4.4 Свойства оптимального побуквенного кода

Лемма 1

• Для оптимального кода с длинами кодовых слов $L_1,...,L_n$ верно соотношение $L_1 \le L_2 \le ... \le L_n$ если $p_1 \ge p_2 \ge ... \ge p_n$

Доказательство (от противного)

Пусть есть индексы i и j такие, что $L_i > L_j$ при $p_i > p_j$ Тогда

$$L_{i}p_{i} + L_{j}p_{j} = L_{i}p_{i} + L_{j}p_{j} + (L_{i}p_{j} + L_{j}p_{i}) - (L_{i}p_{j} + L_{j}p_{i}) =$$

$$= p_{i}(L_{i} - L_{j}) - p_{j}(L_{i} - L_{j}) + L_{i}p_{j} + L_{j}p_{i} =$$

$$= (p_{i} - p_{j})(L_{i} - L_{j}) + L_{i}p_{j} + L_{j}p_{i} > L_{i}p_{j} + L_{j}p_{i},$$

• если поменяем местами L_i и L_j , то получим код, имеющий меньшую среднюю длину кодового слова, что противоречит оптимальности кода.

Лемма 1 доказана

Лемма 2

• Пусть $\sigma = \langle a_1 \to b_1, ..., a_n \to b_n \rangle$ схема оптимального префиксного кодирования для источника с распределением вероятностей

$$p_1 \ge p_2 \dots \ge p_n > 0$$

Тогда среди элементарных кодов, имеющих максимальную длину, существуют два, которые различаются только в последнем разряде.

• Пусть $\sigma = \langle a_1 \to b_1, ..., a_n \to b_n \rangle$ -- схема кодирования для источника с распределением вероятностей

$$p_1 \ge p_2 \dots \ge p_n > 0$$

• Рассмотрим новый источник с распределением $\{p_1', p_2', \dots p_{n-1}'\}$ причем

$$p'_1 = p_1$$
 ... $p'_{n-2} = p_{n-2}$ $p'_{n-1} = p_{n-1} + p_n$

• Построим код σ' по следующему правилу

$$\sigma' = \left\langle \begin{array}{c} a_1 \to b_1, \\ \dots, \\ a_{n-2} \to b_{n-2} \\ a_{n-1} \to b'_{n-1} \end{array} \right\rangle$$

• где b_{n-1}^\prime общая часть кодов b_{n-1} и b_n

Лемма 3

• Если схема кодирования σ' оптимальная, то и схема σ оптимальная

4.5 Оптимальный код Хаффмана

• Метод оптимального побуквенного кодирования был разработан в 1952 г. Д. Хаффманом.

 Оптимальный двоичный код Хаффмана обладает минимальной средней длиной кодового слова среди всех побуквенных кодов для данного источника с алфавитом

$$A = \{a_1, a_2, ..., a_n\}$$

• и вероятностями

$$p_i = P(a_i)$$
 $\sum_{i=1}^{n} p_i = 1$ $p_1 \ge p_2 \ge ... \ge p_n$

 Алгоритм построения оптимального кода Хаффмана основывается на утверждениях предыдущих лемм и заключается в следующем • Если $A = \{a_1, a_2\}$,

• TO $a_1 \rightarrow 0$ $a_2 \rightarrow 1$

• Если $A = \{a_1, a_2, ..., a_j, ..., a_n\}$ и известны коды $\left\langle a_{j} \rightarrow b_{j} \right\rangle$ j=1,...,nто для алфавита $A' = \{a_1, a_2, ..., a'_i, a''_i, ..., a_n\}$ с новыми символами a'_j и a''_j (вместо a_j) и вероятностями $p_i = p'_i + p''_i$ a_i заменяется на коды код символа $a'_i \rightarrow b_i 0$ $a_i'' \rightarrow b_i 1$

Процесс построения кодов Хаффмана происходит в два этапа.

- На первом этапе складываются две наименьшие вероятности и суммарная вероятность включается на соответствующее место в упорядоченном массиве вероятностей так, чтобы массив остался упорядоченным.
- Это происходит до тех пор, пока в массиве не останется две вероятности.

Второй этап заключается в построении кодов символов.

- Если в массиве вероятностей всего два значения, то символы источника кодируются 0 и 1.
- Если вероятность в массиве получилась в результате слияния двух наименьших вероятностей, то из имеющегося кода строится два кода, добавлением 0 и 1 справа, т.е. новые коды будут отличаться только последним битом.

