《系统分析与设计》、《软件工程理论与实践》

课程项目说明

(13902295111; issyy@mail.sysu.edu.cn)

1 要点

- ◇ 系统功能合理。该系统功能合理,贴近实际应用。
- → 项目能体现相关的理论(面向对象)。合理运用面向对象方法学、软件架构设计等理论。在软件系统中,建议至少要实现一种设计模式。
- ◇ 应符合当前软件系统分析、设计、实现、测试等方面的主流核心技术规范。
- ◆ 有工作量。每组1-7人。
- ◇ 做什么功能及功能大小、采用何种编程平台,不做限定,由各组同学自行决定。

2 提交作业要求

- 1) 基于内容迭代地提交作业,期末提交电子版+纸质版。
- 2) 纸质版: 仅仅打印"分析与设计文档"即可,其它制品不必打印。
- 3) 期末提交的电子版材料的内容:每组一个文件夹(命名:学号姓名学号姓名。。。), 其包含:
 - a) XXX 系统.doc

- b) 项目中 UML 源文件
- c) 一个子文件夹,命名: CODE,内为代码,需提交所有代码,用于验证
- d) 系统核心部分录像, 3-5min
- e) 其他(例如,同学的感悟),这些内容可以侧面反映出团队管理、同学们平时的努力、同学们的技术水平,等等。
- f) 提交时间:
 - 纸质版,请于 2018-06-15,上课时带来
 - 电子版:请于 2018-06-15 之前,按班级分别发给:丘兆丰、孙洪亮、庞 景龙三位同学
- 3 分析与设计部分的具体内容(供参考)

1	Requirements Overview							
	Produce the following:							
	□ Problem statement							
	☐ Use-Case Model main diagram							
	□ Supplementary specification							
	□ Glossary							
	Review the given Requirements artifacts, noting any questions, issues and inconsistencies							
2	Architectural Analysis							
	Given the following:							
	☐ Some results from the Requirements discipline:							
	☐ Problem statement							
	☐ Use-Case Model main diagram							

	☐ Some architectural decisions:							
	☐ (textually) The upper-level architectural layers and their dependencies							
	Identify the following:							
	☐ The key abstractions							
	Produce the following:							
	☐ Class diagram containing the key abstractions							
	☐ Class diagram containing the upper-level architectural layers and their							
	dependencies							
	Compare your key abstractions with the rest of the class							
	☐ Have the key concepts been identified?							
	☐ Does the name of each class reflect the role it plays?							
	Compare your class diagram showing the upper-level layers							
	☐ Do the package relationships support the Payroll System architecture?							
3	Use-Case Analysis							
	Given the following:							
	☐ Use-Case Model, especially the use-case flows of events							
	☐ Key abstractions/classes							
	☐ The Supplementary Specification							
	☐ The possible analysis mechanisms							
	Identify the following for a particular use case:							
	☐ The analysis classes, along with their:							
	☐ Brief descriptions							
	□ Stereotypes							
	□ Responsibilities							
	$\hfill\Box$ The collaborations needed to implement the use case							
	☐ Analysis class attributes and relationships							
	☐ Analysis class analysis mechanisms							
	Produce the following for a particular use case:							
	☐ Use-Case Realization Interaction diagram for at least one of the usecase flows of events							

	□ VOPC class diagram, containing the analysis classes, their stereotypes, responsibilities, attributes,						
	and relationships						
	☐ Analysis class to analysis mechanism map						
4	Design Elements(软件工程课程,不必写)						
	Given the following:						
	☐ The analysis classes and their relationships						
	☐ The layers, packages, and their dependencies						
	Identify the following:						
	☐ Design classes, subsystems, their interfaces and their relationships with other design elements						
	☐ Mapping from the analysis classes to the design elements						
	☐ The location of the design elements (e.g. subsystems and their design classes) in the architecture						
	(i.e., the package/layer that contains the						
	design element)						
	Produce the following:						
	☐ For each subsystem, an interface realization class diagram						
	☐ Table mapping analysis classes to design elements						
	☐ Table listing design elements and their "owning" package						
	Compare your results with the rest of the class						
	☐ What subsystem did you find? Is it partitioned logically? Does it realize an interface (s)?						
	☐ What analysis classes does it map to?						
	☐ Do the package dependencies correspond to the relationships between the contained classes ?						
	☐ Are the classes grouped logically?						
	☐ Are there classes or collaborations of classes within a package that can be separated into an						
	independent package?						
5	Describe the Run-time Architecture (从这里开始,部分内容,系统分析与设计课程需完成,软件						
	工程理论与实践课程不必写)						
	Given the following:						
	☐ Design elements (classes and subsystems) and their relationships						

