Equational Criterion of Flatness

ゆじ

2021年12月11日

これは平坦性の Equational Criterion などに関するノートである。このノートでは、可換環のことをたん に環と呼ぶ。平坦加群の定義は、以下を採用する:

Definition 0.1. A を環とする。A-加群 M が平坦 (flat) であるとは、任意の単射 $N_1 \rightarrow N_2$ に対して $N_1 \otimes_A M \to N_2 \otimes_A M$ も単射であることを言う。

$$\int_{0}^{\infty} \text{Faltings}(x)dx = asrf$$

$$= href.$$
(1)

$$= href. (2)$$

定義など 1

圏 \mathcal{C} と対象 $x \in \mathcal{C}$ に対して、 $\mathcal{C}_{/x}$ により slice 圏を表す。圏 $\mathcal{C}_{/x}$ の対象は x への \mathcal{C} の射 $y \to x$ であり、圏 $C_{/x}$ の射は x への射と可換であるような C の射である。

Definition 1.1. 圏 I が filtered であるとは、以下の条件を満たすことを言う:

- (i) $I \neq \emptyset$ である。
- (ii) 任意の対象 $i,j \in I$ に対し、対象 $k \in I$ と射 $i \to k, j \to k$ が存在する。
- (iii) 任意の対象 $i, j \in I$ と任意の射 $f, g: i \to j$ に対し、ある射 $h: j \to k$ が存在し、 $h \circ f = h \circ g$ となる。

このノートの話は、filtered category の定義の条件 (iii) が本質的な役割を果たす話である。

Definition 1.2. filtered category I の充満部分圏 J が **cofinal** であるとは、任意の対象 $i \in I$ に対してある 対象 $j \in J$ と I の射 $i \rightarrow j$ が存在することを言う。

filtered category の cofinal な部分圏はまた filtered となることが容易に確認できる。

有限表示加群

この節では有限表示加群とコンパクト性に関する Remark をする。

Definition 2.1. A を環、M を A-加群とする。圏 \mathcal{I}_M を以下で定める:

ullet 圏 \mathcal{I}_M の対象は、A-加群の射の列

$$F_2 \xrightarrow{\varphi} F_1 \xrightarrow{p_{\varphi}} M$$

であり、以下を満たすものである:

- (i) F_1, F_2 は有限ランク自由加群。
- (ii) $p_{\varphi} \circ \varphi = 0$.

圏 \mathcal{I}_M の対象はたんに $\varphi: F_2 \to F_1$ や φ のように表される。

• 二つの対象 $\varphi: F_2 \to F_1, \varphi': F_2' \to F_1'$ の間の射の集合は、

$$\operatorname{Hom}_{\mathcal{I}_M}(\varphi,\varphi') \stackrel{\operatorname{def}}{=} \operatorname{Hom}_{(\mathsf{Mod}_A)_{/M}}(\operatorname{coker}(\varphi),\operatorname{coker}(\varphi'))$$

と定める。

 $(\mathsf{Mod}_A)_{/M}$ の有限表示部分加群のなす充満部分圏を $\mathsf{FP}_{/M}$ と置く。定義から、函手

$$\mathcal{I}_M \to \mathsf{Mod}_A, (\varphi : F_2 \to F_1) \mapsto \mathrm{coker}(\varphi)$$

により \mathcal{I}_M は $\mathsf{FP}_{/M}$ と圏同値となる。

Remark 2.2. 圏 \mathcal{I}_M の二つの対象 $\varphi: F_2 \to F_1, \varphi': F_2' \to F_1'$ と任意の射 $f: \operatorname{coker}(\varphi) \to \operatorname{coker}(\varphi')$ に対し、ある $f_2: F_2 \to F_2', f_1: F_1 \to F_1'$ が存在して f は f_1, f_2 が余核の間に引き起こす射と一致する。証明は、射影分解の取り方が up to quasi-isomorphism で一意的であることの証明と全く同様である。これから、圏 \mathcal{I}_M の射は二つの射 $f_2: F_2 \to F_2', f_1: F_1 \to F_1'$ で図式

$$F_2' \xrightarrow{\varphi'} F_1' \longrightarrow M$$

$$f_2 \downarrow \qquad \qquad \downarrow f_1 \qquad \qquad \parallel$$

$$F_2 \xrightarrow{\varphi} F_1 \longrightarrow M$$

が可換となるものにより代表できる。

Lemma 2.3. 任意の環 A と任意の A-加群 M に対して \mathcal{I}_M は filtered である。

Proof. $\mathsf{FP}_{/M}$ が filtered であることから従う。

Remark 2.4. 環 A と A-加群 M に対し、以下が成り立つ:

$$M \cong \operatorname{colim}_{N \in \mathsf{FP}_{/M}} N \cong \operatorname{colim}_{\varphi \in \mathcal{I}_M} \operatorname{coker}(\varphi).$$

