(250327-서민호) 제어기 구조 분석 및 요구사 양 정리

■ 담당자	서민호
TAG	정기회의
■ 생성 일시	@2025년 3월 26일 오후 3:17
■ 체크박스	✓

- 1. 시스템 사양
- 2. 요구사항 명세서
- 3. 기능 정의서
- 4. Siemens S7-300 PLC 구조 분석
- 5. 주요 시퀀스 동작 로직 도출 및 문서화
- 6. Cryocooler Control Rack
- 7. PLAN

1. 시스템 사양

• 시스템 사양 상세 설명 및 사양 근거

항목	상세 내용	사양 설정 근거
냉각 능력 (Cooling Power)	최대 2500 W	- 열 부하(thermal load)를 기준으로 시스템이 제거할 수 있는 최대 열 에너지 량 - 실험 장비나 대상 소비기기의 최대 열발생을 고려한 설계 - 상용 고출력 크라이오쿨러의 일반적인 상한 수준
냉각 온도 (Cooling Temperature)	78 – 100 K	- 액체 질소의 끓는점(77 K) 근처에서 안정적인 작동 가능 - 고체 상태로의 과냉각 방지 및 압력 제어와의 연계 - 일부 실험 조건에서 100 K까지의 온도 안정화 필요
온도 안정성 (Temperature Stability)	±0.02 K (rms) 이하	- 실시간 온도 제어 루프(PI 또는 PID 기반)에 의해 유지됨 - 민감한 장비에 필요한 온도 플럭추에이션 억제 - RMS 기준은 평균 오차를 정량적으로 판단하기 위한 통계적 기준
압력 안정성 (Pressure Stability)	< 1 mbar (rms)	- 압력 제어 루프 및 펌프 속도 조절로 보정됨 - 최적 운전 조건(온도 안정화 이후)에 한해 측정 - 기체 순환 회로의 효율 유지 및 압력 변동 최소화 목적
유량 (Flow Rate)	1400 ℓ/h	- 고출력 열교환기 또는 열 부하 대처를 위한 유량 보장 - 액체 또는 기체 상태의 순환율 기준(일반적으로 GN₂) - 배관 지름 및 펌프 스펙과 연계된 설계 수치
측정 해상도 (Measuring Resolution)	$\Delta p \le 0.4 \text{ mbar}$ $\Delta Flow = 0.01$ ℓ/min $\Delta T = 1 \text{ mK}$	- 고정밀 센서(Sensor)의 정밀도 스펙 기반 - 제어 루프에서 미세 조정 가능 수준 - 시스템 정밀도 판단의 기준값

항목	상세 내용	사양 설정 근거
작동 압력 범위 (Operating Pressure Range)	최대 10 bar	- 시스템 구성 재질의 내압 기준 및 안전 설계 기준 - 일반적인 GN₂ 순환 시스템은 6~8 bar 운용, 여유 압력 포함 - EPS(장비 보호 시스템)와 연동된 설계 마진
전기 사양 (Electric Power)	230 V / 16 A	- 표준 유럽 산업용 전원 사양 적용 - 히터부는 전류 급등으로 인한 제어기 영향 방지 위해 별도 공급
크기 (Dimensions)		cryocooler : 약 2.2 m / 0.9 m / 1.15 m controller : 약 1.4 m / 0.6 m / 0.7 m
중량 (Weight)		cryocooler : 약 300 kg controller: 약 70 kg

○ 열부하 기준 시스템 제거 최대 열 에너지량

■ 액체질소 supply, return 온도와 유량을 계산하여 "액체질소가 얻은 열량"을 산출할 수는 있으나, "DCM 이 얼마나 냉각"되는지는 DCM을 냉각시키는 유로(액체질소가 흐르는 DCM과 접촉된 관의 형상)의 문제임.

