

<u>NAmes:</u> Predicted SalePrice = 8.4927 + 0.8196 * logGrLiv + 2.5798

Restricted Model (Figure 2.17):

log_SalePrice = 8.4195 + 0.4607 * logGrLiv + 0.7059 * Edwards + 2.2418 * NAmes - 0.1051 * (logGrLiv * Edwards) - 0.3050 * (logGrLiv * NAmes)

Model by Neighborhood:

BrkSide (reference): Predicted SalePrice = 8.4195 + 0.4607 * logGrLiv

<u>Edwards:</u> Predicted SalePrice =8.4195 + 0.4607 * logGrLiv + 0.7059 - 0.1051 * (logGrLiv * Edwards)

<u>NAmes:</u> Predicted SalePrice = 8.4195 + 0.4607 * logGrLiv + 2.2418 - 0.3050 * (logGrLiv * NAmes)

Assumptions (Figure 2.13-2.15):

Unrestricted Model:

Normality: Judging from the scatter plot, Q-Q plot, and the histogram of residuals we see a normal distribution with some residual outliers; however, we will move forward with the assumption of normality.

Linear Trend: We see a positive linearity across our pairwise plots for each individual neighborhood.

Equal SD: There is some evidence of heteroscedasticity from our residual plots, where a few outliers are slightly out of range for comfort, however, we will proceed with caution and attempt competing models to confirm this assumption further.

Independence: We will assume the observations are independent.

Restricted Model:

Normality: For the restricted data, we see similar normality to our first model (unrestricted data). We will assume normality.

Linear Trend: We see a positive linearity across our pairwise plots for each individual neighborhood. The Edwards neighborhood shows an outlier; however, this is less influential than the original dataset.

Equal SD: There is some evidence of heteroscedasticity from our residual plots again, however, it appears to be less in strength (judging from our residual plots and DFBetas).

Independence: We will assume the observations are independent.

Comparing Competing Models (Figures 2.15/2.17):

Stat	<u>Unrestricted Model</u>	Restricted Model	
R ²	0.5121	0.3098	
Adj R²	0.5056	0.2965	
CV Press	16.9386*	6.2902*	

Parameters, Estimates, Interpretations, and Confidence Intervals:

Our model parameters and estimates (Figure 2.18) show overall significant interactions between each neighborhood.

The intercept estimate is 5.912920736. This represents the estimated baseline value of the log(SalePrice) when all other predictor variables are zero. In this case, when logGrLiv, logGrLiv*Neighborhood interaction terms, and the neighborhood indicators (Edwards and NAmes) are zero, the estimated log(SalePrice) is approximately 5.91. Our 95% confidence interval for the intercept ranges from approximately (e^{4.92},e^{6.91}) = (137.002, 1002.25) where we can be 95% confident the true value of SalePrice falls within this range.

The estimate for logGrLivArea is 0.819648056. This indicates that for each one-unit increase in the natural logarithm of GrLivArea (living area square footage), the estimated log(SalePrice) is expected to increase by approximately 0.82 units, assuming all other variables are held constant. We can be 95% confident the true value GrLivArea lies within the range of $(e^{0.68}, e^{0.96}) = (1.974, 2.612)$ where for each one-unit increase in GrLivArea, the estimated SalePrice is expected to increase by 1.974 to 2.612 units holding other variables constant.

The estimates for Edwards and NAmes neighborhoods are 2.093586444 and 2.579806905, respectively. These estimates represent the difference in the estimated log(SalePrice) between the Edwards and NAmes neighborhoods compared to the reference neighborhood (BrkSide). The log(SalePrice) is expected to be higher in the Edwards neighborhood by approximately 2.09 units and in the NAmes neighborhood by approximately 2.58 units compared to the BrkSide neighborhood. Our 95% confidence interval is approximately ($e^{0.82}$, $e^{3.36}$) = (2.27, 28.79) for the range of possible differences in log(SalePrice) between Edwards and NAmes compared to the reference neighborhood (BrkSide).

The estimates for the interaction terms logGrLivNeighborhood Edwards and log(GrLivArea)*Neighborhood NAmes are -0.299980812 and -0.346624454, respectively. These estimates indicate that the relationship between log(GrLivArea) and log(SalePrice) varies depending on the neighborhood. The negative values suggest that the effect of log(GrLivArea) on log(SalePrice) is less pronounced in the Edwards and NAmes neighborhoods compared to the BrkSide neighborhood. Our 95% confidence interval is between $(e^{-0.51}, e^{-0.18}) = (0.6004, 0.835)$ for the effect of GrLivArea on SalePrice in the Edwards and NAmes neighborhoods.

Conclusion:

The analysis conducted between the unrestricted and restricted data involved exploring the relationship between the log-transformed SalePrice and the predictors, specifically log-transformed GrLivArea and the categorical variable Neighborhood (with interaction terms). In the unrestricted model, we found that logGrLiv had a significant positive effect on log(SalePrice), indicating that an increase in living area is associated with a higher sale price. Additionally, the neighborhoods Edwards and NAmes had significantly higher log(SalePrice) compared to the reference neighborhood BrkSide. When comparing the two models, the unrestricted model provided a better fit to the data, as evidenced by a higher adjusted R-squared value. However, the restricted model offered valuable insights into the relationship between logGrLiv and log(SalePrice) specific to each neighborhood. The interaction terms revealed that the effect of logGrLiv on log(SalePrice) varied depending on the neighborhood, with Edwards and NAmes showing a weaker relationship compared to BrkSide.

