Scilab Textbook Companion for Electrical And Electronic Principles And Technology by J. Bird¹

Created by
Sufiyan Siddique
BE (pursuing)
Electronics Engineering
Mumbai University
College Teacher
Prof Chaya Ravindra
Cross-Checked by
Lavitha Pereira

May 26, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electrical And Electronic Principles And Technology

Author: J. Bird

Publisher: Elsevier, U.K.

Edition: 3

Year: 2007

ISBN: 9780750685566

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Units associated with basic electrical quantities	6
2	An introduction to electric circuits	10
3	Resistance variation	19
4	Batteries and alternative sources of energy	25
5	Series and parallel networks	28
6	Capacitors and capacitance	38
7	Magnetic circuits	48
8	Electromagnetism	56
9	Electromagnetic induction	59
10	Electrical measuring instruments and measurements	69
12	Transistors	82
13	DC circuit theory	84
14	Alternating voltages and currents	105
15	Single phase series AC circuits	112

16 Single phase parallel AC circuits	131
17 Filter networks	141
18 DC transients	146
19 Operational amplifiers	161
20 Three phase systems	166
21 Transformers	176
22 DC machines	192
23 Three phase induction motors	206

List of Scilab Codes

Exa 1.1	Example 1													6
Exa 1.2	Example 2													6
Exa 1.3	Example 3													7
Exa 1.4	Example 4													7
Exa 1.5	Example 5													7
Exa 1.6	Example 6													8
Exa 1.7	Example 7													8
Exa 1.8	Example 8													9
Exa 2.1	Example 1													10
Exa 2.2	Example 2													10
Exa 2.3	Example 3													11
Exa 2.4	Example 4													11
Exa 2.5	Example 5													11
Exa 2.6	Example 6													12
Exa 2.7	Example 7													12
Exa 2.8	Example 8													13
Exa 2.9	Example 9													13
Exa 2.10	Example 10													14
Exa 2.11	Example 11													14
Exa 2.12	Example 12													14
Exa 2.13	Example 13													15
Exa 2.14	Example 14													15
Exa 2.15	Example 15													16
Exa 2.16	Example 16													16
Exa 2.18	Example 18													16
Exa 2.19	Example 19													17
Exa 2.20	Example 20													18
Eva 3.1	Example 1													19

Exa 3.2	Example 2	 20
Exa 3.3	Example 3	 20
Exa 3.4	Example 4	 21
Exa 3.5	Example 5	 21
Exa 3.6	Example 6	 21
Exa 3.7	Example 7	 22
Exa 3.8	Example 8	 22
Exa 3.9	Example 9	 23
Exa 3.10	Example 10	 23
Exa 3.11	Example 11	 23
Exa 3.12	Example 12	 24
Exa 3.13	Example 13	 24
Exa 4.1	Example 1	 25
Exa 4.2	Example 2	 26
Exa 4.3	Example 3	 26
Exa 4.4	Example 4	27
Exa 5.1	Example 1	 28
Exa 5.2	Example 2	 29
Exa 5.3	Example 3	 29
Exa 5.4	Example 4	 30
Exa 5.5	Example 5	 30
Exa 5.6	Example 6	 31
Exa 5.7	Example 7	 32
Exa 5.8	Example 8	 32
Exa 5.10	Example 10	 33
Exa 5.11	Example 11	 33
Exa 5.12	Example 12	 34
Exa 5.13	Example 13	 35
Exa 5.14	Example 14	 35
Exa 5.15	Example 15	 36
Exa 5.16	Example 16	 37
Exa 6.1	Example 1	 38
Exa 6.2	Example 2	 38
Exa 6.3	Example 3	 39
Exa 6.4	Example 4	 39
Exa 6.5	Example 5	 40
Exa 6.6	Example 6	 40
Exa. 6.7	Example 7	41

Exa 6.8	Example 8										41
Exa 6.9	Example 9										42
Exa 6.10	Example 10										42
Exa 6.11	Example 11										43
Exa 6.12	Example 12										43
Exa 6.13	Example 13										44
Exa 6.15	Example 15										45
Exa 6.16	Example 16										46
Exa 6.17	Example 17										46
Exa 6.18	Example 18										47
Exa 7.1	Example 1										48
Exa 7.2	Example 2										48
Exa 7.3	Example 3										49
Exa 7.4	Example 4										49
Exa 7.5	Example 5										49
Exa 7.6	Example 6										50
Exa 7.7	Example 7										51
Exa 7.8	Example 8										51
Exa 7.10	Example 10										52
Exa 7.11	Example 11										52
Exa 7.12	Example 12										53
Exa 7.13	Example 13										54
Exa 7.15	Example 15										55
Exa 8.2	Example 2										56
Exa 8.3	Example 3										56
Exa 8.4	Example 4										57
Exa 8.6	Example 6										58
Exa 8.7	Example 7										58
Exa 9.1	Example 1										59
Exa 9.2	Example 2										59
Exa 9.3	Example 3										60
Exa 9.4	Example 4										61
Exa 9.6											61
Exa 9.7	Example 7										62
Exa 9.8	-										62
Exa 9.9	Example 9										63
Exa 9.10	Example 10										63
Exa 9 11	Example 11										63

Exa 9.12	Example 12.											64
Exa 9.13	Example 13.											64
Exa 9.14	Example 14.											64
Exa 9.15	Example 15.											65
Exa 9.16	Example 16.											65
Exa 9.17	Example 17.											66
Exa 9.18	Example 18.											67
Exa 9.19	Example 19.											67
Exa 9.20	Example 20.											67
Exa 9.21	Example 21.											68
Exa 10.1	Example 1 .											69
Exa 10.2	Example 2 .											69
Exa 10.3	Example 3 .											70
Exa 10.4	Example 4											71
Exa 10.5	Example 5 .											72
Exa 10.6	Example 6											72
Exa 10.7	Example 7											73
Exa 10.8	Example 8 .											73
Exa 10.9	Example 9 .											74
Exa 10.10	Example 10.											74
Exa 10.12	Example 12.											75
Exa 10.13	Example 13.											76
Exa 10.14	Example 14.											76
Exa 10.15	Example 15.											77
Exa 10.16	Example 16.											77
Exa 10.17	Example 17.											77
Exa 10.18	Example 18.											78
Exa 10.19	Example 19.											78
Exa 10.20	Example 20.											78
Exa 10.21	Example 21.											79
Exa 10.22	Example 22.											79
Exa 10.23	Example 23.											80
Exa 10.24	Example 24.											80
Exa 12.2	Example 2 .											82
Exa 12.6	Example 6 .						•					82
Exa 12.9	Example 9 .											83
Exa 13.1	Example 1 .						•					84
Eva 13.9	Evample 2											25

Exa 13.3	Example 3																					85
Exa 13.4	Example 4											 										86
Exa 13.5	Example 5											 										87
Exa 13.6	Example 6											 										88
Exa 13.7	Example 7											 										90
Exa 13.8	Example 8											 										91
Exa 13.9	Example 9											 										91
Exa 13.10	Example 10											 										92
Exa 13.13	Example 13											 										93
Exa 13.14	Example 14											 										94
Exa 13.15	Example 15																					95
Exa 13.16	Example 16											 										96
Exa 13.17	Example 17											 										96
Exa 13.19	Example 19											 										97
Exa 13.20	Example 20											 										98
Exa 13.21	Example 21																					99
Exa 13.22	Example 22											 										102
Exa 13.23	Example 23																					102
Exa 13.24	Example 24											 										103
Exa 14.1	Example 1											 										105
Exa 14.2	Example 2																					105
Exa 14.3	Example 3											 										106
Exa 14.4	Example 4											 										106
Exa 14.6	Example 6											 										107
Exa 14.7	Example 7											 										108
Exa 14.8	Example 8																					108
Exa 14.9	Example 9											 										108
Exa 14.10	Example 10																					109
Exa 14.11	Example 11																					110
Exa 14.12	Example 12																					110
Exa 15.1																						112
Exa 15.2	Example 2											 										112
Exa 15.3	Example 3											 										113
Exa 15.4	Example 4											 										114
Exa 15.5	Example 5											 										114
Exa 15.6	Example 6																					114
Exa 15.7	Example 7											 										115
Exa 15.8	Example 8	•	•	•	-	•	•	•	-	-		•	•	-	•	•	-	•	•	•	-	115

Exa 15.9	Example 9												116
Exa 15.10	Example 10												117
Exa 15.11	Example 11												117
Exa 15.12	Example 12												118
Exa 15.13	Example 13												119
Exa 15.14	Example 14												119
Exa 15.15	Example 15												120
Exa 15.16	Example 16												121
Exa 15.17	Example 17												122
Exa 15.18	Example 18												123
Exa 15.19	Example 19												124
Exa 15.20	Example 20												125
Exa 15.21	Example 21												125
Exa 15.22	Example 22												126
Exa 15.23	Example 23												126
Exa 15.24	Example 24												127
Exa 15.25	Example 25												127
Exa 15.26	Example 26												128
Exa 15.27	Example 27												128
Exa 15.28	Example 28												128
Exa 15.29	Example 29												129
Exa 15.30	Example 30												130
Exa 16.1													131
Exa 16.2	Example 2												132
Exa 16.3	Example 3												133
Exa 16.4	Example 4												133
Exa 16.5	Example 5												134
Exa 16.6	Example 6												135
Exa 16.7	-												136
Exa 16.8	-												137
Exa 16.9	Example 9												138
Exa 16.10	Example 10												138
Exa 16.11	Example 11												139
Exa 16.13	Example 13												139
Exa 17.1	-												141
Exa 17.2													141
Exa 17.3	-												142
Exa 17 4	Example 4												142

Exa 17.5	Example 5											 							143
Exa 17.6	Example 6											 							144
Exa 17.7	Example 7											 							144
Exa 18.1	Example 1											 							146
Exa 18.2	Example 2											 							148
Exa 18.3	Example 3											 							149
Exa 18.4	Example 4											 							150
Exa 18.5	Example 5											 							151
Exa 18.6	Example 6											 							152
Exa 18.7	Example 7											 							153
Exa 18.8	Example 8											 							154
Exa 18.9	Example 9											 							155
Exa 18.10	Example 10											 							156
Exa 18.11	Example 11											 							157
Exa 18.12	Example 12											 							158
Exa 18.13	Example 13																		159
Exa 19.1	Example 1											 							161
Exa 19.2	Example 2											 							161
Exa 19.3	Example 3											 							162
Exa 19.4	Example 4											 							162
Exa 19.5	Example 5											 							162
Exa 19.6	Example 6											 							163
Exa 19.7	Example 7											 							163
Exa 19.8	Example 8											 							164
Exa 19.10	Example 10																		164
Exa 19.11																			165
Exa 20.1	Example 1																		166
Exa 20.2	-																		166
Exa 20.4	-																		167
Exa 20.5	-											 							168
Exa 20.6	Example 6																		168
Exa 20.7	-																		169
Exa 20.8	_																		169
Exa 20.9	-																		170
Exa 20.11	Example 11																		170
Exa 20.13	Example 13																		171
Exa 20.14	Example 14																		172
	Example 15	•	-	•	•	•	-	-	•		-	 •	•		•		•	•	172

Exa 20.16	Example 16															173
Exa 20.17	Example 17															173
Exa 20.18	Example 18															174
Exa 21.1	Example 1															176
Exa 21.2	Example 2															176
Exa 21.3	Example 3															177
Exa 21.4	Example 4															177
Exa 21.5	Example 5															177
Exa 21.6	Example 6															178
Exa 21.7	Example 7															178
Exa 21.9	Example 9															179
Exa 21.10	Example 10															179
Exa 21.11	Example 11															180
Exa 21.12	Example 12															180
Exa 21.13	Example 13															181
Exa 21.14	Example 14															182
Exa 21.15	Example 15															183
Exa 21.16	Example 16															183
Exa 21.17	Example 17															183
Exa 21.18	Example 18															184
Exa 21.19	Example 19															184
Exa 21.20	Example 20															186
Exa 21.21	Example 21															186
Exa 21.22	Example 22															186
Exa 21.23	Example 23															187
Exa 21.24	Example 24															187
Exa 21.25	Example 25															188
Exa 21.26	Example 26															188
Exa 21.27	Example 27															189
Exa 21.28	Example 28															190
Exa 21.29	Example 29															190
Exa 22.1	Example 1															192
Exa 22.2	Example 2															192
Exa 22.3	Example 3															193
Exa 22.4	Example 4															193
Exa 22.6	Example 6															194
Exa 22.7	Example 7															194
Exa. 22.8	Example 8	•	-	•	•	-	·		•	•						194

Exa 22.9	Example 9												195
Exa 22.10	Example 10												196
Exa 22.11	Example 11												196
Exa 22.12	Example 12												197
Exa 22.13	Example 13												197
Exa 22.14	Example 14												198
Exa 22.15	Example 15												198
Exa 22.16	Example 16												198
Exa 22.17	Example 17												199
Exa 22.18	Example 18												200
Exa 22.19	Example 19												200
Exa 22.20	Example 20												200
Exa 22.21	Example 21												201
Exa 22.23	Example 23												201
Exa 22.24	Example 24												202
Exa 22.25	Example 25												202
Exa 22.26	Example 26												203
Exa 22.27	Example 27												203
Exa 22.28	Example 28												204
Exa 22.29	Example 29												204
Exa 22.30	Example 30												205
Exa 23.1	Example 1												206
Exa 23.2	Example 2												206
Exa 23.3	Example 3												207
Exa 23.4	Example 4												207
Exa 23.5	Example 5												207
Exa 23.6	Example 6												208
Exa 23.7	Example 7												208
Exa 23.8	Example 8												209
Exa 23.9	Example 9												210
Exa 23.10	Example 10												210
Exa 23.11	Example 11												212
Exa 23.12	Example 12												213
Exa 23.13	Example 13												213

List of Figures

13.1	Example 22		•		•		•	•	•		•				•	•		101
18.1	Example 1.																	147
18.2	Example 2 .																	148
18.3	Example 8.																	154
18.4	Example 11																	157

Chapter 1

Units associated with basic electrical quantities

Scilab code Exa 1.1 Example 1

Scilab code Exa 1.2 Example 2

```
6 printf("Force = %f N \n\n",F); //
displaying the result with unit
```

Scilab code Exa 1.3 Example 3

```
//Chapter 1, Problem 3
clc;
M=0.2; //mass in Kg
g=9.81 // acceleration due to gravity
F=M*g; //calculating the force
//Force acting downwards = weight
printf("Force acting downwards = %f N",F);
```

Scilab code Exa 1.4 Example 4

Scilab code Exa 1.5 Example 5

```
1 //Chapter 1, Problem 5
2 clc;
3 M=1000; //mass in kg
```

Scilab code Exa 1.6 Example 6

```
1 //Chapter 1, Problem 6
2 clc;
3 R1 = 10;
                                //Resistance of R1 in ohms
4 R2 = 5;
                                //Resistance of R2 in
      kilohms
5 R3=100*10^-3;
                                //Resistance of R3 in ohms
6 \text{ G1} = 1/R1;
                                //calculating conductance
7 G2=1/R2;
8 \text{ G3} = 1/\text{R3};
9 printf("Conductance of a conductor of resistance 10
      ohms = \%f S \n\n\n",G1);
10 printf("Conductance of a conductor of resistance 5 k
       . \text{ ohms} = \% f \text{ mS } \backslash n \backslash n \backslash n", G2);
11 printf ("Conductance of a conductor of resistance 100
       miliohms = \%f S \n\n",G3);
```

Scilab code Exa 1.7 Example 7

```
1 // Chapter 1, Problem 7
2 clc;
```

Scilab code Exa 1.8 Example 8

```
1 //Chapter 1, Problem 8
2 clc;
3 E=1.8*10^6;
                                //energy consumes by
     electric heater
4 T=30*60;
                                //time in seconds
5 V = 250;
                            //supply voltage
6 \text{ P=E/T};
                                //calculating power
     rating of the heater
7 printf("Power rating of heater = \%f \ kW \ n\n\n",P
     /1000);
8 I=P/V;
                                    //calculating
     current taken from the supply
9 printf("Current taken from supply = \%f A \n\n\,I);
```

Chapter 2

An introduction to electric circuits

Scilab code Exa 2.1 Example 1

Scilab code Exa 2.2 Example 2

```
// Calculating
5 Q=I*T;
     charge
6 printf("Electricity transfered = %f C",Q);
     Displaying the result in coulombs
  Scilab code Exa 2.3 Example 3
1 // Chapter 2, Problem 3
2 clc;
3 V = 20;
                        //Potential difference
                        //Current in ampere
4 I=0.8;
5 R=V/I;
                        //Calculating resistance using
     Ohm's law
6 printf("Resistance = %d ohms", R);
  Scilab code Exa 2.4 Example 4
1 //Chapter 2, Problem 4
2 clc;
3 R=2*10^3;
                                //Resistance in ohms
4 I=10*10^-3;
                                //Current in ampere
5 V=R*I;
                                     // Calculating
     voltage
6 printf("Potential difference = %d V", V);
  Scilab code Exa 2.5 Example 5
```

//voltage

1 //Chapter 2, Problem 5

2 clc;
3 V=12;

Scilab code Exa 2.6 Example 6

```
1 //Chapter 2, Problem 6
2 clc;
3 V1 = 100;
                           //Battery voltage
4 I1=5*10^-3;
                                //Current of 5mA;
5 V2 = 25;
                                //Voltage is now reduced
      to 25V
6 R=V1/I1;
                                //Calculating resistance
      due to V1 using Ohms law
7 I2=V2/R;
                                // Calculating current
     due to V2 using Ohms law
8 printf("Resistance of resistor = \%d k.ohms\n\n\n", R
     /1000);
9 printf ("Current when voltage is reduced to 25V = \%f
    mA", I2*1000);
```

Scilab code Exa 2.7 Example 7

```
8 printf("Resistance of coil draws 50mA current = %f
      ohms\n\n\n",R1);
9 printf("Resistance of coil draws 100uA current = %f
      ohms\n\n\n",R2);
```

Scilab code Exa 2.8 Example 8

```
1 //Chapter 2, Problem 8, Figure 2.8
2 clc;
3 V1 = 20;
                                 //Voltage of resistor A
                                 //Current of resistor A
4 I1=20*10^-3;
5 V2=16;
                                 //Voltage of resistor B
                                 //Current of resistor B
6 I2=5*10^-3;
                                 //Calculating resistance
7 R1 = V1/I1;
       of resistor A using Ohms law
8 R2=V2/I2;
                                 // Calculating resistance
       of resistor B using Ohms law
9 printf ("Resistance of resistor A = \%d k.ohms \ n \ n'",
     R1/1000);
10 printf ("Resistance of resistor B = \%f \text{ k.ohms} \ n \ n',
     R2/1000);
```

Scilab code Exa 2.9 Example 9

Scilab code Exa 2.10 Example 10

Scilab code Exa 2.11 Example 11

Scilab code Exa 2.12 Example 12

Scilab code Exa 2.13 Example 13

```
// Chapter 2, Problem 13
clc;
V=240; //voltage
R=960; //resistance
I=V/R; //calculating current using Ohms
law
P=V*I; //calculating power
printf("Power rating P = %d W",P);
```

Scilab code Exa 2.14 Example 14

```
1 //Chapter 2, Problem 14
2 clc;
3 V = 12;
                        //voltage
4 R = 40;
                        //resistance
                        //time period
5 t=2*60;
                        //calculating current using Ohms
6 I = V/R;
      law
7 P = V * I;
                        //calculating power
8 E=P*t;
                        //calculating energy
9 printf("Current flowing in load = \%f A\n\n\n",I);
10 printf("Power consumed = \%f W\n\n\n",P);
11 printf("Energy dissipated = %f J",E);
```

Scilab code Exa 2.15 Example 15

Scilab code Exa 2.16 Example 16

Scilab code Exa 2.18 Example 18

```
1 //Chapter 2, Problem 18
2 clc;
3 I=10; //Curent in ampere
```

```
//Resistance in ohm
4 R = 20;
5 T=6;
                        //Time in hours
6 unit=13;
                            //Unit of cost of
     electricity
7 P=I^2*R;
                            // Calculating power
      dissipated by electric fire
8 E=P*T;
                            //Calculating Energy used
                                // Calculating cost of
9 cost=E*unit;
     energy
10 cost=cost/100000;
11
12 printf("Power dissipated by element = \%f kW\n\n\n",P
     /1000);
13 printf ("Energy used in 6 hours = \%f kWh\n\n\n", E
     /1000);
                                %fp",cost);
14 printf("Cost of energy =
```

Scilab code Exa 2.19 Example 19

```
1 //Chapter 2, Problem 19
2 clc;
3 P1 = 3000;
                              //power in watts
                              //power in watts
4 P2=150;
                             //time in hours
5 t1=20;
                             //time in hours
6 t2=30;
                             //no of fires
7 n1=2;
                             //no of light
8 n2=6;
9 m = 14;
                             //cost per unit
10 E1=P1*t1;
11 w1=n1*E1;
12 E2=P2*t2;
13 \text{ w2=n2*E2};
14 T = w1 + w2;
15 c=m*(T/1000);
16 printf("\nIf the cost of electricity is 14 p per
```

```
unit\n")

17 printf("\n the weekly cost of electricity to the business = \%f p",c);

18 printf("\n\t\t\t\t\t\t=\%.2f euro",c/100);
```

Scilab code Exa 2.20 Example 20

```
1 //Chapter 2, Problem 20,
2 clc;
3 V = 240;
                                          //Supply voltage
4 P1 = 1000;
                                            //Power rating
      of Electric toaster
5 P2 = 3000;
                                            //Power rating
      of Electric fire
6 // Calculating fuse current for electric toaster
7 I1=P1/V;
8 // Calculating fuse current for electric fire
9 I2=P2/V;
10 I1=I1+1;
11 I2=I2+1;
12 printf("(i) Current in fuse for Electric toaster =
      %d A \setminus n \setminus n", I1);
13 printf("(ii) Current in fuse for Electric fire = %d
      A \setminus n \setminus n", I2);
```

Chapter 3

Resistance variation

Scilab code Exa 3.1 Example 1

```
1 //Chapter 3, Problem 1
2 clc;
3 R = 600;
                                  //Resistance of wire
4 L=5;
                                  //Length of wire in metre
                                  //Length of the same wire in
5 L1=8;
        metre
6 R2 = 420;
                                  //Resistance of the same
       wire
                                  // Calculating
7 \text{ K=R/L};
       proportionality constant
                                  // Calculating resistance of
       an 8m length of same wire
                              //Calculating length of same
9 L2=R2/K;
       wire when resistance is 420ohm
10 printf ("The resistance of an 8m length wire= \%f ohm\
      n \hspace{-.05cm} \setminus \hspace{-.05cm} n \hspace{-.05cm} \setminus \hspace{-.05cm} n " ,R1);
11 printf ("Length of the same wire when the resistance
       is 420 \text{ ohm} = \% \text{fm}", L2);
```

Scilab code Exa 3.2 Example 2

```
1 //Chapter 3, Problem 2
2 clc;
3 A = 2;
                             //Cross-sectional area in
      milimetre square
4 R = 300;
                             //Resistance of wire
5 \quad A1 = 5;
                            //Cross-sectional area of
     same wire
6 R2 = 750;
                             //Resistance of same wire
7 K = R * A;
                             // Calculating
      proportionality constant
  R1=K/A1;
                           // Calculating resistance with
       cross-sectional area 5mm2
  A2=K/R2;
                            // Calculating cross-sectional
       area with resistance 750ohm
10 printf("(a) Resistance of wire = \%f ohm\n\n\n",R1);
11 printf("(b) Cross-sectional area of a wire = \%f mm^2
     ",A2);
```

Scilab code Exa 3.3 Example 3

```
1 //Chapter 3, Problem 3
2 clc;
3 R=0.16;
                            //resistance of wire
                            //length of wire
4 1=8;
                            //area of cross-section
5 a=3;
6 //If the cross-sectional area is reduced to 1/3 of
      its original area then the length must be tripled
      to 3 8,
7 11=3*1;
8 a1=a/3;
9 k=R*a/1;
                                //calculating
      coefficient of proportionality
10 R1=k*(11/a1);
                                //calculating new
```

```
resistance with reduced area of cross-section 11 printf("Resistance of wire = %f ohm", R1);
```

Scilab code Exa 3.4 Example 4

Scilab code Exa 3.5 Example 5

Scilab code Exa 3.6 Example 6

```
1 // Chapter 3, Problem 6
2 clc;
```

Scilab code Exa 3.7 Example 7

```
1 //Chapter 3, Problem 7
2 clc;
3 L=1200;
                                 //Length of copper cable
      in meter
4 D=12*10^-3;
                                 //Diameter of cable in
     meter
5 p=1.7*10^-8;
                                 //Resistivity of cable
     in ohm. meter
6 \text{ r=D/2};
                                 // Calculating radius
7 A = \%pi * r^2;
                                 // Caculating area
                                 //Calculating resistance
8 R = (p*L)/A;
9 printf("Resistance of wire = %f ohm",R);
```

