Список литературы

Книги на курсе:

1. Ульянов, Дьяченко: Мера и интеграл

2. Колмогоров, Фомин

3. Сакс: Теория интеграла

Базовые понятия

Аксиома выбора: Пусть имеется $\{A_w\}_{w\in\Omega}$ - система непустых множеств:

$$A_{w_1} \cap A_{w_2} = \varnothing, w_1 \neq w_2 \Rightarrow \exists B = \{a_w\}_{w \in \Omega} \colon \forall w \in \Omega, a_w \in A_w$$

Обозначения стандартные: $\cap, \cup, \setminus, \triangle$.

Опр: 1. Симметрической разностью называется: $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

Опр: 2. $C = A \sqcup B$ - дизъюнктное объединение тогда и только тогда, когда:

- $(1) C = A \cup B;$
- (2) $A \cap B = \emptyset$;

Утв. 1. Верны следующие тождества:

- $(1) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$
- (2) $A \cup B = (A \triangle B) \triangle (A \cap B)$;
- (3) $A \setminus B = A \triangle (A \cap B);$
- □ Покажем справедливость равенств:
 - (1) Очевидно;
 - $(2) \ A \cup B = [(A \cup B) \setminus (A \cap B)] \cup (A \cap B) = ([(A \cup B) \setminus (A \cap B)] \cup (A \cap B)) \setminus \emptyset = ([(A \cup B) \setminus (A \cap B)] \cup (A \cap B)) \setminus ([(A \cup B) \setminus (A \cap B)] \cap (A \cap B)) = ((A \cup B) \setminus (A \cap B)) \triangle (A \cap B) = (A \triangle B) \triangle (A \cap B);$
 - $(3) \ A \setminus B = A \setminus (A \cap B) = (A \cup (A \cap B)) \setminus (A \cap B) = (A \cup (A \cap B)) \setminus (A \cap (A \cap B)) = A \triangle (A \cap B);$

Системы множеств

Опр: 3. Пусть $K = \{A_w\}_{w \in \Omega} \land E \in K \Rightarrow E$ - единица $K \Leftrightarrow \forall w \in \Omega, A_w \cap E = A_w, (A_w \subseteq E)$.

Опр: 4. Пусть K - система множеств $\Rightarrow K$ - полукольно \Leftrightarrow выполнены условия:

- (1) $\varnothing \in K$;
- (2) $A, B \in K \Rightarrow A \cap B \in K$;
- (3) Если $A,A_1\in K\colon A_1\subset A\Rightarrow\exists\, A_2,\ldots,A_n\in K\colon A=\bigsqcup_{i=1}^nA_i;$

Примеры

- 1. Пусть $[a,b)\subset\mathbb{R}^1$, тогда $K=\varnothing\cup\{\,[\alpha,\beta)\subseteq[a,b)\,\}$ полукольцо;
- 2. Пусть $[a,b] \subset \mathbb{R}^1, \ K=\varnothing \cup \{\ \{'\alpha,\beta\}'\subseteq [a,b]\ \},$ где $\{'=[\lor ($ полукольцо;
- 3. $[a,b] = \prod_{j=1}^n [a_j,b_j] \subset \mathbb{R}^n, \ K = \varnothing \cup \{ \{\alpha,\beta\} = \prod_{j=1}^n \{\alpha_j,\beta_j\} \subseteq [a,b] \}$ полукольцо;
- 4. Все открытые подмножества отрезка [0,1] не образуют полукольцо, поскольку их нельзя дополнить конечным числом интервалов до дизъюнктного объединения.

Опр: 5. Система множеств R называется кольцом \Leftrightarrow выполнены условия:

- (1) $R \neq \emptyset$;
- (2) $A, B \in R \Rightarrow A \cap B \in R$;
- (3) $A, B \in R \Rightarrow A \triangle B \in R$;

Опр: 6. Кольцо с единицей называется алгеброй.

