THE BOEING COMPANY

2.8 BMS 8-139

2.8.1 BMS 8-139, Type 120, Class I or Π

This specification applies to solid glass laminates and glass laminate faced honeycomb sandwich details using a autoclave process (350°F).

Type 120: BMS 9-3, Type D, Style 120 Glass Fabric.

Reference: Coordination Sheet STRU-BY92B-C90-A195, "BMS 8-139 Fiberglass Test Results and Update on BMS 8-79 Fiberglass Test Program.

Contents:

Table 2.8.1-1 Ply Properties

a Nasana Nasalina Alia

and the second of the second o

一点,一点,我们就是这样的一点,我们就把一块的一点,这样的_是是一个

THE BOEING COMPANY

Table 2.8.1-1 Ply Properties

						and the second second		CONTRACTOR CONTRACTOR CONTRACTOR	
TABLE 2.8.1-1		PLY PROPERTIES							
PREPREG MATERIAL	SPECIFICAT	10N: BMS 8-13	39, TYPE	120, CL	ASS I or I				
RESIN CONTENT:		42 (% Wī	n : .				•		
CURED PLY THICKNES	SS:	.0045 (in))						
PROCESS SPECIFICAT	ПОИ:	BAC 531	7, BAC 5	578				r su sañ.	
an experient for the constraint of the experience displayed and according to constraint and an according to the constraint of the constrai				ENVI	RONMENT	AL COND	ITION		
PROPERTY		UNIT	-75	۰F	70° F		130° F	160° F	
			DRY	WET	DRY	WET	WET	DRY	
MODULUS ② E ₁ ①		msi	3.0						
	E 2 ①		3.0				***************************************		
	G ₁₂	msi		·	0.54		0.42	0.37	
	G ₁₃	msi			0.54		0.42	0.37	
	G ₂₃	msi			0.54		0.42	0.37	
POISSON'S RATIO	V ₁₂		.12						
COEFFICIENTS OF LINEAR THERMAL	α 1	in/in ° F	5.5 x 10 ⁻⁶		5.5 x 10 ⁻⁶				
EXPANSION 3	α2	In/in ° F	5.5 x 1	o - 6			5.5 x	5.5 x 10 ⁻⁶	
COEFFECIENTS OF LINEAR MOISTURE	β 1	in/in %M	NA						
EXPANSION (4)	in/in % M			N	A		0/73888CV2#47888/A5788A		
THERMAL CONDUCTIVITY	κ ₁	BTU/(hr ft °F)							
	κ2	BTU/(hr ft °F)							
	K ₃	BTU/(hr ft °F)							

- ① E₁ & E₂ are the average of tension and compression moduli.
- Modulus values are secant values at a strain level of 4000 µ in/in. For special analyses use modulus versus strain curves to determine secant values at the desired strain level.
- 3 CLTE values are for expansion between -75° F and 70° F, and 70° F and 180° F.
- 4 %M = Percent absorbed moisture by weight.

DG-100-588

THE BOEING COMPANY

2.8.2 BMS 8-139, Type 1581 or 7781, Class I or II

This specification applies to solid glass laminates and glass laminate faced honeycomb sandwich details using a autoclave process (350°F).

Type 1581: BMS 9-3, Type H-2, Style 181-150 Glass Fabric. Type 7781: BMS 9-3, Type H-3, Style 181-77 Glass Fabric.

Reference: Coordination Sheet STRU-BY92B-C90-A195, "BMS 8-139 Fiberglass Test Results and Update on BMS 8-79 Fiberglass Test Program.

