

الگوریتمهای گراف و شبکه

دانشگاه تهران

۔ دانشکدہ علوم مهندسی

دانشکدگان فنی

rabedian@ut.ac.ir

گرافها و گرافهای ساده

گراف

یک سهتایی مرتب V(G) از رئوس، یک مجموعه V(G) است که از مجموعه ی ناتهی V(G) از رئوس، یک مجموعه V(G) از یالها و یک تابع وقوع ψ_G که به هر یال V(G)، یک زوج نامرتب از راسهای V(G) نسبت می دهد V(G)

$$\mathbf{G} = (V(G), E(G), \psi_G)$$

$$V(G) = \{v_1, v_2, ..., v_{13}\}$$

$$E(G) = \{e_1, e_2, ..., e_{12}\}$$

$$\psi_G(e_1) = (v_5, v_7), \ \psi_G(e_2) =$$

$$(v_3, v_5), ...$$

self-loop دارای G گراف

گراف G مسطح

گراف G نامسطح

يكريختي گراف

دو گراف G و H همسانند G = H اگر G = V(H) و V(G) = V(H) و V(G) = V(H) و G = H باشد. دو گراف G = H باشد. دو گراف G = H باشد، و گراف G = H باشد، و گراف G = H باشده میشوند G = H باگر نگاشتهای دوطرفه $G = V(G) \to V(H)$ و جود داشته باشنده باشنده باشنده G = H باگر و تنها اگر و تنها اگر G = H باگر و تنها اگر و تنها در $\psi_{G}(e) = uV$ باین زوج $\psi_{G}(e) = uV$ این زوج و تنها اگر و تنها داد و تنها

$$\theta(1) = A$$
, $\theta(2) = B$, $\theta(3) = C$, $\theta(4) = D$, $\theta(5) = E$

$$\phi(e_1) = a$$

$$\phi(e_2) = b$$

$$\phi(e_3) = c$$

$$\phi(e_4) = d$$

$$\phi(e_5) = e$$

$$\phi(e_6) = f$$

چند رده خاص از گراف

به گرافی که هر دو راس متمایز آن به یکدیگر متصلاند گراف کامل می گویند. طبق ویژگیهای یکریختی، فقط یک گراف کامل با n=5 را نمایش میدهد: n=5 را نمایش میدهد:

- گراف تهی، گرافی است که هیچ یالی نداشته باشد.
- گراف دوبخشی، گرافی است که میتوان مجموعه راسهای آن را به دو زیرمجموعه X و Y چنان افراز کرد که یک سر تمام یالهای آن در X و سر دیگر آنها در Y باشد. گراف دوبخشی کامل، یک گراف دوبخشی با بخشهای X و X است که در آن هر راس X، به هر راس X وصل شده باشد. اگر X و X است که در آن ایر را با X نمایش می دهیم.

 $k_{3,3}$ كراف دوبخشى كامل

ماتریس وقوع و ماتریس مجاورت

یک روش برای نمایش گراف ماتریس وقوع است. در واقع متناظر با هر گراف G یک ماتریس v وجود دارد که ماتریس وقوع v و ماتریس وقوع v نامیده می شود. اگر راسهای v را با v را با v را با با و یالهای آنرا با v را با تعداد دفعاتی است که v بر ابر با تعداد دفعاتی است که v بر v واقع شده است.

 a_{ij} روش دیگر برای نمایش گراف استفاده از ماتریس مجاورت است که ماتریسی است $\mathcal{V} imes \mathcal{V}$ مانند \mathcal{V}_i مانند و از ماتریس مجاورت است که v_i و در آن v_i برابر تعداد یال هایی است که v_i را به v_i و صل می کند.

	e_1	e_2	e_3	e_4	e_5	e_6	e_7
v_1	1	1	0	0	1	0	1
v_2	1	1	1	0	0	0	0
v_3	0	0	1	1	0	0	1
v_4	0	0	0	1	1	2	0

	v_1	v_2	v_3	v_4
v_1	0	2	1	1
v_2	2	0	1	0
v_3	1	1	0	1
v_4	1	0	1	1

زیرگراف

گراف H را زیرگراف گراف گراف ψ_G گوییم اگر $V(H)\subseteq V(G)$ و $V(H)\subseteq V(G)$ و ψ_H از محدود کردن ψ_G به ψ_G حاصل شده باشد، و بهصورت ψ_G نمایش داده می شود. اگر ψ_G باشد، و بهصورت می نویسیم ψ_G نمایش داده می شود. اگر ψ_G باشد، در آن صورت ψ_G را یک زبر گراف بر گراف و است. اگر ψ_G یک زیرگراف فراگیر (زبرگراف فراگیر) از ψ_G گوییم. ψ_G نمایش و از ψ_G باز ψ_G تحت شرط ψ_G بیروی کند، آن را یک زیرگراف فراگیر (زبرگراف فراگیر) از ψ_G گوییم.

