ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA MẠNG MÁY TÍNH VÀ TRUYỀN THÔNG

NGUYỄN THANH TÙNG - 15520983 LÊ HOÀNG TUẨN - 15520967

KHÓA LUẬN TỐT NGHIỆP

CẢI THIỆN TÍNH MINH BẠCH VÀ TIN CẬY CỦA ỨNG DỤNG GÂY QUỸ CỘNG ĐỒNG TỪ THIỆN ÁP DỤNG CÔNG NGHỆ BLOCKCHAIN

GIẢNG VIÊN HƯỚNG DẪN TS. PHẠM VĂN HẬU ThS. PHAN THẾ DUY

TP. HỒ CHÍ MINH, 2019

DANH SÁCH HỘI ĐỒNG BẢO VỆ KHÓA LUẬN

Hội đồng chấm khóa luận tốt nghiệp, thành lập theo quyết định số .../QĐ-ĐHCNTT ...QĐ-ĐHCNTT ngày ../../.. của Hiệu trưởng Trường Đại học Công nghệ Thông tin.

- 1. Chủ tịch.
- 2. Thư ký.
- 3. Ủy viên.

LÒI CẨM ƠN

Nhóm thực hiện khóa luận chân thành cảm ơn thầy ThS. Phan Thế Duy, cùng với TS. Phạm Văn Hậu đã theo sát quá trình thực hiện đề tài, đóng góp những ý kiến thiết thực và hữu ích để nhóm có thể hoàn thành đề tài khóa luận một cách hoàn chỉnh nhất.

Nhóm xin gởi lời cảm ơn đến gia đình và bạn bè đã động viên, khuyến khích nhóm hoàn thành khoá luận.

Nhóm cũng xin cảm ơn đến quý thầy cô khoa Mạng máy tính và truyền thông, trường Đại học Công nghệ Thông tin - ĐHQG TP.HCM đã giúp đỡ và hỗ trợ nhóm.

Xin chân thành cảm ơn!

TP.Hồ Chí Minh, ngày ... tháng ... năm ... Nhóm tác giả

Mục lục

Da	anh sá	ich hình vẽ	1
Da	anh sá	ch bảng biểu	2
Da	anh sá	ch thuật ngữ	3
Da	anh sá	ch từ viết tắt	4
T(ÓM T	ẮT KHÓA LUẬN	5
1	MỞ	ĐẦU	6
	1.1	Vấn đề đặt ra	6
	1.2	Tính khoa học và tính mới của đề tài	8
		1.2.1 Tính khoa học	8
		1.2.2 Tính mới	8
	1.3	Mục tiêu	8
	1.4	Đối tượng và phạm vi nghiên cứu	9
2	TổN	NG QUAN	10
	2.1	Giới thiệu	10
	2.2	Các nghiên cứu liên quan	11
	2.3	Kiến thức nền tảng	13
		2.3.1 Công nghệ blockchain	13
		2.3.2 Nền tảng Ethereum	13
		2.3.3 Hợp đồng thông minh - Smart contract	13
3	PHÂ	ÂN TÍCH VÀ THIẾT KẾ HỆ THỐNG	14
	3.1	Giới thiệu hệ thống	14
	3.2	Quy trình gây quỹ cộng đồng	14
		3.2.1 Các đối tương trong quy trình	14

	3.2.2	Sơ đồ quy trình gây quỹ	
3.3	Kiến t	trúc hệ thống	
3.4	Các ch	hức năng	
	3.4.1	Tổng quan các chức năng	
	3.4.2	Chức năng nộp tiền và rút tiền	
		3.4.2.1 Mục tiêu	
		3.4.2.2 Sơ đồ hoạt động	
	3.4.3	Chức năng quản lý định danh	
		3.4.3.1 Mục tiêu	
		3.4.3.2 Cách hoạt động	
	3.4.4	Tạo lập và lưu trữ chiến dịch gây quỹ	
		3.4.4.1 Mục tiêu	
		3.4.4.2 Cách thức hoạt động	
	3.4.5	Chức năng giải ngân	
		3.4.5.1 Mục tiêu	
		3.4.5.2 Cách thức hoạt động	
	3.4.6	Hoàn tiền chiến dịch gây quỹ	
		3.4.6.1 Mục tiêu	
		3.4.6.2 Cách hoạt động	
3.5	Tổ chứ	ức dữ liệu	
	3.5.1	Dữ liệu phi tập trung	
	3.5.2	Dữ liệu tập trung	
,			
	•	ỰC VÀ ĐÁNH GIÁ HỆ THỐNG	
4.1		thực	
	4.1.1	Môi trường hiện thực	
	4.1.2	Các công nghệ được sử dụng	
		4.1.2.1 Công nghệ ReactJS/NodeJS	
		4.1.2.2 Material UI framework	
		4.1.2.3 Cơ sở dữ liệu Redis	
		4.1.2.4 IPFS	
		4.1.2.5 Bộ công cụ Truffle framework	
		4.1.2.6 Thư viện web3js	
		4.1.2.7 Ví Metamask	
	4.1.3	Các bước hiện thực	
		4.1.3.1 Cấu hình thông số các service	
		4.1.3.2 Tạo các service	

			4.1.3.3	Chay các service	36
		4.1.4	Kết quả h	niện thực	36
	4.2	Đánh g	giá hệ thốn	g đã hiện thực	36
		4.2.1	Kiểm tra	các quy trình trong hệ thống	36
			4.2.1.1	Mục tiêu	36
			4.2.1.2	Phương pháp thực hiện	36
			4.2.1.3	Kết quả thực hiện	37
		4.2.2	Đo lường	tốc độ thực hiện giao dịch	37
			4.2.2.1	Môi trường thực hiện đánh giá	38
			4.2.2.2	Phương pháp thực hiện đánh giá	38
			4.2.2.3	Kết quả đánh giá	38
		4.2.3	Chi phí tl	nực hiện các giao dịch trong hệ thống	39
			4.2.3.1	Môi trường thực hiện đánh giá	39
			4.2.3.2	Phương pháp thực hiện đánh giá	40
			4.2.3.3	Kết quả chi phí cho các giao dịch trong hệ thống	41
		4.2.4	Phân tích	bảo mật của hợp đồng thông minh trong hệ thống	43
		4.2.5	Đánh giá	tốc độ tải trang của giao diện người dùng	43
			4.2.5.1	Môi trường thực hiện	43
			4.2.5.2	Kết quả đánh giá	43
5	KÉT	LUẬN			44
	5.1	. •			44
	5.2			c điểm của hệ thống	44
	5.3				44
	5.4	Hướng	phát triển		44
ТÀ	TTT	TITUA	M KHẢO		45
1 A	VI LII	LU IIIA	IVI KIIAC	,	73
A	Mã l	nợp đồn	g thông n	ninh - TokenSystem	47
В	Mã l	nợp đồn	g thông n	ninh - Campaigns	48

Danh sách hình vẽ

1.1	Những lý do chưa tạo được niềm tin trong hoạt động từ thiện của người dân	7
1.2	Những lý do chưa tạo được niềm tin trong hoạt động từ thiện của doanh nghiệp	7
2.1	Sơ đồ quy trình tạo chiến dịch trong mô hình của tác giả Nazmus Saadat	12
3.1	Sơ đồ quy trình gây quỹ cộng đồng	15
3.2	Sơ đồ kiến trúc hệ thống	16
3.3	Sơ đồ tổng quan các chức năng trong hệ thống	18
3.4	Sơ đồ phân rã các chức năng trong hệ thống	18
3.5	Sơ đồ tổng quan các đối tượng và luồng tương tác dữ liệu	19
3.6	Sơ đồ hoạt động chức năng nộp tiền	20
3.7	Sơ đồ hoạt động chức năng rút tiền	21
3.8	Sơ đồ cách thức lưu trữ hồ sơ định danh	22
3.9	Sơ đồ cách thức chia sẻ thông tin định danh	23
3.10	Sơ đồ hoạt động tiến trình tạo lập chiến dịch	25
3.11	Kiến trúc hợp đồng thông minh	28
4.1	Sơ đồ hiện thực hệ thống	30
4.2	Biểu đồ thể hiện thái độ người dùng khi không còn được sử dụng thư viện	
	Material	32
4.3	Biểu đồ thể hiện tốc độ thực hiện giao dịch giữa các hàm	40
4.4	Ảnh chụp màn hình kết quả đo lường chi phí giao dịch	42

Danh sách bảng biểu

4.1	Các hàm và tham số đầu vào được dùng để đo thời gian thực hiện giao dịch	39
4.2	Bảng kết quả đánh giá thời gian hiện thực một số hàm trong hệ thống	39
4.3	Các hàm và dữ liệu đầu vào được dùng để đo lường chi phí giao dịch	41
4.4	Kết quả đo lường chi phí giao dịch	42
4.5	Kết quả đo lường chi phí triển khai các hợp đồng	43
4.6	Bảng kết quả đo tốc đô truy xuất front-end của hệ thống	43

Danh sách thuật ngữ

Thuật ngữ	Diễn giải
address	địa chỉ, địa chỉ người dùng trong mạng
	blockchain. 19
back-end	lập trình phía máy chủ, xử lí luồng thông tin
	giao diện người dùng. 30
blockchain	chuỗi khối. 7, 8, 10, 11, 12, 14, 17, 19, 21, 22,
	23, 33, 37, 44
crowdfunding	gây quỹ cộng đồng. 10, 11
cryptocurrency	đồng tiền mã hóa. 15, 16
front-end	hệ thống các giao diện người dùng, tương tác
	trực tiếp với người dụng. 29, 30, 35
service	dịch vụ. 35, 36
smart contract	hợp đồng thông minh. 30
transaction	giao dịch. 17, 24, 37, 38, 40

Danh sách từ viết tắt

Từ viết tắt	Từ đầy đủ
ABI	Application Binary Interface. 35
BCF	Binance Charity Foundation. 12
IPFS	InterPlanetary File System. 22, 30, 33
P2P	Peer-to-Peer. 33, 34
RPC	Remote Procedure Call. 34

TÓM TẮT KHÓA LUẬN

Khóa luận này tập trung giải quyết các vấn đề sau: (1) vấn đề 1, (2) vấn đề 2,... Kết quả đạt được là: (i) kết quả 1, (ii) kết quả 2,..

Chương 1

MỞ ĐẦU

1.1 Vấn đề đặt ra

Hoạt động từ thiện là một hoạt động được đông đảo mọi người quan tâm, theo một kết quả của cuộc một cuộc điều tra [1] cho thấy có tới 81% người ở nước ta được khảo sát cho rằng những hoạt động tình nguyện thì họ rất quan tâm đến. Tương tự có khoảng 83% cho rằng hoạt động từ thiện đặc biệt quan trọng đối với một đất nước đang phát triển như Việt Nam.

Tuy nhiên, các hoạt động từ thiện thì chưa được đông đảo người dân thực sự tin tưởng. Thật vậy, trong một cuộc khảo sát [2] có hơn 50% người dân thành thị (người dân thành thị chiếm đa số trong nguồn gây quỹ) cho rằng các hoạt động từ thiện của người dân hiện tại chưa công khai minh bạch, và đứng sau đó là các lý do được thể hiện ở hình 1.1 như: chưa tạo niềm tin, chưa trùng đối tượng, chưa tuyên truyền tốt, thiếu nguồn lực.

