The Protocol Informatics Project Automating Network Protocol Analysis

Debuted at Toorcon 2004 by

Marshall Beddoe (mbeddoe@baselineresearch.net)

Copyright © 2004 Baseline Research

http://www.baselineresearch.net

Before We Start

- HTTP will be used for visualization of concept
 - Most people know HTTP
 - PowerPoint slides are only so large
- Questions will be gladly answered at the end

My email: mbeddoe@baselineresearch.net

PI Homepage: http://www.baselineresearch.net/Pl

Objective of Protocol Analysis

- Determine protocol fields
- Understand structure of requests and responses
- Simplified Plaintext Example: HTTP
 - GET /index.html HTTP/1.0
 - GET: Keyword
 - /index.html: Filename
 - HTTP/1.0: Keyword
- Why is this knowledge important?
 - Understanding proprietary protocols
 - Finding vulnerabilities in unknown or badly documented protocols

Problems with Protocol Analysis

- Binary protocols
- Large amount of data
- Dynamically sized fields
- Time consuming
- Amazingly boring
- There must be a better way...
 - Enter bioinformatics

Bioinformatics

- What is Bioinformatics?
 - "The use of mathematical and informational techniques, including statistics, to solve biological problems" – Wikipedia
 - Processing of large amounts of structured, yet complex data
 - Operates on large sequences of strings to find patterns
 - Objective: To find genes that produce specific proteins by performing a series of comparisons.
 - Mapping of phenotypes to genotypes
 - Example: Attached earlobes to the sequence: ATTGAC

Protocol Analysis & Bioinformatics

Similarities

- Both operate on large sequences of data
- Whereas bioinformatics helps find specific genes that produce proteins, protocol analysis finds specific fields in a packet
- Both work through a series of compares and contrasts between a large number of samples
- Creating an application that helps understand structured, complex data would be an asset when doing this type of analysis..

Tech Behind the Talking Points

- Sequence Alignment
 - Needleman-Wunsch
- Similarity Matrices
 - BLOSUM, PAM
- Phylogenetic Trees
 - UPGMA
- Multiple Alignment
 - Phylogeny

Sequence Alignment

- Base technology used in bioinformatics
- Idea: Take two sequences regardless of length and align them to each other so both have equal length
- Gaps are inserted when needed to achieve the maximum alignment of the sequences
- Example of amino acid alignment:
 - ◆ TCAT---CAA

 - TCATGGGCAA
- Notice the gaps inserted into sequence one to force length alignment
- Simple concept right?

Needleman-Wunsch Algorithm

- Dynamic programming algorithm
- Performs global alignment on a pair of sequences
 - Global means that all characters in the sequence participate in the alignment
 - What goes in, comes out
- Used for analyzing closely related structures

Dynamic Programming

- Dynamic programming is not coding
- Idea: Break problem into sub-problems
- Operations mainly on matrices
- Results of previous computations are saved and used by the remaining sub-problems
- Needleman Wunsch is a DP algorithm

How NW Works

- Sequence one is placed in the top-most row and sequence two is placed in the left-most column.
- For each cell, perform the following:
 - Assign similarity values
 - Assess possible pathways through matrix (left, up and diagonal), assigning the current cell with value of the maximum scoring pathway using:

$$M_{i,j} = MAX(M_{i-1,j-1} + S_{i,j}, M_{i,j-1} + w, M_{i-1,j} + w)$$

where w is the gap penalty (currently 0) and S is the similarly weight

- Construct a pathway from the highest scoring cell to the beginning of the matrix to get the maximum global alignment
- A gap penalty is used to decrease the number of gaps in the final alignment

In Other Words: Step One

• Characters that are similar receive a scoring of 1 (for now)

In Other Words: Step Two

		G	E	T		/	i	n	d	e	X		h	t	m	l		Н	T	T	P	/	1		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
E	0	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
T	0	1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	0	1	2	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
/	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6
Н	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	7	7	7	7	7	7	7
T	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	8	8	8	8	8	8
T	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	9	9	9	9	9
P	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	A	A	A	Α	Α
/	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	A	В	В	В	В
1	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	A	В	C	C	C
•	0	1	2	3	4	5	5	5	5	5	5	6	6	6	6	6	6	7	8	9	A	В	C	D	D
0	0	1	2	3	4	5	5	5	5	5	5	6	6	6	6	6	6	7	8	9	A	В	C	D	Е

