Chapter 2 Context-Free Languages

CS 341: Foundations of CS II

Contents

Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102

- Context-Free Grammar (CFG)
- Chomsky Normal Form
- Pushdown Automata (PDA)
- \bullet PDA \Leftrightarrow CFG
- ullet Regular Language \Rightarrow CFL
- Pumping Lemma for CFLs

CS 341: Chapter 2

CS 341: Chapter 2

2-3

Context-Free Languages (CFLs)

Definition of CFG

2-4

- ullet Consider language $\{ 0^n 1^n \mid n \geq 0 \}$, which is nonregular.
- ullet Start variable S with "substitution rules":

$$S \rightarrow 0S1$$

- $S \to \varepsilon$
- ullet Rules can **yield** string 0^k1^k by
 - \blacksquare applying rule " $S \to 0S1$ " k times,
 - \blacksquare followed by rule " $S \to \varepsilon$ " once.
- **Derivation** of string 0^31^3

 $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000S111 \Rightarrow 000\varepsilon111 = 000111$

Definition: Context-free grammar (CFG) $G = (V, \Sigma, R, S)$ where

- 1. V is finite set of variables (AKA nonterminals)
- 2. Σ is finite set of **terminals** (with $V \cap \Sigma = \emptyset$)
- 3. R is finite set of substitution **rules** (AKA **productions**), each of the form

$$L \to X$$

where

- $L \in V$
- $X \in (V \cup \Sigma)^*$
- 4. S is **start variable**, where $S \in V$

Example of CFG

Example: Language $\{ 0^n 1^n | n \ge 0 \}$ has CFG $G = (V, \Sigma, R, S)$

- ullet Variables $V=\{S\}$
- ullet Terminals $\Sigma = \{0,1\}$
- ullet Start variable S
- ullet Rules R:

$$S \to 0S1$$
$$S \to \varepsilon$$

 Combine rules with same left-hand side in Backus-Naur (or Backus Normal) Form (BNF):

$$S \rightarrow 0S1 \mid \varepsilon$$

Deriving Strings Using CFG

Definition: If

- $ullet u,v,w\in (V\cup \Sigma)^*$, and
- $\bullet \ A \to w$ is a rule of the grammar,

then uAv yields uwv, written

$$uAv \Rightarrow uwv$$

Remark:

 A single-step derivation "⇒" consists of substituting a variable by a string of variables and terminals according to a substitution rule.

Example: With the rule " $A \rightarrow BC$ ", we can have $01AD0 \implies 01BCD0.$

CS 341: Chapter 2

Language of CFG

Definition: u derives v, written $u \stackrel{*}{\Rightarrow} v$, if

- $\bullet u = v$, or
- $\bullet \exists u_1, u_2, \dots, u_k$ for some $k \geq 0$ such that

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v$$

Remark: " $\stackrel{*}{\Rightarrow}$ " denotes a sequence of ≥ 0 single-step derivations.

Example: With the rules " $A \rightarrow B1 \mid D0C$ ",

$$0AA \stackrel{*}{\Rightarrow} 0D0CB1$$

Definition: The **language** of CFG $G = (V, \Sigma, R, S)$ is

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$$

Such a language is called **context-free**, and satisfies $L(G) \subseteq \Sigma^*$.

CS 341: Chapter 2

2-7

Example of CFG

- CFG $G = (V, \Sigma, R, S)$ with
- 1. $V = \{S\}$
- 2. $\Sigma = \{0, 1\}$
- 3. Rules R:

$$S \to 0S \mid \varepsilon$$

- Then $L(G) = \{ 0^n | n \ge 0 \}.$
- For example, S derives 0^3

$$S \Rightarrow 0S \Rightarrow 00S \Rightarrow 000S \Rightarrow 000\varepsilon = 000$$

- Note that \rightarrow and \Rightarrow are different.
 - $lue{}$ ightarrow used in defining rules
 - ⇒ used in derivation

Example of CFG

- CFG $G = (V, \Sigma, R, S)$ with
 - 1. $V = \{S\}$
 - 2. $\Sigma = \{0, 1\}$
 - 3. Rules R:

$$S \rightarrow 0S \mid 1S \mid \varepsilon$$

- Then $L(G) = \Sigma^*$.
- ullet For example, S derives 0100

$$S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010S \Rightarrow 0100S \Rightarrow 0100$$

Example of CFG

- CFG $G = (V, \Sigma, R, S)$ with
 - 1. $V = \{S\}$
 - 2. $\Sigma = \{0, 1\}$
 - 3. Rules R:

$$S \rightarrow 0S \mid 1S \mid 1$$

- Then $L(G)=\{\,w\in\Sigma^*\,|\,w=s1 \text{ for some }s\in\Sigma^*\,\}$, i.e., strings that end in 1.
- ullet For example, S derives 011

$$S \Rightarrow 0S \Rightarrow 01S \Rightarrow 011$$

CS 341: Chapter 2

Example of CFG

- CFG $G = (V, \Sigma, R, S)$ with
 - 1. $V = \{S, Z\}$
 - 2. $\Sigma = \{0, 1\}$
 - 3. Rules R:

$$S \to 0S1 \mid Z$$
$$Z \to 0Z \mid \varepsilon$$

- Then $L(G) = \{ 0^i 1^j | i \ge j \}.$
- \bullet For example, S derives $0^5 1^3$

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000S111 \Rightarrow 000Z111$$

 $\Rightarrow 0000Z111 \Rightarrow 00000Z111 \Rightarrow 000000\varepsilon111$
 $= 00000111$

CS 341: Chapter 2

2-11

CFG for Palindrome

- PALINDROME = { $w \in \Sigma^* | w = w^{\mathcal{R}}$ }, where $\Sigma = \{a, b\}$.
- CFG $G = (V, \Sigma, R, S)$ with
 - 1. $V = \{S\}$
 - 2. $\Sigma = \{a, b\}$
 - 3. Rules R:

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \varepsilon$$

- Then L(G) = PALINDROME
- \bullet S derives bbaabb

$$S \Rightarrow bSb \Rightarrow bbSbb \Rightarrow bbaSabb \Rightarrow bba\varepsilon abb = bbaabb$$

 \bullet S derives aabaa

$$S \, \Rightarrow \, aSa \, \, \Rightarrow \, \, aaSaa \, \, \Rightarrow \, \, aabaa$$

