Математически анализ 2

Exonaut

 $16\ {
m Mapt}\ 2021\, г.$

Съдържание

1	Лe	кция 1: Пространството \mathbb{R}^m	2
	1.1	Няколко важни неравенства	2
	1.2	Видове крайно мерни пространства	2
		1.2.1 Линейно(Векторно) пространство	2
		1.2.2 Евклидово пространство	3
		1.2.3 Метрично пространство	3
		1.2.4 Нормирано пространство	3
	1.3	Пространството \mathbb{R}^m - дефиниция и основни свойства	3
		1.3.1 Скаларно произведение	4
		1.3.2 Норма и метрика	4
		1.3.3 Скаларен квадрат	4
		1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат	4
		1.3.5 Неравенство на Минковски, чрез скаларен квадрат	$\overline{4}$
	1.4	Tочки и множества в \mathbb{R}^m	4
		1.4.1 Паралеленинед	4
		1.4.2 Сфера и кълбо	5
	1.5	Редици от точки в \mathbb{R}^m	7
		кция 2: Функция на няколко променливи. Граница и неп- съснатост Дефниция на функция на няколко променливи	8 8 8 9
3	Пот	кция 3: Частни производни. Диференцируемост на фун-	
o		ия на две и повече променливи	11
	3.1	Дефиниция на частна производна	11
	3.2	Частни производни от по-висок ред	11
	3.3	Диференцируемост на функция	12
	0.0	дпроронцируемоет на функции	12
4	Лекция 4: Диференциране на съставна функция. Производ-		
	на	по посока. Градиент. Допирателна. Нормална права	15
	4.1	Диференциране на съставна функция	15
	4.2	Производна по посока. Градиент	16
	4.3	Допирателна равнина. Нормална права	17
5	Лei	кция 5:	19

1 Лекция 1: Пространството \mathbb{R}^m

1.1 Няколко важни неравенства

Нека a_k и $b_k(k=1,2,...,m)$ са реални числа и $m\in\mathbb{N}$

Теорема 1.1.1 (**Неравенство на Коши-Шварц**) В сила е следното неравенство:

$$\left(\sum_{k=1}^{m} a_k b_k\right)^2 \le \left(\sum_{k=1}^{m} a_k\right) \left(\sum_{k=1}^{m} b_k\right)$$

Равенство се достига само когато a_k и b_k са пропорционални:

 $(\exists \lambda_0 : b_k = \lambda_0 a_k)$

Равенството може да се запише:

$$\left| \sum_{k=1}^{m} a_k b_k \right| \le \sqrt{\left(\sum_{k=1}^{m} a_k\right)} \sqrt{\left(\sum_{k=1}^{m} b_k\right)}$$

Теорема 1.1.2 (**Неравенство на Минковски**) В сила е следното неравенство:

$$\sqrt{\sum_{k=1}^{m} (a_k + b_k)^2} \le \sqrt{\sum_{k=1}^{m} a_k^2} + \sqrt{\sum_{k=1}^{m} b_k^2}$$

Равенство се достига само когато a_k и b_k са пропорционални. Общ случай на неравенството на Минковски:

$$\left(\sum_{k=1}^{m} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{m} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{m} |b_k|^p\right)^{\frac{1}{p}} (p \ge 1)$$

Теорема 1.1.3 В сила е следното неравенство:

$$|a_k + b_k| \le \sqrt{\sum_{k=1}^m (a_k + b_k)^2} \le \sum_{k=1}^m |a_k - b_k|$$

1.2 Видове крайно мерни пространства

1.2.1 Линейно(Векторно) пространство

Дефиниция 1.2.1 Нека L е линейно (векторно) пространство над полето R. B него има въведени две операции: събиране и умножение на вектор c число.

1.
$$x, y \in L \implies z = x + y \in L$$

2.
$$x \in L, \lambda \in \mathbb{R} \implies z = \lambda x \in L$$

1.2.2 Евклидово пространство

Дефиниция 1.2.2 Крайномерното пространство L се нарича евклидово, ако в него е въведено скаларно произведение, т.е за всеки два елемента $x,y \in L$ може да се съпостави реално число (x,y), удовлетворяващо свойствата за линейност, симетричност и положителна определеност.

1.
$$x, y, z \in L, \lambda \in \mathbb{R} \implies (x + y, z) = (x, z) + (y, z); (\lambda x, y) = \lambda(x, y)$$

$$2. \ x, y \in L \implies (x, y) = (y, x)$$

3.
$$x \in L, x \neq 0 \implies (x, x) > 0$$

1.2.3 Метрично пространство

Дефиниция 1.2.3 Крайномерното пространство L се нарича метрично, ако в него е въведено разстояние (метрика) ρ , т.е за два елемента $x,y\in L$ може да се съпостави неотрицателно число $\rho\geq 0$ със следните свойства

1.
$$\rho(x,x) = 0; \rho(x,y) > 0, x \neq y$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z) \forall x,y,z \in L$$

Метрично пространство L с метрика ρ се означава (L, ρ)

1.2.4 Нормирано пространство

Дефиниция 1.2.4 Пространството се нарича нормирано, ако в него е въведена норма $\|.\|$, m.e $\|.\|$: $L \to \mathbb{R}^+_0$ със свойства

