Análisis II - Matemática 3 Análisis Matemático II

Leandro M. Del Pezzo Idpezzo@dm.uba.ar

Teóricas - Verano 2022

Curvas

Curvas

El concepto de curva

En general vamos a trabajar en \mathbb{R}^N , con N=2 o N=3.

Una curva $\mathcal{C} \subset \mathbb{R}^N$ es un conjunto de puntos en el plano (si N=2) o en el espacio (si N=3) que puede describirse mediante un parámetro que varía en forma continua en un intervalo cerrado y acotado de la recta real.

Definición.

Un conjunto $\mathcal{C} \subset \mathbb{R}^N$ es una curva si existe una función continua $\sigma(t)$, denominada una "parametrización de \mathcal{C} ", definida en algún intervalo [a,b]

$$\sigma\colon [a,b]\to \mathcal{C},$$

tales que $P \in \mathcal{C}$ si y solo si existe $t \in [a, b]$ con $\sigma(t) = P$.

El ejemplo más simple de curva plana es el gráfico de una función continua. En efecto, si tenemos $f:[a,b]\to\mathbb{R}$ una función continua, su gráfico

$$\{(x,y)\in\mathbb{R}^2\colon y=f(x)\,\mathbf{y}\,x\in[a,b]\}\,,$$

es una curva que admite una parametrización

$$\sigma(x) = (x, f(x))$$

definida para $x \in [a, b]$.

Una curva $\mathcal C$ que es el Gráfico de una función continua $f:[0,4]\to\mathbb R$, parametrizada como $\sigma(t)=(t,f(t)),$ con $\sigma\colon [0,4]\to\mathcal C\subset\mathbb R^2.$

Notación. Toda vez que usemos el término parametrización para una función $\sigma\colon [a,b]\to \mathcal{C}$, se asumirá que es continua y suryectiva (es decir que la imagen de σ es \mathcal{C}).

Observación.

La continuidad de σ en la definición anterior implica la continuidad de todas sus coordenadas (de hecho es equivalente). Por ejemplo, si N=3 y

$$\sigma(t) = (x(t), y(t), z(t))$$

entonces las funciones x(t), y(t), z(t) definidas en [a,b] resultan continuas.

Ejercicio.

Una curva (con nuestra definición) resulta ser siempre acotada. Es decir que está contenida en un una bola de radio suficientemente grande.

¿La parametrización de una curva es única?

Curvas

El concepto de curva

Ejemplo

Consideremos la curva

$$\sigma \colon [0,2\pi] \to \mathbb{R}^3, \sigma(t) \coloneqq (\cos(3t),\sin(3t),t)$$

Esta no es la única parametrización de ${\mathcal C}$

$$\alpha \colon [0, 6\pi] \to \mathbb{R}^3 \alpha(t) \coloneqq (\cos(t), \sin(t), \frac{t}{3})$$

$$\beta \colon [0, \sqrt{2\pi}] \to \mathbb{R}^3 \beta(t) \coloneqq (\cos(3t^2), \sin(3t^2), t^2).$$

¿La parametrización de una curva es única?

La respuesta es: la parametrización de una curva no es única.

Definición.

Sean $\mathcal{C}\subset\mathbb{R}^N$ (N=2,3) una curva que admite una parametrización $\sigma\colon [a,b]\to\mathbb{R}^N$ y

$$h: [a, b] \rightarrow [c, d]$$

una Bivección continua, entonces tenemos

$$h^{-1}: [c,d] \to [a,b].$$

Si definimos $\tilde{\sigma}\colon [c,d]\to\mathbb{R}^N$ dada por $\tilde{\sigma}(\tau)=\sigma\big(h^{-1}(\tau)\big)$. Entonces, $\tilde{\sigma}$ es una parametrización de \mathcal{C} . Decimos que $\tilde{\sigma}$ es una reparametrización de σ .

