	Niranjan I andaranjan	
	2010090	papergrid
	SM L- As signment 1.	Date: / /
	-(1 - 5) 1 (26) 1	
Q1.	Plotting done in Python.	
	- 1 - 2 1 + 3 3 1 - 2 8 × 3 C=	
	i) Por a zero-one loss,	
	22 000 17	
	[10]	
	To minimize extor,	
	De vide w, lig -P(w, 1x) > P(w2/x)	
	and we otherwise (because $\lambda_{12} =$	
	and $n_{ii} = n_{ii}$	
	=> P(error/2) = min [P(w,120) P.(w_1/2i)]	1 (6)
	is P(errox) = P(W, In) P(ma) du +	[0(, 1) 0(-)4.
	or P(errox) = P(W, n). P() du +	P(W, /a) P(h)on
		76
	where no corresponds to the value	
. 1	for the <u>Decision</u> Boundary.	-
	. For minimum value of Plerror),	xo would
	give us the correct decision boundary	١.
	d P(error) = P(w, Ino) P(no) - P	(Wilno) P(no)
	du	= 0
A 2	P(w2/20) P(20) = P(w, (20) P/20).	
	$\Rightarrow P(n_0 w_2) P(w_2) = P(n_0 w_1) P(u_2)$	N,)
	$=) P((x_0 w_2)) \cdot 3 = P(x_0 w_1) \cdot 1$	
		1.
	$= \frac{3}{\sqrt{12\pi \sigma_{2}^{2}}} \left(\frac{1}{2\pi \sigma_{2}^{2}} \left(\frac{1}{2\pi \sigma_{2}^{2}} \left(\frac{1}{2\pi \sigma_{2}^{2}} \right) \frac{1}{2\pi \sigma_{2}^{2}} \right) \right)$	•
	J278,2 10 10 10 1000	roor
	Jan 0,2 Page 2 92	<u>m</u>) - 4)
		J / .
-	As 1 017 = 002 = 11 100 19 00 1	1.7.0.

$$\frac{1}{2} \ln 3 + \frac{-1}{2} \left(x_0 - \frac{15}{2} \right)^2 = \frac{-1}{2} \left(x_0 - \frac{2}{2} \right)^2$$

$$= 1 \left[x_0^2 + 25 - 10x_0 - x_0^2 - x_0^2 - 4 + 4x_0 \right]$$

I ((we want to minimize the error (), the the rematrix comes its account,

The decision boundary for minimum error (
$$\alpha$$
) would be when $R(\alpha, |\alpha) = R(\alpha, |\alpha)$. $\alpha \rightarrow DB$.

$$R(x, |x) = R(x, |x)$$
. $x_0 \rightarrow DB$

Date: Mowerer, N12 = Risk value associated with saying a person has cancer when s/he doesn't have cancer. = c = (some positive coust.). = Risk value associated with saying a person doesn't have can cer when s/he has com cer-= 10c or 100c or (100c) Oc " (defending on the kind g cancu). Here 0>1. In a real world scenario, Tri & Colombia) Juli This - is because; catching cancer early and treating Lit is necessary for its treatment.

-

A=[2+2][02. 1= $E(x) = \int E(x_1) \int =$ $E(x_1)$ LE(X3) E [[2 -1 2][x,] $E(Y) = E(A^T x + B) =$ 23 221-22+223+5 2 E(X1) - E(X2) + 2 E(X3) + 5 (2×5) - (-5) + 2 (6) +5= = 10+15+12+5 This gastion does not use the co-variance matrix provided to $\frac{1}{x^{5}} \frac{8^{2} + 11^{2}}{1 + (n-ai)^{2}}$ $\frac{1}{x^{5}} \frac{1}{(n-ai)^{2}}$ $P(\omega_1) = P(\omega_2) = 0.5$ for minimum error rate, P(w/x) = P(w2/x) (Equating posteriors $P(x|w_1) P(v_1) = P(x|w_1) P(w_1) \qquad P(x \to DB)$ $P(x) = P(x|w_1) P(w_1) \qquad P(x \to DB)$

