Dimensionality Reduction: Singular Value Decomposition (SVD) & Principal Component Analysis (PCA)

High-Dimensional Data

High-Dimensions = Lot of Features

- Document classification
 - Features per document = thousands of words/unigrams, millions of bigrams, contextual information

- Surveys Netflix
 - 480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

High-Dimensional Data

High-Dimensions = Lot of Features

- Discovering gene networks
 - 10,000 genes x 1000 drugs x several species
- MEG Brain Imaging
 - 120 locations x 500 time points x 20 objects

Curse of Dimensionality

Why are more features bad?

- Redundant features
 - not all words are useful to classify a document
- Hard to interpret and visualize
- Hard to store and process data
 - computationally challenging
- Complexity of decision boundaries tends to grow with # features

Dimensionality Reduction

Represent data with fewer dimensions

- **Easier learning** fewer parameters
- Visualization show high dimensional data in 2D
- Discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lowerdimensional
 - noise reduction

Informally: Given data points in *D*-dimensional space

- Convert them to data points in d<D dimensions
- Goal: With minimal/maximal information loss/maintenance

Dimensionality Reduction

Assumption: Data (approximately) lies on a lower dimensional space

Singular Value Decomposition(SVD)

Orthonormal Basis

A set of vectors $\{u_1, u_2, ..., u_d\} \subset \mathbb{R}^d$ form an orthonormal basis if:

- unit ℓ_2 -norm: $||u_i||_2 = 1$, for all i=1 to d
- orthogonal to each other: $(u_i, u_j)=0$, for all $i \neq j$

Let $\{u_1, u_2, ..., u_d\}$ be any orthonormal basis of \mathbb{R}^d

• Any vector $\mathbf{x} \in \mathbb{R}^d$ can be expressed as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_d$, for some real-valued $\alpha_1, \alpha_2, ..., \alpha_d$

$$\mathbf{x} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_d \mathbf{u}_d$$

Singular Value Decomposition (SVD)

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be anymatrix
- Rank: $r = \text{rank}(\mathbf{A}) (\leq m, n)$
- SVD: $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \boldsymbol{V}^T = \sum_{i=1}^r \sigma_i \, \boldsymbol{u}_i \boldsymbol{v}_i^T$
 - Singular values: $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$
 - Σ diagonal matrix, with $\Sigma_{ii} = \sigma_i$
 - Left singular matrix/vectors: $\mathbf{U}=\{u_1,u_2,\dots,u_r\}\in\mathbb{R}^m$ forms an orthonormal basis, i.e., $\mathbf{U}^\mathsf{T}\,\mathbf{U}=\mathbf{I}_\mathsf{r}$
 - Right singular matrix/vectors: $V = \{v_1, v_2, ..., v_r\} \in \mathbb{R}^n$ forms an orthonormal basis, i.e., $V^T V = I_r$

Singular Value Decomposition (SVD)

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be anymatrix
- Rank: $r = \operatorname{rank}(\mathbf{A}) (\leq m, n)$
- SVD: $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \boldsymbol{V}^T = \sum_{i=1}^r \sigma_i \, \boldsymbol{u}_i \boldsymbol{v}_i^T$
 - Singular values: $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$

Singular Value Decomposition (SVD)

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be anymatrix
- Rank: $r = \text{rank}(\mathbf{A}) (\leq m, n)$
- SVD: $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \boldsymbol{V}^T = \sum_{i=1}^r \sigma_i \, \boldsymbol{u}_i \boldsymbol{v}_i^T$
- Truncated SVD: for 0 < k < r
 - $\bullet \mathbf{A}_{\mathbf{k}} = \sum_{i=1}^{k} \sigma_i \, \boldsymbol{u}_i \boldsymbol{v}_i^T$
 - A_k is the **best** rank-k approximation to A

$$\mathbf{A}_k = \arg\min_{\mathbf{B}} \|\mathbf{A} - \mathbf{B}\|_F^2$$
, s.t. $\operatorname{rank}(\mathbf{B}) \le k$.