La propia definición de curva admite que podamos concatenar más de una curva para obtener una nueva. Por ejemplo, si $\sigma_1\colon [a,b]\to \mathcal{C}_1$ y $\sigma_2\colon [b,c]\to \mathcal{C}_2$ son parametrizaciones de dos curvas $\mathcal{C}_1,\mathcal{C}_2$ tales que $\sigma_1(b)=\sigma_2(b)$ entonces $\mathcal{C}=\mathcal{C}_1\cup\mathcal{C}_2$ es una curva que de hecho admite una parametrización dada por la función partida (y continua) $\sigma\colon [a,c]\to \mathcal{C}$ dada por

$$\sigma(t) \coloneqq egin{cases} \sigma_1(t), \ \mathsf{si} \ t \in [\mathsf{a}, \mathsf{b}] \ \sigma_2(t), \ \mathsf{si} \ t \in (\mathsf{b}, \mathsf{c}]. \end{cases}$$

Ejemplo

$$egin{aligned} \sigma_1\colon [-2\pi,0] &
ightarrow \mathbb{R}^2, \quad \sigma_1(t)\coloneqq (\cos(t)-1,\sin(t)) \ &\sigma_2\colon [0,1] &
ightarrow \mathbb{R}^2, \quad \sigma_2(t)\coloneqq (t^2,t) \ &\sigma\colon [-2\pi,1] &
ightarrow \mathbb{R}^2 \ &\sigma(t)\coloneqq egin{cases} (\cos(t)-1,\sin(t)) & si\ t\in [-2\pi,0], \ (t^2,t) & si\ t\in [0,1]. \end{cases} \end{aligned}$$

Curvas	Simples

Definición.

Una curva $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) se dice simple, abierta si no se corta a si misma. Más precisamente, si admite una parametrización $\sigma\colon [a,b]\to \mathcal{C}$ que es inyectiva en [a,b].

Definición.

Una curva $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) se dice simple, cerrada si admite una parametrización $\sigma: [a,b] \to \mathcal{C}$ que es inyectiva en [a,b) y $\sigma(a) = \sigma(b)$.

Curvas

Curvas simples

¿Toda curva es simple abierta o cerrada?

La respuesta es: No toda curva es simple abierta o cerrada.

$$\sigma: \left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right] \to \mathbb{R}^2 \quad \sigma(t) := (\cos(t), \sin(2t))$$

Vamos a suponer que cualquier curva puede escribirse como union finita de curvas simples abiertas y/o cerradas que se intersecan -de a dos en dos- a lo sumo en un solo punto.

Lema.

Sean $\mathcal C$ una curva simple abierta de $\mathbb R^N$ (N=2,3) y $\sigma\colon [a,b]\to\mathbb R^N$ una parametrización continua e inyectiva de $\mathcal C$. Entonces $P_n=\sigma(t_n)\to P_0=\sigma(t_0)$ cuando $n\to\infty$ si y solo si $t_n\to t_0$ cuando $n\to\infty$.

Recta tangente y suavidad

Curvas

Recta tangente y suavidad

Definición.

Sean $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) una curva simple abierta o cerrada y $\sigma\colon [a,b] \to \mathbb{R}^N$ una paramatrización de \mathcal{C} tal que

$$\sigma$$
 es injectiva en $[a,b]$ si $\mathcal C$ es simple abienta o

 σ es invectiva en [a,b) si \mathcal{C} es simple cerrada.

Sea $t_0 \in [a,b]$ tal que existe $\sigma'(t_0)$ y $\sigma'(t_0) \neq 0$.^a Entonces llamaremos recta tangente a \mathcal{C} en el punto $P_0 = \sigma(t_0)$ a la recta que pasa por P_0 con dirección dada por el vector $\sigma'(t_0)$, es decir

$$\mathbb{L}_{P_0}$$
: $\sigma(t_0) + \lambda \sigma'(t_0)$ $\lambda \in \mathbb{R}$.

^aCuando $t_0=a$ o b la derivada se interpreta lateral y en el caso que la curva sea cerrada $\sigma'(a)=\sigma'(b)$.

Curvas

Recta tangente y suavidad

Teorema.

