

GRUNDLAGEN DER ELEKTROTECHNIK 1 - ET1

Teil 08

Elektrisches Feld und Kondensator

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

WECHSELSTROM

Inhalte der Kapitel 5 bis 7: Wechselstrom

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Punktladungen
- 5.6 Kondensator

REVIEW: ELEKTRISCHE FELDSTÄRKE E

Um Ladungen unterschiedlicher Polarität zu trennen, muss man von außen Energie aufbringen.

Es entsteht ein elektrisches Feld.

Elektrische Feldstärke E = Kraft F auf Ladung Q bezogen auf Q

$$E = \frac{F}{O}$$
 mit $[E] = 1\frac{N}{C} = 1\frac{Nm}{Cm} = 1\frac{VAs}{Asm} = 1\frac{V}{m}$

REVIEW: ELEKTRISCHES FELD

elektrisches Feld: Kraftwirkung auf geladene Teilchen

elektrischer Strom: geordnete Bewegung von Ladungsträgern

elektrische Feldstärke: E = F/Q

Woran erkennt man die Feldstärke?

Kraft auf ein ladungs trager?

HOMOGENES FELD

an jedem Ort die gleiche Feldstärke (Betrag und Richtung)

Frage:

Was bedeutet dies für die Feldlinien?

Porabel + gleicher Abstand

REVIEW: ELEKTRISCHE ARBEIT

Frage:

 Welche Arbeit muss man in einem homogenen Feld aufwenden, um eine Ladung entlang einer Feldlinie zu bewegen?

Welcher Potentialdifferenz entspricht dies?

$$U = \frac{W}{Q} = E \cdot S \qquad \Rightarrow E = \frac{1}{S}$$

FELDLINIEN UND ÄQUIPOTENTIALLINIEN

Frage: Was sind Äquipotentialflächen?

Flache gleichen Potentials

- bei zweidimensionaler Darstellung → Äquipotentiallinien
- schneiden sich immer im rechten Winkel mit Feldlinien

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Punktladungen
- 5.6 Kondensator

INHOMOGENES FELD

Inhomogen ⇔ Feldstärke ist nicht an jedem Ort gleich

Allgemeine Eigenschaften von Feldlinien:

- Feldlinien beginnen bei positiven Ladungen und enden auf negativen Ladungen
- Feldlinien stehen senkrecht auf sehr gut leitenden Flächen
- Feldlinien schneiden sich nicht

INHOMOGENES FELD

Beispiel:

SPANNUNGSBERECHNUNG IM INHOMOGENEN FELD

- 1. Zerlegung eines "Weges" in gerade Teilstücke $\Delta \vec{s}$
- 2. Bei $E \cdot s$ wirkt nur die Feldstärke in Richtung des Weges $\Delta \vec{s}$

$$\Rightarrow \vec{E} \cdot \overrightarrow{\Delta s} = E \cdot \Delta s \cdot \cos \angle (\vec{E}, \overrightarrow{\Delta s})$$

$$\Rightarrow U_{12} = E_1 \Delta s_1 + E_2 \Delta s_2 + \dots \Rightarrow U_{12} = \int_1^2 \vec{E} \cdot \overrightarrow{ds}$$

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Punktladungen
- 5.6 Kondensator

LADUNGSTRENNUNG DURCH INFLUENZ

Influenzladung Qauf Fläche A

Ladungsmenge hängt von der Fläche ab:

⇒ Definition der elektrischen Flussdichte

Flussdichte *D* ist proportional zur Feldstärke:

- ε : Permittivität mit $\varepsilon = \varepsilon_0 \varepsilon_r$
- $\varepsilon_0 = 8,854 \cdot 10^{-12} As/Vm$: Permittivität des Vakuums
- ε_r : relative Permittivität (Materialkonstante)

$$Q \sim A$$

$$D = \emptyset$$

$$D = \mathcal{E} = \mathcal{E}_{o} \mathcal{E}_{v}$$

$$\mathcal{E}_{psilov}$$

FLUSSDICHTE

Die Flussdichte ist eine Feldeigenschaft.

$$\Rightarrow D = \frac{Q}{A}$$
 gilt auch ohne eingebrachte Metallplatten!

