第4节 高考中双曲线常用的二级结论(★★☆)

内容提要

解析几何中存在无数的二级结论,本节筛选出了一些在高考中比较常用的双曲线二级结论,记住这些结论可适当缩短解题时间.

1. 焦点三角形面积公式: 如图 1,设 P 是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 上一点, $F_1(-c, 0)$, $F_2(c, 0)$ 分别

是双曲线的左、右焦点, $\angle F_1PF_2=\theta$,则 $S_{\Delta PF_1F_2}=c\left|y_P\right|=\frac{b^2}{\tan\frac{\theta}{2}}.$

证明: 一方面, ΔPF_1F_2 的边 F_1F_2 上的高 $h = |y_P|$, 所以 $S_{\Delta PF_1F_2} = \frac{1}{2}|F_1F_2| \cdot h = \frac{1}{2} \cdot 2c \cdot |y_P| = c|y_P|$;

另一方面,记 $|PF_1|=m$, $|PF_2|=n$,则|m-n|=2a ①,

在 ΔPF_1F_2 中,由余弦定理, $|F_1F_2|^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1| \cdot |PF_2| \cdot \cos \angle F_1PF_2$,

所以 $4c^2 = m^2 + n^2 - 2mn\cos\theta = (m-n)^2 + 2mn - 2mn\cos\theta = (m-n)^2 + 2mn(1-\cos\theta)$ ②,

将式①代入式②可得: $4c^2 = 4a^2 + 2mn(1-\cos\theta)$, 所以 $mn = \frac{4c^2 - 4a^2}{2(1-\cos\theta)} = \frac{2b^2}{1-\cos\theta}$,

故
$$S_{\Delta PF_1F_2} = \frac{1}{2}mn\sin\theta = \frac{1}{2}\cdot\frac{2b^2}{1-\cos\theta}\cdot\sin\theta = b^2\cdot\frac{\sin\theta}{1-\cos\theta} = b^2\cdot\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = \frac{b^2}{\tan\frac{\theta}{2}}.$$

2. 基于双曲线第三定义的斜率积结论: 如上图 2,设 A,B 分别是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右顶点,P 是双曲线上不与 A,B 重合的任意一点,则 $k_{PA} \cdot k_{PB} = \frac{b^2}{a^2}$.

注:上述结论中 A, B 是双曲线的左、右顶点,可将其推广为双曲线上关于原点对称的任意两点,如上图 3,只要直线 PA, PB 的斜率都存在,就仍然满足 $k_{PA}\cdot k_{PB}=\frac{b^2}{a^2}$,下面给出证明.

证明: 设 $A(x_1, y_1)$, $P(x_2, y_2)$, 则 $B(-x_1, -y_1)$, 所以 $k_{PA} \cdot k_{PB} = \frac{y_2 - y_1}{x_2 - x_1} \cdot \frac{y_2 + y_1}{x_2 + x_1} = \frac{y_2^2 - y_1^2}{x_2^2 - x_1^2}$ ①,

因为点 A 在双曲线上,所以 $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$,故 $y_1^2 = b^2(\frac{x_1^2}{a^2} - 1) = \frac{b^2}{a^2}(x_1^2 - a^2)$,同理, $y_2^2 = \frac{b^2}{a^2}(x_2^2 - a^2)$,

所以
$$y_2^2 - y_1^2 = \frac{b^2}{a^2}(x_2^2 - a^2 - x_1^2 + a^2) = \frac{b^2}{a^2}(x_2^2 - x_1^2)$$
,代入①得: $k_{PA} \cdot k_{PB} = \frac{b^2}{a^2}$;

在上述条件中令A(-a,0),B(a,0),即得内容提要第 2 点的特殊情况下的结论.

3. 中点弦斜率积结论: 如图 4,AB 是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的一条不与坐标轴垂直且不过原点的弦, M 为 AB 中点,则 $k_{AB} \cdot k_{OM} = \frac{b^2}{a^2}$,此结论可用下面的点差法来证明.

