UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2019/2Prova da área I

1-5	6	7	Total

Nome:	Cartão:
Ponto extra: ()Wikipédia ()Apresentação ()Nenhum	Tópico:

Regras Gerais:

- $\bullet \ \ \text{N\~ao} \ \acute{\text{e}} \ \text{permitido} \ o \ \text{uso} \ \text{de calculadoras}, \ \text{telefones} \ \text{ou} \ \text{qualquer} \ \text{outro} \ \text{recurso} \ \text{computacional} \ \text{ou} \ \text{de comunicaç\~ao}.$
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z)e
 g=g(x,y,z)são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e
 $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

	(101)
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$ec{ abla} \cdot \left(f ec{F} ight) = \left(ec{ abla} f ight) \cdot ec{F} + f \left(ec{ abla} \cdot ec{F} ight)$
6.	$ec{ abla} imes\left(fec{F} ight)=ec{ abla}f imesec{F}+fec{ abla} imesec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \\ - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$ \vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right) $
14.	$\vec{\nabla}\varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração:		
Nome	Definição	
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}''(t)\ ^3}$	
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$	
Módulo da Torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $	
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$	
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$	

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+ au ec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1 (1.0 ponto) Considere a curva representada na figura ao lado. A figura é simétrica com respeito a origem, isto é, ela pode ser representada por uma função ímpar y(x). Considere que a curva está orientada no sentido positivo de x. Assinale as alternativas corretas que indicam o vetor binormal nos pontos (-1,-1) e (1,1) e o gráfico da curvatura $\kappa(x)$, respectivamente.

Vetor binormal nos pontos (-1, -1) e (1, 1), nessa ordem.

- () $\vec{k} e \vec{k}$.
- (X) $-\vec{k} \in \vec{k}$.
- () $\vec{k} \in \vec{k}$.
- () $-\vec{k} e \vec{k}$.
- () nenhuma das alternativas anteriores.

 \bullet Questão 2 (1.0 ponto) Mens sana in corpore sano. Diversos estudantes têm aderido ao ciclismo como modo de transporte barato, não poluente e saudável. Em uma bicicleta, uma estudante de engenharia se desloca sobre o plano nos arredores da orla do Guaíba em Porto Alegre. Em determinado momento, a ciclista trava o guidon e percorre uma trajetória circular com 3m de raio à velocidade constante de 2 m/s. Assinale as alternativas que indicam a aceleração normal e tangencial experimentada pela atleta.

()
$$a_N = \frac{8}{3}m/s^2$$

()
$$a_T = \frac{8}{3}m/s^2$$

()
$$a_N = \frac{6}{3}m/s^2$$

()
$$a_T = \frac{6}{3}m/s^2$$

$$(X) a_N = \frac{4}{3}m/s^2$$

()
$$a_T = \frac{4}{3}m/s^2$$

()
$$a_N = \frac{2}{3}m/s^2$$

()
$$a_T = \frac{2}{3}m/s^2$$

()
$$a_N = \frac{1}{3}m/s^2$$

()
$$a_T = \frac{1}{3}m/s^2$$

$$(\)\ a_N = 0$$

$$(X) a_T = 0$$

• Questão 3 (1.0 ponto) Seja \vec{F} o campo vetorial dado por $\vec{F} = e^{-\sqrt{x^2+y^2}}\vec{i}$, C_1 o caminho dado pela semircunferência de raio unitário no plano xy com y>0 orientada no sentido $(1,0,0)\to (-1,0,0)$ e C_2 o caminho dado pelo segmento de reta que liga o ponto (-1,0,0) ao ponto (1,0,0) orientado no sentido $(-1,0,0) \rightarrow (1,0,0)$.

Assinale as alternativas que indicam, respectivamente, $W_1 = \int_{C_1} \vec{F} \cdot d\vec{r}$ e $W_2 = \int_{C_2} \vec{F} \cdot d\vec{r}$.

- (X) $W_1 = -2e^{-1}$
- () $W_2 = -2e^{-1}$
- () $W_1 = 2e^{-1}$
- () $W_2 = 2e^{-1}$
- () $W_1 = 2(1 e^{-1})$
- (X) $W_2 = 2(1 e^{-1})$
- () $W_1 = 2(e^{-1} 1)$
- () $W_2 = 2(e^{-1} 1)$
- $() W_1 = 2$
- $() W_2 = 2$

- $() W_1 = -2$
- () $W_2 = -2$

• Questão 4 (1.0 ponto) Seja \vec{F} o campo vetorial dado por $\vec{F} = \left(2xy + y^2\right)z\vec{i} + x^2y\vec{k}$ e C o caminho C dado pela circunferência centrada em (0,1,0) e raio 1 no plano y=1, orientada no sentido $(1,1,0) \rightarrow (0,1,1) \rightarrow (-1,1,0) \rightarrow (0,1,-1) \rightarrow (1,1,0)$.