Shiny App displaying Living Area v Sales Price per these three neighborhoods!

<u>Analysis 2: Predictive Models for Home Sale Prices in Ames, Iowa</u>

The objective of this analysis is to develop predictive models for home sale prices in Ames, Iowa, utilizing techniques covered in the course. The analysis involves constructing four distinct models: forward selection, backward elimination, stepwise selection, and a custom model. To facilitate accurate predictions, data preprocessing involves addressing missing values by filling NA values in categorical columns with the most common category and NA values in continuous columns with the average value.

Model Selection

Forward Selection

The forward selection method involves systematically adding variables based on their contribution to model performance. The model equation is provided:

SalePrice = OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + PoolArea + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtFinType1 + BsmtQual + SaleCondition

This model achieved an adjusted R-squared of 0.875, CVPRESS of 1.4671E12, and AIC of 31458. Please see **Figure 2.3 Forward Selection**

Backward Elimination

The backward elimination technique entails iteratively removing variables with minimal contribution to model performance. The model equation is provided:

SalePrice = OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + PoolArea + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtFinType1 + BsmtQual

This model achieved an adjusted R-squared of 0.871, CVPRESS of 1.6316E12, and AIC of 31495. Please see **Figure 2.4 Backward Selection**

Stepwise Selection

Stepwise selection combines elements of forward and backward techniques. The model equation is provided:

SalePrice = OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + PoolArea + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtFinType1 + BsmtQual

This model achieved an adjusted R-squared of 0.871, CVPRESS of 1.5379E12, and AIC of 31495. Please see **Figure 2.5 Stepwise Selection**

Custom Model

The custom model involves manual variable selection, yielding the following equation:

SalePrice = Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + FireplaceQu + OverallQual * FullBath

This model achieved an adjusted R-squared of 0.851, CVPRESS of 2.1535E12, and AIC of 31713. Please see **Figure 2.6 Custom Selection**

Comparing the competing models based on their adjusted R-squared, CVPRESS, and AIC scores, the forward selection model emerges as the most promising for predicting future sale prices of homes in Ames, Iowa. It exhibits the highest adjusted R-squared and relatively low CVPRESS and AIC scores, which are R-squared of 0.875, CVPRESS of 1.4671E12, and AIC of 31458, suggesting favorable predictive capabilities.

Model Assumption Check

Residual plots indicate reasonably normal distribution of residuals, suggesting adherence to the assumption of normality. However, the presence of high leverage points and notable Cook's D values suggests potential outliers, warranting further scrutiny and potential mitigation. Please see **Figure 2.1 Fit Diagnostics for SalePrice with High Leverage and Cook's D.**

In order to enhance the robustness and reliability of the predictive models, careful consideration of high leverage points was undertaken. High leverage points can significantly influence model outcomes and result in inflated values of metrics like Cook's D and leverage. Therefore, a crucial step in refining the models involved the identification and removal of these high leverage points. Please see **Figure 2.2 Fit Diagnostics for SalePrice with Low Leverage and Cook's D.**

Following the removal of high leverage points, the models were re-evaluated to assess their performance under the new conditions. The selected variables were updated for each type of selection method, yielding the following model specifications:

• Forward Selection (After Removing High Leverage Points)

SalePrice = OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtQual + BsmtFullBath + CentralAir + HalfBath + FireplaceQu + GarageFinish

This model achieved Adjusted R-squared of 0.868, CVPRESS of 6.2289E11 and AIC: 23059. Please see Figure 2.7 Forward Selection without High Leverage

• Backward Elimination (After Removing High Leverage Points)

SalePrice = OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtQual + BsmtFinType1 + SaleCondition

This model achieved Adjusted R-squared of 0.859, CVPRESS of 6.5093E11 and AIC of 23120. Please see Figure 2.8 Backward Selection without High Leverage

• Stepwise Selection (After Removing High Leverage Points):

SalePrice = OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtQual + BsmtFullBath + CentralAir + HalfBath + FireplaceQu + GarageFinish

This model achieved Adjusted R-squared of 0.868, CVPRESS of 6.2938E11, and AIC of 23059. Please see Figure 2.9 Stepwise Selection without High Leverage

• Custom Model (After Removing High Leverage Points):

SalePrice = OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtQual + BsmtFullBath + CentralAir + HalfBath + FireplaceQu + GarageFinish

This model achieved Adjusted R-squared of 0.866, CVPRESS of 6.3086E11, and AIC of 23074. Please see Figure 2.10 Custom Selection without High Leverage

Comparative Analysis

Upon revisiting the models after addressing the issue of high leverage points, it is evident that the models' performance remains largely consistent with their earlier counterparts. The adjusted R-squared values continue to reflect the models' goodness of fit, while the CVPRESS scores provide insight into their prediction accuracy. Considering the AIC values, which capture the models' complexity, it is apparent that the forward selection model maintains a balance between fit and complexity, resulting in a favorable predictive performance.

After submitting the models for public score evaluation, the following results were obtained:

- Forward selection achieved a public score of 0.16482.
- Forward selection, after removing high leverage points, achieved a slightly higher public score of 0.16681.
- Backward selection achieved a public score of 0.16861.
- Backward selection, after removing high leverage points, achieved a lower public score of 0.16729.
- Stepwise selection achieved a public score of 0.16861.
- Stepwise selection, after removing high leverage points, achieved a slightly lower public score of 0.16681.
- Custom selection achieved a higher public score of 0.18012.
- Custom selection, after removing high leverage points, achieved the same lower public score of 0.16681.

