

Tema1.pdf

PruebaAlien

Modelos de Computación

3º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

7CR

Rocio

pony

Hay 2 tipos de problemas con la gramática:

- Tipo 1: Lenguajes regulares
- Tipo 2: Lenguajes Libres del contexto

Forma automática: Usaremos algoritmos

Forma eficiente: Tiempo real (Veremos AFD [Autómatas Finitos] y después Autómatas con pila)

Algoritmo Turing: Es un paso previo al problema, esto sirve para demostrar que ese programa no existe.

L If Stops(P,P) GOTO L

Este es un programa turing(P)

GOTO L → Vuelve a ejecutar el programa

De tal forma que el programa no se detiene, si stop devuelve **true**, haciendo un ciclo infinito.

Se hace 2 casos:

- Caso 1: Stops(Turing, Turing) = true (Si se detiene el programa de Turing el método Stops
- Caso 2: Stops(Turing, Turing) = false (El programa acaba y finaliza)

Significados

Alfabeto: es un conjunto finito A y sus elementos se llaman símbolos o letras.

Ejemplo:

Tenemos 2 sensores que devuelven 0 o 1:

- alfa: 0, 1
- beta: 0, 1

0 no hay coches y 1 hay coches

(0,0) --> no hay coches ni en alfa ni beta

(0,1) --> hay coches en alfa

(1,0) --> hav coches en beta

(1,1) --> hay coches en alfa y beta

con lo cual un alfabeto son las posibles combinaciones o casos que haya

 $A = \{0,1\}$

 $B = \{<0,0>,<0,1>,<1,0>,<1,1>\}$

Palabra: Sobre el alfabeto A es una sucesión finita de elementos de A.

Palabra es una secuencia de simbolos:

(0,0), (1,0), (1,0), (0,0), (1,1)...

Si $A = \{0,1\}$ entonces 0111 es una palabra sobre este alfabeto.

El conjunto de todas las palabras sobre un alfabeto A se nota como A*.

La palabra vacía es la palabra de longitud 0 Notación: ε

Para decir que el conjunto de cadenas sobre un alfabeto $\bf A$ excluyendo la cadena vacía se nota como $\bf A^+$.

Si $u, v \in A^*, u = a_1 \dots a_n, v = b_1 \dots b_m$, se llama concatenación

de u y v a la cadena $u \cdot v$ (o simplemente uv) dada por $a_1 \dots a_n b_1 \dots b_m$

Ejemplo:

Si u = 011, v = 1010, entonces uv = 0111010

Propiedades:

- 1. $|u \cdot v| = |u| + |v|$, $\forall u, v \in A^*$
- 2. Asociativa: $u \cdot (v \cdot w) = (u \cdot v) \cdot w, \ \forall u, v, w \in A^*$
- 3. Elemento Neutro: $u \cdot e = e \cdot u = u$, $\forall u \in A^*$

Iteración n-ésima de una cadena (u^n) como la concatenación con ella misma n veces.

Si $u \in A^*$ entonces

- $u^0 = \varepsilon$
- $u^{i+1} = u^i \cdot u, \forall i \geq 0$

Ejemplo

Si **u** = **010**, entonces u^3 = **010 010 010**.

Si $u=a_1\ldots a_n\in A^*$, entonces la cadena inversa de u es la cadena $u^{-1}=a_n\ldots a_1\in A^*$.

Ejemplo

Si **u = 011**, entonces u^{-1} = **110**.

Un lenguaje sobre un alfabeto A es un subconjunto del conjunto de las cadenas sobre A: $L \subseteq A^*$

Es decir, un lenguaje es una secuencia de símbolos.

Notación: Lenguajes: L, M, N, ...

