1994-95

ANALOG MILITARY DATA BOOK SUPPLEMENT 1994-95

HARRIS SEMICONDUCTOR

The 1994 Military Data Book Supplement, combined with the 1989 Analog Military Product Data Book, contains detailed technical information on the extensive line of Harris Semiconductor Linear and Data Acquisition products for Military (MIL-STD-883, DESC SMD and JAN) applications and supersedes all previously published Linear and Data Acquisition Military data books. For applications requiring Radiation Hardened products, please refer to the 1993 Harris Radiation Hardened Product Data Book (#DB235B).

For complete, current and detailed technical specifications on any Harris devices please contact the nearest Harris sales, representative or distributor office. Literature requests may also be directed to:

Harris Semiconductor Literature Department P.O. Box 883, MS CB1-25 Melbourne, FL 32901 TEL: 1-800-442-7747 FAX: (407) 724-3937

See Section 13 for Data Sheets Available on AnswerFAX

U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road Melbourne, Florida 32902 TEL: (407) 724-7000

SOUTH ASIA

Harris Semiconductor H.K. Ltd 13/F Fourseas Building 208-212 Nathan Road Tsimshatsui, Kowloon Hong Kong TEL: 852-723-6339

EUROPEAN HEADQUARTERS

Harris Semiconductor Mercure Centre 100, Rue de la Fusee 1130 Brussels, Belgium TEL: 32 2 724 21 11

NORTH ASIA

Harris K.K. Shinjuku NS Bldg. Box 6153 2-4-1 Nishi-Shinjuku Shinjuku-ku, Tokyo 163 Japan TEL: 81-3-3345-8911

Copyright © Harris Corporation 1994 (All Rights Reserved) Printed in USA, 9/1994

ABOUT THIS DATA BOOK

Harris Semiconductor is an industry leader in developing and producing advanced Linear and Data Acquisition products for demanding Military applications.

The 1994 Military Data Book Supplement includes: datasheets for Harris Military products introduced or significantly changed since the publication of the attached 1989 Analog Military Product Data Book, new die plots for products that have been redesigned since the 1989 data book and the addition of "Harris AnswerFAX - Data Sheets by FAX". AnswerFAX is the Harris automated response system that gives you access to a full library of the latest complete data sheets, application notes and other information on Harris products. The 1994 Military Data Book Supplement includes shortened version /883 Military product data sheets containing Table 1, 2, and 3 data only. For complete Military /883 product data sheets please use the Harris AnswerFAX system and request documents using the file number listed on page one of every Harris data sheet. In addition, a listing of SPICE Models and product Packaging data provides a wide variety of information at your fingertips.

It is our intention to provide you with the most up-to-date information on Linear and Data Acquisition Military products. For complete, current and detailed technical specifications on any Harris devices, please contact the nearest Harris sales, representative or distributor office listed at the back of the data book; or direct literature requests to:

Harris Semiconductor Literature Department P.O. Box 883, MS CB1-25 Melbourne, FL 32901 1-800-442-7747 FAX 407-724-3937

See Section 13 for Data Sheets Available on AnswerFAX

Harris Semiconductor products are sold by description only. All specifications in this product guide are applicable only to packaged products; specifications for die are available upon request. Harris reserves the right to make changes in circuit design, specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that information in this publication is current before placing orders. Reference to products of other manufacturers are solely for convenience of comparison and do not imply total equivalency of design, performance, or otherwise.

ANALO

Ge
N
Opera
CMOS
CMOS An
Sample and
A
Quali
SPI
Packa
How To Use H

Operational Amplifiers	3
CMOS Analog Switches	4
MOS Analog Multiplexers	5
Data Converters	6
mple and Hold Amplifiers	7

Analog Multipliers 8

Quality and Reliability

SPICE Model Listing

Packaging Information

New Die Plots 9

11

General Information

Military Programs 2

TECHNICAL ASSISTANCE

For technical assistance on the Harris products listed in this databook, please contact the Field Applications Engineering staff available at one of the following Harris Sales Offices:

Costa Mesa
San Jose
Woodland Hills
Melbourne
Duluth
Schaumburg
Carmel
Burlington
Voorhees
Great Neck
Dallas
Paris
Munich
Kowloon
Milano
Tokyo
Seoul
Singapore
Camberley
Taipei

For literature requests, please contact Harris at 407-724-3739.

ANALOG

GENERAL INFORMATION

ALPHA NUMERIC PRODUCT INDEX

		MILITARY SUPPLEMENT PAGE	1989 MILITARY DATABOOK PAGE
DG401/883	Monolithic CMOS Analog Switches	4-3	
DG403/883	Monolithic CMOS Analog Switches.		
			•
DG405/883	Monolithic CMOS Analog Switches		-
DG406/883	Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers	5-3	•
DG407/883	Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers	5-3	-
DG408/883	Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers	5-4	-
DG409/883	Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers	5-4	-
DG411/883	Monolithic Quad SPST CMOS Analog Switches	4-9	-
DG412/883	Monolithic Quad SPST CMOS Analog Switches	4-9	-
DG413/883	Monolithic Quad SPST CMOS Analog Switches	4-9	-
DG441/883	Monolithic Quad SPST CMOS Analog Switches	4-15	-
DG442/883	Monolithic Quad SPST CMOS Analog Switches	4-15	
DG458/883	Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers	5-11	-
DG459/883	Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers	5-11	
HA-2400/883	PRAM Four Channel Programmable Operational Amplifier		3-3
HA-2420/883	Fast Sample and Hold	-	7-3
HA-2444/883	Selectable, Four Channel Video Operational Amplifier	3-3	
HA-2500/883	Precision High Slew Rate Operational Amplifiers	3-8	
HA-2502/883	Precision High Slew Rate Operational Amplifiers	3-8	
HA-2510/883	High Slew Rate Operational Amplifiers	3-13	
HA-2512/883	High Slew Rate Operational Amplifiers	3-13	

		MILITARY SUPPLEMENT PAGE	1989 MILITARY DATABOOK PAGE
HA-2520/883	Uncompensated, High Slew Rate Operational Amplifiers	3-18	
HA-2522/883	Uncompensated, High Slew Rate Operational Amplifiers	3-18	
HA-2529/883	Uncompensated, High Slew Rate High Output Current, Operational Amplifier	3-23	
HA-2539/883	Very High Slew Rate Wideband Operational Amplifier		3-63
HA-2540/883	Wideband, Fast Settling Operational Amplifier		3-75
HA-2541/883	Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier	3-28	• , ;
HA-2542/883	Wideband, High Slew Rate, High Output Current, Operational Amplifier		3-99
HA-2544/883	Video Operational Amplifier	3-33	-
HA-2546/883	Wideband Two Quadrant Analog Multiplier (Voltage Output)	8-3	
HA-2548/883	Precision, High Slew Rate, Wideband Operational Amplifier	3-38	
HA-2556/883	Wideband Four Quadrant Analog Multiplier (Voltage Output)	8-7	
HA-2557/883	Wideband Four Quadrant Analog Multiplier (Current Output)	8-12	
HA-2600/883	Wideband, High Impedance Operational Amplifiers	3-43	
HA-2602/883	Wideband, High Impedance Operational Amplifiers	3-43	
HA-2620/883	Very Wideband, High Impedance Uncompensated Operational Amplifier	-	3-138
HA-2622/883	Very Wideband, High Impedance Uncompensated Operational Amplifier	-	3-138
HA-2640/883	High Voltage Operational Amplifier	3-48	
HA-2839/883	Very High Slew Rate, Wideband Operational Amplifier	3-53	
HA-2840/883	Very High Slew Rate, Wideband Operational Amplifier	3-58	
HA-2841/883	Wideband, Fast Settling, Unity Gain Stable, Video Operational Amplifier	3-63	
HA-2842/883	Wideband, High Slew Rate, High Output Current, Video Operational Amplifier	3-68	
HA-2850/883	Low Power, High Slew Rate, Wideband Operational Amplifier	3-73	-
HA-4741/883	Quad Operational Amplifier	3-78	
HA-4902/883	Precision Quad Comparator	-	3-174
HA-5002/883	Monolithic, Wideband, High Slew Rate, High Output Current Buffer	3-83	
HA-5004/883	100MHz Current Feedback Amplifier	3-89	
HA-5020/883	100MHz Current Feedback Video Amplifier with Disable	3-94	
HA5022/883	Dual 100MHz Video Current Feedback Amplifier with Disable	3-100	
HA5023/883	Dual 100MHz Video Current Feedback Amplifier	3-105	
HA-5033/883	Video Buffer		3-199
HA-5101/883	Low Noise, High Performance Operational Amplifier	-	3-212
HA-5102/883	Dual, Low Noise, High Performance Operational Amplifier	3-109	

		MILITARY SUPPLEMENT PAGE	1989 MILITARY DATABOOK PAGE
HA-5104/883	Low Noise, High Performance, Quad Operational Amplifier	3-114	
HA-5111/883	Low Noise, High Performance Uncompensated Operational Amplifier	-	3-254
HA-5112/883	Dual, Low Noise, High Performance Uncompensated Operational Amplifier.	3-119	
HA-5114/883	Quad, Low Noise, High Performance Uncompensated Operational Amplifier	3-124	
HA-5127/883	Ultra Low Noise, Precision Operational Amplifier	3-129	
HA-5134/883	Precision Quad Operational Amplifier	3-134	
HA-5135/883	Precision Operational Amplifier	3-139	•
HA-5137/883	Ultra Low Noise, Precision Wideband Operational Amplifier	3-144	-
HA-5141/883	Single, Ultra-Low Power Operational Amplifier		OBSOLETE
HA-5142/883	Dual, Ultra Low Power Operational Amplifier	3-149	
HA-5144/883	Quad, Ultra-Low Power Operational Amplifier		3-378
HA-5147/883	Ultra Low Noise, Precision, High Slew Rate Wideband Operational Amplifier	3-154	. "
HA-5151/883	Single, Low Power Operational Amplifier		OBSOLETE
HA-5152/883	Dual, Low Power Operational Amplifier	, -	OBSOLETE
HA-5154/883	Quad, Low Power Operational Amplifier		OBSOLETE
HA-5177/883	Ultra Low Offset Voltage Operational Amplifier	3-159	
HA-5190/883	Wideband, Fast Settling Operational Amplifier		3-462
HA-5221/883	Low Noise, Wideband, Precision Operational Amplifier	3-164	-
HA-5222/883	Dual, Low Noise, Wideband, Precision Operational Amplifier	3-169	
HA-5320/883	High Speed Precision Sample and Hold Amplifier	7-3	-
HA-5330/883	Very High Speed Precision Monolithic Sample and Hold Amplifier		7-16
HA-5340/883	High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier.	7-8	
HA-5351/883	Fast Acquisition, Low Power Sample and Hold Amplifier	7-13	-
HA-5352/883	Fast Acquisition Dual Sample and Hold Amplifier	7-14	-
HC-55564/883	Continuously Variable Slope Delta-Modulator (CVSD)	6-3	-
HFA1100/883	850MHz Current Feedback Amplifier	3-174	-
HFA1110/883	750MHz, Low Distortion Unity Gain, Closed Loop Buffer	3-179	-
HFA1112/883	Ultra High Speed Programmable Gain Buffer Amplifier	3-184	-
HFA1113/883	Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier \dots	3-189	-
HFA1115/883	$\label{thm:light} \mbox{High Speed, Low Power, Output Limiting Closed Loop Buffer Amplifier} \ \ldots \ .$	3-194	-
HFA1120/883	850MHz Current Feedback Amplifier with Offset Adjust	3-199	-

		MILITARY SUPPLEMENT PAGE	1989 MILITARY DATABOOK PAGE
HFA1130/883	Output Clamping, 850MHz Current Feedback Amplifier	3-204	-
HFA1135/883	High Speed, Low Power Current Feedback Amplifier with Programmable Output Limiting.	3-209	
HFA1145/883	High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable		
HFA1212/883	Dual, High Speed, Low Power, Video Closed Loop Buffer	3-219	-
HFA1245/883	Dual, High Speed, Low Power, Video Operational Amplifier with Output Disable	3-224	
HFA1412/883	Quad, High Speed, Low Power, Video Closed Loop Buffer	3-230	
HI-200/883	Dual SPST CMOS Analog Switch	-	4-3
HI-201/883	Quad SPST CMOS Analog Switch		4-13
HI-201HS/883	High Speed Quad SPST CMOS Analog Switch		4-23
HI-222/883	Dual SPST High Frequency/Video Switch		4-34
HI-300/883	Dual SPST CMOS Analog Switch		4-46
HI-301/883	SPDT CMOS Analog Switch		4-57
HI-302/883	Dual DPST CMOS Analog Switch		4-68
HI-303/883	Dual SPDT CMOS Analog Switch		4-79
HI-304/883	Dual SPST CMOS Analog Switch	- 1	4-90
HI-305/883	SPDT CMOS Analog Switch	-	4-101
HI-306/883	Dual DPST CMOS Analog Switch		4-112
HI-307/883	Dual SPDT CMOS Analog Switch		4-123
HI-381/883	Dual SPST CMOS Analog Switch		4-134
HI-384/883	Dual DPST CMOS Analog Switch		4-145
HI-387/883	SPDT CMOS Analog Switch		4-156
HI-390/883	Dual SPDT CMOS Analog Switch		4-167
HI-506/883	Single 16 Channel CMOS Analog Multiplexer		5-3
HI-507/883	Differential 8 Channel CMOS Analog Multiplexer		5-3
HI-508/883	Single 8 Channel CMOS Analog Multiplexer		5-14
HI-509/883	Differential 4 Channel CMOS Analog Multiplexer		5-14
HI-516/883	16 Channel/Differential 8 Channel CMOS High Speed Analog Multiplexer	-	5-25
HI-518/883	8 Channel/Differential 4 Channel CMOS High Speed Analog Multiplexer		5-36
HI-524/883	4 Channel Wideband Multiplexer		5-47
HI-546/883	Single 16 Channel CMOS Analog Multiplexer With Active Overvoltage Protection.		5-59
HI-547/883	Differential 8 Channel CMOS Analog Multiplexer With Active Overvoltage Protection.		5-59

1989

		MILITARY SUPPLEMENT PAGE	MILITARY DATABOOK PAGE
HI-548/883	Single 8 Channel CMOS Analog Multiplexer With Active Overvoltage Protection.	-	5-70
HI-549/883	Differential 4 Channel CMOS Analog Multiplexer With Active Overvoltage Protection.		5-70
HI-562A/883	12-Bit High Speed Monolithic Digital-to-Analog Converter	-	OBSOLETE
HI-565A/883	High Speed, Monolithic Digital-to-Analog Converter With Reference	-	6-16
HI-574A/883	Fast, Complete 12-Bit A/D Converter With Microprocessor Interface	-	6-47
HI-674A/883	Fast, Complete 12-Bit A/D Converter With Microprocessor Interface	-	6-78
HI-774/883	Fast, Complete 12-Bit A/D Converter With Microprocessor Interface	-	6-109
HI-1818A/883	Low Resistance Single 8 Channel CMOS Analog Multiplexer	-	5-81
HI-1828A/883	Low Resistance Differential 4 Channel CMOS Analog Multiplexer	-	5-81
HI-5040/883	SPST CMOS Analog Switch		4-178
HI-5041/883	Dual SPST CMOS Analog Switch	-	4-189
HI-5042/883	SPDT CMOS Analog Switch	-	4-200
HI-5043/883	Dual SPDT CMOS Analog Switch	-	4-212
HI-5044/883	DPST CMOS Analog Switch	-	4-224
HI-5045/883	Dual DPST CMOS Analog Switch	-	4-235
HI-5046/883	DPDT CMOS Analog Switch	-	4-247
HI-5046A/883	DPDT CMOS Analog Switch		4-247
HI-5047/883	4PST CMOS Analog Switch		4-259
HI-5047A/883	4PST CMOS Analog Switch	-	4-259
HI-5048/883	Dual SPST CMOS Analog Switch		4-271
HI-5049/883	Dual DPST CMOS Analog Switch		4-235
HI-5050/883	SPDT CMOS Analog Switch	•	4-200
HI-5051/883	Dual SPDT CMOS Analog Switch		4-212
HI-5687V/883	Wide Temperature Range Monolithic 12-Bit Digital-to-Analog Converter	-	OBSOLETE
HI-5700/883	8-Bit, 20 MSPS Flash A/D Converter.	6-8	- "
HI-5701/883	6-Bit, 30 MSPS Flash A/D Converter.	6-14	-

PRODUCT INDEX BY FAMILY

		MILITARY SUPPLEMENT PAGE	MILITARY DATABOOI PAGE
ANALOG TO	DIGITAL CONVERTERS		
HI-574A/883	Fast, Complete 12-Bit A/D Converter With Microprocessor Interface		6-47
HI-674A/883	Fast, Complete 12-Bit A/D Converter With Microprocessor Interface		6-78
HI-774/883	Fast, Complete 12-Bit A/D Converter With Microprocessor Interface		6-109
HI-5700/883	8-Bit, 20 MSPS Flash A/D Converter	6-8	- "
HI-5701/883	6-Bit, 30 MSPS Flash A/D Converter	6-14	-
ANALOG MI	ULTIPLIERS		
HA-2546/883	Wideband Two Quadrant Analog Multiplier (Voltage Output)	8-3	
HA-2556/883	Wideband Four Quadrant Analog Multiplier (Voltage Output)	8-7	
HA-2557/883	Wideband Four Quadrant Analog Multiplier (Current Output)	8-12	- ,
CMOS ANAI	LOG MULTIPLEXERS		
DG406/883	Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers	5-3	
DG407/883	Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers	5-3	- 1
DG408/883	Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers	5-4	
DG409/883	Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers	5-4	-
DG458/883	Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers	5-11	
DG459/883	Multiplexers	5-11	•
DG459/665	Multiplexers	5-11	-
HI-506/883	Single 16 Channel CMOS Analog Multiplexer		5-3
HI-507/883	Differential 8 Channel CMOS Analog Multiplexer		5-3
HI-508/883	Single 8 Channel CMOS Analog Multiplexer		5-14
HI-509/883	Differential 4 Channel CMOS Analog Multiplexer		5-14
HI-516/883	16 Channel/Differential 8 Channel CMOS High Speed Analog Multiplexer		5-25
HI-518/883	8 Channel/Differential 4 Channel CMOS High Speed Analog Multiplexer		5-36
HI-524/883	4 Channel Wideband Multiplexer		5-47
HI-546/883	Single 16 Channel CMOS Analog Multiplexer With Active Overvoltage Protection.	-	5-59
HI-547/883	Differential 8 Channel CMOS Analog Multiplexer With Active Overvoltage Protection.		5-59
HI-548/883	Single 8 Channel CMOS Analog Multiplexer With Active Overvoltage Protection.		5-70
HI-549/883	Differential 4 Channel CMOS Analog Multiplexer With Active Overvoltage Protection.		5-70
HI-1818A/883	Low Resistance Single 8 Channel CMOS Analog Multiplexer		5-81
HI-1828A/883	Low Resistance Differential 4 Channel CMOS Analog Multiplexer	-	5-81

		MILITARY SUPPLEMENT PAGE	1989 MILITARY DATABOOK PAGE
CMOS ANAI	LOG SWITCHES		
DG401/883	Monolithic CMOS Analog Switches	4-3	
DG403/883	Monolithic CMOS Analog Switches	4-3	
DG405/883	Monolithic CMOS Analog Switches	4-3	
DG411/883	Monolithic Quad SPST CMOS Analog Switches	4-9	
DG412/883	Monolithic Quad SPST CMOS Analog Switches	4-9	-
DG413/883	Monolithic Quad SPST CMOS Analog Switches	4-9	-
DG441/883	Monolithic Quad SPST CMOS Analog Switches	4-15	
DG442/883	Monolithic Quad SPST CMOS Analog Switches	4-15	
HI-200/883	Dual SPST CMOS Analog Switch		4-3
HI-201/883	Quad SPST CMOS Analog Switch		4-13
HI-201HS/883	High Speed Quad SPST CMOS Analog Switch	-	4-23
HI-300/883	Dual SPST CMOS Analog Switch		4-46
HI-301/883	SPDT CMOS Analog Switch		4-57
HI-302/883	Dual DPST CMOS Analog Switch		4-68
HI-303/883	Dual SPDT CMOS Analog Switch		4-79
HI-304/883	Dual SPST CMOS Analog Switch	-	4-90
HI-305/883	SPDT CMOS Analog Switch		4-101
HI-306/883	Dual DPST CMOS Analog Switch	-	4-112
HI-307/883	Dual SPDT CMOS Analog Switch		4-123
HI-381/883	Dual SPST CMOS Analog Switch		4-134
HI-384/883	Dual DPST CMOS Analog Switch		4-145
HI-387/883	SPDT CMOS Analog Switch		4-156
HI-390/883	Dual SPDT CMOS Analog Switch		4-167
HI-5040/883	SPST CMOS Analog Switch	-	4-178
HI-5041/883	Dual SPST CMOS Analog Switch		4-189
HI-5042/883	SPDT CMOS Analog Switch		4-200
HI-5043/883	Dual SPDT CMOS Analog Switch	-	4-212
HI-5044/883	DPST CMOS Analog Switch	-	4-224
HI-5045/883	Dual DPST CMOS Analog Switch		4-235
HI-5046/883	DPDT CMOS Analog Switch		4-247
HI-5046A/883	DPDT CMOS Analog Switch	-	4-247
HI-5047/883	4PST CMOS Analog Switch	-	4-259
HI-5047A/883	4PST CMOS Analog Switch	-	4-259
HI-5048/883	Dual SPST CMOS Analog Switch		4-271
HI-5049/883	Dual DPST CMOS Analog Switch	-	4-235
HI-5050/883	SPDT CMOS Analog Switch	•	4-200
HI-5051/883	Dual SPDT CMOS Analog Switch	-	4-212

		MILITARY SUPPLEMENT PAGE	1989 MILITARY DATABOOK PAGE
COMPARAT	OR		
HA-4902/883	Precision Quad Comparator		3-174
DATA CONV	ZERTERS		
HC-55564/883	Continuously Variable Slope Delta-Modulator (CVSD)	6-3	-
HI-5700/883	8-Bit, 20 MSPS Flash A/D Converter	6-8	
HI-5701/883	6-Bit, 30 MSPS Flash A/D Converter.	6-14	-
DIGITAL TO	ANALOG CONVERTERS		
HI-562A/883	12-Bit High Speed Monolithic Digital-to-Analog Converter		OBSOLETE
HI-565A/883	High Speed, Monolithic Digital-to-Analog Converter With Reference		6-16
HI-5687V/883	Wide Temperature Range Monolithic 12-Bit Digital-to-Analog Converter	-	OBSOLETE
OPERATION	NAL AMPLIFIERS		
HA-2400/883	PRAM Four Channel Programmable Operational Amplifier	-	3-3
HA-2444/883	Selectable, Four Channel Video Operational Amplifier	3-3	
HA-2500/883	Precision High Slew Rate Operational Amplifiers	3-8	
HA-2502/883	Precision High Slew Rate Operational Amplifiers	. 3-8	
HA-2510/883	High Slew Rate Operational Amplifiers	. 3-13	
HA-2512/883	High Slew Rate Operational Amplifiers	. 3-13	
HA-2520/883	Uncompensated, High Slew Rate Operational Amplifiers	3-18	-
HA-2522/883	Uncompensated, High Slew Rate Operational Amplifiers	. 3-18	
HA-2529/883	Uncompensated, High Slew Rate High Output Current, Operational Amplifier.	. 3-23	
HA-2539/883	Very High Slew Rate Wideband Operational Amplifier		3-63
HA-2540/883	Wideband, Fast Settling Operational Amplifier		3-75
HA-2541/883	Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier	. 3-28	
HA-2542/883	Wideband, High Slew Rate, High Output Current, Operational Amplifier		3-99
HA-2544/883	Video Operational Amplifier	. 3-33	
HA-2548/883	Precision, High Slew Rate, Wideband Operational Amplifier	. 3-38	
HA-2600/883	Wideband, High Impedance Operational Amplifiers	. 3-43	
HA-2602/883	Wideband, High Impedance Operational Amplifiers	. 3-43	-
HA-2620/883	Very Wideband, High Impedance Uncompensated Operational Amplifier		3-138
HA-2622/883	Very Wideband, High Impedance Uncompensated Operational Amplifier		3-138
HA-2640/883	High Voltage Operational Amplifier	. 3-48	-
HA-2839/883	Very High Slew Rate, Wideband Operational Amplifier	. 3-53	-
HA-2840/883	Very High Slew Rate, Wideband Operational Amplifier	. 3-58	

1989

		MILITARY SUPPLEMENT PAGE	MILITARY DATABOOK PAGE
OPERATION	NAL AMPLIFIERS (Continued)		
HA-2841/883	Wideband, Fast Settling, Unity Gain Stable, Video Operational Amplifier	3-63	
HA-2842/883	Wideband, High Slew Rate, High Output Current, Video Operational		
	Amplifier		-
HA-2850/883	Low Power, High Slew Rate, Wideband Operational Amplifier		•
HA-4741/883	Quad Operational Amplifier		-
HA-5002/883	Monolithic, Wideband, High Slew Rate, High Output Current Buffer		-
HA-5004/883	100MHz Current Feedback Amplifier	3-89	-
HA-5020/883	100MHz Current Feedback Video Amplifier with Disable	3-94	•
HA5022/883	Dual 100MHz Video Current Feedback Amplifier with Disable	3-100	-
HA5023/883	Dual 100MHz Video Current Feedback Amplifier	3-105	-
HA-5033/883	Video Buffer	-	3-199
HA-5101/883	Low Noise, High Performance Operational Amplifier	-	3-212
HA-5102/883	Dual, Low Noise, High Performance Operational Amplifier	3-109	-
HA-5104/883	Low Noise, High Performance, Quad Operational Amplifier	3-114	-
HA-5111/883	Low Noise, High Performance Uncompensated Operational Amplifier	-	3-254
HA-5112/883	Dual, Low Noise, High Performance Uncompensated Operational Amplifier	3-119	-
HA-5114/883	Quad, Low Noise, High Performance Uncompensated Operational		
	Amplifier	3-124	-
HA-5127/883	Ultra Low Noise, Precision Operational Amplifier	3-129	
HA-5134/883	Precision Quad Operational Amplifier	3-134	-
HA-5135/883	Precision Operational Amplifier	3-139	-
HA-5137/883	Ultra Low Noise, Precision Wideband Operational Amplifier	3-144	-
HA-5141/883	Single, Ultra-Low Power Operational Amplifier	-	OBSOLETE
HA-5142/883	Dual, Ultra Low Power Operational Amplifier	3-149	-
HA-5144/883	Quad, Ultra-Low Power Operational Amplifier		3-378
HA-5147/883	Ultra Low Noise, Precision, High Slew Rate Wideband Operational Amplifier	3-154	-
HA-5151/883	Single, Low Power Operational Amplifier	-	OBSOLETE
HA-5152/883	Dual, Low Power Operational Amplifier		OBSOLETE
HA-5154/883	Quad, Low Power Operational Amplifier		OBSOLETE
HA-5177/883	Ultra Low Offset Voltage Operational Amplifier		
HA-5190/883	Wideband, Fast Settling Operational Amplifier		3-462
HA-5221/883	Low Noise, Wideband, Precision Operational Amplifier.		
HA-5222/883	Dual, Low Noise, Wideband, Precision Operational Amplifier		
HFA1100/883	850MHz Current Feedback Amplifier.		
HFA1110/883	750MHz, Low Distortion Unity Gain, Closed Loop Buffer		
		0 170	

		MILITARY SUPPLEMENT PAGE	1989 MILITARY DATABOOK PAGE
OPERATION	NAL AMPLIFIERS (Continued)		
HFA1112/883	Ultra High Speed Programmable Gain Buffer Amplifier	3-184	
HFA1113/883	Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier	3-189	
HFA1115/883	High Speed, Low Power, Output Limiting Closed Loop Buffer Amplifier	3-194	
HFA1120/883	850MHz Current Feedback Amplifier with Offset Adjust	3-199	
HFA1130/883	Output Clamping, 850MHz Current Feedback Amplifier	3-204	
HFA1135/883	High Speed, Low Power Current Feedback Amplifier with Programmable Output Limiting.	3-209	
HFA1145/883	High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable	3-214	-
HFA1212/883	Dual, High Speed, Low Power, Video Closed Loop Buffer	3-219	-
HFA1245/883	Dual, High Speed, Low Power, Video Operational Amplifier with Output Disable	3-224	-
HFA1412/883	Quad, High Speed, Low Power, Video Closed Loop Buffer	3-230	
SAMPLE AI	ND HOLD AMPLIFIERS		
HA-2420/883	Fast Sample and Hold	-	7-3
HA-5320/883	High Speed Precision Sample and Hold Amplifier	7-3	•
HA-5330/883	Very High Speed Precision Monolithic Sample and Hold Amplifier		7-16
HA-5340/883	High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier	7-8	-
HA-5351/883	Fast Acquisition, Low Power Sample and Hold Amplifier	7-13	
HA-5352/883	Fast Acquisition Dual Sample and Hold Amplifier	7-14	
TELECOM I	PRODUCT		
HC-55564/883	Continuously Variable Slope Delta-Modulator (CVSD)	6-3	-
VIDEO SWI			
HI-222/883	Dual SPST High Frequency/Video Switch	-	4-34

2

ANALOG

MILITARY PROGRAMS

	PAGE
HARRIS MILITARY GRADE LEVELS	2-2
MILITARY GRADE PRODUCT OFFERINGS	2-2
NON-STANDARD PRODUCT OFFERINGS	2-2
HARRIS ANALOG/DSP MILITARY PART NUMBER LISTING	2-3

Harris Military Grade Levels

MIL-STD-883 describes several levels or "grades" of screening for microcircuits. Although basic circuit design and manufacturing process technology may be identical, differences in testing, documentation, and product assurance criteria are

designed to guarantee the needed reliability levels for a particular application. Harris offers two basic levels of standard products.

MILITARY GRADE	APPLICATION
Class S	Spacecraft and other "Hi-Rel" systems which require long term reliability in a harsh environment. Applications are frequently life-critical and component replacement is costly or impossible. Harris class S or equivalent product is used in military, commercial, and scientific satellite systems as well as medical implantible and nuclear powerplant applications.
Class B	Military Systems for harsh applications requiring performance over an extended temperature range. Harris class B and equivalent product is used in aerospace, strategic, tactical, and secure communications systems as well as low priority space and commercial aircraft applications.

Military Grade Product Offerings

Harris military grade product is offered in the following levels. For detailed process flows and specific quality and reliability information, refer to section 10.

JAN - JOINT ARMY NAVY

(Indicated by DESC Issued "Slash Sheet" Number)
Fully compliant to MIL-I-38535. Changes must be approved by DESC who also maintains a continuing audit of manufacturing compliance (class S and class B).

• SMD - STANDARD MICROCIRCUIT DRAWING

(Indicated by DESC Part Number)

Fully compliant to MIL-STD-883. Major changes must be approved by DESC (currently applies to class B only).

HARRIS CLASS B COMPLIANT

(Indicated by /883 or /883B Suffix on Harris Part Number)

Fully compliant to MIL-STD-883 Paragraph 1.2.1.

• HARRIS CLASS B "EQUIVALENT"

(Indicated by -8 Suffix on Harris Part Number)
Exceptions to MIL-STD-883 per individual data sheet.

HARRIS CLASS S "EQUIVALENT"

(Indicated by -Q Suffix on Harris Part Number)
Exceptions to MIL-STD-883 per individual data sheet.

Non-Standard Product Offerings

Harris understands the need for customer generated Source Control Drawings (SCDs) with non-standard parameter and/ or screening requirements. A Customer Engineering Department is responsible for efficiently expediting your SCDs through a comprehensive review process. The Customer Engineering Group compares your SCD to its closest equivalent grade device type and works closely with the Product Engineer, Manufacturing Engineer, Design Engineer, or applicable individual to compare Harris' screening ability against your non-standard requirement(s). For product processed to non-standard requirements, a unique part number suffix is assigned.

Harris shares the military's objective to utilize standards wherever possible. We recommend using our /883 data sheet as the guideline for your SCD's. In instances where an available military specification or Harris /883 datasheet is inappropriate, it is Harris' sincerest wish to work closely with the buyer in establishing an acceptable procurement document. For this reason, the customer is requested to contact the nearest Harris Sales Office or Representative before finalizing the Source Control Drawing. Harris looks forward to working with the customer prior to implementation of the formal drawing so that both parties may create a mutually acceptable procurement document.

Harris Analog/DSP Military Part Number Listing -

MIL-STD-883 PART NO.	DESC/SMD PART NO.	JAN JM38510 PART NO.	HARRIS DATASHEET AnswerFAX NO. (NOTE 3)
DG181AA/883B			-
DG181AP/883B			-
DG182AA/883B			
DG182AP/883B			
DG184AP/883B			-
DG185AP/883B			
DG187AA/883B			•
DG187AP/883B			
DG188AA/883B			-
DG188AP/883B			
DG190AP/883B			•
DG191AP/883B			
DG200AA/883B			
DG200AK/883B			-
DG201AAK/883B	7705301EA	/12302BEA	3117
DG201AK/883B			
DG202AK/883B			
DG300AAA/883B			-
DG300AAK/883B			
DG300AAP		/11601BCA	
DG301AAA/883B			-
DG301AAK/883B			-
DG301AAP		/11602BCA	3119
DG302AAK/883B			3119
DG302AAP		/11603BCA	3119
DG303AAK/883B			3119
DG303AAP		/11604BCA	3119
DG308AAK/883B			-
DG309AAK/883B			-
DG401AK/883	5962-9056901EA		3703
DG403AK/883	5962-8976301MEA		3703
DG405AK/883	5962-8996101EA		3703
DG406AK/883			3720
DG407AK/883			3720
DG408AK/883	5962-9204201MEA		3688
DG409AK/883	5962-9204202MEA		3688
DG411AK/883	5962-9073101MEA		3681
DG412AK/883	5962-9073102MEA		3681
DG413AK/883	5962-9073103MEA		3681

- 1. In sequence by 2-character prefix (e.g. HA) then base p/n (e.g. 2400) of MIL-STD-883 part number.
- 2. DESC/SMD part may have different /better electricals than the MIL-STD-883 part number listed.
- 3. See Section 13 on "How to Use AnswerFAX".

MIL-STD-883 PART NO.	DESC/SMD PART NO.	JAN JM38510 PART NO.	HARRIS DATASHEET AnswerFAX NO. (NOTE 3)
DG441AK/883	5962-9204101MEA		3687
DG442AK/883	5962-9204102MEA		3687
DG458AK/883			3708
DG459AK/883			3708
DG506AAK/883B			
DG507AAK/883B			-
DG508AAK/883B			-
DG509AAK/883B	'		
DG526AK/883B			
DG527AK/883B			
DG528AK/883B			
DG529AK/883B			-
HA1-2400/883	5962-8778301EA		3926
HA4-2400/883	5962-87783012A		3926
HA1-2420/883	8001601CA		
HA4-2420/883	80016012A		
HA1-2444/883	5962-9309501MEA		3608
HA2-2500/883		/12204BGA	3734
HA7-2500/883		/12204BPA	3734
HA2-2502/883			3734
HA4-2502/883			3734
HA7-2502/883			3734
HA2-2510/883		/12205BGA	3697
HA7-2510/883		/12205BPA	3697
HA2-2512/883			3697
HA4-2512/883			3697
HA7-2512/883			3697
HA2-2520/883	5962-8988001GC	/12206BGA	3735
HA7-2520/883	5962-8988001PA	/12206BPA	3735
HA2-2522/883	5962-8988001GC		3735
HA4-2522/883	5962-89880012A		3735
HA7-2522/883	5962-8988001PA		3735
HA2-2529/883	5962-8972101GC		3736
HA4-2529/883	5962-89721012A		3736
HA7-2529/883	5962-8972101PA		3736
HA1-2539/883	5962-8778701CA		3927
HA4-2539/883	5962-87787012A		3927
HA1-2540/883	5962-8964801CA		3929
HA4-2540/883	5962-89648012A		3929
HA1-2541/883	5962-8778501CA		2898

- 1. In sequence by 2-character prefix (e.g. HA) then base p/n (e.g. 2400) of MIL-STD-883 part number.
- $2. \ \ \mathsf{DESC/SMD} \ \mathsf{part} \ \mathsf{may} \ \mathsf{have} \ \mathsf{different} \ \mathsf{/better} \ \mathsf{electricals} \ \mathsf{than} \ \mathsf{the} \ \mathsf{MIL-STD-883} \ \mathsf{part} \ \mathsf{number} \ \mathsf{listed}.$
- 3. See Section 13 on "How to Use AnswerFAX".

MIL-STD-883 PART NO.	DESC/SMD PART NO.	JAN JM38510 PART NO.	HARRIS DATASHEET AnswerFAX NO. (NOTE 3)
HA2-2541/883	5962-8778501XC		3698
HA2-2542/883	5962-8964301XC		3928
HA2-2544/883	5962-8950201GC		3699
HA4-2544/883	5962-89502012A		3699
HA7-2544/883	5962-8950201PA		3699
HA1-2546/883	5962-9325101MEA		2444
HA4-2546/883	5962-9325101M2A		2444
HA2-2548/883			2472
HA7-2548/883			2472
HA1-2556/883	Pending		3619
HA1-2557/883	Pending		3638
HA2-2600/883		/12202BGA	3700
HA7-2600/883		/12202BPA	3700
HA2-2602/883			3700
HA7-2602/883			3700
HA2-2620/883		/12203BGA	3701
HA7-2620/883		/12203BPA	3701
HA2-2622/883			3701
HA7-2622/883			3701
HA2-2640/883	7800302GC		3702
HA4-2640/883	78003022A		3702
HA7-2640/883	7800302PA		3702
HA1-2839/883			3593
HA1-2840/883		1	3594
HA7-2840/883	5962-9467901MPA		3594
HA1-2841/883	5962-8778503CA		3621
HA7-2841/883	5962-8778503PA		3621
HA1-2842/883			3622
HA7-2842/883	5962-94694MPA		3622
HA1-2850/883			3595
HA7-2850/883			3595
HA1-4741/883			3704
HA4-4741/883			3704
HA1-4902/883	5962-8686001EA		3929
HA4-4902/883	5962-86860012A		3929
HA2-5002/883	5962-8963601GC		3705
HA4-5002/883	5962-89636012A		3705
HA7-5002/883	5962-8963601PA		3705
HA1-5004/883			3706

- 1. In sequence by 2-character prefix (e.g. HA) then base p/n (e.g. 2400) of MIL-STD-883 part number.
- 2. DESC/SMD part may have different /better electricals than the MIL-STD-883 part number listed.
- 3. See Section 13 on "How to Use AnswerFAX".

MIL-STD-883 PART NO.	DESC/SMD PART NO.	JAN JM38510 PART NO.	HARRIS DATASHEET AnswerFAX NO. (NOTE 3)
HA4-5020/883	5962-89620012A		3541
HA7-5020/883	5962-8962001PA		3541
HA5022MJ/883			3729
HA5023MJ/883			3730
HA2-5033/883	5962-8963301XC		3930
HA2-5101/883			3931
HA4-5101/883	5962-89635012A		3931
HA7-5101/883	5962-8963501PA		3931
HA2-5102/883	5962-8954801GC		3709
HA4-5102/883	5962-89548012A		3709
HA7-5102/883	5962-8954801PA		3709
HA1-5104/883	5962-8850201CA		3710
HA4-5104/883	5962-88502012A		3710
HA2-5111/883	5962-8963101GC		3932
HA4-5111/883	5962-89631012A		3932
HA7-5111/883	5962-8963101PA		3932
HA2-5112/883	5962-8963201GC		3711
HA4-5112/883	5962-89632012A		3711
HA7-5112/883	5962-8963201PA		3711
HA1-5114/883	5962-8963401CA		3712
HA4-5114/883	5962-89634012A		3712
HA2-5127/883	5962-8962701GC		3751
HA4-5127/883	5962-89627012A		3751
HA7-5127/883	5962-8962701PA		3751
HA1-5134/883	5962-9455301MCA		3713
HA4-5134/883	5962-9455301M2A		3713
HA2-5135/883			3731
HA4-5135/883			3731
HA7-5135/883			3731
HA2-5137/883	5962-8962702GC		3714
HA4-5137/883	5962-89627022A		3714
HA7-5137/883	5962-8962702PA		3714
HA2-5142/883	5962-8965602GC		3732
HA4-5142/883	5962-89656022A		3732
HA7-5142/883	5962-8965602PA		3732
HA1-5144/883	5962-8965603CA		3934
HA4-5144/883	5962-89656032A		3934
HA2-5147/883	5962-8962703GC		3715
HA4-5147/883	5962-89627032A		3715

- 1. In sequence by 2-character prefix (e.g. HA) then base p/n (e.g. 2400) of MIL-STD-883 part number.
- 2. DESC/SMD part may have different /better electricals than the MIL-STD-883 part number listed.
- 3. See Section 13 on "How to Use AnswerFAX".

MIL-STD-883 PART NO.	DESC/SMD PART NO.	JAN JM38510 PART NO.	HARRIS DATASHEET AnswerFAX NO. (NOTE 3)
HA7-5147/883	5962-8962703PA		3715
HA2-5177/883			3733
HA4-5177/883			3733
HA7-5177/883			3733
HA1-5190/883	5962-8778401CA		-
HA2-5190/883	5962-8778401XC		-
HA4-5190/883	5962-87784012A		-
HA2-5221/883			3716
HA4-5221/883	5962-9163401M2A		3716
HA7-5221/883	5962-9163401MPA		3716
HA4-5222/883	5962-9163402M2A		3717
HA7-5222/883	5962-9163402MPA		3717
HA1-5320/883	5962-9306302MCA		2927
HA4-5320/883	5962-9306302M2A		2927
HA1-5330/883	5962-8767701CA		3935
HA4-5330/883	5962-87677012A		3935
HA1-5340/883	5962-9306301MCA		2452
HA4-5340/883	5962-9306301M2A		2452
HA5351MJ/883			
HA5352MJ/883			-
HFA1100MJ/883	5962-9467601MPA		3615
HFA1110MJ/883	5962-9468301MPA		3620
HFA1112MJ/883			3610
HFA1113MJ/883	5962-9468201MPA		3618
HFA1113ML/883	5962-9468201M2A		3618
HFA1115MJ/883			3724
HFA1120MJ/883	5962-9468501MPA		3617
HFA1130MJ/883	5962-9467701MPA		3625
HFA1130ML/883	5962-9467701M2A		3625
HFA1135MJ/883			3725
HFA1135ML/883			3725
HFA1145MJ/883			3726
HFA1212MJ/883			3742
HFA1245MJ/883			3743
HFA1412MJ/883			3744
HI1-0200/883			
HI4-0200/883			-
HI1-0201/883	7705302EA		
HI4-0201/883	77053022A		

NOTE

- 1. In sequence by 2-character prefix (e.g. HA) then base p/n (e.g. 2400) of MIL-STD-883 part number.
- 2. DESC/SMD part may have different /better electricals than the MIL-STD-883 part number listed.
- 3. See Section 13 on "How to Use AnswerFAX".

MIL-STD-883 PART NO.	DESC/SMD PART NO.	JAN JM38510 PART NO.	HARRIS DATASHEET AnswerFAX NO. (NOTE 3)
HI1-0201HS/883	5962-8671601EA		-
HI4-0201HS/883	5962-86716012A		
HI1-0222/883	5962-9456201MXA		•
HI4-0222/883	5962-9456201M2A		-
HI2-0300/883			
HI1-0301/883			•
HI1-0302/883			-
HI1-0306/883			
HI1-0307/883			-
HI1-0384/883			-
HI1-0390/883			-
HI1-0506/883	5962-8513107XA	/19001BXA	-
HI4-0506/883	5962-85131073A		-
HI1-0507/883	5962-8513108XA	/19003BXA	-
HI4-0507/883	5962-85131083A		-
HI1-0508/883	7705201EC	/19007BEA	-
HI4-0508/883	77052012A		-
HI1-0509/883	5962-8513109EA	/19008BEA	-
HI4-0509/883	5962-85131092A		-
HI1-0516/883	5962-8869901XA		3146
HI4-0516/883	5962-88699013A		3146
HI1-0518/883			-
HI4-0518/883			-
HI1-0524/883	5962-8761801VA		3148
HI1-0546/883	5962-8513101XA	/19002BXA	-
HI4-0546/883	5962-85131013A		-
HI1-0547/883	5962-8513102XA	/19004BXA	-
HI4-0547/883	5962-85131023A		-
HI1-0548/883	7705202EA	/19005BEA	-
HI4-0548/883	77052022A		•
HI1-0549/883	5962-8513103EA	/19006BEA	-
HI4-0549/883	5962-85131032A		-
HI1-565ASD/883			-
HI1-565ATD/883			-
HI1-574ASD/883			
HI1-574ATD/883	5962-8512704XA		
HI1-574AUD/883	5962-8512703XA		
HI4-574ASE/883			-
HI4-574ATE/883	5962-8512704YA		-

- 1. In sequence by 2-character prefix (e.g. HA) then base p/n (e.g. 2400) of MIL-STD-883 part number.
- 2. DESC/SMD part may have different /better electricals than the MIL-STD-883 part number listed.
- 3. See Section 13 on "How to Use AnswerFAX".

MIL-STD-883 PART NO.	DESC/SMD PART NO.	JAN JM38510 PART NO.	HARRIS DATASHEET AnswerFAX NO. (NOTE 3)
HI4-574AUE/883	5962-8512703YA		-
HI1-674ASD/883			
HI1-674ATD/883	1		-
HI1-674AUD/883			-
HI4-674ASE/883			-
HI4-674ATE/883			-
HI4-674AUE/883			-
HI1-774S/883			-
HI1-774T/883			-
HI1-774U/883			-
HI4-774S/883			-
HI4-774T/883			-
HI4-774U/883			-
HI1-1818A/883			-
HI1-1828A/883			-
HI1-5040/883	8100609EA		-
HI1-5041/883	8100610EA		-
HI1-5042/883	8100611EA		-
HI1-5043/883	8100612EA	,	-
HI4-5043/883	81006122A		-
HI1-5044/883	8100613EA		-
HI1-5045/883	8100614EA		-
HI4-5045/883	81006142A		-
HI1-5046/883	8100615EA		-
HI1-5046A/883	8100617EA		-
HI1-5047/883	8100616EA		-
HI1-5047A/883	8100618EA		-
HI1-5048/883	8100619EA		-
HI1-5049/883	8100620EA		-
HI4-5049/883	81006202A		3127
HI1-5050/883	8100621EA		
HI1-5051/883	8100622EA		-
HI4-5051/883	81006222A		
HI1-5700S/883	5962-9467801MXA		
HI1-5701T/883			3378
HI1-7153S/883			
HSP43168GM-25/883			3177
HSP43168GM-33/883			3177
HSP43220GM-15/883			2802

- 1. In sequence by 2-character prefix (e.g. HA) then base p/n (e.g. 2400) of MIL-STD-883 part number.
- $2. \ \ \mathsf{DESC/SMD} \ \mathsf{part} \ \mathsf{may} \ \mathsf{have} \ \mathsf{different} \ \mathsf{/better} \ \mathsf{electricals} \ \mathsf{than} \ \mathsf{the} \ \mathsf{MIL-STD-883} \ \mathsf{part} \ \mathsf{number} \ \mathsf{listed}.$
- 3. See Section 13 on "How to Use AnswerFAX".

MIL-STD-883 PART NO.	DESC/SMD PART NO.	JAN JM38510 PART NO.	HARRIS DATASHEET AnswerFAX NO. (NOTE 3)
HSP43220GM-25/883			2802
HSP43481GM-20/883			2450
HSP43481GM-25/883			2450
HSP43881GM-20/883			2449
HSP43881GM-25/883			2449
HSP43891GM-20/883	5962-9209701MXC		2451
HSP43891GM-25/883	5962-9209702MXC		2451
HSP45106GM-25/883			2815
HSP45116GM-15/883			2813
HSP45116GM-25/883			2813
HSP45240GM-25/883			2816
HSP45240GM-33/883			2816
HSP45240GM-40/883			2816
HSP45256GM-20/883			2997
HSP45256GM-25/883			2997
HSP48410GM-25/883	5962-9457301MXC		3542
HSP48410GM-33/883	5962-9457302MXC		3542
HSP48908GM-20/883	5962-9300701MXC		2783
HSP48908GM-27/883	5962-9300702MXC		2783
ICL7109MDL/883B			
ICL8038AMJD/883B	5962-8877201CA		
ICL8038BMJD/883B			-
ICL8069CMSQ/883B			-
ICL8069DMSQ/883B			-
ICM7555MTV/883B	5962-8950303GC		-
ICM7556MJD/883B	5962-8950304CA		-
H5012MDE/883B			
IH5043MJE/883B			-
H5140MJE/883B	8100609EA		-
H5141MJE/883B	8100610EA		-
IH5142MJE/883B	8100611EA		-
IH5143MJE/883B	8100612EA		-
H5144MJE/883B	8100613EA		-
IH5145MJE/883B	8100614EA		-
IH5151MJE/883B	8100622EA		
IH5341MTW/883B			
IH5352MJE/883B	5962-8875001EA		-
H6108MJE/883B	7705201EA		
H6201MJE/883B			
IH6208MJE/883B			

- 1. In sequence by 2-character prefix (e.g. HA) then base p/n (e.g. 2400) of MIL-STD-883 part number.
- 2. DESC/SMD part may have different /better electricals than the MIL-STD-883 part number listed.
- 3. See Section 13 on "How to Use AnswerFAX".

ANALOG

3

OPERATIONAL AMPLIFIERS

			PAGE
0	PERATIONAL AMPL	IFIER DATA SHEETS	
	HA-2444/883	Selectable, Four Channel Video Operational Amplifier	3-3
	HA-2500/883, HA-2502/883	Precision High Slew Rate Operational Amplifiers	3-8
	HA-2510/883, HA-2512/883	High Slew Rate Operational Amplifiers	3-13
	HA-2520/883, HA-2522/883	Uncompensated, High Slew Rate Operational Amplifiers	3-18
	HA-2529/883	Uncompensated, High Slew Rate High Output Current, Operational Amplifier	3-23
	HA-2541/883	Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier	3-28
	HA-2544/883	Video Operational Amplifier	3-33
	HA-2548/883	Precision, High Slew Rate, Wideband Operational Amplifier	3-38
	HA-2600/883, HA-2602/883	Wideband, High Impedance Operational Amplifiers	3-43
	HA-2640/883	High Voltage Operational Amplifier	3-48
	HA-2839/883	Very High Slew Rate, Wideband Operational Amplifier.	3-53
	HA-2840/883	Very High Slew Rate, Wideband Operational Amplifier	3-58
	HA-2841/883	Wideband, Fast Settling, Unity Gain Stable, Video Operational Amplifier	3-63
	HA-2842/883	Wideband, High Slew Rate, High Output Current, Video Operational Amplifier	3-68
	HA-2850/883	Low Power, High Slew Rate, Wideband Operational Amplifier	3-73
	HA-4741/883	Quad Operational Amplifier	3-78
	HA-5002/883	Monolithic, Wideband, High Slew Rate, High Output Current Buffer	3-83
	HA-5004/883	100MHz Current Feedback Amplifier	3-89
	HA-5020/883	100MHz Current Feedback Video Amplifier with Disable	3-94
	HA5022/883	Dual 100MHz Video Current Feedback Amplifier with Disable	3-10
	HA5023/883	Dual 100MHz Video Current Feedback Amplifier	3-10
	HA-5102/883	Dual, Low Noise, High Performance Operational Amplifier.	3-109

Operational Amplifiers (Continued)

		PAGE
HA-5104/883	Low Noise, High Performance, Quad Operational Amplifier	3-114
HA-5112/883	Dual, Low Noise, High Performance Uncompensated Operational Amplifier	3-119
HA-5114/883	Quad, Low Noise, High Performance Uncompensated Operational Amplifier	3-124
HA-5127/883	Ultra Low Noise, Precision Operational Amplifier	3-129
HA-5134/883	Precision Quad Operational Amplifier	3-134
HA-5135/883	Precision Operational Amplifier	3-139
HA-5137/883	Ultra Low Noise, Precision Wideband Operational Amplifier	3-144
HA-5142/883	Dual, Ultra Low Power Operational Amplifier	3-149
HA-5147/883	Ultra Low Noise, Precision, High Slew Rate Wideband Operational Amplifier	3-154
HA-5177/883	Ultra Low Offset Voltage Operational Amplifier	3-159
HA-5221/883	Low Noise, Wideband, Precision Operational Amplifier	3-164
HA-5222/883	Dual, Low Noise, Wideband, Precision Operational Amplifier	3-169
HFA1100/883	850MHz Current Feedback Amplifier	3-174
HFA1110/883	750MHz, Low Distortion Unity Gain, Closed Loop Buffer	3-179
HFA1112/883	Ultra High Speed Programmable Gain Buffer Amplifier	3-184
HFA1113/883	Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier	3-189
HFA1115/883	High Speed, Low Power, Output Limiting Closed Loop Buffer Amplifier	3-194
HFA1120/883	850MHz Current Feedback Amplifier with Offset Adjust	3-199
HFA1130/883	Output Clamping, 850MHz Current Feedback Amplifier	3-204
HFA1135/883	High Speed, Low Power Current Feedback Amplifier with Programmable Output Limiting	3-209
HFA1145/883	High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable	3-214
HFA1212/883	Dual, High Speed, Low Power, Video Closed Loop Buffer	3-219
HFA1245/883	Dual, High Speed, Low Power, Video Operational Amplifier with Output Disable	3-224
HFA1412/883	Quad, High Speed, Low Power, Video Closed Loop Buffer	3-230

HA-2444/883

Selectable, Four Channel Video Operational Amplifier

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- · Digital Selection of Input Channel
- **Unity Gain Stable**
- Gain Flatness (to 10MHz) 0.12dB (Typ)
- Differential Gain 0.03% (Typ)
- Differential Phase..... 0.03 Degrees (Typ)
- Fast Channel Selection 100ns (Max)
- Crosstalk Rejection 60dB (Typ)

Applications

- Programmable Gain Amplifier
- Special Effects Processors
- Video Distribution Systems/Multiplexers
- · Heads-up/Night Vision Displays
- Radar Video
- Flight Simulators
- IR Imaging

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE			
HA1-2444/883	-55°C to +125°C	16 Lead CerDIP			

Description

The HA-2444/883 is a channel-selectable video op amp consisting of four differential inputs, a single-ended output, and digital control circuitry allowing two digital inputs to activate one of the four differential inputs. The HA-2444/883 also includes a high impedance output state allowing the outputs of multiple HA-2444/883s to be wire-OR'd. Functionally, the HA-2444/883 is equivalent to four wideband video op amps and a wideband multiplexer.

Unlike similar competitor devices, the HA-2444/883 is not restricted to multiplexing. Any op amp configuration can be used with any of the inputs. Signal amplification, addition, integration, and more can be put under digital control with broadcast quality performance.

The key video parameters of the HA-2444/883 have been optimized without compromising DC performance. Gain Flatness, to 10MHz, is only 0.12dB. Differential gain and phase are typically 0.03% and 0.03 degrees, respectively.

Laser trimming allows offset voltages in the 4.0mV range and a unique common current source design assures minimal channelto-channel mismatch, while maintaining 60dB of crosstalk rejection at 5MHz. Open loop gain of 76dB and low input offset and bias currents enhance the performance of this versatile device.

Uses for the HA-2444/883 include video test equipment, guidance systems, radar displays, and other precise imaging systems where stringent gain and phase requirements have previously required costly hybrids and discrete circuitry. It will also be used for systems requiring high speed signal conditioning, such as data acquisition systems, specialized instrumentation, and communications systems.

Pinout

Logic Operation

TRUTH TABLE

EN	D1	D0	SELECTED CHANNEL
Н	L	L	1
Н	L	Н	2
Н	Н	L	3
Н	Н	Н	4
L	Х	Х	NONE-OUT is set to a high impedance state.

- L = Low State (0.8V Max.)
- = High State (2.4V Min.)
- = Don't Care

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright @ Harris Corporation 1994

Spec Number 511091-883 File Number 3608.1

Specifications HA-2444/883

Absolute Maximum Ratings

Thermal Information

Voltage between V+ and V- Terminals 35V Differential Input Voltage. 6V Voltage at Either Input Terminal V+ to V- Voltage on Digital Inputs. GND +7.5V to GND -0.5V Peak Output Current (≤10% Duty Cycle) .40mA Junction Temperature (T _J) +175°C Storage Temperature Range -65°C to +150°C ESD Rating. <2000V	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range.....-55°C to +125°C $V_{INCM} \le 1/2(V + - V -)$ $R_L \ge 1k\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} \le 10pF$, $V_{OUT} = 0V$, $V_{IL} = 0.8V$, $V_{IH} = 2.4V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-7	7	mV
			2, 3	+125°C, -55°C	-20	20	mV
Channel to Channel	V _{IODEV}	V _{CM} = 0V	1	+25°C	-	5	mV
Offset Voltage Mismatch			2, 3	+125°C, -55°C	-	12	mV
Input Bias Current	+l _B	$V_{CM} = 0V, +R_{S} = 250\Omega$	1	+25°C	-15	15	μА
		$-R_S = 50\Omega$	2, 3	+125°C, -55°C	-25	25	μΑ
	-l _B	$V_{CM} = 0V$, $+R_S = 50\Omega$	1	+25°C	-15	15	μА
		$-R_S = 250\Omega$	2, 3	+125°C, -55°C	-25	25	μА
Input Offset Current	I _{IO}	$V_{CM} = 0V, +R_{S} = 250\Omega$	1	+25°C	-4	4	μА
		$-R_S = 250\Omega$	2, 3	+125°C, -55°C	-8	8	μА
Large Signal Voltage	+A _{VOL}	V _{OUT} = 0V and +5V	4	+25°C	71	-	dB
Gain			5, 6	+125°C, -55°C	65	-	dB
	-A _{VOL}	V _{OUT} = 0V and -5V	4	+25°C	71	-	dB
			5, 6	+125°C, -55°C	65	-	dB
Common Mode	+CMRR	$\Delta V_{CM} = +5V$,	1	+25°C	68	-	dB
Rejection Ratio		V _{OUT} = -5V, V+ = 10V, V- = -20V	2, 3	+125°C, -55°C	68	-	dB
	-CMRR	$\Delta V_{CM} = -5V$,	1	+25°C	68	-	dB
	V _{OUT} = +5V, V+ = 20V, V- = -10V		2, 3	+125°C, -55°C	68	-	dB
Output Voltage Swing	+V _{OUT}		1	+25°C	10	-	V
			2, 3	+125°C, -55°C	10	-	V
	-V _{OUT}		1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V
Output Current	+lout	V _{OUT} = -10V	1	+25°C	25	-	mA
		R _{LOAD} = OPEN	2, 3	+125°C, -55°C	25	-	mA
	-l _{out}	V _{OUT} = 10V	1	+25°C	-	-25	mA
		R _{LOAD} = OPEN	2, 3	+125°C, -55°C	-	-25	mA
Output Current	+DISAB	$V_{OUT} = 5V, V_{EN} = 0.8V$	1	+25°C	-	860	μА
(Device Disabled)		R _{LOAD} = OPEN	2, 3	+125°C, -55°C	-	860	μА
	-DISAB	$V_{OUT} = -5V, V_{EN} = 0.8V$	1	+25°C	-	860	μА
		R _{LOAD} = OPEN	2, 3	+125°C, -55°C	-	860	μА

Specifications HA-2444/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} \le 10pF$, $V_{OUT} = 0V$, $V_{IL} = 0.8V$, $V_{IH} = 2.4V$, Unless Otherwise Specified. (Continued)

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Quiescent Power	+l _{cc}	V _{OUT} = 0V	1	+25°C	-	25	mA
Supply Current		I _{OUT} = 0mA	2, 3	+125°C, -55°C	-	25	mA
	-lcc	V _{OUT} = 0V	1	+25°C	-25	-	mA
		I _{OUT} = 0mA	2, 3	+125°C, -55°C	-25	-	mA
Supply Current	+lccois	V _{OUT} = 0V	1	+25°C	-	10	mA
(Device Disabled)		V _{EN} = 0.8V	2, 3	+125°C, -55°C	-	10	mA
	-I _{CCDIS}	V _{OUT} = 0V	1	+25°C	-10	-	mA
		V _{EN} = 0.8V	2, 3	+125°C, -55°C	-10	-	mA
Power Supply	+PSRR	$\Delta V_{SUPPLY} = 5V$,	1	+25°C	65	-	dB
Rejection Ratio		V+ = 15V, V- = -15V V+ = 20V, V- = -15V	2, 3	+125°C, -55°C	65	-	dB
	-PSRR	$\Delta V_{SUPPLY} = 5V$,	1	+25°C	65	-	dB
		V+ = 15V, V- = -15V V+ = 15V, V- = -20V	2, 3	+125°C, -55°C	65	-	dB
Digital Input Voltages	V _{IL}		1	+25°C	-	0.8	V
(D0, D1, EN)			2, 3	+125°C, -55°C	-	0.8	V
	V _{IH}		1	+25°C	2.4	-	V
			2, 3	+125°C, -55°C	2.4	-	V
Input Current (D0, D1)	DX _{IIL}	V _{IL} = 0V	1	+25°C	-	1	mA
			2, 3	+125°C, -55°C	-	1	mA
	DX _{IIH}	V _{IH} = 5V	1	+25°C	-	1.2	μА
			2, 3	+125°C, -55°C	-	1.2	μА
Input Current (EN)	ENIIL	V _{IL} = 0V	1	+25°C	-	50	μА
			2, 3	+125°C, -55°C	-	50	μА
	ENIIH	V _{IH} = 5V	1	+25°C	-	1.2	μА
			2, 3	+125°C, -55°C	-	1.2	μА

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} \le 10pF$, $A_{VCL} = +1V/V$, $V_{IL} = 0.8V$, $V_{IH} = 2.4V$, Unless Otherwise Specified.

			GROUP A		LIN		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -5V to +5V	7	+25°C	120	-	V/µs
			8	+125°C, -55°C	120	-	V/μs
-SR V _{out}		V _{OUT} = +5V to -5V	7	+25°C	120	-	V/µs
			8	+125°C, -55°C	120	-	V/µs
Channel Select	CHSE Note 1		9, 10	+25°C, +125°C	-	100	ns
Time		$V_{EN} = 2.4V$	11	-55°C	-	125	ns
Output Enable CHEN N		Note 2	9	+25°C	-	100	ns
Time			10, 11	+125°C, -55°C	-	100	ns

- Measured for all channel combinations. Channel Select time is the delay in switching from channel X to channel Y. Channel Y input set to +5V, all other channels set to 0V. Select time is measured from the 50% point of the critical digital select input to the 50% point on the output.
- 2. Channel 1 selected with the input at 5V. All other channels set to 0V. Enable input switched from 0.8V to 2.4V. Enable time is measured from the 50% point of the EN input to the 50% point on the output.

Specifications HA-2444/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $C_L \le 10pF$, $A_{VCL} = 1V/V$, $V_{IL} = 0.8V$, $V_{IH} = 2.4V$, Unless Otherwise Specified.

					LIMITS MIN MAX		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE			UNITS
Rise Time	TR	V _{OUT} = 0V to +200mV	1, 4	+25°C	-	11	ns
			1, 4	-55°C, +125°C	-	12	ns
Fall Time	T _F	V _{OUT} = 0V to -200mV	1, 4	+25°C	-	11	ns
			1, 4	-55°C, +125°C	-	12	ns
Overshoot	+OS	V _{OUT} = 0V to +200mV	1	+25°C	-	15	%
			1	-55°C, +125°C	-	30	%
	-os	V _{OUT} = 0V to -200mV	1	+25°C	-	15	%
			1	-55°C, +125°C	-	30	%
Full Power Bandwidth	FPBW	V _{PEAK} = 5V	1, 2	+25°C	3.8	-	MHz
			1, 2	-55°C, +125°C	3.8	-	MHz
Minimum Closed Loop Stable Gain	CLSG		1	+25°C	1	-	V/V
Stable Gain			1	-55°C, +125°C	1	-	V/V
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	+25°C	-	750	mW
Consumption			1, 3	-55°C, +125°C	-	750	mW

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)
- 4. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)				
Interim Electrical Parameters (Pre Burn-In)	1				
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11				
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11				
Groups C and D Endpoints	1				

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

74mils x 103mils x 19mils \pm 1mil 1880 μ m x 2620 μ m x 483 μ m \pm 25.4 μ m

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

SUBSTRATE POTENTIAL (Powered Up): V-

GLASSIVATION:

Type: Nitride over Silox Silox Thickness: $12k\mathring{A} \pm 2k\mathring{A}$ Nitride Thickness: $3.5k\mathring{A} \pm 1.5k\mathring{A}$

TRANSISTOR COUNT: 129

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2500/883 HA-2502/883

July 1994

Precision High Slew Rate Operational Amplifiers

Features

- · This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Slew Rate (HA-2500/883) 25V/μs (Min) 30V/μs (Typ)
- Wide Power Bandwidth (HA-2500/883)...350kHz (Min)
- High Input Impedance (HA-2500/883).... 25M Ω (Min) $50M\Omega$ (Typ)
- Low Offset Current (HA-2500/883) 25nA (Max) 10nA (Typ)
- Low Quiescent Current 6mA (Max)
- Fast Settling Time (0.1% of 10V Step) 330ns (Typ)
- High Gain Bandwidth Product 12MHz (Typ)
- . Internally Compensated For Unity Gain Stability

Applications

- . Data Acquisition Systems
- · RF Amplifiers
- · Video Amplifiers
- Signal Generators
- Pulse Amplification

Description

HA-2500/883 and HA-2502/883 comprise a series of monolithic operational amplifiers whose designs are optimized to deliver excellent slew rate, bandwidth, and settling time specifications. The outstanding dynamic features of this internally compensated device are complemented with low offset voltage and offset cur-

These dielectrically isolated amplifiers are ideally suited for applications such as data acquisition, RF, video, and pulse conditioning circuits. Guaranteed slew rates of ±25V/µs minimum (HA-2500/883) and ±20V/us minimum (HA-2502/883) make these devices excellent components in fast, accurate data acquisition and pulse amplification designs. To insure compliance, all devices are 100% tested for AC performance characteristics over the full temperature limits.

A typical 12MHz gain bandwidth product and 500kHz full power bandwidth make these devices well suited to RF and video applications. With guaranteed offset voltages of 5mV (HA-2500/883) and 8mV (HA-2502/883) plus external offset adjust flexibility and low offset current, these amplifiers are particularly useful components in signal conditioning designs.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2500/883	-55°C to +125°C	8 Pin Can
HA2-2502/883	-55°C to +125°C	8 Pin Can
HA4-2502/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-2500/883	-55°C to +125°C	8 Lead CerDIP
HA7-2502/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-2500/883, HA-2502/883 (CERDIP) TOP VIEW

HA-2500/883, HA-2502/883 (METAL CAN) TOP VIEW

Specifications HA-2500/883, HA-2502/883

Absolute Maximum Ratings	Thermal Information	
Voltage Between V+ and V- Terminals 40V Differential Input Voltage. 15V Voltage at Either Input Terminal V+ to V- Peak Output Current 50mA Junction Temperature +175°C Storage Temperature Range -65°C to +150°C ESD Rating <2000V		W W W nW 3W nW

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		HA-2500/883		HA-25	02/883		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS	
Input Offset	V _{IO}	V _{CM} = 0V	1	+25°C	-5	5	-8	8	mV	
Voltage			2, 3	+125°C, -55°C	-8	8	-10	10	mV	
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-200	200	-250	250	nA	
		$+R_S = 100kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-400	400	-500	500	nA	
	-l _B	V _{CM} = 0V,	1	+25°C	-200	200	-250	250	nA	
		$+R_S = 100\Omega$, $-R_S = 100k\Omega$	2, 3	+125°C, -55°C	-400	400	-500	500	nA	
Input Offset	I _{IO}	V _{CM} = 0V,	1	+25°C	-25	25	-50	50	nA	
Current		$+R_S = 100kΩ,$ $-R_S = 100kΩ$	2, 3	+125°C, -55°C	-50	50	-100	100	nA	
Common Mode	+CMR	V+ = 5V, V- = -25V	1	+25°C	+10	-	+10	-	٧	
Range			2, 3	+125°C, -55°C	+10	-	+10	-	٧	
	-CMR	V+ = 25V, V- = -5V	1	+25°C	-	-10	-	-10	٧	
			2, 3	+125°C, -55°C	-	-10	-	-10	٧	
Large Signal	+A _{VOL}		V _{OUT} = 0V and +10V,	4	+25°C	20	-	15	-	kV/V
Voltage Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	15	-	10	-	kV/V	
	-A _{VOL}		4	+25°C	20	-	15	-	kV/V	
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	15	-	10	-	kV/V	
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	80	-	74	-	dB	
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	80	-	74	-	dB	
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	80	-	74	-	dB	
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	80	-	74	-	dB	
Output Voltage	+V _{OUT}	$R_L = 2k\Omega$	4	+25°C	10	-	10	-	٧	
Swing			5, 6	+125°C, -55°C	10	-	10	-	٧	
	-V _{OUT}	$R_L = 2k\Omega$	4	+25°C	-	-10	-	-10	٧	
			5, 6	+125°C, -55°C	-	-10	-	-10	٧	

Specifications HA-2500/883, HA-2502/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V_{SUPPLY} = ±15V, R_{SOURCE} = 100Ω, R_{LOAD} = 500kΩ, V_{OUT} = 0V, Unless Otherwise Specified.

			GROUP A		HA-2500/883		HA-2502/883		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	10	-	10	-	mA
			5, 6	+125°C, -55°C	7.5	-	7.5	-	mA
-	-l _{out}	V _{OUT} = +10V	4	+25°C	-	-10	-	-10	mA
			5, 6	+125°C, -55°C	-	-7.5	-	-7.5	mA
Quiescent Power	+I _{CC}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	6	-	6	mA
Supply Current			2, 3	+125°C, -55°C		6.5	-	7	mA
	-lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-6	-	-6	-	mA
			2, 3	+125°C, -55°C	-6.5	-	-7	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$	1	+25°C	80	-	74	-	dB
Rejection Ratio		V+ = +20V, V- = -15V, V+ = +10V, V- = -15V	2, 3	+125°C, -55°C	80	-	74	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	80	-	74	-	dB
		V+ = +15V, V- = -20V, V+ = +15V, V- = -10V	2, 3	+125°C, -55°C	80	-	74	-	dB
Offset Voltage Adjustment	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	V _{IO} -1	-	mV
			2, 3	+125°C, -55°C	V _{IO} -1	-	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	V _{IO} +1	-	mV

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified.

		GROUP A			HA-2500/883		HA-2502/883		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -5V to +5V	7	+25°C	25	-	20	-	V/µs
		25% ≤ +SR ≤ 75%	8A, 8B	+125°C, -55°C	20	-	15	-	V/µs
	-SR	V _{OUT} = +5V to -5V	7	+25°C	25	-	20	-	V/µs
		75% ≥ -SR ≥ 25%	8A, 8B	+125°C, -55°C	20	-	15	-	V/µs
Rise and Fall		$V_{OUT} = 0 \text{ to } +200\text{mV}$ $10\% \le T_R \le 90\%$	7	+25°C	-	50	-	50	ns
Time			8A, 8B	+125°C, -55°C	-	60	-	60	ns
	T _F	$V_{OUT} = 0 \text{ to -200mV} $ 10% $\leq T_F \leq 90\%$	7 .	+25°C	-	50	-	50	ns
			8A, 8B	+125°C, -55°C	-	60	-	60	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	-	50	%
			8A, 8B	+125°C, -55°C	-	50	-	60	%
	-OS	V _{OUT} = 0 to -200mV	7	+25°C	-	40	-	50	%
			8A, 8B	+125°C, -55°C	-	50	-	60	%

Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

Specifications HA-2500/883, HA-2502/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

	1				HA-2500/883		HA-2502/883		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	25	-	20	-	МΩ
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	350	-	300	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	1	-	1	-	V/V
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	195		210	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)					
Interim Electrical Parameters (Pre Burn-In)	1					
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7, 8A, 8B					
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7, 8A, 8B					
Groups C and D Endpoints	1					

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

57 x 65 x 19 mils ± 1 mils 1450 x 1650 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

0.3 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): Unbiased

TRANSISTOR COUNT:

HA-2500/883: 40 HA-2502/883: 40

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2500/883, HA-2502/883

HA-2510/883 HA-2512/883

July 1994

High Slew Rate Operational Amplifiers

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Slew Rate (HA-2510/883) 50V/μs (Min) 65V/μs (Typ)
- Wide Power Bandwidth (HA-2510/883)...750kHz (Min)
- High Input Impedance (HA-2510/883)..... 50M Ω (Min) 100M Ω (Typ)
- Wide Small Signal Bandwidth..... 12MHz (Typ)
- Fast Settling Time (0.1% of 10V Step) 250ns (Typ)
- Low Quiescent Supply Current6mA (Max)
- Internally Compensated For Unity Gain Stability

Applications

- · Data Acquisition Systems
- RF Amplifiers
- · Video Amplifiers
- Signal Generators
- Pulse Amplification

Description

The HA-2510/883 and HA-2512/883 are a series of high performance operational amplifiers which set the standards for maximum slew rate and wide bandwidth operation in moderately powered, internally compensated, monolithic devices. In addition to excellent dynamic characteristics, these dielectrically isolated amplifiers also offer low offset current and high input impedance.

The $\pm 50\text{V}/\mu\text{s}$ minimum slew rate and fast settling time of the HA-2510/883 are ideally suited for high speed D/A, A/D, and pulse amplification designs. The HA-2510/883 and the HA-2512/883's superior bandwidth and 750kHz (HA-2510/883) minimum full power bandwidth are extremely useful in RF and video applications. To insure compliance with slew rate and transient response specifications, all devices are 100% tested for AC performance characteristics over full temperature limits. To improve signal conditioning accuracy, the HA-2510/883 provides a maximum offset current of 25nA and a minimum input impedance of 50M Ω , both at +25°C, as well as offset voltage adjust capability.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2510/883	-55°C to +125°C	8 Pin Can
HA7-2510/883	-55°C to +125°C	8 Lead CerDIP
HA2-2512/883	-55°C to +125°C	8 Pin Can
HA4-2512/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-2512/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

(METAL CAN)
TOP VIEW

COMP

BAL 1 7 V+

IN 2 6 OUT

V-

HA-2510/2512/883

Specifications HA-2510/883, HA-2512/883

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals	. 40V
Differential Input Voltage	. 15V
Voltage at Either Input Terminal	+ to V-
Peak Output Current	50mA
Junction Temperature +	175°C
Storage Temperature Range65°C to +	150°C
ESD Rating	2000V
Lead Temperature (Soldering 10s)+	300°C

Thermal Information

Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	75°C/W	23°C/W
Metal Can Package	160°C/W	75°C/W
Package Power Dissipation Limit at +75°C for	$T_{\rm J} \le +175^{\rm o}$	С
CerDIP Package		870mW
Ceramic LCC Package		1.33W
Metal Can Package		625mW
Package Power Dissipation Derating Factor A		
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	3.3mW/°C
Motal Can Package		6.3mW/90

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		HA-2510/883		883 HA-2512/883		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Input Offset Volt-	V _{IO}	V _{CM} = 0V	1	+25°C	-8	8	-10	10	mV
age			2, 3	+125°C, -55°C	-18	10	-14	14	mV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-200	200	-250	250	nA
		$+R_S = 100k\Omega$, $-R_S = 100\Omega$	2, 3	+125°C, -55°C	-400	400	-500	500	nA
	-I _B	V _{CM} = 0V,	1	+25°C	-200	200	-250	250	nA
		$+R_S = 100\Omega$, $-R_S = 100k\Omega$	2, 3	+125°C, -55°C	-400	400	-500	500	nA
Input Offset Cur-	I _{IO}	V _{CM} = 0V,	1	+25°C	-25	25	-50	50	nA
rent		$+R_S = 100kΩ$, $-R_S = 100kΩ$	2, 3	+125°C, -55°C	-50	50	-100	100	nA
Common Mode	+CMR	V+ = 5V, V- = -25V	1	+25°C	+10	-	+10	-	٧
Range			2, 3	+125°C, -55°C	+10	-	+10	-	٧
	-CMR	V+ = 25V, V- = -5V	1	+25°C	-	-10	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	-	-10	٧
Large Signal	+A _{VOL}	$V_{OUT} = 0V$ and +10V,	4	+25°C	10	-	7.5	-	kV/V
Voltage Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	7.5	-	5	-	kV/V
	-A _{VOL}	$V_{OUT} = 0V$ and -10V,	4	+25°C	10	-	7.5	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	7.5	-	5	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +10V$	1	+25°C	80	-	74	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	80	-	74	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	80	-	74	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	80	-	74	-	dB
Output Voltage	+V _{OUT}	$R_L = 2k\Omega$	4	+25°C	10	-	10	-	٧
Swing			5, 6	+125°C, -55°C	10	-	10	-	٧
	$-V_{OUT}$ $R_L = 2k\Omega$	$R_L = 2k\Omega$	4	+25°C	-	-10	-	-10	٧
			5, 6	+125°C, -55°C		-10	-	-10	٧

Specifications HA-2510/883, HA-2512/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		HA-25	10/883	HA-25	12/883	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	10	-	10	-	mA
			5, 6	+125°C, -55°C	7.5	-	7.5	-	mA
	-l _{out}	V _{OUT} = +10V	4	+25°C	-	-10	-	-10	mA
			5, 6	+125°C, -55°C	-	-7.5	-	-7.5	mA
Quiescent Power	+l _{cc}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	6	-	6	mA
Supply Current			2, 3	+125°C, -55°C	-	6.5	-	7	mA
	$-I_{CC}$ $V_{OUT} = 0V, I_{OUT} = 0mA$	1	+25°C	-6	-	-6	-	mA	
			2, 3	+125°C, -55°C	-6.5	-	-7	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$	1	+25°C	80	-	74	-	dB
Rejection Ratio		V+ = +20V, V- = -15V, V+ = +10V, V- = -15V	2, 3	+125°C, -55°C	80	-	74	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	80	-	74	-	dB
		V+ = +15V, V- = -20V, V+ = +15V, V- = -10V	2, 3	+125°C, -55°C	80	-	74	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	V _{IO} -1	-	mV
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	V _{IO} +1	-	mV

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified.

			GROUP A		HA-25	10/883	HA-25	12/883	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -5V to +5V	7	+25°C	50	-	40	-	V/μs
		25% ≤ +SR ≤ 75%	8A, 8B	+125°C, -55°C	45	-	35	-	V/μs
	-SR	$V_{OUT} = +5V \text{ to } -5V$	7	+25°C	50	-	40	-	V/μs
		75% ≥ -SR ≥ 25%	8A, 8B	+125°C, -55°C	45	-	35	-	V/μs
Rise and Fall	T _R	$V_{OUT} = 0$ to $+200$ mV	7	+25°C	-	50	-	50	ns
Time		$10\% \le T_R \le 90\%$	8A, 8B	+125°C, -55°C	-	60	-	60	ns
	T _F	$V_{OUT} = 0 \text{ to -200mV}$ $10\% \le T_F \le 90\%$	7	+25°C	-	50	-	50	ns
			8A, 8B	+125°C, -55°C	-	60	-	60	ns
Overshoot	ershoot +OS V _{OUT} = 0 to +200mV	$V_{OUT} = 0 \text{ to } +200\text{mV}$	7	+25°C	-	40	-	50	%
		8A, 8B	+125°C, -55°C	-	50	-	60	%	
	-OS	V _{OUT} = 0 to -200mV	7	+25°C	-	40	-	50	%
			8A, 8B	+125°C, -55°C	-	50	-	60	%

Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

Specifications HA-2510/883, HA-2512/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

					HA-2510/883		HA-2512/883		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	50	-	40	-	МΩ
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	750	-	600	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	1	-	1	-	V/V
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1,3	-55°C to +125°C	-	195	-	210	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7, 8A, 8B
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7, 8A, 8B
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

65 x 57 x 19 mils ± 1 mils 1650 x 1450 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

0.3 x 10⁵ A/cm²

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT:

HA-2510/883: 40 HA-2512/883: 40

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2510/883, HA-2512/883

HA-2520/883 HA-2522/883

Uncompensated, High Slew Rate Operational Amplifiers

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Slew Rate (HA-2520/883) 100V/us (Min) 120V/μs (Typ)
- Wide Power Bandwidth (HA-2520/883)...1.5MHz (Min)
- Wide Gain Bandwidth (HA-2520/883) 10MHz (Min)
- High Input Impedance (HA-2520/883). 50MΩ (Min) 100M Ω (Typ)
- Low Offset Current (HA-2520/883) 25nA (Min) 10nA (Typ)
- Fast Settling (0.1% of 10V Step) 200ns (Typ)
- Low Quiescent Supply Current 6mA (Max)

Applications

- . Data Acquisition Systems
- RF Amplifiers
- Video Amplifiers
- **Signal Generators**
- Pulse Amplification

Description

Description The HA-2520/883 and HA-2522/883 are monolithic operational amplifiers which deliver an unsurpassed combination of specifications for slew rate, bandwidth and settling time. These dielectrically isolated amplifiers are designed for closed loop gains of 3 or greater without external compensation. In addition, these high performance components also provide low offset current and high input

The 100V/µs (min) slew rate (80V/µs for HA-2522/883) and fast settling time of these amplifiers make them ideal components for pulse amplification and data acquisition designs. To insure compliance with slew rate and transient response specifications, all devices are 100% tested for AC performance characteristics over full temperature. These devices are valuable components for RF and video circuitry requiring wideband operation. For accurate signal conditioning designs, the HA-2520/883's superior dynamic specifications are complemented by 25nA (max) offset current (50nA for HA-2522/883) and offset voltage adjust capability.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2520/883	-55°C to +125°C	8 Pin Can
HA2-2522/883	-55°C to +125°C	8 Pin Can
HA4-2522/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-2520/883	-55°C to +125°C	8 Lead CerDIP
HA7-2522/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

(CERDIP) TOP VIEW COMP 7

HA-2520/883, HA-2522/883

HA-2522/883

HA-2520/883, HA-2522/883 (METAL CAN) TOP VIEW

OUT

RAI

Specifications HA-2520/883, HA-2522/883

Absolute Maximum Ratings	Thermal Information		
Voltage Between V+ and V- Terminals 40V Differential Input Voltage. 15V Voltage at Either Input Terminal V+ to V- Peak Output Current 50M Junction Temperature +175°C Storage Temperature Range -65°C to +150°C ESD Rating -2000V Lead Temperature (Soldering 10s) +300°C	Thermal Resistance CerDIP Package Ceramic LCC Package Metal Can Package Package Power Dissipation Limit at +75°C for CerDIP Package Ceramic LCC Package Metal Can Package Package Power Dissipation Derating Factor A CerDIP Package Ceramic LCC Package Metal Can Package	T _J ≤ +175° 	870mW 1.33W 625mW ; 8.7mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range	-55°C to +125°C	$V_{INCM} \le 1/2 (V + - V -)$
Operating Supply Voltage	±15V	$R_1 \ge 2k\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A	HA-25	20/883	HA-25				
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS	
Input Offset	V _{IO}	V _{CM} = 0V	1	+25°C	-8	8	-10	10	mV	
Voltage			2, 3	+125°C, -55°C	-10	10	-14	14	mV	
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-200	200	-250	250	nA	
		$+R_S = 100kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-400	400	-500	500	nA	
	-I _B	V _{CM} = 0V,	1	+25°C	-200	200	-250	250	nA	
		$+R_S = 100\Omega$, $-R_S = 100k\Omega$	2, 3	+125°C, -55°C	-400	400	-500	500	nA	
Input Offset	I _{IO}	V _{CM} = 0V,	1	+25°C	-25	25	-50	50	nA	
Current		$+R_S = 100kΩ$, $-R_S = 100kΩ$	2, 3	+125°C, -55°C	-50	50	-100	100	nA	
Common Mode	+CMR	V+ = 5V, V- = -25V	1	+25°C	+10	-	+10	-	٧	
Range			2, 3	+125°C, -55°C	+10	-	+10	-	٧	
	-CMR	-CMR	V+ = 25V, V- = -5V	1	+25°C		-10		-10	٧
			2, 3	+125°C, -55°C	-	-10	-	-10	٧	
Large Signal	+A _{VOL}	V _{OUT} = 0V and +10V,	4	+25°C	10	-	7.5	-	kV/V	
Voltage Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	7.5	-	5	-	kV/V	
	-A _{VOL}	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	10	-	7.5	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	7.5	-	5	-	kV/V	
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	80	-	74	-	dB	
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	80	-	74	-	dB	
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	80	-	74	-	dB	
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	80	-	74	-	dB	
Output Voltage	+V _{OUT}	$R_L = 2k\Omega$	4	+25°C	10	-	10	-	٧	
Swing			5, 6	+125°C, -55°C	10	-	10	-	٧	
	-V _{OUT}	$R_L = 2k\Omega$	4	+25°C	-	-10	-	-10	٧	
			5, 6	+125°C, -55°C	-	-10	-	-10	٧	

Specifications HA-2520/883, HA-2522/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A	GROUP A		20/883	HA-25	22/883	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	10	-	10	-	mA
			5, 6	+125°C, -55°C	7.5	-	7.5	-	mA
18 ² 16 y	-lout	V _{OUT} = +10V	4	+25°C	-	-10	-	-10	mA
			5, 6	+125°C, -55°C	-	-7.5	-	-7.5	mA
Quiescent Power	+I _{cc}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	6	-	6	mA
Supply Current			2, 3	+125°C, -55°C	-	6.5	-	7	mA
	-lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-6	-	-6	-	mA
			2, 3	+125°C, -55°C	-6.5	-	-7	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	80	-	74	-	dB
Rejection Ratio		V+ = +20V, V- = -15V, V+ = +10V, V- = -15V	2, 3	+125°C, -55°C	80	-	74	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	80	-	74	-	dB
		V+ = +15V, V- = -20V, V+ = +15V, V- = -10V	2, 3	+125°C, -55°C	80	-	74	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	V _{IO} -1	-	mV
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	V _{IO} +1	-	mV

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50$ pF, $A_{VCL} = +3V/V$, Unless Otherwise Specified.

			GROUP A	GROUP A		20/883	HA-25	22/883	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -5V to +5V	7	+25°C	100	-	80	-	V/μs
		25% ≤ +SR ≤ 75%	8A, 8B	+125°C, -55°C	84	-	60	-	V/μs
7	-SR	V _{OUT} = +5V to -5V	7	+25°C	100	-	80	-	V/µs
		75% ≥ -SR ≥ 25%	8A, 8B	+125°C, -55°C	84	-	60	-	V/µs
Rise and Fall	T _R	V _{OUT} = 0 to +200mV	7	+25°C	-	50	-	50	ns
Time		$10\% \le T_{R} \le 90\%$	8A, 8B	+125°C, -55°C	-	55	-	60	ns
-	T _F	V _{OUT} = 0 to -200mV	7	+25°C	-	50	-	50	ns
		$10\% \le T_F \le 90\%$	8A, 8B	+125°C, -55°C	-	55	-	60	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	-	50	%
			8A, 8B	+125°C, -55°C	-	45	-	60	%
	-OS	V _{OUT} = 0 to -200mV	7	+25°C	-	40	-	50	%
			8A, 8B	+125°C, -55°C	-	45	-	60	%

Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

Specifications HA-2520/883, HA-2522/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_V \ge 3$, $C_{COMP} = 0pF$, Unless Otherwise Specified.

					HA-2520/883		HA-2522/883		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	50	-	40	-	МΩ
Full Power	GBWP	$V_0 = 200 \text{mV}, f_0 = 10 \text{kHz}$	1	+25°C	10	-	10	-	MHz
Bandwidth		$V_0 = 200 \text{mV}, f_0 = 1 \text{MHz}$	1	+25°C	10	-	10	-	MHz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	1.6	-	1.2	-	MHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	+3	-	+3	-	V/V
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	195	-	210	mW

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PFAK}).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7, 8A, 8B
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7, 8A, 8B
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

 $67 \times 57 \times 19 \text{ mils } \pm 1 \text{ mils}$ $1700 \times 1440 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu

Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

0.26 x 10⁵ A/cm²

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT:

HA-2520/883: 40 HA-2522/883: 40

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2520/883, HA-2522/883

HA-2529/883

Uncompensated, High Slew Rate **High Output Current, Operational Amplifier**

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Slew Rate......135V/μs (Min) 150V/μs (Typ)
- High Output Current ±30mA (Min)
- High Gain-Bandwidth Product 15MHz (Min) 20MHz(Typ)
- High Input Impedance 50MΩ (Min) 130M Ω (Typ)
- Low Offset Current25nA (Max) 5nA (Typ)
- Fast Settling (10V Step to 0.1%)......200ns (Typ)
- Low Quiescent Supply Current 6mA (Max)

Applications

- Data Acquisition Systems
- · RF Amplifiers
- Video Amplifiers
- **Signal Generators**
- Pulse Amplification

Description

The HA-2529/883 is a monolithic operational amplifier which typifies excellence of design. With a design based on years of experience coupled with the reliable dielectric isolation process, these amplifiers provide an outstanding combination of DC and AC parameters at closed loop gains of 3 or greater without external compensation.

The HA-2529/883 offers 135V/µs (min) slew rate and fast settling time (200ns typ), while consuming a mere 6mA (max) quiescent supply current, making these amplifiers ideal components for video circuitry and data acquisition designs. With 15MHz minimum gain-bandwidth product combined with 7.5kV/V minimum open loop gain, the HA-2529/883 is an ideal component for demanding signal conditioning designs. These devices provide ±30mA (min) output current drive with an output voltage swing of ±10V (min), making then suited for pulse amplifier and RF amplifier components.

HA-2529/883 will upgrade a system presently using the HA-2520/22/883 or EHA-2520/22/883 in regards to output current, slew rate, offset voltage drift, and offset current drift. To insure compliance with slew rate and transient response specifications, all devices are 100% tested for AC performance characteristics over full temperature.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2529/883	-55°C to +125°C	8 Pin Can
HA4-2529/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-2529/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-2529/883

HA-2529/883

(METAL CAN)

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright © Harris Corporation 1994

Spec Number 511025-883

File Number 3736

Specifications HA-2529/883

Absolute Maximum Ratings

Itage Between V+ and V- Terminals	40V
ferential Input Voltage	15V
Itage at Either Input Terminal V+ t	o V-
ak Output Current50)mA
nction Temperature	5°C
orage Temperature Range65°C to +15	o°C
SD Rating<20	V00
ad Temperature (Soldering 10s)+30	10°C

Thermal Information

Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	75°C/W	23°C/W
Metal Can Package	160°C/W	75°C/W
Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}$	
CerDIP Package		870mW
Ceramic LCC Package		1.33W
Metal Can Package		625mW
Package Power Dissipation Derating Factor A	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	3.3mW/°C
Metal Can Package		6.3mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-5	5	mV
			2, 3	+125°C, -55°C	-8	8	mV
Input Bias Current	+l _B	$V_{CM} = 0V, +R_S = 100k\Omega,$	1	+25°C	-200	200	nA
		$-R_S = 100\Omega$	2, 3	+125°C, -55°C	-400	400	nA
	-I _B	$V_{CM} = 0V, +R_S = 100\Omega,$	1	+25°C	-200	200	nA
		$-R_S = 100k\Omega$	2, 3	+125°C, -55°C	-400	400	nA
Input Offset	I _{IO}	$V_{CM} = 0V, +R_S = 100k\Omega,$	1	+25°C	-25	25	nA
Current		$-R_S = 100k\Omega$	2, 3	+125°C, -55°C	-50	50	nA
Common Mode Range	+CMR	V+ = 5V, V- = -25V	1	+25°C	+10	-	V
			2, 3	+125°C, -55°C	+10	-	V
	-CMR	V+ = 25V, V- = -5V	1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V \text{ and } +10V,$	4	+25°C	10	-	kV/V
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	7.5	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	10	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	7.5	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	83	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	80	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	83	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	80		dB
Output Voltage Swing	+V _{OUT}	$R_L = 2k\Omega$	4	+25°C	10	-	V
-			5, 6	+125°C, -55°C	10	-	V
	-V _{OUT}	$R_L = 2k\Omega$	4	+25°C	-	-10	V
			5, 6	+125°C, -55°C	-	-10	V

Specifications HA-2529/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V_{SUPPLY} = ±15V, R_{SOURCE} = 100Ω, R_{LOAD} = 500kΩ, V_{OUT} = 0V, Unless Otherwise Specified.