Model Selection with High Leverage Point

Predictive Models	Adjusted R2	CV PRESS	Kaggle Score
Forward	0.875	1.4671 E12	0.16482
Backward	0.871	1.6316 E12	0.16861
Stepwise	0.871	1.5379 E12	0.16861
сиѕтом	0.851	2.1535 E12	0.18012

Model Selection without High Leverage Point

Predictive Models	Adjusted R2	CV PRESS	Kaggle Score
Forward	0.875	1.4671 E12	0.16681
Backward	0.871	1.6316 E12	0.16729
Stepwise	0.871	1.5379 E12	0.16681
сиѕтом	0.851	2.1535 E12	0.16681

Considering that a lower public score indicates better predictive performance, the forward selection model without high leverage points adjustment emerges as the most promising choice among the tested models. It achieves the lowest public score, signifying superior predictive accuracy while maintaining an optimal balance between model fit and complexity. This outcome aligns with our earlier assessment and underscores the forward selection model's robustness and suitability for predicting future sale prices of homes in Ames, lowa.

Conclusion

Upon comprehensive evaluation of the models with high leverage points addressed, the forward selection model emerges as the most suitable choice for predicting future sale prices of homes in Ames, lowa. This model effectively combines an elevated adjusted R-squared, CVPRESS, and a competitive AIC score. However, it is crucial to acknowledge that the existence of outliers and high leverage points can impact model robustness. Therefore, further diagnostic analysis and sensitivity tests are recommended to validate the selected model's robustness and applicability.

Appendix

Github Page Links:

Kyle Kuberski

Pejal Rath

Figures:

• Figure 2.1 Fit Diagnostics for SalePrice with High Leverage and Cook's D

Figure 2.2 Fit Diagnostics for SalePrice with Low Leverage and Cook's D

• Figure 2.3 Forward Selection

Data Set	WORK	.MYDAT	Α
Dependent Variable		SalePrio	e
Selection Method		Forwar	d
Select Criterion		SB	С
Stop Criterion	Cross Validation		
Cross Validation Method	Random		
Cross Validation Fold			5
Effect Hierarchy Enforced		Non	e
Random Number Seed	6	9462367	1
Number of Observations	Read	1460	
Number of Observations	Used	1480	

Dimensions	
Number of Effects	74
Number of Parameters	7598

The GLMSELECT Procedure

	Forward Selection Summary								
Step	Effect Entered	Number Effects In	Number Parms In	Adjusted R-Square	SBC	CV PRESS			
0	Intercept	1	1	0.0000	32952.0292	9.21859E12			
1	OverallQual	2	10	0.6822	31334.8280	2.99646E12			
2	Neighborhood	3	34	0.7497	31138.8041	2.37274E12			
3	TotRmsAbvGrd	4	45	0.7843	30988.6375	2.11564E12			
4	BsmtExposure	5	48	0.8007	30891.6431	1.95479E12			
5	PoolArea	6	55	0.8177	30805.7481	1.9511E12			
6	KitchenQual	7	58	0.8281	30738.3682	1.85451E12			
7	Fireplaces	8	61	0.8367	30882.0167	1.79159E12			
8	GarageCars	9	65	0.8455	30825.7547	1.69506E12			
9	BldgType	10	69	0.8522	30586.0097	1.63659E12			
10	FullBath	11	72	0.8591	30535.7083	1.57127E12			
11	BsmtFinType1	12	77	0.8663	30489.5141	1.5124E12			
12	BsmtQual	13	80	0.8710	30456.2403	1.47823E12			
13	SaleCondition	14	85	0.8747*	30445.3285*	1.48714E12*			
		* Opti	mal Value o	f Criterion					

Selection stopped at a local minimum of the cross validation PRESS.

Stop Details						
Candidate Compare For Effect CV PRESS CV PRESS						
Entry	Condition2	1.53803E12	>	1.48714E12		

The GLMSELECT Procedure Selected Model

The selected model is the model at the last step (Step 13).

Effects: Intercept Neighborhood BldgType OverallQual BsmtQual BsmtExposure BsmtFinType1 FullBath KitchenQual TotRmsAbvGrd Fireplaces GarageCars PoolArea SaleCondition

Analysis of Variance								
Source DF Squares Square F Valu								
Model	84	8.120349E12	96670815744	122.22				
Error	1375	1.087563E12	790954772					
Corrected Total	1459	9.207911E12						

Root MSE	28124
Dependent Mean	180921
R-Square	0.8819
Adj R-Sq	0.8747
AIC	31458
AICC	31469
SBC	30445
CV PRESS	1.487144E12

• Figure 2.4 Backward Selection

The GLMSELECT Procedure

Data Set

Dependent Variable

Cross Validation Method

Effect Hierarchy Enforced

Number of Observations Read

Number of Observations Used

Cross Validation Fold

Random Number Seed

Selection Method

Select Criterion

Stop Criterion

WORK.MYDATA

Cross Validation

SalePrice

Backward

Random

5

None

556753002

1460

1460

SBC

The GLMSELECT Procedure Selected Model

The selected model is the model at the last step (Step 2).

