

Data Mining 資料探勘

Link Analysis

Objectives

- □ To review common approaches to link analysis
- □ To calculate the popularity of a site based on link analysis
- □ To model human judgments indirectly

Outline

- 1. Motivation
- 2. Early Approaches to Link Analysis
- 3. Hubs and Authorities: HITS
- 4. Page Rank
- 5. Other issues and Limitation of Link Analysis
- 6. Links in a social network

Motivation

- Human knowledge is real, convincing and trustable information
 - *E.g.*, *classification by human in yahoo*
- Hyperlinks contain information about the human judgment
- Social sciences
 - Nodes: persons, organizations
 - Edges: social interaction
- □ Easy job? Counting in-links for popularity

An example: scientific literature

Impact factor

(http://scientific.thomson.com/free/essays/journalcitationreports/impact

- for journal evaluation
- *Garfield (Science 1955, 1972)*
- □ C / N
 - C: the total number of citations in a given time interval [t, 0955-0674 13795 12.897 12.594 t + t1] to articles published by a given journal aduring [t 1545-9993 22401 12.712 12.114 t2, t]
 - N: the total number of articles published by that journal in [t t2, t]
- Issues
 - The number of citation base
 - Normalization?

ISI impact factor: http://isiknowledge.com/

Abbreviated Journal Title

(linked to iournal information)

NAT REV MOL CELL BIO

CANCER CELL

MOL CELL

DEV CELL

CELL STEM CELL

ISSN

1471-0072

0092-8674

1535-6108

1078-8956

1465-7392

1081-0706

1097-2765

1534-5807

5-Year

Impact Factor

42.508

28.174

27,494

26.418

20.116

19.733

14.202

14,202

Impact

39.123

26.566

25,421

22.462

19.488

15.836

14.178

14.030

Total Cites

29222

171297

19726

10145

54228

29959

8399

44493

18481

Early Approaches

Basic Assumptions

- Hyperlinks contain information about the human judgment of a site
- The more incoming links to a site, the more it is judged important

Bray 1996 (Measuring the Web, WWW)

- The visibility of a site is measured by the number of other sites pointing to it (indegree)
- The luminosity of a site is measured by the number of other sites to which it points (outdegree)
- → Limitation: failure to capture the relative importance of different parents (children) sites
- → But works in some recent reports!

Early Approaches

Mark (Commun ACM, 1988)

To calculate the score S of a document at vertex v

$$S(v) = s(v) + \frac{1}{|ch[v]|} \sum_{w \in |ch(v)|} S(w)$$

v: a vertex in the hypertext graph G = (V, E)

S(v): the global score

s(v): the score if the document is isolated

ch(v): children of the document at vertex v

•Limitation:

- Require G to be a directed acyclic graph (DAG)
- If v has a single link to w, S(v) > S(w)
- If v has a long path to w and s(v) < s(w), then S(v) > S
 (w)
- → *Unreasonable*, users need go through the long path from the irrelevant document (v) to reach the important document (w)
- → But show the message passing schemes

Early Approaches

Marchiori (WWW, 1997)

Hyper information should complement textual information to obtain the overall information

$$S(v) = s(v) + h(v)$$
 Can't handle real world cases \rightarrow a cyclic graph

- s(v): textual information
- h(v): hyper information

•
$$h(v) = \sum_{w \in |ch[v]|} F^{r(v, w)} S(w)$$

- F: a fading constant, F € (0, 1)
- r(v, w): the rank of w after sorting the children of v by S(w)
- → a remedy of the previous approach (Mark 1988)

HITS - Kleinberg's Algorithm

- HITS Hypertext Induced Topic Selection
- For each vertex v € V in a subgraph of interest:
 - a(v) the authority of v
 - h(v) the hubness of v
- A site is very authoritative if it receives many citations. Citation from important sites weight more than citations from less-important sites
- Hubness shows the importance of a site. A good hub is a site that links to many authoritative sites 雞生蛋,蛋生雞?

