UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA

Estatística não paramétrica básica no *software* R: uma abordagem por resolução de problemas

Magda Carvalho Pires

Matheus Barros Castro

Zaba Valtuille Lieber

Thais Pacheco Menezes

Raquel Yuri da Silveira Aoki

Prefácio

Este material foi elaborado a partir das notas de aula da Profa. Magda Carvalho Pires na disciplina EST080 — Estatística não paramétrica (oferecida pelo Departamento de Estatística da UFMG ao Curso de Graduação em Estatística), sendo resultado dos projetos de Iniciação à Docência dos alunos Matheus Barros de Castro, Zaba Valtuille Lieber, Thais Pacheco Menezes e Raquel Yuri da Silveira Aoki.

O objetivo principal do texto é apresentar a solução de problemas envolvendo a aplicação dos métodos estatísticos não paramétricos mais comuns através do software R (https://cran.r-project.org/). Não se pretende, portanto, fornecer explicações teóricas sobre os métodos abordados (para tanto, indicamos os livros de Lehmann e D'Abrera [1975], Conover [1999], Siegel e Castellan [2006], Agresti [2007] e Triola [2010]). Os exemplos foram retirados desses livros, do material do Prof. Paulo Guimarães da UFPR (www.coordest.ufpr.br/wp-content/uploads/2016/08/aluno-2016-np.pdf) dos tutoriais dos pacotes utilizados (https://cran.r-project.org/web/packages/) e também de websites, como o R-bloggers (www.r-bloggers.com) e o Portal Action (www.portalaction.com.br).

Sugestões e possíveis correções podem ser enviadas para magda@est.ufmg.br.

Índice

Capítulo 1 – Testes de Aderência	1
1.1 Teste Binomial (binom.test)	1
1.2 Teste Qui-quadrado (chisq.test)	2
1.3 Teste de kolmogorov-Smirnov (ks.test)	3
1.4 Teste de Lilliefors (lillie.test)	4
1.5 Teste Shapiro-Wilk (Ryan-Joiner) (shapiro.test)	5
1.6 Teste Anderson-Darling (ad.test)	5
Capítulo 2 – Testes para Comparação de dois tratamentos (populações)	7
2.1 Teste do sinal (SIGN.test)	7
2.2 Teste de Postos com Sinais de Wilcoxon (wilcox.test)	8
2.3 Teste exato de Fisher (fisher.test)	9
2.4 Teste Qui-Quadrado (chisq.test)	11
2.5 Teste da mediana (fisher.test)	12
2.6 Teste de Wilcoxon\ Mann-Whitney (wilcox.test)	13
2.7 Teste de Kolmogorov-Smirnov (ks.test)	14
Capítulo 3 – Testes para Comparação para mais populações	16
3.1 Teste Qui-Quadrado (chisq.test)	16
3.2 Teste da Mediana (chisq.test)	17
3.3 Teste por postos de Kruskall-Wallis (1 fator)(kruskal.test)	18
3.4 Teste de Levene (leveneTest)	18
3.5 Teste de Friedman (friedman.test)	20
Capítulo 4 – Coeficientes e Testes de Concordância e correlação	22
4.1 Coeficiente de Correlação de Spearman (cor.test)	22
4.2 Coeficiente de Correlação Posto-Ordem de Kendall (T) (cor.test)	23
4.3 Coeficiente de Kappa (kappa2)	24
4.4 Coeficiente de Kappa Múltiplo (kappam.fleiss)	25
Referências	27

Capítulo 1 – Testes de Aderência

1.1 Teste Binomial (binom.test)

Utilizado em amostras com variáveis dicotômicas, testa se a proporção de sucesso observada na amostra (\hat{p}) pertence a uma população com um determinado valor de p.

Exemplo 1.1

Em uma amostra de tamanho 20 foram observados 5 sucessos. Testar se p>0.2 com nível de significância de 5%.

```
#------binom.test(5, 20, p = 0.2, alternative = c( "greater"),conf.level = 0.95)
```

<u>Parâmetros:</u> O valor 5 representa o número de sucesso observados; 20 é o tamanho da amostra; p=0.2 é a hipótese nula; "greater" para a hipótese alternativa onde testamos se p>0.2 (usaríamos "two.sided" caso p≠0.2 e "less" caso p<0.2); conf.level=0.95 para construir um intervalo de confiança.

Hipóteses:
$$\begin{cases} H_0: p = 0.2 \\ H_1: p > 0.2 \end{cases}$$

Resultado:

```
Exact binomial test

data: 5 and 20

number of successes = 5, number of trials = 20, p-value = 0.3704

alternative hypothesis: true probability of success is greater than 0.2

95 percent confidence interval:

0.1040808 1.0000000

sample estimates:

probability of success

0.25
```

Resultado comentado: No resultado do teste são apresentados em sequência o número de sucessos, o número de tentativas e o p-valor calculado. Abaixo é apresentada a hipótese nula do teste realizado, seguida pelo intervalo de confiança calculado. Por fim é apresentada a estimativa da probabilidade de sucesso calculada a partir da amostra.

