

Giving back motion through voice

23-25 April 2025
Lausanne EPFL
Lemanic Life Sciences Hackathon

The Problem

People living with Spinal Cord Injury (SCI), which can lead to partial or complete loss of hand motor function. [1]

"The top priority for patients affected by SCI is regaining hand functions" [2]

^[1] Wu, A. M., et al. (2023)

^[2] Anderson, K. D. (2004)

The Problem

Grasping is essential for daily life and independence [1].

Nervous system damage can impair this ability [2].

^[1] Y. Liu et al. 2021

^[2] A. Renne, J. A et al,. 2023

Current solution

Brain-Computer Interface

Complex, experimental, invasive

Surgery

Risky, irreversible, very expensive

Physical Therapy

Slow, limited recovery

Functional Electrical Stimulation (FES)

Stimulation of muscles using electrical pulses [1]

Restoration of impaired motor functions [2]

Intention Recognition in FES

Current Solutions

- Muscle (EMG) and brain (EEG) signals [1]
- Motion signals [4, 5]

Challenges

- Instability in intention decoding [2, 3]
- Limited application in real-world scenarios

Closed-Loop Stimulation

• Traditionally, rehabilitation therapies use fixed electrical currents [1]

 Adaptation with sensory feedback is crucial [2, 3]

Related Work

Related Work

C. Lin, 2025 in IEEE Transactions on Medical Robotics and Bionics

Grasp It is a Python-based software system designed to induce hand movements—specifically grasping—

Controller

Roadmap

Our Competitive Advantage

Tailor-Made

- Adaptive feedback-based closed-loop system
- Works across different muscle types, skin conditions, and arm mobility levels

Easy to use

- Non-invasive solution
- Modular and lightweight
- Voice command recognition — even works for users with speech impairments

Affordable

- Designed to be cost-effective and accessible for individual users
- Also suitable for therapeutic centers and research institutions

The Team

Arash SAL MOSLEHIAN Jérémy **OLIVIER** Julie **KIEFFER** Milo **SANDERS** Glodi **DOMINGOS** Johan BENJELLOUN Leandro SARAIVA MAIA Bianca **ZILIOTTO**

Project proposed by Federico CIOTTI (Left to right)

Mobile App Prototype

