計量経済 II:中間試験

村澤 康友

2022年11月22日

注意:3 問とも解答すること.結果より思考過程を重視するので,途中計算等も必ず書くこと(部分点は大いに与えるが,結果のみの解答は0 点とする).

- 1. (20点) 以下で定義される時系列分析の専門用語をそれぞれ書きなさい.
 - (a) 平均 0 で系列相関のない共分散定常過程
 - (b) 標本自己相関関数の棒グラフ
 - (c) 予測誤差の2乗の(条件付き)期待値
 - (d) 変数間の理論的な関係を表した連立方程式
- 2. $(50 点) \{y_t\}$ を共分散定常な AR(2) 過程とする. すなわち任意の t について

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + w_t$$

 $\{w_t\} \sim \text{WN}(\sigma^2)$

- $\{y_t\}$ の自己共分散関数を $\gamma(.)$, 自己相関関数を $\rho(.)$ とする.
- (a) $E(y_t)$ を c, ϕ_1, ϕ_2 で表しなさい.
- (b) $\gamma(1) := \cos(y_t, y_{t-1})$ を $\gamma(0)$ と ϕ_1, ϕ_2 で表しなさい.
- (c) $\gamma(2) := \text{cov}(y_t, y_{t-2})$ を $\gamma(0), \gamma(1)$ と ϕ_1, ϕ_2 で表しなさい.
- (d) $\rho(1), \rho(2)$ と ϕ_1, ϕ_2 の関係を表す Yule–Walker 方程式を導きなさい.
- (e) Yule–Walker 方程式を解いて ϕ_1, ϕ_2 を $\rho(1), \rho(2)$ で表しなさい.
- 3. (30 点) 次頁のコンピューター出力は,旧西ドイツのマクロの所得(Y_t)・消費(C_t)・投資(I_t)の季節 調整済み四半期系列の対前期比変化率(対数階差),すなわち $\{\Delta \ln Y_t, \Delta \ln C_t, \Delta \ln I_t\}$ に関する 3 変量 VAR(2) モデルの推定結果(の一部)である.以下の各変数の予測に役立つと考えられる変数を,根拠を示して列挙しなさい.
 - (a) $\Delta \ln Y_t$
 - (b) $\Delta \ln C_t$
 - (c) $\Delta \ln I_t$

VAR モデル, ラグ次数: 2 最小二乗法 (OLS) 推定量, 観測: 1960:4-1982:4 (T=89)

方程式 1: ld_income

係数 標準誤差 <i>t</i> -ratio	p 値
	0.0003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3341
ld_income_2 0.0209787 0.123096 0.1704	0.8651
ld_consumption_1 0.305059 0.143900 2.120	0.0370
ld_consumption_2 0.0490191 0.143467 0.3417	0.7335
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1370
ld_investment_2	0.0351
方程式 2: ld_consumption	
係数 標準誤差 <i>t</i> -ratio	p 値
const $0.0123795 0.00296019 4.182$	0.0001
ld_income_1 0.289319 0.112313 2.576	0.0118
ld_income_2 0.366431 0.108987 3.362	0.0012
$10_{-0.284515}$ 0.127407 -2.233	0.0283
ld_consumption_2 -0.115976 0.127023 -0.9130	0.3639
ld_investment_1	0.9149
$1d_{investment_2}$ 0.0497398 0.0254619 1.953	0.0542
方程式 3: ld_investment	
係数 標準誤差 t-ratio	p 値
const $-0.00991912 0.0131944 -0.7518$	0.4543
ld_income_1 0.337485 0.500610 0.6741	0.5021
ld_income_2 0.182728 0.485787 0.3761	0.7078
ld_consumption_1 0.652044 0.567891 1.148	0.2542
ld_consumption_2 0.598070 0.566181 1.056	0.2939
ld_investment_1 -0.272565 0.113908 -2.393	0.0190
10^{-1} ld_investment_2 -0.134051 0.113491 -1.181	0.2410

解答例

- 1. 時系列分析の基本用語
 - (a) ホワイト・ノイズ
 - (b) コレログラム
 - (c) 平均 2 乗誤差 (MSE)
 - (d) 構造形
- 2. AR(2) 過程

(a)

$$E(y_t) = E(c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + w_t)$$

$$= c + \phi_1 E(y_{t-1}) + \phi_2 E(y_{t-2})$$

$$= c + \phi_1 E(y_t) + \phi_2 E(y_t)$$

$$= \frac{c}{1 - \phi_1 - \phi_2}$$

(b)

$$\gamma(1) := \cos(y_t, y_{t-1})$$

$$= \cos(c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + w_t, y_{t-1})$$

$$= \phi_1 \cos(y_{t-1}, y_{t-1}) + \phi_2 \cos(y_{t-2}, y_{t-1})$$

$$= \phi_1 \gamma(0) + \phi_2 \gamma(1)$$

$$= \frac{\phi_1}{1 - \phi_2} \gamma(0)$$

• $\gamma(1) = \phi_1 \gamma(0) + \phi_2 \gamma(1)$ で 5 点.

(c)

$$\gamma(2) := \cos(y_t, y_{t-2})$$

$$= \cos(c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + w_t, y_{t-2})$$

$$= \phi_1 \cos(y_{t-1}, y_{t-2}) + \phi_2 \cos(y_{t-2}, y_{t-2})$$

$$= \phi_1 \gamma(1) + \phi_2 \gamma(0)$$

(d) 前 2 問より Yule-Walker 方程式は

$$\rho(1) = \phi_1 + \phi_2 \rho(1)
\rho(2) = \phi_1 \rho(1) + \phi_2$$

(e) 第2式に $\rho(1)$ を掛けると

$$\rho(1) = \phi_1 + \phi_2 \rho(1)$$

$$\rho(1)\rho(2) = \phi_1 \rho(1)^2 + \phi_2 \rho(1)$$

 ϕ_2 を消去すると

$$\rho(1) - \rho(1)\rho(2) = \phi_1 - \phi_1\rho(1)^2$$

したがって

$$\phi_1 = \frac{\rho(1)(1 - \rho(2))}{1 - \rho(1)^2}$$

第 1 式に $\rho(1)$ を掛けると

$$\rho(1)^{2} = \phi_{1}\rho(1) + \phi_{2}\rho(1)^{2}$$
$$\rho(2) = \phi_{1}\rho(1) + \phi_{2}$$

 ϕ_1 を消去すると

$$\rho(2) - \rho(1)^2 = \phi_2 - \phi_2 \rho(1)^2$$

したがって

$$\phi_2 = \frac{\rho(2) - \rho(1)^2}{1 - \rho(1)^2}$$

3. VAR(2) モデル

有意水準 5 %で係数=0 の帰無仮説が棄却される説明変数を予測に役立つ変数とすると,各式で p 値 が.05 以下の説明変数は

- (a) $\Delta \ln C_{t-1}$, $\Delta \ln I_{t-2}$
- (b) $\Delta \ln Y_{t-1}, \Delta \ln Y_{t-2}, \Delta \ln C_{t-1}$
- (c) $\Delta \ln I_{t-1}$