This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PRODUCTION OF LIQUID CRYSTAL DISPLAY ELEMENT

Patent Number:

JP5249423

Publication date:

1993-09-28

Inventor(s):

TAKAHASHI JUN

Applicant(s)::

CASIO COMPUT CO LTD

Requested Patent:

☐ JP5249423

Application Number: JP19920049372 19920306

Priority Number(s):

IPC Classification:

G02F1/13

EC Classification:

Equivalents:

JP2678326B2

Abstract

PURPOSE:To efficiently produce the liquid crystal display element which is reduced in the thickness of one substrate at a good yield.

CONSTITUTION: After a pair of glass substrates 11, 12 each having an area for plural pieces of liquid crystal display elements are adhered via sealing materials 13 respectively enclosing the liquid crystal sealing regions of the respective element blocks thereof and an outer peripheral sealing material 14 enclosing all of the respective element blocks to assemble an element assemblage 10. The outside surface of one of the two substrates 11, 12 of the respective element blocks is then etched exclusive of the peripheral edge parts of the element blocks to reduce the thickness of the parts exclusive of the peripheral edge parts of this substrate and thereafter, the element assemblage 10 is separated to the individual elements.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

F I

(11)特許出願公開番号

特開平5-249423

(43)公開日 平成5年(1993)9月28日

(51) Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

G 0 2 F 1/13

101

8806-2K

審査請求 未請求 請求項の数1(全 9 頁)

(21)出願番号

特願平4-49372

(22)出願日

平成4年(1992)3月6日

(71)出願人 000001443

カシオ計算機株式会社

東京都新宿区西新宿2丁目6番1号

(72)発明者:高橋 潤

東京都八王子市石川町2951番地の5 カシ

才計算機株式会社八王子研究所内

(74)代理人 弁理士 鈴江 武彦

(54) 【発明の名称】 液晶表示素子の製造方法

(57)【要約】

【目的】少なくとも一方の基板の厚さを薄くした液晶表示素子を能率的にかつ歩留よく製造する。

【構成】液晶表示素子複数個分の面積をもつ一対のガラス基板11,12を、その各案子区画の液晶封入領域をそれぞれ囲むシール材13と、前記各案子区画の全てを囲む外周シール材14とを介して接着して素子集合体10を組立てた後、前記各案子区画の両基板11,12のうち少なくとも一方の基板の外面を前記案子区画の周縁部を除いてエッチングしてこの基板の前記周縁部を除く部分の厚さを薄くし、この後前記案子集合体10を個々の素子に分離する。

【特許請求の範囲】

【請求項1】液晶表示素子複数個分の面積をもつ一対の ガラス基板を、その各案子区画の液晶封入領域をそれぞ れ囲むシール材と、前記各素子区画の全てを囲む外周シ ール材とを介して接着して素子集合体を組立てた後、前 記各素子区画の両基板のうち少なくとも一方の基板の外 面を前記素子区画の周縁部を除いてエッチングしてこの 基板の前記周縁部を除く部分の厚さを薄くし、この後前 記素子集合体を個々の素子に分離することを特徴とする 液晶表示素子の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は液晶表示素子の製造方法 に関するものである。

[0002]

【従来の技術】一般に、液晶表示素子は、複数個の素子 を一括して同時に組立てる製法で製造されている。

【0003】この製法は、液晶表示素子複数個分の面積 をもつ一対のガラス基板の各案子区画にそれぞれ表示用 の透明電極および配向膜等を形成し、この一対の基板 20 を、一方の基板にその各案子区画の液晶封入領域をそれ ぞれ囲んで印刷したシール材を介して接着して、複数個 の液晶表示素子が並んだ素子集合体を組立て、この後、 この素子集合体の両基板を各素子区画ごとに分断して個 々の素子に分離する方法であり、分離された各素子は、 この後、前記シール材の一部に設けておいた液晶注入口 から液晶封入領域に液晶を注入して前記液晶注入口を封 止し、さらに素子の表裏面(両基板の外面)にそれぞれ 偏光板を接着して液晶表示素子とされている。

【0004】なお、液晶表示素子内に液晶を封入する方 30 法には、一対の基板を接着する前に、一方の基板の各案 子区画の液晶封入領域にそれぞれ適量の液晶をディスペ ンサ等によって滴下供給する方法もあり、この場合は、 各素子区画の液晶封入領域を囲むシール材に液晶注入口 を設けておく必要はない。