• Nitrogen phase diagram

• 압력 (기압) = 1 atm

온도 (°C)	온도 (K)
-250	23.15
-209.86	63.29
-203.15	70
-195.8	77.35
-195.15	78
-173.15	100

。 질소(Nitrogen)의 상변화 특성 요약

구분	압력 (atm)	온도 (°C)	온도 (K)	온도 (°F)	설명
융점 (Melting Point)	1.0	-209.86°C	63.29 K	-345.75°F	고체 → 액체로 전 이되는 온도
끓는점 (Boiling Point)	1.0	-195.80°C	77.35 K	-320.44°F	액체 → 기체로 전 이되는 온도
삼중점 (Triple Point)	0.1234	-210.05°C	63.10 K	-346.09°F	고체, 액체, 기체 가 공존하는 상태
임계점 (Critical Point)	33.55	-146.95°C	126.2 K	-232.51°F	액체와 기체의 구 분이 사라지는 지 점

Closed loop pressure

- > 1bar: be sure no bubbles will appear.
- < 4.5bar: (PT1 safety valve opening pressure: 5bar)

Overpressure melting point

0 [bar] = 0 [atm], 77 [K], -196 [C]

1 [bar] = 0.987 [atm], 84 [K], -189 [C]

2 [bar] = 1.974 [atm], 88 [K], -185 [C]

3 [bar] = 2.961 [atm], 91 [K], -182 [C]

4 [bar] = 3.948 [atm], 94 [K], -179 [C]

5 [bar] = 4.935 [atm], 96 [K], -177 [C]

■ 즉 cryo-cooler 내부 액체질소의 melting point는 -189~-177 [C].

2. 요구사항 명세서

• Link

0

• 2. 기능적 요구사항 (Functional Requirements)

○ 2.1 제어 기능

ID	기능명	설명
FR-001	자동 냉각 제어	PLC가 센서 데이터를 기반으로 LN2 유량 및 온도를 자동 조절
FR-002	수동 제어 모드	운영 패널을 통해 사용자 개입으로 장비 제어 가능
FR-003	PID 제어	서브쿨러 및 히터에 대한 PID 기반 제어 수행
FR-004	펌프 속도 제어	LN2 펌프의 속도를 조정하여 냉각 성능 최적화

○ 2.2 모니터링 및 경보

ID	기능명	설명
FR-005	실시간 데이터 모니터링	온도, 압력, 유량 등의 데이터를 운영 패널에서 실시간 확인
FR-006	경보 시스템	온도/압력 이상 시 경보 발생 및 시각적/음향적 알람 표시
FR-007	데이터 로깅	주요 변수의 데이터 저장 및 이력 조회 기능
FR-008	원격 모니터링	TCP/IP 기반으로 외부 시스템에서 모니터링 가능

○ 2.3 통신 기능

ID	기능명	설명
FR-009	PLC-운영 패널 간 통신	운영 패널과 PLC 간 데이터 교환 (MPI 또는 Profibus)
FR-010	센서 데이터 수집	온도, 압력, 유량 센서 데이터 수집 및 처리
FR-011	TCP/IP 통신	LN2 Flow Meter 등 일부 장치와 TCP/IP 기반 데이터 교환
FR-012	외부 시스템 연계	SCADA 또는 상위 모니터링 시스템과 연계 가능

• 3. 비기능적 요구사항 (Non-Functional Requirements)

。 3.1 성능 요구사항

ID	요구사항명	설명
NFR-001	데이터 갱신 속도	센서 데이터는 1초 이내 갱신

ID	요구사항명	설명
NFR-002	시스템 응답 속도	제어 명령 수행 시간 500ms 이내
NFR-003	동시 연결 사용자 수	운영 패널 1대, 원격 모니터링 2대 동시 접속 지원
NFR-004	최대 데이터 저장 기간	최소 6개월간 주요 데이터 저장 가능

○ 3.2 신뢰성 및 안정성

ID	요구사항명	설명
NFR-005	전원 장애 대비	UPS(무정전 전원 공급 장치) 지원 및 전원 복구 후 자동 재시작
NFR-006	이상 감지 및 보호	온도, 압력, 유량이 허용 범위를 초과하면 시스템 자동 차단
NFR-007	시스템 가동 시간	연간 가동 시간 99.5% 이상 유지
NFR-008	장애 발생 시 조치	경보 발생 후 5초 이내 장애 로그 기록 및 알람 발생

