Reading Material

CS 5135/6035 Learning Probabilistic Models Lecture 21: Markov Chain Monte Carlo Methods I

Gowtham Atluri

November 15, 2018

 Chapter 6. Metropolis-Hastings Algorithms
 Christian Robert and George Casella. Introducing Monte Carlo Methods with R

- Ilker Yildirim, Bayesian Inference: Metropolis-Hastings Sampling http://www.mit.edu/~ilkery/papers/MetropolisHastingsSampling.pdf
- Andrieu et al. An introduction to MCMC for machine learning, Machine learning, 2003.

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

mber 15, 2018 1

tluri

S 5135/6035 Learning Probabilistic Models

ovember 15, 2018

Topics

- Limitations of sampling and integration approaches
- Intuitive idea of MCMC
- Markov Chain
 - Introduction
 - Finite state space
 - Infinite state space
 - Stationary distribution
 - Ergodicity
 - Ergodic Theorem
- Metropolis Hastings Algorithm
 - Algorithm
 - Acceptance probability
 - Example

mber 15, 2018

Accept-Reject Methods

- Accept-reject methods used to sample from arbitrary distributions
- Need to choose g(x) such that Mg(x) is a tighter envelope
 - Non-trivial for high-dimensional problems

3/33

CS 5135/6035 Learning Probabilistic Models

vember 15, 2018 4

Challenges with Monte Carlo Integration

$$I(f) = \int f(\mathbf{x}) d\mathbf{x} = \int g(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \mathbb{E}_{p(\mathbf{x})}[g(\mathbf{x})] \approx \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{x}_i) = S_n$$

Error in Monte Carlo Integration $|\epsilon_n| \leq 1.96 \sqrt{\frac{Var[g(x)]}{n}}$

- In Importance sampling, we use the factorization $\frac{f(x)}{g(x)}q(x)$ for g(x)p(x)
- Error is small when we choose q(x) with the same shape as f(x)

wtham Atluri CS 5135/6035 Learning Probabilistic Mo

vember 15, 2018

Idea behind Markov Chain Monte Carlo Methods

• Instead of sampling i.i.d., sample from a Markov Chain

- Markov Chain- where we go next depends on our current state
- Monte Carlo Simulating data

Ashuri CS E135 /6025 Learning Drobabilistic Model

November 15, 2018

Advantages/Disadvantes of MCMC

Advantages:

- applicable even when we can't directly draw samples
- works for complicated distributions in high-dimensional spaces, even when we don't know where the regions of high probability are
- relatively easy to implement
- fairly reliable

Disadvantages:

- slower than simple Monte Carlo or importance sampling (i.e., requires more samples for the same level of accuracy)
- can be very difficult to assess accuracy and evaluate convergence, even empirically

Markov Chain

• A Markov Chain is a sequence of random variables $\{x_i\} = x_0, x_1, \dots, x_n$ such that, given the present state, future and past states are independent.

$$p(x_{n+1}|x_1,x_2,...x_n)=p(x_{n+1}|x_n)$$

• In other words, conditional distribution of x_{n+1} (in future), depends only on present state x_n

Markov Chain

• A Markov Chain is a sequence of random variables x_1, x_2, \dots, x_n such that, given the present state, future and past states are independent

$$p(x_{n+1}|x_1,x_2,...x_n) = p(x_{n+1}|x_n)$$

- In other words, conditional distribution of x_{n+1} (in future), depends only on present state x_n
- State space of the Markov Chain: the set from which x_i take values
- Example: Weather over 6 days is observed as {sunny, sunny, cloudy, rainy, sunny, sunny)
 - State-space is [sunny, cloudy, rainy]

Defining a Markov Chain $\{x_i\}$

- **State space** of the Markov Chain: the set from which x_i take values
- **Initial distribution (** π_0 **):** the distribution of x_0
- Transition probability distribution or Markov kernel $K(x_n, x_{n+1})$: conditional distribution $p(x_{n+1}|x_n)$
 - Time-homogeneous chain when $p(x_{n+1}|x_n)$ does not depend on n

