

# 14BHDxx Informatica

ING. INF/ELT/ENE/MTM/ELN/FIS/CIN - CORSO #3 (DIQ-JZZ)

PROF. FULVIO CORNO



Politecnico di Torino, 2022/23 **INFORMATICA / COMPUTER SCIENCES** 

## Welcome

#### Corso di Informatica (14BHD)

- Insegnamento obbligatorio, 8 crediti, 1° Semestre
- Corso n. 3
  - Studenti con cognomi compresi tra DIQ e JZZ
  - Iscritti ai corsi di ing. Informatica, Elettrica, Energetica, Matematica, Elettronica, Fisica, Cinema
- Docenti:
  - Fulvio Corno
     (lezioni, esercitazioni in aula)
  - Roberta Bardini
     (esercitazioni in laboratorio, esercitazioni in aula)





#### Benvenuti ad Ingegneria

- Questo è il primo corso di Ingegneria che affronterete
- Ingegneria =
  - Saper progettare
  - Risolvere problemi
  - Trovare soluzioni
  - Soddisfare le specifiche
  - Nel rispetto dei vincoli
  - Con gli strumenti disponibili



#### Benvenuti ad Ingegneria

- Questo è il primo corso di Ingegneria che affronterete
- Ingegneria =
  - Saper progettare
  - o Risolvere problemi
  - Trovare soluzioni
  - Soddisfare le specifiche
  - Nel rispetto dei vincoli
  - o Con gli strumenti disponibili
- Ingegneria informatica =
  - Problemi di ogni genere (calcolo, gestione dati, interazione, ...)
  - Lo strumento è il calcolatore



# Programma del corso

#### Link utili



- Sito del corso (ufficiale):
  - o <a href="http://elite.polito.it/">http://elite.polito.it/</a> → Teaching → Current Courses → 14BHD Informatica
  - o Link breve: <a href="http://bit.ly/polito-informatica">http://bit.ly/polito-informatica</a>
- Gruppo Telegram
  - o https://t.me/+WikfXJT94b44ZDQ0
- Materiale, laboratori, esercizi
  - o https://github.com/polito-info-2022

#### Programma dell'insegnamento

- Metodologie di Problem Posing and Solving (PPS)
  - Tecniche di analisi basate su flow-chart e pseudo-code
  - Implementazione attraverso programmi informatici
- Strutture dati e rappresentazione dell'informazione nel PPS
  - Numeri, Stringhe, Vettori, Sequenze, Liste, Insiemi, Dizionari, ...
- Linguaggio di programmazione Python
  - Maggior semplicità sintattica e maggior potenza espressiva
  - Possibilità di affrontare esercizi con uno scopo applicativo più diretto
  - Ambiente di lavoro adeguato ai sistemi operativi moderni
  - Disponibilità di numerose librerie adatte a diversi campi applicativi (che potranno essere introdotte negli insegnamenti successivi).

#### Contenuti

- Teoria (9h)
  - o Cenni di Informatica generale ed impatti dell'informatica e del digitale
  - Struttura ed architettura del calcolatore, linguaggi, applicazioni
  - Rappresentazione dell'Informazione
- Problem Solving (12h)
  - Approccio alla logica dei problemi
  - I passaggi del processo di Problem Solving
  - Tipologie di problemi e di approcci risolutivi
- Programmazione Python (41h)
  - Numeri e Stringhe
  - Decisioni
  - Cicli
  - Liste (vettori)
  - Insiemi e dizionari (array associativi)
  - File
  - Funzioni
- Laboratori (12 x 1,5 = 18h)

#### ...e cioè cosa impariamo a fare?

• Quali sono i nomi più frequenti in quest'aula?



