R Notebook

Code ▼

Hide

library(datasets)
?datasets

Hide

library(help = "datasets")

Hide

head(datasets::ToothGrowth)

	len <dbl></dbl>	supp <fctr></fctr>	dose <dbl></dbl>
1	4.2	VC	0.5
2	11.5	VC	0.5
3	7.3	VC	0.5
4	5.8	VC	0.5
5	6.4	VC	0.5
6	10.0	VC	0.5
6 rows			

Hide

?ToothGrowth

Hide

head(datasets::UKgas)

[1] 160.1 129.7 84.8 120.1 160.1 124.9

Hide

?UKgas

head(datasets::PlantGrowth)

	weight <dbl></dbl>	
1	4.17	ctrl
2	5.58	ctrl
3	5.18	ctrl
4	6.11	ctrl
5	4.50	ctrl
6	4.61	ctrl
6 rows		

Hide

?PlantGrowth

Hide

head(datasets::quakes)

	lat <dbl></dbl>	long <dbl></dbl>	depth <int></int>	mag <dbl></dbl>	stations <int></int>
1	-20.42	181.62	562	4.8	41
2	-20.62	181.03	650	4.2	15
3	-26.00	184.10	42	5.4	43
4	-17.97	181.66	626	4.1	19
5	-20.42	181.96	649	4.0	11
6	-19.68	184.31	195	4.0	12
6 rows					

Hide

?quakes

Hide

head(datasets::trees)

	Girth <dbl></dbl>	Height <dbl></dbl>	Volume <dbl></dbl>
1	8.3	70	10.3
2	8.6	65	10.3
3	8.8	63	10.2
4	10.5	72	16.4
5	10.7	81	18.8
6	10.8	83	19.7
6 rows			

Hide

?trees

Hide

library(ggplot2)
plot1 <- ggplot(trees, aes(Girth, Volume)) + geom_point(colour = "blue", size = 2)
plot1</pre>

cor.test(trees\$Girth, trees\$Volume)

```
Pearson's product-moment correlation

data: trees$Girth and trees$Volume

t = 20.478, df = 29, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:
    0.9322519 0.9841887

sample estimates:
    cor

0.9671194
```

Hide

```
plot2_bp <- ggplot(trees,aes(Girth,Volume,group = 1)) + geom_boxplot()
plot2_bp</pre>
```


Hide

head(datasets::cars)

speed dist <dbl> <dbl>

1	4	2
2	4	10
3	7	4
4	7	22
5	8	16
6	9	10
6 rows		

Hide

?cars

Hide

plot2 <- ggplot(cars, aes(speed,dist)) + geom_point(colour = "blue", size = 2)
plot2</pre>

Hide

cor.test(cars\$speed, cars\$dist)

```
Pearson's product-moment correlation

data: cars$speed and cars$dist

t = 9.464, df = 48, p-value = 1.49e-12

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.6816422 0.8862036

sample estimates:

cor

0.8068949
```

Hide

```
plot2_bp <- ggplot(cars,aes(speed,dist,group = 1)) + geom_boxplot()
plot2_bp</pre>
```


Hide

head(datasets::state.x77)

	Popula	ation	Income	Illiteracy	Life Exp	Murder	HS Gra	ad
Alabama		3615	3624	2.1	69.05	15.1	41.	. 3
Alaska		365	6315	1.5	69.31	11.3	66.	. 7
Arizona		2212	4530	1.8	70.55	7.8	58.	. 1
Arkansas		2110	3378	1.9	70.66	10.1	39.	9
California	2	21198	5114	1.1	71.71	10.3	62.	6
Colorado		2541	4884	0.7	72.06	6.8	63.	9
	Frost	Are	:a					
Alabama	20	5070	8					
Alaska	152	56643	2					
Arizona	15	11341	.7					
Arkansas	65	5194	5					
California	20	15636	1					
Colorado	166	10376	6					

Hide

?state.x77
as.data.frame(state.x77)