Defining a Markov Chain $\{x_i\}$

- State space of the Markov Chain: the set from which x_i take values
- Initial distribution (π_0): the distribution of x_0
- Transition probability distribution or Markov kernel $K(x_n, x_{n+1})$: conditional distribution $p(x_{n+1}|x_n)$
 - Time-homogeneous chain when $p(x_{n+1}|x_n)$ does not depend on n

Example: Weather over 6 days is observed as {sunny, sunny, cloudy, rainy, sunny, sunny)

- State-space is [sunny, cloudy, rainy] (Discrete-state Markov Chain)
- Let our initial distribution be $\pi_0 = [0.8, 0.05, 0.15]$
- Let our transition probabilities be:

$$K = \left(\begin{array}{cccc} & & & T & \\ & Sunny & Cloudy & Rainy \\ Sunny & 0.6 & 0.3 & 0.1 \\ T-1 & Cloudy & 0.2 & 0.3 & 0.5 \\ Rainy & 0.4 & 0.1 & 0.5 \end{array} \right)$$

Markov Chain: probability

Example: Probability of daily weather from a Markov Chain

- State-space is [sunny, cloudy, rainy], initial distr. $\pi_0 = [0.8, 0.05, 0.15]$
- Transition probability distr.:

$$K = \left(\begin{array}{cccc} Sunny & Cloudy & Rainy \\ Sunny & 0.6 & 0.3 & 0.1 \\ Cloudy & 0.2 & 0.3 & 0.5 \\ Rainy & 0.4 & 0.1 & 0.5 \end{array} \right)$$

• The probability for the second day π_1 is $\pi_1 = \pi_0 * K$, i.e.,

$$[0.8, 0.05, 0.15]*\left(\begin{array}{ccc} 0.6 & 0.3 & 0.1 \\ 0.2 & 0.3 & 0.5 \\ 0.4 & 0.1 & 0.5 \end{array}\right) = [0.55, 0.27, 0.18]$$

• The probability for the third day is $\pi_2 = \pi_1 * K = \pi_0 * K^2$, i.e.,

$$[0.8, 0.05, 0.15] * \textit{K}^2 = [0.46, 0.26, 0.28]$$

• Probability of states at n: $\pi_n = \pi_{n-1} * K = \pi_0 * K^n$

CS 5135/6035 Learning Probabilistic Models

Stationary distribution: Equilibruim

Typically,
$$\pi_1 = \pi_0 K$$

 $\pi_2 = \pi_1 K$
 $\pi_3 = \pi_2 K$
 \vdots
 $\pi_n = \pi_{n-1} K$

- A stationary distribution of a Markov Chain is a probability distribution that remains unchaged in the Markov Chain as time progresses $\pi = \pi K$
 - ullet π can be determined by solving the set of eqns $\pi=\pi K$
 - When $\pi_n = \pi$, we say the chain reached equilibrium
- ullet Once in equilibrium, $x_{n+1} \sim \pi$, $x_{n+2} \sim \pi, \dots$
 - This property is leveraged by MCMC approaches

Stationary distribution

Example: Weather

• State-space is [sunny, cloudy, rainy], initial distr. $\pi_0 = [0.8, 0.05, 0.15]$

Transition probability distr.: $K = \begin{pmatrix} 0.6 & 0.3 & 0.1 \\ 0.2 & 0.3 & 0.5 \\ 0.4 & 0.1 & 0.5 \end{pmatrix}$

Markov Chain: Continuous States

- State space: $-\infty \le x \le \infty$ (uncountable)
- Initial distribution (π_0): $\pi_0(x) = \mathcal{N}(0,3)$
- Transition probability distribution: $p(x_{n+1}|x_n) = K(x_n, x_{n+1}) = \mathcal{N}(x_n/2, 1)$

