Tone Counting vs Baseline

Statistics: p-values adjusted for search volume

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ctation of Values adjusted for Sourch Volume					
D C P_FWE-coff FDR-corr P_FWE-coff FDR-coff (Z_=) P_uncorr	set-level			peak-level mm mm mm		
1.000 0.579 1 0.579 1.000 0.620 3.68 3.33 0.000 -20 -2 56 1.000 0.579 1 0.579 1.000 0.621 3.68 3.33 0.000 -52 28 12 1.000 0.579 1 0.579 1.000 0.625 3.68 3.32 0.000 -22 20 -18 1.000 0.530 3 0.321 1.000 0.630 3.67 3.32 0.000 -16 56 -10 1.000 0.552 2 0.420 1.000 0.630 3.67 3.32 0.000 -54 -22 60 1.000 0.552 2 0.420 1.000 0.637 3.67 3.31 0.000 12 -26 32 1.000 0.318 7 0.135 1.000 0.649 3.65 3.30 0.000 28 -26 54 1.000 0.579 1 0.579 1.000 0.651 3.65 3.30 0.000 28 -26 54 1.000 0.579 1 0.579 1.000 0.651 3.65 3.30 0.000 56 -12 -34 1.000 0.579 1 0.579 1.000 0.661 3.65 3.30 0.000 -32 -26 26 1.000 0.579 1 0.579 1.000 0.664 3.64 3.30 0.000 -32 -26 26 1.000 0.552 2 0.420 1.000 0.664 3.64 3.29 0.000 -50 -34 18 1.000 0.552 2 0.420 1.000 0.664 3.64 3.29 0.000 -50 -34 18 1.000 0.552 2 0.420 1.000 0.668 3.64 3.29 0.001 -12 -8 -20 1.000 0.477 4 0.252 1.000 0.668 3.64 3.29 0.001 -12 -8 -20 1.000 0.552 2 0.420 1.000 0.669 3.64 3.29 0.001 -12 -8 -20 1.000 0.552 2 0.420 1.000 0.669 3.64 3.29 0.001 -24 4 26 1.000 0.552 2 0.420 1.000 0.669 3.64 3.29 0.001 -24 4 26 1.000 0.552 2 0.420 1.000 0.672 3.63 3.29 0.001 -24 4 26 1.000 0.552 2 0.420 1.000 0.672 3.63 3.29 0.001 -8 -90 -30 1.000 0.552 2 0.420 1.000 0.672 3.63 3.29 0.001 -8 -90 -30 1.000 0.552 2 0.420 1.000 0.677 3.63 3.28 0.001 -60 -38 48 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -24 -4 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -24 -4 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -60 -38 48 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -18 62 26 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -18 62 26 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -18 62 26 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -18 62 26 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -18 62 26 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -18 62 26 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -60 -38 48 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -18 62 26 1.000 0.552 2 0.420 1.000 0.680 3.62 3.28 0.001 -18 62 26 1.000 0.552 2 0.420 1.000 0.680 3.62 3.27 0.001 66 -30 8	р с	$\rho_{\text{FWE-corr} \text{FDR-corr}} k_{\text{E}}$	$p_{ m uncorr}$	$\rho_{\text{FWE-corr}} = G_{\text{ENE-corr}} = F_{\text{uncorr}}$		
	ρι	1.000 0.579 1 1.000 0.579 1 1.000 0.579 1 1.000 0.530 3 1.000 0.552 2 1.000 0.552 2 1.000 0.318 7 1.000 0.579 1 1.000 0.579 1 1.000 0.579 1 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2 1.000 0.552 2	0.579 0.579 0.579 0.321 0.420 0.135 0.135 0.579 0.321 0.420 0.420 0.420 0.579 0.321 0.579 0.420 0.420	1.000 0.620 3.68 3.33 0.000 -20 -2 56 1.000 0.621 3.68 3.33 0.000 -52 28 12 1.000 0.625 3.68 3.32 0.000 22 20 -18 1.000 0.630 3.67 3.32 0.000 -16 56 -10 1.000 0.630 3.67 3.32 0.000 -54 -22 60 1.000 0.637 3.67 3.31 0.000 12 -26 32 1.000 0.638 3.66 3.31 0.000 -54 -26 20 1.000 0.649 3.65 3.30 0.000 28 -26 54 1.000 0.651 3.65 3.30 0.000 56 -12 -34 1.000 0.660 3.64 3.30 0.000 62 -42 32 1.000 0.664 3.64 3.29 0.000 -50 -34 18 1.000 0.668 3.64 3		
table shows 2 local maxima more than 9 0mm apart		1.000 0.579 1	0.579	1.000 0.698 3.61 3.27 0.001 -10 -18 -42		

table shows 3 local maxima more than 8.0mm apart

Height threshold: F = 3.39, p = 0.001 (1.00 Ω) egrees of freedom = [10.0, 80.0]

Extent threshold: k = 0 voxels

FWHM = 8.0 7.9 7.8 mm mm mm; 4.0 3.9 3.9 {voxels}

Expected voxels per cluster, $\langle k \rangle = 3.286$ Volume: 1784456 = 223057 voxels = 3391.7 resels

Expected number of clusters, $\langle c \rangle = 71.08$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 61.02 voxels)

FWEp: 6.605, FDRp: 5.227, FWEc: 50, FDR 2979