Started on	Wednesday, 4 June 2025, 3:25 PM
State	Finished
Completed on	Wednesday, 4 June 2025, 3:39 PM
Time taken	13 mins 43 secs
Marks	20.00/30.00
Grade	66.67 out of 100.00
Question 1	
Complete	
Mark 0.00 out of 1.00	
Which technique is u	sed to prevent exploding gradients in RNNs?
a. Weight deca	у
b. Dropout	
c. Batch norma	lization
d. Gradient clip	pping
·	
Question 2	
Complete	
Mark 0.00 out of 1.00	
Which of the following	ng sorting algorithms has the best worst-case time complexity?
a. Heap Sort	
b. Quick Sort	
c. Insertion Soi	†
d. Merge Sort	·
u. Weige sort	
Question 3	
Complete	
Mark 1.00 out of 1.00	
What is the best-case	e time complexity for inserting in a heap?
a. O(1)	
b. O(n log n)	
c. O(log n)	
O d. O%	

Question 4
Complete
Mark 1.00 out of 1.00
What is the purpose of a softmax layer in a neural network?
 a. Normalize gradients
 b. Prevent overfitting
c. Convert logits into probabilities
○ d. Introduce sparsity
Question 5
Complete
Mark 1.00 out of 1.00
Which of the following problems is undecidable?
a. Halting Problem
b. Sorting a list County Coloring
c. Graph Coloringd. Finding the shortest path
G. Finding the shortest path
Question 6
Complete Mark 1.00 out of 1.00
Mark 1.00 Out of 1.00
What is backpropagation used for in neural networks?
a. Updating weights via gradients
 b. Performing forward pass
○ c. Computing loss
od. Initializing weights
Question 7
Complete
Mark 1.00 out of 1.00
Which data structure allows insertion and deletion from both ends?
○ a. Queue
b. Deque
○ c. Stack
d. Priority Queue

Question 8	
Complete	
Mark 1.00 out	of 1.00
In the cor	ntext of Operating Systems, what is a "race condition"?
○ a. V	Vhen the CPU switches tasks too quickly
b. V	When multiple processes attempt to modify the same data concurrently
O c. V	Vhen a process is stuck in an infinite loop
O d. V	Vhen processes terminate unexpectedly
Question 9	
Complete	
Mark 1.00 out	of 1.00
What is th	ne time complexity of searching for an element in a balanced Binary Search Tree (BST)?
○ a. C	O(n)
○ b. C	D(1)
O c. C	O(n log n)
⊚ d. C	O(log n)
Question 10	
Complete	
Mark 1.00 out	of 1.00
In a relation	onal database, which normal form eliminates transitive dependencies?
a. 2	NF .
○ b. B	CNF
c. 3	NF
O d. 1	NF
Question 11	
Complete	
Mark 0.00 out	of 1.00
3.00 Sut	
Which of	the following is a non-parametric model?
⊚ a. L	inear Regression
	ogistic Regression
	-Nearest Neighbors
	Jaive Bayes

,	·
Question	12
Complete	
Mark 1.00	out of 1.00
What o	loes the term "curse of dimensionality" refer to in ML?
a.	Data sparsity in high-dimensional spaces
O b.	Limited model capacity
O c.	Difficulty in training deep models
O d.	Increased computation time
Question	13
Complete	
Mark 1.00	out of 1.00
Which	Al concept is best associated with "exploration vs exploitation"?
О a.	Unsupervised Learning
b.	Supervised Learning
O c.	Self-supervised Learning
d.	Reinforcement Learning
Question	14
Complete	
Mark 1.00	out of 1.00
Which	scheduling algorithm may lead to starvation in OS?
a.	Priority Scheduling
b.	Shortest Job First
O c.	First-Come-First-Serve
O d.	Round Robin
Question	15
Complete	
Mark 0.00	out of 1.00
Which	of the following is NOT a valid kernel function in SVM?
○ a.	Step Kernel
b.	Polynomial Kernel
О с.	Linear Kernel
	Gaussian Kernel

