Universidad de Granada. Ecuaciones Diferenciales I 19 de Diciembre de 2023

NOMBRE:

1. Se consideran las funciones $f_1, f_2:]0, 1[\to \mathbb{R}, f_1(t) = 1 \text{ si } t \in]0, 1[, f_2(t) = 1 \text{ si } t \in]0, \frac{2}{3}], f_2(t) = 0 \text{ si } t \in]\frac{2}{3}, 1[$. ¿Son estas funciones linealmente independientes en el intervalo]0, 1[?

$$8n \cdot \delta_{1} L_{I} L_{I} = \sum_{i=1}^{3} \lambda_{i} \delta_{i}(t) + \sum_{i=1}^{3} \delta_{i}(t) = \sum_{i=$$

2. Se considera la ecuación diferencial

$$ax + by + (cx + dy)y' = 0,$$

con $a,b,c,d\in]0,\infty[$. ¿En qué casos se puede afirmar que $\mu(x,y)=e^{x+y}$ es un factor integrante?

SEO B(xix) = 0x+ps , Q(xix) = cx+dy & C'(P?)

h 8y=> { h(λιλ) ±0 + (λιλ) ∈ K₅ h 8y=> { h(λιλ) ±0 + (λιλ) ∈ K₅

 $e^{x+y}(P+P_y) = e^{x+y}(Q+Q_x) \iff ax+by+b = cx+dy+C \iff ax+by+b = cx+dy+b =$

3. Dada una función $a \in C(\mathbb{R})$, se supone que φ_1 , φ_2 son las soluciones de la ecuación x'' + a(t)x = 0 que cumplen las condiciones iniciales

$$\varphi_1(0) = 1$$
, $\varphi'_1(0) = 0$, $\varphi_2(0) = 0$, $\varphi'_2(0) = 1$.

Demuestra que la función

$$x(t) = \varphi_2(t) \int_0^t e^s \varphi_1(s) ds - \varphi_1(t) \int_0^t e^s \varphi_2(s) ds + 2024 \varphi_2(t)$$

pertenece a $C^2(\mathbb{R})$ y encuentra una ecuación diferencial de la que es solución.

For ser soluciones,
$$\psi_{1}, \psi_{2} \in C^{2}(\mathbb{R})$$
. Podo que $e^{s}\psi_{1}(s)$, $e^{s}\psi_{2}(s) \in C(\mathbb{R})$
 \Rightarrow Por to Fundamental Calculo, $x \in C^{n}(\mathbb{R})$ con

 $\psi_{1}, \psi_{2} \in 2$ sist. Sund. \Rightarrow I to $\in \mathbb{R}$ / $W(\psi_{1}, \psi_{2})$ (to) \neq 0 \Rightarrow $W(\psi_{1}, \psi_{2})$ (th) $\psi_{1} \in \mathbb{R}$ for $0 \in \mathbb{R}$ / $W(\psi_{1}, \psi_{2})$ (to) $\psi_{2} \in \mathbb{R}$ for $0 \in \mathbb{R}$

4. Encuentra todas las funciones continuas $f: \mathbb{R} \to \mathbb{R}$ que cumplen las desigual-

$$0 \le f(t) \le \frac{1}{1+t^2} F(t), \quad \forall t \in \mathbb{R},$$

con
$$F(t) = \int_0^t f(s)ds$$
.

Usamos Lema: sea &: 5 -> Rot, 120, to e J intervalo cualquiera/ 8(+) = + | (18(2) & + =) & (+) = 0 ++=]

$$S(t \ge 0)$$
 $S(t \ge 0)$ $S(t \ge 0)$

$$f < 0$$
:
 $0 = g(+1) = \frac{1}{1++2} \int_{0}^{+} g(s) ds = 0 \implies g(+1) = 0 \quad \forall + \in \mathbb{R}$

5. El espacio vectorial de soluciones de las ecuación x'' + 4x = 0 se denota por Z_x . De igual modo, Z_y será el espacio vectorial de soluciones de y'' + 2y' + 5y = 0. Demuestra que la transformación

$$\Psi: Z_x \to Z_y, \ x \mapsto y, \ y(t) = e^{-t}x(t)$$

define un isomorfismo. Encuentra bases de Z_x y Z_y y calcula la matriz que representa a Ψ en esas bases.

- Veamos y está bien desimida:

eamos
$$y$$
 está bíen desirnos:
Sí x es sol de $x'' + ux = 0$, $y = e^{-t} \times debens serio de $y' + 3y' + 5y = 0$
 $y''(t) = -e^{-t} \times + e^{-t} \times' = e^{-t} (x' - x)$
 $y''(t) = -e^{-t} (x' - x) + e^{-t} (x'' - x') = e^{-t} (x'' - 2x' + x)$
 $y'''(t) = -e^{-t} (x'' - 2x' + x) + 2 e^{-t} (x' - x) + 5 e^{-t} x = e^{-t} (x'' - 2x' + x) + 2 e^{-t} (x'' - 2x' + x) = e^{-t} (x'' - 2x' + x) = e^{-t} (x'' - 2x' + x) + 2 e^{-t} (x'' - 2x' + x) = e^{-t$$

- Veamos
$$\psi$$
 lineal:
 $\psi(\alpha x + by) = e^{-t}(\alpha x + by) = \alpha e^{-t}x + be^{-t}y = \alpha \psi(x) + b\psi(y)$

- Veamos y in yectivo => xer y= fo}

$$\text{Ker } V = \{x \in Z \times / V(x) = e^{-t} = 0\} = \{0\}$$

- baga dre 5 x A 5 A con exbociaz ge zalncianez ge echacion ez lineorez ge 2° orden, dim(5x) = dim(2x) = 2

Por tanto, queda probado que y es isomorgismo.

Podemos comprobar que (1,(+) = cos ?+ y (2(+) = sen ?+ forman sist sundamental de Zx => [V1, Vz] es base de Z = Fy= {V(V1), {V(V2)}} = Set V1, et 42 % forman base de 24. Por tanto,

$$\mathcal{M}(\mathcal{V};\mathcal{B}_{x},\mathcal{B}_{\delta}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$