D.S. Analyse Numérique - ISIMA 1ère Année

V. Barra, J. Koko et Ph. Mahey

Mercredi 6 février 2008

Exercice 1 Soient A une matrice symétrique définie positive de taille $n, u \in \mathbb{R}^n$ dont toutes les composantes sont égales à 1, et e un vecteur de \mathbb{R}^n .

Pour $\epsilon \in \mathbb{R}$ et $\sigma \in \mathbb{R}^+$ donnés, on définit les ensembles

$$C_1(\epsilon) = \left\{ x \in \mathbb{R}^n, u^T x = 1, e^T x = \epsilon \right\}, \qquad C_2(\sigma) = \left\{ x \in \mathbb{R}^n, u^T x = 1, \frac{1}{2} x^T A x = \sigma \right\}$$

Dans la suite, on cherche à résoudre les problèmes

$$\min_{x \in C_1(\epsilon)} \frac{1}{2} x^T A x \tag{1}$$

$$\max_{x \in C_2(\sigma)} e^T x \tag{2}$$

- 1. Donner les conditions sur e et ϵ pour que $C_1(\epsilon)$ soit non vide.
 - On admet par ailleurs que pour tout $\epsilon \in \mathbb{R}$, $C_1(\epsilon)$ est fermé et non borné. On en déduit que le problème (1) admet une solution unique. De même, on admet que pour certaines valeurs de $\sigma \in \mathbb{R}^+$, $C_2(\sigma)$ est non vide, fermé et borné, de sorte que (2) admet au moins une solution.
- 2. On note λ le multiplicateur de Lagrange associé à la contrainte $u^Tx=1$, et μ celui associé à $e^Tx=\epsilon$. On définit

$$a = (A^{-1}u)^T u$$
, $b = (A^{-1}u)^T e$, $c = (A^{-1}e)^T e$, $d = b^2 - ac$

En utilisant les conditions d'optimalité associées à $C_1(\epsilon)$, montrer que la solution de (1) vérifie

$$\lambda = (c - b\epsilon)/d$$

$$\mu = (a\epsilon - b)/d$$

$$x = -A^{-1}(\lambda u + \mu e)$$

On s'attachera en particulier à montrer que d est non nul.

3. On dit qu'une solution x est efficiente si elle est solution commune aux problèmes (1) et (2), et on appelle frontière d'efficience la courbe du plan (ϵ, σ) correspondant à l'ensemble de ces solutions, lorsque ϵ et σ varient. Pour x efficient, exprimer $\frac{1}{2}x^TAx$ en fonction de λ, μ, ϵ . En déduire une expression de σ en fonction de a, b, c et ϵ . Quelle est la courbe ainsi obtenue dans le plan (ϵ, σ) ?

Exercice 2 Soit $D = \text{diag}(d_1, \dots, d_n)$ une matrice diagonale. Soit ρ un réel positif et $x \in \mathbb{R}^n$ tel que $||x||_2 = 1$. On considère la matrice $A = D + \rho x x^T$.

1. Montrer que chaque composante v_i d'un vecteur propre v de A associée à la valeur propre λ vérifie

$$v_i = \rho \frac{ax_i}{\lambda - d_i}$$

où $a = x^T v$.

2. Montrer que les valeurs propres de A vérifient l'équation $\rho \sum_{i=1}^n \frac{x_i^2}{\lambda - d_i} - 1 = 0$.

Exercice 3 Soit f la fonction quadratique

$$f(x) = \frac{1}{2}x^T A x - b^T x, \quad A = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix} \text{ et } b = \begin{pmatrix} 2 & 1 \end{pmatrix}^T$$

- 1. Quel est l'ensemble des points stationnaires de f ? Quelle est leur nature ?
- 2. En partant du point $x_0 = \begin{pmatrix} 0 & 1 \end{pmatrix}^T$, on souhaite trouver $x_1 = x_0 + t_0 d_0$ en appliquant une itération de la méthode du gradient. Donner d_0, t_0, x_1 .

1