coursework2

Problem3

In lecture, we examined the stability of multiplying vectors with vectors and triangular matrices. We now consider the problem of computing the general matrix product Ax=b, where $A\in\mathbb{C}^{n\times n}$ and $x,b\in\mathbb{C}^n$. We use the following simple algorithm to compute b for given A, x

Algorithm 3 Matrix-Vector Multiplication

```
1: b = 0
```

2: **for**
$$i = 1$$
 to n **do**

3: **for**
$$j = 1$$
 to n **do**

$$4: b_i = b_i + A_{ij}x_j$$

5: end for

6: end for

Perform a backward stability analysis of this algorithm. You may assume the given data are floating-point numbers (errors are only introduce by arithmetic operations)

we assume the floating point precise of the machine that this algorithm will run on is $\epsilon_{\rm machine}$, and the floating point operations to be \oplus, \otimes for add ans multiply, and fl() for convert the numerical values to the real value used in the program

according to the question

- input data can be seen as x
- output is Ax

in order to check an algorithm is backwards stable, we need to check

•
$$ilde{f}(x) = f(ilde{x})$$

$$ullet rac{|| ilde{x}-x||}{||x||} = \mathcal{O}(\epsilon_{ ext{machine}})$$

for clarity

we first analyse the inner cycle, or line 3 to 5,

then the inner loop will iteratively increment b_i by $A_{ij}x_j$

therefore, the inner loop does $b_i = b_i \oplus (A_{ij} \otimes x_j)$ iteratively

Since

$$fl(A_{ij})\otimes fl(x_j) = A_{ij}\otimes x_j \ = (1+\delta_1)A_{ij}x_j$$

where, as the question states, we assume everything is floating point, or fl is the identity function. δ_1 is the error caused during multiplying floating point numbers and $|\delta| \leq \epsilon_{\rm machine}$

therefore we can show that, the inner cycle will turn b_i to

$$b_i + \sum_{j=1}^n (1+\delta_1) A_{ij} x_j$$

combined with the outer loop, which does the same operation for each i, independently the program turns b (initially 0), to $(1+\delta_1)Ax$

therefore $ilde{f}(x) = (1 + \delta_1)Ax$

to satisfy $f(\tilde{x})$ which f(x) = Ax, we let $\tilde{x} = (1 + \delta_1)x$

then

$$egin{aligned} rac{|| ilde{x}-x||}{||x||} &= rac{||(1+\delta_1)x-x||}{||x||} \ &= rac{||(\delta_1)x||}{||x||} \ &= \mathcal{O}(\epsilon_{ ext{maghing}}) \end{aligned}$$

therefore, we can safely conclude that this algorithm is backward stable

Problem 4

We defined the growth factor for Gaussian elimination of a matrix $A \in \mathcal{L}^{m imes m}$ to be

$$ho = rac{\max_{i,j} |u_{i,j}|}{\max_{i,j} |a_{i,j}|}$$

where A=LU, $a_{i,j}$ is the element A[i,j] and $u_{i,j}$ is the element U[i,j]. Show that with partial pivoting this growth factor is bounded by $\rho \leq 2^{m-1}$

when we swap rows with partial pivoting

consider the following example, we switch the rows of

$$egin{bmatrix} a & b \ c & d \end{bmatrix}
ightarrow egin{bmatrix} c & d \ a & b \end{bmatrix}$$

then in gaussian eliminate, we compute a multiplier of $\frac{a}{c}$ and turn the matrix into

$$\begin{bmatrix} c & d \\ 0 & b - \frac{a}{c}d \end{bmatrix}$$

by subtracting $\frac{a}{c}$ times the first row from the second row

or, if we use the syntax we used for ρ

$$u_1 = a_1 - \frac{a}{c}a_2$$

since we only swap when c > a, this guarantees that the scaling factor $|\frac{a}{c}| \le 1$ (for negatives, it is similar same)

and again we generalise this process, let m be the scaling factor with $|m| \leq 1$

then $u_i = a_i - m \bullet a_{pivot}$

notice that since $|m| \leq 1$, the maximum possible growth, or $\max \rho_{\mathrm{one\ step}} = \max \frac{\max_{i,j} |u_{i,j}|}{\max_{i,j} |a_{i,j}|} = 2$

this happens when m=-1

so at every step we can at most double the ρ , since A is m*m matrix, we at most do m-1 operations

optimally, all the steps double rho, and ho can be seen as having a initial value of 1

therefore, $\rho \leq 2^{m-1}$

or ρ is bounded by 2^{m-1}