Final Project

Justin Hsie, Bingyu Sun, Eleanor Zhang, Annie Yu
12/15/2018

Data Import

```
cancer_raw =
  read_csv("./data/Cancer_Registry.csv") %>%
  janitor::clean_names() %>%
  dplyr::select(target_death_rate, geography, everything()) %>%
  separate(geography, into = c("county", "state"), sep = ",")
```

Data varibale dictionary:

- target_death_rate: mean per capita (100,000) cancer mortalities (a)
- avg_ann_count: mean number of reported cases of cancer diagnosed annually (a)
- avg_deaths_per_year: mean number of reported mortalities due to cancer (a)
- incidence_rate: mean per capita (100,000) cancer diagnoses (a)
- med_income: median income per county (b)
- pop_est2015: population of county (b)
- **poverty_percent:** percent of population in poverty (b)
- study_per_cap per capita number of cancer-related clinical trials per county (a)
- binned_inc: median income per capita binned by decile (b)
- median age: median age of county residents (b)
- median_age_male: median age of male county residents (b)
- median_age_female: median age of female county residents (b)
- **geography:** county name (b)
- avg household size: mean household size of county (b)
- percent married: percent of county residents who are married (b)
- pct_no_hs18_24: percent of county residents ages 18-24 highest education attained: less than high school (b)
- pct_hs18_24: percent of county residents ages 18-24 highest education attained: high school diploma (b)
- pct_some_col18_24: percent of county residents ages 18-24 highest education attained: some college (b)
- pct_bach_deg18_24: percent of county residents ages 18-24 highest education attained: bachelor's degree (b)
- pct_hs25_over: percent of county residents ages 25 and over highest education attained: high school diploma (b)
- pct_bach_deg25_over: percent of county residents ages 25 and over highest education attained: bachelor's degree (b)
- pct_employed16_over: percent of county residents ages 16 and over employed (b)
- pct unemployed16 over: percent of county residents ages 16 and over unemployed (b)
- pct private coverage: percent of county residents with private health coverage (b)
- pct_private_coverage_alone: percent of county residents with private health coverage alone (no public assistance) (b)

- pct_emp_priv_coverage: percent of county residents with employee-provided private health coverage (b)
- pct_public_coverage: percent of county residents with government-provided health coverage (b)
- pct_public_coverage_alone: percent of county residents with government-provided health coverage alone (b)
- pct_white: percent of county residents who identify as White (b)
- pct_black: percent of county residents who identify as Black (b)
- pct_asian: percent of county residents who identify as Asian (b)
- **pct_other_race:** percent of county residents who identify in a category which is not White, Black, or Asian (b)
- pct_married_households: percent of married households (b)
- birth_rate: number of live births relative to number of women in county (b)

Look at the distribution of all varibales:

```
cancer_raw %>%
keep(is.numeric) %>%
gather() %>%
ggplot(aes(value)) +
  facet_wrap(~ key, scales = "free") +
  geom_histogram(bins = 30)
```

Warning: Removed 3046 rows containing non-finite values (stat_bin).

Choose variables:

Check correlation and distribution:

```
cor(cancer_county) %>%
knitr::kable()
```

	$target_death_rate$	$incidence_rate$	med _income	poverty_percent	$median_age$	mediai
target_death_rate	1.0000000	0.4494317	-0.4286149	0.4293890	0.0043751	
incidence_rate	0.4494317	1.0000000	-0.0010362	0.0090463	0.0180892	
med_income	-0.4286149	-0.0010362	1.0000000	-0.7889652	-0.0132877	
poverty_percent	0.4293890	0.0090463	-0.7889652	1.0000000	-0.0292800	
median_age	0.0043751	0.0180892	-0.0132877	-0.0292800	1.0000000	

	target_death_rate	incidence_rate	med_income	poverty_percent	median_age	median
median_age_male	-0.0219294	-0.0147332	-0.0916626	-0.2140010	0.1291195	
$median_age_female$	0.0120484	-0.0091056	-0.1532784	-0.1481635	0.1246784	
avg_household_size	-0.0369053	-0.1184000	0.1120653	0.0743076	-0.0319441	
$pct_unemployed16_over$	0.3784124	0.0999795	-0.4531077	0.6551481	0.0185904	
pct_white	-0.1774000	-0.0145098	0.1672254	-0.5094328	0.0350094	
pct_black	0.2570236	0.1134890	-0.2702316	0.5115297	-0.0171732	
pct_asian	-0.1863311	-0.0081234	0.4258442	-0.1572887	-0.0384239	
pct_other_race	-0.1898936	-0.2087483	0.0836349	0.0470959	-0.0302765	
pct_married_households	-0.2933253	-0.1521763	0.4460829	-0.6049528	0.0145036	
pct_upto_hs18_24	0.2443042	-0.0929669	-0.3212077	0.2517431	0.0401926	
pct_with_coverage	-0.2292798	0.2302489	0.5566583	-0.6516658	0.0049621	
income_cat	-0.3030288	0.0110839	0.4765990	-0.6344122	0.0103377	

