H19T1A4

a) Bestimme ein Fundamentalsystem für die homogene Differentialgleichung

$$y'' - 2\beta y + \beta^2 y = 0$$

b) Bestimme alle Werte $\beta \in \mathbb{R}$ mit

$$\lim_{t \to \infty} y(t) = 0$$

für alle Lösungen $y:\mathbb{R}\to\mathbb{R}$ der homogenen Gleichung mit dem jeweiligen Parameter $\beta.$

c) Bestimme die allgemeine Lösung $y:\mathbb{R}\to\mathbb{R}$ der Differentialgleichung

$$y''(t) - 2\beta y'(t) + \beta^2 y(t) = e^{-2t}$$

Hinweis zu c): Eine Fallunterscheidung in β ist notwendig.

Zu a):

Übergang zum charakteristischen Polynom: (Ersetze $y\mapsto 1,\,y'\mapsto z,\,y''\mapsto z^2,\,\ldots)$

$$z^2 - 2\beta z + \beta^2 \stackrel{!}{=} 0$$

 $(z - \beta)^2$ hat doppelte Nullstelle β .

$$\Rightarrow \mu_1 : \mathbb{R} \to \mathbb{R}, t \mapsto e^{t\beta}, \quad \mu_2 : \mathbb{R} \to \mathbb{R}, t \mapsto te^{t\beta}$$

sind linear unabhängige Lösungen von $y'' - 2\beta y + \beta^2 y = 0$ und bilden damit ein Fundamentalsystem, da der Lösungsraum zu $y'' - 2\beta y + \beta^2 y = 0$ zwei-dimensional ist.

Zu b):

Laut a) hat

$$y(t) = a_1 \mu_1(t) + a_2 \mu_2(t) = e^{t\beta} (a_1 + a_2 t) \xrightarrow[t \to \infty]{} \begin{cases} 0, & \beta < 0 \\ a_1, & \beta = 0, \ a_2 = 0 \\ \infty, & \beta > 0, \ a_2 = 0, \ a_1 > 0 \end{cases}$$

d.h. nur für $\beta < 0$ konvergiere alle Lösungen für $t \to \infty$ gegen 0.

Zu c):

Nach a) bilden $\lambda_1: \mathbb{R} \to \mathbb{R}, t \mapsto e^{\beta t}$ und $\lambda_2: \mathbb{R} \to \mathbb{R}, t \mapsto te^{\beta t}$ ein Fundamentalsystem zu $y''(t) - 2\beta y'(t) + \beta^2 y(t) = e^{-2t}$.

Durch $x_1(t) := y(t), x_2(t) := y'(t)$ wird aus der Differentialgleichung das System:

$$x_1'(t) = x_2(t)$$

$$x_2'(t) = y''(t) = 2\beta y'(t) + \beta^2 y(t) + e^{-2t} = 2\beta x_2(t) + \beta^2 x_1(t) + e^{-2t}$$

In Matrixform:

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\beta^2 & 2\beta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ e^{-2t} \end{pmatrix}$$

Aus dem Fundamentalsystem λ_1 , λ_2 wird die Fundamentalmatrix $\phi: \mathbb{R} \to M(2 \times 2, \mathbb{R}), \ t \mapsto \begin{pmatrix} \lambda_1(t) & \lambda_2(t) \\ \lambda_1'(t) & \lambda_2'(t) \end{pmatrix} = \begin{pmatrix} e^{\beta t} & te^{\beta t} \\ \beta e^{\beta t} & e^{\beta t}(1+\beta t) \end{pmatrix}$ Damit berechten. nen sich die maximalen Lösungen zu

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\beta^2 & 2\beta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ e^{-2t} \end{pmatrix}, \quad \begin{pmatrix} x_1(\tau) \\ x_2(\tau) \end{pmatrix} = \xi \text{ aus}$$

$$\lambda_{(\tau,\xi)} = \phi(t)(\phi(t))^{-1}\xi + \phi(t) \int_{\tau}^{t} (\phi(s))^{-1} \begin{pmatrix} 0 \\ e^{-2s} \end{pmatrix} ds$$