Лабораторная работа 4.2.2

Интерферометр Жамена

```
In [4]: import numpy as np
import scipy as ps
import pandas as pd
import math
import matplotlib.pyplot as plt
%matplotlib inline
```

Калибровка компенсатора

Выполним калибровку компенсатора, выделив узкий интервал длин волн с помощью светофильтра.

```
In [5]: data1 = pd.read_excel('lab-422.xlsx', 'table-1')
pd.DataFrame(data1)
```

Out[5]:

	$z_m,$ mm
0	15.27
1	15.31
2	15.36
3	15.42
4	15.47
5	15.52
6	15.57
7	15.64
8	15.69
9	15.74
10	15.79

```
In [6]: l = 100 # Длина кюветы (мм)
Lambda = 650 # Длина волны (нм)
```

По полученным значениям построим калибровочный график $z_m=f(m).$

```
In [8]: x1 = np.array(range(11))
y1 = np.array(data1.values[:, 0], dtype = float)

k1, b1 = np.polyfit(x1, y1, deg = 1)

plt.figure(figsize = (10, 6))
plt.title('График зависимости $z_m = f(m)$', fontsize=16)
plt.ylabel('$z_m, мм$', fontsize=12)
plt.xlabel('$m$', fontsize=12)

plt.scatter(x1, y1)
plt.plot(x1, x1 * k1 + b1)
plt.grid(linestyle = '--')

plt.show()
```


Рассчитаем среднее расстояние между соседними интерференционными полосами.

```
In [10]: distance = 0
    for i in range(10):
        distance += math.fabs(y1[i] - y1[i + 1])
        distance /= 11
        print(distance, 'MM')
```

0.047272727272724 MM

Зависимость $\,\delta n\,$ от $P\,$ воздуха

Снимем зависимость показаний компенсатора Δz от перепада давлений ΔP и построим по полученным данным график $\Delta z = f(\Delta P)$.

In [11]: data2 = pd.read_excel('lab-422.xlsx', 'table-2')
 pd.DataFrame(data2)

Out[11]:

	ΔP , mm H_2O	z, mm
0	-100	15.27
1	0	15.26
2	150	15.22
3	300	15.19
4	450	15.15
5	-250	15.32
6	-350	15.34
7	-500	15.38
8	-650	15.40
9	-750	15.43
10	-850	15.45

```
In [12]: x2 = np.array(data2.values[:, 0], dtype = float)
y2 = np.array(data2.values[:, 1], dtype = float)
y2 = np.array([each - b1 for each in y2])

k2, b2 = np.polyfit(x2, y2, deg = 1)

plt.figure(figsize = (10, 6))
plt.title('График зависимости $\Delta z = f(\Delta P)$', fontsize=16)
plt.ylabel('$\Delta z, MM$', fontsize=12)

plt.xlabel('$\Delta P, MM H_20$', fontsize=12)

plt.scatter(x2, y2)
plt.plot(x2, x2 * k2 + b2)
plt.grid(linestyle = '--')

plt.show()
```


Используя формулу $\delta n=rac{\Delta}{l}=mrac{\lambda}{l}$, где m – число полос, на которые сместилась картина, перейдем от делений компенсатора Δz к величине δn .

$$\delta n = rac{\Delta z}{d} rac{\lambda}{l}$$
, d – расстояние между соседними полосами

Следовательно, $\frac{\delta n}{\Delta P} = \frac{\Delta z}{\Delta P} \frac{\lambda}{dl}$.

In [14]: result = math.fabs(k2 * Lambda *
$$10**(-6)$$
 / (distance * l * $(10**(-2)$ * $1.0197)$)) print(result, '1/ β ')

3.1117247016716403e-06 1/B

Рассчитаем среднюю поляризуемость молекулы: $lpha=rac{\delta n}{\Delta P}rac{k_{ exttt{B}}T}{2\pi}$

2.0376763229722413e-20

А также показатель преломления воздуха в условиях опыта по формуле $n-1=2\pilpharac{P}{k_{\scriptscriptstyle B}T}$

0.00031836988940213054

Сравним результаты с табличными, пересчитав для лабораторных условий значения коэффициента преломления воздуха по следующей формуле: $\dfrac{n_0-1}{n-1}=\dfrac{TP_0}{T_0P}$, где $P_0=1$ атм, $T_0=273K$. Тогда n_0-1 :

Out[19]: 0.0002916610060630256

Результаты совпадают с табличными (0.0002926) по порядку величины.

Сравнение показателей преломления воздуха и углекислого газа при атмосферном давлении

Определим новое положении нулевой полосы после впускания углекислого газа: CO_0 10.44 15.20 11.10

$$z_0^{CO_2}=16.44$$
мм, следовательно: $\Delta z=z_0^{CO_2}-z_0=(16.44-15.26)$ мм $=1.18$ мм

Рассчитаем показатель преломления углекислого газа по формуле $n=n_{_{{ t BO3Д}}}+rac{\Delta}{l}=n_{_{{ t BO3Д}}}+rac{m\lambda}{l}.$

0.00048061988940213067

Сравним результаты с табличными, пересчитав для лабораторных условий значения коэффициента преломления воздуха:

Out[23]: 0.00044029942888181765

Результаты совпадают с табличными (0.0004506) по порядку величины.

Установка оказалась абсолютно герметичной (т.к. со временем полосы не смещались).