Scilab code Exa 3.8 Example 8

Scilab code Exa 3.9 Example 9

Scilab code Exa 3.10 Example 10

Scilab code Exa 3.11 Example 11

Scilab code Exa 3.12 Example 12

Scilab code Exa 3.13 Example 13

Chapter 4

Batteries and alternative sources of energy

Scilab code Exa 4.1 Example 1

```
1 //Chapter 4, Problem 1
2 clc;
3 //There is eight cell with same emf and internal
      resistance
4 r=0.2;
5 \text{ emf} = 2.2;
6 //When connected in series
7 Temf = 8 * emf;
8 \text{ Tr} = 8 * r;
9 //When connected in parallel
10 Tr1 = (1/8) *r;
11 printf("Total emf in series = \%f V\n\n\n", Temf);
12 printf ("Total internal resistance in series = %f ohm
      \n\n\n, Tr);
13 printf("Total emf in parallel = \%f V\n\n\n", emf);
14 printf("Total internal resistance in parallel = %f
      ohm \n \n \n , Tr1);
```

Scilab code Exa 4.2 Example 2

```
1 // Chapter 4, Problem 2
2 clc;
3 r=0.02;
                                          //Internal
      resistance in ohm
4 \text{ emf} = 2.0;
                                            //e.m. f
                                            // Current in
5 I1=5;
      ampere
6 I2=50;
                                            // Calculating
7 V1 = emf - (I1 * r);
      Voltage
8 V2 = emf - (I2 * r);
9 printf("Terminal p.d when 5A current = \%f V\n\n\n",
      V1);
10 printf ("Terminal p.d when 50A current = \%f V\n\n\n",
      V2);
```

Scilab code Exa 4.3 Example 3

Scilab code Exa 4.4 Example 4

```
1 //Chapter 4, Problem 4
2 clc;
3 \text{ emf} = 1.5;
                                   //Internal resistance of
4 r=0.2;
       1 \operatorname{cell}
5 R=58;
                                    //Resistance of load in
      ohm
                                    //Total battery e.m. f
6 E=10*emf;
7 \text{ rt} = 10 * r;
                                    //Total internal
      resistance in ohm
                                   //Total resistance in
8 Rt = R + rt;
      ohm
                                   //Current flowing in the
9 I=E/Rt;
       circuit
10 V = E - (I * rt);
                                   //P.d. at battery
      terminals
11 printf("Current flowing in the circuit = \%f A\n\n\"
12 printf("P.d. at battery terminals = %f V", V);
```

Chapter 5

Series and parallel networks

Scilab code Exa 5.1 Example 1

```
1 //Chapter 5, Problem 1, Figure 5.2
2 clc;
3 V1=5;
     //assigning the value to parameters
4 V2=2;
5 V3=6;
6 I = 4;
7 V = V1 + V2 + V3;
                                                   //
      Calculating the Battery voltage
8 printf("Battery Voltage = \%f V\n\n",V);
                    // Displaying the value
9 R=V/I;
                                                        //
      Calculating the total resistance
10 printf("Total circuit resistance = \%f ohm\n\n",R);
11 R1=V1/I;
                                                        //
      Calculating the invidual resistance
12 R2=V2/I;
```

```
13  R3=V3/I;
14  printf("Resistance R1 = %f ohm\n\n",R1);
15  printf("Resistance R2 = %f ohm\n\n",R2);
16  printf("Resistance R3 = %f ohm\n\n",R3);
```

Scilab code Exa 5.2 Example 2

```
1 // Problem 2, Figure 5.3
2 clc;
3 R = 100;
                                          //Assigning the
      values to variable
4 V = 25;
5 V1 = 10;
6 V2=4;
7 V3 = V - V1 - V2;
                                         // Calculating the
       voltage across Resistor R3
8 printf ("Potential difference across R3 = \%f V\n\n\n"
      ,V3);
                                         // Calculating the
9 I=V/R;
       current
10 printf ("Current flowing through each resistor = %f A
     \n\n\n, I);
                                         // Calculating the
11 R2=V2/I;
       resistance of R2
12 printf("Resistance R2 = \%f ohm\n\n\n",R2);
```

Scilab code Exa 5.3 Example 3

```
1 // Chapter 5, Problem 3, Figure 5.4
2 clc;
3 R1=4;
4 R2=9;
5 R3=11;
```

```
6 V = 12;
7 R=R1+R2+R3;
                                       // Calculating total
       resistance R
8 I=V/R;
9 printf ("Current flowing through circuit = \%f A\n\n\n
      ",I);
10 V1 = I * R2;
11 printf ("Potential difference across R2 = \%f V n n"
      , V1);
12 P=(I^2)*R3;
                                                        //
      Calculating power dissipated in the 11 ohm
13 printf ("Power dissipated in R3 = \%f W\n\n\n",P);
   Scilab code Exa 5.4 Example 4
1 //Chapter 5, Problem 4, Figure 5.6
2 clc;
3 V = (6/(6+4))*50;
      Calculating the voltage by voltage divider rule
4 printf("Voltage = \%f V\n\n\n",V);
   Scilab code Exa 5.5 Example 5
1 //Chapter 5, Problem 5, Figure 5.8
2 clc;
3 V = 24;
4 I = 3;
5 R1 = 2;
6 T = 50;
7 R=V/I;
      //Calculating total resistance
```

```
8 R2=R-R1;
      //Calculating the value of unknown resistance
9 printf("Value of unknown resistance = \%f ohm\n\n\n",
     R2);
10 V1=I*R1;
      // Calculating the voltage across 2 ohm resistor
11 printf ("Potential difference across 2 ohm resistor =
       %f V n n n", V1);
12 E = (V * I) * T;
13 printf("Energy used = %f Wh", E);
   Scilab code Exa 5.6 Example 6
1 //Chapter 5, Problem 6, Figure 5.13
2 clc;
3 // Potential difference across R1 is the same as the
      supply voltage V
4 R1=5;
5 R3 = 20;
6 I=11;
7 I1=8;
8 //Hence supply voltage is
9 V = R1 * I1;
10 I3=V/R3;
11 //Reading on ammeter,
12 printf ("Reading on ammeter = \%f A\n\n\n", I3);
13 I2=I-I1-I3;
14 R2=V/I2;
15 // Current flowing through R2
16 printf ("Resistance R2 = \%f ohm\n\n\n", R2);
```

Scilab code Exa 5.7 Example 7

```
//Chapter 5, Problem 7, Figure 5.14
clc;
R1=3;
R2=6;
V=12;
//The total circuit resistance R is given by,
R=(R2*R1)/(R1+R2);
printf("Total circuit resistance = %f ohm\n\n\n",R);
//Current in the 3 ohm resistor is given by,
I1=V/R1;
printf("Current in the 3 ohm resistor = %f A\n\n\n",
I1);
```

Scilab code Exa 5.8 Example 8

```
1 //Chapter 5, Problem 8, Figure 5.15
2 clc;
3 //Resistors R1, R2, R3 in ohm
4 R1=10;
5 R2=20;
6 R3=60;
7 //Current through R2 in ampere
8 I2=3;
9 //Calculating voltage and current
10 V=I2*R2;
11 I1=V/R1;
12 I3=V/R3;
13 I=I1+I2+I3;
14 printf("(a) Supply voltage = %f V\n\n\n",V);
15 printf("(b) Current I = %f A",I)
```

Scilab code Exa 5.10 Example 10

```
1 //Chapter 5, Problem 10, Figure 5.20
2 clc;
3 R1 = 1;
4 R2=2.2;
5 R3 = 3;
6 R4 = 6;
7 R5 = 18;
8 R6 = 4;
9 //R3, R4 and R5 are connected in parallel, their
      equivalent resistance R7 is
10 Z=(1/R3)+(1/R4)+(1/R5);
11 R7=1/Z;
12 //circuit is now equivalent to four resistors in
      series
13 R = R1 + R2 + R7 + R6;
14 printf("Equivalent circuit resistance = %f ohm", R);
```

Scilab code Exa 5.11 Example 11

```
1 //Chapter 5, Problem 11, Figure 5.21
2 clc;
3 R1=10;
4 R2=20;
5 R3=30;
6 V=240;
7 //Resistor connected in series
8 Rs=R1+R2+R3;
9 Is=V/Rs;
10 //Resistor connected in parallel
11 Z=(1/R1)+(1/R2)+(1/R3);
12 Rp=1/Z;
13 Ip=V/Rp;
14 printf("Supply current when resistor in series = %f
```

```
A \ n \ n', Is);
15 printf("Supply current when resistor in parallel = %f A \ n \ n', Ip);
```

Scilab code Exa 5.12 Example 12

```
1 //Chapter 5, Problem 12, Figure 5.24
2 clc;
3 R1 = 2.5;
4 R2 = 6;
5 R3 = 2;
6 R4 = 4;
7 V = 200;
8 // Calculating equivalent resistance Rx of R2 and R3
      in parallel
9 Rx = (R2*R3)/(R2+R3);
10 // Calculating equivalent resistance RT of R1, Rx and
       R4 in series
11 Rt=R1+R4+Rx;
12 //Supply current
13 I=V/Rt;
14 // Calculating current through each resistor
15 I2=(R3/(R2+R3))*I;
16 I3 = (R2/(R2+R3))*I;
17 // Calculating p.d across each resistor
18 V1 = I * R1;
19 Vx = I * Rx;
20 V4 = I * R4;
21 disp("(a)")
22 printf("Supply current = \%f A\n\n\n",I);
23 disp("(b)")
24 printf ("Current through R1 and R4 = \%f A\n\n",I);
25 printf ("Current through R2 = \%f A n n n", I2);
26 printf ("Current through R3 = \%f A\n\n\n", I3);
27 disp("(c)")
```

```
28 printf("p.d. across R1 = %f V\n\n\n",V1);
29 printf("p.d. across R2 and R3 = %f V\n\n\n",Vx);
30 printf("p.d. across R4 = %f V\n\n\n",V4);
```

Scilab code Exa 5.13 Example 13

```
1 //Chapter 5, Problem 13, Figure 5.26
2 clc;
3 R1 = 15;
                                //in ohms
4 R2 = 10;
                                //in ohms
                                //in ohms
5 R3=38;
6 V = 250;
                                //in volts
7 Pt = 2500;
                                //in watts
8 I = Pt/V;
                                //current in amperes
9 Rt=V/I;
10 r = (R1*R2)/(R1+R2);
                               //equivalent resistance
     of R1 and R2
11 V1=I*r;
12 V2 = V - V1;
13 i = V2/R3;
14 \text{ rx=V2/i};
15 I1=(R2/(R1+R2))*I;
16 I2 = (R1/(R1+R2))*I;
17 printf("\n(a) Value of resistor Rx = \%d \text{ ohm} \setminus n", rx)
18 printf("\n(b) Current flowing in each of the four
      A", I1, I2, i);
```

Scilab code Exa 5.14 Example 14

```
1 // Chapter 5, Problem 14, Figure 5.27
2 clc;
3 // Resistance R1 R2 R3 R4 R5
```

```
4 R1 = 2;
5 R2 = 9;
6 R3=1.4;
7 R4 = 2;
8 R5 = 8;
9 V = 17;
10 R45 = (R4*R5)/(R4+R5);
11 R34=R3+R45;
12 R23 = (R2*R34)/(R2+R34);
13 R=R1+R23;
14 //the circuit is gradually reduced in stages as
      shown in Fig. 5.28(a) (d).
15 I=V/R;
16 I1=(R2/(R2+R34))*I;
17 Ix=(R1/(R1+R5))*I1;
18 printf("From Fig. 5.27,\\\n\\\n\");
19 printf ("Current Ix = %f A", Ix);
```

Scilab code Exa 5.15 Example 15

```
1 //Chapter 5, Problem 15
2 clc;
3 r1=1000
                                              //in ohms
4 r2 = 4000
                                              //in ohms
                                              //in ohms
5 r3 = 5000
6 \text{ r4} = 1500
                                              //in ohms
7 V = 24
                                              //in volts
8 \text{ rt} = (((r1+r2)*r3)/(r1+r2+r3))+r4
                                              //equivalent
      resistance of r1, r2, r3
9 \text{ it=V/rt};
                                              //total circuit
      current
10 i1=(r3/(r1+r2+r3))*it;
                                              //current across
       top branch
11 v=i1*r2;
                                              //volt drop
      across r2
```

Scilab code Exa 5.16 Example 16

```
// Chapter 5, Problem 16
clc;
R=150; // Combined resistance
R1=3*R; // Calculating individual
resistance
printf("The resistance of one lamp = %f ohm", R1);
```

Chapter 6

Capacitors and capacitance

Scilab code Exa 6.1 Example 1

```
1 //Chapter 6, Problem 1
2 clc;
3 C=4*10^-6;
                                   //Capacitance in farad
4 Q=5*10^-3;
                                   //Charge in coulomb
5 C1=50*10^-12;
                                   //Capacitance in farad
                                   //Voltage
6 V1 = 2000;
7 V = Q/C;
8 \ Q1 = C * V;
9 disp("(a)")
10 printf("Potential difference V = \%f V \setminus n \setminus n", V);
11 disp("(b)")
12 printf("Charge Q = \%f C",Q1);
```

Scilab code Exa 6.2 Example 2

```
1 //Chapter 6, Problem 2
2 clc;
3 I=4; //Current in ampere
```

Scilab code Exa 6.3 Example 3

Scilab code Exa 6.4 Example 4

```
1 //Chapter 6, Problem 4
2 clc;
3 1=20*10^-2;
4 b=40*10^-2;
5 Q=0.2*10^-6;
                                 //Charge
6 V=0.25*10^3;
                                 //Voltage
7 d=5*10^-3;
                                 //Distance between
     plates
8 \quad A=1*b;
                                 // Calculating area of
     restangular plated
9 D=Q/A;
                                 // Calculating electric
     flux density
```

Scilab code Exa 6.5 Example 5

Scilab code Exa 6.6 Example 6

Scilab code Exa 6.7 Example 7

```
1 //Chapter 6, Problem 7
2 clc;
3 Q=1.2*10^-6;
                                   //Charge
4 A = 4 * 10^{-4};
                                   //Area of plates
5 d=0.1*10^-3;
                                   //Distance between
      plates
6 e0=8.85*10^{-12};
7 \text{ er} = 100;
8 C = (e0 * er * A) / d;
                                   // Calculating
      capacitance
9 V=Q/C;
                                      // Calculating
      potential difference
10 disp("(a)");
11 printf ("Capacitance = \%f pF\n\n\n", C*10^12);
12 disp("(b)");
13 printf("p.d. between the plates = \%f V", V);
```

Scilab code Exa 6.8 Example 8

```
1 //Chapter 6, Problem 8 2 clc
```

Scilab code Exa 6.9 Example 9

```
1 //Chapter 6, Problem 9
2 clc;
3 n=19;
                                       //No of interleaved
      plates
4 n=n-1;
5 A = (75*10^-3)*(75*10^-3);
                                           // Calculating
      area of plates
6 \text{ er=5};
7 e0=8.85*10^-12;
8 d=0.2*10^{-3};
                                  //Distance between
     plates
9 C = (e0 * er * A * n) / d;
                                  // Calculating
      capacitance of the capacitor
10 printf("Capacitance of capacitor = %f nF", C*10^9);
```

Scilab code Exa 6.10 Example 10

Scilab code Exa 6.11 Example 11

Scilab code Exa 6.12 Example 12

```
7 V = 100;
                                           //Voltage across
       capacitor
8 C = C1 + C2 + C3 + C4;
                                      // Calculating
      equivalent capacitance in series
9 Q = C * V;
                                      //Calcuating total
      charge
                                      //Calculating charge
10 Q1=C1*V;
       on each capacitor
11 Q2=C2*V;
12 Q3=C3*V;
13 Q4=C4*V;
14 disp("(a)");
15 printf ("Equivalent capacitance C for parallel = %f
      uF \setminus n \setminus n", C*10^6);
16 disp("(b)");
17 printf("Total charge = \%f mC\n\n",Q*1000);
18 disp("(2)");
19 disp("Charge on each capacitor");
20 printf("Charge on capacitor1 = \%f mC\n",Q1*1000);
21 printf("Charge on capacitor2 = \%f mC\n",Q2*1000);
22 printf ("Charge on capacitor3 = \%f mC\n", Q3*1000);
23 printf("Charge on capacitor4 = \%f mC\n",Q4*1000);
```

Scilab code Exa 6.13 Example 13

```
8 C=1/C;
9 Q = C * V;
                                 //Calculating voltage
10 V1 = Q/C1;
      across each capacitor
11 V2=Q/C2;
12 V3=Q/C3;
13 disp("(a)");
14 printf ("Equivalent circuit capacitance = \%f uF\n\n\n
      ",C*10^6);
15 disp("(b)");
16 printf("Charge on each capacitor = \%f uF\n\n",Q
      *10^6);
17 disp("(c)");
18 printf("Voltage across 3uF capacitor = \%f V\n", V1);
19 printf ("Voltage across 6uF capacitor = \%f V\n", V2);
20 printf("Voltage across 12uF capacitor = \%f V\n", V3);
```

Scilab code Exa 6.15 Example 15

```
1 //Chapter 6, Problem 15
2 clc;
3 V=1.25*10^3;
                                      //Voltage across
      terminals
                                      //Capacitance of
4 C=0.2*10^-6;
      capacitor
                                      // Dielectric
5 E=50*10^6;
      strength
6 e0=8.85*10^-12;
7 \text{ er} = 6;
8 d=(V/E);
      Calculating distance between plates
9 A = (C*d)/(e0*er);
                                               //
      Calculating area of plates
10 disp("(a)")
11 printf ("Thickness of the mica needed = \%f mm\n\n",d
```

```
*10^3);
12 disp("(b)")
13 printf("Area of a plate = %f cm2", A*10^4);
```

Scilab code Exa 6.16 Example 16

```
1 //Chapter 6, Problem 16
2 clc;
                                     // Capacitance
3 C=3*10^-6;
4 V = 400;
                                 //Voltage across
     capacitor
5 t=10*10^-6;
                                 //Time in sec
6 W = (1/2) * C * V^2;
                                 // Calculating energy
     stored
7 P=W/t;
                                 //Calculating power
8 disp("(a)");
9 printf ("Energy stored in a 3 F capacitor = \%f J\n\
     n",W);
10 disp("(b)");
11 printf("Average power = \%f kW", P/1000);
```

Scilab code Exa 6.17 Example 17

Scilab code Exa 6.18 Example 18

Chapter 7

Magnetic circuits

Scilab code Exa 7.1 Example 1

Scilab code Exa 7.2 Example 2

Scilab code Exa 7.3 Example 3

```
1 //Chapter 7, Problem 3
2 clc;
3 \text{ H=8000};
                                           //Magnetic field
      strength
4 d=30*10^-2;
                                           //Diameter of
     coil
5 l = \%pi*d;
                                       //Length
6 N = 750;
                                       //No of turns
7 I = (H*1)/N;
                                       // Calculating
     current in the coil
8 printf("Current in the coil = %f A",I);
```

Scilab code Exa 7.4 Example 4

Scilab code Exa 7.5 Example 5

```
1 //Chapter 7, Problem 5
2 clc;
3 B=0.25;
                                     //Magnetic flux
     density
4 u0=4*\%pi*10^-7;
                                     //permeability of
     free space
                                     //Length
5 1=12*10^-3;
                                     // Calculating
6 \text{ H=B/u0};
     magnetic field strength
                                     // Calculating
7 mmf=H*1;
     magnetomotive force
8 printf ("Magnetic field strength = \%d A/m\n\n\n", H);
9 printf ("m.m. f = \%d A", mmf);
```

Scilab code Exa 7.6 Example 6

```
1 //Chapter 7, Problem 6
2 clc;
3 N = 300;
                                  //No of turns
                                  //Current in the coil
4 I = 5;
5 1=40*10^-2;
                                  //Length
6 \quad A = 4 * 10^{-4};
                                  //Area of cross-
      sectional
7 H = (N*I)/1;
                                  //Calculating magnetic
      field strength
8 u0=4*\%pi*10^-7;
                                  //permeability of free
      space
9 B=u0*H;
                                  //Flux density
10 phi=B*A;
                                  //Fux
11 disp("(a)");
12 printf ("Magnetic field strength = \%d A/m\n\n\n",H);
13 disp("(b)");
14 printf ("Flux density = \%f mT\n\n", B*1000);
15 disp("(c)");
16 printf("Flux = \%f Wb", phi*10^6);
```

Scilab code Exa 7.7 Example 7

```
1 //Chapter 7, Problem 7
2 clc;
3 d=10*10^-2;
                                                 //Diameter
4 N = 2000;
                                                 //No of
      turns
                                                 //Current
5 I = 0.25;
     in the coil
                                                 //Magnetic
6 B = 0.4;
      flux density
7 u0=4*\%pi*10^-7;
                                                 //
      permeability of free space
8 l = \%pi *d;
                                                 //
      Calculating length of coil
9 H = (N * I) / 1;
                                                 //
      Calculating magnetic field strength
                                                 //
10 ur=B/(u0*H);
      Calculating relative permeability
11 disp("(a)");
12 printf ("Magnetic field strength = \%f A/m\n\n\n",H);
13 disp("(b)");
14 printf("Relative permeability = %d", ur);
```

Scilab code Exa 7.8 Example 8

```
1 // Chapter 7, Problem 8
2 clc;
3 A=10*10^-4; // cross-sectional area
4 l=0.2; // mean circumference
```

Scilab code Exa 7.10 Example 10

```
1 //Chapter 7, Problem 10
2 clc;
3 1=150*10^{-3};
                                                // length
4 u0=4*\%pi*10^-7;
      permeability of free space
5 \text{ ur} = 4000;
                                                 //relative
      permeability
6 A=1800*10^-6;
                                                 //\operatorname{cross} –
      sectional area
7 S=1/(u0*ur*A);
                                                 //
      Calculating reluctance
8 u=u0*ur;
                                                 //
      Calculating absolute permeability
9 printf("Reluctance = \%f H^-1\n\n',S);
10 printf ("Absolute permeability = \%f H/m", u*1000);
```

Scilab code Exa 7.11 Example 11

```
1 //Chapter 7, Problem 11
2 clc;
3 r=50*10^-3; //radius
```

```
//cross-
4 A = 400 * 10^{-6};
      sectional area
5 I = 0.5;
                                            //current in the
       coil
6 u0=4*\%pi*10^-7;
                                            //permeability
      of free space
7 phi=0.1*10^-3;
                                            //flux
8 \text{ ur} = 200;
                                            //relative
      permeability
9 1=2*\%pi*r;
                                            // Calculating
10 S=1/(u0*ur*A);
      reluctance
11 N=(S*phi)/I;
                                            // Calculating no
       of turns
12 printf("Reluctance = \%f /H\n\n\n",S);
13 printf("Number of turns = %d turns", N);
```

Scilab code Exa 7.12 Example 12

```
1 //Chapter 7, Problem 12
2 clc;
3 11=6*10^-2;
                                      //length 1
4 A1=1*10^-4;
                                      //area 1
5 12=2*10^-2;
                                      //length 2
6 A2=0.5*10^-4;
                                      //area 2
                                      //no of turns
7 N = 200;
8 I = 0.4;
                                      //current in the
      coil
9 u0=4*\%pi*10^-7;
                                      //permeability of
      free space
                                      //relative
10 \text{ ur} = 750;
     permeability
11 S1=11/(u0*ur*A1);
                                      //calculating
      reluctance for 6 cm long path
12 S2=12/(u0*ur*A2);
                                      //calculating
```

Scilab code Exa 7.13 Example 13

```
1 //Chapter 7, Problem 13
2 clc;
                                           //length of iron
3 11=40*10^-2;
       path
4 12=2*10^-3;
                                           //radial air gap
5 u0=4*\%pi*10^-7;
6 phi=0.7*10^-3;
                                           //flux
7 A=5*10^-4;
                                           //\operatorname{cross} –
      sectional area
                                           //from B H
8 H1=1650;
      curve for silicon iron
9 // Calculation for the silicon iron:
10 B=phi/A;
11 mmf1=H1*11;
12 // Calculation for the air gap:
13 H2=B/u0;
14 mmf2=H2*12;
15 \text{ mmf} = \text{mmf} 1 + \text{mmf} 2;
16 disp ("From the B H curve for silicon iron on page
      74, when B=1.4T, H=1650A/m.");
17 printf ("Hence m.m. f for the iron path = \%d A\n\n\n",
      mmf1);
18 disp("The flux density will be the same in the air
      gap as in the iron,");
19 printf ("Hence m.m. f for the air gap = \%d A\n\n'n",
```

```
mmf2); 20 printf("Total m.m.f to produce a flux of 0.6mWb = %d A\n\n\n",mmf);
```

Scilab code Exa 7.15 Example 15

```
1 //Chapter 7, Problem 15, Figure 7.6
2 clc;
3 u0=4*\%pi*10^-7;
4 ur=1;
5 B=0.80;
                                   //flux density
                                   //field intensity from B
6 \text{ H} = 750;
     -H curve
7 11 = 25 * 10^{-2};
                                   //length of cast steel
      core
8 12=1*10^-3;
                                   //air gap
                                   //cross-sectional area
9 A = 2 * 10^{-4};
10 N = 5000;
                                   //no of turns
11 //for cast steel core
12 S1=(11*H)/(B*A);
13 //For the air gap:
14 S2=12/(u0*ur*A);
15 // Total reluctance
16 \text{ S=S1+S2};
17 phi=B*A;
18 I = (S*phi)/N;
19 printf ("Current in the coil to produce a flux
      density of 0.80T = \%f A", I);
```