【0005】ところで、液晶表示素子には、その背後に パックライトを配置して使用されるものと、素子の裏面 に反射板を配置して使用される反射型のものとがある。 なお、前記反射板としては、透明な光拡散板の背面に光 反射面を形成したものが使用されている。

【0006】上記反射型の液晶表示案子は、その表面側 偏光板を通って入射し、両基板間の液晶層を通った後、 裏面側偏光板により透過・遮断されて像光となった光 を、この裏面側偏光板の外面に配置した上記反射板で反 射させて表示するもので、この反射型液晶表示素子は、 時計、電卓、電子手帳等、各種電子機器の表示素子に広 く利用されている。

【0007】しかし、上記反射型液晶表示素子は、反射 板で反射された像光を素子の表面側から観察するもので と暗部との境界がぼけた像となってしまうという問題を もっている。

【0008】これは、裏面側基板での光の屈折によるも ので、反射型液晶表示素子の表示を表示面(表面側偏光 板面)に対して垂直な方向から見た場合は裏面側基板で の光の屈折はなく、したがって反射板で反射された反射 光は入射時の経路と同じ経路を通って出射するが、表示 面に対して斜め方向から表示を見ると、裏面側基板での 光の屈折によって、反射光の経路が入射時の経路からず 10 れ、その結果、表示像の輪郭がぼけてしまう。

【0009】このため、上記反射型液晶表示素子では、 その両基板のうち少なくとも裏面側基板の厚さをできる だけ薄くすることが望まれており、裏面側基板の厚さを 薄くすれば、表示を斜め方向から見たときにおける裏面 側基板での光の屈折による反射光の経路のずれが小さく なるため、輪郭の鮮明な表示を得ることができる。

【0010】しかし、上述したように複数個の素子を一 括して同時に組立てる製法で液晶表示素子を製造する場 合は、液晶表示素子複数個分の面積をもつ大面積のガラ ス基板を用いるため、液晶表示素子の製造において最初 から薄いガラス基板を使用したのでは、このガラス基板 が、一対の基板をシール材を介して接着して素子集合体 を組立てる際の基板加圧力に耐えきれずに割れてしま う。このため、上記製法で液晶表示素子を製造する場合 は、薄くても0. 3㎜程度以上の厚さのガラス基板を使 用する必要がある。

【0011】そこで、従来は、0.3㎜~1.1㎜程度 の厚さのガラス基板を用いて素子集合体を組立て、この 素子集合体を個々の素子に分離した後、各液晶表示素子 のガラス基板の外面を機械的に研磨して、少なくとも一 方の基板の厚さを薄くした液晶表示素子を製造してい

【0012】なお、この製造方法において、ガラス基板 面の研磨を、素子集合体を個々の素子に分離してから行 なっているのは、素子集合体の状態でガラス基板面を研 磨すると、研磨中にガラス基板が割れてしまうからであ

[0013]

【発明が解決しようとする課題】しかしながら、上記従 40 来の製造方法は、素子集合体を個々の素子に分離した後 に、1つ1つの液晶表示素子についてそのガラス基板を 薄く研磨するものであるため、液晶表示素子の製造能率 が悪く、したがって液晶表示素子の製造コストが高くな るといる問題をもっていた。

【0014】しかも、上記従来の製造方法では、ガラス 基板の外面を機械的に研磨してその厚さを薄くしている ため、基板面の均一な研磨が難しく、そのために薄型化 された基板の厚さにばらつきがあるし、また、研磨中に 基板の角部が欠けたりして生じるガラス屑により基板面 あるため、表示を斜め方向から見ると、表示像が、明部 50 が傷ついて、この液晶表示素子が不良品となるため、液

-180-

晶表示素子の製造歩留も悪いという問題があった。

【0015】本発明は上記のような実情にかんがみてな されたものであって、その目的とするところは、少なく とも一方の基板の厚さを薄くした液晶表示素子を能率的 にかつ歩留よく製造することができる液晶表示素子の製 造方法を提供することにある。

[0016]

