

Instrumentation in Raman spectroscopy, part 2: how to calibrate your spectrometer.

Jean Dubessy, Marie-Camille Caumon, Shiv Sharma, Fernando Rull

Introduction

- Raman spectroscopy provides information on:
 - Molecules or minerals and their physical-chemical environment
 - Quantities or proportions of each compound
 - Geometry (crystal)
 - Spatial arrangement

- Expected information:
 - Number of peaks
 - Peak position (Raman shift, cm⁻¹)
 - Peak intensity (relative or absolute)
 - Spatial positioning (x, y, z)

Introduction

- Required to know:
 - Spectral resolution
 - Raman shift wavenumber accuracy and precision
 - Intensity response of the device used (spectrometer, optics, sampling system)
 - Confocality (z: axial resolution)
 - Spatial resolution (x, y: lateral resolution)
- Depend on:
 - Optics (mirrors, objectives, optical geometry)
 - Spectrometer (grating, detector, focal length of the spectrometer, slit and confocal apertures)
 - Excitation wavelength (laser)
 - Time
 - Temperature

Must be determined at least once but more often depending on:

- Time stability of the device
- Required precision and accuracy

- 1. Raman shift wavenumber calibration:
 - Detector
 - Laser
- 2. Raman intensity calibration:
 - spectrometer response
 - cross section
- 3. Spectral resolution
- 4. Confocality: axial resolution
- 5. Spatial resolution : lateral resolution

- 1. Raman shift wavenumber calibration:
 - Detector
 - Laser
- 2. Raman intensity calibration:
 - spectrometer response
 - cross section
- 3. Spectral resolution
- 4. Confocality: axial resolution
- 5. Spatial resolution: lateral resolution

•Raman shift wavenumber $\overline{\nu_{R,j}}$ depends on laser wavelength:

$$\lambda_{R,j} = \frac{1}{\overline{\nu_{R,j}^{abs}}} = \frac{1}{\overline{\nu_0} - \overline{\nu_{R,j}}}$$

$$\overline{\nu_{R,j}} = \frac{1}{\lambda_0} - \frac{1}{\lambda_{R,j}}$$

•Raman wavelength $\lambda_{R, i}$ scattering by grating :

- · CCD pixels' correspondence to wavelength and grating position
- Exact laser wavelength

The scattered beam highlights the CCD along the largest dimension:

- For each grating position and each laser wavelength
- Usually done at the time of installation but can vary with:
 - Mechanical drift (e.g. grating rotation by a sine bar)
 - Room temperature variations

Depending on the required accuracy, must be checked every day or before each measurement.

- How to proceed:
 - 1. Determine the required accuracy (< or > 1 cm⁻¹)
 - 2. Determine the Raman shift range to calibrate (full range or reduced window)
 - 3. Select the relevant standard sample(s)
 - 4. Record standard's spectrum (! collection geometry)
 - 5. Modify the correlation curve parameters if necessary

- Low accuracy (> 1 cm⁻¹) and/or full range:
 - Silicon wafer (520.7 \pm 0.5 cm⁻¹)
 - Air: O_2 (1555 ± 1 cm⁻¹) and N_2 (2332 ± 1 cm⁻¹)
 - Laser (0 cm⁻¹)
 - Organic compounds (e.g. cyclohexane, polystyrene)

Modify (slightly) the correlation curve parameters to fit the exact peak position.

Cyclohexane Raman spectrum:

Cyclohexane Raman peaks' positions (cm⁻¹) from ASTM E 1840-96:

284.1 ± 0.78	1444.4 ± 0.30
426.3 ± 0.41	2664.4 ± 0.42
801.3 ± 0.96	2852.9 ± 0.32
1028.3 ± 0.45	2923.8 ± 0.36
1157.6 ± 0.45	2938.3 ± 0.51
1266.34 ± 0.94	

Correlation curves obtained from cyclohexane using a multiplexed VPH grating.

- High accuracy (< 1 cm⁻¹):
 - Ne, Ar, Hg, etc. lamps
 - Gas laser atomic emission lines

How to proceed:

- 1. Fit the standard peaks (Lorentzian)
- 2. Correlate the measured peak positions to the expected ones

Accuracy close to the spectrometer spectral resolution can be reach.

Laser wavelength

- Gas lasers: atomic emission stable over a long period of time and known with an accuracy ~1 pm (0.04 cm⁻¹ at 500 nm)
- Solid and semi-conductor lasers: less stable with time
 - ⇒ emission wavelength must be checked (and corrected)

How to proceed:

- 1. Calibrate the Raman shift wavenumber (detector)
- 2. Select a relevant standard sample (organic compounds)
- 3. Record the spectrum of the standard
- 4. Modify the laser wavelength to reach the best correspondence between the measured and expected peak positions of the standard.

- 1. Raman shift wavenumber calibration:
 - Detector
 - Laser
- 2. Raman intensity calibration:
 - spectrometer response
 - · cross section
- 3. Spectral resolution
- 4. Confocality: axial resolution
- 5. Spatial resolution: lateral resolution

The scattered Raman intensity I_{Raman}:

R_{instrument}: instrument response function Depends on optics, grating, filters, wavelength, detector, polarisation, objectives.

