CLAIMS

1	1. A method of encoding data in an optical signal including a center wavelength, the
2	method comprising:
3	
4	directing the optical signal through a filter mechanism having a passband function
5	including a center wavelength; and
6	
7	modulating the center wavelength of the optical signal to establish a difference between
8	the center wavelengths of the filter mechanism and the optical signal to represent a data
9	value.
1	2. A method according to Claim 1, wherein the modulating step includes the steps of:
2	
3	generating a feedback signal representing the difference between the center wavelengths
4	of the filter mechanism and the optical signal; and
5	
6	using said feedback signal in a feedback loop to modulate the center wavelength of the
7	optical signal to establish said difference between said center wavelengths.
1	3. A method according to Claim 2, wherein the modulating step further includes the
2	steps of:
3	
4	generating a dither signal; and
5	
6	using the dither signal to modulate the center wavelength of the optical signal to
7	establish said difference between said center wavelengths.

1

2

4. A method according to Claim 3, wherein the step of using the feedback signal

includes the step of using the feedback signal to adjust the dither signal.

- 1 5. A method according to Claim 1, further including the step of modulating the optical
- 2 signal to carry a first set of data, and wherein the step of modulating the center
- 3 wavelength of the optical signal includes the step of modulating the center wavelength of
- 4 the optical signal to carry a second set of data.
- 1 6. A method according to Claim 5, wherein the optical signal is used in optical
- 2 network, and the second set of data are information for controlling the transmission of
- 3 optical signals within the network.
- 1 7. A method according to Claim 1, wherein the data are encoded according to one or
- 2 more protocols selected from the group comprising:

3

- 4 Multi-Protocol Label Switching (MPLS), Tag Switching, Digital Wrapper, Digital
- 5 Encapsulation, or related protocols.
- 8. A method according to Claim 1, wherein:

2

3 the encoded data are analog data; and the modulating step includes the steps of

4

5 i) providing a look-up table having wavelength differences associated with data values,

6

- 7 ii) value, obtaining from the look-up table a wavelength difference for a given data
- 8 value, and

9

- 10 iii) encoding the given data value in the optical signal by establishing the obtained
- difference between the center wavelengths of the filter mechanism and the optical signal.
 - 9. Apparatus for encoding data in an optical signal, comprising:

2

1

3	a filter mechanism having a passband function including a center wavelength;
4	
5	a mechanism for generating an optical signal including a center wavelength and for
6	directing the optical signal to the filter mechanism; and
7	
8	a modulation system to modulate the center wavelength of the optical signal to establish
9	a difference between the center wavelengths of the filter mechanism and the optical
10	signal to represent a data value.
1	10. Apparatus according to Claim 9, wherein the modulation system includes a feedback
2	circuit to generate a feedback signal representing the difference between the center
3	wavelengths of the filter mechanism and the optical signal, and to use said feedback
4	signal to modulate the center wavelength of the optical signal to establish said difference
5	between said center wavelengths.
1	11. Apparatus according to Claim 10, wherein the mechanism for generating the optical
2	signal includes a dither generator for generating a dither signal, and means for applying
3	the dither signal to modulate the center wavelength of the optical signal to establish said
4	difference between said center wavelengths.
1	12. Apparatus according to Claim 11, wherein the feedback circuit includes means to use
2	the feedback signal to adjust the dither signal.
1	13. A method of decoding an optical signal including a center wavelength, the method
2	comprising:
3	
4	receiving the optical signal;
5	
6	passing the optical signal through a filter mechanism having a passband function
7	including a center wavelength;

8	
9	generating a difference signal representing the difference between the center
10	wavelengths of the optical signal and the filter mechanism; and
11	
12	converting said difference signal to a data value.
1	14. A method according to Claim 13, wherein a dither signal is used to encode data in
2	the optical signal, and the converting step includes the steps of processing said dither
3	signal with said difference signal to obtain a processed difference signal, and converting
4	said processed difference signal to the data value.
1	15. Apparatus for decoding an optical signal including a center wavelength,
2	comprising:
3	
4	a filter mechanism having a passband function including a center wavelength;
5	
6	means for receiving the optical signal and passing the optical signal through the filter
7	mechanism;
8	
9	a circuit for generating a difference signal representing the difference between the center
10	wavelengths of the optical signal and the filter mechanism; and
11	
12	a control for converting said difference signal to a data value.
1	16. Apparatus according to Claim 15, wherein a dither signal is used to encode data in
2	the optical signal, and said circuit includes a subcircuit for processing said dither signal
3	with said difference signal to obtain a processed difference signal, and said control
4	includes means for converting said processed difference signal to the data value.
1	17. A method of processing an optical signal including a center wavelength, comprising

2	
3	modulating the center wavelength of the optical signal to establish a difference between
4	the center wavelength and a predefined wavelength to encode adata in the optical signal
5	
6	transmitting the optical signal to a receiving device; and
7	
8	using the receiving device to process the optical signal to identify the encoded data.
1	18. A method according to Claim 17, wherein the using step includes the steps of:
2	
3	at the receiving device,
4	
5	a. generating a difference signal representing the difference between the center
6	wavelengths of the optical signal and a defined value, and
7	
8	b. converting the difference signal to a data value.
1	19. Apparatus for processing an optical signal, including a center wavelength,
2	comprising
3	Comprising
4	a transmit device for modulating the center wavelength of the optical signal to establish
5	a difference between the center wavelength and a predefined wavelength to encode data
6	in the optical signal, and to transmit the optical signal; and
7	
8	a receive device for receiving the optical signal from the transmit device and to process
9	the optical signal to identify the encoded data.
1	20. Apparatus according to Claim 19, wherein the receive device includes:
2	

- 3 a first circuit to generate a difference signal representing the difference between the
- 4 center wavelength of the optical signal and a defined value, and

5

6 a second circuit to convert the difference signal to a data value.