付値体のノート

箱 (@o_ccah)

2020年1月25日

概要

付値体の定義からはじめ、 $\mathbb Q$ 上の絶対値の分類や、複素係数と実係数それぞれの場合の Gelfand–Mazur の定理の経由して、Ostrowski の定理を証明する。Ostrowski の定理は、Archimedes 的な完備付値体が $\mathbb R$ 、 $\mathbb C$ 、 $\mathbb H$ のいずれかに同値であることを主張する。

目次

1	付值体	2
1.1	絶対値と付値体	2
1.2	擬絶対値	4
1.3	Archimedes 性	5
2	ℚ上の絶対値の分類	6
3	四元数体に関する準備	8
4	Gelfand–Mazur の定理	10
4.1	単位的代数の元のスペクトル	10
4.2	ノルム代数,Banach 代数	11
4.3	Gelfand–Mazur の定理(複素係数の場合)	12
4.4	Gelfand–Mazur の定理(実係数の場合)	14
5	Ostrowski の定理	15
付録 A	Frobenius の定理	16

記号と用語

- 自然数、整数、有理数、実数、複素数、四元数全体の集合を、それぞれ \mathbb{N} 、 \mathbb{Z} 、 \mathbb{Q} 、 \mathbb{R} , \mathbb{C} , \mathbb{H} と書く。0 は自然数に含める。また、0 以上の実数全体の集合を、 $\mathbb{R}_{\geq 0}$ と書く。
- 体とは、可換とは限らない単位的環であって、零環ではなく、0以外の元がすべて乗法に関する逆元をもつものをいう.
- 可換とは限らない単位的環 R に対して、R の元であって R のすべての元と可換であるもの全体の集合

を, R の中心という.

1 付值体

1.1 絶対値と付値体

定義 1.1(絶対値,付値体) 体 K 上の絶対値とは,写像 $|-|:K \to \mathbb{R}_{\geq 0}$ であって,次の 3 条件を満たすものをいう.

- (V1) 任意の $x \in K$ に対して、x = 0 と |x| = 0 とは同値である(非退化性).
- (V2) 任意の $x, y \in K$ に対して, |xy| = |x||y| である (乗法性).
- (V3) 任意の $x, y \in K$ に対して, $|x + y| \le |x| + |y|$ である (三角不等式).

体とその上の絶対値との組を, 付値体という.

K を体とする. |0| = 0 かつ任意の $x \in K \setminus \{0\}$ に対して |x| = 1 と定めると,これは K 上の絶対値である.これを,K 上の自明な絶対値という.

K を体, K' を K の部分体とする. K 上の絶対値を K' に制限したものは, K' 上の絶対値となる. これにより、付値体の部分体は自然に付値体とみなせる.

K を体,|-| を K 上の絶対値とする。 $|1| = |1^2| = |1|^2$ であり,非退化性より $|1| \neq 0$ だから,|1| = 1 である.また, $|-1|^2 = |(-1)^2| = |1| = 1$ だから,|-1| = 1 である.したがって, $x \in K$ に対して |-x| = |-1||x| = |x| であり, $|x||x^{-1}| = |xx^{-1}||1| = 1$ より $|x^{-1}| = |x|^{-1}$ である.

命題 1.2 K を体,|-| を K 上の絶対値とする.このとき, $(x,y) \mapsto |x-y|$ は K 上の距離であり,この距離が定める位相によって K は位相体となる(すなわち,K 上の加法,加法逆元をとる演算,乗法および乗法逆元をとる演算は,この距離が定める位相に関して連続である).

証明 $(x,y) \mapsto |x-y|$ が K 上の距離であることは,絶対値の非退化性と三角不等式,および上で見たように $x \in K$ に対して |-x| = |x| であることからわかる.以下,K にはこの距離が定める位相を考える.

加法の連続性は、 $x_0, y_0, x, y \in K$ に対して

$$|(x + y) - (x_0 + y_0)| \le |x - x_0| + |y - y_0|$$

であることからわかる. 加法逆元をとる演算の連続性は、 $x_0, x \in K$ に対して

$$|(-x) - (-x_0)| = |x - x_0|$$

であることからわかる. 乗法の連続性は, $x_0, y_0, x, y \in K$ に対して

$$xy - x_0y_0 = (x - x_0)(y - y_0) + (x - x_0)y_0 + x_0(y - y_0),$$

したがって

$$|xy - x_0y_0| \le |x - x_0||y - y_0| + |x - x_0||y_0| + |x_0||y - y_0|$$

であることからわかる. 乗法逆元をとる演算の連続性は、 $x_0, x \in K^{\times}$ に対して

$$x^{-1} - x_0^{-1} = -x^{-1}(x - x_0)x_0^{-1},$$

したがって

$$|x^{-1} - x_0^{-1}| = \frac{|x - x_0|}{|x||x_0|}$$

であることからわかる.

体上の絶対値から命題 1.2 のようにして定まる位相を,その絶対値が定める位相という.以下,付値体は常に,その絶対値が定める位相を備えているものと考える.

体 K 上の絶対値 |-| について,|-| が定める位相が離散であることと,|-| が自明な絶対値であることは同値である。このことを見ておく.自明な絶対値が離散位相を定めることは明らかである.逆に,|-| が自明でなければ, $|x| \neq 1$ なる $x \in K \setminus \{0\}$ がとれ,|x| < 1 であるか |x| > 1 であるかに応じて y = x あるいは $y = x^{-1}$ と置くことで,|y| < 1 なる $y \in K \setminus \{0\}$ がとれる.このとき,点列 $(y^n)_{n \in \mathbb{N}}$ は 0 を含まないが,|-| が定める位相に関して 0 に収束する.よって,|-| が定める位相は離散ではない.

定義 1.3(同値な絶対値) 体 K 上の 2 つの絶対値 $|-|_0$, $|-|_1$ は,それらが K 上に同じ位相を定めるとき,同値であるという.

命題 1.4 体 K 上の自明でない絶対値 $|-|_0,|_{-|_1}$ に対して、次の 4 条件は同値である.

- (a) 2 つの絶対値 |-|0 と |-|1 は同値である.
- (b) 任意の $x \in K$ に対して、 $|x|_0 < 1$ と $|x|_1 < 1$ とは同値である.
- (c) 任意の $x \in K$ に対して、 $|x|_0 < 1$ ならば $|x|_1 < 1$ である.
- (d) ある s > 0 が存在して、任意の $x \in K$ に対して $|x|_1 = |x|_0^s$ が成り立つ.

証明 (a) \Longrightarrow (b) K 上の絶対値 |-| について, $x \in K$ が |x| < 1 を満たすことは, 点列 $(x^n)_{n \in \mathbb{N}}$ が |-| の定める位相に関して 0 に収束することと同値である. よって, $|-|_0$ と $|-|_1$ が同値ならば, $x \in K$ に対して $|x|_0 < 1$ と $|x|_1 < 1$ とは同値となる.

- $(b) \Longrightarrow (c)$ 明らかである.
- $(c) \Longrightarrow (d)$ 任意の $x \in K$ に対して, $|x|_0 < 1$ ならば $|x|_1 < 1$ であるとする.このとき,任意の $x \in K$ に対して, $|x|_0 > 1$ ならば $|x|_1 > 1$ である.実際, $|x|_0 > 1$ ならば $|x^{-1}|_0 = |x|_0^{-1} < 1$ だから仮定より $|x^{-1}|_1 < 1$ であり,したがって $|x|_1 = |x^{-1}|_1^{-1} > 1$ である.

 $|-|_0$ は自明な絶対値ではないから, $|x_0|_0>1$ なる $x_0\in K$ がとれる.このとき $|x_0|_0>1$ でもある.そこで, $s=\log|x_0|_1/\log|x_0|_0>0$ と置く.この s について,任意の $x\in K$ に対して $|x|_1=|x|_0^s$ が成り立つことを示そう.