1.
$$x = 0 \implies ||x|| = 0, x \neq 0 \implies ||x|| > 0$$

2.
$$x \in L, \lambda \in \mathbb{R} \implies ||\lambda x|| = |\lambda|||x||$$

3.
$$x, y \in L \implies ||x + y|| \le |x| + |y|$$

Теорема 1.2.1 Ако L е нормирано пространство c дадена норма $\|.\|$, то L е метрично пространство, т.е равенството $\rho(x,y) = \|x-y\|$ дефинира разстоянието в L

1.3 Пространството \mathbb{R}^m - дефиниция и основни свойства

Дефиниция 1.3.1 Множесството от наредени т-торки $a=(a_1,a_2,...,a_m)$ от реални числа. Числата $a_1,a_2,...,a_m$ се наричат съответно първа, втора, ..., т-та кордината на a.

Ако имаме $a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_m), ; \lambda \in \mathbb{R}$ то

1.
$$a+b=(a_1,a_2,...,a_m)+(b_1,b_2,...,b_m)=(a_1+b_1,a_2+b_2,...,a_m+b_m)\in\mathbb{R}^m$$

2.
$$\lambda a = (\lambda a_1, \lambda a_2, ..., \lambda a_m) \in \mathbb{R}^m$$

1.3.1 Скаларно произведение

Скаларно произведение се дефинира:

$$(a,b) = \left(\sum_{k=1}^{m} a_k b_k\right)$$

С така въведено скаларно произведение пространството \mathbb{R}^m се превръща в евклидово.

1.3.2 Норма и метрика

С равенството:

$$||a|| := \sqrt{\sum_{k=1}^{m} (a_k)^2}$$

се въвежда норма в \mathbb{R}^m .

Нормата генерира метрика в \mathbb{R}^m с формула:

$$\rho(a,b) := ||a - b|| = \sqrt{\sum_{k=1}^{m} (a_k - b_k)^2}$$

1.3.3 Скаларен квадрат

Скаларен квадрат: $a^2 = (a, a) = \sum_{k=1}^m a_k^2$

1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат

Коши-Шварц чрез скаларен квадрат: $(a,b)^2 \leq a^2b^2$ и $|(a,b)| \leq \|a\| \|b\|$

1.3.5 Неравенство на Минковски, чрез скаларен квадрат

Неравенство на Минковски чрез скаларен квадрат: $\|a+b\| \leq \|a\| + \|b\|$

1.4 Точки и множества в \mathbb{R}^m

1.4.1 Паралелепипед

Дефиниция 1.4.1 Множеството

$$\Pi(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in \mathbb{R}^m : -\delta_k < x_k - a_k < \delta_k\}$$

се нарича отворен паралелепипед в \mathbb{R}^m с център точката а.

Множеството

$$\widetilde{\Pi}(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in \mathbb{R}^m : -\delta_k \le x_k - a_k \le \delta_k\}$$

ce нарича затворен паралелепипед в R^m c център точката a.

Ако $\delta_1 = \delta_2 = ... = \delta_m = \delta$, получените множества $\Pi(a;\delta)$ и $\widetilde{\Pi}(a;\delta)$ се наричат съответно отворен и затворен куб в \mathbb{R}^m с център a.

1.4.2 Сфера и кълбо

Дефиниция 1.4.2 Нека числото r > 0. Множеството

$$B(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) < r\} = \{x | x \in \mathbb{R}^m, ||x - a|| < r\}$$

се нарича отворено кълбо в \mathbb{R}^m с център а и радиус r, множеството

$$\widetilde{B}(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) \le r\} = \{x | x \in \mathbb{R}^m, ||x-a|| \le r\}$$

се нарича затворено кълбо в \mathbb{R}^m с център а и радиус r, а множеството

$$S(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) = r\} = \{x | x \in \mathbb{R}^m, ||x - a|| = r\}$$

се нарича сфера в \mathbb{R}^m с център а и радиус r, а множеството

Дефиниция 1.4.3 Точката а се нарича

- $\bullet\,$ вътрешна за множеството A, ако съществува отворено кълбо $B(a,\varepsilon):$ $B(a,\varepsilon)\subset A$
- външна за A, ако съществува $B(a,\varepsilon):B(a,\varepsilon)\subset\mathbb{R}^m\setminus A$
- контурна за A, ако за всяко $\varepsilon > 0: B(a,\varepsilon) \cap A \neq \emptyset$ и $B(a,\varepsilon) \cap (\mathbb{R}^m \setminus A) \neq \emptyset$
- изолирана ако съществува $\varepsilon > 0$: $B(a, \varepsilon) \cap A = \{a\}$

Дефиниция 1.4.4 Множеството $A \subset \mathbb{R}^m$ се нарича

- отворено, ако всяка негова точка е вътрешна
- ullet затворено, ако неговото допълнение $\mathbb{R}^m \setminus A$ е отворено

Дефиниция 1.4.5 Околност на дадена точка $a \in \mathbb{R}^m$ се нарича всяко отворено множество, което я съдържа. Означава се с U_a .

