CONTROLE N°3: 20 NOVEMBRE 2015 (Durée: 1h30).

Documents et appareils électroniques non autorisés. Les notations sont celles du cours.

Exercice 1. (3 pts)

Soit $F:I\subset\mathbb{R}\to\mathbb{R}$, la fonction définie par : $F(x)=\int_K f(x,t)\,dt$

où K est un intervalle fermé et borné de $\mathbb R$ et f est une fonction définie sur $I \times K$ à valeurs réelles.

- 1. Enoncer clairement (hypothèses et conclusions) le théorème de continuité, permettant d'établir la continuité de F;
- 2. Application : Montrer que la fonction $F(x) = \int_0^1 e^{-x(1+t^2)} dt$ est continue sur \mathbb{R} .

Exercice 2. (5 pts)

Soit f la fonction définie de $\mathbb{R}^2 \to \mathbb{R}$ par : $f(x,y) = \cos x + y^2 - 2y + 5$.

Etudier l'existence de points d'extrema locaux de f sur \mathbb{R}^2 . Précisez s'il s'agit de minimum, de maximum ou autre.

Exercice 3. (6 pts)

Soit f la fonction définie de $\mathbb{R}^2 \to \mathbb{R}$ par :

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & si \ (x,y) \neq (0,0) \\ 0 & si \ (x,y) = (0,0) \end{cases}$$

Etudier:

- 3.1 La continuité de f;
- 3.2 L'existence des dérivées partielles premières de f;
- 3.2 La continuité des dérivées partielles premières de f .
- 3.3 La différentiabilité de f.

Exercice 4. (6 pts)

Soit *F* la fonction définie de $]0, +\infty[\to \mathbb{R}]$ par

$$F(x) = \int_0^{+\infty} \frac{1}{x^2 + t^2} dt$$

- 4.1 Montrer que F est continue sur $]0, +\infty[$.
- 4.2 Montrer que F est de classe C^1 sur $]0, +\infty[$.
- 4.3 Donner sous forme intégrale, l'expression de F' sur $]0, +\infty[$.