How JWST MIRI Will Improve upon Spitzer IRS Observations of Titan

Brandon Park Coy^{1,2}, Conor Nixon^{1,} Naomi Rowe-Gurney^{1,2,3,4}, Richard Achterberg^{1,2,4}, Nicholas Lombardo⁵

¹NASA Goddard, ²CRESST II, ³University of Leicester, ⁴University of Maryland, ⁵Yale University

bpcoy0@g.ucla.edu

KRYPOINS

- Spitzer was able to provide updated haze extinction cross sections for regions noisy in Cassini CIRS
- Spitzer discovered strong emission features at 16.39 and 17.35 micron and several weaker features in the 16-19 micron range (17.35 micron feature is possibly C₃H₆)
- ***JWST** observations and new line lists will be required to pinpoint the origins of spectral features detected by Spitzer
- ❖Full results will soon be available in Planetary Science Journal

NEW SPECTRAL FEATURES

- ❖ Several smaller *candidate* features in the 17.4-18.8 µm range
- ❖ Polyaromatic hydrocarbons? C₃H₆? H₂O? C₆₀?

JWST MIRI

- I provide a ~21x increase in sensitivity increase in spectral resolution 0 vs R~600) in the 16-20 micron region
- d increase in spatial resolution (0.20-/s. 2.3" per pixel) will allow MIRI to resolve Titan's disk (diameter~0.84")
- will allow for trace gas detection, cially in 5-7 and 16-20 micron windows, straining organic chemistry in the mosphere

ACKNOWLEDGEMENTS

This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of the NASA/IPAC Infrared Science Archive, which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology.

❖ Strong emission features discovered at 16.39 and 17.35 µm

Image Credit: NASA/JPL

BACKGROUND

- Spitzer IRS took moderate resolution (R~600) observations of Titan over 2004-2009
- ❖ These observations cover the 5.2-38.0 µm range largely covered by JWST MIRI (5.0-28.3 µm)
- The time span and wavelength range also overlap with Cassini CIRS (2004-2017, 7-1000 μm)
- ❖ IRS also covers the ~16-19.5 µm range noisy in Cassini CIRS

HAZE CROSS SECTIONS

- We used Spitzer observations to fill a crucial gap (560-610 cm⁻¹) in haze measurements
- Measurements will help reveal underlying trace gases with JWST and future IR observations

www.nasa.gov