			GROUP A		LIN		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	30	-	mA
			5, 6	+125°C, -55°C	20	-	mA
	-lout	V _{OUT} = +10V	4	+25°C	-	-30	mA
			5, 6	+125°C, -55°C	-	-20	mA
Quiescent Power Supply	+lcc	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	6	mA
Current			2, 3	+125°C, -55°C	-	7	mA
	-l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-6	-	mA
			2, 3	+125°C, -55°C	-7	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	80	-	dB
Rejection Ratio		V+ = +20V, V- = -15V, V+ = +10V, V- = -15V	2, 3	+125°C, -55°C	80	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	80	-	dB
		V+ = +15V, V- = -20V, V+ = +15V, V- = -10V	2, 3	+125°C, -55°C	80	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	mV

NOTE:

 Offset adjustment range is [V_{IO}(Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +3V/V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -5V to +5V	7	+25°C	135	-	V/µs
		25% ≤ +SR ≤ 75%	8A, 8B	+125°C, -55°C	125	-	V/μs
	-SR	$V_{OUT} = +5V \text{ to } -5V$	7	+25°C	135	-	V/μs
		75% ≥ -SR ≥ 25%	8A, 8B	+125°C, -55°C	125	-	V/μs
Rise and Fall Time	T _R	V _{OUT} = 0 to +200mV	7	+25°C	-	45	ns
		$10\% \le T_R \le 90\%$	8A, 8B	+125°C, -55°C	-	50	ns
	T _F	V _{OUT} = 0 to -200mV	7	+25°C	-	45	ns
		$10\% \le T_F \le 90\%$	8A, 8B	+125°C, -55°C	-	50	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	%
			8A, 8B	+125°C, -55°C	-	40	%
	-os	V _{OUT} = 0 to -200mV	7	+25°C	-	40	%
			8A, 8B	+125°C, -55°C	-	40	%

Specifications HA-2529/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $C_{COMP} = 0pF$, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	50	-	MΩ
Gain Power Bandwidth	GBWP	$V_O = 200 \text{mV},$ $f_O \ge 10 \text{kHz}$	1	+25°C	15	-	MHz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	2.1	-	MHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	±3	-	V/V
Output Resistance	Rout	Open Loop	1	+25°C	-	60	Ω
Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	210	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PFAK}).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7, 8A, 8B
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7, 8A, 8B
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

67 x 57 x 19 ± 1 mils 1700 x 1440 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

0.78 x 10⁵ A/cm²

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT: 40

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2529/883

HA-2541/883

July 1994

Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Unity Gain Bandwidth 40MHz (Min)

- Fast Settling Time (0.1%) 90ns (Typ)

- · Unity Gain Stability
- . Monolithic Bipolar Dielectric Isolation Construction

Applications

- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- High Speed Sample and Hold Circuits
- · Fast, Precise D/A Converters
- High Speed A/D Input Buffer

Description

The HA-2541/883 is the first unity gain stable monolithic operational amplifier to achieve 40MHz unity gain bandwidth. A major addition to the Harris series of high speed, wideband op amps, the HA-2541/883 is designed for video and pulse applications requiring stable amplifier response at low closed loop gains.

The uniqueness of the HA-2541/883 is that its slew rate and bandwidth characteristics are specified at unity gain. Historically, high slew rate, wide bandwidth and unity gain stability have been incompatible features for a monolithic operational amplifier. But features such as 250V/µs slew rate and 40MHz unity gain bandwidth clearly show that this is not the case for the HA-2541/883. These features, along with 90ns settling time to 0.1%, make this product an excellent choice for high speed data acquisition systems.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2541/883	-55°C to +125°C	12 Pin Can

Pinout

HA-2541/883 (METAL CAN) TOP VIEW

CASE TIED TO V-

Specifications HA-2541/883

Thermal Information **Absolute Maximum Ratings** Differential Input Voltage 6V Voltage at Either Input Terminal V+ to V-Peak Output Current (< 10% Duty Cycle)50mA Junction Temperature (T_J) +175°C Storage Temperature Range-65°C to +150°C ESD Rating.....<2000V Lead Temperature (Soldering 10s).....+300°C

Thermal Resistance	θ_{JA}	θ_{JC}
Metal Can Package	65°C/W	34°C/W
Package Power Dissipation Limit at +75°C for	$T_{\rm J} \le +175^{\rm o}$	С
Metal Can Package		1.54W
Package Power Dissipation Denating Factor A	hove +75°C	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation

Operating Conditions

Operating Temperature Range55°C to +125°C	$V_{INCM} \le 1/2 (V + - V -)$
Operating Supply Voltage±12V to ±15V	$R_L \ge 1k\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-2	2	mV
			2, 3	+125°C, -55°C	-6	6	mV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-35	35	μА
		$+R_S = 1.1k\Omega$, $-R_S = 100\Omega$	2, 3	+125°C, -55°C	-50	50	μА
	-I _B	V _{CM} = 0V,	1	+25°C	-35	35	μА
		$+R_S = 100Ω,$ $-R_S = 1.1kΩ$	2, 3	+125°C, -55°C	-50	50	μА
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-7	7	μА
		$+R_S = 1.1k\Omega$, $-R_S = 1.1k\Omega$	2, 3	+125°C, -55°C	-9	9	μА
Common Mode	+CMR	V+ = 5V, V- = -25V	1	+25°C	10	-	V
Range			2, 3	+125°C, -55°C	10	-	V
	-CMR	V+ = 25V, V- = -5V	1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V
Large Signal Voltage	+A _{VOL}	$+A_{VOL}$ $V_{OUT} = 0V \text{ and } +10V,$ $R_L = 1k\Omega$	4	+25°C	10	-	kV/V
Gain			5, 6	+125°C, -55°C	5	-	kV/V
	-A _{VOL}	$V_{OUT} = 0V$ and -10V, $R_L = 1k\Omega$	4	+25°C	10	-	kV/V
			5, 6	+125°C, -55°C	5	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	70	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	70	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	70	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	70	-	dB
Output Voltage	+V _{OUT}	$R_L = 1k\Omega$	1	+25°C	10	-	V
Swing			2, 3	+125°C, -55°C	10	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V

Specifications HA-2541/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

	1		GROUP A		LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -10V	1	+25°C	10	-	mA
			1, 3	+125°C, -55°C	10	-	mA
	-l _{out}	V _{OUT} = +10V	1	+25°C	-	-10	mA
			1, 3	+125°C, -55°C	-	-10	mA
Quiescent Power	+lcc	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	39	mA
Supply Current			2, 3	+125°C, -55°C	-	39	mA
	-I _{CC}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-39	-	mA
			2, 3	+125°C, -55°C	-39	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	70	-	dB
Rejection Ratio		V+ = +5V, V- = -15V, V+ = +15V, V- = -15V	2, 3	+125°C, -55°C	70	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	70	-	dB
		V+ = +15V, V- = -5V, V+ = +15V, V- = -15V	2, 3	+125°C, -55°C	70	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV
Adjustment	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	mV

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See A.C. Specifications in Table 3

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 10pF$, $A_V = 1V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	40	-	kΩ
Unity Gain Bandwidth	UGBW	V _O = 90mV	1	+25°C	40		MHz
Slew Rate	+SR	V _{OUT} = -3V to +3V	1	+25°C	200		V/µs
	-SR	$V_{OUT} = +3V \text{ to } -3V$	1	+25°C	200	-	V/µs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	3	-	MHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 1k\Omega$, $C_L = 10pF$	1	-55°C to +125°C	1	-	V/V
Rise and Fall Time	T _R	V _{OUT} = 0V to +200mV	1, 4	+25°C	-	20	ns
	T _F	V _{OUT} = 0V to -200mV	1, 4	+25°C	-	20	ns

Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

Specifications HA-2541/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 10pF$, $A_V = 1V/V$, Unless Otherwise Specified.

					LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Overshoot	+OS	V _{OUT} = 0V to +200mV	1	+25°C	-	50	%
	-os	V _{OUT} = 0V to -200mV	1	+25°C	-	50	%
Output Resistance	R _{OUT}	Open Loop	1	+25°C	-	25	Ω
Quiescent Power Consumption	PC	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1, 3	-55°C to +125°C		1.17	W

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)
- 4. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

 $80 \times 90 \times 19 \text{ mils} \pm 1 \text{ mils}$ $2020 \times 2280 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride(Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

5.3 x 10⁴ A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 41

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2541/883

HA-2544/883

July 1994

Video Operational Amplifier

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Wide Unity Gain Bandwidth 45MHz (Min)
- High Slew Rate...... 100V/μs (Min)
- Low Supply Current......12mA (Max)
- Differential Phase Error..........0.11 Deg. (Max)
- Gain Flatness at 3.58MHz or 4.43MHz . . . 0.15dB (Max)
- Fast Settling Time (10V to 0.1%)......... 120ns (Typ)

Applications

- Video Systems
- · Video Test Equipment
- Radar Displays
- · Imaging Systems
- Pulse Amplifiers
- . Signal Conditioning Circuits
- · Data Acquisition Systems

Description

The HA-2544/883 is a fast, unity gain stable, monolithic op amp designed to meet the needs required for accurate reproduction of video or high speed signals. It offers high voltage gain (3.5kV/V min, 6kV/V typ), wide unity gain bandwidth of 45MHz minimum and phase margin of 65 degrees (open loop). Built from high quality Dielectric Isolation, the HA-2544/883 is another addition to the Harris series of high speed, wideband op amps, and offers true video performance combined with the versatility of an op amp.

The primary features of the HA-2544/883, include wide bandwidth, 150V/µs (typ) slew rate, < 0.04dB differential gain error, < 0.11 degrees differential phase error and gain flatness of just 0.15dB at 3.58MHz and 4.43MHz, therefore proving to be sufficient for video amplification. High performance and low power requirements are met with a supply current of only 10mA typically and 12mA over the full temperature range.

Uses of the HA-2544/883 range from video test equipment guidance systems, radar displays and other precise imaging systems where stringent gain and phase requirements have previously been met with costly hybrids and discrete circuitry. The HA-2544/883 will also be used in non-video systems requiring high speed signal conditioning such as data acquisition systems, medical electronics, specialized instrumentation and communication systems.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2544/883	-55°C to +125°C	8 Pin Can
HA4-2544/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-2544/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-2544/883

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright @ Harris Corporation 1994

File Number 3699

File Number 511028-883

Specifications HA-2544/883

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals
Differential Input Voltage (Note 2) 6V
Voltage at Either Input Terminal
Peak Output Current (< 10% Duty Cycle)40mA
Junction Temperature (T _J) +175°C
Storage Temperature Range65°C to +150°C
ESD Rating<2000V
Lead Temperature (Soldering 10s)+300°C

Thermal Information

		_
Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}C$	
CerDIP Package		870mW
Ceramic LCC Package		1.54W
Metal Can Package		645mW
Package Power Dissipation Derating Factor A	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	5.4mW/°C
Metal Can Package		6.5mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range55°C to +125°C	$V_{INCM} \le 1/2 (V+ - V-)$
Operating Supply Voltage	$R_L \ge 2k\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 10\Omega$, $R_{LOAD} = 500k\Omega$, $C_{LOAD} \le 10pF$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-20	20	mV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-15	15	μА
		$+R_S = 1k\Omega$, $-R_S = 10\Omega$	2, 3	+125°C, -55°C	-20	20	μА
	-I _B	V _{CM} = 0V,	1	+25°C	-15	15	15 μΑ
		$+R_S = 10\Omega$, $-R_S = 1k\Omega$	2, 3	+125°C, -55°C	-20	20	μА
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-2	2	μА
		$+R_S = 1k\Omega$, $-R_S = 1k\Omega$	2, 3	+125°C, -55°C	-3	3	μА
Common Mode	+CMR	V+ = 5V, V- = -25V	1	+25°C	10	-	V
Range			2, 3	+125°C, -55°C	10	-	V
	-CMR	V+ = 25V, V- = -5V	1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V$ and $+8V$,	4	+25°C	3.5	-	kV/V
Gain		$R_L = 1k\Omega$	5, 6	+125°C, -55°C	2.5	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -8V,	4	+25°C	3.5	-	kV/V
		$R_L = 1k\Omega$	5, 6	+125°C, -55°C	2.5	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	75	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	75	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	75	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	75	-	dB
Output Voltage	+V _{OUT}	$R_L = 1k\Omega$	1	+25°C	10	-	V
Swing			2, 3	+125°C, -55°C	10	-	V
	-V _{OUT}	$R_L = 1k\Omega$	1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V

Specifications HA-2544/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 10\Omega$, $R_{LOAD} = 500k\Omega$, $C_{LOAD} \le 10pF$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -9V	1	+25°C	25	-	mA
	-l _{out}	V _{OUT} = +9V	1	+25°C	-	-25	mA
Quiescent Power	+lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	12	mA
Supply Current			2, 3	+125°C, -55°C	-	12	mA
	-l _{cc}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-12	-	mA
			2, 3	+125°C, -55°C	-12	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	70	-	dB
Rejection Ratio		V+ = +10V, V- = -15V, V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	70	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	70	-	dB
		V+ = +15V, V- = -10V, V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	70	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV
Adjustment	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1		mV

NOTE:

- Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.
- To achieve optimum AC performance, the input stage was designed without protective diode clamps. Exceeding the maximum differential
 input voltage results in reverse breakdown to the base-emitter junction of the input transistors and probable degradation of the input
 parameters especially V_{OS}, I_{OS} and Noise.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 10pF$, $V_{OUT} = 1V/V$, Unless Otherwise Specified.

			GROUP A		LIM	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	$V_{OUT} = -3V \text{ to } +3V$	7	+25°C	100	-	V/µs
	-SR	$V_{OUT} = +3V \text{ to } -3V$	7	+25°C	100	-	V/µs

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 10pF$, $A_V = 1V/V$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Gain	dA _V	$R_S = 50\Omega$, $R_L = 1k\Omega$, $f_O = 3.58MHz$ and 4.43MHz	1, 5, 6, 8	+25°C	-	0.04	dB
Differential Phase	dØ	$R_S = 50\Omega$, $R_L = 1k\Omega$, $f_O = 3.58MHz$ and 4.43MHz	1, 6, 8	+25°C	-	0.11	Degrees
Unity Gain Bandwidth	UGBW	V _O = 200mV _{RMS} , f at -3dB	1	+25°C	45	-	MHz

Specifications HA-2544/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 10pF$, $A_V = 1V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Gain Flatness	ΔA _V	$V_O = 200 \text{mV}_{RMS}$, $f_O = 5 \text{MHz}$	1, 6	+25°C	-0.15	0.15	dB
		$V_O = 200 \text{mV}_{RMS}$, $f_O = 10 \text{MHz}$	1, 6	+25°C	-0.35	0.35	dB
Full Power Bandwidth	FPBW	V _{PEAK} = 1V	1, 2	+25°C	15.9	-	MHz
		V _{PEAK} = 5V	1, 2	+25°C	3.2	-	MHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 1k\Omega, C_L \le 1pF$	1	-55°C to +125°C	1	-	V/V
Rise and Fall Time	T _R	V _{OUT} = 0V to +200mV	1, 4	+25°C	-	15	ns
	T _F	V _{OUT} = 0V to -200mV	1, 4	+25°C	-	15	ns
Overshoot	+OS	$V_{OUT} = 0V \text{ to } +200\text{mV}$	1	+25°C	-	20	%
	-OS	V _{OUT} = 0V to -200mV	1	+25°C	-	20	%
Settling Time	T _S	Open Loop	1	+25°C	-	150	%
Output Resistance	Rout	Open Loop	1	+25°C	-	40	Ω
Quiescent Power Consumption	PC	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1, 3	-55°C to +125°C	-	360	mW

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)
- 4. Measured between 10% and 90% points.

5.
$$A_D(\%) = \begin{bmatrix} A_D(dB) \\ 10^{20} -1 \end{bmatrix} \times 100$$

- 6. The video parameter specifications will degrade as the output load resistance decreases.
- 7. C-L Gain and C-L Delay were less than the resolution of the test equipment used which is 0.1dB and 7ns, respectively.
- Test signal used is 200mV_{RMS} at each frequency on a 0 and 1 volt offset. For adequate test repeatability, a minimum warm-up of 2 minutes is suggested.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

80 x 64 x 19 mils ± 1 mils 2030 x 1630 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SIO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

7.0 x 10⁴ A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 44

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2544/883

BAL

Spec Number 511028-883

HA-2548/883

July 1994

Precision, High Slew Rate, **Wideband Operational Amplifier**

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Offset Voltage......300μV (Typ) 900μV (Max)
- 114dB (Min)
- Gain Bandwidth Product 150MHz (Typ)
- Low Voltage Noise at 1kHz 8.3nV/√Hz (Tvp)
- Minimum Gain Stability ≥ 5 (Typ)

Applications

- · High Speed Instrumentation
- · Data Acquisition Systems
- Analog Signal Conditioning
- · Precision, Wideband Amplifiers
- · Pulse/RF Amplifiers

Description

The HA-2548/883 is a monolithic op amp that offers a unique combination of bandwidth, slew rate, and precision specifications. These features can eliminate the need for composite op amp designs and external calibration circuitry.

Optimized for gains ≥5, the HA-2548/883 has a gain bandwidth product of 150MHz (typ) and a slew rate of 120V/µs (typ) while maintaining an extremely high open loop gain of 130dB (typ) and a low offset voltage of 300µV (typ). These specifications are achieved through uniquely designed input circuitry and a single ultra-high gain stage that minimizes the AC signal path. Capable of delivering over 30mA (min) of output current, the HA-2548/883 is ideal for precision, high speed applications such as signal conditioning, instrumentation, video/pulse amplifiers and buffers.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2548/883	-55°C to +125°C	8 Pin Can
HA7-2548/883	-55°C to +125°C	8 Lead Sidebraze DIP

Pinouts

HA-2548/883 (METAL CAN) TOP VIEW

Specifications HA-2548/883

Absolute Maximum Ratings	Thermal Information	
Voltage Between V+ and V- Terminals 40V Differential Input Voltage. 5V Voltage at Either Input Terminal V+ to V- Peak Output Current (< 10% Duty Cycle) 60mA Continuous Output Current 40mA Junction Temperature +175°C Storage Temperature Range -65°C to +150°C ESD Rating <2000V Lead Temperature (Soldering 10s) +300°C	Condition Condition in Contract Contrac	. 0.70W 3mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-900	900	μV
			2, 3	+125°C, -55°C	-1200	1200	μV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-50	50	nA
		$+R_S = 100.1$ kΩ, $-R_S = 100$ Ω	2, 3	+125°C, -55°C	-100	100	D μV D μV D NA
	-I _B	V _{CM} = 0V,	1	+25°C	-50	50	nA
		$+R_S = 100\Omega$, $-R_S = 100.1k\Omega$	2, 3	+125°C, -55°C	-100	100	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-50	50	nA
		$+R_S = 100.1kΩ,$ $-R_S = 100.1kΩ$	2, 3	+125°C, -55°C	-100	100	nA
Common Mode Range	+CMR	V+ = +8V, V- = -22V	1	+25°C	7		٧
			2, 3	+125°C, -55°C	7	-	V
	-CMR	V+ = +22V, V- = -8V	1	+25°C	+25°C7	-7	٧
			2, 3	+125°C, -55°C	-	-7	٧
Large Signal Voltage	+A _{VOL}	V _{OUT} = 0V and +10V,	4	+25°C	114	-	dB
Gain		$R_L = 1k\Omega$	5, 6	+125°C, -55°C	108	-	dB
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	114	-	dB
		$R_L = 1k\Omega$	5, 6	+125°C, -55°C	108	-	dB
Common Mode	+CMRR	$\Delta V_{CM} = +2V,$	1	+25°C	80		dB
Rejection Ratio		V+ = +13V, V- = -17V, $V_{OUT} = -2V$	2, 3	+125°C, -55°C	80	-	dB
	-CMRR	$\Delta V_{CM} = -2V,$ V+ = +17V, V- = -13V.	1	+25°C	80	-	dB
		V + = +1/V, V - = -13V, $V_{OUT} = +2V$	2, 3	+125°C, -55°C	80	-	dB

Specifications HA-2548/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT}	$R_L = 1k\Omega$	4	+25°C	11	-	٧
			5, 6	+125°C, -55°C	11	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	4	+25°C	-	-11	٧
			5, 6	+125°C, -55°C	-	-11	٧
Output Current	+l _{out}	V _{OUT} = +10V	4	+25°C	30	-	mA
			5, 6	+125°C, -55°C	30	-	mA
	-l _{out}	V _{OUT} = -10V	4	+25°C	-	-30	mA
			5, 6	+125°C, -55°C	-	-30	mA
Quiescent Power Supply	+lcc	V _{OUT} = 0V,	1	+25°C	-	18	mA
Current		I _{OUT} = 0mA	2, 3	+125°C, -55°C		18	mA
	-l _{cc}	V _{OUT} = 0V,	1	+25°C	-18	-	mA
		I _{OUT} = 0mA	2, 3	+125°C, -55°C	-18	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
Rejection Ratio		V+ = +10V, V- = -15V, V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	86	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
		V+ = +15V, V- = -10V, V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	86	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Characteristics in Table 3.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} \le 10pF$, Unless Otherwise Specified.

					LIN	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Average Offset Voltage Drift	V _{IO} TC	V _{CM} = 0V	1	-55°C to +125°C	-	7	μV/°C
Offset Voltage Adjust	V _{IO} Adj		1, 5	+25°C	1	-	mV
Input Noise Voltage Density	E _N	$R_S = 10\Omega$, $f_O = 1$ kHz	1	+25°C	-	13.0	nV/√Hz
Input Noise Current Density	I _N	$R_S = 500\Omega$, $f_O = 1$ kHz	1	+25°C	-	1.0	pA∕√Hz
Gain Bandwidth Product	GBWP	$V_0 = 1.0V, f_0 = 1MHz$	1	+25°C	-	130	MHz
			1	-55°C to +125°C		110	MHz

Specifications HA-2548/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} \le 10pF$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -5V to +5V	1	+25°C	80	-	V/μs
			1 '	-55°C to +125°C	70	-	V/μs
	-SR	V _{OUT} = +5V to -5V	1	+25°C	80	-	V/μs
			1	-55°C to +125°C	70	-	V/μs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	1.11	-	MHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 1k\Omega$, $C_L = 10pF$	1	-55°C to +125°C	5	-	V/V
Rise and Fall Time	T _R		1, 4	+25°C	-	15	ns
		to +100mV	1, 4	-55°C to +125°C	-	20	ns
	T _F		1, 4	+25°C	-	15	ns
		to -100mV	1, 4	-55°C to +125°C	-	20	ns
Overshoot	+OS	V _{OUT} = -100mV	1	+25°C	-	30	%
		to +100mV	1	-55°C to +125°C	-	35	%
	-OS	V _{OUT} = +100mV	1	+25°C	-	30	%
		to -100mV	1	-55°C to +125°C	-	35	%
Settling Time	T _S	To 0.01% for a 10V Step	1	+25°C	-	260	ns
Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	540	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/($2\pi V_{PEAK}$).
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)
- 4. Measured between 10% and 90% points.
- Offset adjustment range is [V_{IO}(Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

 $85 \times 91 \times 19 \text{ mils} \pm 1 \text{ mils}$ $2160 \times 2320 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

3.6 x 10⁴ A/cm²

SUBSTRATE POTENTIAL (Powered Up): V- (Note)

TRANSISTOR COUNT: 60

PROCESS: Bipolar, Dielectric Isolation

NOTE: The Substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at a V- potential.

Metallization Mask Layout

HA-2548/883

-IN V+

Spec Number 511069-883

HA-2600/883 HA-2602/883

Wideband, High Impedance **Operational Amplifiers**

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Input Impedance (HA-2600/883).... 100MΩ (Min) 500MΩ (Typ)
- 7V/μs (Typ)
- Low Input Bias Current (HA-2600/883).... 10nA (Max) 1nA (Typ)
- Low Input Offset Current (HA-2600/883) . . . 4mV (Max)
- Wide Unity Gain Bandwidth 12MHz (Typ)
- · Output Short Circuit Protection

Applications

- Video Amplifier
- Pulse Amplifier
- . High-Q Active Filters
- High Speed Comparators
- Low Distortion Oscillators

Description

HA-2600/883 and HA-2602/883 are internally compensated bipolar operational amplifiers that feature very high input impedance coupled with wideband AC performance. The high resistance of the input stage is complemented by low offset voltage (4mV max at +25°C for HA-2600/883) and low bias and offset current (10nA max at +25°C for HA-2600/ 883) to facilitate accurate signal processing. Offset voltage can be reduced further by means of an external nulling potentiometer. The 4V/µs minimum slew rate at +25°C and the minimum open loop gain of 100kV/V at +25°C enables the HA-2600/883 to perform high gain amplification of fast, wideband signals. These dynamic characteristics, coupled with fast settling times, make these amplifiers ideally suited to pulse amplification designs as well as high frequency or video applications. The frequency response of the amplifier can be tailored to exact design requirements by means of an external bandwidth control capacitor. Other high performance designs such as high gain, low distortion audio amplifiers, high-Q and wideband active filters and high speed comparators, are excellent uses of this part.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2600/883	-55°C to +125°C	8 Pin Can
HA7-2600/883	-55°C to +125°C	8 Lead CerDIP
HA2-2602/883	-55°C to +125°C	8 Pin Can
HA7-2602/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-2600/883, HA-2602/883 (CERDIP) TOP VIEW

HA-2600/883, HA-2602/883 (METAL CAN) TOP VIEW

Specifications HA-2600/883, HA-2602/883

Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals 40V	Thermal Resistance	θ_{JA}	$\theta_{\sf JC}$
Differential Input Voltage12V	CerDIP Package	115°C/W	28°C/W
Voltage at Either Input Terminal V+ to V-	Metal Can Package	160°C/W	75°C/W
Peak Output Current Full Short Circuit Protection	Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}$	С
Junction Temperature (T _J) +175°C	CerDIP Package		870mW
Storage Temperature Range65°C to +150°C	Metal Can Package		625mW
ESD Rating<2000V	Package Power Dissipation Derating Factor A	bove +75°C	;
Lead Temperature (Soldering 10s)+300°C	CersDIP Package		8.7mW/°C
	Metal Can Package		6.3mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		HA-26	00/883	HA-26	02/883	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Input Offset	V _{IO}	V _{CM} = 0V	1	+25°C	-4	4	-5	5	mV
Voltage			2, 3	+125°C, -55°C	-6	6	-7	7	mV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-10	10	-25	25	nA
		$+R_S = 100kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-30	30	-60	60	nA
	-l _B	V _{CM} = 0V,	1	+25°C	-10	10	-25	25	nA
		$+R_S = 100\Omega$, $-R_S = 100k\Omega$	2, 3	+125°C, -55°C	-30	30	-60	60	nA
Input Offset	I _{IO}	V _{CM} = 0V,	1	+25°C	-10	10	-25	25	nA
Current		$+R_S = 100kΩ$, $-R_S = 100kΩ$	2, 3	+125°C, -55°C	-30	30	-60	60	nA
Common Mode	+CMR	V+ = +4V, V- = -26V	1	+25°C	11	-	11	-	٧
Range	*		2, 3	+125°C, -55°C	11	-	11	-	٧
	-CMR	V+ = +26V, V- = -4V	1	+25°C	-	-11		-11	٧
			2, 3	+125°C, -55°C		-11	-	-11	٧
Large Signal	+A _{VOL}		4	+25°C	100	-	80	-	kV/V
Voltage Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	70	-	60	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	100	-	80	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	70	-	60	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	80	-	74	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	80	-	74	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	80	-	74	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	80	-	74	-	dB
Output Voltage	+V _{OUT}	$R_L = 2k\Omega$	4	+25°C	10	-	10	-	٧
Swing			5, 6	+125°C, -55°C	10	-	10	-	٧
	-V _{OUT}	$R_L = 2k\Omega$	4	+25°C		-10	-	-10	٧
			5, 6	+125°C, -55°C	-	-10		-10	٧

Specifications HA-2600/883, HA-2602/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		HA-26	00/883	HA-26	02/883	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	15	-	10	-	mA
			5, 6	+125°C, -55°C	10	-	7.5	-	mA
	-l _{out}	V _{OUT} = +10V	4	+25°C	-	-15	-	-10	mA
			5, 6	+125°C, -55°C	-	-10	-	-7.5	mA
Quiescent Power	+I _{CC}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	3.7	-	3.7	mA
Supply Current			2, 3	+125°C, -55°C	-	4.0	-	4.0	mA
	-l _{cc}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-3.7	-	-3.7	-	mA
			2, 3	+125°C, -55°C	-4.0	-	-4.0	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = \pm 5V$,	1	+25°C	80	-	74	-	dB
Rejection Ratio		V+ = +10V, V- = -15V, V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	80	-	74	-	dB
	-PSRR	$\Delta V_{SUP} = \pm 5V$,	1	+25°C	80	-	74	-	dB
		V+ = +15V, V- = -10V, V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	80	-	74	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	V _{IO} -1	-	mV
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	V _{IO} +1	-	mV

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified.

			GROUP A		HA-2600/883		HA-2602/883		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -5V to +5V	7	+25°C	4	-	4	-	V/µs
			8A, 8B	+125°C, -55°C	3	-	3	-	V/µs
	-SR	V _{OUT} = +5V to -5V	7	+25°C	4	-	4	-	V/μs
			8A, 8B	+125°C, -55°C	3	-	3	-	V/µs
Rise and Fall	T _R	$V_{OUT} = 0$ to $+200$ mV	7	+25°C	-	60	-	60	ns
Time		$10\% \le T_{R} \le 90\%$	8A, 8B	+125°C, -55°C	-	70	-	70	ns
	T _F	V _{OUT} = 0 to -200mV	7	+25°C	-	60	-	60	ns
		$10\% \le T_F \le 90\%$	8A, 8B	+125°C, -55°C	-	70	-	70	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	-	40	%
			8A, 8B	+125°C, -55°C	-	50	-	50	%
	-os	V _{OUT} = 0 to -200mV	7	+25°C	-	40	-	40	%
			8A, 8B	+125°C, -55°C	-	50	-	50	%

Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

Specifications HA-2600/883, HA-2602/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

					HA-26	00/883	HA-26	02/883	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	100	-	40	-	МΩ
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	50	-	50	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	1	-	1	-	V/V
Output Short	+I _{SC}	$V_{OUT} = 1V$, $R_L = 10\Omega$	1	+25°C	-	50	-	50	mA
Circuit Current			1	+125°C	-	45	-	45	mA
			1	-55°C	-	60	-	60	mA
	-I _{SC}	$V_{OUT} = -1V$, $R_L = 10\Omega$	1	+25°C	-50	-	-50	-	mA
			1	+125°C	-45	-	-45	-	mA
			1	-55°C	-60		-60	-	mA
Quiescent Power Consumption	PC	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1, 3	-55°C to +125°C	-	120	-	120	mW

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7, 8A, 8B
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7, 8A, 8B
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

69 x 56 x 19 mils ± 1 mils 1750 x 1420 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

3.9 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): Unbiased

TRANSISTOR COUNT:

HA-2600/883: 140 HA-2602/883: 140

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2600/883, HA-2602/883

OUT

HA-2640/883

July 1994

High Voltage Operational Amplifier

Features

- · This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.

- Common Mode Input Voltage Swing ±35V (Min)
- Unity Gain Bandwidth 5MHz (Typ)
- Output Overload Protection

Applications

- Industrial Control Systems
- · Power Supplies
- · High Voltage Regulators
- · Resolver Excitation
- · Signal Conditioning

Description

HA-2640/883 monolithic operational amplifier is designed to deliver unprecedented dynamic specification for a high voltage internally compensated device. This dielectrically isolated device offer very low values for offset voltage and offset current coupled with large output voltage swing and common mode input voltage.

For maximum reliability, the HA-2640/883 offers unconditional output overload protection through output short circuit current limiting. This circuitry will limit the output to typically ±25mA output drive current.

These amplifiers deliver ±35V common mode input voltage swing, ±35V output voltage swing, and up to ±40V supply range for use in such designs as regulators, power supplies. and industrial control systems. The 5MHz typical gain-bandwidth product and 5V/µs slew rate (typ) make these devices excellent components for high performance signal conditioning applications. To insure compliance, all devices are 100% tested for slew rate, rise/fall time and overshoot. Outstanding input and output voltage swings coupled with a low 5nA offset current (typ), make these amplifiers excellent components for resolver excitation designs.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-2640/883	-55°C to +125°C	8 Pin Can
HA4-2640/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-2640/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-2640/883 (METAL CAN)

Specifications HA-2640/883

Absolute Maximum Ratings Voltage Between V+ and V- Terminals 100V Differential Input Voltage 37V Output Current Full Short Circuit Protection Output Short Circuit Duration 5 Seconds Junction Temperature (T_J) +175°C Storage Temperature Range -65°C to +150°C ESD Rating <2000V</td> Lead Temperature (Soldering 10s) +300°C

100						
Th	erm	all	nt	orn	nati	on

Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{\rm J} \le +175^{\circ}$	3
CerDIP Package		870mW
Ceramic LCC Package		1.54W
Metal Can Package		645mW
Package Power Dissipation Derating Factor A	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	5.4mW/°C
Metal Can Package		6.5mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 40V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-4	4	mV
			2, 3	+125°C, -55°C	-6	6	mV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-25	25	nA
		$+R_S = 100kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-50	50	nA
	-I _B	V _{CM} = 0V,	1 .	+25°C	-25	25	nA
		$+R_S = 100\Omega$, $-R_S = 100k\Omega$	2, 3	+125°C, -55°C	-50	50	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-12	12	nA
		$+R_S = 100kΩ,$ $-R_S = 100kΩ$	2, 3	+125°C, -55°C	-35	35	nA
Common Mode	+CMR	V+ = 15V, V- = -65V	1	+25°C	25	- V	V
Range			2, 3	+125°C, -55°C	25	-	V
	-CMR	-CMR V+ = 65V, V- = -15V	1	+25°C	-	-25	V
			2, 3	+125°C, -55°C	-	-25	V
Large Signal Voltage	+A _{VOL}	V _{OUT} = 0V and +30V,	4	+25°C	100	-	kV/V
Gain		$R_L = 5k\Omega$	5, 6	+125°C, -55°C	75	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -30V,	4	+25°C	100	-	kV/V
		$R_L = 5k\Omega$	5, 6	+125°C, -55°C	75	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +20V$,	4	+25°C	80	-	dB
Rejection Ratio		V+ = +20V, V- = -60V, V _{OUT} = -20V	5, 6	+125°C, -55°C	80	-	dB
	-CMRR	$\Delta V_{CM} = -20V$,	4	+25°C	80	-	dB
		V+ = +60V, V- = -20V, V _{OUT} = +20V	5, 6	+125°C, -55°C	80	-	dB

Specifications HA-2640/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 40V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage	+V _{OUT}	$R_L = 5k\Omega$	1	+25°C	35	-	V
Swing			2, 3	+125°C, -55°C	35	-	V
	-V _{OUT}	$R_L = 5k\Omega$	1	+25°C	-	-35	V
			2, 3	+125°C, -55°C	-	-35	V
Output Current	+l _{OUT}	V _{OUT} = -10V	4	+25°C	12	-	mA
	-l _{out}	V _{OUT} = +10V	4	+25°C	-	-12	mA
Quiescent Power	+lcc	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	3.8	mA
Supply Current			2, 3	+125°C, -55°C	-	4.0	mA
	-I _{CC}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-3.8	-	mA
			2, 3	+125°C, -55°C	-4.0	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 30V$,	4	+25°C	80	-	dB
Rejection Ratio		V+ = +10V, V- = -40V, V+ = +40V, V- = -40V	5, 6	+125°C, -55°C	80	-	dB
	-PSRR	$\Delta V_{SUP} = 30V$,	4	+25°C	80	-	dB
		V+ = +40V, V- = -10V, V+ = +40V, V- = -40V	5, 6	+125°C, -55°C	80	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV
Adjustment	ustment		2, 3	+125°C, -55°C	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	mV

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 40V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 5k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	$V_{OUT} = -3V \text{ to } +3V$	4	+25°C	3	-	V/µs
	-SR	V _{OUT} = +3V to -3V	4	+25°C	3	-	V/µs
Rise and Fall Time	T _R	$V_{OUT} = 0 \text{ to } +200\text{mV}$ $10\% \le T_{R} \le 90\%$	4	+25°C	-	135	ns
	T _F	$V_{OUT} = 0 \text{ to -} 200 \text{mV}$ $10\% \le T_F \le 90\%$	4	+25°C	-	135	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	4	+25°C	-	30	%
	-OS	V _{OUT} = 0 to -200mV	4	+25°C	-	30	%

Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

Specifications HA-2640/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 40V$, $R_{LOAD} = 5k\Omega$, $C_{LOAD} = 10pF$, $A_V = 1V/V$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	50	-	МΩ
Full Power	FPBW	V _{PEAK} = 10V	1, 2	+25°C	45	-	kHz
Bandwidth		V _{PEAK} = 35V	1, 2	+25°C	13.6	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 5k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	1	-	V/V
Output Short Circuit Current	+I _{SC}	$V_{OUT} = 0V$, $R_L = 10\Omega$	1	+25°C	-	25	mA
	-I _{SC}	$V_{OUT} = 0V$, $R_L = 10\Omega$	1	+25°C	-25	-	mA
Output Resistance	R _{OUT}	Open Loop	1	+25°C	-	600	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	320	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

93 x 68 x 19 mils ± 1 mils $2360 \times 1720 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

5.0 x 104 A/cm2 at 12mA

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT: 76

PROCESS: HV200 Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2640/883

BAL

HA-2839/883

Very High Slew Rate, Wideband Operational Amplifier

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Offset Voltage..... 2.0mV (Max)
- Very High Slew Rate 600V/μs (Typ)
- Wide Gain-Bandwidth ($A_V \ge 10$) 600MHz (Typ)
- Input Noise Voltage at 1kHz 6nV/√Hz (Typ)
- Enhanced Replacement for HA-2539/883 and EL2039

Applications

- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- RF/IF Signal Processing
- . High Speed Sample-Hold Circuits
- · Fast, Precise D/A Converters
- RF Oscillators

Description

The HA-2839/883 is a wideband, very high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. It also features trimmed supply current, which minimizes supply current (and thus A.C. parameter) variation over process and temperature extremes. For example, the I_{CC} variation over the entire military temperature range is typically less than 0.5mA. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with closed loop gains ≥10.

The 600V/µs slew rate, and 600MHz gain bandwidth product ensure high performance in video and wideband amplifier designs. Differential gain and phase are a low 0.03% and 0.03 degrees, respectively, making the HA-2839/883 ideal for video applications. A full ±10V output swing, high open loop gain, and outstanding A.C. parameters make the HA-2839/883 an excellent choice for data acquisition systems.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-2839/883	-55°C to +125°C	14 Lead CerDIP

Pinout

File Number 3593.1

Specifications HA-2839/883

Absolute Maximum Ratings

Thermal Information

Voltage between V+ and V- Terminals
Differential Input Voltage
Voltage at Either Input Terminal V+ to V-
Peak Output Current (≤ 10% Duty Cycle)50mA
Junction Temperature (T _J) +175°C
Storage Temperature Range65°C to +150°C
ESD Rating<2000V
Lead Temperature (Soldering 10 seconds) +300°C

Thermal Resistance	θ_{JA}	θ_{JC}
14 Lead CerDIP Package	81°C/W	26°C/W
Package Power Dissipation Limit at +75°C for	$T_J \leq +175^\circ$	C
14 Lead CerDIP Package		1.23W
Package Power Dissipation Derating Factor A	Above +75°C	;
14 Lead CerDIP Package	1	2.3mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			ODOUD A		LIMITS		
DC PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-2	2	mV
			2, 3	+125°C, -55°C	-6	6	mV
Input Bias Current	+l _B	$V_{CM} = 0V, +R_S = 1.1k\Omega$	1	+25°C	-14.5	14.5	μА
		$-R_S = 100\Omega$	2, 3	+125°C, -55°C	-20	20	μА
	-I _B	$V_{CM} = 0V, +R_S = 100\Omega$	1	+25°C	-14.5	14.5	μА
		$-R_S = 1.1k\Omega$	2, 3	+125°C, -55°C	-20	20	μА
Input Offset Current	I _{IO}	$V_{CM} = 0V, +R_S = 1.1k\Omega$ -R _S = 1.1k\O	1	+25°C	-4	4	μА
		-n _S = 1.1k22	2, 3	+125°C, -55°C	-8	8	μА
Common Mode Range	+CMR	V+ = 5V V- = -25V	1	+25°C	10	10 -	٧
		V- = -25V	2, 3	+125°C, -55°C	10	-	٧
	-CMR	V+ = 25V V- = -5V	1	+25°C	+	-10	٧
		V- = -5V	2, 3	+125°C, -55°C	-	2 6 14.5 20 14.5 20 4 8 -	٧
Large Signal Voltage Gain	+A _{VOL}	$V_{OUT} = 0V \text{ and } +10V$ $R_1 = 1k\Omega$	4	+25°C	20	-	kV/V
Gaiii		∩ _L = 1K22	5, 6	+125°C, -55°C	10	-	kV/V
	-A _{VOL}	$V_{OUT} = 0V$ and -10V $R_1 = 1k\Omega$	4	+25°C	20	-	kV/V
		□[= 1K22	5, 6	+125°C, -55°C	10	-	kV/V
Common Mode Rejection Ratio	+CMRR ΔV _{CM} = 10V,		1	+25°C	75	-	dB
nejection natio		V _{OUT} = -10V V+ = 5V, V- = -25V	2,3	+125°C, -55°C	75		dB
	-CMRR	$\Delta V_{CM} = -10V,$ $V_{OUT} = 10V$	1	+25°C	75	-	dB
		V _{OUT} = 10V V+ = 25V, V- = -5V	2, 3	+125°C, -55°C	75	-20 20 -4 4 -8 8 10 - 10 - -10 - -10 20 - 10 - 20 - 10 - 75 - 75 - 75 -	dB

Specifications HA-2839/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
DC PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT}	$R_L = 1k\Omega$	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	٧
Output Current	+l _{OUT}	V _{OUT} = 10V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
	-l _{out}	V _{OUT} = -10V	1	+25°C	-	-10	mA
			2, 3	+125°C, -55°C	-	-10	mA
Quiescent Power Supply Current	+lcc	V _{OUT} = 0V I _{OUT} = 0mA	1	+25°C	-	14.6	mA
Supply Current		IOUT = OTTA	2, 3	+125°C, -55°C		15	mA
	-I _{cc}	V _{OUT} = 0V I _{OUT} = 0mA	1	+25°C	-14.6	-	mA
		IOUT = OTTA	2, 3	+125°C, -55°C	-15	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$ V+ = 10V, V- = -15V	1	+25°C	75	-	dB
Rejection Ratio		V+ = 10V, V- = -15V V+ = 20V, V- = -15V	2, 3	+125°C, -55°C	75	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$ V+ = 15V, V- = -10V	1	+25°C	75	-	dB
		V+ = 15V, V- = -10V V+ = 15V, V- = -20V	2, 3	+125°C, -55°C	75	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See A.C. Specifications in Table 3

Specifications HA-2839/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $C_L \le 10pF$, $A_V = +10V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Gain Bandwidth Product	GBWP	$V_0 = 200 \text{mV}, f_0 = 5 \text{MHz}$	1	+25°C	500	-	MHz
Product		V _O = 200mV, f _O = 45MHz	1	+25°C	450	-	MHz
Slew Rate	+SR	V _O = -5V to +5V	1, 4	+25°C	550	-	V/μs
	-SR	V _O = +5V to -5V	1, 4	+25°C	500	-	V/μs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	8.0	-	MHz
Rise and Fall Time	T _R	V _O = 0V to +200mV	1, 4	+25°C		10	ns
	T _F	V _O = 0V to -200mV	1, 4	+25°C		10	ns
Minimum Closed Loop Stable Gain	CLSG	$R_L = 1k\Omega, C_L \le 10pF$	1	-55°C to +125°C	10	-	V/V
Overshoot	+OS	V _O = 0V to +200mV	1	+25°C	-	30	%
	-os	V _O = 0V to -200mV	1	+25°C	-	30	%
Open Loop Output Resistance	R _{out}	V _{OUT} = 0V	1	+25°C	-	60	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	450	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)
- 4. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C & D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $65 \times 52 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1650 \times 1310 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Aluminum, 1% Copper Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Al, 1% Cu

Silox Thickness: $12k\text{\AA} \pm 2k\text{\AA}$ Nitride Thickness: $3.5k\text{\AA} \pm 1k\text{\AA}$

WORST CASE CURRENT DENSITY:

1.3 x 10⁵ A/cm² at 3.4mA

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 34

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2839/883

HA-2840/883

July 1994

Very High Slew Rate, Wideband Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Supply Current...... 15.0mA (Max)
- Low Offset Voltage..... 2.0mV (Max)
- Very High Slew Rate 600V/μs (Typ)
- Open Loop Gain 20kV/V (Min)
- Wide Gain-Bandwidth (AV \geq 10) 600MHz (Typ)
- Input Noise Voltage at 1kHz 6nV/√Hz (Typ)
- Enhanced Replacement for HA-2540/883 and AD840

Applications

- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- · RF/IF Signal Processing
- · High Speed Sample-Hold Circuits
- · Fast, Precise D/A Converters
- RF Oscillators

Description

The HA-2840/883 is a wideband, very high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. It also features trimmed supply current, which minimizes supply current (and thus A.C. parameter) variation over process and temperature extremes. For example, the I_{CC} variation over the entire military temperature range is typically less than 0.5mA. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with closed loop gains ≥10.

The 600V/ μ s slew rate, and 600MHz gain bandwidth product ensure high performance in video and wideband amplifier designs. Differential gain and phase are a low 0.03% and 0.03 degrees, respectively, making the HA-2840/883 ideal for video applications. A full ± 10 V output swing, high open loop gain, and outstanding A.C. parameters make the HA2840/883 an excellent choice for data acquisition systems.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-2840/883	-55°C to +125°C	14 Lead CerDIP
HA7-2840/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

Specifications HA-2840/883

Absolute Maximum Ratings	Thermal Information		
Voltage between V+ and V- Terminals 35V Differential Input Voltage. 6V Voltage at Either Input Terminal V+ to V- Peak Output Current (≤10% Duty Cycle) .50mA Junction Temperature (T _J) +175°C Storage Temperature Range -65°C to +150°C ESD Rating. <2000V	Thermal Resistance 14 Lead CerDIP Package 8 Lead CerDIP Package Package Power Dissipation Limit at +75°C for 1 14 Lead CerDIP Package 8 Lead CerDIP Package Package Power Dissipation Derating Factor Ab 14 Lead CerDIP Package 8 Lead CerDIP Package	T _J ≤ +175°(oove +75°C 1	1.23W 0.87W 2.3mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range55°C to +125°C	$V_{INCM} \le 1/2 (V + - V -)$
Operating Supply Voltage	V R _i ≥1kΩ

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			ODOUD 4		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-2	2	mV
			2, 3	+125°C, -55°C	-6	6	mV
Input Bias Current	+l _B	$V_{CM} = 0V, +R_S = 1.1k\Omega$	1	+25°C	-14.5	14.5	μА
		$-R_S = 100\Omega$	2, 3	+125°C, -55°C	-20	20	μА
	-I _B	$V_{CM} = 0V, +R_S = 100\Omega$ -R _S = 1.1k Ω	1	+25°C	-14.5	14.5	μА
		-n _S = 1.1K22	2, 3	+125°C, -55°C	-20	20	μА
Input Offset Current	Iю	$V_{CM} = 0V, +R_{S} = 1.1k\Omega$ -R _S = 1.1k\O	1	+25°C	-4	4	μА
		-M _S = 1.1K22	2, 3	+125°C, -55°C	-8	8	μА
Common Mode Range	+CMR	V+ = 5V V- = -25V V+ = 25V	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	V
	-CMR		1	+25°C	-	-10	٧
		V- = -5V	2, 3	+125°C, -55°C	-	-10	٧
Large Signal Voltage Gain	+A _{VOL}	V _{OUT} = 0V and +10V	4	+25°C	20	-	kV/V
Gain		$R_L = 1k\Omega$	5, 6	+125°C, -55°C	10	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V	4	+25°C	20	-	kV/V
		$R_L = 1k\Omega$	5, 6	+125°C, -55°C	10	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = 10V$	1	+25°C	75	-	dB
Rejection Ratio		V _{OUT} = -10V V+ = 5V, V- = -25V	2, 3	+125°C, -55°C	75	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	75	-	dB
		V _{OUT} = 10V V+ = 25V, V- = -5V	2, 3	+125°C, -55°C	75	-	dB

Specifications HA-2840/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT}	$R_L = 1k\Omega$	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	٧
Output Current	+l _{out}	V _{OUT} = 10V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
	-lout	V _{OUT} = -10V	1	+25°C	-	-10	mA
		2, 3	+125°C, -55°C	-	-10	mA	
Quiescent Power Supply Current	+lcc	V _{OUT} = 0V I _{OUT} = 0mA	1	+25°C	-	14.6	mA
Supply Current		IOUT = OTTA	2, 3	+125°C, -55°C	-	15	mA
	-I _{CC}	V _{OUT} = 0V I _{OUT} = 0mA	1	+25°C	-14.6	-	mA
		IOUT = OTTA	2, 3	+125°C, -55°C	-15	-	mA
Power Supply Rejection Ratio	+PSRR	$\Delta V_{SUP} = 10V$ V+ = 10V, V- = -15V	1	+25°C	75	-	dB
Nejection natio		V+ = 10V, V- = -15V	2, 3	+125°C, -55°C	75	-	dB
	-PSRR	ΔV _{SUP} = 10V V+ = 15V, V- = -10V	1	+25°C	75	-	dB
		V+ = 15V, V- = -10V V+ = 15V, V- = -20V	2, 3	+125°C, -55°C	75	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See A.C. Specifications in Table 3

Specifications HA-2840/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $C_L \le 10pF$, $A_V = +10V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Gain Bandwidth Product	GBWP	$V_O = 200 \text{mV}, f_O = 5 \text{MHz}$	1	+25°C	500	-	MHz
Product		V _O = 200mV, f _O = 45MHz	1	+25°C	450	-	MHz
Slew Rate	+SR	V _O = -5V to +5V	1, 4	+25°C	550	-	V/µs
	-SR	V _O = +5V to -5V	1, 4	+25°C	500	-	V/μs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	8.0	-	MHz
Rise and Fall Time	T _R	V _O = 0V to +200mV	1, 4	+25°C	-	10	ns
	T _F	V _O = 0V to -200mV	1, 4	+25°C	-	10	ns
Minimum Closed Loop Stable Gain	CLSG	$R_L = 1k\Omega, C_L \le 10pF$	1	-55°C to +125°C	10	-	V/V
Overshoot	+OS	V _O = 0V to +200mV	1	+25°C	-	30	%
	-os	V _O = 0V to -200mV	1	+25°C	-	30	%
Open Loop Output Resistance	R _{out}	V _{OUT} = 0V	1	+25°C	-	60	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	450	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)
- 4. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)		
Interim Electrical Parameters (Pre Burn-In)	1		
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6		
Group A Test Requirements	1, 2, 3, 4, 5, 6		
Groups C & D Endpoints	1		

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $65 \times 52 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1650 \times 1310 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride over Silox Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.3 x 10⁵ A/cm² at 3.4mA

SUBSTRATE POTENTIAL (Powered UP): V-

TRANSISTOR COUNT: 34

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2840/883

OPERATIONAL

AMPLIFIERS

HA-2841/883

Wideband, Fast Settling, Unity Gain Stable, **Video Operational Amplifier**

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1
- Low AC Variability Over Process and Temperature
- Low Supply Current......11mA (Max)
- Unity Gain Bandwidth 50MHz (Typ)
- Low Offset Voltage...... 1mV (Typ)
- Full Power Bandwidth 4.6MHz (Typ)
- Low Differential Gain/Phase 0.03%/0.03° (Typ)

Applications

- Pulse and Video Amplifiers
- · Wideband Amplifiers
- · Fast Sample and Hold Circuits
- · Fast, Precise D/A Converters
- · High Speed A/D Input Buffer

Description

The HA-2841/883 is a wideband, unity gain stable, operational amplifier featuring a 50MHz unity gain bandwidth, and excellent DC specifications. This amplifier's performance is further enhanced through stable operation down to closed loop gains of +1, the inclusion of offset null controls, and by its excellent video performance.

The capabilities of the HA-2841/883 are ideally suited for high speed pulse and video amplifier circuits, where high slew rates and wide bandwidth are required. Gain flatness of 0.05dB, combined with differential gain and phase specifications of 0.03%, and 0.03 degrees, respectively, make the HA-2841/883 ideal for component and composite video applications.

A zener/nichrome based reference circuit, coupled with advanced laser trimming techniques, vields a supply current with a low temperature coefficient and low lot-to-lot variability. Tighter I_{CC} control translates to more consistent AC parameters ensuring that units from each lot perform the same way, and easing the task of designing systems for wide temperature ranges.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-2841/883	-55°C to +125°C	14 Lead CerDIP
HA7-2841/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-2841/883

HA-2841/883 (CERDIP) TOP VIEW

NOTE: (NC) No Connection pins may be tied to a ground plane for better isolation and heat dissipation.

File Number 3621.1

Specifications HA-2841/883

Absolute Maximum Ratings

Thermal Information

Voltage between V+ and V- Terminals+35V	Thermal Resistance
Differential Input Voltage 6V	14 Pin CerDIP Package.
Voltage at Either Input TerminalV+ to V-	8 Pin CerDIP Package.
Peak Output Current (≤10% Duty Cycle)	Package Power Dissipation
Junction Temperature (T _J) +175°C	14 Pin CerDIP Package.
Storage Temperature Range65°C to +150°C	8 Pin CerDIP Package.
ESD Rating<2000V	Package Power Dissipation
Lead Temperature (Soldering 10s) +300°C	14 Pin CerDIP Package.
	0 D'- 0 - DID D - I

 θ_{JC} 9..... 73°C/W 18°C/W 110°C/W 27°C/W on Limit at +75°C for T_J ≤ +175°C0.9W on Derating Factor Above +75°C 9......10.5mW/°C

 θ_{JA}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range. -55°C to +125°C $V_{INCM} \le 1/2(V + - V -)$ Operating Supply Voltage.....±12V to ±15V $R_L \ge 1k\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-4	4	mV
			2, 3	+125°C, -55°C	-8	8	mV
Input Bias Current	+l _B	$V_{CM} = 0V, +R_S = 1.1k\Omega$	1	+25°C	-10	10	μА
		$-R_S = 100\Omega$	2, 3	+125°C, -55°C	-20	20	μА
	-I _B	$V_{CM} = 0V, +R_S = 100\Omega$	1	+25°C	-10	10	μА
		$-R_S = 1.1k\Omega$	2, 3	+125°C, -55°C	-20	20	μА
Input Offset Current	I _{IO}	$V_{CM} = 0V, +R_S = 1.1k\Omega$ -R _S = 1.1k\O	1	+25°C	-1	1	μА
		-n _S = 1.1K22	2, 3	+125°C, -55°C	-2	2	μА
Common Mode Range	+CMR	V+ = 5V V- = -25V	1	+25°C	10	-	٧
		V- = -25V	2, 3	+125°C, -55°C	10	-	٧
	-CMR	V+ = 25V V- = -5V	1	+25°C	-	-10	٧
		V- = -5V	2, 3	+125°C, -55°C	-	-10	٧
Large Signal Voltage Gain	+A _{VOL}	$V_{OUT} = 0V \text{ and } +10V$ $R_1 = 1k\Omega$	4	+25°C	10	-	kV/V
Gaiii		\(\(\Gamma\L = 1\psi 2\)	5, 6	+125°C, -55°C	5	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V	4	+25°C	10	-	kV/V
		$R_L = 1k\Omega$	5, 6	+125°C, -55°C	5	-	kV/V
Common Mode Rejection Ratio	+CMRR	$\Delta V_{CM} = 10V,$ $V_{OUT} = -10V$	1	+25°C	86	-	dB
nejection natio		V _{OUT} = -10V V+ = 5V, V- = -25V	2, 3	+125°C, -55°C	80	-	dB
	-CMRR	$\Delta V_{CM} = -10V,$ $V_{OUT} = 10V$	1	+25°C	86	-	dB
		V _{OUT} = 10V V+ = 25V, V- = -5V	2, 3	+125°C, -55°C	80	-	dB

Specifications HA-2841/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT}	$R_L = 1k\Omega$	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	٧
Output Current	+l _{out}	V _{OUT} = -5V, (Note 1)	1	+25°C	25	-	mA
			2, 3	+125°C, -55°C	15	-	mA
	-lout	V _{OUT} = 5V, (Note 1)	1	+25°C	-	-25	mA
			2, 3	+125°C, -55°C	-	-15	mA
Quiescent Power Supply Current	+lcc	V _{OUT} = 0V I _{OUT} = 0mA	1	+25°C	-	11	mA
Supply Current		IOUT = OTTA	2, 3	+125°C, -55°C	-	11	mA
	-I _{cc}	V _{OUT} = 0V I _{OUT} = 0mA	1	+25°C	-11	-	mA
		IOUT = OTTA	2, 3	+125°C, -55°C	-11	-	mA
Power Supply Rejection Ratio	+PSRR	ΔV _{SUPPLY} = 10V V+ = 10V, V- = -15V	1	+25°C	70	-	dB
nejection hatio		V+ = 10V, V- = -15V V+ = 20V, V- = -15V	2, 3	+125°C, -55°C	70	-	dB
	-PSRR	ΔV _{SUPPLY} = 10V V+ = 15V, V- = -10V	1	+25°C	70	-	dB
		V+ = 15V, V- = -10V V+ = 15V, V- = -20V	2, 3	+125°C, -55°C	70		dB
Offset Voltage Adjustment	+V _{IO} Adj	(Note 2)	1	+25°C	V _{IO} -1		mV
Aujustinent	-V _{IO} Adj	(Note 2)	1	+25°C	V _{IO} +1	-	mV

NOTES:

- 1. The output metal is sized to handle I_{OUT} = 10mA at a 50% duty cycle, for T_J = +175°C. For I_{OUT} = 15mA and T_J = +175°C, a duty cycle ≤33% is required.
- 2. Offset Adjustment range is V_{IO} (measured) ±1mV | minimum referred to output. This test is for functionality only, to assure adjustment through 0V.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See A.C. Specifications in Table 3

Specifications HA-2841/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $V_{OUT} = 0V$, $A_V = +1V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Gain Bandwidth Product	GBWP	$V_{O} = 200 \text{mV},$ $f_{O} = 0.1 \text{MHz}$	1	+25°C	42	-	MHz
		V _O = 200mV, f _O = 10MHz	1	+25°C	44	-	MHz
Slew Rate	SR	V _O = -3V to +3V	1, 3	+25°C	200	-	V/μs
	SR	$V_O = -3V$ to $+3V$	1, 3	-55°C to +125°C	187	-	V/µs
Rise Time	T _R	V _O = 0V to +200mV	1, 3	+25°C	-	6	ns
		C _L < 10pF	1, 3	-55°C to +125°C	-	6	ns
Fall Time	T _F	$V_{O} = 0V \text{ to -200mV}$ $C_{L} < 10pF$	1, 3	+25°C	-	5	ns
	,	OL < 10pr	1, 3	-55°C to +125°C	-	6	ns
Full Power Bandwidth	FPBW	V _{PEAK} = +10V	1, 2	+25°C	3.1	-	MHz
			1, 2	-55°C to +125°C	3.0	-	MHz
Overshoot	+OS	V _O = 0V to +200mV	1	+25°C	-	60	%
			1	-55°C to +125°C	-	65	%
	-os	V _O = 0V to -200mV	1	+25°C	-	60	%
			1	-55°C to +125°C	-	70	%
Closed Loop Output Resistance	R _{OUT}	$A_V > +1$ $V_M = 10V$, $\Delta I = 9mA$	1	+25°C	-	1	Ω

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variations.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/($2\pi V_{PEAK}$).
- 3. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)			
Interim Electrical Parameters (Pre Burn-In)	1			
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6			
Group A Test Requirements	1, 2, 3, 4, 5, 6			
Groups C & D Endpoints	1			

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $77 \times 81 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1960 \times 2060 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride over Silox Silox Thickness: 12kÅ ± 2kÅ Nitride thickness: 3.5kÅ ± 1kÅ

WORST CASE CURRENT DENSITY:

1.2 x 105 A/cm2 at 9.7mA

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 43

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2841/883

HA-2842/883

Wideband, High Slew Rate, High Output Current, **Video Operational Amplifier**

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low AC Variability Over Process and Temperature
- · Stable at Gains of 2 or Greater

•	Low Supply Current		15mA (Max)
---	---------------------------	--	------------

- Gain Bandwidth Product...... 80MHz (Typ)
- High Slew Rate...... 375V/μs (Typ)
- High Output Current 100mA (Min)
- Full Power Bandwidth 6MHz (Typ)
- Low Differential Gain/Phase 0.02%/0.03° (Typ)

Applications

- · Coaxial Cable Drivers
- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- · Fast Sample and Hold Circuits
- . High Frequency Signal Conditioning Circuits

Description

The HA-2842/883 is a wideband, high slew rate, operational amplifier featuring an outstanding combination of speed, bandwidth, and output drive capability. This amplifier's performance is further enhanced through stable operation down to closed loop gains of +2, the inclusion of offset null controls, and by its excellent video performance.

The capabilities of the HA-2842/883 are ideally suited for high speed cable driver circuits, where low closed loop gains and high output drive are required. With a 6MHz full power bandwidth, this amplifier is well suited for high frequency signal conditioning circuits and video amplifiers. Gain flatness of 0.035dB, combined with differential gain and phase specifications of 0.02%, and 0.03 degrees, respectively, make the HA-2842/883 ideal for component and composite video applications.

A zener/nichrome based reference circuit, coupled with advanced laser trimming techniques, yields a supply current with a low temperature coefficient and low lot-to-lot variability. For example, the average I_{CC} variation from +85°C to -40°C is <600µA (±2%), while the standard deviation of the I_{CC} distribution is <0.1mA (0.8%) at +25°C. Tighter I_{CC} control translates to more consistent AC parameters ensuring that units from each lot perform the same way, and easing the task of designing systems for wide temperature ranges.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-2842/883	-55°C to +125°C	14 Lead CerDIP
HA7-2842/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

TOP VIEW 14 NC NC 2 13 BAL 12 NC BAL 3 11 V+ -IN 4 10 OUT +IN 5 9 NC V- 6 NC 7 8 NC

HA-2842/883

(CERDIP)

HA-2842/883 (CERDIP) TOP VIEW

NOTE: (NC) No Connection pins may be tied to a ground plane for better isolation and heat dissipation.

Specifications HA-2842/883

Absolute Maximum Ratings	Thermal Information		
Voltage between V+ and V- Terminals. 35V Differential Input Voltage 6V Voltage at Either Input Terminal. V+ to V- Peak Output Current (≤40% Duty Cycle) 125mA Junction Temperature (T _J) (Note 1) +175°C Storage Temperature Range -65°C to +150°C ESD Rating. <2000V Lead Temperature (Soldering 10s). +300°C	Thermal Resistance 14 Lead CerDIP Package	T _J ≤ +175°(cove +75°C	1.1W 0.9W

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range55°C to +125°C	$V_{INCM} \le 1/2(V + - V -)$
Operating Supply Voltage±12V to ±15V	$R_L \ge 1k\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	МАХ	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-4	4	mV
			2, 3	+125°C, -55°C	-8	8	mV
Input Bias Current	+l _B	$V_{CM} = 0V, +R_S = 1.1k\Omega$	1	+25°C	-10	10	μА
		$-R_S = 100\Omega$	2, 3	+125°C, -55°C	-20	20	μА
	-I _B	$V_{CM} = 0V, +R_S = 100\Omega$ -R _S = 1.1k Ω	1	+25°C	-10	10	μА
		-n _S = 1.1k22	2, 3	+125°C, -55°C	-20	20	μА
Input Offset Current	I _{IO}	$V_{CM} = 0V, +R_{S} = 1.1k\Omega$ -R _S = 1.1k\O	1	+25°C	-1	1	μА
,		-n _S = 1.1k22	2, 3	+125°C, -55°C	-2	2	μА
Common Mode Range	+CMR	V+ = 5V V- = -25V	1	+25°C	10	-	٧
		V- = -25V	2, 3	+125°C, -55°C	10	-	٧
	-CMR	V+ = 25V V- = -5V	1	+25°C	-	-10	٧
		V- = -5V	2, 3	+125°C, -55°C	-	-10	٧
Large Signal Voltage Gain	+A _{VOL}	$V_{OUT} = 0V$ and +10V $R_1 = 1k\Omega$	4	+25°C	50	-	kV/V
Gain		□ □ = 1K22	5, 6	+125°C, -55°C	30	-	kV/V
	-A _{VOL}	$V_{OUT} = 0V$ and -10V $R_1 = 1k\Omega$	4	+25°C	50	-	kV/V
		D _L = 1K22	5, 6	+125°C, -55°C	30	-	kV/V
Common Mode Rejection Ratio	+CMRR	$\Delta V_{CM} = 10V,$ $V_{OUT} = -10V$	1	+25°C	90	-	dB
nejection natio		V _{OUT} = -10V V+ = 5V, V- = -25V	2, 3	+125°C, -55°C	85	-	dB
	-CMRR	$\Delta V_{CM} = -10V,$ $V_{OUT} = 10V$	1	+25°C	90	-	dB
		V _{OUT} = 10V V+ = 25V, V- = -5V	2, 3	+125°C, -55°C	85	-	dB

Specifications HA-2842/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			ODOUD 4		LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT}	$R_L = 1k\Omega$	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	٧
Output Current	+l _{out}	V _{OUT} = -5V Note 1	1	+25°C	100	-	mA
		Note 1	2, 3	+125°C, -55°C	100	-	mA
	-l _{out}	V _{OUT} = +5V	1	+25°C	-	-100	mA
		Note 1	2, 3	+125°C, -55°C	-	-100	mA
Quiescent Power	+l _{cc}	V _{OUT} = 0V	1	+25°C	-	15	mA
Supply Current		I _{OUT} = 0mA	2, 3	+125°C, -55°C	-	15	mA
	-I _{cc}	V _{OUT} = 0V	1	+25°C	-15	-	mA
		I _{OUT} = 0mA	2, 3	+125°C, -55°C	-15	-	mA
Power Supply	+PSRR	ΔV _{SUPPLY} = 10V V+ = 10V, V- = -15V	1	+25°C	70	-	dB
Rejection Ratio		V+ = 10V, V- = -15V V+ = 20V, V- = -15V	2, 3	+125°C, -55°C	70	-	dB
	-PSRR	$\Delta V_{SUPPLY} = 10V$	1	+25°C	70	-	dB
		V+ = 15V, V- = -10V V+ = 15V, V- = -20V	2, 3	+125°C, -55°C	70	-	dB
Offset Voltage	+V _{IO} Adj	Note 2	1	+25°C	V _{IO} -1	-	mV
Adjustment	+V _{IO} Adj	Note 2	1	+25°C	V _{IO} +1	-	mV

NOTES:

- 1. Maximum power dissipation, including output load conditions, must be designed to maintain the maximum junction temperature below +175°C. For a 100mA load and a +125°C ambient, heat sinking is required.
- Offset Adjustment range is V_{IO} (measured) ±1mV i minimum referred to output. This test is for functionality only, to assure adjustment through 0V.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See A.C. Specifications in Table 3.

Specifications HA-2842/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $V_{OUT} = 0V$, $A_V = +2V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Gain Bandwidth Product	GBWP	$V_O = 200 \text{mV},$ $f_O = 100 \text{kHz}$	1 1	+25°C	60	-	MHz
		$V_O = 200 \text{mV},$ $f_O = 10 \text{MHz}$	1	+25°C	70	-	MHz
Slew Rate	+SR	V _O = -5V to +5V	1, 3	+25°C, -55°C	350	-	V/μs
			1, 3	+125°C	300	-	V/µs
	-SR	V _O = +5V to -5V	1, 3	+25°C, -55°C	350	-	V/µs
			1, 3	+125°C	300	-	V/µs
Full Power Bandwidth	FPBW	V _{PEAK} = +10V	1, 2	+25°C, -55°C	5.5	-	MHz
			1, 2	+125°C	4.7	-	MHz
Rise Time	TR	$V_O = 0V \text{ to } +200\text{mV}$ $C_1 \le 10\text{pF}$	1, 3	+25°C	-	5	ns
		C _L ≤ TOPP	1, 3	-55°C to +125°C	-	7	ns
Fall Time	T _F	V _O = 0V to -200mV	1, 3	+25°C	-	5	ns
		C _L ≤ 10pF	1, 3	-55°C to +125°C	-	5	ns
Overshoot	+OS	V _O = 0V to +200mV	1	+25°C	-	50	%
			1	-55°C to +125°C	-	55	%
	-os	V _O = 0V to -200mV	1	+25°C	-	50	%
			1	-55°C to +125°C	-	55	%

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variations.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C & D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

77 x 81 x 19 mils \pm 1 mils 1960 x 2060 x 483 μ m \pm 25.4 μ m

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride over Silox Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.83 x 10⁵ A/cm² at 56mA

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 58

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2842/883

Spec Number 511088-883

HA-2850/883

Low Power, High Slew Rate, Wideband Operational Amplifier

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Supply Current..... 8.0mA (Max)
- Low Offset Voltage...... 2.0mV (Max)
- High Slew Rate................. 340V/μs (Typ)
- Wide Gain-Bandwidth (A_V ≥ 10) 470MHz (Typ)
- Input Noise Voltage at 1kHz 11nV/√Hz (Typ)
- Lower Power Replacement for HA-2540/883, AD840

Applications

- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- · High Speed Sample-Hold Circuits
- · Fast, Precise D/A Converters

Description

The HA-2850/883 is a wideband, high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. It also features trimmed supply current, which minimizes supply current (and thus AC parameter) variation over process and temperature extremes. For example, the I_{CC} variation over the entire military temperature range is typically less than 0.5mA. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with closed loop gains ≥10.

The 340V/µs slew rate, and 470MHz gain bandwidth product ensure high performance in video and wideband amplifier designs. Differential gain and phase are a low 0.04% and 0.04 degrees, respectively, making the HA-2850/883 ideal for video applications. A full ±10V output swing, high open loop gain, and outstanding AC parameters make the HA-2850/883 an excellent choice for data acquisition systems.

Ordering Information

	PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1	1-2850/883	-55°C to +125°C	14 Lead CerDIP
HA7	7-2850/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

Specifications HA-2850/883

Thermal Information

Absolute Maximum Ratings

Lead Temperature (Soldering 10s).....+300°C

Voltage between V+ and V- Terminals	Thermal Resistance
Differential Input Voltage6V	14 Lead CerDIP I
Voltage at Either Input Terminal V+ to V-	8 Lead CerDIP Pa
Peak Output Current (≤10% Duty Cycle) 50mA	Package Power Dis
Junction Temperature (T _J) +175°C	14 Lead CerDIP I
Storage Temperature Range65°C to +150°C	8 Lead CerDIP Pa
ESD Classification <2000V	Package Power Dis

Thermal Resistance	θ_{JA}	θ_{JC}
14 Lead CerDIP Package	81°C/W	26°C/W
8 Lead CerDIP Package	115°C/W	30°C/W
Package Power Dissipation Limit at +75°C for	T _J ≤ +175°C	
14 Lead CerDIP Package		1.23W
8 Lead CerDIP Package		0.87W
Package Power Dissipation Derating Factor A	bove +75°C	
14 Lead CerDIP Package		2.3mW/°C

8 Lead CerDIP Package 8.7mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			CDOUD A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-2	2	mV
			2, 3	+125°C, -55°C	-6	6	mV
Input Bias Current	+l _B	$V_{CM} = 0V, +R_S = 1.1k\Omega$	1	+25°C	-14.5	14.5	μА
		$-R_S = 100\Omega$	2, 3	+125°C, -55°C	-20	20	μА
	-I _B	$V_{CM} = 0V, +R_S = 100\Omega$	1	+25°C	-14.5	14.5	μА
		-R _S = 1.1kΩ	2, 3	+125°C, -55°C	-20	20	μА
Input Offset Current	I _{IO}	V_{CM} = 0V, +R _S = 1.1k Ω -R _S = 1.1k Ω	1	+25°C	-4	4	μА
			2, 3	+125°C, -55°C	-8	8	μА
Common Mode Range	+CMR	V+ = 5V, V- = -25V	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	٧
	-CMR	V+ = 25V, V- = -5V	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	٧
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V$ and +10V $R_L = 1k\Omega$	4	+25°C	20	-	kV/V
Gain			5, 6	+125°C, -55°C	10	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V	4	+25°C	20	-	kV/V
		$R_L = 1k\Omega$	5, 6	+125°C, -55°C	10	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = 10V$,	1	+25°C	75	-	dB
Rejection Ratio		V _{OUT} = -10V V+ = 5V, V- = -25V	2,3	+125°C, -55°C	75	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	75	-	dB
	V _{OUT} = 10V V+ = 25V, V- = -5V		2, 3	+125°C, -55°C	75	٧ .	dB

Specifications HA-2850/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT}	$R_L = 1k\Omega$	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	٧
Output Current	+l _{out}	V _{OUT} = 10V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
	-l _{out}	V _{OUT} = -10V	₁ 1	+25°C	-	-10	mA
			2, 3	+125°C, -55°C	-	-10	mA
Quiescent Power Supply Current	+lcc	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	8	mA
Supply Current			2, 3	+125°C, -55°C	-	8	mA
	-lcc	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-8	-	mA
			2, 3	+125°C, -55°C	-8	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$	1	+25°C	75	-	dB
Rejection Ratio	V+ = 10V, V- = -15V V+ = 20V, V- = -15V	2, 3	+125°C, -55°C	75	٠ -	dB	
	-PSRR	ΔV _{SUP} = 10V V+ = 15V, V- = -10V	1	+25°C	75		dB
		V+ = 15V, V- = -10V V+ = 15V, V- = -20V	2, 3	+125°C, -55°C	75	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See A.C. Specifications in Table 3

Specifications HA-2850/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 1k\Omega$, $C_L \le 10pF$, $A_V = +10V/V$, Unless Otherwise Specified.

					LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Gain Bandwidth Product	GBWP	$V_O = 200 \text{mV}, f_O = 5 \text{MHz}$	1	+25°C	400	-	MHz
Product		V _O = 200mV, f _O = 45MHz	1	+25°C	350	-	MHz
Slew Rate	+SR	V _O = -5V to +5V	1, 4	+25°C	300	-	V/μs
	-SR	V _O = +5V to -5V	1, 4	+25°C	300	-	V/μs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	4.8	-	MHz
Rise and Fall Time	T _R	V _O = 0V to +200mV	1, 4	+25°C	-	15	ns
	T _F	V _O = 0V to -200mV	1, 4	+25°C	-	15	ns
Minimum Closed Loop Stable Gain	CLSG	$R_L = 1k\Omega, C_L \le 10pF$	1	-55°C to +125°C	10	-	V/V
Overshoot	+OS	V _O = 0V to +200mV	1	+25°C	-	30	%
	-os	V _O = 0V to -200mV	1	+25°C	-	30	%
Open Loop Output Resistance	R _{out}	V _{OUT} = 0V	1	+25°C	-	60	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	240	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/($2\pi V_{PEAK}$).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)
- 4. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

65 x 52 x 19 mils ± 1 mils 1650 x 1310 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride over Silox Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

0.7 x 10⁵ A/cm² at 1.8mA

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 34

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2850/883

HA-4741/883

July 1994

Quad Operational Amplifier

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Slew Rate0.9V/μs (Min)
- Bandwidth.....2.5MHz (Min)
- Input Bias Current 200nA (Max)
- Input Voltage Noise 9nV/√Hz (Tvp)
- No Crossover Distortion
- Standard Quad Pinout

Applications

- Universal Active Filters
- · D3 Communications Filters
- **Audio Amplifiers**
- Battery-Powered Equipment

Description

The Harris HA-4741/883, which contains four amplifiers on a monolithic chip, provides a new measure of performance for general purpose operational amplifiers. Each amplifier in the HA-4741/883 has operating specifications that equal or exceed those of the 741-type amplifier in all categories of performance.

The HA-4741/883 is well suited to applications requiring accurate signal processing by virtue of its low values of input offset voltage (3mV max), input bias current (200nA max) and input voltage noise (9nV/\Hz typ at 1kHz). The 2.5MHz bandwidth, coupled with high open loop gain, allow the HA-4741/883 to be used in designs requiring amplifiers of wideband signals, such as audio amplifiers. Audio application is further enhanced by the HA-4741/883's nealigible output crossover distortion. These excellent dynamic characteristics also make the HA-4741/883 ideal for a wide range of active filter designs. Performance integrity of multi-channel designs is assured by a high level of amplifier-to-amplifier isolation (66dB at 10kHz).

A wide range of supply voltages (±2V to ±20V) can be used to power the HA-4741/883, making it compatible with almost any system including battery-powered equipment.

Ordering Information

	PART NUMBER	TEMPERATURE RANGE	PACKAGE		
,	HA1-4741/883	-55°C to +125°C	14 Lead CerDIP		
	HA4-4741/883	-55°C to +125°C	20 Lead Ceramic LCC		

Pinouts

Specifications HA-4741/883

Absolute Maximum Ratings	Thermal Information		
Voltage Between V+ and V- Terminals 40V Differential Input Voltage 15V Voltage at Either Input Terminal V+ to V- Output Current Indefinite (One Amplifier Shorted to GND) Junction Temperature (T _J) +175°C Storage Temperature Range -65°C to +150°C ESD Rating <2000V	Thermal Resistance CerDIP Package Ceramic LCC Package Package Power Dissipation Limit at +75°C for CerDIP Package Ceramic LCC Package Package Power Dissipation Derating Factor At CerDIP Package Ceramic LCC Package	oove +75°C	1.33W 1.54W) 13.3mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-3	3	mV
			2, 3	+125°C, -55°C	-5	5	mV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-200	200	nA
		$+R_S = 10k\Omega,$ $-R_S = 100\Omega$	2, 3	+125°C, -55°C	-325	325	nA
	-I _B	V _{CM} = 0V,	1	+25°C	-200	200	nA
		$+R_S = 100\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-325	325	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	- 1	+25°C	-30	30	nA
		$+R_S = 10k\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-75	75	nA
Common Mode	+CMR	V+ = 3V, V- = -27V	1	+25°C	12	-	V
Range			2, 3	+125°C, -55°C	12	-	V
	-CMR	V+ = 27V, V- = -3V	1	+25°C	-	-12	V
			2, 3	+125°C, -55°C	-	-12	V
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V$ and +10V,	4	+25°C	50	-	kV/V
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	25	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	50	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	25	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	80	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	74	-	dB
	-CMRR	$\Delta V_{CM} = +10V$	1	+25°C	80	-	dB
	V+ = +25V, V- = -5 $V_{OUT} = +10V$, , ,	2, 3	+125°C, -55°C	74	-	dB

Specifications HA-4741/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

		CONDITIONS	GROUP A		LIMITS		
PARAMETERS	SYMBOL		SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage	+V _{OUT1}	$R_L = 10k\Omega$	4	+25°C	12	-	V
Swing			5, 6	+125°C, -55°C	12	-	V
	-V _{OUT1}	$R_L = 10k\Omega$	4	+25°C	-	-12	٧
			5, 6	+125°C, -55°C	-	-12	V
	+V _{OUT2}	$R_L = 2k\Omega$	4	+25°C	10	-	٧
			5, 6	+125°C, -55°C	10	-	V
	-V _{OUT2}	$R_L = 2k\Omega$	4	+25°C	-	-10	٧
			5, 6	+125°C, -55°C	-	-10	V
Output Current	+l _{OUT}	V _{OUT} = -10V	4	+25°C	5	-	mA
			5, 6	+125°C, -55°C	5	-	mA
	-lout	V _{OUT} = +10V	4	+25°C	-	-5	mA
			5, 6	+125°C, -55°C	-	-5	mA
Quiescent Power	+lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	5	mA
Supply Current			2, 3	+125°C, -55°C	-	7	mA
	-I _{cc}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-5	-	mA
			2, 3	+125°C, -55°C	-7	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = +5V$,	1	+25°C	80	-	dB
Rejection Ratio		V+ = +10V, V- = -15V, V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	80	-	dB
	-PSRR	$\Delta V_{SUP} = -5V$,	1	+25°C	80	-	dB
		V+ = +15V, V- = -10V, V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	80	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -5V to +5V	7	+25°C	0.9	-	V/μs
	-SR	V _{OUT} = +5V to -5V	7	+25°C	0.9	-	V/μs
Rise and Fall Time	T _R	$V_{OUT} = 0 \text{ to } +200\text{mV}$ $10\% \le T_R \le 90\%$	7	+25°C	-	140	ns
	T _F	$V_{OUT} = 0 \text{ to -200mV}$ $10\% \le T_F \le 90\%$	7	+25°C	-	140	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	%
	-OS	V _{OUT} = 0 to -200mV	7	+25°C	-	40	%
Gain Bandwidth Product (Small Signal)	GBWP	V _{OUT} = 50mV	7	+25°C	2.5	-	MHz

Specifications HA-4741/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 5k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	260	-	kΩ
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	14	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	1		V/V
Output Resistance	R _{OUT}	Open Loop	1	+25°C	-	350	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	180	mW
Channel Separation	CS	$f = 10kHz$, $R_S = 1k\Omega$ Referred to Input $A_V = 100V/V$, $V_{IN} = 100mV_{PEAK}$	1	+25°C	-66	-	dB

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)		
Interim Electrical Parameters (Pre Burn-In)	1		
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7		
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7		
Groups C and D Endpoints	1		

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $87 \times 75 \times 19 \text{ mils} \pm 1 \text{ mils}$ 2210 x 1910 x $483 \mu \text{m} \pm 25.4 \mu \text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride

Thickness: 7kÅ ± 0.7kÅ

WORST CASE CURRENT DENSITY:

1.68 x 10⁵ A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 72

PROCESS: Junction Isolated Bipolar/JFET

Metallization Mask Layout

HA-4741/883

HA-5002/883

Monolithic, Wideband, High Slew Rate, High Output Current Buffer

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.

 $(R_L = 100\Omega) \dots 0.96 (Min)$ 0.971 (Typ)

- Wide Small Signal Bandwidth..... 110MHz (Typ)

- · Monolithic Dielectric Isolation Construction
- Replaces Hybrid LH0002

Applications

- · Line Driver
- Data Acquisition
- 110MHz Buffer
- High Power Current Booster
- · High Power Current Source
- Sample and Holds
- Radar Cable Driver
- Video Products

Description

The HA-5002/883 is a monolithic, wideband, high slew rate, high output current, buffer amplifier.

Utilizing the advantages of the Harris Dielectric Isolation technologies, the HA-5002/883 current buffer offers 1300V/ μs slew rate typically and 1000V/ μs minimum with 110MHz of bandwidth. The ± 100 mA minimum output current capability is enhanced by a 3Ω output impedance.

The monolithic HA-5002/883 will replace the hybrid LH0002 with corresponding performance increases. These characteristics range from the $3M\Omega$ (typ) input impedance to the increased output voltage swing. Monolithic design technologies have allowed a more precise buffer to be developed with more than an order of magnitude smaller gain error. The voltage gain is 0.98 guaranteed minimum with a $1k\Omega$ load and 0.96 minimum with a 100Ω load.

The HA-5002/883 will provide many present hybrid users with a higher degree of reliability and at the same time increase overall circuit performance.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5002/883	-55°C to +125°C	8 Pin Can
HA4-5002/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-5002/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright © Harris Corporation 1994

3-83

Spec Number 511017-883 File Number 3705

Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals	
Peak Output Current (50ms On, 1s Off)±400m	A Ceramic LCC Packa
Junction Temperature (T _J) +175°	C Metal Can Package
Storage Temperature Range65°C to +150°	C Package Power Dissip
ESD Rating	V CerDIP Package
Lead Temperature (Soldering 10s)+300°	C Ceramic LCC Packa
	Metal Can Package

Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}C$;
CerDIP Package		870mW
Ceramic LCC Package		1.54W
		045-14

 CerDIP Package
 8.7mW/°C

 Ceramic LCC Package
 15.4mW/°C

 Metal Can Package
 6.5mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range . . . -55°C to +125°C $R_L \ge 100\Omega$ Operating Supply Voltage ± 12 V to ± 15 V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 12V$ and $\pm 15V$, $R_{SOURCE} = 50\Omega$, $C_{LOAD} \le 10pF$, $V_{IN} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset	V _{IO1}	$V_{SUP} = \pm 15V$	1	+25°C	-20	20	mV
Voltage			2, 3	+125°C, -55°C	-30	30	mV
	V _{IO2}	$V_{SUP} = \pm 12V$	1	+25°C	-20	20	mV
	-		2, 3	+125°C, -55°C	-30	30	mV
Input Bias Current	I _{B1}	$V_{SUP} = \pm 15V$, $R_S = 1k\Omega$	1	+25°C	-7	7	μА
			2, 3	+125°C, -55°C	-10	10	μА
	I _{B2}	$V_{SUP} = \pm 12V, R_S = 1k\Omega$	1	+25°C	-7	7	μА
			2, 3	+125°C, -55°C	-10	10	μА
Voltage Gain 1	+AV ₁	$V_{SUP} = \pm 12V$, $R_L = 1k\Omega$, $V_{IN} = 10V$	1	+25°C	0.98	-	V/V
			2, 3	+125°C, -55°C	0.98	-	V/V
	-AV ₁	$V_{SUP} = \pm 12V$, $R_L = 1k\Omega$, $V_{IN} = -10V$	1	+25°C	0.98	-	V/V
			2, 3	+125°C, -55°C	0.98	-	V/V
Voltage Gain 2	+AV ₂	$V_{SUP} = \pm 12V, R_L = 100\Omega, V_{IN} = 10V$	1	+25°C	0.96	-	V/V
	-AV ₂	$V_{SUP} = \pm 12V, R_L = 100\Omega, V_{IN} = -10V$	1	+25°C	0.96	-	V/V
Voltage Gain 3	+AV ₃	$V_{SUP} = \pm 15V, R_L = 100\Omega, V_{IN} = 10V$	1	+25°C	0.96	-	V/V
	-AV ₃	$V_{SUP} = \pm 15V, R_L = 100\Omega, V_{IN} = -10V$	1	+25°C	0.96	-	V/V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 12V$ and $\pm 15V$, $R_{SOURCE} = 50\Omega$, $C_{LOAD} \le 10$ pF, $V_{IN} = 0V$, Unless Otherwise Specified.

	T		GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Voltage Gain 4	+AV ₄	$V_{SUP} = \pm 15V$,	1	+25°C	0.99	-	V/V
		$R_{L} = 1k\Omega,$ $V_{IN} = +10V$	2, 3	+125°C, -55°C	0.99	-	V/V
	-AV ₄	$V_{SUP} = \pm 15V$,	1	+25°C	0.99	-	V/V
		$R_{L} = 1k\Omega,$ $V_{IN} = -10V$	2, 3	+125°C, -55°C	0.99		V/V
Output Voltage	+V _{OUT1}	$V_{SUP} = \pm 15V$,	1	+25°C	10	-	V
Swing		$R_{L} = 100\Omega,$ $V_{IN} = +15V$	2, 3	+125°C, -55°C	10	-	V
	-V _{OUT1}	$V_{SUP} = \pm 15V$,	1	+25°C	-	-10	V
		$R_{L} = 100\Omega,$ $V_{IN} = -15V$	2, 3	+125°C, -55°C	-	-10	٧
	+V _{OUT2}	$V_{SUP} = \pm 15V$,	1	+25°C	10	-	V
		$R_{L} = 1k\Omega,$ $V_{IN} = +15V$	2, 3	+125°C, -55°C	10	-	V
	-V _{OUT2}	$V_{SUP} = \pm 15V$,	1	+25°C	-	-10	V
		$R_{L} = 1k\Omega,$ $V_{IN} = -15V$	2, 3	+125°C, -55°C	-	-10	V
	+V _{OUT3}	$V_{SUP} = \pm 12V$, $R_L = 1k\Omega$, $V_{IN} = +12V$	1	+25°C	10		V
			2, 3	+125°C, -55°C	10	-	V
	-V _{OUT3}	$V_{SUP} = \pm 12V$, $R_L = 1k\Omega$, $V_{IN} = -12V$	1	+25°C	1 -	-10	V
			2, 3	+125°C, -55°C	-	-10	V
Output Current	+l _{OUT1}	V _{SUP} = ±15V,	1	+25°C	100		mA
		V _{OUT} = +10V	2, 3	+125°C, -55°C	100	-	mA
	-l _{OUT1}	$V_{SUP} = \pm 15V$,	1	+25°C	-	-100	mA
		V _{OUT} = -10V	2, 3	+125°C, -55°C	-	-100	mA
	+I _{OUT2}	V _{SUP} = ±12V,	1	+25°C	100	-	mA
		V _{OUT} = +10V	2, 3	+125°C, -55°C	100	-	mA
	-l _{OUT2}	$V_{SUP} = \pm 12V,$ $V_{OUT} = -10V$	1	+25°C	-	-100	mA
		4001 = 2104	2, 3	+125°C, -55°C	-	-100	mA
Power Supply Rejection Ratio	+PSRR ₁	$\Delta V_{SUP} = \pm 5V,$ V+ = +20V, V- = -15V,	1	+25°C	54	-	dB
riejection riatio		V+ = +10V, V- = -15V	2, 3	+125°C, -55°C	54	-	dB
	-PSRR ₁	$\Delta V_{SUP} = \pm 5V,$ V+ = +15V, V- = -20V,	1	+25°C	54	-	dB
		V+ = +15V, V- = -10V	2, 3	+125°C, -55°C	54	-	dB
	+PSRR ₂	ΔV _{SUP} = ±5V, V+ = +17V, V- = -12V,	1	+25°C	54	-	dB
		V+ = +17V, V- = -12V, V+ = +7V, V- = -12V	2, 3	+125°C, -55°C	54	-	dB
	-PSRR ₂	$\Delta V_{SUP} = \pm 5V,$	1	+25°C	54	-	dB
		V+ = +12V, V- = -17V, V+ = +12V, V- = -7V	2, 3	+125°C, -55°C	54	-	dB

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 12V$ and $\pm 15V$, $R_{SOURCE} = 50\Omega$, $C_{LOAD} \le 10$ pF, $V_{IN} = 0V$, Unless Otherwise Specified.

+			GROUP A		LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Power Supply Current	+ICC ₁	$V_{SUP} = \pm 15V,$	1	+25°C	-	10	mA
Current		V _{OUT} = 0V	2, 3	+125°C, -55°C	-	10	mA
	-ICC ₁	$V_{SUP} = \pm 15V$,	1	+25°C	-10	-	mA
		V _{OUT} = 0V	2, 3	+125°C, -55°C	-10	-	mA
,	+ICC ₂ V _{SUP} = ±12V V _{OUT} = 0V	$V_{SUP} = \pm 12V$,	1	+25°C	-	10	mA
		V _{OUT} = 0V	2, 3	+125°C, -55°C	-	10	mA
	-ICC ₂	V _{SUP} = ±12V, V _{OUT} = 0V	1	+25°C	-10	-	mA
1		V _{OUT} = 0V	2, 3	+125°C, -55°C	-10	-	mA

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$ or $\pm 12V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} \le 10pF$, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Resistance	R _{IN1}	V _{SUP} = ±15V	1	+25°C	1.5	-	ΜΩ
*	R _{IN2}	V _{SUP} = ±12V	1	+25°C	1.5	-	ΜΩ
Slew Rate	+SR ₁	$V_{SUP} = \pm 15V$,	1	+25°C	1000	-	V/μs
		$V_{OUT} = -5V \text{ to } +5V$		+125°C, -55°C	1000	-	V/µs
1	-SR ₁	V _{SUP} = ±15V,	1	+25°C	1000	-	V/μs
2	V _{OUT} = +5V to -5	$V_{OUT} = +5V \text{ to } -5V$		+125°C, -55°C	1000	-	V/μs
	+SR ₂ V _{SUP} = ±12V, V _{OUT} = -5V to +5V	1	+25°C	1000	-	V/µs	
			+125°C, -55°C	1000	-	V/µs	
	-SR ₂	$V_{SUP} = \pm 12V$,	1	+25°C	1000	-	V/µs
		V _{OUT} = +5V to -5V		+125°C, -55°C	1000	-	V/µs
Rise and Fall Time	TR	$V_{SUP} = \pm 15V \text{ or } \pm 12V,$	1, 2	+25°C	-	10	ns
		V _{OUT} = 0 to +500mV	1, 2	+125°C, -55°C	-	10	ns
	T _F	$V_{SUP} = \pm 15V \text{ or } \pm 12V,$ $V_{OUT} = 0 \text{ to } -500\text{mV}$	1, 2	+25°C	-	10	ns
		V _{OUT} = 0 to -500mV	1, 2	+125°C, -55°C	-	10	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: V_{SUPPLY} = ±15V or ±12V, R_{LOAD} = 1kΩ, C_{LOAD} ≤ 10pF, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Overshoot	+OS	$V_{SUP} = \pm 12V \text{ or } \pm 15V,$ $V_{OUT} = 0 \text{ to } +500\text{mV}$	1	+25°C	-	30	%
		V _{OUT} = 0 to +500111V		+125°C, -55°C	-	30	%
	-os	301	1	+25°C	-	30	%
	VOUT	V _{OUT} = 0 to -500mV		+125°C, -55°C	-	30	%
Quiescent Power Consumption	$\begin{array}{c} \text{PC}_1 & \text{V}_{\text{SUP}} = \pm 15\text{V}, \\ \text{V}_{\text{IN}} = 0\text{V}, \\ \text{I}_{\text{OUT}} = 0\text{mA} \end{array}$		1, 3	+25°C	-	300	mW
Consumption				+125°C, -55°C	-	300	mW
	PC_2 $V_{SUP} = \pm 12V$,	1, 3	+25°C	-	240	mW	
		$V_{IN} = 0V,$ $I_{OUT} = 0mA$		+125°C, -55°C	-	240	mW
Output Resistance	R _{OUT1}	V _{SUP} = ±12V	1	+25°C	-	5	Ω
	R _{OUT2}	V _{SUP} = ±12V	1	+25°C	-	5	Ω

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Measured between 10% and 90% points.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

81 x 80 x 19 mils \pm 1 mils 2050 x 2030 x 483 μ m \pm 25.4 μ m

METALLIZATION:

Type: Al, 1% Cu Thickness: 20kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride

Thickness: 7kÅ ± 0.7kÅ

WORST CASE CURRENT DENSITY:

0.7 x 10⁵ A/cm² at 3.6mA

SUBSTRATE POTENTIAL (Powered Up): V1-

TRANSISTOR COUNT: 27

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5002/883

HA-5004/883

July 1994

100MHz Current Feedback Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Output Current±80mA (Min) ±100mA (Typ)
- Drives $\pm 8.0 \text{V}$ into 100Ω (Min) $\pm 9.5 \text{V}$ into 100Ω (Typ)
- . Thermal Overload Protection and Output Flag
- · Bandwidth Nearly Independent of Gain
- · Output Enable/Disable

Applications

- · Unity Gain Video/Wideband Buffer
- · Video Gain Block
- · High Speed Peak Detector
- · Fiber Optic Transmitters
- Zero Insertion Loss Transmission Line Drivers
- · Current to Voltage Converter
- Radar Systems

Description

The HA-5004/883 current feedback amplifier is a video/wideband amplifier optimized for low gain applications. The design is based on current-mode feedback which allows the amplifier to achieve higher closed loop bandwidth than voltage-mode feedback operational amplifiers. Since feedback is employed, the HA-5004/883 can offer better gain accuracy and lower distortion than open loop buffers. Unlike conventional op amps, the bandwidth and rise time of the HA-5004/883 are nearly independent of closed loop gain. The 100MHz bandwidth at unity gain reduces to only 65MHz at a gain of 10. The HA-5004/883 may be used in place of a conventional op amp with a significant improvement in speed power product.