自然な射 ${
m colim}_{N\in {\sf FP}_{/M}} o M$ は明らかに全射である。単射であることは ${\sf FP}_{/M}$ が filtered であることから従う。特に、任意の A-加群は有限表示 A-加群の filtered colimit として表せる。

 ${f Remark~2.5.}~M$ が有限表示加群であれば、明らかに圏 ${\cal I}_M\cong {\sf FP}_{/M}$ は終対象を持つ。

Remark 2.6. F を有限ランク自由加群とし、 $N_i, i \in I$ を A-加群の filtered な族とする。このとき自然な射

$$\operatorname{colim}_{i \in I} \operatorname{Hom}_A(F, N_i) \xrightarrow{\sim} \operatorname{Hom}_A(F, \operatorname{colim}_{i \in I} N_i)$$

は同型射である。従ってとくに、任意の射 $F \to \operatorname{colim}_{i \in I} N_i$ はある $i \in I$ に対する自然な射 $N_i \to \operatorname{colim}_{i \in I} N_i$ を経由し、また、与えられた射 $F \to N_i$ が $N_i \to \operatorname{colim}_{i \in I} N_i$ と合成することで 0-射となるならば、ある

 $N_i \to N_j$ があって $F \to N_i \to N_j$ の合成が 0-射となる。以上の議論により、任意の対象 $\varphi \in \mathcal{I}_{\operatorname{colim}_{i \in I} N_i}$ に対しある $i \in I$ が存在して、 φ は $N_i \to \operatorname{colim}_{i \in I} N_i$ を合成することにより定まる函手 $\mathcal{I}_{N_i} \to \mathcal{I}_{\operatorname{colim}_{i \in I} N_i}$ の像に属する、ということがわかる。

M を有限表示加群とすると、圏 \mathcal{I}_M は終対象を持つ (cf. Remark 2.5)。任意の射 $M \to \operatorname{colim}_{i \in I} N_i$ に対して、この射を合成することにより定まる函手 $\mathcal{I}_M \to \mathcal{I}_{\operatorname{colim}_{i \in I} N_i}$ での終対象の像は、ある i に対する函手 $\mathcal{I}_{N_i} \to \mathcal{I}_{\operatorname{colim}_{i \in I} N_i}$ の像に属する。このことは、射 $M \to \operatorname{colim}_{i \in I} N_i$ がある $N_i \to \operatorname{colim}_{i \in I} N_i$ を経由することを示している。従って、自然な射

$$\operatorname{colim}_{i \in I} \operatorname{Hom}_A(M, N_i) \to \operatorname{Hom}_A(M, \operatorname{colim}_{i \in I} N_i)$$

は全射である。

Remark 2.7. M を A-加群であって、任意の A-加群の filtered な族 $N_i, i \in I$ に対して自然な射

$$\varphi : \operatorname{colim}_{i \in I} \operatorname{Hom}_A(M, N_i) \to \operatorname{Hom}_A(M, \operatorname{colim}_{i \in I} N_i)$$

が全射であるとする。このとき、M を有限表示 A-加群の filtered colimit として $M\cong \operatorname{colim}_{j\in J} M_j$ と表示することで、ある j が存在して $\operatorname{id}: M\to M\cong \operatorname{colim}_{j\in J} M_j$ が $M_j\to \operatorname{colim}_{j\in J} M_j$ を経由する。従って M は有限表示加群のレトラクトとなり、有限表示であることがわかる。Remark 2.6の結果とあわせると、以下が同値であることがわかったことになる:

- (i) M は有限表示加群である。
- (ii) 任意の A-加群の filtered な族 N_i , $i \in I$ に対して自然な射

$$\varphi: \operatorname{colim}_{i \in I} \operatorname{Hom}_A(M, N_i) \to \operatorname{Hom}_A(M, \operatorname{colim}_{i \in I} N_i)$$

