

《电路》目录

东南大学	《电路》	期中试卷一	·					
东南大学	《电路》	期中试卷一	参考答案	**************	******	***********		
东南大学	《电路》	期中试卷二			,		•••••	10
东南大学	《电路》	期中试卷三			*********			13
		Abre B. C. B. SPA						
东南大学	《电路》	期末试卷一					*************	17
东南大学	丝《电路》	期末试卷二			engaren			21
左齿十 4	5 / 由 以 》	期末试卷二	** ****					23
小用八寸	- , чырт // Па Парада 150		多有百余					
东南大学	《电路》	期末试卷三		. j		<i>6</i>		2-7
东南大学	纟《电路》	期末试卷三	参考答案	**************************************	藝			32
74.7142.44		期末试卷二						
《电路》	综合复义	J题						37
《电路》	综合复习]题参考答案	1111,1111111111111111111111111111111111			••	***************************************	104

扫一扫查看更多科目资料

东南大学《电路》期中试卷一

一、采用节点电压法求图中电流 I 和电压 U。

三、宋图示电路中的"。

四、用回路电流法求解图示电路中的电流工

五、在 t=0 时刻,图中开关闭合,求电流 i(t)及电容的电压 u(t)。

六、图示电路中, 已知 U=8V。求:

- (1) R为何值时它消耗的功率为最大?并求出此功率。
- (2) 求 R-12 O 时电流 1 和 I, 的值

七、求图中电阻能获得的最大功率。

九、叙述并证明就维宁定理。

东南大学《电路》期中试卷一参考答案

一、采用节点电压法求图中电流 1和电压 U。

$$\begin{cases} \left(\frac{1}{30}, \frac{1}{10}, \frac{1}{10}\right) u - \frac{1}{10} u_2 - \frac{1}{10} u_3 - \frac{20}{10} \\ u_2 = 5 \\ u_3 = 10I \\ I = \frac{u_1 - u_2}{10} \end{cases}$$

$$u_1 = \frac{1}{10}V$$

$$u_2 = \frac{5}{10}V$$

$$u_3 = \frac{1}{10}V$$

$$u_4 = \frac{1}{10}V$$

$$u_5 = \frac{1}{10}V$$

$$U = u_1 = 15V$$

二、求图中 CCVS 的功率。

解: 取如下图所示的回路电流

$$\begin{cases} i_1 = 2 \\ (20+20)i_2 - 20i_3 = 10+10I \\ -7i_1 - 20i_2 + (7+20+3)i_3 = -4 \\ I = i_1 - i_2 \end{cases} \Rightarrow \begin{cases} i_1 = 2A \\ i_2 = 1A \\ i_3 = 1A \\ I = 1A \end{cases}$$

CCVS 的功率为 $P=10I \times i_2 = 10 \times 1 \times 1 = 10W$

三、求国示电路中的 u,

四、用回路电流法求解图示电路中的电流1、

解:则 I₁=3A,I₂=1.5U 含 I₂支路的回路电流方程为

$$(4+2+2+2)I_5+(2+4)I_1+(4+2)I_2=15$$

附加方程为

$$U=2(I_2+I_x)$$

联立求解,得 $I_s = -3A$

五、在 t=0 时刻,图中开关闭合,求电流 i(t) 及电容的电压 u(t)。

第1 开美初会装。更容断隆处理,

$$u(0_{\perp}) = 2A \times 5\Omega = 10V$$

 $u(0_{-}) = u(0_{-}) \stackrel{\triangle}{=} 10V$

开关闭合无限长时问后, 电客断路处理,

$$u(\infty) = 2A + \frac{20V}{5\Omega} \times (5\Omega / 5\Omega) = 15V$$

左侧二端网络的输入电阻为

$$R_{eq} = 5\Omega // 5\Omega = 2.5\Omega$$

所以

$$\tau = RC = 2.5\Omega \times 400 \, pF = 10^{-9} \, s$$

那么

$$u(t) = u(\infty) + [u(0_+) - u(\infty)]e^{-\frac{t}{t}}$$

= 15 + (10 - 15)e^{-10^{t}t}
= 15 - 5e^{-10^{t}t}V (t > 0)

六、

解, 反复利用电源的等效变换, 可得到除 R 之外的电路其它部分的栽维宁等效电路为:

所以当 $R=8\Omega$ 时,其消耗的功率最大,此功率为 $\frac{10}{4R_{gg}}=2W$

(2)当 R-12 Q 时,易录 J-8/(12+8)=0.4A 反复倒退计算,得 J=0.0125A

七、求图中电图能获得的最大功率。

解: 将电阻 R 断开, 求剩余二境网络的戴维宁等效电路:

$$R_{eq} = 4\Omega / (2\Omega + 2\Omega) / (2\Omega = 1\Omega)$$

特端口开路, 采用节点电压法求开路电压

$$\begin{cases} u_1 = 10 \\ -\frac{1}{2}u_1 + \left(\frac{1}{2} + \frac{1}{2}\right)u_2 - \frac{1}{2}u_3 = 1 \\ -\frac{1}{4}u_1 - \frac{1}{2}u_2 + \left(\frac{1}{4} + \frac{1}{2} + \frac{1}{2}\right)u_3 = 0 \\ u_{OC} = u_3 \end{cases}$$

解得开路电压

$$u_{ac} = 5.5V$$

所以. 当电阻 $R=R_{eq}=\mathrm{I}\Omega$ 时,获得最大功率 $P_{\mathrm{max}}=\frac{u_{\mathrm{oc}}^2}{4R}=\frac{121}{16}$ W =7. 5625W

东南大学《电路》期中试卷二

1、(10 分)在图所示电路中,开关打 1 档时,电压表读数为 10V,开关打 2 档时,电压表读数为 2V,那么当开关打 3 档时,求流过 10 Ω 电阻的电流。

2、(10分)已知电阻 R 支路流过的电流 I=1A. 求电阻 R 的值。

3、(10 分)电路如图,在 t<0 时开关闭合于 1,电路处于稳定状态。当时开关合向 2,求 初始值 $i_C(0_+)$ 、 $i_1(0_+)$ 、 $u_L(0_+)$ 和 $u_2(0_+)$ 。

5、

6.

4、

10

4、(10分) 求可变电阻 R 可能获得的最大功率及此时 R 的值。

5、(10分)用节点电压法求图中所示 CCVS 的功率。

6、(10分)用回路电流法求图中电路 I。

随え

7、(10 分)求图中电流 I_0 和电压 U_0 。

8、(10分)图示电路的运算器是理想的,求输出电压与输入电压的关系。

10、(10 分)在下图中,E=20V , $R_1=12k\Omega$, $R_2=6k\Omega$, $C_1=10\mu F$, $C_2=20\mu F$ 。 电容元件原先均未储能。当开关闭合后,试求电容元件两端电压 u_C 。

东南大学《电路》期中试卷三

- 1. 选择题(每小题 5分, 计 30分):
 - 1. 图示电路, Rab电阻为:

A: 2Ω ; B: 4Ω ;

C; 6Ω ; D: 8Ω

)

酱; (

2.

)

图示电路, Rab 电阻为:

A: (11/9) R; B: (6/5) R;

C: (3/2)R; D: (10/9)R

当 Na 和 Nb 均为有源线性

电阻网络时, 3Ω 电阻两端的电压 U

答: (

4. No 为线性电阻网络, 当 Us=8V, Is=2A 时, Us=0; 当 Us=8V, Is=0 时, Uab=6v, 短路电流 Iab=6A,则当 Us=0,k=2A,且 ab 间接9Ω电阻时,电流 Iab 为:

5. 已知电流的有效值 I=l₁=l₂=10A,R=8Ω,则电路的无功功率为:

A: -250var; B: 433var;

- C: 346.4var; D: -346.4var
- 答: ()
- 6. 图示电路,Ù=12∠0°V,则电流 i,为:

A: -j1.5Ai, B:-j1A; C: j1A; D: ĪĀ

二. 计算题(每题14分, 计70分)

1. 图示电路,求:① 各理想电源发出或吸收的功率;② 如果 R4 可调,求支路电流 i=0时的R4=?

14

随才

2.

交; 电!

吸4

2. N₀为线性电阻网络,已知 I₈=0时, I₁=-1A;当 I₈=9A时, I₁=5A; 若将 N₀的外电路 改接为(b)图,且已知 R 可获最大功率,试求 R 值及其最大功率 Pmax.

吸收的功率为 150 瓦,线圈两端的电压和电源电压成 45°.试求电路参数 R、r、L、C 各为多少?

4. 电路及参数如图示,求 ab 端的输入阻抗及电路所吸收的平均功率...

- 5. 一个内阻为 128Ω 的放大器(如图等效电路),经理想变压器耦合和负载为
 - 8Q(RL)的肠声器相接,
 - ①. n=?时,扬声器可获最大功率;
 - ②. 若扬声器输出的平均功率是 10W,则输入正弦信号 us 的最大值是多少? ③。 如果扬声器直接和放大器相接。重复求②

三、率?;

随米,

东南大学《电路》期末试卷一

一、(8分)求图示电路中 U_{AB} 和R

二、(8分)如图所示电路开关 S 断开时电流 I=1A,若开关 S 接通,则电流 I 为多少?

三、(8分)图示电路中为理想运算放大器,负载 R_1 可调,试问 R_1 为何值时获得最大功

率?并求此最大功率

四、(8分)如图所示 $R=8\Omega$ 求电路的输入阻抗。

五、(10 分)如图所示正弦稳态电路中,电源有效值U=20V, R_1C 支路消耗功率 $P_1=36W,\cos\varphi_1=0.6$, R_2L 支路消耗功率 $P_2=64W,\cos\varphi_2=0.8$;计算电流有效值I及整个电路的功率因数和平均功率。

六、(8 分)电路如图所示,求稳态电流 l_1 和 l_2 ,已知 $u_s(t)=6\sin 3000t$ V。

18

随米

七、 u_e 图

八、 阻抗:

种情

九、

功率

 $I \mathcal{D}$

七、(8 分)图示电路中 $u_s=20+20\sin(200t-30^\circ)$ V, l=0.025H,C=0.001F 求i 及 u_c 的瞬时表达式。

八、(8 分)如图对称三相电路,对称三相电源的线电压有效值为 $380\,\mathrm{V}$,对称三项负载阻抗为 着(2+2j) Ω ,输电线阻抗 $Z_{\mathrm{l}}=(1+2j)\Omega$,分别求中线阻抗 $Z_{\mathrm{p}}=0$, 10Ω , ∞ ,三

九、(8分)已知网络N的Y矩阵为 $\begin{bmatrix} 4/3 & -1 \\ -1 & 5/4 \end{bmatrix}$,求负载电阻R的功率。

十、(8分)如图电路中,开关S闭合前电路已经达到稳态,画出S闭合后复频域电路并求 $i_{\scriptscriptstyle L}(t)$ 。

十一、(8分)蒂娜路如图所示,列出图示电路的结点电压方程。

十二、(10 分)图示电路中, $u_s(t)=22\varepsilon(t)+10\varepsilon(-t)$,适用时域法求 t>0时电路的响应 i

随米,

战正共

.

电阻上

三、如

路并

..

东南大学《电路》期末试卷二

共五道计算题, 每题 20 分

一、如图所示电路,a,b,c,d 表示 4 个节点。 $R_{\rm l}=2\Omega$, $R_{\rm 2}=6\Omega$, $R_{\rm 3}=6\Omega$, 求电压 $U_{\rm b}$

二、己知电路如图,己知 $R_1=6\Omega,R_2=4\Omega,R_3=12\Omega,R_L=4\Omega$ 。利用戴维南定理,求证

三、如图所示电路,已知 $i=\sqrt{2}2\cos 5t(A)$, $r=4\Omega$, L=2.4H , C=0.025F 求电压 \mathbf{u}

} j*ol.*

的响

4Ω

51-1

四、如图所示电路, $R_1=2\Omega, R_2=1\Omega$, $X_L=j1\Omega, X_C=-j3\Omega$, $U_S=10\angle 0^0(V)$ 求:(1)各元件吸收的功率;(2)电源供给的功率.

五、如图所示的对称三相负载,已知线电压 $U_i=380V$ 。负载阻抗Z=6+j8,求各项负载电流和负载总功率。

(2):

二、解:

随米, i

东南大学《电路》期末试卷二参考答案

解:由图可见,ab间的电压 $U_{ab}=U_{ad}-U_{bd}=U_a-U_b=6-U_b$

所以
$$I_1 = \frac{U_{ab}}{2} = \frac{6 - U_b}{2}$$

bc 间的电压 $U_{bc} = U_{bd} - U_{cd} = U_b - U_c = U_b - (-3) = U_b + 3$

所以
$$I_2 = \frac{U_{bc}}{6} = \frac{U_b + 3}{6}$$

$$I_3 = \frac{U_{bd}}{6} = \frac{U_b}{6}$$

对于节点 b,根据 KCL 有 $I_1=I_2+I_3$,将 I_1 , I_2 , I_3 代入上式,得

R2R3

(2)求端口开路电压 U_{oc}

由K

将电

四、解

$$U_{oc} = U_1 + U_2 = \frac{12}{6+12} \times 12 + 0.5 \times \left(\frac{6 \times 12}{6+12} + 4\right)$$

$$=8+4=12V$$

利用戴维南得原理图:

三、解: 取电流 i 的相量为: $\dot{I} = 2 \angle 0^{0}(A)$

令未知电压相量为 \dot{U}_0 由于 $\omega = 5rad/s$,根据各元件值可得

$$j\omega L = j5 \times 2.4 = j12(\Omega)$$

$$\frac{1}{j\omega C} = \frac{1}{j5 \times 0.025} = -j8(\Omega)$$

可得各元件电压分别为: $\dot{U_r} = rI = 4 \times 2 \angle 0^0 = 8 \angle 0^0(V)$

$$\dot{U_L} = j\omega L \dot{I} = j12 \times 2 \angle 0^0 = 24 \angle 90^0 (V)$$

$$\dot{U}_C = \frac{1}{j\omega C}\dot{I} = -j8 \times 2 \angle 0^0 = 16 \angle -90^0(V)$$

由 KVL,得
$$\dot{U} = \dot{U}_r + \dot{U}_L + \dot{U}_C = 8 \angle 0^0 + 24 \angle 90^0 + 16 \angle -90^0$$

