CS2109S: Introduction to AI and Machine Learning

Lecture 3: Informed, Local, and Adversarial Search

25 August 2023

Recap

- Problem-solving agents
- Search algorithms
- Uninformed search algorithms
 - Breadth-first Search (BFS)
 - Uniform-cost search
 - Depth-first Search (DFS)
- Variants of uninformed search algorithms
 - Depth-limited search
 - Iterative deepening search
 - Bidirectional search
- Dealing with repeated states

Questions from Last Week

Uniform-cost search

- Why the name?
 - Exploring states of the same path cost uniformly
- Why O(b^C*/e) is the upperbound depth although there are other nodes explored?
 - The depth of the other nodes explored are less than the bound
- Why the condition that step cost >= e?
 - This is not a condition, but simply an assumption for analysis

Outline

- Informed search algorithms
 - Greedy best-first search
 - A* search
 - Heuristics
 - Variants of A*
- Local search
 - Hill climbing
 - Simulated annealing
 - Beam search
 - Genetic algorithms
- Adversarial search
 - Games
 - Minimax
 - Alpha-beta pruning
 - Handling large/infinite game trees
 - Optimizing the search

Recap!

Outline

Informed search algorithms

- Greedy best-first search
- A* search
- Heuristics
- Variants of A*
- Local search
 - Hill climbing
 - Simulated annealing
 - Beam search
 - Genetic algorithms
- Adversarial search
 - Games
 - Minimax
 - Alpha-beta pruning
 - Handling large/infinite game trees
 - Optimizing the search

Recap!

Informed Search Algorithms

Uninformed search:

Search blindly

Informed search:

Use domain information to guide the search

Best-first Search

create frontier : priority queue f(n) insert initial state while **frontier** is not empty: state = frontier.pop() if state is goal: return solution for action in actions(state): next state = transition(state, action) frontier.add(next state) return failure

Special cases:

- Greedy best-first search
- A* search

Greedy Best-first Search

create frontier: priority queue f(n)

insert initial state

while **frontier** is not empty:

state = frontier.pop()

if state is goal: return solution

for action in actions(state):

next state = transition(state, action)

frontier.add(next state)

return failure

f(n) = h(n)

Heuristic: estimated cost from n to goal

Sibiu

 $O(b^m)$, good heuristic gives improvement

0

- $O(b^m)$, keep all nodes in memory
- **Complete?**

Greedy Best-first Search

create frontier: priority queue f(n) insert initial state while **frontier** is not empty: state = frontier.pop() if state is goal: return solution for action in actions(state): next state = transition(state, action) frontier.add(next state) return failure

f(n) = h(n)Heuristic: estimated cost from n to goal

Doesn't consider the cost so far!

- $O(b^m)$, good heuristic gives improvement
- Space complexity?
 - $O(b^m)$, keep all nodes in memory
- Complete? No
- Optimal? No

A* Search

create frontier: priority queue f(n)

insert initial state

while **frontier** is not empty:

state = frontier.pop()

if state is goal: return solution

for action in actions(state):

next state = transition(state, action)

frontier.add(next state)

return failure

$$f(n) = g(n) + h(n)$$

Time complexity (# nodes expanded)?

Fag

• $O(b^m)$, good heuristic gives improvement

Sib

2+2+3

Fagaras

Pitesti

Bucharest

Signal to

~distance:

0

Rimnicu Vilcea

Space complexity?

Buc

2+3+0

Sib

Sibiu

- $O(b^m)$, keep all nodes in memory
- **Complete?** Yes

Sib

Optimal? Yes*

Cost so far to reach n Heuristic: estimated cost from n to goal

Admissible Heuristics

A heuristic h(n) is admissible if for every node n, h(n) \leq h*(n), where h*(n) is the **true cost** to reach the goal state from n.

An admissible heuristic **never over- estimates** the cost to reach the goal, i.e., it is a **conservative estimate**.

