

Máster Universitario en Internet of Things

Sensor Networks - Project 1

- Correctivity implementation for the embedded plant monitoring IoT system platform using the B-L072Z-LRWAN1 ARM mbed-based platform
- Pedro J. LoboOffice A4202e-mail: pedro.lobo@upm.es
- © Guillermo Azuara
 Office A4206
 e-mail: g.azuara@upm.es

Outline

- Project main goal
 - Add LoRaWan connectivity to the project developed in the Embedded Systems course.
- Hardware, software and other resources to be used
 - HW: B-L072Z-LRWAN1, Multitech Conduit Access Point (Gateway)
 - SW: Mbed (node), Packet-Forwarder (Gateway) and ResloT Server (software foud applications)
- Project Specifications:
 - Work to be done by students
 - SW development using Mbed and Keil Microvision using a template provided by instructors.
 - Configuration of ResIoT software application, LUA script development
 - Report and demonstration
 - Implemented code (C++ and LUA)
 - Results

Main steps

Software development using LoRaWan protocol for B-L072Z-LRWAN1 device

LoRaWan cloud **Application** LoRaWan server configuration

Recall: The B-L072Z-LRWAN1

- Our platform: B-L072Z-LRWAN1
 - Core: STM32L072CZ
 - ARM Cortex M0+
 - Ultra-low-power
 - Peripherals
 - ADC, DAC, timers
 - Serial connections
 - I2C, UART, SPI
 - Embedded LoRa module
 - User LEDs and buttons
 - Arduino compatible connectors
 - Much more...

Recall: General diagram of the B-L072Z-LRWAN

LoRa integration in Mbed OS

- Mbed OS already supports:
 - LoRa radio devices (PHY)
 - mbed LoRa radio drivers reside out of the mbed OS tree. Arm provides support for SX1272 and SX1276 LoRa radios, which are the most widely used LoRa end-device radio chipsets
 - LoRaWAN protocol (stack): LoRaWAN API
 - LoRaWAN Specification v1.0.2 and v1.1 (Some of the features in v1.1 are the improved security primitives and the support for roaming)
 - Two classes of devices: A and C
 - The LoRaWAN specification defines two methods for connecting to an access network
 - Over the air activation (OTAA)
 - Activation by personalization (ABP)

LoRa PHY Layer in Mbed

- Developed by SEMTECH and STACKFORCE for SX1272/6 chips
- Supported in mbed or in mbed-os

© Configuration of SPI interface and support for the SX127x interrupts

SX1276 radio features

- 168 dB maximum link budget (maximum attenuation between Device and Gateway)
- High sensitivity (RX): down to −148 dBm
- +20 dBm 100 mW constant RF output vs supply voltage (TX)
- +14 dBm high efficiency Power Amplifier
- Programmable bit rate up to 300 kbps
- \(\subseteq \text{ow RX current of 9.9 mA, 200 nA register retention } \)
- Fully integrated synthesizer with a resolution of 61 Hz
- FSK (Frequency), GFSK (Gaussian Frequency Shift Keying), MSK (Minimum), GMSK (Gaussian Minimum), LoRa and OOK (ASK ON/OFF) modulation
- 127 dB Dynamic Range RSSI
- Built-in temperature sensor and low battery indicator

Software configuration on LoRaWAN in Mbed (parameters, default values) I

- Name: lora.adr-on
 - Description: Turns Automatic Data Rate on/off
 - Defined by: library:lora
 - Value: 1 (set by library:lora)
- Name: lora.app-port
 - Description: Set the application port
 - Defined by: library:lora
 - Value: 15 (set by library:lora)
- **Name: Iora.application-eui**
 - Description: Set AppEUI (application EUI needed for OTAA)
 - Defined by: library:lora
 - Value: {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} (set by library:lora)
- Name: lora.application-key
 - Description: Set AppKey (application key needed for OTAA)
 - Defined by: library:lora
 - Value: {0x00, 0x00, 0x0

Software configuration on LoRaWAN in Mbed (parameters, default values) II

- Name: lora.appskey
 - Description: Set AppSkey (application session key needed for ABP)
 - Defined by: library:lora
 - Value: {0x00, 0x00, 0x00
- Name: lora.device-address
 - Description: Set DevAddr (device address needed for ABP)
 - Defined by: library:lora
 - Value: 0x00000000 (set by library:lora)
- Name: lora.device-eui
 - Description: Set DevEUI (device EUI needed for OTAA)
 - Defined by: library:lora
 - Value: {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} (set by library:lora)
- Name: lora.duty-cycle-on
 - Description: Turns duty cycle on/off
 - Defined by: library:lora
 - Value: 1 (set by library:lora)

