Материалы к экзамену

Именные теоремы

Бэр (о полном метрическом пространстве): Полное метрическое пространство не может быть представлено в виде счетного объединения своих нигде не плотных множеств.

Хаусдорф (о пополнении): Для любого неполного метрического пространства существует его пополнение.

Александер (о предбазе):

Тихонов (о компактности декартова произведения компактных ТП):

Критерий Фреше (топологическая компактность в МП): $(X, \rho) - \text{МП}$, подмножество $S \subset X$. Следующие 3 свойства эквивалентны:

1) S — компактное множество; 2) S — вполне ограниченное множество и (S, ρ) — полное метрическое пространство; 3) S — секвенциально компактное множество.

Арцела, Асколи: (K, ρ) — компактное МП, C(K) — пространство непрерывных на компакте K функций, $S \subset C(K)$. Множество S является вполне ограниченным множеством тогда и только тогда, когда:

- 1) S ограниченное множество;
- 2) S равностепенно непрерывное множество.

Рисс, Колмогоров:

Рисс (лемма о почти перпендикуляре): $(X, \|\cdot\|_X) - \Pi H \Pi, L \subset X - \text{собственное замкнутое подпространство. Тогда}$

$$\forall \varepsilon in(0,1) \ \exists z_{\varepsilon} : \|z_{\varepsilon}\|_{X} = 1, \rho(z_{\varepsilon}, L) > 1 - \varepsilon.$$

Рисс (о некомпактности сферы): В бесконечномерном ЛНП единичная сфера не является компактным множеством. [простое следствие леммы о почти перпендикуляре]

Банах (об открытом отображении): $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ — банаховы пространства, $A \in L(X,Y)$ — сюръективный оператор. Тогда A является открытым отображением.

Банах (об обратном операторе): $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ — банаховы пространства, $A \in L(X, Y)$. Оператор A непрерывно обратим $A^{-1} \in L(Y, X)$ тогда и только

тогда, когда
$$\begin{cases} KerA = \{0\} \\ ImA = Y \end{cases}$$

Хан, Банах (реально это частный случай более общего утверждения): $(X, \|\cdot\|_X)$ — комплексное ЛНП, $L \subset X$ — подпространство, $f: L \to \mathbb{C}$ — линейный непрерывный функционал на L. Тогда существует линейный непрерывный функционал $g: X \to \mathbb{C}$ на X такой, что:

- 1) $f \mid_{L} = g \mid_{L}$;
- 2) ||f|| = ||g||.

4 следствия теоремы Хана-Банаха:

Рисс (о проекции): $H - \Gamma\Pi$, $S \subset H$ — выпуклое замкнутое множество. Тогда для любого элемента $\Gamma\Pi$ существует и единствена метрическая проекция этого элемента на множество S:

$$\forall x \in H \ \exists! y \in S : \rho(x, S) = ||x - y||.$$

Рисс (об ортогональном дополнении): $H - \Gamma\Pi, L \subset H -$ замкнутое подпространство. Тогда

$$H = L \oplus L^{\perp}$$
.

Рисс, Фреше: $H-\Gamma\Pi,\ f\in H^*-$ линейный непрервный функционал на H. Тогда существует и единственен $z_f\in H$ такой, что:

- 1) $\forall x \in H : f(x) = (x, z_f);$
- 2) $||f|| = ||z_f||_H$.

Отображение $z:H^* \to H$ является взаимооднозначным, изометричным и сопряженнолинейным.

Следствием этой теоремы является рефлексивность произвольного $\Gamma\Pi$.

Шур В пространстве $(l_1, \|\cdot\|_1)$ всякая слабо сходящаяся последовательность сходится сильно.

Мазур: $(X, \|\cdot\|) - ЛНП$. Пусть $A \subset X$ — выпуклое множество. Тогда мн-во A слабо замкнуто тогда и только тогда, когда оно сильно замкнуто.

Банах, Алаоглу: $(X, \|\cdot\|) - \Pi H \Pi$. Пусть $(X, \|\cdot\|)$ является сепарабельным пространством. Тогда любой замкнутый шар в сопряженном пространстве $\forall R > 0$ $B_R^*(0) \subset X^*$ является слабо* компакнтым.

