(12) UK Patent Application (19) GB (11) 2 363 173 (13) A

(43) Date of A Publication 12.12.2001

(21) Application No 0013727.3

(22) Date of Filing 07.06.2000

(71) Applicant(s)

Frank Moeller
The Paddock, 182 Main Road, MILFORD, Stafford, ST17 OUN, United Kingdom

(72) Inventor(s) Frank Moeller

(74) Agent and/or Address for Service
Forrester Ketley & Co
Chamberlain House, Paradise Place, BIRMINGHAM,
B3 3HP, United Kingdom

(51) INT CL⁷
F16H 3/72

(52) UK CL (Edition S)
F2D DEC DE1 DE3 DE46 DE50 DE72 DE78 DE83 DE86

(56) Documents Cited
US 5730676 A US 5603671 A US 5577973 A
US 5558589 A

(58) Field of Search
UK CL (Edition S) F2D DEC
INT CL⁷ F16H 3/72
ONLINE: WPI; EPODOC; JAPIO.

(54) Abstract Title

Epicyclic transmission with electric motors to vary output speed

(57) An epicyclic transmission comprises a first annulus gear 26 grounded by a switched reluctance type first electric motor 13 and a second sun gear 18 grounded by a second motor 15 of the switched reluctance type. The transmission has control means which permits the speed of the motors 13, 15 to be varied so as to alter an output speed of the transmission. First annulus gear 26 is engaged with first planet wheels 24 having a first carrier that is connected to a second annulus gear 30. Second annulus gear 39 drives second planet wheels 31 having a second carrier which may be connected to an output shaft 37. The first carrier and first planet wheels 24 may be driven, via flywheel 22, by an input to the transmission. First planet wheels 24 also drive a first sun gear 19 which is coupled to the second sun gear 18.

(_)

FIG 2

FIG 3

Electric F	Electric Power Split Tran	ransmission									
Spread S	Spread Sheet Model, 74	74 kW engine	at 3200 R	PM input		•					
8	-3.62	EP1				-2.15	EP2				
Pos	0	3.62	4.62		Pos	0	2.15	3.15			
	output	engine		딦			output		E2		engine
	sun speed	carr.speed	ring			sun speed	carr.speed				
RPM	-710	3200	4280	4280	RPM	-710	1959	3200	-710		3200
	sun torque	carr.torque				sun torque	carr.torque				
E Z	ເກ	-25	20	19.9	E	115	-361		120.0		221
	sun power	carr. power	ring			sun power	carr. power			net el.	
κ	4.0-	-8.5	8.9	8.9	Ķ	-8.5	-74.0		-8.9	0.0	74
	m	Input EP1	E2			Ш	Output EP2	part engine			

!__)

EP1/2 = epicyclic stages E1/2 = electric motors

slider value only 7280

ring speed RPM slide E1

Full power, min output speed setting max torque on E2 motor = 120 Nm electric power flow 8.9 kW no electric power flow from external source

Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet 1

	engine	3200	221	74
			to To	
	E 2	16008	-2.6	-4.3
	3.15	ring 3200		22.2 part engine
COU	2.15 output	carr.speed 7266	que carr.torque	carr. power 1119 -74.0 22.2 Output EP2 part engine
	0 0	sun spe 16008	sun torque con	51.8 • • • • • • • • • • • • • • • • • • •
input	Pos	RPM	E E	X X
O RPM	Ш	-338	-121.0	4.3
ı ie at 320	4.62	ring -338	ring -121	ring 4.3 E2
Electric Power Split Transmission Spread Sheet Model, 74 kW engine at 3200 RPM input	EP1 3.62 engine	sun speed carr.speed	sun torque carr.torque -33 154	carr. power 51.8 Input EP1
Power Split Sheet Model	-3.62 0	sun speed 16008	sun torque	sun power -56.0 E1
Electric Spread	Pos S	RPM		¥ ≪

> ring speed RPM slide

ᇤ

slider value only 2662 Full power, max output speed setting max electric motor speed = 16000 RPM electric power flow 4.3 kW no electric power flow from external source

Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet 2

8	-3.62 EP1	Ro -3.62 EP1			8	-2.15	EP2				
Pos	0	3.62	4.62		Pos	0	2.15	3.15			
	output	engine		핎			output		E 2		engine
	sun speed	carr.speed	ring			sun speed	carr.speed	ring			
RPM	-4 3200	3200	4085	4085	RPM	4	2183	3200	4		3200
	sun torque	carr.torque	ring			sun torque	carr.torque	ring			
N E	0	-) (0.1	EZ.	103	-324	221	102.8		221
	sun power carr, power	carr. power	ring			sun power	carr, power	ring		net el.	
Κ	0.0	0.0	0.0	0.0	κ	0.0	-74.0	74.0	0.0	0.0	74
	Ш	Input EP1	E2			딘	Output EP2 part engine	art engine			

> ring speed RPM silde

П

only 7085 Full power, first node point setting

no internal electric power flow no electric power flow from external source

Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet 3

•

(

engine 3200 221	74				
	net el. 0.0				dsheet
E2 14788	0.0				this sprea
3.15 ring 3200 ring	ring 23.5 art engine			_	lculated in
-2.15 EP2 0 2.15 output sun speed carr.speed 14788 6879 sun torquecarr.torque	sun powercarr, power ring 50.5 -74.0 23.5 E1 Output EP2 part engine		l setting	no internal electric power flow no electric power flow from external source	Mechanical and electrical losses are not calculated in this spreadsheet
-2.15 0 sun speed 14788 sun torqu	sun powe 50.5 E1	lages ors	Full power, second node point setting	no internal electric power flow no electric power flow from ext	etrical loss
Ro Pos RPM	X	EP1/2 = epicyclic stages E1/2 = electric motors	er, second	al electric Ic power f	cal and ele
PM Input	0.0	EP1/2 = e E1/2 = ele	Full pow	no intern no electr	Mechani
at 3200 R 4.62 ring -1	-118 ring 0.0 E2				
wer Split Transmission set Model, 74 kW engine -3.62 EP1 0 3.62 output engine sun speed carr.speed 14788 3200	-33 151 sun power carr. power -50.5 50.5 E1 Input EP1				
Electric Power Split Transmission Spread Sheet Model, 74 kW engine at 3200 RPM input Ro -3.62 EP1 Pos 0 3.62 4.62 entput engine sun speed carr.speed ring RPM 14788 3200 -1 -1 sun torque carr.torque ring	-33 sun power -50.5 E1	slider value only 2999 ring speed	RPM slide E1		
Spread S Spread S Ro Pos RPM	E &				

Fig 4 Sheet 4

Electric	Electric Power Split	plit Transmission			1						
pread	Sheet Model,	, 74 kW engine	e at 3200) M						
Bo	-3.62	EP1			8	-2.15	EP2				
Pos	Pos 0	3.62	4.62		Pos	0	2.15	3.15			
	output	engine		ᇤ			output		E2		engine
	sun speed	carr.speed	ring			paads uns	carr.speed	ring			
RPM	5347	3200	2607	2607	RPM	5347	3881	3200	5347		3200
	sun torque	ၓ	ring			sun torque	sun torque carr.torque	ring		•	
EN	-21	. 26	9/-	-75.7	E N	28	-182	124	36.9		221
	sun power	carr. power	ring			sun power	carr. power	ring		net el.	
¥	-11.7	32.4	-20.7	-20.7	Κ	32.4	74.0	41.6	20.7	0.0	74
	Ξ	_	E2			피	ut EP2	part engine			

> ring speed RPM slide E1

slider value

only 5607 Full power, max electric power between node points (can be avoided by engine speed variation) electric power flow = 20.7 kW no electric power flow from external source

Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet 5

**

•)

2.15 3.15 engine output carr.speed ring -1020 1000 -5364 1000 carr.torque ring 37 -26 -25.7 38 -4.0 -2.7 14.4 0.0 4	RPM ource
Electric Power Split Transmission Spread Sheet Model, vehicle reversing, 4 kW engine input at 1000 RPM Spread Sheet Model, vehicle reversing, 4 kW engine input at 1000 PPM Pos -2.15 EP2 Ro -3.62 EP1 Ro -2.15 EP2 Pos 0 2.15 EP2 Pos 0 2.15 EP2 Pos 0 2.15 EP2 Sun speed carr.speed sun speed carr.speed sun speed carr.speed sun torque carr.torque ring Sun torque carr.torque sun torque carr.torque sun power carr.torque sun power carr. power sun power	EP1/2 = epicyclic stages E1/2 = electric motors Reverse speed setting at 1000 engine RPM electric power flow = 14.4 kW no electric power flow from external source Mechanical and electrical losses are not calculated in this spreadsheet
sion 4.62 E1 ed ring 275 lue ring -50 ver ring -50	EP1/ E1/2 E1/2 Rew Rew no e
heet Model, vehicle 13.62 EP1 0 3.62 output engine sun speed carr.spe -5364 1000 sun torque carr.torq -14 64 6.7 E1 Input EF	slider value only 5758 ring speed RPM slide E1
Spread Sp	

