Machine Learning

Linear Regression

선형 회귀

x(hour)	y(score)
9	90
8	80
4	40
2	20

시험성적 데이터

7시간 공부 할 경우 성적은 몇 점 일까?

y = 10x + 0

Linear Regression

$$y = wx + b$$

 $y = w_1x_1 + w_2x_2 + \cdots + w_{13}x_{13} + b$

모델 파라미터(Model Parameter)

모델이 학습하며 스스로 찾아내는 파라미터

w: 가중치, 계수

b : 절편, 편향

하이퍼파라미터(HyperParameter)

모델 학습 전에 사람이 직접 지정해 주어야 하는 파라미터 knn에서 k

MSE(Mean Squared Error)

MSE(Mean Squared Error)

$$Cost = \frac{1}{m} \sum_{i=1}^{m} (y_m - \hat{y}_m)^2$$

 $y_m: 실제값$ $\hat{y}_m = wx + b: 예측값$

비용함수(Cost function) - 실습: 4-1

가중치에 따른 MSE 그래프 그리기

Gradient descent algorithm

Gradient descent algorithm

함수의 기울기(경사)를 구하여 기울기가 낮은 쪽으로 계속 이동하여 값을 최적화 시키는 방법

경사하강법(Gradient descent algorithm)

Gradient descent algorithm

Gradient descent algorithm을 사용해서 가중치를 찾아보자

장단점

- 특성이 많은 데이터 세트라면 훌륭한 성능을 낼 수 있다.
- 모델의 복잡도를 제어할 방법이 없어 과대적합 되기 쉽다.

모델 정규화(Regularization)을 통해 과대적합을 제어한다.

정규화

- 가중치(w)의 값을 조정하여 제약을 주는 것.
- L1 규제: Lasso w의 모든 원소에 똑같은 힘으로 규제를 적용하는 방법. 특정 계수들은 0이 됨. 특성선택(Feature Selection)이 자동으로 이루어진다.
- L2 규제 : Ridge w의 모든 원소에 골고루 규제를 적용하여 0에 가깝게 만든다.

Regularization

정규화: cost 함수 alpha hyperparameter로 조정·

L1 규제 : Lasso

$$J(w)_{LASSO} = \sum_{i=1}^{n} (y^{(i)} - y^{(i)})^{2} \left(\sum_{j=1}^{m} |w_{j}| \right)^{2}$$

L2 규제 : Ridge

$$J(w)_{Ridge} = \sum_{i=1}^{n} (y^{(i)} - y^{(i)})^{2} \underbrace{\lambda}_{j=1}^{m} w_{j}^{2}$$