AVB (IEEE 802) について

目次

- ・序章
 - · AVBで何がしたいの?
 - · AVBを使うモチベーションは何?
- ・本章
 - ・AVB「自体」の規格説明
 - · AVBが持つコンポーネント規格の説明
- ・おまけ
 - ・注釈の説明
 - 情報メモ

AVBで何がしたいの?

- ・Ethernetを用いてAudio/Video Bridgingを実現したい
- ・つまり・・・マルチメディア機器をつなぐための「家庭内バックボーン網」を提供したい(リアルタイムに映像など流すための基盤!)
- ・AVBで接続したい機器の例
 - ・パソコン
 - ・レジデンシャル・ゲートウェイ(家電<->インターネット)
 - ・セット・トップ・ボックス (テレビ放送信号の変換器)

図1 IEEE 802.1 AVBの利用イメージ

(出典: http://www.ieee802.org/1/files/public/docs2006/avb-mjt-EthernetAV-summary-060425.pdf)

AVBの利用イメージ

まだ本題ではないのでツッコミは抑え気味で

図1 IEEE 802.1 AVBの利用イメージ

車載ネットワークに使えそうですね

各々の家電 = ECU

・ネットワーク網 = CAN

でも既に他の規格がありますよね?(IEEE1394 ※1) 何故わざわざEtherでも規定するんですか?

AVBを規格する モチベーション

- Ethernetなら下記の利点が既にある
- 1. 汎用性 (**広く普及している**こと) ←重要!!
- 2. 廉価性 (価格が安いこと)
- 3. 高速伝送(100Mbps、1Gbps、10Gbps)
- 4. 取り扱いの容易さ (LANケーブルは取り扱いが容易)
- 5. 伝送距離 (100m、家庭向けでは十分な距離)
- 6. 電力供給 (PoE ※2 により周辺機器への電力供給が可能)
- →活用しない手はない!

AVBを規格する モチベーション

Etherだけでは出来ないこと (=AVBで新たに規格したこと)

- ・**低遅延**:7ホップ〔6台のブリッジ(スイッチ)をまたぐ中継〕において、2ミリ秒(クラス5)または8~16ミリ秒(クラス4)以内〕
- · 時刻同期:7ホップ内の端末すべてが1マイクロ秒以内の誤差で同期
- · **帯域確保**: 上記の低遅延性を守るため、トラフィックが帯域を確保 する仕組みを提供する

(出典: http://www.ieee802.org/1/files/public/docs2007/avb-pannell-assumptions-0607-v6.pdf)

Etherだけでは出来ないこと (=AVBで新たに規格したこと)

これをEtherで実現したいのですね。 物理層に近い部分で規定しないと 実現できなさそうな事が多いですね。

AVBはプロトコルスイートのどこにあたるのですか?

お

ビデオ・サーバ

AVBの

位置付け

- トランスポート層&ネットワーク層(TCP/IP)に相当する
- ブリッジについての 規定が多い

低遅延・時刻同期・帯域確保 を規定 →AVBの要! ここに絞って説明します

まだ本題ではないのでツッコミは抑え気味で

AVBの

位置付け

Control Applications (UPnP/DLNA, A/VC, HiQnet, etc.)

トランフポート層

つまり、リアルタイム通信を実現するために 足りなかった規格を、 TCP/IPレイヤーに追加したんですね。

FCP/IP rotocol Stack

ではAVBの中身について詳しく説明してください。

こに収って記りしょり

低

AVBは複数の規格の集合体

- · AVB本体規格(802.1BA-2011)
 - ・AVB網の全体像や、<u>コンポーネント規格3つや既</u>存のEther規格を使ってAVB網を実現するための要求事項やベスト・プラクティス(推奨実装仕様)

を規定する。

時刻同期プロトコル

- ・時刻同期のためのプロトコル
 - スピーカーの同期など
- 本プロトコルが提供するのは…
 - Grand Master Clockの選定
 - ・各機器への時刻配信

IEEE1588 PTPをベースとしている (が、パケットのデータ位置が同じ程度)

時刻同期プロトコル

Red

is GM

- · Ground Master Clock(GM) · · ·
 - ・ドメイン内の基準時刻を提供するノード
- ・各ノードにGMを周知させる方法
 - ・GMが各機器に"ANNOUNCE"メッセージを送信
 - · 各機器は受け取った"ANNOUNCE"メッセージ から一番良いものを選定(自ノードも選定対象)
- · GMが新しくやってきたら…
 - 「あのGMよりも自分のほ うがふさわしい」と他のノー ドに"ANNOUNCE"する

IEEE802.1AS 時刻同期プロトコル

基準時刻を担当するノードが ドメイン内に常に1つだけ存在するわけですね。

und Mantar Clask/CMM

でも、基準時刻を各機器に送っている間に 遅延が発生しますよね? それはどうやって解決するのですか? 解決できないと時刻同期できませんよ。 I'm better than Red Grand Master

> Grand Master

時刻同期プロトコル

・タイムスタンプに

各リンクを通る時にかかる遅延を加算する

時刻同期プロトコル

h / l ¬ h \ . — l -

ブリッジ(スイッチ)が、 タイムスタンプに遅延分の時間を加算するのですね。

ところで、図に出てきたTlinkとかTegrという値はどう やって算出しているのですか?

+T_{link}"

is

Not

can be off by as much as 200PPM.
802.1AS defines "rateRatio" to correct this.

