Calculus - Chapter 46 - PowerSeiles.

Definition:

An infinite series $\sum_{n=0}^{+\infty} a_n(x-c)^n = a_0 + a_1(x-c) + a_2(x-c)^2 + ...$

is a powersences.

Important case: \(\sum_{n=0}^{\infty} \anx^n = a_0 + a_{pc} + a_{2}x^2 + \dots is powersonies about 0.

Example:

The power series about 0 $\sum_{n=0}^{+\infty} 3c^n = 11 + 2c + 3c^2 + ...$ is a geometric series with ratio ∞ . If correspos for |x| < 1, with sum 1/(1-3c).

Theorem:

Assume $\leq n=0$ an(x-c) converges for ∞ 0 \neq c) then it converges absolutely $\forall x \leq t$. $|x-c| < |x_0-c| = q \forall x closer to c than <math>x_0$.

Theorem:

For power series $\sum_{n=0}^{+\infty} a_n(x-c)^n$, one of cases holds:

(a). converges toc, or

(b). Converges $\forall \alpha$ in an open interval $(c-R_1, c+R_1)$ around c but not outside the closed interval $[c-R_1, c+R_2]$, or

(c). it converges only for oc=c

By interval of convergence of \$\ \int 1=0 an(\alpha-c)^n we mean:

(a). $(-\omega, \infty)$ \Rightarrow radius of convergence ∞

(b). $(c-R, c+R_1)$

(c). {c}

Example:

Power series $\sum_{n=1}^{+\infty} (x-2)/n = (x-2) + (x-2)^2 + (x-2)^3 + \dots$ is powerseries about 2.

Rahotest: $|\alpha_{n+1}/\alpha_n| = (\alpha-2)^{n+1} / (\alpha-2)^n = \frac{n}{n+1} (\alpha-2)$

Thus $\lim_{n\to\infty} |x_{n+1}/x_n| = \infty-2$, so series converges absolutely for |x-2|<1 $\Rightarrow -1<\infty-2<1 \Rightarrow 1<\infty<3$; convergence interval is (1,3), radius of convergence is 1

Example:	Power series $\sum_{n=0}^{+\infty} \frac{2^n}{n!} = 1 + \frac{2^n}{2!} +$
·	Raho test: $ S_{n+1}/S_n = \frac{ \alpha ^{n+1}}{(n+1)!} / \frac{ \alpha }{n!} = \frac{ \alpha }{n+1} S_0 \lim_{n \to \infty} S_{n+1}/S_n = 0$
	Series converges absolutely tax: Therval of convergence (-00,00) and radius of convergence or
Example:	$\sum_{n=0}^{+\infty} n! x^n = 1 + \alpha + 2! x^2 + 3! x^3 + \dots \text{ is power series about 0.}$
	$\left S_{n+1}/S_n \right = \frac{(n+1)! x ^{n+1}}{n! x ^n} = \frac{(n+1) x }{(n+1) x } : \lim_{n \to \infty} S_{n+1}/S_n = +\infty$
	except when $x=0$: series converges only for $x=0$ and internal of convergence [0]
Uniform	Let (Fn) be sequence of functions all defined on set A, and let f be a function defined on A.
Convergence:	Then (fin) converges uniformly to for A if YEZO Imzo St Vac & A and Ynzim,
	$ f_{m}(x) - f(x) < \varepsilon$
Theorem:	If a power series \(\sum_{n=0}^{+\infty} \angle an(\infty -c)^n \) converges for \(\pi_0 \neq e \) and \(d < 1 \pi_0 -c \), then the
(1641)	sequence of partial sums $\langle S_k(x) \rangle$, where $S_k(x) = \sum_{n=0}^{k} a_n(x-c)^n$ converges uniformly
	to Zto an(x=c) on the interval Yx st. 1x-c/ <d< th=""></d<>
	is the convergence is uniform on any interval shirtly inside the interval of conneceence.
Theorem:	If < Fn> converges uniformly to f on a set A and \fn continuous on A, then f is
	continuous at A
Corollory:	The finding defined by a power series $\sum_{n=0}^{+\infty} a_n(x-a)^n$ is continuous at paints within
	its interval of convergence.
Integration:	$\int f(x)dx = \sum_{n=0}^{+\infty} a_n \frac{(x-a)^{n+1}}{n+1} K \text{for } [x-c] < R, \text{ with convergence randius}.$
	However, if a and b are white interval of convergence then:
	$\int_{a}^{b} f(x) dx = \sum_{n=0}^{+\infty} \left(a_n \frac{(x-c)^{n+1}}{n+1} \right) \Big _{a}^{b}$

