

GeoPrivacy: 2nd Workshop on Privacy in Geographic Information Collection and Analysis

Differentially Private H-Tree

Hien To, **Liyue Fan**, Cyrus Shahabi Integrated Media System Center University of Southern California November 3, 2015

Motivation

Mobile devices collect/share location data

- Enable applications, e.g., spatial crowdsourcing, traffic monitoring, location-aware recommendation
- Adversary can infer users' sensitive details

Many location-based apps require only spatial aggregation of users

- e.g., spatial crowdsourcing
- Differential privacy serves that purpose

~0	~3	~3		~2	
~4	~7	~6		~3	
~4	~5	~2	~	3	~1
. 0	task	~2	~	0	~0
~0	~0	~3	2	0	~0

Noisy worker count per grid cell

Differential Privacy (DP)

Ensures adversary do not know whether an individual is present or not in dataset, regardless of background knowledge

Allows only aggregate queries, e.g., count, sum

$$\mathcal{E}$$
-indistinguishability $\ln \frac{\Pr[QS^{D_1} = U]}{\Pr[QS^{D_2} = U]} \le \varepsilon$ [Dwork'06]

 ${\boldsymbol{\mathcal{E}}}$: privacy budget

$$L_1 \text{-sensitivity} \qquad \sigma(QS) = \max_{D_1, D_2} \sum_{i=1}^{q} |QS(D_1) - QS(D_2)|$$

D1 and D2 are sibling datasets that differ in only one record

Achieve \mathcal{E} -DP by adding random Laplace noise with mean 0 and standard deviation $\lambda = \sigma(QS)/\varepsilon$ [Dwork'06]

Problem Definition

Publish private spatial decomposition (PSD) of 2-d dataset

Accurately answer count queries

Range query fully covers 2 cells and partially covers 2 cells → Estimated result set size:

Relative error

$$RE_{PSD}(q) = \frac{Q_{PSD}(q) - A(q)}{A(q)}$$

	0 50	0 50	0 100
	0	0	0
actual	200	200	0
count	100	100	100
published	5 0	50	200
noisy counts)			

Related Work

✓ Kd-tree on top of fixed equal-size grid [Xiao et

[Xiao et al. 2010]

✓ Wavelet transformation

[Xiao et al. 2011]

√ Kd-tree, Quad-tree

[Cormode et.al ICDE 2012]

Perturbation error is excessively high on hierarchical partitions and high dimensional data \otimes

✓ Uniform grid, adaptive grid

[Qardaji et al. ICDE 2013]

✓ Extend to higher dimension

[Qardaji et al. VLDB 2013]

Grid-based partitions are not ideal for skewed datasets 😵

✓ H-Tree: two-level data-dependent tree

[This study]

Differentially Private H-Tree

Equi-depth multidimensional histograms

[Muralikrishna et. al SIGMOD 1988]

H-Tree of size m=4

Canonical range query processing minimizes total error

1) Granularity 2) Count/Median budget 3) Post-processing

Granularity

Compute H-tree's size mxm that minimizes query estimation error

Perturbation error vs. Non-uniformity error

C1	C2	C3		C4
	C21	C31		C41
C11				C42
	C22	C32		
				C43
C12	C23	C33		C 13
C13	U 23	C34		C44
C14	C24			C44

H-tree partition

Query size increase

- → Perturbation error increases
- → Non-uniformity error decreases

Granularity
$$m = \sqrt{W\varepsilon^c/c}$$
 • W is the domain size

- c is a small constant
- $oldsymbol{arepsilon}^c$ is the count budget

Budget Allocation Strategy

Two kinds of budgets

- 1. Median budget for 2 levels ε^m
- 1. Count budget for 2 levels

$$\varepsilon^c = \varepsilon_1^c + \varepsilon_2^c$$

Total budget

$$\varepsilon = \varepsilon^m + \varepsilon^c$$

Count Budget Allocation

Split count budget across levels of the tree index

Minimize
$$Err(q) = n_1 \frac{2}{(\varepsilon_1^c)^2} + n_2 \frac{2}{(\varepsilon_2^c)^2}$$
, subject to $\varepsilon^c = \varepsilon_1^c + \varepsilon_2^c$

- n1: number of level-1 nodes
- n2: number of level-2 nodes

$$n_2 \approx m \times n_1$$

The proof uses Cauchy Schwarz inequality

$$\left(\varepsilon_1^c + \varepsilon_1^c\right) \left(\frac{n_1}{\left(\varepsilon_1^c\right)^2} + \frac{n_2}{\left(\varepsilon_2^c\right)^2}\right) \ge \left(\frac{\sqrt{n_1}}{\sqrt{\varepsilon_1^c}} + \frac{\sqrt{n_2}}{\sqrt{\varepsilon_2^c}}\right)^2$$

Err(q) is minimized when
$$\varepsilon_1^c = \frac{\varepsilon^c}{1 + \sqrt[3]{m}}, \varepsilon_2^c = \frac{\varepsilon^c \sqrt[3]{m}}{1 + \sqrt[3]{m}}$$

Median Budget Allocation

Private H-Tree requires selecting private medians

Splits apply to the same data \rightarrow sequential composition

Recursively splits each dimensional range → parallel composition

Each split
$$\frac{\varepsilon^m}{2\log_2 m}$$

Use exponential mechanism

[McSherry SIGMOD 2009]

Proposed **Slicing Algorithm** recursively splits a range at points that are closest to the corresponding medians

DP H-tree Algorithm

Input: h-tree of size mxm

- 1. Median budget ε_1^m
- 2. Count budget
- 3. For each level-1 node:
 - Median budget
 - 2. Count budget

H-Tree structure

The entire H-tree satisfies ε -DP by composition property

$$\varepsilon^{m} = \varepsilon_{1}^{m} + \varepsilon_{2}^{m}$$

$$\varepsilon = \varepsilon^{m} + \varepsilon^{c} \longrightarrow \varepsilon^{c} = \varepsilon_{1}^{c} + \varepsilon_{2}^{c}$$

Trade-off between median budget and count budget

$$\varepsilon^{m} = 0.3\varepsilon$$
 [Cormode et.al ICDE 2012]

Experimental Setup

Datasets

Queries

- Privacy budget $\varepsilon = \{.1, .4, .7, 1\}$
- Query size = {1, 2, 4, 8} square km
- $\varepsilon^m = 0.4\varepsilon$; c = 3
- Average relative error over 1000 random queries

Tiger dataset (similar result on Brightkite)

Grid-adaptive performs well and even better than datadependent methods

Gowalla-Sparse

Tiger-Syn

Grid-adaptive performs arbitrarily worse in the presence of sparseness and outliers

Conclusion

- ✓ Observed drawbacks of high-level trees and grid-based structures
- ✓ Proposed several analysis on DP H-tree, i.e., budget allocation, median splitting, post-processing
- ✓ DP H-Tree consistently performs well on various datasets
 - i.e., h-tree outperforms kd-tree and quadtree in all cases and adaptive grid for sparse datasets

Q/A

Liyue Fan

University of Southern California liyuefan@usc.edu

Partitions

Adaptive grid

-160L

H-tree

Quadtree

Kd-tree

