Practical Rate Adaptation for Very High Throughput WLANs

Ομάδα 5

Αλεβίζος Στέλιος ΑΕΜ: 02837 Βλιώρα Αγγελική ΑΕΜ: 03140 Αντωνίου Ιωάννης ΑΕΜ: 02948 Σούτσιου Σωκράτης ΑΕΜ: 03581

Ασύρματες επικοινωνίες 2023-24

Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήμιο Θεσσαλίας, Βόλος astelios@uth.gr avliora@uth.gr ioanniantoniou@uth.gr ssoutsiou@uth.gr

1 Εισαγωγή

Το παρόν άρθρο εξετάζει την υλοποίηση και την αποτελεσματικότητα του αλγόριθμου L3S (Long-Term Stability and Short-Term Responsiveness) στον ath9k, έναν γνωστό ανοιχτού κώδικα οδηγό για ασύρματες κάρτες WLAN Atheros 802.11n. Ο αλγόριθμος L3S έχει σχεδιαστεί για να βελτιώνει την προσαρμογή και ανταπόκριση ρυθμού μετάδοσης εκμεταλλευόμενος μετρήσεις ποιότητας της ασύρματης σύνδεσης σε πραγματικό χρόνο ώστε να λαμβάνει ενημερωμένες αποφάσεις για τα σχήματα διαμόρφωσης και κωδικοποίησης (MCS). Με τη δυναμική ρύθμιση αυτών των παραμέτρων, ο L3S επιδιώκει τη μέγιστη απόδοση χωρίς να διακυβεύεται η σταθερότητα και η αξιοπιστία της επικοινωνίας.

2 Υλοποίηση

2.1 Κύρια Δομή

Ο αλγόριθμος μας υλοποιείται ως επέκταση του minstrel high throughput, του default αλγορίθμου του ath9k driver για το IEEE 802.11n πρωτόκολλο. Δηλαδή έχουν μεταβληθεί τα source και header αρχεία του minstrel ht, net/mac80211/rc80211_minstrel_ht.c και rc80211 minstrel ht.h.

2.2 Αποθήκευση Δεδομένων

Όλα τα επιπλέον δεδομένα του L3S προστέθηκαν στο struct minstrel_ht_sta που επεκτείνει το ieee80211_sta (πληροφορίες για station προς το οποίο μεταδίδουμε) με τις παραμέτρους του minstrel high throughput. Παρακάτω διαφαίνονται οι μεταβλητές των:

- · Short Term Statistics
- State intervals που καθορίζουν τα transition intervals των δύο states
- Flags για την αναγνώριση καταστάσεων μεταβατικών ή μη
- Timers για την εκπλήρωση του σκοπού των intervals

```
// Short term stats
unsigned int L3S_consecutive_successes;
unsigned int L3S_consecutive_failures;
unsigned int L3S_consecutive_retries;

// State intervals
unsigned int L3S_tx_interval;
unsigned int L3S_probe_interval;

// Flags
bool L3S_state;
bool L3S_recovery;
bool L3S_first_probe;
bool L3S_probe_left;

// Timers
unsigned int L3S_tx_timer;
unsigned int L3S_probe_timer;
```

Listing 1: minstrel ht.h, struct minstrel ht sta

2.3 Αρχικοποίηση Δεδομένων

Τα δεδομένα αρχικοποιούνται στην συνάρτηση **minstrel_ht_update_caps** ακριβώς μετά της αρχικοποίησης των rates για το συγκεκριμένο station σε index 0.

```
minstrel_ht_update_rates(mp, mi, retry_series);
// L3S init
L3S_ST_stats_reset(mi);

mi->L3S_state = true;
mi->L3S_probe_left = false;
mi->L3S_probe_interval = 60;
mi->L3S_tx_interval = 20;
mi->L3S_tx_timer = 0;
mi->L3S_probe_timer = 0;
```

