

Claudio Arbib Università dell'Aquila

Ricerca Operativa

Problemi di cammino ottimo

Sommario

- Il problema del cammino più breve
- Il problema del cammino più sicuro
- Una formulazione come PL 0-1
 - Proprietà della formulazione
 - Risoluzione come programmazione lineare
- Applicazione del metodo primale-duale
- Confronto con il metodo di Dijkstra

• Trovandovi in *s* volete raggiungere il punto *t*. Qual è la strada più breve?

• Trovandovi in *s* volete raggiungere il punto *t*. Qual è la strada più breve?

• Associando a ogni arco uv del grafo un peso c_{uv} pari alla distanza tra i suoi estremi, si tratta di trovare un (s, t)-cammino di peso minimo

Cos'è un (s, t)-cammino?

Per ogni $X \subseteq E$, il peso di $X \grave{e} c(X) = \sum_{uv \in X} c_{uv}$ $\Im = \{X \subseteq E : X \grave{e} \text{ un } (s, t)\text{-cammino}\}$

Se la città pullula di delinquenti, è tuttavia meglio cercare di minimizzare la probabilità di incontrarli

Sia p_{uv} la probabilità di **non** incontrare delinquenti lungo il tratto uv. Se le probabilità associate ad archi diversi sono indipendenti, la probabilità di non incontrarne lungo uv **e** vw è p_{uv} : p_{vw}

Sia p_{uv} la probabilità di **non** incontrare delinquenti lungo il tratto uv. Se le probabilità associate ad archi diversi sono indipendenti, la probabilità di non incontrarne lungo uv **e** vw è $p_{uv} \cdot p_{vw}$

La probabilità di non incontrare delinquenti lungo il cammino verde è $p_{s,1} \cdot p_{1,3} \cdot p_{3,4} \cdot p_{4,5} \cdot p_{5,10} \cdot p_{10,11} \cdot p_{11,6} \cdot p_{6,8} \cdot p_{8,17} \cdot p_{17,18} \cdot p_{18,21} \cdot p_{21,t}$

Per ogni $X \subseteq E$, il peso di $X \grave{e} p(X) = \prod_{uv \in X} p_{uv}$ $\max_{X \in \mathfrak{I}} p(X)$

La probabilità di non incontrare delinquenti lungo il cammino verde è $p_{s,1} \cdot p_{1,3} \cdot p_{3,4} \cdot p_{4,5} \cdot p_{5,10} \cdot p_{10,11} \cdot p_{11,6} \cdot p_{6,8} \cdot p_{8,17} \cdot p_{17,18} \cdot p_{18,21} \cdot p_{21,t}$

Per ogni $X \subseteq E$, il peso di $X \in p(X) = \prod_{uv \in X} p_{uv}$ $\max_{X \in \mathfrak{I}} p(X)$ $\max_{X \in \mathfrak{I}} \log[p(X)]$ $= \max_{X \in \mathfrak{I}} \log[\prod_{uv \in X} p_{uv}]$ $= \max_{X \in \mathfrak{I}} \sum_{uv \in X} \log[p_{uv}]$ $= \min_{X \in \mathfrak{I}} \sum_{uv \in X} [-\log(p_{uv})]$

Ponendo $c_{uv} = -\log(p_{uv}) > 0$ ci si riconduce al problema di trovare un (s, t)-cammino X di peso c(X) minimo

Sia $x_{uv} \in \{0, 1\}$ con il seguente significato:

$$x_{uv} = 1$$
 \Rightarrow $uv \in \text{al cammino } X \text{ cercato}$

$$x_{uv} = 0$$
 \Rightarrow $uv \notin \text{al cammino } X \text{ cercato}$

Il peso di *X* si scrive dunque

$$\mathbf{cx} = \sum_{uv \in E} c_{uv} x_{uv}$$

Osserviamo ora il comportamento dell'espressione

Per v = s vi è un solo arco di P che esce dal nodo

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = -\sum_{u:su \in E} x_{su} = -1$$

Per v = t vi è un solo arco di P che entra nel nodo

$$\sum_{u:uv\in E} x_{uv} - \sum_{u:vu\in E} x_{vu} = \sum_{u:ut\in E} x_{ut} = 1$$

Per $v \neq s$, t se $v \in W$ vi sono esattamente un arco uscente e uno entrante nel nodo