Question 16	
Complete	
Mark 0.00 out of 1.00	
What does PCA (Principal Component Analysis) aim to achieve?	
a. Maximize variance in lower dimensions	
b. Normalize features	
c. Increase dimensionality	
O d. Train decision trees	
47	
Question 17 Complete	
Mark 1.00 out of 1.00	
mark 1.50 ode of 1.50	
Which type of neural network is primarily used for sequence modeling?	
○ a. CNN	
b. Autoencoder	
O c. GAN	
⊚ d. RNN	
Question 18	
Complete	
Mark 0.00 out of 1.00	
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs?	
what is the primary use of the ELBO (Evidence Lower Bound) in VAES:	
a. Maximize mutual information	
b. Estimate weight gradients	
c. Regularize output probabilities	
d. Optimize a generative model	
10	
Question 19 Complete	
Mark 1.00 out of 1.00	
mark 1.50 ode of 1.50	
What is the role of the 'learning rate' in gradient descent?	
a. Controls model complexity	
b. Determines output layer depth	
c. Determines step size during optimization	
d. Regularizes feature importance	

Question 2	20
Complete	
Mark 1.00 d	out of 1.00
\\/bisb	of the following less functions is post commonly used in electification problems?
vvnich	of the following loss functions is most commonly used in classification problems?
○ a.	Mean Squared Error
	L1 Loss
O c.	Hinge Loss
	Cross-Entropy
Question 2	21
Complete	
Mark 1.00 c	out of 1.00
Which	component is not part of a Turing Machine?
	os inpolitation for part of a railing maximum.
○ a.	Head
b.	Tape
	State register
	Stack
Question 2	22
Complete	
Mark 1.00 d	out of 1.00
What is	s a major limitation of convolutional neural networks (CNNs)?
vviiat is	y a major initiation of compositional fictions (critis).
О а.	Inability to capture spatial hierarchies
O b.	Lack of parallelism
c.	Inefficiency in handling sequential data
O d.	Overfitting on small datasets
Question 2	23
Complete	
Mark 0.00 d	out of 1.00
What is	the primary objective of feature scaling in ML?
	· ····· - · · · · · · · · · · · · · · ·
○ a.	Reduce memory usage
O b.	Ensure features contribute equally during training
c.	Eliminate irrelevant features
0 d.	Improve model interpretability

Question 24
Complete
Mark 0.00 out of 1.00
Which activation function can cause the vanishing gradient problem?
o a. Tanh
○ b. Softmax
○ c. Sigmoid
■ d. ReLU
Question 25
Complete
Mark 1.00 out of 1.00
What does the Big-O notation O(n log n) represent in divide and conquer algorithms?
a. Sub-linear performance
b. Linear performance
c. Logarithmic performance
d. Average-case performance
Question 26
Complete
Mark 1.00 out of 1.00
Which algorithm is used to find strongly connected components in a directed graph?
a. Kruskal's Algorithm
b. Kosaraju's Algorithm
c. Bellman-Ford Algorithm
od. Prim's Algorithm
Question 27
Complete
Mark 1.00 out of 1.00
What is the primary function of the attention mechanism in Transformers?
a. Reduce gradient vanishing
b. Capture long-range dependencies
c. Pooling feature maps
○ d. Increase depth of networks

	Quiz-CS-AI: Attempt review
Question 28	
Complete	
Mark 1.00 out of 1.	00
What is the m	nain advantage of using dropout in neural networks?
a. Preve	ent overfitting
O b. Bette	er weight initialization
O c. Easie	r gradient computation
O d. Faste	er training
Question 29	
Complete	
Mark 0.00 out of 1.	00
In graph theo	ry, what is the minimum number of colors needed for a graph with chromatic number k?
b. log₂(k)
b. log₂(c. Depe	k)
b. log₂(c. Deped. k	k)

- \bigcirc b. The reward function
- oc. The optimal policy
- Od. The value of a state under a policy