GURLS_mkl: A PFBS-based Implementation for Multiple Kernel Learning

(Jeremiah) Zhe Liu

Department of Biostatistics Harvard University Boston, MA 02115

zhl112@mail.harvard.edu

Contents

1 Hierarchical Dirichlet Process		rarchical Dirichlet Process	1
	1.1	Model	1
	1.2	Inference	1
	1.3	Application: Clustering Hierarchical Gaussian Data	2
2	HDI	P for Hidden Markov Model	3
	2.1	Hidden Markov Model	3
	2.2	Sticky HDP	3
	2.3	Inference	3
		2.3.1 Forward-backward Message Passing	4
A	A Chinese Restaurant Franchise		5
R	Dofa	prences	6

1 Hierarchical Dirichlet Process

1.1 Model

Classic view:

$$\begin{aligned} G_0|\gamma, H &\sim DP(\gamma, H) \\ G_j|\alpha_0, G_0 &\sim DP(\alpha_0, G_0) \\ \theta_{ji}|G_j &\sim G_j \\ x_{ji}|\theta_{ji} &\sim F(\theta_{ji}) \end{aligned}$$

where $P \sim DP(\alpha, G)$ adopts the stick breaking representation w.p. 1:

$$P = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$
 where: $\pi_k \sim GEM(\alpha), \quad \phi_k \sim G$

Alternatively, one may describe the generative processes of π_k and θ_k separately as:

$$\begin{aligned} & \boldsymbol{\pi}_0 | \boldsymbol{\gamma} & \sim GEM(\boldsymbol{\gamma}) & \boldsymbol{\theta}_k | \boldsymbol{H} \sim \boldsymbol{H} \\ & \boldsymbol{\pi}_j | \alpha_0, \boldsymbol{\pi}_0 & \sim DP(\alpha_0, \boldsymbol{\pi}_0) \end{aligned}$$

$$\begin{aligned} & \boldsymbol{z}_{ji} | \boldsymbol{\pi}_j & \sim \boldsymbol{\pi}_j \\ & \boldsymbol{x}_{ji} | \boldsymbol{z}_{ji}, (\boldsymbol{\theta}_k)_{k=1}^{\infty} \sim F(\boldsymbol{\theta}_{z_{ji}}) \end{aligned}$$

(a) Hierarchical Dirichlet Process

(b) Hierarchical Dirichlet Process

Figure 1: Hierarchical Dirichlet Process

1.2 Inference

Assuming conjugacy between H and F^{-1} and holding (γ, α_0) fixed,

we now describe a simplied Gibbs approach to sample parameters (z_{ji}, m_{jk}, π_0) from the Chinese Restaurant Franchise (see Appendix A) representation of the posterior, where the parameter z_{ji} are referred to respectively as customer-specific dish assignment, m_{jk} as dish-specific table count, and π_0 as global dish distribution. This

¹so we can integrate out the mixture component parameters

particular method is referred to as "direct assignment" in Teh et al. [2006] since it circumvented the issue of bookkeeping for every t_{ij} (customer-specific table assignment) and k_{jt} (table-specific dish assignment) variables

In each Gibbs iteration, denote $f_k^{-x_{ji}}(x_{ji}) = \frac{\int f(\mathbf{x}|\theta_k)h(\theta_k)d_{\theta_k}}{\int f(\mathbf{x}_{-(ji)}|\theta_k)h(\theta_k)d_{\theta_k}}$ the conditional distribution $x_{ji}|\mathbf{x}_{-(ji)}$ under $\theta = \theta_k$, and assume there are currently K dishes and T tables, we sample (z_{ji}, m_{jk}, π_0) iteratively as:

1. Sample $z_{ji} = k | \mathbf{z}_{-(ji)}, \mathbf{m}, \boldsymbol{\pi}_0$ from the distribution:

$$z_{ji} = k | \mathbf{z}_{-(ji)}, \mathbf{m}, \boldsymbol{\pi}_0 \propto \begin{cases} f_k^{-x_{ji}}(x_{ji}) * (n_{jk}^{-(ji)} + \alpha_0 \pi_{0,k}) & k \leq K \\ f_{K+1}^{-x_{ji}}(x_{ji}) * \alpha_0 \pi_{0,u} & k = K+1 \end{cases}$$

