DERIVAÇÃO IMPLÍCITA

Até o momento estudamos funções da forma explícita y = f(x). Mas, frequentemente ocorrem equações como, por exemplo, $x^2+y^2=1 \hspace{1cm} xy=1$

$$x^2 + y^2 = 1 xy = 1$$

$$x^2 + xy^2 - y^3 = 10 x\cos y + y\sin x = 1$$

Tais equações não fornecem y explicitamente como função de x. Mesmo assim, cada uma das equações fornece um ou mais valores para y quando substituimos x por algum número de um conjunto conveniente. Escolhendo um dentre esses valores, obtemos y como função de x. Dizemos que a equação determina y como uma ou mais funções implícitas de x.

Nos exemplos $x^2 + y^2 = 1$ e xy = 1 as equações podem ser resolvidas de modo a fornecer y explicitamente como função de x, o que não ocorre nos outros dois exemplos.

Vamos olhar um pouco mais de perto a equação $x \cos y + y \sin x = 1$: marcamos num plano cartesiano os pares (x, y) que satisfazem à equação, obtendo, deste modo, o lugar geométrico da equação. A figura abaixo mostra uma parte do lugar geométrico dessa equação:

FIGURA 1. O lugar geométrico da equação $x \cos y +$ $y \operatorname{sen} x = 1$

É fácil ver que tal figura não é o gráfico de nenhuma função y = f(x). Mas existem "pedaços" das linhas que compõem o lugar geométrico da equação que são gráficos de funções da forma y = f(x). Na figura abaixo estão destacados alguns desses tais "pedaços".

FIGURA 2. Um trecho do lugar geométrico que é gráfico de função y = f(x).

Mesmo não sendo possível obter y explicitamente, podemos obter a derivada $\frac{dy}{dx}$ a partir da equação original envolvendo x e y. Tal técnica é chamada de derivação ou diferenciação implícita. Consideramos ycomo uma função desconhecida de x, e derivamos os dois lados da equação em relação à variável x.

Para facilitar a compreensão dos exemplos abaixo, reescrevemos a tabela de derivadas com a regra da cadeia. Aqui y é função de x e a derivada é em relação a x:

$$(y^{n})' = ny^{n-1}y'$$

$$(a^{y})' = (a^{y} \ln a)y'$$

$$(\log_{a} y)' = \frac{1}{y \ln a}y'$$

$$(\cos y)' = -(\sin y)y'$$

$$(\cos y)' = -(\cos^{2} y)y'$$

$$(\cos y)' = -(\cos y)y'$$

$$(\csc y)' = (\cos y)y'$$

$$(\csc y)' = (\sec y \log y)y'$$

$$(\csc y)' = \frac{1}{\sqrt{1 - y^{2}}}y'$$

$$(\operatorname{arccot} y)' = -\frac{1}{\sqrt{1 + y^{2}}}y'$$

$$(\operatorname{arccot} y)' = -\frac{1}{1 + y^{2}}y'$$

 \bullet Obs. Escrevemos, por exemplo, $(\operatorname{sen} y)' = (\cos y)y'$ no lugar de $(\operatorname{sen} y)' = \cos y y'$ para maior clareza.

Exemplo 1. Se y é função implícita dada pela equação $x^2 + y^2 = 1$, obter a derivada $y' = \frac{dy}{dx}$

Vamos derivar os dois lados da equação em relação à variável x. Para tanto aplicamos as regras de derivação e, onde necessário, a regra da cadeia.

Temos:

$$(x^2)' + (y^2)' = 1'$$
$$2x + 2yy' = 0$$
$$2yy' = -2x$$
$$y' = -\frac{x}{y}$$

• Note que a derivada y' depende tanto de x quanto de y.

Exemplo 2. Determine a equação da reta tangente à curva $x^2 + y^2 = 1$ no ponto $P = (1/2, -\sqrt{3}/2)$

Do exemplo anterior sabemos que $y' = -\frac{x}{y}$.

Logo
$$m_t=y'\big|_P=-\frac{1/2}{-\sqrt{3}/2}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}.$$
 Assim, a equação da reta tangente no ponto P dado é

$$y + \sqrt{3}/2 = \frac{\sqrt{3}}{3}(x - 1/2)$$

Isto é.

$$y = \frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3}$$

FIGURA 3. Reta tangente à curva $x^2 + y^2 = 1$ em $P = (1/2, -\sqrt{3}/2)$

Exemplo 3. Sendo y = f(x) dada implicitamente pela equação $xe^y + y^2 = 1$, obter a equação da reta tangente à curva no ponto P = (0, -1).

Derivando os dois lados da equação em relação a x e lembrando que a derivando (e^y) em relação a x obtemos $(e^y)'=e^yy'$ obtemos:

$$\left(xe^y + y^2\right)' = 1'$$

$$x'e^y + x(e^y)' + (y^2)' = 0$$

$$e^y + xy'e^y + 2yy' = 0$$

$$(xe^y + 2y) = -e^y$$

$$y' = -\frac{e^y}{xe^y + 2y}$$

Portanto,

$$m_t = y'(P) = y'(0, -1) = -\frac{e^{-1}}{0e^{-1} + 2(-1)} = -\frac{e^{-1}}{-2} = \frac{1}{2e}$$

e equação da reta tangenta à curva por P=(0,-1) é

$$y - (-1) = \frac{1}{2e}(x - 0)$$
, isto é, $y = \frac{1}{2e}x - 1$

Exemplo 4. Supondo y função implícita de x dada pela equação $x+xy-x^2y^3=0$, obter a derivada $y'=\frac{dy}{dx}$.