 $x \in K$ を任意にとる。 x = 0 ならば $|x|_1 = 0 = |x|_0^s$ だから, $x \neq 0$ とする。 $\gamma \in \mathbb{R}$ を $|x|_0 = |x_0|_0^\gamma$ となるようにとる。任意の有理数 $m/n > \gamma$ $(m \in \mathbb{Z}, n \in \mathbb{N}_{>0})$ に対して, $|x|_0 < |x_0|_0^{m/n}$,したがって $|x^n x_0^{-m}|_0 < 1$ だから,仮定より $|x^n x_0^{-m}|_1 < 1$,したがって $|x|_1 < |x_0|_1^{m/n}$ を得る。同様に,任意の有理数 $m/n < \gamma$ $(m \in \mathbb{Z}, n \in \mathbb{N}_{>0})$ に対して $|x|_1 > |x_0|_1^{m/n}$ が成り立つ。よって,m/n を γ に近づけることにより, $|x|_1 = |x_0|_1^\gamma$ を得る。よって,

$$|x|_1 = |x_0|_1^{\gamma} = (|x_0|_0^s)^{\gamma} = (|x_0|_0^{\gamma})^s = |x|_0^s$$

が成り立つ. これで, (d) が示された.

 $(d) \Longrightarrow (a)$ 明らかである.

命題 1.5 K を体,|-| を K 上の絶対値とする.任意の $0 < s \le 1$ に対して, $|-|^s$ は |-| と同値な K 上の絶対値である.

証明 $0 < s \le 1$ とする. $|-|^s$ が非退化かつ乗法的であることは明らかである. $|-|^s$ が三角不等式を満たすことを示す. $x, y \in K$ を任意にとる. x = y = 0 なら明らかだから,そうではないとする.このとき, $0 < s \le 1$ より

$$\left(\frac{|x|}{|x|+|y|}\right)^{s} + \left(\frac{|y|}{|x|+|y|}\right)^{s} \ge \frac{|x|}{|x|+|y|} + \frac{|y|}{|x|+|y|} = 1$$

だから、両辺に $(|x| + |y|)^s$ を掛け、|-| に対する三角不等式を使うことで

$$|x|^s + |y|^s \ge (|x| + |y|)^s \ge |x + y|^s$$

を得る. よって, |-|^s は K 上の絶対値である. |-|^s が |-| と同値であることは, (命題 1.4 の証明にも書いたとおり) 明らかである.

1.2 擬絶対値

定義 1.6(擬絶対値) 体 K 上の擬絶対値 *1 とは,写像 $f: K \to \mathbb{R}_{\geq 0}$ であって,次の 3 条件を満たすものをいう.

- (PV1) 任意の $x \in K$ に対して、 x = 0 と f(x) = 0 とは同値である.
- (PV2) 任意の $x, y \in K$ に対して,f(xy) = f(x)f(y) である.
- (PV3) ある定数 $A \ge 0$ が存在して、任意の $x, y \in K$ に対して $f(x + y) \le A \max\{f(x), f(y)\}$ である.

命題 1.7 体 K 上の絶対値 |-| と任意の s>0 に対して, $|-|^s$ は K 上の擬絶対値である.

証明 $\mid -\mid$ が非退化かつ乗法的であることから, $\mid -\mid ^s$ が (PV1), (PV2) を満たすことは明らかである. (PV3) については,任意の $x,y\in K$ に対して

$$|x + y|^s \le (|x| + |y|)^s \le (2 \max\{|x|, |y|\})^s = 2^s \max\{|x|^s, |y|^s\}$$

だから、 $A = 2^s$ と置けばよい.

命題 1.8 体 K 上の擬絶対値 f に対して、次の 3 条件は同値である.

- (a) f は K 上の絶対値である.
- (b) 任意の $n \in \mathbb{N}$ に対して, $f(n) \le n$ が成り立つ.
- (c) ある定数 $C \ge 0$ が存在し、任意の $n \in \mathbb{N}$ に対して $f(n) \le Cn$ が成り立つ.

証明 (a) \Longrightarrow (b) f が K 上の絶対値であるとする. すると, f(0) = 0, f(1) = 1 である. また, $n \in \mathbb{N}$ に対して, $|n| \le n$ ならば三角不等式より $f(n+1) \le f(n) + f(1) \le n+1$ となる. よって, 帰納法より, 任意の $n \in \mathbb{N}$ に対して $|n| \le n$ が成り立つ.

- $(b) \Longrightarrow (c)$ 明らかである.
- $(c) \Longrightarrow (a)$ f は擬絶対値だから、定数 $A \ge 0$ であって、任意の $x, y \in K$ に対して

$$f(x + y) \le A \max\{f(x), f(y)\}\$$

^{*&}lt;sup>1</sup> この概念は, たとえば Bourbaki [3, p. 108] で定義されている. ただし, Bourbaki [3, p. 108] では特に名前は付けられていない. 「擬絶対値」は、本稿だけの用語である.

が成り立つようなものがとれる.ここから帰納法により,任意の $r \in \mathbb{N}$ と $x_0, \ldots, x_{2^r-1} \in K$ に対して

$$f(x_0 + \dots + x_{2^r - 1}) \le A^r \max\{f(x_0), \dots, f(x_{2^r - 1})\}$$
 (*)

が成り立つことがわかる.

(c) が成り立つとする. $x, y \in K$ を任意にとる. $r \in \mathbb{N}, n = 2^r - 1$ とする. (*) と(c) より、

$$f(x+y)^n = f((x+y)^n)$$

$$= f\left(\sum_{k=0}^n \binom{n}{k} x^{n-k} y^k\right)$$

$$\leq A^r \max_{0 \leq k \leq n} f\left(\binom{n}{k} x^{n-k} y^k\right)$$

$$\leq A^r \max_{0 \leq k \leq n} C\binom{n}{k} f(x)^{n-k} f(y)^k$$

$$\leq A^r \sum_{k=0}^n C\binom{n}{k} f(x)^{n-k} f(y)^k$$

$$= A^r C(f(x) + f(y))^n,$$

したがって

$$f(x + y) \le A^{r/n} C^{1/n} (f(x) + f(y))$$

が成り立つ. $r \rightarrow \infty$ とすることで, 三角不等式

$$f(x+y) \le f(x) + f(y)$$

を得る. よって、f は K 上の絶対値である.

系 1.9 K を体,|-| を K 上の絶対値とし,s>0 とする.ある定数 $C\geq 0$ が存在して,任意の $n\in\mathbb{N}$ に対して $|n|^s\leq Cn$ が成り立てば, $|-|^s$ は |-| と同値な K 上の絶対値である.

証明 命題 1.7 と命題 1.8 より、与えられた仮定の下で、|-| は K 上の絶対値である。|-| が |-| と同値であることは、(命題 1.4 の証明にも書いたとおり) 明らかである.

1.3 Archimedes 性

定義 1.10 (Archimedes 性) 体 K 上の絶対値 |-| は, 条件

(U) 任意の $x, y \in K$ に対して, $|x + y| \le \max\{|x|, |y|\}$ である(超距離不等式).

を満たすとき、非 Archimedes 的あるいは超距離的であるという. 非 Archimedes 的でない絶対値は、Archimedes 的であるという. 付値体は、その絶対値が非 Archimedes 的・Archimedes 的であるに応じて、非 Archimedes 的・Archimedes 的であるという.

明らかに、自明な絶対値は非 Archimedes 的である。また、命題 1.4 の条件 (d) より、Archimedes 性は同値な絶対値の間では変わらないことがわかる。すなわち、Archimedes 的な絶対値と同値な絶対値は Archimedes 的であり、非 Archimedes 的な絶対値と同値な絶対値は非 Archimedes 的である。

命題 1.11 体 K 上の絶対値 |-| に対して,次の3条件は同値である.

- (a) |-| は非 Archimedes 的である.
- (b) 任意の $n \in \mathbb{N}$ に対して, $|n| \le 1$ である.
- (c) 任意の s > 0 に対して、 $|-|^s$ は K 上の絶対値である.