Matrix Frobenius Norm

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be anymatrix
- Frobenius norm

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

A generalization of the l_2 -vector norm to matrix

Relation with singular values

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$$

 σ_i is the *i*-th singular value of **A**

Error of Truncated SVD

- Let $A \in \mathbb{R}^{m \times n}$ be anymatrix and rank(A)=r
- SVD: $\mathbf{A} = \sum_{i=1}^{r} \sigma_i \, \boldsymbol{u}_i \boldsymbol{v}_i^T$
- Truncated SVD: $\mathbf{A}_{\mathbf{k}} = \sum_{i=1}^{k} \sigma_i \, \boldsymbol{u}_i \boldsymbol{v}_i^T$ (for $0 < \mathbf{k} < \mathbf{r}$)
- Error of the truncated SVD

$$\|\mathbf{A} - \mathbf{A}_k\|_F^2 = \sum_{i=k+1}^r \sigma_i^2$$

Bottom (the smallest) singular values

Original image size (1000 x 1500)

Rank-5 truncated SVD

Rank-20 truncated SVD

Rank-50 truncated SVD

Rank-100 truncated SVD

Original image size (1000 x 1500)

Rank-100 truncated SVD

- The original matrix
 - Size: 1000×1500
 - #Entries: 1.5M
- The rank-100 truncated SVD
 - $\mathbf{A}_{100} = \sum_{i=1}^{100} \sigma_i \, \mathbf{u}_i \, \mathbf{v}_i^T$
 - Size
 - $\{\sigma_i\}$: 100×1
 - $\{u_i\}$: 100×1000
 - $\{v_i\}:100\times1500$
 - #Entries: 0.25M
- Truncated SVD saves 83% storage

Power Iteration for Computing Truncated SVD

Theorem. If $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ is the SVD of A, then $A^TA = \sum_{i=1}^r \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$

Proof.

•
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \left(\sum_{i=1}^{r} \sigma_{i} \mathbf{v}_{i} \mathbf{u}_{i}^{T}\right) \left(\sum_{j=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right)$$

•
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \left(\sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{u}_i^T \mathbf{u}_i \mathbf{v}_i^T\right) + \left(\sum_{i \neq j} \sigma_i \sigma_j \mathbf{v}_i \mathbf{u}_i^T \mathbf{u}_j \mathbf{v}_j^T\right)$$

$$\left(\sum_{i} \mathbf{x}_{i}^{T}\right) \cdot \left(\sum_{j} \mathbf{x}_{j}\right) = \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} + \sum_{i \neq j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

Theorem. If $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ is the SVD of A, then $A^TA = \sum_{i=1}^r \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$

Proof.

•
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \left(\sum_{i=1}^{r} \sigma_{i} \mathbf{v}_{i} \mathbf{u}_{i}^{T}\right) \left(\sum_{j=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right)$$

•
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \left(\sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{u}_i^T \mathbf{u}_i \mathbf{v}_i^T\right) + \left(\sum_{i \neq j} \sigma_i \sigma_j \mathbf{v}_i \mathbf{u}_i^T \mathbf{u}_j \mathbf{v}_j^T\right)$$

• A^TA =
$$\left(\sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \ 1 \ \mathbf{v}_i^T\right) + \left(\sum_{i \neq j} \sigma_i \ \sigma_j \ \mathbf{v}_i \ 0 \ \mathbf{v}_j^T\right)$$

Using the properties of orthonormal basis: $\mathbf{u}_i^T \mathbf{u}_i = 1$ and $\mathbf{u}_i^T \mathbf{u}_i = 0$ for $i \neq j$.

Theorem. If $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ is the SVD of A, then $A^TA = \sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$

Proof.

