CHAPTER TWO TABLE OF CONTENTS

Section		Page
2.0	INTRODUCTION	1
2.1	GUIDANCE REGARDING FLEXIBILITY INHERENT TO SW-846 METHODS AND THE	2
	PRECEDENCE OF SW-846 QUALITY CONTROL CRITERIA	
2.2	INFORMATION NECESSARY FOR CHOOSING THE CORRECT PROCEDURE	4
2.3	CHOOSING PROCEDURES FOR ORGANIC ANALYSES	6
2.4	CHOOSING PROCEDURES FOR CHARACTERISTIC ANALYSES	11
2.5	CHOOSING PROCEDURES FOR GROUNDWATER ANALYSES	11
2.6	CHOOSING PROCEDURES FOR INORGANIC ANALYSES	12
2.7	REFERENCES	12
TABLE		
2-1	DETERMINATIVE METHODS FOR ORGANIC ANALYTES	13
2-2	METHOD 8011 (MICROEXTRACTION AND GAS CHROMATOGRAPHY)	30
2-3	METHOD 8015 (GC/FID) - NONHALOGENATED VOLATILES	30
2-4	METHOD 8021 (GC, PHOTOIONIZATION AND ELECTROLYTIC CONDUCTIVITY	31
	DETECTORS) - AROMATIC AND HALOGENATED VOLATILES	
2-5	METHODS 8031 AND 8033 (GC WITH NITROGEN-PHOSPHORUS DETECTION)	32
	AND METHOD 8032 (GC WITH ELECTRON CAPTURE DETECTION)	
2-6	METHOD 8041 (GC) - PHENOLS	32
2-7	METHOD 8061 (GC/ECD) - PHTHALATE ESTERS	33
2-8	METHOD 8070 (GC) - NITROSAMINES	33
2-9	METHOD 8081 (GC) - ORGANOCHLORINE PESTICIDES	34
2-10	METHOD 8082 (GC) - POLYCHLORINATED BIPHENYLS	35
2-11	METHOD 8085 (GC/AED) - PESTICIDES	36
2-12	METHOD 8091 (GC) - NITROAROMATICS AND CYCLIC KETONES	38
2-13	METHOD 8095 (GC) - EXPLOSIVES	38
2-14	METHOD 8100 - POLYNUCLEAR AROMATIC HYDROCARBONS	39
2-15	METHOD 8111 (GC) - HALOETHERS	39
2-16	METHOD 8121 (GC) - CHLORINATED HYDROCARBONS	40
2-17	METHOD 8131 (GC) - ANILINE AND SELECTED DERIVATIVES	40
2-18	METHOD 8141 (GC) - ORGANOPHOSPHORUS COMPOUNDS	41
2-19	METHOD 8151 (GC USING METHYLATION OR PENTAFLUOROBENZYLATION	42
	DERIVATIZATION) - CHLORINATED HERBICIDES	
2-20	METHOD 8260 (GC/MS) - VOLATILE ORGANIC COMPOUNDS	43
2-21	METHOD 8261 (VD/GC/MS) - VOLATILE ORGANIC COMPOUNDS	45

CHAPTER TWO TABLE OF CONTENTS (continued) Table Page 2-22 46 METHOD 8270 (GC/MS) - SEMIVOLATILE ORGANIC COMPOUNDS 2-23 METHOD 8275 (TE/GC/MS) - SEMIVOLATILE ORGANIC COMPOUNDS 51 2-23A METHOD 8276 (GC-NICI/MS) - TOXAPHENE AND TOXAPHENE CONGENERS 52 2-24 METHODS 8280 (HRGC/LRMS) AND 8290 (HRGC/HRMS) - POLYCHLORINATED 52 DIBENZO-p-DIOXINS (PCDDs) AND POLYCHLORINATED DIBENZOFURANS (PCDFs) 2-25 METHOD 8310 (HPLC) - POLYNUCLEAR AROMATIC HYDROCARBONS 53 2-26 METHOD 8315 - CARBONYL COMPOUNDS 53 2-27 METHOD 8316 (HPLC) 54 2-28 METHOD 8318 (HPLC) - N-METHYLCARBAMATES 54 2-29 METHOD 8321 (HPLC/TS/MS) - NONVOLATILE ORGANIC COMPOUNDS 55 2-29A METHOD 8323 - ORGANOTINS BY MICRO-LIQUID CHROMATOGRAPHY-57 ELECTROSPRAY ION TRAP MASS SPECTROMETRY 2-30 METHOD 8325 (HPLC/PB/MS) - NONVOLATILE ORGANIC COMPOUNDS 57 2-31 METHOD 8330 (HPLC) - NITROAROMATICS AND NITRAMINES 57 2-32 METHOD 8331 (HPLC) 58 2-33 METHOD 8332 (HPLC) 58 2-34 METHOD 8410 - SEMIVOLATILE ORGANIC COMPOUNDS 58 2-35 METHOD 8430 (GC/FT-IR) - BIS(2-CHLOROETHYL) ETHER AND ITS HYDROLYSIS 59 **PRODUCTS** 2-35A METHOD 8440 - TOTAL RECOVERABLE PETROLEUM HYDROCARBONS BY 59 INFRARED SPECTROPHOTOMETRY 2-36 METHOD 8510 (COLORIMETRIC SCREENING) - RDX AND HMX 60 METHOD 8520 - CONTINUOUS MEASUREMENT OF FORMALDEHYDE IN AMBIENT 2-36A 60 2-37 METHOD 8535 (COLORIMETRIC SCREENING) - VOLATILE ORGANIC HALIDES 60 2-38 METHOD 8540 (UV-INDUCED COLORIMETRY) - PENTACHLOROPHENOL 60 2-39 DETERMINATIVE METHODS FOR INORGANIC ANALYTES 61 2-40A RECOMMENDED SAMPLE CONTAINERS. PRESERVATION TECHNIQUES. AND 63 HOLDING TIMES FOR ORGANIC CHEMICALS 2-40B RECOMMENDED CONTAINERS. PRESERVATION TECHNIQUES. AND HOLDING 67 TIMES FOR INORGANIC AND OTHER ANALYTES IN AQUEOUS MATRICES 2-41 PREPARATION METHODS FOR ORGANIC ANALYTES 69 2-42 CLEANUP METHODS FOR ORGANIC ANALYTE EXTRACTS 73 2-43 DETERMINATIVE METHODS ORGANIC ANALYTES 74

USE OF LEACHING, EXTRACTION AND DIGESTION METHODS FOR INORGANIC

PREPARATION METHODS FOR INORGANIC ANALYSES

ANALYSIS (IN ORDER OF INCREASING STRENGTH)

SCREENING METHODS FOR ORGANIC ANALYTES

75

76

78

2-44

2-45

2-46

FIGURE		
2-1	ORGANIC ANALYSIS OPTIONS FOR SOLID AND LIQUID MATRICES	79
2-2	SCHEMATIC OF SEQUENCE TO DETERMINE IF A WASTE IS HAZARDOUS BY	80
	CHARACTERISTIC	
2-3A	RECOMMENDED SW-846 METHODS FOR ANALYSIS OF EP LEACHATES	82
2-3B	RECOMMENDED SW-846 METHODS FOR ANALYSIS OF TCLP LEACHATES	83
2-4A	GROUNDWATER ANALYSIS - ORGANIC ANALYTES	84
2-4B	GROUNDWATER ANALYSIS - INDICATOR ANALYTES	85
2-4C	GROUNDWATER ANALYSIS - INORGANIC ANALYTES	86
Appendix A	SUMMARY OF UPDATES/CHANGES IN CHAPTER 2	87

CHAPTER TWO

CHOOSING THE CORRECT PROCEDURE

SW-846 is not intended to be an analytical training manual. Therefore, method procedures are written based on the assumption that they will be performed by analysts who are formally trained in at least the basic principles of chemical analysis and in the use of the subject technology.

In addition, SW-846 methods, with the exception of required method use for the analysis of method-defined parameters, are intended to be guidance methods containing general information on how to perform an analytical procedure or technique which a laboratory can use as a basic starting point for generating its own detailed Standard Operating Procedure (SOP), either for its own general use or for a specific project application. The performance data included in these methods are for guidance purposes only, and are not intended to be and must not be used as absolute quality control (QC) acceptance criteria for the purposes of laboratory accreditation.

2.0 INTRODUCTION

The purpose of this chapter is to aid the analyst in choosing the appropriate methods for sample analyses, based upon the sample matrix and the analytes to be determined. The ultimate responsibility for producing reliable analytical results lies with the entity subject to the regulation. Therefore, members of the regulated community are advised to refer to this chapter and to consult with knowledgeable laboratory personnel when choosing the most appropriate suite of analytical methods. In addition, analysts and data users are advised that, except where explicitly specified in a regulation, the use of SW-846 methods is not mandatory in response to Federal testing requirements.

SW-846 analytical methods are written as quantitative analytical methods, and specific methods may be used to demonstrate that a waste does not contain analytes of concern that cause it to be managed as a hazardous waste. SW-846 methods typically contain relatively stringent recommended QC criteria appropriate to many levels of analyses, including trace. However, if a particular application does not require data of this quality, less stringent QC criteria may and should be used.

The choice of the appropriate sequence of analytical methods depends on the information sought and on the experience of the analyst. Appropriate selection is confirmed by the usability of data (i.e., adequate for its intended use). The use of the recommended procedures, whether they are approved or mandatory, does not release the analyst from demonstrating the correct execution of the method.

Sec. 2.1 provides guidance regarding the analytical flexibility inherent to SW-846 methods and the precedence of various QC criteria. Sec. 2.2 reviews the information required to choose the correct combination of methods for an analytical procedure. Sec. 2.3 provides useful information on implementing the method selection guidance for organic analyses. Sec. 2.4 provides guidance on choosing procedures for characteristic analyses. Sec. 2.5 provides guidance on the determination of analytes in groundwater. Finally, Sec. 2.6 provides

information regarding choosing procedures for inorganic analyte analyses. Tables and figures referenced in this chapter are sequentially located after the last page of chapter text.

2.1 GUIDANCE REGARDING FLEXIBILITY INHERENT TO SW-846 METHODS AND THE PRECEDENCE OF SW-846 QUALITY CONTROL CRITERIA

The specific products and instrument settings cited in SW-846 methods represent those products and settings used during method development or subsequently evaluated by the Agency for use in the method. Glassware, reagents, supplies, equipment and settings other than those listed in this manual may be employed, provided that method performance appropriate for the intended application has been documented. Such performance includes consideration of precision, accuracy (or bias), recovery, representativeness, comparability, and sensitivity (quantitation or reporting limits, now referred to as lower limit of quantitation (LLOQ)) relative to the data quality objectives (DQOs) for the intended use of the analytical results. In response to this inherent flexibility, if an alternative analytical procedure is employed, then EPA expects the laboratory to demonstrate and document that the procedure is capable of providing appropriate performance for its intended application. This demonstration must not be performed after the fact, but as part of the laboratory's initial demonstration of proficiency with the method. The documentation should be in writing, maintained in the laboratory, and available for inspection upon request by authorized representatives of the appropriate regulatory authorities. The documentation should include the performance data as well as a detailed description of the procedural steps as performed (i.e., a written standard operating procedure).

Given this allowance for flexibility, EPA wishes to emphasize that this manual also contains procedures for "method-defined parameters," where the analytical result is wholly dependent on the process used to make the measurement. Examples include: the use of the toxicity characteristic leaching procedure (TCLP) to prepare a leachate, and the flash point, pH, paint filter liquids, and corrosivity tests. In these instances, changes to the specific methods may change the end result and incorrectly identify a waste as nonhazardous. Therefore, when the measurement of such method-defined parameters is required by regulation, those methods are <u>not</u> subject to the flexibility afforded in other methods.

Analysts and data users are advised that even for those analytes that are not method-defined, different procedures may produce some difference in results. Common examples include the differences in recoveries of phenolic compounds extracted from water by separatory funnel (Method 3510) and continuous liquid-liquid (Method 3520) extraction techniques, differences in recoveries of many compounds between Soxhlet (Method 3540) and ultrasonic (Method 3550) extraction techniques, and differences resulting from the choice of acid digestion of metals (Method 3050) or microwave digestion (Method 3051). Where practical, the Agency has included guidance in the individual methods regarding known potential problems, and analysts are advised to review this information carefully in choosing or modifying analytical procedures. Chapter One describes a variety of QC procedures that may be used to evaluate the quality of the analytical results. Additional QC procedures may be described in the individual methods. The results of these QC procedures should be used by the analyst to evaluate if the analytical procedures and/or any modifications are appropriate to generate data of the quality necessary to satisfy the data quality needs of the intended application.

The performance data included in the SW-846 methods are <u>not</u> intended to be used as absolute QC acceptance criteria for method performance. The data are intended to be guidance, by providing typical method performance in typical matrices, to assist the analyst in selection of the appropriate method for the intended application. In addition, it is the

responsibility of the laboratory to establish actual operating parameters and in-house QC acceptance criteria, based on its own laboratory SOPs and in-house QC program, to demonstrate appropriate performance of the methods used in that laboratory for the RCRA analytical applications for which they are intended.

The regulated community is further advised that the methods here or from other sources need only be used for those specific analytes of concern that are subject to regulation or other monitoring requirements. The fact that a method provides a long list of analytes does not mean that each of those analytes is subject to any or all regulations, or that all of those analytes must be analyzed each time the method is employed, or that all of the analytes can be analyzed using a single sample preparation procedure. It is EPA's intention that the target analyte list for any procedure includes those analytes necessary to meet the DQOs of the project (i.e., those analytes subject to monitoring requirements and set out in a RCRA permit or other applicable regulation, plus those analytes used in the methods for QC purposes, such as surrogates, internal standards, system performance check compounds, etc.). Additional analytes, not included on the analyte list of a particular method(s) but needed for a specific project, may be analyzed by that particular method(s), if appropriate performance can be demonstrated for those analytes in the matrices of concern at the levels of concern.

2.1.1 Trace analysis vs. macroanalysis

Through the choice of sample size and concentration procedures, the methods presented in SW-846 were designed to address the problem of "trace" analyses (<1000 ppm), and have been developed for an optimized working range. These methods are also applicable to "minor" (1000 ppm - 10,000 ppm) and "major" (>10,000 ppm) analyses, as well, through use of appropriate sample preparation techniques that result in analyte concentrations within that optimized range. Such sample preparation techniques include:

- 1. Adjustment of size of sample prepared for analysis (for homogeneous samples)
- 2. Adjustment of injection volumes
- 3. Dilution or concentration of sample
- 4. Eelimination of concentration steps prescribed for "trace" analyses
- 5. Direct injection (of samples to be analyzed for volatile constituents)

The performance data presented in each of these methods were generated from "trace" analyses, and may not be applicable to "minor" and "major" analyses. Generally, extraction efficiency improves as concentration increases.

<u>CAUTION</u>: Great care should be taken when performing trace analyses after the analysis of concentrated samples, given the possibility of contamination.

2.1.2 Choice of apparatus and preparation of reagents

Since many types and sizes of glassware and supplies are commercially available, and since it is possible to prepare reagents and standards in many different ways, the apparatus, reagents, and volumes included in these methods may be replaced by any similar types as long as this substitution does not affect the overall quality of the analyses.

2.1.3 Quality control criteria precedence

Chapter One contains general QC guidance for analyses using SW-846 methods. QC guidance specific to a given analytical technique (e.g., extraction, cleanup, sample introduction, or analysis) may be found in Methods 3500, 3600, 5000, 7000, and 8000. Method-specific QC criteria may be found in Sec. 8.0 of most older individual methods, in Sec. 9.0 of newer methods, or in Sec. 11.0 of some air sampling methods. When inconsistencies exist between the information in these locations, method-specific QC criteria take precedence over both technique-specific criteria and those criteria given in Chapter One, and technique-specific QC criteria take precedence over the criteria in Chapter One.

2.2 INFORMATION NECESSARY FOR CHOOSING THE CORRECT PROCEDURE

In order to choose the correct combination of methods to comprise the appropriate analytical procedure, some basic information is necessary. This includes information on:

- 1. The physical state of the sample
- 2. The analytes of interest
- 3. The analytical sensitivity needed
- 4. The analytical objective
- 5. Whether the purpose is quantitation or monitoring
- 6. What sample containers and preservation will be used and what holding times may apply

2.2.1 Physical state(s) of sample

The phase characteristics of the sample must be known. There are several general categories of phases into which the sample may be categorized, including:

Aqueous
Sludge
Solid
Solid
Stack Sampling –Volatile Organics Sampling Train (VOST) Condensate
TCLP or Extraction Procedure (EP) Extract

There may be a substantial degree of overlap between the phases listed above and it may be useful to further divide these phases in certain instances. A multiphase sample may be a combination of aqueous, organic liquid, sludge, and/or solid phases, and generally must undergo a phase separation as the first step in the analytical procedure.

2.2.2 Analytes of interest

Analytes may be divided into various classes, based on the determinative methods used to identify and quantify them. The most basic differentiation is between organic (e.g., carbon-containing) analytes and inorganic (e.g., metals and anions) analytes.

Table 2-1 is an alphabetical list of analytes cited within the SW-846 organic determinative methods (excludes immunoassay and other screening methods). These analytes have been evaluated by those methods. The methods may also be applicable to other analytes that are similar to those listed. Tables 2-2 through 2-38 list the analytes for each organic determinative method. Table 2-39 indicates which methods are applicable to inorganic analytes.

NOTE: Analysts should review the discussion in Sec. 2.1 of this chapter with regard to the presence of an analyte in a method versus the need for its analysis for a given project.

2.2.3 Sensitivity

Some regulations may require a specific sensitivity or quantitation limit (LLOQ) for an analysis, as in the determination of analytes for the Toxicity Characteristic (TC). Drinking water quantitation limits, for those specific organic and metallic analytes covered by the National Primary Drinking Water Regulations, are desired in the analysis of groundwater.

2.2.4 Analytical objective

Knowledge of the analytical objective is essential in the choice of sample preparation procedures and in the selection of a determinative method. This is especially true when the sample has more than one phase. Knowledge of the analytical objective may not be possible or desirable at all management levels, but that information should be included in the project planning document and transmitted to the analytical laboratory management to ensure that the correct techniques are used during the analytical effort. Screening methods or composite sampling may be highly beneficial for some applications in order to generate a broader view of contaminant distribution than may be possible with a more precise and more costly method. Table 2-46 identifies some screening methods appropriate for different classes of organic chemicals in certain matrices.