	□ Processes							
	☐ What classes and subsystems are mapped to what processes?							
	Identify the following:							
	□ Process relationships							
	Produce the following:							
	☐ Class diagram showing the:							
	□ Processes							
	☐ Mapping of classes and subsystems to processes							
	□ Process relationships							
	☐ Design element relationships to support process relationships							
	Compare your Process View with those created by the rest of the class							
	☐ Are processes and threads stereotyped properly?							
	☐ If a thread is defined, is there a composition relationship from the process to the thread?							
	☐ Is there a composition relationship from the process elements to the design elements?							
	☐ Do the necessary relationships exist between the process elements in order to support the							
	relationships to the design elements mapped to those process elements?							
6	Describe Distribution(软件工程课程,不必写)							
	Given the following textual information:							
	☐ Network configuration (e.g., nodes and heir connections)							
	☐ What processes run on what nodes?							
	Produce the following:							
	☐ Deployment diagram depicting:							
	□ Connections							
	♦ What processes run on what nodes							
	Compare your Deployment Model with those developed by the rest of the class.							
	☐ Have nodes and node connections been modeled?							
	☐ Have processes been identified and assigned to nodes?							
	☐ Do the allocations make sense?							

	☐ Are the processes listed beneath the nodes in the Deployment diagram?							
7	Use-Case Design(软件工程课程,不必写)							
	Given the following:							
	☐ Analysis use-case realizations (VOPCs and interaction diagrams)							
	☐ The analysis-class-to-design element map							
	Identify the following:							
	☐ The design elements that replaced the analysis classes in the analysis usecase realizations							
	☐ The design element collaborations needed to implement the usecase							
	☐ The relationships between the design elements needed to support the							
	collaborations							
	Produce the following:							
	☐ Design use-case realization							
	☐ Interaction diagram(s) per use case flow of events that describes the							
	design element collaborations required to implement the usecase							
	☐ Class diagram (VOPC) that includes the design elements that must collaborate to perform the use							
	case, and their relationships							
	Compare your use-case realizations							
	☐ Have all the main and subflows for this iteration been handled?							
	☐ Has all behavior been distributed among the participating design elements?							
	Continue to the prior page							
	☐ Has behavior been distributed to the right design elements?							
	☐ Are there any messages coming from the interfaces?							
8	Class Design (1) (软件工程课程,不必写)							
	Given the following:							
	☐ The architectural layers, their packages, and their dependencies							
	☐ Design classes for a particular use case							
	Identify the following:							
	☐ Attributes, operations, and their complete attribute signatures							
	☐ Attribute and operation scope and visibility							

	☐ Any additional relationships and/or classes to support the defined attributes and attribute signatures							
	☐ Class(es) with significant state-controlled behavior							
	$\ \square$ The important states and transitions for the identified class							
	Produce the following:							
	☐ Design Use-Case Realization							
	☐ Statechart for one of the classes that exhibits state-controlled behavior							
	☐ Class diagram (VOPC) that includes all operations, operation							
	signatures, attributes, and attribute signatures							
	Compare your results							
	\Box Is the name of each operation descriptive and understandable? Does the name of the operation							
	indicate its outcome?							
	☐ Does each attribute represent a single conceptual thing?							
	☐ Is the name of each attribute descriptive and does it correctly convey the information it stores?							
	☐ Is the state machine understandable?							
	☐ Do state names and transitions reflect the context of the domain of the system? Does the state							
	machine contain any superfluous states or transitions?							
9	Class Design (2) (软件工程课程,不必写)							
	Given the following:							
	☐ The Use-Case Realization for a use case and/or the detailed design of a subsystem							
	☐ The design of all participating design elements							
	Identify the following:							
	☐ The required navigability for each relationship							
	☐ Any additional classes to support the relationship design							
	☐ Any associations refined into dependencies							
	☐ Any associations refined into aggregations or compositions							
	☐ Any refinements to multiplicity							
	☐ Any refinements to existing generalizations							
	☐ Any new applications of generalization considered							
	☐ Make sure any metamorphosis is							

	Produce the following:
	☐ An updated VOPC, including the relationship refinements (generalization, dependency, association)
	Continue
	Compare your results
	☐ Do your dependencies represent context independent relationships?
	☐ Are the multiplicities on the relationships correct?
	☐ Does the inheritance structure capture common design abstractions, and not implementation
	considerations?
	☐ Is the obvious commonality reflected in the inheritance hierarchy?
10	Testing Case Design (都要写)
	For a particular Usecase, by using Equivalence Partitioning and Boundary Value Analysis, design the
	Testing Cases

4 实验成绩占总成绩 40%。以最终的成绩这次为准。并且,必须提交纸质版本的"XXX系统.doc"

5 评分标准。

软件工程	UML (图	CODE (与	类的设计	类的机制	文	测试	其它(工作	项目
理论、技术	制品恰如	设计匹配)	正确合理	(设计合	档	案例	量、技术先	管理
运用正确、	其分、详略			理并实现)	规	设计	进性、综合	和文
合理	得当、结构				范		质量、作业	档质
	清晰)						的创造性)	量
15%	15%	10%	10%	10%	10%	10%	10%	10%

6 欢迎同学的任何疑问、建议,请 EMAIL(issyy@mail.sysu.edu.cn)。