* الدالة الأسية و الدالة اللوغاريتمية 🖈

الدالة الأسية

هي الدالة الوحيدة ، قابلة $\frac{1}{1}$ تعريف: نسمي " الدالة اللوغارتمية النبيرية " الدالة التي نسمي " الدالة التي x من f(0)=1 وَ f(x)=1 وَ f(x)=1 العدد الحقيقي x من f(x)=1 العدد الحقيقي x العدد الحقيقي x من f(x)=1

الدال اللوغار يتمية

$\frac{1}{x}$ الدالة الأسيّة f هي الدالة الوحيدة ، قابلة $f\left(0\right)=1$ و f'=f و تحقق \mathbb{R} و كتب: $f(x)=e^{x}$ و $f(x)=\exp(x)$: و نكتب

2 خواص الدالة اللوغاريتمية النبيرية:

اليكن x وَ y من $]0;+\infty[$ و x عدد صحيح نسبي

$$\ln e = 1$$
, $\ln 1 = 0$

$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y \quad \ln(x.y) = \ln x + \ln y \quad \Box$$

$$\ln x^n = n \ln x \quad , \qquad \ln \left(\frac{1}{x}\right) = -\ln x$$

- x = y: فإن $\ln x = \ln y$ إذا كان \Box
- x > y: فإن $\ln x > \ln y$ فإن \Box
- 0 < x < 1يعنى 1 < x < 0 و 1 < x < 0 يعنى 1 < x < 0

<u>2- خواص الدالة الأسية:</u>

اليكن y ، y من \mathbb{R} و n عدد صحيح نسبي

$$e^1 = e \approx 2.71$$
 $e^0 = 1$

$$e^{x-y} = \frac{e^x}{e^y} \quad , \quad e^{x+y} = e^x . e^y$$

$$e^{nx} = \left(e^x\right)^n \quad , \qquad e^{-x} = \frac{1}{e^x}$$

- x = y: فإن $e^x = e^y$
- x > y: فإن $e^x > e^y$: إذا كان

3- محموعة تعريف الدّالة اللوغاريتمية:

$$u(x) > 0$$
 : معرفة إذا كانت ، $f(x) = \ln u(x)$

3- مجموعة تعريف الدّالة الأسية:

الدالة
$$f$$
 معرفة إذا كانت u معرفة ، الدالة $f\left(x
ight)=e^{u\left(x
ight)}$

4- مشتقة الدّالة اللوغاريتمية:

$$u(x) > 0$$
 مع $f'(x) = \frac{u'(x)}{u(x)}$: منه $f(x) = \ln u(x)$

$$u(x) \neq 0$$
 منه: $f'(x) = \frac{u'(x)}{u(x)}$ منه: $f(x) = \ln |u(x)|$

4- مشتقة الدّالة الأسية :

$$f'(x) = u'(x) \times e^{u(x)}$$
 منه: $f(x) = e^{u(x)}$

5- النهايات الشهيرة:

 $\lim_{x \to 0^+} x \ln x = 0^- \ , \ \lim_{x \to 0^+} \ln x = -\infty \ , \ \lim_{x \to +\infty} \ln x = +\infty$

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1 \cdot \lim_{x \to 0} \frac{\ln(x + 1)}{x} = 1 \cdot \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\ln x > 0$$
 $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$ $\lim_{x \to 0^+} x^n \ln x = 0^-$

5- النهايات الشهيرة:

 $\lim_{x \to -\infty} x e^x = 0^- \quad \lim_{x \to -\infty} e^x = 0^+ \quad \lim_{x \to +\infty} e^x = +\infty$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1 \cdot \lim_{x\to +\infty} \frac{e^x}{x} = +\infty$$

$$n > 0$$
 مع $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$, $\lim_{x \to -\infty} x^n e^x = 0$

$$x\in\mathbb{R}_{+}^{st}$$
 مع $e^{\ln x}=x$ ، $x\in\mathbb{R}$ مع $\ln e^{x}=x$