Agenda

- 1. Course evaluations
 https://horizon.mcgill.ca/pban1/twbkwbis.P_WWWLogin?ret_code=f
 (Minerva > Mercury)
- 2. Models of time
- 3. Nesting time within students
- 4. Example in R

Models of time

Common models of time

Autoregression models

Model outcome at time t as a function of covariates and outcome at time t-1.

$$y_t = y_{t-1} + \beta X_{t-1} + \varepsilon_t$$

$$y_{\Delta t} = \beta X_{t-1} + \varepsilon_t$$

Survival / eventhistory models

Model the timing of a one-time event (graduation, job acquisition, death). $\lambda(t \mid X) = \lambda_0 \exp(\beta X)$

Age-period-cohort models

Demographic models aiming to differentiate between effects of individuals' age, the date of measurement (period), and birth cohort.

Ad hoc models

Countless context-specific ways to model a randomly varying or functionally defined effect of time on outcomes.

Models of time

Common temporal data structures

Student scores over time

						student.
Student 1	54	0	531	564	563	
Student 2	47	9	487	505	510	
Student 3	50	3	505	501	503	
Student 4	46	1	471	_	_	
Student 5	52	5		506	541	
	•	• •	• • •	• • •	• • •	
	198	5	1986	1987	1988	•

Correlation between

scores from the same

Student scores over time

Student scores over time

	1985	1986	1987	1988
Student 1	540	531	564	563
Student 2	479	487	505	510
Student 3	503	505	501	503
Student 4	461	471	_	_
Student 5	525	_	506	541
	• • •	• • •	• • •	•••

Student	Year	Score
1	1985	540
1	1986	531
1	1987	564
1	1988	563
2	1985	479
2	1986	487
2	1987	505
2	1988	510
3	1985	503
•••	• • •	• • •

Students groups into classrooms

Single year

Test scores grouped by student

Score for student *i* at time *t*.

$$S_{ti} \sim \mathsf{Norm}(\mu_{ti}, \sigma)$$

Average score for student *i*.

$$\mu_{ti} = \beta_{0i} + \beta_1 CSize_{ti}$$

$$\beta_{0i} = \gamma_{00} + \eta_{0i}$$

Average score across all students.

$$\eta_{0i} \sim \mathsf{Norm}(0, \phi_0)$$

$$S_{ti} \sim ext{Norm}(\mu_{ti}, \sigma)$$
 $\mu_{ti} = eta_{0i} + eta_1 CSize_{ti}$
 $eta_{0i} = \gamma_{00} + \eta_{0i}$

$$\eta_{0i} \sim \mathsf{Norm}(0, \phi_0)$$

$$\gamma_{00} \sim \text{Norm}(500, 100)$$
 $\beta_1 \sim \text{Norm}(0, 50)$
 $\sigma \sim \text{HalfCauchy}(0, 50)$
 $\phi_0 \sim \text{HalfCauchy}(0, 50)$

	Mean	90% credible Mean interval		
Y 00	547.06	544.05	549.94	
β1	1.23	0.58	1.87	
σ	56.94	54.97	58.93	
 ϕ 0	33.91	30.16	37.60	

Linear time trend

$$S_{ti} \sim ext{Norm}(\mu_{ti}, \sigma)$$
 $\mu_{ti} = eta_{0i} + eta_{1i} Year_{ti} + eta_2 CSize_{ti}$
 $eta_{0i} = \gamma_{00} + \eta_{0i}$
 $eta_{1i} = \gamma_{10} + \eta_{1i}$

$$[\eta_{0i}, \eta_{1i}] \sim \mathsf{MVNorm}([0, 0], \Phi, R)$$

<u>Linear time trend</u>

$$S_{ti} \sim ext{Norm}(\mu_{ti}, \sigma)$$
 $\mu_{ti} = eta_{0i} + eta_{1i} Year_{ti} + eta_2 CSize_{ti}$
 $eta_{0i} = \gamma_{00} + \eta_{0i}$
 $eta_{1i} = \gamma_{10} + \eta_{1i}$

$$[\eta_{0i}, \eta_{1i}] \sim \mathsf{MVNorm}([0, 0], \Phi, R)$$

γ_{00}	\sim	Norm(500, 100)
<i>Y</i> ₁₀	\sim	Norm(0,50)
$oldsymbol{eta}_2$	\sim	Norm(0,50)
σ	\sim	HalfCauchy(0,50)
ϕ_0, ϕ_1	\sim	HalfCauchy(0,50)
R	\sim	LKJ(2,2)

	Mean		redible nterval
Y 00	484.64	481.84	487.39
V 10	42.88	41.75	44.02
$oldsymbol{eta}_2$	-0.33	-0.73	0.070
σ	24.27	23.27	25.32
φ ₀	38.25	35.84	40.65
φ ₁	8.89	7.17	10.56
P 01	-0.37	-0.48	-0.23

Linear time trend

Quadratic time trend

$$S_{ti} \sim ext{Norm}(\mu_{ti}, \sigma)$$
 $\mu_{ti} = eta_{0i} + eta_{1i} Y ear_{ti} + eta_{2i} Y ear_{ti}^2 + eta_3 C Size_{ti}$
 $eta_{0i} = \gamma_{00} + \eta_{0i}$
 $eta_{1i} = \gamma_{10} + \eta_{1i}$
 $eta_{2i} = \gamma_{20} + \eta_{2i}$

 $[\eta_{0i}, \eta_{1i}, \eta_{2i}] \sim \mathsf{MVNorm}([0, 0, 0], \Phi, R)$

Quadratic time trend

${\sf S}_{ti} \sim$	$Norm(\mu_{ti},\sigma)$
$\mu_{\it ti} =$	$eta_{0i} + eta_{1i}$ Yea $r_{ti} + eta_{2i}$ Yea $r_{ti}^2 + eta_3$ CSize
$eta_{0i} =$	$\gamma_{00} + \eta_{0i}$
$eta_{1i} =$	$\gamma_{10} + \eta_{1i}$
$eta_{2i} =$	$\gamma_{20} + \eta_{2i}$
$[\eta_{0i},\eta_{1i},\eta_{2i}] \sim$	$MVNorm([0,0,0],\Phi,R)$
$\gamma_{00} \sim$	Norm(500, 100)
$\gamma_{10} \sim$	Norm(0,50)
$v_{\rm ac} \sim$	Norm(0, 50)

 $eta_3 \sim \mathsf{Norm}(0,50)$

 $\phi_0,\phi_1,\phi_2 \sim \mathsf{HalfCauchy}(0,50)$

 $R \sim LKJ(2,3)$

 $\sigma \sim \mathsf{HalfCauchy}(0,50)$

	Mean	_	redible nterval
Y 00	482.32	479.37	485.30
V 10	49.28	45.77	52.88
¥ 20	-2.10	-3.14	-1.09
β_3	-0.36	-0.74	0.02
σ	21.91	20.76	23.04
ϕ_0	40.70	38.16	43.43
ф 1	31.48	26.35	36.38
ф2	7.29	5.62	8.96
P 01	-0.45	-0.55	-0.35
P 02	0.40	0.25	0.53
P 12	-0.98	-1.00	-0.96

Quadratic time trend