は全射である。

3 テンソル積

この節ではテンソル積に関する Remark をする。

Definition 3.1. *A*-加群 M, N のテンソル積とは、次を満たす加群 $M \otimes_A N$ のことである:任意の A-加群 L に対して自然に

$$\operatorname{Hom}_A(M \otimes_A N, L) \cong \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L))$$

となる。

Remark 3.2. $\operatorname{Hom}_A(M,\operatorname{Hom}_A(N,L))\cong \operatorname{Hom}_A(N,\operatorname{Hom}_A(M,L))$ ొందినిస్ $M\otimes_A N\cong N\otimes_A M$ ొ సీప్య

Remark 3.3. テンソル積の存在は次のように示される:まず M,N の一方が自由加群である場合、 $M\cong A^{\oplus I}$ とすれば、 $\operatorname{Hom}_A(M,-)\cong (-)^{\prod I}$ となるので

$$\operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L)) \cong \operatorname{Hom}_A(N, L)^{\prod I} \cong \operatorname{Hom}_A(N^{\prod I}, L)$$

となる。つまりテンソル積 $A^{\oplus I}\otimes_A N$ は存在して自然な同型 $A^{\oplus I}\otimes_A N\cong N^{\oplus I}$ が成り立つ。次に M,N を任意の A-加群とする。M を自由加群の射の余核として表す。すなわち、

$$A^{\oplus I} \to A^{\oplus J} \to M \to 0$$

という完全列をひとつとる。 $\operatorname{Hom}_A(-,\operatorname{Hom}_A(N,L))$ は左完全であるから、

 $\operatorname{Hom}_A(M,\operatorname{Hom}_A(N,L))\cong \ker(\operatorname{Hom}_A(N^{\prod J},L) \to \operatorname{Hom}_A(N^{\prod I},L))\cong \operatorname{Hom}_A(\operatorname{coker}(N^{\oplus I} \to N^{\oplus J}),L)$ となることがわかる。特にテンソル積 $M\otimes_A N$ は存在する。

Lemma 3.4 (cf. [後藤渡辺, 1.106]). A を環、P を A-加群、M,N を A-加群、 $f:P\to M\otimes_A N$ を A-加群 の射とする。

- (i) P が有限表示であるとき、有限生成部分加群 $i: M_0 \xrightarrow{\subset} M, j: N_0 \xrightarrow{\subset} N$ と射 $g: P \to M' \otimes_A N'$ が存在し、 $f = (i \otimes j) \circ g$ となる。特に、射 $h_1: P \to M' \otimes_A N, h_2: P \to M \otimes_A N'$ が存在し、 $f = (i \otimes \mathrm{id}_N) \circ h_1, f = (\mathrm{id}_M \otimes j) \circ h_2$ となる。
- (ii) P が有限表示射影的であるとき、有限生成自由加群 F_1, F_2 、射 $i: F_1 \to M, j: F_2 \to N$ 、射 $g: P \to F_1 \otimes_A F_2$ が存在し、 $f = (i \otimes j) \circ g$ となる。特に、射 $h_1: P \to F_1 \otimes_A N, h_2: P \to M \otimes_A F_2$ が存在し、 $f = (i \otimes \mathrm{id}_N) \circ h_1, f = (\mathrm{id}_M \otimes j) \circ h_2$ となる。

 $Proof.\ M,N$ を有限生成部分加群の filtered colimit として表すことで、 $Remark\ 2.7$ より (i) がわかる。(ii) は (i) よりただちに従う。

Remark 3.5. Lemma 3.4 (ii) を P = A として適用することで、テンソル積 $M \otimes_A N$ の元はすべて有限個の $m_i \in M, n_i \in N$ により $\sum m_i \otimes n_i$ のように表せることがわかる。

4 平坦加群

Definition 4.1. A を環、M を A-加群とする。 $0 \to F_1$ という対象からなる \mathcal{I}_M の充満部分圏を \mathcal{J}_M と書く。これは $(\mathsf{Mod}_A)_{/M}$ の有限ランク自由加群のなす充満部分圏と自然に圏同値である。

 \mathcal{I}_M は filtered であったが、 \mathcal{J}_M は filtered とは限らない。本節ではそのことを見ていく。 \mathcal{J}_M は filtered category の条件 Definition 1.1 (iii) 以外を満たすことは容易にわかる (Lemma 2.3の証明と同じようにする)。