証明 (a) \Longrightarrow (b) |-| が非 Archimedes 的であるとする. |0|=0, |1|=1 は一般に成り立つのだった. また, $n \in \mathbb{N}$ に対して, $|n| \le 1$ ならば超距離不等式より $|n+1| \le \max\{|n|,|1|\} \le 1$ となる. よって, 帰納法より, 任意の $n \in \mathbb{N}$ に対して $|n| \le 1$ が成り立つ.

- (b) \Longrightarrow (c) (b) が成り立つとすると,任意の s>0 と $n\in\mathbb{N}$ に対して $|n|^s\le 1$ である.よって,系 1.9 より,任意の s>0 に対して $|-|^s$ は K 上の絶対値である.
- $(c) \Longrightarrow (a)$ (c) が成り立つとする. 任意の s>0 に対して, $|-|^s$ が絶対値であることより,任意の $x,y\in K$ に対して

$$|x + y|^s \le |x|^s + |y|^s \le 2 \max\{|x|^s, |y|^s\},$$

したがって

$$|x + y| \le 2^{1/s} \max\{|x|, |y|\}$$

である. $s \to \infty$ とすることで, |-| が超距離不等式を満たすことがわかる.

系 1.12 K を体, K' を K の部分体, |-| を K 上の絶対値とする。|-| が (K 上の絶対値として) 非 Archimedes 的であることと, |-| の K' への制限が (K' 上の絶対値として) 非 Archimedes 的であることとは同値である。

証明 命題 1.11 の条件(b)からわかる.

系 1.13 正標数の体上の絶対値は、すべて非 Archimedes 的である.

証明 K を標数 p > 0 の体,|-| を K 上の絶対値とする.任意の $n \in \mathbb{N}$ に対して,K の元としての n は素部分体 \mathbb{F}_p に属する.したがって,K の元として $n \neq 0$ ならば $n^{p-1} = 1$ であり,したがって |n| = 1 となる.よって,命題 1.11 より,|-| は非 Archimedes 的である.

2 ◎ 上の絶対値の分類

定義 2.1 (実絶対値・p 進絶対値)

(1) \mathbb{Q} 上の実絶対値 $|-|_{\infty}$ を, $x \in \mathbb{Q}$ に対して

$$|x|_{\infty} = \begin{cases} x & (x \ge 0) \\ -x & (x < 0) \end{cases}$$

と定める.

(2) 素数 p に対して、 \mathbb{Q} 上の p 進絶対値 $|-|_p$ を、次のように定める。 x=0 に対しては、 $|x|_p=0$ とする。 $x\in\mathbb{Q}\setminus\{0\}$ に対しては、 $n\in\mathbb{Z}$ および p と互いに素な $a\in\mathbb{Z}$ 、 $b\in\mathbb{N}_{>0}$ を用いて $x=p^n\cdot a/b$ と表し、この n を用いて

$$|x|_p = p^n$$

と定める.

実絶対値および素数 p に対する p 進絶対値が実際に $\mathbb Q$ 上の絶対値であることは,簡単に確かめられる.実 絶対値は Archimedes 的であり,p 進絶対値は非 Archimedes 的である.

定理 2.2 (\mathbb{Q} 上の絶対値の分類定理) \mathbb{Q} 上の絶対値 |-| に対して、次の 3 条件のうちただ 1 つが成り立つ.

- (i) |-| は自明な絶対値である.
- (ii) $0 < s \le 1$ が存在して、任意の $x \in \mathbb{Q}$ に対して $|x| = |x|_{\infty}^{s}$ が成り立つ.
- (iii) 素数 p および s > 0 が存在して、任意の $x \in \mathbb{Q}$ に対して $|x| = |x|_p^s$ が成り立つ.

さらに,(ii) の場合, $0 < s \le 1$ の選び方は |-| に対して一意的であり,(iii) の場合,素数 p および s > 0 の選び方は |-| に対して一意的である.逆に,(i),(ii),(iii) それぞれによって定まる |-| はいずれも \mathbb{Q} 上の絶対値である. $*^2$

証明 (i), (ii), (iii) によって定まる |-| が \mathbb{Q} 上の絶対値であることは, $|-|_{\infty}$ が \mathbb{Q} 上の絶対値であることと命題 1.5, $|-|_p$ (p は素数) が \mathbb{Q} 上の非 Archimedes 的な絶対値であることと命題 1.11 の条件 (d) からわかる.また,容易にわかるように,(i), (ii), (iii) (および s や p の選択)によって定まる絶対値はすべて異なる.あとは, \mathbb{Q} 上の任意の絶対値が (i), (ii), (iii) のいずれかの形であることを示せばよい.証明を 2 つの場合にわける.

(I) まず,ℚ上の非 Archimedes 的な絶対値 |-| について考える.このとき命題 1.11 より,任意の $n \in \mathbb{N}$ に対して(したがって $n \in \mathbb{Z}$ に対しても) $|n| \le 1$ である.もし任意の $n \in \mathbb{N}_{>0}$ に対して |n| = 1 ならば,絶対値の乗法性から |-| が自明な絶対値であることがわかる.それ以外の場合を考えよう.このとき,|n| < 1 なる $n \in \mathbb{N}_{>0}$ の中で最小のもの n_0 がとれる.この n_0 は素数でなければならない.実際, n_0 が約数 $1 < d < n_0$ をもったとすると, $|d||n_0/d| = |n_0| < 1$ より |d| < 1 または $|n_0/d| < 1$ だが,これは n_0 の最小性に反する.そこで,改めて $p = n_0$ と置く.

p と互いに素な $a \in \mathbb{Z}$ に対して |a| = 1 であることを示そう. a = kp + l $(k \in \mathbb{Z}, l \in \{1, ..., p-1\})$ と表す. |p| < 1 であり,また p の最小性より |l| = 1 だから,

$$|a - l| = |kp| = |k||p| < 1 = |l|$$

である. 一方で, 超距離不等式より

$$|l| \le \max\{|a|, |a-l|\}$$

である. これら 2 式より、 $1 = |l| \le |a|$ 、したがって |a| = 1 を得る. これで示された.

さて、 $p^{-s} = |p| < 1$ なる s > 0 をとる。|-| が $|-|_p^s$ に等しいことを示そう。 $x \in \mathbb{Q} \setminus \{0\}$ を任意にとり、 $n \in \mathbb{Z}$ および p と互いに素な $a \in \mathbb{Z}$, $b \in \mathbb{N}_{>0}$ を用いて $x = p^n \cdot a/b$ と表す。すると、

$$|x| = |p|^n \cdot \frac{|a|}{|b|} = |p|^n = (p^{-s})^n = |x|_p^s$$

である. よって、絶対値 |-| は $|-|_p^s$ に等しい. これで、 $\mathbb Q$ 上の任意の非 Archimedes 的な絶対値が (i) または (iii) の形であることが示された.

(II) 次に, \mathbb{Q} 上の Archimedes 的な絶対値 |-| について考える.このとき命題 1.11 より,ある整数 $h \geq 2$ が存在して |h| > 1 である.

 $x \in \mathbb{Q} \setminus \{0,\pm 1\}$ に対して

$$f(x) = \frac{\log|x|}{\log|x|_{\infty}}$$

^{*&}lt;sup>2</sup> 定理 2.2 を Ostrowski の定理と呼ぶこともある.