= $8 + i24 - i16 = 8 + i8 = 8\sqrt{2}\angle 45^0(V)$

将电压相量变换为正弦函数形式,得

$$u(t) = \sqrt{2} \times 8\sqrt{2}\cos(5t + 45^{\circ}) = 16\cos(5t + 45^{\circ})(V)$$

四、解 (1)支路 1 的阻抗为 $Z_1 = 2 + j1(\Omega)$,故电流

$$I_1 = \frac{U_3}{Z_1} \pm \frac{10 \angle 0^0}{2 + j1} = 4.74 \angle -26.57^0$$
(A)

 R_i 吸收的有功功率和 L 吸收的无功功率分别为

 $P_{R_i} = I_1^2 R_i = 40 W$
 $Q_L = I_1^2 X_L = 20 \text{ var}$
支路 2 的阻抗为 $Z_2 = 1 + j3(\Omega)$,故电流

$$I_2 = \frac{\dot{U}_S}{Z_2} = \frac{10 \angle 0^0}{1 - j3} = 3.16 \angle 71.57^0 (A)$$

 R_2 吸收的有功功率和 C 吸收的无功功率分别为

$$P_{R_2} = I_2^2 R_2 = 10W$$

 $Q_C = I_2^2 (-X_C) = -30 \text{ var}$

(2)电路的总电流
$$I = I_1 + I_2 = 4.47 \angle -26.57^{\circ} + 3.16 \angle 71.57^{\circ} = 5 + jl(A)$$

电源供给的复功率:
$$\tilde{S} = U_s I^* = (10 + j0)(5 - j1) = 50 - j10(VA)$$

五、解:与线电压 U_I 相对应的相电压

$$U_p = \frac{U_l}{\sqrt{3}} = \frac{380}{\sqrt{3}} = 220V$$

由于三相电路对称,因而中线两端电压 $U_{nn}=0$,根据置换定理,将nn 短路。

设 A 相电压相量 $U_a = 220 \angle 0^0(V)$,可求得电流

$$I_a = \frac{U_{nn}}{Z} = \frac{220 \angle 0^0}{6 + j8} = 22 \angle -53.1^0 (A)$$

根据对称性,有

$$I_c = 22 \angle -173 \text{ s}^0(A)$$

$$I_c = 22 \angle 66.9^0(A)$$

A相负载吸收的功率。

$$P_a = U_a I_a \cos \theta_2 = 220 \times 22 \cos 53.1^0 = 2904w$$

负载吸收的总功率
$$P=3P=8712m$$

2, ķ

 R_{eq}

5, 图 1

读费

6, 图 1

发出

东南大学《电路》期末试卷三

一、填空题

短路。

- 1、 图 1-1 所示电路中, I₁ = ____A, I₂ = ____A。
- 2、 图 1-2 所示电路, *U*₁ = ______V, *U*₂ = ______V。

- 5、 图 1-5 所示正弦稳态电路中,已知 $\dot{U}_{ab} = 50/\underline{45^{\circ}}$ V, $\dot{U}_{S} = 50/\underline{-45^{\circ}}$ V。则电流表 Φ 的 读数为_____A,功率表 Ψ 的读数为_____ W。
- 6、 图 1-6 所示正弦交流电流中, $\dot{I}_S=4/0^\circ$ A,则电源发出的有功功率 P=_____W,电源发出的无功功率 Q=_____Var。

2、图 2-2月

3、图 2-3月

电压表的

 \dot{U}_{ab} \dot{U}_{ab}

8、已知两线圈的自感分别为 0.8H 和 0.7H, 互感为 0.5H, 线圈电阻忽略不计。正弦电源 电压有效值不变,则两线圈同名端反接时的电流有效值为两线圈同名端顺接时的____倍。

一、计复题

1、图 2-1 所示电路中, 电阻 RL 为何值时获得最大功率, 并求此最大功率。

4、图 2-4 1800W, 高到 0.9 4Ω

rad/s

E弦电源 的___倍。 2、图 2-2 所示电路,用节点电压法求电压 Ua。

3、图 2-3 所示电路处于谐振状态,已知 $u_s = 5\sqrt{2}\cos(1000 + 30^\circ)$ V,电流表的读数为 1A,

4、图 2-4 所示电路中, 电源端电压 U=100V, 频率 ω=1000 rad/s。电路总有功功率为 1800W, 项率因数为 0.6 (感性)。(1) 电源发出的复功率; (2) 如使电路的功率因数提 高到 0.9 (感性),需要并联多大的电容?

随米,让尹

5、已知图 2-5 所示对称三相电路,电源线电压有效值为 380 V,负载阻抗 $Z=100\sqrt{3}+\mathrm{j}100\Omega$ 。试求两个功率表的读数及三相负载吸收的总功率。

三、计算题

图 3 所示电路在换路前已建立稳定状态。试用三要素法求开关闭合后的全响应 $u_{\mathbf{C}}(t)$ 。

四、计算题

求图 4 所示电路的 I_1 、 I_2 、U,并求出各电源发出的功率。

五、计算

图 5

 $C = 100 \mu I$

六、计算规

在图

图 5 所示稳态电路, $u(t)=6+20\sqrt{2}\cos(1000t+30^\circ)$ V , L 、 C 元件参数 L=0.01 H, $C=100\mu$ F。不试求电压表、电流表、功率表的读数。

六、计算题(10分)

在图 6 所示电路中,已知电源开始作用前电路中无储能。用运算法求: 1>0 时的 i(1)。

应 $u_{\rm C}(t)$ 。

东南大学《电路》期末试卷三参考答案

一、填空题

1, 4, -1.

2, 4, -10.

3, -4, -20000.

4, 8, 2.

5, 1.25, 62.5, 6, 16, 16,

7, 10, 80 .

8, 5/3.

二、计算题

1,

解:根据戴维南定理,原电路的戴维南等效电路如图 2-1a 所示。

当 $R_L = 2\Omega$ 时,电阻 R_L 可获得最大功率

最大功率
$$P_{\text{max}} = \frac{2^2}{4 \times 3} = \frac{1}{3} (W)$$

图 2-1a

$$\begin{split} &U_{\text{nl}} = 50\text{V} \\ &-\frac{1}{80}U_{\text{nl}} + \left(\frac{1}{80} + \frac{1}{50} + \frac{1}{40}\right)U_{\text{n2}} - \frac{1}{40}U_{\text{n3}} = 0 \\ &-\frac{1}{800}U_{\text{n1}} - \frac{1}{40}U_{\text{n2}} + \left(\frac{1}{800} + \frac{1}{200} + \frac{1}{40}\right)U_{\text{n3}} = 0.75 \end{split}$$

解得:
$$U_{n2} = 34\text{V}$$
; $U_{n3} = 53.2\text{V}$

$$U_0 = U_{n3} - U_{n1} = 3.2 \text{V}$$

3、解;原电路的相量模型图如图 2-3-1 所示。

设: $\dot{U}_{S}=5/30^{\circ}\,\mathrm{V}$,因为电路处于谐振状态,因此入端阻抗为 R,且

$$R = \frac{U_S}{I} = \frac{5}{1} = 5 \,(\Omega)$$
$$L = \frac{U_L}{\omega I} = \frac{40}{1000} = 0.04 \,(\text{H})$$

4、 解:(1

5、

解: A

ı'i

$$C = \frac{1}{\omega^2 L} = 25 (\mu F)$$

4.

解: (1)
$$\varphi = \arccos 0.6 = 53.13^{\circ}$$

$$Q = Ptg\varphi = 1800 \times tg53.13^{\circ} = 2400(Var)$$

$$\vec{S} = P + j\vec{Q} = 1800 + J2400$$
(VA)

(2) 并联电容后,将原电路功率因数提高到 0.9. 电路仍保持感性。

$$\varphi' = \cos^{-1} 0.9 = 25.84^{\circ}$$

$$C = \frac{P(ig\varphi - ig\varphi^i)}{U^2\omega} = \frac{2400 - 871.7}{100^2 \times 1000} = 152.8 \,\mu\text{K}$$

5、

解:A 相等效电路如图 2-5a 所示,设 $\dot{U}_{AN}=220/0^{\circ}$ V

$$\dot{I}_{A} = \frac{\dot{U}_{AN}}{Z/3} = 3.3 / -30^{\circ} (A), \quad \dot{I}_{C} = \dot{I}_{A} / 120^{\circ} = 3.3 / 90^{\circ} (A)$$

$$\dot{U}_{AB} = \sqrt{3}\dot{U}_{A}/30^{\circ} = 380/30^{\circ} \text{ (V)}, \quad \dot{U}_{CB} = -\dot{U}_{AB}/-120^{\circ} = 380/90^{\circ} \text{ (V)}$$

两个功率表读数分别为:

$$P_1 = U_{AB}I_A \cos(30^\circ + 30^\circ) = 380 \times 3.3 \times \cos 60^\circ = 627(W)$$

$$P_2 = U_{CB}I_C \cos(90^\circ - 90^\circ) = 380 \times 3.3 \times \cos 0^\circ = 1254(W)$$

三相负载的总功率: $P=P_1+P_2=627+1254=1881(W)$

三、计算题

解: (1) 求初始值
$$u_C(0-)=20\times 1-10=10$$
V, $u_C(0+)=u_C(0-)=10$ V

(2) 求时间常数
$$\tau = RC = 10 \times 10 \times 10^{-3} = 0.1$$
 s

(3) 求稳态值
$$u_C(\infty) = \frac{10}{10+10+20} \times 1 \times 20 - 10 = -5 \text{ V}$$

(4) 按三要素法求出全响应 $u_C(t) = u_C(\infty) + \left[u_C(0+) - u_C(\infty)\right]e^{-\frac{t}{\tau}} = \left(-5 + 15e^{-10t}\right)V$, t>0 四、计算題

解:
$$I_1 = \frac{24}{2} - 12 = 0$$
A;
$$I_2 = -12 - \frac{80}{10} = -20$$
A
$$U = 3 \times 12 + 24 = 60$$
V

12A 电流源发出的功率 P₁ = 12U = 12×60 = 720 W

24V 电压源发出的功率 $P_2 = 24I_1 = 0$ W

80V 电压源发出的功率 $P_3 = -80I_2 = 80 \times 20 = 1600$ W

五、计算题(10分)

随米,让

解: (1

(2) 星

LC 印建

 $\dot{I}_{\rm L}$

(3) 功

11.

电

六、计

解::

解: (1) 直流分量单独作用时, $U_0=6$ V,电容相当于开路,电感相当于短路。等效电路 如图 13-2a 所示,则

$$I_0 = \frac{U_0}{20 + 10} = 0.2 \,\text{A}, \quad U_{L0} = 10I_0 = 2 \,\text{V}$$

(2) 基波分量单独作用时, $\dot{U}_1 = 20/30^{\circ} \text{V}$,等效电路如图 5-2 所示。

因为:
$$\frac{1}{\sqrt{LC}}$$
=1000rad/s,则

LC 串联支路发生串联谐振, LC 串联部分相当于短路。

$$\dot{I}_1 = \dot{U}_1 / 20 = 1/30^{\circ} \text{ A}, \quad \dot{U}_{L1} = \dot{I}_1 \cdot \text{j} 10 = 10/120^{\circ} \text{ V}$$

(3) 功率表的读数: $P = U_0 I_0 + U_1 I_1 \cos Q_1 = 6 \times 0.2 + 20 \times 1 = 21.2 \text{ W}$ 电流表的读数: $J = \sqrt{I_0^2 + I_1^2} = \sqrt{0.04 + 1} \approx 1.02 \text{ A}$ 电压表的读数: $U_1 = \sqrt{U_{10}^2 + U_{11}^2} = \sqrt{4 + 100} \approx 10.2 \text{ V}$.

- 解:(1)运算电路图如图 6-1 所示,
 - (2) 采用回路电流法,各回路电流参考方向如图 6-1 所示

$$I_{I1} = \frac{15}{s}$$

$$-20I_{I1} + \left(20 + \frac{20}{s}\right)I_{I2} - \frac{20}{s}I_{I3} = -\frac{60}{s}$$

$$-10sI_{I1} - \frac{20}{s}I_{I2} + \left(40 + 10s + \frac{20}{s}\right)I_{I3} = 0$$

$$I(s) = I_{12}(s) = \frac{12s^2 + 63s + 24}{s^3 + 5s^2 + 6s}$$

(3) 部分分式展开

$$I(s) = \frac{12s^2 + 63s + 24}{s^3 + 5s^2 + 6s} = \frac{A}{s} + \frac{B}{s + 2} + \frac{C}{s + 3} = \frac{4}{s} + \frac{27}{s + 2} - \frac{19}{s + 3}$$

[其中:
$$A = sI(s)|_{s=0} = 4$$
, $B = (s+2)I(s)|_{s=-2} = 27$, $C = (s+3)I(s)|_{s=-3} = -19$]

(4) 拉氐反变换,得到响应的时域形式
$$t = (4 + 27e^{-2t} - 19e^{-3t})\varepsilon(t)$$
 A

(A) Ji⁴ (B) H

一、选择 (注:在每 L. 通常序 (A) I

2. 图示中

(A) 21

3. 图示

(A) 6

《电路》综合复习题

第一章 电路模型和电路定律

一、选择题

-191

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

- 1. 通常所说负载增加,是指负载_____增加。
 - (A) 电流 (B) 电压 (C) 功率 (D) 电阻

- 2. 图示电路中电压 UAB 为_____V。

- (B) I₁R₁+I₃R₃+E₁=0; (C) 当 R₃ 开路时 U=E₂
- 4. 图示电路中 S 断开时 I₁= A,

I=____A。 & 闭合时 I₁= A, I= A。

(A) 6 (B) 2 (C) 0 (D) 3

5. 图示电路中, 当 I_S=1 A 时电压 U 为_____V, 当 I_S=8 A 时电压 U 为_____V。

6. 图示电路中 I=0 时, 电位 UA=____ V。

(A) 0 (B) 8 (C) 12 (D) 16

- (A) 70 V
- (D) 00 I
- (C) -10 V
- (D) 90 V
- 二、填空题

1. 图示电路中电流 I=___A。

2. 电路图中的 Ix= ____ A。

随米, 让天

三、计算

1. 求图示

2. 求如图

3. 求图示

4. 图示电 (1) 当开关

(2) 当开关

三、计算题

1. 求图示电路中的 Ux、Ix

2. 求如图所示电路中 Us =?

