	R 455 Final e:	December 16, 2010 					
BOTH MUS BUBE	INSTRUCTIONS: BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE ON THE BUBBLE SHEET. YOU MUST BUBBLE-IN YOUR NAME & YOUR STUDENT IDENTIFICATION NUMBER.						
	EACH QUESTION HAS ONLY ONE CORRECT CHOICE (decimals may need rounding).						
	USE "NUMBER 2" PENCIL ONLY - DO NOT USE INK - FILL BUBBLE COMPLETELY.						
	IOTES OR REMARKS ARE BLE SHEET.	ACCE	PTED - DO NOT TEAR OR FOLD THE				
BUBE	A GRADE OF ZERO WILL BE ASSIGNED FOR THE ENTIRE EXAM IF THE BUBBLE SHEET IS NOT FILLED OUT ACCORDING TO THE ABOVE INSTRUCTIONS.						
QUE	STIONS are worth 1 point e	each.					
A dat	nown from the scientific bad	nse vari okgrour	wing iable Y and predictor variables X_1 and X_2 . Indeed of the experiment that the appropriate where ξ are independent $N(0,\sigma^2)$.				
A) Bo C) Or	e appropriate method for fittox-Cox transformation rdinary Least Squares one of the above	ting this B) Th	s model is is model cannot be fitted				
2. Th	e appropriate SAS code is proc reg data=blah; model Y=X1 X2; run;	B)	proc transreg data=blah; W; model boxcox(Y)=identity(X1 X2); run;				
C)	data blah; set blah; W=X1*X1+X2*X2; run; proc reg data=blah; weight W; model Y=X1 X2;	D)	data blah; set blah; W=1/(X1*X1+X2*X2); run; proc reg data=blah; weight W; model Y=X1 X2;				

run;

run;

None of the above

E)

- 3. Which of the following functions is linear in unknown parameters (symbols β)? $A)(\beta_1x_1 + \beta_2x_2)^2$ $B)\beta_0 + \sin(\beta_1x)$ $C)e^{\beta_0 + \beta_1x_1}$ $D)\beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_1x_2$
- 4. Which of the following functions cannot be made into a function linear in unknown parameters (symbols β) using a Box-Cox Transformation?

 $A(\beta_1x_1 + \beta_2x_2)^2$ $B(\beta_0 + \sin(\beta_1x))$ $C(e^{\beta_0 + \beta_1x_1})$ $D(\beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_1x_2)$

E) None of the above

E) None of the above

Use the following to answer questions 5 - 9:

A researcher wants to evaluate a new methodology in determining a chemical concentration of a particular heavy metal in soil. To investigate the relationship between the true and measured concentration, the researcher makes 32 samples containing a known (preselected) amount of the heavy metal. These samples are then analyzed using a technician who is unaware of the true concentration of the heavy metal.

- 5. The target population of items in this study is
- B) all soil samples C) both B, D A) measured concentration
- E) none of the above D) soil samples prepared in the lab
- 6. The study population of items in this study is
- A) measured concentration B) all soil samples C) both B, D
- D) soil samples prepared in the lab E) none of the above
- 7. The response variable in this study is
- B) measured concentration A) true concentration C) not enough info
- D) soil sample E) None of the above
- 8. The predictor variable in this study is
- A) true concentration B) measured concentration C) not enough info
- D) soil sample E) None of the above
- 9. The equation of the least-squares regression line is

$$\hat{\mathbf{v}} = -0.1046 + 0.9877 \cdot x$$

Which of the following descriptions of the value of the slope is the correct description?

- A) The measured concentration is expected to decrease by 0.1046 when the true concentration increases by 1.
- B) The measured concentration is expected to increase by 0.9877 when the true concentration increases by 1.
- C) We cannot interpret the slope because we cannot have a negative concentration.
- D) None of the above

Use the following to answer questions 10 - 18:

Below is a small data set, and we want to fit the linear regression model Y= $\beta_0+\beta_1$ X₁+ β_2 X₂+ ξ . In matrix notation this model can be written as Y=**X** β + ξ .