#### Una possibile soluzione... in Python

```
import csv
from matplotlib import pyplot
# Leggi l'elenco degli studenti e salvalo in un'array
def leggi(nome file):
   file = open(nome file, 'r')
    reader = csv.reader(file)
    prima = True
    studenti = []
    for line in reader:
        if prima: # skip first line (headers)
            prima = False
        else:
            studenti.append(line)
    file.close()
    return studenti
# estrai i nomi di battesimo da un elenco di studenti
def estrai nomi(elenco):
    lista nomi = []
    for riga in elenco:
       lista nomi.append(riga[2])
    return lista nomi
# Calcola le frequenze dei vari nomi presenti in un array
def frequenze(tokens):
    freq = {}
    for token in tokens:
        if token in freq:
            freq[token] = freq[token] + 1
        else:
            freq[token] = 1
    return freq
```

```
# calcola il massimo valore presente nelle frequenze
def max frequenza(freq):
    return max(freq.values())
def nomi piu frequenti(freq, max):
    return [nome for (nome, frequenza) in freq.items() if frequenza == max]
FILENAME = '01TXYOV 2020.csv'
def main():
    stud = leggi(FILENAME)
    nomi = estrai nomi(stud)
    print(f"Nella classe ci sono {len(stud)} studenti")
    freq = frequenze(nomi)
    max freq = max frequenza(freq)
    print(f"Il nome più frequente compare {max freq} volte")
    nomi max = nomi piu frequenti(freq, max freq)
    print(f"Si tratta di : {nomi max}")
    # estrai solo i nomi che compaiono almeno 3 volte
    freq2 = \{k: v \text{ for } (k, v) \text{ in freq.items() if } v >= 3\}
    print(
        f"I nomi che compaiono più volte sono {', '.join(sorted(list(freg2.keys())))}."
    pyplot.barh(list(freq2.keys()), freq2.values())
    pyplot.show()
main()
```

https://replit.com/@fulcorno/NomiFrequentiStudenti#main.py



## Dopo «Informatica»

|                  | Tecniche di<br>Programmazione | Algoritmi e<br>strutture dati              | Calcolatori<br>elettronici | Sistemi operativi             | Reti di calcolatori                                   |  |
|------------------|-------------------------------|--------------------------------------------|----------------------------|-------------------------------|-------------------------------------------------------|--|
| Ing. Informatica | <br>                          | Basi di dati                               |                            | Programmazione<br>a oggetti   | Controlli<br>automatici                               |  |
| Ing. Cinema      | <br>                          | Algoritmi e<br>programmazione a<br>oggetti |                            | Basi di dati                  | Reti di calcolatori                                   |  |
|                  | <br>                          |                                            |                            | Computer Grafica              |                                                       |  |
| Ing. Gestionale  |                               | Basi di dati                               |                            | Programmazione a oggetti      | Progettazione di servizi<br>web e reti di calcolatori |  |
| J                |                               |                                            |                            | Tecniche di<br>Programmazione | (solo L8)                                             |  |
| Ing. Elettronica | Algoritmi e programmazione    |                                            |                            |                               |                                                       |  |
| E.C.E.           | l anno                        | II anno                                    |                            | Algorithms and Programming    | III anno                                              |  |

Politecnico di Torino, 2022/23 INFORMATICA / COMPUTER SCIENCES 13

#### Dopo «Dopo «Informatica»»



Politecnico di Torino, 2022/23 INFORMATICA / COMPUTER SCIENCES 14

# Uno sguardo a Python

VISIONE GENERALE DELL'ECOSISTEMA PYTHON

#### Il linguaggio Python





- Linguaggio gratuito ed open-source
- Disponibile per tutti i sistemi operativi
  - Windows, Mac OS X, Linux
  - Sistemi embedded, Raspberry PI, Android
- Progettato negli anni '90 da Guido Van Rossum
  - Sintassi semplice, pulita, regolare
  - Approccio «batterie incluse»
    - Ampia libreria di funzioni standard
  - Basso gradino d'accesso
    - Linguaggio interpretato
- Sterminata documentazione on-line



#### Diffusione del linguaggio Python



- IEEE Spectrum, 23 Aug 2022
   <a href="https://spectrum.ieee.org/top-programming-languages-2022">https://spectrum.ieee.org/top-programming-languages-2022</a>
  - Top Programming Languages 2022

- Altre statistiche, per i più curiosi:
  - https://www.tiobe.com/tiobe-index/
  - http://pypl.github.io/PYPL.html
  - o https://octoverse.github.com/

O ...