<u>Conclusão:</u> Não há evidências suficientes para rejeitarmos a hipótese nula (p-valor = 0.3704).

1.2 Teste Qui-quadrado (chisq.test)

Utilizado para testar se a frequência observada na amostra difere significativamente da frequência esperada especificada por uma distribuição de probabilidade.

Exemplo 1.2

Abaixo, temos o número observado de falhas mecânicas, por hora, em uma linha de montagem, a partir de um experimento com duração de 40 horas. Um engenheiro afirma que o processo descrito, seguem uma distribuição de Poisson com média igual a 3.2.Testar com α=0.05.

<u>Parâmetros</u>: O primeiro parâmetro é um vetor com os dados observados, o segundo parâmetro (p) é um vetor com as probabilidades esperadas (sob H_0).

```
Hipóteses: H_0: As falhas seguem distribuição de Poisson(3.2) H_1: As falhas não seguem distribuição de Poisson (3.2)
```

Resultado:

```
Chi-squared test for given probabilities

data: fo

X-squared = 3.1434, df = 8, p-value = 0.925
```

Resultado comentado: No resultado é apresentada a estatística de teste calculada, o número de graus de liberdade 'df' e o p-valor do teste.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,925), ou seja, não refutamos a ideia que os dados seguem uma distribuição de Poisson(3.2).

1.3 Teste de kolmogorov-Smirnov (ks.test)

Avalia se os dados amostrais se aproximam razoavelmente de uma determinada distribuição.

Exemplo 1.3

Testar se os dados em y seguem uma distribuição de Poisson(1.2)

```
#------y=c(15,25,10,5,4,1)
ks.test(y, "ppois", 1.2)
```

<u>Parâmetros</u>: O parâmetro 'ppois' representa a distribuição de Poisson com lambda igual a 1.2. Caso a distribuição de interesse fosse a Gamma, por exemplo, usaríamos 'pgamma' e seguida colocaríamos os parâmetros da Gamma separados por vírgula. O mesmo é feito para as demais distribuições.

```
Hipóteses: H_0: Y segue distribuição de Poisson (1.2) H_1: Y não segue distribuição de Poisson (1.2)
```

Resultado:

```
One-sample Kolmogorov-Smirnov test

data: y

D = 0.8256, p-value = 5.63e-05

alternative hypothesis: two-sided
```

<u>Resultado comentado:</u> O resultado apresenta em 'data' a variável onde os dados foram retirados, em 'D' a estatística de teste e o 'p-value' representa o p-valor. Temos também uma referência à hipótese alternativa utilizada.

<u>Conclusão:</u> Há fortes evidências para rejeitarmos a hipótese nula (p=0,000), ou seja, os dados não são provenientes de uma distribuição Poisson de parâmetro 1.2.

Observação: O teste K-S só deve realizado quando não há observações empatadas.

1.4 Teste de Lilliefors (lillie.test)

Esse teste é utilizado para verificar a normalidade dos dados.

Nota: Para a realização deste teste é necessária à instalação do pacote 'nortest'.

Exemplo 1.4

Testar se os dados guardados em x seguem a distribuição Normal.

```
#-----
ifelse(!require(nortest),install.packages("nortest",
dependencies=TRUE),1)

require(nortest)

x=c(1.90642, 2.10288, 1.52229, 2.61826, 1.42738, 2.22488, 1.69742, 3.15435,
1.98492, 1.99568)

lillie.test(x)
```

Parâmetros: O vetor com os dados a serem testados

Resultado:

```
Lilliefors (Kolmogorov-Smirnov) normality test

data: x

D = 0.1771, p-value = 0.5012
```

Resultado comentado: O resultado apresenta a estatística de teste calculada em 'D' e o p-valor resultante.

<u>Conclusão</u>: Não há evidências para rejeitarmos H0 (valor-p = 0.5012), concluindo que dados seguem a distribuição normal.

1.5 Teste Shapiro-Wilk (Ryan-Joiner) (shapiro.test)

O teste de shapiro-wilk é outro exemplo de teste de normalidade, sendo mais indicado para amostras menores ou iguais a 50.

Exemplo 1.5

Testar se os dados guardados em x seguem a distribuição Normal.

```
#------
require(nortest)

x=c(1.90642, 2.10288, 1.52229, 2.61826, 1.42738, 2.22488, 1.69742, 3.15435, 1.98492, 1.99568)

shapiro.test(x)
```

Parâmetros: O vetor com os dados a serem testados

Resultado:

```
Shapiro-Wilk normality test

data: x

W = 0.9267, p-value = 0.4162
```

Resultado comentado: O resultado apresenta a estatística de teste calculada em 'W' e o p-valor resultante.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,4162), ou seja, os dados são provenientes de uma distribuição normal.

