Efficient Distributed DPF KeyGen with Active Security for QA-SD

ePrint 2024/429 & 2023/845 & 2024/426

March 26, 2024 Presented by Hongrui Cui

1

Introduction

Correlation Examples

- $y_1^A = y_1^B$
- $y_1^A = (w_1, \Delta), y_2^B = (u_1, v_1), \text{ s.t. } w_1 = v_1 + u_1 \cdot \Delta$
- $y_1^A + y_1^B = (a, b, a \cdot b)$

Motivation of This Line of Work

- Silent generation/PCG of Beaver triples over \mathbb{F}_2
- Application 1: Silent GMW Preprocessing
- Application 2: GC-PCG

Paradigm for PCG

Paradigm for COT/sVOLE PCG

- Generate sparse correlations
- Compress with linear map (LPN)

FSS for DCF/RDCF

- Input: $[\alpha]$, $[\beta]$
- Output: (k^A, k^B)

 $\begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} & & & \\$

■ Correlation: Eval
$$(k^A, x)$$
 + Eval (k^B, x) =
$$\begin{cases} \beta & x = \alpha \\ 0 & o.w. \end{cases}$$

SPFSS: Sum of single Point FSS

- For a t-sparse noise, generate t-pairs of DPF FSS keys
- Full domain evaluation gives us e
- FullEval(k^A) + FullEval(k^B) = $\mathbf{e} \cdot \Delta \rightarrow$ Left multiply by H gives us the desired correlation.

More Details on DPF FSS

- Let $\alpha = 01$
- Invariant: On the α path, 2 parties share a random value; Otherwise, they share zero.

$$s_{0,0}^{A} \leftarrow \$||0, t_{0,0}^{A} = 0$$

$$s_{0,0}^{B} \leftarrow \$||1, t_{0,0}^{B} = 1$$

$$\tilde{s}_{1,0}^{A} = G_{0}(s_{0,0}^{A})$$

$$\left(\widetilde{s}_{1,1}^{A}=\mathsf{G}_{1}(s_{0,0}^{A})\right)$$

$$\tilde{s}_{1,0}^{B} = G_{0}(s_{0,0}^{B})$$

$$\tilde{s}_{1,1}^B = G_1(s_{0,0}^B)$$

More Details on DPF FSS

- Let $\alpha = 01$
- \blacksquare Invariant: On the α path, 2 parties share a random value; Otherwise, they share zero.

For the output, set $extit{CW}_{out} = eta \oplus ilde{s}_{n,lpha}^{ extit{A}} \oplus ilde{s}_{n,lpha}^{ extit{B}}$

Motivations

Key problem with "Quadratic" correlation

- Quadratic computation blow-up
- \blacksquare Consider $10^6 \rightarrow 10^{12}$

Alice:
$$z^A$$
, y^A , x^A

Bob:
$$z^B$$
, y^B , x^B

$$z^A + z^B = (x^A + x^B) \cdot (y^A + y^B)$$

Consider
$$x^A[i] \cdot y^B[j] = \langle H[i], e^A \rangle \cdot \langle H[j], e^B \rangle$$

Let
$$H \in \mathbb{F}_p^{N \times cN}$$
, $|e| = t$.

For regular LPN over
$$\mathbb{F}_p$$
, $H \leftarrow \mathbb{F}_p^{N \times cN}$, expected $O(c^2N^2)$ work

Previous Solutions

BCGIKS20

- **Ring-LPN**: Replace $\langle H, e \rangle$ with $\langle a(X), e(X) \rangle$ for $a(X), e(X) \in (\mathbb{F}_q[X]/(f(X)))^c$
- Now evaluating cross-term requires $O(c^2N \log N) = \tilde{O}(N)$ work (with FFT)
- The resulting polynomial $\langle a \otimes a, e^A \otimes e^B \rangle$ is isomorphic to \mathbb{F}_q^N
- **CRT** requires q > N

