Scout and NegaScout

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Introduction

- It looks like alpha-beta pruning is the best we can do for a generic searching procedure.
 - What else can be done generically?
 - Alpha-beta pruning follows basically the "intelligent" searching behaviors used by human when domain knowledge is not involved.
 - Can we find some other "intelligent" behaviors used by human during searching?
- Intuition: One a MAX node
 - Suppose we know currently we have a way to gain at least 300 points at the first branch.
 - If there is an efficient way to know the second branch is at most gaining 300 points, then there is no need to search the second branch in detail.
 - ▶ Is there a way to search a tree approximately?
 - ▶ Is searching approximately faster than searching exactly?
- Similar intuition holds for a MIN node.

SCOUT procedure

- Invented by Judea Pearl in 1980.
- It may be possible to verify whether the value of a branch is greater than a value v or not in a way that is faster than knowing its exact value.
- High level idea:
 - While searching a branch T_b of a MAX node, if we have already obtained a lower bound v_ℓ .
 - \triangleright First TEST whether it is possible for T_b to return something greater than v_ℓ .
 - \triangleright If FALSE, then there is no need to search T_b . This is called fails the test.
 - \triangleright If TRUE, then search T_b . This is called passes the test.
 - While searching a branch T_c of a MIN node, if we have already obtained an upper bound v_u
 - \triangleright First TEST whether it is possible for T_c to return something smaller than v_u .
 - \triangleright If FALSE, then there is no need to search T_c . This is called fails the test.
 - ightharpoonup If TRUE, then search T_c .
 This is called passes the test.

How to TEST

- procedure TEST(position p, value v, condition >) // test whether the value of the branch at p is > v
 - determine the successor positions p_1, \ldots, p_d of p
 - if d = 0, then // terminal
 - \triangleright return TRUE if f(p) > v // f(): evaluating function
 - ▶ return FALSE otherwise
 - for i := 1 to d do
 - \triangleright if p is a MAX node and TEST $(p_i, v, >)$ is TRUE, then return TRUE
 - \triangleright if p is a MIN node and TEST $(p_i, v, >)$ is FALSE, then return FALSE
 - if p is a MAX node, then return FALSE
 - if p is a MIN node, then return TRUE
- Condition can be stated as \geq by properly revising the algorithm.
 - For the condition to be < or \le , we need to switch conditions for the MAX and MIN nodes.
- Practical consideration:
 - Set a depth limit and evaluate the position's value when the limit is reached.

Main SCOUT procedure

- Algorithm SCOUT(position p)
 - determine the successor positions p_1, \ldots, p_d
 - if d = 0, then return f(p)
 - else $v = SCOUT(p_1)$ // SCOUT the first branch
 - for i := 2 to d do // TEST first for the rest of the branches
 - \triangleright if p is a MAX node and TEST $(p_i, v, >)$ is TRUE, then $v = SCOUT(p_i)$ // find the value of this branch
 - \triangleright if p is a MIN node and $TEST(p_i, v, \geq)$ is FALSE, then $v = SCOUT(p_i)$ // find the value of this branch
 - \bullet return v
- Note that v is the current best value at any moment.
 - for a MAX node, p,
 - ▶ For any i > 1, if $TEST(p_i, v, >)$ is TRUE, then the value returned by $SCOUT(p_i)$ must be greater than v for a MAX node.
 - \triangleright We say the p_i passes the test if TEST $(p_i, v, >)$ is TRUE.
 - for a MIN node, p,
 - ▶ For any i > 1, if $TEST(p_i, v, \ge)$ is FALSE, then the value returned by $SCOUT(p_i)$ must be smaller than v.
 - \triangleright We say the p_i passes the test if $TEST(p_i, v, \geq)$ is FALSE.

Discussions for SCOUT (1/2)

TEST may visit less nodes than alpha-beta.

- Assume TEST(p,5,>) is called by the root after the first branch is evaluated.
 - \triangleright It calls TEST(K, 5, >) which skips K's second branch.
 - ightharpoonup TEST(p,5,>) is FALSE, i.e., fails the test, after returning from the 3rd branch.
 - \triangleright No need to do SCOUT for the branch p.
- Alpha-beta needs to visit K's second branch.

Discussions for SCOUT (2/2)

SCOUT may visit a node that is cut off by alpha-beta.

Number of nodes visited (1/3)

- For TEST to return TRUE for a subtree T, it needs to evaluate at least
 - \triangleright one child for a MAX node in T, and
 - \triangleright and all of the children for a MIN node in T.
 - ▶ If T has a fixed branching factor b and uniform depth d, the number of nodes evaluated is $\Omega(b^{d/2})$.
- For TEST to return FALSE for a subtree T, it needs to evaluate at least
 - \triangleright one child for a MIN node in T, and
 - \triangleright and all of the children for a MAX node in T.
 - ▶ If T has a fixed branching factor b and uniform depth d, the number of nodes evaluated is $\Omega(b^{d/2})$.