Markov Chain: Continuous States

- State space: $-\infty \le x \le \infty$ (uncountable)
- Initial distribution (π_0): $\pi_0(x) = \mathcal{N}(0,3)$
- Transition probability **distribution**: $p(x_{n+1}|x_n) = K(x_n, x_{n+1}) = \mathcal{N}(x_n/2, 1)$
- Generating data from this Markov Chain

$$x_{n+1} \sim \mathcal{N}(x_n/2, 1)$$
, alternatively $x_{n+1} = x_n/2 + \epsilon_n$, $\epsilon_n \sim \mathcal{N}(0, 1)$

Properties of Markov Chain

• Irreducibility: Every state is reachable from any other state in finite

$$\forall s_i, s_j \in S, \exists m < \infty : p(x_{n+m} = s_i | x_n = s_i) > 0$$

• If there is path from each state to every other, then it's irreducible.

$$K_{1} = \begin{pmatrix} A & B & C \\ A & 0.8 & 0 & 0.2 \\ B & 0 & 0.5 & 0.5 \\ C & 0.4 & 0.6 & 0 \end{pmatrix} \text{ (irreducible)} \quad K_{2} = \begin{pmatrix} A & B & C \\ A & 0.8 & 0.15 & 0.05 \\ B & 0.4 & 0.5 & 0.1 \\ C & 0 & 0 & 1 \end{pmatrix} \text{ (reducible)}$$

- When irreducibile, Markov Kernel K allows for free moves all over the state space
 - This property is leveraged by MCMC approaches

Reversibility

• If the joint probability of $x_0, x_1, \dots, x_{n-1}, x_n$ is the same as that of $x_n, x_{n-1}, \dots, x_1, x_0$, we say the markov chain is **reversible**.

$$p(x_0, x_1, \dots, x_{n-1}, x_n) = p(x_n, x_{n-1}, \dots, x_1, x_0)$$

- Recorded simulation of a reversible chain looks the same if it is run backwards
- ullet A Markov chain with stationary probability π is reversible if and only if

$$\pi_i K_{ij} = \pi_j K_{ji}, \forall i, j$$

- These are called detailed balance equations
- If a Markov Kernel K satifies detailed balance equations w.r.t a distrbution π
 - Then π is a unique stationary distribution
 - This property will be leveraged in MCMC.

CS 5135/6035 Learning Probabilistic Models

Recurrent & a-periodic states

- Recurrent state: a state that the chain began with is guaranteed to be revisited. Otherwise state s_i is transient
 - If all states are recurrent, stationary distribution π exists.

$$t_i = \inf(t \ge 1 : x_t = s_i)$$
 $p(t_i < \infty | x_0 = s_i) = 1$

$$\mathcal{K} = \left(\begin{array}{cccc} A & B & C \\ A & 0.85 & 0.15 & 0 \\ B & 0.1 & 0.9 & 0 \\ C & 0.8 & 0.2 & 0 \end{array}\right) \text{A is recurrent, C is transient}$$

• Periodicity: A state is periodic if the chain can return to it only at multiples of some integer larger than 1

$$d(s_i) = \gcd\{n \in \mathbb{N}_+ : K_{ii}^n > 0\}$$

• if $d(s_i) = 1$ the state is a-periodic

CS 5135/6035 Learning Proba

Ergodicity, Ergodic Theorem

- Ergodicity: A state is ergodic if it is recurrent and a-periodic
 - A Markov Chain is ergodic if all states are ergodic
- Convergence: Irrespective of the starting state, the probability of state s_i follows stationary distribution.
 - ullet For an ergodic Markov chain $\lim_{t o \infty} p(x_t = s_j | x_0 = s_i) = \pi$
- These properties (Ergodicity and Convergence) have major consequences for simulation
 - Samples from Markov Chain $x \sim \pi$
 - These will be leveraged for MCMC

Ergodic Theorem and CLT

• Ergodic Theorem: For a finite irreducible chain with stationary distribution π

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^nh(x_t)=\mathbb{E}_\pi(h(x))$$

