1 Úvod

Poznámka (Co je diskrétní matematika)

Protipól matematiky spojité. Souhrnný název pro matematické disciplíny, zabývající se diskrétními objekty.

Poznámka (Co je potřeba)

Cvičení + zkouška z věcí z přednášky.

Poznámka (literatura)

Kapitoly z diskrétní matematiky od Matouška.

Definice 1.1 (Důkaz (neformální))

Rozebírání tvrzení na tvrzení, která už jsou zřejmá.

Definice 1.2 (Definice (neformální))

Definujeme objekty pomocí jednodušších a jednodušších, až axiomů.

Definice 1.3 (Důkaz sporem)

Dokážeme φ tím, že vyvrátíme φ

Definice 1.4 (Důkaz matematickou indukcí)

Dokážeme $\varphi(n), \forall n \in \mathbb{N}$ tak, že dokážeme $\varphi(0) \land (\forall n \in \mathbb{N})(\varphi(n) \implies \varphi(n+1))$

Definice 1.5 (Dolní a horní celá část)

 $\lceil x \rceil$ je nejbližší nižší celé číslo kx

 $\lfloor x \rfloor$ je nejbližší vyšší celé číslo kx

Definice 1.6 (Sčítání mnoha čísel)

 $\sum_{i=13}^{n} x_i = x_{13} + x_{14} + \ldots + x_n = \text{Sčítání } x \text{ od indexu } 13 \text{ do indexu } n$

$$\sum_{\emptyset} = 0$$

Definice 1.7 (Sčítání mnoha čísel)

$$\prod_{i=13}^{n} x_i = x_{13} \cdot x_{14} \cdot \ldots \cdot x_n = \text{Násobení } x \text{ od indexu } 13 \text{ do indexu } n$$

$$\prod_{\emptyset} = 1$$

Poznámka (Klasické množiny)

 $\mathbb{N}\mathbb{Z}\mathbb{Q}\mathbb{R}\mathbb{C}$

Poznámka (Klasické množinové operace)

$$x \in \mathbb{A}$$

$$\mathbb{A}\subseteq\mathbb{B}$$

$$\mathbb{A} \cap \mathbb{B}$$

$$\mathbb{A} \cup \mathbb{B}$$

$$\mathbb{A} \setminus \mathbb{B}$$

$$\mathbb{A} \triangle \mathbb{B} = (\mathbb{A} \setminus \mathbb{B}) \cup (\mathbb{B} \setminus \mathbb{A}) = \text{disperze}$$

$$2^{\mathbb{A}} = \mathcal{P}(\mathbb{A})$$

Definice 1.8 (Uspořádaná dvojice)

Uspořádaná dvojice je (x, y) nebo $\{\{x\}, \{x, y\}\}.$

Vytváří se např. kartézským součinem $\mathbb{A} \times \mathbb{B} := \{(a,b) | a \in \mathbb{A}, b \in \mathbb{B}\}.$

Uspořádaná trojice je (x, y, z) = ((x, y), z) = (x, (y, z)). Atd. pro n-tice.

Definice 1.9 (Relace)

 $\mathbb A$ je relace (binární) mezi množinami $\mathbb X$ a $\mathbb Y \equiv \mathbb A \subseteq \mathbb X \times \mathbb Y.$

 $\mathbb A$ je relace (binární) na množině $\mathbb X \equiv \operatorname{mezi} \, \mathbb X$ a $\mathbb X.$

Inverze je relace mezi $\mathbb {Y}$ a $\mathbb {X}\colon R^{-1}:=\{(y,x)|(x,y)\in R\}.$

Skládání $T = R \circ S = \{(x,z) | \exists y : xRy \wedge ySz\}$

Diagonála = diagonální relace: $\triangle x := \{(x, x) \in \mathbb{X}\}$

Definice 1.10 (Funkce = zobrazení)

Funkce z množiny $\mathbb X$ do množiny $\mathbb Y$ je relace A mezi $\mathbb X$ a $\mathbb Y$ taková, že $\forall x \in \mathbb X \exists ! y \in \mathbb Y : xAy$

