Computational Physics Project 1: Pendulum

Ben Zager, Remy Wang February 5, 2017

1. Phase space of nonlinear pendulum

Figure 1: Plots of trajectory $(\theta, \dot{\theta})$, for many values of $\theta_0 \in [0, \pi]$

- 2. Phase space of linear pendulum
- 3. Pendulum with driving force, $\gamma k^2 cos(\omega t)$
- 4. Exploration of driven system

For fixed θ and θ , how do the real and phase space trajectories vary with γ

- 5. Identifying (θ_0, γ) for which the motion diverges
- 6. Driven pendulum with damping $\ddot{\theta} + 2\beta\dot{\theta} + k^2sin\theta = \gamma k^2cos(\omega t)$
- 7. Spectral analysis

Figure 2: Trajectory for various $\dot{\theta}$

Figure 3: Plots of linearized trajectory $(\theta, \dot{\theta})$, for many values of $\theta_0 \in [0, \pi]$