2.2.5 Quantitation or monitoring

The strategy for quantitation of compounds in environmental or process samples may be contrasted with the strategy for collecting monitoring data. When there is little information available about the composition of the sample source (e.g., a well or process stream), mass spectral identification of organic analytes leads to fewer false positive results. Thus, the most practical form of quantitation for organic analytes is often mass spectral identification. However, where the sensitivity requirements exceed those that can be achieved using mass spectral methods (e.g., gas chromatography/mass spectrometry (GC/MS) or high performance liquid chromatography (HPLC)/MS), it may be necessary to employ a more sensitive quantitation method (e.g., electron capture). In these instances, the risk of false positive results may be minimized by confirming the results through a second analysis with a dissimilar detector or chromatographic column. Thus, the choice of technique for organic analytes may be governed by the sensitivity requirements and potential interferants.

Similarly, the choice of technique for metals may be governed by the sensitivity requirements and potential interferants.

In contrast, monitoring samples are analyzed to confirm existing and ongoing conditions, tracking the presence or absence of known constituents in an environmental or process matrix. In well-defined matrices and under stable analytical conditions, less compound-specific quantitation modes may be used, as the risk of false positive results is less.

2.2.6 Sample preservation and holding times

Table 2-40 provides information regarding recommended sample preservation techniques, sample holding times, and other information. Similar information may be found in Table 3-1 of Chapter Three (inorganic analytes) and Table 4-1 of Chapter Four (organic analytes). Samples

need to be extracted and analyzed within the recommended holding times for the results to be considered reflective of native concentrations as collected. Analytical data generated outside of the recommended holding times should typically be considered as minimum values only. Such data may be used to demonstrate that a waste is hazardous where it shows the concentration of a constituent to be above the regulatory threshold, but cannot be used to demonstrate that a waste is <u>not</u> hazardous. However, regarding the information in Table 2-40, a longer holding time may be appropriate if it can be demonstrated that reported concentrations are not adversely affected from preservation, storage and analyses performed outside the recommended holding times.

2.3 CHOOSING PROCEDURES FOR ORGANIC ANALYSES

Table 2-1 summarizes the organic analysis options available in SW-846.

2.3.1 Extraction and sample preparation procedures for organic analytes

SW-846 methods for preparing samples for organic analytes are shown in Table 2-41. Method 3500 and associated methods should be consulted for further details on preparing the sample for analysis.

2.3.1.1 Aqueous samples

Methods 3510, 3520, and 3535 may be used for extraction of the semivolatile organic compounds (SVOCs) from aqueous samples. The choice of a preparative method depends on the sample. Method 3510, a separatory funnel liquid-liquid extraction technique, is appropriate for samples which will not form a persistent emulsion interface between the sample and the extraction solvent. The formation of an emulsion that cannot be broken up by mechanical techniques will prevent proper extraction of the sample. Method 3520, a continuous liquid-liquid extraction technique, may be used for any aqueous sample and will minimize emulsion formation.

Method 3535 is solid-phase extraction technique that has been tested for organochlorine pesticides, phthalate esters, polychlorinated biphenyls (PCBs), organophosphorus pesticides, nitroaromatics and nitramines, and some explosive compounds, and may be applicable to other semivolatile and extractable compounds as well. The aqueous sample is passed through a solid sorbent material which traps the analytes. They are then eluted from the solid-phase sorbent with a small volume of organic solvent. This technique may be used to minimize the volumes of organic solvents that are employed, but may not be appropriate for aqueous samples with high suspended solids contents.

2.3.1.1.1 Acidic extraction of phenols and acid analytes

The solvent extract obtained by performing Method 3510, 3520, or 3535 at a pH less than or equal to 2 will contain the phenols and acid/neutral extractable organics of interest, and may contain some mildly basic compounds. The particular pH extraction conditions needs to be defined during the project planning process based on the desired target analytes and performance goals.

2.3.1.1.2 Basic or neutral extraction of semivolatile analytes

The solvent extract obtained by performing Method 3510, 3520, or 3535 at a basic pH will contain the organic bases of interest, if acid extraction is performed first. It will also contain the neutral compounds of interest, if acid extraction is not performed. Refer to Table 1 in the extraction methods (3510 and/or 3520) for guidance on the requirements for pH adjustment prior to extraction and analysis.

2.3.1.2 Solid samples

Soxhlet extraction (Methods 3540, 3541 and 3542), pressurized fluid extraction (Method 3545), microwave extraction (Method 3546) and ultrasonic extraction (Method 3550) may be used with solid samples. Consolidated samples should be ground finely enough to pass through a 1-mm sieve. In limited applications, waste dilution (Methods 3580 and 3585) may be used if the entire sample is soluble in the specified solvent.

Methods 3540, 3541, 3542, 3545, 3546 and 3550 are neutral-pH extraction techniques and therefore, depending on the analysis requirements, acid-base partition cleanup (Method 3650) may be necessary. Method 3650 will only be needed if chromatographic interferences are severe enough to prevent quantitation of the analytes of interest. This separation will be most important if a gas chromatography (GC) method is chosen for analysis of the sample. If GC/MS is used, the ion selectivity of the technique may compensate for chromatographic interferences.

There are three extraction procedures for solid samples that employ supercritical fluid extraction (SFE). Method 3560 is a technique for the extraction of petroleum hydrocarbons from various solid matrices using carbon dioxide at elevated temperature and pressure. Method 3561 may be used to selectively extract polynuclear aromatic hydrocarbons (PAHs) from solid matrices using supercritical carbon dioxide and appropriate modifiers, based on the determinative procedure to be used. Method 3562 may be used to selectively extract organochlorine pesticides or PCBs from solid matrices using supercritical carbon dioxide.

2.3.1.3 Oils and organic liquids

Method 3580, waste dilution, may be used to prepare oils and organic liquid samples for analysis of semivolatile and extractable organic analytes by GC or GC/MS. Method 3585 may be employed for the preparation of these matrices for volatiles analysis by GC or GC/MS. To avoid overloading the analytical detection system, care must be exercised to ensure that proper dilutions are made. Methods 3580 and 3585 give guidance on performing waste dilutions.

To remove interferences for semivolatiles and extractables, Method 3611 (alumina cleanup) may be performed on an oil sample directly, without prior sample preparation.

Method 3650 is the only other preparative procedure for oils and other organic liquids. This procedure is a back extraction into an aqueous phase. It is generally introduced as a cleanup procedure for extracts rather than as a preparative procedure. Oils generally have a high concentration of semivolatile compounds and, therefore, preparation by Method 3650 should be done on a relatively small aliquot of the sample. Generally, extraction of 1 mL of oil will be sufficient to obtain a saturated aqueous phase and avoid emulsions.

NOTE: The use of traditional extraction techniques (i.e., 3510, 3520, 3535, 3540, 3541, 3545, 3546, and 3550), is neither suitable nor recommended for use in these matrices due to a high potential for hydrocarbon interferences and decreased determinative method sensitivity (i.e., poor analytical performance).

2.3.1.4 Sludge samples

Determining the appropriate methods for analysis of sludges is complicated because of the lack of precise definitions of sludges with respect to the relative percent of liquid and solid components. There is no set ratio of liquid to solid that enables the analyst to determine which of the three extraction methods cited is the most appropriate. Sludges may be classified into three categories: liquid sludges, solid sludges, and emulsions, but with appreciable overlap.

If the sample is an organic sludge (solid material and organic liquid, as opposed to an aqueous sludge), the sample should be handled as a multiphase sample.

2.3.1.4.1 Liquid sludges

Method 3510 or Method 3520 may be applicable to sludges that behave like, and have the consistency of, aqueous liquids. Ultrasonic extraction (Method 3550) and Soxhlet-type (Method 3540 series) procedures will, most likely, be ineffective because of the overwhelming presence of the liquid aqueous phase.

2.3.1.4.2 Solid sludges

Soxhlet extraction (Methods 3540 and 3541), pressurized fluid extraction (Method 3545), microwave extraction (Method 3546), and ultrasonic extraction (Method 3550) will be more effective when applied to sludge samples that resemble solids. Samples may be dried or centrifuged to form solid materials for subsequent determination of semivolatile compounds.

Using Method 3650, Acid-Base Partition Cleanup, on the extract may be necessary, depending on whether chromatographic interferences prevent determination of the analytes of interest.

2.3.1.4.3 Emulsions

Attempts should be made to break up and separate the phases of an emulsion. Several techniques are effective in breaking emulsions or separating the phases of emulsions, including:

- 1. Freezing/thawing -- Certain emulsions will separate if exposed to temperatures below 0 °C.
- 2. Salting out -- Addition of a salt to make the aqueous phase of an emulsion too polar to support a less polar phase promotes separation.
- 3. Centrifugation -- Centrifugal force may separate emulsion components by density.

- 4. Addition of water or ethanol -- Emulsion polymers may be destabilized when a preponderance of the aqueous phase is added.
- 5. Forced filtering through glass wool -- Many emulsions can be broken by forcing the emulsion through a pad of Pyrex glass wool in a drying column using a slight amount of air pressure (using a rubber bulb usually provides sufficient pressure).

If techniques for breaking emulsions fail, use Method 3520. If the emulsion can be broken, the different phases (aqueous, solid, or organic liquid) may then be analyzed separately.

2.3.1.5 Multiphase samples

Choice of the procedure for separating multiphase samples is highly dependent on the objective of the analysis. With a sample in which some of the phases tend to separate rapidly, the percent weight or volume of each phase should be calculated and each phase should be individually analyzed for the required analytes.

An alternate approach is to obtain a homogeneous sample and attempt a single analysis on the combination of phases. This approach will give no information on the abundance of the analytes in the individual phases other than what can be implied by solubility.

A third alternative is to select phases of interest and to analyze only those selected phases. This tactic must be consistent with the sampling/analysis objectives or it will yield insufficient information for the time and resources expended. The phases selected should be compared with Figure 2-1 and Table 2-41 for further guidance.

2.3.2 Cleanup procedures

Cleanup procedure selection is determined by the analytes of interest within the extract. Each analyte type in Table 2-42, Cleanup Methods for Organic Analyte Extracts, corresponds to one or more of the possible determinative methods available in the manual. However, the necessity of performing cleanup may also depend upon the matrix from which the extract was developed. Cleanup of a sample may be done exactly as instructed in the cleanup method for some of the analytes. There are some instances when cleanup using one of the methods may only proceed after the procedure is modified to optimize recovery and separation. Several cleanup techniques may be possible for each analyte category. The information provided is not meant to imply that any or all of these methods must be used for the analysis to be acceptable. Extracts with components which interfere with spectral or chromatographic determinations are expected to be subjected to cleanup procedures.

The analyst, in consultation with the regulator, customer, and other project planning participants as necessary, must determine the necessity for cleanup procedures, as there are no clear-cut criteria for indicating their use. Method 3600 and associated methods should be consulted for further details on extract cleanup.

2.3.3 Determinative procedures

In Table 2-43, the determinative methods for organic analytes are divided into four categories, specifically: GC/MS (this category includes single quadrupole MS, triple quadrupole (MS/MS), and time-of-flight instruments); GC with electromagnetic spectrometric (ES) detectors (i.e., Fourier Transform infrared (FT-IR) or atomic emission (AES)); specific quantitation methods (i.e., GC with specific non-MS detectors); and HPLC, including any HPLC-MS methods. This division is intended to help an analyst choose which determinative method will apply. Under each analyte column, SW-846 method numbers are indicated, if appropriate, for the determination of the analyte. A blank has been left if no chromatographic determinative method is available.

Generally, the MS procedures are more specific but less sensitive than the appropriate gas chromatographic/specific quantitation or ES method.

Method 8000 gives a general description of the techniques of GC and HPLC. Method 8000 should be consulted prior to application of any of the GC or HPLC methods.

Method 8081 (organochlorine pesticides), Method 8082 (PCBs), Method 8141 (organophosphorus pesticides), and Method 8151 (chlorinated herbicides), are preferred over GC/MS because of the combination of selectivity and sensitivity of the flame photometric, nitrogen-phosphorus, and electron capture detectors.

Method 8260 is a GC/MS method for volatile analytes. A variety of sample introduction techniques may be used with Method 8260, including Methods 5021, 5030, 5031, 5035, 5041, and 3585. A GC with a selective detector is also useful for the determination of volatile organic compounds in a monitoring scenario, as described in Sec. 2.2.5.

Method 8270 is a GC/MS method for semivolatile analytes. Method 8410 is another GC method for semivolatile analytes which uses a FT-IR detector. Method 8085 is a GC method for pesticides which uses an AES detector.

Table 2-43 lists several GC and HPLC methods that apply to only a small number of analytes. Methods 8031 and 8033 are GC methods for acrolein, acrylonitrile, and acetonitrile. Methods 8315 and 8316 are HPLC methods for these three analytes. Method 8316 also addresses acrylamide, which may be analyzed by Method 8032. Method 8325 is an HPLC coupled with particle beam MS for the determination of benzidines and nitrogen-containing pesticides in water and wastewater. Method 8520 measures formaldehyde in ambient air primarily for non-occupational exposure monitoring. Method 8540 is used for field-testing of soil samples for pentachlorophenol (PCP).

HPLC methods have been developed for other types of analytes, most notably N-methyl carbamates (Method 8318); azo dyes, phenoxy acid herbicides, carbamates, and organophosphorus pesticides (Method 8321); PAHs (Method 8310); explosives (Methods 8330, 8331, and 8332); and some volatile organics (Methods 8315 and 8316).

Method 8430 utilizes a FT-IR spectrometer coupled to a gas chromatograph to determine bis(2-chloroethyl) ether and its hydrolysis products. The sample is introduced by direct aqueous injection. Method 8440 may be employed for the determination of total recoverable petroleum hydrocarbons (TRPH) in solid samples by infrared (IR) spectrophotometry. The samples may be extracted with supercritical carbon dioxide, using Method 3560.

2.4 CHOOSING PROCEDURES FOR CHARACTERISTIC ANALYSES

2.4.1 Figure 2-2 outlines a sequence for determining if a waste exhibits one or more of the characteristics of a hazardous waste.

2.4.2 SPLP, EP and TCLP extracts

The leachate obtained from using either the Synthentic Precipitation Leaching procedure (SPLP), EP (Figure 2-3A) or the TCLP (Figure 2-3B) is an aqueous sample, and therefore, requires further solvent extraction prior to the analysis of semivolatile compounds.

The SPLP or TCLP leachate is solvent extracted with methylene chloride at a pH <2 and at a pH >11 by either Method 3510 or 3520. The leachate may also be extracted as received for organochlorine pesticides and semivolatiles and at pH <1.0 for phenoxyacid herbicides using the solid phase extraction (SPE) disk option in Method 3535. The best recoveries are usually obtained using either Method 3520 or Method 3535.

The solvent extract obtained by performing either Method 3510 or 3520 at an acidic pH will contain the acid/neutral compounds of interest. Refer to the specific determinative method for guidance on the pH requirements for extraction prior to analysis. Method 5031 (azeotropic distillation) may be used as an effective preparative method for pyridine.

Due to the high concentration of acetate in the TCLP extract, it is recommended that purge-and-trap be used to introduce the volatile sample into the gas chromatograph.

The SPLP, EP and/or TCLP extracts can also be digested using acids (Method 3010, 3015, or 3020) and analyzed for metals using a 6000 or 7000 series method (Figures 2-3A and 2-3B).

2.5 CHOOSING PROCEDURES FOR GROUNDWATER ANALYSES

Appropriate analysis schemes for the determination of analytes in groundwater are presented in Figures 2-4A, 2-4B, and 2-4C. Quantitation limits (LLOQs) for the inorganic analytes should correspond to the drinking water limits, where such limits are available.

2.5.1 Special techniques for inorganic analytes

All atomic absorption (AA) analyses should employ appropriate background correction systems whenever spectral interferences could be present. Several background correction techniques are employed in modern AA spectrometers. Matrix modification can complement background correction in some cases. Since no approach to interference correction is completely effective in all cases, the analyst should attempt to verify the adequacy of correction. If the interferant is known (e.g., high concentrations of iron in the determination of selenium), accurate analyses of synthetic solutions of the interferant (with and without analyte) could establish the efficacy of the background correction. If the nature of the interferant is not established, good agreement of analytical results using two substantially different wavelengths could substantiate the adequacy of the background correction.

To reduce matrix interferences, all graphite furnace atomic absorption (GFAA) analyses should be performed using techniques which maximize an isothermal environment within the furnace cell. Data indicate that two such techniques, L'vov platform and the delayed atomization cuvette (DAC), are equivalent in this respect, and produce high quality results.

All GFAA analysis should be carried out using the best matrix modifier for the analysis. Some examples of modifiers are listed below. (See also the appropriate methods.)

Element(s)	Modifier(s)
As and Se	Nickel nitrate, palladium
Pb	Phosphoric acid, ammonium phosphate, palladium
Cd	Ammonium phosphate, palladium
Sb	Ammonium nitrate, palladium
TI	Platinum, palladium

Inductively coupled plasma (ICP), AA, and GFAA calibration standards need to match the acid composition and strength of the acids contained in the samples. Acid strengths of the calibration standards should be stated in the raw data. When using a method which permits the use of internal standardization, and the internal standardization option is being used, matrix matching is not required.

2.6 CHOOSING PROCEDURES FOR INORGANIC ANALYSES

Methods for preparing different sample matrices for inorganic analyses are shown in Table 2-44. Guidance regarding the use of leaching and digestive methods for inorganic analysis is provided in Table 2-45.

2.7 REFERENCES

- 1. M. J. Barcelona, "TOC Determinations in Ground Water," <u>Ground Water</u> 1984, <u>22(1)</u>, 18-24.
- R. Riggin, et al.; <u>Development and Evaluation of Methods for Total Organic Halide and Purgeable Organic Halide in Wastewater</u>; U.S. Environmental Protection Agency; Office of Research and Development; Environmental Monitoring and Support Laboratory; ORD Publication Offices of Center for Environmental Research Information; Cincinnati, OH, 1984; EPA-600/4-84-008.
- G. McKee, et al.; <u>Determination of Inorganic Anions in Water by Ion Chromatography</u> (Technical addition to Methods for Chemical Analysis of Water and Wastewater, EPA 600/4-79-020); U.S. Environmental Protection Agency; Environmental Monitoring and Support Laboratory; ORD Publication Offices of Center for Environmental Research Information; Cincinnati, OH, 1984; EPA-600/4-84-017.

