WEI CHEN

Nationality: Chinese

Date of Birth: 11 August 1980 Place of Birth: Shanghai, China

http://orcid.org/0000-0002-7496-0341

http://github.com/wayn3

Unversité Catholique de Louvain Nanoscopic Physics Division (NAPS) Chemin des Étoiles, 8 bte L7.03.01 B-1348, Louvain-la-Neuve, Belgium

wei.chen@uclouvain.be

Education

08.2007 – 04.2011 Dr. rer. nat, summa cum laude
Leibniz Universität Hannover, Germany
Institut für Festkörperphysik (Prof. Herbert Pfnür)

"Adsorption of organic molecules on wide band-gap insulators"

07.2005 – 08.2007 Research assistant, Fudan University
Institute of Microelectronic

"High-k dielectrics in nonvolatile memory"

09.2002 – 07.2005 MSc. in Electrical Engineering, Fudan University
Institute of Microelectronics

"DFT study of atomic layer deposition of high-k gate dielectrics"

09.1998 – 07.2002 BSc., Fudan University, Shanghai, China

Research Experience

06.2016 – present Post-doctoral researcher, UC Louvain, Belgium

Nanoscopic Physics Division (NAPS)

(Profs. Gian-Marco Rignanese and Geoffroy Hautier)

"Next-generation high-throughput computational screening of spin filters"

04.2011 – 06.2016 Post-doctoral researcher, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Chair of Atomic Scale Simulation

(Prof. Alfredo Pasquarello)

"Defects in solids through *GW* calculations", "*Ab initio* molecular dynamics of liquid water"

Coding skills

Good knowledge of FORTRAN, C, PYTHON, RUBY, and GNU BASH.

Well versed in parallel computing (MPI).

Active developer for ABINIT and QUANTUM ESPRESSO.

Code developments

ABINIT Bootstrap exchange-correlation kernel for accurate *GW* quasiparticle energies,

Gygi-Baldereschi auxiliary function for the treatment of Coulomb singularity

QUANTUM-ESPRESSO Range-separated hybrid density functional

FNV PYTHON class for finite-size-corrections of periodic charged defects

(https://github.com/wayn3/FNV)

Teaching Activities

04.2012 - 04.2016	Master's course: Computational Simulation and Physical Systems I & II
	Teaching assistance, EPFL
06.2013 - 04.2014	Supervising Master student (Karim Steiner)
	Project: Band-offset of lattice matched semiconductor heterojunctions

Recent Talks and Seminars

08.2017	29th International Conference on Defects in Semiconductors (ICDS2017), Matsue, Japan
	Invited talk: "'Towards accurate determination of defect levels in semiconductors"
05.2017	ABINIT Developer Workshop 2017, Frèjus, France
	Invited talk: "Accurate band gaps via efficient vertex corrections in GW"
10.2015	Université catholique de Louvain, Belgium
	Invited seminar: "Efficient vertex corrections in GW"
09.2015	PSI-K 2015 conference, San Sebastian, Spain
	Talk: "Accurate band gaps via efficient vertex corrections in GW"
07.2015	28th International Conference on Defects in Semiconductors (ICDS2015), Espoo, Finland
	Talk: "Determination of defect energy levels through GW"
04.2015	"Nothing is Perfect" workshop, Ascona, Switzerland
	Invited Talk: "First-principles determination of defect energy levels through GW"
08.2014	International conference on the physics of semiconductors (ICPS 14), Austin, USA
	Talk: "Band offset of lattice-matched semiconductor heterojunctions"
07.2013	International Conference on Defects in Semiconductors (ICDS 13), Bologna, Italy
	Talk: "Defect energy levels: Hybrid functionals vs GW"

Miscellaneous

Referee for Phys. Rev. Lett., Phys. Rev. B, Appl. Phys. Lett.

Publications (chronological order)

- [1] W. Chen, F. Ambrosio, G. Miceli, and A. Pasquarello, "*Ab initio* electronic structure of liquid water", Physical Review Letters 117, 186401 (2016).
- [2] W. Chen, and A. Pasquarello, "Accurate band gaps of extended systems via efficient vertex corrections in GW", Physical Review B (Rapid Comm.) 92, 041115(R) (2015).