。 3.3 보안 요구사항

ID	요구사항명	설명
NFR-009	사용자 인증	운영 패널 및 원격 접속 시 사용자 ID 및 비밀번호 필요
NFR-010	접근 제어	관리자, 운영자, 유지보수 엔지니어 등 사용자 권한 설정 가능
NFR-011	데이터 암호화	네트워크 통신(TCP/IP) 시 데이터 암호화 적용
NFR-012	로그 관리	모든 사용자 활동 및 제어 명령 로그 저장

○ 3.4 유지보수 및 확장성

ID	요구사항명	설명
NFR-013	모듈형 설계	하드웨어 및 소프트웨어 모듈화로 유지보수 용이
NFR-014	원격 소프트웨어 업데이트	운영 패널 및 제어 소프트웨어 원격 업데이트 지원
NFR-015	확장성	추가 센서 및 제어 장치 연결 가능
NFR-016	문서화	사용자 매뉴얼 및 유지보수 문서 제공

3. 기능 정의서

• Link

0

• 5. 주요 소프트웨어 기능 정의

기능 ID	기능명	설명	관련 장치
SW-001	센서 데이터 수집	PLC가 온도, 압력, 유량 센서 데이터 를 읽어 저장	PT100, 압력 센서, 유량 센서
SW-002	PID 제어	PLC에서 온도, 압력, 유량 값을 기준 으로 PID 연산 수행	PLC (S7-300)
SW-003	펌프 속도 조정	PID 연산 결과에 따라 펌프 속도를 조 절	LN2 펌프

기능 ID	기능명	설명	관련 장치
SW-004	히터 온도 조절	온도 값이 설정 범위를 벗어나면 히터 출력을 조절	히터
SW-005	밸브 개폐 제어	압력 및 유량 상태에 따라 밸브를 자동 개폐	밸브 컨트롤러
SW-006	비상 정지 처리	EMO 버튼이 눌리면 모든 장치를 정지 하고 경보 발생	EMO 버튼, PLC
SW-007	SCADA 통신	SCADA 시스템과 Modbus-TCP 또 는 OPC-UA를 이용하여 데이터 송수 신	SCADA (WinCC, Ignition)
SW-008	HMI 터치스크린	HMI를 통해 수동 제어 및 실시간 데이 터 확인 가능	HMI 패널
SW-009	데이터 로깅	온도, 압력, 유량 데이터를 SQL 데이 터베이스에 저장	SCADA 데이터 서버
SW-010	원격 모니터링	VPN 또는 웹 기반 대시보드를 통해 원격 제어 가능	원격 SCADA

• 6. 테스트 기준 및 검증 방법

테스트 ID	테스트 항목	설명	기대 결과
T-001	시스템 초기화	PLC 전원을 켜고 SCADA에서 초기화 명령 수행	센서 값 정상 읽기 및 초기화 완료 메시 지 출력
T-002	자동 모드 제어	PLC를 자동 모드로 설정 후 온도/압력/ 유량 입력값 시뮬레이션	PID 제어가 자동 수행되고 적절한 밸브 개폐 및 펌프 속도 조정
T-003	온도 제어	온도 센서 값을 높이거나 낮춰서 테스트	히터가 자동으로 ON/OFF 되며, PID 제 어값이 반영됨
T-004	압력 제어	압력 센서 값을 변화시켜 테스트	압력이 설정값 이상이면 밸브 개방, 이하 이면 밸브 닫힘
T-005	유량 제어	유량 센서 값을 변화시켜 테스트	펌프 속도가 유량에 맞게 증가 또는 감소
T-006	비상 정지(EMO)	비상 정지 버튼을 누름	모든 장치 정지, 운영 패널 및 경보 활성 화
T-007	SCADA 데이터 동 기화	SCADA와 PLC 간 통신 테스트	실시간 데이터가 SCADA 및 HMI에서 정상 표시
T-008	원격 제어 기능	VPN을 통한 SCADA 접속 후 원격 제어 수행	원격 명령이 PLC에 적용되고 장치 상태 변경 확인