证明:设 $A(x_1, y_1)$, $B(x_2, y_2)$, $x_1 \neq x_2$, $y_1 \neq y_2$, 因为A, B都在双曲线上,所以 $\begin{cases} \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1\\ \frac{x_2^2}{a^2} - \frac{y_2^2}{b^2} = 1 \end{cases}$

两式作差得:
$$\frac{x_1^2 - x_2^2}{a^2} - \frac{y_1^2 - y_2^2}{b^2} = 0$$
, 整理得: $\frac{y_1 - y_2}{x_1 - x_2} \cdot \frac{y_1 + y_2}{x_1 + x_2} = \frac{b^2}{a^2}$ ①,

注意到
$$\frac{y_1 - y_2}{x_1 - x_2} = k_{AB}$$
, $\frac{y_1 + y_2}{x_1 + x_2} = \frac{2y_M}{2x_M} = \frac{y_M}{x_M} = k_{OM}$,所以式①即为 $k_{AB} \cdot k_{OM} = \frac{b^2}{a^2}$.

注:中点弦结论和上面的第三定义斜率积结论的结果都是 $\frac{b^2}{a^2}$,这是巧合吗?不是,两者之间有必然的联系.如上图 5,设 B' 为 B 关于原点的对称点,则 B' 也在该双曲线上,且 O 为 BB' 中点,结合 M 为 AB 中点可得 OM///AB',所以 $k_{AB} \cdot k_{OM} = k_{AB} \cdot k_{AB'}$,于是又回到了双曲线上的点 A 与双曲线上关于原点对称的 B 和 B' 的连线的斜率积.

典型例题

类型 I: 焦点三角形面积

【例1】在平面直角坐标系xOy中, F_1 , F_2 是双曲线 $C: x^2 - \frac{y^2}{2} = 1$ 的两个焦点,点M在C上,且 $\overrightarrow{MF_1} \cdot \overrightarrow{MF_2} = 0$,

则 $\Delta F_1 F_2 M$ 的面积为 ()

(A)
$$\sqrt{3}$$
 (B) 2 (C) $\sqrt{5}$ (D) 4

解析: 求焦点三角形面积可考虑代公式 $S = \frac{b^2}{\tan \frac{\theta}{2}}$,由 $\overline{MF_1} \cdot \overline{MF_2} = 0$ 恰好可求得公式中的 θ ,

因为
$$\overrightarrow{MF_1} \cdot \overrightarrow{MF_2} = 0$$
,所以 $\theta = \angle F_1 M F_2 = 90^\circ$,故 $S_{\Delta F_1 F_2 M} = \frac{b^2}{\tan \frac{\theta}{2}} = \frac{2}{\tan 45^\circ} = 2$.

【变式】已知 F_1 , F_2 是双曲线 $C: x^2 - \frac{y^2}{3} = 1$ 的左、右焦点,P为双曲线C右支上的一点, $\angle F_1 P F_2 = 120^\circ$,则点P的纵坐标为____, $|PF_1| =$ ____.

解析: 给出 $\angle F_1PF_2$, 可由 $S = \frac{b^2}{\tan \frac{\theta}{2}}$ 求出 ΔPF_1F_2 的面积, 再由 $S = c|y_P|$ 解出 y_P ,

由题意,双曲线 C 的半焦距 $c = \sqrt{1+3} = 2$, $S_{\Delta PF_1F_2} = \frac{b^2}{\tan \frac{\theta}{2}} = \frac{3}{\tan 60^\circ} = \sqrt{3}$,

又
$$S_{\Delta PF_1F_2} = c|y_P| = 2|y_P|$$
,所以 $2|y_P| = \sqrt{3}$,解得: $y_P = \pm \frac{\sqrt{3}}{2}$;

再求 $|PF_1|$,可联想到由双曲线定义和 ΔPF_1F_2 的面积各建立一个关于 $|PF_1|$ 和 $|PF_2|$ 的方程,求解即可,如图,由双曲线定义, $|PF_1|-|PF_2|=2$ ①,

又
$$S_{\Delta PF_1F_2} = \frac{1}{2}|PF_1|\cdot|PF_2|\cdot\sin\angle F_1PF_2 = \frac{\sqrt{3}}{4}|PF_1|\cdot|PF_2| = \sqrt{3}$$
,所以 $|PF_1|\cdot|PF_2| = 4$ ②,

由①可得 $|PF_2|=|PF_1|-2$,代入②整理得: $|PF_1|^2-2|PF_1|-4=0$,解得: $|PF_1|=1+\sqrt{5}$ 或 $1-\sqrt{5}$ (舍去).

