Measuring the Impact of a Lower BAC in Utah

A Frequentist and Bayesian Comparison

Introduction

0.05 BAC impact is measured by DUI related collisions

- What:

Utah lowered it's BAC limit on 2018-12-30 from 0.08% to 0.05%

- Expectations:

- The number alcohol related collisions and collisions involving death will decrease.

- How to measure:

- We look at weekly DUI related collisions in Utah from 2015-01-01 to 2019-03-31

Methodology

We compare Frequentist and Bayesian Methodologies

- Frequentist

- 1. Identify plausible ARIMA model on pre-intervention data
- 2. Run model on full series with a treatment binary included
- 3. Ensure quality measures hold (i.e. residual checks, significance, convergence)
- 4. Evaluate treatment binary

- Bayesian

- 1. Build several state-space models on the full dataset and evaluate on:
 - RMSE, RMSE on a holdout, R-Square, Harvey's GOF, Posterior Predictive Checks
- 2. Include treatment binary and evaluate impact based on:
 - Posterior Inclusion Probability
 - HPD interval given inclusion
- 3. Robustness Check: Pre-built Bayesian State-Space Causal Impact Analysis

Frequentist Approach: Unit Root Testing Perform visual inspection as first step of Unit Root Tests

- No obvious deterministic trend
- Stationary test to include drift
- Seasonality potentially exists

Frequentist Approach: Unit Root Testing HEGY tests for unit roots at each seasonal frequency

- Seasonal Unit Root Example: SAR(1)

$$y_t = \alpha y_{t-52} + \varepsilon$$
$$\alpha = 1$$

- HEGY Test
 - H_o: Unit Root
 - Test for a unit root at each seasonal frequency

Frequentist Approach: Unit Root Testing **HEGY** statistics on level data show seasonal unit roots

- H_o: Unit Root

HEGY Test Statistics

	test			test		
	statistic	p-value		statistic	p-value	
t_1	-2.68	0.061	F_31:32	1.85	0.110	
t_2	-1.16	0.236	F_33:34	2.24	0.073	
F_3:4	1.82	0.113	F_35:36	2.09	0.085	
F_5:6	3.30	0.025 *	F_37:38	1.92	0.102	
F_7:8	1.46	0.169	F_39:40	1.57	0.151	
F_9:10	2.64	0.048 *	F_41:42	4.89	0.005	**
F_11:12	4.18	0.009 **	F_43:44	5.53	0.003	**
F_13:14	1.93	0.102	F_45:46	3.84	0.014	**
F_15:16	0.34	0.582	F_47:48	1.91	0.103	
F_17:18	2.81	0.041 *	F_49:50	1.94	0.101	
F_19:20	2.81	0.041 *	F_51:52	0.41	0.531	
F_21:22	0.83	0.331	F_2:52	3.67	0.253	
F_23:24	1.13	0.243	F_1:52	3.78	0.000	***
F_25:26	2.49	0.056				
F_27:28	0.42	0.525				
F_29:30	3.59	0.018 **		g. at 0.05		
			In	significan	Ť	

Frequentist Approach: Unit Root Testing HEGY statistics on 1 seasonally difference show no unit roots

- H_o: Unit Root

HEGY Test Statistics

	test			test	
	statistic	p-value		statistic	p-value
t_1	-2.68	0.061	F_31:32	1.85	0.110
t_2	-1.16	0.236	F_33:34	2.24	0.073
F_3:4	1.82	0.113	F_35:36	2.09	0.085
F_5:6	3.30	0.025 *	F_37:38	1.92	0.102
F_7:8	1.46	0.169	F_39:40	1.57	0.151
F_9:10	2.64	0.048 *	F_41:42	4.89	0.005 **
F_11:12	4.18	0.009 **	F_43:44	5.53	0.003 **
F_13:14	1.93	0.102	F_45:46	3.84	0.014 **
F_15:16	0.34	0.582	F_47:48	1.91	0.103
F_17:18	2.81	0.041 *	F_49:50	1.94	0.101
F_19:20	2.81	0.041 *	F_51:52	0.41	0.531
F_21:22	0.83	0.331	F_2:52	3.67	0.253
F_23:24	1.13	0.243	F_1:52	3.78	0.000 ***
F_25:26	2.49	0.056			
F_27:28	0.42	0.525			
F_29:30	3.59	0.018 **	Si	g. at 0.05	

Insignificant

HEGY Test Statistics on 1 Seasonal Diff.

	test			test	
	statistic	p-value		statistic	p-value
t_1	-3.50	1.000	F_31:32	3.68	0.013**
t_2	-1.18	0.991	F_33:34	3.72	0.013**
F_3:4	3.55	0.013**	F_35:36	3.22	0.014**
F_5:6	4.45	0.012**	F_37:38	4.56	0.011 **
F_7:8	0.62	0.018**	F_39:40	3.67	0.013**
F_9:10	2.53	0.015 **	F_41:42	6.59	0.000 ***
F_11:12	6.10	0.008**	F_43:44	3.99	0.013**
F_13:14	5.57	0.009 **	F_45:46	4.19	0.012**
F_15:16	3.42	0.014**	F_47:48	3.19	0.014**
F_17:18	4.97	0.011 **	F_49:50	2.97	0.014**
F_19:20	0.63	0.018**	F_51:52	1.70	0.017**
F_21:22	5.24	0.010**	F_2:52	6.99	0.304
F_23:24	3.66	0.013**	F_1:52	7.13	0.000 ***
F_25:26	5.11	0.010**			
F_27:28	1.39	0.017**			
F_29:30	0.99	0.017**			

Frequentist Approach: ARIMA Modeling HEGY statistics on 1 seasonally difference show no unit roots

Seasonally Differenced ACF

Seasonally Differenced PACF

Frequentist Approach: ARIMA Modeling HEGY statistics on 1 seasonally difference show no unit roots

Seasonally Differenced ACF

Seasonally Differenced PACF

Move forward with a SAR(1), SMA(1), pure noise models (of seasonal order 1)

Frequentist Approach: ARIMA Modeling SAR(1) is only model that passes coefficient quality checks.