TABLE 2-1

DETERMINATIVE METHODS FOR ORGANIC ANALYTES

Analytes are listed in alphabetical order and alternative analyte names are in parenthesis. The applicable method listing does not include immunoassay or screening methods.

Applicable Method Analyte Abate (Temephos)8085 Acenaphthylene8100, 8270, 8275, 8310, 8410 Acetaldehyde8315 2-Acetylaminofluorene8270 1-Acetyl-2-thiourea......8270 Aldicarb (Temik).......8318, 8321 Aldicarb sulfoxide......8321 2-Aminoanthraquinone......8270 Aminoazobenzene8270 4-Aminobiphenyl8270 Aminocarb......8321 3-Amino-9-ethylcarbazole8270 *t*-Amyl alcohol (TAA)......8015 *t*-Amyl methyl ether (TAME).......8015, 8260, 8261

o-Anisidine8270Anthracene8100, 8270, 8275, 8310, 8410Aramite8270Aroclor-1016 (PCB-1016)8082, 8270Aroclor-1221 (PCB-1221)8082, 8270Aroclor-1232 (PCB-1232)8082, 8270Aroclor-1242 (PCB-1242)8082, 8270Aroclor-1248 (PCB-1248)8082, 8270Aroclor-1254 (PCB-1254)8082, 8270

A - 1 - 4000 (DOD 4000)			0000	0070
Aroclor-1260 (PCB-1260)				
Aspon				
Asulam				
Atraton				
Atrazine		,	,	
Azinphos-ethyl (Ethyl guthion)				
Azinphos-methyl (Guthion)				
Barban				
Baygon (Propoxur)				
Bendiocarb			,	
Benefin				8091
Benfluralin				
Benomyl				8321
Bentazon				8151
Benzal chloride				8121
Benzaldehyde				8315
Benz(a)anthracene8100,	8270,	8275,	8310,	8410
Benzene	8015,	8021,	8260,	8261
Benzenethiol (Thiophenol)				8270
Benzidine				
Benzo(b)fluoranthene				
Benzo(j)fluoranthene				
Benzo(k)fluoranthene				
Benzoic acid	-	-		
Benzo(g,h,i)perylene				
Benzo(a)pyrene				
p-Benzoquinone				
Benzotrichloride				
Benzoylprop ethyl				
Benzyl alcohol				
Benzyl chloride				
α-BHC (α-Hexachlorocyclohexane)				
β-BHC (β-Hexachlorocyclohexane)				
δ-BHC (δ-Hexachlorocyclohexane)				
γ-BHC (Lindane, γ-Hexachlorocyclohexane)				
Bis(2-n-butoxyethyl)phthalate				8061
Bis(2-chloroethoxy)methane				
Bis(2-chloroethyl)ether				
Bis(2-chloroethyl)sulfide				
Bis(2-chloro-1-methylethyl)ether				
Bis(2-ethoxyethyl)phthalate				
Bis(2-ethylhexyl)phthalate				
Bis(2-methoxyethyl)phthalate				
Bis(4-methyl-2-pentyl)phthalate				8061
Bolstar (Sulprofos)				
Bromacil				
Brominal (Bromoxynil)			.8085,	8270
Bromoacetone				
4-Bromoaniline				
Bromobenzene				
Bromochloromethane		8021,	8260,	8261
		,	,	

2-Bromo-6-chloro-4-nitroaniline	 			.8131
Bromodichloromethane	 	8021,	8260,	8261
2-Bromo-4,6-dinitroaniline	 			.8131
Bromoform	 	8021,	8260,	8261
Bromomethane	 	8021,	8260,	8261
4-Bromophenyl phenyl ether	 8111.	8270.	8275,	8410
Bromoxynil (Brominal)		-	-	
Butachlor				
Butanal				
<i>n</i> -Butanol (1-Butanol, <i>n</i> -Butyl alcohol)				
2-Butanone (Methyl ethyl ketone, MEK)				
Butifos (DEF)				
Butralin				
<i>t</i> -Butyl alcohol				
Butyl benzyl phthalate				
Butylate		-		
<i>n</i> -Butylbenzene		-		
sec-Butylbenzene		-		
tert-Butylbenzenetert				
2-sec-Butyl-4,6-dinitrophenol (DNBP, Dinoseb)				
Captafol				
Captan				
Carbaryl (Sevin)				
Carbendazim				
Carbofuran (Furaden)				
Carbofuran phenol				
Carbon disulfide				
Carbon tetrachloride		-		
Carbophenothion		-		
Carbosulfan				
Carboxin				
Casoron (Dichlobenil)				
Chloral hydrate				
Chloramben	 			.8151
Chlordane (NOS)	 		8081,	8270
<i>cis</i> -Chlordane	 			.8081
trans-Chlordane	 		8085,	8081
Chlorfenvinphos	 		8141,	8270
Chloroacetonitrile	 			.8260
2-Chloroaniline	 			.8131
3-Chloroaniline	 			.8131
4-Chloroaniline	 	8131,	8270,	8410
Chlorobenzene	 	8021,	8260,	8261
Chlorobenzilate	 		8081,	8270
2-Chlorobiphenyl	 		8082.	8275
2-Chloro-1,3-butadiene (Chloroprene)				
1-Chlorobutane				
Chlorodibromomethane (Dibromochloromethane)				
2-Chloro-4,6-dinitroaniline				
1-Chloro-2,4-dinitrobenzene				
1-Chloro-3 4-dinitrobenzene				8091

Chloroethane	.8021,	8260,	8261
2-Chloroethanol	.8021,	8260,	8430
2-(2-Chloroethoxy) ethanol			.8430
2-Chloroethyl vinyl ether		8021,	8260
Chloroform	.8021,	8260,	8261
1-Chlorohexane			8260
Chloromethane	.8021,	8260,	8261
5-Chloro-2-methylaniline			.8270
Chloromethyl methyl ether			.8021
2-Chloro-5-methylphenol			.8041
4-Chloro-2-methylphenol			.8041
4-Chloro-3-methylphenol	.8041,	8270,	8410
3-(Chloromethyl) pyridine hydrochloride			.8270
1-Chloronaphthalene			
2-Chloronaphthalene	.8121,	8270,	8410
Chloroneb			.8081
2-Chloro-4-nitroaniline			.8131
4-Chloro-2-nitroaniline			.8131
1-Chloro-2-nitrobenzene			.8091
1-Chloro-4-nitrobenzene			.8091
2-Chloro-6-nitrotoluene			.8091
4-Chloro-2-nitrotoluene			.8091
4-Chloro-3-nitrotoluene			.8091
2-Chlorophenol	. 8041,	8270,	8410
3-Chlorophenol			.8041
4-Chlorophenol			
2-Chlorophenyl 4-nitrophenyl ether			
3-Chlorophenyl 4-nitrophenyl ether			
4-Chlorophenyl 4-nitrophenyl ether			
4-Chlorophenyl phenyl ether			
o-Chlorophenyl thiourea			
4-Chloro-1,2-phenylenediamine			.8270
4-Chloro-1,3-phenylenediamine			
Chloroprene (2-Chloro-1,3-butadiene)			
Chloropropham			
Chloropropylate			
Chlorothalonil			
2-Chlorotoluene			
4-Chlorotoluene			
Chloroxuron			
Chlorpyrifos			
Chlorpyrifos methyl			
Chlorthalonil (Daconil)			
Chrysene			
Coumaphos			
p-Cresidine			
o-Cresol (2-Methylphenol)			
<i>m</i> -Cresol (3-Methylphenol)			
p-Cresol (4-Methylphenol)			
Crotonaldehyde			
Crotoxyphos	-		

<i>m</i> -Cumenyl methylcarbamate	 	 	.8318,	8321
Cyanazine	 	 		.8085
Cycloate	 	 		.8085
Cyclohexane	 	 		.8260
Cyclohexanone	 	 		.8315
2-Cyclohexyl-4,6-dinitrophenol	 	 	8041,	8270
2,4-D	 	 	8151,	8321
2,4-D (acid)	 	 		.8085
2,4-D (butoxyethanol ester)	 	 		.8321
2,4-D (ethylhexyl ester)	 	 		.8321
Daconil (Chlorthalonil)				
Dacthal (DCPA)				
Dalapon				
2,4-DB			-	
2,4-DB (acid)				
DBCP (1,2-Dibromo-3-chloropropane)				
DCM (Dichloromethane, Methylene chloride)				
DCPA (Dacthal)				
DCPA diacid				
2,4'-DDD				
4,4'-DDD				
2,4'-DDE		-		
4,4'-DDE				
2,4'-DDT				
4,4'-DDT				
DDVP (Dichlorvos, Dichlorovos)				
2,2',3,3'4,4'5,5',6,6'-Decachlorobiphenyl				
Decanal				
DEF (Butifos)				
Demeton-O, and Demeton-S				
Diallate				
2,4-Diaminotoluene		-		
Diamyl phthalate				
Diazinon				
Dibenz(a,h)acridine				
Dibenz(a,j)acridine				
Dibenz(a,h)anthracene				
7H-Dibenzo(c,g)carbazole				
Dibenzofuran				
Dibenzo(a,e)pyrene				
Dibenzo(a,h)pyrene			-	
Dibenzo(a,i)pyrene				
Dibenzothiophene				
Dibromochloromethane (Chlorodibromomethane)				
1,2-Dibromo-3-chloropropane (DBCP)				
Dibromomethane				
1,2-Dibromoethane (EDB, Ethylene dibromide)	 	 8021,	8021	8260
2,6-Dibromo-4-nitroaniline				
2,4-Dibromophenyl 4-nitrophenyl ether				
DibutyItin dichloride				
Di-n-butyl phthalate				
DI 11 NOLT DI ILI IGIGLO	 	 	J_1 U.	J 1 1 U

Dicamba				. 8085,	8151,	8321
Dichlobenil (Casoron)						.8085
Dichlone					.8081,	8270
Dichloran						
3,4-Dichloroaniline						.8131
1,2-Dichlorobenzene	.8021,	8121,	8260,	8261,	8270,	8410
1,3-Dichlorobenzene			-			
1,4-Dichlorobenzene						
3,3'-Dichlorobenzidine					. 8270	,8325
3,5-Dichlorobenzoic acid					8085,	8151
2,3-Dichlorobiphenyl						8082
3,3'-Dichlorobiphenyl						8275
cis-1,4-Dichloro-2-butene						
trans-1,4-Dichloro-2-butene						
Dichlorodifluoromethane					,	
1,1-Dichloroethane						
1,2-Dichloroethane						
1,1-Dichloroethene (Vinylidene chloride)						
cis-1,2-Dichloroethene						
trans-1,2-Dichloroethene						
Dichlorofenthion						
Dichloromethane (DCM, Methylene chloride)						
2,6-Dichloro-4-nitroaniline						
2,3-Dichloronitrobenzene						
2,4-Dichloronitrobenzene						
2,5-Dichloronitrobenzene						
3,4-Dichloronitrobenzene						
3,5-Dichloronitrobenzene						
2,3-Dichlorophenol						
2,4-Dichlorophenol						
2,5-Dichlorophenol						
2,6-Dichlorophenol						
3,4-Dichlorophenol						
3,5-Dichlorophenol						
2,4-Dichlorophenol 3-methyl-4-nitrophenyl ether						
2,3-Dichlorophenyl 4-nitrophenyl ether						8111
2,4-Dichlorophenyl 4-nitrophenyl ether						8111
2,5-Dichlorophenyl 4-nitrophenyl ether						
2,6-Dichlorophenyl 4-nitrophenyl ether						
3,4-Dichlorophenyl 4-nitrophenyl ether						8111
3,5-Dichlorophenyl 4-nitrophenyl ether						
Dichloroprop (Dichlorprop)						
1,2-Dichloropropane						
1,3-Dichloropropane						
2,2-Dichloropropane						
1,3-Dichloro-2-propanol						
1,1-Dichloropropene						
cis-1,3-Dichloropropene						
trans-1,3-Dichloropropene						
Dichlorovos (DDVP, Dichlorvos)			8085	8141.	8270.	8321
Dichlorprop (Dichloroprop)						
r -r \ r -r /				,	,	

Diclofol (Kelthane)				
Diclofop-methyl				
Dicofol				
Dicrotophos				
Dicyclohexyl phthalate				
Dieldrin				
1,2,3,4-Diepoxybutane				
Diesel range organics (DRO)				.8015
Diethyl ether		. 8015,	8260,	8261
Diethyl phthalate		. 8061,	8270,	8410
Diethyl sulfate				.8270
Diethylene glycol				.8430
Diethylstilbestrol				.8270
Dihexyl phthalate				.8061
Diisobutyl phthalate				.8061
Diisopropyl ether (DIPE)		. 8015,	8260,	8261
Dimethoate				
3,3'-Dimethoxybenzidine			8270,	8325
Dimethyl phthalate				
Dimethylaminoazobenzene				
2,5-Dimethylbenzaldehyde				.8315
7,12-Dimethylbenz(a)anthracene				
3,3'-Dimethylbenzidine				
4,4-Dimethyl-3-oxahexane (<i>t</i> -Amyl ethyl ether, TAEE)				
α, α -Dimethylphenethylamine				
2,3-Dimethylphenol				
2,4-Dimethylphenol				
2,5-Dimethylphenol				
2,6-Dimethylphenol				
3,4-Dimethylphenol				
Dinitramine				
2,4-Dinitroaniline				
3,5-Dinitroaniline				
1,2-Dinitrobenzene				
1,3-Dinitrobenzene (1,3-DNB)				
1,4-Dinitrobenzene				
4,6-Dinitro-2-methylphenol				
2,4-Dinitrophenol				
2,5-Dinitrophenol				
2,4-Dinitrotoluene (2,4-DNT)809	1 8005	 8270	8330	8/10
2,6-Dinitrotoluene (2,6-DNT)809				
Dinocap				
Dinocap Dinonyl phthalate				
Dinoseb (2- <i>sec</i> -Butyl-4,6-dinitrophenol, DNBP)804				
Di-n-octyl phthalate				
Dioxacarb				
1,4-Dioxane				
Dioxathion				
DIPE (Diisopropyl ether)				
Diphenamid				
Diphenylamine		• • • • • • • • • • • • • • • • • • • •		.ø2/U

E.E. Dinhanulhudantain					0070
5,5-Diphenylhydantoin					
1,2-Diphenylhydrazine					
Diphenyltin dichloride					
Di- <i>n</i> -propyl phthalate					
Disperse Blue 3					
Disperse Blue 14					
Disperse Brown 1					
Disperse Orange 3					
Disperse Orange 30					
Disperse Red 1					
Disperse Red 5					
Disperse Red 13					
Disperse Red 60					.8321
Disperse Yellow 5					
Disulfoton		8085,	8141,	8270,	8321
Diuron					
1,3-DNB (1,3-Dinitrobenzene)		8091,	8095,	8270,	8330
DNBP (2-sec-Butyl-4,6-dinitrophenol, Dinoseb)	.8041,	8085,	8151,	8270,	8321
2,4-DNT (2,4-Dinitrotoluene)					
2,6-DNT (2,6-Dinitrotoluene)					
EDB (1,2-Dibromoethane, Ethylene dibromide)					
Endosulfan I					
Endosulfan II					
Endosulfan sulfate					
Endrin					
Endrin aldehyde					
Endrin ketone					
Epichlorohydrin					
EPN					
Eptam (EPTC)					
EPTC (Eptam)				,	
ETBE (Ethyl <i>tert</i> -butyl ether)					
Ethalfluralin (Sonalan)					
Ethanol					
Ethion					
Ethoprop					
Ethyl acetate					
Ethyl benzene					
Ethyl <i>t</i> -butyl ether (ETBE)					
Ethyl carbamate					
Ethyl cyanide (Propionitrile)			8015,	8260,	8261
Ethyl guthion (Azinphos-ethyl)				.8085,	8141
Ethyl methacrylate				8260,	8261
Ethyl methanesulfonate					8270
Ethylene dibromide (EDB, 1,2-Dibromoethane)			8011,	8021,	8260
Ethylene glycol					
Ethylene oxide					
Etridiazole				-	
Famphur					
Fenamiphos					
Fenarimol					
1 OHGHINOL					. 5500

F 20.003				0005	0444
Fenitrothion					
Fensulfothion					
Fenthion					
Fenuron					.8321
Fluchloralin					
Fluometuron					
Fluoranthene	.8100,	8270,	8275,	8310,	8410
Fluorene	.8100,	8270,	8275,	8310,	8410
Fluridone					.8085
Fonophos				8085,	8141
Formaldehyde					.8315
Formetanate hydrochloride				8318,	8321
Furaden (Carbofuran)			. 8270,	8318,	8321
Gardona (Tetrachlovinphos, Stirophos)					
Garlon (Triclopyr)					
Gasoline range organics (GRO)					
Guthion (Azinphos-methyl)					
Halowax-1000					
Halowax-1001					
Halowax-1013					
Halowax-1014					
Halowax-1051					
Halowax-1099					
Heptachlor					
Heptachlor epoxide					
2,2',3,3',4,4',5-Heptachlorobiphenyl					
2,2',3,4,4',5,5'-Heptachlorobiphenyl					
2,2',3,4,4',5',6-Heptachlorobiphenyl					
2,2',3,4',5,5',6-Heptachlorobiphenyl					
Heptanal					
Hexachlorobenzene8081	8085,	8121,	8270,	8275,	8410
2,2',3,3,4,4'-Hexachlorobiphenyl					
2,2',3,4,4',5'-Hexachlorobiphenyl					
2,2',3,4,5,5'-Hexachlorobiphenyl					
2,2',3,5,5',6-Hexachlorobiphenyl					.8082
2,2',4,4',5,5'-Hexachlorobiphenyl					
2-exo,3-endo,6-exo,8,9,10-Hexachlorobornane (Hx-Sed)					.8276
Hexachlorobutadiene (1,3-Hexachlorobutadiene)8021,	8121,	8260,	8261,	8270,	8410
α-Hexachlorocyclohexane (α-BHC)					
β-Hexachlorocyclohexane (β-BHC)					
δ-Hexachlorocyclohexane (δ-BHC)					
γ-Hexachlorocyclohexane (γ-BHC, Lindane)					
Hexachlorocyclopentadiene	.8081.	8085.	8121.	8270.	8410
Hexachloroethane		8121.	8260	8270.	8410
Hexachlorophene					
Hexachloropropene					
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)					
Hexamethyl phosphoramide (HMPA)					
Hexanal					
2-Hexanone				,	
Hexazinone					.0085

