Natural numbers and then...

What are the real numbers?

Clarice Poon

Semester 1 (2021)

Natural numbers What are the real numbers?

Natural numbers

Fundamental properties of the natural numbers

- i) 1 is a natural number.
- ii) Every natural number n has a successor n+1 which is also a natural number.
- iii) The well-ordering property: Every non-empty set $S\subseteq \mathbb{N}$ has a least element.
- iv) If a subset $\Lambda \subset \mathbb{N}$ satisfies
 - $1 \in \Lambda$
 - $\forall n \in \Lambda : n+1 \in \Lambda$

then $\Lambda = \mathbb{N}$.

The last property iv is the principle of mathematical induction. You will cover this in Foundations.

Principle of Mathematical Induction

For every $n \in \mathbb{N}$, let P(n) be a statement about n. Suppose that the following hold:

- *P*(1) is true.
- If P(k) is true then P(k+1) is true.

Then, P(n) is true for all $n \in \mathbb{N}$.

Example

Use mathematical induction to show that for all $n \in \mathbb{N}$,

i)
$$1+2+\ldots+n=n(n+1)/2$$

- ii) 3 is a factor of $4^n 1$.
- iii) 5 is a factor of $6^n 1$.

iv)
$$2+5+8+\ldots+(3n-1)=\frac{n(3n+1)}{2}$$

$$v)^* \sum_{m=0}^{n} \binom{n}{m} = 2^n$$

Wang's Paradox: 'Certainly 1 is small. If n is small then also n + 1 is small. Therefore by induction all natural numbers are small.'

What is wrong?

What are the real numbers?

Axioms

One approach to defining the real numbers is using axioms.

Axioms are basic properties which are assumed as true and not proven.

We will see

- 9 Field axioms describing properties of addition and multiplication.
- 3 Ordering axioms.
- The completeness axiom.

The field axioms

There is an operation $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ which satisfies

- (A1) $\forall a, b, c \in \mathbb{R}$: a + (b + c) = (a + b) + c (associative law for +).
- **(A2)** $\forall a, b \in \mathbb{R}$: a + b = b + a (commutative law for +).
- (A3) $\exists 0 \in \mathbb{R} \ \forall a \in \mathbb{R} : a + 0 = a = 0 + a$ (additive identity).
- (A4) $\forall a \in \mathbb{R} \exists b \in \mathbb{R} \colon a+b=0=b+a$ (additive inverse). For a given $a \in \mathbb{R}$, the additive inverse (referred to as b in the previous formula) is unique and is usually denoted by -a.

There is an operation $\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ which satisfies

- **(M1)** $\forall a, b, c \in \mathbb{R}$: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associative law for \times).
- **(M2)** $\forall a, b \in \mathbb{R}$: $a \cdot b = b \cdot a$ (commutative law for \times).
- (M3) $\exists 1 \in \mathbb{R} \setminus \{0\} \, \forall a \in \mathbb{R} \colon a \cdot 1 = a = 1a$ (multiplicative identity).
- **(M4)** $\forall a \in \mathbb{R} \setminus \{0\} \exists b \in \mathbb{R} \colon a \cdot b = 1 = b \cdot a$ (multiplicative inverse). The multiplicative inverse of a is unique and is usually denoted by 1/a or a^{-1} .
 - **(D)** $\forall a, b, c \in \mathbb{R}$: $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributive law).

Proving properties of the reals from the axioms

Consequences of (A1) to (A4).

- 1. If a + x = a for all a, then x = 0. (uniqueness of zero element).
- 2. If a + x = a + y then x = y (cancellation law for addition).
- 3. -0 = 0.
- 4. -(-a) = a.
- 5. -(a+b) = (-a) + (-b).

Consequences of (M1) to (M4)

- 1. If $a \cdot x = a$ for all $a \neq 0$ then x = 1 (uniqueness of multiplicative identity).
- 2. If $a \neq 0$ and $a \cdot x = a \cdot y$, then x = y (cancellation law for multiplication).
- 3. If $a \neq 0$ then $(a^{-1})^{-1} = a$.

Consequences from combining all the axioms.

- 1. $(a+b) \cdot c = a \cdot c + b \cdot c$.
- 2. $a \cdot 0 = 0$.
- 3. $a \cdot (-b) = -(a \cdot b)$. In particular, $(-1) \cdot a = -a$.
- 4. $(-1) \cdot (-1) = 1$.
- 5. If $a \cdot b = 0$ then either a = 0 or b = 0 (or both).

Powers

For $a \in \mathbb{R}$ and $n \in \mathbb{N}$ we define

- $a^0 = 1$
- $a^n = \underbrace{a \cdots a}_{n \text{ times}}$
- $a^{-n} = (a^{-1})^n$

From these definitions, we have properties

- $a^{ij}=(a^i)^j$ for all $a\in\mathbb{R}\setminus\{0\}$ and $i,j\in\mathbb{Z}$.
- $(ab)^i = a^i b^i$ for all $a, b \in \mathbb{R} \setminus \{0\}$ and $i \in \mathbb{Z}$.
- $a^{i+j}=a^ia^j$ for all $a\in\mathbb{R}\setminus\{0\}$ and $i,j\in\mathbb{Z}$.

The order axioms

There is a subset \mathbb{P} (the strictly positive numbers) of \mathbb{R} such that for all $a,b\in\mathbb{R}$,

- **(P1)** $a, b \in \mathbb{P}$ implies $a + b \in \mathbb{P}$.
- **(P2)** $a, b \in \mathbb{P}$ implies $a \cdot b \in \mathbb{P}$
- **(P3)** exactly one of $a \in \mathbb{P}$, a = 0 and $-a \in \mathbb{P}$ holds.

We write

- a < b (or b > a) if and only if $b a \in \mathbb{P}$
- $a \le b$ (or $b \ge a$) if and only if $b a \in \mathbb{P} \cup \{0\}$.

Some consequences of the order axioms

- 1. Reflexivity: $a \leq a$.
- 2. Antisymmetry: $a \le b$ and $b \le a$ implies a = b.
- 3. Transitivity: If $a \le b$ and $b \le c$, then $a \le c$. Likewise with < in place of \le .
- 4. Trichotomy: Exactly one of the following hold: a < b, a = b and b < a.
- 5. 0 < 1 (equivalently, $1 \in \mathbb{P}$).
- 6. a < b if and only if -b < -a.
- 7. a < b and $c \in \mathbb{R}$ implies a + c < b + c.
- 8. If a < b and c < d, then a + c < b + d.
- 9. a < b and 0 < c implies ac < bc.
- 10. $a^2 \ge 0$ with equality if and only if a = 0.
- 11. a > 0 if and only if 1/a > 0.
- 12. If a, b > 0 and a < b, then 1/b < 1/a.