と置く. 整数 $a, b \ge 2$ を任意にとる. $n \in \mathbb{N}$ に対して, a^n の b 進法展開を

$$a^{n} = c_{0} + c_{1}b + \dots + c_{q(n)}b^{q(n)}$$

とする.ここで q(n) は, a^n の b 進法展開の b^m の位が 0 でないような最大の自然数であり, $\lfloor n \cdot \log a / \log b \rfloor$ に等しい.また, $c_0, \ldots, c_{q(n)} \in \{0, \ldots, b-1\}$ である. a^n の b 進法展開の表式より,

$$|a|^{n} \le |c_{0}| + |c_{1}||b| + \dots + |c_{q(n)}||b||^{q(n)}$$

$$\le c_{0} + c_{1}|b| + \dots + c_{q(n)}|b|^{q(n)}$$

$$\le b(1 + |b| + \dots + |b|^{q(n)})$$

$$\le b(q(n) + 1) \max\{1, |b|\}^{q(n)}$$

である. 上式の両辺の対数をとって

$$n \log |a| \le \log b + \log(q(n) + 1) + q(n) \max\{0, \log|b|\},$$

さらに両辺を n log a で割って

$$f(a) \le \frac{\log b}{n \log a} + \frac{\log(q(n)+1)}{n \log a} + \frac{\max\{0, \log|b|\}}{\log a} \cdot \frac{q(n)}{n}$$

を得る. $n \to \infty$ のとき $q(n)/n \to \log a/\log b$ だから、上式で $n \to \infty$ として

$$f(a) \le \frac{\max\{0, \log|b|\}}{\log b} = \max\{0, f(b)\}$$
 (*)

を得る. ところで,|h|>1 なる整数 $h\geq 2$ がとれるのだった.このような h をとる.|h|>1 より f(h)>0 だから,(*) において a を h に置き換えることで f(b)>0 を得る.したがって,(*) は $f(a)\leq f(b)$ となる.a と b の役割を交換することで $f(b)\leq f(a)$ もわかるから,f(a)=f(b) である.結局,f は 2 以上の整数に対して一定の値 s>0 をとる.すなわち,任意の整数 $a\geq 2$ に対して

$$|a| = |a|_{\infty}^{s}$$

が成り立つ。絶対値の乗法性より,この式が任意の有理数に対しても成り立つことがわかる。よって,絶対値 |-| は $|-|_{\infty}$ に等しい。さらに,三角不等式より $|2| \le |1| + |1|$,すなわち $2^s \le 2$ だから, $s \le 1$ でなければならない。これで, $\mathbb Q$ 上の任意の Archimedes 的な絶対値が (ii) の形であることが示された.

3 四元数体に関する準備

定理 3.1 D は標数が 2 でない非可換体であって,D の中心 Z を含む D の可換な部分体はすべて Z 上 2 次元以下であるとする.このとき, $u,v,w\in D$ と $\alpha,\beta\in Z$ であって,(1,u,v,w) が D の Z 上の基底をなし,かつ

$$u^2 = \alpha,$$
 $v^2 = \beta,$ $w^2 = -\alpha\beta$
 $uv = -vu = w,$ $vw = -wv = -\beta u,$ $wu = -uw = -\alpha v$

を満たすものが存在する.

証明 D は非可換だから、 $a \in D \setminus Z$ がとれる。Z(a) は Z を含む D の可換な部分体だから 2 次元以下であり、したがって (1,a) が Z(a) の Z 上の基底となるから、 $a^2 = \lambda a + \mu$ $(\lambda, \mu \in Z)$ と書ける。 $u = a - 2^{-1}\lambda$ と置くと、 $u \in D \setminus Z$ であって

$$u^2 = (a - 2^{-1}\lambda)^2 = a^2 - \lambda a + 2^{-2}\lambda^2 = \mu + 2^{-2}\lambda^2 \in \mathbb{Z}$$

を満たす.

単位的 Z-代数の自己同型 $\sigma: D \to D; x \mapsto uxu^{-1}$ を考え、

$$D_{+} = \{ x \in D \mid \sigma(x) = x \},\$$

$$D_{-} = \{ x \in D \mid \sigma(x) = -x \}$$

と置く.

まず,D が Z-線型空間として D_+ と D_- に直和分解されることを示す. D_+ と D_- が D の部分 Z-線型空間 であることはよい.また, $x \in D_+ \cap D_-$ とすると $x = \sigma(x) = -x$ であり,D の標数は 2 でないから x = 0 である.よって, $D_+ \cap D_- = \{0\}$ である.さらに, $\sigma^2 = \mathrm{id}_D$ に注意すると,任意の $x \in D$ に対して

$$x = 2^{-1}(x + \sigma(x)) + 2^{-1}(x - \sigma(x)) \in D_+ + D_-$$

であることがわかる. よって、D は Z-線型空間として D_+ と D_- に直和分解される.

次に、 $D_+ = Z(u)$ であることを示す.容易にわかるように、 D_+ は Z と u を含む D の部分体だから、 $Z(u) \subseteq D_+$ である.あとは、 $D_+ \subseteq Z(u)$ を示せばよい. $x \in D_+$ を任意にとると、 D_+ の定義より u と x は可換だから、Z(u,x) は D の可換な部分体となる.したがって仮定より、Z(u,x) は Z 上 2 次元以下であり、(1,u) が Z(u,x) の Z 上の基底となる.よって、 $x \in Z(u)$ である.これで、 $D_+ \subseteq Z(u)$ が示された.

次に、 D_- が自然に 1 次元左 D_+ -線型空間とみなせることを見る.容易にわかるように、 $x \in D_+$ と $y \in D_-$ に対して $xy \in D_-$ だから、これをスカラー乗法として D_- は左 D_+ -線型空間とみなせる. D_- が左 D_+ -線型空間として 1 次元であることを示そう. $y,z \in D_-$ に対して、 $y \neq 0$ とすると、 $y = (zy^{-1})y$ であり、

$$\sigma(zy^{-1}) = \sigma(z)\sigma(y)^{-1} = (-z)(-y)^{-1} = zy^{-1}$$

より $zy^{-1} \in D_+$ だから, D_- は左 D_+ -線型空間としてたかだか 1 次元である.また,D は Z-線型空間として D_+ と D_- に直和分解されるのだったから,もし D_- = $\{0\}$ だとすると $D = D_+$ となるが,これは $a \in D \setminus Z$ に 反するから,ありえない.よって, D_- は左 D_+ -線型空間として 1 次元である.

さて、 $v \in D_- \setminus \{0\}$ を 1 つ固定し、w = uv と置く。(1,u) は D_+ の Z 上の基底であり、 D_- は 1 次元左 D_+ -線型空間だったから、(v,w) は D_- の Z 上の基底である。さらに、D は Z-線型空間として D_+ と D_- に直和分解されるのだったから、(1,u,v,w) は D の Z 上の基底である。 $v,w \in D_-$ だから、 D_- の定義より、

$$uv = -vu$$
, $vw = vuv = -uvv = -wv$, $wu = -uw$

である. $u^2 = \alpha$, $v^2 = \beta$ と置こう. すると,

$$w^2 = uvuv = -uuvv = -\alpha\beta$$

となる. u のとり方より, $\alpha \in Z$ である. また, 容易にわかるように D_- の 2 つの元の積は D_+ に属するから $\beta = v^2 \in D_+$ であり, 一方で $\beta = v^2 \in Z(v)$ だから, $\beta = D_+ \cap Z(v)$ である. $v \notin D_+$ より $D_+ \cap Z(v)$ は Z を含む D_+ の真部分体だが, D_+ は Z 上 2 次元だから, これは Z しかありえない. よって, $\beta \in Z$ である. さらに, 以上のことより

$$wv = uvv = u\beta = \beta u, \qquad uw = uuv = \alpha v$$

もわかる. これで、u, v, w および α, β が主張の性質を満たすことが確かめられた.

系 3.2 D は非可換な単位的 \mathbb{R} -代数であって,D の中心は(D の部分体とみなした) \mathbb{R} に等しく, \mathbb{R} を含む D の可換な部分体はすべて \mathbb{R} 上 2 次元以下であるとする.このとき,D は単位的 \mathbb{R} -代数として四元数体 \mathbb{H} に同型である.

証明 D の標数は 0 だから,定理 3.1 より, $u, v, w \in D$ と $\alpha, \beta \in \mathbb{R}$ であって,(1, u, v, w) が D の \mathbb{R} 上の基底をなし,かつ

$$u^2 = \alpha,$$
 $v^2 = \beta,$ $w^2 = -\alpha\beta$
 $uv = -vu = w,$ $vw = -wv = -\beta u,$ $wu = -uw = -\alpha v$ (*)

を満たすものが存在する.