Twin relation v.s. triple relation or more

Motivation

- □ For a given query, which pages are the answer set?
 - Results of search engines
 - Rank manually
 - Rank by similarity
 - Rank by hit rate (need usage log)
 - Rank by link analysis (HITS, PageRank,...)
 - Relevant v.s. Authoritative
 - Intra-page v.s. inter-page
 - Users need authoritative pages among relevant pages.

Authorities and Hubs

Introduction

- How to find authoritative pages for queries
 - Step I: rank pages according to their in-degree in the sub-graph induced by the root set S
 - root set: top k pages indexed by search engines
 - Problems
 - very few edges, a large fraction of the nodes will be isolated
 - real authoritative pages are not included in the root set

Introduction

- Step II: extend the root set to base set
 - Problems
 - Unrelated page of large indegree
 - New approach (kleinberg '97)
 - There should also be considerable overlap in the sets of pages that point to authoritative pages.
 - Hub pages
 - mutually reinforcing relationship

Authority and Hubness Convergence

Recursive dependency:

$$a(v) \leftarrow \sum_{w \in pa[v]} h(w)$$
$$h(v) \leftarrow \sum_{w \in ch[v]} a(w)$$

Using Linear Algebra, we can prove:

HITS Example

Find a base subgraph:

- Start with a root set R {1, 2, 3, 4}
- {1, 2, 3, 4} nodes relevant to the topic
- Expand the root set R to include all the children and a fixed number of parents of nodes in R
 - Indegree v.s. outdegree
- → A new set S (base subgraph) →

HITS Example

```
BaseSubgraph(R, d)
1. S ← r
2. for each v in R
3. do S ← S U ch[v]
4. P ← pa[v]
5. if |P| > d
6. then P ← arbitrary subset of P having size d
7. S ← S U P
8. return S
```


HITS Example

Hubs and authorities: two n-dimensional a and h

```
HubsAuthorities(G)

1 1 \leftarrow [1,...,1] \in R<sup>|V|</sup>

\begin{array}{ccc}
2 & a_0 \leftarrow h_0 \leftarrow \mathbf{1} \\
3 & t \leftarrow 1
\end{array}

           repeat
                                  for each v in V
                                  do a_t(v) \leftarrow \sum_{w \in pa[v]} h(w)
6
                            \begin{array}{ccc} & h_{\cdot}(v) \leftarrow & \Sigma \\ a_{\cdot} \leftarrow & a_{\cdot} / \parallel a_{\cdot} \parallel \\ b_{\cdot} \leftarrow & b_{\cdot} / \parallel \cdot \parallel \end{array} \quad \text{w } \in \text{ch}[v] \quad \begin{array}{c} a \\ t - 1 \end{array}
                             h_t \leftarrow h_t / || h_t || normalization
 10
              until || a_t - a_{t-1} || + || h_t - h_{t-1} || < \epsilon return (a_t, h_t)
 12
```


Authority and Hubness

Basic Link Analysis

- Let A denote the adjacency matrix of the graph, $\mathbf{a}_{t} \leftarrow A^{t}\mathbf{h}_{t-1}$, $\mathbf{h}_{t} \leftarrow A \mathbf{a}_{t-1}$
 - $\square a_n$ is the unit vector in the direction of $(A^tA)^{n-1}A^tz$
 - $\square h_n$ is the unit vector in the direction of $(AA^t)^n z$
- $\Box a^*$ is the principal eigenvector of A^tA , and h^* is the principal eigenvector of AA^t

Adjacency matrix

$$A = \begin{bmatrix} 0010 \\ 0010 \\ 0001 \\ 1000 \end{bmatrix}$$

$$A^t = \begin{bmatrix} 0001 \\ 0000 \\ 1100 \\ 0010 \end{bmatrix}$$

$$A^{t}A = \begin{bmatrix} 1000 \\ 0000 \\ 0020 \\ 0001 \end{bmatrix}$$

$$AA^{t} = \begin{bmatrix} 1100 \\ 1100 \\ 0010 \\ 0001 \end{bmatrix}$$

$$AA = \begin{bmatrix} 0001\\0001\\1000\\0010 \end{bmatrix}$$

Example (1-norm normalization)