Đối với các hoạt động từ thiện của các doanh nghiệp, cũng trong cuộc khảo sát trên thì có tới hơn 50% người dân thành phố Hồ Chí Minh cho rằng lý do khiến họ không tin tưởng vào hoạt động từ thiện của doanh nghiệp là chưa đúng đối tượng cần được hỗ trợ. Lý do này chiếm tỉ lệ cao nhất trong các lý do được liệt kê ở hình 1.2.

Trong một bài nghiên cứu về từ thiện của tác giả Bekkers và Wiepking [3], các cá nhân sẽ đóng góp từ thiện nếu họ (i) nhận thức được nhu cầu của người cần giúp đỡ, ví dụ như biết cụ thể người cần giúp đỡ; (ii) được vận động đóng góp bởi một tổ chức đáng tin cậy; (iii) nhận thấy chi phí cho việc đóng góp (thuế) nhỏ và lợi ích khi đóng góp rõ ràng; (iv) động cơ nhân ái mạnh mẽ; (v) nhận thấy việc đóng góp từ thiện có lợi cho danh tiếng bản thân; (vi) nhận thấy lợi ích về mặt tâm lý, ví dụ như thoải mái khi đem cho; (vii) đóng góp cho những giá trị sống vì cộng đồng, và (viii) thấy rõ tính hiệu quả.

Hình 1.1: Những lý do chưa tạo được niềm tin trong hoạt động từ thiện của người dân

Hình 1.2: Những lý do chưa tạo được niềm tin trong hoạt động từ thiện của doanh nghiệp

Trong sách trắng của nền tảng Alice¹ cũng chỉ ra rằng sự minh bạch trong các hoạt động gây quỹ từ thiện ở các nước trên thế giới khiến cho lòng tin người dân sụt giảm một cách đáng kể. [4]

Do đó việc tạo ra một ứng dụng gây quỹ từ thiện theo mô hình gây quỹ cộng đồng áp dụng công nghệ blockchain là cần thiết. Ứng dụng có thể loại bỏ sự kiểm soát về mặt tài chính của các tổ chức, các giao dịch được công khai, minh bạch và đảm bảo được chiến dịch là đáng

¹https://alice.si

tin cây khi nó được xác minh bởi tổ chức, cơ quan chuyên trách.

1.2 Tính khoa học và tính mới của đề tài

1.2.1 Tính khoa học

Với các vấn đề đặt ra ở phần 1.1, hệ thống mà nhóm tác giả xây dựng sẽ:

- Giải quyết vấn đề công khai, minh bạch trong hoạt động gây quỹ khi xây dựng mô hình ứng dụng phi tập trung bằng công nghệ blockchain.
- Loại bỏ sự kiểm soát tài chính bởi các tổ chức, thay vào đó là ứng dụng hợp đồng thông minh trong công nghệ blockchain để phân bổ dòng tiền một cách tự động và an toàn.
- Tăng cường niềm tin ở người đóng góp quỹ khi các chiến dịch được xác minh một cách công khai trước khi đưa đến cộng đồng mà không tiết lộ các thông tin liên quan tới quyền riêng tư bằng công nghệ mã hoá.
- Tạo ra những cuộc bỏ phiếu của người đóng góp quỹ cho việc phân bổ nguồn quỹ một cách công khai, minh bạch bằng hợp đồng thông minh. Do đó tăng cường quyền hạn của người đóng góp quỹ.

1.2.2 Tính mới

- Xây dựng ứng dụng gây quỹ từ thiện theo mô hình gây quỹ cộng đồng.
- Úng dụng công nghệ blockchain vào hoạt động gây quỹ từ thiện.

1.3 Mục tiêu

Mục tiêu khi thực hiện khóa luận này bao gồm:

- Xây dựng một ứng dụng web gây quỹ cộng đồng cho mục đích từ thiện dựa trên công nghệ Blockchain để tăng cường tính minh bạch, công khai với các chức năng cơ bản: lập hồ sơ gây quỹ, vận động gây quỹ, đóng góp tiền vào chiến dịch gây quỹ, phân phối tiền gây quỹ.
- Tạo cơ chế để ứng dụng đảm bảo các yêu cầu sau:
 - Các chiến dịch gây quỹ phải được xác minh trước khi công khai cho những người đóng góp.
 - Đảm bảo nguồn quỹ được chuyển trực tiếp từ người đóng góp tới người thụ hưởng.
 - Nguồn quỹ chỉ được phân phối theo lộ trình nếu như mục tiêu đặt ra trong hồ sơ gây quỹ được hoàn thành và được những người ủng hộ chấp nhận bằng cách bỏ phiếu.

1.4 Đối tượng và phạm vi nghiên cứu

Thứ nhất về mặt công nghệ, tập trung nghiên cứu nền tảng công nghệ Ethereum và hợp đồng thông minh. Các công nghệ xây dựng ứng dụng trên nền web như NodeJS, ReactJS.

Thứ hai về mặt nghiệp vụ, nghiên cứu các phương thức gây quỹ từ thiện bằng tài chính, các quy trình, giai đoạn của hoạt động gây quỹ.

Chương 2

TỔNG QUAN

2.1 Giới thiệu

Trong những năm gần đây, Blockchain được biết tới như là công nghệ để vận hành đồng tiền số Bitcoin, số lượng giao dịch và các tài khoản trong mạng Bitcoin đang càng ngày càng tăng cao. Dưới sự phát triển bùng nổ này, không khó để khiến đồng tiền điện tử Bitcoin thu hút được sự chú ý của cộng đồng. Blockchain là một cuốn sổ cái mà ở đó các dữ liệu không thể bị chỉnh sửa hoặc xoá khi đã được chấp thuận bởi các nút trong mạng. Vì đặc điểm này nên blockchain còn được biết đến như là một công nghệ giúp dữ liệu được lưu trữ toàn vẹn, tin tưởng [5]. Công nghệ blockchain này còn được áp dụng không chỉ về các lĩnh vực tài chính mà nó còn được áp dụng ở một số các lĩnh vực khác như chăm sóc sức khoẻ, sở hữu trí tuệ,...

Chính vì các đặc điểm nổi bật này của blockchain mà PwC và VeChain đã tiến hành cuộc khảo sát vào tháng 11 và tháng 12 năm 2017. Kết quả đã chỉ ra rằng hầu hết các doanh nghiệp của họ đang thành lập bộ phận nghiên cứu và phát triển (R&D) để đầu tư cho blockchain. Lý do mà họ (các công ty trong cuộc khảo sát đã triển khai công nghệ blockchain) chọn công nghệ này để nghiên cứu và phát triển thì có đến 50% về lý do bảo mật, các lý do còn lại như phân tán dữ liêu (26.7%), chứng thực đinh danh (23.3%),...

Khóa luận này tập trung vào việc áp dụng công nghệ blockchain vào hình thức gây quỹ cộng đồng (Crowdfunding). Định nghĩa về crowdfunding được nhóm tác giả trích từ bài nghiên cứu của tác giả Lambert và Schwienbacher (2010) như sau:

"Crowdfunding involves an open call, essentially through the Internet, for the provision of financial resources either in form of donationor in exchange for some form of reward and/or voting rights." [6]

Có thể hiểu đinh nghĩa trên theo tiếng Việt là crowdfunding giống như một lời gọi mở, thường

được thực hiện qua Internet, để cung cấp nguồn tài chính dưới hình thức tài trợ để đổi lấy phần thưởng hoặc quyền biểu quyết.

Crowdfunding là một thị trường chứa hàng tỉ đô-la, những giao dịch quốc tế đã đạt tới 34 tỷ đô-la trong năm 2015, gấp đôi năm trước [7]. Hiện nay, trên thế giới đã xuất hiện nhiều mô hình gây quỹ cộng đồng có thể kể đến như **Kickstarter**¹ và **Indiegogo**². Những mô hình này cung cấp một platform để cho các chủ đầu tư có thể kêu gọi các nhà đầu tư, đầu tư vào các dự án của họ, các dự án này đa dạng, phong phú về lĩnh vực có thể kể đến như: âm nhạc, sản xuất vật liệu mới, đầu tư về giáo dục hay thậm chí là kêu gọi quỹ từ thiện.

Theo một cuộc nghiên cứu về Kickstarter bắt đầu từ năm 2008 đến tháng 7 năm 2012 của một cuộc điều tra kết quả là có 48.526 nỗ lực kêu gọi dự án với 237 triệu cam kết, và có 23.719 dự án chiếm 48.1% là kêu gọi quỹ thành công. Kickstarter cũng đã công bố phân tích tổng thể danh sách 26.017 dự án thành công và 33.098 dự án thất bại [8].

Tuy nhiên, các dự án trong Kickstarter đa phần tập trung vào mục đích lợi nhuận, thương mại cụ thể có 16% về lĩnh vực phim, 13% liên quan đến âm nhạc, 11% là về sách và 10% là các dự án về trò chơi điện tử; còn các dự án phi lợi nhuận, gây quỹ cộng đồng từ thiện chiếm tỉ lệ thấp, hầu như ít xuất hiện trên platform này ³. Có thể thấy trên các nền tảng này, nguồn tiền được đóng góp thông qua bên thứ 3 (Visa, Mastercard, ...), bên thứ 3 này có tác dụng là nắm giữ nguồn vốn của nhà đầu tư, khi việc gây quỹ thành công, tuỳ vào cơ chế quản lý của nền tảng, nguồn vốn sẽ được xử lý và công nghệ hiện tại mà các platform này sử dụng đều đi qua cơ sở dữ liệu của chính nền tảng đó, điều này đặt ra tính toàn vẹn dữ liệu của dự án cũng như số tiền thật sự mà họ nhận được. Bên cạnh đó, các giải pháp giải quyết rủi ro về vấn đề tính sẵn sàng cao cũng như các cuộc tấn công khác nhằm chiếm đoạt tài sản của các nhà đầu tư chưa được chú ý đến. Tất cả các yếu tố bất lợi trên ta có thể thấy được rằng mô hình gây quỹ cộng đồng truyền thống chưa thật sự an toàn đối với các nhà đầu tư cũng như chủ chiến dịch và đặc biệt là nó chưa quan tâm đến các dự án gây quỹ cộng đồng, phi lợi nhuận. Bằng cách áp dụng blockchain vào mô hình gây quỹ truyền thống, ta có thể loại bỏ các yếu tố bất lợi được đề câp ở trên.

2.2 Các nghiên cứu liên quan

Với ý tưởng áp dụng blockchain vào các chiến dịch với mục đích phi lợi nhuận – trên thế giới đã có một chiến dịch có tên là **Usizo**⁴, dự án này nhằm mục đích mua điện cho trường học ở miền nam của châu Phi bằng Bitcoin được đề xuất bởi Nir Kshetri – một giáo sư tại trường

¹https://www.kickstarter.com

²https://www.indiegogo.com

³Nguồn: https://thehustle.co/archive/02102019d

⁴http://secret.usizo.org

đại học North Carolina, ý tưởng của chiến dịch này đó chính là áp dụng đồng tiền kỹ thuật số Bitcoin từ các nhà tài trợ để thanh toán tiền điện cho trường học, số tiền được nhận sẽ được thanh toán trực tiếp vào nguồn điện mà nhà trường đã sử dụng [9]. Theo đó, các nhà tài trợ có thể theo dõi số lượng nguồn điện mà nhà trường tiêu thụ và đồng thời tính toán nguồn tiền đóng góp của họ.