【課題を解決するための手段】本発明は、液晶表示素子 複数個分の面積をもつ一対のガラス基板を、その各案子 区画の液晶封入領域をそれぞれ囲むシール材と、前記各 10 素子区画の全てを囲む外周シール材とを介して接着して 素子集合体を組立てた後、前記各素子区画の両基板のう ち少なくとも一方の基板の外面を前記素子区画の周縁部 を除いてエッチングしてこの基板の前記周録部を除く部 分の厚さを薄くし、この後前記素子集合体を個々の素子 に分離することを特徴とするものである。

[0017]

【作用】すなわち、本発明は、素子集合体の状態で各素 子区画の両基板のうち少なくとも一方の基板の外面をエ ッチングすることにより、各液晶表示素子の少なくとも 20 一方の基板の厚さを一括して薄くするものである。な お、この場合、素子集合体の内部は各素子区画の全てを 囲む外周シール材によってシールされているため、基板 外面のエッチングに際して素子集合体の内部がエッチン グ雰囲気にさらされることはなく、したがって、基板の 内面がエッチングされてダメージを受けることはない。

【0018】そして、本発明では、素子集合体の状態で 各素子区画の基板の厚さを薄くしているため、この後に 素子集合体を分断して個々に分離される各素子は、その 全てが既に基板の厚さを薄くされた素子であり、したが 30 って、少なくとも一方の基板の厚さを薄くした液晶表示 素子を能率的に製造できる。しかも、本発明では、基板 外面をエッチングして基板の厚さを薄くしているため に、基板を均一に薄くすることができるし、また機械的 研磨のように基板を損傷してしまうこともないから、上 記液晶表示素子を歩留よく製造することができる。

【0019】さらに、本発明では、各案子区画の基板の 外面を索子区画の周縁部を除いてエッチングすることに より、この基板の前記周縁部を除く部分の厚さを薄くし ができ、したがって基板の厚さを薄くしても、その周縁 部の強度を確保することができる。

[0020]

【実施例】

[第1の実施例]

【0021】以下、本発明の第1の実施例を図1~図5 を参照して説明する。図1は液晶表示素子の製造方法を 示す各製造工程時の断面図であり、液晶表示素子は、次 のような工程で製造する。

(工程1)

【0022】まず、図1(a)に示すように、液晶表示 素子複数個分の面積をもつ一対のガラス基板 1 1, 1 2 を、その各案子区画の液晶封入領域をそれぞれ囲むシー ル材13と、前記各案子区画の全てを囲む外周シール材 14とを介して接着して素子集合体10を組立てる。

【0023】図2は上記素子集合体10の一部切開平面 図であり、この素子集合体10は、後述する基板外面の エッチング工程を終了した後、両基板11,12を図に 一点鎖線で示した分断線 a, b に沿って折断することに より、個々の素子に分離される。

【0024】上記ガラス基板11,12は、素子集合体 10の組立て時に割れ等を生じないような厚さ(約0. 3㎜~1. 1㎜) の基板であり、図1において下側の基 板(以下、下基板という)11の分断線 a で囲まれた各 素子区画部分はそれぞれ液晶表示素子の表面側基板Aと なり、上側の基板(以下、上基板という)12の分断線 bで囲まれた各素子区画部分はそれぞれ液晶表示素子の 裏面側基板Bとなる。

【0025】そして、両基板11,12の各案子区画に はそれぞれ表示用の透明電極と配向膜とが形成されてい る。なお、図1および図2には透明電極および配向膜は 示していないが、前記透明電極は、例えば図3に示すよ うなパターンの複数のセグメント電極15と、これらセ グメント電極15に対向するコモン電極16(図4参 **照)であり、この実施例では、下基板11の全ての素子** 区画にセグメント電極15を形成し、上基板12の全て の素子区画にコモン電極16を形成している。また、図 3および図4において、17,18は前記配向膜であ る。この配向膜17,18は、例えばポリイミドからな っており、その膜面にはラビング処理が施されている。

【0026】また、上記下基板11の各素子区画(液晶 表示素子の表面側基板A)の一側縁部は、液晶封入領域 を囲むシール材13の外側に張出す端子配列部とされて いる。この端子配列部には、図3および図4に示すよう に、上記各セグメント電極15の端子15aと、上基板 12に形成したコモン電極16の端子16aとが形成さ れており、上基板12側のコモン電極16は、素子集合 体10を個々の素子に分離した後、シール材13の外側 において導電ペースト19等により下基板11に形成し ているため、この基板の周縁部に厚肉の縁部を残すこと 40 た端子16aと導通接続される。上記素子集合体10 は、次のようにして組立てる。