Listing 2: retry_series χρησιμοποιεί αρχικά rates μετάδοσης

2.4 Κύρια Λειτουργία

Η κύρια λειτουργία του αλγορίθμου μας υλοποιείται με επίκεντρο την συνάρτηση minstrel_ht_tx_status. Σε αυτήν μπορούμε να εξάγουμε τα short term statistics από τις πληροφορίες που λαμβάνουμε για το μεταδιδόμενο frame.

```
struct ieee80211_tx_status *st;
struct ieee80211_tx_rate *ar = st->info->status.rates;
// add counts of all the rates
L3S_consecutive_retries += ar[i].count;
```

Listing 3: Κύρια Structs

Αφού εξαχθούν χρησιμοποιούμε την συναρτησή μας rate_statistics για να τα χρησιμοποιήσουμε (αλλαγές στο probing interval, άμεσο recovery προς χαμηλότερο rate).

Listing 4: Recovery Process relative to idx

Στη συνέχεια ελέγχουμε τις **timer** και **flag** μεταβλητές για να προσδιορίσουμε σε ποιο state είμαστε (tx/probe). Τέλος, με το σωστό state, διαλέγουμε τα rates για το **MRRS** (rix1,2,3) και τις retry τιμές τους. Παραδείγματος χάρην, σε περίπτωση probing state και first probing stage:

Listing 5: relative group idx in (0,7)

2.5 Ειδικές Περιπτώσεις Probing

	GROUP 1		GROUP 2		GROUP 3
0		10	rix2	20	
1		11	rix1	21	
2		12		22	
3		13		23	
4		14		24	
5		15		25	
6		16		26	
7		17		27	
ı			may to vata[1]	L	
			max_tp_rate[1]		
			rix3		

Listing 6: Probing First Stage tx state relative idx == 0 (rix2)

	GROUP 1		GROUP 2		GROUP 3
0		10		20	
1		11		21	
2		12		22	
3		13		23	
4		14		24	
5		15	rix3	25	
6		16	rix2	26	
7		17	rix1	27	

Listing 7: Probing First Stage tx_state relative idx == 7 (rix1)

	GROUP 1		GROUP 2		GROUP 3
0		10	rix3	20	rix1
1		11		21	
2		12		22	
3		13		23	
4		14		24	
5		15		25	
6		16		26	
7		17	rix2	27	

Listing 8: Probing Second Stage Right tx_state relative idx == 0 (rix2)

	GROUP 1		GROUP 2		GROUP 3
0		10	rix2	20	
1		11		21	
2		12		22	
3		13		23	
4		14		24	
5		15		25	
6		16		26	
7	rix3	17	rix1	27	

Listing 9: Probing Second Stage Left tx_state relative idx == 7 (rix1)

3 Επαλήθευση Λειτουργίας

3.1 Kernel Debugging Μηνόματα

Με την χρήση της συνάρτησης printk τυπώνουμε μηνύματα από το kernel space. Αυτά μπορούμε να τα ελέγχουμε με την εντολή dmesg. Ενδεικτικά, σε μια από τις εκτελέσεις του driver με τον κώδικα μας:

```
[ 291.449449] TX State
[ 291.449450] rix1: 17
[ 291.449450] rix2: 16
[ 291.449451] rix3: 24
[ 291.452641] max tp rates[0]: 17
[ 291.452643] max_tp_rates[1]: 16
[ 291.452644] max_tp_rates[2]: 24
[ 291.452645] max_tp_rates[3]: 15
[ 291.452645] Sucesses (4), Failures (0), Retries(0)
[ 291.452646] Probe State
  291.452647] First Probe Period
  291.452648] rix1: 17
  291.452648] rix2: 16
[ 291.452649] rix3: 15
[ 291.454828] max_tp_rates[0]: 17
[ 291.454852] max_tp_rates[1]: 16
[ 291.454853] max tp rates[2]: 24
[ 291.454854] max tp rates[3]: 15
[ 291.454855] Sucesses (5), Failures (0), Retries(0)
```