 $u \neq 0$ だから $\alpha \neq 0$ である。また, $\alpha > 0$ とすると,可換体 $Z(\alpha)$ において 2 次の多項式 $T^2 - \alpha$ が 3 つの根 $\pm \sqrt{\alpha}$,u をもつことになり矛盾する。したがって $\alpha < 0$ だから,u を $1/\sqrt{-\alpha}$ 倍することにより,はじめから $\alpha = -1$ であるとしてよい.同様に, $\beta = -1$ であるとしてよい.このとき,(*) は

$$u^{2} = -1,$$
 $v^{2} = -1,$ $w^{2} = -1$
 $uv = -vu = w,$ $vw = -wv = u,$ $wu = -uw = v$

となる. よって、D は単位的 \mathbb{R} -代数として四元数体 \mathbb{H} に同型である.

4 Gelfand–Mazur の定理

4.1 単位的代数の元のスペクトル

定義 4.1(単位的代数の元のスペクトル) K を可換体, A を単位的 K-代数とする. $x \in A$ の(A における)スペクトルを、

$$Sp_A(x) = \{\lambda \in K \mid \lambda - x \text{ は } A \text{ において可逆でない} \}$$

と定める. $Sp_A(x)$ を単に Sp(x) とも書く.

B が A の部分単位的 K-代数であるとき, $x \in B$ に対して $\operatorname{Sp}_A(x) \subseteq \operatorname{Sp}_B(x)$ が成り立つ.

命題 4.2 K を可換体,A を単位的 K-代数, $x \in A$ とする. $\lambda, \mu \in \operatorname{Sp}_A(x)$ に対して,

$$(\mu - x)^{-1} - (\lambda - x)^{-1} = -(\mu - \lambda)(\mu - x)^{-1}(\lambda - x)^{-1}$$

が成り立つ.

証明 $\lambda, \mu \in \operatorname{Sp}_A(x)$ に対して,

$$(\mu - x)^{-1} - (\lambda - x)^{-1} = (\mu - x)^{-1} (\lambda - x)(\lambda - x)^{-1} - (\mu - x)^{-1}(\mu - x)(\lambda - x)^{-1}$$
$$= (\mu - x)^{-1}(\lambda - \mu)(\lambda - x)^{-1}$$
$$= -(\mu - \lambda)(\mu - x)^{-1}(\lambda - x)^{-1}$$

である.

4.2 ノルム代数, Banach 代数

定義 4.3(ノルム代数,Banach 代数) K を可換付値体とする. K-代数 A にその K-線型空間の構造と整合するノルム $\|-\|$ が定まっており,かつそのノルムが

(NA) 任意の $x, y \in A$ に対して, $||xy|| \le ||x|| ||y||$ である.

を満たすとき,このノルム \parallel – \parallel は A の K-代数の構造と整合するといい,A と \parallel – \parallel との組を K-ノルム代数という.完備な K-ノルム代数を,K-Banach 代数という.

K-ノルム代数 A が単位的であるとする.条件 (NA) より $\|1\| = \|1 \cdot 1\| \le \|1\|^2$ だから, $A \ne \{0\}$ ならば $\|1\| \ge 1$ である.本稿では, $\{0\}$ でない単位的 K-代数が $\|1\| = 1$ を満たすことは仮定しない.なお,(本稿の意味での) $\{0\}$ でない単位的 K-ノルム代数 A に対し,そのノルムを適切にとりかえれば,A の位相を変えず に A を $\|1\| = 1$ なる単位的 K-ノルム代数に修正することができる.これについては,たとえば Arveson [1, pp. 12–13] を参照のこと.

A を K-ノルム代数とすると,条件 (NA) より,A の乗法 $(x,y)\mapsto xy$ は連続である.逆に,K-代数 A 上に (K-線型空間の構造と整合する) ノルム $\|-\|$ が与えられていて,そのノルムが定める位相に関して A の乗法が連続であれば,ある定数 $C\geq 0$ が存在して任意の $x,y\in A$ に対して $\|xy\|\leq C\|x\|\|y\|$ が成り立つから,ノルム $\|-\|$ を適当に定数倍することによって,A を K-ノルム代数にすることができる.

命題 4.4 K を可換付値体,A を単位的 K-Banach 代数とする.任意の $x \in A$, $\|x\| < 1$ に対して,1-x は可逆かつ $\{x^n\}_{n \in \mathbb{N}}$ は絶対総和可能であり,

$$(1-x)^{-1} = \sum_{n \in \mathbb{N}} x^n$$

が成り立つ. さらにこのとき,

$$\|(1-x)^{-1}\| \le \|1\| + \frac{\|x\|}{1-\|x\|}, \qquad \|(1-x)^{-1}-1\| \le \frac{\|x\|}{1-\|x\|}$$

が成り立つ*3.

証明 $x \in A$, ||x|| < 1 を任意にとる. $n \ge 1$ に対して $||x^n|| \le ||x||^n$ だから, ||x|| < 1 より $\{x^n\}_{n \in \mathbb{N}}$ は絶対総和可能である. また, $N \in \mathbb{N}$ に対して

$$(1-x)(1+x+\cdots+x^{N-1}) = (1+x+\cdots+x^{N-1})(1-x) = 1-x^N$$

だから、 $N \to \infty$ として

$$(1-x)\left(\sum_{n\in\mathbb{N}}x^n\right) = \left(\sum_{n\in\mathbb{N}}x^n\right)(1-x) = 1$$

を得る. よって, 1-x は可逆であり、その逆元は $\sum_{n\in\mathbb{N}} x^n$ で与えられる. さらに、

$$\|(1-x)^{-1}-1\| = \left\|\sum_{n>1} x^n\right\| \le \sum_{n>1} \|x\|^n = \frac{\|x\|}{1-\|x\|}$$

^{*} 3 ||1|| = 1 ならば、第一の式は || $(1-x)^{-1}$ || $\leq 1/(1-||x||)$ となる.

が成り立ち, したがって

$$\|(1-x)^{-1}\| \le \|1\| + \|(1-x)^{-1} - 1\| \le \|1\| + \frac{\|x\|}{1-\|x\|}$$

が成り立つ.

系 4.5 K を可換付値体,A を単位的 K-ノルム代数とし,A の可逆元全体を A^{\times} と書く.乗法逆元をとる写像 $A^{\times} \to A^{\times}$; $x \mapsto x^{-1}$ は連続である.

証明 A の完備化 \widehat{A} を考えると, $A^{\times} \subseteq (\widehat{A})^{\times}$ であり,A における乗法逆元をとる写像 $A^{\times} \to A^{\times}$ は \widehat{A} における乗法逆元をとる写像 $(\widehat{A})^{\times} \to (\widehat{A})^{\times}$ の制限だから, \widehat{A} に対する主張を示せば,A に対する主張も示される.そこで,はじめから A は単位的 K-Banach 代数であるとしてよい.以下,そのように仮定する.

 $x \in A^{\times}$, $h \in A$ であって $x + h \in A^{\times}$ なるものに対して

$$(x+h)^{-1} - x^{-1} = x^{-1}(((x+h)x^{-1})^{-1} - 1) = x^{-1}((1+hx^{-1})^{-1} - 1)$$

だから、h が 0 に十分近く $||hx^{-1}|| < 1$ であるとき、命題 4.4 より

$$\|(x+h)^{-1} - x^{-1}\| \le \|x^{-1}\| \|(1+hx^{-1})^{-1} - 1\| \le \|x^{-1}\| \frac{\|hx^{-1}\|}{1 - \|hx^{-1}\|}$$

が成り立つ. 上式の最右辺は, $h \to 0$ のとき 0 に収束する. これで, 乗法逆元をとる写像の連続性が示された.

系 4.6 A を単位的 \mathbb{C} -ノルム代数とする. 任意の $x \in A$ に対して, $\lambda \in \mathbb{C} \setminus \operatorname{Sp}_A(x)$ が無限遠に近づくとき, $(\lambda - x)^{-1}$ は $0 \in A$ に収束する*4.

