

FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES B.P 1515 LOME

$\frac{\text{UE MATH 101: ESSAI}}{\text{SEMESTRE HARMATTAN 2021-2022}} \\ \frac{\text{DUR\'EE: 2 heures}}{\text{DUR\'EMENTE MARMATTAN 2021-2022}}$

EXERCICE 1 (8 pts)

oit E un \mathbb{K} -ev de dimension finie. Iontrer que pour tout endomorphisme f de E , on a: $(Im f = Im f^2) \Leftrightarrow (E = Ker f \oplus Im f)$.						

EXERCICE 2 (7 pts)
On considère l'espace vectoriel \mathbb{R}^3 , sur \mathbb{R} , muni de sa base canonique $\mathcal{B}=(e_1,e_2,e_3)$. Soient f l'application définie, sur \mathbb{R}^3 , par $f(x)=(x+y-2z,x-2y+z,x+3y-4z)$.
1 D/+i

1.	Déterminer	une	base	du	noyau	de .	f et	sa	dimension.

2. Déterminer une base de l'image de
$$f$$
 et le rang de f .

3.
$$f$$
 est-elle bijective? Justifier votre réponse.

EXERCICE 3 (5 pts)

Soient
$$A = \begin{pmatrix} 57 & -21 & 21 \\ -14 & 22 & -7 \\ -140 & 70 & -55 \end{pmatrix}$$
 et $P = \begin{pmatrix} -1 & 1 & -3 \\ 0 & 2 & 1 \\ 2 & 0 & 10 \end{pmatrix}$.

- 1. Déterminer l'inverser P^{-1} de P.
- 2. Calculer $P^{-1}A^2$.