4. Siemens S7-300 PLC 구조 분석

• Link

0

• Analog Inputs (AI)

신호명	신호 유형	설명	입력 채널 (PLC PEW번호)
TEMP_FEED_LINE	온도 센서 (PT100)	공급 라인 온도 측정	PEW128

신호명	신호 유형	설명	입력 채널 (PLC PEW번호)
TEMP_RETURN_LINE	온도 센서 (PT100)	반환 라인 온도 측정	PEW130
PRESS_FEED_LINE	압력 센서	공급 라인 압력 측정	PEW132
PRESS_RETURN_LINE	압력 센서	반환 라인 압력 측정	PEW134
LEV_SUBCOOLER	레벨 센서	서브쿨러 액체 질소 레벨 측정	PEW136
LEV_LN2VESSEL	레벨 센서	Heater Vessel 액체 질소 레벨 측정	PEW138
FREQ_MEAS_LN2PUMP	주파수 센서	LN2 펌프 동작 주파수 측정	PEW140
FLOW_METER			PEW142

• Analog Outputs (AO) - PLC에서 장치로 신호 전달

신호명	설명	PLC 주소 (PAW)	신호 유형
BYPASS_VALVE_POSITION	바이패스 밸브 위치 설정	PAW128	4-20mA
RETURN_VALVE_POSITION	반환 밸브 위치 설정	PAW130	4-20mA
VENT_VALVE_POSITION	벤트 밸브 위치 설정	PAW132	4-20mA
FREQ_SET_LN2PUMP	LN2 펌프 속도 설정	PAW134	4-20mA

• Digital Inputs (DI) - 센서 및 상태 신호 입력

신호명	설명	PLC 주소 (E)	신호 유형
CC_ENABLE	Cryocooler 동작 가능 상태 확인	E0.0	DC 24V, Sink
VAL_CAB_CON_OK	밸브의 케이블과 커넥터 상태 확인	E0.1	DC 24V, Sink
SENSOR_CAB_CON_OK	센서의 케이블과 커넥터 상태 확인	E0.2	DC 24V, Sink
AUX_PRESS	AUX Pressure 상태 확인 (Purge in 추정)	E0.3	DC 24V, Sink
HEATER_CAB_CON_OK	히터의 케이블과 커넥터 상태 확인	E0.4	DC 24V, Sink

• Digital Outputs (DO) - PLC에서 장치 제어 신호 출력

신호명	설명	PLC 주소 (A)	신호 유형
FEED_VALVE_OPN(V9)	FEED Cooler Valve V9 open	A0.0	DC 24V, Sink
FILL_VAL_HEAT_OPN(V15)	Loop Filling valve V15 open	A0.1	DC 24V, Sink
FILL_VAL_SUBCO_OPN(V19)	Subcooler fill valve V19 open	A0.2	DC 24V, Sink
VENT_VAL_HEAT_OPN(V20)	Heater vessel vent valve (V20) open (overflow)	A0.3	DC 24V, Sink
PURGE_VAL_OPN(V21)	purge consumer line Valve(V21) open	A0.4	DC 24V, Sink
PUMP_ON	pump on	A0.6	DC 24V, Sink
HEA_VEN_PTP	vent pipe heater 스위치 on	A0.7	DC 24V, Sink
PRESS_HEAT_ON	pressure Heater Vessel on	A1.0	DC 24V, Sink
CC_READY	Cryocooler 준비 완료	A1.1	DC 24V, Sink
CC_ALARM	Cryocooler 이상 상태 알람	A1.2	DC 24V, Sink
LT19 H AL	Filling Level Tramsmitter L19 High 신호 (Subcooler 내부 LN2 level high)	A1.3	DC 24V, Sink

신호명	설명	PLC 주소 (A)	신호 유형
LT19 L AL	LT19 Low 신호 (Subcooler 내부 LN2 level low)	A1.4	DC 24V, Sink

