- C++11, C++14, C++17
- Атрибуты
 - o C++11
 - o C++14
 - o C++17
- Lambda
 - o C++11
 - o C++14
 - o C++17
- POD-type
- auto/decltype
 - o C++11
 - Альтернативный синтаксис шаблонных функций
 - o C++14
- Literals
 - o C++11
 - Строковые литералы
 - Пользовательские литералы
 - o C++14
 - Строковый литерал
 - Бинарные литералы
 - Разделители числовых литералов
 - STL литералы
- Initialization
 - o C++11
 - Универсальная инициализация
 - std::initializer_list
 - o C++14
 - Aggregate initialization with deafult member initializer
 - o C++17
 - auto + std::initializer_list
 - Агрегатная инциализация базового класса
- constexpr
 - o C++11
 - o C++14
 - o C++17
- Шаблоны
 - o C++11
 - Вариативные шаблоны (Variadic template)
 - Extern templates
 - o C++14
 - Шаблон переменной (Variable template)
 - o C++17
 - Выведение типов шаблонных аргументов
 - template auto
 - Fold expressions (свертка функций)

- constexpr if
- Спецификаторы
 - 'default' + 'deleted' specifiers
 - o 'overrdie' + 'final' sepcifiers
- Небольшие нововведения
 - o C++11
 - Move semantics
 - noexcept
 - Range based for cycle
 - Delegate constructors
 - Default values for non-static class members
 - nullptr
 - enum class
 - enum underlying type
 - Explicit cast operators
 - Relaxed rules for unions
 - static assert
 - allignof, alligingas
 - 'using' for types
 - o C++14
 - Memory allocation ellision/combining
 - o C++17
 - noexcept
 - Copy elision
 - Structure bindings
 - Последовательность операций вызова
 - 'if' / 'switch' with initialization
 - inline variables
 - has_include()
 - allignas (32)
 - static_assert(true)
 - Nasted namespaces
- STL
 - o C++11
 - Chrono
 - Random
 - Regex
 - Multithreading
 - Обновления вызванные новым стандартом
 - std::tuple
 - Accosicative unordered containers
 - Smart pointers
 - std::function
 - std::reference_wrapper
 - o C++14
 - Гетрогенный поиск по ассоциативным контейнерам

- Адресация элементов кортежа через тип
- std::make_unique
- std::exchange
- rbegin, rend, cbegin, cend, rcbegin, rcend

o C++17

- string_view
- std::to_chars/std::from_chars
- std::optional
- std::variant
- std::any
- std::filesystem
- std::byte
- std::apply
- std::as_const
- std::clamp
- Ассоциативыне контейнеры
- std::size, std::data, std::empty
- non const std::string::data
- std::not fn
- emplace_back
- std::scoped_lock
- shared_poiter для массивов
- Математические функции
- Paralel algorithms
- Undefined behavior
 - Неуточненное поведение
 - Примеры undefined behavior
 - Более серьёзные, и менее очевидные случаи:
- Выведение типов лекция
 - Обзор
 - Правила вывода для шаблонов
 - Правила вывода типов по значению
 - Правила вывода типов для указателей и ссылок
 - Правила вывода типов для forwarding reference
 - Правила вывода для auto
 - Правила вывода для lambda capture-list
 - Правила вывода для decltype
 - Правила вывода для возвращаемого типа
 - Как найти\отладить выводимый тип
 - Вывод типов на runtime: RTTI
- Метапрограммирование
 - Не типовые шаблонные параметры
 - Типовые шаблонные параметры
 - Ключевое слово typename
 - Explicit (full) specialization (явная\полная специализация)
 - Partial specialization (частичная специализация)

- Variadic template (вариативные шаблоны)
- Вычисления на этапе компиляции
- Compile-time type manipulation (Преобразование с типами)
 - Primary type categories
 - Composite type categories
 - Type properties
 - Supported operations properties
 - Type relationships
 - Property queries
 - Type transformations
- Curiously recurring template pattern: CRTP
- SFINAE (Substituation Failure Is Not An Error)
 - Tag dispatch
 - Практический пример основанный на SFINAE
- Special metafunctions
- o void_t
- Detectors
- STL
 - Базовая структура STL
 - Контейнеры
 - std::allocator
 - Последовательные контейнеры
 - std::vector
 - std::array
 - std::forward list
 - std::list
 - std::deque
 - Упорядоченные ассоциативные контейнеры
 - std::set / std::multiset
 - std::map / std::multimap
 - Неупорядоченные ассоциативные контейнеры
 - **std::unordered_set **
 - **std::unordered_map **
 - Адаптеры
 - std::stack
 - std::queue
 - std::priority_queue
 - Итераторы
 - InputIterator
 - ForwardIterator
 - BidirectionalIterator
 - RandomAccessIterator
 - OutputIterator
 - std::iterator_trait
- TODO

C++11, C++14, C++17

Ниже рассмотрены нововведения 3х стандартов языка С++.

Атрибуты

C + + 11

[[noreturn]]

Функция помеченная так не должна возвращать поток управленения.

[[carries_dependencies]]

Атрибут связан с моделями памяти.

C + + 14

[[depracated]]

Атрибудт позволяет разметить устаревший код, вызывая warning'и при его использовании.

```
struct [[depracated]] Name;
[[depracated]] typedef S* pS;
using PS [[depracated]] = S*;
[[depracated]] int x;
uninon U { [[depracated]] int n; }
[[depracated]] void f();
namespace [[depracated]] {NS { int x; }
enum [[depracated]] E {};
enum E { a [[depracated]], b [[depracated]] = 1 };
template < > struct [[depracated]] X<int> {};
```

C + +17

[[fallthrough]]

Используется для switch блоков, сообщая что оператор break не был пропущен по ошибке.

```
switch (x)
{
   case 1:
      [[fallthrough]] //No warning
   case 2:
      break;
```

```
case 3: //Warning
  case 4:
    break;
}
```

[[nodiscard]]

Атрибут требует чтобы результат функции не был проигнорирован.

```
[[nodiscard]] bool isEmpty() { ... }
bool status = isEmpty(); //No warning
isEmpty(); //Warning - результат возвращаемый функцией проигнорирован
```

[[maybe_unused]]

Атрибут убирает warning от неиспользуемых аргументов\переменных\функций итд.

```
struct [[maybe_unused]] S;
[[maybe_unused]] typedef S* PS;
using PS [[maybe_unused]] = S*;
[[maybe_unused]] int x;
union U { [[maybe_unused]] int n; };
[[maybe_unused]] void f();
enum [[maybe_unused]] E {};
enum { A [[maybe_unused]], B [[maybe_unused]] };
```

Lambda

C + + 11

Анонимные функции, вызываемого типа std::function, могут использоваться в STL.

Общий вид:

Списки захвата:

```
[] // ничего не захватывается
[=] // локальные переменные по значению
[&] // локальные переменные по ссылке
[this] // this по ссылке
[a, &b] // захват отдельных перменных, по значению и ссылке
```

C + + 14

Дополнены правила списка захвата:

```
[&r = x, x = x + 1]

//в lambda можно захватить ссылку, и назвать её как удобно, и можно использовать выражение для инициализации переменной

[x = factory(2)]
[p = std::move(p)]

//Пример генератора
auto generator = [x = 0]() mutable { return x++; }
int a = generator(); // == 0
int b = generator(); // == 1
```

Так же перестал быть необходим trailing return type, для возвращаемого типа auto.

Были введены генерализированные lambds, когда аргументы указаны типа auto.

C + +17

Добавлена возможность захвата текущего объекта по копии, а не по ссылке.

```
[*this]
```

Необходим спецификатор mutable, для того чтобы иметь возможность вызывать неконстантные версии функций класса.

POD-type

Plain old data - структура размещающаяся в памяти таким образом, как её описал программист, исключая оптимизации. Это может быть необходимо для передачи данных в другие языки программирования.

POD = Тривиальный класс + Класс со стандартным размещением

Тривиальный класс:

- T() = default;
- T(const T&) = default;
- T& operator=(const T&) = default;
- T(T&&) = default;
- T& operator=(T&&) = default;
- ~T() = default;
- Нет виртуальных методов и виртуального наследования
- Все нестатические поля тривиальны
- Все базовые классы тривиальны(при наличии)

Класс со стандартным размещением:

- Все нестатические поля имеют одинаковый доступ private\public\protected
- Нет вирутальных методов и вирт. наследования
- Нет нестатических полей-ссылок
- Все нестатические поля и базовые классы со стандартным размещением
- Все нестатические поля объявленны в одном классе в иерархии наследования
- Нет базовых классов того же типа, что и первое нестатическое поле

auto/decltype

auto - возможность замена типа на auto.

Примеры типов: переменной, возвращаемого значения функции, и шаблоных аргументов.

decltype() - позволяет выводить тип переменной или выражения.

C + + 11

Особенности работы auto:

```
int bar();
auto i = 0; //int
auto ui = 0u; //unsigned int
volatile auto ci = i; //volotile int
const volatile auto cvi = i; // const volatile int
auto j = cvi; //int

auto& ri = i; //int &
const auto& cri = i; //const int&

auto&& fri = i; // int &
auto&& fri = i; // const int &
```

```
auto &&frv = 0; // int && auto &&frvf = bar(); // int &&
```

Альтернативный синтаксис шаблонных функций

Позволяет выводить возвращаемый тип шаблонной функции.

```
template <typename T1, typename T2>
auto sum(const T1& lhs, const T2& rhs) -> decltype(lhs + rhs)
{
    return lhs + rhs;
}
```

C + + 14

He нужен trailing return type, достаточно auto, Можно реализовать функцию факториал с возвращаемым типом auto, но факториал от нуля должен быть определён до рекурсивного использования этой функции.

Так же было осущестлвенно послабление, теперь внутри decltype() можно указывать не выражение\переменную, а auto.

Примеры:

```
double foo();
double&& bar();

double v1 = 0.0;  //double
  const double& v2 = v1;  //const double &

decltype(auto) v3 = v1;  //double
  decltype(auto) v4 = (v1);  //double&
  decltype(auto) v5 = v2;  //const double&

decltype(auto) v6 = foo();  //double
  decltype(auto) v7 = bar();  //double &&
```

Literals

C + + 11

Строковые литералы

```
//Было до C++11

"Text" //char
L"Text" //wchar_t

//Появилось в C++11 - utf

u8"Text" //char - utf8
u"Text" //char16_t
U"Text"//char32_t

//Сырые строки обрамляются в () в "" и могут иметь произвольны delemiter
R"delimiter( raw string )delimeter"
LR"delimiter( raw string )delimeter"
u8R"delimiter( raw string )delimeter"
uR"delimiter( raw string )delimeter"
uR"delimiter( raw string )delimeter"
UR"delimiter( raw string )delimeter"
```

Пользовательские литералы

Пример пользовательского литерала преобразования радиан в градусы.

```
long double operator""_degrees(long double value)
{
    return value * M_PI / 180.0;
}
double degrees = 0.38__degrees
```

Список возможных аргументов, при определении пользовательского литерала:

```
( const char * )
( unsigned long long int )
( long double )
( char )
( wchar_t )
( char16_t )
( char32_t )
( const char * , std::size_t )
( const wchar_t * , std::size_t )
( const char16_t * , std::size_t )
( const char32_t * , std::size_t )
```

C + + 14

```
std::string from_literal = "some string"s;
```

Бинарные литералы

```
int a = 0b111; // == 7
int b = 0B11; // == 3
```

Разделители числовых литералов

```
int a = 1'000'000;
int b = 3.14'15'92'65;
```

STL литералы

```
auto half_minute = 30s; // std::chrono::duration
auto day = 24h; // std::chrono::duration

auto complex = 1 + 1i; //std::complex
```

Initialization

C + +11

Универсальная инициализация

Везде можно использовать {}:

```
// Начиная с C++11 можно везде {}

int a;
int b{2};
int c = {2};
int d{};
int arr[] = {1, 2, 3};

struct Point { double x, y; } point {0.0, 0.0}; //(5)
std::complex<double> cmpl{0.0, 0.0}; //(2)
std::complex<double> c2 = std::complex<double>{0.0, 0.0}; //(3)
```

std::initializer_list

Возможность использовать список инициализации для создания конструкторов или операторов присвоения.