Chapter 8

Electromagnetism

Scilab code Exa 8.2 Example 2

```
1 //Chapter 8, Problem 2
2 clc;
3 B=0.9;
                            //flux density
4 I = 20;
                            //current
5 1=30*10^-2;
                            //length of the conductor
6 // Calculating force when conductor is at right angle
7 F=B*I*1;
8 // Calculating force when conductor is inclined at 30
          to the field
9 F1=B*I*l*sin(%pi/6);
10 printf("Force when conductor is at right angle = %f
     N n n n, F);
11 printf("Force when conductor is inclined at 30
                                                       to
      the field = \%f N", F1);
```

Scilab code Exa 8.3 Example 3

```
1 //Chapter 8, Problem 3
```

```
2 clc;
3 F=1.92;
4 1 = 400 * 10^{-3};
5 B=1.2;
6 I=F/(B*1);
7 printf ("Current = \%f A\n\n\n",I);
8 printf("If the current flows downwards, the
      direction of its");
9 printf(" magnetic field due to the current alone
      will be clockwise when viewed from above.\n");
10 printf("The lines of flux will reinforce (i.e.
     strengthen) the main magnetic field at");
11 printf("the back of the conductor and will be in
     opposition in the front (i.e. weaken the field).\
     n");
12 disp("Hence the force on the conductor will be from
     back to front (i.e. toward the viewer).");
```

Scilab code Exa 8.4 Example 4

```
1 //Chapter 8, Problem 4
2 clc;
3 1=350*10^{-3};
                                            //length of
      conductor
4 I = 10;
                                            //current
5 r=0.06;
                                            //radius of pole
6 phi=0.5*10^-3;
                                            //flux
7 A = \%pi * r^2;
                                            //area of pole
8 B=phi/A;
                                            //calculating
      flux density
9 F = B * I * 1;
                                            //calculating
      force
10 printf ("Force = \%f N", F);
```

Scilab code Exa 8.6 Example 6

```
1 //Chapter 8, Problem 6
2 clc;
3 B=0.8;
4 1=30*10^-3;
5 I = 50 * 10^{-3};
6 F = B * I * 1;
7 F1 = 300 * F;
8 printf("For a single-turn coil, force on each coil
      side \n");
9 printf ("Force = \%f N\n\n\n",F);
10 printf ("When there are 300 turns on the coil there
      are effectively 300 parallel conductors each
      carrying a current of 50 mA.\n");
11 printf("Thus the total force produced by the current
       is 300 times that for a single-turn coil. Hence
      force on coil side,\n");
12 printf("Force = \%f N",F1);
```

Scilab code Exa 8.7 Example 7

Chapter 9

Electromagnetic induction

Scilab code Exa 9.1 Example 1

```
1 //Chapter 9, Problem 1
2 clc;
3 B=1.25;
                                //flux density
4 v = 4;
                                //conductor velocity
                                //conductor length
5 1=300*10^{-3};
6 R = 20;
                                //resistance
7 E=B*1*v;
                                //calculating emf
8 I=E/R;
                                //calculating current
     from ohms law
9 disp("(a)");
10 disp("If the ends of the conductor are open
      circuited, no current will flow.");
11 disp("(b)");
12 disp("If its ends are connected to a load of 20ohm
      resistance, then");
13 printf("Current = \%f A",I);
```

Scilab code Exa 9.2 Example 2

Scilab code Exa 9.3 Example 3

```
1 //Chapter 9, Problem 3
2 clc;
                                  //velocity of conductor
3 v = 15;
                                  //length of conductor
4 1 = 0.02;
5 \quad A = 2 * 2 * 10^{-4};
                                  //area of conductor
6 phi=5*10^-6;
                                  //flux
7 Q1 = \%pi/2;
                                  //converting 90 degree
      into radian
8 \ Q2 = \% pi/3;
                                  //converting 60 degree
      into radian
                                  //converting 30 degree
9 Q3 = \%pi/6;
      into radian
10 B=phi/A;
                                  //calculating flux
      density
11 E90=B*1*v*\sin(Q1);
                                  //calculating emf
12 E60=B*1*v*sin(Q2);
13 E30=B*1*v*sin(Q3);
14 disp("(a)");
15 printf("E.M.F at 90
                            =\%f V\n\n",E90*1000);
16 disp("(b)");
17 printf("E.M.F at 60
                            =\% f V n n", E60*1000);
18 disp("(c)");
```

```
19 printf("E.M.F at 30 =\%f V \setminus n \setminus n", E30*1000);
```

Scilab code Exa 9.4 Example 4

Scilab code Exa 9.6 Example 6

```
1 //Chapter 9, Problem 6
2 clc;
3 B=1.4;
                                          //flux density
4 1=12*10^-2;
                                          //length
5 N = 80;
                                          //no of turns
6 n=1200/60;
                                          //rotation in
      sec
7 E1 = 90;
                                          //emf
8 r = (8*10^-2)/2;
9 Q90 = \%pi/2;
10 //calculating velocity
11 v=2*\%pi*n*r;
12 //calculating maximum emf
13 E=2*N*B*v*l*sin(Q90);
14 //calculating velocity with emf 90V
15 v=E1/(2*N*B*1*sin(Q90));
16 //calculating speed of coil
```

```
17 w=v/r;
18 w1=(w*60)/(2*%pi);
19 disp("(a)");
20 printf("Maximum emf induced = %f V",E);
21 disp("(b)");
22 printf("Speed of coil in rev/min = %d rev/min",w1);
```

Scilab code Exa 9.7 Example 7

Scilab code Exa 9.8 Example 8

Scilab code Exa 9.9 Example 9

Scilab code Exa 9.10 Example 10

Scilab code Exa 9.11 Example 11

```
1 //Chapter 9, Problem 11
2 clc;
3 L=150*10^-3;
4 E=40;
5 //since the current is reversed, dI =6 ( 6 )=12A
```

```
6 dI=12;
7 //calculating change in time dt
8 dt=(L*dI)/E;
9 printf("Change in time dt = %f sec",dt);
```

Scilab code Exa 9.12 Example 12

Scilab code Exa 9.13 Example 13

Scilab code Exa 9.14 Example 14

```
1 //Chapter 9, Problem 14
```

```
2 clc;
3 N = 1500;
                                            //no of turns
4 phi=25*10^-3;
                                            //flux
5 I = 3;
                                            //current in
      coil
6 \, dI = 3 - 0;
                                            //change in
      current
7 dt = 150 * 10^{-3};
                                            //change in time
8 L = (N*phi)/I;
                                            //calculating
      inductance
9 W = (1/2) *L*I^2;
                                            //calculating
      energy stored
10 E=-L*(dI/dt);
                                            //calculating
      induced emf
11 disp("(a)");
12 printf("Inductance = \%f H\n\n",L);
13 disp("(b)");
14 printf("Energy stored = \%f J\n\n", W);
15 disp("(c)");
16 printf ("Induced e.m. f = \%d V", E);
```

Scilab code Exa 9.15 Example 15

Scilab code Exa 9.16 Example 16

```
1 //Chapter 9, Problem 16
2 clc
                                     //no of turns
3 N = 750
                                      //inductance in
4 L=3
     henry
5 T = 2
                                      //current in ampere
6 t = 20e - 3
                                      //time in milisec
7 phi=(L*I)/N
8 E=-(N*phi)/t
9 printf("Flux linking the coil = \%d mWb\n\n", phi
      *1000)
10 printf("Induced emf = %d V",E)
```

Scilab code Exa 9.17 Example 17

```
1 //Chapter 9, Problem 17, Figure 9.10
2 clc;
3 N = 800;
                                   //no of turns
                                   //current in coil
4 I = 0.5;
5 l = \%pi * 120 * 10^{-3};
                                   //length of coil
6 u0=4*\%pi*10^-7;
                                   //permeability of free
      space
                                   //relative permeability
7 ur = 3000;
                                   //change in current
8 \, dI = 0.5 - 0;
9 dt = 80 * 10^{-3};
                                   //change in time
                                    //cross sectional area
10 A = 400 * 10^{-6};
                                   //calculating reluctance
11 S=1/(u0*ur*A);
                                   //calculating inductance
12 L=N^2/S;
13 E=-L*(dI/dt);
                                   //calculating induced
14 printf ("Self inductance L = \%f H \setminus n \setminus n", L);
15 printf ("Induced emf E = \%d V", E);
```

Scilab code Exa 9.18 Example 18

Scilab code Exa 9.19 Example 19

Scilab code Exa 9.20 Example 20

```
1 //Chapter 9, Problem 20
2 clc;
3 M=0.2;
4 dI=10-4;
5 dt=10*10^-3;
6 N=500;
7 E=-M*(dI/dt);
8 dphi=(E*dt)/N;
9 printf("Induced emf = %d V\n\n\n",E);
10 printf("Change of flux = %f mWb",dphi*1000);
```

Scilab code Exa 9.21 Example 21

```
//Chapter 9, Problem 21, Figure 9.11
clc;
dl=6-1;
dt=200*10^-3;
E=15;
Np=1000;
Ns=480;
M=E/(dI/dt);
S=(Np*Ns)/M;
Lp=Np^2/S;
printf("Mutual Inductance = %f H\n\n\n",M);
printf("Reluctance = %d A/Wb\n\n\n",S);
printf("Primary self-inductance Lp = %f H",Lp);
```

Chapter 10

Electrical measuring instruments and measurements

Scilab code Exa 10.1 Example 1

```
1 //Chapter 10, Problem 1, figure 10.5
2 clc;
3 Ia=40*10^-3;
                                  //maximum permissible
      current
4 I = 50;
                                  //total circuit current
5 \text{ ra} = 25;
                                  //resistance of
      instrument
                                  //current flowing in
6 \text{ Is=I-Ia};
      shunt
                                  //voltage
7 V=Ia*ra;
8 \text{ Rs=V/Is};
                                  //resistance in shunt
9 printf("Shunt resistance Rs = \%f miliohm\n\n\n", Rs
      *1000);
10 printf ("A resistance of value 20.02 miliohm needs to
       be connected in parallel with the instrument.")
```

Scilab code Exa 10.2 Example 2

```
1 //Chapter 10, Problem 2, figure 10.6
2 clc;
3 I = 0.008;
                                   //total circuit
     current
4 ra=10;
                                //resistance of
     instrument
                                //total p.d
5 V = 100:
                                //calculating voltage
6 Va=I*ra;
     across moving coil instrument
 Rm = (V - (I * ra)) / I;
                                //calculating value of
     multiplier
8 printf("Multiplier Rm = \%f K.ohm\n\n\n", Rm/1000);
9 printf("A resistance of value 12.49 k ohm needs to
     be connected in series with the instrument.");
```

Scilab code Exa 10.3 Example 3

```
1 //Chapter 10, Problem 3, figure 10.9
2 clc;
3 S = 10000;
                              //voltmeter sensitivity
                              //total voltage
4 V = 100;
                              //full scale deflection
5 \text{ fsd} = 200;
                              //load 1
6 R1 = 250;
                              //load 2
7 R2 = 2e6;
                              //resistance of voltmeter,
8 \text{ Rv=S*fsd};
9 Iv=V/Rv:
                              //current flowing in
      voltmeter
10 P = V * Iv;
                              //calculating power
      dissipated by voltmeter
  Ir1=V/R1;
                              //calculating current in
      load 1
12 Ir2=V/R2;
                              ///calculating current in
      load 2
```

Scilab code Exa 10.4 Example 4

```
1 //Chapter 10, Problem 4, figure 10.10
2 clc;
3 R = 500;
                         //load resistance
4 V = 10;
                         //supply voltage
                         //ammeter resistance
5 \text{ ra} = 50;
                         //calculating expected current
6 \text{ Ie=V/R};
7 Ia=V/(R+ra);
                         //calculating actual current
8 P=Ia^2*ra;
                         //calculating power dissipated
      in the ammeter
                         //calculating power dissipated
9 Pl=Ia^2*R;
      in load resistor
10 printf("(a) Expected ammeter reading = \%f mA\n\n\n",
      Ie*1000);
11 printf("(b) Actual ammeter reading = \%f mA\n\n\n", Ia
      *1000);
12 printf("(c) Power dissipated in the ammeter = %f mW\
      n \setminus n \setminus n", P*1000);
13 printf("(d) Power dissipated in the load resistor =
      %f mW n n n", Pl*1000);
```

Scilab code Exa 10.5 Example 5

```
1 //Chapter 10, Problem 5, figure 10.11, figure 10.12
2 clc;
3 V = 100;
                              //f.s.d of voltmeter
4 S = 1600;
                              //sensitivity
                              //resistor 1
5 R1 = 40 e3;
6 R2 = 60 e3;
                              //resistor 2
7 V1 = (R1/(R1+R2)) *V;
                              //voltage between A and B
                              //resistance of voltmeter
8 R = V * S;
9 R3=((R1*R)/(R1+R));
                              //equivalent resistance of
      parallel network
10 V2 = (R3/(R2+R3))*V;
                             //voltage indicated by
      voltmeter
11 printf("(a) Value of voltage V1 with the voltmeter
      not connected = \%f V \setminus n \setminus n, v1);
12 printf("(b) Voltage between A and B = \%f V\n\n\n", V2
      );
```

Scilab code Exa 10.6 Example 6

```
1 //Chapter 10, Problem 6, figure 10.13
2 clc;
3 I = 20;
                            //current flows through a
     load
4 R=2;
                            //load
                            //wattmeter coil resistance
5 r=0.01;
6 P=I^2*R:
                            //power dissipated in the
     load
                            //total resistance
7 Rt=R+r;
8 P1=I^2*Rt;
                            //wattmeter reading
9 printf("(a) Power dissipated in the load = \%f W\n\n\
     n",P);
10 printf("(b) Wattmeter reading = \%f W', P1);
```

Scilab code Exa 10.7 Example 7

```
1 //Chapter 10, Problem 7, figure 10.17
2 clc;
3 \text{ tc} = 100e-6;
                                 // in s/cm
                                 // in V/cm
4 \text{ Vc} = 20;
5 w = 5.2;
                                  // in cm ( width of one
      complete cycle )
6 h = 3.6;
                                  // in cm ( peak-to-peak
      height of the display )
8 //calculation:
9 T = w*tc
10 f = 1/T
11 ptpv = h*Vc
12
13 printf("\n (a)The periodic time, T = \%.2 f ms\n", T
      *10^3)
14 printf("\n (b) Frequency, f = \%.2 f \text{ kHz} \ \text{n}", f/1000)
15 printf("\n (c)The peak-to-peak voltage = \%.0 \text{ f V} \text{ N}",
      ptpv)
```

Scilab code Exa 10.8 Example 8

Scilab code Exa 10.9 Example 9

```
1 //Chapter 10, Problem 9, figure 10.19
2 clc;
3 \text{ tc} = 500e-6;
                              // in s/cm
4 \ Vc = 5;
                              // in V/cm
5 w = 4;
                              // in cm ( width of one
      complete cycle )
6 h = 5;
                              // in cm ( peak-to-peak
      height of the display )
7 //calculation:
8 T = w*tc
9 f = 1/T
10 \text{ ptpv} = h*Vc
11 \text{ Amp} = \text{ptpv/2}
12 Vrms = Amp/(2^0.5)
13 printf("\n\ (a) Frequency, f = \%.0 f Hz",f)
14 printf("\n\ (b) the peak-to-peak voltage = \%.0 f V",
      ptpv)
15 printf("\n\n (c) Amplitude = %.1 f V", Amp)
16 printf("\n\n (d)r.m.s voltage = %.2 f V", Vrms)
```

Scilab code Exa 10.10 Example 10

```
1 //Chapter 10, Problem 10, figure 10.20
2 clc;
3 \text{ tc} = 100E-6;
                               // in s/cm
                               // in V/cm
4 \ Vc = 2;
5 w = 5;
                               // in cm ( width of one
      complete cycle for both waveform )
6 \text{ h1} = 2;
                               // in cm ( peak-to-peak
      height of the display )
7 h2 = 2.5;
                               // in cm ( peak-to-peak
      height of the display )
8
9 //calculation:
10 T = w*tc
11 f = 1/T
12 \text{ ptpv1} = \text{h1*Vc}
13 Vrms1 = ptpv1/(2^0.5)
14 \text{ ptpv2} = \text{h2*Vc}
15 \text{ Vrms2} = \text{ptpv2}/(2^{\circ}0.5)
16 \text{ phi} = 0.5*360/w
17
18 printf("\n\ (a) Frequency, f = \%f \ kHz", f/1000)
19 printf("\n (b1)r.m.s voltage of 1st waveform = %.2
      f V", Vrms1)
20 printf("\n\n (b2)r.m.s voltage of 2nd waveform = \%.2
      f V", Vrms2)
21 printf("\n\n (c) Phase difference = %.0 f ", phi)
```

Scilab code Exa 10.12 Example 12

```
7 // calculation:
8 X1 = 10*log10(3)
9 X2 = 10*log10(20)
10 X3 = 10*log10(400)
11 X4 = 10*log10(1/20)
12
13 printf("\n\n (a) decibel power ratio for power ratio 3 = %.2 f dB ",X1)
14 printf("\n\n (b) decibel power ratio for power ratio 20 = %.1 f dB ",X2)
15 printf("\n\n (c) decibel power ratio for power ratio 400 = %.1 f dB ",X3)
16 printf("\n\n (d) decibel power ratio for power ratio 1/20 = %.1 f dB ",X4)
```

Scilab code Exa 10.13 Example 13

Scilab code Exa 10.14 Example 14

Scilab code Exa 10.15 Example 15

Scilab code Exa 10.16 Example 16

Scilab code Exa 10.17 Example 17

Scilab code Exa 10.18 Example 18

Scilab code Exa 10.19 Example 19

Scilab code Exa 10.20 Example 20

```
//Chapter 10, Problem 20, figure 10.35
clc;
//resistance of coil
R1=400;
R2=400;
R3=5000;
//value of capacitance
C=7.5e-6;
//calculating the value of inductance
L=R1*R2*C;
//calculating the value unknown resistance
r=(R1*R2)/R3;
printf("Inductance = %f H\n\n\n",L);
printf("Resistance = %d ohm",r);
```

Scilab code Exa 10.21 Example 21

Scilab code Exa 10.22 Example 22

Scilab code Exa 10.23 Example 23

```
1 //Chapter 10, Problem 23
2 clc
3 V = 36.5
                                              //voltage
                                              //max voltage of
4 V1=50
       voltameter
                                              //max current of
5 I1=10
       ammeter
6 I=6.25
                                              //current in amperes
7 \text{ ev}=2
8 R=V/I
9 \text{ ev1} = (2/100) * V1
10 \text{ ev2} = \text{ev1} * 100 / \text{V}
11 ei1 = (ev/100) * I1
12 \text{ ei2=ei1*100/I}
13 \text{ eiv=ev2+ei2}
14 r = eiv * R / 100
15 printf ("Maximum relative error = \%.2 f percent or \%.2
       f \circ hm \setminus n \cap n, eiv, r)
16 printf("Resistance = %.2 f ohm", R)
```

Scilab code Exa 10.24 Example 24

```
1 // Chapter 10, Problem 24
```

```
//resistance in ohm
3 R2 = 100
4 R3 = 432.5
                                             //resistance in ohm
                                             //resistance in ohm
5 R1=1000
                                             //error of R1 in
6 e1=1
       percent
                                             //error of R2 in
 7 e2=0.5
       percent
                                             //error of R3 in
8 e3=0.2
       percent
9 \text{ Rx} = \text{R2} \times \text{R3} / \text{R1}
10 \text{ et} = \text{e1} + \text{e2} + \text{e3}
11 et1=et*Rx/100
12 printf("Unknown resistance = \%.2 \text{ f ohm } \ln \%, Rx)
13 printf("Maximum relative error = \%.1 f percentn",et)
14 printf("Maximum relative erroe in ohm = \%.2\,\mathrm{f} ohm",
       et1)
```

Chapter 12

Transistors

Scilab code Exa 12.2 Example 2

Scilab code Exa 12.6 Example 6

Scilab code Exa 12.9 Example 9

```
1 //Chapter 12, Problem 9
2 \text{ clc};
                                             //operating
3 Id=100*10^-3;
      drain current
                                             //change in gate
4 \, dVgs = -0.1;
      -source voltage
5 \text{ gfs} = 0.25;
                                             //calculating
6 dId=dVgs*gfs;
      change in drain current
                                             //new value of
7 Id1=Id+dId;
      drain current
8 disp("(a)");
9 printf("Change in drain current = \%d \text{ mA} \times n \times n, dId
      *1000);
10 disp("(b)");
11 printf("New value of drain current = %d mA", Id1
      *1000);
```

Chapter 13

DC circuit theory

Scilab code Exa 13.1 Example 1

```
1 //Chapter 13, Problem 1, Figure 13.3,
2 clc;
3 //branch currents in figure 13.3 (a)
4 I1=50-20;
5 I2 = 20 + 15;
6 I3=I1-120;
7 \quad I4=15-I3;
8 \quad I5=120-40;
9 disp("(a)
               from Fig. 13.3(a).");
10 disp("For junction B:");
11 printf("I1 = \%d A", I1);
12 disp("For junction C:");
13 printf (" I2 = \%d A", I2);
14 disp("For junction D:");
15 printf("I3 = \%d A",I3);
16 disp("For junction E:");
17 printf (" I4 = \%d A", I4);
18 disp("For junction F:");
19 printf("I5 = \%d A\n\n\n", I5);
               from Fig. 13.3(b).");
20 disp("(b)
21 printf("Applying Kirchhoff s voltage law and
```

```
moving clockwise around the loop,\n");

22 printf("starting at point A, we get,\n");

23 //from figure 13.3(b)

24 I=2;

25 E=I*(2+2.5+1.5+1)-(3+6-4);

26 printf("emf E = %d V",E);
```

Scilab code Exa 13.2 Example 2

```
1 //Chapter 13, Problem 2, Figure 13.4
2 clc;
3 A = [6 4; 4 5];
4 B = [4;2];
5 \quad X = A \setminus B;
6 I1=X(1,1);
                                  //I1 and I2 is a branch
      current
7 I2=X(2,1);
8 disp("From figure 13.5");
9 disp("Using Kirchhoff s current law and labeling
      the current directions on the circuit");
10 disp("Divide the circuit into two loops and apply
      Kirchhoff s voltage law to each.");
11 printf ("we get \n 6I1 + 4I2 = 4 \n 4I1 + 5I2 = 2\n\n"
12 printf(" By solving both equations, we get n");
13 printf("I1 = \%.3 \, f \, A \ n", I1);
14 printf("I2 = \%.3 \, f \, A \ n", I2);
15 printf("I1+I2 = \%.3 f A", I1+I2);
```

Scilab code Exa 13.3 Example 3

```
1 //Chapter 13, Problem 3, Figure 13.7
2 clc;
```

```
3 A = [0.5 2; -5 7];
4 B = [16; 12];
5 X = A \setminus B;
6 I1=X(1,1);
                                    //I1 and I2 is a branch
      current
7 I2=X(2,1);
8 disp("From figure 13.8");
9 disp("The network is divided into two loops");
10 printf("Applying Kirchhoff s voltage law to both
      loops gives,");
11 printf("16 = 0.5 I1 + 2I2 \setminus n12 = 5I1 + 7I2 \setminus n \setminus n")
12 printf("Solving these equation we get,\n");
13 printf("I1 = \%.2 \text{ f A} \text{ n}", I1);
14 printf ("I2 = \%.2 \, f \, A n", I2);
15 printf("Current flowing in R3 = \%.2 f A", I1-I2);
```

Scilab code Exa 13.4 Example 4

```
1 //Chapter 13, Problem 4, Figure 13.9
2 clc;
                              //total current
3 I = 8;
4 A = [13 -11; 16 32];
5 B = [54; 112];
6 \quad X = A \setminus B;
7 I1=X(1,1)
                                 //I1 and I2 is a branch
      current
8 \quad I2=X(2,1);
9 disp("from figure 13.10");
10 printf("Applying Kirchhoff s voltage law to loop 1
       and 2, we get");
11 printf("13I1
                      11I2 = 54 n 16I1 + 32I2 = 112 n n
      ");
12 printf ("Solving the above simultaneous equations, we
       get \n");
```

```
13 printf("I1 = \%d A\n", I1);
14 printf("I2 = \%d A\n", I2);
15 printf("I-I1 = %d A n", I-I1);
16 printf ("I1-I2 = \%d A\n", I1-I2);
17 printf ("I-I1+I2 = %d A \setminus n \setminus n", I-I1+I2);
18 printf("Therefore,\n");
19 printf ("Current flowing in the 2ohm resistor = \%f A\
      n", I1);
20 printf ("Current flowing in the 14ohm resistor = \%f A
      n, I-I1);
21 printf ("Current flowing in the 32ohm resistor = \%f A
      \n", I2);
22 printf ("Current flowing in the 11ohm resistor = \%f A
      n, I1-I2);
23 printf ("Current flowing in the 3ohm resistor = \%f A\
      n", I-I1+I2);
```