Sea $\mathcal{C}\subset\mathbb{R}^N$ (N=2,3) una curva simple cerrada o abierta que admite una parametrización $\sigma\colon [a,b]\to\mathcal{C}$ tal que

 σ es inyectiva en [a,b] si $\mathcal C$ es simple abierta o σ es inyectiva en [a,b) si $\mathcal C$ es simple cerrada.

Si σ es diferenciable en $t_0 \in [a,b]$ y $\sigma'(t_0) \neq 0$ entonces la recta tangente de $\mathcal C$ en $P_0 = \sigma(t_0)$ es el límite de las rectas secantes a $\mathcal C$ que pasa por P_n y P_0 con $P_n \in \mathcal C$ tal que $P_n \to P_0$ cuando $n \to \infty$.

Curvas Recta tangente y suavidad

Definición.

Una parametrización $\sigma\colon [a,b]\to\mathcal{C}\subset\mathbb{R}^N$, (N=2,3) de clase $C^1([a,b])$ con $\sigma'(t)\neq 0$ para todo $t\in[a,b]$ y que cumple una de las siguientes condiciones

- σ es invectiva en [a, b],
- σ es inyectiva en [a,b), $\sigma(a)=\sigma(b)$ y $\sigma'(a)=\sigma'(b)$ (derivadas laterales).

se denomina parametrización regular de un curva simple abierta o cerrada respectivamente.

Curvas Recta tangente y suavidad

Definición.

Una curva simple abierta o cerrada, que admite una parametrización regular se dice suave.

Curvas Recta tangente y suavidad

Reparametrización. Sean $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) una curva simple abierta o cerrada que admite una parametrización regular $\sigma\colon [a,b] \to \mathbb{R}^N$ y

$$h: [a, b] \rightarrow [c, d]$$

una Biyección C^1 con $h'(t) \neq 0$ para todo $t \in [a,b]$. Entonces la parametrización $\tilde{\sigma} \colon [c,d] \to \mathbb{R}^N$ dada por

$$\tilde{\sigma}(\tau) = \sigma(h^{-1}(\tau)).$$

es una parametrización regular de \mathcal{C} . Decimos que $\tilde{\sigma}$ es una reparametrización regular de σ .

Longitud de curva

Longitud de curva Motivación

Más específicamente nos interesa responder la siguiente pregunta: ¿Cuál es la longitud de una curva abierta simple?

Comentario: Si aprendemos a medir longitudes de curvas abiertas simples podemos medir longitudes de curvas más complejas pensando que son curvas concatenadas, por ese motivo no es una limitación estudiar este caso particular.

Sean $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) una curva simple abierta y $\sigma\colon [a,b] \to \mathbb{R}^N$ una parametrización regular de \mathcal{C} . Sea $a=t_0 < t_1 < \cdots < t_n = b$ una partición π de [a,b]. Esto induce una partición \mathcal{P} de la curva \mathcal{C} dada por los puntos $P_n=\sigma(t_n)$.

Podemos pensar a los puntos P_n como vértices de una poligonal. Cuantos más puntos tenga, más parecida será la poligonal a la curva \mathcal{C} . La idea es que las longitudes de las poligonales tenderán a la longitud de \mathcal{C} .

Si \mathcal{P}' es una partición más fina, es decir, si todos los puntos de \mathcal{P} están contenidos en \mathcal{P}' , la longitud $\mathcal{L}(\mathcal{P}')$ será mayor o igual a $\mathcal{L}(\mathcal{P})$,

$$\mathcal{L}(\mathcal{P}') \geq \mathcal{L}(\mathcal{P}).$$

En efecto, si entre dos puntos consecutivos P_1 y P_2 de la partición $\mathcal P$ tengo puntos S_1, S_2, \cdots, S_k de la partición $\mathcal P'$, la longitud del segmento de extremos P_1 y P_2 verifica

$$||P_1 - P_2|| \le ||P_1 - S_1|| + ||S_1 - S_2|| + \dots + ||S_k - P_2||$$

que es parte de la suma que da la longitud $\mathcal{L}(\mathcal{P}')$.

