1.39 Theorem. Let $a, b \in \mathbb{Z}$. If there exist $x, y \in \mathbb{Z}$ with ax + by = 1, then (a, b) = 1.

Proof. Let $a, b \in \mathbb{Z}$ be given. Let $x, y \in \mathbb{Z}$ such that ax + by = 1. We want to show (a, b) = 1. Let d = (a, b). It follows that $d \mid a$ and $d \mid b$. Observing ax + by = 1, since $d \mid a$, d divides any multiple of a. Similarly, since $d \mid b$, d divides any multiple of b. Both terms are divisible by d, therefore, the sum is divisible my d. Thus, $d \mid 1$.

Clearly, the only two numbers that divide 1, are -1 and 1. Since $d \ge 1$, we could assume d = 1. But suppose not. That is, given d|1, suppose d > 1. By definition, 1 = dt for $t \in \mathbb{Z}$. Since d > 1, it follows that $1 \le t < dt$. Thus, 1 < dt. This contradicts the definition of d|1. Thus, d = 1 = (a, b).