Scilab code Exa 13.5 Example 5

```
1 //Chapter 13, Problem 5, figure 13.16
2 clc;
3 E1=4;
                                 //e.m.f source 1
4 E2=2;
                                 //e.m.f source 2
5 R=4
                                 //resistor
6 \text{ r1=2};
                                 //internal resistance 1
7 r2=1;
                                 //internal resistance 2
                                 //equivalent resistance
8 Rr2=(R*r2)/(R+r2);
  //calculating I2, I3, I4, I5, I6 by using current
      division formula
10 I1=E1/(r1+Rr2);
11 I2=(r2/(R+r2))*I1;
12 I3=(R/(R+r2))*I1;
13 Rr1 = (R*r1)/(R+r1);
14 I4=E2/(Rr1+r2);
15 I5=(r1/(R+r1))*I4;
```

```
16 \quad I6 = (R/(R+r1))*I4;
17 printf("Redraw the original circuit with sourceE2
      removed, being replaced by r2 only, as shown in
      Fig. 13.17(a) \ln n;
18 printf ("From the equivalent circuit of Fig. 13.17(a)
       and (b), n;
19 printf ("I1 = \%.3 \, f \, A \ n", I1);
20 printf ("I2 = \%.3 \text{ f A/n}", I2);
21 printf("I3 = \%.3 f A \ln n \%, I3);
22 printf ("Redraw the original circuit with source E1
      removed, being replaced by r1 only, as shown in
      Fig. 13.18(a) \setminus n \setminus n");
23 printf ("From the equivalent circuit of Fig. 13.18(a)
       and (b) \n")
24 printf("I4 = \%.3 \, f \, A \ n", I4);
25 printf("I5 = \%.3 \, f \, A \ n", I5);
26 printf("I6 = \%.3 f A n n", I6);
27 printf ("Superimpose Fig. 13.18(a) on to Fig. 13.17(a)
      ) as shown in Fig. 13.19 \n\n");
28 printf("Resultant current flowing through source 1 =
       \%.3 f A (discharging) \n", I1-I6);
29 printf("Resultant current flowing through source 2 =
       \%.3 f A (charging) n, I4-I3);
30 printf ("Resultant current flowing through resistor R
       = \%.4 f A n n", I2+I5);
31 printf ("The resultant currents with their directions
       are shown in Fig. 13.20");
```

Scilab code Exa 13.6 Example 6

```
6 \text{ r1=3};
                                   //internal resistance 1
7 r2=2;
                                   //internal resistance 2
                                   //equivalent resistance
8 \text{ Rr2}=(R*r2)/(R+r2);
9 //calculating I2, I3, I4, I5, I6 by using current
      division formula
10 I1=E1/(r1+Rr2);
11 I3=(r2/(R+r2))*I1;
12 I2 = (R/(R+r2))*I1;
13 Rr1 = (R*r1)/(R+r1);
14 I4=E2/(Rr1+r2);
15 I6=(r1/(R+r1))*I4;
16 I5 = (R/(R+r1))*I4;
17 \quad I36 = I3 - I6;
18 V = I36 * R;
19 printf ("Redraw the original circuit with source E2
      removed, being replaced by r2 only, as shown in
      Fig. 13.22(a) \ln n;
20 printf ("From the equivalent circuit of Fig. 13.22(a)
       and (b), n;
21 printf("I1 = \%.3 \, f \, A \ n", I1);
22 printf ("I2 = \%.3 \, f \, A \ n", I2);
23 printf("I3 = \%.3 f A \setminus n \setminus n", I3);
24 printf ("Redraw the original circuit with source E1
      removed, being replaced by r1 only, as shown in
      Fig. 13.23(a) \setminus n \setminus n");
25 printf ("From the equivalent circuit of Fig. 13.23(a)
       and (b) \n")
26 printf ("I4 = \%.3 \, f \, A \ n", I4);
27 printf("I5 = \%.3 \, f \, A \ n", I5);
28 printf("I6 = \%.3 f A n n", I6);
29 printf ("Superimpose Fig. 13.23(a) on to Fig. 13.22(a
      as shown in Fig. 13.24 \ln n;
30 printf("Resultant current flowing through 18 ohm
      resistor = \%.3 f A/n", I36);
31 printf("P.d. across the 18ohm resistor = \%.3 \, f \, V \ n", V
      );
32 printf ("Resultant current flowing in the 8V battery
      = \%.3 f A (discharging) \n, I1+I5);
```

Scilab code Exa 13.7 Example 7

are shown in Fig. 13.24");

```
1 //Chapter 13, Problem 7, figure 13.37
2 clc;
3 E1 = 10;
                                   //e.m.f source 1
                                   //resistor 1
4 R1 = 2;
5 R3 = 5;
                                    //resistor 2
                                   //resistor 3
6 R2 = 8;
                                   //resistor 4
7 R = 10;
8 I1=E1/(R1+R2);
9 V2=I1*R2;
10 r=R3+((R1*R2)/(R1+R2));
11 I=V2/(R+r);
12 printf("(i) The 10 resistance is removed from the
      circuit as shown in Fig. 13.38(a) \n\n");
13 printf("(ii) There is no current flowing in the 5
      resistor and current I1 is given by \n");
14 printf("I1 = \%.3 \, f \, A \setminus n", I1);
15 printf("P.d across R2 is given by\n E = \%.3 f V\n\n",
16 printf("(iii) Removing the source of e.m.f. gives
      the circuit of Fig. 13.38(b) Resistance, \n");
17 printf ("r = \%.3 \text{ f ohm} \n\n", r);
18 printf("(iv) The equivalent Th venin s circuit is
       shown in Fig. 13.38(c)");
19 printf ("Hence the current flowing in the 10 resistor
       of Fig. 13.37 is n");
20 printf ("I = \%.3 \, \text{f A}", I);
```

Scilab code Exa 13.8 Example 8

```
1 //Chapter 13, Problem 8, figure 13.39
2 clc;
                                 //e.m.f source
3 E1=12;
4 R1=1;
                                //resistance in ohm
                                  //resistance in ohm
5 R3=4;
6 R2 = 5;
                                //resistance in ohm
                                 //resistance in ohm
7 R=0.8;
8 I1=E1/(R1+R2+R3);
                                    //current in amperes
9 V1=R3*I1;
10 Req=R1+R2;
                                        //equivalent
     resistance
11 r = (R3*Req)/(R3+Req);
                                                  //
      equivalent resistance
12 I = V1/(r+R);
13 printf("(i) The 0.8ohm resistor is removed from the
      circuit as shown in Fig. 13.40(a).\n\n");
14 printf("(ii) Current I1 = %f A \n P.d. across 4ohm
      resistor = \%f V\n\n\n",I1,V1);
15 printf("(iii) Removing the source of e.m.f. gives
     the circuitshown in Fig. 13.40(b). The equivalent
       circuitof Fig. 13.40(b) is shown in Fig. 13.40(c
     ), from which, resistance\n");
16 printf ("r = \%f ohm \n\n", r);
17 printf("(iv) The equivalent Th venin s circuit is
      shown in Fig. 13.40(d), from which, current\n");
18 printf("Current in the 0.8ohm resistor I = \%f A", I);
```

Scilab code Exa 13.9 Example 9

```
1 //Chapter 13, Problem 9, figure 13.41
```

```
2 clc;
3 E1=4;
                                  //e.m.f source 1
4 E2=2;
                                  //e.m.f source 2
                                  //resistance in ohm
5 \text{ r1=2};
6 \text{ r2=1};
                                   //resistance in ohm
7 R=4;
                                  //resistance in ohm
8 I1=(E1-E2)/(r1+r2);
                                 //current in amperes
9 E=E1-(I1*r1);
10 r=(r1*r2)/(r1+r2);
11 I=E/(r+R);
12 P = I^2 * R;
                                      //power dissipated
      in watt
13 printf("(i) The 4ohm resistor is removed from the
      circuit as shown in Fig. 13.42(a) \n\n");
14 printf("(ii) Current I1 = \%f A \n P.d across AB = \%f
       V \setminus n \setminus n", I1, E);
15 printf("(iii) Removing the sources of e.m.f. gives
      the circuit shown in Fig. 13.42(b), from which,
      resistance\n r = %f ohm\n\n",r);
16 printf("(iv) The equivalent Th venin s circuit is
       shown in Fig. 13.42(c), from which, current,\n I
       = \%f A n n, I);
17 printf ("Power dissipated in the 4 resistor, \nP = \%f
      W, P);
```

Scilab code Exa 13.10 Example 10

```
9 E=E1-(I1*r1);
                                     //p.d in volts
10 r=(r1*r2)/(r1+r2);
                                     //resistance in ohm
11 I=E/(r+R3);
12 V = I * R3;
13 Ia=(E1-V)/r1;
14 Ib = (E2 + V)/r2;
15 printf("(i) The 5ohm resistance is removed from the
      circuit as shown in Fig. 13.44(a) \n\n");
16 printf("(ii) Current I1 = %f A \n P.d across AB = %f
      V \setminus n \setminus n", I1, E);
17 printf("(iii) Removing the sources of e.m.f. gives
      the circuit shown in Fig. 13.44(b), from which,
      resistance\n r = %f ohm\n\n",r);
18 printf("(iv) The equivalent Th venin s circuit is
       shown in Fig. 13.44(c), from which, current,\n I
      = \%f A n n, i);
19 printf ("From Section 13.4(iii), Hence current \n Ia
     = \%f A n, Ia);
20 printf ("From Fig. 13.44(d), Hence current \ln Ib = \%f
      A", Ib);
```

Scilab code Exa 13.13 Example 13

```
1 //Chapter 13, Problem 13, figure 13.54
2 clc;
3 E=10;
                                 //e.m.f source 1
4 R1 = 2;
                                    //resistance in ohm
                                    //resistance in ohm
5 R2 = 8;
6 R3 = 5;
                                    //resistance in ohm
                                     //resistance in ohm
7 R4 = 10;
8 \text{ Isc=E/R1};
                                      //short-circuit
      current in ampere
9 r = (R1*R2)/(R1+R2);
10 I=(r/(r+R3+R4))*Isc;
11 printf("(i) The branch containing the 10 resistance
```

Scilab code Exa 13.14 Example 14

```
1 //Chapter 13, Problem 14, figure 13.56
2 clc;
                              //e.m.f source 1
3 E1=4;
4 E2=2;
                              //e.m.f source 2
                                //resistance in ohm
5 R1 = 2;
6 R2=1;
                                //resistance in ohm
                                //resistance in ohm
7 R3 = 4;
8 I1=E1/R1;
                                //current in ampere
9 I2=E2/R2;
                                //current in ampere
10 Isc = I1 + I2;
                               //short-circuit current
11 r=(R1*R2)/(R1+R2);
12 I=(r/(r+R3))*Isc;
13 printf("(i) The 4ohm branch is short-circuited as
     shown in Fig. 13.57(a)");
14 printf("(ii) From Fig. 13.57(a),\n Isc = \%f A\n\n",
     Isc);
15 printf("(iii) If the sources of e.m.f. are removed
     the resistance looking - in at a break made
```

Scilab code Exa 13.15 Example 15

```
1 //Chapter 13, Problem 15, figure 13.58
2 clc;
3 E1 = 4;
                            //e.m.f source 1
                             //e.m.f source 2
4 E2=12;
5 R1 = 0.5;
                                //resistance in ohm
6 R2 = 2;
                              //resistance in ohm
7 R3 = 5;
                              //resistance in ohm
8 I1=E1/R1;
                                //current in ampere
9 I2=E2/R2;
                                //current in ampere
10 Isc=I1-I2;
                            //short-circuit current
11 r = (R1*R2)/(R1+R2);
12 I=(r/(r+R3))*Isc;
13 printf("(i) The 5ohm branch is short-circuited as
     shown in Fig. 13.59(a) \ln ";
14 printf("(ii) From Fig. 13.59(a),\n Isc = \%f A\n\n",
     Isc);
15 printf("(iii) If each source of e.m.f. is removed
     the resistance looking - in at a break made
     between A and B is given by:\n");
16 printf("r = \%f ohm\n\n",r);
17 printf("(iv) From the Norton equivalent network
     shown in Fig. 13.59(b) the current in the 5
     resistance is given by:\n");
18 printf("I = \%f A",I);
```

Scilab code Exa 13.16 Example 16

```
1 //Chapter 13, Problem 16, figure 13.60
2 clc;
3 E1 = 24;
                             //e.m.f source 1
4 R1 = 3;
                              //resistance in ohm
                                 //resistance in ohm
5 R2=1.66;
6 R3 = 10;
                               //resistance in ohm
7 R4 = 5;
                              //resistance in ohm
8 R5 = 20;
                               //resistance in ohm
9 Isc=E1/R4;
                            //short-circuit current
10 r = (R3*R4)/(R4+R3);
11 I=(r/(r+R2+R1))*Isc;
12 printf("(i) The branch containing the 3ohm
      resistance is shortcircuited as shown in Fig.
      13.61(a) nn");
13 printf("(ii) From the equivalent circuit shownin Fig
      . 13.61(b), \n Isc = \%f A\n\n", Isc);
14 printf("(iii) If the 24V source of e.m.f. is removed
                                         at a break made
       the resistance looking - in
     between A and B is obtained from Fig. 13.61(c) and
       its equivalent circuit shown in Fig. 13.61(d)
     and is given by:\n");
15 printf("r = \%f ohm\n\n",r);
16 printf("(iv) From the Norton equivalent network
     shown in Fig. 13.61(e) the current in the 30hm
      resistance is given by: n");
17 printf("I = \%.1 \text{ f A} / \text{n} / \text{n}", I);
```

Scilab code Exa 13.17 Example 17

```
1 //Chapter 13, Problem 17, Figure 13.62
```

```
2 clc;
3 I1=15
                                       //current source
     in ampere
4 R1 = 6;
                                      //resistance in ohm
5 R2 = 4;
                                       //resistance in
     ohm
6 R3 = 2;
                                       //resistance in
     ohm
7 R4 = 8;
                                       //resistance in
     ohm
8 R5 = 7;
                                       //resistance in
  Isc = (R1/(R1+R2))*I1;
                                      //short-circuit
     current
10 R12=R1+R2;
11 R45 = R4 + R5;
12 r=(R12*R45)/(R12+R45);
13 I = (R1/(R1+R3))*Isc;
14 printf("(i) The 2ohm resistance branch is short-
      circuited as shown in Fig. 13.63(a) \n\n");
15 printf("(ii) Fig. 13.63(b) is equivalent to Fig.
      13.63(a).\n");
16 printf ("Hence Isc = \%f A\n\n", Isc);
17 printf("(iii) If the 15A current source is replaced
     by an opencircuit then from Fig. 13.63(c),");
18 printf("the resistance looking-in
     made between A and B is given by (6+4)ohm in
      parallel with (8+7) ohm, i.e.\n r = \%f ohm\n\n",r)
19 printf("(iv) From the Norton equivalent network
     shown in Fig. 13.63(d) the current in the 20hm
     resistance isgiven by: \n");
20 printf("I = \%f A",I);
```

Scilab code Exa 13.19 Example 19

Scilab code Exa 13.20 Example 20

```
1 //Chapter 13, Problem 20, figure 13.72
2 clc;
3 E1 = 12;
                                        //e.m.f source 1
                                         //e.m.f source 2
4 E2 = 24;
5 \text{ r1}=3:
                                           //resistance in
      ohm
6 \text{ r2=2};
                                            //resistance in
       ohm
7 R=1.8;
                                          //resistance in
      ohm
                                            //short-circuit
  Isc1=E1/r1;
       current
                                             // short -
  Isc2=E2/r2;
      circuit current
                                               //short-
10 Isc=Isc1+Isc2;
      circuit current
11 r=(r1*r2)/(r1+r2);
12 E=Isc*r;
13 I = (E/(r+R));
14 printf ("For the branch containing the 12V source,
      converting to a Norton equivalent circuit gives \
      nIsc1 = %d A n, Isc1);
15 printf ("For the branch containing the 24V source,
```

```
converting to a Norton equivalent circuit gives \
nIsc2 = %d A\n\n", Isc2);

16 printf("Thus Fig. 13.73(a) shows a network
        equivalent to Fig. 13.72");

17 printf("From Fig. 13.73(a) the total short-circuit
        current and the total resistance is given by\n");

18 printf("Isc = %f A\n r = %f ohm\n Thus Fig. 13.73(a)
        simplifies to Fig. 13.73(b).", Isc,r);

19 printf("The open-circuit voltage across AB of Fig.
        13.73(b),\n E = %f V\n",E);

20 printf("Hence the Th venin equivalent circuit is as
        shown in Fig. 13.73(c).");

21 printf("When the 1.8 resistance is connected
        betweenterminals A and B of Fig. 13.73(c) the
        current Iflowing is given by\n I = %f A",I);
```

Scilab code Exa 13.21 Example 21

```
1 //Chapter 13, Problem 21, figure 13.74
2 clc;
3 E1 = 10;
                                           //e.m.f source 1
4 r1 = 2000;
                                            //resistance in
      ohm
5 E2=6;
                                       //e.m.f source 2
6 \text{ r2} = 3000;
                                            //resistance in
      ohm
  I1=1*10^-3;
                                            //current in
      ampere
                                              //resistance
8 R1 = 600;
      in ohm
                                           //resistance in
9 R2 = 200;
      ohm
                                           //short-circuit
10 Isc1=E1/r1;
      current
11 Isc2=E2/r2;
                                           //short-circuit
```

```
current
12 Isc=Isc1+Isc2;
                                            //short-
      circuit current
13 R=(r1*r2)/(r1+r2);
14 Vcd=Isc*R;
15 Vef=I1*R1;
16 \quad E=Vcd-Vef;
17 r = (R + R1);
18 I=E/(r+R2);
19 printf("For the branches containing the 10V
      sourceand 6V source, converting to a Norton
      equivalent network respectively gives \n");
20 printf(" Isc1 = \%f mA\nIsc2 = \%f mA\n\n", Isc1*1000,
      Isc2*1000);
21 printf ("Thus the network of Fig. 13.74 converts to
      Fig. 13.75(a).\n\n");
22 printf ("Combining the 5mA and 2mA current sources
      gives the equivalent network of Fig. 13.75(b)\n")
23 printf("where the short-circuit current for the
      original two branches considered is 7mA and the
      resistance is n = %f \circ n \ , n \ ;
24 printf ("The open-circuit voltage across CD is n = 2
      %f \ V \ n", Vcd);
25 printf ("The open-circuit voltage across EF is n = \%f
      V \setminus n \setminus n Thus Fig. 13.75(b) converts to Fig. 13.75(
      c).", Vef);
26 printf ("Combining the two Th venin circuits gives \n
       E = %f V n r = %f ohm", E,r);
27 printf("\n\nHence the current I flowing in a 200 ohm
       resistance connected between A and B is given by
      \n");
28 printf(" I = \%f \text{ mA}", I*1000);
```


Figure 13.1: Example 22

Scilab code Exa 13.22 Example 22

```
1 //Chapter 13, Problem 22, figure 13.82
2 clc;
3 E=6;
                                //in volt
                                //in ohm
4 r=2.5;
6 // defining a function
7 function a = myfunction (c,d,e)
8 b = c/(d+e);
9 a=b^2*e;
10 endfunction
11
12
13 for R1=0:0.5:5
       P=myfunction(E,r,R1)
14
       x=linspace(0,7,12);
15
16 y=linspace(0,5,12);
17 plot(R1,P,".");
18 xtitle("Rl vs P", "Rl (ohm)", "Power (watt)");
19 end
20
21 printf("A graph of RL against P is shown\n");
22 printf ("i.e. maximum power occurs when RL = R, which
       is what the maximum power transfer theorem
      states.");
```

Scilab code Exa 13.23 Example 23

Scilab code Exa 13.24 Example 24

```
1 //Chapter 13, Problem 24, figure 13.85
2 clc;
3 R1 = 3;
                                             //resistance
      in ohm
4 R2=12;
                                              //
     resistance in ohm
                                                 //e.m. f
5 E=15;
     source
                                                 //p.d in
6 E1=(R2/(R1+R2))*E;
      volts
7 r = (R1*R2)/(R1+R2);
     resistance in ohm
8 Rl=r
9 I=E1/(r+R1);
     current in amperes
                                                 //power
10 P=I^2*R1;
     in watt
11 printf("(i) Resistance RL is removed from the
      circuit as shown in Fig. 13.86(a) \n\n");
12 printf("ii) The p.d. across AB is the same as the p.
     d. across the 12 resistor. Hence n");
13 printf ("E = \%d V\n\n", E1);
14 printf("(iii) Removing the source of e.m.f. gives
      the circuit of Fig. 13.86(b), from which,
      resistance,\n");
```

Chapter 14

Alternating voltages and currents

Scilab code Exa 14.1 Example 1

Scilab code Exa 14.2 Example 2

```
6 f2=1/t2; //frequency in hertz 7 printf("(a) Frequency F = \%f Hz \setminus n \cdot n",f1); 8 printf("(b) Frequency F = \%f KHz",f2/1000);
```

Scilab code Exa 14.3 Example 3

Scilab code Exa 14.4 Example 4

```
1 //Chapter 14, Problem 4, Figure 14.5
2 clc;
3 funcprot(0)
4 deff('[freq]=function1(time)', 'freq=1/time')
5 deff('[ave]=function2(base, area)', 'ave=area/base')
6 deff('[rms] = function3(a1, a2, a3, a4)', rms = sqrt((a1^2 +
      a2^2+a3^2+a4^2)/4;
7 deff('[form]=function4(rms, ave)', 'form=rms/ave')
8 deff('[peak]=function5(max,rms)', 'peak=max/rms')
10 //from triangular waveform (Fig. 14.5(a))
11 t = 20e - 3;
12 b=t/2;
13 h = 200;
14 \text{ v1} = 25;
15 \text{ v2=75};
16 \text{ v3} = 125;
```

```
17 v4 = 175;
18 f=function1(t);
19 a=(1/2)*b*h;
20 av=function2(b,a);
21 r=function3(v1, v2, v3, v4);
22 fr=function4(r,av);
23 p=function5(h,r);
24 disp("Triangular waveform")
25 printf("(i) Frequency = \%d Hz \n\n",f);
26 printf("(ii) Average value of waveform = \%d V \ n \ n",
      av);
27 printf("(iii) R.m.s value = \%f V \n\n",r);
28 printf("(iv) Form factor = \%f \n\n",fr);
29 printf("(v) peak factor = \%f \n\n\n\n",p);
30
31 //from rectangular waveform (Fig. 14.5(b))
32 t1 = 16e - 3;
33 b1=t1/2
34 i1=10;
35 f1=function1(t1);
36 \text{ a1=i1*b1};
37 av1=function2(b1,a1);
38 r1=function3(i1,i1,i1,i1);
39 fr1=function4(r1, av1);
40 p1=function5(i1,r1);
41 disp("Rectangular waveform")
42 printf("(i) Frequency = \%f Hz \n\n",f1);
43 printf("(ii) Average value of waveform = \%d A \n\n",
      av1);
44 printf("(iii) R.m.s value = \%d A \n\n",r1);
45 printf("(iv) Form factor = \%d \ \ln n", fr1);
46 printf("(v) peak factor = %d \ n\ ", p1);
```

Scilab code Exa 14.6 Example 6

Scilab code Exa 14.7 Example 7

Scilab code Exa 14.8 Example 8

Scilab code Exa 14.9 Example 9

```
1 //Chapter 14, Problem 9
2 clc;
3 / \text{from eqn } v = 282.8 (\sin 314 t)
                                               //peak voltage
4 \text{ Vm} = 282.8;
5 \text{ w} = 314;
6 t = 4e - 3;
7 Vrms = 0.707 * Vm;
8 f=w/(2*\%pi);
9 v = 282.8 * sin(314 * t);
10 printf("(a) Comparing Comparing v=282.8 sin 314 t
      with this general expression gives the peak
       voltage as 282.8V\n");
11 printf("v = \%f V \setminus n \setminus n", Vrms);
12 printf("(b) Angular velocity w = 314 \text{ rad/s},
       therefore \n");
13 printf("f = \%f Hz\n\n",f);
14 printf("(c) When t = 4ms \ n");
15 printf("v = \%f V",v);
```

Scilab code Exa 14.10 Example 10

```
1 //Chapter 14, Problem 10
2 clc;
3 \text{ Vm} = 75;
                                          //peak voltage
4 w = 200 * \%pi;
5 \text{ phi} = 0.25;
6 Vpp=2*Vm;
                                          //peak to peak
      voltage
7 Vrms = 0.707 * Vm;
                                          //rms voltage
8 T = (2*\%pi)/w;
                                          //time period
9 f = 1/T;
                                          //frequency
10 angle=phi*(180/%pi);
11 printf ("Comparing v=75 \sin((200*pi*t))
                                                    0.25) with
      the general expression, we get\n");
12 printf("(a) Amplitude or peak value = \%d V \setminus n \setminus n", Vm);
```

```
printf("(b) Peak-to-peak value = %d V\n\n", Vpp);
printf("(c) The r.m.s. value = %d V\n\n", Vrms);
printf("(d) The periodic time = %f sec\n\n",T);
printf("(e) Frequency f = %d Hz\n\n",f);
printf("(d) Phase angle = %f deg", angle);
```

