Chapter 5

Spatial database technology

Table of Content

- ➤Introduction, differences with tradition (non-spatial) DBMS, values of SDBMS, user
- Basic of spatial taxonomy and data models
- > Concept on spatial query language, standards, data mining

Introduction

In various fields there is a need to manage geometric, geographic, or spatial data, which means data related to space.

A spatial database system is a database system.

- It offers spatial data types (SDTs) in its data model and query language.
- It supports spatial data types in its implementation, providing at least spatial indexing and efficient algorithms for spatial join.

Value of SDBMS

- > Traditional (non-spatial) database management systems provide:
 - Persistence/Determination across failures
 - Allows concurrent access to data
 - Scalability to search queries on very large datasets which do not fit inside main memories of computers
 - Efficient for non-spatial queries, but not for spatial queries
- ➤ Non-spatial queries:
 - List the names of all bookstore with more than ten thousand titles.
 - List the names of ten customers, in terms of sales, in the year 2001
 - Use an index to narrow down the search
- ➤ Spatial Queries:
 - List the names of all bookstores with ten miles of Minneapolis
 - List all customers who live in Tennessee and its adjoining states
 - List all the customers who reside within fifty miles of the company headquarter

Value of SDBMS – Spatial Data Examples

- > Examples of non-spatial data
 - Names, phone numbers, email addresses of people
- Examples of Spatial data
 - Census Data
 - NASA satellites imagery terabytes of data per day
 - Weather and Climate Data
 - Rivers, Farms, ecological impact
 - Medical Imaging
- ➤ Assignment 1:

Identify spatial and non-spatial data items in

- A phone book
- A Product catalog

Value of SDBMS – Users, Application Domains

- ➤ Many important application domains have spatial data and queries. Some Examples follow:
 - Army Field Commander: Has there been any significant enemy troop movement since last night?
 - Insurance Risk Manager: Which homes are most likely to be affected in the next great flood on the Mississippi?
 - Medical Doctor: Based on this patient's MRI, have we treated somebody with a similar condition ?
 - Molecular Biologist: Is the topology of the amino acid biosynthesis gene in the genome found in any other sequence feature map in the database ?
 - Astronomer: Find all blue galaxies within 2 arcmin of quasars.

> Assignment 2 :

List two ways you have used spatial data. Which software did you use to manipulate spatial data?

What is a SDBMS?

- > A SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial abstract data types (ADTs) and a query language from which these ADTs are callable
 - supports spatial indexing, efficient algorithms for processing spatial operations, and domain specific rules for query optimization
- > Example: Oracle Spatial data cartridge, ESRI SDE
 - can work with Oracle 8i DBMS
 - Has spatial data types (e.g. polygon), operations (e.g. overlap) callable from SQL3 query language
 - Has spatial indices, e.g. R-trees
- ➤ IBM: Spatial Option
- ➤ Informix: Spatial Datablade

SDBMS Example

- > Consider a spatial dataset with:
 - County boundary (dashed white line)
 - Census block name, area, population, boundary (dark line)
 - Water bodies (dark polygons)
 - Satellite Imagery (gray scale pixels)

```
Storage in a SDBMS table:
create table census_blocks (
name string,
area float,
population number,
boundary polygon );
```


Modeling Spatial Data in Traditional DBMS

- •A row in the table census_blocks (Figure below)
- Question: Is Polyline datatype supported in DBMS?

Spatial Data Types and Traditional Databases

- > Traditional relational DBMS
 - Support simple data types, e.g. number, strings, date
 - Modeling Spatial data types is tedious
- Example: Fig above shows modeling of polygon using numbers
 - Three new tables: polygon, edge, points
 Note: Polygon is a polyline where last point and first point are same
 - A simple unit square represented as 16 rows across 3 tables
 - Simple spatial operators, e.g. area(), require joining tables
 - Tedious and computationally inefficient
- ➤ Assignment 3

Question. Name post-relational database management systems which facilitate modeling of spatial data types, e.g. polygon. How?

Mapping "census_table" into a Relational Database

Census_blocks

Name	Area	Population	boundary-ID
340	1	1 839	1050

Polygon

boundary-ID	edge-name
1050	A
1050	В
1050	С
1050	D

Edge

edge-name	endpoint
A	1
A	2
В	2
В	3
С	3
С	4
ם	4
ם	1

Point

endpoint	x-coor	y-coor
1	o	1
2	0	0
3	1	0
4	1	1

Evolution of DBMS technology

Spatial Data Types and Post-relational Databases

- ➤ Post-relational DBMS
 - Support user defined abstract data types
 - Spatial data types (e.g. polygon) can be added
- ➤ Choice of post-relational DBMS
 - Object oriented (OO) DBMS
 - Object relational (OR) DBMS
- A spatial database is a collection of spatial data types, operators, indices, processing strategies, etc. and can work with many post-relational DBMS as well as programming languages like Java, Visual Basic etc.