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = 1 - 1 = 0$$

se $v \notin W$ nessun arco entra o esce dal nodo

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = 0 - 0 = 0$$

In definitiva, ogni $\mathbf{x} \in \{0, 1\}^{|E|}$ che sia vettore caratteristico di un (s, t)cammino dovrà verificare le condizioni

(1)
$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = -1 \text{ per } v = s$$

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = +1 \text{ per } v = t$$

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = 0 \text{ per } v \neq s, t$$

Viceversa, non è detto che tutti i gli $\mathbf{x} \in \{0, 1\}^{|E|}$ che verificano le condizioni (1) siano vettori caratteristici di (s, t)-cammini

In v la (1) è soddisfatta ma gli archi blu non formano un cammino

In definitiva, ogni $\mathbf{x} \in \{0, 1\}^{|E|}$ che sia vettore caratteristico di un (s, t)cammino dovrà verificare le condizioni

(1)
$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = -1 \text{ per } v = s$$

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = +1 \text{ per } v = t$$

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = 0 \text{ per } v \neq s, t$$

Viceversa, non è detto che tutti i gli $\mathbf{x} \in \{0, 1\}^{|E|}$ che verificano le condizioni (1) siano vettori caratteristici di (s, t)-cammini

In v la (1) è soddisfatta ma gli archi blu non formano un cammino

Per capire com'è fatto l'insieme dei vettori 0-1 che soddisfano le condizioni

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = -1 \text{ per } v = s$$

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = +1 \text{ per } v = t$$

$$\sum_{u:uv \in E} x_{uv} - \sum_{u:vu \in E} x_{vu} = 0 \text{ per } v \neq s, t$$

osserviamo che in forma matriciale queste si riscrivono

$$\mathbf{G}\mathbf{x} = \mathbf{e}_t - \mathbf{e}_s$$

cioè

$$\operatorname{div}(\mathbf{x}) = \mathbf{e}_s - \mathbf{e}_t$$

x è dunque la distribuzione di un *flusso unitario* con divergenza 1 in s,
-1 in t, e 0 altrove

Poiché però una *circolazione unitaria* **x**' ha divergenza nulla, **x** + **x**' è ancora soluzione

del problema

In conclusione, le soluzioni del problema

(P) min
$$\mathbf{c}\mathbf{x}$$

 $\mathbf{G}\mathbf{x} = \mathbf{e}_t - \mathbf{e}_s$
 $\mathbf{0} \leq \mathbf{x} \leq \mathbf{1}$, intero

sono distribuzioni di flusso unitario con sorgente in *s* e pozzo in *t*

Come possiamo garantire che corrispondano a degli (s, t)-cammini?

- 1) Richiedendo che *G* sia privo di circuiti: in questo caso *G* non ammette circolazioni, oppure
- 2) Richiedendo che c_{uv} sia ≥ 0 per ogni $uv \in E$: in questo caso se $\mathbf{x} + \mathbf{x}$ ' è ammissibile e ottima con \mathbf{x} ' circolazione, allora \mathbf{x} è ammissibile e $\mathbf{c}\mathbf{x} \leq \mathbf{c}(\mathbf{x} + \mathbf{x}')$ dunque \mathbf{x} è ammissibile e ottima

Se dunque si ha $c_{uv} \ge 0$ per ogni $uv \in E$, osservando che la matrice G è <u>totalmente unimodulare</u> e che il vettore $\mathbf{e}_t - \mathbf{e}_s$ è intero, si conclude che i vertici del rilassamento lineare di (P) sono tutti a componenti intere, dunque una soluzione ottima di base di

$$(P_R)$$
 min \mathbf{cx}

$$\mathbf{Gx} = \mathbf{e}_t - \mathbf{e}_s$$

$$\mathbf{0} \leq \mathbf{x} \leq \mathbf{1}$$

corrisponde a un (s, t)-cammino di peso minimo

E se $\mathbf{c} \ngeq \mathbf{0}$ e G contiene circuiti?

Costo della soluzione:
$$\mathbf{cx} = 9 \cdot 1 + 5 \cdot 1 + 12 \cdot 1 + 14 \cdot 1 + 12 \cdot \frac{1}{4} + 8 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} + 32 \cdot \frac{3}{4} + 5 \cdot 1 = 75$$

Eliminando la circolazione sugli archi 23, 34, 42

Costo della soluzione:
$$\mathbf{cx} = 9.1 + 5.0 + 12.0 + 14.0 + 12.1/4 + 8.1/4 + 4.1/4 + 32.3/4 + 5.1 = 44$$

Eliminando la circolazione sugli archi 23, 34, 42

Un flusso unitario sul cammino 17 costa 32, mentre sul cammino 13, 35, 57 costa 12 + 8 + 4 = 24.