CFG for EVEN-EVEN

- Recall language EVEN-EVEN is the set of strings over $\Sigma = \{a, b\}$ with even number of a's and even number of b's.
- EVEN-EVEN has regular expression

$$(aa \cup bb \cup (ab \cup ba)(aa \cup bb)^*(ab \cup ba))^*$$

- CFG $G = (V, \Sigma, R, S)$ with
 - 1. $V = \{S, X, Y\}$
 - 2. $\Sigma = \{a, b\}$
 - 3. Rules R:

$$S \to aaS \mid bbS \mid XYXS \mid \varepsilon$$

$$X \to ab \mid ba$$

$$Y \to aaY \mid bbY \mid \varepsilon$$

• Then L(G) = EVEN-EVEN

CFG for Simple Arithmetic Expressions

- CFG $G = (V, \Sigma, R, S)$ with
 - 1. $V = \{S\}$
- 2. $\Sigma = \{+, -, \times, /, (,), 0, 1, 2, ..., 9\}$
- 3. Rules R:

$$S \rightarrow S + S \mid S - S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \cdots \mid 9$$

- \bullet L(G) is a set of valid arithmetic expressions over single-digit integers.
- S derives string $2 \times (3 + 4)$

$$S \Rightarrow S \times S \Rightarrow S \times (S) \Rightarrow S \times (S+S)$$

 $\Rightarrow 2 \times (S+S) \Rightarrow 2 \times (3+S) \Rightarrow 2 \times (3+4)$

CS 341: Chapter 2

Derivation Tree

• CFG

$$S \rightarrow S + S \mid S - S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \cdots \mid 9$$

• Can generate string $2 \times 3 + 4$ using derivation

$$S \Rightarrow S+S \Rightarrow S \times S+S \Rightarrow 2 \times S+S$$

 $\Rightarrow 2 \times 3+S \Rightarrow 2 \times 3+4$

- **Leftmost derivation**: leftmost variable replaced in each step.
- Corresponding derivation (or parse) tree

- Depth-first traversal of tree
 - Starting at **root**, walk around tree with left hand always touching tree.
 - string = sequence of **leaves** visited.

CS 341: Chapter 2

2-15

Ambiguous CFG

$$S \rightarrow S + S \mid S - S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \cdots \mid 9$$

• Another derivation of string $2 \times 3 + 4$:

$$S \Rightarrow S \times S \Rightarrow S \times S + S \Rightarrow 2 \times S + S$$

 $\Rightarrow 2 \times 3 + S \Rightarrow 2 \times 3 + 4$

which is **not** a **leftmost derivation**.

• Corresponding derivation tree:

Definition: CFG G is **ambiguous** if \exists string $w \in L(G)$ having different parse trees (or equivalently, different leftmost derivations).

CS 341: Chapter 2

2-18

Applications of CFLs

• Model for natural languages (Noam Chomsky)

```
 \langle \mathsf{SENTENCE} \rangle \to \langle \mathsf{NOUN-PHRASE} \rangle \langle \mathsf{VERB-PHRASE} \rangle \\ \langle \mathsf{NOUN-PHRASE} \rangle \to \langle \mathsf{ARTICLE} \rangle \langle \mathsf{NOUN} \rangle \mid \langle \mathsf{ARTICLE} \rangle \langle \mathsf{ADJ} \rangle \langle \mathsf{NOUN} \rangle \\ \langle \mathsf{VERB-PHRASE} \rangle \to \langle \mathsf{VERB} \rangle \mid \langle \mathsf{VERB} \rangle \langle \mathsf{NOUN-PHRASE} \rangle \\ \langle \mathsf{ARTICLE} \rangle \to \text{a} \mid \text{the} \\ \langle \mathsf{NOUN} \rangle \to \text{girl} \mid \text{boy} \mid \text{cat} \\ \langle \mathsf{ADJ} \rangle \to \text{big} \mid \text{small} \mid \text{blue} \\ \langle \mathsf{VERB} \rangle \to \text{sees} \mid \text{likes} \\ \\ \mathsf{Using above CFG, which has } \langle \mathsf{SENTENCE} \rangle \text{ as start variable, can derive} \\ \langle \mathsf{SENTENCE} \rangle \to \langle \mathsf{NOUN-PHRASE} \rangle \langle \mathsf{VERB-PHRASE} \rangle \\ \to \langle \mathsf{ARTICLE} \rangle \langle \mathsf{NOUN} \rangle \langle \mathsf{VERB-PHRASE} \rangle \\ \to \langle \mathsf{ARTICLE} \rangle \langle \mathsf{NOUN} \rangle \langle \mathsf{VERB} \rangle \langle \mathsf{NOUN-PHRASE} \rangle \\ \to \langle \mathsf{ARTICLE} \rangle \langle \mathsf{NOUN} \rangle \langle \mathsf{VERB} \rangle \langle \mathsf{ARTICLE} \rangle \langle \mathsf{ADJ} \rangle \langle \mathsf{NOUN} \rangle
```

Applications of CFLs

- Specification of programming languages:
 - parsing a computer program
- Describes mathematical structures, etc.
- Intermediate class between
 - regular languages (Chapter 1) and
 - computable languages (Chapters 3 and 4)

CS 341: Chapter 2 2-19

Context-Free Languages

Definition: Any language that can be generated by CFG is a **context-free language (CFL)**.

 \Rightarrow the girl sees a blue cat

Remark: The CFL $\{ 0^n 1^n \mid n \ge 0 \}$ shows us that certain CFLs are nonregular.

Questions:

- 1. Are all regular languages context-free?
- 2. Are all languages context-free?

CS 341: Chapter 2 2-20

Chomsky Normal Form

Definition: CFG $G = (V, \Sigma, R, S)$ is in **Chomsky normal form** if each rule is in one of three forms:

$$\begin{array}{c} A \to BC \\ \text{or} \ A \to x \\ \text{or} \ S \to \varepsilon \end{array}$$

with

- variables $A \in V$ and $B, C \in V \{S\}$, and
- ullet terminal $x \in \Sigma$

Example: Rules of CFG in Chomsky normal form with $V = \{S, W, X\}$, $\Sigma = \{a, b\}$:

$$S \to XX \mid XW \mid a \mid \varepsilon$$
$$X \to WX \mid b$$
$$W \to a$$

Remark: Grammars in Chomsky normal form are far easier to analyze.

2-24

Can Always Put CFG into Chomsky Normal Form

Recall: CFG in Chomsky normal form if each rule has form:

$$A \to BC$$
 or $A \to x$ or $S \to \varepsilon$

 $\text{ where } A \in V; \quad B,C \in V - \{S\}; \quad x \in \Sigma.$

Theorem 2.9

Every CFL can be described by a CFG in Chomsky normal form.

Proof Idea:

- Start with CFG $G = (V, \Sigma, R, S)$.
- Replace, one-by-one, every rule that is not "Chomsky".
- Need to take care of:
 - Start variable (not allowed on RHS of rules)
 - ullet ε -rules ($A \to \varepsilon$ not allowed when A isn't start variable)
 - \blacksquare all other violating rules $(A \to B, A \to aBc, A \to BCDE)$

Converting CFG into Chomsky Normal Form

- 1. Start variable not allowed on RHS of rule, so introduce
 - New start variable S_0
 - New rule $S_0 \to S$
- 2. Remove ε -rules $A \to \varepsilon$, where $A \in V \{S\}$.
 - Before: $B \to xAy$ and $A \to \varepsilon \mid \cdots$
 - After: $B \rightarrow xAy \mid xy$ and $A \rightarrow \cdots$
- 3. Remove unit rules $A \to B$, where $A \in V$.
 - Before: $A \to B$ and $B \to xCy$
 - ullet After: A o xCy and B o xCy

CS 341: Chapter 2

4. Replace problematic terminals a by variable T_a with rule $T_a \to a$.

• Before: $A \rightarrow ab$

• After: $A \to T_a T_b$, $T_a \to a$, $T_b \to b$.

