

Roundup regression

Machine Learning

Norman Juchler

Regression: Summary of key points

Linear (or non-linear) regression:

- Used for regression tasks where the output is a continuous variable.
- Models the relationship between features and output with a linear or non-linear equation.
- Objective is to minimize the difference between the predicted and actual values (e.g., by minimizing mean squared error).

Logistic regression:

- Used for binary classification tasks where the output is categorical.
- Models the probability of an instance belonging to a particular class, using the sigmoid function to convert linear outputs into probabilities.
- Predictions are made by setting a threshold (usually 0.5) on the output probability.

Interpretation of model parameters

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n$$

 Each coefficient β_i represents the change in the target variable for a one-unit increase in the corresponding feature

Logistic regression:

$$p(y=1|x) = \frac{1}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}}$$

• For each one-unit increase in a feature, the log-odds of the positive class increase by the value of the feature's weight β_i.

What does it mean if $\beta_i = 0$?

- No relationship: The feature does not contribute to explaining the variation in the target variable or the log odds.
- Feature exclusion: The model has effectively "excluded" the feature as uninformative*
- (We can even apply a t-test to examine if $\beta_i = 0$)

Logistic regression: Interpretation

- The logistic regression model consists of two main components:
 - The linear model, which is a linear combination of the input features
 - The sigmoid, which maps the linear model's output to a probability value between 0 and 1

$$p(y = 1|x) = \sigma(x) = \frac{1}{1 + e^{-z(x)}}, \quad \text{with } z = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n$$

 $\ \ \,$ We can rewrite this expression as (with p=p(y=1|x))

$$\log \frac{p}{1-p} = z(x) = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n$$

• Interpretation:

In logistic regression, we model the so-called log-odds (i.e., the logarithm of the odds ratio) using a linear regression!

$$p = \frac{1}{1 + e^{-z(x)}}$$

$$\frac{1}{p} = 1 + e^{-z(x)}$$

$$\frac{1}{p} - 1 = e^{-z(x)}$$

$$\log \frac{p}{1 - p} = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Logistic regression: Learning check

Which of the following statements are true?	
□ a.	The logistic function is the inverse of the logit function
☐ b.	The logistic function maps the linear model's output to a probability value between 0 and 1
☐ c.	The logarithm of the odds (log-odds) is modeled as a linear combination of the input features
☐ d.	The ratio $\frac{p}{(1-p)}$ is called the odds: Probability of the event occurring divided by the probability of the event not occurring

Regularized regression

- Idea: Prevent overfitting by penalizing large coefficients, encouraging simpler models that generalize better.
- How? Modify the loss function!

Regularized loss = Original loss + Penalty term on coefficients

Example: (Ridge regression)

$$\mathcal{L}(\beta|X,y) = MSE(\beta|X,y) + \lambda \sum_{j=1}^{p} \beta_j^2$$

Recap: $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i|\beta))^2$

- This introduces a **hyperparameter** λ (or α in sklearn):
 - Controls the strength of regularization
 - Larger α increases penalty, leading to smaller coefficients

Polynomial regression without regularization showing overfitting

Polynomial regression with regularization (ridge), which in this case prevents overfitting.

Types of regularization:

- L1 regularization (<u>Lasso</u>):
 - Adds absolute values of coefficients to the loss function.
 - Encourages sparsity; some coefficients become zero, effectively excluding unimportant features.
- L2 regularization (Ridge):
 - Adds squared values of coefficients to the loss function.
 - Shrinks coefficients towards zero but usually keeps all features in the model.
- Elastic net (<u>ElasticNet</u>):
 - Combines L1 and L2 regularization
 - Balances sparsity and small coefficients.

Summary:

- Reduce overfitting by constraining model complexity
- Improves interpretability + robustness (especially in high dimensions)
- Feature selection comes along for free (e.g., in Lasso)

Polynomial regression without regularization showing overfitting

Polynomial regression with regularization (ridge), which in this case prevents overfitting.