BCGIKS20 (FOCS'20)

VD-LPN

BCGIKRS22

- **EA-LPN** Replace $\langle H, e \rangle$ with $\langle E \cdot A, e \rangle$ for c-sparse E, upper-triangular A
- Now evaluating cross-term requires $O(c^2t^2N)$ work
- Requires further cryptanalysis

BCCD23

- QA-SD Replace univariate polynomial in Ring-LPN with multivariate polynomial
- Generate Beaver triples over \mathbb{F}_q for $q \geq 3$

BBCCDS24

- **QA-SD** over \mathbb{F}_4 implies Beaver triples over \mathbb{F}_2 .
- FFT optimizations and implementation

Distributed Setup of PCG

Ds17

Distributed setup of DPF keys with black-box 2PC

ZGYZYW24

■ Half-tree DPF KeyGen from BDOZ-authenticated inputs and SPDZ-authenticated-payload

Ultimate Goal

- End-to-end MPC with malicious security
- 1. Correct LPN variant
- \blacksquare 2. Matching $\Pi_{FSS.KeyGen}$ with malicious security

Problem with BCGIKS20 (Ring-LPN)

BCGIKS20

- Ring-LPN: Replace $\langle H, e \rangle$ with $\langle a(X), e(X) \rangle$ for $a(X), e(X) \in (\mathbb{F}_q[X]/(f(X)))^c$
- Now evaluating cross-term requires $O(c^2N \log N) = \tilde{O}(N)$ work (with FFT)
- The resulting polynomial $\langle a \otimes a, e^A \otimes e^B \rangle$ is isomorphic to \mathbb{F}_q^N
- **CRT** requires q > N

Our Goal: Beaver Triple over \mathbb{F}_2

- Ring-LPN solution requires setting $q=2^{\rho}$, incurring a ρ -time blow-up
- Beaver triple usage: Suppose we have [x], [y] and we want to compute $[x \cdot y]$
- Beaver triple: ([a], [b], [a · b])
- $[x \cdot y] = [(x \oplus a \oplus a) \cdot (y \oplus b \oplus b)] = [(x \oplus a)(y \oplus b)] \oplus [(x \oplus a)b] \oplus [a(y \oplus b)] \oplus [ab]$

Quasi-Abelian Syndrome Decoding

$$\mathbb{F}_q[G] \stackrel{\mathsf{def}}{=} \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{F}_q \right\}$$

- \blacksquare $G = \{1_G\}: \mathbb{F}_q[G] = \mathbb{F}_q$
- $lacksquare G = \mathbb{Z}/n\mathbb{Z} : \mathbb{F}_q[G] = \mathbb{F}_q[X]/(X^n-1)$

13.1: Finite Abelian Groups

In our investigation of cyclic groups we found that every group of prime order was isomorphic to \mathbb{Z}_p , where p was a prime number. We also determined that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ when $\gcd(m,n)=1$. In fact, much more is true. Every finite abelian group is isomorphic to a direct product of cyclic groups of prime power order; that is, every finite abelian group is isomorphic to a group of the type

$$\mathbb{Z}_{p_1^{\alpha_1}} imes \cdots imes \mathbb{Z}_{p_n^{\alpha_n}},$$

where each p_k is prime (not necessarily distinct).

Multiplication by convolution

$$\left(\sum_{g\in G} a_g g\right) \left(\sum_{g\in G} b_g g\right) \stackrel{\text{def}}{=} \sum_{g\in G} \left(\sum_{h\in G} a_h b_{h^{-1}g}\right) g$$

(Search) QA-SD problem. Given $\mathbf{H} = (\mathbf{1} \mid \mathbf{a})$ a paritycheck matrix of a random systematic quasiabelian code, a target weight $t \in \mathbb{N}$ and a syndrome $\mathbf{s} \in \mathbb{F}_q[G]$, the goal is to recover an error $\mathbf{e} = (\mathbf{e}_1 \mid \mathbf{e}_2)$ with $\mathbf{e}_i \leftarrow \mathcal{D}_t(\mathbb{F}_q[G])$ such that $\mathbf{H}\mathbf{e}^T = \mathbf{s}$, i.e. $\mathbf{e}_1 + \mathbf{a} \cdot \mathbf{e}_2 = \mathbf{s}$.