One response function for each experimental configuration. Should not vary with time.

How to proceed:

- 1. Configure the spectrometer as for samples (grating, filters, objective, etc.).
- 2. Chose a standard source.
- 3. Record the spectrum of the standard.
- 4. Calculate the instrument response (automatically or manually).

• Instrument response $R = I_{measured}/I_{true} \nu s. \lambda$.

Standard source:

White lamp (tungsten): do not reproduce sample positioning Luminescent standards: laser wavelength and temperature dependants

Example of a system to ensure a reproducible positioning of the source:

HCA Kaiser Optical Systems, Inc.

- When to measure instrument response?
 - To compare spectra of one sample recorded
 - on different spectrometers
 - using different lasers (! λ^4)
 - To determine true σ Raman cross section

Ex: cyclohexane with 2 ≠ lasers:

- Semi-quantitative measurements: internal standard
- First require to record calibration curves

$$\begin{split} I_{Raman} & \propto P_{laser} \times [vibrator]_{scattering \, volume} \times \sigma_{vibrator} \times 1/\lambda_{R, \, j}^{4} \times R_{instrument} \\ I_{A}/I_{B} & = ([A] \times \sigma_{A}^{*})/([B] \times \sigma_{B}^{*}) \\ & \text{with } \sigma_{A}^{*} \, (\text{and } \sigma_{B}^{*}) = \sigma_{A} \times R_{instrument} \times 1/\lambda_{R, \, A}^{4} \end{split}$$

(effective Raman cross section of A)

CO₂ solubility (mol/kg) in water. Internal standard: water

From Isabelle Daniel

- 1. Raman shift wavenumber calibration:
 - Detector
 - Laser
- 2. Raman intensity calibration:
 - spectrometer response
 - cross section
- 3. Spectral resolution
- 4. Confocality: axial resolution
- 5. Spatial resolution: lateral resolution

3. Spectral resolution

Spectral resolution: ability of the spectrometer to separate two peaks.

- Depends on:
 - Wavelength
 - Grating (no of grooves/mm)
 - CCD (no and size of pixels)
 - Focal length of the spectrometer
 - Entrance slit aperture
 - Natural bandwidth of the peak

3. Spectral resolution

How to proceed:

- 1. Highlight the spectrometer with lamp (Ne, Hg, Ar, Kr) (bandwidth < 0.01nm)
- 2. Record the spectrum of the lamp in the desired configuration (slit, grating, wavenumber, etc.)
- 3. Fit the peak (Lorentzian) => spectral resolution = FWHM

- 1. Raman shift wavenumber calibration:
 - Detector
 - Laser
- 2. Raman intensity calibration:
 - spectrometer response
 - cross section
- 3. Spectral resolution
- 4. Confocality: axial resolution
- 5. Spatial resolution: lateral resolution

4. Confocality: axial resolution

- Confocality: selectivity along the axial direction
- Only for microspectrometers
- Depends on:
 - N.A. of the objective
 - Laser wavelength
 - Confocal hole aperture

It is an indicator of laser optical alignment.

4. Confocality: axial resolution

- How to proceed:
- 1. Illuminate a Si wafer with laser (520.7 \pm 0.5 cm⁻¹)
- 2. Record Si spectrum as a function of depth and confocal hole aperture
- 3. Plot the peak intensity vs. depth for each hole aperture: axial resolution = FWHM of depth profiling peak.
- 4. Compare the curves of axial resolution and relative intensity *vs.* confocal hole aperture with anterior ones.

4. Confocality: axial resolution

- How to proceed:
- 1. Illuminate a Si wafer with laser (520.7 \pm 0.5 cm⁻¹)
- 2. Record Si spectrum as a function of depth and confocal hole aperture
- 3. Plot the peak intensity vs. depth for each hole aperture: axial resolution = FWHM of depth profiling peak.
- 4. Compare the curves of axial resolution and relative intensity *vs.* confocal hole aperture with anterior ones.

- 1. Raman shift wavenumber calibration:
 - Detector
 - Laser
- 2. Raman intensity calibration:
 - spectrometer response
 - cross section
- 3. Spectral resolution
- 4. Confocality: axial resolution
- 5. Spatial resolution: lateral resolution

5. Spatial resolution: lateral resolution

- · Indicates the minimum surface size that can be individually analyzed.
- Limited by light diffraction (resolving power of a confocal microscope):

$$\delta_{xy} = 0.46 \lambda / \text{N.A.}$$

=> Depends on wavelength and N.A. of objectives.

Summary

- 1. Raman shift wavenumber calibration
- 2. Raman intensity calibration
- 3. Spectral resolution
- 4. Confocality
- 5. Spatial resolution

- Useful standards:
 - Atomic emission lamps (Ne, Ar, etc.)
 - Si wafer
 - Organic compounds (cyclohexane, polystyrene, etc.)