Effects: Intercept OverallQual Neighborhood TotRmsAbvGrd BsmtExposure PoolArea KitchenQual Fireplaces GarageCars BldgType FullBath BsmtFinType1 BsmtQual

Analysis of Variance							
Source DF Squares Square F Valu							
Model	79	8.084505E12	1.023355E11	125.71			
Error	1380	1.123407E12	814062833				
Corrected Total	1459	9.207911E12					

Root MSE	28532
Dependent Mean	180921
R-Square	0.8780
Adj R-Sq	0.8710
AIC	31495
AICC	31505
SBC	30456
CV PRESS	1.631646E12

• Figure 2.5 Stepwise Selection

The GLMSELECT Procedure

Step	Effect Entered	Effect Removed	Number Effects In	Number Parms In	Adjusted R-Square	SBC	CV PRES
0	Intercept		1	1	0.0000	32952.0292	9.2177E1
1	OverallQual		2	10	0.6822	31334.8280	2.98863E1
2	Neighborhood		3	34	0.7497	31136.8041	2.41751E1
3	TotRmsAbvGrd		4	45	0.7843	30988.6375	2.18174E1
4	BsmtExposure		5	48	0.8007	30891.6431	2.02077E1
5	PoolArea		6	55	0.8177	30805.7461	2.01841E1
6	KitchenQual		7	58	0.8281	30738.3682	1.91639E1
7	Fireplaces		8	61	0.8367	30682.0167	1.84953E1
8	GarageCars		9	65	0.8455	30625.7547	1.75832E1
9	BldgType		10	69	0.8522	30586.0097	1.70964E1
10	FullBath		11	72	0.8591	30535.7083	1.82452E1
11	BsmtFinType1		12	77	0.8663	30489.5141	1.57691E1
12	BsmtQual		13	80	0.8710*	30456.2403*	1.53798E12

Selection stopped at a local minimum of the cross validation PRESS.

Stop Details							
Candidate For	Effect	Candidate CV PRESS		Compare CV PRESS			
Entry	SaleCondition	1.55258E12	>	1.53798E12			
Removal	BsmtQual	1.57691E12	>	1.53798E12			

The GLMSELECT Procedure

Data Set	WORK.MYDATA
Dependent Variable	SalePrice
Selection Method	Stepwise
Select Criterion	SBC
Stop Criterion	Cross Validation
Cross Validation Method	Random
Cross Validation Fold	5
Effect Hierarchy Enforced	None
Random Number Seed	955180600

Number of Observations Read 1480 Number of Observations Used 1480

The GLMSELECT Procedure Selected Model

The selected model is the model at the last step (Step 12).

Effects: Intercept Neighborhood BldgType OverallQual BsmtQual BsmtExposure BsmtFinType1 FullBath KitchenQual TotRmsAbvGrd Fireplaces GarageCars PoolArea

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value				
Model	79	8.084505E12	1.023355E11	125.71				
Error	1380	1.123407E12	814062833					
Corrected Total	1459	9.207911E12						

Root MSE	28532
Dependent Mean	180921
R-Square	0.8780
Adj R-Sq	0.8710
AIC	31495
AICC	31505
SBC	30458
CV PRESS	1.537963E12

• Figure 2.6 Custom Selection

The GLMSELECT Procedure

Data Set	WORK.MYDATA
Dependent Variable	SalePrice
Selection Method	Stepwise
Select Criterion	SBC
Stop Criterion	Cross Validation
Cross Validation Method	Random
Cross Validation Fold	5
Effect Hierarchy Enforced	None
Random Number Seed	694623671

Number of Observations Read	1460
Number of Observations Used	1460

The GLMSELECT Procedure

		Ste	pwise Select	ion Summai	У		
Step	Effect Entered	Effect Removed	Number Effects In	Number Parms In	Adjusted R-Square	SBC	CV PRESS
0	Intercept		1	1	0.0000	32952.0292	9.21859E12
1	OverallQual*FullBath		2	30	0.7231	31259.2484	4.18263E12
2	Neighborhood		3	54	0.7793	31078.3577	3.33987E12
3	GarageCars		4	58	0.8001	30958.8276	2.98575E12
4	Fireplaces		5	61	0.8155	30880.2172	2.76229E12
5	KitchenQual		6	64	0.8247	30804.2998	2.55191E12
6	BsmtExposure		7	67	0.8324	30757.1673	2.41384E12
7	TotRmsAbvGrd		8	77	0.8453	30702.8711	2.2182E12
8	BldgType		9	81	0.8514*	30668.8503*	2.1538E12

Selection stopped at a local minimum of the cross validation PRESS.

Stop Details							
Candidate For	Effect	Candidate CV PRESS		Compare CV PRESS			
Entry	BsmtFullBath	2.21477E12	>	2.1536E12			
Removal	BldgType	2.2182E12	>	2.1538E12			

The GLMSELECT Procedure Selected Model

The selected model is the model at the last step (Step 8).