Several features have been designed in for added value. A thermal overload feature protects the part against excessive junction temperature by shutting down the output. If this feature is not needed, it can be inhibited via a TTL input (TOI). A TTL chip enable/disable $(\overline{\rm OE})$ input is also provided; when the chip is disabled its output is high impedance. Finally, an open collector output flag ($\overline{\rm TOL}$) is provided to indicate the status of the chip. The status flag goes low to indicate when the chip is disabled due to either the internal Thermal Overload shutdown or the external disable.

In order to maximize bandwidth and output drive capacity, internal current limiting is not provided. However, current limiting may be applied via the V_C + and V_C - pins which provide power separately to the output stage.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE		
HA1-5004/883	-55°C to +125°C	14 Lead CerDIP		

Pinouts

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright © Harris Corporation 1994

3-89

Spec Number 511053-883 File Number 3706

Absolute Maximum Ratings

Thermal Information

 Thermal Resistance
 θ JA
 θ JC
 0 JC
 18°C/W
 18°C/W

 Package Power Dissipation Limit at +75°C
 CerDIP Package
 1.37W

 Package Power Dissipation Derating Factor Above +75°C
 1.37W

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V+ = V_C + = +15V, V- = V_C - = -15V, R_L = 100 Ω , A_V = +1, R_F = 250 Ω , $\overline{\text{OE}}$ = 0.8V, TOI = 0.8V or 2.0V, Unless Otherwise Specified.

			ODOUD A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{IN} = 0V	1	+25°C	-2.5	2.5	mV
			2, 3	+125°C, -55°C	-20	20	mV ,
Input Bias Current	+I _B	V _{IN} = 0V (Note 1)	1	+25°C	-5	5	μА
		*	2, 3	+125°C, -55°C	-20	20	μА
DC Gain Error (Small Signal)	SSGE	$V_{IN} = \pm 100 \text{mV},$ $R_{I} = 100 \Omega$	1	+25°C	-	0.43	%
(Smail Signal)		HL = 10012	2, 3	+125°C, -55°C	-	0.75	%
DC Gain Error (Large Signal)	LSGE ₁	$V_{IN} = \pm 5.0V$, $R_{I} = 1k\Omega$	1	+25°C	-	0.43	%
(Large Signal)		H _L = 1K22	2, 3	+125°C, -55°C	-	0.75	%
	LSGE ₂	$V_{IN} = \pm 10V$, $R_L = 1k\Omega$	1	+25°C	-	0.43	%
			2, 3	+125°C, -55°C	-	0.75	%
DC Voltage Gain	A _V	For All Gain Error Conditions (Note 2)	1	+25°C	233	-	V/V
		Conditions (Note 2)	2, 3	+125°C, -55°C	133	-	V/V
DC Transimpedence	A _R	For All Gain Error	1	+25°C	58	-	V/mA
		Conditions (Note 3)	2, 3	+125°C, -55°C	33	-	V/mA
Output Voltage Swing	±V _{OUT1}	$V_{IN} = \pm 15V$, $R_{I} = 1k\Omega$	1	+25°C	11.5	-11.5	V
		□	2, 3	+125°C, -55°C	10.5	-10.5	٧
	±V _{OUT2}	$V_{IN} = \pm 10V,$ $R_{I} = 100\Omega$	1	+25°C	9.0	-9.0	٧
		11 - 10012	2, 3	+125°C, -55°C	8.0	-8.0	٧
Output Current	±I _{OUT}	$V_{IN} = \pm 10V$, $R_{I} = 100\Omega$	1	+25°C	90	-90	mA
		11[- 10032	2, 3	+125°C, -55°C	80	-80	mA

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V+ = V_C + = +15V, V- = V_C - =-15V, R_L = 100 Ω , A_V = +1, R_F = 250 Ω , \overline{OE} = 0.8V, TOI = 0.8V or 2.0V, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Logic Input Voltage	V _{IH}	Pins OE, TOI (Note 4)	1	+25°C	2.0	-	٧
			2, 3	+125°C, -55°C	2.0		٧
	V _{IL}	Pins OE, TOI	1	+25°C	-	0.8	٧
			2, 3	+125°C, -55°C		0.8	٧
Power Supply Rejection Ratio	PSRR ₁	V+ = +10V, +20V V- = -15V	1	+25°C	50	-	dB
nejection natio		V- = -15V	2, 3	+125°C, -55°C	50	-	dB
	PSRR ₂	V- = -10V, -20V V+ = +15V	1	+25°C	50	-	dB
		V+=+15V	2, 3	+125°C, -55°C	50	-	dB
Power Supply Current	+lcc	$V_{IN} = 0V$, $R_L = 1k\Omega$	1	+25°C		16	mA
			2, 3	+125°C, -55°C	-	22	mA
	-lcc	$V_{IN} = 0V$, $R_L = 1k\Omega$	1	+25°C	-16	-	mA
			2, 3	+125°C, -55°C	-22	-	mA

NOTES:

- 1. Inverting (FB) input is a low impedance point; Bias Current and Offset Current are not specified for this terminal.
- 2. DC Voltage Gain = $\frac{1}{\text{Gain Error}}$, for all Gain Error conditions.
- 3. DC Transimpedance = $\frac{R_F}{\text{Gain Error}}$, $R_F = 250\Omega$, for all Gain Error conditions.
- 4. Please refer to the Truth Table in the Applications Information section.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: V+ = V_C + = +15V, V- = V_C - = -15V, R_L = 1k Ω , A_V = +1, R_F = 250 Ω , $C_L \le$ 10pF, \overline{OE} = 0.8V, TOI = 0.8V or 2.0V, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = 0V to +10V	1, 2	+25°C	1000	-	V/µs
	-SR	V _{OUT} = 0V to -10V	1, 2	+25°C	1000	-	V/µs
Rise and Fall Time	TR	$V_{OUT} = 0V \text{ to } +200\text{mV},$	1, 2	+25°C	-	7.0	ns
	T _F	V _{OUT} = 0V to -200mV	1, 2	+25°C		7.0	ns
Full Power Bandwidth	FPBW	V _{PEAK} = 2V	1, 3	+25°C	79.5	-	MHz
Quiescent Power Consumption	PC	V _{IN} = 0V	1, 4	-55°C to +125°C	-	660	mW

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Measured between 10% and 90% points.
- 3. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 4. Power Consumption based upon Quiescent Supply Current test maximum.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C & D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

63 x 93 x 19 mils ± 1 mils 1600 x 2370 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu

Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over (Silox, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

6.6 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): VEE

TRANSISTOR COUNT: 64

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5004/883

GND
TOL
IN
FB
VVCVCVCVC+
OUT

HA-5020/883

July 1994

100MHz Current Feedback **Video Amplifier with Disable**

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Wide Unity Gain Bandwidth 105MHz (Min)
- Slew Rate 800V/μs
- Drives 3.5V into 75Ω

- Low Input Noise Voltage 4.5nV/√Hz
- Low Supply Current......10mA (Max)
- · Output Enable/Disable
- High Performance Replacement for EL2020/883

Applications

- · Unity Gain Video/Wideband Buffer
- · Video Gain Block
- Video Distribution Amp/Coax Cable Driver
- Flash A/D Driver
- Waveform Generator Output Driver
- Current to Voltage Converter; D/A Output Buffer
- Radar Systems
- . Imaging Systems

Description

The HA-5020/883 is a wide bandwidth, high slew rate amplifier optimized for video applications and gains between 1 and 10. Manufactured on Harris' Reduced Feature Complementary Bipolar DI process, this amplifier uses current mode feedback to maintain higher bandwidth at a given gain than conventional voltage feedback amplifiers. Since it is a closed loop device, the HA-5020/883 offers better gain accuracy and lower distortion than open loop buffers.

The HA-5020/883 features low differential gain and phase and will drive two double terminated 75Ω coax cables to video levels with low distortion. Adding a gain flatness performance of 0.1dB makes this amplifier ideal for demanding video applications. The bandwidth and slew rate of the HA-5020/ 883 are relatively independent of closed loop gain. The 105MHz unity gain bandwidth only decreases to 77MHz at a gain of 10. The HA-5020/883 used in place of a conventional op amp will yield a significant improvement in the speed power product. To further reduce power, the HA-5020/883 has a disable function which significantly reduces supply current, while forcing the output to a true high impedance state. This allows the outputs of multiple amplifiers to be wire-OR'd into multiplexer configurations. The device also includes output short circuit protection and output offset voltage adjustment.

The HA-5020/883 offers significant enhancements over competing amplifiers, such as the EL2020. Improvements include unity gain bandwidth, slew rate, video performance, lower supply current, and superior DC specifications.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA7-5020/883	-55°C to +125°C	8 Lead CerDIP
HA4-5020/883	-55°C to +125°C	20 Lead Ceramic LCC

Pinouts

HA-5020/883

(CERDIP)

HA-5020/883 (CLCC) TOP VIEW

Absolute Maximum Ratings
Voltage Between V+ and V- Terminals 36V Differential Input Voltage. 8V Voltage at Either Input Terminal V+ to V- Peak Output Current. Full Short Circuit Protected Junction Temperature (T _J) +175°C Storage Temperature Range -65°C to +150°C ESD Rating. < 2000V Lead Temperature (Soldering 10s) +300°C

Thermal Information

Thermal Package Characteristics	θ_{JA}	θJC
CerDIP Package	. 115°C/W	30°C/W
Ceramic LCC Package		23°C/W
Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}C$	
CerDIP Package		0.87W
Ceramic LCC Package		1.33W
Package Power Dissipation Derating Factor Al	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic I CC Package	1	3.3mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range55°C to +12	25°C	$V_{INCM} \le 1/2(V+ - V-)$	$R_F = 1k\Omega$
Operating Supply Voltage	15V	$R_L \ge 400\Omega$	$V_{\overline{DISABLE}} = V + \text{ or } 0V$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: Supply Voltage = ± 15 V, R_{SOURCE} = 0Ω , A_{VCL} = +1, R_F = $1k\Omega$, R_{LOAD} = 400Ω , V_{OUT} = 0V, V_{DISABLE} = V+, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-8	8	mV
			2, 3	+125°C, -55°C	-10	10	mV
Common Mode	+CMRR	$\Delta V_{CM} = +10V, V+ = 5V,$	1	+25°C	60	-	dB
Rejection Ratio		V- = -25V	2, 3	+125°C, -55°C	50	-	dB
	-CMRR	$\Delta V_{CM} = -10V, V + = 25V,$	1	+25°C	60	-	dB
		V- = -5V	2, 3	+125°C, -55°C	50	-	dB
Power Supply Rejection	+PSRR	$\Delta V_{SUP} = 13.5V$,	1	+25°C	64	-	dB
Ratio		V+ = 4.5V, V- = -15V; V+ = 18V, V- = -15V	2, 3	+125°C, -55°C	60	-	dB
	-PSRR	-PSRR	1	+25°C	64	-	dB
			2, 3	+125°C, -55°C	60	-	dB
Non-Inverting (+IN)	I _{BP} V _{CM}	V _{CM} = 0V	1	+25°C	-8	8	μА
Current			2, 3	+125°C, -55°C	-20	20	μА
+IN Common Mode	IBPCMP	$\Delta V_{CM} = +10V, V+ = 5V,$	1 .	+25°C	-	0.1	μA/V
Rejection		V- = -25V	2, 3	+125°C, -55°C	-	0.5	μA/V
	IBPCMN	$\Delta V_{CM} = -10V, V+ = 25V,$	1	+25°C	-	0.1	μA/V
		V- = -5V	2,3	+125°C, -55°C	-	0.5	μ Α /V
Non-Inverting (+IN) Input	+R _{IN}	Calculated 1/IBPCMP	1	+25°C	10	-	ΜΩ
Impedance			2, 3	+125°C, -55°C	2	-	ΜΩ
+IN Power Supply	IBPPSP	$\Delta V_{SUP} = 13.5V$,	1	+25°C	-	0.06	μ Α /V
Rejection		V+ = 4.5V, V- = -15V; V+ = 18V, V- = -15V	2, 3	+125°C, -55°C	-	0.2	μA/V
	IBPPSN	$\Delta V_{SUP} = 13.5V$,	1	+25°C	-	0.06	μA/V
		V+ = 15V, V- = -4.5V; V+ = 15V, V- = -18V	2, 3	+125°C, -55°C	-	0.2	μA/V
Inverting Input (-IN)	I _{BN}	V _{CM} = 0V	1	+25°C	-20	20	μА
Current			2, 3	+125°C, -55°C	-50	50	μА

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: Supply Voltage = ± 15 V, $R_{SOURCE} = 0\Omega$, $A_{VCL} = +1$, $R_F = 1k\Omega$, $R_{LOAD} = 400\Omega$, $V_{OUT} = 0$ V, $V_{\overline{DISABLE}} = V+$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
-IN Common Mode	IBNCMP	$\Delta V_{CM} = +10V, V+ = 5V,$	1	+25°C	-	0.4	μA/V
Rejection		V- = -25V	2, 3	+125°C, -55°C	-	0.5	μA/V
İ	IBNCMN	$\Delta V_{CM} = -10V, V + = 25V,$	1	+25°C	-	0.4	μA/V
		V- = -5V	2, 3	+125°C, -55°C	-	0.5	μA/V
-IN Power Supply	IBNPSP	$\Delta V_{SUP} = 13.5V,$	1	+25°C	-	0.2	μ Α /\
Rejection		V+ = 4.5V, V- = -15V; V+ = 18V, V- = -15V	2, 3	+125°C, -55°C	-	0.5	μ Α /\
	IBNPSN	$\Delta V_{SUP} = 13.5V$,	1	+25°C	-	0.2	μ Α /\
		V+ = 15V, V- = -4.5V; V+ = 15V, V- = -18V	2, 3	+125°C, -55°C	-	0.5	μA/\
Common Mode Range	+CMR	V+ = 5V, V- = -25V	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	٧
	-CMR	V+ = 25V, V- = -5V	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	V
Transimpedance	+A _{ZOL1}	$R_L = 400\Omega$, $V_{OUT} = 0$ to	1	+25°C	1	-	ΜΩ
		10V	2,3	+125°C, -55°C	1	-	ΜΩ
	$-A_{ZOL1}$ $R_{L} = 400\Omega$, $V_{OUT} = 0$ to $-10V$	1	+25°C	1	-	ΜΩ	
		-10V	2, 3	+125°C, -55°C	1	-	ΜΩ
Output Voltage Swing	+V _{OUT}	V _{IN} = 12.8V	1, 2	+25°C, +125°C	12	-	V
			3	-55°C	11	-	V
	-V _{out}	-V _{OUT} V _{IN} = -12.8V	1, 2	+25°C, +125°C	-	-12	V
			3	-55°C	-	-11	V
1	+V _{OUT5}	V+ = 5V, V- = -5V,	1	+25°C	2	-	V
		V _{IN} = 3V	2, 3	+125°C, -55°C	2	-	V
	-V _{OUT5}	V+ = 5V, V- = -5V,	1	+25°C	-	-2	V
		V _{IN} = -3V	2, 3	+125°C, -55°C	-	-2	V
Output Current	+I _{OUT} Note 1	Note 1	1, 2	+25°C, +125°C	30	-	mA
		-	3	-55°C	27.5	-	mA
	-l _{out}	Note 1	1, 2	+25°C, +125°C	-	-30	mA
	331		3	-55°C	-	-27.5	mA
Short Circuit Output	+l _{sc}	R _L = Open, V _{IN} = 10V	1	+25°C	50	-	mA
Current			2, 3	+125°C, -55°C	50	-	mA
	-I _{SC}	R _L = Open, V _{IN} = -10V	1	+25°C	-	-50	mA
			2,3	+125°C, -55°C	-	-50	mA
Disabled Output Current	+I _{LEAK}	V _{IN} = 0V, V _{OUT} = +10V,	1	+25°C	-1	1	μА
		R _L = Open, V _{DIS} = 0V	3	-55°C	-1	1	μА
		V _{IN} = 2V	2	+125°C	-1	1	μА
	-I _{LEAK}	V _{IN} = 0V, V _{OUT} = -10V,	1	+25°C	-1	1	μА
		R _L = Open, V _{DIS} = 0V	3	-55°C	-1	1	μА
		V _{IN} = -2V	2	+125°C	-1	1	μА

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: Supply Voltage = ± 15 V, R_{SOURCE} = 0Ω , A_{VCL} = +1, R_F = $1k\Omega$, R_{LOAD} = 400Ω , V_{OUT} = 0V, V_{DISABLE} = V+, Unless Otherwise Specified.

			GROUP A		LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Disable Pin Input Current	I _{LOGIC}	$V_{\overline{DIS}} = 0V$	1, 2	+25°C, +125°C	-1	0	mA
			3	-55°C	-1.5	0	mA
Minimum DISABLE Pin	I _{DIS}	Note 2	1	+25°C	-	350	μА
Current to Disable			2, 3	+125°C, -55°C	-	350	μА
Maximum DISABLE Pin	I _{EN}	Note 3	1	+25°C	20	-	μА
Current to Enable			2, 3	+125°C, -55°C	20	-	μА
Quiescent Power Supply	Icc	R _L = Open	1	+25°C	-	10	mA
Current			2, 3	+125°C, -55°C	-	10	mA
	I _{EE}	R _L = Open	1	+25°C	-10	-	mA
			2, 3	+125°C, -55°C	-10	-	mA
Disabled Power Supply	I _{CCDIS}	$R_L = 400\Omega$, $V_{\overline{DIS}} = 0V$	1	+25°C	-	5.6	mA
Current			2, 3	+125°C, -55°C	-	7.5	mA
	I _{EEDIS}	$R_L = 400\Omega$, $V_{\overline{DIS}} = 0V$	1	+25°C	-5.6	-	mA
			2, 3	+125°C, -55°C	-7.5	-	mA
Offset Voltage	+V _{ADJ}	Note 4	1	+25°C	30	-	mV
Adjustment			2, 3	+125°C, -55°C	25	-	mV
	-V _{ADJ}	Note 4	1	+25°C	-	-30	mV
			2, 3	+125°C, -55°C	-	-25	mV

NOTES:

- 1. Guaranteed from V_{OUT} test by $I_{OUT} = V_{OUT}/400\Omega$.
- 2. This is the minimum current which must be sourced from the DISABLE pin, to disable the output. The output is considered disabled when V_{OUT} ≤ 10mV. Conditions are: V_{IN} = 10V, R_L = 100Ω. The test is performed by sourcing 350μA from the DISABLE pin, and testing that the output decreases below the test limit (10mV).
- This is the maximum current that can be sourced from the DISABLE pin with the device remaining enabled. The device is considered disabled when the supply current decreases by at least 0.5mA. Conditions are: R_L = 400Ω. Test is performed by sourcing 20μA from the DISABLE pin, and testing that the supply current decreases by no more than the test limit (0.5mA).
- 4. The offset adjustment range is referred to the output. The inverting input current (-I_{BIAS}) can be adjusted with an external pot between pins 1 and 5, wiper connected to V+. Since -I_{BIAS} flows through R_F, an adjustment of offset voltage results. The amount of offset adjustment is proportional to the value of R_F. Test conditions are: R_L = Open, 10kΩ from pin 5 to V+, 1kΩ from pin 1 to V+, for +V_{ADJ}; R_L = Open, 1kΩ from pin 5 to V+, 10kΩ from pin 1 to V+, for -V_{ADJ}.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: Supply Voltage = ±15V, R_{SOURCE} = 50Ω, R_{LOAD} = 400Ω, C_{LOAD} ≤ 10pF, A_{VCL} = +1V/V, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	$V_{IN} = -10V \text{ to } +10V$	4	+25°C	600	-	V/µs
			5, 6	+125°C, -55°C	400	-	V/µs
	-SR	V _{IN} = +10V to -10V	4	+25°C	600	-	V/µs
			5, 6	+125°C, -55°C	400	-	V/µs

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: Supply Voltage = $\pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 400\Omega$, $R_F = 1k\Omega$, $V_{\overline{DISABLE}} = V+$, $C_{LOAD} \le 10pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
-3dB Bandwidth	BW ₁	$V_{O} = 100 \text{mV}_{RMS}, A_{V} = +1$	1	+25°C	105	-	MHz
	BW ₁₀	$V_O = 100 \text{mV}_{\text{RMS}}, A_V = +10,$ $R_F = 360 \Omega, R_L = \text{Open}$	1	+25°C	77	-	MHz
Gain Flatness	GF₅	$V_O = 100 \text{mV}_{RMS}$, $f = 5 \text{MHz}$	1	+25°C	-0.075	+0.075	dB
	GF ₁₀	$V_O = 100 \text{mV}_{RMS}$, $f = 10 \text{MHz}$	1	+25°C	-0.2	+0.2	dB
Rise Time	t _R	$V_O = 0V$ to 1V, $R_L = 100\Omega$	1, 2	+25°C	-	3.7	ns
Fall Time	t _F	$V_O = 1V$ to 0V, $R_L = 100\Omega$	1,3	+25°C	-	4.0	ns
Overshoot	+OVS	$V_0 = 0V$ to 1V, $R_L = 100\Omega$	1	+25°C	-	18.0	%
	-ovs	$V_O = 1V$ to 0V, $R_L = 100\Omega$	1	+25°C	-	16.6	%
Slew Rate	+SR ₁₀	V_O = -10V to 10V, A_V = +10, R_F = 360 Ω , R_L = Open	1, 4	+25°C	1070	-	V/µs
	-SR ₁₀	$V_O = 10V$ to -10V, $A_V = +10$, $R_F = 360\Omega$, $R_L = Open$	1, 5	+25°C	860	-	V/µs
Disable Time	+t _{DIS}	$V_O = 2V$ to 0V, 50% of $V_{\overline{DIS}}$ to 90% V_O	1, 6	+25°C	-	3.13	μѕ
	-t _{DIS}	$V_O = -2V$ to 0V, 50% of $V_{\overline{DIS}}$ to 90% V_O	1, 6	+25°C	-	2.44	μs
Enable Time	+t _{EN}	V _O = 0V to 2V, 50% to 90%	1,7	+25°C	-	1.45	μs
	-t _{EN}	V _O = 0V to -2V, 50% to 90%	1,7	+25°C	-	1.49	μѕ

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Measured from 10% to 90% of the output waveform.
- 3. Measured from 90% to 10% of the output waveform.
- 4. Measured from 25% to 75% of the output waveform.
- 5. Measured from 75% to 25% of the output waveform.
- 6. $\overline{\text{DISABLE}}$ = +15V to 0V. Measured from the 50% of $\overline{\text{DISABLE}}$ to V_{OUT} = ±200mV.
- 7. $\overline{\text{DISABLE}}$ = 0V to +15V. Measured from the 50% of $\overline{\text{DISABLE}}$ to V_{OUT} = ±1.8V.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

65 x 60 x 19 mils \pm 1 mils 1640 μ m x 1520 μ m x 483 μ m \pm 25.4 μ m

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

WORST CASE CURRENT DENSITY:

5.77 x 104 A/cm2 at 30mA

SUBSTRATE POTENTIAL (Powered Up): V-

GLASSIVATION:

Type: Nitride over Silox Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1kÅ

TRANSISTOR COUNT: 62

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5020/883

Spec Number 511080-883

HA5022/883

ADVANCE INFORMATION

July 1994

Dual 100MHz Video Current Feedback Amplifier with Disable

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Dual Version of HA-5020
- Individual Output Enable/Disable

•	Wide Unity Gain Bandwidth 125MHz
•	Slew Rate
•	Differential Gain
•	Differential Phase
•	Supply Current (per Amplifier)
•	Crosstalk Rejection at 10MHz60dE
	ECD Protection 2000\

Guaranteed Specifications at ±5V Supplies

Applications

- · Video Multiplexers; Video Switching and Routing
- Video Gain Block
- Video Distribution Amplifier/RGB Amplifier
- Flash A/D Driver
- · Current to Voltage Converter
- · Radar and Imaging Systems
- · Medical Imaging

Description

The HA5022/883 is a dual version of the popular Harris HA-5020. It features wide bandwidth and high slew rate, and is optimized for video applications and gains between 1 and 10. It is a current feedback amplifier and thus yields less bandwidth degradation at high closed loop gains than voltage feedback amplifiers.

The low differential gain and phase, 0.1dB gain flatness, and ability to drive two back terminated 75Ω cables, make this amplifier ideal for demanding video applications.

The HA5022/883 also features a disable function that significantly reduces supply current while forcing the output to a true high impedance state. This functionality allows 2:1 video multiplexers to be implemented with a single IC.

The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor. By reducing R_{F} , the bandwidth can be increased to compensate for decreases at higher closed loop gains or heavy output loads.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE		
HA5022MJ/883	-55°C to +125°C	16 Lead CerDIP		

Pinout

HA5022/883

Absolute Maximum Ratings	Thermal Information	
Voltage Between V+ and V- 36V Differential Input Voltage. 10V	Thermal Resistance θ JA θ JC CerDIP Package 75°C/W 20°C/W	
Voltage at Either Input Terminal V+ to V-	Maximum Package Power Dissipation at +75°C	
Output Current Full Short Circuit Protected	CerDIP Package	
Junction Temperature	Package Power Dissipation Derating Factor above +75°C	
ESD Rating<2000V	CerDIP Package	
Storage Temperature Range65°C ≤ T _A ≤ +150°C		
Lead Temperature (Soldering 10s)+300°C		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Supply Voltage (±V _S)±5V to ±1	15V $V_{INCM} \le 1/2(V + - V -)$	$R_L \ge 50\Omega$
Operating Temperature Range55°C ≤ T _A ≤ +125	5° C $V_{\overline{DISABIF}} = V + \text{ or } 0V$	$R_F = 1k\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 1k\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 400\Omega$, $V_{OUT} = 0V$, $V_{\overline{DISABLE}} = V+$, Unless Otherwise Specified.

			GROUP A		LIN	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-3	3	mV
			2, 3	+125°C, -55°C	-5	5	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 2.5 V$	1	+25°C	53	-	dB
Rejection Ratio		V+ = 2.5V, V- = -7.5V V+ = 7.5V, V- = -2.5V	2	+125°C	38	-	dB
		ΔV _{CM} = ±2.25V V+ = 2.75V, V- = -7.25V V+ = 7.25V, V- = -2.75V	3	-55°C	38	-	dB
Power Supply	PSRRP	$\Delta V_{SUP} = \pm 1.5V$	1	+25°C	60	-	dB
Rejection Ratio		V+ = 6.5V, V- = -5V V+ = 3.5V, V- = -5V	2, 3	+125°C, -55°C	55	-	dB
Delta Input Offset	ΔV _{IO}	V _{CM} = 0	1	+25°C	-	2	mV
Voltage Between Channels			2,3	+125°C, -55°C	-	3.5	mV
Non-Inverting Input (+IN)	out (+IN) I _{BSP}	I _{BSP} V _{CM} = 0V	1	+25°C	-8	8	μА
Current			2, 3	+125°C, -55°C	-20	20	μА
+IN Current Common Mode Sensitivity	CMS _{IBP}	$\Delta V_{CM} = \pm 2.5V$ V+ = 2.5V, V- = -7.5V	1	+25°C	-	0.15	μ Α /V
Mode Sensitivity		V+ = 2.5V, V- = -7.5V V+ = 7.5V, V- = -2.5V	2	+125°C	-	2.0	μΑ/γ
		ΔV _{CM} = ±2.25V V+ = 2.75V, V- = -7.25V V+ = 7.25V, V- = -2.75V	3	-55°C	-	2.0	μA/V
ΔInverting Input (-IN) Current Between	ΔI _{BSN}	V _{CM} = 0	1	+25°C	-15	15	μА
Channels			2, 3	+125°C	-30	30	μА
Inverting Input (-IN)	I _{BSN}	V _{CM} = 0V	1	+25°C	-12	12	μА
Current			2, 3	+125°C, -55°C	-30	30	μА

HA5022/883

			GROUP A		LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
-IN Current Common	CMS _{IBN}	$\Delta V_{CM} = \pm 2.5 V$	1	+25°C	-	0.4	μA/V
Mode Sensitivity		V+ = 2.5V, V- = -7.5V V+ = 7.5V, V- = -2.5V	2	+125°C	-	5	μΑ/V
		ΔV _{CM} = ±2.25V V+ = 2.75V, V- = -7.25V V+ = 7.25V, V- = -2.75V	3	-55°C	-	5	μΑ/V
-IN Current Power Supply Sensitivity	PSS _{IBN}	$\Delta V_{SUP} = \pm 1.5V$	1	+25°C	-	0.2	μΑ/V
		V+ = 6.5V, V- = -5V V+ = 3.5V, V- = -5V	2, 3	+125°C, -55°C	-	0.5	μA/V
+IN Current Power	PSS _{IBP}	$\Delta V_{SUP} = \pm 1.5V$	1	+25°C	-	0.1	μΑ/V
Supply Sensitivity		V+ = 6.5V, V- = -5V V+ = 3.5V, V- = -5V	2, 3	+125°C, -55°C	-	0.3	μ Α /V
Output Voltage	V _{OP}	A _V = +1 V _{IN} = -3V	1	+25°C	2.5	-	V
Swing		$A_{V} = +1$ $V_{IN} = -3V$ $R_{L} = 150\Omega$ $V_{IN} = -3V$	2, 3	+125°C, -55°C	2.5	-	V
	V _{ON}	1	1	+25°C	-	-2.5	٧
		$A_{V} = +1$ $R_{L} = 150\Omega$ $V_{IN} = +3V$ $V_{IN} = +3V$	2, 3	+125°C, -55°C	-	-2.5	٧
Short Circuit Output	+I _{SC}	$V_{IN} = \pm 2.5 V$	1	+25°C	50	-	mA
Current		V _{OUT} = 0V	2, 3	+125°C, -55°C	50	-	mA
	-l _{sc}	$V_{IN} = \pm 2.5V$ $V_{OUT} = 0V$	1	+25°C	-	-40	mA
			2, 3	+125°C, -55°C	-	-40	mA
Output Current	+l _{out}	Note 1	1	+25°C	20	-	mA
			2, 3	+125°C, -55°C	16.6	-	mA
	-lout	Note 1	1	+25°C	-	-20	mA
			2, 3	+125°C, -55°C	-	-16.6	mA
Quiescent Power Supply Current	Icc	$R_L = 400\Omega$	1	+25°C	-	10	mA/Op Am
Зарру Сапен			2, 3	+125°C, -55°C		10	mA/Op Am
	I _{EE}	$R_L = 400\Omega$	1	+25°C	-10		mA/Op Am
			2, 3	+125°C, -55°C	-10	-	mA/Op Am
Transimpedance	+A _{ZOL1}	$R_{L} = 400\Omega$ $V_{OUT} = \pm 2.5V$	1	+25°C	1	-	ΜΩ
		VOUT = 12.5V	2	+125°C	0.85	-	MΩ
		V _{OUT} = ±2.25V	3	-55°C	0.85	-	ΜΩ
	-A _{ZOL1}	$R_{L} = 400\Omega$ $V_{OUT} = \pm 2.5V$	1	+25°C	1	-	MΩ
		▼OUT = 12.3¥	2	+125°C	0.85	-	MΩ
	1	V _{OUT} = ±2.25V	3	-55°C	0.85	-	ΜΩ

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 1k\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 400\Omega$, $V_{OUT} = 0V$, $V_{\overline{DISABLE}} = V+$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Disabled Output Current	+I _{LEAK}	V _{IN} = 0V,	1	+25°C	-	1	μА
		$V_{OUT} = +2.5V$ R _L = Open, $V_{\overline{DIS}} = 0V$	2, 3	+125°C, -55°C	-	2	μА
	-I _{LEAK}	V _{IN} = 0V,	1	+25°C		1	μА
		$V_{OUT} = -2.5V$ R _L = Open, $V_{\overline{DIS}} = 0V$	2, 3	+125°C, -55°C	-	2	μА
Disable Pin Input Current	I _{LOGIC}	V _{DIS} = 0V	1	+25°C	-1.0	-	mA
			2, 3	+125°C, -55°C	-1.5	-	mA
Minimum DISABLE Pin Current to Disable	I _{DIS}	Note 2	1	+25°C	-	350	μА
Current to bisable			2, 3	+125°C, -55°C		350	μА
Maximum DISABLE Pin Current to Enable	I _{EN}	Note 3	1	+25°C	20	-	μА
Current to Enable			2, 3	+125°C, -55°C	20	-	μА
Disabled Power Supply	I _{CCDIS}	R _L = Open, V _{DIS} = 0V	1	+25°C	-	7.5	mA/Op Amp
Current			2, 3	+125°C, -55°C	-	7.5	mA/Op Amp
	I _{EEDIS}	R _L = Open, V _{DIS} = 0V	1	+25°C	7.5	-	mA/Op Amp

NOTE:

- 1. Guaranteed from V_{OUT} Test with $R_L = 150\Omega$, by: $I_{OUT} = V_{OUT}/150\Omega$.
- 2. R_L = 100Ω, V_{IN} = 2.5V. This is the minimum current which must be pulled out of the Disable pin in order to disable the output. The output is considered disabled when -10mV ≤ V_{OUT} ≤ +10mV.
- 3. V_{IN} = 0V. This is the maximum current that can be pulled out of the Disable pin with the HA5022/883 remaining enabled. The HA5022/883 is considered disabled when the supply current has decreased by at least 0.5mA.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

65 x 100 x 19 mils ± 1 mils $1650 \times 2540 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Metal 1: AlCu (1%), Metal 2: AlCu (1%) Thickness: Metal 1: 8kÅ ± 0.4kÅ, Metal 2: 16kÅ ± 0.8kÅ

WORST CASE CURRENT DENSITY:

1.62 x 105 A/cm2 at 35mA

SUBSTRATE POTENTIAL (Powered Up): V-

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.4kÅ

TRANSISTOR COUNT: 124

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA5022/883

+IN1 DIS1 ٧-NC DIS2 +IN2

HA5023/883

ADVANCE INFORMATION

July 1994

Dual 100MHz Video Current Feedback Amplifier

Features

 This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.

Wide Unity Gain Bandwidth
• Slew Rate
Differential Gain
Differential Phase
• Supply Current (per Amplifier)
Crosstalk Rejection at 10MHz60dB

Guaranteed Specifications at ±5V Supplies

Applications

- Video Gain Block
- · Video Distribution Amplifier/RGB Amplifier
- Flash A/D Driver
- · Current to Voltage Converter
- · Radar and Imaging Systems
- · Medical Imaging

Description

The HA5023/883 is a dual version of the popular Harris HA-5020/883 except that it does not have an enable function. It features wide bandwidth and high slew rate, and is optimized for video applications and gains between 1 and 10. It is a current feedback amplifier and thus yields less bandwidth degradation at high closed loop gains than voltage feedback amplifiers.

The low differential gain and phase, 0.1dB gain flatness, and ability to drive two back terminated 75 Ω cables, make this amplifier ideal for demanding video applications.

The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor. By reducing R_{F} , the bandwidth can be increased to compensate for decreases at higher closed loop gains or heavy output loads.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA5023MJ/883	-55°C to +125°C	8 Lead CerDIP

Pinout

HA5023/883

Absolute Maximum Ratings Thermal Information Thermal Resistance θ_{JA} θ_{JC} 28°C/W CerDIP Package 115°C/W Maximum Package Power Dissipation at +75°C Output Current Fully Short Circuit Protected Junction Temperature +175°C Package Power Dissipation Derating Factor above +75°C ESD Rating.....< 2000V CerDIP Package8.7mW/°C Storage Temperature Range -65°C \leq T_A \leq +150°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Lead Temperature (Soldering 10s).....+300°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 1k\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 400\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-3	3	mV
			2, 3	+125°C, -55°C	-5	5	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 2.5 V$	1	+25°C	53	- 1	dB
Rejection Ratio		V+ = 2.5V, V- = -7.5V V+ = 7.5V, V- = -2.5V	2	+125°C	38	-	dB
		$\Delta V_{CM} = \pm 2.25V$ V+ = 2.75V, V- = -7.25V V+ = 7.25V, V- = -2.75V	3	-55°C	38	-	dB
Power Supply	PSRRP	$\Delta V_{SUP} = \pm 1.5V$	1	+25°C	60	- 1	dB
Rejection Ratio		V+ = 6.5V, V- = -5V V+ = 3.5V, V- = -5V	2, 3	+125°C, -55°C	55	-	dB
Delta Input Offset	ΔV _{IO}	V _{CM} = 0	1	+25°C	-	2	mV
Voltage Between Channels			2,3	+125°C, -55°C	-	3.5	mV
Non-Inverting Input	I _{BSP}	V _{CM} = 0V	1	+25°C	-8	8	μА
(+IN) Current			2, 3	+125°C, -55°C	-20	20	μА
+IN Current Common	CMS _{IBP}	$\Delta V_{CM} = \pm 2.5 V$	1	+25°C	-	0.15	μA/V
Mode Sensitivity		V+ = 2.5V, V- = -7.5V V+ = 7.5V, V- = -2.5V	2	+125°C	-	2.0	μA/V
		$\Delta V_{CM} = \pm 2.25V$ V+ = 2.75V, V- = -7.25V V+ = 7.25V, V- = -2.75V	3	-55°C	-	2.0	μA/V
ΔInverting Input (-IN) ΔI _{BSN}	Δl _{BSN}	V _{CM} = 0	1	+25°C	-15	15	μА
Current Between Channels			2, 3	+125°C, -55°C	-30	30	μА
Inverting Input (-IN)	I _{BSN}	V _{CM} = 0V	1	+25°C	-12	12	μА
Current			2, 3	+125°C, -55°C	-30	30	μА
-IN Current Common	CMS _{IBN}	$\Delta V_{CM} = \pm 2.5 V$	1	+25°C	-	0.4	μA/V
Mode Sensitivity		V+ = 2.5V, V- = -7.5V V+ = 7.5V, V- = -2.5V	2	+125°C	•	5	μA/V
		ΔV _{CM} = ±2.25V V+ = 2.75V, V- = -7.25V V+ = 7.25V, V- = -2.75V	3	-55°C	-	5	μA/V
-IN Current Power	PSS _{IBN}	$\Delta V_{SUP} = \pm 1.5V$	1	+25°C	-	0.2	μΑ/V
Supply Sensitivity		V+ = 6.5V, V- = -5V V+ = 3.5V, V- = -5V	2, 3	+125°C, -55°C	-	0.5	μA/V
+IN Current Power	PSS _{IBP}	$\Delta V_{SUP} = \pm 1.5V$	1	+25°C	-	0.1	μA/V
Supply Sensitivity		V+ = 6.5V, V- = -5V V+ = 3.5V, V- = -5V	2, 3	+125°C, -55°C	-	0.3	μA/V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V_{SUPPLY} = ±5V, A_V = +1, R_F = 1kΩ, R_{SOURCE} = 0Ω, R_L = 400Ω, V_{OUT} = 0V, Unless Otherwise Specified.

			GROUP A		LIN	ITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage	V _{OP}	$A_V = +1$ $V_{IN} = -3V$	1	+25°C	2.5	-	V
Swing		R _L = 150 V _{IN} = -3V	2, 3	+125°C, -55°C	2.5	-	V
	V _{ON}	$A_V = +1$ $V_{IN} = +3V$	1	+25°C	-	-2.5	V
		$R_{L} = 150$ $V_{IN} = +3V$ Ω	2, 3	+125°C, -55°C	-	-2.5	٧
Short Circuit Output	+I _{SC}	$V_{IN} = \pm 2.5V$	1	+25°C	50	-	mA
Current		V _{OUT} = 0V	2, 3	+125°C, -55°C	50	-	mA
	-I _{SC}	$V_{IN} = \pm 2.5V$	1	+25°C	-	-40	mA
		$V_{OUT} = 0V$	2, 3	+125°C, -55°C	-	-40	mA
Output Current	+l _{out}	Note 1	1	+25°C	20	-	mA
			2, 3	+125°C, -55°C	16.6	-	mA
	-lout	Note 1	1	+25°C		-20	mA
			2, 3	+125°C, -55°C	-	-16.6	mA ,
Quiescent Power	Icc	$R_L = 400\Omega$	1	+25°C	-	10	mA/Op Amp
Supply Current			2, 3	+125°C, -55°C	-	10	mA/Op Amp
	I _{EE}	$R_L = 400\Omega$	1	+25°C	-10	-	mA/Op Amp
			2, 3	+125°C, -55°C	-10	-	mA/Op Amp
Transimpedance	+A _{ZOL1}	$R_L = 400\Omega$	1	+25°C	1	-	МΩ
		$V_{OUT} = \pm 2.5V$	2, 3	+125°C	0.85	-	ΜΩ
		$V_{OUT} = \pm 2.25V$	3	-55°C	0.85	-	МΩ
	-A _{ZOL1}	$R_L = 400\Omega$	1	+25°C	1	-	МΩ
		V _{OUT} = ±2.5V	2, 3	+125°C	0.85	-	МΩ
		$V_{OUT} = \pm 2.25V$	3	-55°C	0.85	-	ΜΩ

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

^{1.} Guaranteed from V_{OUT} Test with R_L = 150 Ω , by: I_{OUT} = $V_{OUT}/150\Omega$.

^{1.} PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

65 x 100 x 19 mils ± 1 mils 1650 x 2540 x 483μm ± 25.4μm

METALLIZATION:

Type: Metal 1: AlCu (1%), Metal 2: AlCu (1%)

Thickness: Metal 1: 8kÅ ± 0.4kÅ, Metal 2: 16kÅ ± 0.8kÅ

WORST CASE CURRENT DENSITY:

1.9 x 10⁵ A/cm² at 15mA

SUBSTRATE POTENTIAL (Powered Up): V-

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.4kÅ

TRANSISTOR COUNT: 124

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA5023/883

HA-5102/883

Dual, Low Noise, High Performance
Operational Amplifier

June 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Input Noise Voltage Density at 1kHz.. 6nV/√Hz (Max)
 4.3nV/√Hz (Typ)
- Unity Gain Bandwidth 8MHz (Typ)
- High Open Loop Gain (Full Temp) 100kV/V (Min) 250kV/V (Typ)
- High CMRR, PSRR (Full Temp).....86dB (Min) 100dB (Typ)
- Low Offset Voltage Drift 3μV/°C (Typ)
- No Crossover Distortion
- Standard Dual Pinout

Applications

- . High Quality Audio Preamplifiers
- · High Q Active Filters
- Low Noise Function Generators
- · Low Distortion Oscillators
- Low Noise Comparators

Description

Low noise and high performance are key words describing the unity gain stable HA-5102/883. This general purpose dual amplifier offers an array of dynamic specifications including 1V/µs slew rate (min), $A_{VCL}^{-} \ge 1$, and 8MHz bandwidth (typ). Complementing these outstanding parameters is a very low noise specification of 4.3nV/ $\overline{\text{Hz}}$ (typ), 6nV/ $\overline{\text{Hz}}$ (max).

Fabricated using the Harris standard high frequency D.I. process, these operational amplifiers also offer excellent input specifications such as 2.5mV (max) offset voltage and 75nA (max) offset current. Complementing these specifications are 100dB (min) open loop gain and 60dB channel separation (min). Economically, the HA-5102/883 also consumes a very moderate amount of supply power 180mW/ package.

This impressive combination of features make this amplifier ideally suited for designs ranging from audio amplifiers and active filters to the most demanding signal conditioning and instrumentation circuits.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5102/883	-55°C to +125°C	8 Pin Can
HA4-5102/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-5102/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-5102/883

HA-5102/883

(METAL CAN)

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures.

Copyright © Harris Corporation 1994

3-109

Spec Number 511019-883

Absolute Maximum Ratings

Thermal Information

mermai imormation		
Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}$	3
CerDIP Package		870mW
Ceramic LCC Package		1.54W
Metal Can Package		645mW
Package Power Dissipation Derating Factor A	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	5.4mW/°C
Metal Can Package		6.5mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-2.0	2.0	mV
			2, 3	+125°C, -55°C	-2.5	2.5	mV
Input Bias Current	+l _B	$V_{CM} = 0V$,	1	+25°C	-200	200	nA
		$+R_S = 10kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-325	325	nA
	-l _B	V _{CM} = 0V,	1	+25°C	-200	200	nA
		$+R_S = 100\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-325	325	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-75	75	nA
		$+R_S = 10kΩ$, $-R_S = 10kΩ$	2, 3	+125°C, -55°C	-125	125	nA
Common Mode Range	+CMR	V+ = +3V, V- = -27V	1	+25°C	+12	-	٧
			2, 3	+125°C, -55°C	+12	-	٧
	-CMR	V+ = +27V, V- = -3V	1	+25°C	-	-12	٧
			2, 3	+125°C, -55°C	-	-12	٧
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V \text{ and } +10V,$	4	+25°C	100	-	kV/V
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	100	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	100	-	kV/V
*		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	100	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +5V$,	1	+25°C	86	-	dB
Rejection Ratio		V+ = +10V, V- = -20V, $V_{OUT} = -5V$	2, 3	+125°C, -55°C	86	-	dB
	-CMRR	$\Delta V_{CM} = -5V$,	1	+25°C	86	-	dB
		V+ = +20V, V- = -10V, V _{OUT} = +5V	2, 3	+125°C, -55°C	86	-	dB

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT1}	$R_L = 2k\Omega$	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	٧
	-V _{OUT1}	$R_L = 2k\Omega$	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	V
	+V _{OUT2}	$R_L = 10k\Omega$	1	+25°C	12	-	٧
			2, 3	+125°C, -55°C	12	-	V
	-V _{OUT2}	$R_L = 10k\Omega$	1	+25°C	-	-12	٧
			2, 3	+125°C, -55°C	-	-12	٧
Output Current	+l _{OUT}	V _{OUT} = -5V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
	-l _{out}	V _{OUT} = +5V	1	+25°C	-	-10	mA
			2, 3	+125°C, -55°C	-	-10	mA
Quiescent Power Supply	+I _{CC}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	5.0	mA
Current			2, 3	+125°C, -55°C	-	6.0	mA
	-lcc	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-5.0	-	mA
			2, 3	+125°C, -55°C	-6.0	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
Rejection Ratio		V+ = +10V, V- = -15V V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	86	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
		V+ = +15V, V- = -10V V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	86	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1VV$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -3V to +3V	4	+25°C	1		V/µs
	-SR	V _{OUT} = +3V to -3V	4	+25°C	1		V/µs
Rise and Fall Time	T _R	V _{OUT} = 0 to +200mV 10% ≤ T _R ≤ 90%	4	+25°C	-	200	ns
	T _F	$V_{OUT} = 0 \text{ to -} 200 \text{mV}$ $10\% \le T_F \le 90\%$	4	+25°C	-	200	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	4	+25°C	-	35	%
	-OS	V _{OUT} = 0 to -200mV	4	+25°C	-	35	%

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: V_{SUPPLY} = ±15V, R_{LOAD} = 2kΩ, C_{LOAD} = 50pF, A_{VCL} = 1V/V, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	250	-	kΩ
Input Noise Voltage Density	E _N	$R_S = 20\Omega,$ $f_O = 1000Hz$	1	+25°C	-	6	nV/√Hz
Input Noise Current Density	I _N	$R_S = 2M\Omega$, $f_O = 1000Hz$	1	+25°C	-	3	pA∕√Hz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	16	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	+1	-	V/V
Output Resistance	R _{out}	Open Loop	1	+25°C	-	360	Ω
Quiescent Power Consumption	PC	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1,3	-55°C to +125°C	-	180	mW
Channel Separation	CS	$\begin{aligned} R_S &= 1k\Omega, \\ A_{VCL} &= 100V/V, \\ V_{IN} &= 100mV_{PEAK} \text{ at} \\ 10kHz \text{ Referred to} \\ \text{Input} \end{aligned}$	1	+25°C	60		dB

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)				
Interim Electrical Parameters (Pre Burn-In)	1				
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6				
Group A Test Requirements	1, 2, 3, 4, 5, 6				
Groups C and D Endpoints	1				

NOTE

1. PDA applies to Subgroup 1 only.

3

Die Characteristics

DIE DIMENSIONS:

 $98.4 \times 67.3 \times 19 \text{ mils } \pm 1 \text{ mils}$ $2500 \times 1710 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: $12k\text{\AA} \pm 2k\text{\AA}$ Nitride Thickness: $3.5k\text{\AA} \pm 1.5k\text{\AA}$

WORST CASE CURRENT DENSITY:

1.43 x 10⁵A/cm² at 10mA

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT: 93

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5102/883

V- +IN1 -IN1 OUT1

+IN2

-IN2

OUT2

٧.

HA-5104/883

July 1994

Low Noise, High Performance, Quad Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Input Noise Voltage Density at 1kHz.. 6nV/√Hz (Max)
 4.3nV/√Hz (Typ)
- Unity Gain Bandwidth 8MHz (Typ)
- High Open Loop Gain (Full Temp) 100kV/V (Min) 250kV/V (Typ)
- Low Offset Voltage Drift 3μV/°C (Typ)
- · No Crossover Distortion
- · Standard Quad Pinout

Applications

- · High Q Active Filters
- Audio Amplifiers
- Integrators
- Signal Generators
- · Instrumentation Amplifiers

Description

Low noise and high performance are key words describing the unity gain stable HA-5104/883. This general purpose quad amplifier offers an array of dynamic specifications including 1V/ μ s slew rate (min), and 8MHz bandwidth (typ). Complementing these outstanding parameters are very low noise specifications of 4.3nV/ $\overline{\text{Hz}}$ at 1kHz (typ) or 6nV/ $\overline{\text{Hz}}$ (max).

Fabricated using the Harris standard high frequency D.I. process, these operational amplifiers also offer excellent input specifications such as 2.5mV (max) offset voltage and 75nA (max) offset current. Complementing these specifications are 100dB (min) open loop gain and 55dB channel separation (min). Economically, the HA-5104/883 also consumes a very moderate amount of power (225mW per package) while also saving board space and cost.

This impressive combination of features make this amplifier ideally suited for designs ranging from audio amplifiers and active filters to the most demanding signal conditioning and instrumentation circuits.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-5104/883	-55°C to +125°C	14 Lead CerDIP
HA4-5104/883	-55°C to +125°C	20 Lead Ceramic LCC

Pinouts

File Number 3710

Specifications HA5104/883

Absolute Maximum Ratings	Thermal Information	
Voltage Between V+ and V- Terminals 40V Differential Input Voltage. 7V Voltage at Either Input Terminal V+ to V- Peak Output Current Indefinite (One Amplifier Shorted to Ground) +175°C Junction Temperature (T _J) +150°C Storage Temperature Range -65°C to +150°C SSD Rating <2000V Lead Temperature (Soldering 10s) +300°C	Thermal Resistance θ_{JA} CerDIP Package 75°C/W Ceramic LCC Package 65°C/W Package Power Dissipation Limit at +75°C for T _J ≤ +175°C CerDIP Package 65°C/W Package Power Dissipation Derating Factor Above +75°C CerDIP Package 15°C CerDIP Package 15°C Ceramic LCC Package 15°C Ceramic LCC Package 15°C	1.33W 1.54W 3.3mW/°C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may of the device at these or any other conditions above those indicated in the ope		nd operation

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

Operating Supply Voltage $\pm 5 \text{V to } \pm 15 \text{V}$ R_L $\geq 2 \text{k} \Omega$

			GROUP A		LIMITS		,
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-2.5	2.5	mV
			2, 3	+125°C, -55°C	-3.0	3.0	mV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-200	200	nA
		$+R_S = 10kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-325	325	nA
	-I _B	V _{CM} = 0V,	1	+25°C	-200	200	nA
		$+R_S = 100\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-325	325	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-75	75	nA
		$+R_S = 10kΩ$, $-R_S = 10kΩ$	2, 3	+125°C, -55°C	-125	125	nA
Common Mode Range	+CMR	V+ = +3V, V- = -27V	1	+25°C	+12	-	٧
			2, 3	+125°C, -55°C	+12	-	٧
	-CMR	V+ = +27V, V- = -3V	1	+25°C	-	-12	٧
			2, 3	+125°C, -55°C	-	-12	٧
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V$ and $+10V$,	4	+25°C	100	-	kV/V
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	100	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	100	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	100	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +5V$,	1	+25°C	86	-	dB
Rejection Ratio		V + = +10V, V - = -20V, $V_{OUT} = -5V$	2, 3	+125°C, -55°C	86	-	dB
	-CMRR	$\Delta V_{CM} = -5V$,	1	+25°C	86	-	dB
		V+ = +20V, V- = -10V, V _{OUT} = +5V	2, 3	+125°C, -55°C	86	-	dB

Specifications HA5104/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

	,		GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT1}	$R_L = 2k\Omega$	1	+25°C	10	-	٧
		*	2, 3	+125°C, -55°C	10	-	V
	-V _{OUT1}	$R_L = 2k\Omega$	1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V
	+V _{OUT2}	$R_L = 10k\Omega$	1	+25°C	12	-	V
			2, 3	+125°C, -55°C	12	-	V
	-V _{OUT2}	$R_L = 10k\Omega$	1	+25°C	-	-12	V
			2, 3	+125°C, -55°C	-	-12	V
Output Current	+l _{out}	V _{OUT} = -5V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
	-l _{out}	V _{OUT} = +5V	1	+25°C	-	-10	mA
			2, 3	+125°C, -55°C	-	-10	mA
Quiescent Power Supply Current	+l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	6.5	mA
			2, 3	+125°C, -55°C	-	7.5	mA
	-I _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-6.5	-	mA
			2, 3	+125°C, -55°C	-7.5	-	mA
Power Supply Rejection Ratio	+PSRR $\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB	
		V+ = +10V, V- = -15V V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	86	-	dB
¥	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
		V+ = +15V, V- = -10V V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	86	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50$ pF, $A_{VCL} = \pm 1$ V/V, Unless Otherwise Specified.

		1	GROUP A	GROUP A	LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	$V_{OUT} = -3V \text{ to } +3V$	4	+25°C	1	-	V/µs
	-SR	V _{OUT} = +3V to -3V	4	+25°C	1	-	V/µs
Rise and Fall Time	T _R	V _{OUT} = 0 to +200mV 10% ≤ T _R ≤ 90%	4	+25°C	-	200	ns
	T _F	$V_{OUT} = 0 \text{ to -200mV}$ $10\% \le T_F \le 90\%$	4	+25°C	-	200	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	4	+25°C	-	35	%
	-OS	V _{OUT} = 0 to -200mV	4	+25°C	-	35	%

Specifications HA5104/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = 1V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	250	-	kΩ
Input Noise Voltage Density	E _N	$R_S = 20\Omega,$ $f_O = 1000Hz$	1	+25°C	-	6	nV/√Hz
Input Noise Current Density	IN	$R_S = 2M\Omega$, $f_O = 1000Hz$	1	+25°C	-	3 1	pA∕√Hz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	32		kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	+1	-	V/V
Output Resistance	R _{out}	Open Loop	1	+25°C	-	270	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1,3	-55°C to +125°C	-	225	mW
Channel Separation	CS	$\begin{aligned} R_S &= 1k\Omega, \\ A_{VCL} &= 100V/V, \\ V_{IN} &= 100mV_{PEAK} \text{ at} \\ 10kHz & \text{Referred to} \\ \text{Input} \end{aligned}$	1	+25°C	55	-	dB

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)	
Interim Electrical Parameters (Pre Burn-In)	1	
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6	
Group A Test Requirements	1, 2, 3, 4, 5, 6	
Groups C and D Endpoints	1	

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

95 x 99 x 19 mils ± 1 mils 2420 x 2530 x 483µm ± 25.4µm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SIO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.43 x 10⁵ A/cm²

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT: 175

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA5104/883

HA-5112/883

Dual, Low Noise, High Performance Uncompensated Operational Amplifier

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Input Noise Voltage Density at 1kHz...6nV/√Hz(Max)
 4.3nV/√Hz(Typ)
- Wide Gain Bandwidth Product (A_{VCL} ≥ 10) 54MHz
- Low Offset Voltage Drift 3μV/°C (Typ)
- High Open Loop Gain (Full Temp.)..... 100kV/V (Min) 250kV/V (Typ)
- High CMRR/PSRR (Full Temp.)......86dB (Min)
 100dB (Typ)
- Low Offset Voltage Drift 3μV/°C (Typ)
- · No Crossover Distortion
- Standard Dual Pinout

Applications

- . High Quality Audio Preamplifiers
- . High Q Active Filters
- Low Noise Function Generators
- Low Distortion Oscillators
- Low Noise Comparators

Description

Low Noise and high performance are key words describing the dual, uncompensated HA-5112/883. This general purpose amplifier offers an array of dynamic specifications including 12V/µs slew rate (min), and 54MHz gain-bandwidth-product for $A_{VCL} \geq 10.$ Complementing these outstanding parameters is a very low noise specification of $6nV/\sqrt{Hz}$ at 1kHz (max).

Fabricated using the Harris standard high frequency D.I. process, these operational amplifiers also offer excellent input specifications such as 2.5mV (max) offset voltage and 75nA (max) offset current. Complementing these specifications are 100dB (min) open loop gain and 55dB channel separation (min). The HA-5112/883 also consumes a very modest amount of supply power (180mW/package).

This impressive combination of features make this amplifier ideally suited for designs ranging from audio amplifiers and active filters to the most demanding signal conditioning and instrumentation circuits.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5112/883	-55°C to +125°C	8 Pin Can
HA4-5112/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-5112/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-5112/883

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures.

Copyright © Harris Corporation 1994

3-119

Spec Number 511032-883 File Number 3711

Specifications HA-5112/883

Absolute Maximum Ratings

•
Voltage between V+ and V- Terminals 40V
Differential Input Voltage7V
Voltage at Either Input Terminal V+ to V-
Peak Output CurrentIndefinite
(One Amplifier Shorted to Ground)
Junction Temperature (T _J) +175°C
Storage Temperature Range65°C to +150°C
ESD Rating<2000V
Lead Temperature (Soldering 10s)+300°C

Thermal Information

θ_{JA}	θ_{JC}
115°C/W	28°C/W
65°C/W	15°C/W
155°C/W	67°C/W
	870mW
	1.54W
	645mW
bove +75°C	
	8.7mW/°C
1	5.4mW/°C
	6.5mW/°C
	115°C/W

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range55°C to +125°C	$V_{INCM} \le 1/2 (V + - V -)$
Operating Supply Voltage	$R_L \ge 2k\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-2.0	2.0	mV
			2, 3	+125°C, -55°C	-2.5	2.5	mV
Input Bias Current	+l _B	$V_{CM} = 0V$, $+R_S = 10k\Omega$,	1	+25°C	-200	200	nA
		$-R_S = 100\Omega$	2, 3	+125°C, -55°C	-325	325	nA
	-I _B	$V_{CM} = 0V, +R_S = 100\Omega,$	1	+25°C	-200	200	nA
		$-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-325	325	nA
Input Offset Current	I _{IO}	$V_{CM} = 0V$, $+R_S = 10k\Omega$, $-R_S = 10k\Omega$	1	+25°C	-75	75	nA
			2, 3	+125°C, -55°C	-125	125	nA
Common Mode Range	+CMR	V+ = +3V, V- = -27V	1	+25°C	+12	-	V
			2, 3	+125°C, -55°C	+12	-	V
	-CMR	V+ = +27V, V- = -3V	1	+25°C	-	-12	٧
			2, 3	+125°C, -55°C	-	-12	٧
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V \text{ and } +10V,$	4	+25°C	100	-	kV/V
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	100	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	100	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	100	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +5V$,	1	+25°C	86	-	dB
Rejection Ratio		V+ = +10V, V- = -20V, V _{OUT} = -5V	2, 3	+125°C, -55°C	86	-	dB
	-CMRR	$\Delta V_{CM} = -5V$,	1	+25°C	86	-	dB
		V+ = +20V, V- = -10V, V _{OUT} = +5V	2, 3	+125°C, -55°C	86	-	dB

Specifications HA-5112/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT1}	$R_L = 2k\Omega$	1	+25°C	10	-	V
			2, 3	+125°C, -55°C	10	-	V
	-V _{OUT1}	$R_L = 2k\Omega$	1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V
	+V _{OUT2}	$R_L = 10k\Omega$	1	+25°C	12	-	V
			2, 3	+125°C, -55°C	12	-	V
	-V _{OUT2}	$R_L = 10k\Omega$	1	+25°C	-	-12	V
			2, 3	+125°C, -55°C	-	-12	V
Output Current	+l _{out}	V _{OUT} = -5V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
	-l _{out}	V _{OUT} = +5V	1	+25°C	-	-10	mA
			2, 3	+125°C, -55°C	-	-10	mA
Quiescent Power Supply	+l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	5	mA
Current			2, 3	+125°C, -55°C	-	6	mA
	-I _{CC}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-5	-	mA
			2, 3	+125°C, -55°C	-6	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
Rejection Ratio		V+ = +10V, V- = -15V V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	86	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
		V+ = +15V, V- = -10V V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	86	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Parameters in Table 3

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = 10V/V$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	250	-	kΩ
Input Noise Voltage	E _N	$R_S = 20\Omega,$ $f_O = 1000Hz$	1	+25°C	-	6	nV/√Hz
Input Noise Current	I _N	$R_S = 2M\Omega$, $f_O = 1000Hz$	1	+25°C	-	3	pA∕√Hz

Specifications HA-5112/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: V_{SUPPLY} = ±15V, R_{LOAD} = 2kΩ, C_{LOAD} = 50pF, A_{VCL} = 10V/V, Unless Otherwise Specified.

					LIM	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Gain Bandwidth Product	GBWP	$V_O = 200$ mV, $f_O = 50$ kHz	1	+25°C	40	-	MHz
		$V_O = 200$ mV, $f_O = 1$ MHz	1	+25°C	54	-	MHz
Slew Rate	+SR	V _{OUT} = -5V to +5V	1	+25°C	12	-	V/µs
	-SR	$V_{OUT} = +5V \text{ to } -5V$	1	+25°C	12	-	V/µs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	191	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	10	-	V/V
Rise and Fall Time	t _R	$V_{OUT} = 0V \text{ to } +200\text{mV}$	1, 4	+25°C	-	100	ns
	t _F	V _{OUT} = 0V to -200mV	1, 4	+25°C	-	100	ns
Overshoot	+OS	$V_{OUT} = 0V \text{ to } +200\text{mV}$	1	+25°C	-	40	%
	-OS	V _{OUT} = OV to -200mV	1	+25°C	-	40	%
Output Resistance	R _{OUT}	Open Loop	1	+25°C	-	232	Ω
Quiescent Power Consumption	PC	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1, 3	-55°C to +125°C	-	180	mW
Channel Separation	CS	$\begin{aligned} R_S &= 1k\Omega, \\ A_{VCL} &= 100V/V, \\ V_{IN} &= 100mV_{PEAK} \text{ at} \\ 10kHz, \text{ Referred to} \\ \text{Input} \end{aligned}$	1	+25°C	55	-	dB

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).
- 4. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $98.4 \times 67.3 \times 19 \text{ mils} \pm 1 \text{ mils}$ $2500 \times 1710 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.43 x 10⁵A/cm² at 10mA

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT: 93

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5112/883

HA-5114/883

July 1994

Quad, Low Noise, High Performance **Uncompensated Operational Amplifier**

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Input Noise Voltage Density at 1kHz... 6nV/√Hz(Max) 4.3nV/√Hz (Typ)
- High Slew Rate...... 12V/µs (Min) 20V/μs (Typ)
- Wide Gain Bandwidth Product (A_{VCL} ≥ 10)... 40MHz (Typ)
- High Open Loop Gain (Full Temp) 100kV/V (Min) 250kV/V (Typ)
- High CMRR, PSRR (Full Temp).....86dB (Min) 100dB (Typ)
- Low Offset Voltage Drift 3μV/°C (Typ)
- No Crossover Distortion
- Standard Quad Pinout

Applications

- High Quality Audio Preamplifiers
- . High Q Active Filters
- Low Noise Function Generators
- **Low Distortion Oscillators**
- Low Noise Comparators

Description

Low noise and high performance are key words describing the quad, uncompensated HA-5114/883. This general purpose amplifier offers an array of dynamic specifications including 12V/us slew rate (min), and 40MHz gain-bandwidth-product for A_{VCL} ≥ 10. Complementing these outstanding parameters is a very low noise specification of 6nV/VHz at 1kHz (max).

Fabricated using the Harris standard high frequency D.I. process, these operational amplifiers also offer excellent input specifications such as 2.5mV (max) offset voltage and 75nA (max) offset current. Complementing these specifications are 100dB (min) open loop gain and 55dB channel separation (min). Economically, HA-5114/883 also consumes a very modest amount of power (225mW/ package), while also saving board space and cost.

This impressive combination of features make this amplifier ideally suited for designs ranging from audio amplifiers and active filters to the most demanding signal conditioning and instrumentation circuits.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-5114/883	-55°C to +125°C	14 Lead CerDIP
HA4-5114/883	-55°C to +125°C	20 Lead Ceramic LCC

Pinouts

Specifications HA-5114/883

Absolute Maximum Ratings	Thermal Information
Voltage between V+ and V- Terminals	Thermal Resistance θ JA θ JC CerDIP Package 75°C/W 20°C/W Ceramic LCC Package 65°C/W 15°C/W
Peak Output Current. Indefinite (One Amplifier Shorted to Ground) Junction Temperature (T,I) +175°C	Package Power Dissipation Limit at +75°C CerDIP Package
Storage Temperature Range -65°C to +150°C ESD Rating <2000V	Package Power Dissipation Derating Factor Above +75°C CerDIP Package
CALITION: Stroscos obovo those listed in "Absolute Maximum Patings" may se	use permanent demane to the device. This is a stress only rating and operation

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-2.5	2.5	mV
			2, 3	+125°C, -55°C	-3.0	3.0	mV
Input Bias Current	+l _B	$V_{CM} = 0V$, $+R_S = 10k\Omega$,	1	+25°C	-200	200	nA
		$-R_S = 100\Omega$	2, 3	+125°C, -55°C	-325	325	nA
	-I _B	$V_{CM} = 0V, +R_{S} = 100\Omega,$	1	+25°C	-200	200	nA
		$-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-325	325	nA
Input Offset Current	I _{IO}	$V_{\text{CM}} = 0V,$ $+R_{\text{S}} = 10k\Omega,$ $-R_{\text{S}} = 10k\Omega$	1	+25°C	-75	75	nA
			2, 3	+125°C, -55°C	-125	125	nA
Common Mode Range	+CMR	MR V+ = +3V, V- = -27V	1	+25°C	+12	-	٧
		2, 3	+125°C, -55°C	+12	-	٧	
	-CMR	V+ = +27V, V- = -3V	1	+25°C	-	-12	٧
			2, 3	+125°C, -55°C	-	-12	٧
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V$ and $+10V$,	4	+25°C	100	-	kV/V
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	100	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	100	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	100	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +5V$,	1	+25°C	86	-	dB
Rejection Ratio		V+ = +10V, V- = -20V, V _{OUT} = -5V	2, 3	+125°C, -55°C	86	-	dB
	-CMRR	$\Delta V_{CM} = -5V$,	1	+25°C	86	-	dB
		V+ = +20V, V- = -10V, V _{OUT} = +5V	2, 3	+125°C, -55°C	86	-	dB

Specifications HA-5114/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OUT1}	$R_L = 2k\Omega$	1	+25°C	10	-	V
			2, 3	+125°C, -55°C	10	-	٧
	-V _{OUT1}	$R_L = 2k\Omega$	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	٧
	+V _{OUT2}	$R_L = 10k\Omega$	1	+25°C	12	-	V
			2, 3	+125°C, -55°C	12	-	٧
	-V _{OUT2}	$R_L = 10k\Omega$	1	+25°C	-	-12	٧
			2, 3	+125°C, -55°C	-	-12	٧
Output Current	+l _{OUT}	V _{OUT} = -5V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
	-l _{out}	V _{OUT} = +5V	1	+25°C	-	-10	mA
			2, 3	+125°C, -55°C	-	-10	mA
Quiescent Power Supply	+l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	6.5	mA
Current			2, 3	+125°C, -55°C	-	7.5	mA
	-I _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-6.5	-	mA
			2, 3	+125°C, -55°C	-7.5	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
Rejection Ratio		V+ = +10V, V- = -15V V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	86	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	86	-	dB
		V+ = +15V, V- = -10V V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	86	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Parameters in Table 3

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = 10V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	250	-	kΩ
Input Noise Voltage	E _N	$R_S = 20\Omega,$ $f_O = 1000Hz$	1	+25°C	-	6	nV/√Hz
Input Noise Current	IN	$R_S = 2M\Omega$, $f_O = 1000Hz$	1	+25°C	-	3	pA∕√Hz

Specifications HA-5114/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = 10V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Gain Bandwidth Product	GBWP	$V_O = 200$ mV, $f_O = 30$ kHz	1	+25°C	34	-	MHz
		$V_O = 200$ mV, $f_O = 1$ MHz	1	+25°C	40	-	MHz
Slew Rate	+SR	V _{OUT} = -5V to +5V	1	+25°C	12	-	V/µs
	-SR	$V_{OUT} = +5V \text{ to } -5V$	1	+25°C	12	-	V/µs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	191	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	10	-	V/V
Rise and Fall Time	t _R	V _{OUT} = 0V to +200mV	1, 4	+25°C	-	100	ns
	t _F	V _{OUT} = 0V to -200mV	1, 4	+25°C	-	100	ns
Overshoot	+OS	$V_{OUT} = 0V \text{ to } +200\text{mV}$	1	+25°C	-	40	%
	-OS	$V_{OUT} = 0V \text{ to -} 200\text{mV}$	1	+25°C	-	40	%
Output Resistance	R _{out}	Open Loop	1	+25°C	-	270	Ω
Quiescent Power Consumption	PC	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1, 3	-55°C to +125°C	-	225	mW
Channel Separation	CS	$\begin{aligned} R_S &= 1 k \Omega, \\ A_{VCL} &= 100 \text{V/V}, \\ V_{IN} &= 100 \text{mV}_{PEAK} \text{ at} \\ 10 \text{kHz Referred to} \\ \text{Input} \end{aligned}$	1	+25°C	55	-	dB

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/($2\pi V_{PEAK}$).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).
- 4. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

99.6 x 95.3 x 19 mils \pm 1 mils 2530 x 2420 x 483 μ m \pm 25.4 μ m

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.43 x 10⁵A/cm² at 10mA

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT: 175

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5114/883

HA-5127/883

July 1994

Ultra Low Noise, Precision Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Slew Rate...... 7V/µs (Min)
- Unity Gain Bandwidth 5MHz (Min)
- Low Noise Voltage (at 1kHz) 4.5nV/√Hz (Max)
- Low Offset Voltage......100µV (Max)
- Low Offset Drift With Temperature. . . . 1.8µV/°C (Max)
- High CMRR......100dB (Min)
- High Voltage Gain 700kV/V (Min)

Applications

- · High Speed Signal Conditioners
- · Wide Bandwidth Instrumentation Amplifiers
- · Low Level Transducer Amplifiers
- Fast, Low Level Voltage Comparators
- · Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers

The HA-5127/883 monolithic operational amplifier features an excellent combination of precision DC and wideband high speed characteristics. Utilizing the Harris D.I. technology and advanced processing techniques, this unique design unites low noise precision instrumentation performance with high speed, wideband capability.

This amplifier's impressive list of features include low V_{OS} , wide gain-bandwidth, high open loop gain, and high CMRR. Additionally, this flexible device operates over a wide supply range while consuming only 120mW of power.

Using the HA-5127/883 allows designers to minimize errors while maximizing speed and bandwidth.

This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5127/883's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers, and signal conditioning circuits.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5127/883	-55°C to +125°C	8 Pin Can
HA4-5127/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-5127/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-5127/883

Specifications HA-5127/883

Absolute Maximum Ratings

Thermal Information

Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{\rm J} \le +175^{\rm o}$	С
CerDIP Package		870mW
Ceramic LCC Package		1.54W
Metal Can Package		645mW
Package Power Dissipation Derating Factor A	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	5.4mW/°C
Metal Can Package		6.5mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Recommended Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-100	100	μV
			2, 3	+125°C, -55°C	-300	300	μV
Input Bias Current	I _B	V _{CM} = 0V,	1	+25°C	-	80	nA
		$R_{S} = 10k\Omega, 50\Omega$ $\left(\frac{ + B + - B }{2}\right)$	2, 3	+125°C, -55°C	-	150	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-75	75	nA
		$+R_S = 10k\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-135	135	nA
Common Mode	+CMR	V+ = +4.7V,	1	+25°C	10.3	-	٧
Range		V- = -25.3V	2, 3	+125°C, -55°C	10.3	-	V
	-CMR	V+ = +25.3V,	1	+25°C	-	-10.3	٧
		V- = -4.7V	2, 3	+125°C, -55°C		-10.3	V
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V$ and +10V,	4	+25°C	700	-	kV/V
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	300	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	700	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	300	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +11V$	1	+25°C	100	-	dB
Rejection Ratio		$\Delta V_{CM} = +10V$	2, 3	+125°C, -55°C	100	-	dB
	-CMRR	ΔV _{CM} = -11V	1	+25°C	100	-	dB
		ΔV _{CM} = -10V	2, 3	+125°C, -55°C	100	-	dB

Specifications HA-5127/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

	GROUP A			LIMITS					
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS		
Output Voltage	+V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	11.5		V		
Swing			5, 6	+125°C, -55°C	11.5	-	V		
	-V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	-	-11.5	V		
			5, 6	+125°C, -55°C	-	-11.5	V		
	+V _{OUT2}	$R_L = 600\Omega$	4	+25°C	10	-	V		
	-V _{OUT2}	$R_L = 600\Omega$	4	+25°C	-	-10	V		
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	16.5	-	mA		
	-l _{out}	V _{OUT} = +10V	4	+25°C	-	-16.5	mA		
	+lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	4	mA		
Supply Current		urrent	oly Current		2, 3	+125°C, -55°C	-	4	mA
	-lcc	$V_{OUT} = 0V, I_{OUT} = 0mA$	1	+25°C	-4	-	mA		
			2, 3	+125°C, -55°C	-4		mA		
Power Supply	+PSRR	$\Delta V_{SUP} = 14V$	1	+25°C	86	-	dB		
Rejection Ratio		$\Delta V_{SUP} = 13.5V$	2, 3	+125°C, -55°C	86	-	dB		
	-PSRR	$\Delta V_{SUP} = 14V$	1	+25°C	86	-	dB		
		$\Delta V_{SUP} = 13.5V$	2, 3	+125°C, -55°C	86	-	dB		
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV		
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	mV		
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	mV		
			2, 3	+125°C, -55°C	V _{IO} +1	-	mV		

NOTE

- Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.
- 2. For differential input voltages greater than 0.7V, the input current must be limited to 25mA to protect the back-to-back input diodes.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	$V_{OUT} = -3V \text{ to } +3V$	7	+25°C	7	-	V/µs
	-SR	$V_{OUT} = +3V \text{ to } -3V$	7	+25°C	7	-	V/µs
Rise and Fall Time	t _R	$V_{OUT} = 0 \text{ to } +200\text{mV}$ $10\% \le T_R \le 90\%$	7	+25°C	-	150	ns
	t _F	$V_{OUT} = 0 \text{ to -} 200 \text{mV}$ $10\% \le T_F \le 90\%$	7	+25°C	-	150	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	%
	-OS	V _{OUT} = 0 to -200mV	7	+25°C	-	40	%

Specifications HA-5127/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: V_{SUPPLY} = ±15V, R_{LOAD} = 2kΩ, C_{LOAD} = 50pF, A_V = +1V/V, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Average Offset Voltage Drift	V _{IO} TC	V _{CM} = 0V	1	-55°C to +125°C	-	1.8	μV/°C
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	0.8	-	ΜΩ
Low Frequency Peak-to-Peak Noise	E _{NP-P}	0.1Hz to 10Hz	1	+25°C	-	0.25	μV _{P-P}
Input Noise Voltage Density	E _N	$R_S = 20\Omega$, $f_O = 10Hz$	1	+25°C	-	10.0	nV/√Hz
		$R_S = 20\Omega$, $f_O = 100Hz$	1	+25°C	-	5.6	nV/√Hz
		$R_S = 20\Omega$, $f_O = 1$ kHz	1	+25°C	-	4.5	nV/√Hz
Input Noise Current Density	I _N	$R_S = 2M\Omega$, $f_O = 10Hz$	1	+25°C	-	4.0	pA∕√Hz
		$R_S = 2M\Omega$, $f_O = 100Hz$	1	+25°C	-	2.3	pA∕√Hz
		$R_S = 2M\Omega$, $f_O = 1kHz$	1	+25°C	-	0.6	pA∕√Hz
Unity Gain Bandwidth	UGBW	V _O = 100mV	1	+25°C	5	-	MHz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	111	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	±1	-	V/V
Settling Time	t _S	To 0.1% for a 10V Step	1	+25°C	-	2	μѕ
Output Resistance	R _{OUT}	Open Loop	1	+25°C	-	100	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	120	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on output.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2) (NOTE 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7
Groups C and D Endpoints	1

NOTES:

- 1. PDA applies to Subgroup 1 only.
- 2. The Subgroup assignments of the parameters in these tables were patterned after Mil-M-38510/135, with the exception of $V_{\rm IO}$, which is Subgroups 1, 2, 3.

Die Characteristics

DIE DIMENSIONS:

 $104 \times 65 \times 19 \text{ mils} \pm 1 \text{ mils}$ $2650 \times 1650 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu

Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

 $3.6 \times 10^5 \text{A/cm}^2$

This device meets Glassivation Integrity Test Requirement per MIL-STD-883 Method 2021 and MIL-I-38535 Paragraph 30.5.5.4.

BAL

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 63

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5127/883

-IN +IN OUT

.

HA-5134/883

July 1994

Precision Quad Operational Amplifier

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Offset Voltage (+25°C)......200μV (Max)
- Low Offset Voltage Drift at Temp......2µV/°C (Max)

- Low Noise (f ≥ 100Hz) 10nV/√Hz (Max)
- Wide Bandwidth 4MHz (Typ)
- High Voltage Gain 800kV/V (Min)
- · Dielectric Isolation

Applications

- Instrumentation Amplifiers
- State-Variable Filters
- **Precision Integrators**
- · Threshold Detectors
- · Precision Data Acquisition Systems
- Low-Level Transducer Amplifiers

Description

The HA-5134/883 is a precision quad operational amplifier that is pin compatible with the OP-400, LT1014, OP11, RM4156, and LM148 as well as the HA-4741/883. Each amplifier features guaranteed maximum values for offset voltage of 350uV. offset voltage drift of 2µV/°C (max), and offset current of 75nA over the full military temperature range while CMRR/PSRR is quaranteed greater than 94dB and open loop gain is guaranteed above 500kV/V from -55°C to +125°C. Room temperature specifications exceed these values such as an offset voltage matching specification between channels of 200uV (max) at +25°C.

Precision performance of the HA-5134/883 is enhanced by a noise voltage density of 7nV/√Hz at 1kHz (typ), noise current density of 2pA√Hz at 1kHz and channel separation of 120dB (min). Each of the four unity gain stable amps on the guad are electrically isolated, having only supply lines in common and are fabricated using Dielectric Isolation to insure quality performance in the most demanding applications.

The HA-5134/883 is ideal for compact circuits such as instrumentation amplifiers, state-variable filters, and low level transducer amplifiers. Other applications include precision data acquisition systems, precision integrators, and accurate threshold detectors in designs where board space is a limitation.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-5134/883	-55°C to +125°C	14 Lead CerDIP
HA4-5134/883	-55°C to +125°C	20 Lead Ceramic LCC

Pinouts

Specifications HA-5134/883

Absolute Maximum Ratings	Thermal Information	
Voltage Between V+ and V- Terminals	Thermal Resistance CerDIP Package Ceramic LCC Package Ceramic LCC Package Package Power Dissipation Limit at +75°C for TJ ≤ +175°C CerDIP Package Ceramic LCC Package 1.3. Ceramic LCC Package 1.3. Package Power Dissipation Derating Factor Above +75°C CerDIP Package 1.3.3mW Ceramic LCC Package 1.5.4mW	/W /W 83W 54W //°C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cau of the device at these or any other conditions above those indicated in the opera	, , , , , , , , , , , , , , , , , , , ,	ation

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-200	200	μV
			2, 3	+125°C, -55°C	-350	350	μV
Offset Voltage Match	ΔV _{IO}	V _{IO} (Max) -V _{IO} (Min)	1	+25°C	-	200	μV
			2, 3	+125°C, -55°C	-	350	μV
Input Bias Current	+l _B	$V_{CM} = 0V$,	1	+25°C	-50	50	nA
		$+R_S = 10kΩ$, $-R_S = 50Ω$	2, 3	+125°C, -55°C	-75	75	nA
	-I _B	$V_{CM} = 0V$,	1	+25°C	-50	50	nA
		$+R_S = 50\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-75	75	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-50	50	nA
		$+R_S = 10kΩ,$ $-R_S = 10kΩ$	2, 3	+125°C, -55°C	-75	75	nA
	+CMR	V+ = +5V, V- = -25V	1	+25°C	10	-	٧
Range			2, 3	+125°C, -55°C	10	-	٧
	-CMR	V+ = +25V, V- = -5V	1	+25°C	-	-10	V
			2, 3	+125°C, -55°C	-	-10	V
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V$ and +10V,	4	+25°C	800	-	kV/V
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	500	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	800	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	500	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = 10V$,	1	+25°C	100	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	94	-	dB
	-CMRR	$\Delta V_{CM} = 10V$,	1	+25°C	100	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	94	-	dB
Output Voltage	+V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	12	-	٧
Swing			5, 6	+125°C, -55°C	12	-	V
	-V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	-	-12	٧
			5, 6	+125°C, -55°C	-	-12	V

Specifications HA-5134/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A	ROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	15	-	mA	
			5, 6	+125°C, -55°C	8	-	mA	
	-l _{out}	V _{OUT} = +10V	4	+25°C	-	-15	mA	
			5, 6	+125°C, -55°C	-	-8	mA	
Quiescent Power	+lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	6.8	mA	
Supply Current		2, 3	+125°C, -55°C	-	8	mA		
	-l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	6.8	mA	
			2, 3	+125°C, -55°C	-	8	mA	
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	100	-	dB	
Rejection Ratio		V+ = +20V, V- = -15V V+ = +10V, V- = -15V	2, 3	+125°C, -55°C	94	-	dB	
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	100	-	dB	
		V+ = +15V, V- = -20V V+ = +15V, V- = -10V	2, 3	+125°C, -55°C	94	-	dB	

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50$ pF, $A_{VCL} = +1$ V/V, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -3V to +3V	7	+25°C	0.75	-	V/µs
	-SR	$V_{OUT} = +3V \text{ to } -3V$	7	+25°C	0.75	-	V/µs
Rise and Fall Time	t _R	$V_{OUT} = 0 \text{ to } +200 \text{mV}$ $10\% \le T_{R} \le 90\%$	7	+25°C	-	400	ns
	t _F	$V_{OUT} = 0 \text{ to -200mV}$ $10\% \le T_F \le 90\%$	7	+25°C	-	400	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	%
	-OS	V _{OUT} = 0 to -200mV	7	+25°C	-	40	%

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Average Offset Voltage Drift	V _{IO} TC	V _{CM} = 0V	1	-55°C to +125°C	-	2	μV/°C
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	20	-	МΩ
Low Frequency Peak-to-Peak Noise	E _{NP-P}	0.1Hz to 10Hz	1	+25°C	-	0.25	μV _{P-P}
Input Noise Voltage Density	E _N	$R_S = 20\Omega$, $f_O = 1$ kHz	1	+25°C	-	10	nV/√Hz

Specifications HA-5134/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Noise Current Density	I _N	$R_S = 2M\Omega$, $f_O = 1kHz$	1	+25°C	-	2	pA∕√Hz
Gain Bandwidth Product	GBWP	$V_O = 200 \text{mV},$ $f_O \ge 100 \text{kHz}$	1	+25°C	3	-	MHz
Unity Bandwidth Product	UBWP	V _O = 200mV	1	+25°C	3	-	MHz
Slew Rate	+SR	$V_{OUT} = -3V \text{ to } +3V$	1	+25°C to +125°C	0.75	-	V/µs
	-SR	$V_{OUT} = +3V \text{ to } -3V$	1	-55°C	0.6	-	V/µs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	12	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	+1	-	V/V
Rise and Fall Time	t _R	V _{OUT} = 0V to +200mV	1, 4	-55°C to +125°C	-	400	ns
	t _F	V _{OUT} = 0V to -200mV	1, 4	-55°C to +125°C	-	400	ns
Overshoot	+OS	V _{OUT} = 0V to +200mV	1	-55°C to +125°C	-	40	%
	-OS	V _{OUT} = 0V to -200mV	1	-55°C to +125°C	-	40	%
Output Resistance	Rout	Open Loop	1	+25°C	-	86	Ω
Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1,3	-55°C to +125°C	-	240	mW
Channel Separation (AC)	CS (AC)	$V_{IN} = 1V_{P-P},$ $f_O = 100Hz$	1	+25°C	120	-	dB
		$V_{IN} = 1V_{P-P},$ $f_O = 10kHz$	1	+25°C	120	-	dB
Channel Separation (DC)	CS (DC)	$V_{O} = \pm 10 V (20 V_{P-P}),$ $\Delta V_{IO} \le 20 \mu V$	1	+25°C	120	-	dB

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).
- 4. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)						
Interim Electrical Parameters (Pre Burn-In)	1						
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7						
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7						
Groups C and D Endpoints	1						

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

91 x 114 x 19 mils \pm 1 mils 2300 x 2900 x 483 μ m \pm 25.4 μ m

METALLIZATION:

Type: Al, 1% Cu

Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SIO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

2.5 x 10⁵A/cm²

This device meets Glassivation Integrity Test Requirement per MIL-STD-883 Method 2021 and MIL-I-38535 Paragraph 30.5.5.4.

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT: 160

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5134/883

HA-5135/883

July 1994

Precision Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Offset Drift 0.4μV/°C (Max)
- Low Offset Voltage......75μV (Max)
- High CMRR......106dB (Min)
- High PSRR94dB (Min)
- Low Noise Voltage Density at 1kHz 9nV/√Hz (Max)
- Low Noise Current Density at 1kHz.... 0.4pA/√Hz (Max)

Applications

- · High Gain Instrumentation
- Precision Data Acquisition
- · Precision Integrators
- . Biomedical Amplifiers
- · Precision Threshold Detectors

Description

The HA-5135/883 is a precision operational amplifier manufactured using a combination of key technological advancements to provide outstanding input characteristics.

A high Beta input stage is combined with laser trimming, dielectric isolation, and matching techniques to produce $75\mu V$ (max) input offset voltage and $0.4\mu V/^{o}C$ (max) input offset voltage average drift. Other features enhanced by this process include $9nV/\sqrt{Hz}$ (typ) Input Noise Voltage, 4nA Input Bias Current (max) and 120dB Open Loop Gain (min).

These features coupled with 106dB CMRR and 94dB PSRR make HA-5135/883 an ideal device for precision D.C. instrumentation amplifiers. Excellent input characteristics in conjunction with 0.6MHz (min) bandwidth and 0.5V/ μ s (min) slew rate, makes this amplifier extremely useful for precision integrator and biomedical amplifier designs. These amplifiers are also well suited for precision data acquisition and for accurate threshold detector applications.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE		
HA2-5135/883	-55°C to +125°C	8 Pin Can		
HA7-5135/883	-55°C to +125°C	8 Lead CerDIP		
HA4-5135/883	-55°C to +125°C	20 Lead Ceramic LCC		

Pinouts

HA-5135/883

Specifications HA-5135/883

Absolute Maximum Ratings

About the maximum realings	
Voltage Between V+ and V- Terminals	
Differential Input Voltage (Note 2)7V	
Voltage at Either Input Terminal V+ to V-	
Input Current25mA	
Output Current Full Short Circuit Protection	
Junction Temperature (T _J) +175°C	
Storage Temperature Range65°C to +150°C	
ESD Rating<2000V	

Lead Temperature (Soldering 10s).....+300°C

Thermal Information

Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}$	0
CerDIP Package		870mW
Ceramic LCC Package		1.54W
Metal Can Package		645mW
Package Power Dissipation Derating Factor A	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	5.4mW/°C
Metal Can Package		6.5mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V_{SUPPLY} = ±15V, R_{SOURCE} = 50Ω, R_{LOAD} = 100kΩ, V_{OUT} = 0V, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-75	75	μV
			2, 3	+125°C, -55°C	-130	130	μV
Input Bias Current	I _B	V _{CM} = 0V,	1	+25°C	-4	4	nA
		$R_{S} = 10k\Omega, 50\Omega$ $\left(\frac{\left +1\right B\right + \left -1\right B\right }{2}\right)$	2, 3	+125°C, -55°C	-6	6	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-4	4	nA
		$+R_S = 10k\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-5.5	5.5	nA
Common Mode	+CMR	V+ = +3V,	1	+25°C	12	-	V
Range		V- = -27V	2, 3	+125°C, -55°C	12	-	V
Ī	-CMR	V+ = +27V,	1	+25°C	-	-12	٧
	V- =	V- = -3V	2, 3	+125°C, -55°C	-	-12	٧
Gain	+A _{VOL}	$V_{OUT} = 0V$ and $+10V$,	4	+25°C	120	-	kV/V
	F	$R_L = 2k\Omega$	5, 6	+125°C, -55°C	120	-	kV/V
	-A _{VOL}	$-A_{VOL}$ $V_{OUT} = 0V \text{ and } -10V,$ $R_L = 2k\Omega$	4	+25°C	120	-	kV/V
			5, 6	+125°C, -55°C	120	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	106	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	106	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	106	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	106	-	dB
Output Voltage	+V _{OUT}	$R_L = 600\Omega$	4	+25°C	10	-	٧
Swing			5, 6	+125°C, -55°C	10	-	V
	-V _{OUT}	$R_L = 600\Omega$	4	+25°C	-	-10	٧
			5, 6	+125°C, -55°C	-	-10	٧
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	15	-	mA
	-l _{out}	V _{OUT} = +10V	4	+25°C	-	-15	mA

Specifications HA-5135/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Power	+lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	1.7	mA
Supply Current			2, 3	+125°C, -55°C	-	1.7	mA
	-I _{cc}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-1.7	-	mA
			2, 3	+125°C, -55°C	-1.7	-	mA
Power Supply	Power Supply +PSRR Rejection Ratio	$\Delta V_{SUP} = 10V$,	1	+25°C	94	-	dB
Rejection Ratio		V+ = +5V, V- = -15V, V+ = +15V, V- = -15V	2, 3	+125°C, -55°C	94	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	94	-	dB
		V+ = +15V, V- = -5V, V+ = +15V, V- = -15V	2, 3	+125°C, -55°C	94	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	`-	mV

NOTES:

- Offset adjustment range is [V_{IO} (Measured ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.
- 2. The input stage has series 500Ω resistors along with back to back diodes. This provides large differential input voltage protection for a slight increase in noise voltage.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	V _{OUT} = -3V to +3V, V _{IN} S.R. ≤ 25V/μs	7	+25°C	0.5	-	V/µs
	-SR	V _{OUT} = +3V to -3V, V _{IN} S.R. ≤ 25V/μs	7	+25°C	0.5	-	V/μs

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_V = +1V/V$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Average Offset Voltage Drift	V _{IO} TC	V _{CM} = 0V	1	-55°C to +125°C	-	1.3	μV/°C
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	20	-	МΩ
Average Offset Current Drift	I _{IO} TC	Versus Temperature V _{CM} = 0V	1	-55°C to +125°C	-	40	pA/°C
Average Bias Current Drift	I _B TC	Versus Temperature V _{CM} = 0V	1	-55°C to +125°C	-	40	pA/°C

Specifications HA-5135/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: V_{SUPPLY} = ±15V, R_{LOAD} = 2kΩ, C_{LOAD} = 50pF, A_V = +1V/V, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Noise Voltage Density	E _N	$R_S = 20\Omega$, $f_O = 1$ kHz	1	+25°C	-	11	nV/√Hz
Input Noise Current Density	I _N	$R_S = 2M\Omega$, $f_O = 1kHz$	1	+25°C	-	0.4	pA∕√Hz
Unity Gain Bandwidth	UGBW	$V_{OUT} = \pm 100$ mV, f_O at -3dB	1	+25°C	600	-	kHz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	8	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	+1	-	V/V
Output Resistance	R _{out}	Open Loop	1	+25°C	-	80	Ω
Power Consumption	PC	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1,3	-55°C to +125°C	-	51	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2πV_{PEAK}).
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $72 \times 103 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1840 \times 2620 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SIO2, 5% Phos.) Silox Thickness: $12k\mathring{A} \stackrel{1}{\pm} 2k\mathring{A}$

Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

6.0 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 71

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5135/883

-IN

BAL₂

+IN

٧-

HA-5137/883

July 1994

Ultra Low Noise, Precision Wideband Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Wide Gain Bandwidth (A_V ≥ 5) 60MHz (Min)
- Low Noise (at 1kHz)...... 4.5nV/√Hz (Max)
- Low Offset Voltage......100μV (Max)
- Low Offset Drift With Temperature.... 1.8µV/°C (Max)
- High CMRR......100dB (Min)
- High Voltage Gain 700kV/V (Min)

Applications

- · High Speed Signal Conditioners
- Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- · Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers

Description

The HA-5137/883 monolithic operational amplifier features an excellent combination of precision DC and wideband high speed characteristics. Utilizing the Harris DI technology and advanced processing techniques, this unique design unites low noise precision instrumentation performance with high speed, wideband capability.

