Algorithms in MapReduce

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Intelligent Decision Support Systems Master studies, second semester Academic year 2015/16 (summer course)

Review of the previous lectures

- Mining of massive datasets.
- Evolution of database systems.
- Dimensional modeling.
- ETL and OLAP systems.
- Multidimensional queries.
- Processing of very large data.
- Nearest neighbor search.
- Data partitioning and MapReduce:
 - ► Data partitioning.
 - ► The overall idea of the MapReduce paradigm.
 - ► Hadoop implementation.

Outline

1 Motivation

- 2 Algorithms in Map-Reduce
- 3 Extensions to MapReduce
- **4** Summary

Outline

Motivation

- 2 Algorithms in Map-Reduce
- 3 Extensions to MapReduce
- 4 Summary

Algorithms in Map-Reduce

- How to implement fundamental algorithms in MapReduce?
 - ► Matrix-vector multiplication.
 - ► Relational-Algebra Operations.
 - Matrix multiplication.

Outline

1 Motivation

- 2 Algorithms in Map-Reduce
- 3 Extensions to MapReduce
- 4 Summary

- Let A to be large $n \times m$ matrix, and x a long vector of size m.
- The matrix-vector multiplication is defined as:

- Let A to be large $n \times m$ matrix, and x a long vector of size m.
- The matrix-vector multiplication is defined as:

$$Ax = v$$

where $\boldsymbol{v} = (v_1, \dots, v_n)$ and

$$v_i = \sum_{j=1}^m a_{ij} x_j.$$

- ullet Let us first assume that m is large, but not so large that vector $oldsymbol{x}$ cannot fit in main memory, and be part of the input to every Map task.
- ullet The matrix $oldsymbol{A}$ is stored with explicit coordinates, as a triple $(i,j,a_{ij}).$
- We also assume the position of element x_j in the vector x will be stored in the analogous way.

• Map:

• Map: each map task will take the entire vector x and a chunk of the matrix A. From each matrix element a_{ij} it produces the key-value pair $(i, a_{ij}x_j)$. Thus, all terms of the sum that make up the component v_i of the matrix-vector product will get the same key.

- Map: each map task will take the entire vector x and a chunk of the matrix A. From each matrix element a_{ij} it produces the key-value pair $(i, a_{ij}x_j)$. Thus, all terms of the sum that make up the component v_i of the matrix-vector product will get the same key.
- Reduce:

- Map: each map task will take the entire vector x and a chunk of the matrix A. From each matrix element a_{ij} it produces the key-value pair $(i, a_{ij}x_j)$. Thus, all terms of the sum that make up the component v_i of the matrix-vector product will get the same key.
- Reduce: a reduce task has simply to sum all the values associated with a given key i. The result will be a pair (i, v_i) where:

$$v_i = \sum_{j=1}^m a_{ij} x_j.$$

Matrix-Vector Multiplication with Large Vector \boldsymbol{v}

Matrix-Vector Multiplication with Large Vector $oldsymbol{v}$

• Divide the matrix into vertical stripes of equal width and divide the vector into an equal number of horizontal stripes, of the same height.

- The *i*th stripe of the matrix multiplies only components from the *i*th stripe of the vector.
- Thus, we can divide the matrix into one file for each stripe, and do the same for the vector.

Matrix-Vector Multiplication with Large Vector \boldsymbol{v}

- Each Map task is assigned a chunk from one the stripes of the matrix and gets the entire corresponding stripe of the vector.
- The Map and Reduce tasks can then act exactly as in the case where Map tasks get the entire vector.

Relational-Algebra Operations

Example (Relation Links)

From	То
url1	url2
url1	url3
url2	url3
url2	url4

Relational-Algebra Operations

- Selection
- Projection
- Union, Intersection, and Difference
- Natural Join
- Grouping and Aggregation

Relational-Algebra Operations

- \bullet R, S relation
- *t*, *t'* a tuple
- ullet C a condition of selection
- A, B, C subset of attributes
- ullet a, b, c attribute values for a given subset of attributes

Selection

• Map:

Selection

- Map: For each tuple t in R, test if it satisfies C. If so, produce the key-value pair (t,t). That is, both the key and value are t.
- Reduce:

Selection

- Map: For each tuple t in R, test if it satisfies C. If so, produce the key-value pair (t,t). That is, both the key and value are t.
- **Reduce**: The Reduce function is the identity. It simply passes each key-value pair to the output.

• Map:

- Map: For each tuple t in R, construct a tuple t' by eliminating from t those components whose attributes are not in A. Output the key-value pair (t',t').
- Reduce:

- Map: For each tuple t in R, construct a tuple t' by eliminating from t those components whose attributes are not in A. Output the key-value pair (t',t').
- **Reduce**: For each key t' produced by any of the Map tasks, there will be one or more key-value pairs (t',t'). The Reduce function turns $(t',[t',t',\ldots,t'])$ into (t',t'), so it produces exactly one pair (t',t') for this key t'.