An Example: OO-Model

```
Class Highway
   tuple (highway_name: string, highway_type: string,
               sections: list(Section))
Class Section
   tuple (section_name: string,
               number_lanes: integer,
               city_start: City,
               city_end: City,
               geometry: Line)
Class City
   Tuple (city_name: string,
               population: integer,
               geometry: Region)
```

An Example: OO-Model

Method
Method length in class Line: real (Computes the length of a line.)

➤ Query: Length of Interstate 99 (I99)

```
Sum (Select s. geometry->length()
from h in All_highways, s in h.sections
where h.highway_name = 'I99')
```

How is a SDBMS different from a GIS?

- ➤GIS is a software to visualize and analyze spatial data using spatial analysis functions such as
 - **Search** Thematic search, search by region, (re-)classification
 - Location analysis Buffer, corridor, overlay
 - **Terrain analysis** Slope/aspect, catchment, drainage network
 - Flow analysis Connectivity, shortest path
 - **Distribution** Change detection, proximity, nearest neighbor
 - Spatial analysis/Statistics Pattern, centrality, autocorrelation, indices of similarity, topology: hole description
 - Measurements Distance, perimeter, shape, adjacency, direction
- ➤GIS uses SDBMS
 - to store, search, query, share large spatial data sets

How is a SDBMS different from a GIS?

- ➤ SDBMS focuses on
 - Efficient storage, querying, sharing of large spatial datasets
 - Provides simpler set based query operations
 - Example operations: search by region, overlay, nearest neighbor, distance, adjacency, perimeter etc.
 - Uses spatial indices and query optimization to speedup queries over large spatial datasets.
- >SDBMS may be used by applications other than GIS
 - Astronomy, Genomics, Multimedia information systems, ...

Evolution of acronym "GIS"

- ➤ Geographic Information Systems (1980s)
- ➤ Geographic Information Science (1990s)
- ➤ Geographic Information Services (2000s)

Three meanings of the acronym GIS

- ➤ Geographic Information Services
 - Web-sites and service centers for casual users, e.g. travelers
 - Example: Service (e.g. AAA, mapquest) for route planning
- ➤ Geographic Information Systems
 - Software for professional users, e.g. cartographers
 - Example: ESRI Arc/View software
- ➤ Geographic Information Science
 - Concepts, frameworks, theories to formalize use and development of geographic information systems and services
 - Example: design spatial data types and operations for querying

Components of a SDBMS

- Recall: a SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial ADTs and a query language from which these ADTs are callable
 - supports spatial indexing, algorithms for processing spatial operations, and domain specific rules for query optimization
- ➤ Components include
 - spatial data model, query language, query processing, file organization and indices, query optimization, etc.

Three Layer Architecture

Spatial Taxonomy, Data Models

➤ Spatial Taxonomy:

- multitude of descriptions available to organize space.
- Topology models homeomorphic relationships, e.g. overlap, adjacent
- Euclidean space models distance and direction in a plane
- Graphs models connectivity, Shortest-Path

➤ Spatial data models

- rules to identify identifiable objects and properties of space
- Object model help manage identifiable things, e.g. mountains, cities, land-parcels etc.
- Field model help manage continuous and amorphous phenomenon, e.g. temperature, satellite imagery, snowfall etc.

Spatial Query Language

- Spatial query language
 - Spatial data types, e.g. point, linestring, polygon, ...
 - Spatial operations, e.g. overlap, distance, nearest neighbor, ...
 - Callable from a query language (e.g. SQL3) of underlying DBMS SELECT S.name FROM Senator S WHERE S.district.Area() > 300

> Standards

- SQL3 (a.k.a. SQL 1999) is a standard for query languages
- OGIS is a standard for spatial data types and operators
- Both standards enjoy wide support in industry

Multi-scan Query Example

- Find all senators who serve a district of are greater than 300 square miles and who own a business within the district
- Spatial join example
 SELECT S.name FROM Senator S, Business B
 WHERE S.district.Area() > 300 AND Within(B.location, S.district)

NAME SOC.-SEC GENDER DISTRICT (POLYGON) BUSINESS B-NAME OWNER SOC-SEC LOCATION (POINT)