Дефиниция 1.4.6 Точка а се нарича точка на сетстяване на множеството $A \subset \mathbb{R}^m$, ако всяка нейна околност U_a съдържа поне една точка на A, различна от a, $m.e\ U_a \cap (A \setminus \{a\} \neq \emptyset)$

Дефиниция 1.4.7 Величината

$$d = d(A) = \sup_{a', a'' \in A} \rho(a'; a'')$$

се нарича диаметър на множеството $A \subset \mathbb{R}^m$.

Дефиниция 1.4.8 Множеството $A \subset \mathbb{R}^m$ се нарича ограничено, ако съшествува кълбо(с краен радиус), което го съдържа.

Дефиниция 1.4.9 Множеството $A \subset \mathbb{R}^m$ се нарича компактно, ако A е затворено и ограничено.

Дефиниция 1.4.10 Множесството $x=(x_1,x_2,...,x_m)\in\mathbb{R}^m$, чийто кординати са непрекоснати функции $x_k=x_k(t)(k=1,2,...,m)$, дефинирани ворху даден интервал [a,b] се нарича непрекосната крива в R^m . t се нарича параметор на кривата.

Точките $x(a)=(x_1(a),x_2(a),...,x_m(a))$ и $x(b)=(x_1(b),x_2(b),...,x_m(b))$ се наричат начало и край на дадената крива. Ако x(a)=x(b) кривата е затворена

Дефиниция 1.4.11 Нека $x^0=(x_1^0,x_2^0,...,x_m^0)\in\mathbb{R}^m$ и $\alpha_1,\alpha_2,...,\alpha_m$ са фиксирани числа за които $\sum_{k=1}^m\alpha_k>0$. Множеството от точки $x=(x_1,x_2,...,x_m)$ чисто кординати се представят във вида

$$x_k = x_k^0 + \alpha_k t, k = 1, 2, ..., m, -\infty < t < \infty$$

се нарича права линия в пространството R^m , минаваща през точка x^0 по направление $(\alpha_1, \alpha_2, ..., \alpha_m)$.

Дефиниция 1.4.12 Множеството $A \subset \mathbb{R}^m$ се нарича свързано, ако за всеки две негови точки съществува непрекъсната крива γ , която ги свързва и $\gamma \subset A$.

Дефиниция 1.4.13 Множеството $A \subset \mathbb{R}^m$ се нарича област, ако е отворено и свързано. Ако е и затворено, то се нарича затворена област.

Дефиниция 1.4.14 Област, всеки две точки на която могат да се съединят с отсечка, изияло лежаща в нея, се нарича изпъкнала област.

Дефиниция 1.4.15 Областа $A \subset \mathbb{R}^m$ се нарича звездообразна област, отностно точката $x^0 \in A$, ако за вскяка точка $x \in A$ отсечката $[x^0, x]$ лежи изияло в A.

1.5 Редици от точки в \mathbb{R}^m

Дефиниция 1.5.1 Редицата $\{x^{(n)}\}_{n=1}^{\infty}=\{x_1^{(n)},x_2^{(n)},...,x_m^{(n)}\}$ се нарича редица от точки в \mathbb{R}^m , а редицата $\{x_k^{(n)}\}_{n=1}^{\infty}(k=1\div m)$ - к-та кординатна редица. За по кратко редицата $\{x^{(n)}\}_{n=1}^{\infty}$ се означава $\{x^{(n)}\}$

Дефиниция 1.5.2 Редицата $\{y^{(l)}\}_{l=1}^{\infty}$ се нарича поредица на редицата $\{x^{(n)}\}$ и се означава:

 $\{x^{(n_l)}\}, l=1,2,..., \ u$ au $\{x^{(n_l)}\}_{l=1}^{\infty}$ ако за всяко l съществува такова n_l , че $y^{(l)}=x^{(n_l)}$, при това, ако l'< l'', то $n_{l'}< n_{l''}$.

Дефиниция 1.5.3 Редицата $\{x^{(n)}\}$ се нарича сходяща към точка $a \in \mathbb{R}^m$ (граница на редицата), ако за всяко $\varepsilon > 0$ съществува такова $N_0 > 0$, че за всяко $n > N_0$ е изпълено неравенството $\rho(x^{(n)};a) = \|x^{(n)} - a\| < \varepsilon$. Ако редицата няма граница, се нарича разходяща.

Дефиниция 1.5.4 Точката $a \in R^m$ се нарича точка на сгъстяване на редицата $\{x^{(n)}\}$, ако всяка нейна околност съдържа безброй много членове на редицата.

Теорема 1.5.1 *Нека* $x^{(n)} \in \mathbb{R}^m$ за $n \in \mathbb{N}$ и точката $a \in \mathbb{R}^m$. Тогава

$$(\lbrace x^{(n)}\rbrace \to a) \iff (x_k^{(n)} \to a_k, k = 1 \div m)$$

T.e редицата има граница точката a, тогава и само тогава когато всяка от кординатите на редици $\{x_k^{(n)}\}$ има граница съответната кордината a_k на точката a

Теорема 1.5.2 (Критерий на Коши) Нека $x^{(n)} \in \mathbb{R}^m$ за $n \in \mathbb{N}$. Редицата $x^{(n)}$ е сходяща тогава и само тогава когато за всяко $\varepsilon > 0$ съществува такова число $N_0 > 0$, че при всяко $n \in N, n > N_0$ и всяко $p \in \mathbb{N}$ е изпълено $\rho(x^{(n+p)}, x^{(n)}) = \|x^{(n+p)} - x^{(n)}\| < \varepsilon$

Дефиниция 1.5.5 Редицата $\{x^{(n)}\}$ се нарича ограничена, ако съществува кълбо (с краен радиус), което съдържа всичките ѝ членове.

