Radiation Mediated Shocks and SuperNova Shock Breakouts

Ranny Budnik
With
Boaz Katz, Amir Sagiv, Eli Waxman

What is a shock?

- In a hydrodynamic flow, when solving the hydro equations (differential):
 - Everything changes smoothly
 - Entropy is conserved
- However, sometimes the equations don't have a single valued solution!
 - A discontinuity appears, over which only conservation equations are solvable
 - This is a SHOCK.

Shock formation

In the shock frame

Ordered kinetic energy -> Thermal energy

Lower density -> Higher density

What "makes" the shock?

- Terrestrial shocks:
 - Ions collide and heat, then transfer the momentum to the electrons.
 - Cross section ~e⁴/(mv²)²
- Low densities, high energies:
 - "collisionless shocks": no Coulomb collisions. Instead: plasma collective effects (e.g: SNR, Earth bow shock, interstellar shocks)

Radiation Mediated Shock: RMS

Cold Upstream ->

$$t_{\gamma} \approx \frac{\Delta_{s}}{\lambda_{\gamma}} \frac{\Delta_{s}}{c} \approx t_{e} \approx \frac{\Delta_{s}}{V} \Longrightarrow \left[\begin{array}{c} \Delta_{s} \\ \lambda_{\gamma} \end{array} \approx \frac{c}{V} \right]$$

$$T_d = \left(\frac{315}{4\pi^2} \varepsilon n_u \hbar^3 c^3\right)^{1/4} \approx 0.16 \left(\frac{\varepsilon}{10 \text{MeV}} \frac{n_u}{10^{15}}\right)^{1/4} \text{KeV}$$

Radiation dominated Downstream

$$U_{\text{rad.}} >> U_{\text{part.}}$$

$$U_{\text{rad.}} \approx \Gamma^2 n m_p c^2$$
or $\frac{1}{2} \beta^2 n m_p c^2$

Conditions for RMS

$$\beta >> \left(\frac{n}{a_{BB}}\right)^{1/6} \left(m_p c^2\right)^{-1/2} \approx 5 \times 10^{-5} \left(\frac{n}{10^{15}}\right)^{1/6}$$

$$L > \Delta_s \approx (n\sigma_T \beta)^{-1}$$

$$E > 3 \times 10^{39} \left(\frac{n}{10^{15}}\right)^{-2} \beta^{-1} \text{erg}$$

$$M > 6 \times 10^{18} \left(\frac{n}{10^{15}}\right)^{-2} \beta^{-3} g$$

Shocks running through CC SN are RMS.

$$E_{SN} \approx 10^{51} \text{ erg}$$
 $M_{SN} \approx 10^{33} \text{ g}$

Physical assumptions

- Steady state shock
- P, e⁺, e⁻ one fluid (plasma)

$$\frac{t_{pl}}{t_{scat}} \approx 10^{-11} \frac{n_{\gamma}}{n_e} n_{e,15}^{1/2}$$

- Radiation mechanisms:
 - Compton scattering
 - Bremmstrahlung
 - Pair production and annihilation

Scaling relations: Length: $d\tau \propto n_u dz$

Intensity: $\widetilde{I} \propto I/n_u$

Only free-free absorption does not scale with n_u!

Solving RMS profiles

- Steady state, 1D, self consistent solutions of:
 - Radiation transport
 - Conservation of energy, momentum and particles.
- Numerical solutions, analytic estimates.
- NR:
 - Transport -> Diffusion
 - Wein equilibrium.

NR RMS

- Numerical solution by Weaver (1976): diffusion approx.
- Shock structure:
 - Deceleration on a scale of $β^{-1}λ_T$
 - Production of downstream equilibrium radiation:
 - High density, low velocity: all in equilibrium
 - Low density, high velocity:
 - T increases inside the shock velocity transition
 - Slow thermalization follows until T=T_d

Low velocity: all in

In and out of equilibrium

Weaver 1976

Analytic estimates

 $n_{\gamma s}$: Production/Diffusion (Wein equilibrium):

Downstream Compton y parameter:

$$y \sim 4(L_T/\Delta_s) \frac{T}{100eV} \beta_{u,-1}^{-2}$$

Thermalization length:

$$L_T \sim eta c rac{n_{\gamma, ext{eq}}}{Q_{\gamma, ext{eff}}(T_d)}; \ Q_{\gamma, ext{eff}} pprox n^2 lpha_e \sigma_T c \sqrt{rac{m_e c^2}{T}} \Lambda_{eff} g_{eff}$$