Definice 1.11 (Vlastnosti funkcí)

Funkce $f: \mathbb{X} \to \mathbb{Y}$ je:

- prostá (injektivní) $\equiv \exists x, x' \in \mathbb{X} : x \neq x' \land f(x) = f(x')$
- na \mathbb{Y} (surjektivní) $\equiv \forall y \in \mathbb{Y} \exists x \in \mathbb{X} : f(x) = y$
- vzájemně jednoznačná (bijektivní, 1-1 (jedna ku jedné)) $\forall y \in \mathbb{Y} \exists ! x \in \mathbb{X} : f(x) = y$

Definice 1.12 (Vlastnoti relací)

Relace R na \mathbb{X} je:

- reflexivní $\equiv \forall x \in \mathbb{X} : xRx$
- symetrická $\equiv \forall x, y \in \mathbb{X} : xRy \implies yRx (\Leftrightarrow R = R^{-1})$
- antisymetrická $\equiv \forall x, y \in \mathbb{X} : xRy \land yRx \implies x = y$
- tranzitivní $\equiv \forall x, y, z \in \mathbb{X} : xRy \land yRz \implies xRz$

Definice 1.13 (Ekvivalence)

Relace se nazývá ekvivalence, pokud je tranzitivní, reflexivní a symetrická.

Definice 1.14 (Ekvivalenční třídy)

$$R[x] = \{ y \in \mathbb{X} | xRy \}$$

Věta 1.1

$$1)\forall x \in \mathbb{X}R[x] \neq \emptyset$$

$$2) \forall x,y \in \mathbb{X} : R[x] = R[Y]XORR[x] \cap R[y] = \emptyset$$

3) $\{R[x]|x\in\mathbb{X}\}$ určuje ekvivalenci R jednoznačně

 $D\mathring{u}kaz$

- 1) triviální
 - 2) Dokážeme: pokud $R[x] \cap R[y] \neq \emptyset$, pak R[x] = R[y]. (Tranzitivita).
 - \Box

Definice 1.15 (Rozklad množiny)

Množinový systém $\mathcal{S} \subseteq 2^{\mathbb{X}}$ je rozklad množiny \mathbb{X} tehdy, když

(R1) $\forall \mathbb{A} \in \mathcal{S} : \mathbb{A} \neq \emptyset$,

 $(R2) \ \forall \mathbb{A}, \mathbb{B} \in \mathcal{S} : \mathbb{A} \neq \mathbb{B} \implies \mathbb{A} \cap \mathbb{B} = \emptyset,$

(R3) $\bigcup_{\mathbb{A} \in \mathcal{S}} = \mathbb{X}$.

Definice 1.16 (Uspořádání)

Relace R na množině \mathbb{X} je uspořádání $\equiv R$ je reflexivní, antisymetrická a tranzitivní.

Poznámka

Někdy se říká částečné uspořádaní a částečně uspořádaná množina (čum), aby se zdůraznilo, že nemusí být lineární.

Definice 1.17 (Uspořádaná množina)

Dvojice (X, R), kde X je množina a R je uspořádání na ní.

Definice 1.18 (Porovnatelné prvky a lineární uspořádání)

 $xy \in X$ jsou porovnatelné $\equiv xRy \vee yRx$

Uspořádání R je lineární $\equiv \forall x, y \in X$ porovnatelné.

Definice 1.19 (Ostrá nerovnost)

 $(X, \leq) \text{ ČUM} \rightarrow (X, <) : x < y \equiv x \leq y \land x \neq y$

Definice 1.20 (Hasseuv diagram)

Poznámka

Splňuje následující: 1. To, co je nahoře je větší než to, co je dole

2. Nezakreslujeme tranzitivitu

Definice 1.21 (Bezprostřední předchůdce $(x \triangleleft y)$)

x je bezprostřední předchůdce y v uspořádání $\leq \equiv x < y \land (\not\exists z : x < z \land z < y)$

V hasseově diagramu jsou mezi vrcholy (prvky množiny) hrany pouze, pokud dolní vrchol je bezprostředním předchůdcem toho nahoře.

