Rappel de cours

Exercice 1.1

$$\begin{cases} x & +y & -z & -t & = 0 \\ x & -y & +z & -t & = 0 \\ x & & -t & = 0 \\ y & -z & = 0 \end{cases}$$

C'est un système d'équations homogène de rang 4, à 4 inconnues. Aucune ligne nulle. Les inconnues principales sont x et y. Les inconnues secondaires sont z et t.

Exercice 1.2

$$(S_0) \begin{cases} x & -3y & = a_1 & [1] \\ 3y & -6z & = a_2 & [2] \\ x & -6z & = a_3 & [3] \end{cases}$$

Calculer [1]+[2], $x-6z=a_1+a_2$, qui est égale à l'équation [3]. Donc $a_1+a_2=a_3$. Ou calculer [1]-[3], $-3y+6z=a_1-a_3$, qui est égale à la négation de l'équation [2]. Donc $a_2=a_3-a_1$.

$$(S_0) \begin{cases} x & -3y & = 1 & [1] \\ 3y & -6z & = 1 & [2] \\ x & -6z & = 2 & [3] \end{cases}$$

Lorsque $(a_1,a_2,a_3)=(1,1,2)$, le système est compatible car 2=1+1. La solution du système est $(x,y,z)=(a,\frac{a-1}{3},\frac{a-2}{6})$.

Lorsque $(a_1, a_2, a_3) = (0, 0, 0)$, le système est compatible. La solution du système est $(x, y, z) = (a, \frac{a}{3}, \frac{a}{6})$.

Exercice 1.3.a

La famille ((1,2,3,0),(3,1,2,0),(2,3,1,0),(3,2,1,0)) engendre \mathbb{R}^4 si

$$\forall a \in \mathbb{R}^4, \exists (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{R}^4, \begin{cases} 1\lambda_1 & +3\lambda_2 & +2\lambda_3 & +3\lambda_4 & = a_1 \\ 1\lambda_1 & +3\lambda_2 & +2\lambda_3 & +3\lambda_4 & = a_2 \\ 1\lambda_1 & +3\lambda_2 & +2\lambda_3 & +3\lambda_4 & = a_3 \\ 0\lambda_1 & +0\lambda_2 & +0\lambda_3 & +0\lambda_4 & = a_4 \end{cases}$$

Le vecteur $(a_1, a_2, a_3, 1) \in \mathbb{R}^4$ mais ne peux pas être génére par la famille. Donc, cette famille n'engendre pas l'espace vectoriel \mathbb{R}^4 .

Exercice 1.3.b

La famille ((1,2,3),(1,3,2),(2,1,3),(2,3,1)) est libre si

$$\begin{cases} 1\lambda_1 & +2\lambda_2 & +3\lambda_3 & = 0\\ 1\lambda_1 & +3\lambda_2 & +2\lambda_3 & = 0\\ 2\lambda_1 & +1\lambda_2 & +3\lambda_3 & = 0\\ 2\lambda_1 & +3\lambda_2 & +1\lambda_3 & = 0 \end{cases} \implies \lambda_1 = \lambda_2 = \lambda_3 = 0$$

$$L_2 \leftarrow L_2 - L_1 : \lambda_2 - \lambda_3 = 0$$

 $L_3 \leftarrow L_3 - 2L_1 : -3\lambda_2 - 3\lambda_3 = 0$

$$L_4 \leftarrow L_4 - 2L_1 : -\lambda_2 - 5\lambda_3 = 0$$

 $L_4 \leftarrow L_4 + L_1 : -6\lambda_3 = 0$

Donc $\lambda_3 = \lambda_2 = \lambda_1 = 0$. La famille est libre.

Exercice 1.4

La famille s'écrit $\mathcal{F} = ((1,1,0),(0,1,1),(0,1,-1))$. La famille engendre-t-elle \mathcal{P}_2 ? bd

$$\forall a \in \mathcal{P}^2, \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{cases} \lambda_1 & +\lambda_2 & = a_1 \\ \lambda_2 & +\lambda_3 & = a_2 \\ \lambda_2 & -\lambda_3 & = a_3 \end{cases}$$
$$L_3 \leftarrow L_3 - L_2 : -2\lambda_3 = a_3 - a_2$$
$$L_2 : 2\lambda_2 = a_2 + a_3$$
$$L_1 : 2\lambda_1 = 2a_1 - a_2 - a_3$$

Donc $\lambda_1 = \frac{2a_1 - a_2 - a_3}{2}$, $\lambda_1 = \frac{a_2 + a_3}{2}$, $\lambda_1 = \frac{a_3 - a_2}{2}$. La famille $\mathcal F$ engendre l'espace vectoriel $\mathcal P_2$.

La famille est-elle libre?

$$\begin{cases} \lambda_1 & +\lambda_2 & = 0\\ & \lambda_2 & +\lambda_3 & = 0\\ & \lambda_2 & -\lambda_3 & = 0 \end{cases}$$

$$L_3 \leftarrow L_3 - L_2 : -2\lambda_3 = 0$$

Donc $\lambda_3 = \lambda_2 = \lambda_1 = 0$. La famille \mathcal{F} est libre.

Exercice 1.5

La famille $\mathcal{F} = (x \to \sin(x), x \to f(x)).$

$$\forall g: x \to g(x), \exists \lambda_1 \in \mathbb{R}, \begin{cases} \lambda_1(x \to \sin(x)) &= x \to g(x) \\ \lambda_1(x \to f(x)) &= x \to g(x) \end{cases}$$

Non. Il n'existe pas de λ_1 qui engendre la fonction $x \to \cos(x)$ car $\sin(x) \neq \frac{\cos(x)}{\lambda_1}$.