Chapter 9 Hypothesis Testing

- **Problem:** Given a realization x_1, \dots, x_n of a random sample X_1, \dots, X_n from some population distribution $f(x; \theta)$, we want to know whether the true parameter θ belongs to some specific subset Θ_0 of the parameter space Θ .
- **Definition: Hypothesis.** A hypothesis is a statement about the population parameter. The two complementary hypotheses in a hypothesis testing problem are called the *null hypothesis* and the *alternative hypothesis*. They are denoted by H_0 and H_1 , respectively.
- **Remark:** The general formats of the null and alternative hypotheses are $H_0: \theta \in \Theta_0$ and $H_1: \theta \in \Theta_0^c$, respectively.

- Example: If θ denotes the average change in a patient's blood pressure after taking a drug. We might be interested in testing $H_0: \theta = 0$ versus $H_1: \theta \neq 0$. The null hypothesis states that, on the average, the drug has no effect on blood pressure. The alternative hypothesis states that there is some effect.
- Example: If θ denotes the proportion of defective items. We might be interested in testing $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_0$, where θ_0 is the maximum acceptable proportion of defective items. The null hypothesis states that the proportion of defective items is unacceptably high.

• Definition: Simple Hypothesis Versus Composite Hypothesis.

A hypothesis is simple if and only if it contains exactly one population. If the hypothesis contains more than one population, it is called a composite hypothesis.

- **Definition: Hypothesis Testing.** A hypothesis testing procedure or a hypothesis test is a decide rule that specifies
 - for what sample values \boldsymbol{x}^n the decision is made to accept \mathbb{H}_0 as true, and
 - for what sample values $\boldsymbol{x}^n \mathbb{H}_0$ is rejected and \mathbb{H}_A is accepted as true.

• Definition: Critical Region or Rejection Region. The set R of the sample points X^n for which \mathbb{H}_0 will be rejected is called the *rejection region* or *critical region*. The complement of the rejection region is called the *acceptance region*.

- The critical region C does not depend on the parameter θ .
- Critical region and acceptance region forms a partition of all possible values of \boldsymbol{x}_n .
- A test is determined by its critical region.

• Remarks:

- If $\theta \in \Theta_0$ (H_0 holds) and the observation (x_1, \dots, x_n) falls into the critical region C, then a type I error is made. The probability of making type I error is

$$\alpha(\theta) = P_{\theta}[(X_1, \cdots, X_n) \in C], \quad \theta \in \Theta_0.$$

- If $\theta \in \Theta_0^c$ (H_1 holds) and the observation (x_1, \dots, x_n) is in the acceptance region, then a *type II error* is made. The probability of making type II error is

$$\beta(\theta) = 1 - P_{\theta}[(X_1, \cdots, X_n) \in C], \quad \theta \in \Theta_0^c.$$

– If the critical region C decreases, the probability of making type I error decreases, but the probability of making type II error increases. Similarly, if C increases, $\beta(\theta)$ decreases, but $\alpha(\theta)$ increases.

- **Definition:** Power of Tests. If R is the critical region of a test of the null hypothesis $H_0: \theta \in \Theta_0$, the function $\pi(\theta) = P_{\theta}(\mathbf{X}^n \in R)$ is called the power of test with the rejection region R.
- **Definition:** Type I and Type II Errors. If $H_0: \theta \in \Theta_0$ holds and the observation \boldsymbol{x}^n falls into the critical region R, then a Type I error is made. The probability of making Type I error is

$$\alpha(\theta) \equiv P_{\theta}(\mathbf{X}^n \in R|H_0).$$

If $H_a: \theta \in \Theta_0^c$ holds and the observation \boldsymbol{x}^n is in the acceptance region, then a Type II error is made. The probability of making Type II error is

$$\beta(\theta) \equiv 1 - P_{\theta}(\boldsymbol{X}^n \in R|H_A).$$

- **Definition:** Uniformly Most Powerful Tests. Let \mathbb{C} be a class of tests for testing $H_0: \theta \in \Theta_0$ versus $H_a: \theta \in \Theta_A$. A test $T(\mathbf{X}^n)$ in class \mathbb{C} , with power function $\pi(\theta)$, is a uniformly most powerful test over \mathbb{C} if $\pi(\theta) \geq \tilde{\pi}(\theta)$ for all $\theta \in \Theta_A$ and all $\tilde{\pi}(\theta)$ that is a power function of any other test $G(\mathbf{X}^n)$ in class \mathbb{C} .
- **Definition:** Size of Tests. The size of test C is defined as

$$\overline{\alpha}_C = \sup_{\theta \in \Theta_0} \pi_C(\theta).$$

For $0 < \alpha \le 1$, a test C satisfying $\overline{\alpha}_C \le \alpha$ will be called an *level* α test. α is called the *significance level*.