Hexyl 2-ethylhexyl phthalate			8061
HMPA (Hexamethyl phosphoramide)	 	8141	8270
HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)	 	8005	8330
1,2,3,4,6,7,8-HpCDD			
HpCDD, total			
1,2,3,4,6,7,8-HpCDF			
1,2,3,4,7,8,9-HpCDF		,	
HpCDF, total			
1,2,3,4,7,8-HxCDD			
1,2,3,6,7,8-HxCDD			
1,2,3,7,8,9-HxCDD		,	
		,	
HxCDD, total		-	
1,2,3,4,7,8-HxCDF		,	
1,2,3,6,7,8-HxCDF		,	
1,2,3,7,8,9-HxCDF			
2,3,4,6,7,8-HxCDF			
HxCDF			
Hydroquinone			
3-Hydroxycarbofuran		,	
5-Hydroxydicamba			
Igran (Terbutryn)			
Imidan (Phosmet)			
Indeno(1,2,3-cd)pyrene			
Iodomethane (Methyl iodide)			
loxynil			
Isobutyl alcohol (2-Methyl-1-propanol)			
Isodrin			
Isophorone	 	.8270,	8410
Isopropalin	 		.8091
Isopropyl alcohol (2-Propanol)	 	8015,	8260
Isopropylbenzene	 	.8021,	8260
<i>p</i> -Isopropyltoluene	 . 8021,	8260,	8261
Isosafrole	 		8270
Isovaleraldehyde	 		.8315
Kelthane (Diclofol)	 		.8085
Kepone	 		8270
Kerb (Pronamide)			
Lannate (Methomyl)			
Leptophos			
Lindane (γ-Hexachlorocyclohexane, γ-BHC)			
Linuron (Lorox)			
Lorox (Linuron)			
Malathion			
Maleic anhydride			
Malononitrile			
MCPA			
MCPA (acid)			
MCPP			
MCPP (acid)		-	
MEK (Methyl ethyl ketone, 2-Butanone)			
Merphos			
INICI PI 109	 . 0000,	0141,	0321

Montropol	9270
	8270
,	
•	8260, 8261
•	8085
	8270
,	8318, 8321
•	
	8260
· · · · · · · · · · · · · · · · · · ·	8015, 8260, 8261
	8085
·	
	8260, 8261
	anone)8260, 8261
	8260, 8261
	8270
	8085
Methyl parathion (Parathion, methyl)	8085, 8270, 8141, 8321
3-Methylcholanthrene	8100, 8270
Methylcyclohexane	8270
2-Methyl-4,6-dinitrophenol	8041
Methylene chloride (Dichloromethane, DCM)	8021, 8260, 8261
4,4'-Methylenebis (2-chloroaniline)	8270
4,4'-Methylenebis (<i>N</i> , <i>N</i> -dimethylaniline)	8270
	8261
2-Methylnaphthalene	
	etone)
	8041, 8270
	8330
• • • • • • • • • • • • • • • • • • • •	
	anone)
NATOE (Mathy) 4 by the attention	8321, 8325
IVI I BE (IVIETINI-T-DUTYI ETNET)	
Naphthalene	8021, 8100, 8260, 8261, 8270, 8275, 8310, 8410

Napropamide						.8085
1,2-Naphthoquinone						.8091
1,4-Naphthoquinone					.8270,	8091
1-Naphthylamine						.8270
2-Naphthylamine						.8270
NB (Nitrobenzene)	8091,	8095,	8260,	8270,	8330,	8410
Neburon						.8321
Nicotine						.8270
5-Nitroacenaphthene						.8270
2-Nitroaniline				8131,	8270,	8410
3-Nitroaniline				8131,	8270,	8410
4-Nitroaniline				8131,	8270,	8410
5-Nitro-o-anisidine				-		
Nitrobenzene (NB)						
4-Nitrobiphenyl						
Nitrofen						
Nitroglycerin						
2-Nitrophenol				-		
3-Nitrophenol						
4-Nitrophenol						
4-Nitrophenyl phenyl ether		-		-		
2-Nitropropane						
Nitroquinoline-1-oxide						
<i>N</i> -Nitroso-di- <i>n</i> -butylamine (<i>N</i> -Nitrosodibutylamine)						
N-Nitrosodiethylamine						
N-Nitrosodimethylamine						
<i>N</i> -Nitrosodimetrylamine						
<i>N</i> -Nitroso-di- <i>n</i> -propylamine						
<i>N</i> -Nitrosomethylethylamine						
<i>N</i> -Nitrosomorpholine						
N-Nitrosopiperidine						
N-Nitrosopyrrolidine						
2-Nitrotoluene (<i>o</i> -Nitrotoluene, 2-NT)						
3-Nitrotoluene (<i>m</i> -Nitrotoluene, 3-NT)						
4-Nitrotoluene (<i>p</i> -Nitrotoluene, 4-NT)						
5-Nitro- <i>o</i> -toluidine						
trans-Nonachlor						
2,2'3,3'4,4'5,5'6-Nonachlorobiphenyl						
2,2,5,5,8,9,9,10,10-Nonachlorobornane (P62)					.0002,	9276
2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-Nonachloroborn	ana (D50	١				.0270. 9276
Nonanal						
Norflurazon						
2-NT (2-Nitrotoluene, <i>o</i> -Nitrotoluene)						
3-NT (3-Nitrotoluene, <i>m</i> -Nitrotoluene)						
4-NT (4-Nitrotoluene, <i>p</i> -Nitrotoluene)						
OCDD						
OCDF						
2,2',3,3',4,4'5,5'-Octachlorobiphenyl						
2-endo,3-exo,5-endo,6-exo,8,8,10,10-Octachlorobornan						
2-endo,3-exo,5-endo,6-exo,8,9,10,10-Octachlorobornan						
2-exo, 3-endo, 5-exo, 8, 9, 9, 10, 10-Octachlorobornane (P4'	1)					. გ2/ნ

2-exo,5,5,8,9,9,10,10-Octachlorobornane (P44)				
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)			.8095,	8330
Octamethyl pyrophosphoramide				
Octanal				.8315
Oxamyl			8318,	8321
4,4'-Oxydianiline				.8270
Oxyfluorfen				
Paraldehyde				
Parathion			-	
Parathion, ethyl				
Parathion, methyl				
PCB-1016 (Aroclor-1016)				
PCB-1221 (Aroclor-1221)				
PCB-1232 (Aroclor-1232)				
PCB-1242 (Aroclor-1242)				
PCB-1248 (Aroclor-1248)				
PCB-1254 (Aroclor-1254)				
,				
PCB-1260 (Aroclor-1260) PCBs, as congeners			. 0002,	0000
PCNB (Pentachloronitrobenzene)				
Pebulate				
1,2,3,7,8-PeCDD				
PeCDD, total				
1,2,3,7,8-PeCDF				
2,3,4,7,8-PeCDF				
PeCDF, total				
Pendimethaline (Penoxalin)				
Penoxalin (Pendimethaline)				
Pentachlorobenzene				
2,2',3,4,5'-Pentachlorobiphenyl				
2,3',4,4',5-Pentachlorobiphenyl				
2,2',4,5,5'-Pentachlorobiphenyl				
2,3,3',4',6-Pentachlorobiphenyl				.8082
Pentachloroethane			.8260,	8261
Pentachloronitrobenzene (PCNB)		8081,	8091,	8270
Pentachlorophenol	8041, 8085,	8151,	8270,	8410
Pentaerythritol tetranitrate (PETN)			. 8095,	8330
Pentafluorobenzene				
Pentanal (Valeraldehyde)				.8315
2-Pentanone				
Perchloroethylene (Tetrachloroethene, Tetrachloroethylene)				
Permethrin (cis + trans)				
Perthane				
Phenacetin				
Phenanthrene				
Phenobarbital			-	
Phenol				
1,4-Phenylenediamine				
1,2-Phenylenediamine (<i>o</i> -Phenylenediamine)				
Phorate				
Phosalone	•	∪ 1 -1 1,	02 i U,	8270
				11//11

Phosmet (Imidan)		. 8085,	8141,	8270
Phosphamidon		. 8085,	8141,	8270
Phthalic anhydride				.8270
Physostigmine				
Physostigmine salicylate				
Picloram				
2-Picoline (2-Methylpyridine)				
Piperonyl sulfoxide				
Polychlorinated biphenyls (PCBs), as Aroclors or congeners			8082.	8270
Pramitol 5p (Prometon)			,	8085
Profluralin				
Promecarb				
Prometon (Pramitol 5p)				
Prometryn				
Pronamide (Kerb)				
Propachlor (Ramrod)				
Propanal (Propionaldehyde)				
1-Propanol (<i>n</i> -Propyl alcohol)				
2-Propanol (Isopropyl alcohol)				
Propargite (S-181)				
Propargyl alcohol				
Propazine				
Propenal (Acrolein)8015				
Propetamidophos	•			
Propham				
ß-Propiolactone				
Propionaldehyde (Propanal)				
Propionitrile (Ethyl cyanide) Propoxur (Baygon)				
n-Propyl alcohol (1-Propanol)				
n-Propylamine				
n-Propylbenzene				
Propylthiouracil				
Prosulfocarb			,	
Prothiophos (Tokuthion)				.8141
Pyrene), 8270	, 82/5,	8310,	8410
Pyridine				
Ramrod (Propachlor)				
RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine)				
Resorcinol				
Ronnel			,	
Rotenone				
S-181 (Propargite)				
Safrole				
Sevin (Carbaryl)			-	
Siduron				
Simazine				
Silvex (2,4,5-TP)				
Solvent Red 3				
Solvent Red 23				
Sonalan (Ethalfluralin)				.8085

Stirophos (Tetrachlorvinphos, Gardona)			
Strobane			
Strychnine			
Styrene	8021,	8260,	8261
Sulfallate			.8270
Sulfotepp		8085,	8141
Sulprofos (Bolstar)		8085,	8141
2,4,5-T		8151,	8321
2,4,5-T (acid)			.8085
TAA (t-Amyl alcohol)			
TAEE (t-Amyl ethyl ether, 4,4-Dimethyl-3-oxahexane)		8015.	8261
TAME (t-Amyl methyl ether)		8015.	8261
2,4,5-TB			
2,3,7,8-TCDD			
TCDD, total			
2,3,7,8-TCDF			
TCDF, total			
Tebuthiuron			
Temephos (Abate)			
Temik (Aldicarb)			
TEPP (Tetraethyl pyrophosphate)			
Terbacil			
Terbufos			
		,	
Terbutryn (Igran)			
1,2,3,4-Tetrachlorobenzene			
1,2,3,5-Tetrachlorobenzene			
1,2,4,5-Tetrachlorobenzene			
2,2',3,5'-Tetrachlorobiphenyl			
2,2',4,5'-Tetrachlorobiphenyl			
2,2',5,5'-Tetrachlorobiphenyl			
2,3',4,4'-Tetrachlorobiphenyl			
1,1,1,2-Tetrachloroethane			
1,1,2,2-Tetrachloroethane			
Tetrachloroethene (Perchloroethylene, Tetrachloroethylene)			
2,3,4,5-Tetrachloronitrobenzene			.8091
2,3,5,6-Tetrachloronitrobenzene			.8091
2,3,4,5-Tetrachlorophenol			
2,3,4,6-Tetrachlorophenol			
2,3,5,6-Tetrachlorophenol			
Tetrachlorvinphos (Stirophos, Gardona)	8085,	8141,	8270
Tetraethyl dithiopyrophosphate			
Tetraethyl pyrophosphate (TEPP)		8141,	8270
Tetrahydrofuran (THF)			.8261
Tetrazene			
Tetryl (Methyl-2,4,6-trinitrophenylnitramine)			
THF (Tetrahydrofuran)			
Thiodicarb			
Thiofanox			
Thionazin (Zinophos)			
Thiophanate-methyl			
Thiophenol (Benzenethiol)			

1,3,5-TNB (1,3,5-Trinitrobenzene)						
2,4,6-TNT (2,4,6-Trinitrotoluene)					. 8095,	8330
TOCP (Tri-o-cresylphosphate)						.8141
Tokuthion (Prothiofos)						.8141
<i>m</i> -Tolualdehyde						.8315
o-Tolualdehyde						.8315
<i>p</i> -Tolualdehyde						.8315
Toluene		80)15,	8021,	8260,	8261
Toluene diisocyanate						.8270
o-Toluidine		80)15,	8260,	8261,	8270
Toxaphene		80	81,	8270,	8272,	8276
2,4,5-TP (Silvex)				8085	8151,	8321
Treflan (Trifluralin)		80	81,	8085,	8091,	8270
Triademefon						.8085
Triallate				8085	8141,	8321
Tributyltin chloride						.8323
Trichlorfon					. 8141,	8321
2,4,5-Trichloroaniline						.8131
2,4,6-Trichloroaniline						.8131
1,2,3-Trichlorobenzene		80)21,	8121	8260,	8261
1,2,4-Trichlorobenzene						
1,3,5-Trichlorobenzene	•			-		
2,2',5-Trichlorobiphenyl					. 8082,	8275
2,3',5-Trichlorobiphenyl						.8275
2,4',5-Trichlorobiphenyl						
1,1,1-Trichloroethane						
1,1,2-Trichloroethane						
Trichloroethene (Trichloroethylene)						
Trichlorofluoromethane						
Trichloronate						
1,2,3-Trichloro-4-nitrobenzene						
1,2,4-Trichloro-5-nitrobenzene						
2,4,6-Trichloronitrobenzene						
2,3,4-Trichlorophenol						
2,3,5-Trichlorophenol						
2,3,6-Trichlorophenol						
2,4,5-Trichlorophenol						
2,4,6-Trichlorophenol						
2,3,4-Trichlorophenyl 4-nitrophenyl ether						
2,3,5-Trichlorophenyl 4-nitrophenyl ether						
2,3,6-Trichlorophenyl 4-nitrophenyl ether						
2,4,5-Trichlorophenyl 4-nitrophenyl ether						
2,4,6-Trichlorophenyl 4-nitrophenyl ether						
3,4,5-Trichlorophenyl 4-nitrophenyl ether						
1,2,3-Trichloropropane						
Triclopyr (Garlon)						
Tri-o-cresylphosphate (TOCP)						
O,O,O-Triethyl phosphorothioate						
Triethylamine						
Trifluralin (Treflan)						
Trihalomethanes			,	2200,	,,	8535

Trimethyl phosphate			.8270
2,4,5-Trimethylaniline			.8270
1,2,4-Trimethylbenzene			
1,3,5-Trimethylbenzene			
1,3,5-Trinitrobenzene (1,3,5-TNB)			
2,4,6-Trinitrophenylmethylnitramine			
2,4,6-Trinitrotoluene (2,4,6-TNT)			
Triphenyltin chloride			
Tris-BP (Tris(2,3-dibromopropyl) phosphate)			
Tris(2,3-dibromopropyl) phosphate (Tris-BP)		.8270,	8321
Tri-p-tolyl phosphate			
Valeraldehyde (Pentanal)			.8315
Vernolate			.8085
Vinyl acetate			.8260
Vernolate Vinyl acetate Vinyl chloride	8021,	8260,	8261
Vinylidene chloride (1,1-Dichloroethene)	8021,	8260,	8261
<i>m</i> -Xylene	5, 8021,	8260,	8261
o-Xylene	5, 8021,	8260,	8261
p-Xylene	5, 8021,	8260,	8261
Zinophos (Thionazin)		.8141,	8270

TABLE 2-2

METHOD 8011 (MICROEXTRACTION AND GAS CHROMATOGRAPHY)

1,2-Dibromo-3-chloropropane (DBCP)

1,2-Dibromoethane (EDB)

TABLE 2-3 METHOD 8015 (GC/FID) - NONHALOGENATED VOLATILES

Acetone	Ethylene oxide
Acetonitrile	Gasoline range organics (GRO)
Acrolein	Isopropyl alcohol
Acrylonitrile	Methanol
Allyl alcohol	Methyl ethyl ketone (MEK, 2- Butanone)
t-Amyl alcohol (TAA)	N-Nitroso-di-n-butylamine
t-Amyl ethyl ether (TAEE)	Paraldehyde
t-Amyl methyl ether (TAME)	2-Pentanone
Benzene	2-Picoline
t-Butyl alcohol	1-Propanol (n-Propyl alcohol)
Crotonaldehyde	Propionitrile
Diesel range organics (DRO)	Pyridine
Diethyl ether	Toluene
Diisopropyl ether (DIPE)	o-Toluidine
Ethanol	<i>m</i> -Xylene
Ethyl acetate	o-Xylene
Ethyl benzene	<i>p</i> -Xylene
Ethyl tert-butyl ether (ETBE)	Triethylamine

TABLE 2-4

METHOD 8021 (GC, PHOTOIONIZATION AND ELECTROLYTIC CONDUCTIVITY DETECTORS) - AROMATIC AND HALOGENATED VOLATILES

Allyl chloride	cis-1,2-Dichloroethene
Benzene	trans-1,2-Dichloroethene
Benzyl chloride	1,2-Dichloropropane
Bis(2-chloro-1-methylethyl) ether	1,3-Dichloropropane
Bromoacetone	2,2-Dichloropropane
Bromobenzene	1,3-Dichloro-2-propanol
Bromochloromethane	1,1-Dichloropropene
Bromodichloromethane	cis-1,3-Dichloropropene
Bromoform	trans-1,3-Dichloropropene
Bromomethane	Epichlorhydrin
<i>n</i> -Butylbenzene	Ethylbenzene
sec-Butylbenzene	Hexachlorobutadiene
tert-Butylbenzene	Isopropylbenzene
Carbon tetrachloride	<i>p</i> -Isopropyltoluene
Chlorobenzene	Methylene chloride
Chlorodibromomethane	Naphthalene
Chloroethane	<i>n</i> -Propylbenzene
2-Chloroethanol	Styrene
2-Chloroethyl vinyl ether	1,1,1,2-Tetrachloroethane
Chloroform	1,1,2,2-Tetrachloroethane
Chloromethane	Tetrachloroethene
Chloromethyl methyl ether	Toluene
Chloroprene	1,2,3-Trichlorobenzene
2-Chlorotoluene	1,2,4-Trichlorobenzene
4-Chlorotoluene	1,1,1-Trichloroethane
1,2-Dibromo-3-chloropropane	1,1,2-Trichloroethane
1,2-Dibromoethane	Trichloroethene
Dibromomethane	Trichlorofluoromethane
1,2-Dichlorobenzene	1,2,3-Trichloropropane
1,3-Dichlorobenzene	1,2,4-Trimethylbenzene
1,4-Dichlorobenzene	1,3,5-Trimethylbenzene
Dichlorodifluoromethane	Vinyl chloride
1,1-Dichloroethane	o-Xylene
1,2-Dichloroethane	<i>m</i> -Xylene
1,1-Dichloroethene	<i>p</i> -Xylene

