T , 1 1 1 1 2 2 C	h.a
Tutorial class Logic & Se	状ら.
(Corresponds to lec1 + lec2).	
(2011 3 10 42 1 12 27.	
E-mail address: Yhanat@c	onnect.uct.hk
, , , , , ,	
7) -0%	
I. Logic	N
	Notation: We say to satisfie & (x).
I. Statements: denoted by p horally. E.g. (1) 1 is a real number.	if Z (No) is true.
To the content of p hands.	T.,
G.J. U L IS A real mumber.	on Ticke - a set
2 I S Not a real nowe	1.5 statement with variable x: 200.
notation: V.J. D Hx In cach that X=2	4 Tred e.g. 9(x):= x=0.
C.g. (1) I is a real number. Guantifier (2) I is not a real number. Notation: V. 3. (3) 3x such that $x^2 = 1$. Tr forall Exist. (1) $\forall x$, $\exists y$ such that $x = 2$. (1) Resis One to	1. False, 7: for all x>1, 9, (x).
1) Prote Marrie 1	
I-2 Basic Operation:	
For given (mathematical) State	ments p. g. we have following
Mhon-thur t	
Operations:	
Negation : ~D	
① negetion: ~P.	
② and : Png.	
<u> </u>	
3 or : PVq.	

Check that (3) is false:

For every fixed real number y_0 , we have $x_0 = 2y_0$ is the unique real number such that $x_0 = 2 \cdot y_0$.

But the statement is true only when for every x we have $x_0 = 2y_0$.

Example 1: p:x >0 q:x<1.
~ P: X<0 ~ 2: X>1.
PAg: x > 0 and x<1. PVg: x>0 or x<1. X is a real number.
Rule: ~ (3x such that x satisfies 4).
= UX, me have x sutsties ~ g
~ (VX, we have X satisfies g) = 3x such that X satisfies ag
Examplez: $p: \exists x > 0$, such that $x^2 = 1$.
g: VX so, we have x21.
T-inding $\sim p$: define a new statement $w: \chi^2=1$.
then P= 3x>0 such that x settisfies w.
thus $NP = 4x>0$ we have $x = x$ satisfies $NW = x^2 \neq 1$.
(1 min) Question: What is ~9? No. X satisfies w. Auswer: define w: x2+1, g: VX60, X satisfies w.
Answer: define w: x271, g: VXED, X sitisfies w.
(~p) 1 g: 12x=0. we have x* and 12x0, we have x2x1.
": ∀x, we have x²≠1.

I.3 Phles of operations (= (4~) ~ ((1) ~(p/14): (~p) V (~4) ③~にpvg,)= (~p)ハ(~g). Dremple 3: p: 3x>0, x2=1. g: 3x50, x2=1. PV9= 3x, 05xE or 3x50, x== 3x, x=1. ~ (pvq) approach 1: = ~ (3x>0, x=1) and ~ (3x 50, x=1) = XX0, X7 and YX50, X7 approach2:= ~ (3x, x=1) = yx, x=1. bx>o or bxso => bx Question: p: 4x70, x=1, g: 4x50, x=1. ~ (PVG)=? Answer. (PVG) * Gx, X=1. ~(pvg)= ~p12 = 3x>0, x3+ and 3x50, x3+1. 7.4 Conditional Structure of Statements. For statements P.G. we can consider a new statement w. written as W: It p, then & (p in plie 2). Notation: W: p=>6. (D) Conditional starcture can be represented using 'negation' and 'or': P=) g = (~p) V g. 12 As a corollary: ~ (p=)q)= ~ ((~p) v q) defined similarly, = p1 (~q). by "if q, then p". Converse Statement of p=g is defined as g=p. and by Q we have $g=p=(ng)vp \neq pn(ng)=n(p=g)$!! Converse is different with necepte! and we can discuss the converge statement only when the statement has conditional structure! (3) (Contrapositive statement): Contrapositive of p2) q is defined as (~q>) (~p) Proof: By def (23)=> (2p) = ~(~3)V (~p) = &V(p)

Example 4. p: X=1. G: X=1. Ux, p=>9: Ux, If x=1, then x2=1. E true Or equinalently: = (~p>yq= (X ≠) or x=1) $\forall x, G= p: \forall x, if x=1.$ then x=1. ($\neg g$) $\neg p=(x^2 \neq 1 \text{ or } x=1)$ ~ (~pV&)= p/1~g ~ (\forall X, p=)\(\text{g} \): \(\forall X \). \(\text{such that } \tau \) \(\text{p=}\)\(\text{q} \) \(\text{false} \)
= 3 \times \text{such that } \(\text{X=1 and } \text{x}^2 \) 1.

Quesition: Write down thing => ~p. Whother it is true or folse?

Answer: Ux X (=) X () it is true.

II. Set theory.

II. | Bosic def of a set.

Def: a Set is a collection of objects, and we say the objects in the set are the elements of the set.

(Classical Paradox: A= {x: x not in set A?) x & A

To avoid such problem, we require that my set A should satisfy:

VX, the statement XGA should be either true or fulse.