Значения задаются между {} и через запятую.

initializer_list содержит следующие функции:

```
auto init_list = initializer_list<int> { 1, 2, 3};
init_list.size();
init_list.begin();
init_list.end();

init_list.r/c/begin/end(); // Начиная с С++14

init_list.empty(); // Начиная с С++17
init_list.data(); // Начиная с С++17
```

C + + 14

Aggregate initialization with deafult member initializer

```
struct x
{
    int a,b;
    char c = '0';
};

x v { 1, 2 }; // До C++14 нельзя было опустить третье поле "c"
```

C + +17

auto + std::initializer_list

```
// До C++17

auto v1 { 1, 2, 3}; // std::initializer_list<int>
auto v2 = { 1, 2, 3, }; // std::initializer_list<int>
auto v3 {42}; // std::initializer_list<int>
auto v4 = { 42 }; // std::initializer_list<int>

// Начиная с C++17

auto v1 { 1, 2, 3}; // compile error
auto v2 = { 1, 2, 3, }; // std::initializer_list<int>
auto v3 {42}; // int
auto v4 = { 42 }; // std::initializer_list<int>
```

Агрегатная инциализация базового класса

Возможность вложенной инициализации:

```
struct Base
{
    std::string name;
    std::string sur_name;
};

stuct Child : public Base
{
    int age;
}

Child ch1; //name, sur_name - empty, age undefined
Child ch2{}; //all fields empty

Child ch3 {{"name", "sur"}, 99};
Child ch4 {"name", "sur", 99};
```

constexpr

C + +11

Функции помеченные constexpr могут вычислять на этапе компиляции. Изначально такие функции имели большое количество ограничений, например должны были состоять из только 1 блока return.

C + + 14

Ограничения были существенно ослабленны. Запрещенным остались:

```
__asm__
goto
метки, корме case\default в switch,
блок try,
переменные нелитерального типа,
static \ thread_local переменные,
переменные без инициализации
```

Так же они удобны для применения в шаблонной магии, например в вариативных шаблонах, о них ниже.

C + +17

Лямбда может быть помечена как constexpr:

```
constexpr auto add = [](int a, int b) { return a + b; }
```

Если она может быть вызванна на этапе компиляции - это будет осуществленно, иначе она будет работать в run-time.

Шаблоны

C + +11

Вариативные шаблоны (Variadic template)

Используются для создания функций с переменным числом аргументов:

```
template <typename... Args>
void printf(const char* const format, const Args&... args);

//При вызове
printf("test", 1, 0.1);

// Произойдёт инстанцирование
printf<int, double>("test", 1, 0.1);
```

Помимо этого, используются в кортежах (tuple).

Extern templates

Используются с целью осуществить единичное истанцирование при компиляции, для её ускорения.

```
extern template void foo<int>(int);
extern template class SomeClass<int>;
```

C + + 14

Шаблон переменной (Variable template)

```
template <class T>
structure is_reference
{
    static constexpr bool value = false;
};

template <class T>
structure is_reference<T&>
{
    static constexpr bool value = true;
};

template <class T>
structure is_reference<T&&>
{
    static constexpr bool value = true;
};

template <class T>
structure is_reference<T&&>
{
    static constexpr bool value = true;
};

template <typename T>
constexpr bool is_reference_v = is_reference<T>::value;
static_assert(!is_reference_v<SomeType>, " SomeType is reference");
```

C + +17

Выведение типов шаблонных аргументов

Возможность не использовать указание типа шаблонного параметра в <>:

```
std::piar m {0, 0}; //Bmecro std::pair<int, int> { 0, 0};
std::vector v { 0.0 }; // Bmecro std::vector<double> { 0.0; }
std::lock_guard lock(mutex); // Bmecro std::lock_guard<std::mutex>
```

Так же deduction guide может быть определен вручную. Пример для std::array:

```
namespace std
{
template <class T, size_t N>
struct array
{
    Tarr[N];
};

template <class T, class... U>
array(T, U...) -> array<T, sizeof...(U) + 1>
};

//Тогда возможно использование
std::array arr {0, 1, 2, 3}; //Вместо std::array<int, 4>;
```

template auto

Полезно для template not-type параметров.

```
template <auto Val> // Эквивалент template <decltype(auto) Val> struct integral_const {
    using value_type = decltype(Val);
    static constexpr value_type value = Val;
};
using true_type = integral_const<true>; //He требуется задавать тип вручную using false_type = integral_const<false>; //integral_const<bool, false>

//Схожий пример:
template <auto.. seq> struct my_sequence
{
    ...
};
auto seq = std::integer_sequence<int, 0, 1, 2>(); //int задан явно auto seq2 = my_sequence<1, 2, 3>(); //int будет выведен из значений
```

Fold expressions (свертка функций)

Позволяет записывать операции для вариативного числа шаблонных аргументов:

```
template <typename T, typename ..Types>
constexpr auto sum(T t1, Types ..tN)
{
    return (t1 + ... + tN);
}
```

```
constexpr size_t res = sum(0, 1, 2, 3);
```

Четыре вида свёрток функций:

```
(pack op ...) = (E_1 op (... op (E_N-1 op E_N)))
(... op pack) = (((E_1 op E_2) op ...) op E_N)
(pack op ... op init) = (E_1 op (... op (E_N-1 op (E_N op I))))
(init op ... op pack) = ((((I op E1) op E2) op ...) op E_N)
```

Операции:

```
op:
+, -, *, /, %, ^, &, |, =, <, >, <<, >>,
+=, -=, *=, /=, %=, ^=, &= |=,
<<=, >>=, ==, !=, <=, >=, &&, ||, .*, ->*
и оператор ,
```

Начиная с С++17 возможна запись:

```
template <typename ...Types>
void print(const Types& ...tN)
{
    std::cout << ... << tN;
}</pre>
```

constexpr if

Метод разметить ветки для шаблонов:

```
template <size_t N>
decltype(auto) get(const Person& )
{
    if constexpr (N == 0)
    {
        return p.Name();
    }
    else if constexpr (N == 1)
    {
        return p.GetSurname();
    }
}
```

Спецификаторы

'default' + 'deleted' specifiers

Возможность либо пометить удалённой и недопустимой функцию (deleted). Либо реализовать стандартное поведение для конструктров\операторов присваения итд.

- 1. Дефотный конструктор
- 2. Констуктор копирования
- 3. Конструктор перемещения
- 4. Оператор копирования
- 5. Оператор перемещения

Если компилятор может - он постарается вывести поехсерт версии функций

'overrdie' + 'final' sepcifiers

override - указывает на то, что функция переопределяет виртуальную функцию из наследуемого класса.

final - не даст переопределять функции дальше, т.е. означает что это финальная версия перезагруженной функции.

```
virtual void foo(int) const override {}
virtual void foo(int) const final {}
```

Так же final может запретить дальнейшее наследование, если мы хотим создать класс\структуру, от которой нельзя наследоваться дальше.

Небольшие нововведения

C + +11

Move semantics

Добавлен новый тип r-value ссылка T&&, который представляет собой временное значение, например результат вычисления выражений или результат вызова функций.

Для того чтобы перенести такое значение без копирования введена специальная функция std::move().

Move семантика полезна когда объект тяжелый для копирования, но легкий для перемещения. Или же когда объект запрещено копировать, например unique_ptr.

noexcept

Метод пометить функцию, что она не должна вызывать исключения.

Необходимо для создания move-конструктора и оператора присвоения, если они не помечены как noexcept будут вызываны конструктор копирования и оператор копирования (например при содания векторов нашего произвольного класса).

Range based for cycle

Вызов цикла в конструкции вида:

```
for (const auto& element: containter)
{
    ...
}
```

Где container это класс с функциями begin\end, возвращающих итератороподобный объект, который должен уметь инкрементироваться и разыменовываться как указатель.

Delegate constructors

Возможность вызова одного из конструкторв из тела другого.

Default values for non-static class members

Возможность проинициализировать переменную класса в месте её определения

nullptr

Общий тип для обозначения пустых указателей. Можно перегружать функции, используя std::nullptr_t как аргумент.

enum class

Не позволяет сравнивать поля разных enum'oв.

enum underlying type

Позволяет задать тип, в котором хранится перечисление, например:

```
enum X : int
{
         A,
         B
};
```

Тем самым можно задать размер переменной типа Х.

Explicit cast operators

Операторы явного каста:

```
class P
{
    explicit operator bool() { return ...; }
};

P ptr;
int flag = ptr; // Преобразования не будет,
//т.к. помечено explicit: ошибка компиляции
```

Relaxed rules for unions

До 11 стандарта можно было использовать только POD внутри union.

Теперь почти любой, но важно для юнона так же объявить конструктор, если он есть у вложенной структуры. Но в 17 стандарте это стало не обязательным для реализации.

static_assert

Возможность использования ассертов на этапе компиляции, условие + строка сообщения, например:

```
static_assert(std::is_pod(variable), "ERROR: !!");
```

В 17 стандарте строка стала не обязательной.

allignof, alligingas

Позволяет использовать нужное выравнивание или узнать его

'using' for types

Более современная замена typedef, способная принимать шаблонные аргументы:

```
typedef std::vector<int>::iterator vec_iter;

template <typename T>
typedef std::vector<T>::iterator vec_t_iter;
//Ошибка при компиляции

Алтернативная запись:
using vec_iter = std::vector<int>::iterator;

template <typename T>
using vec_t_iter = std::vector<T>::iterator;

vec_t_iter<int> it; //ok!
```

C + + 14

Memory allocation ellision/combining

Вызовы new\delete могут оптимизироваться.

C + + 17

noexcept

Спецификатор того, что функция не выбрасывает исключения - теперь часть системы типов функции.

```
typdef void (*nef)() noexcept;
typedef void (*ya)();

void foo() noexcept;
void bar();

ef pf1 = foo; // +
nef pf2 = foo; // +
ef = bar; // +
nef = bar; // Compile error
```

Copy elision

Создание объекта не при выходе из фукнкции, а в месте его последующего применения, там где эта функция вызывалась.

Structure bindings

Возможность раскрутить группу значений в серию переменных. Можно раскрытить:

- array
- tuple
- pair/structure

```
const auto& [field1, field2, field2] = structure/tupple/..
```

Можно реализовать для произвольного класса:

```
template <size_t N>
decltype(auto) get(const Person&);

template <>
delctype(auto) get<0>(const Person& p)
```

```
return p.GetName();
}
template <>
decltype(auto) get<1>(const Person& p)
    return p.GetSurname();
}
// Далее нужно определить tuple_size в std::
namespace std
{
    template <>
    struct tuple_size<Person> : std::integral_constant<size_t, 2>
    {};
    template <>
    struct tuple_element<0, Person>
        using type = const std::string &;
    };
    template <>
    struct tuple_element<1, Person>
        using type = const std::string &;
    };
}
```

Последовательность операций вызова

```
a.b
a->b
a->*b
a(b1, b2, b3)
// b1, b2, b3 не последовательны
// их порядок не определен
b @= a
a[b]
a << b << c
a >> b >> c
```

'if' / 'switch' with initialization

Возможность задать значение в теле условия:

```
if (int a = f(5); a > 2)
{
    //a существует здесь
}
//а не существует здесь
```

Можно использовать structure bindings на этапе if initialization. Тем самым подготовить сразу несколько переменных для условий и вычислений.

inline variables

Необходимы чтобы быть разделяемыми между файлами, будучи определенными в хэдере. Или для функций - чтобы писать определение прямо в хэдере.

