

Topic 4

Support Vector Machines

(SVMs)

[Jiawei Han, Jian Pei, Hanghang Tong. 2022. *Data Mining Concepts and Techniques*. 4th Ed. Morgan Kaufmann. ISBN: 0128117605.]

[Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar. 2018. *Introduction to Data Mining*. 2nd Ed. Pearson. ISBN: 0133128903.]

[Masashi Sugiyama. 2015. Introduction to Statistical Machine Learning. Morgan Kaufmann. ISBN: 9780128021217.]

Contents

- 2. Linear SVM: Separable Case (linear DB) (hard-margin SVM)
- 3. Linear SVM: Nonseparable Case (linear DB) (soft-margin SVM)
- 4. Nonlinear SVM (non-linear DB)

- A classification technique that has received considerable attention is **support vector machine** (SVM).
- Practical applications of SVM: handwritten digit recognition, speaker identification, text categorization, and so on.
- SVM works very well with high-dimensional data and avoids the curse of dimensionality problem.

- SVM creates decision boundary (DB) (i.e., optimal separating hyperplane) by using a subset of training examples called **support vectors**.
- Linear SVM uses maximal margin hyperplane (MMH) to classify linearly separable data.
- SVMs can also be used to classify non-linearly separable data (a.k.a. linearly inseparable data).

• Figure below shows plot of data set containing examples belonging to two different classes, represented as squares and circles.

Possible DBs for a linearly separable data set

- We can find hyperplane ($\mathbf{w} \cdot \mathbf{x} + b = 0$) such that all squares reside on one side of hyperplane and all circles reside on other side.
- As shown in the figure above, there are infinitely possible hyperplanes.
- Although their training errors are zero, there is no guarantee that different hyperplanes will perform equally well on previously unseen examples.

/*
$$\mathbf{x} = (x_1, x_2, ..., x_d)$$
, $\mathbf{w} = \{w_1, w_2, ..., w_d\}$
 $\mathbf{w} \cdot \mathbf{x} = w_1 x_1 + w_2 x_2 + ... + w_d x_d */$

• SVM classifier must choose one of these hyperplanes to represent its DB, based on how well they are expected to perform on test examples.

• Consider two DBs B_1 and B_2 , shown in figure

below.

• Both DBs B_1 and B_2 can separate training examples into their respective classes without committing any misclassification errors.

- Each DB B_i is associated with a pair of hyperplanes, denoted as b_{i1} and b_{i2} , respectively.
- b_{i1} is obtained by moving a parallel hyperplane away from DB until it touches closest square(s), whereas b_{i2} is obtained by moving the parallel hyperplane until it touches closest circle(s).
- Distance between these two hyperplanes b_{i1} and b_{i2} is known as the margin of the SVM classifier.

• The figure shows that the margin for B_1 is considerably larger than that for B_2 .

• B_1 is maximum margin hyperplane (MMH) of

training instances.

10

- A DB with large margin tends to have better generalization errors than a DB with small margin.
- SVM classifier that produces DB with small margin is more susceptible to model overfitting and tends to generalize poorly on previously unseen examples.

Contents

- 1. Basic Concepts of SVM
- 2. Linear SVM: Separable Case (linear DB) (hard-margin SVM)
- 3. Linear SVM: Nonseparable Case (linear DB) (soft-margin SVM)
- 4. Nonlinear SVM (non-linear DB)

• Linear SVM is classifier that searches for hyperplane with largest margin, which is why it is often known as maximal margin classifier

(MMH).

- Consider binary classification problem consisting of *N* training examples.
- Each example is denoted by tuple (\mathbf{x}_i, y_i) , where $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{id})$ corresponds to attribute set for the i^{th} example, i = 1, 2, ..., N.
- Let $y_i \in \{-1, 1\}$ denote its class label.
- For a data point \mathbf{x} , we have the notation (\mathbf{x}, y) , where $\mathbf{x} = (x_1, x_2, ..., x_d), y \in \{-1, 1\}$.

$$\mathbf{w} \cdot \mathbf{x} = w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

• DB of a linear SVM classifier can be written in the following form:

$$\mathbf{w} \cdot \mathbf{x} + b = 0, (5.28)$$

where weight vector $\mathbf{w} = (w_1, w_2, ..., w_d)$ and scalar b (a.k.a. bias) are parameters of the model.

- Example:
- In 2-dimensional space, we have $\mathbf{w} = (w_1, w_2)$, $\mathbf{x} = (x_1, x_2)$, equation of DB: $w_1x_1 + w_2x_2 + b = 0$.
- Assume that $\mathbf{w} = (-6.64, -9.32), b = 7.93$, we have equation of DB: $-6.64x_1 9.32x_2 + 7.93 = 0$.

 $-\mathbf{w} \cdot \mathbf{x} + b = 0$, (5.28), $\mathbf{w} = (w_1, w_2)$, $\mathbf{x} = (x_1, x_2)$, DB: $w_1x_1 + w_2x_2 + b = 0$.

• Figure below shows two-dimensional training set consisting of squares and circles.

- DB that bisects training examples into their respective classes is illustrated with solid line (i.e., $\mathbf{w} \cdot \mathbf{x} + b = 0$, or $\langle \mathbf{w}, \mathbf{x} \rangle + b = 0$).
- Any example located along DB must satisfy equation $\mathbf{w} \cdot \mathbf{x} + b = 0$.
- Direction of w must be perpendicular to DB.

• For example, if \mathbf{x}_a and \mathbf{x}_b are two points located on DB, then

$$\mathbf{w} \cdot \mathbf{x}_a + b = 0,$$

$$\mathbf{w} \cdot \mathbf{x}_b + b = 0.$$

• Subtracting two equations will yield the following:

$$\mathbf{w}\cdot(\mathbf{x}_b-\mathbf{x}_a)=0,$$

where $\mathbf{x}_b - \mathbf{x}_a$ is vector parallel to DB and is directed from \mathbf{x}_a to \mathbf{x}_b .

• Since dot product $\mathbf{w} \cdot (\mathbf{x}_b - \mathbf{x}_a)$ is zero, direction of \mathbf{w} must be perpendicular to DB.

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \quad (5.28)$$

- If we label all squares as class +1 and all circles as class -1, then, given parameters \mathbf{w} and b of DB, we can predict class label y for any test example \mathbf{z} in the following way:
- -y = 1 if sign($\mathbf{w} \cdot \mathbf{z} + b$) > 0 (or $\mathbf{w} \cdot \mathbf{z} + b \gtrsim 1$)
- y = -1 if sign($\mathbf{w} \cdot \mathbf{z} + b$) < 0 (or $\mathbf{w} \cdot \mathbf{z} + b \lesssim -1$)

$$b_{i1}$$
: $\mathbf{w} \cdot \mathbf{x} + b = 1 (5.32)$

$$b_{i2}$$
: $\mathbf{w} \cdot \mathbf{x} + b = -1$ (5.33)

- Consider square and circle that are closest to DB.
- Since square is located above DB, square must satisfy equation $\mathbf{w} \cdot \mathbf{x}_s + b = k$ for k > 0 (e.g., k = 1).
- Since circle is located below DB, circle must satisfy equation $\mathbf{w} \cdot \mathbf{x}_c + b = k'$ for k' < 0

$$(e.g., k' = -1).$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \quad (5.28)$$

• We can rescale parameters \mathbf{w} and b of DB so that two parallel hyperplanes b_{i1} and b_{i2} can be expressed as follows.

$$b_{i1}$$
: $\mathbf{w} \cdot \mathbf{x} + b = 1 (5.32)$
 b_{i2} : $\mathbf{w} \cdot \mathbf{x} + b = -1 (5.33)$

