Domácí úloha 3

Program v dolní polovině stránky, který je zapsaný v programovací jazyce Java, přepište do assembleru architektury x86_64. Program v assembleru musí být funkčně ekvivalentní. Podrobnější informace naleznete stránkách výukového serveru.

```
/**
 *! eeccae95-103f-4b03-951c-b3d5c0ed8c0a
c = 11 * a / 8 - 5 * b;
section .data
a dq 0 ; proměnná a (64 bitů)
b dq 0 ; proměnná b (64 bitů)
c dq 0 ; proměnná c (64 bitů)
section .text
global _start
    ; Načtení proměnné a do registru rax
                 ; rax = a
    mov rax, [a]
                          ; rax = 11 * a
    imul rax, 11
                          ; rbx = 8 (dělenec)
    mov rbx, 8
    cqo
                          ; rozšíření rax do rdx:rax pro dělení
    idiv rbx
                         ; rax = rax / 8 (výsledek dělení)
    ; Uložení mezivýsledku do registru rcx
    mov rcx, rax
                         ; rcx = 11 * a / 8
    ; Načtení proměnné b do registru rax
    mov rax, [b]
                      ; rax = b
                          ; rax = 5 * b
    imul rax, 5
    ; Odečtení 5 * b od mezivýsledku
                         ; rcx = rcx - rax (11 * a / 8 - 5 * b)
    sub rcx, rax
    ; Uložení výsledku do proměnné c
    mov [c], rcx
                         ; c = rcx
    ; Ukončení programu
    mov rax, 60
                        ; syscall číslo 60 (exit)
                        ; návratový kód 0
    xor rdi, rdi
    syscall
```

Domácí úloha 4

1. Program v Javě z úlohy 3 upravte tak, aby byl akceptovatelný simulátorem paměťového subsystému MSS. Půjde z větší čás� o Cut&Paste přepis s drobnými úpravami do jazyka C++ a úpravu deklarace proměnných specifickými makry simulátoru.

S použi m simulace keše vyhodnoť te procento výpadků keše (cache miss) a další dostupné sta s ky v závislos na stupni asocia vity (1,2,4) a v závislos na velikos keše (tři vámi zvolené velikos dle typu úlohy). Výsledky uveď te a písemně zdůvodněte na příloženém listu papíru.

2. Pro adresy uvedené v následující tabulce určete TAG a INDEX. Dále vyplňte řádky keše daty tak, aby bylo jasné, na kterých místech budou v keši ležet. Pořadí zápisů do pamě • je určeno prvním sloupcem tabulky.

Parametry keše jsou: šířka adresy 32 bitů, velikost řádku 16 bytů, velikost keše 256 bytů, stupeň asocia �vity je 1.

Pořadí zápisu	Adresa	Data				
1	0x8BED2A16	0x11				
2	0x4B4782FD	0x3322				
3	0x49D5E228	0x77665544				
4	0x7BAC2615	0xBBAA9988				

Poznámka: data budou uložena do pamě • metodou Li • le-endian.

Α	dresa	Data															
INDEX	TAG	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
0																	
1																	
2																	
3																	
4																	
5																	
6																	
7																	
8																	
9																	
10																	
11																	
12																	
13																	
14																	
15																	