Digital Signal Processing

Spring Semester 2022

Frequency-Based Analysis, Part 2

Damon M. Chandler < chandler@fc.ritsumei.ac.jp>
Visual Information Engineering Laboratory
Ritsumeikan University

Last time's learning objectives

- Explain the term "DT frequency"
 - > A measure of how frequently a signal changes per time
 - \blacktriangleright Usually represented by **variable** ω with units radians/sample and over the range $(-\pi,\pi]$
 - \triangleright Sines, cosines, and $e^{j\omega_0}$ fluctuate at only one \pm frequency
 - Other signals fluctuate over a range (a "spectrum") of frequencies
- Explain what is the "spectrum" of a signal
 - ➤ A function that represents how much energy (and delay) a signal has at each frequency
 - Computed by using the DTFT
- Use the Discrete-Time Fourier Transform (DTFT) to compute a signal's spectrum

Today's learning objectives

From today's lecture, you should be able to...

- Compute the DTFTs of basic signals on paper
- Write a signal's spectrum in terms of magnitude and phase

Discrete-time Fourier transform (DTFT)

Transforms a signal from the **time domain** into the **frequency domain** (and vice-versa)

time-domain $\chi(n) \leftrightarrow \chi(\omega)$ frequency domain

Forward DTFT:
$$X(e^{i\omega}) = \int x(n) e^{i\omega n}$$

Threese DTFT: $X(\omega) = \frac{1}{2\pi} \times X(e^{i\omega}) =$

The **DTFT** basically **answers this question**:

How much of each frequency does the signal x(n) contain?

Not just these frequencies, but all frequencies in the continuous range $\omega = -\pi$ to π .

 $X(e^{j\omega})$ contains the answer:

Magnitude

 $|X(e^{j\omega})|$ tells the amount

Phase

 $\angle X(e^{j\omega})$ tells the shift

The **DTFT** basically **answers this question**:

How much of $\omega = 0$ does x(n) contain?

$$\rightarrow X(e^{j\omega})\big|_{\omega=0} = X(e^{j0})$$

How much of $\omega = \frac{2\pi}{3}$ does x(n) contain?

$$\rightarrow X(e^{j\omega})|_{\omega=\frac{2\pi}{3}} = X(e^{j\frac{2\pi}{3}})$$

How much of $\omega = -\frac{\pi}{5}$ does x(n) contain?

$$\rightarrow X(e^{j\omega})|_{\omega=\frac{-\pi}{5}} = X(e^{j\frac{-\pi}{5}})$$

and so on...

Time domain x(n)

Frequency domain $X(e^{j\omega})$

Last week's in-class activity

Compute the DTFT of the following signals:

1.
$$x(n) = \delta(n+1) - \delta(n-1)$$

2. $y(n) = \delta(n+1) + 2\delta(n) - \delta(n-1)$

Question: We can see that $y(n) = x(n) + 2\delta(n)$. Please write $Y(e^{j\omega})$ in terms of $X(e^{j\omega})$.

$$\begin{split} \underline{\operatorname{Ex:}} \quad x(n) &= \delta(n+1) - \delta(n-1) \\ X(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} \\ &= \sum_{n=-1}^{1} \left[\delta(n+1) - \delta(n-1) \right] e^{-j\omega n} \\ &= \left[\delta(-1+1) - \delta(-1-1) \right] e^{-j\omega(-1)} & n = -1 \\ &+ \left[\delta(0+1) - \delta(0-1) \right] e^{-j\omega 0} & n = 0 \\ &+ \left[\delta(1+1) - \delta(1-1) \right] e^{-j\omega 1} & n = 1 \end{split}$$

$$&= \left[\delta(0) - \delta(-2) \right] e^{j\omega 1} \\ &+ \left[\delta(1) - \delta(-1) \right] e^{-j\omega 0} \\ &+ \left[\delta(2) - \delta(0) \right] e^{-j\omega 1} \\ &= \left[1 - 0 \right] e^{j\omega 1} \\ &+ \left[0 - 0 \right] e^{-j\omega 0} \\ &+ \left[0 - 1 \right] e^{-j\omega 1} \end{split}$$

