SMART PARKING

Creating a complete smart parking system would require a significant amount of code and potentially hardware integration, which is beyond the scope of a simple response. However, I can provide you with a basic Python code example for a simulated smart parking system using a simple text-based interface. This code assumes a single parking spot, but you can extend it for multiple spots and integrate sensors or cameras for a real-world application:

```
```python
Class SmartParking:
 Def __init__(self):
 Self.available_spots = 1 # Initialize with 1 parking spot
 Self.parked_cars = 0
 Def park_car(self):
 If self.available_spots > 0:
 Print("Car parked successfully.")
 Self.available_spots -= 1
 Self.parked_cars += 1
 Else:
 Print("No available parking spots.")
 Def leave_car(self):
 If self.parked_cars > 0:
 Print("Car left the parking spot.")
 Self.available_spots += 1
 Self.parked_cars -= 1
 Else:
 Print("No cars in the parking lot.")
```

```
Def status(self):
 Print(f"Available parking spots: {self.available_spots}")
 Print(f"Occupied parking spots: {self.parked_cars}")
If __name__ == "__main__":
 Parking_lot = SmartParking()
 While True:
 Print("\nSmart Parking System")
 Print("1. Park a car")
 Print("2. Remove a car")
 Print("3. Check parking status")
 Print("4. Quit")
 Choice = input("Enter your choice: ")
 If choice == "1":
 Parking_lot.park_car()
 Elif choice == "2":
 Parking_lot.leave_car()
 Elif choice == "3":
 Parking_lot.status()
 Elif choice == "4":
 Print("Exiting the system.")
 Break
 Else:
 Print("Invalid choice. Please try again.")
```

This code provides a basic interface for parking and removing cars in a single parking spot. For a real-world smart parking system, you would need to integrate hardware, sensors, and potentially use a database to manage multiple parking spots and store information about parked cars.