Quasi-Abelian Syndrome Decoding in PCG

Recall our goal: $z^A + z^B = (x^A + x^B) \cdot (y^A + y^B)$

- Let $\mathbf{x}^A = \langle \mathbf{a}, \mathbf{e}_0 \rangle$, $\mathbf{y}^B = \langle \mathbf{a}, \mathbf{e}_1 \rangle$ c-length vector inner product over $\mathbb{F}_q[G]$
- lacksquare Let $\mathbf{x}^A\mathbf{y}^B=\langle \mathbf{a}\otimes \mathbf{a},\mathbf{e}_0\otimes \mathbf{e}_1
 angle$
- FullEval($\mathbf{x}^A \mathbf{y}^B$)[i] = x^A [i] · y^B [i] over \mathbb{F}_q

Multiplication by convolution

$$\left(\sum_{i\in[t]}a_{g_i}g_i\right)\left(\sum_{j\in[t]}b_{h_j}h_j\right)=\sum_{i,j\in[t]}a_{g_i}b_{h_j}(g_i\circ h_j)$$

Quasi-Abelian Syndrome Decoding in PCG

Recall our goal:
$$z^A + z^B = (x^A + x^B) \cdot (y^A + y^B)$$

- Let $\mathbf{x}^A = \langle \mathbf{a}, \mathbf{e}_0 \rangle$, $\mathbf{y}^B = \langle \mathbf{a}, \mathbf{e}_1 \rangle$ c-length vector inner product over $\mathbb{F}_q[G]$
- Let $\mathbf{x}^A \mathbf{y}^B = \langle \mathbf{a} \otimes \mathbf{a}, \mathbf{e}_0 \otimes \mathbf{e}_1 \rangle -$
- FullEval($\mathbf{x}^A \mathbf{y}^B$)[i] = x^A [i] · y^B [i] over \mathbb{F}_q

Multiplication by convolution

$$\left(\sum_{i\in[t]}a_{g_i}g_i\right)\left(\sum_{j\in[t]}b_{h_j}h_j\right)=\sum_{i,j\in[t]}a_{g_i}b_{h_j}(g_i\circ h_j)$$

- Use c^2t^2 DPF FSS to share $\mathbf{e}_0 \otimes \mathbf{e}_1$ \blacktriangleleft
- lacktriangle Locally evaluate the additive share of ${f e}_0\otimes{f e}_1$ and convert them into shares over $\mathbb{F}_q[G]$
- Perform $\mathbb{F}_q[G]$ inner product
- Perform FullEval to get final output

Choice of G

- lacksquare The most interesting case is $\mathbb{F}_q=\mathbb{F}_2$
- However, when q=2, $G=\{1_G\}\otimes...\otimes\{1_G\}$ has order 1
- **FOLEAGE** sets q = 4, $G = (\mathbb{Z}/3\mathbb{Z})^n$
- $\blacksquare \ \mathbb{F}_q[G] \cong \mathbb{F}_q[X_1,...,X_n]/(X_1^3-1,...,X_n^3-1) \cong \mathbb{F}_q^{3^n}$

Why \mathbb{F}_4 :

Let $([a]^4, [b]^4, [ab]^4)$ be a Beaver triple over \mathbb{F}_4 . Writing $x = x(0) + \theta \cdot x(1)$ for any $x \in \mathbb{F}_4$, with θ a root of the polynomial $X^2 + X + 1$ (hence $\theta^2 = \theta + 1$), we have

$$a \cdot b = a(0)b(0) + a(1)b(1) + \theta \cdot (a(0)b(1) + a(1)b(0) + a(1)b(1))$$

