De Moivre-tétel

A komplex számok szorzásának definíciójából következik, hogy $(\cos(\varphi_1) + i\sin(\varphi_1))(\cos(\varphi_2) + i\sin(\varphi_2)) = \cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)$ Ez vezet el a következő, **De Moivre-tételként** ismert eredményhez, mely a z komplex szám z^n hatványával kapcsolatos.

Tétel. Tetszőleges
$$n$$
 pozitív egészre $(\cos(\varphi) + i\sin(\varphi))^n = \cos(n\varphi) + i\sin(n\varphi)$.

Az eredmény igaz *n* negatív egész, sőt nulla értékére is, és ezek tekinthetők akár a De Moivre-tétel speciális esetének, akár kiterjesztésének.

De Morgan-szabály

Legyen A és B egy univerzális alaphalmaz két tetszőleges részhalmaza. Akkor $(A \cup B)^C = A^C \cap B^C$ és $(A \cap B)^C = A^C \cup B^C$. Ezek a **De Morgan-szabályok**.

determináns

Az A négyzetes mátrix $\det(\mathbf{A})$ -val vagy $|\mathbf{A}|$ -val jelölt **determinánsát** a következőképpen definiálhatjuk. Tekintsük sorra az 1×1 -es, 2×2 -es, 3×3 -as és az $n \times n$ -es mátrixokat.

Az 1×1 -es [a] mátrix determinánsa egyszerűen az a szám. Ha A az alábbi 2×2 -es mátrix, akkor $\det(\mathbf{A}) = ad - bc$, és a determinánst az alábbi módon jelölhetjük:

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix}.$$

Ha A 3 \times 3-as mátrix, akkor $\det(\mathbf{A})$, melyet így is jelölhetünk:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix},$$

a következőképpen számítható:

$$\det(\mathbf{A}) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{22} \end{vmatrix}.$$

differenciáloperátor

Általában bármilyen operátor, mely deriválást vagy parciális deriválásokat tartalmaz. Például a $\nabla:=\mathbf{i}\frac{\partial}{\partial x}+\mathbf{j}\frac{\partial}{\partial y}+\mathbf{k}\frac{\partial}{\partial z}$ operátor, ahol $\mathbf{i},\mathbf{j},\mathbf{k}$ az egyes koordinátatengelyek irányába mutató egységvektorok, és $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$ a parciális deriváltak x,y,z szerint. Lásd még rotáció, divergencia és gradiens.

Dirichlet-sor

A $\sum_{n=1}^{+\infty} a_n e^{-\lambda_n z}$ alakú sor, ahol a_n és z komplex, $\{\lambda_n\}$ pedig valós, monoton növő sorozat. Ha $\lambda_n = \ln(n)$, akkor a sor a $\sum_{n=1}^{+\infty} a_n n^{-z}$ sorra egyszerűsödik, amely **Dirichlet-féle L-sorként** ismert.

divergencia

Az $m \to +\infty$ vektor-vektor függvény **divergenciája** a $\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$ operátorral vett skaláris szorzata, vagyis

$$i, -1 + i, -1, 0, i, -1 + i, \dots$$

Vesd össze rotáció, gradiens.

Hérón-módszer

Iterációs eljárás egy szám négyzetgyökének a meghatározására. Ha \sqrt{k} értékét szeretnénk kiszámítani, akkor egy x_0 kezdeti értékből kiindulva az $x_{n+1}=\frac{\left(x_n+\frac{k}{x_n}\right)}{2},\quad (n=0,1,2,\dots)$ rekurzióval definiált sorozat k négyzetgyökénez fog konvergálni. Például 5 négyzetgyökének kiszámításához a 2 kezdeti értékből kiindulva azt kapjuk, hogy $x_1=\frac{2+2.5}{2}=2.25,\quad x_2=2.23611111\ldots,\quad x_3=2.236067978\ldots,\quad x_4=2.236067978\ldots$ és $\sqrt{5}=2.236067978\ldots$ Ez az eljárás már a harmadik iterációs lépésnél nagy pontosságú közelítést ad.

Horner-elrendezés

A (példaként vett) $f(x) := 2x^3 - 7x^2 + 5x + 11$ polinomnak az x = h helyen vett helyettesítési értékét úgy határozhatjuk meg, hogy kiszámoljuk a h^2 és a h^3 hatványokat, ezeket a megfelelő együtthatókkal megszorozzuk, és az így kapott tagokat összeadjuk. Ezt az értéket azonban kevesebb művelet elvégzésével is megkaphatjuk, ha a polinomot a

$$((2x-7)x+5)x+11$$

alakban értékeljük ki. Hasonló módon tetszőleges polinom helyettesítési értékeit is hatékonyabban lehet kiszámítani, ezért ezt az eljárást ajánlatos használni akár kézzel, akár géppel. Az eljárást **Horner-elrendezésnek** szokás nevezni. Például az ötödfokú

$$a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

polinomot az

$$((((a_5x + a_4)x + a_3)x + a_2)x + a_1)x + a_0$$

alakra írjuk át a fenti célból.

láncszabály

Differenciálható függvények kompozíciójának deriváltjára vonatkozó tétel: ha $h=f\circ g$, akkor $h'=(f'\circ g)g'$. Például, ha $h(x)=(x^2+1)^3$, akkor $h=f\circ g$, ahol $f(x)=x^3$ és $g(x)=x^2+1$. Ekkor $f'(x)=3x^2$ és g'(x)=2x, így tehát $h'(x)=3(x^2+1)^22x=6x(x^2+1)^2$.