"now=37+(T_{egr1} - T_{in})+ T_{link} "

時刻同期プロトコル

隣接ノード間伝播遅延算出の基本原理

 1.ノードAは伝播遅延時間の算出 を要求するメッセージPdelay_Reqを 送信

2. ノードBはPdelay_Respメッセージを返信(返信時刻t3及びPdelay_Reqの受信時刻t2を同梱)

3 . ノードAは取得した(t1,t2,t3,t4)に 基づき片道の遅延時間Dを算出

片道遅延D = ((t4 - t1) - (t3 - t2)) / 2

時刻同期プロトコル

IEEE802.1 Qat

ストリーム予約プロトコル

- Stream Reservation Protocol
 - 安定したA/V再生のため、各ストリームが 一定のバンド幅を確保する方法
 - · Talker・・・送信ノード
 - · Listener · · · 受信ノード

トーカーロ 帯域確保できたっ ブリッジ リスナー すごくデータ欲しがっ アブリッジ ぽいな! てるノードがいるな。 リスナー じゃあ○○bpsの アブリッジ 確保を要求します。 1日リスナ R: Registered、登録 D: Declare、申請 私も 帯域確保して おきますよ

TalkerとListenerは、定期的に帯域予約要求と 準備OK(Ready)をやりとりして帯域確保を続ける

準 らし スト!

IEEE802.1Qat ストリーム予約プロトコル

これで予め帯域を予約できるので、 通信路が渋滞していてデータを送れないという 事がなくなるわけですね。

・・・でも、「○○bps確保」では不十分ですよね? 「瞬時に大量のデータを送って、休む、」 (10Mbps確保した経路で、0.1秒間に10Mbit送信) という通信の場合はどうしますか? 通信路の状態が不安定だと十分起こり得ますよね。

IEEE802.1Qav

ストリーム中継方式

- 確かにブリッジで輻輳が発生し得る
 & 既存のベストエフォート型のスケジューラでは
 絶対的に遅延させないのは不可能
 →新しく専用のスケジューラを作成
- · FQTSS
 - Forwarding and Queuing Enhancements for Time-Sensitive Streams
 - Talker及びブリッジの送信フレーム間隔を125us単位で平滑化(Class Aの場合)

IEEE802.1Qav ストリーム中継方式

(出典: http://www3.ietf.org/proceedings/06nov/slides/tsvarea-1.pdf)

・ETCレーンを作ってしまうようなイメージ (料金所が2重になっているが、そこは無視してください)

IEEE802.1Qav

ストリーム中継方式

IEEE802.1Qav

ストリーム中継方式

IEEE802-10av

ストリーム

ブリッジ内では125µs周期で キュー内のデータが送信される

IEEE802-10av

ストリーム

ブリッジ内では125µs周期で キュー内のデータが送信される

このキ AVBで許容される7ステップだと クレジ 間にあるブリッジは6個。 $125 \mu s \times 6 = 750 \mu s$ ある pe) ストリ AVBの通信速度の要件: クラス5・・・2ms クラス4・・・8~16ms これなら要件通りに送信できますね。 Credit-based Faire Queuing:クレンット値に基つくキューインク

ご清聴ありがとうございました

注釈の説明

- ・※1 IEEE1394: IEEE(電気電子技術者協会)が定めるデジタルAV機器(DVDやSTB等)を相互に接続する「デジタル・ケーブル」の規格。通常、「FireWire」(アップルによって提唱)や「i.LINK」(ソニーによって提唱)などと呼ばれることもある。
- ・※2 PoE・・・Power over Ethernet の略。IEEE802.3af に規定されるイーサネットの電力供給方式。スイッチから UTPケーブル経由で接続機器に最大12W程度の電力を供給 することが可能。最大30W(目標)を提供するためのPoE Plus (IEEE802.3at) の標準化も進められている。

情報メモ

・Ethernet AVBの現行仕様には、「IEEE802.1AS/Qat/Qav/BA」といった4項目の規格がある。これらにより、あらかじめ特定用途のために通信帯域を確保する「帯域予約」や時刻同期、そして遅延時間を7ホップで2ms以下に抑えることを可能にする。

http://itpro.nikkeibp.co.jp/article/COLUMN/ 20130604/481966/

情報メモ

- ・AVBサマリ http://www.ieee802.org/1/files/public/docs2013/ avb-mjt-et-all-AVB-for-IEEE-Smart-Home-0213.pdf
- · AS概要
- http://www.ieee802.org/1/files/public/docs2008/ as-kbstanton-8021AS-overview-fordot11aa-1108.pdf

情報メモ

- ・AVB-TP・・・Audio Video Bridging Transport Protocol イーサネットやIP上のオーディオ・ビデオのストリーム転送プロトコル
- ・IEEE MSC・・・IEEE Multi-Conference on Systems and Control システムと制御に関する IEEE マルチ会議 http://www.msc2016.org/

時刻同期プロトコル

gTPTへッダ

8	7	6	5	4	3	2	1		
	transportSpecific messageType								
	reserv	ved				1			
messageLength									
	domainNumber								
	reserved								
flags								2	
correctionField								8	
	reserved								
sourcePortIdentity								10	
sequenceId								2	
control									
	logMessageInterval								

Bits

Octets

gTPTデータ

Ι	Bits								Octets
	7	6	5	4	3	2	1	0	
Ι	header (see 13.3)							34	
	preciseOriginTimestamp							10	

IEEE802.1Qat

ストリーム予約プロトコル

パケット構造 Ethernetフレームのデータ部に格納

Ethernetフレーム

CRC データ 46-1500バイト 送信先 MACアドレス 送信元 MACアドレス EtherType 0x22EA 4バイト 802.1Qatパケット **ProtocolVersion** EndMark Message Message

AttibuteType (Advertise等)

AttributeLength

AttributeListLength

AttributeList (Stream ID等)