

Entrega N° 2 del Proyecto

Miguel Ángel Sánchez Peñates

Daniel Góngora García

Jhon Alexander Longas

Tutor Raúl Ramos Pollan, Professor of Computer Science

Introducción a la Inteligencia Artificial para las Ciencias e Ingeniería

Universidad de Antioquia

Facultad de Ingeniería

Ingeniería Industrial

Medellín, Antioquia, Colombia

Planteamiento del Problema

La crisis de la vivienda holandesa es uno de los mayores problemas a los que se enfrentan los residentes. Debido a múltiples factores, como el crecimiento de la población y la escasez de trabajadores de la construcción, la disponibilidad de viviendas ha disminuido significativamente. Esta disminución ha llevado el alquiler a precios altísimos, lo que hace que muchos se pregunten si se están aprovechando de ellos.

Para responder a esta pregunta, debe predecir el alquiler de una casa a partir de sus datos (es decir, ubicación, tamaño, instalaciones, etc.).

Dataset o Base de Datos

El dataset seleccionado es de una competición de Kaggle llamada **Precios de Alojamientos en Países Bajos**, la cual podemos consultar en el siguiente enlace:

https://www.kaggle.com/competitions/fcg-2022-netherlands-accommodation-prices/overview.

Los datos de esta competición se han dividido en dos grupos:

- conjunto de entrenamiento (train.csv)
- conjunto de prueba (test.csv)

El conjunto de entrenamiento debe usarse para construir el modelo de aprendizaje automático. Para el conjunto de entrenamiento, proporcionamos el alquiler de cada alojamiento junto con otras 35 características.

El conjunto de prueba debe usarse para ver cómo se desempeña el modelo en datos no vistos. Por lo tanto, no se proporciona el alquiler de cada alojamiento. El propósito del modelo es predecir estos valores.

Para ilustrar el formato de un archivo de envío, proporcionamos sample submission.csv

La carpeta contiene los siguientes archivos

- train.csv el conjunto de entrenamiento
- test.csv el conjunto de prueba
- sample submission.csv: un archivo de envío de muestra en el formato correcto

El archivo contiene las siguientes variables:

Variables	Descripción		
Titulo	Nombre del alojamiento		
Ciudad	Nombre de la ciudad		
Código postal	Código postal		
Latitud	Latitud en grados		
Longitud	Longitud en grados		
Área m ²	Tamaño en metros cuadrados		
Visto por primera vez	Hora de registro del titular (AAAA-MM-DD HH-MM-SS) GMT		
Visto por última vez	Última aparición del propietario (AAAA-MM-DD HH-MM-SS) GMT		
isRoomActive	Disponibilidad actual		
rawDisponibilidad	Periodo de tiempo de disponibilidad (DD-MM-AAAA)		
Publicado hace	Hace cuánto tiempo se planteó la propiedad		
Descripción no traducida	Descripción original		
Descripción Traducido	Descripción traducida		
Limpiar Detalle	Justificación del alquiler		
Tipo de propiedad	Tipo de alojamiento		
Amoblar	Presencia de muebles		
Etiqueta de energía	Eficiencia de energética		
Genero	Sexo del propietario		
Internet	Disponibilidad de internet		
Compañeros de cuarto	Numero de compañeros de cuarto		
Ducha	Propiedad de la ducha		
Baño	Propiedad del baño		
Cocina	Propiedad de la cocina		
Viviendo	Propiedad de la sala de estar		
Mascotas	Mascotas permitidas		
Fumar	Fumar está permitido		
Edad	Edad permitida del inquilino		

Coincidencia de genero	Sexo del inquilino deseado
Capacidad de coincidencia	# de personas que pueden vivir en el alojamiento
Coincidir idioma	Idioma deseado
Estado	Estado deseado
coverImageUrl	Url de la imagen de portada del alojamiento
Alquilar	Función objetivo

Métrica de evaluación

La métrica de evaluación para el modelo será el Error Absoluto Promedio (MAE) el cual nos proporcionará el promedio de la diferencia absoluta entre la predicción del modelo y el valor objetivo.