Definice 1.22 (Nejmenší, minimální, největší a maximální prvek)

- $x \in \mathbb{X}$ je nemenší $\equiv \forall y \in \mathbb{X} : x \leq y$
- $x \in \mathbb{X}$ je minimální $\equiv \nexists y \in \mathbb{X} : y < x$
- největší a maximální obdobně

Lemma 1.2

Každá konečná neprázdná ČUM má minimální prvek.

Důkaz (Důkazík)

 $x_1 \in \mathbb{X}$ zvolíme libovolně, pokud x_1 není minimální $\exists x_2 < x_1 ... \; \exists k \in \mathbb{N} x_k$ je minimální. \qed

Definice 1.23 (Řetězec)

Pro (X, \leq) ČUM $A \subseteq X$ je řetězec $\equiv \forall a, b \in A : a, b$ jsou porovnatelné.

Naopak $A \subseteq X$ je antiřetězec (nezávislá množina) $\equiv \nexists a, b \in A$ různé a porovnatelné.

Definice 1.24 (Délka nejdelšího řetězce)

 $\omega(X,\leq) := \text{maximum z délek řetězců ("výška uspořádání")}$

 $\alpha(X,\leq) := \text{maximum z "délek" (velikostí) antiřetězců ("šířka uspořádání")}$

Věta 1.3 (O dlouhém a Širokém)

$$\forall (X,\leq) \check{C}UM \colon \alpha(X,\leq) \cdot \omega(X,\leq) \geq |X|$$

(Neboli buď $\alpha \geq \sqrt{|X|}$ nebo $\omega \geq \sqrt{|X|}$.)

 $D\mathring{u}kaz$

Sestrojíme $X_1 := \{x \in X | x \text{ je minimální} \}.$

Když máme $X_1, \ldots, X_i, Z_i := X \setminus \left(\bigcup_{j=1}^i x_j\right)$. Pokud $Z_i = \emptyset$, tak jsme skončili, jinak $X_{i+1} := \{x \in Z_i | x$ je minimální v $Z_i\}$.

Přitom $\forall i \ X_i$ je antiřetězec, $\{X_1,\ldots,X_k\}$ tvoří rozklad X a $\exists \{r_j \in X_j\}_{j=1}^k, \{r_j\}_{j=1}^k$ je řetězec. $(r_k \in X_k$ zvolíme libovolně, $r_j \notin X_{j-1} \implies \exists r_{j-1} \in X_{j-1} : r_{j-1} < r_j.)$

$$|X| = \sum_{i=1}^{k} |X_i| \le k \cdot \max_{1 \le i \le k} |X_i| \le \omega \cdot \alpha.$$

Věta 1.4

 $\#f: N \to M = m^n, |N| = n, |M| = m, m > 0, n > 0$

$$n = 1 : \#f = m = m^1$$

 $n \to n+1: f$ jednoznačně určenaf(x)a $f': N \setminus \{x\} \to M \implies \#f = m \cdot m^n = m^{n+1}$

Věta 1.5

Je-li N n- $prvková množina, pak <math>|2^N| = 2^n$.

Důkaz

charakteristická funkce: $A\subseteq N\to C_A:N\to \{0,1\}$ $C_A(x)=0, x\notin A, C_A(x)=1, x\in A$

Věta 1.6

Nechť $X \neq \emptyset$ je konečná množina, $\mathcal{S} := \{S \subseteq X | |S| \text{ je sudá}\}, \mathcal{L} := \{L \subseteq X | |L| \text{ je lichá}\}.$ Potom $|\mathcal{S}| = |\mathcal{L}| = 2^{n-1}$.

