Topics to be covered

The Convolution Sum

- Definition and Equation of Convolution
- Steps for calculating Convolution
- Numerical Example on Convolution
- The Convolution sum in Python

Applications of Convolution

- Signal Denoising
- Edge detection in a Signal

The Convolution Theorem

Representing a discrete time signal

Following are the two commonly used methods for representing a signal.

- 1. Sequential method.
- 2. Graphical method.

Sequential Representation of discrete time signal

Sequential representation of discrete time signal is shown below

$$x(n) = [2, 1, -2, -2, 3, 2, 2, -2, 1]$$

Graphical Representation of discrete time signal

The Convolution Sum

The response or the convolution sum y(n) of the two input signals $x_1(n)$ and $x_2(n)$ is defined by the following equation.

$$y(n) = x_1(n) \circledast x_2(n)$$

 $x_2(n)$ is called kernel or filter.

Steps for performing convolution sum

- 1. Flipping / Folding.
- 2. Shifting.
- 3. Multiplication.
- 4. Addition.

$$y(n) = x_1(n) \circledast x_2(n)$$

$$y(n) = \sum_{k=0}^{N-1} x_1(k)x_2(n-k)$$

 $x_2(n)$ is called kernel or filter.

$$y(n) = \sum_{k=0}^{N-1} x_1(k)x_2(n-k)$$

Example

For k = 0, means no shifting

Now we have to perform the next step i.e multiplication. Multiplication of the discrete signals is always performed by sample-to-sample basis.

For x1 and flipped x2, they have a common sample only at time =0 i.e n=0 so the product sequence = $[1 \times 3 = 3]$

Sum sequence = [3]

For k=1, means shift the flipped signal towards right by one unit

For x1 and shifted x2, they have a two common samples at time =0 and 1 i.e n=0 and 1

so the product sequence = [1x2 = 2, 2x3 = 6]

Sum sequence = [2 + 6 = 8]

For k=2, means shift the flipped signal towards right by two unit

For x1 and shifted x2, they have a three common samples at time =0,1 and 2 i.e n=0,1 and 2.

so the product sequence = [1x1 = 1, 2x2 = 4, 2x3 = 6]

Sum sequence = [1 + 4 + 6 = 11]

For k = 3, means shift the flipped signal towards right by three unit

For x1 and shifted x2, they have a three common samples at time =1,2 and 3 i.e n=1,2 and 3.

so the product sequence = [2x1 = 2, 2x2 = 4, 1x3 = 3]

Sum sequence = [2 + 4 + 3 = 9]

For k = 4, means shift the flipped signal towards right by four unit

For x1 and shifted x2, they have a three common samples at time =2,3 and 4 i.e n=2,3 and 4.

so the product sequence = [2x1 = 2, 1x2 = 2, 1x3 = 3]Sum sequence = [2 + 2 + 3 = 7]

For k = 5, means shift the flipped signal towards right by five unit

For x1 and shifted x2, they have a two common n=3 and 4.

samples at time =3 and 4 i.e

so the product sequence = [1x1 = 1, 1x2 = 2]Sum sequence = [1 + 2 = 3]

For k=6, means shift the flipped signal towards right by six unit

For x1 and shifted x2, they have only one common samples at time = 4 i.e n = 4.

so the product sequence = [1x1 = 1]Sum sequence = [1]

For k = 7, means shift the flipped signal towards right by seven unit

For x1 and shifted x2, they have no common samples so the product and sum sequences are zero.

The output sequence

$$y(n) = [3, 8, 11, 9, 7, 3, 1]$$

The output sequence

Convolution for mode = "full"

The number of samples in first signal = $nx_1 = 5$

The number of samples in the kernel = $nx_2 = 3$

Number of samples in output sequence = nconv = $nx_1 + nx_2$ - 1 = 5 + 3 - 1

$$=7$$