Fundamentos de Sistemas Inteligentes: Atividade com o Weka

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Instalação

- http://www.cs.waikato.ac.nz/ml/weka/ downloading.html
 - Download no link "Click here to download a selfextracting executable without the Java VM"

Arquivos adicionais

- http://saci-devel.ufscar.br/weka/
 - bag.arff
 - complexidade.arff
 - corpus.zip
 - olimpiadas.arff

Mineração de textos (2)

- Estratégia comum bag of words (saco de palavras – conjunto de palavras): cada palavra virá um atributo
- Problema de exemplo: classificar textos entre os gêneros esportivo, biografia e humorístico

nasceu	jogador	papagaio	()	classes
1	0	0	()	??
0	2	0	()	??
1	0	3	()	??

Arquivos arff

- Arquivos de entrada do WEKA
- Tem duas partes:
 - Cabeçalho
 - Nome da relação
 - Lista de atributos com os tipos
 - Dados
 - Dados separados por vírgula e seguindo a ordem em que os atributos são definidos no cabeçalho

Arquivos arff (2)

@RELATION olimpiadas

@ATTRIBUTE tamanho REAL

@ATTRIBUTE peso REAL

@ATTRIBUTE class {basquete,levantamento}

@DATA

1.79,88,basquete

1.86,94,levantamento

1.56,56,levantamento

2.05,106,basquete

1.83,145,levantamento

1.95,89,basquete

Cabeçalho

Dados

Arquivos arff (3)

- Os atributos podem ser dos tipos:
 - Numeric (inteiros ou reais)
 - <nominal-specification> (classe → entre { })
 - String
 - Date [<date-format>]

iris.arff

Setosa

Versicolor

• Virginica

iris.arff (2)

- Abra o Weka
- Clique em "Explorer"
- Open file
- Data
- Iris.arff
- Clique nos campos e compare com o gráfico
 - Qual atributo é um bom separador?

iris.arff: classificação

- Treine os algoritmos a seguir
 - J48 (árvore de decisão) visualize a árvore
 - MLP (mude os parâmetros da rede)
 - SMO (SVM)
 - Naive Bayes

iris.arff: classificação (2)

- Analise as medidas de desempenho
- Visualiza a árvore de decisão
- Mude os parâmetros da rede neural
 - Veja a topologia gerada

iris.arff: classificação (3)

- Compare
 - Cross validation
 - Holdout
 - Avaliação usando conjunto de treinamento

iris.arff: classificação (4)

- Outros algoritmos interessantes:
 - Rules.Part
 - Function.Logistic
 - Lazy.IBK (KNN)
 - Meta.Adabost com SMO/IBK/MLP

iris.arff: regressão

- Remova o atributo classe
- Escolha sepalwidth como classe
- O algoritmo SimpleLinearRegression ficará disponível
- Execute
- Ao fim, abra de novo iris.arff

iris.arff: agrupamento

- Teste
 - EM
 - Hierarquical clusterer
- Para EM
 - Avalie clusteres com classes verdadeiras

iris.arff (5)

- Aba preprocess →
 aplicar filtro → discretize
- Aba associate → apriori

iris.arff (6)

- Aba select attributes
- Choose → cfs sub set eval
- Start
- Quais são os atributos mais relevantes?

iris.arff (7)

- Aba visualize
- Compare atributos dois a dois
- Teste com diferentes plot-sizes e gitters

complexidade.arff

Arquivo: complexidade.arff

Córpus	Número de textos	Número de palavras	Média de palavras por textos	Classe
ZH – jornalístico	166	63996	385,518	Complexo
CH – divulgação científica	130	81139	624,146	Complexo
PSFL – jornalístico	166	19257	116,006	Simples
CHC – divulgação científica	127	56096	441,701	Simples

complexidade.arff (2)

- Abra o arquivo complexidade.arff
- Gere uma árvore de decisão visualize-a (J48)
- Gere uma máquina de vetor suporte (SVM)

wikipedia.arff

- Artigos de capa do ano de 2012
- 13 domínios: arte, biografias, ciências exatas, ciências da natureza, ciências sociais, cultura e sociedade, desporto, geografia, história, literatura, musica, religião, tecnologia
- Cada classe com 12 textos (total: 156)

wikipedia.arff (2)

- Descompactar corpus.zip
- Weka → knowledge flow
- Data Sources → Text Directory Loader (clique duplo) → espaço em branco (clique duplo)
 - Clique duplo no campo que aparecer
 - Selecionar diretório de entrada (corpus). Obs: pode ser necessário digitar manualmente

wikipedia.arff (3)

- Data Sink → Arff Saver
 - Mesmo processo
 - Apontar arquivo de saída wikipedia.arff
- Botão direito no TextDirectoryLoader criado → dataset
- Arrastar setting até o ArffSaver
- Importante: TextDirectoryLoader está com erro em em diversas versões do Weka. Em caso de problemas, usa a linha de comando (a seguir).

wikipedia.arff (4)

- Prompt de comandos:
 - cd corpus
 - java -cp \$diretorio_weka/weka.jar weka.core.converters.TextDirectoryLoader -dir text_example > wikipedia.arff
 - java -Xms1000m -Xmx1000m weka.jar
- Após conversão: aplicar filtro unsupervised → attribute → string to word vector
 - Salvar arff como bag.arff

bag.arff

- Vamos gerar a partir de wikipedia.arff
- Abrir wikipedia.arff
- Na aba preprocess
- Filter → Choose → weka/filters/unsupervised/ string to word vector
- Abaixo de "selected attribute" manter: Class: @@class@@ (noun)
- Clicar em "apply"

bag.arff (2)

- Remover campos 2 até 49
- Salvar resultado como bag.arff
- Aba classify,
- Abaixo de "More Options":
 @@class@@ (noun)
- Rodar J48 e SVM
 - Visualizar árvore gerada
 - Ela faz sentido?