Software configuration on LoRaWAN in Mbed (parameters, default values) III

- Name: lora.lbt-on
 - Description: Turns LBT on/off
 - Defined by: library:lora
- Name: lora.nb-trials
 - Description: Set number of retries for a join request
 - Defined by: library:lora
 - Value: 12 (set by library:lora)
- Name: lora.nwkskey
 - Description: Set NwkSkey (network session key needed for ABP)
 - Defined by: library:lora
 - Value: {0x00, 0x00, 0x0
- Name: lora.over-the-air-activation
 - Description: Enable or disable OTAA. Value set to false would enable ABP
 - Defined by: library:lora
 - Value: 1 (set by library:lora)

Software configuration on LoRaWAN in Mbed (parameters, default values) IV

- Name: lora.phy
 - Description: Set the region of operation for the device
 - Defined by: library:lora
 - Value: <u>EU868</u> (set by library:lora)
- Name: lora.public-network
 - Description: Set the public network parameter
 - Defined by: library:lora
 - Value: 1 (set by library:lora)
- Mame: lora.tx-max-size
 - Description: Maximum outgoing buffer size
 - Defined by: library:lora
 - Value: 64 (set by library:lora)

Software configuration on LoRaWAN in Mbed (parameters, default values) V

- If you want to change the default values (you have to, really):
 - You can edit the file mbed_app.json
 - mbed_config.h is generated from it
 - BUT if you modify it, the whole project (incl. Mbed) is recompiled
 - 10+ minutes
 - So, the parameters that you have to change are overridden in main.cpp

- Get the DEV_EUI values from the user account information that is published in Moodle
- Do not change any other parameters!!!
- If the LoRaWAN layer is correctly configured, you can start using the LoRaWAN API

Mbed Studio project organization

- Download the example project from Moodle
 - Beware! 700+ MB ZIP file
- Project generated using mbed repositories, with mbed compiler and ovision
 - mbed-lora-radio-drv

 n of the project project by the instructors

 mbed-os-example-lorawan

 n of the project by the instructors

 Mbed OS
 - DummySensor.h

 Application using LoRaWAN

 lora_radio_helper.h
 - main.cpp Your main application
 - mbed_config.h

 mbedtls_lora_config.h
 - trace_helper.cpp
 - threadANALOG.cpp

trace_helper.h

- threadGPS.cpp
- threadOUTPUT.cpp
- SerialGPS
- ± = Si7021

Example (I) Having a look at the main.cpp file

- static EventQueue ev_queue (MAX_NUMBER_OF_EVENTS * EVENTS_EVENT_SIZE);
- 2. SX1276_LoRaRadio radio (MBED_CONF_APP_LORA_SPI_MOSI,

```
MBED_CONF_APP_LORA_SPI_MISO,
```

MBED_CONF_APP_LORA_SPI_SCLK,

MBED_CONF_APP_LORA_CS,

MBED_CONF_APP_LORA_RESET,....);

- static LoRaWANInterface lorawan (radio);
- static lorawan_app_callbacks_t callbacks;
- 5. lorawan.initialize(&ev_queue); // initialization of LoRaWAN
- 6. callbacks.events = mbed::callback(lora_event_handler);
- 7. lorawan.add_app_callbacks(&callbacks); // setting a callback function

Example (II) Having a look at the main.cpp file

- Having a look at the main.cpp file!!!!
- retcode = lorawan.connect(); // see possible errors
- ev_queue.dispatch_forever(); Every time that an event occurs the callback is executed
- Return //main.cpp

Example (III) Having a look at the main.cpp file

Example (III)


```
case TX TIMEOUT:
Having a look at the
                                               case TX ERROR:
                                               case TX CRYPTO ERROR:
 callback code in main.cpp
                                               case TX SCHEDULING ERROR:
                                                 printf("\r\n Transmission Error - EventCode = %d \r\n", event);
                                                 // try again
                                                 if (MBED CONF LORA DUTY CYCLE ON) {
                                                   send message();
                                                 break;
                                               case RX DONE:
                                                 printf("\r\n Received message from Network Server \r\n");
                                                 receive message();
                                                 break;
                                               case RX TIMEOUT:
                                               case RX ERROR:
                                                 printf("\r\n Error in reception - Code = %d \r\n", event);
                                                 break;
                                               case JOIN FAILURE:
                                                 printf("\r\n OTAA Failed - Check Keys \r\n");
                                                 break;
                                               case UPLINK REQUIRED:
                                                 printf("\r\n Uplink required by NS \r\n");
                                                 if (MBED CONF LORA DUTY CYCLE ON) {
                                                   send message();
                                                 break;
                                               default:
                                                 MBED ASSERT("Unknown Event");
                           Máster Universitação en Internet of Things. Sensor Networks - 18 -
```