Effects: Intercept Neighborhood TotRmsAbvGrd BsmtExposure KitchenQual Fireplaces GarageCars OverallQual*FullBath BldgType

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value				
Model	80	7.914868E12	98935851769	105.51				
Error	1379	1.293043E12	937667290					
Corrected Total	1459	9.207911E12						

Root MSE	30821
Dependent Mean	180921
R-Square	0.8596
Adj R-Sq	0.8514
AIC	31703
AICC	31713
SBC	30869
CV PRESS	2.153598E12

• Figure 2.7 Forward Selection without High Leverage

RK.MYDATA	Data Set
SalePrice	Dependent Variable
Forward	Selection Method
SBC	Select Criterion
ss Validation	Stop Criterion
Random	Cross Validation Method
5	Cross Validation Fold
None	Effect Hierarchy Enforced
694623671	Random Number Seed
001020071	nandom Hamber deed
d 1093	Number of Observations
d 1092	Number of Observations

The GLMSELECT Procedure Selected Model The selected model is the model at the last step (Step 15). Effects: Intercept Neighborhood BldgType OverallQual BsmtQual BsmtExposure CentralAir BsmtFullBath FullBath HalfBath KitchenQual TotRmsAbvGrd Fireplaces FireplaceQu GarageFinish GarageCars Analysis of Variance DF Source Squares Square F Value Model 67 3.69544E12 55155826332 107.67 Error 1024 5.245569E11 512262644 1091 4.219997E12 Corrected Total Root MSE 22633 Dependent Mean 174761 R-Square 0.8757 Adj R-Sq 0.8676 AIC 23059 23089 AICC SBC 22305 **CV PRESS** 6.228889E11

• Figure 2.8 Backward Selection without High Leverage

The GLMSELECT Procedure Data Set WORK.MYDATA SalePrice Dependent Variable Selection Method Backward Select Criterion SBC Stop Criterion Cross Validation Cross Validation Method Random Cross Validation Fold 5 Effect Hierarchy Enforced None Random Number Seed 556753002 Number of Observations Read 1093 Number of Observations Used 1092

	The GLMSELECT Procedure Selected Model								
	The selected model is the model at the last step (Step 1).								
Effects:	Intercept OverallQual Neighborhood TotRmsAbvGrd BsmtExposure KitchenQual Fireplaces GarageCars BldgType FullBath BsmtFinType1 BsmtQual SaleCondition								pe FullBath BsmtFinType1 BsmtQual SaleCondition
	Analysis of Variance								
	So	ource	Sum of Mean						
	Mo	lodel	66	3.66422	E12	12 55518487280 1		102.39	
	En	rror	1025	5.557772	E11	54222	1611		
	Co	orrected Total	1091	4.219997	E12				
	Root MSE 23288								
			Depende	ent Mean		174761			
			R-Squar	re		0.8683			

Adj R-Sq

CV PRESS

AIC

AICC SBC 0.8598

23120

23129

22381

6.50939E11

• Figure 2.9 Stepwise Selection without High Leverage

Number of Observations Read 1093 Number of Observations Used The GLMSELECT Procedure Selected Model The selected model is the model at the last step (Step 15). Effects: Intercept Neighborhood BldgType OverallQual BsmtQual BsmtQual BsmtExposure CentralAir BsmtFullBath HalfBath KitchenQual TotRmsAbvGrd FireplaceS FireplaceQu GarageFinish GarageCars Analysis of Variance Mean Sum of Source F Value Squares Square Model 3.69544E12 55155826332 107.67 Error 1024 5.245569E11 512262644 Corrected Total 1091 4.219997E12 Root MSE 22633 174761 Dependent Mean R-Square 0.8757 Adj R-Sq 0.8676 AIC 23059 AICC 23089 SBC 22305 CV PRESS 6.293784E11

• Figure 2.10 Custom Selection without High Leverage

The GLMSELECT Procedure

WORK, MYDATA

Cross Validation

SalePrice

Stepwise

Random

None

955180800

SBC

Data Set

Dependent Variable

Cross Validation Method

Effect Hierarchy Enforced

Cross Validation Fold

Random Number Seed

Selection Method

Select Criterion

Stop Criterion

Number of Observations Used	1092						
			LMSELECT		ire		
	The selected	l model is	s the mode	el at the la	st step (St	ep 12).	
cts: Intercept Neighborhood TotRmsAbvGrd E	BsmtExposure KitchenQual	Fireplac	es Garage(Cars Bsm	Qual BsmtF	ullBath Cer	tralAir FireplaceQu OverallQual*FullBath BldgType*Half8
		An	nalysis of \	Variance			
	Source			m of Mean ares Square		F Value	
	Model	70 3.69102 1021 5.28973		3E12 527289066		8 101.77	
	Error			3E11	518093874		
	Corrected Total	1091	4.219997	E12			
		Root MS	Ε	2	2762		
		Depende	ent Mean	17	4761		
		R-Squar	e	0.	8747		
		Adj R-So	4	0.	8661		
		AIC		2	3074		
		AICC		2	3085		
		SBC		2	2335		
		CV PRE		6.30865			

