

#### COMPUTER VISION LECTURE 10 – CLUSTERING AND SEGMENTATION

Prof. Dr. Francesco Maurelli 2018-10-05



#### What we will learn today

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Agglomerative clustering
- Oversegmentation

Reading: [Forsyth & Ponce] Chapters: 14.2, 14.4

#### **Image Segmentation**

Goal: identify groups of pixels that go together



Slide credit: Steve Seitz, Kristen Grauman

#### The Goals of Segmentation

Separate image into coherent "objects"

Image











Slide credit: Svetlana Lazebnik

#### The Goals of Segmentation

- Separate image into coherent "objects"
- Group together similar-looking pixels for efficiency of further processing

"superpixels"





X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

## Segmentation for efficiency





[Felzenszwalb and Huttenlocher 2004]







[Shi and Malik 2001]

Slide: Derek Hoiem

## Segmentation as a result



Rother et al. 2004

#### Types of segmentations





Oversegmentation



Undersegmentation







Multiple Segmentations

# One way to think about "segmentation" is Clustering

Clustering: group together similar data points and represent them with a single token

#### **Key Challenges:**

- 1) What makes two points/images/patches similar?
- 2) How do we compute an overall grouping from pairwise similarities?

Slide: Derek Hoiem

#### Why do we cluster?

#### Summarizing data

- Look at large amounts of data
- Patch-based compression or denoising
- Represent a large continuous vector with the cluster number

#### Counting

Histograms of texture, color, SIFT vectors

#### Segmentation

Separate the image into different regions

#### Prediction

Images in the same cluster may have the same labels

Slide: Derek Hoiem

#### How do we cluster?

- Agglomerative clustering
  - Start with each point as its own cluster and iteratively merge the closest clusters
- K-means (next lecture)
  - Iteratively re-assign points to the nearest cluster center
- Mean-shift clustering (next lecture)
  - Estimate modes of pdf

#### General ideas

- Tokens
  - whatever we need to group (pixels, points, surface elements, etc., etc.)
- Bottom up clustering
  - tokens belong together because they are locally coherent
- Top down clustering
  - tokens belong together because they lie on the same visual entity (object, scene...)
- > These two are not mutually exclusive

#### **Examples of Grouping in Vision**



Determining image regions

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Shot 6 Shot 7 Shot 8

Grouping video frames into shots



Figure-ground

What things should be grouped?

What cues indicate groups?



Object-level grouping

## Similarity











## Symmetry









#### **Common Fate**





Image credit: Arthus-Bertrand (via F. Durand)

## **Proximity**





#### Muller-Lyer Illusion



 What makes the bottom line look longer than the top line?

#### What we will learn today

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Agglomerative clustering
- Oversegmentation

#### The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from relationships
  - "The whole is greater than the sum of its parts"



http://en.wikipedia.org/wiki/Gestalt\_psychology

#### **Gestalt Theory**

- Gestalt: whole or group
  - Whole is greater than sum of its parts
  - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

"I stand at the window and see a house, trees, sky.
Theoretically I might say there were 327 brightnesses
and nuances of colour. Do I have "327"? No. I have sky, house,
and trees."

Max Wertheimer (1880-1943)

Untersuchungen zur Lehre von der Gestalt, Psychologische Forschung, Vol. 4, pp. 301-350, 1923 http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm



# Image source: Forsyth & Ponce

#### **Gestalt Factors**



These factors make intuitive sense, but are very difficult to translate into algorithms.

#### Continuity through Occlusion Cues



#### Continuity through Occlusion Cues



Continuity, explanation by occlusion

## Figure-Ground Discrimination



#### The Ultimate Gestalt?



#### What we will learn today

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Agglomerative clustering
- Oversegmentation



#### Clustering: distance measure

Clustering is an unsupervised learning method. Given items  $x_1, \ldots, x_n \in \mathbb{R}^D$ , the goal is to group them into clusters. We need a pairwise distance/similarity function between items, and sometimes the desired number of clusters.

