第7章 时序逻辑设计原理

南京大学人工智能学院 2018 - 2019春季

应用问题:

输入

数字系统

输出

应用问题

确定的输入有确定的输出

组合逻辑

确定的输入和电 路状态综合决定 输出结果

时序逻辑

应用问题中时序逻辑

决定输出的状态有哪些?

什么时候处于什么 状态如何决定?

状态如何记录保持?

状态如何流转?

- 时序电路的输出不仅取决于当前的输入,而且 取决于过去的输入序列(状态)。
 - 可能有多少个状态?
- 状态state:
 - 是一个状态变量集合。
- 时序电路的状态个数有限:
 - 有限状态机
 - 状态的流转反映了电路的特性。

- 状态变化的驱动方式:
 - 时钟clock
 - 有效电平: 通常在时钟的触发沿内状态发生改变。

- 时序电路的类型:
 - 反馈时序电路:采用普通门电路和反馈回路来实现逻辑电路中的记忆能力,由此构成时序逻辑电路。
 - 时钟同步时序电路:也采用逻辑构件来构建电路,但输入由统一的时钟信号控制。
 - 其它类型:通用基本型、多脉冲型等

内容提要

- 双稳态电路(Bi-stable Device)
- 锁存器与触发器
- 时钟同步状态机分析
- 时钟同步状态机设计
 - 用状态表设计状态机
 - 用状态图设计状态机
 - 用转移表设计状态机
- 反馈时序电路分析
- 反馈时序电路设计
- Verilog设计时序电路: 自学

双稳态元件 Bistable Elements

 所谓的双稳态元件(或者电路),是指电路 有两个稳定的状态,即置位状态和复位状态。Q为1的状态称为置位状态,而Q为0的状态称为复位状态。

Analog analysis

- 以CMOS电路电压传输特性为例
- CMOS阈值电平2.5 V左右

亚稳定性Metastability

- 双稳态电路的内在特性(inherent)
 - 2 稳定点(stable points)
 - 1亚稳定点(metastable point)

Transfer function:

$$V_{\text{out1}} = T(V_{\text{in1}})$$

$$V_{\text{out2}} = T(V_{\text{in2}})$$

亚稳态,非有效的逻辑信号,但满足回路方程

亚稳态特性

- 球正好在山顶
- 球在山脚,需要踢到另一边

亚稳态特性

- 任何时序电路都存在亚稳态现象
 - 开机: 存在亚稳态
 - 工作:外部激励必须满足最短时间要求,才能生效, 否则...

说说单稳态(Monostable)

2 锁存器与触发器

- 时序电路的基本构件。
- 都是双稳态元件。
- 锁存器(Latch)
 - 连续地监测其输入,并且独立于时钟信号而在任何时 候都可以改变输出
- 触发器(Flip-Flop)
 - 连续地监测输入信号,并只在时钟信号所确定的时刻 改变其输出
 - 同步(Synchronous): 与时钟信号同步

