Résoudre les équations suivantes :

- a) $e^{4x} \ge 650$ c) $e^{-0.001x} < 12$
- e) $e^{-3x} \le 1290$

- b) $e^{-x} \le 100$
- d) $e^{0.5x} > 0.5$

Résoudre les équations suivantes :

a) $e^{-2x} + 1.5 \le 7.5$

b) $0.1 e^{100x} - 1 \ge 4$

: Ce qu'il faut retenir

	$ \ln(ax) = b $ $ x > 0 \text{ et } a > 0 $	$ \ln(ax) \geqslant b $ $x > 0 \text{ et } a > 0$
Résolution	$e^{\ln(ax)} = e^b$ $ax = e^b$	$e^{\ln(ax)}\geqslant e^b$ $ax\geqslant e^b$
Solutions	$X = \frac{e^b}{a}$	$x\geqslant \frac{\mathrm{e}^{\mathrm{b}}}{a}$

Comment résoudre des équations du type ln(ax) = b? >> MÉTHODE

On cherche à résoudre l'équation: ln(2x) = 10

On calcule l'exponentielle de chacun des deux membres:

$$e^{\ln(2x)} = e^{10}$$

On applique les propriétés algébriques de la fonction exponentielle :

$$2x = e^{10}$$

On termine la résolution :

$$x = \frac{e^{10}}{2}$$

$$x \approx 11013,23$$

>> APPLICATIONS

Résoudre les équations suivantes :

a)
$$ln(1,5x) = 8$$

b)
$$ln(0,5x) = 100$$

c)
$$\ln(0,1x) = 0,5$$

$$\frac{d}{\ln \left(\frac{x}{2}\right)} = 4$$

e)
$$\ln x + 1 = 4$$

$$f) \ln(2x) + 2.3 = 3.8$$

(1) Résoudre les inéquations suivantes :

a)
$$ln(2,5x) \ge 10$$

b) $ln(2x) \le 25$

c) $\ln(0.01x) < 0.1$

d) ln(1000x) > 5

e) $\ln(x) \leq 10^{-4}$

f) $ln(4x) + 1 \le 7,5$

q) $\ln(x) - 6 \ge -5$