Booleska uppgifter

- 1. a) Lösning: Antalet sådana booleska funktioner är 2^6 , ty om vi väljer funktionsvärdet f(0,0,0), så har vi fixerat f(1,1,1) och f(0,1,0) också.
 - b) Lösning: Antalet sådana booleska funktioner är 2^{15} , ty om vi väljer funktionsvärdena f(0,0,0,1) och f(0,0,1,0), så är även f(0,0,1,1) entydigt bestämt.
- 2. Lösning: $\overline{\bar{x}+yz}+\overline{y+x\bar{z}}=\bar{y}+x\bar{z}$ ger tabellen

Х	y	Z	f(x, y, z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

3. Lösning: $f(x,y,z)=\overline{x+\overline{yz}}+\overline{\overline{y}+xz}=\bar{x}yz+y\overline{xz}$ ger tabellen

Х	у	z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

och $f = \bar{x}y\bar{z} + \bar{x}yz + xy\bar{z}$ är disjunktiv normalform

4. Lösning: skriv först upp tabellen för f.

X	у	Z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1

	x	у	Z	f(x, y, z)
	1	1	0	1
1	1	1	1	1

$$f = (x + y + z)(x + y + \bar{z})(x + \bar{y} + z)(x + \bar{y} + \bar{z})(\bar{x} + y + z)$$

5. Lösning: Att relationen R är reflexiv och transitiv är uppenbart. Antisymmetrin kan motiveras på följande sätt: om $f(x,y) \leq g(x,y)$ och $g(x,y) \leq f(x,y)$ för alla $x,y \in \{0,1\}$, så måste f(x,y) = g(x,y) för alla $x,y \in \{0,1\}$. Hassediagrammet:

där t.ex. **1101** är funktionen f där $f(0,0)=\mathbf{1},\ f(0,1)=\mathbf{1},\ f(1,0)=\mathbf{0},\ f(1,1)=\mathbf{1}$ och **0100** är funktionen g där $g(0,0)=\mathbf{0},\ g(0,1)=\mathbf{1},\ g(1,0)=\mathbf{0},\ g(1,1)=\mathbf{0}.$ Generellt representerar en nod "abcd" funktionen h där $h(0,0)=a,\ h(0,1)=b,\ h(1,0)=c,\ h(1,1)=d.$

Fler uppgifter

- 6. Lösning: Antalet sådana funktioner är 2^5
- 7. Svar: $f(x, y, z) = x \cdot y \cdot z + x \cdot z + y \cdot z$ ger tabellen

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Detta ger att $f=(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(\bar{x}+y+z)(\bar{x}+\bar{y}+z)$

- 8. Lösning: Vi delar upp i två fall. Antag först att f(1,0,1)=0. Då är f(0,0,1)=f(0,0,0)=f(1,1,1)=0, och det finns 2^4 sådana funktioner. Antag nu att f(1,0,1)=1. Då är kravet i olikheten alltid uppfyllt, och det finns 2^7 sådana funktioner. Totalt finns alltså 2^4+2^7 sådana funktioner
- 9. a) Lösning: Det finns 2 sätt att välja funktionsvärdet f(0,0,0) (och därmed även f(1,1,1)). Där efter finns 2 sätt att välja funktionsvärdet f(0,0,1) (och därmed även f(1,0,0). Övriga funktions-värden kan sedan väljas på 2^4 sätt. Alltså finns 2^6 booleska funktioner som uppfyller villkoren.
 - b) Lösning: Om f(0,0,0)=f(0,0,1)=0, så finns 2^6 sådana funktioner; om $f(0,0,0)\neq f(0,0,1)=0$, så finns 2^5 sådana funktioner; $f(0,0,0)\neq f(0,0,1)=1$ ger också 2^5 booleska funktioner; och f(0,0,0)=f(0,0,1)=1 ger 2^4 funktioner. Totalt finns alltså $2^6+2^5+2^5+2^4=144$ funktioner som uppfyller villkoren