Theorem: if h(n) is admissible, A* using tree search is optimal

Example: $h_{SLD}(n)$ never overestimates

the actual road distance

Admissible Heuristics: Optimality

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

$$f(G) = g(G) + h(G) = g(G) + 0$$

 $f(G_2) = g(G_2) + h(G_2) = g(G_2) + 0$
 $g(G_2) > g(G)$ since G_2 is suboptimal
 $f(G_2) > f(G)$

$$h(n) \le h^*(n)$$
 since h is admissible $f(n) = g(n) + h(n) \le g(n) + h^*(n) = f(G)$

$$f(n) \le f(G) < f(G_2)$$
, G_2 will never be expanded

Consistent Heuristics

A heuristic h(n) is consistent if for every node n, every successor n' of n generated by any action a, $h(n) \le c(n,a,n') + h(n')$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n,a,n') + h(n')$
 $\geq g(n) + h(n) = f(n)$

i.e., f(n) is **non-decreasing** along any path

Theorem: If h(n) is consistent, A* using graph search is optimal

Consistent Heuristics: Optimality

A * expands nodes in order of increasing f-cost

Gradually adds "f-contours" of nodes

Contour i has all nodes with $f = f^{(i)}$, where $f^{(i)} < f^{(i+1)}$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 . h_2 is better for search.

Heuristics

- h_1 number of misplaces tiles
- h₂ total Manhattan distance

 h_2 dominates h_1

If each tile is at most one distance away from the goal, then $h_2 = h_1$, otherwise $h_2 > h_1$

"Inventing" Admissible Heuristics

A problem with **fewer restrictions** on the actions is called a <u>relaxed</u> <u>problem</u>. The cost of an <u>optimal solution</u> to a relaxed problem is an **admissible heuristic** for the original problem.

Goal State

Original:

A tile can only move to adjacent blank

Relaxations:

- Each tile can move anywhere
 - h_1 number of misplaces tiles
- Each tile can move to any adjacent square
 - h₂ total Manhattan distance

Variants of A*

- Iterative Deepening A* (IDA*)
 - Use iterative deepening search
 - Cutoff using f-cost [f(n) = g(n) + h(n)] instead of depth
- Simplified Memory-bounded A* (SMA*)
 - Drop the nodes with worst f-cost if memory is full

Summary: Informed Search

- Informed search: guide search with domain information
- Best-first search
 - Greedy best-first search
 - f(n) = h(n), heuristic estimate of cost from n to goal
 - A* search
 - f(n) = g(n) + h(n), cost so far + heuristic
- Heuristics
 - Admissible: $h(n) \le h^*(n)$
 - Consistent: $h(n) \le c(n,a,n') + h(n')$
 - Dominant: if $h1(n) \le h2(n)$, h2 dominant
- Creating admissible heuristic: true cost of the relaxed problem
- A* variants: IDA*, SMA*
 - Idea: prune to save memory

Outline

- Informed search algorithms
 - Greedy best-first search
 - A* search
 - Heuristics
 - Variants of A*

Local search

- Hill climbing
- Simulated annealing
- Beam search
- Genetic algorithms
- Adversarial search
 - Games
 - Minimax
 - Alpha-beta pruning
 - Handling large/infinite game trees
 - Optimizing the search

Local Search

Previously: path to a goal is a solution

There are problems where path is not important (state is the solution).

3			8		1			2
2		1		3		6		4
			2		4			
8		9				1		6
	6						5	
7		2				4		9
			5		9			
9		4		8		7		5
6			1		7			3

Credit: Encyclopaedia Britannica

Credit: Frontiersin

How do we solve these problems? Start with a state (solution) then try to improve it

Trivial Algorithms

- Random sampling
 - Generate a state randomly until a solution is found

- Random walk
 - Randomly pick a neighbour from the current state

Can we do better?

Formulation

Formally, a local search problem can be formulated as follows.

- States (state space)
 - State representation: grid with N queens
- Initial state
 - N queens positioned randomly on the grid
- Goal test
 - No queens are attacking each other
- Successor function
 - Move a single queen to another square on the same column

Evaluation Function

Output the value ("goodness") of a state.