答案: $\pm \frac{\sqrt{3}}{2}$, $1+\sqrt{5}$ 《一数•高考数学核心方法》

【反思】从上面两道题可以看出,当题干给出 $\angle F_1PF_2$ 时,可用 $S_{\Delta PF_1F_2} = \frac{b^2}{\tan\frac{\theta}{2}}$ (其中 $\theta = \angle F_1PF_2$)来算焦点

三角形的面积;由 $S_{\Delta PF_1F_2} = c|y_P| = \frac{b^2}{\tan \frac{\theta}{2}}$ 还可以建立顶角 θ 和 $|y_P|$ 之间的等量关系.

类型 II: 第三定义、中点弦斜率积结论

【例 2】双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右顶点分别为 A 和 B, P 为双曲线 C 上不与 A, B 重合的一点,若 PA, PB 的斜率之积为 1,则双曲线 C 的离心率为_____.

解析: 涉及双曲线上的点与左、右顶点的连线斜率积,用双曲线第三定义斜率积结论处理,

由双曲线第三定义斜率积结论, $k_{PA}\cdot k_{PB}=\frac{b^2}{a^2}=1$,所以 $a^2=b^2=c^2-a^2$,整理得: $e=\frac{c}{a}=\sqrt{2}$.

答案: √2

【变式 1】在平面直角坐标系 xOy 中,双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右顶点分别为 A, B,若该双曲线上存在点 P,使 PA, PB 的斜率之和为 1,则该双曲线的离心率的范围为(

(A)
$$(\sqrt{3}, +\infty)$$
 (B) $(1, \sqrt{3})$ (C) $(\frac{\sqrt{5}}{2}, +\infty)$ (D) $(1, \frac{\sqrt{5}}{2})$

解析: 条件给的是斜率之和,表面上跟斜率之积无关,但我们可利用不等式 $xy \le (\frac{x+y}{2})^2$ 来沟通和与积,

由第三定义斜率积结论, $k_{PA} \cdot k_{PB} = \frac{b^2}{a^2}$,又由题意, $k_{PA} + k_{PB} = 1$,且 $k_{PA} \neq k_{PB}$,

所以
$$\frac{b^2}{a^2} = k_{PA} \cdot k_{PB} < (\frac{k_{PA} + k_{PB}}{2})^2 = \frac{1}{4}$$
,从而 $a^2 > 4b^2 = 4c^2 - 4a^2$,故 $5a^2 > 4c^2$,

所以
$$e^2 = \frac{c^2}{a^2} < \frac{5}{4}$$
,结合 $e > 1$ 可得 $1 < e < \frac{\sqrt{5}}{2}$.

答案: D

【变式 2】设双曲线 $C: \frac{x^2}{a^2} - y^2 = 1(a > 0)$ 与直线 y = kx交于 A, B 两点,P 为 C 右支上的一动点,记直线 PA,

PB 的斜率分别为 k_{PA} , k_{PB} ,C 的左、右焦点分别为 F_1 , F_2 ,若 k_{PA} · $k_{PB} = \frac{1}{9}$,则下列说法正确的是()

(A)
$$a = \sqrt{3}$$

- (B) 双曲线 C 的渐近线方程为 $y = \pm \sqrt{3}x$
- (C) 若 $PF_1 \perp PF_2$, 则 ΔPF_1F_2 的面积为 2
- (D) 双曲线 C 的离心率为 $\frac{\sqrt{10}}{3}$

解析:由对称性可得A,B 关于原点对称,又涉及斜率之积 $k_{PA} \cdot k_{PB}$,故想到第三定义斜率积结论,

因为 $k_{PA}\cdot k_{PB}=\frac{1}{a^2}=\frac{1}{9}$,所以a=3,从而双曲线C的渐近线方程为 $y=\pm\frac{1}{3}x$,

离心率 $e = \frac{\sqrt{a^2 + 1}}{a} = \frac{\sqrt{10}}{3}$,故A项和B项错误,D项正确;

对于 C 项,求焦点三角形面积,代公式 $S = \frac{b^2}{\tan \frac{\theta}{2}}$ 即可,

当
$$PF_1 \perp PF_2$$
 时, $\angle F_1PF_2 = 90^\circ$,所以 $S_{\Delta PF_1F_2} = \frac{b^2}{\tan \frac{\theta}{2}} = \frac{1}{\tan 45^\circ} = 1$,故 C 项错误.

答案: D

【反思】涉及双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 上的点 P 与双曲线上关于原点对称的 A, B 两点连线的斜率之积, 考虑用第三定义斜率积结论 $k_{PA} \cdot k_{PB} = \frac{b^2}{a^2}$, 其推导方法请参考本节内容提要.