 $\rightarrow (ab)(0) = a(0)b(0) + a(1)b(1)$

2-Party Case

$$(a \cdot b)(0) = [ab]_A^4(0) + [ab]_B^4(0) = a(0)b(0) + a(1)b(1),$$

$$\underbrace{a(0)a(1) + \llbracket ab \rrbracket_A^4(0)}_{\text{known by } A} + \underbrace{b(0)b(1) + \llbracket ab \rrbracket_B^4(0)}_{\text{known by } B} = \underbrace{(a(0) + b(1))}_{\text{shared by } A, B} \cdot \underbrace{(a(1) + b(0))}_{\text{shared by } A, B}.$$

Optimized Distributed KeyGen

Protocol $\Pi_{\mathsf{rDPF-CW}}$

PARAMETERS:

- Party $\sigma \in \{0,1\}$ has input $[\alpha_i]_{\sigma} \in \mathbb{F}_3$, $r_i^{\sigma} \in \{0,1\}^{\lambda}$, $(s_{i,j}^{\sigma} || t_{i,j}^{\sigma})_{j \in \{0,1,2\}} \in \{0,1\}^{3(\lambda+1)}$.
- An instantiation of chosen $\binom{1}{3}$ -OT.

PROTOCOL:

For each party $\sigma \in \{0, 1\}$:

- 1: Sample $z^{\sigma} \leftarrow_R \{0,1\}^{3(\lambda+1)}$.
- 2: Define

$$\mathbf{C}_{0}^{\sigma} := (r_{i}^{\sigma} \oplus s_{i,0}^{\sigma} \| (t_{i,0}^{\sigma} \oplus \sigma), \ s_{i,1}^{\sigma} \| t_{i,1}^{\sigma}, \ s_{i,2}^{\sigma} \| t_{i,2}^{\sigma}) \oplus z^{\sigma} \quad \triangleright \llbracket \mathsf{CW}_{i} \rrbracket_{\sigma} \text{ when } \alpha_{i} = 0$$

$$\mathbf{C}_{1}^{\sigma} := (s_{i,0}^{\sigma} \| t_{i,0}^{\sigma}, \ r_{i}^{\sigma} \oplus s_{i,1}^{\sigma} \| (t_{i,1}^{\sigma} \oplus \sigma), \ s_{i,2}^{\sigma} \| t_{i,2}^{\sigma}) \oplus z^{\sigma} \quad \triangleright \llbracket \mathsf{CW}_{i} \rrbracket_{\sigma} \text{ when } \alpha_{i} = 1$$

$$\mathbf{C}_{2}^{\sigma} := (s_{i,0}^{\sigma} \| t_{i,0}^{\sigma}, \ s_{i,1}^{\sigma} \| t_{i,1}^{\sigma}, \ r_{i}^{\sigma} \oplus s_{i,2}^{\sigma} \| (t_{i,2}^{\sigma} \oplus \sigma)) \oplus z^{\sigma} \quad \triangleright \llbracket \mathsf{CW}_{i} \rrbracket_{\sigma} \text{ when } \alpha_{i} = 2$$

$$\mathbf{M}_{0}^{\sigma} := (\mathbf{C}_{0}^{\sigma}, \mathbf{C}_{1}^{\sigma}, \mathbf{C}_{2}^{\sigma}), \ \mathbf{M}_{1}^{\sigma} := (\mathbf{C}_{1}^{\sigma}, \mathbf{C}_{2}^{\sigma}, \mathbf{C}_{0}^{\sigma}), \ \mathbf{M}_{2}^{\sigma} := (\mathbf{C}_{2}^{\sigma}, \mathbf{C}_{0}^{\sigma}, \mathbf{C}_{1}^{\sigma})$$