5. Shorten long RHS to sequence of RHS's with only 2 variables each:

• Before: $A \to B_1 B_2 \cdots B_k$

• After: $A \to B_1 A_1, A_1 \to B_2 A_2, \ldots, A_{k-2} \to B_{k-1} B_k$

■ Thus, $A \Rightarrow B_1A_1 \Rightarrow B_1B_2A_2 \Rightarrow \cdots \Rightarrow B_1B_2\cdots B_k$

- 6. Be careful about removing rules:
 - Do not introduce new rules that you removed earlier.
 - **Example:** $A \rightarrow A$ simply disappears
 - ullet When removing $A \to \varepsilon$ rules, insert all new replacements:
 - Before: $B \to AbA$ and $A \to \varepsilon \mid \cdots$
 - After: $B \to AbA \mid bA \mid Ab \mid b$ and $A \to \cdots$

CS 341: Chapter 2

Example: Convert CFG into Chomsky Normal Form

Initial CFG G_0 :

$$S \to XSX \mid aY$$

$$X \to Y \mid S$$

$$Y \rightarrow b \mid \varepsilon$$

1. Introduce new start variable S_0 and new rule $S_0 \to S$:

$$S_0 \to S$$

$$S \to XSX \mid aY$$

$$X \to Y \mid S$$

$$Y \to b \mid \varepsilon$$

Example: Convert CFG into Chomsky Normal Form

From previous slide

$$S_0 \to S$$

$$S \to XSX \mid aY$$

$$X \to Y \mid S$$

$$Y \to b \mid \varepsilon$$

2. Remove ε -rules for which left side is not start variable:

(i) remove
$$Y \to \varepsilon$$

(ii) remove
$$X \to \varepsilon$$

$$S_{0} \rightarrow S$$

$$S \rightarrow XSX \mid aY \mid a$$

$$X \rightarrow Y \mid S \mid \varepsilon$$

$$Y \rightarrow b$$

$$S_{0} \rightarrow S$$

$$S \rightarrow X$$

$$X \rightarrow Y$$

$$Y \rightarrow b$$

$$S_{0} \rightarrow S$$

$$S \rightarrow XSX \mid aY \mid a$$

$$X \rightarrow Y \mid S \mid \varepsilon$$

$$Y \rightarrow b$$

$$S_{0} \rightarrow S$$

$$S \rightarrow XSX \mid aY \mid a \mid SX \mid XS \mid S$$

$$X \rightarrow Y \mid S$$

$$Y \rightarrow b$$

2-27

CS 341: Chapter 2

CS 341: Chapter 2

From previous slide

3. Remove unit rules:

(i) remove unit rule $S \to S$

 $S_0 \to S$

 $Y \rightarrow b$

 $X \to Y \mid S$

 $S_0 \to S$

 $X \to Y \mid S$ $Y \rightarrow b$

2-28

Example: Convert CFG into Chomsky Normal Form

From previous slide

CS 341: Chapter 2

$$S_0 \to S$$

$$S \to XSX \mid aY \mid a \mid SX \mid XS$$

$$X \to Y \mid S$$

$$Y \to b$$

(ii) remove unit rule $S_0 \to S$

$$S_0 \to XSX \mid aY \mid a \mid SX \mid XS$$

$$S \to XSX \mid aY \mid a \mid SX \mid XS$$

$$X \to Y \mid S$$

$$Y \to b$$

Example: Convert CFG into Chomsky Normal Form

Example: Convert CFG into Chomsky Normal Form

 $S \rightarrow XSX \mid aY \mid a \mid SX \mid XS \mid S$

 $S \rightarrow XSX \mid aY \mid a \mid SX \mid XS$

From previous slide

$$S_0 \to XSX \mid aY \mid a \mid SX \mid XS$$

$$S \to XSX \mid aY \mid a \mid SX \mid XS$$

$$X \to Y \mid S$$

$$Y \to b$$

(iii) remove unit rule $X \to Y$

$$S_0 \to XSX \mid aY \mid a \mid SX \mid XS$$

$$S \to XSX \mid aY \mid a \mid SX \mid XS$$

$$X \to S \mid b$$

$$Y \to b$$

2-31

2-32

Example: Convert CFG into Chomsky Normal Form

From previous slide

$$S_0 \rightarrow XSX \mid aY \mid a \mid SX \mid XS$$

$$S \rightarrow XSX \mid aY \mid a \mid SX \mid XS$$

$$X \rightarrow S \mid b$$

$$Y \rightarrow b$$

(iv) remove unit rule
$$X \to S$$

$$S_0 \rightarrow XSX \mid aY \mid a \mid SX \mid XS$$

$$S \rightarrow XSX \mid aY \mid a \mid SX \mid XS$$

$$X \rightarrow b \mid XSX \mid aY \mid a \mid SX \mid XS$$

$$Y \rightarrow b$$

Example: Convert CFG into Chomsky Normal Form

From previous slide

$$S_0 \rightarrow XSX \mid aY \mid a \mid SX \mid XS$$

$$S \rightarrow XSX \mid aY \mid a \mid SX \mid XS$$

$$X \rightarrow b \mid XSX \mid aY \mid a \mid SX \mid XS$$

$$Y \rightarrow b$$

4. Replace problematic terminals a by variable U with $U \to a$.

$$S_0 \rightarrow XSX \mid UY \mid a \mid SX \mid XS$$

$$S \rightarrow XSX \mid UY \mid a \mid SX \mid XS$$

$$X \rightarrow b \mid XSX \mid UY \mid a \mid SX \mid XS$$

$$Y \rightarrow b$$

$$U \rightarrow a$$

CS 341: Chapter 2

Example: Convert CFG into Chomsky Normal Form

From previous slide

$$S_0 \rightarrow XSX \mid UY \mid a \mid SX \mid XS$$

$$S \rightarrow XSX \mid UY \mid a \mid SX \mid XS$$

$$X \rightarrow b \mid XSX \mid UY \mid a \mid SX \mid XS$$

$$Y \rightarrow b$$

$$U \rightarrow a$$

5. Shorten long RHS to sequence of RHS's with only 2 variables each

$$S_{0} \rightarrow XX_{1} \mid UY \mid a \mid SX \mid XS$$

$$S \rightarrow XX_{1} \mid UY \mid a \mid SX \mid XS$$

$$X \rightarrow b \mid XX_{1} \mid UY \mid a \mid SX \mid XS$$

$$Y \rightarrow b$$

$$U \rightarrow a$$

$$X_{1} \rightarrow SX$$

which is a CFG in Chomsky normal form.

