Structural Clustering Analysts' Step 1 Approach to New Data

Dylan Hutchison dhutchis@stevens.edu and the Microsoft Research Tabular Team

Vision: Enable data analysts to run Probabilistic Machine Learning in Excel

Background: Tabular – an Excel-based DSL data analysts use to write generative models for probabilistic inference.

Tabular: A Schema-Driven Probabilistic Programming Language A. Gordon, T. Graepel, N. Rolland, C. Russo et al **POPL 2014**

Problem: High entry barrier for data analysts to write generative models.

Need expert domain knowledge, heavy time investment.

Solution Idea: Suggest a default model based on a dataset's structure and statistics. Extends Singh and Graepel's InfernoDB in Tabular.

Automated Probabilistic Modelling for Relational Data S. Singh, T. Graepel **CIKM 2013**

Evaluation: Compare model accuracy and fit with InfernoDB & other models.

Demonstrate value to data analysts via case studies.

MovieLens Example

http://grouplens.org/datasets/movielens>

Application: Predicting users' ratings, Suggesting movies to users

Pipeline CSVs

upto(Ku)

real

bool

upto(Nocc)

link(T_User)

upto(Kr)

upto(5)

link(T_Movie)

- 1) Statistical Analysis
- 2) Functional Analysis Occup. = f(Age)?

CPoisson(alpha=5.0,beta=5.0)[k]

CDiscrete(N=Kr)[User.k][Movie.k]

3) Structural Analysis

CDiscrete(N=Ku)

CBernoulli()[k]

CDiscrete(N=Nocc)[k]

Foreign
Links

User	Age	Gender	Occupation
1	24	M	technician
2	53	F	lawyer
3	23	M	writer

1	24	M	technician
2	53	F	lawyer
3	23	M	writer
4	24	M	technician

Gender	
Movies	

Ratings

User

Movie

Rating

Occupation

Users

Age

k	upto(Km)	latent	CDiscrete(N=Km)
Action	bool	output	CBernoulli()[k]
Adventure	bool	output	CBernoulli()[k]
Animation	bool	output	CBernoulli()[k]

latent

output

output

output

input

input

latent

Generative Cluster Model

Ratings

Users

User	Movie	Rating
196	242	3
186	302	3
22	377	1
244	51	2

Movie	Title	Action	Adventure	Animation
	Toy Story			
1	(1995)	0	0	1
	GoldenEye			
2	(1995)	1	1	0
	Four Rooms			
3	(1995)	0	0	0
	Get Shorty			
4	(1995)	1	0	0

output CBinomial(N=5)[k]