The discriptive statistics:

```
state_summary = function(x){
mean = mean(x)
max = max(x)
min = min(x)
median = median(x)
var = var(x)
sd = sd(x)
sample_size=length(x)-sum(is.na(x))
tibble(mean, max, min, median, var, sd, sample size)
}
df_target_death_rate <-state_summary(cancer_county$target_death_rate)</pre>
df incidence rate <-state summary(cancer county$incidence rate)</pre>
df_med_income <-state_summary(cancer_county$med_income)</pre>
df_poverty_percent<-state_summary(cancer_county$poverty_percent)</pre>
df_median_age<-state_summary(cancer_county$median_age)</pre>
df_median_agemale<-state_summary(cancer_county$median_age_male)</pre>
df_median_agefemale<-state_summary(cancer_county$median_age_female)</pre>
df_avg_household_size<-state_summary(cancer_county$avg_household_size)</pre>
df_pct_unemployed16_over<-state_summary(cancer_county$pct_unemployed16_over)</pre>
df_pct_white<-state_summary(cancer_county$pct_white)</pre>
df_pct_black<-state_summary(cancer_county$pct_black)</pre>
df_pct_asian<-state_summary(cancer_county$pct_asian)</pre>
df_pct_other_race<-state_summary(cancer_county$pct_other_race)</pre>
df_pct_married_households<-state_summary(cancer_county$pct_married_households)</pre>
df pct upto hs18 24<-state summary(cancer county$pct upto hs18 24)
df_pct_with_coverage<-state_summary(cancer_county$pct_with_coverage)</pre>
state_des <- bind_rows(df_target_death_rate,</pre>
                        df incidence rate,
                        df_med_income,
                        df_poverty_percent,
                        df_median_age,
                        df_median_agemale,
                        df_median_agefemale,
                        df_avg_household_size,
                        df_pct_unemployed16_over,
                        df_pct_white,
                        df_pct_black,
                        df_pct_asian,
                        df_pct_other_race,
                        df_pct_married_households,
                        df_pct_upto_hs18_24,
                        df_pct_with_coverage)
variable <- c("target_death_rate", "incidence_rate", "med_income", "poverty_percent", "median_age", "medi
state_wholedes <- cbind(variable, state_des)</pre>
knitr::kable(state_wholedes)
```

variable	mean	max	min	median	var	sd
target_death_rate incidence_rate	178.664063 448.268586	362.80000 1206.90000			7.701464e+02 2.976874e+03	

variable	mean	max	min	median	var	sd
med_income	47063.281917	125635.00000	22640.00000	4.520700e+04	1.449638e + 08	1.204009e+04
poverty_percent	16.878175	47.40000	3.20000	1.590000e+01	4.107639e+01	6.409087e+00
median_age	45.272333	624.00000	22.30000	4.100000e+01	2.052496e+03	4.530448e+01
median_agemale	39.570725	64.70000	22.40000	3.960000e+01	2.731125e+01	5.226017e+00
median_agefemale	42.145323	65.70000	22.30000	4.240000e+01	2.801425e+01	5.292849e+00
avg_household_size	2.479662	3.97000	0.02210	2.500000e+00	1.841906e-01	4.291744e-01
$pct_unemployed16_over$	7.852412	29.40000	0.40000	7.600000e+00	1.191886e+01	3.452371e+00
pct_white	83.645286	100.00000	10.19916	9.005977e + 01	2.683052e+02	1.638003e+01
pct_black	9.107978	85.94780	0.00000	2.247576e + 00	2.112528e+02	$1.453454e{+01}$
pct_asian	1.253965	42.61942	0.00000	5.498117e-01	6.813543e+00	2.610276e+00
pct_other_race	1.983523	41.93025	0.00000	8.261852 e-01	1.237428e+01	3.517710e+00
pct_married_households	51.243872	78.07540	22.99249	5.166994e+01	4.320188e+01	6.572814e+00
pct_upto_hs18_24	53.226518	100.00000	4.80000	5.390000e+01	1.601814e+02	$1.265628e{+01}$
pct_with_coverage	83.595011	95.70000	54.60000	8.400000e+01	$3.536646e{+01}$	5.946971e+00