_has_include()

Директива препроцессора, проверяет наличие хэдеров

allignas (32)

Теперь выравнивани структуры по границе заданной, при динамическом размещении

static_assert(true)

Теперь можно использовать без строки, просто 1 условие

Nasted namespaces

```
namespace A::B::C {
    int i;
}

//Эквивалентно:
namespace n1 {
    namespace n2 {
        int n;
    };
};

//Вызов
n1::n2::n;
```

STL

C++11

Chrono

Используется для измерения времени:

```
#include <chrono>
template <class Clock, class Duration = typename Clock::duration>
std::chrono::time_point; //Тип для хранения момента времени
std::chrono::system clock; //Возможные типы отсчётов
std::chrono::high_resolution_clock;
std::chrono::steady_clock; //Наиболее приоритетный
auto start = std::chrono::steady_clock::now();
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
auto durMs = duration_cast<std::chrono::miliseconds>(end - start);
//Другие варианты для std::chrono::duration cast:
std::chrono::nanosecods;
std::chrono::microseconds;
std::chrono::miliseconds;
std::chrono::seconds;
std::chrono::minutes;
std::chrono::hours;
```

Random

Используется для генерации случайных чисел.

```
Random number engines
{
    linear_congruential_engine,
    mersenne_twister_engine,
    subtract_with_carry_engine
};

Random number engine adaptors
{
    discard_block_engine,
    independent_bits_engine,
    shuffle_order_engine
};

Predefined generators
{
    minstd_rand0,
    minstd_rand,
    mt19937,
```

```
mt19937_64,
    ranlux24_base,
    ranlux48_base,
    ranlux24,
    ranlux48,
    knuth_b,
    default_random_engine
};
Non-deterministic random numbers : random_device;
//Внутри каждого из них есть несколько вариаций
Distributions
{
    Uniform distributions,
    Bernoulli distributions,
    Poisson distributions,
    Normal distributions,
    Sampling distributions
};
```

Пример:

```
#include <random>

std::mt19937_64 engine { std::random_device{}() };
std::uniform_int_distribution<> distr { 0, 100 };
std::cout << distr(engine);
auto generator = std::bind(distr, engine);
std::cout << generator();</pre>
```

Regex

Регулярные выражения:

```
//Другой вариант использования - замена:

auto replaced = std::regex_replace(str, pattern, "xx.xx.xxxx");
```

Multithreading

Используется для реализации многопоточных или асинхронных приложений.

```
#include <thread>
   // Потоки и синхронизация:
    std::thread
   std::mutex
   std::recursive_mutex
   std::timed_mutex
    std::recursive_timed_mutex
    std:: conditional_variable
   // Модели и барьеры памяти:
    std::memory order
    std::atomic_thread_fence
    // Атомарные переменные:
    std::atomic
   // Асинхронные вычисления:
    std::future
    std::packaged_task
    std::promise
```

Обновления вызванные новым стандартом

```
// конструирование на месте, на подобии как make_pair: только 1 вызов move конструктора std::container<T>::emplace(); std::container<T>::cbeing, ::cend(), std::begin, std::end; // если unordered контейнер, когда есть ясность куда вставить значение - это может улучшить скорость std::associative_container<T>::emplace_hint(); // обрезать по границе использования std::seq_container<T>::shrink_to_fit(); std::vector<T>::data(); std::list<T>; // complexity constraints
```

Можно использовать функцию make_tuple().

Доставать значения можно std::get(v);

Функция tie - которая может сформировать tupple от левых ссылок, $std::tie(name, surname) = get_person(1);$

В С++17 он перестаёт быть нужен, но можно им сравнивать группы значений:

std::tie(year, month, day) > std::tie(year2, month2, day2);

Accosicative unordered containers

```
unordered__set, _multiset, _map, _multimap,
```

Поиск за O(1), как и вставка\удаление. Но зависит от количества элементов на bucket'e.

Smart pointers

```
//Можно настроить делитер - который закроет файл std::unique_ptr<FILE, decltype(deleter)>;
std::unique_ptr<T> std::shared_ptr<T> std::week_ptr<T> //решение для перекрестных ссылок
```

std::function

Обертка для callable объекта, которым может выступать лямбда.

Или результат std::bind.

std::reference_wrapper

Модулирование поведения ссылки. Нужны для thread'ов - чтобы протолкнуть объект по ссылке std::ref + std::cref - функции помогающие сгенерировать объект типа reference_wrapper.

C + + 14

Гетрогенный поиск по ассоциативным контейнерам

```
//Гетрогенный компоратор less
std::set<std::string, std::less<>> elements { ... };
//При вызове не будет формироваться новые std::string для сравнения:
elements.find("const char*");
```

Адресация элементов кортежа через тип

Стала доступна адресация по типу ::get().

Если будет указан несуществующий тип - ошибка будет на этапе компиляции. Но элементов с одинаковым типом не должно быть, для корректной работы функции.

std::make_unique

Подобие make_shared, make_pair, make_tuple.

std::exchange

std::excange(объект, следующее его значение). Результат вызова это изначальный объект.

Можно использовать чтобы пробежать по массиву и обнулить его:

```
for (const auto x: std::exchange(vec, {})
    std::cout << x << std::endl;</pre>
```

Другая область использоваия это реализация своего move конструктора, или move оператора присваивания.

rbegin, rend, cbegin, cend, rcbegin, rcend

Константные и реверсивные интераторы для контейнеров.

C + + 17

string_view

Обобщенный и легковесный вариант для хранения строчек std::string\c_string std::string_view // std::wstring_view

std::to_chars/std::from_chars

Функции приобразования цифр. Может содержать ошибку парсинга.

std::optional

Хранит либо значение, либо nullopt

```
#incluede <optional>
std::optional<int> opt = 3;

opt.has_value(); // == if (optional)
opt.value(); // == *optional

//Возвращает значение, если оно есть, или переданный объект:
opt.value_or({});
```

```
//Операции сравнения в условиях с нижлежащим классом if (optional > 2) {}
```

std::variant

Метод хранения множества разнотипных значений вместе:

```
#include <variant>
std::get<0>();
std::get<std::string>();

//Boзвращает const type* ptr, или nullptr если не удалось преобразовать к типу
std::get_if<type>(variant);

//Boзможность установки базового состояния variant
//на случай если другие объекты не имеют конструктора по умолчанию
std::monostate;

//Можно всё обработать единственной лямбдой с auto аргументом
std::visit( [](auto arg) { std::cout << arg << ' '; }, v);</pre>
```

std::any

Принимает произволный тип, но почти всегда происходит динамическая локация. Если возможно, лучше использовать variant.

Пример:

```
std::any x{5};
x.has_value(); // == true
std::any_castt<int>(x); // == 5
```

std::filesystem

Позвояет использовать функции доступа к файловой системе:

```
if (std::filesystem::exists(my_path))
{
   const auto fileSize { std::filesystem::file_size(my_path)};
   std::filesystem::path tmpPath { "/tmp"};
   if (std::filesystem::space(tmpPath).available > fileSize )
   {
     std::filesystem::create_directory(tmpPath.append("example"))
     std::filesystem::copy_file(my_path, tmpPath.append("newFile"))
```

```
}
```

std::byte

```
//Новый тип для хранения "сырых" байтов, перегружен std::byte a { 0 }; int x = std::to_integer<int>(a);
```

std::apply

Применение функции к tuple\pair:

```
auto add = [](int x, int y)
{
    return x + y;
};
std::apply(add, std::make_tuple(2, 3)); // == 5
std::apply(add, std::make_pair(1, 2)); // == 3
```

std::as_const

Обертка для получение const-ref.

std::clamp

Клипует значение по 2м границам - верхней и нижней.

Ассоциативыне контейнеры

Добавлены функции: try_emplace, insert_or_assign.

Добавлены функции: extract, insert, merge.

```
// merge:
std::set<int> src { 1, 3, 5};
std::set<int> dst { 2, 4, 5};
dst.merge(src);
// dst == {1, 2, 3, 4, 5}
// src == {5} !!!

// extract\insert - позволяют move'нуть объект из одного контейнера, в другой
// Или изменить ключ у поля
std::map m;
auto e = m.extract(2); // key == 2
e.key() = 4;
m.insert(std::move(e));
```

std::size, std::data, std::empty

Свободные обобщенные функции для всех контейнеров.

non const std::string::data

Доступ к сырой памяти строки.

std::not_fn

Wrapper возвращающий отрицательное\обратное значение функции.

emplace_back

Функции теперь возвращают ссылку на объект.

std::scoped_lock

Возможность использовать несколько мьютексов в одном локе.

shared_poiter для массивов

TODO дополнить.

Математические функции

TODO дополнить + (std::gcd, std::lcm).

Paralel algorithms

Возможность использовать параллельные вычисления в стандартных алгоритмах.

TODO дополнить с примерами.

Undefined behavior

Стандарт языка допускает **неопределенное поведение**, в некоторых ситуациях. Это сделанно с целью сделать код наиболее эффективным и быстрым, и не платить за дорогие проверки.

Неуточненное поведение

Неуточненное поведение или **поведение определяемое реализацией** - поведение, которое может различаться на разных платформах и компиляторах, т.к. спецификация языка предлагает несколько доступных вариантов реализации конструкции.

В отличии от **неопределённого поведения**, программа с неуточненным поведением с точки зрения соответствия спецификации языка не считается ошибочной. Но писать такой код - плохая идея.

```
int a = 0;
// Неуточненное поведение:
foo(a = 2, a);
// Последовательность вычисления аргументов не гарантирована стандартом
```

```
// -1 знаковое целое, вычисление b будет неуточненным поведением: int b = (-1) >> 5;
```

Примеры undefined behavior

```
void foo()
{
   int a[10];
   //Выход за границу массива:
   a[22] = 10;
}
```

```
struct Base
{
    //virtual ~Base() = default;
    virtual void f();
}

struct Derived : Base {};

void foo()
{
    Base* b = new Derived();
    delete b; // UB т.к. нет виртуального деструктора в Ваse
}
```

```
auto p1 = new int[10];
delete p1; //Должно быть delete[]

auto p2 = new int;
delete[] p2; //Должно быть delete

auto p3 = new int[10];
free(p3); //Должно быть delete[]

auto p4 = new int;
free(p4); //Должно быть delete
```

Более серьёзные, и менее очевидные случаи:

```
int try_init(struct usb_line6_podhd* podhd)
{
    //Отсутствует проверка что podhd != nullptr
    struct usb_line* line6 = &podhd->line6;

    //Тут у нас уже возможно UB:
    if (podhd == nullptr) //Проверять надо раньше
        return -ENODEV;
    //Компилятор может опитимизировать условие!
}
```

Пример из JPEG:

```
//Схожая ситуация, как с >>
((-1) << 2) + 1;
//Правильный unsigned вариант
((~0u) << 2) | 1;
```

Целочисленное переполнение:

```
size_t count = (size_t)(5) * 1024 * 1024 * 1024; // 5 Gb
//... выделим array размера count

// count не поместится в int, если он 32
for (int i = 0; i != count; ++i)
    //Произойдёт переполнение i
    array[i] = (char)(i) | 1;

//Если вдруг count == 0, тут тоже UB
if (array[count - 1] == 0)
    std::cout << "Issue";
```

```
int foo(const unsigined char* s)
{
   int r = 0; //Fix: unsigned
   while (*s)
   {
   //Возможно переполнение r
   //Но это не рассматривается, т.к. запрещено переполнять знаковые числа
        r += ((r * 20891 + *s * 200) | *s ^ 4 | *s ^ 3) ^ (r >> 1);
        s++;
   }
   //Компилятор может оптимизировать и убрать операцию ниже
   //Т.к. суммация положительного числа с положительным
```

```
return r & 0x7fffffff
// Станет: return r;
// И мы вернём отрицательное число, после оптимизации
}
```

Выведение типов лекция

До С++11 вывод типов применялся только в шаблонах.