Υ	19	13	10	3	6
X1	1	-1	0	-1	1
X2	-2	-1	0	1	2

10. The matrix X is

$$A) \ \mathbf{X} = \begin{pmatrix} 1 & -2 \\ -1 & -1 \\ 0 & 0 \\ -1 & 1 \\ 1 & 2 \end{pmatrix} \quad B) \ \mathbf{X} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 & -1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \quad C) \ \mathbf{X} = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \quad D) \ \mathbf{X} = \begin{pmatrix} 19 & 1 & -2 \\ 13 & -1 & -1 \\ 10 & 0 & 0 \\ 3 & -1 & 1 \\ 6 & 1 & 2 \end{pmatrix}$$

- E) None of the above
- 11. Find the vector b, the LS estimator of β .

$$A) \ b = \begin{pmatrix} 2.25 \\ -3.6 \end{pmatrix} \quad B) \ b = \begin{pmatrix} 255 \\ 36 \\ -360 \end{pmatrix} \quad C) \ b = \begin{pmatrix} 10.2 \\ 2.25 \\ -3.6 \end{pmatrix} \quad D) \ b = \begin{pmatrix} 51 \\ 9 \\ -36 \end{pmatrix}$$

- E) None of the above
- 12. Compute the SSE
- A) 50
- B) 150
- C) 5
- D) 0 E) None of the above is within ±1
- 13. The number of degrees of freedom in MSE is
- A) 2
- B) 0
- C) 4
- D) 3 E) None of the above
- 14. Compute the SSR (sometimes also called SSM)
- A) 50
- B) 150
- C) 5
- D) 0 E) None of the above is within ±1
- 15. What is the number of degrees of freedom in MSR (sometimes also called MSM)
- A) 2
- B) 0
- C) 4
- D) 3 E) None of the above
- 16. Which of the following can be used for testing H_0 : $\beta_1=0$, $\beta_2=0$?
- A) MSR/MSE
- B) MSTO/MSE
- C) SSM/SSTO
- D) SSR/SSE

- E) None of the above
- 17. Which of the following defines R²?
- A) MSR/MSE
- B) MSTO/MSE
- C) SSR/SSTO
- D) SSR/SSE

- E) None of the above
- 18. Which of the following defines adjusted R²?
- A) MSR/MSE
- B) MSTO/MSE
- C) SSR/SSTO
- D) SSR/SSE

E) None of the above

Use the following to answer questions 19 – 26:

Crime-related and demographic statistics for 47 US states in 1960 were collected from the FBI's Uniform Crime Report and other government agencies to determine how the variable crime rate depends on the other variables measured in the study. Following is a description of the variables:

```
R: Crime rate: # of offenses reported to police per million population
Age: The number of males of age 14-24 per 1000 population
S: Indicator variable for Southern states (0 = No, 1 = Yes)
Ed: Mean # of years of schooling x 10 for persons of age 25 or older
Ex0: 1960 per capita expenditure on police by state and local government
Ex1: 1959 per capita expenditure on police by state and local government
LF: Labor force participation rate per 1000 civilian urban males age 14-24
M: The number of males per 1000 females
N: State population size in hundred thousands
NW: The number of non-whites per 1000 population
U1: Unemployment rate of urban males per 1000 of age 14-24
U2: Unemployment rate of urban males per 1000 of age 35-39
W: Median value of transferable goods and assets or family income
X: The number of families per 1000 earning below 1/2 the median income
```

Here is the SAS output obtained by fitting a linear regression model with R as response variable and all the other variables as explanatory variables.

Parameter Estimates

Variable DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept 1	-691.83759	155.88792	-4.44	<.0001	0
Age 1	1.03981	0.42271	2.46	0.0193	2.69802
S 1	-8.30831	14.91159	-0.56	0.5812	4.87675
Ed 1	1.80160	0.64965	2.77	0.0091	5.04944
ExO 1	1.60782	1.05867	1.52	0.1384	94.63312
Ex1 1	-0.66726	1.14877	-0.58	0.5653	98.63723
LF 1	-0.04103	0.15348	-0.27	0.7909	3.67756
M 1	0.16479	0.20993	0.78	0.4381	3.65844
N 1	-0.04128	0.12952	-0.32	0.7520	2.32433
NW 1	0.00717	0.06387	0.11	0.9112	4.12327
U1 1	-0.60168	0.43715	-1.38	0.1780	5.93826
U2 1	1.79226	0.85611	2.09	0.0441	4.99762
W 1	0.13736	0.10583	1.30	0.2033	9.96896
X 1	0.79293	0.23509	3.37	0.0019	8.40945

- 19. Which variables have a multicollinearity problem?
- A) Intercept
- B) Ex0
- C) Ex1
- D) Both B and C

E) None of the above

20. When running a backward selection, which of the variables would get dropped from the model first?

A) X B) Ex1

1.5850

0.2216

C) NW

D) Not enough info E) None of the above

Use these additional SAS outputs to answer questions 21 – 26:

After model selection we include only five variables in our model: Age, Ed, Ex0, U2 and X. Below is a SAS output from fitting this model.