Fig 4 Sheet 6

	-3.62	EP1			&	-2.15	EP2				
		3.62	4.62		Pos	0	2.15	3.15			
	output	enaine	!	Ш			output		E 2		engine
	baads uns	carr.speed	ring			sun speed	carr.speed	ring			
	-2587	1200	2246	2246	RPM	-2587	-5	1200	-2587		1200
_	sun torque	carr.torque	ring			sun torque	sun torque carr.torque	ring			,
	0		0	0.0	E E	0	0	0	0.0		-
	sun power	sun power carr. power ring sun power carr.	ring	0.0	¥	sun power 0.0	carr. power 0.0	ring 0.0	0.0	net el. 0.0	0
		Input EP1	E2			<u>т</u>	ut EP2	part engine			-
	1	•									
	sila rvalue only 5246	表。) 127.7		EP1/2 = E1/2 = e	EP1/2 = epicyclic stag E1/2 = electric motors	EP1/2 = epicyclic stages E1/2 = electric motors					
	ring speed										
•	RPM slide	(Zero ve 1200 RF	hicle sp	Zero vehicle speed setting, h 1200 RPM engine speed	Zero vehicle speed setting, held by speed control of motors 1200 RPM engine speed	control of m	otors	٠	
				no pow	er flow, tric powe	no power flow, if no losses are assumed no electric power flow from external sou	no power flow, if no losses are assumed no electric power flow from external source	ø			•
				Mechar	ical and	electrical los	Mechanical and electrical losses are not calculated in this spreadsheet	ilculated in	this spr	eadsheet	
						C took of the contract of the					

(;

Electric	Power Split	Electric Power Split Transmission	7	\$ 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9						
Spr ad	Sheet Model,	Spr ad Sheet Model, vehicle stopped, starting erigine	sed, star	g gang eng	פ						
8	-3.62	EP1			2		EP2				
2 0	-	3.62	4.62		Pos		2.15	3.15			
2	tictic	encine		Ш			output		E 2		engine
		Carr eneed	ring			sun speed	carr.speed	ring		-	
Waa	adii apeed	300	563	563	MPM	-652	. Ó	300	-652		300
	200-	carr torque	ring			sun torque	carr.torque	ring			
8	sun torque car		50	49.9	E E	0	0 0	0	13.8		-64
	בום מושפג	carr nower	rlna			sun power	carr. power	ring		net el.	
γ. -	or c-	-2.0		2.9	ΚM	0.0	0.0 0.0		6.0-	2.0	7-
.	<u>.</u>	Input EP1	ES			Ш	Output EP2 part engine	art engine			

EP1/2 = epicyclic stages E1/2 = electric motors Zero vehicle speed setting, starting engine at 300 RPM and 2 kW starting load

ring speed RPM slide E1

.50

slider value. only 3563 2 kW electric power flow from external source

. . .

* 194. <u>1</u>

Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet.8

	engine	3200	221	74				
			•	10.0				
	E2	12525	12.8	16.8			urce	
urce	3.15	ring 3200	ring 89	ring 29.8	part engine		external so	(motoring)
external sol	2.15 output	carr.speed 6160	carr.torque -130	carr. power -84.0	Output EP2		power from	er = 16.8 kW
electric from -2.15	0	sun speed carr.speed 12525 6160	sun torque carr.torque 41 -130	sun power carr. power 54.2 -84.0	핍	EP1/2 = epicyclic stages E1/2 = electric motors	Full power + 10 kW electric power from external source	highest electric motor power = 16.8 kW (motoring)
. 10 kW 6	Pos	RPM	R E	K		EP1/2 = epicyclic stag E1/2 = electric motors	wer + 10	electric
O RPM +	П	624	-103.4	6.8		EP1/2 = E1/2 = e	Full po	highest
e at 320	4.62	ring 624	ring -103	ring -6.8	E2			
ransmisslor 74 kW engin EP1	3.62 engine	carr.speed 3200	carr.torque	carr. power	Input EP1	◀		* ,
Electric Pow r Split Transmission Spread Sheet Model, 74 kW engine at 3200 RPM + 10 kW electric from external source Ro -3.62 EP1	0	sun speed	sun torque carr.torque	sun power	<u>Е</u>	slid r value only 3624 ring speed	RPM slide E1	
Electric Spread &	Pos	Z Z		84	•			