Starting at position 1,1

For each cell:

$$M_{i,j} = MAX(M_{i-1,j-1} + S_{i,j}, M_{i,j-1} + w, M_{i-1,j} + w)$$

In Other Words: Step Three

		G	E	T		/	i	n	d	e	X		h	t	m	l		Н	T	T	P	/	1		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
E	0	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
T	0	1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	0	1	2	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
/	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6
Н	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	7	7	7	7	7	7	7
T	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	8	8	8	8	8	8
T	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	9	9	9	9	9
P	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	A	A	A	A	A
/	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	Α	В	В	В	В
1	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	A	В	C	C	С
	0	1	2	3	4	5	5	5	5	5	5	6	6	6	6	6	6	7	8	9	A	В	C	D	D
0	0	1	2	3	4	5	5	5	5	5	5	6	6	6	6	6	6	7	8	9	A	В	C	D	Е

• Starting in cell with highest value (0xE), traverse matrix to the beginning

What did this do?

- Now that we computed a path through the matrix, we can apply the rules of NW to obtain two aligned sequences
- Anytime the path travels upwards or to the left, a gap is inserted into a sequence
- Upwards affects sequence 1 (row)
- Left affects sequence 2 (column)

The Result

		G	E	T		/	i	n	d	e	X		h	t	m	l		Н	T	T	P	/	1		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
E	0	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
T	0	1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	0	1	2	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
/	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6
Н	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	7	7	7	7	7	7	7
T	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	8	8	8	8	8	8
T	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	9	9	9	9	9
P	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	A	A	A	A	A
/	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	Α	В	В	В	В
1	0	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	Α	В	C	С	C
•	0	1	2	3	4	5	5	5	5	5	5	6	6	6	6	6	6	7	8	9	A	В	С	D	D
0	0	1	2	3	4	5	5	5	5	5	5	6	6	6	6	6	6	7	8	9	A	В	C	D	E

```
GET /index.html HTTP/1.0
|||||
GET /_____ HTTP/1.0
```

Analyzing the Results

```
GET /index.html HTTP/1.0
```

- We can easily discern the protocol fields from these results
- 1. GET / is considered a keyword
- index.html had no alignment, and is therefore considered a variable length field
- 3. Followed by keyword HTTP/1.0

Similarity Matrices

- Each character similarity is weighted
- In the earlier NW example, the value of S was 1
- In Bioinformatics, similarity matrices are used to optimize alignments of sequences.
 - Markov chain probability table
 - Based on observed mutations accepted in evolution. Adenine can mutate into thymine, etc.
- Applications to protocol analysis? Datatypes
 - Binary data mutates into other binary data, as ASCII mutates into other ASCII

PI Similarity Matrices

- 256x256 matrix
- Contains mutation probabilities between every character
- Direct match has probability of 1
- Others are categorized and weighted
- Arbitrary example:
 - ASCII character set, probability = .3
 - ASCII printable, probability = .4
 - Binary, probability = .4

What this Allows

- This allows more optimized alignments, with sequences converging on similar data types and reduces the number of incorrect gaps
- Similarity matrices must be tweaked
 - It is not uncommon to spend a lot of time creating these matrices
 - Bioinformatics scientists spend years perfecting their version of similarity matrices (BLOSUM, PAM, etc.)

What Now?

- Illustrated the ability to align two sequences to each other and discern protocol fields
- Shown how similarity matrices can be used to optimize alignment
- Is it really useful only comparing two sequences?

Multiple Sequence Alignment

Act of aligning more than 2 sequences

Uses NW as alignment algorithm

Computation issues

Computation of Multiple NW

- To perform NW algorithm on multiple sequences, a hypercube would be traversed
- This leads to NP-completeness
- 2ⁿ x Lⁿ
- Where n is the number of sequences and L is the length of the sequences
- In other words, our sun will supernova before finishing the alignment 1000, 800 byte sequences

Heuristic Sequence Alignment

Sacrificing accuracy for time

 Objective: To align every sequence to each other in a reasonable amount of time

However, results are never perfect

Phylogenetic Trees

- A tree of evolutionary development
 - Used in biology to construct taxonomic groupings based purely on DNA analysis as opposed to fossil records
- Typically binary trees
- Interesting parallel in protocol analysis
 - A protocol mimics evolution by changing fields
 - This can be characterized as a mutation
- What came first? GET /index.html or GET /?

