La representación matricial de esta gráfica es

Figura 2.7
Existen trayectorias de V_1 a V_5 aun cuando no hay una arista de V_1 a V_5 . Una de estas trayectorias es

 $V_1 \rightarrow V_2 \rightarrow V_5$

Trayectoria

Cadena

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

No tendría mucho sentido introducir la representación matricial de una gráfica si lo único viable fuera escribirlas. Existen varios hechos no tan visibles que se pueden preguntar sobre las gráficas. Para ilustrar lo anterior considere la gráfica en la figura 2.7.

Observe que aunque no hay una arista de V_1 a V_5 es posible mandar un mensaje entre estos dos vértices. De hecho, hay cuando menos dos maneras de hacerlo:

$$V_1 \to V_2 \to V_5 \tag{2.8.2}$$

У

$$V_1 \rightarrow V_4 \rightarrow V_2 \rightarrow V_5 \tag{2.8.3}$$

La ruta de un vértice hacia otro se denomina **trayectoria** o **cadena**. La trayectoria de V_1 a V_5 en (2.8.2) se llama **2-cadena** porque atraviesa por dos aristas. La trayectoria (2.8.3) se llama **3-cadena**. En general una trayectoria que atraviesa por n aristas (y por tanto pasa por n+1 vértices) se llama **n-cadena**. Ahora, regresando a la gráfica, se puede observar que es posible ir de V_1 a V_5 a lo largo de la 5-cadena

$$V_1 \to V_4 \to V_3 \to V_4 \to V_2 \to V_5$$
 (2.8.4)

Sin embargo, no resultaría muy interesante hacerlo, ya que con una parte de la trayectoria no se obtiene nada. Una trayectoria en la que un vértice se encuentra más de una vez se denomina **redundante**. La 5-cadena (2.8.4) es redundante porque el vértice 4 se encuentra dos veces.

Es de gran interés poder determinar la trayectoria más corta (si es que existe) que une a dos vértices en una gráfica dirigida. Existe un teorema que muestra cómo esto se puede lograr, pero primero se hará una observación importante. Como se ha visto, la representación matricial de la gráfica en la figura 2.3 está dada por

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Se calcula

$$A^{2} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 & 0 \end{pmatrix}$$