Longitud de curva

Definición.

Si existe una cota superior finita para las longitudes de todas las poligonales con vértices en la curva $\mathcal C$ decimos que $\mathcal C$ es rectificable y definimos la longitud de $\mathcal C$ como la menor de esas cotas, es decir

$$\mathcal{L}(\mathcal{C}) \coloneqq \sup \left\{ \mathcal{L}(\mathcal{P}) \colon \mathcal{P} \text{ es una partición de } \mathcal{C} \right\}.$$

¿Cómo calculamos la longitud de arco de una curva?

Si $\mathcal C$ es abierta simple y suave podemos considerar una parametrización regular $\sigma\colon [a,b]\to \mathcal C$. Tomando una partición π de [a,b] y $\mathcal P_\pi$ observamos que

$$\mathcal{L}(\mathcal{P}_{\pi}) = \sum_{i=1}^{N} \|P_i - P_{i-1}\| = \sum_{i=1}^{N} \|\sigma(t_i) - \sigma(t_{i-1})\|.$$

Tenemos

$$\sigma(t_i) - \sigma(t_{i-1}) \sim \sigma'(t_{i-1})(t_i - t_{i-1}),$$

luego

$$\mathcal{L}(\mathcal{P}_\pi) \sim \sum_{i=1}^N \|\sigma'(t_{i-1})\|(t_i-t_{i-1}),$$

que es una suma de Riemman de la función $\|\sigma'(t)\|$ asociada a la partición π .

Se tiene

$$\mathcal{L}(\mathcal{C}) = \int_a^b \|\sigma'(t)\| \, dt.$$

Longitud de curva Parámetro de longitud de arco

Sea $\mathcal C$ una curva simple abierta suave y $\sigma\colon [a,b]\to \mathcal C$ una parametrización regular. La longitud entre $P_0=\sigma(a)$ y otro punto $P=\sigma(t)\in \mathcal C$ es

$$\int_{a}^{t} \|\sigma'(I)\| dI.$$

Si escribimos

$$s = \int_{2}^{t} \|\sigma'(I)\| dI,$$

resulta ser que $s \in [0, \mathcal{L}(\mathcal{C})]$ y se denomina parámetro de longitud de arco.

Longitud de curva

Parámetro de longitud de arco

Pensado como función de t.

$$s(t) = \int_0^t \|\sigma'(I)\| dI,$$

lo llamamos función de longitud de arco y verifica

$$s: [a, b] \rightarrow [0, \mathcal{L}(\mathcal{C})].$$

Por el Teorema Fundamental del Cálculo resulta ser $s'(t) = ||\sigma'(t)|| > 0$ y por ende de clase C^1 (pues σ es regular). En particular s(t) admite una inversa continuamente diferenciable. Esto es, puede escribirse t = t(s),

$$t: [0, \mathcal{L}(\mathcal{C})] \rightarrow [a, b]$$

con derivada

$$t'(s) = \frac{1}{\|\sigma'(t(s))\|}.$$

Longitud de curva

Parámetro de longitud de arco

Teniendo esto en cuenta podemos considerar la reparametrización de $\mathcal C$ dada por

$$\tilde{\sigma}(s) = \sigma(t(s))$$

$$\tilde{\sigma}(s) \colon [0, \mathcal{L}(\mathcal{C})] \to \mathcal{C},$$

y en este caso decimos que $\mathcal C$ está parametrizada por longitud de arco. Notar que

$$\|\tilde{\sigma}'(s)\| = 1$$
,

pues

$$ilde{\sigma}'(s) = \sigma'(t(s))t'(s) = rac{\sigma'(t(s))}{\|\sigma'(t(s))\|}.$$

Longitud de curva

Reparametrización por longitud de arco

Proposición.

Sean N=2 o 3, $\sigma\colon [a,b]\to\mathbb{R}^N$ y $\gamma\colon [c,d]\to\mathbb{R}^N$ dos parametrizaciones regulares de una curva simple abierta y suave \mathcal{C} . Entonces γ es una reparametrización de σ .