Can be either:

- Heuristic function
 - # of well-positioned queens
- Objective function
 - $J(x) = -x^2$

Hill climbing algorithm

```
current = initial state
loop:
    neighbor = a highest value successor of current
    if value(neighbor) <= value(current):
        return current
    current = neighbor</pre>
```


Simulated Annealing

```
current = initial state
for t = 1 ... ∞:
    T = schedule(t)
    if T = 0:
        return current
    next = a randomly selected successor of current
    if value(next) > value(current) or Prob(next, current, T):
        current = next
```

```
Prob(next, current, T) = e^{\frac{value(next)-value(current)}{T}}
```

Allow "bad moves" from time to time

Select a "bad move"

Theorem: if T decreases slowly enough, simulated annealing will find a global optimum with high probability

Beam Search

Perform *k* hill-climbing in parallel

Variants:

- Local beam search
 - Choose *k* successors <u>deterministically</u>
- Stochastic beam search
 - Choose *k successors* probabilistically

Genetic Algorithm

Genetic Algorithm: 8-Queens

DNA String: 16257483

Summary: Local Search

- Local search: path is not important, just want the state
 - Goal state is unknown
- Trivial algorithms
 - Random sampling: random sample a state until solution is found
 - Random walk: go to random neighbours until solution is found
- Algorithms:
 - Hill-climbing: pick the best among neighbours, repeat
 - Simulated Annealing: hill-climbing but allow bad moves from time to time
 - Beam search: do k hill-climbing in parallel
 - Genetic algorithm: marry the best, mutate, repeat

Outline

- Informed search algorithms
 - Greedy best-first search
 - A* search
 - Heuristics
 - Variants of A*
- Local search
 - Hill climbing
 - Simulated annealing
 - Beam search
 - Genetic algorithms

Adversarial search

- Games
- Minimax
- Alpha-beta pruning
- Handling large/infinite game trees
- Optimizing the search

Games

Search problems:

The environment reacts either deterministically or stochastically

Games:

- The opponent reacts "unpredictably" (strategic environment)
- Usually have time limits

Example: Tic-tac-toe

Example: Game of NIM

- Several piles of sticks are given
 - Representation: **monotone** sequence of integers, e.g., (1,3,5)
- A player may remove any number of sticks from one pile in one turn
 - Example: (1,3,5) -> (1,1,3)
- The player who takes the last stick <u>loses</u>

Minimax

```
def minimax(state):
  v = max_value(state)
  return action in successors(state) with value v
def max_value(state):
  if is_terminal(state): return utility(state)
  ∨ = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next state))
  return v
def min_value(state):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next state))
  return v
```

(1,2,2)(0,2,2) (1,1,2) (0,1,2)(0,1,2) (0,0,2) (1,1,1) (0,1,1) (0,0,1)(0,0,2) (0,1,1) (0,0,1) (0,0,0)(0,0,1) (0,0,0)+1 (0,0,0)

MAX

MIN

MAX

MIN

MAX

Minimax: Analysis

- Complete?
 - Yes, if tree is finite
- Time Complexity?
 - $O(b^m)$
- Space Complexity?
 - O(bm), with depth first exploration
- Optimal?
 - Yes, against optimal opponent

Chess: $b \approx 35$, $m \approx 100$ for "reasonable" games What to do?

MAX

MIN

MAX

MIN

MAX

Alpha-beta Pruning

```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```


MAX

MIN

```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```


MIN

MAX

 $\alpha = -\infty$

β = ∞

```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
     if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
    if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
     if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
    if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
     if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
     if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
     if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  y = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
     if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
     v = max(v, min_value(next_state, \alpha, \beta))
     if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  y = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
     if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
     v = max(v, min_value(next_state, \alpha, \beta))
     if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  y = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
     if v <= α: return v
     \beta = \min(\beta, v)
  return v
```



```
def alpha_beta_search(state):
  v = max_value(state, -\infty, \infty)
  return action in successors(state) with value v
def max_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  V = -∞
  for action, next_state in successors(state):
    v = max(v, min_value(next_state, \alpha, \beta))
     if v >= \beta: return v
     \alpha = \max(\alpha, v)
  return v
def min_value(state, \alpha, \beta):
  if is_terminal(state): return utility(state)
  y = ∞
  for action, next_state in successors(state):
    v = min(v, max_value(next_state))
     if v <= α: return v
     \beta = \min(\beta, v)
  return v
```


Alpha-beta Pruning: Analysis

- Pruning doesn't affect final result
- Good move ordering improves effectiveness of pruning
 - "Perfect ordering": $O\left(b^{\frac{m}{2}}\right)$
- An example of meta-reasoning: reasoning about which computations to do first