Ejemplo:

- $L_1 = \{a, b, e\}$ (TRES PALABRAS)
- $L_2 = \{a^i b^i \mid i = 0,1,2,...\}$ (El alfabeto es A = {a,b}; u = aabb = a^2 b^2)
- $L_3 = \{uu^{-1} \mid u \in A^*\}$ (Palíndromos de longitud par)
- $L_4 = \{a^{n^2} \mid n=1,2,3,\ldots\}$ (Sucesiones de **a** de longitud un cuadrado perfecto)

 L_2 es una sucesión de a seguida de una b de la misma longitud.

L₃: (abba) **palíndromo** es que leas como leas la cadena es la misma.

$$A = \{a,b\}$$

A* = son todas las cadenas posibles con el alfabeto A

(Ejemplo: $\mathbf{u} = \mathbf{aabab}$) $\mathbf{u}^{-1} = \mathbf{babaa}$ (es la cadena inversa)

 $uu^{-1} = aababbabaa$

Conjuntos numerables: Aquel conjunto al que se le puede asignar un numero a cada elemento del conjunto, de tal forma que 2 elementos distintos tengan distinto número. En resumen, cada elemento está asociado a un número distinto.

Conjuntos no numerables: Pueden estar asociados a un mismo numero varios elementos distintos del conjunto.

Si L_1, L_2 son 2 lenguajes sobre el alfabeto A, la **concatenación** de estos 2 lenguajes se define como: L_1L_2 = $\{u_1u_2 \mid u_1 \in L_1, u_2 \in L_2\}$

Propiedades:

- L0 = 0L = 0
- Elemento Neutro: $\{\varepsilon\}L = L\{\varepsilon\} = L$
- Asociativa: $L_1(L_2L_3) = (L_1L_2)L_3$

Si
$$L_1 = \{0^i 1^i : i \ge 0\}; L_2 = \{1^i 0^i : i \ge 0\}, \text{ entonces,}$$

$$L_1L_2 = \{0^i 1^i 1^j 0^j : i, j \ge 0\}$$

Ejemplo:

Si j = 0, i = 2
$0^2 1^2 1^0 0^0 = 0^2 1^2 = u1$

La iteración de lenguajes se define de forma recursiva: $L^0 = \{\epsilon\}, \quad L^{i+1} = L^i L$

Si L es un lenguajes sobre el alfabeto A, la clausura de Kleene de L es: $L^* = \bigcup_{i \ge 0} L^i$

$$L^+ = \cup_{i \geq 1} L^i$$

Propiedades:

- $L^+ = L^* \operatorname{si} \varepsilon \in L$
- $L^+ = L^* \{ \varepsilon \}$ si $\varepsilon \notin L$

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416 arts esce ues2016juny.pdf

Top de tu gi

Rocio

pony

Ejemplo: (cualquier cosa que quieras concatenar con 0 o 01 pertenecerá a L* y a L+)

Si $L = \{0, 01\}$, entonces:

 $L^* = \text{Conjunto de palabras sobre } \{0, 1\}$ en las que un 1 va siempre precedido de un cero.

 L^+ = Conjunto de palabras sobre $\{0,1\}$ en las que un 1 va siempre precedido de un cero y distintas de la palabra vacia

Lenguaje inverso de L es: $L^{-1} = \{u \mid u^{-1} \in L\}$

Cabecera: $CAB(L) = \{u \mid u \in A^* \text{ y } \exists v \in A^* \text{ tal que } uv \in L\}$

Ejemplo: Si $L=\{\mathbf{0}^i\mathbf{1}^i:\ i\geq \mathbf{0}\}$ entonces $\mathit{CAB}(L)=\{\mathbf{0}^i\mathbf{1}^j:\ i\geq j\geq \mathbf{0}\}$

Si A_1 y A_2 son 2 alfabetos, una aplicación: $m{h}: A_1^* o A_2^*$

Se dice que es un **homomorfismo** si y solo si h(uv) = h(u)h(v)

En resumen, es como una traducción.