Теорема 1.5.3 (Болцано-Вайерщрас) От всяка ограничена редица в пространството R^m може да се избере сходяща подредица.

Дефиниция 1.5.6 Всяко множество $A \subset \mathbb{R}^m$ се нарича компактно, ако от всяка редица $\{x^{(n)}\}, x^{(n)} \in A$, може да се избере сходяща подредица $\{x_k^{(n)}\}$ с граница принадлежаща на A

2 Лекция 2: Функция на няколко променливи. Граница и непрекъснатост

2.1 Дефниция на функция на няколко променливи

Дефиниция 2.1.1 Казва се че дадена функция с дефиниционна област (дефиниционно множество) D, ако на всяка точка $x=(x_1,x_2,...,x_m)$ от множеството D е съпоставено реално число $f(x)=f(x_1,x_2,...,x_m)$, т.е на всяко $x\in D$ съществува единствено число $y=f(x)\in\mathbb{R}$. Понякога за кратко се записва.

$$f:D\to\mathbb{R}$$

 $B \mathbb{R}^2$ се използва (x,y) за означение, а в \mathbb{R}^3 - (x,y,z).

2.2 Граница на функция на няколко променливи

Дефиниция 2.2.1 (Коши) Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на сгостяване за D. Казва се че f(x) има граница L при $x \to a$ със стойностти $x \neq a$ ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, че за всяко x от множеството $D \setminus \{a\}$, за което $\rho(x;a) = \|x-a\| < \delta$ е изпълнено $|f(x)-L| < \varepsilon$. Записва се

$$\lim_{x \to a} f(x) = L$$

Дефиниция 2.2.2 (Хайне) Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на сегствяване за D. Казва се че f(x) има граница L при $x \to a$ със стойностти $x \neq a$ ако за всяка редица $\{x^{(n)}\}, x^{(n)} \in D, x^{(n)} \neq a$ сходяща към a, числовата редица $\{f(x^{(n)})\}$ има граница L.

Теорема 2.2.1 Дефинициите 2.2.1 и 2.2.2 на Коши и Хайне за граница на функция са еквивалентни.

Дефиниция 2.2.3 Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на сегстяване за D. Казва се че f(x) дивергира към ∞ (съответно към $-\infty$) при $x \to a$ със стойностти $x \neq a$, ако за всяко $A \in \mathbb{R}$ съществува такова $\delta > 0$, че за всяко x от множеството $D \setminus \{a\}$, за което $\rho(x;a) = \|x-a\| < \delta$ е изпълнено f(x) > A (съответно f(x) < A). Записва се

$$\lim_{x \to a} f(x) = \infty(-\infty)$$

Дефиниция 2.2.4 (Повторна граница) Нека $D \subset \mathbb{R}^2, a = (a_1, a_2) \in \mathbb{R}^2$ е точка на състяване за D и функция $f:D \to \mathbb{R}$. Нека съществува такава околност $U_{a_2} \subset \mathbb{R}$ на точката $_2$, че за всички стойностти $y \in U_{a_2}$ да съществува $\lim_{x \to a_1} f(x,y) = \varphi(y)$. Ако освен това съществува $\lim_{y \to a_2} \varphi(y) = A$, A се нарича повторна граница и се означава както следва

$$A = A_{1,2} = \lim_{y \to a_2} (\lim_{x \to a_1} f(x, y))$$

Аналогично се съвежда и другата повторна граница

$$A_{2,1} = \lim_{x \to a_1} (\lim_{y \to a_2} f(x, y))$$

Теорема 2.2.2 *Нека* $D \subset \mathbb{R}^2$, $a = (a_1, a_2) \in \mathbb{R}^2$ е точка на сетстяване за D и функция $f: D \to \mathbb{R}$. Нека

- 1. Нека съществува такава околност $U_{a_2}\subset\mathbb{R}$ на точката $_2$, че за всички стойностти $y\in U_{a_2}$ да съществува $\lim_{x\to a_1}f(x,y)=\varphi(y)$.
- 2. Съществува границата $\lim_{(x,y)\to(a_1,a_2)} f(x,y) = L$.

Тогава съществува граница $\lim_{y \to a_2} \varphi(y)$ и освен това е в сила равенствотот $\lim_{y \to a_2} \varphi(y) = L$

2.3 Непрекъснатост на функция на няколко променливи

Дефиниция 2.3.1 Казва се че функцията $f:D\to \mathbb{R}$ е непрекъсната в точка $a\in D$ ако $\lim_{x\to a}f(x)=f(a)$.