## Desirable Properties of a Clustering Algorithms

- Scalability (in terms of both time and space)
- Ability to deal with different data types
- Minimal requirements for domain knowledge to determine input parameters
- Interpretability and usability Optional
  - Incorporation of user-specified constraints

#### Animated example



source

#### Animated example



source

#### Animated example



source

#### Agglomerative clustering



1. Say "Every point is its own cluster"

#### Agglomerative clustering



- Say "Every point is its own cluster"
- Find "most similar" pair of clusters



Slide credit: Andrew Moore

## Agglomerative clustering



- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster



Slide credit: Andrew Moore

## Agglomerative clustering



- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- Repeat



Slide credit: Andrew Moore

## Agglomerative clustering



- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- 4. Repeat



Slide credit: Andrew Moore

## Agglomerative clustering

#### How to define cluster similarity?

- Average distance between points,
- maximum distance
- minimum distance
- Distance between means or medoids



#### How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges



#### Agglomerative Hierarchical Clustering - Algorithm

- 1. Initially each item  $x_1, \ldots, x_n$  is in its own cluster  $C_1, \ldots, C_n$ .
- 2. Repeat until there is only one cluster left:
- 3. Merge the nearest clusters, say  $C_i$  and  $C_j$ .

#### Different measures of nearest clusters

#### Single Link

•  $d(C_i, C_j) = \min_{x \in C_i, x' \in C_j} d(x, x')$ . This is known as *single-linkage*. It is equivalent to the minimum spanning tree algorithm. One can set a threshold and stop clustering once the distance between clusters is above the threshold. Single-linkage tends to produce long and skinny clusters.



Long, skinny clusters

#### Different measures of nearest clusters

#### Complete Link

•  $d(C_i, C_j) = \max_{x \in C_i, x' \in C_j} d(x, x')$ . This is known as *complete-linkage*. Clusters tend to be compact and roughly equal in diameter.



Tight clusters

#### Different measures of nearest clusters

#### Average Link

•  $d(C_i, C_j) = \frac{\sum x \in C_i, x' \in C_j d(x, x')}{|C_i| \cdot |C_j|}$ . This is the average distance between items. Somewhere between single-linkage and complete-linkage.



Robust against noise.

### Conclusions: Agglomerative Clustering

#### Good

- Simple to implement, widespread application.
- Clusters have adaptive shapes.
- Provides a hierarchy of clusters.
- No need to specify number of clusters in advance.

#### Bad

- May have imbalanced clusters.
- Still have to choose number of clusters or threshold.
- Does not scale well. Runtime of O(n³).
- Can get stuck at a local optima.

## What we will learn today?

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Agglomerative clustering
- Oversegmentation



# How do we segment using Clustering?

 Solution: Oversegmentation algorithm



 Introduced by Felzenszwalb and Huttenlocher in the paper titled Efficient Graph-Based Image Segmentation.

#### **Problem Formulation**

- Graph G = (V, E)
- V is set of nodes (i.e. pixels)



- w(vi, vj) is the weight of the edge between nodes vi and vj.
- S is a segmentation of a graph G such that G' = (V, E') where E' 

  E.
- S divides G into G' such that it contains distinct clusters C.



## Predicate for Segmentation (



 Predicate D determines whether there is a boundary for segmentation.

$$Merge(C_1, C_2) = \begin{cases} True & if \ dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$

#### Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal different in the clusters C1 and C2

## Predicate for Segmentation (



 Predicate D determines whether there is a boundary for segmentation.

$$Merge(C_1, C_2) = \begin{cases} True & if \ dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$

$$dif(C_1, C_2) = \min_{v_i \in C_1, v_j \in C_2, (C_1, C_2) \in E} w(v_i, v_j)$$

The different between two components is the minimum weight edge that connects a node  $v_i$  in clusters C1 to node  $v_j$  in C2

## Predicate for Segmentation (

is

 Predicate D determines whether there is a boundary for segmentation.

In(C1, C2) is to the maximum weight edge that connects two nodes in the same component.

## Predicate for Segmentation

- k/|C| sets the threshold by which the components need to be different from the internal nodes in a component.
- Properties of constant k:
  - If k is large, it causes a preference of larger objects.
  - k does not set a minimum size for components.





## Features and weights

- Project every pixel into feature space defined by (x, y, r, g, b).
- Every pixel is connected to its 8 neighboring pixels and the weights are determined by the difference in intensities.
- Weights between pixels are determined using L2 (Euclidian) distance in feature space.
- Edges are chosen for only top ten nearest neighbors in feature space to ensure run time of O(n log n) where n is number of pixels.



### Results









## What we have learned today?

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Agglomerative clustering
- Oversegmentation