Turingmaschine mit folgender Übergangsfunktion

Gegeben sei eine TM mit folgender Übergangsfunktion:

	z_1	z_2	z_3	z_4	z_5
0	$(z_2: \square, R)$	$(z_3: X, R)$	$(z_4: 0, R)$	$(z_3: X, R)$	$(z_5:0,L)$
X	-	$(z_2: X, R)$	$(z_3: X, R)$	$(z_4: X, R)$	$(z_5: X, L)$
	_	$(z_f: \Box, R)$	$(z_5: \square, L)$	-	$(z_2: \square, R)$

flaci.com/Apew8cea2

Erreicht die TM den Zustand z_f (final), so hält sie an und bearbeitet keine weitere Eingabe. Zu Beginn der Berechnung soll die TM auf dem ersten Symbol der Eingabe (links) stehen.

- (a) Gebe für die folgenden Eingaben die Konfigurationsfolgen der Berechnung an:
 - 00000

Der Zustand der TM steht vor dem nächsten gelesenen Zeichen

- 000000

- 0000

Der Zustand der TM steht vor dem nächsten gelesenen Zeichen

(b) Gebe zwei andere Wörter über der Sprache $L\subset\{\,0^*\,\}$ an, für die TM im Zustand z_f endet.

Z. B. 0 oder 00

(c) Für welche Sprache ist die TM an Akzeptor?

Die TM erkennt alle Wörter mit der Eigenschaft, dass die Anzahl der Nullen eine 2er-Potenzen ist.