اگر در یک گراف ساده، تمام حلقهها را حذف کنیم و همچنین از بین هر دو راس مجاور، تمام یالهای پیوندی به جز یکی را حذف نماییم، به زیرگراف فراگیر ساده ای از G می رسیم که گراف ساده زمینه G نامیده می شود.

فرض کنید V' یک زیرمجموعه ناتهی از V باشد، زیرگرافی از G که مجموعه راسهای آن V' و مجموعه یالهایش برابر مجموعه یالهایی از G[V'] باشد که هر دو سر آنها در V' واقع است، زیرگراف القا شده توسط V' نامیده می شود و با G[V'] نمایش داده می شود. به بیانی دیگر یک زیرگراف القایی گرافی است که مجموعه رئوس آن، زیر مجموعه ای از مجموعه رئوس گرافی دیگر باشد با این ویژگی که این زیر گراف دارای تمامی یالهایی است که بین رئوس نظیر خود در مجموعه رئوس گراف اولیه موجود هستند. زیرگراف القایی V' و یالهای واقع برآنها، زیرگراف القایی V' و یالهای واقع برآنها، از V به جای V' و یالهای واقع برآنها، از V به جای V' و یالهای واقع برآنها، از V به جای V' و یالهای واقع برآنها،

فرض کنید که E' یک زیرمجموعه ناتهی از E' باشد. زیرگرافی از G که مجموعه راسهای آن برابر مجموعه راسهای دو سر E' باشد، زیرگراف القا شده توسط E' نامیده می شود و با G[E'] نمایش داده می شود و با G[E'] نمایش داده می شود و با G[E'] نمایش داده می شود. اگر E' باشد، زیرگراف القا شده توسط E' باشد، به طور ساده شده ی E' نمایش داده می شود. اگر E' به جای E' و E' به جای E' و E' می نویسیم E' و E' می نویسیم E' و E' نمایش داده می شود. اگر E' و E' به جای E' و E' و E' می نویسیم E' و E' نمایش داده می شود. اگر E' و E' به جای E' و E' و E' و E' و E' و E' نمایش داده می شود. اگر E' و E' به جای E' و E'

دو زیرگراف G_2 و G_2 از گراف G را مجزا گوییم اگر راس مشترک در آنها وجود نداشته باشد، و آنها را یال-مجزا مینامیم اگر هیچ یال مشترکی نداشته باشند.

اجتماع دو زیرگراف G_{1} و G_{2} ، زیرگرافی است با مجموعه راسها و یالهای این دو زیرگراف. یعنی:

 $\mathbf{V}(G_1) \cup \mathbf{V}(G_2)$ مجموع راسها: $\mathbf{E}(G_1) \cup \mathbf{E}(G_2)$ مجموع يالها:

اگر G_2 و G_2 مجزا باشند، میتوان اجتماع را بهصورت G_1+G_2 نمایش داد. اشتراک نیز بهطور مشابه تعریف می شود با این تفاوت که G_1+G_2 و G_2 باید حداقل یک راس مشترک داشته باشند. G_2 و G_3

 $\mathrm{V}(G_1)\cap\mathrm{V}(G_2)$ اشتراک راسها: $\mathrm{E}(G_1)\cap\mathrm{E}(G_2)$ اشتراک یالها:

درجه رئوس

درجه راس ۷ در گراف $d_G(v)$ ، $d_G(v)$ ، واقع بر ۷ میباشد.

• نکته: در این تعریف، هر حلقه را دو یال در نظر می گیریم.

کمترین و بیشترین درجه راسهای G را بهترتیب با $\delta(G)$ و $\delta(G)$ نمایش میدهند.

نتیجه ۱-۱ در هر گراف، تعداد راسهای فرد، زوج است.

$$\sum_{v \in V} d(v) = 2\mathcal{E}$$
 احا

-k ،k می گوییم گرافی است که بهازای یک مقدار k باشد. گراف منتظم، گرافی است که بهازای یک مقدار k ،k منتظم باشد. گرافهای کامل، گرافهای دوبخشی کامل k و همچنین k-مکعبها منتظم هستند.

مسیرها و همبندی در گراف

یک گشت از G، دنباله ناصفر متناهی $v_i = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$ است به طوری که جملات آن یک درمیان از راسها و یالها $v_i = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$ یا به عبارتی دیگر بوده و به ازای $v_i = v_i e_i$ دو سر $v_i = v_i e_i$ دو سر $v_i = v_i e_i$ یا به عبارتی دیگر بوده و به ازای $v_i = v_i e_i$ دو سر $v_i = v_i e_i$ دو

اگر $v_0e_1v_1$... $v_{k-1}e_kv_k$... $v_{k-1}e_kv_k$ و $W'=v_ke_{k+1}$ v_{k+1} ... e_lv_l و $W=v_0e_1v_1$... e_kv_k ... $W=v_0e_1v_1$... $W=v_0$

مسیرها و همبندی در گراف

در یک گراف ساده، گشت های میتوان یک گشت را با دنباله در یک گراف ساده به ساده گی میتوان یک گشت را با دنباله راسهای آن مشخص نمود. گاهی اوقات در گرافهایی که ساده نیستند نیز دنبالهای از راسها را که در آن هر دو راس متوالی مجاورند، به عنوان یک گشت قلمداد می کنیم. در چنین حالاتی باید توجه داشت که بحث در مورد تمامی گشتهای که دارای چنین دنباله راسهایی هستند صادق است.