Потом приехали новые конструкты языка.

C++11: r-value/forwarding reference, auto, decltype, lambda capture, return type deduction for lambda.

C++14: function return type deduction, lambda caption with initialization.

Обзор

Изначально было 2 типа правил, для вывода шаблонных типов:

- для указателей и ссылок
- для обычных типов

В C++11 появились r-value ссылки, которые в шаблонах работают не совсем как r-value, а как forwarding reference и в зависимости от того чем инициализируется становится либо r-value либо l-value ссылкой.

Появилось ключевое слово auto, которое наследует правила вывода всех шаблонных аргументов.

Далее появилось ключевое слово decltype.

Появились списки захвата lambda, которые наследуют правила вывода типов для ссылок и указателей.

Появился вывод типов lambda, который как auto наследует правила вывода шаблонных аргументов.

Правила вывода для шаблонов

Правила вывода типов по значению

Отбрасываются ссылки, const, volatile:

```
//Если заменить на const T:
template <typename T>
void foo(const T param); //param типа Т

//Тогда:
foo(ri); //T = int, param тип = const int
foo(rci); //T = int, param тип = const int
foo(rvi); //T = int, param тип = const int
foo(rcvi); //T = int, param тип = const int
foo(rcvi); //T = int, param тип = const int
//Тоже самое для void foo(volatile T param);
//Т = int, param тип = volatile int
```

Отбрасывается модификатор для указателя (const\volatile):

```
const int* const cpci = &i;
//volatile int * volatile
volatile int* volatile vpvi = &i;

//cv int * cv
const volatile int* const volatile cvpcvi = &i;

foo(pci); //T = const int*, param τμπ = const int*
foo(pvi); //T = volatile int*, param τμπ = volatile int*
foo(cpci); //T = const int*, param τμπ = const int*
foo(vpvi); //T = volatile int*, param τμπ = volatile int*
foo(cvpcvi); //T = cv int*, param τμπ = cv int*
```

```
template <typename T>
void foo(T param);

void bar();
int arr[10]; //int[10]

foo(arr); //T = int*, param τμπ = int*
foo(bar); //T = void(*)(), param τμπ = void(*)()

foo({1, 2, 3}); //ERROR: fails to deduce type
```

Правила вывода типов для указателей и ссылок

Если передаётся значение, у которого есть референс - он отбрасывается, остальные модификаторы сохраняются:

```
template <typename T>
void foo(T& param);

int i = 0;
const int ci = i;
volatile int vi = i;
const colotile int cvi = i;

foo(i); // T = int, param тип = int&
foo(i); // T = const int, param тип = const int&
foo(i); // T = volotile int, param тип = volotile int&
foo(i); // T = cv int, param тип = cv int&

//Если добавить ссылки перед сi, vi, cvi
//То результат не изменится
```

Если наш параметр должен быть ссылкой на константный объект:

Для указателей действуют схожие правила:

```
template <typename T>
void foo(T* param);

int i = 0;
int* pi = &i;
const int* pci = &i;
volatile int* pvi = &i;
const volatile int* pcvi = &i;

foo(pi); // T = int, param тип = int*
foo(pci); // T = const int, param тип = const int*
foo(pvi); // T = volatile int, param тип = volatile int*
foo(pcvi); // T = const volatile, param тип = const volatile int*
```

При добавлении константности для указателей:

```
template <typename T>
void foo(const T* param);

int i = 0;
int* pi = &i;
const int* pci = &i;
volatile int* pvi = &i;
const volatile int* pcvi = &i;

foo(pi); // T = int, param тип = const int*
foo(pci); // T = int, param тип = const int*
foo(pvi); // T = volatile int, param тип = volatile int*
foo(pcvi); // T = volatile int, param тип = const volatile int*
```

```
template <typename T>
void foo(T& param);

void bar();
int arr[10]; //int[10]

foo(arr); //T = int [10], param τμπ = int(&)[10]
foo(bar); //T = void(), param τμπ = void(&)()

foo({1, 2, 3}); //ERROR: fails to deduce type
```

Правила вывода типов для forwarding reference

Если передается ссылка на объект I-value, т.е. объект у которого есть имя и адрес, тогда аргумент ссылка на I-value.

Если передаётся временный объект, то расскручивается аргумент на r-value ссылка.

Подобное поведение было необходимо для реализации emplace_back.

```
//Плохо: копирование
template <class... Args>
void emplace_back(Args... args);

//Лучше - ссылки
template <class... Args>
void emplace_back(Args&... args);

//Идеально
template <class... Args>
void emplace_back(Args&... args)
{
    T* ptr = ....; //Memory region from allocator
```

```
new (ptr) T { std::forward<Args>(args)...}; //TODO placement new в конспект
}
```

TODO более детально про std::forward.

Правила вывода для auto

```
//Для задания переменной со спецификатором:

const auto ca_i = i;

volatile auto va_i = ri;

volatile auto va_i = rvi;

const volatile auto cva_i = rcvi;

//Полынй тип переменной = specificators + int
```

При указании ссылки, работают правила вывода ссылки в шаблонах:

При добавлении спецификаторов немного меняется поведение:

```
const auto& ca_rci = rci; //auto = int, var type = const int&
volatile auto& va_rvi = rvi; //auto = int, var type = volatilee int&
const volatile auto& cva_rcvi = rcvi; //auto = int, var type = cv int&
```

При применении двойного амперсанда:

Пример с массивом и функцией:

```
void bar();
int arr[10];

auto& rarr = arr; // auto = int[10], var type = int(&)[10]
auto& abar = bar; // auto = void(), var type = void(&)()

auto parr = arr; // auto = int*, var type = int*
auto pbar = bar; // auto = void(*)(), var type = void(*)()

auto init_list1 {1, 2, 3}; // auto = std::initalizer_list<int>
auto init_list2 = {1, 2, 3}; // auto = std::initalizer_list<int>
auto err_list = {1, 0.2}; // не удастся вывести тип
```

Правила вывода для lambda capture-list

Список типов захвата:

```
[=]
[&]
[this]
[*this] // C++17
[identifier]
[&identifier]
```

```
[identifier initializer] // C++14
[&identifier initializer] // C++14
```

Захват по копии:

```
const int cx = 42;
auto lambda = [cx] { ... };

// При раскручивании в компиляторе:
class LambdaCompilerRepresentation
{
    // Сохраняется const\volatile:
    const int cx;
public:
    auto operator()() const { ... }
}
```

Влияние mutable спецификатора:

```
int x = 42;
// Compile error:
auto lambda = [x] { x = 0; }; // Hexbataet mutable

class LambdaCompilerRepresentation
{
   int x;
public:
   // const модификатор причина проблемы выше
   auto operator()() const { ... }
   // требуется модификатор mutable в lambda
}
```

```
const int x = 42;
// Compile error:
auto lambda = [x] mutable { x = 0; };

class LambdaCompilerRepresentation
{
    // const модификатор причина проблемы выше:
    const int x;
public:
    auto operator()() { x = 0; }
}
```

Захват по ссылке:

```
int x = 42;
auto lambda = [&x] { x = 0; }; // ok

class LambdaCompilerRepresentation
{
   int& x;
public:
   auto operator()() const { x = 0; }
}
```

```
const int x = 42;
auto lambda = [&x] { x = 0; }; // compile error

class LambdaCompilerRepresentation
{
    const int& x;
public:
    auto operator()() const { x = 0; }
}
```

Список захвата с инициализацией:

```
auto p = std::make_unique<SomeClass>();

auto lambda = [p = std::move(p)] { ... }; // ok

class LambdaCompilerRepresentation
{
    //Если захват не по ссылке const\volatile отбросятся
    std::make_unique<SomeClass> p;

public:
    auto operator()() const { ... }
}
```

```
int x = 42;
auto lambda = [&rx = x] { rx = 0; }; // ok

class LambdaCompilerRepresentation
{
   //Если захват по ссылке const\volatile coxpанятся
   int& rx;
public:
   auto operator()() const { rx = 0; }
}
```

Правила вывода для decltype

```
int foo();
int&& bar();
int arr[10];
int v1 = 0.0; //int
const int& v2 = v1; //const int &
int&& v3 = 0; //int&&
decltype(auto) v4 = v1; //int
decltype(auto) v5 = (v1); //int&
decltype(auto) v6 = v2; //const int&
decltype(auto) v7 = foo(); //int
decltype(auto) v8 = bar(); //int &&
decltype(auto) v9 = arr[0]; //int &
//Если не использовать (auto) - compile errors:
decltype(foo) v10 = foo(); //int()()
decltype(bar) v11 = bar(); //int && ()()
//Исправляется через decltype(foo()), decltype(bar())
```

Правила вывода для возвращаемого типа

```
// Будет используется шаблонный вывод типов:
[capture-list](params) -> T
{
    return ...;
}

//В С++ не обязательно использовать ->
//Тогда будут применены правила вывода auto

// Будет используется шаблонный вывод типов:
auto foo() -> T
{
    return ...;
}

//Не обязательно использовать ->, как выше

// Будет использовать decltype вывод типов:
decltype(auto) bar()
{
```

```
return ...;
}
```

Применение механизмов выше, создание обобщенного оператора суммации:

```
template <typename T1, typename T2>
auto operator+(T1&& lhs, T2&& rhs)
{
    return std::forward<T1>(lhs) + std::forward<T2>(rhs);
}
```

```
template <typename Callable, typename ...Args>
auto operator+(Callable&& op, Args&& args) // auto не может вернуть ссылку
{
    return std::forward<Callable>(op)(std::forward<Args>(args)...);
}

template <typename Callable, typename ...Args>
auto&& operator+(Callable&& op, Args&& args) // Могут быть проблемы!
{
    return std::forward<Callable>(op)(std::forward<Args>(args)...);
}

// Если Callable возвращает просто тип Т, тогда вернется ссылка
// на локальный объект, который погибнет сразу же: undefined behavior

template <typename Callable, typename ...Args>
decltype(auto) operator+(Callable&& op, Args&& args) // Perfect returning
{
    return std::forward<Callable>(op)(std::forward<Args>(args)...);
}
```

Но с decltype нужно быть аккуратным:

```
template <typename T>
decltype(auto) lookup(T value)
{
    static const std::vector<SomeClass> values = {...};
    size_t idx = ...; // Найти индекс по value

    auto ret = values[idx];
    return ret; // Возвращаемый тип SomeClass
}

// НО:

template <typename T>
decltype(auto) lookup(T value)
```

```
{
    static const std::vector<SomeClass> values = {...};
    size_t idx = ...; // Найти индекс по value

    auto ret = values[idx];
    return (ret); // Возвращаемый тип SomeClass&
}
// Из-за лишних скобок вернётся ссылка на локальный объект
// А это выстрел в ногу
```

Как найти\отладить выводимый тип

Следующий код выведет ошибку компиляции, из которой можно понять выводимый тип:

```
template <typename T, typename ...Types>
class TypePrinter;

template<typename T>
void foo(const T& t)
{
    TypePrinter<T, decltype(t)> _;
}

class SomeClass { ... };

SomeClass obj;
foo(obj);
```

Вывод типов на runtime: RTTI

```
template <typename T>
void print_type(const T& arg)
{
    std::cout << "T = " << typeid(T).name() << "\n";
    std::cout << "arg = " << typeid(arg).name() << "\n";
}

SomeClass { ... };

void foo()
{
    std::vector<SomeClass> vec { ... };
    print_type(vec.data());
}

//Ожидание:
//T = SomeClass *
```

```
//arg = SomeClass * const&

//Peaльность:

//T = P9SomeClass, demangle - SomeClass*

//arg = P9SomeClass, demangle - SomeClass*
```

Если необходимо - можно решить задачу через boost::typeindex.

