1	2	3	4	5
6-	R	. 0	7	B
V		1		1

CALIF.

APELLIDO Y NOMBRE.
TURNO: (Mañana (&

Álgebra I - 2do Cuatrimestre 2016 Segundo Recuperatorio del Primer Parcial - 16/12/2016

1. Sea $A=\{n\in\mathbb{N}:n\leq 20\}$ y sea $B=\mathcal{P}(A)-\{\emptyset\}$. Definimos la relación $\mathcal{R}\subseteq B\times B$ de la siguiente forma:

$$XRY \iff \max X \le \min Y.$$

- a) Determinar si \mathcal{R} es reflexiva, simétrica, antisimétrica o transitiva.
- b) Determinar cuántos son los $X \in B$ que verifican simultáneamente:
 - $= \{1, 2, 3, 5\} \mathcal{R} X.$
 - $\times XR\{16, 17, 18, 19\}.$
- 2. Probar que para todo $n \in \mathbb{N}$ se verifica

$$\prod_{i=1}^{n} \frac{2i-1}{2i} \le \frac{1}{\sqrt{3n+1}}.$$

- 3. Calcular la cantidad de funciones inyectivas $f:\{1,2,3,4,5,6,7\} \rightarrow \{1,2,3,4,5,6,7,8,9,10,11\}$ que cumplen simultáneamente:
 - f(1) < f(7).
 - = f(3) es par.
- 4. Sea $(a_n)_n$ la sucesión de números enteros definida como $a_1=3, a_2=8$ y para todo $n\geq 2,$

$$a_{n+1} = 6a_n^3 + 24a_{n-1} + 19^{2n+1}.$$

Probar que para todo $n \in \mathbb{N}$ se verifica que $a_n \equiv 3(5)$.

5. Para todo $n \in \mathbb{N}$, definimos $a_n = 10 + n^2$. Sea $d_n = (a_n : a_{n+1})$. Determinar todos los $n \in \mathbb{N}$ para los cuales d_n alcanza el mayor valor posible.

Complete esta hoja con sus datos y entréguela con el resto del examen.

Justifique todas sus respuestas.

