Exercice 1

Représenter la droite numérique et placer les nombres suivants (on pourra éventuellement s'aider de la calculatrice pour avoir une valeur approchée) : $3; -1, 5; \frac{5}{4}; \frac{-2}{5}; \sqrt{2}$.

Exercice 2

Compléter avec le symbole correspondant $(\in, \notin, \subset, \not\subset)$. $a) -5 \dots \mathbb{N} \qquad b) \frac{4}{5} \dots \mathbb{D} \qquad c) \ 0 \dots \mathbb{Z} \qquad d) \ \mathbb{N} \dots \mathbb{Z} \qquad e) \ 1,5^2 \dots \mathbb{D}$ $f) \ 1 + \sqrt{3} \dots \mathbb{Q} \qquad g) \ \frac{1}{7} \dots \mathbb{D} \qquad h) \ \mathbb{Z} \dots \mathbb{R} \qquad i) \ 3 - \pi \dots \mathbb{R} \qquad j) \ \mathbb{N} \dots \mathbb{D}$

$$a) - 5 \dots \mathbb{N}$$

$$b) \; \frac{4}{5} \dots \mathbb{D}$$

$$c) \ 0 \dots \mathbb{Z}$$

$$d) \mathbb{N} \dots \mathbb{Z}$$

$$e) 1,5^2 \dots \mathbb{D}$$

$$f) 1 + \sqrt{3} \dots \mathbb{Q}$$

$$g) \frac{1}{7} \dots \mathbb{D}$$

$$h) \mathbb{Z} \dots \mathbb{F}$$

$$i) 3 - \pi \dots \mathbb{R}$$

$$j) \mathbb{N} \dots \mathbb{I}$$

Exercice 3

Trouver pour chacun des cas (si c'est possible), un nombre x qui vérifie les conditions suivantes. a) $x \in \mathbb{Z}$ et $x \notin \mathbb{N}$ b) $x \in \mathbb{R}$ et $x \notin \mathbb{Q}$ c) $x \in \mathbb{Q}$ et $x \notin \mathbb{D}$ d) $x \in \mathbb{Q}$ et $x \notin \mathbb{R}$

$$a) \ x \in \mathbb{Z} \ \mathrm{et} \ x \notin \mathbb{N}$$

b)
$$x \in \mathbb{R}$$
 et $x \notin \mathbb{Q}$

c)
$$x \in \mathbb{Q}$$
 et $x \notin \mathbb{I}$

$$d) \ x \in \mathbb{Q} \ \mathrm{et} \ x \notin \mathbb{R}$$

Exercice 4

Pour chacun des nombres suivants, déterminer le plus petit ensemble $(\mathbb{N}, \mathbb{Z}, \mathbb{D}, \mathbb{Q}, \mathbb{R})$ auquel il

$$a) \frac{1}{2}$$

$$b)\sqrt{5}$$

b)
$$\sqrt{5}$$
 c) $\frac{10-4}{3}$ d) $-\sqrt{16}$

$$d) - \sqrt{16}$$

Exercice 5

Soit $x \in \mathbb{N}$ un entier naturel. Pour chacune des affirmations suivantes, dire si elle est fausse ou toujours vraie. Si elle est fausse, donner un contre-exemple et donner le plus petit ensemble qui

rende vraie.
$$a)\ 2x+3\in\mathbb{N}\quad b)\ 2x-3\in\mathbb{N}\quad c)\ \frac{x-6}{2}\in\mathbb{Z}\quad d)\ 3x+1\in\mathbb{Q}\quad e)\ \frac{x+1}{\sqrt{2}}\in\mathbb{R}\quad f)\ \sqrt{x}\in\mathbb{Q}$$

Exercice 6

Parmi les nombres suivants, donner les multiples de 5, les multiples de 17, et les multiples de 6.