1.6 **Teste Anderson-Darling (ad.test)**

Esse teste também é para testar a normalidade dos dados e é mais poderoso para amostras maiores que 50.

Nota: Para a realização deste teste é necessária à instalação do pacote 'nortest'.

Exemplo 1.6

Testar se os dados são normais.

```
#-----
ifelse(!require(nortest),install.packages("nortest",
dependencies=TRUE),1)
require(nortest)
x=c(1.90642, 2.10288, 1.52229, 2.61826, 1.42738, 2.22488, 1.69742, 3.15435,
1.98492, 1.99568)
ad.test(x)
```

Parâmetros: O vetor com os dados a serem testados.

Resultado:

```
Anderson-Darling normality test

data: x

A = 0.3417, p-value = 0.4144
```

Resultado comentado: O resultado apresenta a estatística de teste calculada em 'A' e o p-valor resultante.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,4144), ou seja, os dados são provenientes de uma distribuição normal.

Observação: Apresentamos diferentes testes de normalidades aplicados à mesma amostra, mas a escolha por um deles deve ser baseada no tamanho amostral: o teste de Anderson-Darling é mais poderoso para amostras maiores que 50, enquanto o de Shapiro-Wilk é mais poderoso para amostras menores ou iguais a 50. O teste K-S (Lilliefors) é o menos poderoso.

Capítulo 2 – Comparação de dois grupos

2.1 Teste do sinal (SIGN.test)

Utilizado para identificar se dois conjuntos de dados possuem a mesma medida de tendência central para experimentos pareados, testando se a mediana da diferença entre os grupos é 0. Calculamos a diferença entre as observações e atribuímos sinais de '+' ou '-' para resultados positivos e negativos respectivamente.

Nota: É necessária a instalação do pacote 'BSDA' para a realização desse teste.

Exemplo 2.1

Deseja-se verificar se existe diferença entre os tempos de taxiamento de decolagem e os tempos de taxiamente de pouso para o Voo 21 da American Airlines de Nova York para Los Angeles. Utilize o teste do sinal com nível de significância de 5%.

```
ifelse(!require(BSDA),install.packages("BSDA",dependencies=T),1)
require(BSDA)
decolagem<-c(13,20,12,17,35,19,22,43,49,45,13,23)
pouso<-c(13,4,6,21,29,5,27,9,12,7,36,12)
SIGN.test(decolagem, pouso, md=0, alternative="two.sided")</pre>
```

<u>Parâmetros:</u> pouso e decolagem são os dados coletados (amostras pareadas). Md é hipótese nula sobre a mediana da diferença das observações, o valor padrão é 0. Alternative indica a hipótese alternativa a ser realizada pelo teste.

Hipóteses:

 $\{H_0: N\~{a}o\ existe\ diferença\ nos\ tempos\ de\ taxiamento\ de\ pouso\ e\ decolagem\ H_1: Existe\ diferença\ nos\ tempos\ de\ taxiamento\ de\ pouso\ e\ decolagem$

```
Dependent-samples Sign-Test
data: decolagem and pouso
S = 8, p-value = 0.2266
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
 -3.574545 32.085455
sample estimates:
median of x-y
         8.5
Achieved and Interpolated Confidence Intervals:
                 Conf.Level L.E.pt U.E.pt
Lower Achieved CI
                   0.8540 0.0000 16.0000
Interpolated CI
                    0.9500 -3.5745 32.0855
                     0.9614 -4.0000 34.0000
Upper Achieved CI
```

Resultado comentado: Os resultados apresentam a estatística de teste 'S' calculada, o p-valor do teste, a hipótese alternativa sob estudo, o intervalo de confiança calculado para a mediana das diferenças (com base em interpolação) e a estimativa da mediana das diferenças. Além disso o resultado também apresenta os intervalos de confiança inferior, interpolado e superior construídos com base nos dados.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,2266), ou seja, não há evidências de que existe diferença nos tempos de taxiamento de pouso e decolagem do Voo 21 da American Airlines.

2.2 Teste de Postos com Sinais de Wilcoxon (wilcox.test)

Teste utilizado para comparar se dois grupos possuem a mesma medida de tendência central. Esse teste leva em consideração a magnitude das diferenças entre os pares. Devido a este fato é mais poderoso, pois dá mais peso a diferenças maiores entre os pares.

Exemplo 2.2

Os dados a seguir são das colheitas de espigas de milho (em libras por acre) de dois diferentes tipos de sementes (normais e secadas no forno) que foram usados em lotes adjacentes. Testar se existe diferença entre a colheita utilizando ambas as sementes.

```
#------
normal=c(1903, 1935, 1910,2496, 2108, 1961,2060, 1444, 1612, 1316, 1511)
secada=c(2009, 1915, 2011, 2463, 2180, 1925, 2122, 1482, 1542, 1443, 1535)
wilcox.test(normal,secada, paired=TRUE,alternative = c("two.sided"))
```

<u>Parâmetros:</u> 'normal' e 'secada' são vetores com os dados coletados; 'paired=TRUE' indica que os dados são pareados (o valor FALSE é utilizado para outro teste relacionado a postos); alternative = c("two.sided") diz a respeito da hipótese alternativa, indicando que ela é bilateral.

```
<u>Hipóteses:</u> H_0: Não há diferença entre os grupos H_1: Há diferença entre os grupos
```

Resultado:

```
Wilcoxon signed rank test

data: normal and secada

V = 15, p-value = 0.123

alternative hypothesis: true location shift is not equal to 0
```

Resultado comentado:

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=123), ou seja, parece não existir diferença significativa entre as duas sementes.