- 3: Invoke $\binom{1}{3}$ -OT with party $\bar{\sigma}$ as follows:
 - Party $\bar{\sigma}$ plays the role of the sender with inputs $\mathbf{M}_{\llbracket \alpha_i \rrbracket_{\bar{\sigma}}}^{\bar{\sigma}}$.
 - Party σ plays the role of the receiver and inputs $[\![\alpha_i]\!]_{\sigma} \in \mathbb{F}_3$.
 - Party σ gets $\mathbf{M}_{\llbracket \alpha_i \rrbracket_{\bar{\sigma}}}^{\bar{\sigma}}[\llbracket \alpha_i \rrbracket_{\sigma}] \in \{0,1\}^{3(\lambda+1)}$ while party $\bar{\sigma}$ gets nothing.
- 4: Define $\llbracket \mathsf{CW}_i \rrbracket_{\sigma} := \mathbf{M}_{\llbracket \alpha_i \rrbracket_{\bar{\sigma}}}^{\bar{\sigma}} \llbracket \llbracket \alpha_i \rrbracket_{\sigma} \rrbracket \oplus z^{\sigma}$ and broadcast $\llbracket \mathsf{CW}_i \rrbracket_{\sigma}$.
- 5: Construct $CW_i := \llbracket CW_i \rrbracket_{\sigma} \oplus \llbracket CW_i \rrbracket_{\bar{\sigma}} \in \{0, 1\}^{3(\lambda+1)}$.
- 6: Output $(CW_{i,0}, CW_{i,1}, CW_{i,2})$.

Other Optimizations of FOLEAGE

Using a single multi-evaluation step

- Alice evaluates $f = \langle a \otimes a, (e_0 \otimes e_1)^A \rangle, x[g] \cdot y[g] = f(g)$ for $g \in G$
- Instead of FFT \rightarrow IFFT \rightarrow FFT, we can keep FFT($a \otimes a$) as pp and perform only one FFT

FFT Optimization

- Recall that order $|G| = 3^n$
- Full-evaluation is traversing on a tenary tree
- Use classic divide-and-conquer algorithm to achieve $O(n3^n)$ complexity

$$P(X_1,...,X_n) = P_0(X_1,...,X_{n-1}) + X_n P_1(X_1,...,X_{n-1}) + X_n^2 P_2(X_1,...,X_{n-1})$$

$$\mathsf{Eval}_n(P) = \mathsf{Eval}_{n-1}(P_0) \cup X_n \, \mathsf{Eval}_{n-1}(P_1) \cup X_n^2 \, \mathsf{Eval}_{n-1}(P_2)$$

- \blacksquare work(n) = $3 \cdot \text{work}(n-1) + 2 \cdot 3^n$
- \blacksquare work(n) = $2 \cdot n \cdot 3^n$

Additional FFT Optimization

- \blacksquare Recall that there are c^2 polynomials in $e_0 \otimes e_1$
- We can pack 32 monomial evaluation in a 64-bit machine word
- lacktriangle Polynomial evaluation is XOR of monomial evaluations ightarrow 32-times optimization

Optimization with Early Termination

General Idea

■ For FSS with small output domain, we can pack the truth table of a sub-tree in an internal node.

Problem

■ Since the index is tenary, we can only pack $3^{\lceil \log_3(64) \rceil}$ leaves

Protocol $\Pi_{\text{Output-CW}}$

PARAMETERS:

- There are two parties $\sigma, \bar{\sigma} \in \{0,1\}$ with input $(\llbracket \alpha_i \rrbracket_{\sigma})_{i \in [t]} \in (\mathbb{F}_3)^t, \llbracket \beta \rrbracket_{\sigma} \in \mathbb{F}_4, s^{\sigma} \in \{0,1\}^{\lambda}$.
- An instantiation of chosen $\binom{1}{3}$ -OT.
- Pseudorandom function $G: \{0,1\}^{\lambda} \to (\mathbb{F}_4)^{3^t}$.