2. 510 **3.** 34

4. 72 **5.** 85 **6.** 28

7. 60

8.97

Exercice 7

Dans chaque cas, chercher le plus grand diviseur commun au numérateur et au dénominateur, puis mettre la fraction sous forme irréductible.

a)
$$\frac{3}{12}$$

b)
$$\frac{16}{6}$$

c)
$$\frac{25}{95}$$

a)
$$\frac{3}{12}$$
 b) $\frac{16}{6}$ c) $\frac{25}{95}$ d) $\frac{45}{20}$ e) $\frac{15}{30}$ f) $\frac{18}{27}$ g) $\frac{63}{42}$ h) $\frac{50}{85}$ i) $\frac{48}{56}$ j) $\frac{56}{63}$ k) $\frac{32}{52}$ l) $\frac{60}{800}$

e)
$$\frac{15}{30}$$

f)
$$\frac{18}{27}$$

g)
$$\frac{63}{42}$$

h)
$$\frac{50}{85}$$

i)
$$\frac{48}{56}$$

j)
$$\frac{56}{63}$$

k)
$$\frac{32}{52}$$

1)
$$\frac{60}{800}$$

Exercice 8

Donner la décomposition en nombres premiers de chacun des nombres suivants.

- **a**) 21
- **b**) 32
- **c**) 56
- **d**) 81
- **e)** 100
- **f**) 144

Exercice 9

- 1. Donner les décompositions en nombres premiers de 420 et 600.
- 2. En déduire la simplification de la fraction $\frac{600}{420}$

Exercice 10

- 1. Déterminer la liste de tous les nombres premiers compris entre 1 et 30.
- 2. Parmi ces nombres, quels sont ceux qui sont pairs?
- 3. Existe-t-il d'autres nombres premiers pairs? Justifier.

Exercice 11

On considère des droites graduées sur lesquelles on marqué des ensembles de nombres. Donner l'intervalle correspondant à chacun de ces ensembles.

Exercice 12

Représenter sur une droite graduée et décrire à l'aide d'un intervalle, chacun des ensembles de nombres réels suivants.

a)
$$0 \le x \le 3$$

a)
$$0 \le x \le 3$$
 b) $-2 < x < 1$ **c)** $x \le 9$ **d)** $x > 3.5$

c)
$$x < 9$$

d)
$$x > 3.5$$

Exercice 13

b)
$$0 \dots [-1; 2]$$

c)
$$\frac{1}{3}$$
...]0;3]

d)
$$2...$$
] $-2;2$

e)
$$\sqrt{2}$$
 ... $[-3; 1[$

f)
$$0...$$
] $0; +\infty$

g)
$$-100...]-\infty;1]$$

Compléter avec
$$\in$$
 ou \notin .
a) $2 \dots]1;3[$ **b)** $0 \dots [-1;2[$ **c)** $\frac{1}{3} \dots]0;3]$ **d)** $2 \dots]-2;2[$ **e)** $\sqrt{2} \dots [-3;1[$ **f)** $0 \dots]0;+\infty[$ **g)** $-100 \dots]-\infty;1]$ **h)** $\frac{1}{10} \dots [0,01;0,2[$

Exercice 14

Écrire les inégalités vérifiées par les réels x dans chacun des cas suivants.

a)
$$x \in [0; 1, 2]$$

b)
$$x \in]-1,75;3]$$

a)
$$x \in [0; 1, 2]$$
 b) $x \in [-1, 75; 3]$ c) $x \in [4, 73; +\infty[$ d) $x \in [-\infty; 0[$

d)
$$x \in]-\infty;0[$$

Exercice 15

Compléter le tableau ci-dessous.

Inégalités	Intervalles	Représentation sur une droite graduée			
$2 \le x \le 7$					
$-4 \le x < 4$					
	$x \in]-13;-1[$				
$x \ge 2$					
	$x \in]1; +\infty[$				
		0 1			
	$x \in [5; +\infty[$				
$x \le 0$					
	$x \in]-\infty;7[$				

Exercice 16

Cocher la (ou les) case(s) quand le nombre de gauche appartient à l'intervalle proposé.

]-2;3,14]	$]-\infty;\frac{10}{3}$	[-4; 5[$]-1;+\infty[$
5				
-2,1				
-4				
π				
$-\frac{3}{11}$				