Model building:

```
# building full model
full_model <- lm(target_death_rate ~., data = cancer_county)</pre>
summary(full_model)
##
## Call:
## lm(formula = target_death_rate ~ ., data = cancer_county)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -132.811 -11.710
                      -0.008
                               11.850 129.454
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          1.030e+02 1.320e+01
                                                7.808 7.96e-15 ***
## incidence_rate
                          2.195e-01 7.485e-03 29.328 < 2e-16 ***
                         -4.878e-04 6.762e-05 -7.215 6.81e-13 ***
## med_income
                          3.101e-01 1.559e-01
## poverty_percent
                                                 1.989 0.046756 *
## median_age
                         -4.321e-03 8.324e-03
                                               -0.519 0.603763
## median_age_male
                         -2.500e-01 2.105e-01
                                                -1.188 0.235102
## median_age_female
                         -1.204e-01 2.086e-01
                                                -0.577 0.563802
## avg_household_size
                          5.976e-01 1.004e+00
                                                0.595 0.551774
## pct_unemployed16_over
                                                5.544 3.22e-08 ***
                          8.448e-01 1.524e-01
## pct_white
                         -5.202e-03 5.868e-02 -0.089 0.929369
## pct black
                         -1.164e-02 5.655e-02
                                                -0.206 0.836891
## pct_asian
                         -1.954e-01 1.873e-01 -1.043 0.296831
## pct other race
                         -9.198e-01 1.235e-01
                                                -7.446 1.24e-13 ***
                                                -1.094 0.273994
## pct_married_households -9.767e-02 8.927e-02
## pct_upto_hs18_24
                          3.827e-01 3.795e-02
                                                10.085 < 2e-16 ***
                         -7.372e-02 1.022e-01
                                                -0.721 0.470747
## pct_with_coverage
## income_cat
                         -5.252e+00 1.503e+00 -3.493 0.000484 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 20.6 on 3030 degrees of freedom
## Multiple R-squared: 0.4521, Adjusted R-squared: 0.4492
## F-statistic: 156.3 on 16 and 3030 DF, p-value: < 2.2e-16
# Using the stepwise
stepwise_model <- stepAIC(full_model, direction = "both", trace = FALSE)</pre>
summary(stepwise_model)
##
## Call:
## lm(formula = target_death_rate ~ incidence_rate + med_income +
       poverty_percent + median_age_male + pct_unemployed16_over +
##
       pct_other_race + pct_upto_hs18_24 + income_cat, data = cancer_county)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -132.047 -11.853
                       -0.066
                                       129.669
                                11.894
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          9.298e+01 8.056e+00 11.541 < 2e-16 ***
## incidence rate
                          2.187e-01 7.094e-03 30.829 < 2e-16 ***
## med income
                         -5.160e-04 5.771e-05 -8.941 < 2e-16 ***
## poverty_percent
                          3.621e-01 1.403e-01
                                                 2.582 0.009882 **
## median age male
                         -3.904e-01 8.713e-02 -4.480 7.74e-06 ***
## pct_unemployed16_over 8.733e-01 1.464e-01
                                                5.965 2.73e-09 ***
## pct_other_race
                         -8.969e-01 1.141e-01
                                               -7.861 5.26e-15 ***
## pct_upto_hs18_24
                          3.894e-01 3.262e-02 11.937 < 2e-16 ***
## income cat
                         -5.176e+00 1.493e+00 -3.466 0.000535 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 20.58 on 3038 degrees of freedom
## Multiple R-squared: 0.4514, Adjusted R-squared:
## F-statistic: 312.5 on 8 and 3038 DF, p-value: < 2.2e-16
vif(stepwise_model)
##
                                    med_income
          incidence_rate
                                                     poverty_percent
##
                                      3.471605
                1.077115
                                                            5.810092
##
                                                      pct_other_race
         median_age_male pct_unemployed16_over
##
                1.491046
                                      1.837179
                                                            1.158462
        pct_upto_hs18_24
##
                                    income cat
                1.225470
                                      1.742843
##
# Cp and AIC and Adjusted R2
model_dig <- glance(stepwise_model) %>%
  as.data.frame() %>%
  dplyr::select(adj.r.squared, sigma, p.value, AIC, BIC) %>%
  rename(RES = sigma) %>%
  mutate(cp = ols_mallows_cp(stepwise_model, full_model))
model_dig
```

BIC

ср

AIC

##

adj.r.squared

RES p.value