•
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \left(\sum_{i=1}^{r} \sigma_{i} \mathbf{v}_{i} \mathbf{u}_{i}^{T}\right) \left(\sum_{j=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right)$$

•
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \left(\sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{u}_i^T \mathbf{u}_i \mathbf{v}_i^T\right) + \left(\sum_{i \neq j} \sigma_i \sigma_j \mathbf{v}_i \mathbf{u}_i^T \mathbf{u}_j \mathbf{v}_j^T\right)$$

• A^TA =
$$\left(\sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \ 1 \ \mathbf{v}_i^T\right) + \left(\sum_{i \neq j} \sigma_i \ \sigma_j \ \mathbf{v}_i \ 0 \ \mathbf{v}_j^T\right)$$

• ATA =
$$\sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$$

Theorem. If $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ is the SVD of A, then $A^TA = \sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \sum_{i=1}^{r} \sigma_i^2 \, \boldsymbol{v}_i \, \boldsymbol{v}_i^T \qquad \qquad \mathbf{A}^{\mathsf{T}}\mathbf{A} \, \boldsymbol{v}_i = \sigma_i^2 \, \boldsymbol{v}_i$$

Eigenvalue decomposition of A^TA to obtain (σ_i, v_i)

Efficient Power Iteration Method

Power Iteration for Truncated SVD

Goal: Compute the top 1 eigenvalue/eigenvector of $\mathbf{A}^T \mathbf{A} = \sum_{i=1}^r \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$

Algorithm:

- 1. Randomly initialize a vector $\mathbf{x_0}$ (with unit ℓ_2 -norm);
- 2. Repeat the power iteration: $x_q \leftarrow A^T A x_{q-1}$ and $x_q \leftarrow x_q / ||x_q||_2$

2 matrix-vector multiplications

$$b=A X_{q-1}$$
 $c=A^Tb$

Cheap computation

Power Iteration for Truncated SVD

Goal: Compute the top 1 eigenvalue/eigenvector of $\mathbf{A}^T \mathbf{A} = \sum_{i=1}^r \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$

Algorithm:

- 1. Randomly initialize a vector $\mathbf{x_0}$ (with unit ℓ_2 -norm);
- 2. Repeat the power iteration: $x_q \leftarrow A^TA x_{q-1}$ and $x_q \leftarrow x_q / ||x_q||_2$

Convergence analysis ($\mathbf{x_q}$ converges to $\mathbf{v_1}$)

- $x_0 = \sum_{i=1}^n \alpha_i v_i$ Every vector can be written as a linear combination of the orthonormal basis
- $x_q \propto (A^T A)^q x_0$ $(A^T A)^q = \sum_{i=1}^r \sigma_i^{2q} v_i v_i^T$
- $\boldsymbol{x}_q \propto (\sum_{i=1}^r \sigma_i^{2q} \boldsymbol{v}_i \boldsymbol{v}_i^T) (\sum_{j=1}^n \alpha_j \boldsymbol{v}_j) = \sum_{i=1}^r \alpha_i \sigma_i^{2q} \boldsymbol{v}_i$

•
$$\mathbf{x}_q \propto \sum_{i=1}^r \alpha_i \left(\frac{\sigma_i}{\sigma_1}\right)^{2q} \mathbf{v}_i = \alpha_1 \mathbf{v}_1 + \sum_{i=2}^r \alpha_i \left(\frac{\sigma_i}{\sigma_1}\right)^{2q} \mathbf{v}_i$$
 Converge to 0 because $\frac{\sigma_i}{\sigma_1} < \frac{\sigma_i}{\sigma_1}$

Power Iteration for Truncated SVD

Goal: Compute the top k eigenvalue/eigenvector of $\mathbf{A}^T \mathbf{A} = \sum_{i=1}^r \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$

Algorithm:

- 1. Randomly initialize a vector $\mathbf{X}_0 \in \mathbb{R}^{n \times k}$
 - Entries are i.i.d. standard Gaussian
- Orthogonalize the columns: $X_0 \leftarrow \text{orth}(X_0)$;
- Repeat the power iteration:
 - i. $X_q \leftarrow A^T A X_{q-1}$; ii. $X_q \leftarrow \text{orth}(X_q)$

Summary: SVD

- SVD: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be anymatrix
 - $\mathbf{A} = \sum_{i=1}^{r} \sigma_i \, \mathbf{u}_i \, \mathbf{v}_i^T$; $r = \text{rank}(\mathbf{A}) \leq \text{min}(\mathbf{m}, \mathbf{n})$.