2. Sample $m_{jk} = m|\mathbf{z}, \mathbf{m}_{-(jk)}, \boldsymbol{\pi}_0$, by setting $m_{jk} = \sum_i I(t_{ji} = t_{new}|k_{jt_{new}} = k)$, we can sample t_{ji} from:

$$t_{ji} = t | k_{jt} = k, \mathbf{t}_{-(ji)}, \boldsymbol{\pi}_0 \propto \begin{cases} n_{jt}^{-(ji)} & t \le T \\ \alpha_0 \pi_{0,k} & t = T+1 \end{cases}$$

and as in Fox [2009], sample $I(t_{ji}=t_{new}|k_{jt_{new}}=k)$ directly from:

$$Bern\Big(\frac{\alpha_0\pi_{0,k}}{n_{jk}+\alpha_0\pi_{0,k}}\Big)$$

3. Sample π_0 from distribution:

$$\pi_0 \sim Dir(m_1, \ldots, m_K, \gamma)$$

Algorithm 1 HDP, Gibbs Sampler through Direct Assignment

```
1: procedure hdp_gibbs_ds(\mathbf{K}, \mathbf{y}, (\tau, \mu, \sigma))
2: \boldsymbol{\alpha}^0 = \mathbf{0}
3: for p = 1 to MAX_ITER do
4: \boldsymbol{\alpha}_0^p = (1 - \frac{\mu}{\sigma})\boldsymbol{\alpha}^{p-1} - \frac{1}{\sigma n}(\mathbf{K}\boldsymbol{\alpha}^{p-1} - \mathbf{y})
5: \boldsymbol{\alpha}^p = \mathbf{S}_{\frac{\tau}{\sigma}}(K, \boldsymbol{\alpha}_0^p)
6: end for
7: return f^{\text{MAX}.ITER} = (\boldsymbol{\alpha}^{\text{MAX}.ITER})^T \mathbf{k}
8: end procedure
```

1.3 Application: Clustering Hierarchical Gaussian Data

Consider mixture of Gaussian data $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_K\}$ with $\mathbf{x}_k \overset{iid}{\sim} MVN(\boldsymbol{\theta}_{k,2\times 1}, \mathbf{I}_{2\times 2})$ with unknown mean $\boldsymbol{\theta}$. Assuming diffused Gaussian prior $\boldsymbol{\theta} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$, the form of likelihood F and base measure H are:

$$f(x_{ji}|\boldsymbol{\theta}_k) \propto exp(-\frac{1}{2\sigma^2}(x_{ji} - \boldsymbol{\theta}_k)^T(x_{ji} - \boldsymbol{\theta}_k))$$
$$h(\boldsymbol{\theta}_k) \propto exp(-\frac{1}{2\sigma_0^2}\boldsymbol{\theta}_k^T\boldsymbol{\theta}_k)$$

Then $f_k^{-x_{ji}}(x_{ji})$ should be:

$$f_k^{-x_{ji}}(x_{ji}) \sim N(\frac{n_k^{-(ji)}\sigma_0^2}{n_k^{-(ji)}\sigma_0^2 + \sigma^2}\bar{\mathbf{x}}_k^{-(ji)}, (1 + \frac{\sigma_0^2}{n_k^{-(ji)}\sigma_0^2 + \sigma^2})\mathbf{I})$$

2 HDP for Hidden Markov Model

2.1 Hidden Markov Model

Figure 2: Hidden Markov Model

$$\beta|\gamma \sim GEM(\gamma)$$

$$\pi_{j}|\beta,\alpha \sim DP(\alpha,\beta)$$

$$\theta_{k}|H,\lambda \sim H(\lambda)$$

$$z_{t}|z_{t-1},\boldsymbol{\pi} \sim \pi_{z_{t-1}}$$

$$y_{t}|z_{t},\boldsymbol{\theta} \sim F(\theta_{z_{t}})$$

$$f_k(y_t) = p(y_t|\boldsymbol{\theta}_{z_t})p(z_t|z_{t-1})$$

2.2 Sticky HDP

Though flexible, the fact that HDP-HMM is deploying $\pi_k \sim DP(\alpha, \beta)$ leads to:

- 1. large posterior probability for unrealistically transition dynamics
- 2. once instantiated, the unrealistically transition dynamics will be reinforced by CRF

Sticky HDP address above issues by encouraging self-transition. More specifically, the base measure for π_k is augmented *a priori* from β to:

$$\pi_j \sim DP(\alpha + \kappa, \frac{\alpha\beta + \kappa\delta_j}{\alpha + \kappa})$$

2.3 Inference

Inference for HMM with Sticky HDP prior follows the sticky extension of CRF. For a observation y_t at time t, "restaurant" corresponds to the state z_t that y_t is at, and dishes at restaurant z_t indicates the potential states that y_{t+1} can transit to. To improve mixing rate of state sequence \mathbf{z} , we deploy the blocked sampler which uses a weak limit approximation of the infinite-dimension DP prior. More specifically, we assume there are L states, and β and π follows:

$$\beta | \gamma \sim Dir(\frac{\gamma}{L}, \dots, \frac{\gamma}{L})$$

$$\pi_j | \alpha, \beta, \kappa \sim Dir(\alpha \beta_1, \dots, \alpha \beta_j + \kappa, \dots, \alpha \beta_L)$$

Define θ_k as emission parameter for state k, we sample $(\mathbf{z}, \mathbf{m}, \pi_0, \boldsymbol{\theta})$ as follows:

1. Sample $z_{ji} = k | \mathbf{z}_{-(ji)}, \mathbf{m}, \boldsymbol{\pi}_0$ from the distribution:

$$z_{ji} = k | \mathbf{z}_{-(ji)}, \mathbf{m}, \boldsymbol{\pi}_0 \propto \begin{cases} f_k^{-x_{ji}}(x_{ji}) * (n_{jk}^{-(ji)} + \alpha_0 \pi_{0,k}) & k \leq K \\ f_{K+1}^{-x_{ji}}(x_{ji}) * \alpha_0 \pi_{0,u} & k = K+1 \end{cases}$$

2. Sample $m_{jk} = m|\mathbf{z}, \mathbf{m}_{-(jk)}, \boldsymbol{\pi}_0$, by setting $m_{jk} = \sum_i I(t_{ji} = t_{new}|k_{jt_{new}} = k)$, we can sample t_{ji} from:

$$t_{ji} = t | k_{jt} = k, \mathbf{t}_{-(ji)}, \boldsymbol{\pi}_0 \propto \begin{cases} n_{jt}^{-(ji)} & t \le T \\ \alpha_0 \boldsymbol{\pi}_{0,k} & t = T+1 \end{cases}$$

and as in Fox [2009], sample $I(t_{ji} = t_{new} | k_{jt_{new}} = k)$ directly from:

$$Bern\Big(\frac{\alpha_0\pi_{0,k}}{n_{ik}+\alpha_0\pi_{0,k}}\Big)$$

3. Sample π_0 from distribution:

$$\pi_0 \sim Dir(m_1, \ldots, m_K, \gamma)$$

2.3.1 Forward-backward Message Passing

In a general graphic model belief propagation algorithm, message is defined as the amount of information passed from neighborhood nodes toward the target node though connected edges. In mathematics, a message passed from node i to j is:

$$m_{ij}(z_j) = \int_{\mathcal{Z}_i} \phi_i(z_i) \psi_{ij}(z_i, z_j) m_i(z_i) d_{z_i}$$

In the context of HMM, the $m'_{ij}s$ can be expressed in exact term, where:

$$m_{12}z_2 = \int_{\mathcal{Z}_1} \phi_1(z_1)\psi_{ij}(z_1, z_2)d_{z_1} = \int_{\mathcal{Z}_1} p(z_1|y_1)p(z_2|z_1)d_{z_1} =$$