Example (1-norm normalization)

HITS Example Results

Authority and hubness weights

Issues for HITS

- Mutually reinforcing relationships between hosts
 - Nepotistic links cancellation
 - Nepotistic links: links between pages that are present for reasons other than merit
 - Menu links
 - Link-based spam
 - Link normalization

One important observation

- The process of link analysis
 - Convergence of values of hubs and authorities
 - Two (hub, authority) pairs

$$\{(A_{a3}, H_{a3}), (A_{b2}, H_{b2}), (A_{c3}, H_{c3})\}$$

$$\{(A_{a2}, H_{a2}), (A_{b3}, H_{b3}), (A_{c2}, H_{c2})\}$$

HITS Improvements

Bharat and Henzinger (1998, SIGIR, 1068 citation counts)

- -- Improved algorithms for topic distillation in a hyperlinked environment
- HITS problems
 - 1) The document can contain many *identical links* to the same document in another host (投票部隊)
 - 2) Links are generated automatically (e.g. messages posted on newsgroups)
 - Containing human's opinion ?
 - 3) Non-relevant Nodes
 - Topic drift

Solutions — *Combining Connectivity and Content Analysis*

- Assign weight to identical multiple edges, which are inversely proportional to their multiplicity
- Prune irrelevant nodes or regulating the influence of a node with a relevance weight

$$similarity(Q, D_j) = \frac{\sum_{i=1}^{t} (w_{iq} \times w_{ij})}{\sqrt{\sum_{i=1}^{t} (w_{iq})^2 \times \sum_{i=1}^{t} (w_{ij})^2}}$$

```
where w_{iq} = freq_{iq} \times IDF_i, w_{ij} = freq_{ij} \times IDF_i, freq_{iq} = the frequency of the term i in query Q, freq_{ij} = the frequency of the term i in document D_j, IDF_i = an estimate of the inverse document frequency of term i on the World Wide Web.
```


PageRank

- \square Introduced by Page et al (1998, WWW)
 - The weight is assigned by the rank of parents

$$r(v) = \alpha \sum_{w \in \text{pa}[v]} \frac{r(w)}{|\text{ch}[w]|},$$

- Difference with HITS
 - HITS takes Hubness & Authority weights
 - The page rank is proportional to its parents' rank, but inversely proportional to its parents' outdegree
 - Query independent

Google's Pagerank

Page ID	OutLinks
1	2,3,4,5,7
2	1
3	1,2
4	2,3,5
5	1,3,4,6
<u>6</u>	<u>1</u> .5
7	5

Adjacent Matrix

A =
$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Matrix Notation

$$r = \alpha B r = M r$$

 α : eigenvalue

r: eigenvector of B

$$A x = \lambda x$$

$$| A - \lambda I | x = 0$$

$$b_{uv} = \begin{cases} \frac{a_{uv}}{\sum_{w} a_{uw}} & \text{if } ch[u] \neq 0, \\ a_{uv} = 0 & \text{otherwise} \end{cases}$$

$$\mathsf{B} = \begin{pmatrix} 0 & 1/51/51/51/5 & 0 & 1/5 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1/21/2 & 0 & 0 & 0 & 0 \\ 0 & 1/31/3 & 0 & 1/3 & 0 & 0 \\ 1/4 & 0 & 1/41/4 & 0 & 1/4 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Finding Pagerank