Spostando il flusso del primo cammino (3/4) sul secondo

Costo della soluzione:
$$\mathbf{cx} = 9.1 + 5.0 + 12.0 + 14.0 + 12.1 + 8.1 + 4.1 + 32.0 + 5.1 = 38$$

Eliminando la circolazione sugli archi 23, 34, 42

Un flusso unitario sul cammino 17 costa 32, mentre sul cammino 13, 35, 57 costa 12 + 8 + 4 = 24.

Spostando il flusso del primo cammino (¾) sul secondo

Esercizio 1 Consideriamo il rilassamento

$$\mathbf{G}\mathbf{x} = \mathbf{e}_t - \mathbf{e}_s$$

$$\mathbf{x} \ge \mathbf{0}$$

nel quale si è rimosso il vincolo $\mathbf{x} \leq \mathbf{1}$. Supponendo $\mathbf{c} \geq \mathbf{0}$, esistono soluzioni ammissibili che assegnano flusso > 1 a qualche arco? Può accadere che nessuna soluzione ottima rappresenti un (s, t)-cammino?

Risoluzione come PL

Per risolvere il problema dell'(*s*, *t*)-cammino minimo, oltre al noto

metodo di Dijkstra

possiamo dunque ricorrere a un qualsiasi metodo di programmazione lineare, ad esempio

- al metodo del simplesso
- al metodo primale-duale

Vediamo cosa comporta l'applicazione del secondo metodo

Siano dati G = (V, E) e $s, t \in V$ con |V| = n, |E| = m

Adottiamo per il problema primale la formulazione standard

(P)
$$\min \mathbf{cx}$$

$$\mathbf{Gx} = \mathbf{e}_t - \mathbf{e}_s$$

$$\mathbf{x} \geq \mathbf{0} \qquad \text{(vedi Esercizio 1)}$$

Poiché la matrice G ha rango n-1 si può rimuovere una riga, ad esempio quella corrispondente al nodo s. Detta G' la matrice risultante, P si riscrive

(P)
$$\min \quad \mathbf{cx} \\ \mathbf{G'x} = \mathbf{e}_t \\ \mathbf{x} \ge \mathbf{0}$$

e il duale è

(D)
$$\max \quad \mathbf{y} \mathbf{e}_t = y_t \\ \mathbf{y} \mathbf{G} < \mathbf{c}$$

min

min
$$9x_{s1} + 13x_{s2} + 2x_{12} + 5x_{23} + 14x_{2t} + x_{31} + 10x_{3t}$$

$$x_{s1} - x_{12} + x_{31} = 0$$

$$x_{s2} + x_{12} - x_{23} - x_{2t} = 0$$

$$x_{23} - x_{31} - x_{3t} = 0$$

$$x_{2t} + x_{3t} = 1$$

$$x_{uv} \ge 0 \ \forall uv \in E$$

Poiché la matrice G ha rango n-1 si può rimuovere una riga, ad esempio quella corrispondente al nodo s. Detta G' la matrice risultante, P si riscrive

(P)
$$\min \frac{\mathbf{c}\mathbf{x}}{\mathbf{G}'\mathbf{x} = \mathbf{e}_t}$$

$$\mathbf{x} \geq \mathbf{0}$$
e il duale è

(D)
$$\max_{\mathbf{y} \mathbf{c}_t} = y_t \\ \mathbf{y} \mathbf{G}' \leq \mathbf{c} \qquad \text{con } \mathbf{y} = (y_1, y_2, ..., y_t)$$

min

$$\min 9x_{s1} + 13x_{s2} + 2x_{12} + 5x_{23} + 14x_{2t} + x_{31} + 10x_{3t}
x_{s1} - x_{12} + x_{31} = 0
x_{s2} + x_{12} - x_{23} - x_{2t} = 0
x_{23} - x_{31} - x_{3t} = 0
x_{2t} + x_{3t} = 1
x_{uv} \ge 0 \quad \forall uv \in E$$

In dettaglio il duale si scrive

max

$$y_t$$

$$y_v - y_u \le c_{uv} \qquad \forall uv \in E$$

$$\forall uv \in E$$

dove si assume $y_s = 0$

In dettaglio il duale si scrive

(D)
$$\max y_t \\ y_v - y_u \le c_{uv} \forall uv \in E$$
 dove si assume $y_s = 0$

Osserviamo che siccome $c_{uv} \ge 0$, $y_u^{\circ} = 0 \ \forall u \in V$ è una soluzione ammissibile.