Listing 10: Example dmesg output

3.2 MCS Table Statistics

Συγκρίνοντας τα στατιστικά επιλογών MCS index των Minstrel και L3S, παρατηρούμε πώς οι επιλογές του L3S έχουν μεγαλύτερο εύρος από του Minstrel.

			best	rate			statistics		last		sum-of		
mode	guard	#	rate	[name	idx	airtime	max_tp]	[avg(tp)	avg(prob)]	[retry	/ suc att]	[#success	#attempts]
CCK	LP			1.0M	160	10548	0.0	0.0	100.0	0	0 0		4
CCK	LP			2.0M	161	5476	0.0	0.0	0.0	0	0 0	Θ	0
CCK	LP			5.5M	162	2411	2.4	0.0	0.0	0	0 0	0	0
CCK	LP			11.0M	163	1535	4.8	0.0	0.0	0	0 0	Θ	0
CCK	SP			2.0M	165	5380	0.0	0.0	0.0	0	0 0	0	0
CCK	SP			5.5M	166	2315	2.4	0.0	0.0	0	0 0	0	0
CCK	SP			11.0M	167	1439	4.8	0.0	0.0	0	0 0	Θ	0
HT20				MCS0	0	1477	4.8	0.0	0.0		0 0	0	0
HT20				MCS1		738	9.7	9.7	100.0		0 0		
HT20				MCS2		492	17.0	17.0	100.0	0	0 0	2	
HT20				MCS3	3	369	21.9	21.9	100.0	0	0 0		
HT20				MCS4	4	246	34.1	34.1	100.0	0	0 0		
HT20				MCS5		185	46.3	46.3	100.0	0	0 0		
HT20				MCS6	6	164	51.2	51.2	100.0	2	0 0		7
HT20			P			148	56.1	56.1	99.9		0 0	648	650
HT20				MCS8	10	738	9.7	0.0	0.0	0	0 0	0	0
HT20				MCS9	11	369	21.9	21.9	100.0	0	0 0		
HT20				MCS10	12	246	34.1	34.1	100.0	0	0 0	1	1
HT20				MCS11	13	185	46.3	46.3	100.0	0	0 0		
HT20				MCS12	14	123	65.9	65.9	100.0	6	0 0		
HT20			D	MCS13	15	92	87.8	87.8	95.0		0 0	877	923
HT20		2	В	MCS14	16	82	97.6	97.6	96.7	4	2 2	262941	285734
HT20			Α	MCS15	17	74	107.4	102.5	85.2	4	148 166	424270	521874
HT20				MCS16	20	492	17.0	0.0	0.0	0	0 0	0	0
HT20		3		MCS17	21	246	34.1	34.1	100.0	0	0 0	2	
HT20		3		MCS18	22	164	51.2	51.2	100.0	0	0 0		
HT20		3		MCS19	23	123	65.9	65.9	100.0	0	0 0		
HT20		3	С	MCS20	24	82	97.6	95.2	87.5	4	0 0	5215	6664
HT20		3		MCS21	25	62	126.9	0.0	0.0	0	0 1	0	2748
HT20		3		MCS22	26	55	139.1	0.0	0.0	0	0 0	0	2748
HT20	LGI	3		MCS23	27	49	153.8	0.0	0.0	0	0 1	0	2748