Date: / /

Date:

$$\frac{1}{2\pi} + \tan \left(\frac{a_1 + a_1}{b} - a_2\right) - \frac{1}{2\pi} + \tan \left(\frac{a_1 + a_2}{b} - a_1\right)$$

$$\frac{1}{2\pi} + \tan \left(\frac{a_1 + a_2}{b} - a_1\right)$$

$$\frac{1}{2\pi} + \tan \left(\frac{a_1 + a_2}{b} - a_1\right)$$

$$\frac{1}{x} \int \frac{fan^{+}(a_{1}-a_{2})}{(2b)} + \frac{1}{4} + \frac{1}{4}$$

$$\frac{P(errox)}{\pi} = \frac{1}{\pi} \frac{\tan^{1}\left(q_{1}-q_{2}\right)}{\tan^{2}\left(q_{2}-q_{2}\right)} + \frac{1}{2}$$

.);

$$for a_1 = 3, a_2 = 5, b = 1$$

$$\frac{P(error) = 1}{\pi} \quad \text{fan} \quad \left(\begin{array}{c} 3 \\ 2 \end{array}\right) \quad + \quad 1 \quad = \quad 1 \quad \circ \left(\begin{array}{c} -\pi \\ 4 \end{array}\right) \quad + \quad 1$$

If
$$a_2 < a$$
, $P(error) \ge 1 \tan^{-1}\left(a_2 - a_1\right) + 1$

P.T.0 -

Date: / /

a. pdf of x1 = (a b) 1 = (a) a → Bernoulli RV p(a=1) = (0,) p(a=0)= (1-0) b → Gaussian RV p'(b) = N((m), σ²) + 6,2 20 3 - (0) 1 6 cov [x] = [o(+-0) 0] d) (2 (m) 10 mil 42 => cola brand & are windependent events be cause $\sigma_{12}^{2} = \sigma_{21}^{2} = 0$. very likely that they are independent. ?. / pdf of n = + pdf of (a, b) = perf (a) x pdf (b)/ :. p(x) = { O N (m, 02) (b) til a =1 (1-0) N(m, σ^2)(b) if $\alpha = 0$ In continuous terms $p(x) = 0^{a} (1-0)^{1-a} \times N(m, \sigma^{2})(b)$ $p(x) = 0^{a} (1-0)^{1-a} \times N(m, \sigma^{2})(b)$ here, a $\in \{0,1\}$, $b \in (-\infty,\infty)$ be let the N iid samples be: q(n) = · Toint- prob. of Rese samples" = p(x, x, ... x,) $= p(x_1) \cdot p(x_1) \cdot \dots \cdot p(x_N)$ " IID samples are independent , pro

Date: / /

.. q(x) = T oai (1-0) x N(m, r+) (bi) $en (q(n)) = \sum_{i=1}^{N} ln \left(\theta^{ai} (1-\theta)^{1-ai} \times N(m,\sigma^2)(b_i) \right)$ $\Rightarrow F(0) = \sum_{i=1}^{\infty} a_i \ln 0 + \sum_{i=1}^{\infty} (1-a_i) \ln (1-0)$ + Eln(N(m, r2) (bi) For maximum value of 0, calculating d. F(0) =0 $\frac{1}{20} \frac{1}{20} \left(\frac{F(0)}{F(0)} \right) = \frac{1}{20} \frac{1}{2$ $(2) (\sum_{i=1}^{n} a_{i}a_{i}) = 0 \sum_{i=1}^{n} (1+a_{i}).$ (d) (1) (d) (d) $\sum_{i=1}^{N} a_i = \emptyset \left(\sum_{i=1}^{N} a_i + \sum_{i=1}^{N} (1-a_i) \right)$ $\frac{1}{2} = 0 \left(\sum_{i=1}^{N} \alpha_i + N - \sum_{i=1}^{N} \alpha_i \right)$ $0 = \sum_{i=1}^{N} \alpha_i$ $\frac{1}{2} = 0$ When o = I ai the value of F(0) 03 in (q(x)) is max \Rightarrow q(x) if max. ×.