A partire da questa costruiamo gli insiemi $Z_0 = \{uv \in E: y_v^{\circ} - y_u^{\circ} = c_{uv}\}\$ $N_0 = \{uv \in E: y_v^{\circ} - y_u^{\circ} < c_{uv}\}\$

In dettaglio il duale si scrive

(D)
$$\max \quad y_t \\ y_v - y_u \le c_{uv} \quad \forall uv \in E$$

dove si assume $y_s = 0$

Osserviamo che siccome $c_{uv} \ge 0$, $y_u^{\circ} = 0 \ \forall u \in V$ è una soluzione ammissibile.

A partire da questa costruiamo gli insiemi $Z_0 = \{uv \in E: y_v^{\circ} - y_u^{\circ} = c_{uv}\}\$ $N_0 = \{uv \in E: y_v^{\circ} - y_u^{\circ} < c_{uv}\}\$

Scriviamo ora il duale ridotto associato a \mathbf{y}°

Se la soluzione ottima \mathbf{y}^* di DR_0 ha valore 0 (cioè se $y_t^* = 0$), allora \mathbf{y}° è ottima. Altrimenti (cioè se $y_t^* > 0$) occorre alterare \mathbf{y}° di un termine $\theta^* \mathbf{y}^*$.

Si ha
$$\theta^* = \min_{uv \in J_0} \{ \frac{c_{uv} - \mathbf{y}^{\circ} \cdot \mathbf{G}_{uv}}{\mathbf{y}^* \cdot \mathbf{G}_{uv}} \} = \min_{uv \in J_0} \{ \frac{c_{uv} - y_v^{\circ} + y_u^{\circ}}{y_v^* - y_u^*} \}$$

$$\text{dove } J_0 = \{ uv \in N_0 : y_v^* - y_u^* > 0 \}, \text{ e siccome per } uv \in N_0 \text{ si ha } y_v^* - y_u^* = 1$$

$$\theta^* = \min_{uv \in J_0} \{ c_{uv} - y_v^{\circ} + y_u^{\circ} \}$$

Se la soluzione ottima \mathbf{y}^* di DR_0 ha valore 0 (cioè se $y_t^* = 0$), allora \mathbf{y}° è ottima. Altrimenti (cioè se $y_t^* > 0$) occorre alterare \mathbf{y}° di un termine $\theta^* \mathbf{y}^*$.

Si ha
$$\theta^* = \min_{uv \in J_0} \left\{ \frac{c_{uv} - \mathbf{y}^{\circ} \cdot \mathbf{G}_{uv}}{\mathbf{y}^* \cdot \mathbf{G}_{uv}} \right\} = \min_{uv \in J_0} \left\{ \frac{c_{uv} - y_v^{\circ} + y_u^{\circ}}{y_v^* - y_u^*} \right\}$$

$$\text{dove } J_0 = \{ uv \in N_0 : y_v^* - y_u^* > 0 \}, \text{ e siccome per } uv \in N_0 \text{ si ha } y_v^* - y_u^* = 1$$

$$\theta^* = \min_{uv \in J_0} \{ c_{uv} - y_v^{\circ} + y_u^{\circ} \}$$

Se la soluzione ottima \mathbf{y}^* di DR_0 ha valore 0 (cioè se $y_t^* = 0$), allora \mathbf{y}° è ottima. Altrimenti (cioè se $y_t^* > 0$) occorre alterare \mathbf{y}° di un termine $\theta^* \mathbf{y}^*$.

Osserviamo che l'insieme J_0 contiene tutti gli archi uv di G diretti da nodi con potenziale $y_u^* = 0$ a nodi con potenziale $y_v^* = 1$.

In altri termini:

il vettore \mathbf{y}^* dei potenziali ridotti divide V in due insiemi di nodi:

S = nodi a potenziale ridotto 0

T = nodi a potenziale ridotto 1

e l'insieme J_0 è formato dagli archi del taglio (archi blu) associato a questa partizione che sono diretti da S a T.

A partire dalla nuova soluzione y^1 si costruiscono i due insiemi

e il duale ridotto

Poi si procede al calcolo di una soluzione ottima \mathbf{y}^* per DR₁.

Osserviamo che se un nodo v è raggiungibile da s attraverso un arco di Z_1 , il suo potenziale ridotto y_v^* non potrà superare 0.

