7.2

最大吞吐率=1/max{ τ }=1/(120ns)=8.33MFLOPS

7.5

CPI2=1+20%*0.5=1.1 吞吐率 TP=fclk/CPI 故 TP1/TP2=CPI2/CPI1=1.1 快 10%

7.7

- 1) 1000 条指令的执行时间为(10+5+5+10+5+(1000-1)*10)ns=10025ns 故吞吐率为 1000/10025ns=99.8MIPS 非流水时,1000条指令执行时间为(10+5+5+10+5)*1000=35000ns 故加速比=35000/10025=3.49
- 2) 将第 1 级和第 4 级流水段重复设置或细分,从而将两段的处理时间降为 5ns, 此时最大吞吐率=1/(5ns)=200MIPS

7.8

一旦确定 I3 分支,则认为编译器可提前预测到分支线路 I3→I8→I9→I6,故 I9→I6的 跳转不造成断流。整个流水线只有 I3→I8, I6→I2 会产生断流。

S5					1	2	3	4	5	6					2	3	4	5	6					2	3	4	5	6
S4				1	2	3	4	5	6	7				2	3	4	5	6	7				2	3	4	5	6	7
S3			1	2	3	4	5	6	7				2	3	4	5	6	7				2	3	4	5	6	7	
S2		1	2	3	4	5	6	7				2	3	4	5	6	7				2	3	4	5	6	7		
S1	1	2	3	4	5	6	7				2	3	4	5	6	7				2	3	4	5	6	7			

未分支 未分支

未分支

				2	3					8	9	6					2	3					8	9	6	7
			2	3	4				8	9	6	7				2	3	4				8	9	6	7	
		2	3	4	5			8	9	6	7				2	3	4	5			8	9	6	7		
	2	3	4	5	6		8	9	6	7				2	3	4	5	6		8	9	6	7			
2	3	4	5	6	7	8	9	6	7				2	3	4	5	6	7	8	9	6	7				
	分支											分支 结束														

分支

指令数为 1+5×10+1=52

无跳转时,从 I2 到 I6 花时间 5+5-1=9

有跳转时,从 I2 到 I3 花时间 2+5-1=6,从 I8、I9 到 I6 花时间 3+5-1=7,共为 6+7=13 故总时间 T=τ(1+(9+13)×5+1)=112τ

或者:每次循环 I6→I2 跳转,需重新充满流水线,需时间(5-1)×9 条件分支 I3 跳转,需重新充满流水线,需时间(5-1)×5 总时间 T=τ(52+5-1+(5-1)×9+(5-1)×5)=112τ

吞吐率为 TP=52/(112τ)= 0.464/τ

无流水线时, 总时间为 T=5τ×52=260τ

故加速比为 260/112=2.32

若仅考虑有效执行的 52 条指令在流水段上产生的设备运行效率,则 E=TP* τ =46.4%

7.10

非流水机的指令平均执行时间为(4*40%+4*20%+5*40%)*10ns=44ns 流水机指令平均执行时间为 11ns, 故加速比为 4

7.11

1)

2)

′										
	MUL					2	2	2	2	
	ADD							3	3	3
	MOV			1	1					
	译码		1	2	3					
	取指	1	2	3						

7.12

- 1) 非流水执行时间为 T1=100*CPI/fclk=100*4/25M=16us 流水执行时间 T2=(100+5-1)/20M=5.2us 故加速比为 16/5.2=3.077
- 2) 速率为 TP1=100/T1=100/16us=6.25MIPS TP2=100/T2=100/5.2us=19.23MIPS

7.13

1: R1=A1+A2 2: R2=A3+A4 3: R3=A5+A6 4:R4=A7+A8 5:R5=A9+A10

0: K	1=0	(1+1	K 2	/:	K/=	=K3-	+K4	7	5: K	8=K	$\mathfrak{I}+K$.0	9:K	(9=1	(/+1	3	
S5					1	2	3	4	5		6		7			8	
α 4				1	0	2	4	_		_		7			0		Γ

S5					1	2	3	4	5		6		7			8					9
S4				1	2	3	4	5		6		7			8					9	
S 3			1	2	3	4	5		6		7			8					9		
S2		1	2	3	4	5		6		7			8					9			
S 1	1	2	3	4	5		6		7			8					9				

吞吐率 TP=9/(21 τ)= 0.429/ τ 加速比=5*9/21=2.143

效率 E=TP* τ =0.429

7.14

TP=n/(3(n-1)+1+3+1+1) τ =n/(3n+3) τ =100/303 τ = 0.33/ τ , τ =1us , t=0.33MIPS

7.15

1	S 1	S2	S 3	S 4		
2	S1	S2	S 3	S4		
3	S1	S2	S 3	S4		
4		S 1	S2	S 3	S4	
5		S 1	S2	S 3	S4	
6		S 1	S2	S 3	S4	
7			S 1	S2	S 3	S 4
8			S 1	S 2	S 3	S 4
9			S 1	S 2	S 3	S 4

需要6个时钟周期

每个部件执行3条指令,3个周期,故效率为3/6=0.5

7.16

- 1) $\tau = 1/\text{fclk} = 1/1\text{G} = 1\text{ns}$
- 2) 一条指令执行 8 τ =8ns
- 3) 理想 CPI=1/m=0.5 TPmax=fclk/CPI=1G/0.5=2G
- 4) 执行 1000 条指令需要时间(1000*CPI+8-1) τ =507ns 非流水时需要 1000*8* τ =8000ns 加速比为 8000/507= 15.779

7.17

- 1) 5
- 2) 5/(2ns)=2500 MIPS