Phylogeny in Biology

Creating Phylogenetic Trees

- UPGMA cluster distance algorithm
 - Unweighted Pair Group Method using Arithmetic Averages

$$d_{i,j} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d_{p,q}$$

Where $d_{i,j}$ is the distance between two clusters C_i and C_j

Building the Tree

- 1. Place each sequence into an individual cluster, insert cluster into universal set
- 2. Use UPGMA algorithm to calculate distance between each cluster, finding two clusters where d_{ii} is minimal
- 3. Create a new cluster k. $C_k = C_i \cup C_j$
- 4. Define a node k with child nodes i and j
- 5. Add C_k to the universal set and remove C_i and C_j

Phylogeny in Protocol Analysis

Phylogenetic tree of the SMB protocol

More Than a Pretty Picture

Phylogenetic tree of the SMB protocol

The Tree is your Guide

- Helps categorize subtypes of a particular protocol
 - SMB contains at least 11 main subtypes as illustrated
- Tree acts as a guide to perform actual multiple sequence alignment
- As opposed to NP-complete hypercube traversal, the UPGMA tree performs n comparisons where n is equal to the depth of the tree.

Multiple Sequence Alignment

- Rule: Once a gap always a gap
- Recursive Traversal Mechanism
 - If root is NULL, go left, then right
 - If left is !NULL and right !NULL, align sequences and choose the sequence with the least number of gaps inserted.
 - Seq1: GET /index.html HTTP/1.0
 - Seq2: GET /______ HTTP/1.0
 - Therefore: Seq1 is chosen to be the representative
 - Place new sequence in root
 - Keep track of edits in edge

Therefore

```
Sequence 1 Aligned = E(1,2) + E(1',3)
Sequence 2 Aligned = E(2,1) + E(1',3)
Sequence 3 Aligned = E(3, 1')
```

Analyzing the Results Qualitatively

Example

Conclusion:

GET / <variable> HTTP/1.0 Host: <variable>.<variable> User-Agent: <variable> Accept: text/xml

Definitely works on binary protocols, but isn't as apparent on slides.

Analyzing the Results Quantitatively

- Statistical analysis on columns
 - Histograms
 - Build a consensus sequence as performed on previous
 - Mutation rates & offset comparison
 - · Group based on mutation rate: Sequence Ids, checksum
- Beware of junk data
 - In last example, junk data could have been a POST in a sea of GETs
- Classification is your friend
 - If you can adequately classify in beginning, data results will be clearer
 - Entropic edit distance
 - N-gram analysis

Experimental Phase

- Initial thought: Simply separate dynamic data versus static data, however, this is not verbose enough
- Identifying integer fields: Build n-gram frequency tables for 1, 2 and 4 byte window sizes
- Observe rate of mutation for each n-gram
 - Example 1: If two consecutive bytes mutate at the same rate, chances are they are part of the same field and perhaps a checksum
 - Example 2: If in two consecutive bytes, the LSB increments faster than the GSB, it may be a 16-bit sequence identifier field.

Next Steps

Current Ideas

- Building protocol profile on each sequence individually, filtering out deviants
- Build single consensus sequence to describe entire protocol
 - Not usually feasible since many block-based protocols such as ISAKMP, SMB, etc. have many layers.
- Present data in an intuitive way to allow improved human estimation and understanding
 - Colors, interface design, etc.
 - This can never be fully automated if accuracy is in mind

Applications

- This technology can be used for:
 - Understanding unknown protocols
 - Fuzz network protocols more efficiently
 - Instead of writing protocol specifications to fuzz against, have them be auto-generated from a tcpdump sample
 - Learning the structure of any sequence containing complex and somewhat random data
- Do you have any ideas?

Conclusions

- Never be fully automated 100%
- Experimental technology
- Framework under development
 - Python/C++, cross platform
 - Widget based visual programming interface similar to the Orange data mining application (http://magix.fri.uni-lj.si/orange/)
 - Open source and looking for interested people to help
- Closing note: Solutions to computer related problems can be found in other sciences.
 It is important to expand your horizons.

Questions/Comments/Ideas?

Thanks for coming

Marshall Beddoe <u>mbeddoe@baselineresearch.net</u>
Baseline Research <u>http://www.baselineresearch.net/Pl</u>

If you are interested in contributing, please contact me.