- This expectation is the same as the integral $\int h(x)\pi(x)dx$
 - This will be leveraged by MCMC methods
- Central Limit Theorem: For a finite irreducible chain with stationary distribution π

$$\frac{1}{\sqrt{n}} \Big(\sum_{t=1}^{n} (h(x_t) - \mathbb{E}_{\pi}(h)) \Big) \implies _{distr.} \mathcal{N}(0, \sigma_h^2)$$

where $\sigma_h = \gamma_0 + 2\sum_{k=1}^{\infty} \gamma_k < \infty, \gamma_k = Cov_{\pi}(h(x_0), h(x_k))$

• CLT provides a bound on the error ϵ_n

CS 5135/6035 Learning Probabilistic Models

Markov Chain Monte Carlo Methods

- Given a target density f
 - We build a Markov Kernel K with stationary distr. f
 - We generate a Markov Chain $\{x_t\}$ using this kernel
 - By stationarity, samples from the Markov Chain follow f
 - Integrals can be approximated using these samples
 - Supported by Ergodic Theorem
- The real effort is in contructing a kernel K such that it is associated with an arbitrary density f

Metropolis-Hastings Algorithm

- Metropolis-Hastings is the most general MCMC algorithm
 - First Introduced by Metropolis and team in 1953
 - one of the top ten most influential algorithms of the 20th century
 - Later extended by Hastings in 1970
- Three components
 - **1** Generate a candidate sample x_{cand} from a proposal distr. $q(x_i|x_{i-1})$
 - $q(x_i|x_{i-1})$ is not the Chain's Kernel K
 - ${\color{red} \bigcirc}$ Compute acceptance probability (α) using proposal distr. q and the full joint density f
 - lacktriangle Accept the candidate sample with probability lpha

Metropolis-Hastings Algorithm

Algorithm:

• Initialize $x_0 \sim q$

2 for iteration $i = 1, 2, \dots$ **do**

Propose: $x_{cand} \sim q(x_i|x_{i-1})$

Acceptance Prob.:

 $\alpha(x_{cand}|x_{i-1}) = min\{1, \frac{q(x_{i-1}|x_{cand})f(x_{cand})}{q(x_{cand}|x_{i-1})f(x_{i-1})}\}$

 $u \sim \textit{Uniform}(0,1)$

if $\mu < \alpha$ then

Accept the proposal $x_i \leftarrow x_{cand}$

else

Reject the proposal $x_i \leftarrow x_{i-1}$

end if

end for

Guidelines for choosing proposal distribution q

- Choosing a suitable q(x, y) is needed to use Metropolis-Hastings
- The induced Markov chain should be irreducible, with short mixing time, to allow full coverage of the state-space
 - Support of q should include support of $f(support(f) \subset support(q))$
- More on this later

MH Algorithm

$$\frac{\alpha(\textit{X}_{\textit{Cand}}|\textit{X}_{i-1})}{\alpha(\textit{X}_{i-1}|\textit{X}_{\textit{Cand}})} = \frac{\textit{q}(\textit{X}_{i-1}|\textit{X}_{\textit{Cand}})\textit{f}(\textit{X}_{\textit{Cand}})}{\textit{q}(\textit{X}_{\textit{Cand}}|\textit{X}_{i-1})\textit{f}(\textit{X}_{i-1})} = \rho$$

- How do we determine acceptance probability $\alpha(x_{cand}|x_{i-1})$?
- If $(\rho < 1)$, $\alpha(x_{cand}|x_{i-1}) = \rho$ and $\alpha(x_{cand}|x_{i-1}) = 1$
- If $(\rho < 1)$, $\alpha(x_{cand}|x_{i-1}) = \rho/2$ and $\alpha(x_{cand}|x_{i-1}) = 1/2$
 - inefficient, as more samples will be rejected
- To account for scenarios when $\rho > 1$, we use above accept. prob.
- Because this follows detailed balance equations, this Markov Chain will coverge to a stationary distribution i.e., our desired target function