CS 341: Chapter 2

Pushdown Automata (PDAs)

- Pushdown automata (PDAs) are for CFLs what finite automata are for regular languages.
 - lacksquare PDA is presented with a string w over an alphabet Σ .
 - lacksquare PDA accepts or doesn't accept w.
- Key Differences Between PDA and DFA:
 - PDAs have a single stack.
 - PDAs allow for nondeterminism.
- **Defn: Stack** is data structure of unlimited size with 2 operations
 - push adds item to top of stack,
- **pop** removes item from top of stack.

Last-In-First-Out (LIFO)

CS 341: Chapter 2

2 - 33

2-35

2-34

2-36

PDA has

- States
- Stack with alphabet □
- Transitions among states based on
 - current state
 - what is read from input string
 - what is popped from stack.
- At end of each transition, symbol may be pushed on stack.

PDA Uses Stack

- **General idea:** CFLs are languages that can be recognized by automata that have one stack:
 - $\{0^n1^n | n \ge 0\}$ is a CFL
 - \blacksquare { $0^n 1^n 0^n \mid n \ge 0$ } is not a CFL
- Recall for alphabet Σ , we defined $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$.
- Let Γ be **stack alphabet**
 - Symbols in Γ can be pushed onto and popped off stack.
 - Often have $\$ \in \Gamma$ to mark bottom of stack.
- Let $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$.
 - lacksquare Pushing or popping arepsilon leaves stack unchanged.

CS 341: Chapter 2

PDA Transitions

• If PDA

- lacksquare currently in state q_i ,
- lacksquare reads $a\in \Sigma_{arepsilon}$, and
- pops $b \in \Gamma_{\varepsilon}$ off the stack,
- then PDA can
 - \blacksquare move to state q_i
 - push $c \in \Gamma_{\varepsilon}$ onto top of stack
- If $a = \varepsilon$, then no input symbol is read.
- If $b = \varepsilon$, then nothing is popped off stack.
- If $c = \varepsilon$, then nothing is pushed onto stack.

CS 341: Chapter 2

How a PDA Computes

- ullet PDA starts in start state with input string $w \in \Sigma^*$
 - stack initially empty
- PDA makes transitions among states
 - Edge label: "read, pop \rightarrow push"
- Based on current state, what from Σ_{ε} is next read from w, and what from Γ_{ε} is popped from stack.
- Nondeterministically move to state and push from Γ_{ε} onto stack.
- ullet If possible to end in accept state $\in F \subseteq Q$ after reading entire input w without crashing, then M accepts w.

Definition of PDA

Defn: Pushdown automaton (PDA) $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$:

- ullet Q is finite set of states
- Σ is (finite) input alphabet
- Γ is (finite) stack alphabet
- q_0 is start state, $q_0 \in Q$
- \bullet F is set of accept states, $F \subseteq Q$
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is transition function

Nondeterministic: multiple choices when in state q_1 , read $a \in \Sigma_{\varepsilon}$, and pop $b \in \Gamma_{\varepsilon}$; $\delta(q_1, a, b) = \{ (q_2, c), (q_3, d), (q_4, c), (q_4, \varepsilon) \}$

Example: PDA $M = (Q, \Sigma, \Gamma, \delta, q_1, F)$

- $\bullet Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0,\$\}$ (use \$ to mark bottom of stack)
- \bullet q_1 is the start state
- $\bullet F = \{q_1, q_4\}$

Will see that M recognizes language $\{ 0^n 1^n | n \ge 0 \}$.

CS 341: Chapter 2 0, $\varepsilon \to 0$ 1, $0 \to \varepsilon$ 2-39 $q_1 \longrightarrow q_2 \longrightarrow q_3 \longrightarrow \varepsilon, \$ \to \varepsilon \longrightarrow q_4 \longrightarrow q_$

• transition function $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$

Input:	0			1			arepsilon		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2,0)\}$	$\{(q_3,\varepsilon)\}$					
q_3				$\{(q_3,\varepsilon)\}$				$\{(q_4,\varepsilon)\}$	
q_4									

- e.g., $\delta(q_2, 1, 0) = \{ (q_3, \epsilon) \}.$
- Blank entries are \emptyset .
- Let's process string 000111 on our PDA.
 - PDA uses stack to match each 0 to a 1.

CS 341: Chapter 2 2-40 $0, \varepsilon \to 0 \qquad 1, 0 \to \varepsilon$ $q_1 \qquad \varepsilon, \varepsilon \to \$ \qquad q_2 \qquad 1, 0 \to \varepsilon \qquad q_3 \qquad \varepsilon, \$ \to \varepsilon \qquad q_4$

|| Current state

Bottom

Input string

Stack

- Start in start state q_1 with stack empty.
- No input symbols read so far.
- Next go to state q_2
 - reading nothing, popping nothing, and pushing \$ on stack.

Stack

- Next return to state q_2
 - reading input symbol 0
 - popping nothing from stack

Input string

pushing 0 on stack.

2-42

Stack

 \bullet Next return to state q_2

CS 341: Chapter 2

- reading input symbol 0
- popping nothing from stack

Input string

■ pushing 0 on stack.

- ullet Next return to state q_2
 - reading input symbol 0
 - popping nothing from stack
 - pushing 0 on stack.

- Next go to state q_3
 - reading input symbol 1
 - popping 0 from stack
 - pushing nothing on stack.

- Next return to state q_3
 - reading input symbol 1
 - popping 0 from stack
 - pushing nothing on stack.

- Next return to state q_3
 - reading input symbol 1
 - popping 0 from stack
 - pushing nothing on stack.

- Next go to state q_4
 - reading nothing
 - popping \$ from stack
 - pushing nothing on stack.

Stack

Input string

0 0 0 1

- \blacksquare ended in an accept state q_4 , and
- PDA read the entire input string without crashing.