This amplifier's impressive list of features include low VOS. wide gain-bandwidth, high open loop gain, and high CMRR. Additionally, this flexible device operates over a wide supply range while consuming only 120mW of power.

Using the HA-5137/883 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than five.

This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5137/ 883's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers, and signal conditioning circuits.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5137/883	-55°C to +125°C	8 Pin Can
HA4-5137/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-5137/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-5137/883

HA-5137/883

(METAL CAN)

Specifications HA-5137/883

Absolute	Maximum	Ratings

Voltage Between V+ and V- Terminals
Input Current.
Lead Temperature (Soldering 10s)+300°C

Thermal Information

	_	
Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	115°C/W	28°C/W
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}$	C
CerDIP Package		870mW
Ceramic LCC Package		1.54W
Metal Can Package		645mW
Package Power Dissipation Derating Factor A	Nbove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	5.4mW/°C
Motal Can Package		6 5mW/PC

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range55°C to +125°C	$V_{INCM} \le 1/2 (V + - V -)$
Operating Supply Voltage	$R_1 \ge 600\Omega$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-100	100	μV
			2, 3	+125°C, -55°C	-300	300	μV
Input Bias Current	I _B	V _{CM} = 0V,	1	+25°C	-	80	nA
		$R_{S} = 10k\Omega, 50\Omega$ $\left(\frac{\left +^{I}B\right + \left -^{I}B\right }{2}\right)$	2, 3	+125°C, -55°C	-	150	nA
Input Offset Current	I _{IO}	$V_{CM} = 0V$,	. 1	+25°C	-75	75	nA
		$+R_S = 10kΩ,$ $-R_S = 10kΩ$	2, 3	+125°C, -55°C	-135	135	nA
Common Mode	+CMR	V+ = +4.7V,	1	+25°C	10.3	-	V
Range		V- = -25.3V	2, 3	+125°C, -55°C	10.3	-	V
	-CMR	V+ = +25.3V, V- = -4.7V	1	+25°C		-10.3	V
	V- =		2, 3	+125°C, -55°C	-	-10.3	V
Large Signal Voltage +/	$+A_{VOL}$ $V_{OUT} = 0V$ and $+10V$,	4	+25°C	700	-	kV/V	
Gain		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	300		kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	700	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	300	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +11V$	1	+25°C	100	-	dB
Rejection Ratio		$\Delta V_{CM} = +10V$	2, 3	+125°C, -55°C	100	-	dB
	-CMRR	ΔV _{CM} = -11V	1	+25°C	100	-	dB
		ΔV _{CM} = -10V	2,3	+125°C, -55°C	100	-	dB
Output Voltage	+V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	11.5	-	V
Swing			5, 6	+125°C, -55°C	11.5	-	V
	-V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	-	-11.5	V
			5, 6	+125°C, -55°C	-	-11.5	V
	+V _{OUT2}	$R_L = 600\Omega$	4	+25°C	10		V
	-V _{OUT2}	$R_L = 600\Omega$	4	+25°C	-	-10	V

Specifications HA-5137/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{OUT}	V _{OUT} = -10V	4	+25°C	16.5	-	mA
	-lout	V _{OUT} = +10V	4	+25°C	-	-16.5	mA
Quiescent Power	+lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	4	mA
Supply Current			2, 3	+125°C, -55°C	-	4	mA
	-lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-4	-	mA
			2, 3	+125°C, -55°C	-4	-	mA
Power Supply		$\Delta V_{SUP} = 14V$,	1	+25°C	86	-	dB
Rejection Ratio		V+ = +4V, V- = -15V, V+ = +18V, V- = -15V	2, 3	+125°C, -55°C	86	-	dB
	-PSRR	$\Delta V_{SUP} = 14V$,	1	+25°C	86	-	dB
		V+ = +15V, V- = -4V, V+ = +15V, V- = -18V	2, 3	+125°C, -55°C	86	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1		mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	mV

NOTES:

- Offset adjustment range is [V_{IO} (Measured ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.
- 2. For differential input voltages greater than 0.7V, the input current must be limited to 25mA to protect the back-to-back input diodes.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +10V/V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	$V_{OUT} = -3V \text{ to } +3V$	7	+25°C	14	-	V/μs
	-SR	$V_{OUT} = +3V \text{ to } -3V$	7	+25°C	14	-	V/µs
Rise and Fall Time	t _R	$V_{OUT} = 0 \text{ to } +200\text{mV}$ $10\% \le T_R \le 90\%$	7	+25°C	-	100	ns
	t _F	$V_{OUT} = 0 \text{ to -200mV}$ 10% $\leq T_F \leq 90\%$	7	+25°C	-	100	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	%
	-OS	V _{OUT} = 0 to -200mV	7	+25°C	-	40	%

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_V = +5V/V$, Unless Otherwise Specified.

					LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Average Offset Voltage Drift	V _{IO} TC	V _{CM} = 0V	1	-55°C to +125°C	-	1.8	μV/°C

Specifications HA-5137/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_V = +5V/V$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	0.8	-	МΩ
Low Frequency Peak-to-Peak Noise	E _{NP-P}	0.1Hz to 10Hz	1	+25°C		0.25	μV _{P-P}
Input Noise Voltage	E _N	$R_S = 20\Omega$, $f_O = 10Hz$	1	+25°C	-	10	nV/√Hz
Density		$R_S = 20\Omega$, $f_O = 100Hz$	1	+25°C	-	5.6	nV/√Hz
		$R_S = 20\Omega$, $f_O = 1$ kHz	1	+25°C	-	4.5	nV/√Hz
Input Noise Current	I _N	$R_S = 2M\Omega$, $f_O = 10Hz$	1	+25°C	-	4.0	pA/√Hz
Density		$R_S = 2M\Omega$, $f_O = 100Hz$	1	+25°C	-	2.3	pA/√Hz
		$R_S = 2M\Omega$, $f_O = 1kHz$	1	+25°C	-	0.6	pA/√Hz
Gain Bandwidth Product	GBWP	$V_0 = 100 \text{mV}, f_0 = 10 \text{kHz}$	1	+25°C	60	-	MHz
		$V_0 = 100 \text{mV}, f_0 = 1 \text{MHz}$	1	+25°C	43	-	MHz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	220	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	±5	-	V/V
Settling Time	ts	To 0.1% for a 10V Step	1	+25°C	-	1.5	μѕ
Output Resistance	R _{OUT}	Open Loop	1	+25°C	-	100	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1,3	-55°C to +125°C	-	120	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on output.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $104.3 \times 65 \times 19 \text{ mils} \pm 1 \text{ mils}$ $2650 \times 1650 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

3.6 x 10⁵A/cm² at 15mA

This device meets Glassivation Integrity Test Requirement per MIL-STD-883 Method 2021 and MIL-I-38535 Paragraph 30.5.5.4.

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 63

PROCESS: Bipolar Dielectric Isolation

HA-5142/883

July 1994

Dual, Ultra Low Power Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Supply Current at V_S = +5V....(+25°C) 160µA (Max)
 (Full) 200µA (Max)
- Wide Supply Voltage Range Single 3V to 30V or
 Dual ±1.5 to ±15V

- 100% Tested at ±15V and +5V, 0V Power Supplies
- Unity Gain Stable
- · Dielectric Isolation

Applications

- · Portable Instruments
- Meter Amplifiers
- · Telephone Headsets
- · Microphone Amplifiers
- Instrumentation
- For Further Design Ideas See Application Note AN544

Description

The HA-5142/883 dual, ultra-low power operational amplifier provides AC and DC performance characteristics similar to, or better than most general purpose amplifiers while only drawing 1/30 of the supply current of most general purpose amplifiers. This amplifier is well suited to applications which require low power dissipation and good electrical characteristics.

The HA-5142/883 provides accurate signal processing by virtue of their low input offset voltage (6mV), low input bias current (100nA), high open loop gain (20kV/V) and low noise (20nV/\Hz). These characteristics coupled with a 1.5V/µs slew rate and a 24kHz bandwidth make the HA-5142/883 ideal for use in low power instrumentation, audio amplifier and active filter designs.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA7-5142/883	-55°C to +125°C	8 Lead CerDIP
HA2-5142/883	-55°C to +125°C	8 Pin Can
HA4-5142/883	-55°C to +125°C	20 Lead Ceramic LCC

Pinouts

HA-5142/883

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures.

Copyright © Harris Corporation 1994

3-149

Spec Number 511035-883 File Number 3732.1

Specifications HA-5142/883

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals
Differential Input Voltage7V
Voltage at Either Input Terminal V+ to V-
Output Current Full Short Circuit Protection
Output Current Duration Indefinite
One Amplifier Shorted to Ground
Junction Temperature (T _J) +175°C
Storage Temperature Range65°C to +150°C
ESD Rating<2000V
Lead Temperature (Soldering 10s)+300°C

Thermal Information

Thermal Resistance	θ _{JA}	θ _{JC} 28°C/W
CerDIP Package	115°C/W	
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{J} \le +175^{\circ}$	0
CerDIP Package		870mW
Ceramic LCC Package		1.54W
Metal Can Package		645mW
Package Power Dissipation Derating Factor A	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	5.4mW/°C
Metal Can Package		6.5mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range 55°C to +1 Operating Supply Voltage	
Operating copply voltage	TION III E OOKSE
or 3V to	30V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified. Subscript 1 Refers to Supply Voltages (V±) = ±15V, Subscript 2 Refers to V+ = 5.0, V- = 0V

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO1}	V _{CM} = 0V	1	+25°C	-6	6	μV
,			2, 3	+125°C, -55°C	-8	8	μV
1	V _{IO2}	V _{CM} = 0V,	1	+25°C	-6	6	μV
		V _{OUT} = 1.4V	2, 3	+125°C, -55°C	-8	8	μV
Input Bias Current	+l _{B1}	V _{CM} = 0V,	1	+25°C	-100	100	nA
		$+R_S = 10k\Omega$, $-R_S = 100\Omega$	2, 3	+125°C, -55°C	-125	125	nA
	-I _{B1}	V _{CM} = 0V,	1	+25°C	-100	100	nA
		$+R_S = 100\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-125	125	nA
	+l _{B2}		1	+25°C	-100	100	nA
-I _{B2}	$+R_S = 10kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-125	125	nA	
	$V_{CM} = 0V, V_{OUT} = 1.4V,$ $+R_S = 100\Omega,$ $-R_S = 10k\Omega$	1	+25°C	-100	100	nA	
		2, 3	+125°C, -55°C	-125	125	nA	
Input Offset Current	I ₁₀₁	$\begin{split} I_{IO1} & V_{CM} = 0V, \\ +R_S &= 10k\Omega, \\ -R_S &= 10k\Omega \end{split}$	1	+25°C	-10	10	nA
1			2, 3	+125°C, -55°C	-20	20	nA
	I ₁₀₂	$V_{CM} = 0V, V_{OUT} = 1.4V$	1	+25°C	-10	10	nA
		$+R_S = 10k\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-20	20	nA
Common Mode	+CMR ₁	V+ = +5V,	1	+25°C	10	-	V
Range		V- = -25V	2, 3	+125°C, -55°C	10	-	٧
	-CMR ₁	V+ = +25V,	1	+25°C	-	-10	V
		V- = -5V	2, 3	+125°C, -55°C	-	-10	V
	+CMR ₂	V+ = +5V to +2V,	1	+25°C	3	-	V
		V- = 0V to -3V, V _{OUT} = 1.4V to -1.6V	2, 3	+125°C, -55°C	3	-	٧

Specifications HA-5142/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified. Subscript 1 Refers to Supply Voltages (V±) = ±15V, Subscript 2 Refers to V+ = 5.0, V- = 0V

			GROUP A		LIMITS			
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
Large Signal Voltage +A _{VOL1}	$V_{OUT} = 0V$ and $+10V$,	4	+25°C	20	-	kV/V		
Gain		$R_L = 50k\Omega$	5, 6	+125°C, -55°C	15	-	kV/V	
	-A _{VOL1}	V _{OUT} = 0V and -10V,	4	+25°C	20	-	kV/V	
		$R_L = 50k\Omega$	5, 6	+125°C, -55°C	15	-	kV/V	
	+A _{VOL2}	$V_{OUT} = 1.4V \text{ and } 2.5V,$	4	+25°C	20	-	kV/V	
		$R_L = 50k\Omega$	5, 6	+125°C, -55°C	15	-	kV/V	
Common Mode	+CMRR ₁	$\Delta V_{CM} = 10V$,	1	+25°C	77	-	dB	
Rejection Ratio		V+ = 5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	77	-	dB	
	-CMRR ₁	$\Delta V_{CM} = 10V$,	1	+25°C	77	-	dB	
		V+ = 25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	77	-	dB	
	+CMRR ₂	$\Delta V_{CM} = 0V \text{ to } 3V,$	1	+25°C	77	-	dB	
		V+ = 2V, V- = -3V, V _{OUT} = -1.6V	2, 3	+125°C, -55°C	77	-	dB	
Output Voltage	+V _{OUT1}	$R_L = 50k\Omega$	1	+25°C	10	-	V	
Swing			2, 3	+125°C, -55°C	10	-	V	
	-V _{OUT1}	$R_L = 50k\Omega$	1	+25°C	-	-10	٧	
+V _{OUT2}			2, 3	+125°C, -55°C	-	-10	٧	
	+V _{OUT2}	$R_L = 50k\Omega$ Terminated at 2.5V	1	+25°C	3.8	-	٧	
			2, 3	+125°C, -55°C	3.5	-	V	
	$R_L = 50k\Omega$	1	+25°C	-	1	V		
		Terminated at 2.5V	2, 3	+125°C, -55°C	-	1.2	V	
Quiescent Power	+l _{CC1}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	300	μА	
Supply Current (Both Amplifiers)				2, 3	+125°C, -55°C	-	400	μА
, ,	-l _{CC1}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-300	-	μА	
			2, 3	+125°C, -55°C	-400	-	μА	
	-I _{CC2}	V _{OUT} = 1.4V, I _{OUT} = 0mA	1	+25°C	-	160	μА	
			2, 3	+125°C, -55°C	-	200	μА	
Power Supply	+PSRR ₁	$\Delta V_{SUP} = +10V$	1	+25°C	77	-	dB	
Rejection Ratio		V+ = +10V, V- = -15V, V+ = +20V, V- = -15V	2, 3	+125°C, -55°C	77	-	dB	
	-PSRR ₁	$\Delta V_{SUP} = +10V$,	1	+25°C	77	-	dB	
		V+ = +15V, V- = -10V, V+ = +15V, V- = -20V	2, 3	+125°C, -55°C	77	-	dB	
	-PSRR ₂	$\Delta V_{SUP} = +10V$,	1	+25°C	77	-	dB	
		V+ = +5V, V- = 0V, V+ = +15V, V- = 0V	2, 3	+125°C, -55°C	77	-	dB	
Channel Separation	CS	$R_L = 50k\Omega$	1	+25°C	80	-	dB	
			2, 3	+125°C, -55°C	80	-	dB	

Specifications HA-5142/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 50k\Omega$, $C_{LOAD} = 50pF$, $V_{OUT} = 0V$, $A_V = 1V/V$, Unless Otherwise Specified. Subscript 1 Refers to Supply Voltages (V±) = ±15V; Subscript 2 Refers to V+ = 5.0V, V- = 0.0V.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR ₁	V _{OUT} = -3V to +3V, V _{IN} S.R. ≤ 10V/μs	4	+25°C	0.8	-	V/µs
	-SR ₁	V _{OUT} = +3V to -3V, V _{IN} S.R. ≤ 10V/μs	4	+25°C	0.8	-	V/µs
	+SR ₂	V _{OUT} = 0V to +3V, V _{IN} S.R. ≤ 10V/μs	4	+25°C	0.8	-	V/µs
	-SR ₂	V _{OUT} = +3V to 0V, V _{IN} S.R. ≤ 10V/μs	4	+25°C	0.8	-	V/µs

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 50k\Omega$, $C_{LOAD} = 50pF$, $A_V = 1V/V$, Unless Otherwise Specified. Subscript 1 Refers to Supply Voltages (V±) = $\pm 15V$; Subscript 2 Refers to V+ = 5.0V, V- = 0.0V.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Full Power Bandwidth	FPBW ₁	V _{PEAK} = 10V	1, 2	+25°C	12.7	-	kHz
	FPBW ₂	V _{PEAK} = 1.1V, V _{REF} = 2.5V	1, 2	+25°C	115.8	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 50k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	1	-	V/V
Quiescent Power	PC ₁	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1,3	-55°C to +125°C	-	12	mW
Consumption	PC ₂	V _{OUT} = 1.4V, I _{OUT} = 0mA	1,3	-55°C to +125°C		1	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $104 \times 55 \times 19 \text{ mils} \pm 1 \text{ mils}$ $2650 \times 1400 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SIO2, 5% Phos.) Silox Thickness: 12kÅ ‡ 2kÅ

Silox Thickness: 12kA ± 2kA Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

0.6 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 72

PROCESS: Bipolar/JFET Dielectric Isolation

Metallization Mask Layout

HA-5142/883

HA-5147/883

Ultra Low Noise, Precision, High Slew Rate Wideband Operational Amplifier

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Slew Rate...... 28V/µs (Min)
- Wide Gain Bandwidth (A_V ≥ 10) 100MHz (Min)
- Low Noise (at 1kHz)..... 4.5nV/√Hz (Max)
- Low Offset Voltage......100μV (Max)
- Low Offset Drift With Temperature. . . . 1.8µV/°C (Max)
- High Voltage Gain 700kV/V (Min)

Applications

- · High Speed Signal Conditioners
- . Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- · Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- · Pulse/RF Amplifiers

Description

The HA-5147/883 monolithic operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Harris DI technology and advanced processing techniques, this unique design unites low noise precision instrumentation performance with high speed wideband capability.

This amplifier's impressive list of features include low Vos. wide gain-bandwidth, high open loop gain, and high CMRR. Additionally, this flexible device operates over a wide supply range while consuming only 120mW of power.

Using the HA-5147/883 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than ten.

This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5147/883's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers, and signal conditioning circuits.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5147/883	-55°C to +125°C	8 Pin Can
HA4-5147/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-5147/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

HA-5147/883

Specifications HA-5147/883

Absolute Maximum Hatings	
Voltage Between V+ and V- Terminals	٧
Differential Input Voltage (Note 2)0.7	٧
Voltage at Either Input Terminal V+ to '	V-
Input Current25m	Α
Differential Output Current Full Short Circuit Protection	n
Junction Temperature (T _J) +175°	C
Storage Temperature Range65°C to +150°	
ESD Rating<2000	
Lead Temperature (Soldering 10s)+300°	C

Thermal Information

Thermal Resistance CerDIP Package	θ _{JA} 115°C/W	θ _{JC}				
Ceramic LCC Package	65°C/W	15°C/W				
Metal Can Package	155°C/W	67°C/W				
Package Power Dissipation Limit at +75°C for	$T_{\rm J} \le +175^{\circ}$	C '				
CerDIP Package		870mW				
Ceramic LCC Package		1.54W				
Metal Can Package		645mW				
Package Power Dissipation Derating Factor Above +75°C						
CerDIP Package		8.7mW/°C				
Ceramic LCC Package	1	5.4mW/°C				

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-100	100	μV
			2, 3	+125°C, -55°C	-300	300	μV
Input Bias Current	I _B	$V_{CM} = 0V,$ $R_{S} = 10k\Omega, 50\Omega$ $\left(\frac{\left +^{I}B\right + \left -^{I}B\right }{2}\right)$	- 1	+25°C	-	80	nA
			2, 3	+125°C, -55°C	-	150	nA
Input Offset Current	I _{IO}	$V_{CM} = 0V$, + $R_S = 10k\Omega$, - $R_S = 10k\Omega$	1	+25°C	-75	75	nA
			2, 3	+125°C, -55°C	-135	135	nA
Common Mode	+CMR	V+ = +4.7V, V- = -25.3V	1	+25°C	10.3	-	V
Range			2, 3	+125°C, -55°C	10.3	-	V
	-CMR	V+ = +25.3V, V- = -4.7V	1	+25°C	-	-10.3	V
			2, 3	+125°C, -55°C	-	-10.3	V
Large Signal Voltage	+A _{VOL}	$V_{OUT} = 0V$ and +10V, $R_L = 2k\Omega$	4	+25°C	700	-	kV/V
Gain			5, 6	+125°C, -55°C	300	-	kV/V
	-A _{VOL}	V _{OUT} = 0V and -10V,	4	+25°C	700	-	kV/V
		$R_L = 2k\Omega$	5, 6	+125°C, -55°C	300	-	kV/V
Common Mode	+CMRR	$\Delta V_{CM} = +11V$	1	+25°C	100	-	dB
Rejection Ratio		$\Delta V_{CM} = +10V$	2, 3	+125°C, -55°C	100	-	dB
	-CMRR	ΔV _{CM} = -11V	1	+25°C	100	-	dB
		$\Delta V_{CM} = -10V$	2, 3	+125°C, -55°C	100	-	dB
Output Voltage	+V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	11.5	-	٧
Swing			5, 6	+125°C, -55°C	11.5	-	٧
	-V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	-	-11.5	٧
			5, 6	+125°C, -55°C	-	-11.5	V
	+V _{OUT2}	$R_L = 600\Omega$	4	+25°C	10	-	V
	-V _{OUT2}	$R_L = 600\Omega$	4	+25°C	-	-10	V

Specifications HA-5147/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	16.5	-	mA
	-lout	V _{OUT} = +10V	4	+25°C	-	-16.5	mA
Quiescent Power	+lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	4	mA
Supply Current			2, 3	+125°C, -55°C	-	4	mA
	-I _{CC}	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-4	-	mA
			2, 3	+125°C, -55°C	-4	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = +14V$	1	+25°C	86	-	dB
Rejection Ratio		$\Delta V_{SUP} = +13.5V$	2, 3	+125°C, -55°C	86	-	dB
	-PSRR	$\Delta V_{SUP} = +14V$	1	+25°C	86	-	dB
		$\Delta V_{SUP} = +13.5V$	2, 3	+125°C, -55°C	86	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	mV

NOTES:

- Offset adjustment range is [V_{IO} (Measured ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.
- 2. For differential input voltages greater than 0.7V, the input current must be limited to 25mA to protect the back-to-back input diodes.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +10V/V$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	$V_{OUT} = -3V \text{ to } +3V$	7	+25°C	28	-	V/µs
	-SR	$V_{OUT} = +3V \text{ to } -3V$	7	+25°C	28	-	V/µs
Rise and Fall Time	t _R	$V_{OUT} = 0 \text{ to } +200 \text{mV}$ $10\% \le T_{R} \le 90\%$	7	+25°C	-	50	ns
	t _F	$V_{OUT} = 0 \text{ to } -200 \text{mV}$ $10\% \le T_F \le 90\%$	7	+25°C	-	50	ns
Overshoot	+OS	V _{OUT} = 0 to +200mV	7	+25°C	-	40	%
	-os	V _{OUT} = 0 to -200mV	7	+25°C	-	40	%

Specifications HA-5147/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: V_{SUPPLY} = ±15V, R_{LOAD} = 2kΩ, C_{LOAD} = 50pF, A_V = +10V/V, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Average Offset Voltage Drift	V _{IO} TC	V _{CM} = 0V	1	-55°C to +125°C	-	1.8	μV/°C
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	0.8	-	MΩ
Low Frequency Peak-to-Peak Noise	E _{NP-P}	0.1Hz to 10Hz	1	+25°C	-	0.25	μV _{P-P}
Input Noise Voltage	E _N	$R_S = 20\Omega$, $f_O = 10Hz$	1	+25°C	-	10	nV/√Hz
Density		$R_S = 20\Omega$, $f_O = 100Hz$	1	+25°C	-	5.6	nV/√Hz
		$R_S = 20\Omega$, $f_O = 1$ kHz	1	+25°C	-	4.5	nV/√Hz
Input Noise Current	I _N	$R_S = 2M\Omega$, $f_O = 10Hz$	1	+25°C	-	4.0	pA∕√Hz
Density		$R_S = 2M\Omega$, $f_O = 100Hz$	1	+25°C	-	2.3	pA∕√Hz
		$R_S = 2M\Omega$, $f_O = 1kHz$	1	+25°C	-	0.6	pA∕√Hz
Gain Bandwidth Product	GBWP	$V_0 = 100 \text{mV}, f_0 = 10 \text{kHz}$	1	+25°C	120	-	MHz
		$V_0 = 100 \text{mV}, f_0 = 1 \text{MHz}$	1	+25°C	100	-	MHz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	+25°C	445	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	±10	-	V/V
Settling Time	t _S	To 0.1% for a 10V Step	1	+25°C	-	600	μѕ
Output Resistance	R _{OUT}	Open Loop	1	+25°C	-	100	Ω
Quiescent Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	120	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/($2\pi V_{PEAK}$).
- 3. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on output.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)			
Interim Electrical Parameters (Pre Burn-In)	1			
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7			
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7			
Groups C and D Endpoints	1			

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $104.3 \times 65 \times 19 \text{ mils} \pm 1 \text{ mils}$ $2650 \times 1650 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

3.6 x 10⁵A/cm² at 15mA

This device meets Glassivation Integrity Test Requirement per MIL-STD-883 Method 2021 and MIL-I-38535 Paragraph 30.5.5.4.

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 63

PROCESS: Bipolar Dielectric Isolation

HA-5177/883

July 1994

Ultra Low Offset Voltage Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Offset Voltage.................60μV (Max) 10μV (Typ)
- Low Offset Voltage Drift 0.6 μV/°C (Max) 0.1μV/°C (Typ)
- 150dB (Typ)
- High CMRR......110dB (Min) 140dB (Tvp)
- High PSRR110dB (Min) 135dB (Typ)
- 9nV/√Hz (Typ)
- Low Power Consumption 51mW (Max)
- Wide Gain Bandwidth Product 2MHz (Min)
- . Unity Gain Stable

Applications

- High Gain Instrumentation Amplifiers
- · Precision Control Systems
- · Precision Integrators
- High Resolution Data Converters
- · Precision Threshold Detectors
- Low Level Transducer Amplifiers

Description

The HA-5177/883 is a monolithic, all bipolar, precision operational amplifier, utilizing Harris Dielectric Isolation and advance processing techniques. This design features a combination of precision input characteristics, wide gain bandwidth (2MHz) and high speed (0.5V/µs min) and is an improved version of the HA-5135/883.

The HA-5177/883 uses advanced matching techniques and laser trimming to produce low offset voltage (10μV typ, 60μV max) and low offset voltage drift (0.1μV/°C typ, 0.6μV/°C max). This design also features low voltage noise (9nV/√Hz typ), Low current noise (0.32pA/\(\overline{Hz}\) typ), nanoamp input currents, and 126dB minimum gain.

These outstanding features along with high CMRR (140dB typ, 110dB min) and high PSRR (135dB typ, 110dB min) make this unity gain stable amplifier ideal for high resolution data acquisition systems, precision integrators, and low level transducer amplifiers.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5177/883	-55°C to +125°C	8 Pin Can
HA7-5177/883	-55°C to +125°C	8 Lead CerDIP
HA4-5177/883	-55°C to +125°C	20 Lead Ceramic LCC

Pinouts

HA-5177/883

HA-5177/883

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright © Harris Corporation 1994

Spec Number 511041-883 File Number 3733.1

Specifications HA-5177/883

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals
Differential Input Voltage (Note 1)
Voltage at Either Input Terminal V+ to V
Input Current25m
Output Current Full Short Circuit Protection
Junction Temperature (T _J) +175°
Storage Temperature Range65°C to +150°
ESD Rating<2000
Lead Temperature (Soldering 10s) +300°

Thermal Information

Thermal Resistance CerDIP Package	θ _{JA} 115°C/W	θ _{JC}
Ceramic LCC Package	65°C/W	15°C/W
Metal Can Package	155°C/W	67°C/W
Package Power Dissipation Limit at +75°C for	$T_{\rm J} \le +175^{\circ}$	0
CerDIP Package		870mW
Ceramic LCC Package		
Metal Can Package		645mW
Package Power Dissipation Derating Factor A	bove +75°C	
CerDIP Package		8.7mW/°C
Ceramic LCC Package	1	5.4mW/°C
Motal Can Package		6 5mW/00

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-60	60	μV
			2, 3	+125°C, -55°C	-100	100	μV
Input Bias Current	I _B	$V_{CM} = 0V$,	1	+25°C	-6	6	nA
		$R_{S} = 10k\Omega, 50\Omega$ $\left(\frac{\left +I_{B}\right + \left -I_{B}\right }{2}\right)$	2, 3	+125°C, -55°C	-8	8	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-6	6	nA
		$+R_S = 10k\Omega$, $-R_S = 10k\Omega$	2, 3	+125°C, -55°C	-8	8	nA
Common Mode	+CMR	V+ = +3V, V- = -27V	1	+25°C	12	-	V
Range			2, 3	+125°C, -55°C	12	-	V
	-CMR	V+ = +27V, V- = -3V	1	+25°C	-	-12	V
			2, 3	+125°C, -55°C	-	-12	V
Large Signal Voltage +A _{VOL} Gain -A _{VOL}	+A _{VOL}	$V_{OUT} = 0V \text{ and } +10V,$ $R_L = 2k\Omega$	4	+25°C	126	-	dB
			5, 6	+125°C, -55°C	120	-	dB
		$V_{OUT} = 0V$ and -10V, $R_L = 2k\Omega$	4	+25°C	126	-	dB
			5, 6	+125°C, -55°C	120	-	dB
Common Mode	+CMRR	$\Delta V_{CM} = 10V$,	1	+25°C	116	-	dB
Rejection Ratio		V+ = +5V, V- = - 25V, V _{OUT} = -10	2, 3	+125°C, -55°C	110	-	dB
	-CMRR	$\Delta V_{CM} = 10V$,	1	+25°C	116	-	dB
		V+ = +25V, V- = - 5V, V _{OUT} = +10	2, 3	+125°C, -55°C	110	-	dB
Output Voltage	+V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	12	-	V
Swing			5, 6	+125°C, -55°C	12	-	V
	-V _{OUT1}	$R_L = 2k\Omega$	4	+25°C	-	-12	V
			5, 6	+125°C, -55°C	-	-12	V
	+V _{OUT2}	$R_L = 600\Omega$	4	+25°C	10	-	V
	-V _{OUT2}	$R_L = 600\Omega$	4	+25°C	-	-10	V

Specifications HA-5177/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 100k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{out}	V _{OUT} = -10V	4	+25°C	15	-	mA
			5, 6	+125°C, -55°C	15	-	mA
	-lout	V _{OUT} = +10V	4	+25°C	-	-15	mA
			5, 6	+125°C, -55°C	-	-15	mA
Quiescent Power	+lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	1.7	mA
Supply Current			2, 3	+125°C, -55°C	-	1.7	mA
	-lcc	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1	+25°C	-1.7	-	mA
		2, 3	+125°C, -55°C	-1.7	-	mA	
Power Supply		ΔV _{SUP} = 15V, V+ = +5V, V- = - 15V, V+ = +20V, V- = - 15V	1	+25°C	110	-	dB
Rejection Ratio			2, 3	+125°C, -55°C	110	-	dB
	-PSRR	$\Delta V_{SUP} = 15V$,	1	+25°C	110	-	dB
		V+ = +15V, V- = - 5V, V+ = +15V, V- = - 20V	2, 3	+125°C, -55°C	110	-	dB
Offset Voltage	+V _{IO} Adj	Note 2	1	+25°C	0.3	-	mV
Adjustment			2, 3	+125°C, -55°C	0.3	-	mV
	-V _{IO} Adj	Note 2	1	+25°C	-	-0.3	mV
			2, 3	+125°C, -55°C	-	-0.3	mV

NOTES:

- The input stage has series 500Ω resistors along with back to back diodes. This provides large differential input voltage protection for a slight increase in noise voltage.
- 2. This test is for functionality only to assure adjustment through 0V.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V_{SUPPLY} = ±15V, R_{SOURCE} = 50Ω, R_{LOAD} = 2kΩ, C_{LOAD} = 50pF, A_{VCL} = +1V/V, Unless Otherwise Specified.

			GROUP A		LIMITS			
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
Slew Rate	+SR	$V_{OUT} = -3V \text{ to } +3V,$ $V_{IN} \text{ S.R.} \le 25V/\mu\text{s}$	7	+25°C	0.5	-	V/µs	
	-SR	V_{OUT} = +3V to -3V, V_{IN} S.R. \leq 25V/ μ s	7	+25°C	0.5	-	V/µs	
Rise and Fall Time	t _R	$V_{OUT} = 0 \text{ to } +200 \text{mV}$ $10\% \le T_R \le 90\%$	7	+25°C	-	420	ns	
	t _F	$V_{OUT} = 0 \text{ to } -200 \text{mV}$ $10\% \le T_F \le 90\%$	7	+25°C	-	420	ns	
Overshoot	+OS	$V_{OUT} = 0$ to +200mV	7	+25°C	-	40	%	
	-OS	V _{OUT} = 0 to -200mV	7	+25°C	-	40	%	

Specifications HA-5177/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_V = +1V/V$, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Average Offset Voltage Drift	V _{IO} TC	V _{CM} = 0V	1	-55°C to +125°C	-	0.6	μV/°C
Average Offset Current Drift	I _{IO} TC	Versus Temperature	1	-55°C to +125°C	-	40	pA/°C
Average Bias Current Drift	I _R TC	Versus Temperature	1	-55°C to +125°C	-	40	pA/°C
Differential Input Resistance	R _{IN}	V _{CM} = 0V	1	+25°C	20	-	МΩ
Low Frequency Peak-to-Peak Noise Voltage	E _{NP-P}	0.1Hz to 10Hz	1	+25°C	-	0.6	μV _{P-P}
Low Frequency Peak-to-Peak Noise Current	I _{NP-P}	0.1Hz to 10Hz	1	+25°C	-	45	pA _{P-P}
Input Noise Voltage	E _N	$R_S = 20\Omega$, $f_O = 10Hz$	1	+25°C	-	18	nV/√Hz
Density		$R_S = 20\Omega$, $f_O = 100Hz$	1	+25°C	-	13	nV/√Hz
		$R_S = 20\Omega$, $f_O = 1$ kHz	1	+25°C	-	11	nV/√Hz
Input Noise Current	I _N	$R_S = 2M\Omega$, $f_O = 10Hz$	1	+25°C	-	4	pA∕√Hz
Density		$R_S = 2M\Omega$, $f_O = 100Hz$	1	+25°C	-	2.3	pA/√Hz
		$R_S = 2M\Omega$, $f_O = 1kHz$	1	+25°C	-	1	pA/√Hz
Gain Bandwidth Product	GBWP	$V_O = 100 \text{mV},$ $1 \text{Hz} \le f_O \le 100 \text{kHz}$	1	+25°C	2	-	MHz
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1,2	+25°C	8	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 2k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	+1	-	V/V
Settling Time	t _S	To 0.1% for a 10V Step	1	+25°C	-	15	μѕ
Output Resistance	R _{out}	Open Loop	1	+25°C	-	70	Ω
Power Consumption	PC	$V_{OUT} = 0V$, $I_{OUT} = 0mA$	1, 3	-55°C to +125°C	-	51	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.)

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)			
Interim Electrical Parameters (Pre Burn-In)	1			
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6, 7			
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7			
Groups C and D Endpoints	1			

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

72 x 103 x 19 mils \pm 1 mils 1840 x 2620 x 483 μ m \pm 25.4 μ m

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SIO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

6.0 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 71

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5177/883

BAL₂

Spec Number 511041-883

HA-5221/883

July 1994

Low Noise, Wideband, Precision Operational Amplifier

Features

•	This Circuit is Processed in Accordance to MIL-STD-
	883 and is Fully Conformant Under the Provisions of
	Paragraph 1.2.1.

Gain Bandwidth Product	 I OUMITZ (MIII)
Unity Gain Bandwidth	 30MHz (Min) 40MHz (Typ)

37V/µs (Typ)	•	High Slew	Rate.								-					25V/μs (Min 37V/μs (Typ	
--------------	---	-----------	-------	--	--	--	--	--	--	--	---	--	--	--	--	----------------------------	--

•	Low Offset voltage	0.75mv (Max)
		0.30mV (Typ)
	High Open Loop Gain	106dB (Min)

Applications

- · Precision Test Systems
- Active Filtering
- · Small Signal Video
- · Accurate Signal Processing
- . RF Signal Conditioning

Description

The HA-5221/883 is a high performance, dielectrically isolated, monolithic op amp, featuring precision DC characteristics while providing excellent AC characteristics. Designed for audio, video, and other demanding applications, noise (3.6nV/ $\sqrt{\text{Hz}}$ at 1kHz typ), total harmonic distortion (<0.005% typ), and DC errors are kept to a minimum.

The precision performance is shown by low offset voltage (0.3mV typ), low bias currents (40nA typ), low offset currents (15nA typ), and high open loop gain (128dB typ). The combination of these excellent DC characteristics with fast settling time (0.4 μ s typ) make the HA-5221/883 ideally suited for precision signal conditioning.

The unique design of the HA-5221/883 gives this device outstanding AC characteristics, including high unity gain bandwidth (40MHz typ) and high slew rate (37V/ μ s typ), not normally associated with precision op amps. Other key specifications include high CMRR (95dB typ) and high PSRR (100dB typ). The combination of these specifications will allow the HA-5221/883 to be used in RF signal conditioning as well as video amplifiers.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5221/883	-55°C to +125°C	8 Pin Can
HA4-5221/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-5221/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

Specifications HA-5221/883

Absolute Maximum Ratings	Thermal Information	
Voltage Between V+ and V- Terminals 36V Differential Input Voltage. 5V Voltage at Either Input Terminal V+ to V- Peak Output Current (Pulsed at 1ms, 10% Duty Cycle) 100mA Continuous Output Current. Short Circuit Protected Junction Temperature +175°C Storage Temperature Range -65°C to +150°C ESD Rating. <2000V	Thermal Resistance	1.56W 0.68W 9.1mW/°C 5.6mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-0.75	0.75	mV
			2, 3	+125°C, -55°C	-1.5	1.5	mV
Input Bias Current	+l _B	V _{CM} = 0V,	1	+25°C	-80	80	nA
		$+R_S = 100.1kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-200	200	nA
	-I _B	$V_{CM} = 0V, +R_{S} = 100\Omega,$	1	+25°C	-80	80	nA
		$-R_S = 100.1k\Omega$	2, 3	+125°C, -55°C	-200	200	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-50	50	nA
		$+R_S = 100.1kΩ,$ $-R_S = 100.1kΩ$	2, 3	+125°C, -55°C	-150	150	nA
Common Mode Range	+CMR	V+ = +3V, V- = -27V	1	+25°C	12	-	٧
			2, 3	+125°C, -55°C	12		V
	-CMR	V+ = +27V, V- = -3V	1	+25°C	-	-12	٧
			2, 3	+125°C, -55°C	-	-12	٧
Large Signal Voltage	+A _{VOL}	V _{OUT} = 0V and +10V	4	+25°C	106	-	dB
Gain			5, 6	+125°C, -55°C	100	-	dB
	-A _{VOL}	V _{OUT} = 0V and -10V	4	+25°C	106	-	dB
			5, 6	+125°C, -55°C	100	-	dB
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	88	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	86	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	88	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	86	-	dB
Output Voltage Swing	+V _{OUT}	$R_L = 1k\Omega$	4	+25°C	12.0	-	٧
			5, 6	+125°C, -55°C	11.5	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	4	+25°C	-	-12.0	٧
			5, 6	+125°C, -55°C	-	-11.5	V

Spec Number 511061-883

Specifications HA-5221/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{out}	$V_{OUT} = +10V$, $R_L = 1k\Omega$	4	+25°C	30	-	mA
			5, 6	+125°C, -55°C	30	-	mA
	-l _{out}	$V_{OUT} = -10V$, $R_L = 1k\Omega$	4	+25°C	-	-30	mA
			5, 6	+125°C, -55°C	-	-30	mA
Quiescent Power Supply	+l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	10	mA
Current			2, 3	+125°C, -55°C	-	11	mA
	-l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-10	-	mA
			2, 3	+125°C, -55°C	-11	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$	1	+25°C	90	-	dB
Rejection Ratio		V+ = +20V, V- = -15V, V+ = +10V, V- = -15V	2, 3	+125°C, -55°C	86	-	dB
	-PSRR	30F,	1	+25°C	90	-	dB
		V+ = +15V, V- = -20V, V+ = +15V, V- = -10V	2, 3	+125°C, -55°C	86	-	dB
Offset Voltage	+V _{IO} Adj	Note 1	1	+25°C	V _{IO} -1	-	mV
Adjustment			2, 3	+125°C, -55°C	V _{IO} -1	-	mV
	-V _{IO} Adj	Note 1	1	+25°C	V _{IO} +1	-	mV
			2, 3	+125°C, -55°C	V _{IO} +1	-	mV

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC specifications in Table 3.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

					LIM	ITS										
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS									
Input Noise Voltage	E _N	$R_S = 0\Omega$, $f_O = 10Hz$	1,5	+25°C	-	24.0	nV/√Hz									
Density		$R_S = 0\Omega$, $f_O = 100Hz$	1, 5	+25°C	-	8.0	nV/√Hz									
		$R_S = 0\Omega$, $f_O = 1kHz$	1, 5	+25°C	-	5.8	nV/√Hz									
Input Noise Current	I _N	$R_S = 500$ kΩ, $f_O = 10$ Hz	1, 5	+25°C	-	11.5	pA∕√Hz									
Density											$R_S = 500$ kΩ, $f_O = 100$ Hz	1, 5	+25°C	- 1	6.0	pA∕√Hz
		$R_S = 500$ kΩ, $f_O = 1$ kHz	1, 5	+25°C	-	2.0	pA√Hz									
Gain Bandwidth Product	GBWP	$V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	100	-	MHz									
		f _O = 100kHz		-55°C to +125°C	90	-	MHz									
Unity Gain Bandwidth	UGBW	V _{OUT} = 200mV	1	+25°C	30		MHz									
				-55°C to +125°C	25	-	MHz									

Offset adjustment range is [V_{IO} (Measured ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V.

Specifications HA-5221/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	±SR	$V_{OUT} = \pm 2.5V$ $C_L = 50pF$	1	-55°C to +125°C	25	-	V/µs
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	-55°C to +125°C	398	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 1k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	1	-	V/V
Rise and Fall Time	t _{R,} t _F	$V_{OUT} = \pm 100 \text{mV}$	1, 4	+25°C	-	20	ns
Overshoot	±OS	$V_{OUT} = \pm 100 \text{mV}$	1	+25°C	-	25	%
				-55°C to +125°C	-	30	%
Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1, 3	-55°C to +125°C	-	660	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).
- 4. Measured between 10% and 90% points.
- 5. Input Noise Voltage Density and Input Noise Current Density limits are based on characterization data.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

72 x 94 x 19 mils ± 1 mils $1840 \times 2400 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SIO2, 5% Phos.) Silox Thickness: $12k\mathring{A} \pm 2k\mathring{A}$

Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

4.2 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 62

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5221/883

+IN -IN

OUT

-BAL

+BAL

HA-5222/883

Dual, Low Noise, Wideband, **Precision Operational Amplifier**

July 1994

Features

•	This Circuit is Processed in Accordance to MIL-STD-
	883 and is Fully Conformant Under the Provisions of
	Paragraph 1.2.1.

Paragraph 1.2.1.
Gain Bandwidth Product 100MHz (Min)
Unity Gain Bandwidth
• High Slew Rate
Low Offset Voltage
High Open Loop Gain
Channel Separation (at 10kHz)110dB (Typ)
• Low Voltage Noise (at 1kHz) 5.9nV/√Hz (Max) 3.3nV/√Hz (Typ)
Low Current Noise (at 1kHz) 2.7pA/√Hz (Max) 1.3pA/√Hz (Typ)
High Output Current

Low Supply Current (per Op Amp.) 10mA (Max)

Applications

- · Precision Test Systems
- Active Filtering
- · Small Signal Video
- Accurate Signal Processing
- · RF Signal Conditioning

Description

The HA-5222/883 is a dual, high performance, dielectrically isolated, monolithic op amp, featuring precision DC characteristics while providing excellent AC characteristics. Designed for audio, video, and other demanding applications, noise (3.3nV/\(\sqrt{Hz}\) at 1kHz typ), total harmonic distortion (<0.005% typ), and DC errors are kept to a minimum.

The precision performance is shown by low offset voltage (0.3mV typ), low bias currents (40nA typ), low offset currents (15nA typ), and high open loop gain (128dB typ). The combination of these excellent DC characteristics with fast settling time (0.4µs typ) make the HA-5222/883 ideally suited for precision signal conditioning.

The unique design of the HA-5222/883 gives this device outstanding AC characteristics, including high unity gain bandwidth (40MHz typ) and high slew rate (37V/us typ), not normally associated with precision op amps. Other key specifications include high CMRR (95dB typ) and high PSRR (100dB typ). The combination of these specifications will allow the HA-5222/883 to be used in RF signal conditioning as well as video amplifiers.

Ordering Information

±56mA (Typ)

8mA (Typ)

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA4-5222/883	-55°C to +125°C	20 Lead Ceramic LCC
HA7-5222/883	-55°C to +125°C	8 Lead CerDIP

Pinouts

Spec Number 511062-883

File Number 3717

Specifications HA-5222/883

Absolute Maximum Ratings

-
Voltage Between V+ and V- Terminals
Differential Input Voltage
Voltage at Either Input Terminal V+ to V-
Peak Output Current (Pulsed at 1ms, 10% Duty Cycle)100mA
Continuous Output Current Chart Circuit Brotosted

 Continuous Output Current.
 Short Circuit Protected

 Junction Temperature
 +175°C

 Storage Temperature Range
 -65°C to +150°C

 ESD Rating
 <2000V</td>

 Lead Temperature (Soldering 10s)
 +300°C

Thermal Information

Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	96°C/W	16°C/W
Ceramic LCC Package	55°C/W	9°C/W
Package Power Dissipation Limit at +75°C		
CerDIP Package		1.04W
Ceramic LCC Package		
Package Power Dissipation Derating Factor A	Nbove +75°C	
CerDIP Package		10.4mW/°C
Ceramic LCC Package		18.2mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-0.75	0.75	mV
			2, 3	+125°C, -55°C	-1.5	1.5	mV
Input Bias Current	+I _B	V _{CM} = 0V,	1	+25°C	-80	80	nA
		$+R_S = 100.1kΩ,$ $-R_S = 100Ω$	2, 3	+125°C, -55°C	-200	200	nA
	-I _B	$V_{CM} = 0V, +R_S = 100\Omega,$	1	+25°C	-80	80	nA
		$-R_S = 100.1k\Omega$	2, 3	+125°C, -55°C	-200	200	nA
Input Offset Current	I _{IO}	V _{CM} = 0V,	1	+25°C	-50	50	nA
		$+R_S = 100.1kΩ,$ $-R_S = 100.1kΩ$	2, 3	+125°C, -55°C	-150	150	nA
Common Mode Range	+CMR	V+ = +3V, V- = -27V	1	+25°C	12	-	٧
			2, 3	+125°C, -55°C	12	-	٧
	-CMR	V+ = +27V, V- = -3V	1	+25°C	-	-12	٧
			2, 3	+125°C, -55°C	-	-12	٧
Large Signal Voltage	+A _{VOL}	VOL V _{OUT} = 0V and +10V	4	+25°C	106	-	dB
Gain			5, 6	+125°C, -55°C	100	-	dB
	-A _{VOL}	V _{OUT} = 0V and -10V	4	+25°C	106	-	dB
			5, 6	+125°C, -55°C	100	-	dB
Common Mode	+CMRR	$\Delta V_{CM} = +10V$,	1	+25°C	88	-	dB
Rejection Ratio		V+ = +5V, V- = -25V, V _{OUT} = -10V	2, 3	+125°C, -55°C	86	-	dB
	-CMRR	$\Delta V_{CM} = -10V$,	1	+25°C	88	-	dB
		V+ = +25V, V- = -5V, V _{OUT} = +10V	2, 3	+125°C, -55°C	86	-	dB
Output Voltage Swing	+V _{OUT}	$R_L = 1k\Omega$	4	+25°C	12.0	-	٧
			5, 6	+125°C, -55°C	11.5	-	٧
	-V _{OUT}	$R_L = 1k\Omega$	4	+25°C	-	-12.0	٧
			5, 6	+125°C, -55°C	-	-11.5	V

Specifications HA-5222/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

	GROUP A				LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{out}	$V_{OUT} = +10V$, $R_L = 1k\Omega$	4	+25°C	30	-	mA
			5, 6	+125°C, -55°C	30	-	mA
	-l _{out}	$V_{OUT} = -10V$, $R_L = 1k\Omega$	4	+25°C	-	-30	mA
			5, 6	+125°C, -55°C	-	-30	mA
Quiescent Power Supply	+l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	20	mA
Current			2, 3	+125°C, -55°C	-	22	mA
-lcc	-l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-20	-	mA
			2, 3	+125°C, -55°C	-22	-	mA
Power Supply	+PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	90	-	dB
Rejection Ratio		V+ = +20V, V- = -15V, V+ = +10V, V- = -15V	2, 3	+125°C, -55°C	86	-	dB
	-PSRR	$\Delta V_{SUP} = 10V$,	1	+25°C	90	-	dB
		V+ = +15V, V- = -20V, V+ = +15V, V- = -10V	2, 3	+125°C, -55°C	86	-	dB

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTIC

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, Unless Otherwise Specified.

					LIM		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Noise Voltage Density	E _N	$R_S = 0\Omega$, $f_O = 10Hz$	1,5	+25°C	-	16.0	nV/√Hz
Density		$R_S = 0\Omega$, $f_O = 100Hz$	1,5	+25°C	-	6.6	nV/√Hz
		$R_S = 0\Omega$, $f_O = 1kHz$	1,5	+25°C	-	5.9	nV/√Hz
Input Noise Current Density	IN	$R_S = 500k\Omega$, $f_O = 10Hz$	1,5	+25°C	-	24.0	pA/√Hz
Density	nsity	$R_S = 500k\Omega$, $f_O = 100Hz$	1,5	+25°C	-	6.6	pA∕√Hz
		$R_S = 500k\Omega$, $f_O = 1kHz$	1,5	+25°C	-	2.7	pA∕√Hz
Gain Bandwidth Product	GBWP	V _{OUT} = 200mV _{P-P} ,	1	+25°C	100	-	MHz
		f _O = 100kHz		-55°C to +125°C	88	-	MHz
Unity Gain Bandwidth	UGBW	V _{OUT} = 200mV	1	+25°C	30	-	MHz
				-55°C to +125°C	25	-	MHz
Slew Rate	±SR	V _{OUT} = ±2.5V, C _L = 50pF	1	-55°C to +125°C	25	-	V/µs

Specifications HA-5222/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTIC (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, Unless Otherwise Specified.

					LIM	LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Full Power Bandwidth	FPBW	V _{PEAK} = 10V	1, 2	-55°C to +125°C	398	-	kHz
Minimum Closed Loop Stable Gain	CLSG	$R_L = 1k\Omega$, $C_L = 50pF$	1	-55°C to +125°C	1	-	V/V
Rise and Fall Time	t _{R,} t _F	V _{OUT} = ±100mV	1, 4	+25°C		20	ns
				-55°C to +125°C	٠.	35	ns
Overshoot	±OS	V _{OUT} = ±100mV	1	+25°C	-	25	%
				-55°C to +125°C	-	30	%
Power Consumption	PC	V _{OUT} = 0V, I _{OUT} = 0mA	1,3	-55°C to +125°C	-	660	mW

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).
- 4. Measured between 10% and 90% points.
- 5. Input Noise Voltage Density and Input Noise Current Density limits are based on characterization data.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $78 \times 185 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1980 \times 4690 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SIO2 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

4.2 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 128

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5222/883

OUT1

+IN2

HFA1100/883

July 1994

850MHz Current Feedback Amplifier

Features

- Excellent Gain Flatness (to 50MHz) 0.05dB (Typ)
- High Output Current 65mA (Typ)
- Fast Overdrive Recovery.....<10ns (Typ)

Applications

- · Video Switching and Routing
- · Pulse and Video Amplifiers
- Wideband Amplifiers
- RF/IF Signal Processing
- Flash A/D Driver
- · Medical Imaging Systems

Description

The HFA1100/883 is a high speed, wideband, fast settling current feedback amplifier. Built with Harris' proprietary, complementary bipolar UHF-1 process, it is the fastest monolithic amplifier available from any semiconductor manufacturer.

The HFA1100/883's wide bandwidth, fast settling characteristic, and low output impedance, make this amplifier ideal for driving fast A/D converters.

Component and composite video systems will also benefit from this amplifier's performance, as indicated by the excellent gain flatness, and 0.03%/0.05 Deg. Differential Gain/ Phase specifications ($R_1 = 75\Omega$).

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HFA1100MJ/883	-55°C to +125°C	8 Lead CerDIP

Pinout

HFA1100/883 (CERDIP) TOP VIEW

Specifications HFA1100/883

Absolute Maximum Ratings	Thermal Information
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Thermal Resistance

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

	GROUP A			LIN	IITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-6	6	mV
			2, 3	+125°C, -55°C	-10	10	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 2V$	1	+25°C	40	-	dB
Rejection Ratio		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	38	-	dB
Power Supply	PSRRP	$\Delta V_{SUPPLY} = \pm 1.25V$	1	+25°C	45	-	dB
Rejection Ratio		V+ = 6.25V, V- = -5V V+ = 3.75V, V- = -5V	2, 3	+125°C, -55°C	42	-	dB
	PSRRN	$\Delta V_{SUPPLY} = \pm 1.25V$	1	+25°C	45	-	dB
		V+ = 5V, V- = -6.25V V+ = 5V, V- = -3.75V	2, 3	+125°C, -55°C	42	-	dB
Non-Inverting Input (+IN)	I _{BSP}	V _{CM} = 0V	1	+25°C	-40	40	μА
Current			2, 3	+125°C, -55°C	-65	65	μА
+IN Current Common	CMS _{IBP}	$\Delta V_{CM} = \pm 2V$	1	+25°C	-	40	μA/V
Mode Sensitivity		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2,3	+125°C, -55°C	-	50	μA/V
+IN Resistance	+R _{IN}	Note 1	1	+25°C	25	-	kΩ
			2,3	+125°C, -55°C	20	-	kΩ
Inverting Input (-IN)	I _{BSN}	V _{CM} = 0V	1	+25°C	-50	50	μА
Current			2,3	+125°C, -55°C	-75	75	μА
-IN Current Common	CMS _{IBN}	$\Delta V_{CM} = \pm 2V$	1	+25°C	-	7	μA/V
Mode Sensitivity		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	-	10	μ Α /V
-IN Current Power	PPSS _{IBN}	$\Delta V_{SUPPLY} = \pm 1.25V$	1	+25°C	-	15	μA/V
Supply Sensitivity		V+ = 6.25V, V- = -5V V+ = 3.75V, V- = -5V	2, 3	+125°C, -55°C	-	27	μA/V
	NPSS _{IBN}	$\Delta V_{SUPPLY} = \pm 1.25V$	1	+25°C	-	15	μΑ/V
		V+ = 5V, V- = -6.25V V+ = 5V, V- = -3.75V	2, 3	+125°C, -55°C	-	27	μA/V
Output Voltage Swing	V _{OP100}	A _V = -1 V _{IN} = -3.5V	1	+25°C	3	-	٧
		$R_L = 100\Omega$ $V_{IN} = -3V$	2, 3	+125°C, -55°C	2.5	-	٧
	V _{ON100}	$A_V = -1$ $V_{IN} = +3.5V$	1	+25°C	-	-3	٧
		$R_L = 100\Omega$ $V_{IN} = +3V$	2,3	+125°C, -55°C	-	-2.5	٧

Specifications HFA1100/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

				GROUP A		LIM	ITS	
PARAMETERS	SYMBOL	CONE	DITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	V _{OP50}	A _V = -1	V _{IN} = -3V	1, 2	+25°C, +125°C	2.5		V
		$R_L = 50\Omega$	V _{IN} = -2V	3	-55°C	1.5		٧
	V _{ON50}		$V_{IN} = +3V$	1, 2	+25°C, +125°C	-	-2.5	٧
		$R_L = 50\Omega$	V _{IN} = +2V	3	-55°C	-	-1.5	٧
Output Current	Output Current +I _{OUT} Note	Note 2		1, 2	+25°C, +125°C	50		mA
				3	-55°C	30	-	mA
	-l _{out}	Note 2		1, 2	+25°C, +125°C	-	-50	mA
				3	-55°C	-	-30	mA
Quiescent Power	Icc	$R_L = 100\Omega$		1	+25°C	14	26	mA
Supply Current				2, 3	+125°C, -55°C	-	33	mA
	I _{EE}	$R_L = 100\Omega$		1	+25°C	-26	-14	mA
				2, 3	+125°C, -55°C	-33		mA

NOTES:

- 1. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 2. Guaranteed from V_{OUT} Test with R_L = 50 Ω , by: I_{OUT} = V_{OUT} /50 Ω .

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $A_V = +2$, $R_F = 360\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
-3dB Bandwidth	BW(-1)	$A_V = -1, R_F = 430\Omega$ $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	300	-	MHz
	BW(+1)	$A_V = +1, R_F = 510\Omega$ $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	550	-	MHz
	BW(+2)	$A_V = +2,$ $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	350	-	MHz
Gain Flatness	GF30	$A_V = +2$, $R_F = 510\Omega$, $f \le 30MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.04	dB
	GF50	$A_V = +2$, $R_F = 510\Omega$, $f \le 50MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.10	dB
	GF100	$A_V = +2$, $R_F = 510\Omega$, $f \le 100MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.30	dB

Specifications HFA1100/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $A_V = +2$, $R_F = 360\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR(+1)	$A_V = +1, R_F = 510\Omega, V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1200	-	V/µs
	-SR(+1)	$A_V = +1$, $R_F = 510\Omega$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1100	-	V/μs
	+SR(+2)	$A_V = +2, V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1650	-	V/µs
	-SR(+2)	$A_V = +2$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1500	-	V/μs
Rise and Fall Time	T _R	$A_V = +2$, $V_{OUT} = 0.5V_{P.P}$	1, 2	+25°C	-	1	ns
	T _F	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	1	ns
Overshoot	+OS	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	25	%
	-OS	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	20	%
Settling Time	TS(0.1)	$A_V = +2$, $R_F = 510\Omega$ $V_{OUT} = 2V \text{ to } 0V$, to 0.1%	1	+25°C	-	20	ns
	TS(0.05)	$A_V = +2$, $R_F = 510\Omega$ $V_{OUT} = 2V$ to 0V, to 0.05%	1	+25°C	-	33	ns
2nd Harmonic	HD2(30)	$A_V = +2$, $f = 30MHz$, $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-48	dBc
Distortion	HD2(50)	$A_V = +2$, $f = 50MHz$, $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-45	dBc
	HD2(100)	$A_V = +2$, $f = 100MHz$, $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-35	dBc
3rd Harmonic	HD3(30)	$A_V = +2$, $f = 30MHz$, $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-65	dBc
Distortion	HD3(50)	$A_V = +2$, $f = 50MHz$, $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-60	dBc
	HD3(100)	$A_V = +2$, $f = 100MHz$, $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-40	dBc

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot-to-lot and within lot variation.
- 2. Measured between 10% and 90% points.
- 3. For 200ps input transition times. Overshoot decreases as input transition times increase, especially for A_V = +1. Please refer to Performance Curves.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

HFA1100/883

Die Characteristics

DIE DIMENSIONS:

63 x 44 x 19 mils ± 1 mils 1600μm x 1130μm x 483μm ± 25.4μm

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW

Type: Metal 2: AICu(2%)

Thickness: Metal 1: 8kÅ ± 0.4kÅ Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:

 $2.0 \times 10^5 \text{ A/cm}^2 \text{ at } 47.5 \text{mA}$

TRANSISTOR COUNT: 52

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1100/883

HFA1110/883

750MHz, Low Distortion Unity Gain, Closed Loop Buffer

June 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Fixed Gain of +1
- Wide -3dB Bandwidth 750MHz (Typ)
- Very Fast Slew Rate............... 1250V/μs (Typ)
- Low Differential Gain and Phase ... 0.04%/0.025 Deg.
- Low Distortion (HD3, 30MHz) -80dBc (Typ)
- Excellent Gain Flatness (to 100MHz) . . . ±0.03dB (Typ)
- Excellent Gain Accuracy......0.99V/V (Typ)
- High Output Current 60mA (Typ)

Applications

- Video Switching and Routing
- Pulse and Video Amplifiers
- Wideband Amplifiers
- · RF/IF Signal Processing
- Flash A/D Driver
- Medical Imaging Systems

Description

The HFA1110/883 is a unity gain, closed loop buffer which achieves a high degree of gain accuracy, wide bandwidth, and low distortion. Manufactured on Harris' proprietary complementary bipolar UHF-1 process, the HFA1110/883 also offers very fast slew rates, and high output current.

Component and composite video systems will also benefit from this buffer's performance, as indicated by the excellent gain flatness, and 0.04%/0.025 Degree Differential Gain/ Phase specifications ($R_L = 75\Omega$).

For buffer applications desiring a standard op amp pinout, or selectable gain (-1, +1, +2), please refer to the HFA1112/883 and HFA1113/883 (featuring programmable output clamps) datasheets.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HFA1110MJ/883	-55°C to +125°C	8 Lead CerDIP

Pinout

Specifications HFA1110/883

Absolute Maximum Ratings Thermal Information

3		
Voltage Between V+ and V		JC
Voltage at Input Terminal V+ to V-	CerDIP Package 115°C/W 30°C	C/W
Output Current (50% Duty Cycle)	Maximum Package Power Dissipation at +75°C	
Junction Temperature	CerDIP Package	.87W
ESD Rating<2000V	Package Power Dissipation Derating Factor above +75°C	
Storage Temperature Range65°C ≤ T _A ≤ +150°C	CerDIP Package8.7m	W/°C
Lead Temperature (Soldering 10s)	•	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Offset Voltage	Vos	V _{CM} = 0V	1	+25°C	-25	25	mV
			2, 3	+125°C, -55°C	-40	40	mV
Power Supply	PSRRP	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	39	-	dB
Rejection Ratio		V+ = 6.25V, V- = -5V V+ = 3.75V, V- = -5V	2, 3	+125°C, -55°C	35	-	dB
	PSRRN	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	39	-	dB
		V+ = 5V, V- = -6.25V V+ = 5V, V- = -3.75V	2, 3	+125°C, -55°C	35	-	dB
Input Current	I _{BSP}	V _{CM} = 0V	1	+25°C	-40	40	μА
			2, 3	+125°C, -55°C	-65	65	μА
Input Current Common	CMS _{IBP}	$\Delta V_{CM} = \pm 2V$ V+ = 3V, V- = -7V	1	+25°C	-	40	μA/V
Mode Rejection		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	-	50	μA/V
Input Resistance	R _{IN}	Note 1	1	+25°C	25	-	kΩ
			2, 3	+125°C, -55°C	20		kΩ
Gain (V _{OUT} = 2V _{P-P})	A _{VP1}	V _{IN} = -1V to +1V	1	+25°C	0.980	1.020	V/V
			2, 3	+125°C, -55°C	0.975	1.025	V/V
Output Voltage Swing	V _{OP100}	$R_L = 100\Omega$, $V_{IN} = +3.3V$	1	+25°C	3	-	٧
			2, 3	+125°C, -55°C	2.5	-	٧
	V _{ON100}	$R_L = 100\Omega, V_{IN} = -3.3V$	1	+25°C	-	-3	٧
			2, 3	+125°C, -55°C	-	-2.5	٧
Output Voltage Swing	V _{OP50}	$R_L = 50\Omega$, $V_{IN} = +3.3V$	1, 2	+25°C, +125°C	2.5	-	٧
			3	-55°C	1.5	-	٧
	V _{ON50}	$R_L = 50\Omega$, $V_{IN} = -3.3V$	1, 2	+25°C, +125°C	-	-2.5	٧
			3	-55°C		-1.5	٧

Spec Number 511083-883

Specifications HFA1110/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+l _{out}	Note 2	1, 2	+25°C, +125°C	50	-	mA
			3	-55°C	30	-	mA
	-lout	Note 2	1, 2	+25°C, +125°C	-	-50	mA
			3	-55°C	-	-30	mA
Quiescent Power	Icc	$R_L = 100\Omega$	1	+25°C	14	26	mA
Supply Current			2, 3	+125°C, -55°C	-	33	mA
	I _{EE}	R _L = 100Ω	1	+25°C	-26	-14	mA
			2, 3	+125°C, -55°C	-33	-	mA

NOTES:

- 1. Guaranteed from Input Common Mode Rejection Test, by: R_{IN} = 1/CMS_{IBP}
- 2. Guaranteed from V_{OUT} Test with $R_L = 50\Omega$, by: $I_{OUT} = V_{OUT}/50\Omega$.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
-3dB Bandwidth	BW	V _{OUT} = 200mV _{P-P}	1	+25°C	350	-	MHz
Gain Flatness	GF30	$f \le 30MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.025	dB
	GF50	$f \le 50MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C		±0.055	dB
	GF100	f ≤ 100MHz V _{OUT} = 200mV _{P-P}	1	+25°C		±0.08	dB
Slew Rate	+SR	V _{OUT} = 5V _{P-P}	1, 2	+25°C	800	-	V/µs
	-SR	V _{OUT} = 5V _{P-P}	1, 2	+25°C	800	-	V/µs
Rise & Fall Time	TR	V _{OUT} = 0.5V _{P-P}	1, 2	+25°C	-	1	ns
	T _F	$V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	1	ns
Overshoot	+OS	V _{OUT} = 0.5V _{P-P}	1, 3	+25°C	-	30	%
	-os	V _{OUT} = 0.5V _{P-P}	1, 3	+25°C	-	30	%

Specifications HFA1110/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
2nd Harmonic	HD2(30)	f = 30MHz, V _{OUT} = 2V _{P-P}	1	+25°C	-	-55	dBc
Distortion	HD2(50)	f = 50MHz, V _{OUT} = 2V _{P-P}	1	+25°C	-	-45	dBc
	HD2(100)	f = 100MHz, V _{OUT} = 2V _{P-P}	1	+25°C	-	-35	dBc
3rd Harmonic Distortion	HD3(30)	f = 30MHz, V _{OUT} = 2V _{P-P}	1	+25°C		-65	dBc
	HD3(50)	f = 50MHz, V _{OUT} = 2V _{P-P}	1	+25°C	-	-60	dBc
	HD3(100)	f = 100MHz, V _{OUT} = 2V _{P-P}	1	+25°C	-	-40	dBc

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot-to-lot and within lot variation.
- 2. Measured between 10% and 90% points.
- 3. For 600ps input transition times. Overshoot decreases as input transition times increase, as shown in the Typical Performance Curve.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $63 \times 44 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1600 \times 1130 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

GLASSIVATION:

Type: Metal 1: AICu(2%)/TiW Thickness: Metal 1: 8kÅ ±0.4kÅ

Type: Metal 2: AICu(2%) Thickness: Metal 2: 16kÅ ±0.8kÅ

Type: Nitride

Thickness: 4kÅ ±0.5kÅ

WORST CASE CURRENT DENSITY:

2.0 x 10⁵ A/cm² at 47.5mA

TRANSISTOR COUNT: 52

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1110/883

Spec Number 511083-883

HFA1112/883

June 1994

Ultra High Speed Programmable Gain Buffer Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Low Differential Gain and Phase 0.02%/0.04 Deg.
- Low Distortion (HD3, 30MHz)-73dBc (Typ)
- Wide -3dB Bandwidth 850MHz (Typ)
- Very High Slew Rate 2400V/μs (Typ)
- Excellent Gain Flatness (to 100MHz).... 0.07dB (Typ)
- Excellent Gain Accuracy......0.99V/V (Typ)
- High Output Current 60mA (Typ)
- Fast Overdrive Recovery.....<10ns (Typ)

Applications

- · Video Switching and Routing
- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- · RF/IF Signal Processing
- · Flash A/D Driver
- Medical Imaging Systems

Description

The HFA1112/883 is a closed loop buffer that achieves a high degree of gain accuracy, wide bandwidth, and low distortion. Manufactured on the Harris proprietary complementary bipolar UHF-1 process, the HFA1112/883 also offers very fast slew rates, and high output current.

A unique feature of the pinout allows the user to select a voltage gain of +1, -1, or +2, without the use of any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Component and composite video systems will also benefit from this buffer's performance, as indicated by the excellent gain flatness, and 0.02%/0.04 Deg. Differential Gain/Phase specifications ($R_{\rm I}=150\Omega$).

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.

This amplifier is available with programmable output clamps as the HFA1113/883. For applications requiring a standard buffer pinout, please refer to the HFA1110/883 datasheet.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HFA1112MJ/883	-55°C to +125°C	8 Lead Ceramic DIP

Pinout

Specifications HFA1112/883

Absolute Maximum Ratings	Thermal Information		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Thermal Resistance CerDIP Package	115°C/W +75°C or above +75	°C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may ca of the device at these or any other conditions above those indicated in the open		tress only rating	g and operation

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at V_{SUPPLY} = $\pm 5V$, R_{SOURCE} = 0Ω , R_L = 100Ω , V_{OUT} = 0V, Unless Otherwise Specified.

				GROUP A		LIM	LIMITS	
D.C. PARAMETERS	SYMBOL	CONI	DITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Offset Voltage	Vos	V _{CM} = 0V		1	+25°C	-25	25	mV
				2, 3	+125°C, -55°C	-40	40	mV
Power Supply	PSRRP	$\Delta V_{SUP} = \pm 1.2$		1	+25°C	39	-	dB
Rejection Ratio		V+ = 6.25V, V+ = 3.75V,		2, 3	+125°C, -55°C	35	-	dB
	PSRRN	$\Delta V_{SUP} = \pm 1.2$		1	+25°C	39	-	dB
		V+ = 5V, V- = V+ = 5V, V- =		2, 3	+125°C, -55°C	35	-	dB
Non-Inverting Input	I _{BSP}	V _{CM} = 0V		1	+25°C	-40	40	μА
(+IN) Current					+125°C, -55°C	-65	65	μА
+IN Common	CMS _{IBP}	$\Delta V_{CM} = \pm 2V$		1	+25°C	-	40	μΑ/V
Mode Rejection			V+ = 3V, V- = -7V V+ = 7V, V- = -3V		+125°C, -55°C	-	50	μA/V
+IN Resistance	+R _{IN}	Note 1		1	+25°C	25	-	kΩ
				2, 3	+125°C, -55°C	20	-	kΩ
Gain	A _{VP1}	A _V = +1		1	+25°C	0.980	1.020	V/V
$(V_{OUT} = 2V_{P-P})$		$V_{IN} = -1V \text{ to } \cdot$	+1V	2, 3	+125°C, -55°C	0.975	1.025	V/V
Gain	A _{VM1}	A _V = -1		1	+25°C	0.980	1.020	V/V
$(V_{OUT} = 2V_{P-P})$		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	0.975	1.025	V/V
Gain	A _{VP2}	A _V = +2		1	+25°C	1.960	2.040	V/V
$(V_{OUT} = 4V_{P-P})$		$V_{IN} = -1V \text{ to}$	+1V	2, 3	+125°C, -55°C	1.950	2.050	V/V
Output Voltage	V _{OP100}	A _V = -1	V _{IN} = -3.2V	1	+25°C	3	-	V
Swing		$R_L = 100\Omega$	V _{IN} = -2.7V	2, 3	+125°C, -55°C	2.5	-	٧
	V _{ON100}	A _V = -1	V _{IN} = +3.2V	1	+25°C	-	-3	V
		$R_L = 100\Omega$	V _{IN} = +2.7V	2, 3	+125°C, -55°C	-	-2.5	V
Output Voltage	V _{OP50}	A _V = -1	V _{IN} = -2.7V	1, 2	+25°C, +125°C	2.5	-	V
Swing		$R_L = 50\Omega$	V _{IN} = -2.25V	3	-55°C	1.5	-	V
	V _{ON50}	A _V = -1	V _{IN} = +2.7V	1, 2	+25°C, +125°C	-	-2.5	٧
		$R_L = 50\Omega$	V _{IN} = +2.25V	3	-55°C	-	-1.5	V

Specifications HFA1112/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at V_{SUPPLY} = $\pm 5V$, R_{SOURCE} = 0Ω , R_L = 100Ω , V_{OUT} = 0V, Unless Otherwise Specified.

				LIM			
D.C. PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+lout	Note 2	1, 2	+25°C, +125°C	50	-	mA
			3	-55°C	30	-	mA
	-l _{out}	Note 2	1, 2	+25°C, +125°C	-	-50	mA
			3	-55°C	-	-30	mA
Quiescent Power	Icc	$R_L = 100\Omega$	1	+25°C	14	26	mA
Supply Current			2, 3	+125°C, -55°C	-	33	mA
	I _{EE}	$R_L = 100\Omega$	1	+25°C	-26	-14	mA
			2, 3	+125°C, -55°C	-33	-	mA

NOTES:

- 1. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 2. Guaranteed from V_{OUT} Test with R_L = 50 Ω , by: I_{OUT} = $V_{OUT}/50\Omega$.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at V_{SUPPLY} = $\pm 5V$, R_L = 100Ω , Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
-3dB Bandwidth	BW(-1)	$A_V = -1$, $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	450	-	MHz
	BW(+1)	$A_V = +1, V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	500	-	MHz
	BW(+2)	$A_V = +2$, $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	350	-	MHz
Gain Flatness	GF30	$A_V = +2$, $f \le 30MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.04	dB
	GF50	$A_V = +2$, $f \le 50MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.08	dB
	GF100	$A_V = +2$, $f \le 100MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.22	dB
Slew Rate	+SR(-1)	$A_V = -1$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1500	-	V/µs
	-SR(-1)	$A_V = -1$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1800	-	V/µs
	+SR(+1)	$A_V = +1, V_{OUT} = 5V_{P-P}$	1, 2	+25°C	900	-	V/µs
	-SR(+1)	$A_V = +1, V_{OUT} = 5V_{P-P}$	1, 2	+25°C	800	-	V/µs
	+SR(+2)	$A_V = +2$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1200	-	V/µs
	-SR(+2)	$A_V = +2$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1100	-	V/µs
Rise and Fall Time	T _R (-1)	$A_V = -1$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	750	ps
	T _F (-1)	$A_V = -1$, $V_{OUT} = 0.5 V_{P-P}$	1, 2	+25°C	-	800	ps
	T _R (+1)	$A_V = +1$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	750	ps
	T _F (+1)	$A_V = +1, V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	750	ps
	T _R (+2)	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	1000	ps
	T _F (+2)	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	1000	ps

Specifications HFA1112/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at V_{SUPPLY} = $\pm 5V$, R_L = 100Ω , Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Overshoot	+OS(-1)	$A_V = -1$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	30	%
	-OS(-1)	$A_V = -1, V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	25	%
	+OS(+1)	$A_V = +1, V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	65	%
	-OS(+1)	$A_V = +1, V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	60	%
,	+OS(+2)	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	20	%
	-OS(+2)	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	20	%
Settling Time	TS(0.1)	A _V = +2, to 0.1% V _{OUT} = 2V to 0V	1	+25°C	-	20	ns
	TS(0.05)	A _V = +2, to 0.05% V _{OUT} = 2V to 0V	1	+25°C	-	33	ns
2nd Harmonic Distortion	HD2(30)	A _V = +2, f = 30MHz V _{OUT} = 2V _{P-P}	1	+25°C	-	-45	dBc
	HD2(50)	A _V = +2, f = 50MHz V _{OUT} = 2V _{P-P}	1	+25°C	-	-40	dBc
	HD2(100)	A _V = +2, f = 100MHz V _{OUT} = 2V _{P-P}	1	+25°C	-	-35	dBc
3rd Harmonic Distortion	HD3(30)	$A_V = +2$, $f = 30MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-65	dBc
	HD3(50)	A _V = +2, f = 50MHz V _{OUT} = 2V _{P-P}	1	+25°C	-	-55	dBc
	HD3(100)	$A_V = +2$, $f = 100MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-45	dBc

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot-to-lot and within lot variation.
- 2. Measured between 10% and 90% points.
- 3. For 200ps input transition times. Overshoot decreases as input transition times increase, especially for A_V = +1. Please refer to Performance curves.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

63 x 44 x 19 mils ± 1 mils

 $1600\mu m \times 1130\mu m \times 483\mu m \pm 25.4\mu m$

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW

Type: Metal 2: AICu(2%)

Thickness: Metal 1: 8kÅ ± 0.4kÅ

Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:

2.0 x 10⁵ A/cm² at 47.5mA

TRANSISTOR COUNT: 52

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1112/883

OPERATIONAL AMPLIFIERS

HFA1113/883

Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- User Programmable Output Voltage Limiting
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Low Differential Gain and Phase 0.02%/0.04 Deg.
- Low Distortion (HD3, 30MHz) -73dBc (Typ)
- Wide -3dB Bandwidth 850MHz (Typ)
- Very High Slew Rate 2400V/μs (Typ)
- Excellent Gain Flatness (to 100MHz) 0.07dB (Typ)
- Excellent Gain Accuracy......0.99V/V (Tvp)
- High Output Current 60mA (Typ)
- Fast Overdrive Recovery.....<1ns (Typ)

Applications

- · Video Switching and Routing
- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- · RF/IF Signal Processing
- Flash A/D Driver
- Medical Imaging Systems

Description

The HFA1113/883 is a closed loop buffer featuring a high degree of gain accuracy, wide bandwidth, low distortion, and programmable output limiting. This buffer is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overdrive recovery times. The output limiting function allows the designer to set the maximum positive and negative output levels, thereby protecting later stages from damage or input saturation. The sub-nanosecond overdrive recovery time quickly returns the amplifier to linear operation following an overdrive condition.

Component and composite video systems will also benefit from this buffer's performance, as indicated by the excellent gain flatness, and 0.02%/0.04 Deg. Differential Gain/Phase specifications ($R_1 = 150\Omega$).

A unique feature of the pinout allows the user to select a voltage gain of +1, -1, or +2, without the use of any external components, as described in the "Design Information" section. Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.

This amplifier is available without output limiting as the HFA1112/883. For applications requiring a standard buffer pinout, please refer to the HFA1110/883 datasheet.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HFA1113MJ/883	-55°C to +125°C	8 Lead CerDIP
HFA1113ML/883	-55°C to +125°C	20 Lead Ceramic LCC

Pinouts

Spec Number 511106-883 File Number 3618.1

Specifications HFA1113/883

Absolute Maximum Ratings

9 -
Voltage Between V+ and V
Differential Input Voltage
Voltage at Either Input Terminal V+ to V-
Voltage at V_H or V_L Terminal(V+) + 2V to (V-) - 2V
Output Current (50% Duty Cycle)
Junction Temperature
ESD Rating< 2000V
Storage Temperature Range65°C \leq T _A \leq +150°C

Lead Temperature (Soldering 10s).....+300°C

Thermal Information

Thermal Resistance CerDIP Package	θ _{JA} 115°C/W	θ _{JC}
Ceramic LCC Package	75°C/W	23°C/W
Maximum Package Power Dissipation at 4	⊦75°C	
CerDIP Package		0.87W
Ceramic LCC Package		1.33W
Package Power Dissipation Derating Fact	or above +75	s°C
CerDIP Package		
Ceramic LCC Package		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

				GROUP A		LIM		
PARAMETERS	SYMBOL	CONE	DITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Offset Voltage	Vos	V _{CM} = 0V		1	+25°C	-25	25	mV
					+125°C, -55°C	-40	40	mV
Power Supply	PSRRP	ΔV _{SUPPLY} =		1	+25°C	39	-	dB
Rejection Ratio		V+ = 6.25V V+ = 3.75V		2, 3	+125°C, -55°C	35	-	dB
	PSRRN	ΔV _{SUPPLY} =		1	+25°C	39	-	dB
		V+ = 5V, V- V+ = 5V, V-		2, 3	+125°C, -55°C	35	-	dB
Non-Inverting Input (+IN)	I _{BSP}	V _{CM} = 0V		1	+25°C	-40	40	μА
Current				2, 3	+125°C, -55°C	-65	65	μА
+IN Common	CMS _{IBP}	$\Delta V_{CM} = \pm 2$	/,	1	+25°C	-	40	μA/V
Mode Rejection		V+ = 3V, V- V+ = 7V, V-		2, 3	+125°C, -55°C	-	50	μ Α /V
+IN Resistance	sistance +R _{IN} Note 1	Note 1		1	+25°C	25	-	kΩ
					+125°C, -55°C	20	-	kΩ
Gain (V _{OUT} = 2V _{P-P})	A _{VP1}	A _V = +1,	***************************************	1	+25°C	0.980	1.020	V/V
		$V_{IN} = -1V \text{ to}$	+1V	2, 3	+125°C, -55°C	0.975	1.025	V/V
Gain (V _{OUT} = 2V _{P-P})	A _{VM1}	A _V = -1,		1	+25°C	0.980	1.020	V/V
		$V_{IN} = -1V \text{ to}$	+1V	2, 3	+125°C, -55°C	0.975	1.025	V/V
Gain (V _{OUT} = 4V _{P-P})	A _{VP2}	A _V = +2,		1	+25°C	1.960	2.040	V/V
		$V_{IN} = -1V \text{ to}$	+1V	2, 3	+125°C, -55°C	1.950	2.050	V/V
Output Voltage	V _{OP100}	A _V = -1	V _{IN} = -3.2V	1	+25°C	3	-	V
Swing		$R_L = 100\Omega$	V _{IN} = -2.7V	2, 3	+125°C, -55°C	2.5	-	V
	V _{ON100}	A _V = -1	V _{IN} = +3.2V	1	+25°C	-	-3	V
		$R_L = 100\Omega$	V _{IN} = +2.7V	2, 3	+125°C, -55°C	-	-2.5	V
Output Voltage	V _{OP50}	A _V = -1	V _{IN} = -2.7V	1, 2	+25°C, +125°C	2.5	-	V
Swing		$R_L = 50\Omega$	$V_{IN} = -2.25V$	3	-55°C	1.5	-	٧
	V _{ON50}	A _V = -1	$V_{IN} = +2.7V$	1, 2	+25°C, +125°C	-	-2.5	V
		$R_L = 50\Omega$	V _{IN} =+2.25V	3	-55°C	-	-1.5	٧
Output Current	+l _{out}	Note 2		1, 2	+25°C, +125°C	50	-	mA
				3	-55°C	30	-	mA
	-l _{out}	Note 2		1, 2	+25°C, +125°C	-	-50	mA
				3	-55°C	-	-30	mA

Specifications HFA1113/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Power	I _{cc}	$R_L = 100\Omega$	1	+25°C	14	26	mA
Supply Current			2, 3	+125°C, -55°C	-	33	mA
	I _{EE}	$R_L = 100\Omega$	1	+25°C	-26	-14	mA
			2, 3	+125°C, -55°C	-33	-	mA
Limiting Accuracy	V _H CLMP	$A_V = -1$, $V_{IN} = -1.6V$,	1	+25°C	-150	150	mV
	V _H = 1V	2, 3	+125°C, -55°C	-200	200	mV	
	V _L CLMP		1	+25°C	-150	150	mV
		V _L = -1V	2, 3	+125°C, -55°C	-200	200	mV
V _H or V _L Input Current	V _H BIAS	V _H = 1V	1	+25°C	-	200	μА
			2, 3	+125°C, -55°C	-	300	μА
	V _L BIAS	V _L = -1V	1	+25°C	-200	-	μА
			2, 3	+125°C, -55°C	-300	-	μА

NOTES:

- 1. Guaranteed from +IN Common Mode Rejection Test, by: +R_{IN} = 1/CMS_{IBP}.
- 2. Guaranteed from V_{OUT} Test with R_L = 50 Ω , by: I_{OUT} = V_{OUT} /50 Ω .

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
-3dB Bandwidth	BW(-1)	$A_V = -1$, $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	450	-	MHz
	BW(+1)	$A_V = +1, V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	500	-	MHz
	BW(+2)	$A_V = +2$, $V_{OUT} = 200 \text{mV}_{P-P}$	í	+25°C	350	-	MHz
Gain Flatness	GF30	$A_V = +2, f \le 30MHz,$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.04	dB
	GF50	$A_V = +2$, $f \le 50MHz$, $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.08	dB
	GF100	$A_V = +2, f \le 100MHz,$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.22	dB
Slew Rate	+SR(-1)	$A_V = -1$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1500	-	V/µs
	-SR(-1)	$A_V = -1$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1800	-	V/μs
	+SR(+1)	$A_V = +1, V_{OUT} = 5V_{P-P}$	1, 2	+25°C	900	-	V/μs
	-SR(+1)	$A_V = +1, V_{OUT} = 5V_{P-P}$	1, 2	+25°C	800	-	V/µs
	+SR(+2)	$A_V = +2$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1200	-	V/µs
	-SR(+2)	$A_V = +2$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1100	-	V/µs

Spec Number 511106-883

Specifications HFA1113/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIN		
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Rise and Fall Time $T_R(-1)$ $A_V = -1$, $V_{OUT} = 0.5V_{P-P}$		1, 2	+25°C	-	750	ps	
	T _F (-1)	$A_V = -1$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	800	ps
	T _R (+1)	$A_V = +1, V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	750	ps
	T _F (+1)	$A_V = +1$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	750	ps
	T _R (+2)	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	1000	ps
	T _F (+2)	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	1000	ps
Overshoot	+OS(-1)	$A_V = -1$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	30	%
	-OS(-1)	$A_V = -1$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	25	%
	+OS(+1)	$A_V = +1$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	65	%
	-OS(+1)	$A_V = +1$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	60	%
	+OS(+2)	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	20	%
	-OS(+2)	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 3	+25°C	-	20	%
Settling Time	TS(0.1)	$A_V = +2$, to 0.1%, $V_{OUT} = 2V$ to 0V	1	+25°C	-	20	ns
	TS(0.05)	A _V = +2, to 0.05%, V _{OUT} = 2V to 0V	1	+25°C	-	33	ns
2nd Harmonic Distortion	HD2(30)	A _V = +2, f = 30MHz, V _{OUT} = 2V _{P-P}	1	+25°C	-	-45	dBc
	HD2(50)	A _V = +2, f = 50MHz, V _{OUT} = 2V _{P-P}	1	+25°C	-	-40	dBc
	HD2(100)	A _V = +2, f = 100MHz, V _{OUT} = 2V _{P-P}	1	+25°C	-	-35	dBc
3rd Harmonic Distortion	HD3(30)	$A_V = +2$, $f = 30MHz$, $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-65	dBc
	HD3(50)	A _V = +2, f = 50MHz, V _{OUT} = 2V _{P.P}	1	+25°C	-	-55	dBc
	HD3(100)	$A_V = +2$, $f = 100MHz$, $V_{OUT} = 2V_{P.P}$	1	+25°C	-	-45	dBc

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot-to-lot and within lot variation.
- 2. Measured between 10% and 90% points.
- For 200ps input transition times. Overshoot decreases as input transition times increase, especially for A_V = +1. Please refer to Performance Curves.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)			
Interim Electrical Parameters (Pre Burn-In)	1			
Final Electrical Test Parameters	1 (Note 1), 2, 3			
Group A Test Requirements	1, 2, 3			
Groups C and D Endpoints	1			

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

63 x 44 x 19 mils ± 1 mils 1600 x 1130 x 483μm ± 25.4μm

METALLIZATION:

Type: Metal 1: AICu(2%)/TiW Thickness: Metal 1: 8kÅ ± 0.4kÅ Type: Metal 2: AlCu(2%) Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:

2.0 x 10⁵ A/cm² at 47.5mA

TRANSISTOR COUNT: 52

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1113/883

OUT

HFA1115/883

High Speed, Low Power, Output Limiting Closed Loop Buffer Amplifier

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- User Programmable Output Voltage Limiting
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Standard Operational Amplifier Pinout
- Fast Overdrive Recovery.....<1ns (Typ)
- Low Supply Current..... 6.9mA (Typ)
- Excellent Gain Accuracy......0.99V/V (Typ)

- Excellent Gain Flatness (to 50MHz) ±0.1dB (Typ)

Applications

- Flash A/D Driver
- · Video Switching and Routing
- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- RF/IF Signal Processing
- · Medical Imaging Systems

Description

The HFA1115/883 is a high speed closed loop Buffer featuring both user programmable gain and output limiting. Manufactured in Harris' proprietary complementary bipolar UHF-1 process, the HFA1115/883 also offers a wide -3dB bandwidth of 225MHz, very fast slew rate, excellent gain flatness and high output current.

This buffer is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overload recovery times. The limiting function allows the designer to set the maximum positive and negative output levels, thereby protecting later stages from damage or input saturation. The HFA1115/883 also allows for voltage gains of +2, +1, and -1, without the use of external resistors. Gain selection is accomplished via connections to the inputs, as described in the "Application Information" text. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HFA1115MJ/883	-55°C to +125°C	8 Lead CerDIP

Pinout

Specifications HFA1115/883

Absolute Maximum Ratings	Thermal Information
Voltage Between V+ and V	CerDIP Package
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may c of the device at these or any other conditions above those indicated in the ope	ause permanent damage to the device. This is a stress only rating and operation rational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN		
PARAMETERS	PARAMETERS SYMBOL CONDITIONS		SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Offset Voltage	Vos	V _{CM} = 0V	1	+25°C	-10	10	mV
			2, 3	+125°C, -55°C	-20	20	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	42	-	dB
Rejection Ratio		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	39		dB
		$\Delta V_{CM} = \pm 1.2V$ V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	39	-	dB
Power Supply	PSRRP	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	45	-	dB
Rejection Ratio		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	42	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	42	-	dB
	PSRRN	$\Delta V_{SUPPLY} = \pm 1.8V$ V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	1	+25°C	45	-	dB
			2	+125°C	42	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	42	-	dB
Non-Inverting Input (+IN)	I _{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
Current			2, 3	+125°C, -55°C	-25	25	μА
+IN Current Common	CMS _{IBP}	$\Delta V_{CM} = \pm 1.8V$ V+ = 3.2V, V- = -6.8V	1	+25°C	-	1.25	μ A /V
Mode Sensitivity		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	-	2.85	μA/V
		ΔV _{CM} = ±1.2V V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C		2.85	μA/V
+IN Resistance	+R _{IN}	Note 2	1	+25°C	800	-	kΩ
			2, 3	+125°C, -55°C	350	-	kΩ

Specifications HFA1115/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

				GROUP A		LIMITS		
PARAMETERS	SYMBOL	CON	DITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Gain	A _{VP1}	A _V = +1		1	+25°C	0.98	1.02	V/V
		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	0.975	1.025	V/V
	A _{VM1}	A _V = -1		1	+25°C	-0.98	-1.02	V/V
		$V_{IN} = -1V \text{ to } +1V$	+1V	2, 3	+125°C, -55°C	-0.975	-1.025	V/V
	A _{VP2}	A _V = +2		1	+25°C	1.96	2.04	V/V
		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	1.95	2.05	V/V
Output Voltage Swing	V _{OP100}	A _V = -1	V _{IN} = -3.2V	1	+25°C	3	-	V
		$R_L = 100\Omega$	V _{IN} = -3V	2, 3	+125°C, -55°C	2.8	-	V
	V _{ON100}	A _V = -1	V _{IN} =+3.2V	1	+25°C	-	-3	٧
		$R_L = 100\Omega$	V _{IN} = +3V	2, 3	+125°C, -55°C	-	-2.8	V
Output Voltage Swing	V _{OP50}	A _V = -1	V _{IN} = -2.7V	1	+25°C	2.5	-	V
		$R_L = 50\Omega$	V _{IN} = -2.25V	2	+125°C	2.0	-	٧
			V _{IN} = -2.25V	3	-55°C	1.4	-	٧
	V _{ON50}	A _V = -1	V _{IN} = +2.7V	1	+25°C	-	-2.5	٧
		$R_L = 50\Omega$	V _{IN} = +2.25V	2	+125°C	-	-2.0	V
			V _{IN} = +2.25V	3	-55°C	-	-1.4	V
Output Current	+I _{OUT} Note 3	Note 3		1	+25°C	50	-	mA
				2	+125°C	40	-	mA
				3	-55°C	28	-	mA
	-l _{OUT} N	Note 3		1	+25°C	-	-50	mA
				2	+125°C	-	-40	mA
				3	-55°C	-	-28	mA
Quiescent Power	Icc	$R_L = 100\Omega$		1	+25°C	6.6	7.1	mA
Supply Current					+125°C, -55°C	6.2	7.5	mA
	I _{EE}	$R_L = 100\Omega$		1	+25°C	-7.1	-6.6	mA
				2, 3	+125°C, -55°C	-7.5	-6.2	mA
Clamp Accuracy	V _H CLMP	$A_V = -1$, V_{IN}	= -1.6V	1	+25°C	-125	125	mV
		V _H = 1V		2, 3	+125°C, -55°C	-125	125	mV
	V _L CLMP	A _V = -1, V _{IN}	= +1.6V	1	+25°C	-125	125	mV
		V _L = -1V		2, 3	+125°C, -55°C	-125	125	mV
Clamp Input Current	V _H BIAS	V _H = 1V		1	+25°C	-	200	μА
				2, 3	+125°C, -55°C	-	200	μА
	V _L BIAS	V _L = -1V		1	+25°C	-200	-	μА
				2, 3	+125°C, -55°C	-200	-	μА

NOTES:

- Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
- 2. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 3. Guaranteed from V_{OUT} Test with R_L = 50 Ω , by: I_{OUT} = $V_{OUT}/50\Omega$.

