Random Planar Diagrams

AMS Western Spring Sectionals 2015 (UNLV) - April 18, 2015

Sponsored by NSF VIGRE [typeset this]

Knotting and Polymers

Random curve distributions

The classical workflow for understanding knotting in random polymers is via random distributions on different spaces of curves.

- Random space polygons. (Fixed edge length, equilateral, confined, etc.)
- Random closed self-avoiding lattice walks.

Figure: Typical random curve workflow

Combinatorial knot distributions

There are also combinatorial distributions in use to study random knotting. Examples include

- Petaluma model (Evan-Zohar, Hass, et al.)
- Random braid words

These combinatorial models are recent.

The Petaluma model

Figure: Petal diagram and corresponding star diagram for the trefoil. (Diagram from Evan-Zohar, et al.)

The void

There is no clear connection between the two models. For example, nearly no random polygons are expected to produce a star diagram from the Petaluma model.

Figure: There is no convenient middle between the two methods

The random diagram model

Every space curve can project to a diagram, and diagrams are combinatorial objects.

Figure: We're trying to fill the void with the random diagram model

Random diagrams

Definition

In the **random diagram model** of random knotting, a n-crossing diagram is drawn uniformly from the finite set of n-crossing knot diagrams.

Diagrams from shadows

We sample diagrams uniformly through tabulation:

- Enumerate shadows, the underlying graph structure behind diagrams.
- 2 Expand shadows into diagrams.

Knot shadows and circle immersions

Knot shadows in n crossings correspond to unoriented, generic immersions of the circle into the sphere with n double points, up to unoriented diffeomorphism.

Figure: Knot shadows. The shadow on the left is equivalent to the shadow on the right.

How many shadows?

n	# knot shadows
0	1
1	1
2	2
3	6
4 5	19
5	76
6	376*
7	2194*
8	14614**
9	106421**

Table: Counts on knot shadows. Numbers are large, but finite.

How many knot shadows?

Counts of knot shadows with n crossings match Arnol'd's counts of immersions of the unoriented circle into the unoriented sphere with n double points (OEIS A008989).

Caveat: Arnol'd's list is for n = 0 to n = 5; the terms for n = 6 and n = 7 are attributed to Guy H. Valette with no clear source.

How many shadows?

n	# knot shadows
0	1
1	1
2	2
3 4	6
4	19
5	76
6	376*
7	2194*
8	14614**
9	106421**

Table: *: Attributed to Guy H. Valette. **: New; values not in OEIS.

Tabulating knot shadows

We have generated our table of knot shadows two different ways as a computational check.

Both methods use features from McKay and Brinkmann's plantri software.

Duals to quadrangulations

Figure: We find all quadrangulations of the sphere in n faces. Shadows are dual to quadrangulations.

Planar graph expansions

Figure: Reduction to a planar graph of degree \leq 4 and connectivity \geq 1. Expansion is the inverse.

Tabulation is difficult!

As of yet this problem is a complicated computational problem; it takes a day on a desktop computer to classify all 9-crossing diagrams. It seems that this is a very difficult problem, because we group by isomorphism! It is difficult at both the shadow stage and the diagram stage

Trefoil shadow has 6-fold symmetry [Figure]
Trefoil [++-] has 3-fold symmetry [Figure]

Figure: The trefoil shadow has 6-fold symmetry (Left). This diagram with trefoil shadow has 3-fold symmetry (Right).

Breaking symmetries could make counting easier

There exist counts for shadows/diagrams with broken symmetries (rooted diagrams). For example, there is a correspondence:

Figure: Two-leg diagrams (left) correspond to rooted shadows (right).

The diagrams on the left are counted by a generating function (Bouttier, et. al).

From shadows to diagrams

Expansion of shadows to diagrams consists of three steps:

- 1 Orient each component. (2#components choices)
- 2 Assign over-under information to each vertex. (2^{#crossings} choices)
- 3 Group diagrams into diagram isomorphism classes.

How many knot diagrams?

n	# knot shadows	# knot diagrams	# knot iso. classes
3	6	96	36
4	19	608	276
5	76	4,864	2,936
6	376	48,128	35,872
7	2,194	561,664	484,088
8	14,614	7,482,368	6,967,942
9	106,421	108,975,104	in process

Table: Counts of knot shadows and diagrams

Q: What fraction of 8-crossing diagrams are trefoils?

Q: What fraction of 8-crossing diagrams are trefoils? 12.48%.

- Q: What fraction of 8-crossing diagrams are trefoils? 12.48%.
- Q: What is the average minimal crossing # of a 7-crossing diagram?