> 【0027】まず、各素子区画にそれぞれ上記セグメン ト電極15と配向膜17とを形成した下基板11と、各 素子区画にそれぞれ上記コモン電極16と配向膜18と を形成した上基板12とのうち、一方の基板面に、その 各素子区画の液晶封入領域をそれぞれ囲むシール材13 と、各素子区画の全てを囲む外周シール材14とを、ス クリーン印刷法等によって同時に印刷する。なお、前記 シール材13,14には、ガラス基板11,12とのエ 50 ッチング選択比が高い接着剤(エポキシ樹脂系接着剤

等)を用いる。また、各素子区画のシール材13はその 一部に液晶注入口13aとなる隙間を残して印刷し、ま た外周シール材14はその一部に通気口14aとなる隙 間を残して印刷する。

【0028】次に、上記一対のガラス基板11,12を その各案子区画を互いに対向させて重ね合わせ、この両 基板11,12を前記シール材13,14を介して接着 する。この場合、両基板11,12間の空間は、各素子 区画のシール材13の一部に設けた液晶注入口13aと て外部に連通しているため、両基板11,12間の空気 圧が高くなることはなく、したがって、両基板11,1 2をその全域にわたって均一な間隔で接着することがで きる。

【0029】このようにして素子集合体10を組立てた 後は、外周シール材14の一部に設けておいた通気口1 4 a を、ガラス基板 1 1、1 2 とのエッチング選択比が 高い封止材(エポキシ樹脂系接着剤等)20で封止し、 素子集合体 1 0 の内部を密封する。

(工程2)

【0030】次に、図1(b)に示すように、上記素子 集合体10の両基板11,12の外面にそれぞれ、各素 子区画のシール材13で囲まれた液晶封入領域(液晶表 示素子の表示領域)を除いて他の部分全体を覆うレジス **トマスク21を形成する。**

、(工程3)

【0031】次に、上記素子集合体10の両基板11, 12の外面をエッチングして、その各案子区画部分、つ まり液晶表示素子の表裏の基板A、Bとなる部分の厚さ をその周縁部を除いて図1 (c) に示すように薄くす 30 る。.

【0032】この上基板12の外面のエッチングは、弗 酸をペースとするエッチング液を用い、このエッチング 液中に素子集合体10を浸漬して行なう。このように、 素子集合体10をエッチング液に浸漬すると、下基板1 1の各素子区画部分、つまり液晶表示素子の表面側基板 A部の外面が、レジストマスク21で覆われている周縁 部を除いてエッチングされるとともに、上基板12の各 素子区画部分、つまり液晶表示素子の裏面側基板 B 部の .外面が、同様にレジストマスク21で覆われている周縁 40 部を除いてエッチングされ、前記表面側基板A部および 裏面側基板B部の周縁部を除く部分(液晶封入領域に対 応する部分)の厚さが薄くなって行く。なお、この基板 11, 12のエッチング時間は、最終的に得ようとする 基板厚さに応じて設定すればよく、このエッチング時間 を制御することにより、前記表面側基板A部および裏面 側基板B部の厚さを0.2㎜~0.1㎜まで薄くするこ とができる。

【0033】この場合、基板11,12は、エッチング 液中において機械的な力がかからない状態でエッチング 50 着され、また反射板25は、裏面側偏光板24の外面に

されるため、素子集合体10の状態で基板11,12の 厚さを薄くしても、この基板 1 1, 1 2 に割れが発生す ることはないし、また基板11,12のエッチングは基 板面全体にわたって均等に進行するため、基板 1 1, 1 - 2のエッチング領域をその全域にわたって均一に薄くす ることができる。

【0034】なお、素子集合体10をエッチング液中に 浸漬しても、素子集合体10の内部は、各素子区画の全 てを囲みかつ通気口14aを封止材19で封止した外周 外周シール材14の一部に設けた通気口14aとを介し 10 シール材14によってシールされているため、素子集合 体10の内部がエッチング雰囲気であるエッチング液に さらされることはなく、したがって、基板11,12の 内面がエッチングされてダメージを受けることはない。