Derivando ambos os lados em relação à variável x obtemos:

$$x + xy - x^{2}y^{3} = 0$$

$$x' + x'y + xy' - [(x^{2})'y^{3} + x^{2}(y^{3})'] = 0'$$

$$1 + y + xy' - 2xy^{3} - 3x^{2}y^{2}y' = 0$$

$$xy' - 3x^{2}y^{2}y' = 2xy^{3} - y - 1$$

$$(x - 3x^{2}y^{2})y' = 2xy^{3} - y - 1$$

$$y' = \frac{2xy^{3} - y - 1}{x - 3x^{2}y^{2}}$$

Exemplo 5. Determinar a equação da reta tangente à curva $(x^2+y^2-1)^3-x^2y^3=0$ no ponto P=(1,1), sendo y função implícita de x.

Derivando ambos os lados da equação em relação a x temos:

$$\begin{split} \left[(x^2+y^2-1)^3 \right]' - (x^2y^3)' &= 0' \\ 3(x^2+y^2-1)^2(x^2+y^2-1)' - \left[(x^2)'y^3 + x^2(y^3)' \right] &= 0 \\ 3(x^2+y^2-1)^2(2x+2yy') - 2xy^3 - 3x^2y^2y' &= 0 \\ 6x(x^2+y^2-1)^2 + 6y(x^2+y^2-1)^2y' - 2xy^3 - 3x^2y^2y' &= 0 \\ \left[6y(x^2+y^2-1)^2 - 3x^2y^2 \right]y' &= 2xy^3 - 6x(x^2+y^2-1)^2 \\ y' &= \frac{2xy^3 - 6x(x^2+y^2-1)^2}{6y(x^2+y^2-1)^2 - 3x^2y^2} \end{split}$$

Portanto
$$y' = \frac{dy}{dx} = \frac{2xy^3 - 6x(x^2 + y^2 - 1)^2}{6y(x^2 + y^2 - 1)^2 - 3x^2y^2}$$

Assim, $\frac{dy}{dx}\Big|_P = -\frac{4}{3}$ e a equação da reta tangente à curva nesse ponto é

$$y-1=-\frac{4}{3}(x-1),$$
isto é, $y=-\frac{4}{3}x+\frac{7}{3}$

A figura abaixo mostra o lugar geométrico da equação $(x^2+y^2-1)^3-x^2y^3=0 \ {\rm e} \ {\rm a} \ {\rm reta} \ {\rm tangente} \ {\rm em} \ P=(1,1).$

FIGURA 4. Uma curva coração

Exemplo 6. Sendo y função de x dada pela equação $\ln y + \frac{x}{y} = 1$ determine $y' = \frac{dy}{dx}$ e a equação da reta tagente à curva em P = (0, e).

Derivando ambos os lados da equação em relação à variavel x temos:

$$(\ln y)' + \left(\frac{x}{y}\right)' = 1'$$

$$\frac{1}{y}y' + \frac{x'y - xy'}{y^2} = 0$$

$$\frac{y'}{y} + \frac{y - xy'}{y^2} = 0$$

$$\frac{yy' + y - xy'}{y^2} = 0$$

$$yy' + y - xy' = 0$$

$$yy' - xy' = -y$$

$$(y-x)y' = -y$$

$$y' = \frac{-y}{y-x}$$

$$y' = \frac{y}{x}$$

Assim, $m_t = y'(P) = \frac{e}{0-e} = -\frac{e}{e} = -1$ e a equação da reta tangente em P = (0,e) é

$$y - e = -1(x - 0)$$
, isto é, $y = -x + e$

Exercícios de revisão

- 1 Em cada equação abaixo y é dada implicitamente como função de x. Determine a derivada $y'=\frac{dy}{dx}$ e a equação da reta tangente à curva no ponto P indicado:
 - (a) $x^2 + xy y^2 = 1$, P = (2, 3).
 - (b) $x^2 + y^2 = 25$, P = (3, -4)
 - (c) $x^2y^2 = 9$, P = (-1,3)
 - (d) $\frac{x-y}{x-2y} = 2$, P = (3,1)
 - (e) $(y-x)^2 = 2x + 4$, P = (6,2)
 - (f) $x^3y xy^2 + 2xy + 2 = 0$, P = (-1, 2)
- 2 Determine $y' = \frac{dy}{dx}$, em cada caso abaixo:
 - (a) $y \ln x + x \ln y 2e = 0$
 - (b) $y^2 e^{xy} + x^3 (1-y) + 1 = 0$
 - (c) $\ln y = xy$
 - (d) $xy = \operatorname{arctg} \frac{x}{y}$
 - (e) $e^{\frac{x}{y}} y = 0$

Respostas

- (a) $y' = \frac{2x+y}{2y-x}$, t: 7x-4y-2=0(b) $y' = -\frac{x}{y}$, t: 3x-4y-25=0(c) $y' = -\frac{y}{x}$, t: 3x-y+6=0(d) $y' = \frac{2y+xy-x+x^2}{x}$, t: 11x-3y-30=0

 - (d) $y = \frac{x}{y x}$, t : 3x 4y 10 = 0(e) $y' = \frac{1 + y x}{y x}$, t : 3x 4y 10 = 0(f) $y' = \frac{y(y 3x^2 2)}{x(x^2 2y + 2)}$, t : -6x y 4 = 0
- (a) $y' = \frac{-y(y+x\ln y)}{x(x+y\ln x)}$ (b) $y' = -\frac{y^3 e^{xy} + 3x^2(1-y)}{2ye^{xy} + xy^2 e^{xy} x^3}$ (c) $y' = \frac{y}{1-x+x^2+y^2}$ (d) $y' = \frac{y(1-x^2-y^2)}{x(1+x^2+y^2)}$ (e) $y' = \frac{y}{x+y}$