 $D\mathring{u}kaz$

Víme, že $\mathcal{S} \cup \mathcal{L} = 2^X$. Stačí tedy $|\mathcal{S}| = |\mathcal{L}|$. Zvolíme si $a \in X$. Pak $f(S) := S \triangle \{a\}$ je bijekce z \mathcal{S} do \mathcal{L} .

Věta 1.7

Nechť N je n prvková, M je m-prvková. Potom # $f: N \to M$ prostých = $m \cdot (m-1) \cdot \ldots \cdot (m-n+1)$.

Poznámka (Možná značení)

$$[n] := \{0,1,\dots,\}$$

$$m^{\underline{n}} = \frac{m!}{(m-n)!} (m \text{ na } n \text{ klesajíc} \text{\'i})$$

Poznámka (Kódování funkcemi)

- $X \to \{0,1\} \dots 2^X$
- $\{1,2\} \to X \dots (x,y) \in X^2$
- $\{1,\dots,k\} \to X\dots$ uspořádané k-tice … X^k
- $\mathbb{N} \to X$... nekonečné posloupnosti prvků X
- permutace na X, tj. počet bijekcí nebo počet lineárních uspořádání na konečném X ... $|X|! \ (0! = 1)$

Definice 1.25 (Kombinační číslo)

Kombinační číslo / binomický koeficient (n nad k) je $\binom{n}{k} := \frac{n^k}{k!} = \frac{n!}{k!(n-k)!}$.

Definice 1.26

Pro množinu X a $k \ge 0$ definujeme $\binom{X}{k} := \{A \subseteq X : |A| = k\}.$

Věta 1.8

Pro každou množinu X a $k \ge 0$: $\left| {X \choose k} \right| = {|X| \choose k}$.

Poznámka (Vlastnosti kombinačních čísel)

$$\binom{n}{0} = \binom{n}{n} = 1$$
$$\binom{n}{1} = \binom{n}{n-1} = n$$
$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} \text{ (Lze upočítat / nebo rozdělit na případ vybereme / nevybereme konkrétní}\\ \sum_{k=0}^n \binom{n}{k}=2^n \text{ BV } A=1,\ B=1$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0 \text{ BV } A = 1, B = -11$$

Poznámka

Vlastnosti se dají vykoukat v tzv. Pascalově trojúhelníku.

Věta 1.9 (Binomická)

$$(A+B)^n = \sum_{k=0}^n A^k \cdot B^{n-k} \cdot \binom{n}{k}$$

Důkaz

Vybírá se k z n členů, ze kterých bude $A\dots$

Věta 1.10 (Princip inkluze a exkluze)

Pro konečné množiny $A_1 - A_n$:

$$\left|\bigcup_{i=1}^n\right| = \sum_k^n (-1)^{k+1} \sum_{I \in \left(\frac{\{1,2,\dots,n\}}{k}\right)} \left|\bigcap_{i \in I} A_i\right|$$

Nebo alternativně:

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{\emptyset \neq I \subseteq \{1,\dots,n\}} (-1)^{|I|+1} \left|\bigcap_{i \in I} A_i\right|$$

Důkaz

Pro každý prvek $x \in \bigcup_i A_i$ spočítáme příspěvky k levé (vždy 1) a k pravé straně. Necht x patří právě j množin z A_1, \ldots, A_n . Průniky k-tic: (1) k > j přispěje 0. (2) $k \le j$ přispěje $(-1)^{k+1} \binom{j}{k}$. Součet toho je alternující řada kombinačních čísel "bez 1", tedy součet je 1.

Důkaz (Druhý) Vyjdeme z

$$\prod_{i=1}^{n} (1+x_i) = \sum_{I \subseteq \{1,\dots,n\}} \prod_{i \in I} x_i.$$

Definujeme si charakteristickou funkci a zjistíme, že ch. f. průniku je součin, doplňku je 1-ch. f. původního, sjednocení je doplněk průniku doplňků a velikost je součet ch. funkce. Tedy dosadíme za x_i mínus charakteristické funkce (1 nám vypadla z prázdné podmnožiny):

$$1 - c_{\bigcup_{i} A_{i}} = \left(\sum_{\emptyset \neq I \subseteq \{1, \dots, n\}} (-1)^{|I|} \cdot c_{\bigcap_{i \in I} A_{i}} \right) + 1$$

Následně ještě přeformulujeme do velikostí a získáme princip inkluze a exkluze.