Trong một bài báo của tác giả Nazmus Saadat [10] đề xuất mô hình gây quỹ cộng đồng áp dụng hợp đồng thông minh trên nền tảng Ethereum blockchain để các hợp đồng được thực hiện hoàn toàn tự động, do đó ngăn ngừa gian lận và đảm bảo rằng các dự án có thể được phân phối trong thời gian nhất định. Hợp đồng thông minh sẽ giữ tiền của người đóng góp cho tới khi đạt được mục tiêu đặt ra. Tùy thuộc vào kết quả gây quỹ, tiền sẽ được trao cho chủ dự án hoặc trả lại an toàn cho người đóng góp. Tuy nhiên trong quy trình tạo chiến dịch ở hình 2.1, người tạo chiến dịch không được xác minh danh tính trước khi tạo chiến dịch, mà chỉ đơn thuần là đăng nhập vào một trình quản lý ví ethereum được gọi là Metamask⁵. Mà trên ví Metamask không cung cấp bất kì cơ chế nào để định danh người dùng.

Hình 2.1: Sơ đồ quy trình tao chiến dịch trong mô hình của tác giả Nazmus Saadat

Một hệ thống khác cũng ứng dụng hợp đồng thông minh trên nền tảng Ethereum được gọi là **WeiFund**⁶, tuy nhiên trong quy trình hoàn tiền cho người đóng góp khi mục tiêu gây quỹ thất bại được thực hiện một cách thủ công, tức người đóng góp phải thực hiện nhấp chuột vào một nút được gọi là "Claim Refund Owed" thì tiền mới được hoàn lại.

Một ứng dụng gây quỹ cộng đồng cho mục đích từ thiện khác được tổ chức có tên **Binance Charity Foundation** (**BCF**)⁷ thực hiện. Tuy nhiên việc đăng kí chiến dịch trên hệ thống của

⁵https://metamask.io

⁶http://weifund.io

⁷https://www.binance.charity

BCF hoàn toàn chưa có tính mở, chưa cho phép cộng đồng đăng kí chiến dịch.

- 2.3 Kiến thức nền tảng
- 2.3.1 Công nghệ blockchain
- 2.3.2 Nền tảng Ethereum
- 2.3.3 Hợp đồng thông minh Smart contract

Chương 3

PHÂN TÍCH VÀ THIẾT KẾ HỆ THỐNG

3.1 Giới thiệu hệ thống

Khóa luận hướng đến việc áp dụng công nghệ blockchain để giải quyết các vấn đề về tính minh bạch, công khai và tin cậy của ứng dụng gây quỹ cộng đồng theo mô hình truyền thống đã đề cập ở mục 1.1, 2.2. Nhóm tác giả sử dụng blockchain cho việc lưu trữ các thông tin về tài chính, các giao dịch của người dùng trong hệ thống nhằm hạn chế việc lưu các thông tin này trên bất kì một bên thứ ba nào. Hơn thế nữa, hệ thống sử dụng hợp đồng thông minh cho các lệnh liên quan tài chính trong hệ thống. Các lệnh này được thực hiện một cách tự động và chính xác, tránh sự can thiệp hay tác động từ yếu tố con người vào hệ thống. Với hợp đồng thông minh, nhóm tác giả cũng bổ sung các tính năng như tự động hoàn tiền khi mục tiêu gây quỹ chiến dịch không thành công; bỏ phiếu để giải ngân, tăng quyền hạn cho người đóng góp chiến dịch.

Bên cạnh đó, hệ thống của nhóm tác giả cũng sử dụng một phần dữ liệu được lưu trữ tập trung nhằm cải thiện tốc độ đọc ghi với các dữ liệu không cần độ tin cậy cao.

3.2 Quy trình gây quỹ cộng đồng

Đây là quy trình gây quỹ cộng đồng trong hệ thống của nhóm tác giả.

3.2.1 Các đối tượng trong quy trình

Trong quy trình gây quỹ, có các đối tượng sau:

 Người tạo chiến dịch: là những cá nhân / tổ chức có nhu cầu gây quỹ vì mục đích từ thiện, hướng tới cộng đồng.

- Hệ thống: là hệ thống gây quỹ trung gian, đứng giữa người tạo chiến dịch và người đóng góp.
- Người đóng góp: là người ủng hộ đóng góp tiền cho chiến dịch gây quỹ.

3.2.2 Sơ đồ quy trình gây quỹ

Sơ đồ quy trình gây quỹ được thể hiện ở hình 3.1.

Hình 3.1: Sơ đồ quy trình gây quỹ cộng đồng

Quy trình này được diễn giải như sau:

- (1) Người tạo chiến dịch sẽ tiến hành tạo lập hồ sơ định danh bao gồm thông tin cá nhân cơ bản và thông tin chứng minh định danh.
- (2) Hệ thống (nhân viên xác minh) tiến hành xác minh hồ sơ định danh và chấp nhận hay từ chối hồ sơ. Nếu hồ sơ định danh được chấp nhận thì hồ sơ đó được phép gọi lệnh tạo chiến dịch, ngược lai thì không.
- (3) Người tạo chiến dịch tiếp tục tạo lập hồ sơ chiến dịch gây quỹ nếu hồ sơ định danh được chấp nhận.
- (4) Hệ thống (nhân viên xác minh) tiến hành xác minh hồ sơ chiến dịch và chấp nhận hay từ chối hồ sơ. Hồ sơ được chấp nhận sẽ được công khai lên hệ thống và cho phép người đóng góp ủng hộ tiền. Ngược lại thì không.
- (5) Người đóng góp muốn ủng hộ tiền cho một chiến dịch thì cần sử dụng cryptocurrency (đồng tiền mã hóa) gửi vào hệ thống (lúc này là hợp đồng thông minh) để sử dụng các

chức năng trong hệ thống.

- (6) Sau khi người đóng góp gửi tiền vào hệ thống, hệ thống sẽ lưu số tiền người gửi vào dưới dạng một giá trị được gọi là token. Người đóng góp sử dụng token này trong các giao dịch nội bộ của hệ thống. Token này có thể được đổi ngược lại sang đồng cryptocurrency với giá tương ứng
- (7) Người đóng góp ủng hộ tiền cho một chiến dịch (chiến dịch đã được xác minh) bằng một lương token mà người đóng góp mong muốn và đang có.
- (8) Mỗi chiến dịch sẽ có một khoảng thời gian để kêu gọi đóng góp, và một mục tiêu là số lượng token cần đạt được. Khi hết thời gian kêu gọi đóng góp, nếu chiến dịch hoàn thành mục tiêu thì sẽ tiến hành cho người tạo chiến dịch giải ngân. Ngược lại, lượng token đã đóng góp sẽ được hoàn lại cho người đóng góp.

3.3 Kiến trúc hệ thống

Kiến trúc hệ thống được thể hiện ở hình 3.2.

Hình 3.2: Sơ đồ kiến trúc hệ thống

Các thành phần và vai trò của từng thành phần trong hệ thống mà nhóm tác giả đề xuất như sau:

• DApp Interface - là một giao diện ứng dụng phi tập trung, nơi người dùng sẽ tương tác

trực tiếp. *DApp Interface* sẽ tạo ra các transaction để gọi các hàm có trong hợp đồng thông minh và chuyển các transaction này tới Wallet Provider thực hiện công đoạn tiếp theo. Và đây cũng là nơi tương tác với cơ sở dữ liệu tập trung trong mô hình. Thực chất *DApp Interface* chỉ là một giao diện front-end tĩnh chạy ở phía người dùng.

- Wallet Provider là ứng dụng phi tập trung có nhiệm vụ xác nhận và kí transaction (sign transaction) do DApp Interface gửi tới trong mô hình, sau đó thực hiện gửi các transaction đã được kí (signed-transaction) đến mạng lưới blockchain. Wallet cũng làm nhiệm vụ lưu trữ thông tin về khóa bí mật của người dùng.
- **Blokchain Node** là một nút trong mạng blockchain mà *Wallet Provider* tương tác để lưu trữ các dữ liệu phi tập trung, các dữ liệu phi tập trung trong trường hợp này là các mã hợp đồng thông tin và các giá trị trong hợp đồng.
- Centralized Database là một cơ sở dữ liệu tập trung, được dùng để lưu trữ một số thông tin như mô tả chiến dịch.

3.4 Các chức năng

3.4.1 Tổng quan các chức năng

Tổng quan các chức năng trong hệ thống được thể hiện ở hình 3.3.

Với sơ đồ được thể hiện có các đối tượng sau:

- Người tạo chiến dịch là người tạo chiến dịch gây quỹ.
- Người đóng góp là người đóng góp, ủng hộ tiền cho chiến dịch gây quỹ.
- Nhân viên xác minh là người xác minh cho hồ sơ định danh và hồ sơ gây quỹ, là nhân viên trong hệ thống hoặc tình nguyện viên của hệ thống.
- Nhân viên vận hành là người vận hành hệ thống hay người triển khai các hợp đồng thông minh.

Nhóm tác giả cũng thực hiện phân rã các chức năng và được sơ đồ như ở hình 3.4.

Tiếp theo là sơ đồ ở hình 3.5 thể hiện tổng quan về các đối tượng và luồng tương tác dữ liệu giữa các đối tượng. Đối tượng "**Hệ thống**" trong sơ đồ được nhóm tác giả đặc tả một cách khái quát cho toàn thể hệ thống.

Hình 3.3: Sơ đồ tổng quan các chức năng trong hệ thống

Hình 3.4: Sơ đồ phân rã các chức năng trong hệ thống

Hình 3.5: Sơ đồ tổng quan các đối tượng và luồng tương tác dữ liệu

3.4.2 Chức năng nộp tiền và rút tiền

3.4.2.1 Mục tiêu

3.4.2.2 Sơ đồ hoạt động

Sơ đồ hoạt động chức năng nộp tiền được thể hiện ở hình 3.6.

Sơ đồ hoạt động chức năng rút tiền được thể hiện ở hình 3.7.

3.4.3 Chức năng quản lý định danh

3.4.3.1 Muc tiêu

Do trong blockchain mỗi người dùng sẽ được xác định bởi các address (địa chỉ), các địa chỉ này hoàn toàn tách biệt với danh tính của người dùng, tức nó không bao gồm danh tính hay bắt cứ thông tin nào như địa chỉ IP, định vị, Do đó có thể nói mỗi người dùng trên mạng blockchain là ẩn danh [11]. Để tăng tính tin cậy cho chiến dịch gây quỹ thì cần thiết phải gắn mỗi địa chỉ người dùng cho một hồ sơ định danh, vì vậy một địa chỉ người dùng muốn đăng kí tạo chiến dịch thì bắt buộc địa chỉ đó đã có hồ sơ định danh và hồ sơ định danh đó phải được xác minh. Việc tạo lập hồ sơ định danh chỉ bắt buộc với địa chỉ người dùng nào muốn tạo chiến dịch, còn đối với người đóng góp vào chiến dịch thì không bắt buộc.