- The margin of DB is given by distance d between these two hyperplanes b_{i1} and b_{i2} .
- We will show that $d = 2 / ||\mathbf{w}||$, where

$$\mathbf{w} = (w_1, w_2, ..., w_n)$$
$$\|\mathbf{w}\| = \sqrt{w_1^2 + w_2^2 + ... + w_n^2}$$

• To compute the margin, let \mathbf{x}_1 be a data point located on b_{i1} and \mathbf{x}_2 be a data point on b_{i2} , as shown in figure below. we the

$$b_{i1}$$
: $\mathbf{w} \cdot \mathbf{x} + b = 1 (5.32)$
 b_{i2} : $\mathbf{w} \cdot \mathbf{x} + b = -1 (5.33)$

• Upon substituting these points into equations b_{i1} : $\mathbf{w} \cdot \mathbf{x} + b = 1$ and b_{i2} : $\mathbf{w} \cdot \mathbf{x} + b = -1$, the margin d can be computed by subtracting the second equation from the first equation. That is,

$$(\mathbf{w} \cdot \mathbf{x}_1 + b = 1) - (\mathbf{w} \cdot \mathbf{x}_2 + b = -1)$$

$$(\mathbf{w} \cdot \mathbf{x}_1 + b = 1) - (\mathbf{w} \cdot \mathbf{x}_2 + b = -1)$$

$$\rightarrow$$
 w · ($\mathbf{x}_1 - \mathbf{x}_2$) = 2

$$\rightarrow ||\mathbf{w}|| ||\mathbf{x}_1 - \mathbf{x}_2|| \cos(\theta) = 2$$
 (geometric definition)

(θ is the angle between w and $\mathbf{x}_1 - \mathbf{x}_2$)

We have
$$cos(\theta) = d / ||\mathbf{x}_1 - \mathbf{x}_2||$$

$$\rightarrow d = ||\mathbf{x}_1 - \mathbf{x}_2|| \cos(\theta)$$

$$\rightarrow ||\mathbf{w}|| \times d = 2$$

$$\rightarrow d = 2 / ||\mathbf{w}|| (5.34)$$

$$\mathbf{w} = (w_1, w_2, ..., w_n)$$

$$||\mathbf{w}|| = \sqrt{w_1^2 + w_2^2 + ... + w_n^2}$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \quad (5.28)$$

- Training phase of SVM involves estimating parameters w and b of DB from training data.
- Parameters must be chosen in such a way that the following two conditions are met:

$$\mathbf{w} \cdot \mathbf{x}_i + b \ge 1 \text{ if } y_i = 1,$$

 $\mathbf{w} \cdot \mathbf{x}_i + b \le -1 \text{ if } y_i = -1 \text{ (5.35)}$

$$-w_j = \sum_{i:\lambda_i>0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

$$\mathbf{w} \cdot \mathbf{x}_i + b \ge 1 \text{ if } y_i = 1,$$

 $\mathbf{w} \cdot \mathbf{x}_i + b \le -1 \text{ if } y_i = -1 \text{ (5.35)}$

- These required conditions are
- all training instances from class y = 1 (i.e., squares) must be located on or above hyperplane w
- $\cdot \mathbf{x}_i + b = 1,$
- all training instances from class y = -1 (i.e., circles) must be located on or below hyperplane $\mathbf{w} \cdot \mathbf{x}_i + b = -1$.

$$b_{i1}$$
: $\mathbf{w} \cdot \mathbf{x} + b = 1 (5.32)$

$$b_{i2}$$
: $\mathbf{w} \cdot \mathbf{x} + b = -1$ (5.33)

$$w_j = \sum_{i:\lambda_i>0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

• Both inequalities can be summarized in more compact form as follows:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N.$$
 (5.36)
 $(y_i \in \{-1, 1\}, \text{hard-margin SVM})$

- SVM requires that margin d of its DB ($d = 2 / \|\mathbf{w}\|$ (5.34)) must be maximal.
- Maximizing margin d is equivalent to minimizing following objective function: $f(\mathbf{w}) = ||\mathbf{w}||^2 / 2$. (5.37)

$$\mathbf{w} \cdot \mathbf{x}_i + b \ge 1 \text{ if } y_i = 1$$

 $\mathbf{w} \cdot \mathbf{x}_i + b \le -1 \text{ if } y_i = -1 \text{ (5.35)}$

$$w_j = \sum_{i:\lambda_i>0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

Definition 5.1 (Linear SVM: Separable Case). The learning task in SVM can be formalized as the following constrained minimization problem:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$

subject to
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N.$$

• Constrained minimization problem above is known as **convex** optimization problem, which can be solved using the standard **Lagrange multiplier** method.

$$w_j = \sum_{i:\lambda_i > 0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

• Step 1: The (original) objective function $f(\mathbf{w}) = \|\mathbf{w}\|^2 / 2$ (5.37) is recast in a form that takes into account the inequality constraints $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$ imposed on its solutions.

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N.$$
 (5.36)
($y_i \in \{-1, 1\}, \text{ hard-margin SVM}$)

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2} \text{ subject to } y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N.$$

• The new objective function is known as the (primary/primal) Lagrangian for minimization problem:

$$L_P = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^N \lambda_i (y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1),$$

(involves λ_i , training data \mathbf{x}_i , and \mathbf{w} , b)

(i.e.,
$$L_P(\mathbf{w}, b, \lambda_i)$$
)

where parameters λ_i are called the Lagrange multipliers.

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2} \text{ subject to } y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N.$$

$$L_P = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \lambda_i (y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1)$$
 (5.38)

(involves λ_i , training data \mathbf{x}_i , and \mathbf{w} , b)

- The term $||\mathbf{w}||^2 / 2$ is the original objective function $f(\mathbf{w})$.
- The term $\sum_{i=1}^{N} \lambda_i (y_i(\mathbf{w} \cdot \mathbf{x}_i + b) 1)$ captures the inequality constraints $(y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1)$.

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N.$$
 (5.36)
 $(y_i \in \{-1, 1\}, \text{hard-margin SVM})$

$$-L_P = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \lambda_i (y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1)$$
 (5.38)

• Step 2: To minimize the Lagrangian L_P , we must take the partial derivatives (or gradient) of L_P w.r.t. w and b and set them to zero.

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Leftrightarrow \mathbf{w} = \sum_{i=1}^N \lambda_i y_i \mathbf{x}_i \ . (5.39), \ \frac{\partial L_P}{\partial b} = 0 \Leftrightarrow \sum_{i=1}^N \lambda_i y_i = 0. (5.40).$$

$$w_j = \sum_{i=1}^{N} \lambda_i y_i x_{ij}$$
, x_{ij} is j-th component of \mathbf{x}_i . (5.50), e.g., $\mathbf{x}_i = (x_{i1}, x_{i2})$

• λ_i 's are unknown, \mathbf{w} and b cannot be solved by using equations $\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$ and $\sum_{i=1}^{N} \lambda_i y_i = 0$.

$$\min_{\mathbf{w}} \frac{||\mathbf{w}||^2}{2} \text{ subject to } y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N.$$

- Step 3: If $\lambda_i \ge 0$, inequality constraints $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$ can be transformed into a set of equality constraints $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$.
- The transformation leads to the Karush-Kuhn-Tucker (KKT) constraints on λ_i 's, shown below.

$$\lambda_i \ge 0, (5.41)$$

$$\lambda_i \left[y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \right] = 0. (5.42)$$

