作二圓與已知圓相切於特定點並相切於已知直綫

Created by Mr. Francis Hung

Last updated: 2023-07-03

如圖1,已給直綫L,及一圓C(圓心G)經過P點,且不與L相交。作一圓 C_1 外切C於P點及一圓 C_2 內切C於P點,且與L相切。

作圖方法如下(圖2):

- (1) 過G作MD 垂直於L,交L於D,交圓C於M(離L較遠一端)及N(離L較近一端)。
- (2) 連接 MP, 其延長綫交 L 於 A; 連接 PN, 其延長綫交 L 於 B。
- (3) 過A作AK 垂直於L,過B作BH 垂直於L。
- (4) 連接 GP, 其延長綫交 AK 於 K, 且交 BH 於 H。
- (5) 以 K 為圓心,KP 為半徑作一圓 C_1 ; 以 H 為圓心,HP 為半徑作一圓 C_2 。

作圖完畢。

證明如下:

 $\Delta MGP \sim \Delta AKP \ \mathcal{D} \ \Delta NGP \sim \Delta BHP$ (等角)

$$\frac{KP}{KA} = \frac{GP}{GM}$$
 及 $\frac{HP}{HB} = \frac{GP}{GN}$ (相似三角形的對應邊)

$$: GM = GP \ \mathcal{L} GN = GP$$
 (圓 C 的半徑)

∴
$$KP = KA \not B HP = HB$$

圓 C_1 經過 $A \cdot P$ 及圓 C_2 經過 $B \cdot P \circ$

 $:: H \setminus G \setminus P \setminus K$ 共綫

∴
$$GP + PK = GK \not B HP - GP = HG$$

圓 C_1 外切圓 C 於 P 及圓 C_2 內切圓 C 於 P。

$$\angle KAD = 90^{\circ} = \angle HBD$$
 (由作圖所得)

∴ 圓 C_1 及圓 C_2 與 L 相切。 (切綫 \bot 半徑的逆定理)

證明完畢。

已給直綫 L,及一圓 C(圓心 G)經過 P 點,且與 L 相交,其中 P 不在 L上。作一圓 C_1 內切C於P點及一圓 C_2 外切C於P點,且與L相切。

圖 3

作圖方法(圖 3)與上頁相似:不妨假設 P 與 G 在 L 的相反一方。

- (1) 過G作MD 垂直於L, 交L於D, 交圓C於M(與G在L的同一方)及N(與G在L的相 反一方)。
- (2) 連接 MP, 交 L 於 A; 連接 NP, 其延長綫交 L 於 B。
- (3) 過A作AK 垂直於L,過B作BH 垂直於L。
- (4) 連接 GP, 其延長綫交 BH 於 H; GP 交 AK 於 K。
- 以 K 為圓心,KP 為半徑作一圓 C_1 ,以 H 為圓心,HP 為半徑作一圓 C_2 。 作圖完畢,證明從略。

思考題:

如圖 4, 已給直綫 L, 及一圓 C(圓心 G)經過 P點, 且與 L 相切於 D, 其中P不在L上。請問可作多少個圓與C相切,經過P點,且與L相切?作圖法如何?

另外,在圖 3 或圖 4 中,若 P 是圓 C 與 L 的交點,以上作圖法是否 正確?

圖 4