Assinale as alternativas que indicam, respectivamente, $\vec{G} = \vec{\nabla} \times \vec{F}$ e $W = \int_C \vec{F} \cdot d\vec{r}$.

() $\vec{G} = x^2 \vec{i} + y^2 \vec{j}$

() 0

() $\vec{G} = x^2 \vec{i} + y^2 \vec{j} + \vec{k}$

- () 2π
- () $\vec{G} = x^2 \vec{i} + (2xy + y^2)\vec{j} z(2x + 2y)\vec{k}$
- () π

() $\vec{G} = x^2 \vec{i} + (2xy + y^2) \vec{j}$

 $(X) -\pi$

(X) $\vec{G} = x^2 \vec{i} + y^2 \vec{j} - z(2x + 2y)\vec{k}$

 $() -2\pi$

 $\bullet \ \mathbf{Quest\~ao} \ \mathbf{5} \ (1.0 \ \mathrm{ponto}) \ \mathrm{Seja} \ V \ \mathrm{o} \ \mathrm{cubo} \ \mathrm{de} \ \mathrm{lado} \ 1 \ \mathrm{cujos} \ \mathrm{v\'ertices} \ \mathrm{s\~ao} \ (0,0,0), \ (0,0,1), \ (0,1,0), \ (0,1,1), \ (1,0,0), \ (1,0,1), \ (1,1,0) \ \mathrm{e} \ (1,1,1) \ \mathrm{e} \ (1,1,1)$ e S a superfície cúbica que limita V orientada para fora. Considere o campo $\vec{F} = r^2 \vec{r}$.

Assinale as alternativas que indicam, respectivamente, $\vec{\nabla} \cdot \vec{F}$ e $\iint_S \vec{F} \cdot \vec{n} dS$

(X) $\vec{\nabla} \cdot \vec{F} = 5r^2$

() 5/3

() $\vec{\nabla} \cdot \vec{F} = 3r^2$

() 5/2

() $\vec{\nabla} \cdot \vec{F} = 2r^2$

() 10/3(X) 5

() $\vec{\nabla} \cdot \vec{F} = 5r$

() $\vec{\nabla} \cdot \vec{F} = 3r$

() 15

• Questão 6 (2.0 ponto) Seja a curva descrita por:

$$\vec{r}(t) = \cos(t)\vec{i} + 2\sin(t)\vec{j} + t\vec{k}$$

- a) (1.0) Calcule a curvatura κ como uma função da coordenada x e simplifique sua resposta.
- b) (1.0) Calcule a torção τ como uma função da coordenada xe simplifique sua resposta.

Solução: a)

$$\begin{split} \vec{r}' &= -\sin(t)\vec{i} + 2\cos(t)\vec{j} + \vec{k} \\ \|\vec{r}'\| &= \sqrt{\sin^2(t) + 4\cos^2(t) + 1} \\ \vec{r}'' &= -\cos(t)\vec{i} - 2\sin(t)\vec{j} \\ \vec{r}' \times \vec{r}'' &= 2\sin^2(t)\vec{k} + 2\cos^2(t)\vec{k} - \cos(t)\vec{j} + 2\sin(t)\vec{i} = 2\sin(t)\vec{i} - \cos(t)\vec{j} + 2\vec{k} \\ \|\vec{r}' \times \vec{r}''\| &= \sqrt{4\sin^2(t) + \cos^2(t) + 4} \\ \kappa &= \frac{\|\vec{r}' \times \vec{r}''\|}{\|\vec{r}'\|^3} = \frac{\sqrt{4\sin^2(t) + \cos^2(t) + 4}}{\left(\sqrt{\sin^2(t) + 4\cos^2(t) + 1}\right)^3} \end{split}$$

Usando o fato que $sen^2(t) = 1 - cos^2(t)$, temos:

$$\kappa = \frac{\sqrt{4(1-\cos^2(t)) + \cos^2(t) + 4}}{\left(\sqrt{1-\cos^2(t) + 4\cos^2(t) + 1}\right)^3} = \frac{\sqrt{8-3\cos^2(t)}}{\left(\sqrt{2+3\cos^2(t)}\right)^3} = \frac{\sqrt{8-3x^2}}{\left(\sqrt{2+3x^2}\right)^3}.$$