Hồ sơ đinh danh có 2 loại thông tin cơ bản là:

• Thông tin công khai: là những thông tin cơ bản của người tạo chiến dịch như ho tên,

Hình 3.6: Sơ đồ hoạt động chức năng nộp tiền

địa chỉ, ngày sinh. Việc công khai thông tin là bắt buộc đối với người tạo chiến dịch.

• Thông tin cá nhân nhạy cảm: là các thông tin cá nhân bí mật, được dùng để chứng minh cho các thông tin được công khai. Do đó cần lưu trữ thông tin cá nhân nhạy cảm một cách bí mật và toàn vẹn.

Yêu cầu về chia sẻ thông tin cá nhân giữa người dùng và người xác minh phải đảm bảo được các yếu tố:

- 1. Chỉ có người dùng và người xác minh mới có thể đọc được thông tin.
- 2. Việc xác minh cho một hồ sơ được minh bạch. Tức biết ai là người đã xác minh cho hồ sơ, và vào thời gian nào.

3.4.3.2 Cách hoạt động

Nhóm tác giả chia làm 2 tiến trình hoạt động cho chức năng này:

Hình 3.7: Sơ đồ hoạt động chức năng rút tiền

- Tạo lập và lưu trữ hồ sơ định danh.
- Chia sẻ thông tin hồ sơ đinh danh.

Các đối tượng trong chức năng định danh bao gồm:

- Người tạo lập hồ sơ (người dùng user): là người tạo hồ sơ định danh, hay người tạo chiến dịch gây quỹ.
- Người xác minh hồ sơ (verifier): người xác minh cho một hồ sơ định danh. Có thể là nhân viên trong hệ thống, tình nguyện viên.
- **Người vận hành hệ thống (deployer):** người quản lí danh sách các verifier. Hay người sẽ triển khai hợp đồng thông minh lên blockchain.

Cách thức tạo lập và lưu trữ hồ sơ định danh được thể hiện ở hình 3.8. Cụ thể:

- Người tạo lập hồ sơ định danh tiến hành nhập thông tin định danh.
- Người tạo lập hồ sơ nhập một chìa khóa bảo vệ hồ sơ định danh, được gọi là SecretKey.
 SecretKey được dùng cho 2 mục đích:
 - (i) Làm khóa (key) cho thuật toán AES dùng để mã hóa các thông tin nhạy cảm của

người dùng trước khi lưu trữ.

- (ii) SecretKey sẽ được mã hóa bằng thuật toán RSA bởi khóa công khai của verifier, sau đó chuỗi mã hóa sẽ được lưu trữ trên blockchain.
- Người tạo lập chọn khóa công khai của verifier (chọn một verifier trong danh sách các verifier), khóa này được dùng để mã hóa SecretKey của người tạo lập hồ sơ.
- Thông tin công khai và khóa bí mật đã mã hóa sẽ được lưu trữ trên hợp đồng thông minh trong blockchain. Thông tin bí mật đã mã hóa sẽ được lưu trữ trên một mạng lưu trữ phi tập trung (ở đây nhóm tác giả đề xuất IPFS).

Hình 3.8: Sơ đồ cách thức lưu trữ hồ sơ đinh danh

Việc chia sẻ hồ sơ định danh là quá trình chia sẻ các thông tin bí mật giữa verifier và người tạo lập hồ sơ phục vụ cho qui trình xác minh hồ sơ. Cách thức chia sẻ hồ sơ định danh được thể hiện trong hình 3.9:

- Verifier chọn một hồ sơ định danh của người dùng. Danh sách hồ sơ mà verifier duyệt là các hồ sơ mà người tao hồ sơ đã chon khóa công khai tương ứng với verifier đó.
- Verifier sẽ nhập khóa bí mật (private key) để giải mã SecretKey của người dùng đã được mã hoá bởi khóa công khai của verifier trước đó.
- Sau khi có được SecretKey của người dùng, verifier sẽ tiến hành giải mã thông tin hồ sơ của người dùng.
- Verifier dựa vào thông tin bí mật đã giải mã và tiến hành xác minh.

Hình 3.9: Sơ đồ cách thức chia sẻ thông tin định danh

3.4.4 Tạo lập và lưu trữ chiến dịch gây quỹ

3.4.4.1 Mục tiêu

Mục tiêu đối với chức năng tạo lập chiến dịch:

- Tạo điều kiện tốt nhất và thuận lợi cho người tạo chiến dịch có thể đăng kí được chiến dịch gây quỹ.
- Người tạo lập chiến dịch cần đăng kí hồ sơ định danh trước khi gọi lệnh đăng kí chiến dịch gây quỹ.

Đối với việc lưu trữ chiến dịch gây quỹ:

- Các thông tin liên quan tài chính thì đặt ưu tiên lưu trữ trên blockchain, đảm bảo tính toàn vẹn, công khai và minh bạch.
- Các dữ liệu không tài chính thì có thể lưu trữ trên cơ sở dữ liệu tập trung, ưu tiên tốc độ đọc dữ liệu.

3.4.4.2 Cách thức hoạt động

Sơ đồ hoạt động của tiến trình tạo chiến dịch được thể hiện ở hình 3.10. Tiến trình cụ thể như sau:

- Đầu tiên người tạo chiến dịch (creator) sẽ tiến hành nhập vào các thông tin của chiến dịch trên DApp Interface. Các thông tin này bao gồm:
 - Tên chiến dịch gây quỹ.

- Mô tả ngắn gọn về chiến dịch gây quỹ.
- Mô tả đầy đủ về chiến dịch.
- Ånh (video) về chiến dịch.
- Mục tiêu gây quỹ.
- Thời gian gây quỹ.
- Hồ sơ giải ngân: số giai đoạn giải ngân, số tiền cho từng giai đoạn, phương thức giải ngân.
- DApp Interface tiến hành kiểm tra thông tin mà người tạo đã nhập, nếu thông tin hợp lệ, dữ liệu được xử lí ở tiến trình tiếp theo. Ngược lại, người tạo phải nhập lại thông tin.
- Dữ liệu sau khi được kiểm tra ở DApp, sẽ được tính toán mã băm (hash) và tính toán một giá trị gọi là **RefID**, giá trị này được định nghĩa như sau:

```
RefID = hash(Campaign's name + NOW() + RANDOMIZE())
```

Trong đó: *NOW()* là thời gian hiện dưới dạng số (timestamp); *RANDOMIZE()* là một số ngẫu nhiên.

- RefID cùng với các thông tin chiến dịch như: tên chiến dịch, mô tả ngắn gọn về chiến dịch, mô tả đầy đủ về chiến dịch, ảnh (video) về chiến dịch. Sẽ được gửi tới một cơ sở dữ liệu tập trung của hệ thống (Centralized database). Lúc này cơ sở dữ liệu tập trung này sẽ kiểm tra lại dữ liệu được gửi tới lần nữa, nếu dữ liệu hợp lệ sẽ tiến hành lưu xuống cơ sở dữ liệu. Ngược lại, dữ liệu không hợp lệ sẽ bắt người tạo phải nhập lại thông tin.
- Khi dữ liệu về mô tả chiến dịch được lưu ở cơ sở dữ liệu tập trung thành công thì DApp sẽ tiến hành tạo giao dịch có kèm mã băm đã tính toán trước đó cùng các thông tin như: mục tiêu gây quỹ, thời gian gây quỹ, hồ sơ giải ngân, RefID. Sau đó transaction được gửi tới Wallet Provider.
- Wallet Provider tiến hành kí cho transaction bằng khóa bí mật của người tạo. Sau đó transaction được gửi tới một nút trong mạng blockchain, để hợp đồng thông minh xử lí.
- Khi giao dịch được gửi tới, hợp đồng thông minh sẽ kiểm tra lại lần nữa các đầu vào, nếu dữ liệu hợp lệ thì dữ liệu được lưu. Ngược lại trả về thông báo lỗi cho người dùng.

Hình 3.10: So đồ hoạt động tiến trình tạo lập chiến dịch

3.4.5 Chức năng giải ngân

3.4.5.1 Muc tiêu

Việc giải ngân được thực hiện khi chiến dịch gây quỹ đạt được mục tiêu gây quỹ. Và giải ngân đối với chiến dịch sẽ được phân làm hai loại:

- Giải ngân một giai đoạn sau khi chiến dịch gây quỹ hoàn thành mục tiêu gây quỹ trong thời gian đặt ra, thì người tạo chiến dịch có thể gọi lệnh giải ngân và rút được tiền từ chiến dịch.
- Giải ngân theo nhiều giai đoạn với một số chiến dịch có thể thực hiện theo nhiều giai đoạn khác nhau, thì việc giải ngân theo nhiều giai đoạn nhằm mục tiêu:
 - Buộc người tạo chiến dịch có trách nhiệm báo cáo tiến độ thực hiện chiến dịch.
 - Tăng cường quyền của người đóng góp bằng cách bỏ phiếu đồng ý xác nhận giải ngân cho chiến dịch theo từng giai đoạn.

3.4.5.2 Cách thức hoạt động

Chức năng giải ngân bao gồm các tiến trình:

- Tạo hồ sơ giải ngân.
- Bỏ phiếu đồng ý giải ngân.
- Gọi lệnh giải ngân.

Tiến trình tạo hồ sơ giải ngân: hồ sơ giải ngân sẽ được người tạo chiến dịch nhập vào lúc đăng kí chiến dịch gây quỹ, các thông tin trong hồ sơ giải ngân bao gồm:

- Số giai đoạn thực hiện giải ngân. Nếu giai đoạn giải ngân là 1 thì các thông tin bên dưới có thể bỏ trống.
- Số tiền cần cho mỗi giai đoạn (tổng tiền ở các giai đoạn sẽ bằng mục tiêu gây quỹ).
- Tùy chọn chế độ giải ngân, có 4 chế độ:
 - Flexible đủ điều kiện giải ngân ở giai đoạn nào thì được rút tiền ở giai đoạn đó.
 - Fixed muốn rút tiền ở giai đoạn tiếp theo thì giai đoạn trước đó phải đủ điều kiện giải ngân.
 - TimingFlexible người tạo chiến dịch sẽ ấn định thời gian thực hiện cho mỗi giai đoạn, khi hết thời gian ấn định của giai đoạn hiện tại thì mới có thể thực hiện lênh bỏ phiếu giải ngân và rút tiền cho giai đoan tiếp theo.
 - TimingFixed người tạo chiến dịch sẽ ấn định thời gian thực hiện cho mỗi giai đoạn, khi hết thời gian ấn định của giai đoạn hiện tại thì mới có thể thực hiện lệnh bỏ phiếu giải ngân và rút tiền cho giai đoạn tiếp theo. Nếu giai đoạn hiện tại không đủ điều kiện giải ngân thì giai đoạn sau sẽ không được rút tiền.

