Pritam Prakash Shete

Computer Division, BARC

Centre for Excellence in Basic Sciences

## **Topics**

- Supervised learning
- Conditional probability
- Bayes' rule
- Naive Bayes
- Laplacian smoothing
- Prior ratio
- Log likelihood
- Applications
- Advantages
- Disadvantages

## Supervised Learning

- Training set  $-\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\}$
- Labeled dataset



## Probability

- SMS spam detection
- Corpus of SMSs
- Events Ham SMS or Spam SMS

$$P(Spam) = \frac{N_{Spam}}{N_{Total}} = 1 - P(Ham)$$

$$P(Ham) = \frac{N_{Ham}}{N_{Total}} = 1 - P(Spam)$$

| Name        | Value      |
|-------------|------------|
| $N_{Total}$ | 1000       |
| $N_{Ham}$   | 800        |
| $N_Spam$    | 200        |
| P(Ham)      | 0.8 (80%)  |
| P(Spam)     | 0.2 (20 %) |

## Probability

- SMS spam detection
- Corpus of SMSs
- Event SMS contains word 'discount'

$$P(discount) = \frac{N_{discount}}{N_{Total}}$$

| Name              | Value      |
|-------------------|------------|
| $N_{Total}$       | 1000       |
| $N_{ m discount}$ | 20         |
| P(discount)       | 0.02 (2 %) |

# **Conditional Probability**



## **Conditional Probability**

- Event SMS Spam
- Event SMS 'discount'
- Intersection Spam and 'discount'

$$P(Spam | discount) = \frac{P(Spam \cap discount)}{P(discount)}$$

- Probability that SMS is Spam, given SMS contains word 'discount'.
- Probability that SMS is Spam and SMS contains word 'discount'.

## Bayes' Rule

- Event SMS Spam
- Event SMS 'discount'
- Intersection Spam and 'discount'

$$P(Spam | discount) = \frac{P(Spam \cap discount)}{P(discount)}$$

$$P(discount | Spam) = \frac{P(discount \cap Spam)}{P(Spam)}$$

## Bayes' Rule

- Event SMS Spam
- Event SMS 'discount'
- Intersection Spam and 'discount'

$$P(Spam | discount) = P(discount | Spam) \times \frac{P(Spam)}{P(discount)}$$

## Bayes' Rule

- Event SMS Spam
- Event SMS 'discount'
- Intersection Spam and 'discount'

$$P(Spam | discount) = P(discount | Spam) \times \frac{P(Spam)}{P(discount)}$$

$$P(A | B) = P(B | A) \times \frac{P(A)}{P(B)}$$

- SMS spam detection
- Corpus
  - Ham corpus
  - Spam corpus
- Vocabulary
  - All words
  - Ham and Spam corpus

| Word     | Ham | Spam |
|----------|-----|------|
| I        | 400 | 400  |
| am       | 400 | 400  |
| because  | 50  | 0    |
| meeting  | 200 | 100  |
| company  | 350 | 100  |
| discount | 100 | 200  |
| lottery  | 100 | 400  |

1600

1600

- SMS spam detection
- Corpus
  - Ham corpus
  - Spam corpus
- Vocabulary
  - All words
  - Ham and Spam corpus

| Word     | Ham     | Spam   |
|----------|---------|--------|
| - 1      | 0.25    | 0.25   |
| am       | 0.25    | 0.25   |
| because  | 0.03125 | 0      |
| meeting  | 0.125   | 0.0625 |
| company  | 0.21875 | 0.0625 |
| discount | 0.0625  | 0.125  |
| lottery  | 0.0625  | 0.25   |

P(Word<sub>i</sub> | Class)

- SMS spam detection
- Corpus
  - Ham corpus
  - Spam corpus
- Vocabulary
  - All words
  - Ham and Spam corpus

| Word     | Ham | Spam |
|----------|-----|------|
| I        | 400 | 400  |
| am       | 400 | 400  |
| because  | 50  | 0    |
| meeting  | 200 | 100  |
| company  | 350 | 100  |
| discount | 100 | 200  |
| lottery  | 100 | 400  |

| 1600   1600 |
|-------------|
|-------------|

$$P(I | Ham) = \frac{400}{1600} = 0.25$$

- SMS spam detection
- Corpus
  - Ham corpus
  - Spam corpus
- Vocabulary
  - All words
  - Ham and Spam corpus

| Word     | Ham     | Spam   |
|----------|---------|--------|
| I        | 0.25    | 0.25   |
| am       | 0.25    | 0.25   |
| because  | 0.03125 | 0      |
| meeting  | 0.125   | 0.0625 |
| company  | 0.21875 | 0.0625 |
| discount | 0.0625  | 0.125  |
| lottery  | 0.0625  | 0.25   |

