Identification of VUS Across the ATP7B Gene

Deniz Saltık 29381 Durmuş Erdem Kertmen 28071 Göktuğ Gençkaya 27888 Metin Alperen Balta 28231

Contents

- >> Wilson's Disease
- >> Copper-transporting p-type ATPase 2, ATP7B
- >> Methods
- >> Results
- Conservation score graph
- Identification of Vus
- >> Discussion

Wilson's Disease

>> Wilson's disease is an autosomal recessive inherited disorder of hepatic copper metabolism resulting in the accumulation of copper in many organs and tissues. (Ferenci P., 2004)

- Neurological symptoms
- Liver malfunctions
- Kayser-Fleischer rings

Copper-transporting ptype ATPase 2, ATP7B

- >> Copper-transporting p-type ATPase 2 is mostly found in liver.
- >> It's main purpose is to transport copper from the liver to other parts of the body and to remove excess copper from the cells.
- >> It's deficiency causes Wilson's disease.

Methods

- 1- Research
- 2- Receiving the protein sequence from UniProt
- 3- Finding Homologous sequences using BlastP
- 4- Alignment of the homologous sequences using MEGA11
- 5- Constructing the Phylogenetic Tree using MEGA11
- 6- Rerooting the Phylogenetic Tree using FigTree
- 7- Calculating conservation scores by Python
- 8- Retrieving mutations from ClinVar
- 9- Identifying Vus by Python

Research

- >> From Google Scholar, Wilson's disease is chosen
- >> The protein (Copper-Transporting p-type ATPase 2,ATP7B) which causes Wilson's disease to occur is identified.
- >> The protein sequence for Copper-Transporting p-type ATPase 2 is retrieved from UniProt.

Finding Homologous Sequences

>> By using BlastP

Alignment and Phylogenetic Tree

Calculating the Conservation Scores

>> By using the Python Code

```
matrixO+Frequencies = [] #there will be 20 columns (for amino acids) and position many i
   lengthOfMSA = len((list(MSA_dict.values()))[0])
64 dictLen = len(MSA_dict)
    eMSA dict = {}
    count = 0
68 for key,value in MSA dict.items():
        eMSA_dict[count]= value
        count+=1
    numberOfiad = []
    for pos in range(lengthOfMSA):
        for key, value in aa dict.items():
            aa dict[key] = 0
        aaDictForPos = aa dict
        totalBases = 0
        iadForPos = 0
        frequencyArray = []
        for i in range(dictLen):
            if eMSA_dict[i][pos] != "-":
                aa = eMSA dict[i][pos]
                if aa == "X":
                    aaDictForPos["A"]+=1
                    aaDictForPos[aa]+=1
                totalBases+=1
```