Contents:

Table 2.8.2-1 Ply Properties

THE BOEING COMPANY

Table 2.8.2-1 Ply Properties

TABLE 2.8.2-1		PLY PROPERTIES						
PREPREG MATERIAL SPECIFICATION: BMS 8-139, TYPE 1581 OR 7781, CL							/n II	
RESIN CONTENT:		36 (% V	VT)					
CURED PLY THICKNES	SS:	.01 (in)						
PROCESS SPECIFICAT	ГЮИ:	BAC 531	7, BAC 5	5578				
				ENVI	RONMENT	AL COND	ITION	
PROPERTY		UNIT	-75	o E	70	o F	130° F	160° F
			DRY	WET	DRY	WET	WET	DRY
MODULUS ²	E ₁ ①	msi	msi3.5				ANTHORNOUS MICE HOUSE STREET, MICHAEL STREET, MICHAEL STREET, MICHAEL STREET, MICHAEL STREET, MICHAEL STREET,	
E ₂ ①		msi						
- 174. - 184.	G ₁₂	msi			0.62		0.52	0.48
	G ₁₃	msi			0.62		0.52	0.48
	G 23	msi			0.62		0.52	0.48
POISSON'S RATIO	V 12		•			2		. A w
COEFFICIENTS OF	α 1	in/in∘F	5.5 x 1	₍₎ -6		$\overline{}$	5.5 x	10 -6
LINEAR THERMAL EXPANSION ③	α 2	In/In ° F	5.5 x 1	0-6			5.5 x	10 -6
COEFFECIENTS OF LINEAR MOISTURE	β 1	in/in %M			N/	A		
EXPANSION 4 \$ 2		in/in %M			N	Α	,	
THERMAL CONDUCTIVITY	κ ₁	BTU/(hr ft °F)						
	κ2	BTU/(hr ft °F)						
	κ3	BTU/(hr ft °F)						

- ① $E_1 \& E_2$ are the average of tension and compression moduli.
- 2 Modulus values are secant values at a strain level of 4000 μ in/in. For special analyses use modulus versus strain curves to determine secant values at the desired strain level.
- 3 CLTE values are for expansion between -75° F and 70° F, and 70° F and 180° F.
- 4 %M = Percent absorbed moisture by weight.

tober 10, 1990
RU-BY92B-C90-A195

To:

John Doherty 9R-62 Steve Johnson 6N - 30Jim Long 9R-62 Dan Mooney 9R-62 Mas Tamekuni 9R-62 Lewis Thomson 6N - 30Dave Trop 6N - 30Jack Winchester 6N - 30Ron Zabora 9R-62

cc:

M.M. Spencer

7Y-89

(cover only)

Subject:

BMS 8-139 Fiberglass test results, and update on BMS 8-79 Fiberglass test program

Reference:

EWA #AC0700, Design Guide Development

BMS 8-139 Fiberglass Test Results

Phase 2 of BMS 8-139 Fiberglass testing has been completed by Stress Methods and Allowables (SMA). Preliminary design values were obtained for ply properties (E11, $_2$, G12, V12), tension and compression strain to failure, notch and environmental ockdown factors, and bearing strengths. These results are attached.

Phase 3 of the BMS 8-139 test program is being initiated at this time, and it will develop firm allowables for BMS 8-139 Fiberglass suitable for inclusion in the Boeing Design Manual.

BMS 8-79 Fiberglass Testing Update

The first phase of BMS 8-79 Fiberglass testing has been completed and a results package is due out in approximately 1-2 weeks from the date of this coordination sheet. Results from this phase of testing will be preliminary.

Phase 2 of the BMS 8-79 test program will begin soon, and will generate firm allowables and design values suitable for inclusion in the Boeing Design Manual.

Any questions concerning either of the above mentioned test programs should be directed to the undersigned.

T. Sandifur

Org. B-Y92B, MS 7W-23

Phone 234-3440

B. . Backman

Org. B-Y92B, MS 7W-23

Phone 234-3418

BMS 8-139 FIBERGLASS (RTD)

 $\mathbf{E}_{\mathbf{X}}^{\mathbf{C}}$, $\mathbf{E}_{\mathbf{Y}}^{\mathbf{C}}$

PRELIMINARY DATA ONLY

FABRIC: $E_x^C = E_y^C$

	Type 1581/7781
E ₁₁	3.3 msi
E ₂₂	3.3 msi
G ₁₂	.62 msi
ν ₁₂	.124
tn	.01 in

1	Туре 120
E ₁₁	2.8 msi
E ₂₂	2.8 msi
G ₁₂	.535 msi
v ₁₂	.129
t _n	.0045 in

% ±45° FIBERS

1 INPUTS TO LAMINATED PLATE THEORY

NGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	
CHECK			COMPRESSION MODULI	
APR			BOEING	