## Diffusione del linguaggio Python

| Aug 2022 | Aug 2021 | Change   | Programming Language | Ratings    | Change |
|----------|----------|----------|----------------------|------------|--------|
| 1        | 2        | ^        | Python               | 15.42%     | +3.56% |
| 2        | 1        | •        | <b>G</b> c           | 14.59%     | +2.03% |
| 3        | 3        |          | Java                 | 12.40%     | +1.96% |
| 4        | 4        |          | <b>C</b> ++          | 10.17%     | +2.81% |
| 5        | 5        |          | <b>G</b> C#          | 5.59%      | +0.45% |
| 6        | 6        |          | VB Visual Basic      | 4.99%      | +0.33% |
| 7        | 7        |          | JS JavaScript        | 2.33%      | -0.61% |
| 8        | 9        | ^        | ASM Assembly langua  | ge 2.17%   | +0.14% |
| 9        | 10       | ^        | sQL SQL              | 1.70%      | +0.23% |
| 10       | 8        | •        | PHP PHP              | 1.39%      | -0.80% |
| 11       | 16       | *        | Swift                | 1.27%      | +0.30% |
| 12       | 12       |          | Classic Visual Ba    | sic 1.27%  | +0.04% |
| 13       | 22       | *        | Oelphi/Object Pa     | scal 1.22% | +0.60% |
| 14       | 23       | *        | Objective-C          | 1.22%      | +0.61% |
| 15       | 18       | ^        | <b>GO</b> GO         | 0.98%      | +0.08% |
| 16       | 14       | <b>~</b> | R R                  | 0.92%      | -0.13% |
| 17       | 17       |          | <b></b> MATLAB       | 0.90%      | -0.08% |
| 18       | 15       | <b>~</b> | Ruby                 | 0.82%      | -0.18% |
| 19       | 13       | *        | F Fortran            | 0.81%      | -0.32% |
| 20       | 20       |          | Perl Perl            | 0.72%      | -0.06% |

Top languages over the years



https://www.tiobe.com/tiobe-index/

https://octoverse.github.com/

Politecnico di Torino, 2022/23 INFORMATICA / COMPUTER SCIENCES 18

### https://www.python.org/



#### Batterie incluse



- Tipi di dato fondamentali
  - boolean, int, float, complex, string, regexp
- Strutture dati fondamentali
  - liste/array/matrici, tuple, insiemi, dizionari/mappe/hash, file, ...
- Orientato agli oggetti
  - Utilizzo semplice e diretto di oggetti predefiniti
  - Possibilità di creare classi ed oggetti personalizzati (avanzato)
- 200+ Moduli nella libreria standard

#### 200 Moduli della libreria standard

| abc      | chunk         | decimal      | getpass    | keyword          | optparse         | queue           | sndhdr        | telnetlib      | unittest       |
|----------|---------------|--------------|------------|------------------|------------------|-----------------|---------------|----------------|----------------|
| aifc     | cmath         | difflib      | gettext    | linecache        | os               | quopri          | socket        | tempfile       | urllib         |
|          |               |              |            |                  | ossaudiodev      |                 |               |                |                |
| argparse | cmd           | dis          | glob       | locale           | (Linux, FreeBSD) | random          | socketserver  | termios (Unix) | uu             |
| array    | codecs        | distutils    | graphlib   | logging          | parser           | re              | spwd (Unix)   | test           | uuid           |
| ast      | codeop        | doctest      | grp (Unix) | Izma             | pathlib          | readline (Unix) | sqlite3       | textwrap       | venv           |
| asynchat | collections   | email        | gzip       | mailbox          | pdb              | reprlib         | ssl           | threading      | warnings       |
| asyncio  | colorsys      | encodings    | hashlib    | mailcap          | pickle           | resource (Unix) | stat          | time           | wave           |
| asyncore | compileall    | ensurepip    | heapq      | marshal          | pickletools      | rlcompleter     | statistics    | timeit         | weakref        |
| atexit   | configparser  | enum         | hmac       | math             | pipes (Unix)     | runpy           | string        | tkinter        | webbrowser     |
| audioop  | contextlib    | errno        | html       | mimetypes        | pkgutil          | sched           | stringprep    | token          | winreg (Win)   |
| base64   | contextvars   | faulthandler | http       | mmap             | platform         | secrets         | struct        | tokenize       | winsound (Win) |
| bdb      | сору          | fcntl (Unix) | imaplib    | modulefinder     | plistlib         | select          | subprocess    | trace          | wsgiref        |
| binascii | copyreg       | filecmp      | imghdr     | msilib (Windows) | poplib           | selectors       | sunau         | traceback      | xdrlib         |
| binhex   | crypt (Unix)  | fileinput    | imp        | msvcrt (Windows) | pprint           | shelve          | symbol        | tracemalloc    | xml            |
| bisect   | csv           | fnmatch      | importlib  | multiprocessing  | profile          | shlex           | symtable      | tty (Unix)     | xmlrpc         |
| builtins | ctypes        | fractions    | inspect    | netrc            | pstats           | shutil          | sys           | turtle         | zipapp         |
| bz2      | curses (Unix) | ftplib       | io         | nis (Unix)       | pty (Linux)      | signal          | sysconfig     | turtledemo     | zipfile        |
| calendar | dataclasses   | functools    | ipaddress  | nntplib          | pwd (Unix)       | site            | syslog (Unix) | types          | zipimport      |
| cgi      | datetime      | gc           | itertools  | numbers          | pyclbr           | smtpd           | tabnanny      | typing         | zlib           |
| cgitb    | dbm           | getopt       | json       | operator         | pydoc            | smtplib         | tarfile       | unicodedata    | zoneinfo       |