• Theorem: Neyman-Pearson Lemma. Let $\mathbf{x}_n = (x_1, \dots, x_n)$ be an observation from distribution with joint PMF/PDF $f(\mathbf{x}_n; \theta)$. Consider testing a **simple** null hypothesis $H_0: \theta = \theta_0$ versus a **simple** alternative $H_1: \theta = \theta_1$. Suppose a test with rejection and acceptance regions $\mathbb{R}_n(c)$ and $\mathbb{A}_n(c)$ defined as follows

$$\mathbb{R}_n(c) = \left\{ \boldsymbol{x}^n : \frac{f_{\boldsymbol{X}^n}(\boldsymbol{x}^n, \theta_1)}{f_{\boldsymbol{X}^n}(\boldsymbol{x}^n, \theta_0)} > c \right\}$$

and

$$\mathbb{A}_n(c) = \left\{ \boldsymbol{x}^n : \frac{f_{\boldsymbol{X}^n}(\boldsymbol{x}^n, \theta_1)}{f_{\boldsymbol{X}^n}(\boldsymbol{x}^n, \theta_0)} \le c \right\}$$

for some $c \geq 0$, and

$$P[\mathbf{X}^n \in \mathbb{R}_n(c)|H_0] = \alpha.$$

- Then
 - (1) [Sufficiency] Any test that satisfies the above conditions is a uniformly most powerful level α test.
 - (2) [Necessity] If there exists a test satisfying the above conditions with c > 0, then every uniformly most powerful level α test is a size α , and every uniformly most powerful level α test satisfies the first two conditions except perhaps on a set A satisfying $P(\mathbf{X}^n \in A|H_0) = P(\mathbf{X}^n \in A|H_A) = 0$.

- $-f(\boldsymbol{X}_n;\theta_1)/f(\boldsymbol{X}_n;\theta_0)$ is called the *likelihood ratio statistic*.
- The test $C = \{ \boldsymbol{x}_n : f(\boldsymbol{x}_n; \theta_1) / f(\boldsymbol{x}_n; \theta_0) \geq k \}$ is called the *likelihood* ratio test.
- By Neyman-Pearson lemma, we want the likelihood ratio to be as large as possible in the critical region.

• Corollary. Suppose $T(\mathbf{X}^n)$ is a sufficient statistic for θ and $g(t, \theta_i)$ is the PMF/PDF of $T(\mathbf{X}^n)$ corresponding to $\theta_i, i = 0, 1$. Then any test based on $T(\mathbf{X}^n)$ with rejection region \mathbb{R}_n is a uniformly most powerful level α test for $\mathbb{H}_0: \theta = \theta_0$ against $\mathbb{H}_A: \theta = \theta_1$ if the test has the rejection and acceptance regions

$$\mathbb{R}_n(c) = \left\{ t : \frac{g(t, \theta_1)}{g(t, \theta_0)} > c \right\}$$

and

$$\mathbb{A}_n(c) = \left\{ t : \frac{g(t, \theta_1)}{g(t, \theta_0)} \le c \right\}$$

for some $c \geq 0$, where $P[T(\boldsymbol{X}^n) \in \mathbb{R}_n(c)|\mathbb{H}_0] = \alpha$.

- **Example:** Suppose random variables X_1, \dots, X_n are i.i.d. from the $\text{EXP}(\lambda)$ distribution with pdf $f(x; \lambda) = \lambda e^{-\lambda x}$ ($E(X_i) = 1/\lambda$). Test hypothesis $H_0: \lambda = 5$ against $H_1: \lambda = 8$ at the significance level α .
 - The likelihood ratio is

$$\frac{f(\boldsymbol{x}_n; \lambda = 8)}{f(\boldsymbol{x}_n; \lambda = 5)} = \frac{\prod_{i=1}^n 8e^{-8x_i}}{\prod_{i=1}^n 5e^{-5x_i}} = \left(\frac{8}{5}\right)^n e^{-3\sum_{i=1}^n x_i}.$$

- The most powerful test has the form of $\{\frac{f(\boldsymbol{x}_n;\lambda=8)}{f(\boldsymbol{x}_n;\lambda=5)} > k\}$, which is equivalent to $\{\sum_{i=1}^n x_i < k^*\}$.
- Find k^* such that $P_{\lambda=5}(\sum_{i=1}^n X_i < k^*) = \alpha$, where $2\lambda \sum_{i=1}^n X_i$ follows a χ^2_{2n} distribution. If n=10, $\alpha=0.1$, then we can obtain $k^*=1.244$ (0.1-quantile of χ^2_{20} is 12.44).
- $-\left\{\sum_{i=1}^{n} x_i < k^*\right\}$ is the most powerful test at significant level α .
- The probability of making type II error is 0.4637.