- Q: What fraction of 8-crossing diagrams are trefoils? 12.48%.
- Q: What is the average minimal crossing # of a 7-crossing diagram?

0.4.

- Q: What fraction of 8-crossing diagrams are trefoils?
- Q: What is the average minimal crossing # of a 7-crossing diagram?

0.4.

Q: How many 8-crossing diagrams are tree-like curves?

- Q: What fraction of 8-crossing diagrams are trefoils? 12.48%.
- Q: What is the average minimal crossing # of a 7-crossing diagram?

0.4.

Q: How many 8-crossing diagrams are tree-like curves? 44.51%.

- Q: What fraction of 8-crossing diagrams are trefoils? 12.48%.
- Q: What is the average minimal crossing # of a 7-crossing diagram?

0.4.

- Q: How many 8-crossing diagrams are tree-like curves? 44.51%.
- Q: What is the average crossing number of a 9-crossing diagram after all immediate R1 moves?

- Q: What fraction of 8-crossing diagrams are trefoils?
- Q: What is the average minimal crossing # of a 7-crossing diagram?

0.4.

- Q: How many 8-crossing diagrams are tree-like curves? 44.51%.
- Q: What is the average crossing number of a 9-crossing diagram after all immediate R1 moves?

2.702.

Knotting probabilities

Advantage of combinatorial model; given enough computing power, we can definitively answer questions about diagrams

- Advantage of a combinatorial model: Able to run searches across entire space computationally.
- We can check knot type of each diagram (HOMFLY is typically enough for our low crossing number)

Unknottedness in diagrams

Ratio of unknots in $\leq n$ -crossing diagram iso. classes (log scale)

Figure: Unknot ratio may decrease exponentially.

Knotting in diagrams

Ratios of knots in $\leq n$ -crossing diagram iso. classes (log scale)

Figure: All ratios of knot types are still increasing. Knot 5_2 is more common than knot 5_1 .

Knotting in diagrams

Ratios of knots in $\leq n$ -crossing diagram iso. classes (log scale)

Figure: Ratios of knot types are still increasing.

Counting monogons and bigons in knot shadows

n	shadows	1-gon	2-gon	neither
3	6	5 (83.33%)	3 (50%)	0
4	19	18 (94.74%)	11 (57.89%)	0
5	76	74 (97.37%)	52 (68.42%)	0
6	376	371 (98.67%)	275 (73.14%)	0
7	2,194	2,178 (99.27%)	1,714 (78.12%)	0
8	14,614	14,562 (99.64%)	11,892 (81.37%)	1
9	106,421	106,216 (99.81%)	89,627 (84.22%)	1

Table: Counts of knot shadows with monogons, bigons, or neither. The 8- and 9- crossing shadows are Conway's 8* and 9*, respectively.

Basic polyhedra 8* and 9*

Figure: Knots with the two knot shadows in ≤ 9 crossings which are planar simple graphs: 8_{18} (left), 9_{40} (right).

Tree-like curves

A **tree-like curve** is a knot shadow which is a connect sum of one-crossing diagrams (figure-eight shadows).

Figure: A tree-like curve.

Tree-like curves provide a lower bound on unknottedness: Diagrams with tree-like shadow are always unknotted.

Tree-like curves

n	# knot shadows	# tree-like	% tree-like
1	1	1	100.00%
2	2	2	100.00%
3	6	5	83.33%
4	19	16	84.21%
5	76	55	72.37%
6	376	240	63.83%
7	2,194	1149	52.37%
8	14,614	6,229	42.62%
9	106,421	35,995	33.82%

Table: Counts of knot shadows and tree-like curves

Unknottedness and tree-like shadows

Ratio of unknots, tree-like curves in \leq *n*-crossing diagram iso. classes (log scale)

Figure: The number of unknots is bounded by the number of tree-like diagrams.

Delooped crossing number

n	Average delooped crossing #
3	0.50
4	0.53
5	0.92
6	1.25
7	1.72
8	2.19
9	2.70

Table: Average delooped crossing number over shadows with *n* crossings.

Future directions

- Most analysis here is on knot diagrams; what can we say about link diagrams?
- How does the random diagram model compare to other models?
 - Petaluma model (Evan-Zohar, Hass, Linial, and Nowik)
 - Random space polygons, random equilateral space polygons, random confined space polygons
 - Random closed self-avoiding lattice walks
- Uniform sampling of diagrams of higher crossing number: Can we avoid outright enumeration?

Link diagrams

Counts for link diagrams

Knot distances

Can study pure knot theoretic things, not just probabilistic things—transitions between knots bat graph [figure]

Thank you!