- Truncated SVD: abandon the bottom singular values/vectors
 - $\bullet \ \mathbf{A_k} = \sum_{i=1}^k \sigma_i \ \boldsymbol{u}_i \boldsymbol{v}_i^T$
 - A_k is the best rank-k approximation to A

• Power iteration (algorithm) for computing truncated SVD

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Assumption: Data (approximately) lies on a lower dimensional space

Basis of this subspace are an effective representation of the data

Identifying the basis is known as **Principal Component Analysis**

Which projection is better?

Principal Components (PC) are orthogonal directions that capture most of the variance in the data

1st PC – direction of greatest variability in data

 Projection of data points along 1st PC discriminate the data most along any one direction

Take a data point x_i (D-dimensional vector)

Projection of x_i onto the 1st PC v is v^Tx_i

Principal Components (PC) are *orthogonal* directions that capture **most** of the variance in the data

1st PC – direction of greatest variability in data

2nd PC – Next orthogonal direction of greatest variability

- remove all variability in first direction
- then find next direction of greatest variability

And so on ...

Data points $\mathbf{X} = [\boldsymbol{x}_1 \;,\; \boldsymbol{x}_2 \;,...,\; \boldsymbol{x}_n]$: assume data are centered Let $\boldsymbol{v}_1 \;, \boldsymbol{v}_2 \;,...,\; \boldsymbol{v}_d$ denote the principal components Orthogonal and unit norm $\boldsymbol{v}_i^T \boldsymbol{v}_i$ =1 and $\boldsymbol{v}_i^T \boldsymbol{v}_j = 0$ for $i \neq j$ Find vector that **maximizes sample variance** of projection

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$

Lagrangian: $\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} - \lambda \mathbf{v}^T \mathbf{v}$

$$\partial/\partial \mathbf{v} = 0$$

$$(\mathbf{X}\mathbf{X}^T - \lambda \mathbf{I})\mathbf{v} = 0 \qquad \Rightarrow (\mathbf{X}\mathbf{X}^T)\mathbf{v} = \lambda \mathbf{v}$$

$$(\mathbf{X}\mathbf{X}^T)\mathbf{v} = \lambda\mathbf{v}$$

Therefore, v is the eigenvector of sample covariance matrix XX^T

Sample variance of projection =
$$\mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda$$

Thus, eigenvalue λ denotes the amount of variability captured along that eigenvector

Let eigenvalues $\lambda_1 > \lambda_2 > \lambda_3 > \dots$

The 1st PC v₁ is the eigenvector of the sample covariance matrix XX^T associated with the largest eigenvalue λ_1

The 2^{nd} PC v_2 is the eigenvector of the sample covariance matrix XX^T associated with the second largest eigenvalue λ_2

And so on ...

Computing the Principal Components

The new basis are the eigenvectors of the sample covariance XX^T of the data

Transformed features are uncorrelated

Geometrical interpretation: centering data by transition and then followed by rotation

Linear transformation

Another Interpretation

Maximum Variance Subspace

• PCA finds vectors v such that projections on to the vectors capture *maximum variance in the data*

$$max_v \frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

Minimum Reconstruction Error

 PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction

$$min_{\boldsymbol{v}} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2$$

Dimensionality Reduction using PCA

The eigenvalue λ denotes the amount of variability captured along that dimension

Zero eigenvalues indicate no variability along those directions

Data exactly lies on a linear subspace

Keep data projections onto PCs with non-zero eigenvalues

say v1, ..., vd, where d = rank (XX^T)

Original Representation

Data point in the raw D-dimensional space

$$\mathbf{x_i} = [x_{i,1}, x_{i,2}, ..., x_{i,D}]$$

Transformed representation

Projection matrix $V \in \mathbb{R}^{D \times d}$ (d-dimensional vector)

$$V^T x_i = [v_1^T x_i, v_2^T x_i, \dots, v_d^T x_i]$$

Dimensionality Reduction using PCA

In high-dimensional problem, data usually lies *near* a linear subspace, as noise introduces small variability

