1000 Genomes and Population Genomics

As small groups separate, they evolve in isolation

How do the frequencies of alleles change over time?

- Selection
- Genetic Drift
- Hardy-Weinberg

Frequency of allele A; p Frequency of allele a: q p+q=1

Frequency of AA: D=p²

Frequency of Aa: H=2pq

Frequency of aa: R=q²

Assume no selection and no mutation
Assume no migration and random mating
Assume infinite population sizes (no
restrictions on numbers)

Mating	Probability	Offspring Genotype frequencies		
		AA	Aa	aa
AAXAA	D^2	1	0	0
AA x Aa	2DH	1/2	1/2	0
AAxaa	2DR	0	1	0
Aa x Aa	H ²	1/4	1/2	1/4
Aaxaa	2HR	0	1/2	1/2
aa x aa	R ²	0	0	1
Total for Gen 1		D'	H'	R'

	Probability	Offspring Genotype frequencies		
Mating		AA	Aa	aa
AAXAA	D^2	1	0	0
AA x Aa	2DH	1/2	1/2	0
AA x aa	2DR	0	1	0
Aa x Aa	H ²	1/4	1/2	1/4
Aaxaa	2HR	0	1/2	1/2
aa x aa	R ²	0	0	1
Total for Gen 1		D'	H'	R'

$$D' = D^{2} + \frac{2DH}{2} + \frac{H^{2}}{4} = \left(D + \frac{H}{2}\right)^{2} = \left(p^{2} + p(1-p)\right)^{2} = \left(p^{2} + p - p^{2}\right) = p^{2}$$
Genotypes
$$R' = \frac{H^{2}}{4} + \frac{2HR}{2} + R^{2} = \left(R + \frac{H}{2}\right)^{2} = \left(q^{2} + q(1-q)\right)^{2} = \left(q^{2} + q - q^{2}\right) = q^{2}$$
over time
$$H' = \frac{2DH}{2} + 2DR + \frac{H^{2}}{2} + \frac{2HR}{2} = 2\left(D + \frac{H}{2}\right)\left(R + \frac{H}{2}\right) = 2pq$$

Andrews, C. (2010) The Hardy-Weinberg Principle. Nature Education Knowledge 3(10):65

Frequency of allele A; p Frequency of allele a: q p+q=1

Frequency of AA: D=p²

Frequency of Aa: H=2pq

Frequency of aa: R=q²

Assume no selection and no mutation
Assume no migration and random mating
Assume infinite population sizes (no
restrictions on numbers)

Genetic Drift

If not infinite number of offspring, then random fluctuations in number of alleles can cause dramatic changes in allele frequency

These drifts are more pronounced in a smaller population

$$h(n) = \left(1 - \frac{1}{2N}\right)^n h(0).$$

Heterozygosity is lost at a geometric rate with the number of generations (n) that depends on the number of individuals (N)

Frequency of allele A; p Frequency of allele a: q p+q=1

Frequency of AA: D=p²

Frequency of Aa: H=2pq

Frequency of aa: R=q²

Assume no selection and no mutation
Assume no migration and random mating
Assume infinite population sizes (no
restrictions on numbers)

The 1000 Genomes Project Consortium; Nature 526, 68–74 (01 October 2015) doi:10.1038/nature15393

The 1000 Genomes Project Consortium; *Nature* **526**, 68–74 (01 October 2015) doi:10.1038/nature15393

Why does the higher level of variants per genome support the out of Africa hypothesis of human evolution and migration?

The 1000 Genomes Project Consortium; Nature 526, 68–74 (01 October 2015) doi:10.1038/nature15393

The populations not in Africa are more similar to each other than those within Africa, indicating a common set of ancestors from Africa (founder population), while within Africa, the least common ancestor is further back, evolutionarily.

The 1000 Genomes Project Consortium; Nature 526, 68–74 (01 October 2015) doi:10.1038/nature15393

What's going on with these populations? Why do they seem to split the non-African and African patterns?

The 1000 Genomes Project Consortium; Nature 526, 68-74 (01 October 2015) doi:10.1038/nature15393

What's going on with these populations? Why do they seem to split the non-African and African patterns?

They are the populations that have the highest admixture of African with non-African. Mostly places that were central to the African slave trade.

Nature Reviews | Genetics

Which chromosome is not admixed or recombined? Is there other DNA in a cell that also transmits without change from generation to generation?

Which chromosome is not admixed or recombined? Is there other DNA in a cell that also transmits without change from generation to generation?

The Y chromosome doesn't have a pair, so can not recombine, and therefore doesn't get admixed.

Mitochondrial DNA is transmitted intact from the maternal line

Because the allele probabilities change during evolution/migration/drift, different populations will have different probabilities of a given allele.

Allows us to predict ancestry, but also gets in the way of determining what alleles associate with a phenotype

https://genographic.nationalgeographic.com/

Han, E, et al; Nature Communications 8, Article number: 14238 (2017); doi:10.1038/ncomms14238

Han, E, et al; Nature Communications 8, Article number: 14238 (2017); doi:10.1038/ncomms14238

Visualize geographic distribution of ancestral birth locations in each cluster.

Map below shows birth locations of ancestors in the African American cluster. Locations are colored by degree of over-representation (odds ratio), and scaled by number of birth location annotations.

Han, E, et al; *Nature Communications* **8**,
Article number: 14238
(2017); doi:10.1038/
ncomms14238

Han, E, et al; Nature Communications 8, Article number: 14238 (2017); doi:10.1038/ncomms14238

Han, E, et al; Nature Communications 8, Article number: 14238 (2017); doi:10.1038/ncomms14238

Far more information than in 1000 Genome Project! Greater diversity in some ancestries

Difficulties in their data

- Some populations had poor ancestry data
 - African–Americans
 - Ashkenazi Jews
- Data still very biased toward European ancestry
- The way they biased the data to increase resolution in recent ancestry, omits populations that are less distincitve/more admixed
 - African-Americans communities in Northern cities for generations

Implications of this study

- Exciting that we can trace migrations so tightly
- Private data set
 - Ancestry.com is not a public repository
 - Company grew out of LDS genealogy projects
 - They got their data by having people pay for their own data

Summary

Next Class

- Guest speaker on genomics of breast and ovarian cancer
- Please come prepared to ask questions