Příklad (Šatnářka)

Šatnářka náhodně vydala klobouky gentlemanům. Jaká je pravděpodobnost, že se ani jeden klobouk nedostal k majiteli?

Tj. $S_n := \{\pi | \pi \text{ permutace na } \{1, \dots, n\}\}, \pi(i) = i \implies i \text{ je pevný bod:}$

$$\check{\mathbf{S}}_n := \left\{ \pi \in S_n \middle| \exists i : \pi(i) = i \right\}.$$

Příklad se tedy ptá na $\frac{\check{\mathbf{S}}_n}{n!}$.

Řešení

Lepší je počítat doplněk: $A := \{ \pi \in S_n | \pi \text{ má pevný bod} \}$. Definujeme si $A_i := \{ \pi \in S_n | \pi(i) = i \}$. Následně vypozorujeme $A = \bigcap_i A_i$. Očividně $|A_i| = (n-1)!, |A_i \cup A_j| = (n-2)! \ (i \neq j),$

•••

$$|A| = \left| \bigcup_{i=1}^{n} \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{I \in \binom{\{1,\dots,n\}}{k}} \left| \bigcap_{i \in I} A_i \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{I \in \binom{\{1,\dots,n\}}{k}} (n-k)! = \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} \binom{n}{k} (n-k)! = \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} \binom{$$

$$\check{\mathbf{S}}_n = |A| \doteq n! \frac{1}{e}$$

2 Odhady

 $Nap\check{r}iklad$

$$2^{n-1} \le n! \le n^n$$

$$n^{n/2} \le n! \le \left(\frac{n+1}{2}\right)^n$$

$$* \left(\frac{n}{e}\right)^n \le n! \le en \cdot \left(\frac{n}{e}\right)^n$$

$$* * n! \sim \left(\frac{n}{e}\right)^n \cdot \sqrt{2\pi n}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le n^k$$

$$* \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\frac{4^n}{2n+1} \le \binom{2n}{n} \le 4^n$$

$$* \frac{4^n}{2\sqrt{n}} \le \binom{2n}{n} \le \frac{4^n}{\sqrt{2n}}$$

3 Grafy

Definice 3.1 (Graf, vrcholy, hrany)

Graf je uspořádaná dvojice (V, E), kde: V je konečná neprázdná množina vrcholů (vertices) a $E \subseteq \binom{V}{2}$ je množina hran (edges).

Poznámka (Rozšíření)

Orientované, se smyčkami, multigrafy, nekonečné.

Například

Úplný graf
$$(K_n)$$
: $V(K_n) := \{1, \ldots, n\}$ a $E(K_n) := {V(K_n) \choose 2}$.

Prázdný graf
$$(E_n)$$
: $V(E_n) := \{1, \ldots, n\}$ a $E(E_n) := \emptyset$.

Cesta
$$(P_n)$$
: $V(P_n) := \{0, 1, ..., n\}$ a $E(P_n) := \{\{i, i+1\} | 0 \le i < n\}$.

Kružnice
$$(C_n)$$
: $V(C_n) := \{0, 1, \dots, n-1\}$ a $E(C_n) := \{\{i, i+1 \mod n\} | 0 \le i \le n\}$.

Úplný bipartitní graf
$$(K_{m,n}): V(K_n) := \{a_1, \dots, a_n\} \cup \{b_1, \dots, b_n\}$$
 a $E(K_n) := \{\{a_i, b_j\} | 1 \le i \le m, 1 \le m\}$

Definice 3.2 (Bipartitní graf)

Graf G je bipartitní $\equiv \exists$ rozklad množiny V(G) na X,Y (= partity) tak, že $E(G) \subseteq \{\{x,y\} | x \in X, y \in Y\}$. (Lze zapsat i jako $\forall e \in e(G) : |e \cap X| = 1$.)

