Programmierung von Datenbanken (PDB)

Vorlesung 2

Teil:PDB-1

Letzte Vorlesung

- Grundbegriffe
- SQL
 - create table
 - insert
 - select

Heute Übersicht

- Modellierung (ER-Diagramme)
 - Entitäten und Entity-Typen
 - Beziehungen und Beziehungstypen
 - Attribute
 - für Entitäten(Typen) und Beziehungen(Typen)
 - einfacher oder zusammengesetzter Schlüssel
 - Kardinalitäten
 - Generalisierung
 - Business Rules
- ... mehr zu SQL

Erstellung einer Datenbank: Erster Schritt ...

- Was sind die Anforderungen?
- Was sind die Ziele?
- Ist bekannt was gespeichert werden soll?

→ Design des *Datenmodells*

Entity-Relationship-Modell (ER-Modell)

 Siehe auch: C. Maria Keet: A formal comparison of conceptual datamodeling languages (http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-337/paper3.pdf)

Picture by: Frank Roeing

ER-Modell

Ziel: Abbildung der Wirklichkeit auf Strukturebene! Beispiel:

Instanzebene

- Strukturebene

ER-Modell

- Strukturebene

– bei uns (PDB)

 Otto Müller lebt in Frankfurt am Main, in der Robert-Mayer-Str. 11.

(Objekttyp) Attribute

- Ein Objekttyp ist durch einen bestimmten Satz von Merkmalen (Attributen) gekennzeichnet.
- Jedes Merkmal kann Werte (values), das sind in der Umwelt beobachtbare oder messbare Größen, aus einem bestimmten Wertebereich (value set) annehmen.
- Beispiel:

Schlüssel

Ein *Schlüssel* besteht aus einer Menge von Attributen, deren Werte eine Instanz (Entity) eines Objekttyps eindeutig bestimmt.

einfacher Schlüssel

zusammengesetzter Schlüssel

Prinzipien des digitalen Speicherns

Wenn möglich sollten vorhandene Identifizierungsmerkmale als Schlüssel wiederverwendet werden.

Man muss aber auch mögliche Änderungen sinnvoll handhaben: ISBN 10 → ISBN 13

... Stifte mit gleichem Barcode ...

Suchportal Frankfurt am Main Universitätsbibliothek UB

Die Universitätsbibliothek Johann Christian Senckenberg ist g Bitte beachten Sie aktuelle Informationen unter https://www.ub.u

kemper, alfons

SUCHEN

Erweiterte Suche

Ihre Suchbegriffe: Einfache Suche: (Alle Felder: kemper, alfons)

BÜCHER & MEHR (43)

ARTIKEL & MEHR (1820)

IHR KONTO

- « zurück zum Suchergebnis
- « zurück 4 von 43 weiter »

Datenbanksysteme

Titel: Datenbanksysteme: eine Einführung / Alfons Kemper;

André Eickler

Verfasser: Kemper, Alfons W; Eickler, André

Ausgabe: 10., aktualisierte und erw. Aufl.

Veröffentlicht: Berlin [u.a.] : De Gruyter Oldenbourg, 2015

Umfang: 879 S. : III., graph. Darst. ; 24 cm x 17 cm

Format:

Sprache: Deutsch

Schriftenreihe/

De Gruyter Studium

mehrbändiges

Werk:

RVK-Notation: ST 270 INFO

Schlagworte: Datenbanksystem W

ISBN: 3110443759 ; 9783110443752

Hinweise zum Hinweise zum Inhalt Inhalt: Inhaltsverzeichnis

EXEMPLARE MEHR INFORMATIONEN

INHALTSVERZEICHNIS

REZENSIONE!

AUSSCHNITT

ZUSAMMENFASSUNG

Universitätsbibliothek J. C. Senckenberg, Zentralbibliothek (ZB)

Signatur: 90.787.58

Kommentar: verfuegbar - UB geschlossen: derzeit keine Ausleihe

Status: ausleihbar

Universitätsbibliothek J. C. Senckenberg, Informatikbibliothek

Signatur: H.0-3 ex 15

Klassifikation: H.0

Kommentar: verfuegbar - UB geschlossen: derzeit keine Ausleihe

Status: • • • ausleihbar

Signatur: H.0-3 ex 16

Klassifikation: H.0

Kommentar: Der Band ist ausgeliehen. Vormerken ist derzeit leider nicht moeglich.

