CIS580 Problem Set 4

Sheil Sarda <sheils@seas.upenn.edu> CIS580 Spring 2021

Contents

1	Mapping 2D points	1
	1.1 Use solution for orthogonal Procrustes problem to obtain rotation matrix	1
	1.2 Find solution that solves directly for the rotation angle θ and translation $[T_x, T_Y]$	1
2	Phone held vertically	1
	2.1 Write projection equations	1
	2.2 Solve equations for yaw angle θ and translations $[T_x, T_y, T_z]$	1
	2.3 Conditions on camera position to obtain unique or finite number of solutions	1
3	Decompose H into rotation R and translation T	2

1 Mapping 2D points

- 1.1 Use solution for orthogonal Procrustes problem to obtain rotation matrix
- 1.2 Find solution that solves directly for the rotation angle θ and translation $[T_x, T_Y]$

2 Phone held vertically

- 2.1 Write projection equations
- 2.2 Solve equations for yaw angle θ and translations $[T_x, T_y, T_z]$
- 2.3 Conditions on camera position to obtain unique or finite number of solutions

3 Decompose H into rotation R and translation T Given:

$$g_1 = \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$$