> 【0035】また、この場合、基板11,12の外面工 ッチングを行なっている間に、この両基板11,12の 外周面もエッチングされるが、両基板11,12の外周 面が外周シール材14の内周面より内側に後退するまで は、素子集合体10内へのエッチング液の侵入が外周シ ール材14によって阻止されるから、外周シール材14 20 を基板外周縁からある程度の間隔をとって設けるととも に、この外周シール材14の幅を十分大きくとっておけ ば、両基板11,12の外周面がエッチングされても何

【0036】このように、素子集合体10の状態で基板 11,12の外面をエッチングした後は、速やかに素子 集合体10を洗浄し、素子集合体10に付着しているエ ッチング液を完全に除去し、この後、両基板11,12 からレジストマスク21を剥離する。

(工程4)

等問題はない。

【0037】次に、図1 (d) に示すように、上記素子 集合体10の両基板11,12を、上述した分断線a, ・ bに沿って折断し、この素子集合体10を個々の素子に 分離する。図1 (e) は分離された1つの素子を示して いる。

(工程5)

【0038】この後は、分離した各素子の裏面側基板B に形成されているコモン電極6と、表面側基板Aの端子 配列部に形成してあるコモン電極端子6 a とを、図3お よび図4に示したようにシール材13の外側において導 電ペースト19等により導通接続するとともに、各案子 内にシール材13の一部に設けておいた液晶注入口13 aから真空注入法により液晶LCを注入して前配液晶注 入口13aを図3に示すように封止樹脂22で封止し、 この後、素子の両基板A、Bの外面にそれぞれ偏光板を 接着するとともに、さらに裏面側の偏光板の外面に反射 板を接着して、反射型の液晶表示素子を完成する。

【0039】図5は完成した液晶表示素子を示してお り、偏光板23,24は、両基板A, Bの凹入面(エッ ・ チングにより厚さを薄くした部分の外面)にそれぞれ接 接着されている。なお、前記反射板25は、透明な光拡 散板の背面に光反射面を形成したものである。

【0040】この液晶表示素子は、表裏の基板A,Bの 厚さを薄くしたものであるため、光の透過率が高いし、 また表示を斜め方向から見たときにおける裏面側基板B での光の屈折による反射光の経路のずれが小さいため、 輪郭の鮮明な表示を得ることができる。」

【0041】また、この液晶表示素子では、両基板A, Bをそれぞれその周縁部を除いて薄くしているため、両 基板A、Bの周縁部に、素子集合体10を組立てるとき 10 のガラス基板 1 1、 1 2 の厚さ(約 0. 3 mm~ 1. 1 m・ m)と同じ厚さの厚肉緑部があり、したがって、この厚 肉縁部でA、Bの周縁部を補強することができるし、さ らに表面側基板Aの端子配列部も厚肉であるため、液晶 表示素子をその駆動回路に接続する際に、液晶表示素子 の端子配列部に圧力がかかっても、液晶表示素子が破壊 されることはない。

【0042】そして、上記製造方法においては、素子集 合体10の状態で各素子区画の両基板、つまり液晶表示 素子の表面側基板Aと裏面側基板B部の外面をエッチン 20 グすることにより、各液晶表示素子の両基板A、Bの厚 さを一括して薄くしているため、この後に素子集合体1 0を分断して個々に分離される各案子は、その全てが既 にその両基板A、Bの厚さを薄くされた素子であり、し たがって、基板の厚さを薄くした液晶表示素子を能率的 に製造することができる。

【0043】しかも、上記製造方法では、基板外面をエ ッチングして基板の厚さを薄くしているために、基板を 均一に薄くすることができるし、また機械的研磨のよう に基板を損傷してしまうこともないから、上記液晶表示 30 素子の製造歩留もよい。

【0044】さらに、上記製造方法では、各案子区画の 基板(液晶表示素子の表面側基板Aと裏面側基板B部) の外面を素子区画の周縁部を除いてエッチングすること により、この基板の前記周縁部を除く部分の厚さを薄く しているため、この基板の周緑部に厚肉の緑部を残すこ とができ、したがって基板の厚さを薄くしても、その周 縁部の強度を確保することができる。

[第1の実施例の変形例]

A、Bの周縁部はその全域にわたって厚肉のままとして いるが、素子集合体10の状態での基板外面のエッチン グ時に、前記両基板A、Bの一方または両方の周縁部の 外面も部分的にエッチング(この部分にはレジストマス ク21を形成しない) すれば、基板周縁部の外面に他の 部品の収容凹部を形成することができる。すなわち、図 6 および図7はそれぞれ上記第1の実施例の変形例を示 す完成された液晶表示素子の電子機器実装状態の断面図 である。