Esta metrica se calcula de la siguiente manera:

$$MAE = \frac{(\sum_{i=1}^{n} |y_i - \overline{y_i}|)}{n}$$

Donde:

 $y_i = son la observaciones actuales de las series de tiempo.$

 $\overline{y_i} = es$ la seriede tiempo estimada o pronosticada.

n = es el número de puntos de datos no fal tan t es

Es importante resaltar que el MAE tiene un umbral predeterminado con un límite superior del 80%, concluyéndose que:

- Tendencia al alza: Una tendencia al alza indica que la métrica se está deteriorando.
 Los datos de comentarios ya son significativamente distintos respecto a los datos de entrenamiento.
- Tendencia a la baja: Una tendencia a la baja indica que la métrica está mejorando.
 Esto significa que el reentrenamiento del modelo es efectivo.
- Variación errática o irregular: Una variación errática o irregular indica que los datos de comentarios no son coherentes entre evaluaciones. Incremente el tamaño mínimo de la muestra para el supervisor de calidad.

Desempeño

Lo que se espera pronosticar es que el precio de los alojamientos respectos a los datos de entrenamiento es que exista una tendencia a la baja, lo que nos representaría que el modelo es adecuado para determinar si los precios de los alquileres están ajustados a las características de cada alojamiento. Es decir, si el precio de un alquiler es 1000€ y el modelo predice 1200€, entonces el error es del 120%. Pero si el precio es de 400€ y el modelo predice 200€ el error es del 50%. Como métrica de negocio se podría usar el incremento en ventas gracias a la utilización del modelo.

Análisis Exploratorio de los datos

Antes de entrenar un modelo predictivo, o incluso antes de realizar cualquier cálculo con un nuevo conjunto de datos, es muy importante realizar una exploración descriptiva de los mismos. Este proceso permite entender mejor qué información contiene cada variable, así como detectar posibles errores. Algunos ejemplos frecuentes son:

- Que una columna se haya almacenado con el tipo incorrecto: una variable numérica está siendo reconocida como texto o viceversa.
- Que una variable contenga valores que no tienen sentido: por ejemplo, para indicar que no se dispone del precio de un alojamiento se introduce el valor 0 o un espacio en blanco.
- Que en una variable de tipo numérico se haya introducido una palabra en lugar de un número.

Además, este análisis inicial puede dar pistas sobre qué variables son adecuadas como predictores en un modelo.

Cargamos la base de datos

	title	city	postalCode	latitude	longitude	areaSqm	firstSeenAt	lastSeenAt	isRoomActive	rawAvailability	 living
id											
0	West- Varkenoordseweg	Rotterdam	3074HN	51.896601	4.514993	14	2019-07-14 11:25:46.511000+00:00	2019-07-26 22:18:23.142000+00:00	True	26-06-'19 - Indefinite period	 None
3	Ruiterakker	Assen	9407BG	53.013494	6.561012	16	2019-07-14 11:25:46.988000+00:00	2019-07-18 22:00:31.174000+00:00	False	16-06-'19 - Indefinite period	 None
8	Brusselseweg	Maastricht	6217GX	50.860841	5.671673	16	2019-07-14 11:25:47.814000+00:00	2019-08-10 00:14:27.130000+00:00	True	15-07-'19 - Indefinite period	 None
10	Donkerslootstraat	Rotterdam	3074WL	51.893195	4.516478	25	2019-07-14 11:25:48.140000+00:00	2019-07-16 06:05:32.183000+00:00	False	01-08-'19 - Indefinite period	 None
12	Vorselenburgstraat	Alphen aan den Rijn	2405XJ	52.122335	4.661434	10	2019-07-14 11:25:48.465000+00:00	2019-08-01 00:02:40.516000+00:00	True	08-07-'19 - Indefinite period	 None

5 rows × 33 columns

Se realizo una descripción del tipo de variable

object title city object postalCode object float64 latitude latituue longitude float64 int64 areaSqm firstSeenAt object lastSeenAt object isRoomActive obje object rawAvailability object postedAgo object descriptionNonTranslated object descriptionTranslated rentDetail object propertyType object furnish energyLabel object object internet object roommates object shower object object toilet object kitchen living object object smokingInside object matchAge object matchGender object matchCapacity object matchLanguages object object matchStatus coverImageUrl object int64 dtype: object

Número de observaciones y valores ausentes

Junto con el estudio del tipo de variables, es básico conocer el número de observaciones disponibles y si todas ellas están completas. Los valores ausentes son muy importantes a la hora de crear modelos, la mayoría de los algoritmos no aceptan observaciones incompletas o bien se ven muy influenciados por ellas. Aunque la imputación de valores ausentes es parte del preprocesado y, por lo tanto, debe de aprenderse únicamente con los datos de entrenamiento, su identificación se tiene que realizar antes de separar los datos para asegurar que se establecen todas las estrategias de imputación necesarias.

