Lecture 4:

A* Search, Minimax search and Decision Trees

30 January 2020

How does GD algorithm know it has reached min/max?

- $-\nabla h = 0$
 - Could be a min, max or saddle point

How to determine if min/max

- 1d second derivative test
 - $\nabla h > 0 \Rightarrow local min$
 - $\nabla h < 0 \Rightarrow local max$
 - $\nabla h = 0 \Rightarrow$ undetermined, may be saddle point
- Higher dimensions, use Hessian to perform second derivative test

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

No, you don't need to know this!!!

- Order nodes by sum of path length and heuristic
- Priority queue order by path(s) + h(s)
- Will find optimal path if using admissible heuristic

```
priority_queue.push(initial state, 0)
While(!priority_queue.empty())
    s = priority_queue.pop()
    if(s == goal)
        return
    if (!s.visited)
        • s.visited=true
        • for all actions a∈A
            s'=τ(s,a)
            s'<sub>path_length</sub> = s<sub>path_length</sub> + length(a)
            priority_queue.push(s', s'<sub>path_length</sub> + h(s'))
```


Admissible Heuristics

- A heuristic is admissible if it never overestimates the cost from a node to the goal
 - $h(s) \le cost(path(s,s_{goal}))$
 - Multiple goals or paths to goal
 - h(s) less than minimum cost over all paths to goals
 - Example: Find a path to the nearest post office
 - Doesn't matter what post office you get to
 - h(s) must be less then cost of shortest path to nearest post office
- Examples
 - Robot in plane
 - Euclidean distance
 - Robot in grid
 - Manhattan distance
 - Mahjong Solitaire
 - 1/2 * number of tiles left

- Proof that search with admissible heuristic will always return optimal path to goal
- Assumptions
 - All actions have positive cost
 - h(s) is admissible
 - $h(s) \le cost(path(s,s_{goal}))$
 - Search expands nodes using priority queue ordered by g(s)
 - g(s) = cost(path(s_{initial},s)) + h(s)

A* Search Example

- Map of driving routs
 - Find shortest rout
 - Heuristic = DirectEuclidean distance to goal

City	h(s) = direct distance to Amarillo
Wichita Falls	220
Dallas	330
Austin	505
Houston	605
San Antonio	445
San Angelo	315
El Paso	440
Laredo	670
Brownsville	795

How can we apply A* to problems with continuous state spaces?

Robot in XY-plane

A* for continuous state space

- Generate graph in space of problem
- Grid up state space
 - What resolution to use
 - More cells ⇒ higher computation cost
 - Complexity exponential with respect to dimension of state space
 - O(x^d)
 - Curse of dimensional
- Generate graph in space of problem
 - Example robotics
- Adaptive grid
 - Recursively subdivide cells that are interesting
 - Example: Robotics use higher resolution cells in difficult regions