【0046】図6に示した液晶表示素子は、その表面側 *50* 行なった後は、速やかに素子集合体10を洗浄し、この

基板Aの端子配列部とその反対側の縁部とに素子押え部 材26の収容凹部を形成したもので、この変形例によれ ば、素子押え部材26を液晶表示素子の表面上に突出さ せることなく液晶表示案子を電子機器に実装することが できる。なお、図6において、27は液晶表示素子の駆 動回路を形成した回路基板、28は前記回路基板27と 液晶表示素子の端子配列部との間に挟持されて前記駆動 回路の端子27aと液晶表示素子の端子とを接続する弾 性コネクタである。

【0047】また、図7に示した液晶表示素子は、その 表裏を逆にして使用されるものであり、反射板25は端 子配列部を有する基板Aの外面に設けた偏光板23の外 面に接着されている。そして、この液晶表示素子では、 上記基板Aの端子配列部の外面に、液晶表示素子の駆動 回路を形成した回路基板29上に取付けられている集積 回路素子30を収容する凹部を形成している。この変形 例によれば、回路基板29上に取付る集積回路素子30 を液晶表示素子の端子配列部の下に配置できるし、また 液晶表示素子を回路基板29から大きく離間させて実装 する必要もないから、電子機器の薄型化をはかることが できる。なお図7において、31は前記回路基板29上 の端子29aと液晶表示素子の端子とを接続するフィル ム状コネクタである。

[第2の実施例]

【0048】なお、上記第1の実施例では、液晶表示素 子の表裏の基板A,Bの厚さをそれぞれ薄くしている が、反射型液晶表示素子の表示を鮮明にするには、少な くとも反射板25を配置する裏面側の基板(図5および 図6では基板B、図7では基板A) の厚さを薄くすれば よいから、表面側の基板は厚いままでもよい。

【0049】このように反射板25を配置する裏面側の 基板だけを薄くした液晶表示素子は、図8に示した第2 の実施例によって製造することができる。なお、図8に おいて、第1の実施例と対応するものには同符号を付 し、重複する説明は省略する。

【0050】この実施例では、図8(a)に示すように 素子集合体(第1の実施例の素子集合体と同じもの)1 0を組立てた後、図8(b)に示すように索子集合体1 0の両基板11,12のうち、液晶表示素子の表面側基 【0045】上記実施例では、液晶表示素子の両基板 40 板Aとなる下基板11にはその外面全体を覆うレジスト マスク21を形成し、裏面側基板Bとなる上基板11に は各素子区画の液晶封入領域を除いて他の部分全体を覆 **うレジストマスク21を形成して、エッチング液中で基** 板外面をエッチングする。

> 【0051】このように、下基板11の外面全体をレジ ストマスク21で覆っておいて基板外面をエッチングす ると、図8(c)に示すように、上基板12のレジスト マスク21で覆われていない部分だけがその外面からエ ッチングされて薄くなる。この基板外面のエッチングを

後両基板11, 12からレジストマスク21を剥離する。

【0052】この後は、図8(d)に示すように、上記 素子集合体10の両基板11,12を、分断線a,bに 沿って折断し、この素子集合体10を個々の素子に分離する。図8(e)は分離された1つの素子を示しており、この素子の表面側基板Aはその全体が素子集合体10の組立て時におけるガラス基板の厚さのままであり、裏面側基板だけがその周縁部を除いて薄くなっている。

【0053】なお、この素子は、第1の実施例と同様 10 に、裏面側基板Bの電極と表面側基板Aの端子配列部に形成してある端子とをシール材13の外側において導電ペースト等により導通接続し、内部に液晶LCを注入して液晶注入口13aを封止し、この後、両基板A,Bの外面にそれぞれ偏光板を接着するとともに、裏面側偏光板の外面に反射板を接着して、反射型の液晶表示素子される。

[第3の実施例]

【0054】なお、第1および第2の実施例では、全ての素子区画に液晶表示素子の表面側基板に設ける電極 20 (セグメント電極)と表裏両基板の電極の端子を形成した基板11と、全ての素子区画に液晶表示素子の裏面側基板に設ける電極 (コモン電極)を形成した基板12とを用いて素子集合体10を組立て、その一方の基板の厚さを薄くしているが、上記素子集合体10は、1つおきの素子区画に液晶表示素子の表面側基板に設ける電極と表裏両基板の電極の端子を形成し、他の素子区画に裏面側基板に設ける電極を形成した一対のガラスを用いて組立ててもよい。