Definice 3.3 (Isomorfismus grafů)

Grafy G a H jsou isomorfní (značme $G\cong H)\equiv \exists f:V(G)\to V(H)$ bijekce tak, že $\forall u,v\in V(G):(\{u,v\}\in E(g)\Leftrightarrow \{f(u),f(v)\}\in E(H)).$

Poznámka (K nahlédnutí)

Na libovolné množině grafů je \cong ekvivalence.

Definice 3.4 (Stupeň vrcholu)

Stupeň vrcholu v v grafu G je $\deg_G(v) := |\{u \in V(G) | \{u, v\} \in E(G)\}|.$

Definice 3.5 (Regulární graf)

Graf je k-regulární (pro $k \in \mathbb{N}$) $\equiv \forall u \in V(G) : \deg_G(u) = k$.

Graf G je regulární $\equiv \exists k : G$ je k-regulární.

Definice 3.6 (Skóre grafu)

Skóre grafu G je posloupnost stupňů všech vrcholů (až na uspořádání).

Věta 3.1

Pro každý graf (V, E) platí:

$$\sum_{v \in V} \deg(v) = 2 \cdot |E|$$

Důsledek (Princip sudosti)

 $\sum_{v} \deg(v)$ je sudé číslo \implies ($\#v \in V$ lichého stupně) je sudý.

Věta 3.2 (O skóre)

Posloupnost $D = d_1 \leq \ldots \leq d_n$ pro $n \geq 2$ je skóre grafu $\Leftrightarrow D' = d'_1, \ldots, d'_{n-1}$ je skóre grafui a $0 \leq d_n \leq n-1$. $(d'_i = d_i \text{ pro } i < n-d_n \text{ a } d'_i = d_i-1 \text{ pro } i \geq n-d_n.)$

11

Důkaz

 (\Leftarrow) nechť G' je graf se skóre D' a vrcholy v_1, \ldots, v_{n-1} tak, že $\forall i \deg_{G'}(v_i) = d'_i$. Vytvořím G doplněním vrcholu v_n a hran $\{v_i, v_n\}$ pro $i \in \{n - d_n, \ldots, n - 1\}$. G má skóre D.

 (\Longrightarrow) Lemma: Necht \mathcal{G} je množina všech grafů se skóre $D, \mathcal{G} \neq \emptyset$. Potom $\exists G \in \mathcal{G} : \{v_n, v_i\} \in E(G)$ pro všechna $i \in \{n - d_n, \dots, n - 1\}$.

Důkaz lemmatu: (Kdyby $d_n = n - 1$, pak zřejmě každý $G \in \mathcal{G}$ splňuje lemma.) Pro $G \in \mathcal{G}$ definujeme $j(G) := \max \{j | \{v_j, v_n\} \notin E(G)\}$ (kdyby $j(g) = n - d_n i - 1$, pak jsme vyhráli, jinak G nesplňuje lemma). Najdeme $G \in \mathcal{G}$, jehož j(G) je minimální. Pokračujeme sporem: Kdyby $j(G) > n - d_n - 1$, musí $\exists i < j : \{v_i, v_n\} \in E(G)$. Následně chceme ukázat, že $\exists k : \{v_i, v_k\} \notin E(G) \land \{v_j, v_k\} \in E(G)$, to ukážeme na základě toho, že posloupnost je seřazena, tedy $d_i \leq d_j$ a vrchol v_i je spojen minimálně s jedním vrcholem, se kterým není spojené v_j (v_n). Upravíme graf G na $G : V(G) := V(G), E(G) := E(G) \cup \{\{v_i, v_k\}, \{v_j, v_n\}\} \setminus \{\{v_i, v_n\}, \{v_j, v_k\}\}$. Ale jelikož jsme vrcholům odstranili stejný počet hran, jako přidali, $G \in \mathcal{G}$. Navíc zřejmě j(G) < j(G), .