Derivatives of Logarithmic Functions

Summary

1.

For
$$y = \ln(x)$$
, $\frac{dy}{dx} = \frac{1}{x}$

Example 1. Find the derivative of each.

- (a) $f(x) = 2 \ln(x)$
- (b) $g(x) = \ln(x^3)$
- (c) $h(x) = 7 4 \ln(x)$

Example 2. The amount of fish products imported into the U.S. each year for human consumption can be modeled by

$$f(x) = 4.21 + 0.67 \ln(x)$$
 [1, 20]

where x represents the number of years since 2009 and f(x) represents the annual impact of fish products in billions of pounds.

- (a) Evaluate and interpret f'(2).
- (b) Evaluate and interpret f'(19).

Chain Rule for Natural Logarithms
If g is differentiable, then the derivative of $h(x) = \ln(g(x))$ is

$$h'(x) = \frac{g'(x)}{g(x)}$$

Example 3. Find the derivative of each.

- (a) $y = \ln(x^4 2x)$
- (b) $h(x) = \ln\left(\sqrt{6x-1}\right)$
- (c) $f(x) = (\ln(x))^3$