§ 6.2: Properties of Sets

Theorem 6.2.1: For all sets A, B, and C:

Inclusion of Intersection: $A \cap B \subseteq A$ and $A \cap B \subseteq B$.

Inclusion in Union: $A \subseteq A \cup B$ and $B \subseteq A \cup B$.

Transitive Property of Subsets: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Procedural Versions of Set Definitions: Let $X, Y \subseteq U$ and $x, y \in U$.

$$x \in X \cup Y \iff x \in X \text{ or } x \in Y$$

$$x \in X \cap Y \iff x \in X \text{ and } x \in Y$$

$$x \in X - Y \iff x \in X \text{ and } x \notin Y$$

$$x \in X^c \iff x \notin X$$

$$(x,y) \in X \times Y \iff x \in X \text{ and } y \in Y$$

Theorem 6.2.2: Set Identities. For all sets A, B, and C, subsets of a universal set U:

1.	Commutative laws:	$A \cup B = B \cup A$	$A \cap B = B \cap A$
2.	Associative laws:	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$

3. Distributive laws:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

4. Identity laws:
$$A \cup \emptyset = A$$
 $A \cap U = A$
5. Complement laws: $A \cup A^c = U$ $A \cap A^c = \emptyset$

6. Double complement law:
$$(A^c)^c = A$$

7. Idempotent laws:
$$A \cup A = A$$
 $A \cap A = A$
8. Universal bound laws: $A \cup U = U$ $A \cap \varnothing = \varnothing$

9. De Morgan's laws:
$$(A \cup B)^c = A^c \cap B^c$$
 $(A \cap B)^c = A^c \cup B^c$
10. Absorption laws: $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$
11. Complements of U and \emptyset : $U^c = \emptyset$ $\emptyset^c = U$

11. Complements of
$$U$$
 and \varnothing : $U^c = \varnothing$

12. Set difference law:
$$A - B = A \cap B^c$$