锁存器

- RS(Reset-Set)锁存器
- 锁存器 $\overline{R} - \overline{S}$
- 具有使能端的RS锁存器
- D锁存器

RS锁存器及典型操作

或非门构成的RS锁存器,有两个输入R、S,两个输出Q、QN。

S进行置位set, 使得Q输出1 R进行复位 reset,使得Q 输出0

RS锁存器时间参数

R非S非锁存器:低态有效的置位和复位,可以用与非门实现。

具有使能端的RS锁存器

- •S-R Latch with Enable, 带使能端的 RS锁存器(RS闩锁)
- •受使能信号控制,C 为写入条件或指令

具有使能端的RS锁存器

- •S-R Latch with Enable, 带使能端的 RS锁存器(RS闩锁)
- •受使能信号控制, C为写入条件或指令

Manual Control of the Control of the

- •数据经非门产生一对互补信号,D型锁存器(D Latch)
- •C:控制输入端,亦称 ENABLE,CLK或G端, 提出最小脉冲宽度。

- •C有效时,Q输出与D输入一致,锁存器打开,从输入到输出的通道时透明的
- •C无效时,锁存器关闭,Q保持上一次的值

D锁存器时间参数

D Latch: Transparent Latch

- 建立时间(Set-up time)
- 保持时间(Hold time)
- 需满足**t**_{setup}和t_{hold}的要求

建立保持时间 窗口内**D**输入改变导 致输出不可预测

锁存器与触发器

- 都是双稳态元件
- 锁存器(Latch)
 - 连续地监测其输入,并且独立于时钟信号而在任何时 候都可以改变输出
- 触发器(Flip-flop)
 - 连续地监测输入信号,并只在时钟信号(变化的一瞬间)所确定的时刻改变其输出
 - 同步(Synchronous): 与时钟信号同步

如何实现边沿触发?

边沿触发式(Edge Triggered)触发器

• 只在时钟信号的上升沿或者下降沿改变状态

•上升沿触发

•下降沿触发

触发器和锁存器再比较

D锁存器

上升沿触发的D触发器

- □ 锁存器(Latch)
 - 连续地监测其输入,并且独立于时钟信号而在任何时候都可以改变输 出
- □ 触发器(Flip-flop)
 - 连续地监测输入信号,并只在时钟信号所确定的时刻改变其输出
 - 同步(Synchronous): 与时钟信号同步

主从D触发器——边沿D触发器

- 正边沿D触发器:一对D锁存器构成
- 只在控制时钟上升沿到来的时刻采样D输入信号,并且据此 改变Q和QN输出;
- 第1个锁存器称为主(master)锁存器,第2个称为从(slave)

D	CLK	Q	QN	
0		0	1	
1		1	0	
χ	0	last Q	last QN	
х	1	last Q	last QN	

CLK	主锁存器	从锁存器
L	写入	不变
上升沿	锁存	开始写入
Н	不变	写入

边沿D触发器功能特性

- CLK为0的区间,QM发生变化;
- CLK为1后,QM的值传给Q。

^Q —

QN

边沿D触发器时间特性

Manual Control

QM

- 传播延迟 (from CLK)
- 建立时间 (D before CLK)
- 保持时间 (D after CLK)

其它的D触发器种类

● 负边沿D触发器Negative-edge triggered

D	CLK_L	. Q	QN
0	7	0	1
1	7	1	0
Χ	0	last Q	last QN
Χ	1	last Q	last QN

• 具有预置和清零端的正边沿D触发器

具有使能端的边沿触发式D触发器

•在时钟边沿能够保持最后一次储存的值。

D	ΕN	CLK	Q	QN
0	1		0	1
1	1		1	0
Х	0		last Q	last QN
Х	Х	0	last Q	last QN
Х	Х	1	last Q	last QN

扫描触发器

CLK

- •扫描触发器除了D输入端以外,还有两个输入端。
 - •TI即Test Input,用来输入测试序列(测试向量)
 - •TE即Test Enable,用来控制触发器工作状态。
 - •TE为0时触发器工作在正常状态,功能和D 触发器一样。
 - •TE为1时,触发器工作在测试状态。

TE	TI	D	CLK	Q	QN
0	Х	0		0	1
0	Х	1		1	0
1	0	Χ		0	1
1	1	Χ		1	0
Χ	Х	Χ	0	last Q	last QN
Х	Χ	Х	1	last Q	last QN

扫描触发器

当TE有效时,D输入被禁止,触发器的数据从TI输入。

扫描触发器

当TE无效时,电路特性和普通的D触发器没有区别。

主从式(Master-slave)触发器

- 在时钟脉冲信号高电平期间数据进入触发器,在 下降沿输出反映输入的变化
- 主从式触发器也称为脉冲触发型触发器(Pulse Triggered Flip-flops)
 - 为了使得输出能正确地反映输入的变化,要求在时钟脉冲信号为高期间,输入不发生变化。
 - 其特点是数据在第一个边沿锁入触发器,第二个边沿后数据出现在输出端。
- 主从式触发器基本上已经被边沿触发式触发器所取代。

