第2章 非线性方程求根

陈路 CHENLU.SCIEN@GMAIL.COM

201800301206

本文首先简要总结非线性方程求根的相关知识,包括非线性方程求根的基本概念和常见算法及其收敛速率。进而对一些常用算法进行编程实现,并应用到实际问题体会不同算法的优劣性。

1. 非线性方程求根知识总结

1.1 不动点迭代法

1.1.1 迭代

迭代是指重复执行一个计算过程,直到找到答案. 首先需要一个函数g(x)和起始点 p_0 ,然后依据迭代规则 $p_{k+1} = g(p_k)$ 可得到迭代序列 $\{p_k\}$. 如果这一序列中的数趋向于某个极限,那么就达到了我们的求解目的.

1.1.2 不动点迭代

定义 1

函数g(x)的一个不动点是指一个实数P,满足P = g(P).

定义 2

迭代 $p_{n+1} = g(p_n)$, 其中 $n = 0, 1, \dots$, 称为不动点迭代.

定理 1

设g是一个连续函数,且 $\{p_n\}_{n=0}^{\infty}$ 是由不动点迭代生成的序列. 如果 $\lim_{n\to\infty} p_n = P$,则P是g(x)的不动点.

不动点存在性定理

定理 2

设函数 $g \in C[a,b]$.

如果对于所有 $x \in [a,b]$,映射y = g(x)的范围满足 $y \in [a,b]$,那么函数g在[a,b]内至少有一个不动点.

此外,设g'(x)定义在(a,b)内,且对于所有 $x \in (a,b)$,存在常数0 < K < 1使得 $|g'(x)| \le K < 1$,则函数g在[a,b]内有唯一的不动点.

不动点迭代收敛条件

定理3

设有(i) $g, g' \in C[a, b]$, (ii) K是一个大于0的常数, (iii) $p_0 \in (a, b)$, (iv) 对于所有 $x \in [a, b]$, 有 $g(x) \in [a, b]$.

如果对于所有 $x \in [a, b]$,有 $|g'(x)| \le K < 1$,那么对于任意初始值 p_0 ,迭代 $p_n = g(p_{n-1})$ 将收敛到唯一的不动点 $P \in [a, b]$.

设函数q满足定理3中的所有条件,当用 p_n 去近似P时,引入的**误差边**界为:

$$|P - p_n| \leqslant K^n |P - p_0|$$
 对于所有 $n \geqslant 1$ (1)

且

$$|P - p_n| \le \frac{K^n |p_1 - p_0|}{1 - K}$$
 对于所有 $n \ge 1$ (2)

1.2 全局收敛法

对于任意函数f(x) = 0,全局收敛法依赖于初始区间[a,b],满足输入函数值f(a),f(b)的符号相反. 一旦给定了这个区间,无论区间多大,通过迭代总能找到输入函数一个根. 然而,如果函数f(x) = 0在区间[a,b]上有多个根,则必须使用不同的起始区间寻找每个根.

1.2.1 二分法

假设函数f(x)在区间[a,b]上连续且两端点处函数值f(a), f(b)符号相反. 二分法判定过程的第一步是选择中点c=(a+b)/2,然后分析可能存在的3种情况:

- 1. 如果f(a)和f(c)符号相反,则在区间[a,c]内存在零点;
- 2. 如果f(c)和f(b)符号相反,则在区间[c,b]内存在零点;
- 3. 如果f(c) = 0,则c是零点

定理 1

设 $f \in C(a,b)$, 且存在数 $r \in [a,b]$ 满足f(r) = 0.

如果f(a)和f(b)的符号相反,且 $\{c_n\}_{n=0}^{\infty}$ 表示二分法生成的中点序列,则

1.2.2 试位法

由于二分法的收敛速度较慢,因此试位法对它进行了改进. 假设函数f(x)在区间[a,b]上连续且两端点处函数值f(a), f(b)符号相反. 二分法使用区间中点进行迭代,如果找到经过点(a,f(a))和(b,f(b))的割线L与x轴的交点(c,0),就可以得到一个更好的近似值,即:

$$c = b - \frac{f(b)(b-a)}{f(b) - f(a)} \tag{4}$$

类似地,会出现3中可能性:

- 1. 如果f(a)和f(c)符号相反,则在区间[a,c]内存在零点;
- 2. 如果f(c)和f(b)符号相反,则在区间[c,b]内存在零点;
- 3. 如果f(c) = 0,则c是零点

1.3 局部收敛法

对于任意函数f(x) = 0,局部收敛法要求给定一个接近根的近似值以保证收敛性. 局部收敛法的速度远大于全局收敛法的速度. 一些混合方法首先采用全局收敛法, 当迭代逼近根后切换到局部收敛法.