SAR(1)

SMA(1)

Pure Noise

Estimate (P-Value)

sar1: -0.49 (0.000)

treatment: -0.03 (0.449)

treatment: -0.04 (0.421)

sma1: -0.99 (0.223)

treatment: -0.04 (0.46)

Coefficient Quality

^{**}Ljung-Box Test

Frequentist Approach: ARIMA Modeling SAR(1) and SMA(1) have lowest AIC and BIC.

	Pure Noise	SMA(1)	SAR(1)	
Coefficient Quality	treatment: -0.04 (0.46)	sma1: -0.99 (0.223) treatment: -0.04 (0.421)	sar1: -0.49 (0.000) treatment: -0.03 (0.449)	Estimate (P-Value)
Model fit	-0.31	-0.71	-60.87	AIC
] Woder III	-0.25	-0.61	-51.47	BIC_

Ho: Independent errors -- White Noise

Frequentist Approach: ARIMA Modeling SAR(1) and SMA(1) pass Ljung-Box Test.

	SAR(1)	SMA(1)	Pure Noise		
Estimate (P-Value)	sar1: -0.49 (0.000) treatment: -0.03 (0.449)	sma1: -0.99 (0.223) treatment: -0.04 (0.421)	treatment: -0.04 (0.46)	Coefficient Quality	
AIC	-60.87	-0.71	-0.31		
BIC_	-51.47	-0.61	-0.25	Model fit	
Ljung-Box Test					
lag 5 p-value	0.41	0.21	0.08		
lag 10 p-value	0.43	0.48	0.17	Residual Quality	
lag 15 p-value	0.13	0.2	0.11	l lessadur Quarry	
lag 20 p-value	0.15	0.34	0.05		
lag 25 p-value	0.11	0.31	0.03		

^{**}Ljung-Box Test

Ho: Independent errors -- White Noise

Frequentist Approach: ARIMA Modeling Treatment variable shows no significant effect on collisions

SAR(1)

Estimate (P-Value)

sar1: -0.49 (0.000)

treatment: -0.03 (0.449)

Conclusion: No significant impact of lowering the BAC on DUI related collisions

Bayesian Approach: Model Comparison We compare 5 state-space models

Model 1: Local Linear Trend & Seasonality

Model 2: Seasonality only

Model 3: Local Linear Trend only

Model 4: Semi Local Linear Trend only

Model 5: Semi Local Linear Trend & Seasonality

Modeled using BSTS in R: https://www.rdocumentation.org/packages/bsts/versions/0.9.0

Evaluation

- RMSE on one-step-ahead predictions
- RMSE on a holdout
- R² & Harvey's GOF (random walk R²)
- Posterior Predictive Checks

Bayesian Approach: Model Comparison Models 4 & 5 lead other models across evaluation criteria

			RMSE	RMSE
	R ²	HarveyGOF	(one-step)	(holdout)
Model 1	11.7%	42.2%	0.181	0.172
Model 2	9.1%	48.3%	0.171	4.497
Model 3	-0.6%	48.5%	0.171	0.173
Model 4	5.6%	49.9%	0.169	0.168
Model 5	16.5%	43.5%	0.179	0.162

Bayesian Approach: Model Comparison Models 4 & 5 lead other models across evaluation criteria

			RMSE	RMSE	
	R ²	HarveyGOF	(one-step)	(holdout)	
Model 1	11.7%	42.2%	0.181	0.172	
Model 2	9.1%	48.3%	0.171	4.497	
Model 3	-0.6%	48.5%	0.171	0.173	
Model 4	5.6%	49.9%	0.169	0.168	Semi Local Linear Trend
Model 5	16.5%	43.5%	0.179	0.162	Semi Local Linear Trend & Seasonality

Bayesian Approach: PPC Residual Checks Q-Q plots show both model residuals are approx. normal

Normal Q-Q Plots

Bayesian Approach: PPC Residual Checks

Neither model has a problem with serial correlation.

Bayesian Approach: Graphical Predictive Checks Model 5 appears to move closely with observed data

Poster Predictions (20-step-ahead)

Bayesian Approach: Graphical Predictive Checks Model 4 wins in terms of one-step-ahead RMSE

Bayesian Approach: Treatment Evaluation Neither model shows a significant effect of a lower BAC

	Inclusion Probability	Coefficient (95% HPD)
Model 4	1.4%	0.045 (-0.08, 0.17)
Model 5	1.2%	0.036 (-0.18, 0.25)

- Both models show inclusion probability much lower than conventional 10% threshold
- 95% HPD for both models includes zero meaning we can't determine a significant effect.

Robustness Check Robustness check also shows zero effect of lower BAC.

Expected log DUI collisions: 3.65 (3.35, 3.96)

Observed log DUI collisions: 3.65

Effect size: 0.0001 (-0.3, 0.3)

Built in state-space causal modeling using CausalImpact R package provides a robustness check to previous results. Note, this is an entirely different methodology using our same state-space Model 5.

Conclusion

- Results:
 - Both Frequentist and Bayesian methods show no significant impact
- Limitations:
 - DUI related deaths is what most previous research has studied
 - It's customary to normalize by vehicle miles driven.
 - Data only includes up to the first quarter of 2019