

Paulo Victor Souza Rodrigues — P8 de Informática Packet Tracer - Criação de sub-redes no cenário

Tabela de Endereçamento

Dispositivo	Interface	Endereço IP	Máscara de sub-rede	Gateway padrão
R1	G0/0	192.168.100.1	255.255.255.224	N/A
	G0/1	192.168.100.33	255.255.255.224	N/A
	S0/0/0	192.168.100.129	255.255.255.224	N/A
R2	G0/0	192.168.100.65	255.255.255.224	N/A
	G0/1	192.168.100.97	255.255.255.224	N/A
	S0/0/0	192.168.100.158	255.255.255.224	N/A
S1	VLAN 1	192.168.100.2	255.255.255.224	192.168.100.1
S2	VLAN 1	192.168.100.34	255.255.255.224	192.168.100.33
S3	VLAN 1	192.168.100.66	255.255.255.224	192.168.100.65
S4	VLAN 1	192.168.100.98	255.255.255.224	192.168.100.97
PC1	NIC	192.168.100.30	255.255.255.224	192.168.100.1
PC2	NIC	192.168.100.62	255.255.255.224	192.168.100.33
PC3	NIC	192.168.100.94	255.255.255.224	192.168.100.65
PC4	NIC	192.168.100.126	255.255.255.224	192.168.100.97

Objetivos

Parte 1: Projetar um Esquema de Endereçamento IP

Parte 2: Atribuir Endereços IP a Dispositivos e Verificar a Conectividade

Cenário

Nesta atividade, você recebe o endereço de rede 192.168.100.0/24 para sub-rede e fornece o endereço IP para a rede Packet Tracer. Cada rede local requer um espaço suficiente para, no mínimo, 25 endereços para dispositivos finais, o comutador e o roteador. A conexão entre R1 e R2 exigirá um endereço IP para cada extremidade do link.

Instruções

Parte 1: Projetar um Esquema de Endereçamento IP

Etapa 1: Divida a rede 192.168.100.0/24 no número apropriado de sub-redes.

a. Com base na topologia, quantas sub-redes são necessárias?

1) Resposta: 8 sub-redes

b. Quantos bits devem ser emprestados para comportar o número de sub-redes na tabela de topologia?

1) Resposta: 3 bits

c. Quantas sub-redes são criadas?

1) Resposta: 8 sub-redes

d. Quantos hosts utilizáveis são criados por sub-rede?

1) Resposta: 30

Observação: se a resposta for menos que os 25 hosts necessários, significa que você pegou emprestado bits demais.

e. Calcule o valor binário das cinco primeiras sub-redes. As duas primeiras sub-redes foram feitas para você.

Sub-re de	Endereço de rede	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	192.168.100.	0	0	0	0	0	0	0	0
1	192.168.100.	0	0	1	0	0	0	0	0
2	192.168.100.	0	1	0	0	0	0	0	0
3	192.168.100.	0	1	1	0	0	0	0	0
4	192.168.100.	1	0	0	0	0	0	0	0

f. Calcule o valor binário e o valor decimal da nova máscara de sub-rede.

Primeiro Octeto	Segundo octeto	Terceiro octeto	Bit de Máscar a 7	Bit de Más cara 6	Bit de Más cara 5	Bit Más cara 4	Bit Más cara 3	Bit de Más cara 2	Bit Más cara 1	Bit de Más cara 0
11111111	11111111	11111111	1	1	1	0	0	0	0	0
Primeiro octeto decimal	Segundo octeto decimal	Terceiro octeto decimal	Quarto octeto decimal							
255	255	255	224							

g. Preencha a **Tabela de Sub-Redes**,listando o valor decimal de todas as sub-redes disponíveis, o primeiro e o último host utilizáveis e o endereço de broadcast. Repita até que todos os endereços estejam listados.

Observação: não é necessário usar todas as linhas.