Number of nodes visited (2/3)

Assumptions:

- Assume a full complete d-ary tree with depth ℓ .
- Assume ℓ is even.
- The depth of the root, which is a MAX node, is 0.
- The total number of nodes in the tree is $\frac{d^{\ell+1}-1}{d-1}$.
- The minimum number of nodes visited by TEST when it returns TRUE.
 - ▶ It is $1 + 1 + d + d + d^2 + d^2 + d^3 + d^3 + \cdots + d^{\ell/2-1} + d^{\ell/2-1} + d^{\ell/2}$.
 - ▶ It is $2 \cdot (d^0 + d^1 + \dots + d^{\ell/2}) d^{\ell/2} = 2 \cdot \frac{d^{\ell/2+1} 1}{d-1} d^{\ell/2}$.
- The minimum number of nodes visited by alpha-beta.
 - ightharpoonup It is $\sum_{i=0}^{\ell} d^{\lceil i/2 \rceil} + d^{\lfloor i/2 \rfloor} 1$.
 - ▶ It is $1 + d + (2d 1) + (d^2 + d 1) + \cdots + (d^{\ell/2} + d^{\ell/2 1} 1) + (2 \cdot d^{\ell/2} 1)$.

Number of nodes visited (3/3)

Comparisons

- When the first branch of a node has the best value, then TEST scans the tree fast.
 - The best value of the first i-1 branches is used to test whether the ith branch needs to be searched exactly.
 - If the value of the first i-1 branches of the root is better than the value of ith branch, then we do not have to evaluate exactly for the ith branch.
- Compared to alpha-beta pruning whose cut off comes from bounds of search windows.
 - It is possible to have some cut-off for alpha-beta as long as there are some relative move orderings are "good."
 - ▶ The moving orders of your children and the children of your ancestor who is odd level up decide a cut-off.
 - The search bound is updated during the searching.
 - > Sometimes, a deep alpha-beta cut-off occurs because a bound found from your ancestor a distance away.

Performance of SCOUT (1/2)

- A node may be visited more than once.
 - First visit is to TEST.
 - Second visit is to SCOUT.
 - During a SCOUT, it may be TESTed with a different value.
 - Q: Can information obtained in the first search be used in the second search?
- SCOUT is a recursive procedure.
 - A node in a branch that is not the first child of a node with a depth of ℓ .
 - ▶ Every ancestor of you may initiate a TEST to visit you.
 - \triangleright It can be visited ℓ times by TEST.
 - ▶ Every ancestor of you may pass the TEST and decides to SCOUT you.
 - \triangleright It can be visited ℓ times by SCOUT.

Performance of SCOUT (2/2)

- Show great improvements on depth > 3 for games with small branching factors.
 - It traverses most of the nodes without evaluating them preciously.
 - Few subtrees remained to be revisited to compute their exact mini-max values.
- Experimental data show [Pearl 1980]:
 - SCOUT favors "skinny" games, that are games with high depth-towidth ratios.
 - On depth = 5, it saves over 40% of time.
 - Maybe bad for games with a large branching factor.
 - Move ordering is very important.
 - ▶ The first branch, if is good, offers a great chance of pruning further branches.

Alpha-beta revisited

- In an alpha-beta search with a window [alpha,beta]:
 - Failed-high means it returns a value that is larger than its upper bound beta.
 - Failed-low means it returns a value that is smaller than its lower bound alpha.
- Null or Zero window search:
 - Using alpha-beta search with the window [m, m+1].
 - The result can be either failed-high or failed-low.
 - Failed-high means the return value is at least m+1.
 - \triangleright Equivalent to TEST(p, m, >) is true.
 - Failed-low means the return value is at most m.
 - \triangleright Equivalent to TEST(p, m, >) is false.

Alpha-Beta + Scout

Intuition:

- Try to incooperate SCOUT and alpha-beta together.
- The searching window of alpha-beta if properly set can be used as TEST in SCOUT.
- Using a searching window is better than using a single bound as in SCOUT.
- Can also apply alpha-beta cut if it applies.
- Modifications to the SCOUT algorithm:
 - Traverse the tree with two bounds as the alpha-beta procedure does.
 - ▶ A searching window.
 - ▶ Use the current best bound to guide the TEST value.
 - Use a fail soft version to get a better result when the returned value is out of the window.