Утв. 2. Пусть R - кольцо $\Rightarrow R$ - полукольцо и если $A, B \in R \Rightarrow A \cup B \in R$.

- \square R кольцо $\Rightarrow \exists A \in R \Rightarrow \varnothing = A \triangle A \in R \Rightarrow (1)$ выполняется.
- (2) выполняется автоматически.

 $A, A_1 \in R, A_1 \subset A \Rightarrow A \setminus A_1 = A \triangle A_1 = A_2 \in R \Rightarrow A = A_1 \bigsqcup A_2 \Rightarrow (3)$ - выполняется.

Если $A, B \in R \Rightarrow A \cup B = (A \triangle B) \triangle (A \cap B) \in R$.

Опр: 7. Пусть R - система множеств, тогда R это $\underline{\sigma}$ -кольцо ($\underline{\delta}$ -кольцо) \Leftrightarrow выполнены условия:

- (1) R кольцо;
- $(2) \{A_i\}_{i=1}^{\infty} \in R \Rightarrow \bigcup_{i=1}^{\infty} A_i \in R \left(\{A_i\}_{i=1}^{\infty} \in R \Rightarrow \bigcap_{i=1}^{\infty} A_i \in R \right);$

Опр: 8. σ -кольцо (δ -кольцо) с единицей будем называть $\underline{\sigma}$ -алгеброй ($\underline{\delta}$ -алгеброй).

Утв. 3. Пусть R - σ -кольцо $\Rightarrow R$ - δ -кольцо. Обратное, вообще говоря не верно, но если R - δ -алгебра, то R - σ -алгебра.

□ Воспользуемся следующими фактами:

 $A \setminus (A \setminus B) = A \cap (A \setminus B)^c = A \cap (A \cap B^c)^c = A \cap (A^c \cup B) = (A \cap A^c) \cup (A \cap B) = \varnothing \cup (A \cap B) = A \cap B$

$$A_{1} \cap \bigcap_{i=2}^{\infty} A_{i} = A_{1} \setminus \left(A_{1} \setminus \bigcap_{i=2}^{\infty} A_{i} \right) = A_{1} \setminus \left(A_{1} \cap \left(\bigcap_{i=2}^{\infty} A_{i} \right)^{c} \right) = A_{1} \setminus \left(A_{1} \cap \left(\bigcup_{i=2}^{\infty} A_{i}^{c} \right) \right) = A_{1} \setminus \left(\bigcup_{i=2}^{\infty} (A_{1} \cap A_{i}^{c}) \right) = A_{1} \setminus \left(\bigcup_{i=2}^{\infty} (A_{1} \setminus A_{i}) \right)$$

R - σ -кольцо и $\{A_i\}_{i=1}^{\infty} \in R \Rightarrow \bigcap_{i=1}^{\infty} A_i = A_1 \setminus \left(\bigcup_{i=2}^{\infty} (A_1 \setminus A_i)\right)$, где $\bigcup_{i=2}^{\infty} (A_1 \setminus A_i) \in R$, так как $A_1 \setminus A_i \in R$ и счетное объединение принадлежит σ -кольцу.

Если R - δ -кольцо с единицей E и $\{A_i\}_{i=1}^\infty \in R$, то $\bigcup_{i=1}^\infty A_i = E \setminus \bigcap_{i=1}^\infty (E \setminus A_i) \in R$. Доказательство аналогично факту выше.

Пример: все ограниченные подмножества прямой $\mathbb{R}^1 = \delta$ -кольцо, но не σ -кольцо (за счет счетного объединения ограниченных множеств можно получить всю прямую \mathbb{R}^1).

Утв. 4. Пусть $\{R_w\}_{w\in\Omega}$ - некоторая система колец $\Rightarrow \bigcap_{w\in\Omega} R_w$ - кольцо.

