Санкт-Петербургский Политехнический Университет Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

ОТЧЁТ
КУРСОВАЯ РАБОТА
ПО ДИСЦИПЛИНЕ
"МАТЕМАТИЧЕСКАЯ СТАТИСТИКА"

Выполнил студент: Салихов С.Р. группа: 3630102/70401

Проверил: к.ф-м.н., доцент Баженов Александр Николавич

Содержание

		· · · •	Стр.
1.	Пос	тановка задачи	4
2.	Под	готовка данных	4
3.	Алг	оритм выделения пилобразных колебаний	4
	3.1.	Шаги алгоритма	4
	3.2.	Иллюстрация шагов алгоритма на примере с данными 38998, для датчика SXR 27 мкм	6
	3.3.	Промежуточные выводы по алгоритму	13
4.	Алг	оритм для оценивания частоты пилобразных колебаний	14
	4.1.	Шаги алгоритма	14
	4.2.	Иллюстрация шагов алгоритма на примере с данными 38998, для датчика SXR 27 мкм	15
	4.3.	Промежуточные выводы по алгоритму	19
5.	-	фики функции частоты от времени для всех датчиков экспери- тов	19
6.	Выі	зод	25
7.	Спи	сок литературы	26

Список иллюстраций

1	Исходный сигнал(0-й шаг алгоритма)	7
2	Результаты после 1-го шага алгоритма	8
3	Результат после 2-го шага алгоритма, частота среза $=850$, для фильтра высоких частот	9
4	Результат после 3-го шага алгоритма, порядок фильтра $=50$	10
5	Результат после 4-го шага алгоритма, частота среза $=4250$, для фильтра низких частот	11
6	Результат после 5-го шага алгоритма, 0.00 - 0.26-с - границы пилобразного участка, 0.00004 - установленный порог	12
7	Результаты после 0-го шага алгоритма	16
8	Результат после 1-го шага алгоритма, частота для фильтра низких частот = 2500 , частота для фильтра высоких частот = 1000	17
9	Результат после 4-го шага алгоритма	18
10	График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38993	20
11	График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38994	21
12	График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38995	22
13	График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38996	23
14	График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38998	24

1 Постановка задачи

Даны показания 4-х датчиков, регистрирующих мягкое рентгеновское излучение плазмы в пяти экспериментах. В показаниях датчиков иногда наблюдаются пилообразные колебания, предшествующие срыву плазмы. Важно уметь вовремя детектировать такие колебания, чтобы предотвращать срыв плазмы. В связи с этим требуется:

- 1)Представить алгоритм выделения пилобразных колебаний.
- 2)Оценить частоту пилобразных колебаний.
- 3)Построить гистограммы частот для различных датчиков.
- 4)Выяснить наличие корреляции у различных датчиков на разных временных этапах пилобразных колебаний.

2 Подготовка данных

Данные представлены в бинарном сжатом виде. Декодирование данных производится с помощью Python и библиотеки pyGlobus. Далее из декодировнных данных извлекаются временные последовательности показаний датчиков, которые сохраняются в массивах numpy.

Представлены наборы данных для 5-и экспериментов: 38993, 38994, 38995, 38996, 38998.

Каждый набор содержит измерения 4-х датчиков: SXR 15 мкм, SXR 27 мкм, SXR 50 мкм, SXR 80 мкм.

3 Алгоритм выделения пилобразных колебаний

3.1 Шаги алгоритма

- 0)Выбирается сигнал для анализа.
- 1) Находим участок сигнала, который не является квазистационарным. Данный участок выделяется сравнением значения отсчёта с его средним значением по всему сигналу (данный шаг алгоритма не применяется в онлайн режиме).
 - 2)Для удаления низкачастотных составляющих применяем фильтр высоких частот.
- 3)Находим 1-ю про-ю спрямленного сигнала путём применения сглаживающего цифрового дифференцирующего фильтра(ЦД Φ): $y(n) = \sum_{k=1}^{M} \frac{1}{M(M+1)} [x(n+k) x(n-k)], M = 2$ порядок фильтра, x(n) значение n-ого отсчёта входного сигнала, а y(n) значение n-го отсчёта входного сигнала.
- 4)Берём модуль от первой производной спрямленного сигнала. И применяем фильтр низких частот, для удаления высокочастотного шума.

