

# GNSS 测量原理与应用

李丽华 中国地质大学 (北京) 测量与导航工程系 lihuali@cugb. edu. cn 2020 春





## 第一章 卫星定位技术简介



- 1.1 空间定位技术的发展
- 1. 2 GPS定位系统
- 1.3 GLONASS定位系统
- 1.4 GALILEO定位系统
- 1.5 BDS定位系统
- 1.6 GNSS在国民经济建设中的应用





# 1.5 北斗卫星导航系统

## 翱翔星空惠及全球

## ■三步走

- 2000年年底,建成北斗一号系统,向中国提供服务。
- · 2012年完成了北斗二号系统,对亚太大部分地区的覆盖并正式提供卫星导航服务。
- 2020年前后,建成北斗三号系统,届时将实现全球的卫星导航功能。



### ■系统建设过程

- 1994年, 我国正式启动建设北斗卫星导航试验系统。
- 2000年发射2颗北斗导航试验卫星,标志试验系统初步建成。
- 2003年发射第3颗北斗导航试验卫星,从而进一步增强北斗卫星导航试验系统性能。
- 2004年启动北斗卫星导航系统工程建设。
- · 2007年4月14日成功发射第一颗中圆地球轨道组网卫星,标志着我国自主研制的北斗卫星导航系统迎来新的发展阶段。
- 至2012年底已部署完成了由5颗GEO卫星、5颗倾斜地球同步轨道(Inclined Geosynchronous Satellite Orbit, IGSO)卫星(2颗在轨备份)和4颗中地球轨道(Medium Earth Orbit, MEO)卫星组成的区域星座,初步具备了区域服务能力。





• 2019年底, 28颗北斗三号卫星发射成功, 其中1颗地球同步卫星, 3颗倾斜地球同步轨道卫星, 24颗中原地球轨道卫星为全球服务核心星座。

• 2020年6月底计划发射2颗地球同步卫星。





### ■服务性能



位置精度:平面10米,高程10米



测速精度:每秒0.2米



授时精度:单向20纳秒



短报文通信服务



广域差分和地基增强





#### **BEIDOU CONSTELLATION STATUS 08.02.20**

| Total satellites in constellation                       | 48 |
|---------------------------------------------------------|----|
| SV is included in operational orbital constellation     | 35 |
| SV is not included in operational orbital constellation | 13 |





具有生成位置报告和短报文功能,使用户 之间能够相互交流。





具有生成位置报告和短报文功能,使用户间能够相互交流。

> 集纳多种轨道设计于一身。

GEO:赤道面上3万6千千米,与地球同步转动

IGSO: 高度相同,但轨道与赤道有一个倾角

MEO: 绕地球运动







不同于其他卫星,北斗是一个"系统" 单星并不能提供服务 需要多星组网才能够发挥导航卫星的效能





10

我是MEO卫星 一般运行在距离地面约 22000千米的轨道面上 运行周期一般在2至12个小时之间 由于我和地球的自转周期存在时间差 随着我们之间的相对运动 理论上









运行在位于赤道上方35800千米的同步轨道上所谓"站得高望得远"

在这个高度上, 我几乎可以看清楚整个半球





#### 我是IGSO卫星 在北斗三号系统中第一次与大家见面



我和GEO哥哥在相同的轨道高度 但是因为我有一些倾角 所以可以看得更广 我和GEO哥哥一起,把关键位置描述得更加精》







## 多种轨道设计于一身





14

- ■北斗的特点
- > 具有短报文功能,使用户之间能够相互交流。
- 集纳多种轨道设计于一身。
- > 三频信号的使用。





#### 原子钟稳定度提高

- ➤星载铷原子钟稳定度是E-14量级
- ➤氢原子钟稳定度是E-15量级(提高了一个量级)
- ▶星地,星间和站间的同步精度维持在0.14ns
- ▶卫星钟差2小时的预报精度0.4ns
- ➤ 卫星授时精度为10ns





星间链路支持下得卫星定轨精度得到明显提升。





### 星间链路



通过卫星间的位置相互定位,假如某一些卫星的位置定的比较准确了,就把它们的位置也作为观测点,联合其他地面观测点去定位其他的卫星。这样一来,卫星的位置精度就能够得到大幅提高。



同样, 三颗卫星也能确定另外一颗卫星的精准位置



于是, 北斗导航卫星手拉着手, 彼此保持相对位置固定



有了**"星间链路"** 我们不依赖全球建站 就可以跟星座中的**所有卫星**相连

#### 有了"星间链路" 我们不依赖全球建站 就可以跟星座中的所有卫星相连



有了"星间链路" 依靠境内的地面站。我们就能管理全球的卫星



#### 即使和地面中断联系、卫星也能继续提供服务



总而言之 "星间链路"是我国自主研制的北斗三号全球组网卫星 最突出的亮点之一