- [3] W. Chen, and A. Pasquarello, "First-principles determination of defect energy levels through hybrid density functionals and GW", Journal of Physics: Condensed Matter (Invited Review) 27, 133202 (2015).
- [4] W. Chen, and A. Pasquarello, "Band-edge positions in GW: Effects of starting point and self-consistency", Physical Review B **90**, 165133 (2014).
- [5] K. Steiner, W. Chen, and A. Pasquarello, "Band offsets of lattice-matched semiconductor heterojunctions through hybrid functionals and G_0W_0 ", Physical Review B **89**, 205309 (2014).
- [6] W. Chen, and A. Pasquarello, "Correspondence of defect energy levels in hybrid density functional theory and many-body perturbation theory", Physical Review B 88, 115104 (2013).
- [7] W. Chen, and A. Pasquarello, "Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus many-body perturbation theory", Physical Review B 86, 035134 (2012).
- [8] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "Anomalous molecular orbital variation upon adsorption on a wide band gap insulator", Journal of Chemical Physics **132**, 214706 (2010).
- [9] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "Color centers in NaCl by hybrid functionals", Physical Review B 82, 104106 (2010).
- [10] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "Insight from first-principles calculations into the interactions between hydroxybenzoic acids and alkali chloride surfaces", Journal of Physical Chemistry C 114, 460 (2010).
- [11] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "Tailoring band gaps of insulators by adsorption at surface defects: Benzoic acids on NaCl surfaces", Physical Review B 79, 235419 (2009).
- [12] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, "The interplay of van der Waals and weak chemical forces in the adsorption of salicylic acid on NaCl(001)", Physical Chemistry Chemical Physics 11, 9337 (2009).
- [13] W. Chen, W.-J. Liu, M. Zhang, S.-J. Ding, D. W. Zhang, and M.-F. Li, "Multistacked Al₂O₃-HfO₂-SiO₂ tunnel layer for high-density nonvolatile memory application", Applied Physics Letters **91**, 022908 (2007).
- [14] W. Chen, Q.-Q. Sun, M. Xu, S.-J. Ding, D. W. Zhang, and L.-K. Wang, "Atomic layer deposition of hafnium oxide from tetrakis-(ethylmethylamino)-hafnium and water precursors", Journal of Physical Chemistry C 111, 6495 (2007).
- [15] W. Chen, M. Zhang, D. Zhang, S.-J. Ding, J.-J. Tan, M. Xu, X.-P. Qu, and L.-K. Wang, "Growth of high-density Ruand RuO₂-composite nanodots on atomic-layer-deposited Al₂O₃ film", Applied Surface Science 253, 4045 (2007).
- [16] S.-J. Ding, M. Zhang, W. Chen, D. W. Zhang, and L.-K. Wang, "Memory effect of metal-insulator-silicon capacitor with HfO₂-Al₂O₃ multilayer and hafnium nitride gate", Journal of Electronic Materials 36, 253 (2007).
- [17] H.-L. Lu, W. Chen, S.-J. Ding, D. W. Zhang, and L.-K. Wang, "DFT calculations of NH₃ adsorption and dissociation on gallium-rich GaAs(001)-4×2 surface", Chemical Physics Letters **445**, 188 (2007).
- [18] H.-L. Lu, M. Xu, S.-J. Ding, W. Chen, D. W. Zhang, and L.-K. Wang, "X-ray reflectometry and spectroscopic ellipsometry characterization of Al₂O₃ atomic layer deposition on HF-last and NH₃ plasma pretreatment Si substrates", Journal of Materials Research 22, 1214 (2007).
- [19] Q.-Q. Sun, W. Chen, S.-J. Ding, M. Xu, H.-L. Lu, H.-C. Lindh-Rengifo, D. W. Zhang, and L.-K. Wang, "Comparative study of passivation mechanism of oxygen vacancy with fluorine in HfO₂ and HfSiO₄", Applied Physics Letters 90, 142904 (2007).
- [20] Q.-Q. Sun, W. Chen, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, "Effects of chlorine residue in atomic layer deposition hafnium oxide: A density-functional-theory study", Applied Physics Letters 91, 022901 (2007).
- [21] M. Zhang, W. Chen, S.-J. Ding, X.-P. Wang, D. W. Zhang, and L.-K. Wang, "Investigation of atomic-layer-deposited ruthenium nanocrystal growth on SiO₂ and Al₂O₃ films", Journal of Vacuum Science & Technology A 25, 775 (2007).
- [22] W. Chen, Q.-Q. Sun, S.-J. Ding, D. W. Zhang, and L.-K. Wang, "First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide", Applied Physics Letters 89, 152904 (2006).
- [23] S.-J. Ding, M. Zhang, W. Chen, D. W. Zhang, L.-K. Wang, X. P. Wang, C. Zhu, and M.-F. Li, "High density and program-erasable metal-insulator-silicon capacitor with a dielectric structure of SiO₂-HfO₂-Al₂O₃ nanolaminate-Al₂O₃", Applied Physics Letters **88**, 042905 (2006).