Multi-scan Query Example

- > Find the name of all female senators who own a business
- ➤ Non-Spatial Join example

SELECT S.name FROM Senator S, Business B WHERE S.soc-sec = B.soc-sec AND S.gender = 'Female'

Query Processing

- Efficient algorithms to answer spatial queries
- > Common Strategy filter and refine
 - Filter Step: Query Region overlaps with MBRs of B,C and D
 - Refine Step: Query Region overlaps with B and C

File Organization and Indices

- ➤ A difference between GIS and SDBMS assumptions
 - GIS algorithms: dataset is loaded in main memory (Fig. (a))
 - SDBMS: dataset is on secondary storage e.g disk (Fig. (b))
 - SDBMS uses space filling curves and spatial indices
 - * to efficiently search disk resident large spatial datasets
- Memory access: 10ns, disk access 10,000,000ns (2000)

Organizing spatial data with space filling curves

- > Issue:
 - Sorting is not naturally defined on spatial data
 - Many efficient search methods are based on sorting datasets
- > Space filling curves
 - Impose an ordering on the locations in a multi-dimensional space
 - Examples: row-order (Fig. (a), z-order (Fig. (b))
 - Allow use of traditional efficient search methods on spatial data

1	2	3	4
5	6	7	8
9	10	11	12
13 14		15	16

 (\mathbf{a})

(b)

Spatial Indexing: Search Data-Structures

- > Choice for spatial indexing:
 - B-tree is a hierarchical collection of ranges of linear keys, e.g. numbers
 - B-tree index is used for efficient search of traditional data
 - B-tree can be used with space filling curve on spatial data
 - R-tree provides better search performance yet!
 - R-tree is a hierarchical collection of rectangles

Query Optimization

- Query Optimization
 - A spatial operation can be processed using different strategies
 - Computation cost of each strategy depends on many parameters
 - Query optimization is the process of
 - •ordering operations in a query and
 - •selecting efficient strategy for each operation
 - •based on the details of a given dataset
- Example Query:

```
SELECT S.name FROM Senator S, Business B
WHERE S.soc-sec = B.soc-sec AND S.gender = 'Female'
```

- Optimization decision examples
 - •Process (S.gender = 'Female') before (S.soc-sec = B.soc-sec)
 - •Do not use index for processing (S.gender = 'Female')

Data Mining

- > Analysis of spatial data is of many types
 - Deductive Querying, e.g. searching, sorting, overlays
 - Inductive Mining, e.g. statistics, correlation, clustering, classification, ...
- Data mining is a systematic and semi-automated search for interesting non-trivial patterns (Significant patterns) in large spatial databases
- > Example applications include
 - Infer land-use classification from satellite imagery
 - Identify cancer clusters and geographic factors with high correlation
 - Identify crime hotspots to assign police patrols and social workers

Summary

- >SDBMS is valuable to many important applications
- >SDBMS is a software module
 - works with an underlying DBMS
 - provides spatial ADTs callable from a query language
 - provides methods for efficient processing of spatial queries
- ➤ Components of SDBMS include
 - spatial data model, spatial data types and operators,
 - spatial query language, processing and optimization
 - spatial data mining
- ➤SDBMS is used to store, query and share spatial data for GIS as well as other applications

Assignment 5

- 1. What do you understand by Data Mining? Describe the applications of Data Mining in SDBMS in detail with suitable example
- 2. Describe the query optimization process in SDBMS in detail with suitable example.
- 3. What do you understand by Spatial Indexing? List out and describe different types of Spatial indexing in detail with suit diagram.
- 4. What is space filling curves? Describe organizing spatial data with space filling curves in detail with suitable example.
- 5. What is Spatial taxonomy? Describe spatial data model and its type in detail with suitable example.
- 6. What is query processing? Describe the common strategy of Query processing in detail.
- 7. What do you understand by spatial query? Describe the three layer architecture of SDBMS in detail with suitable diagram.
- 8. Discuss the differences between Spatial and non-spatial data.
- 9. Geographic applications are a common source of spatial data. List at least four other important sources of spatial data.
- 10. What are the advantages of storing spatial data in a DBMS as opposed to file system.
- 11. How can object relational databases be used to implement an SDBMS?
- 12. Compare and Contrast
- a. GIS Vs SDBMs
- b. OODBMS vs RDBMS
- c. GI Systems VS GI services
- d. Data Model VS Query Language
- e. Query Processing VS File organization and indices
- f. Querying and Data Mining
- g. Main Memory Vs DISK