Consecuencias:

- $h(\varepsilon) = \varepsilon$
- $h(a_1 \dots a_n) = h(a_1) \dots h(a_n)$

Si
$$A_1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, A_2 = \{0, 1\}$$

$$h(0) = 0000, \quad h(1) = 0001, \quad h(2) = 0010, \quad h(3) = 0011$$

$$h(4) = 0100, \quad h(5) = 0101, \quad h(6) = 0110, \quad h(7) = 0111$$

$$h(8) = 1000, \quad h(9) = 1001$$

$$h(034) = 00000 0011 0100, \quad h(\varepsilon) = \varepsilon$$

Una gramática generativa es un cuadrupla (V, T, P, S) en la que:

- V es un alfabeto, llamado de variables o símbolos no terminales, es decir son los utensilios o recipientes a usar (se representa con letras mayúsculas)
- T es un alfabeto, llamado Simbolos terminales, es decir son los ingredientes o componentes (se representa con letras minúsculas)
- **P** es un conjunto de pares (α, β) , llamados **reglas de producción**, donde $\alpha, \beta \in (V \cup T)^*$ y α contiene al menos un símbolo de **V.** El par (α, β) suele representarse como $\alpha \to \beta$. Es decir, es una secuencia de pasos a seguir.
- S es un elemento de V, llamado símbolo de partida.

Ejemplo:

G = (V, Y, P, S) dada por,

 $V = \{E\}$ (conjunto de variables)

 $T = \{+,*,(,),a,b,c\}$ (los elementos para elaborar)

P está compuesto por las siguientes reglas de producción

$$E \to E + E$$
, $E \to E * E$, $E \to (E)$, $E \to a$, $E \to b$, $E \to c$

$$S = E$$

$$E \Rightarrow E * E \Rightarrow (E) * E \Rightarrow (E + E) * E \Rightarrow (a + E) * E \Rightarrow (a + b) * E \Rightarrow (a + b) * C$$

(a + b) * c Palabra Generada

Lenguaje generado por una gramática **G = (V, T, P, S)** al conjunto de cadenas formadas por símbolos terminales y que son derivables a partir del símbolo de partida, es decir:

$$L(G) = \{ u \in T^* \mid S \Rightarrow^* u$$

G = (V, T, P, S), donde $V = \{S, A, B\}$, $T = \{a, b\}$, el símbolo de partida es S y las reglas son:

$$S \rightarrow aB$$
, $S \rightarrow bA$, $A \rightarrow a$, $A \rightarrow aS$, $A \rightarrow bAA$, $B \rightarrow b$, $B \rightarrow bS$, $B \rightarrow aBB$

Ejemplo:

 $S \equiv \text{cadena con } a's = b's$

 $B \equiv \text{una } b \text{ de más}$

Empieza en: ab(resto)

 $S \rightarrow aB \rightarrow ab$

Debe ser: aa(resto)

 $S \rightarrow aB \rightarrow aaBB$

Si queremos que empiece por b(resto)

 $S \rightarrow bA$

Si queremos que empiece por bb(resto)

 $S \rightarrow bA \rightarrow bbAA$

Esta gramática genera el lenguaje: $L(G) = \{u \mid u \in \{a, b\}^+ \text{ y } N_a(u) = N_b(u)\}$

Donde $N_a(u)$ y $N_b(u)$ son el numero de apariciones de símbolos **a** y **b**, en **u**, respectivamente.

Ejemplo 2:

Sea $G = (\{S, X, Y\}, \{a, b, c\}, P, S)$ donde P tiene las reglas:

 $S \rightarrow abc$, $S \rightarrow aXbc$, $Xb \rightarrow bX$, $Xc \rightarrow Ybcc$, $bY \rightarrow Yb$, $aY \rightarrow aaX$, $aY \rightarrow aa$

Gramática dependiendo del contexto:

abc pertenece a $L(G) = \{a^n b^n c^n\}$, $n \ge 1$ queremos generar la cadena (abc)

 $S \rightarrow abc$

Si queremos generar la cadena (aabbcc)

$$S \rightarrow aXbc \rightarrow abXc \rightarrow abYbcc \rightarrow aYbbcc \rightarrow aabbcc$$

Una cadena no valida seria abcabc, porque no cumple con la estructura, que es una serie de **a's** a continuación una de **b's** y otras de **c's**.