2-49 *CS 341*

2-51

CS 341: Chapter 2 2-50

On input w = 000111, the (state; stack) evolution is $(q_1; \varepsilon) \overset{\varepsilon, \varepsilon \to \$}{\longrightarrow} (q_2; \$) \overset{0, \varepsilon \to 0}{\longrightarrow} (q_2; 0\$) \overset{0, \varepsilon \to 0}{\longrightarrow} (q_2; 00\$)$ $\overset{0, \varepsilon \to 0}{\longrightarrow} (q_2; 000\$) \overset{1, 0 \to \varepsilon}{\longrightarrow} (q_3; 00\$) \overset{1, 0 \to \varepsilon}{\longrightarrow} (q_3; 0\$) \overset{1, 0 \to \varepsilon}{\longrightarrow} (q_3; \$)$ $\overset{\varepsilon, \$ \to \varepsilon}{\longrightarrow} (a_{\texttt{A}} : \varepsilon).$

- Stack grows to the left, so leftmost symbol in stack is on top.
- ullet Concatenation of what is read in sequence of transitions is arepsilon 000111 arepsilon = w.

$$(q_1) \begin{array}{c} 0, \varepsilon \to 0 \\ \hline \\ (q_2) \end{array} \begin{array}{c} 1, 0 \to \varepsilon \\ \hline \\ (q_3) \end{array} \begin{array}{c} \varepsilon, \$ \to \varepsilon \\ \hline \\ (q_4) \end{array}$$

• On input w = 0111, the (state; stack) evolution is $(q_1:\varepsilon) \xrightarrow{\varepsilon,\varepsilon\to\$} (q_2;\$) \xrightarrow{0,\varepsilon\to0} (q_2;0\$) \xrightarrow{1,0\to\varepsilon} (q_3;\$) \xrightarrow{\varepsilon,\$\to\varepsilon} (q_4;\varepsilon)$

- \bullet Only first two symbols 01 were read from input w= 0111.
- ullet PDA then crashes: there are still unread symbols 11 in input string w but PDA can't make any more transitions from q_4 .
- No other way of processing, so string 0111 not accepted.
- Can show that PDA M recognizes language $\{0^n1^n \mid n \geq 0\}$.

CS 341: Chapter 2

PDA May Be Nondeterministic

Recall: PDA transition function allows for nondeterminism

$$\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$$

Multiple choices when in state q_1 , read $a \in \Sigma_{\varepsilon}$, and pop $b \in \Gamma_{\varepsilon}$; $\delta(q_1, a, b) = \{ (q_2, c), (q_3, d), (q_4, c), (q_4, \varepsilon) \}$

CS 341: Chapter 2 2-52

Formal Definition of PDA Computation

- Recall PDA transition function $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$.
- PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts string $w \in \Sigma^*$ if
 - w can be written as $w = w_1 w_2 \cdots w_m$, where each $w_i \in \Sigma_{\varepsilon}$,
 - \exists a sequence of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ [stack contents on each transition] and the following hold:
 - $r_0 = q_0$ and $s_0 = \varepsilon$. [M starts in start state with empty stack.]
 - For each i = 0, 1, ..., m 1,

$$(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a),$$

where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^*$. [M moves properly according to state, what's read, and stack.]

• $r_m \in F$. [M ends in an accept state after reading entire input.]

Computation Requires Valid Sequence of Transitions

Recall for proper computation, we require for each transition i.

$$(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a),$$

where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^*$.

Definition: The set of all input strings that are accepted by PDA M is the **language recognized by** M and is denoted by L(M).

• Note that $L(M) \subset \Sigma^*$.

CS 341: Chapter 2 2-56

Example: PDA for language $\{a^ib^jc^k | i, j, k > 0 \text{ and } i = j \text{ or } i = k\}$

Equivalence of PDAs and CFGs

Theorem 2.20

A language is context free iff some PDA recognizes it.

Showing this equivalence requires two steps.

• Lemma 2.21

If A = L(G) for some CFG G, then A = L(M) for some PDA M.

• Lemma 2.27

If A = L(M) for some PDA M. then A = L(G) for some CFG G.

We will only show how the first lemma works.

CS 341: Chapter 2

Example: PDA for language $\{ww^{\mathcal{R}} \mid w \in \{0, 1\}^*\}$

$$0, \varepsilon \to 0 \qquad 0, 0 \to \varepsilon$$

$$1, \varepsilon \to 1 \qquad 1, 1 \to \varepsilon$$

$$(q_1) \quad \varepsilon, \varepsilon \to \$ \qquad (q_2) \quad \varepsilon, \varepsilon \to \varepsilon \qquad (q_3) \quad \varepsilon, \$ \to \varepsilon$$

PDA works as follows:

• $q_1 \rightarrow q_2$: First pushes \$ on stack to mark bottom

 $\bullet q_2 \rightarrow q_2$: Reads in first half w of string, pushing it onto stack

 \bullet $q_2 \rightarrow q_3$: Guesses that it has reached middle of string

• $q_3 \to q_3$: Reads second half $w^{\mathcal{R}}$ of string, matching symbols from first half in reverse order (recall: stack LIFO)

• $q_3 \rightarrow q_4$: Makes sure that no more input symbols on stack

PDA guesses if it should match the a's

- with the b's (state q_3), or
- with the c's (state q_5)

2-55

CS 341: Chapter 2

2-60

Lemma 2.21

If A = L(G) for some CFG G, then A = L(M) for some PDA M.

Proof Idea:

- Given CFG G, convert it into PDA M with L(M) = L(G).
- Basic idea: build PDA that simulates a leftmost derivation.
- For example, consider CFG $G = (V, \Sigma, R, S)$
 - \blacksquare Variables $V = \{S, T\}$
 - \blacksquare Terminals $\Sigma = \{0, 1\}$
 - Rules: $S \rightarrow 0TS1 \mid 1T0, T \rightarrow 1$
- Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

2-59

- ullet Recall CFG rules: $S o 0TS1 \mid 1T0, \quad T o 1$
- Corresponding PDA:

CS 341: Chapter 2

- PDA is non-deterministic.
- \blacksquare Input alphabet of PDA is the terminal alphabet of CFG
 - $\Delta \Sigma = \{0, 1\}.$
- Stack alphabet consists of all variables, terminals and "\$"
 - $\Gamma = \{S, T, 0, 1, \$\}.$
- PDA simulates a **leftmost derivation** using CFG
 - ▲ Pushes RHS of rule in **reverse order** onto stack.

• Convert CFG into PDA as follows:

- PDA works as follows:
 - 1. Pushes \$ and then S on the stack, where S is start variable.
 - 2. Repeats following until stack empty
 - (a) If top of stack is variable $A \in V$, then replace A by some $u \in (\Sigma \cup V)^*$, where $A \to u$ is a rule in R.
 - (b) If top of stack is terminal $a \in \Sigma$ and next input symbol is a, then read and pop a.
 - (c) If top of stack is \$, then pop it and accept.

CS 341: Chapter 2

ullet Recall CFG rules: $S o 0TS1 \mid 1T0, \quad T o 1$

Corresponding PDA:

• Recall leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

- Let's now process string 011101 on PDA.
- When in state q_2 , look at top of stack to determine next transition.