• Figure 2.11 R-Code used to predict the SalePrice

The GLMSELECT Procedure

WORK.MYDATA

Cross Validation

SalePrice

Stepwise

Random

None

694623671

1093

Data Set

Dependent Variable

Cross Validation Method

Cross Validation Fold

Effect Hierarchy Enforced

Random Number Seed

Number of Observations Read

Selection Method

Select Criterion

Stop Criterion

```
#Predict Formula and Write to CSV Files
#Forward 1
fit_forward1=lm(SalePrice ~ OverallQual+Neighborhood+TotRmsAbvGrd+BsmtExposure+PoolArea+KitchenQual+ Fireplaces+ GarageCars+ BldgType+ FullBath+ BsmtFinType1+
BsmtQual+ SaleCondition, data = df_subset)
predicted_sale_price_forward1 <- predict(fit_forward1, newdata = df_test)</pre>
df_f1 <- data.frame(Id = df_test$Id, SalePrice = predicted_sale_price_forward1)</pre>
write.csv(df_f1, file = "C:/Users/pejal/OneDrive/Desktop/SMU/Classes/Summer 2023/Stat/project/forward.csv", row.names = FALSE)
#Forward 1 RH
fit_forward1_RH=lm(SalePrice ~ OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtQual +
BsmtFullBath + CentralAir + HalfBath + FireplaceQu + GarageFinish, data = data_filtered)
predicted_sale_price_forward1_RH <- predict(fit_forward1_RH, newdata = df_test)</pre>
df_f1_RH <- data.frame(Id = df_test$Id, SalePrice = predicted_sale_price_forward1_RH)</pre>
write.csv(df_f1_RH, file = "C:/Users/pejal/OneDrive/Desktop/SMU/Classes/Summer 2023/Stat/project/forward_RH.csv", row.names = FALSE)
#Backward 2
fit_backward1=lm(SalePrice ~OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + PoolArea + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath +
BsmtFinType1 + BsmtQual, data = df_subset)
predicted_sale_price_backward1 <- predict(fit_backward1, newdata = df_test)</pre>
df_b1 <- data.frame(Id = df_test$Id, SalePrice = predicted_sale_price_backward1)</pre>
write.csv(df_b1, file = "C:/Users/pejal/OneDrive/Desktop/SMU/Classes/Summer 2023/Stat/project/backward.csv", row.names = FALSE)
#Rackward 2 RH
fit_backward1_RH=1m(SalePrice ~ OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtQual
+ BsmtFinType1 + SaleCondition, data = data_filtered)
predicted_sale_price_backward1_RH <- predict(fit_backward1_RH, newdata = df_test)</pre>
df_b1_RH <- data.frame(Id = df_test$Id, SalePrice = predicted_sale_price_backward1_RH)</pre>
write.csv(df_b1_RH, file = "C:/Users/pejal/OneDrive/Desktop/SMU/Classes/Summer 2023/Stat/project/backward_RH.csv", row.names = FALSE)
#Stepwise 3
fit_stepwise1=lm(SalePrice ~ OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + PoolArea + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath +
BsmtFinType1 + BsmtQual, data = df_subset)
predicted_sale_price_stepwise1 <- predict(fit_stepwise1, newdata = df_test)</pre>
df_s1 <- data.frame(Id = df_test$Id, SalePrice = predicted_sale_price_stepwise1)</pre>
write.csv(df_s1, file = "C:/Users/pejal/OneDrive/Desktop/SMU/Classes/Summer 2023/Stat/project/stepwise.csv", row.names = FALSE)
#Stepwise 3 RH
fit_stepwise1_RH=lm(SalePrice ~ OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtQual
+ BsmtFullBath + CentralAir + HalfBath + FireplaceQu + GarageFinish, data = data_filtered)
predicted_sale_price_stepwise1_RH <- predict(fit_stepwise1_RH, newdata = df_test)</pre>
df_s1_RH <- data.frame(Id = df_test$Id, SalePrice = predicted_sale_price_stepwise1_RH)</pre>
write.csv(df_s1_RH, file = "C:/Users/pejal/OneDrive/Desktop/SMU/Classes/Summer 2023/Stat/project/stepwise_RH.csv", row.names = FALSE)
#Custom 4
fit_1=lm(SalePrice ~ Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + FireplaceQu + OverallQual * FullBath, data = df_subset)
predicted_sale_price_1 <- predict(fit_1, newdata = df_test)</pre>
df_c1 <- data.frame(Id = df_test$Id, SalePrice = predicted_sale_price_1)</pre>
write.csv(df_c1, file = "C:/Users/pejal/OneDrive/Desktop/SMU/Classes/Summer 2023/Stat/project/custom.csv", row.names = FALSE)
fit_1_RH=lm(SalePrice ~ OverallQual + Neighborhood + TotRmsAbvGrd + BsmtExposure + KitchenQual + Fireplaces + GarageCars + BldgType + FullBath + BsmtQual +
BsmtFullBath + CentralAir + HalfBath + FireplaceQu + GarageFinish, data = data_filtered)
predicted_sale_price_1_RH <- predict(fit_1_RH, newdata = df_test)</pre>
df_c1_RH <- data.frame(Id = df_test$Id, SalePrice = predicted_sale_price_1_RH)</pre>
write.csv(df_c1_RH, file = "C:/Users/pejal/OneDrive/Desktop/SMU/Classes/Summer 2023/Stat/project/custom_RH.csv", row.names = FALSE)
```

/*Forward*/

proc glmselect data=mydata seed=694623671;

class MSSubClass MSZoning LotFrontage LotArea Street LotShape LandContour
 LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType HouseStyle
 OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl Exterior1st
 Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation BsmtQual
 BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2 BsmtFinSF2
 BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical X1stFlrSF
 X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath
 BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional Fireplaces
 FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars GarageArea
 GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF EnclosedPorch
 ScreenPorch PoolArea MiscVal MoSold YrSold SaleType SaleCondition;

model SalePrice=MSSubClass MSZoning LotFrontage LotArea Street LotShape
 LandContour LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType
 HouseStyle OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl
 Exterior1st Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation
 BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
 BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical
 X1stFlrSF X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath
 HalfBath BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
 Fireplaces FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars
 GarageArea GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF
 EnclosedPorch ScreenPorch PoolArea MiscVal MoSold YrSold SaleType
 SaleCondition / selection=Forward(stop=CV) cvmethod=random(5) stats=adjrsq;

run;