Analysis of Variance

				AI	larybib Oi		arrance				
					Sum			Mean		_	
So	urce			DF	Squar	ces		Square	F Valu	ie P	r > F
Mo	del			?	???	???		10041	22.13	<	.0001
Er	ror			??	???	???		????			
Co	rrected	l Total		46	688	309					
				Pa	rameter E	sti	mates				
		Paramete	r St	andard							
Vari	iable	Estimate		Error	t Value	F	r > t	Type	I SS	Type	II SS
		25 o i ma o o		21101	0 .0100	•	2 . 101	1) P		1310	11 00
Inte	ercept-	524.37433	95.	11557	-5.51		<.0001	.9	85014		13791
Age	or oop o	1.01982		35320	2.89		0.0062		83962	3782	81167
Ed		2.03077		47419	4.28		0.0001		67450		11780
								1209.			
Ex0		1.23312		14163	8.71		<.0001	0.470	31739		34394
U2		0.91361		43409	2.10		0.0415		86286		88258
X		0.63493	0.	14685	4.32		<.0001	8482.	73176	8482.	73176
		Hat Diag	Cov								
0bs	RStudent	H	Ratio	DFFITS							
1	-0.4906	0.0990	1.2416	-0.1626							
2	1.4616 0.6046	0.0782 0.1093	0.9207 1.2328	0.4257 0.2118							
4	0.5994	0.2075	1.3869	0.3068							
5	-0.2449	0.1367	1.3313	-0.0974							
6	-0.3181	0.1777	1.3891	-0.1479							
7	1.1278	0.0579	1.0202	0.2797							
8 9	1.0086 0.4704	0.1031 0.0974	1.1121	0.3419 0.1545							
10	-0.3639	0.0865	1.2446	-0.1120							
11	3.5227	0.1000	0.2547	1.1741							
12	1.1253	0.0506	1.0131	0.2598							
13	-1.0518	0.1363	1.1400	-0.4178							
14	-0.3058	0.0974	1.2670	-0.1005							
15	-0.2321	0.1139	1.2982	-0.0832							
16 17	-0.2079 -0.4763	0.1228 0.1022	1.3135	-0.0778 -0.1607							
18	-0.9402	0.0929	1.1214	-0.3010							
19	-2.2305	0.0852	0.6274	-0.6807							
20	0.1226	0.2143	1.4727	0.0640							
21	0.2674	0.0744	1.2395	0.0758							
22	-1.8952	0.1148	0.7821	-0.6825							
23	1.8350	0.1147	0.8066	0.6606							
24 25	0.2800 -0.6461	0.1052 0.1485	1.2809 1.2798	0.0960 -0.2698		37	-0.4326	0.2457	1.4950	-0.2469	
26	0.6868	0.2100	1.3683	0.3541		38	0.1841	0.1198	1.3108	0.0679	
27	0.3190	0.2107	1.4471	0.1649		39	0.4727	0.0800	1.2191	0.1394	
28	0.0152	0.1082	1.3004	0.0053		40	0.2967	0.0594	1.2168	0.0746	
29	-2.6667	0.2678	0.5934	-1.6129		41	0.7949	0.2013	1.3217	0.3991	
30	-0.0913	0.1569	1.3739	-0.0394		42	0.1302	0.1231	1.3191	0.0488	
31	-0.0647	0.1138	1.3078	-0.0232		43	-0.9433	0.1122	1.1447	-0.3353	
32	-0.1360	0.0767	1.2525	-0.0392		44	-0.5318	0.0981	1.2326	-0.1753	
33 34	1.1263 -0.4045	0.0823 0.0601	1.0478	0.3373 -0.1023		45	-0.7245	0.2062	1.3510	-0.3692	
35	-0.4308	0.1564	1.3370	-0.1025		46	-1.3750	0.1543	1.0394	-0.5873	