Specifications HFA1115/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)			
Interim Electrical Parameters (Pre Burn-In)	1			
Final Electrical Test Parameters	1 (Note 1), 2, 3			
Group A Test Requirements	1, 2, 3			
Groups C and D Endpoints	1			

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $59 \times 58.2 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1500 \times 1480 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:

TRANSISTOR COUNT: 89

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1115/883

 V_{L}

HFA1120/883

850MHz Current Feedback Amplifier with Offset Adjust

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Distortion (HD3, 30MHz)-84dBc (Typ)
- Wide -3dB Bandwidth 850MHz (Typ)
- Very High Slew Rate 2300V/μs (Typ)
- Excellent Gain Flatness (to 50MHz)..... 0.05dB (Typ)
- High Output Current 65mA (Typ)
- Fast Overdrive Recovery.....<10ns (Typ)

Applications

- · Video Switching and Routing
- · Pulse and Video Amplifiers
- Wideband Amplifiers
- · RF/IF Signal Processing
- Flash A/D Driver
- . Medical Imaging Systems

Description

The HFA1120/883 is a high speed, wideband, fast settling current feedback amplifier. Built with Harris' proprietary, complementary bipolar UHF-1 process, it is the fastest monolithic amplifier available from any semiconductor manufacturer.

The HFA1120/883's wide bandwidth, fast settling characteristic, and low output impedance, make this amplifier ideal for driving fast A/D converters. Additionally, it offers offset voltage nulling capabilities as described in the "Offset Adjustment" section of this datasheet.

Component and composite video systems will also benefit from this amplifier's performance, as indicated by the excellent gain flatness, and 0.03%/0.05 Degree Differential Gain/ Phase specifications ($R_L = 75\Omega$).

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE		
HFA1120MJ/883	-55°C to +125°C	8 Lead CerDIP		

Pinout

(CERDIP) TOP VIEW

Specifications HFA1120/883

Absolute Maximum Ratings	Thermal Information
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Thermal Resistance θ _{JA} θ _{JC} CerDIP Package
CALITION: Stranger above these listed in "Absolute Maximum Detings" may as	use permanent demand to the device. This is a stress only rating and operation

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-6	6	mV
			2, 3	+125°C, -55°C	-10	10	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 2V$	1	+25°C	40	-	dB
Rejection Ratio		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	38	-	dB
Power Supply	PSRRP	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	45	-	dB
Rejection Ratio		V+ = 6.25V, V- = -5V V+ = 3.75V, V- = -5V	2, 3	+125°C, -55°C	42	-	dB
	PSRRN	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	45	-	dB
		V+ = 5V, V- = -6.25V V+ = 5V, V- = -3.75V	2, 3	+125°C, -55°C	42	-	dB
Non-Inverting Input	I _{BSP}	V _{CM} = 0V	1	+25°C	-40	40	μА
(+IN) Current			2, 3	+125°C, -55°C	-65	65	μА
+IN Current	CMS _{IBP}	$\Delta V_{CM} = \pm 2V$	1	+25°C	-	40	μA/V
Common Mode Sensitivity		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	-	50	μA/V
+IN Resistance	+R _{IN}	Note 1	1	+25°C	25	-	kΩ
			2, 3	+125°C, -55°C	20	-	kΩ
Inverting Input (-IN)	I _{BSN}	V _{CM} = 0V	1	+25°C	-50	50	μА
Current			2, 3	+125°C, -55°C	-75	75	μА
-IN Current Adjust	ADJ _{IBN}	V _{CM} = 0V, Note 3	1	+25°C	100	-100	μА
Range			2, 3	+125°C, -55°C	100	-100	μА
-IN Current	CMS _{IBN}	$\Delta V_{CM} = \pm 2V$	1	+25°C	-	7	μA/V
Common Mode Sensitivity		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	-	10	μA/V
-IN Current Power	PPSS _{IBN}	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	-	15	μΑ/V
Supply Sensitivity		V+ = 6.25V, V- = -5V V+ = 3.75V, V- = -5V	2, 3	+125°C, -55°C	-	27	μ A /V
	NPSS _{IBN}	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	-	15	μΑ/V
		V+ = 5V, V- = -6.25V V+ = 5V, V- = -3.75V	2, 3	+125°C, -55°C	-	27	μA/V
Output Voltage	V _{OP100}	A _V = -1 V _{IN} = -	3.5V 1	+25°C	3	-	V
Swing		$R_L = 100\Omega$ $V_{IN} = -$	3V 2, 3	+125°C, -55°C	2.5	-	V
	V _{ON100}	$A_V = -1$ $V_{IN} = -1$	-3.5V 1	+25°C	× -	-3	٧
		$R_L = 100\Omega$ $V_{IN} = 4$	-3V 2, 3	+125°C, -55°C	-	-2.5	٧

Specifications HFA1120/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN			
PARAMETERS	SYMBOL	COND	ITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage	V _{OP50}	A _V = -1	$V_{IN} = -3V$	1,2	+25°C, +125°C	2.5	-	V
Swing		$R_L = 50\Omega$	V _{IN} = -2V	3	-55°C	1.5	-	٧
	V _{ON50}		V _{IN} = +3V	1, 2	+25°C, +125°C	-	-2.5	V
		$R_L = 50\Omega$	V _{IN} = +2V	3	-55°C	-	-1.5	٧
Output Current	+lout	Note 2		1, 2	+25°C, +125°C	50	-	mA
	,			3	-55°C	30	-	mA
	-l _{out}	Note 2		1, 2	+25°C, +125°C	-	-50	mA
				3	-55°C	-	-30	mA
Quiescent Power	lcc	$R_L = 100\Omega$		1	+25°C	14	26	mA
Supply Current	Supply Current			2, 3	+125°C, -55°C	-	33	mA
	I _{EE}	$R_L = 100\Omega$		1	+25°C	-26	-14	mA
				2, 3	+125°C, -55°C	-33	-	mA

NOTES:

- 1. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 2. Guaranteed from V_{OUT} Test with R_L = 50 Ω , by: I_{OUT} = V_{OUT} /50 Ω .
- 3. This is the minimum change in inverting input bias current when a BAL pin is connected to V- through a 50Ω resistor.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $A_V = +2$, $R_F = 360\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
-3dB Bandwidth	BW(-1)	$A_V = -1, R_F = 430\Omega$ $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	300	-	MHz
	BW(+1)	$A_V = +1, R_F = 510\Omega$ $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	550	-	MHz
	BW(+2)	$A_V = +2$, $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	350	-	MHz
Gain Flatness	GF30	$A_V = +2$, $R_F = 510\Omega$, $f \le 30MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.04	dB
	GF50	$A_V = +2$, $R_F = 510\Omega$, $f \le 50MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.10	dB
	GF100	$A_V = +2$, $R_F = 510\Omega$, $f \le 100MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.30	dB
Slew Rate	+SR(+1)	$A_V = +1$, $R_F = 510\Omega$ $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1200	-	V/µs
	-SR(+1)	$A_V = +1$, $R_F = 510\Omega$ $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1100	-	V/µs
	+SR(+2)	$A_V = +2$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1650	-	V/µs
	-SR(+2)	$A_V = +2$, $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1500	-	V/µs

Specifications HFA1120/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $A_V = +2$, $R_F = 360\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Rise and Fall Time	T _R	$A_V = +2, V_{OUT} = 0.5V_{P-P}$	1,2	+25°C	-	1	ns
	T _F	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1,2	+25°C	-	1	ns
Overshoot	+OS	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1,3	+25°C	-	25	%
	-OS	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1,3	+25°C	-	20	%
Settling Time	TS(0.1)	$A_V = +2$, $R_F = 510\Omega$ $V_{OUT} = 2V$ to 0V, to 0.1%	1	+25°C	-	20	ns
	TS(0.05)	$A_V = +2$, $R_F = 510\Omega$ $V_{OUT} = 2V$ to 0V, to 0.05%	1	+25°C	-	33	ns
2nd Harmonic Distortion	HD2(30)	$A_V = +2$, $f = 30MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-48	dBc
	HD2(50)	$A_V = +2$, $f = 50MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-45	dBc
	HD2(100)	A _V = +2, f = 100MHz V _{OUT} = 2V _{P-P}	1	+25°C	-	-35	dBc
3rd Harmonic Distortion	HD3(30)	$A_V = +2$, $f = 30MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-65	dBc
	HD3(50)	A _V = +2, f = 50MHz V _{OUT} = 2V _{P-P}	1	+25°C	-	-60	dBc
	HD3(100)	$A_V = +2$, $f = 100MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-40	dBc

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot-to-lot and within lot variation.
- 2. Measured between 10% and 90% points.
- For 200ps input transition times. Overshoot decreases as input transition times increase, especially for A_V = +1. Please refer to Performance Curves.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $63 \times 44 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1600 \times 1130 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kű0.4kÅ Type: Metal 2: AlCu(2%)

Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:

2.0 x 10⁵ A/cm² at 47.5mA

TRANSISTOR COUNT: 52

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1120/883

OUT

HFA1130/883

Output Clamping, 850MHz Current Feedback Amplifier

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- User Programmable Output Voltage Clamps
- Low Distortion (HD3, 30MHz) -84dBc (Typ)
- Wide -3dB Bandwidth 850MHz (Typ)
- Very High Slew Rate 2300V/μs (Typ)
- Excellent Gain Flatness (to 50MHz) 0.05dB (Typ)
- High Output Current 65mA (Typ)
- Fast Overdrive Recovery.....<1ns (Typ)

Applications

- · Residue Amplifier
- Video Switching and Routing
- · Pulse and Video Amplifiers
- Wideband Amplifiers
- · RF/IF Signal Processing
- Flash A/D Driver
- · Medical Imaging Systems

Description

The HFA1130/883 is a high speed, wideband current feedback amplifier featuring programmable output clamps. Built with Harris' proprietary complementary bipolar UHF-1 process, it is the fastest monolithic amplifier available from any semiconductor manufacturer.

This amplifier is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overdrive recovery times. The output clamp function allows the designer to set the maximum positive and negative output levels, thereby protecting later stages from damage or input saturation. The sub-nanosecond overdrive recovery time quickly returns the amplifier to linear operation following an overdrive condition.

The HFA1130/883's wide bandwidth, fast settling characteristic, and low output impedance, coupled with the output clamping ability, make this amplifier ideal for driving fast A/D converters.

Component and composite video systems will also benefit from this amplifier's performance, as indicated by the excellent gain flatness, and 0.03%/0.05 Degree Differential Gain/ Phase specifications ($R_1 = 75\Omega$).

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE	
HFA1130MJ/883	-55°C to +125°C	8 Lead CerDIP	
HFA1130ML/883	-55°C to +125°C	20 Lead Ceramic LCC	

Pinouts

Specifications HFA1130/883

Absolute Maximum Ratings	Thermal Information		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Thermal Resistance CerDIP Package Ceramic LCC Package Maximum Package Power Dissipation at +75° CerDIP Package Ceramic LCC Package Package Power Dissipation Derating Factor a CerDIP Package Ceramic LCC Package	75°C/W °C bove +75°C	1.33W 8.7mW/°C
CALITION! Changes about the self-tend in Mahard the Manieron Delicary			and an anadem

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-6	6	mV
			2, 3	+125°C, -55°C	-10	10	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 2V$	1	+25°C	40	-	dB
Rejection Ratio		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	38	-	dB
Power Supply	PSRRP	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	45	-	dB
Rejection Ratio		V+ = 6.25V, V- = -5V V+ = 3.75V, V- = -5V	2, 3	+125°C, -55°C	42	-	dB
	PSRRN	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	45	-	dB
		V+ = 5V, V- = -6.25V V+ = 5V, V- = -3.75V	2, 3	+125°C, -55°C	42	-	dB
Non-Inverting Input	I _{BSP}	V _{CM} = 0V	1	+25°C	-40	40	μА
(+IN) Current			2, 3	+125°C, -55°C	-65	65	μА
+IN Current Common	CMS _{IBP}	$\Delta V_{CM} = \pm 2V$	1	+25°C	-	40	μA/V
Mode Sensitivity		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	-	50	μA/V
+IN Resistance	+R _{IN}	Note 1	1	+25°C	25	-	kΩ
			2, 3	+125°C, -55°C	20	-	kΩ
Inverting Input (-IN)	I _{BSN}	V _{CM} = 0V	1	+25°C	-50	50	μА
Current			2, 3	+125°C, -55°C	-75	75	μА
-IN Current Common	CMS _{IBN}	$\Delta V_{CM} = \pm 2V$	1	+25°C	-	7	μA/V
Mode Sensitivity		V+ = 3V, V- = -7V V+ = 7V, V- = -3V	2, 3	+125°C, -55°C	-	10	μA/V
-IN Current Power	PPSS _{IBN}	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	-	15	μA/V
Supply Sensitivity		V+ = 6.25V, V- = -5V V+ = 3.75V, V- = -5V	2, 3	+125°C, -55°C	-	27	μ Α/V
	NPSS _{IBN}	$\Delta V_{SUP} = \pm 1.25V$	1	+25°C	-	15	μA/V
		V+ = 5V, V- = -6.25V V+ = 5V, V- = -3.75V	2, 3	+125°C, -55°C	-	27	μA/V
Output Voltage Swing	V _{OP100}	$A_V = -1$ $V_{IN} = 3.5V$	1	+25°C	3	-	V
		$R_L = 100\Omega$ $V_{IN} = -3V$	2, 3	+125°C, -55°C	2.5	-	V
	V _{ON100}	A _V = -1 V _{IN} =+3.5V	1	+25°C	-	-3	V
		$R_L = 100\Omega$ $V_{IN} = +3V$	2, 3	+125°C, -55°C	-	-2.5	V

Specifications HFA1130/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	V _{OP50}	$A_V = -1$ $V_{IN} = -3V$	1, 2	+25°C, +125°C	2.5	-	V
		$R_L = 50\Omega$ $V_{IN} = -2V$	3	-55°C	1.5	-	V
	V _{ON50}	$A_V = -1$ $V_{IN} = +3V$	1, 2	+25°C, +125°C	-	-2.5	V
		$R_L = 50\Omega$ $V_{IN} = +2V$	3	-55°C	-	-1.5	V
Output Current	+l _{out}	Note 2	1, 2	+25°C, +125°C	50	-	mA
			3	-55°C	30	-	mA
	-lout	Note 2	1, 2	+25°C, +125°C	-	-50	mA
			3	-55°C	-	-30	mA
Quiescent Power	Icc	$R_L = 100\Omega$	1	+25°C	14	26	mA
Supply Current			2, 3	+125°C, -55°C	-	33	mA
	I _{EE}	$R_L = 100\Omega$	1	+25°C	-26	-14	mA
			2, 3	+125°C, -55°C	-33	-	mA
Clamp Accuracy	V _H CLMP	$A_V = -1$, $V_{1N} = -2V$	1	+25°C	-125	125	mV
		V _H = 1V	2, 3	+125°C, -55°C	-200	200	mV
	V _L CLMP	$A_V = -1$, $V_{1N} = +2V$	1	+25°C	-125	125	mV
		V _L = -1V	2, 3	+125°C, -55°C	-200	200	mV
Clamp Input Current	V _H BIAS	V _H = 1V	1	+25°C	-	200	μА
			2, 3	+125°C, -55°C	-	300	μА
	V _L BIAS	V _L = -1V	1	+25°C	-200	-	μА
			2, 3	+125°C, -55°C	-300	-	μА

NOTES

- 1. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 2. Guaranteed from $\rm V_{OUT}$ Test with $\rm R_L$ = 50 $\!\Omega_{\rm h}$ by: $\rm I_{OUT}$ = $\rm V_{OUT}/50 \Omega_{\rm h}$

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{SUPPLY} = \pm 5V$, $A_V = +2$, $R_F = 360\Omega$, $R_L = 100\Omega$, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
-3dB Bandwidth	BW(-1)	$A_V = -1$, $R_F = 430\Omega$ $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	300	-	MHz
	BW(+1)	$A_V = +1, R_F = 510\Omega$ $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	550	-	MHz
	BW(+2)	$A_V = +2$, $V_{OUT} = 200 \text{mV}_{P-P}$	1	+25°C	350	-	MHz
Gain Flatness	GF30	$A_V = +2$, $R_F = 510\Omega$, $f \le 30MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.04	dB
	GF50	$A_V = +2$, $R_F = 510\Omega$, $f \le 50MHz$ $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.10	dB
	GF100	$A_V = +2$, $R_F = 510\Omega$, $f \le 100MHz$, $V_{OUT} = 200mV_{P-P}$	1	+25°C	-	±0.30	dB

Specifications HFA1130/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: V_{SUPPLY} = ±5V, A_V = +2, R_F = 360Ω, R_L = 100Ω, Unless Otherwise Specified.

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR(+1)	$A_V = +1, R_F = 510\Omega$ $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1200	-	V/µs
	-SR(+1)	$A_V = +1, R_F = 510\Omega$ $V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1100	-	V/µs
	+SR(+2)	$A_V = +2, V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1650	-	V/µs
	-SR(+2)	$A_V = +2, V_{OUT} = 5V_{P-P}$	1, 2	+25°C	1500	-	V/μs
Rise and Fall Time	T _R	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	1	ns
	T _F	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1, 2	+25°C	-	1	ns
Overshoot	+OS	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1,3	+25°C	-	25	%
	-OS	$A_V = +2$, $V_{OUT} = 0.5V_{P-P}$	1,3	+25°C	-	20	%
Settling Time	TS(0.1)	$A_V = +2$, $R_F = 510\Omega$ $V_{OUT} = 2V$ to 0V, to 0.1%	1	+25°C	-	20	ns
	TS(0.05)	$A_V = +2$, $R_F = 510\Omega$ $V_{OUT} = 2V$ to 0V, to 0.05%	1	+25°C	-	33	ns
2nd Harmonic Distortion	HD2(30)	$A_V = +2, f = 30MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-48	dBc
	HD2(50)	$A_V = +2$, $f = 50MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-45	dBc
	HD2(100)	$A_V = +2$, $f = 100MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-35	dBc
3rd Harmonic Distortion	HD3(30)	$A_V = +2$, $f = 30MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-65	dBc
	HD3(50)	$A_V = +2$, $f = 50MHz$ $V_{OUT} = 2V_{P,P}$	1	+25°C	-	-60	dBc
	HD3(100)	$A_V = +2$, $f = 100MHz$ $V_{OUT} = 2V_{P-P}$	1	+25°C	-	-40	dBc

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot-to-lot and within lot variation.
- 2. Measured between 10% and 90% points.
- For 200ps input transition times. Overshoot decreases as input transition times increase, especially for A_V = +1. Please refer to Performance Curves.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

HFA1130/883

Die Characteristics

DIE DIMENSIONS:

63 x 44 x 19 mils ± 1 mils 1600 x 1130 x 483µm ± 25.4µm

METALLIZATION:

Type: Metal 1: AICu(2%)/TiW

Type: Metal 2: AlCu(2%)

Thickness: Metal 1: 8kÅ ± 0.4kÅ Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:

2.0 x 10⁵ A/cm² at 47.5mA

TRANSISTOR COUNT: 52

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1130/883

HFA1135/883

High Speed, Low Power Current Feedback Amplifier with Programmable Output Limiting

June 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- User Programmable Output Voltage Limiting
- Fast Overdrive Recovery.....<1ns (Typ)
- Low Supply Current..... 6.9mA (Typ)
- High Slew Rate...... 1200V/us (Tvp)
- High Input Impedance 2MΩ (Typ)
- Excellent Gain Flatness (to 50MHz) ±0.07dB (Typ)

Applications

- Flash A/D Driver
- Video Switching and Routing
- Pulse and Video Amplifiers
- Wideband Amplifiers
- · RF/IF Signal Processing
- · Medical Imaging Systems

Description

The HFA1135/883 is a high speed, low power current feedback amplifier built with Harris' proprietary complementary bipolar UHF-1 process. This amplifier features user programmable output limiting, via the VH and V_L pins.

The HFA1135/883 is the ideal choice for high speed, low power applications requiring output limiting (e.g. flash A/D drivers), especially those requiring fast overdrive recovery times. The limiting function allows the designer to set the maximum and minimum output levels to protect downstream stages from damage or input saturation. The subnanosecond overdrive recovery time ensures a quick return to linear operation following an overdrive condition.

Component and composite video systems also benefit from this op amp's performance, as indicated by the gain flatness, and differential gain and phase specifications.

The HFA1135 is a low power, high performance upgrade for the CLC501 and CLC502.

Ordering Information

9			
PART NUMBER	TEMPERATURE RANGE	PACKAGE	
HFA1135MJ/883	-55°C to +125°C	8 Lead CerDIP	
HFA1135ML/883	-55°C to +125°C	20 Lead Ceramic LCC	

Pinouts

Specifications HFA1135/883

Absolute Maximum Ratings

Absolute maximum natings
Voltage Between V+ and V
Differential Input Voltage5V
Voltage at Either Input Terminal V+ to V-
Output Current (Note 1) Short Circuit Protected
Output Current (50% Duty Cycle, Note 1) 60mA
Junction Temperature
ESD Rating> 2000V
Storage Temperature Range65°C \leq T _A \leq +150°C

Lead Temperature (Soldering 10s).....+300°C

Thermal Information

THOI III CHI III CHI II					
Thermal Resistance	θ_{JA}	θ_{JC}			
CerDIP Package	115°C/W	30°C/W			
Ceramic LCC Package		23°C/W			
Maximum Package Power Dissipation at +75°C					
CerDIP Package		0.87W			
Ceramic LCC Package					
Package Power Dissipation Derating Factor	or above +75°	C			
CerDIP Package		.8.7mW/°C			
Ceramic LCC Package		13.3mW/°C			

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V_{SUPPLY} = ±5V, A_V = +1, R_F = 510Ω, R_{SOURCE} = 0Ω, R_L = 100Ω, V_{OUT} = 0V, Unless Otherwise Specified.

			GROUP A		LIN		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-5	5	mV
			2, 3	+125°C, -55°C	-10	10	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	47	-	dB
Rejection Ratio		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	44	-	dB
		ΔV _{CM} = ±1.2V V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	44	-	dB
Power Supply	PSRRP	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	50	-	dB
Rejection Ratio		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	46	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	46	-	dB
	PSRRN	- SOFFLI	1	+25°C	50	-	dB
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	46	-	dB
		$\Delta V_{SUPPLY} = \pm 1.2V$ V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	46	-	dB
Non-Inverting Input (+IN)	I _{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
Current			2, 3	+125°C, -55°C	-25	25	μА
+IN Current Common	l lbr	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	-	1.25	μA/V
Mode Sensitivity		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	-	2.85	μA/V
		ΔV _{CM} = ±1.2V V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	-	2.85	μΑ/V
+IN Resistance	+R _{IN}	Note 2	1	+25°C	800	-	kΩ
			2, 3	+125°C, -55°C	350	-	kΩ

Specifications HFA1135/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS			
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
+IN Current Power	PPSS _{IBP}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	1	μA/V	
Supply Sensitivity		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	-	3	μA/V	
		$\Delta V_{SUPPLY} = \pm 1.2V$ V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	-	3	μA/V	
	NPSS _{IBP}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	1	μA/V	
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	-	3	μΑ/V	
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	-	3	μA/V	
Inverting Input (-IN)	I _{BSN}	V _{CM} = 0V	1	+25°C	-7.5	7.5	μА	
Current			2, 3	+125°C, -55°C	-25	25	μА	
-IN Current Common	CMS _{IBN}	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	-	6	μΑ/V	
Mode Sensitivity		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	-	8	μA/V	
		ΔV _{CM} = ±1.2V V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	-	8	μA/V	
-IN Current Power	PPSSIBN	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	5	μA/V	
Supply Sensitivity	V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	-	8	μA/V		
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	-	8	μΑ/V	
		NPSS _{IBN} Δ	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	5	μA/V
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	-	8	μA/V	
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	-	8	μA/V	
Output Voltage Swing	V _{OP100}	$A_V = -1$ $V_{IN} = -3.2V$	1	+25°C	3	-	V	
		$R_{L} = 100\Omega \qquad V_{IN} = -3V$	2, 3	+125°C, -55°C	2.8	-	V	
	V _{ON100}	A. = -1 V=+3 2V	1	+25°C	-	-3	V	
		$R_{L} = 100\Omega \frac{V_{IN} = +3V}{V_{IN} = +3V}$	2, 3	+125°C, -55°C	-	-2.8	٧	
Output Voltage Swing	V _{OP50}	$A_V = -1$ $V_{IN} = -2.7V$	1	+25°C	2.5	-	٧	
		$R_L = 50\Omega$ $V_{IN} = -2.25V$	2	+125°C	2.0	-	٧	
		V _{IN} = -2.25V	3	-55°C	1.4	-	٧	
	V _{ON50}	$A_V = -1$ $V_{IN} = +2.7V$	1	+25°C	-	-2.5	٧	
		$R_L = 50\Omega$ $V_{IN} = +2.25V$	2	+125°C	-	-2.0	٧	
		V _{IN} = +2.25V	3	-55°C	-	-1.4	٧	
Output Current	+l _{OUT}	Note 3	1	+25°C	50	-	mA	
			2	+125°C	40	-	mA	
			3	-55°C	28	-	mA	
	-l _{out}	Note 3	1	+25°C	-	-50	mA	
			2	+125°C	-	-40	mA	
	1		3	-55°C	-	-28	mA	

Specifications HFA1135/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Power	Icc	$R_L = 100\Omega$	1	+25°C	6.6	7.1	mA
Supply Current			2, 3	+125°C, -55°C	6.2	7.5	mA
	I _{EE}	$R_L = 100\Omega$	1	+25°C	-7.1	-6.6	mA
			2, 3	+125°C, -55°C	-7.5	-6.2	mA
Clamp Accuracy	V _H CLMP	A _V = -1, V _{IN} = -2V V _H = 1V	1	+25°C	-125	125	mV
		V _H = 1V	2, 3	+125°C, -55°C	-150	150	mV
	V _L CLMP	$A_V = -1, V_{IN} = +2V$ $V_I = -1V$	1	+25°C	-125	125	mV
		V _L = -1V	2, 3	+125°C, -55°C	-150	150	mV
Clamp Input Current	V _H BIAS	V _H = 1V	1	+25°C	-	200	μА
			2, 3	+125°C, -55°C	-	200	μА
	V _L BIAS	V _L = -1V	1	+25°C	-200	-	μА
			2, 3	+125°C, -55°C	-200	-	μА

NOTES

- Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
- 2. Guaranteed from +IN Common Mode Rejection Test, by: +R_{IN} = 1/CMS_{IBP}.
- 3. Guaranteed from V_{OUT} Test with $R_L = 50\Omega$, by: $I_{OUT} = V_{OUT}/50\Omega$.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $59 \times 58.2 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1500 \times 1480 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ± 0.4kÅ Type: Metal 2: AlCu(2%)

Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:

TBD

TRANSISTOR COUNT: 89

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1135/883

Spec Number 511115-883

HFA1145/883

High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable

June 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Supply Current..... 5.9mA (Typ)
- High Slew Rate...... 1000V/μs (Typ)
- Excellent Gain Flatness (to 50MHz) ±0.07dB (Typ)
- Excellent Differential Gain 0.02% (Typ)
- Excellent Differential Phase 0.03 Deg. (Typ)
- High Output Current 60mA (Typ)
- Output Enable / Disable Time 180ns/35ns (Typ)

Applications

- Multiplexed Flash A/D Driver
- RGB Multiplexers / Preamps for Multimedia Systems
- Video Switching and Routing
- · Pulse and Video Amplifiers
- Wideband Amplifiers
- RF/IF Signal Processing
- . Medical Imaging Systems

Description

The HFA1145/883 is a high speed, low power current feedback amplifier built with Harris' proprietary complementary bipolar UHF-1 process.

This amplifier features a TTL/CMOS compatible disable control, pin 8, which when pulled low, reduces the supply current and forces the output into a high impedance state. This allows easy implementation of simple, low power video switching and routing systems. Component and composite video systems also benefit from this op amp's excellent gain flatness, and good differential gain and phase specifications.

Multiplexed A/D applications will also find the HFA1145/883 useful as the A/D driver/multiplexer.

The HFA1145/883 is a low power, high performance upgrade for the CLC410.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE	
HFA1145MJ/883	-55°C to +125°C	8 Lead CerDIP	

Pinout

File Number 3726

Specifications HFA1145/883

Absolute Maximum Ratings	
Voltage Between V+ and V	. 12V
Differential Input Voltage	5V
Voltage at Either Input Terminal	+ to V-
Output Current (Note 1) Short Circuit Pro	tected
Output Current (50% Duty Cycle, Note 1)	60mA
Junction Temperature +	175°C
ESD Rating>2	2000V
Storage Temperature Range65°C ≤ T _A ≤ +	150°C
Lead Temperature (Soldering 10s)+	300°C

Therr	nal	Information	

Thermal Resistance CerDIP Package	θ _{JA} 115°C/W	θ _{JC}
Maximum Package Power Dissipation at +		
CerDIP Package		0.87W
Package Power Dissipation Derating Factor	or above +75°	°C
CerDIP Package		8.7mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V_{SUPPLY} = ±5V, A_V = +1, R_F = 510Ω, R_{SOURCE} = 0Ω, R_L = 100Ω, V_{OUT} = 0V, $\overline{\rm DIS}$ = Floated, Unless Otherwise Specified.

			GROUP A	GROUP A LIMITS			
PARAMETERS	SYMBOL.	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-5	5	mV
			2, 3	+125°C, -55°C	-10	10	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	47	-	dB
Rejection Ratio		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	44	-	dB
		ΔV _{CM} = ±1.2V V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	44	-	dB
Power Supply	PSRRP	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	50	-	dB
Rejection Ratio		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	46	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	46	-	dB
	PSRRN	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	50	-	dB
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	46	٠.	dB
		$\Delta V_{SUPPLY} = \pm 1.2V$ V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	46	-	dB
Non-Inverting Input (+IN)	I _{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
Current			2, 3	+125°C, -55°C	-25	25	μА
+IN Current Common	CMS _{IBP}	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	-	1.25	μΑ/V
Mode Sensitivity		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	-	2.85	μA/V
		ΔV _{CM} = ±1.2V V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	-	2.85	μA/V
+IN Resistance	+R _{IN}	Note 2	1	+25°C	800	-	kΩ
	,		2, 3	+125°C, -55°C	350	-	kΩ

Specifications HFA1145/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, $\overline{DIS} = Floated$, Unless Otherwise Specified.

	1	GROUP A		LIN	IITS	_	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
+IN Current Power	PPSS _{IBP}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	1	μA/V
Supply Sensitivity		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	-	3	μA/V
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	-	3	μA/V
	NPSS _{IBP}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	1	μA/V
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	-	3	μA/V
		$\Delta V_{SUPPLY} = \pm 1.2V$ V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	-	3	μΑ/ν
Inverting Input (-IN)	I _{BSN}	V _{CM} = 0V	1	+25°C	-7.5	7.5	μА
Current			2, 3	+125°C, -55°C	-25	25	μА
-IN Current Common	CMS _{IBN}	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	-	6	μΑΛ
Mode Sensitivity		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	-	8	μΑ/ν
		$\Delta V_{CM} = \pm 1.2V$ V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	-	8	μΑ/\
-IN Current Power	PPSS _{IBN}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	5	μΑΛ
Supply Sensitivity		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	-	8	μΑΛ
	NPSS _{IBN}	ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	-	8	μΑΛ
		$\Delta V_{SUPPLY} = \pm 1.8V$. 1	+25°C	-	5	μΑΛ
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	-	8	μΑΛ
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	-	8	μΑ/ν
Output Voltage Swing	V _{OP100}	$A_V = -1$ $V_{IN} = -3.2V$	1	+25°C	3	-	V
		$R_{L} = 100\Omega \frac{V_{IN} = -3V}{V_{IN} = -3V}$	2, 3	+125°C, -55°C	2.8	-	٧
	V _{ON100}	$A_{V} = -1$ $V_{IN} = +3.2V$	1	+25°C	-	-3	V
		$R_{L} = 100\Omega \frac{V_{IN} = +3V}{V_{IN} = +3V}$	2, 3	+125°C, -55°C	-	-2.8	V
Output Voltage Swing	V _{OP50}	$A_V = -1$ $V_{IN} = -2.7V$	1	+25°C	2.5	-	V
		$R_L = 50\Omega$ $V_{IN} = -2.25V$	2	+125°C	2.0	-	V
		V _{IN} = -2.25V	3	-55°C	1.4	-	V
	V _{ON50}	$A_V = -1$ $V_{IN} = +2.7V$	1	+25°C	-	-2.5	٧
		$R_L = 50\Omega$ $V_{IN} = +2.25V$	2	+125°C	-	-2.0	V
		V _{IN} = +2.25V	3	-55°C	-	-1.4	٧
Output Current	+l _{OUT}	Note 3	1	+25°C	50	-	mA
			2	+125°C	40	-	mA
			3	-55°C	28	-	mA
	-l _{out}	Note 3	1	+25°C	-	-50	mA
			2	+125°C	-	-40	mA
			3	-55°C	-	-28	mA

Specifications HFA1145/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 510\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, $\overline{DIS} =$ Floated, Unless Otherwise Specified.

		GROUP A			LIMITS			
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
Quiescent Power	Icc	$R_L = 100\Omega$	1	+25°C	5.6	6.1	mA	
Supply Current			2, 3	+125°C, -55°C	5.2	6.5	mA	
	I _{EE}	$R_L = 100\Omega$	1	+25°C	-6.1	-5.6	mA	
			2, 3	+125°C, -55°C	-6.5	-5.2	mA	
Disabled Power	DISICC	$R_L = 100\Omega$, $V_{\overline{DIS}} = 0V$	1	+25°C	-	4	mA	
Supply Current			2, 3	+125°C, -55°C	-	4	mA	
	DISIEE	$R_L = 100\Omega$, $V_{\overline{DIS}} = 0V$	1	+25°C	-4	-	mA	
			2, 3	+125°C, -55°C	-4	-	mA	
Disabled Output	DOLC	$V_{\overline{DIS}} = 0V$,	1	+25°C	-10	10	μА	
Leakage Current		$V_{IN} = \pm 2.5V, V_{OUT} = \pm 2.5V$	2, 3	+125°C, -55°C	-10	10	μА	
Disable Input	DILLC	$V_{\overline{DIS}} = 0V$	1	+25°C	-	200	μА	
Current			2, 3	+125°C, -55°C	-	200	μА	
	DILHC	$V_{\overline{DIS}} = 5V$	1	+25°C	-	15	μА	
			2, 3	+125°C, -55°C	-	15	μА	
Disable Input	DILLV		1	+25°C	-	0.8	V	
Logic Levels			2, 3	+125°C, -55°C	- 1	0.8	V	
	DILHV		1, 2	+25°C, +125°C	2.0	-	V	
			3	-55°C	2.4	-	V	

NOTES:

- Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
- 2. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 3. Guaranteed from V_{OUT} Test with $R_L = 50\Omega$, by: $I_{OUT} = V_{OUT}/50\Omega$.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $59 \times 58.2 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1500 \times 1480 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ± 0.4kÅ Type: Metal 2: AICu(2%)

Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

WORST CASE CURRENT DENSITY: TBD

TRANSISTOR COUNT: 75

Metallization Mask Layout

HFA1145/883

NOTE: This pad is not bonded out on packaged units. Die users may set a GND reference, via this pad, to ensure the TTL compatibility of the DIS input when using asymmetrical supplies (e.g. V+ = 10V, V- = 0V).

HFA1212/883

PRELIMINARY

June 1994

Dual, High Speed, Low Power, **Video Closed Loop Buffer**

Features

- · This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Standard Operational Amplifier Pinout
- Low Supply Current...... 5.9mA/Op Amp (Typ)
- Excellent Gain Accuracy......0.99V/V (Typ)
- Wide -3dB Bandwidth 340MHz (Typ)

- Excellent Gain Flatness (to 50MHz) ±0.02dB (Tvp)
- Fast Overdrive Recovery.....<10ns (Typ)

Applications

- Flash A/D Driver
- · Video Switching and Routing
- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- · RF/IF Signal Processing
- · Medical Imaging Systems

Description

The HFA1212/883 is a dual closed loop Buffer featuring user programmable gain and high speed performance. Manufactured on Harris' proprietary complementary bipolar UHF-1 process, this device offers wide -3dB bandwidth of 340MHz. very fast slew rate, excellent gain flatness and high output current.

A unique feature of the pinout allows the user to select a voltage gain of +1, -1, or +2, without the use of any external components. Gain selection is accomplished via connections to the inputs, as described in the "Application Information" section. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE		
HFA1212MJ/883	-55°C to +125°C	8 Lead CerDIP		

Pinout

Specifications HFA1212/883

Absolute Maximum Ratings

Thermal Information

Absolute maximum riatings	i iici iiiai iiiici iiiaaani	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Thermal Resistance	C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Offset	Vos	V _{CM} = 0V	1	+25°C	-10	10	mV
Voltage			2, 3	+125°C, -55°C	-20	20	mV
Channel-to-Channel	ΔV _{OS}	V _{CM} = 0V	1	+25°C	-15	15	mV
Output Offset Voltage Mismatch			2, 3	+125°C, -55°C	-30	30	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	42	-	dB
Rejection Ratio		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	39	-	dB
		ΔV _{CM} = ±1.2V V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	39	-	dB
Power Supply	PSRRP			+25°C	45	-	dB
Rejection Ratio		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	42	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	42	-	dB
	PSRRN	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	45	-	dB
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	42	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	42	-	dB
Non-Inverting Input	I _{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
(+IN) Current			2, 3	+125°C, -55°C	-25	25	μА
Channel-to-Channel	ΔI _{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
Mismatch			2, 3	+125°C, -55°C	-25	25	μА

Specifications HFA1212/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

				GROUP A		LIMITS		
PARAMETERS	SYMBOL	сом	DITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
+IN Current Common	CMS _{IBP}	$\Delta V_{CM} = \pm 1.8V$ V+ = 3.2V, V- = -6.8V		1	+25°C	-	1.25	μA/V
Mode Sensitivity		V + = 3.2V, $V + = 6.8V$, $V + = 6.8V$		2	+125°C	-	2.85	μΑ/V
		$\Delta V_{CM} = \pm 1.2$ V+ = 3.8V, V+ = 6.2V, V+	V- = -6.2V	3	-55°C	-	2.85	μA/V
+IN Resistance	+R _{IN}	Note 2		1	+25°C	800	-	kΩ
				2, 3	+125°C, -55°C	350	-	kΩ
Gain	A _{VP1}	A _V = +1		1	+25°C	0.98	1.02	V/V
		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	0.975	1.025	V/V
	A _{VM1}	A _V = -1		1	+25°C	-0.98	-1.02	V/V
		$V_{IN} = -1V$ to	$V_{IN} = -1V \text{ to } +1V$		+125°C, -55°C	-0.975	-1.025	V/V
	A _{VP2}	$A_V = +2$ $V_{IN} = -1V \text{ to } +1V$		1	+25°C	1.96	2.04	V/V
*				2, 3	+125°C, -55°C	1.95	2.05	V/V
Channel-to-Channel	ΔA _{VP1}	$A_V = +1$ $V_{1N} = -1V \text{ to } +1V$		1	+25°C	-0.02	0.02	V/V
Gain Mismatch				2, 3	+125°C, -55°C	-0.025	0.025	V/V
	ΔA_{VM1}	A _V = -1		1	+25°C	-0.025	0.025	V/V
		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	-0.025	0.025	V/V
	ΔA_{VP2}	A _V = +2		1	+25°C	-0.04	0.04	V/V
		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	-0.05	0.05	V/V
Output Voltage	V _{OP100}		V _{IN} = -3.2V	1	+25°C	3	-	V
Swing		$R_L = 100\Omega$	V _{IN} = -3V	2, 3	+125°C, -55°C	2.8	-	V
	V _{ON100}	A _V = -1	V _{IN} =+3.2V	1	+25°C	-	-3	V
		$R_L = 100\Omega$	V _{IN} = +3V	2, 3	+125°C, -55°C	-	-2.8	V
Output Voltage	V _{OP50}	A _V = -1	V _{IN} = -2.7V	1	+25°C	2.5	-	V
Swing		$R_L = 50\Omega$	V _{IN} = -2.25V	2	+125°C	2.0	-	٧
			V _{IN} = -2.25V	3	-55°C	1.4	-	٧
	V _{ON50}	A _V = -1	V _{IN} = +2.7V	1	+25°C	-	-2.5	٧
		$R_L = 50\Omega$	V _{IN} = +2.25V	2	+125°C	-	-2.0	V
			V _{IN} = +2.25V	3	-55°C	-	-1.4	V

Specifications HFA1212/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+lout	Note 3	1	+25°C	50	-	mA
			2	+125°C	40	-	mA
			3	-55°C	28	-	mA
	-lout	Note 3	1	+25°C	-	-50	mA
			2	+125°C	-	-40	mA
			3	-55°C		-28	mA
Quiescent Power	Icc	$R_L = 100\Omega$	1	+25°C	5.6	6.1	mA/Op Amp
Supply Current			2, 3	+125°C, -55°C	5.2	6.5	mA/Op Amp
	I _{EE}	$R_L = 100\Omega$	1	+25°C	-6.1	-5.6	mA/Op Amp
			2, 3	+125°C, -55°C	-6.5	-5.2	mA/Op Amp

NOTES:

- Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
- 2. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 3. Guaranteed from $\rm V_{OUT}$ Test with $\rm R_L$ = 50 $\!\Omega_{\rm r}$ by: $\rm I_{OUT}$ = $\rm V_{OUT}/50 \Omega_{\rm r}$

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)		
Interim Electrical Parameters (Pre Burn-In)	1		
Final Electrical Test Parameters	1(Note 1), 2, 3		
Group A Test Requirements	1, 2, 3		
Groups C and D Endpoints	1		

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $69 \times 92 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1750 \times 2330 \times 483 \mu\text{m} \pm 25.4 \mu\text{m}$

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ± 0.4kÅ Type: Metal 2: AlCu(2%)

Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:

TBD

TRANSISTOR COUNT: 150

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1212/883

HFA1245/883

PRELIMINARY

June 1994

Dual, High Speed, Low Power, Video Operational Amplifier with Output Disable

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Supply Current..... 5.9mA (Typ)
- Wide -3dB Bandwidth 530MHz (Typ)
- Excellent Gain Flatness (to 50MHz) ±0.11dB (Typ)
- Excellent Differential Gain 0.02% (Typ)
- Excellent Differential Phase 0.03 Deg. (Typ)
- High Output Current 60mA (Typ)
- Individual Output Enable/Disable
- Output Enable / Disable Time 160ns/20ns (Typ)

Applications

- . Multiplexed Flash A/D Driver
- RGB Multiplexers and Preamps
- · Video Switching and Routing
- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- · Hand Held and Miniaturized RF Equipment
- Battery Powered Communications

Description

The HFA1245/883 is a dual high speed, low power current feedback amplifier built with Harris' proprietary complementary bipolar UHF-1 process.

This amplifier features individual TTL/CMOS compatible disable controls, which when pulled low, reduce the supply current and force the output into a high impedance state. This allows easy implementation of simple, low power video switching and routing systems. Component and composite video systems also benefit from this op amp's excellent gain flatness, and good differential gain and phase specifications.

Multiplexed A/D applications will also find the HFA1245/883 useful as the A/D driver/multiplexer.

The HFA1245/883 is a low power, high performance upgrade for the popular HA5022/883.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE	
HFA1245MJ/883	-55°C to +125°C	14 Lead CerDIP	

Pinout

Specifications HFA1245/883

Absolute Maximum Ratings	Thermal Information		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Thermal Resistance CerDIP Package	75°C or above +75°	C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may ca	use permanent damage to the device. This is a sti	ress only rating	and operation

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 560\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, $\overline{DIS} = Floated$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	V _{CM} = 0V	1	+25°C	-5	5	mV
			2,3	+125°C, -55°C	-10	10	mV
Channel-to-Channel	ΔV _{IO}	V _{CM} = 0V	1	+25°C	-7.5	7.5	mV
Input Offset Voltage Mismatch			2, 3	+125°C, -55°C	-15	15	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	45	-	dB
Rejection Ratio	,	V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	42	-	dB
		$\Delta V_{CM} = \pm 1.2V$ V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	42	-	dB
Power Supply	PSRRP	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	48	-	dB
Rejection Ratio		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	45	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	45	-	dB
	PSRRN	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	48	-	dB
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	45	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	45	-	dB
Non-Inverting Input	I _{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
(+IN) Current			2, 3	+125°C, -55°C	-25	25	μА
Channel-to-Channel	ΔI_{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
+IN Current Mismatch			2, 3	+125°C, -55°C	-25	25	μА
+IN Current Common	CMS _{IBP}	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	-	1.25	μA/V
Mode Sensitivity		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	-	2.85	μA/V
		$\Delta V_{CM} = \pm 1.2V$ V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	-	2.85	μ A /V

Specifications HFA1245/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 560\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, $\overline{DIS} = Floated$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
+IN Resistance	+R _{IN}	Note 2	1	+25°C	800	-	kΩ
			2, 3	+125°C, -55°C	350	-	kΩ
+IN Current Power	PPSS _{IBP}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	1	μA/V
Supply Sensitivity		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	-	3	μ Α /V
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C		3	μA/V
	NPSS _{IBP}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	1	μA/V
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	-	3	μ Α /V
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	-	3	μA/V
Inverting Input (-IN)	I _{BSN}	V _{CM} = 0V	1	+25°C	-7.5	7.5	μА
Current			2, 3	+125°C, -55°C	-25	25	μА
Channel-to-Channel	ΔI_{BSN}	V _{CM} = 0V	1	+25°C	-10	10	μА
-IN Current Mismatch			2, 3	+125°C, -55°C	-30	30	μА
-IN Current Common	CMS _{IBN}	$\Delta V_{CM} = \pm 1.8V$	1	+25°C	-	6	μA/V
Mode Sensitivity		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	-	8	μA/V
		$\Delta V_{CM} = \pm 1.2V$ V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	-	8	μA/V
-IN Current Power	PPSS _{IBN}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	5	μA/V
Supply Sensitivity		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	-	8	μA/V
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	-	8	μA/V
	NPSS _{IBN}	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	-	5	μA/V
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	-	8	μ Α /V
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	-	8	μA/V
Output Voltage	V _{OP100}	A _V = -1 V _{IN} = -3.2V	1	+25°C	3	-	V
Swing		$R_L = 100\Omega$ $V_{IN} = -3V$	2, 3	+125°C, -55°C	2.8	-	V
	V _{ON100}	A _V = -1 V _{IN} =+3.2V	1	+25°C	-	-3	٧
		$R_{L} = 100\Omega \frac{V_{IN} = +3V}{V_{IN} = +3V}$	2, 3	+125°C, -55°C	-	-2.8	V

Specifications HFA1245/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 560\Omega$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, $\overline{DIS} = Floated$, Unless Otherwise Specified.

		L CONDITIONS		GROUP A		LIM	IITS	
PARAMETERS	SYMBOL			SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage	V _{OP50}	A _V = -1	V _{IN} = -2.7V	1	+25°C	2.5	-	V
Swing		$R_L = 50\Omega$	V _{IN} = -2.25V	2	+125°C	2.0	-	V
			V _{IN} = -2.25V	3	-55°C	1.4	-	V
	V _{ON50}	A _V = -1	V _{IN} = +2.7V	1	+25°C	-	-2.5	V
		$R_L = 50\Omega$	V _{IN} = +2.25V	2	+125°C	-	-2.0	V
			V _{IN} = +2.25V	3	-55°C	-	-1.4	V
Output Current	+l _{OUT}	Note 3		1	+25°C	50	-	mA
				2	+125°C	40	-	mA
				3	-55°C	28	-	mA
	-l _{out}	Note 3		1	+25°C	-	-50	mA
				2	+125°C	-	-40	mA
				3	-55°C	-	-28	mA
Quiescent Power	I_{CC} $R_L = 100\Omega$			1	+25°C	5.6	6.1	mA/Op Amp
Supply Current				2, 3	+125°C, -55°C	5.2	6.5	mA/Op Amp
	I _{EE}	$R_L = 100\Omega$		1	+25°C	-6.1	-5.6	mA/Op Amp
				2, 3	+125°C, -55°C	-6.5	-5.2	mA/Op Amp
Disabled Power	DISICC	$DISI_{CC}$ $R_L = 100\Omega, V_{\overline{DIS}} = 0V$		1	+25°C	-	4	mA/Op Amp
Supply Current				2, 3	+125°C, -55°C	-	4.25	mA/Op Amp
	DISIEE	$R_L = 100\Omega$,	$V_{\overline{DIS}} = 0V$	1	+25°C	-4	-	mA/Op Amp
				2, 3	+125°C, -55°C	-4.25	-	mA/Op Amp
Disabled Output	DOLC	$V_{\overline{DIS}} = 0V$,		1	+25°C	-10	10	μА
Leakage Current		$V_{IN} = \pm 2.5V$, $V_{OUT} = \pm 2.5V$		2, 3	+125°C, -55°C	-10	10	μА
Disable Input	DILLC	V _{DIS} = 0V		1	+25°C	-	200	μА
Current				2, 3	+125°C, -55°C		200	μА
	DILHC	V _{DIS} = 5V		1	+25°C	-	15	μА
				2, 3	+125°C, -55°C	-	15	μА
Disable Input	DILLV			1	+25°C		0.8	V
Logic Levels				2, 3	+125°C, -55°C	-	0.8	V
	DILHV			1, 2	+25°C, +125°C	2.0	-	V
				3	-55°C	2.4	-	V

NOTES:

- Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
- 2. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 3. Guaranteed from V_{OUT} Test with R_L = $50\Omega,$ by: I_{OUT} = $V_{OUT}/50\Omega.$

Specifications HFA1245/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

69 x 92 x 19 mils ± 1 mils 1750 x 2330 x 483μm ± 25.4μm

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ± 0.4kÅ Type: Metal 2: AICu(2%)

Thickness: Metal 2: 16kÅ ± 0.8kÅ

GLASSIVATION:

Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY: TBD

TRANSISTOR COUNT: 150

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1245/883

NOTE:

1. This is an optional GND pad. Users may set a GND reference, via this pad, to ensure the TTL compatibility of the DISABLE inputs when using asymmetrical supplies (e.g. V+ = 10V, V- = 0V). See the "Application Information" section for details.

HFA1412/883

PRELIMINARY

June 1994

Quad, High Speed, Low Power, Video Closed Loop Buffer

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Standard Operational Amplifier Pinout
- Low Supply Current..... 5.9mA/Op Amp (Typ)
- Excellent Gain Accuracy......0.99V/V (Typ)

- Excellent Gain Flatness (to 50MHz) ±0.02dB (Typ)
- Fast Overdrive Recovery.....<10ns (Typ)

Applications

- Flash A/D Driver
- · Video Switching and Routing
- · Pulse and Video Amplifiers
- · Wideband Amplifiers
- · RF/IF Signal Processing
- · Medical Imaging Systems

Description

The HFA1412/883 is a quad closed loop Buffer featuring user programmable gain and high speed performance. Manufactured on Harris' proprietary complementary bipolar UHF-1 process, this device offers wide -3dB bandwidth of 340MHz, very fast slew rate, excellent gain flatness and high output current.

A unique feature of the pinout allows the user to select a voltage gain of +1, -1, or +2, without the use of any external components. Gain selection is accomplished via connections to the inputs, as described in the "Application Information" section. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HFA1412MJ/883	-55°C to +125°C	14 Lead CerDIP

Pinout

Specifications HFA1412/883

Absolute Maximum Ratings	Thermal Information		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Thermal Resistance CerDIP Package Maximum Package Power Dissipation at + CerDIP Package Package Power Dissipation Derating Factor CerDIP Package	75°C or above +75	5°C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may can of the device at these or any other conditions above those indicated in the open		ress only ratin	ng and operation

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Offset	Vos	V _{CM} = 0V	1	+25°C	-10	10	mV
Voltage			2, 3	+125°C, -55°C	-20	20	mV
Channel-to-Channel	ΔV _{OS}	V _{CM} = 0V	1	+25°C	-15	15	mV
Output Offset Voltage Mismatch			2, 3	+125°C, -55°C	-30	30	mV
Common Mode	CMRR	$\Delta V_{CM} = \pm 1.8 V$	1	+25°C	42	-	dB
Rejection Ratio		V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	2	+125°C	39	-	dB
		ΔV _{CM} = ±1.2V V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	39	-	dB
Power Supply PSRRP	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	45	-	dB	
Rejection Ratio		ction Ratio	2	+125°C	42	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	42	-	dB
	PSRRN		1	+25°C	45	-	dB
		V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	2	+125°C	42	-	dB
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	42	-	dB
Non-Inverting Input I _{BSP}	I _{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
(+IN) Current			2, 3	+125°C, -55°C	-25	25	μА
Channel-to-Channel +IN Current	ΔI _{BSP}	V _{CM} = 0V	1	+25°C	-15	15	μА
Mismatch			2, 3	+125°C, -55°C	-25	25	μА

Specifications HFA1412/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

				GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONI	DITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
+IN Current Common	CMS _{IBP}		$\Delta V_{CM} = \pm 1.8V$ V+ = 3.2V, V- = -6.8V		+25°C	-	1.25	μΑ/V
Mode Sensitivity		V + = 3.2V, V + = 6.8V, V +		2	+125°C	-	2.85	μA/V
		$\Delta V_{CM} = \pm 1.2$ V+ = 3.8V, V+ = 6.2V, V+	V- = -6.2V	3	-55°C	-	2.85	μΑ/V
+IN Resistance	+R _{IN}	Note 2		1	+25°C	800	-	kΩ
				2, 3	+125°C, -55°C	350	-	kΩ
Gain	A _{VP1}	A _V = +1		1	+25°C	0.98	1.02	V/V
		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	0.975	1.025	V/V
	A _{VM1}	A _V = -1	414	1	+25°C	-0.98	-1.02	V/V
		$V_{IN} = -1V$ to) +1V	2, 3	+125°C, -55°C	-0.975	-1.025	V/V
	A _{VP2}	A _V = +2		1	+25°C	1.96	2.04	V/V
		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	1.95	2.05	V/V
Channel-to-Channel	ΔA _{VP1}	$A_{V} = +1$ $V_{IN} = -1 V \text{ to } +1 V$ $A_{V} = -1$ $V_{IN} = -1 V \text{ to } +1 V$		1	+25°C	-0.02	0.02	V/V
Gain Mismatch				2, 3	+125°C, -55°C	-0.025	0.025	V/V
	ΔA _{VM1}			1	+25°C	-0.02	0.02	V/V
				2, 3	+125°C, -55°C	-0.025	0.025	V/V
	ΔA _{VP2}	A _V = +2	$A_V = +2$ $V_{IN} = -1V$ to $+1V$		+25°C	-0.04	0.04	V/V
		V _{IN} = -1 V to	+1V	2, 3	+125°C, -55°C	-0.05	0.05	V/V
Output Voltage Swing	V _{OP100}	$A_V = -1$ $R_1 = 100\Omega$	V _{IN} = -3.2V	1	+25°C	3	-	٧
Swilly		H_ = 10022	$V_{IN} = -3V$	2, 3	+125°C, -55°C	2.8	-	V
	V _{ON100}	$A_{V} = -1$ $R_{L} = 100\Omega$	V _{IN} =+3.2V	1	+25°C	-	-3	V
			V _{IN} = +3V	2, 3	+125°C, -55°C		-2.8	٧
Output Voltage	V _{OP50}	A _V = -1	V _{IN} = -2.7V	1	+25°C	2.5	-	٧
Swing		$R_L = 50\Omega$	V _{IN} = -2.25V	2	+125°C	2.0	-	٧
			V _{IN} = -2.25V	3	-55°C	1.4	-	V
	V _{ON50}		V _{IN} = +2.7V	1	+25°C	-	-2.5	V
		$R_L = 50\Omega$	V _{IN} = +2.25V	2	+125°C	-	-2.0	٧
			V _{IN} = +2.25V	3	-55°C	-	-1.4	V

Specifications HFA1412/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Current	+lout	Note 3	1	+25°C	50	-	mA
			2	+125°C	40	-	mA
			3	-55°C	28	-	mA
	-l _{out}	Note 3	1	+25°C	-	-50	mA
			2	+125°C	-	-40	mA
			3	-55°C	-	-28	mA
Quiescent Power Supply Current I _{CC}	Icc	$R_L = 100\Omega$	1	+25°C	5.4	6.1	mA/Op Amp
			2, 3	+125°C, -55°C	5.0	6.5	mA/Op Amp
	I _{EE}	$R_L = 100\Omega$	1	+25°C	-6.1	-5.4	mA/Op Amp
			2, 3	+125°C, -55°C	-6.5	-5.0	mA/Op Amp

NOTES:

- Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
- 2. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 3. Guaranteed from V_{OUT} Test with R_L = 50 Ω , by: I_{OUT} = V_{OUT} /50 Ω .

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

4

CMOS ANALOG SWITCHES

ANALOG

CMOS ANALOG SWITCHES

		PAGE
CMOS ANALOG SWI	TCH DATA SHEETS	
DG401/883, DG403/883, DG405/883	Monolithic CMOS Analog Switches	4-3
DG411/883, DG412/883, DG413/883	Monolithic Quad SPST CMOS Analog Switches	4-9
DG441/883, DG442/883	Monolithic Quad SPST CMOS Analog Switches	4-15

DG401/883, DG403/883 DG405/883

June 1994

Monolithic CMOS Analog Switches

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- ON-Resistance <35Ω
- Low Power Consumption (Pp <35μW)
- · Fast Switching Action
 - t_{ON} <150ns
 - tope <100ns
- · Low Charge Injection
- DG401/883 Dual SPST: Replaces HI-5041/883
- DG403/883 Dual SPDT: Replaces DG190/883B. IH5043/883B, IH5151/883B, HI-5051/883, HI-5043/883B
- DG405/883 Dual DPST; Replaces DG184/883B. HI-5045/883, IH5145/883B
- . TTL, CMOS Compatible
- · Single or Split Supply Operation

Applications

- · Audio Switching
- · Battery Operated Systems
- Data Acquisition
- Hi-Rel Systems
- · Sample and Hold Circuits
- Communication Systems

Description

The DG401/883, DG403/883 and DG405/883 monolithic CMOS analog switches have TTL and CMOS compatible digital inputs.

These switches feature low analog ON resistance ($<35\Omega$) and fast switch time (ton <150ns). Low charge injection simplifies sample and hold applications.

The improvements in the DG401/403/405/883 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 30V peak-to-peak signals. Power supplies may be single-ended from +5V to +34V, or split from ±5V to ±17V.

The analog switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is guite low over a ±15V analog input range. The three different devices provide the equivalent of two SPST (DG401/883), two SPDT (DG403/883) or two DPST (DG405/883) relay switch contacts with CMOS or TTL level activation. The pinout is similar, permitting a standard layout to be used, choosing the switch function as needed.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG401AK/883	-55°C to +125°C	16 Lead CerDIP
DG403AK/883	-55°C to +125°C	16 Lead CerDIP
DG405AK/883	-55°C to +125°C	16 Lead CerDIP

Pinouts

DG403/883, DG405/883 (CERDIP) TOP VIEW

(NC) NO CONNECTION

Functional Diagrams

Schematic Diagram

Truth Table

	DG401/883	DG403/883		DG405/883
LOGIC	SWITCH	SWITCH 1, 2	SWITCH 3, 4	SWITCH
0	OFF	OFF	ON	OFF
1	ON	ON	OFF	ON

NOTE: Logic "0" ≤0.8V. Logic "1" ≥2.4V.

Specifications DG401/883, DG403/883, DG405/883

Absolute Maximum Ratings	Reliability Information	
V+ to V	Thermal Resistance (Max) CerDIP Package Operating Temperature (A Suffix) Junction Temperature (CerDIP).	55°C to +125°C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may ca of the device at these or any other conditions above those indicated in the open		only rating and operation

Operating Conditions

Operating Voltage Range	Input High Voltage2.4V Min
Operating Temperature Range55°C to +125°C	Input Rise and Fall Time
Input Low Voltage	

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at V+ = +15V, V- = -15V, $V_L = 5V$, Unless Otherwise Specified

			GROUP A		LIN		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Drain-to-Source	R _{DS(ON)}	V+ = +13.5V, V- = -13.5V,	1	+25°C	-	35	Ω
ON Resistance		$I_S = -10 \text{mA}, V_D = \pm 10 \text{V}$	2, 3	+125°C, -55°C	-	45	Ω
Delta Drain-to-Source	Delta	V+ = +16.5V, V- = -16.5V,	1	+25°C	-	3	Ω
ON Resistance	R _{DS(ON)}	$I_S = -10 \text{mA},$ $V_D = +5 \text{V}, 0 \text{V}, -5 \text{V}$	2, 3	+125°C, -55°C	-	5	Ω
Source OFF Leakage Current	I _{S(OFF)}	V+ = +16.5V, V- = -16.5V,	1	+25°C	-	±0.25	nA
		$V_S = -15.5V, V_D = +15.5V$	2	+125°C	-	±20	nA
		V+ = +16.5V, V- = -16.5V,	1	+25°C	-	±0.25	nA
		$V_S = +15.5V, V_D = -15.5V$	2	+125°C	-	±20	nA
Drain OFF Leakage Current	I _{D(OFF)}	V+ = +16.5V, V- = -16.5V, V _S = -15.5V, V _D = +15.5V	1	+25°C	-	±0.25	nA
			2	+125°C	-	±20	nA
	V+ = +16.5V, V- = -16.5V, V _S = +15.5V, V _D = -15.5V	1	+25°C	-	±0.25	nA	
		$V_S = +15.5V, V_D = -15.5V$	2	+125°C	-	±20	nA
Channel ON Leakage	I _{D(ON)} +	V+ = +16.5V, V- = -16.5V,	1	+25°C	-	±0.4	nA
Current	I _{S(ON)}	$V_S = V_D = \pm 15.5V$	2	+125°C	-	±40	nA
Low Level Input Current	I _{IL}	V _{IN} Under Test = 0.8V, All Others = 2.4V	1, 2	+25°C, +125°C	-	±1.0	μА
High Level Input Current	I _{IH}	V _{IN} Under Test = 2.4V, All Others = 0.8V	1, 2	+25°C, +125°C	-	±1.0	μА
Positive Supply Current	l+	V+ = 16.5V, V- = -16.5V,	1	+25°C	-	+1.0	μА
		V _{IN} = 0V or 5.0V	2, 3	+125°C, -55°C	-	+5.0	μА
Negative Supply Current	I-	V+ = +16.5V, V- = -16.5V,	1	+25°C	-	-1.0	μА
		V _{IN} = 0V or 5.0V	2,3	+125°C, -55°C	-	-5.0	
Logic Supply Current	ΙL	V+ = +16.5V, V- = -16.5V,	1	+25°C	-	+1.0	μА
		V _{IN} 0V or 5V	2,3	+125°C, -55°C	-	+5.0	
Ground Current	I _{GND}	V+ = +16.5V, V- = -16.5V,	1	+25°C	-	-1.0	μА
		V _{IN} 0V or 5V		+125°C, -55°C	-	-5.0	

Specifications DG401/883, DG403/883, DG405/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at V+ = +15V, V- = -15V, V₁ = 5V, Unless Otherwise Specified

			GROUP A	LIMITS		IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Turn On Time	t _{ON}	$R_L = 300\Omega$, $C_L = 35pF$	9	+25°C	-	150	ns
			10, 11	+125°C, -55°C	-	275	ns
Turn Off Time	t _{OFF}	$R_L = 300\Omega$, $C_L = 35pF$	9	+25°C	-	100	ns
			10	+125°C	-	250	ns
			11	-55°C	-	175	ns
Break-Before-Make Time Delay (DG403 Only)	t _D	$R_L = 300\Omega$, $C_L = 35pF$	9	+25°C	10	150	ns

NOTE:

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)		
Interim Electrical Parameters (Pre Burn-In)	1		
Final Electrical Test Parameters	1 (Note 1), 2, 3, 9, 10, 11		
Group A Test Requirements	1, 2, 3, 9, 10, 11		
Groups C and D Endpoints	1		

NOTE:

1. PDA applies to Subgroup 1 only.

^{1.} Signals on S_X, D_X, or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

Die Characteristics

DIE DIMENSIONS:

 $2150 \mu m \times 1720 \mu m \times 485 \pm 25 \mu m$

METALLIZATION:

Type: Si - Al

Thickness: 12kÅ ± 1kÅ

GLASSIVATION:

Type: Nitride Thickness: 8kÅ ± 1kÅ

WORST CASE CURRENT DENSITY:

1.5 x 10⁵A/cm²

Metallization Mask Layout

DG401/883

DG403/883, DG405/883

Die Characteristics

DIE DIMENSIONS:

 $2150 \mu m \ x \ 1720 \mu m \ x \ 485 \pm 25 \mu m$

METALLIZATION:

Type: Si - Al

Thickness: 12kÅ ± 1kÅ

GLASSIVATION:

Type: Nitride

Thickness: 8kÅ ± 1kÅ

WORST CASE CURRENT DENSITY:

1.5 x 10⁵A/cm²

Metallization Mask Layout

DG403/883, DG405/883

DG411/883, DG412/883 DG413/883

August 1994

Monolithic Quad SPST CMOS Analog Switches

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- ON-Resistance <35Ω Max
- Low Power Consumption (Pp <35µW)
- · Fast Switching Action
 - t_{ON} <175ns
 - t_{OFF} <145ns
- · Low Charge Injection
- Upgrade from DG211/DG212
- TTL, CMOS Compatible
- · Single or Split Supply Operation

Applications

- · Audio Switching
- **Battery Operated Systems**
- **Data Acquisition**
- Hi-Rel Systems

PART NUMBER

DG411AK/883

DG412AK/883

DG413AK/883

- Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Ordering Information

TEMP. RANGE

-55°C to +125°C

-55°C to +125°C

-55°C to +125°C

Pinout							
DG411/883, DG412/883, DG413/883 (CERDIP) TOP VIEW							
IN ₁ 1 D ₁ 2 S ₁ 3 V- 4 GND 5 S ₄ 6 D ₄ 7 IN ₄ 8		16 IN ₂ 15 D ₂ 14 S ₂ 13 V+ 12 V _L 11 S ₃ 10 D ₃ 9 IN ₃					

(NC) NO CONNECTION

Description

The DG411/883 series monolithic CMOS analog switches are drop-in replacements for the popular DG211 and DG212 series devices. They include four independent single pole throw (SPST) analog switches, and TTL and CMOS compatible digital inputs.

These switches feature lower analog ON resistance ($<35\Omega$) and faster switch time (ton <175ns) compared to the DG211 or DG212. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG411/883 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 40V_{P-P} signals. Power supplies may be single-ended from +5V to +34V, or split from ±5V to ±20V.

The four switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a ±15V analog input range. The switches in the DG411/883 and DG412/883 are identical, differing only in the polarity of the selection logic. Two of the switches in the DG413/883 (#1 and #4) use the logic of the DG211 and DG411/883 (i.e. a logic "0" turns the switch ON) and the other two switches use DG212 and DG412/883 positive logic. This permits independent control of turn-on and turn-off times for SPDT configurations, permitting "breakbefore-make" or "make-before-break" operation with a minimum of external logic.

Functional Diagrams Four SPST Switches per Package Switches Shown for Logic "1" Input

PACKAGE

16 Lead CerDIP

16 Lead CerDIP

16 Lead CerDIP

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright © Harris Corporation 1994

Spec Number 512043 File Number 3681

DG411/883, DG412/883, DG413/883

Pin Description

PIN	SYMBOL	DESCRIPTION
1	IN ₁	Logic Control for Switch 1
2	D ₁	Drain (Output) Terminal for Switch 1
3	S ₁	Source (Input) Terminal for Switch 1
4	V-	Negative Power Supply Terminal
5	GND	Ground Terminal (Logic Common)
6	S ₄	Source (Input) Terminal for Switch 4
7	D ₄	Drain (Output) Terminal for Switch 4
8	IN ₄	Logic Control for Switch 4
9	IN ₃	Logic Control for Switch 3
10	D_3	Drain (Output) Terminal for Switch 3
11	S ₃	Source (Input) Terminal for Switch 3
12	V _L	Logic Reference Voltage
13	V+	Positive Power Supply Terminal (Substrate)
14	S ₂	Source (Input) Terminal for Switch 2
15	D_2	Drain (Output) Terminal for Switch 2
16	IN ₂	Logic Control for Switch 2

TRUTH TABLE

	DG411/ 883	DG412/ 883	DG413/883		
LOGIC	SWITCH	SWITCH	SWITCH 1, 4	SWITCH 2, 3	
0	ON	OFF	OFF	ON	
1	OFF	ON	ON	OFF	

NOTE: Logic "0" ≤0.8V. Logic "1" ≥2.4V.

Specifications DG411/883, DG412/883, DG413/883

Absolute Maximum Ratings	Thermal Information	
V+ to V	Thermal Resistance (Note 3) CerDIP Package Junction Temperature Operating Temperature (A Suffix)	+175°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range	Input High Voltage2.4V Min
Operating Temperature Range55°C to +125°C	Input Rise and Fall Time
Input Low Voltage	

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V+ = +15V, V- = -15V, V_L = 5V, GND = 0V, Unless Otherwise Specified

		GROUP A				LIMITS												
PARAMETERS	SYMBOL	CONDI	TIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS										
Drain-to-Source ON Resistance	R _{DS(ON)}	V+ = +13.5V, V- = -13.5V,	V _{IN} = 0.8V	1, 3	+25°C, -55°C	0	35	Ω										
DG411/883		$I_S = -10 \text{mA},$ $V_D = \pm 8.5 \text{V}$		2	+125°C	0	45	Ω										
DG412/883		VD = 10.5V	V _{IN} = 2.4V	1, 3	+25°C, -55°C	0	35	Ω										
				2	+125°C	0	45	Ω										
DG413/883			V _{IN} = 0.8V or	1, 3	+25°C, -55°C	0	35	Ω										
			2.4V (Note 1)	2	+125°C	0	45	Ω										
DG411/883		$V+=+10.8V, \ V-=-0V, \ I_S=-10mA, \ V_D=3.0V \ and \ 8.0V$	V _{IN} = 0.8V	1, 3	+25°C, -55°C	0	80	Ω										
				2	+125°C	0	100	Ω										
DG412/883			$V_D = 3.0V \text{ and}$ $V_{IN} = 2.4V$ $V_{IN} = 0.8V \text{ or}$			V _{IN} = 2.4V	1, 3	+25°C, -55°C	0	80	Ω							
				2	+125°C	0	100	Ω										
DG413/883					1, 3	+25°C, -55°C	0	80	Ω									
			2.4V (Note 1)	2	+125°C	0	100	Ω										
Source OFF Leakage Current	I _{S(OFF)}	V+ = 16.5V,		1	+25°C	-0.25	+0.25	nA										
DG411/883		V- = -16.5V, V _D = -15.5V, V _S = 15.5V	V _D = -15.5V,	2, 3	+125°C, -55°C	-20	+20	nA										
DG412/883														1	+25°C	-0.25	+0.25	nA
					2, 3	+125°C, -55°C	-20	+20	nA									
DG413/883			$V_{IN} = 0.8V$ or	1	+25°C	-0.25	+0.25	nA										
			2.4V (Note 1)	2, 3	+125°C, -55°C	-20	+20	nA										
DG411/883		V+ = 16.5V,	V _{IN} = 2.4V	1	+25°C	-0.25	+0.25	nA										
		$V_{-} = -16.5V,$ $V_{D} = 15.5V,$		2, 3	+125°C, -55°C	-20	+20	nA										
DG412/883		$V_D = 15.5V$, $V_S = -15.5V$	V _{IN} = 0.8V	1	+25°C	-0.25	+0.25	nA										
				2, 3	+125°C, -55°C	-20	+20	nA										
DG413/883			V _{IN} = 0.8V or	1	+25°C	-0.25	+0.25	nA										
			2.4V (Note 1)	2, 3	+125°C, -55°C	-20	+20	nA										

Specifications DG411/883, DG412/883, DG413/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V+ = +15V, V- = -15V, $V_L = 5V$, GND = 0V, Unless Otherwise Specified

		CONDITIONS		GROUP A		LIMITS		
PARAMETERS	SYMBOL			SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Drain OFF Leakage Current	I _{D(OFF)}	V+ = 16.5V,	V _{IN} = 2.4V	1	+25°C	-0.25	+0.25	nA
DG411/883		$V_{-} = -16.5V$, $V_{D} = -15.5V$,		2, 3	+125°C, -55°C	-20	+20	nA
DG412/883		$V_{S} = 15.5V$	V _{IN} = 0.8V	1	+25°C	-0.25	+0.25	nA
				2, 3	+125°C, -55°C	-20	+20	nA
DG413/883			V _{IN} = 0.8V or	. 1	+25°C	-0.25	+0.25	nA
			2.4V (Note 1)	2, 3	+125°C, -55°C	-20	+20	nA
DG411/883		V+ = 16.5V,	V _{IN} = 2.4V	1	+25°C	-0.25	+0.25	nA
1		$V_{-} = -16.5V,$ $V_{D} = 15.5V,$		2, 3	+125°C, -55°C	-20	+20	nA
DG412/883		$V_S = -15.5V$	$V_{IN} = 0.8V$	1	+25°C	-0.25	+0.25	nA
				2, 3	+125°C, -55°C	-20	+20	nA
DG413/883	·		$V_{IN} = 0.8V$ or	1	+25°C	-0.25	+0.25	nA
			2.4V (Note 1)	2, 3	+125°C, -55°C	-20	+20	nA
Channel ON Leakage Current	I _{D(ON) +}	V+ = 16.5V,	$V_{IN} = 0.8V$	1	+25°C	-0.4	+0.4	nA
DG411/883	I _{S(ON)}	V = -16.5V, $V_S = V_D = \pm 15.5V$		2, 3	+125°C, -55°C	-40	+40	nA
DG412/883		V _S = V _D = ±15.5V	V _{IN} = 2.4V V _{IN} = 0.8V or 2.4V (Note 1)	1	+25°C	-0.4	+0.4	nA
				2, 3	+125°C, -55°C	-40	+40	nA
DG413/883				1	+25°C	-0.4	+0.4	nA
				2, 3	+125°C, -55°C	-40	+40	nA
Input Current with V _{IN} Low	IIL	Input Under Test = 0.8V, All Others = 2.4V		1, 2, 3	+25°C, +125°C, -55°C	-0.5	+0.5	μА
Input Current with V _{IN} High	I _{IH}	Input Under Test = 2.4V, All Others = 0.8V		1, 2, 3	+25°C, +125°C, -55°C	-0.5	+0.5	μА
Positive Supply Current	l+	V+ = 16.5V, V- = -	16.5,	1	+25°C	-	+1.0	μА
		V _{IN} = 0Vor 5.0V		2, 3	+125°C, -55°C	-	+5.0	μА
		V+ = 13.2V, V- = 0)V,	1	+25°C	-	+1.0	μА
		V _{IN} = 0Vor 5.0V V _L = 5.25V		2, 3	+125°C, -55°C	-	+5.0	μА
Negative Supply Current	I-	V+ = 16.5V, V- = -	16.5,	1	+25°C	-1.0	-	μА
		V _{IN} = 0V or 5.0V		2, 3	+125°C, -55°C	-5.0	-	μА
		V+ = 13.2V, V- = 0)V,	1	+25°C	-1.0	-	μА
		$V_{IN} = 0V \text{ or } 5.0V$ $V_{L} = 5.25V$		2, 3	+125°C, -55°C	-5.0	-	μА
Logic Supply Current	١ _L	V+ = 16.5V, V- = -	16.5,	1	+25°C	-	+1.0	μА
		V _{IN} = 0V or 5.0V		2, 3	+125°C, -55°C	-	+5.0	μА
		V+ = 13.2V, V- = 0)V,	1	+25°C	-	+1.0	μА
		$V_{IN} = 0V \text{ or } 5.0V$ $V_{L} = 5.25V$		2, 3	+125°C, -55°C	-	+5.0	μА
Ground Current	I _{GND}	V+ = 16.5V, V- = -	16.5,	1	+25°C	-1.0	-	μА
		$V_{IN} = 0V \text{ or } 5.0V$		2, 3	+125°C, -55°C	-5.0	-	μА
		V+ = 13.2V, V- = 0)V,	1	+25°C	-1.0	-	μА
		$V_{IN} = 0V \text{ or } 5.0V$ $V_{L} = 5.25V$		2, 3	+125°C, -55°C	-5.0	-	μА

Specifications DG411/883, DG412/883, DG413/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V+ = +15V, V- = -15V, V_I = 5V, GND = 0V, Unless Otherwise Specified

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Turn ON Time	t _{ON}	$C_L = 35pF, V_S = \pm 10V,$	9, 11	+25°C, -55°C	0	175	ns
		$R_L = 300\Omega$	10	+125°C	0	240	ns
		V+ = 12V, V- = 0V,	9, 11	+25°C, -55°C	0	250	ns
		$C_L = 35pF, V_S = +8V, R_L = 300\Omega$	10	+125°C	0	400	ns
Turn OFF Time	t _{OFF}	$C_L = 35pF, V_S = \pm 10V,$	9, 11	+25°C, -55°C	0	145	ns
		$R_L = 300\Omega$	10	+125°C	0	160	ns
		V+ = 12V, V- = 0V,	9, 11	+25°C, -55°C	0	125	ns
		$C_L = 35pF, V_S = +8V,$ $R_L = 300\Omega$	10	+125°C	0	140	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (NOTE 1)

Device Tested at: V+ = +15V, V- = -15V, V_L = 5V, GND = 0V, Unless Otherwise Specified

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Charge Injection	Q	See Figure 2, $V_G = 0V$, $R_G = 0\Omega$,	9	+25°C	-100	+100	рC
		$T_A = +25^{\circ}C, C_L = 10nF$		+25°C			pC
		See Figure 2,	9	+25°C	-100	+100	pC
		$V_G = 6V, R_G = 0\Omega, T_A = +25^{\circ}C$ $C_L = 10nF, V+ = 12V, V- = 0V$		+25°C			pC

NOTES:

- 1. V_{IN} = Input Voltage to Perform Proper Function.
- 2. Signals on S_X , D_X or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- 3. All leads soldered or welded to PC board.
- 4. Parameters listed in Table 3 are controlled via design or process and are not directly tested at final production. These parameters are lab characterized upon initial design release or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 9, 10, 11
Group A Test Requirements	1, 2, 3, 9, 10, 11
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $2760 \mu m \times 1780 \mu m \times 485 \pm 25 \mu m$

METALLIZATION:

Type: SiAI

Thickness: 12kÅ ± 1kÅ

GLASSIVATION:

Type: Nitride

Thickness: 8kÅ ± 1kÅ

WORST CASE CURRENT DENSITY:

1.5 x 10⁵A/cm²

Metallization Mask Layout

DG411/883, DG412/883, DG413/883

DG441/883 DG442/883

June 1994

Monolithic Quad SPST CMOS Analog Switches

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- ON-Resistance 85Ω Max
- Low Power Consumption (P_D <1.6mW)
- · Fast Switching Action
 - t_{ON} <250ns
 - tope <120ns (DG441/883)
- · Low Charge Injection
- Upgrade from DG201A/883/DG202/883
- . TTL. CMOS Compatible
- · Single or Split Supply Operation

Applications

- · Audio Switching
- · Battery Operated Systems
- Data Acquisition
- · Hi-Rel Systems
- · Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Description

The DG441/883 and DG442/883 monolithic CMOS analog switches are drop-in replacements for the popular DG201A/ 883 and DG202/883 series devices. They include four independent single pole single throw (SPST) analog switches, TTL and CMOS compatible digital inputs, and a voltage reference for logic thresholds.

These switches feature lower analog ON resistance ($<85\Omega$) and faster switch time (t_{ON} <250ns) compared to the DG201A/883 and DG202/883. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG441/883 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 40V peak-to-peak signals. Power supplies may be single-ended from +5V to +34V, or split from ±5V to ±20V.

The four switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a ±5V analog input range. The switches in the DG441/883 and DG442/883 are identical, differing only in the polarity of the selection logic.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG441AK/883	-55°C to +125°C	16 Lead CerDIP
DG442AK/883	-55°C to +125°C	16 Lead CerDIP

0 D. -0 D₂ 0 D3 0 S4

DG442/883

SWITCHES SHOWN FOR LOGIC "1" INPUT

Spec Number 512044 File Number 3687

DG441/883, DG442/883

Pin Description

PIN	SYMBOL	DESCRIPTION
1	IN ₁	Logic Control for Switch 1
2	D ₁	Drain (Output) Terminal for Switch 1
3	S ₁	Source (Input) Terminal for switch 1
4	V-	Negative Power Supply Terminal
5	GND	Ground Terminal (Logic Common)
6	S ₄	Source (Input) Terminal for Switch 4
7	D ₄	Drain (Output) Terminal for Switch 4
8	IN ₄	Logic Control for Switch 4
9	IN ₃	Logic Control for Switch 3
10	D_3	Drain (Output) Terminal for Switch 3
11	S ₃	Source (Input) Terminal for Switch 3
12	NC	No Internal Connection
13	V+	Positive Power Supply Terminal (Substrate)
14	S ₂	Source (Input) Terminal for Switch 2
15	D_2	Drain (Output) Terminal for Switch 2
16	IN ₂	Logic Control for Switch 2

TRUTH TABLE

LOGIC	V _{IN}	DG441	DG442
0	≤0.8V ON		OFF
1	≥2.4V	OFF	ON

Specifications DG441/883, DG442/883

Absolute Maximum Ratings	Thermal Information
V+ to V	Thermal Resistance (Max, Note 3) CerDIP Package 85°C/W 25°C/W Junction Temperature +175°C Operating Temperature (A Suffix) -55°C to +125°C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may ca	use permanent damage to the device. This is a stress only rating and operation

Operating Conditions

Operating Voltage Range	Input High Voltage2.4V Min
Operating Temperature Range55°C to +125°C	Input Rise and Fall Time
Input Low Voltage	

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, V+ = +15V, V- = -15V, Unless Otherwise Specified

PARAMETERS	SYMBOL	co	NDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIM	ITS	UNITS
Drain-to-Source ON Resistance DG441/883	R _{DS(ON)}	V _{IN} = 0.8V	V+ = +13.5V, V- = -13.5V, I _S = -10mA,	1, 3	+25°C, -55°C	-	85	Ω
			$V_D = \pm 8.5V$	2	+125°C	-	100	Ω
DG442/883		V _{IN} = 2.4V	V+ = +13.5V,	1, 3	+25°C, -55°C	-	85	Ω
			$V = -13.5V,$ $I_S = -10mA,$ $V_D = \pm 8.5V$	2	+125°C	-	100	Ω
DG441/883		V _{IN} = 0.8V	V+ = +10.8V,	1, 3	+25°C, -55°C	-	160	Ω
			$V- = 0V,$ $I_S = -10mA,$ $V_D = 3.0V$ $V+ = +10.8V,$	2	+125°C	-	200	Ω
				1, 3	+25°C, -55°C	-	160	Ω
		V- = 0V, I _S = -10mA, V _D = 8.0V	2	+125°C	-	200	Ω	
DG442/883	1	V _{IN} = 2.4V	V+ = +10.8V,	1, 3	+25°C, -55°C	-	160	Ω
			$V_{-} = 0V,$ $I_{S} = -10 \text{mA},$ $V_{D} = 3.0 \text{V}$	2	+125°C	-	200	Ω
			V+ = +10.8V,	1, 3	+25°C, -55°C	-	160	Ω
			V- = 0V, I _S = -10mA, V _D = 8.0V	2	+125°C	-	200	Ω
Source OFF Leakage Current	I _{S(OFF)}	V _{IN} = 2.4V	$V_{IN} = 2.4V$ $V_{+} = +16.5V,$ $V_{-} = -16.5V,$ $V_{S} = \mp 15.5V,$ $V_{D} = \pm 15.5V$	1	+25°C	-0.5	0.5	nA
DG441/883				2, 3	+125°C, -55°C	-20	20	nA
DG442/883		V _{IN} = 0.8V		1	+25°C	-0.5	0.5	nA
			$V_{-} = -16.5V,$ $V_{S} = \mp 15.5V,$ $V_{D} = \pm 15.5V$	2, 3	+125°C, -55°C	-20	20	nA

Specifications DG441/883, DG442/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $-55^{\circ}C \le T_A \le +125^{\circ}C$, V+ = +15V, V- = -15V, Unless Otherwise Specified

PARAMETERS	SYMBOL	CONDITIONS		GROUP A SUBGROUP	TEMPERATURE	LIM	ITS	UNITS
Drain OFF Leakage Current	I _{D(OFF)}	V _{IN} = 2.4V	V+ = +16.5V,	1	+25°C	-0.5	0.5	nA
DG441/883			V = -16.5V, $V_S = \mp 15.5V,$ $V_D = \pm 15.5V$	2, 3	+125°C, -55°C	-20	20	nA
DG442/883	1	V _{IN} = 0.8V	V+ = +16.5V,	1	+25°C	-0.5	0.5	nA
			$V_{-} = -16.5V,$ $V_{S} = \mp 15.5V,$ $V_{D} = \pm 15.5V$	2, 3	+125°C, -55°C	-20	20	nA
Channel ON Leakage Current	I _{D(ON)} +	V _{IN} = 0.8V	V+ = +16.5V,	1	+25°C	-0.5	0.5	nA
DG441/883	S(ON)		V = -16.5V, $V_S = V_D = \pm 15.5V$	2, 3	+125°C, -55°C	-40	40	nA
DG442/883	1	V _{IN} = 2.4V	V+ = +16.5V,	1	+25°C	-0.5	0.5	nA
			$V_{-} = -16.5V,$ $V_{S} = V_{D} = \pm 15.5V$	2, 3	+125°C, -55°C	-40	40	nA
Input Current with V _{IN} Low	I _{IL}	V _{IN} Under Te All Others = 3		1, 2, 3	+25°C, +125°C, - 55°C	-0.5	0.5	μА
Input Current with V _{IN} High	I _{IH}	V _{IN} Under Test = 2.4V, All Others = 0.8V		1, 2, 3	+25°C, +125°C, - 55°C	-0.5	0.5	μА
Positive Supply Current	l+	+ V+ = 16.5V, V- = -16.5V, V _{IN} = 0\		1, 2, 3	+25°C, +125°C, - 55°C	-	0.1	mA
		V+ = 16.5V, V- = -16.5V, V _{IN} = 5V				-	0.1	mA
		V+ = 13.2V,	V- = 0V, V _{IN} = 0V			-	0.1	mA
		V+ = 13.2V,	V- = 0V, V _{IN} = 5V			-	0.1	mA
Negative Supply Current	I-	V+ = 16.5V,	V- = -16.5V, V _{IN} = 0V	1, 3	+25°C, -55°C	-1.0	-	μА
				2	+125°C	-100	-	μА
		V+ = 16.5V,	V- = -16.5V, V _{IN} = 5V	1, 3	+25°C, -55°C	-1.0	-	μА
				2	+125°C	-100	-	μА
		V+ = 13.2V,	V- = 0V, V _{IN} = 0V	1, 3	+25°C, -55°C	-1.0	-	μА
				2	+125°C	-100	-	μА
		V+ = 13.2V,	V- = 0V, V _{IN} = 5V	1, 3	+25°C, -55°C	-1.0	-	μА
				2	+125°C	-100	-	μА
Ground Current	I _{GND}	V+ = 16.5V,	V-=-16.5V, V _{IN} =0V	1, 2, 3	+25°C, +125°C, -	-100	-	μА
		V+ = 16.5V,	V- = -16.5V, V _{IN} = 5V		55°C	-100	-	μА
		V+ = 13.2V,	V- = 0V, V _{IN} = 0V			-100	-	μА
		V+ = 13.2V,	V- = 0V, V _{IN} = 5V			-100	-	μА

Specifications DG441/883, DG442/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$, V+ = +15V, V- = -15V, Unless Otherwise Specified

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Turn ON Time	ton						
DG441		$C_L = 35pF, V_S = \pm 10V,$	9	+25°C	-	250	ns
DG442		$R_L = 1k\Omega$			-	315	ns
DG441		$C_L = 35pF, V_S = \pm 10V,$	10, 11	+125°C, -55°C	-	300	ns
DG442		$R_L = 1k\Omega$			-	400	ns
DG441		V+ = 12V, V- = 0V,	9	+25°C	-	400	ns
DG442		$C_L = 35pF, V_S = 8.0V, R_L = 1k\Omega$			-	450	ns
DG441		V+ = 12V, V- = 0V,	10, 11	+125°C, -55°C	-	600	ns
DG442		$C_L = 35pF, V_S = 8.0V, R_L = 1k\Omega$			-	675	ns
Turn OFF Time	t _{OFF}						
DG441		$C_L = 35pF, V_S = \pm 10V,$	9	+25°C	-	120	ns
DG442	1	$R_L = 1k\Omega$			-	210	ns
DG441		$C_L = 35pF, V_S = \pm 10V,$	10, 11	+125°C, -55°C	-	150	ns
DG442		$R_L = 1k\Omega$			-	250	ns
DG441, DG442		V+ = 12V, V- = 0V, $C_L = 35pF, V_S = 8.0V, R_L = 1k\Omega$	9, 10, 11	+25°C, +125°C, -55°C	-	200	ns

NOTES:

- 1. All leads soldered to PC Board.
- 2. Room: +25°C. Cold: A suffix -55°C, D suffix -40°C. Hot: A suffix +125°C, D suffix +85°C.
- 3. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
- 4. Typical values are for DESIGN AID ONLY, not guaranteed nor production tested.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 9, 10, 11
Group A Test Requirements	1, 2, 3, 9, 10, 11
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $2760\mu m \ x \ 1780\mu m \ x \ 485 \pm 25\mu m$

METALLIZATION:

Type: SiAI

Thickness: 12kÅ ± 1kÅ

GLASSIVATION:

Type: Nitride

Thickness: 8kÅ ± 1kÅ

WORST CASE CURRENT DENSITY:

1.5 x 10⁵A/cm²

Metallization Mask Layout

ANALOG

5

CMOS ANALOG MULTIPLEXERS

		PAGE
CMOS ANALOG MUL	TIPLEXER DATA SHEETS	
DG406/883, DG407/883	Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers	5-3
DG408/883, DG409/883	Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers	5-4
DG458/883, DG459/883	Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers	5-11

PRELIMINARY

June 1994

Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers

DG406/883

DG407/883

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- ON-Resistance 100Ω (Max)
- Low Power Consumption (P_D <1.2mW)
- · Fast Transition Time (300ns Max)
- · Low Charge Injection
- · TTL, CMOS Compatible
- · Single or Split Supply Operation

Applications

- · Battery Operated Systems
- Data Acquisition
- **Medical Instrumentation**
- · Hi-Rel Systems
- · Communication Systems
- Automatic Test Equipment

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG406AK/883	-55°C to +125°C	28 Lead CerDIP
DG407AK/883	-55°C to +125°C	28 Lead CerDIP

Description

The DG406/883 and DG407/883 monolithic CMOS analog multiplexers are drop-in replacements for the popular DG506A/883 and DG507A/883 series devices. They each include an array of sixteen analog switches, a TTL and CMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds, and an ENABLE input for device selection when several multiplexers are present.

These multiplexers feature lower signal ON resistance $(<100\Omega)$ and faster transition time (t_{TRANS} <250ns) compared to the DG506A/883 and DG507A/883. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG406 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 30V_{D-D} signals when operating with ±15V power supplies.

The sixteen switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a ±5V analog input range.

Pinouts

File Number 3720

DG408/883 DG409/883

June 1994

Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- ON-Resistance 100Ω Maximum (+25°C)
- Low Power Consumption (P_D <11mW)
- · Fast Switching Action
 - t_{TRANS} <250ns
 - t_{ON/OFF(EN)} <150ns
- Low Charge Injection
- Upgrade from DG508A/DG509A
- . TTL, CMOS Compatible
- Single or Split Supply Operation

Applications

- · Data Acquisition Systems
- · Audio Switching Systems
- Automatic Testers
- · Hi-Rel Systems
- · Sample and Hold Circuits
- · Communication Systems
- · Analog Selector Switch

Description

The DG408/883 Single 8-Channel and DG409/883 Differential 4-Channel monolithic CMOS analog multiplexers are drop-in replacements for the popular DG508A and DG509A series devices. They each include an array of eight analog switches, a TTL/CMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds and an ENABLE input for device selection when several multiplexers are present.

The DG408/883 and DG409/883 feature lower signal ON resistance (<100 Ω) and faster switch transition time (t_{TRANS} <250ns) compared to the DG508A or DG509A. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG408/883 series are made possible by using a high-voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. Power supplies may be single-ended from +5V to +34V, or split from ±5V to ±20V.