/*
$$f(x) = x^{\alpha}$$
, $f'(x) = (x^{\alpha})' = \alpha x^{\alpha - 1}$
 $f(x, y) = 2x^3 + 4y^5$, $\partial f / \partial x = 6x^2$, $\partial f / \partial y = 20y^4$ */

$$b_{i1}$$
: $\mathbf{w} \cdot \mathbf{x} + b = 1$ (5.32), b_{i2} : $\mathbf{w} \cdot \mathbf{x} + b = -1$ (5.33)

- The equality constraint $\lambda_i \left[y_i(\mathbf{w} \cdot \mathbf{x}_i + b) 1 \right] = 0$ (5.42) indicates that
- If training instances \mathbf{x}_i 's do not reside along hyperplanes b_{i1} ($\mathbf{w} \cdot \mathbf{x} + b = 1$) or b_{i2} ($\mathbf{w} \cdot \mathbf{x} + b = -1$), λ_i 's must be zero. That is, λ_i 's must be zero if training instances \mathbf{x}_i 's do not satisfy equation $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ (i.e., $\mathbf{w} \cdot \mathbf{x}_i + b > 1$ or $\mathbf{w} \cdot \mathbf{x}_i + b < -1$).
- Training instance \mathbf{x}_i 's with λ_i 's > 0 lie along the hyperplanes b_{i1} or b_{i2} and are known as support vectors.

$$b_{i1}$$
: $\mathbf{w} \cdot \mathbf{x} + b = 1$ (5.32), b_{i2} : $\mathbf{w} \cdot \mathbf{x} + b = -1$ (5.33)

• For a support vector \mathbf{x}_i (i.e., $\lambda_i > 0$), we have

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 = 0 \Leftrightarrow y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

$$\Leftrightarrow b = y_i - \mathbf{w} \cdot \mathbf{x}_i$$
. $// y_i = \pm 1 \rightarrow 1/y_i = y_i$.

- Equations $\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$ (5.39) and $\lambda_i \left[y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \right]$
- -1] = 0 (5.42) show that parameters **w** and *b*,

which define DB, depend only on support vectors.

$$w_{j} = \sum_{i=1}^{N} \lambda_{i} y_{i} x_{ij}$$
 (5.50)

$$-L_P = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \lambda_i (y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1)$$
 (5.38)

• Step 4: Minimizing L_P (by finding \mathbf{w} , b, and λ_i from λ_i [$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1$] = 0, $\lambda_i \geq 0$) can be simplified by transforming the primary/primal Lagrangian $L_P(\mathbf{w}, b, \lambda_i)$ into a function of the Lagrange multipliers only (this is known as the dual problem).

$$w_j = \sum_{i:\lambda_i > 0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

• Transformation: substitute equations

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$$
 (5.39) and
$$\sum_{i=1}^{N} \lambda_i y_i = 0$$
 (5.40) into equation

$$L_{P} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{N} \lambda_{i} (y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1) \quad (5.38)$$
(i.e., $L_{P}(\mathbf{w}, b, \lambda_{i})$)

$$\mathbf{w}_{j} = \sum_{i:\lambda_{i}>0} \lambda_{i} y_{i} x_{ij}, b^{(k)} = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$$

• The transformation leads to the dual Lagrangian formulation of the maximization problem:

$$L_D = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j \quad (5.43)$$
$$\lambda_i \ge 0, \quad \sum_{i=1}^{N} \lambda_i y_i = 0$$

(involves only λ_i and training data \mathbf{x}_i) (i.e., $L_D(\lambda_i)$)

$$w_j = \sum_{i:\lambda_i > 0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

- The solutions for minimization problem $L_P(\mathbf{w}, b, \lambda_i)$ and maximization problem $L_D(\lambda_i)$ are equivalent under the Karush-Kuhn-Tucker (KKT) constraints.
- Solving the dual maximization problem $L_D(\lambda_i)$ (i.e., finding λ_i 's) is beyond the scope of the course.
- λ_i can be found by using Python package cvxopt (Martin S. Andersen: http://people.compute.dtu.dk/~mskan)

$$w_j = \sum_{i:\lambda_i > 0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

• Once λ_i 's are found, we can use equations $\mathbf{w} = \sum_{i=1}^{N} \lambda_i \mathbf{w}$

$$\sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i \text{ and } \lambda_i \left[y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \right] = 0 \text{ to obtain}$$

feasible solutions for w and b (i.e., $b = y_i - \mathbf{w} \cdot \mathbf{x}_i$).

• DB $\mathbf{w} \cdot \mathbf{x} + b = 0$ can be expressed as follows:

$$\left(\sum_{i=1}^N \lambda_i y_i \mathbf{x}_i \cdot \mathbf{x}\right) + b = 0.$$

b is obtained by solving equation $\lambda_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] = 0$ (5.42) for support vectors. (i.e., $\lambda_i > 0$).

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \quad (5.28)$$

• Reminder: For a support vector \mathbf{x}_i (i.e., $\lambda_i > 0$), we have

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 = 0 \Leftrightarrow y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

$$\Leftrightarrow \mathbf{b} = y_i - \mathbf{w} \cdot \mathbf{x}_i. // y_i = \pm 1 \rightarrow 1/y_i = y_i.$$

- The value computed for b may not be unique. Value of b depends on support vectors used in equation $\lambda_i \left[y_i(\mathbf{w} \cdot \mathbf{x}_i + b) 1 \right] = 0$ (5.42).
- Average value for b is chosen.

Summary

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \quad (5.28)$$

- Given m SVs \mathbf{x}_i (i.e., $\lambda_i > 0$), $\mathbf{w} = (w_1, w_2, ..., w_d)$, $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{id})$
- Generally, we have

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i = \sum_{i:\lambda_i > 0} \lambda_i y_i \mathbf{x}_i \text{ and } b = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

• Specifically, we have $w_j = \sum_{i=1}^N \lambda_i y_i x_{ij} = \sum_{i:\lambda_i>0} \lambda_i y_i x_{ij}$ where x_{ij} is the *j*th component of \mathbf{x}_i (e.g., $\mathbf{x}_i = (x_{i1}, x_{i2})$). $b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$, where k = 1, 2, ..., m. b is the average of $b^{(k)}$.

Summary

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \quad (5.28)$$

- Computing $b^{(k)} = y_i \mathbf{w} \cdot \mathbf{x}_i$, makes the value of $b^{(k)}$ depend on the computed value of \mathbf{w} .
- Alternatively, we can compute $b^{(i)}$ as

$$b^{(i)} = y_i - \sum_{j:\lambda_i > 0, \lambda_i > 0} \lambda_j y_j (\mathbf{x}_j \cdot \mathbf{x}_i)$$

• b is the average of $b^{(i)}$.

$$w_j = \sum_{i:\lambda_i>0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i - \mathbf{w} \cdot \mathbf{x}_i$$

Example: Consider two-dimensional data set shown below, which contains eight training instances \mathbf{x}_i . Class label $y_i \in \{-1, 1\}$, λ_i : Lagrange multipliers)

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	0.3858	0.4687	1	65.5261
X 2	0.4871	0.611	-1	65.5261
X 3	0.9218	0.4103	-1	0
X 4	0.7382	0.8936	-1	0
X 5	0.1763	0.0579	1	0
X 6	0.4057	0.3529	1	0
X 7	0.9355	0.8132	-1	0
X 8	0.2146	0.0099	1	0

$$w_j = \sum_{i:\lambda_i > 0} \lambda_i y_i x_{ij}, b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i$$

• First two instances have $\lambda_i > 0$. These instances correspond to two support vectors \mathbf{x}_1 and \mathbf{x}_2 .