BESTIMMUNG DER LADUNG Q ÜBER D \bigcirc = \bigcirc

Es gilt für eine kleine Fläche ΔA , wenn D senkrecht zu ΔA :

$$D = \frac{\Delta Q}{\Delta A}$$

Allgemein gilt für ΔQ mit der Flächennormalen $\Delta \vec{A}$:

$$\Delta Q = \vec{D} \cdot \Delta \vec{A}$$
Sha la prolut

Die Gesamtladung ergibt sich als Summe aller Teilladungen über eine geschlossene Fläche.

Maxwellsche Gleichung auch: Gaußsches Gesetz

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität &
- 5.5 Punktladungen
- 5.6 Kondensator

MATERIE IM FELD

Was passiert wenn ein Isolator zwischen zwei geladene Platten gebracht

wird?

MATERIE IM FELD $\Rightarrow Q^{\uparrow}$

- Spannung U bleibt konstant
- Aus E = U/d folgt dass die Feldstärke unverändert bleibt
- Mit $\varepsilon_r > 1$ folgt aus $D = \varepsilon_0 E$ dass die Flussdichte steigt when $\varepsilon_r = 0$
- Aus $D^{\dagger} = Q^{\dagger}/(A)$ folgt dass die Ladung steigt wit $D^{\dagger} \rightarrow Q^{\dagger}$
- → Grund hierfür: Moleküle polarisiert

Typische Werte für ε_r :

• Luft:

- $\overline{1}$
- Kunststofffolie
- 2 ... 4
- Papier, imprägniert 4 ... 6
- Glas 5 ... 16
- Aluminiumoxid

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Punktladungen
- 5.6 Kondensator

PUNKTLADUNG

Ladung auf einer Kugel mit vernachlässigbarem Radius

Frage:

Wie kann man das Feld einer Punktladung berechnen?

$$Q = \oint_{A} \overrightarrow{D} \cdot d\overrightarrow{A} = D \cdot 4\pi \cdot r^{2}$$

$$\Rightarrow E = \frac{Q}{4\pi\varepsilon \cdot r^{2}}$$

Bei Punktladung anwendbar?

KRAFTWIRKUNG ZWISCHEN PUNKTLADUNGEN

Frage:

Wie groß ist die Kraft zwischen zwei Punktladungen Q_1 und Q_2 im Abstand a voneinander?

Frage:

COULOMBSCHES GESETZ

gleichnamige geladene Kugeln stossen sich ab

Frage:

Was hat Coulomb in seinen Versuchen mit geladenen Kugeln in 1785 festgestellt?

• Kraft $F \sim Q$

• Kraft
$$F \sim \frac{1}{2}$$

entgegengesetzt geladene Kugeln ziehen sich an

Coulombsches Gesetz:

$$F_C = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 \cdot Q_2}{r^2}$$

Permittivität des Vakuums:

$$\varepsilon_0 = 8,854 \cdot 10^{-12} \frac{As}{Vm}$$

WECHSELSTROM

Inhalte der Kapitel 5 bis 7: Wechselstrom

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität

5.5 Kondensator

Definition der Kapazität

Kondensatorgleichung

Reihen- und Parallelschaltung

Energie im Kondensator

Berechung der Kapazität

Bauformen

KONDENSATOR

- zwei parallele Metallplatten in definiertem Abstand d
- isolierender Abstandshalter heißt Dielektrikum
- ⇒ elektronisches Bauelement, das Ladung speichert

Schaltzeichen

C: Capacitor (engl.)

d: Plattenabstand

A: Fläche einer Platte

KAPAZITÄT

Ladungsmenge Q ist proportional zur Spannung U

$$\Rightarrow Q \propto U$$

⇒ Proportionalitätskonstante heißt **Kapazität** *C*

$$Q = C \cdot U \implies C = \frac{Q}{U}$$

$$[C] = 1 As/V = 1 F$$
 (Farad)

ANALOGIE ZUM WASSERMODELL

Frage:

Womit kann man einen Kondensator vergleichen?

Analogie zum Wassereimer

- Ladungsmenge Q: Wasser meuge
- Spannung $U: \exists ullstand$
- · Kapazität C: 6 mod plache

WOZU IST DER KONDENSATOR GUT?