Метапрограммирование

Вид программирования, связанный с созданием программ, которые порождают другие программы, как результат своей работы.

В С++ реализуется при помощи шаблонов: инстанцируемые функции и классы.

Не типовые шаблонные параметры

Существует 4 вариации:

```
template <size_t> // или <size_t N>
struct int_array { ... };

template <size_t = 42> // или <size_t N = 42>
struct array { ... };

// Начиная с C++11:
template <size_t ...> // или <size_t ...ints>
class sizeT_sequence { ... };

// Начиная с C++17:
template<auto V> // или <decltype(auto) V>
struct B { .... };
```

Параметром могут выступать:

- I-value reference
- std::nullptr_t
- integral type (bool, char, signed char, unsigned char, short, ...)
- pointer
- pointer to member
- enumeration

Типовые шаблонные параметры

Три наиболее часто используемых варианта:

```
template <class> // или <typename T>
class FalseVector { ... };

template <class T, class Alloc = std::allocator<T>>
class TrueVector { ... };

// Начиная с C++11:
template <class ...> // или <typename ... Types>
class tuple { .... };
```

Начиная с С++17 доступны три более экзотических вариантов, шаблон в шаблоне:

```
template <class K, class T, template <class> class Container>
  class MyMap
{
    Container<K> keys;
    Container<T> values;
};

template<class T> class my_array { ... };

template<class K, class T, template <class> class Container = my_array>
  class MyMap { ... };

template <class K, class T, template <class, class> class ...Map>
  class MyMap : Map<K, T>... { ... };
```

Ключевое слово typename

Может быть использованно несколькими разными способами:

```
template <typename T>
struct X : B<T> // B<T> is dependent T

{
    //Если не написать typename T::A может интерпретироваться не верно
    typename T::A* pa; // T::A is dependent name from T

    void f(B<T>* pb)
    {
        static int i = B<T>::i; // B<T>::i is dependent variable on T
        pb->j++; // pb->j is dependent variable from T ??? B ???
    }
}
```

Пример для классов:

```
template <class T>
class vector // class template
{
    ...
};

// full specialization for vector<bool>:
template<>
class vector<bool>
{
    ....
};
```

Пример для функций:

```
template <class T>
void print(const T& obj) // function template
{
    std::cout << obj;
};

class SomeClass {...};

// full specialization for print:
template<>
void print<SomeClass>(const SomeClass& obj)
{
    std::cout << obj;
};</pre>
```

Partial specialization (частичная специализация)

```
// Шаблонный класс
template <class T, class Deleter>
class untique_ptr
{

public:
    T* operator->() const noexcept;
}

// Частичная специализация для шаблонного класса
// Реалиция unique_ptr для массивов
template <class T, class Deleter>
```

```
class unique_ptr<T[], Deleter>
{

public:
    T& operator[](size_t idx) noexcept;
    const T& operator[](size_t idx) const noexcept;
}
```

Для функций частичная специализация не доступна.

Variadic template (вариативные шаблоны)

```
template <class T1, class T2, class T3>
bool equalsAnyOf(const T1& t1, const T2& t2, const T3& t3)
{
   return t1 == t2 || t1 == t3;
}
// 4,5,6 и больше аргументов - стали уже огромными
```

Решение:

```
// C++11:
template <class T1>
bool equalsAnyOf(const T1& t1) noexcept
{
    return false;
}

template <class T1, class T2, class ...TN>
bool equalsAnyOf(const T1& t1, const T2& t2, const TN&... tN) noexcept
{
    // Вызывается первый аргумент и оставшиеся tN
    // каждый раз на 1 меньше, за счёт выбывшего T2
    return t1 == t2 || EqualsAnyOf(t1, tN...); // рекурсия
}

// Вызов:
std::cout << equalsAnyOf(0, 'a', 0.0, 42);</pre>
```

Свертка позволяет избежать рекурсии и переполнение стека, в отличии от решения стандарта 11 года.

```
// C++17:

template <class T1, class T2, class ...TN>
bool equalsAnyOf(const T1& t1, const T2& t2, const TN&... tN) noexcept
{
```

```
// Лаконичное решение через свертку функций return ((t1 == t2) || ... || (t1 == tN)); }

std::cout << equalsAnyOf(0, 'a', 0.0, 42);
```

Пример использования в std::vector:

```
template <class T, class Alloc = std::allocator<T>>>
class vector
{

public:
    template <class ...Args>
    T& emplace_back(Args&&.. args)
    {
        T* ptr = ...; // указатель на новый объект
        new (ptr) T { std::forward<Args>(args)...};
    // new (ptr) T { std::forward<Arg1>(arg1), std::forward<Arg2>(arg2), ...};
    return *ptr;
    }
};
```

Вычисления на этапе компиляции

```
template <size_t N>
struct Facrotial;
template <>
struct Facrotial<0>
// enum использовались в старых компиляторах
// так как должны вычисляться на этапе компиляции
// До С++11
    enum { value = 1 };
};
template <>
struct Facrotial<1>
    enum { value = 1 };
};
template <>
struct Facrotial<2>
{
```

```
enum { value = 2 };
};
```

Более разумное решение, без определения каждой частичной спецификации:

```
// Если не реализовать <0> и <1>
// Тогда рекурсия будет бесконечной
template <size_t N>
struct Facrotial
{
    // До С++11
    enum { value = N * Factorial<N - 1>::value };
};
template <>
struct Facrotial<0>
    enum { value = 1 };
};
template <>
struct Facrotial<1>
    enum { value = 1 };
};
const auto fac5 = Factorial<5>::value;
```

Однако в данном случае присутствует рекурсия, но её глубина может достигать 1024 вызовов.

Начиная с С++11:

```
template <size_t N>
struct Facrotial
{
    static constexpr size_t value = N * Facrotial<N - 1>::value;
};

template <>
struct Facrotial<0>
{
    static constexpr size_t value = 1;
};

template <>
struct Facrotial<1>
{
    static constexpr size_t value = 1;
}
```

```
};
const auto fac5 = Factorial<5>::value;
```

Такие структуры называются метафункции. Стандартное название для переменной метафункций ::value - негласное соглашение программистов.

Вариант с использованием функций constexpr:

```
constexpr size_t Factorial(size_t n) noexcept
{
    return n > 1 ? n * Facrotial(n - 1) : 1; // Начиная с C++11
}

// Не рекурсивный вариант:
constexpr size_t Facrotial(size_t n) noexcept
{
    size_t acc = 1;
    for (size_t i = 2; i <= n; ++i)
        acc *= i;

    return acc; // Начиная с C++14
}</pre>
```

Возведение некоторого числа, в степень:

```
template<size_t Exp>
struct pow1
{
    double operator()(double base) const noexcept
    {
        return base * pow1<Exp - 1>{}(base);
    }
}

template <>
struct pow1<0>
{
    double operator()(double base) const noexcept
    {
        return 1.0;
    }
}
```

Компилятор зная степень, подготовит вычисления на этапе компиляции.

Возможные оптимизации:

```
template<size_t Exp>
struct pow2
{
    double operator()(double base) const noexcept
    {
        return (Exp % 2 != 0)
        ? base * pow2<(Exp - 1) / 2>{}(base) * pow2<(Exp - 1) / 2>{}(base)
        : pow2<Exp / 2>{}(base) * pow2<Exp / 2>{}(base);
    }
}
template <>
struct pow2<0>
    double operator()(double base) const noexcept
    {
        return 1.0;
    }
}
```

Так же на С++17 можно записать прошлый вариант короче:

```
template <size_t Exp>
struct pow1
{
    double operator()(double base) const noexcept
    {
        if constexpr(Exp == 0)
        {
            return 1.0;
        }
        else
        {
            return base * pow1<Exp - 1>{}(base);
        }
    }
};
```

И для оптимизированной версии:

```
template <size_t Exp>
struct pow2
{
    double operator()(double base) const noexcept
    {
        if constexpr(Exp == 0)
        {
            return 1.0;
        }
}
```

В итоге pow2 почти всегда лучше встроенной функции в компилятор.

Подсчёт бит в числе:

```
constexpr uint8_t popcount(uint64_t value) noexcept
{
    uint8_t res = 0;
    while (value != 0)
    {
       res += value & 1;
       value >>= 1;
    }
    return res;
}

constexpr uint8_t pop_count = popcount(0b010010010); // == 3
```

Наибольший общий делитель:

```
constexpr uint64_t gcd(uint64_t a, uint64_t b) noexcept
{
    while (a != b)
    {
        if (a > b)
        {
            a -= b
        }
        else
        {
            b -= a;
        }
    }
    return a;
}
```

```
constexpr auto gcd_a_b = gcd(15, 125); // == 5
```

Решето Эратосфена:

```
template <uint64_t N, size_t ...Idx>
constexpr std::array<bool, N + 1> sieve_impl(std::index_sequence<Idx...>) noexcept
    //Нужно просто чтобы заполнить массив true:
    std::array<bool, N + 1> primes { (Idx, true)... };
    //В С++20 можно использовать вектора, и это не понадобится.
    primes[0] = primes[1] = false;
    for (size_t i = 2; i * i <= N; ++i)
        if (primes[i])
        {
            for (size_t j = i * i; j \leftarrow N; j \leftarrow i)
                primes[j] = false;
    return primes;
}
template <uint64_t N, typename Idx = std::make_index_sequence<N + 1>>
constexpr std::array<bool, N + 1> sieve() noexcept
    return sieve_impl<N>(Idx {});
constexpr auto primes = seive<5>();
// 0, 1, 4 == false
// 2, 3, 5 == true
//Вывод в поток:
std::copy(primes.begin(), primes.end(),
    std::ostream_iterator<bool> {std::cout, " " });
//0 0 1 1 0 1
```

Compile-time type manipulation (Преобразование с типами)

С++ типы:

Чтобы проверить является ли тип ссылкой - определим метафункцию:

```
template<class T>
struct is_reference
{
    static constexpr bool value = false;
};

template<class T>
struct is_reference<T&>
{
    static constexpr bool value = true;
};

template<class T>
struct is_reference<T&&>
{
    static constexpr bool value = true;
};
```

Может потребоваться вытянуть это значение иначе. Например через вызов функции и cast is_reference в bool.

Чтобы не писать вручную такой код - применяют шаблонную магию integral_constant:

```
template<class T, T v>
struct integral_constant
{
    using value_type = T;
    using type = std::integral_constant<T, v>;
    static constexpr value_type value = v;
    constexpr operator value_type() { return v; } const noexcept
    constexpr value_type operator()() { return v; } const noexcept
};
using true_type = integral_constant<bool, true>;
using false_type = integral_constant<bool, false>;
//Теперь перепишем прошлый код:
template <class T>
struct is_reference : false_type {};
template <class T>
struct is_reference<T&> : true_type {};
template <class T>
struct is_reference<T&&> : true_type {};
//Теперь у нас будет не только ::value
//Но и все необходимые перегрузки в каждом варианте
```

В C++17 ввели шаблонные переменные, в данной ситуации они могут помочь, чтобы каждый раз не писать is_reference::value.

```
template<class T>
inline constexpr bool is_reference_v = is_reference<T>::value;
```

Рассмотрим функции, которые есть в стандартной библиотеке:

Primary type categories

- is_void
- is_null_pointer
- is_integral
- is_floating_point
- is_array
- is_enum
- is_union
- is_class
- is_function
- is_pointer

- is Ivalue reference
- is_rvalue_reference
- is_member_object_pointer
- is_member_function_pointer

И так же шаблонные переменные с постфиксом _v.