Solução: b)

$$\vec{r}''' = \operatorname{sen}(t)\vec{i} - 2\cos(t)\vec{j}$$

$$(\vec{r}' \times \vec{r}'') \cdot \vec{r}''' = 2\operatorname{sen}^2(t) + 2\cos^2(t) = 2$$

$$||\vec{r}' \times \vec{r}''||^2 = 4\operatorname{sen}^2(t) + \cos^2(t) + 4$$

$$\tau = \frac{(\vec{r}' \times \vec{r}'') \cdot \vec{r}'''}{||\vec{r}'' \times \vec{r}''||^2} = \frac{2}{4\operatorname{sen}^2(t) + \cos^2(t) + 4}.$$

Usando o fato que $sen^2(t) = 1 - cos^2(t)$, temos:

$$\tau = \frac{2}{4(1 - \cos^2(t)) + \cos^2(t) + 4} = \frac{2}{8 - 3\cos^2(t)} = \frac{2}{8 - 3x^2}.$$

• Questão 7 (3.0 ponto) Considere a superfície fechada dada superiormente por:

$$S_1: z = e^{-x^2 - y^2}, \quad x^2 + y^2 < 1.$$

e inferiormente por:

$$S_2: z = e^{-1}, \quad x^2 + y^2 \le 1.$$

orientada para fora e o campo dado por $\vec{F}=z\vec{k}$. Calcule $\Phi=\iint_S \vec{F}\cdot \vec{\eta} dS$.

- a) (1.5) Via teorema da divergência.
- b) (1.5) Via parametrização direta da superfície.

Solução: a)

$$\begin{split} \Phi &= \iint_{S} \vec{F} \cdot \vec{\eta} dS \\ &= \iiint_{V} \vec{\nabla} \cdot \vec{F} dV \\ &= \iiint_{V} 1 dV \\ &= \int_{0}^{2\pi} \int_{0}^{1} \int_{e^{-1}}^{e^{-r^{2}}} 1 r dz dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{1} \left(r e^{-r^{2}} - r e^{-1} \right) dr d\theta \\ &= \int_{0}^{2\pi} \left(\left(-\frac{e^{-r^{2}}}{2} - \frac{r^{2}e^{-1}}{2} \right) \Big|_{0}^{1} \right) d\theta \\ &= \int_{0}^{2\pi} \left(\frac{1 - e^{-1}}{2} - \frac{e^{-1}}{2} \right) d\theta \\ &= 2\pi \left(\frac{1 - 2e^{-1}}{2} \right) = \pi \left(1 - 2e^{-1} \right) \end{split}$$

Solução: b)

Superfície S_1 :

$$G = z - e^{-x^2 - y^2}$$

$$\vec{\nabla}G = -2xe^{-x^2 - y^2}\vec{i} - 2ye^{-x^2 - y^2}\vec{j} + \vec{k}$$

$$\vec{F} = e^{-x^2 - y^2}\vec{k}.$$

Temos:

$$\begin{split} \iint_{S_1} \vec{F} \cdot \vec{\eta} dS &= \iint_D \vec{F} \cdot \vec{\nabla} G dA \\ &= \iint_D e^{-x^2 - y^2} dA \\ &= \int_0^{2\pi} \int_0^1 e^{-r^2} r dr d\theta \\ &= \int_0^{2\pi} \left(\frac{-e^{-r^2}}{2} \right|_0^1 \right) d\theta \\ &= \int_0^{2\pi} \frac{1 - e^{-1}}{2} d\theta \\ &= 2\pi \frac{1 - e^{-1}}{2} = \pi \left(1 - e^{-1} \right). \end{split}$$

Superfície S_2 :

$$G = z - e^{-1}$$

$$\vec{\nabla}G = \vec{k}$$

$$\vec{F} = e^{-1}\vec{k}.$$

Temos:

$$\begin{split} \iint_{S_2} \vec{F} \cdot \vec{\eta} dS &= - \iint_D \vec{F} \cdot \vec{\nabla} G dA \\ &= - \iint_D e^{-1} dA = -\pi e^{-1}. \end{split}$$

Portanto:

$$\Phi = \iint_{S_1} \vec{F} \cdot \vec{\eta} dS + \iint_{S_2} \vec{F} \cdot \vec{\eta} dS = \pi \left(1 - 2e^{-1} \right).$$