 $5) \Pi$ о установленному порогу определяем пилобразные колебания.

3.2	Иллюстрация шагов алгоритма на примере с данными 38998, для датчика SXR 27 мкм

Рис. 1: Исходный сигнал(0-й шаг алгоритма)

Рис. 2: Результаты после 1-го шага алгоритма

Рис. 3: Результат после 2-го шага алгоритма, частота среза = 850, для фильтра высоких частот

Рис. 4: Результат после 3-го шага алгоритма, порядок фильтра =50

Рис. 5: Результат после 4-го шага алгоритма, частота среза = 4250, для фильтра низких частот

Рис. 6: Результат после 5-го шага алгоритма, 0.00 - 0.26-с - границы пилобразного участка, 0.00004 - установленный порог

3.3 Промежуточные выводы по алгоритму

1)Время выполнения для тестового примера ≈ 80 сек.(в данном времени не учитывалось время построения и сохранения графиков), основное время работы занимает 3-й шаг алгоритма. Таким образом, для отслеживания пилобразных колебаний в реальном времени нужна большая вычислительная мощность, либо необходимо представить данный алгоритм на более низком языке программирования.

2)Для выполнения 5-го шага алгоритма необходимо на тестовых данных определить допустимое пороговое значение, чтобы в дальнейшем использовать его на будущих вычислениях.

4 Алгоритм для оценивания частоты пилобразных колебаний

4.1 Шаги алгоритма

- 0)Выделяем участок с пилобразными коллебаниями.
- 1)Применяем фильтр высоких частот и удаляем высокочастотные шумы с помощью фильтра низких частот.
- 2)Ищем точки пересечения сигнала с осью абцисс. Для получения мгновенных периодов колебаний вычитаем полученные значения, через 1-н.
- 3)Из периодов (полученных на шаге 2), получаем мгновенные частоты функция частоты от времени.
- 4)Применяем любой сглаживающий фильтр. Т.к. наша функция зависит от времени, то лучше выбрать скользящие среднее.

4.2	Иллюстрация шагов алгоритма на примере с данными 38998, для датчика SXR 27 мкм

Рис. 7: Результаты после 0-го шага алгоритма

Рис. 8: Результат после 1-го шага алгоритма, частота для фильтра низких частот = 2500, частота для фильтра высоких частот = 1000

Рис. 9: Результат после 4-го шага алгоритма

4.3 Промежуточные выводы по алгоритму

1)Время работы алгоритма меньше 1сек(при исключении работы с диском и построения графиков).

5 Графики функции частоты от времени для всех датчиков экспериментов

Рис. 10: График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38993

Рис. 11: График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38994

Рис. 12: График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38995

Рис. 13: График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38996

Рис. 14: График функции частоты от времени для участка пилобразных колебаний для всех датчиков в эксперименте 38998

6 Вывод

- 1)Полученные графики свидетельствуют о том, что алгоритм детектирования пилобразных коллебаний обладает достаточной точностью для использования на практике.
- 2)Ориентируясь на данные полученные из примеров видно, что алгоритм для выделения частот пилобразных коллебаний также даёт удовлетворительный результат.
- 3) Также видно, что из за различного характера коллебаний необходимо больше данных для определения порогового значения для 1-го алгоритма.

7 Список литературы

```
[1] Скользящая средняя

[2] https://www.academia.edu/21643111/Development_of_real-time_plasma_analysis_and_control_algorithms

[3] https://numpy.org/

[4] https://matplotlib.org/

[5] https://github.com/dev0x13/globus-plasma/releases/tag/v0.1.1

[6] Гармонические колебания

[7] Цифровые фильтры
```