主从式RS触发器

主从式RS触发器

QM_L

Q ____

QN

主从式J-K触发器

last QN last Q

•解决RS端同时有效的问题;在JK触发器中,JK同时有效,Q和QN进入与当前状态相反的状态(状态翻转)。

复位/置位/数据保持/数据求反

主从式J-K触发器

-QQ

-QN

QM

pred

e QN is 0.

1钳位:即使

K输入有效,

J输入无效

Κ**ロ**

С

now 0.

特性:

- 在触发脉冲的后沿,JK输入 的状态变化可能无效。
- 使用中,尽量保好的 即使

QM QM_L

> Q QN

> > 19/4/30

边沿触发式J-K触发器

la municipal de la constantia de la cons

- •解决主从JK触发器中1和0钳位的问题。
- 在上升沿时采样输入信号。

另一种商用的边沿JK触发器

• 74LS109

T(Toggle)触发器

- - 常用在计数器和分频器。
 - 变种: 具有使能端的T触发器。

附: 维持-阻塞D触发器

- 逻辑结构
 - 正边沿触发的维持-阻塞D触发器见下图所示,它由 一个4门的钟控触发器和两个输入信号接收门组成。
 - <u>D1</u>、<u>D2</u>是数据输入端, CP是时钟输入端。 S_D、R_D 是异步置1、置0端。

19/4/30

维持-阻塞D触发器

JK触发器(Vs D触发器)

- 功能: 复位/置位/数据保持/数据求反
- SSI和MSI设计初期,简化激励函数使JK触发器受重视
 - PLD设计中: 需要为J、K两端分别提供单独的组合逻辑,即两个"与-或"阵列
 - ASIC设计中: D触发器7个门, JK触发器占用9个门, 比D触发器多占用25%芯片面积
- PLD和ASIC设计中,大量使用D触发器,特殊情况下使用JK触发器

锁存器、触发器汇总

锁存器和触发器的描述

- 锁存器和触发器虽然工作特性差异很大、他从 电路的功能设计来说,更多地关注其状态的 变迁。
- 锁存器和触发器的描述
 - 电路图
 - 功能表
 - 逻辑符号
 - 特征方程
 - 状态图

特征方程

• 锁存器或触发器的功能特性采用特征方程进行形式描述

SR锁存器

$$Q^{n+1} = S + \overline{R} \bullet Q^n$$

JK触发器

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

T触发器

$$Q^{n+1} = \overline{Q^n}$$

D触发器

$$Q^{n+1} = D$$

状态转移图(State Diagram)

- 用来描述电路状态,也可以对现实世界中任何有状态的事物进行建模
 - 列举出该事物所有可能的状态,每个状态用 一个圈表示
 - 状态之间可以相互转换。状态转换用带箭头的弧线表示。
 - 在弧线上标明状态发生变化的条件(即系统的输入)。也可以标明该状态转移导致的结果(输出)。

状态转移图举例

- 计算器的开关状态
 - 开和关
 - 输入: 电源开关按钮ON和OFF

RS触发器的状态转移图

S	R	Q	QN	
0	0	last Q	last QN	
0	1	0	1	
1	0	1	0	
1	1	0	0	

S=0 R=1

SR=11没有列入有效状态列表。

JK触发器的状态转移图

Inputs			Output		पप ४८
J	K	CLK	Q	Q'	说明
0	0	↑	Last Q	Last Q'	维持原状态
0	1	↑	0	1	复位
1	0	↑	1	0	置位
1	1		Last Q'	Last Q	翻转(Toggle)

T触发器的状态转移图

D触发器的状态转移图?