Cap. 3- Séries

M. Elfrida Ralha (eralha@math.uminho.pt)
M.Isabel Caiado (icaiado@math.uminho.pt)

dezembro de 2015

[MIEInf] Cálculo-2015-16

1 / 16

Séries de termos não negativos

 Uma série de termos não negativos é uma série cuja forma geral é

$$\sum_{n>1} u_n, \qquad u_n \geq 0 \quad \text{para todo o} \ n \in \mathbb{N}.$$

- A sucessão geradora é, naturalmente, u;
- ullet A sucessão das somas parciais, s, é monótona crescente pois

$$s_n = s_{n-1} + u_n \ge s_{n-1}$$

• Uma série de termos não negativos é convergente se e só se a correspondente sucessão s é majorada.

3.3 Séries de termos não negativos

Definição

Critérios de convergência

1.º critério de comparação 2.º critério de comparação Critério da razão (ou de D'Alembert) Critério da raiz (ou de Cauchy) Critério do integral

[MIEInf] Cálculo-2015-16

2 / 16

- ► [Análise da convergência]
 - [Recordar] Toda a sucessão limitada e monótona é convergente.
 - E

$$\sum_{n\geq 1} u_n \quad \text{convergente} \Leftrightarrow s \quad \text{convergente}$$

$$\Leftrightarrow s \quad \text{limitada, pois \'e mon\'otona}$$

$$\Leftrightarrow s \quad \text{majorada, pois \'e crescente}$$

[M|Elnf] Cálculo-2015-16 3 / 16 [M|Elnf] Cálculo-2015-16 4 / 16

Critérios de convergência

[1.º critério de comparação]

Sejam $\sum_{n\geq 1} u_n$ e $\sum_{n\geq 1} v_n$ duas séries de termos não negativos tais que, a partir de certa ordem, $u_n < v_n$.

- (a) Se $\sum_{n>1} v_n$ é convergente então $\sum_{n>1} u_n$ é convergente.
- (b) Se $\sum_{n\geq 1} u_n$ é divergente então $\sum_{n\geq 1} v_n$ é divergente.

[MIEInf] Cálculo-2015-16

5 / 16

[2.º critério de comparação]

Sejam $\sum_{n\geq 1}u_n$ e $\sum_{n\geq 1}v_n$ séries de termos positivos tais que $\ell=\lim_n\frac{u_n}{v_n}$, onde $\ell\in[0,+\infty]$.

- (a) $\ell \neq 0$ e $\ell \neq +\infty \Longrightarrow \sum_{n \geq 1} u_n$ e $\sum_{n \geq 1} v_n$ têm a mesma natureza.
- (b) $\ell = 0$
 - $ightharpoonup \sum_{n>1} v_n \; {
 m converge} \Longrightarrow \sum_{n>1} u_n \; {
 m converge}.$
 - $\sum_{n>1} u_n \text{ diverge} \Longrightarrow \sum_{n>1} v_n \text{ diverge.}$

Exemplo

1. Mostre que série $\sum_{n\geq 1} \frac{1}{3^{n+1}n}$ é convergente.

[MIEInf] Cálculo-2015-16 6 / 16

Exemplo

1. Mostre que série $\sum_{n\geq 1} \frac{1}{n+1}$ é divergente.

2. Mostre que série $\sum_{n>1} \operatorname{sen} \frac{1}{n}$ é divergente.

[Critério da razão (ou de D'Alembert)]

Seja u uma sucessão de termos positivos e suponha-se que

$$\ell = \lim_{n} \frac{u_{n+1}}{u_n}$$

- (a) Se $\ell < 1$ então $\displaystyle \sum_{n \geq 1} u_n$ é convergente.
- (b) Se $\ell>1$ então $\displaystyle\sum_{n\geq 1}u_n$ é divergente.
- (c) Se $\ell=1$ então nada se pode concluir sobre a natureza de $\displaystyle\sum_{n\geq 1}u_n.$

[MIEInf] Cálculo-2015-16

9 / 16

[Critério da raiz (ou de Cauchy)]

Seja \boldsymbol{u} uma sucessão de termos não negativos e suponha-se que

$$\ell = \lim_{n} \sqrt[n]{u_n}.$$

- (a) Se $\ell < 1$ então $\displaystyle \sum_{n \geq 1} u_n$ é convergente.
- (b) Se $\ell > 1$ então $\sum_{n > 1} u_n$ é divergente.
- (c) Se $\ell=1$ então nada se pode concluir sobre a natureza de $\sum_{n\geq 1}u_n.$

Exemplo

1. Estude a natureza da série $\sum_{n\geq 1} \frac{(n!)^2}{(2n)!}$.

[MIEInf] Cálculo-2015-16 10 / 16

Exemplo

1. Estude a natureza da série $\sum_{n\geq 1} \left(\frac{n^2}{n^3+3n}\right)^n$.

[Critério do integral]

Seja $f:[1,+\infty[\longrightarrow \mathbb{R}$ uma função contínua, positiva, decrescente e, para cada $n\in \mathbb{N}$ seja, $f(n)=u_n$. Então

$$\sum_{n>1} u_n \qquad \mathsf{e} \qquad \int_1^{+\infty} f(x) \, dx$$

têm da mesma natureza.

[MIEInf] Cálculo-2015-16

13 / 16

- ► Usando diretamente o critério do integral:
 - Seja $f(x) = \frac{1}{x}$. Esta função
 - tem domínio $[1, +\infty[$
 - ► função contínua, positiva, decrescente
 - $f(n) = \frac{1}{n}$
 - Então

$$\sum_{n\geq 1} \frac{1}{n} \qquad \qquad \mathsf{e} \qquad \qquad \int_{1}^{+\infty} \frac{1}{x} \, dx$$

têm a mesma natureza.

• O integral impróprio é divergente (c.f. Cap. 2.4), logo a série harmónica diverge.

Exemplo

- 1. A série harmónica $\sum_{n\geq 1} \frac{1}{n}$ é divergente (c.f. Cap 3.3).
 - Temos

$$s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ge \int_1^{n+1} \frac{1}{x} dx = \ln(n+1)$$

Uma vez que

$$\lim_{n} s_n > \lim_{n} \ln(n+1) \longrightarrow \infty$$

a série harmónica diverge.

[MIEInf] Cálculo-2015-16 14 / 16

- 2. A série de Riemann $\sum_{n\geq 1} \frac{1}{n^r}$ converge se e só se r>1 (c.f. Cap 3.3).
 - Seja $f(x) = \frac{1}{x^r}$. Esta função
 - ▶ tem domínio $[1, +\infty[$
 - ► função contínua, positiva, decrescente
 - $f(n) = \frac{1}{n^r}$
 - Então

$$\sum_{n>1} \frac{1}{n^r} \qquad \qquad \mathsf{e} \qquad \qquad \int_1^{+\infty} \frac{1}{x^r} \, dx$$

têm a mesma natureza.

• O integral impróprio diverge se $r \leq 1$ e converge se r > 1 (c.f. Cap. 2.4), logo a série de Riemann diverge se $r \leq 1$ e converge se r > 1.