 \square $\forall w \in \Omega, \varnothing \in R_w \Rightarrow R = \bigcap_{w \in \Omega} R_w \ni \varnothing \Rightarrow R$ - не пусто (содержит пустое множество).

Пусть $A, B \in R \Rightarrow \forall w \in \Omega, A, B \in R_w \Rightarrow \forall w \in \Omega, A \cap B \in R_w, A \triangle B \in R_w \Rightarrow A \cap B \in R, A \triangle B \in R.$

Rm: 1. Если все R_w обладали одной и той же $E\Rightarrow E$ - единица $R\Rightarrow R$ - алгебра.

 \mathbf{Rm} : 2. Утверждение, аналогичное утверждению выше справедливо и для σ -колец.

Теорема 1. Пусть K - некоторая система множеств $\Rightarrow \exists$ кольцо R(K):

- (1) $K \subseteq R(K)$;
- (2) Если кольцо $R_1: K \subseteq R_1 \Rightarrow R(K) \subseteq R_1$;

где R(K) - минимальное кольцо, содержащее K.

(1) Пусть $K = \{A_w\}_{w \in \Omega}$. Рассмотрим $B = \bigcup_{w \in \Omega} A_w$ и пусть \bar{R} - все подмножества B включая \varnothing , очевидно, что \bar{R} - кольцо. Теперь $\{R_\gamma\}_{\gamma \in \Gamma}$ - все кольца, которые содержатся в \bar{R} и содержат $K \Rightarrow$ эта система не пуста $(\bar{R} = R_{\gamma_0})$.

Положим $R(K) = \bigcap_{\gamma \in \Gamma} R_{\gamma}$, по утверждению выше R(K) - кольцо, а по выбору $\{R_{\gamma}\}_{\gamma \in \Gamma} \Rightarrow K \subseteq R(K)$, так как каждое из колец содержит K.

(2) Пусть T - кольцо: $K\subseteq T$, пусть $\widetilde{R}=\bar{R}\cap T$ - кольцо и $\widetilde{R}=R_{\gamma_1}$ - лежит внутри \bar{R} и содержит $K\Rightarrow R(K)\subseteq R_{\gamma_1}\subseteq T$.

Rm: 3. Если E - единица $K\Rightarrow B=E$ и R(K) - алгебра с единицей E

Rm: 4. Аналогично доказывается, что \exists min σ -кольцо содержащее K, а если K обладало E, то оно будет σ -алгефрой.

Лемма 1. Пусть S - полукольцо, $A \in S, A_1, \dots A_l \in S$ и $\bigsqcup_{i=1}^l A_i \subset A$, тогда $\exists A_{l+1}, \dots, A_m \in S \colon A = \bigsqcup_{i=1}^m A_i$.

□ По индукции:

База: $l=1 \Rightarrow$ определение полукольца.

 \coprod аг: Пусть $l \geq 1$ и лемма доказана для $l, A, A_1, \ldots, A_{l+1} \in S$: $\bigsqcup_{i=1}^{l+1} A_i \subset A$, по индукции

$$\exists B_1, \dots, B_k \in S : \bigsqcup_{i=1}^l A_i \bigsqcup \left(\bigsqcup_{j=1}^k B_j\right) = A$$

Рассмотрим $C_j = A_{l+1} \cap B_j, \ j = \overline{1,k}, \ C_j \in S$ - по определению полукольца, кроме того, $C_j \subseteq B_j \Rightarrow \forall j, \ \exists \ \{D_{j,\nu}\}_{\nu=1}^{\nu_j} \subset S \colon B_j = C_j \bigsqcup \left(\bigsqcup_{j=1}^{\nu_j} D_{j,\nu}\right)$ - по определению полукольца \Rightarrow

$$A = \bigsqcup_{i=1}^{l} A_i \bigsqcup \left(\bigsqcup_{j=1}^{k} C_j \right) \bigsqcup \left(\bigsqcup_{j=1}^{k} \bigsqcup_{\nu=1}^{\nu_j} D_{j,\nu} \right)$$

