

eQTL pipeline for V7 & V8

AWG call :: 08/14/2017

François Aguet

Summary

Proposed changes:

- Normalization: TMM instead of quantile normalization
 - Unchanged: inverse transform to standard normal
- Expression/detection thresholds:
 - ≥6 counts in ≥20% of samples and >0.1 TPM in ≥20% of samples
 - Was:
 - ≥6 counts in ≥10 samples and
 - >0.1 FPKM in ≥10 samples
- PEER factors: extension of prior approach

TMM normalization

- TMM: trimmed mean of M values (log fold-change)
 - Implemented in edgeR [Robinson & Oshlack, 2010]
 - Rescaling of count data; preserves zeros
 - Better for effect size calculations
- Consensus across benchmarks that TMM is generally the most suitable between-sample normalization method (together with DESeq)
 - References: Lin et al. BMC Genomics 2016;
 Rapaport et al. Genome Biology 2013; Dillies et al. Brief. Bioinformatics 2012

Comparison of normalization methods on V6p data

Tissue	v6p	v7 pipeline	shared	lost	gained
Thyroid	10610	10311	9461	1149	850
Skin - Sun Exposed (Lower leg)	9069	9167	8160	909	1007
Heart - Left Ventricle	4814	4649	4193	621	456
Whole Blood	7332	7055	6383	949	672

Significant fraction of lost eGenes have median expression
 < 3 counts (!)

Selection of PEER factors

- Extension of approach from V6p paper
 - Selection of PEER factors based on eGenes detected, binned by sample size:

Sample size	PEER factors	Tissues	
[0,150)	15	20	
[150,250)	30	11	
[250,350)	45	8	
[350,450)	60	8	
[450,550)	75	1	

Discussion: FDR approach

- q-values or BH?
 - q-values: 'true' π_0 is 0 => use of q-values justified despite potential underestimation of FDR?
 - BH: more conservative, but 'wrong' H₀
- Limited to protein coding genes and lincRNAs? Or all biotypes?

- Based on stringent expression filters (unique mapping reads, edit distance), other biotypes unlikely artifacts
- Consistent sets across papers and GTEx portal