Size of a set f empty set finite set infinite set

desirile the property

How to describe a set? { A=[x: x satisfies p]. of elements. /7= \xu --, xu]. - list all elevers

A= [1,2,3,4,5,---] Example 0: R:= {x: x is a real number?

Z:= { X: X is a interper? or 5 -- , -2 -1, 0, 1, 2, -- } [a,b]:={ X: x EIR and asx sb}

Oxemplo 1: S := { (x,y): x2+y2-1, x,y G|R?

II.2 Relation of sets. For two sets A.B. We say O A is a subset of B (ASB), if VKEA, we have XEB holds. (D) A=B if A=B and B=A. (3) A is a proper subset of B (A CB), if A CB and A &B. (D) In fact, ACB (=) EXEB such that X &A. Example 2: A= X, B= IR, then ACB. -1 C/A, -1 EB. 3/26/3 not in/A.
A= Z, B=1R+:= [x: x G|R, x >0], then we have neither ACB nor BCA. 17.3 Power set a collection of sex Def of power set: Let S be a sex, then power set of S, demoted by 25 or P(5), is given by 25:= {A: A is a subset of S) [305) Quesitlan: S= S|Z, 25= (\$,17 or \$\$, 111) ? 25=99.9177.

22.4 Operations of sorts

Consider sets AL, Az, --

1) Union: Union: An:= {x: x is an element of Ai for some i?

(2) Interpretion: 10 Ani = 1 x: x is an element of A; for all i)

(3) Cartesian product:

100 11) An = A1 x ... x Anx ... = { (x1, -.. xn, ...) : x2 GAi for all i}

@ Complement of Az in A1:

A, \Az := { x: x & A, x & Az}

Example 3:

Denote A:={n & Z: 1<n<57 B:= 12m: m & Z, m > 0}.

then compute ANB, AUB, AVB, BVA:

ANB= {2.4}, AUB= {2.3,4,6.8.10, h. ...}

A\B= 933 B\A: 60, 6.8, 10, ...]

Exemple 4: Clenote $S_r := I(xy : x^2y^2 = r^2)$, then plot the graph of $U S_r := Y$ Y := Y Y := Y

Example 5: Show that for any sets A,B,C, we have

(A/B)/C = (A/C)/B.

we have

XE (AVB)/C it and only it

YE AIB and X & C if and only if

XG A and X&B, X&C if and only if

XE AX and X&B if and only :}

XEMICINB.

II.5 functions

Def: Given two sets A.B. we say f is a function from A to B. if f is a rule that assign every a EA exactly to a value beB. such b is called the value of f at a denoted by flax. domain: A bifley.

codomain: B

range: = { tw:xeA?

alcoby. = { (x 9 cx) X e y}

Properties:

We say of is

1) injective: if Va.a'EA.a+a' we have for + fles

1) Surjective : if YbeB, we can find a EA such that thereb.

Obijective: if f is both injective and surjective

Example 6:

Consider A= 1R+:= [XGIR:X>0]

B= 1R+:={x61R:x30}.

+(x) = x2, then

(1) whether of is surjective?

2 whether f is injective?

3 what about O. O when A= 1R?

Husner: O Yes, because for all beth. The is in A, and

f(16) = b.

(2) Yes, for every b₁, b₂>0, b₁=b₂ (=) b₁+b₂, since if b₁+b₂, then f(b₁)7 f(b₁), thus f is an injection

(3): (1) still is Yes, because ALGB. To is still in A.

O is No, because for a GA such that ato, we have -a + a but from = fl-as

Example 7:
Suppose A.B are subsets of IR and f: A -B is a function
If for every GB, the horizontal line given by
((x,y: y=b) satisfies it intersect with graph (f) at leasure, show that f is surjective;
By the claim, we have bbEB, there exists a point
(xo,yo) e { (xy): y=17 () { (x,f xx): xeA], by
(ko.yo) G graph (f), we have graph(f)
(xo, yo) = (xo, f(xo)), thus yo=f(xo). (x1)
On the other hand.
(No. Yore ((xiy): y=b) implies that Yo=b (x2).
Combining (*1). (*1), ne get f(xo)=b.
By b is aribitary, ne get of is surjective.

Chesition: If "at least once" is replaced by at most once", show that f is injective.

Answer:	
Consider 9, , az EA S.t. a, # az, we have	
(a,, f(a)), (a, f(u)) & graph (f), and denote b= f(a)6B,	
graph (f) intersects with the line ((x,y): y = bz) at more once, we have	
(ar, fan) is the unique point in 1 (xy): y-bill graph (f),	
that implies front by: otherwise, we must have	
(a), f(u)) G graph (f) 1 (1x.y): y= bil as well, but by	
(a,,t(a,)) and (a, fax) are different points, we get	
a contradiction (with the fact "(ar, f (an)) is the unique point in a (xy): y=br1 () graph (f)".	
1 (xy): y= bol () graph (f)".	
by a, az is selected aribitary in A, we have	
a, +az => f(a,)+f(az) for all a, az GA. That implies f is injective.	