Tiền trình bỏ phiếu giải ngân cho mỗi giai đoạn – tiến trình bỏ phiếu được đặc tả như sau:

- Chỉ có người đã đóng góp tiền cho chiến dịch thì mới có quyền bỏ phiếu cho chiến dịch đó.
- Việc bỏ phiếu đồng ý giải ngân được thực hiện cho từng giai đoạn giải ngân của chiến dịch, không bỏ phiếu cho toàn bộ chiến dịch.
- Với mỗi lá phiếu sẽ có hai tùy chọn: Đồng ý hoặc Không đồng ý giải ngân.
- Số phiếu "Đồng ý" đạt từ 50% trên tổng số người đã đóng góp vào chiến dịch và tổng số tiền mà những những người đồng ý giải ngân phải đạt tỉ lệ trên 50% tổng số tiền

mục tiêu gây quỹ thì được xem là đủ điều kiện giải ngân.

Tiến trình gọi lệnh giải ngân – việc gọi lệnh giải ngân sẽ có hai trường hợp:

- Đối với chiến dịch chỉ có một giai đoạn giải ngân: được rút toàn bộ số tiền gây quỹ được nếu hoàn thành mục tiêu gây quỹ trong thời gian đặt ra.
- Chiến dịch từ 2 giai đoạn thực hiện trở lên: giai đoạn đầu tiên sẽ được rút tiền mà không cần người đóng góp bỏ phiếu. Từ giai đoạn thứ hai trở đi, cần đạt điều kiện về bỏ phiếu giải ngân thì mới được rút tiền.

3.4.6 Hoàn tiền chiến dịch gây quỹ

3.4.6.1 Mục tiêu

Chức năng này giúp người đóng góp tiền vào chiến dịch có thể thực hiện hoàn tiền trong hai trường hợp:

- Trường hợp 1: hoàn tiền khi đang trong thời gian gây quỹ. Việc hoàn tiền này được thực hiện theo yêu cầu của người đóng góp.
- Trường hợp 2: hoàn tiền sau khi hết thời gian gây quỹ. Điều kiện để hoàn tiền trong trường hợp này là chiến dịch không đạt được mục tiêu gây quỹ trong thời gian đặt ra. Việc hoàn tiền này phải diễn ra một cách tự động. Tức người đóng góp không cần thực hiện bất kì thao tác gì.

3.4.6.2 Cách hoat đông

3.5 Tổ chức dữ liệu

3.5.1 Dữ liệu phi tập trung

Cấu trúc hợp đồng thông minh được thể hiện ở hình 3.11. Cụ thể trong hệ thống có các hợp đồng thông minh sau:

- Wallet đây là hợp đồng chứa mã lưu trữ và xử lí các tác vụ liên quan đến tài chính trong hệ thống, bao gồm các tác vụ như nộp tiền và rút tiền trong hệ thống.
- Campaigns là một contract chứa nhiều mã xử lí nhất trong hệ thống, bao gồm việc lưu trữ thông tin liên quan đến chiến dịch, các tác vụ như tạo chiến dịch, đóng góp tiền vào một chiến dịch, giải ngân.
- Identity chứa mã lưu trữ và xử lí các tác vụ liên quan đến thông tin định danh. Các tác vụ trên contract này như: đăng kí hồ sơ định danh, duyệt hồ sơ định danh.
- Disbursement chứa mã lưu trữ thông tin giải ngân của chiến, tác vụ bỏ phiếu giải

ngân được contract này xử lí.

Hình 3.11: Kiến trúc hợp đồng thông minh

3.5.2 Dữ liệu tập trung

Chương 4

HIỆN THỰC VÀ ĐÁNH GIÁ HỆ THỐNG

4.1 Hiện thực

4.1.1 Môi trường hiện thực

Để thuận tiện trong việc đóng gói và triển khai ứng dụng, nhóm tác giả sử dụng công nghệ Container để hỗ trợ, đại diện tiêu biểu cho công nghệ Container mà nhóm tác giả chọn để sử dụng là Docker¹.

Công nghệ Docker container giúp người phát triển có thể triển khai ứng dụng ở bất kì đâu miễn là thiết bị đó có thể chạy được docker. Các ứng dụng được đóng gói trong container, có thể kiểm tra, xóa bất kì container. Các ứng dụng được triển khai dễ dàng và đồng nhất giữa các môi trường khác nhau.

Phiên bản docker và ứng dụng kèm theo mà nhóm tác giả triển khai bao gồm:

• **Docker Engine:** 19.03.3

• Docker Compose: 1.21.0

4.1.2 Các công nghệ được sử dụng

Dựa vào kiến trúc hệ thống ở hình 3.2, nhóm tác giả tiến hành chọn các công nghệ để hiện thực. Sơ đồ tổng quan về các công nghệ mà nhóm tác giả hiện thực được thể hiện ở hình 4.1.

Các công nghệ được sử dụng bao gồm:

• Phần giao diện người dùng (front-end): nhóm tác giả sử dụng **ReactJS/NodeJS** kết

¹https://www.docker.com

Hình 4.1: Sơ đồ hiện thực hệ thống

hợp **Material UI** để tạo giao diện ứng dụng web cho người dùng. Để tương tác với các hợp đồng thông minh, nhóm tác giả sử dụng thư viện Web3js và trình mở rộng Ví Metamask.

- Phần back-end được chia làm hai thành phần như sau:
 - Kiến trúc phi tập trung (decentralized): nhóm sử dụng ngôn ngữ solidity để xây dựng các smart contract kết hợp IPFS để thực hiện lưu trữ các dữ liệu phi tập trung.
 - Kiến trúc tập trung (centralized): công nghệ NodeJS kết hợp với Redis để tổ chức và tương tác với dữ liệu tập trung.

Với hợp đồng thông minh và ngôn ngữ Solidity, nhóm tác giả sử dụng bộ công cụ Truffle framework để xây dựng và triển khai các mã hợp đồng thông minh.

4.1.2.1 Công nghệ ReactJS/NodeJS

ReactJS là một thư viện để hỗ trợ cho việc phát triển giao diện của người dùng. Đây là một trong những thư viện front-end nổi tiếng với hơn 141.000 sao đánh giá với hơn 2.8 triệu người dùng trên dịch vụ lưu trữ mã nguồn Github² (số liệu cập nhật tháng 12 năm 2019). Thư viện

²https://github.com

này được hỗ trợ và phát triển bởi Facebook³ và Instagram⁴ cùng với cộng đồng các nhà phát triển trên toàn thế giới và đang được phát triển từng ngày. ReactJS cung cấp tốt hơn về trải nghiệm người dùng và đồng thời có nhiều thư viện bên thứ ba hữu ích khác được phát triển kèm theo.

ReactJS được thiết kế và phát triển theo kiến trúc các component⁵. Theo như tài liệu từ Facebook, định nghĩa React là một thư viện dành cho phát triển các mô đun cho giao diện người dùng. Về cơ bản, React cho phép các nhà lập trình phát triển các ứng dụng web lớn, phức tạp và đổng thời có thể thay đổi dữ liệu mà không cần tải lại trang. React sử dụng DOM ảo, điều này có tác dụng tăng hiệu suất kết xuất trang web, đồng thời nâng cao trải nghiệm của người dùng, cũng như rất dễ dàng lập trình phát triển sản phẩm.

Node.js hay còn được gọi là Node – là một nền tảng chạy trên môi trường Javascript hay còn được gọi là một nền tảng chạy trên môi trường V8 JavaScript runtime. Công nghệ V8 đã được triển khai hầu hết ở C và C++, công nghệ này tập trung chủ yếu vào hiệu suất và ít tiêu tốn bộ nhớ. Hầu hết V8 hỗ trợ chủ yếu Javascript trên trình duyệt (chú ý nhất là Google Chrome), mục đích hỗ trợ của Node đó chính là hỗ trợ các tiến trình có thời gian chạy dài. Không giống như những ngôn ngữ khác, Node không hỗ trợ đa luồng, nhưng hỗ trợ xử lý bất đồng bộ [12]. Nhờ vào tính năng xử lý bất đồng bộ này, Node còn được biết đến là một nền tảng xử lý nhanh chóng hàng ngàn yêu cầu đồng thời, chịu tải cao, tốc độ thực thi và khả năng mở rộng tốt.

Đánh giá về hiệu suất của các ứng dụng chạy Node.js, nhóm tác giả có tham khảo nghiên cứu của tác giả Robert Ryan McCune về đo lường hiệu suất của ứng dụng Node.js [13]. Trong bài nghiên cứu, tác giả Robert Ryan McCune đã thực hiện phần đánh giá trên một máy ảo **Ubuntu 11.10** được tạo bởi VMWare Fusion 4.0.2 trên iMac *OS X 10.6.8* với 8GB RAM và *3.06Ghz Intel Core 2 Duo*, máy ảo này được được cấu hình với bộ nhớ là **2GB RAM**, và một bộ vi xử lý lõi kép. Tác giả đã thực hiện đồng thời 100 và 1000 yêu cầu đến máy chủ chạy bằng Node và thu được kết quả là thời gian trả lời từ máy chủ chưa tới 70ms. Tương tự thực hiện 500 yêu cầu đồng thời và thực hiện tổng cộng 10.000 yêu cầu thì thời gian phản hồi là dưới 140ms.

4.1.2.2 Material UI framework

Material UI là một thư viện được $Google^6$ viết dành riêng cho ReactJS, bao gồm tập hợp nhiều các thành phần được xây dựng và thiết kế theo phong cách Material. Với hơn 52.8

³https://www.facebook.com

⁴https://www.instagram.com

⁵là một kiểu kiến trúc trong phát triển phần mềm, chia ứng dụng ra thành các thành phần, bộ phận không phu thuộc lẫn nhau và có thể tải sử dụng các thành phần này khi cần thiết

⁶https://www.google.com

nghìn sao đánh giá trên cộng đồng Github, và được sử dụng bởi hơn 139.000 dự án khác nhau, Material là một trong những thư viện UI được nhiều người sử dụng nhất trên thế giới. Giao diện của Material cũng tương đồng với các sản phẩm của Google như: *Gmail, Google tìm kiếm, Google Form,...*

Material UI hiện tại cũng đang được sử dụng bởi NASA, UNIQLO, shutterstock,...

Trong cuộc khảo sát vào năm 2019 của Oliver được đăng trên trang Medium⁷ đã chỉ ra rằng, có đến 74.4% của 734 người khảo sát cho rằng sẽ thất vọng khi không còn sử dụng thư viện này. Biểu đồ thể hiện thái độ người khảo sát khi không còn được sử dụng thư viện Material ở hình 4.2.

Hình 4.2: Biểu đồ thể hiện thái độ người dùng khi không còn được sử dụng thư viện Material

Cũng tại bài viết, tác giả đã ghi nhận nhận những lợi ích từ người khảo sát cho rằng yếu tố tập trung vào luồng xử lý, tiết kiệm thời gian, dễ dùng, ... và có đến 70% dùng thư viện này để xây dựng dashboard, 40% để thiết kế hệ thống, 35% dùng để thiết kế các trang doanh nghiệp.

