Know thyself: Metacognitive networks and measures of consciousness

[Antoine Pasquali, Bert Timmermans, Axel Cleeremans]

Simulation 1 : Blindslight

Principe

Un premier réseau apprend à discriminer un stimulus. En même temps, un second réseau apprend à parier sur le résultat du premier réseau, à partir, de la comparaison entre l'entrée et la sortie du premier.

Paramètres

Momentum : 0. pour tout neurone Taux d'apprentissage : 0.9 pour le premier réseau, 0.1 pour le second 60 unités cachés Apprentissage : 150 epochs Poids initialisés entre [-1 ;1] pour le premier, [0, 0.1] pour le second Température à 1

Sorties dess neurones sur [0.; 1.] 100 unités entrées/sorties/comparées Bruit (Subthreshold): 0.0012

Résultat de l'article

Localization with		Simulation			
Subthreshold stimuli	Correct	Incorrect	Total	Suprathreshold : test sur la base d'apprentissage Subthreshold : test avec du bruit ajouté	
High Wager	<u>29</u>	2	31	Subtilieshold , test avec du bruit ajoute	
Low Wager	49.5	19.5	69	Le réseau de premier ordre affiche de bonne performances (78.5%, 80%)	
Total	78.5	21.5	100	performances (78.576, 8076)	
Suprathreshold stimuli	Correct	Incorrect	Total	En ajoutant du bruit, la qualité des paris est détériorée passant de 66% à 48.5% (29 + 19.5	
High Wager	<u>50.5</u>	4.5	55	`	
Low Wager	29.5	<u>15.5</u>	45	Log hong porig gont goulianés	
Total	80	20	100	Les bons paris sont soulignés.	

Conclusion

Illustration de représentations formées en dehors du réseau de premier ordre grâce à un comparateur.

Note : les résultats de la simulation dépendent des paramètres utilisés (taux d'apprentissage, temps d'apprentissage, bruit, ...) contrairement aux 2 simulations qui vont suivre.

Nos résultats :

Sigmoïde sur [0,1] : $\frac{1}{1 + e^{-\theta x}}$

Paramètres supposés Apprentissage online

Localization with	Simulation				
Subthreshold stimuli	Correct	Incorrect	Total		
High wager	62	30	92		
Low wager	0	8	8		
Total	62	38	100		
Suprathreshold stimuli	Correct	Incorrect	Total		
High Wager	62	31	93		
Low Wager	0	7	7		
Total	62	38	100		

Par rapport aux résultats de l'article on note :

- la discrimination est moins efficace (62 % au lieu de 80 %)
- il y a plus de paris confiants (92 % au lieu de 55 %)
- le taux de paris avantageux est approximativement le même ($69 \% \sim 75 \%$)
- il n'y a pas de diminution de performance en Subthreshold

Courbe des performances associées :

Conclusion:

Les résultats ne sont pas les même que l'article. On notera tout de même que le taux de paris avantageux est similaire.

PS: insensibilité au bruit

Tentatives:

Paramètres modifiés

Pour augmenter la performance de discrimination

Température du premier réseau passe de 1 à 2

Initialisation des poids du premier réseau passe de [-1;1]à[-0.6;0.6]

Pour ajuster le taux de paris avantageux (étant donné que la perf. de discrimination augmente, le taux de paris confiants augmente)

Pour diminuer les performances vis à vis du bruit

Les 2 neurones représentant les paris haut/bas utilisent une fonction de Heaviside

Bruit passe de 0.0012 à 0.0024

Localization with		Simulation			
Subthreshold stimuli	Correct	Incorrect	Total		
High wager	47.5	1.5	49		
Low wager	27.5	23.5	51		
Total	75	25	100		
Suprathreshold stimuli	Correct	Incorrect	Total		
High Wager	77.5	7	84.5		
Low Wager	0	15.5	15.5		
Total	77.5	22.5	100		

Par rapport aux résultats de l'article on note :

- la discrimination est approximativement la même (77.5 % au lieu de 80 %)
- il y a plus de paris confiants (84.5 % au lieu de
- le taux de paris avantageux est meilleur (93 % au lieu de 75 %)
- il y a bien une diminution des performances avec le bruit (93% à 71%)

Courbe des performances associées :

Conclusion:

C'est mieux mais le taux de paris hauts reste trop élevé.