- 4. 图示电路中, 求:
- (1) 当开关 K 合上及断开后, UAB =?
- (2) 当开关 K 断开后, U_{CD} =?

7+90V

5. 求出图示电路的未知量 I 和 U。

- 6. 电路如附图所示。试求:
- (1) 求电压 u;
- (2) 如果原为 1Ω 、 4Ω 的电阻和 1A 的电流源 可以变动(可以为零,也可以为无限大) 对结果有无影响。

7. 试求电路中各元件的功率。

8. 试求电路中负载所吸收的功率。

9. 求

10. (1) 你

(2) (5 (3) 好

11.

12.

9. 求图示电路中的电流 I 和受控源的输出功率。

- 10. 电路如图所示。试求:
- (1) 仅用 KVL 求各元件电压;
- (2) 仅用 KCL 求各元件电流;
- (3) 如使流经 3 伏电压源的电流为零,则电流源 $i_{\rm S}$ 应为什么值。

11. 求图示电路中电源发出的功率.

12. 如图, 试计算 UAC, UAD

随米, 让

13. 计算如图示电路中当开关 K 断开及接通时 A 点的电位 VA

14. 图示电路中,以 A 点为参考点计算电位 UC、UD、UE 和电压 UBE

15. 图中各电阻均为 1Ω , 则当 $U_{AB} = 5V$ 时 U_{S} 应为多少?

一**、选** (注:在 1.图示

(C) (V)

A

2. 电路

(A) 4 3. 电路

(A) 8 (C) 3

4. 如图

(A) \exists

5. 现7 灯, 应

(A)

6. 图:

(V)

第二章 电阻电路的等效变换

一、选择题

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

- 1. 图示电路 AB 间的等效电阻为
 - (A) 10.67Ω
- (B) 12Ω
- (C) 14 Ω
- (D) 24 Ω

- 2. 电路如图所示, A、B 端的等效电阻 R=

- (A) 4Ω (B) 5Ω (C) 10Ω
- 3. 电路如图所示,可化简为____

- (A) 8Ω电阻
- (B) 13Ω电阻
- (C) 3Ω电阻
- (D) 不能化简

4. 如图所示电路中, 当电阻 R2 增加时电流 I 将

- (A) 增加
- (B) 减小

- 5. 现有额定值为 220V、25W 的电灯一只, 准备串联一个小灯泡放在另一房间作为它的信号
- (A) 6V, 0.15A; (B) 6V, 0.1A; (C) 1.5V, 0.5A; (D) 1.5V, 0.3A; (E) 都不可以
- 6. 图示电路的输出端开路, 当电位器滑动触点移动时, 输出电压 U2变化的范围为___
- (A) $0 \sim 4V$
- (B) 0∼5V
- (C) $(1\sim4)$ V
- (D) $(1\sim5)$ V

8kΩ

2V

12Ω

7. 图示电路中, 当开关 S 接通时, 电压 U₂_____, 电流 I₂_____, 电压 U₁____, 电流 I₁___

- (A) 不变 (B) 增大
- (C) 减小 (D) 增大或减小

8. 将 25W、220V 的白炽灯和 60W、220V 的白炽灯串联后接到 220V 的电源上,比较两灯 的亮度是 。

- (A) 25W 的白炽灯较亮
- (B) 60W 的白炽灯较亮
- (C) 二灯同样亮
- (D) 无法确定那个灯亮
- 9. 电路如图所示, 若电流表 A 的内阻很小, 可忽略不计(即内阻为零), 则 A 表的读数为

图示电路的电压、电压表应选用

- (A) 量程 0~100V, 内阻 25 KΩ/V (B) 量程 0~10V, 内阻 20 KΩ/V
- (C) 量程 0~5V, 内阻 20 KΩ/V (D) 量程 0~3V, 内阻 1 KΩ/V
- 11. 如图所示电路, 若在独立电流源支路串联接入 10 Q 电阻, 则独立电压源所发出的功率
- ____: 独立电流源发出的功率___

 - (A) 改变 (B) 不改变

12. 图示电路中, 就其外特性而言, ____。

- (A) B、C 等效:
- (B) A、D 等效;

随米, 让:

(C) A.

13. 如图

(A) UA

(C) UA

二、计 1.图所: 闭合或 两点间

3. 试划

2.求图

比较两灯

的读数为

 Ω C

的功率

(C) A、B、C、D 均等效;

- 13. 如图所示电路,增大 G_l 将导致
- (A) UA 增大, UB 增大;
- (B) UA 减小, UB 减小;
- (C) UA 不变, UB 减小;
- (D) UA 不变, UB 增大。

二、计算题

- 1.图所示的是直流电动机的一种调速电阻。它由四个固定电阻串联而成。利用几个开关的 闭合或断开。可以得到多种电阻值。设 4 个电阻都是 1Ω ,试求在下列三种情况下 A,B 两点间的电阻值:
 - (2) K₂、K₃和 K₅ 闭合, (1) K₁和 K₅闭合, 其他打开;

2.求图示电路等效电阻 RMN.

3. 试求图示电路的入端电阻 RAB 图中电阻的单位为欧.

4. 求图示电路 A、B 端的等效电阻 RAB

9. 试求

10. 如胃 $R = R_1$ 250 伏

随米, 让

8. 试用

5. 在图示电路中, 求当 R_i =0 时的 K 值。

6. 求图 (1)、(2) 两电路的输入

7. 图示电路中 AB 间短路时电流 I₁ =?

11. 图

6.3V, 件Rx

8. 试用电源等效变换的方法计算图示电路中 1Ω 电阻中的电流.

9. 试求图示电路中安培表的读数. (A 点处不连接)

10. 如图电路中, 内阻 Ro= 280 欧, 万用表 16 的满标值为 0.6 毫安、且有 $R=R_1+R_2+R_3$ -420 欧。 如用这个万用表测量直流电压、量程分别为 10 伏。 100 伏、和 250 伏。试计算 R4 、R5 、R6 的阻值。

11. 图示电路中, R₁ 、 R₂ 、 R₃ 、 R₄ 的额定值均为 6.3V, 0.3A, R₅ 的额定值为 6.3V, 0.45A。为使上述各电阻元件均处于其额定工作状态,问应选配多大阻值的电阻元 件 Rx 和 Ry?

12. 应用电源等效变换法求如图所示电路中 2 0 支路的电流.

13. 电路如图所示, 试求独立电压源电流、独立电流源电压以及受控电流源电压。

15. 在图示电路中, 用一个电源代替图中的三个电源, 并且保持 R_1 至 R_4 中的电流和端电压不变。

随米,让;

一、选择 (注:在每

1. 对如图

(A) $I_{\mathbf{I}}$

2. 若网维 计为___

____↑ (A) B

3. 分析

(A)

(D)

4. 列写: 入电流:

(A) 2

第三章 电路的一般分析

一、选择题

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

1. 对如图所示电路,下列各式求支路电流正确的是____。

(A)
$$I_1 = \frac{E_1 - E_2}{R_1 + R_2}$$
 ; (B) $I_2 = \frac{E_2}{R_2}$ (C) $I_L = \frac{U_{AB}}{R_L}$

(B)
$$I_2 = \frac{E_2}{R_2}$$

$$(C) \quad I_L = \frac{U_{AB}}{R_L}$$

- 2. 若网络有B条支路、11个节点, 其独立 KCL 方程有_____个, 独立 KVL 方程有_____个, 共 计为 个方程。若用支路电流法,总计应列 个方程; 若用支路电压法, 总计应列

3. 分析不含受控源的正电阻网络时,得到下列的节点导纳矩阵 Y_n ,其中肯定错误的为

(B)
$$\begin{bmatrix} 1 & -1.2 \\ 1.2 & 1.4 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 2 & 0.8 \\ 0.8 & 1.6 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 2 & -0.4 \\ -0.4 & -1 \end{bmatrix}$$
 (E) $\begin{bmatrix} 2 & -1 \\ -1.5 & 3 \end{bmatrix}$

(E)
$$\begin{bmatrix} 2 & -1 \\ -1.5 & 3 \end{bmatrix}$$

- 4. 列写节点方程时, 图示部分电路中 B 点的自导为____S, BC 间的互导为____S, B 点的注 入电流为___A。

流和端电

- (A) 2 (B) -14 (C) 3 (D) -3 (E) -10 (F) 4

- 5. 图示电路中各节点的电位分别为 V₁、V₂、V₃,则节点②的 KCL 方程:
- () + 0.5I+2=0 ,括号中应为
- (A) $V_1/3$ (B) $(V_2 鹭-V_1)/3$

- 6. 电路如图所示, I=___。
- (A) 25mA
- (B) 27.5mA
- 30mA
- (C) 32.5mA
- (D) 35mA

- Ω, R₂₃为 7. 图示部分电路的网孔方程中, 互阻 R₁₂为 Ω, R₁₃ 为_
- (A) 0

- (D) -4Ω

二、计算题

- 1. 求附图中的电流 I₁, I₂, 和电位 V_A 鸑,
- 3Ω

2. 用节点

3. 如图£ 之值。

4. 试用

5. 列写

2. 用节点法求电路中的电流 I1 鲅。

3. 如图所示电路中,US=5V, R_1 =2 Ω , R_2 =5 Ω ,IS=1A,用节点法计算电流 I 及电压 U 之值。

5. 列写图示电路的网孔方程, 并用矩阵形式表示.

一、选择

(注:在每

1. 图示二

到 40V, 原 (A) 0.2

2. 在利用

(A) N [†] (B) N [†] (C) N [‡]

3. 若实际

(A)-

4. 图示即 (A)9V,

6. 电路如图, 试求: i和 u 镍。(电导的单位为 S)。

7. 用网孔分析法求电流 I1, I2, I3 膊。

8. 电路如图所示,仅需要编写以电流 i_1 和 i_2 为回路电流的方程,如可以求解,试解之。

榹

5. 图(B

(B) K"

相同?

第四章 电路定理

一、选择题

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

1. 图示二端网络 N 中, 只含电阻和受控源, 在电流源 is 的作用下, U=10V, 如果使 u 增大 到 40V,则电流源电流应为___。

(A) 0.25is; (B) 0.5 is; (C) 2is; (D) 4is

- 2. 在利用戴维南定理把图 A 所示电路简化为图 B 电路时, 满足的条件是
- (A) N 为线性的纯电阻性的三端网络, NL 为无源线性网络。
- (B) N 为线性纯电阻的有源三端网络, NL 不必是线性的或纯电阻性的
- (C) N和NL都是线性的纯电阻性二端网络

3. 若实际电源的开路电压为 24V, 短路电流为 30A, 则它外接 1.2Ω电阻时的电流为

_____A, 端电压为____V。

武解之。

- (A) 20 (B) 12 (C) 0 (D) 14.4
- 4. 图示电路的戴维南等效电路参数 Us 和 Rs 为____。
- (A) 9V, 2Ω (B) 3V, 4Ω (C) 3V, 6Ω (D) 9V, 6Ω

5. 图(B)是图(A)的戴维南等效电路。问:(1)图(A)虚框内电路消耗的总功率是否等于图 (B) R。上消耗的功率? ____。为什么? ____。(2) 图(A) 及图(B) 中 RL上消耗的功率是否 相同? _____。为什么? _____。

(A) 是 (B) 不是 (C) 因为等效是指外部等效 (D) 因为功率守恒 (E) 因为是等效网络 6. 图示电路中, 当在 A, B 两点之间接入一个 R=10 Ω 的电阻时,则 16V 电压源输出功率 将____。

- (A)增大
- (B) 减少
- (C)不变
- (D) 不定

7. 图示电路中,若 RL 可变, RL 能获得的最大功率 PmAx=

(A) 5W (B) 10W (C) 20W (D) 40W

8. 电路如图所示, 负载电阻 RL 能获得最大功率是

- (A) 20mW
- (B) 50mW
- (C) 100mW

二、填空题

(注:请将正确答案填入空自处,不必写求解过程或说明其原因)

I. 如图所示电路,各电阻均为 $I\Omega$,各电压源大小、方向皆未知。已知 AB 支路电流为 I_{AB} =IA, 若将该支路电阻换为 3Ω, 那么该支路电流 IAB=___A。

随来, 让天下江

2. 利用戴维利 图(1)的 Us=

3. 求如图 A,

4. 附图(A)/

1. 用叠加知

2. 利用戴维南定理将图(1),(2)电路化为最简形式.

图(1)的 $Us=____V;Rs=___\Omega;$ 图(2)的 $Us=___V;Rs=___\Omega$.

3. 求如图 A, B 端的戴维南等效电路的 UoC=___V; Ro=___Ω.

1. 用叠加定理求出图示电路中 I₁, I₂。

(A)

(B)

是等效网络

原输出功率

为I_{AB}=1A,

2. 求图示电路中 AB 间的戴维南等效电路。

3. 求图示电路中 AB 间的戴维南等效电路。

4. 图示电路中,(1) N 为仅由线性电阻构成的网络。当 u_1 =2V、 u_2 =3V 时, I_s =20A,而当 u_1 =-2V、 u_2 =1V 时, I_s =0A。求 u_1 = u_2 =5V 时的电流 I_s . (2) 若将 N 换为含有独立源的网络,当 u_1 = u_2 =0V 时, I_s = I_s 10A,且(1)中的已知条件仍然适用,再求当 u_1 = u_2 =5V 时的电流 I_s .

5. 图示电路中电压 U 不变时,要使电流 I 增加一倍,则电阻 18 Ω 应改为多少?

随米,让天

6. 图示电 值应变为:

7.图示电 接到 C 时

8. 電路如

I_sC=0. 1∄

9. 用叠加

ов

В

A, 而当 的网络,

J电流 L.

6. 图示电路中 R=21 Ω 时其中电流为 I。若要求 I 升至原来的三倍而电路其他部分不变,则 R 值应变为多少?

7.图示电路中 N 为有源网络。当开关 S 接到 A 时 I_1 =5 A, 当 S 接到 B 时 I_1 = 2 A, 求 S 接到 C 时的电流 I_1 。

8. 电路如图所示,已知线性含源二端网络 N 的开路电压。UoC=10V, AB 端的短路电流

I_sC=0.1A。求流过受控电压源的电流 I。

9. 用叠加原理计算图示电路各支路电流。

10. 如图所示电路中, 各参数已知, 试求该电路 A、B 左右两方的戴维南等效电路。

15.如图所: I_{AB} \circ

11. 图示无源网络 N 外接 Us=8V , Is=2A 时, 开路电压 U_{AB} = 0 ; 当 Us=8V, Is=0 时开路电 压 U_{AB}=6V, 短路电流为 6A。求当 Us=0, Is=2A 且 AB 间外接 9Ω 电阻时的电流。

12. 图示无源网络 N 外接 Us=5V, Is=0 时, 电压 U=3V。当外接 Us=0, Is=2A 时, 电压 U=2V, 则当 Us=5V, Is 换成 2Ω 电阻时, 电压 U 为多少?

