		Tipo de Prova Exame de Época de Recurso	Ano letivo 2017/2018	Data 20-07-2018	
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Curso Licenciatura em Engenharia Informática		Hora 14:30	
		Unidade Curricular Matemática Discreta		Duração 2,5 horas	

N.º de aluno: ______ Nome: ______

Observações

Este exame tem um peso de 70% da classificação Final desta UC.

Os restantes 30% são relativos ao Trabalho Prático <u>obrigatório</u> cujo enunciado está no moodle.

Nas perguntas assinaladas com scilata recorra ao software para evitar os cálculos morosos.

Submeta no moodle um ficheiro com os cálculos que efetue no Scilab

Questão	1	2	3	4	5	6	PARTE 1	7	8	9	10	11	12	13	PARTE 2	TOTAL
Cotação	0,3x3+0,5x2	1,4	2,0	1,5	1,0	1,0+1,2	10	2,8	1,2	0,8	1,0	1,0+1,2	1,0	1,0	10	20

PARTE1

- 1. Considere o conjunto $X = \{\emptyset, a, b, \{\emptyset\}, \{a, b\}, \{\emptyset, a, b\}\}$, com $a, b, c \in \mathbb{N}$. Indique, se cada uma das seguintes afirmações é verdadeira ou falsa. No caso de ser falsa, corrija a afirmação de forma a torná–la verdadeira.
 - a) $\{\emptyset, \alpha, \{\emptyset\}\} \subseteq X$
- $b) \{\emptyset, \{\emptyset\}, \{b\}\} \in \mathcal{P}(X)$
- c) $\#\mathcal{P}(\mathcal{P}(X)) = 2^{16}$
- d) A função $f: X \to \mathcal{P}(X)$ tal que $f(x) = \{x\} \cap \{b\}$ é injetiva.
- e) A relação Θ em $\mathcal{P}(X)$ definida por $A\Theta B$ se e só se $B\subseteq A$ é uma relação de ordem parcial.
- **2.** Considere o conjunto universo $U = \{x \in \mathbb{Z}_0^+ : x^4 10 < 99\}$, os seus subconjuntos:

$$A = \{x \in U : x^2 > 4\}, B = \{x \in U : x \text{ divide 3}\} \in C = \{x \in U : [x - 0.3] < 2\},$$

Determine, apresentando todos os cálculos $\bar{C} \oplus (A \cup B)$ e $B \times \overline{A \cap C}$.

3. Considere as sequintes relações binárias definidas sobre {1,2,3}:

$$R = \{(2,2), (1,2), (2,1)\}\ e\ S = \{(1,1), (2,2), (2,1), (1,3), (3,3)\}.$$

- a) Determine, se possível transitivo(S) e (S \cap R⁻¹) \circ S
- **b)** Diga, justificando, se alguma das relações *R* ou S é relação de equivalência, e determine, se possível, a classe de equivalência de 2.
- 4. Determine, apresentando todos os cálculos:

$$\sum_{i=1}^{21} \left(\prod_{j=1}^{3} (1-j) \right) - \sum_{k=10}^{30} (-1)^{2k-1} \times k$$

5. Considere a fórmula de recorrência dada por: $\begin{cases} G(1) = -5 \\ G(n) = 3 \ G(n-1) + 7, \ n \ge 2 \end{cases}$

Recorrendo ao algoritmo EGV (Expand, Guess, Verify), encontre a fórmula fechada.

- **6.** Considere o grafo \vec{G}_1 definido por V (\vec{G}_1) = {a, b, c, d} e E(\vec{G}_1) = { (a, a), (a, b), (b, a), (b, a), (c, d), (c,c)}, o grafo \vec{G}_2 representado na **Figura 1**.
- a) Represente \vec{G}_1 graficamente, indique a matriz de adjacências de G_2 e determine os graus de cada vértice de \vec{G}_1 .
- b) scilate Indique, justificando:

i) se possível, para o grafo G_2 , um caminho de comprimento 10 do vértice 6 para o vértice 3;

ii) quantos caminhos de comprimento 7 do segundo para o terceiro vértice, existem no grafo \vec{G}_1 ;

iii) se algum dos grafos é conexo.

ESTG-PR05-Mod013V2 Página1de2

		Tipo de Prova Exame de Época de Recurso	Ano letivo 2017/2018	Data 20-07-2018		
P.PORTO	ESCOLA SUPERIOR	^{Curso} Licenciatura em Engenharia Informática		Hora 14:30		
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 2,5 horas		

N.º de aluno: Nome:

PARTE 2

- 7. Uma multinacional pretende testar todas as ligações de circuitos dedicados entre as suas filiais sediadas em 7 países (A-Alemanha, B-Bélgica, C-Canadá, D-Dinamarca, E-Espanha, F- Finlândia e G-Grécia), utilizando uma mensagem de diagnóstico que terá de percorrer todas as ligações. As ligações entre as diferentes filiais são dadas pelo grafo apresentado na Figura 2.
 - a) Diga, justificando, se é ou não possível que a mensagem parta da sede na Bélgica, B, percorra todas as ligações exatamente uma vez e retorne à Bélgica. Em caso afirmativo, indique um possível circuito e o respetivo custo.
- $E = \begin{bmatrix} C & 5 & F \\ & 3 & 4 & 1 \\ & & A & 1 \\ & & & & \end{bmatrix}$ Figura 2
- b) Use o algoritmo de Dijkstra para encontrar o caminho menor custo entre a Bélgica e a Espanha. <u>Observação</u>: Use uma tabela como a abaixo indicada.

Iteração	Vértice	Caminhos / Custo	Caminhos mínimos			

- **8.** Usando o Algoritmo de Euclides, determine os inteiros s e t (coeficientes de Bézout) tais que mdc(140,48) = 140 s + 48 t.
- **9.** Resolva, se possível, a congruência $7x \equiv 5 \mod 11$.
- **10.** Scilab Escreva a sequência de números pseudo-aleatórios gerada por $x_{n+1} = (5x_n + 2) \mod 11$, com raíz $x_0 = 7$.
- 11. Scillab Considere a função de encriptação $f(n) = (6n + 15) \mod 29$. Considere ainda que:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z * @ _ O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

- a) Encripte a mensagem "YES".
- b) Escreva a função de desencriptação e desencripte a mensagem "SM@RKBH".

Observação: $6 \times 5 \equiv 1 \mod 29$.

- **12.** Scilla Considere o sistema RSA com $p=43,\ q=59$ e a=13. Encripte a mensagem "YES".
- 13. scilab Considere a rede constituída por 6 páginas web A, B, C, D, E, F com os links mostrados na Figura 3.

Suponha que, em cada passo, escolhemos de forma aleatória um link da página web onde estamos.

Escreva a matriz de transição do processo Markov subjacente e calcule a probabilidade, de começando na página C, 7 passos depois estar na página A?

Bom Trabalho Eliana Costa e Silva Flora Ferreira

ESTG-PR05-Mod013V2 Página 2 de 2