Дефиниция 2.3.2 (непрекъснатост по Коши) Казва се, че функцията $f:D\to\mathbb{R}$ е непрекъсната в точка $a\in D$, ако за всяко $\varepsilon>0$ съществува $\delta>0$, че за всяко x от множеството D, за което $\rho(x;a)=\|x-a\|<\delta$ е изпълнено $|f(x)-f(a)|<\varepsilon$.

Дефиниция 2.3.3 (непрекъснатост по Хайне) Казва се, че функцията $f: D \to \mathbb{R}$ е непрекъсната в точка $a \in D$ ако за всяка редица $\{x^{(n)}\}$ (с $x^{(n)} \in D$ за $n \in \mathbb{N}$) сходяща към а, числовата редица $\{f(x^{(n)})\}$ има граница f(a).

Дефиниция 2.3.4 (за съставна функция) $Heka\ A\subset \mathbb{R}^m$ е отворено множество, $f: \to \mathbb{R}\ u\ x_k: (\alpha,\beta)\to \mathbb{R}, k=1\div m$. Полагайки $x(t)=(x_1(t),x_2(t),...,x_m(t))\in A$ за всяко $t\in (\alpha,\beta)$ съставната функция $F(t)=f\circ x(t)=f(x(t))$ се дефинира по формулата

$$F(t) = f \circ x(t) = f(x(t)) = f(x_1(t), x_2(t), ..., x_m(t))$$

Теорема 2.3.1 Нека $A \subset \mathbb{R}^m$ е отворено множество u $f: \to \mathbb{R}$ интервальт $(\alpha,\beta) \subset \mathbb{R}$, $x_k: (\alpha,\beta) \to \mathbb{R}$ за $k=1\div m$. Нека освен това $x(t)=(x_1(t),x_2(t),...,x_m(t))\in A$ за $\forall t\in (\alpha,\beta)$ и x_k са непрекъснати в точката $t_0\in (\alpha,\beta)$ за $k=1\div m$, а f е непрекъсната в $x^0=x(t_0)$. Тогава функцията $F(t)=f\circ x(t)=f(x(t))=f(x_1(t),x_2(t),...,x_m(t))$ е непрекъсната в точката t_0

2.4 Равномерна непрекъснатост на функция на няколко променливи

Дефиниция 2.4.1 Нека $A \subset \mathbb{R}^m$ е отворено множество и $f: A \to \mathbb{R}$. Функцията се нарича равномерно непрекъсната в A, ако за всяко $\varepsilon > 0$ съществува $\delta = \delta(\epsilon)$, че за всеки две точки $x', x'' \in A$ за които разстоянието $\rho(x'; x'') = \|x' - x''\| < \delta$, да следва, че $|f(x') - f(x'')| < \varepsilon$.

Теорема 2.4.1 (на Вайерщрас) Нека множеството $K \subset \mathbb{R}^m$ е компактно и функцията $f:K \to \mathbb{R}$ е непрекосната върху K. Тогава

- 1. f е ограничена в K, m.е същестуват $m, M \in \mathbb{R}$ такива че за всички $x \in K$ е изпълнено неравенството $m \leq f(x) \leq M$
- 2. f достифа най малката и най-голямата си стойност в K, т.е съществуват точки $x^0, y^0 \in K$, такива че

$$f(x^0) = \inf_{x \in K} f(x); f(y^0) = \sup_{y \in K} f(x)$$

Теорема 2.4.2 (на Кантор) Нека множеството $K \subset \mathbb{R}^m$ е компактно и функцията $f: K \to \mathbb{R}$ е непрекъсната върху K. Тогава f е равномерно непрекъсната върху K.

Лекция 3: Частни производни. Диференци-3 руемост на функция на две и повече промен-ЛИВИ

3.1Дефиниция на частна производна

Ще дефинираме елементи които ще се използват.

- $D \subset \mathbb{R}^m$ отворено множество
- $x^0 = (x_1^0, x_2^0, ..., x_m^0)$ точка, принадлежаща на D
- $U_{x^0} \subset D$ околност на x^0
- $U_{x_{i}^{0}} \subset D$ околност на x_{i}^{0} (i = 1, 2, ..., m)
- точката $(x_1^0, x_2^0, ..., x_{i-1}^0, x_i^0, x_{i+1}^i, ..., x_m^0) \in U_{x^0}$, за всички стойности на $x_i \in U_{x^0}$
- f и g функции, дефинирани съответно в D и $U_{x_i^0}$. т.е $f:D \to \mathbb{R}, g:U_{x_i^0} \to \mathbb{R}$ и $g(x_i) = f(x_1^0, x_2^0, ..., x_{i-1}^0, \overset{`}{x_i^0}, \overset{`}{x_{i+1}^i}, ..., x_m^0)$

Дефиниция 3.1.1 Производната, ако съществува на функцията д в точката x_i^0 се нарича частна производна на функцията f(по променлива $x_i^0)$ ката x_i^0 се нарича частна произволна на удинизации. Стана в точката x^0 . Използва се означението $\frac{\partial f(x^0)}{\partial x_i}$ или $f'_{x_i}(x^0)$. Частната производна на функцията f отностно променливата x_i е равна на границата на функцията $\varphi(h_i) = \frac{g(x_i^0 + h_i) - g(x_i^0)}{h_i}$ при $h_i \to 0$ (ако

$$\lim_{h_i \to 0} \varphi(h_i) = \lim_{h_i \to 0} \frac{g(x_i^0 + h_i) - g(x_i^0)}{h_i} = \frac{\partial f(x^0)}{\partial x_i}$$