13. 如图所示电路, 求 RL=?时, RL 消耗的功率最大?

随米, 让天

14. 如图例

16. 网络 A

17. 图示电 U' 22=6V, 电阻中流

1.5ΚΩ

0时开路电

电压 U=2V,

14. 如图所示电路. R. 是负载问当 R.=?时才能使负载上获得最大功率. 并求此功率值.

15.如图所示电路为一直流电路,参数如图所示,试用最简便的方法求出 AB 支路中的电流 I_{AB}。

电流源和线性电阻,

17. 图示电路中 No 为一线性无源电阻网络,图 A 中 11' 端加电流 Is=2A,测得 U' 11=8V; U' 22=6V, 如果将 Is=2A 的电流源接在 22' 两端, 而在 11' 两端接 2Ω 电阻 (图 B)。问 2Ω 电阻中流过电流多大?

图 B

随来, 让天下

18. 电路如图。已知: u_{s1} =2V, u_{s3} =24V, u_{s7} =-24V, i_{s1} =2iA, i_{s2} =3u, R_1 = R_2 = R_4 = R_6 = R_7 =2 Q, R_3 = R_5 =4 Ω ,R=10 Ω 。求:电流 i 和 i_{s1} 的端电压。

3. 理想运算 (A)输入电

4. 如图所示

(A) 2

19. 图 A 所示电路中,测得二端网络 N 的端电压 U=12.5V,在图 B 中,当二端网络 N 短路时,测得电流 I=10A 求从 AB 端看进去 N 的戴维南等效电路。

第五章 具有运算放大器的电阻电路

一、选择题

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

- 1. 如图所示的含理想运放的电路, 其节点方程组中错误的是____。
 - (A) $(G_1 + G_2)U_1 G_2U_2 = G_1U_S$; (B) $-(G_2U_1) + (G_2 + G_4 + G_5)U_2 G_4U_3 = 0$
 - (C) $(G_3 + G_4)U_3 G_4U_2 = 0$; (D) $U_1 U_3 = 0$

(A) +4. 5V

2. 电路如图

5. 如图**月**

(A)

 $R_6 = R_7 = 2 \Omega$,

二端网络 N

设选错论)

- 2. 电路如图所示, Ui=0.3V, 则 Uo 为____。
- (A) +4. 5V; (B) -4. 5V; (C) +4. 8V; (D) $3V_{\circ}$

- 3. 理想运算放大器的两条重要结论是: 理想运算放大器的__
- (A)输入电流为零

- (B)输入电阻为零 (C)输入电压为零 (D)输出电阻为零
- 4. 如图所示电路中,运算放大器视为理想元件,可求转移电压比 $\dot{U_2}/\dot{U_1}$ = _____。

- 5. 如图所示电路中,运算放大器视为理想元件,可求转移电流比 $\frac{12}{12} = -$

- (A) $-\frac{R_1}{R_2}$ (B) $\frac{R_2}{R_1}$ (C) $\frac{R_1}{R_2}$ (D) $\frac{-R_1}{R_1 + R_2}$

6. 如图所示电路中,运算放大器视为理想元件,可求转移阻抗 $\frac{U_{\sigma}}{\sigma}=$

- (A) $R_1 + \frac{R_1 R_3}{R_2}$; (B) $\frac{R_1 R_3}{R_2}$; (C) $R_1 + R_2 + R_3$; (D) $R_1 + \frac{R_1 R_2}{R_2}$

7. 如图所示电路中,运算放大器视为理想元件,可求得 R₃消耗的平均功率为

己知: $u_s = 100\sqrt{2}\sin\omega tV$.

- (A) 0.625W (B) 20W

8. 运放为理想运放, 则 $u_o/i_s=$ ____

- (A) 0 (B) R
- (C)-R
- (D) ∞

随米,让天下

、解答下

1. 电路如

2. 电路如图

 $R_1 = 1 M \Omega$

3. 电路如图

二、解答下列各题

⊸ὑ₀

 $R_3 = 1k\Omega$

1. 电路如图所示,求: u。的表达式.

2. 电路如图所示,求电路的电压增益 u_o/u_i 其中:

3. 电路如图所示,已知 $u_{i1}=1V,u_{i2}=-1V,R_1=R_2=300\mathrm{W},R_3=200\mathrm{W},$ 求: u_{o1} , u_{o2}

4. 图示电路中, 试求输出电压 u_o =?

一、计算

1. 画出如

2. 如图所

i = g(u)

to the title care

汞电路工

3. 如图所

i.

+ u_o

6. 电路如图所示, $u_i = 1V$, 求图中 I.

4. 画出如

第六章 非线性电阻电路

一、计算下列各题

1. 画出如图所示电路端口的 u—i 特性.

2. 如图所示电路中,非线性电阻伏安特性为:

$$i = g(u) =$$

$$\begin{cases} u^2 & u > 0 \\ 0 & u < 0 \end{cases}$$
 且知 $I_0 = 15A, R_0 = 0.5$ W小信号电流源 $i_S = \cos w t A$, 。

求电路工作时的 u、i、

3. 如图所示电路, $u_1 = 2 \times 10^{-3} \sin 628 tV$,试用小信号分析法求通过非线性电阻中的电流i。

4. 画出如图所示电路的 DP 图。

濕

5. 图示电路中, 已知 $u_s=\sin\omega t$, 非线性电阻为电流控制型的, 伏安关系为 $u=2i+i^2$, 用小信号分析法求电流系。设当 $u_s=0$ 时, 回路的电流为 1A。

6. 如图所示电路中,已知 $I_s=10A$, $\triangle i_s=\sin tA$, R=1/3 W,非线性电阻特性

关系为: $\begin{cases} i = u^2 & u > 0 \\ i = 0 & u < 0 \end{cases}$, 求非线性电阻两端电压。

8. 图中两非线性电阻均为电压控制型, 其伏安特性分别为 $i_1 = g_1(u) = \begin{cases} u^2 & u > 0 \\ 0 & u < 0 \end{cases}$

$$i_2 = g_2(u) =$$

$$\begin{cases} u + 0.5u^2 & u > 0 \\ 0 & u < 0 \end{cases}$$
 直流电流源 IS=8A,小信号电流源 $i_s = 0.5 \sin tA$,

66

试用小信号法求镍u、 i_1 、 i_2 .

- 一、选择用
- 1. 电路出现
- (A)护
- 2. 电路如图
- Æ *t*==3S ₿
 - (A)
- 3. 电路中
- 4. 电路中

(V)

- (A) F
- 5. 如图所 (A)
- 6. 图示电

 (Λ) 3

7. 图示电

 (Λ) -2 \mathfrak{a}

愎

 $u = 2i + i^2$

 $u \iint u = f(i)$

阻特性

第七章 一阶电路

一、选择题

- 1. 电路出现过渡(暂态)过程的原因有两个:外因是_____,内因是___
 - (A) 换路 (B) 存在外加电压 (C) 存在储能元件 (D) 电容充电
- 2. 电路如图所示,电流源 IS=2A 向电容(C=2F)充电,已知 t=0 时, $u_e(0)=1$ V,则

在 t=3S 时,镍 $u_c(3)=.$ ____

- (A) 2V; (B) 3V; (C) 4V;
- (D) 8V.

- 3. 电路中的储能元件是指_____
 - (A) 电阻元件

 - (B) 电感元件 (C) 电容元件
 - (D)电压源
- (E) 电流源
- 4. 电路中的有源元件通常是指 (A) 电阻元件 (B) 电感元件 (c) 电容元件 (D) 电压源

- 5. 如图所示电路的时间常数 τ 为
 - (A) $(R_1 + R_2)C_1C_2/(C_1 + C_2)^{-1}$
- (B) $R_2C_1C_2/(C_1+C_2)$ (C)

- 6. 图示电路的时间常数为_____ µs
 - (A) 3 (B) 4.5 (C) 6 (D) 1.5

7. 图示电压波形的数值表达式为

(A) $-2\varepsilon(t)+\varepsilon(t-1)$ (B) $-2\varepsilon(t)+3\varepsilon(t+1)-\varepsilon(t+3)$ (C) $-2\varepsilon(t)+3\varepsilon(t-1)-\varepsilon(t-3)$ (D) $-2\varepsilon(t)+3\varepsilon(t-1)$

n*tA*.,

> 0< 0

- 8. 电路如图所示, 电路的时间常数是
 - (A) 0.25s
- (B) 0.5s
- (C) 2s
- (D) 4s

- 9. 电路如图所示, 开关 K 断开后, 一阶电路的时间常数 $\tau = -$ 。
- (A) $(R_1 + R_2)C$; (B) R_2C ; (C) $\frac{R_1R_2}{R_1 + R_2}C$;
- (D) $\frac{(R_1 + R_2)R_3}{R_1 + R_2 + R_3}C$

- 10. 一阶电路时间常数的数值取决于
 - (A) 电路的结构形式
 - (B) 外加激励的大小,
 - (C) 电路的结构和参数
- (D) 仅仅是电路的参数
- 11. RC 一阶电路的企响应 Ue(t) 呈图0÷6Exp(=10t) 引V。初始状态不变而若输入增加一倍, 则全响应 Uc(t)为。
 - (A) 20-12Exp(-10t);
- (B) 20-6Exp(-10t);
- (C) 10-12Exp(-10t); (D) 20-16Exp(-10t).
- 12. f(t)的波形如图所示,今用单位阶跃函数ε(t)表示 f(t),则 f(t)=___。
 - (A) $t\epsilon(t-1)$
- (B) $(t-1)\varepsilon(t)$
- (C) $(t-1)\varepsilon(t-1)$
- (D) $(t-1)\varepsilon(t+1)$

- 13. f(t)的波形如图所示,今用阶跃函数来表示 f(t),于是 $f(t) = _____$ 。
 - $(A)\epsilon(t)-\epsilon(t-1)$
- (B) ε (t-1)- ε (t+1)
- $(C)\varepsilon(t+1)-\varepsilon(t-1)$
- (D) ε (t-1)- ε (t)

15. 电路 电流作用

14. 电路

流作用时

(A) 7V

- (A) 6.
- 16. 如图
 - (A)
 - (C)
- 17. 电躁
- $(\Lambda) = 0,$
- (C) 0.₺
- 二、填雪
- (注: 请 1. 图 A 🕻
- 它的多数

14. 电路如图所示, 电容 C 原已充电到 3V, 现通过强度为 8δ(t)的冲激电流,则在冲激电 流作用时刻,电容电压的跃变量为_

(A) 7V

2Ω

2H

+ κ

增加一倍,

- t(s)

- (B) 4V
- (C) 3V
- (D) -4V

15. 电路如图所示, 电感 L 原已通有恒定电流 3A, 现施加 7δ(t) V 的冲激电压, 则在冲激 电流作用时刻,电感电流的跃变量为____。

- (A) 6.5A
- (B) 3.5A
- (C) 3A
- (D) -3.5A

- - (A) $2e^{-2t}\varepsilon(t)$ A (B) $\delta(t) + e^{-2t}\varepsilon(t) = A$
 - (C) $e^{-0.5t}\varepsilon(t)$ A
- (D) $\delta(t) + e^{0.5i} \hat{\varepsilon}(t)$

- 17. 电路如图所示,可求得单位阶跃响应电压像 u=_
- (A) $0.5e^{-t}\varepsilon(t)$ V
- (B) $-0.5e^{-t}\varepsilon(t)$ V
- (C) $0.5(1-e^{-t})\varepsilon(t)$ V (D) $0.5\delta(t)-e^{-t}\varepsilon(t)$ V

二、填空题~

(注:请将正确答案填入空白处,不必写求解过程或说明其原因)

1. 图 A 所示为一线性元件, 其电压、电流波形如图 B、C 所示, 该元件是_____元件, 它的参数是

2. 如图所示电路, 开关 S 合上的瞬间电容器电压 $u_{c1}(0_+)=$ _____; $u_{c2}(0_+)=$ _____。

3. 图示电路原已稳定, t=0 时闭合开关 S 后在 $t=(0_+)$ 时, 则电容储能 WC=_____; 电感储能 WL=____。

4. 如图所示电路原已稳定,t=0 时开关由位置。"1" 换到 "2",则换路后,响应 $u_e(t)$ 的暂

5. 图示电路中, 换路前电路已处于稳态,如 t=0 时将 S 打开,则 $i_L=$ ___A。

6. 图示电路为____阶电路。

7. 图示电路为______阶电路。

三、**计算** 1. 图示电

随米,让判

2. 己知: 置。试束

3. 如图》 动电流 电阻 R,

的零输

4. 图示

三、计算题

1. 图示电路原已稳定, t=0 时断开开关 S 后,则在 $t=(0_+)$ 时,求电容储能和电感储能。

2. 已知:如图所示电路,S在"1"位置已处于稳态,t=0时开关突然由"1"搬至"2"位置。试求u(t)并画出波形.

3. 如图为-个延迟继电器 J 的电路,已知继电的电阻 R=250 Ω ,电感 L=14. 4H,它的最小启动电流 lmin=6mA,外加电压 E=6V 为了能改变它的延迟时间,在电路中 V 串接了-个可变电阻 R,其阻值在 0 至 250Ω 范围内回调带。试求:该继电器延迟时间的变动范围。

4. 图示电路原已稳定, t=0 时闭合开关 S, 求 t>0 时的 $a_L(t)$ 和 $u_L(t)$,并写出 $i_L(t)$ 中的零输入响应和零状态响应分量.