The forward-backward algorithm provide an efficient method for computing node marginals $p(y_t)$. Define:

Backward Message : $\beta_t(z_t) = p(\mathbf{y}_{T>t}|z_t)$ Forward Message : $\alpha_t(z_t) = p(\mathbf{y}_{T\leq t}, z_t)$ Joint Message : $\alpha_t(z_t)\beta_t(z_t) = p(\mathbf{y}, z_t)$

which can be alternatively defined using message m_{t_1,t_2}

Backward Message: $\beta_t(z_t) = p(\mathbf{y}_{T>t}|z_t) = m_{t+1,t}(z_t)$ Forward Message: $\alpha_t(z_t) = p(y_t|z_t)p(\mathbf{y}_{T<t},z_t) = p(y_t|z_t)m_{t-1,t}(z_t)$

These two types of messages can be computed β_t backward and α_t forward in time as:

$$\begin{split} \beta_{t-1} &= \sum_{z_t} p(y_t|z_t) \qquad p(z_t|z_{t-1})\beta_t(z_t) \qquad \text{with} \quad \beta_T(z_T) = 1 \\ \alpha_{t+1} &= \sum_{z_t} p(y_{t+1}|z_{t+1})p(z_{t+1}|z_t)\alpha_t(z_t) \qquad \text{with} \quad \alpha_1(z_1) = p(y_1,z_1) = p(y_1|z_1)\pi^0(z_1) \end{split}$$

Using Forward and Backward messages, we can compute state assignment posterior as:

$$p(z_t|\mathbf{y}) = \frac{p(z_t, \mathbf{y})}{\sum_{z_t} p(z_t, \mathbf{y})} = \frac{\alpha_t(z_t)\beta_t(z_t) = p(\mathbf{y}, z_t)}{\sum_{z_t} \alpha_t(z_t)\beta_t(z_t) = p(\mathbf{y}, z_t)}$$

A Chinese Restaurant Franchise

A hierarchical analogy of Chinese Restaurant Process, the Chinese Restaurant Franchise offers a convenient scheme to sample from the posterior of cluster-specific θ 's in HDP. This process draw below analogy:

- H as the dish distribution for all possible dishes in the world, with the types of possible dishes being $(\theta_k)_{k=1}^{\infty}$.
- $G_0 \sim DP(\gamma, H)$ as the dish distribution for the franchise
- $G_j \sim DP(\alpha_0, G_0)$ as the dish distribution for restaurant j in the franchise
- $\psi_{jt} \sim G_0$ as the dish served at table t in restaurant j. $k_{jt} \sim \pi_0$ as the index of dish choice for this table.
- $\theta_{ji} \sim G_j$ as the dish will be enjoyed by customer i in restaurant j. $t_{ji} \sim \pi_j$ as the index of table choice for this customer.

Integrating over G_j , the sampling scheme for subject-specific dish $\theta_{ji} \sim G_j$ is:

$$\theta_{ji} | \boldsymbol{\theta}_{j(-i)}, \alpha_0, G_0 \sim \sum_{k=1}^{K} \frac{n_{jt.}}{\alpha_0 + n_{j..}} \delta_{\psi_{jt}} + \frac{\gamma}{n_{j..} + \gamma} G_0$$

Integrating over G_0 , the sampling scheme for table-specific dish $\psi_{jt}\sim G_0$ is:

$$\psi_{jk}|\Psi_{j(-k)}, \gamma, H \sim \sum_{k=1}^{K} \frac{m_{.k}}{\gamma + m_{..}} \delta_{\theta_k} + \frac{\gamma}{m_{..} + \gamma} H$$

B References

References

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical Dirichlet Processes. *Journal of the American Statistical Association*, 101(476):1566–1581, 2006. ISSN 0162-1459. URL http://www.jstor.org/stable/27639773.

Emily Beth Fox. *Bayesian nonparametric learning of complex dynamical phenomena*. Thesis, Massachusetts Institute of Technology, 2009. URL http://dspace.mit.edu/handle/1721.1/55111.