1.3.1 牛顿法

定理 1

设 $f \in C^2[a,b]$,且存在数 $p \in [a,b]$,满足f(p) = 0. 如果 $f'(p) \neq 0$,则存在一个数 $\delta > 0$,对任意初始近似值 $p_0 \in [p-\delta,p+\delta]$,使得由如下迭代定义的序列 $\{p_k\}_{k=0}^{\infty}$ 收敛到p:

$$p_k = g(p_{k-1}) = p_{k-1} - \frac{f(p_{k-1})}{f'(p_{k-1})} \quad \text{ } \sharp \vdash k = 1, 2, \cdots$$
 (5)

其中,函数g(x)定义如下:

$$g(x) = x - \frac{f(x)}{f'(x)} \tag{6}$$

并被称为牛顿-拉夫森迭代函数.

1.3.2 割线法

牛顿法中每次迭代需要计算两个函数: $f(p_{k-1})$ 和 $f'(p_{k-1})$,当函数形式非常复杂时,求其导数往往较为费时,因此需要一种和牛顿法收敛速度一样快且无需计算导数的方法,这就是割线法. 割线法包含的公式与试位法公式一致,只是在关于如何定义每个后续项的逻辑判定上不一样. 割线法需要两个靠近零点(p,0)的初始点 $(p_0,f(p_0))$ 和 $(p_1,f(p_1))$,定义 p_2 为经过两个初始点

的直线与x轴的交点的横坐标,即

$$p_2 = g(p_1, p_0) = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$
(7)

根据两点迭代公式可以得到一般项为:

$$p_{k+1} = g(p_k, p_{k-1}) = p_k - \frac{f(p_k)(p_k - p_{k-1})}{f(p_k) - f(p_{k-1})}$$
(8)

2. 分析讨论题

问题 1

求方程 $2x^2 + x - 15 = 0$ 的正根x* = 2.5近似值,分别利用如下三种格式编程计算:

1.
$$x_{k+1} = 15 - 2x_k^2, k = 0, 1, 2, \dots$$
, 取初始值 $x_0 = 2$.

2.
$$x_{k+1} = \frac{15}{2x_k+1}, k = 0, 1, 2, \dots$$
, 取初始值 $x_0 = 2$.

3.
$$x_{k+1} = x_k - \frac{2x_k^2 + x_k - 15}{4x_k + 1}, k = 0, 1, 2, \dots$$
,取初始值 $x_0 = 2$.

依次计算 $x_1, x_2, \dots, x_k, \dots$,并作图观察解的稳定性、收敛性,并分析原因.

解:

不动点迭代算法的代码实现:

```
function [k, p, err, P] = fixpt(g, p0, TOL, N)
2 % Fixed Point Interation
3 \% Input - g the iteration function as a string
_{4} % - p0 initial guess for the fixed point
         - TOL tolerance
        – N
                the maximum number of iterations
7 % Output - k the number of iterations carried out
8\% - p the approximation of the fixed point
          - err the error in the approximation
          - P sequence {p_n}
12 % Initialization
13 P(1) = p0; % initial guess
14 if nargin < 3
TOL = 1e-3; % tolerance default
16 end
17 if nargin < 4
N = 200; % maximum interation default
19 end
20
21 % Compute fixed point
22 \text{ for } k = 2:N
P(k) = feval(g, P(k-1));
err = abs(P(k) - P(k-1));
relerr = err/(abs(P(k)) + eps);
```

Table 1: 问题1.1迭代过程

迭代次数	根的估计值	误差	相对误差
2	7.000000	5.000000	0.714286
3	-83.000000	90.000000	1.084337
4	-13763.000000	13680.000000	0.993969
5	-378840323.000000	378826560.000000	0.999964
6	-287039980661488672.000000	287039980282648352.000000	1.000000

- **1**. 使用格式 " $x_{k+1} = 15 2x_k^2, k = 0, 1, 2, \cdots$,初始值 $x_0 = 2$,精确度= 10^{-4} "时,迭代过程及误差如表1. 在此情况下,算法无法收敛.
- **2**. 使用格式 " $x_{k+1} = \frac{15}{2x_k+1}$, $k = 0, 1, 2, \cdots$,初始值 $x_0 = 2$ "时,迭代过程及误差如表**2**. 在此情况下,算法经过48次迭代后达到精度 10^{-4} ,根的估计值为2.500104. 迭代过程可以通过图1可视化呈现.