 G_{XX}

PRELIMINARY DATA ONLY

	Type 1581/7781
E ₁₁	3.5 msi
E ₂₂	3.5 ms1
G ₁₂	.62 msi
ν ₁₂	.124
tn	.01 in

	Type 120
E ₁₁	3.0 msi
E ₂₂	3.0 msi
G ₁₂	.535 msi
v ₁₂	.129
tn	.0045 in

INPUTS TO LAMINATED PLATE THEORY

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	
CHECK			SHEAR MODULUS	
APR			BOEING	

BMS 8-139 FIBERGLASS

DEFINITION OF TERMS

E _{X,Y}	Laminate Average Modulus in x- or y-direction
E _{X,Y}	Laminate Compression Modulus in x- or y-direction
G _{XY}	Laminate Shear Modulus
V _{XY}	Laminate Poisson's Ratio
tn	Nominal Ply Thickness
F ^T _{UN}	Unnotched Tension - Stress to Failure
$\epsilon_{\scriptscriptstyle ext{UN}}^{\scriptscriptstyle ext{T}}$	Unnotched Tension - Strain to Failure
F ^C UN	Unnotched Compression - Stress to Failure
ε _{un}	Unnotched Compression - Strain to Failure
ε _{oH} ^{c, T}	Open Hole (Notched) Strain to Failure
C _N	Notch Correction Factor
$C_{\mathtt{T}}$	Environmental Correction Factor
F _{bru}	Bearing Strength - Ultimate
G _{Ic}	Mode I Toughness
G _{IIc}	Mode II Toughness

BMS 8-139 FIBERGLASS (RTD)

 E_X^A , E_Y^A

Type 1581/7781

3.5 msi

3.5 msi

.62 msi

.124

.01 in

 v_{12}

PRELIMINARY DATA ONLY

FABRIC: $E_X^A = E_Y^A$

E ₁₁	3.0 msi
E ₂₂	3.0 msi
G ₁₂	.535 msi
ν ₁₂	.129
tn	.0045 in

1 Type 120

% ±45° FIBERS

1>INPUTS TO LAMINATED PLATE THEORY

LAMINATE MODULI

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	
CHECK			AVERAGE MODULI	
APR			BOEING	

PRELIMINARY DATA ONLY

"WET" SPECIMENS WERE CONDITIONED AT 170°F AND 85% R.H.
TO EQUILIBRIUM WEIGHT GAIN.

ENG	GR	T. SANDIFUR	REVISED	BMS	8-139 FIBERGLASS	
CHE	ECK			MODE I	TOUGHNESS-TYPICAL VALUES	
AP	PR		·		BOEING	

closure to: 1NU-RFW-M93-031 ge 2 of 14

BMS 8-79 FIBERGLASS PRELIMINARY DESIGN VALUES

LAMINATE AVERAGE MODULUS TYPICAL VALUES CLASS III, GRADE 1, TYPE120 AND/OR 1581/7781 ROOM TEMPERATURE AMBIENT (RTA)

TYPE 120: $Ex = Ey = 3.00 - 1.11E-2*(%45'S) - 2.15E-5*(%45'S)^2 - 1.76E-7*(%45'S)^3$

TYPE 1581/7781: $Ex = Ey = 3.50 - 1.29E-2*(%45'S) - 2.87E-5*(%45'S)^2 - 2.12E-7*(%45'S)^3$

^{*} Compression Modulus = Average Modulus

BMS 8-139 FIBERGLASS (RTD) DESIGN VALUES

F_{bru}
Type 120

% ±45° FIBERS

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	
CHECK	12		BEARING STRENGTH - TYPE 120	
APR			BOEING	

PRELIMINARY DATA ONLY

"WET" SPECIMENS WERE CONDITIONED AT 170°F AND 85% R.H. TO EQUILIBRIUM WEIGHT GAIN.