/*Backward*/

proc glmselect data=mydata seed=556753002;

class MSSubClass MSZoning LotFrontage LotArea Street LotShape LandContour
 LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType HouseStyle
 OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl Exterior1st
 Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation BsmtQual
 BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2 BsmtFinSF2
 BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical X1stFlrSF
 X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath
 BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional Fireplaces
 FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars GarageArea
 GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF EnclosedPorch
 ScreenPorch PoolArea MiscVal MoSold YrSold SaleType SaleCondition;

model SalePrice=OverallQual Neighborhood TotRmsAbvGrd BsmtExposure PoolArea
 KitchenQual Fireplaces GarageCars BldgType FullBath BsmtFinType1 BsmtQual
 SaleCondition Condition2/ selection=Backward(stop=CV) cvmethod=random(5)
 stats=adjrsq;

riin '

```
/*Stepwise*/
```

run;

```
proc glmselect data=mydata seed=955180600;
    class MSSubClass MSZoning LotFrontage LotArea Street LotShape LandContour
        LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType HouseStyle
        OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl Exterior1st
        Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation BsmtQual
        BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2 BsmtFinSF2
        BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical X1stFlrSF
        X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath
        BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional Fireplaces
        FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars GarageArea
        GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF EnclosedPorch
        ScreenPorch PoolArea MiscVal MoSold YrSold SaleType SaleCondition;
    model SalePrice=MSSubClass MSZoning LotFrontage LotArea Street LotShape
        LandContour LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType
        HouseStyle OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl
        Exterior1st Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation
        BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
        BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical
        X1stFlrSF X2ndFlrSF LowOualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath
        HalfBath BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
        Fireplaces FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars
        GarageArea GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF
        EnclosedPorch ScreenPorch PoolArea MiscVal MoSold YrSold SaleType
        SaleCondition / selection=Stepwise(stop=CV) cvmethod=random(5) stats=adjrsq;
run;
/*Custome*/
proc glmselect data=mydata seed=694623671;
    class OverallQual Neighborhood TotRmsAbvGrd BsmtExposure KitchenQual
        Fireplaces GarageCars BldgType FullBath BsmtQual BsmtFullBath CentralAir
        HalfBath FireplaceQu GarageFinish;
    model SalePrice=FireplaceOu BsmtOual BsmtFullBath CentralAir BsmtExposure
        Fireplaces GarageCars OverallQual | Neighborhood | TotRmsAbvGrd | KitchenQual | BldgType | FullBath | HalfBath | GarageFinish
       / selection=Forward(stop=CV) cvmethod=random(5) stats=adjrsq;
```

2

• Figure 2.13 Assumption Plots, Residuals, Influential plots, and Leverage for Unrestricted data

• Figure 2.14 Assumption Plots, Residuals, Influential plots, and Leverage for Restricted data

-0.2

• Figure 2.15 GLMSELECT procedure for R^2, Adj R-Sq, CV PRESS

Unrestricted Model Restricted Model

				ELECT ected M			
he sele	ected m	odel	is th	e mode	el at	the last s	tep (Step
	E	Effects: Intercept logGrLiv					
		A	naly	sis of V	ariar	nce	
Source	e		DF	Sun		Mean Square	
Model			1	1.083	372	1.08372	45.95
Error			264 6.22		598	0.02359	
Correc	Corrected Total		265	7.310	070		
	AI	Squa ij R-	аге	Mean	-72	0.1489 0.1482 0.1450 26.72499 26.63339 37.55800	
	CI	/ PR	ESS			6.29020	
		Pa	aram	eter Es	tima	tes	
Para	ameter	ter DF E		stimate	_	tandard Error	t Value
Inte	rcept	1	9.	869850	0	.270885	36.44
logo	logGrLiv		0.	260750	0.038468		6.78

• Figure 2.16 General Scatter for un-altered data LivArea v Sale Price

Figure 2.17 Estimates, SE, t-Value, P-val, 95% Confidence Limits
 Unrestricted:

				1	The (GLM Proc	edui	re				
			0)epend	lent	Variable: I	log S	alePrice				
	Source		DF Sum		ium of Squares			an Square	F Value	Pr > F		
	Model Error Corrected Total		5		14.62857557		2	.92571511	79.14	<.0001		
			377	377		13.93775037		.03697016				
			382		28.56632594							
		D Cau		Coeff	Var	Root MS	-	logSalePri	as Mass	1		
	0.5120							_				
		0.5120	132	1.629	01/	0.1922	0		11.79887			
	Source	Source logGrLiv		DF		Type I SS		ean Square	F Valu	ie Pr > F		
	logGrLiv			1	12.00843049		1	2.00843049	324.8	31 <.0001		
	Neighborhood logGrLiv*Neighborhoo		2	1.9	1.98063548		0.99031774	4 26.7	79 <.0001			
			2 0.		63950960		0.31975480	8.6	0.0002			
	Source			DF	Ty	pe III SS	М	ean Square	F Valu	ie Pr>F		
	logGrLiv Neighborhood logGrLiv*Neighborhoo				11.69403942 0.69497286		1.69403942	2 316.3	<.0001	1		
							0.34748643	9.4	0.0001			
			2	0.63950960		0.31975480		8.6	0.0002			
						Stand						
Parameter				imate			ror	t Value	Pr > t		nfidence Limits	
Intercept		_	5.912920		В	0.50459		11.72	<.0001	4.9207571		_
logGrLiv	0.8196			В			11.44	<.0001	0.6788064			
Neighborhood Edwards 2.0935			В	0.64589		3.24	0.0013	0.8235795				
	g			06905	В	0.59988	132	4.30	<.0001	1.4002744	128 3.7593393	8
	ghborhood BrkSide 0.0000				В							_
logGrLiv*Neighb				В	0.09121		-3.29	0.0011	-0.4793353			
	ghborhoo NAmes -0.34662			В	0.08482	008	-4.09	<.0001	-0.5134041	71 -0.1798447	3	
logGrLiv*Neighb	ornoo Brk Si	ae 0	.00000	00000	В						•	