Пример 3.1.1

съществува) т.е

$$f(x,y) = x^2 + 9xy^2$$

$$f'_x(x,y) = (x^2)'_x + (9xy^2)'_x = 2x + 9y^2$$

$$f'_y(x,y) = (x^2)'_y + (9xy^2)'_y = 0 + 9x \cdot 2 \cdot y = 18xy$$

3.2 Частни производни от по-висок ред

Дефиниция 3.2.1 Частната производна на частната производна от n- $1 \ ped, \ n=1,2,...$ (ако съществува), се нарича частична производна от n-ти ред. Частните производни, получени при диференциране по различни променливи се наричат смесени производни, а получените при диференциране само по една и съща променлива се наричат чисти производни.

Пример 3.2.1
$$f(x,y) = x^3 \sin(6y) + x^2 y^3 + 2222, f''_{x,y} = ?, f''_{y,x} = ?$$

1.
$$f''_{x,y} = (f'_x(x,y))'_y$$

(a)
$$f'_x(x,y) = (x^3\sin(6y))'_x + (x^2y^3)'_x + (2222)'_x = 3x^2\sin(6y) + 2xy^3 + 0$$

(6)
$$f_{x,y}'' = (3x^2\sin(6y) + 2xy^3)_y' = (3x^2\sin(6y))_y' + (2xy^3)_y' = 3x^2\cos(6y).6 + 2.3xy^2 = 18x^2\cos(6y) + 6xy^2$$

2.
$$f''_{y,x} = (f'_y(x,y))'_x$$

(a)
$$f'_y(x,y) = (x^3\sin(6y))'_y + (x^2y^3)'_y + (2222)'_y = x^3\cos(6y).6 + x^2.3y^2 + 0 = 6x^3\cos(6y) + 3x^2y^2$$

(6)
$$f_{y,x}'' = (6x^3\cos(6y) + 3x^2y^2)_y' = (6x^3\cos(6y))_y + (3x^2y^2)_y' = 6.3.x^2\cos(6y) + 3.2.xy^2 = 18x^2\cos(6y) + 6xy^2$$

Теорема 3.2.1 (за равенство на смесени производни) Нека точката $(x_0,y_0)\in\mathbb{R}^2$ и нека функцията f е дефинирана в отвореното множество $U=U_{(x_0,y_0)}\subset\mathbb{R}^2$, което е нейната област т.е $f:U\to\mathbb{R}$. Нека освен това съществуват частните производни $f'_x, f'_y, f''_{x,y}, f''_{y,x}$ за всички $(x,y)\in U$ и $f''_{x,y}, f''_{y,x}$ са непрекъснати в точката (x_0,y_0) . Тогава е изпълнено равенството

$$f_{x,y}''(x_0, y_0) = f_{y,x}''(x_0, y_0)$$

3.3 Диференцируемост на функция

Ще дефинираме елементи които ще се използват.

- $x^0 \in \mathbb{R}^m$
- $U \subset \mathbb{R}^m$ отворено множество, което е околност на x^0 . Без ограничение на общността може да се счита че U е δ -околност на x^0 т.е U е отворено кълбо $B(x^0;\delta)$ с център x^0 и радиус δ
- $f:U\to\mathbb{R}$ функция дефинирана в $U=B(x^0;\delta)$

Дефиниция 3.3.1 Функцията f се нарича диференцируема в точка x^0 ако съществуват числа $A_1,A_2,...,A_m$ и функция $\varepsilon(x^0,x-x^0)$, дефинирана за всички допустими стойности на $x\in U$ и $x-x^0=(x_1-x_1^0,x_2-x_2^0,...x_m-x_m^0)$, като при това

$$f(x) - f(x^{0}) = \sum_{k=1}^{m} A_{k}(x_{k} + x_{k}^{0}) + \varepsilon(x^{0}, x - x^{0}) ||x - x^{0}||$$

$$u \lim_{\|x-x^0\|\to 0} \varepsilon(x^0, x-x^0) = 0$$

Дефиниция 3.3.2 Функцията f се нарича диференцируема в отвореното множество U, ако тя е диференцируема във всяка негова точка.

Теорема 3.3.1 Ако функцията $f: U \to \mathbb{R}$ е диференцируема в точката $x^0 \in U$, то тя е непрекосната.

Дефиниция 3.3.3 B случай на диференцируемост в точката x^0 на функцията $f: U \to \mathbb{R}$, изразът

$$df(x^0) \circ (h) = A_1h_1 + A_2h_2 + \dots + A_mh_m$$

 $(unu\ df,df(x^0))$ се нарича пълен диференциал на f(x) в точката x^0

Теорема 3.3.2 Ако функцията $f:U\to\mathbb{R}$ е диференцируема в точката $x^0\in U$, то съществуват частните производни $\frac{\partial f(x^0)}{\partial x_k}$ в точката x^0 и освен това $A_k(x^0)=\frac{\partial f(x^0)}{\partial x_k}, k=1\div m.$

Дефиниция 3.3.4 Ако функцията $f:U\to\mathbb{R}$ е диференцируема в точката $x^0\in U$, то със следната формула се изразява нейната производна в точката x^0

$$f'(x^0) = (f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0))$$

Теорема 3.3.3 Ако функцията $f: U \to \mathbb{R}$ притежава частни производни $\frac{\partial f(x^0)}{\partial x_k}, k=1 \div m$ в отвореното множество U и освен това са непрекъснати в точката $x^0 \in U$, то f е диференцируема в точката x^0 .