The NegaScout Algorithm – MiniMax (1/2)

- Algorithm F4' (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_d
 - if d=0 // a terminal node or depth=0 // depth is the remaining depth to search or time is running up // from timing control or some other constraints are met // apply heuristic here
 - then return f(p) else begin

• return m

The NegaScout Algorithm – MiniMax (2/2)

- Algorithm G4' (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_d
 - if d=0 // a terminal node or depth=0 // depth is the remaining depth to search or time is running up // from timing control or some other constraints are met // apply heuristic here
 - then return g(p) else begin

```
▷ m = ∞ // m is the current best upper bound; fail soft m := min{m, F4'(p₁, alpha, beta, depth - 1)} // the first branch if m ≤ alpha then return(m) // alpha cut off
▷ for i := 2 to d do
▷ 9: t := F4'(pᵢ, m, m + 1, depth - 1) // null window search
▷ 10: if t <= m then // failed-low</li>
11: if (depth < 3 or t ≤ alpha)</li>
12: then m := t
13: else m := G4'(pᵢ, alpha, t, depth - 1) // re-search
▷ 14: if m ≤ alpha then return(m) // alpha cut off
```

• return m

Example for NegaScout – MiniMax version

The NegaScout Algorithm

- Use Nega-MAX format.
- Algorithm F4 (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_d
 - if d=0 // a terminal node or depth=0 //depth is the remaining depth to search or time is running up // from timing control or some other constraints are met // apply heuristic here
 - then return f(p) else

```
▷ m := -\infty // the current lower bound; fail soft
▷ n := beta // the current upper bound
▷ for i := 1 to d do
▷ 9: t := -F4(p_i, -n, -max\{alpha, m\}, depth - 1)
▷ 10: if t > m then
11: if (n = beta \text{ or } depth < 3 \text{ or } t \ge beta)
12: then m := t
13: else m := -F4(p_i, -beta, -t, depth - 1) // re-search
▷ 14: if m \ge beta then return(m) // cut off
▷ 15: n := max\{alpha, m\} + 1 // set up a null window
```

• return m

Search behaviors (1/3)

- If the depth is enough or it is a terminal position, then stop searching further.
 - Return f(p) as the value computed by an evaluation function.
- Fail soft version.
- For the first child p_1 , a normal alpha beta searching window is used.
 - line 9: normal alpha-beta search for the first child
 - the initial value of m is $-\infty$, hence $-max\{alpha, m\} = -alpha$ m is current best value
 - that is, searching with the normal window [alpha, beta]

Search behaviors (2/3)

- For the second child and beyond p_i , i>1, first perform a null window search for testing whether m is the answer.
 - line 9: a null-window of [m, m+1] searches for the second child and beyond.
 - ▶ m is best value obtained so far
 - \triangleright m's value will be first set at line 12 because n = beta
 - ▶ The null window is set at line 15.

• line 11:

- \triangleright n = beta: we are at first iteration.
- ightharpoonup depth < 3: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
- \triangleright $t \ge beta$: we have obtained a good enough value from the failed-soft version to guarantee a beta cut.

Search behaviors (3/3)

- For the second child and beyond p_i , i>1, first perform a null window search for testing whether m is the answer.
 - line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
 - ▶ Normally, no need to do alpha-beta or any enhancement on very small subtrees.
 - ▶ The overhead is too large on small subtrees.
 - line 13: re-search when the null window search fails high.
 - \triangleright The value of this subtree is at least t.
 - \triangleright This means the best value in this subtree is more than m, the current best value.
 - \triangleright This subtree must be re-searched with the the window [t, beta].
 - line 14: the normal pruning from alpha-beta.

Example for NegaScout

Refinements

- When a subtree is re-searched, it is best to use information on the previous search to speed up the current search.
 - ullet Restart from the position that the value t is returned.
- Maybe want to re-search using the normal alpha-beta procedure.
- ullet F4 runs much better with a good move ordering and transposition tables.
 - Order the moves in a best-first list.
 - Reduce the number of re-searches.

Performances

- Experiments done on a uniform random game tree [Reinefeld 1983].
 - Normally superior to alpha-beta when searching game tree with branching factors from 20 to 60.
 - Shows about 10 to 20% of improvement.

Comments

- Incooperating both SCOUT and alpha-beta.
- Used in state-of-the-art game search engines.
- The first search, though maybe unsuccessful, can provide useful information in the second search.
 - Information can be stored and then be reused.

References and further readings

- * A. Reinefeld. An improvement of the scout tree search algorithm. $ICCA\ Journal$, 6(4):4–14, 1983.
- * J. Pearl. Asymptotic properties of minimax trees and game-searching procedures. $Artificial\ Intelligence,\ 14(2):113-138,\ 1980.$