In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import scipy.stats as sps
from statsmodels.sandbox.stats.multicomp import multipletests
import matplotlib.pyplot as plt
%matplotlib inline
```

Реализация коэффициентов Крамера и Мэтьюса

In [2]:

```
1 v def cramer(chi2, n, k1, k2):
    return np.sqrt(chi2 / (n * min(k1, k2) - 1))
3
4 v def matthews(table2x2):
    table2x2 = np.array(table2x2)
    a, b = table2x2[0]
    c, d = table2x2[1]
    return (a*d - b*c) / np.sqrt((a+b) * (a+c) * (b+d) * (c+d))
```

Отток клиентов телекома

Данные https://github.com/Yorko/mlcourse_open/blob/master/data/telecom_churn.csv (https://github.com/Yorko/mlcourse_open/blob/master/data/telecom_churn.csv)

In [3]:

```
1 telecom = pd.read_csv('./telecom_churn.csv')
2 telecom.head()
```

Out[3]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	Tot e\ cal
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	ξ
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	1(
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	11
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	}
4	ОК	75	415	Yes	No	0	166.7	113	28.34	148.3	12
4											•

Количество клиентов в данных

In [4]:

```
1 n = len(telecom)
2 n
```

Out[4]:

3333

Зависимость оттока от количества звонков в службу поддержки

Гистограмма количества звонков в службу поддержки для клиентов в оттоке и не в оттоке. Как видим, клиенты из оттока в среднем чаще совершают звонки в службу поддержки.

In [5]:

```
1 ▼ d1, x1 = np.histogram(telecom[telecom['Churn']]['Customer service calls'],
                           range=(0, 10), bins=10, normed=True)
3 ▼ d2, x2 = np.histogram(telecom[~telecom['Churn']]['Customer service calls'],
                           range=(0, 10), bins=10, normed=True)
5
  dens = pd.DataFrame(np.array([np.append(d1, d2),
                                   np.append(x1[:-1], x2[:-1]),
6
7
                                    [1]*10 + [0]*10]).T,
8
                         columns=['density', 'Customer service calls', 'Churn'])
9
     sns.set(style='white', font_scale=1.3)
10
11 ▼ sns.factorplot(data=dens, x='Customer service calls', y='density',
12
                    hue='Churn', kind='bar', size=6)
13
     plt.xticks(np.arange(10), np.arange(10).astype(str));
```


Будем применять критерий хи-квадрат. Подадим таблицу как есть, и проверим применимость. Доля клеток, в которых ожидаемое количество меньше 5 получилась больше 20%, поэтому надо делать объединения клеток.

```
In [6]:
```

Out[6]:

0.3

In [7]:

```
1 obs
```

Out[7]:

```
        Customer service calls
        0
        1
        2
        3
        4
        5
        6
        7
        8
        9

        Churn

        False
        605
        1059
        672
        385
        90
        26
        8
        4
        1
        0

        True
        92
        122
        87
        44
        76
        40
        14
        5
        1
        2
```

Объединяем два последних столбца

In [8]:

```
1 obs['>7'] = obs[8] + obs[9]
2 del obs[8], obs[9]
3 obs
```

Out[8]:

```
Customer service calls
                      0
                           1
                                2
                                     3 4
                                           5
                                               6 7 >7
             Churn
              False
                    605
                        1059
                              672
                                   385
                                       90
                                           26
                                                8 4
                                                      1
              True
                     92
                         122
                               87
                                   44 76 40 14 5
```

Опять не получилось...

In [9]:

```
chi2, p, dof, expected = sps.chi2_contingency(obs)
(expected < 5).mean()</pre>
```

Out[9]:

0.2222222222222

Еще раз объединяем последние столбцы

```
In [10]:
 1
      obs['>6'] = obs[7] + obs['>7']
 2
      del obs[7], obs['>7']
 3
 4
      obs
Out[10]:
Customer service calls
                    0
                       1
                            2
                                3 4 5 6 >6
             Churn
             False 605 1059 672 385 90 26
                                                5
              True
                   92
                       122 87 44 76 40 14
На этот раз все нормально
In [11]:
 1
      chi2, p, dof, expected = sps.chi2_contingency(obs)
      (expected < 5).mean()</pre>
Out[11]:
0.125
Получаемое число степеней свободы, все правильно
In [12]:
 1
     dof
Out[12]:
7
Значение статистики и pvalue, наблюдается статистически значимая зависимость
In [13]:
     chi2, p
Out[13]:
(339.8121374370096, 1.8667121238838202e-69)
Коэффициент Крамера
In [14]:
 1
      cramer(chi2, n, 8, 2)
Out[14]:
```

Зависимость оттока от тарифного плана

0.22579762345348267

