

Feasibility of detecting depression from free text published in online forums

Ignacio Montes Álvarez University of Oviedo, 2020

Table of Contents

Motivation & Objectives 01 Why are we developing this project? Methodology 02 How was the process structured? Results 03 What results have we obtained? **Conclusions** 04 What can we derive from that

results?

Introduction

Depression is a serious disorder and the largest contributor to global dissability

+264 million

PEOPLE LIVE WITH THIS DISORDER

What is depression?

SYMPTOMS

Great sadness, reduced energy, loss of interest

OTHER FEELINGS

Guilt, worthlessness, irritability

CAUSES

Changes in life: accidents, drugs abuse, traumas, divorce...

RELATED DISORDERS

Anxiety, disturbed sleep, eating and concentration disorders

How can we help?

01Motivation &Objectives

Social media can be used as a "behavioral health assessment tool" [1]

Why social media?

SAFE ENVIRONMENT

Sufferers can express themselves better. It's like a "diary" [2]

LOTS OF DATA

We have acess to large amounts of data about users' beliefs

Which platform to analyze?

REDDIT

Large group of forums or communities

STRUCTURE

Several forums also called subreddit with their own rules managed by moderators

STATISTICS

17th globally and 7th USA (Alexa Rank, October 2020)

ANONIMITY

No need to provide personal information, only a username

Subreddit subject to study

r/depression

- The biggest Reddit community about this disorder
- More than 695k users
- Created in 2009

Goals

Detection of depression-related texts

Detection of depression-prone users in non depression-related forums

Potential fields of application

Automatic detection bot

(*) Caveats: ethical implications should be carefully analyzed before deployment of any of these tools

02 Methodology

Datasets creation, text handling and machine learning

Technologies used

Project structure

PHASE A

Detection of depression-related texts

PHASE B

Detection of depression-prone users in non depression-related forums

How was it done? (phase A)

- 1. Subreddit corpus extraction (depression-prone dataset)
- 2. Control collection generation (non-depression-prone dataset)
- 3. Machine learning pipeline

How was it done? (phase B)

- 1. Username extraction from <u>depression-prone dataset</u> (phase A, step 1)
- 2. Obtain users information
- 3. Obtain random users' sample (presumably depressed users)
- 4. Obtain control users' sample (presumably non-depressed users)
- 5. Corpus generation for both samples
- 6. Machine learning pipeline

In depth: obtain users information

Creation date

Karma punctuations

+69 million users

Elasticsearch indexing

In depth: obtain users' samples

Systematic sampling

Similarity constraints

Not in r/depression

Pareto's Law and fine-tuning

Additional steps: subreddits removal

To ensure we don't distort the results we have to remove possible comorbidities of depression

- Remove subreddits that can be <u>directly related to depression</u>
 (i.e, r/Anxiety, r/SuicideWatch, r/mentalhealth...)
- Remove subreddits that can be <u>indirectly related to depression</u>
 (i.e, r/lgtbi, r/Alcoholism...)
- Remove subreddits that <u>contain "-depress-"</u> in their name

Machine Learning

Supervised binary classification using text features

Datasets cleaning

Lowercase

Remove punctuation and URLs

Stemming

Whitespace normalization

Stopwords removal

Unicode symbols conversion

Datasets vectorization

Bag of words

TF-IDF

1-2 n-grams

10,000 features

Train and test

Classifiers chosen							
Classifier	Туре	Alpha (α) values					
Multinomial Naïve Bayes	Bayesian	0.1, 0.2, 0.4, 0.6, 0.8, 1.0					
Complement Naïve Bayes	Bayesian	0.1, 0.2, 0.4, 0.6, 0.8, 1.0					
Stochastic Gradient Descent	Linear	[10 ⁻¹ , 10 ⁻⁶] (step 10 ⁻¹)					

The <u>alpha</u> parameter is the one to be tuned for each classifier. In the <u>Bayesian</u> classifiers controls the <u>smoothing</u> and in the <u>linear</u> classifier controls the regularization <u>strength</u>

03 Results

Metrics presentation and interpretation

Runs

Performance metrics

Best classifiers - I

	CLF	α	ТҮРЕ	Acc	W-P	W-SS	W-F1	W-F2
Posts	SGD-4	10 ⁻⁶	TF-IDF 1-1	0.960	0.959	0.960	0.959	0.960
Authors	SGD-5	10 ⁻⁵	TF-IDF 1-2	0.752	0.734	0.752	0.694	0.723
Authors - sub	SGD-5	10 ⁻⁵	TF-IDF 1-2	0.726	0.710	0.726	0.669	0.697
180 days	MNB-4	0.1	TF-IDF 1-1	0.719	0.711	0.719	0.712	0.715
180 days - sub	MNB-5/CNB-5	0.1	TF-IDF 1-2	0.699	0.659	0.699	0.688	0.693
90 days	CNB-4	0.6	TF-IDF 1-1	0.729	0.720	0.729	0.720	0.725
90 days - sub	CNB-4	0.4	TF-IDF 1-1	0.718	0.713	0.718	0.714	0.716

Best classifiers - II (phase A)

Subreddit posts classification scores (SGD-4)

Best classifiers – III (phase B)

04 Conclusions

What could we "take home" from all of this?

Aside from numbers...

TF-IDF over BoW

Bayesian for small datasets and SGD for the largest

Phases' results

Future work...

WORD EMBEDDINGS

DEEP LEARNING

Questions?

Ignacio Montes Álvarez uo257907@uniovi.es

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