	Population <dbl></dbl>	Inco <dbl></dbl>	Illiteracy <dbl></dbl>	Life Exp <dbl></dbl>	Mur <dbl></dbl>	HS Grad <dbl></dbl>	Frost <dbl></dbl>	Area <dbl></dbl>
Alabama	3615	3624	2.1	69.05	15.1	41.3	20	50708
Alaska	365	6315	1.5	69.31	11.3	66.7	152	566432
Arizona	2212	4530	1.8	70.55	7.8	58.1	15	113417
Arkansas	2110	3378	1.9	70.66	10.1	39.9	65	51945
California	21198	5114	1.1	71.71	10.3	62.6	20	156361
Colorado	2541	4884	0.7	72.06	6.8	63.9	166	103766
Connecticut	3100	5348	1.1	72.48	3.1	56.0	139	4862
Delaware	579	4809	0.9	70.06	6.2	54.6	103	1982
Florida	8277	4815	1.3	70.66	10.7	52.6	11	54090
Georgia	4931	4091	2.0	68.54	13.9	40.6	60	58073
1-10 of 50 rows				Previ	ous 1	2 3	4 5	5 Next

```
# Setting the randomizer's seed
set.seed(123)
#Split your data into training and test sets
trees sample <- sample(c(TRUE, FALSE), nrow(trees), replace = T, prob = c(0.6,0.4)
trees_train <- trees[trees_sample, ]</pre>
trees test <- trees[!trees sample, ]</pre>
                                                                                      Hide
trees_model <- lm(Volume ~ Girth, data = trees_train)</pre>
                                                                                      Hide
cars sample <- sample(c(TRUE, FALSE), nrow(cars), replace = T, prob = c(0.6,0.4))
cars train <- cars[cars sample, ]</pre>
cars_test <- cars[!cars_sample, ]</pre>
                                                                                      Hide
cars_model <- lm(dist ~ speed, data = cars_train)</pre>
                                                                                      Hide
# Find the RSE of each model
sigma(trees_model)
[1] 3.917072
                                                                                      Hide
sigma(cars model)
[1] 16.4502
                                                                                      Hide
# Find the R Squared value of each model
summary(trees_model)$r.squared
[1] 0.9450944
                                                                                      Hide
summary(cars_model)$r.squared
```

```
[1] 0.6233043
```

Hide

```
# Print the summary of each model
summary(trees_model)
```

```
Call:
lm(formula = Volume ~ Girth, data = trees_train)
Residuals:
   Min
            1Q Median
                           3Q
-6.7789 -2.6169 -0.3262 3.1373 5.3413
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -34.3241 4.1916 -8.189 1.04e-06 ***
                    0.3141 15.524 3.23e-10 ***
             4.8761
Girth
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.917 on 14 degrees of freedom
Multiple R-squared: 0.9451,
                             Adjusted R-squared:
F-statistic: 241 on 1 and 14 DF, p-value: 3.23e-10
```

```
summary(cars_model)
```

```
Call:
lm(formula = dist ~ speed, data = cars_train)
Residuals:
            1Q Median 3Q
   Min
                                  Max
-30.122 -8.886 -0.886 3.732 42.805
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -20.9673 9.4277 -2.224 0.0336 *
                      0.5801 7.162 4.74e-08 ***
speed
             4.1544
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.45 on 31 degrees of freedom
Multiple R-squared: 0.6233, Adjusted R-squared: 0.6112
F-statistic: 51.29 on 1 and 31 DF, p-value: 4.738e-08
```

Hide

```
#save predicted and residual values to df
trees_train$estimate <- predict(trees_model)
trees_train$residuals <- residuals(trees_model)
cars_train$estimate <- predict(cars_model)
cars_train$residuals <- residuals(cars_model)
#create visualization
ggplot(trees_train, aes(Girth, Volume)) +
geom_point(colour = "red") +
geom_point(aes(y = estimate), colour = "blue") +
geom_segment(aes(xend = Girth, yend = estimate), colour = "black")</pre>
```



```
ggplot(cars_train, aes(speed, dist)) +
geom_point(colour = "red") +
geom_point(aes(y = estimate), colour = "blue") +
geom_segment(aes(xend = speed, yend = estimate), colour = "black")
```



```
# Add a LOESS smoother to your scatterplot
plot1 <- ggplot(trees_train, aes(Girth, Volume)) + geom_point(colour = "blue", size
= 2) + geom_smooth(method = "lm") + geom_smooth(se = FALSE, color = "red")
plot1</pre>
```

```
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using method = 'loess' and formula 'y ~ x'
```



```
plot2 <- ggplot(cars_train, aes(speed,dist)) + geom_point(colour = "blue", size =
2) + geom_smooth(method = "lm") + geom_smooth(se = FALSE, color = "red")
plot2</pre>
```

```
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


Hide

```
# Create a multiple linear regression model
trees_model_multivar <- lm(Volume ~ Girth + Height, data = trees_train)
summary(trees_model_multivar)</pre>
```

```
Call:
lm(formula = Volume ~ Girth + Height, data = trees_train)
Residuals:
          1Q Median
                         3Q
                              Max
-5.462 -1.990 -0.561 3.367 5.753
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        11.2544 -4.223 0.000996 ***
(Intercept) -47.5291
                         0.3637 12.737 1.02e-08 ***
Girth
              4.6319
Height
              0.2146
                         0.1703 1.260 0.229751
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.837 on 13 degrees of freedom
Multiple R-squared: 0.9511,
                              Adjusted R-squared:
F-statistic: 126.3 on 2 and 13 DF, p-value: 3.035e-09
```

Hida

пие

```
#create visualization
ggplot(trees_train, aes(Girth + Height, Volume)) +
geom_point(colour = "red") +
geom_point(aes(y = estimate), colour = "blue") +
geom_segment(aes(xend = Girth + Height, yend = estimate), colour = "black")
```