Perciò una soluzione ottima di DR_k avrà valore $y_t^* = 1$ fin tanto che il nodo t non sarà raggiungibile da s usando archi di Z_k .

La nuova partizione S, T di V individua il nuovo taglio J_1 .

Di qui si procede per il calcolo di $\theta^* = \min_{uv \in J_1} \{c_{uv} - y_v^{-1} + y_u^{-1}\}$

Osserviamo che se un nodo v è raggiungibile da s attraverso un arco di Z_1 , il suo potenziale ridotto y_v^* non potrà superare 0.

Perciò una soluzione ottima di DR_k avrà valore $y_t^* = 1$ fin tanto che il nodo t non sarà raggiungibile da s usando archi di Z_k .

La nuova partizione S, T di V individua il nuovo taglio J_1 .

Di qui si procede per il calcolo di $\theta^* = \min_{uv \in J_1} \{c_{uv} - y_v^{-1} + y_u^{-1}\}$

Notiamo che il potenziale y_u^1 dei nodi di S (cioè dei nodi a potenziale ridotto 0) non viene alterato. Questo potenziale rappresenta la <u>distanza minima</u> di u da s.

$$Z_2 = \{s1, 12\}$$

 $N_2 = E - \{s1, 12\}$
 $J_2 = \{23, 2t\}$

$$DR_2) \quad \max \quad y_t$$

$$y_u \le 1 \ \forall u \in V - \{s\}$$

$$y_1 \le y_s = 0$$

$$y_2 \le y_1$$

$$y_{2} \le y_{1}$$

$$0^{*} = \min\{5 - 11 + 11, 14 - 11 + 11\} = 5$$

$$y^{3} = (0, 9, 11, 11, 11) + 5 \cdot (0, 0, 0, 1, 1)$$


```
Z_{3} = \{s1, 12, 23\} \quad DR_{3}
N_{3} = E - \{s1, 12, 23\}
J_{3} = \{2t, 3t\}
                                                                                      y_u \le 1 \ \forall u \in V - \{s\}
                                                                                      y_1 \leq y_s = 0
                                                                                        y_2 \leq y_1
                                                                                       y_3 \leq y_2
```

$$\theta^* = \min\{14 - 16 + 11, 10 - 16 + 16\} = 9$$

$$\mathbf{y}^4 = (0, 9, 11, 16, 16) + 5 \cdot (0, 0, 0, 1, 1)$$

A questo stadio della computazione si ha $Z_4 = \{s1, 12, 23, 2t\}$.

Gli archi di Z_4 (blu a tratto grosso) individuano un <u>albero dei cammini</u> minimi dal nodo s a tutti gli altri nodi di G.

In altri termini, il nodo t è raggiungibile da s attraverso archi di Z_4 ,

per cui il duale ridotto DR₄) max

$$y_u \le 1 \qquad \forall u \in V - \{s\}$$

$$y_1 \leq y_s = 0$$

$$y_2 \leq y$$

$$y_3 \leq y_2$$

$$y_t \leq y_2$$

Il metodo primale-duale applicato al problema dell'(s, t)-cammino minimo si comporta sostanzialmente simulando una trazione di un modello fisico inestensibile del grafo operata sui nodi s e t

Inizialmente si dispongono i nodi di G su una linea a potenziale 0

Il metodo primale-duale applicato al problema dell'(s, t)-cammino minimo si comporta sostanzialmente simulando una trazione di un modello fisico inestensibile del grafo operata sui nodi s e t

Il metodo primale-duale applicato al problema dell'(s, t)-cammino minimo si comporta sostanzialmente simulando una trazione di un modello fisico inestensibile del grafo operata sui nodi s e t

Il metodo primale-duale applicato al problema dell'(s, t)-cammino minimo si comporta sostanzialmente simulando una trazione di un modello fisico inestensibile del grafo operata sui nodi s e t

Il metodo primale-duale applicato al problema dell'(s, t)-cammino minimo si comporta sostanzialmente simulando una trazione di un modello fisico inestensibile del grafo operata sui nodi s e t

Il metodo primale-duale applicato al problema dell'(s, t)-cammino minimo si comporta sostanzialmente simulando una trazione di un modello fisico inestensibile del grafo operata sui nodi s e t

Il metodo primale-duale applicato al problema dell'(s, t)-cammino minimo si comporta sostanzialmente simulando una trazione di un modello fisico inestensibile del grafo operata sui nodi s e t

Esercizio 2 Confrontare il metodo primale-duale con quello di Dijkstra