Table 2: 问题1.2迭代过程(部分省略)

 迭代次数	根的估计值	 误差	相对误差
2	3.000000	1.000000	0.333333
3	2.142857	0.857143	0.400000
4	2.837838	0.694981	0.244898
5	2.246964	0.590874	0.262966
6	2.730287	0.483324	0.177023
7	2.321775	0.408513	0.175948
8	2.657902	0.336127	0.126463
9	2.374995	0.282907	0.119119
10	2.608700	0.233706	0.089587
20	2.517270	0.037851	0.015036
21	2.485691	0.031578	0.012704
22	2.511981	0.026290	0.010466
23	2.490055	0.021926	0.008805
24	2.508315	0.018259	0.007280
25	2.493090	0.015225	0.006107
26	2.505771	0.012681	0.005061
27	2.495200	0.010572	0.004237
28	2.504007	0.008807	0.003517
29	2.496666	0.007341	0.002940
30	2.502782	0.006116	0.002444
40	2.500449	0.000988	0.000395
41	2.499626	0.000823	0.000329
42	2.500312	0.000686	0.000274
43	2.499740	0.000572	0.000229
44	2.500217	0.000476	0.000191
45	2.499820	0.000397	0.000159
46	2.500150	0.000331	0.000132
47	2.499875	0.000276	0.000110
48	2.500104	0.000230	0.000092

Table 3: 问题1.3迭代过程

迭代次数	根的估计值	误差	相对误差
2	2.555556	0.555556	0.217391
3	2.500550	0.055006	0.021997
4	2.500000	0.000550	0.000220
5	2.500000	0.000000	0.000000

Figure 1: 问题1.2的迭代过程图示

3. 使用格式 " $x_{k+1} = x_k - \frac{2x_k^2 + x_k - 15}{4x_k + 1}$, $k = 0, 1, 2, \cdots$, 初始值 $x_0 = 2$ " 时,迭代过程及误差如表3 在此情况下,算法经过5次迭代后达到精度 10^{-4} ,根的估计值为2.500000. 迭代过程可以通过图2可视化呈现.

Figure 2: 问题1.3的迭代过程图示

问题 2

证明方程 $2-3x-\sin(x)=0$ 在(0,1)内有且仅有一个实根,使用二分法求误差不大于0.0005的根及其需要迭代的次数.

解:

令f(x) = 2 - 3x - sin(x),则f'(x) = -3 - cos(x) < 0,所以f(x)在区间(0,1)内单调递减. 又因为f(0) = 2 > 0, f(1) = -1 - sin1 < 0,所以f(x)在(0,1)内有且仅有一个实根. 二分法的代码实现:

```
17 return
18 end
19
20 % Compute the number of needed iteration round
21 N = 1 + round((log(b-a)-log(TOL))/log(2));
22 % Main process
_{23} for k = 1:N
    c = (a+b)/2;
    yc = feval(f, c);
26
    % Print intermediate messages
27
    fprintf('Interation NO.%d,\t current section = [%f,%f],\t c=%f,\t f(c)=%f\n',...
     k, a, b, c, yc);
    if yc == 0
31
     a = c;
      b = c;
33
    elseif yb * yc > 0
     b = c;
35
36
     yb = yc;
37
     else
     a = c;
38
     ya = yc;
    end
40
    if (b - a) < TOL
42
    break, end
43
44
45
    c = (a + b)/2;
    yc = feval(f, c);
    err = abs(b-a);
49 end
50 end
```

经过11次迭代后误差为 $-2.454600314258926 \times 10^{-4}$. 此时根c= 0.505371093750000

问题 3

利用牛顿法求解方程

$$\frac{1}{2} + \frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x = 0 \tag{9}$$

分别取 $x_0 = \frac{\pi}{2}, 5\pi, 10\pi$, 使得精度不超过 10^{-5} . 比较初值对计算结果的影响.

解:

牛顿法的代码实现:

```
function [p0, y, k, err] = newton(f, df, p0, delta, epsilon, N)
Newton Raphson method
```

```
3 % Input - f the input function as a string
4 % − df
                  the derivative of f as a string
         - p0 the initial approximation to zero point of f
         - delta tolerance for the value of zero point
         - epsilon tolerance for the value of function f at zero point
8 %
        - N
                   maximum number of iterations
9 % Output - p0
                   the approximation to zero point of input function
10 % - y
                  = f(p0)
          - k the number of iterations
11 %
          - err the error in the approximation
14 fprintf('Initial guess\t p0 = %f\n', p0);
15
16 for k = 1:N
   p1 = p0 - (feval(f, p0) / feval(df, p0));
    err = abs(p1 - p0);
   relerr = 2 * err / (abs(p1) + delta);
   p0 = p1;
   y = feval(f, p0);
21
    % Print intermediate messages
   fprintf('Interation NO.%d,\t p0=\%f\t f(p0)=\%f\n', k, p0, y);
24
   if (err < delta) || (relerr < delta) || (abs(y) < epsilon)
26
    break, end
27
28
29 end
```