→ to find eigenvector of B with an associated eigenvalue α

PageRank: eigenvector of **P** relative to max eigenvalue

$$B = P D P^{-1}$$

D: diagonal matrix of eigenvalues $\{\lambda_1, \dots \lambda_n\}$

P: regular matrix that consists of eigenvectors

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \ddots \\ \lambda_n \end{pmatrix}$$

$$(\mathbf{r}_1 \ \mathbf{r}_2 \cdots \mathbf{r}_n)$$

PageRank
$$\Gamma_1 = \begin{pmatrix} 0.69946 \\ 0.38286 \\ 0.32396 \\ 0.24297 \\ 0.41231 \\ 0.10308 \\ 0.13989 \end{pmatrix}$$
 normalized
$$\begin{pmatrix} 0.303514 \\ 0.166134 \\ 0.140575 \\ 0.105431 \\ 0.178914 \\ 0.044728 \\ 0.060703 \end{pmatrix}$$

PR	ID	OutLink	InLink
0.304	1	2,3,4,5,7	2,3,5,6
0.179	5	1,3,4,6	1,4,6,7
0.166	2	1	1,3,4
0.141	3	1,2	1,4,5
0.105	4	2,3,5	1,5
0.061	7	5	1
0.045	6	1,5	5

- Confirm the result
 # of inlinks from high ranked page
 hard to explain about 5&2, 6&7
- Interesting Topic
- * How do you create your homepage highly ranked / lowly ranked?

^{*} How to detect it?

Markov Chain Notation

- Random surfer model
 - Description of a random walk through the Web graph
 - Interpreted as a transition matrix with asymptotic probability that a surfer is currently browsing that page

$$r_t(v) = P(S_t = v) = \sum_w P(S_t = v \mid S_{t-1} = w)P(S_{t-1} = w)$$

= $\sum_w m_{wv} r_{t-1}(w)$.

$$r_{t} = M r_{t-1}$$

M: transition matrix for a first-order Markov chain (stochastic)

Does it converge to some sensible solution (as $t \rightarrow \infty$) regardless of the initial ranks (equal or non-equal)?

Problem

- "Rank Sink" Problem
 - never pass the rank to others
 - In general, many Web pages have no inlinks / outlinks
 - It results in dangling edges in the graph

E.g.

no parent → rank 0

M^T converges to a matrix

whose last column is all zero

no children \rightarrow no solution M^T converges to zero matrix

Modification

Surfer will restart browsing by picking a new Web page at random

$$M = (B + E)$$

E: escape matrix

M: stochastic matrix

$$\mathbf{e}_{\vee\vee} = \begin{cases} 0 & \text{if } |ch[v]| > 0 \\ \frac{1}{n} & \text{otherwise} \end{cases}$$

- □ Problem still exists?
 - It is not guaranteed that **M** is primitive
 - If **M** is stochastic and primitive, PageRank converges to corresponding stationary distribution of **M**

PageRank Algorithm

```
PageRank(M, n, \epsilon)
   1 \quad 1 \leftarrow [1, ..., 1] \in \mathbb{R}^n
  z \leftarrow \frac{1}{n}1
  3 \quad x_0 \leftarrow z
  4 \quad t \leftarrow 0
  5 repeat
   6
                                                                   dt is the total rank
                     t \leftarrow t + 1
                    \mathbf{x}_t \leftarrow \mathbf{M}^{\mathrm{T}} \mathbf{x}_{t-1}
                                                                   being lost in sinks
                    d_t \leftarrow \|\mathbf{x}_{t-1}\|_1 - \|\mathbf{x}_t\|_1
                    x_t \leftarrow x_1 + d_t z Normalization
   9
             \delta \leftarrow \|\mathbf{x}_{t-1} - \mathbf{x}_t\|_1
 10
             until \delta < \epsilon
 11
                                                  * Page et al, 1998
 12
         return x_t
```


Quick reference

$$PR(P_i) = \frac{(d)}{n} + (1 - d) \times \sum_{l_{j,i} \in E} PR(P_j) / \text{Outdegree}(P_j)$$

Stability

- Whether the link analysis algorithms based on eigenvectors are stable in the sense that results don't change significantly?
- The connectivity of a portion of the graph is changed arbitrary
 - How will it affect the results of algorithms?