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	0.3858	0.4687	1	65.5261
X 2	0.4871	0.611	-1	65.5261
X 3	0.9218	0.4103	-1	0
:				
X 8	0.2146	0.0099	1	0

 $w_j = \sum_{i:\lambda_i>0} \lambda_i y_i x_{ij}$, where x_{ij} is the jth component of \mathbf{x}_i (e.g., $\mathbf{x}_i = (x_{i1}, x_{i2})$)

- Two support vectors $\mathbf{x}_1 = (0.3858, 0.4687)$ and $\mathbf{x}_2 = (0.4871, 0.611), \lambda_1 = 65.5261, \lambda_2 = 65.5261.$
- Let $\mathbf{w} = (w_1, w_2)$ and b denote parameters of DB.
- Using equation $\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$ (i.e. $w_j = \sum_{i=1}^{N} \lambda_i y_i x_{ij}$),

 $\mathbf{x}_i = (x_{i1}, x_{i2})$, we can solve for w_1 and w_2 as follows.

 $w_j = \sum_{i:\lambda>0} \lambda_i y_i x_{ij}$, where x_{ij} is the jth component of \mathbf{x}_i (e.g., $\mathbf{x}_i = (x_{i1}, x_{i2})$)

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	0.3858	0.4687	1	65.5261
\mathbf{x}_2	0.4871	0.611	-1	65.5261
X 3	0.9218	0.4103	-1	0
:				
X 8	0.2146	0.0099	1	0

$$w_{1} = \sum_{i:\lambda_{i}>0} \lambda_{i} y_{i} x_{ij} = \sum_{i=1}^{2} \lambda_{i} y_{i} x_{i1} = \lambda_{1} y_{1} x_{11} + \lambda_{2} y_{2} x_{21}$$

$$w_{1} = 65.5261 \times 1 \times 0.3858 + 65.5261 \times (-1) \times 0.4871$$

$$=-6.6378 \approx -6.64$$
.

 $w_j = \sum_{i: \lambda > 0} \lambda_i y_i x_{ij}$, where x_{ij} is the jth component of \mathbf{x}_i (e.g., $\mathbf{x}_i = (x_{i1}, x_{i2})$)

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	0.3858	0.4687	1	65.5261
\mathbf{x}_2	0.4871	0.611	-1	65.5261
X 3	0.9218	0.4103	-1	0
:				
X 8	0.2146	0.0099	1	0

$$w_{2} = \sum_{i:\lambda_{i}>0} \lambda_{i} y_{i} x_{ij} = \sum_{i=1}^{2} \lambda_{i} y_{i} x_{i2} = \lambda_{1} y_{1} x_{12} + \lambda_{2} y_{2} x_{22}$$

$$w_2 = 65.5261 \times 1 \times 0.4687 + 65.5261 \times (-1) \times 0.611$$

= -9.3244 \approx -9.32.

• Thus, $\mathbf{w} = (w_1, w_2) = (-6.64, -9.32)$.

• For support vectors \mathbf{x}_i (i.e., $\lambda_i > 0$), we have

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i = \sum_{i:\lambda_i > 0} \lambda_i y_i \mathbf{x}_i$$

$$w_j = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_{ij} = \sum_{i:\lambda_i > 0} \lambda_i y_i \mathbf{x}_{ij}$$

$$\mathbf{w}_{j} = \sum_{i:\lambda_{j}>0} \lambda_{i} y_{i} x_{ij}, b^{(k)} = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$$

- Bias term b can be computed using equation λ_i $[y_i(\mathbf{w} \cdot \mathbf{x}_i + b) 1] = 0$ (5.42) for each support vector.
- Recall: for a support vector \mathbf{x}_i (i.e., $\lambda_i > 0$), we have

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 = 0 \Leftrightarrow y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

 $\Leftrightarrow \mathbf{b} = y_i - \mathbf{w} \cdot \mathbf{x}_i. // y_i = \pm 1 \rightarrow 1/y_i = y_i.$
 $\mathbf{w} = (w_1, w_2) = (-6.64, -9.32), \mathbf{x}_i = (x_{i1}, x_{i2})$
 $b^{(k)} = y_i - w_1 \times x_{i1} - w_2 \times x_{i2}, k = 1, 2, ..., m; m \text{ is the number of support vectors (e.g., $m = 2$), $i = 1, 2$.$

$$w_{j} = \sum_{i:\lambda_{i}>0} \lambda_{i} y_{i} x_{ij}, b^{(k)} = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$$

$$\mathbf{w} = (w_1, w_2) = (-6.64, -9.32), \mathbf{x}_i = (x_{i1}, x_{i2})$$

$$b^{(k)} = y_i - w_1 \times x_{i1} - w_2 \times x_{i2}, k = 1, 2; i = 1, 2.$$

$$b^{(1)} = 1 - \mathbf{w} \cdot \mathbf{x}_1$$

$$= 1 - (-6.64) \times (0.3858) - (-9.32) \times (0.4687)$$

$$= 1 - (-6.9311) = 7.9311 \approx 7.93.$$

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	0.3858	0.4687	1	65.5261
\mathbf{x}_2	0.4871	0.611	-1	65.5261
X 3	0.9218	0.4103	-1	0
:				
X 8	0.2146	0.0099	1	0

$$w_{j} = \sum_{i:\lambda_{i}>0} \lambda_{i} y_{i} x_{ij}, b^{(k)} = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$$

$$\mathbf{w} = (w_1, w_2) = (-6.64, -9.32), \mathbf{x}_i = (x_{i1}, x_{i2})$$

$$b^{(k)} = y_i - w_1 \times x_{i1} - w_2 \times x_{i2}, k = 1, 2; i = 1, 2.$$

$$b^{(2)} = -1 - \mathbf{w} \cdot \mathbf{x}_2$$

$$= -1 - (-6.64) \times (0.4871) - (-9.32) \times (0.611)$$

$$= -1 - (-8.9304) = 7.9305 \approx 7.93.$$

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	0.3858	0.4687	1	65.5261
\mathbf{x}_2	0.4871	0.611	-1	65.5261
X 3	0.9218	0.4103	-1	0
:				
X 8	0.2146	0.0099	1	0

$$\mathbf{w}_{j} = \sum_{i:\lambda_{i}>0} \lambda_{i} y_{i} x_{ij}, b^{(k)} = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$$

$$\mathbf{w} = (w_1, w_2) = (-6.64, -9.32), \mathbf{x}_i = (x_{i1}, x_{i2})$$

$$b^{(k)} = y_i - w_1 \times x_{i1} - w_2 \times x_{i2}, k = 1, 2; i = 1, 2.$$

$$b^{(1)} = 7.9311 \approx 7.93, b^{(2)} = 7.9305 \approx 7.93.$$

• Averaging these values $b^{(1)}$ and $b^{(2)}$, we obtain $b \approx 7.93$.

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	0.3858	0.4687	1	65.5261
X 2	0.4871	0.611	-1	65.5261
X 3	0.9218	0.4103	-1	0
•				
X 8	0.2146	0.0099	1	0

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \quad (5.28)$$

- Recall: in 2-dimensional space, we have $\mathbf{w} = (w_1, w_2)$, $\mathbf{x} = (x_1, x_2)$, DB: $w_1x_1 + w_2x_2 + b = 0$.
- With $\mathbf{w} = (w_1, w_2) = (-6.64, -9.32), b = 7.93$, we have DB: $-6.64x_1 9.32x_2 + 7.93 = 0$.
- DB corresponding to parameters w and b is shown in figure below.