Differentiation:
$$f'(x) = \sum_{n=0}^{+\infty} na_n(x-c)^{n-1}$$
, $|x-c| \le R$, (x)

Example: For
$$|\infty| < 1$$
, $\frac{1}{1-\alpha} = \sum_{n=0}^{+\infty} \infty^n = 1 + \infty + \infty^2 + ... + \infty^n$
By $(*)$

$$D_{\infty}(\frac{1}{1-\alpha}) = 1 + 2\infty + 3\infty^2 + ... + n\infty^{n-1} + ... |\infty| < 1$$

$$= \sum_{n=1}^{+\infty} n\infty^{n-1}$$

$$= \sum_{n=0}^{+\infty} (n+1) x^n$$

Example: Replace
$$x$$
 with $-x$: $\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-x)^n = \sum_{n=0}^{+\infty} (-1)^n = \sum_{n=0}^{+\infty} (-1)^n$

By integral th:
$$\int \frac{dx}{1+\alpha} = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1} + k = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^n}{n} + k, |x| < 1$$

$$|n| 1 + \alpha 1 = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\alpha^n}{n}, |\alpha| < 1$$

Rahio test proves series convarges.

Replacing ∞ by $\infty-1$: $\lim_{n\to\infty} = \sum_{n=1}^{+\infty} (-1)^{n-1} (\alpha-1)^n / (\alpha-1)^n / (\alpha-1)^n = \infty$. So $\ln \infty$ is definable power series in (0,2).

Abel's Thomas: Assume $\sum_{n=0}^{+\infty} a_n(x-c)^n$ has finite interval of convergence 1x-cl < R, if power series also converges at the right endpoint b=c+R, the $\lim_{n\to b} f(x)$ exists and equal to the sum of the power series at b, similarly for LHS: a=c-R,

Example:
$$\ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^n}{n}$$
, $|x| < 1$
At RHS, $x = 1$, power series becomes convergent order along hormonic series.

By Abelstheorem: the series is equal to $\lim_{x\to 1^-} \ln(1+x) = \ln 2$. So $\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$

$$\frac{1}{1-\alpha} = \sum_{n=0}^{+\infty} 1 + \alpha + \alpha^2 + \dots, |\alpha| < 1$$

Replacing with -22:

$$\frac{1}{1+\alpha^2} = \sum_{n=0}^{+\infty} (-1)^n \alpha^{2n} = 1 - \alpha^2 + \alpha^4 - \alpha^6 + \dots, |-\alpha^2| < 1 \text{ egho } |\alpha| < 1$$

$$\tan^{-1} \alpha = \sum_{n=0}^{+\infty} (-1)^n \frac{\alpha^{2n+1}}{2n+1} + K_3 |\alpha| < 1$$

$$= k + \alpha - \frac{1}{3}\alpha^{3} + \frac{1}{5}\alpha^{5} - \dots$$

Let
$$ac = 0$$
, $tan^{-1}(0) = 0$: $k = 0$:

$$\tan^{-1} x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{x^{2n+1}} = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots$$

At RHS endpoint z= 1 of interval of convergence, the series becomes:

$$\sum_{n=0}^{+\infty} (-1)^n \frac{1}{2n+1} = -\frac{1}{3} + \frac{1}{5} - \dots$$

$$1 - \frac{1}{3} + \frac{1}{5} - \dots = \lim_{n \to 1^{-}} \tan^{-1}(x) = \tan^{-1}(x) = \pi/4$$

Example:

$$f'(\infty) = \sum_{n=0}^{+\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = f(\infty)$$

Note
$$f(0) = 1$$
: $f(x) = e^{x}$

Thus

$$e^{x} = \sum_{n=0}^{+\infty} \frac{1}{x^n/n!}$$