Composite type categories

- is_fundamental
- is arithmetic
- is_scalar
- is_object
- is_compound
- is_reference
- is_member_pointer

И так же шаблонные переменные с постфиксом _v.

Type properties

- is_const
- is_volatile
- is_trivial
- is_trivial_copyable
- is_standard_layout
- is_pod
- is_literal_type
- has_unique_object_representations
- is_empty
- is_polymorphic
- is_abstract
- is_final
- is_aggregate
- is_signed
- is_unsigned
- is_bounded_array
- is_unbounded_array

И так же шаблонные переменные с постфиксом _v.

Supported operations properties

- is_constructible
- is_trivially_constructible
- is_nothrow_constructible

- is default constructible
- is_trivially_default_constructible
- is_nothrow_default_constructible
- is_copy_constructible
- is_trivially_copy_constructible
- is_nothrow_copy_constructible
- is_move_constructible
- is_trivially_move_constructible
- is_nothrow_move_constructible
- is_assignable
- is_trivially_assignable
- is_nothrow_assignable
- is_copy_assignable
- is_trivially_copy_assignable
- is_nothrow_copy_assignable
- is_move_assignable
- is_trivially_move_assignable
- is_nothrow_move_assignable
- is destructible
- is_trivially_destructible
- is_nothrow_destructible
- is_default_destructible
- has_virtual_destructor
- is_swappable_with
- is_swappable
- is_nothrow_swappable_with
- is_nothrow_swappable

И так же шаблонные переменные с постфиксом _v.

Type relationships

- is_same
- is_base_of
- is_convertible
- is_nothrow_convertible
- is_invocable
- is_invocable_r
- is_nothrow_invocable

И так же шаблонные переменные с постфиксом _v.

Property queries

- alligment_of работает как allignof
- rank число элементов массива

• extent - сколько размерностей внутри массива

И так же шаблонные переменные с постфиксом _v.

Type transformations

Другой вариант использования - это преобразование типа:

```
template <class T>
struct remove_reference
{
    using type = T;
};

template <class T>
struct remove_reference<T&>
{
    using type = T;
};

template <class T>
struct remove_reference<T&>
{
    using type = T;
};

//Haчиная c C++14
template <class T>
using remove_reference_t = typename remove_reference<T>::type;
```

Наподобии с неявным правилом constexpr value, здесь так же есть неявное правило using type.

Список метафункций из стандартной библиотеки:

- remove_const
- remove_volatile
- remove_cv
- add_const
- add_volatile
- add_cv
- remove_reference
- add_lvalue_reference
- add_rvalue_reference
- remove_cvref
- remove_pointer
- add_pointer
- make_signed
- make_unsigned

- · remove extent
- remove_all_extents
- decay
- conditional
- underlying_type
- common_type
- · result of
- invoke_result

И так же есть специальные перегрузки с постфиксом _t.

Для чего это может быть нужно:

```
template <class T, class Alloc = std::allocator<T>>
class vector
public:
    template <class ...Args>
    T& emplace_back(Args ...args);
};
template <class ...Args>
T& emplace_back(Args ...args)
    if (size() == capacity())
        const auto oldCap = capacity();
        const auto newCap = computeGrowth(oldCap + 1);
        auto *newVec = allocator_traits<Alloc>::allocate(al, newCap);
        allocator_traits<Alloc>::construct(al, newVec, oldCap + 1,
                                             forward<Args>(args)...);
        if constexpr (is_nothrow_move_constructible_v<T>
                     || !is_copy_constructible_v<T>)
        {
            uninitialized_move(begin(), end(), ptr);
        }
        else
        {
            uninitialized_copy(begin(), end(), ptr);
        }
        //Освобождение старых объектов и региона памяти
        change_array(newVec, size() + 1, newCap);
    }
}
```

Curiously recurring template pattern: CRTP

```
template <class T>
struct Base
{
};

struct Derived : Base<Derived>
{
};
```

Проблемная ситуация, для которой нужна такая странная композиция:

```
template <class T = intmax_t>
class Rational
{
   T m_num = T(0), m_denom = T(1);
public:
    Rational() = default;
    explicit Rational(T num, T denom = T(1))
        : m_num { num }
        , m_denom { denom }
    { ... }
    friend bool operator<(const Rational<T>& 1, const Rational<T>& r) noexcept
        const auto lcm = std::lcm(1.m_denom, r.m_denom);
        return 1.m_num * (lcm / l.m_denom)
               < r.m_num * (lcm / r.m_denom);
    }
}
//Однако возникает сложность, если требуется оператор >
```

Пример из boost:

```
template <class T>
struct less_than_comparable
{
    friend bool operator>(const T& 1, const T& r) noexcept
    {
       return r < 1;
    }
    friend bool operator<=(const T& 1, const T& r) noexcept
    {
       return !(r < 1);
    }
    friend bool operator>=(const T& 1, const T& r) noexcept
    {
       return !(r < r);
    }
}</pre>
```

```
}

templace <class T = uint64_t>
class Rational : less_than_comparable<Rational<T>>
{ //Класс объявлен выше с операцией <
};

//Обобщенная задача решена!
}
```

Так же эта идеома применима при статическом полиморфизме, но это не даёт большого прироста производительности.

SFINAE (Subsituation Failure Is Not An Error)

```
templace <class Container>
void printContainer(const Container& cont)
{
    if (!cont.empty())
    {
        std::cout << "(";

        for (const auto& value: cont)
        {
            std::cout << " " << value;
        }
        std::cout << ")";
    }
}</pre>
```

Примитивные типы элементов из листа\вектора\дека - работают из коробки.

Для своего класса потребуется только определить оператор <<.

Для set\unordered всё работает из коробки.

Для map\unordered потребуется определить оператор << для пары.

Однако если попробовать использовать std::stack в качестве контейнера - возникнет ошибка компиляции. Это произойдёт потому что у него нет функций begin\end.

Нужно сделать защиту, чтобы нельзя был использовать не итерируемый тип Container:

```
if (!cont.empty())
{
    std::cout << "(";

    for (const auto& value: cont)
    {
        std::cout << " " << value;
    }

    std::cout << ")";
}

//Использование It не даст собраться нежелательным вызовам:
void printContainer(1);
void printContainer(std::stack<int>{1});
//И будут выведены понятные сообщения об ошибке
```

Альтернативный метод реализации SFINAE через std::enable_if:

```
template <bool Cond, class T = void>
struct enable_if {};

template <class T>
struct enable_if<true, T>
{
    using type = T;
};

template <bool Cond, class T = void>
using enable_if_t = typename enable_if<Cond, T>::type;
```

Где это необходимо:

```
template <class It, class Diff,
            std::enable_if_t<std::is_same_v<</pre>
            std::bidirectional_iterator_tag, ItTag<It>>>,
            int > = 0 >
It next(It it, Diff n) noexcept
    for (; n > Diff(0); --n)
        ++it;
    for (; n < Diff(0); ++n)
        --it;
    return it;
}
// input или forward итераторы
template <class It, class Diff,
             std::enable_if_t<std::is_same_v<std::input_iterator_tag, ItTag<It>>>
                              | std::is_same_v<std::forward_iterator_tag,</pre>
ItTag<It>>>,
            int > = 0 >
It next(It it, Diff n) noexcept
    assert(n >= 0);
    for (; n != Diff(∅); --n)
        ++it;
    return it;
}
```

Tag dispatch

Был придуман, чтобы выглядить удобнее.

Подготовка функций:

```
template <typename It, class Diff>
It next_impl(It it, Diff n, std::input_iterator_tag)
{
}

template <typename It, class Diff>
It next_impl(It it, Diff n, std::bidirectional_iterator_tag)
{
}

template <typename It, class Diff>
```

```
It next_impl(It it, Diff n, std::random_access_iterator_tag)
{
}
```

Основная функция:

```
template<typename It>
using ItTag = typename std::iterator_traits<It>::iterator_category;

template <typename It, class Diff>
It next(It it, Diff n)
{
    return (it, n, ItTag<It>{});
}
```

Вариант реализации, с использованием if constexpr:

```
template<typename It>
using ItTag = typename std::iterator_traits<It>::iterator_category;

template <typename It, class Diff>
It next(It it, Diff n)
{
    if constexpr(std::is_base_of_v<std::random_access_iterator_tag, ItTag<It>))
    {} //Для random access итераторов
    else if constexpr(std::is_same_v<std::bidirectional_iterator_tag, ItTag<It>))
    {} //Для bidirectional итераторов
    else
    {} //Для input and forward итераторов
}
```

Практический пример основанный на SFINAE

Ленивые вычисления. У нас функтор инициализатор, и есть optional - в котором значение либо уже проинициализированно, либо ещё нет. Есть потребность проверить, является возвращаемый результат void или ссылкой, т.е. optional не умеет работать со ссылками, для этого используем reference_wrapper. Всё это реализуется кодом ниже:

```
#include <optional>
#include <functional>

template <class T>
using OptRefType =
std::optional<std::reference_wrapper<std::remove_reference_t<T>>>;

template <class Func>
```

Теперь, как возвращать значение: оно может быть результирующим типом или void. Для этого используем SFINAE

```
template <class Func>
class Lazy
{
public:
    template <class T = ResultType, std::enable_if_t<!std::is_void_v<T>, int> = 0>
    ResultType operator()()
    {
        if (m_value)
            return *m value;
        return m_value.emplace(m_initializer());
    }
    template <class T = ResultType, std::enable_if_t<std::is_void_v<T>, int> = 0>
    void operator()()
    {
        if (m_value)
            return;
        m_value = true;
        m_initializer();
    }
};
```

Пример использования:

```
// С++ 14: Не удастся автоматически deduce типа Func
// Потому необходим CreateLazy + auto idx = CreateLazy([]{});
template <class Func>
Lazy<Func> CreateLaxy(Func&& f)
{
    return { std::forward<Func>(f); };
}

auto idx = CreateLazy([] {auto i = 0; return i;});

// С++ 17: может вывести всё без templatre CreateLazy
Lazy idx { []{...} };

// Использование: (оба стандарта языка)
if (.... & idx())
{
    ....
}
```

Special metafunctions

В примерах выше была реализованна функция equalsAny, которая сравнивала произвольное количество, произвольных типов.

Теперь реализуем её вариант, когда необходимо чтобы все типы были идентичными:

Проблема такого метода в раскрутке свертки, она может быть дорого стоит компилятору.

