Moth 28/ HWJ.

Consider two CI's for M. & Mr. For testing M. = Mr., a one consider the testing strategy: if two CI's overlap then not reject to, otherwise reject to. What is the effective significance level?

Consider the Standard Z-test and the sample sizes one equal; with variance known.

How would you modify the test if H: M: Mi > Mi is one - cided?

Without loss of generality, arrune $CI_1 = [\hat{\mathcal{M}}_1 - R, \hat{\mathcal{M}}_1 + R]$ and $CI_2 = [\hat{\mathcal{M}}_2 - R, \hat{\mathcal{M}}_2 + R]$. Since they have same sample size and verrance, under Ho, $\hat{\mathcal{M}}_1 \stackrel{!}{=} \hat{\mathcal{M}}_2$. The test is to reject Ho \mathcal{A} $CI_1 \cap CI_2 = \emptyset$, equivalently, $|\hat{\mathcal{M}}_1 - \hat{\mathcal{M}}_2| \ge 2R$. If the level of CI'_3 are \mathcal{A} , then $P(|\hat{\mathcal{M}}_1 - \hat{\mathcal{M}}_2| \ge 2R) = P(|Z_1 - Z_2| \ge 2|Z_1 \stackrel{!}{=})$ where Z_1, Z_2 are ind N(0,1) and $Z_1 \stackrel{!}{=}$ is the $(1-\frac{1}{2})^{th}$ quantile of standard normal.

Note that $Z_1 - Z_2 \sim N(0,2)$, therefore $P(|Z_1 - Z_2| \ge 2Z_1 \le 2) = P(|Z_1| \ge \sqrt{2}Z_1 \le 2) < \alpha$. Therefore the effective level is few than Δ .

If H₁: μ₁ > μ₂ is interested, construct one-sided CI's for μ₁ & μ₂ 8 nch that μ₁ has a CI of type (μ₁, +∞) and μ₂ has CI like (-∞, μ₂). If the two CI's does not overlap then reject the Ho.