Lesson 10: Tidy data

Learning objectives

- Describe the concept of tidy data
- Determine whether a dataset is in tidy format
- Use tidyr::pivot_wider() and tidyr::pivot_longer() to reshape data frames
- Use tidyr::unite() and tidyr::separate() to merge or separate information from different columns

Three inter-related rules that make a dataset tidy:

- Each variable is a column; each column is a variable.
- Each observation is a row; each row is an observation.
- Each value is a cell; each cell is a single value.

Different ways to display the same data

Which structure is tidy?

_	country [‡]	year ‡	type [‡]	count [‡]
1	Afghanistan	1999	cases	745
2	Afghanistan	1999	population	19987071
3	Afghanistan	2000	cases	2666
4	Afghanistan	2000	population	20595360
5	Brazil	1999	cases	37737
6	Brazil	1999	population	172006362
7	Brazil	2000	cases	80488
8	Brazil	2000	population	174504898
9	China	1999	cases	212258
10	China	1999	population	1272915272
11	China	2000	cases	213766
12	China	2000	population	1280428583

_	country [‡]	year 🗘	rate
1	Afghanistan	1999	745/19987071
2	Afghanistan	2000	2666/20595360
3	Brazil	1999	37737/172006362
4	Brazil	2000	80488/174504898
5	China	1999	212258/1272915272
6	China	2000	213766/1280428583

-	Aignamst	an		/4:	'	2000
2	Brazil		3	7737	7 8	30488
3	China		21	2258	3 21	13766
•	country ‡	19	99	¢	2000	‡
1	country †		99 19987	7071		÷ 95360
1 2	row names				205	

1999

2000

country

1 Afghanistan

In a tidy data set:

Each **variable** is saved in its own **column**

Each **observation** is saved in its own **row**

Different ways to display the same data

Tidy data

•	country	year -	type :	count
1	Afghanistan	1999	cases	745
2	Afghanistan	1999	population	19987071
3	Afghanistan	2000	cases	2666
4	Afghanistan	2000	population	20595360
5	Brazil	1999	cases	37737
6	Brazil	1999	population	172006362
7	Brazil	2000	cases	80488
8	Brazil	2000	population	174504898
9	China	1999	cases	212258
10	China	1999	population	1272915272
11	China	2000	cases	213766
12	China	2000	population	1280428583

-	country	year :	rate
1	Afghanistan	1999	745/19987071
2	Afghanistan	2000	2666/20595360
3	Brazil	1999	37737/172006362
4	Brazil	2000	80488/174504898
5	China	1999	212258/1272915272
6	China	2000	213766/1280428583

	country		1999		2000	
1	Afghanist	an	7	45	26	66
2	Brazil		377	37	804	8.8
3	China		2122	58	2137	66
	country	199	19	1 2	2000	
	Afghanistan			71	20595	360

In a tidy data set:

Each **variable** is saved in its own **column**

Each **observation** is saved in its own **row**

Exercise

Compute the rate for table2, and table4a + table4b. You will need to perform four operations:

- Extract the number of TB cases per country per year.
- Extract the matching population per country per year.
- Divide cases by population, and multiply by 10000.
- Store back in the appropriate place.

Which representation is easiest to work with? Which is hardest? Why?

If I had one thing to tell biologists learning bioinformatics, it would be "write code for

humans, write data for computers" — Vince Buffalo (@vsbuffalo)

Common problems

 One variable might be spread across multiple columns and sometimes values have ended up in column names

One observation is spread across multiple rows

pivot_longer()

```
table4a %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
```

country	year	cases	country	1999	2000
Afghanistan	1999	745	Afghanistan	7/15	2 666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	37737	China	212258	213766
Brazil	2000	80488			
China	1999	212258			
China	2000	213766		table4	

pivot_wider()

```
table 2 %>%
  pivot_wider(names_from = type, values_from = count)
```


table2

separate()

```
table3 %>%
separate(rate, into = c("cases", "population"))
```

By default, separate() will split values wherever it sees a nonalphanumeric character (i.e. a character that isn't a number or letter)

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

table2

Exercise – LOTR data

 After tidying the data and completing your analysis, you may want to output a table that has each race in its own column. Let's use the pivot_wider() function to make such a table and save it as "lotr wide"

2. OPTIONAL: Use the pivot_longer() function to transform you lotr_wide back to tidy format.

Exercise

 Make a barchart that shows how many words are spoken by males and females in each of the movies.

First with the tidy dataset

 Then with the wider dataset you just created (with Male and Female word counts in different columns)

Exercise – coronavirus data

 Convert the coronavirus dataset to a wider format where the confirmed cases, deaths and recovered cases are shown in separate columns

 With this wide format data, make a bar chart of the total number of confirmed cases, deaths, and recoveries per day for the US