Products, Coproducts, and Universal Properties

Ex C = Top

<u>Df</u> a category C consists of

objects are topological spaces morphisms are continuous maps

- a class of objects
- for any objects X, Y, a set Hom(X, Y) of arrows from X to Y called morphisms
- for any objects X, Y, Z, a composition law
 - \neg : Hom(X, Y) × Hom(Y, Z) to Hom(X, Z)

Ex C = Grp

objects are groups morphisms are group homomorphisms

Ex C = Ab

objects are abelian groups morphisms are group homomorphisms

[note: no axiom of inversion]

we say that Ab is a subcategory of Grp

s.t. 1) • is associative

2) for all X, an elt Id_X in Hom(X, X) serving as (left and right) id elt for •

it is <u>full</u> in the sense that Hom_{Ab}(A, B) is just Hom_{Grp}(A, B) for any abelian groups A, B

superlatives in natural language become universal properties of objects in cats

viz., defns asserting that certain test objects and/or morphisms give rise to certain unique maps

e.g., least upper bound s.t. ... coarsest topology s.t. ... largest quotient s.t. ...

Slogan

correspond to defns involving universal properties

Ex the product topology is a topology on prod_ α X_ α s.t.

 $f: Y \text{ to prod}_\alpha \ X_\alpha \text{ is cts iff}$ pr $_\alpha \circ f: Y \text{ to } X_\alpha \text{ is cts for all } \alpha$

[draw] given cts maps f_α : Y to X_α for all α get a unique cts map f: Y to prod_ α X_ α s.t. $f_\alpha = pr_\alpha \circ f$

Ex the product of groups G_{α} is a group prod_α G_{α} s.t.

given hom's ϕ_{α} : H to G_{α} for all α get a unique hom ϕ : H to prod_ α G_{α} s.t. $\phi_{\alpha} = pr_{\alpha} \circ \phi$

reversing the diagram gives the defn of free product:

Ex the free product of the $G_α$ is a group bigast α $G_α$ s.t.

[draw] given hom's ψ_{α} : G_{α} to K for all α get a unique hom ψ : bigast_ α G_{α} to K s.t. $\psi_{\alpha} = \psi \circ i_{\alpha}$ [for incl.'s i_{α}]

<u>Df</u> in a general category C

objects described by the pr_α property are called products prod_α X_α objects described by the i_α property are called coproducts coprod_α X_α

Ex if A_α are abelian groups then their product in Ab is isomorphic as a group to their product in Grp

[still left: describe the coproducts in Top and Ab]

 \underline{Ex} the coproduct of A_\alpha in Ab is not iso to their free product, i.e., coproduct in Grp

it's isomorphic to the subgroup

bigoplus α A α sub prod α A α

of elts $(x_\alpha)_\alpha$ s.t. $x_\alpha = e_{A_\alpha}$ for all but finitely many α

Ex given top spaces $X_α$ what is coprod_α $X_α$?

given cts maps g_α : X_α to Z for all α need a unique cts map g: coprod_ α X_α to Z s.t. g $\alpha = g \circ i$ α

turns out to be the disjoint union: coprod = cup

Rem related notion of a pushout X_1 cup_Y X_2

in Grp, this is the amalgamated prod

G_1 *_H G_2, a quotient of G_1 * G_2
in Top, this is gluing X_1 and X_2 along Y,
a quotient of X_1 cup X_2

(Munkres §72–73)

Thm let X be Hausdorff let i : A to X be inclusion of a closed path-connected subspace

suppose there is cts ζ : D^2 to X s.t. ζ maps Int(D^2) bijectively onto X – A ζ maps S^1 into A let $a = \zeta(p)$ and $\eta = \zeta|_{S^1}$ then:

- 1) $i_* : \pi_1(A, a)$ to $\pi_1(X, a)$ is surjective
- 2) $\ker(i_*) = \operatorname{im}(\eta_* : \pi_1(S^1, p) \text{ to } \pi_1(A, a))$

[how to wield this thm efficiently?]

https://divisbyzero.com/2020/04/08/make-a-real-projective-plane-boys-surface-out-of-paper/

take X to be the quotient space of [0, 1]^2 resulting from the edge identifications

take A to be the image of the boundary square take ζ to be a homeo from D^2 onto [0, 1]^2

in the torus and Klein-bottle cases
take a to be the path following ">"
take b to be the path following ">>"
then

$$\pi_1(X) = \langle a, b | R \rangle$$

where R is read off of a loop traversal of A

 $\pi_1(n-fold dunce cap) = Z/nZ$

Remarks on the Proof of Seifert-van Kampen

the full proof (Munkres §70) is tedious

recall our proof that $\pi_1(S^2)$ is trivial, using open nbds of hemispheres intersecting in an annulus

that proof generalizes to a proof of the first part of Seifert–van Kampen:

then every elt of $\pi_1(X, x)$ is a (finite) iterated composition of elts of the images of

$$i_{1, *} : \pi_{1}(U_{1, x}) \text{ to } \pi_{1}(X, x),$$

 $i_{2, *} : \pi_{1}(U_{2, x}) \text{ to } \pi_{1}(X, x)$