4.1.2.3 Cơ sở dữ liệu Redis

Redis là một cơ sở dữ liệu thường được xếp vào nhóm cơ sở dữ liệu NoSQL, được phát triển vào năm 2009. Khác với những cơ sở dữ liệu khác, Redis lưu dữ liệu trên RAM của máy chủ, điều này làm cho việc truy xuất giá trị nhanh hơn so với cách lưu trữ truyền thống – lưu trữ trên ổ cứng. Sau một thời gian, các bản ghi được lưu trên RAM này sẽ được lưu xuống ổ

⁷Nguồn: https://medium.com/material-ui/2019-material-ui-developer-survey-results-c9589434bbcf

cứng nhằm tiết kiệm tài nguyên bộ nhớ RAM.

Các đặc điểm của Redis [14]:

- (i) Redis là một dạng lưu trữ dữ liệu key-value, như được nói ở trên khi Redis chạy, dữ liệu sẽ được lưu trữ trong bộ nhớ, do đó nó có thể xử lý hơn 100.000 thao tác đọc và ghi mỗi giây.
- (ii) Redis hỗ trợ nhiều dạng lưu trữ như *List* và *Set*,...
- (iii) Giá trị lớn nhất lưu trên Redis là 1GB.
- (iv) Nhược điểm yếu nhất của Redis đó chính là dung lương của cơ sở dữ liệu bị giới hạn bởi bộ nhớ vật lý, do đó Redis không nên dùng làm cơ sở dữ liệu cho các dự án lớn và khả năng mở rộng kém.

Với các đặc điểm trên, Redis phù hợp cho việc cung cấp hiệu suất cao cho lượng dữ liệu nhỏ.

4.1.2.4 IPFS

InterPlanetary File System (IPFS) là một giao thức chia sẻ tệp tin được phân tán ngang hàng Peer-to-Peer (P2P). Giao thức này cho phép người dùng chia sẻ các tệp tin ngang hàng với nhau mà không cần có sự xuất hiện của máy chủ. Các dữ liệu khi người dùng tải lên sẽ được băm ra và đồng thời sinh ra mã băm của dữ liệu ấy. Với các dữ liệu giống nhau thì sẽ tạo ra những hàm băm giống nhau, do đó IPFS sẽ hạn chế được sự trùng lặp.

IPFS có thể giải quyết vấn đề về lưu trữ dữ liệu lớn cho các ứng dụng blockchain bằng cách sử dụng blockchain để lưu trữ địa chỉ của dữ liệu được ra bằng IPFS (chính là mã băm nhận diện cho tập tin) và đặt địa chỉ bất biến này cho một giao dịch trong blockchain. Không những giải quyết vấn đề lưu trữ, IPFS còn giải quyết vấn đề về bằng thông bằng cách phân tán nội dung đến hệ thống P2P. Do đó, khi truy cập tập tin nào đó bằng các dùng hàm băm, nút gần nhất với tệp sẽ phản hồi và gửi tệp cho người yêu cầu. Như đã được chứng minh từ trước [16], một hệ thống phân phát P2P có thể tiết kiệm lên đến 60% so với hệ thống truyền thống. Đồng thời, IPFS còn tăng tính bảo mật và chống lại các cuộc tấn công từ chối dịch vụ và giới hạn lại kiểm duyệt vì không có địa chỉ IP cụ thể của máy chủ bị chặn [17].

4.1.2.5 Bô công cu Truffle framework

Truffle là một bộ công cụ để phát triển các ứng dụng phi tập trung trên mạng Ethereum. Khi sử dụng truffle, theo tài liêu kĩ thuật⁸ của Truffle mô tả framework này có các tính năng sau:

 Tích hợp các tính năng biên dịch, liên kết, triển khai và quản lý mã nhị phân các hợp đồng thông minh.

⁸https://www.trufflesuite.com/docs

- Tư đông kiểm thử các contract để quá trình phát triển nhanh hơn.
- Khung triển khai các hợp đồng thông minh có thể tùy biến và mở rộng.
- Quản lí mạng để triển khai hợp đồng thông minh đến bất kì mạng công khai hay riêng tư nào.
- Quản lí gói với EthPM và NPM, sử dụng tiêu chuẩn ERC1909.
- Tương tác trực tiếp với hợp đồng thông minh thông qua giao diện console.

4.1.2.6 Thư viện web3js

Web3js là một thư viện được viết bằng *Javascript*, thư viện cung cấp các API cần thiết cho lập trình viên tương tác với mạng blockchain Ethereum cũng như là hợp đồng thông minh trên Ethereum thông qua giao tiếp Remote Procedure Call (RPC)¹⁰.

Theo như tài liệu của thư viện Web3js¹¹, các hàm trong *web3-eth* dùng để tương tác với mạng blockchain và hợp đồng thông minh như là lấy thông tin địa chỉ của tài khoản, chọn lựa mạng,... *web3-ssh* cung cấp giao thức để giao tiếp P2P và broadcast. *web3-bzz* được dành cho giao thức swarm¹², lưu trữ tập trung. Cuối cùng là *web-utils* chứa đựng các hàm tiện ích cho dự án DApp.

4.1.2.7 Ví Metamask

Metamask¹³ là một ví Ethereum, được phát triển dưới dạng trình mở rộng trên trình duyệt. Metamask là ứng dụng cầu nối cho phép người dùng truy cập vào các ứng dụng web phi tập trung và tương tác với mạng blockchain đơn giản hơn mà không cần phải chạy một nút Ethereum đầy đủ.

Metamask cung cấp giao diện người dùng để quản lí các khóa bí mật, các giao dịch, số dư Ethereum, kí transaction, Metamask có giao diện dễ dùng, hỗ trợ hầu hết các trình duyệt hiện nay.

4.1.3 Các bước hiện thực

Phần hiện thực hệ thống được viết thành kịch bản và thực hiện tự động bằng trình Docker Compose, hệ thống sẽ được chia thành nhiều dịch vụ, bao gồm:

• smartcontract – thực hiện chức năng biên dịch và triển khai các hợp đồng thông minh lên mạng blockchain, sau đó trả về các tệp json chứa Application Binary Interface

⁹https://github.com/ethereum/EIPs/issues/190

¹⁰Remote Procedure Call (RPC) tạm dịch là các cuộc gọi thủ tục từ xa, đây là một phương pháp dùng để trao đổi dữ liêu theo kiến trúc yêu cầu - phản hồi.

¹¹https://web3js.readthedocs.io

¹²swarm - một mô hình kiến trúc phân tán.

¹³https://metamask.io

 $(ABI)^{14}$ và địa chỉ của hợp đồng thông minh. Các tệp json này được front-end sử dụng để kết nối với hợp đồng thông minh.

- client kết xuất và triển khai giao diện người dùng.
- store_centralized_data xây dựng và triển khai Restful API để xử lí đọc và ghi dữ liệu ở cơ sở dữ liệu tập trung.
- redis cơ sở dữ liệu Redis, lưu trữ các thông tin mô tả về chiến dịch.

Nội dung tệp **docker-compose.yml**¹⁵ triển khai các dịch vụ trong hệ thống như sau:

```
version: '3.4'
services:
 smartcontracts:
   build: ./smartcontracts/
   volumes:
     - contracts:/app/build/
   build: ./client/
   ports:
     - 3000:3000
   volumes:
     - ./client/src/:/app/src/
      - contracts:/app/src/contracts/:ro
   depends_on:
     - smartcontracts
  store_centralized_data:
   build: ./store_centralized_data/
   ports:
     - 8080:8080
   volumes:
     - ./store_centralized_data/src/:/app/src/
   depends_on:
     - redis
 redis:
   image: redis:alpine
   command: redis-server --requirepass 12345678 --appendonly yes
   volumes:
     - data:/data
volumes:
 data:
  contracts:
```

Các bước để hiện thực hệ thống như sau:

- Bước 1: cấu hình thông số các service.
- Bước 2: tao các service.

¹⁴là cách tiêu chuẩn để tương tác với các hợp đồng trong hệ sinh thái Ethereum, cả từ bên ngoài blockchain và cho tương tác giữa các hợp đồng với nhau.

¹⁵docker-compose.yml là tệp mặc định được sử dụng bởi Docker Compose

• Bước 3: chay các service.

Chi tiết các bước trên được mô tả ở mục 4.1.3.1, 4.1.3.2, 4.1.3.3.

4.1.3.1 Cấu hình thông số các service

Để các service chạy chính xác, nhóm tác giả tạo ra các biến môi trường được lưu ở file **.env** trong thư mục của từng service trong bộ mã nguồn chương trình kèm theo khóa luận này để phục vụ cho việc cấu hình.

Chỉnh sửa các biến sau trong tệp smartcontracts/.env:

- MNEMONIC biến chứa giá trị mnemonic của tài khoản nhân viên vận hành hệ thống, mnemonic là một chuổi 12 kí tự gợi nhớ, chuỗi này gắn liền với các tài khoản trên ethereum. Tài khoản mặc định gắn với mnemonic nhập vào sẽ là tài khoản triển khai các hợp đồng thông minh lên mạng blockchain.
- INFURA_API_KEY khóa để sử dụng API của Infura để tương tác với một nút trong mạng blockchain để đưa các hợp đồng thông minh lên mạng. Để có khóa này, có thể đăng kí sử dụng API của Infura.
- 4.1.3.2 Tao các service
- 4.1.3.3 Chay các service
- 4.1.4 Kết quả hiện thực

4.2 Đánh giá hệ thống đã hiện thực

4.2.1 Kiểm tra các quy trình trong hệ thống

4.2.1.1 Muc tiêu

Kiểm tra các quy trình trong hệ thống nhằm mục tiêu sau:

- Xác định đầu ra các hàm trong hợp đồng thông minh có trả về kết quả như mong đợi với đầu vào cho trước hay không.
- Việc thực hiện kiểm tra các hàm tuần tự như quy trình hoạt động thực tế của hệ thống.
- Phát hiện các lỗi ở mức đơn vị nhỏ nhất trong hệ thống.

4.2.1.2 Phương pháp thực hiện

Nhóm tác giả tiến hành kiểm thử đơn vị (unit testing) với các hàm trong hệ thống theo hai kịch bản. Bao gồm:

- Kịch bản 1: kiểm thử quy trình với chiến dịch một giai đoạn.
- Kich bản 2: kiểm thử quy trình với chiến dịch nhiều giai đoan.