#### Gli ambienti di lavoro



- Ambienti di sviluppo tradizionali (IDE)
  - IDLE, PyCharm, Visual Studio Code, Eclipse PyDev, ...
- Ambienti di sviluppo on-line
  - Repl.it, PythonAnywhere, Python Tutor
- Ambienti per il calcolo interattivo
  - Spyder, IPython
- Notebook Computazionali
  - Jupyter, JupyterLab, Google Colab
- Ambienti per l'apprendimento
  - Mu, Thonny, Wing

## L'IDE di PyCharm



### IDE On-line : <a href="https://replit.com/">https://replit.com/</a>



#### Ambienti scientifici interattivi

**SPYDER** 

#### JUPYTERLAB (ANCHE ON-LINE), GOOGLE COLAB





Librerie per ambiti applicativi



- Scientific computation
  - NumPy, SciPy, SymPy
- Data Analysis, Algoritmi, Grafi
  - Pandas, networkx, GeoPandas
- Image Processing
  - Pillow, scikit-image, OpenCV
- Visualization
  - o Pyviz, matplotlib, plotly, seaborn, altair
- Machine Learning
  - Scikit-learn, tensorflow, pytorch, keras
- Fintech
  - o f.fn, zipline, pyalgotrade
- Biology and Genome
  - Biopython
- Fluid Dynamics
  - Fluidity
- Finite Elements
  - Sfepy
- Control systems





Singoli moduli



Toolkit completo per data science

#### Calcolo scientifico



NumPy

Array, vettori, algebra lineare



SciPy

 Package specializzati su diversi ambiti scientifici



SymPy

Calcolo simbolico



Pandas

Analisi e manipolazione dati

Subpackage Description

**cluster** Clustering algorithms

**constants** Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers

**interpolate** Interpolation and smoothing splines

io Input and Output linalg Linear algebra

ndimageN-dimensional image processingodrOrthogonal distance regression

**optimize** Optimization and root-finding routines

signal Signal processing

sparsespatialSpatial data structures and algorithms

**special** Special functions

**stats** Statistical distributions and functions

#### Calcolo scientifico



- NumPy
  - Array, vettori, algebra lineare



- SciPy
  - Package specializzati su diversi ambiti scientifici



- SymPy
  - Calcolo simbolico



- Pandas
  - Analisi e manipolazione dati



#### Visualizzazione

































matplotlib, plotly, seaborn, ...

#### Esempio: dati ufficiali Covid-19 in real-time

```
import pandas as pd
import seaborn as sns
sns.set style("whitegrid")
# Leggi dati aggiornati
covid = pd.read json(
path or buf='https://raw.githubusercontent.com/pcm-dpc/COVID-
19/master/dati-json/dpc-covid19-ita-andamento-nazionale.json',
convert dates=['data'])
covid.set index('data', inplace=True)
sns.relplot(data=covid, kind='line')
dati utili = covid[['totale ospedalizzati', 'totale positivi' ]]
sns.relplot(data=dati utili, kind='line')
sns.relplot(data=dati utili, kind='scatter',
x='totale_ospedalizzati', y='totale_positivi', hue='data',
legend=False)
```

Try me on Google Colab



#### Dove arriviamo nel corso del primo anno?



- Programma del corso di Informatica
  - Conoscenza di base del linguaggio
  - Familiarità con gli ambienti di sviluppo più semplici
  - Capacità di analizzare un problema e formulare un algoritmo
- Le specializzazioni sulle varie aree non rientrano nel programma di Informatica
  - Possibile costruire negli insegnamenti successivi
  - Partendo da una base consolidata