highest electric motor power = 16.8 kW (motoring) 10 kW electric power flow from external source

Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet 9

				onding	300		3200			25.	7		77	1		
												net el.	9	2.0.		
				ย	7		12525	2		4	o. •		0			
			3.15			ring						ring		1.77	Caison to	part erigine
out of bush	iliai souloe	EP2	2.15	A	ontput	sun speed carr.speed	6460	0010	carr.torque		. 31 -99	carr. power		41.3 -64.0	C L 1	Output EPZ part erigine
	erice to exic	-2.15	0		•	sun speed	4000	6767	sun torque			sun power		41.3	ì	ī
	N KW ele	2	Pos					Z Z			툳			≷		
	- E				ш			624			-120.0			-7.8		
	e at 320(4 62			ring		624	ring	ח	-120	Z C	ב ב	-7.8		E2
Electric Power Split Transmission	74 kW engin	FP1	2 62	30.0	engine	•	500	3200	2	25,000	153	100000	carr. power	51.3)	Input EP1
Power Split	Sheet Model,	.3 62	}	>	output	τ	33325	12525	פווטיים מוים	ממון נסולמני	-33		and power	W -43.5)	ũ
Electric	Spread !	9	2 2	ros				RPM			N	<u>.</u>		× ×	=	

Full power - 10 kW electric power to external source

ring speed RPM slide E1

slider value only 3624 highest electric motor power = -7.8 kW (generating) external electric power flow to external source = 10 kW

Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet 10

			4	außua		3000	2500		ć	08-		;	<u>-</u>			
											a tan	; ;	-1.0			
			i	E 7		10101	C7C71			χ. -						
		40	0.0		rina		3200	ring	n :	=	r i	5	c.	•	part engine	
	EP2		CI.7	output	carr.speed	2000	12525 6160	dispared vaco	משלים ייום	ո -5 16 -1։1		carr. power	10.0	2.	Output EP2	•
	-2.15	•	Э		cun capped	and the	12525	Ollowood area	anh ioi uns	လု		sun power	u	o.	Ш	
RPM	8		Pos				RPM			Ž			1,147	ž		
a 3200				ш			624			15.1	:		,). -		
ı e brakir			4.62		1111	guu	624		ring	4	2	rina	,	<u>-</u>	ü	1
Electric Power Split Transmission ومرورة Split Transmission المحافظ Split Transmission Split	, 10 mm cingin		3.62	engine		carr.speed	12525 3200		carr.torque	01-	2	ann nower carr, bower		က်	LOD Franci	- 1 52 -
Power Split	Spread Sheet Moder	70'6-	0	tilatio		sun speed	12525		sun torane		T	AIID DOWP		r.) ü	ij
Electric	Spread	2	Pos	:			Mod	=			E			%		

slider value only 3624

ring speed RPM slide E1

10 kW engine braking

internal electric power flow = 1 kW no external electric power flow

Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet 11

		engine	2000	0	-0.01				p resistor)
		E2	13606	-7.8	-11.1 net el.				ative or dum
		ш	130	-	7	ō			genera
	3.15		ring 2000	ring -11	ring -2.4	part engine			source (re
COS	2.15	output	carr.speed 5684	sun torque carr.torque	sun power carr. power -7.6 10.0	Output EP2			10 kW electric brake power to external source (regenerative or dump resistor)
ų	n		sun speed 13606	sun torque	sun power -7.6	Ш	-	EP1/2 = epicyclic stages E1/2 = electric motors	brake power
e at 200	Pos Pos		RPM	E	κ			epicycl lectric	lectric
ng engin		ш	-1206	0.6-	· ·			EP1/2 = epicyclic stag E1/2 = electric motors	10 kW e
n ric braklı	4 62	1	ring1206	ring -9	ring 1.1	E 23			
Electric Power Split Transmission Spread Sheet Model, 10 kW electric braking engine at 2000 RPM	EP1 3.63	enaine	ຮ	S	car	Input EP1	•		
Power Split	-3.62		(D	sun torque	sun power	Н	slider value	only 1794	ring speed RPM slide E1
Electric Spread	2 2	<u> </u>	W 0			<u>}</u>			

internal electric power flow = 1.1 kW 10 kW external electric power flow Mechanical and electrical losses are not calculated in this spreadsheet

