







# **EVIDENTE** facilitates the identification of enriched characteristics in SNP-based phylogenetic trees

Mathias Witte Paz, Alexander Seitz, Kay Nieselt

Institute for Bioinformatics and Medical Informatics University of Tübingen Sand 14, 72076 Tübingen



Motivation for EVIDENTE: In recent years the developments of the next-generation sequencing technologies have enabled genome resequencing projects of many individuals within one species. The genomes are often analyzed with respect to single-nucleotide polymorphisms (SNPs) or small indels. This gives the possibility of reconstructing a phylogenetic tree of all individuals based on the detected mutations. From such a phylogenetic tree, a common question is to identify clade-specific SNPs within the reconstructed phylogeny, i.e. that support the computed topology. Then one also often wishes to analyze these mutations in more detail to retrieve for example functional consequences that the SNP may have on the organism or to compute enrichment of certain features within the phylogenetic tree. Here, we present on-going work in developing the visual analytics tool Evidente for annotation and analysis of metadata in SNP-based phylogenetic trees. It enables the user to get a visual overview of distribution of SNPs across all samples as well as clade-specific SNPs within the tree. Furthermore, Evidente allows the user to run an enrichment analysis, for example for Gene Ontology (GO) annotations.



#### Use case: MI10-99\_Mali\_2016 Node Search MI10-95\_Mali\_2016 Mycobacterium leprae<sup>5</sup> MI10-97\_Mali\_2016 MI10-93\_Mali\_2016 Origin Place: Ng12-33\_Niger\_2015 Mali, Nigeria Ng17-39\_Niger\_2015 STATE OF THE PROPERTY OF THE P MI9-86\_Mali\_2014 Ng15-37\_Niger\_2015 MI10-91\_Mali\_2016 S13\_Mali\_2012 Ng13-32\_Niger\_2015 Ng15-36\_Niger\_2015 No Of Infections Ng16-38\_Niger\_2015 MI10-94\_Mali\_2016 Filter Nodes found: 17 Export to file. MI9-79\_Mali\_2016 MI9-81\_Mali\_2014 SNP Search Terral parity and Supporting SNPs US57\_Marshall\_Islands\_2000 Non-Supporting SNPs Ryukyu-2\_Japan\_2000 Zensho-9\_Japan\_2000 CM1\_Philippines\_1994 Apaper, agai, min man, agai, min man, agai, min S9 New Caledonia 1996 1987172 Jorgen\_507\_Denmark\_1058-1253 SK11\_Hungary\_600-800 S10\_China\_2006 Files Upload Izumi\_Japan\_2000 Tree Options Node Search Kanazawa\_Japan\_2000 Oku-4\_Japan\_2000 Kyoto-1\_Japan\_2000 Kyoto-2\_Japan\_1991 Korea-3-2\_Korea\_2000 Tsukuba-1\_Japan\_2000 2\_Japan\_2000 3. SNP3: 1987172 😵 **Enrichment Analysis on SNPs** Subtree ID: 335 Significance level SNP Characteristic Gene Name Enrichment namena marina and program or more agreement **Enrichment** - Angalianja amanjaran ar - Angalianja amang jawa ar - Angalianjaran - Maranjaran - Maranjaran - Maranjaran The following p-values have been corrected Fischer's Exact Test runned as logarithms. Visualization of Comparisons made: 205, corrected significance level: 0.000244 analysis enriched gene on genes Printer Marches Printer Marches Printer Marches Printer Marches Marche

# Features:

#### Filtering:

Through metadata of the samples

### **SNP Visualization:**

- Clade-specific SNPs
- Non-supporting SNPs
- Common SNPs between subtrees

# **Enrichment Analysis:**

- Fisher's Exact Test
- Enrichment of SNP characteristics
- Enrichment of taxonomic information
- Visualization of enriched features



# References

- 1) Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol 17:60 (2016).
- 2) <a href="https://github.com/Integrative-Transcriptomics/MUSIAL">https://github.com/Integrative-Transcriptomics/MUSIAL</a>
- 3) Kumar, S. et al. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Molecular Biology and Evolution, 33: 1870-1874 (2016).

A CONTRACTOR

4) Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80-92 (2012). 5) Schuenemann, VJ. et al. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLOS Pathogens 4: e1006997(2018).

## **Availability:**



https://lambda.informatik.uni-tuebingen.de/gitlab/paz/evidente

Poster download!