Ng et al (2001, SIGIR) – "stable algorithms for link analysis"

SALSA

- □ SALSA (*Lempel*, *Moran 2001*, *ACM TOIS*)
 - Probabilistic extension of the HITS algorithm
 - Random walk is carried out by following hyperlinks both in the forward and in the backward direction
- □ Two separate random walks
 - Hub walk
 - Authority walk

Forming a Bipartite Graph in SALSA

Random Walks

- Hub walk
 - Follow a Web link from a page u_h to a page w_a (a **forward** link) and then
 - Immediately traverse a **backlink** going from w_a to v_h , where (u,w) $\in E$ and (v,w) $\in E$
- Authority Walk
 - Follow a Web link from a page w_a to a page u_h (a **backward** link) and then
 - □ Immediately traverse a forward link going back from u_h to x_a where (u,w) ∈ E and (u,x) ∈ E

Computing Weights

Hub weight computed from the sum of the product of the inverse degree of the in-links and the outlinks

$$\tilde{h}_{uv} = \sum_{\substack{w:(u,w) \in E, \\ (v,w) \in E}} \frac{1}{\deg(u_h)} \frac{1}{\deg(w_a)},$$

$$\tilde{t}_{uv} = \sum_{\substack{w:(w,u) \in E, \\ (w,v) \in E}} \frac{1}{\deg(v_a)} \frac{1}{\deg(w_h)}.$$

Why We Care

- Lempel and Moran (2001) showed theoretically that SALSA weights are more robust that HITS weights in the presence of the Tightly Knit Community (TKC) Effect.
 - This effect occurs when a small collection of pages (related to a given topic) is connected so that every hub links to every authority and includes as a special case the mutual reinforcement effect
 - highly ranked by HITS
- TKC could be exploited by spammers hoping to increase their page weight (e.g. link farms)

A Similar Approach

- Rafiei and Mendelzon (2000, WWW) and Ng et al. (2001) propose similar approaches using <u>reset</u> as in PageRank
 - Unlike PageRank, in this model the surfer will follow a forward link on odd steps but a backward link on even steps
- The stability properties of these ranking distributions are similar to those of PageRank (Ng et al. 2001)
- $lue{}$ Borodin, 2001~WWW

PHITS and More

- □ PHITS: Cohn and Chang (2000, ICML)
 - Only the principal eigenvector is extracted using HITS/SALSA, so the authority along the remaining eigenvectors is completely neglected
 - Account for more eigenvectors of the co-citation matrix
- See also Lempel, Moran (2003, 2004)

An Example of Three-tier HITS: EigenRumor (www2005)

	PageRank	HITS	EigenRumor
Entities	Web page	Web page	Agent/Object
Link types	Evaluation (E)	Evaluation (E)	Evaluation (E)
			Provisioning (P)
Scores	Authority (\vec{a})	Authority(\vec{a})	Authority(\vec{a})
		$ \operatorname{Hub}(\vec{h}) $	$ \operatorname{Hub}(\vec{h})$ Agent
			Reputation (\vec{r}) Object
Algorithm	$\vec{a} = (\frac{d}{N}1_N + (1-d)E^T)\vec{a}$	$\vec{h} = E\vec{a}$	$\vec{r} = \alpha P^T \vec{a} + (1 - \alpha) E^T \vec{h}$
	N^{N}	$\vec{a} = E^T \vec{h}$	$\vec{a} = P \vec{r}$
	$\begin{pmatrix} a_1 & & \\ a_2 & & \\ a_3 & & \end{pmatrix}$	$ \begin{array}{c} h_1 \bullet \\ h_2 \bullet \\ h_3 \bullet \end{array} $ $ \begin{array}{c} a_1 \\ b \circ a_2 \\ o a_3 \end{array} $	$\vec{h} = E\vec{r}$ $\alpha \qquad a \qquad o \qquad o \qquad r_1$ $\alpha \qquad a \qquad o \qquad o \qquad r_2$ $\alpha \qquad o \qquad o \qquad o \qquad r_3$ $1 - \alpha \qquad h \qquad o \qquad o \qquad r_1$ $1 - \alpha \qquad h \qquad o \qquad o \qquad r_2$ $0 \qquad r_3$