• With found parameters \mathbf{w} and b of DB, a test instance \mathbf{z} is classified as follows:

$$f(\mathbf{z}) = sign(\mathbf{w} \cdot \mathbf{z} + b) = sign\left(\sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i \cdot \mathbf{z} + b\right)$$

- If $f(\mathbf{z}) > 0$ (or $\mathbf{w} \cdot \mathbf{z} + b \gtrsim 1$), then \mathbf{z} is classified as positive class (i.e., class label y = 1).
- If $f(\mathbf{z}) < 0$ (or $\mathbf{w} \cdot \mathbf{z} + b \lesssim -1$), then \mathbf{z} is classified as negative class (i.e., class label y = -1).

Recall

Steps	Hard-margin SVM, DB: $\mathbf{w} \cdot \mathbf{x} + b = 0$ (5.28),
	b_{i1} : $\mathbf{w} \cdot \mathbf{x} + b = 1$ (5.32), b_{i2} : $\mathbf{w} \cdot \mathbf{x} + b = -1$ (5.33)
	maximize $d = 2 / \mathbf{w} (5.34)$, minimize $f(\mathbf{w}) = \mathbf{w} ^2 / 2$
	s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2,, N.$ (5.36)
1	minimize
	$L_{P}(\mathbf{w}, b, \lambda_{i}) = \frac{1}{2} \mathbf{w} ^{2} - \sum_{i=1}^{N} \lambda_{i} (y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1) $ (5.38)
2	$\partial L_P/\partial \mathbf{w} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N \lambda_i y_i \mathbf{x}_i (5.39)$
	$// w_{j} = \sum_{i=1}^{N} \lambda_{i} y_{i} x_{ij} $ (5.50)
	$\partial L_P/\partial b = 0 \Rightarrow \sum_{i=1}^N \lambda_i y_i = 0 $ (5.40)
3	Karush-Kuhn-Tucker (KKT) constraints
	$\lambda_i \geq 0 \ (5.41), \ \lambda_i \ [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] = 0 \ (5.42)$
	(\mathbf{x}_i) 's with λ_i 's > 0 are called support vectors (sv))
4	Transform $L_P(\mathbf{w}, b, \lambda_i)$ to $L_D(\lambda_i)$
	$L_D(\lambda_i) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j $ (5.43)
	s.t. $\lambda_i \geq 0$ (5.41), $\sum_{i=1}^{N} \lambda_i y_i = 0$ (5.40)
	(minimizing L_P is equivalent to maximizing L_D)
	Once λ_i 's are found (e.g., use cvxopt), use λ_i [$y_i(\mathbf{w} \cdot \mathbf{w})$]
	$[\mathbf{x}_i + b] - 1] = 0 (5.42) \text{ to obtain } \mathbf{b} = \mathbf{y}_i - \mathbf{w} \cdot \mathbf{x}_i.$

Contents

- 1. Basic Concepts of SVM
- 2. Linear SVM: Separable Case (linear DB) (hard-margin SVM)
- 3. Linear SVM: Nonseparable Case (linear DB) (soft-margin SVM)
- 4. Nonlinear SVM (non-linear DB)

- Recall: hard-margin SVM uses inequality constraints $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$, i = 1, 2, ..., N.
- Soft-margin SVM uses inequality constraints $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \xi_i$, i = 1, 2, ..., N; $\forall i : \xi_i \ge 0$.
- Hard-margin SVM is a special case of soft-margin SVM (i.e., $\xi_i = 0$ for $\forall i$)

Hard-margin SVM: There is no data point \mathbf{x}_i falling inside margin. [Simon Haykin]

Soft-margin SVM: Data point \mathbf{x}_i represented by a small square falls inside margin, but resides on the correct side of DB. $(0 < \lambda_i = C \text{ and } 0 \le \xi_i < 1)$

Soft-margin SVM: Data point \mathbf{x}_i represented by a small circle falls on the wrong side of DB. $(0 < \lambda_i = C \text{ and } \xi_i \ge 1)$

DB of SVM for nonlinearly separable data set

- Slack variables ξ_i 's permit
- positive point Q lies on the negative side of DB.
- negative point *P* lies on the positive side of DB.

• Recall: primal hard-margin problem (i.e., original objective function)

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$

subject to
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N.$$

• Primal soft-margin problem (i.e., modified objective function) is

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^{2}}{2} + C \sum_{i=1}^{N} \xi_{i}$$
subject to $y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \ge 1 - \xi_{i}$, $\xi_{i} \ge 0$, $i = 1, 2, ..., N$.

where constant C > 0 (a.k.a. cost) is user-specified parameter and determined based on the model's performance on the validation set (i.e., cross-validation).

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^{2}}{2} + C \sum_{i=1}^{N} \xi_{i}$$
subject to $y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \ge 1 - \xi_{i}$, $\xi_{i} \ge 0$, $i = 1, 2, ..., N$.

• Constrained minimization problem above is known as **convex** optimization problem, which can be solved using the standard **Lagrange multiplier** method.

• Step 1: The primary/primal Lagrangian for the constrained minimization problem can be written as

$$L_{P} = \frac{1}{2} ||\mathbf{w}||^{2} + C \sum_{i=1}^{N} \xi_{i}$$

$$- \sum_{i=1}^{N} \lambda_{i} [y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1 + \xi_{i}]$$

$$- \sum_{i=1}^{N} \mu_{i} \xi_{i}, (5.46)$$
(i.e., $L_{P}(\mathbf{w}, b, \lambda_{i}, \xi_{i}, \mu_{i})$)

where

- first two terms are objective function to be minimized,
- third term represents inequality constraints $(y_i(\mathbf{w}\cdot\mathbf{x}_i + b) \ge 1 \xi_i, \ \xi_i \ge 0, \ i = 1, 2, ..., N)$ associated with slack variables ξ_i , and
- last term is the result of the non-negativity requirements on the values of ξ_i 's (i.e., $\forall i$: $\xi_i \geq 0$). $(\lambda_i \geq 0 \text{ and } \mu_i \geq 0 \text{ are KKT multipliers})$

• Step 2: To minimize the Lagrangian L_P , we set the first-order derivatives (or gradient) of L_P with respect to \mathbf{w} , b, and ξ_i to zero, resulting in the following equations.

$$\frac{\partial L_{P}}{\partial w_{j}} = w_{j} - \sum_{i=1}^{N} \lambda_{i} y_{i} x_{ij} = 0 \Rightarrow w_{j} = \sum_{i=1}^{N} \lambda_{i} y_{i} x_{ij} \quad (5.50)$$

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_{i} y_{i} \mathbf{x}_{i} \quad (5.39)$$

$$\frac{\partial L_{P}}{\partial b} = -\sum_{i=1}^{N} \lambda_{i} y_{i} = 0 \Rightarrow \sum_{i=1}^{N} \lambda_{i} y_{i} = 0 \quad (5.51)$$

$$\frac{\partial L_{P}}{\partial \xi_{i}} = C - \lambda_{i} - \mu_{i} = 0 \Rightarrow \lambda_{i} + \mu_{i} = C \quad (5.52)$$

$$0 < \lambda_{i} < C.$$

• Step 3: The inequality constraints $(y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i)$ can be transformed into equality constraints using the following KKT (Karush-Kuhn-Tucker) conditions:

$$\lambda_i \ge 0, \ \xi_i \ge 0, \ \mu_i \ge 0, \ (5.47)$$

 $\lambda_i \left[y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b \right) - 1 + \boldsymbol{\xi}_i \right] = 0, \ (5.48)$
 $\mu_i \xi_i = 0. \ (5.49)$

• Step 4: Substituting equations $\partial L_P/\partial \mathbf{w} = 0$, $\partial L_P/\partial b = 0$, $\partial L_P/\partial \xi_i = 0$ into the primary/primal Lagrangian L_P will produce the following dual Lagrangian L_D of the maximization problem.