# Organizzazione del corso

#### Sito del corso

Tutto il materiale sarà disponibile su questo sito

- Slide
- Laboratori
- Esempi svolti
- Video Lezioni
- Temi d'esame
- Calendario lezioni
- • •

#### http://bit.ly/polito-informatica



Politecnico di Torino, 2022/23 INFORMATICA / COMPUTER SCIENCES 33

#### Struttura del corso

Programmazione e Python : 41 ore

Teoria: 9 ore

Problem solving : 12 ore

Laboratorio : 18 ore (x 3 squadre)

Totale: 80 ore/studente



Politecnico di Torino, 2022/23 INFORMATICA / COMPUTER SCIENCES 34

#### Libri di testo





#### Libri: Informazioni dettagliate

- Concetti di informatica e fondamenti di Python
- Seconda edizione Giugno 2019 (II° Edizione)
- Cay Horstmann Rance D. Necaise
- Maggioli Editore
- ISBN 9788891635433
- http://www.apogeoeducation.com/c oncetti-di-informatica-e-fondamentidi-python.html

- Python For Everyone
- 3rd Edition
- Cay S. Horstmann, Rance D. Necaise
- Wiley
- ISBN: 978-1-119-49853-7 December
   2018
- https://www.wiley.com/enit/Python+For+Everyone,+3rd+Editio n-p-9781119498537

#### Altre risorse



Introduzione a Python Tony Gaddis Pearson - ISBN: 9788891900999



Introduzione a Python per l'informatica e la data science Paul J. Deitel, Harvey M. Deitel, Pietro Codara, Carlo Mereghetti Pearson - ISBN: 9788891915924



The Hitchhiker's Guide to Python: Best Practices for Development Kenneth Reitz, Tanya Schlusser O'Reilly Media - ISBN-13: 978-1491933176



https://www.python.org/ https://docs.python.org/3/ https://docs.python.org/3/tutorial/



https://realpython.com/

#### Gratis su:

https://docs.python-guide.org/

### Strumenti per programmare



## https://www.jetbrains.com/ pycharm/

- Professional (gratis per docenti e studenti)
- Community (gratis per tutti)



http://pythontutor.com



https://replit.com
(free online IDE)

### Istruzioni di installazione





http://bit.ly/polito-informatica





@fulcorno/NomiFrequentiStudenti

```
main.py
     import csv
     # from matplotlib import pyplot
     FILENAME = '01TXYOV_2020.csv'
     # Leggi l'elenco degli studenti e salvalo in un array
     def leggi(nomefile):
       file = open(nomefile, 'r')
 9
       reader = csv.reader(file)
10
       prima = True
       studenti = []
11
       for line in reader:
12
13
         if prima: #skip first line (headers)
14
           prima = False
15
         else:
           studenti.append(line)
16
17
       file.close()
18
       return studenti
19
     # estrai i nomi di battesimo da un elenco di studenti
20
     def nomi(elenco):
21
       nomi = []
22
23
       for riga in elenco:
         nomi.append(riga[2])
24
25
       return nomi
26
     # Calcola le frequenze dei vari nomi presenti in un
     array
28
     def frequenze(tokens):
29
       freq = {}
30
       for token in tokens:
31
         if token in freq:
32
           freq[token]= freq[token]+1
33
         else:
34
           freq[token] = 1
```

https://NomiFrequentiStudenti.fulcorno.repl.run Nella classe ci sono 180 studenti Q 🐼 Il nome più frequente compare 9 volte Si tratta di : ['ALESSANDRO'] I nomi che compaiono più di una volta sono ALESSANDRO, ANDREA , CLAUDIO, DAVIDE, ENRICO, ETTORE, FEDERICA, FEDERICO, FRANCE SCA, FRANCESCO, GABRIELE, GIANLUCA, GIOVANNI, GIUSEPPE, LOREN ZO, LUCA, MARCO, MARTINA, MATTEO, MATTIA, MICHELE, PIETRO. **>** [] https://replit.com (free online IDE)