47 -0.9000

-0.1855 0.8456

1.0338

0.1089

1.1539

-0.3146

	hat is t 13	the estimate of B) 100.2	f σ? C) 453.75	D) 21.	3	E) None of the above	
		extra sum of s B) 2173.9			e, Ed, E 309		
		extra sum of s B) 2173.9				Ex0, X) E) None of the above	
respoi	nse va	riable?	·			ed to detect outliers in the E) None of the above	!
25. W	hich st	,	•	•		ed to detect outliers in the	·
			C) Cov Ratio	D) DF	FITS	E) None of the above	
A) Yes B) Yes C) No D) No	s, beca s, beca , there becau	e any influentia nuse observati nuse observati is no observa nse there are n ne above	on 11 has RS ons 11 and 29 tion with Hat I	Student 9 have Diag>0	: >3. DFFIT .5	⁻ S >1	
27. As responding you to	ssume nse va believ n estim proc t	riable Y and p	ting a simple I redictor X in a formation of Y Box-Cox tran dog;	linear re a data s ′ might	egressi et dog. be nee ition? proc re	on with non-negative . Residual analysis leads ded. What SAS code give eg data=dog; election=boxcox;	s
27. As responding you to you an A)	ssume nse va believe n estim proc t boxco run; proc t boxco run;	that we are fith riable Y and poor that a transforate of λ in the ransreg data=	ting a simple I redictor X in a formation of Y Box-Cox tran dog; Y);	linear re a data s ' might nsforma	egressi et dog. be nee ition? proc ro Y=X/s run; proc tr	Residual analysis leads ded. What SAS code give eg data=dog;	S
27. As responding you to you are A) C) E) Note 28. If the A) Y=	ssume nse van believen estime procest boxed run; procest boxed run; ne of the Box $(\beta_0+\beta_1)$	that we are fitteriable Y and page that a transfer attention of λ in the ransreg data= ox(X)=identity(ransreg data= ox(X)=Y; he above	ting a simple I redictor X in a formation of Y Box-Cox trandog; Y); dog; ure selected λ B) $\sqrt{Y} = \beta_0 + \beta_2$	linear re a data s ' might nsforma B) D)	egressi et dog. be nee ition? proc re Y=X/s run; proc tr boxco run;	Residual analysis leads ded. What SAS code give eg data=dog; election=boxcox;	S
27. As responding you to you and A) C) E) Note 28. If the A) Y= D) log 29. If the A) Y=	ssume nse van believen estimproc to boxco run; proc to boxco run; ne of the Box $(\beta_0+\beta_1)$ $Y=\beta_0$ the Box $(\beta_0+\beta_1)$	that we are fitteriable Y and power that a transformate of λ in the ransreg data= $0x(X)$ =identity(formalise) The above $0x(X)$ = $0x$	ting a simple I redictor X in a formation of Y Box-Cox trandog; Y); $dog;$ dog $dog;$ $dog;$ dog	linear readata so might insformations B) =0, what in X1+ \xi_1 = 1/2, we will also will be wi	egressi et dog. be nee stion? proc re Y=X/s run; proc tr boxco run; at mode //e	Residual analysis leads ded. What SAS code give eg data=dog; election=boxcox; ransreg data=dog; x(Y)=identity(X); el is it suggesting?	S

Use the following to answer questions 30 - 33:

A researcher studies a relationship between latitude/longitude of a city and the January minimum temperature. The data set contains the normal average January minimum temperature (in Fahrenheit) and longitude and latitude of 56 cities located in the continental USA (lower 48 states). Following is the description of the variables:

Temp: Average January minimum temperature in degrees F. from 1931-1960

Lat: Latitude in degrees north of the equator

Long: Longitude in degrees west of the prime meridian

We first fit a linear regression model without any interactions. A SAS output follows

Analysis of Variance

Source	DF	Sum o Square	_	Mean quare	F Value	Pr > F
Model	2	7297.3348	8 3648.	66744	75.88	<.0001
Error	53	2548.6472	7 48.	08768		
Corrected Total	55	9845.9821	4			
Root MSE Dependent Mean Coeff Var		6.93453 26.51786 26.15041	R-Square Adj R-Sq	0.741 0.731		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	110.83077	6.90937	16.04	<.0001
lat	1	-2.16355	0.17570	-12.31	<.0001
long	1	0.13396	0.06314	2.12	0.0386

- 30. Raleigh has (Lat, Long)=(35.8,78.6) and Los Angeles has (Lat, Long) = (34.1,118.3). Predict the average difference (Raleigh-LA) in Temp between these two cities.
- A) 86.1
- B) -9.0
- C) 43.9
- D) -1.6
- E) None of the above
- 31. Honolulu has (Lat, Long)=(21.3,157.8). Is it appropriate to use the above model to predict Honolulu's average January minimum temperature? Why?
- A) Yes, the prediction is 85.9
- B) No. The longitude is only borderline significant.
- C) No. We should not extrapolate this far outside of the predictor values in the data set.
- D) Not enough info.
- E) None of the above.