Банах, **Тихонов**: (является следствием теоремы Банаха, Алаоглу) $(X, \|\cdot\|)$ — ЛНП. Пусть $(X, \|\cdot\|)$ является сепарабельным и рефлексивным пространством. Тогда любая ограниченная последовательность в пространстве $(X, \|\cdot\|)$ содержит

слабо сходящуюся подпоследовательность.

Банах, Штейнгауз: $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ — ЛНП, причем $(X, \|\cdot\|_X)$ банахово пространство. Пусть последовательность линейных непрерывных операторов $\{A_n\}_{n\in\mathbb{N}}\subset L(X,Y)$ является поточечно ограниченной: $\forall x\in X\sup_{n\in\mathbb{N}}\|A_nx\|_Y<+\infty$.

Тогда она является ограниченной в пространстве $L(X,Y):\sup_{x\in\mathbb{R}^N}\|A_n\|<\infty.$

Следствием этой теоремы служит ограниченность слабо и слабо* сходящихся последовательностей.

Фредгольм: $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y) - \Pi H \Pi, A \in L(X, Y)$. Тогда

$$KerA = ^{\perp} (ImA^*), KerA^* = (ImA)^{\perp}.$$

Следствие: $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y) - \Pi H\Pi, A \in L(X, Y)$. Тогда

$$(Ker A)^{\perp} = (^{\perp}(Im A^*))^{\perp} \supset [Im A^*],^{\perp}(Ker A^*) =^{\perp} ((Im A)^{\perp}) = [Im A].$$

Если X — рефлексивно, то

$$(Ker A)^{\perp} = (^{\perp}(Im A^*))^{\perp} = [Im A^*].$$

Гельфанд, Мазур: A — банахова алгебра, в которой каждый ненулевой элемент обратим. Тогда A изометрически изоморфна полю комплексных чисел.

Хелингер, Теплиц: $H - \Gamma\Pi$, A - линейный симметричный оператор на всем H. Тогда A является непрерывным, а следовательно самосопряженным оператором.

Гильберт, Шмидт:

Спектральная теорема:

Основные определения
Топологическое пространство
Метрическое пространство
Нормированное пространство
Гильбертово пространство
Компактность
Виды операторов
Ограниченный оператор:
Норма оператора:
Ограниченный снизу оператор:
Обратный оператор:
Компактный оператор:
Сопряженный оператор:
Нормальный оператор:
Унитарный оператор:
Оператор проекции:
Симметричный оператор:
Самосопряженный оператор:
Неотрицательный оператор:
Спектр
Спектр:
Резольвентное множество:
Резольвента:

Спектральный радиус:

Точечный спектр оператора:

Непрерывный спектр оператора:

Остаточный спектр оператора:

Важные теоремы

Критерий базы ТП X — множество. Семейство β подмножеств множества Xявляется базой некоторой топологии τ в X тогда и только тогда, когда:

- 1) $\forall x \in X : \exists V \in \beta : x \in V$, то есть $X = \bigcup_{V \in \beta} V$; 2) $\forall V_1, V_2 \in \beta \ \forall x \in V_1 \cap V_2 \ \exists W \in \beta : x \in W \subset V_1 \cap V_2$.

Критерий несепарабельности МП Метрическое пространство является несепарабельным тогда и только тогда, когда в нем существует более чем счетное $\varepsilon_0 > 0$ - дырявое множество.

Принцип вложенных шаров Метрическое пространство является полным тогда и только тогда, когда произвольная последовательность замкнутых вложенных шаров, чьи радиусы стремятся к нулю, имеет непустое пересечение.

Контрпример. Полное МП и последовательность замкнутых вложенных шаров, радиусы которых не стремятся к нулю, имеет пустое пересечение.

Теорема о полноте пространства операторов $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y) - \Pi H \Pi$, причем $(Y, \|\cdot\|_X)$ банахово пространство. Тогда $(L(X,Y), \|\cdot\|_A)$ является банаховым пространством.

Тривиальным следствием этого факта является банаховость произвольного сопряженного пространства, так как $X^* = L(X, \mathbb{C})$.

Схема определения частей спектра линейного непрерывного оператора

Известные операторы