Only keep data projections onto PCs with large eigenvalues

Can *ignore* the components of lesser significance

Might lose some information, but if the eigenvalues are small, don't lose much

Summary: PCA

Project high-dimensional data points into a lower-dimensional space

- Data points: X = (x₁,...,x_n)
- Define mean: $\underline{\mathbf{x}}$, and let $\underline{\mathbf{X}} = \mathbf{X} \underline{\mathbf{x}}$
- Principal components: set of orthonormal basis vectors (v₁,...,v_d)
 - Eigenvalue decomposition: $\underline{\mathbf{X}}\underline{\mathbf{X}}^T\mathbf{v}_i = \lambda_i\mathbf{v}_i$
 - where $\langle \mathbf{v}_{j,} \mathbf{v}_{j} \rangle = 1$, and $\langle \mathbf{v}_{i,} \mathbf{v}_{j} \rangle = 0$ for $j \neq i$
- Low-dim representation for x_i:
 - $\mathbf{z}_{i} = (z_{i,1},...,z_{i,d})$, where $z_{i,j} = \langle \mathbf{x}_{i} \underline{\mathbf{x}}_{i}, \mathbf{v}_{j} \rangle$

Relationship between SVD and PCA

Centered data points $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n] \in \mathbb{R}^{D \times n}$

SVD:
$$\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^T$$
 $\mathbf{U}^T\mathbf{U} = \mathbf{I}_r; \ \mathbf{V}^T\mathbf{V} = \mathbf{I}_r$

PCA: $\mathbf{X}\mathbf{X}^T\mathbf{s}_i = \lambda_i\mathbf{s}_i$ $\longrightarrow \mathbf{X}\mathbf{X}^T\mathbf{S} = \mathbf{S}\Lambda$ $\longrightarrow \mathbf{X}\mathbf{X}^T = \mathbf{S}\Lambda\mathbf{S}^T$
 $\mathbf{S}_i^T\mathbf{s}_i = 1; \mathbf{s}_i^T\mathbf{s}_j = 0, \forall i \neq j$ $\mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_D]$ $\mathbf{S}^T\mathbf{S} = \mathbf{S}\mathbf{S}^T = \mathbf{I}_D$
 $\mathbf{X}\mathbf{X}^T = \mathbf{U}\Sigma\mathbf{V}^T\mathbf{V}\Sigma^T\mathbf{U}^T$ $= \mathbf{U}\Sigma^2\mathbf{U}^T$

The **left singular vectors (U)** of **X** are the same as the **eigenvectors (S)** of **XX**^T

Similarly, the eigenvalues (Λ) of XX^T are the squares of the singular values (Σ) of X

Thus, PCA can reduce to computing the SVD of X (without forming XX^T)

Example of PCA

Eigenvectors and eigenvalues of covariance matrix for n=1600 inputs in d=3 dimensions.

PCA for Face Images

The space of all face images

- Each image as vectors of pixel of values
- Image could be high-dimensional
 - E.g., 100 x 100 image = 10,000 dimensions
- Few 10,000-dim vectors are valid face images
- We want to effectively model the subspace of face images

Eigenfaces [Turk, Pentland '91]

Input images

Eigenfaces: Principal components

Example: faces

Figenfaces from 7562 images:

top left image is linear combination of rest.

Sirovich & Kirby (1987) Turk & Pentland (1991)

Properties of PCA

Strengths

- Eigenvector method
- No tuning parameters
- Non-iterative
- No local optima

Weaknesses

- Limited to second order statistics
- Limited to linear projections

Summary

- Singular Value Decomposition (SVD)
 - Truncated SVD as dimensionality reduction
 - **Best** rank-*k* approximation
- Principal Component Analysis (PCA)
 - Linearly project high-dim data points into low-dim space
 - Maximize data variance
 - Minimize data mean square reconstruction
- PCA can be reduced to SVD

Acknowledgement

Some slides are from

Arti Singh (CMU)

https://www.cs.cmu.edu/~aarti/Class/10701

/slides/Lecture20.pdf

Shusen Wang

https://github.com/wangshusen/DeepLearn ing/blob/master/Slides/5_DR_1.pdf