так как $A_{l+1} \cap \bigsqcup_{j=1}^l A_j = \emptyset$, как дизъюнктное объединение по предположению индукции, и в силу того, что $A_{l+1} \subset A \Rightarrow A_{l+1} \subseteq \bigsqcup_{j=1}^k B_j$, поскольку:

$$A = \bigsqcup_{i=1}^{l} A_i \bigsqcup \left(\bigsqcup_{j=1}^{k} B_j\right) \Rightarrow A_{l+1} = A_{l+1} \cap \left(\bigsqcup_{j=1}^{k} B_j\right) = \bigsqcup_{j=1}^{k} \left(A_{l+1} \cap B_j\right) = \bigsqcup_{j=1}^{k} C_j$$

Таким образом:

$$A = \bigsqcup_{i=1}^{l+1} A_i \bigsqcup \left(\bigsqcup_{j=1}^k \bigsqcup_{\nu=1}^{\nu_j} D_{j,\nu} \right)$$

Теорема 2. Пусть S - полукольцо $\Rightarrow R(S) = \left\{ \bigsqcup_{i=1}^n A_i \colon A_i \in S \text{ (включая пустое) } \right\}$ - минимальное кольцо, содержащее полукольцо S.

- 1) Очевидно $R(S) : S \subset R(S)$ объединение по одному элементу;
- 2) Если произвольное кольцо $R \colon S \subset R \Rightarrow \Big\{ \bigsqcup_{i=1}^n A_i \colon A_i \in S \Big\} \subseteq R$ так как кольцо должно выдерживать операцию дизъюнктного объединения \Rightarrow минимальное;
- 3) Проверим, что $\left\{ \bigsqcup_{i=1}^{n} A_{i} \colon A_{i} \in S \right\}$ кольцо:
 - (1) Пустое множество входит \Rightarrow объединение не пусто;

$$A = \bigsqcup_{i=1}^{n} A_i, \ B = \bigsqcup_{j=1}^{m} B_j, \ A_i, B_j \in S \Rightarrow$$

$$\Rightarrow \left(\bigsqcup_{i=1}^{n} A_i\right) \cap \left(\bigsqcup_{j=1}^{m} B_j\right) = A \cap B = \bigsqcup_{i=1}^{n} \bigsqcup_{j=1}^{m} \left(\underbrace{A_i \cap B_j}_{\in S}\right) \Rightarrow A \cap B \in L$$

Лекция - 1

(3) Воспользуемся A и B из пункта (2). Пусть $C_{ij} = A_i \cap B_j \in S \Rightarrow C_{i1}, C_{i2}, \dots, C_{im} \subset A_i$ и они попарно не пересекаются, тогда по лемме 1

$$\forall i = \overline{1, n}, \ \exists \{D_{ir}\}_{r=1}^{r_i} \subset S \colon A_i = \left(\bigsqcup_{j=1}^m C_{ij}\right) \bigsqcup \left(\bigsqcup_{r=1}^{r_i} D_{ir}\right)$$

и аналогично:

$$\forall j = \overline{1, m}, \ \exists \{E_{j\nu}\}_{\nu=1}^{\nu_j} \subset S \colon B_j = \left(\bigsqcup_{i=1}^n C_{ij}\right) \bigsqcup \left(\bigsqcup_{\nu=1}^{\nu_j} E_{j\nu}\right)$$