PROTOCOL:

For each party $\sigma \in \{0, 1\}$, for $i \in [t]$:

- 1: Sample $z_i^{\sigma} \leftarrow_R (\mathbb{F}_4)^{3^i}$.
- 2: Define

$$\mathbf{C}_{i,0}^{\sigma} = (\llbracket \beta \rrbracket_{\sigma}, 0, 0) \oplus z_{i}^{\sigma} \in (\mathbb{F}_{4})^{3^{i}},$$

$$\mathbf{C}_{i,1}^{\sigma} = (0, \llbracket \beta \rrbracket_{\sigma}, 0) \oplus z_{i}^{\sigma} \in (\mathbb{F}_{4})^{3^{i}},$$

$$\mathbf{C}_{i,2}^{\sigma} = (0, 0, \llbracket \beta \rrbracket_{\sigma}) \oplus z_{i}^{\sigma} \in (\mathbb{F}_{4})^{3^{i}},$$

$$\mathbf{M}_{0}^{\sigma} = (\mathbf{C}_{i,0}^{\sigma}, \mathbf{C}_{i,1}^{\sigma}, \mathbf{C}_{i,2}^{\sigma}), \ \mathbf{M}_{1}^{\sigma} = (\mathbf{C}_{i,1}^{\sigma}, \mathbf{C}_{i,2}^{\sigma}, \mathbf{C}_{0}^{\sigma}), \ \mathbf{M}_{2}^{\sigma} = (\mathbf{C}_{i,2}^{\sigma}, \mathbf{C}_{i,0}^{\sigma}, \mathbf{C}_{i,1}^{\sigma})$$

- 3: Invoke $\binom{1}{3}$ -OT with party $\bar{\sigma}$ as follows:
 - Party $\bar{\sigma}$ plays the role of the sender with inputs $\mathbf{M}_{\llbracket \alpha_i \rrbracket_{\bar{\sigma}}}^{\bar{\sigma}}$.
 - Party σ plays the role of the receiver and inputs $[\![\alpha_i]\!]_{\sigma} \in \mathbb{F}_3$.
 - Party σ gets $\mathbf{M}_{\llbracket\alpha_i\rrbracket_{\bar{\sigma}}}^{\bar{\sigma}}[\llbracket\alpha_i\rrbracket_{\sigma}] \in (\mathbb{F}_4)^{3^i}$ while party $\bar{\sigma}$ gets nothing.
- 4: Define $[\![\beta]\!]_{\sigma} := \mathbf{M}_i^{\bar{\sigma}}[[\![\alpha_i]\!]_{\sigma}] \oplus z_i^{\sigma} \in (\mathbb{F}_4)^{3^i}$. Output $[\![\mathsf{CW}]\!]_t := [\![\beta]\!]_{\sigma} \oplus G(s^{\sigma})$.

Converting Half-Tree Techniques to Tenary Trees

- Currently the 1-out-of-3 OT seems hard to instantiate using the half-tree technique
- The main difficulty, in my opinion, is how to express CW_i as a linear function on index α_i and its authentication
- In Half-tree, $CW_i = H(s_{i-1}^0) \oplus H(s_{i-1}^1) \oplus (1 \oplus \alpha_i) \cdot \Delta$
- In FOLEAGE,

$$egin{aligned} extit{CW}_i &= (G_0(s_{i-1}^0) \oplus G_0(s_{i-1}^1) \oplus \mathbb{I}(lpha_i = 0) \cdot r \| \ & G_1(s_{i-1}^0) \oplus G_1(s_{i-1}^1) \oplus \mathbb{I}(lpha_i = 1) \cdot r \| \ & G_2(s_{i-1}^0) \oplus G_2(s_{i-1}^1) \oplus \mathbb{I}(lpha_i = 2) \cdot r) \end{aligned}$$

Minor Details

- Index authentication over \mathbb{F}_3
- Tenary Half Tree

Distributed KeyGen for Half-Tree

Protocol Π_{DPF}

This protocol invokes $\Pi_{\mathsf{BatchCheck}}$ (Figure 2) as a sub-protocol.