【例 3】已知 A, B 是双曲线 $C: \frac{x^2}{2} - \frac{y^2}{3} = 1$ 上的两点, 线段 AB 的中点是 M(2,1), 则直线 AB 的方程为_____.

解析: 涉及弦中点,想到中点弦斜率积结论, $M(2,1) \Rightarrow k_{AB} \cdot k_{OM} = k_{AB} \cdot \frac{1}{2} = \frac{3}{2}$,所以 $k_{AB} = 3$,

如图,直线 AB 过点 M,故其方程为 y-1=3(x-2),整理得: 3x-y-5=0.

答案: 3x-y-5=0

【变式】已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$,过点 P(0,2)的直线 l 与 C 交于 A, B 两点,且 AB 的中点为

N(2,3),则双曲线 C 的离心率为____.

解析:条件中有弦AB的中点,故想到中点弦斜率积结论,先画图看看,

如图,由中点弦斜率积结论, $k_{AB} \cdot k_{ON} = \frac{b^2}{a^2}$ ①,

又
$$k_{AB} = k_{PN} = \frac{3-2}{2-0} = \frac{1}{2}$$
, $k_{ON} = \frac{3-0}{2-0} = \frac{3}{2}$,代入①得: $\frac{1}{2} \times \frac{3}{2} = \frac{b^2}{a^2}$,

所以 $3a^2 = 4b^2 = 4c^2 - 4a^2$, 从而 $7a^2 = 4c^2$, 故离心率 $e = \frac{c}{a} = \frac{\sqrt{7}}{2}$.

答案: $\frac{\sqrt{7}}{2}$

【总结】在双曲线中,涉及弦中点的问题都可以考虑用中点弦斜率积结论来建立方程,求解需要的量.

强化训练

1. (★)设 F_1 , F_2 是双曲线C: $\frac{x^2}{4} - \frac{y^2}{5} = 1$ 的左、右焦点,P为C上一点,若 $\angle F_1 P F_2 = 60^\circ$,则 $\Delta P F_1 F_2$ 的 面积为____.

- 2. (2023・江西模拟・★★) 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a>0,b>0)$ 的左、右焦点分别为 F_1 , F_2 ,其渐近 线方程为 $y=\pm 2x$,P是C上一点,且 $PF_1 \perp PF_2$,若 ΔPF_1F_2 的面积为4,则C的焦距为()

- (A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) $2\sqrt{5}$ (D) $4\sqrt{5}$
- 3. (2023・陝西安康模拟・★★★) 双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 , C 上 一点 P 到 x 轴的距离为 2a, $\angle F_1PF_2=120^\circ$,则双曲线 C 的离心率为____.
- 4. (2022・陕西汉中模拟・★★) 已知双曲线 $\frac{x^2}{4} \frac{y^2}{b^2} = 1(b>0)$ 的左焦点为 F, 过 F 作斜率为 2 的直线与 双曲线交于 A, B 两点, P 是 AB 中点, O 为原点, 若直线 OP 的斜率为 $\frac{1}{4}$, 则双曲线的离心率为() (A) $\frac{\sqrt{6}}{2}$ (B) 2 (C) $\frac{3}{2}$ (D) $\sqrt{2}$

- 5. (2023・安徽模拟・★★) 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 与直线 y = -x + 2相交于 A, B 两点,

- (A) $y = \pm \sqrt{3}x$ (B) $y = \pm 3x$ (C) $y = \pm \frac{1}{2}x$ (D) $y = \pm \frac{\sqrt{3}}{2}x$

- 6. (2023 •安徽亳州模拟 •★★) 已知平行四边形 *ABCD* 的四个顶点均在双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 上, 且直线 AB, AD 的斜率之积为 $\frac{1}{9}$, 则该双曲线的渐近线方程是____.
- 7. $(2022 \cdot 湖南长沙模拟 \cdot \star \star \star)$ 已知 m+n=4,点 M(m,n) 是双曲线 $\frac{x^2}{8} \frac{y^2}{2} = 1$ 的一条弦 AB 的中点, 则当 mn 取得最大值时,直线 AB 的方程为____.

- 8. (★★★) 已知 A, B 为双曲线 E 的左、右顶点,点 M 在 E 上, ΔABM 为等腰三角形,且顶角为120°, 则E的离心率为(

- (A) $\sqrt{5}$ (B) 2 (C) $\sqrt{3}$ (D) $\sqrt{2}$