0. Start in state q_1 with 011101 on input tape and empty stack.

Next unread symbol

Input string

Stack

2-63

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

1. Read nothing, pop nothing, move to q_2 , and push \$ and then S.

011101

Input string

S \$

Stack

2-64

Leftmost derivation of string $011101 \in L(G)$:

$$\underline{S} \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

CS 341: Chapter 2

2. Read nothing, pop S, return to q_2 , and push 0TS1.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow \underline{0TS1} \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

CS 341: Chapter 2

3. Read 0, pop 0, return to q_2 , and push nothing.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow \underline{0TS1} \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

4. Read nothing, pop T, return to q_2 , and push 1.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

5. Read 1, pop 1, return to q_2 , and push nothing.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

CS 341: Chapter 2

6. Read nothing, pop S, return to q_2 , and push 1T0.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

CS 341: Chapter 2

2-67

7. Read 1, pop 1, return to q_2 , and push nothing.

Leftmost derivation of string $011101 \in L(G)$:

$$S \ \Rightarrow \ 0TS1 \ \Rightarrow \ 01S1 \ \Rightarrow \ \underline{011T01} \ \Rightarrow \ 011101$$

2-68

2-72

8. Read nothing, pop T, return to q_2 , and push 1.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

9. Read 1, pop 1, return to q_2 , and push nothing.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

CS 341: Chapter 2

10. Read 0, pop 0, return to q_2 , and push nothing.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow 011101$$

CS 341: Chapter 2

11. Read 1, pop 1, return to q_2 , and push nothing.

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow \underline{011101}$$

12. Read nothing, pop \$, move to q_3 , push nothing, and accept.

Input string

Stack

2-75

Leftmost derivation of string $011101 \in L(G)$:

$$S \Rightarrow 0TS1 \Rightarrow 01S1 \Rightarrow 011T01 \Rightarrow \underline{011101}$$

Constructed DDA is Not Co

Constructed PDA is Not Compliant

- ullet Recall CFG rules: $S
 ightarrow 0 TS1 \mid 1 T0, \quad T
 ightarrow 1$
- Corresponding PDA:

- ullet Problem: pushing strings onto stack instead of ≤ 1 symbols, which is not allowed in PDA specification.
 - PDA transition fcn $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$

CS 341: Chapter 2

Solution: Add Extra States as Needed

becomes

CS 341: Chapter 2

• For example, in our PDA

we replace

$$q_1$$
 $\varepsilon, \varepsilon \to S$ q_2

with

Also, replace

with

and replace

with

So our final PDA from the CFG is

CS 341: Chapter 2

 $Regular \Rightarrow CFL$

Corollary 2.32

If A is a regular language, then A is also a CFL.

Proof.

- ullet Suppose A is regular.
- \bullet Corollary 1.40 implies A has an NFA.
- But an NFA is just a PDA that ignores stack (always pops/pushes ε).
- \bullet So A has a PDA.
- \bullet Thus, Theorem 2.20 implies A is context-free.

Remark: Converse is not true.

For example, $\{ 0^n 1^n \mid n \ge 0 \}$ is CFL but not regular.

CS 341: Chapter 2

2-79

Pumping Lemma for CFLs

- Previously saw pumping lemma for regular languages.
- ullet Analogous result for context-free language A.
- Basic Idea: Derivation of long string $s \in A$ has repeated variable R.
 - Long string implies tall parse tree, so must have repeated variable.
 - Can split string $s \in A$ into **5 pieces** s = uvxyz based on R.
 - $uv^ixy^iz \in A \text{ for all } i \geq 0.$
- ullet Consider language A with CFG G

$$S \rightarrow CDa \mid CD$$

$$C \rightarrow aD$$

$$D \rightarrow Sb \mid b$$

• Below "long" derivation using G repeats variable R = D:

$$S \Rightarrow CDa \Rightarrow aDDa \Rightarrow ab\underline{D}a \Rightarrow abSba \Rightarrow abCDba \\ \Rightarrow aba\underline{D}Dba \Rightarrow ababDba \Rightarrow ababbba$$

Repeated Variable in Path of Parse Tree

• Derivation of "long" string $s = ababbba \in A$ repeats variable D:

ullet "Tall" parse tree repeats variable D on path from root to leaf.

Split String Into 5 Pieces

• In depth-first traversal of tree

- u = ab is before D-D subtree
- v = a is before second D within D-D subtree
- $\mathbf{x} = b$ is what second D eventually becomes
- y = bb is after second D within D-D subtree
- z = a is after D-D subtree

CS 341: Chapter 2

Split Long String Into 5 Pieces

- $\begin{tabular}{ll} \bullet \begin{tabular}{ll} \bf More & generally, & consider & "long" \\ & string & s \in A. \end{tabular}$
- Parse tree is "tall"
 - \blacksquare \exists repeated variable R in path from root S to leaf.

- Split string s = uvxyz into 5 pieces based on repeated variable R:
 - \blacksquare u is before R-R subtree (in depth-first order)
 - v is before second R within R-R subtree
 - \blacksquare x is what second R eventually becomes
 - lacksquare y is after second R within R-R subtree
 - lacksquare z is after R-R subtree

CS 341: Chapter 2

2-83

Subtrees Yield ...

 $R \stackrel{*}{\Longrightarrow} x$

Can Pump To Obtain Other Strings in A

- ullet Parse tree for string $s \in A$ implies
 - $S \stackrel{*}{\Rightarrow} uRz \text{ for } u, z \in \Sigma^*$
 - $\blacksquare R \stackrel{*}{\Rightarrow} vRy \text{ for } v, y \in \Sigma^*$
 - $\blacksquare R \stackrel{*}{\Rightarrow} x \text{ for } x \in \Sigma^*$

ullet Can derive string $s=uvxyz\in A$ $S\ \stackrel{*}{\Rightarrow}\ uRz\ \stackrel{*}{\Rightarrow}\ uvRyz\ \stackrel{*}{\Rightarrow}\ uvxyz\ \in\ A$

ullet Also for each $i \geq 0$, can derive string

$$S \stackrel{*}{\Rightarrow} uRz \stackrel{*}{\Rightarrow} uvRyz \stackrel{*}{\Rightarrow} uvvRyyz \stackrel{*}{\Rightarrow} \cdots \stackrel{*}{\Rightarrow} uv^{i}Ry^{i}z$$

$$\stackrel{*}{\Rightarrow} uv^{i}xy^{i}z \in A$$

Pumping a Parse Tree

- Recall: $S \stackrel{*}{\Rightarrow} uRz$, $R \stackrel{*}{\Rightarrow} vRy$, $R \stackrel{*}{\Rightarrow} x$
- ullet Consider parse tree of $uvxyz \in A$

CS 341: Chapter 2

Pumping Up a Parse Tree

- Recall: $S \stackrel{*}{\Rightarrow} uRz$, $R \stackrel{*}{\Rightarrow} vRy$, $R \stackrel{*}{\Rightarrow} x$
- ullet Using R-R subtree **twice** shows $uvvxyyz=uv^2xy^2z\in A$

CS 341: Chapter 2

2-87

Pumping Up Multiple Times

- Recall: $S \stackrel{*}{\Rightarrow} uRz$, $R \stackrel{*}{\Rightarrow} vRy$, $R \stackrel{*}{\Rightarrow} x$
- Using R-R subtree **thrice** shows $uv^3xy^3z \in A$

2-88

Pumping Down a Parse Tree

- Recall: $S \stackrel{*}{\Rightarrow} uRz$, $R \stackrel{*}{\Rightarrow} vRy$, $R \stackrel{*}{\Rightarrow} x$
- Removing R-R subtree shows $uxz = uv^0xy^0z \in A$

When Is Pumping Possible?