The analog switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a ±5V analog input range.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG408AK/883	-55°C to +125°C	16 Lead CerDIP
DG409AK/883	-55°C to +125°C	16 Lead CerDIP

Pinouts

Functional Block Diagrams

DG408/883, DG409/883

Pin Description - (DG408/883)

PIN	SYMBOL	DESCRIPTION
1	Ao	Logic Decode Input (Bit 0, LSB)
2	EN	Enable Input
3	V-	Negative Power Supply Terminal
4	S ₁	Source (Input) for Channel 1
5	S ₂	Source (Input) for Channel 2
6	S ₃	Source (Input) for Channel 3
7	S ₄	Source (Input) for Channel 4
8	D	Drain (Output)
9	S ₈	Source (Input) for Channel 8
10	S ₇	Source (Input) for Channel 7
11	S ₆	Source (Input) for Channel 6
12	S ₅	Source (Input) for Channel 5
13	V+	Positive Power Supply Terminal (Substrate)
14	GND	Ground Terminal (Logic Common)
15	A ₂	Logic Decode Input (Bit 2, MSB)
16	A ₁	Logic Decode Input (Bit 1)

Pin Description - (DG409/883)

PIN	SYMBOL	DESCRIPTION
1	Ao	Logic Decode Input (Bit 0, LSB)
2	EN	Enable Input
3	V-	NegAtive Power Supply Terminal
4	S _{1A}	Source (Input) for Channel 1A
5	S _{2A}	Source (Input) for Channel 2A
6	S _{3A}	Source (Input) for Channel 3A
7	S _{4A}	Source (Input) for Channel 4A
8	D _A	Drain A (Output A)
9	D _B	Drain B (Output B)
10	S _{4B}	Source (Input) for Channel 4B
11	S _{3B}	Source (Input) for Channel 3B
12	S _{2B}	Source (Input) for Channel 2B
13	S _{1B}	Source (Input) for Channel 1B
14	V+	Positive Power Supply Terminal
15	GND	Ground Terminal (Logic Common)
16	A ₁	Logic Decode Input (Bit 1, MSB))

TRUTH TABLE DG408/883

A ₂	A ₁	A ₀	EN	ON SWITCH
Х	Х	Х	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8
	X 0 0	X X 0 0 0 0 0 0 1 0 1 1 0 1 0 1	X X X X 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1	X X X O 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1

TRUTH TABLE DG409/883

A ₁	Ao	EN	ON SWITCH
Х	Х	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

NOTES:

- 1. V_{AH} Logic "1" ≥2.4V.
- 2. V_{AL} Logic "0" ≤0.8V.

Specifications DG408/883, DG409/883

Absolute Maximum Ratings	Thermal Information
V+ to V	$ \begin{array}{cccc} Thermal \ Resistance & \theta_{JA} & \theta_{JC} \\ CerDIP \ Package & 70^{\circ}CW & 20^{\circ}CW \\ Operating \ Temperature &55^{\circ}C \ to +125^{\circ}C \\ Junction \ Temperature & .+175^{\circ}C \\ \end{array} $
Current (Any Terminal, Except S or D) .30mA Continuous Current, S or D .20mA Peak Current, S or D .40mA (Pulsed 1ms, 10% Duty Cycle) .65°C to +125°C Storage Temperature Range .65°C to +300°C Lead Temperature (Soldering, 10s) .300°C	
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may can of the device at these or any other conditions above those indicated in the opera	

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: -55° C $\leq T_{A} \leq +125^{\circ}$ C, V+ = +15V, V- = -15V, Unless Otherwise Specified

			ODOUD A	anaun 4	LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Drain-Source ON Resistance	r _{DS(ON)}	$V_D = \pm 10V$, $V_{AL} = 0.8V$, $V_{AH} = 2.4V$, $I_S = -10mA$,	1, 3	+25°C, -55°C	-	100	Ω
riesisiance		Sequence Each Switch On	2	+125°C	-	125	Ω
Difference In Drain- Source ON Resistance Between Channels	Δr _{DS(ON)}	$V_D = \pm 10V$, $V_{AL} = 0.8V$, $V_{AH} = 2.4V$, $I_S = -10mA$, (Note 2)	1	+25°C	-	15	Ω
Source OFF Leakage Current	I _{S(OFF)}	$V_S = \pm 10V, V_D = \mp 10V, V_{FN} = 0V$	1	+25°C	-0.5	+0.5	nA
Current		VEN - 0V	2	+125°C	-50	+50	nA
Drain OFF Leakage Current	I _{D(OFF)}	$V_S = \pm 10V, V_D = \mp 10V, V_{EN} = 0V$	1	+25°C	-1	+1	nA
DG408/883							
			2	+125°C	-200	+200	nA
DG409/883			1	+25°C	-1	+1	nA
			2	+125°C	-100	+100	nA
Drain ON Leakage Current DG408/883	I _{D(ON)}	$V_S = V_D = \pm 10V$, $V_{AL} = 0.8V$, $V_{AH} = 2.4V$, $V_{EN} = 2.4V$, Sequence Each Switch On	1	+25°C	-1	+1	nA
		*	2	+125°C	-200	+200	nA
DG409/883			1	+25°C	-1	+1	nA
			2	+125°C	-150	+150	nA
Logic Input Current,	I _{AH}	V _{EN} = 0.8V, V _A = 2.4V		+25°C, +125°C, -55°C	-10	+10	μА
Input Voltage High		V _{EN} = 0.8V, V _A = 15V		-55 0	-10	+10	μА
Logic Input Current, Input Voltage Low	I _{AL}	V _{EN} = 0V, V _A = 0V	1, 2, 3 +	+25°C, +125°C, -55°C	-10	+10	μА
Input Voltage Low		V _{EN} = 2.4V, V _A = 0V		-55 0	-10	+10	μА
Positive Supply Current Standby	I+ _(SB)	V _{EN} = 0V, V _A = 0V	1, 2, 3	+25°C, +125°C, -55°C	-	75	μА

Specifications DG408/883, DG409/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, V+ = +15V, V- = -15V, Unless Otherwise Specified

			ODOUD A	ODOUD A	LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Negative Supply Current Standby	I- _(SB)	V _{EN} = 0V, V _A = 0V	1, 2, 3	+25°C, +125°C, -55°C	-75	-	μА
Positive Supply	I+	V _{EN} = 2.4V, V _A = 0V	1, 3	+25°C, -55°C	-	0.5	mA
Current			2	+125°C	-	2	mA
Negative Supply Current	l-	V _{EN} = 2.4V, V _A = 0V	1, 2, 3	+25°C, +125°C, -55°C	-0.5	-	mA

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: -55° C \leq T_A \leq +125°C, V+ = +15V, V- = -15V, Unless Otherwise Specified

			GROUP A	CDOUD A		LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Switching Time of Multiplexer	t _{TRANS}		9, 10, 11	+25°C, +125°C, -55°C	-	250	ns
Enable Turn ON Time	t _{ON(EN)}		9, 11	+25°C, -55°C	-	150	ns
			10	+125°C	-	225	ns
Enable Turn OFF Time	t _{OFF(EN)}		9, 10, 11	+25°C, +125°C, -55°C	-	150	ns
Break-Before-Make Interval	t _{OPEN}		9	+25°C	10	-	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 3), 2, 3, 9, 10, 11
Group A Test Requirements	1, 2, 3, 9, 10, 11
Groups C and D Endpoints	1

NOTES:

- Signals on S_X, D_X, or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- 2. $\Delta r_{DS(ON)} = r_{DS(ON)} MAX r_{DS(ON)} MIN$.
- 3. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $1800 \mu m \times 3320 \mu m \times 485 \pm 25 \mu m$

METALLIZATION:

Type: SiAI

Thickness: 12kÅ ± 1kÅ

GLASSIVATION:

Type: Nitride

Thickness: 8kÅ ± 1kÅ

WORST CASE CURRENT DENSITY:

9.1 x 10⁴ A/cm²

Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:

1800μm x 3320μm x 485 ± 25 μm

METALLIZATION:

Type: SiAI

Thickness: 12kÅ ± 1kÅ

GLASSIVATION:

Type: Nitride

Thickness: 8kÅ ± 1kÅ

WORST CASE CURRENT DENSITY:

9.1 x 104 A/cm2

Metallization Mask Layout

DG458/883, DG459/883

PRELIMINARY

June 1994

Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Fault and Overvoltage Protection
- ON-Resistance <1.5kΩ (+25°C)
- Low Power Consumption (P_D <3mW)
- Fast Switching Action
 - t_A <500ns
 - t_{ON/OFF(EN)} <250ns
- Fail Safe with Power Loss (No Latch-Up)
- Upgrade from IH5108/IH5208
- TTL, CMOS Compatible Logic

Applications

- · Data Acquisition Systems
- · Audio Switching Systems
- Automatic Testers
- · Hi-Rel Systems
- Sample and Hold Circuits
- · Communication Systems
- · Analog Selector Switch

Ordering Information

PART NUMBER	RANGE	PACKAGE		
DG458AK/883	-55°C to +125°C	16 Lead CerDIP		
DG459AK/883	-55°C to +125°C	16 Lead CerDIP		
Pinouts				

TEMPEDATURE

Description

The DG458/883 Single 8-Channel and DG459/883 Differential 4-Channel monolithic CMOS analog multiplexers are drop-in replacements for the popular IH5108/883 and IH5208/883 series devices. They each include an array of eight analog switches, a series N-Channel/P-Channel/N-Channel fault protection circuit, a TTL/CMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds and an ENABLE input for device selection when several multiplexers are present.

The DG458/883 and DG459/883 feature lower signal ON resistance (450 Ω typical) and faster switch transition time (200ns typical) compared to the IH5108/883 or IH5208/883. The improvements in the DG458/883 series are made possible by using a high-voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies.

The 44V maximum voltage range permits controlling 20V_{P-P} signals, while withstanding continuous overvoltages up to ±35V, providing an open fault circuit.

The analog switches are bilateral, break-before-make, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a ±5V analog input range.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures.

Copyright © Harris Corporation 1993

5-11

Spec Number 512040-883 File Number 3708

6

ANALOG

6

DATA CONVERTERS

		PAGE
DATA CONVERTER D	DATA SHEETS	
HC-55564/883	Continuously Variable Slope Delta-Modulator (CVSD)	6-3
HI-5700/883	8-Bit, 20 MSPS Flash A/D Converter	6-8
HI-5701/883	6-Bit, 30 MSPS Flash A/D Converter	6-14

HC-55564/883

Continuously Variable Slope Delta-Modulator (CVSD)

June 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.Requires Few External Parts
- All Digital
- · Requires Few External Parts
- Low Power Drain
- Time Constants Determined by Clock Frequency; No Calibration or Drift Problems: Automatic Offset Adjustment
- · Half Duplex Operation Under Digital Control
- · Filter Reset Under Digital Control
- · Automatic Overload Recovery
- Automatic "Quiet" Pattern Generation
- AGC Control Signal Available

Applications

- Voice Transmission Over Data Channels (Modems)
- · Voice/Data Multiplexing (Pair Gain)
- Voice Encryption/Scrambling
- Voicemail
- Audio Manipulations: Delay Lines, Time Compression, Echo Generation/Suppression, Special Effects, etc.
- Pagers/Satellites
- · Data Acquisition Systems
- Voice I/O for Digital Systems and Speech Synthesis Requiring Small Size, Low Weight, and Ease of Reprogrammability

Description

The HC-55564/883 is a half duplex modulator/demodulator CMOS intergrated circuit used to convert voice signals into serial NRZ digital data and to reconvert that data into voice. The conversion is by delta-modulation, using the Continuously Variable Slope (CVSD) method of modulation/demodulation.

While the signals are compatible with other CVSD circuits, the internal design is unique. The analog loop filters have been replaced by very low power digital filters which require no external timing components. This approach allows inclusion of many desirable features which would be difficult to implement using other approaches.

The fundamental advantages of delta-modulation, along with its simplicity and serial data format, provide an efficient (low data rate/low memory requirements) method for voice digitization. The device may be easily configured with the National TP3040 PCM/CVSD filter.

The HC-55564/883 is usable from 9k bits/sec to above 64kbps. For more applications information, see Application Notes AN576 and AN607.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HC1-55564/883	-55°C to +125°C	14 Lead CerDIP
HC4-55564/883 -55°C to +125°C		20 Lead Ceramic LCC

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures.

Copyright © Harris Corporation 1994

6-3

Spec Number 512016-883 File Number 3738

Pin Description

PIN NO. 14 LEAD DIP	PIN NO. 20 LEAD LCC	SYMBOL	DESCRIPTION	
1	2	V _{DD}	Positive Supply Voltage. Voltage range is +3.2V to +6.0V.	
2	3	Analog GND	Analog Ground connection to D/A ladders and comparator.	
3	4	A _{OUT}	Audio Out recovered from 10-bit DAC. May be used as side tone at the transmitter. Presents approximately 75k Ω source with DC offset of V _{DD} /2. Within ±2dB of Audio Input. Should be externally AC coupled.	
4	6	ĀĠĊ	Automatic Gain Control output. A logic low level will appear at this output when the recovered signal excursion reaches one-half of full scale value. In each half cycle full scale is V _{DD} /2. The mark-space ratio is proportional to the average signal level.	
5	8	A _{IN}	Audio Input to comparator. Should be externally AC coupled. Presents approximately $200k\Omega$ in series with $V_{DD}/2$.	
6, 7	1, 5, 7, 9, 10, 11, 15, 17	NC	No internal connection is made to these pins.	
8	12	Digital GND	Logic ground. 0V reference for all logic inputs and outputs.	
9	13	Clock	Sampling rate clock. In the decode mode, must be synchronized with the digital input data such that the data is valid at the positive clock transition. In the encode mode, the digital data is clocked out on the negative going clock transition. The clock rate equals the data rate.	
10	14	Encode/ Decode	A single CVSD can provide half-duplex operation. The encode or decode function is selected by the logic level applied to this input. A low level selects the encode mode, a high level the decode mode.	
11	16	APT	Alternate Plain Text input. Activating this input caused a digital quieting pattern to be transmitted, ho ever; internally the CVSD is still functional and a signal is still available at the A _{OUT} port. Active low.	
12	18	Digital In	Input for the received digital NRZ data.	
13	19	FZ	Force Zero input. Activating this input resets the internal logic and forces the digital output and the recovered audio output into the "quieting" condition. An alternating 1-0 pattern appears at the digital output at 1/2 the clock rate. When this is decoded by a receive CVSD, a 10mV _{P-P} inaudible signal appears at audio output. Active low.	
14	20	Digital Out	Output for transmitted digital NRZ data.	

NOTE

Functional Diagram

^{1.} No active input should be left in a "floating condition".

Specifications HC-55564/883

Absolute Maximum Ratings	Thermal Information		
Voltage at Any Pin GND -0.3V to V _{DD} +0.3V Maximum V _{DD} Voltage +6.0V Minimum V _{DD} Voltage +3.2V Junction Temperature +175°C Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering 10s) +300°C ESD Rating <20000V	Thermal Resistance CerDIP Package Ceramic LCC Package Package Power Dissipation Limit at +75°C for CerDIP Package Ceramic LCC Package Package Power Dissipation Derating Factor A CerDIP Package Ceramic LCC Package	T _J at ≤ +17	1.52W 1.54W) 15.2W/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Recommended Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = +5V$, fclk = 16kHz, Operating Temperature = -55°C $\leq T_A \leq +125$ °C, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	TYP	MAX	UNITS
Supply Current	I _{DD}	Encode Mode: A _{IN} = 0V	1	+25°C	-	1.5	mA
			2, 3	+125°C, -55°C	-	1.5	mA
Logic Input High (Note 2)	V _{IH}	Input Level: '1' = +3.5V,	1	+25°C	3.5	-	V
		'0' = +1.5V	2, 3	+125°C, -55°C	3.5	-	V
Logic Input Low (Note 2)	V _{IL}	Input Level: '1' = +3.5V,	1	+25°C	-	1.5	V
		'0' = +1.5V	2, 3	+125°C, -55°C	-	1.5	V
Logic Output High (Note 3)	V _{OH}	$I_{LOAD} = -40\mu A$	1	+25°C	4.0	-	V
			2, 3	+125°C, -55°C	4.0	-	V
Logic Output Low (Note 3)	V _{OL}	$I_{LOAD} = +0.8 \text{mA}$	1	+25°C	-	0.4	V
			2, 3	+125°C, -55°C	-	0.4	V
Quieting Pattern	V _{QP}	FZ = 0; Clock Inputs	1	+25°C	-	14	mV _{P-P}
Amplitude (Note 8)		Switched Statically	2, 3	+125°C, -55°C	-	14	mV _{P-P}
AGC Threshold (Note 9)	V _{ATH}	Encode Mode	1	+25°C	0.45	0.65	F.S.
			2, 3	+125°C, -55°C	0.45	0.65	F.S.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICL PERFORMANCE CHARACTERISTICS

Devices Characterized at: $\frac{V_{DD}}{ENC} = +5.0V$, $\frac{T_A}{ENC} = +25^{\circ}C$, Operating Temperature, fclk = 16kHz Clock Sampling Rate.

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTE	TEMPERATURE	TYP	MAX	UNITS
Sampling Rate	CLK	A _{IN} = 0.775 V _{RMS} at 20Hz	1, 12	+25°C	9	64	kBS
				+125°C, -55°C	9	64	kBS
CLK Duty Cycle		A _{IN} = 0.775 V _{RMS} at 100Hz	12	+25°C	30	70	%
				+125°C, -55°C	30	70	%

TABLE 3. ELECTRICL PERFORMANCE CHARACTERISTICS (Continued)

Devices Characterized at: $\frac{V_{DD}}{ENC}$ = +5.0V, $\frac{T_A}{E}$ = +25°C, Operating Temperature, fclk = 16kHz Clock Sampling Rate.

		LIMITS		IITS			
PARAMETER	SYMBOL	CONDITIONS	NOTE	TEMPERATURE	TYP	MAX	UNITS
Audio Input Voltage	A _{IN}	A _{IN} = 100Hz	4, 12	+25°C	-	1.2	V _{RMS}
				+125°C, -55°C	-	1.2	V _{RMS}
Audio Output Voltage	A _{OUT}	A _{IN} = 100Hz	5, 12	+25°C	-	1.2	V _{RMS}
				+125°C, -55°C	-	1.2	V _{RMS}
Input Impedance	Z _{IN}	A _{IN} = 100Hz	6, 12	+25°C	150	500	kΩ
				+125°C, -55°C	150	500	kΩ
Output Impedance	Z _{OUT}	A _{IN} = 100Hz	6, 12	+25°C	35	25	kΩ
				+125°C, -55°C	35	25	kΩ
Transfer Gain	A _{E-D}	A _{IN} = 0.775 V _{RMS} at 100Hz	11, 12	+25°C	-2	+2	dB
				-55°C, +125°C	-2	+2	dB
Resolution	RES	A _{IN} at 100Hz. Note 8	12, 13	+25°C	0.3	-	% of Supply
MIN Step Size	MSS		7, 12	+25°C	0.10	0.14	% of Supply
Clamping Threshold	V _{CTH}		10, 12	+25°C	0.70	0.90	F.S.

NOTES:

- 1. There is one NRZ (Non-Return Zero) data bit per clock period. Data is clocked out on the negative clock edge. Data is clocked into the CVSD on the positive going edge (see Figure 2). Clock may be run at less than 9kbps.
- 2. Logic inputs are CMOS compatible at supply voltage and are diode protected. Digital data input is NRZ at clock rate.
- Logic outputs are CMOS compatible at supply voltage and will withstand short-circuits to V_{DD} or ground; however, the short circuit duty
 cycle must not exceed 5% in order to maintain an acceptable current density level. Digital data output is NRZ and changes with negative
 clock transitions. Each output will drive one LS TTL loads.
- 4. Recommended voice input range for best voice performance. Should be externally AC coupled.
- 5. May be used for side-tone in encode mode. Should be externally AC coupled.
- 6. Presents series impedance with audio signal. Zero signal reference is approximately V_{DD}/2. Varies with audio input level by ±2dB.
- 7. The minimum audio output voltage change that can be produced by the internal DAC.
- 8. The "guieting" pattern or idle-channel audio output steps at 1/2 the bit rate, changing state on negative clock transitions.
- 9. A logic "0" will appear at the AGC output pin when the recovered signal reaches one-half of full-scale value (positive or negative), i.e. at V_{DD}/2 ±25% of V_{DD}.
- 10. The recovered signal will be clamped, and the computation will be inhibited, when the recovered signal reaches three-quarters of full-scale value, and will unclamp when it falls below this value (positive or negative).
- 11. No load condition measured from audio in to audio out.
- 12. The parameters listed in this table are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.
- 13. The minimum audio input voltage above which encoding is guaranteed to take place.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

82 x 147 x 20 ± 1 mils

METALLIZATION:

Type: AlSi

Thickness: $10kÅ \pm 1kÅ$

GLASSIVATION:

Type: Silane, 3% Phosphorous Thickness: 13kÅ ± 2.6kÅ

WORST CASE CURRENT DENSITY:

2.0 x 10⁵A/cm²

TRANSISTOR COUNT: 1896
PROCESS: CMOS; SAJI

Metallization Mask Layout

HC-55564/883

HI-5700/883

June 1994

8-Bit, 20 MSPS Flash A/D Converter

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- 20 MSPS with No Missing Codes
- 18MHz Full Power Input Bandwidth
- No Missing Codes Over Temperature
- · Sample and Hold Not Required
- Single +5V Supply Voltage
- · CMOS/TTL
- · Overflow Bit

Applications

- · Video Digitizing
- · Radar Systems
- · Medical Imaging
- · Communication Systems
- · High Speed Data Acquisition Systems

Description

The HI-5700/883 is a monolithic, 8-bit, CMOS Flash Analogto-Digital Converter. It is designed for high speed applications where wide bandwidth and low power consumption are essential. Its 20 MSPS speed is made possible by a parallel architecture which also eliminates the need for an external sample and hold circuit. The HI-5700/883 delivers ±0.5 LSB differential nonlinearity while consuming only 725mW (typical) at 20 MSPS. Microprocessor compatible data output latches are provided which present valid data to the output bus 1.5 clock cycles after the convert command is received. An overflow bit is provided to allow the series connection of two converters to achieve 9-bit resolution.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-5700S/883	-55°C to +125°C	28 Lead CerDIP

Pinout

HI-5700/883

Functional Block Diagram

Pin Descriptions

PIN#	NAME	DESCRIPTION		
1	CLK	Clock Input		
2	D7	Bit 7, Output (MSB)		
3	D6	Bit 6, Output		
4	D5	Bit 5, Output		
5	D4	Bit 4, Output		
6	1/4R	1/4th Point of Reference Ladder		
7	V _{DD}	Digital Power Supply		
8	GND	Digital Ground		
9	3/4R	3/4th Point of Reference Ladder		
10	D3	Bit 3, Output		
11	D2	Bit 2, Output		
12	D1	Bit 1, Output		
13	D0	Bit 0, Output (LSB)		
14	OVF	Overflow, Output		
15	CE2	Three-State Output Enable Input, Active High. (See Truth Table)		
16	CE1	Three-State Output Enable Input, Active Low. (See Truth Table))		
17	V _{REF} +	Reference Voltage Positive Input		

PIN#	NAME	DESCRIPTION
18	AV _{DD}	Analog Power Supply, +5V
19	AGND	Analog Ground
20	AGND	Analog Ground
21	AV _{DD}	Analog Power Supply, +5V
22	1/2R	1/2 Point of Reference Ladder
23	AV _{DD}	Analog Power Supply, +5V
24	AGND	Analog Ground
25	AGND	Analog Ground
26	AV _{DD}	Analog Power Supply, +5V
27	V _{REF} -	Reference Voltage Negative Input
28	V _{IN}	Analog Input

Chip Enable Truth Table

CE1	CE2	D0 - D7	OVF
0	1	Valid	Valid
1	1	Three-State	Valid
х	0	Three-State	Three-State

X = Don't Care.

Specifications HI-5700/883

Absolute Maximum Ratings Thermal Information

Thermal Resistance θ_{JA} θ_{JC}
HI1-5700S/883 47°C/W 28°C/W
Power Dissipation at +75°C (Note 1)
HI1-5700S/883 2100mW

 Storage Temperature Range
 -65°C to +150°C
 Reliability Information

 Lead Temperature (Soldering, 10s)
 300°C
 Transistor Count
 14677

 ESD Clasification
 Class 1
 Worst Case Density
 3.05 x 10⁴A/cm²

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $AV_{DD} = V_{DD} = +5.0V$; $V_{REF} + = +4.0V$; $V_{REF} - = GND = AGND = 0V$; $F_{S} = Specified Clock Frequency at 50% Duty Cycle$; $C_{L} = 30pF$; Unless Otherwise Specified.

			GROUP A		LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNIT
ACCURACY					Parket States of Control of Control		
Integral Linearity Error	INL	F _S = 15MHz, f _{IN} = DC	1	+25°C	-	±2.0	LSB
(Best Fit Method)			2, 3	+125°C, -55°C	-	±2.65	LSB
		F _S = 20MHz, f _{IN} = DC	1	+25°C	-	±2.25	LSB
			2, 3	+125°C, -55°C	-	±4.1	LSB
Differential Linearity Error	DNL	F _S = 15MHz, f _{IN} = DC	1	+25°C	-	±0.9	LSB
(Guaranteed No Missing Codes)			2,3	+125°C, -55°C	-	±1.0	LSB
		F _S = 20MHz, f _{IN} = DC	1	+25°C	-	±0.9	LSB
			2, 3	+125°C, -55°C	-	±1.0	LSB
Offset Error	VOS	PS $F_S = 15MHz$, $f_{IN} = DC$	1	+25°C	-	±8.0	LSB
(Adjustable to Zero)			2, 3	+125°C, -55°C	-	±9.5	LSB
		F _S = 20MHz, f _{IN} = DC	1	+25°C	-	±8.0	LSB
			2,3	+125°C, -55°C	-	±9.5	LSB
Full Scale Error (Adjustable to Zero)	FSE	$F_S = 15MHz$, $f_{IN} = DC$	1	+25°C	-	±4.5	LSB
(Adjustable to Zero)			2, 3	+125°C, -55°C	-	±8.0	LSB
		$F_S = 20MHz$, $f_{IN} = DC$	1	+25°C	-	±4.5	LSB
			2, 3	+125°C, -55°C	-	±8.0	LSB
ANALOG INPUT							
Analog Input Resistance	R _{IN}	V _{IN} = 4V	1	+25°C	4	-	MΩ
			2, 3	+125°C, -55°C	4	-	MΩ
Analog Input Bias Current	I _B	V _{IN} = 0V, 4V	1	+25°C		±1.0	μА
			2, 3	+125°C, -55°C		±1.0	μА

Specifications HI-5700/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $AV_{DD} = V_{DD} = +5.0V$; $V_{REF} + = +4.0V$; $V_{REF} = GND = AGND = 0V$; $F_S = Specified Clock Frequency at 50% Duty Cycle$; $C_L = 30pF$; Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNIT
REFERENCE INPUT		♦ D-21		•			
Total Reference Resistance	RL		1	+25°C	250	-	Ω
			2, 3	+125°C, -55°C	235	-	Ω
DIGITAL INPUTS			***************************************			***************************************	
Input High Voltage	V _{IH}		1	+25°C	2.0	-	V
			2, 3	+125°C, -55°C	2.0	-	٧
Input Low Voltage	V _{IL}		1	+25°C	-	0.8	٧
			2, 3	+125°C, -55°C	-	0.8	٧
Logic Input Current	I _{IN}	V _{IN} = 0V, +5V	1	+25°C	-	±1	μА
			2, 3	+125°C, -55°C	-	±1	μА
DIGITAL OUTPUTS		•		-			
Output Leakage	l _{oz} CE	CE2 = 0V, V _O = 0V, 5V	1	+25°C	-	±1.0	μА
			2, 3	+125°C, -55°C	-	±1.0	μА
Output Logic Source Current	Іон	V _O = 4.5V	1	+25°C	-3.2	-	mA
			2, 3	+125°C, -55°C	-3.2	-	mA
Output Logic Sink Current	I _{OL}	V _O = 0.4V	1	+25°C	3.2	-	mA
			2, 3	+125°C, -55°C	3.2	-	mA
POWER SUPPLY REJECTION	N	•					
Offset Error PSRR	ΔVOS	V _{DD} = 5V ±10%	1	+25°C	-	±2.75	LSB
		-	2, 3	+125°C, -55°C	-	±5.5	LSB
Gain Error PSRR	ΔFSE	V _{DD} = 5V ±10%	1	+25°C	-	±2.75	LSB
			2, 3	+125°C, -55°C	-	±5.5	LSB
POWER SUPPLY CURRENT				A			Branch Commence
Supply Current	I _{DD}	F _S = 20MHz	1	+25°C	-	180	mA
			2, 3	+125°C, -55°C	-	190	mA

NOTE:

^{1.} Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

Specifications HI-5700/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: AV_{DD} = V_{DD} = +5.0V; V_{REF}+ = +4.0V; V_{REF}- = GND = AGND = 0V; F_S = Specified Clock Frequency at 50% Duty Cycle; C_L = 30pF; Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNIT
Maximum Conversion Rate		No Missing Codes	9	+25°C	20	-	MSPS
			10, 11	+125°C, -55°C	20	-	MSPS
Data Output Enable Time	t _{EN}		9	+25°C	-	25	ns
			10, 11	+125°C, -55°C	-	30	ns
Data Output Disable Time	t _{DIS}		9	+25°C	-	20	ns
			10, 11	+125°C, -55°C	-	25	ns
Data Output Delay	t _{OD}	1	9	+25°C	-	25	ns
			10, 11	+125°C, -55°C	-	30	ns
Data Output Hold	t _H		9	+25°C	10	-	ns
			10, 11	+125°C, -55°C	5	-	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (NOTE 1)

Device Characterized at: $AV_{DD} = V_{DD} = +5.0V$; $V_{REF} + = +4.0V$; $V_{REF} = GND = AGND = 0V$; $F_S = Specified Clock Frequency at 50% Duty Cycle; <math>C_L = 30pF$; Unless Otherwise Specified.

				LIMITS		
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNIT
Minimum Conversion Rate		No Missing Codes	+25°C, +125°C, -55°C	-	0.125	MSPS

NOTE:

Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 9, 10, 11
Group A Test Requirements	1, 2, 3, 9, 10, 11
Groups C & D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

6

Die Characteristics

DIE DIMENSIONS:

154.3 x 173.2 x 19 ± 1mils

METALLIZATION:

Type: Si - Al

Thickness: 11kÅ ± 1kÅ

GLASSIVATION:

Type: SiO₂

Thickness: 8kÅ ± 1kÅ

DIE ATTACH:

Material: Gold Silicon Eutectic Alloy Temperature: Ceramic DIP - 460°C (Max)

WORST CASE CURRENT DENSITY:

3.05 x 104 A/cm2

Metallization Mask Layout

HI-5701/883

June 1994

6-Bit, 30 MSPS Flash A/D Converter

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- 30 MSPS with No Missing Codes
- · 20MHz Full Power Input Bandwidth
- · No Missing Codes Over Temperature
- · Sample and Hold Not Required
- Single +5V Supply Voltage
- · CMOS/TTL
- · Overflow Bit

Applications

- Video Digitizing
- Radar Systems
- Medical Imaging
- · Communication Systems
- High Speed Data Acquisition Systems

Description

The HI-5701/883 is a monolithic, 6-bit, CMOS Flash Analog-to-Digital Converter. It is designed for high speed applications where wide bandwidth and low power consumption are essential. Its 30 MSPS speed is made possible by a parallel architecture which also eliminates the need for an external sample and hold circuit. The HI-5701/883 delivers ±0.7 LSB differential nonlinearity while consuming only 250mW (typical) at 30 MSPS. Microprocessor compatible data output latches are provided which present valid data to the output bus 1.5 clock cycles after the convert command is received. An overflow bit is provided to allow the series connection of two converters to achieve 7-bit resolution.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-5701T/883	-55°C to +125°C	18 Lead CerDIP

Pinout

Functional Block Diagram

Pin Description

PIN#	NAME	DESCRIPTION
1	D5	Bit 6, Output (MSB)
2	OVF	Overflow, Output
3	V _{SS}	Digital Ground
4	NC	No Connection
5	CE2	Three-State Output Enable Input, Active high (See Truth Table)
6	CE1	Three-State Output Enable Input, Active Low (See Truth Table)
7	CLK	Clock Input
8	PHASE	Sample Clock Phase Control Input. When Phase is Low, Sample Unknown (\$\phi1) occurs when the Clock is Low and Auto Balance (\$\phi2) occurs when the Clock is High (See Phase Control Table)
9	V _{REF} +	Reference Voltage Positive Input
10	V _{REF} -	Reference Voltage Negative Input
11	V _{IN}	Analog Signal Input
12	V _{DD}	Power Supply, +5V
13	D0	Bit 1, Output (LSB)
14	D1	Bit 2, Output
15	D2	Bit 3, Output
16	1/2R	Reference Ladder Midpoint
17	D3	Bit 4, Output
18	D4	Bit 5, Output

Chip Enable Truth Table

CE1	CE2	D0 - D5	OVF
0	1	Valid	Valid
1	1	Three-State	Valid
Х	0	Three-State	Three-State

X = Don't Care.

Phase Control

CLOCK	PHASE	INTERNAL GENERATION
0	0	Sample Unknown (φ2)
0	1	Auto Balance (φ1)
1	0	Auto Balance (φ1)
1	1	Sample Unknown (¢2)

Specifications HI-5701/883

Absolute Maximum Ratings Thermal Information Supply Voltage, V_{DD} to V_{SS} (V_{SS} - 0.5) < V_{DD} < +7.0V Analog and Reference Input Pins. . (V_{SS} - 0.5) < V_{INA} < (V_{DD} +0.5V) Thermal Resistance θ_{JC} HI1-5701T/883..... 70°C/W 28°C/W Digital I/O Pins $(V_{SS} - 0.5) < V_{I/O} < (V_{DD} + 0.5V)$ Power Dissipation at +75°C (Note 1) Operating Temperature Range HI1-5701T/883..... .. 1.4mW Power Dissipation Derating Factor Above +75°C HI1-5701T/883 -55°C to +125°C HI1-5701T/883......14mW/°C Storage Temperature Range -65°C to +150°C Reliability Information Lead Temperature (Soldering, 10s) 300°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V_{DD} = +5.0V; V_{REF}+ = +4.0V; V_{REF}- = V_{SS} = GND; F_S = Specified Clock Frequency at 50% Duty Cycle; C_L = 30pF; Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNIT
ACCURACY							
Integral Linearity Error	INL	F _S = 20MHz, f _{IN} = DC	1	+25°C	-	±1.25	LSB
(Best Fit Method)		2	2, 3	+125°C, -55°C	-	±2.0	LSB
		F _S = 30MHz, f _{IN} = DC	1	+25°C	-	±1.5	LSB
			2,3	+125°C, -55°C	-	±2.5	LSB
Differential Linearity Error (Guaranteed No Missing	DNL	F _S = 20MHz, f _{IN} = DC	1	+25°C	-	±0.6	LSB
Codes)			2, 3	+125°C, -55°C	-	±0.75	LSB
	$F_S = 30MHz$, $f_{IN} = DC$	F _S = 30MHz, f _{IN} = DC	1	+25°C	-	±0.75	LSB
			2, 3	+125°C, -55°C	-	±1.0	LSB
Offset Error	vos	F _S = 20MHz, f _{IN} = DC	1	+25°C	-	±2.0	LSB
(Adjustable to Zero)			2,3	+125°C, -55°C	-	±2.5	LSB
Full Scale Error (Adjustable to Zero)	FSE	F _S = 20MHz, f _{IN} = DC	1	+25°C	-	±2.0	LSB
(Adjustable to Zero)			2, 3	+125°C, -55°C	-	±2.5	LSB
ANALOG INPUT		T					
Analog Input Resistance	R _{IN}	V _{IN} = 4V	1	+25°C	4	-	ΜΩ
			2, 3	+125°C, -55°C	4	-	МΩ
Analog Input Bias Current	IB	V _{IN} = 0V, 4V	1	+25°C		±1.0	μА
			2, 3	+125°C, -55°C		±1.0	μА
REFERENCE INPUT			-			•	
Total Reference Resistance	RL		1	+25°C	250	-	Ω
			2, 3	+125°C, -55°C	235	-	Ω

Specifications HI-5701/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V_{DD} = +5.0V; V_{REF}+ = +4.0V; V_{REF}- = V_{SS} = GND; F_S = Specified Clock Frequency at 50% Duty Cycle; C_L = 30pF; Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNIT
DIGITAL INPUTS							
Input High Voltage	V _{IH}		1	+25°C	2.0	-	V
			2, 3	+125°C, -55°C	2.0	-	V
Input Low Voltage	V _{IL}		1	+25°C	-	0.8	V
			2, 3	+125°C, -55°C		0.8	V
Logic Input Current	I _{IN}	V _{IN} = 0V, +5V	1	+25°C	-	±1	μА
			2, 3	+125°C, -55°C	-	±1	μА
DIGITAL OUTPUTS	•	***************************************				•	
Output Leakage	loz	CE2 = 0V, V _O = 0V, 5V	1	+25°C	-	±1.0	μА
			2, 3	+125°C, -55°C	-	±1.0	μА
Output Logic Source Current	Іон	V _O = 4.5V	1	+25°C	-3.2	-	mA
			2, 3	+125°C, -55°C	-3.2	-	mA
Output Logic Sink Current	l _{OL}	V _O = 0.4V	1	+25°C	3.2	-	mA
			2, 3	+125°C, -55°C	3.2	-	mA
POWER SUPPLY REJECTION	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Offset Error PSRR	ΔVOS	V _{DD} = 5V ±10%	1	+25°C	-	±1.0	LSB
			2, 3	+125°C, -55°C		±1.5	LSB
Gain Error PSRR	ΔFSE	V _{DD} = 5V ±10%	1	+25°C	-	±1.0	LSB
			2, 3	+125°C, -55°C	-	±1.5	LSB
POWER SUPPLY CURRENT		•					•
Supply Current	I _{DD}	F _S = 30MHz	1	+25°C	-	60	mA
			2, 3	+125°C, -55°C	-	75	mA

NOTE:

^{1.} Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

Specifications HI-5701/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V_{DD} = +5.0V; V_{REF}+ = +4.0V; V_{REF}- = V_{SS} = GND; F_S = Specified Clock Frequency at 50% Duty Cycle; C_L = 30pF; Unless Otherwise Specified.

			CDOUD A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	MIN	MAX	UNIT
Maximum Conversion Rate		No Missing Codes	9	+25°C	30	-	MSPS
			10, 11	+125°C, -55°C	30	-	MSPS
Data Output Enable Time	t _{EN}		9	+25°C	-	20	ns
*			10, 11	+125°C, -55°C	-	20	ns
Data Output Disable Time	t _{DIS}		9	+25°C	-	20	ns
			10, 11	+125°C, -55°C	-	20	ns
Data Output Delay	t _{OD}		9	+25°C	-	20	ns
			10, 11	+125°C, -55°C	-	20	ns
Data Output Hold	t _H		9	+25°C	10		ns
			10, 11	+125°C, -55°C	5	-	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (NOTE 1)

Device Characterized at: V_{DD} = +5.0V; V_{REF}+ = +4.0V; V_{REF}- = V_{SS} = GND; F_S = Specified Clock Frequency at 50% Duty Cycle; C_L = 30pF; Unless Otherwise Specified.

				LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNIT
Minimum Conversion Rate		No Missing Codes	+25°C, +125°C, -55°C	-	0.125	MSPS

NOTE:

1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 9, 10, 11
Group A Test Requirements	1, 2, 3, 9, 10, 11
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

Die Characteristics

DIE DIMENSIONS:

2220μm x 3320μm x 19 \pm 1mils

METALLIZATION:

Type: Si - Al

Thickness: 11kÅ ± 1kÅ

GLASSIVATION:

Type: SiO₂
Thickness: 8kÅ ± 1kÅ

DIE ATTACH:

Material: Gold Silicon Eutectic Alloy Temperature: Ceramic DIP - 460°C (Max)

WORST CASE CURRENT DENSITY:

3.05 x 10⁴ A/cm²

Metallization Mask Layout

HI-5701/883

ANALOG

7

SAMPLE AND HOLD AMPLIFIERS

		PAGE
SAMPLE AND HOLD	AMPLIFIER DATA SHEETS	
HA-5320/883	High Speed Precision Sample and Hold Amplifier	7-3
HA-5340/883	High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier	7-8
HA-5351/883	Fast Acquisition, Low Power Sample and Hold Amplifier	7-13
HA-5352/883	Fast Acquisition Dual Sample and Hold Amplifier	7-14

HA-5320/883

July 1994

High Speed Precision Sample and Hold Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Gain, DC 2 x 10⁶ V/V (Tvp) • Acquisition Time1.0μs (0.01%) (Typ)
- Droop Rate 0.08μV/μs (+25°C) (Typ) 17μV/μs (Full Temperature) (Typ)
- · Internal Hold Capacitor
- Fully Differential Input
- TTL Compatible

Applications

- High Bandwidth Precision Data Acquisition Systems
- Inertial Navigation and Guidance Systems
- Ultrasonics
- SONAR / RADAR

-INPUT 1

+INPUT 2 OFFSET ADJ 3

OFFSET ADJ 4

OFFSET ADJ

NC OFFSET ADJ

NC

SIG GND 6 OUTPUT 7

Digital to Analog Converter Deglitcher

Description

The HA-5320/883 was designed for use in precision, high speed data acquisition systems.

The circuit consists of an input transconductance amplifier capable of providing large amounts of charging current, a low leakage analog switch, and an output integrating amplifier. The analog switch sees virtual ground as its load; therefore, charge injection on the hold capacitor is constant over the entire input/ output voltage range. The pedestal voltage resulting from this charge injection can be adjusted to zero by use of the offset adjust inputs. The device includes a hold capacitor. However, if improved droop rate is required at the expense of acquisition time, additional hold capacitance may be added externally.

This monolithic device is manufactured using the Harris Dielectric Isolation Process, minimizing stray capacitance and eliminating SCR's. This allows higher speed and latch-free operation. For further information, please see Application Note AN538.

Pinouts Ordering Information HA-5320/883 (CERDIP) TOP VIEW

14 S/H CONTROL

13 SUPPLY GND

12 NC 11 CEXT

10 NC 9 V+

HA-5320/883 (CLCC)

TOP VIEW

3 2 1 20 19

8 INT. BW

NC

NC

NC

CEXT

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-5320/883	-55°C to +125°C	14 Lead CerDIP
HA4-5320/883	-55°C to +125°C	20 Lead Ceramic LCC

Functional Diagram 34 (9) HA-5320/883 100pF INPUT (1) +INPUT (2) OUTPUT CONTROL 14 (13) ➂ 6 (3) SUPPLY SIG INTEGRATOR GND BANDWIDTH 11 CEXT

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright @ Harris Corporation 1994 7-3

Spec Number 511096-883 File Number 2927.3

Specifications HA-5320/883

Absolute Maximum Ratings	Thermal Information		
Voltage Between V+ and V- Terminals	Thermal Resistance	θ_{JA}	θ_{JC}
Differential Input Voltage	CerDIP Package	66°C/W	16°C/W
Digital Input Voltage (S/H Pin) +8V, -15V	Ceramic LCC Package	57°C/W	9°C/W
Output Current, Continuous (Note 1)	Package Power Dissipation at +75°C		
Storage Temperature Range65°C to +150°C	CerDip Package		1.5W
Junction Temperature	Ceramic LCC Package		1.75W
Lead Temperature (Soldering 10s)+300°C	Package Power Dissipation Derating Factor Al	oove +75°C	;
ESD Classification	CerDip Package		15mW/°C
	Ceramic LCC Package		17mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range55°C ≤ T _A ≤ +125°C	Logic Level Low (V _{IL})0V to 0.8V
Operating Supply Voltage (±V _S)±15V	Logic Level High (V _{IH}) 2.0V to 5.0V
Analog Input Voltage	

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V+ = +15V; V- = -15V; V_{IL} = 0.8V (Sample); V_{IH} = 2.0V (Hold); C_H = Internal = 100pF; Signal GND = Supply GND, Unless Otherwise Specified

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}		1	+25°C	-1	+1	mV
			2, 3	+125°C, -55°C	-2	+ 2	mV
Input Bias Current	+I _B		1	+25°C	-200	+200	nA
			2, 3	+125°C, -55°C	-200	+200	nA
	-I _B		1	+25°C	-200	+200	nA
			2, 3	+125°C, -55°C	-200	+200	nA
Input Offset Current	I _{IO}		1	+25°C	-100	+100	nA
			2, 3	+125°C, -55°C	-100	+100	nA
Open Loop Voltage Gain	+A _{VS}	$R_L = 1k\Omega$, $V_{OUT} = +10V$	1	+25°C	120	-	dB
			2,3	+125°C, -55°C	110	-	dB
	-A _{VS}	$R_L = 1k\Omega$, $V_{OUT} = -10V$	1	+25°C	120	-	dB
			2, 3	+125°C, -55°C	110	-	dB
Common Mode	+CMRR		1	+25°C	80	-	dB
Rejection Ratio		$V_{OUT} = -5V, V_{S/H} = -4.2V, V_{GND} = -5V$	2, 3	+125°C, -55°C	80	-	dB
	-CMRR	V+ = 20V, V- = -10V,	1	+25°C	80	-	dB
		$V_{OUT} = +5V, V_{S/H} = 5.8V, V_{GND} = +5V$	2, 3	+125°C, -55°C	80	-	dB
Output Current	+l ₀	V _{OUT} = +10V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
	-l ₀	V _{OUT} = -10V	1	+25°C	-10	-	mA
			2,3	+125°C, -55°C	-10	-	mA

Specifications HA-5320/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V+ = +15V; V- = -15V; V_{IL} = 0.8V (Sample); V_{IH} = 2.0V (Hold); C_H = Internal = 100pF; Signal GND = Supply GND, Unless Otherwise Specified

			GROUP A	LIMITS	IITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Swing	+V _{OP}	$R_L = 1k\Omega$	1	+25°C	10	-	V
			2, 3	+125°C, -55°C	10	-	V
	-V _{OP}	$R_L = 1k\Omega$	1	+25°C	-	-10	٧
			2, 3	+125°C, -55°C	-	-10	٧
Power Supply Current	+lcc	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	13	mA
			2, 3	+125°C, -55°C	-	13	mA
	-l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-13	-	mA
			2,3	+125°C, -55°C	-13	-	mA
Power Supply Rejection	+PSRR	PSRR V+ = 14.5V, 15.5V V- = -15V, -15V	1	+25°C	80	-	dB
Ratio			2, 3	+125°C, -55°C	80	-	dB
	-PSRR	V+ = +15V, +15V,	1	+25°C	65	-	dB
		V- = -14.5V, -15.5V	2, 3	+125°C, -55°C	65	-	dB
Digital Input Current	I _{INL}	V _{IN} = 0V	1	+25°C	-	4	μА
			2, 3	+125°C, -55°C	-	10	μА
	I _{INH}	V _{IN} = 5V	1	+25°C	-	0.1	μА
			2, 3	+125°C, -55°C	-	0.1	μА
Digital Input Voltage	V _{IL}		1	+25°C		0.8	٧
			2, 3	+125°C, -55°C	-	0.8	٧
	V _{IH}		1	+25°C	2.0	-	٧
			2, 3	+125°C, -55°C	2.0	-	٧
Output Voltage Droop Rate	V _D	V _{OUT} = 0V	2	+125°C	-	100	μV/μs

NOTE:

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3.

^{1.} Internal power dissipation may limit output current below 20mA.

Specifications HA-5320/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Hold Mode Feedthrough	V _{HMF}	V _{IN} = 10V _{P-P} , 100kHz	1	+25°C	-	3	mV
Hold Step Error	V _{ERROR}	$V_{IH} = 3.5V, V_{IL} = 0V,$ $T_{RISE} (V_{IL} \text{ to } V_{IH}) = 10 \text{ ns}$	1	+25°C	-11	11	mV
Sample Mode Noise Voltage	E _{N(SAMPLE)}	DC to 10MHz, $V_{S/H} = 0V$, $R_{LOAD} = 2k\Omega$	1	+25°C	-	200	μV _{RMS}
Hold Mode Noise Voltage	E _{N(HOLD)}	DC to 10MHz, $V_{S/H} = 5V$, $R_{LOAD} = 2k\Omega$	1	+25°C	-	200	μV _{RMS}
Input Capacitance	C _{IN}	V _{S/H} = 0V	1	+25°C	-	5	pF
Input Resistance	R _{IN}	V _{S/H} = 0V, Delta V _{IN} = 20V	1	+25°C	1	-	МΩ
Slew Rate	+SR	C_L = 50pF, R_L = 2k Ω , V_{OUT} = -5V to +5V Step 10%, 90% pts	1	+25°C	30	-	V/µs
	-SR	C_L = 50pF, R_L = 2k Ω , V_{OUT} = +5V to -5V Step 10%, 90% pts	1	+25°C	30	-	V/µs
Rise and Fall Times	T _R	C_L = 50pF, R_L = 2k Ω , V_{OUT} = 0V to +200mV Step 10%, 90% pts	1	+25°C	-	150	ns
	T _F	C_L = 50pF, R_L = 2k Ω , V_{OUT} = 0V to -200mV Step 10%, 90% pts	1	+25°C	-	150	ns
Overshoot	+OS	$C_L = 50 pF$, $R_L = 2 k\Omega$, $V_{OUT} = 0 V$ to +200 mV Step	1	+25°C	-	25	%
	-OS	$C_L = 50 pF$, $R_L = 2 k\Omega$, $V_{OUT} = 0 V$ to -200 mV Step	1	+25°C	-	25	%
0.1% Acquisition Time	T _{ACQ} 0.1%	$C_L = 50pF$, $R_L = 2k\Omega$, $V_{OUT} = 0V$ to 10V Step	1	+25°C	-	1.2	μѕ

NOTE:

1. The parameters listed in this table are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	-
Final Electrical Test Parameters	1(Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

Die Characteristics

DIE DIMENSIONS:

92 x 152 x 19 ± 1mils

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si $_3$ N $_4$) over Silox (SiO $_2$, 5% Phos) Silox Thickness: 12kÅ $\stackrel{+}{_{\sim}}$ 2kÅ

Silox Thickness: 12kA ± 2kA Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.742 x 10⁵ A/cm²

TRANSISTOR COUNT: 184
SUBSTRATE POTENTIAL: V-

Metallization Mask Layout

HA-5320/883

HA-5340/883

High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier

June 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Fast Acquisition Time (0.01%) 900ns
- Fast Hold Mode Settling Time (0.01%)......300ns
- Low Distortion (Hold Mode) -72dBc (Typ)
 (V_{IN} = 200kHz, Fs = 450kHz, 5V_{P-P})
- Bandwidth Minimally Affected By External C_H
- Fully Differential Analog Inputs
- · Built-in 135pF Hold Capacitor
- Pin Compatible with HA-5320

Applications

- · High Bandwidth Precision Data Acquisition Systems
- · Inertial Navigation and Guidance Systems
- Ultrasonics
- SONAR
- RADAR

Description

The HA-5340/883 combines the advantages of two sample/hold architectures to create a new generation of monolithic sample/hold. High amplitude, high frequency signals can be sampled with very low distortion being introduced. The combination of exceptionally fast acquisition time and specified/characterized hold mode distortion is an industry first. Additionally, the AC performance is only minimally affected by additional hold capacitance.

To achieve this level of performance, the benefits of an integrating output stage have been combined with the advantages of a buffered hold capacitor. To the user this translates to a front-end stage that has high bandwidth due to charging only a small capacitive load and an output stage with constant pedestal error which can be nulled out using the offset adjust pins. Since the performance penalty for additional hold capacitance is low, the designer can further minimize pedestal error and droop rate without sacrificing speed.

Low distortion, fast acquisition, and low droop rate are the result, making the HA-5340/883 the obvious choice for high speed, high accuracy sampling systems.

Pinouts

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-5340/883	-55°C to +125°C	14 Lead CerDIP
HA4-5340/883	-55°C to +125°C	20 Lead Ceramic LCC

Functional Diagram

NOTE: Buffer acts as a buffer in sample mode, acts as a closed switch in hold mode.

Specifications HA-5340/883

Absolute Maximum Ratings	Thermal Information
Voltage Between V+ and V- Terminals 36V Differential Input Voltage 24V Digital Input Voltage (S/H Pin) +8V, -6V Output Current, Continuous ±20mA Storage Temperature Range -65°C to +150°C Junction Temperature +175°C Lead Temperature (Soldering 10s) +300°C ESD Classification <2000V	Thermal Resistance
	Ceramic LCC Package

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range55°C ≤ T _A ≤ +125°C	Logic Level Low (V _{IL})0V to 0.8V
Operating Supply Voltage (±V _S) ±15V	Logic Level High (V _{IH})
Analog Input Voltage	

TABLE 1. DC ELECTICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V+ = +15V; V- = -15V; V_{IL} = 0.8V (Sample); V_{IH} = 2.0V (Hold); C_H = Internal = 135pF; Signal GND = Supply GND, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}		1	+25°C	-1.5	1.5	mV
			2, 3	+125°C, -55°C	-3	3	mV
Input Bias Current	+l _B		1	+25°C	-350	350	nA
			2, 3	+125°C, -55°C	-350	350	nA
	-I _B		1	+25°C	-350	350	nA
			2,3	+125°C, -55°C	-350	350	nA
Input Offset Current	I _{IO}		1	+25°C	-350	350	nA
			2, 3	+125°C, -55°C	-350	350	nA
Open Loop Voltage Gain	+A _{VS}	$R_L = 2k\Omega$, $C_L = 60pF$, $V_{OUT} = +10V$	1	+25°C	110	-	dB
			2, 3	+125°C, -55°C	100	-	dB
-A _V s	-A _{VS}	$R_L = 2k\Omega$, $C_L = 60pF$,	1	+25°C	110		dB
	V _{OUT} = -10V	2,3	+125°C, -55°C	100	-	dB	
Common Mode	+CMRR	V+ = 5V, V- = -25V,	1	+25°C	72	-	dB
Rejection Ratio		$V_{OUT} = -10V, V_{\overline{S}/H} = -9.2V$	2, 3	+125°C, -55°C	72	-	dB
	-CMRR	V+ = 25V, V- = -5V,	1	+25°C	72		dB
		$V_{OUT} = +10V, V_{\overline{S}/H} = 10.8V$	2, 3	+125°C, -55°C	72	-	dB
Output Current	+l ₀	V _{OUT} = +10V	1	+25°C	10	-	mA
			2, 3	+125°C, -55°C	10	-	mA
-I _O	-l ₀	V _{OUT} = -10V	1	+25°C	-10	-	mA
			2, 3	+125°C, -55°C	-10	-	mA
Output Voltage Swing	+V _{OP}	$R_L = 2k\Omega$, $C_L = 60pF$	1	+25°C	10	-	٧
			2, 3	+125°C, -55°C	10	-	V
	-V _{OP}	$R_L = 2k\Omega$, $C_L = 60pF$	1	+25°C	-	-10	٧
	2, 3	+125°C, -55°C	-	-10	V		

Specifications HA-5340/883

TABLE 1. DC ELECTICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V+ = +15V; V- = -15V; V_{IL} = 0.8V (Sample); V_{IH} = 2.0V (Hold); C_H = Internal = 135pF; Signal GND = Supply GND, Unless Otherwise Specified.

			GROUP A		LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Power Supply Current	+lcc	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-	25	mA
			2, 3	+125°C, -55°C	-	25	mA
	-l _{cc}	V _{OUT} = 0V, I _{OUT} = 0mA	1	+25°C	-25		mA
			2, 3	+125°C, -55°C	-25	-	mA
Power Supply Rejection	+PSRR	V+ = 13.5V, 16.5V	1	+25°C	75	-	dB
Ratio		V- = -15V, -15V	2,3	+125°C, -55°C	75	-	dB
		V+ = +15V, +15V, V- = -13.5V, -16.5V	1	+25°C	75	-	dB
			2,3	+125°C, -55°C	75		dB
Digital Input Current	I _{INL}	V _{IN} = 0V	1	+25°C		40	μА
			2,3	+125°C, -55°C	-	40	μА
	I _{INH}	V _{IN} = 5V	1	+25°C	-	40	μА
			2, 3	+125°C, -55°C	-	40	μА
Digital Input Voltage	V _{IL}		1	+25°C	-	0.8	V
		,	2,3	+125°C, -55°C	-	0.8	V
	V _{IH}		1	+25°C	2.0	-	٧
			2, 3	+125°C, -55°C	2.0	-	V
Output Voltage Droop Rate	V _D	V _{OUT} = 0V	2	+125°C	-	95	μV/μs

TABLE 2. AC ELECTICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V+ = +15V; V- = -15V; V_{IL} = 0.8V (Sample); V_{IH} = 2.0V (Hold); C_H = Internal = 135pF; - Input Tied to Output, Signal GND = Supply GND, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	UNITS
Hold Step Error	V _{ERROR}	$V_{IL} = 0V, V_{IH} = 4.0V,$ $t_{RISE}(V_{S/H}) = 15ns$	4	+25°C	-50	50	mV
Rise Time & Fall Time	T _R	$C_L=60pF, R_L=2k\Omega, A_V=+1,$	4	+25°C	-	50	ns
		V _{OUT} = 0V to +200mV Step 10%, 90%pts	5, 6	+125°C, -55°C	-	50	ns
	T _F	$C_L = 60 pF, R_L = 2 k\Omega,$ $A_V = +1, V_{OUT} = 0 V to$ -200mV Step 10%, 90%pts	4	+25°C		50	ns
Overshoot	+OS	$C_L = 60pF, R_L = 2k\Omega,$	4	+25°C	-	60	%
		$A_V = +1$, $V_{OUT} = 0V$ to +200mV Step	5, 6	+125°C, -55°C	-	60	%
	-OS	$C_L = 60pF, R_L = 2k\Omega,$	4	+25°C	-	60	%
		$A_V = +1$, $V_{OUT} = 0V$ to -200mV Step	5, 6	+125°C, -55°C	-	60	%
Slew Rate	+SR	$C_L = 60 pF, R_L = 2 k\Omega,$ $A_V = +1, V_{OUT} = 0V to +10V$ Step, 25%, 75% pts	4	+25°C	40	-	V/μs
			5, 6	+125°C, -55°C	40		V/µs
	-SR	$C_L = 60pF, R_L = 2k\Omega,$ $A_V = +1, V_{OUT} = 0V \text{ to -10V}$ Step, 25%, 75% pts	4	+25°C	40	-	V/µs
			5, 6	+125°C, -55°C	40	-	V/µs

Specifications HA-5340/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Hold Mode Feedthrough	V _{HMF}	V _{IN} = 20V _{P-P} , 200kHz	1	+25°C	-	-70	dB
Sample Mode Noise Voltage	E _{n(SAMPLE)}	DC to 10MHz, V _{S/H} = 0V, R _{LOAD} = 2K	1	+25°C	-	335	μV _{RMS}
Hold Mode Noise Voltage	E _{n(HOLD)}	DC to 10MHz, V _{S/H} = 5V, R _{LOAD} = 2K	1	+25°C	-	100	μV _{RMS}
Input Capacitance	C _{IN}	V _{S/H} = 0V	1	+25°C	-	5	pF
Input Resistance	R _{IN}	V _{S/H} = 0V, Delta V _{IN} = 20V	1	+25°C	1	-	МΩ
0.1% Acquisition Time	T _{ACQ} 0.1%	C _L = 60pF, R _L = 2K, V _{OUT} = 0V to 10V Step	1	+25°C		600	ns
Total Harmonic Distortion Hold Mode	THD _{200K(HOLD)}	F _S = 450kHz, V _{IN} = 20V _{P-P} , 200kHz	1	+25°C		-50	dBc
	THD _{5∞K(HOLD)}	F _S = 450kHz, V _{IN} = 5V _{P-P} , 500kHz	1	+25°C	-	-47	dBc
Total Harmonic Distortion Sample Mode	THD _{200K(SAMPLE)}	V _{IN} = 20V _{P-P} , 200kHz	1	+25°C	-	-60	dBc
Distortion Sample Mode	THD _{500K(SAMPLE)}	V _{IN} = 5V _{P-P} , 500kHz	1	+25°C	-	-49	dBc

NOTE:

1. The parameters listed in this table are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	-
Final Electrical Test Parameters	1(Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

Die Characteristics

DIE DIMENSIONS:

84 x 139 x 19mils

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si_3N_4) over Silox $(SiO_2, 5\%$ Phos) Silox Thickness: $12k\mathring{A} \pm 2.0k\mathring{A}$ Nitride Thickness: $3.5k\mathring{A} \pm 1.5k\mathring{A}$

DIE ATTACH:

Material: Gold Silicon Eutectic Alloy Temperature: Ceramic DIP - 460°C (Max)

Ceramic LCC - 420°C (Max)

WORST CASE CURRENT DENSITY:

5.33 x 10⁴ A/cm²

Metallization Mask Layout

HA-5340/883

(11) EXTERNAL HOLD CAP

(9) +V_{SUPPLY}

(7) OUTPUT

(7) OUTPUT

(6) SIG GND

OFFSET ADJ (3) OFFSET ADJ (4)

HA-5351/883

ADVANCE INFORMATION

June 1994

Fast Acquisition, Low Power Sample and Hold Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Fast Acquisition to 0.01%70ns (Max)
- Low Offset Error±2mV (Max)
- Low Droop Rate 2μV/μs (Max)
- Wide Unity Gain Bandwidth 40MHz (Typ)
- Total Harmonic Distortion (Hold Mode) . . -72dBc (Typ) $(V_{IN} = 5V_{P.P} \ at \ 1 \ MHz)$
- Fully Differential Inputs
- · On Board Hold Capacitor

Applications

- · Synchronous Sampling
- · Wide Bandwidth A/D Conversion
- Dealitchina
- · Peak Detection
- · High Speed DC Restore

Description

The HA-5351/883 is a fast acquisition, wide bandwidth sample/hold amplifier built with the Harris HBC-10 BiCMOS process. This sample and hold amplifier offers the combination of features; fast acquisition time (70ns to 0.01% maximum), excellent DC precision and extremely low power dissipation, making it ideal for use in systems that sample multiple signals and require low power. In systems with multiple channels also consider the Dual HA-5352/883 sample and hold amplifier.

The HA-5351/883 is in an open loop configuration with fully differential inputs providing flexibility for user defined feedback. In unity gain the HA-5351/883 is completely self-contained and requires no external components. The on-board 15pF hold capacitor is completely isolated to minimizing droop rate and reduce sensitivity to pedestal error. The HA5351/883 is available in 8 lead CerDIP for minimum board space and easy layout.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA-5351MJ/883	-55°C to +125°C	8 Lead CerDIP

Pinout

HA-5352/883

ADVANCE INFORMATION

June 1994

Fast Acquisition Dual Sample and Hold Amplifier

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.

- Low Droop Rate 2μV/μs (Max)
- Wide Unity Gain Bandwidth 40MHz (Typ)
- Low Power Dissipation per Amp 220mW (Max)
- Total Harmonic Distortion (Hold Mode) . . -72dBc (Typ) $(V_{IN} = 5V_{P-P} \text{ at } 1MHz)$
- · Fully Differential Inputs
- · On Board Hold Capacitor

Applications

- · Synchronous Sampling
- Wide Bandwidth A/D Conversion
- Deglitching
- Peak Detection
- High Speed DC Restore

Description

The HA-5352/883 is a fast acquisition, wide bandwidth Dual Sample and Hold amplifier built with the Harris HBC-10 BiCMOS process. This Sample and Hold amplifier offers the combination of features; fast acquisition time (70ns to 0.01%), excellent DC precision and extremely low power dissipation, making it ideal for use in multi-channel systems that require low power.

The HA-5352/883 comes in an open loop configuration with fully differential inputs providing flexibility for user defined feedback. In unity gain the HA-5352/883 is completely self-contained and requires no external components. The on-board 15pF hold capacitors are completely isolated to minimize droop rate and reduce the sensitivity of pedestal error. The HA-5352/883 Dual Sample and Hold is available in a 14 lead CerDIP package saving board space while its pinout is designed to simplify layout.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA5352MJ/88	3 -55°C to +125°C	14 Lead CerDIP

Pinout

HA-5352/883 (CERDIP) TOP VIEW

ANALOG

8

ANALOG MULTIPLIERS

		PAGE
ANALOG MULTIPLIE	R DATA SHEETS	
HA-2546/883	Wideband Two Quadrant Analog Multiplier (Voltage Output)	8-3
HA-2556/883	Wideband Four Quadrant Analog Multiplier (Voltage Output)	8-7
HA-2557/883	Wideband Four Quadrant Analog Multiplier (Current Output)	8-12

HA-2546/883

Wideband Two Quadrant Analog **Multiplier (Voltage Output)**

July 1994

Features

- . This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Speed Voltage Output...... 300V/μs (Min)
- 1.6% (Typ)
- Input Bias Currents 5μA (Max) 1.2μA (Typ)
- Wide Signal Bandwidth......30MHz (Typ)
- Wide Control Bandwidth 17MHz (Typ)

Applications

- Military Avionics
- · Missile Guidance Systems
- Medical Imaging Displays
- **Video Mixers**
- **Sonar AGC Processors**
- Radar Signal Conditioning
- **Voltage Controlled Amplifier**
- **Vector Generator**

Description

The HA-2546/883 is a monolithic, high speed, two guadrant, analog multiplier constructed in the Harris Dielectrically Isolated High Frequency Process. The HA-2546/883 has a voltage output with a 30MHz signal bandwidth, 300V/µs slew rate and a 17MHz control input bandwidth. High bandwidth and slew rate make this part an ideal component for use in video systems. The suitability for precision video applications is demonstrated further by the 0.1dB gain flatness at 5MHz, 1.6% multiplication error, -52dB feedthrough and differential inputs with 1.2µA bias currents. The HA-2546/883 also has low differential gain (0.1% typ.) and phase (0.1° typ.) errors.

The HA-2546/883 is well suited for AGC circuits as well as mixer applications for sonar, radar, and medical imaging equipment. The voltage output of the HA-2546/883 simplifies many designs by eliminating the current-to-voltage conversion stage required for current output multipliers.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-2546/883	-55°C to +125°C	16 Lead CerDIP
HA4-2546/883	-55°C to +125°C	20 Lead Ceramic LCC

HA-2546/883

Pinouts

HA-2546/883

(CERDIP)

TOP VIEW

Spec Number 511050-883 File Number 2444.1

Specifications HA-2546/883

Absolute Maximum Ratings

_
Voltage Between V+ and V
Differential Input Voltage
Output Current
Junction Temperature
Storage Temperature Range65°C ≤ T _A ≤ +150°C
ESD Rating<2000V
Lead Temperature (Soldering 10s)+300°C

Thermal Information

Thermal Resistance	θ_{JA}	θ_{JC}
CerDIP Package	80°C/W	25°C/W
Ceramic LCC	61°C/W	12°C/W
Maximum Package Power Dissipation		
CerDIP Package at +75°C		1.25W
Ceramic LCC Package at +75°C		
Package Power Dissipation Derating Factor at	oove +75°C	;
CerDIP Package		. 12mW/°C
Ceramic LCC Package		. 16mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROU	TEMPERATURE	MIN	MAX	UNITS
Multiplication Error	ME	$V_Y = \pm 5V$	1	+25°C	-3	3	%FS
			2, 3	+125°C, -55°C	-5	5	%FS
Scale Factor Error	SF		1	+25°C	-5	5	%
			2, 3	+125°C, -55°C	-5	5	%
Common Mode Range	+CMR		. 1	+25°C	5	-	V
			2, 3	+125°C, -55°C	5	-	V
	-CMR		1	+25°C	-	-5	V
			2, 3	+125°C, -55°C	-	-5	V
Input Offset Voltage (V _Y)	$V_{IO}(V_Y)$	V _{CM} = 0V	1	+25°C	-10	10	mV
			2, 3	+125°C, -55°C	-15	15	mV
Input Bias Current (V _Y)	I _B (V _Y)	V _{CM} = 0V	1	+25°C	-15	15	μА
			2, 3	+125°C, -55°C	-20	20	μА
Input Offset Current (V _Y)	$I_{IO}(V_Y)$	V _{CM} = 0V	1	+25°C	-2	2	μА
			2, 3	+125°C, -55°C	-3	3	μА
Common Mode (V _Y)	+CMRR(V _Y)	$V_Y = 0 \text{ to } +5V, V_X = +2V$	1	+25°C	60	-	dB
Rejection Ratio			2, 3	+125°C, -55°C	60	-	dB
	-CMRR(V _Y)	$V_Y = 0 \text{ to -5V}, V_X = +2V$	1	+25°C	60	-	dB
			2, 3	+125°C, -55°C	60	-	dB
Input Offset Voltage (V _X)	Offset Voltage (V _X) V _{IO} (V _X)	V _{CM} = 0V	1	+25°C	-2	2	mV
			2, 3	+125°C, -55°C	-15	15	mV
Input Bias Current (V _X)	Current (V _X) I _B (V _X) V _{CI}	V _{CM} = 0V	1	+25°C	-2	2	μА
			2, 3	+125°C, -55°C	-5	5	μА
Input Offset Current (V _X)	$I_{IO}(V_X)$	V _{CM} = 0V	1	+25°C	-2	2	μА
			2, 3	+125°C, -55°C	-3	3	μА
Input Offset Voltage (V _Z)	$V_{IO}(V_Z)$	$V_X = 0V$, $V_Y = 0V$	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-15	15	mV
Output Voltage Swing	+V _{OUT}	$V_Y = +5V, V_X = +2.5V$	1	+25°C	5	-	V
			2, 3	+125°C, -55°C	5	-	V
	-V _{OUT}	$V_Y = -5V, V_X = +2.5V$	1	+25°C	-	-5	V
			2, 3	+125°C, -55°C	-	-5	V
Output Current	+l _{OUT}	$V_Y = +5V$, $V_X = +2.5V$	1	+25°C	20	-	mA
			2, 3	+125°C, -55°C	20	-	mA
	-lour	$V_Y = -5V, V_X = +2.5V$	1	+25°C	~	-20	mA
			2, 3	+125°C, -55°C	-	-20	mA

Specifications HA-2546/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

			GROUP A SUBGROU		LIMITS		
PARAMETERS	SYMBOL	SYMBOL CONDITIONS		TEMPERATURE	MIN	MAX	UNITS
Power Supply Rejection	+PSRR	$\Delta V_S = 3V, V+ = +15V, V- = -15V,$	1	+25°C	58	-	dB
Ratio -PSRR		V+ = +12V, V- = -15V	2, 3	+125°C, -55°C	58	-	dB
	-PSRR	$\Delta V_S = 3V, V_{+} = +15V, V_{-} = -15V,$	1	+25°C	58	-	dB
	V+ = +15V, V- = -12V		2, 3	+125°C, -55°C	58	-	dB
Quiescent Power Supply	+lcc	$V_X = V_Y = 0V$, $I_{OUT} = 0mA$	1	+25°C	29	-	mA
Current			2, 3	+125°C, -55°C	29	-	mA
	-l _{cc}	$V_X = V_Y = 0V$, $I_{OUT} = 0mA$	1	+25°C	-	-29	mA
			2, 3	+125°C, -55°C	-	-29	mA

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 1k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified.

					LIN	LIMITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Slew Rate	+SR	$V_{OUT} = -5V$ to $+5V$, $V_X = 2V_{DC}$	1	+25°C	300	-	V/µs
			1	+125°C, -55°C	300	-	V/µs
	-SR	$V_{OUT} = +5V \text{ to } -5V, V_X = 2V_{DC}$	1	+25°C	300	-	V/µs
			1	+125°C, -55°C	300	-	V/μs
Rise and Fall Time	Rise and Fall Time		1, 3	+25°C	-	15	ns
		$V_X = 2V_{DC}$	1, 3	+125°C, -55°C	-	17	ns
		1,3	+25°C	-	15	ns	
		$V_X = 2V_{DC}$	1, 3	+125°C, -55°C	-	17	ns
Overshoot	00.	V _{OUT} = -100mV to +100mV	1	+25°C	-	30	%
		$V_X = 2V_{DC}$	1	+125°C, -55°C	-	30	%
	-OS	V _{OUT} = +100mV to -100mV	1	+25°C	-	30	%
	$V_X = 2V_{DC}$	$V_X = 2V_{DC}$	1	+125°C, -55°C	-	30	%
Full Power Bandwidth	FPBW	$V_{PEAK} = 5V, V_X = 2V_{DC}$	1, 2	+25°C	9.5	-	MHz
			1, 2	+125°C, -55°C	9.5	-	MHz

NOTES:

- Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$.
- 3. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-in)	1
Final Electrical Test Parameters	1(Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

DIE DIMENSIONS:

79.9mils x 119.7mils x 19mils ± 1mils

METALLIZATION:

Type: Al, 1%Cu

Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si_3N_4) over Silox $(SiO_2, 5\%$ Phos) Silox Thickness: $12k\mathring{A} \pm 1.5k\mathring{A}$ Nitride Thickness: $3.5k\mathring{A} \pm 1.5k\mathring{A}$

WORST CASE CURRENT DENSITY:

0.72 x 10⁵ A/cm²

TRANSISTOR COUNT: 87

Metallization Mask Layout

HA-2556/883

Wideband Four Quadrant Analog Multiplier (Voltage Output)

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- High Speed Voltage Output...... 450V/μs (Typ)
- Low Multiplication error 1.5% (Typ)
- Input Bias Currents 8μA (Typ)
- Signal Input Feedthrough -50dB (Typ)
- Wide Y Channel Bandwidth 57MHz (Typ)
- Wide X Channel Bandwidth 52MHz (Typ)

Applications

- Military Avionics
- Missile Guidance Systems
- Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- · Radar Signal Conditioning
- Voltage Controlled Amplifier
- · Vector Generator

Description

The HA-2556/883 is a monolithic, high speed, four quadrant, analog multiplier constructed in Harris' Dielectrically Isolated High Frequency Process. The voltage output simplifies many designs by eliminating the current-to-voltage conversion stage required for current output multipliers. The HA-2556/883 provides a 450V/µs output slew rate and maintains 52MHz and 57MHz bandwidths for the X and Y channels respectively, making it an ideal part for use in video systems.

The suitability for precision video applications is demonstrated further by the Y Channel 0.1dB gain flatness to 5.0MHz, 1.5% multiplication error, -50dB feedthrough and differential inputs with 8µA bias current. The HA-2556 also has low differential gain (0.1%) and phase (0.1°) errors.

The HA-2556/883 is well suited for AGC circuits as well as mixer applications for sonar, radar, and medical imaging equipment. The HA-2556/883 is not limited to multiplication applications only; frequency doubling, power detection, as well as many other configurations are possible.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE		
HA1-2556/883	-55°C to +125°C	16 Lead CerDIP		

HA-2556/883 (CERDIP) TOP VIEW GND 1 REF 2 16 VXIOA VREF 2 15 VXIOB VYIOA 4 VY+ 5 12 VX11 V+ VY- 6 7 7 2 2 10 VzVOUT 8 VZ+

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright © Harris Corporation 1994

Spec Number 511063-883 File Number 3619

Specifications HA-2556/883

Absolute Maximum Ratings

Thermal Information

7.000 T.000 T.		
Voltage Between V+ and V	Thermal Resistance	θ_{JA}
Differential Input Voltage	CerDIP Package	82°C/W
Output Current	Maximum Package Power Dissipation at +75°	C
ESD Rating< 2000V	CerDIP Package	
Lead Temperature (Soldering 10s)+300°C	Package Power Dissipation Derating Factor a	bove +75°
Storage Temperature Range65°C \leq T _A \leq +150°C	CerDIP Package	
Max Junction Temperature +175°C		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

 $\label{eq:conting_supply_voltage} \ \text{Operating Supply Voltage } \\ (\pm V_S) \\ \text{Operating Temperature Range} \\ \text{Operating Temperat$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_F = 50\Omega$, $R_L = 1k\Omega$, $C_L = 20pF$, Unless Otherwise Specified.

			GROUP A		LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Multiplication Error	ME	V_Y , $V_X = \pm 5V$	1	+25°C	-3	3	%FS
			2, 3	+125°C, -55°C	-6	6	%FS
Linearity Error	LE4V	V_Y , $V_X = \pm 4V$	1	+25°C	-0.5	0.5	%FS
	LE5V	V _Y , V _X = ±5V	1	+25°C	-1	1	%FS
Input Offset Voltage (V _X)	V _{XIO}	V _Y = ±5V	1	+25°C	-15	15	mV
			2,3	+125°C, -55°C	-25	25	mV
Input Bias Current (V _X)	I _B (V _X)	V _X = 0V, V _Y = 5V	1	+25°C	-15	15	μА
			2, 3	+125°C, -55°C	-25	25	μА
Input Offset Current (V _X)	I _{IO} (V _X)	V _X = 0V, V _Y = 5V	1	+25°C	-2	2	μА
			2, 3	+125°C, -55°C	-3	3	μА
Common Mode (V _X) Rejection Ratio	CMRR (V _X)	$V_XCM = \pm 10V$	1	+25°C	65		dB
		V _Y = 5V	2, 3	+125°C, -55°C	65	-	dB
Power Supply (V _X)	+PSRR (V _X)	V _{CC} = +12V to +17V V _Y = 5V	1	+25°C	65	-	dB
Rejection Ratio			2, 3	+125°C, -55°C	65	-	dB
	-PSRR (V _X)	V _{EE} = -12V to -17V V _Y = 5V	1	+25°C	45	-	dB
			2, 3	+125°C, -55°C	45	-	dB
Input Offset Voltage (V _Y)	V _{YIO}	V _X = ±5V	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-25	25	mV
Input Bias Current (V _Y)	I _B (V _Y)	V _Y = 0V, V _X = 5V	1	+25°C	-15	15	μА
			2, 3	+125°C, -55°C	-25	25	μА
Input Offset Current (V _Y)	I _{IO} (V _Y)	V _Y = 0V, V _X = 5V	1	+25°C	-2	2	μА
			2, 3	+125°C, -55°C	-3	3	μА
Common Mode (V _Y)	CMRR (V _Y)	V _Y CM = +9V, -10V	1	+25°C	65	-	dB
Rejection Ratio		V _X = 5V	2, 3	+125°C, -55°C	65	-	dB
Power Supply (V _Y)	+PSRR (V _Y)	V _{CC} = +12V to +17V	1	+25°C	65	-	dB
Rejection Ratio		V _X = 5V	2, 3	+125°C, -55°C	65	-	dB
	-PSRR (V _Y)	V _{EE} = -12V to -17V	1	+25°C	45	-	dB
		V _X = 5V	2, 3	+125°C, -55°C	45	-	dB

θ_{JC} 27°C/W

....1.22W °C .. 12mW/°C

Specifications HA-2556/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_F = 50\Omega$, $R_L = 1k\Omega$, $C_L = 20pF$, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage (V _Z)	V _{ZIO}	$V_X = 0V$, $V_Y = 0V$	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-25	25	mV
Input Bias Current (V _Z)	I _B (V _Z)	$V_X = 0V$, $V_Y = 0V$	1	+25°C	-15	15	μА
			2, 3	+125°C, -55°C	-25	25	μА
Input Offset Current (V _Z)	I _{IO} (V _Z)	V _X = 0V, V _Y = 0V	1	+25°C	-2	2	μА
			2, 3	+125°C, -55°C	-3	3	μА
Common Mode (V _Z)	CMRR (V _z)	V _Z CM = ±10V	1	+25°C	65	-	dB
Rejection Ratio		$V_X = 0V, V_Y = 0V$	2, 3	+125°C, -55°C	65	-	dB
Power Supply (V _Z)	+PSRR (V _Z)	$V_{CC} = +12V \text{ to } +17V$	1	+25°C	65	-	dB
Rejection Ratio		$V_X = 0V, V_Y = 0V$	2, 3	+125°C, -55°C	65	-	dB
	-PSRR (V _Z)	V _{EE} = -12V to -17V	1	+25°C	45	-	dB
		$V_X = 0V, V_Y = 0V$	2, 3	+125°C, -55°C	45	-	dB
Output Current	+I _{OUT}	$V_{OUT} = 5V$, $R_L = 250\Omega$	1	+25°C	20	-	mA
			2, 3	+125°C, -55°C	20	-	mA
	-l _{out}	$V_{OUT} = 5V$, $R_L = 250\Omega$	1	+25°C	-	-20	mA
			2, 3	+125°C, -55°C	-	-20	mA
Output Voltage Swing	+V _{OUT}	$R_L = 250\Omega$	1	+25°C	5	-	٧
			2, 3	+125°C, -55°C	5	-	٧
	-V _{OUT}	$R_L = 250\Omega$	1	+25°C	-	-5	٧
			2, 3	+125°C, -55°C	-	-5	٧
Supply Current	±lcc	V _X , V _Y = 0V	1	+25°C	-	22	mA
			2, 3	+125°C, -55°C	-	22	mA

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested: at V_{SUPPLY} = ±15V, R_F = 50 Ω , R_L = 1k Ω , C_L = 20pF, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
V _Y , V _Z CHARACTERISTICS	S (NOTE 2)						***************************************
Bandwidth	BW(V _Y)	-3dB, $V_X = 5V$, $V_Y \le 200 \text{mV}_{P-P}$	1	+25°C	30	-	MHz
Gain Flatness	GF(V _Y)	0.1dB, $V_X = 5V$, $V_Y \le 200 \text{mV}_{P,P}$	1	+25°C	4.0	-	MHz
AC Feedthrough	V _{ISO}	$f_O = 5MHz$, $V_Y = 200mV_{P-P}$ $V_X = Nulled$	1, 3	+25°C	•	-45	dB
Rise and Fall Time	T _R , T _F	V _Y = 200mV Step,	1	+25°C	-	9.5	ns
		V _X = 5V, 10% to 90% pts	1	+125°C, -55°C	-	10	ns

Specifications HA-2556/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested: at $V_{SUPPLY} = \pm 15V$, $R_F = 50\Omega$, $R_L = 1k\Omega$, $C_L = 20pF$, Unless Otherwise Specified.

					LIM	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Overshoot	+OS, -OS	V _Y = 200mV step,	1	+25°C	-	35	%
		V _X = 5V	1	+125°C, -55°C	-	50	%
Slew Rate	+SR, -SR	V _Y = 10V step,	1	+25°C	410	-	V/µs
		V _X = 5V	1	+125°C, -55°C	360		V/µs
Differential Input Resistance	R _{IN} (V _Y)	$V_Y = \pm 5V, V_X = 0V$	1	+25°C	650	-	kΩ
V _X CHARACTERISTICS			***************************************				
Bandwidth	BW (V _X)	-3dB, $V_Y = 5V$, $V_X \le 200 \text{mV}_{P-P}$	1 /	+25°C	30	-	MHz
Gain Flatness	GF (V _X)	0.1dB, $V_Y = 5V$, $V_X \le 200 \text{mV}_{P,P}$	1	+25°C	2.0	-	MHz
AC Feedthrough	V _{ISO}	$f_O = 5MHz,$ $V_X = 200mV_{P-P}$ $V_Y = Nulled$	1, 3	+25°C	-	-45	dB
Rise & Fall Time	T _R , T _F	V _X = 200mV step,	1	+25°C	-	9.5	ns
		V _Y = 5V, 10% to 90% pts	1	+125°C, -55°C	-	10	ns
Overshoot	+OS, -OS	V _X = 200mV step,	1	+25°C	-	35	%
		V _Y = 5V	1	+125°C, -55°C	-	50	%
Slew Rate	+SR, -SR	V _X = 10V step,	1	+25°C	410	-	V/µs
		V _Y = 5V	1	+125°C, -55°C	360	-	V/µs
Differential Input Resistance	R _{IN} (V _X)	$V_X = \pm 5V, V_Y = 0V$	1	+25°C	650	-	kΩ
OUTPUT CHARACTERIST	ics						
Output Resistance	R _{OUT}	$V_Y = \pm 5V$, $V_X = 5V$ $R_L = 1k\Omega$ to 250Ω	1	+25°C		1	Ω

NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. V_Z AC characteristics may be implied from V_Y due to the use of V_Z as feedback in the test circuit.
- 3. Offset voltage applied to minimize feedthrough signal.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	-
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

DIE DIMENSIONS:

71mils x 100mils x 19mils ± 1mils

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si₃N₄) over Silox (SiO₂, 5% Phos) Silox Thickness: 12kÅ ± 2kÅ

Nitride Thickness: 3.5kÅ ± 1.5kÅ

TRANSISTOR COUNT: 84

SUBSTRATE POTENTIAL: V-

WORST CASE CURRENT DENSITY:

0.47 x 10⁵A/cm²

Metallization Mask Layout

HA-2556/883

HA-2557/883

Wideband Four Quadrant Analog Multiplier (Current Output)

July 1994

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Multiplication Error 1.5% (Typ)
- Input Bias Currents 8μA (Typ)
- Signal Input Feedthrough at 5MHz.....-52dB (Typ)
- Wide Y Channel Bandwidth 130MHz (Typ)
- Wide X Channel Bandwidth 75MHz (Typ)

Applications

- Military Avionics
- . Missile Guidance Systems
- · Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- · Radar Signal Conditioning
- · Voltage Controlled Amplifier
- Vector Generator

Description

The HA-2557/883 is a monolithic, high speed, four quadrant, analog multiplier constructed in Harris' Dielectrically Isolated High Frequency Process. The single-ended current output of the HA-2557/883 has a 130MHz signal bandwidth (R $_{\rm L}=50\Omega$). High bandwidth and low distortion make this part an ideal component in video systems.

The suitability for precision video applications is demonstrated further by low multiplication error (1.5%), low feedthrough (-52dB), and differential inputs with low bias currents (8 μ A). The HA-2557/883 is also well suited for mixer circuits as well as AGC applications for sonar, radar, and medical imaging equipment.

The current output of the HA-2557/883 allows it to achieve higher bandwidths than voltage output multipliers. Full scale output current is trimmed to 1.6mA. An internal 2500 Ω feedback resistor is also provided to accurately convert the current, if desired, to a full scale output voltage of $\pm 4V$. The HA-2557/883 is not limited to multiplication applications only; frequency doubling, power detection, as well as many other configurations are also possible.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-2557/883	-55°C to +125°C	16 Lead CerDIP

Pinout HA-2557/883 (CERDIP) TOP VIEW 16 V_{XIO}A GND 1 REF 15 V_{XIO}B V_{REF} 2 V_{YIO}B 3 14 NC V_{YIO}A 4 12 V_X-11 V+ 10 R₂ 9 NC I_{OUT} 8

Specifications HA-2557/883

Absolute Maximum Ratings	Thermal Information	
Voltage Between V+ and V- 35V Differential Input Voltage. 6V Output Current ±3mA ESD Rating. < 2000V	Thermal Resistance θ JA θ JC 27°C/W CerDIP Package 82°C/W 27°C/W Maximum Package Power Dissipation at +75°C .1.22W CerDIP Package .1.22W Package Power Dissipation Derating Factor above +75°C .12mW/°C	
wax sunction temperature		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, R_Z (Pin 10) not connected, Unless Otherwise Specified.

			GROUP A		LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Multiplication Error	ME	V_Y , $V_X = \pm 4V$	1	+25°C	-3	3	%FS
		FS = 1.6mA	2, 3	+125°C, -55°C	-6	6	%FS
Linearity Error	LE	V_Y , $V_X = \pm 4V$	1	+25°C	-0.25	0.25	%FS
R _Z Accuracy	RZE	Nominal 2500Ω	1	+25°C	-3	3	%
			2, 3	+125°C, -55°C	-5	5	%
I _{OUT} Offset	100	V_X , $V_Y = 0V$	1	+25°C	-10	10	μА
			2, 3	+125°C, -55°C	-15	15	μА
Input Offset Voltage (V _X)	V _{XIO}	V _Y = ±4V	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-25	25	mV
Input Bias Current (V _X)	I _B (V _X)	$V_X = 0V, V_Y = 4V$	1	+25°C	-15	15	μА
			2, 3	+125°C, -55°C	-25	25	μА
Input Offset Current (V _X)	$I_{IO}(V_X)$	$V_X = 0V, V_Y = 4V$	1	+25°C	-2	2	μА
			2, 3	+125°C, -55°C	-3	3	μА
Common Mode (V _X)	CMRR(V _X)	$V_XCM = \pm 10V$	1	+25°C	65	-	dB
Rejection Ratio		V _Y = 4V	2, 3	+125°C, -55°C	65	-	dB
Power Supply (V _X)	+ PSRR(V _X)	V+ = +12V to +17V	1	+25°C	65	-	dB
Rejection Ratio		$V_Y = 4V$	2, 3	+125°C, -55°C	65	-	dB
	- PSRR(V _X)	V- = -12V to -17V	1	+25°C	45	-	dB
		$V_Y = 4V$	2, 3	+125°C, -55°C	45	-	dB
Input Offset Voltage (V _Y)	V _{YIO}	V _X = ±4V	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-25	25	mV
Input Bias Current (V _Y)	I _B (V _Y)	$V_{Y} = 0V, V_{X} = 4V$	1	+25°C	-15	15	μА
			2, 3	+125°C, -55°C	-25	25	μА
Input Offset Current (V _Y)	$I_{IO}(V_Y)$	$V_{Y} = 0V, V_{X} = 4V$	1	+25°C	-2	2	μА
			2, 3	+125°C, -55°C	-3	3	μА
Common Mode (V _Y)	CMRR(V _Y)	$V_{Y}CM = +9V, -10V$	1	+25°C	65	-	dB
Rejection Ratio		$V_X = 4V$	2, 3	+125°C, -55°C	65	-	dB
Power Supply (V _Y)	+ PSRR(V _Y)	V+ = +12V to +17V	1	+25°C	65	-	dB
Rejection Ratio		V _X = 4V	2, 3	+125°C, -55°C	65	-	dB
	- PSRR(V _Y)	V- = -12V to -17V	1	+25°C	45	-	dB
		V _X = 4V	2, 3	+125°C, -55°C	45	-	dB
Supply Current	lcc	V _X , V _Y = 0V	1	+25°C	-	17	mA
			2, 3	+125°C, -55°C	-	17	mA
Output Impedance	Z _{OUT}	$V_{OUT} = \pm 10V$	1	+25°C	1.0	-	МΩ

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: V_{SUPPLY} = ±15V, R_Z (Pin 10) not connected, Unless Otherwise Specified.

					LIM	ITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
V _Y , CHARACTERISTICS							
Bandwidth	BW(V _Y)	-3dB, $V_X = 4V$, $V_Y \le 200 \text{mV}_{P-P}$	1	+25°C	90	-	MHz
AC Feedthrough	V _{ISO}	$f_O = 5MHz$, $V_Y = 200mV_{P.P}$ $V_X = Nulled$	1, 2	+25°C	-	-48	dB
Rise and Fall Time	T _R , T _F	$V_Y = -4V \text{ to } +4V \text{ Step}$ $V_X = 4V$, 10% to 90% pts	1	+25°C	-	10	ns
Overshoot	+OS, -OS	$V_Y = -4V \text{ to } +4V \text{ Step}$ $V_X = 4V$	1	+25°C	-	10	%
Differential Input Resistance	R _{IN} (V _Y)	$V_{Y} = \pm 4V, V_{X} = 0V$	1	+25°C	650	-	kΩ
V _X CHARACTERISTICS		***************************************		-			
Bandwidth	BW(V _X)	-3dB, $V_Y = 4V$, $V_X \le 200 \text{mV}_{\text{p.p}}$	1	+25°C	60		MHz
AC Feedthrough	V _{ISO}	$f_O = 5MHz$, $V_X = 200mV_{P.P}$ $V_Y = Nulled$	1, 2	+25°C	-	-50	dB
Rise and Fall Time	T _R , T _F	$V_X = -4V \text{ to } +4V \text{ Step}$ $V_Y = 4V, 10\% \text{ to } 90\% \text{ pts}$	1	+25°C	-	10	ns
Overshoot	+OS, -OS	$V_X = -4V \text{ to } +4V \text{ Step}$ $V_Y = 4V$	1	+25°C	-	15	%
Differential Input Resistance	R _{IN} (V _X)	$V_X = \pm 4V$, $V_Y = 0V$	1	+25°C	650	-	kΩ

NOTE:

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)	
Interim Electrical Parameters (Pre Burn-In)	-	
Final Electrical Test Parameters	1 (Note 1), 2, 3	
Group A Test Requirements	1, 2, 3	
Groups C and D Endpoints	1	

NOTE:

1. PDA applies to Subgroup 1 only.

^{1.} Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.

^{2.} Offset voltage applied to minimize feedthrough signal.

DIE DIMENSIONS:

71mils x 100mils x 19mils ± 1mils

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si_3N_4) over Silox (SiO_2 , 5% Phos) Silox Thickness: $12k\mathring{A} \ddagger 2k\mathring{A}$

Silox Thickness: 12kA ± 2kA Nitride Thickness: 3.5kÅ ± 1.5kÅ

TRANSISTOR COUNT: 72 SUBSTRATE POTENTIAL: V-

WORST CASE CURRENT DENSITY:

0.47 x 10⁵A/cm2

Metallization Mask Layout

HA-2557/883

9

ANALOG

9

NEW DIE PLOTS

I	PAGE
NEW DIE PLOT DATA SHEETS	
HA-2400/883	9-3
HA-2420/883	9-4
HA-2539/883	9-5
HA-2540/883.	9-6
HA-2542/883	9-7
HA-2620/883, HA-2622/883.	9-8
HA-5033/883	9-9
HA-5101/883.	9-10
HA-5111/883	9-11
HA-5144/883.	9-12
HA-5190/883.	9-13
HA-5330/883.	9-14

This section contains die characteristics and metallization layouts for those products which have not had electrical specification changes, but have had significant layout changes since the publication of the 1989 "Analog Military Product Data Book". Please refer to AnswerFAX, or the 1989 Analog Military book for complete electrical specifications.

DIE DIMENSIONS:

88 x 67 x 19 mils \pm 1 mils 2240 μ m x 1710 μ m x 483 μ m \pm 25.4 μ m

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

0.7 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): Unbiased

TRANSISTOR COUNT: 251

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2400/883

DIE DIMENSIONS:

102 x 61 x 19 mils ± 1 mils $2590 \times 1550 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: $12k\mathring{A} \ddagger 2k\mathring{A}$

Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

6.8 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 78

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2420/883

S/H CONT. +IN -IN GND VOS ADJ VOS ADJ HOLD CAP V-OUTPUT

DIE DIMENSIONS:

62 x 76 x 19 mils ± 1 mils 1575 x 1930 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ‡ 2kÅ

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.2 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 30

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2539/883

+IN

-IN

DIE DIMENSIONS:

 $62 \times 76 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1575 \times 1930 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.2 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 30

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2540/883

OUTPUT V-+IN

-IN

DIE DIMENSIONS:

 $106 \times 73 \times 19 \text{ mils} \pm 1 \text{ mils}$ $2700 \times 1850 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ½ 2kÅ

Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

4.0 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 43

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2542/883

-IN

+IN BAL BAL OUTPUT COMP ٧-

DIE DIMENSIONS:

69 x 56 x 19 mils ± 1 mils 1750 x 1420 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.)

Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

3.9 x 10⁴A/cm²

SUBSTRATE POTENTIAL (Powered Up): Unbiased

TRANSISTOR COUNT:

HA-2620/883: 140 HA-2622/883: 140

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2620/883, HA-2622/883

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.54 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): Unbiased

TRANSISTOR COUNT: 20

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5033/883

IN

OUT

V+

V-

NEW DIE PLOTS

DIE DIMENSIONS:

 $70 \times 70 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1790 \times 1780 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ‡ 2kÅ

Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

 $1.38 \times 10^5 \text{A/cm}^2$

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 54

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5101/883

DIE DIMENSIONS:

 $70 \times 70 \times 19 \text{ mils} \pm 1 \text{ mils}$ $1790 \times 1780 \times 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.38 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 54

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5111/883

DIE DIMENSIONS:

97 x 103 x 19 mils ± 1 mils 2460 x 2610 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ

Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

0.45 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 144

PROCESS: Bipolar/JFET Dielectric Isolation

Metallization Mask Layout

HA-5144/883

DIE DIMENSIONS:

 $54 \times 88 \times 19 \text{ mils} \pm 1 \text{ mils}$ 1360 x 2240 x 483μm ± 25.4μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: $12k\mathring{A}\pm2k\mathring{A}$ Nitride Thickness: $3.5k\mathring{A}\pm1.5k\mathring{A}$

WORST CASE CURRENT DENSITY:

1.29 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT: 49

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5190/883

DIE DIMENSIONS:

99 x 166 x 19 mils ± 1 mils 2510 x 4210 x 483µm ± 25.4µm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ± 2kÅ Nitride Thickness: 3.5kÅ ± 1.5kÅ

WORST CASE CURRENT DENSITY:

1.36 x 10⁵A/cm²

SUBSTRATE POTENTIAL (Powered Up): Signal GND

TRANSISTOR COUNT: 205

PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5330/883

+IN OFFSET ADJ OFFSET ADJ

SIGNAL GND SUPPLY GND

OUTPUT

S/H CONTROL

10

ANALOG

QUALITY AND RELIABILITY

		PAGE
G	QUALITY AND RELIABILITY	
Н	IARRIS QUALITY	10-3
	Introduction	10-3
	The Role of the Quality Organization.	10-3
	The Improvement Process.	10-3
	Designing for Manufacturability	10-3
	Quality Systems	10-5
	Special Testing.	10-5
	Harris Semiconductor Standard Processing Flow	10-6
	Controlling and Improving the Manufacturing Process - SPC/DOX	10-8
	Average Outgoing Quality (AOQ).	10-9
	Training	10-9
	Incoming Materials	10-9
	Calibration Laboratory	10-11
	Manufacturing Science - CAM, JIT, TPM	10-11
Н	IARRIS RELIABILITY	10-12
	Introduction	10-12
	Reliability Engineering	10-12
	Design for Reliability (Wear-Out Characterization)	10-12
	Process/Product/Package Qualifications	10-13
	Product/Package Reliability Monitors	10-13
	Customer Return Services.	10-15
	Product Analysis Lab	10-19
	Analytical Services Laboratory	10-20
	Reliability Fundamentals and Calculation of Failure Rate	10-21
I	ECH BRIEF 52 Electrostatic Discharge Control: A Guide To Handling Integrated Circuits	10-23
	ESD Protection and Prevention Measures	10-23
	Do's and Don'ts for Integrated Circuit Handling.	10-23
	Recommended Maintenance Procedures	10-24
	Static Controlled Work Station	10-24

Harris Quality

Introduction

Success in the integrated circuit industry means more than simply meeting or exceeding the demands of today's market. It also includes anticipating and accepting the challenges of the future. It results from a process of continuing improvement and evolution, with perfection as the constant goal.

Harris Semiconductor's commitment to supply only top value integrated circuits has made quality improvement a mandate for every person in our work force – from circuit designer to manufacturing operator, from hourly employee to corporate executive. Price is no longer the only determinant in market-place competition. Quality, reliability, and performance enjoy significantly increased importance as measures of value in integrated circuits.

Quality in integrated circuits cannot be added or considered after the fact. It begins with the development of capable process technology and product design. It continues in manufacturing, through effective controls at each process or step. It culminates in the delivery of products which meet or exceed the expectations of the customer.

The Role of the Quality Organization

The emphasis on building quality into the design and manufacturing processes of a product has resulted in a significant refocus of the role of the Quality organization. In addition to facilitating the development of SPC and DOX, Quality professionals support other continuous improvement tools such as control charts, measurement of equipment capability, standardization of inspection equipment and processes, procedures for chemical controls, analysis of inspection data and feedback to the manufacturing areas, coordination of efforts for process and product improvement, optimization of environmental or raw materials quality, and the development of quality improvement programs with vendors.

At critical manufacturing operations, process and product quality is analyzed through random statistical sampling and product monitors. The Quality organization's role is changing from policing quality to leadership and coordination of quality programs or procedures through auditing, sampling, consulting, and managing Quality Improvement projects.

To support specific market requirements, or to ensure conformance to military or customer specifications, the Quality organization still performs many of the conventional quality functions (e.g., group testing for military products or wafer lot acceptance). But, true to the philosophy that quality is everyone's job, much of the traditional on-line measurement and control of quality characteristics is where it belongs — with the people who make the product. The Quality organization is there to provide leadership and assistance in the deployment of quality techniques, and to monitor progress.

The Improvement Process

FIGURE 1. STAGES OF STATISTICAL QUALITY TECHNOLOGY

Harris Semiconductor's quality methodology is evolving through the stages shown in Figure 1. In 1981 we embarked on a program to move beyond Stage I, and we are currently in the transition from Stage III to Stage IV, as more and more of our people become involved in quality activities. The traditional "quality" tasks of screening, inspection, and testing are being replaced by more effective and efficient methods, putting new tools into the hands of all employees. Table 1 illustrates how our quality systems are changing to meet today's needs.

Designing for Manufacturability

Assuring quality and reliability in integrated circuits begins with good product and process design. This has always been a strength in Harris Semiconductor's quality approach. We have a very long lineage of high reliability, high performance products that have resulted from our commitment to design excellence. All Harris products are designed to meet the stringent quality and reliability requirements of the most demanding end equipment applications, from military and space to industrial and telecommunications. The application of new tools and methods has allowed us to continuously upgrade the design process.

Each new design is evaluated throughout the development cycle to validate the capability of the new product to meet the end market performance, quality, and reliability objectives.

The validation process has four major components:

- 1. Design simulation/optimization
- 2. Layout verification
- 3. Product demonstration
- 4. Reliability assessment

Harris Quality

TABLE 1. TYPICAL ON-LINE MANUFACTURING/QUALITY FUNCTIONS

AREA	FUNCTION	MANUFACTURING CONTROLS	QA/QC MONITOR AUDIT
Wafer Fab	QML/JAN Self-Audit		X
	Environmental		
	- Room/Hood Particulates	X	X
	- Temperature/Humidity	X	X
	- Water Quality		Х
	Product	-	
	- Junction Depth	X	
	- Sheet Resistivities	X	
	- Defect Density	X	Х
	- Critical Dimensions	X	X
	- Visual Inspection	X	X
	- Lot Acceptance	X	
	Process		
	- Film Thickness	X	X
	- Implant Dosages	X	
	- Capacitance Voltage Changes	X	X
	- Conformance to Specification	X	X
	Equipment		
	- Repeatability	X	X
	- Profiles	X	X
	- Calibration	^	X
	- Preventive Maintenance	X	X
Assembly	QML/JAN Self-Audit	^	X
Assembly	Environmental		^
	- Room/Hood Particulates	X	X
		X	×
	- Temperature/Humidity	^	
	- Water Quality		X
	Product		
	- Documentation Check		X
	- Dice Inspection	X	X
	- Wire Bond Pull Strength/Controls	X	X
	- Ball Bond Shear/Controls		X
	- Die Shear Controls		X
	- Post-Bond/Pre-Seal Visual	X	Х
	- Fine/Gross Leak	X	X
	- PIND Test	X	
	- Lead Finish Visuals, Thickness	X	X
	- Solderability	X	X
	Process		
	- Operator Quality Performance	X	Х
	- Saw Controls	X	,
	- Die Attach Temperatures	X	Х
	- Seal Parameters	X	
	- Seal Temperature Profile	X	X
	- Sta-Bake Profile	X	
	- Temp Cycle Chamber Temperature	X	X
	- ESD Protection	X	Х
	- Plating Bath Controls	X	X
	- Mold Parameters	X	X

Harris Quality

TABLE 1. TYPICAL ON-LINE MANUFACTURING/QUALITY FUNCTIONS (Continued)

AREA	FUNCTION	MANUFACTURING CONTROLS	QA/QC MONITOR AUDIT
Test	QML/JAN Self-Audit		X
	Temperature/Humidity	X	X
	ESD Controls	X	X
	Temperature Test Calibration	X	
	Test System Calibration	X	
	Test Procedures		X
	Control Unit Compliance	X	X
	Lot Acceptance Conformance	X	Х
	Group A Lot Acceptance		X
Probe	QML/JAN Self-Audit		X
	Wafer Repeat Correlation	X	
	Visual Requirements	X	X
	Documentation	X	X
	Process Performance	X	X
Burn-In	QML/JAN Self-Audit		X
	Functionality Board Check	X	
	Oven Temperature Controls	X	
	Procedural Conformance		X
Brand	QML/JAN Self-Audit		X
	ESD Controls	X	X
	Brand Permanency	X	X
	Temperature/Humidity	X	
	Procedural Conformance		X
QCI Inspection	QML/JAN Self-Audit		X
	Group B Conformance		X
	Group C and D Conformance		Х

Quality Systems

Qualified Manufacturers List (QML)

Harris Semiconductor has been a certified supplier of JAN products since the early 1970's. In August, 1993, Harris began a transition phase for the JAN and MIL-STD-883 compliant product portfolio to QML in conformance with the requirements of MIL-I-38535. The QML program utilizes a "best commercial practices" philosophy to manufacture integrated circuits for all classes of military products. This QML philosophy ties directly into existing Harris systems and programs such as statistical process control of critical processes and utilization of continuous improvement teams to continually raise product quality, reliability, manufacturability, and performance. The transition to this culture eliminates the need for much of the present end-of-line testing which was defined in a period when Quality was inspected into the product rather than manufactured into the product.

QML manufacturing lines will, in the near future, eliminate much of the end-of-line testing through demonstration of product quality through process control. In turn, much of the present paperwork in the form of attributes and other records demonstrating "inspection of quality into the product" will no longer be provided. By following this charter, the burden of quality and reliability is placed in the manufacturing arena which is where the solutions reside.

ISO-9000

Harris Semiconductor's wafer fabrication and I.C. assembly and test operations have received ISO-9002 certification. The certification for this international standard was achieved with minimal effort based on the years of performance in the military market coupled with the implementation of a Total Quality Management system. Harris TQM system and ISO compliance, combined, provide a synergetic quality system which supports the Harris corporate quality policy.

Special Testing

Harris Semiconductor offers several standard screen flows to support a customer's need for additional testing and reliability assurance. These flows include environmental stress testing, burn-in, and electrical testing at temperatures other than +25°C. The flow shown in Figure 2 indicates the Harris standard processing flow for a Compliant Military Device. In addition, Harris can supply products tested to customer specifications both for electrical requirements and for non-standard environmental stress screening. Consult your field sales representative for details.

FIGURE 2B.

Harris Quality

TABLE 2. PROCESS CONTROL APPLICATIONS

	FAB	
Diffusion Junction Depth Sheet Resistivities Oxide Thickness	Thin Film Film Thickness Refractive Index Film Composition Metal Step Coverage	 Photo Resist Critical Dimension Resist Thickness Etch Rates
	ASSEMBLY	
Pre-Seal Die Prep Visuals Die Attach Heater Block Die Shear Wire Pull Ball Bond Shear Saw Blade Wear Pre-Cap Visuals	Post-Seal Internal Package Moisture PIND Defect Rate Solder Thickness Package Hermeticity Tests Lid Torque Temperature Cycle	
	TEST	
	 Handlers/Test System Defect Pareto Charts Lot % Defective ESD Failures per Month After Burn-In PDA 	
	OTHER	
Receiving Inspection Vendor Performance Material Criteria Quality Levels Plated Finish Thickness	Environment Water Quality Clean Room Control Temperature Humidity	

Controlling and Improving the Manufacturing Process - SPC/DOX

Statistical process control (SPC) is the basis for quality control and improvement at Harris Semiconductor. Harris manufacturing people use control charts to determine the normal variabilities in processes, materials, and products. Critical process variables and performance characteristics are measured and control limits are plotted on the control charts. Appropriate action is taken if the charts show that an operation is outside the process control limits or indicates a nonrandom pattern inside the limits. These same control charts are powerful tools for use in reducing variations in processing, materials, and products. Table 2 lists some typical manufacturing applications of control charts at Harris Semiconductor.

SPC is important, but still considered only part of the solution. Processes which operate in statistical control are not always capable of meeting engineering requirements. The conventional way of dealing with this in the semiconductor industry has been to implement 100% screening or inspection steps to remove defects, but these techniques are insufficient to meet today's demands for the highest reliability and perfect quality performance.

Harris still uses screening and inspection to "grade" products and to satisfy specific customer requirements for burn-in, multiple temperature test insertions, environmental screening, and visual inspection as value-added testing options. However, inspection and screening are limited in their ability to reduce product defects to the levels expected by today's buyers. In addition, screening and inspection have an associated expense, which raises product cost (see Table 3).

TABLE 3. APPROACH AND IMPACT OF STATISTICAL QUALITY TECHNOLOGY

	STAGE	APPROACH	IMPACT
ı	Product Screening	Stress and Test Defective Prediction	Limited Quality Costly After-The-Fact
11	Process Control	Statistical Process Control Just-In-Time Manufacturing	Identifies Variability Reduces Costs Real Time
Ш	Process Optimization	 Design of Experiments Process Simulation 	Minimizes Variability Before-The-Fact
IV	Product Optimization	Design for Producibility Product Simulation	 Insensitive to Variability Designed-In Quality Optimal Results

Harris Quality

Harris engineers are, instead, using Design of Experiments (DOX), a scientifically disciplined mechanism for evaluating and implementing improvements in product processes, materials, equipment, and facilities. These improvements are aimed at reducing the number of defects by studying the key variables controlling the process, and optimizing the procedures or design to yield the best result. This approach is a more time-consuming method of achieving quality perfection, but a better product results from the efforts, and the basic causes of product nonconformance can be eliminated.

SPC, DOX, and design for manufacturability, coupled with our 100% test flows, combine in a product assurance program that delivers the quality and reliability performance demanded for today and for the future.

Average Outgoing Quality (AOQ)

Average Outgoing Quality is a yardstick for our success in quality manufacturing. The average outgoing electrical defective is determined by randomly sampling units from each lot and is measured in parts per million (PPM). The current procedures and sampling plans outlined in MIL-STD-883 and MIL-I-38535 are used by our quality inspectors.

The focus on this quality parameter has resulted in a continuous improvement to less than 100 PPM, and the goal is to continue improvement toward 0 PPM.

Training

The basis of a successful transition from conventional quality programs to more effective, total involvement is training. Extensive training of personnel involved in product manufacturing began in 1984 at Harris, with a comprehensive development.

opment program in statistical methods. Using the resources of Harris statisticians, private consultants, and internally developed programs, training of engineers, supervisors, and operators/technicians has been an ongoing activity in Harris Semiconductor.

Over the past years, Harris has also deployed a comprehensive training program for hourly operators and supervisors in job requirements and functional skills. All hourly manufacturing employees participate (see Table 4).

Incoming Materials

Improving the quality and reducing the variability of critical incoming materials is essential to product quality enhancement, yield improvement, and cost control. With the use of statistical techniques, the influence of silicon, chemicals, gases and other materials on manufacturing is highly measurable. Current measurements indicate that results are best achieved when materials feeding a statistically controlled manufacturing line have also been produced by statistically controlled vendor processes.

To assure optimum quality of all incoming materials, Harris has initiated an aggressive program, linking key suppliers with our manufacturing lines. This user-supplier network is the Harris Vendor Certification process by which strategic vendors, who have performance histories of the highest quality, participate with Harris in a lined network; the vendor's factory acts as if it were a beginning of the Harris production line.

SPC seminars, development of open working relationships, understanding of Harris's manufacturing needs and vendor capabilities, and continual improvement programs are all part of the certification process. The sole use of engineering limits no longer is the only quantitative requirement of incoming materials.

TABLE 4. SUMMARY OF TRAINING PROGRAMS

COURSE	AUDIENCE	TOPICS COVERED	
SPC, Basic	Manufacturing Operators, Non-Manufacturing Personnel	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations, Problem Analysis Tools, Graphing Techniques, Control Charts	
SPC, Intermediate	Manufacturing Supervisors, Technicians	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations, Problem Analysis Tools, Graphing Techniques, Control Charts, Distributions, Measurement Process Evaluation, Introduction to Capability	
SPC, Advanced	Manufacturing Engineers, Manufacturing Managers	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations, Problem Analysis Tools, Graphing Techniques, Control Charts, Distributions, Measurement Process Evaluation, Advanced Control Charts, Variance Component Analysis, Capability Analysis	
Design of Experiments (DOX)	Engineers, Managers	Factorial and Fractional Designs, Blocking Designs, Nested Models, Analysis of Variance, Normal Probability Plots, Statistical Intervals, Variance Component Analysis, Multiple Comparison Procedures, Hypothesis Testing, Model Assumptions/Diagnostics	
Regression	Engineers, Managers	Simple Linear Regression, Multiple Regression, Coefficient Interval Estimation, Diagnostic Tools, Variable Selection Techniques	
Response Surface Methods (RSM)	Engineers, Managers	Steepest Ascent Methods, Second Order Models, Central Composite Designs, Contour Plots, Box-Behnken Designs	

Harris Quality

Specified requirements include centered means, statistical In addition to the certification process, Harris has worked to control limits, and the requirement that vendors deliver their promote improved quality in the performance of all our qualified products from their own statistically evaluated, in-control manu- vendors who must meet rigorous incoming inspection criteria facturing processes.

(see Table 5).

TABLE 5. INCOMING QUALITY CONTROL MATERIAL QUALITY CONFORMANCE

MATERIAL	INCOMING INSPECTIONS	VENDOR DATA REQUIREMENTS
Silicon	Resistivity Crystal Orientation Dimensions Edge Conditions Taper Thickness Total Thickness Variation Backside Criteria Oxygen Carbon	Equipment Capability Control Charts Oxygen Resistivity Control Charts Related to Enhanced Gettering Total Thickness Variation Total Indicated Reading Particulates Certificate of Analysis for all Critical Parameters Control Charts from On-Line Processing Certificate of Conformance
Chemicals/Photoresists/ Gases	Chemicals Assay Major Contaminants Molding Compounds Spiral Flow Thermal Characteristics Gases Impurities Photoresists Viscosity Film Thickness Solids	Certificate of Analysis on all Critical Parameters Certificate of Conformance Control Charts from On-Line Processing Control Charts - Assay - Contaminants - Water - Selected Parameters Control Charts - Assay - Contaminants Control Charts - Assay - Contaminants Control Charts on - Photospeed - Thickness - UV Absorbance - Filterability - Water - Contaminants
Thin Film Materials	Assay Selected Contaminants	Control Charts from On-Line Processing Control Charts Assay Contaminants Dimensional Characteristics Certificate of Analysis for all Critical Parameters Certificate of Conformance
Assembly Materials	Visual Inspection Physical Dimension Checks Glass Composition Bondability Intermetallic Layer Adhesion Ionic Contaminants Thermal Characteristics Lead Coplanarity Plating Thickness Hermeticity	Certificate of Analysis Certificate of Conformance Process Control Charts on Outgoing Product Checks and In-Line Process Controls

Calibration Laboratory

Another important resource in the product assurance system is a calibration lab in each Harris Semiconductor operation site. These labs are responsible for calibrating the electronic, electrical, electro/mechanical, and optical equipment used in both production and engineering areas. The accuracy of instruments used at Harris is traceable to a national standards. Each lab maintains a system which conforms to the current revision of MIL-STD-45662A, "Calibration System Requirements."

Each instrument requiring calibration is assigned a calibration interval based upon stability, purpose, and degree of use. The equipment is labeled with an identification tag on which is specified both the date of the last calibration and of the next required calibration. The Calibration Lab reports on a regular basis to each user department. Equipment out of calibration is taken out of service until calibration is performed. The Quality organization performs periodic audits to assure proper control in the using areas. Statistical procedures are used where applicable in the calibration process.

Manufacturing Science - CAM, JIT, TPM

In addition to SPC and DOX as key tools to control the product and processes, Harris is deploying other management mechanisms in the factory. On first examination, these tools appear to be directed more at schedules and capacity. However, they have a significant impact on quality results.

Computer Aided Manufacturing (CAM)

CAM is a computer based inventory and productivity management tool which allows personnel to quickly identify production line problems and take corrective action. In addition, CAM improves scheduling and allows Harris to more quickly respond to changing customer requirements and aids in managing work in process (WIP) and inventories.

The use of CAM has resulted in significant improvements in many areas. Better wafer lot tracking has facilitated a number of process improvements by correlating yields to process variables. In several places CAM has greatly improved capacity utilization through better planning and scheduling. Queues have been reduced and cycle times have been shortened - in some cases by as much as a factor of 2.

The most dramatic benefit has been the reduction of WIP inventory levels, in one area by 500%. This results in fewer lots in the area and a resulting quality improvement. In wafer fab, defect rates are lower because wafers spend less time in production areas awaiting processing. Lower inventory also improves morale and brings a more orderly flow to the area. CAM facilitates all of these advantages.

Just In Time (JIT)

The major focus of JIT is cycle time reduction and linear production. Significant improvements in these areas result in large benefits to the customer. JIT is a part of the Total Quality Management philosophy at Harris and includes Employee Involvement, Total Quality Control, and the total elimination of waste.

Some key JIT methods used for improvement are sequence of events analysis for the elimination of non-value added activities, demand/pull to improve production flow, TQC check points and Employee Involvement Teams using root cause analysis for problem solving.

JIT implementations at Harris Semiconductor have resulted in significant improvements in cycle time and linearity. The benefits from these improvements are better on time delivery, improved yield, and a more cost effective operation.

JIT, SPC, and TPM are complementary methodologies and used in conjunction with each other create a very powerful force for manufacturing improvement.

Total Productive Maintenance (TPM)

TPM or Total Productive Maintenance is a specific methodology which utilizes a definite set of principles and tools focusing on the improvement of equipment utilization. It focuses on the total elimination of the six major losses which are equipment failures, setup and adjustment, idling and minor stopnages, reduced speed, process defects, and reduced yield. A key measure of progress within TPM is the overall equipment effectiveness which indicates what percentage of the time is a particular equipment producing good parts. The basic TPM principles focus on maximum equipment utilization, autonomous maintenance, cross functional team involvement, and zero defects. There are some key tools within the TPM technical set which have proven to be very powerful to solve long standing problems. They are initial clean, P-M analysis, condition based maintenance, and quality maintenance.

Utilization of TPM has shown significant increases in utilization on many tools across the Sector and is rapidly becoming widespread and recognized as a very valuable tool to improve manufacturing competitiveness.

The major benefits of TPM are capital avoidance, reduced costs, increased capability, and increased quality. It is also very compatible with SPC techniques since SPC is a good stepping stone to TPM implementation and it is in turn a good stepping stone to JIT because a high overall equipment effectiveness guarantees the equipment to be available and operational at the right time as demanded by JIT.

Harris Reliability

Introduction

At Harris Semiconductor, reliability is built into every product by emphasizing quality throughout manufacturing. This starts by ensuring the excellence of the design, layout, and manufacturing processes. The quality of the raw materials and workmanship is monitored using statistical process control (SPC) to preserve the reliability of the product. The primary and ultimate goal of these efforts is to provide full performance to the product specification throughout its useful life.

Reliability Engineering

The Reliability Engineering department is responsible for all aspects of reliability assurance at Harris Semiconductor:

- Charter
 - To ensure that Harris is recognized by our customers and competitors as a company that consistently delivers products with high reliability.
- Mission
 - To develop systems for assessing, enhancing, and assuring that quality and reliability are integrated into all aspects of our business.
- Vision
 - To establish excellence and integrity through all design and manufacturing processes as it relates to quality and reliability.

Values

- To be considered responsive and service oriented by our customers.
- To be acknowledged by Harris as a highly qualified resource for reliability assurance, product analysis, and electronic materials characterization
- To successfully utilize the organization's talents through trained, empowered employees/employee team participation.
- · To maintain an attitude of integrity, dignity and respect for all.

Strategy

- To provide quantitative assessments of product reliability focusing on the identification and timely elimination of design and processing deficiencies that degrade product performance and operating life expectancy.
- To provide systems for continuous improvement of reliability and quality through the assessment of existing processes, products, and packages.
- To perform product analysis as a means of problem solving and feedback to our customers, both internal and external.
- To exercise full authority over the internal qualifications of new products, processes, and packages.

The reliability organization is comprised of a team that possesses a broad cross section of expertise in these areas:

- · Custom Military (Radiation Hardened)
- · Automotive ASICs

- · Harsh Environment Plastic Packaging
- Advanced Methods for Design for Reliability (DFR)
- · Strength in Power Semiconductor
- · Chemical/Surface Analysis Capabilities
- · Failure Analysis Capabilities

The reliability focus is customer satisfaction (external and internal) and is accomplished through the development of standards, performance metrics, and service systems. These major systems are summarized below:

- A process and product development system known as ACT PTM (Applying Concurrent Teams to Product-To-Market) has been established. The ACT PTM philosophy is one of new product development through a team that pursues customer involvement. The team has the authority, responsibility, and training necessary to successfully bring the product to market. This not only includes product definition and design, but also all manufacturing capabilities as well.
- Standard test vehicles (over 100) have been developed for process characterization of wear-out failure mechanisms.
 These vehicles are used for conventional stresses (for modeling failure rates) and for wafer level reliability characterization during development.
- Common qualification standards have been established for all sites.
- A reliability monitoring system (also known as the Matrix monitoring system) is utilized for products in production to ensure ongoing reliability and verification of continuous improvement.
- The field return system is designed to handle a variety of customer issues in a timely manner. Product issues are often handled by routing the product into the PFAST (Product Failure Analysis Solution Team) system. Return authorizations (RAs) are issued where an entire lot of product needs to be returned to Harris. The Customer Return Services (CRS) group is responsible for the administration of this system (see Customer Return Services.)
- The PFAST system has been established to expedite failure analysis, failure root cause determination, and corrective actions for field returns. PFAST is a team effort involving many functional areas at all Harris sites. The purpose of this system is to enable Harris's Field Sales and Quality operations to properly route, track, and respond to our customer's needs as they relate to product analysis.

Design for Reliability (Wear-Out Characterization)

The concept of "Design for Reliability" focuses on moving reliability assessment away from tests on sample product to a point much earlier in the design cycle. Effort is directed at building in and verifying the reliability of a new process well

before manufacture of the first shippable product that uses that technology. This gives these first new products a higher probability of success and achieves reduced product-to-market cycle times.

In practice, a set of standardized test vehicles containing special test structures are transferred to the new process using the layout ground rules specified for that process. Each test structure is designed for a specific wear-out failure mechanism. Highly accelerated stress tests are performed on these structures and the results can be extrapolated to customer use conditions. Generally, log-normal statistics are used to define wear-out distributions for the life prediction models. The results are used to establish reliability design ground rules and critical node lists for each process. These ground rules and critical nodes ensure that wear-out failures do not occur during the customer's projected use of the product.

Process/Product/Package Qualifications

Once the new process has successfully completed wear-out characterization, the final qualification consists of more conventional testing (e.g. biased life, storage life, temp cycle etc.). These tests are performed on the first new product designs (sampled across multiple wafer production lots). Successful completion of the final qualification tests concurrently qualifies the new process and the new products that were used in the qualification. Subsequent products designed within the nowestablished ground rules are qualified individually prior to introduction. New package configurations are also qualified individually prior to being available for use with new products. Harris's qualification procedures are specified via controlled

documentation and the same standard is used at Harris's sites worldwide. Figure 4 gives more information on the new

Product/Package Reliability Monitors

process/product development and life cycle.

Many of the accelerated stress-tests used during initial reliability qualification are also employed during the routine monitoring of standard product. Harris's continuing reliability monitoring program consists of three groups of stress tests, labeled Matrix I, II and III. Table 6 outlines the Matrix tests used to monitor plastic packaged ICs in Harris's off-shore assembly plants, where each wafer fab technology is sampled. Matrix I consists of highly accelerated, short duration (typically 48 hours) tests, sampled biweekly, which provide real-time feedback on product reliability. Matrix II consists of the more conventional, longer term stress-tests, sampled monthly, which are similar to those used for product qualification. Finally, Matrix III, performed monthly on each package style, monitors the mechanical reliability aspects of the package. Any failures occurring on the Matrix monitors are fully analyzed and the failure mechanisms identified, with containment and corrective actions obtained from Manufacturing and Engineering. This information along with all of the test results are routinely transmitted to a central data base in Reliability Engineering, where failure rate trends are analyzed and tracked on an ongoing basis. These data are used to drive product improvements, to ensure that failure rates are continuously being reduced over time.

Reliability data, including the Matrix Monitor results, can be obtained by contacting your local Harris sales office.

TABLE 6. PLASTIC PACKAGED IC MONITORING TESTS

MATRIX I

TEST	CONDITIONS	DURATION	SAMPLE/ LTPD
Autoclave	+121°C, 100%RH, 15PSIG	96 Hours	45/5
Biased Life	+175°C	48 Hours	45/5
Biased Life	+125°C	48 Hours	45/5
HAST	+135°C, 85% RH	48 Hours	45/5
Thermal Shock	-65°C to +150°C	200 Cycles	45/5

MATRIX II

TEST	CONDITIONS	DURATION	SAMPLE/ LTPD
Autoclave	+121°C, 100%RH, 15PSIG	192 Hours	45/5
Biased Humidity	+85°C, 85% RH	1000 Hours	45/5
Biased Life	+125°C	1000 Hours	45/5
Dynamic Life	+125°C	1000 Hours	45/5
Storage Life	+150°C	1000 Hours	45/5
Temp. Cycle	-65°C to +150°C	1000 Cycles	45/5

MATRIX III

TEST	CONDITIONS	SAMPLE/LTPD
Brand Adhesion	MIL-STD-883/2015	15/15
Flammability	(UL-94 Vertical Burn)	11/20
Lead Fatigue	MIL-STD-883/2004	15/15
Physical Dimensions	MIL-STD-883/2016	11/20
Solderability	MIL-STD-883/2003	45/15

Harris Reliability

Customer Return Services

Harris places a high priority on resolving customer return issues. The Customer Return Services (CRS) department is responsible for determining the best manner to handle a return issue as illustrated in Figure 5.

FIGURE 5. GENERAL RETURN FLOW

The diversity of return reasons requires that many different organizations be involved to test, analyze, and correct field return issues. The CRS group coordinates the responses from the supporting organizations to drive closure of issues within the customer response time requirements, see Table 7. The results from the work performed on customer returns are used to initiate corrective actions and continuous improvements within the factories. When the work on a return is completed, the customer is contacted to be certain all issues have been satisfactorily resolved.

The two methods used to return devices are by a RA (Return Authorization) request or by a PFAST (Product Failure Analysis Solution Team) request. The main difference between RA and PFAST is that the PFAST requests often require extensive analysis and a more formal response to the customer. All returns follow the same general procedure from the customer's perspective as seen in steps one to five of the customer return procedure.

- Step 1 Customer or Sales office contacts the Customer Return Services department. If a return is to be routed into the PFAST system, then a PFAST Action Request (see the PFAST form in this section) needs to be completed to understand the customer's issue and direct the analysis efforts.
 - Phone Number: (407)-724-7400FAX Number: (407)-724-7658
 - Internet: creturn@huey.mis.semi.harris.com
 - PROFS: CRETURN
- Step 2 The Customer Return Services department notifies all affected sales, factory, and engineering organizations of the issue.
- Step 3 When product is received, the issue is verified and any required analysis is performed. Where applicable, a preliminary analysis report is sent to the customer.
- Step 4 A determination of the root cause of failure initiates the corrective actions to address the source of the problem. A final corrective action report is sent to the customer if requested.
- Step 5 The Customer Return Services department contacts the customer to confirm that all issues have been handled properly and the customer is satisfied that the return is completed.

The RA request is used to return and replace an entire lot of product. The lot is returned to Harris for replacement or credit. Once the product is received various tests and evaluations will be performed to determine the appropriate actions that should be taken to resolve any problems or issues.

A PFAST request is used to return a small sample for analysis of a problem. The ultimate outcome of both types of requests is to determine corrective actions that would preclude the same problem occurring in the future. Where appropriate, a containment plan is also implemented to prevent a re-occurrence of the problem in the field. The customer return flow diagram (Figure 6) provides the typical activities and cycle times for processing a PFAST request.

TABLE 7. CUSTOMER RETURN SERVICES

CHARTER	MISSION	RESPONSIBILITIES
To resolve product quality issues	To provide a single point interface	Maintain customer return history.
while providing feedback to both external and internal customers to	between the customer and the fac- tory for resolving technical prob-	Track returns through the factory.
facilitate corrective actions and continuous improvement of the product.	lems, issues, and field returns.	Establish a history library of problems and corrective actions.
		Ensure closure with customers.

NOTE: The days indicated are the typical number of 'working days' not calendar days. Analysis difficulty and the nature of the corrective actions may either improve or degrade the total cycle time.

FIGURE 6. CUSTOMER RETURN FLOW DIAGRAM

PFAST ACTION REQUEST

(Product Failure Analysis Solution Team)

Request #

Originator _ Customer _____ Company/Phone No. Location _ Device Type/Part No. Customer's Reference No. No. Samples Returned Ouantity Received Instructions and requirements are on the back of this form. Has Field Applications been contacted for assistance? ☐ No ☐ Yes - Who was contacted _ SOURCE OF PROBLEM REASON FOR ELECTRICAL REJECT (Enter the sequence of events in the boxes provided) (Where appropriate serialize units and specify for each) Visual/Mechanical Test Conditions Relating to Failure ☐ Describe _____ Tester Used (Mfgr/Model) Test Temperature Continuous (T = ____sec) ☐ Not Performed Incoming Test Test Time ☐ 100% Tested ☐ Sar No. Tested ☐ No. of Rejects ☐ ☐ Sample Tested \square One Shot (T = ____sec) Describe any observed condition to which Are results representative of previous lots? failure appears sensitive 3. In Process/Manufacturing Failure ■ Board Test ☐ System Test ☐ Board Test
How many units failed? _____ DC Failure Failed after _____hours of testing ☐ Short Open Leakage ☐ Power Drain ☐ Input Level ☐ Output Level Was unit retested at incoming inspection? Pin Number___ □ NO AC Failure Are results representative of previous lots? Power Supply Voltages = $___V$ Input Voltages V_{IH} = $___V$ V_{IL} = $___V$ ☐ YES ☐ NO Field Failure Failed after ____hours operation Pin Number___ Estimated failure rate_____ % per ___ Failing characteristics End User_____ Location _____ Min. ____oC Ave. ____oC Max. ____ 3. RAM and ROM Failures (ROM failures must be Other returned with a good master unit if failure analysis is requested). ACTION REQUESTED BY CUSTOMER Address of Failing Location ___ Specific Action Requested (Contact PFAST Coordinator for other options) Describe Pattern Used (If not standard ☐ Test Sample for Correlation Only patterns, give very complete description ☐ Test Sample for Product Return >\$5k including address sequence). ☐ Failure Analysis Other Include timing diagrams and circuit schematic if available. Impact of Failed Units on Customer's Situation: ROM Programmer Used (If purchased unprogrammed) _____ Customer Contact with Specific Knowledge of Rejects Conformal Coating (Mfgr/Model) _____ Position ___ Phone___ Additional Comments:

FIGURE 7. PFAST ACTION REQUEST

INSTRUCTIONS FOR COMPLETING PFAST ACTION REQUEST FORM

The purpose of this form is to help us provide you with a more accurate, complete, and timely response to failures which may occur. Accurate and complete information is essential to ensure that the appropriate corrective action can be implemented. Due to this need for accurate and complete information, requests without a completed PFAST Action Request form will be returned.

Source of Problem:

This section requests the product flow leading to the failure. Mark an 'X' in the appropriate boxes up to and including the step which detected the failure. Also mark an 'X' in the appropriate box under "ARE RESULTS REPRESENTATIVE OF PREVIOUS LOTS?" to indicate whether this is a rare failure or a repeated problem.

Example 1. No incoming electrical test was performed; the units were installed onto boards; the boards functioned correctly for two hours and then 1 unit failed. The customer rarely has a failure due to the Harris device.

SOURCE OF PROBLEM (Enter the sequence of events in the boxes provided)
1. VISUAL/MECHANICAL
☐ DESCRIBE
2. INCOMING TEST NOT PERFORMED
☐ 100% TESTED ☐ SAMPLE TESTED
No. Tested No. of Rejects
Are results representative of previous lots?
3. In Process/Manufacturino Failure
■ BOARD TEST SYSTEM TEST
HOW MANY UNITS FAILED?1
FAILED AFTER 2 HOURS OF TESTING WAS UNIT RETESTED AT INCOMING INSPECTION?
☐ YES Ø NO
ARE RESULTS REPRESENTATIVE OF PREVIOUS LOTS?
☐ YES NO
4. FIELD FAILURE
FAILED AFTER HOURS OPERATION ESTIMATED FAILURE RATE % PER
END USERLOCATION MIN*C AVE*C MAX*C
5. OTHER

Example 2. 100 out of the 500 units shipped were tested at incoming and all passed. The units were installed into boards and the boards passed. The boards were installed into the system and the system failed immediately when turned on. There were 3 system failures due to this part. The customer frequently has failures of this Harris device. The 3 units were not retested at incoming.

SOURCE OF PROBLEM (Enter the sequence of events in the boxes provided)			
1. VISUAL/MECHANICAL DESCRIBE			
2. INCOMING TEST			
2 YES NO 3. IN PROCESS/MANUFACTURING FAILURE 20 BOARD TEST HOW MANY UNITS FAILED?			
WAS UNIT RETESTED AT INCOMING INSPECTION? YES 00 NO ARE RESULTS REPRESENTATIVE OF PREVIOUS LOTS? 0 YES 0 NO			
4. FIELD FAILURE FAILED AFTER HOURS OPERATION ESTIMATED FAILURE RATE % PER END USER LOCATION MIN *C AVE *C MAX *C 5. OTHER			

Action Requested by Customer:

This section should be completed with the customer's expectations. This information is essential for an appropriate response.

Reason for Electrical Reject:

This section should be completed if the type of failure could be identified. If this information is contained in attached customer correspondence there is no need to transpose onto the PFAST Action Request form.

PFAST REQUIREMENTS

The value of returning failing products is in the corrective actions that are generated. Failure to meet the following requirements can cause erroneous conclusion and corrective action; therefore, failure to meet these requirements will result in the request being returned. Contact the local PFAST Coordinator if you have any questions.

Units with conformal coating should include the coating manufacturer and model. This is requested since the coating must be removed in order to perform electrical and hermeticity testing.

- Units must be returned with proper ESD protection (ESD-safe shipping tubes within shielding box/bag or inserted into conductive foam
 within shielding box/bag). No tape, paper bags, or plastic bags should be used. This requirement ensures that the devices are not damaged
 during shipment back to Harris.
- 2. Units must be intact (lid not removed and at least part of each package lead present). This is a requirement since the parts must be intact in order to perform electrical test. Also, opening the package can remove evidence of the cause of failure and lead to an incorrect conclusion.
- 3. Programmable parts (ROMs, PROMs, UVEPROMs, and EEPROMs) must include a master unit with the same pattern. This requirement is to provide the pattern so all failing locations can be identified. A master unit is required if a failure analysis is requested.

FIGURE 7. PFAST ACTION REQUEST (Continued)

QUALITY AND

Product Analysis Lab

The Product Analysis Laboratory capabilities and charter encompass the isolation and identification of failure modes and mechanisms, preparing comprehensive technical reports, and assigning appropriate corrective actions. The primary activities of the Product Analysis Lab are electrical verification/characterization of the failure, package inspection/analysis, die inspection/analysis, and circuit isolation/probing. A variety of tools and techniques have been developed to ensure the accuracy and integrity of the product analysis. This section lists some of the tools and techniques that are employed during a typical analysis.

The electrical verification/characterization of devices failing electrical parameters is essential prior to performing an analysis. The information obtained from the electrical verification provides a direction for the analysis efforts. The following electrical verification/characterization equipment may be used to obtain electrical data on a device:

- LV500 ASIC verification system
- LTS2020 Analog tester
- Curve Tracer
- Parametric Analyzer

Prior to die level analysis, package inspection and analysis are performed. These steps are performed routinely since valuable data may not be obtainable once the package is opened. The package inspection and analysis may require the use of some of the following lab equipment:

- X-ray
- C-mode Scanning Acoustic Microscope (C-SAM)
- · Optical inspection microscopes
- Package opening tools and techniques

Once the device has been opened, die inspection and analysis can be performed. Depending on the type of failure, several tools and techniques may be used to identify the failure mechanism. Usually the faster and easier to use operations are performed first in an attempt to expedite the analysis. The list of equipment and techniques for performing die inspection and analysis is as follows:

- Optical microscopes
- · Liquid crystal
- Emission microscope
- · Scanning electron microscopes SEM

The final step of circuit isolation is ready to be performed when an area of the circuit has been identified as the source of the problem through one of the previous analysis efforts. Circuit analysis is performed using the following probing and isolation tools:

- Mechanical probing
- · Laser cutter and isolation
- · E-beam probing
- · Cross sectioning and chemical deprocessing

A typical analysis flow is shown in the Figure 8 below. The exact analysis steps and sequence are determined as the situation dictates. For the analysis to be conclusive, it is essential that the failure mechanism correlates to the initial product failure conditions. Some failure mechanisms require elemental and chemical analysis to identify the root cause within the manufacturing process. Elemental and chemical analysis tasks are sent to the Analytical Services Lab for further evaluation.

The results of each analysis are entered into a computer data base. This data base is used to search for specific types of problems, to identify trends, and to verify that the corrective actions were effective.

Harris Reliability

Analytical Services Laboratory

Chemical and physical analysis of materials and processes is an integral part of Harris' Total Quality/Continuous Improvement efforts to build reliability into processes and products. Manufacturing operations are supported with real-time analyses to help maintain robust processes. Analyses are run in cooperation with raw material suppliers to help them provide controlled materials in dock-to-stock procurement programs.

Harris facilities, engineering, manufacturing, and product assurance are supported by the Analytical Services Laboratory. Organized into chemical or microbeam analysis methodology, staff and instrumentation from both labs cooperate in fully integrated approaches necessary to complete analytical studies.

The department also maintains ongoing working arrangements with commercial laboratories, universities, and equipment manufacturers to obtain any materials analysis in cases where instrumental capabilities are not available in our own facility.

Figure 9 and Figure 10 show the capabilities of each area.

FIGURE 9. MICROBEAM LABORATORY

Reliability Fundamentals and Calculation of Failure Rate

Table 8 defines some of the more important terminology used in describing the lifetime of integrated circuits. Of prime importance is the concept of "failure rate" and its calculation.

Failure Rate Calculations

Since reliability data can be accumulated from a number of different life tests with several different failure mechanisms, a comprehensive failure rate is desired. The failure rate calculation can be complicated if there are more than one failure mechanism in a life test, since the failure mechanisms are thermally activated at different rates The equation below accounts for these considerations along with a statistical factor to obtain the upper confidence level (UCL) for the resulting failure rate.

$$\lambda = \left[\sum_{i=1}^{\beta} \frac{x_i}{\sum_{j=1}^{k} \mathsf{TDH}_j \mathsf{AF}_{ij}} \right] \times \frac{\mathsf{M} \times 10^9}{\sum_{i=1}^{\beta} x_i}$$

where.

 $\lambda = \text{ failure rate in FITs (Number fails in 10}^9 \text{ device hours)}$

 β = number of distinct possible failure mechanisms

k = number of life tests being combined

 $x_i = n$ umber of failures for a given failure mechanism $i = 1, 2, \ldots, \beta$

 $TDH_j = Total device hours of test time (unaccelerated) for Life Test j, j = 1, 2, 3, . . . k$

 $AF_{ij} = Acceleration factor for appropriate failure mechanism i = 1, 2, ..., k$

 $M = X^{2}_{(\alpha, 2r+2)}/2$ where,

 X^2 = chi square factor for 2r + 2 degrees of freedom r = total number of failures (Σx_i)

 α = risk associated with UCL; i.e. α = (100-UCL(%))/100

In the failure rate calculation, Acceleration Factors (AF_{ij}) are used to derate the failure rate from the thermally accelerated life test conditions to a failure rate indicative of actual use temperature. Although no standard exists, a temperature of $+55^{\circ}$ C has been popular. Harris Semiconductor Reliability Reports will derate to $+55^{\circ}$ C and will express failure rates at 60% UCL. Other derating temperatures and UCLs are available upon request.

TABLE 8. FAILURE RATE PRIMER

TERMS	DEFINITIONS/DESCRIPTION	
Failure Rate λ	Measure of failure per unit of time. The early life failure rate is typically higher, decreases slightly, and then becomes relatively constant over time. The onset of wear-out will show an increasing failure rate, which should occur well beyond useful life. The useful life failure rate is based on the exponential life distribution.	
FIT (Failure In Time)	Measure of failure rate in 10 ⁹ device hours; e.g., 1 FIT = 1 failure in 10 ⁹ device hours, 100 FITS = 100 failure in 10 ⁹ device hours, etc.	
Device Hours	The summation of the number of units in operation multiplied by the time of operation.	
MTTF (Mean Time To Failure)	Mean of the life distribution for the population of devices under operation or expected lifetime of an individual, MTTF = 1/ λ , which is the time where 63.2% of the population has failed. Example: For λ = 10 FITS (or 10 E-9/Hr.), MTTF = 1/ λ = 100 million hours.	
Confidence Level (or Limit)	Probability level at which population failure rate estimates are derived from sample life test: 10 FITs at 95% UCL means that the population failure rate is estimated to be no more that 10 FITs with 95% certainty. The upper limit of the confidence interval is used.	
Acceleration Factor (AF)	A constant derived from experimental data which relates the times to failure at two different stresses. The AF allows extrapolation of failure rates from accelerated test conditions to use conditions.	

Acceleration Factors

Acceleration factor is determined from the Arrhenius Equation. This equation is used to describe physiochemical reaction rates and has been found to be an appropriate model for expressing the thermal acceleration of semiconductor failure mechanisms.

$$AF = EXP \left[\frac{E_a}{k} \left(\frac{1}{T_{USE}} - \frac{1}{T_{STRESS}} \right) \right]$$

where,

AF = Acceleration Factor

E_a = Thermal Activation Energy (See Table 9)

k = Boltzmann's Constant (8.63 x 10⁻⁵ eV/°K)

Both $T_{\rm USe}$ and $T_{\rm Stress}$ (in degrees Kelvin) include the internal temperature rise of the device and therefore represent the junction temperature.

Activation Energy

The Activation Energy (E_a) of a failure mechanism is determined by performing at least two tests at different levels of stress (temperature and/or voltage). The stresses will provide the time to failure (t_f) for the two (or more) populations thus allowing the simultaneous solution for the activation energy as follows:

In
$$(t_{f1}) = C + E_a$$
 In $(t_{f2}) = C + E_a$
 kT_a

By subtracting the two equations and solving for the activation energy, the following equation is obtained:

$$\mathsf{E}_{\mathsf{a}} = \frac{\mathsf{k}[\mathsf{ln}(\mathsf{t}_{\mathsf{f1}}\) - \mathsf{ln}\,(\mathsf{t}_{\mathsf{f2}})\]}{(1/\mathsf{T1} - 1/\mathsf{T2})}$$

where,

Ea = Thermal Activation Energy (See Table 10)

k = Boltzmann's Constant (8.63 x 10⁻⁵ eV/°K)

 $T_1, T_2 =$ Life test temperatures in degrees Kelvin

TABLE 9. FAILURE MECHANISM

FAILURE MECHANISM	ACTIVATION ENERGY	SCREENING AND TESTING METHODOLOGY	CONTROL METHODOLOGY
Oxide Defects	0.3eV - 0.5eV	High temperature operating life (HTOL) and voltage stress. Defect density test vehicles.	Statistical Process Control of oxide parameters, defect density control, and voltage stress testing.
Silicon Defects (Bulk)	0.3eV - 0.5eV	HTOL and voltage stress screens.	Vendor statistical Quality Control programs, and Statistical Process Control on thermal processes.
Corrosion	0.45eV	Highly accelerated stress testing (HAST)	Passivation dopant control, hermetic seal control, improved mold compounds, and product handling.
Assembly Defects	0.5eV - 0.7eV	Temperature cycling, temperature and mechanical shock, and environmental stressing.	Vendor Statistical Quality Control programs, Statistical Process Control of assembly process- es, proper handling methods.
Electromigration - Al Line - Contact	0.6eV 0.9eV	Test vehicle characterizations at highly elevated temperatures.	Design ground rules, wafer process statistical process steps, photoresist, metals and passivation.
Mask Defects/ Photoresist Defects	0.7eV	Mask FAB comparator, print checks, defect density monitor in FAB, voltage stress test and HTOL.	Clean room control, clean mask, pellicles, Statistical Process Control of photoresist/etch processes.
Contamination	1.0eV	C-V stress at oxide/interconnect, wafer FAB device stress test and HTOL.	Statistical Process Control of C-V data, oxide/ interconnect cleans, high integrity glassivation and clean assembly processes.
Charge Injection	1.3eV	HTOL and oxide characterization.	Design ground rules, wafer level Statistical Process Control and critical dimensions for oxides.

No. TB52 January 1994

Harris Digital

ELECTROSTATIC DISCHARGE CONTROL: A GUIDE TO HANDLING INTEGRATED CIRCUITS

This paper discusses methods and materials recommended for protection of ICs against ESD damage or degradation during manufacturing operations vulnerable to ESD exposure. Areas of concern include dice prep and handling, dice and package inspection, packing, shipping, receiving, testing, assembly and all operations wurhere ICs are involved.

All integrated circuits are sensitive to electrostatic discharge (ESD) to some degree. Since the introduction of integrated circuits with MOS structures and high quality junctions, safe and effective means of handling these devices have been of primary importance.

If static discharge occurs at a sufficient magnitude, 2kV or greater, some damage or degradation will usually occur. It has been found that handling equipment and personnel can generate static potentials in excess of 10kV in a low humidity environment; thus it becomes necessary for additional measures to be implemented to eliminate or reduce static charge. Avoiding any damage or degradation by ESD when handling devices during the manufacturing flow is therefore essential.

ESD Protection and Prevention Measures

One method employed to protect gate oxide structures is to incorporate input protection diodes directly on the monolithic chip. However, there is no completely foolproof system of chip input protection in existence in the industry.

In areas where ICs are being handled, certain equipment should be utilized to reduce the damaging effects of ESD. Typically, equipment such as grounded work stations, conductive wrist straps, conductive floor mats, ionized air blowers and conductive packaging materials are included in the IC handling environment. Any time an individual intends to handle an IC, in any way, they must insure they have been grounded to eliminate circuit damage.

Grounding personnel can, practically, be performed by two methods. First, grounded wrist straps which are usually made of a conductive material, such as Velostat or metal. A resistor value of 1 megohm (1/2 watt) in series with the strap to ground completes a discharge path for ESD when the operator wears the strap in contact with the skin. Another method is to insure direct physical contact with a grounded, conductive work surface.

This consists of a conductive surface like Velostat, covering the work area. The surface is connected to a 1 megohm (1/2 watt) resistor in series with ground. In addition to personnel grounding, areas where work is being performed with ICs, should be equipped with an ionized air blower. Ionized air blowers force positive and negative ions simultaneously over the work area so that any nonconductors that are near the work surface would have their static charge neutralized before it would cause device damage or degradation.

Relative humidity in the work area should be maintained as high as practical. When the work environment is less than 40% RH, a static build-up condition can exist on nonconductors allowing stored charges to remain near the ICs causing possible static electricity discharge to ICs.

Integrated circuits that are being shipped or transported require special handling and packaging materials to eliminate ESD damage. Dice or packaged devices should be in conductive carriers during all phases of transport and handling. Leads of packaged devices can be shorted by tubular metallic carriers, conductive foam or foil.

Do's and Don'ts for Integrated Circuit Handling

Do's

Do keep paper, nonconductive plastic, plastic foams and films or cardboard off the static controlled conductive bench top. Placing devices, loaded sticks or loaded burn-in boards on top of any of these materials effectively insulates them from ground and defeats the purpose of the static controlled conductive surface

Do keep hand creams and food away from static controlled conductive work surfaces. If spilled on the bench top, these materials will contaminate and increase the resistivity of the work area.

Do be especially careful when using soldering guns around conductive work surfaces. Solder spills and heat from the gun may melt and damage the conductive mat.

Do check the grounded wrist strap connections daily. Make certain they are snugly fitted before starting work with the product.

Do put on grounded wrist strap before touching any devices. This drains off any static build-up from the operator.

Do know the ESD caution symbols.

Do remove devices or loaded sticks from shielding bags only when grounded via wrist strap at grounded work station. This also applies when loading or removing devices from the antistatic sticks or the loading on or removing from the burn-in boards.

10

QUALITY AND RELIABILITY

Do wear grounded wrist straps in direct contact with the bare skin never over clothing.

Do use the same ESD control with empty burn-in boards as with loaded boards if boards contain permanently mounted ICs as part of driver circuits.

Do insure electrical test equipment and solder irons at an ESD control station are grounded and only uninsulated metal hand tools be used. Ordinary plastic solder suckers and other plastic assembly aids shall not be used.

Do use ionizing air blowers in static controlled areas when the use of plastic (nonconductive) materials cannot be avoided.

Don'ts

Don't allow anyone not grounded to touch devices, loaded sticks or loaded burn-in boards. To be grounded they must be standing on a conductive floor mat with conductive heel straps attached to footwear or must wear a grounded wrist strap.

Don't touch the devices by the pins or leads unless grounded since most ESD damage is done at these points.

Don't handle devices or loaded sticks during transport from work station to work station unless protected by shielding bags. These items must never be directly handled by anyone not grounded.

Don't use freon or chlorinated cleaners at a grounded work area

Don't wax grounded static controlled conductive floor and bench top mats. This would allow build-up of an insulating layer and thus defeating the purpose of a conductive work surface.

Don't touch devices or loaded sticks or loaded burn-in boards with clothing or textiles even though grounded wrist strap is worn. This does not apply if conductive coats are worn.

Don't allow personnel to be attached to hard ground. There must always be 1 megohm series resistance (1/2 watt between the person and the ground).

Don't touch edge connectors of loaded burn-in boards or empty burn-in boards containing permanently mounted

driver circuits when not grounded. This also applies to burnin programming cards containing ICs.

Don't unload stick on a metal bench top allowing rapid discharge of charged devices.

Don't touch leads. Handle devices by their package even though grounded.

Don't allow plastic "snow or peanut" polystyrene foam or other high dielectric materials to come in contact with devices or loaded sticks or loaded burn-in boards.

Don't allow rubber/plastic floor mats in front of static controlled work benches.

Don't solvent-clean devices when loaded in antistatic sticks since this will remove antistatic inner coating from sticks.

Don't use antistatic sticks for more than one throughput process. Used sticks should not be reused unless recoated.

Recommended Maintenance Procedures

Daily

Perform visual inspection of ground wires and terminals on floor mats, bench tops, and grounding receptacles to ensure that proper electrical connections via 1 megohm resistor (1/2 watt) exist.

Clean bench top mats with a soft cloth or paper towel dampened with a mild solution of detergent and water.

Weekly

Damp mop conductive floor mats to remove any accumulated dirt layer which causes high resistivity.

Annually

Replace nuclear elements for ionized air blowers.

Review ESD protection procedures and equipment for updating and adequacy.

Static Controlled Work Station

The figure below shows an example of a work bench properly equipped to control electro-static discharge. Note that the wrist strap is connected to a 1 megohm resistor. This resistor can be omitted in the setup if the wrist strap has a 1 megohm assembled on the cable attached.

ANALOG

SPICE MODEL LISTING

PART NUMBER	DESCRIPTION
HA-2500	Precision, High Slew Rate, Single Op Amp
HA-2502	Precision, High Slew Rate, Single Op Amp
HA-2510	High Slew Rate, Single Op Amp
HA-2512	High Slew Rate, Single Op Amp
HA-2520	Uncompensated, High Slew Rate, Single Op Amp
HA-2522	Uncompensated, High Slew Rate, Single Op Amp
HA-2539	Very High Slew Rate, Wideband, Single Op Amp
HA-2540	Wideband, Fast Settling, +10 Stable Single Op Amp
HA-2541	Wideband, Fast Settling, Unity Gain Stable, Op Amp
HA-2542	Wideband, High Slew Rate, High Output Current +2 Stable Op Amp
HA-2544	Precision, High Slew Rate, Unity Gain Stable Op Amp
HA-2548	Precision, High Slew Rate, Wideband +5 Stable Op Amp
HA-2600	Wideband, High Input Impedance, Single Op Amp
HA-2602	Wideband, High Input Impedance, Single Op Amp
HA-2620	Very Wideband, Uncompensated, Single Op Amp
HA-2622	Very Wideband, Uncompensated, Single Op Amp
HA-2839	Very High Slew Rate, Wideband, +10 Stable Single Op Amp
HA-2840	Very High Slew Rate, Wideband, +10 Stable Single Op Amp
HA-2841	Wideband, Fast Settling, Unity Gain Stable Video Amp
HA-2842	Wideband, High Slew Rate, High Output Current +2 Stable Video Amp
HA-2850	Low Power, High Slew Rate, Wideband, +10 Stable Single Op Amp
HA-5002	Wideband, High Slew Rate, 200mA Output Current Buffer
HA-5004	100MHz Current Feedback, Single Video Op Amp
HA-5020	100MHz Current Feedback, Single Video Op Amp
HA-5033	250MHz, 100mA Output Current Video Buffer
HA-5101	Low Noise, High Performance, Single Op Amp
HA-5102	Low Noise, High Performance, Dual Op Amp
HA-5104	Low Noise, High Performance, Quad Op Amp
HA-5112	Low Noise, High Performance, Dual Op Amp
HA-5114	Low Noise, High Performance, Quad Op Amp
HA-5127	Low Noise, Precision, Unity Gain Stable, Single Op Amp
HA-5137	Low Noise, Precision, +5 Stable, Single Op Amp
HA-5147	Low Noise, Precision, +10 Stable, Single Op Amp
HA-5190	Wideband, Fast Settling, Single Op Amp
HA-5221	Low Noise, Wideband, Precision, Single Op Amp
HA-5222	Low Noise, Wideband, Precision, Dual Op Amp
HC-5509B	Subscriber Line Interface IC (SLIC)
HFA3XXX	10GHz NPN, 5.5GHz PNP Transistor Arrays
HFA1100	850MHz Current Feedback Op Amp

12

ANALOG

PACKAGING INFORMATION

	PAGE
ANALOG MILITARY PACKAGE SELECTION GUIDE	12-3
PACKAGE OUTLINES	12-6
CERAMIC DUAL-IN-LINE METAL SEAL PACKAGES (SBDIP)	12-6
CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGES (CERDIP).	12-10
CERAMIC LEADLESS CHIP CARRIER PACKAGES (CLCC)	12-17
METAL CAN PACKAGES (CAN)	12-20

Analog Military Package Selection Guide

Using the Selection Guide:

The first character of each entry indicates the package type, while the number preceding the decimal point details the package lead count. Except for LCC and Can packages, the decimal point and succeeding numbers specify the reference package width in inches (e.g. .3 = 300 mil width). The entire entry indicates the package table containing the appropriate package dimensions (e.g. 16 lead CerDIP dimensions are detailed in Table F16.3). The index on page 11-1 lists page numbers for CerDIP, Sidebraze, LCC, and Can tables.

NOTE: Parts listed with /883 or /883B suffix are MIL-STD-883 compliant. All other products are specified over the military temperature range.

PART NUMBER	SIDE- BRAZE	CERDIP	LCC	CAN
AD7520/883B		F16.3		
AD7545		F20.3		
ADC0802		F20.3		
ADC0803		F20.3		
DG200/883B		F14.3		T10.B
DG201/883B		F16.3		
DG201A/883B		F16.3		
DG202/883B		F16.3		
DG300A/883B		F14.3		T10.B
DG301A/883B		F14.3		T10.B
DG302A/883B		F14.3		
DG303A/883B		F14.3		
DG308A/883B		F16.3		
DG309/883B		F16.3		
DG401/883		F16.3		
DG403/883		F16.3		
DG405/883		F16.3		
DG408/883		F16.3		
DG409/883		F16.3		
DG411/883		F16.3		
DG412/883		F16.3		
DG413/883		F16.3		
DG441/883		F16.3		
DG442/883		F16.3		
DG458/883		F16.3		
DG459/883		F16.3		
DG506A/883B		F28.6		
DG507A/883B		F28.6		
DG508A/883B		F16.3		

PART NUMBER	SIDE- BRAZE	CERDIP	LCC	CAN
DG509A/883B		F16.3		
DG526/883B		F28.6		
DG527/883B		F28.6		
DG528/883B		F18.3		
DG529/883B		F18.3		
HA-2400/883		F16.3	J20.A	
HA-2420/883		F14.3	J20.A	
HA-2444/883		F16.3		
HA-2500/883		F8.3A		T8.C
HA-2502/883		F8.3A	J20.A	T8.C
HA-2510/883		F8.3A		T8.C
HA-2512/883		F8.3A	J20.A	T8.C
HA-2520/883		F8.3A		T8.C
HA-2522/883		F8.3A	J20.A	T8.C
HA-2529/883		F8.3A	J20.A	T8.C
HA-2539/883		F14.3	J20.A	
HA-2540/883		F14.3	J20.A	
HA-2541/883				T12.C
HA-2542/883				T12.C
HA-2544/883		F8.3A	J20.A	T8.C
HA-2546/883		F16.3	J20.A	
HA-2548/883	D8.3			T8.C
HA-2556/883		F16.3		
HA-2557/883		F16.3		
HA-2600/883		F8.3A		T8.C
HA-2602/883		F8.3A		T8.C
HA-2620/883		F8.3A		T8.C
HA-2622/883		F8.3A		T8.C
HA-2640/883		F8.3A	J20.A	T8.C

Analog Military Package Selection Guide (Continued)

PART NUMBER	SIDE- BRAZE	CERDIP	LCC	CAN
HA-2700		F14.3		T8.C
HA-2839/883		F14.3		
HA-2840/883		F8.3A, F14.3		
HA-2841/883		F8.3A, F14.3		
HA-2842/883		F8.3A, F14.3		
HA-2850/883		F8.3A, F14.3		
HA-4741/883		F14.3	J20.A	
HA-4900		F16.3		
HA-4902/883		F16.3	J20.A	
HA-5002/883		F8.3A	J20.A	T8.C
HA-5004/883		F14.3		
HA-5020/883		F8.3A	J20.A	
HA5022/883		F16.3		
HA5023/883		F8.3A		
HA-5033/883				T12.0
HA-5101/883		F8.3A	J20.A	T8.C
HA-5102/883		F8.3A	J20.A	T8.C
HA-5104/883		F14.3	J20.A	
HA-5111/883		F8.3A	J20.A	T8.C
HA-5112/883		F8.3A	J20.A	T8.C
HA-5114/883		F14.3	J20.A	
HA-5127/883		F8.3A	J20.A	T8.C
HA-5127A		F8.3A		T8.C
HA-5130		F8.3A		T8.C
HA-5134/883		F14.3	J20.A	
HA-5135/883		F8.3A	J20.A	T8.C
HA-5137/883		F8.3A	J20.A	T8.C
HA-5137A		F8.3A		T8.C
HA-5142/883		F8.3A	J20.A	T8.C
HA-5144/883		F14.3	J20.A	
HA-5147/883		F8.3A	J20.A	T8.C
HA-5147A		F8.3A		T8.C
HA-5160				T8.C
HA-5170		F8.3A		T8.C

PART NUMBER	SIDE- BRAZE	CERDIP	LCC	CAN
HA-5177/883		F8.3A	J20.A	T8.C
HA-5190/883		F14.3	J20.A	T12.C
HA-5221/883		F8.3A	J20.A	T8.C
HA-5222/883		F8.3A	J20.A	
HA-5320/883		F14.3	J20.A	
HA-5330/883		F14.3	J20.A	
HA-5340/883		F14.3	J20.A	
HA5351/883		F8.3A		
HA5352/883		F14.3		
HC55564/883		F14.3	J20.A	
HFA1100/883		F8.3A		
HFA1110/883		F8.3A		
HFA1112/883		F8.3A		
HFA1113/883		F8.3A	J20.A	
HFA1115/883		F8.3A		
HFA1120/883		F8.3A		
HFA1130/883		F8.3A	J20.A	
HFA1135/883		F8.3A	J20.A	
HFA1145/883		F8.3A		
HI-200/883		F14.3		T10.B
HI-201/883		F16.3	J20.A	
HI-201HS/883		F16.3	J20.A	
HI-222/883		F14.3	J20.A	
HI-300/883		F14.3		T10.B
HI-301/883		F14.3		T10.B
HI-302/883		F14.3		
HI-303/883		F14.3		
HI-304/883		F14.3		T10.B
HI-305/883		F14.3		T10.B
HI-306/883		F14.3		
HI-307/883		F14.3		
HI-381/883		F14.3		T10.B
HI-384/883		F16.3		
HI-387/883		F14.3		T10.B
HI-390/883		F16.3		
HI-506/883		F28.6	J28.A	
HI-507/883		F28.6	J28.A	

12

Analog Military Package Selection Guide (Continued)

PART NUMBER	SIDE- BRAZE	CERDIP	LCC	CAN
HI-508/883		F16.3	J20.A	
HI-509/883		F16.3	J20.A	
HI-516/883		F28.6	J28.A	
HI-518		F18.3	J20.A	
HI-524/883		F18.3	J20.A	
HI-539/883		F16.3		
HI-546/883		F28.6	J28.A	
HI-547/883		F28.6	J28.A	
HI-548/883		F16.3	J20.A	
HI-549/883		F16.3	J20.A	
HI-565A/883		F24.6		
HI-574A/883	D28.6		J44.A	
HI-674A/883	D28.6		J44.A	
HI-774/883	D28.6		J44.A	
HI-1818A/883		F16.3		
HI-1828A/883		F16.3	J20.A	
HI-5040/883		F16.3		
HI-5041/883		F16.3		
HI-5042/883		F16.3		
HI-5043/883		F16.3	J20.A	
HI-5044/883		F16.3		
HI-5045/883		F16.3		
HI-5046/883		F16.3		
HI-5046A/883		F16.3		
HI-5047/883		F16.3		

PART NUMBER	SIDE- BRAZE	CERDIP	LCC	CAN
HI-5047A/883		F16.3		
HI-5048/883		F16.3		
HI-5049/883		F16.3		
HI-5050/883		F16.3		
HI-5051/883		F16.3	J20.A	
HI-5700/883		F28.6		
HI-5701/883		F18.3		
HI7153/883	D40.6			
ICL232/883B		F16.3		
ICL8038/883B		F14.3		
ICL8069/883B				T2.A
ICM7170/883B	D24.6			
ICM7228/883B		F28.6		
ICM7555/883B				T8.C
ICM7556/883B		F14.3		
IH5043/883B		F16.3		
IH5140/883B		F16.3		
IH5141/883B		F16.3		
IH5142/883B		F16.3		
IH5143/883B		F16.3		
IH5144/883B		F16.3		
IH5145/883B		F16.3		
IH5151/883B		F16.3		
IH5341/883B				T10.B
IH5352/883B		F16.3		

Package Outlines

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located ed adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- 7. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.
- 12. Materials: Compliant to MIL-I-38535.

D8.3 MIL-STD-1835 CDIP2-T8 (D-4, CONFIGURATION C) 8 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

	INCHES		MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	-
Е	0.220	0.310	5.59	7.87	-
е	0.100	BSC	2.54 BSC		-
eA	0.300	BSC	7.62	BSC	-
eA/2	0.150	BSC	3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2
N	8	3	8	3	8

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located ed adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.
- 12. Materials: Compliant to MIL-I-38535.

D24.6 MIL-STD-1835 CDIP2-T24 (D-3, CONFIGURATION C) 24 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

	INCHES		MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.225	-	5.72	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.290	-	32.77	-
Е	0.500	0.610	12.70	15.49	-
е	0.100 BSC		2.54 BSC		-
eA	0.600	BSC	15.24	BSC /	
eA/2	0.300	BSC	7.62 BSC		-
L	0.120	0.200	3.05	5.08	-
Q	0.015	0.075	0.38	1.91	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2
N	2	4	2	4	8

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- 7. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.
- 12. Materials: Compliant to MIL-I-38535.

D28.6 MIL-STD-1835 CDIP2-T28 (D-10, CONFIGURATION C) 28 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

	INCHES		MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.232	-	5.92	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.490	-	37.85	-
E	0.500	0.610	12.70	15.49	-
е	0.100	BSC	2.54	BSC	-
eA	0.600	BSC	15.24	BSC	-
eA/2	0.300	BSC	7.62	BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	5
S1	0.005	-	0.13	-	6
S2	0.005	-	.0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2
N	2	8	2	8	8

Rev. 0 5/18/94

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.
- 12. Materials: Compliant to MIL-I-38535.

D40.6 MIL-STD-1835 CDIP2-T40 (D-5, CONFIGURATION C) 40 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.225	-	5.72	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	2.096	-	53.24	4
E	0.510	0.620	12.95	15.75	4
е	0.100	BSC	2.54 BSC		-
eA	0.600	BSC	15.24 BSC		-
eA/2	0.300	BSC	7.62 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.070	0.38	1.78	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2
N	4	0	4	.0	8

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- This dimension allows for off-center lid, meniscus, and glass overrun.
- Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.
- 11. Materials: Compliant to MIL-I-38535.

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	5
E	0.220	0.310	5.59	7.87	5
е	0.100 BSC		2.54 BSC		-
eA	0.300	BSC	7.62 BSC		-
eA/2	0.150	BSC	3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2,3
N	8		8	3	8

NOTES:

- Index area: A notch or a pin one identification mark shall be located ed adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- This dimension allows for off-center lid, meniscus, and glass overrun.
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.
- 11. Materials: Compliant to MIL-I-38535.

F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A) 14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE)

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.785	-	19.94	5
Е	0.220	0.310	5.59	7.87	5
е	0.100 BSC		2.54 BSC		-
eA	0.300 BSC		7.62 BSC		-
eA/2	0.150	BSC	3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2,3
N	14		1	4	8

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. This dimension allows for off-center lid, meniscus, and glass
- Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.
- 11. Materials: Compliant to MIL-I-38535.

F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A) 16 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.840	-	21.34	5
E	0.220	0.310	5.59	7.87	5
е	0.100 BSC		2.54 BSC		-
eA	0.300 BSC		7.62 BSC		-
eA/2	0.150	BSC	3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	- ,	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2,3
N	16		16		8

NOTES:

- Index area: A notch or a pin one identification mark shall be located ed adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. This dimension allows for off-center lid, meniscus, and glass
- Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.
- 11. Materials: Compliant to MIL-I-38535.

F18.3 MIL-STD-1835 GDIP1-T18 (D-6, CONFIGURATION A)
18 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.960	-	24.38	5
E	0.220	0.310	5.59	7.87	5
е	0.100 BSC		2.54 BSC		-
eA	0.300 BSC		7.62 BSC		-
eA/2	0.150	BSC	3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.070	0.38	1.78	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015		0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010		0.25	-
М	-	0.0015		0.038	2,3
N	18 18		8	8	

Rev. 0 4/94

12

NOTES:

- Index area: A notch or a pin one identification mark shall be located ed adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- This dimension allows for off-center lid, meniscus, and glass overrun.
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.
- 11. Materials: Compliant to MIL-I-38535.

F20.3 MIL-STD-1835 GDIP1-T20 (D-8, CONFIGURATION A) 20 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.060	-	26.92	5
E	0.220	0.310	5.59	7.87	5
е	0.100 BSC		2.54 BSC		-
eA	0.300 BSC		7.62 BSC		-
eA/2	0.150	BSC	3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.070	0.38	1.78	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb		0.030	-	0.76	
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2,3
N	2	0	20		8

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- This dimension allows for off-center lid, meniscus, and glass overrun.
- Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.

F24.6 MIL-STD-1835 GDIP1-T24 (D-3, CONFIGURATION A) 24 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.225	-	5.72	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.290	-	32.77	5
Е	0.500	0.610	12.70	15.49	5
е	0.100 BSC		2.54 BSC		-
eA	0.600 BSC		15.24 BSC		-
eA/2	0.300	BSC	7.62 BSC		-
L	0.120	0.200	3.05	5.08	-
Q	0.015	0.075	0.38	1.91	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2, 3
N	24		24		8

Ceramic Dual-In-Line Frit Seal Packages (CerDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- This dimension allows for off-center lid, meniscus, and glass overrun.
- Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.
- 11. Materials: Compliant to MIL-I-38535.

F28.6 MIL-STD-1835 GDIP1-T28 (D-10, CONFIGURATION A) 28 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.232	-	5.92	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.490		37.85	5
E	0.500	0.610	12.70	15.49	5
е	0.100 BSC		2.54 BSC		-
eA	0.600	BSC	15.24 BSC		
eA/2	0.300	BSC	7.62 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2,3
N	2	8	2	8	8

Rev. 0 4/94

Ceramic Leadless Chip Carrier Packages (CLCC)

J20.A MIL-STD-1835 CQCC1-N20 (C-2) 20 PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.060	0.100	1.52	2.54	6, 7
A1	0.050	0.088	1.27	2.23	-
В	-	-	-	-	-
B1	0.022	0.028	0.56	0.71	2,4
B2	0.072	REF	1.83	REF	-
В3	0.006	0.022	0.15	0.56	-
D	0.342	0.358	8.69	9.09	-
D1	0.200	BSC	5.08	BSC	-
D2	0.100	BSC	2.54	BSC	-
D3	-	0.358	-	9.09	2
E	0.342	0.358	8.69	9.09	-
E1	0.200	BSC	5.08 BSC		-
E2	0.100	BSC	2.54 BSC		
E3	-	0.358	-	9.09	2
е	0.050	BSC	1.27 BSC		-
e1	0.015	-	0.38	-	2
h	0.040	REF	1.02 REF		5
j	0.020	REF	0.51	REF	5
L	0.045	0.055	1.14	1.40	-
L1	0.045	0.055	1.14	1.40	-
L2	0.075	0.095	1.91	2.41	-
L3	0.003	0.015	0.08	0.38	-
ND	5			5	3
NE	Ę	5		5	3
N	2	0	2	0	3

Rev. 0 5/18/94

- Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
- Unless otherwise specified, a minimum clearance of 0.015 inch (0.38mm) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
- Symbol "N" is the maximum number of terminals. Symbols "ND" and "NE" are the number of terminals along the sides of length "D" and "E", respectively.
- 4. The required plane 1 terminals and optional plane 2 terminals (if used) shall be electrically connected.
- 5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- 6. Chip carriers shall be constructed of a minimum of two ceramic layers.
- Dimension "A" controls the overall package thickness. The maximum "A" dimension is package height before being solder dipped.
- 8. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 9. Controlling dimension: INCH.
- 10. Materials: Compliant to MIL-I-38535.

Ceramic Leadless Chip Carrier Packages (CLCC)

J28.A MIL-STD-1835 CQCC1-N28 (C-4)
28 PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	0.060	0.100	1.52	2.54	6, 7
A1	0.050	0.088	1.27	2.23	-
В	-	-	-	-	-
B1	0.022	0.028	0.56	0.71	2, 4
B2	0.072	REF	1.83	REF	-
В3	0.006	0.022	0.15	0.56	-
D	0.442	0.460	11.23	11.68	
D1	0.300	BSC	7.62	BSC	-
D2	0.150	BSC	3.81	BSC	-
D3	-	0.460	-	11.68	2
Е	0.442	0.460	11.23	11.68	-
E1	0.300	0.300 BSC		7.62 BSC	
E2	0.150	BSC	3.81 BSC		-
E3	-	0.460	-	11.68	2
е	0.050	BSC	1.27	BSC	-
e1	0.015	-	0.38	-	2
h	0.040	REF	1.02 REF		5
j	0.020	REF	0.51 REF		5
L	0.045	0.055	1.14	1.40	-
L1	0.045	0.055	1.14	1.40	-
L2	0.075	0.095	1.90	2.41	-
L3	0.003	0.015	0.08	0.038	-
ND	-	7		7	3
NE	7	7		7	3
N	2	8	2	8	3

Rev. 0 5/18/94

- Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
- Unless otherwise specified, a minimum clearance of 0.015 inch (0.38mm) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
- Symbol "N" is the maximum number of terminals. Symbols "ND" and "NE" are the number of terminals along the sides of length "D" and "E", respectively.
- The required plane 1 terminals and optional plane 2 terminals (if used) shall be electrically connected.
- 5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- Chip carriers shall be constructed of a minimum of two ceramic layers.
- Dimension "A" controls the overall package thickness. The maximum "A" dimension is package height before being solder dipped.
- 8. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 9. Controlling dimension: INCH.
- 10. Materials: Compliant to MIL-I-38535.

Ceramic Leadless Chip Carrier Packages (CLCC)

J44.A MIL-STD-1835 CQCC1-N44 (C-5)
44 PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.064	0.120	1.63	3.05	6, 7
A1	0.054	0.088	1.37	2.24	-
В	0.033	0.039	0.84	0.99	4
B1	0.022	0.028	0.56	0.71	2, 4
B2	0.072	REF	1.83	REF	-
B3	0.006	0.022	0.15	0.56	-
D	0.640	0.662	16.26	16.81	-
D1	0.500	BSC	12.70	BSC	-
D2	0.250	BSC	6.35	BSC	-
D3	-	0.662	-	16.81	2
Е	0.640	0.662	16.26	16.81	-
E1	0.500	BSC	12.70 BSC		
E2	0.250	BSC	6.35 BSC		-
E3	-	0.662	-	16.81	2
е	0.050	BSC	1.27 BSC		-
e1	0.015	-	0.38	-	2
h	0.040	REF	1.02 REF		5
j	0.020	REF	0.51	REF	5
L	0.045	0.055	1.14	1.40	-
L1	0.045	0.055	1.14	1.40	-
L2	0.075	0.095	1.90	2.41	-
L3	0.003	0.015	0.08	0.38	-
ND	1	1	1	1	3
NE	1	1	1	1	3
N	4	4	4	4	3

Rev. 0 5/18/94

- Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
- Unless otherwise specified, a minimum clearance of 0.015 inch (0.38mm) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
- Symbol "N" is the maximum number of terminals. Symbols "ND" and "NE" are the number of terminals along the sides of length "D" and "E", respectively.
- The required plane 1 terminals and optional plane 2 terminals (if used) shall be electrically connected.
- 5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- 6. Chip carriers shall be constructed of a minimum of two ceramic
- 7. Dimension "A" controls the overall package thickness. The maximum "A" dimension is package height before being solder dipped.
- 8. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 9. Controlling dimension: INCH.
- 10. Materials: Compliant to MIL-I-38535.

NOTES:

- 1. Measured from maximum diameter of the actual device.
- 2. Measured from tab centerline.
- 3. N is number of leads.
- 4. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 5. Controlling dimension: INCH.
- 6. Materials: Compliant to MIL-I-38535.

T2.A 2 LEAD METAL CAN PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	0.130	0.150	3.30	3.81	-
b	0.016	0.019	0.41	0.48	-
D	0.205	0.22	5.21	5.59	-
D1	0.180	0.190	4.57	4.83	-
F	0.010	0.025	0.25	0.64	-
k	0.033	0.046	0.84	1.17	1
j	0.033	0.045	0.84	1.14	-
L	0.500	0.560	12.70	14.22	
е	0.100	BSC	2.54	BSC	-
e1	-			-	-
α	45		4	5	2
N	2	2		2	3

Rev. 0 4/94

NOTES:

- (All leads) Øb applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
- 2. Measured from maximum diameter of the product.
- 3. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position (N -1 places) from α , looking at the bottom of the package.
- 4. N is the maximum number of terminal positions.
- 5. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 6. Controlling dimension: INCH.
- 7. Materials: Compliant to MIL-I-38535.

T8.C MIL-STD-1835 MACY1-X8 (A1) 8 LEAD METAL CAN PACKAGE

	INCHES		MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	0.165	0.185	4.19	4.70	-
Øb	0.016	0.019	0.41	0.48	1
Øb1	0.016	0.021	0.41	0.53	1
Øb2	0.016	0.024	0.41	0.61	-
ØD	0.335	0.375	8.51	9.40	-
ØD1	0.305	0.335	7.75	8.51	-
ØD2	0.110	0.160	2.79	4.06	-
е	0.200 BSC		5.08 BSC		-
e1	0.100	BSC	2.54 BSC		-
F	-	0.040	-	1.02	-
k	0.027	0.034	0.69	0.86	-
k1	0.027	0.045	0.69	1.14	2
L	0.500	0.750	12.70	19.05	1
L1	-	0.050	-	1.27	1
L2	0.250	-	6.35	-	1
Q	0.010	0.045	0.25	1.14	-
α	45° BSC		45°	BSC	3
β	45°	BSC	45°	BSC	3
N	8	3	8	3	4

Rev. 0 5/18/94

NOTES:

- (All leads) Øb applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
- 2. Measured from maximum diameter of the product.
- 3. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position (N -1 places) from α , looking at the bottom of the package.
- 4. N is the maximum number of terminal positions.
- 5. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 6. Controlling dimension: INCH.
- 7. Materials: Compliant to MIL-I-38535.

T10.B MIL-STD-1835 MACY1-X10 (A2) 10 LEAD METAL CAN PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.165	0.185	4.19	4.70	-
Øb	0.016	0.019	0.41	0.48	1
Øb1	0.016	0.021	0.41	0.53	1
Øb2	0.016	0.024	0.41	0.61	-
ØD	0.335	0.375	8.51	9.52	-
ØD1	0.305	0.335	7.75	8.51	-
ØD2	0.110	0.160	2.79	4.06	
е	0.230 BSC		5.84	BSC	-
e1	0.115	BSC	2.92 BSC		-
F	-	0.040	-	1.02	-
k	0.027	0.034	0.69	0.86	-
k1	0.027	0.045	0.69	1.14	2
L	0.500	0.750	12.70	19.05	1
L1	-	0.050	-	1.27	1
L2	0.250	-	6.35	-	1
Q	0.010	0.045	0.25	1.14	-
α	36° BSC		36°	BSC	3
β	36°	BSC	36°	BSC	3
N	1	0	1	0	4

Rev. 0 5/18/94

T12.C 12 LEAD METAL CAN PACKAGE

	INCHES		MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.130	0.150	3.30	3.81	-
Øb	0.016	0.019	0.41	0.48	-
Øb2	0.016	0.021	0.41	0.53	-
ØD	0.585	0.615	14.86	15.62	-
ØD1	0.540	0.560	13.72	14.22	-
е	0.400	BSC	10.16 BSC		-
e1	0.100	BSC	2.54 BSC		-
F	0.020	0.040	0.51	1.02	-
k	0.027	0.034	0.69	0.86	-
k1	0.027	0.045	0.69	1.14	2
L	0.500	0.560	12.70	14.22	-
N	1	2	1	2	3

Rev. 0 5/18/94

- The reference, base, and seating planes are the same for this variation.
- 2. Measured from maximum diameter of the product.
- 3. N is the maximum number of terminal positions.
- 4. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 5. Controlling dimension: INCH.
- 6. Materials: Compliant to MIL-I-38535.

SEE SECTION 2 FOR /883 AnswerFAX DOC. #

HOW TO USE HARRIS AnswerFAX

What is AnswerFAX?

AnswerFAX is Harris' automated fax response system. It gives you on-demand access to a full library of the latest data sheets, application notes, and other information on Harris products.

What do I need to use AnswerFAX?

Just a fax machine and a touch-tone phone. You can access it 24 hours a day, 7 days a week.

How does it work?

You call the AnswerFAX number, touch-tone your way through a series of recorded questions, enter the order numbers of the documents you want, and give AnswerFAX a fax number to send them to. You'll have the information you need in minutes. The chart on the next page shows you how.

How do I find out the order number for the publications I want?

The first time you call AnswerFAX, you should order one or more on-line catalogs of product line information. There are nine catalogs:

- New Products
- Digital Signal Processing (DSP) Products
 Rad Hard Products

- Linear/Telecom Products
 Discrete & Intelligent Power Products
- CMOS Logic Products

- Data Acquisition Products Microprocessor Products

Application Notes

Once they're faxed to you, you can call back and order the publications themselves by number.

How do I start?

Dial 407-724-3818. That's it.

Please refer to next page for a map to AnswerFAX.