```
In [15]:
 1
      np.unique(telecom['International plan'])
Out[15]:
array(['No', 'Yes'], dtype=object)
В этом случае получаем таблицу 2 на 2
In [16]:
 1
      obs = pd.crosstab(telecom['Churn'], telecom['International plan'])
 2
Out[16]:
International plan
                No Yes
         Churn
         False 2664
                    186
          True
               346 137
Результат применения критерия хи-квадрат статистически значим
In [17]:
 1
      chi2, p, dof, expected = sps.chi2_contingency(obs)
 2
      chi2, p, dof
Out[17]:
(222.5657566499376, 2.4931077033159556e-50, 1)
Коэффициенты Крамера и Мэтьюса
In [18]:
      cramer(chi2, n, 2, 2), matthews(obs)
 1
Out[18]:
(0.1827380961935435, 0.25985184734548217)
Зависимость оттока от тарифного плана голосовой почты
Все аналогично.
In [19]:
      np.unique(telecom['Voice mail plan'])
Out[19]:
array(['No', 'Yes'], dtype=object)
```

In [20]:

```
obs = pd.crosstab(telecom['Churn'], telecom['Voice mail plan'])
obs
```

Out[20]:

```
Voice mail plan No Yes
Churn
False 2008 842
True 403 80
```

In [21]:

```
chi2, p, dof, expected = sps.chi2_contingency(obs)
chi2, p, dof
```

Out[21]:

```
(34.13166001075673, 5.15063965903898e-09, 1)
```

Статистическая значимость имеется, в то время как практическая значимость может быть поставлена под сомнение

In [22]:

```
1 cramer(chi2, n, 2, 2), matthews(obs)
```

Out[22]:

(0.07156136708398074, -0.10214814067014692)

Зависимость оттока от количества минут днем

В данном случае нужно исследовать зависимость двух переменных, из которых одна вещественная, а другая -- бинарная. Для начала можно построить две KDE, по которым уже видна зависимость.

In [23]:

```
sns.set(font scale=1.3)
1
2
    plt.figure(figsize=(12, 5))
3 ▼
    sns.kdeplot(telecom[telecom['Churn'] == True]['Total day minutes'],
4
                 label='True', lw=3)
5 ▼
    sns.kdeplot(telecom[telecom['Churn'] == False]['Total day minutes'],
6
                 label='False', lw=3)
7
    plt.xlabel('Total day minutes')
8
    plt.legend(title='Churn');
```


Чтобы исследовать статистическую зависимость, разобьем вещественную переменную на несколько интервал, тем самым сведя ее к категориальной. После этого можно построить таблицу сопряженности.

In [24]:

Out[24]:

```
array([[ 71., 592., 1478., 674., 35.], [ 10., 88., 132., 184., 69.]])
```

Применяем критерий хи-квадрат. Статистическая значимость имеется.

In [25]:

```
1 sps.chi2_contingency(obs)
```

Out[25]:

```
(312.22807558569394,
2.4931581541229795e-66,
4,
array([[ 69.26192619, 581.45814581, 1376.68766877, 733.66336634,
88.92889289],
[ 11.73807381, 98.54185419, 233.31233123, 124.33663366,
15.07110711]]))
```

Зависимость оттока от количества минут ночью

Все аналогично

In [26]:

In [27]:

Out[27]:

```
array([[ 62., 772., 1499., 488., 29.], [ 5., 120., 259., 96., 3.]])
```

In [28]:

```
1 sps.chi2_contingency(obs)
```

Out[28]:

```
(5.992610695316391,
0.19970079123233955,
4,
array([[ 57.29072907, 762.73627363, 1503.24032403, 499.36993699,
27.36273627],
[ 9.70927093, 129.26372637, 254.75967597, 84.63006301,
4.63726373]]))
```

Интересно, что в этом случае **результат статистически незначим**. Т.е. получаем, что отток зависит от дневных минут и не зависит от ночных.

Итог:

- Зависимость оттока от количества звонков в службу поддержки --- да;
- Зависимость оттока от тарифного плана --- да;
- Зависимость оттока от тарифного плана голосовой почты --- сомнительно;
- Зависимость оттока от количества минут днем --- да;
- Зависимость оттока от количества минут ночью --- нет.

Chess (King-Rook vs. King) Data Set

https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King) (https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King))

Данные состоят некоторого количества бинарных переменных, которые задают комбинацию в игре, а так же результата игры с такой позицией.

In [30]:

```
1 kr_vs_kp = pd.read_csv('kr-vs-kp.data')
2 kr_vs_kp.head()
```

Out[30]:

	bkblk	bknwy	bkon8	bkona	bkspr	bkxbq	bkxcr	bkxwp	blxwp	bxqsq	•••	spcop	stlm
0	f	f	f	f	f	f	f	f	f	f		f	1
1	f	f	f	f	t	f	f	f	f	f		f	†
2	f	f	f	f	t	f	t	f	f	f		f	1
3	f	f	f	f	f	f	f	f	t	f		f	1
4	f	f	f	f	f	f	f	f	f	f		f	1

5 rows × 37 columns

Проведем анализ влияния параметров позиции на итог игры. Для этого для каждого параметра применим критерий хи-квадрат, посчитаем коэффициенты Крамера и Мэтьюса. К результатам применения критерия хи-квадрат применим так же МПГ по методу Холма. Столбец value

соответствует "положительному" значению в терминах коэффициентов Крамера и Мэтьса.

In [31]:

```
features = kr_vs_kp.columns[:-1]
3
    n = len(kr vs kp)
4
5
6 v for f in features:
7
        obs = pd.crosstab(kr_vs_kp[f], kr_vs_kp['result'])
        chi2, p, _, _ = sps.chi2_contingency(obs)
8
9 ▼
        series = pd.Series({'value': obs.index[0],
                          'chi2': chi2,
10
                          'pvalue': p,
11
                          'reject': p < 0.05,
12
                          'cramer': cramer(chi2, n, 2, 2),
13
14
                          'matthews': matthews(obs)})
15
        series.name = f
        influence = influence.append(series)
16
17
18 v influence['reject_holm'] = multipletests(influence['pvalue'],
19
                                         method='holm')[0]
```

In [32]:

- 1
- influence['matthews_abs'] = np.abs(influence['matthews'])
 influence.sort_values(by='matthews_abs', ascending=False).iloc[:, :-1] 2

Out[32]:

	value	chi2	pvalue	reject	cramer	matthews	reject_holm
rimmx	f	651.435295	1.088838e-143	True	0.319265	0.452284	True
bxqsq	f	460.095072	4.583551e-102	True	0.268312	-0.380101	True
wknck	f	424.899908	2.093813e-94	True	0.257845	-0.365265	True
bkxwp	f	172.243093	2.394809e-39	True	0.164167	-0.232908	True
wkna8	f	121.752418	2.615189e-28	True	0.138024	-0.196557	True
r2ar8	f	85.803472	1.987369e-20	True	0.115869	-0.164526	True
bkxcr	f	85.100239	2.836162e-20	True	0.115393	-0.163828	True
mulch	f	78.661185	7.373009e-19	True	0.110942	-0.158337	True
wkpos	f	67.971542	1.658723e-16	True	0.103129	0.146543	True
bkxbq	f	61.903982	3.606196e-15	True	0.098418	0.139802	True
skrxp	f	53.266420	2.912429e-13	True	0.091294	-0.130476	True
stlmt	f	50.034793	1.510438e-12	True	0.088481	-0.127724	True
wkcti	f	50.360744	1.279278e-12	True	0.088769	0.126350	True
rkxwp	f	32.356829	1.283055e-08	True	0.071154	0.101402	True
dwipd	g	31.251496	2.266727e-08	True	0.069928	0.099563	True
bkon8	f	25.609635	4.179472e-07	True	0.063302	-0.091163	True
rxmsq	f	23.886245	1.021994e-06	True	0.061135	-0.087799	True
blxwp	f	22.834490	1.765684e-06	True	0.059774	-0.085171	True
katri	b	154.274708	3.159896e-34	True	0.155368	0.076105	True
hdchk	f	14.436453	1.449688e-04	True	0.047528	-0.071791	True
cntxt	f	14.558650	1.358635e-04	True	0.047728	0.068125	True
simpl	f	6.460625	1.102909e-02	True	0.031795	0.045605	False
wkovl	f	5.021603	2.503299e-02	True	0.028031	-0.040287	False
thrsk	f	4.792972	2.857607e-02	True	0.027385	0.040277	False
skach	f	3.848425	4.979273e-02	True	0.024539	-0.040049	False
bkspr	f	4.645799	3.112965e-02	True	0.026962	-0.038791	False
skewr	f	4.214011	4.009142e-02	True	0.025678	-0.036991	False
reskd	f	2.391095	1.220282e-01	False	0.019343	0.030839	False
spcop	f	0.001979	9.645207e-01	False	0.000556	-0.018496	False
dsopp	f	0.659828	4.166208e-01	False	0.010161	0.015390	False
bkona	f	0.442373	5.059792e-01	False	0.008320	-0.012806	False
qxmsq	f	0.344931	5.569966e-01	False	0.007347	0.012214	False
reskr	f	0.140819	7.074687e-01	False	0.004694	0.007513	False
bknwy	f	0.019222	8.897321e-01	False	0.001734	0.003677	False

_		value chi2		pvalue reject		cramer	matthews	reject_holm	
_	bkblk	f	0.000060	9.937975e-01	False	0.000097	0.001132	False	
	wtoeg	n	0.001504	9.690686e-01	False	0.000485	-0.000040	False	

Прикладная статистика и анализ данных, 2019

Никита Волков

https://mipt-stats.gitlab.io/ (https://mipt-stats.gitlab.io/)