Scilab code Exa 14.11 Example 11

Scilab code Exa 14.12 Example 12

```
1 //Chapter 14, Problem 12
2 clc;
3 \text{ Imax} = 120;
                                         //current in amperes
                                         // in rad/sec
4 w = 100*\%pi;
5 \text{ phi} = 0.36;
                                         // in rad
6 \text{ t1} = 0;
                                         // in secs
7 t2 = 0.008;
                                         // in secs
8 i = 60;
                                            in amperes
9
10 //calculation:
11 //for a sine wave
```

```
12 f = w/(2*\%pi)
13 T = 1/f
14 phid = phi*180/%pi
15 i0 = Imax*sin((w*t1) + phi)
16 i8 = Imax*sin((w*t2)+phi)
17 ti = (asin(i/Imax) - phi)/w
18 \text{ tm1} = (asin(Imax/Imax) - phi)/w
19
20 printf("\n (a) Peak value = \%.0 f A, Periodic time T =
       \%.2\,\mathrm{f} sec , Frequency , f = \%.0\,\mathrm{f} Hz Phase angle = \%
       .1 f \n\, Imax, T, f, phid)
21 printf("\n (b) When t = 0, i = \%.1 f A \setminus n \setminus n",i0)
22 printf("\n (c)When t = 8 ms = \%.1 \text{ f A} \cdot \text{n}", i8)
23 printf("\n (d)When i is 60 A, then time t = \%.2E \text{ s} \cdot \text{n}
       \n",ti)
24 printf("\n (e)When the current is a maximum, time, t
        = \%.2E \text{ s} \text{n} \text{n}",tm1)
```

Chapter 15

Single phase series AC circuits

Scilab code Exa 15.1 Example 1

```
1 //Chapter 15, Problem 1
2 clc;
                                     //frequency in hertz
3 f1=50;
4 L1=0.32;
                                     //inductance
5 x1=124;
                                     //reactance
                                     //frequency in hertz
6 f2=5000;
7 X1=2*\%pi*f1*L1;
                                     //inductive
     reactance
8 L=x1/(2*\%pi*f2);
                                     //inductance
9 printf("(a) Inductive reactance, \ Nl = \%.1f \ ohm \ \ \
10 printf("(d) Inductance,\n L = \%.3 f mH\n\n",L*1000);
```

Scilab code Exa 15.2 Example 2

```
1 //Chapter 15, Problem 2
2 clc;
3 f1=50; //frequency in hertz
```

```
//inductance
4 L1 = 40e - 3;
                                   //voltage
5 V = 240;
                                     //voltage
6 V2 = 100;
7 f2=1000;
                                     //frequency in hertz
8 X1=2*\%pi*f1*L1;
                                        //inductive
      reactance
                                         //inductive
  X12=2*\%pi*f2*L1;
      reactance
10 I=V/X1;
                                         //current
                                             //current
11 I2=V2/X12;
12 printf("(a) Inductive reactance, Xl = .2\%f ohm \
      nCurrent I = \%.2 f A \setminus n \setminus n, X1, I);
13 printf("(b) Inductive reactance, Xl = \%.1 f ohm \
      nCurrent I = \%.3 f A\n\n", X12, I2);
```

Scilab code Exa 15.3 Example 3

```
1 //Chapter 15, Problem 3
2 clc;
3 f = 50;
                                 //frequency in hertz
4 f2=20e3;
                                    //frequency in hertz
5 C=10e-6;
                                      //capacitance in
      farad
                                      //capacitive
6 Xc=1/(2*\%pi*f*C);
      reactance
                                        //capacitive
7 Xc2=1/(2*\%pi*f2*C);
      reactance
8 printf("(a) Capacitive reactance Xc = \%.1 f \text{ ohm} \ n \ ",
      Xc);
9 printf("(b) Capacitive reactance Xc = \%.3 f \text{ ohm} n n",
      Xc2);
10 printf ("Hence as the frequency is increased from 50
     Hz to 20 kHz, XC decreases from %.1f to %.3f (see
       Fig. 15.5)", Xc, Xc2);
```

Scilab code Exa 15.4 Example 4

Scilab code Exa 15.5 Example 5

Scilab code Exa 15.6 Example 6

Scilab code Exa 15.7 Example 7

```
1 //Chapter 15, Problem 7
2 clc;
3 R=4;
                             //coil resistance
                             //inductance
4 L=9.55e-3;
                             //frequency in hertz
5 f = 50
                             //supply voltage
6 V = 240;
                             //inductive reactance,
7 X1=2*\%pi*f*L;
                             //impedance
8 Z=sqrt(R^2+X1^2);
9 I=V/Z;
                             //current
10 phi=atan(X1/R);
11 printf("(a) Inductive reactance Xl = %d \text{ ohm} \ n'", X1)
12 printf("(b) Impedance Z = \%d \text{ ohm} \ n\ , Z);
13 printf("(c) Current I = \%f A\n\n",I);
14 printf ("The circuit and phasor diagrams and the
      voltage and impedance triangles are as shown in
      Fig. 15.6 \setminus n");
15 printf("phi = \%f lagging",phi*(180/\%pi));
```

Scilab code Exa 15.8 Example 8

Scilab code Exa 15.9 Example 9

```
1 //Chapter 15, Problem 9
2 clc;
3 L=318.3e-3;
                                 //inductance
4 R = 200;
                                   //resistance
5 V = 240;
                                //supply voltage
6 	ext{ f=50};
                                //frequency in hertz
7 X1 = 2 * \%pi * f * L;
                                //inductive reactance,
8 \quad Z=sqrt(R^2+X1^2);
                               //impedance
9 I=V/Z;
10 V1 = I * X1;
11 Vr=I*R;
12 phi = atan(X1/R);
13 printf("(a) Inductive reactance = \%f ohm\n\n", X1);
14 printf("(b) Impedance Z = \%.1 \text{ f ohm} \n', Z);
15 printf("(c) Current I = \%.3 f A \setminus n \setminus n", I);
16 printf("(d) The p.d. across the coil = \%1f V \setminus n \setminus n", V1
      );
17 printf("
                 The p.d. across the resistor = \%.1 \text{ f V}
      \n", \n";
18 printf("(e) From the impedance triangle, angle = %f
```

Scilab code Exa 15.10 Example 10

```
1 //Chapter 15, Problem 10
2 clc;
\frac{3}{\text{from eqn v}} = 200 \text{ (sin } 500 \text{ t)}
4 Vm = 200;
5 w = 500;
6 V = 0.707 * 200;
7 L=200e-3;
                                   //inductance
8 R = 100;
                                    //resistance
                                   //inductive reactance
9 X1 = w * L;
10 Z = sqrt(R^2 + X1^2);
                                   //impedance
11 I=V/Z;
12 V1 = I * X1;
13 Vr=I*R;
14 phi=atan(X1/R);
15 printf("(a) Inductive reactance = \%d ohm\n\n",X1);
16 printf("(b) Impedance Z = \%.1 \text{ f ohm} \n', Z);
17 printf("(c) Current I = \%f A\n\n",I);
18 printf("(d) The p.d. across the coil = \%f V\n\n", V1)
19 printf("
                 The p.d. across the resistor = \%f V n n
      ", Vr);
20 printf("(e) Phase angle between voltage and current
      is given by, \n angle = \%d deg\n", phi*(180/%pi))
```

Scilab code Exa 15.11 Example 11

```
1 //Chapter 15, Problem 11 2 clc;
```

```
//inductance
3 L=1.273e-3;
4 \text{ Vr=6};
                              //pd across resistor
5 R = 30;
                              //resistor
6 f = 5e3;
                              //frequency in hertz
7 I=Vr/R;
                              //current
                             //inductive reactance
8 X1=2*\%pi*f*L;
                              //impedance
9 Z=sqrt(R^2+X1^2);
                              //supply voltage
10 V = I * Z;
                              //voltage across inductor
11 Vl = I * Xl;
12 printf("From circuit in Fig. 15.7(a) \n'");
13 printf("Supply voltage V = \%f V \setminus n \setminus n", V);
14 printf("Voltage across the 1.273mH inductance VI =
      %f V n n", V1);
15 printf ("The phasor diagram is shown in Fig. 15.7(b)"
      );
```

Scilab code Exa 15.12 Example 12

```
1 //Chapter 15, Problem 12
2 clc;
3 L=159.2e-3;
                                  //inductance in henry
                                  //resistance in ohm
4 Rc=20;
                                  //resistance in ohm
5 R1 = 60;
6 	ext{ f=50};
                                  //frequency in hertz
7 V = 240;
                                  //supply voltage
8 R=Rc+R1;
9 X1=2*%pi*f*L;
                                 //inductive reactance
                                 //impedance
10 Z=sqrt(R^2+X1^2);
11 I=V/Z;
12 phi = atan(X1/R);
13 Vr=I*R1;
14 Zcoil=sqrt(Rc^2+X1^2);
15 Vcoil=I*Zcoil;
16 V1 = I * X1;
17 Vrcoil=I*Rc;
```

Scilab code Exa 15.13 Example 13

```
1 //Chapter 15, Problem 13
2 clc;
3 R = 25;
                                  //resistance in ohm
4 C=45e-6;
                                   //capacitance in farad
5 V = 240;
                                   //supply voltage
6 	ext{ f=50};
                                   //supply frequency
7 Xc=1/(2*\%pi*f*C);
                                   //capacitive reactance
                                   //impedance
8 Z = sqrt(R^2 + Xc^2);
9 I=V/Z;
                                   //current
10 a = atan(Xc/R);
11 printf("(a) Impedance, Z = \%.2 f \text{ ohm} n \ ", Z);
12 printf("(b) Current, I = \%.2 f A \setminus n \setminus n", I);
13 printf("Phase angle between the supply voltage and
      current, = \%.2 f deg (leading)\n\n",a*(180/%pi));
```

Scilab code Exa 15.14 Example 14

```
1 //Chapter 15, Problem 14
2 clc;
3 I = 3;
4 Z=50;
                                                  //impedance
5 R = 40;
                                              //resistance in
      ohm
                                                  //supply
6 \text{ f=} 60;
      frequency
                                                   //capacitive
7 Xc = sqrt(Z^2-R^2);
      reactance
8 C=1/(2*\%pi*f*Xc);
                                               //capacitance in
       farad
9 V = I * Z;
                                               //voltage
10 a = atan(Xc/R);
11 Vr=I*R;
12 Vc = I * Xc;
13 printf("(a) Capacitance, C = \%.2 \text{ f uF} \cdot \text{n'n}, C*10^6);
14 printf("(b) Supply voltage V = \%d V \setminus n \setminus n", V);
15 printf("(c) Phase angle between the supply voltage
      and current, = \%.2 f deg (leading)\n\n",a*(180/%pi
      ));
16 printf("(d) p.d. across resistor, Vr = \%d V \setminus n \setminus n", Vr)
17 printf("p.d. across the capacitor, Vc = \%d V \setminus n \setminus n", Vc
18 printf("The phasor diagram is shown in Fig. 15.11,
      where the supply voltage V is the phasor sum of
      VR and VC.");
```

Scilab code Exa 15.15 Example 15

```
//inductance in
4 L=120e-3;
      henry
5 C=100e-6;
                                           //capacitance in
       farad
6 V = 300;
                                           //supply voltage
7 f = 50;
                                            //supply
      frequency
8 X1=2*\%pi*f*L;
                                            //inductive
      reactance
  Xc=1/(2*\%pi*f*C);
                                            //capacitive
      reactance
10 X = X1 - Xc;
11 Z = sqrt(R^2 + X^2);
                                           //impedance
                                           //current
12 I=V/Z;
13 phi=atan(X/R);
14 Zcoil=sqrt(R^2+X1^2);
                                             //impedance of
       coil
15 Vcoil=I*Zcoil;
                                             //voltage
      across coil
16 phi2=atan(X1/R);
17 Vc = I * Xc;
                                             //voltage
      across capacitor
18 printf("(a) Current, I = \%f A \setminus n \setminus n", I);
19 printf("(b) Phase angle = \%f deg (leading)\n\n",phi
      *(180/%pi));
20 printf("(c) Phase angle of coil = %f deg (lagging)\n
      n, phi2*(180/%pi));
21 printf("(d) Voltage across capacitor, Vc = \%f V n n"
      , Vc);
22 printf ("The phasor diagram is shown in Fig. 15.14.
      The supply voltage V is the phasor sum of VCOIL
      and VC.");
```

Scilab code Exa 15.16 Example 16

```
1 //Chapter 15, Problem 16, Fig 15.16
2 clc;
3 V = 40;
                                                    //supply voltage
                                                           //supply
4 f = 20 e3;
       frequency
5 R1 = 8;
                                                    //resistance in
       ohm
6 L=130e-6;
                                                     //inductance in
       henry
7 R2=5;
                                                    //resistance in
       ohm
8 R3 = 10;
9 C=0.25e-6;
                                                      //capacitance
       in farad
                                                           //eqv
10 Re=R1+R2+R3;
       resistance
11 X1=2*%pi*f*L;
                                                           //inductive
       reactance
12 Xc=1/(2*\%pi*f*C);
                                                         //capacitive
       reactance
13 X = Xc - X1;
14 Z=sqrt(Re^2+X^2);
                                                           //impedance
                                                           //current
15 I=V/Z;
16 phi=atan(X/Re);
17 Z2 = sqrt(R2^2 + X1^2);
18 Z3 = sqrt(R3^2 + Xc^2);
19 V1 = I * R1;
20 V2 = I * Z2;
21 V3 = I * Z3;
22 printf("(a) Current, I = \%.3 f A \setminus n \setminus n", I);
23 printf("Phase angle = \%.2 \, \text{f} \, \text{deg} \, (\text{leading}) \, \text{n}", phi
       *(180/%pi));
24 printf ("V1 = \%.2 \text{ f V} \setminus \text{n} \setminus \text{nV2} = \%.2 \text{ fV} \setminus \text{n} \setminus \text{nV3} = \%.2 \text{ fV}", V1,
       V2, V3)
```

Scilab code Exa 15.17 Example 17

```
1 //Chapter 15, Problem 17, Fig 15.17
2 clc;
3 R1 = 4;
                                             //resistance in
      ohm
                                             //resistance in
4 R2=8;
      ohm
                                                  //current in
5 I = 5;
       ampere
                                                  //supply
6 f = 5000;
      frequency
7 L=0.286e-3;
                                                //inductance
      in henry
                                                //capacitance
8 C=1.273e-6;
      in farad
9 X1=2*%pi*f*L;
                                                  //inductive
      reactance
10 Z1=sqrt(R1^2+X1^2);
11 V1 = I * Z1;
12 phi=atan(X1/R1);
                                                 //capacitive
13 Xc=1/(2*\%pi*f*C);
      reactance
14 Z2 = sqrt(R2^2 + Xc^2);
15 V2 = I * Z2;
16 phi2=atan(Xc/R2);
17 printf("Phase angle 1, phi = \%.2 \, \text{f} \, \text{deg (lagging)} \setminus n \setminus n"
      ,phi*(180/%pi));
18 printf ("Phase angle 2, phi2 = \%.2 \,\mathrm{f} deg (leading)\n\n
      ",phi2*(180/%pi));
19 printf("The phasor diagram is shown in Fig. 15.18");
```

Scilab code Exa 15.18 Example 18

```
1 //Chapter 15, Problem 18
```

```
2 clc;
3 R = 10;
                                            //resistance in
      ohm
4 L=125e-3;
                                             //inductance in
      henry
5 C = 60e - 6;
                                            //capacitance in
      farad
6 V = 120;
                                             //supply voltage
7 fr=1/(2*%pi*sqrt(L*C));
                                             //resonant
      frequency
8 I = V/R;
9 printf ("Frequency F at which resonance occur = \%.2 f
      Hz \setminus n \setminus n", fr);
10 printf ("Current I flowing at the resonant frequency
      = \%d A", I);
```

Scilab code Exa 15.19 Example 19

```
1 //Chapter 15, Problem 19
2 clc;
3 I = 100 e - 6;
                                                //supply
4 V = 2e - 3;
      voltage
5 f = 200 e3;
                                                 //frequency
                                                //inductance
6 L=50e-6;
       in henry
7 R=V/I;
      resistance in ohm
8 C=1/((2*\%pi*f)^2*L);
                                                 //
      capacitance in farad
9 printf("(a) Circuit resistance, R = \%d \text{ ohm} \ n', R);
10 printf("(b) Circuit capacitance, C = \%.1 f nF n r, c
      *10^9);
```

Scilab code Exa 15.20 Example 20

```
1 //Chapter 15, Problem 20
2 clc;
3 L=80e-3;
                                           //inductance in
      henry
4 C=0.25e-6;
                                             //capacitance
      in farad
5 R=12.5;
                                             //resistance in
       ohm
6 V = 100;
                                            //supply voltage
7 fr=1/(2*%pi*sqrt(L*C));
                                            //resonant
      frequency
8 I = V/R;
9 V1=I*2*%pi*fr*L;
10 Vc=I*1/(2*\%pi*fr*C);
11 Vm = V1/V;
12 printf("(a) Resonant frequency = \%.1 \text{ f Hz} / \text{n'n}, fr);
13 printf("(b) Current at resonance = \%d A\n\n",I);
14 printf(" Q-factor of the circuit = \%.3 \, \text{f}", Vm);
```

Scilab code Exa 15.21 Example 21

Scilab code Exa 15.22 Example 22

```
1 //Chapter 15, Problem 22
2 clc;
                                           //resistance in
3 R = 10;
      ohm
4 L=100e-3;
                                              //inductance in
      henry
5 C = 2e - 6;
                                         //capacitance in
      farad
                                              //voltage
6 V = 50;
7 fr=1/(2*%pi*sqrt(L*C));
                                             //resonant
      frequency
8 I = V/R;
                                              //current
9 V1=I*2*%pi*fr*L;
                                              //voltage across
       coil at resonance
10 Vc=I*1/(2*%pi*fr*C);
                                              //voltage across
       capacitance at resonance
11 Vm = V1/V;
12 printf("(a) Resonant frequency = \%.1 \text{ f Hz} \ \text{n",fr};
13 printf("(b) Current at resonance = \%d A\n\n",I);
14 printf("(c) Voltages across the coil and the
      capacitor at resonance\n Vl = %d V \setminus nVc = %d V \setminus n \setminus n
      ", V1, Vc);
15 printf("(d)Q-factor of the circuit = \%.2 \,\mathrm{f}", Vm);
```

Scilab code Exa 15.23 Example 23

```
1 //Chapter 15, Problem 23
2 clc;
3 R=10; //resistance in
ohm
```

Scilab code Exa 15.24 Example 24

Scilab code Exa 15.25 Example 25

Scilab code Exa 15.26 Example 26

Scilab code Exa 15.27 Example 27

Scilab code Exa 15.28 Example 28

Scilab code Exa 15.29 Example 29

```
1 //Chapter 15, Problem 29
2 clc;
3 V = 120;
                                               //voltage
                                               //frequency in
4 f = 50;
      hertz
5 P = 400;
                                               //power in watt
6 I=8;
                                               //current in
      ampere
7 R=P/I^2;
                                               //resistance in
      ohm
8 Z=V/I;
                                               //impedance
9 X1 = sqrt(Z^2 - R^2);
                                               //inductive
      reactance
                                               //power factor
10 pf = P/(V*I);
11 phi=acos(pf);
12 printf("(a) Resistance R = \%.2 f \text{ ohm} n \ ;
13 printf("(b) Impedance Z = \%d \text{ ohm} \ n \ ", Z);
14 printf("(c) Reactance = \%.2 \text{ f ohm} \n', X1);
15 printf("(d) Power factor = \%.4 \text{ f} \n\n",pf);
16 printf("(e) Phase angle = \%.2 \, f \, deg \, (lagging) \setminus n \setminus n",
      phi*(180/%pi));
```

Scilab code Exa 15.30 Example 30

```
1 //Chapter 15, Problem 30
2 clc;
3 V = 100;
                                           //voltage
                                          //frequency in
4 f = 60;
      hertz
5 P = 100;
                                          //power in watt
6 \text{ pf} = 0.5;
                                     //power factor
7 I=P/(pf*V);
                                        //current in ampere
8 R=P/I^2;
                                           //resistance in
      ohm
                                         //impedance
9 Z=V/I;
                                           //capacitive
10 Xc=sqrt(Z^2-R^2);
      reactance
11 C=1/(2*\%pi*f*Xc);
                                           //capacitance
12 phi=acos(pf);
13 printf("(a) Current I = \%d A\n\n",I);
14 printf("(b) Phase angle = \%d deg (leading)\n\n",phi
      *(180/%pi));
15 printf("(c) Resistance R = \%d \text{ ohm} \ n\ , R);
16 printf("(d) Impedance Z = %d n \ , Z);
17 printf("(e) Capacitance C = \%.2 f uF \ n\ ", C*10^6);
```

Chapter 16

Single phase parallel AC circuits

Scilab code Exa 16.1 Example 1

```
1 //Chapter 16, Problem 1
2 clc;
                                     //voltage
3 V = 60;
4 R = 20;
                                     //resistance in ohm
5 f = 1000;
                                     //frequency in hertz
6 L=2.387e-3;
                                     //inductance in
      henry
7 Ir=V/R;
                                     //current flowing in
      the resistor
8 X1=2*%pi*f*L;
                                     //inductive
      reactance
9 I1=V/X1;
                                     //current flowing in
       the inductance
10 I=sqrt(Ir^2+I1^2);
                                     //supply current
      from phasor diagram fig 16.1
11 phi=atan(Il/Ir);
12 \quad Z=V/I;
                                     //impedance
13 P=V*I*cos(phi);
                                     //power consumed
14 printf("(a) Current flowing in the resistor = %d A\
```

```
n\tCurrent flowing in the inductance = %d A\n\n",
Ir,Il);
15 printf("(b) Supply current = %d A\n\n",I);
16 printf("(c) Circuit phase angle = %.2 f deg (lagging)
\n\n",phi*(180/%pi));
17 printf("(d) Circuit impedance = %.1 f ohm\n\n",Z);
18 printf("(e) Power consumed = %d W",P);
```

Scilab code Exa 16.2 Example 2

```
1 //Chapter 16, Problem 2
2 clc;
3 V = 240;
                                         //voltage
4 R=80;
                                       //resistance in ohm
5 f = 50;
                                   //frequency in hertz
                                   //capacitance in farad
6 C = 30e - 6;
7 Ir=V/R;
                                        //current flowing in
       the resistor
8 Xc=1/(2*\%pi*f*C);
                                        //capacitive
      reactance
9 Ic=V/Xc;
                                        //current flowing in
       the capacitor
10 I=sqrt(Ir^2+Ic^2);
                                        //supply current
11 phi=atan(Ic/Ir);
12 \quad Z=V/I;
                                            //impedance
                                            //power consumed
13 P=V*I*cos(phi);
14 S = V * I;
                                            //apparent power
15 printf("(a) Current flowing in the resistor = %d A\
      n \setminus tCurrent flowing in the capacitor = \%.3 f A \setminus n \setminus n"
      , Ir , Ic);
16 printf("(b) Supply current = \%.3 f A n n", I);
17 printf("(c) Circuit phase angle = \%.2 f deg (leading)
      \n^n, phi*(180/%pi));
18 printf("(d) Circuit impedance = \%.2 \text{ f ohm} \n', Z);
```

```
19 printf("(e) Power consumed = %d W \setminus n \setminus n",P);
20 printf("(f) Apparent power = %.1 \text{ f VA}",S);
```

Scilab code Exa 16.3 Example 3

```
1 // Chapter 16, Problem 3, Fig. 16.3
2 clc;
3 V = 120;
                                        //voltage
4 f = 200;
                                         //frequency in
      hertz
                                        //supply current
5 I = 2;
6 \text{ pf} = 0.6;
                                           //power factor
7 phi=acos(pf);
                                       //current flowing in
8 \text{ Ir=I*pf};
       the resistor
9 Ic=I*sin(phi);
                                              //current
      flowing in the capacitor
                                           //resistance in
10 R=V/Ir;
      ohm
11 C=Ic/(2*\%pi*f*V);
                                           //capacitance in
       faradd
12 printf("Capacitance of capacitor = \%f uF\n\n", C
      *10^6);
13 printf ("Resistance of resistor = \%f ohm\n\n",R);
```

Scilab code Exa 16.4 Example 4

```
7 X1=2*%pi*f*L;
                                       //inductive
      reactance
8 Xc=1/(2*\%pi*f*C);
                                       //capacitive
      reactance
  I1=V/X1;
                                      //current flowing in
      the inductance
10 Ic=V/Xc;
                                       //current flowing in
       the capacitor
11 I=I1-Ic;
12 \quad Z=V/I;
13 P=V*I*cos(90*\%pi/180);
14 printf("(a) Branch current,\n II = \%.3 f A\nIc = \%.3 f
       A \setminus n \setminus n, II, Ic);
15 printf("(b) Supply current = \%.3 f A\nCurrent lags
      the supply voltage V by 90deg from Fig 16.4(i)", I
16 printf("(c) Circuit impedance Z = \%.3 f \text{ ohm} n \ , Z);
17 printf("(d) Power consumed P = \%d W, P);
```

