

EXAMENUL DE BACALAUREAT – 2007

Proba scrisă la MATEMATICĂ PROBA D

Varianta020

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul vectorului $\vec{v} = 5\vec{i} + 12\vec{j}$.
- (4p) b) Să se calculeze lungimea segmentului cu capetele în punctele A(3, 4) și C(4, -5).
- (4p) c) Să se calculeze $\sin \frac{\pi}{2} \cdot \sin \frac{\pi}{3}$.
- (4p) d) Să se determine ecuația tangentei la cercul $x^2 + y^2 = 25$ în punctul P(3, -4).
 - e) Să se calculeze lungimea laturii BC a triunghiului ABC în care AB = 2, AC = 2 și
- $(2\mathbf{p}) \qquad m(\angle BAC) = \frac{\pi}{6}.$
- (2p) f) Să se determine $a, b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $a + bi = (\cos 30^\circ + i \sin 30^\circ)^3$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze elementul $\hat{2}^{2007}$ în (Z_3, \cdot) .
- (3p) b) Să se calculeze expresia $E = C_{12}^3 C_{12}^9$.
- (3p) c) Să se rezolve în mulțimea numerelor reale strict pozitive ecuația $\log_2 x = \log_4 x$.
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $2^x = 4^x$.
- (3p) e) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $n! < n^3$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^3 + 2x 10$.
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x) dx.$
- (3p) c) Să se calculeze $\lim_{x \to 0} \frac{f(x) f(0)}{x}.$
- (3p) d) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .
- (3p) e) Să se calculeze $\lim_{n\to\infty} \frac{7n+3}{8n-2}$.

SUBIECTUL III (20p)

Se consideră $a,b,c,d \in \mathbb{C}$ iar în mulțimea $M_2(\mathbb{C})$ matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,

 $B = \begin{pmatrix} y & -b \\ 0 & x \end{pmatrix}$ și $C = \begin{pmatrix} x & 0 \\ c & y \end{pmatrix}$, unde $x, y \in \mathbb{C}$. Notăm prin tr(A) = a + d urma matricei A.

- (4p) a) Să se calculeze $tr(I_2)$.
- (4p) b) Să se arate că tr(X+Y)=tr(X)+tr(Y) și tr(XY)=tr(YX), $\forall X, Y \in M_2(\mathbb{C})$.
- (4p) c) Să se calculeze UV VU, unde $U = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$, $V = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- (2p) d) Să se arate că dacă $D = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$, atunci se pot alege $x, y \in \mathbb{C}$ astfel încât matricele B și C să verifice relatia D = C B.
- (2p) e) Să se arate că dacă $b \neq 0$, $c \neq 0$, atunci matricea $S = \begin{pmatrix} 0 & -\frac{b}{c} \\ 1 & 0 \end{pmatrix}$ este inversabilă şi $S^{-1}BS = C$.
- (2p) f) Să se arate că nu există $X, Y \in M_2(\mathbb{C})$ astfel încât $I_2 = XY YX$.
- (2p) **g**) Să se arate că pentru o matrice oarecare $W = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$, cu $bc \neq 0$, există matricele $X, Y \in M_2(\mathbb{C})$ astfel încât W = XY YX dacă și numai dacă tr(W) = 0.

SUBIECTUL IV (20p)

Se consideră șirurile $(I_n)_{n\geq 0}$, definit prin $I_0 = \int_0^{\frac{\pi}{2}} 1 \, dx$, $I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$, $n \geq 1$ și $(w_n)_{n\geq 1}$ definit prin $w_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \sqrt{2n+1}$.

- (4p) a) Să se calculeze I_0 și I_1 .
- (4p) b) Utilizând metoda integrării prin părți, să se arate că $I_n = \frac{n-1}{n} I_{n-2}, \forall n \ge 2, n \in \mathbb{N}.$
- (4p) c) Utilizând metoda inducției matematice, să se arate că $I_{2n} = \frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \frac{\pi}{2}, \quad \forall n \in \mathbb{N}^*$.
- (2p) d) Să se arate că $I_{2n+1} = \frac{2}{1} \cdot \frac{4}{3} \cdot \dots \cdot \frac{2n}{2n-1} \cdot \frac{1}{2n+1}, \ \forall n \in \mathbb{N}^*.$
- (2p) e) Să se arate că $1 \le \frac{I_n}{I_{n+1}} \le \frac{n+1}{n}, \forall n \in \mathbb{N}^*$
- (2p) f) Să se verifice că $\frac{I_{2n}}{I_{2n+1}} = (w_n)^2 \cdot \frac{\pi}{2}, \quad \forall n \in \mathbb{N}^*.$
- (2p) g) Să se arate că $\lim_{n\to\infty} w_n = \sqrt{\frac{2}{\pi}}.$

2