# Informazioni pratiche

|             | Lunedì                               | Martedì | Mercoledì                            | Giovedì                                    | Venerdì |
|-------------|--------------------------------------|---------|--------------------------------------|--------------------------------------------|---------|
| 08:30-10:00 |                                      |         |                                      |                                            |         |
| 10:00-11:30 |                                      |         |                                      |                                            |         |
| 11:30-13:00 |                                      |         | Lezione /<br>Esercitazione<br>Aula 4 | <b>Laboratorio</b><br>Squadra 1<br>LAIB 2B |         |
| 13:00-14:30 |                                      |         | Lezione /<br>Esercitazione<br>Aula 4 | <b>Laboratorio</b><br>Squadra 2<br>LAIB 2B |         |
| 14:30-16:00 |                                      |         |                                      |                                            |         |
| 16:00-17:30 | Lezione /<br>Esercitazione<br>Aula 4 |         | Laboratorio<br>Squadra 3<br>LAIB 1   |                                            |         |
| 17:30-19:00 |                                      |         |                                      |                                            |         |

## Orario Settimanale

### Laboratori

- La parte più importante del corso, in cui imparare a risolvere problemi e scrivere programmi
- Il corso è diviso in 3 squadre
  - Presso i Laboratori Informatici (LAIB)
- Inizio laboratori: 05/10/2022
- Testo pubblicato sul sito del corso
- È necessario installare il software richiesto (Python e PyCharm) vedere le istruzioni di installazione sul portale

Politecnico di Torino, 2022/23 INFORMATICA / COMPUTER SCIENCES 4

## Suddivisione in squadre

- Squadra 1 (giovedì 11:30, Laib 2B): xxxxx
- Squadra 2 (giovedì 13:00, Laib 2B): xxxxx
- Squadra 3 (mercoledì 16:00, Laib 1): xxxxx

## Svolgimento dei laboratori



Politecnico di Torino, 2022/23 INFORMATICA / COMPUTER SCIENCES 46

#### Comunicazioni

- Tutti i contatti con i docenti avverranno sulla piattaforma Telegram
  - Non inviare e-mail ai docenti, ma utilizzare il gruppo Telegram
  - Non inviare messaggi privati, se non richiesti dai docenti stessi
- Iscriversi (obbligatorio!) all'indirizzo https://t.me/+WikfXJT94b44ZDQ0



# Esame

### Contenuti dell'esame

- 3 domande brevi sulla parte teorica del corso (6 punti)
- Un esercizio di programmazione (26 punti)
  - Con la possibilità di usare uno strumento di sviluppo per la scrittura del codice
  - Sarà consegnato il codice sorgente del programma sviluppato
  - Il codice verrà corretto manualmente (valuteremo la qualità della soluzione, e il rispetto delle richieste del problema, in maniera indipendente da eventuali errori sintattici e dall'effettivo funzionamento del programma)
- Nelle ultime 2 settimane del corso vi proporremo diversi esercizi di simulazione dell'esame, in modo da poter familiarizzare con le modalità di esame e con le conoscenze richieste per passarlo

## Cosa serve per passare [bene] l'esame?

- Capacità logico-razionali di analisi e di sintesi
  - Comprendere i propri processi risolutivi e saperli formalizzare
- Svolgere tutti gli esercizi proposti
  - Davvero
  - Anche quelli [che sembrano] facili
  - Da soli
  - Su Personal Computer
  - Verificarli con dati diversi
  - Cercare di metterli in crisi
- Inventarsi nuovi problemi, o varianti di quelli proposti
  - E poi risolverli

# Contatti

#### Docenti

- Fulvio Corno
  - Dipartimento di Automatica e Informatica (3° piano)
  - o fulvio.corno@polito.it

- Roberta Bardini
  - Dipartimento di Automatica e Informatica (2° piano)
  - o roberta.bardini@polito.it

Ci trovate su Telegram!

### Link utili



- Sito del corso (ufficiale):
  - o <a href="http://elite.polito.it/">http://elite.polito.it/</a> → Teaching → Current Courses → 14BHD Informatica
  - o Link breve: <a href="http://bit.ly/polito-informatica">http://bit.ly/polito-informatica</a>
- Gruppo Telegram
  - o https://t.me/+WikfXJT94b44ZDQ0
- Materiale, laboratori, esercizi
  - o https://github.com/polito-info-2022



### Licenza d'uso

 Queste diapositive sono distribuite con licenza Creative Commons "Attribuzione - Non commerciale - Condividi allo stesso modo 2.5 Italia (CC BY-NC-SA 2.5)"

#### Sei libero:

- o di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera
- o di modificare quest'opera
- Alle seguenti condizioni:
  - Attribuzione Devi attribuire la paternità dell'opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
  - Non commerciale Non puoi usare quest'opera per fini commerciali.
  - Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.
- http://creativecommons.org/licenses/by-nc-sa/2.5/it/









