Midterm solution EE120

let's denote the function in the problem to be XIt)), (a) then we can write X(t) as the sum of X(t), X2(t) $\chi_{i}(\tau) =$ 1/2(t) = Now $\chi_{\Sigma}(t) = \frac{1}{2} + \frac{1$ $(2\sqrt{2}\sin\frac{\omega}{4})^2 = (2\sqrt{2}\sin\frac{\omega}{4})^2 = 8(\sin\frac{\omega}{4})^2 = 8(\sin\frac$ Since Kit) = Net) * = & &(t-k) $X_{1}(\omega) = 8\left(\frac{\sin 4}{4}\right)^{2}e^{-\frac{2\pi}{2}} = 2\pi \sum_{k=-1}^{\infty} \delta(\omega - 2\pi k)$ = \(\Sin \frac{2\tau k}{4} \)^2 \(-j\times k \) $= \sum_{k=1}^{\infty} \frac{4}{\pi} \left(\frac{\sin \frac{\pi k}{2}}{h} \right)^{2} (-1)^{k} \delta(w-2\pi k)$ $= \pi \delta(\omega) - \sum_{m=-\infty}^{\infty} \frac{4}{\pi (2m+1)^2} \delta(\omega - 2\pi (2m+1))$ $X(\omega) = X_{1}(\omega) + X_{2}(\omega) = T S(\omega) - \sum_{m=-\infty}^{\infty} \frac{4}{T(2m+1)^{2}} S(\omega - 2T(2m+1))$ + 8(sin 4) e-) 2

1.(b)

let
$$X(t)$$
 clerate the function in 1.(b)

then $X(t) = X_1(t) \cdot U(t)$

where $X_1(t) = \frac{1}{3}$

$$X_{1(w)} = \pi S(w) - \sum_{m=-\infty}^{\infty} \frac{4}{\pi (2m+1)^2} S(w-2\pi (2m+1))$$

$$(u(t)) = \frac{1}{2\pi} X_{1}(u) * F(u(t))$$

$$=\frac{1}{2\pi}\left[\pi(\delta | \omega) + \frac{4}{\pi(2m+1)^2}\delta(\omega-2\pi(2m+1))\right] \times (\pi(\delta | \omega) + \frac{1}{2\pi\omega})$$

$$=\frac{1}{2\pi}\left[\pi(\delta | \omega) - \frac{2}{m-2\omega} + \frac{4}{\pi(2m+1)^2}\delta(\omega-2\pi(2m+1))\right] + \frac{1}{2\pi(2m+1)^2}$$

$$= \frac{1}{2\pi} \left[\pi \delta(w) - \frac{2}{m^{2} - 10} \pi (2m+1)^{2} \right]$$

$$= \frac{1}{2} \left(\pi \delta(w) + \frac{1}{10} \right) - \frac{20}{2\pi} \frac{2}{\pi^{2} (2m+1)^{2}} \left[\pi \delta(w - 2\pi (2m+1)) + \frac{1}{10m^{2} - 10m^{2} + 10m^{2}} \right]$$

$$= \frac{1}{2} \left(\pi \delta(w) + \frac{1}{10m^{2}} \right) - \frac{20}{\pi^{2} - 10} \frac{2}{\pi^{2} (2m+1)^{2}} \left[\pi \delta(w - 2\pi (2m+1)) + \frac{1}{10m^{2} - 10m^{2}} \right]$$

2.(a)
$$f_{1}(t) = \sum_{k=-\infty}^{\infty} e^{\int 2\pi kt}$$

$$\Rightarrow f_{1}(w) = 2\pi \sum_{k=-\infty}^{\infty} S(w-2\pi k)$$

$$\Rightarrow f_{1}(t) = \sum_{k=-\infty}^{\infty} S(t-k)$$

$$Since f_{2}(t) = \sum_{n=-\infty}^{\infty} S(t-n+as),$$

$$f_{1}(t) \cdot f_{2}(t) = 0$$

$$\Rightarrow \text{ the output is } 0$$

2.(b) From 2(a),
$$f(t) = \sum_{k=0}^{\infty} \int_{z=k}^{2\pi kt} = \sum_{k=0}^{\infty} \delta(t-k)$$

$$\chi(t) = f(t) * h(t) = \sum_{k=0}^{\infty} \int_{z=k}^{2\pi kt} \int_{z=k}^{2\pi kt}$$

3.49 Since the period of the sampling signal $f_2(t)$ is 3T, the sampling frequency is $\frac{2T}{3T}$.

Now the maximum frequency of filt) is Wn = 20Th

In order-to satisfy Nyquist cricerion, we must have

$$\frac{2\pi}{37} > 2W_{M} = 40\pi$$

$$\Rightarrow 7 < \frac{1}{60}$$

In order to recover original signal file), Brust saisty

$$\frac{2\pi}{3T} - \omega_{M} > B > \omega_{M}$$

(b) denote
$$f_3(t) = f_1(t) \cdot f_2(t)$$

then $f_3(\omega) = \frac{1}{2\pi} f(\omega) * f_2(\omega)$

$$= \frac{1}{2\pi} f_1(\omega) * \left(\sum_{n=-\infty}^{\infty} 2\pi a_n S(\omega - n \frac{2\pi}{3T}) \right)$$

$$= \sum_{n=-\infty}^{\infty} G_n f_1(\omega - n \frac{2\pi}{3T})$$

where aris the FS coefficient of falt).

Since H(w) only passes $Q_0F_1(w)$ in order to recover $f_1(t)$, $A = \frac{1}{C}$

Now
$$a_0 = \frac{1}{3T} \int_0^{3T} f_2(t) dt = \frac{2}{3}$$
 $\Rightarrow A = \frac{1}{a_0} = \frac{3}{2}$

$$F(W_{x},W_{y}) = 3 \cdot \frac{2 \cdot \sin w_{x}}{w_{x}} \cdot \frac{2 \cdot \sin \frac{3}{2} w_{y}}{w_{y}} \cdot \frac{-3j \cdot w_{x}}{w_{x}} - \frac{9j \cdot w_{y}}{2j \cdot w_{y}}$$

$$+ 2 \cdot \frac{2 \cdot \sin w_{x}}{w_{x}} \cdot \frac{2 \cdot \sin \frac{3}{2} w_{y}}{w_{y}} \cdot \frac{-5j \cdot w_{x}}{w_{x}} - \frac{9j \cdot w_{y}}{2j \cdot w_{y}}$$

$$+ \frac{2 \cdot \sin w_{x}}{w_{x}} \cdot \frac{2 \cdot \sin \frac{3}{2} w_{y}}{w_{y}} \cdot \frac{-7j \cdot w_{x}}{w_{y}} - \frac{9j \cdot w_{y}}{2j \cdot w_{y}} - \frac{9j \cdot w_{x}}{2j \cdot w_{y}} - \frac{9j \cdot w_{x$$

(b)
$$f_2(x,y) = f_1(-y,-x)$$

=) $f_2(w_x, w_y) = F_1(-w_y,-w_x)$