_; 电感储

1µF 2Ω∏u

 $\Delta u_c(t)$ 的暂

9. 如图所示 u₂(t) = 4si

的零输入喷

10. 图示电 u_c(0_.)=(

6. 如图所示动态电路,原已处于稳态,在 t=0 时开关 S 闭合,求:

5. 图 (2) 电路中. $i_{L}(0_{L})=0$, 求在图 (1) 所示的脉冲作用下电流 i(t)。

- (1) 电感电流 $i_L(t)$ 及电压 $u_L(t)$;
- (2)(2)就 $i_L(t)$ 的函数式,分別写出它们的稳态解、暂态解、零输入解、及零状态解。

7. 在如图所示电路中,当开关 K 在 t=0 时合上后又在 t=0. 71mS 打开,求 $i_L(t)=?$

8. 如图所示电路,t<0 时处于稳态,且 $u_{cl}(0)=0$,t=0 时开关闭合。求 $t\geq0$ 时的 $u_2(t)$

9. 如图所示电路中,已知:NR 为纯电阻网络, $i_1(t) = 2\varepsilon(t)$, $i_L(0_-) \neq 0$ $u_2(t) = 4\sin(\omega t + 60^0)\varepsilon(t)$,若全响应 $i_L(t) = [1 + 4e^{-t} + 2\sin(\omega t + 30^0)]\varepsilon(t)$ 求该电路的零输入响应 $i_L(t)$.

状态解。

i(t)

1.2H

3Ω

$$(t) = ?$$

0 时的 u₂(t)

第八章 二阶电路

一、选择题

- 1、如图所示电路原已稳定,t=0 时断开开关,则 t.> 0 时网络的动态过程为_____
 - (A) 振荡的
- (B) 非振荡的
- (C) 临界状态

- 2、图示电路中, $u_c(0_+)=10V$,D 为理想二极管,t=0 时闭合开关 S 后,二极管__
 - (A) 不会导通
- (B) 有时会导通
- (C) 不起任何作用
- (D) 以上结论都不对

3、电路如图所示,二阶电路的固有频率是

(A)
$$-1 \pm j1/s$$
 (B) $-1 \pm 11/s$ (C) $-1/2 \pm j\frac{\sqrt{3}}{2}\frac{1}{s}$ (D) $-1/2 \pm j\frac{\sqrt{7}}{2}\frac{1}{s}$

- 4、电路如图所示,原处于临界阻尼状态,现添加一个如虚线所示的电容 C,电路成为_
- (A)过阻尼
- (B)欠阻尼
- (C)临界阻尼
- (D) 无阻尼

5、二阶电路电容电压的 u_c 的微分方程为 $\frac{d^2u_c}{dt^2} + 6\frac{du_c}{dt} + 13u_c = 0$,此电路属_____情况。

随米, 让天

(A)过阻尼 6、图示电

事的二极行

二、计算

1、图示[

2、图示

其端

(A)过阻尼

(B)欠阻尼

(C)临界阻尼

无阻尼 (D)

6、图示电路中的二极管是理想的,其中______电路中的二极管有可能导通,____ 电路 中的二极管不会导通。

二、计算题

1Ω

本 D

极管

uc

都不对

1、 图示电路中, μ=? 此电路可能产生等幅振荡。

2、图示电路中的 R C 支路是用来避免开关 S 斯耳时产生电弧的,今欲使五关 S 断开后,

其端电压 $u_s=E$,试问 R、I、C、r 之间应满足何种关系。

3、 图示电路中, 求电路中流过的电流为非振荡时的电阻 R 的临界值。设 R 为无穷大时过 渡电流是振荡的。

情况。

第九章 正弦交流电路

一、选择题

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

- 1.电感电压相位滞后其电流 90°, 电容电流相位滞后其电压 90°,这个结论 成立。
- (A) 根本不可能:
- (B) 电容、电感为非线性元件时;
- (C) 电感电流和电压, 电容电流和电压为非关联参考方向时。
- 2. 若 $i_1 = 10\sin(\omega t + 30^\circ)A$, $i_2 = 20\sin(\omega t 10^\circ)A$,则 i_1 的相位比 i_2 超前_
- $(A)20^{\circ}$
- (B)-20°
- (C) 40° (D) -40°
- (E)不能确定
- 3.图示电路中 R 与 ΩL 串联接到 $u = 10\sin(\omega t 180^{\circ})V$, 的电源上,则电感电压 $u_1 = \underline{\hspace{1cm}}$ 型 V_{\circ}
- (A) $6\sin(\Omega t-143.1^{\circ})$
- (B) 6sin(Ωt-126.9°)
- (C) $6\sin(\Omega t + 36.9^{\circ})$
- (D) $8\sin(\Omega t-53.1^{\circ})$

- 4. 若含 R、L 的线圈接到直流电压 12V 时电流为 2A,接到正弦电压 12V 时电流为 1. 则 X

- (A) 4 (B) 8 (C) 10 (D) 不能确定
- 5. 正弦电流通过电感无件时, 下列关系中错误的是 1988 1988
- (A) $\dot{U}_L = jX_L \dot{I}$ 競器(B) $U_M = \omega L I_M$ 驱 (C) $\dot{I} = -j\frac{U}{\omega I}$ (D) $u = \omega L i$

- (E) p = ui = 0 (F) $Q_L = U_L I$ (G) $L = \frac{U}{\omega I}$ (H) $\dot{U} = L \frac{di}{dt}$
- (I) $\Psi_i = \Psi_u + \pi/2$
- 6. 正弦电流通过电容元件时, 下列关系中正确的是

 - (A) $I = j\omega C U$ (B) $I_M = j\omega C U_M$ Size (C) $u = \omega L i$ (D) I = U/C

- (E) $i = \omega C u$ (F) $P = U_C I$ (G) $Q_C = 0$ (H) $\dot{I} = C \frac{dU}{dU}$
- (I) $X_C = -j\omega C$
- 7. 电导 4S、感纳 8S 与容纳 5S 三者并联后的总电纳为 S, 总导纳模 为 S, 总阻抗 模为 $_{---}$ Ω,总电抗为 $_{---}$ Ω。

随米,i

8. 图示

误的是 (A) 当

(C)

9. 如图

(A)

10. 図

 (Λ)

(E) I

11.

(A) (E)

12.

(A)13.

安选错论) 成立。

充为 1. 则 X

S, 总阻抗

(A) 0.2 (B) 3 (C) 0.12 (D) -3 (E) 5 (F) 1/3

8. 图示二端网络 N 中, u 与 i 的相位差 $\phi = \Psi u - \Psi i$ 可以决定网络 N 的性质。下列结论中错 误的是____。

(A) 当 φ 在 0- π/2 时为感性网络; (B) φ 在 0- π/2 时为容性网络;

(C) | φ | > 90° 时为有源网络; (D) φ=0 时网络中只有电阻

9. 如图所示的 RLC 并联电路 $I_m=5A$, $I_{Rm}=3A$, $I_{Cm}=3A$,则 $I_{Lm}=$

(A) -1 A (B) 1A (C) 4A (D) 7/鲽 A (E) 7A

图(B)中的总阻抗 Z=_____A。

(A) 2

(B) 8

(C) 2.82

(D) 4 鲱

(E) 0

(F) ∞

12. 在 R、L、C 并联电路中, 若 XL 款> | XC |, 则总电流相位比电压__

(A) 潜后

(B) 超前 (C) 同相

(D)不能确定

13. 图示电路中, 电源电压的有效值 U=1V 保持不变, 但改变电源频率使电阻两端所接 锯 电压表的读数也为 IV, 则此时角频率 Ω=___rAD/s.

(A) 500 (B) 1000 (C) 1 (D) 10 齮 (E) 1000/(2π)

- 14. 图示电路中, 已知 u_1 =220 $\sin(\Omega t 15^{\circ})$ V, 若 Ω 增大, 镍 u_1 的有效值不变, U_{\bullet} 将______ u。与 u_1 之间的相位差将_____。
 - (A) 增大
- (B)减小
- (C) 不变

- 15. 电路如图所示,若 $I_R = 0$ 则____。
 - (A) I_C 与 I_S 同相; (B) I_C 与 I_S 反相。(C) I_C 与 I_S 正交。 I_C I_C I
- 16. 图示正弦电流电路中 U 保持不变, 当开关 S 闭合时电流表读数将 _____
- (A) 增加
- (B) 不变
- (C) 有些减少
- (D) 减至零

- 17. 图示电路中, 电压有效值 UAB=50V, UAC=78V 则 XL =临___Ω。
- (A) 28
- (B) 32
- (C) 39.2
- (D) 60

二、填空

18. 图示二 (A) M 为

(C) M 为

- 1. 如图所
- 2. 图示电

- 3. 一个电 流。如果
- 4. 电路如
 - ____A,

5. 己知如

if $\dot{U}_{\rm S}$ =

- (A) M 为无源感性网络, N 为有源网络 (B) M 为无源容性网络, N 为有源网络
- (C) M 为有源网络, N 为无源感性网络 (D) M 为有源网络, N 为无源容性网络

二、填空圈 (注:请将正确答案填入空白处,不必写求解过程或说明其原因)

1. 如图所示为正弦稳态电路,已知 $u_1(t_1)=3V$, $u_2(t_1)=4V$,则 $u(t_1)=$ _____V

3.一个电感线圈(电阻忽略不计)接在 U=100V、 f=50HZ 的交流电源上时,流过 2A 电流。如果把它接在 U=150V、 f=60HZ 的。交流电源上,则流过的电流。 $U=_$ A。

4. 电路如图所示, 已知 $\dot{U_S}$ =120 \angle 0° V, ZC=-j120 Ω , ZL=j60 Ω , 则 $\dot{I_1}$ =___A, $\dot{I_2}$ =

A, i = A.

5. 已知如图所示的一 RLC 串联谐振电路, 其谐振频率 Ω o=2×10⁵ rAD/s, R=10 Ω , 餱

耸
$$U_s = 50\sqrt{2} \angle 0^\circ \text{V}$$
, $U_c = 5\sqrt{2} \angle -90^\circ \text{V}$, 则 $L = _$ ______, C=______

8Ω

-j8Ω=

10Ω

い将

随米,

6. 在1 i = 10

> 7. 读 (1)

> > 8. 图

水:

1/2 (1)性 դեմ

(2)

及

三、计算题

1. 定性画出图示电路的相量图(包括各支路电流及元件电压,设 XC=0.5XL 嬴)。

2. 两端无源网络 No 如图所示,已知: $\dot{U}=$ 220 \angle 25° V; $\Omega=$ 1rAD/s; $\dot{I}=$ 22 \angle 55° A。 试求: (1) No 的最简等效电路参数(表为Z或Y均可,但需写出相应的C、L、G、R值); (2) 此网络的 S、P、Q。

No

3. 图所示, 电容器 C1 和 C2 的规格分别为 20 平 F/300 V 和 5 F/450V。求

允许接入电压的最太值 UmAx。

=1∠45° A, Z1 =7+j6Ω, 求 Z2 为多少?

5. 图示电路中 $R=\Omega$ $L=1/\Omega$ $C=10\Omega$ 时, 求整个电路的等效阻抗和等效导纳。

铬蟒

说)。

 R_2

22∠55° A。 ∴ G、R

ľΩ

N₀ μ

C₂

2 为多少?

6. 在 R、L、C 并联电路中, 己知: L=5mH,

 $i = 10\sqrt{2}\cos(\omega t + 30^{\circ})A$, $u(t) = 100\cos(\omega t + 75^{\circ})V$, $\Omega = 10^{3}$ rAD/s. 求 $i_{L}(t)$ (t) 表达式.

7. 读得一纯电感电路中安培表(见 附图)读数为 5A, 若在 L 两端再并联一个电容 C。问(1)能否使安培表读数仍保持为 5A?(2)若能,则该电容应为何值?

8. 图示电路中,已知 $u_{AB}=10\sqrt{2}\sin \omega tV$, $R=XC=4\Omega$, $R=XL=3\Omega$,

求: (1) i_1 、 i_2 和 u_{CD} 的瞬时值表达式;

(2)以 U_{20} 为参考相量,画出 I_1 、 I_2 和 U_{00} 的相量图。

- 9. 有一由 R、L、C 元件串联的交流电路, 已知: $R=10\,\Omega$, L=1/31.4H, $C=10^6/3140$ 微 法 ,在电容元件的两端并联一短路开关 K。
- (1)当电源电压为 220 伏的直流电压时,试分别计算在短路开关闭合和断开两种情况下电路中的电流 I 及各元件上的电压 UR,UL,UC。
- (2)当电源电压为正弦电压镍 $u=220\sqrt{2}\sin 314tV$ 时,试分别计算在上述两种情况下电流及各电压的有效值。

随来,让天下初

[4. 如图所示]

(1)试求出使し

(2)相对于电压

15. 在图示正 60°, 求电容

11. 如图所示正弦稳态电路,R、L、C、 I_{Sm} 均为常数, $i_S=I_{Sm}\cos\omega t$,电源角频率 Ω 可变. 已知:当 $\Omega=\Omega_1$ 时电流表 PA_1 读数为 3A,电流表 PA 读数为 6A。问当 $\Omega=2\Omega_1$ 时,电流表 PA_2 的读数为多少?(注:各电流表内阻忽略不计)

10. 在图示中,已知 $u = 220\sqrt{2}\sin 314tV, i_1 = 22\sin(314t - 45^\circ)\Lambda$; 濕

16.利用叠加。

12. R、L、C 串联电路如图所示,已知 $i_s=\sqrt{6}\sin\omega tA$, $\Omega=100$ rAD/s, $U_1=U_2=U$, 负载吸收的平均功率为 60W,试计算 Ω 、L、C 的 参数值.

17. 如图所示

18. 列出如图

13. 图示电路中,加上 f= 50Hz 的交流电压后,开关 K 合上前 I=10A,开关 K 合上后 I=10A,电路呈容性,求电容 C 的大小。

14. 如图所示电路中, 调整 R 和 C, 使它们的阻抗为 5000 Ω, 电源频率为 1000Hz。

(1)试求出使 \dot{U}_i 和 \dot{U}_o 之间产生30°相位差的R值及C值。

(2)相对于电压 \dot{U}_i 而言, \dot{U}_o 是滞后还是超前? 画出相量图加以说明。

15. 在图示正弦稳态电路中, 电源频率为 50 Hz , 为使电容电流 I_c 与总电流 I 的相位差为 60°, 求电容 C。

17. 如图所示电路中, $u_s = 60\sqrt{2}\sin 1000tV$, 求 i(t)=?

18. 列出如图所示电路的节点电压方程(以节点 0 为参考点).

|频率Ω可变 Ω 1时, 电流表

U₂=U, 负载

湜

K 合上后 I=

19. 试列写出如图所示电路的网孔方程.

