Homework 2: Clustering

Mobile Data Mining Spring 2019

Goal

• Implement clustering algorithms on mobile big data

• Group base stations (BSs) with similar traffic patterns into clusters.

Data

- Time distribution of BSs obtained in the experiments #2 of homework 1
 - Traffic volume of BSs in different time-bins (1 hour)
 - Each BS is described by a 744-sized vector (31days x 24 hour)
- Folding: Convert the traffic of one month to a week (7 days) by averaging
 - You can use traffic of 28 days in the folding (remove 3 days)

7x24 vector

Normalization: Each vector is normalized by its z-score

Normalized
$$(e_i)=rac{e_i-ar{E}}{\mathrm{std}(E)}$$
• Where $ar{E}=rac{1}{n}\sum_{i=1}^n e_i$, $\mathrm{std}(E)=\sqrt{rac{1}{n-1}\sum_{i=1}^n (e_i-ar{E})}$

traffic(第一个小时)-平均 值/标准差

Experiments

- Implement one clustering algorithm introduced in the class on the BSs (regardless of language and platform)
 - Agglomerative hierarchical clustering
 - K-means
 - BFR
 - CURE
- Virtualization
 - Plot the traffic volume of the centroid or clustroid of each obtained cluster

Bonus

 Implement SVD to the vectors to reduce their dimensionality before clustering (5 points)

 Implement the clustering algorithm in the experiment by Spark (5 points)

Submission

- Submit this homework before April 28th. (Hard Deadline, please keep in mind)
- Submit as .zip file, including:
 - 1) A word document, Including:
 - Brief summary about the algorithms designed for data processing and clustering
 - All the results you obtained, presented in table or figure (using figure more, and show the results clearly and beautifully)
 - Interpretation/discussion for each result
 - Do not need to copy the code into this document
 - 2) Source code, Including:
 - Clustering algorithm
 - Other analysis code

Thank you!