Union

• Map:

Union

- Map: Turn each input tuple t either from relation R or S into a key-value pair (t,t).
- Reduce:

Union

- Map: Turn each input tuple t either from relation R or S into a key-value pair (t,t).
- ullet Reduce: Associated with each key t there will be either one or two values. Produce output (t,t) in either case.

Intersection

• Map:

Intersection

- Map: Turn each input tuple t either from relation R or S into a key-value pair (t,t).
- Reduce:

Intersection

- Map: Turn each input tuple t either from relation R or S into a key-value pair (t, t).
- ullet Reduce: If key t has value list [t,t], then produce (t,t). Otherwise, produce nothing.

Minus

• Map:

Minus

- Map: For a tuple t in R, produce key-value pair (t, name(R)), and for a tuple t in S, produce key-value pair (t, name(S)).
- Reduce:

Minus

- Map: For a tuple t in R, produce key-value pair (t, name(R)), and for a tuple t in S, produce key-value pair (t, name(S)).
- **Reduce**: For each key t, do the following.
 - 1 If the associated value list is [name(R)], then produce (t,t).
 - 2 If the associated value list is anything else, which could only be $[\mathtt{name}(R),\mathtt{name}(S)],\ [\mathtt{name}(S),\mathtt{name}(R)],\ \mathsf{or}\ [\mathtt{name}(S)],\ \mathsf{produce}$ nothing.

Natural Join

- Let us assume that we join relation R(A,B) with relation S(B,C) that share the same attribute B.
- Map:

Natural Join

- Let us assume that we join relation R(A,B) with relation S(B,C) that share the same attribute B.
- Map: For each tuple (a,b) of R, produce the key-value pair $(b,(\mathtt{name}(R),a))$. For each tuple (b,c) of S, produce the key-value pair $(b,(\mathtt{name}(S),c))$.
- Reduce:

Natural Join

- Let us assume that we join relation R(A,B) with relation S(B,C) that share the same attribute B.
- Map: For each tuple (a,b) of R, produce the key-value pair $(b,(\mathtt{name}(R),a))$. For each tuple (b,c) of S, produce the key-value pair $(b,(\mathtt{name}(S),c))$.
- Reduce: Each key value b will be associated with a list of pairs that are either of the form $(\mathsf{name}(R), a)$ or $(\mathsf{name}(S), c)$. Construct all pairs consisting of one with first component $\mathsf{name}(R)$ and the other with first component S, say $(\mathsf{name}(R), a)$ and $(\mathsf{name}(S), c)$. The output for key b is $(b, [(a1, b, c1), (a2, b, c2), \ldots])$, that is, b associated with the list of tuples that can be formed from an R-tuple and an S-tuple with a common b value.

Grouping and Aggregation

- ullet Let assume that we group a relation R(A,B,C) by attributes A and aggregate values of B.
- Map:

Grouping and Aggregation

- ullet Let assume that we group a relation R(A,B,C) by attributes A and aggregate values of B.
- Map: For each tuple (a, b, c) produce the key-value pair (a, b).
- Reduce:

Grouping and Aggregation

- Let assume that we group a relation R(A,B,C) by attributes A and aggregate values of B.
- Map: For each tuple (a, b, c) produce the key-value pair (a, b).
- **Reduce**: Each key a represents a group. Apply the aggregation operator θ to the list $[b_1, b_2, \ldots, b_n]$ of B-values associated with key a. The output is the pair (a, x), where x is the result of applying θ to the list. For example, if θ is SUM, then $x = b_1 + b_2 + \ldots + b_n$, and if θ is MAX, then x is the largest of b_1, b_2, \ldots, b_n .

• If M is a matrix with element m_{ij} in row i and column j, and N is a matrix with element n_{jk} in row j and column k, then the product:

$$P = MN$$

is the matrix P with element p_{ik} in row i and column k, where:

$$pik =$$

• If M is a matrix with element m_{ij} in row i and column j, and N is a matrix with element n_{jk} in row j and column k, then the product:

$$P = MN$$

is the matrix P with element p_{ik} in row i and column k, where:

$$pik = \sum_{j} m_{ij} n_{jk}$$

 We can think of a matrix M and N as a relation with three attributes: the row number, the column number, and the value in that row and column, i.e.,:

$$M(I, J, V)$$
 and $N(J, K, W)$

with the following tuples, respectively:

$$(i, j, m_{ij})$$
 and (j, k, n_{jk}) .

- ullet In case of sparsity of M and N, this relational representation is very efficient in terms of space.
- \bullet The product MN is almost a natural join followed by grouping and aggregation.