- **Key to Pumping**: repeated variable *R* in parse tree.
 - $S \stackrel{*}{\Rightarrow} uRz \text{ for } u, z \in \Sigma^*$
 - $\blacksquare R \stackrel{*}{\Rightarrow} vRy \text{ for } v, y \in \Sigma^*$
 - $\blacksquare \ R \stackrel{*}{\Rightarrow} x \ \text{ for } x \in \Sigma^*$
 - \blacksquare string $s = uvxyz \in A$

• Repeated variable $R \stackrel{*}{\Rightarrow} vRy$, so "v-y pumping" possible:

$$S \stackrel{*}{\Rightarrow} uRz \stackrel{*}{\Rightarrow} uvRyz \stackrel{*}{\Rightarrow} uv^iRy^iz \stackrel{*}{\Rightarrow} uv^ixy^iz \in A$$

- If tree is tall enough, then repeated variable in path from root to leaf.
 - lacktriangle CFG has finite number |V| of variables.
 - How tall does parse tree have to be to ensure pumping possible?
 - **Length** of path between two nodes = # edges in path.
 - Tree **height** = # edges on longest path from root to a leaf.

CS 341: Chapter 2

Can Pump If Parse Tree Is Tall Enough

- ullet Path from root S to leaf
 - lacksquare Leaf is a terminal $\in \Sigma$
 - lacksquare All other nodes along path are variables $\in V$.
- ullet If height of tree $\geq |V|+1$, where |V|=# variables in CFG
 - \blacksquare then \exists repeated variable on longest path from root to leaf.
- ullet How long does string $s \in A$ have to be to ensure tall enough tree?

CS 341: Chapter 2 2-92

Previous Example

• |V| = 3 variables in below CFG:

$$S \rightarrow CDa \mid CD$$

$$C \rightarrow aD$$

$$D \rightarrow Sb \mid b$$

■ In parse tree for ababbba, longest path has length $5 \ge |V| + 1 = 4$

2-93 *CS 341: Chapter 2*

2-96

If String s is Long Enough, Then Can Pump

ullet Let A have CFG in which longest rule has right-side length $b\geq 2$:

 $C \to D_1 \cdots D_b$

- So each node in tree has $\leq b$ children.
- At most b leaves one step from root.
- At most b^2 leaves 2 steps from root, and so on.
- If tree has height $\leq h$, then
 - $\blacktriangle \le b^h$ leaves, so generated string s has length $|s| \le b^h$.
- Equiv: If string $s \in A$ has $|s| \ge b^h + 1$, then tree height $\ge h + 1$.
- Let |V| = # variables in CFG.
- If string $s \in A$ has length $|s| > p \equiv b^{|V|+1}$, then
 - tree height $\geq |V| + 1$ because $b^{|V|+1} \geq b^{|V|} + 1$.
 - some variable on longest path in tree is repeated
 - can pump parse tree.

Pumping Lemma for CFLs

Theorem 2.34

If A is context-free language, then \exists pumping length p where, if $s \in A$ with |s| > p, then s can be split into s pieces

s = uvxyz

satisfying the properties

- 1. $uv^i x y^i z \in A$ for each $i \ge 0$,
- 2. |vy| > 0, and
- $3. |vxy| \le p.$

Remarks:

- Property 1 implies that $uxz \in A$ by taking i = 0.
- ullet Property 2 says that vy cannot be the empty string.
- Property 3 is sometimes useful.

CS 341: Chapter 2

Proof of Pumping Lemma for CFLs

- Let $G = (V, \Sigma, R, S)$ be CFG of A.
- Maximum size of rules is b > 2: $C \rightarrow D_1 \cdots D_b$
- From slide 2-93: If string $s \in A$ has length $|s| \ge p \equiv b^{|V|+1}$,
 - \blacksquare then longest path in parse tree has some repeated variable R:

 $S \stackrel{*}{\Rightarrow} uRz \stackrel{*}{\Rightarrow} uvRyz \stackrel{*}{\Rightarrow} uvxyz$

- It follows that $uv^i x y^i z \in A$ for all $i = 0, 1, 2, \ldots$
- Assume
 - lacktriangleright parse tree is smallest one for string s
 - lacktriangleright repeated R is among the bottom |V|+1 variables on longest path.
- Then in tree, repeated part $R \stackrel{*}{\Rightarrow} vRy$ and $R \stackrel{*}{\Rightarrow} x$ satisfy
 - |vy| > 0 because tree is minimal.
 - bottom subtree with $R \stackrel{*}{\Rightarrow} vRy$ and $R \stackrel{*}{\Rightarrow} x$ has height $\leq |V| + 1$, so $|vxy| \leq b^{|V|+1} = p$.

CS 341: Chapter 2

2-95

Non-CFL

Remark: CFL Pumping Lemma (PL) mainly used to show certain languages are **not** CFL.

Example: Prove that $B = \{ a^n b^n c^n \mid n \ge 0 \}$ is non-CFL. **Proof.**

- Suppose B is CFL, so PL implies B has pumping length $p \ge 1$.
- Consider string $s = a^p b^p c^p \in B$, so $|s| = 3p \ge p$.
- PL: can split s into 5 pieces $s = uvxyz = a^pb^pc^p$ satisfying
- 1. $uv^i x y^i z \in B$ for all i > 0
- 2. |vy| > 0
- 3. |vxy| < p
- For contradiction, show **cannot** split s = uvxyz satisfying 1–3.
 - Show **every** possible split satisfying Property 2 violates Property 1.

2-97 *CS 341: Chapter 2*

2-99

2-98

- $\bullet \ \text{Recall} \ s = uvxyz = \underbrace{aa\cdots a}_{p} \underbrace{bb\cdots b}_{p} \underbrace{cc\cdots c}_{p}.$
- ullet Possibilities for split s=uvxyz satisfying Property 2: |vy|>0
 - (i) Strings v and y are **uniform** [e.g., $v = a \cdots a$ and $y = b \cdots b$].
 - Then uv^2xy^2z won't have same number of a's, b's and c's because |vy|>0.
 - Hence, $uv^2xy^2z \notin B$.
- (ii) Strings v and y are **not both uniform** [e.g., $v = a \cdots ab \cdots b$ and $y = b \cdots b$].
 - Then $uv^2xy^2z \notin L(a^*b^*c^*)$: symbols not grouped together.
 - Hence, $uv^2xy^2z \notin B$.
- Thus, every split satisfying Property 2 has $uv^2xy^2z \notin B$, so Property 1 violated.
- Contradiction, so $B = \{ a^n b^n c^n \mid n \ge 0 \}$ is not a CFL.