Comparison with PageRank and HITS Algorithms

Limits of Link Analysis

- META tags/ invisible text
 - Search engines relying on meta tags in documents are often misled (intentionally) by web developers
- Pay-for-place
 - Search engine bias : organizations pay search engines and page rank
 - Advertisements: organizations pay high ranking pages for advertising space
 - With a primary effect of increased visibility to end users and a secondary effect of increased respectability due to relevance to high ranking page
 - Ad-sense
- □ Inside Web Page Patron Graph

Limits of Link Analysis

- Stability
 - Adding even a small number of nodes/edges to the graph has a significant impact
 - reference Project #3
- □ Topic drift similar to TKC
 - A top authority may be a hub of pages on a different topic resulting in increased rank of the authority page
- Content evolution
 - Adding/removing links/content can affect the intuitive authority rank of a page requiring recalculation of page ranks
 - Incremental link analysis
- □ 子曰: 眾好之, 必查之, 眾惡之, 必查之 (論語衛靈公篇)

Similarity measurement by links

- How similar two objects are within a network?
- How to measure the similarity between two objects based on links relationship?
 - E.g., similar friendship
- Measure the similarity between two objects
 - Based on linked-structure
 - Measure the object-to-object relations
 - Based on textual content
 - Measure the keywords co-currency
 - Linked-based structural similarity measures produce systematically better correlation with human judgements compared to the text-based one [Maguitman etc. WWW06]

Data Mining

Related Work

- Coupling
 - M. M. Kessler, American Documentation, 1963
- Co-Citation
 - H. G. Small, J. of American Society for Information Science, 1973
- SimRank
 - Glen Jeh, Jennifer Widom, KDD'02
 - Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, Denis Turdakov, VLDB'08
- LinkClus
 - Xiaoxin Yin, Jiawei Han, Philip S. Yu VLDB'06
- □ P-Rank
 - Peixiang Zhao, Jiawei Han, Yizhou Sun, CIKM'09
- RankClus
 - Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin, Hong Cheng, Tianyi We, EDBT'09
- □ NetClus
 - Yizhou Sun, Yintao Yu, Jiawei Han, KDD'09

SimRank

- □ Basic idea
 - Based on Random Surfer model
 - Two objects are similar if they are linked with the same or similar objects
 - Consider the inlink relationship
 - Defined by recursively and computed by iteratively
- Discussion in the Homogeneous Networks

SimRank

SimRank formula

$$S(a,b) = \frac{C}{|I(a)||I(b)|} \sum_{i=1}^{|I(a)|} \sum_{j=1}^{|I(b)|} S(I_i(a),I_j(b))$$

- \square I(a), I(b): all in-neighbors
- □ C is decay factot, 0<C<1
- S(a, b)∈[0, 1]
- \square S(a, a)=1

1'st iteration S(3, 5)=C/4 * 2 S(4, 5)=0

How about S(4,5) while e(1,2) is added?

P-Rank

P-Rank formula

$$s(\mathbf{a}, \mathbf{b}) = \lambda \times \frac{C}{|I(a)||I(b)|} \sum_{i=1}^{|I(a)||I(b)|} \sum_{j=1}^{|I(a)||I(b)|} s(I_i(\mathbf{a}), I_j(\mathbf{b})) + (1 - \lambda) \times \frac{C}{|O(a)||O(b)|} \sum_{i=1}^{|O(a)||O(b)|} \sum_{j=1}^{|O(a)||O(b)|} s(O_i(\mathbf{a}), O_j(\mathbf{b}))$$