20. 图示电路中 N 为有源线性网络。当 us=0 时,i=3 s in Ω t A; 当 us= 3 s in $(\Omega$ t+30°) V 时, $i=3\sqrt{2}\sin(314+45)4$). 则当 us=4 s in $(\Omega$ t-150°) V 时,求。

21. 图示电路中,调整电容器 C 的容量,使开关 K 断开和闭合时, 流过电流表的读数保持不变,试求电容 C 的值($f=50\mathrm{H}Z$)。

一、选择(注:在每季

1.五感电路 况下, LF

(A) :

1

eq M

2. 如图所i

3. 两个自身 (A) Li

4. 图示电路

(A) (R₁

ŕ

(B) (R₁

(C) (R₁

 $(D)(R_1$

- 5. 图示电

(A) 增大

第十章 具有耦合电感的电路

一、选择题

∠30°A

[20Ω

(-30°A

·30°)V吋,

的读数保持

4Ω

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) 1.互感电路如图所示,L₁=4mH, L₂=9mH, M=3mH, S 断开的情况下,LEq=___mH, S 闭合的情 况下,LEq=___mH。

(A) 3

(B) 4

(C) 7

(D) 13

(E) 19

2. 如图所示二端网络的等效复阻抗 Z_{AB}= Ω

(A) j2 (B) j1 (C) j3

3. 两个自感系数为 [5] L2 的耦合电感, 其互感系数 M 的最大值为

(A) L_1L_2 ; (B) $(L_1+L_2)/2$; (C) $(L_1+L_2)/2$; (D) 4. 图示电路中, 网孔 1 的方程为____。

(A) $(R_1+j\Omega L_1+j\Omega L_2) I_1-j2\Omega M I_2=U_1$

(B) $(R_1+j\Omega L_1+j\Omega L_2)$, $I_1+j\Omega M_2$

(C) $(R_1 + j \Omega L_1 + j \Omega L_2) I_1 + j \Omega M I_2 - j \Omega L_2 I_2 - j 2 \Omega M I_1 = U_1$

(D) $(R_1+j\Omega L_1+j\Omega L_2)$ $\dot{I}_1-j\Omega M\dot{I}_2-j\Omega L_2$ $\dot{I}_2+j\Omega Mi\dot{I}_1=\dot{U}_1$

5. 图示电路中, 当 S 闭合时电流表读数

(A) 增大

(B) 减小

(C) 不变

(D) 不能确定

85

随米, 让天下

6. 图示电路中,角频率为 Ω ,则电压相量 U_{cn} =

- (A) $-R\dot{I}_{A} + \dot{U}_{S3} j\omega L_{1}\dot{I}_{B} \dot{U}_{S1} + j\omega M\dot{I}_{C}$ (B) $-R\dot{I}_{A} + \dot{U}_{S3} j\omega L_{1}\dot{I}_{B} \dot{U}_{S1} j\omega M\dot{I}_{C}$
- (C) $-\dot{U}_{S2} + j\omega L_2 \dot{I}_C + j\omega M \dot{I}_B$
- (D) $-\dot{U}_{S2} + j\omega L_2 \dot{I}_C j\omega M \dot{I}_B$
- 7. 理想变压器端口上的电压、电流参考方向如图所示,则其 伏安特性为____。

- (B) $U_2 = nU_1$, $I_2 = (-1/n)I_1$; (C) $U_2 = nU_1$, $I_2 = (1/n)I_{1-1}$

二、填空题

(注:请将正确答案填入空白处,不必写求解过程或说明其原因)

1. 如图所示电路中, LAB = _____。

2. 图示正弦稳态电路中, 已知 us=8sin10tV, L =0.5H, L2=0.3H,

M=0.1H。可求得 AB 端电压 u=

3. 图示电路中, 线圈 LI 和 L2 之间为全耦合,则 U1=____,

4. 变压器出 间电压。设 反之电压表

三、计算周 1. 在知图) 丽、信号测

2. 如图所才

3. 如图所

4. 图示电

4. 变压器出厂前要进行"极性"试验。如图,在 AX 端加电压,将 X-x 相联,用电压表测 AA 间电压。设变压器额定电压为 220/110V, 如 A、A 为同名端, 则电压表的读数为 反之电压表的读数为____。

三、计算题

ÎR

 I_{C}

- j $\omega M \, \dot{I_c}$

1. 在如图所示电路中, ZL=8 Ω 的扬声器接在输出变压器的二次侧。已知 N1 =300 匝, N2 =100 匝, 信号源电压 u_1 =6V, 内阻 RS=100 Ω . 试求信号源输出的功率.

3. 如图所示电路为一理想变压器电路,求入端阻抗 Zi 若将 A 和 A' 短接后,再求 Zi.

4. 图示电路中, $I_2 = 4\angle 0^{\circ}$ ° mA, 求电流 I_1 。

ΣB

5. 求图示电路的等值阻抗 ZAB

6. 如图所示电路中, 已知: $i_s=4\sqrt{2}\sin\omega t$ A,若电压表内阻为无穷大,求电压表的读数为多少?

7. 求下列情况下,如图所示电路中的 U_1 和 I_1 ; (1) AB 两端短路 (2) AB 两端开路。

8. 如图所示电路,已知 $i_s=2\cos\omega t$ A。 武求初级电压

9. 图示电路中 $u(t)=0.1\sin \omega t$ V, $\Omega=1000 \mathrm{rAD/s}$, 理想变压器之比为 1:2, 求 AB 问戴维 南等效电路。

- 10. 额定容量为 10KVA 的单相变压器(理想变压器), 电压为 3300/220V, 试求:
 - (1) 原付边的额定电流。
 - (2) 负载为 220V, 40W 的白炽灯, 满载时可接几盏?
 - (3) 负载为 220V, 40W, Cos φ=0.44 的日光灯, 满载时可接几盏?

一、选择题

1. 若对称三 若三条端

(A) 220

2. 星形联接

3. 对称三相 (A)110

4. 如图所示 电压), 则

(A) $U_A = U$

(B) $U_4 = U$

(C) $U_A = 0$

•

(D) $U_4 = 0$

5. 图示三**相** 为 。

(A) A 相重

AV. V. Him

(C) B 相種

第十一章 三相电路

--、洗择题

- 1. 若对称三相电压源星形联结,每相电压有效值均为 220V,但 BY 相的 B 与 Y 接反。 若三条端线的注字仍为 A、B、C, 则其线电压 UAB 为____V, UBC 为____V, UCA 为
 - (A) 220 (B) 381 (C) 127 (D) 0
- 2. 星形联接的对称三相电源供电给三相星形联接负载时, 中点偏移电压为零的条件 (A) 三相负载对称 (B) 三相电压对称

- (C)中性线阻抗为 0 (D)中性线不存在
- 3. 对称三相电路如图所示,已知线电压为 380V,则电压表的读数(有效值)为____。
 - (A)110V
- (B) 380/3V
- (C) 190V
- (D) 220V

- 4. 如图所示电路 S 闭合时为对称三相电路, A 电源为证序,设 $U_A=$ U \angle 0° V(A 相电源的
- 电压),则 S 断开时,负载端的相电压为 (A) $\dot{U}_A = U \angle 0$ V; $\dot{U}_B = U \angle 120$ V;
- (B) $\dot{U}_A = U \angle 0^\circ \text{ V}; \quad \dot{U}_B = U \angle -180^\circ \text{ V}$
- (C) $\dot{U}_A = (\sqrt{3}/2) \text{ U} \angle 30^\circ \text{ V}; \quad \dot{U}_B = (\sqrt{3}/2) \text{ U} \angle 150^\circ \text{ V}$
- (D) $\dot{U}_{A} = (\sqrt{3}/2) \text{ U} \angle -30^{\circ} \text{ V}; \quad \dot{U}_{B} = (\sqrt{3}/2) \text{ U} \angle -30^{\circ} \text{ V}$
- 5. 图示三相电路由对称电压 源供电、各灯泡额定值均相同,当 A' B' 间断开时各灯泡亮度 为___。
- (A) A 相最亮, C 相最暗
- (B) A 相最暗, C 相最亮
- (C) B 相最亮, A 相最暗
- (D) C相最亮, A, B相相同

AB 间戴维

6. 对称三相三线制, 负载 Y 联接, 线电压 UL=380V, 若因故障 B 线断路(相当于图中开关 K 打开), 则电压表读数(有效值)为____。

- (A) 0V
- (B) 190V
- (C) 220V
- (D) 380V

7. 用二表法测量三相负载的总功率,试问如图的四种接法中,错误的一种是____。

二、填空题

(注:请将正确答案填入空白处,不必写求解过程或说明其原因)

1. 如图所示对称三相电路,已知: $U_{AB}=380 \angle 0^\circ$ V, $I_A=2 \angle -30^\circ$ A,则三相有功功率 为 W。

2. 如图所示对称三相电路,已知 $\dot{U}_{AB}=380 \angle 0^\circ$ V, $\dot{I}_A=1 \angle -60^\circ$ A,则: W1 鲅=_____; W2 鹙=_____。

随朱, 让天"

三、计算周

1. 图示对**彩** 功功率为:

-30°。浆

2. 己知三 ZY=(4+j3

3. 图示电 压表的阻

4. 如图

NB=

并作图

计图中开

相有功功率

三、计算题

1. 图示对称三相电路中, 电源电压 $U_{{\scriptscriptstyle AB}}$ =380 \angle 0° ${\sf V}$, 其中一组对称三相感性负载的三相有 功功率为 5.7kW, 功率因数为 0.866, 另一组对称星形联结容性负载的每相阻抗 Z=22Z -30°。求电流 $\overset{\cdot}{I_A}$ 铬暾。

2. 已知三相电源线电压为380伏,接入两组对称三相负载,见图示电路,其中每相负载为:

ZY=(4+j3) Ω , $Z_{\rm D}$ =10 Ω , 试求线电流 $I_{\rm A}$ =?

3. 图示电路当开关 8. 闭合时三相电路对称, 电压表 V 1、V 2. 的读数分别 F 0 和 220 V . 若电压表的阻抗看作为 ∞ , 求当开 关开断后, V \in V 2. 的读数。

4. 如图所示电路,已知对称三相电源巘 $U_{{\scriptscriptstyle AB}}=380{\,\angle}30\,^\circ$ V, ZA =ZB=ZC=(10+j10) Ω, Z=j76 Ω, \dot{x} (1) \dot{I}_{A} , \dot{I}_{B} , \dot{I}_{C} $\ddot{\Sigma}\dot{I}_{N}$ 并作图; (2) 三相总功率 P=?

Ñttp://sui.me □ 4 AC? 杉接法,RA=RB=RC=100√3Ω;

5. 在三相交流电路中,同时接有两组负载,一组是三角形接法,RA=RB=RC=100 $\sqrt{3}$ Ω ; 另一组是星形接法,RA=RB=RC=100 Ω 。 当电源线电压为 380V 时求电路总线电流 I_A 的瞬时值表达式和总功率 P 为多少?(设 u_{AB} 初相位为 0)

6. 三相电动机接到线电压为 380V 的线路中, 如图所示, 功率表 W1 及功率表 W2 的读数分别为 398W 和 2670W, 试说明读数表示什么? 并求出功率因数和电动机 Y 联接的等效阻抗。

7. 有两组对称星形联接的负载,一组为纯阻性,各相电阻 $R=10\,\Omega$,另一组为纯感性,各相感抗 $XL=10\,\Omega$,共同接于线电压为 380V 的主相四线制供电系统中,试求;

- (1)各组负载的线电流有效值;
- (2) 供电干线上的总电流有效值:
- (3)负载消耗的有功功率;
- (4)负载的无功功率:
- (5) 画出供电线路图.

8. 图示电路中,已知负载 $Z=(35+j25)\Omega$,线路阻抗 $Z1=(5+j5)\Omega$,电压表的读数(有效值)为 200V,(1)问三相电源提供多少功率?(2)如用二表法测量负载吸收的功率,请在图中补画出另一只功率表的 接线图,并算出功率表 W1 的读数。

随米

(注

1.

2.

3.

4.

则,

6.

7.

第十二章 非正弦周期电流电路

一、选择题

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

- 1. 在图中, $i_1 = 4\sqrt{2} \sin 10t$, $i_2 = 3\sqrt{2} \sin 20t$, 则电流 i_3 的有效值为______。
 - (A) 1A; (B) 5A; (C) 7A。

- 2. 欲测一周期非正弦量的有效值应用____。
 - (A) 电磁式仪表; (B) 整流式仪表; C磁电式仪表。
- 3. 下列四个表达式中,是非正弦周期性电流的为
 - (A) $i(t) = 6 + 2\cos 2t + 3\cos 3p t$, A
 - (B) $i(t) = 3 + 4\cos t + 5\cos 3t + 6\sin 5t \le A$
 - (c) $i(t) = 2\sin(t/3 + 4\sin(t/7))$, A
 - (D) $i(t) = \cos t + \cos wt + \cos wpt$, A

(A) U = 30 + 80 + 80 + 30 = 220 V

(B)
$$U = \sqrt{30^2 + 80^2 + 80^2 + 30^2} = 120.83$$

(c)
$$U = \sqrt{30^2 + 80^2 + 30^2} = 90.55$$

- 5. 在线性电阻电路中, 非正弦周期电流产生的电压响应的波形与激励电流的波形___
 - (A)相同
- (B) 不同
- (C)不一定 .
- 6. 非正弦周期电流电路中, 激励不含有直流分量, 则响应中_____直流分量.
 - (A)含有, (B)不含有, (C)不一定含有
- 7. 电路如图所示, 已知 L=0. 2H, U_S=5sin50t+10sin100tV, 则 i(t)= _____。
 - (A) $0.5\sin(50t-90^{\circ}) + 0.5\sin(100t-90^{\circ})$ A

- (B) $0.5\sin(50t-90^{\circ}) + \sin(100t-90^{\circ}) A$
- (C) $0.5\sin 50t + 0.5\sin 100tA$
- (D) $0.5\sin 50t + \sin 100tA$
- 8. 电路如图所示,已知 $i_1=4\sqrt{2}\cos 2t, i_2=3\sqrt{2}\cos t$ A,C=1F,L=1H,R=1 Ω 。则 R

消耗的平均功率 P=。

鹙

(A) 1W (B) 25W (C) 7W (D) 49W

二、填空题

(注:请将正确答案填入空白处,不必写求解过程或说明其原因)

- 1. 若电路的电压 $u=(10+20\sin(\Omega t-30^{\circ})+8\sin(3\Omega t-60^{\circ}))$,电流 $:=(3+6\sin(\Omega t+30^{\circ})+2\sin(\Omega t))$ A. 则该电路的平均功率为 W.