Restricted:

• Figure 2.18 Shiny App

House Price vs. Square Footage

• Figure 2.19 SAS Code for Analysis 1

```
/* Filtering the data to include only needed neighborhoods*/
data filtered houses;
    set houses;
    where Neighborhood in ("NAmes", "Edwards", "BrkSide");
run;
/* Start by plotting the data */
proc sort data=filtered houses;
by Neighborhood;
run;
proc sgplot data=filtered houses;
    title "Scatter Plot of SalePrice vs GrLivArea by Neighborhood";
    scatter x=GrLivArea y=SalePrice / group=Neighborhood;
    xaxis label="Living Area SqFt";
    yaxis label="Sales Price";
    by Neighborhood;
run;
proc sgscatter data = filtered houses;
by Neighborhood;
matrix SalePrice GrLivArea;
run;
data loghouses;
set filtered houses;
logGrLiv = log(GrLivArea);
logSalePrice = log(SalePrice);
proc sgscatter data = loghouses;
by Neighborhood;
matrix logSalePrice logGrLiv;
run;
proc glm data = loghouses plots=all;
class Neighborhood (REF = "BrkSide");
model logSalePrice = logGrLiv | Neighborhood / solution clparm;
run;
/*Unrestricted MODEL*/
proc glm data = loghouses plots=all;
class Neighborhood (REF = "BrkSide");
model logSalePrice = logGrLiv Neighborhood logGrLiv*Neighborhood / solution clparm;
/*Conf/Pred Plots */
proc reg data=loghouses outest=cooks;
 by Neighborhood;
 model logSalePrice = logGrLiv / stb clb;
run;
```

```
/*Influential Points DFBeta plots */
proc reg data=loghouses plots(only)=DFBetas;
 by Neighborhood;
 model logSalePrice = logGrLiv / stb clb;
run;
/* CV Press non-restricted*/
proc glmselect data= loghouses;
class Neighborhood;
model logSalePrice = logGrLiv
/selection = forward(stop=CV) cvmethod=random(5) stats= adjrsq;
run;
/*Set Restriction on dataset*/
data restricted data;
 set loghouses;
 where GrLivArea >= 1000 and GrLivArea <= 3250;
 where SalePrice >= 75000 and SalePrice <= 150000;
run;
data loghouses;
set filtered houses;
logGrLiv = log(GrLivArea);
logSalePrice = log(SalePrice);
/*Restricted Model*/
proc glm data = restricted data plots=all;
class Neighborhood (REF = "BrkSide");
model logSalePrice = logGrLiv Neighborhood logGrLiv*Neighborhood / solution clparm;
run;
/*Influential Points DFBeta plots (restricted)*/
proc reg data=restricted data plots(only)=DFBetas;
 by Neighborhood;
 model logSalePrice = logGrLiv / stb clb;
run;
/*Scatter for restricted data*/
proc sgscatter data = restricted data;
by Neighborhood;
matrix logSalePrice logGrLiv;
run;
/* CV Press restricted*/
proc glmselect data= restricted data;
class Neighborhood;
model logSalePrice = logGrLiv
/selection = forward(stop=CV) cvmethod=random(5) stats= adjrsq;
run;
```

Figure 2.20 RShiny Code for Analysis 1

```
library(shiny)
library(ggplot2)
library(readr)
ui <- fluidPage(
  titlePanel("House Price vs. Square Footage"),
  sidebarLayout(
    sidebarPanel(
      fileInput("datafile", "Choose a CSV file with data"),
      checkboxGroupInput("neighborhoods", "Select Neighborhoods:",
                           choices = c("NAmes", "Edwards", "BrkSide"),
selected = c("NAmes", "Edwards", "BrkSide")
      )
    ),
    mainPanel(
     plotOutput("scatterplot")
  )
server <- function(input, output) {</pre>
  data <- reactive({
    req(input$datafile)
    read_csv(input$datafile$datapath)
  })
  output$scatterplot <- renderPlot({
    req(data())
    filtered_data <- subset(data(), Neighborhood %in% input$neighborhoods)
    ggplot(filtered_data, aes(x = GrLivArea, y = SalePrice, color = Neighborhood)) +
      geom_point() +
      xlab("Living Area SqFt") +
ylab("Sales Price") +
      ggtitle("Living Area SqFt vs Sales Price") +
      theme_minimal()
  })
}
shinyApp(ui, server)
```