1 Dynamical System

The following ODEs govern calcium (c) dynamics

$$\frac{dc}{dt} = J_{IP3R} + J_{ERleak} - J_{SERCA} + \delta[J_{ECSadd} - J_{PMCA} + J_{SOC}]$$
 (1)

$$\frac{dc_{tot}}{dt} = \delta[J_{ECSadd} - J_{PMCA} + J_{SOC}] \tag{2}$$

$$\frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_h} \tag{3}$$

where the equations related to h are

$$\tau_h = \frac{1}{a_2(Q_2 + c)} \tag{4}$$

$$h_{\infty} = \frac{Q_2}{Q_2 + c} \tag{5}$$

$$Q_2 = d_2 \left(\frac{p + d_1}{p + d_3}\right) \tag{6}$$

The various fluxes J are given each by

$$J_{IP3R} = v_{IP3R} m_{\infty}^3 n_{\infty}^3 h^3 (c_{ER} - c)$$
 (7)

$$m_{\infty} = \frac{p}{p+d_1}, \quad n_{\infty} = \frac{c}{c+d_5} \tag{8}$$

$$m_{\infty} = \frac{p}{p+d_1}, \quad n_{\infty} = \frac{c}{c+d_5}$$

$$J_{SERCA} = v_{SERCA} \frac{c^{1.75}}{c^{1.75} + k_{SERCA}^{1.75}}$$

$$J_{PMCA} = v_{PMCA} \frac{c^2}{c^2 + k_{PMCA}^2}$$
(10)

$$J_{PMCA} = v_{PMCA} \frac{c^2}{c^2 + k_{PMCA}^2} \tag{10}$$

$$J_{SOC} = v_{SOC} \frac{k_{SOC}^2}{k_{SOC}^2 + c_{ER}^2} \tag{11}$$

$$J_{ERleak} = v_{ERleak}(c_{ER} - c) \tag{12}$$

$$J_{ECSadd} = v_{in} - k_{out}c (13)$$

and in equations (1), (2), δ is a scaling size parameter. The other dynamic variable of interest is IP3 (p), which has ODEs

$$IP3_{production} = v_{\beta}G^* + v_{+}\frac{k_{\delta}}{1+p}\frac{c^2}{c^2 + k_{PLC\delta}^2}$$

$$\tag{14}$$

$$IP3_{degradation} = v_{-} \frac{c^4}{c^4 + k_d^4} \frac{p}{p + k_3} + r_{5p}p \tag{15}$$

$$\frac{dp}{dt} = IP3_{production} - IP3_{degradation} \tag{16}$$

 G^* is the strength of external stimulation to the system and our bifurcation parameter. Importantly in equations (14) and (15), v_{δ} is the strength of positive $c \to p$ feedback, and v_{3k} is the strength of negative $c \to p$ feedback. If $v_{\delta} = 0$ or $v_{3k} = 0$, we say that there is no positive or no negative feedback respectively.

The GPCR model has the following equations

$$\frac{dG^*}{dt} = k_p \gamma G - k_m G^* - k_{d1} G^* - k_{d2} G^* \lambda \tag{17}$$

$$\frac{dG_{d1}}{dt} = k_{d1}G^* - k_{r1}G_{d1} \tag{18}$$

$$\frac{dG_{d2}}{dt} = k_{d2}(G^* + G)\lambda - k_{r2}G_{d2}$$
(19)

$$\frac{d\lambda}{dt} = k_{\lambda+}G^* - k_{\lambda-}\lambda \tag{20}$$

All parameters are given in the following table:

Parameter	Description	Value/Unit
	Calcium Parameters	
V _{IP3R}	Max IP3 Receptor Flux	0.222 s^{-1}
v_{ER_leak}	Cytosol to ER leak	0.002 s^{-1}
Vin	Rate of leak into Cytosol from Plasma Membrane	$0.05 \mu { m M~s^{-1}}$
k _{out}	Rate of leak out of Cytosol from Plasma Membrane	$1.2 \ {\rm s}^{-1}$
$v_{ m SERCA}$	Max SERCA Flux	$0.9 \mu {\rm M} {\rm \ s}^{-1}$
k_{SERCA}	Half-Saturation for SERCA	$0.1 \mu \mathrm{M}$
v_{PMCA}	Max PMCA Flux	$10 \mu {\rm M} \; {\rm s}^{-1}$
k_{PMCA}	Half-Saturation for PMCA	$2.5 \mu \mathrm{M}$
$ m v_{SOC}$	Max SOC channels Flux	$1.57 \mu { m M~s^{-1}}$
k_{SOC}	Half-Saturation for SOC channels	$90\mu\mathrm{M}$
δ	Scale Factor (ratio of membrane transport to ER transport)	0.2^{-}
d_1	Dissociation constant for IP3	$0.13 \mu \mathrm{M}$
d_2	Dissociation constant for Ca2+ inhibition	$1.049 \mu { m M}$
d_3	Receptor dissociation constant for IP3	$0.9434 \mu M$
d_5	Ca2+ activation constant	$0.08234 \mu M$
a_2	Ca2+ inhibition constant	$0.04 \ \mu \text{M}^{-1} \ \text{s}$
	IP3 Parameters	,
V_{eta}	$PLC\beta$ IP3 Generation from GPCR	0.2
$\mathrm{k}_{\delta}^{^{\!$	'	1.5
$ m k_{PLC\delta}$		0.1
V_	Negative Calcium to IP3 Feedback via Phosphorylation	0.1(2.0)
v_{+}	Positive Calcium to IP3 Feedback Rate via $PLC\delta$	0.005 (0.01)
\mathbf{k}_d		0.7
k_3		1
\mathbf{r}_{5p}	Natural IP3 Degradation	0.08
бр	GPCR Parameters	
$\overline{\mathbf{k}_p}$	GPCR Activation Rate	0.02 (0.03)
\mathbf{k}_m	GPCR Deactivation Rate	0.2 (0.04)
\mathbf{k}_{d1}	Homologous (Gd1) Deactivation Rate	0.02
\mathbf{k}_{r1}	Homologous Reactivation Rate	0.01
\mathbf{k}_{d2}	Heterologous (Gd2) Deactivation Rate	1.2 (0.003)
\mathbf{k}_{r2}	Heterologous Reactivation Rate	0.005 (0.000)
\mathbf{k}_{lp}	Downstream PKA (λ) Production	0.0002
\mathbf{k}_{lm}	PKA (λ) Degradation	0.004
	Diversity Transient Parameters	
$r_{\rm rise}$	Rate of Exponential Growth	[0.002-12] s ⁻
$ m d_{decay}$	Duration of IP3 decline	[0.002-12] s $[15-220]$ s
•	Duration of IP3 increase	[13-220] s [1-41] s
d_{rise}		