Status: ausleihbar

Signatur: H.0-3 ex 17

Klassifikation: H.0

Kommentar: verfuegbar - UB geschlossen: derzeit keine Ausleihe

Status: ausleihbar

Signatur: LB: Xd 244 <10> (1.-5. Ex.) Standort: Lehrbuchsammlung Informatik

Mathematische Betrachtung

Ein Beziehungstyp zwischen zwei Objekttypen kann als eine mathematische Relation aufgefasst werden.

Beispiel:

Min/Max Kardinalitäten

- min_card(Person, Lebt_in) = 1
- max_card(Person, Lebt_in) = 1
- min_card(Stadt, Lebt_in) = 0
- max_card(Stadt, Lebt_in) = n

Es gilt immer: min_card <= max_card!

Kardinalitäten

Instanz:

Person = { p1, p2, p3 } Stadt = { c1, c2, c3 }

lebt_in = { <p1,c1>, <p2,c2>, <p3,c3> }

Instanz:

Person = { p1, p2, p3, p4} Stadt = { c1, c2, c3, c4, c5 }

lebt_in = { <p1,c1>, <p2,c1>, <p3,c3>, <p1, c4> }

Übung 1

- Aussage:
 - Mannschaften werden von mindestens einem Trainer trainiert.

Mannschaften werden von mindestens einem Trainer trainiert.

(Beziehungs) Attribute

Instanz:

Passagier = { p1, p2, p3 }
Flug = { c1, c2, c3 }
bucht = { <p1,c1, "D2">, <p2,c1, "D3">}

Übung 2 – ER-Diagr. für folgende Aussage erstellen

Aussage:

 Bei einem Spiel spielen zwei Mannschaften an einem bestimmten Tag und Uhrzeit in einem Stadion gegeneinander.

Häufige Lösungsansätze ...

Übung 2 – ER-Diagr. für folgende Aussage erstellen

Aussage:

 Bei einem Spiel spielen zwei Mannschaften an einem bestimmten Tag und Uhrzeit in einem Stadion gegeneinander.

... eine weitere Möglichkeit!

Bem.: So wird verhindert, dass eine Mannschaft gegen sich selbst spielt. Wenn man bei Spiel einen zusammengesetzten Schlüssel wählt (Tag/Zeit/Stadion) kann man auch modellieren, dass nicht zwei Spiele gleichzeitig im gleichen Stadion stattfinden.

Die Uni ...

Studenten können sich von Professoren über eine Vorlesung mündlich prüfen lassen.

Entity-Typ oder Attribut???

- Entities sind Instanzen der Entity-Typen und nehmen keine Werte an.
- ... nur deren Attribute stellen die beschreibenden Eigenschaften dar und nehmen Werte an.

Die Entscheidung ist abhängig vom Kontext (Situation/Anwendungsfall).

Generalisierung

Hierarchien für Objekttypen (entspricht Klassenhierarchie in OO)

... mit Mehrfachvererbung

... mit Mehrfachvererbung

Übung 3

Aussage:

 Eine Mannschaft besteht aus Spieler, die sich aufteilen in Verteidigung, Mittelfeld, Angriff oder Torhüter.

Übung 3

Aussage:

Eine Mannschaft besteht aus Spieler, die sich aufteilen in Verteidigung, Mittelfeld, Angriff oder Torhüter.

ER-Modell

Vorteile

- Unabhängig von Implementierungsdetails
- Grafische Darstellung (leicht zu lesen)

— ...

Nachteile

- Abbildung des ER-Modells in das relationale Modell ist nicht eindeutig
 nicht automatisch
- ER-Modell ist "statisch"

— ...

Ausdruckskraft

 Ein Angestellter einer Abteilung soll nicht mehr verdienen, als der entsprechende

Abteilungsleiter.

Benötigt zusätzliche Beschreibung, sogenannte *Business Rules*.

Ein Angestellter **darf nicht** mehr Gehalt bekommen als der Abteilungsleiter, zu dessen Abteilung der Angestellte gehört.

Ein Abteilungsleiter **muss** zu der Abteilung gehören, die er leitet.

Business Rules (im weitesten Sinne) können angesehen werden als:

- 1. Die semantische Definition eines für Anwendungen relevanten Konzeptes, genauer, die semantische Definition
 - eines Objektes,
 - eines Attributes,
 - einer Relation

des ER-Modells.

Für diesen Fall werden natürlich sprachliche Sätze verwendet, da es unmöglich ist hierfür eine präzise Syntax zu definieren.