- Here $\sum_{i=1}^{n} X_i$ is called a *test statistic*, and k^* is called the *critical value*.
- In this example, if we observed a realization (x_1, \dots, x_n) , $P_{\lambda=5}(\sum_{i=1}^n X_i < \sum_{i=1}^n x_i)$ is called the *p-value* of the observation.
- The p value is the probability of obtaining a test statistic at least as extreme as the one that was observed. H_0 will be accepted if p value of the observation is larger than α , H_0 will be rejected if p value of the observation is less than α .
- In this example, consider testing $H_0: \lambda = 8$ against $H_1: \lambda = 5$. The most powerful critical region at significance level $\alpha = 0.1$ is $\{\sum_{i=1}^n x_i > 1.7757\}$. It is possible to find some observations that are accepted by both $H_0: \lambda = 5$ and $H_0: \lambda = 8$ at significance level $\alpha = 0.1$.

- **Example:** Suppose X_1, \dots, X_n are i.i.d. from normal distribution $N(\mu, \sigma^2)$ with σ^2 known. Consider testing $H_0: \mu = 0$ against $H_1: \mu > 0$ at significance level α .
 - For any fixed $\mu' > 0$, consider the likelihood ratio test for $H_0: \mu = 0$ against $H_1: \mu = \mu'$.
 - We have

$$\frac{f(\boldsymbol{x}_n; \mu = \mu')}{f(\boldsymbol{x}_n; \mu = 0)} \propto exp\left\{ (\mu'/\sigma^2) \sum_{i=1}^n x_i \right\}.$$

- Because $\mu' > 0$, the most powerful test has the form of $\{\sum_{i=1}^{n} x_i > k\}$.
- Find k^* such that $P_{\mu=0}(\sum_{i=1}^n X_i > k^*) = \alpha$, where $\frac{1}{\sqrt{n}\sigma} \sum_{i=1}^n X_i$ follows a standard normal distribution.
- Because the critical regions (or k^*) are the same for all $\mu' > 0$, $C = \{\sum_{i=1}^n X_i > k^*\}$ is the UMP test at significant level α .

- **Example:** Suppose X_1, \dots, X_n are i.i.d. from normal distribution $N(\mu, \sigma^2)$ with σ^2 known. Consider testing $H_0: \mu = 0$ against $H_1: \mu \neq 0$ at significance level α .
 - Fixed $\mu' \neq 0$, consider the likelihood ratio test for $H_0: \mu = 0$ against $H_1: \mu = \mu'$.
 - The critical regions obtained by using the likelihood ratio test are $\{\sum_{i=1}^{n} X_i > k^*\}$ and $\{\sum_{i=1}^{n} X_i < k^*\}$ for cases $\mu' > 0$ and $\mu' < 0$, respectively. The critical regions are different for different μ' . The UMP test does not exist in this case.
 - We can use $\{\left|\frac{1}{\sqrt{n}\sigma}\sum_{i=1}^{n}X_{i}\right|>k^{*}\}$, where $k^{*}>0$ is the value that makes $P_{\mu=0}(\left|\frac{1}{\sqrt{n}\sigma}\sum_{i=1}^{n}X_{i}\right|>k^{*})=\alpha$.
 - However, $\{\left|\frac{1}{\sqrt{n}\sigma}\sum_{i=1}^{n}X_{i}\right|>k^{*}\}$ is not a UMP test.

Wald Test: Consider testing

$$H_0: g(\theta) = 0$$
 against $H_1: g(\theta) \neq 0$.

$$H_0: g(\theta_0) = 0$$
 against $H_1: g(\theta_0) \neq 0$.

• Assumptions:

- **B.1:** $\sqrt{n}(\widehat{\theta}_n \theta_0) \stackrel{d}{\to} N(0, V)$, where V is a $p \times p$ symmetric bounded and non-singular covariance matrix, θ_0 is the true parameter value which is an interior point in Θ , and Θ is a compact parameter space.
- **B.2:** $\widehat{V}_n \stackrel{p}{\to} V$, where \widehat{V}_n is a function of X_1, \dots, X_n .
- **B.3:** $g: \mathbb{R}^p \to \mathbb{R}^q \ (q \leq p)$ is a continuously differentiable vector-valued function of θ . The first derivative $G(\theta_0) \stackrel{\triangle}{=} \frac{\partial}{\partial \theta} g(\theta_0)$ is a $q \times p$ matrix and has rank q.
- **Remark:** $\widehat{\theta}_n$ can be the MLE or MME.

