PATENT SPECIFICATION

PATENT SPECIFICATION

UNITED STATES PATENT APPLICATION NO. 16/78

Title: SYSTEM AND METHOD FOR COLD-ENVIRONMENT POWER

Inventors: Elena FROST, Marcus CHEN, James BARRETT

Assignee: Polar Dynamics Robotics, Inc., Wilmington, Delaware

Filed: March 15, 2022

Priority Date: March 15, 2021

ABSTRACT

A system and method for distributing power in autonomous mobile role in sub-zero environments, comprising a thermally-isolated power distribution, temperature-compensating voltage regulators, and an adaptive promanagement system. The BlueCore(TM) power distribution system management system and power delivery in environments ranging from C through proprietary thermal management and voltage stabilization to

BACKGROUND

[0001] Autonomous mobile robots operating in cold storage environm significant challenges related to power distribution and battery perform. Conventional power systems experience substantial efficiency losses reliability issues when operating in sub-zero temperatures.

[0002]. Existing solutions fail to adequately address the unique require cold-environment robotics, particularly in maintaining consistent voltage and preventing thermal-induced power fluctuations.

SUMMARY OF THE INVENTION

[0003] The present invention provides a novel power distribution system specifically designed for autonomous mobile robots operating in extre environments. The BlueCore(TM) system comprises:

a) A thermally-isolated power distribution unit (PDU) incorporating:

Multi-layer insulation technology

Active thermal management subsystem

3 -
Temperature-compensating voltage regulators
b) An adaptive power management system featuring:
Real-time temperature monitoring
-
Dynamic power allocation algorithms
-
Predictive thermal compensation

DETAILED DESCRIPTION

[0004] Power Distribution Unit

The PDU incorporates proprietary thermal isolation technology utilizing

multi-layer composite structure comprising:
-
Outer layer: High-density polyethylene shell
-
Middle layer: Vacuum-sealed aerogel insulation
-
Inner layer: Phase-change material thermal buffer
[0005] Voltage Regulation System
The temperature-compensating voltage regulators employ:
-
Adaptive feedback loops monitoring temperature-induced impedance
-
- Dynamic duty cycle adjustment based on thermal conditions
- Dynamic duty cycle adjustment based on thermal conditions
Dynamic duty cycle adjustment based on thermal conditions

-		-	5	
			•	

Redundant regulation pathways with automatic failover

[0006] Power Management Architecture

The system implements a hierarchical power management architecture

-

Primary power bus operating at 48VDC nominal

_

Secondary distribution network at 12VDC and 5VDC

-

Isolated control signal bus

CLAIMS

A power distribution system for cold-environment autonomous mobile

- a) A the mally-isolated power distribution unit;
- b) Temperature-compensating voltage regulators;
- c) An adaptive power management system;

wherein said system maintains stable power delivery in environments C and +25 C.

The system of claim 1, wherein the thermally-isolated power distributi

- a) A multi-layer composite structure;
- b) Active thermal management components;
- c) Integrated temperature sensors.

The system of claim 1, wherein the adaptive power management syst

- a) Real-time temperature monitoring;
- b) Dynamic power allocation;

c) Predi c tive thermal compensation algorithms.
DRAWINGS
[0007] FIG. 1 illustrates the overall architecture of the BlueCore(TM) production system.
[0008] FIG. 2 shows the internal structure of the thermally-isolated PI
[0009] FIG. 3 depicts the power management control flow.
DECLARATION AND POWER OF ATTORNEY
I hereby declare that:
-
I am the original inventor of the subject matter described herein
-

I have reviewed and understand the contents of this application
-
I acknowledge the duty to disclose all material information
/s/ Elena Frost_
Elena Frost, Ph.D.
CEO & Co-founder
Polar Dynamics Robotics, Inc.
/s/ Marcus Chen
Marcus Chen
СТО
Polar Dynamics Robotics, Inc.
/s/ James Barrett

James Barrett, Ph.D.

Chief Robotics Officer

Polar Dynamics Robotics, Inc.

Date: March 15, 2022

ATTORNEY DOCKET NO: PDR-2022-015-US

Prepared by:

TECH PATENT LAW GROUP, LLP

100 Innovation Drive, Suite 400

Boston, MA 02110

Tel: (617) 555-0123