Listing 11: Minstrel MCS Table

			best	rate			stat	istics		last	sum-of		
mode	guard	#	rate	[name	idx	airtime	max_tp]	[avg(tp)	avg(prob)]	[retry	suc att]	[#success	#attempts]
сск	LP			1.0M	160	10548	0.0	0.0	100.0	0	0 0	4	4
сск	LP			2.0M	161	5476	0.0	0.0	0.0	0	0 0	0	0
сск	LP			5.5M	162	2411	2.4	0.0	0.0	0	0 0	0	0
сск	LP			11.0M	163	1535	4.8	0.0	0.0	0	0 0	0	0
CCK	SP			2.0M	165	5380	0.0	0.0	0.0	0	0 0	0	0
сск	SP			5.5M	166	2315	2.4	0.0	0.0	0	0 0	0	0
CCK	SP			11.0M	167	1439	4.8	0.0	0.0	0	0 0	0	0
HT20	LGI			MCS0	0	1477	4.8	4.8	100.0		0 0		7
HT20	LGI			MCS1		738	9.7	0.0	0.0		0 0	0	0
HT20	LGI			MCS2		492	17.0	0.0	0.0	0	0 0	0	0
HT20	LGI			MCS3		369	21.9	21.9	100.0	0	0 0		1
HT20	LGI			MCS4		246	34.1	34.1	100.0		0 0		1
HT20	LGI			MCS5		185	46.3	46.3	100.0		0 0		1
HT20	LGI			MCS6		164	51.2	51.2	100.0		0 0	20	20
HT20	LGI		P	MCS7		148	56.1	56.1	99.9		0 0	194	196
HT20	LGI			MCS8	10	738	9.7	9.7	99.9		0 0	1003	1027
HT20	LGI			MCS9	11	369	21.9	21.9	100.0	0	0 0		1
HT20	LGI			MCS10	12	246	34.1	34.1	100.0		0 0		1
HT20	LGI			MCS11	13	185	46.3	46.3	100.0		0 0	84	84
HT20	LGI			MCS12	14	123	68.3	68.3	99.9	3	0 0	2484	2542
HT20	LGI		D	MCS13	15	92	87.8	87.8	99.5	3	0 0	14744	15260
HT20	LGI			MCS14	16	82	97.6	97.6	99.8		0 0	67753	70471
HT20	LGI		Α	MCS15	17	74	107.4	107.4	95.6	4	84 85	581717	610143
HT20	LGI			MCS16	20	492	17.0	0.0	0.0		0 0	0	1
HT20	LGI			MCS17	21	246	34.1	34.1	99.4		0 0	446	462
HT20	LGI			MCS18	22	164	51.2	51.2	99.9		0 0	1101	1164
HT20	LGI			MCS19	23	123	68.3	68.3	97.4		0 0	1449	1506
HT20	LGI		В	MCS20	24	82	97.6	97.6	99.9		0 0	10705	11193
HT20	LGI			MCS21	25	62	126.9	0.0	0.0		0 0		34192
HT20	LGI			MCS22	26	55	141.6	0.0	8.3		1 3		119712
HT20	LGI			MCS23	27	49	156.2	0.0	0.0		0 1	0	92105

Listing 12: L3S MCS Table

Listing 13: MCS index choices

4 Πειράματα

4.1 Interference

Για να δούμε την απόδοση του L3S σε σύγκριση με τον minstrel φτιάξαμε ένα script στην python το οποίο για 300 sec δημιουργεί και τρέχει εντολές iperf οι οποίες έχουν time range από 10 εώς 40 seconds και Mbps range από 30 εώς 60. Οι εντολές iperf εκκινούνται η μία μετά την άλλη με τυχαία χρονική διαφορά μεταξύ 10 με 15 seconds ώστε να μην υπάρξει απότομη συμφόρηση στην αρχή του πειράματος αλλά να είναι διαμοιρασμένη για να παρατηρήσουμε την συμπεριφορά του αλγόριθμου όταν υπάρχουν απρόβλεπτες και μεγάλες αυξομειώσεις στην διάρκεια των 300 δευτερολέπτων.

4.2 Σενάρια

Χρησιμοποιώντας την μηχανή ψευδοτυχαίων αριθμών της python καταλήξαμε σε 3 σενάρια με 3 διαφορετικά seeds (1, 10 και 100). Και τα τρία σενάρια έτρεξαν στους

κόμβους 54-84, το main link (link quality 61/70), και 55-86 το interference link. Παρακάτω παρουσιάζουμε τα προφίλ των interference.

Listing 14: Scenario 1

Listing 15: Scenario 2

Listing 16: Scenario 3

4.3 Αποτελέσματα

Οι συγκρίσεις των throughput Minstrel-L3S:

Listing 17: Scenario 1

Listing 18: Scenario 2

Listing 19: Scenario 3