Решаются подобные задачи с помощью функций из С++17:

- std::conjuction_v коньюнкция (соединение через логическое И)
- std::disjunction дизюнкция (соединение через логическое ИЛИ)
- std::negation отрицание

Метод исправить этот недостаток:

```
bool equalsAny(const T1& t1, const T2& t2, const TN&... tN) noexcept
{
}
```

void_t

Проблема:

```
int* pi = nullptr;
fload* pf = nullptr;

std::vector<int*> vi;
std::vector<float*> vf;

// Допустим нам нужна перегрузка, чтобы вектор мог сравнивался
// с нижележайшим типом: Некоторая реализация std::all_of
bool result = equalsAny(nullptr, pi, pf, vi, vf);
//Из коробки, это не будет работать
```

Чтобы защититься от проблем, нужно применить SFINAE, который позволит получать лаконичные сообщения об ошибке:

declval это шаблонная функция без тела. Рассмотрим применение declval. Допустим у нас есть две структуры Default и NonDefault:

```
template <class T>
std::add_rvalue_reference<T>_t declval();

struct Default { int foo() const { return 1; }};

struct NonDefault {
    NonDefault(const NonDefault&) {}
    int foo() const { return 1 };
}

decltype(Default.foo()) i1 = 1; // type = int
decltype(NonDefault().foo()) i2 = i1; // Compile error

decltype(std::declval<NonDefault>().foo()) i2 = i1; // type = int
```

Важно! declval работает только внутри:

- decltype
- sizeof
- typeid
- noexcept

Т.е. в тех операторах, где выражение не вычисляется.

Detectors

Проверка на то, что контейнер может итерироваться:

```
template <class T, typename = void>
struct is_iterable: std::false_value
{
};
template <class T>
struct is iterable<T, std::void t<</pre>
                   decltype(std::begin(std::declval<T&>())),
                   decltype(std::end(std::declval<T&>()))>>
    : std::true type
{
};
template <class T>
inline constexpr auto is_iterable = is_iterable<T>::value;
static_assert(is_iterable<std::vector<int>>); // ok
static_assert(is_iterable<std::list<int>>); // ok
static_assert(is_iterable<std::map<int, int>>); // ok
static_assert(is_iterable<std::stack<int>>); // compile time error
```

Если трубется так же проверять есть ли возможность rbegin\rend:

```
template <class T, typename = void>
struct is_reverse_iterable: std::false_value
};
template <class T>
struct is_reverse_iterable<T, std::void_t<</pre>
                   decltype(std::begin(std::declval<T&>())),
                   decltype(std::end(std::declval<T&>())),
                   decltype(std::rbegin(std::declval<T&>())),
                   decltype(std::rend(std::declval<T&>()))>>
    : std::true_type
{
};
template <class T>
inline constexpr auto is_reverse_iterable_v = is_reverse_iterable<T>::value;
static_assert(is_iterable<std::vector<int>>); // ok
static_assert(is_iterable<std::list<int>>); // ok
static_assert(is_iterable<std::map<int, int>>); // ok
static_assert(is_iterable<std::forward_list<int>>); // compile time error
```

Для того чтобы сделал обобщенный вариант, когда не нужно будет определять 2 структуры каждый раз, придумали детекторы:

```
template <class Default, class AlwaysVoid, template <class...> class Op, class
...Args>
struct detector
    using value t = std::false type;
   using type = Default;
}
template <class Default, template <class ...>, class Op, class... Args>
struct dectector<Default, std::void_t<Op<Args...>>, Op, Args>
   using value_t = std::true_type;
   using type = Op<Args...>;
}
struct nonesuch
{
    nonesuch() = delete;
    nonsuch(const nonesuch&) = delete;
    nonsuch(nonesuch&&) = delete;
    nonesuch& operator=(const nonesuch&) = delete;
```

```
nonesuch& operator=(nonesuch&&) = delete;
};
```

Где Op - это метафункция, например std::is_same, a Args - это наши типы, например T1\T2.

Далее:

```
template <template <class ...> class Op, class... Args>
using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;

template <template<class..> class Op, class... Args>
inline constexpr bool is_detected_v = is_detected<Op, Args...>::value;

template<template<class..> class Op, class.. Args>
using detected_t = typename detector<nonesuch, void, Op, Args...>::type;

template <class Default, template<class...> class Op, class... Args>
using detected_or = detector<Default, void, Op, Args...>;

template <class Default, template<class ...> class Op, class... Args>
using detected_or = typename detected_or<Default, Op, Args...>::type;
```

Как это использовать:

Для того чтобы проверить, что в нашем классе есть функция foo:

Детекторы позволяют делать проверку, что наши объекты соответствуют нашим ожиданиям. В C++20 появятся концепты, которые так же позволяют решать данные задачи.

STL

Базовая структура STL

- Контейнеры
- Итераторы
- Алгоритмы
- Адаптеры
- Функциональные объекты

Контейнеры

- Последовательные
- Упорядоченные ассоциативные
- Неупорядоченные ассоциативные
- Адаптеры

std::allocator

Изначально алокаторы появились для того чтобы проще было работать со старой моделью памяти, в которой существовали ближние и дальние указатели. Но на текущий момент у них другие задачи. Рассмотрим пример реализации:

```
template <class T>
struct allocator { ... };

template <class Alloc>
struct allocator_traits
{
   using allocator_type = Alloc;
   using value_type = Alloc::value_type;
```

```
using pointer = Alloc::pointer;
using const_pointer = Alloc::const_pointer;
using difference_type = Alloc::difference_type;
using size_type = Alloc::size_type;

[[nodiscard]] static pointer allocate(Alloc& a, size_type n);

static void deallocate(Alloc& a, pointer p, size_type n);

template <class T, class... Args>
static void construct(Alloc& a, T* p, Args&&... args);

template<class T>
static void destroy(Alloc& a, T* p);
}
```

Allocator умеет:

- Аллоцировать кусок памяти через функцию allocate
- Очищаять аллоцированную память через deallocate
- Через функцию construct формируется объект (placement new)
- Разрушать объект, через функцию destroy

Начиная с C++11 эти функции были перенесены в allocator_traits, а так же были добавленны using'и для шаблонной магии.

Пример использования:

```
#include <memory>

std::allocator<int> a1; //Стандартный алокатор для int
int* p = a1.allocate(1); //алокация памяти для 1 элемента
a1.construct(p, 7); //Конструирование и инициализация

std::cout << *p; // 7

using prev_alloc = decltype(a1);
std::allocator<std::allocator_traits<prev_alloc>::value_type> a2;

a2.deallocate(p, 1); //Этот код корректен, алокаторы не хранят состояния
```

Контейнеры используют алокаторы как второй шаблонный параметер.

Последовательные контейнеры

std::vector

Вектор хранит объекты типа Т в динамически выделенной памяти.

```
template <class T, class Alloc = std::allocator<T>>
class vector
{
    using value_type = T;
    using allocator_type = Alloc;
    using size_type = std::size_t;
    using difference_type = std::ptrdiff_t;
    using reference = value_type&;
    using const_reference = const value_type&;
    using pointer = std::allocator_traits<Alloc>::pointer;
    using const_pointer = std::allocator_traits<Alloc>::const_pointer;

//+ итераторы (о них позже)
};
```

Функции класса вектор можно разбить на 4 типа.

Доступ к элементам:

- at, operator[] асимптотическая сложность O(1)
- data асимптотическая сложность O(1)
- front, back асимптотическая сложность O(1)

Функция at может бросить исключение, если вышли за границы, operator[] - нет.

Размеры (capacity):

- empty асимптотическая сложность O(1)
- size, max_size, capacity асимптотическая сложность O(1)
- resize, reserve, shrink_to_fit асимптотическая сложность O(n)

При инициализации вектора при помощи std::initializer_list или {} - capacity равно его размеру.

При resize происходит изменение размера вектора, новые элементы (выше прошлого size()) заполняются дефолтным значением.

При reserve происходит увеличение capacity, но не size.

Функция shrink_to_fit делает capasity = size, т.е. обрезает лишнюю память.

Модицикаторы (modifiers):

- clear, erase асимптотическая сложность O(n)
- insert, emplace, push_back асимптотическая сложность O(1) или O(n)
- emplace_back, pop_back асимптотическая сложность O(1)
- swap асимптотическая сложность O(1)

Разница в асимптотической сложности push_back итд связанна с тем нужна ли реалокация, или нет. Если требуется сделать вставку не в конец, insert\emplace тоже работают за O(n), иначе O(1).

Emplace и emplace_back формируют объект при помощи preferct forwarding.

Аллокатор:

• get_allocator - асимптотическая сложность O(1)

std::array

Отличается от вектора там, что хранит элементы на стеке, а не в динамически выделенной памяти.

```
template <class T, size_t N>
struct array
{
    using value_type = T;
    using size_type = std::size_t;
    using difference_type = std::ptrdiff_t;
    using reference = value_type&;
    using const_reference = const value_type&;
    using pointer = T*;
    using const_pointer = const T*;

//+ итераторы (о них позже)
};
```

В отличии от сырых массивов его можно передавать как по значению, так и по ссылки, и в первом случае он будет копироваться.

std::array содержит 3 группы функций.

Доступ к элементам:

- at, operator[] асимптотическая сложность O(1)
- data асимптотическая сложность O(1)
- front, back асимптотическая сложность O(1)

Размер (capacity):

- empty асимптотическая сложность O(1)
- size, max_size асимптотическая сложность O(1)

Модификаторы:

• swap - асимптотическая сложность O(n)

std::forward_list

Представляет однонаправленный список. Так же использует аллокатор как вектор и содержит все те же using'и, для метапрограммирования.

У него есть 5 групп функций.

Доступ к элементам:

• front - асимптотическая сложность O(1)

Размер:

- empty асимптотическая сложность O(1)
- max_size асимптотическая сложность O(1)
- resize асимптотическая сложность O(n)

Модификаторы:

- clear асимптотическая сложность O(n)
- erase_after асимптотическая сложность O(1)-O(n)
- insert_after асимптотическая сложность O(1)-O(n)
- push_front, emplace_after, emplace_front асимптотическая сложность O(1)
- pop_front асимптотическая сложность O(1)
- swap асимптотическая сложность O(1)
- merge асимптотическая сложность O(n)

Merge перености все элементы из листа переданного в качестве аргумента функции, второй лист становится пустым.

Встроенные алгоритмы:

- splice_after асимптотическая сложность O(1)-O(n)
- remove, remove_if асимптотическая сложность O(n)
- reverse асимптотическая сложность O(n)
- sort - асимптотическая сложность O(n log n)
- unique асимптотическая сложность O(n)

Функция splice_after работает схоже с merge, но можно задать позицию для вставки.

Функции remove\remove_if - удаление диапазона.

Функция unique - оставляет только уникальные значения, однако перед тем как её вызвать нужно обязательно отсортировать элементы, функцией sort.

Аллокатор:

• get_allocator - асимптотическая сложность O(1)

std::list

Похож на std::forward_list - но умеет двигаться в обоих направлениях. Это приводит к тому что он занимает больше места в памяти, но у него появляются новые функции.

У него тоже есть 5 групп функций.

Доступ к элементам:

• front, back - асимптотическая сложность O(1)

Размер:

- empty асимптотическая сложность O(1)
- max size асимптотическая сложность O(1)
- resize асимптотическая сложность O(n)

Модификаторы:

- clear асимптотическая сложность O(n)
- erase асимптотическая сложность O(n)
- insert асимптотическая сложность O(1)-O(n)
- push_front, push_back, emplace, emplace_front, emplace_back асимптотическая сложность O(1)
- pop_front, pop_back асимптотическая сложность O(1)
- swap асимптотическая сложность O(1)
- merge асимптотическая сложность O(n)

Встроенные алгоритмы:

- splice_after асимптотическая сложность O(1)-O(n)
- remove, remove_if асимптотическая сложность O(n)
- reverse асимптотическая сложность O(n)
- sort - асимптотическая сложность O(n log n)
- unique асимптотическая сложность O(n)

Аллокатор:

• get_allocator - асимптотическая сложность O(1)

std::deque

Дек - двусторонняя очередь (стек + очередь). Саму структуру возможно реализовать через std::list, однако последний не дружелюбен к кэшированию, т.к. элементы не хранятся блоком памяти.

Другой возможный способ - это реализация через массив указателей на chunk'и.