• Map:

• Map: Send each matrix element m_{ij} to the key value pair:

$$(j,(M,i,m_{ij}))$$
.

Analogously, send each matrix element n_{jk} to the key value pair:

$$(j,(N,k,n_{jk}))$$
.

Reduce:

• Map: Send each matrix element m_{ij} to the key value pair:

$$(j,(M,i,m_{ij}))$$
.

Analogously, send each matrix element n_{jk} to the key value pair:

$$(j,(N,k,n_{jk}))$$
.

• **Reduce**: For each key j, examine its list of associated values. For each value that comes from M, say (M, i, m_{ij}) , and each value that comes from N, say (N, k, n_{jk}) , produce the tuple

$$(i, k, v = m_{ij}n_{jk}),$$

The output of the Reduce function is a key j paired with the list of all the tuples of this form that we get from j:

$$(j, [(i_1, k_1, v_1), (i_2, k_2, v_2), \dots, (i_p, k_p, v_p)]).$$

• Map:

• Map: From the pairs that are output from the previous Reduce function produce p key-value pairs:

$$((i_1,k_1),v_1),((i_2,k_2),v_2),\ldots,((i_p,k_p),v_p).$$

Reduce:

 Map: From the pairs that are output from the previous Reduce function produce p key-value pairs:

$$((i_1,k_1),v_1),((i_2,k_2),v_2),\ldots,((i_p,k_p),v_p).$$

• Reduce: For each key (i, k), produce the sum of the list of values associated with this key. The result is a pair

$$((i,k),v)$$
,

where v is the value of the element in row i and column k of the matrix

$$P = MN$$
.

• Map:

• Map: For each element m_{ij} of M, produce a key-value pair

$$((i,k),(M,j,m_{ij})),$$

for $k=1,2,\ldots$, up to the number of columns of N. Also, for each element n_{jk} of N, produce a key-value pair

$$((i,k),(N,j,n_{jk})),$$

for $i=1,2,\ldots$, up to the number of rows of M.

• Reduce:

• Reduce: Each key (i, k) will have an associated list with all the values

$$(M, j, m_{ij})$$
 and (N, j, n_{jk}) ,

for all possible values of j. We connect the two values on the list that have the same value of j, for each j:

- ▶ We sort by j the values that begin with M and sort by j the values that begin with N, in separate lists,
- ▶ The jth values on each list must have their third components, m_{ij} and n_{jk} extracted and multiplied,
- ▶ Then, these products are summed and the result is paired with (i,k) in the output of the Reduce function.

Outline

1 Motivation

- 2 Algorithms in Map-Reduce
- 3 Extensions to MapReduce
- 4 Summary

 Workflow systems, like Clustera or Hyracks, extend map-reduce from the simple two-step workflow (the Map function feeds the Reduce function) to any collection of functions, with an acyclic graph representing workflow among the functions.

- Workflow systems, like Clustera or Hyracks, extend map-reduce from the simple two-step workflow (the Map function feeds the Reduce function) to any collection of functions, with an acyclic graph representing workflow among the functions.
- Pregel is a distributed programming framework for graph algorithms
 - ▶ Pregel views its data as a graph.
 - ► Each node of the graph corresponds roughly to a task
 - ► Each graph node generates output messages that are destined for other nodes of the graph, and each graph node processes the inputs it receives from other nodes.

- Workflow systems, like Clustera or Hyracks, extend map-reduce from the simple two-step workflow (the Map function feeds the Reduce function) to any collection of functions, with an acyclic graph representing workflow among the functions.
- Pregel is a distributed programming framework for graph algorithms
 - Pregel views its data as a graph.
 - ► Each node of the graph corresponds roughly to a task
 - ► Each graph node generates output messages that are destined for other nodes of the graph, and each graph node processes the inputs it receives from other nodes.
- PIG and Hive: the former is an implementation of relational algebra on top of Hadoop, while the latter implements a restricted form of SQL on top of Hadoop.
- And many others . . .

Outline

1 Motivation

- 2 Algorithms in Map-Reduce
- 3 Extensions to MapReduce
- 4 Summary

Summary

- Algorithms in MapReduce:
 - ► Matrix-vector multiplication.
 - ► Relational-Algebra Operations.
 - Matrix multiplication.
- Extensions of MapReduce

Bibliography

- A. Rajaraman and J. D. Ullman. Mining of Massive Datasets.
 Cambridge University Press, 2011
 http://infolab.stanford.edu/~ullman/mmds.html
- J.Lin and Ch. Dyer. Data-Intensive Text Processing with MapReduce.
 Morgan and Claypool Publishers, 2010
 http://lintool.github.com/MapReduceAlgorithms/
- Ch. Lam. Hadoop in Action.
 Manning Publications Co., 2011