PAÜ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2020-2021 GÜZ DÖNEMİ İSARET İSLEME BÜTÜNLEME SINAVI

TÜM YAPRAKLARA AD-SOYAD yazınız. İmzanızı atınız	SÜRE: 120DK	PUAN:
Ara cevapları tek, kesin cevapları çift kutu içine alınız		
AD-SOYAD:	NUMARA:	

1- Aşağıdaki denklemi Laplace özelliklerini kullanarak x(t) = u(t) için çözünüz. y(t) = ?

Başlangıç koşulları:
$$y(0) = 1$$
 ve $\dot{y}(0) = 2$

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y(t) = 2\frac{dx}{dt} + x(t)$$

- 2- Haberleşmenin temeli sayılan modülasyon işleminin gerekliliğini yazınız
- 3- Aşağıda verilen Fourier Serisini dikkate alarak şu soruları cevaplayınız
 - a) Serinin temel frekansı ve harmonikleri nelerdir? Belirtiniz
 - b) Seriye ait frekans spektrumunu (genlik ve açı spektrumu) çiziniz.

$$f(t) = 8 + 4\sin(\pi t - 60^\circ) + 6\sqrt{2}\sin(2\pi t) + 4\sin(5\pi t + 30^\circ) - 5\sin(6\pi t + 120^\circ)$$
 ise

4-
$$y[-1] = 1$$
, $y[-2] = 33$ başlangıç şartlarına sahip $y[k] + 0.3y[k-1] - 0.1y[k-2] = x[k] + 2x[k-1]$ sisteminin sıfır giriş cevabını $y[k]$ bulunuz.

5- Şekildeki x(t) işareti için

zamanda kaydırma (öteleme/geciktirme), tersleme ve ölçekleme özelliklerini kullanarak

$$x(2-\frac{t}{2})$$
 grafiğini çiziniz

6- a)
$$y[k+2] + 2.5y[k+1] + y[k] = x[k+1] - 2x[k]$$

b)
$$y[k] - y[k-1] + 0.21y[k-2] = 2x[k-1] + 3x[k-2]$$

c)
$$(D - 0.7)(D^2 + 7D + 10)y(t) = (D - 3)x(t)$$

d)
$$(D+5)(D^2+4)y(t) = (D^2+D+1)x(t)$$

Yukarıda verilen sistemlerin kutuplarını/karakteristik modlarını gösteriniz (eksende ve/veya çemberde). Her seçenekte verilen sistemin kararlılığı hakkında ne söyleyebilirsiniz yazınız.

7- (
$$D^2 + 4D + 4$$
) $\mathbf{y(t)} = D\mathbf{f(t)}$ sisteminde $y_0(\mathbf{0}) = 3$, $\dot{y}_0(\mathbf{0}) = -4$ başlangıç şartları varsa $y_{SGC}(t) = ?$

8- Aşağıdaki blok diyagramı kullanarak ayrık zamanlı y[n] denklemini elde ediniz.

Bu sistemde n<0 için $\mathbf{y}[\mathbf{n}] = 0$ başlangıç koşulları geçerlidir (nedensel sistem olduğu için). Bulduğunuz $\mathbf{y}[\mathbf{n}]$ denklemini kullanarak aşağıda istenen cevapları elde ediniz.

- a) $x[n] = \delta[n]$ (birim darbe sinyali) girişi için sistem çıkışı y[0] = ?, y[1] = ?, y[2] = ?
- b) x[n] = u[n] (birim basamak sinyali) girişi için sistem çıkışı y[0] =?, y[1] =?, y[2] =?

9- Aşağıdaki soruları ilgili tabloları kullanarak çözünüz.

a)
$$h(t) = (8e^{5t})u(t)$$
 ve $x(t) = u(t)$ ise $y(t) = x(t) * h(t) = ?$

b)
$$f(t) = [-2e^{-5(t-3)} + 3e^{-(t-3)}]u(t-3)$$
 ise $F(s) = ?$

c)
$$\mathbf{x}(t) = 3e^{-4t}\mathbf{u}(t)$$
 ve $\mathbf{h}(t) = (e^{-3t} - e^{-4t})\mathbf{u}(t)$ ise $Konvol\ddot{\mathbf{u}}syon$: $\mathbf{y}(t) = \mathbf{x}(t) * \mathbf{h}(t) = ?$

d)
$$F(s) = \frac{(s+17)}{(s^2+4s-5)}$$
 ise $f(t) = ?$

10- Bu soruda sadece çizim yapılacaktır! Aşağıdaki sistem için **x**(**t**): giriş sinyalini, **y**(**t**): çıkış sinyalini temsil etmektedir.