Conservation score graph

Identification of VUS

Name	Mutation	Amino acid #	Protein Change Significance	Polarity/Charge	with gaps	nucleotide
Tyr1464Ser	Y-S	1464	Y1386S, Y13535 No	P_P	2555	4391A>C
Gln1463Arg	Q-R	1463	Q1379R, Q1256 No	P_+	2554	4388A>G
Gln1463Ter		1463	Q1463*, Q1256* No		2554	4387C>T
Asp1460Gly	D-G	1460	D1253G, D1376 No	N	2543	4379A>G
Leu1454Pro	L-P	1454	L1454P, L1343P, No	N_N	2534	4361T>C
Asp1450Asn	D-N	1450	D1020N, D1169l No	P	2471	4383G>A
Ala1443Ser	A-S	1443	A1236S, A13325 No	N_P	2461	4327G>T
Arg1440GIn	R-Q	1440	R1233Q, R1362 No	\+_P	2453	4319G>A
Arg1440Trp	R-W	1440	R1356W, R1362 No	\+_N	2453	4318C>T
Ser1439Pro	S-P	1439	S1328P, S1355F No	P_N	2452	4315T>C
Ser1432Phe	S-F	1432	S1225F, S1321F No	P_N	2443	4295C>T
Leu1430Met	L-M	1430	L1223M, L1346N No	N_N	2441	4288C>A
Ser1429Leu	S-L	1429	S1429L, S1222L No	P_N	2440	4286C>T
Tyr1424Cys	Y-C	1424	Y1340C, Y1313(No	P_N	2435	4271A>G
Ser1423Asn	S-N	1423	S1216N, S1345l No	P_P	2433	4286G>A
Arg1411GIn	R-Q	1411	R1300Q, R1411(No	\+_P	2416	4232G>A
Ser1398Thr	S-T	1398	S1191T, S1287T Yes	P_P	2403	4192T>A
Pro1394Leu	P-L	1394	P1187L, P1283L No	N_N	2399	4181C>T
Met1392Thr	M-T	1392	M1185T, M1281 ⁻ No	N_P	2397	4175T>C
His1389Arg	H_R	1389	H1182R, H1311F No	\+_+	2394	4166A>G
Ala1388Val	A-V	1388	A1388V, A1304V No	N_N	2393	4163C>T
Leu1381Val	L-V	1381	L1100V, L1154V, No	N_N	2384	4141C>G
Tyr1376Ser	Y-S	1376	Y1376S, Y11695 Yes	P_P	2379	4127A>C
Cys1375Ser	C-S	1375	C1375S, C1168! No	N_P	2378	4124G>C
Leu1373Pro	L-P	1373	L1373P, L1289P, No	N_N	2376	4118T>C
Gln1372Lys	Q-K	1372	Q1091K, Q1145I No	P_+	2375	4114C>A
Gln1372Glu	Q-E	1372	Q1261E, Q1288 No	P	2375	4114C>G
Leu1371Arg	L-R	1371	L1164R, L1371R Yes	N +	2374	4112T>G
Ser1369Leu	S-L	1369	S1369L, S1258L Yes	P_N	2372	4106C>T
Leu1368Val	L-V	1368	L1368V, L1161V, No	N N	2371	4102C>G
Val1364Leu	V-L	1364	V1364L, V1157L Yes	N_N	2367	4090G>C
Met1359lle	M-I	1359	M1152I, M1275I, Yes	N_N	2362	4077G>T
Ala1357Val	A-V	1357	A1246V, A1273V Yes	N_N	2360	4070C>T
Ser1356Pro	S-P	1356	S1356P, S1149F Yes	P_N	2359	4066T>C
Gly1355Asp	G-D	1355	G1355D, G1271 Yes	N	2358	4064G>A
Gly1355Val	G-V	1355	G1355V, G1244 Yes	N N	2358	4064G>T
Gly1355Ser	G-S	1355	G1355S, G1148 Yes	N_P	2358	4064G>A
Trp1353Arg	W-R	1353	W1146R, W1275 Yes	N_+	2356	4057T>C
Val1349Leu	V-L	1349	V1349L, V1271L No	N N	2352	4045G>C
Met1344Leu	M-L	1344	M1137L, M1233I No	N N	2347	4030A>C

Amino Acids with Polar Uncharged Side Chains

DISCUSSION

- Changes between amino acids with same polarities may not change the protein structure/function, even though the conservation score is high.
- Number and relevance of sequences may cause overfitting/underfitting for classifying the VUS.
- Change in the threshold for conservation score will result in differences.

References

- Ferenci, P. (2004). diagnosis and current therapy of Wilson's disease. *Alimentary pharmacology & therapeutics*, 19(2), 157-165. https://doi.org/10.1046/j.1365-2036.2003.01813.x
- *Kayser-Fleischer rings*. (2018, October). National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/liver-disease/wilson-disease/symptoms-causes
- Bitter, R. M., Oh, S., Deng, Z., Rahman, S., Hite, R. K., & Yuan, P. (2022). Structure of the Wilson disease copper transporter ATP7B. *Science Advances*, 8(9). https://doi.org/10.1126/sciadv.abl5508
- Amino Acid Table. (n.d.). Rosalind. https://rosalind.info/glossary/amino-acid/

THANK YOU FOR LISTENING!!!