Initialize: For each $b \in \mathbb{F}_2$, P_b samples $\Delta_b \leftarrow \mathbb{F}_{2^{\lambda}}$ such that $lsb(\Delta_b) = b$, and sends (init, b, Δ_b) to \mathcal{F}_{aBit} .

Protocol inputs: Two parties P_0 and P_1 hold n BDOZ-style authenticated sharings $\langle \alpha^{(i)} \rangle = (\langle \alpha^{(i)} \rangle_0, \langle \alpha^{(i)} \rangle_1)$ for all $i \in [0, n)$ as well as a SPDZ-style authenticated sharing $[\![\beta]\!] = ([\![\beta]\!]_0, [\![\beta]\!]_1)$. Let $N = 2^n$ for some $n \in \mathbb{N}$. Let $\mathcal{H}_0 : \{0, 1\}^{\lambda} \to \{0, 1\}^{\lambda}$ be a CCR hash function and $\mathcal{H}_1 : \{0, 1\}^{\lambda} \to \{0, 1\}^{2\lambda}$ such that $\mathcal{H}_1(x) := \mathcal{H}_0(x) \parallel \mathcal{H}_0(x \oplus 1)$.

Generate SPDZ-style authenticated sharings of DPF outputs: Let $\langle \alpha^{(i)} \rangle_b = (\alpha_b^{(i)}, \mathsf{K}_b[\alpha_{1-b}^{(i)}], \mathsf{M}_b[\alpha_b^{(i)}])$ and $[\![\beta]\!]_b = (\beta_b, \mathsf{M}_b[\beta])$ for each $b \in \{0, 1\}$. The parties P_0 and P_1 do the following.

- 1. Both parties call $\mathcal{F}_{\mathsf{coin}}$ to sample a public randomness $W \in \mathbb{F}_{2^{\lambda}}$. Each party P_b sets $(s_b^{(0,0)} \parallel t_b^{(0,0)}) := \Delta_b \oplus W \in \{0,1\}^{\lambda}$.
- 2. For each $b \in \{0, 1\}$, for each $i \in [0, n)$, P_b computes the following:

$$\mathsf{CW}_b^{(i)} := \left(\bigoplus_{j \in [0,2^i)} \mathcal{H}_0(s_b^{(i,j)} \parallel t_b^{(i,j)}) \right) \oplus \Delta_b \oplus \left(\alpha_b^{(i)} \cdot \Delta_b \oplus \mathsf{K}_b[\alpha_{1-b}^{(i)}] \oplus \mathsf{M}_b[\alpha_b^{(i)}] \right) \in \{0,1\}^\lambda,$$

and sends $CW_b^{(i)}$ to P_{1-b} . For each $i \in [0, n)$, both parties compute $CW_0^{(i)} := CW_0^{(i)} \oplus CW_1^{(i)}$, and each party P_b computes:

$$\left(s_b^{(i+1,2j)} \, \| \, t_b^{(i+1,2j)} \right) := \mathcal{H}_0 \left(s_b^{(i,j)} \, \| \, t_b^{(i,j)} \right) \oplus t_b^{(i,j)} \cdot \mathsf{CW}^{(i)} \text{ for each } j \in [0,2^i),$$

$$\left(s_b^{(i+1,2j+1)} \, \| \, t_b^{(i+1,2j+1)} \right) := \mathcal{H}_0 \left(s_b^{(i,j)} \, \| \, t_b^{(i,j)} \right) \oplus \left(s_b^{(i,j)} \, \| \, t_b^{(i,j)} \right) \oplus t_b^{(i,j)} \cdot \mathsf{CW}^{(i)} \text{ for each } j \in [0,2^i).$$