Supongamos que tenemos un alambre que ocupa una región del espacio que podemos pensar como una curva $\mathcal C$ simple abierta, y suave (admite una parametrización regular).

Si el alambre está formado por un material inhomogéneo, la densidad masa $\rho(x,y,z)$ será una función -no constante- definida sobre la curva $\mathcal C$ que supondremos continua. ¿ Cómo calcular la masa total del alambre en este caso?

Como la función $\rho(x,y,z)$ definida en $\mathcal C$ es continua, podemos pensar que es casi constante en pedacitos del alambre de longitud pequeña

Partamos al alambre en n pedacitos de longitud ℓ/n donde ℓ es la longitud de \mathcal{C} . Para eso, sea $\sigma\colon [a,b]\to\mathbb{R}^3$ una parametrización regular de \mathcal{C} de clase C^1 y g(t) la función de longitud de arco (g(t)=longitud del arco entre $\sigma(a)$ y $\sigma(t)$). Sabemos que g es estrictamente creciente.

Tomemos sucesivamente puntos $t_k \in [a,b]$ tales que $g(t_k) = k\frac{\ell}{n}$, para $k=0,1,\cdots,n$. Si $P_k=\sigma(t_k)$ se tiene que la longitud del arco de curva $\mathcal C$ entre P_k y P_{k+1} es ℓ/n .

Como ρ es continua, podemos aproximar a ρ por su valor en $\tilde{P}_k = \sigma(\tilde{t}_k)$ con $\tilde{t}_k \in [t_k, t_{k+1}]$. De este modo, la masa del pedazo de alambre entre los puntos P_k y P_{k+1} será aproximadamente $\rho(\tilde{P}_k) \frac{\ell}{n}$.

Sumando sobre todos los pedacitos y recordando que

$$\frac{\ell}{n} = \int_{t}^{t_{k+1}} \|\sigma'(t)\| dt$$

tenemos que la masa total será aproximadamente

$$M \sim \sum_{k=1}^{n-1} \rho\left(\sigma(\tilde{t}_k)\right) \int_{t}^{t_{k+1}} \|\sigma'(t)\| dt.$$

Por otro lado, por el teorema del valor medio integral,

$$\int_{a}^{b} \rho(\sigma(t)) \|\sigma'(t)\| dt = \sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}} \rho(\sigma(t)) \|\sigma'(t)\| dt = \sum_{k=0}^{n-1} \rho(\sigma(t_{k}^{*})) \int_{t_{k}}^{t_{k+1}} \|\sigma'(t)\| dt$$

para un $t_k^* \in [t_k, t_{k+1}]$.

Definición.

Sea $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) una curva simple, abierta y <u>suave</u>. Sean $\sigma\colon [a,b] \to \mathbb{R}^3$ una parametrización <u>regular</u> de \mathcal{C} <u>de clase C^1 </u> y f un <u>función continua</u> definida sobre \mathcal{C} . Definimos la integral de f sobre la curva \mathcal{C} como

$$\int_{\mathcal{C}} f \, d\ell := \int_{a}^{b} f \left(\sigma(t) \right) \, \| \sigma'(t) \| \, dt.$$

Proposición.

Sean N=2 o $3,\ \sigma\colon [a,b]\to\mathbb{R}^N$ y $\gamma\colon [c,d]\to\mathbb{R}^N$ dos parametrizaciones regulares de una curva simple abierta y suave $\mathcal{C}.$ Si f es una función continua definida sobre $\mathcal{C},$ entonces

$$\int_{\mathcal{C}} f \, d\ell = \int_{a}^{b} f(\sigma(t)) \|\sigma'(t)\| \, dt$$
$$= \int_{a}^{d} f(\gamma(r)) \|\gamma'(r)\| \, dr$$

Definición.

