Functional Programming

Graham Hutton

Chapter 12 - Lazy Evaluation

INTRODUCTION

Up to now, we have not looked in detail at how Haskell expressions are evaluated.

In fact, they are evaluated using a simple technique that, among other things:

- 1 Avoids doing unnecessary evaluation;
- 2) Allows programs to be more modular;
- 3) Allows us to program with infinite lists.

The evaluation technique is called <u>lazy</u> evaluation, and Haskell is a <u>lazy</u> functional <u>language</u>.

EVALUATING EXPRESSIONS

Basically, expressions are evaluated or <u>reduced</u> by successively <u>applying definitions</u> until no further simplification is possible.

For example, given the definition

square n = n * n

the expression <u>square</u> (3+4) can be evaluated using the following sequence of reductions:

square (3+4)

square 7

7*7

49

However, this is not the only possible reduction sequence. Another is the following:

<u> Square (3+4)</u>

(3+4) * (3+4)

7 x (3+4)

7 * 7

49

Now we have applied square before doing the addition, but the final result is the same.

FACT: In Haskell, two <u>different</u> (but terminating) ways of evaluating the same expression will always give the same final result.

REDUCTION STRATEGIES

At each stage during evaluation of an expression, there may be many possible subexpressions that can be reduced by applying a definition.

There are two common strategies for deciding which redex (reducible subexpression) to choose:

- 1 Innermost reduction

 An innermost redex is always reduced;
- 2 <u>Outermost reduction</u>
 An outermost redex is always reduced.

How do the two strategies compare ...?

TERMINATION

Given the definition

loop = tail loop

let's evaluate the expression fst(1,loop) using these two reduction strategies:

1) Innermost reduction

$$fst (1, loop)$$
=
$$fst (1, tail loop)$$

- fst (1, tail (tail loop))

This strategy does not terminate.

5

2 Outermost reduction

fst (1, loop)

1

This strategy gives a result in one step.

FACTS

- Outermost reduction may give a result when innermost reduction <u>fails</u> to <u>terminate</u>;
- For a given expression, if there exists any reduction sequence that terminates, then ordermost reduction also terminates, with the same result.

NUMBER OF REDUCTIONS

Consider again the following reductions:

Innermost	Outermost
$59 \text{ vare } (3+4)$ = $\frac{59 \text{ vare } 7}{7 \times 7}$ = $\frac{7 \times 7}{49}$	$= \frac{\text{square}(3+4)}{(3+4)} * (3+4)$ $= 7 * (3+4)$ $= 7 * 7$ $= 49$

The outermost version is <u>inefficient</u>: the suberpression 3+4 is displicated when <u>square</u> is reduced, and so must be reduced <u>twice</u>.

FACT: Outermost reduction may require more steps than innormost reduction.

The problem can be solved by using pointers to indicate sharing of expressions during evaluation:

$$= \frac{\text{Square } (3+4)}{(3+4)}$$

$$= \frac{(3+4)}{7}$$

$$= \frac{7}{7}$$

This gives a new reduction strategy:

FACTS

- Lazy evaluation never requires more reduction steps than innermost reduction;
- <u>Haskell</u> uses lazy evaluation.

New consider evaluating the expression head ones using innormast reduction and lazy evaluation:

1 Innermost reduction

In this case, evaluation does not terminate.

2 Lazy evaluation

head ones =
$$\frac{\text{head}}{1}$$
 (1: ones)

In this are, evaluation gives the result 1.

INFINITE LISTS

In addition to the termination advantages, using lary evaluation allows us to program with <u>infinite lists</u> of values!

Consider the recursive definition

ones :: [Int]
ones = 1: ones

Unfolding the recursion a few times gives:

ones = 1: ones = 1:1:0nes = 1:1:1:0nes

That is, ones is the infinite list of 1's.

That is, using lazy evaluation only the <u>first</u> value in the infinite list <u>ones</u> is actually produced, since this is all that is required to evaluate the expression <u>head ones</u> as a whole.

In general, we have the slogan:

Using lary evaluation, expressions are only evaluated as much as required to produce the final result.

We see now that

ones = 1: ones

really defines a <u>potentially infinite</u> list that is only evaluated as much as required by the context in which it is used.

9

. 8

MODULAR PROGRAMMING

We can generate finite lists by taking elements from infinite lists. For example:

? take 5 ones
[1,1,1,1,1]
? take 5 [1..]
[1,2,3,4,5]

Lazy evaluation alkness is to make programs more modular, by separating control from data:

Using lazy evaluation, the obta is only evaluated as much as required by the control part.

EXAMPLE : GENERATING PRIMES

A simple procedure for generating the <u>infinite</u> <u>list</u> of all <u>prime numbers</u> is as follows:

- 1 Write down the list 2, 3, 4, ...;
- 2 Mark the first value p in the list as prime;
- 3 Delete all multiples of p from the list;
- 4 Return to step 2.

The first few steps can be pictured by:

13

This procedure is known as the "seive of Eratosthenes", after the Greek mathematician who first described it.

It can be translated directly into Harkell:

primes

:: [Int]

primes

= seive [2...]

Somo

:: [Int] -> [Int]

seive (p:xs) = p: seive [x | x exs, x 'mod' p /=0]

and executed as follows:

? primes

[2,3,5,7,11,13,17,19,23,29,31, 37,4),43,47,53,59,61,67,... By freeing the generation of primes from the constraint of finiteness, we obtain a <u>modular</u> definition on which different <u>boundary</u> <u>conditions</u> can be imposed in different situations:

Selecting the first 10 primes:

? take 10 primes [2,3,5,7, 11, 13, 17, 19, 23,29]

Selecting the primes less than 15:

? takeWhile (<15) primes [2,3,5,7,11,13]

Lazy evaluation is a powerful programming tool!

FUN EXERCISES - CHAPTER 12

1 Define a program

fibs :: [Integer]

that generates the infinite Fibonacci sequence

[0,1,1,2,3,5,8,13,21,34,...

using the following simple procedure:

- The first two numbers are 0 and 1;
- 6) The next is the sum of the previous two;
- @ Return to step (b).
- 2 Define a function

fib :: Int → Integer

that calculates the nth Fibonacci number. 16