• Theorem: Asymptotic Distribution of Wald Test Statistic.

Suppose Assumptions **B.1-B.3** hold. Under H_0 ,

$$\widehat{W}_n \stackrel{\triangle}{=} ng(\widehat{\theta}_n)' \left[G(\widehat{\theta}_n) \widehat{V}_n G(\widehat{\theta}_n)' \right]^{-1} g(\widehat{\theta}_n) \stackrel{d}{\to} \chi_q^2.$$

- Remarks:

- In Wald test, we only need to consider parameter estimation in the whole parameter space Θ .
- Test $C = \{ \boldsymbol{x}_n : \widehat{W}_n > \chi^2_{\alpha,q} \}$ is an asymptotically level α test, where $\chi^2_{\alpha,q}$ is the upper α-quantile of χ^2_q distribution..

Lagrangian Multiplier Test:

- Consider maximizing the normalized log-likelihood $l(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log f(X_i; \theta)$ under $H_0: g(\theta) = 0$.
- The Lagrangian function is

$$L(\theta; \lambda) = l(\theta) + \lambda' g(\theta),$$

where λ is a $q \times 1$ vector.

 \bullet $\widetilde{\theta}_n$ and $\widetilde{\lambda}_n$ are the solutions of the first order conditions

$$\frac{\partial L(\widetilde{\theta}_n, \widetilde{\lambda}_n)}{\partial \theta} = \frac{\partial l(\widetilde{\theta}_n)}{\partial \theta} + \widetilde{\lambda}'_n G(\widetilde{\theta}_n) = 0,$$

$$\frac{\partial L(\widetilde{\theta}_n, \widetilde{\lambda}_n)}{\partial \lambda} = g(\widetilde{\theta}_n) = 0.$$

• Theorem: Asymptotic Distribution of Lagrangian Multiplier Test Statistic. Suppose Assumptions A.1-A.6 hold, and Assumption B.3 holds. Under H_0 ,

$$LM \stackrel{\triangle}{=} -n\widetilde{\lambda}_n' G(\widetilde{\theta}_n) \left[\widehat{H}(\widetilde{\theta}_n) \right]^{-1} G(\widetilde{\theta}_n)' \widetilde{\lambda}_n \stackrel{d}{\to} \chi_q^2,$$

- An asymptotically size α LM test will reject the null hypothesis \mathbb{H}_0 : $g(\theta_0) = 0$ when LM exceeds the $(1-\alpha)$ th quantile of the χ^2 distribution.
- In Lagrangian multiplier test, we only need to maximize the likelihood function in the null parameter space $\Theta_0 = \{\theta : g(\theta) = 0\}$.
- Test $C = \{ \boldsymbol{x}_n : LM_n > \chi^2_{\alpha,q} \}$ is an asymptotically level α test.
- In many cases, Wald test and Lagrangian multiplier test are not as powerful as the generalized likelihood ratio test.

9.4 The Likelihood Ratio Test

• Likelihood Ratio(LR) Test. Consider a LR test for \mathbb{H}_0 : $g(\theta) = 0$. Suppose X^n is an IID random sample from the population $f(x, \theta_0)$, where θ_0 is an unknown parameter value in Θ . Then the likelihood function of X^n is

$$f_{\mathbf{X}^n}(\mathbf{X}^n, \theta) = \prod_{i=1}^n f(X_i, \theta).$$

The likelihood ratio statistic is defined as

$$\hat{\Lambda} = \frac{\max_{\theta \in \Theta} f_{\boldsymbol{X}^n}(\boldsymbol{X}^n, \theta)}{\max_{\theta \in \Theta_0} f_{\boldsymbol{X}^n}(\boldsymbol{X}^n, \theta)} = \frac{\prod_{i=1}^n f(X_i, \hat{\theta}_n)}{\prod_{i=1}^n f(X_i, \tilde{\theta}_n)},$$

where $\hat{\theta}_n$ and $\tilde{\theta}_n$ are the unconstrained and constrained MLE estimators respectively, that is $\hat{\theta}_n = \arg\max_{\theta \in \Theta} \hat{l}(\theta)$, and $\tilde{\theta}_n = \arg\max_{\theta \in \Theta_0} \hat{l}(\theta)$, with $\hat{l}(\theta) = \frac{1}{n} \sum_{i=1}^n \ln f(X_i, \theta)$. And Θ_0 is the parameter space Θ subject to the constraint $g(\theta) = 0$.