Fig 4 Sheet 12

:		E2 engine	3200		ring net el. = 7*19/9550 =J7*J9/9550 =E11+J11 74		16	/ 1	7	
			<u>-67</u>	=G9+B9	50 =J7*J	ine				ıo
	=-G3+1		ring =C7	ring =-G3*G9	ring =17*19/955	part engine		8	-	Fig 5
ć i	=-G3	output	carr.speed =-G7/(G3-1)+I7*G3/(G3-1)	carr.torque =9550*H11/H7	carr. power =-L11	Output EP2		Refer to Fig 4 Sheets 1-12	losses are not calculated on this spreadsheet	Electric Power Split Transmission
	Ro -2.15 Pos 0		sun speed A =B7	sun torque =H9/(G3-1)						
-	Pos Pos		317 RPM							
		Ξ	=-3000+B17	6Q=	=E7*E9/6					
engine input	=-B3+1		ring =E7	ring =-89*B3	ring -D7*D9/9550	E2	4	:, •		
74 kW at 3200	EP1 =-83	engine	carr.speed	carr.torque	carr. power ring -C7*C0/0550 =D7*D9/9550	Input EP1	-			
Spread Sheet Model 74 kW at 3200 engine input f rmula sheet	Ro -3.62 Pos 0	output	sun speed	sun torque	sun power	KW == 1 D9/9330 E1	slider value	only 6306	ring speed RPM slide E1	

PATENTS ACT 1977

A10087GB-JNL/jm

Title: Single Regime Power Split Transmission

Description of Invention

This invention relates to a transmission in or for an automotive vehicle with at least two wheels and of up to approximately 5 tonnes gross weight. Such a transmission is referred to hereinafter as being of the kind specified.

An object of the invention is to provide a new and improved transmission of the kind specified.

According to the invention we provide a transmission of the kind specified comprising a first epicyclic train having a first carrier member, which carries at least one first planet member which is in driving engagement with a first annulus member and with a first sun wheel member and a second epicyclic train comprising a second carrier member, which carries at least one second planet member which is in driving engagement with a second annulus member and with a second sun wheel member wherein the first carrier member is connected to the second annulus member and the first and second sun wheel members being connected together, the first annulus is connected to ground through a first electric motor and the second sun wheel is connected to ground through a second electric motor, one of said members of the first train provides an input to said transmission and one of said members of the second train provides an output of said transmission and there being control means to permit the speed of said motors to be varied to vary the output speed of the transmission.

The first carrier of the first train may provide an input of the said transmission.

The second carrier of the second train may provide an output of said transmission.

The output of the transmission may be connected to the wheels of a vehicle.

The output of the transmission may provide an input to at least one other transmission.

The output of the other transmission or of at least one of the other transmissions may be connected to the wheels of a vehicle.

The output of the transmission or of the other transmission or of at least one of the other transmissions may be connected to the wheels of a vehicle via a clutch means and/or a differential means.

The first motor may comprise a rotor connected to the first annulus member and a stator connected to ground.

The first annulus member may be mounted to rotate fixedly with the rotor of the first motor.

The second motor may comprise a rotor connected to the second sun gear member.

The first sun member and the second sun member may be fixed to rotate with a shaft and the rotor of the second motor may also be adapted to rotate with said shaft.

The first sun member, second sun member and the rotor of the second motor may be longitudinally disposed on said shaft in said order.

Bearing means may be provided between the first carrier member and the first annulus member.

Alternatively, the first planet members and the first annulus member may be mutually supported by virtue of said interengagement therebetween.

All the interengaging members may comprise gear wheels.

Further alternatively, the first planetary members may comprise taper rollers in frictional engagement with said first annulus member and said first sun wheel member.