$$= e^{j\omega 1} - e^{-j\omega 1} = 2j\sin(\omega)$$

Note: $e^{ja} - e^{-ja} = 2j\sin(a)$

https://en.wikipedia.org/wiki/Euler%27s_formula#Relationship_to_trigonometry

Ex:
$$y(n) = \delta(n+1) + 2\delta(n) - \delta(n-1) = x(n) + 2\delta(n)$$

$$Y(e^{j\omega}) = X(e^{j\omega}) + 2$$
 By using the linearity property of the DTFT

$$\begin{split} Y\!\left(e^{j\omega}\right) &= \sum_{n=-\infty}^{\infty} y(n)e^{-j\omega n} = \sum_{n=-1}^{1} \left[\delta(n+1) + 2\delta(n) - \delta(n-1)\right]e^{-j\omega n} \\ &= \left[\delta(-1+1) + 2\delta(-1) - \delta(-1-1)\right]e^{-j\omega(-1)} \qquad n = -1 \\ &+ \left[\delta(0+1) + 2\delta(0) - \delta(0-1)\right]e^{-j\omega 0} \qquad n = 0 \\ &+ \left[\delta(1+1) + 2\delta(1) - \delta(1-1)\right]e^{-j\omega 1} \qquad n = 1 \end{split}$$

$$&= \left[\delta(0) + 2\delta(-1) - \delta(-2)\right]e^{j\omega 1} \\ &+ \left[\delta(1) + 2\delta(0) - \delta(-1)\right]e^{-j\omega 0} \\ &+ \left[\delta(2) + 2\delta(1) - \delta(0)\right]e^{-j\omega 1} \end{split}$$

$$&= \left[1 + 0 - 0\right]e^{j\omega 1} \\ &+ \left[0 + 2 - 0\right]e^{-j\omega 0} \\ &+ \left[0 + 0 - 1\right]e^{-j\omega 1} \\ &= e^{j\omega 1} + 2 - e^{-j\omega 1} \qquad = 2j\sin(\omega) + 2 \end{split}$$

Today

- 1. More DTFT examples
- 2. Computing the DTFT in Matlab (next time)
- 3. DTFT properties (next time)

How to compute the magnitude and phase of $1+e^{-j\omega}$

$$\begin{split} X(e^{j\omega}) &= 1 + e^{-j\omega} \\ &= e^{-j0.5\omega} e^{j0.5\omega} + e^{-j\omega} \quad \text{Re-write 1 as } e^{-j0.5\omega} e^{j0.5\omega} \\ &= e^{-j0.5\omega} \left(e^{j0.5\omega} + e^{-j0.5\omega} \right) \quad \text{Factor out } e^{-j0.5\omega} \\ &= e^{-j0.5\omega} \left(2\cos(0.5\omega) \right) \quad \text{Note that } e^{ja} + e^{-ja} = 2\cos(a) \\ &= e^{-j0.5\omega} \left(2\cos(0.5\omega) \right) \quad \text{Note that } e^{ja} + e^{-ja} = 2\cos(a) \end{split}$$

So,
$$X(e^{j\omega}) = 2\cos(0.5\omega) e^{-j0.5\omega}$$

thus, $|X(e^{j\omega})| = |2\cos(0.5\omega)|$
 $= 2\cos(0.5\omega)$ for $\omega \in (-\pi,\pi]$
and $4X(e^{j\omega}) = -0.5\omega$ for $\omega \in (-\pi,\pi]$

Magnitude Spectrum

Phase Spectrum

Matlab code to generate the plots:

```
w = [-pi:0.001:pi];
X_mag = 2*cos(0.5*w);
X_phs = -0.5*w;

figure(1); plot(w, X_mag);
figure(2); plot(w, X_phs);
```


Rectangle in time

Periodic sinc in frequency

Periodic sinc in frequency

Rectangle $\stackrel{DTFT}{\longleftrightarrow}$ Periodic Sinc

$$X(e^{j\omega}) = 5in(7/2\omega)$$

 $5in(1/2\omega)$

Rectangle $\stackrel{DTFT}{\longleftrightarrow}$ Periodic Sinc

Rectangle $\stackrel{DTFT}{\longleftrightarrow}$ Periodic Sinc

The DTFT of a general rectangle

The DTFT of a general rectangle