/* recall

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N \lambda_i y_i \mathbf{x}_i \quad (5.39)$$

$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{i=1}^N \lambda_i y_i = 0 \quad (5.51)$$

$$\frac{\partial L_P}{\partial \xi_i} = 0 \Rightarrow C - \lambda_i - \mu_i = 0 \quad (5.52)$$

*/

$$L_D(\lambda_i) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j \quad (5.53)$$
$$(0 \le \lambda_i \le C, \sum_{i=1}^N \lambda_i y_i = 0)$$

Recall:

$$L_{P}(\mathbf{w}, b, \lambda_{i}, \xi_{i}, \mu_{i}) = \frac{1}{2} ||\mathbf{w}||^{2} + C \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \lambda_{i} [y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1 + \xi_{i}] - \sum_{i=1}^{N} \mu_{i} \xi_{i}, (5.46)$$

maximize
$$L_D(\lambda_i) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

subject to $0 \le \lambda_i \le C$, $\sum_{i=1}^N \lambda_i y_i = 0$.

• The dual Lagrangian L_D for nonlinearly separable data is identical to the dual Lagrangian L_D for linearly separable data.

- Dual problem L_D can be solved numerically using quadratic programming techniques to obtain Lagrange multipliers λ_i (out of scope of the course).
- Once λ_i 's are found (cvxopt), we can use equations

$$w_j = \sum_{i=1}^{N} \lambda_i y_i x_{ij}$$
 (5.50) (i.e., $\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$ (5.39)) and

$$\lambda_i [y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 + \xi_i] = 0 (5.48)$$
 to obtain

feasible solutions for w and b (i.e., $b = y_i - \mathbf{w} \cdot \mathbf{x}_i$, \mathbf{x}_i

is support vector).

• Specifically, for support vectors (i.e., $0 < \lambda_i < C$ and $\xi_i = 0$), we have

$$\lambda_{i} [y_{i} (\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1 + \xi_{i}] = 0 (5.48)$$

$$\rightarrow y_{i} (\mathbf{w} \cdot \mathbf{x}_{i} + b) = 1$$

$$\rightarrow \mathbf{w} \cdot \mathbf{x}_{i} + b = y_{i} (y_{i} = \pm 1 \rightarrow 1/y_{i} = y_{i})$$

$$\rightarrow b = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$$

- The value computed for b may not be unique. Value of b depends on support vectors used in $\lambda_i [y_i (\mathbf{w} \cdot \mathbf{x}_i + b) 1 + \xi_i] = 0$.
- Average value for b is chosen.

Figure 27.8 When $\lambda_i = 0$, \mathbf{x}_i is inside the margin and correctly classified. When $0 < \lambda_i < C$, \mathbf{x}_i is on the margin border (the dotted lines) and correctly classified. When $\lambda_i = C$, \mathbf{x}_i is outside the margin, and if $\xi_i > 1$ and $m_i = (\mathbf{w} \cdot \mathbf{x}_i + b)y_i < 0$, then \mathbf{x}_i is misclassified. [Masashi Sugiyama]

Summary

Hard-margin SVM, DB: $\mathbf{w} \cdot \mathbf{x} + b = 0$ (5.28),
b_{i1} : $\mathbf{w} \cdot \mathbf{x} + b = 1$ (5.32), b_{i2} : $\mathbf{w} \cdot \mathbf{x} + b = -1$ (5.33)
maximize $d = 2 / \mathbf{w} (5.34)$, minimize $f(\mathbf{w}) = \mathbf{w} ^2 / 2$
s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2,, N.$ (5.36)
minimize
$L_{P}(\mathbf{w}, b, \lambda_{i}) = \frac{1}{2} \mathbf{w} ^{2} - \sum_{i=1}^{N} \lambda_{i} (y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1) $ (5.38)
$\partial L_P/\partial \mathbf{w} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N \lambda_i y_i \mathbf{x}_i (5.39)$
$// w_j = \sum_{i=1}^{N} \lambda_i y_i x_{ij} $ (5.50)
$\partial L_P/\partial b = 0 \Rightarrow \sum_{i=1}^N \lambda_i y_i = 0 $ (5.40)
Karush-Kuhn-Tucker (KKT) constraints
$\lambda_i \geq 0 \ (5.41), \ \lambda_i \ [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] = 0 \ (5.42)$
(\mathbf{x}_i 's with λ_i 's ≥ 0 are called support vectors (sv))
Transform $L_P(\mathbf{w}, b, \lambda_i)$ to $L_D(\lambda_i)$
$L_D(\lambda_i) = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j $ (5.43)
s.t. $\lambda_i \geq 0$ (5.41), $\sum_{i=1}^{N} \lambda_i y_i = 0$ (5.40)
(minimizing L_P is equivalent to maximizing L_D)
Once λ_i 's are found (e.g., use cvxopt), use λ_i [y_i (\mathbf{w})
$[\mathbf{x}_i + b] - 1] = 0 (5.42) \text{ to obtain } b = y_i - \mathbf{w} \cdot \mathbf{x}_i.$

Steps	Soft-margin SVM, DB: $\mathbf{w} \cdot \mathbf{x} + b = 0$ (5.28)
	b_{i1} : $\mathbf{w} \cdot \mathbf{x} + b = 1$ (5.32), b_{i2} : $\mathbf{w} \cdot \mathbf{x} + b = -1$ (5.33)
	minimize $f(\mathbf{w}) = \mathbf{w} ^2 / 2 + C \sum_{i=1}^{N} \xi_i$
	s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i = 1, 2,, N. \ (5.36')$
	(user-specified parameter $C > 0$ (cost))
1	minimize $L_P(\mathbf{w}, b, \lambda_i, \xi_i, \mu_i) = \frac{1}{2} \mathbf{w} ^2 + C \sum_{i=1}^N \xi_i$
	$-\sum_{i=1}^{N} \lambda_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 + \boldsymbol{\xi}_i] - \sum_{i=1}^{N} \mu_i \boldsymbol{\xi}_i (5.46)$
2	$\partial L_P/\partial w_j = 0 \Rightarrow w_j = \sum_{i=1}^N \lambda_i y_i x_{ij} (5.50)$
	$// \partial L_P / \partial \mathbf{w} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N \lambda_i y_i \mathbf{x}_i (5.39)$
	$\partial L_P/\partial b = 0 \Rightarrow \sum_{i=1}^N \lambda_i y_i = 0 \ (5.51) \equiv (5.40)$
	$\partial L_P/\partial \xi_i = C - \lambda_i - \mu_i = 0 \Rightarrow \lambda_i + \mu_i = C (5.52)$
	$(0 \le \lambda_i \le C)$
3	Karush-Kuhn-Tucker (KKT) constraints
	$\lambda_i \geq 0, \zeta_i \geq 0, \mu_i \geq 0, (5.47)$
	$\lambda_i \left[y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b \right) - 1 + \underline{\xi}_i \right] = 0, (5.48)$
	$\mu_i \xi_i = 0$ (5.49). (\mathbf{x}_i 's with $0 < \lambda_i < C$ and $\xi_i = 0$ are
	called support vectors (sv))
4	Transform $L_P(\mathbf{w}, b, \lambda_i, \xi_i, \mu_i)$ to $L_D(\lambda_i)$
	$L_D(\lambda_i) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j (5.53) \equiv (5.43)$
	s.t. $0 \le \lambda_i \le C$, $\sum_{i=1}^N \lambda_i y_i = 0$ (5.51) \equiv (5.40)
	(minimizing L_P is equivalent to maximizing L_D)
	Once λ_i 's are found (e.g., use cvxopt), use λ_i [$y_i(\mathbf{w} \cdot \mathbf{w})$]
	$[\mathbf{x}_i + b) - 1] = 0$ (5.42) to obtain $\mathbf{b} = \mathbf{y}_i - \mathbf{w} \cdot \mathbf{x}_i$ for \mathbf{x}_i 's
	with $0 \le \lambda_i \le C$ and $\xi_i = 0$ (i.e., for support vectors \mathbf{x}_i).