Содержит 4 группы функций:

Доступ:

- at, operator[] асимптотическая сложность O(1)
- front, back асимптотическая сложность O(1)

Размер:

- empty асимптотическая сложность O(1)
- size, max_size асимптотическая сложность O(1)
- resize, shrink_to_fit асимптотическая сложность O(n)

Модификаторы:

- clear, erase асимптотическая сложность O(n)
- insert, emplace, push_front, push_back, O(1), O(n)
- emplace_front, emplace_back, pop_front, pop_back асимптотическая сложность O(n)
- swap асимптотическая сложность O(1)

Аллокатор:

• get_allocator

Упорядоченные ассоциативные контейнеры

Поиск в последовательных контейнерах достаточно тяжелая операция, более эффективная структура для поиска элементов - дерево.

std::set / std::multiset

Реализация сета это красно-черное дерево даёт сбалансированное бинарное дерево поиска, благодаря этом средняя скорость поиска имеет логарифмическую сложность.

Содержит 5 групп функций:

Размер:

- empty асимптотическая сложность O(1)
- size, max_size асимптотическая сложность O(1)

Модификаторы:

- clear асимптотическая сложность O(n)
- erase асимптотическая сложность O(1), O(log n), O(n)
- insert, emplace асимптотическая сложность O(log n)
- emplace_hint асимптотическая сложность O(1), O(log n)
- swap асимптотическая сложность O(1)
- merge асимптотическая сложность O(n log n)
- extract асимптотическая сложность O(1), O(log n)

Удаление при помощи erase по итератору работает за константное время, если удаление по ключу - то логарифмическое, и если последний случай с multiset тогда за линейное время.

Так же определяется асимптотическая сложность extract.

Функция emplace_hint может быть использована, чтобы "подсказать" куда вставить элемент - если позиция будет верная - тогда вставка будет за константное время, иначе - логарифмическое.

Важное замечание: extract\insert можно использовать только между контейнерами с одинаковыми алокаторами, иначе это undefined behavior.

Поиск \ нахождение элементов по условиям (Lookup):

- count, find, contains, equal_range асимптотическая сложность O(log n)
- lower bound, upper bound асимптотическая сложность O(log n)

Contains появилась в C++20 и возвращает bool, в остальном работая как count.

Функция lower_bound для ключа возвращает итератор на элемент, который не меньше по компаратору с переданным.

Функция upper_bound для ключа возвращает итератор на элемент, который больше чем заданный.

Наблюдатели (Observers):

• key_comp, value_comp - асимптотическая сложность O(1)

Аллокатор:

• get_allocator - асимптотическая сложность O(1)

std::map / std::multimap

Есть 6 групп функций std::map.

Доступ к элементам:

• at, operator[] - асимптотическая сложность O(log n)

operator[] может использоваться для добавления нового элемента, не только для получения существующего.

Размер\длина:

- empty асимптотическая сложность O(1)
- size, max_size асимптотическая сложность O(1)

Модификаторы:

- clear асимптотическая сложность O(n)
- erase асимптотическая сложность O(1), O(log n), O(n)
- insert, insert_or_assign, emplace, try_emplace O(log n)
- emplace_hint асимптотическая сложность O(1), O(log n)
- swap асимптотическая сложность O(1)
- merge асимптотическая сложность O(n log n)
- extract асимптотическая сложность O(1), O(log n)

Почти всё действует как в std::set.

Функция insert_or_assing работает как оператор [], отличие в том что возвращается пару - итератор на вставленный элемент и bool определяющий был ли вставлен элемент.

Функция try_emplace - пытается создать объект на месте, но если он уже создан - не будет делать ничего

Поиск:

- count, find, contains, equal_range асимптотическая сложность O(log n)
- lower_bound, upper_bound асимптотическая сложность O(log n)

Наблюдатели (observers):

• key_comp, value_comp - асимптотическая сложность O(1)

Аллокатор:

• get_allocator - асимптотическая сложность O(1)

Неупорядоченные ассоциативные контейнеры

Особенность неупорядоченных ассоциативных контейнеров заключается в том, что они используют хэш-функцию, для хранения ключей. Это позволяет добиться более быстрого доступа к элементам, в средем за константное время.

**std::unordered_set **

Содержит те же 5 групп функций, что и std::set:

Размер:

• empty - асимптотическая сложность O(1)

• size, max size - асимптотическая сложность O(1)

Модификаторы:

- clear асимптотическая сложность O(1)
- erase асимптотическая сложность O(1), O(log n), O(n)
- insert, emplace асимптотическая сложность O(1)
- emplace_hint асимптотическая сложность O(1), O(log n)
- swap асимптотическая сложность O(1)
- merge асимптотическая сложность O(n)
- extract асимптотическая сложность O(1), O(n)

Поиск \ нахождение элементов по условиям (Lookup):

- count, find, contains, equal_range асимптотическая сложность O(log n)
- lower_bound, upper_bound асимптотическая сложность O(log n)

Наблюдатели (Observers):

• key_eq, hash_function - асимптотическая сложность O(1)

Аллокатор:

• get_allocator - асимптотическая сложность O(1)

**std::unordered_map **

Присутствуют те же 6 групп функций как и в std::map.

Доступ к элементам:

at, operator[] - асимптотическая сложность O(1), O(n)

Размер\длина:

- empty асимптотическая сложность O(1)
- size, max_size асимптотическая сложность O(1)
- reserve асимптотическая сложность O(n), O(n^2)

Модификаторы:

- clear асимптотическая сложность O(n)
- erase асимптотическая сложность O(1), O(n)
- insert, insert_or_assign, emplace, try_emplace O(log n)
- emplace_hint асимптотическая сложность O(1), O(log n)
- swap асимптотическая сложность O(1)
- merge асимптотическая сложность O(n)
- extract асимптотическая сложность O(1), O(log n)

Поиск:

- count, find, contains, equal_range асимптотическая сложность O(log n)
- lower_bound, upper_bound асимптотическая сложность O(log n)

Наблюдатели (observers):

• key_eq, hash_function - асимптотическая сложность O(1)

Аллокатор:

• get_allocator - асимптотическая сложность O(1)

Функции load factor, max load factor позволяют регулировать количество элементов на bucket'e. По умолчанию это 1.0. Значение больше - создаст больше колизий, но потребует меньше памяти, значение меньше - наоборот.

Адаптеры

Это разновидность контейнеров, которые могут использовать для своей реализации другой класс контейнера.

std::stack

Функции:

• top - O(1)

Элемент на вершине стека.

• empty - O(1)

- size O(1)
- swap как в контейнере ниже
- push, emplace как в контейнере ниже push back, emplace back
- pop как в контейнере pop_back

Условиям функций соответствуют помимо std::deque, std::vector и std::list.

std::queue

Функции:

- front, back O(1)
- empty O(1)
- size O(1)
- swap как в контейнере ниже
- push, emplace сложность как в контейнере ниже у функций push_back, emplace_back
- pop сложность как в контейнере ниже у pop_front

Типы доступных контейнеров: deque, list. std::vector нельзя, у него нет pop_front.

std::priority_queue

Очередь с приоритетом. По умолчанию нижележайший контейнер это std::vector.

```
templace <....

class Compare = std::less<typename Container::value_type>>
class priority_queue
{
}; // Остальные using схожие
```

Функции:

- top O(1)
- empty O(1)
- size O(1)
- swap как в контейнере ниже
- push, emplace как в контейнере ниже push_back, emplace_back
- pop как в контейнере pop_back

Помимо std::vector могут быть использованы std::list, std::deque. Очередь с приоритетом реализуется через кучу, она похожа на дерево. На вершине находится максимальный элемент, слева максимальный наследник, справа минимальный наследник.

Итераторы

Итераторы это обобщенные указатели, которые используются для унифицированного доступа к контейнерам (и не только).

InputIterator:

• std::istream

ForwardIterator:

- std::forward list
- std::unordered_set
- std::unordered map
- std::unordered_multiset
- std::unordered_multimap

BidirectionalIterator:

- std::list
- std::set
- std::multiset
- std::map
- std::multimap

RandomAccess \setminus ContinuesIterator (C++17):

- std::array
- std::vector
- std::string
- std::string_view
- std::valarray

OutputIterator:

• std::ostream

Последовательность первых 5 итераторов иерархична, и каждая следующая группа имеет больше возможностей, чем предшествующая.

InputIterator

```
//std::istream& is;

std::istreambuf_iterator it {is};

std::istreambuf_iterator<char> end;

//size_t count = std::distance(it, end); //O(n)

//Если строчку выше раскоментить, то buf окажется пустой, т.к. it смещён!

std::string buf {it, end};
```

ForwardIterator

У него есть перегруженная функция ++, но отсутствует --.

Оператор += не перегружен, но его эффекта можно достичь при помощи std::next \ std::advance.

Любой контейнер можно сконструировать используя итераторы, таким образом можно из std::forward list или std::unordered map создать вектор, с соответствующей нижележащей структурой.

BidirectionalIterator

В дополнение имеет перегрузку --. Для смещения на несколько элементов можно использовать std::prev // std::advance.

Контейнеры имеют реверсированыне итераторы rbegin \ rend.

RandomAccessIterator

В дополнение перегружены операторы +=, -=. Но prev\next\advance - работают так же.

OutputIterator

```
std::string buf { "text" };
std::ostream& os;
std::copy(buf.begin(), buf.end(), os); //Копирует строку в поток
```

std::iterator_trait

Структуры для метапрограммирования, позволяющие узнать тип итератора.

```
template <class Iter>
struct iterator traits
{
    using difference_type = typename Iter::difference_type;
    using value type = typename Iter::value type;
    using pointer = typename Iter::pointer;
    using reference = typename Iter::reference;
    using iterator_category = typename Iter::iterator_category;
};
template <class T>
struct iterator traits<T*>
{
    using difference_type = ptrdiff_t;
   using value_type = T;
   using pointer = T*;
    using reference = T&;
```

```
using iterator_category = random_access_iterator_tag;
}
```

Существует 6 типов итератор тэгов:

- input_interator_tag
- forward_iterator_tag наследуюет предшествующий
- bidirectional_iterator_tag наследуюет предшествующий
- random_access_iterator_tag наследуюет предшествующий
- continues_iterator_tag наследуюет предшествующий
- output_iterator_tag

```
template <typename It>
using it_cat = typename std::iterator_trait<It>::iterator_category;
template <typename It>
using it_diff = typename std::iterator_trait<It>::difference_type;
template <class It>
auto distance(It first, It last, std::input_iterator_tag)
    it_diff<It> dist = 0;
    for (; frist != last; ++first, ++dist);
    return dist;
}
template <class It>
auto distance(It first, It last, std::random_access_iterator_tag)
    return first < last ? (last - first) : -(first - last);</pre>
template <class It>
auto distance(It first, It last)
    return distance(first, last, it_cat<It>{});
}
```

TODO

++ Forwarding reference допольнить и изучить внимательней

- ++ inline namespaces тоже в 11 фитчи
- ++std::invoke
- ++ Searcher function objects
- ++ общие фитчи языка вроде const\volotile итд из конспетов курсеры
- +++ Идеомы
- +++ шпоры filesystem +?
- ++ advanced constexpr?
- ++ TODO скользкие места C++ в UB
- // TODO placement new
- ++ std::true_type пометить о существовании этих функций, где есть пример их реализации
- ++ Изучить мелкие фитчи, например
- $int^* pArr = new int[N]$; создаёт массив с дефолтными значениями (+ массивы на умных указателях)
- ++ узнать больше о multiset \ multimap

TODO при описании контейнеров выводить только разницу между ними (не дублировать море лишнего кода и названий полей) А может лучше всего даже сделать сводную таблицу, чтобы видеть сразу разницу между всеми контейнерами