Lemma 4.2 (Equational Criterion of Flatness; cf. [松村, 定理 7.6]). A を環、M を平坦 A-加群とする。

$$F_2 \xrightarrow{\varphi} F_1 \xrightarrow{p} M$$

を圏 \mathcal{I}_M の対象とする。このとき、以下の図式が可換となるような有限自由加群 F' と射 $f:F_1 \to F', r:F' \to M$ が存在する:

$$F_2 \xrightarrow{\varphi} F_1 \xrightarrow{p} M$$

$$\downarrow \qquad \qquad f \downarrow \qquad \qquad \parallel$$

$$0 \xrightarrow{F'} \xrightarrow{r} M$$

特に、M が平坦であれば \mathcal{J}_M は \mathcal{I}_M において cofinal である。

Proof. 有限自由加群 F と A-加群 M に対して、自然な同型 $M\otimes_A F^*\cong \operatorname{Hom}_A(F,M)$ により両辺を同一視する。

 $\varphi^*: F_1^* \to F_2^*$ を φ の双対とし、 $k: \ker(\varphi^*) \to F_1^*$ を自然な包含射とする。M は平坦なので、自然な射 $M \otimes_A \ker(\varphi^*) \to \ker(\mathrm{id}_M \otimes \varphi^*)$ は同型射であり、特に全射である(この証明では、この射が全射であることしか必要ない! Remark 4.3も見よ)。 $p \circ \varphi = 0$ であるから $p \in \ker(\mathrm{id}_M \otimes \varphi^*)$ であり、よってある元 $q \in M \otimes_A \ker(\varphi^*)$ が存在して $p = (\mathrm{id}_M \otimes k)(q)$ となる。よって、Lemma 3.4 (ii) を $M = M, N = \ker(\varphi^*), P = A, f(1) = q \in M \otimes_A \ker(\varphi^*)$ として適用することで、ある有限ランク自由加群 F' と射 $g: F'^* \to \ker(\varphi^*)$ が $q \in \operatorname{Im}(\mathrm{id}_M \otimes g)$ となるようにとれる。すると、ある元 $r \in M \otimes_A F'^*$ が存在して $q = (\mathrm{id}_M \otimes g)(r)$ となる。自然な同型 $M \otimes_A F'^* \cong \operatorname{Hom}_A(F', M)$ のもとで $r: F' \to M$ と考える。 $f: F_1 \to F'$ を合成 $F'^* \xrightarrow{g} \ker(\varphi^*) \subset F_1^*$ の双対とする。図式

$$F_{2} \xrightarrow{\varphi} F_{1} \xrightarrow{p} M$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow F' \xrightarrow{r} M$$

はrの取り方と f^* が $\ker(\varphi^*)$ を経由することから可換である。

Remark 4.3. 一般に、A-加群の射 $f:N_1\to N_2$ と A-加群 M に対して、自然な射 $\varphi:M\otimes_A\ker(f)\to\ker(\mathrm{id}_M\otimes f)$ は全射ですらない。図式

$$M \otimes_A \ker(f) \longrightarrow M \otimes_A N_1 \longrightarrow M \otimes_A \operatorname{Im}(f) \longrightarrow 0.$$

$$\varphi \downarrow \qquad \qquad \qquad \downarrow \psi$$

$$0 \longrightarrow \ker(\operatorname{id}_M \otimes f) \longrightarrow M \otimes_A N_1 \xrightarrow{\operatorname{id}_M \otimes f} M \otimes_A N_2$$

を見れば、 $\mathrm{coker}(\varphi)\cong \mathrm{ker}(\psi)$ である。M が平坦でなければ ψ は一般に単射とはならないことは、平坦加群という用語が存在することからも十分に納得できる。

Remark 4.4. Lemma 4.2をより具体的に記述すると次のようになる: M が平坦 A-加群であるとき、

$$a_{ij}\in A, m_j\in M, (1\leq i\leq r, 1\leq j\leq n)$$
 が $\sum_i a_{ij}m_j=0, (\forall i)$ を満たす

ならば、正の整数 s と $b_{jk} \in A, n_k \in M, (1 \le j \le n, 1 \le k \le s)$ が存在して、

$$\sum_{j} a_{ij}b_{jk} = 0, (\forall i, k), \quad m_j = \sum_{k} b_{jk}n_k, (\forall j)$$