証明 A の完備化 \widehat{A} を考えると、 $x \in A$ に対して $\operatorname{Sp}_{\widehat{A}}(x) \subseteq \operatorname{Sp}_{A}(x)$,したがって $\mathbb{C} \setminus \operatorname{Sp}_{A}(x) \subseteq \mathbb{C} \setminus \operatorname{Sp}_{\widehat{A}}(x)$ だから、 \widehat{A} に対する主張を示せば、A に対する主張も示される.そこで、はじめから A は \mathbb{R} -Banach 代数をなすとしてよい.以下、そのように仮定する.

 $x \in A$ を任意にとる. $\lambda \in \mathbb{C} \setminus \operatorname{Sp}_A(x)$ が無限遠点に十分近く $\|\lambda^{-1}x\| < 1$ であるとき,命題 4.4 より, $\lambda - x = \lambda(1 - \lambda^{-1}x)$ は可逆であって

$$\|(\lambda - x)^{-1}\| = |\lambda|^{-1} \|(1 - \lambda^{-1}x)^{-1}\| \le |\lambda|^{-1} \left(\|1\| + \frac{\|\lambda^{-1}x\|}{1 - \|\lambda^{-1}x\|} \right)$$

が成り立つ. 上式の最右辺は, $\lambda \to \infty$ のとき 0 に収束する. これで, $\lambda \to \infty$ のとき $(\lambda - x)^{-1} \to 0$ となることが示された.

4.3 Gelfand-Mazur の定理(複素係数の場合)

複素係数の場合の Gelfand-Mazur の定理の証明の鍵となるのは、次の定理である.

定理 4.7 A を $\{0\}$ でない単位的 \mathbb{C} -ノルム代数とする. 任意の $x \in A$ に対して, $\operatorname{Sp}_A(x)$ は空でない.

^{*4} ある $R \ge 0$ が存在して $\operatorname{Sp}_A(x)$ が $\{\lambda \in \mathbb{C} \mid |\lambda| \ge R\}$ を含む場合, $\lambda \in \mathbb{C} \setminus \operatorname{Sp}_A(x)$ は無限遠には近づけないが,このとき主張は自明に成立するとみなす.

証明 $\operatorname{Sp}_A(x)$ が空であると仮定する. すると,任意の $\lambda \in \mathbb{C}$ に対して $\lambda - x$ は可逆だから,写像 $\mathbb{C} \to A$; $\lambda \mapsto (\lambda - x)^{-1}$ が考えられる. \mathbb{C} -ノルム空間 A 上の連続線型形式 ϕ ごとに,関数 $f_{\phi} : \mathbb{C} \to \mathbb{C}$ を

$$f_{\phi}(\lambda) = \langle (\lambda - x)^{-1}, \phi \rangle$$

によって定める. すると、 f_{ϕ} は正則関数である. 実際、 $\lambda_0, \lambda \in \mathbb{C}$ 、 $\lambda \neq \lambda_0$ に対して

$$\frac{f_{\phi}(\lambda) - f_{\phi}(\lambda_0)}{\lambda - \lambda_0} = \frac{\langle (\lambda - x)^{-1}, \phi \rangle - \langle (\lambda_0 - x)^{-1}, \phi \rangle}{\lambda - \lambda_0}$$
$$= \left\langle \frac{(\lambda - x)^{-1} - (\lambda_0 - x)^{-1}}{\lambda - \lambda_0}, \phi \right\rangle$$
$$= \langle -(\lambda - x)^{-1}(\lambda_0 - x)^{-1}, \phi \rangle$$

だから (命題 4.2 を用いた), $\lambda \rightarrow \lambda_0$ として, 乗法逆元をとる写像の連続性 (系 4.5) より

$$\lim_{\lambda \to \lambda_0} \frac{f_{\phi}(\lambda) - f_{\phi}(\lambda_0)}{\lambda - \lambda_0} = \langle -(\lambda_0 - x)^{-2}, \phi \rangle$$

を得る. また、系 4.6 より、 f_{ϕ} は無限遠方において 0 に収束する. よって、 f_{ϕ} は \mathbb{C} 全体で定義された無限遠方において 0 に収束する正則関数だから、Liouville の定理より、 $f_{\phi}=0$ である.

以上より、 $\lambda \in \mathbb{C}$ を 1 つ固定すると、A 上の任意の連続線型形式 ϕ に対して $\langle (\lambda - x)^{-1}, \phi \rangle = 0$ だから、Hahn–Banach の定理より $(\lambda - x)^{-1} = 0$ となる.これは、A が $\{0\}$ でないことに矛盾する.よって、背理法より、 $\mathrm{Sp}_A(x)$ は空でない.

定理 4.8(複素係数の場合の Gelfand–Mazur の定理) (可換とは限らない)体をなす単位的 \mathbb{C} -ノルム代数は,単位的 \mathbb{C} -代数として \mathbb{C} に同型である.

証明 A が体をなす単位的 \mathbb{C} -ノルム代数であるとする.写像 $\mathbb{C} \to A$; $\lambda \mapsto \lambda 1_A$ が全単射であることを示せばよい. $A \neq \{0\}$ だから,この写像は単射である.全射性を示す. $x \in A$ を任意にとる.定理 4.7 より, $\lambda \in \operatorname{Sp}_A(x)$ がとれる.スペクトルの定義より $\lambda 1_A - x$ は A において可逆でないが,いま A は体をなすから,そのためには $x = \lambda 1_A$ でなければならない.これで,全射性が示された.

次小節で実係数の場合の Gelfand-Mazur の定理(定理 4.12)を証明するときに必要になるので、複素係数の場合の Gelfand-Mazur の定理(定理 4.8)を少し拡張しておく.

補題 4.9 E を \mathbb{C} -線型空間, $\|-\|$ を E の \mathbb{R} -線型空間の構造と整合するノルムとし, $\|-\|$ が定める位相は E の \mathbb{C} -線型空間の構造と整合する(すなわち,複素数によるスカラー倍 $\mathbb{C} \times E \to E$; $(\lambda, x) \mapsto \lambda x$ はこの位相に関して連続である)とする.このとき,E の \mathbb{C} -線型空間の構造と整合するノルム $\|-\|'$ であって, $\|-\|$ と同じ位相を定めるものが存在する.

証明 複素数によるスカラー倍は ||-|| が定める位相に関して連続だから,各 $x \in E$ に対して関数 $\mathbb{R} \to \mathbb{R}_{\geq 0}$; $\theta \mapsto ||e^{\sqrt{-1}\theta}x||$ は連続である.そこで,||-||': $E \to \mathbb{R}_{\geq 0}$ を

$$||x||' = \frac{1}{2\pi} \int_0^{2\pi} ||e^{\sqrt{-1}\theta}x|| d\theta$$

と定める. すると, $\|-\|'$ は三角不等式を満たし, 任意の複素数 $\lambda=re^{\sqrt{-1}\,\phi}$ $(r\geq 0,\;\phi\in\mathbb{R})$ と $x\in E$ に対して

$$\|\lambda x\|' = \frac{1}{2\pi} \int_0^{2\pi} \|e^{\sqrt{-1}\theta} \cdot \lambda x\| d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \|re^{\sqrt{-1}(\theta + \phi)}x\| d\theta$$
$$= r\|x\|'$$
$$= |\lambda| \|x\|'$$

だから、||-||'は E の \mathbb{C} -線型空間の構造と整合するノルムである.

||-||'が ||-|| と同じ位相を定めることを示そう. E を ||-|| によって \mathbb{R} -ノルム空間とみなすと,複素数によるスカラー倍 $\mathbb{C} \times E \to E$; $(\lambda, x) \mapsto \lambda x$ は連続双線型写像だから,ノルム空間の一般論より,ある定数 C > 0 が存在して任意の $\lambda \in \mathbb{C}$, $x \in E$ に対して $||\lambda x|| \le C|\lambda|||x||$ が成り立つ.特に, $\lambda = e^{\sqrt{-1}\,\theta}$ ($\theta \in \mathbb{R}$)と置いて

$$||e^{\sqrt{-1}\,\theta}x|| \le C||x||$$

を得る. また、上式でxを $e^{\sqrt{-1}(-\theta)}x$ に置き換えてから θ を $-\theta$ に置き換えることで、

$$||x|| \le C||e^{\sqrt{-1}\,\theta}x||$$

を得る. よって,

$$C^{-1}||x|| \le ||x||' \le C||x||$$

が成り立ち、||-||'が ||-||と同じ位相を定めることがわかる.