Дефиниция 3.3.5 Ако функцията $f: U \to \mathbb{R}$ притежава частни производни в U и тези частични производни са непрекъснати в точката $x^0 \in U$, то функцията се нарича непрекъснато диференцируема в точката x^0 . Ако тези производни са непрекъснати в U, то функцията се нарича непрекъсанот диференцируема в това множество.

Дефиниция 3.3.6 Диференциалът на диференциала от n-1 ред (n=2, 3, ...) от функцията f(ако съществува) се нарича диференциал от n-ти ред(n-ти диференциал) на тази функция и се бележи $d^n f$

Ако f е два пъти непрекъсната и диференцируема в $x^0 \in U$ тогава втория диференциал получава по следния резултат

$$d^{2}f(x^{0}) = \sum_{i=1}^{m} \sum_{j=1}^{m} f''_{x_{i}x_{j}}(x^{0})dx_{i}dx_{j} = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \dots + \frac{\partial}{\partial x_{m}}dx_{m}\right)^{2} f(x^{0})$$

което е симетрична квадратична форма на $dx_i (i=1 \div m)$.

Аналогично ако f е n пъти непрекъсната и диференцируема в $x^0 \in U$, то $d^n f(x^0)$ съществува и се дава със следната формула

$$d^{n} f(x^{0}) = \left(\frac{\partial}{\partial x_{1}} dx_{1} + \dots + \frac{\partial}{\partial x_{m}} dx_{m}\right)^{n} f(x^{0})$$

```
Пример 3.3.1 f(x,y) = x^2 + 3xy - 8y^3 + 11, df(0,1) = ? df(x,y) = f_x'(x,y)dx + f_y'(x,y)dy = ? f_x'(x,y) = 2x + 3y \implies f_x'(0,1) = 2 \cdot 0 + 3 \cdot 1 = 3 f_y'(x,y) = 3x - 24y^2 \implies f_y'(0,1) = 3 \cdot 0 - 24 \cdot 1 = 24 df(x,y) = (2x + 3y)dx + (3x - 24y^2)dy df(0,1) = 3dx - 24dy
```

4 Лекция 4: Диференциране на съставна функция. Производна по посока. Градиент. Допирателна. Нормална права

4.1 Диференциране на съставна функция

 $x^0\in\mathbb{R}^m$ и отворено множество $U\subset\mathbb{R}^m$ е околност на точката x^0 (Без ограничение на общността може да се счита че U е δ -околност на x^0 т.е U е отворено кълбо $B(x^0;\delta)$ с център x^0 и радиус δ). $t_0\in(\alpha,\beta)\subset R$

Теорема 4.1.1 Нека функцията f е дефинирана в U, а φ_k - в интервала (α, β) , m.e

 $f: U \to \mathbb{R} \ u \ \varphi_k : (\alpha, \beta) \to \mathbb{R} \ (k = 1 \div m)$

като при това $x_k = \varphi_k(t)$ за $k = 1 \div m$, $\varphi_1(t), \varphi_2(t), ..., \varphi_m(t) \in U$ за всички стойности на $t \in (\alpha, \beta)$. Нека f е диференцируема в U, f_k' са непрекъснати в x^0 за $k = 1 \div m$, φ_k са диференцируеми в t_0 и $F: (\alpha, \beta) \to \mathbb{R}$ е дефинирана с равенствово.

$$F(t) = f(\varphi_1(t), \varphi_2(t), ..., \varphi_m(t)), t \in (\alpha, \beta)$$

Тогава функцията F е диференцируема в t_0 и в сила е следното равенство

$$F'(t_0) = \sum_{k=1}^{m} f'_{x_k}(x^0) \varphi'_k(t_0)$$

 $3a \ m = 2:$ $\varphi_1(t) = \varphi(t), \varphi_2(t) = \psi(t)$

$$F'(t_0) = f'_x(x_0, y_0)\varphi'(t_0) + f'_y(x_0, y_0)\psi'(t_0)$$

Пример 4.1.1 f(x,y) - дефинирана и диференцируема в $U_{(1,2)} \subset \mathbb{R}^2$. Непрекъснати частни производни f'_x , f'_y в точката (1,2). Намерете производната F'(0) на съставната фунция F, зададена с равенството F(t) = f(1+3t,2+4t).

$$t_0 = 0$$

$$x = \varphi(t) = 1 + 3t$$

$$y = \psi(t) = 2 + 4t$$

$$x_0 = \varphi(0) = 1$$

$$y_0 = \psi(0) = 2$$

$$\varphi'(t) = 3$$

$$\psi'(t) = 4$$

$$F'(t_0) = f'_x(x_0, y_0)\varphi'(t_0) + f'_y(x_0, y_0)\psi'(t_0) \implies F'(0) = 3f'_x(1, 2) + 4f'_y(1, 2)$$