Deriving Acceptance Probability

MH Algorithm

$$\alpha(x_{cand}|x_{i-1}) = min\{1, \frac{q(x_{i-1}|x_{cand})f(x_{cand})}{q(x_{cand}|x_{i-1})f(x_{i-1})}\}$$

- Transitions are made according to $K(x_{cand}|x_{i-1}) = q(x_{cand}|x_{i-1})\alpha(x_{cand}|x_{i-1})$ **Detailed Balance Equations**

$$K(x_{i-1}|x_{cand})f(x_{cand}) = p(x_{i-1}, x_{cand}) = K(x_{cand}|x_{i-1})f(x_{i-1})$$

$$q(x_{i-1}|x_{cand})\alpha(x_{i-1}|x_{cand})f(x_{cand}) = q(x_{cand}|x_{i-1})\alpha(x_{cand}|x_{i-1})f(x_{i-1})$$

$$\frac{\alpha(x_{cand}|x_{i-1})}{\alpha(x_{i-1}|x_{cand})} = \frac{q(x_{i-1}|x_{cand})f(x_{cand})}{q(x_{cand}|x_{i-1})f(x_{i-1})} = \rho$$

MH Algorithm

Interpreting Acceptance Probability

$$\alpha(\textit{x}_\textit{cand}|\textit{x}_\textit{i-1}) = \textit{min}\{1, \frac{\textit{q}(\textit{x}_\textit{i-1}|\textit{x}_\textit{cand})\textit{f}(\textit{x}_\textit{cand})}{\textit{q}(\textit{x}_\textit{cand}|\textit{x}_\textit{i-1})\textit{f}(\textit{x}_\textit{i-1})}\}$$
• Notice that we only need to know \textit{f} upto a normalization constant

Two constraints:

- 1 The sampler should tend to visit higher probability areas under the full joint density
 - Accounted for by $f(x_{cand})/f(x_{i-1})$
 - When q is symmetric, this is the only part of the acceptance prob. that
- The sampler should explore the space and avoid getting stuck at one site
 - Accounted for by $q(x_{i-1}|x_{cand})/q(x_{cand}|x_{i-1})$
- Opposing forces
 - Moving too far out in the support space & too far out in f is not desired

Example: Sampling

Binomial likelihood with non-standard prior

- $y = [y_1, y_2, \dots y_n]^T$, where $y_1, \dots, y_n \sim Bernoulli(\theta)$;
- $S_n = \sum y_i$
- $p(\theta) = 2\cos^2(4\pi\theta)$
- $p(y|\theta) = \theta^{N_H}(1-\theta)^{N_T} = \theta^2(1-\theta)^8$, using $y = \{2 \text{ Heads}, 8\text{Tails}\}$

Example: MH Setup

$$p(\theta|y) = f(x) = 2\theta^2 (1-\theta)^8 \cos^2(4\pi\theta)$$

Candidate/proposal distribution:

 $q(x_{cand}|x) = \mathcal{N}(x, 0.1)$

Metropolis Hastings

Metropolis Hastings

Metropolis Hastings: Tracing the Chain

Summary

- For complicated, high-dimensional target distributions
 - Sampling and approximating integrals is challenging
- Markov Chain
 - State-space, Initial distr., Transition probabilities
 - Stationary distriution
 - Irreducibility, Ergodicity
 - Ergodic theorem guarantees that samples from the chain can be used to compute expectation under the standard distribution
- Markov Chain Monte Carlo methods
 - Developes a Markov Chain whose stationary distribution is the same as the target desntiy
 - We need to choose a good candidate/proposal distribution
 - Ensure that the chain converges to a stationary distribution
 - by complying with detailed balance equations in selecting samples

owtham Atluri CS 5135/6035 Learning Probabilistic Models

November 15, 2018

am Atluri

CS 5135/6035 Learning Probabilistic Models

November 15, 2018

33 / 33