当 $x_0 = \pi/2$ 时,经过14次迭代即可满足精度,此时解为x = 0.000005611212547 当 $x_0 = 5\pi$ 时,经过40次迭代才可满足精度,此时解为x = -0.00000051311029 当 $x_0 = 10\pi$ 时,需要经过273次迭代才可满足精度,此时解为x = -0.00000543338169

问题 4

已知 $f(x) = 5x - e^x \div (0,1)$ 之间有一个实根,试分别利用二分法、牛顿法、割线法、试位法设计相应的计算格式,并编程求解(精确到4位小数).

解:

- (1)二分法
- 二分法的代码实现请见问题22.
- 选取初始点 $p_0 = 0, p_1 = 1$, 经过14次迭代后达到精度0.0001, 此时 \mathbf{x} =0.2592
 - (2)牛顿法
- 牛顿法的代码实现请见问题32.
- 选取初始点 $p_0 = 0, p_1 = 1$,只需4次迭代后即可达到精度0.0001,迭代过程为:
- -1.0000 0.1588 0.2576 0.2592 0.2592
 - (3)割线法

代码实现:

```
1 function [p1, y, k, err] = secant(f, p0, p1, delta, epsilon, N)
 2 % Secant method
 3 % Input - f
                    the input function as a string
 4 % — p0
                    the initial approximation to zero point of f
 5 %
          - p1
                    the initial approximation to zero point of f
          - delta tolerance for the value of zero point
 6 %
          - epsilon tolerance for the value of function f at zero point
          - N
                    maximum number of iterations
 8 %
                    the approximation to zero point of input function
9 % Output - p1
10 %
        - y
                    = f(p0)
           - k the number of iterations
11 %
                    the error in the approximation
           - err
14 fprintf('Initial guess\t p0 = \%f, p1 = \%f\t f(p1)=\%f\n', p0, p1, feval(f, p1));
16 \text{ for } k = 1:N
    p2 = p1 - feval(f, p1) * (p1 - p0) / (feval(f, p1) - feval(f, p0));
    err = abs(p2 - p1);
    relerr = 2 * err / (abs(p2) + delta);
19
    p0 = p1;
    p1 = p2;
    y = feval(f, p1);
22
    % Print intermediate messages
24
    fprintf('Interation NO.\%d, \ \ t \ p0 = \%f, \ p1 = \%f \ \ f(p1) = \%f \ \ ', \ k, \ p0, \ p1, \ y);
    if (err < delta) || (relerr < delta) || (abs(y) < epsilon)
     break, end
29 end
30 end
```

使用割线法时选取初始点应慎重,有的选点会出现不正确的结果。

选取 $p_0 = 0.3, p_1 = 0.5$ 后进行迭代,经过4次迭代产生精度误差不超过0.0001的解x=0.2592 (4)试位法

试位法代码实现:

```
function [c, yc, err] = regula(f, a, b, delta, epsilon, N)
2 % Regula falsi method
3 \% Input - f the input function as a string
    - a
                  the left end point of the initial section
5 %
                  the right end point of the initial section
         – b
         - delta tolerance for the value of zero point
         - epsilon tolerance for the value of function f at zero point
       - N
                  maximum number of iterations
                  the zero point of input function
9 % Output - c
10 % − yc
                 = f(c)
11 %
          - err the error in the approximation
13 % Initialization
14 ya = feval(f, a);
yb = feval(f, b);
16 % Check condition
```

```
_{17} if ya*yb > 0
   disp ('The end-points value of the initial section should not be of the same sign')
19 return
20 end
_{22} for k = 1:N
   dx = yb*(b - a) / (yb - ya);
c = b - dx;
   ac = c - a;
25
    yc = feval(f, c);
    % Print intermediate messages
28
    fprintf('Interation NO.%d,\t current section = [%f,%f],\t c=%f,\t f(c)=%f\n',...
     k, a, b, c, yc);
30
    if yc == 0
32
     break
33
   elseif yb*yc > 0
34
     b = c;
     yb = yc;
37
    else
    a = c;
     ya = yc;
39
    end
41
    dx = \min(abs(dx), ac);
   if abs(dx) < delta
    break, end
44
    if abs(yc) < epsilon
46
    break, end
47 end
49 err = abs(b-a)/2;
yc = feval(f, c);
51 end
```

错位法选取初始点 $p_0=0,p_1=1$,经过13次迭代后达到精度0.0001,x=0.2592