Variance-based Pivot Selection for Metric Spaces

Yan Ruan ¹, Detao Ji ², Kun Luo ¹, Yuhang Lou ¹, Minhua Lu ¹, Rui Mao ¹

²School of Computer Science & Technology, Beijing Institute of Technology, Zhuhai, China

Background

- In metric-space indexing, data can be represented by distances to reference points (pivots).
- The intrinsic dimension of the data is often estimated first and used as the number of pivots to select, after which the pivots are chosen according to certain heuristics.

The Problem

- Existing dimension estimation methods are usually inaccurate or unstable.
- Current pivot selection heuristics may produce redundant pivots or show inconsistent performance across datasets.

Our Contributions

- Variance-based framework: Designed for intrinsic dimension estimation, combining eigenvalue truncation, matrix centering, and a novel elbow rule (S-Elbow).
- MVGSO: A pivot selection method that incrementally chooses representative, low-redundancy pivots via Gram—Schmidt orthogonalization.

Dimension Estimation Methods

Pivot Selection Methods

We compare our proposed MVGSO with common pivot selection heuristics:

- **FFT**: Simple but but sensitive to initialization and unstable in pruning.
- **PCA**: Projects onto principal directions, but higher-order components are often redundant with limited query-time gains.
- *ISMM*: Maximizes pairwise distance; effective but somewhat dataset-dependent.
- MVGSO: Incrementally selects pivots with maximum variance, applying Gram—Schmidt to reduce redundancy, , and achieves up to 70% fewer distance computations with ~10% average improvement over the best baselines

Supported by the NSFC project "Theory and methods of graph universal representation through metric space".