【0055】すなわち、図9および図10は本発明の第 30 3の実施例を示しており、この実施例は、表面側基板は 薄くせず、裏面側基板だけを薄くした液晶表示素子を製 造する例である。図9は液晶表示素子の製造方法を示す 各製造工程時の断面図、図10は素子集合体10の一部 切開平面図である。なお、図9および図10において、 第1および第2の実施例と対応するものには同符号を付 し、重複する説明は省略する。

【0056】まず、素子集合体10の構成を説明すると、この素子集合体10は、図9(a)および図10に示すように、1つおきの素子区画に液晶表示素子の表面側基板に設ける電極と表裏両基板の電極の端子を形成し、他の素子区画に裏面側基板に設ける電極を形成した一対のガラス11,12を、その各素子区画の液晶封入領域をそれぞれ囲むシール材13と、前記各案子区画の全てを囲む外周シール材14とを介して接着して組立てたものであり、この素子集合体10は、後述する基板外面のエッチング工程を終了した後、両基板11,12を図に一点鎖線で示した分断線a,bに沿って折断することにより、個々の案子に分離される。

【0057】上記ガラス基板11,12は、素子集合体 *50*

10の組立て時に割れ等を生じないような厚さ(約0.3 mm~1.1 mm)の基板であり、下基板11の分断線 a で囲まれた各素子区画部分のうち、1つおきの区画部分はそれぞれ液晶表示素子の表面側基板Aとなり、他の区画部分はそれぞれ液晶表示素子の裏面側基板Bとなる。また、上基板12の分断線 b で囲まれた各素子区画部分のうち、下基板11の表面側基板A部に対向する区画部分はそれぞれ液晶表示素子の裏面側基板Bとなり、下基板11の裏面側基板B部に対向する区画部分はそれぞれ液晶表示素子の表面側基板Aとなる。

- 10

【0058】そして、図示しないが、両基板11,12 の各素子区画のうち、表面側基板A部にはそれぞれ液晶 表示素子の表面側基板に設ける表示用の透明電極と配向 膜とが形成されており、裏面側基板B部にはそれぞれ液 晶表示素子の裏面側基板に設ける表示用の透明電極と配 向膜とが形成されている。

【0059】また、両基板11,12の表面側基板A部の一側縁部は、液晶封入領域を囲むシール材13の外側に張出す端子配列部とされている。この端子配列部には、表裏両基板の電極の端子が形成されており、前記裏面側基板B部の電極は、素子集合体10を個々の素子に分離した後、シール材13の外側において導電ペースト等により表面側基板A部の端子と導通接続される。

【0060】この実施例による液晶表示素子の製造方法を説明すると、この実施例では、まず図9(a)および図10に示した素子集合体10を組立てた後、図9(b)に示すように、両基板1,2の外面にそれぞれ、その各素子区画のうちの表面側基板A部の全域と裏面側基板B部の周縁部(素子区画の周縁部)とを覆う覆うレジストマスク21を形成する。

【0061】次に、上記素子集合体10をエッチング液中に浸漬して、素子集合体10の両基板11,12の各素子区画のうち、レジストマスク21で覆われていない部分外面をエッチングし、両基板11,12の前記裏面側基板B部の厚さをその周縁部を除いて図9(c)に示すように所望の厚さに薄くする。この基板外面のエッチングを行なった後は、速やかに素子集合体10を洗浄し、この後両基板11,12からレジストマスク21を剥離する。

示すように、1つおきの素子区画に液晶表示素子の表面・40 【0062】次に、図9(d)に示すように、上記素子 側基板に設ける電極と表裏両基板の電極の端子を形成 集合体10の両基板11,12を、分断線a,bに沿っし、他の素子区画に裏面側基板に設ける電極を形成した て折断し、この素子集合体10を個々の素子に分離すー対のガラス11,12を、その各素子区画の液晶封入 る。図9(e)は分離された1つの素子を示している。