- Identical probabilities
  - Neutral words
  - I, am
- Significant words
  - Power words
  - meeting, company
  - discount, lottery
- Table of probabilities

| Word     | Ham     | Spam   |
|----------|---------|--------|
| I        | 0.25    | 0.25   |
| am       | 0.25    | 0.25   |
| because  | 0.03125 | 0      |
| meeting  | 0.125   | 0.0625 |
| company  | 0.21875 | 0.0625 |
| discount | 0.0625  | 0.125  |
| lottery  | 0.0625  | 0.25   |

$$\prod_{i=1}^{m} \frac{P(word_i | Ham)}{P(word_i | Spam)} > 1$$

#### I am in meeting.

$$\frac{0.25}{0.25} \times \frac{0.25}{0.25} \times \frac{0.125}{0.0625}$$
$$= 2 > 1$$

Ham

| Word     | Ham     | Spam   |
|----------|---------|--------|
| I        | 0.25    | 0.25   |
| am       | 0.25    | 0.25   |
| because  | 0.03125 | 0      |
| meeting  | 0.125   | 0.0625 |
| company  | 0.21875 | 0.0625 |
| discount | 0.0625  | 0.125  |
| lottery  | 0.0625  | 0.25   |

$$\prod_{i=1}^{m} \frac{P(word_i | Ham)}{P(word_i | Spam)} > 1$$

#### You got discount.

 $\frac{0.0625}{0.125}$ 

= 0.5 < 1

**Spam** 

| Word     | Ham     | Spam   |
|----------|---------|--------|
| - 1      | 0.25    | 0.25   |
| am       | 0.25    | 0.25   |
| because  | 0.03125 | 0      |
| meeting  | 0.125   | 0.0625 |
| company  | 0.21875 | 0.0625 |
| discount | 0.0625  | 0.125  |
| lottery  | 0.0625  | 0.25   |

## Laplacian Smoothing

- Word count 0
- Probability of word 0
- Probability of sentence 0
- e.g.
  - Word 'because' Spam

## Laplacian Smoothing

$$\begin{split} &P(Word_{i} \mid Class) = \frac{C(Word_{i}, Class)}{N_{Class}} \\ &P(Word_{i} \mid Class) = \frac{C(Word_{i}, Class) + 1}{N_{Class} + U_{Class}} \\ &C(Word_{i}, Class) = Number of Word_{i} words in Class \\ &N_{Class} = Number of words in Class \\ &U_{Class} = Number of unique words in Class \end{split}$$

| Word     | Ham    | Spam   |
|----------|--------|--------|
| 1        | 0.2495 | 0.2495 |
| am       | 0.2495 | 0.2495 |
| because  | 0.0317 | 6.2e-4 |
| meeting  | 0.125  | 0.0628 |
| company  | 0.2184 | 0.0628 |
| discount | 0.0628 | 0.125  |
| lottery  | 0.0628 | 0.2495 |

#### **Prior Ratio**

- Number of Ham (positive) SMSs
- Number of Spam (negative) SMSs
- Ratio of number of Ham and Spam SMSs

#### Likelihood

- Ratio of probabilities
- Neutral words
  - **~**1.
- Positive words
  - > 1 Larger than 1
- Negative words
  - < 1 Less than 1</p>
- Multiplication
  - Numerical underflow

## Log Likelihood

- Logarithm of ratio of probability
  - Log likelihood
- Addition of logarithms
  - No numerical underflow
- Neutral words ~0
- Positive words > 0
- Negative words < 0</li>
- Logprior

## **Applications**

- Spam detection
- Text classification
- Author identification
- Word disambiguation
- Sentiment analysis

### Advantages

- Simple
- Easy to implement
- Real-time predictions
- Work with less training dataset
- Continuous and discrete data
- Not sensitive to irrelevant features

## Disadvantages

Assume independent features

# Questions?

Thank you