Handling Huge/Infinite Game Trees

```
def minimax(state):
  v = max value(state)
  return action in successors(state) with value v
def max_value(state):
 if is terminal(state): return utility(state)
  V = -∞
  for action, next state in successors(state):
    v = max(v, min value(next state))
  return v
def min_value(state):
  if is_terminal(state): return utility(state)
  ∨ = ∞
  for action, next state in successors(state):
    v = min(v, max value(next state))
  return v
```

```
def minimax with cutoff(state):
  v = max value(state)
  return action in successors(state) with value v
def max value(state):
  if is cutoff(state): return eval(state)
  V = -∞
  for action, next state in successors(state):
    v = max(v, min value(next state))
  return v
def min_value(state):
  if is cutoff(state): return eval(state)
  ∨ = ∞
  for action, next state in successors(state):
    v = min(v, max value(next state))
  return v
```

is_cutoff

Return true if

- State is terminal
- Cutoff is reached (e.g., time/depth limit is exceeded)

eval

Return

- Utility for terminal states
- Heuristic value for nonterminal states

Handling Huge/Infinite Game Trees


```
def minimax_with_cutoff(state):
  v = max value(state)
  return action in successors(state) with value v
def max_value(state):
  if is_cutoff(state): return eval(state)
  V = -∞
  for action, next state in successors(state):
    v = max(v, min value(next state))
  return v
def min_value(state):
  if is cutoff(state): return eval(state)
  ∨ = ∞
  for action, next state in successors(state):
    v = min(v, max value(next state))
  return v
```

is_cutoff

Return true if

- State is terminal
- Cutoff is reached (e.g., time/depth limit is exceeded)

eval

Return

- Utility for terminal states
- Heuristic value for nonterminal states

Evaluation Functions

How to design a good evaluation function?

Need to understand the problem domain

For chess, typically linear weighted sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s), w_i \in \mathbb{R}$$

Example features:

- Number of white queens number of black queens
- Number of player's pieces number of opponent's pieces

Optimizing the Search

- Transposition table
- Precomputation of best moves in the opening and closing games

Credit: chess.com

Al in Games

Credit: AAAI

Credit: IEEE Spectrum

Credit: Guardian

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions.
- Chess: Deep Blue defeated human world champion Garry Kasparov in a sixgame match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- **Go:** AlphaGo defeated 18-time world champion Lee Sedol in 2016. Instead of using probability algorithms hard-coded by human programmers, AlphaGo uses neural networks to estimate its probability of winning.

Summary: Adversarial Search

- Games vs Search Problems:
 - Search problems: **predictable** world, deterministic and stochastic
 - Games: "unpredictable" opponent, strategic
- Minimax:
 - Assume opponent behaves optimally
 - Pick move that maximizes player's utility
- Alpha-beta pruning
 - Prune branches that are useless (will not change the decision)
- Handling large/infinite game trees:
 - Cutoff the search in the middle of the game and use evaluation function
- Optimizing the search:
 - Transposition table: **reuse** values
 - **Precomputation** of good moves

Summary

- Informed search algorithms
 - Greedy best-first search: f(n) = g(n)
 - A^* search: f(n) = g(n) + h(n)
 - Heuristics: admissibility, consistency, dominance
 - Variants of A*: IDA*, SMA*
- Local search
 - Hill climbing: pick best neighbor, repeat
 - Simulated annealing: allow bad moves from time to time, escape local optima
 - Beam search: parallel hill-climbing
 - Genetic algorithms: inspired by evolution
- Adversarial search
 - Games: opponent "unpredictable"
 - Minimax: max then min value
 - Alpha-beta pruning: prune unuseful branch
 - Handling large/infinite game trees: cutoff, eval
 - Optimizing the search: transposition table, precomputation

Coming Up Next Week

- Machine Learning
- Decision Trees
 - Entropy and Information Gain
 - Different types of attributes
 - Pruning
- Performance Measures
 - Precision, Recall, F1
 - ROC

To Do

- Lecture Training 3
 - +100 Free EXP
 - +50 Early bird bonus
- Problem Set 1
 - Due Saturday, 2nd September (Tomorrow)