Scilab code Exa 16.5 Example 5

```
1 //Chapter 16, Problem 5
2 clc;
3 L=120e-3;
                                  //inductance in henry
4 C = 25e - 6;
                                 //capacitance in farad
5 V = 100;
                                     //voltage
6 f = 150;
                                 //frequency in hertz
7 X1=2*%pi*f*L;
                                     //inductive
      reactance
8 Xc=1/(2*\%pi*f*C);
                                     //capacitive
      reactance
  I1=V/X1;
                                      //current flowing in
       the inductor
10 Ic=V/Xc;
                                      //current flowing in
      the capacitor
```

Scilab code Exa 16.6 Example 6

```
1 // Chapter 16, Problem 6, Fig. 16.6
2 clc;
3 L=159.2e-3;
                                      //inductance in henry
4 R = 40;
                                       //resistance in ohm
5 C = 30e - 6;
                                       //capacitance in
      farad
6 V = 240;
                                       //voltage
7 f = 50;
                                       //frequency
8 X1 = 2 * \%pi * f * L;
                                       //inductive
      reactance
9 Z1 = sqrt(R^2 + X1^2);
10 Ilr=V/Z1;
11 phi1=atan(X1/R);
12 Xc=1/(2*\%pi*f*C);
                                           //capacitive
      reactance
13 Ic=V/Xc;
14 Ih=Ilr*cos(51.34*\%pi/180);
15 a=-Ilr*sin(51.34*%pi/180);
16 b=Ic*sin(90*\%pi/180);
17 Iv=a+b;
18 I=sqrt(Ih^2+(Iv)^2);
19 phi2=atan(-Iv/Ih);
```

Scilab code Exa 16.7 Example 7

```
1 // Chapter 16, Problem 7, Fig. 16.8
2 clc;
3 L=0.12;
                               //inductance in henry
                                       //resistance in ohm
4 R=3000;
5 C=0.02e-6;
                                       //capacitance in
      farad
6 V = 40;
                                    //voltage
7 f = 5000;
                                       //frequency
                                    //inductive reactance
8 X1=2*\%pi*f*L;
9 Z1=sqrt(R^2+X1^2);
10 Ilr=V/Z1;
11 phi1=atan(X1/R);
12 Xc=1/(2*\%pi*f*C);
                                         //capacitive
      reactance
13 Ic=V/Xc;
14 Ih=Ilr*cos(51.34*\%pi/180);
15 a=-Ilr*sin(51.34*%pi/180);
16 b=Ic*sin(90*\%pi/180);
17 Iv=a+b;
18 I=sqrt(Ih^2+(Iv)^2);
```

```
19 phi2=atan(-Iv/Ih);
20 \quad Z=V/I;
                                                //impedance
21 P=V*I*cos(phi2);
                                           //apparent power
22 S = V * I;
23 Q=V*I*sin(phi2);
                                             //reactive power
24 printf("(a) Current in coil = \%.3 f mA\n Phase angle
      = \%.3 f \deg (lagging) \n\n, Ilr*1000, phi1*180/%pi);
25 printf("(b) Current in capacitor, Ic = %.3 f mA\n A
      leading the supply voltage by 90 \deg \ln n, Ic*1000)
26 printf("(c) Supply current I = \%.3 f mA\n phase angle
       = \%.3 \, f \, \deg \, \ln \, ..., 1*1000, -phi2*180/%pi);
27 printf("(d) Circuit impedance Z = \%.3 f \text{ Kohm} n n, Z
      /1000);
28 printf("(e) Power consumed P = \%.3 \text{ f mW} / n / n", P*1000);
```

Scilab code Exa 16.8 Example 8

```
1 //Chapter 16, Problem 8
2 clc;
3 L=150e-3;
                                  //inductance in henry
4 C=40e-6;
                                    //capacitance in farad
5 V = 50;
                                    //voltage
                                    //resonant frequency
6 fr=(2*\%pi)^-1*sqrt(1/(L*C));
7 Xc=1/(2*\%pi*fr*C);
                                      //capacitive
      reactance
8 Icir=V/Xc;
                                      //current
      circulating in L and C at resonance
9 printf("(a) Resonant frequency of the circuit = \%.3 f
       Hz \setminus n \setminus n", fr);
10 printf("(b) Current circulating in the capacitor and
       inductance at resonance = \%.3 f A, Icir);
```

Scilab code Exa 16.9 Example 9

```
1 //Chapter 16, Problem 9
2 clc;
3 L=0.20;
                                 //inductance in henry
4 R = 60;
                                     //resistance in ohm
                                    //capacitance in farad
5 C = 20e - 6;
                                    //voltage
6 V = 20;
7 fr=(2*\%pi)^-1*sqrt((1/(L*C))-(R^2/L^2));
8 X1=2*%pi*fr*L;
                                      //inductive reactance
9 Rd=L/(R*C);
                                       //dynamic resistance
10 Ir=V/Rd;
                                       //current at
      resonance
                                       //circuit Q-factor
11 Q=X1/R;
      at resonance
12 printf("(a) Resonant frequency of the circuit = \%.2 f
       Hz \setminus n \setminus n", fr);
13 printf("(b) Dynamic resistance Rd = \%.2 f ohm \n\n", Rd
14 printf("(c) Current at resonance Ir = \%.2 f A\n\n", Ir
      );
15 printf("(d) Q factor of circuit = \%.2 \,\mathrm{f}",Q);
```

Scilab code Exa 16.10 Example 10

```
1 //Chapter 16, Problem 10
2 clc;
3 L=100e-3;
                                 //inductance in henry
4 R=800;
                                     //resistance in ohm
5 f = 5000;
                                      //frequency
                                  //voltage
6 V = 12;
7 w = 2 * \%pi * f;
8 C=(L*(w^2+(R^2/L^2)))^{-1};
                                       //capacitance in
     farad
9 X1=2*%pi*f*L;
                                   //inductive reactance
```

Scilab code Exa 16.11 Example 11

```
1 // Chapter 16, Problem 11, Fig 16.13(a)
2 clc;
3 f = 50;
                                 // in ohm
4 V = 240;
                                  // in Volts
                                 // power factor
5 pf = 0.6
6 \text{ Im} = 50;
                                 // in amperes
8 //calculation:
9 \text{ phi} = a\cos(pf)
10 phid = phi*180/%pi
11 Ic = Im*sin(phi)
12 I = Im * cos(phi)
13 printf("\n (a) The capacitor current Ic must be %.0
      f A for the power factor to be unity. ", Ic)
14 printf("\n\ (b) Supply current I = \%.0 f A ",I)
```

Scilab code Exa 16.13 Example 13

```
1 //Chapter 16, Problem 13
2 clc;
3 \text{ eff} = 0.8;
                                    // effficiency
                                    // in ohm
4 f = 50;
5 \text{ Pout} = 4800;
                                    // in Watt
6 pf1 = 0.625
                                    // power factor
                                    // power factor
7 pf2 = 0.95
8 V = 240;
                                    // in Volts
9 //calculation:
10 Pin = Pout/eff
11 Im = Pin/(V*pf1)
12 \text{ phi1} = a\cos(pf1)
13 phi1d = phi1*180/%pi
14 //When a capacitor C is connected in parallel with
      the motor a current Ic flows which leads V by 90
15 \text{ phi2} = a\cos(pf2)
16 phi2d = phi2*180/%pi
17 \quad Imh = Im*cos(phi1)
18 //Ih = I*cos(phi2)
19 Ih = Imh
20 I = Ih/cos(phi2)
21 \text{ Imv} = \text{Im} * \sin(\text{phi}1)
22 \text{ Iv} = I*\sin(\text{phi}2)
23 Ic = Imv - Iv
24 \ C = Ic/(2*\%pi*f*V)
25 \text{ kvar} = V*Ic/1000
26 printf("\n\n (a) Current taken by the motor, Im = \%.0
      f A", Im)
27 printf("\n\n (b) Supply current after p.f. correction
      , I = \%.2 f A ", I)
28 printf("\n\n (c) Magnitude of the capacitor current
      Ic = \%.0 f A", Ic)
29 printf("\n\ (d) Capacitance, C = \%.0 \,\text{f} F", (C/1E-6)
30 printf("\n (d) kvar rating of the capacitor = \%. 2 f
      kvar ", kvar)
```

Chapter 17

Filter networks

Scilab code Exa 17.1 Example 1

```
1 //Chapter 17, Problem 1, Figure 17.8
2 clc;
3 L=200*10^-3;
                                   //inductance in henry
4 C=0.2*10^-6;
                                  //capacitance in farad
5 fc=1/(%pi*sqrt(L*C));
                                   //cut-off frequency
6 R0 = sqrt(L/C);
                                   //nominal impedance
8 disp ("Comparing Fig. 17.8 with the low-pass section
      of Fig. 17.7(a),");
9 printf("Inductance L = \%f H \setminus n \setminus n",L);
10 printf("Capacitance C = \%f uF \setminus n \setminus n", C*10^6);
11 printf("Cut off frequency fc = \%f KHz\n\n",fc/1000)
12 printf ("Nominal impedance R0 = \%f \text{ Kohm} n n", R0/1000)
```

Scilab code Exa 17.2 Example 2

```
1 //Chapter 17, Problem 2, Figure 17.9
2 clc;
3 C=2*200*10^-12;
                                        //capacitance in
      farad
4 L=0.4;
                                          //inductance in
      henry
5 fc=1/(%pi*sqrt(L*C));
                                          //cut-off frequency
6 R0 = sqrt(L/C);
                                          //nominal impedance
7 disp ("Comparing Fig. 17.9 with the low-pass section
      of Fig. 17.7(a),");
8 printf("Inductance L = \%f H \setminus n \setminus n", L);
9 printf ("Capacitance C = \%f pF \setminus n \in (C*10^12);
10 printf ("Cut off frequency fc = \%.2 \text{ f KHz} \ln \text{"}, \text{fc/1000}
       );
11 printf ("Nominal impedance R0 = \%.2 f \text{ Kohm} n n", RO
      /1000);
```

Scilab code Exa 17.3 Example 3

```
1 //Chapter 17, Problem 3
2 clc;
3 R0 = 600;
                                   //nominal impedance
4 fc=5*10^6;
                                    //cut-off frequency
5 C=1/(%pi*R0*fc);
                                   //capacitance in farad
6 L=R0/(%pi*fc);
                                     //inductance in henry
7 printf ("Inductance L = \%d uH \ln n", L*10^6);
8 printf ("Capacitance C = \%d pF \setminus n \cdot n", C*10^12);
9 printf("A low-pass T-section filter is shownin Fig.
      17.10(a), nn");
10 printf("A low-pass pi-section filter is shownin Fig.
       17.10(b), nn");
```

Scilab code Exa 17.4 Example 4

```
1 // Chapter 17, Problem 4, Figure 17.17
2 clc;
3 C=(0.2*10^-6)/2;
                                        //capacitance in
      farad
4 L=100*10^-3;
                                         //inductance in
      henry
5 fc=1/(4*%pi*sqrt(L*C));
                                          //cut-off frequency
                                           //nominal
6 R0 = sqrt(L/C);
      impedance
7 disp ("Comparing Fig. 17.17 with the low-pass section
       of Fig. 17.16(a),");
8 printf ("Inductance L = \%f H \setminus n \setminus n", L);
9 printf("Capacitance C = \%f uF \setminus n \setminus n", C*10^6);
10 printf("Cut off frequency fc = \%.1 \, f Hz\n\n",fc);
11 printf ("Nominal impedance R0 = \%d \text{ Kohm} \ n', R0/1000)
```

Scilab code Exa 17.5 Example 5

```
1 //Chapter 17, Problem 5, Figure 17.18
2 clc;
3 L=(200*10^-6)/2;
                                         //inductance in
      henry
4 C=4000*10^-12;
                                        //capacitance in
      farad
5 fc=1/(4*%pi*sqrt(L*C));
                                        //cut-off frequency
6 R0 = sqrt(L/C);
                                        //nominal impedance
7 disp ("Comparing Fig. 17.18 with the low-pass section
       of Fig. 17.16(b),");
8 printf("Inductance L = \%f H \setminus n \setminus n", L);
9 printf("Capacitance C = \%f uF \ln n", C*10^6);
10 printf ("Cut off frequency fc = \%d KHz\n\n",fc/1000)
11 printf ("Nominal impedance R0 = \%d \text{ ohm} \ n \ , R0);
```

Scilab code Exa 17.6 Example 6

```
1 //Chapter 17, Problem 6
2 clc;
3 \text{ fc} = 25 * 10^3;
                                                // cut - off
      frequency
4 R0=600;
                                               //nominal
      impedance
5 C=1/(4*\%pi*R0*fc);
                                                //capacitance
       in farad
6 L=R0/(4*\%pi*fc);
                                                //inductance
      in henry
7 printf("Inductance L = \%f \text{ mH} / n , L*10^3);
8 printf("Capacitance C = \%f pF \setminus n \setminus n", C*10^12);
9 printf("A high-pass T-section filter is shownin Fig.
       17.19(a), nn");
10 printf("A high-pass pi-section filter is shownin Fig
      . 17.19(b), nn";
```

Scilab code Exa 17.7 Example 7

```
//inductance
7 L1=R0/(%pi*fcl);
     in henry
8 C2=1/(4*\%pi*R0*fch);
                                            //capacitance
      in farad
9 L2=R0/(4*\%pi*fch);
                                             //inductance
       in henry
10 disp("Thus, from Fig. 17.7(a), the series arm
      inductances are each L/2");
11 printf("the series arm inductances L/2 = \%f mH \ n",(
     L1/2)*10^3;
12 printf("and the shunt arm capacitance = \%f nF\n\n",
     C1*10^9);
13 disp("Thus, from Fig. 17.16(a), the series arm
      capacitances are each 2C");
14 printf("the series arm capacitances 2C = \%f \text{ nF} \ n",2*
     C2*10^9);
15 printf("and the shunt arm inductance = \%f mH\n\n",L2
      *10^3);
16 disp("The composite, band-pass filter is shown in
      Fig. 17.24.");
```

Chapter 18

DC transients

Scilab code Exa 18.1 Example 1

```
1 //Chapter 18, Problem 1
2 clc;
3 v = 120;
                             //dc supply
4 c=15e-6;
                             //capacitance in farad
5 r = 47 e 3;
                             //resistance in ohms
6 \text{ taw=r*c};
                             //time constant
7 t1=taw;
8 vcta= v*(1-%e^(-1*t1/taw));
9 vct = v/2;
10 t = 0:0.1:10
11 vc = v*(1-\%e^{(-1*t/taw)});
12 plot(t, vc)
13 xtitle("capacitor voltage/time characteristic", "t",
       "Vc")
14 t = -1*taw*log(1 - vct/v);
16 printf("\n (a) The capacitor voltage at a time equal
      to one time constant = \%.2 \,\mathrm{f} V", vcta)
17 printf("\n (b)The time for the capacitor voltage to
```


Figure 18.1: Example 1

Figure 18.2: Example 2

reach one half of its steady state value = $\%.1\,\mathrm{f}$ sec",t)

Scilab code Exa 18.2 Example 2

```
1 // Chapter 18, Problem 2
2 clc;
3 // initializing the variables:
4 c = 4E-6; // capacitance in
```

```
farad
5 r = 220000;
                                        //resistance in ohm
                                        //supply voltage
6 V = 24;
7 t1 = 1.5;
9 //calculation:
10 \text{ taw} = r*c
11 t = 0:0.1:10
12 Vc = V*(1-\%e^{(-1*t/taw)});
13 plot2d(t,Vc)
14 xtitle("capacitor voltage/time characteristic", "t",
       "Vc")
15 xset ('window',1)
16 VR = V*(1-\%e^{(-1*t/taw)});
17 plot2d(t, VR)
18 xtitle("resistor voltage/time characteristic", "t",
      "VR")
19 xset ('window', 2)
20 I = V/r
21 i = I*\%e^{(-1*t/taw)}
22 plot2d(t,i)
23 xtitle("current/time characteristic", "t", "i")
24 \text{ Vct1} = \text{V*\%e}^{(-1*t1/taw)}
25 \text{ VRt1} = \text{V*\%e}^{(-1*t1/taw)}
26 \text{ it1} = I*\%e^{(-1*t1/taw)}
27
28 printf("\n The value of capacitor voltage is %.2 f V
      \,\n\n resistor voltage is \%.2 f V,\n\n current is
      %.1E A at one and a half seconds after discharge
      has started.", Vct1, VRt1, it1)
```

Scilab code Exa 18.3 Example 3

```
1 // Chapter 18, Problem 3
2 clc;
```

```
3 //initializing the variables:
4 C = 20E-6;
                                           //capacitance in
      farads
5 R = 50000;
                                           //resistance in ohms
6 V = 20;
                                           //supply voltage
7 t1 = 1;
                                           // in secs
                                           // in secs
8 t2 = 2;
9 \text{ VRt} = 15;
                                           // in volts
10
11 //calculation:
12 \text{ taw} = R*C
13 I = V/R
14 Vct1 = V*(1-\%e^{(-1*t2/taw)})
15 t3 = -1*taw*log(VRt/V)
16 \text{ it1} = I * \%e^{(-1 * t1/taw)}
17
18
19 printf("\n (a) Initial value of the current flowing =
       \%.4 \text{ f mA} \ \text{n} \ \text{n} \ \text{, I*10^3}
20 printf("\n (b)Time constant of the circuit = \%.0 f
       \sec \langle n \rangle n, taw)
21 printf("\n (c)) The value of the current one second
       after connection = \%.3 \text{ f mA/n/n}, (it1/1E-3))
22 printf("\n (d)The value of the capacitor voltage two
        seconds after connection = \%.2 \, f \, V \setminus n \setminus n, Vct1)
23 printf("\n (e) The time after connection when the
       resistor voltage is 15 \text{ V} = \%.3 \text{ f sec/n/n}, t3)
```

Scilab code Exa 18.4 Example 4

Scilab code Exa 18.5 Example 5

```
1 //Chapter 18, Problem 5
2 clc;
3 //Initializing the variables
4 C=10*10^-6;
                                  //capacitance in farad
5 R = 25 * 10^3;
                                  //resistance in ohm
6 V = 100;
                                  //voltage dc supply
                                  //time in seconds
7 t1=0.5;
                                  //time in seconds
8 t2=0.1;
                                  //capacitor voltage
9 \text{ vc1} = 45;
10 Vm = V;
11
12 // Calculation
13 taw=C*R;
                                                //time
      constant
14 Im=V/R;
                                                //maximum
      current
15 vc = Vm * (1 - exp(-t1/taw));
                                                //voltage
      across the capacitor
16 i = Im * exp(-taw/taw);
                                                //current
      flowing after one time constant
                                                //voltage
17 vr=V*exp(-t2/taw);
```

```
across the resistor
18 t3=-(\log(1-(vc1/Vm))/\log(\exp(1)))*taw; //time in
      seconds
                                               //initial
19 vt=V/taw;
      rate of voltage rise
20
21
22 printf("\n(a) Time constant = \%f sec\n", taw);
23 printf("\n(b) Maximum current = \%f mA\n", Im*10^3);
24 printf("\n(c) Voltage across the capacitor after 0.5
       s = \%f V n, vc);
25 printf("\setminusn(d) Current flowing after one time
      constant = \%f mA\n",i*10^3);
26 printf("\n(e) Voltage across the resistor after 0.1
      s = \%f V n, vr);
27 printf("\setminus n(f)) Time for the capacitor voltage to
      reach 45V = \%f \text{ s} n",t3);
28 printf("\n(g) Initial rate of voltage rise = \%f V\n"
      , vt);
```

Scilab code Exa 18.6 Example 6

```
1 //Chapter 18, Problem 6
2 clc;
3
4 //initializing the variables:
5 R = 50000;
                              //resistance in ohms
6 V = 100;
                              //supply voltage
7 \text{ Vc1} = 20;
                              // in volts
                              // in secs
8 \text{ tou} = 0.8;
                              // in secs
9 	 t1 = 0.5;
10 t2 = 1;
                              // in secs
11
12 //calculation:
13 C = tou/R
```

```
14 t = -1*tou*log(Vc1/V)
15 I = V/R
16 \text{ it1} = I*\%e^{(-1*t1/tou)}
17 Vc = V*\%e^{(-1*t2/tou)}
18
19
20 printf("\n (a) The value of the capacitor = \%f uF\n\n
      ",C*10^6)
21 printf("\n (b) The time for the capacitor voltage to
       fall to 20 V = \%.2 f \sec \ln ",t)
22 printf("\n (c)The current flowing when the capacitor
       has been discharging for 0.5 \text{ s} = \% \text{f mA} \cdot \text{n}, it1
      *10^3)
23 printf("\n (d)The voltage drop across the resistor
      when the capacitor has been discharging for one
      second = \%.1 f V \setminus n \setminus n", Vc)
```

Scilab code Exa 18.7 Example 7

```
1 //Chapter 18, Problem 7
2 clc;
3
4 //initializing the variables:
5 C = 0.1E-6;
                             //capacitance in farads
6 R = 4000;
                             //resistance in ohms
7 V = 200;
                             //supply voltage
8 \text{ Vc1} = 2;
                             // in volts
10 //calculation:
11 taw = R*C
12 I = V/R
13 t = -1*taw*log(Vc1/V)
14
15 printf("\n (a) Initial discharge current = \%.2 f A\n\n
     ",I)
```


Figure 18.3: Example 8

```
16 printf("\n (b)Time constant tou = \%.4\,\mathrm{f} sec\n\n",taw)
17 printf("\n (c)Minimum time required for the voltage across the capacitor to fall to less than 2~\mathrm{V}=\%. .3\,\mathrm{f} sec",t)
```

Scilab code Exa 18.8 Example 8

```
1 //Chapter 18, Problem 8
2 clc;
3 //initializing the variables:
4 L = 0.1; //inductance in henry
```

```
5 R = 20;
                            //resistance in ohms
6 V = 60;
                            //supply voltage
7 i2 = 1.5;
                            // in amperes
9 //calculation:
10 \text{ taw} = L/R
11 \ t1 = 2*taw
12 t = 0:0.0001:0.025
13 I = V/R
14 i = I*(1 - %e^(-1*t/taw))
15 plot2d(t,i)
16 xtitle("current/time characteristic", "t", "i")
17 i1 = I*(1 - %e^{(-1*t1/taw)})
18 t2 = -1*taw*log(1 - i2/I)
19
20
21 printf("\n (a)The value of current flowing at a time
       equal to two time constants = \%.3 f A n n, i1)
22 printf("\n (b)The time for the current to grow to
      1.5 A = \%.7 f sec n ", t2)
```

Scilab code Exa 18.9 Example 9

Scilab code Exa 18.10 Example 10

```
1 //Chapter 18, Problem 10
2 clc;
3
4 //initializing the variables:
5 L = 3;
                             //inductance in henry
6 R = 15;
                             //resistance in ohms
7 V = 120;
                             //supply voltage
8 t1 = 0.1;
                            // in secs
9 t3 = 0.3;
                            // in secs
10
11 //calculation:
12 taw= L/R
13 I = V/R
14 i2 = 0.85 * I
15 VL = V*\%e^{(-1*t1/taw)}
16 	 t2 = -1*taw*log(1 - (i2/I))
17 i3 = I*(1 - %e^{(-1*t3/taw)})
18
19 printf("(a) Steady state value of current = \%.0 f A n
```


Figure 18.4: Example 11

```
n",I)
20 printf("(b)Time constant of the circuit = %.3f sec\n
    \n",taw)
21 printf("(c)Value of the induced e.m.f. after 0.1 s =
    %.2f V\n\n",VL)
22 printf("(d)Time for the current to rise to 0.85
    times of its final values = %.3f sec\n\n",t2)
23 printf("(e)Value of the current after 0.3 s = %.3f A
    \n\n",i3)
```

Scilab code Exa 18.11 Example 11

```
1 //Chapter 18, Problem 11
2 clc;
4 //initializing the variables:
5 R = 15;
                            //resistance in ohms
6 V = 110;
                            //supply voltage
7 \text{ taw} = 2;
                            //time constant
8 t1 = 3;
                            // in secs
9 i2 =5;
                            // in amperes
10
11 //calculation:
12 L = taw*R
13 t = 0:0.1:10
14 I = V/R
15 i = I*(\%e^{(-1*t/taw)})
16 plot2d(t,i)
17 xtitle ("current/time characteristic", "t", "i")
18 i1 = I*(%e^(-1*t1/taw))
19 t2 = -1*taw*log((i2/I))
20
21
22 printf("\n Inductance is \%.0 f H\n\n",L)
23 printf("\n (a) The current flowing in the winding 3 s
       after being shorted-out = \%.2 f A n n, i1)
24 printf("\n (b) The time for the current to decay to 5
      A = \%.3 f sec nn",t2)
```