Biasing means may be provided to bias said planetary members into said frictional engagement and reaction means may be provided for said first annulus member and said first sun wheel member.

Each electric motor may be a switched reluctance motor.

The transmission may be a power split transmission in which means are provided to supply electrical power to one of said motors from the other of said motors.

As a result the transmission does not require any external electrical power supply.

The transmission may be provided with an electrical energy storage means in which electrical power generated by either of said motors is stored.

For example, when the transmission is operated at a relatively slow speed and/or the vehicle is braking an amount of electrical power is generated which is not required by either motor and this is stored in the energy storage means.

Power may be supplied from the energy storage means to at least one of said motors to limit variation in the amount of power supplied to one or other of said motors.

The input of the transmission may be connected to an engine such as an internal combustion engine or an electric motor or indeed any other type of prime mover. Alternatively the input may be connected to an output of any design form of transmission from a prime mover.

The output of the transmission may be connected to the wheels of a vehicle but may be connected into another transmission of any kind including, for example, another power split transmission. Any vehicle within which the transmission is provided may be provided with a plurality of transmissions according to the present invention.

Three embodiments of the invention will now be described by way of example with reference to the accompanying drawings wherein:-

Figure 1 is a diagrammatic representation of a first transmission embodying the invention,

Figure 2 is a diagrammatic representation of a second transmission embodying the invention,

Figure 3 is a diagrammatic representation of a third embodiment of the invention,

Figure 4 comprises twelve tables setting out details of the transmission described herein when connected to a prime mover comprising a 74 kilowatt internal combustion engine operating at 3200 rpm with the transmission set at the twelve different settings referred to in each sheet,

Figure 5 is a spreadsheet setting out how the figures shown in Sheets 1-12 of Figure 4 have been calculated, and

Figure 6 is a graphical illustration in which traction and efficiency are plotted against speed.

Referring now to Figure 1, a transmission is indicated generally at 10 and comprises a housing 11 which provides a ground.

Fixed to the housing 11 is a stator 12 of a first electric motor 13. In the present example, electric motor 13 is of the "switched reluctance" type. The housing 11 also has fixed thereto a stator 14 of a second electric motor 15 also of the "switched reluctance" type.

The housing 11 also carries, via a suitable bearing means 16a, a shaft 16 which is rotatable relative to the housing 11 and fixedly carries a rotor 17 of the motor 15, a second sun wheel member 18 and a first sun wheel member 19, each of which comprises a gear. In addition a bearing, not shown, is provided between an end part 20 of the shaft 16 and a recess 21 provided in a flywheel 22 of a prime mover. The flywheel 22 also provides a first carrier member having a plurality of shafts 23, three in the present example, on each of which a first planet member 24 is rotatably mounted by bearing means 25.

The planet members 24 comprise gears which are in mesh with an annulus member 26, which also comprise a gear, and thus the first annulus member 26, first planetary member 24-together with the first carrier member 23 and the first sun wheel member 19 provide a first epicyclic, gear, train 27.

The annulus member 26 fixedly carries a rotor 28 of the first electric motor 12. Suitable bearing means 29 are provided between the first annulus member 26 and the first carrier member 23.

The first carrier 23 is also connected to a second annulus member 30 which comprises a gear which is in mesh with the second planet members 31 carried by shafts 32 of a second carrier member 33.

The number of first planet members and second planet members although comprising three, in each case, in the present example may be less or more than this figure and either the same or a different number of planet wheels may be provided in each epicyclic train.

The planet members 31 comprises gears are also in mesh with the second sun, gear, member 18 and so the second annulus member 30, said planet member 31 and second sun wheel member 18 together provide a second epicyclic, gear, train 34.

The second carrier member 33 is provided with a set of gear teeth 35 which mesh with a gear 36 carried on a shaft 37 which is carried in bearings 38 carried by the housing 11.

An oil seal 39 is provided between the flywheel 22 and the housing 11. Similarly an oil seal 39a is provided between the housing 11 and the output shaft 37. The shaft 37 is connected, where desired, by a clutch to, for example, wheels or other item to be driven by the transmission and, if desired, in addition, or alternatively, at least one differential may be connected to the shaft 37.