DATA BOOKS AVAILABLE NOW! PUBLICATION NUMBER DATA BOOK/DESCRIPTION CMOS LOGIC SELECTION GUIDE (1994: 288pp) Key product information on all High Speed CMOS Logic HC/ SG103 HCT Series, AC/ACT Series, BiCMOS Interface Logic FCT Series and CMOS Logic CD4000B Series. PSG201.20 PRODUCT SELECTION GUIDE (1994: 320pp) Key product information on all Harris Semiconductor devices. Sectioned (Analog, Data Acquisition, Digital, Application Specific, Power, Hi-Rel and Rad-Hard, ASIC) for easy use and includes cross references and alphanumeric part number index. DB500B LINEAR AND TELECOM ICs (1993: 1,312pp) Product specifications for: op amps, comparators, S/H amps, differential amps, arrays, special analog circuits, telecom ICs, and power processing circuits. DB301B DATA ACQUISITION (1994: 1,104pp) Product specifications on A/D converters (display, integrating, successive approximation, flash); D/A converters, switches, multiplexers, and other products. DIGITAL SIGNAL PROCESSING (1994: 528pp) Product specifications on one-dimensional and two-DB302B dimensional filters, signal synthesizers, multipliers, special function devices (such as address sequencers, binary correlators, histogrammer). INTELLIGENT POWER ICs (1994: 946pp) This data book includes a complete set of data sheets for product DB304.1 specifications, application notes with design details for specific applications of Harris products, and a description of the Harris quality and high reliability program. TRANSIENT VOLTAGE SUPPRESSION DEVICES (1994: 400pp) Product specifications of Harris varistors **DB450C** and surgectors. Also, general informational chapters such as: "Voltage Transients - An Overview." "Transient Suppression - Devices and Principles," "Suppression - Automotive Transients." POWER MOSFETs (1994: 1,328pp) This data book contains detailed technical information including standard **DB223B** power MOSFETs (the popular RF-series types, the IRF-series of industry replacement types, and JEDEC types), MegaFETs, logic-level power MOSFETs (L²FETs), ruggedized power MOSFETs, advanced discrete, high-reliability and radiation-hardened power MOSFETs. BIPOLAR POWER TRANSISTORS (1992: 592pp) Technical information on over 750 power transistors for use DB220.1 in a wide range of consumer, industrial and military applications. RADIATION HARDENED (1993: 2,232pp) Harris technologies used include dielectric isolation (DI), Silicon-on-DB235B Sapphire (SOS), and Silicon-on-Insulator (SOI). The Harris radiation-hardened products include the CD4000. HCS/HCTS and ACS/ACTS logic families, SRAMs, PROMs, op amps, analog multiplexers, the 80C85/80C86 microprocessor family, analog switches, gate arrays, standard cells and custom devices. MICROPROCESSOR PRODUCTS (1992: 1,156pp) For commercial and military applications. Product specifi-**DB303** cations on CMOS microprocessors, peripherals, data communications, and memory ICs. MCT/IGBT/DIODES (1994: 528pp) This data book fully describes Harris Semiconductor's line of MOS Con-DB309 trolled Thyristors, Insulated Gate Bipolar Transistors (IGBTs) and Power Diodes/Rectifiers. Analog Military ANALOG MILITARY (1989: 1,264pp) This data book describes Harris' military line of Linear, Data Acquisition, and Telecommunications circuits. ANALOG MILITARY DATA BOOK SUPPLEMENT (1994: 432pp) The 1994 Military Data Book Supplement, DB312 combined with the 1989 Analog Military Product Data Book, contain detailed technical information on the extensive line of Harris Semiconductor Linear and Data Acquisition products for Military (MIL-STD-883, DESC SMD and JAN) applications and supersedes all previously published Linear and Data Acquisition Military data books. For applications requiring Radiation Hardened products, please refer to the 1993 Harris Radiation Hardened Product Data Book (document #DB235B) Digital Military DIGITAL MILITARY (1989: 680pp) Harris CMOS digital ICs -- microprocessors, peripherals, data communications and memory -- are included in this data book. PHONE: NAME: MAIL STOP: _____ FAX: _____ COMPANY: __ ADDRESS: DATA BOOK REQUESTED:

AnswerFAX		
DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
27007	BR007	Complete Listing of Harris Sales Offices, Representatives and Authorized Distributors World Wide (7 pages)
27026	BR026	Linear and Data Acquisition Product Cross Reference (26 pages)
LINEAR DATA	SHEETS	
796	CA124, CA224, CA324, LM324*, LM2902*	Quad Operational Amplifiers for Commercial, Industrial and Military Applications (7 pages)
795	CA139, CA239, CA339, LM339, LM2901, LM3302	Quad Voltage Comparators for Industrial, Commercial and Military Applications (5 pages)
1019	CA158, CA258, CA358, CA2904, LM358*, LM2904*	Dual Operational Amplifiers for Commercial, Industrial and Military Applications (11 pages)
834	CA555, LM555	Timers for Timing Delays and Oscillator Applications in Commercial, Industrial and Military Equipment (6 pages)
531	CA741, CA1458, CA1558, LM741*, LM1458*, LM1558*	High Gain Single and Dual Operational Amplifiers for Military, Industrial and Commercial Applications (6 pages)
981	CA1391, CA1394	TV Horizontal Processors (4 pages)
338	CA3018	General Purpose Transistor Arrays (6 pages)
339	CA3020	Multipurpose Wide-Band Power Amps Military, Industrial and Commercial Equipment at Frequency Up to 8MHz (9 pages)
382	CA3028, CA3053	Differential/Cascode Amplifiers for Commercial and Industrial Equipment for DC to 120MHz (12 pages)
343	CA3039	Diode Array (4 pages)
341	CA3045, CA3046	General Purpose N-P-N Transistor Arrays (6 pages)
611	CA3049, CA3102	Dual High Frequency Differential Amplifiers for Low Power Applications Up to 500MHz (9 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
388	CA3054	Transistor Array - Dual Independent Differential Amp for Low Power Applications for DC to 120MHz (8 pages)
490	CA3059, CA3079	Zero-Voltage Switches for 50-60Hz and 400Hz Thyristor Control Applications (12 pages)
537	CA3060	Operational Transconductance Amplifier Arrays (12 pages)
535	CA3078	Micropower Operational Amplifier (9 pages)
475	CA3080	Operational Transconductance Amplifier (OTA) (13 pages)
480	CA3081, CA3082	General Purpose High Current N-P-N Transistor Arrays (3 pages)
481	CA3083	General Purpose High Current N-P-N Transistor Array (4 pages)
483	CA3086	General Purpose N-P-N Transistor Array (5 pages)
561	CA3089	FM IF System (7 pages)
598	CA3094	Programmable Power Switch/ Amplifier for Control and General Purpose Applications (15 pages)
595	CA3096	N-P-N/P-N-P Transistor Array (13 pages)
896	CA3098	Programmable Schmitt Trigger - with Memory Dual Input Precision Level Detectors (10 pages)
625	CA3100	Wideband Operational Amplifier (7 pages)
860	CA3126	TV Chroma Processor (9 pages)
662	CA3127	High Frequency N-P-N Transistor Array (6 pages)
817	CA3130	BiMOS Operational Amplifier with MOSFET Input/CMOS Output (15 pages)
975	CA3140	BiMOS Operational Amplifier with MOSFET Input/Bipolar Output (20 pages)
906	CA3141	High-Voltage Diode Array for Commercial, Industrial and Military Applications (3 pages)
532	CA3146, CA3183	High-Voltage Transistor Arrays (10 pages)
976	CA3160	BiMOS Operational Amplifiers with MOSFET Input/CMOS Output (17 pages)

^{*}Technical Data on LM Branded Types is Identical to the Corresponding CA Branded Types

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
1046	CA3189	FM IF System (7 pages)
1249	CA3193	BiCMOS Precision Operational Amplifiers (11 pages)
1270	CA3194	Single Chip PAL Luminance/Chroma Processor (9 pages)
1332	CA3217	Single Chip TV Chroma/Luminance Processor (9 pages)
1345	CA3227, CA3246	High-Frequency N-P-N Transistor Arrays for Low Power Applications at Frequencies Up to 1.5GHz (5 pages)
1480	CA3237	IR Remote-Control Amplifier (5 pages)
1050	CA3240	Dual BiMOS Operational Amplifier with MOSFET Input/Bipolar Output (16 pages)
1769	CA3256	BiMOS Analog Video Switch and Amplifier (12 pages)
1266	CA3260	BiMOS Operational Amplifier with MOSFET Input/CMOS Output (4 pages)
1174	CA3280	Dual Variable Operational Amplifier (11 pages)
1049	CA3290	BiMOS Dual Voltage Comparator with MOSFET Input, Bipolar Output (8 pages)
1320	CA3420	Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers (5 pages)
1318	CA3440	Nanopower BiMOS Operational Amplifier (6 pages)
1732	CA3450	Video Line Driver, High Speed Operational Amplifier (8 pages)
1923	CA5130	BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output (17 pages)
1924	CA5160	BiMOS Microprocessor Operational Amplifiers with MOSFET Input/ CMOS Output (20 pages)
1929	CA5260	BiMOS Microprocessor Operational Amplifiers with MOSFET Input/ CMOS Output (5 pages)
1925	CA5420	Low Supply Voltage, Low Input Current BiMOS Operational Amplifier (7 pages)
1946	CA5470	Quad Microprocessor BiMOS-E Operational Amplifiers with MOSFET Input/Bipolar Output (5 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
1076	CD22100	CMOS 4 x 4 Crosspoint Switch and Control Memory High-Voltage Type (20V Rating) (9 pages)
2871	CD22101, CD22102	CMOS 4 x 4 x 2 Crosspoint Switch with Control Memory (12 pages)
1310	CD22103A	CMOS HDB3 (High Density Bipolar 3) Transcoder for 2.048/8.448 Mb/s Transmission Applications (6 pages)
1695	CD22202, CD22203	5V Low Power DTMF Receiver (6 pages)
1696	CD22204	5V Low Power Subscriber DTMF Receiver (5 pages)
1368	CD22301	Monolithic PCM Repeater (5 pages)
2491	CD22M3493	12 x 8 x 1 BiMOS-E Crosspoint Switch (5 pages)
3587	CD22M3493 ER2536	12 x 8 x 1 BiMOS-E Crosspoint Switch (6 pages)
2793	CD22M3494	16 x 8 x 1 BiMOS-E Crosspoint Switch (6 pages)
1682	CD22354A, CD22357A	CMOS Single-Chip, Full-Feature PCM CODEC (10 pages)
1686	CD22402	Sync Generator for TV Applications and Video Processing Systems (10 pages)
1257	CD22859	Monolithic Silicon COS/MOS Dual- Tone Multifrequency Tone Generator (5 pages)
1719	CD74HC22106, CD74HCT22106	QMOS 8 x 8 x 1 Crosspoint Switch with Memory Control (9 pages)
2891	HA-2400, HA-2404, HA-2405	PRAM Four Channel Programmable Amplifiers (6 pages)
3926	HA-2400/883	PRAM Four Channel Programmable Operational Amplifier (11 pages)
2892	HA-2406	Digitally Selectable Four Channel Operational Amplifier (6 pages)
2856	HA-2420, HA-2425	Fast Sample and Hold Amplifiers (9 pages)
2490	HA-2444	Selectable, Four Channel Video Operational Amplifier (3 pages)
3608	HA-2444/883	Selectable, Four Channel Video Operational Amplifier (8 pages)
2890	HA-2500, HA-2502, HA-2505	Precision High Slew Rate Operational Amplifiers (6 pages)
3734	HA-2500/883, HA-2502/883	Precision High Slew Rate Operational Amplifiers (10 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
2893	HA-2510, HA-2512, HA-2515	High Slew Rate Operational Amplifiers (5 pages)
3697	HA-2510/883, HA-2512/883	High Slew Rate Operational Amplifiers (11 pages)
2894	HA-2520, HA-2522, HA-2525	Uncompensated High Slew Rate Operational Amplifiers (7 pages)
3735	HA-2520/883, HA-2522/883	Uncompensated, High Slew Rate Operational Amplifiers (11 pages)
2895	HA-2529	Uncompensated, High Slew Rate High Output Current, Operational Amplifier (7 pages)
3736	HA-2529/883	Uncompensated, High Slew Rate High Output Current, Operational Amplifier (12 pages)
2896	HA-2539	Very High Slew Rate Wideband Operational Amplifier (7 pages)
3927	HA-2539/883	Very High Slew Rate Wideband Operational Amplifier (11 pages)
2897	HA-2540	Wideband, Fast Settling Operational Amplifier (8 pages)
2898	HA-2541	Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier (8 pages)
3698	HA-2541/883	Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier (11 pages)
2899	HA-2542	Wideband, High Slew Rate, High Output Current Operational Amplifier (10 pages)
3928	HA-2542/883	Wideband, High Slew Rate, High Output Current, Operational Amplifier (12 pages)
2900	HA-2544	Video Operational Amplifier (10 pages)
3699	HA-2544/883	Video Operational Amplifier (13 pages)
2861	HA-2546	Wideband Two Quadrant Analog Multiplier (13 pages)
2444	HA-2546/883	Wideband Two Quadrant Analog Multiplier (Voltage Output) (19 page)
2444	HA-2546/883	Wideband Two Quadrant Analog Multiplier (19 pages)
2862	HA-2547	Wideband Two Quadrant Analog Multiplier (8 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
2901	HA-2548	Precision, High Slew Rate, Wideband Operational Amplifier (10 pages)
2472	HA-2548/883	Precision, High Slew Rate, Wideband Operational Amplifier (14 pages)
2477	HA-2556	Wideband Four Quadrant Voltage Output Analog Multiplier (18 pages)
3619	HA-2556/883	Wideband Four Quadrant Analog Multiplier (Voltage Output) (20 pages)
2478	HA-2557	Wideband Four Quadrant Current Output Analog Multiplier (13 pages)
3638	HA-2557/883	Wideband Four Quadrant Analog Multiplier (Current Output) (14 pages)
2902	HA-2600, HA-2602, HA-2605	Wideband, High Impedance Operational Amplifiers (8 pages)
3700	HA-2600/883, HA-2602/883	Wideband, High Impedance Operational Amplifiers (11 pages)
2903	HA-2620, HA-2622, HA-2625	Very Wideband, Uncompensated Operational Amplifiers (7 pages)
3701	HA-2620/883, HA-2622/883	Very Wideband, High Input Impedance Uncompensated Operational Amplifiers (11 pages)
2904	HA-2640, HA-2645	High Voltage Operational Amplifiers (6 pages)
3702	HA-2640/883	High Voltage Operational Amplifier (11 pages)
3391	HA-2705	Low Power, High Performance Operational Amplifier (3 pages)
2841	HA-2839	Very High Slew Rate Wideband Operational Amplifier (8 pages)
3593	HA-2839/883	Very High Slew Rate, Wideband Operational Amplifier (13 pages)
2842	HA-2840	Very High Slew Rate Wideband Operational Amplifier (8 pages)
3594	HA-2840/883	Very High Slew Rate, Wideband Operational Amplifier (13 pages)
2843	HA-2841	Wideband, Fast Settling, Unity Gain Stable, Video Operational Amplifier (9 pages)
3621	HA-2841/883	Wideband, Fast Settling, Unity Gain Stable, Video Operational Amplifier (14 pages)
2766	HA-2842	Wideband, High Slew Rate, High Output Current, Video Operational Amplifier (9 pages)

A		
AnswerFAX DOCUMENT	PART	
NUMBER	NUMBER	DESCRIPTION
3622	HA-2842/883	Wideband, High Slew Rate, High Output Current, Video Operational Amplifier (14 pages)
2844	HA-2850	Low Power, High Slew Rate Wideband Operational Amplifier (8 pages)
3595	HA-2850/883	Low Power, High Slew Rate, Wideband Operational Amplifier (13 pages)
3680	HA4201	Wideband, 1 x 1 Video Crosspoint Switch with Talley Output (4 pages)
3679	HA4314	Wideband, 4 x 1 Video Crosspoint Switch (4 pages)
3678	HA4404	Wideband, 4 x 1 Video Crosspoint Switch with Talley Outputs (4 pages)
2922	HA-4741	Quad Operational Amplifier (6 pages)
3704	HA-4741/883	Quad Operational Amplifier (11 pages)
2855	HA-4900, HA-4902, HA-4905	Precision Quad Comparator (8 pages)
3929	HA-4902/883	Precision Quad Comparator (10 pages)
2921	HA-5002	Monolithic, Wideband, High Slew Rate, High Output Current Buffer (8 pages)
3705	HA-5002/883	Monolithic, Wideband, High Slew Rate, High Output Current Buffer (15 pages)
2923	HA-5004	100MHz Current Feedback Amplifier (9 pages)
3706	HA-5004/883	100MHz Current Feedback Amplifier (13 pages)
3654	HA5013	Triple 125MHz Video Amplifier (16 pages)
2845	HA-5020	100MHz Current Feedback Video Amplifier (11 pages)
3541	HA-5020/883	100MHz Current Feedback Video Amplifier with Disable (19 pages)
3392	HA5022	Dual, 125MHz Video Current Feedback Amplifier with Disable (18 pages)
3729	HA5022/883	Dual 100MHz Video Current Feedback Amplifier with Disable (5 pages)
3393	HA5023	Quad 125MHz Video Current Feedback Amplifier with Disable (16 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3730	HA5023/883	Dual 100MHz Video Current Feedback Amplifier (4 pages)
3550	HA5024	Quad 125MHz Video Current Feedback Amplifier with Disable (18 pages)
3591	HA5025	Quad 125MHz Video Current Feedback Amplifier (16 pages)
2924	HA-5033	Video Buffer (10 pages)
3930	HA-5033/883	Video Buffer (12 pages)
2905	HA-5101, HA-511	Low Noise, High Performance Operational Amplifiers (10 pages)
3931	HA-5101/883	Low Noise, High Performance Operational Amplifier (13 pages)
2925	HA-5102, HA-5104, HA-5112, HA-5114	Low Noise, High Performance Operational Amplifiers (10 pages)
3709	HA-5102/883	Dual, Low Noise, High Performance Operational Amplifier (13 pages)
3710	HA5104/88	Low Noise, High Performance, Quad Operational Amplifier (13 pages)
3932	HA-5111/883	Low Noise, High Performance Uncompensated Operational Amplifier (13 pages)
3711	HA-5112/883	Dual, Low Noise, High Performance Uncompensated Operational Amplifier (13 pages)
3712	HA-5114/883	Quad, Low Noise, High Performance Uncompensated Operational Amplifier (13 pages)
2906	HA-5127	Ultra-Low Noise Precision Operational Amplifier (9 pages)
3751	HA-5127/883	Ultra Low Noise, Precision Operational Amplifier (13 pages)
2907	HA-5130, HA-5135	Precision Operational Amplifiers (8 pages)
2926	HA-5134	Precision Quad Operational Amplifier (8 pages)
3713	HA-5134/883	Precision Quad Operational Amplifier (13 pages)
3731	HA-5135/883	Precision Operational Amplifier (13 pages)
2908	HA-5137	Ultra-Low Noise Precision Wideband Operational Amplifier (8 pages)
3714	HA-5137/883	Ultra Low Noise, Precision Wideband Operational Amplifier (13 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
2909	HA-5142, HA-5144	Dual/Quad Ultra-Low Power Operational Amplifiers (7 pages)
3732	HA-5142/883	Dual, Ultra Low Power Operational Amplifier (12 pages)
3934	HA-5144/883	Quad, Ultra-Low Power Operational Amplifier (12 pages)
2910	HA-5147	Ultra-Low Noise Precision High Slew Rate Wideband Operational Amplifier (8 pages)
3715	HA-5147/883	Ultra Low Noise, Precision, High Slew Rate Wideband Operational Amplifier (13 pages)
2911	HA-5160, HA-5162	Wideband, JFET Input High Slew Rate, Uncompensated, Operational Amplifiers (8 pages)
2912	HA-5170	Precision JFET Input Operational Amplifier (8 pages)
2913	HA-5177	Ultra-Low Offset Voltage Operational Amplifier (10 pages)
3733	HA-5177/883	Ultra Low Offset Voltage Operational Amplifier (14 pages)
2914	HA-5190, HA-5195	Wideband, Fast Settling Operational Amplifiers (8 pages)
2915	HA-5221, HA-5222	Low Noise, Wideband Precision Operational Amplifier (11 pages)
3716	HA-5221/883	Low Noise, Wideband, Precision Operational Amplifier (12 pages)
3717	HA-5222/883	Dual, Low Noise, Wideband, Precision Operational Amplifier (15 pages)
2851	HA5232, HA5234	Precision Dual and Quad Operational Amplifiers (5 pages)
2857	HA-5320	High Speed Precision Monolithic Sample and Hold Amplifier (10 pages)
2927	HA-5320/883	High Speed Precision Sample and Hold Amplifier (12 pages)
2858	HA-5330	Very High Speed Precision Monolithic Sample and Hold Amplifier (4 pages)
3935	HA-5330/883	Very High Speed Precision Monolithic Sample and Hold Amplifier (9 pages)
2859	HA-5340	High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier (8 pages)
2452	HA-5340/883	High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier (12 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
2452	HA-5340/883	High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier (12 pages)
3690	HA5351	Fast Acquisition Sample and Hold Amplifier (7 pages)
3727	HA-5351/883	Fast Acquisition, Low Power Sample and Hold Amplifier (1 page)
3394	HA5352	Fast Acquisition Dual Sample and Hold Amplifier (7 pages)
3728	HA-5352/883	Fast Acquisition Dual Sample and Hold Amplifier (1 page)
3389	HA7210	Low Power Crystal Oscillator (15 pages)
2884	HC-5502B	SLIC Subscriber Line Interface Circuit (9 pages)
3588	HC-5504ALC	SLIC Subscriber Line Interface Circuit (9 pages)
2886	HC-5504B	SLIC Subscriber Line Interface Circuit (8 pages)
2443	HC-5504DLC	SLIC Subscriber Line Interface Circuit (8 pages)
3567	HC-5509A1	SLIC Subscriber Line Interface Circuit (10 pages)
2799	HC-5509B	SLIC Subscriber Line Interface Circuit (10 pages)
2798	HC-5524	SLIC Subscriber Line Interface Circuit (9 pages)
2887	HC-5560	PCM Transcoder (9 pages)
2888	HC-55536	Continuous Variable Slope Delta- Demodulator (CVSD) (3 pages)
2889	HC-55564	Continuously Variable Slope Delta- Modulator (CVSD) (6 pages)
3738	HC-55564/883	Continuously Variable Slope Delta- Modulator (CVSD) (14 pages)
2916	HFA-0001	Ultra High Slew Rate Operational Amplifier (10 pages)
2917	HFA-0002	Low Noise Wideband Operational Amplifier (9 pages)
2749	HFA-0003, HFA-0003L	Ultra High Speed Comparator (4 pages)
2918	HFA-0005	High Slew Rate Operational Amplifier (10 pages)
2945	HFA1100, HFA1120	Ultra High-Speed, Current Feedbac Amplifiers (12 pages)
3615	HFA1100/883	850MHz Current Feedback Amplifie (16 pages)

AnswerFAX		
DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3597	HFA1102	Ultra High-Speed, Current Feedback Amplifier with Compensation Pin (8 pages)
3547	HFA1102Y	Ultra High-Speed Current Feedback Amplifier with Compensation Pin (4 pages)
3395	HFA1105, HFA1145	High-Speed, Low Power, Current Feedback Operational Amplifiers (7 pages)
2944	HFA1110	750MHz Low Distortion Unity Gain, Closed Loop Buffer (9 pages)
3620	HFA1110/883	750MHz, Low Distortion Unity Gain, Closed Loop Buffer (15 pages)
2992	HFA1112	Ultra High-Speed Programmable Gain Buffer Amplifier (15 pages)
3610	HFA1112/883	Ultra High Speed Programmable Gain Buffer Amplifier (18 pages)
1342	HFA1113	Output Limiting, Ultra High Speed, Programmable Gain, Buffer Amplifier (19 pages)
3618	HFA1113/883	Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier (22 pages)
3151	HFA1114	Ultra High-Speed Programmable Gain Buffer Amplifier (7 pages)
3606	HFA1115	High-Speed, Low Power, Output Limiting, Closed Loop Buffer Amplifier (9 pages)
3724	HFA1115/883	High Speed, Low Power, Output Limiting Closed Loop Buffer Amplifier (5 pages)
3617	HFA1120/883	850MHz Current Feedback Amplifier with Offset Adjust (17 pages)
3369	HFA1130	Output Clamping, Ultra High-Speed Current Feedback Amplifier (11 pages)
3625	HFA1130/883	Output Clamping, 850MHz Current Feedback Amplifier (19 pages)
3653	HFA1135	High-Speed, Low Power, Video Operational Amplifier with Output Limiting (7 pages)
3725	HFA1135/883	High Speed, Low Power Current Feedback Amplifier with Programmable Output Limiting (5 pages)
3726	HFA1145/883	High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable (5 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3605	HFA1205	Dual High-Speed, Low Power, Video Operational Amplifiers (8 pages)
3607	HFA1212, HFA1412	Dual/Quad High-Speed, Low Power Closed Loop Buffer Amplifiers (5 pages)
3742	HFA1212/883	Dual, High Speed, Low Power, Video Closed Loop Buffer (5 pages)
3682	HFA1245	Dual, High-Speed, Low Power, Video Operational Amplifier with Disable (8 pages)
3743	HFA1245/883	Dual, High Speed, Low Power, Video Operational Amplifier with Output Disable (6 pages)
3604	HFA1405	Quad High-Speed, Low Power, Current Feedback Operational Amplifier (7 pages)
3744	HFA1412/883	Quad, High Speed, Low Power, Video Closed Loop Buffer (4 pages)
3076	HFA3046, HFA3096, HFA3127, HFA3128	Ultra High Frequency Transistor Array (6 pages)
3663	HFA3101	Gilbert Cell UHF Transistor Array (13 pages)
3635	HFA3102	Dual Long-Tailed Pair Transistor Array (7 pages)
3655	HFA3600	Low-Noise Amplifier/Mixer (14 pages)
2943	HFA5250	Ultra High-Speed, Monolithic Pin Driver (4 pages)
3689	HFA5251	Ultra High-Speed Monolithic Pin Driver (10 pages)
2919	ICL7611, ICL7612	ICL76XX Series Low Power CMOS Operational Amplifiers (12 pages)
3403	ICL7621, ICL7641, ICL7642	ICL76XX Series Low Power CMOS Operational Amplifiers (12 pages)
2920	ICL7650S	Super Chopper-Stabilized Operational Amplifier (12 pages)
2863	ICL8013	Four Quadrant Analog Multiplier (8 pages)
2864	ICL8038	Precision Waveform Generator/ Voltage Controlled Oscillator (10 pages)
2865	ICL8048, ICL8049	Log/Antilog Amplifiers (10 pages)
2866	ICM7242	Long Range Fixed Timer (6 pages)
2867	ICM7555, ICM7556	General Purpose Timers (8 pages)

Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	AnswerFAX		
9007 AN007 Using the 8048/8049 Log/Antilog Amplifier (6 pages) 9013 AN013 Everything You Always Wanted to Know About the ICL8038 (4 pages) 9040 AN040 Using the ICL8013 Four Quadrant Analog Multiplier (6 pages) 9053 AN053 The ICL7650 A New Era in Glitch-Free Chopper Stabilized Amplifiers (19 pages) 9509 AN509 A Simple Comparator Using the HA-2620 (1 page) 9514 AN514 The HA-2400 PRAM Four Channel Operational Amplifier (7 pages) 9515 AN515 Operational Amplifier Stability: Input Capacitance Considerations (2 pages) 9519 AN515 Operational Amplifier Noise Prediction (4 pages) 9525 AN525 HA-5190/5195 Fast Settling Operational Amplifier (4 pages) 9526 AN526 Video Applications for the HA-5190/5195 (5 pages) 9540 AN540 HA-5170 Precision Low Noise JFET Input Operational Amplifier (4 pages) 9541 AN540 HA-5170 Precision Low Noise JFET Input Operational Amplifiers (4 pages) 9543 AN541 Using HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifiers (4 pages) 9544 AN543 New High Speed Switch Offers Sub-50ns Switching Times (7 pages)			DESCRIPTION
Amplifier (6 pages)	LINEAR APPL	ICATION NOTE	s
Section Sect	9007	AN007	
Analog Multiplier (6 pages) 9053 AN053 The ICL7650 A New Era in Glitch-Free Chopper Stabilized Amplifiers (19 pages) 9509 AN509 A Simple Comparator Using the HA-2620 (1 page) 9514 AN514 The HA-2400 PRAM Four Channel Operational Amplifier (7 pages) 9515 AN515 Operational Amplifier Stability: Input Capacitance Considerations (2 pages) 9519 AN519 Operational Amplifier Noise Prediction (4 pages) 9525 AN525 HA-5190/5195 Fast Settling Operational Amplifier (4 pages) 9526 AN526 Video Applications for the HA-5190/5195 (5 pages) 9540 AN540 HA-5170 Precision Low Noise JFET Input Operational Amplifier (4 pages) 9541 AN541 Using HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifiers (4 pages) 9543 AN543 New High Speed Switch Offers Sub-50ns Switching Times (7 pages) 9544 AN544 Micropower Op Amp Family HA-5141/42/44 and HA-5151/52/54 (6 pages) 9546 AN546 A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature (4 pages) 9548 AN548 A Designers Guide for the HA-5033 Video Buffer (12 pages) 9549 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages)	9013	AN013	
Free Chopper Stabilized Amplifiers (19 pages) AN509 A Simple Comparator Using the HA-2620 (1 page) 514 AN514 The HA-2400 PRAM Four Channel Operational Amplifier (7 pages) 515 AN515 Operational Amplifier Stability: Input Capacitance Considerations (2 pages) 519 AN519 Operational Amplifier Noise Prediction (4 pages) 510 AN525 HA-5190/5195 Fast Settling Operational Amplifier (4 pages) 511 AN526 Video Applications for the HA-5190/5195 (5 pages) 512 AN526 Video Applications for the HA-5190/5195 (5 pages) 513 AN540 HA-5170 Precision Low Noise JFET Input Operational Amplifier (4 pages) 514 AN541 Using HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifiers (4 pages) 514 AN541 Wisney HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifiers (4 pages) 514 AN543 New High Speed Switch Offers Sub-5ons Switching Times (7 pages) 515 AN546 A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature (4 pages) 516 AN548 A Designers Guide for the HA-5033 Video Buffer (12 pages) 517 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 518 AN550 Using the HA-2541 (6 pages) 519 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9040	AN040	
HA-2620 (1 page) 9514 AN514 The HA-2400 PRAM Four Channel Operational Amplifier (7 pages) 9515 AN515 Operational Amplifier Stability: Input Capacitance Considerations (2 pages) 9519 AN519 Operational Amplifier Noise Prediction (4 pages) 9525 AN525 HA-5190/5195 Fast Settling Operational Amplifier (4 pages) 9526 AN526 Video Applications for the HA-5190/5195 (5 pages) 9540 AN540 HA-5170 Precision Low Noise JFET Input Operational Amplifier (4 pages) 9541 AN541 Using HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifiers (4 pages) 9543 AN543 New High Speed Switch Offers Sub-50ns Switching Times (7 pages) 9544 AN544 Micropower Op Amp Family HA-5141/42/44 and HA-5151/52/54 (6 pages) 9546 AN546 A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature (4 pages) 9548 AN548 A Designers Guide for the HA-5033 Video Buffer (12 pages) 9549 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9053	AN053	Free Chopper Stabilized Amplifiers
Operational Amplifier (7 pages) 9515 AN515 Operational Amplifier Stability: Input Capacitance Considerations (2 pages) 9519 AN519 Operational Amplifier Noise Prediction (4 pages) 9525 AN525 HA-5190/5195 Fast Settling Operational Amplifier (4 pages) 9526 AN526 Video Applications for the HA-5190/5195 (5 pages) 9540 AN540 HA-5170 Precision Low Noise JFET Input Operational Amplifier (4 pages) 9541 AN541 Using HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifiers (4 pages) 9543 AN543 New High Speed Switch Offers Sub-50ns Switching Times (7 pages) 9544 AN544 Micropower Op Amp Family HA-5141/42/44 and HA-5151/52/54 (6 pages) 9546 AN546 A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature (4 pages) 9548 AN548 A Designers Guide for the HA-5033 Video Buffer (12 pages) 9549 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9509	AN509	
Capacitance Considerations (2 pages) 9519 AN519 Operational Amplifier Noise Prediction (4 pages) 9525 AN525 HA-5190/5195 Fast Settling Operational Amplifier (4 pages) 9526 AN526 Video Applications for the HA-5190/ 5195 (5 pages) 9540 AN540 HA-5170 Precision Low Noise JFET Input Operational Amplifier (4 pages) 9541 AN541 Using HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifiers (4 pages) 9543 AN543 New High Speed Switch Offers Sub-50ns Switching Times (7 pages) 9544 AN544 Micropower Op Amp Family HA-5141/42/44 and HA-5151/52/54 (6 pages) 9546 AN546 A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature (4 pages) 9548 AN548 A Designers Guide for the HA-5033 Video Buffer (12 pages) 9549 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9514	AN514	
Prediction (4 pages)	9515	AN515	Capacitance Considerations
Possible 9519	AN519		
9540	9525	AN525	9
Input Operational Amplifier (4 pages)	9526	AN526	
High Slew Rate, Wideband Operational Amplifiers (4 pages) 9543 AN543 New High Speed Switch Offers Sub-50ns Switching Times (7 pages) 9544 AN544 Micropower Op Amp Family HA-5141/42/44 and HA-5151/52/54 (6 pages) 9546 AN546 A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature (4 pages) 9548 AN548 A Designers Guide for the HA-5033 Video Buffer (12 pages) 9549 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9540	AN540	Input Operational Amplifier
Sub-50ns Switching Times (7 pages)	9541	AN541	High Slew Rate, Wideband
HA-5141/42/44 and HA-5151/52/54 (6 pages) 9546 AN546 A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature (4 pages) 9548 AN548 A Designers Guide for the HA-5033 Video Buffer (12 pages) 9549 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9543	AN543	Sub-50ns Switching Times
Gain Bandwidth Product vs. Temperature (4 pages) 9548 AN548 A Designers Guide for the HA-5033 Video Buffer (12 pages) 9549 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9544	AN544	HA-5141/42/44 and HA-5151/52/54
Video Buffer (12 pages) 9549 AN549 The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9546	AN546	Gain Bandwidth Product vs.
Line Interface Circuits (SLIC) (19 pages) 9550 AN550 Using the HA-2541 (6 pages) 9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9548	AN548	
9551 AN551 Recommended Test Procedures for Operational Amplifiers (6 pages)	9549	AN549	, ,
Operational Amplifiers (6 pages)	9550	AN550	Using the HA-2541 (6 pages)
OFFO MISEO Mains the UA OF 40 /F ne see	9551	AN551	
Sooz ANOOZ Using the HA-2542 (5 pages)	9552	AN552	Using the HA-2542 (5 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
9553	AN553	HA-5147/37/27, Ultra Low Noise Amplifiers (8 pages)
9554	AN554	Low Noise Family HA-5101/02/04/11/12/14 (7 pages)
9556	AN556	Thermal Safe-Operating-Areas for High Current Op Amps (5 pages)
9571	AN571	Using Ring Sync with HC-5502A and HC-5504 SLICs (2 pages)
9573	AN573	The HC-5560 Digital Line Transcoder (6 pages)
95290	AN5290	Integrated-Circuit Operational Amplifiers (20 pages)
96048	AN6048	Some Applications of A Programmable Power Switch/Amp (12 pages)
96077	AN6077	An IC Operational Transconductance-Amplifier (OTA) With Power Capability (12 pages)
96182	AN6182	Features and Applications of Integrated Circuit Zero-Voltage Switches (CA3058, CA3059 and CA3079) (31 pages)
96386	AN6386	Understanding and Using the CA3130, CA3130A and CA3130B BiMOS Operational Amplifiers (5 pages)
96459	AN6459	Why Use the CMOS Operational Amplifiers and How to Use it (4 pages)
96669	AN6669	FET-Bipolar Monolithic Op Amps Mate Directly to Sensitive Sources (3 pages)
96915	AN6915	Application of CA1524 Series Pulse- Width Modulator ICs (18 pages)
97326	AN7326	Applications of the CA3228E Speed Control System (16 pages)
98707	AN8707	The CA3450: A Single-Chip Video Line Driver and High Speed Op Amp (14 pages)
98742	AN8742	Application of the CD22402 Video Sync Generator (4 pages)
98743	AN8743	Micropower Crystal-Controlled Oscillator Design Using CMOS Inverters (8 pages)
98811	AN8811	BiMOS-E Process Enhances the CA5470 Quad Op Amp (8 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
98823	AN8823	CMOS Phase-Locked-Loop Applications Using the CD54/74HC/ HCT4046A and CD54/74HC/ HCT7046A (23 pages)
99202	AN9202	Using the HFA1100, HFA1130 Evaluation Fixture (4 pages)
99314	AN9314	Harris UHF Pin Drivers (4 pages)
99315	AN9315	RF Amplifier Design Using HFA3046/3096/3127/3128 Transis- tor Arrays (4 pages)
99317	AN9317	Micropower Clock Oscillator and Op Amps Provide System Control for Battery Operated Circuits (2 pages)
99327	AN9327	HC-5509A1 Ring Trip Component Selection (9 pages)
99334	AN9334	Improving Start-Up Time at 32kHz for the HA7210 Low Power Crystal Oscillator (2 pages)
660001	MM0001	HFA-0001 Spice Operational Amplifier Macro-Model (4 pages)
660002	MM0002	HFA-0002 Spice Operational Amplifier Macro-Model (4 pages)
660005	MM0005	HFA-0005 Spice Operational Amplifier Marco-Model (4 pages)
662500	MM2500	HA2500/02 Spice Operational Amplifier Macro-Model (5 pages)
662510	MM2510	HA-2510/12 Spice Operational Amplifier Macro-Model (4 pages)
662520	MM2520	HA-2520/22 Spice Operational Amplifier Macro-Model (4 pages)
662539	MM2539	HA-2539 Spice Operational Amplifier Macro-Model (4 pages)
662540	MM2540	HA-2540 Spice Operational Amplifier Macro-Model (4 pages)
662541	MM2541	HA-2541 Spice Operational Amplifier Macro-Model (5 pages)
662542	MM2542	HA-2542 Spice Operational Amplifier Macro-Model (5 pages)
662544	MM2544	HA-2544 Spice Operational Amplifier Macro-Model (5 pages)
662548	MM2548	HA-2548 Spice Operational Amplifier Macro-Model (5 pages)
662600	MM2600	HA-2600/02 Spice Operational Amplifier Macro-Model (5 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
662620	MM2620	HA-2620/22 Spice Operational Amplifier Macro-Model (5 pages)
662839	MM2839	HA-2839 Spice Operational Amplifier Macro-Model (4 pages)
662840	MM2840	HA-2840 Spice Operational Amplifier Macro-Model (4 pages)
662841	MM2841	HA-2841 Spice Operational Amplifier Macro-Model (4 pages)
662842	MM2842	HA-2842 Spice Operational Amplifier Macro-Model (4 pages)
662850	MM2850	HA-2850 Spice Operational Amplifier Macro-Model (4 pages)
663046	MM3046	HFA3046/3096/3127/3128 Transistor Array Spice Models (4 pages)
665002	MM5002	HA-5002 Spice Buffer Amplifier Mad ro-Model (4 pages)
665004	MM5004	HA-5004 Spice Current Feedback Amplifier Macro-Model (4 pages)
665020	MM5020	HA-5020 Spice Current Feedback Operational Amplifier Macro-Model (4 pages)
665033	MM5033	HA-5033 Spice Buffer Amplifier Mac ro-Model (4 pages)
665101	MM5101	HA-5101 Spice Operational Amplifier Macro-Model (5 pages)
665102	MM5102	HA-5102 Spice Operational Amplifier Macro-Model (5 pages)
665104	MM5104	HA-5104 Spice Operational Amplifier Macro-Model (5 pages)
665112	MM5112	HA-5112 Spice Operational Amplifier Macro-Model (5 pages)
665114	MM5114	HA-5114 Spice Operational Amplifier Macro-Model (5 pages)
665127	MM5127	HA-5127 Spice Operational Amplifier Macro-Model (4 pages)
665137	MM5137	HA-5137 Spice Operational Amplifier Macro-Model (4 pages)
665147	MM5147	HA-5147 Spice Operational Amplifier Macro-Model (4 pages)
665190	MM5190	HA-5190 Spice Operational Amplifier Macro-Model (4 pages)
665221	MM5221	HA-5221/22 Spice Operational Amplifier Macro-Model (4 pages)

August 12, 1994 AnswerFAX Technical Support Data Acquisition Product Listing

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
27007	BR007	Complete Listing of Harris Sales Offices, Representatives and Authorized Distributors World Wide (7 pages)
27026	BR026	Linear and Data Acquisition Product Cross Reference (26 pages)
7051		High Speed Data Converters A/D, D/A Cross Reference (1 page)
DATA ACQUI	SITION DATA	SHEETS
1790	CA3304	CMOS Video-Speed 4-Bit Flash A/D Converter (1 page)
3102	CA3306	CMOS Video Speed 6-Bit Flash A/D Converter (1 page)
3103	CA3318C	CMOS Video Speed 8-Bit Flash A/D Converter (1 page)
1850	CA3338, CA3338A	CMOS Video Speed 8-Bit R-2R D/A Converter (7 pages)
3114	DG181 Thru DG191	High-Speed Drivers with JFET Switch (6 pages)
3284	DG401, DG403, DG405	Monolithic Dual CMOS Analog Switches (12 pages)
3703	DG401/883, DG403/883, DG405/883	Monolithic CMOS Analog Switches (12 pages)
3720	DG406/883, DG407/883	Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers (1 page)
3283	DG408, DG409	Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers (17 pages)
3688	DG408/883, DG409/883	Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers (14 pages)
3282	DG411, DG412, DG413	Monolithic Quad SPST CMOS Analog Switches (11 pages)
3681	DG411/883, DG412/883, DG413/883	Monolithic Quad SPST CMOS Analog Switches (10 pages)
3281	DG441, DG442	Monolithic Quad SPST CMOS Analog Switches (12 pages)
3687	DG441/883, DG442/883	Monolithic Quad SPST CMOS Analog Switches (12 pages)
3586	DG444, DG445	Monolithic Quad SPST CMOS Analog Switches (12 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3280	DG458, DG459	Single 8 Channel/Differential 4-Channel Fault Protected Analog Multiplexers (2 pages)
3708	DG458/883, DG459/883	Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers (1 page)
2494	HBC2500	3μm BiMOS-E Analog/Digital Library (8 pages)
3123	HI-201HS	High Speed Quad SPST CMOS Analog Switch (1 page)
3124	HI-222	High Frequency/Video Switch (8 pages)
3148	HI-524	4 Channel Wideband and Video Multiplexer (1 page)
3580	HI-562A	12-Bit High Speed Monolithic D/A Converter (6 pages)
3109	HI-565A	High Speed Monolithic D/A Converter with Reference (1 page)
3096	HI-574A	Fast, Complete 12-Bit A/D Converter with Microprocessor Interface (15 pages)
3634	HI5813	CMOS 3.3V, 25µs 12-Bit Sampling A/D Converter with Internal Track and Hold (12 pages)
3664	HI5816	CMOS 12-Bit Sampling A/D Converter with Serial Data Output and Internal Track and Hold (16 pages)
3097	HI-674A	12µs, Complete 12-Bit A/D Converter with Microprocessor Interface (11 pages)
3098	HI-774	8µs, Complete 12-Bit A/D Converter with Microprocessor Interface (12 pages)
3579	HI1166	8-Bit, 250MSPS Flash A/D Converter (12 pages)
3662	HI1171	8-Bit, 40MSPS High Speed D/A Converter (8 pages)
3577	HI1175	8-Bit, 20MSPS Flash A/D Converter (11 pages)
3582	HI1176	8-Bit, 20MSPS Flash A/D Converter (12 pages)
3666	HI1179	8-Bit, 35MSPS Video A/D Converter (11 pages)
3578	HI1276	8-Bit, 500MSPS Flash A/D Converter (11 pages)
3583	HI1386	8-Bit, 75MSPS Flash A/D Converter (11 pages)
3576	HI1396	8-Bit, 125MSPS Flash A/D Converter (12 pages)

August 12, 1994 AnswerFAX Technical Support Data Acquisition Product Listing

AnswerFAX		
DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3174	HI-5700	8-Bit, 20 MSPS Flash A/D Converter (12 pages)
3286	HI-5700/ 883	8-Bit, 20 MSPS Flash A/D Converter (8 pages)
2937	HI-5701	6-Bit, 30MSPS Flash A/D Converter (14 pages)
3378	HI-5701/ 883	6-Bit, 30 MSPS Flash A/D Converter (8 pages)
3745	HI5702	10-Bit, 40 MSPS A/ D Converter (10 pages)
2938	HI-5800	12-Bit, 3MSPS Sampling A/D Converter (14 pages)
3287	HI5801	12-Bit, 5MSPS A/D Converter (1 page)
3633	HI5810	CMOS 10µs 12-Bit Sampling A/D Converter with Internal Track and Hold (13 pages)
3214	HI5812	CMOS 12-Bit Sampling A/D Converter with Internal Track and Hold (16 pages)
3634	HI5813	CMOS 3.3V, 20µs 12-Bit Sampling A/D Converter with Internal Track and Hold (12 pages)
3373	HI7131	3 1/2 Digit Low Power, High CMRR LCD Display Type A/D Converter (19 pages)
3550	HI7133	3 1/2 Digit Low Power, High CMRR LED Display Type A/D Converter (19 pages)
3099	HI-7151	10-Bit High Speed A/D Converter with Trach and Hold (17 pages)
3100	HI-7152	10-Bit High Speed A/D Converter with Track and Hold (17 pages)
2787	HI-7153	8-Channel, 10-Bit High Speed Sampling A/D Converter (20 pages)
3285	HI-7153/ 883	8-Channel, 10-Bit, High Speed Sampling A/D Converter (12 pages)
3581	HI20201, HI20203	10/8-Bit, 160MSPS Ultra High Speed D/A Converter (12 pages)
3138	HIN230 thru HIN241	+5V Powered RS-232 Transmitters/ Receivers (20 pages)
3020	ICL232	+5V Powered Dual RS-232 Transmitter/Receiver (8 pages)
3639	ICL7112	12-Bit High-Speed CMOS μP- Compatible A/D Converter (13 pages)
3101	ICL7115	14-Bit High-Speed CMOS μP- Compatible A/D Converter (14 pages)
3112	ICL7121	16-Bit Multiplying Microprocessor- Compatible D/A Converter (7 pages)

AnswerFAX DOCUMENT	PART	
NUMBER	NUMBER	DESCRIPTION
3084	ICL7126	3 ¹ / ₂ Digit Low Power Single-Chip A/D Converter (14 pages)
3113	ICL7134	14-Bit Multiplying μP-Compatible D/A Converter (15 pages)
3181	ICL7662	CMOS Voltage Converter (10 pages)
3182	ICL766S	CMOS Micropower Over/Under Voltage Detector (13 pages)
3081	ICL8052/ ICL71C03, ICL8068/ ICL71C03	Precision 4 ¹ / ₂ Digit A/D Converter (21 pages)
3091	ICL8052/ ICL7104, ICL8068/ ICL7104	14/16-Bit µP-Compatible 2-Chip A/D Converter (21 pages)
3163	ICM7207, ICM7207A	CMOS Timebase Generator (6 pages)
3164	ICM7208	7-Digit LED Display Counter (7 pages)
3128	IH401A	QUAD Varafet Analog Switch (5 pages)
3129	IH5009-12 IH5014, IH5016-20 IH5022, IH5024	Virtual Ground Analog Switch (7 pages)
3134	IH5341	Dual SPST CMOS RF/Video Switch (1 page)
3135	IH5352	Quad SPST CMOS RF/Video Switch (1 page)
3156	IH6108	8-Channel CMOS Analog Multiplexer (10 pages)
3136	IH6201	Dual CMOS Driver/Voltage Translator (5 pages)
3157	IH6208	4-Channel Differential CMOS Analog Multiplexer (8 pages)
DATA ACQUI	SITION APPL	LICATION NOTES
9001	AN001	Glossary of Data Conversion Terms (6 pages)
9002	AN002	Principles of Data Acquisition and Conversion (20 pages)
9004	AN004	The IH5009 Analog Switch Series (9 pages)
9009	AN009	Pick Sample-Holds by Accuracy and Speed and Keep Hold Capacitors in Mind (7 pages)
9012	AN012	Switching Signals with Semiconductors (4 pages)
9016	AN016	Selecting A/D Converters (7 pages)

August 12, 1994 AnswerFAX Technical Support Data Acquisition Product Listing

AnswerFAX		
DOCUMENT	PART	DECODINTION
NUMBER	NUMBER	DESCRIPTION
9017	AN017	The Integrating A/D Converter ((5 pages)
9018	AN018	Do's and Don'ts of Applying A/D Converters (4 pages)
9020	AN020	A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing (23 pages)
9023	AN023	Low Cost Digital Panel Meter Designs (5 pages)
9028	AN028	Build an Auto-Ranging DMM with the ICL7103A/8052A A/D Converter Pair (6 pages)
9030	AN030	ICL7104: A Binary Output A/D Converter for Microprocessors (16 pages)
9032	AN032	Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7107/7109 Family (8 pages)
9042	AN042	Interpretation of Data Converter Accuracy Specifications (11 pages)
9043	AN043	Video Analog-to-Digital Conversion (6 pages)
9046	AN046	Building a Battery Operated Auto Ranging DVM with the ICL7106 (5 pages)
9047	AN047	Games People Play with Intersil's A/D Converter's (27 pages)
9048	AN048	Know Your Converter Codes (5 pages)
9049	AN049	Applying the 7109 A/D Converter (5 pages)
9051	AN051	Principles and Applications of the ICL7660 CMOS Voltage Converter (9 pages)
9052	AN052	Tips for Using Single Chip 3.5 Digit A/D Converters (9 pages)
9054	AN054	Display Driver Family Combines Convenience of Use with Microprocessor Interfaceability (18 pages)
9059	AN059	Digital Panel Meter Experiments for the Hobbyist (7 pages)
9517	AN517	Applications of Monolithic Sample and Hold Amplifier (5 pages)
9520	AN520	CMOS Analog Miltiplexers and Switches; Applications Considerations (9 pages)
9521	AN521	Getting the Most Out of CMOS Devices for Analog Switching Jobs (7 pages)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
9522	AN522	Digital to Analog Converter Terminology (3 pages)
9524	AN524	Digital to Analog Converter High Speed ADC Applications (3 pages)
9531	AN531	Analog Switch Applications in A/D Data Conversion Systems (4 pages)
9532	AN532	Common Questions Concerning CMOS Analog Switches (4 pages)
9534	AN534	Additional Information on the HI-300 Series Switch (5 pages)
9535	AN535	Design Considerations for A Data Acquisition System (DAS) (7 pages)
9538	AN538	Monolithic Sample/Hold Combines Speed and Precision (6 pages)
9539	AN539	A Monolithic 16-Bit D/A Converter (5 pages)
9543	AN543	New High Speed Switch Offers Sub- 50ns Switching Times (7 pages)
9557	AN557	Recommended Test Procedures for Analog Switches (6 pages)
9559	AN559	HI-222 Video/HF Switch Optimizes Key Parameters (7 pages)
98759	AN8759	Low Cost Data Acquisition System Features SPI A/D Converter (9 pages)
99203	AN9203	Using the HI5800 Evaluation Board (13 pages)
99213	AN9213	Advantages and Application of Display Integrating A/D Converters (6 pages)
99214	AN9214	Using Harris High Speed A/D Converters (10 pages)
99215	AN9215	Using the HI-5700 Evaluaton Board (7 pages)
99216	AN9216	Using the HI5701 Evaluation Board (8 pages)
99303	AN9303	Upgrading Your Application to the HI7166 or HI7167 (7 pages)
99309	AN9309	Using the HI5800/HI5801 Evaluation Board (8 pages)
99313	AN9313	Circuit Considerations in Imaging Applications (8 pages)
99316	AN9316	Power Supply Considerations for the HI-222 High Frequency Video Switch (2 pages)
99328	AN9328	Using the HI1166 Evaluation Board (9 pages)
99329	AN9329	Using the HI1176/HI1171 Evaluation Board (5 pages)

August 12, 1994 AnswerFAX Technical Support Data Acquisition Product Listing

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
99330	AN9330	Using the HI1396 Evaluation Board (9 pages)
99331	AN9331	Using the HI1175 Evaluation Board (10 pages)
99332	AN9332	Using the HI1276 Evaluation Board (10 pages)
99333	AN9333	Using the HI1386 Adapter Board (2 pages)
99336	AN9336	Mult-Meter Display Converter Eases DMM Design (6 pages)
99337	AN9337	Reduce CMOS-Multiplexer Troubles Through Proper Device Selection (6 pages)
99402	AN9402	Keeping the HI-0201 Switch Closed When Removing the V+ Supply (1 page)

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
99406	AN9406	Using the HI20201/03 Evaluation Kit (11 pages)
99411	AN9411	Using the HI1171 Evaluation Kit (6 pages)
DATA ACQUISITION TECH BRIEFS		
82322	TB322	Replacing an MP7684/MP7684A with an HI5700 (1 page)
82323	TB323	Replacing an MP7682 with an HI5701 (1 page)
82324	TB324	Clamping the Analog Input of the HI5800 (1 page)
82325	TB325	Understanding Glitch in a High Speed D/A Converter (2 pages)

ANALOG

14

SALES OFFICES

HARRIS HEADQUARTER LOCATIONS BY COUNTRY:

U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road Melbourne, Florida 32902 TEL: (407) 724-3000

SOUTH ASIA

Harris Semiconductor H.K. Ltd 13/F Fourseas Building 208-212 Nathan Road Tsimshatsui, Kowloon Hong Kong TEL: (852) 723-6339

EUROPEAN HEADQUARTERS

Harris Semiconductor Mercure Centre 100, Rue de la Fusee 1130 Brussels, Belgium TEL: 32 2 724 21 11

NORTH ASIA

Harris K.K. Shinjuku NS Bldg. Box 6153 2-4-1 Nishi-Shinjuku Shinjuku-Ku, Tokyo 163-08 Japan TEL: (81) 3-3345-8911

TECHNICAL ASSISTANCE IS AVAILABLE FROM THE FOLLOWING SALES OFFICES:

UNITED STATES	CALIFORNIA	Costa Mesa 714-433-0600 San Jose 408-995-7322 Woodland Hills 818-992-0686
	FLORIDA	Melbourne
	GEORGIA	Duluth
	ILLINOIS	Schaumburg708-240-3480
	MASSACHUSETTS	Burlington
	NEW JERSEY	Voorhees 609-751-3425
	NEW YORK	Great Neck
	TEXAS	Dallas
INTERNATIONAL	FRANCE	Paris
	GERMANY	Munich
	HONG KONG	Kowloon
	ITALY	Milano 39-2-262-0761
	JAPAN	Tokyo
	KOREA	Seoul
	SINGAPORE	Singapore
	UNITED KINGDOM	Camberley

ALABAMA

Harris Semiconductor Suite 103 600 Boulevard South Huntsville, AL 35802 TEL: (205) 883-2791 FAX: 205 883 2861

Giesting & Associates Suite 15

4835 University Square Huntsville, AL 35816 TEL: (205) 830-4554 FAX: 205 830 4699

ARIZONA

Compass Mktg. & Sales, Inc. 11801 N. Tatum Blvd. #101 Phoenix, AZ 85028 TEL: (602) 996-0635 FAX: 602 996 0586 P.O. Box 65447 Tucson, AZ 85728 TEL: (602) 577-0580

CALIFORNIA

Harris Semiconductor Suite 320 1503 So. Coast Drive Costa Mesa, CA 92626 TEL: (714) 433-0600 FAX: 714 433 0682

FAX: 602 577 0581

Harris Semiconductor 3031 Tisch Way

1 Plaza South San Jose, CA 95128 TEL: (408) 985-7322 FAX: 408 985 7455

CK Associates

8333 Clairemont Mesa Blvd. Suite 102 San Diego, CA 92111 TEL: (619) 279-0420 FAX: 619 279 7650

Ewing Foley, Inc. 185 Linden Avenue Auburn, CA 95603 TEL: (916) 885-6591 FAX: 916 885 6598

Ewing Foley, Inc. 895 Sherwood Lane Los Altos, CA 94022 TEL: (415) 941-4525 FAX: 415 941 5109

Vision Technical Sales, Inc. 26010 Mureau Road Calabasas, CA 91302 TEL: (818) 222-0486 FAX: 818 591 1403

CANADA

Blakewood Electronic Systems, Inc. #201 - 7382 Winston Street Burnaby, BC Canada V5A 2G9 TEL: (604) 444-3344 FAX: 604 444 3303

Clark Hurman Associates Unit 14

20 Regan Road Brampton, Ontario Canada L7A IC3 TEL: (905) 840-6066 FAX: 905 840-6091

308 Palladium Drive Suite 200 Kanata, Ontario Canada K2B 1A1 TEL: (613) 599-5626 FAX: 613 599 5707

78 Donegani, Suite 200 Pointe Claire, Quebec Canada H9R 2V4 TEL: (514) 426-0453 FAX: 514 426 0455

COLORADO

Compass Mktg. & Sales, Inc. Suite 350D 5600 So. Quebec St. Greenwood Village, CO 80111 TEL: (303) 721-9663 FAX: 303 721 0195

CONNECTICUT

Advanced Tech. Sales, Inc. Westview Office Park Bldg. 2, Suite 1C 850 N. Main Street Extension Wallingford, CT 06492 TEL: (508) 664-0888 FAX: 203 284 8232

FLORIDA

Harris Semiconductor 1301 Woody Burke Rd. Melbourne, FL 32901 TEL: (407) 724-3576 FAX 407 724 3130

Sun Marketing Group 1956 Dairy Rd. West Melbourne, FL 32904 TEL: (407) 723-0501 FAX 407 723 3845

GEORGIA

Giesting & Associates Suite 108 2434 Hwy. 120 Duluth, GA 30136 TEL: (404) 476-0025

FAX: 404 476 2405

ILLINOIS

Harris Semiconductor Suite 600 1101 Perimeter Dr.

Schaumburg, IL 60173 TEL: (708) 240-3480 FAX: 708 619 1511

Oasis Sales 1101 Tonne Road Elk Grove Village, IL 60007 TEL: (708) 640-1850 FAX: 708 640 9432

INDIANA

Harris Semiconductor Suite 100 11590 N. Meridian St.

Carmel, IN 46032 TEL: (317) 843-5180 FAX: 317 843 5191

Giesting & Associates 370 Ridgepoint Dr. Carmel, IN 46032 TEL: (317) 844-5222 FAX: 317 844 5861

IOWA

Oasis Sales Suite 203 4905 Lakeside Dr., NE Cedar Rapids, IA 52402 TEL: (319) 377-8738 FAX: 319 377 8803

KANSAS Advanced Tech. Sales, Inc. Suite 8

601 North Mur-Len Olathe, KS 66062 TEL: (913) 782-8702 FAX: 913 782 8641

KENTUCKY

Giesting & Associates 212 Grayhawk Court Versailles, KY 40383 TEL: (606) 873-2330 FAX: 606 873 6233

MARYLAND

New Era Sales, Inc. Suite 103 890 Airport Pk. Rd Glen Burnie, MD 21061 TEI: (410) 761-4100 FAX: 410 761-2981

MASSACHUSETTS Harris Semiconductor

Six New England Executive Pk. Burlington, MA 01803 TEL: (617) 221-1850 FAX: 617 221 1866

Advanced Tech Sales, Inc. Suite 102 348 Park Street Park Place West N. Reading, MA 01864 TEL: (508) 664-0888 FAX: 508 664 5503

MICHIGAN

Harris Semiconductor Suite 460 27777 Franklin Rd. Southfield, MI 48034 TEL: (810) 746-0800 FAX: 810 746 0516

Giesting & Associates Suite 113 34441 Eight Mile Rd. Livonia, MI 48152 TEL: (810) 478-8106 FAX: 810 477 6908

Giesting & Associates 1279 Skyhills N.E. Comstock Park, MI 49321 TEL: (616) 784-9437 FAX: 616 784 9438

MINNESOTA Oasis Sales Suite 210 7805 Telegraph Road Bloomington, MN 55438 TEL: (612) 941-1917

FAX: 612 941 5701

MISSOURI

Advanced Tech. Sales 13755 St. Charles Rock Rd. Bridgeton, MO 63044 TEL: (314) 291-5003 FAX: 314 291 7958

NEBRASKA

Advanced Tech. Sales 13755 St. Charles Rock Rd. Bridgeton, MO 63044 TEL: (314) 291-5003 FAX: 314 291 7958

NEW JERSEY

Harris Semiconductor Plaza 1000 at Main Street Suite 104 Voorhees, NJ 08043 TEL: (609) 751-3425 FAX: 609 751 5911

Harris Semiconductor 724 Route 202 P.O. Box 591 Somerville, NJ 08876 TEL: (908) 685-6150 FAX: 908 685-6140

Tritek Sales, Inc. Suite 410, One Mall Dr. Cherry Hill, NJ 08002 TEL: (609) 667-0200 FAX: 609 667 8741

NEW MEXICO Compass Mktg. & Sales, Inc. Suite 109 4100 Osuna Rd., NE Albuquerque, NM 87109 TEL: (505) 344-9990 FAX: 505 345 4848

NEW YORK

Harris Semiconductor Hampton Business Center 1611 Rt. 9, Suite U3 Wappingers Falls, NY 12590 TEL: (914) 298-0413 FAX: 914 298 0425

Foster & Wager, Inc. 300 Main Street Vestal, NY 13850 TEL: (607) 748-5963 FAX: 607 748 5965

2511 Browncroft Blvd. Rochester, NY 14625 TEL: (716) 385-7744 FAX: 716 586 1359

^{*} Field Application Assistance Available

Trionic Associates, Inc. 320 Northern Blvd. Great Neck, NY 11021 TEL: (516) 466-2300 FAX: 516 466 2319

NORTH CAROLINA Harris Semiconductor 4020 Stirrup Creek Dr. Building 2A, MS/2T08 Durham, NC 27703 TEL: (919) 405-3600 FAX: 919 405 3660

New Era Sales Suite 203 1110 Navajo Dr. Raleigh, NC 27609 TEL: (919) 878-0400 FAX: 919 878 8514

оню

Giesting & Associates P.O. Box 39398 2854 Blue Rock Rd. Cincinnati, OH 45239 TEL: (513) 385-1105 FAX: 513 385 5069

Suite 521 26250 Euclid Avenue Cleveland, OH 44132 TEL: (216) 261-9705 FAX: 216 261 5624 6324 Tamworth Ct.

Columbus, OH 43017 TEL: (614) 752-5900 FAX: 614 792-6601

OKLAHOMA Nova Marketing Suite 1339 8125D East 51st Street Tulsa, OK 74145 TEL: (800) 826-8557 TEL: (918) 660-5105 FAX: 918 665 3815

OREGON Northwest Marketing Assoc. Suite 330 6975 SW Sandburg Road Portland, OR 97223

TEL: (503) 620-0441 FAX: 503 684 2541

PENNSYLVANIA Giesting & Associates 471 Walnut Street Pittsburgh, PA 15238 TEL: (412) 828-3553 FAX: 412 828 6160

TEXAS Harris Semiconductor Suite 205 17000 Dallas Parkway Dallas, TX 75248 TEL: (214) 733-0800 FAX: 214 733 0819

Nova Marketing

Suite 180 8310 Capitol of Texas Hwy. Austin, TX 78731 TEL: (512) 343-2321

FAX: 512 343-2487 Suite 174

8350 Meadow Rd. Dallas, TX 75231 TEL: (214) 265-4600 FAX: 214 265 4668

Corporate Atrium II Suite 140 10701 Corporate Dr. Stafford, TX 77477 TEL: (713) 240-6082 FAX: 713 240 6094

UTAH

Compass Mktg. & Sales, Inc. Suite 320 5 Triad Center Salt Lake City, UT 84180 TEL: (801) 322-0391 FAX: 801 322-0392

WASHINGTON Northwest Marketing Assoc. Suite 330N 12835 Bel-Red Road Bellevue, WA 98005 TEL: (206) 455-5846

WISCONSIN Oasis Sales 1305 N. Barker Rd. Brookfield, WI 53005 TEL: (414) 782-6660 FAX: 414 782 7921

Obsolete Products:

Rochester Electronic

10 Malcom Hoyt Drive

TEL: (508) 462-9332

FAX: 508 462 9512

Newburyport, MA 01950

North American Authorized Distributors and Corporate Offices

FAX: 206 451 1130

Alliance Electronics 7550 E. Redfield Rd. Scottsdale, AZ 85260 TEL: (602) 483-9400 FAX: (602) 443 3898

Arrow/Schweber **Electronics Group** 25 Hub Dr. Melville, NY 11747 TEL: (516) 391-1300 FAX: 516 391 1644

Electronics Marketing Corporation (EMC) 1150 West Third Avenue Columbus, OH 43212 TEL: (614) 299-4161 FAX: 614 299 4121

Farnell Electronic Services (Formerly ITT Multicomponents) 300 North Rivermede Rd. Concord, Ontario Canada L4K 3N6 TEL: (416) 798-4884 FAX: 416 798 4889

Gerber Flectronics 128 Carnegie Row Norwood, MA 02062 TEL: (617) 769-6000, x156 FAX: 617 762 8931

Hamilton Hallmark 10950 W. Washington Blvd. Culver City, CA 90230 TEL: (310) 558-2000 FAX: 310 558 2809 (Mil) FAX: 214 343 5988(Com)

Newark Electronics 4801 N. Ravenswood Chicago, IL 60640 TEL: (312) 784-5100 FAX: 312 275-9596

Wyle Laboratories (Commercial Products) 3000 Bowers Avenue Santa Clara, CA 95051 TEL: (408) 727-2500 FAX: 408 988-2747

Zeus Electronics. **An Arrow Company** 100 Midland Avenue Pt. Chester, NY 10573 TEL: (914) 937-7400 TEL: (800) 52-HI-REL FAX: 914 937-2553

Hamilton Hallmark and Zeus are the only authorized North American distributors for stocking and sale of Harris Rad Hard Space products.

North American Authorized Distributors

CALIFORNIA ALABAMA Arrow/Schweber Huntsville Santa Clarita TEL: (205) 837-6955 TEL: (805) 297-6204

Hamilton Hallmark Huntsville TEL: (205) 837-8700 Wyle Laboratories Huntsville

TEL: 205) 830-1119 Zeus, An Arrow Company Huntsville

TEL: (407) 333-3055 TEL: (800) 52-HI-REL

ARIZONA Alliance Electronics, Inc. Gilbert

TEL: (602) 813-0233 Scottsdale TEL: (602) 483-9400

Arrow/Schweber Tempe TEL: (602) 431-0030

Hamilton Hallmark Phoenix TEL: (602) 437-1200

Wyle Laboratories Phoenix TEL: (602) 437-2088

Zeus, An Arrow Company Tempe TEL: (408) 629-4789 TEL: (800) 52-HI-REL

Alliance Electronics, Inc.

Arrow/Schweber

Calabasas TEL: (818) 880-9686 Irvine

TEL: (714) 587-0404 San Diego TEL: (619) 565-4800

San Jose TEL: (408) 441-9700

Hamilton Hallmark Costa Mesa

TEL: (714) 641-4100 Los Angeles TEL: (818) 594-0404

Sacramento TEL: (916) 624-9781

San Diego TEL: (619) 571-7540 San Jose

TEL: (408) 435-3500 Wyle Laboratories Calabasas TEL: (818) 880-9000

14

SALES OFFICES

Irvine TEL: (714) 863-9953 Rancho Cordova TEL: (916) 638-5282

^{*} Field Application Assistance Available

San Diego TEL: (619) 565-9171 Santa Clara

TEL: (408) 727-2500

Zeus, An Arrow Company San Jose

TEL: (408) 629-4789 TEL: (800) 52-HI-REL

Yorba Linda TEL: (714) 921-9000 TEL: (800) 52-HI-REL

CANADA

Arrow/Schweber Burnaby, British Columbia TEL: (604) 421-2333

Dorval, Quebec TEL: (514) 421-7411 Nepan, Ontario

TEL: (613) 226-6903 Mississagua, Ontario

TEL: (905) 670-7769

Farnell Electronic Services Burnaby, British Columbia

TEL: (604) 421-6222 Calgary, Alberta

TEL: (403) 273-2780 Concord, Ontario TEL: (416) 738-1071

V. St. Laurent, Quebec TEL: (514) 697-8149

Nepean, Ontario TEL: (613) 596-6980

Winnipeg, Manitoba TEL: (204) 786-2589

Hamilton Hallmark

Montreal TEL: (514) 335-1000

Ottawa

TEL: (613) 226-1700

Vancouver, B.C. TEL: (604) 420-4101

Toronto TEL: (416) 795-3859

COLORADO

Arrow/Schweber Englewood TEL: (303) 799-0258

Hamilton Hallmark

Denver TEL: (303) 790-1662

Colorado Springs TEL: (719) 637-0055

Wyle Laboratories Thornton

TEL: (303) 457-9953 Zeus. An Arrow Company

TEL: (408) 629-4789 TEL: (800) 52-HI-REL

CONNECTICUT Alliance Electronics, Inc.

Shelton TEL: (203) 926-0087 Arrow/Schweber Wallingford

TEL: (203) 265-7741 Hamilton Hallmark

Danbury TEL: (203) 271-2844

Zeus, An Arrow Company TEL: (914) 937-7400

TEL: (800) 52-HI-REL

FLORIDA

Alliance Electronics, Inc. Tampa

TEL: (813) 831-7972

Arrow/Schweber Deerfield Beach TEL: (305) 429-8200

Lake Mary TEL: (407) 333-9300

Hamilton Hallmark

Miami TEL: (305) 484-5482

Orlando TEL: (407) 657-3300

St. Petersburg TEL: (813) 541-7440

Wyle Laboratories Fort Lauderdale TEL: (305) 420-0500

St. Petersburg TEL: (813) 576-3004

Zeus, An Arrow Company Lake Mary TEL: (407) 333-3055

TEL: (800) 52-HI-REL

GEORGIA

Arrow/Schweber Duluth TEL: (404) 497-1300

Hamilton Hallmark Atlanta

TEL: (404) 623-5475

Wyle Laboratories Duluth

TEL: (404) 441-9045 Zeus, An Arrow Company

TEL: (407) 333-3055 TEL: (800) 52-HI-REL

ILLINOIS

Alliance Electronics, Inc. Vernon Hills TEL: (708) 949-9890

Arrow/Schweber

Itasca

TEL: (708) 250-0500 **Hamilton Hallmark**

Chicago TEL: (708) 860-7780

Newark Electronics, Inc. Chicago TEL: (312) 907-5436

Wyle Laboratories Addison TEL: (708) 620-0969 Zeus, An Arrow Company Itasca

TEL: (708) 595-9730 TEL: (800) 52-HI-REL

INDIANA

Arrow/Schweber Indianapolis

TEL: (317) 299-2071

Hamilton Hallmark Indianapolis TEL: (317) 872-8875

Zeus, An Arrow Company

TEL: (708) 595-9730 TEL: (800) 52-HI-REL

IOWA

Arrow/Schweber Cedar Rapids TEL: (319) 395-7230

Hamilton Hallmark Cedar Rapids TEL: (319) 362-4757

Zeus, An Arrow Company TEL: (214) 380-4330 TEL: (800) 52-HI-REL

KANSAS

Arrow/Schweber Lenexa

TEL: (913) 541-9542 Hamilton Hallmark

Kansas City TEL: (913) 888-4747

Zeus. An Arrow Company TEL: (214) 380-4330 TEL: (800) 52-HI-REL

MARYLAND

Arrow/Schweber Columbia TEL: (301) 596-7800

Hamilton Hallmark Raltimore TEL: (410) 988-9800

Wyle Laboratories

Columbia

TEL: (410) 312-4844 Zeus, An Arrow Company

TEL: (914) 937-7400 TEL: (800) 52-HI-REL

MASSACHUSETTS Alliance Electronics, Inc. Winchester

TEL: (617) 756-1910

Arrow/Schweber Wilmington TEL: (508) 658-0900

Gerber Norwood

TEL: (617) 769-6000

Hamilton Hallmark Boston TEL: (508) 532-9808

Wyle Laboratories Burlington (617) 272-7300

Zeus, An Arrow Company Wilmington, MA

TEL: (508) 658-4776 TEL: (800) HI-REL

MICHIGAN

Arrow/Schweber Livonia

TEL: (313) 462-2290 Hamilton Hallmark

Detroit TEL: (313) 416-5800

Grandville TEL: (616) 531-0345

Zeus, An Arrow Company TEL: (708) 595-9730 TEL: (800) 52-HI-REL

MINNESOTA

Arrow/Schweber Eden Prarie

TEL: (612) 941-5280

Hamilton Hallmark Minneapolis

TEL: (612) 881-2600 Wyle Laboratories

Minneapolis TEL: (612) 853-2280

Zeus, An Arrow Company TEL: (214) 380-4330 TEL: (800) 52-HI-REL

MISSOURI

Arrow/Schweber St. Louis TEL: (314) 567-6888

Hamilton Hallmark

St. Louis TEL: (314) 291-5350

Zeus, An Arrow Company

TEL: (214) 380-4330 TEL: (800) 52-HI-REL

NEW JERSEY Arrow/Schweber Marlton

TEL: (609) 596-8000

Pinebrook

TEL: (201) 227-7880 **Hamilton Hallmark**

Cherry Hill

TEL: (609) 424-0110 Parsippany

TEL: (201) 515-5300 **Wyle Laboratories**

Mt. Laurel TEL: (609) 439-9110

Zeus, An Arrow Company TEL: (914) 937-7400 TEL: (800) 52-HI-REL

NEW MEXICO

Hamilton Hallmark Albuquerque TEL: (505) 345-0001

Zeus, An Arrow Company TEL: (408) 629-4789 TEL: (800) 52-HI-REL

Field Application Assistance Available

SALES OFFICES

14

NEW YORK
Alliance Electronics, Inc.
Binghamton

TEL: (607) 648-8833

Huntington TEL: (516) 673-1900

Arrow/Schweber Hauppauge

TEL: (516) 231-1000 Melville

TEL: (516) 391-1276 TEL: (516) 391-1300 TEL: (516) 391-1277

Rochester TEL: (716) 427-0300 Hamilton Hallmark

Long Island TEL: (516) 434-7400

Rochester

TEL: (716) 475-9130 Syracuse TEL: (315) 453-4000

Zeus, An Arrow Company Pt. Chester

TEL: (914) 937-7400 TEL: (800) 52-HI-REL

NORTH CAROLINA Arrow/Schweber Raleigh TEL: (919) 876-3132

EMC Charlotte

TEL: (704) 394-6195 Hamilton Hallmark Raleigh

TEL: (919) 872-0712

Zeus, An Arrow Company
TEL: (407) 333-3055

TEL: (800) 52-HI-REL

OHIO
Alliance Electronics, Inc.
Dayton

TEL: (513) 433-7700 Arrow/Schweber

Solon TEL: (216) 248-3990

Centerville TEL: (513) 435-5563

Columbus TEL: (614) 299-4161

Hamilton Hallmark Cleveland

TEL: (216) 498-1100 Columbus

TEL: (614) 888-3313

Toledo TEL: (419) 242-6610

Zeus, An Arrow Company TEL: (708) 595-9730

TEL: (708) 595-9730 TEL: (800) 52-HI-REL OKLAHOMA Arrow/Schweber

> Tulsa TFI : (918) 25

TEL: (918) 252-7537

Hamilton Hallmark Tulsa

TEL: (918) 254-6100

Zeus, An Arrow Company TEL: (214) 380-4330 TEL: (800) 52-HI-REL

OREGON Almac/Arrow Beaverton

TEL: (503) 629-8090

Hamilton Hallmark Portland

TEL: (503) 526-6202 Wyle Laboratories

Beaverton TEL: (503) 643-7900

Zeus, An Arrow Company TEL: (408) 629-4789 TEL: (800) 52-HI-REL

PENNSYLVANIA Arrow/Schweber Pittsburgh TEL: (412) 856-9490

Hamilton Hallmark Pittsburgh TEL: (412) 281-4150

Zeus, An Arrow Company TEL: (914) 937-7400 TEL: (800) 52-HI-REL

TEXAS
Alliance Electronics, Inc.
Carrollton

TEL: (214) 492-6700 Arrow/Schweber

Austin TEL: (512) 835-4180 Dallas

TEL: (214) 380-6464 Houston

TEL: (713) 530-4700 Hamilton Hallmark

Austin TEL: (512) 258-8848 Dallas TEL: (214) 553-4300

Houston

TEL: (713) 781-6100

Wyle Laboratories Austin

TEL: (512) 345-8853

Houston

TEL: (713) 879-9953

Richardson

TEL: (214) 235-9953

Zeus, An Arrow Company Carroliton

TEL: (214) 380-4330 TEL: (800) 52-HI-REL

UTAH

Arrow/Schweber Salt Lake City

TEL: (801) 973-6913

Hamilton Hallmark Salt Lake City TEL: (801) 266-2022

Wyle Laboratories
West Valley City
TEL: (801) 974-9953

Zeus, An Arrow Company TEL: (408) 629-4789 TEL: (800) 52-HI-REL

WASHINGTON Almac/Arrow

Bellevue TEL: (206) 643-9992

Hamilton Hallmark Seattle TEL: (206) 881-6697

Wyle Laboratories Redmond TEL: (206) 881-1150

Zeus, An Arrow Company TEL: (408) 629-4789 TEL: (800) 52-HI-REL

WISCONSIN Arrow/Schweber Brookfield TEL: (414) 792-0150 Hamilton Hallmark Milwaukee TEL: (414) 797-7844

Wyle Laboratories
Waukesha

TEL: (414) 521-9333

Zeus, An Arrow Company
TEL: (708) 595-9730

TEL: (800) 52-HI-REL Harris Semiconductor Chip Distributors

Chip Supply, Inc. 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 TEL: (407) 298-7100 FAX: (407) 290-0164

Elmo Semiconductor Corp. 7590 North Glenoaks Blvd. Burbank, CA 91504-1052 TEL: (818) 768-7400 FAX: (818) 767-7038

Puerto Rican Authorized Distributor

Hamilton Hallmark TEL: (809) 731-1110

South American Authorized Distributor

Graftec Electronic Sales Inc. One Boca Place, Suite 305 East 2255 Glades Road Boca Raton, Florida 33431 TEL: (407) 994-0933 FAX: 407 994-5518

BRASIL Graftec Electronics Av. Moema 538 04077-022 Sao Paulo - SP Brasil TEL: 55 11 572 2727

FAX: 55 11 575 7519

European Sales Offices and Representatives

European Sales Headquarters
Harris S.A.
Mercure Center

100 Rue de la Fusee 1130 Brussels, Belgium TEL: 32 2 724 21 11 FAX: 32 2 724 2205/...09

DENMARK
Delco AS
Titangade 15
DK - 2200 Copenhagen N
TEL: 45 35 82 12 00
FAX: 45 35 82 12 05

FINLAND
Teknokit OY
Reinikkalan Kartano

Fax: 358 59 432031

FRANCE
Harris Semiconducteurs SARL

* 2-4, Avenue de l'Europe F - 78140 Velizv

TEL: 33 1 34 65 40 00 TEL: 33 1 34 65 40 81 (Dist) TEL: 33 1 34 65 40 27 (Sales) FAX: 33 1 39 46 40 54

FAX: 33 1 39 46 40 5 TLX: 697060 GERMANY Harris Sa

Harris Semiconductor GmbH

Putzbrunnerstrasse 69 81739 München TEL: 49 89 63813-0 FAX: 49 89 6376201 TWX: 529051

Harris Semiconductor GmbH Kieler Strasse 55 - 59 25451 Quickborn TEL: 49 4106 50 02-04 FAX: 49 4106 6 88 50 TWX: 211582

Field Application Assistance Available

Harris Semiconductor GmbH Wegener Strasse, 5/1 D - 71063 Sindelfingen TEL: 49 7031 8 69 40 FAX: 49 7031 87 38 49 TWX: 7265431

Ecker Michelstadt GmbH In den Dorfwiesen 2a Postfach 33 44 D - 64720 Michelstadt TEL: 49 6061 22 33 FAX: 49 6061 50 39 TWX: 4191630

FINK Handelsvertretung Laurinweg, 1 D - 85521 Ottobrunn TEL: 49 89 6 09 70 04 FAX: 49 89 6 09 81 70

Erwin W. Hildebrand Nieresch 32 D - 48301 Nottuln-Darup TEL: 49 2502 60 65 FAX: 49 2502 18 89 TWX: 892565

Dipl. -Ing. Hartmut Weite Hepbacher Strasse 11a D - 88677 Markdorf TEL: 49 7544 7 25 55 FAX: 49 7544 7 25 55

ICDAEL

Aviv Electronics Ltd Hayetzira Street, 4 Ind. Zone IS - Ra'anana 43651 PO Box 2433 IS - Ra'anana 43100 TEL: 972 9 982322 FAX: 972 9 916510 TWX: 33572

ITALY

Harris SRL

Viale Fulvio Testi, 126 20092 Cinisello Balsamo TEL: 39 2 262 07 61 (Disti & OEM ROSE) TEL: 39 2 240 95 01

(Disti & OEM Italy) FAX: 39 2 248 66 20 39 2 262 22 158 (ROSE) TWX: 324019

NETHERLANDS Harris Semiconductor SA Benelux OEM Sales Office Mercuriusstraat 40 NL - 5345 LX Oss TEL: 31 4120 38561 FAX: 31 4120 34419

Aurlema Nederland BV Beatrix de Rijkweg, 8 NL - 5657 EG Eindhoven TEL: 31 40 500602 FAX: 31 40 510255 TWX: 51992

PORTUGAL

Cristalonica Componentes De Radio E Televisao Lda Rua Bernardim Ribeiro, 25 P - 1100 Lisbon TEL: 351 13 53 46 31 FAX: 351 13 56 17 55 TWX: 64119

SLOVENIA Avtotehna Celovska 175 P.O. Box 593 Ljubljana TEL: 386 61 551 287

FAX: 386 61 1 594 112

SPAIN Elcos S. L. Avda. Europa, 30 Port. 1; esc. izq; Bajo A 28224 Pozuelo de Alarcon Madrid TEL: 91 3523052

FAX: 91 3521147

SWEDEN Delco AS Kemistvagen, 10A Box 516 S - 183 25 Taby TEL: 46 8 630 86 00

FAX: 46 8 732 49 20

TURKEY

Elektronik Mamulleri Pazarlama AS Besyol Londra Asfalti TK - 34630 Sefakoy/ Istanbul TEL: 90 1 599 3050 FAX: 90 1 598 5353 TWX: 21137

UNITED KINGDOM

Harris Semiconductor Ltd
Riverside Way
Camberley
Surrey GU15 3YQ
TEL: 44 276 686 886
FAX: 44 276 682 323

Laser Electronics Ballynamoney Greenore Co. Louth, Ireland TEL: 353 4273165 FAX: 353 4273518 TWX: 43679

S.M.D.
Comtech House
Redgate Road
South Lancashire Indust. Estate
Ashton-In-Makerfield
WIGAN WN4 8DT
TEL: 44 942 274731
FAX: 44 942 274732

Stuart Electronics Ltd.
Phoenix House
Bothwell Road
Castlehill, Carluke
Lanarkshire ML8 5UF
TEL: 44 555 751566
FAX: 44 555 751562
TWX: 777404

European Authorized Distributors

AUSTRIA

Avnet E2000 Ges.mbH Waidhausenstrasse 19 A - 1140 Wien TEL: 43 1 9112847 FAX: 43 1 9113853

EBV Elektronik Diefenbachgasse 35/6 A - 1150 Wien TEL: 43 1 8941774 FAX: 43 1 8941775

Eurodis Electronics GmbH Lamezanstrasse 10 A - 1232 Wien TFI : 43 1 610620

Spoerle Electronic Heiligenstädter Str. 52 A - 1190 Wien TEL: 43 1 31872700 FAX: 43 1 3692273

FAX: 43 1 610625

BELGIUM

Diode Belgium

Keiberg II
Minervastraat, 14/B2
B-1930 Zaventem
TEL: 32 2 725 46 60
FAX: 32 2 725 45 11
TWX: 64475

EBV Elektronik Excelsiorlaan 35 B - 1930 Zaventem TEL: 32 2 716 00 10 FAX: 32 2 720 81 52

Eurodis Inelco SA/NV
* Avenue des Croix de
Guerre,116
B - 1120 Brussels
TEL: 32 2 247 49 69
FAX: 32 2 215 81 02
TWX: 64475

DENMARK

Avnet Nortec A/S
Transformervej, 17
DK - 2730 Herlev
TEL: 45 42 84 2000
FAX: 45 44 92 1552

Ditz Schweitzer A/S Vallensbaekvej 41 Postboks 5 DK - 2605 Brondby TEL: 45 42 45 30 44 FAX: 45 42 45 92 06 TWX: 33257

FINLAND Avnet Nortec OY Italahdenkatu, 18 SF - 00210 Helsinki TEL: 358 061 318250 FAX: 358 069 22326

Bexab Finland Teollisuustie SF - 65611 Mustasaari TEL: 358 61 32 22 222 FAX: 358 61 32 22 962

FRANCE

ZI des Glaises 6/8 rue Ambroise Croizat F - 91127 Palaiseau Cedex TEL: 33 1 64 47 29 29 FAX: 33 1 64 47 00 84 TWX: 603341

Arrow Electronique S.A. 73 - 79, Rue des Solets Silic 585 F - 94663 Rungis Cedex TEL: 33 1 49 78 49 78 FAX: 33 1 49 78 05 96 TLX: 265185 Avnet EMG SA

* 81, Rue Pierre Semard F-92320 Chatillon Sous Bagneux TEL: 33 1 49 65 27 00 FAX: 33 1 49 65 27 38 TWX: 632247

* 5, Rue Marcelin Berthelot Zone Industrielle D'Antony BP 92 F - 92164 Antony Cedex TEL: 33 1 46 74 47 00 FAX: 33 1 40 96 92 26 TWX: 203881

Harris Semiconductor Chip Distributors

Edgetek
Zai De Courtaboeuf
Avenue Des Andes
91952 Les Ulis Cedex
TEL: 33 1 64 46 06 50
FAX: 33 1 69 28 43 96
TWX: 600333

Elmo Z. A. De La Tuilerie B. P. 1077 78204 Mantes-La-Jolie TEL: 33 1 34 77 16 16 FAX: 33 1 34 77 95 79 TWX: 699737

Hybritech CM (HCM)
7, Avenue Juliot Curie
F - 17027 ŁA Rochelle Cedex
TEL: 33 46 45 12 70
FAX: 33 46 45 04 44
TWX: 793034

^{*} Field Application Assistance Available

EASTERN COUNTRIES HEV GmbH Alexanderplatz 6

D - 10178 Berlin TEL: 49 30 2483400 FAX: 49 30 2483424

GERMANY

Eurodis Enatechnik Electronics GmbH Schillerstrasse 14 D - 25451 Quickborn TEL: 49 4106 6 12-0 FAX: 49 4106 6 12-268

Avnet/E2000 Stahlgruberring, 12 D - 81829 München TEL: 49 89 4511001 FAX: 49 89 45110129

EBV Elektronik GmbH Hans-Pinsel-Strasse 4 D - 85540 Haar-bel-München TEL: 49 89 45610-0 FAX: 49 89 464488

HED Steeler Strasse 529 D - 45276 Essen TEL: 49 201 5636270 FAX: 49 201 5636279

Indeg GmbH Emil Kömmerling Strasse 5 D - 66954 Pirmasens TEL: 49 6331 9 40 65 FAX: 49 6331 9 40 64 TWX: 452269

Sasco Semiconductor GmbH Hermann-Oberth Strasse 16 D - 85640 Putzbrunn TEL: 49 89 46 11-0 FAX: 49 89 46 11-270

Spoerle Electronic
Max-Planck Strasse 1-3
D - 63303 Dreieich
TEL: 49 6103 3 04-0
FAX: 49 6103 3 04-201

GREECE Semicon Co. 104 Aeolou Street GR - 10564 Athens TEL: 30 1 32 53 626 FAX: 30 1 32 16 063 TWX: 216684

ISRAEL
Aviv Electronics Ltd
Hayetzira Street 4, Ind. Zone
IS - 43651 Ra'anana
PO Box 2433
IS - 43100 Ra'anana
TEL: 972 9 983232
FAX: 972 9 916510

ITALY
Eurelettronica SpA
Via Enrico Ferni, 8
I - 20090 Assago (MI)
TEL: 39 2 457 841
FAX: 39 2 488 02 75

EBV Elektronik SRL Via C. Frova, 34 I - 20092 Cinisello Balsamo (MI) TEL: 39 2 660 17111

FAX: 39 2 660 17020 Lasi Elettronica SpA Viale Fulvio Testi 280 I - 20126 Milano

I - 20126 Milano TEL: 39 2 66 10 13 70 FAX: 39 2 66 10 13 85 TWX: 352040

Silverstar Ltd. Viale Fulvio Testi 280 I - 20126 Milano TEL: 39 2 66 12 51 FAX: 39 2 66 10 13 59 TWX: 332189

NETHERLANDS
* Auriema Nederland BV
Beatrix de Rijkweg 8
NL - 5657 EG Eindhoven
TEL: 31 40 502602
FAX: 31 40 510255
TWX: 51992

Diode Components BV Coltbaan 17 NL - 3439 NG Nieuwegein TEL: 31 3402 912 34 FAX: 31 3402 359 24

Diode Components BV Post'bus 7139 NL - 5605 JC Eindhoven TEL: 31 40 54 54 30 FAX: 31 40 53 55 40

EBV Elektronik Planetenbaan, 2 NL - 3606 AK Maarssenbroek TEL: 31 3465 623 53 FAX: 31 3465 642 77

NORWAY Hans H. Schive A/S Undelstadlia 27 Postboks 185 N - 1371 Asker TEL: 47 66 900 900 FAX: 47 66 904 484 TWX: 19124

PORTUGAL Cristalonica Componentes De Radio E Televisao, Lda Rua Bernardim Ribeiro, 25 P - 1100 Lisbon TEL: 351 13 53 46 31 FAX: 351 13 56 17 55 TWX: 64119

SPAIN Amitron-Arrow S.A. Albasanz, 75 SP - 28037 Madrid TEL: 34 1 304 30 40 FAX: 43 1 327 24 72 EBV Elektronik Calle Maria Tubau, 6 SP - 28049 Madrid TEL: 34 1 358 86 08 FAX: 34 1 358 85 60

SWEDEN
Bexab Sweden AB
P.O. Box 523
Kemistvagen, 10A
S - 183 25 Taby
TEL: 46 8 630 88 00
FAX: 46 8 732 70 58

SWITZERLAND Avnet E2000 AG Boehirainstrasse 11 CH - 8801 Thalwil TEL: 41 1 7221330 FAX: 41 1 7221340 Basix AG Hardturmstrasse 181 CH - 8010 Zürich TEL: 41 1 2 76 11 11 FAX: 41 1 2761234

EBV Elektronik Vordstadtstrasse 37 CH - 8953 Dietikon TEL: 41 1 7401090 FAX: 41 1 7415110

Eurodis Electronic AG Bahnstrasse 58/60 CH - 8105 Regensdorf TEL: 41 1 84 33 111 FAX: 41 1 84 33 910

FABRIMEX
Kirchenweg 5
CH - 8032 Zürich
TEL: 41 1 38 68 686
FAX: 41 1 38 32379

TURKEY EMPA Elektronik Mamulleri Pazarlama AS Besyol Londra Asfalti TK - 34630 Sefakoy/ Istanbul TEL: 90 1 599 3050 FAX: 90 1 598 5353 TWX: 21137

UNITED KINGDOM
Avnet Access Ltd.
Jubilee House, Jubilee Road
Letchworth
Hertfordshire SG6 1QH
TEL: 44 462 480888
FAX: 44 462 488567
TWX: 826505

Farnell Electronic Components Ltd. Armley Road, Leeds West Yorkshire LS12 2QQ TEL: 44 532 790101 FAX: 44 532 633404 TWX: 55147 Services Ltd.
Edinburgh Way.
Harlow
Essex CM20 2DE
TEL: 44 279 626777
FAX: 44 279 441687
TWX: 818801
Jermyn Distribution
Vestry Industrial Estate
Sevenoaks
Kent TN14 5EU
TEL: 44 732 743743
FAX: 44 732 451251

TWX: 95142

Farnell Electronic

Micromark Electronics Ltd. Boyn Valley Road Maidenhead Berkshire SL6 4DT TEL: 44 628 76176 FAX: 44 628 783799 TWX: 847397

Thame Components
Thame Park Rd.
Thame, Oxfordshire OX9 3UQ
TEL: 44 844 261188
FAX: 44 844 261681
TWX: 837917
Harris Semiconductor

Chip Distributors
Die Technology Ltd.
Corbrook Rd., Chadderton
Lancashire OL9 9SD
TEL: 44 61 626 3827
FAX: 44 61 627 4321
TWX: 668570

Rood Technology Test House Mill Lane, Alton Hampshire GU34 2QG TEL: 44 420 88022 FAX: 44 420 87259 TWX: 858456

South African Authorized Distributor TRANSVAAL

Allied Electronic Components 10, Skietlood Street Isando, Ext. 3, 1600 P.O. Box 69 Isando, 1600 TEL: 27 11 392 3804/. . . 19 FAX: 27 11 974 9625 FAX: 27 11 974 9683

Sales Headquarters **JAPAN**

Harris K.K. Shinjuku NS Bldg. Box 6153 2-4-1 Nishi-Shiniuku Shinjuku-ku, Tokyo 163-08 Japan TEL: (81) 3-3345-8911 FAX: (81) 3-3345-8910

SOUTH ASIA Sales Headquarters HONG KONG

Harris Semiconductor H.K. Ltd. 13/F Fourseas Building 208-212 Nathan Road Tsimshatsui, Kowloon TEL: (852) 723-6339 FAX: (852) 739-8946 TLX: 78043645

AUSTRALIA VSI Promark Electronics Pty Ltd

16 Dickson Avenue Artarmon NSW 2064 TEL: (61) 2-439-4655 FAX: (61) 2-439-6435

INDIA

Intersil Private Limited Plot 54, SEEPZ Marol Industrial Area Andheri (E) Bombay 400 096 TEL: (830) 1546/830 3097 FAX: (830) 836 6682

KOREA

Harris Semiconductor YH RM #419-1 4TH FL Korea Air Terminal Bldg. 159-1, Sam Sung-Dong, Kang Nam-ku, Seoul 135-728, Korea TEL: 82-2-551-0931/4 FAX: 82-2-551-0930

Inhwa Company, Ltd. Room #305 Daegyo Bldg., 56-4, Wonhvoro - 2GA. Young San-Ku, Seoul 140-113, Korea TEL: 822-703-7231 FAX: 822-703-8711

KumOh Electric Co., Ltd. 203-1, Jangsa-Dong, Chongro-ku, Seoul TEL: 822-279-3614 FAX: 822-272-6496

PHILIPPINES

Intergral Silicon Solution, Inc. 6th Floor Peakson Bldg 1505 Princeton Street Cor. Shaw Bldg. Mandauyong TEL: 632-786652 FAX: 632-786731

SINGAPORE

Harris Semiconductor Pte Ltd. 105 Boon Keng Road #01-01 Singapore 1233 TEL: (65) 291-0203 FAX: 65-293-4301 TLX: RS36460 RCASIN

Gloria (S) PTE Ltd Block 5073 #02-1656 Ang Mo Kio Industrial Park 2 Singapore 2056 TEL: 4832920

FAX: 4832930, 4814619

TAIWAN

Harris Semiconductor Room 1101, No. 142, Sec. 3 Ming Chuan E. Road Taipei, Taiwan TEL: (886) 2-716-9310 FAX: 886-2-715-3029 TLX: 78525174

Applied Component Tech. Corp.

8F No. 233-1 Pao-Chia Road Hsin Tien City, Taipei Hsien, Taiwan, R.O.C. TEL: (886) 2 9170858 FAX: 886 2 9171895

Galaxy Far East Corporation 8F-6, No. 390, Sec. 1

Fu Hsing South Road Taipei, Taiwan TEL: (886) 2-705-7266 FAX: 886-2-708-7901

TECO Enterprise Co., Ltd. 10FL., No. 292, Min-Sheng W. Rd

Taipei, Taiwan TEL: (886) 2-555-9676 FAX: (886) 2-558-6006

Asian Pacific Authorized Distributors

AUSTRALIA VSI Promark Electronics Pty Ltd 16 Dickson Avenue

Artarmon, NSW 2064 TEL: (61) 2-439-4655 FAX: (61) 2-439-6435

Means Come Ltd. Room 1007, Harbour Centre 8 Hok Cheung Street Hung Hom, Kowloon TEL: (852) 334-8188 FAX: (852) 334-8649

Sunnice Electronics Co., Ltd. Flat F, 5/F, Everest Ind. Ctr. 396 Kwun Tong Road Kowloon,

TEL: (852) 790-8073 FAX: (852) 763-5477

HONG KONG

Array Electronics Limited 24/F., Wyler Centre Phase 2 200 Tai Lin Pai Road Kwai Chung New Territories, H.K. TEL: (852) 418-3700 FAX: (852) 481-5872

Inchcape Industrial 10/F, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong **New Territories**

TEL: (852) 410-6555 FAX: (852) 401-2497

Kingly International Co., Ltd. Flat 03, 16/F, Block A, Hi-Tech Ind. Centre 5-12 Pak Tin Par St., Tsuen Wan New Territories, H.K. TEL: (852) 499-3109 FAX: (852) 417-0961

Hakuto Co., Ltd. 1-1-13 Shinjuku Shinjuku-ku Tokyo 160 TEL: 81-3-3355-7615 FAX: 81-3-3355-7680

Jepico Corp. Shinjuku Dajichi Seimei Bldg. 2-7-1, Nishi-Shinjuku Shinjuku-ku, Tokyo 163 TEL: 03-3348-0611 FAX: 03-3348-0623

Macnica Inc. Hakusan High Tech Park 1-22-2. Hakusan Midori-ku, Yokohama-shi, Kanagawa 226 TEL: 045-939-6116

Micron, Inc. DJK Kouenji Bldg. 5F 4-26-16, Kouenji-Minami Suginami-Ku, Tokyo 166 TEL: 03-3317-9911 FAX: 03-3317-9917

FAX: 045-939-6117

Okura Electronics Co., Ltd. Okura Shoji Bldg. 2-3-6, Ginza Chuo-ku, Tokyo 104 TEL: 03-3564-6871 FAX: 03-3564-6870

Takachiho Koheki Co., Ltd. 1-2-8, Yotsuya Shinjuku-ku, Tokyo 160 TEL: 03-3355-6696 FAX: 03-3357-5034

KOREA

KumOh Electric Co., Ltd. 203-1, Jangsa-Dong, Chongro-ku, Seoul TEL: 822-279-3614 FAX: 822-272-6496

Inhwa Company, Ltd. Room #305 Daegyo Bldg., 56-4, Wonhyoro - 2GA, Young San-Ku, Seoul 140-113, Korea TEL: 822-703-7231 FAX: 822-703-8711

NEW ZEALAND Components and Instrumentation NZ, Ltd. Semple Street Porirua, Wellington P.O. Box 50-548 TEL: (64) 4-237-5632

FAX: (64) 4-237-8392

PHILIPPINES

Crystalsem, Inc. 216 Ortega Street San Juan, Metro Manila 1500 TEL: (632) 79-05-29 FAX: (632) 722-1006 TLX: 722-22031 (IMCPH)

SINGAPORE

B.B.S Electronics PTE, Ltd. 1 Genting Link #05-03 Perfect Indust. Bldg. Singapore 1334 TEL: (65) 7488400 FAX: (65) 7488466

Device Electronics PTE, Ltd. 605B MacPherson Road 04-12 Citimac Ind. Complex Singapore 1336 TEL: (65) 2886455 FAX: (65) 2879197

TAIWAN

Acer Sertek Inc. 3F. No. 135, Sec. 2 Chien Kuo N. Road Taipei, Taiwan TEL: (886) 2-501-0055

FAX: (886) 2-501-2521 **Applied Component** Technology Corp. 8F No. 233-1 Pao-Chial Road Hsin Tien City, Taipei Hsein, Taiwan, R.O.C. TEL: (02) 9170858

FAX: (02) 9171895 Galaxy Far East Corporation 8F-6, No. 390, Sec. 1

Fu Hsing South Road Taipei, Taiwan TEL: (886) 2-705-7266 FAX: 886-2-708-7901

TECO Enterprise Co., Ltd. 10FL., No. 292, Min-Sheng W. Rd. Taipei, Taiwan TEL: (886) 2-555-9676 FAX: (886) 2-558-6006

Field Application Assistance Available

We're Backing You Up with Products, Support, and Solutions!

Signal Processing

- Linear
- Custom Linear
- Data Conversion
- Interface
- Analog Switches
- Multiplexers
- Filters
- DSP
- Telecom

Power Products

- Power MOSFETs
- IGBTs
- MCTs
- Bipolar
- Transient Voltage Suppressors
- MOVs
- Rectifiers
- Surgectors
- MLVs
- Intelligent Discretes

Intelligent Power

- Power ICs
- Power ASICs
- Hybrid Programmable Switches
- Full-Custom High Voltage ICs

Military/Aerospace Products

- Microprocessors and Peripherals
- Memories
- Analog ICs
- Digital ICs
- Discrete Power
 - Bipolar
 - MOSFET
 - IGBTs
 - MOVs

ASICs

- Full-Custom
- Analog Semicustom
- Mixed-Signal
- ASIC Design Software

Digital

- CMOS Microprocessors and Peripherals
- CMOS Microcontrollers
- CMOS Logic

Rad-Hard Products

- Microprocessors and Peripherals
- Memories
- Analog ICs
- Digital ICs
- Discrete Power
 - Bipolar
 - MOSFET
- ASICs
- ESA SCC 9000 and Class S Screening

Military/Aerospace Programs

- Strategic and Space Programs
- Military ASIC Programs