2.3 Teste exato de Fisher (fisher.test)

Utilizado em tabelas de contingência 2x2 para comparar 2 grupos de duas amostras independentes e pequenas.

Exemplo 2.3

Verificar ao nível de 5% de significância se a proporção de divórcios amigáveis é maior na classe alta quando comparado com a classe média.

```
#-----
#Os dados sobre divórcios são alocados a dois vetores, chamados 'amigavel'
#e 'naoamigavel'. O primeiro elemento de cada vetor são o número de
#divórcios da classe alta e o segundo elemento, o número de divórcios da
#classe baixa
amigavel=c(3,2)
naoamigavel=c(2,3)
divorcio=cbind(amigavel,naoamigavel)
divorcio
fisher.test(divorcio, alternative = "greater", conf.int = TRUE, conf.level
= 0.95)
```

<u>Parâmetros:</u> Matriz 2x2 no formato de uma tabela de contingência. Alternative indica a hipótese alternativa do teste realizado, também são validos os valores "less" e "two.sided", conf.int indica que o intervalo de confiança deve ser construído para a razão de chances e conf.level indica o nível de confiança a ser utilizado para a construção do intervalo.

Hipóteses:

 $\{H_0: Prop\ de\ divórcios\ amigáveis\ na\ classe\ alta=Prop\ de\ divórcios\ amigáveis\ na\ classe\ baixa\ H_1: Prop\ de\ divórcios\ amigáveis\ na\ classe\ baixa$

Resultado:

Resultado comentado: São apresentados o p-valor do teste, a hipótese alternativa em consideração, o intervalo de confiança construído baseado na hipótese alternativa e a estimativa da razão de chances com base na tabela de contingência.

<u>Conclusão</u>: Não há evidências para rejeitar H0 (p=0,50), ou seja, não há evidencias de que o numero de divórcios amigáveis da classe alta seja maior que o numero de divórcios amigáveis da classe media.

2.4 Teste Qui-Quadrado (chisq.test)

Usado em tabelas 2x2 somente quando N>20 e se todas as frequências esperadas são maiores ou iguais a 5. Quando utilizado em matrizes com dimensões maiores que 2x2, só é usado se pelo menos 20% das células tem frequência esperada maior que 5 e nenhuma delas tem frequência esperada menor que 1.

Exemplo 2.4

Desejamos testar se a altura define se uma pessoa será um líder ou não.

```
#-----
# Construímos uma tabela 2x3 com o nível de liderança nas colunas (líder,
#moderado ou não classificado) e a altura da pessoa (baixo ou alto) nas
#linhas
baixo=c(12,22,9)
alto=c(32,14,6)
lider=cbind(baixo,alto)
chisq.test(lider)
```

<u>Parâmetros:</u> Matriz com o conjunto de dados para se testar se existe associação entre as linhas e as colunas.

Hipóteses: ${H_0: N\~ao\ existe\ influência\ da\ altura\ sobre\ ser\ um\ l\'ider\ ou\ n\~ao\ }\atop {H_1: A\ altura\ da\ pessoa\ influencia\ em\ ser\ um\ l\'ider\ ou\ n\~ao\ }}$

Resultado:

```
Pearson's Chi-squared test

data: lider

X-squared = 10.7122, df = 2, p-value = 0.004719
```

<u>Resultado comentado:</u> O resultado apresenta a estatística de teste calculada, os graus de liberdade e o p-valor do teste.

<u>Conclusão</u>: Ao nível de 5% de significância, há fortíssimas evidências para rejeitarmos a hipótese nula (p-valor = 0.004719), concluindo que a altura é um fator que pode definir se uma pessoa será um líder ou não.

2.5 **Teste da mediana (fisher.test)**

O teste se baseia no cálculo da possiblidade de que os dois grupos provenham de populações com a mesma mediana. O nível de mensuração deve no mínimo ser ordinal. Em sua realização, através dos dados, montamos uma nova tabela 2x2 e a partir dela realizamos o teste Exato de Fisher ou Qui-quadrado.