Legendre-polinomok

A Legendre-féle differencálegyenlet megoldásainak $b=180=2^2\cdot 3^2\cdot 5$ halmaza, melyek másrészt a $\frac{1}{\sqrt{(1-2xt+t^2)}}$ ktváltozós függvény t szerinti sorbafejtésével t^n együtthatójaként adódnak. Felírhatók a Rodrigues-formula segítségével is, azaz $P_n(x)=\frac{1}{2^n n!}\frac{d^n}{\mathrm{d}x^n}(x^2-1)^n$.

másodfokú egyenlet

Az x ismeretlenre nézve **másodfokú egyenletnek** nevezzük az $\{(x,y)\in\mathbb{R}^2|x>0,y<0\}$ alakú egyenletet, ahol a,b,c adott valós számok, $ax^2+bx+c=0$. Teljes négyzetté kiegészítéssel vagy az

$$a \neq 0$$

megoldóképlettel – amely szintén teljes négyzetté kiegészítéssel vezethető le – lehet megoldani. Ha $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \text{, akkor két különböző valós gyök van, ha } b^2 - 4ac > 0 \text{, akkor egyetlen valós gyök van (amit célszerű lehet kétszeres vagy két egybeeső gyöknek tekinteni), ha pedig } b^2 - 4ac = 0 \text{, akkor nincs valós gyök, van viszont két komplex gyök:}$

$$b^2 - 4ac < 0$$

$$_{\rm Ha}x_{1,2}=-\frac{b}{2a}\pm i\frac{\sqrt{4ac-b^2}}{2a}._{\rm \acute{e}s}\,\alpha\,{\rm az}\,\beta\,{\rm egyenlet}\,{\rm gy\"{o}kei,\,akkor}$$

$$ax^2 + bx + c = 0$$

Tehát az adott $\alpha + \beta = -b/a$ $\alpha \beta = c/a$. és α gyökökkel bíró másodfokú egyenlet: β .

Maxwell-egyenletek

Az elektromos és mágneses mezők változását leíró differenciálegyenlet-rendszer:

$$\nabla \cdot \mathbf{D} = \varrho \quad \nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}.$$

Itt B jelöli a mágneses indukciót, D az elektromos eltolást, E az elektromos térerősséget, H a mágneses térerősséget, j a töltésáram-sűrűséget, Q a szabad töltéssűrűséget, t pedig az időt.

szórásnégyzet

Egy valószínűségi változó vagy minta szóródásának mértéke. Az X valószínűségi változó esetén a **sokaság szórásnégyzete** a sokaság második centrális momentuma, azaz a sokaság μ várható értékétől vett négyzetes eltérés várható értéke, $E((X-\mu)^2)$. A szórásnégyzetet gyakran a σ^2 , $D^2(X)$ vagy a $E((X-\mu)^2)$ szimbólummal jelöljük.

Egy n elemű **minta szórásnégyzete** – amelyet s^2 vagy s_n^2 jelöl – nem más, mint a minta \bar{x} átlaga körüli második centrális momentum, vagyis

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$

Az s^2 mennyiséget **tapasztalati szórásnégyzetnek** is nevezzük. A tapasztalati szórásnégyzet azonban a sokaság szórásnégyzetének nem torzítatlan becslése, ezért becslésekben helyette sokszor az

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$

ún. korrigált tapasztalati szórásnégyzetet alkalmazzuk.

A számításokat a $\sum_{i=1}^n (x_i - \overline{x})^2 = \left(\sum_{i=1}^n x_i^2\right) - n\overline{x}^2$ összefüggés segítségével gyakran egyszerűsíthetjük.

teljes valószínűség tétele

Legyenek A_1, A_2, \ldots, A_n egymást páronként kizáró események, amelyek uniója valamely kísérlet teljes eseménytere. A tetszőleges B esemény valószínűsége ekkor

$$P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_n)P(A_n)$$

alakban is felírható a feltételes valószínűségek segítségével.

többszörös integrál

Két- vagy többváltozós integrál kiszámításának módja, ahol az integrálás lépéseit egymás után hajtjuk végre, mindig egy-egy változó szerint, miközben többi változót konstansnak tekintjük. A kétszeres integrál a kétváltozós speciális eset.

A töbszörös integrálok lehetnek határozottak vagy határozatlanok. Határoztlan integrál esetén az első integrálnál kapott konstanst a második változó szerinti integrálnál már a második változó függvényének tekintjük. Ha egy felületet a kétváltozós f függvény ír le, akkor a felület alatti térfogat éppen $\int \int f(x,y)\,\mathrm{d}x\,\mathrm{d}y$. Például a z=x+3y+5 sík alatti térfogatot az $0\leq x\leq 2, 0\leq y\leq 3$ tartományon a következőképpen számolhatjuk

$$\int_0^3 \int_0^2 (x+3y+5) \, \mathrm{d}x \, \mathrm{d}y = \int_0^3 \left[\frac{x^2}{2} + 3xy + 5x \right]_0^2 \, \mathrm{d}y = \int_0^3 (6y+12) \, \mathrm{d}y = \left[3y^2 + 12y \right]_0^3 = 63$$

Vandermonde-féle konvolúciós képlet

Ha m,n és k nemnegatív egészeket jelölnek, akkor a binomiális együtthatók között fennáll, hogy

$$\binom{m+n}{k} = \binom{m}{0} \binom{n}{k} + \binom{m}{1} \binom{n}{k-1} + \dots + \binom{m}{k} \binom{n}{0}.$$

A képletet az $(1+x)^{m+n}=(1+x)^m(1+x)^n$ azonosságból kapjuk, ha összehasonlítjuk x^k együtthatóját a két oldal kifejtésekor.