Paraconsistent and Paracomplete Systems

Paraconsista

April 13 2022

Abstract

Every paraconsistent or paracomplete system invalidates one of the laws of indiscernibility or one of the laws of logical explosion.

Contents

I	$G\epsilon$	eneral Paraqualifications	1
1		Paracomplete Systems	
		Indiscernibility of Identicals	
	1.2	Identity of Indiscernibles	4
	1.3	Excluded Middle	4
2 Pa	Par	aconsistent Systems	:
	2.1	Logical Explosion	
	2.2	Contradictory Consequence	
	2.3	Non-Contradiction	•

Part I

General Paraqualifications

1 Paracomplete Systems

A system is generally paracomplete if it invalidates one or both of the laws of indiscernibility.

1.1 Indiscernibility of Identicals

$$\frac{\neg \forall F (Fx \leftrightarrow Fy) \vdash \neg (x = y)}{x = y \vdash \forall F (Fx \leftrightarrow Fy)}$$

$$\frac{\exists F (Fx \not\leftrightarrow Fy) \vdash x \neq y}{x = y \vdash \forall F (Fx \leftrightarrow Fy)}$$

1.2 Identity of Indiscernibles

$$\frac{\neg (x = y) \vdash \neg \forall F (Fx \leftrightarrow Fy)}{\forall F (Fx \leftrightarrow Fy) \vdash x = y}$$

$$\frac{x \neq y \vdash \exists F (Fx \not\leftrightarrow Fy)}{\forall F (Fx \leftrightarrow Fy) \vdash x = y}$$

1.3 Excluded Middle

$$\frac{\neg (x \lor \neg x) \vdash \neg \top}{\bot \vdash x \lor \neg x}$$

2 Paraconsistent Systems

A system is generally paraconsistent if it invalidates some number of the laws of inconsistency.

2.1 Logical Explosion

$$\frac{\neg y \vdash \neg (x \land \neg x)}{x \land \neg x \vdash y}$$

2.2 Contradictory Consequence

$$\frac{\neg (x \land \neg x) \vdash \neg y}{y \vdash x \land \neg x}$$

2.3 Non-Contradiction

$$\frac{\neg\bot\vdash\neg\left(x\wedge\neg x\right)}{x\wedge\neg x\vdash\bot}$$