Exemplo 2.5

Verifique se os salários do RH(Recursos Humanos) provêm de populações com mediana diferente dos salários da CQ (controle de qualidade).

```
#-----
rh= c(4,3,8,3,5,7,2)

cq= c(11,10,7,6,5,8,9,10)

a=c(rh,cq)

median(a)

salario= matrix(c(1,6,5,3),nrow = 2,dimnames = list(Mediana = c(">
mediana", "<= mediana"),departamento = c("RH", "CQ")))

salario
fisher.test(salario)</pre>
```

Estrutura do teste: o vetor 'a' é a união dos dois vetores cujas medianas queremos comparar. Depois de calcular a mediana de 'a', o próximo passo é montar uma matriz. No comando montar a matriz, que no caso chamará 'salario', colocamos um vetor com os dados. Esses dados são obtidos da seguinte maneira: O primeiro elemento é o numero de salários acima da mediana do vetor 'rh', o segundo elemento é o numero de salários abaixo ou igual a mediana, também do vetor 'rh'. O terceiro elemento é o numero de salários acima da mediana do vetor 'cq' e o quarto elemento é o número de salários abaixo ou igual a mediada do vetor 'cq'. O comando 'nrow=2' dividirá o vetor em dois, formando então uma matriz 2x2. O comando 'dimnames' muda o nome das linhas e colunas, nessa ordem respectivamente. Primeiro colocamos um nome que define todas as linhas e dentro de um vetor c, os nomes de cada linha. Os mesmos passos são usados para mudar o nome das colunas.

<u>Parâmetros:</u> Uma matriz 2x2 cujas linhas são os grupos em estudo e as colunas contém o número de observações acima e abaixo da mediana dos dados em conjunto respectivamente.

```
\underline{\textit{Hipóteses:}} \begin{cases} H_0 : Mediana(RH) = mediana(CQ) \\ H_1 : Mediana(RH) \neq mediana(CQ) \end{cases}
```

```
Fisher's Exact Test for Count Data

data: salario

p-value = 0.1189

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.001827082 1.768053629

sample estimates:

odds ratio

0.1189474
```

Resultado comentado: São apresentados o p-valor do teste, a hipótese alternativa em estudo, o intervalo de confiança construído para a razão de chances e a estimativa para a razão de chances calculada com base na tabela informada.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,1189), ou seja, não existe diferença significativa entre as medianas dos salários dos dois departamentos.

2.6 Teste de Wilcoxon\ Mann-Whitney (wilcox.test)

Utilizado para verificar se dois grupos pertencem à mesma população. Na prática, verifica-se se há evidências para afirmar que valores de um grupo A são superiores aos valores do grupo B.

Exemplo 2.6

Desejamos testar se os dois grupos pertencem a uma mesma população.

```
a = c(6, 8, 2, 4, 4, 5)
b = c(7, 10, 4, 3, 5, 6)
wilcox.test(a,b, correct=FALSE alternative = "two.sided")
```

<u>Parâmetros:</u> 'a' e 'b' representam os grupos que queremos testar. No comando, o parâmetro 'correct=FALSE', indica que não queremos que seja aplicada a correção de continuidade.

<u>Hipóteses:</u> $H_0: Os \ dois \ grupos \ possuem \ a \ mesma \ medida \ de \ tendência \ central \ H_1: Os \ grupos \ estão \ centrados \ em \ pontos \ diferentes$

```
Wilcoxon rank sum test

data: a and b

W = 14, p-value = 0.5174

alternative hypothesis: true location shift is not equal to 0
```

<u>Resultado comentado:</u> O teste apresenta a estatística de teste 'W' calculada e o p-valor do teste, além disso é apresentada a hipótese alternativa em estudo.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,5174), concluindo que os dois grupos são da mesma população.

2.7 Teste de Kolmogorov-Smirnov (ks.test)

Esse teste é usado para determinar se duas amostras procedem da mesma população ou se uma amostra segue uma distribuição determinada na hipótese nula. A segunda situação foi abordada na Seção 1.3.

Exemplo 2.7

Deseja-se comparar duas soluções químicas com relação ao grau de P.H. Testar se os dados A e B tem a mesma distribuição ao nível de 5% de significância.

<u>Parâmetros:</u> A e B são os dados coletados dos dois grupos. Alternative indica a hipótese alternativa do teste, é utilizado 'greater' ou 'less' para testar se a distribuição de A se encontra acima da curva de distribuição de B ou abaixo respectivamente.

Hipóteses:

```
Two-sample Kolmogorov-Smirnov test

data: A and B

D = 0.5, p-value = 0.1641

alternative hypothesis: two-sided
```

<u>Resultado comentado:</u> O resultado apresenta a estatística de teste 'D' calculada, e o p-valor do teste, além da hipótese alternativa sob estudo.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,1641), concluindo que os dados seguem a mesma distribuição.

Capítulo 3 – Comparação de três ou mais grupos

3.1 Teste Qui-Quadrado (chisq.test)

Os dados são frequências em r categorias discretas. Deseja-se testar se os dados são de uma mesma população ou seguem uma mesma distribuição.

Exemplo 3.1

Deseja-se testar se a proporção de homens e mulheres em 3 partidos difere significativamente.