Ladungsspeicher

Frequenzabhängiger Widerstand

→ Hochpass- oder Tiefpassfilter

Schwingkreise

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Kondensator

Definition der Kapazität

Kondensatorgleichung

Reihen- und Parallelschaltung

Energie im Kondensator

Berechung der Kapazität

Bauformen

KONDENSATORGLEICHUNG

Bei einer veränderlichen Spannung am Kondensator gilt:

$$\underline{q(t)} = C \underline{u(t)} \quad | \quad ddt \rightarrow dq/dt = d/dt (G \cdot u(t)) = G \cdot \frac{du}{dt}$$

Zusammenhang zwischen Ladung q und Strom i:

$$i = \frac{dq}{dt}$$

Beiderseitiges Ableiten der ersten Gleichung ergibt:

$$i = 2 \cdot \frac{d4}{da}$$

Kondensatorgleichung

⇒ Es fließt nur dann ein Strom, wenn 51ch dre Spanny änder

STROM UND SPANNUNG AM KONDENSATOR

Gegeben: $u(t) = u = \hat{u} \sin(\omega t)$

$$\Rightarrow i = \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \cdot \sin(\omega t) \right) = \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$= \frac{\partial}{\partial t} \cdot \frac{\partial}{\partial t} \left(\sin(\omega t) \right)$$

$$=$$

folgt
$$\frac{\sqrt{5 \pi \sigma w}}{\sqrt{2}}$$
 um $\pi/2$

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Kondensator

Definition der Kapazität

Kondensatorgleichung

Reihen- und Parallelschaltung

Energie im Kondensator

Berechung der Kapazität

Bauformen

REIHENSCHALTUNG VON KONDENSATOREN

Durch beide Kondensatoren fließt derselbe Strom und es gilt:

$$i = \frac{dq}{dt} \Rightarrow Q_1 = Q_2 = Q$$

Für die Gesamtspannung gilt:

$$u = u_1 + u_2$$

Mit der Definitionsgleichung der Kapazität
$$C_{i} = q/u_{i}$$
 folgt:

$$u = \frac{Q_{1}}{Q_{1}} + \frac{Q_{2}}{Q_{2}} = \frac{Q_{1}}{Q_{1}} + \frac{Q_{2}}{Q_{2}}$$

$$\Rightarrow \frac{1}{Q_{3}} = \frac{1}{Q_{1}} + \frac{1}{Q_{2}}$$

"Reihenschaltung von Kondensatoren wie Parallelschaltung von Widerständen"

PARALLELSCHALTUNG VON KONDENSATOREN

Aus der Kirchhoffschen Knotenregel folgt:

$$i = \frac{1}{1} + \frac{1}{2}$$

Aus
$$q = \int idt$$
 folgt damit:
$$\frac{dq}{dt} = i \int q = \int idt$$

$$q = \int idt = \int idt + \int idt = f_1 + f_2$$

Mit der Definitionsgleichung der Kapazität C = q/u folgt:

$$q = \frac{2}{3} \times 1 = \frac{2}{3} \times 1 + \frac{2}{3} \times 1 \Rightarrow$$

$$= \frac{2}{3} \times 1 + \frac{2}{3} \times 1 \Rightarrow$$

$$\dot{Q}_{J} = \dot{Q}_{1} + \dot{Q}_{2}$$

5 ELEKTRISCHES FELD

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Kondensator

Definition der Kapazität

Kondensatorgleichung

Reihen- und Parallelschaltung

Energie im Kondensator

Berechung der Kapazität

Bauformen

ENERGIE IM KONDENSATOR

Ladevorgang eines Kondensators:

Ladungsmenge um den Kondensator zu laden:

$$Q = C U$$

Arbeit während des Ladens gegeben durch:

$$w(t) = u(t) \cdot q(t) = U(t) \cdot c \cdot u(t)$$

Da die Spannung nicht konstant während des Ladens ist sondern von 0 auf U steigt ist die aufzubringende Arbeit gegeben durch:

$$W = \frac{1}{2}C \cdot U^2$$

5 ELEKTRISCHES FELD

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Punktladungen
- 5.6 Kondensator

Definition der Kapazität

Kondensatorgleichung

Reihen- und Parallelschaltung

Energie im Kondensator

Berechung der Kapazität

Bauformen

FELDSTÄRKE IM PLATTENKONDENSATOR

Elektrisches Feld
 (Kraftwirkung auf Ladung *Q*)

$$E = \frac{1}{2} \sqrt{Q}$$

2. Elektrische Spannung U (Arbeit um Ladung Q zu bewegen)

Das elektrische Feld in einem Plattenkondensator ist homogen, also überall gleich. (Stärke und Richtung)