Distributed KeyGen for Half-Tree (Continued)

3. For each $b \in \{0, 1\}$, P_b computes

$$\mathsf{CW}_b^{(n)} := \left(\bigoplus_{j \in [0,N)} \mathcal{H}_1(s_b^{(n,j)} \, \| \, t_b^{(n,j)}) \right) \oplus (\beta_b \, \| \, \mathsf{M}_b[\beta]) \in \{0,1\}^{2\lambda},$$

and sends $CW_b^{(n)}$ to P_{1-b} . Then, both parties compute $CW_0^{(n)} := CW_0^{(n)} \oplus CW_1^{(n)}$. For each $b \in \{0,1\}$, P_b computes

4. As in the **Rand** process of protocol Π_{2PC} (Figure 4), both parties call functionality \mathcal{F}_{aBit} to generate [r] with a random $r \in \mathbb{F}_{2^{\lambda}}$. Then, both parties call functionality \mathcal{F}_{coin} to sample a random challenge $\chi \in \mathbb{F}_{2^{\lambda}}$, and locally compute

$$[\![a]\!] := \sum_{j \in [0,N)} \chi^j \cdot [\![u^{(j)}]\!] + \sum_{j \in [0,N)} \chi^{N+j} \cdot [\![v^{(j)}]\!] + [\![r]\!].$$

- 5. As in the **Open** process of protocol Π_{2PC} , both parties open [a] to obtain $\tilde{a} = a_0 + a_1 \in \mathbb{F}_{2^{\lambda}}$ by letting P_0 send a_0 to P_1 and P_1 send a_1 to P_0 in parallel. Then, both parties run sub-protocol $\Pi_{\mathsf{BatchCheck}}$ (Figure 2) on input $([a], \tilde{a})$ to check $a = \tilde{a}$.
- 6. For each $j \in [0, N)$, both parties obtain $[\![u^{(j)}]\!] = ([\![u^{(j)}]\!]_0, [\![u^{(j)}]\!]_1)$ and $[\![v^{(j)}]\!] = ([\![v^{(j)}]\!]_0, [\![v^{(j)}]\!]_1)$.

Some Confusing Points

What's the cost of broadcast

- \blacksquare $P_2, ..., P_n$ sends shares to P_1 , who sends back reconstructed value
- Total comm. is 2(n-1) bits, amortized comm. ≈ 2 bits

Protocol $\Pi_{\mathsf{BT}}(\mathbb{F}_4 \to \mathbb{F}_2)$

PROTOCOL:

- 1: The parties invoke the functionality $\mathcal{F}_{cBT}(\mathbb{F}_4)$ with init. Each party P_i receives a triple $(\llbracket a \rrbracket_i^4, \llbracket b \rrbracket_i^4, \llbracket c \rrbracket_i^4) \in \mathbb{F}_4^3$.
- 2: Each party P_i broadcasts $[\![b]\!]_i^4(1)$. All parties reconstruct $b(1) = \sum_{i=1}^N [\![b]\!]_i^4(1)$.

OUTPUT: Each party P_i outputs $([a]_i^4(0), [b]_i^4(0), [c]_i^4(0) + b(1) \cdot [a]_i^4(1))$.

Lemma 21. The protocol $\Pi_{\mathsf{BT}}(\mathbb{F}_4 \to \mathbb{F}_2)$ of Fig. 16 securely realizes the $\mathcal{F}_{\mathsf{cBT}}(\mathbb{F}_2)$ corruptible functionality in the $\mathcal{F}_{\mathsf{cBT}}(\mathbb{F}_4)$ -hybrid model, using one bit of communication per party and a single call to $\mathcal{F}_{\mathsf{cBT}}(\mathbb{F}_4)$.

What's the cost of GMW online

- With star-sharing, 1 broadcast suffices
- With additive sharing, we need 2 broadcasts