- 1. 已知一无源二端网络的外加电压及输入电流分别为 $u = 220\sqrt{2}\sin 314t$,伏 $i = 0.8\sin(314t 85^\circ) + 0.25\sin 942t 105^\circ)$ 安,试求网络吸收的平均功率。
- 2. 如图所示电路中 $u_s = (\sin wt + \sin 2wt)V$, 求下列各量:
- (1) 电阻两端的电压 u_R ,; (2) 电流源两端的电压 u_i , (3) 电流源发出的功率 (平均功率);
- (4) 电压源发出的功率(平均功率).

3. 图示电路中既有直流电源,又有交流电源,试应用叠加原理分别画出分析直流和交流的电路图(电容对交流视作短路),并说明直流电源中是否通过交流电流,交流电源是否通过直流电流。

4. 如图所示电路, 求 $u_{\rm l}$ 、 $u_{\rm 2}$ 、 $u_{\rm L}$,设 $i_{\rm c}$ =2+2sin2 πf t (mA) f=1KHz.

5. 图示电路中电压 $u=60(1+\sqrt{2}\cos wt+\sqrt{2}\cos 2wt)V$, Ω L_1 =100 Ω , Ω L_2 =100 Ω ,

 $1/\Omega C_1 = 400 \Omega$, $1/\Omega C_2 = 100 \Omega$,求有效值 I_1 , I_2 , U_2 雹.

6. 图示电路中,电压

$$u_{S1} = 80\sqrt{2}\sin(wt + 60^{\circ})V, u_{S2} = 40\sqrt{2}\sin(2wt - 60^{\circ})V$$

 Ω =5000rAD/s, 电感 L_1 = 40mH, L_2 = 80mH, 两线圈的耦合系数 K=0.5, 电流表的内阻和电压表中的电流均不计, 求此时电流表读数和电压表读数。

随:

7. 图示电路中,已知: $u = [20 + 20\sqrt{2} \sin \omega t + 15\sqrt{2} \sin(3\omega t + 90^{\circ})V]$

 $R_{\rm l}=1$ W, $R_{\rm 2}=4$ W, $wL_{\rm l}=5$ W, 1/(wC)=45W, $wL_{\rm 2}=40$ W。 试求电流表及电压表的读数 (图中仪表均为电磁式仪表)。

8. 图示电路中,已知, $E=0.1H, L_2=0.5H, C_1=10^{-3}F, C_2=0.5?10^{-4}F, R$ 15W

 $u_1 = 10\sqrt{2}\sin 100t + 10\sin 200t$, 武求镍 $u_0 = 2^{3}$

第十三章 拉普拉斯变换

.选择颇

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

- 1. 已知 £ [δ(t)]=1, 则 £ [δ(t-t₀)]=____。
 - (A) 1;
- (B) e^{-st_0}
- (C) e^{st_0} 篸 (D) $e^{-st_0}\varepsilon(t-t_0)$
- 2. 已知 £ [$e^{-2t} \varepsilon(t)$]=1/(s+2),则 £ [$e^{-2t} \varepsilon(t-1)$]=____。
 - (A) $\frac{e^{-S}}{S+2}$ (B) $\frac{2e^{-S}}{S+2}$ (C) $\frac{e^{(2-S)}}{S+2}$ (D) $\frac{e^{-(2+S)}}{S+2}$

3. 己知
$$F(S) = \frac{e^{-S}}{S(2S+1)}$$
, 则 $f(t) = _____$ 。

(A)
$$[1-e^{-(t-1)/2}]\varepsilon(t)$$

(A)
$$[1-e^{-(t-1)/2}]\varepsilon(t)$$
 (B) $[1-e^{-(t-1)/2}]\varepsilon(t-1)$

(C)
$$[1-2e^{-(t-1)/2}]\varepsilon(t)$$

(C)
$$[1-2e^{-(t-1)/2}]\varepsilon(t)$$
 (D) $[1-2e^{-(t-1)/2}]\varepsilon(t-1)$

4. f(t)的波形如图所示,则 F(s)=____。

(A)
$$S^{2}\left[\frac{1}{2} - \frac{1}{2}e^{-2S} - Se^{-2S}\right]$$
 (B) $\frac{1}{S^{2}}\left[1 - e^{-2S} - Se^{-2S}\right]$

(C)
$$\frac{1}{2S^2}[1-e^{\frac{1}{2}S}-Se^{\frac{2S}{2}}]$$

(C)
$$\frac{1}{2S^2}[1-e^{-2S}-Se^{-2S}]$$
 (D) $\frac{1}{S^2}[\frac{1}{2}-\frac{1}{2}e^{-2S}-Se^{-2S}]$

- 5. R、L、C 串联电路的复频域阻抗为

- 6. 已知双口网络 N 在零状态时的阶跃响应为 $3/(S^2+9)$, 若激励改为 E(s)=
- $3/(S^2+9)$,则网络 N 的响应象函数 U(s)=____。

(A)
$$\frac{9}{(S^2+9)^2}$$
 (B) $\frac{9S}{(S^2+9)^2}$

(B)
$$\frac{9S}{(S^2+9)^2}$$

(C)
$$\frac{3S}{(S^2+9)^2}$$

(C)
$$\frac{3S}{(S^2+9)^2}$$
 (D) $\frac{9}{S(S^2+9)^2}$

7. 图示电路中,L=1H,C=1F,其中输入阻抗 Z(s)=

(A)
$$\frac{2S}{(S^2+1)}$$
 (B) $\frac{S}{2(S^2+1)}$

(C)
$$\frac{S}{(S^2+1)}$$
 (D) $\frac{-S}{(S^2+1)}$

二、填空题

(注:请将正确答案填入空白处,不必写求解过程或说明其原因)

1. 如图所示电路,已知 $u_c(0_-)=4$ V, $i_L(0_-)=2$ A (与 i 方向相同), $u_S=2e(t)$),则电流 i 的零状态响应的象函数为_____, 电流 i 的 零输入响应的象函数为_

1. 如图所示电路在 S 断开前处于稳态试画出 S 断开后的运算电路图。

2. 如图所示动态电路的激励 u_1 、 u_2 如图 B 所示,求镍 u_c =?

3. 如图所示电路中,US=10V,R1 =R2 =2 Ω ,L=2H,C=2F,在电路稳定后将开关 S 闭合,试用运算法求流经开关 S 的电流 \mathbb{R} 。

4. 如图所示电路, 开关动作前电路已稳定. t=0 时, 断开开关 S, 当 $t \ge 0$ 时, 试求: (1) 画 出运算电路. (2) 求出电流 i(t) 的象函数 I(s); (3) 求电流 i(t).

6. 电路如图所示,已知 $i_{S1}=2$ δ (t) A, $i_{S2}=\epsilon$ (t) A。试求零状态响应 $i_C(t)$,t \geq 0,并画出 $i_C(t)$ 的波形。

7. 用拉普拉斯变换求图示电路的单位冲激响 $a_{R}(t)$,并判断电路是否振荡。

第十四章 二端网络

二、选择题

(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论)

- - (A)对称、互易的;
- (B)对称、非互易的:
- (C)不对称、非互易的。

2. 如图所示双口网络的 Z 参数矩阵为

 $\begin{array}{ccc}
3 - j4 & -j4 \\
-j4 & -j1
\end{array}$

- 3. 直流双口网络中,已知 U₁==10V, U₂ =5V, I₁ =2A, I₂ = 4A, 则 Y 参数 Y₁₁ 때, Y₁₂ Y₂₁ 工 Y₂ 吨依次为 。
 - (A) 0.2S, 0.4S, 0.4S, 0.8 S (B) 0.8S, 0.4S, 0.4S, 0.2S (C) 不能确定
- 4. 在下列双口网络参数矩阵中,______所对应的网络中含有受控源。

(A)
$$Y = \begin{bmatrix} 3 & -1 \\ -10 & 6 \end{bmatrix} S$$

(B)
$$T = \begin{bmatrix} 1 & j\omega L \\ 0 & 1 \end{bmatrix}$$

(C)
$$Z=$$
, $\begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix} \Omega$

(D) H=
$$\begin{bmatrix} 2\Omega & 5 \\ -5 & 4S \end{bmatrix}$$

- 5. 图示双口网络中,参数____和____分别是节点①和节点②间的自导纳,参数___和___是 节点①和节点②的互导纳。
- (A) Y_{11} (B) Y_{12} 曜 (C) Y_{21} 垯 (D) Y_{22} 嚾

6. 图示双口网络的 T 参数矩阵为__

(A)
$$\begin{bmatrix} 0 & 1/g \\ g & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} -1/g & 0 \\ 0 & g \end{bmatrix}$ (C) $\begin{bmatrix} 0 & -g \\ 1/g & 0 \end{bmatrix}$

(C)
$$\begin{bmatrix} 0 & -g \\ 1/g & 0 \end{bmatrix}$$

$$(D) \begin{bmatrix} g & 0 \\ 0 & \frac{1}{g} \end{bmatrix}$$

7. 附图所示理想变压器可看作为双口网络,它的传输函数矩阵 T 可写成为

三、计算题

1. 如图所示双口网络中,设内部双口网络 P_1 的 A 参数矩阵为 $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ 求整个双口网络的A参数矩阵。

2. 如图所示电路, 由理想变压器及 电阻 R1 和 R2 组成二端口网络。试求此二端口网络的 Y 参数矩阵.

3. 求如图所示电路的传输参数 A。

4. 试求出如图所示电路的开路 阻抗矩阵[Z].(Z参数矩阵)

7. 已知如图所示二端口网络的 Z参数是 Z11=10 Ω , Z12=15 Ω , Z21=5 Ω , Z22=20 Ω . 试求转移电压比 A(s)=U2 (S) /US (S) 之值。

8. 图示电路中, 已知: $i_S=10\sin \omega t$ mA, $\Omega=10^6$ rAD/s, 回转常数 r=1000, 求 $u_2(t)$

9. 要使图中所示的两个双口网络为等值的,试求 R2 鹫的表达式。

10. 试求如图所示网络的输入阻抗,并讨论输入阻抗与纯电容阻抗之间的关系。

堤 综

11. 已知双口网络 N 的 Y 参数为 Y(s) = $\begin{bmatrix} 10+\frac{4}{S} & -\frac{4}{S} \\ -\frac{4}{S} & \frac{5}{S} + \frac{4}{S} \end{bmatrix} u_s(t)$ 如图所示, C=1F。试

求: (1)双口网络的口型等效电路; (2) H(s) = Uo(s) / US(s);

(3) 当 $u_s(t)$ 为如图所示波形,且初始状态为零时的 $u_o(t)$

12. 如图所示电路, $\dot{U_s}=5\angle 0^\circ$ V, $Z2=5+j5\Omega$, $Z1=1+j1\Omega$ 试求:(1)双口网络 N(虚框)的 T 参数. (2)用理想变压器的特性直接求 2-2'端的戴维南等效电路. (3)ZL 获得最大功率的条件.

《电路》综合复习题参考答案

第一章 电路模型和电路定律参考答案

一、选择题

(1).C(2).C(3).A(4).C,B,A,C(5).C,D(6).B

二、填空

(1). -3(2). 1. 4

三、解答下列各题

- 1. Ux = -15V Ix = -5A
- 2. $US=2\times1, 2+1=3, 4V$
- 3. $I_{S}=-5A_{1}$
- 4. (1) K 合上, 显然 UAB=0K 断开, UAB=-8+2. 84-9=14. 16V
- (2) K 断开后。UCD=9-2.84=6.16V
- 5. (1) I=-4A (2) U=24V
- 6. (1) n=1.4V, (2)没有影响。
- 7. $P1 = 100W_{1}$ $P2 = 120W_{2}$ $P3 = 50W_{3}$

CCVS 为-1.5×10×6=-90W, 电压源为:-20×4=-80W。

- 10.(1)各元件电压分别为:
 - 4A 电流源 Us4(±)=-4V,

-3A 电流源 Us3 (+ -)=-9V,

- 2A 电流源 Us2(土)=-1V,
- 2Ω电阻 U2(+ -)=4V
- (2) 非电流源支路的电流分别为: 3V 电压源 㬎 Iu3(→)=-7A -5V 电压源 Iu5(↓)=6A
- (3) Is (1) = -3A
- 11. 电流源发出功率 32W; 电压源发出功率为0W。
- 12. UAC=-28 V UAD=2-28=-26 V
- 13. (1) 当开关 K 断开时 I=1mA UA=-6V
 - (2) 当开关 K 闭合时: 通过 18K, 2K 的电流 I'=0.6mA
 - \therefore UA = 1.2V
- 14. UB=10V; UC=UD=14V; UE=20V; UBE=-10V
- 15. $US=5+1\times I=12, 5V$

第二章 电阻电路的等效变换参考答案

一、选择题

- (1), C(2), A(3), C(4), A(5), A(6), C(7), C, C, B, B(8), A
- (9), C(10), C(11), B, A(12), A(13), D

二、计算题

- 1. (1) RAB=3 (Ω) (2) RAB=1.33 (Ω) (3) RAB=0.5 (Ω)
- 2. RMN=U/II =8 Ω
- 3. 对图(1)而言: RAB=5Ω ; 对图(2)而言: RAB=1.5Ω
- 4. $R = U/I = -3 \Omega$, $RAB = -3//1 + 2 = 3.5 \Omega$
- 5. $K_i = (4-K)/3$ $R_i = R'_i / 0.5$ $\stackrel{\text{def}}{=} R_i = 0$,
- 即 R' i=0 时 K=4
- 6. (1) Ri=U/I=-6 Ω ; (2) Ri=U/I=12 Ω
- 7. 用电源变换方法 II 8.25A
- 8. I=4/9
- 9. I=0.676
- 10. R4=9. 83 (K Ω), R5=90 (K Ω) R6= 150 (K Ω)
- 11. $Rx = 168 \Omega$ $Ry = 174.4 \Omega$
- 12. I=5A
- 13. I1=4A; U2=6V; U3=0V
- 14. iA=1.33A, 累 B=37.78A, iC=2.67A
- 15. 略