We suspect that the relationship between Temp and Long is nonlinear and polynomial regression model might be needed. To determine the degree of the polynomial a model selection procedure is used and the following is the output. (I2 =long*long, I3=long*long*long, etc.)

J	R-Square	C(p)	MSE	Variables in Model
1	0.7192	213.4412	51.20572	lat
1	0.0375	857.7697	175.50181	15
1			176.78757	13
1	0.0155	878.5639	179.51317	14
1	0.0010	892.2157	182.14671	12
2	0.8920	52.0766	20.06292	lat 14
2	0.8809	62.5808	22.12751	lat 15
2	0.8654	77.2083	25.00250	lat 12
2	0.8415	99.8352	29.44977	lat 13
2	0.7411	194.6616	48.08768	lat long
3	0.9457	3.2876	10.27432	lat long 13
3	0.9289	19.1562	13.45323	lat long 15
3	0.9193	28.2423	15.27343	lat long 14
3	0.9016	45.0485	18.64018	lat 13 15
3	0.8977	48.7190	19.37548	lat 13 14
4	0.9467	4.3319	10.28057	lat long 13 15
4	0.9461	4.9278	10.40229	lat long 12 13
4	0.9458	5.2566	10.46944	lat long 13 14
4	0.9310	19.1810	13.31358	lat long 12 15
4	0.9297	20.4269	13.56806	lat long 14 15
5	0.9477	5.4129	10.29472	lat long 13 14 15
5	0.9473	5.8336	10.38236	lat long 12 13 15
5	0.9464	6.6341	10.54915	lat long 12 13 14
5	0.9326	19.6755	13.26619	lat long 12 14 15
5	0.9066	44.2595	18.38804	lat 12 13 14 15
6	0.9482	7.0000	10.41703	lat long 12 13 14 15

^{32.} Based strictly on Mallow's C(p), which model would you recommend using?

A) temp=lat long I3

B) temp=lat

C) temp=lat long I2 I3 I4 I5

D) temp=lat long

E) None of the above

^{33.} Is the all-subsets procedure better than the step-wise procedure for this problem?

A) No. Stepwise procedure is always better.

B) Yes. If feasible, the all-subset procedure is always better.

C) It does not matter which model selection procedure we use.

- 34. A researcher is studying effects of predictors U and V on a response variable Z. It is expected that large values of U will reinforce the effect of V on the response variable Z. What model statement is appropriate for this situation? (V2=V*V, UV=U*V, UZ=U*Z, etc.)
- A) model V=U Z UZ;
- B) model Z=U V;
- C) model U=V V2;

- D) model Z=U V UV;
- E) linear regression is not able to handle this situation
- 35. What should you do first when you receive a new data set for analysis?
- A) Investigate residuals for outliers.
- B) Plot the data and investigate all the variables.
- C) Fit the largest possible model available
- D) Run a stepwise selection procedure.
- E) Investigate DFFITS for influential observations.
- 36. What do we hope to capture within a confidence interval?
- A) The unknown parameter value.
- B) The sample size.
- C) The unknown confidence level.
- D) The parameter estimate.

- E) None of the above.
- 37. What can you conclude from the following deleted residual plot?

- A) The model does not fit
- C) The model seems to fit well
- E) None of the above
- B) There are influential observations
- D) The variance of the residuals is decreasing

38. What can you conclude from the following deleted residual plot?

- A) The model does not fit
- C) The model seems to fit well
- E) None of the above
- B) There are influential observations
- D) The variance of the residuals is decreasing
- 39. What can you conclude from the following deleted residual plot?

- A) The model does not fit
- C) The model seems to fit well
- E) None of the above
- B) There are influential observations
- D) The variance of the residuals is decreasing

40. What can you conclude from the following QQ plot?

- A) There is nothing we can learn here
- B) QQ plot should never be examined, instead examine the residual plot
- C) The assumption that residuals are normal appears to be violated
- D) The assumption that residuals are normal appears to be valid
- E) None of the above

41. What can you conclude from the following deleted QQ plot?

- A) There is nothing we can learn here
- B) QQ plot should never be examined, instead examine the residual plot
- C) The assumption that residuals are normal appears to be violated
- D) The assumption that residuals are normal appears to be valid
- E) None of the above