• Утверждение. Код Хаффмана является префиксным.

Пример

• Пусть источник имеет алфавит

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

• с вероятностями

$$p_1 = 0.36$$

$$p_2 = 0.18$$

$$p_3 = 0.18$$

$$p_4 = 0.12$$

$$p_5 = 0.09$$

$$p_6 = 0.07$$

 0.36
 0.18
 0.18
 0.12
 0.09
 0.07

Код Хаффмана

a_i	p_i	$igg L_i$	кодовое слово
a_1	0.36	1	0
a_2	0.18	3	111
$\begin{vmatrix} a_2 \\ a_3 \\ a_4 \end{vmatrix}$	0.18	3	110
a_{4}	0.12	3	100
	0.09	4	1011
$\begin{vmatrix} a_5 \\ a_6 \end{vmatrix}$	0.07	4	1010

$$L_{cp}(P) = 0.36 \cdot 1 + 0.18 \cdot 3 + 0.18 \cdot 3 + 0.12 \cdot 3 + 0.09 \cdot 4 + 0.07 \cdot 4 = 2.44 > 2.37$$

- Для восстановления содержимого сообщения декодер должен знать таблицу частот, которой пользовался кодер.
- Следовательно, длина сжатого сообщения увеличивается на длину таблицы частот, которая должна посылаться впереди данных.

- Кроме того необходимость наличия полной частотной статистики перед началом собственно кодирования требует двух проходов по сообщению:
 - одного для построения модели сообщения (таблицы частот и дерева кодирования),
 - другого для собственно кодирования.

Блочное кодирование

- Для уменьшения избыточности кодирования используют принцип блочности
- Сообщение разбивается на последовательности одинаковой длины (блоки). Каждый блок кодируется отдельно.

- Для известного бернуллиевского источника известны не только вероятности появления отдельных символов, но и вероятности появления всех последовательностей символов (как произведение вероятностей символов блока)
- Таким образом, блок длины L можно считать «буквой» нового алфавита с определенным вероятностным распределением

• Можно получить более сильные результаты, если кодовые слова приписывать не отдельным буквам, а сообщениям (блокам из *L* букв) источника.

Теорема

В случае бернуллиевского стационарного источника существует префиксный код для кодирования блоков длины L, такой, что для любого $\varepsilon>0$ можно выбрать достаточно большое L, чтобы величина L_{cp} удовлетворяла неравенствам:

$$H(p_1,...,p_n) \le L_{cp} \le H(p_1,...,p_n) + \varepsilon$$

Теорема

Пусть H_L — энтропия на букву в блоке длины L дискретного источника. Тогда существует префиксный код для кодирования блоков длины L, такой, что средняя длина кодового слова L_{cp} будет удовлетворять неравенствам:

$$H_L \le L_{cp} < H_L + \frac{1}{L}$$

- Код для каждого блока строится с использованием методов побуквенного кодирования для алфавита блоков и вероятностного распределения блоков
- При этом избыточность кодовых символов распределяется между всеми буквами блока.

aababbababbb

Блоки	Вероятности	Коды	p _i l _i	средняя длина кода
а	0.25	0	0.25	1
b	0.75	1	0.75	

Н≈0.8225 Избыточность 1-0.8225 ≈ 0.17

aa ba bb ab ab bb

Блоки	Вероятности	Коды	p _i l _i	средняя длина кода
aa	$(0.25)^2$	000	0.1875	0.84375
ab	0.25.0.75	001	0.5625	r=0.021
ba	0.75.0.25	01	0.375	
bb	$(0.75)^2$	1	0.5625	

aab abb aba bbb

Блоки	Вероятности	Коды	p _i l _i	средняя длина кода
aaa	$(0.25)^3$	00110	0.078125	0.825208
aab	$(0.25)^2 \cdot 0.75$	00111	0.234375	r=0.0027
aba	$(0.25)^2 \cdot 0.75$	00101	0.234375	
abb	$(0.75)^2 \cdot 0.25$	000	0.421875	
baa	$(0.25)^2 \cdot 0.75$	00100	0.234375	
bab	$(0.75)^2 \cdot 0.25$	010	0.421875	
bba	$(0.75)^2 \cdot 0.25$	011	0.421875	
bbb	$(0.75)^3$	1	0.421875	