MATH 450 Seminar in Proof

Prove: If $f: A \to B$ be a function such that A and B are finite |A| = |B|, then f is one-to-one if only if it is onto.

Proof.

 \Leftarrow Let $f:A\to B$ be a function such that |A|=|B| and f is onto. Then from the definition of onto, for all $b\in B$ there exists $a\in A$ such that, f(a)=b. Let f be not one-to-one. Then there exists $a_1,a_2\in A,a_1\neq a_2$ such that $f(a_1)=f(a_2)=b\in B$. Since f is onto, every $b\in B$ has a pre-image in A. Also, since f is well defined, each $a\in A$ has only one image in B. But by our assumption f is not one-to-one and so there exists $a_1,a_2\in A$ where $a_1\neq a_2$ such that they both have the same image. Also, by our assumption since |A|=|B| we will have an element in B which does not have a pre-image in A making it not onto. Hence there is a contradiction $\to \leftarrow$; and so, f is one-to-one.

⇒ Let $f: A \to B$ be a function such that |A| = |B| and f is one-to-one. Then from the definition of one-to-one, if $f(a_1) = f(a_2)$ then $a_1 = a_2$. Also note that since f is one-to-one |A| = |f[A]|. Let f be not onto. Then there exist a $b \in B$ such that there does not exist any $a \in A$ where f(a) = b. This is a contradiction because, according to our assumption |A| = |B| but then if f is not onto it implies that there exists more elements in B than there are in A. Also, since the cardinality of A and B is same then two elements in A map to one element in B thus making it not one-to-one. This is where our contradiction lies. Therefore f has to be onto.