Parâmetros: 'M' é a matriz com os dados.

Hipóteses: H_0 : A proporção nos 3 partidos é semelhante H_1 : A proporção nos 3 partidos não é semelhante

Resultado:

```
Pearson's Chi-squared test

data: M

X-squared = 30.0701, df = 2, p-value = 2.954e-07
```

<u>Resultado comentado:</u> São apresentados a estatística teste Qui-quadrado, os graus de liberdade e o p-valor calculado.

<u>Conclusão:</u> Há fortes evidências para rejeitarmos H0 (p=0,000), concluindo haver alguma diferença entre as proporções de homens e mulheres nos três partidos políticos analisados em questão.

3.2 Teste da Mediana (chisq.test)

Nesse teste averiguamos se os k grupos provem de populações com medianas iguais. O nível de mensuração deve ser, no mínimo, em escala ordinal.

Exemplo 3.2

Deseja-se verificar se há diferença significativa entre os escores de QI de sujeitos com baixa exposição ao chumbo, média exposição ao chumbo e alto exposição ao chumbo. Use o nível de significância de 0.05 para testar se as três amostras provêm de populações com medianas iguais.

```
baixo<-c(85,90,107,85,100,97,101,64)
medio<-c(78,97,107,80,90,83)
alto<-c(93,100,97,79,97)

mediana<-median(c(baixo,medio,alto)) #mediana geral
b<-c(sum(baixo>mediana),sum(baixo<=mediana))
m<-c(sum(medio>mediana),sum(medio<=mediana))
a<-c(sum(alto>mediana),sum(alto<=mediana))
dados<-as.table(cbind(b,m,a))
chisq.test(dados)</pre>
```

<u>Parâmetros:</u> Para a realização desse teste, foi criada uma matriz onde as colunas ainda são os k grupos, e as linhas indicam quanos indivíduos de cada grupo estão acima e quantos estão abaixo da mediana geral. Obtida essa matriz, o teste é realizado como no Teste qui-quadrado.

```
<u>Hipóteses:</u> H_0: Os grupos têm medianas semelhantes H_1: Pelo menos um grupo tem mediana diferente das demais
```

Resultado:

```
Pearson's Chi-squared test

data: dados

X-squared = 0.8163, df = 2, p-value = 0.6649
```

Resultado comentado: A saída é a mesma do teste qui-quadrado.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,6649), ou seja, não há evidencias suficientes para afirmar que os escores medianos dos grupos são diferentes.

Observação: Esse exemplo para implementação do teste da Mediana é apenas ilustrativo, pois os dados não atendem o requisito do Teste Qui-Quadrado de que todas as frequências esperadas devem ser maiores que 5. Para maiores detalhes, consulte Agresti [2007].

3.3 Teste por postos de Kruskall-Wallis (1 fator) (kruskal.test)

Utilizado para testar se k grupos são semelhantes.

Exemplo 3.3

Serão utilizados os mesmos dados do exemplo anterior.

```
baixo<-c(85,90,107,85,100,97,101,64)

medio<-c(78,97,107,80,90,83)

alto<-c(93,100,97,79,97)

QI<-c(baixo,medio,alto)
grupo<-
c(rep("b",length(baixo)),rep("m",length(medio)),rep("a",length(alto)))
kruskal.test(QI~factor(grupo))</pre>
```

<u>Hipóteses:</u> H_0 : Os grupos são semelhantes H_1 : Pelo menos um grupo difere dos demais

Resultado:

```
Kruskal-Wallis rank sum test

data: QI by factor(grupo)

Kruskal-Wallis chi-squared = 0.70311, df = 2, p-value = 0.7036
```

<u>Resultado comentado:</u> O teste apresenta a estatística de teste, os graus de liberdade e o p-valor calculado.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,7036), ou seja, não há evidências de que os grupos apresentam diferentes escores de QI.

3.4 Teste de Levene (leveneTest)

Para a realização de muitos testes, é necessária a suposição de que as amostras tenham a mesma variância. O Teste de Levene tem a função de testar se essas suposições são válidas, analisando se todos os grupos têm a mesma variância.

Nota: Para a realização deste teste é necessária à instalação do pacote 'car'.

Exemplo 3.4

Utilizando os mesmos dados dos exemplos anteriores, testaremos se os grupos têm a mesma variância.