Contents

- 1. Basic Concepts of SVM
- 2. Linear SVM: Separable Case (linear DB) (hard-margin SVM)
- 3. Linear SVM: Nonseparable Case (linear DB) (soft-margin SVM)
- 4. Nonlinear SVM (non-linear DB)

- Hard-margin SVM and soft-margin SVM have linear decision boundaries.
- Non-linear SVM has a nonlinear decision boundary (DB).

(a) nonlinear DB in original 2D space

$$y_{\text{square}} = 1, y_{\text{circle}} = -1,$$

DB: $\sqrt{((x_1 - 0.5)^2 + (x_2 - 0.5)^2)} = 0.2$

- In a non-linear SVM, the original input data is transformed into new space $\Phi(\mathbf{x})$ (or $\phi(\mathbf{x})$) so that a linear DB can be used to separate the instances in the transformed space.
- The mapping function Φ (or ϕ) is a nonlinear transformation needed to map the data \mathbf{x} from its original feature space into a new space $\Phi(\mathbf{x})$ where the DB becomes linear. For example, we choose $\Phi: (x_1, x_2) \to (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$. (5.55)

(b) linear DB in transformed space DB: $\mathbf{w} \cdot \Phi(\mathbf{x}) + b = 0$

- After doing the transformation, we can apply the methodology used for hard-margin SVM and soft-margin SVM to find a linear DB in the transformed space.
- The linear DB in the transformed space $\Phi(\mathbf{x})$ has the form: $\mathbf{w} \cdot \Phi(\mathbf{x}) + b = 0$. // or $\mathbf{w} \cdot \phi(\mathbf{x}) + b = 0$

Problems with Attribute Transformation Approach

- It is not clear what type of appropriate mapping function Φ should be used to ensure that a linear DB can be constructed in the transformed space $\Phi(\mathbf{x})$.
- Solving the constrained optimization problem (i.e., solve for w and b) in the high-dimensional feature space $\Phi(\mathbf{x})$ is a computationally expensive task.
- This approach suffers from the curse of dimensionality problem.

Problems with Attribute Transformation Approach

• Problems with attribute transformation approach can be solved by using the kernel trick method.

• Definition 5.2 (Nonlinear SVM). The learning task for a nonlinear SVM can be formalized as the following optimization problem:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_i(\mathbf{w} \cdot \Phi(\mathbf{x}_i) + b) \ge 1, i = 1, 2, ..., N$.

• The learning task of a nonlinear SVM is performed on the transformed attributes $\Phi(\mathbf{x})$.

Recall: Linear SVM

Definition 5.1 (Linear SVM: Separable Case). The learning task in SVM can be formalized as the following constrained minimization problem:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., N$.

• The learning task of a linear SVM is performed on the original attributes **x**.

• Following the approach used for linear SVM (i.e., hard-margin SVM and soft-margin SVM), we may derive the following dual Lagrangian L_D for the constrained optimization problem:

$$L_D = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$
 (5.56)

• Once the λ_i 's are found using quadratic programming techniques, the parameters **w** and *b* can be derived using the following equations:

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_{i} y_{i} \Phi(\mathbf{x}_{i}) \quad (5.57)$$

$$\lambda_{i} \left[y_{i} \left(\sum_{j=1}^{N} \lambda_{j} y_{j} \Phi(\mathbf{x}_{j}) \cdot \Phi(\mathbf{x}_{i}) + b \right) - 1 \right] = 0 \quad (5.58)$$

$$\rightarrow b = y_{i} - \sum_{j=1}^{N} \lambda_{j} y_{j} \Phi(\mathbf{x}_{j}) \cdot \Phi(\mathbf{x}_{i})$$

• Finally, a test instance z can be classified using the following equation:

$$f(\mathbf{z}) = sign(\mathbf{w} \cdot \mathbf{\Phi}(\mathbf{z}) + b)$$

$$= sign\left(\sum_{i=1}^{N} \lambda_i y_i \mathbf{\Phi}(\mathbf{x}_i) \cdot \mathbf{\Phi}(\mathbf{z}) + b\right) (5.59)$$

- If $f(\mathbf{z}) > 0$, then \mathbf{z} is classified as positive class (i.e., class label y = 1).
- If $f(\mathbf{z}) < 0$, then \mathbf{z} is classified as negative class (i.e., class label y = -1).

- Calculating the dot product (i.e., similarity) between pairs of vectors in the transformed space, $\Phi(\mathbf{x}_i)\cdot\Phi(\mathbf{x}_j)$, can be quite cumbersome and may suffer from the curse of dimensionality problem.
- A breakthrough solution to this problem comes in the form of a method known as the kernel trick.

- The dot product $\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$ can also be regarded as a measure of similarity between two instances \mathbf{x}_i and \mathbf{x}_i in the transformed space.
- The kernel trick is a method for computing similarity in the transformed space $\Phi(\mathbf{x})$ using the original attribute set \mathbf{x} .
- Suppose we choose the following transformation (a.k.a. the mapping function):

$$\Phi:(x_1, x_2) \to (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1).$$
 (5.55)

• The dot product between two input vectors **u** and **v** in the transformed space can be written as follows:

$$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = (u_1^2, u_2^2, \sqrt{2}u_1, \sqrt{2}u_2, \sqrt{2}u_1u_2, 1) \cdot (v_1^2, v_2^2, \sqrt{2}v_1, \sqrt{2}v_2, \sqrt{2}v_1v_2, 1)$$

$$= u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 v_1 + 2u_2 v_2 + 2u_1 u_2 v_1 v_2 + 1$$

$$= (\mathbf{u} \cdot \mathbf{v} + 1)^2. (5.60)$$

• Thus, the dot product in the transformed space $\Phi(\mathbf{x})$ can be expressed in terms of a similarity function K in the original space \mathbf{x} :

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^2 (5.61)$$

// polynomial kernel function

• The similarity function K, which is computed in the original attribute space \mathbf{x} , is known as the kernel function.

- Thus, the kernel trick method can overcome the problems with the attribute transformation approach.
- First, we do not have to know the exact form of the mapping function Φ because the kernel functions used in nonlinear SVM must satisfy a mathematical principle known as Mercer's theorem.

- The principle of Mercer's theorem ensures that a kernel function $K(\mathbf{u}, \mathbf{v})$ can always be expressed as the dot product $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$ between two input vectors in some high-dimensional space.
- Second, computing the dot products $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$ (e.g., solve for \mathbf{w} and \mathbf{b}) using a **kernel function** is considerably cheaper than using the transformed attribute set $\Phi(\mathbf{x})$ because $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^2$ (5.61).

- Third, since the computations are performed in the original space x, issues associated with the curse of dimensionality problem can be avoided.