De tal forma que esta gramática genera el lenguaje: $\{a^nb^nc^n \mid n=1,2,3,...\}$

Tipos de jerarquía de Chomsky:

- **Tipo 0:** Cualquier gramática (**Sin restricciones**), es decir, es hacer básicamente un traductor nuevo. Son lenguajes <u>recursivamente enumerables</u>.
- **Tipo 1:** Si todas las producciones tienen la forma $\alpha_1 A \alpha_2 \to \alpha_1 \beta \alpha_2$ donde $\alpha_1, \alpha_2, \beta \in (V \cup T)^*, A \in V \lor \beta \neq \varepsilon$, excepto posiblemente la regla $S \to \varepsilon$, en cuyo caso S no aparece a la derecha de las reglas. Son lenguajes dependientes del contexto.
- **Tipo 2:** Si cualquier producción tiene forma $A \to \alpha$ donde $A \in V$, $\alpha \in (V \cup T)^*$. **Son** lenguajes independientes del contexto.
- Tipo 3: Si toda regla tiene la forma $A \to uB$ o $A \to u$ donde $u \in T^*$ y $A, B \in V$. Son conjuntos regulares (Lenguajes Regulares), son Autómatas Finitos Deterministas.

Conjutos regulares tipo 3: S->OS, S->B, B->1B, B->E

Un lenguaje se dice que es de tipo i (i=0, 1, 2, 3) si y solo si es generado por una gramática de tipo i.

Demostrar que la gramática $G = (\{S\}, \{a, b\}, \{S \rightarrow \varepsilon, S \rightarrow aSb\}, S)$ genera el lenguaje

$$L = \{a^ib^i \mid i = 0, 1, 2, ...\}$$

Inicialmente tenemos 2 opciones $S \rightarrow \varepsilon$, $S \rightarrow aSb$

Con eso generamos la palabra vacía o continuamos generando, de tal forma que:

$$S \rightarrow aSb \rightarrow aaSbb \rightarrow aabb$$

Si seguimos este procedimiento, nos encontramos que podemos ir generando todas las palabras de la forma a^ib^i . De tal forma que son las únicas palabras que se pueden generar.

CAERA EN EL EXAMEN:

$$L = \left\{ uu^{-1} \mid u \in \{a.b\}^* \right\}$$

De tal forma que este lenguaje genera u = aab, $u^{-1} = baa$; $uu^{-1} = aabbaa$, esto quiere decir que genera cadenas palíndromas.

Entonces la gramática sería:

$$S \rightarrow aSa$$
, $S \rightarrow bSb$, $S \rightarrow \epsilon$

$$S \rightarrow aSa \rightarrow aaSaa \rightarrow aabSbaa \rightarrow aabbaa$$

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

pony

Ejercicio:

Determina si la gramática $G = (\{S, A, B\}, \{a, b, c, d\}, P, S)$ donde **P** es el conjunto de reglas de producción: $S \rightarrow AB$, $A \rightarrow Ab$, $A \rightarrow a$, $B \rightarrow cB$,

Genera un lenguaje de tipo 3.

Para empezar, $S \rightarrow AB$, $A \rightarrow Ab$ no son lenguajes regulares, puesto que solo admite 1 variable y en un orden especifico (la variable siempre a la derecha): (A
ightarrow uB o A
ightarrow u)

Conclusión en este caso estas reglas son libre del contexto, de tal forma que este algoritmo no es eficiente.

Una forma óptima sería:

$$S \rightarrow aB$$
, $B \rightarrow bB$, $B \rightarrow C$, $C \rightarrow cC$, $C \rightarrow d$

Esta gramática generaría $ab^ic^jd:i,j\in\mathbb{N}$

Y como esta gramática es de tipo 3, el lenguaje lo es.

