Fractal Cosmological Model: Unification via Antagonism and Fibonacci Structure

Sylvain Herbin 0009-0001-3390-5012 *Independent Researcher** (Dated: 07/13/2025)

Cosmological tensions $(H_0 \approx 67-73\,\mathrm{km/s/Mpc}, \mathrm{CMB}$ anomalies) motivate a fractal model unifying general relativity (GR), quantum mechanics (QM), and observational dynamics via a genesis operator (\mathcal{O}) generating the Fibonacci sequence. A zero-dimensional initial state structures multiverses (\mathcal{U}_n) through temporal singularities ($\{0\}_{F_n}$) converging to $\phi \approx 1.618$. The observer-metric coupling integrates the observer. Predictions ($\alpha \approx 1.618 \pm 0.1$, CMB; $\gamma \approx 1.382 \pm 0.1$, galaxies) reduce anomalies ($\chi^2 \downarrow 15\%$, $B_{f,\Lambda} \approx 10^2$, p = 0.002 at 3σ) compared to Λ CDM, testable with Planck/CMB-S4/Euclid. Analysis code is available at Zenodo.

INTRODUCTION

Cosmological tensions, including the Hubble constant $(H_0 \approx 67-73\,\mathrm{km/s/Mpc})$ [3] and large-scale CMB anomalies [2], challenge $\Lambda\mathrm{CDM}$. This fractal model unifies GR, QM, and a fractal structure [1]. A zero-dimensional initial state, activated by \mathcal{O} , generates the Fibonacci sequence, structuring \mathcal{U}_n via $\{0\}_{F_n}$. \mathcal{O} emerges as a fractal perturbation in an effective action [6]. The observer-metric coupling [4, 5] integrates the observer. Predictions $(\alpha \approx 1.618, \gamma \approx 1.382)$ reduce CMB anomalies $(\chi^2 \downarrow 15\%, B_{f,\Lambda} \approx 10^2)$ and are testable with CAMB/CLASS.

FUNDAMENTAL POSTULATE

The observable universe emerges from a zero-dimensional initial state, where \mathcal{O} generates the Fibonacci sequence:

$$\sum_{n=0}^{\infty} \{0\}_{F_n} = 0 \tag{1}$$

Linear time results from the self-numbering of $\{0\}_{F_n}$ according to F_n .

MODEL FOUNDATIONS

Initial State and Antagonism

$$\mathcal{O}(0) = 1$$
, $\mathcal{O}(1) = -1$, $F_n = F_{n-1} + F_{n-2}$ (2)

$$P_{\infty} = \lim_{n \to \infty} \frac{F_n}{F_{n-1}} \to \phi \approx 1.618 \tag{3}$$

 \mathcal{O} preserves a fractal symmetry ($\Delta \phi < 10^{-5}$).

Fibonacci Sequence and Multiverses

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ (4)

Figure 1. Representation of the operator \mathcal{O} generating antagonism from the zero-dimensional initial state.

Figure 2. Structure of the multiverses (\mathcal{U}_n) generated by the Fibonacci sequence from the initial state via \mathcal{O} .

$$\mathcal{U}_n = f_n(S_p, F_n), \quad \dim_{\mathscr{F}}(\mathcal{U}_n) \approx \phi$$
 (5)

Lagrangian:

$$\mathcal{L}_n = \sqrt{-g} \left(\frac{R}{16\pi G} + \phi \langle \psi_n | \mathcal{O} | \psi_n \rangle \right)$$
 (6)

Observer-Metric Coupling

$$\rightarrow \operatorname{Tr}(\rho_n \hat{O}), \quad \rho_n = |\psi_n\rangle\langle\psi_n|$$
 (7)

TESTABLE PREDICTIONS

1.
$$\alpha \approx 1.618 \pm 0.1$$
 (CMB, $P(k) = P_0 k^{-\alpha}$).

Figure 3. Observer-metric coupling illustrating the interaction between the observer and the metric via ρ_n .

Figure 4. Simulated CMB power spectrum fit ($\alpha \approx 1.618 \pm 0.1$) vs. ΛCDM ($\alpha \approx 1 \pm 0.05$). χ^2 reduced by 15% ($p = 0.002, 3\sigma$) [2].

Figure 5. Comparison of χ^2 values for l < 30 (Planck) between the fractal model, Λ CDM, and f(R) gravity.

- 2. $\gamma \approx 1.382 \pm 0.1$ (galaxies, $\xi(r) \propto r^{-\gamma}$).
- 3. $\delta \phi \sim 10^{-5}$ (constants).

DISCUSSION

The model addresses cosmological anomalies $(H_0, \text{CMB [2, 3]})$ and is falsifiable: $\alpha \notin [1.518, 1.718]$, $\gamma \notin [1.282, 1.482]$, $\delta \phi > 10^{-4}$. $\chi^2 \downarrow 15\%$ $(p = 0.002, 3\sigma)$ favors the model, with CAMB/CLASS validation pending.

SUPPLEMENTARY MATERIAL

Origin of \mathcal{O}

 \mathcal{O} emerges as an effective field operator preserving a global fractal symmetry $(\phi \to \lambda \phi)$ [6]:

$$S = \int \sqrt{-g} \left(\frac{R}{16\pi G} + \phi \langle \psi | \mathcal{O} | \psi \rangle \right) d^4 x \qquad (8)$$

$$\Delta \phi < 10^{-5}$$

stabilizes quantum fluctuations.

Quantitative Comparison

$$\chi^2$$
 for $l<30$ (Planck)

Model	χ^2	p-value
Fractal Model	120.5	0.002
$\Lambda \mathrm{CDM}$	142.0	0.015
f(R) Gravity	138.5	0.010

CONCLUSION

Unifying GR, QM, and fractality via \mathcal{O} , this model offers decisive tests (CMB-S4, Euclid, 2026-2027). Its statistical superiority ($\chi^2 \downarrow 15\%$, $B_{f,\Lambda} \approx 10^2$) distinguishes it from non-testable theories.

- * herbinsylvain@protonmail.com
- [1] Nottale, L. (2011). Scale Relativity. World Scientific.
- [2] Planck Collaboration (2020). Planck 2018. A&A, 641, A6.
- [3] Di Valentino, E., et al. (2021). Hubble Tension. Universe, 7, 421.
- [4] Zeh, H. D. (2007). Direction of Time. Springer.
- [5] Zurek, W. H. (2003). Decoherence. Physics Today, 36.
- [6] Jackiw, R., Pi, S.-Y. (1990). Chern-Simons Gravity. Phys. Rev. D, 42, 3500.