Sea $\mathcal C$ una curva abierta, simple, suave. Sea τ un campo de vectores unitarios tangentes a $\mathcal C$ continuo. Este campo determina un sentido de recorrido sobre la curva $\mathcal C$. Decimos que $\mathcal C$ está orientada por el campo τ .

Una forma de hallar un campo au es a partir de una parametrización regular $\sigma\colon [a,b] \to \mathbb{R}^3$ usando la relación

$$\tau(P) = \frac{\sigma'(t)}{\|\sigma'(t)\|}$$
 si $P = \sigma(t)$.

En este caso también decimos que $\mathcal C$ está orientada por la parametrización σ .

Definición

Sea $\mathcal C$ una curva abierta, simple, suave orientada por la parametrización regular $\sigma\colon [a,b]\to\mathbb R^N$. Sea $\alpha\colon [c,d]\to\mathbb R^N$ otra parametrización regular de $\mathcal C$. Decimos que α preserva la orientación de $\mathcal C$ si para todo $P\in\mathcal C$, se tiene

$$\tau(P) = \frac{\sigma'(t)}{\|\sigma'(t)\|} = \frac{\alpha'(r)}{\|\alpha'(r)\|} \text{ si } P = \sigma(t) = \alpha(r) \text{ con } t \in [a,b], \ r \in [c,d].$$

Definición.

Sea $\mathcal C$ una curva abierta, simple, suave que admite una parametrización regular $\sigma:[a,b]\to\mathbb R^N$ que la orienta. Sea F un campo vectorial continuo definido sobre $\mathcal C$. Llamamos integral curvilínea del campo F sobre la curva orientada $\mathcal C$ a

$$\int_{\sigma} \mathbf{F} \cdot d\mathbf{s} := \int_{a}^{b} \langle \mathbf{F}(\sigma(t)), \sigma'(t) \rangle dt.$$

Ejemplo

Sea C la curva orientada dada por la parametrización

$$\sigma(t) = (t, t^2) \ con \ t \in [0, 1].$$

Sea

$$F(x, y) = -(x, y)$$

un campo de fuerzas. Supongamos que una partícula se desplaza por la curva C siguiendo la trayectoria σ . Calcular el trabajo efectuado por la fuerza sobre la partícula

Proposición

Sean N=2 o 3 y $\sigma\colon [a,b]\to\mathbb{R}^N$ una parametrización regular de una curva simple abierta y suave \mathcal{C} . Sean \mathbf{F} un campo continuo sobre \mathcal{C} y $\alpha:[c,d]\to\mathcal{C}$ es una reparametrización regular de σ . Si α preserva la orientación de \mathcal{C} definida por σ , entonces

$$\int_a^b \langle \mathbf{F}(\sigma(t)), \sigma'(t) \rangle dt = \int_a^d \langle \mathbf{F}(\alpha(t)), \alpha'(t) \rangle dt.$$

Si no la preserva, entonces

$$\int_{0}^{b} \langle \mathsf{F}(\sigma(t)), \sigma'(t) \rangle \, dt = - \int_{0}^{d} \langle \mathsf{F}(\alpha(t)), \alpha'(t) \rangle \, dt.$$

Para la integral curvilinea de un campo $\mathbf{F} = (P(x,y,z), Q(x,y,z), R(x,y,z))$ sobre una curva orientada \mathcal{C} se utiliza indistintamente las notaciones

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} \quad \mathbf{O} \quad \int_{\mathcal{C}} P \, dx + Q \, dy + R \, dz.$$

La idea de esta última notación es que

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\sigma(t)) \cdot \sigma'(t) dt =$$

$$\int_{0}^{b} P(x,y,z)(t)x'(t) + Q(x,y,z)(t)y'(t) + R(x,y,z)(t)z'(t) dt$$

Proposición

Sean N=2 o 3, $f\in C^1(\mathbb{R}^N,\mathbb{R}),\ F=\nabla f$ y $\sigma\colon [a,b]\to\mathbb{R}^N$ es una parametrización regular de una curva simple abierta y suave $\mathcal C$ entonces

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = f(\sigma(b)) - f(\sigma(a)).$$