In use, the flywheel 22 is driven by a prime mover which, for example, may be an internal combustion engine or may be of any other desired type

including for example an electric motor. The flywheel 22 is rotated either at a constant speed by the prime mover or the speed of the prime mover is varied so as to vary the speed of rotation of the flywheel. In either case the power provided to the first electric motor 13 from the second electric motor 15 or vice versa is varied as desired to achieve a desired torque split between the two differentials therefore providing a desired output speed of the shaft 37. The variation in the speed of the motors is preferably achieved by a suitable electronic controller programmed according to the desired output of the transmission.

No external electrical power is required to be supplied since electrical power generated by one of the electric motors by rotation of the rotor of the electric motor relative to the stator may be fed to the other electric motor so as to drive its rotor with the electrical power thus generated.

Referring now to Figure 2, in which the same reference numerals have been used as were used in Figure 1 for corresponding parts. This embodiment is similar to that shown in Figure 1 but differs from that shown in Figure 1 by virtue of the absence of a separate bearing means between the first annular member and the first carrier member 23. In this case the gears are manufactured accurately so that the gears interengage and act as a bearing means. In addition the first rotor 29 is symmetrically disposed relative to the stator 12 so as to avoid any axial loads. In addition, the planet members are equally spaced so that there are no offset loads to upset the balance.

In the embodiment shown in Figure 3, again the same reference numerals have been used to refer to corresponding parts as were used in Figure 1 but in this case instead of the first annulus member 26 being provided with teeth which engage with the teeth of the first planetary wheel members 24, which are themselves engaged with the first sun gear 19, the first annulus member, first planetary members and first sun wheel are formed as tapered rollers, which are axially forced into engagement to provide a frictional drive.

For this reason these components are indicated in Figure 3 by the same reference numbers as used in Figures 1 and 2 with the addition of a prime sign.

The required axial load is achieved by providing the Belleville washers indicated at 40 in Figure 3 which serve to urge the first planetary wheel members 24' to the right in Figure 3 and so cause frictional engagement between the first planetary wheel members 24' and the first annulus member 26' and the first sun wheel member 19' respectively. To accommodate the thrust thus provided by the Belleville washers 40, thrust bearing means 41, 42 are provided. In addition, because of built in non-symmetrical disposition of the stator and rotor 26, 28 on rotation additional magnetic loads which are torque dependent will be created which are supported by the thrust bearing means 43.

It should be noted that for starting the engine it is not necessary to disengage any clutches with which the engine may be provided since the electric motors can keep the vehicle stationary during the starting procedure. If a clutch is provided and if it is disengaged in an emergency then the electric motors can synchronise the relevant clutch halves for easy engagement.

In any of the embodiments described hereinbefore if desired energy, storage means, for example a suitable battery, may be connected to at least one and preferably to both of the motors. As a result when the transmission is operated at a relatively slow speed and/or the vehicle is braking an amount of electrical power is generated and this is fed to and stored in the energy storage means.

Power may be supplied from the energy storage means to at least one of the motors to limit variation in the amount of power supplied to the other of said motors.

If desired electrical power may be supplied to other external means such as regenerative or dump resistor to assist in braking of the engine for example as shown in Sheet 12 of Figure 4.

It is important to maintain the power requirements of the electrical motors to a minimum to reduce cost and to increase transmission efficiency particularly as electrical control of motors can be expensive for high powers and the efficiency of motors and generators combined is not greater than for example 80% whereas mechanical efficiency can be as high as 97% for example.

The present invention provides a power shaft transmission which circulates relatively little electrical power, especially if the engine speed is always readjusted by the vehicle controller to run the transmission close to one of the electrical power node points. These node points occur, when one of the motors is at a standstill and therefore cannot generate nor absorb any power. This is the condition shown in Sheets 3 and 4 of Figure 4.

It will be clear to a person of skill in the art that for each different vehicle and engine combination the ratios of the transmission have to be adjusted to make the node points most effective.

In the present specification "comprise" means "includes or consists of" and "comprising" means "including or consisting of".

