## Naive Bayes and Bayesian Networks



Frederik Mallmann-Trenn 6CCS3AIN

# Bayes' Rule & conditional independence

■ In naive Bayes models, one assumes that

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i | Cause)$$

Conditional independence is an example of naive Bayes

### Naive Bayes

Assuming conditional independent effects, reduces the model the problem

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i | Cause)$$

- Total number of parameters is linear in the number of conditionally independent effects n.
- It is called 'naive', because it is oversimplifying: in many cases the 'effect' variables aren't actually conditionally independent given the cause variable. Example:
  - Cause: it rained yesterday
  - $Effect_1$ : the streets are wet this morning
  - $Effect_2$ : I'm late for my class
  - If the streets were still wet, then an accident was more likely to happen and the caused traffic jam could be the reason for being late

## Naive Bayes

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i | Cause)$$

Visualise as:



- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Topology of network encodes conditional independence assertions:



- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

- **Bayesian networks** are a way to represent these dependencies:
  - Each node corresponds to a random variable (which may be discrete or continuous)
  - A directed edge (also called link or arrow) from node u to node v means that u is the parent of v.
  - Likewise, v is a child of u
  - The graph has no directed cycles (and hence is a directed acyclic graph, or DAG).
  - Each node u has a conditional probability  $P(u \mid Parents(u))$  that quantifies the effect of the parent nodes
- Example: C depends on A and B, and A and B are independent.





(http://www.igi.tugraz.at)

1

- How can we represent the knowledge about the probabilities?
- $lue{}$  Conditional distribution represented as a conditional probability table (CPT) giving the distribution over u for each combination of parent values

| A | В | $P(C \mid A, B)$ |
|---|---|------------------|
| T | Т | 0.2              |
| T | F | 0.123            |
| F | Т | 0.9              |
| F | F | 0.51             |

- Bayesian networks  $\neq$  Naive Bayes
- These are somewhat orthogonal. Naive Bayes might be used in Bayesian networks.
- Also don't confuse them with Bayes' rule

An example (from California):

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

- Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
  - A burglar can set the alarm off
  - An earthquake can set the alarm off
  - The alarm can cause Mary to call
  - The alarm can cause John to call







#### A note on CPTs

■ The CPTs in the previous slide appear to be missing some values:

| A | P(J A) |
|---|--------|
| T | 0.90   |
| F | 0.05   |

has two values rather then the four which would completely specify the relation between J and A.

■ The table tells us that:

$$P(J=T|A=T) = 0.9$$

which means:

$$P(J = F|A = T) = 0.1$$

because 
$$P(J = T|A = T) + P(J = F|A = T) = 1$$

#### A note on CPTs

 $lue{}$  Or, writing the values of J and A the other way:

$$P(j|a) = 0.9$$
$$P(\neg j|a) = 0.1$$

because 
$$P(j|a) + P(\neg j|a) = 1$$

# **Applications**