TABLE 2-5

METHODS 8031 AND 8033 (GC WITH NITROGEN-PHOSPHORUS DETECTION) AND METHOD 8032 (GC WITH ELECTRON CAPTURE DETECTION)

Method 8031: Acrylonitrile Method 8032: Acrylamide Method 8033: Acetonitrile

TABLE 2-6

METHOD 8041 (GC) - PHENOLS

2-Chloro-5-methylphenol	2,5-Dinitrophenol
4-Chloro-2-methylphenol	Dinoseb (2-sec-butyl-4,6-dinitro phenol)
4-Chloro-3-methylphenol	2-Methyl-4,6-dinitrophenol
2-Chlorophenol	2-Methylphenol (o-Cresol)
3-Chlorophenol	3-Methylphenol (m-Cresol)
4-Chlorophenol	4-Methylphenol (p-Cresol)
2-Cyclohexyl-4,6-dinitrophenol	2-Nitrophenol
2,3-Dichlorophenol	3-Nitrophenol
2,4-Dichlorophenol	4-Nitrophenol
2,5-Dichlorophenol	Pentachlorophenol
2,6-Dichlorophenol	Phenol
3,4-Dichlorophenol	2,3,4,5-Tetrachlorophenol
3,5-Dichlorophenol	2,3,4,6-Tetrachlorophenol
2,3-Dimethylphenol	2,3,5,6-Tetrachlorophenol
2,4-Dimethylphenol	2,3,4-Trichlorophenol
2,5-Dimethylphenol	2,3,5-Trichlorophenol
2,6-Dimethylphenol	2,3,6-Trichlorophenol
3,4-Dimethylphenol	2,4,5-Trichlorophenol
2,4-Dinitrophenol	2,4,6-Trichlorophenol

TABLE 2-7
METHOD 8061 (GC/ECD) - PHTHALATE ESTERS

Bis(2- <i>n</i> -butoxyethyl) phthalate	Diethyl phthalate
Bis(2-ethoxyethyl) phthalate	Dihexyl phthalate
Bis(2-ethylhexyl) phthalate	Diisobutyl phthalate
Bis(2-methoxyethyl) phthalate	Di- <i>n</i> -butyl phthalate
Bis(4-methyl-2-pentyl) phthalate	Dimethyl phthalate
Butyl benzyl phthalate	Di-n-octyl phthalate
Diamyl phthalate	Dinonyl phthalate
Dicyclohexyl phthalate	Hexyl 2-ethylhexyl phthalate

TABLE 2-8
METHOD 8070 (GC) - NITROSAMINES

N-NitrosodimethylamineN-NitrosodiphenylamineN-Nitrosodi-n-propylamine

TABLE 2-9
METHOD 8081 (GC) - ORGANOCHLORINE PESTICIDES

Alachlor	4,4'-DDE	Halowax-1051
Aldrin	4,4'-DDT	Halowax-1099
α-BHC	Diallate	Heptachlor
β-ВНС	Dichlone	Heptachlor epoxide
δ-ΒΗС	Dichloran	Hexachlorobenzene
γ-BHC (Lindane)	Dicofol	Hexachlorocyclopentadiene
Captafol	Dieldrin	Isodrin
Carbophenothion	Endosulfan I	Methoxychlor
Chlordane (NOS)	Endosulfan II	Mirex
cis-Chlordane	Endosulfan sulfate	Nitrofen
trans-Chlordane	Endrin	trans-Nonachlor
Chlorobenzilate	Endrin aldehyde	Pentachloronitrobenzene (PCNB)
Chloroneb	Endrin ketone	Permethrin (cis + trans)
Chloropropylate	Etridiazole	Perthane
Chlorothalonil	Halowax-1000	Propachlor
Dacthal (DCPA)	Halowax-1001	Strobane
DBCP	Halowax-1013	Toxaphene
4,4'-DDD	Halowax-1014	Trifluralin

TABLE 2-10

METHOD 8082 (GC) - POLYCHLORINATED BIPHENYLS

Aroclor 1016	2,2',3,4,5,5'-Hexachlorobiphenyl
Aroclor 1221	2,2',3,5,5',6-Hexachlorobiphenyl
Aroclor 1232	2,2',4,4',5,5'-Hexachlorobiphenyl
Aroclor 1242	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl
Aroclor 1248	2,2',3,4,5'-Pentachlorobiphenyl
Aroclor 1254	2,2',4,5,5'-Pentachlorobiphenyl
Aroclor 1260	2,3,3',4',6-Pentachlorobiphenyl
2-Chlorobiphenyl	2,2',3,5'-Tetrachlorobiphenyl
2,3-Dichlorobiphenyl	2,2',5,5'-Tetrachlorobiphenyl
,2',3,3',4,4',5-Heptachlorobiphenyl	2,3',4,4'-Tetrachlorobiphenyl
2,2',3,4,4',5,5'-Heptachlorobiphenyl	2,2',5-Trichlorobiphenyl
2,2',3,4,4',5',6-Heptachlorobiphenyl	2,4',5-Trichlorobiphenyl
2,2',3,4',5,5',6-Heptachlorobiphenyl	

TABLE 2-11 METHOD 8085 (GC/AED) – PESTICIDES

Abate (Temephos)	Cycloate	Diphenamid
Acifluorfen	Coumaphos	Disulfoton (Disyston)
Alachlor	2,4-D acid	Diuron
Aldrin	2,4-DB acid	Endosulfan I
Ametryn	DCPA (Dacthal)	Endosulfan II
Atraton	2,4'-DDD	Endosulfan sulfate
Atrazine	4,4'-DDD	Endrin
Azinphos ethyl (Ethyl guthion)	2,4'-DDE	Endrin aldehyde
Azinphos methyl (Guthion)	4,4'-DDE	Endrin ketone
Benfluralin	2,4'-DDT	EPN
α-ВНС	4,4'-DDT	Eptam (EPTC)
β-ВНС	DEF (Butifos)	Ethalfluralin (Sonalan)
δ-ΒΗС	Demeton-O	Ethion
γ-BHC (Lindane)	Demeton-S	Ethoprop
Bromacil	Diallate	Fenamiphos
Bromoxynil (Brominal)	Diazinon	Fenarimol
Butachlor	Dicamba	Fenitrothion
Butylate	Dichlobenil (Casoron)	Fensulfothion
Captafol	3,5-Dichlorobenzoic acid	Fenthion
Captan	Dichlorprop	Fluridone
Carbophenothion	Dichlorvos (DDVP)	Fonofos
Carboxin	Diclofol (Kelthane)	Gardona (Tetrachlovinphos)
trans-Chlordane	Diclofop-methyl	Heptachlor
Chlorpropham	Dieldrin	Heptachlor epoxide
Chlorpyrifos	Dimethoate	Hexachlorobenzene
Chlorthalonil (Daconil)	Dinoseb	Hexachlorocyclopentadiene
Cyanazine	Dioxathion	Hexazinone

TABLE 2-11 (continued)

4-Nitrophenol

Imidan (Phosmet)	Norflurazon	Sulfotepp
loxynil	Oxyfluorfen	Sulprofos (Bolstar)
Malathion	Parathion	Silvex
MCPA acid	Pebulate	2,4,5-T acid
MCPP acid	Pendimethalin	2,4,5-TB
Merphos	Pentachlorophenol (PCP)	Tebuthiuron
Metalaxyl	Phorate	Terbacil
Methoxychlor	Phosphamidon	Terbutryn (Igran)
Methyl chlorpyrifos	Picloram	2,3,4,5-Tetrachlorophenol
Methyl paraoxon	Profluralin	2,3,4,6-Tetrachlorophenol
Methyl parathion	Prometon (Pramitol 5p)	Triademefon
Metolachlor	Prometryn	Triallate
Metribuzin	Pronamide (Kerb)	2,4,5-Trichlorophenol
Mevinphos	Propachlor (Ramrod)	2,4,6-Trichlorophenol
MGK-264	Propargite (S-181)	Triclopyr (Garlon)
Mirex	Propazine	Trifluralin (Treflan)
Molinate	Propetamidophos	Vernolate
Napropamide	Ronnel	

Simazine

TABLE 2-12

METHOD 8091 (GC) - NITROAROMATICS AND CYCLIC KETONES

Benefin	2,4-Dinitrotoluene
Butralin	2,6-Dinitrotoluene
1-Chloro-2,4-dinitrobenzene	Isopropalin
1-Chloro-3,4-dinitrobenzene	1,2-Naphthoquinone
1-Chloro-2-nitrobenzene	1,4-Naphthoquinone
1-Chloro-4-nitrobenzene	Nitrobenzene
2-Chloro-6-nitrotoluene	2-Nitrotoluene
4-Chloro-2-nitrotoluene	3-Nitrotoluene
4-Chloro-3-nitrotoluene	4-Nitrotoluene
2,3-Dichloronitrobenzene	Penoxalin [Pendimethalin]
2,4-Dichloronitrobenzene	Pentachloronitrobenzene
2,5-Dichloronitrobenzene	Profluralin
3,4-Dichloronitrobenzene	2,3,4,5-Tetrachloronitrobenzene
3,5-Dichloronitrobenzene	2,3,5,6-Tetrachloronitrobenzene
Dinitramine	1,2,3-Trichloro-4-nitrobenzene
1,2-Dinitrobenzene	1,2,4-Trichloro-5-nitrobenzene
1,3-Dinitrobenzene	2,4,6-Trichloronitrobenzene
1,4-Dinitrobenzene	Trifluralin

TABLE 2-13
METHOD 8095 (GC) - EXPLOSIVES

2-Amino-4,6-dinitrotoluene	2-Nitrotoluene
4-Amino-2,6-dinitrotoluene	3-Nitrotoluene
3,5-Dinitroaniline	4-Nitrotoluene
1,3-Dinitrobenzene	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
2,4-Dinitrotoluene	Pentaerythritoltetranitrate
2,6-Dinitrotoluene	1,3,5-Trinitrobenzene
Hexahydro-1,3,5-trinitro-1,3,5-triazine	2,4,6-Trinitrophenylmethylnitramine
Nitrobenzene	2,4,6-Trinitrotoluene
Nitroglycerine	

TABLE 2-14

METHOD 8100 - POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene	Dibenz(a,h)anthracene
Acenaphthylene	7H-Dibenzo(c,g)carbazole
Anthracene	Dibenzo(a,e)pyrene
Benz(a)anthracene	Dibenzo(a,h)pyrene
Benzo(b)fluoranthene	Dibenzo(a,i)pyrene
Benzo(j)fluoranthene	Fluoranthene
Benzo(k)fluoranthene	Fluorene
Benzo(g,h,i)perylene	Indeno(1,2,3-cd)pyrene
Benzo(a)pyrene	3-Methylcholanthrene
Chrysene	Naphthalene
Dibenz(a,h)acridine	Phenanthrene
Dibenz(a,j)acridine	Pyrene

TABLE 2-15
METHOD 8111 (GC) - HALOETHERS

Bis(2-chloroethoxy)methane	2,5-Dichlorophenyl 4-nitrophenyl ether
Bis(2-chloroethyl) ether	2,6-Dichlorophenyl 4-nitrophenyl ether
Bis(2-chloro-1-methylethyl) ether	3,4-Dichlorophenyl 4-nitrophenyl ether
4-Bromophenyl phenyl ether	3,5-Dichlorophenyl 4-nitrophenyl ether
4-Chlorophenyl phenyl ether	4-Nitrophenyl phenyl ether
2-Chlorophenyl 4-nitrophenyl ether	2,3,4-Trichlorophenyl 4-nitrophenyl ether
3-Chlorophenyl 4-nitrophenyl ether	2,3,5-Trichlorophenyl 4-nitrophenyl ether
4-Chlorophenyl 4-nitrophenyl ether	2,3,6-Trichlorophenyl 4-nitrophenyl ether
2,4-Dibromophenyl 4-nitrophenyl ether	2,4,5-Trichlorophenyl 4-nitrophenyl ether
2,4-Dichlorophenyl 3-methyl-4-nitrophenyl ether	2,4,6-Trichlorophenyl 4-nitrophenyl ether
2,3-Dichlorophenyl 4-nitrophenyl ether	3,4,5-Trichlorophenyl 4-nitrophenyl ether
2,4-Dichlorophenyl 4-nitrophenyl ether	

TABLE 2-16

METHOD 8121 (GC) - CHLORINATED HYDROCARBONS

Benzal chloride	δ-Hexachlorocyclohexane (δ-BHC)
Benzotrichloride	γ-Hexachlorocyclohexane (γ-BHC)
Benzyl chloride	Hexachlorocyclopentadiene
2-Chloronaphthalene	Hexachloroethane
1,2-Dichlorobenzene	Pentachlorobenzene
1,3-Dichlorobenzene	1,2,3,4-Tetrachlorobenzene
1,4-Dichlorobenzene	1,2,3,5-Tetrachlorobenzene
Hexachlorobenzene	1,2,4,5-Tetrachlorobenzene
Hexachlorobutadiene	1,2,3-Trichlorobenzene
α -Hexachlorocyclohexane (α -BHC)	1,2,4-Trichlorobenzene
β-Hexachlorocyclohexane (β-BHC)	1,3,5-Trichlorobenzene

TABLE 2-17

METHOD 8131 (GC) - ANILINE AND SELECTED DERIVATIVES

Aniline	2,6-Dibromo-4-nitroaniline
4-Bromoaniline	3,4-Dichloroaniline
2-Bromo-6-chloro-4-nitroanilne	2,6-Dichloro-4-nitroaniline
2-Bromo-4,6-dintroaniline	2,4-Dinitroaniline
2-Chloroaniline	2-Nitroaniline
3-Chloroaniline	3-Nitroaniline
4-Chloroaniline	4-Nitroaniline
2-Chloro-4,6-dinitroaniline	2,4,5-Trichloroaniline
2-Chloro-4-nitroaniline	2,4,6-Trichloroaniline
4-Chloro-2-nitroaniline	

TABLE 2-18

METHOD 8141 (GC) - ORGANOPHOSPHORUS COMPOUNDS

Aspon	Disulfoton	Parathion, methyl
Atrazine	EPN	Pebulate
Azinphos-ethyl	EPTC	o-Phenylenediamine
Azinphos-methyl	Ethion	Phorate
Bendiocarb	Ethoprop	Phosmet
Bolstar (Sulprofos)	Famphur	Phosphamidon
Butylate	Fenitrothion	Propham
Carbophenothion	Fensulfothion	Prosulfocarb
Chlorfenvinphos	Fenthion	Ronnel
Chlorpyrifos	Fonophos	Simazine
Chlorpyrifos methyl	Hexamethyl phosphoramide (HMPA)	Stirophos (Tetrachlorvinphos, Gardona)
Coumaphos	Leptophos	Sulfotepp
Crotoxyphos	Malathion	Terbufos
Demeton-O, and -S	Merphos	Tetraethyl pyrophosphate (TEPP)
Diazinon	Methiocarb	Thionazin (Zinophos)
Dichlorofenthion	Mevinphos	Tokuthion (Prothiofos)
Dichlorvos (DDVP)	Molinate	Triallate
Dicrotophos	Monocrotophos	Trichlorfon
Dimethoate	Naled	Trichloronate
Dioxathion	Parathion, ethyl	Tri-o-cresyl phosphate (TOCP)

TABLE 2-19

METHOD 8151 (GC USING METHYLATION OR PENTAFLUOROBENZYLATION DERIVATIZATION) - CHLORINATED HERBICIDES

Acifluorfen	Dicamba	MCPP
Bentazon	3,5-Dichlorobenzoic acid	4-Nitrophenol
Chloramben	Dichloroprop	Pentachlorophenol
2,4-D	Dinoseb	Picloram
Dalapon	5-Hydroxydicamba	2,4,5-T
2,4-DB	MCPA	2,4,5-TP (Silvex)
DCPA diacid		

TABLE 2-20 METHOD 8260 (GC/MS) - VOLATILE ORGANIC COMPOUNDS

2-Chloroethyl vinyl ether	Diisopropyl ether (DIPE)
Chloroform	1,4-Dioxane
1-Chlorohexane	Epichlorohydrin
Chloromethane	Ethanol
Chloroprene	Ethyl acetate
2-Chlorotoluene	Ethyl t-butyl ether (ETBE)
4-Chlorotoluene	Ethyl methacrylate
Crotonaldehyde	Ethylbenzene
Cyclohexane	Ethylene oxide
1,2-Dibromo-3-chloropropane	Hexachlorobutadiene
1,2-Dibromoethane	Hexachloroethane
Dibromomethane	2-Hexanone
1,2-Dichlorobenzene	lodomethane
1,3-Dichlorobenzene	Isobutyl alcohol
1,4-Dichlorobenzene	Isopropylbenzene
cis-1,4-Dichloro-2-butene	p-Isopropyltoluene
trans-1,4-Dichloro-2-butene	Malononitrile
Dichlorodifluoromethane	Methacrylonitrile
1,1-Dichloroethane	Methanol
1,2-Dichloroethane	Methyl acrylate
1,1-Dichloroethene	Methyl-t-butyl ether (MTBE)
cis-1,2-Dichloroethene	Methyl methacrylate
trans-1,2-Dichloroethene	Methylcyclohexane
1,2-Dichloropropane	Methylene chloride
1,3-Dichloropropane	4-Methyl-2-pentanone (MIBK)
2,2-Dichloropropane	Naphthalene
1,3-Dichloro-2-propanol	Nitrobenzene
1,1-Dichloropropene	2-Nitropropane
cis-1,3-Dichloropropene	N-Nitroso-di-n-butylamine
trans-1,3-Dichloropropene	Paraldehyde
1,2,3,4-Diepoxybutane	Pentachloroethane
Diethyl ether	Pentafluorobenzene
	Chloroform 1-Chlorohexane Chloromethane Chloroprene 2-Chlorotoluene 4-Chlorotoluene Crotonaldehyde Cyclohexane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene

TABLE 2-20 (continued)

2-Pentanone	Styrene	Trichloroethene
2-Picoline	1,1,1,2-Tetrachloroethane	Trichlorofluoromethane
1-Propanol	1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane
2-Propanol	Tetrachloroethene	1,2,4-Trimethylbenzene
Propargyl alcohol	Toluene	1,3,5-Trimethylbenzene
ß-Propiolactone	o-Toluidine	Vinyl acetate
Propionitrile (Ethyl cyanide)	1,2,3-Trichlorobenzene	Vinyl chloride
n-Propylamine	1,2,4-Trichlorobenzene	o-Xylene
n-Propylbenzene	1,1,1-Trichloroethane	m-Xylene
Pyridine	1,1,2-Trichloroethane	p-Xylene

TABLE 2-21
METHOD 8261 (VD/GC/MS) - VOLATILE ORGANIC COMPOUNDS

Acetone	1,3-Dichlorobenzene	Methacrylonitrile
Acetonitrile	1,4-Dichlorobenzene	Methyl t-butyl ether (MTBE)
Acetophenone	cis-1,4-Dichloro-2-butene	Methyl methacrylate
Acrolein	trans-1,4-Dichloro-2-butene	Methylene chloride
Acrylonitrile	Dichlorodifluoromethane	1-Methylnaphthalene
Allyl Chloride	1,1-Dichloroethane	2-Methylnaphthalene
t-Amyl ethyl ether (TAEE) (4,4-Dimethyl-3-oxahexane)	1,2-Dichloroethane	4-Methyl-2-pentanone
t-Amyl methyl ether (TAME)	1,1-Dichloroethene	Naphthalene
Aniline	cis-1,2-Dichloroethene	N-Nitrosodibutylamine
Benzene	trans-1,2-Dichloroethene	N-Nitrosodiethylamine
Bromochloromethane	1,2-Dichloropropane	N-Nitrosodimethylamine
Bromodichloromethane	1,3-Dichloropropane	N-Nitrosodi-n-propylamine
Bromoform	2,2-Dichloropropane	N-Nitrosomethylethylamine
Bromomethane	1,1-Dichloropropene	Pentachloroethane
2-Butanone	cis-1,3-Dichloropropene	2-Picoline
<i>n</i> -Butylbenzene	trans-1,3-Dichloropropene	Propionitrile
sec-Butylbenzene	Diethyl ether	<i>n</i> -Propylbenzene
tert-Butylbenzene	Diisopropyl ether (DIPE)	Pyridine
Carbon disulfide	1,4-Dioxane	Styrene
Carbon tetrachloride	Ethanol	1,1,2,2-Tetrachloroethane
Chlorobenzene	Ethyl acetate	Tetrachloroethene
Chlorodibromomethane	Ethyl t-butyl ether (ETBE)	Tetrahydrofuran
Chloroethane	Ethyl methacrylate	Toluene
Chloroform	Ethylbenzene	o-Toluidine
Chloromethane	Hexachlorobutadiene	1,2,3-Trichlorobenzene
2-Chlorotoluene	2-Hexanone	1,2,4-Trichlorobenzene
4-Chlorotoluene	Iodomethane	1,1,1-Trichloroethane
1,2-Dibromo-3-chloropropane	Isobutyl alcohol	1,1,2-Trichloroethane
Dibromomethane	Isopropylbenzene	Trichloroethene
1,2-Dichlorobenzene	<i>p</i> -Isopropyltoluene	Trichlorofluoromethane

TABLE 2-21 (continued)

1,2,3-Trichloropropane	Vinyl chloride	<i>p</i> -Xylene
, ,	,	, ,

1,2,4-Trimethylbenzene *o*-Xylene 1,3,5-Trimethylbenzene *m*-Xylene

TABLE 2-22 METHOD 8270 (GC/MS) - SEMIVOLATILE ORGANIC COMPOUNDS

Acenaphthene Aroclor-1260

Acenaphthylene Azinphos-methyl

Acetophenone Barban

2-Acetylaminofluorene Benz(a)anthracene

1-Acetyl-2-thiourea Benzidine

Aldrin Benzo(b)fluoranthene

2-Aminoanthraquinone Benzo(k)fluoranthene

Aminoazobenzene Benzoic acid

4-Aminobiphenyl Benzo(g,h,i)perylene

3-Amino-9-ethylcarbazole Benzo(a)pyrene

Anilazine *p*-Benzoquinone

Aniline Benzyl alcohol

o-Anisidine α -BHC Anthracene β -BHC Aramite δ -BHC

Aroclor-1016 γ-BHC (Lindane)

Aroclor-1221 Bis(2-chloroethoxy)methane

Aroclor-1232 Bis(2-chloroethyl)ether

Aroclor-1242 Bis(2-chloro-1-methylethyl)ether

Aroclor-1248 Bis(2-ethylhexyl)phthalate

Aroclor-1254 4-Bromophenyl phenyl ether

Bromoxynil Demeton-S

Butyl benzyl phthalate Diallate (*cis* or *trans*)

Captafol 2,4-Diaminotoluene

Captan Dibenz(*a,j*)acridine

Carbaryl Dibenz(*a*,*h*)anthracene

Carbofuran Dibenzofuran

Carbophenothion Dibenzo(a,e)pyrene

Chlordane (NOS) 1,2-Dibromo-3-chloropropane

Chlorfenvinphos Di-*n*-butyl phthalate

4-Chloroaniline Dichlone

Chlorobenzilate 1,2-Dichlorobenzene 5-Chloro-2-methylaniline 1,3-Dichlorobenzene

4-Chloro-3-methylphenol 1,4-Dichlorobenzene

3-(Chloromethyl)pyridine hydrochloride 3,3'-Dichlorobenzidine

1-Chloronaphthalene 2,4-Dichlorophenol

2-Chloronaphthalene 2,6-Dichlorophenol

2-Chlorophenol Dichlorovos

4-Chloro-1,2-phenylenediamine Dicrotophos

4-Chloro-1,3-phenylenediamine Dieldrin

4-Chlorophenyl phenyl ether Diethyl phthalate

Chrysene Diethyl sulfate

Coumaphos Diethylstilbestrol

p-Cresidine Dimethoate

Crotoxyphos 3,3'-Dimethoxybenzidine

2-Cyclohexyl-4,6-dinitrophenol Dimethyl phthalate

4,4'-DDD Dimethylaminoazobenzene

4,4'-DDE 7,12-Dimethylbenz(a)anthracene

4,4'-DDT 3,3'-Dimethylbenzidine

Demeton-O α, α -Dimethylphenethylamine

2,4-Dimethylphenol Fluchloralin

1,2-Dinitrobenzene Fluoranthene

1,3-Dinitrobenzene Fluorene

1,4-Dinitrobenzene Heptachlor

4,6-Dinitro-2-methylphenol Heptachlor epoxide

2,4-Dinitrophenol Hexachlorobenzene

2.4-Dinitrotoluene Hexachlorobutadiene

2,6-Dinitrotoluene Hexachlorocyclopentadiene

Dinocap Hexachloroethane

Dinoseb Hexachlorophene

Di-*n*-octyl phthalate Hexachloropropene

Diphenylamine Hexamethylphosphoramide

5,5-Diphenylhydantoin Hydroquinone

1,2-Diphenylhydrazine Indeno(1,2,3-cd)pyrene

Disulfoton Isodrin

Endosulfan I Isophorone

Endosulfan II Isosafrole

Endosulfan sulfate Kepone

Endrin Leptophos

Endrin aldehyde Malathion

Endrin ketone Maleic anhydride

EPN Mestranol

Ethion Methapyrilene

Ethyl carbamate Methoxychlor

Ethyl methanesulfonate Methyl methanesulfonate

Famphur Methyl parathion

Fensulfothion 3-Methylcholanthrene

Fenthion 4,4'-Methylenebis(2-chloroaniline)

4,4'-Methylenebis(N,N-dimethylaniline) N-Nitrosodimethylamine

2-Methylnaphthalene N-Nitrosodiphenylamine

2-Methylphenol N-Nitrosodi-n-propylamine

3-Methylphenol N-Nitrosomethylethylamine

4-Methylphenol N-Nitrosomorpholine

Mevinphos N-Nitrosopiperidine

Mexacarbate N-Nitrosopyrrolidine

Mirex 5-Nitro-o-toluidine

Monocrotophos Octamethyl pyrophosphoramide

Naled 4,4'-Oxydianiline

Naphthalene Parathion

1,4-Naphthoquinone Pentachlorobenzene

1-Naphthylamine Pentachloronitrobenzene

2-Naphthylamine Pentachlorophenol

Nicotine Phenacetin

5-Nitroacenaphthene Phenanthrene

2-Nitroaniline Phenobarbital

3-Nitroaniline Phenol

4-Nitroaniline 1,4-Phenylenediamine

5-Nitro-o-anisidine Phorate

Nitrobenzene Phosalone

4-Nitrobiphenyl Phosmet

Nitrofen Phosphamidion

2-Nitrophenol Phthalic anhydride

4-Nitrophenol 2-Picoline (2-methylpyridine)

Nitroquinoline-1-oxide Piperonyl sulfoxide

N-Nitrosodi-n-butylamine Pronamide

N-Nitrosodiethylamine Propylthiouracil

Pyrene Toluene diisocyanate

Resorcinol o-Toluidine

Safrole Toxaphene

Strychnine 1,2,4-Trichlorobenzene

Sulfallate 2,4,5-Trichlorophenol

Terbufos 2,4,6-Trichlorophenol

1,2,4,5-Tetrachlorobenzene O,O,O-Triethylphosphorothioate

2,3,4,6-Tetrachlorophenol Trifluralin

Tetrachlorvinphos Trimethyl phosphate

Tetraethyl dithiopyrophosphate 2,4,5-Trimethylaniline

Tetraethyl pyrophosphate 1,3,5-Trinitrobenzene

Thionazine Tris(2,3-dibromopropyl)phosphate

Thiophenol (Benzenethiol)

Tri-p-tolyl phosphate

TABLE 2-23

METHOD 8275 (TE/GC/MS) - SEMIVOLATILE ORGANIC COMPOUNDS

Acenaphthene	2,2',3,4',5,5',6- Heptachlorobiphenyl
Acenaphthylene	Hexachlorobenzene
Anthracene	2,2',3,3',4,4'- Hexachlorobiphenyl
Benz(a)anthracene	2,2',3,4,4',5'- Hexachlorobiphenyl
Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene
Benzo(b)fluoranthene	Naphthalene
Benzo(g,h,i)perylene	2,2',3,3'4,4',5,5',6- Nonachlorobiphenyl
Benzo(a)pyrene	2,2',3,3',4,4',5,5'- Octachlorobiphenyl
4-Bromophenyl phenyl ether	2,2',4,5,5'-Pentachlorobiphenyl
2-Chlorobiphenyl	2,3',4,4',5-Pentachlorobiphenyl
1-Chloronaphthalene	Phenanthrene
Chrysene	Pyrene
2,2',3,3'4,4',5,5',6,6'- Decachlorobiphenyl	2,2'3,5'-Tetrachlorobiphenyl
Dibenz(a,h)anthracene	2,2'4,5'-Tetrachlorobiphenyl
Dibenzofuran	2,2',5,5'-Tetrachlorobiphenyl
Dibenzothiophene	2,3',4,4'-Tetrachlorobiphenyl
3,3'-Dichlorobiphenyl	1,2,4-Trichlorobenzene
Fluoranthene	2,2',5-Trichlorobiphenyl
Fluorene	2,3',5-Trichlorobiphenyl
2,2',3,3',4,4',5- Heptachlorobiphenyl	2,4',5-Trichlorobiphenyl
2,2',3,4,4',5,5'- Heptachlorobiphenyl	

2-endo,3-exo,5-endo,6-exo,8,9,10-Heptachlorobornane	aH)	-Sed)
	٠ ام	,

2-exo,3-endo,6-exo,8,9,10-Hexachlorobornane (Hx-Sed)

2,2,5,5,8,9,9,10,10-Nonachlorobornane (P62)

2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-Nonachlorobornane (P50)

2-endo,3-exo,5-endo,6-exo,8,8,10,10-Octachlorobornane (P26)

2-endo,3-exo,5-endo,6-exo,8,9,10,10-Octachlorobornane (P40)

2-exo,3-endo,5-exo,8,9,9,10,10-Octachlorobornane (P41)

2-exo,5,5,8,9,9,10,10-Octachlorobornane (P44)

Toxaphene

TABLE 2-24

METHODS 8280 (HRGC/LRMS) AND 8290 (HRGC/HRMS) - POLYCHLORINATED DIBENZOp-DIOXINS (PCDDs) AND POLYCHLORINATED DIBENZOFURANS (PCDFs)

1,2,3,4,6,7,8-HpCDD 2,3,4,6,7,8-HxCDF HpCDD, total HxCDF, total
HnCDD total HyCDE total
TIPODD, total
1,2,3,4,6,7,8-HpCDF OCDD
1,2,3,4,7,8,9-HpCDF OCDF TCDF, total
HpCDF, total 1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD PeCDD, total
1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDF
1,2,3,7,8,9-HxCDD 2,3,4,7,8-PeCDF
HxCDD, total PeCDF, total
1,2,3,4,7,8-HxCDF 2,3,7,8-TCDD
1,2,3,6,7,8-HxCDF TCDD, total
1,2,3,7,8,9-HxCDF 2,3,7,8-TCDF

TABLE 2-25

METHOD 8310 (HPLC) - POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene	Chrysene
Acenaphthylene	Dibenzo(a,h)anthracene
Anthracene	Fluoranthene
Benz(a)anthracene	Fluorene
Benzo(b)fluoranthene	Indeno(1,2,3-cd)pyrene
Benzo(k)fluoranthene	Naphthalene
Benzo(g,h,i)perylene	Phenanthrene
Benzo(a)pyrene	Pyrene

TABLE 2-26

METHOD 8315 - CARBONYL COMPOUNDS

Acetaldehyde	Decanal	Octanal
Acetone	2,5-Dimethylbenzaldehyde	Pentanal (Valeraldehyde)
Acrolein	Formaldehyde	Propanal (Propionaldehyde)
Benzaldehyde	Heptanal	<i>m</i> -Tolualdehyde
Butanal (Butyraldehyde)	Hexanal (Hexaldehyde)	o-Tolualdehyde
Crotonaldehyde	Isovaleraldehyde	<i>p</i> -Tolualdehyde
Cyclohexanone	Nonanal	

TABLE 2-27

METHOD 8316 (HPLC)

Acrolein	
Acrylamide	
Acrylonitrile	

TABLE 2-28 METHOD 8318 (HPLC) - *N*-METHYLCARBAMATES

Aldicarb (Temik)	Dioxacarb	Mexacarbate
Aldicarb sulfone	Formetanate hydrochloride	Oxamyl
Bendiocarb	3-Hydroxycarbofuran	Promecarb
Carbaryl (Sevin)	Methiocarb (Mesurol)	Propoxur (Baygon)
Carbofuran (Furadan)	Methomyl (Lannate)	Thiodicarb
m-Cumenyl methylcarbamate	Metolcarb	

TABLE 2-29

METHOD 8321 (HPLC/TS/MS) - NONVOLATILE ORGANIC COMPOUNDS

Disperse Brown 1 Asulam

Disperse Orange 3 Dichlorvos (DDVP)

Disperse Orange 30 Dimethoate
Disperse Red 1 Disulfoton

Disperse Red 5 Famphur

Disperse Red 13 Fensulfothion

Disperse Yellow 5 Merphos

Solvent Red 3 Methomyl

Solvent Red 23 Monocrotophos

Naled

<u>Anthraquinone Dyes</u> Parathion methyl

Disperse Blue 3 Phorate

Disperse Blue 14 Thiofanox

Disperse Red 60 Trichlorfon

Tris(2,3-dibromopropyl) phosphate (Tris-BP)

Chlorinated Phenoxyacid Compounds

2,4-D Silvex (2,4,5-TP)

2,4-D, butoxyethanol ester 2,4,5-T

2,4-D, ethylhexyl ester 2,4,5-T, butyl ester

Dalapon 2,4,5-T, butoxyethanol ester

2,4-DB

Dicamba

Dichlorprop

Dinoseb

MCPA

MCPP

Carbamates

Aldicarb Linuron

Aldicarb sulfone Methiocarb

Aldicarb sulfoxide Methomyl

Aminocarb Metolcarb

Barban Mexacarbate

Bendiocarb Molinate
Benomyl Monuron
Bromacil Neburon
Butylate Oxamyl
Carbaryl Pebulate

Carbendazim o-Phenylenediamine

Carbofuran Physostigmine

Carbofuran phenol Physostigmine salicylate

Carbosulfan Promecarb
Chloropropham Propham
Chloroxuron Propoxur

m-Cumenyl methyl carbamate Prosulfocarb

Diuron Siduron

EPTC Tebuthiuron
Fenuron Thiodicarb

Fluometuron Thiophanate-methyl

Formetanate hydrochloride Triallate

3-Hydroxycarbofuran

TABLE 2-29A

METHOD 8323 (MS) - ORGANOTINS BY MICRO-LIQUID CHROMATOGRAPHY-ELECTROSPRAY ION TRAP MASS SPECTROMETRY

Dibutyltin dichloride	Monophenyltin trichloride
Diphenyltin dichloride	Tributyltin chloride
Monobutyltin trichloride	Triphenyltin chloride

TABLE 2-30 METHOD 8325 (HPLC/PB/MS) - NONVOLATILE ORGANIC COMPOUNDS

Benzidine	3,3'-Dimethylbenzidine
Benzoylprop ethyl	Diuron
Carbaryl	Linuron (Lorox)
o-Chlorophenyl thiourea	Monuron
3,3'-Dichlorobenzidine	Rotenone
3,3'-Dimethoxybenzidine	Siduron