<u>Parâmetros:</u> Os parâmetros do teste são dois vetores, tais como os construídos no teste de Kruskal Wallis.

```
<u>Hipóteses:</u>\{H_0: Os\ grupos\ possuem\ a\ mesma\ variância\ H_1: Pelo\ menos\ 1\ grupo\ possui\ variância\ diferente
```

Resultado:

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 2 0.7152 0.5041

16
```

<u>Resultado comentado:</u> São apresentados os graus de liberdade dos grupos e dos resíduos, a estatística de teste F e o p-valor calculado.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,5041), ou seja, não há evidências de que exista diferença entre as variâncias.

3.5 **Teste de Friedman (friedman.test)**

O teste de Friendman é uma alternativa não paramétrica para o teste anova, quando existem blocos completamente aleatorizados.

Exemplo 3.5

Em um estudo de hipnose, as emoções de medo, felicidade, depressão e calma foram estimuladas (em ordem aleatória) em oito pacientes durante a hipnose. A tabela a seguir apresenta as medidas resultantes do potencial elétrico em minivolts da pele dos pacientes. Cada paciente é considerado um bloco. Teste se existe efeito da emoção induzida nos pacientes no potencial elétrico medido.

	Medo	Felicidade	Depressão	Calma
Paciente 1	23,1	22,7	22,5	22,6
Paciente 2	57,6	53,2	53,7	53,1
Paciente 3	10,5	9,7	10,8	8,3
Paciente 4	23,6	19,6	21,1	21,6
Paciente 5	11,9	13,8	13,7	13,3
Paciente 6	54,6	47,1	39,2	37
Paciente 7	21	13,6	13,7	14,8
Paciente 8	20,3	23,6	16,3	14,8

<u>Parâmetros:</u> Os parâmetros são três vetores, o primeiro com as respostas, o segundo com os grupos em estudo e o terceiro com os blocos do experimento.

Hipóteses:

 $\{H_0: Os\ grupos\ se\ comportam\ de\ forma\ similar \ \}$ $\{H_1: Pelo\ menos\ um\ dos\ grupos\ difere\ dos\ demais\ \}$

Resultado:

```
Friedman rank sum test

data: resposta, emocao and paciente

Friedman chi-squared = 6.45, df = 3, p-value = 0.09166
```

<u>Resultado comentado:</u> O resultado apresenta a estatística de teste, os graus de liberdade e o p-valor calculado.

<u>Conclusão:</u> Não há evidências para rejeitar H0 (p=0,09166), ou seja, não há evidências de que o potencial elétrico cutâneo é diferente entre todas as emoções estudadas.

Capítulo 4 – Coeficientes e Testes de Concordância e correlação

Mede a correlação linear entre duas variáveis. Suponha que se deseja verificar uma associação ou correlação entre duas variáveis A e B. Podem existir diversas explicações do porque elas variam conjuntamente, como mudanças em A causam mudanças em B, ou mudanças em B causam mudanças em A, ou mudanças em outras variáveis causam mudanças tanto em A como em B, ou a relação observada é somente uma coincidência.

4.1 Coeficiente de Correlação de Spearman (cor.test)

A escala de mensuração das duas variáveis deve ser pelo menos ordinal. Baseia-se na atribuição de postos às observações X e Y e possui um cálculo semelhante ao de Pearson.

Exemplo 4.1

Deseja-se calcular a relação entre a diversidade de gafanhotos e o numero de anos após a aplicação de um pesticida.

```
anos= c(0, 1, 3, 5, 9, 12, 13, 15, 21, 25)
gafanhotos=c(0.00, 0.19, 0.15, 1.49, 1.10, 1.12, 1.61, 1.42, 1.48, 1.92)
cor.test(anos,gafanhotos, method="spearman",alternative="two.sided")
```

<u>Parâmetros:</u> Para o calculo da correlação, é necessário entrar com os dois vetores que se deseja comparar e depois definir em 'method' o tipo de correlação, no caso, 'sperman', Alternative indica a hipótese alternativa a ser testada. Outros valores possíveis são "greater" ou "less".

Hipóteses:

```
\{H_0: As \ variáveis \ não \ são \ correlacionadas \ (\rho_s=0) \}
\{H_1: \ As \ variáveis \ são \ correlacionadas \ (\rho_s\neq 0) \}
```

Resultado:

```
Spearman's rank correlation rho

data: anos and gafanhotos

S = 32, p-value = 0.008236

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.8060606
```

Resultado Comentado: O resultado apresenta o p-valor do teste realizado, a hipótese alternativa sob estudo e a estimativa da correlação de spearman.

<u>Conclusão:</u> O valor da estimativa do coeficiente de Spearman é 0,806. Há fortes evidências de que a correlação é significativa. Podemos inferir que há uma correlação positiva e significativa entre diversidade de gafanhotos e o tempo após aplicação de pesticidas.

4.2 Coeficiente de Correlação Posto-Ordem de Kendall(T) (cor.test)

A escala de mensuração das duas variáveis deve ser pelo menos ordinal. Assim como o de Spearman, baseia-se na atribuição de postos às observações de X e Y para medir a correlação.

Exemplo 4.2

Será utilizado o mesmo conjunto de dados anterior, em que deseja-se calcular a relação entre a diversidade de gafanhotos e o numero de anos após a aplicação de um pesticida.

