

INTELLIGENCE ARTIFICIELLE PROJET - EXAMEN ORAL

REGRESSION LOGISTIQUE & NAIVE BAYES

Gregory Sedykh, Leandre Catogni, Noah Peterschmitt, Noah Munz, Michel Donnet

02 Fevrier 2024

RÉGRESSION LOGISTIQUE

RÉGRESSION LOGISTIQUE BINAIRE: PRINCIPE

RÉGRESSION LOGISTIQUE BINAIRE: IDÉE

RÉGRESSION LOGISTIQUE: FONCTION D'ESTIMATION

Fonction sigmoïde

$$\sigma(z)=rac{1}{1+e^{-z}}$$

Caractérisiques:

- Comprise entre 0 et 1 ⇒ probabilité!
- Point d'inflexion à 0.5

Idée:

ullet établir un seuil afin de prédire le label Y

ENTRAÎNEMENT DU MODÈLE

But:

ullet maximiser la probabilité P(Y=y|X) pour y la valeur d'entrainement du label.

Mais on a la descente en gradient...

⇒ transformer le problème en problème de minimisation !

 \Rightarrow Negative Logarithm Likelihood

RÉGRESSION LOGISTIQUE MULTINOMIALE: PRINCIPE

GÉNÉRALISATION DE LA FONCTION SIGMOÏDE EN FONCTION SOFTMAX

$$P(Y=k|X) = rac{1}{1+e{-}X heta^T} \;
ightarrow \; rac{e^{X heta_k^T}}{\sum_i^N e^{X heta_i^T}}$$

ENTRAÎNEMENT DU MODÈLE

Même principe que pour la régression logistique binaire

EVOLUTION DES MÉTRIQUES

CONTEXTE:

Les mesures d'évaluations permettent d'analyser les performances de prédictions d'un modèle, à l'aide d'un "test set".

Rappel:

Test set : Données dont on connaît les labels exacts, que l'on cachera afin de tester les prédictions faites par le modèle.

DÉFINITIONS UTILES :

Dans le contexte multinomial considérons un label positif et des labels nétagifs (ie. ceux qui diffèrent du label positif), on a alors :

- True positive (TP) : Labels positifs qui ont été correctement prédits comme tel
- False Positive (FP): Labels négatifs prédits comme positifs
- True negative (TN): Labels négatifs prédits comme négatifs
- False Negative (FN) : Labels positfs prédits comme négatifs

PRÉCISION PRECISION

- **Intuition**: Proportion des prédictions positives correctes (TP) par rapport à toutes les prédictions positives (TP + FP).
- Cas multinomial : Moyenne des précisions pour chaque label positif possible.
- Définition :

$$rac{1}{|L|} \cdot \sum_{l \in L} rac{TP_l}{TP_l + FP_l}$$

où L est l'ensemble des labels

RAPPEL:

- Intuition : Proportion des prédictions positives correctes (TP) par rapport aux positifs réels (du test set) (TP + FN).
- Cas multinomial: Moyenne des rappels pour chaque label positif possible.
- Définition Formelle :

$$rac{1}{|L|} \cdot \sum_{l \in L} rac{TP_l}{TP_l + FN_l}$$

où L est l'ensemble des labels

F1 SCORE:

- Intuition : Combinaison de la précision et du rappel (moyenne harmonique)
- Définition :

$$\frac{2}{rappel^{-1} + precision^{-1}} = 2 \cdot \frac{precision \cdot rappel}{precision + rappel}$$

ACCURACY:

- Intuition : Proportion des prédictions correctes parmi l'ensemble total des prédictions.
- Définition :

$$\frac{\text{Nombre de predictions correctes}}{\text{Nombre total de prediction}} = \frac{TP + TN}{TP + TN + FP + FN}$$

OVERFITTING

On ne veut pas apprendre le bruit des données d'apprentissage!

SUR-APPRENTISSAGE: EXEMPLE

SUR-APPRENTISSAGE: GRAPHIQUE

COMMENT ÉVITER LE SUR-APPRENTISSAGE ?

Validation croisée!

AUTRES TECHNIQUES?

- Ajout données d'apprentissage modifiées (pour plus de généralisation...)
- Retirer des caractéristiques
- ..

CONCRÊTEMENT, DANS LE PROJET

Dans le projet, pour montrer le phénomène de sur-apprentissage:

- Ajout de bruits aux données d'apprentissage
- Volume réduit de données
- Modification du nombre d'itérations

RÉSULTATS OBTENUS

RÉSULTATS OBTENUS

RÉSULTATS OBTENUS

- Pic bleu et rouge faible $\Rightarrow X_0$ et X_1 ont moins d'influence sur la classe.
- Chevauchement faible \Rightarrow peu interdépendance

- pic bleu et vert faible $\Rightarrow X_0$ et X_2 ont moins d'influence sur la classe.
- Chevauchement fort entre bleu et vert et vert et vert et vert et vert et rouge \Rightarrow interdépendance entre X_1 et X_2 et X_0 et X_2

- Pic bleu et vert faible $\Rightarrow X_0$ et X_2 ont moins d'influence sur la classe.
- Chevauchement fort entre bleu et vert et rouge et magenta \Rightarrow interdépendance entre X_1 et X_3 et entre X_0 et X_2

FONCTIONS UTILISÉES

plot_util.py: modification de la fonction plot_vs afin de pouvoir comparer jusqu'à 4 fonctions.

feature_analyse_plot.py : affichage pour chaque classe les courbes des normal PDF de chaque données.

SAMPLING

SAMPLING

- Une fois que les paramètres des classes sont obtenus en supposant l'indépendance des variables, on échantillone de nouvelles données afin de comparer les résultats obtenus avec les données d'origine.
- L'échantillonage est fait dans le fichier sampling.py.
- On fait 50 échantillons pour chaque classe, à partir des paramètres des distributions obtenus dans la section précédente.
- On obtient les résultats suivants (la moyenne et l'écart-type sont donnés pour chaque classe et chaque variable):

a

GRAPHS PAR CLASSE ($Y \in \{\,0,1,2\,\}$)

RÉSULTATS

COMPARAISON AVEC SKLEARN

NAIVE BAYES

NOTRE NAIVE BAYES

• Precision: 0.976

• Recall: 0.974

• Accuracy: 0.977

• F1 score: 0.975

SKLEARN NAIVE BAYES

• Precision: 0.976

• Recall: 0.974

• Accuracy: 0.977

• F1 score: 0.975

LOGISTIC REGRESSION

NOTRE LOGISTIC REGRESSION

• Precision: 0.850

• Recall: 0.846

• Accuracy: 0.866

• F1 score: 0.848

SKLEARN LOGISTIC REGRESSION

• Precision: 0.976

• Recall: 0.974

• Accuracy: 0.977

• F1 score: 0.975

CONCLUSION