が成り立つ。実際、 m_j を与える自由加群からの射 $p:A^n\to M$ と a_{ij} を与える射 $\varphi:A^r\to A^n$ を取れば、条件 $\sum_j a_{ij}m_j=0$ は $p\circ\varphi=0$ ということである。さらに Lemma 4.2から射 $f:A^n\to A^s, r':A^s\to M$ が存在して

が可換となるが、f を与えることは b_{jk} を与えることと等しく、r' を与えることは n_k を与えることに等しく、 $f\circ\varphi=0$ は等式 $\sum_j a_{ij}b_{jk}=0$ を意味し、 $p=r'\circ f$ は等式 $m_j=\sum_k b_{jk}n_k$ を意味する。

Lemma 4.5. A を環、M を A-加群とする。このとき、次は同値:

- (i) *M* は平坦である。
- (ii) \mathcal{J}_M は \mathcal{I}_M において cofinal である。
- (iii) \mathcal{J}_M は filtered である。
- (iv) \mathcal{J}_M it filtered \mathcal{T} \mathcal{S} b, $M \cong \operatorname{colim}_{(F \to M) \in \mathcal{J}_M} F \mathcal{T}$ \mathcal{S} \mathcal{S} o

Proof. (i) \Rightarrow (ii) は Lemma 4.2そのものである。(ii) \Rightarrow (iii) は初等的な圏論によりわかる。また、(iv) \Rightarrow (i) は平坦加群の filtered colimit が平坦であることから従う。

(iii) \Rightarrow (iv) を確かめる。 \mathcal{J}_F が filtered であると仮定する。自然な射 φ : $\operatorname{colim}_{F\in\mathcal{J}_M}F\to M$ は明らかに 全射である。単射であることを示す。 $A\to\operatorname{colim}_{F\in\mathcal{J}_M}F$ を φ の核を与える射とすると、これはある自然な 射 $F\to\operatorname{colim}_{F\in\mathcal{J}_M}F$ を経由し、射 $f:A\to F$ を得る。また、 $A\to F\to M$ の合成は 0-射である。f と 0-射という二つの射 \mathcal{J}_M の射 $A\rightrightarrows F$ に \mathcal{J}_M が filtered であることの条件を使うと、ある $g:F\to F'$ が存在して $g\circ f=0$ となることがわかる。従って $A\to\operatorname{colim}_{F\in\mathcal{J}_M}F$ は 0-射であり、 φ は単射である。以上ですべて示された。

Corollary 4.6 (Lazard の定理: cf. [Stacks, Tag 058G]). A を環、M を A-加群とする。このとき M が平坦であることと、M が有限自由加群の filtered colimit として表せることは同値である。

Proof. Lemma 4.5より直ちに従う。

Corollary 4.7. A を環、M を有限表示平坦 A-加群とする。このとき M は射影的である。

Proof. 有限自由加群 F_2, F_1 と射 $F_2 \rightarrow F_1$ で

$$F_2 \to F_1 \to M \to 0$$

が完全となるものを一つとる。Equational Criterion より、以下の可換図式が存在する:

$$F_{2} \longrightarrow F_{1} \longrightarrow M$$

$$f_{2} \downarrow \qquad \qquad \downarrow f_{1} \qquad \qquad \parallel$$

$$0 \longrightarrow F \stackrel{r}{\longrightarrow} M.$$

ここで F は有限自由加群である。図式の可換性から $r:F\to M$ は全射である。また、 (f_2,f_1) が余核の間に引き起こす射 $M\to F$ は r の分裂を与える。よって M は射影加群である。

Remark 4.8. 有限生成平坦加群は一般に射影的とはならない (cf. [Stacks, Tag 00NY])。

Corollary 4.9. A を局所環、k を A の剰余体、M を有限生成平坦 A-加群とする。このとき M は自由 A-加群である。

Proof. M は有限生成なので、有限自由加群 F_1 と全射 $p:F_1\to M$ で $p\otimes 1:F_1\otimes_A k\to M\otimes_A k$ が同型となるものが存在する。p が同型射であれば良い。有限自由加群 F_2 と射 $\varphi:F_2\to F_1$ で $p\circ\varphi=0$ となるものを任意にとる。 φ が 0-射であることを示せば良い。Equational Criterion より、以下の可換図式が存在する:

$$F_2 \xrightarrow{\varphi} F_1 \xrightarrow{p} M$$

$$\downarrow \qquad \qquad \downarrow_f \qquad \qquad \parallel$$

$$0 \xrightarrow{F} \xrightarrow{r} M.$$

ここで F は有限自由加群である。図式の可換性から r は全射である。また p が全射であることと F が自由加群であることから、射 $q:F\to F_1$ が存在して以下の図式が可換となる:

$$F_1 \xrightarrow{f} F \xrightarrow{g} F_1$$

$$\downarrow^p \qquad \qquad \downarrow^p$$

$$M = M = M.$$

図式全体に k をテンソルして中山の補題を用いることで、 $g\circ f: F_1\to F_1$ は全射であることがわかる。 F_1 は有限自由加群であるので、よって $g\circ f$ は同型射であり、特に f は単射であることがわかる。一方、 $f\circ \varphi=0$ であったから、 φ は 0-射である。従って p は単射となる。

5 ねじれなし加群

この節はおまけみたいな感じで書いてます。

Definition 5.1. A を整域、M を A-加群とする。M が**ねじれなし** (torsion free) であるとは、任意の元 $0 \neq a$ に対して a 倍写像 $M \to M$ が単射であることを言う。

Lemma 5.2. A を整域、M を A-加群、K を A の商体とする。以下は同値:

- (i) *M* はねじれなしである。
- (ii) 自然な包含射 $A \subset K$ により引き起こされる射 $M \to M \otimes_A K$ は単射である。
- (iii) 任意の一元生成イデアルI に対して、 $\operatorname{Tor}_1^A(A/I, M) = 0$ である。
- (iv) 任意の素イデアル \mathfrak{p} に対して $M_{\mathfrak{p}}$ はねじれなし $A_{\mathfrak{p}}$ -加群である。
- (v) 任意の極大イデアル \mathfrak{m} に対して $M_{\mathfrak{m}}$ はねじれなし $A_{\mathfrak{m}}$ -加群である。

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) は定義より従う。局所化は平坦であるから、(ii) \Leftrightarrow (iv) が従う。(iv) \Leftrightarrow (iii) は自明である。A-加群 $\ker(M \to M \otimes_A K)$ が 0 かどうかは、任意の極大イデアルによる局所化で 0 となるかどうかであるから、(v) \Leftrightarrow (ii) が従う。以上ですべて示された。

Corollary 5.3. 平坦加群はねじれなし加群である。

Proof. Lemma 5.2の (i) ⇔ (iii) より従う。

Definition 5.4. 整域 *A* が **Prüfer 整域**であるとは、すべてのねじれなし加群が平坦であることを言う。

Corollary 5.5. 任意の局所環が付値環であれば Prüfer 整域である。特に、Dedekind 環と付値環は Prüfer 整域である。

Proof. 環 A は任意の局所環が付値環であるとする。M を A 上のねじれなし加群とする。局所化をすることで、A は付値環であるとしても良い。よって A の任意の有限生成イデアルは一元生成である。従って $(\mathbf{i})\Leftrightarrow$ (\mathbf{iii}) より M は平坦となる $(\mathbf{cf.}$ $[\mathit{アティマク},$ 演習 2.26])。

Proposition 5.6. A を Prüfer 整域とする。このとき任意の素イデアル $\mathfrak p$ に対して $A_{\mathfrak p}$ は付値環である。特に、Noether な Prüfer 整域は Dedekind 環となる。

Proof. A を局所 Prüfer 整域として、A が付値環であることを示せば良い。I を A の有限生成イデアルとする。A が付値環であることを示すには、I が一元生成であることを示せば良い (cf. [Stacks, Tag 090Q])。I は ねじれなし A-加群 A の部分加群なのでねじれなしである。従って平坦である。一方、A は局所環であり、I は有限生成平坦加群であるので、C orollary A-の存在は、A-の存在は A-の存在は A-の存在は

参考文献

[アティマク] M. Atiyah, I. Macdonald, (新妻 弘 訳), 「可換代数入門」, 共立出版, (2006). [後藤渡辺] 後藤 四郎, 渡辺 敬一, 「可換環論」, 日本評論社, (2011). [松村] 松村 英之, 「可換環論」, 共立出版, (1980).

[Stacks] The Stacks Project Authors, Stacks Project.