```
anos= c(0, 1, 3, 5, 9, 12, 13, 15, 21, 25)
gafanhotos=c(0.00, 0.19, 0.15, 1.49, 1.10, 1.12, 1.61, 1.42, 1.48, 1.92)
cor.test(anos,gafanhotos, method="kendall",alternative="two.sided")
```

<u>Parâmetros:</u> Os dados são colocados de maneira análoga ao coeficiente de correlação de 'sperman', mudando apenas o tipo de método que deseja-se utilizar, no caso 'kendall'.

```
<u>Hipóteses:</u> H_0: As variáveis não são correlacionadas (\tau = 0) H_1: As variáveis são correlacionadas (\tau \neq 0)
```

Resultado:

```
Kendall's rank correlation tau

data: anos and gafanhotos

T = 38, p-value = 0.004687

alternative hypothesis: true tau is not equal to 0

sample estimates:
    tau

0.6888889
```

Resultado comentado: O teste apresenta saída similar ao comando anterior.

<u>Conclusão</u>: O valor da estimativa do coeficiente de kendall é 0,688. Há fortes evidências de que a correlação é significativa. Podemos inferir que há uma correlação positiva e significativa entre diversidade de gafanhotos e o tempo após aplicação de pesticidas.

4.3 Coeficiente de Kappa (kappa2)

Baseada no numero de respostas concordantes, ou seja, o numero de casos cujo resultado é o mesmo entre os juízes. Nesse caso, 2 avaliadores classificam n objetos em m categorias e o coeficiente mede o grau de concordância do que seria esperado tão somente pelo acaso.

Exemplo 4.3

Uma amostra de 30 pacientes foi avaliada por dois psicólogos que classificaram os pacientes em Psicótico, Neurótico ou Orgânico. Encontre o coeficiente de kappa.

Nota: Para a realização deste teste é necessária à instalação do pacote 'irr'.

```
install.packages('irr',dependencies=T)
require('irr')

psicologoA =
    c('neurotico','psicótico','Orgânico','Orgânico','Psicótico','O
    rgânico','neurotico','psicótico','psicótico')

psicologoB =
    c('neurotico','psicótico','neurotico','Orgânico','Orgânico','psicótico','
    Orgânico','Orgânico','neurotico','psicótico')

tabela = cbind(psicologoA,psicologoB)

kappa2(tabela)
```

<u>Parâmetros:</u> Os parâmetros são uma tabela 2xn com as conclusões de cada avaliador nas colunas e os indivíduos avaliados nas linhas.

```
Cohen's Kappa for 2 Raters (Weights: unweighted)

Subjects = 10

Raters = 2

Kappa = 0.545

z = 2.46

p-value = 0.0138
```

Resultado comentado: O resultado apresenta o número de indivíduos classificados, o número de avaliadores, o coeficiente kappa calculado e a estatística de teste utilizada para a verificação se o coeficiente kappa é significativo.

<u>Conclusão</u>: O coeficiente de Kappa obtido foi de 0.545, indicando que existe alguma concordância entre as classificações dos psicólogos. Há evidências de que existe essa concordância entre os avaliadores é significativa (p=0,0138).

4.4 Coeficiente de Kappa Múltiplo (kappam.fleiss)

Utilizado para descrever a intensidade da concordância entre juízes ou entre métodos de classificação quando existem mais de dois avaliadores.

Exemplo 4.4

Suponha agora que uma amostra de 10 pacientes foi classificada por três psicólogos em psicótico, neurótico ou orgânico. Encontre o coeficiente de Kappa múltiplo.

<u>Parâmetros</u>: O parâmetro é uma matrix $n \times m$, cujas linhas são os indivíduos classificados e as colunas são os avaliadores.

```
<u>Hipóteses:</u>  \begin{cases} H_0: Os \ avaliadores \ n\~ao \ concordam \ entre \ si \ (K=0) \\ H_1: Os \ avaliadores \ concordam \ entre \ si \ (K>0) \end{cases}
```

Resultado:

```
Fleiss' Kappa for m Raters

Subjects = 10

Raters = 3

Kappa = 0.398

z = 3.08

p-value = 0.00209
```

<u>Resultado comentado:</u> O resultado apresenta os mesmos valores do teste de kappa para 2 avaliadores.

<u>Conclusão:</u> Há fortes evidências para rejeitarmos H0 e concluirmos que o coeficiente de Kappa é significativamente diferente de 0. O coeficiente de Kappa obtido foi de 0.398.

Referências

Conover, W. J. Practical nonparametric statistics. 2a. ed. New York: John Wiley & Sons, 1999.

Lehmann, E.L.; D'Abrera, H.J.M. Nonparametrics: Statistical Methods Based on Ranks. Holden-Daym, California, 1975. p. 264

Siegel, S., Castellan, Jr., N. J., Estatística não-paramétrica para ciências do comportamento. São Paulo: Bookman (Artmed), 2006.

Agresti, A – An Introduction to Categorical Data Analysis (Wiley Series in Probability and Statistics) – 2^a edição. New York, USA: Wiley, 2007.

Triola, M. F. *Introdução à estatística*. Rio de Janeiro: Livros Técnicos e Científicos, 2013.