ENGR	T. SANDIFUR	REVISED	BMS	8-139	FIBERGLAS	S
CHECK			MODE II	TOUGHNES	S-TYPICAL VAI	LUES
APR				BOE	ING	

BMS 8-139 FIBERGLASS (RTD)

 $\boldsymbol{\nu}_{xx}$

PRELIMINARY DATA ONLY

1> INPUTS TO LAMINATED PLATE THEORY

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	
CHECK			POISSON'S RATIO	
APR			BOEING	

BMS 8-139 FIBERGLASS(RTD) DESIGN VALUES

 $\mathbf{F}_{\mathtt{UN}}^{\mathtt{T}}$

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	
CHECK		e se estado.	UNNOTCHED TENSION - STRESS	•
APR		****	BOEING	

BMS 8-139 FIBERGLASS(RTD) DESIGN VALUES

ENGR	T. SANDIFUR	REVĮSED	BMS 8-139 FIBERGLASS	
CHECK			UNNOTCHED TENSION - STRAIN	
APR			BOEING	

BMS 8-139 FIBERGLASS (RTD) DESIGN VALUES

% ±45° FIBERS

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS
CHECK			UNNOTCHED COMPRESSION - STRAIN
APR			BOEING

BMS 8-139 FIBERGLASS (RTD) DESIGN VALUES

% ±45° FIBERS

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	
CHECK		28 A. K. A.	UNNOTCHED COMPRESSION - STRESS	
APR		·	BOEING	

BMS 8-139 FIBERGLASS DESIGN VALUES

C _T ENVIRONMENTAL FACTORS						
	TY	PE .				
	120,	1581/7781				
TENSION						
RTD	1.0	1.0				
130°F Wet	. 67	. 67				
180°F Wet	.54	.54				
COMPRESSION	and the second s					
RTD	1.0	1.0				
130°F Wet	.73	.66				
180°F Wet	.64	60				
		er e				

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	
CHECK			NOTCH & ENVIRONMENTAL FACTORS	
APR			BOEING	

BMS 8-139 FIBERGLASS(RTD) DESIGN VALUES

F_{bru} Type 1581/7781

% ±45° FIBERS

ENGR	T. SANDIFUR	REVISED	BMS 8-139 FIBERGLASS	and the second s
CHECK			BEARING STRENGTH-TYPE 1581/7781	
APR			BOEING	

February 4, 1993 BY1NU-RFW-M93-031

To:	Michael J. Tovey Ken Wilson Dan Wilson Ernie Dost Herb Swanson Pat Meyers Mark Freisthler	48-05 48-33 48-02 6K-19 48-02 48-02 6M-42	John Dohert Roy Ostergren Steve Ward Bud James Jim Evans Kevin Johnson	48-30 6F-HH 48-02 4F-01 6X-AU 6K-KA
cc:	J. Quinlivan M. Thould K. Schreiber J. Simmons J. Kent J. Winchester L. Thomson	48-64 48-30 48-33 48-05 48-02 6F-KF 6F-HJ		

Subject:

BMS 8-79 Design Values, Supporting 777 Empennage Structures

From:

777 Empennage Allowables/SMA

Ref. A:

EWA W81000-A53, "777 Empennage Allowables Development Support"

Ref. B:

Coordination Sheet STRU-BY92B-C90-A231, BMS 8-79 Test Results

Ref. C:

EWA W81067-A22, Rev.A, "Design Values for BMS 8-79"

Ref. D:

EWA W81067A22, Rev.B, "Design Values for BMS 8-79"

Enclosed is the updated design values for BMS 8-79. The updated values are based on coupon data collected from REF. A, B, C and D to support 777 Empennage Design. Environmental testing still pending under REF. D.

It should be stressed that these numbers are only PRELIMINARY, and should be treated as such.

The fiberglass used to support these design values was purchased through HEXCEL and FIBERITE per BMS 8-79, Class III, Grade 1, Type 7781.

Any questions should be directed to the undersigned.

Prepared by:

Rick A. Stewart

BY91B,

234-3439

Concurrence by:

R. F. Zabora

BY1NU, 48-02

662-2655

Com menos

J. H. Laakso BY91B,

84918, 237-4222 Approved by:

R. F. Wilkinson

BY1NU, 48-05

662-2750