Kich bản 1 được nhóm tác giả soan như sau:

- (1) Nhân viên vận hành tiến hành biên dịch và triển khai các hợp đồng thông minh lên mạng blockchain. Kiểm tra kết quả: địa chỉ các hợp đồng thông minh đã có trên mạng blockchain hay chưa?
- (2) Người đóng góp gọi hàm *deposit* để nộp tiền vào hệ thống. Kiểm tra kết quả: chênh lệch số dư trước và sau khi gọi hàm có bằng số tiền đã nộp?
- (3) Người vận hành gọi hàm *addVerify* để thêm danh sách xác nhân viên xác minh. Kiểm tra kết quả: địa chỉ có trong danh sách địa chỉ nhân viên xác minh?
- (4) Người tạo chiến dịch gọi hàm *registerIdentity* để đăng kí hồ sơ định danh. Kiểm tra kết quả: lấy thông tin hồ sơ định danh đã lưu đối chiếu với đầu vào trước đó đã nhập, hai thông tin có giống nhau?
- (5) Nhân viên xác minh gọi hàm *verify* để xác minh cho một hồ sơ định danh. Kiểm tra kết quả: trạng thái của hồ sơ định danh đã được xác minh hay chưa?
- (6) Người tạo chiến dịch gọi hàm *createCampaign* để tạo chiến dịch thứ nhất. Kiểm tra kết quả: đối chiếu thông tin chiến dịch đã lưu với đầu vào đã nhập có khớp nhau?
- (7) Nhân viên xác minh gọi hàm *verifyCampaign* để xác minh cho chiến dịch, cho phép chiến được nhận đóng góp từ người dùng. Kiểm tra kết quả: trạng thái chiến dịch có được xác minh hay chưa?
- (8) Người đóng góp gọi hàm *donate* để đóng góp tiền cho chiến dịch, số tiền đóng góp đúng bằng mục tiêu của chiến dịch. Kiểm tra kết quả: chênh lệch số dư trước và sau khi đóng góp có bằng với số tiền đã đóng góp?
- (9) Người tạo chiến dịch tiến hành gọi hàm endCampaign để gọi lệnh giải ngân từ chiến dịch khi kết thúc thời gian chiến dịch gây quỹ. Kiểm tra kết quả: chênh lệch số dư (tokens) của người tạo chiến dịch trước và sau khi gọi lệnh giải ngân đúng bằng số tiền đã đóng góp hay không?
- (10) Người tạo chiến dịch gọi hàm *createCampaign* để tạo chiến dịch thứ hai. Kiểm tra kết quả: đối chiếu thông tin chiến dịch đã lưu với đầu vào đã nhập có khớp nhau?
- (11) Người đóng góp gọi hàm *donate* để đóng góp tiền cho chiến dịch, số tiền đóng góp không đạt được mục tiêu gây quỹ. Kiểm tra kết quả: chênh lệch số dư trước và sau khi đóng góp có bằng với số tiền đã đóng góp?
- (12) Sau khi kết thúc thời gian gây quỹ, người đóng góp tiến hành kiểm tra số dư có đúng bằng số tiền đã đúng bằng số tiền đã đóng góp hay không?

4.2.1.3 Kết quả thực hiện

4.2.2 Do lường tốc độ thực hiện giao dịch

Để tăng tính tin cậy cho phần đánh giá dưới đây của khóa luận, nhóm tác giả đã tham khảo mô hình đánh giá và kết quả đánh giá về hiệu suất của ethereum ở các công trình khác để làm thước đo và thực hiện tương tự với mô hình đánh giá đó.

Cụ thể, công trình của tác giả Sara Rouhani và Ralph Deters [15] đã đo được thời gian trung bình cho mỗi transaction là 104.609ms với Parity client và 198.9125ms với Geth. Tổng số transaction được gửi là 2000. Hai Ethereum private blockchain khác nhau với cùng cấu hình được thực thi bởi Parity client và Geth client được sử dụng để đo lường. Cấu hình hệ thống bao gồm 24GiB RAM và Core i7-6700 CPU. Việc gửi các transaction được thực hiện bằng ngôn ngữ NodeJS và sau đó thu thập thời gian xử lí cho việc xác nhận các transaction.

4.2.2.1 Môi trường thực hiện đánh giá

Nhóm tác giả thực hiện việc đánh giá này trên cấu hình máy như sau:

• Chip xử lí: 4 x Intel(E) Pentium(R) CPU N3540 @ 2.16GHz

• RAM: 8GB

• Hệ điều hành: Alpine Linux 3.9 chạy trên Docker container

Công cụ mà nhóm tác giả sử dụng trong phần đánh giá này là **Truffle framework**¹⁶, đây là một bộ công cụ được sử dụng để triển khai các hợp đồng thông minh hỗ trợ ngôn ngữ Solidity.

Trong phần đánh giá thời gian này, nhóm tác giả sử dụng một mạng ethereum riêng được chạy trên mạng cục bộ nhằm loại bỏ đi thời gian chờ xác nhận giao dịch thông thường trên các mạng công khai hiện tại.

4.2.2.2 Phương pháp thực hiện đánh giá

Đầu tiên nhóm tác giả thực hiện lựa chọn các hàm trong hợp đồng thông minh thường xuyên được sử dụng trong hệ thống, sau đó các hàm được chọn sẽ được hiện thực thông qua các transaction. Các transaction sẽ được xử lí và gửi đi bằng NodeJS, thời gian đo được tính từ lúc transaction được tạo ra đến lúc hoàn tất transaction đó. Với mỗi transaction, thực hiện gửi đi tuần tự 100, 200, 400, 600, 900 lần với cùng một bộ tham số cho trước. Sau đó lấy kết quả là thời gian trung bình thực hiện cho mỗi transaction.

Các hàm được chọn và tham số đầu vào cho mỗi hàm để đo thời gian được thể hiện ở bảng 4.1.

¹⁶https://www.trufflesuite.com

Contract	Hàm được chọn	Tham số đầu vào	Ghi chú
Wallet	deposit()		
Campaigns	createCampaign()	77760000, 1000000, 1, [], 0, [], '8f1ef45972ebd8ef45b2410e8a0b399181fed3d929738d2eb96baf470758a97d', 'c2337a3217ffcf3b01398d83577a1c32235ceb4f481b8c7be00a055798e95d36'	một g.đoạn giải ngân
	createCampaign()	77760000, 1000000, 3, [300000, 300000, 400000] 2, [0, 7200, 7200], '8f1ef45972ebd8ef45b2410e8a0b399181fed3d929738d2eb96baf470758a97d', 'c2337a3217ffcf3b01398d83577a1c32235ceb4f481b8c7be00a055798e95d36'	nhiều g.đoạn giải ngân
	donate()	0, 1	

Bảng 4.1: Các hàm và tham số đầu vào được dùng để đo thời gian thực hiện giao dịch

4.2.2.3 Kết quả đánh giá

Sau khi thực hiện đánh giá thời gian, nhóm tác giả đã tổng hợp kết quả như ở bảng 4.2. Theo như kết quả tổng hợp được, nhóm tác giả nhận xét rằng với dữ liệu đầu vào càng nhiều (kích thước lớn) thì thời gian xử lí càng lâu.

Contract	Hàm	Thời gian thực hiện 100 lần (giây)	Thời gian thực hiện 200 lần (giây)	Thời gian thực hiện 400 lần (giây)	Thời gian thực hiện 600 lần (giây)	Thời gian thực hiện 900 lần (giây	Thời gian trung bình (giây)	Ghi chú
Wallet	deposit	11.099	18.035	36.484	54.166	86.968	0.095856	
Campaigns	createCampaign	19.613	37.839	76.577	115.433	172.447	0.1921527	một g.đoạn giải ngân
	createCampaign	31.986	63.561	127.236	191.94	287.694	0.319063	nhiều g.đoạn giải ngân
	donate	16.529	32.083	63.9	94.204	142.934	0.160255	

Bảng 4.2: Bảng kết quả đánh giá thời gian hiện thực một số hàm trong hệ thống.

Từ kết quả thu được, ta có biểu đồ tổng quan về tốc độ thực hiện của các hàm như ở hình 4.3. Nhìn vào kết quả, ta thấy được:

- Hàm deposit là hàm có tốc độ thực hiện nhanh nhất với thời gian trung bình là 0.095856 giây. Phần mã xử lí của hàm deposit tương đối ngắn nên thời gian xử lí nhanh hơn.
- Hàm có tốc độ xử lí chậm nhất là hàm createCampaign (với chiến dịch gây quỹ có nhiều giai đoạn giải ngân). Do hàm này có tham số đầu vào tương đối nhiều và phần mã xử lí phức tạp hơn nên thời gian hoàn tất lâu hơn những hàm khác.

Hình 4.3: Biểu đồ thể hiện tốc độ thực hiện giao dịch giữa các hàm

4.2.3 Chi phí thực hiện các giao dịch trong hệ thống

4.2.3.1 Môi trường thực hiện đánh giá

Nhóm tác giả thực hiện việc đo lường chi phí giao dịch trên cấu hình máy như sau:

- Chip xử lí: 4 x Intel(E) Pentium(R) CPU N3540 @ 2.16GHz
- **RAM**: 8GB
- Hệ điều hành: Alpine Linux 3.9 running in Docker container

Bộ công cụ **Truffle framework** kết hợp plug-in có tên là **eth-gas-reporter**¹⁷ được sử dụng để triển khai các hợp đồng thông minh và đo lường chi phí thực hiện. Mạng ethereum riêng chạy trên máy cục bộ được sử dụng nhằm loại bỏ đi thời gian chờ xác nhận giao dịch thông

¹⁷https://www.npmjs.com/package/eth-gas-reporter

thường trên các mang công khai hiện tai.

4.2.3.2 Phương pháp thực hiện đánh giá

Do chỉ có các hàm thực hiện ghi dữ liệu mới tốn chi phí thực hiện nên nhóm tác giả chọn ra các hàm có thao tác ghi dữ liệu, sau đó các hàm được chọn sẽ được hiện thực thông qua các transaction. Các transaction sẽ được xử lí và gửi đi bằng NodeJS. Sau đó thực hiện ghi lại kết quả chi phí.

Các hàm được chọn và tham số đầu vào cho mỗi hàm để đo lường chi phí được thể hiện ở bảng 4.3. Các tham số đầu vào mẫu được cho là sát với thực tế khi triển khai hệ thống (độ dài từng tham số mẫu là sát với thực tế).

4.2.3.3 Kết quả chi phí cho các giao dịch trong hệ thống

Bảng tổng hợp chi phí cho các giao dịch được liệt kê ở bảng 4.4. Kết quả màn hình khi chạy chạy công cụ đo lường chi phí được thể hiện ở hình 4.4.

Hình 4.4: Ảnh chup màn hình kết quả đo lường chi phí giao dịch

Công cụ đo lường còn cung cấp cho chúng ta chi phí triển khai các hợp đồng thông minh, kết quả được thể hiện ở bảng 4.5.

