收敛和弱收敛的一个等价刻画

December 24, 2020

1 收敛的等价刻画

Theorem 1.1. 设 $\{x_k\}_{k\in\mathbb{N}}$ 是 \mathbb{R}^n 中的有界数列. $\{x_k\}_{k\in\mathbb{N}}$ 收敛到 x_0 当且仅当 $\{x_k\}_{k\in\mathbb{N}}$ 的任意收敛子列均收敛到 x_0 .

Proof. " ⇒ "显然成立,下证" \Leftarrow ". 设 $\{x_k\}_{k\in\mathbb{N}}$ 的任意收敛子列均收敛到 x_0 . 反设 $\{x_k\}_{k\in\mathbb{N}}$ 不收敛到 x_0 ,则存在 $\varepsilon_0\in(0,\infty)$ 使得对 $\forall N\in\mathbb{N}$,存在k>N 使得

$$|x_k - x_0| > \varepsilon_0$$
.

故可取子列 $\{x_{n_k}\}_{k\in\mathbb{N}}$ 使得对 $\forall k\in\mathbb{N}$,

$$|x_{n_k} - x_0| > \varepsilon_0.$$

 $\{x_{n_k}\}_{k\in\mathbb{N}}$ 是有界数列, 故存在收敛子列, 不妨记为其本身. 由" \Leftarrow "的假设知 $\{x_{n_k}\}_{k\in\mathbb{N}}$ 收敛到 x_0 , 矛盾. 故 $\{x_k\}_{k\in\mathbb{N}}$ 收敛到 x_0 , Theorem 1.1 证毕.

Remark 1.2. 若 \mathbb{R}^n 中的有界数列不收敛,则存在两个子列收敛到不同的极限.

2 弱收敛的等价刻画

Lemma 2.1. 设E 是自反空间 \mathcal{X} 的子集. 则E 有界当且仅当E 弱列紧.

Remark 2.2. 自反空间中的有界数列必有弱收敛子列.

Theorem 2.3. 设 $\{x_k\}_{k\in\mathbb{N}}$ 是自反空间 \mathcal{X} 中的有界数列. 则 $\{x_k\}_{k\in\mathbb{N}}$ 弱收敛到 x_0 当且仅当 $\{x_k\}_{k\in\mathbb{N}}$ 的任意弱收敛子列均弱收敛到 x_0 .

Proof. " ⇒ "显然成立, 下证" \Leftarrow ". 设 $\{x_k\}_{k\in\mathbb{N}}$ 的任意弱收敛子列均弱收敛到 x_0 . 反设 $\{x_k\}_{k\in\mathbb{N}}$ 不弱收敛到 x_0 , 则存在 $f\in\mathcal{X}^*$ 使得

$$f(x_k) \nrightarrow f(x_0)$$
, as $k \to \infty$.

注意到 $\{x_k\}_{k\in\mathbb{N}}$ 有界, 从而 $\{f(x_k)\}_{k\in\mathbb{N}}$ 有界. 由此及Remark 1.2 知, 存在收敛子列 $\{f(x_{n_k})\}_{k\in\mathbb{N}}$ 和 $\{f(x_{p_k})\}_{k\in\mathbb{N}}$ 使得

$$\lim_{k \to \infty} f(x_{n_k}) \neq \lim_{k \to \infty} f(x_{p_k}). \tag{1}$$

又由Remark 2.2 知, $\{x_{n_k}\}_{k\in\mathbb{N}}$ 和 $\{x_{p_k}\}_{k\in\mathbb{N}}$ 均有弱收敛子列, 不妨记为其本身. 由" \Leftarrow "的假设知

$$x_{n_k} \rightharpoonup x_0, \quad x_{p_k} \rightharpoonup x_0, \quad \text{as } k \to \infty.$$

则由(1)知,

$$f(x_0) = \lim_{k \to \infty} f(x_{n_k}) \neq \lim_{k \to \infty} f(x_{p_k}) = f(x_0).$$

矛盾. 从而 $\{x_k\}_{k\in\mathbb{N}}$ 弱收敛到 x_0 , Theorem 2.3 证毕.

Remark 2.4. 若自反空间中的有界数列不弱收敛,则存在两个子列弱收敛到不同的极限.