3. Arbeit (nur wenn *F* konstant, wie im Plattenkondensator)

$$W = \overline{f}, s = \overline{f}, d$$

Damit folgt für den Kondensator: $U = \sqsubseteq \cdot$

$$\Rightarrow E = \sqrt[4]{d}$$

FLUSSDICHTE IM PLATTENKONDENSATOR

Bestimmung der Ladung Q über Flussdichte D

$$Q = \oint_{A} \vec{D} \cdot d\vec{A} = \mathbf{D} \cdot \mathbf{A}_{\delta}$$

mit der Plattenfläche A c

KAPAZITÄT DES PLATTENKONDENSATORS

Für den Plattenkondensator gilt:

$$U = E \cdot d$$

$$Q = D \cdot A$$

$$D = \varepsilon \cdot E \implies$$

$$\Rightarrow C = \frac{D \cdot A}{U} = \frac{\mathcal{E} \cdot \mathcal{E}_r (\vec{E})}{U} A = \mathcal{E} \cdot \mathcal{E}_r \cdot \frac{\mathcal{X}}{U} \cdot \frac{A}{U} = \mathcal{E} \cdot \mathcal{E}_r \cdot \frac{A}{U}$$

WIE ERZIELE ICH EINE HOHE KAPAZITÄT?

$$C = \frac{Q}{U} = \underline{\varepsilon_0} \cdot \widehat{\varepsilon_r} \cdot \frac{A^{\prime}}{d}$$

Hohe Kapazität erfordert:

- $A \uparrow$
 - Aufwickeln
 - Aufrauhen der Fläche (Ätzen)
- d↓
 - dünne Schicht, aber: Durchschlagsgefahr
- $\varepsilon_r \uparrow$

Luft:

Kunststofffolie 2 ... 4

Papier, imprägniert 4 ... 6

Glas 5 ... 16

Aluminiumoxid 8

Tantaloxid 25

Keramik 6 ... 50 000

5 ELEKTRISCHES FELD

- 5.1 Homogenes Feld
- 5.2 Inhomogenes Feld
- 5.3 Influenz
- 5.4 Permittivität
- 5.5 Punktladungen
- 5.6 Kondensator

Definition der Kapazität

Kondensatorgleichung

Reihen- und Parallelschaltung

Energie im Kondensator

Berechung der Kapazität

Bauformen

BAUFORMEN

Metallfolie + Dielektrikumsfolie

K: Kunststofffolie

KP: Polypropylen

KS: Polystyrol

2 pF ... 500 nF

Metallisierte Dielektrikumsfolie Elektrolyt-Kondensator

MP: Papier

MK: Kunststofffolie

MK: 100 pF ... 10 μF

MP: 100 pF ... 10 mF

Al-Elko: Aluminium Ta-Elko: Tantal

Al: 1 μF ... 1 F

Ta: 100 nF ... 1 mF

Keramik-Kondensator

NDK: niedriges ε_r HDK: hohes ε_r

1 pF ... 1 µF

DC bis NF HF

GOLDCAP® - DOPPELSCHICHTKONDENSATOR

- Electric double layer capacitor (EDLC)
- Kapazität bis einige 100 F
- Prinzip:

Dielektrikum aus einer nur wenige Atomlagen dicken Ionen-Schicht

+ große Fläche durch Rauheit

Anwendung: Energiespeicher für unbegrenzte Anzahl von

Ladungszyklen

WAS SIE MITNEHMEN SOLLEN...

Begriffe

- Feldlinie
- Äquipotentiallinie

homogenes und inhomogenes Feld

- Unterschied verstehen
- Ausrichtung von Feldlinien und Äquipotentiallinien kennen
- Spannung und Feldstärke im homogenen Feld berechnen können

Influenz

- Effekt der Influenz beschreiben können
- Definition der Flussdichte kennen und anwenden können
- Anwendung der Flussdichte verstehen

Zusammenhang zwischen Q, E, D, U

- formelmäßigen Zusammenhang zwischen den Größen verstehen
- Formeln anwenden können

Permittivität

Begriff verstehen und erklären

WAS SIE MITNEHMEN SOLLEN...

Kondensator

- Aufbau und Funktionsprinzip verstehen und erklären
- Definition der Kapazität kennen: C =
- Kondensatorgleichung herleiten und anwenden: i =
- Reihen- und Parallelschaltung von Kondensatoren
 - Reihenschaltung: C =
 - Parallelschaltung: C =
- Energie im Kondensator berechnen: W=
- Kapazität eines Kondensators berechnen: C =
- Bauformen erkennen