Môt số đại lương trong bảng kết quả:

- Gas là một đơn vị đo lường công việc tính toán của các giao dịch hoặc hợp đồng thông minh trong mạng Ethereum.
- ETH là một đơn vị tiền tệ được sử dụng nội bộ trong mạng Ethereum. Tỉ lệ trao đổi giữa các đại lượng như sau: giá gas là 2 GWei/gas, và 1 ETH = 10⁹ GWei. Giá trị chuyển đổi giữa ETH và USD hiện tại được tham khảo trên CoinMarketcap¹⁸ là 150.08 USD/ETH (cập nhật ngày 27/11/2019)

Đánh giá tổng quan về chi phí:

¹⁸https://coinmarketcap.com

Contract	Hàm	Dữ liệu đầu vào	Ghi chú
Wallet	deposit		
wanet	withdraw	1000	
Identity	addVerify	'0x93598a39777ED4B4Af3Ac7429d123Ca3bE9658C5', 'AAAAB3NzaC1yc2EAAAADAQABAAAAgQCDxbho2O3XWhktz4Hwi6/61ltfk/l SCqeXLufvjr6O3wh1++MmTZT+KzcO0azsKsiFJTXL7ynC06Vp1Hp9o0BK3Q/Q ZTo8jRoP3XX1LBu1CLe7OeOA5P2TO/nz2mWtuxz0b11GmRrjO8YoznizlPiolL kv9hoDBvwTy0JonyJ6+w=='	
	changePubKey	'0x93598a39777ED4B4Af3Ac7429d123Ca3bE9658C5', 'MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCMjs5j52lzXN6XX+nZ1js yaBgzVBsA/JIWVux1zL0pw4GocvqPsZrIKwKsTeQycGdf3azjKRKwMga6g8fPF HO+Ayh+6v33B1h+3ckWu81alwsM+Y9ADpcMret5qH2Mv9rDyWi+lmAYeUA OOosAWfmgc6QJz+psSMtuGKOr08q+1wIDAQAB'	
	registerIdentity	'KLTN', 'UIT-HCM, Linh Trung, Thu Duc, HCM', 830550240, 'QmarHSr9aSNaPSR6G9KFPbuLV9aEqJfTk1y9B8pdwqK4Rq', 'frPULs0boASMCqSq1guu+jX636wkY+fzhFSRnFQi9dQuK50yzCobUIGm5b/f7 oGDea/NrieB5c883EpWiQdgJIO+0B43jJLAtfSfJ/mlbGX3FUPc6LAQzxlCb5FSh 7+Q1E4WIUyFwLwoNdipDYFcpuXxtCsKeepjFHwGFhfupxM=', '0x93598a39777ED4B4Af3Ac7429d123Ca3bE9658C5'	
	verify	'0x41A418C946Fd3201b7b2b30B367De35b0c54A6ce', true	
Campaigns	createCampaign	77760000, 1000000, 1, [], 0, [], %f1ef45972ebd8ef45b2410e8a0b399181fed3d929738d2eb96baf470758a97d', 'c2337a3217ffcf3b01398d83577a1c32235ceb4f481b8c7be00a055798e95d36'	một g.đoạn giải ngân
	createCampaign	10, 1000, 3, [300, 300, 400], 0, [], '8f1ef45972ebd8ef45b2410e8a0b399181fed3d929738d2eb96baf470758a97d', 'c2337a3217ffcf3b01398d83577a1c32235ceb4f481b8c7be00a055798e95d36'	nhiều g.đoạn giải ngân
	verifyCampaign	1, true	
	donate	1, 1000	
	claimRefund	1, 200	
	donate	1, 200	donate lần 2
	endCampaign	1	
Disbursement	vote	1, 1, true	

Bảng 4.3: Các hàm và dữ liệu đầu vào được dùng để đo lường chi phí giao dịch

- Hàm verify trong contract Identity có mức chi phí thực hiện thấp nhất với 20778 gas (tương đương 0.000041556 ETH). Phần mã xử lí của hàm này tương đối ngắn nên chi phí thấp hơn.
- Hàm có chi phí cao nhất là hàm createCampaign (tạo chiến dịch với nhiều giai đoạn) với chi phí 497048 gas (tương đương 0.000994096 ETH). Do hàm này có tham số đầu vào tương đối nhiều và phần mã lí phức tạp hơn nên chi phí cao hơn những hàm khác.
- Contract Campaigns có chi phí triển khai cao nhất (3447461 gas), contract có chi phí

		Chi phí	Chi phí	Chi phí	
Contract	Hàm	tính toán	giao dịch	giao dịch	
		(gas)	(ETH)	(USD)	
Wallet	deposit	64512	0.000129024	0.02	
wanet	withdraw	46257	0.000092514	0.01	
	addVerify	265666	0.000531332	0.08	
Identity	changePubKey	79644	0.000159288	0.02	
Identity	registerIdentity	430215	0.000860430	0.13	
	verify	20778	0.000041556	0.01	
	createCampaign	281589	0.000563178	0.08	
	createCampaign	497048	0.000994096	0.15	
	verifyCampaign	46288	0.000092576	0.01	
Campaigns	donate	177817	0.000355634	0.05	
	claimRefund	36007	0.000072014	0.01	
	donate	48473	0.000096946	0.01	
	endCampaign	82927	0.000165854	0.02	
Disbursement	vote	91003	0.000182006	0.03	

Bảng 4.4: Kết quả đo lường chi phí giao dịch

Contract	Chi phí (gas)	Chi phí (ETH)	Chi phí (USD)	
Campaigns	3447461	0.006894922	1.03	
Disbursement	1331555	0.002663110	0.4	
Identity	2401480	0.004802960	0.72	
Wallet	1163284	0.002326568	0.35	

Bảng 4.5: Kết quả đo lường chi phí triển khai các hợp đồng

triển khai thấp nhất là Identity với 1163284 gas.

4.2.4 Phân tích bảo mật của hợp đồng thông minh trong hệ thống

4.2.5 Đánh giá tốc độ tải trang của giao diện người dùng

4.2.5.1 Môi trường thực hiện

Thông tin cấu hình máy sử dụng để đo tốc độ truy xuất của ReactJS như sau:

- Chip xử lý: 2.7 Ghz Dual-Core intel Core i5
- Hệ điều hành: macOS Catalina version 10.15.1
- RAM: 8GB 1867Mhz DDR3
- Đồ họa: Intel Iris Graphics 6100 1536 MB
- Trình duyệt Google Chrome version 78.0.3904 (được cài sẵn extension MetaMask đã

cấp phép truy cập thông tin)

4.2.5.2 Kết quả đánh giá

Kết quả được tổng hợp ở bảng 4.6.

Page	Loading	Scripting	Rendering	Painting	System	Idle	Total
Detail campaign	28 ms	1320 ms	70 ms	65 ms	220 ms	918 ms	2621 ms
Home page	6 ms	743 ms	3 ms	3 ms	41 ms	102 ms	898 ms
Create campaign	24 ms	1181 ms	47 ms	36 ms	196 ms	672 ms	2156 ms
Explore campaigns	14 ms	798 ms	98 ms	82 ms	237 ms	1541 ms	2770 ms

Bảng 4.6: Bảng kết quả đo tốc độ truy xuất front-end của hệ thống

Chương 5

KẾT LUẬN

5.1 Kết quả đạt được

Khóa luận này đạt được một số kết quả sau:

- Đề xuất mô hình ứng dụng gây quỹ cộng đồng từ thiện dựa trên công nghệ blockchain cải thiện các vấn đề hiện tại của ứng dụng gây quỹ từ thiện.
- Hiện thực mô hình đã đề xuất với các chức năng cơ bản của ứng dụng gây quỹ từ thiện cộng đồng như: tạo chiến dịch, đóng góp vào chiến dịch, giải ngân. Ngoài ra hệ thống còn hiện thực các chức năng nổi bật mà các hệ thống hiện tại chưa hoàn thiện như: lưu trữ định danh, hoàn tiền tự động chiến dịch khi chiến dịch thất bại, bỏ phiếu giải ngân nhiều giai đoạn.

5.2 Ưu điểm và nhược điểm của hệ thống

Với mô hình được đề xuất trong khóa luận, có một số ưu và khuyết điểm sau:

5.3 Khó khăn
......
5.4 Hướng phát triển

Tài liệu tham khảo

- [1] H. P. Vu, L. Bình, H. Dũng, and P. Trà, *Nhận thức của người dân về hoạt động từ thiện* và khả năng gây quỹ của các tổ chức phi chính phủ Việt Nam. NXB Giao thông vận tải, Nov. 2015.
- [2] T. tâm Nghiên cứu Châu Á Thái Bình Dương Hà Nội & Quỹ Châu Á. (2011). Đóng góp từ thiện tại việt nam, [Online]. Available: https://asiafoundation.org/resources/pdfs/ASIATVfinal.pdf (visited on 08/25/2019).
- [3] R. Bekkers and P. Wiepking, "A literature review of empirical studies of philanthropy: Eight mechanisms that drive charitable giving," *Nonprofit and voluntary sector quarterly*, vol. 40, no. 5, pp. 924–973, 2011.
- [4] Alice. (2019). Alice whitepaper, [Online]. Available: https://github.com/alice-si/whitepaper (visited on 08/25/2019).
- [5] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, "Where is current research on blockchain technology?—a systematic review," *PloS one*, vol. 11, no. 10, e0163477, 2016.
- [6] P. Belleflamme, T. Lambert, and A. Schwienbacher, "Crowdfunding: An industrial organization perspective," in *Prepared for the workshop Digital Business Models: Understanding Strategies'*, held in Paris on June, Citeseer, 2010, pp. 25–26.
- [7] L. Hornuf and D. Cumming, *The Economics of Crowdfunding: Startups, Portals and Investor Behavior*. Taylor & Francis Limited, 2018.
- [8] E. Mollick, "The dynamics of crowdfunding: An exploratory study," *Journal of business venturing*, vol. 29, no. 1, pp. 1–16, 2014.
- [9] A. Goranović, M. Meisel, L. Fotiadis, S. Wilker, A. Treytl, and T. Sauter, "Blockchain applications in microgrids an overview of current projects and concepts," in *IECON* 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017, pp. 6153–6158.

- [10] M. N. Saadat, S. A. H. S. A. Rahman, R. M. Nassr, and M. F. Zuhiri, "Blockchain based crowdfunding systems in malaysian perspective," in *Proceedings of the 2019 11th International Conference on Computer and Automation Engineering*, ACM, 2019, pp. 57–61.
- [11] R. Henry, A. Herzberg, and A. Kate, "Blockchain access privacy: Challenges and directions," *IEEE Security & Privacy*, vol. 16, no. 4, pp. 38–45, 2018.
- [12] S. Tilkov and S. Vinoski, "Node.js: Using javascript to build high-performance network programs," *IEEE Internet Computing*, vol. 14, no. 6, pp. 80–83, Nov. 2010, ISSN: 1941-0131. DOI: 10.1109/MIC.2010.145.
- [13] R. R. McCune, "Node.js paradigms and benchmarks," *Striegel, Grad Os F*, vol. 11, p. 86, 2011.
- [14] Jing Han, Haihong E, Guan Le, and Jian Du, "Survey on nosql database," in 2011 6th International Conference on Pervasive Computing and Applications, Oct. 2011, pp. 363–366. DOI: 10.1109/ICPCA.2011.6106531.
- [15] S. Rouhani and R. Deters, "Performance analysis of ethereum transactions in private blockchain," in 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE, 2017, pp. 70–74.
- [16] K. Nguyen, T. Nguyen, and Y. Kovchegov, "A p2p video delivery network (p2p-vdn)," in 2009 Proceedings of 18th International Conference on Computer Communications and Networks, Aug. 2009, pp. 1–7. DOI: 10.1109/ICCCN.2009.5235364.
- [17] F. A. Alabdulwahhab, "Web 3.0: The decentralized web blockchain networks and protocol innovation," in 2018 1st International Conference on Computer Applications Information Security (ICCAIS), Apr. 2018, pp. 1–4. DOI: 10.1109/CAIS.2018.8441990.

Phụ lục A

Mã hợp đồng thông minh - TokenSystem

Mã được liệt kê ở đây

Phụ lục B

Mã hợp đồng thông minh - Campaigns

Mã được liệt kê ở đây