Tabela de Sub-Redes

Número da	Furdaman da	Primeiro	Última Endamas	Endonosado
Sub-Red	Endereço da Sub-Rede	Endereço de Host Utilizável	Último Endereço de Host Utilizável	Endereço de Broadcast
е	Sub-Rede	Utilizavei	de nost utilizavei	Dioducasi
0	192.168.100.0	192.168.100.1	192.168.100.30	192.168.100.31
1	192.168.100.32	192.168.100.33	192.168.100.62	192.168.100.63
2	192.168.100.64	192.168.100.65	192.168.100.94	192.168.100.95
3	192.168.100.96	192.168.100.97	192.168.100.126	192.168.100.127
4	192.168.100.128	192.168.100.129	192.168.100.158	192.168.100.159
5				
6				
7				
8				
9				
10	_			

Etapa 2: Atribua as sub-redes à rede mostrada na topologia.

- a. Atribua a sub-Rede 0 à LAN conectada à interface GigabitEthernet 0/0 de R1: 192.168.100.0 /27
- b. Atribua a Sub-Rede 1 à LAN conectada à interface GigabitEthernet 0/1 de R1: 192.168.100.32 /27
- c. Atribua a Sub-Rede 2 à LAN conectada à interface GigabitEthernet 0/0 de R2: 192.168.100.64 /27
- d. Atribua a Sub-Rede 3 à LAN conectada à interface GigabitEthernet 0/1 de R2: 192.168.100.96 /27
- e. Atribua a Sub-Rede 4 ao link WAN entre R1 e R2: 192.168.100.128 /27

Etapa 3: Documente o esquema de endereçamento.

Preencha a Addressing Table utilizando as seguintes diretrizes:

- a. Atribua os primeiros endereços IP utilizáveis em cada sub-rede a R1 para os dois links de LAN e WAN.
- Atribua os primeiros endereços IP utilizáveis a R2 para os links LAN. Atribua o último endereço IP utilizável para o link WAN.
- c. Atribua o segundo endereço IP utilizável nas sub-redes anexadas aos comutadores.
- d. Atribua os últimos endereços IP utilizáveis aos PCs em cada sub-rede.

Parte 2: Parte 2: Atribuir Endereços IP a Dispositivos e Verificar a Conectividade

A maior parte do endereçamento IP já está configurada nesta rede. Implemente as etapas a seguir para concluir a configuração do endereçamento. O roteamento dinâmico EIGRP já está configurado entre R1 e R2.

Etapa 1: Configure interfaces LAN R1.

a. Configure as duas interfaces de rede local com os endereços da tabela de endereçamento.

Configure as interfaces para que os hosts nas LANs tenham conectividade com o gateway padrão.

Etapa 2: Configure o endereçamento IP no S3.

a. Configure a interface VLAN1 do switch com endereçamento.

b. Configure o switch com o endereço de gateway padrão.

Etapa 3: Configure PC4.

Configure o PC4 com endereços de host e gateway padrão .

Etapa 4: Verifique a conectividade.

Você só pode verificar a conectividade de R1, S3 e PC4. Entretanto, deve conseguir fazer ping em cada endereço IP listado na **Tabela de Endereçamento**.


```
C:\>ping 192.168.100.66
  Pinging 192.168.100.66 with 32 bytes of data:
  Request timed out.
  Request timed out.
  Reply from 192.168.100.66: bytes=32 time=11ms TTL=254
  Reply from 192.168.100.66: bytes=32 time=3ms TTL=254
   Ping statistics for 192.168.100.66:
  Packets: Sent = 4, Received = 2, Lost = 2 (50% loss), Approximate round trip times in milli-seconds:
       Minimum = 3ms, Maximum = 11ms, Average = 7ms
  C:\>ping 192.168.100.1
  Pinging 192.168.100.1 with 32 bytes of data:
  Reply from 192.168.100.1: bytes=32 time=2ms TTL=254
  Reply from 192.168.100.1: bytes=32 time=1ms TTL=254
Reply from 192.168.100.1: bytes=32 time=4ms TTL=254
  Reply from 192.168.100.1: bytes=32 time=35ms TTL=254
   Ping statistics for 192.168.100.1:
       Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
       Minimum = 1ms, Maximum = 35ms, Average = 10ms
Top
```

COMPLETO