系 4.10 E を単位的 \mathbb{C} -代数とする. E の \mathbb{R} -代数の構造と整合するノルムが存在するならば, E の \mathbb{C} -代数の構造と整合するノルムも存在する.

П

証明 E の \mathbb{R} -代数の構造と整合するノルム \parallel - \parallel が存在するとする. E の乗法はこのノルム \parallel - \parallel が定める位相に関して連続だから,特に複素数によるスカラー倍 $\mathbb{C} \times E \to E$; $(\lambda,x) \mapsto \lambda x$ も連続である. よって補題 4.9 より,E の \mathbb{C} -線型空間の構造と整合するノルム \parallel - \parallel ' であって, \parallel - \parallel と同じ位相を定めるものが存在する. E の乗法はノルム \parallel - \parallel ' が定める位相に関して連続だから,定義 4.3 の直後に注意したように,ノルム \parallel - \parallel ' を適当に定数倍することによって,E の \mathbb{C} -代数の構造と整合するノルムが得られる.これで示された.

定理 4.11(複素係数の場合の Gelfand–Mazur の定理・拡張版) A は(可換とは限らない)体をなす単位的 \mathbb{C} -代数であって,その \mathbb{R} -代数の構造と整合するノルムが存在するとする.このとき,A は単位的 \mathbb{C} -代数として \mathbb{C} に同型である.

証明 複素係数の場合の Gelfand-Mazur の定理(定理 4.8)と系 4.10 からただちに従う.

4.4 Gelfand-Mazur の定理(実係数の場合)

定理 4.12(実係数の場合の Gelfand–Mazur の定理) (可換とは限らない)体をなす単位的 \mathbb{R} -ノルム代数 は、単位的 \mathbb{R} -代数として \mathbb{R} , \mathbb{C} , \mathbb{H} のいずれかに同型である.

証明 A が体をなす単位的 \mathbb{R} -ノルム代数であるとする. 証明を 3 つの場合に分ける.

(I) まず、A が可換であり、 $j^2=-1$ を満たす $j\in A$ が存在する場合を考える.このとき、 $\alpha+\beta\sqrt{-1}\in\mathbb{C}$ $(a,b\in\mathbb{R})$ と $x\in A$ に対して

$$(\alpha + \beta \sqrt{-1})x = \alpha x + \beta j x$$

と定めると、A の可換性と $j^2=-1$ より、これをスカラー乗法として(A 上にもともと定まっていた加法・乗法とともに)A が単位的 \mathbb{C} -代数をなし、この単位的 \mathbb{C} -代数の構造を忘却して得られる単位的 \mathbb{R} -代数の構造が A のもとの単位的 \mathbb{R} -代数の構造と一致することが容易に確かめられる.よって、複素係数の場合の Gelfand–Mazur の定理・拡張版(定理 4.11)より、A は単位的 \mathbb{R} -代数として \mathbb{C} に同型である.

(II) 次に、A が可換であり、 $j^2 = -1$ を満たす $j \in A$ が存在しない場合を考える。このとき、 $T^2 + 1$ は A 上の既約多項式だから、 $B = A[T]/(T^2 + 1)$ は可換体をなす。 $j = T + (T^2 + 1)$ と置くと、(1,j) は B の A 上の基底である。 $x + yj \in B$ $(x, y \in A)$ に対して、

$$||x + yj||_B = ||x||_A + ||y||_A$$

と定めよう. すると、 $\|-\|_A$ が A の \mathbb{R} -線型空間の構造と整合するノルムであることからただちに、 $\|-\|_B$ が B の \mathbb{R} -線型空間の構造と整合するノルムであることがわかる. さらに、B の元 z=x+yj、z'=x'+y'j($x,y,x',y'\in A$)に対して

$$||zz'||_{B} = ||xx' - yy'||_{A} + ||xy' + x'y||_{A}$$

$$\leq ||xx'||_{A} + ||yy'||_{A} + ||xy'||_{A} + ||x'y||_{A}$$

$$\leq ||x||_{A} ||x'||_{A} + ||y||_{A} ||y'||_{A} + ||x||_{A} ||y'||_{A} + ||x'||_{A} ||y||_{A}$$

$$\leq (||x||_{A} + ||y||_{A})(||x'||_{A} + ||y'||_{A})$$

$$= ||z||_{B} ||z'||_{B}$$

である.したがって,このノルム $\|-\|_B$ によって B は単位的 \mathbb{R} -ノルム代数をなす.B は可換体であり, $j \in B$ は $j^2 = -1$ を満たすのだったから,(I) より,B は単位的 \mathbb{R} -代数として \mathbb{C} に同型である.A は B の真部分単位的 \mathbb{R} -代数だが, \mathbb{C} の真部分単位的 \mathbb{R} -代数は \mathbb{R} しかないので,A は単位的 \mathbb{R} -代数として \mathbb{R} に同型である.

(III) 最後に、A が非可換である場合を考える。Z を A の中心とすると、Z は A の可換な部分体であり、さらに A の部分単位的 \mathbb{R} -ノルム代数でもある。また、A は非可換だから $a \in A \setminus Z$ を 1 つ固定できるが、このとき Z(a) も A の可換な部分体であり、A の部分単位的 \mathbb{R} -ノルム代数である。よって、(I)、(II) より、Z と Z(a) はそれぞれ単位的 \mathbb{R} -代数として \mathbb{R} または \mathbb{C} に同型だが、Z は Z(a) の真部分単位的 \mathbb{R} -代数だから、Z は \mathbb{R} に、Z(a) は \mathbb{C} にそれぞれ同型でなければならない。よって、系 3.2 より、A は単位的 \mathbb{R} -代数として \mathbb{H} に同型である。

5 Ostrowski の定理

 \mathbb{R} , \mathbb{C} , \mathbb{H} を、その標準的な絶対値によって付値体とみなす.

定理 5.1(Ostrowski の定理) $(K, |-|_K)$ を(可換とは限らない)Archimedes 的な完備付値体とする.このとき,次の 3 条件のうちただ 1 つが成り立つ.

- (i) 体の同型 $\phi: K \to \mathbb{R}$ と $0 < s \le 1$ が存在して、任意の $x \in K$ に対して $|x|_K = |\phi(x)|^s$ が成り立つ.
- (ii) 体の同型 $\phi: K \to \mathbb{C}$ と $0 < s \le 1$ が存在して、任意の $x \in K$ に対して $|x|_K = |\phi(x)|^s$ が成り立つ.

(iii) 体の同型 $\phi: K \to \mathbb{H}$ と $0 < s \le 1$ が存在して、任意の $x \in K$ に対して $|x|_K = |\phi(x)|^s$ が成り立つ.

さらに、(i)、(ii)、(iii) のそれぞれの場合、 $0 < s \le 1$ の選び方は K に対して(ϕ のとり方によらず)一意的である.逆に、体 K と K から \mathbb{R} 、 \mathbb{C} 、 \mathbb{H} のいずれかへの体の同型 ϕ があるとき、(i)、(ii)、(iii) にある式によって $|-|_K$ を定めると、 $(K, |-|_K)$ は Archimedes 的な完備付値体となる.