【0063】この後は、第1の実施例と同様に、分離した各素子の裏面側基板Bに形成されている電極と表面側基板Aの端子配列部に形成してある端子とを、シール材13の外側において導電ペースト等により導通接続するとともに、各素子内に真空注入法により液晶LCを注入して液晶注入口13aを封止し、この後、素子の表裏面(両基板A, Bの外面)にそれぞれ偏光板を接着すると

ともに、さらに裏面側の偏光板の外面に反射板を接着して、反射型の液晶表示素子を完成する。

【0064】この実施例においても、素子集合体10の状態で各素子区画の両基板、つまり液晶表示素子の表面側および裏面側基板A,Bとなる部分のうち、裏面側基板B部の外面をエッチングすることにより、各液晶表示素子の一方の基板の厚さを一括して薄くしているため、一方の基板の厚さを薄くした液晶表示素子を能率的に製造することができるし、また、基板外面をエッチングして基板の厚さを薄くしているために、基板を均一に薄く10することができるとともに、基板を損傷してしまうこともないから、上記液晶表示素子を歩留よく製造することができ、しかも、基板をその周縁部を除いて薄くしているため、基板の厚さを薄くしても、その周縁部の強度を確保することができる。

【0065】なお、この実施例では、液晶表示素子の表面側基板Aの厚さは薄くしていないが、素子集合体10の状態での基板外面のチッチングに際して、基板11,12の表面側基板A部の上のレジストマスク21も、表面側基板A部の周縁部(素子区画の周縁部)だけを覆う20ように形成すれば、表面側基板Aと裏面側基板Bとの両方の基板の厚さをその周縁部を除いて薄くした液晶表示素子を製造することができる。

[他の実施例]

【0066】上記各実施例では、素子集合体10の状態での基板外面のエッチングを、素子集合体10をエッチング液中に浸漬して行なっているが、この基板外面のエッチングは、素子集合体10にエッチング液を散布して行なっても、またドライエッチングによって行なってもよい。

【0067】また、上記実施例では、素子集合体10を個々の液晶表示素子に分離した後に、各液晶表示素子に液晶を注入しているが、この液晶は、一対のガラス基板1,2を接着して素子集合体10を組立てる前に、一方のガラス基板の各素子区画の液晶封入領域にディスペンサ等によって滴下供給してもよく、その場合は、各素子区画の液晶封入領域を囲むシール材3に液晶注入口を設けておく必要はない。

[0068]

【発明の効果】本発明によれば、素子集合体の状態で各案子区画の両基板のうちの一方の外面をエッチングしてこの基板の厚さを薄くし、この後前記案子集合体を個々の素子に分離しているため、一方の基板の厚さを薄くした液晶表示素子を能率的に製造することができるし、また、基板を均一に薄くすることができるとともに、基板を均低でしまうこともないから、上記液晶表示素子を歩留よく製造することができ、さらに、各案子区画の基板の外面を素子区画の周縁部を除いてエッチングすることにより、この基板の前記周縁部を除く部分の厚さを薄くしているため、基板の厚さを薄くしても、その周縁部の強度を確保することができる。

12

【図面の簡単な説明】

【図1】本発明の第1の実施例による液晶表示素子の製造方法を示す各製造工程時の断面図

【図2】図1 (a) に示した素子集合体の一部切開平面

7 【図3】上記素子集合体から分離された液晶表示素子の液晶封入後の状態の一部切開平面図。

【図4】図3のIV-IV線に沿う断面図。

【図5】完成された液晶表示素子の断面図。

【図 6】本発明の第1の実施例の変形例を示す完成された液晶表示素子の電子機器実装状態の断面図。

【図7】本発明の第1の実施例の他の変形例を示す完成 された液晶表示素子の電子機器実装状態の断面図。

【図8】本発明の第2の実施例による液晶表示素子の製造方法を示す各製造工程時の断面図。

【図9】本発明の第3の実施例による液晶表示素子の製造方法を示す各製造工程時の断面図。

【図10】図9 (a) に示した素子集合体の一部切開平 面図。

【符号の説明】

10…素子集合体、11, 12…ガラス基板、A…表面 側基板、B…裏面側基板、13…シール材、14…外周 シール材、21…レジストマスク。

【図4】

18 16 LC 19 16 C 15 17 15 17 15 23 15 16a 13 18 LC 24 16 25

26 A LC 15 17 23 15 26 19 13 28 18 27 16 24 25

[図1]

[図2]

【図3】

[図7]

[図8]

【図1.0

【図9】

