Best-First Rao-Blackwellization

J Chiu

March 5, 2022

Gradient Estimation

► Goal: optimize

$$\max_{\theta} \sum_{x} p_{\theta}(x) f(x)$$

(optimizing wrt parameters of f is easy)

ightharpoonup Discrete x, expensive evaluation of f(x)

Gradient Estimators

Score-function estimator (SFE)

$$\nabla_{\theta} \sum_{x} p_{\theta}(x) f(x) = \mathbb{E}_{p_{\theta}(x)} [f(x) \nabla \log p_{\theta}(x)]$$

- High variance, consistent
- ▶ Continuous relaxation, $x \approx g(\theta, \epsilon)$

$$\nabla_{\theta} \sum_{x} p_{\theta}(x) f(x) \approx \mathbb{E}_{p(\epsilon)} \left[\nabla_{\theta} f(g_{\theta}(\theta, \epsilon)) \right]$$

- Biased, lower variance
- Requires relaxable f
- Stochastic softmax tricks (SST)
- ► Focus on improving SFE
 - Total error most important, but SFE under-explored

Rao-Blackwellization of score function estimator

▶ Condition on values of f(x) for $x \in S$

$$\nabla_{\theta} \sum_{x} p_{\theta}(x) f(x)$$

$$= \mathbb{E}_{p_{\theta}(x)} [f(x) \nabla \log p_{\theta}(x)]$$

$$= \sum_{x \in S} p(x) f(x) \nabla \log p_{\theta}(x) + \mathbb{E}_{p_{\theta}(x \notin S)} [f(x) \nabla \log p_{\theta}(x)]$$

- ▶ Conditioning on all values f(x) =no variance
- ▶ Want S to have x with high p(x)f(x)
 - Need to compromise with high p(x)
 - ▶ Use heuristic estimate of f(x)?
 - What if x is structured?

Structured Setting

Structured

Best-first Rao-Blackwellization

- Modern MCTS
 - Prior p(x) (forward)
 - ightharpoonup Cost-to-go estimate $\tilde{V}(x)$ (backward)
 - Search procedure that links the two
- Proposal
 - In many cases, already have the prior p(x)
 - Estimate cost-to-go with continuous relaxation or cheaper problem-dependent weaker model (Markov transformer)

BF RB

Citations I