 $\mathcal{E}(W)$ اگر یالهای e_1,e_2,\dots,e_k در گشت W متمایز باشند، W یک گذرگاه نامیده می شود. دراین حالت، طول v_0,v_1,\dots,v_k در بالهای راسهای v_0,v_1,\dots,v_k نیز متمایز باشند، v_0,v_1,\dots,v_k نیز متمایز باشند، اگر علاوه بر یالهای، راسهای v_0,v_1,\dots,v_k

uavfyfvgyhwbv: گشت

wcxdyhwbvgy: گذرگاه

xcwhyeuav: مسير

می گوییم دو راس u و v از v همبند یا متصلاند، اگر یک v اگر یک v اسیر در v وجود داشته باشد. همبندی یک رابطه همارزی روی او v می گوییم دو راس v از v از v افرازی از v به زیرمجموعه های ناتهی v اتشکیل می دهد. بنابراین افرازی از v به زیرمجموعه های ناتهی v و جود دارد که در آن دو راس و v مجموعه راس های v و v همبندند اگر و تنها اگر v و v هر دو متعلق به مجموعه v یکسانی باشند.

زیر گرافهای $G[V_1]$, $G[V_2]$, ..., $G[V_w]$ مولفههای $G[V_1]$ مولفههای میشوند. اگر گرافهای $G[V_1]$ در غیر این صورت ناهمبند خواهد بود. تعداد مولفههای $G[V_1]$ را با $G[V_0]$ نمایش می دهیم.

دورها

می گوییم یک گشت بسته است اگر طول آن مثبت بوده و ابتدا و انتهای آن یکسان باشند. یک گذرگاه بسته که ابتدا و راسهای داخلی آن متمایز باشند دور نامیده می شود. همانند مسیرها، گاهی اوقات لفظ "دور" را به منظور اشاره به گرافی که متناظر با یک دور است به کار می بریم. یک دور با طول k را k حدور می نامیم.

یک k-دور را بسته با اینکه k زوج باشد یا فرد، یک دور زوج یا فرد مینامیم. غالبا به ∞ -دور مثلث گفته می شود.

ucvhxgwfwdvbu: گذرگاه بسته

دور :xaubvhx

قضیه ۱-۲ یک گراف دوبخشی است اگر و تنها اگر هیچ دور فردی نداشته باشد.

مسئله كوتاهترين مسير

اگر به هر یک از یالهای e از گراف G یک عدد حقیقی نسبت داده باشیم، به گراف G یک گراف وزندار در نظریه گرافها کاربردهای بسیاری دارد. به طور مثال می توان به میزان علاقه و دوستی میان افراد در یک گراف دوستی اشاره کرد.

اگر H زیرگرافی از یک گراف وزن دار باشد، وزن W(H) از W(H) برابر حاصل حمع وزن های روی یالهای آن یعنی $\sum_{e\in E(H)} w(e)$ است. بسیاری از مسایل بهینه سازی برای پیدا کردن یک زیرگراف خاص کمترین (یا بیشترین) وزن در یک گراف وزن دار است. به عنوان مثال، مسئله کوتاه ترین مسیر یک نمونه از این مسائل است که به صورت زیر تعریف می شود: پیدا کردن کوتاه ترین مسیر بین دو شهر که توسط یک شبکه راه آهن به یکدیگر متصل شده اند.

الگوريتم دايجسترا

این الگوریتم علاوه بر کوتاهترین مسیر بین ۲تا گره مد نظر (u_0,v_0) ، کوتاهترین مسیرهای بین u_0 تا تمام راسهای دیگر در G را پیدا می کند. روش کار این الگوریتم به صورت زیر است:

الگوریتم دایجسترا برای یافتن کوتاهترین مسیر از یک راس s به سایر رئوس در گراف وزن دار غیرمنفی با وزنهای $\omega(u,v)$ استفاده می شوند. ابتدا فاصلهها d(v) برای تمام رئوس $v \in V$ به به بطوری که d(s) = 0 و برای سایر رئوس d(v) مقدار دهی اولیه می شوند. در هر تکرار، راس u با کمترین مقدار d(u) انتخاب می شود، سپس برای هر همسایه v از طریق یال v بررسی می شود که آیا در هر تکرار، راس v با کمترین مقدار v است یا خیر. اگر باشد v بروزرسانی می شود. این فرایند تا زمانی که همه رئوس بازدید شوند ادامه دارد.

مثال

 ${
m G}$ پیادهسازی الگوریتم دایجسترا روی راس ${
m 0}$ گراف

11/19