 $\mathbf{x}(t)$ işaretinin Fourier transformu $\mathbf{X}(f)$ yukarıda verildiği şekildedir. Bu sistemde $\mathbf{H}_1(f)$ ve $\mathbf{H}_2(f)$ blokları ise aşağıdaki grafiklerle özellikleri belirtilen çeşitli filtreleri ifade etmektedir.

- a. $\mathbf{x}(\mathbf{t})$ işaretinin $2\cos(2\pi 50\mathbf{t})$ taşıyıcı işareti ile $\underline{\text{modüle}}$ edildikten sonraki hali olan $\mathbf{u}(\mathbf{f})$ işaretini frekans ortamında çiziniz.
- b. Modüle edilen $\mathbf{u}(\mathbf{f})$ işaretinin $\mathbf{H_1}(\mathbf{f})$ filtresinden geçtikten sonraki hali olan $\mathbf{v}(\mathbf{f})$ işaretini frekans ortamında çiziniz.
- c. $\mathbf{v}(\mathbf{f})$ işaretinin $2\cos(2\pi 50\mathbf{t})$ taşıyıcı işareti ile <u>demodüle</u> edildikten sonraki hali olan $\mathbf{w}(\mathbf{f})$ işaretini frekans ortamında çiziniz.
- d. Demodüle edilen w(f) işaretinin H₂(f) filtresinden geçtikten sonraki hali olan y(f) çıkış işaretini frekans ortamında çiziniz.
 Not: Frekans ortamında kaydırma özelliğini hatırlatmak gerekirse;

$$F[w(t)\cos(2\pi f_c t)] = \frac{1}{2}[W(f - f_c) + W(f + f_c)]$$

Sürekli-Zamanlı Konvolüsyon Tablosu

Curcui Zamami Konvolasyon Tablosa				
No	$\mathbf{x_1}(\mathbf{t})$	$\mathbf{x}_{2}(\mathbf{t})$	$\mathbf{x_1}(\mathbf{t}) * \mathbf{x_2}(\mathbf{t})$	
1	x(t)	$\delta(t-T)$	x(t-T)	
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$	
3	u(t)	u(t)	tu(t)	
4	$e^{\lambda 1t}u(t)$	$e^{\lambda 2t}u(t)$	$\frac{e^{\lambda 1t} - e^{\lambda 2t}}{\lambda_1 - \lambda_2} \mathbf{u}(\mathbf{t})$	
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$	
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}\mathbf{u}(t)$	

Laplace Ozellikleri Tablosu				
No	x(t)	X(s)		
1	$\mathbf{x}_1(\mathbf{t}) + \mathbf{x}_2(\mathbf{t})$	$X_1(s) + X_2(s)$		
2	kx(t)	kX(s)		
3	dx(t)	$\mathbf{sX}(\mathbf{s}) - \mathbf{x}(0^{-})$		
	dt			
	$d^2x(t)$	$s^2X(s) - sx(0^-)$		
	dt^2	$-\dot{x}(0^{-})$		
4	$x(t-t_0)u(t$	$X(s)e^{-st_0}$, $t_0\geq 0$		
	$-t_{0}$)			

Laplace Dönüşüm TablosuNo $x_1(t)$ $X_1(s)$ 1 $\delta(t)$ 12u(t)1/s3t.u(t) $1/s^2$ 4 $e^{\lambda t}u(t)$ $1/(s-\lambda)$ 5 $t.e^{\lambda t}.u(t)$ $1/(s-\lambda)^2$

NOT: Soruları çözmek için tablolarda bulamadığınız özellikler varsa canlı ders sunumları ve ders materyallerini kullanabilirsiniz.

Her soru 10 puandır.

Doç. Dr. Meriç Çetin, Başarılar dilerim