- [24] H.-L. Lu, W. Chen, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, "Quantum chemical study of adsorption and dissociation of H₂S on the gallium-rich GaAs (001)-4×2 surface", Journal of Physical Chemistry B **110**, 9529 (2006).
- [25] H.-L. Lu, W. Chen, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, "Quantum chemical study of the initial surface reactions in atomic layer deposition of TiN on the SiO₂ surface", Journal of Physics: Condensed Matter 18, 5937 (2006).
- [26] H.-L. Lu, M. Xu, S.-J. Ding, W. Chen, D. W. Zhang, and L.-K. Wang, "Quantum chemical study of the initial surface reactions of HfO₂ atomic layer deposition on the hydroxylated GaAs(001)-4×2 surface", Applied Physics Letters 89, 162905 (2006).
- [27] J. Ren, W. Chen, H. Lu, M. Xu, and W. Zhang, "Density functional theory study on surface reaction mechanism of atomic layer deposition of ZrO₂ on Si(100)-2×1", Acta Chimica Sinica -Chinese Edition- **64**, 1133 (2006).
- [28] J. Ren, H.-L. Lu, W. Chen, M. Xu, and D. W. Zhang, "Surface reaction mechanism of atomic layer deposition of HfO₂ on Ge(100)-2×1: A density functional theory study", Applied Surface Science **252**, 8466 (2006).
- [29] M. Xu, C. Zhang, S.-J. Ding, H.-L. Lu, W. Chen, Q.-Q. Sun, D. W. Zhang, and L.-K. Wang, "Mechanism of interfacial layer suppression after performing surface Al(CH₃)₃ pretreatment during atomic layer deposition of Al₂O₃", Journal of Applied Physics 100, 106101 (2006).
- [30] W. Chen, H.-L. Lu, D. W. Zhang, M. Xu, J. Ren, J.-Y. Zhang, J.-T. Wang, and L.-K. Wang, "Density functional theory study of adsorption and dissociation of HfCl₄ and H₂O on Ge/Si(100)-(2×1): Initial stage of atomic layer deposition of HfO₂ on SiGe surface", Applied Physics Letters 86, 142901 (2005).
- [31] W. Chen, D. W. Zhang, J. Ren, H.-L. Lu, J.-Y. Zhang, M. Xu, J.-T. Wang, and L.-K. Wang, "Density functional theory study of initial stage of ZrO₂ atomic layer deposition on Ge/Si(100)-(2×1) surface", Thin Solid Films 479, 73 (2005).
- [32] H.-L. Lu, W. Chen, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, "Initial surface reactions in atomic layer deposition of Al₂O₃ on the hydroxylated GaAs(001)-4×2 surface", Journal of Physics: Condensed Matter 17, 7517 (2005).

Typeset by LATEX. Updated on June 29, 2017.