Alex Valentino Homework 9
412

6.2.1 Exercise 3. Let $\epsilon > 0$. Then there exists $k \in \mathbb{N}$ such that $\frac{1}{2^k} < 2\epsilon$. Let $\mathcal{P}_y = \{s_0, \cdots s_{2^k}\}$ be the partition of evenly spaced intervals of length $\frac{1}{2^k}$ for the y axis, where $I_{yi} = [s_{i-1}, s_i]$. Furthermore, for any $(x, y) \in [0, 1]^2$, $0 \le f(x, y) \le \frac{1}{2}$. Therefore for any $U \subseteq [0, 1]^2$, $osc(f, U) \le \frac{1}{2}$. Thus for an arbitrary \mathcal{P}_x of the x axis with 2^k intervals denoted I_{xi} , $\sum_{i=1}^{2^k} osc(f, I_{xi} \times I_{yi}) \frac{1}{2^k} |I_{xi}| \le \frac{1}{2^{k+1}} \sum_{i=1}^{2^k} |I_{xi}| = \frac{1}{2^{k+1}} < \frac{1}{2}2\epsilon = \epsilon$. Therefore the 2d thomae function f(x, y) is Riemann integrable. Since the irrationals are dense in $[0, 1]^2$, then for an arbitrary $I_x \times I_y \subseteq [0, 1]^2$, $m(f, I_x \times I_y) = 0$, thus for an arbitrary partition \mathcal{P} , $L(f, \mathcal{P}) = 0$. Thus $\int_{[0,1]^2} f = 0$, giving us that $\int_{[0,1]^2} f = 0$.

- 6.2.3 Exercise 1. Given that f, g are Riemann integrable then both of their sets of discontinuities are of measure 0. Then the union of those sets is also of measure 0. Since the discontinuities of $f \cdot g$ is at most the union of the previous sets, and that is measure zero implies the discontinuities of $f \cdot g$ is measure 0. Thus $f \cdot g$ is Riemann integrable.
- 6.2.3 Exercise 2. Note that for all x, $0 \leq \sum_{i=2}^{\infty} \frac{x^i}{i!}$, therefore $x+1 \leq e^x$, and finally $\log(x+1) \leq x$. Therefore since $\sum_{k=1}^{\infty} r_k < \infty$, then $\sum_{k=1}^{\infty} \log(1+r_k) < \infty$. This implies that $\prod_{k=1}^{\infty} (1+r_k) < \infty$. Therefore we get that $\prod_{k=1}^{\infty} (1-r_k) < \infty$. Note that by induction, if we remove ratio after ratio of the unit interval we get that \mathcal{K} has length $\prod_{k=1}^{\infty} (1-r_k)$. If we consider the fact that $r_k \to 0$ as $k \to \infty$ implies that $1-r_k$ will converge to 1. If $\prod_{k=1}^{\infty} (1-r_k) = 0$ then that would imply past some $K \in \mathbb{N}$, for all $k \geq K, 1-r_k < r < 1$. However this is impossible for the afformentioned limit argumentation. Thus our given set isn't measure 0. Therefore, an upper sum can attain 1 for intervals of lengths which will sum to the length determined earlier by the product $\prod_{k=1}^{i} nfty(1-r_k)$. Additionally, the lower sums can trivially be made 0, as any open set can eventually have a multiple of $\frac{r_k}{2^k}$ put inside of it (end points of the k-th order cantor set process). Therefore the upper sums and the lower sums disagree, making $\chi_{\mathcal{K}}$ not Riemann integrable. Note that the character of \mathcal{K}^c is also not Riemann integrable since it is equivalent to $1-\chi_{\mathcal{K}}$, which is not Riemann integrable.
- 6.3.4 Note that the function defined as f(x,y) in this problem is equivalent to 1-f(y,x) as defined in Exercise 3 of 6.2.1 (first problem in the homework), and in this exercise f is shown to be Riemann integrable, therefore 1-f(y,x) is Riemann integrable. Therefore the definition of f for this problem is Riemann integrable. Now to consider $\bar{\int}_0^1 f(x,y) dy$, for any possible partition of \mathcal{P} for [0,1] in y and any x, $U(f,\mathcal{P})=1$, as the irrationals are dense in [0,1], therefore for any subinterval the max of 1 can always be attained. Therefore $\bar{\int}_0^1 f(x,y) dy = 1$. For $\underline{\int}_0^1 f(x,y) dy$, if $x = \frac{p}{q}, \gcd(p,q) = 1$ then in every possible interval of y for an arbitrary partition \mathcal{P} , $f(x,y) = 1 \frac{1}{q}$, by the density of the rationals. Thus $L(f,\mathcal{P}) = 1 \frac{1}{q}$. If x is irrational then $L(f,\mathcal{P}) = 1$ since every f(x,y) = 1. Thus $\underline{\int}_0^1 f(x,y) dy = \begin{cases} 1 \frac{1}{q} & x = \frac{p}{q}, \gcd(p,q) = 1 \\ 1 & \text{otherwise} \end{cases}$. Therefore based off of this analysis it appears that $\int_0^1 f(x,y) dy$ is Riemann integrable for irrational x.
- 6.3.9 Suppose for contradiction that $g(x) \neq 0$ almost everywhere. Note that $0 = \bar{\int}_{R_1} g(\mathbf{x}) \geq \underline{\int}_{R_1} g(\mathbf{x}) \geq \min_{\mathbf{x} \in R_1} g(x) |R_1| \geq 0$, therefore $0 = \int_{R_1} g(\mathbf{x}) = \bar{\int}_{R_1} g(\mathbf{x}) = \underline{\int}_{R_1} g(\mathbf{x})$, making

Alex Valentino Homework 9
412

g Riemann integrable on R_1 . Since g is riemann integrable on R_1 then it is bounded, therefore there exists m>0 such that $g(\mathbf{x})\geq m$, as $g(\mathbf{x})\geq 0, \neq 0$ by assumption. Thus, by definition of Riemann integrability, there exists $\delta>0$ such that for any partition $\lambda(\mathcal{P})<\delta$ we have that $\left|\sum_{S_{\alpha}\in\mathcal{P}}g(\mathbf{x}_{\alpha})|S_{\alpha}|\right|< m|R_1|$. Since $g(x)\neq 0$ almost everywhere in R_1 , then for each S_{α} we can choose an \mathbf{x}_{α} such that $g(\mathbf{x}_{\alpha})\neq 0$. Therefore $m|R_1|\leq \left|\sum_{S_{\alpha}\in\mathcal{P}}g(\mathbf{x}_{\alpha})|S_{\alpha}|\right|< m|R_1|$. This is a contradiction. Therefore $g(\mathbf{x})=0$ almost everywhere.