9.4 Likelihood Ratio Test

- **Example:** Suppose X_1, \dots, X_n are i.i.d. from normal distribution $N(\mu, \sigma^2)$. Consider testing $H_0: \mu = 0$ against $H_1: \mu \neq 0$. Find the likelihood ratio test (1) when σ^2 is known; (2) when σ^2 is unknown.
- (1) When σ^2 is known,

$$\lambda(\mathbf{x}_{n}) = exp \left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x}_{n})^{2} + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2} \right\}$$

$$= exp \left\{ -\frac{1}{2\sigma^{2}} \left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}_{n}^{2} \right) + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2} \right\}$$

$$= exp \left\{ \frac{n}{2\sigma^{2}} \overline{x}_{n}^{2} \right\},$$

the corresponding GLR test is $\{\boldsymbol{x}_n : \lambda(\boldsymbol{x}_n) > k\}$, which is equivalent to $\{\boldsymbol{x}_n : |\frac{\sqrt{n}}{\sigma}\overline{x}_n| > k^*\}$. Under H_0 , the test statistic $\frac{\sqrt{n}}{\sigma}\overline{X}_n$ follows a N(0,1) distribution.

9.4 Likelihood Ratio Tests

• (2) When σ^2 is unknown,

$$\sup_{\mu,\sigma^{2}} f(\boldsymbol{x}_{n}; \mu, \sigma^{2}) = \left[\frac{n}{2\pi \sum_{i=1}^{n} (x_{i} - \overline{x}_{n})^{2}} \right]^{n/2} e^{-n/2},$$

$$\sup_{\mu=0,\sigma^{2}} f(\boldsymbol{x}_{n}; \mu, \sigma^{2}) = \left[\frac{n}{2\pi \sum_{i=1}^{n} x_{i}^{2}} \right]^{n/2} e^{-n/2},$$

we have

$$\lambda(\boldsymbol{x}_n) = \left[\frac{\sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \overline{x}_n)^2}\right]^{n/2}$$
$$= \left[1 + \frac{n\overline{x}_n^2}{\sum_{i=1}^n (x_i - \overline{x}_n)^2}\right]^{n/2}.$$

The corresponding GLR test is $\left\{ \boldsymbol{x}_n : \frac{\sqrt{n(n-1)}|\overline{x}_n|}{\sqrt{\sum_{i=1}^n (x_i - \overline{x}_n)^2}} > k \right\}$. Under H_0 , the test statistic $\frac{\sqrt{n(n-1)}\overline{X}_n}{\sqrt{\sum_{i=1}^n (X_i - \overline{X}_n)^2}}$ follows a t_{n-1} distribution.

9.4 Likelihood Ratio Test

• Theorem: LR Test. Suppose Assumptions A.1-A.6, and B.3 hold.

Consider testing

$$H_0: g(\theta_0) = 0$$
 against $H_1: g(\theta_0) \neq 0$.

Under H_0 ,

$$LR \stackrel{\triangle}{=} 2 \ln \hat{\Lambda} = 2n \left[\widehat{l}_n(\widehat{\theta}_n) - \widehat{l}_n(\widetilde{\theta}_n) \right] \stackrel{d}{\to} \chi_q^2.$$

- GLR test statistic is a function of any sufficient statistic T.
- To construct an asymptotically level α test, we can let critical region $C = \{\boldsymbol{x}_n : 2 \log \lambda(\boldsymbol{x}_n) > \chi_{\alpha,q}^2\}$, where $\chi_{\alpha,q}^2$ is the upper α -quantile of χ_q^2 distribution.
- We can show that if $g(\theta_0) \neq 0$ (H_1 holds), the power function of $C = \{\boldsymbol{x}_n : 2 \log \lambda(\boldsymbol{x}_n) > \chi_{\alpha,q}^2\}$ at θ_0 tends to 1 as $n \to \infty$.

9.4 Likelihood Ratio Test

• **Theorem.** If $T(\mathbf{X}^n)$ is a sufficient statistic for θ , and $LR(\mathbf{X}^n)$ and $LR[T(\mathbf{X}^n)]$ are the likelihood ratio based on \mathbf{X}^n and $T(\mathbf{X}^n)$ respectively, then

$$LR(\mathbf{X}^n) = LR[T(\mathbf{X}^n)].$$

- Examples.
- Conclusion.