TABLE 2-31 METHOD 8330 (HPLC) - NITROAROMATICS AND NITRAMINES

2-Amino-4,6-dinitrotoluene (2-Am-DNT)	2-Nitrotoluene (2-NT)
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	3-Nitrotoluene (3-NT)
3,5-Dinitroanaline (3,5-DNA)	4-Nitrotoluene (4-NT)
1,3-Dinitrobenzene (1,3-DNB)	Nitroglycerin
2,4-Dinitrotoluene (2,4-DNT)	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)
2,6-Dinitrotoluene (2,6-DNT)	Pentaerythritol tetranitrate (PETN)
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	1,3,5-Trinitrobenzene (1,3,5-TNB)
Methyl-2,4,6-trinitrophenyl-nitramine (Tetryl)	2,4,6-Trinitrotoluene (2,4,6-TNT)
Nitrobenzene (NB)	

TABLE 2-32

METHOD 8331 (HPLC)

Tetrazene

TABLE 2-33

METHOD 8332 (HPLC)

Nitroglycerine

TABLE 2-34

METHOD 8410 - SEMIVOLATILE ORGANIC COMPOUNDS

Acenaphthene	1,2-Dichlorobenzene
Acenaphthylene	1,3-Dichlorobenzene
Anthracene	1,4-Dichlorobenzene
Benzo(a)anthracene	2,4-Dichlorophenol
Benzo(a)pyrene	Diethyl phthalate
Benzoic acid	Dimethyl phthalate
Bis(2-chloroethoxy)methane	4,6-Dinitro-2-methylphenol
Bis(2-chloroethyl)ether	2,4-Dinitrophenol
Bis(2-chloro-1-methylethyl)ether	2,4-Dinitrotoluene
Bis(2-ethylhexyl) phthalate	2,6-Dinitrotoluene
4-Bromophenyl phenyl ether	Di-n-octyl phthalate
Butyl benzyl phthalate	Di-n-propyl phthalate
4-Chloroaniline	Fluoranthene
4-Chloro-3-methylphenol	Fluorene
2-Chloronaphthalene	Hexachlorobenzene
2-Chlorophenol	1,3-Hexachlorobutadiene
4-Chlorophenol	Hexachlorocyclopentadiene
4-Chlorophenyl phenyl ether	Hexachloroethane
Chrysene	Isophorone
Dibenzofuran	2-Methylnaphthalene
Di- <i>n</i> -butyl phthalate	2-Methylphenol

4-Methylphenol	<i>N</i> -Nitrosodiphenylamine
Naphthalene	N-Nitroso-di-n-propylamine
2-Nitroaniline	Pentachlorophenol
3-Nitroaniline	Phenanthrene

4-Nitroaniline Phenol

Pyrene

2-Nitrophenol 1,2,4-Trichlorobenzene
4-Nitrophenol 2,4,5-Trichlorophenol

N-Nitrosodimethylamine 2,4,6-Trichlorophenol

TABLE 2-35

METHOD 8430 (GC/FT-IR) - BIS(2-CHLOROETHYL) ETHER AND ITS HYDROLYSIS PRODUCTS

Bis(2-chloroethyl) ether

2-Chloroethanol

2-(2-Chloroethoxy) ethanol

Diethylene glycol

Ethylene glycol

TABLE 2-35A

METHOD 8440 - TOTAL RECOVERABLE PETROLEUM HYDROCARBONS BY INFRARED SPECTROPHOTOMETRY

This method does not give a specific compound list but is applicable to total recoverable petroleum hydrocarbons.

TABLE 2-36

METHOD 8510 (COLORIMETRIC SCREENING) - RDX AND HMX

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

TABLE 2-36A

METHOD 8520 (CONTINUOUS MEASUREMENT OF FORMALDEHYDE IN AMBIENT AIR)

Formaldehyde

TABLE 2-37

METHOD 8535 (COLORIMETRIC SCREENING) - VOLATILE ORGANIC HALIDES

Carbon tetrachloride

Perchloroethylene (Tetrachloroethene)

Trichloroethylene

Trihalomethanes

TABLE 2-38

METHOD 8540 (UV-INDUCED COLORIMETRY) - PENTACHLOROPHENOL

Pentachlorophenol

TABLE 2-39

DETERMINATIVE METHODS FOR INORGANIC ANALYTES

Analyte	Applicable Meth	nods
Aluminum	6010, 6020, 7000, 7	010
	6010, 6020, 6200, 6800, 7000, 7	
•	6010, 6	
	6010, 6020, 6200, 6800, 7	
	6010, 6020, 6200, 6800, 7000, 7	
	6010, 6020, 6200, 6800, 7000, 7	
	6010, 6020, 6200, 6800, 7000, 7	
Magnasium	6010, 6030, 6800, 7	2000
Managanasa		000
	6010, 6020, 6200, 6800, 7470, 7471, 7472, 7473, 7	
Molybdenum		
Nickel	6010, 6020, 6200, 6800, 7000, 7	'010
NickelNitrate	6010, 6020, 6200, 6800, 7000, 7 6500, 9056, 9	'010)210
Nitrate Nitrite		010 0210 0216
Nickel Nitrate Nitrite Osmium		7010 9210 9216 7000
Nickel Nitrate Nitrite Osmium Perchlorate		7010 9210 9216 7000 8860
Nickel Nitrate Nitrite Osmium Perchlorate Phosphate		7010 9210 9216 7000 8860 9056
Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus		7010 9210 9216 7000 8860 9056 6010
Nickel Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white		7010 9210 9216 7000 8860 9056 6010 7580
Nickel Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium		7010 9210 9216 7000 8860 9056 9010 7580 7000
Nickel Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium		7010 9210 9216 7000 8860 9056 9010 7580 7000 8200
Nitrate Nitrate Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium		7010 9210 9216 7000 8860 9056 9010 7580 7000 9200 7742
Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica		7010 9210 9216 7000 8860 9056 9010 7580 7000 9200 7742
Nickel Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica Silver		7010 9210 9216 7000 8860 9056 9010 7580 7000 7742 9010 7010
Nickel Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica Silver Sodium		7010 9210 9216 7000 8860 9056 9010 7580 7000 7742 8010 7000
Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica Silver Sodium Strontium		7010 9210 9216 7000 8860 9056 9010 7580 7000 7742 8010 7000 7000 7000
Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica Silver Sodium Strontium Sulfate		7010 9210 9216 7000 8860 9056 9000 7580 7000 7010 7000 9056
Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica Silver Sodium Strontium Sulfate Sulfide		7010 9210 9216 7000 8860 9056 9010 7000 7010 7000 7000 7000 9056 9215
Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica Silver Sodium Strontium Strontium Sulfate Sulfide Thallium		7010 9210 9216 7000 8860 9056 9010 7000 7010 7000 7000 7000 9056 9215 7010
Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica Silver Sodium Strontium Sulfate Sulfide Thallium Thorium		7010 9210 9216 7000 8860 9056 9010 7580 7000 7000 7000 9056 9215 7010 9200
Nitrate Nitrite Osmium Perchlorate Phosphate Phosphorus Phosphorus, white Potassium Rubidium Selenium Silica Silver Sodium Strontium Sulfate Sulfide Thallium Thorium Tin		7010 9210 9216 7000 8860 9056 9010 7000 7000 7000 9056 9215 7010 7000 7000 7000

TABLE 2-39 (cont)

Vanadium	6010, 6020, 6200, 6800, 7000, 7010
	6010, 6020, 6200, 6800, 7000, 7010
	6200

TABLE 2-40A

RECOMMENDED SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES FOR ORGANIC CHEMICALS^a (Note: Footnotes are located on the last page of the table.)

VOLATILE ORGANICS

Sample Matrix	Container	Preservative ¹	Holding Time ¹
Concentrated waste samples	Method 5035: See the method. Method 5021: See the method. Methods 5031 and 5032: See the methods. Use PTFE-lined lids for all procedures.	Cool to 0 - 6 °C.	14 days
Aqueous samples with no residual chlorine present	Methods 5030, 5031, and 5032: 3 x 40-mL vials with PTFE-lined septum caps	Cool to 0 - 6 °C and adjust pH to less than 2 with H ₂ SO ₄ , HCl, or solid NaHSO ₄	14 days
		If carbonaceous materials are present, or if MTBE and other fuel oxygenate ethers are present and a high temperature sample preparative method is to be used, do not acid preserve the samples.	7 days
		If the reactive compound 2-chloroethyl vinyl ether ^b is an analyte of interest, collect a second set of samples without acid preservatives and analyze immediately.	7 days

RECOMMENDED SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES FOR ORGANIC CHEMICALS^a

VOLATILE ORGANICS (continued)

Sample Matrix	Container	Preservative ¹	Holding Time ¹
Aqueous samples WITH residual chlorine present	Methods 5030, 5031, and 5032: 3 x 40-mL vials with PTFE-lined septum caps	Collect sample in a 125-mL container which has been pre-preserved with 4 drops of 10% sodium thiosulfate solution. Gently swirl to mix sample and transfer to a 40-mL VOA vial. Cool to 0 - 6 °C and adjust pH to less than 2 with H ₂ SO ₄ , HCl, or solid NaHSO ₄ .	14 days
		If carbonaceous materials are present, or if MTBE and other fuel oxygenate ethers are present and a high temperature sample preparative method is to be used, do not acid preserve the samples.	7 days
		If the reactive compound 2-chloroethyl vinyl ether ^b is an analyte of interest, collect a second set of samples without acid preservatives and analyze immediately.	7 days
Acrolein and acrylonitrile in aqueous samples	Methods 5030, 5031, and 5032: 3 x 40-mL vials with PTFE-lined septum caps	Adjust to pH 4-5. Cool to 0 - 6 °C. These compounds are highly reactive and should be analyzed as soon as possible.	7 days
Solid samples (e.g., soils, sediments, sludges, ash)	Method 5035: See the method. Method 5021: See the method. Methods 5031 and 5032: See the methods.	See the individual methods. If vinyl chloride, styrene, or 2-chloroethyl vinyl ether are analytes of interest, collect a second set of samples without acid preservatives and analyze as soon as possible.	14 days 7 days

RECOMMENDED SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES FOR ORGANIC CHEMICALS^a

SEMIVOLATILE ORGANICS/ORGANOCHLORINE PESTICIDES AND HERBICIDES

Sample Matrix	Container	Preservative ¹	Holding Time ¹
Concentrated waste samples	125-mL wide-mouth glass with PTFE-lined lid	None	Samples extracted within 14 days and extracts analyzed within 40 days following extraction.
Aqueous samples with no residual chlorine present	4 x 1-L amber glass container with PTFE- lined lid, or other size, as appropriate, to allow use of entire sample for analysis.	Cool to 0 - 6 °C.	Samples extracted within 7 days and extracts analyzed within 40 days following extraction.
Aqueous samples WITH residual chlorine present	4 x 1-L amber glass container with PTFE- lined lid, or other size, as appropriate, to allow use of entire sample for analysis.	Add 3 mL 10% sodium thiosulfate solution per gallon (or 0.008%). Addition of sodium thiosulfate solution to sample container may be performed in the laboratory prior to field use. Cool to 0 - 6 °C.	Samples extracted within 7 days and extracts analyzed within 40 days following extraction.
Solid samples (e.g., soils, sediments, sludges, ash)	250-mL wide-mouth glass container with PTFE-lined lid	Cool to 0 - 6 °C.	Samples extracted within 14 days and extracts analyzed within 40 days following extraction.

RECOMMENDED SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES FOR ORGANIC CHEMICALS^a

POLYCHLORINATED BIPHENYLS, POLYCHLORINATED DIBENZO-p-DIOXINS, AND POLYCHLORINATED DIBENZOFURANS

Sample Matrix	Container	Preservative ¹	Holding Time ²
Concentrated waste samples	125-mL wide-mouth glass with PTFE-lined lid	None	None
Aqueous samples with no residual chlorine present	4 x 1-L amber glass container with PTFE- lined lid, or other size, as appropriate, to allow use of entire sample for analysis.	Cool to 0 - 6 °C.	None
Aqueous samples WITH residual chlorine present	4 x 1-L amber glass container with PTFE- lined lid, or other size, as appropriate, to allow use of entire sample for analysis.	Add 3 mL 10% sodium thiosulfate solution per gallon (or 0.008%). Addition of sodium thiosulfate solution to sample container may be performed in the laboratory prior to field use.	None
		Cool to 0 - 6 °C	
Solid samples (e.g., soils, sediments, sludges, ash)	250-mL wide-mouth glass container with PTFE-lined lid.	Cool to 0 - 6 °C.	None

^a The information presented in this table does not represent EPA requirements, but rather is intended solely as guidance. Selection of containers, preservation techniques, and applicable holding times should be based on the stated project-specific DQOs.

¹ The exact sample, extract, and standard storage temperature should be based on project-specific requirements and/or manufacturer's recommendations for commercially available standards. Furthermore, alternative storage temperatures may be appropriate based on demonstrated analyte stability in a given matrix, provided the stated DQOs for a project-specific application are still attainable.

² A longer holding time may be appropriate if it can be demonstrated that the reported analyte concentrations are not adversely affected from preservation, storage, and analyses performed outside the recommended holding times.

TABLE 2-40B

RECOMMENDED CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES FOR INORGANIC AND OTHER ANALYTES IN AQUEOUS MATRICES (SEE CHAPTER THREE FOR MORE DETAILED GUIDANCE, INCLUDING REGARDING SOLID MATRICES) (Footnotes are located on the next page.)

Name	Container ¹	Preservation ²	Holding Time ³
Inorganic Tests:			
Chloride	P, G	None required	28 days
Cyanide, total and amenable to chlorination	P, G	Cool to 0 - 6 °C; if oxidizing agents present add 5 mL 0.1N NaAsO ₂ per L or 0.06 g of ascorbic acid per L; adjust pH>12 with 50% NaOH. See Method 9010 for other interferences.	14 days
Hydrogen ion (pH)	P, G	None required	As soon as possible
Nitrate	P, G	Cool to 0 - 6 °C.	48 hours
Sulfate	P, G	Cool to 0 - 6 °C.	28 days
	P, G	Cool to 0 - 6 °C , add zinc acetate, NaOH to pH >9	7 days
Metals:	P, G P, G	Cool to 0 - 6 °C , add zinc acetate, NaOH to pH >9 Cool to 0 - 6 °C.	7 days 24 hours
Metals: Chromium VI			·
Metals: Chromium VI Mercury	P, G	Cool to 0 - 6 °C.	24 hours
Metals: Chromium VI Mercury Mercury (soil/sediment)	P, G P, G	Cool to 0 - 6 °C. HNO ₃ to pH<2	24 hours 28 days
Metals: Chromium VI Mercury Mercury (soil/sediment) Mercury Species in soil/sediment	P, G P, G P, G	Cool to 0 - 6 °C. HNO₃ to pH<2 Cool to 0 - 6 °C.	24 hours 28 days 28 days
Sulfide Metals: Chromium VI Mercury Mercury (soil/sediment) Mercury Species in soil/sediment All Other Metals Hexane Extractable Material (HEM; Oil and grease)	P, G P, G P, G P, G	Cool to $0 - 6$ °C. HNO ₃ to pH<2 Cool to $0 - 6$ °C. Cool to $0 - 6$ °C.	24 hours 28 days 28 days 5 days

Name	Container ¹	Preservation ²	Holding Time ³
Alpha, beta and radium	P, G	HNO₃ to pH<2	6 months

The information presented in this table does not represent EPA requirements, but rather is intended solely as guidance. Selection of containers, preservation techniques and applicable holding times should be based on the stated project-specific DQOs. See Chapter Three, Chapter Four, or the individual methods for more information.

¹ Polyethylene (P) or glass (G)

The exact sample, extract, and standard storage temperature should be based on project-specific requirements and/or manufacturer's recommendations for commercially available standards. Furthermore, alternative storage temperatures may be appropriate based on demonstrated analyte stability in a given matrix, provided the stated DQOs for a project-specific application are still attainable.

A longer holding time may be appropriate if it can be demonstrated that the reported analyte concentrations are not adversely affected by preservation, storage, and analyses performed outside the recommended holding times.

TABLE 2-41
PREPARATION METHODS FOR ORGANIC ANALYTES
(Note: Footnotes are located on the last page of the table.)