电路的一般分析参考答案 第三章

一、选择题

- (1). C(2). C, D, A, A, A(3). B, C, D, E(4). F, D, B
- (5), C(6), D(7), B, E, A

二、计算题

- 1. I3=-4A , I4=0.4A , I2=-4.4A , UA=10.4V .
- 2. VA=VB=8 V, $WII=(8V-4V)/2\Omega=2 A$
- 3. I=1A; U=7V
- 4. (G2+G1)Un1 -G2Un2 -G3Un3 = Is1 课

Un2 = Us4

U2 = Un1 - Un2

5. 网孔方程为
$$\begin{bmatrix} 4 & -2 & 0 \\ -3 & 11 & -4 \\ 0 & -6 & 9 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 9 \\ -3 \end{bmatrix}$$

- 6. u=7V, 㬎 i=12A
- 7. $I_1 = 27/13A$, $I_2 = 6/13A$, $I_3 = 18/13A$.
- 8. $i_1=0.24A$, $k_1=0.39A$

第四章 电路定理参考答案

一、选择题

- (1). D(2). B(3). B, D(4). D (5). B, C, A, E(6). C (7). B (8) A
- 二、填空题
- (1).0.5 (2).30,5;4,2 (3).4;4 $(4).2/3A, -2\Omega$

三、解答下列各题

- 1. II=6A I2=4A
- 2. UAB =UA =28V
- RAB =0. $625k \Omega$
- 3. UAB =16V RAB €
- 4, (1)37,5A; (2)40A
- 5. RL=6 Ω
- 6. R=(48-18)//6=5Ω
- 8. I= 25mA
- 9. II= -0. 143A; I2=0. 857A; I3=0. 857A I4 = -0.143A; I5 = 1A; I6 = -0.714A
- 10. U0C = 10V, Ro=2. 2K Ω : U0C = 1.5V, Ro=0. 375K Ω
- 11. 9Ω上电流 I=UOC/(9+R。)=-0.6A
- 12. Is 换为 2Ω时, U=2/(2+R) × U0C =2V
- 13. $R_L = (1-A)^2 R_1/(3-A)$
- 14. 当 RL=2/3 Ω 时, 获得最大功率. PmAx=Uo²/4Ro=3/2W
- 15. IAB=1A
- 16. Ro=1. 2 Ω, U0C=8. 8V, U=4. 55V
- 17. 1A
- 18. i = 2A, $u_1 = -2V$
- 19. U0C =10V; RAB = 5Ω

第五章 具有运算放大器的电阻电路参考答案

一、选择题

(1).B (2).C (3).A, C(4).B (5).A (6).D (7).C (8).C

二、解答下列各题

- 1. 镍 Uo = -R/R×Uo-Uo1=2RiUi/Ri 鲅
- 2. 镍 Uo/Ui =-100

4. Uo1=2V, 镍 Uo2 =U2=2V, Uo=Uo1 -Uo2 =0

5.
$$\frac{U_o}{U_i} = \frac{-G_1 G_4}{G_1 G_3 + G_2 G_3 + G_3 G_4 + G_3 G_5 + G_4 G_5}$$

倒相比例器

6. J=-1.1 (mA)

-、计算下列各题

- 2. $u(t) = (3+0.125\cos\Omega t) V$, $i(t) = (9+0.75\cos\Omega t) A$
- 3. $i(t) = (1+0.67 \times 130 \sin 628t)$
- 5. $i = (1 + \sin \Omega t / 7) A$
- 6. $u = (2+\sin(t/7))V$
- 7. 5.43V; 2.33A
- 8. u = (2+0.0714 sint) V, i1 = (4+0.286 sint) A, i2 = (4+0.214 sint) A

第七章 一阶电路参考答案

一、选择题

- (1). A, C (2). C (3). B, C(4). D, E(5). C (6). C (7). C
- (8). A (9). B (10). C (11). D(12). C (13). C (14). B (15). B
- (16). A (17). B

二、填空题

- (1). 电容, 1 μ F (2) 2V, 1V (3) 8×10⁻⁸ J, 2 J
- (4). (Us1 -Us2)Exp(-t/RC) ε (t); Us2 燃
- (5). 8-2Exp(-10t); 6; 8; 0. 1 (6). 1 (7). 1

三、计算题

- 1. WC(0+)=0 W!=4% 4.5.
- 2. $[-12+12Exp(-3/t)] \epsilon (t)$
- 3. t = (16.5 20) mS
- iL(t)= iL(∞)+[iL(0+)- iL(∞)]Exp(-t/τ)=0.5+0.5 Exp(-t/τ)
 其中 0.5(1-E(-t/τ))为零状态响应, E(-t/τ)为零输入响应.
 UL(t)=LD iL(t)/Dt=-10 E(-t/τ)V
- 5. $i(t)=0.2 \text{ Exp}(-t) \epsilon (t)=0.2 \text{Exp}(-t+1) \epsilon (t-1) A$
- 6. (1) iL(t)=[15-10Exp(-500t)] ϵ (t) mA UL(t)=5Exp(-500t) ϵ (t) V
 - (2)稳态解:15ε(t)

暂态解:10Exp(-500t) ε(t)

零输入解:5Exp(-500t)ε(t) 零状态解:15[1-Exp(-500t)]ε(t)

- 7. iL=5+[iL(0.71)-5]Exp(-t+0.71) mA $(t \ge 0.71$ mS)
- 8. $u2(t)=4Exp(-0.5t) \epsilon(t)$
- 9. iL=6Exp(-t) ε (t)
- 10. (1) 全响应为 UC=- E(-t/ t) + 62.5(1/ E(-t/ t)) V
 - (2) 全响应为 UC=6+125(1 E(-t/τ))=125=119 E(-t/τ)V

第八章 二阶电路参考答案

一、选择题

(1). A (2):B (3). A (4). A (5): B (6):B; A

二、计算题

1. μ=-2 时电路产生等幅振荡,

第九章 正弦交流电路参考答案

一、选择题

- (1). C (2). C (3). B (4). B (5). D, E, H, I (6). A (7). D, E, A, C (8). D (9). E (10). B, C, E, G (11). C, D, F, E (12). B (13). B (14). A, B (15). B (16). D (17). B (18). A
- 二、填空题
 - (1). 7V(2). -Z(3). 2. 5A(4). j; 1-j; 1. (5). $5 \mu H$, $5 \mu F$

三、计算题

- 1. 略
- 解: (1) Z=(8.66-j5) Ω=10∠-30° Ω; R=8.66ΩC=0.2F, 串联;
 (2) S=4840VA P=4191W Q=-2420VAr
- 3. 在电容串联电路中,电容上的电压与其容量大小成反比。 UmAx=562.5V。

- 4. $Z2=3+j4\Omega$
- 5. $Z=5-j5\Omega$ Y=1/Z=0.1+j0.1S
- 6. i_L =20Cos(10³t-15°)A; $_{\rm iC}$ =10Cos(10³t +165°)A
- 7. (1) 能。IC = Ω^2 L
- 9. (1) 开路当 K 闭合时: I=22 (A) UR=U=220 (V)
 UL=UC=0
 当 K 断开时: I=0 UR=UL=0 UC=U=220 (V)
 - (2) 当电源电压为正弦电压时

当 K 闭合时: I=11 √2 (A); UR=R=110 √2 (V)
UL=110 √2 鳅 (V); UC=0

当 K 断开时: I=22 (A); UR=220 (V); UL=220 (V);

10. H = 15.6 (A12 = 11 (A) U = 220 (V) J = 11 (A) $R = XL = 10 \Omega$ $L = XL/\Omega = 10/314 = 0.0318H$ C==159 ($^{1}\mu$ F)

- 11. 18A
- 12. R=20Ω, UR=20√3√; 从相量图页短: U1=U2=40V; UL=20V L=0. 115h; C= 433 μ F
- 13. C=636.6 μ F

UC=220 (V)

- 14. (1) C=0.037 μF R=2.5 ΚΩ(2) Uo 滞后 Ui 30°, 相量图略.
- 15. C= 30.6 μF
- 16. 利用叠加原理, I=19.45∠-40°+12.8∠20°=28.2∠-16.78°mA
- 17. $i=-(2+4\sqrt{2} \sin 1000t) A$
- 18. 略
- 19. 略
- 20. $i_3=5\sin(\Omega t-53.1^{\circ})$ A
- 21. $C=1/(2\times 2 \pi \times 50)=0.00159F$

第十章 具有耦合电感的电路参考答案

一、选择题

(1). C, A(2). B (3). D (4). C (5). D (6). D, A (7). A

二、填空题

- (1). LI +L2 鹫-M²/L3 膊(2). 9. 6sin10tV
- (3).380V, 160V (4).110V, 330V

三、计算题

- 1. 87.6mW
- 2. n=10; PmAx=0.025W
- 3. (1) $Zi = 4\Omega$ (2) $Zi = 8/3\Omega$
- 4. I1=1A
- 5. $ZAB = (1.8+j3.4) \Omega$
- 6. 20V
- f(-1) U1=0V; I1=2. 5 \angle 0° mA;
- (2) U1=5∠0° V; I1=0A
- 8. 25. 6Cos2tV
- 9. 镀 UoC =- j20V Zo=400+ j4 KΩ
- 10. (1) $I_{1n} = 3.03A$, $I_{2n} = 45.5A$
 - (2) 自成为数量 n1 = 250 量 (3) 日光炉数量 n2 = 170 盏

第十一章 三相电路参考答案

一、选择题

- (1) A, A, B(2) A, C (3) A (4) C (5) C (6) B (7) D
- 二、填空趣
 - (1) 1316. 35 (2) 190W; 380W

三、计算题

- 2. 铬 IA 噉=104∠-15° A
- 3. V2 的读数为 190V, V1 鳑 110V
- 4. (1) $IA=11 \angle -60^{\circ} A$; IB=-16A; $IC=14.18 \angle 42.22^{\circ} A$; IN=0A(2) 3620 W
- 5. iA=6√2 sin(Ωt-30°)A 总功率 P=3,949KW
- 6. W1 为部分有功功率, W2 为 1/ √3 倍的无功功率。

 $\cos \phi = 0.6$, $ZEq = (15+j20) \Omega$

- 7. (1) Il1=Il2=22A (2) I=31.1A
- (3) P=14.52KW, (4) Q=14.52KVAr(5) 图略
- 8. (1) P=2594.7W,
- (2) 另一只表串接 B 项电流, 并接上 AB 线电压, PI=667W

第十二章 非正弦周期电流电路参考答案

一、选择题

(1).B(2).A(3).B(4).C(5).A(6).B(7).A(8).B

二、填空题

(1),60 (2).交流;70.7V;直流;4A

三、计算题

- 1. P=10.8 (W)
- 2. (1) -2V; (2) Us(t)+2; (3) 4W; (4) 0W
- 3. 略
- 4. $u_1 = 6 2 \sin 2 \pi \, \text{ft V}$, $u_2 = -2 \sin 2 \pi \, \text{ft V}$, $u_i = 0.2 \sin 2 \pi \, \text{ft}$
- 5, I_1 = 1.204A, I_2 = 0.45A, UC2 = 75V
- 6. 电流表的读数为-II=0.566A,

电压表的读数为 U=63.25V

8. $uo=10 \sqrt{2}sin100t+5 \sqrt{2}sin(200t-45°)$ V

第十三章 拉普拉斯变换参考答案

一、选择题

(1).B(2).D(3).B(4).D(5).D(6).B(7).D

二、填空题,

(1). $2/(s^2+6s+5)$; $(2s-4)/(s^2+6s+5)$;

三、计算题

- 1. 略
- 2. $VC=1.5[1-Exp(-t)] \epsilon (t)-1.5[1-Exp(-t+1)] \epsilon (t-1)-Exp(-t+1) \epsilon (t-1)$
- 3. $is(t) = [27.5Exp(-t)-5] \epsilon (t)-10 \delta (t)$
- 4. (1)运算电路图略
 - (2) I(s) = (2s+5) / [(5s(s+4))]
 - (3) $i(t) = [0.25 + 0.15 \text{ Exp}(-4t)] \epsilon(t)$
- 5. Z(s) = (5s+1)/(4s+1)

6.
$$2\delta(t) - Exp(-t) \epsilon(t) A$$

电路振荡。 7.

8. 镍 uL1(t) =- δ (t)-8Exp(-12t) ϵ (t)

第十四章 二端网络参考答案

-、选择题

(1). C (2). B (3). C (4). A (5). A, D, B, C (6). A (7). A (8). C

二、计算题

1.
$$A = \begin{bmatrix} A_{11} & A_{22} \\ YA_{11} + A_{21} & YA_{12} + A_{22} \end{bmatrix}$$

1.
$$A = \begin{bmatrix} A_{11} & A_{22} \\ YA_{11} + A_{21} & YA_{12} + A_{22} \end{bmatrix}$$
 2. $\begin{bmatrix} \frac{n^2}{n^2 R_1 + R_2} & \frac{n}{n^2 R_1 + R_2} \\ -\frac{n}{n^2 R_1 + R_2} & \frac{1}{n^2 R_1 + R_2} \end{bmatrix}$

3.
$$A = \begin{bmatrix} 1 & R_1 & 0 & r \\ 0 & 1 & 1/r & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & R_2 & r \\ 1/r & 0 & 1/r & R_2 \end{bmatrix}$$
4. $Z = \begin{bmatrix} Jn^2 [\omega L - 1/\omega C] & n/j\omega C \\ n/j\omega C & j[\omega L - 1/\omega C] \end{bmatrix}$
5. $Y = \begin{bmatrix} 12/5 + j2/4 & -2(5-j5) \\ -2.5 - j5 & j1 \end{bmatrix}$

- 6.
- 7. A(s) = U2(s)/US(s) = 1/39
- 8. $u2(t)=5\sqrt{2} \sin(10^6 t-45^\circ) V$
- 9. R2= (n1 /n2) ²×R1 鍍
- 10. Z 谯= j $(n/g)^2\Omega C$
- (1) 图略 11.
- $(2) 4/(s^2 + 5s + 4)$
- (3) $[1-4Exp(-t)/3+Exp(-4t)/3] \epsilon (t) -$

[1-4Exp(-t+1)/3+Exp(-4t+4)/3] ϵ (t-1)

12. (1)
$$T = \begin{bmatrix} \frac{1}{20} & 5Z_2 + 20Z_1 \\ 0 & 20 \end{bmatrix}$$

- (2) UoC = $100 \angle 0^{\circ}$ V $Z_{\circ} = 900 + j900 \Omega$
- (3) $ZL = 900 j900 \Omega$