Лабораторная работа №3.

Метод стрельбы

Задание. Используя метод стрельбы, решить численно предложенные вариационные задачи:

задачи а) — используя алгоритм для линейного случая;

задачи b) — используя алгоритм для общего случая;

задачу c) — обобщив алгоритм на случай варииацонной задачи c функционалом, зависящим от нескольких неизвестных функций.

В случае необходимости, преобразовать исходную задачу к стандартному виду.

Оценка. Баллы за выполнение лабораторной работы распределяются следующим образом:

№	Подзадача	Балл
1	Реализация метода Ритца с конечно-линейным базисом $(n = 10,$	1.5
	n = 15) для задачи а)	
2	Реализация метода Ритца с базисом из В-сплайнов $(n = 5, n =$	2
	10) для задачи а)	
3	Реализация метода Ритца с конечно-линейным базисом $(n = 10,$	1.5
	n = 15) для задачи b)	
4	Реализация метода Ритца с базисом из В-сплайнов $(n = 5, n =$	2
	10) для задачи b)	
5	Реализация метода Ритца с произвольным базисом $(n = 3,$	3
	$n=5$) для задачи с). Необходимая точность $\varepsilon=0.01$, точное	
	решение найти при помощи уравнения Эйлера.	
6	Повышение точности решения задачи c) из пункта 5. до $\varepsilon =$	1
	0.001.	
7	Блок-схема программного кода (в любой нотации), комменти-	1
	рование кода	
	ОТОТИ	12

Сроки выполнения. Две недели со дня выдачи задания.

Форма сдачи работ. Исходные файлы (скрипты, проект в Visual Studio и т.п.) должны быть запакованы в архив формата .zip с названием

Архив отправляется по электронной почте по адресу **ogulenko.a.p@onu.edu.ua**, тема письма должна совпадать с именем архива. Помимо этого, необходимо заполнить шаблон отчета и сдать в печатном виде. Аналитическое решение можно вписать в соответствующее место отчета вручную.

Варианты заданий

Вариант 1.

a)
$$V[y] = \int_{0}^{1} [(y')^{2} + y^{2} - (4 + 2x(1-x))y]dx$$
, $y(0) = 0$, $y(1) = 0$;

b)
$$V[y] = \int_{0}^{1} [xy' - (y')^{2}] dx$$
, $y(0) = 1$, $y(1) = \frac{1}{4}$;
c) $V[y] = \int_{0}^{1} y\sqrt{1 + y'^{2}} dx$; $y(0) = 2$; $y(1) = 3$;

Вариант 2.

a)
$$V[y] = \int_{0}^{1} [(y')^{2} + y^{2} - 2(\pi^{2} + 1)\sin(\pi x)y] dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{\frac{3\pi}{2}} [y^{2} - 2(y')^{2}] e^{-x} dx$, $y(0) = 0$, $y(\frac{3\pi}{2}) = e^{\frac{3\pi}{4}}$;
c) $V[y] = \int_{0}^{1} \frac{\sqrt{1 + y'^{2}}}{y} dx$; $y(0) = 2$; $y(1) = 1$;

Вариант 3.

a)
$$V[y] = \int_{0}^{1} \left[2(y')^{2} + \pi^{2}y^{2} - 6\pi^{2}\sin(\pi x)y \right] dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{2} \left[x^{2}(y')^{2} + 12y^{2} \right] dx$, $y(1) = 1$, $y(2) = 8$;
c) $V[y] = \int_{0}^{1} yy'^{2} dx$; $y(0) = 2$; $y(1) = 1$;

Вариант 4.

a)
$$V[y] = \int_{0}^{1} [(y')^{2} + y^{2} + 2(x^{3} - x^{2} - 6x + 2)y]dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{1} [6x^{2}y' + (y')^{2}]dx$, $y(0) = 0$, $y(1) = -1$;
c) $V[y] = \int_{0}^{1} \sqrt{y(1 + y'^{2})}dx$; $y(0) = 1$; $y(1) = 3$;

Вариант 5.

a)
$$V[y] = \int_{0}^{1} [(y')^{2} + 2y^{2} - (4 + 4x(1 - x))y]dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{1}^{2} \frac{x^{2}(y')^{2}}{2x^{3} + 1}dx$, $y(1) = 0$, $y(2) = \frac{7}{2}$;
c) $V[y] = \int_{1}^{3} y\sqrt{y'}dx$; $y(1) = 2$; $y(3) = 8$;

Вариант 6.

a)
$$V[y] = \int_{0}^{1} [(y')^{2} + 2y^{2} - 2(\pi^{2} + 2)\sin(\pi x)y]dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{2}^{4} [x(y')^{4} - 2y(y')^{3}]dx$, $y(2) = 1$, $y(4) = 5$;
c) $V[y] = \int_{2}^{2} y\sqrt{1 + y'^{2}}dx$; $y(0) = -1$; $y(2) = -3$;

Вариант 7.

a)
$$V[y] = \int_{0}^{1} [(y')^{2} + 2y^{2} + (2x^{3} - 2x^{2} - 6x + 2)y]dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{2} [x(y')^{3} - 3y(y')^{2}]dx$, $y(0) = 4$, $y(2) = 6$;
c) $V[y] = \int_{0}^{2} yy'^{2}dx$; $y(0) = 1$; $y(2) = 3$;

Вариант 8.

a)
$$V[y] = \int_{0}^{1} \left[x(y')^{2} + \pi^{2}y^{2} - \left(8x - 2 + 2\pi^{2}x(1 - x) \right) y \right] dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{2}^{3} \frac{\sqrt{1 + (y')^{2}}}{y} dx$, $y(2) = 2$, $y(3) = \sqrt{3}$;
c) $V[y] = \int_{0}^{2} \frac{\sqrt{1 + y'^{2}}}{y} dx$; $y(0) = 4$; $y(2) = 2$;

Вариант 9.

a)
$$V[y] = \int_{0}^{1} \left[x(y')^{2} + \pi^{2}y^{2} + \left(\pi \cos(\pi x) - \pi^{2}(x+1)\sin(\pi x) \right) y \right] dx$$
, $y(0) = 0$, $y(1) = 0$;

b)
$$V[y] = \int_{0}^{1} \left[(y')^{2} + \frac{2xy}{1+x^{2}} \right] dx$$
, $y(0) = 0$, $y(1) = -2$;
c) $V[y] = \int_{0}^{2} y\sqrt{y'}dx$; $y(0) = 2$; $y(2) = 4$;

Вариант 10.

a)
$$V[y] = \int_{0}^{1} \left[e^{x} (y')^{2} + x^{2} y^{2} - \left(4x^{3} (1 - x) - (4x + 2)e^{x} \right) y \right] dx, \quad y(0) = 0, \quad y(1) = 0;$$

b) $V[y] = \int_{0}^{1} \left[(y')^{2} + ye^{x} \right] dx, \quad y(0) = 0, \quad y(1) = -2;$

c)
$$V[y] = \int_{0}^{2} \sqrt{y(1+y'^2)} dx$$
; $y(0) = 2$; $y(2) = 1$;