		Matrix		
Analyte Type	Aqueous ¹	Solids	Sludges and Emulsions ^{1,2}	Organic Liquids, Tars, Oils
Acid Extractable	35103520 (pH ≤ 2)	3540 3541 3542 ¹³ 3545 3546 3550	3520 (pH ≤ 2)	3650 3580 ³
Acrolein ¹² , Acrylonitrile ¹² , and Acetonitrile	5031 5032 ¹²	5031 5032 ¹²	5031 5032 ¹²	3585
Acrylamide	80324			
Aniline and Selected Derivatives	3510 3520 (pH >11) 5031 ¹¹	3540 3541 3545 3550	3520 (pH >11)	3580 ³
Aromatic Volatiles	5021 5030 5032	5021 5032 5035	5030 5032	3585
Base/Neutral Extractable	3510 3511 3520 (pH >11)	3540 3541 3542 ¹³ 3545 3546 3550	3520 (pH >11)	3650 3580 ³
Carbamates	8318 ⁵ 8321	8318 ⁵ 8321	8318 ⁵	8318 ⁵
Chlorinated Herbicides	3535 (pH < 1) 8151^6 (pH < 2) 8321	3545 3546 8151 ⁶ 8321	8151 ⁶ (pH ≤ 2)	3580³
Chlorinated Hydrocarbons	3510 3520 (pH as received)	3540 3541 3550	3520 (pH as received)	3580 ³
Dyes	3510 3520	3540 3541 3545 3550		

TABLE 2-41 (continued) PREPARATION METHODS FOR ORGANIC ANALYTES

	Matrix			
Analyte Type	Aqueous ¹	Solids	Sludges and Emulsions ^{1,2}	Organic Liquids, Tars, Oils
Explosives	3535 8330 ⁷ 8331 ⁸	8330 ⁷ 8331 ⁸		
Formaldehyde	8315 ⁹	8315 ⁹		
Haloethers			3510 3520	3540 3541 3545 3550
Halogenated Volatiles	5021 5030 5032	5021 5032 5035	5030	5021 (methanol extr) 5035 / 5030 (methanol extr) 5032 3585
Nitroaromatics and Cyclic Ketones	3510 3520 (pH 5-9) 3535	3540 3541 3545 3550	3520 (pH 5-9)	3580 ³
Nitrosamines	3510 3520	3540 3541 3545 3550		
Non-halogenated Volatiles	5021 5030 5031 5032	5021 5031 5032 5035	5021 5031 5032	5021 (methanol extr) 5035 / 5030 (methanol extr) 5032 3585
Organochlorine Pesticides	3510 3520 3535 (pH 5-9)	3540 3541 3545 3546 3550 3562	3520 (pH 5-9)	3580 ³
Organophosphorus Pesticides	3510 3520 (pH 5-8) 3535	3540 3541 3545 3546	3520 (pH 5-8)	3580 ³

TABLE 2-41 (continued) PREPARATION METHODS FOR ORGANIC ANALYTES

	Matrix			
	Aqueous ¹	Solids	Sludges and Emulsions ^{1,2}	Organic Liquids, Tars, Oils 3650 3580 ³
Phenols	3510 3520 (pH ≤ 2) 3535	3540 3541 3545 3546 3550 3562	3520 (pH ≤ 2)	3650 3580 ³
Phthalate Esters	3510 3520 3535 (pH 5-7)	3540 3541 3545 3546 3550	3520 (pH 5- 7)	3580 ³
Polychlorinated Biphenyls	3510 3520 3535 (pH 5-9)	3540 3541 3545 3546 3562	3520 (pH 5-9)	3580 ³
PCDDs and PCDFs	8280 ¹⁰ 8290 ¹⁰	3545 3546 8280 ¹⁰ 8290 ¹⁰	8280 ¹⁰ 8290 ¹⁰	8280 ¹⁰ 8290 ¹⁰
Polynuclear Aromatic Hydrocarbons	3510 3511 3520 (pH as received)	3540 3541 3545 3546 3550 3561	3520 (pH as received)	3580 ³
Volatile Organics	5021 5030 5031 5032	5021 5031 5032 5035	5021 5030 5031 5032	5021 (methanol extr) 5035 / 5030 (methanol extr) 5032 3585
Wipes (Chemical Agents		3572		

The pH at which extraction should be performed is shown in parentheses.

² If attempts to break an emulsion are unsuccessful, these methods may be used.

Method 3580 is only appropriate if the sample is soluble in the specified solvent.

⁴ Method 8032 contains the extraction, cleanup, and determinative procedures for this analyte.

- Method 8318 contains the extraction, cleanup, and determinative procedures for these analytes.
- ⁶ Method 8151 contains the extraction, cleanup, and determinative procedures for these analytes.
- Method 8330 contains the extraction, cleanup, and determinative procedures for these analytes.
- Method 8331 is for Tetrazene only, and contains the extraction, cleanup, and determinative procedures for this analyte.
- 9 Method 8315 contains the extraction, cleanup, and determinative procedures for this analyte.
- Methods 8280 and 8290 contain the extraction, cleanup, and determinative procedures for these analytes.
- Method 5031 may be used when only aniline is to be determined.
- Method 5032 may be used for acrolein and acrylonitrile.
- Method 3542 is used for extraction of semivolatiles from stack samples collected using Method 0010.

TABLE 2-42 CLEANUP METHODS FOR ORGANIC ANALYTE EXTRACTS

Analyte Type	Method
Acid Extractable	3650, 3640
Base/Neutral Extractable	3650, 3640
Carbamates	8318 ¹
Chlorinated Herbicides	8151 ²
Chlorinated Hydrocarbons	3620, 3640
Haloethers	3620, 3640
Nitroaromatics & Cyclic Ketones	3620, 3640
Nitrosamines	3610, 3620, 3640
Organochlorine Pesticides	3620, 3630, 3640 3660
Organophosphorus Pesticides	3620
Phenols	3630, 3640, 3650 8041 ³
Phthalate Esters	3610, 3611, 3620 3640
Polychlorinated Biphenyls	3620, 3630, 3640 3660, 3665
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans	8280 ⁴ 8290 ⁴
Polynuclear Aromatic Hydrocarbons	3610, 3611 3630, 3640, 3650

Method 8318 contains the extraction, cleanup, and determinative procedures for these analytes.
 Method 8151 contains the extraction, cleanup, and determinative procedures for these analytes.
 Method 8041 includes a derivatization technique followed by GC/ECD analysis, if interferences are encountered using GC/FID.
 Methods 8280 and 8290 contain the extraction, cleanup, and determinative procedures for these analytes.

TABLE 2-43 DETERMINATIVE METHODS ORGANIC ANALYTES

Analyte Type	GC/MS Method	Specific GC Method ⁶	HPLC Method
Acid Extractable	8270	8410 ⁶	
Acrolein, Acrylonitrile, Acetonitrile	8260, 8261	8015, 8031, 8033 ¹	8315 ² , 8316
Acrylamide	8260	8032	8316
Aniline and Selected Derivatives	8270	8131	
Aromatic Volatiles	8260, 8261	8021	
Base/Neutral Extractable	8270	8410 ⁶	83254
Carbamates			8318, 8321
Chlorinated Herbicides	8270 ³	8151	8321
Chlorinated Hydrocarbons	8270	8121	
Diesel Range Organics (DRO)		8015, 8440 ⁷	
Dyes			8321
Explosives		8095	8330, 8331, 8332
Formaldehyde			8315
Gasoline Range Organics (GRO)		8015	
Haloethers	8270	8111, 8430	
Halogenated Volatiles	8260, 8261	8011, 8021	
Nitroaromatics and Cyclic Ketones	8270	8091	8330 ⁵
Nitrosoamines	8270	8070	
Non-halogenated Volatiles	8260	8015	8315
Organochlorine Pesticides	8270 ³ , 8276	8081, 8085 ⁶	
Organophosphorus Pesticides	8270 ³	8141, 8085 ⁶	8321
Phenols	8270	8041, 8410 ⁶	
Phthalate Esters	8270	8061, 8410 ⁶	
Polychlorinated Biphenyls	8270 ³	8082	
PCDDs and PCDFs	8280, 8290		
Polynuclear Aromatic Hydrocarbons	8270	8100, 8410 ⁶	8310
Volatile Organics	8260, 8261	8011, 8015, 8021, 8031, 8032, 8033	8315, 8316

Of these analytes, Method 8033 is for acetonitrile only.
Of these analytes, Method 8315 is for acrolein only.
This method is an alternative confirmation method, not the method of choice.

Benzidines and related compounds.

Nitroaromatics (see "Explosives").

Includes GC/ES methods, e.g., Methods 8085 and 8410.

FT-IR determinative method only. Does not use GC.

TABLE 2-44

PREPARATION METHODS FOR INORGANIC ANALYSES ¹

Matrix	Method
Surface water	3005, 3010, 3015, 3020
Groundwater	3005, 3010, 3015, 3020
Extracts	3010, 3015, 3020
Aqueous samples containing suspended solids	3010, 3015, 3020
Oils	3031, 3040, 3051, 3052 ²
Oil sludges	3031, 3052 ²
Tars	3031, 3052 ²
Waxes	3031, 3040, 3052 ²
Paints	3031, 3052 ²
Paint sludges	3031, 3052 ²
Petroleum products	3031, 3040, 3052 ²
Sediments	$3050, 3051, 3052^2, 3060^3, 3200^4$
Sludges	3050, 3051, 3052 ² , 3060 ³
Soil samples	$3050, 3051, 3052^2, 3060^3, 3200^4$
Ashes	3052 ²
Biological tissues	3052 ²

¹It is the responsibility of the analyst to refer to each analytical method to determine applicability of the chosen method to a specific waste type and target analyte.

²For total decomposition analysis ONLY.

³For the analysis of samples for hexavalent chromium ONLY.

⁴For the analysis of samples for mercury or mercury species ONLY.

TABLE 2-45

USE OF LEACHING, EXTRACTION AND DIGESTION METHODS FOR INORGANIC ANALYSIS (In order of increasing strength)

Method	Method Name	Reagents & Conditions	Use
1310	Extraction Procedure (EP) Toxicity Test Method and Structural Integrity Test	Dilute acetic acid	Simulate leaching that would result from codisposal of a solid waste and municipal waste in a sanitary landfill ¹
1311	Toxicity Characteristic Leaching Procedure	Extraction Fluid # 1 Dilute glacial acetic acid and NaOH, pH 4.93 ± 0.05 Extraction Fluid # 2 Dilute glacial acetic acid, pH 2.88 ± 0.05	Simulate leaching that would result from codisposal of a solid waste and municipal waste in a sanitary landfill ¹
1312	Synthetic Precipitation Leaching Procedure	Dilute H ₂ SO ₄ and HNO ₃ (synthetic acid rain)	Simulate acid rain leaching of a waste
1313	Liquid-Solid Partitioning as a Function of Extract pH Batch Extraction Procedure	Dilute HNO ₃ , KOH	Industrial wastes, soils, sludges, combustion residues, sediments, stabilized materials, construction materials, and mining wastes
1316	Liquid-Solid Partitioning as a Function of Liquid-to-Solid Ratio in Solid Materials Using a Parallel Batch Procedure	None	Industrial wastes, soils, sludges, combustion residues, sediments, stabilized materials, construction materials, and mining wastes
1320	Multiple Extraction Procedure	Dilute H ₂ SO ₄ and HNO ₃ (synthetic acid rain)	Simulate long-term acid rain leaching of a waste
3005	Acid Digestion of Waters for Total Recoverable or Dissolved Metals Analysis by FLAA or ICP Spectroscopy	HNO ₃ , heat	Surface water and groundwater
3010	Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy	HNO ₃ , HCl, heat	Aqueous samples and extracts
3015	Microwave Assisted Acid Digestion of Aqueous Samples and Extracts	HNO₃ or alternatively HNO₃ and HCl, (pressure, heat)	Aqueous samples and extracts

SW-846 Update V TWO - 76 Revision 5
July 2014

TABLE 2-45 (continued)

USE OF LEACHING, EXTRACTION AND DIGESTION METHODS FOR INORGANIC ANALYSIS (In order of increasing strength)

Method	Method Name	Reagents & Conditions	Use
3020	Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by GFAA Spectroscopy	HNO ₃ , heat	Aqueous samples and extracts for GFAA work only
3031	Acid Digestion of Oils for Metals Analysis by Atomic Absorption or ICP Spectrometry	Potassium permanganate, H ₂ SO ₄ , HNO ₃ , HCI, heat	Oils, oily sludges, tars, waxes, paint, paint sludge, and other viscous petroleum products
3040	Dissolution Procedure for Oils, Greases, or Waxes	Solvent (e.g., xylene, kerosene, or MIBK)	Dissolution of oils, oily wastes, greases and waxes
3050	Acid Digestion of Sediments, Sludges, and Soils	HNO ₃ and H ₂ O ₂ , heat (for GFAA or ICPMS) HNO ₃ , H ₂ O ₂ , and HCl, heat (for ICP-AES or FLAA)	Sediments, soils, and sludges
3051	A Microwave Assisted Acid Digestion of Sediments Sludges, Soils, and Oils	HNO ₃ , or alternatively HNO ₃ and HCl, microwave assisted (pressure, heat)	Sludges, sediments, soils and oils
3052	Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices	HNO_3 , HF , HCI (optional) H_2O_2 (optional), heat, pressure	Siliceous, organic and other complex matrices for total sample decomposition
3060A	Alkaline Digestion for Hexavalent Chromium	Na ₂ CO ₃ /NaOH, heat	Soils, sludges, sediments and some industrial wastes for the analysis of hexavalent chromium only.

¹As described in the respective background documents developed in support of the rulemakings, which added required use of these methods to the Toxicity Characteristic regulation (Method 1311 replaced Method 1310 for Toxicity Characteristic determinations on March 29, 1990, 55 FR 11862).

TABLE 2-46 SCREENING METHODS FOR ORGANIC ANALYTES

		Matrix		
Analyte Type	Aqueous	Solids	Sludges and Emulsions	Organic Liquids, Tars, Oils
Chlordane		4041		
2,4-Dichlorophenoxyacetic acid	4015	4015		
Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)		4051 8510		
Octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX)		8510		
Pentachlorophenol	4010	4010 8540	4010	
Petroleum Hydrocarbons		4030		
Poly-Chlorinated Biphenyls (PCBs)	4425 (coplanar)	4020 4425 (coplanar)		4020 (non-aqueous)
Polychlorinated Dibenzodioxins	4425	4425		
Polychlorinated Dibenzofurans	4425	4425		
Polynuclear Aromatic Hydrocarbons (PAHs)	4425	4035 4425		
Toxaphene		4040		
Triazine Pesticides	4670 (quantitative)			
1,1,1,-Trichloro-2,2- bis(chlorophenyl)ethane (DDT) and breakdown products		4042		
Trinitrotoluene (TNT)		4050 8515		

to be analyzed fo Dioxin? 8280 or 8290 characteristic of Aqueous Liquid Solid or Sludge Does the sample need Organic Liquid characteristic o Aqueous Sampl sample extraction? Sample Prepa Sample Prepa Sample Prep Procedure: 3540 3541 3545 Procedure: 3546, 3550, 3560, 3561, 3562, 3580 3510, 3520, 3535 3650 or 3580 GC/MS Anaylsis Analysis Procedure Is cleanup needed? 8260, 8261 Cleanup Procedures: Alumina Column for Petroleum Wastes 3611 GC Analysis Procedures : 801 EUB and DBCP:
Nonhalogenated Volatile Compounds:
Halogenated Volatile Compounds:
Acrylonitrile: EDB and DBCP Florisil Column: Silicia Gel Column: 3620 3630 8015 Gel Permeation: 3640 3650 3660 3665 Acid Base Partitioning Sulfure: Sulfuric Acid Cleanup: Acrylamide 8032 GC Analysis Procedures : Phenols: Phthalate Esters: 8033 8061 8070 Organochlorine Pesticides 8081, 8085 H PLC Analysis Procedures: 8310, 8318, 8321, 8325, HPLC Analysis Procedures: PCBs: Nitroaromatics and Cyclic Ketone 8082 8091 Carbaryl Compounds: 8330, 8331, 8332 8095 8100 8111 Chlorinated Hydrocarbons: Organophosphorus Pesticides Chlorinated Herbicides: GC/MS 8151 GC/MS Procedure: 8270, 8275

FIGURE 2-1
ORGANIC ANALYSIS OPTIONS FOR SOLID AND LIQUID MATRICES

For illustrative purposes only.

See the disclaimer and Sec. 2.1 for information on the flexibility inherent in SW-846 methods.

NOTE: Not all clean-up methods are applicable to all listed methods. Consult the individual methods for further information on what clean-up methods are applicable and appropriate.

SW-846 Update V TWO - 79 Revision 5

FIGURE 2-2 SCHEMATIC OF SEQUENCE TO DETERMINE IF A WASTE IS HAZARDOUS BY CHARACTERISTIC

- Users can find information regarding the corrosivity characteristic for samples in a gel matrix at:http://yosemite.epa.gov/osw/rcra.nsf/0/7D573EA3E0F1576D8525670F006BEA5F/\$file/11719.pdf.
- 2. Biphasic or multiphasic waste can present a unique challenge. More information can be found on this topic in the Federal Register (Dec 21, 1995 FR (page 66389). This can be found online at: http://nepis.epa.gov/Exe/ZyNET.exe/10001E3Y.txt?ZyActionD=ZyDocument&Client=EPA&Index=1995%20Thru%2019 99&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A\ZYFILES\INDEX%2 0DATA\95THRU99\TXT\00000000\10001E3Y.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h|-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=p|f&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=48

FIGURE 2-3A RECOMMENDED SW-846 METHODS FOR ANALYSIS OF EP LEACHATES

FIGURE 2-3B

RECOMMENDED SW-846 METHODS FOR ANALYSIS OF TCLP LEACHATES

FIGURE 2-4A GROUNDWATER ANALYSIS - ORGANIC ANALYTES

For illustrative purposes only. See the disclaimer and Sec. 2.1 for information on the flexibility inherent in SW-846 methods.

FIGURE 2-4B GROUNDWATER ANALYSIS - INDICATOR ANALYTES

1- Barcelona 1984, (See Reference 1) 2- Riggin, 1984, (See Reference 2)

For illustrative purposes only. See the disclaimer and Sec. 2.1 regarding the flexibility inherent in SW-846 methods.

FIGURE 2-4C
GROUNDWATER ANALYSIS - INORGANIC ANALYTES

For illustrative purposes only. See the disclaimer and Sec. 2.1 regarding the flexibility inherent in SW-846 methods.

Appendix A: Summary of Updates/Changes in Chapter 2

- Improved overall method formatting for consistency with new SW-846 methods style guidance. The entire document was reformatted in Microsoft Word.docx format from the original .WPD and .PDF files.
- 2. The revision number was changed to five and the published date to July 2014.
- 3. A Table of Contents was compiled and added to make finding information easier.
- 4. Minor editorial and grammatical changes (e.g., removing extra spaces between words, adding commas, etc.) were made throughout Sections 1.0 to 2.7. The disclaimer statement in Section 1.0 was numbered to keep the format consistent, as it started at Section 2.0 originally.
- 5. Graphics in the Figures Section were modified from Corel Drawing Objects V.10 to .jpg graphical images where needed to remove artifacts from the conversion process. The text titles of each figure was centered and formatted.
- 6. This appendix was added to document non-significant changes made during the editorial process.
- 7. Bis(2-chloroisopropyl) ether was corrected to Bis(2-chloro-1-methylethyl) ether in Tables 2-1, 2-4, 2-15, 2-22, and 2-34.
- 8. Revised Table 2-40A to reflect current sample preservation guidance for styrene and vinyl chloride in aqueous samples (i.e., deletion of previously recommended practice of collecting a second set of samples without acid preservatives and analyze immediately, if styrene and vinyl chloride are analytes of interest).
- 9. Revised Table 2-41.
- 10. Revised Table 2-45 to include Methods 1313 and 1316.
- 11. Added Table 2-46.
- 12. Added Figure(s) for new leaching procedure(s).
- 13. Revised Table 2-40B to include Mercury Speciation hold times in addition to totals.
- 14. All other tables were updated with the target compound list in the current published methods.