DB produced by a nonlinear SVM with polynomial kernel function

• A test instance x is classified as follows:

$$f(\mathbf{z}) = sign(\mathbf{w} \cdot \mathbf{\Phi}(\mathbf{z}) + b) = sign(\sum_{i=1}^{N} \lambda_{i} y_{i} \mathbf{\Phi}(\mathbf{x}_{i}) \cdot \mathbf{\Phi}(\mathbf{z}) + b)$$

$$= sign(\sum_{i=1}^{N} \lambda_{i} y_{i} \mathbf{K}(\mathbf{x}_{i}, \mathbf{z}) + b)$$

$$= sign(\sum_{i=1}^{N} \lambda_{i} y_{i} (\mathbf{x}_{i} \cdot \mathbf{z} + 1)^{2} + b), \quad (5.62)$$
where $b = y_{i} - \sum_{j=1}^{N} \lambda_{j} y_{j} \mathbf{\Phi}(\mathbf{x}_{j}) \cdot \mathbf{\Phi}(\mathbf{x}_{i}) \quad (5.58)$
i.e., $b = y_{i} - \sum_{j=1}^{N} \lambda_{j} y_{j} (\mathbf{x}_{j} \cdot \mathbf{x}_{i} + 1)^{2}$

• Theorem 5.1 (Mercer's Theorem). A kernel function K can be expressed as

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

if and only if, for any function $g(\mathbf{x})$ such that $\int g(\mathbf{x})^2 d\mathbf{x}$ is finite, then $\int K(\mathbf{x}, \mathbf{y})g(\mathbf{x})g(\mathbf{y})d\mathbf{x}d\mathbf{y} \ge 0$.

Some Kernel Functions

1. Polynomial kernel of degree p:

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^p (5.63)$$

2. Gaussian radial basis function (RBF) kernel:

$$K(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x} - \mathbf{y}\|^2/(2\sigma^2)}$$
 (6.54)

3. Sigmoid kernel:

$$K(\mathbf{x}, \mathbf{y}) = \tanh(k\mathbf{x} \cdot \mathbf{y} - \delta), (5.65)$$

for some $k > 0, \delta > 0$

- A nonlinear SVM with a Gaussian radial basis function (RBF) kernel gives the same decision hyperplane as a type of neural network (NN) known as a radial basis function (RBF) network.
- A nonlinear SVM with a sigmoid kernel is equivalent to a simple three-layer NN known as a multilayer perceptron (i.e., backpropagation NN).

- SVM training always finds a global solution, unlike NNs, such as backpropagation NN, where many local minima usually exist.
- A major research goal regarding SVMs is to improve the speed in training and testing so that SVMs may become a more feasible option for very large data sets.

• Other issues with a nonlinear SVM include determining the best kernel for a given data set and finding an efficient method for multiclass classification.

Summary

1. Consider the linearly separable dataset D in a two-dimensional space, as shown in the table below, which contains eight training instances \mathbf{x}_i , class labels $y_i \in \{-1, 1\}$, and Lagrange multipliers λ_i for i = 1, 2, ..., 8.

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	2	2.5	1	2.7027
\mathbf{x}_2	2.5	3.2	-1	2.7027
X 3	4	2.5	-1	0
X 4	3.5	4	-1	0
X 5	1	2	1	0
X 6	2.2	1.5	1	0
X 7	4.5	3.3	-1	0
X 8	1.5	0.5	1	0

Specify support vectors from the given data set *D* and determine a decision boundary of a hard-margin linear SVM (support vector machine). You need to show how to compute the parameters **w** and *b* of the decision boundary (DB). Describe how to use the trained hard-margin linear SVM to classify a test instance **z**.

2. Consider the linearly separable dataset D in a two-dimensional space, as shown in the table below, which contains nine training instances \mathbf{x}_i , class labels $y_i \in \{-1, 1\}$, and Lagrange multipliers λ_i for i = 1, 2, ..., 8. Compute \mathbf{w} and b of DB.

Instances	<i>x</i> ₁	<i>x</i> ₂	Уi	λ_i
\mathbf{x}_1	0.1193	0.3913	+1	0
X 2	-0.0080	0.1209	+1	49.6257
X 3	0.1671	0.2101	+1	0
X 4	0.3408	0.3518	+1	0
X 5	-0.1479	0.1639	+1	0.0005
X 6	-0.2042	-0.3964	-1	0
X 7	-0.2732	-0.0832	-1	0
X 8	-0.0663	-0.0712	-1	49.6262
X 9	0.0875	-0.1819	-1	0

112

3. Consider the linearly separable dataset D in a two-dimensional space, as shown in the table below, which contains nine training instances \mathbf{x}_i , class labels $y_i \in \{-1, 1\}$, and Lagrange multipliers λ_i for i = 1, 2, ..., 8. Compute \mathbf{w} and b of DB.

Instances	<i>x</i> ₁	x_2	Уi	λ_i
\mathbf{x}_1	-1	-4	-1	0
X 2	-3	-3	-1	0
X 3	-0.6	-1.3	-1	0.0533
X 4	-3	-1	-1	0
X 5	-2	0.5	-1	0.1316
X 6	3	3	+1	0
X 7	2	1	+1	0
X 8	1	2	+1	0.1849
X 9	1	3	+1	0

4. Consider the linearly separable dataset D in a two-dimensional space, as shown in the table below, which contains eight training instances \mathbf{x}_i , class labels $y_i \in \{-1, 1\}$, and Lagrange multipliers λ_i for i = 1, 2, ..., 8. Compute \mathbf{w} and b of DB.

Instances	x_1	x_2	y_i	λ_i
\mathbf{x}_1	2	2.5	1	2.6847
X 2	4	2.5	-1	0
X 3	2.5	3.2	-1	2.7029
X 4	3.5	4	-1	0
X 5	1	2	1	0
\mathbf{x}_6	3	1.8	1	0.0182
X 7	4.5	3.3	-1	0
X 8	2	1	1	0

References

- 1. Jiawei Han, Micheline Kamber, Jian Pei. 2011. *Data Mining Concepts and Techniques*. 3rd Ed. Morgan Kaufmann. ISBN: 9380931913.
- 2. Pang-Ning Tan, Michael Steinbach, Vipin Kumar. 2005. *Introduction to Data Mining*. 1st Ed. Pearson. ISBN: 0321321367.
- 3. Charu C. Aggarwal. 2015. Data Mining The Textbook. Springer. ISBN: 3319141414.

References

- 4. Nong Ye. 2013. Data Mining: Theories, Algorithms, and Examples. CRC Press. ISBN: 1439808384.
- **5**. Rodrigo Fernandes de Mello, Moacir Antonelli Ponti. 2018. *Machine Learning A Practical Approach on the Statistical Learning Theory*. Springer. ISBN: 9783319949888.
- **6**. Dan Simovici. 2018. *Mathematical Analysis for Machine Learning and Data Mining*. World Scientific. ISBN: 9813229683.

Extra Slides

• Euclidean norm (magnitude) of $\mathbf{w} = (w_1, w_2, ..., w_n)$ $||\mathbf{w}|| = \sqrt{\mathbf{w} \cdot \mathbf{w}} = \sqrt{w_1^2 + w_2^2 + ... + w_n^2}$

- Given two vectors $\mathbf{x} = (x_1, x_2)$, $\mathbf{y} = (y_1, y_2)$, θ is the angle between \mathbf{x} and \mathbf{y} .
- The algebraic definition of the dot product:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2.$$

- The geometric definition of the dot product:

$$\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \, \cos(\theta).$$

 $-\cos(\theta) = \text{adjacent / hypotenuse}$

Extra Slides

- λ_i can be found by using Python package cvxopt (Martin S. Andersen: http://people.compute.dtu.dk/~mskan)
- Install: conda install -c conda-forge cvxopt
- To use: import cvxopt
- Use provided methods/functions: cvxopt.matrix(), solution = cvxopt.solvers.qp(), and so on.
- Form solution, we obtain $\lambda_i > 0$ (i.e., support vectors), weight vector **w**, bias b.