Electrical circuits

Kinzel	Python
Solve[eq1, {vo, vr, ir, ic, il}]	<pre>def Vo(w,R,L,C):</pre>
	return -1j*w*L/(-1j*w*L - R +
	R*C*L*w**2)
phase(Vo)	<pre>func = Vo(w,R,L,C)</pre>
	<pre>def phase(func):</pre>
	return
	<pre>np.arctan(func.imag/func.real)</pre>
$ V_i ^2$	def P0(Vi,R):
$P_0 = \frac{ V_i ^2}{2R}$	return abs(Vi)**2/(2*R)
where V_i is constant	
$P(\omega) = \frac{ I_R(\omega) ^2 R}{2}$	<pre>def Ir(w,R,L,C): return (1j*w*C + 1/(1j*w*L)) * func</pre>
	<pre>def P(w,R,L,C): return abs(Ir(w,R,L,C))**2*R/2</pre>