- 2. Integritätsbedingungen für die Daten einer Anwendung (als zusätzliche Beschreibung der im ER-Modell enthaltenen Bedingungen oder zusätzliche Bedingungen).
- 3. Abgeleitete Bedingungen bzw. Folgerungen aus anderen Bedingungen (z.B. Brutto ist Summe aus Netto plus Steuer).

ER Zusammenfassung

- Entitäten und Entity-Typen
- Beziehungen und Beziehungstypen
- Attribute
 - für Entitäten(Typen) und Beziehungen(Typen)
 - einfacher oder zusammengesetzter Schlüssel
- Kardinalitäten
- Generalisierung
- Business Rules

Tools zum Zeichnen von ER-Diagrammen

... einfach PowerPoint oder andere Zeichentools, eine genaue 1-1 wie in der Vorlesung ist mir nicht bekannt.

... wer mag, kann sich auch gerne folgende Tools ansehen (nur eine Auswahl):

- Edraw https://www.edrawsoft.com
- yEd https://www.yworks.com/products/yed
- Lucidchart https://www.lucidchart.com
- Draw.io https://drawio-app.com/entity-relationship-diagrams-with-draw-io/

SQL - Primärschlüssel

Mittels der Klausel **primary key** kann ein Attribut einer Relation als Schlüssel ausgezeichnet werden. Hierdurch kann ein Datensatz identifiziert werden und das DBS sorgt dafür, dass keine Duplikate eingetragen werden.

Primärschlüssel

Wenn mehr als ein Attribut als Primärschlüssel definiert werden sollen, wird die Klausel in der Form **primary key** (Attributnamen-Liste) verwendet.

```
create table kunde2 (
name varchar(30) not null,
vorname varchar(20) not null,
strasse varchar(50),
stadt varchar(25),
kinder int not null default 0,
gebDatum date,
primary key (name, vorname) );
```


Primärschlüssel

- Es kann für eine Tabelle nur maximal einen Primärschlüssel (PK) geben.
- Eine Tabelle kann neben dem PK weitere Schlüssel
 (Schlüsselkandidaten) besitzen. Diese können über "Unique
 Index" im DBS modelliert werden.

Aggregatfunktionen

Die sog. Aggregatfunktionen können in der select-Klausel anstelle von einzelnen Attributen angegeben werden.

Ergebnis einer Aggregatfunktion ist ein Wert, kein Tupel.

select count(*) as AnzahlKunden
from kunde;

Aggregatfunktionen

- min(A) zur Berechnung des Minimalwerts aller Tupel unter dem Attribut A.
- max(A) zur Berechnung des Maximalwerts aller Tupel unter dem Attribut A.
- avg([distinct]A) zur Berechnung des Durchschnittswerts aller Tupel unter dem Attribut A, wobei unter Angabe von distinct mehrfach gleiche Werte nur einmal in die Berechnung eingehen.
- **sum**([**distinct**] A) zur Berechnung der Summe aller Tupel unter dem Attribut A, wobei unter Angabe von distinct mehrfach gleiche Werte nur einmal in die Berechnung eingehen.
- count(*) zum Zählen der Tupel der betrachteten Relation.
- count([distinct]]] A) zum Zählen der Tupel der betrachteten Relation, wobei zunächst eine Duplikateneliminierung bezogen auf Werte unter dem Attribut A stattfindet.

Anfrage über mehrere Relationen

Werden in der **from**-Klausel mehrere Relationen spezifiziert, so erfolgt die Berechnung des **kartesischen Produktes**.

```
konto (<u>konto nr</u>, kunden_nr, name, saldo)
filiale (<u>name</u>, leiter)
```

select * from filiale, konto;

Anfrage über mehrere Relationen

```
konto (<u>konto nr</u>, kunden_nr, name, saldo)
filiale (<u>name</u>, leiter)
select * from filiale, konto;
```

```
select * from filiale, konto

where name = ' test1';

→ Fehlermeldung: Name nicht eindeutig!
```

→select * from filiale f, konto k where f.name = 'test1';

Anfrage über mehrere Relationen

- ... hier mit where-Bedingung, was einem sogenannten "Join" entspricht.
- ... Verwendung von Fremdschlüsseln eventuell sinnvoll (siehe Video)!

```
konto (<u>konto nr</u>, kunden_nr, name, saldo)
filiale (<u>name</u>, leiter)
```

select * from filiale f, konto k
 where f.name = k.name;