- \square I(a), I(b): all in-neighbors
- \square O(a), O(b): all out-neighbors
- \square C is damping factor, C \in [0, 1]
- □ λ is a parameter to balance the relative weight of in-link and outlink directions, $\lambda \in [0, 1]$
- □ s(a, b) ∈ [0, 1]
- \square s(a, a)=1

Link analysis in a social network

- □ Node → entity
- □ Edge → relationship
- We want to know in this social network
 - Which (group of) node / edge is influential
 - Which (group of) node / edge is important
 - Which node is an outlier
 - Information flow

Centrality

- Degree centrality
 - In-degree, out-degree
 - Localization, isolation
- Closeness centrality
 - Geodesic distance between the entity and all other entities
- Betweeness centrality
 - Gendesic path
- Eigenvector centrality
 - Central entity receiving many communications from other wellconnected entities (central entities)
- Power centrality

Network centralization

- Summary of centralization of a network
 - E.g.,

$$NET_{Degree} = \frac{\sum_{v \in V} Max_{v \in V} Degree(v) - Degree(v)}{(n-1)*(n-2)}$$

$$NET_{Degree} = \frac{\sum_{v \in V} 2 - 2}{(n-1)*(n-2)}$$

$$NET_{Degree} = \frac{\sum_{v \in V} (n-1) - 1}{(n-1)*(n-2)} = \frac{(n-1)(n-2)}{(n-1)(n-2)} = 1$$

Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E).

The conductance ϕ of a set S of nodes is:

$$\phi(S) = \frac{\sum_{i \in S, j \notin S} A_{ij}}{\min\{A(S), A(\overline{S})\}}$$

$$=s/(s+2e),$$

 $\phi(S) = \frac{\sum_{i \in S, j \notin S} A_{ij}}{\min\{A(S), A(\overline{S})\}} \quad \text{s: \#edges with one } A(S) = \sum_{i \in S} \sum_{j \in V} A_{ij}$ endpoint in S and one endpoint in S complement

> e: #edges with both endpoints in S

A: adjacency matrix of G

The Network Community Profile (NCP) Plot of the graph is:

$$\Phi(k) = \min_{S \subset V, |S| = k} \phi(S)$$

Just as conductance captures the "gestalt" notion of cluster/community quality, the NCP plot measures cluster/community quality as a function of size.

NCP is intractable to compute --> use approximation algorithms!

Conductance

NCPP examples

(a) Zachary's karate club network ...

k (number of nodes in the cluster)
(b) ...and it's community profile plot

(d) ... and it's community profile plot

NCPP examples

k (number of nodes in the cluster) $(f) \dots and it$'s community profile plot

k (number of nodes in the cluster)
(h) ... and it's community profile plot

Conductance

- The lower the conductance the more expressed and more community-like a set of nodes is

Conductance

Reference paper

Statistical Properties of Community Structure in Large Social and Information Networks. Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, Michael W. Mahoney. WWW 2008

Further Reading

- R. Lempel and S. Moran,
 Rank Stability and Rank Similarity of Link-Based Web Ranking
 Algorithms in Authority Connected Graphs, Inf. Retrieval. Vol 8(2): 245-264 (2005)
- M. Henzinger, <u>Link Analysis in Web Information Retreival</u>, Bulletin of the IEEE computer Society Technical Committee on Data Engineering, 2000.
- L. Getoor, N. Friedman, D. Koller, and A. Pfeffer.
 <u>Relational Data Mining</u>, S. Dzeroski and N. Lavrac, Eds., Springer-Verlag, 2001

Can you think of any circumstances where being "central" might make one less influential? less powerful?

Adversarial Information Retrieval on the Web

- search engine spam and optimization (SEO)
- link-bombing (a.k.a. Google-bombing)
- comment spam, referrer spam
- blog spam (splogs)
 - □ 部落格觀察 (http://look.urs.tw/) (close, 2006~2010)
- malicious tagging
- reverse engineering of ranking algorithms