• Dimensión de la base de datos: (27915, 33).

• Numero de datos ausentes por variables:

title	0		
coverImageUrl		0	
propertyType	(0	
rawAvailability	(0	
lastSeenAt	0		
firstSeenAt	0		
rent	0		
longitude	0		
latitude	0		
postalCode	0		
city	0		
areaSqm	0		
postedAgo	6		
matchStatus	63	3	
matchLanguages		63	
matchCapacity	6	63	
matchGender	6	3	
matchAge	63		
smokingInside	(53	
pets	63		
living	63		
kitchen	63		
energyLabel	63	1	
shower	63		
internet	63		
isRoomActive		3	
toilet	63		
descriptionNonTi		d	111
furnish	214		
gender	536		
roommates	53	_	
rentDetail	7896		
descriptionTransl	lated	10	140
dtype: int64			

Análisis de la variable respuesta

Cuando se crea un modelo, es muy importante estudiar la distribución de la variable respuesta, ya que, a fin de cuentas, es lo que interesa predecir. La variable alquiler (rent) tiene una distribución asimétrica con una cola positiva debido a que, unos pocos alojamientos, tienen un precio muy superior a la media. Este tipo de distribución suele visualizarse mejor si se calcular la asimetría de los datos, que en este caso es 2.36.

Descripción de las variables numéricas

Se realizo los gráficos de la distribución de cada una de las variables numéricas

Como el objetivo del estudio es predecir el precio del alquiler de los alojamientos, el análisis de cada variable se hace también en relación con la variable respuesta precio. Analizando los datos de esta forma, se pueden empezar a extraer ideas sobre qué variables están más relacionadas con el precio y de qué forma.

Correlación de las variables numéricas

Algunos modelos (LM, GLM, ...) se ven perjudicados si incorporan predictores altamente correlacionados. Por esta razón, es conveniente estudiar el grado de correlación entre las variables disponibles.

	variable_1	variable_2	r	abs_r
11	areaSqm	rent	0.729018	0.729018
14	rent	areaSqm	0.729018	0.729018
1	latitude	longitude	0.405798	0.405798
4	longitude	latitude	0.405798	0.405798
7	longitude	rent	-0.230255	0.230255
13	rent	longitude	-0.230255	0.230255
2	latitude	areaSqm	-0.052129	0.052129
8	areaSqm	latitude	-0.052129	0.052129
6	longitude	areaSqm	-0.033980	0.033980
9	areaSqm	longitude	-0.033980	0.033980

Primeros Modelos

Como primer modelo se ajustó una regresión logística, obteniendo resultados desfavorables, sin embargo, antes de entrenar el modelo con los datos, se seleccionaron los features a utilizar por concenso entre los integrantes del equipo:

```
LAS VARIABLES SELECCIONADAS PARA INCLUIR EN EL PRIMER ACERCAMIENTO A UN MODELO PREDICTIVO, SON:

areaSqm
rentDetail
propertyType
furnish
gender
internet
shower
toilet
kitchen
living
pets
smokingInside

Y como variable de respuesta rent, vamos a clasificar cada valor por el cuartil al que pertenece
```

También se definió la función *data_prep()* para crear X_train e y_train con los features seleccionados.

Finalmente se ajusto el modelo de regresión logística, obteniendo el siguiente resultado:

Accuracy for train= 56.12400275547991

Como trabajo futuro se van a explorar mas modelos de machine learning que se ajusten mejor a los datos, además de realizar una selección de variables.

Bibliografia

Netherlands Accommodation Prices (FCG) | Kaggle. (s. f.).

https://www.kaggle.com/competitions/fcg-2022-netherlands-accommodation-

prices/overview/evaluation