Simulazione Prova Parziale

Esercizio 1 [5 punti]

Quale delle seguenti sequenze di funzioni è tale che ogni funzione è O della successiva?

(A)
$$n^{\pi}$$
, $2^{\log n^8}$, $\binom{n}{7}$, π^n , $n^{(\log n)^2}$

(B)
$$n^{\pi}$$
, $\binom{n}{7}$, $n^{(\log n)^2}$, $2^{\log n^8}$, π^n

(C)
$$\binom{n}{7}$$
, n^{π} , π^{n} , $n^{(\log n)^2}$, $2^{\log n^8}$

(D)
$$n^{\pi}$$
, $\binom{n}{7}$, $2^{\log n^8}$, $n^{(\log n)^2}$, π^n

Esercizio 2 [5 punti]

Indicare la complessità temporale nel caso peggiore dell'algoritmo ALGO descritto di seguito. L'input è un array A di dimensione n, con n potenza di 2.

Algorithm ALGO(A, n)

```
1: if n \leq 1 then
        return 1
 2:
 3: else
        somma \leftarrow 0
 4:
        for j \leftarrow 1 to n do
 5:
 6:
            somma \leftarrow somma + A[j]
        end for
 7:
        for j \leftarrow 1 to \log n do
 8:
            A[j] \leftarrow 3 \cdot A[j]
 9:
        end for
10:
        return somma + 2 \cdot ALGO(A, n/2)
11:
12: end if
```

- (A) $\Theta(n)$
- (B) $\Theta(n \log n)$
- (C) $\Theta(n^2)$
- (D) $\Theta(n \log^2 n)$

Esercizio 3 [5 punti]

La soluzione della ricorrenza $T(n) = T(n-1) + T(1) + n^2$ è:

- (A) $\Omega(n^3)$
- (B) $\Theta(n \log n)$
- (C) $\Theta(n^2)$
- (D) Nessuna delle precedenti

Esercizio 4 [5 punti]

Indicare quale delle seguenti affermazioni è vera:

- (A) E' possibile ricercare un certo intero k in un qualsiasi array di n interi con BINARY SEARCH in $O(\log n)$ passi.
- (B) L'algoritmo di moltiplicazione binaria delle elementari è un algoritmo ottimo.
- (C) Siano date due sequenze, $A \in B$, entrambe contenenti n interi distinti ordinati in senso decrescente (alcuni interi potrebbero apparire sia in A che in B). E' possibile generare, in O(n) passi, una sequenza ordinata in senso crescente e priva di doppioni che rappresenti l'unione $A \cup B$.
- (D) Nessuna delle precedenti.

Esercizio 5 [5 punti]

Una struttura dati di tipo heap è:

- (A) un albero binario di ricerca utilizzabile per l'ordinamento
- (B) un albero per il raggruppamento di numeri vicini tra loro
- (C) una struttura dati in memoria secondaria
- (D) un albero binario quasi completo

SBARRAMENTO - 18 punti sugli esercizi precedenti

Esercizio 6 [10 punti]

Dati un array A di n interi ed un intero k, progettare un algoritmo ricorsivo che alteri A in modo che tutti gli elementi non maggiori di k appaiano prima di tutti gli elementi maggiori di k. Qual è il tempo di esecuzione del vostro algoritmo nel caso peggiore?