NAME: AMMAAR AHMAD

ROLL NO: 1801CS08

CS575 - LAB4

Colab Link -

https://colab.research.google.com/drive/1WM8jds9aTIH_DIKI EbDL5eBKflixn0Qj?usp=sharing

Task 1 Q1.

Group 1	Group 2	Group 3	
85	79	91	
86	78	92	
88	88	93	
75	94	85	
78	92	87	
94	85	84	
98	83	82	
79	85	88	
71	82	95	
80	81	96	

Group 1:

Mean = 83.4, Median = 82.5 Variance = 64.04, Standard Deviation = 8.002499609497024 Skewness = 0.3201841554571654, Kurtosis = -0.8410405582706946

Group 2:

Mean = 84.7, Median = 84.0 Variance = 25.21, Standard Deviation = 5.020956084253277 Skewness = 0.5278629787066954, Kurtosis = -0.8351499132790328

Group 3:

Q3:

F One-way Anova Test

F-statistic = 2.3575322551335565, P-value = 0.11384795345837273

P value > 0.05 indicates that there is possibility of mean of 3 groups being from same distribution and hence we cannot reject the Null hypothesis

Task 2 Q1.

Scatter Plot of Pre-weight distribution of Females

Q2. Anova Test Result

F_onewayResult(statistic=1.247834694837041, pvalue=0.29317702104020305)

Pvalue of 0.29 give significant evidence that we cannot reject null hypothesis

Task 3

Q1.

Q2.

	<pre>bp_before_male</pre>	<pre>bp_after_male</pre>	<pre>bp_before_female</pre>	<pre>bp_after_female</pre>
count	60.000000	60.000000	60.000000	60.000000
mean	159.266667	155.516667	153.633333	147.200000
std	11.413442	15.243217	10.735600	11.742722
min	140.000000	125.000000	138.000000	127.000000
25%	150.750000	145.000000	144.750000	138.000000
50%	158.000000	158.500000	151.000000	146.000000
75%	170.000000	164.750000	161.250000	152.000000
max	185.000000	185.000000	185.000000	178.000000

Q3.

Null Hypothesis : Mean of blood pressure for both male and female are equal

Alternate Hypothesis : Mean of blood pressure for both male and female are different

t=3.348, df=118, cv=1.658, p=0.001 Reject the null hypothesis that the means are equal. Reject the null hypothesis that the means are equal.

We got t value as 3.348 and p=0.001 which is less than significance level hence rejecting the Null Hypothesis

Task 4 Q1.

Probability Density with sample size = 100

Probability Density with sample size = 500

Probability Density with sample size = 1000

We observed that on increasing the sample size from 100 to 1000 the standard deviation of sample mean decreases.

Task 5

On sampling standard deviation values on XOM sp500 values. We found that it is highly positively skewed

Task 6

Probability density when number of red balls = 25%

Probability density when number of red balls = 70%

We observed that the mean percentage of red balls is nearly equal to actual percentage of red balls in the bag. This is expected as no. of experiments done is large = 10000