ODE solvers recursive equations

Aurelie Degletagne

March 3, 2015

Contents

1	Not	ations	1
2	Euler solver		1
	2.1	EulerExplicit solver	1
	2.2	EulerImplicit solver	2
3	Nev	vmark solver	2
4	VariationalSymplectic solver		
	4.1	VariationalSymplecticExplicit solver	3
	4.2	VariationalSymplecticImplicit solver	3
5	RungeKutta		
	5.1	Runge Kutta second order	4
	5.2	Runge Kutta fourth order	4
6	CentralDifference solver		5

1 Notations

In each following equation h is the time step, x_k, v_k, a_k the position, velocity and acceleration at the time step k, K the stiffness, M the mass, r_m the rayleigh mass, r_k the rayleigh stiffness and F_{ext} the external forces.

2 Euler solver

2.1 EulerExplicit solver

It is the simplest time integration solver.

The integration scheme is based on the following equations:

$$v_{k+1} = v_k + ha_k$$

$$x_{k+1} = x_k + hv_k$$

2.2 EulerImplicit solver

It is a semi-implicit time integrator using backward Euler scheme for first and second degree Ordinary Differential Equations (ODE). This is based on [Baraff and Witkin, Large Steps in Cloth Simulation, SIGGRAPH 1998]

The integration scheme is based on the following equations:

$$v_{k+1} = v_k + h \frac{Fext_k + v_k(-(r_k + h)K - r_m M)}{h(h + r_k)K + (1 + hr_m)M}$$

$$x_{k+1} = x_k + hv_k$$

3 Newmark solver

It is an implicit time integrator using Newmark scheme. The implementation computes a_k directly then solves the first equation to compute a_{k+1} , and finally computes the new velocity v_{k+1} and the new position x_{k+1} . In Sofa one uses for Newmark coefficients $\gamma = 0.5$ and $\beta = 0.25$.

$$a_{k+1} = \frac{Fext_k + h*cstAcc*a_k + cstVel*v_k}{(h^2\beta + h\gamma r_k)K + (1 + h\gamma r_m)M} \begin{cases} cstAcc = (-r_m(1 - \gamma)M - h(0.5 - \beta)K - rk(1 - \gamma)K) \\ cstVel = (-r_mM - (h + r_k)K) \end{cases}$$

$$v_{k+1} = v_k + h(1 - \gamma)a_k + h\gamma a_{k+1}$$

$$x_{k+1} = x_k + hv_k + 0.5h^2(1 - 2\beta)a_k + h^2\beta a_{k+1}$$

4 VariationalSymplectic solver

It is explicit and implicit time integrator using the Variational Symplectic Integrator as defined in: Kharevych, L et al. Geometric, Variational Integrators for Computer Animation. ACM SIGGRAPH Symposium on Computer Animation 4 (2006): 4351. p is the momentum.

4.1 VariationalSymplecticExplicit solver

$$v_{k+1} = \frac{2(Fext_k + p_k - hr_m v_k M)}{M}$$

$$p_{k+1} = Mv_{k+1}$$

$$x_{k+1} = x_k + hv_{k+1}$$

4.2 VariationalSymplecticImplicit solver

The current implementation for implicit integration assume alpha = 0.5 (quadratic accuracy) and uses several Newton steps to estimate velocity.

$$v_{k+1} = \frac{2(hFext_k + 2p_k)}{4M + h^2K + 4h(r_mM + r_kK)}$$

$$p_{k+1} = (M + \frac{h^2}{4})v_{k+1} + \frac{h}{2}Fext_k$$

$$x_{k+1} = x_k + hv_{k+1}$$

5 RungeKutta

It is a popular explicit time integration method, much more precise than euler explicit solver.

5.1 Runge Kutta second order

It is the Runge-Kutta method with order 2 or the middle point rule. Functions are evaluated two times at each step.

At time
$$t + h/2$$

$$x_{k+\frac{1}{2}} = x_k + \frac{1}{2}hv_k$$

$$v_{k+\frac{1}{2}} = v_k + \frac{1}{2}ha_k$$

$$a_{k+\frac{1}{2}} = \frac{Fext_{k+\frac{1}{2}}}{m}$$
At time $t+h$

$$x_{k+1} = x_k + h * v_{k+\frac{1}{2}}$$

$$v_{k+1} = v_k + h * a_{k+\frac{1}{2}}$$

$$a_{k+1} = \frac{Fext_{k+1}}{m}$$

5.2 Runge Kutta fourth order

It is the Runge-Kutta method with order four. Functions are evaluated four times at each step.

<u>Variables</u>

$$stepBy2 = \frac{h}{2} stepBy3 = \frac{h}{3} stepBy6 = \frac{h}{6}$$

At time t:

• Step 1

$$k1v = v_k$$

$$k1a = a_k$$

• Step 2

$$k2x = x_k + k1v * stepBy2$$

$$k2v = v_k + k1a * stepBy2$$

$$k2a = (Fext_{stepBy2}(k2x, k2v))/m$$

• Step 3

$$k3x = x_k + k2v * stepBy2$$

$$k3v = v_k + k2a * stepBy2$$

$$k3a = (Fext_{stepBy2}(k3x, k3v))/m$$

• Step 4

$$k4x = x_k + k3v * h$$

$$k4v = v_k + k3a * h$$

$$k4a = (Fext_{k+1}(k4x, k4v))/m$$

At time t + h:

$$x_{k+1} = x_k + k1v * stepBy6 + k2v * stepBy3 + k3v * stepBy3 + k4v * stepBy6$$

$$v_{k+1} = v_k + k1a * stepBy6 + k2a * stepBy3 + k3a * stepBy3 + k4a * stepBy6$$

$$a_{k+1} = (Fextk+1)/m$$

6 CentralDifference solver

It is an explicit time integrator using central difference (also known as Verlet or Leap-frog). The equations are separated in two cases: either the rayleigh mass is null or not.

•
$$\underline{\text{if } rm = 0}$$

$$a_{k+1} = \frac{Fext_{k+1}}{m}$$
$$v_{k+1} = v_k + ha_{k+1}$$

$$x_{k+1} = x_k + hv_{k+1}$$

• $\underline{\text{if } rm! = 0}$

$$a_{k+1} = \frac{Fext_{k+1}}{m}$$

$$a_{k+1} = \frac{Fext_{k+1}}{m}$$

$$v_{k+1} = cstVel * v_k + cstAcc * a_k$$

$$\begin{cases}
cstVel = \frac{\frac{1}{h} - \frac{r_m}{2}}{\frac{1}{h} + \frac{r_m}{2}} \\
cstAcc = \frac{1}{\frac{1}{h} + \frac{r_m}{2}} \\
x_{k+1} = x_k + hv_{k+1}
\end{cases}$$