Prove $C = \{ a^i b^j c^k \mid 0 \le i \le j \le k \}$ is not CFL

- ullet Suppose C is CFL, so PL implies C has pumping length p.
- $\bullet \text{ Take string } s = \underbrace{aa\cdots a}_{p} \underbrace{bb\cdots b}_{p} \underbrace{cc\cdots c}_{p} \in C \text{, so } |s| = 3p \geq p.$
- PL: can split $s=a^pb^pc^p$ into 5 pieces s=uvxyz satisfying 1. $uv^ixy^iz\in C$ for every $i\geq 0$, 2. |vy|>0, 3. $|vxy|\leq p$.
- ullet Property 3 implies vxy can't contain 3 different types of symbols.
- ullet Two possibilities for v,x,y satisfying |vy|>0 and $|vxy|\leq p$:
 - (i) If $vxy \in L(a^*b^*)$, then z has all the c's
 - string uv^2xy^2z has too few c's because z not pumped
 - Hence, $uv^2xy^2z \notin C$
 - (ii) If $vxy \in L(b^*c^*)$, then u has all the a's
 - string $uv^0xy^0z = uxz$ has too many a's
 - Hence, $uv^0xy^0z \notin C$
- ullet Every split s=uvxyz satisfying 2–3 violates 1, so C isn't CFL.

CS 341: Chapter 2

Prove $D = \{ ww | w \in \{0, 1\}^* \}$ is not **CFL**

- ullet Suppose D is CFL, so PL implies D has pumping length p.
- $\bullet \ \mathsf{Take} \ s = \underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p} \underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p} \in D \text{, so } |s| = 4p \geq p.$
- PL: can split s into 5 pieces s = uvxyz satisfying
- 1. $uv^i xy^i z \in D$ for every $i \ge 0$, 2. |vy| > 0, 3. $|vxy| \le p$.
- (i) If vxy is entirely left of middle of $0^p 1^p 0^p 1^p$,
 - lacktriangle then second half of uv^2xy^2z starts with a 1
 - so can't write uv^2xy^2z as ww because first half starts with 0.
- (ii) Similar reasoning: if vxy is entirely right of middle of $\mathbf{0}^p \mathbf{1}^p \mathbf{0}^p \mathbf{1}^p$,
 - $\blacksquare \text{ then } uv^2xy^2z \not\in D$
- (iii) If vxu straddles middle of $0^p 1^p 0^p 1^p$.
 - then $uv^0xy^0z = uxz = 0^p 1^j 0^k 1^p \notin D$ (because j or k < p)
- ullet Every split s=uvxyz satisfying 2–3 violates 1, so D isn't CFL.

CS 341: Chapter 2 2-100

Remarks on CFL Pumping Lemma

Often more difficult to apply CFL pumping lemma (Theorem 2.34) than pumping lemma for regular languages (Theorem 1.70).

- \bullet Carefully choose string s in language to get contradiction.
 - lacksquare Not all strings s will give contradiction.
- CFL pumping lemma: "... can split s into 5 pieces s=uvxyz satisfying all of Properties 1–3."
- To get contradiction, must show **cannot** split s into 5 pieces s = uvxyz satisfying all of Properties 1–3.
- Need to show **every possible** split s = uvxyz **violates** at least one of Properties 1–3.

2-104

CFLs Closed Under Union

Is class of CFLs closed under standard operations?

Theorem:

If A_1 and A_2 are CFLs, then union $A_1 \cup A_2$ is CFL.

Proof.

- Assume
 - A_1 has CFG $G_1 = (V_1, \Sigma, R_1, S_1)$
 - A_2 has CFG $G_2 = (V_2, \Sigma, R_2, S_2)$.
- Assume that $V_1 \cap V_2 = \emptyset$.
- $A_1 \cup A_2$ has CFG $G_3 = (V_3, \Sigma, R_3, S_3)$ with
 - $\blacksquare V_3 = V_1 \cup V_2 \cup \{S_3\}$, where $S_3 \notin V_1 \cup V_2$ is new start variable
 - $R_3 = R_1 \cup R_2 \cup \{S_3 \to S_1, S_3 \to S_2\}.$

Example of Union of CFLs

ullet Suppose A_1 has CFG G_1 with rules:

$$S \to aS \mid bXb$$
$$X \to ab \mid baXb$$

ullet Suppose A_2 has CFG G_2 with rules:

$$S \to Sbb \mid aXba$$
$$X \to b \mid XaX$$

• Then $A_1 \cup A_2$ has CFG G_3 with start variable S_3 and rules:

$$S_3 \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow aS_1 \mid bX_1b$$

$$X_1 \rightarrow ab \mid baX_1b$$

$$S_2 \rightarrow S_2bb \mid aX_2ba$$

$$X_2 \rightarrow b \mid X_2aX_2$$

CS 341: Chapter 2

Some Closure Properties of CFLs

- Let A_1 and A_2 be two CFLs.
- Can prove that
 - \blacksquare union $A_1 \cup A_2$ is always CFL (slide 2-101)
 - lacktriangle concatenation $A_1 \circ A_2$ is always CFL
 - Kleene-star A_1^* is always CFL
- But
 - lacktriangle intersection $A_1 \cap A_2$ is not necessarily CFL
 - $A_1 = \{ a^n b^n c^k \mid n \ge 0, k \ge 0 \} \text{ and } A_2 = \{ a^k b^n c^n \mid n \ge 0, k \ge 0 \}$
 - lacktriangle complement $\overline{A_1} = \Sigma^* A_1$ is not necessarily CFL.

CS 341: Chapter 2

Hierarchy of Languages (so far)

All languages

Context-free
(CFG, PDA)

Regular
(DFA, NFA, Reg Exp)

Finite

 $\{ 0^n 1^n 2^n | n \ge 0 \}$

 $\{ 0^n 1^n | n \ge 0 \}$

 $(0 \cup 1)^*$

Examples

{ 110, 01 }

CS 341: Chapter 2 2-105

Summary of Chapter 2

- Context-free language is defined by CFG
- Parse trees
- ullet Chomsky normal form: $A \to BC$ or $A \to x$, with $A \in V$, $B,C \in V \{S\}$, $x \in \Sigma$. Also allow rule $S \to \varepsilon$.
- Pushdown automaton is NFA with stack for additional memory.
- Equivalence of PDAs and CFGs
- Regular \Rightarrow CFL, but CFL $\not\Rightarrow$ Regular.
- Pumping lemma for CFLs: long strings in CFL can be pumped.
 - Repeat part of tall parse tree corresponding to repeated variable
 - Used to prove certain languages are non-CFL
- Class of CFLs closed under union, Kleene star, concatenation
- Class of CFLs not closed under intersection, complementation