5. 주요 시퀀스 동작 로직 도출 및 문서화

Link

0

• 주요 제어 단계 상세화

• 제어 흐름도 (Flowchart)

Cryo Cooler Control Flowchart

6. Cryocooler Control Rack

- Link
 - 0
 - 。 <u>(250327-이윤선) Cryocooler 전기 도면 도식</u>
- Control Rack

• Block Diagram

7. PLAN

• Link

0

• 2개월 제작 계획표 (총 8주)

주차	주요 작업	세부 내용	예상 산출물
1주차	코드 시뮬레이션 설 계 및 구현	 전체 구조 설계 C 기반 로직 설계 시뮬레이션 코드 작성 및 테스트 인터페이스 정의 (DO, DI, Relay, LED) 	- C 시뮬레이터 - 시뮬레이터 동작 다이어그램 - 입출력 시퀀스 정의
3주차	전기도면 작성	- I/O 맵 구성 (PLC) - 릴레이 동작 논리 정리 - 전기 회로도 도면화 - 인터락 조건 정리	- 전기회로도 도면 (EPAN) - 부품 리스트(BOM) - 배선도
5주차	시뮬레이터 실제 제 작	- 하드웨어 부품 구매 및 준비 - 기구 구성 & 배선 작업	- 시뮬레이터 하드웨어 - 릴레이, LED 동작 확인
7주차	동작 검증 및 수정	전체 시퀀스 검증릴레이 동작 타이밍 확인오류 및 비정상 상태 대응 확인기능별 검토 및 수정시연 준비	- 테스트 리포트 - 최종 매뉴얼 (회로 + 코드) - 시연 영상 (선택사항)

• 장치파트 확인사항

- ▼ 히터배슬, Vent Pipe 온도 범위 (모형욱)
- ☑ 펌프유량 및 주파수 관계 (모형욱)
- ✓ 비례제어 밸브 용도, 조건식, 사용절차 (어철수)
 - 제어시 진동 영향 파악
 - 언제 진동이 안정되는지 : 진동 안정 범위

• 소모임 1차 목표

- Cryo-Cooler 정상화 → DCM 설치 후 진동측정
 - 탱크 내부 확인 및 릴리프 밸브 교체:
 - CLK (PAL 질소공급업체) 방문일정 및 계획
 - o 4/3 4: Cryo-cooler 분해
 - 。 7 11: 수리
 - 14 18: 치수측정(도면작성) 및 체결
 - 🗸 고장원인 분석 보고서 : 김호영, 어철수
- 。 11B DCM 진동기준으로
 - 정상화시킨 Cryo-Cooler DCM 설치 후 진동측정
 - 🗸 진동비교 분석 보고서 : 박종하
 - 🗸 유량분석 : 모형욱
- 소모임 2차 목표
 - 。 제어파트 : 제어기 시뮬레이터 제작 및 검증
 - 정차파트 : 시제품 장치 설계 및 모델링
- 4월 발표 : 장치파트

◦ Cryo-Cooler 정상화 정리 및 보고

• 4GSR 요구사양 : 3~5 bar

pressure drop	maximum up to 3 bar
consumption of LN ₂	- approx. 25 l/h at 1 kW power load - approx. 2.5 l/h in idle operation
electrical power rating	- 200 to 230 VAC, single phase - 50 / 60 Hz - maximum 3.0 kW due to exhaust heater
length of cable set between LN ₂ chiller and controls	up to 30 m (to be decided at the FDR)
dimensions of LN ₂ chiller	0.95 x 0.90 x 2.1 m³ (l x w x h)
dimensions of controls rack	6 HU crate that can be integrated into any existing standard 19" rack (alternatively controls can be provided already integrated into standalone rack)
Dewar volume	300 l (> 150l usable)
closed loop vessel volume	151
cooling loop pressure	2 to 10 bar
pressure stability	< 1 mbar (rms) / < 5 mbar (p-v)
cooling loop temperature	77 K (standard)
cooling temperature stability	0.02 K (rms)
Stabilization time after cool-down or change of operation parameters	< 10 min.