High temperatures inside the shock transition:

$$\beta_s > 0.07 n_{15}^{1/30} \left(\Lambda_{eff} g_{eff} \right)^{4/15} \Rightarrow L_T > \Delta_s \Rightarrow T_s > T_d$$

$$\Lambda_{eff} \approx \log \left[\frac{T}{h \nu_a \left(@ N_{\text{coll.}} = m_e c^2 / 4T \right)} \right]$$

Analytic estimates and solutions

$$n_{\gamma,s} \approx Q_{\gamma,eff}(T_s, n_d) \frac{1}{3n_d \sigma_T \beta_d^2 c}$$
 (Diffusion)

$$n_{\gamma,s}T_s = \frac{12}{7} \varepsilon n_u$$

(Momentum cons.)

Velocity - Temperature relation:

$$\beta_{\rm s} \approx 0.2 \left(\frac{\Lambda_{\it eff}}{10} \frac{g_{\it eff}}{2}\right)^{1/4} \left(\frac{T_{\it s}}{10 {\rm KeV}}\right)^{1/8}$$

 $v_{s}/c=0.25$, $n_{u}=10^{15}/cm$

Relativistic RMS

We obtained a self consistent solution for the shock profile up to Γ=20:

$$\Gamma \beta(\tau)$$

$$\frac{T}{m c^2}(\tau)$$

Velocity transition

Immediate DS temp.

Γ=10 profiles and spectra

Spec. inside the transition: shock frame

Spec. inside the transition: rest frame

Understanding of immediate DS in relativistic RMS

Highly relativistic limit
$$\beta_d \rightarrow 1/3$$
:
Wein + pair eq. (at T< \sim m_ec²): $\frac{n_{\gamma,s}}{n_{\pm,s}} \approx \frac{m_e c^2}{2T}$

production/diffusion:
$$\frac{n_{\gamma,s}}{n_{\pm,s}} \approx 2.5 \left(\frac{\Lambda}{15}\right)^2 \left(\frac{\beta_d}{1/3}\right)^{-2}$$

$$\rightarrow$$
 T_s<200keV

Assumptions of pair-radiation equilibrium in agreement with numerical results.

Supernova shock breakout

SN Breakout X-rays: a simple model

- Envelope density $\rho \sim \delta^n$, $\delta = (1-r/R)$ (n=3, 3/2 for radiative (BSG, WR), convective (RSG))
- Shock velocity (interpolating ST-Sakurai)

$$v_s \approx 0.8 \left(\frac{E}{M}\right)^{1/2} \delta^{-0.2n}$$
.

Post-shock thermal energy $U_{rad} = (18/7)\rho v_s^2$

$$10 \left(\frac{E_{51}}{M_{Sol}} \right)^{1/2} \approx 0.24c \implies T_s > 10 \text{ KeV}$$

[Colgate 74; Falk 78; Klein & Chevalier 78]

[Matzner & McKee 99]

BSG,
$$M=M_{\odot}$$
, $R=10^{12}$ cm

Optical depth

Breakout X-rays: a simple model

Velocity amplification factor for n = 3 (BSG):

$$\frac{v_s}{v_{ej}} \approx 11 \left(\frac{M}{M_{Sol}}\right)^{0.14} \left(\frac{\kappa}{\kappa_T}\right)^{0.14} \left(\frac{R}{10^{12} cm}\right)^{-0.28} \left(\frac{\tau}{3}\right)^{-0.14}$$

Velocity amplification factor for n = 3/2 (RSG):

$$\frac{v_s}{v_{ej}} \approx 4 \left(\frac{M}{M_{Sol}}\right)^{0.11} \left(\frac{\kappa}{\kappa_T}\right)^{0.11} \left(\frac{R}{10^{13} cm}\right)^{-0.23} \left(\frac{\tau}{3}\right)^{-0.11}$$
 [Matzner & McKee 99]

Energy emitted in the x - ray outburst:

$$E \approx 4 \times 10^{46} \beta_s^2 \left(\frac{R}{10^{12} cm}\right)^2 \left(\frac{\kappa}{\kappa_T}\right)^{-1} \left(\frac{\tau}{3}\right) \text{ erg}$$

Summary

- We obtained numerical solutions for relativistic and NR RMS.
- We found simple analytic expressions for the temperatures and structure of these shocks.
- High velocities $\beta>0.2 => 200 \text{ KeV} > T>10 \text{ KeV}$
 - Has important consequence for x-ray breakout interpretation and detection, e.g. 2008d, 2006aj.

Simple diffusion Vs. Weaver