Example (IV)

Having a look at the callback code in main.cpp

```
static void send message()
  retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, packet_len,
               MSG_UNCONFIRMED_FLAG);
  printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
  memset(tx buffer, 0, sizeof(tx buffer));
static void receive message()
  int16 t retcode;
  retcode = lorawan.receive(rx buffer, sizeof(rx buffer), port, flags);
  if (retcode < 0) {
    printf("\r\n receive() - Error code %d \r\n", retcode);
    return;
  printf(" Data:");
  for (uint8 t i = 0; i < retcode; i++) {
    printf("%x", rx_buffer[i]);
  printf("\r\n Data Length: %d\r\n", retcode);
  memset(rx buffer, 0, sizeof(rx buffer));
```

Máster Universitario en Internet of Things. Sensor Networks - 19 -

LoRa in Mbed - Example stack events visible to application

Demo

Gateway Mutitech Conduit: Hawdware

- Programmable Gateway for the Internet of Things (MTCDT-247A)
- Wi-Fi communication supporting 802.11 a/b/g/n 2.4 GHz and 5GHz with WPA2 personal transmission security. Wi-Fi Access Point and Client modes are supported simultaneously.
- BT Classic and BLE 4.1 communication supports local connectivity with automatic pairing with target devices utilizing 128 bit link key length security.
- GNSS module for LoRaWAN packet time-stamping and geolocation capability
- Backhaul options include 4G-LTE, 3G, 2G cellular or Ethernet for cost effective global deployment
- LORA FEATURES
 - Certified for Europe 868 MHz, North American and Australian 915 MHz ISM bands
 - 27 dBm (output power) support for European region
 - ISM band scanning for optimum LoRa® performance
 - Listen Before Talk LoRa operating protocol

Gateway Configuration for LoRawan

LoRaWan Setup

and Restart	LoRa Mode				
	Mode	PACKET FORWARDER	▼]		
VAN™	Packet Forwarder	3.1.0-r11.0	Status	RUNNING	
vork Settings	Network Server	2.0.19	Status	DISABLED	
ss	Lens Server	2.0.19	Status	DISABLED	
ıll	FPGA Version	31) Status	Restart Lo	Ra Services
istration	TT GA VEISION		,		
& Logs	LoRa Packet Forwa	arder Configuration		Manual C	Configuration
ands	Gateway Info				
	Gateway EUI	00-80-00-00-A0-00-1E-B7			
	UUID	5C94F1DD-9519-C76D-47D	A-7BE1991B5C2D		
	Serial Number	19721601			
Copyright © 1995-2019 Multi-Tech Systems, Inc. All rights reserved.	SX1301				
	Frequency Band	868			
	Channel Plan				
	Channel Plan	EU868 ▼	Additional Channels	869.5	MHz
	Basics		Intervals		
	Public	•	Keep Alive Interval	10	s
	Gateway ID	00800000A0001EB7	Stat Interval	20	s
	Packet Forwarder P	ath /opt/lora/lora_pkt_fwd	Push Timeout	100	ms
	Server		Forward CRC		
	Server Address	eu72udp.resiot.io	Forward CRC Disabl	ed 🗆	
	Upstream Port	7677	Forward CRC Error	•	
	Downstream Port	7677	Forward CRC Valid	•	

Where is the GW?

ResloT: Main features

- IoT Platform and LoRaWAN™ Network Server (On-Premises or Cloud)
- ResIOT™ IoT Platform provides all the necessary software to manage networks with millions of devices but also to manage small private network
- The entire platform can be installed on Linux or Windows server clusters but also on Embedded Arm, x86, x64 systems, as an all-in-one gateway. Below you will find all the software features of the ResIOT™ IoT Platform
- ResIOT™ is suitable for all LPWAN and IoT projects for Smart City or Industry 4.0 and can be used free of charge up to 15 Devices and 1 LoRaWAN™ Gateway

ResIOT: Main software elements

ResIOT™ Core IoT
Application/Automation

Data adapters Server

Network Server

- ResIOT Core IoT Application Automation Data adapters Server
 - Is the heart of the platform, manages all configured data, maintains the link with all ResIOT™ LoRaWan™ Network Servers and all other connectors, provides a web interface for configuration but also for the creation of IoT projects, manages the data automation, data store in the database and many other features
- RésIOT™ LoRaWAN™ Network Server
 - Manages all the features of the LoRaWAN™ network, such as node authentication, encryption key maintenance, uplink management and downlink transmission through all the base stations / gateways of the LPWAN network