The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

CLAIMS

- 1. A transmission of the kind specified comprising a first epicyclic train having a first carrier member, which carries at least one first planet member which is in driving engagement with a first annulus member and with a first sun wheel member and a second epicyclic train comprising a second carrier member, which carries at least one second planet member which is in driving engagement with a second annulus member and with a second sun wheel member wherein the first carrier member is connected to the second annulus member and the first and second sun wheel members are connected together, the first annulus is connected to ground through a first electric motor and the second sun wheel is connected to ground through a second electric motor, one of said members of the first train provides an input to said transmission and one of said members of the second train provides an output of said transmission and there being control means to permit the speed of said motors to be varied to vary the output speed of the transmission.
- 2. A transmission according to Claim 1 wherein the first carrier of the first train provides an input of the said transmission.
- 3. A transmission according to Claim 1 or Claim 2 wherein the second carrier of the second train provides an output of said transmission.
- 4. A transmission according to any one of the preceding claims wherein the output of the transmission is connected to the wheels of a vehicle.
- 5. A transmission according to any one of Claims 1 to 3 wherein the output of the transmission provides an input to at least one other transmission.

- 6. A transmission according to Claim 5 wherein the output of the other transmission or of at least one of the other transmissions is connected to wheels of a vehicle.
- 7. A transmission according to any one of Claims 4 to 6 wherein the output of the transmission or said other transmission or at least one of the other transmissions is connected to the wheels of a vehicle via a clutch means and/or a differential means.
- 8. A transmission according to any one of the preceding claims wherein the first motor comprises a rotor connected to the first annulus member and a stator connected to ground.
- 9. A transmission according to Claim 8 wherein the first annulus member is mounted to rotate fixedly with the rotor of the first motor.
- 10. A transmission according to any one of the preceding claims wherein the second motor comprises a rotor connected to the second sun gear member.
- 11. A transmission according to Claim 10 wherein the first sun member and the second sun member are fixed to rotate with a shaft and the rotor of the second motor is also be adapted to rotate with said shaft.
- 12. A transmission according to Claim 11 wherein the first sun member, second sun member and the rotor of the second motor are longitudinally disposed on said shaft in said order.

- 13. A transmission according to any one of the preceding claims wherein bearing means are provided between the first carrier member and the first annulus member.
- 14. A transmission according to any one of Claims 1 to 12 wherein the first planet members and the first annulus member are mutually supported by virtue of said interengagement therebetween.
- 15. A transmission according to Claim 14 wherein all the interengaging members comprise gear wheels.
- 16. A transmission according to Claim 14 wherein the first planetary members comprise taper rollers in frictional engagement with said first annulus member and said first sun wheel member.
- 17. A transmission according to Claim 16 wherein biasing means are provided to bias said planetary members into said frictional engagement and reaction means may be provided for said first annulus member and said first sun wheel member.
- 18. A transmission according to any one of the preceding claims wherein each electric motor is a switched reluctance motor.
- 19. A transmission according to any one of the preceding claims wherein the transmission is a power split transmission in which means are provided to supply electrical power to one of said motors from the other of said motors.

- 20. A transmission according to any one of the preceding claims wherein the transmission is provided with an electrical energy storage means in which electrical power generated by either of-said motors is stored.
- 21. A transmission according to Claim 20 wherein the power is supplied from the energy store to at least one of said motors.
- 22. A transmission substantially as hereinbefore described with reference to Figure 1 or Figure 2 or Figure 3 and Figures 4 to 6of the accompanying drawings.
- 23. A transmission according to any one of the preceding claims wherein the transmission is connected to another transmission.
- 24. A transmission according to Claim 22 wherein said other transmission is of the same kind as the transmission claimed in Claims 1 to 22 is of a different kind.
- 25. Any novel feature or novel combination of features described herein and/or in the accompanying drawings.

Application No: Claims searched:

GB 0013727.3

1 to 24

Examiner:

Date of search:

Mike Mckinney 21 September 2001

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK CI (Ed.S): F2D (DEC).

Int Cl (Ed.7): F16H 3/72.

Other: ONLINE: WPI; EPODOC; JAPIO.

Documents considered to be relevant:

Category	Identity of docur	Relevant to claims	
Α	US 5730676	(SCHMIDT)	
Α	US 5603671	(SCHMIDT)	·
. A	US 5577973	(SCHMIDT)	
A	US 5558589	(SCHMIDT)	

& Member of the same patent family

- A Document indicating technological background and/or state of the art.
- P Document published on or after the declared priority date but before the filing date of this invention.
- E Patent document published on or after, but with priority date earlier than, the filing date of this application.

X Document indicating lack of novelty or inventive step

Y Document indicating lack of inventive step if combined with one or more other documents of same category.