Analysis II

Sommersemester 2014

Prof. Dr. D. Lenz

Blatt 1

Abgabe 17.04.2014

- (1) Zeigen Sie, dass $f: \mathbb{R} \to \mathbb{C}$ konstant ist, falls f hölderstetig mit Exponent $\alpha > 1$ ist. (Zur Erinnerung: Eine Funktion $f: \mathbb{R} \to \mathbb{C}$ heißt hölderstetig mit Exponent $\beta > 0$, wenn ein C > 0 existiert, so dass für alle $x, y \in \mathbb{R}$ mit |x y| < 1 die Ungleichung $|f(x) f(y)| \le C|x y|^{\beta}$ gilt.)
- (2) Die Funktionen f_1 bzw. f_2 seien auf \mathbb{R} definiert durch

$$f_1(x) := \begin{cases} x \sin \frac{1}{x} & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}, \quad f_2(x) := \begin{cases} x^2 \sin \frac{1}{x} & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}.$$

Sind f_1 und f_2 differenzierbar bzw. stetig differenzierbar?

(3) Sei $x_0 \in \mathbb{R}$ gegeben. Geben Sie in Abhängigkeit von x_0 reelle Zahlen a und b an, so dass die Funktion

$$f(x) := \begin{cases} x^2 & \text{für } x \le x_0 \\ ax + b & \text{für } x > x_0 \end{cases}$$

überall differenzierbar wird.

- (4) Bestimmen Sie die erste Ableitung der folgenden Funktionen
 - (a) $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2 e^x$.
 - (b) $(1, \infty) \to \mathbb{R}, x \mapsto \ln(\ln x)$.
 - (a) $\mathbb{R} \to \mathbb{R}$, $x \mapsto \sqrt{e^{x^2 + x + 1}}$.
 - (d) $(0, \infty) \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{\sqrt{x} \sin x}{\ln x}$.