Dashboard/Control Center

ResIOT™ LoRaWAN™ Base Station/Gateway Server

It is the main component for connection to all the LoRaWAN™ Base Station / Gateway of the network. Allows the receipt and transmission of all data from the LoRaWAN™ devices and collects the monitoring data of each Base Station / Gateway. ResIOT™ LoRaWAN Base Station / Gateway Server communicates with ResIOT™ LoRaWan Network Server and ResIOT™ IoT Application / Automation / Data adapters Server with MQTT protocol

ResIOT™ LoRaWAN™ Base Station/Gateway Packet forwarder

It is the component that is installed on the Base Station / Gateway. It allows the management of the LoRa radio cards, takes care of the transmission and reception of all data and communicates constantly with the ResIOT™ component LoRaWAN™ Base Station / Gateway Server. Available for Multitech Ftdi, Multitech SPI, Kerlink Ftdi, IMST + Raspberry SPI and other gateways. It also allows to remotely configure data such as gain antenna, frequencies, server connection parameters, etcc

We are not using this option

Other components

- Automatic update of the software installed in your local installation (not our case)
- Mobile APP for Android/IOS. Please install it in your mobiles!

ResloT

- URL: https://eu72.resiot.io/
- Every student has a login and a password to access to the cloud application

Dashboard

Adding a Gateway

Adding a Node: Step 0, wizard

Adding a Node: Step 1, identification

Adding a Node: Step 2, adding Node Fields

Adding a Node: Step 3, store payload data into Node Fields

- Is your responsibility to define the content of the payload and how to use it. ResIOT uses LUA scripting to "translate" the content of the payload to the TAGS
- In order to test the LUA script, ResIOT allows to execute the script in a test environment.
- Define your custom payload and use the terminal to debug your script

Interesting tools in ResloT

- Logging window
- © Communication logs
- Statistics
- Creation of widgets
- Wizards to add gateways and nodes

```
21:34:55comm_rx[LoRaWAN™ Network Server] comm_rx/70b3d57ed000fcda/3639323559379194
{"CommType":"comm_rx","Connector":"69643d32","AppEui":"70b3d57ed000fcda","DevEui":"363
9323559379194","DevAddr":"074eebe0","Port":"15","GatewayEUIs":["00800000a0001eb7"],"Pa
yload":"302e302c302e302c302e303030303030302c302e3030303030","DT":"2019-01-
13T21:34:51.814948713+01:00",
"Extra":{"JSONRXINFO":[{"altitude":0,"latitude":40,"loRaSNR":9.5,"longitude":-3,
"mac":"00800000a0001eb7", "name":"00800000a0001eb7", "rssi":-
66}],"adr":"true","bandwidth":"125","fCnt":"14809","frequency":"868100000","spreadFact
or":"7"},"Attempt":0}
```


Project phases and basic specifications

- The project has three different phases (see specifications document)
- Phase A: Use of LoraWAN Mbed example available at Moodle
 - Configuration
 - Setup of the node in ResloT (add the basic LUA code)
 - Test (using Widgets). Use also your mobile
- Phase B: Adding your custom code developed in embedded hardware course
 - Adding code incrementally
 - Define the organization of your payload (maximum number of bytes to be used)
 - Add your LUA custom code and test
- Phase C: optional part! Improving the design

Sending commands to your node in ResIOT

- Option 1 Direct interface
 - Raw (hex) / Text
 - Mind the confirmation

Sending commands to your node in ResIOT

Máster Universitario en Internet of Things. Sensor Networks - 49 -

- Questions
- Comments
- Next steps:
 - Read document with the Project specifications
 - Check the example provided and give us your feedback!
 - Check your solutions in the lab or at least close to the gateways!

Tested Coverage

- Around campus 200m (problems with walls and other metallic object)
- From a point with direct yisibility (1.4km)

Attenuation

https://www.pasternack.com/t-calculator-friis.aspx

Received Power: -51.95 dBm

Transmitter Receiver

Tx Rx D_r P_{Tx} G_{Tx} Q_{Rx}

Typical screens

Bad configuration or communication error in the initialization

Successful TX and RX

Máster Universitario en Internet of Things. Sensor Networks - 53 -

Some guidelines

- Next class could be chaotic if all the nodes try to join simultaneously
 - Be patient! Joining and first connection takes some minutes
 - (yes, minutes)
 - Trial an error process!
- ResloT:
 - We have an academic license with "low low low low, the lowest" priority. This implies that once the data is received it takes some minutes until widgets are updated
 - The platform has a lot of features for debugging, try to play with that and understand the internals of Lorawan