What is claimed is:

- 1. A light-emitting device, comprising:
- a substrate;
- a SiN/Al_{1-x-y}In_xGa_yN $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$ superlattice buffer layer located on the substrate; and

an illuminant epitaxial structure located on the SiN/Al_{1-x-y}In_xGa_yN ($0 \le x \le 1$, 0 $\le y \le 1$, $x+y \le 1$) superlattice buffer layer.

- 2. The light-emitting device according to claim 1, wherein the substrate is a transparent substrate.
 - 3. The light-emitting device according to claim 1, wherein the substrate is a sapphire substrate.

15

- 4. The light-emitting device according to claim 1, wherein a material of the substrate is selected from the group consisting of Al₂O₃, SiC, Si, GaN and GaAs.
- 5. The light-emitting device according to claim 1, wherein a thickness of the SiN/Al_{1-x-y}In_xGa_yN $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$ superlattice buffer layer is between about 10Å and 2000Å.
- 6. The light-emitting device according to claim 1, wherein a number of SiN/Al_{1-x-y}In_xGa_yN (0≤x≤1, 0≤y≤1, x+y≤1) structures in the SiN/Al_{1-x-y}In_xGa_yN
 25 (0≤x≤1, 0≤y≤1, x+y≤1) superlattice buffer layer is greater than or equal to 2.

7. The light-emitting device according to claim 1, wherein a composition of the $SiN/Al_{1-x-y}In_xGa_yN$ $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$ superlattice buffer layer is selected from the group consisting of a $Al_{1-x-y}In_xGa_yN$ $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)/SiN$ structure and a $SiN/Al_{1-x-y}In_xGa_yN$ $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$ structure, and a material in contact with the substrate is selected from the group consisting of SiN and $Al_{1-x-y}In_xGa_yN$ $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$.

5

15

- 8. The light-emitting device according to claim 1, wherein the light-emitting device is selected from the group consisting of a light-emitting diode and a laser diode.
 - 9. A method for manufacturing a light-emitting device, comprising: providing a substrate;

forming a SiN/Al_{1-x-y}In_xGa_yN $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$ superlattice buffer layer on the substrate; and

forming an illuminant epitaxial structure on the SiN/Al_{1-x-y}In_xGa_yN ($0 \le x \le 1$, 0 $\le y \le 1$, $x+y \le 1$) superlattice buffer layer.

- 10. The method for manufacturing a light-emitting device according to claim 9,
 20 wherein in the step of forming the SiN/Al_{1-x-y}In_xGa_yN (0≤x≤1, 0≤y≤1, x+y≤1) superlattice buffer layer, a temperature for growing SiN of the SiN/Al_{1-x-y}In_xGa_yN (0≤x≤1, 0≤y≤1, x+y≤1) superlattice buffer layer is between about 200°C and 900°C.
- 11. The method for manufacturing a light-emitting device according to claim 9,
 25 wherein in the step of forming the SiN/Al_{1-x-y}In_xGa_yN (0≤x≤1, 0≤y≤1, x+y≤1)

superlattice buffer layer, a temperature for growing $Al_{1-x-y}In_xGa_yN$ $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$ of the $SiN/Al_{1-x-y}In_xGa_yN$ $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$ superlattice buffer layer is between about $200^{\circ}C$ and $900^{\circ}C$.

- 5 12. The method for manufacturing a light-emitting device according to claim 9, wherein the substrate is a transparent substrate.
 - 13. The method for manufacturing a light-emitting device according to claim 9, wherein the substrate is a sapphire substrate.

10

- 14. The method for manufacturing a light-emitting device according to claim 9, wherein a material of the substrate is selected from the group consisting of Al₂O₃, SiC, Si, GaN and GaAs.
- 15. The method for manufacturing a light-emitting device according to claim 9, wherein a thickness of the SiN/Al_{1-x-y}In_xGa_yN ($0 \le x \le 1$, $0 \le y \le 1$, $x+y \le 1$) superlattice buffer layer is between about 10Å and 2000Å.
- 16. The method for manufacturing a light-emitting device according to claim 9,
 20 wherein a number of SiN/Al_{1-x-y}In_xGa_yN (0≤x≤1, 0≤y≤1, x+y≤1) structures in the SiN/Al_{1-x-y}In_xGa_yN (0≤x≤1, 0≤y≤1, x+y≤1) superlattice buffer layer is greater than or equal to 2.
- 17. The method for manufacturing a light-emitting device according to claim 9, wherein a composition of the SiN/Al_{1-x-y}In_xGa_yN $(0 \le x \le 1, 0 \le y \le 1, x+y \le 1)$

superlattice buffer layer is selected from the group consisting of a $Al_{1-x-y}In_xGa_yN$ ($0 \le x \le 1$, $0 \le y \le 1$, $x+y \le 1$)/SiN structure and a SiN/ $Al_{1-x-y}In_xGa_yN$ ($0 \le x \le 1$, $0 \le y \le 1$, $x+y \le 1$) structure, and a material in contact with the substrate is selected from the group consisting of SiN and $Al_{1-x-y}In_xGa_yN$ ($0 \le x \le 1$, $0 \le y \le 1$, $x+y \le 1$).

5

18. The method for manufacturing a light-emitting device according to claim 9, wherein the light-emitting device is selected from the group consisting of a light-emitting diode and a laser diode.

10