証明 体 K と K から \mathbb{R} , \mathbb{C} , \mathbb{H} のいずれかへの体の同型 ϕ があるとして,(i), (ii), (iii) にある式によって定まる $|-|_K$ を考える.すると,命題 1.5 と命題 1.11 より $|-|_K$ は K 上の Archimedes 的な絶対値であり,命題 1.4 より $|-|_K$ と \mathbb{R} , \mathbb{C} , \mathbb{H} の標準的な絶対値の ϕ による引き戻しとは同値だから,(K, $|-|_K$) は Archimedes 的な完備付値体となる.

 $(K, |-|_K)$ を Archimedes 的な完備付値体とする. \mathbb{R} , \mathbb{C} , \mathbb{H} はどの 2 つも体として同型ではないから, (i), (ii), (iii) のどの 2 つも同時には成り立たない. また, K から \mathbb{R} , \mathbb{C} , \mathbb{H} のいずれかへの体の同型 ϕ と $0 < s \le 1$ について, 任意の $x \in K$ に対して $|x|_K = |\phi(x)|^s$ が成り立つとすると, $|2|_K = |2|^s = 2^s$ でなければならないから, $0 < s \le 1$ の選び方は K に対してたかだか一意に定まる. あとは, このような ϕ と s の存在を示せばよい.

 $|-|_K$ は Archimedes 的だから,K は標数 0 であり(系 1.13),したがって K は素部分体 $\mathbb Q$ を含む. $|-|_K$ の $\mathbb Q$ への制限は $\mathbb Q$ 上の Archimedes 的な絶対値だから(系 1.12), $\mathbb Q$ 上の絶対値の分類定理(定理 2.2)より,ある $0 < s \le 1$ が存在して,任意の $\lambda \in \mathbb Q$ に対して $|\lambda|_K = |\lambda|_\infty^s$ が成り立つ.特に,任意の $n \in \mathbb N$ に対して $|n|_K^{1/s} = n$ だから,系 1.9 より, $|-|_K^{1/s}$ は $|-|_K$ と同値な K 上の絶対値である.付値体 (K, |-|) は完備だから,付値体 $(K, |-|_K^{1/s})$ も完備である.さらに,任意の $\lambda \in \mathbb Q$ と $x \in K$ に対して

$$|\lambda x|_K^{1/s} = |\lambda|_{\infty} |x|_K^{1/s}$$

だから,絶対値 $|-|_K^{1/s}$ の乗法性や三角不等式と合わせて, $|-|^{1/s}$ が K の単位的 \mathbb{Q} -代数の構造と整合する K 上の完備なノルムであることがわかる(ここで, \mathbb{Q} は実絶対値 $|-|_{\infty}$ を備えた付値体とみなす). すなわち, $(K,|-|_K^{1/s})$ は単位的 \mathbb{Q} -Banach 代数である.完備化によって, $(K,|-|_K^{1/s})$ は単位的 \mathbb{R} -Banach 代数となる. すると,実係数の場合の Gelfand—Mazur の定理(定理 4.12)より,K から \mathbb{R} , \mathbb{C} , \mathbb{H} のいずれかへの単位的 \mathbb{R} -代数の同型 ϕ がとれる.

 $|-|_K^{1/s}$ と $|\phi(-)|$ はともに K 上の絶対値であり,K の \mathbb{R} -線型空間の構造と整合するノルムでもある. K は \mathbb{R} 上有限次元だから,ノルム空間の一般論より,これら 2 つのノルム $|-|_K^{1/s}$ と $|\phi(-)|$ は K 上に同じ位相を定める。すなわち,絶対値 $|-|_K^{1/s}$ と $|\phi(-)|$ は同値である。したがって命題 1.4 より,ある t>0 が存在して $|-|_K^{t/s} = |\phi(-)|$ となるが,一方で $|-|_K^{1/s}$ と $|\phi(-)|$ は K の部分体 \mathbb{R} 上で一致するので,t=1 でなければならない。よって, $|-|_K^{1/s} = |\phi(-)|$,すなわち $|-| = |\phi(-)|^s$ である。これで示された.

付録 A Frobenius の定理

系 3.2 から,有限次元単位的 \mathbb{R} -代数を決定する Frobenius の定理が証明できる.証明は,実係数の場合の Gelfand–Mazur の定理(定理 4.12)のそれと並行している.

定理 A.1 (Frobenius の定理) (可換とは限らない)体をなす有限次元単位的 \mathbb{R} -代数は,単位的 \mathbb{R} -代数として \mathbb{R} , \mathbb{C} , \mathbb{H} のいずれかに同型である.

証明 A が体をなす有限次元単位的 \mathbb{R} -ノルム代数であるとする. 証明を 3 つの場合に分ける.

(I) まず、A が可換であり、 $j^2 = -1$ を満たす $j \in A$ が存在する場合を考える. このとき、

$$A' = \{ \alpha + \beta j \mid \alpha, \beta \in \mathbb{R} \}$$

は A の部分体であって, \mathbb{R} -代数として \mathbb{C} に同型である. A は A' の(可換な)有限次拡大と考えられるが, $A' \cong \mathbb{C}$ は代数閉体だから,A = A' でなければならない.よって,A は単位的 \mathbb{R} -代数として \mathbb{C} に同型である.

- (II) 次に、A が可換であり、 $j^2=-1$ を満たす $j\in A$ が存在しない場合を考える.このとき、 T^2+1 は A 上 の既約多項式だから、 $B=A[T]/(T^2+1)$ は可換体をなす.また、B は A 上 2 次元だから,B も有限次元単位 的 \mathbb{R} -代数である.さらに、 $j=T+(T^2+1)\in B$ は $j^2=-1$ を満たす.したがって、(I) より、B は単位的 \mathbb{R} -代数として \mathbb{C} に同型である.A は B の真部分単位的 \mathbb{R} -代数だが、 \mathbb{C} の真部分単位的 \mathbb{R} -代数は \mathbb{R} しかないので、A は単位的 \mathbb{R} -代数として \mathbb{R} に同型である.
- (III) 最後に、A が非可換である場合を考える。Z を A の中心(A のすべての元と可換な A の元全体の集合)とすると、Z は A の可換な部分体であり、さらに A の有限次元単位的 \mathbb{R} -代数でもある。また、A は非可換だから $a \in A \setminus Z$ を 1 つ固定できるが、このとき Z(a) も A の可換な部分体であり、A の有限次元単位的 \mathbb{R} -代数である。よって、(I)、(II) より、Z と Z(a) はそれぞれ単位的 \mathbb{R} -代数として \mathbb{R} または \mathbb{C} に同型だが、Z は Z(a) の真部分単位的 \mathbb{R} -代数だから、Z は \mathbb{R} に、Z(a) は \mathbb{C} にそれぞれ同型でなければならない。よって、系 3.2 より、A は単位的 \mathbb{R} -代数として \mathbb{H} に同型である。

参考文献

本稿の内容は、主に Bourbaki [3] の第 6 章 6 節による。定理 3.1 については、Palais [6] および Bourbaki [3] の第 6 章 6 節の演習問題 2 を参考にした。複素係数の場合の Gelfand–Mazur の定理(定理 4.8)については、Arveson [1] の 1.6 節を参考にした。Ostrowski [5] は、Ostrowski の定理の原論文である。

- [1] W. Arveson, A Short Course on Spectral Theory, Springer, 2002.
- [2] N. Bourbaki (著), 山崎 泰郎, 清水 達雄 (訳), 『ブルバキ数学原論 位相 4』, 東京図書, 1969.
- [3] N. Bourbaki (著), 中沢 英昭 (訳), 『ブルバキ数学原論 可換代数 3』, 東京図書, 1971.
- [4] S. Katok, p-adic Analysis Compared with Real, American Mathematical Society, 2007.
- [5] A. Ostrowski, "Über einige Lösungen der Funktionalgleichung $\psi(x)$. $\psi(y) = \psi(xy)$ ", *Acta Mathematica* **41** (1916): 271–284.
- [6] R. S. Palais, "The classification of real division algebras", *The American Mathematical Monthly*, **75**.4 (1968): 366–368.