Scilab code Exa 18.12 Example 12

```
//time constant
7 \text{ taw} = 0.3;
                         // in secs
8 t1 = 1;
10 //calculation:
11 R = (L/taw) - r
12 Rt = R + r
13 I = V/Rt
14 i2 = 0.1*I
15 i1 = I*(%e^{(-1*t1/taw)})
16 t2 = -1*taw*log((i2/I))
17
18 printf("\n (a) Resistance of the coil = \%.0 f ohm\n\n"
19 printf("\n (b) Current flowing in the circuit one
      second after the shorting link has been placed =
     \%.3 f A \ n \ ",i1)
20 printf("\n (c) The time for the current to decay to
      0.1 times of initial value = \%.3 \, f \, \sec \ln^n, t2)
```

Scilab code Exa 18.13 Example 13

```
1 //Chapter 18, Problem 13
2 clc;
3 //initializing the variables:
4 L = 0.2;
                                 //inductance in henry
                                 //resistance in ohms
5 R = 1000;
6 V = 24;
                                 //supply voltage
8 //calculation:
9 \text{ taw} = L/R
10 t1 = 1*taw // in secs
11 t2 = 2*taw // in secs
12 t3 = 3*taw // in secs
13 I = V/R
14 i1 = I*(1 - %e^{(-1*t1/taw)})
```

Chapter 19

Operational amplifiers

Scilab code Exa 19.1 Example 1

Scilab code Exa 19.2 Example 2

Scilab code Exa 19.3 Example 3

Scilab code Exa 19.4 Example 4

```
1 //Chapter 19, Problem 4
2 clc;
3 \text{ Ri} = 1000;
                                   //input resistance
                                   //feedback resistance
4 Rf = 2000;
5 \text{ Vil=0.4};
                                   //input voltage 1
6 Vi2 = -1.2;
                                   //input voltage 2
                                  //output voltage 1
7 V01 = (-Rf/Ri) * Vi1;
                                  //output voltage 2
8 V02=(-Rf/Ri)*Vi2;
9 printf("(a) When Vi = 0.4V,\n\n\ V0 = \%.1 f V\n\n", V01);
10 printf("(b) When Vi = -1.2V,\n V0 = \%.1 f V\n\n", V02)
```

Scilab code Exa 19.5 Example 5

```
7 Vos=Ib*((Ri*Rf)/(Ri+Rf)); //output offset voltage
8 printf("(a) Voltage gain = %f \n\n",A);
9 printf("(b) Output offset voltage due to the input
        bias current = %.2 f mV\n\n",Vos*1000);
10 printf("(c) The effect of input bias current can be
        minimised by ensuring that both inputs see
        the same driving resistance.\n");
11 printf("This means that a resistance of value of 9.9
        k (from part (b)) should be placed between the
        non-inverting (+) terminal and earth in Fig. 19.6
        ");
```

Scilab code Exa 19.6 Example 6

```
1 // Chapter 19, Problem 6, Fig. 19.6
2 clc;
3 \text{ Av} = 40;
                                      //voltage gain
4 B = 5000;
                                       //bandwidth
5 Ri = 10000;
                                       //input resistance
6 A=10^(Av/20);
                                       //voltage gain in
     decibels
                                       //feedback
7 Rf = A * Ri;
     resistance
8 f = A * B;
                                       //frequency
9 printf ("Gain = %d\n\nFeedback Resistor Rf = %d
     Megaohm\n\nFrequency = \%d Khz", A, Rf/10^6, f/1000);
```

Scilab code Exa 19.7 Example 7

Scilab code Exa 19.8 Example 8

```
1 // Chapter 19, Problem 8, Fig. 19.12
2 clc;
                                                       //
3 R1 = 10 e3;
      resistance 1
                                                   //resistance
4 R2=20e3;
       2
5 R3 = 30 e3;
                                                   //resistance
       3
6 V1 = 0.5;
                                                   //input
      voltage 1
                                                    //input
7 V2=0.8;
      voltage 2
                                                       //input
8 V3=1.2;
      voltage 3
9 \text{ Rf} = 50 \text{ e3};
      feedback resistance
10 V0 = -Rf * ((V1/R1) + (V2/R2) + (V3/R3));
                                                       //output
       voltage
11 printf("Output voltage = %f V", V0);
```

Scilab code Exa 19.10 Example 10

```
1 //Chapter 19, Problem 10
2 clc;
3 R=200e3; //resistance
```

Scilab code Exa 19.11 Example 11

```
1 //Chapter 19, Problem 11
2 clc;
3 R1 = 10 e3;
                                 //resistance 1
4 R2=10e3;
                                 //resistance 2
                                  //resistance 3
5 R3 = 100 e3;
6 Rf = 100 e3;
                                  //feedback resistance
7 V1 = 5e - 3;
                                 //input voltage 1
8 V2=5e-3;
                                 //input voltage 2
9 V3 = 50e - 3;
                                  //input voltage 3
10 V4 = 25e - 3;
                                  //input voltage 4
                                  //input voltage 5
11 V5 = 25e - 3;
12 V6 = 50 e - 3;
                                  //input voltage 6
13 V01 = (-Rf/R1) * V1;
                                                 //output
      voltage 1
14 V02 = (R3/(R2+R3))*(1+(Rf/R1))*V2;
                                                  //output
      voltage 2
15 V03 = (V3 - V4) * (-Rf/R1);
                                                  //output
      voltage 3
16 V04 = (V6 - V5) * (R3/(R2+R3)) * (1+(Rf/R1));
                                                   //output
      voltage 4
17 printf("(a) V0 = \%d \ mV \ n', V01*1000);
18 printf("(b) V0 = \%d \ mV \ n \ ", V02*1000);
19 printf("(c) V0 = %d mV \ n\ ", V03*1000);
20 printf("(d) V0 = %d mV \ n \ ", V04*1000);
```

Chapter 20

Three phase systems

Scilab code Exa 20.1 Example 1

Scilab code Exa 20.2 Example 2

Scilab code Exa 20.4 Example 4

```
1 // Chapter 20, Problem 4, Fig. 20.7
2 clc;
3 V1 = 415;
                                            //3-phase supply
4 Pr = 24000;
                                            //resistance in
      ohm
5 Py = 18000;
                                            //resistance in
      ohm
6 Pb = 12000;
                                            //resistance in
      ohm
7 Vp=V1/sqrt(3);
                                            //phase voltage
8 Ir=Pr/Vp;
                                            //current in
      each line
9 Iy=Py/Vp;
10 Ib=Pb/Vp;
11
12 //calculating current in the neutral conductor
13 Irh=\cos(90*\%pi/180);
14 Iyh = cos(330 * \%pi/180);
15 Ibh = cos(210 * \%pi/180);
16 Irv = sin(90 * \%pi/180);
17 Iyv = sin(330 * \%pi/180);
18 Ibv=sin(210*%pi/180);
19 Ih=(Ir*Irh)+(Iy*Iyh)+(Ib*Ibh);
```

Scilab code Exa 20.5 Example 5

Scilab code Exa 20.6 Example 6

Scilab code Exa 20.7 Example 7

```
1 //Chapter 20, Problem 7
2 clc;
3 R=3;
                                  //resistance of coil
4 X1 = 4;
                                  //inductive reactance
                                  //3 phase supply
5 V1 = 415;
6 Vp1=415;
                                  //line voltage
7 Vp=V1/sqrt(3);
                                  //phase voltage for star
       connection
8 Zp=sqrt(R^2+X1^2);
                                  //impedance per phase
9 Ip=Vp/Zp;
                                  //phase current
                                  //phase voltage
10 Ip1=Vp1/Zp;
11 Il1=Ip1*sqrt(3);
                                  //line current
12 printf("(i) For star connection\n
                                         (a) Line
      voltage = %d V n
                           Phase voltage = \%f V\n\n", V1,
      Vp);
13 printf("
                 (b) Line current = \%d V \setminus n
                                                 Phase
      current = \%f V \setminus n \setminus n, [p, Ip);
14 printf("(ii) For delta connection\n
                                            (a) Line
      voltage = %d V n
                           Phase voltage = \%d V n n, Vp1
      , Vp1);
15 printf("
                 (b) Line current = \%f V \setminus n
                                                 Phase
      current = \%f V \ n", Il1, Ip1);
```

Scilab code Exa 20.8 Example 8

```
1 //Chapter 20, Problem 8
```

Scilab code Exa 20.9 Example 9

Scilab code Exa 20.11 Example 11

```
//Power P = VL*IL*(3^0.5)*cos(phi) or P = 3*Ip*Ip*
Rp)
IL = Pi/(VL*(3^0.5)*pf) // line current

//For a delta connection:
//IL = Ip*(3^0.5)
Ip = IL/(3^0.5)

printf("\n\n (a)Power input = %d W",Pi)
printf("\n\n (b)Line current = %.2 f A",IL)
printf("\n\n (c)Phase current = %.2 f A",Ip)
```

Scilab code Exa 20.13 Example 13

```
1 //Chapter 20, Problem 13
2 clc;
3 V1 = 400;
                                        //supply voltage
                                        //resistance
4 Rp=30;
5 \text{ X1=40};
                                        //inductive
      reactance
6 Zp = sqrt(Rp^2 + X1^2);
                                        //phase impedance
7 Ip=V1/Zp;
                                        //phase current
                                        //line current
8 Il=sqrt(3)*Ip;
                                        //power factor
9 pf = Rp/Zp;
10 P=sqrt(3)*V1*I1*pf;
                                        //power dissipated
11 S=sqrt(3)*V1*I1;
                                        //alternator output
      KVA
12 printf("(a) Current is supplied by alternator = \%.3 f
       A \setminus n \setminus n", Il);
13 printf("(b) Output power = \%.2 \text{ f kW} n", P/1000);
                 Alternator ouput KVA = \%.2 f KVA", S/1000)
14 printf("
      ;
```

Scilab code Exa 20.14 Example 14

```
1 //Chapter 20, Problem 14
2 clc;
3 f = 50;
                                            //supply frequency
4 Rp=30;
                                            //resistance
5 C = 80e - 6;
                                            //capacitance
6 V1 = 400;
                                            //3 phase supply
7 Xc=1/(2*\%pi*f*C);
                                            //capacitive
       reactance
8 \text{ Zp=sqrt}(\text{Rp}^2+\text{Xc}^2);
                                            //phase impedance,
                                            //power factor
9 \text{ pf} = \text{Rp}/\text{Zp};
10 phi=acos(pf);
                                            //phase angle
11 Ip=V1/Zp;
                                            //phase current
12 Il=sqrt(3)*Ip;
                                            //line current
13 P=sqrt(3)*V1*I1*cos(phi);
                                            //power dissipated
14 S=sqrt(3)*V1*I1;
                                            //total KVA
15 printf("(a) Phase current = \%.3 f A \ln n", Ip);
16 printf("(b) Line current = \%.2 \text{ f A} \times \%, Il);
17 printf("(c) Total power dissipated = \%.3 \text{ f kW} \cdot \text{n} \cdot \text{n}", P
       /1000);
18 printf("(d) Total kVA = \%.3 \text{ f kVA} \cdot \text{n} \cdot \text{n}, S/1000);
19 printf ("The phasor diagram for the load is shown in
       Fig. 20.18");
```

Scilab code Exa 20.15 Example 15

```
9 printf("(b) Power factor = \%.3 \,\mathrm{f} ",pf);
```

Scilab code Exa 20.16 Example 16

Scilab code Exa 20.17 Example 17

```
1 //Chapter 20, Problem 17
2 clc;
3 P1=10;
                                    //power 1 in watt
                                    //power 2 in watt
4 P2 = -3;
                                    //total input power
5 P = P1 + P2;
6 phi=atan(sqrt(3)*((P1-P2)/(P1+P2)));
7 pf = cos(phi);
                                    //load power factor
8 disp("Since the reversing switch on the wattmeter
     had to be operated the 3kW reading is taken as
        3 kW");
9 printf("(a) Total input power = \%f kW\n\n",P);
10 printf("(b) Power factor = \%f ",pf);
```

Scilab code Exa 20.18 Example 18

```
1 //Chapter 20, Problem 18
2 clc;
3 R = 8;
                                    //resistance
4 XL = 8;
                                    //inductive reactance
5 \text{ VL} = 415;
                                    //supply voltage
7 //calculation:
8 //For a star connection:
9 //IL = Ip
10 /VL = Vp*(3^0.5)
11 VLs = VL
12 Vps = VLs/(3^0.5)
13 //Impedance per phase,
14 \quad Zp = (R*R + XL*XL)^0.5
15 Ips = Vps/Zp
16 ILs = Ips
17 //Power dissipated, P = VL*IL*(3^0.5)*cos(phi)
      P = 3*Ip*Ip*Rp)
18 pf = R/Zp
19 Ps = VLs*ILs*(3^0.5)*pf
20 //If wattmeter readings are P1 and P2 then P1 + P2 =
       Pst
21 Pst = Ps
22 // Pid = Pi1 - Pi2
23 \text{ phi} = a\cos(pf)
24 \text{ Psd} = \text{Pst*} \tan(\text{phi})/(3^{0.5})
25 //Hence wattmeter 1 reads
26 \text{ Ps1} = (\text{Psd} + \text{Pst})/2
27 //wattmeter 2 reads
28 \text{ Ps2} = \text{Pst} - \text{Ps1}
29
30 //For a delta connection:
```

```
31 //VL = Vp
32 //IL = Ip * (3^0.5)
33 \text{ VLd} = \text{VL}
34 Vpd = VLd
35 \text{ Ipd} = \text{Vpd/Zp}
36 \text{ ILd} = \text{Ipd}*(3^0.5)
37 //Power dissipated, P = VL*IL*(3^0.5)*cos(phi)
       P = 3*Ip*Ip*Rp)
38 \text{ Pd} = VLd*ILd*(3^0.5)*pf
39 //If wattmeter readings are P1 and P2 then P1 + P2 =
        Pdt
40 \text{ Pdt} = \text{Pd}
41 // Pid = Pi1 - Pi2
42 \text{ Pdd} = \text{Pdt}*tan(phi)/(3^0.5)
43 //Hence wattmeter 1 reads
44 \text{ Pd1} = (\text{Pdd} + \text{Pdt})/2
45 //wattmeter 2 reads
46 \text{ Pd2} = \text{Pdt} - \text{Pd1}
47
48
49 printf("\n\n (a))When the coils are star-connected
       the wattmeter readings are %.3 f kW and %.3 f kW",
       Ps1/1000, Ps2/1000)
50 printf("\n (b) When the coils are delta-connected
       the wattmeter readings are are \%.3\,\mathrm{f} kW and \%.3\,\mathrm{f}
      kW", Pd1/1000, Pd2/1000)
```

Chapter 21

Transformers

Scilab code Exa 21.1 Example 1

Scilab code Exa 21.2 Example 2

Scilab code Exa 21.3 Example 3

Scilab code Exa 21.4 Example 4

```
1 //Chapter 21, Problem 4
2 clc;
3 v1 = 240;
                                   //primary voltage
4 v2=12;
                                   //secondary voltage
5 P = 150;
                                   //power
6 N = v1/v2;
                                   //turns ratio
                                   //secondary current
7 i2=P/v2;
                                   //primary current
8 i1=i2/N;
9 printf("Transformer turns ratio = \%f \setminus n \setminus n", N);
10 printf("Current = %f A",i1);
```

Scilab code Exa 21.5 Example 5

Scilab code Exa 21.6 Example 6

```
1 //Chapter 21, Problem 6
2 clc;
3 N = 10;
                                          //turns ratio
4 v1=2.5e3;
                                          //primary
      voltage
                                          //power
5 P = 5000;
                                          //secondary
6 v2=v1/N;
      voltage
                                          //secondary
7 i2=P/v2;
      current
8 R1=v2/i2;
                                          //resistance in
     ohm
9 i1=i2/N;
                                          //primary
      current
10 printf("(a) Full-load secondary current = \%d A\n\n",
11 printf("(b) Minimum value of load resistance = %.1 f
     ohms \n \n ,R1);
12 printf("(c) Primary current = \%d A\n\n",i1);
```

Scilab code Exa 21.7 Example 7

Scilab code Exa 21.9 Example 9

```
1 //Chapter 21, Problem 9
2 clc;
3 v1 = 4000;
                                     //primary voltage
4 v2 = 200;
                                     //secondary voltage
5 f = 50;
                                     //frequency
                                     //secondary turns
6 n2=100;
                                     //resistance in ohm
7 R=100e3;
8 E = v2;
9 i1=R/v1;
                                     //primary current
10 i2=R/v2;
                                     //secondary current
                                     //primary turns
11 n1=(v1/v2)*n2;
                                     //flux max
12 phim=E/(4.44*f*n2);
13 printf("(a) Primary current = \%f A\n\nSecondary
      currenr = \%f A\n\n\n",i1,i2);
14 printf("(b) Primary turns = \%f \n \n', n1);
15 printf("(c) maximum value of the flux = \%f mWb", phim
      *1000);
```

Scilab code Exa 21.10 Example 10

```
1 //Chapter 21, Problem 10
2 clc;
3 f = 50;
                                  //frequency
                                  //primary turns
4 n1 = 25;
5 n2=300;
                                  //secondary turns
6 A = 300e - 4;
                                  //cross-sectional area
      of the core
7 v1 = 250;
                                  //primary voltage
8 phim=v1/(4.44*f*n1);
                                  //flux
9 Bm=phim/A;
                                  //maximum flux density
10 v2=v1*(n2/n1);
                                  //secondary voltage
11 printf("(a) Maximum flux density= \%.2 \text{ f T} / \text{n}", Bm);
12 printf("(b) Secondary winding voltage = %d V", v2);
```

Scilab code Exa 21.11 Example 11

```
1 //Chapter 21, Problem 11
2 clc;
3 f = 50;
                                     //frequency
4 v1 = 500;
                                      //primary voltage
5 v2=100;
                                      //secondary voltage
6 B=1.5;
                                      //maximum core flux
      density
7 A = 50e - 4;
                                     //effective core
      cross-sectional area
8 phim=B*A;
                                     //maximum flux
9 n1=v1/(4.44*f*phim);
                                     //primary turns
                                     //secondary turns
10 n2=v2/(4.44*f*phim);
11 printf("Primary turns = \%d turns\n\n",n1);
12 printf ("Secondary turns = \%d turns \n\n", n2);
```

Scilab code Exa 21.12 Example 12

```
1 //Chapter 21, Problem 12
2 clc;
3 v1 = 4500;
                                      //primary voltage
4 v2 = 225;
                                      //secondary voltage
5 f = 50;
                                      //frequency
6 \text{ en} = 15;
                                      //e.m.f. per turn
7 B=1.4;
                                      //maximum core flux
      density
8 \text{ n1=v1/en};
                                      //primary turns
9 n2=v2/en;
                                      //secondary turns
10 phim=v1/(4.44*f*n1);
                                      //maximum flux
                                      //effective core
11 A=phim/B;
      cross-sectional area
12 printf("(a) Primary turns = \%f\n\nSecondary turns =
      %f\n\n" ,n1,n2);
13 printf("(b) cross-sectional area of the core = \%f m2
      ",A);
```

Scilab code Exa 21.13 Example 13

```
1 //Chapter 21, Problem 13, Figure 21.5
2 clc
3 n1=2000
                                      //no of turns on
     primary
4 n2=800
                                      //no of turns on
      secondary
5 i2=100
                                      //secondary current
     in amperes
6 i1 = 44
                                      //current in amperes
       from phasor diagram
7 i0=5
                                      //no load current
8 i3 = 40
                                      //current from phaor
       diagram
9 pf0=0.2
                                      //power factor
10 \text{ a} 1 = 37
```

```
11  pf2=0.85
12  i1=i2*n2/n1
13  a2=acosd(pf2)
14  a0=acosd(pf0)
15  Icos=(i0*pf0)+(i3*pf2)
16  Isin=(i0*sin(a0*%pi/180))+(i3*sin(a2*%pi/180))
17  I1=sqrt(Isin^2+Icos^2)
18  ta=atand(Isin/Icos)
19  pf=cos(ta*%pi/180)
20  printf("I1 = %.3 f A\n\n Power factor = %.3 f degree\n\n",I1,pf)
```

Scilab code Exa 21.14 Example 14

```
1 //Chapter 21, Problem 14
2 clc;
                                            //primary turns
3 n1 = 600;
                                            //secondary
4 n2=150;
      turns
                                           //primary
5 \text{ r1=0.25};
      resistance
                                            //secondary
6 \text{ r2=0.01};
      resistance
                                            //leakage
7 x 1 = 1;
      reactance
8 x2=0.04;
9 re=r1+r2*(n1/n2)^2;
                                           //equivalent
      resistance
10 xe=x1+x2*(n1/n2)^2;
                                           //equivalent
      reactance
                                           //equivalent
11 ze=sqrt(re^2+xe^2);
      impedance
12 phie=acos(re/ze);
                                           //phase angle of
       the impedance
13 printf("(a) Equivalent resistance = \%.2 \, f ohms\n\n",
```

```
re);
14 printf("(b) Equivalent reactance = %.2 f ohms\n\n",xe
    );
15 printf("(c) Equivalent impedance = %.2 f ohms\n\n",ze
    );
16 printf("(d) Phase angle of the impedance = %.2 f deg"
    ,phie*180/%pi);
```

Scilab code Exa 21.15 Example 15

Scilab code Exa 21.16 Example 16

Scilab code Exa 21.17 Example 17

```
1 //Chapter 21, Problem 17
2 clc;
3 \text{ vi} = 200 \text{ e3};
                                   //rated transformer
4 pf = 0.85;
                                   //power factor
5 lcu=1.5e3;
                                   //copper loss
6 	ext{ lfe=1e3};
                                   //iron loss
                                   //full-load output power
7 po=vi*pf;
8 lt=lcu+lfe;
                                   //total losses
                                   //input power
9 pi=po+lt;
10 Ef = (1-(lt/pi));
                                   //efficiency
11 printf ("Transformer efficiency at full load = %f
      percent", Ef *100);
```

Scilab code Exa 21.18 Example 18

```
1 //Chapter 21, Problem 18
2 clc;
3 \text{ vi} = 200 \text{ e3};
                                         //rated transformer
                                         //power factor
4 pf = 0.85;
5 lcu=(1/2)^2*1.5e3;
                                         //copper loss
                                         //iron loss
6 	ext{ lfe=1e3};
                                         //full-load output
7 p0 = (1/2) * vi * pf;
      power
8 lt=lcu+lfe;
                                         //total losses
                                         //input power
9 pi=p0+lt;
10 Ef = (1 - (lt/pi));
                                         //efficiency
11 printf ("Transformer efficiency at half load = \%.3 f
      percent", Ef*100);
```

Scilab code Exa 21.19 Example 19

```
1 //Chapter 21, Problem 19
2 clc
```

```
//
3 k = 400000
      transformer rating
                                                  //primary
4 v1=5000
      current
                                                 //secondary
5 v2 = 320
      current
6 \text{ r1=0.5}
                                                  //resistance
       in ohm
7 r2=0.001
                                                  //resistance
       in ohm
8 	ext{ lfe} = 2500
                                                  //iron loss
9 pf = 0.85
                                                  //power
      factor
                                                  //primary
10 i1=k/v1
      current
11 i2=k/v2
                                                  //secondary
      current
12 lcu=(i1^2*r1)+(i2^2*r2)
                                                  //total
      copper loss
                                                  //total loss
13 lt=lcu+lfe
                                                  //total
14 \text{ pt=k*pf}
      output power
15 \text{ pi=pt+lt}
                                                 //input
      power
16 n = (1 - (lt/pi)) * 100
                                                  //efficiency
17 lc=lcu*(1/2)^2
                                                  //total
      copper loss at half load
                                                  //total loss
18 lh=lc+lfe
       at half loss
19 ph0 = (1/2) * pt
                                                  //output
      power at half load
20 phi = (ph0 + lh)
                                                  //input
      power at half load
21 \quad n1 = (1 - (1h/phi)) * 100
                                                 //efficiency
22 printf("(a) Efficiency on full load = %.3f percent\n
      \n",n)
23 printf("(b) Efficiency at half load = \%.3f percent\n
      \n",n1)
```

Scilab code Exa 21.20 Example 20

```
1 //Chapter 21, Problem 20
2 clc
3 c = 4 e 3
                                   //coper loss
4 p = 500 e3
                                   //transformer rating
5 r = 2.5 e3
                                   //iron loss
6 pf = 0.75
                                   //power factor
7 x = sqrt(r/c)
8 \text{ eff=x*p}
9 los=2*r
10 \text{ po=eff*pf}
11 pi=po-los
12 n = (1 - (los/pi)) * 100
13 printf("(a) The Output KVA at maximum efficiency = \%
      .2 f kVA n n", eff/1000)
14 printf("(b) Maximum efficiency = \%.2f percent",n)
```

Scilab code Exa 21.21 Example 21

Scilab code Exa 21.22 Example 22

Scilab code Exa 21.23 Example 23

Scilab code Exa 21.24 Example 24

```
1 //Chapter 21, Problem 24
2 clc;
                                          //primary
3 v1 = 220;
     voltage
                                          //secondary
4 v2 = 1760;
     voltage
                                          //cable
5 R=2;
     resistance
6 R1=1.28e3;
                                          //load across
     secondary winding
                                          //turns ratio
7 N=v1/v2;
```

```
//equivalent
8 R1=N^2*R1;
      input resistance
                                          //total input
9 Rin=R+R1;
      resistance,
10 I1=v1/Rin;
                                          //primary
      current
                                          //secondary
11 I2 = I1 * N;
      current
12 P=I2^2*R1;
                                          //power
      dissipated
13 printf("(a) Primary current = \%d A\n\n",I1);
14 printf("(b) Power dissipated in load resistor = %d W
     ",P);
```

