

Спецкурс: системы и средства параллельного программирования.

Отчёт № 3.

Параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью "решета Эратосфена".

Работу выполнил **Ухин С.А**

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью "решета Эратосфена". Оценить: суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов. Во время выполнения не включать время ввода/вывода.

Формат командной строки: <первое число из диапазона> <последнее число из

Формат командной строки: <первое число из диапазона> <последнее число из диапазона> <имя выходного файла для хранения списка простых чисел в текстовом виде через пробелы>.

Результаты выполнения.

Оценить: суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов. Во время выполнения не включать время ввода/вывода.

Проводились тесты по замеру суммарного времени для всех процессов и максимального времени выполнения среди всех процессов в зависимости от числа процессов.

Результаты:

Кол-во процессов	10	16	32	64
суммарное время выполнения для всех процессов	17.4188 сек	18.0551 сек	17.1874 сек	20.6777 сек
максимально е время выполнения среди всех процессов	2.15117 сек	1.38805 сек	0.637713 сек	0.441259 сек

Основные выводы

Исследования показывают, что при большем количестве процессов скорость работы одного процесса повышается, но скорость работы программы остается примерно на одном уровне из-за наклодных расходов.