Neural Networks Design And Application







Video data: multiple frames per second













Video data: multiple frames per second Action recognition

#### many to one



Video data: multiple frames per second







#### Recurrent networks



#### Recurrent networks



#### Recurrent networks















Q: what is the action?



Q: what is the action?

Running or opening a door?



Q: what is the action?



Q: what is the action?

Running or opening a door?



Q: what is the action?



Q: what is the action?

Running or opening a door?



Action recognition: predict a label from given multiple frames

Q: what is the action? Running or opening a door?





Video data: multiple frames per second



Video data: multiple frames per second
Action recognition

Q: what application?





Q: what is the action?



Q: what is the action?



Q: what is the action?



Q: what is the action?

Run



Q: what is the action?

Runn



Q: what is the action?

Runni



Q: what is the action?

Runnin



Q: what is the action?

Running



Q: what is the action?

Sequence data Running -

## Recurrent neural networks in practice



Q: what is the action?

Opening a door

# Recurrent neural networks in practice



Q: what is the action?

Opening a door

What real applications?



What real applications?



Image classification

What real applications?



Action recognition

What real applications?



Video captioning

What real applications?



## Image captioning



Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions."
In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.

## Image captioning



Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.

What's the key?

























$$h_t = figg[ {f w} * igg[ rac{h_{t-1}}{x_t} igg] igg]$$
 $h_t = figg[ {f w} (m{h}_{t-1}, m{x}_t) igg]$ 
new state  $igg|$  old state input vector at some time step some function with parameters W



$$h_t = f \begin{bmatrix} w * h_{t-1} \\ x_t \end{bmatrix}$$
  $f = \tanh(\cdot)$ 
 $h_t = f_W(h_{t-1}, x_t)$ 
new state old state input vector at some time step some function with parameters W















- Guess the word:
  - h

- Guess the word:
  - he

- Guess the word:
  - hel

- Guess the word:
  - hell

- Guess the word:
  - hello

- Guess the word:
  - hello
  - net

- Guess the word:
  - hello
  - netw

- Guess the word:
  - hello
  - netwo

- Guess the word:
  - hello
  - network

- Guess the word:
  - hello
  - network
  - •

- Guess the word:
  - hello
  - network
  - lan

- Guess the word:
  - hello
  - network
  - langu

- Guess the word:
  - hello
  - network
  - languag

- Guess the word:
  - hello
  - network
  - language

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - n
  - n

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - ne
  - ne

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - neu
  - net

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - neur
  - netw

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - neura
  - netwo

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - neural
  - network

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - neural
  - network

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - neural
  - network

- Guess the word:
  - hello
  - network
  - language
- Sequence data: predict the next value
  - neural Information flow
  - network

• Vocabulary: {a, b, ..., z}

- Vocabulary: {a, b, ..., z}
- Given a sequence of character:

- Vocabulary: {a, b, ..., z}
- Given a sequence of character:
  - hellx
  - mornixx
  - languaxx
  - neurxx
  - netwxxx
  - •

- Vocabulary: {a, b, ..., z}
- Given a sequence of character:
  - hellx → hello
  - mornixx → morning
  - languaxx → language
  - neurxx → neural
  - netwxxx → network
  - •







Vocabulary: {h, e, l, o}





99

Vocabulary: {h, e, l, o}



character features (one-hot encode)



Vocabulary: {h, e, l, o}



0 0  $\rightarrow$ 



character features (one-hot encode)

Image from <a href="http://cs231n.stanford.edu/slides/2020/lecture\_10.pdf">http://cs231n.stanford.edu/slides/2020/lecture\_10.pdf</a>

Vocabulary: {h, e, l, o}



0 0  $\rightarrow$ 



102

Vocabulary: {h, e, l, o}



0 0  $\rightarrow$ 



103

































Vocabulary: {h, e, l, o} Q: How to compute loss? Sample .03 .25 .11 .11 .20 .17 Softmax .13 .79 0.5 -1.5 0.3 output layer -1.0 1.9 -0.1 2.2 1.2 W\_hy 0.1 W\_hh 0.3 -0.3 1.0 hidden layer 0.9 character features input layer (one-hot encode) input chars: "h"

















### Word-level language model

Vocabulary: {h, e, l, o} → {ant, and, ..., network, ..., zoo}



### Word-level language model

Vocabulary: {h, e, l, o} → {ant, and, ..., network, ..., zoo}



Character → Word

Image from <a href="http://cs231n.stanford.edu/slides/2020/lecture\_117">http://cs231n.stanford.edu/slides/2020/lecture\_10.pdf</a>

### Word-level language model

Change

• Vocabulary:  $\{h, e, l, o\} \xrightarrow{to} \{ant, and, ..., network, ..., zoo\}$ 



### Image captioning



Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.

### Image captioning



Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.

### Image captioning



Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.



Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.



Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.

# Short-term dependence



the clouds are in the ???

# Short-term dependence



the clouds are in the ???

## Short-term dependence



the clouds are in the sky



I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France.



I spent my childhood outdoors.



Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers,



or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I cannot be more appreciative of it.



I speak fluent ???.



I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France.

I spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I cannot be more appreciative of it.

I speak fluent *French*.



I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France.

I spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I cannot be more appreciative of it.

I speak fluent *French*.



I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France.

I spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I cannot be more appreciative of it.

I speak fluent *French*.

## Reading

 Reference slides at <a href="http://cs231n.stanford.edu/slides/2020/lecture">http://cs231n.stanford.edu/slides/2020/lecture</a> 10.pdf