Следовательно, распишем симметричную разность:

$$A \triangle B = \left(\bigsqcup_{i=1}^{n} A_{i}\right) \triangle \left(\bigsqcup_{j=1}^{m} B_{j}\right) =$$

$$= \left(\left(\bigsqcup_{i=1}^{n} \bigsqcup_{j=1}^{m} C_{ij}\right) \bigsqcup \left(\bigsqcup_{i=1}^{n} \bigsqcup_{r=1}^{r_{i}} D_{ir}\right)\right) \triangle \left(\left(\bigsqcup_{j=1}^{m} \bigsqcup_{i=1}^{n} C_{ij}\right) \bigsqcup \left(\bigsqcup_{j=1}^{m} \bigsqcup_{\nu=1}^{\nu_{j}} E_{j\nu}\right)\right) =$$

$$= \left(\bigsqcup_{i=1}^{n} \bigsqcup_{r=1}^{r_{i}} D_{ir}\right) \bigsqcup \left(\bigsqcup_{j=1}^{m} \bigsqcup_{\nu=1}^{\nu_{j}} E_{j\nu}\right) \in L$$

Таким образом, получили, что L - кольцо.

Лемма 2. Пусть S - полукольцо, $A_1, \ldots, A_k \in S \Rightarrow \exists$ конечный набор попарно непересекающихся множеств $\{B_j\}_{j=1}^M \in S$ таких, что:

$$\forall i \in \{1, \dots, k\}, \exists \Omega(i) \subset \{1, \dots, M\} \colon A_i = \bigsqcup_{j \in \Omega(i)} B_j$$

- \square По индукции для k.
 - (1) База: k = 1 очевидно: $B_1 = A_1$;
 - (2) Шаг: Пусть утверждение доказано, для $k \ge 1$, тогда по предположению индукции:

$$\forall A_1, \dots, A_k \in S, \exists \{B_j\}_{j=1}^M \in S \colon \forall i \in [1, \dots, k], \exists \Omega(i) \colon A_i = \bigsqcup_{j \in \Omega(i)} B_j$$

Рассмотрим множества $C_j = A_{k+1} \cap B_j, \ j = \overline{1, M}, \ C_j \in S$ поскольку S - полукольцо \Rightarrow по лемме 1:

$$\exists D_1, \dots D_r \in S \colon A_{k+1} = \Big(\bigsqcup_{j=1}^M C_j\Big) \bigsqcup \Big(\bigsqcup_{l=1}^r D_l\Big)$$

Также по определению полукольца:

$$\forall j, \exists \{E_{j\mu}\}_{\mu=1}^{\mu_j} \in S \colon B_j = C_j \bigsqcup \left(\bigsqcup_{\mu=1}^{\mu_j} E_{j\mu}\right)$$

Следовательно, следующий набор множеств представляет требуемое:

$$\{C_j\}_{j=1}^M \bigsqcup \{D_l\}_{l=1}^r \bigsqcup \left(\bigsqcup_{j=1}^M \bigsqcup_{\mu=1}^{\mu_j} E_{j\mu}\right)$$

Из этого набора можно составить любое B_j , поскольку:

$$\forall j = \overline{1, M}, B_j = C_j \bigsqcup \left(\bigsqcup_{\mu=1}^{\mu_j} E_{j\mu}\right)$$

Следовательно, можно составить любое A_i и A_{k+1} , поскольку:

$$A_i = \bigsqcup_{j \in \Omega(i)} B_j, \ A_{k+1} = \left(\bigsqcup_{j=1}^M C_j\right) \bigsqcup \left(\bigsqcup_{l=1}^r D_l\right)$$

Остается проверить, что они не пересекаются: так как не пересекались $B_j \Rightarrow E_{j\mu}$ - не пересекаются, следовательно все $E_{j\mu}$ не пересекаются с C_j , так как при одном и том же j имеем дизъюнктное объединение, а при разных j они лежат в разных B_j и не пересекаются между собой. Также они не пересекаются с D_l , так как D_l лежат в A_{k+1} и они не пересекаются с B_j .

Rm: 5. В дальнейшем при использовании леммы 2, всегда будем считать что:

$$\{B_j\}_{j=1}^M : \bigsqcup_{i=1}^k \Omega(i) = \{1, \dots, M\}$$

Таким образом, нет паразитных множеств, которые не входят ни в какое-то объединение.