Scilab code Exa 21.25 Example 25

```
1 //Chapter 21, Problem 25
2 clc;
3 V = 24;
                                  //ac source
4 R1=15e3;
                                  //input resistance
                                 //turns ratio
5 N = 25/1;
                                 //internal resistance
6 Rin=15e3;
                                 //load resistance
7 Rl=R1*(1/N)^2;
                                 //total input resistance
8 Rt = Rin + R1;
                                  //primary current
9 I1=V/Rt;
                                  //secondary current
10 I2=I1*N;
                                 //power dissipated
11 P=I2^2*R1;
12 printf("(a) Load resistance = \%d ohms\n\n",R1);
13 printf("(b) Power dissipated in the load = \%.1 \, \text{f mW}",
      P*1000);
```

Scilab code Exa 21.26 Example 26

```
1 //Chapter 21, Problem 26
2 clc;
3 V1 = 320;
                                   //primary voltage
                                   //secondary voltage
4 V2 = 250;
5 \text{ Rg} = 20 \text{ e3};
                                   //rating
                                   //primary current
6 I1=Rg/V1;
                                   //secondary current
7 I2=Rg/V2;
                                   //current in common part
8 I = I2 - I1;
       of the winding
9 printf ("Primary current = \%.1 f A\n\nSecondary
      current = \%d A\n\n\n",I1,I2);
10 printf ("Hence current in common part of the winding
      = \%.1 f A", I);
```

Scilab code Exa 21.27 Example 27

```
1 //Chapter 21, Problem 27
2 clc;
3 v1 = 200;
                                      //primary voltage of
       transformer 1
4 v2=150;
                                      //secondary voltage
      of transformer 1
                                      //primary voltage of
5 v3=500;
       transformer 2
6 v4 = 100;
                                      //secondary voltage
      of transformer 2
7 x = v2/v1;
8 V = (1-x)*100;
9 y = v4/v3;
10 W = (1 - y) * 100;
11 printf("(a) 200V:150V transformer,\n Volume of
      copper = \%d percent\n", V);
12 disp("Hence the saving is 75\%");
13 printf("\n\n(b) 500V:100V transformer, \nVolume of
      copper = \%d percent\n", W);
```

Scilab code Exa 21.28 Example 28

```
1 //Chapter 21, Problem 28
2 clc;
3 n1 = 500;
                                            //primary turns
4 n2=50;
                                            //secondary
      turns
5 v1=2.4e3;
                                            //supply voltage
                                            //primary phase
6 Vp=v1/sqrt(3);
      voltage
7 Vp2=Vp*(n2/n1);
                                            //secondary
      phase voltage
                                            //secondary
8 Vp3=v1*(n2/n1);
      phase voltage 2
9 V1=sqrt(3)*Vp3;
                                            //secondary line
       voltage
10 printf("(a) For star connection\n")
11 printf ("Secondary line voltage = \%.2 \text{ f V} \times \text{n}", Vp2);
12 printf("(b) For delta connection\n");
13 printf ("Secondary line voltage = \%.2 \,\mathrm{f} V", V1);
```

Scilab code Exa 21.29 Example 29

```
//secondary current
8 I2=I1*(N1/N2);
                                       //secondary voltage
9 V2=I2*Ra;
                                       //total resistance
10 Rt=Ra+R2;
      of secondary circuit
                                       //induced e.m.f. in
11 e2=I2*Rt;
      secondary
                                       //load on secondary
12 1=e2*I2;
13 printf("(a) Reading on the ammeter = \%d A \n\n", I2);
14 printf("(b) P.d. across the ammeter = \%.2 \, f \, V \setminus n \setminus n", V2
      );
15 printf("(c) Total load (in VA) on the secondary = %d
       VA",1);
```

Chapter 22

DC machines

Scilab code Exa 22.1 Example 1

Scilab code Exa 22.2 Example 2

```
//no of pairs of
6 p=4/2;
      poles
7 c = 2 * p;
8 n=(E*c)/(2*p*phi*Z);
                                         //armature speed
9 printf("Speed = \%d rev/s",n);
  Scilab code Exa 22.3 Example 3
1 //Chapter 22, Problem 3
2 clc;
                                           //no of pairs of
3 p=8/2;
      poles
4 c = 2 * p;
5 \text{ phi} = 0.03;
                                           //flux
                                           //armature speed
6 n=500/60;
                                           //no of armature
7 Z=1200;
      conductors
                                           //e.m. f
8 E=(2*p*phi*n*Z)/c;
9 printf("emf = \%f V",E);
  Scilab code Exa 22.4 Example 4
1 //Chapter 22, Problem 4
2 clc;
                                           //no of pairs of
3 p=8/2;
      poles
4 c=2;
5 \text{ phi} = 0.03;
                                           //flux
                                           //armature speed
6 n=500/60;
7 Z=1200;
                                           //no of armature
      conductors
8 E=(2*p*phi*n*Z)/c;
                                           //e.m. f
```

9 printf("emf = %f V",E);

Scilab code Exa 22.6 Example 6

```
1 //Chapter 22, Problem 6
2 clc;
3 E1 = 200;
                                    //generated e.m. f 1
                                    //armature speed 1
4 n1=30;
                                    //generated e.m.f 2
5 E2 = 250;
                                    //armature speed 2
6 n2=20;
                                    //flux 1
7 phi1=1;
                                    //flux 2
8 phi2=(phi1*n1*E2)/(n2*E1);
9 printf("Increase in the flux per pole = %f percent",
     phi2*100);
```

Scilab code Exa 22.7 Example 7

Scilab code Exa 22.8 Example 8

```
1 // Chapter 22, Problem 8 2 clc;
```

```
3 ia=8;
                                         //armature
     current
                                         //armature
4 Ra=1;
     resistance
5 R1 = 60;
                                         //loadd
     resistance
6 V=ia*R1;
                                         //terminal
     voltage
7 E=V+(ia*Ra);
                                         //generated e.m.
8 printf("(a) Terminal voltage = \%f V\n\n", V);
9 printf("(b) Generated emf = \%f V\n\n",E);
```

Scilab code Exa 22.9 Example 9

```
1 //Chapter 22, Problem 9
2 clc;
                                        //generated e.m. f 1
3 E1 = 150;
4 phi1=0.10;
                                        //flux 1
5 phi2=0.1;
                                        //flux 2
6 \text{ N1=20};
                                        //armature speed 1
7 N2 = 25;
                                        //armature speed 2
                                        //armature speed 3
8 N3 = 24;
9 N4 = 20
                                        //armature speed 4
10 phi3=0.08;
                                        //flux 3
                                        //flux 4
11 phi4=0.07;
12 E2=(E1*phi1*N2)/(phi2*N1);
                                                      //
      generated e.m. f 2
13 E3=(E1*phi3*N4)/(phi2*N1);
      generated e.m. f 3
14 E4=(E1*phi4*N3)/(phi2*N1);
                                                      //
      generated e.m. f 4
15 printf("(a) emf = \%.1 \text{ f V} / n / n", E2);
16 printf("(b) emf = \%d V\n\n",E3);
17 printf("(c) emf = \%d V \setminus n \setminus n", E4);
```

Scilab code Exa 22.10 Example 10

```
1 //Chapter 22, Problem 10
2 clc;
3 P = 20 e3;
                             //power by shunt generator
4 V = 200;
                             //voltage
5 R=100e-3;
                             //cable resistance
                             //field winding resistance
6 \text{ Rf} = 50;
7 Ra=40e-3;
                             //armature resistance
                             //load current
8 I=P/V;
9 Vc = I *R;
                             //voltage drop in cable
                             //terminal voltage
10 Vt = Vc + V;
11 If=Vt/Rf;
                             //field current
                             //armature current
12 Ia=I+If;
                             //generated e.m. f
13 E=Vt+(Ia*Ra);
14 printf("(a) Terminal voltage = \%d V \n\n", Vt);
15 printf("(b) Generated e.m.f. E = \%.2 f V", E);
```

Scilab code Exa 22.11 Example 11

```
1 //Chapter 22, Problem 11
2 clc;
3 I = 80;
                                 //current
                                  //series resistance
4 Rse=0.02;
                                 //armature resistance
5 Ra=0.04;
6 Rf = 40;
                                 //field resistance
                                 //supply voltage
7 V = 200;
                                 //volt drop in series
8 \text{ Vse=I*Rse};
     winding
9 V1=V+Vse;
                                 //P.d. across the field
     winding
```

Scilab code Exa 22.12 Example 12

```
1 //Chapter 22, Problem 12
2 clc;
                             //armature circuit
3 R = 0.75
      resistance
4 Rf = 125;
                             //field resistance
5 Po=10e3;
                             //power in watt
                             //supply voltage
6 V = 250;
                             //iron, friction and windage
7 C = 600;
       losses in watt
8 I = Po/V;
                             //load current
9 If=V/Rf;
                             //field current
                             //armature current
10 Ia=If+I;
11 n=(Po/(Po+(Ia^2*R)+(If*V)+C))*100;
                                                  //
      efficiency
12 printf("Efficiency = %f percent",n);
```

Scilab code Exa 22.13 Example 13

Scilab code Exa 22.14 Example 14

```
1 //Chapter 22, Problem 14
2 clc;
                                      //armature
3 Ra=0.25;
      resistance
4 V = 300;
                                      //supply voltage
5 Ia1=100;
                                      //current 1
                                      //current 2
6 Ia2=80;
                                      //e.m.f (generator)
7 E1=V+(Ia1*Ra);
                                      //e.m.f (motor)
8 E2=V-(Ia2*Ra);
9 printf("(a) As a generator, generated e.m. f = \%d V \setminus n
     \n",E1);
10 printf("(b) As a motor, generated e.m. f = \%d V", E2)
```

Scilab code Exa 22.15 Example 15

Scilab code Exa 22.16 Example 16

```
1 //Chapter 22, Problem 16
2 clc;
3 V = 350;
                                      //supply voltage
4 Ra=0.5;
                                      //armature
     resistance
5 n=15;
                                      //motor speed in rev
     /sec
6 Ia=60;
                                      //armature current
                                      //back e.m. f
7 E=V-Ia*Ra;
8 T=(E*Ia)/(2*\%pi*n);
                                      //torque
9 printf("Torque, T = \%.1 \text{ f Nm}", T);
```

Scilab code Exa 22.17 Example 17

```
1 //Chapter 22, Problem 17
2 clc;
                                                 //supply
3 V = 250;
      voltage
                                                 //pairs of
4 p=6/2;
      poles
5 Z = 500;
                                                 //conductors
6 \text{ Ra}=1;
                                                 //armature
      resistance
7 phi = 20*10^{-3};
                                                 //flux
                                                 //armature
8 Ia=40;
      current
9 c = 2*p;
10 E=V-(Ia*Ra);
                                                 //back e.m. f
11 n=E*c/(2*p*phi*Z);
                                                 //rotating
      speed
12 T=(E*Ia)/(2*\%pi*n);
                                                 //torque
13 printf("(a) Speed = \%f rev/min\n\n",n*60);
14 printf("(b) Torque, T = \%.2 \text{ f Nm}",T);
```

Scilab code Exa 22.18 Example 18

Scilab code Exa 22.19 Example 19

Scilab code Exa 22.20 Example 20

```
1 //Chapter 22, Problem 20
2 clc;
3 Ra=0.4; //armature
    resistance
```

Scilab code Exa 22.21 Example 21

```
1 //Chapter 22, Problem 21
2 clc;
3 V = 200;
                                       //supply voltage
                                       //armature
4 Ra=0.4;
      resistance
5 Ia = 30;
                                       //armature current
                                       //rotating speed
6 n1 = 1350/60;
                                       //armature current 2
7 Ia2=45;
8 E1=V-(Ia*Ra);
                                       //e.m.f.1
9 E2=V-(Ia2*Ra);
                                       //e.m.f 2
                                       //speed of the motor
10 n2=(n1*E2)/E1;
       due to armature current 2
11 printf("Speed of the motor = \%.3 \, \text{f} \, \text{rev/min}", n2*60);
```

Scilab code Exa 22.23 Example 23

```
//armature current
6 Ia=15;
7 I2=30;
                                         //current
8 Ra=0.2;
                                         //armature
      resistance
9 \text{ Rf} = 0.3;
                                         //field resistance
                                         //e.m.f 1
10 E1=V-(Ia*(Ra+Rf));
11 E2=V-(I2*(Ra+Rf));
                                         //e.m.f.2
                                         //speed of motor
12 n2=n1*E2/(E1*phi2);
13 printf("(a) Generated e.m. f = \%f V \setminus n \setminus n", E1);
14 printf("(b) Speed of motor n2 = \%.1 \text{ f rev/s}", n2);
```

Scilab code Exa 22.24 Example 24

```
1 //Chapter 22, Problem 24
2 clc;
3 Ra=0.2
                             //armature resistance
4 V = 320;
                             //supply voltage
                             //field resistance
5 Rf = 40;
                             //current
6 I=80;
                             //field current
7 If=V/Rf;
8 Ia=I-If;
                             //armature current
9 C=1500;
10 n = (((V*I) - (Ia^2*Ra) - (If*V) - C)/(V*I))*100;
     //overall efficiency
11 printf ("Efficiency = \%.3 f percent",n);
```

Scilab code Exa 22.25 Example 25

```
6 \text{ Rf} = 0.05;
                              //field resistance
7 n=(((V*I)-(2*I^2*(Ra+Rf)))/(V*I))*100;
     overall efficiency
8 printf("Efficiency = \%.1f percent",n);
  Scilab code Exa 22.26 Example 26
1 //Chapter 22, Problem 26
2 clc;
3 T = 15;
                                   //torque
                                  //supply voltage
4 V = 200;
                                   //speed of motor
5 n1 = 1200/60;
                                   //efficiency
6 n = 80;
7 I = ((T*2*\%pi*n1)/(V*n))*100;
                                            //current
     supplied
8 printf ("Current supplied = \%.2 \, \text{f A}", I);
```

Scilab code Exa 22.27 Example 27

```
1 //Chapter 22, Problem 27
2 clc;
3 V = 400;
                                           //supply voltage
4 I = 10;
                                           //current
5 R=2;
                                           //total
     resistance
                                           //iron, friction
6 C = 300;
      and windage losses
7 n = (((V*I) - (I^2*R) - C) / (V*I)) *100;
                                                    //
     overall efficiency
8 printf("Efficiency = %.1f percent",n);
```

Scilab code Exa 22.28 Example 28

```
1 // Chapter 22, Problem 28, Fig. 22.29(b)
2 clc;
3 V = 500;
                                    //supply voltage
4 Ia=120;
                                    //armature current
                                    //armature current 2
5 Ia2=60;
                                    //armature resistance
6 Ra=0.2;
7 \text{ Ra1} = 0.5;
                                    //armature resistance 2
8 n1=10;
                                    //speed of motor
                                    //flux
9 \text{ phi3=0.8};
10 E1=V-(Ia*Ra);
                                    //e.m.f
                                    //e.m.f 2
11 E2=V-(Ia2*(Ra+Ra1));
                                    //speed of motor 2
12 \quad n2=n1*E2/E1;
13 E3=V-(Ia2*Ra);
                                    //e.m.f.3
                                    //speed of motor 2
14 \quad n3 = (n1 * E3) / (phi3 * E1);
15 printf("(a) Speed n2 = \%.2 \text{ f rev/s/n/n}",n2);
16 printf("(b) Speed n3 = \%.2 \text{ f rev/s/n/n}, n3);
```

Scilab code Exa 22.29 Example 29

```
1 //Chapter 22, Problem 29
2 clc;
3 V = 300;
                                             //supply voltage
                                             //total current
4 I=90;
5 \text{ Ra} = 0.1;
                                             //armature
      resistance
6 n1=15;
                                             //speed of motor
7 Rse=0.05;
                                             //series winding
       resistance
                                             //diverter
8 R1 = 0.2;
                                             //e.m. f
9 E1=V-(I*(Ra+Rse));
10 R = (R1 * Rse) / (R1 + Rse);
                                                  //equivalent
       resistance
                                                  //current
11 I1 = (R1/(R1 + Rse));
```

Scilab code Exa 22.30 Example 30

```
1 //Chapter 22, Problem 30
2 clc;
3 V = 400;
                                  //supply voltage
4 I = 25;
                                  //current
                                  //armature resistance
5 \text{ Ra} = 0.4;
6 n1 = 800;
                                  //motor speed 1
7 n2 = 600;
                                  //motor speed 2
8 Rse=0.2;
                                  //series winding
      resistance
9 R1=0.2;
                                  //series field
      resistance
10 E1=V-(I*(Ra+Rse));
                                  //e.m.f.1
                                  //e.m.f 2
11 E2=E1*n2/n1;
12 R = ((V-E2)/I) - (Ra+Rse);
                                      //resistance
13 printf("Resistance = \%f ohms\n\n",R);
14 printf ("Thus the addition of a series resistance of
      %fohm has reduced the speed from 800 rev/min to
      600 \text{ rev/min.}, R);
```

Chapter 23

Three phase induction motors

Scilab code Exa 23.1 Example 1

Scilab code Exa 23.2 Example 2

Scilab code Exa 23.3 Example 3

Scilab code Exa 23.4 Example 4

```
1 //Chapter 23, Problem 4
2 clc;
3 f = 50;
                                           //supply
     frequency
4 p=4/2;
                                            //pairs of poles
                                           //rotor speed
5 \text{ nr} = 1455/60;
6 \text{ ns=f/p};
                                            //synchronous
     speed
7 s = ((ns-nr)/ns)*100;
                                           //slip
8 printf("(a) synchronous speed = \%f rev/s\n\n",ns);
9 printf("(b) Slip, s = \%d percent",s);
```

Scilab code Exa 23.5 Example 5

Scilab code Exa 23.6 Example 6

Scilab code Exa 23.7 Example 7

Scilab code Exa 23.8 Example 8

```
1 //Chapter 23, Problem 8
2 clc;
3 \text{ Psi} = 32000;
                                    // in Watts
                                    // in Watts
4 \text{ Psl} = 1200;
                                    // slip
5 s = 0.05;
6 \text{ Pfl} = 750;
                                    // in Watts
7 //Input power to rotor = stator input power - stator
       losses
8 \text{ Pi} = \text{Psi} - \text{Psl}
9 //slip = rotor copper loss/rotor input
10 \text{ Pl} = s*Pi
11 //Total mechanical power developed by the rotor =
      rotor input power - rotor losses
12 \text{ Pr} = \text{Pi} - \text{Pl}
13 //Output power of motor = power developed by the
      rotor - friction and windage losses
14 \text{ Po} = \text{Pr} - \text{Pfl}
15 // Efficiency of induction motor = (output power/
      input power) *100
16 eff = (Po/Psi)*100 // in percent
17 printf("\n\n(a) Rotor copper loss is %f kW", P1/1000)
18 printf("\n\n(b) Total mechanical power developed by
      the rotor is \%f \text{ kW}, Pr/1000)
19 printf("\n\n\c) Output power of motor is \%f kW", Po
      /1000)
20 printf("\n\n(d) Efficiency of induction motor is %.2
      f percent", eff)
```

Scilab code Exa 23.9 Example 9

```
1 //Chapter 23, Problem 9
2 clc
                                         //input power to rotor
3 \text{ pi} = 30.8e3
4 pi1 = 32e3
                                         //stator input power
5 \text{ ns} = 0.35
                                         //percent
6 1 = 0.75 e3
                                         //friction and windage
       losses
7 s = 1 - ns
8 \text{ cl=s*pi}
9 P=pi-cl
10 \text{ Po=P-1}
11 n = (Po/pi1) * 100
12 printf("(a) Rotor copper loss = \%.3 \text{ f kW} \cdot \text{n} \cdot \text{n}",cl
       /1000)
13 printf("(b) Efficiency = \%.2 f percent",n)
```

Scilab code Exa 23.10 Example 10

```
1 //Chapter 23, Problem 10
2 clc;
3 \text{ nr} = 24;
                                        // in rev/sec
4 p = 4/2;
                                         // no. of pole
      pairs
5 R2 = 0.35;
                                         // in Ohms
6 X2 = 3.5;
                                             // in Ohms
                                        // in Volts
7 V = 415;
8 \text{ tr} = 0.85;
                                         // turn ratio N2/N1
9 f = 50 ;
                                        // in Hz
10 \text{ Pl} = 770;
                                        // in Watt
11 m = 3;
                                        // no. of phases
```

```
12
13 //ns is the synchronous speed, f is the frequency in
       hertz of the supply to the stator and p is the
      number of pairs of poles.
14 \text{ ns} = f/p
15 //The slip, s
16 \ s = ((ns - nr)/ns)*100 // in percent
17 //Phase voltage, E1 = V/(3^0.5)
18 E1 = V/(3^0.5)
19 //Full load torque
20 T = [m*(tr^2)/(2*\%pi*ns)]*[(s/100)*E1*E1*R2/(R2*R2 + frac{1}{2})
       (X2*(s/100))^2)
21 //Output power, including friction losses
22 \text{ Pm} = 2*\%pi*nr*T
23 //power output
24 Po = Pm - Pl
\frac{25}{Maximum} torque occurs when R2 = Xr = 0.35 ohm
26 // Slip
27 \text{ sm} = R2/X2
28 //maximum torque, Tm
29 Tm = [m*(tr^2)/(2*\%pi*ns)]*[sm*E1*E1*R2/(R2*R2 + (X2))]
      *sm)^2)]
30 //speed at which maximum torque occurs
31 \quad nrm = ns*(1 - sm)
32 \text{ nrmrpm} = \text{nrm}*60
33 //At the start, i.e., at standstill, slip, s=1
34 \text{ ss} = 1
35 //starting torque
36 \text{ Ts} = [m*(tr^2)/(2*\%pi*ns)]*[ss*E1*E1*R2/(R2*R2 + (X2))]
      *ss)^2)]
37 printf("\n\n(a)Synchronous speed is %.0f rev/sec",ns
38 printf("\n\n(b) Slip is %.0f percent",s)
39 printf("\n\n(c)Full load torque is %.2 f Nm", T)
40 printf("\n\n(d) power output is %.2E W", Po)
41 printf("\n\n(e) maximum torque is %.2 f Nm", Tm)
42 printf("\n\n(f) speed at which maximum torque occurs
      is \%.0 \, \text{frev/min}", nrmrpm)
```

Scilab code Exa 23.11 Example 11

```
1 //Chapter 23, Problem 11
2 \text{ clc};
3 \text{ nr} = 24;
                             // in rev/sec
                             // in Hz
4 f = 50 ;
                             // no. of pole pairs
5 p = 4/2;
                             // in Volts
6 V = 415;
7 R2 = 0.35;
                             // in Ohms
                             // in Ohms
8 X2 = 3.5;
9 \text{ tr} = 0.85;
                              // turn ratio N2/N1
10 m = 3;
                              // no. of phases
11 //ns is the synchronous speed, f is the frequency in
       hertz of the supply to the stator and p is the
      number of pairs of poles.
12 \text{ ns} = f/p
13 //The slip, s
14 s = ((ns - nr)/ns)*100 // in percent
15 //Phase voltage, E1 = V/(3^0.5)
16 E1 = V/(3^0.5)
17 //rotor current,
18 Ir = (s/100)*E1*tr/((R2^2 + (X2*(s/100))^2)^0.5)
19 //Rotor copper loss
20 \text{ Pcl} = m*R2*(Ir^2)
21 //starting current,
22 \text{ ss} = 1
23 I2 = ss*tr*E1/((R2^2 + (X2*ss)^2)^0.5)
24 printf("\n\n(a)Rotor current is \%.2 f A", Ir)
25 printf("\n\n(b) Total copper loss is %.2 f W', Pcl)
26 printf("\n\n(c) Starting current is \%.2 f A", I2)
```

Scilab code Exa 23.12 Example 12

```
1 //Chapter 23, Problem 12
2 clc;
3 V = 415;
                                 // in Volts
                                 // in Watt
4 \text{ Psl} = 650;
                                // power factor
5 pf = 0.87;
                                // watts from part (d),
6 \text{ Pm} = 11770;
      Problem 22.10
7 \text{ Pcl} = 490.35;
                               // watts, Rotor copper loss
      , from part (b), Problem 22.11
9 //Stator input power
10 \text{ P1} = \text{Pm} + \text{Pcl} + \text{Psl}
11
12 \text{ Po} = 11000
                              // watts, Net power output,
      from part (d), Problem 22.10
13 // efficiency = (output/input) *100
14 eff = (Po/P1)*100 // in percent
15
16 //Power input, P1 = (3^0.5)*VL*IL*cos(phi)
17 // pf = cos(phi)
18 //supply current, IL
19 I = P1/((3^0.5)*V*pf)
20 printf("\n\n(a) Stator input power is \%.2 \text{ f kW}", P1
      /1000)
21 printf("\n\n(b) Efficiency is \%.2f percent", eff)
22 printf("\n\n(c) Supply current is %.2 f A",I)
```

Scilab code Exa 23.13 Example 13