1

7

14

15

1

2

3

4

1

WHAT IS CLAIMED IS:

	4	1 1 1 0		.1 1 .	C 1'1	4 11		1	
^		A mothod to	AP 37AP1137111A	the decion	AT 2 MICK	CONTROLLER	CITCHILL TO	ne incor	noratea
/.		A method for		uic dosign	or a disk	COHUCHE	CHCuit to		poracou

- 3 into a targeted hard disk drive system, wherein the targeted hard disk drive system comprises a
- 4 read/write channel and a head actuator, the method comprising the steps of:
- emulating reading and writing of data in the read/write channel based upon a model of the
- 6 read/write channel;
 - emulating a behavior of the head actuator during track seek and track following operations based upon an electromechanical model of the head actuator;
 - providing a disk controller design base for defining integrated circuit elements comprising the disk controller circuit;
 - providing a controller environment to support execution and debug of firmware for operating the disk controller circuit;
 - performing a plurality of disk functions according to a script, wherein the plurality of disk functions comprise interaction of the read/write channel model, the electromechanical model, the disk controller design base and the controller environment.
 - 2. The method of claim 1, wherein the plurality of disk functions are performed at a time-scaled rate, wherein the time-scaled rate maintains an accurate relative time relationship between the plurality of disk functions performed under direction of the script, and a real-time performance of the disk functions.
 - 3. The method of claim 1, wherein the plurality of disk functions are performed at a

- 2 plurality of environmental limits, wherein the models and the design base are made to operate
- according to their predicted behavior at the environmental limits.