4.2 Производна по посока. Градиент

Нека $x^0 \in \mathbb{R}^m$ и лъчът l е дефиниран, както следва:

$$l: x = x^0 + t\nu, t > 0$$

Функцията f е дефинирана върху този лъч, а

$$\varphi(t) := f(x(t)) = f(x^0 + t\nu), t > 0$$

Дефиниция 4.2.1 Границата (ако съществува)

$$\lim_{t \to 0, t > 0} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \to 0, t > 0} \frac{\varphi(x^0 + t\nu) - \varphi(x^0)}{t}$$

се нарича производна на f в точката x^0 по посока на вектора ν и се означава $\frac{\partial f(x^0)}{\partial \nu}$, m.e

$$\frac{\partial f(x^0)}{\partial \nu} = \lim_{t \to 0, t > 0} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \to 0, t > 0} \frac{\varphi(x^0 + t\nu) - \varphi(x^0)}{t}$$

ако същестува границата.

Aко частните производни съществуват, са производни "по посока на кординатните оси".

Ако f е дефинирана и диференцируема в околността U_{x^0} на точката в x^0 и f'_{x_k} са непрекъснати в x_0 , то съществува производната ѝ по посока на вектора $\nu=(\nu_1,\nu_2,...,\nu_m)$ и

$$\frac{\partial f(x^0)}{\partial \nu} = \sum_{k=1}^m \nu_k \frac{\partial f(x^0)}{\partial x_k}$$

Дефиниция 4.2.2 Векторът с кординати $f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0)$ се нарича градиент на f в точката x^0 и се означава

$$grad f(x^0) = (f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0))$$

Предвид тази дефиниция, формулата за производна по посока на вектор ν се записва по кратко във вида

$$\frac{\partial f(x^0)}{\partial \nu} = grad(f(x^0), \nu)$$

Теорема 4.2.1 Ако функцията f е дефинирана и диференцируема в околността U_{x^0} на точката в x^0 и f'_{x_k} са непрекъснати в x_0 , то съществува производната на f по посока на произволен вектора $\nu=(\nu_1,\nu_2,...,\nu_m)$ и тя се дава с формула: $\frac{\partial f(x^0)}{\partial \nu}=\operatorname{grad} f(x^0)$

Ако, ν е единичен вектор, т.е $\|\nu\|=1$. Тогава е в сила неравнестово $\left|\frac{\partial f(x^0)}{\partial \nu}\right| \leq \|grad\, f(x^0)\|$, което следва от неравенство на Коши

$$\left|\frac{\partial f(x^0)}{\partial \nu}\right| = \left|grad\left(f(x^0), \nu\right)\right| \le \|grad\, f(x^0)\| \|\nu\| = \|grad\, f(x^0)\|$$

Равенство се достига само когато ν и $f(x^0)$ са колинеарни (еднопосочни или успоредни). тогава

$$\left|\frac{\partial f(x^0)}{\partial \nu}\right| = \|grad \, f(x^0)\|$$

Ако вектора ν е колинеарен с градиента, тогава векторът $\nu=\dfrac{grad\,f(x^0)}{\|grad\,f(x^0)\|}$ и тогава

$$\frac{\partial f(x^0)}{\partial \nu} = \left(\operatorname{grad} f(x^0), \frac{\operatorname{grad} f(x^0)}{\left\| \operatorname{grad} f(x^0) \right\|} \right) = \left\| \operatorname{grad} f(x^0) \right\|$$

Ако $grad f(x^0) \neq 0$ то производната достига най голяма стойност единствено, ако диференцирането се извършва по посока на градиента. С други думи, посоката на градиента е посоката на най бързо нарастване на функцията, а големината му е равна на производната по тази посока.

Ако $\nu = (\cos \alpha_1, \cos \alpha_2, ..., \cos \alpha_m)$, то производната по посока ν става

$$\frac{\partial f(x^0)}{\partial \nu} = f'_{x_1}(x^0) \cos \alpha_1 + f'_{x_2}(x^0) \cos \alpha_2 + \dots + f'_{x_m}(x^0) \cos \alpha_m.$$

Допирателна равнина. Нормална права

- $(x_0,y_0) \in \mathbb{R}^2$ точка в \mathbb{R}^2
- $M_0(x_0, y_0, z_0) \in \mathbb{R}^3$ точка в \mathbb{R}^3
- $U = U_{(x_0, y_0)} \subset \mathbb{R}^2 =$ околност на (x_0, y_0)
- $f:U\to\mathbb{R}$ функция
- $z_0 = f(x, y)$
- $S:z=f(x,y)\Leftrightarrow S:f(x,y)-z=0$ уравнение на равнина
- f_x', f_y' първи частни производни за всички $(x,y) \in U, f_x', f_y'$ са непрекъснати в точката (x_0, y_0)

Дефиниция 4.3.1 Равнината $\tau(\tau \not \! \! \mid Oz)$, зададена с уравнение

$$\tau: z - z_0 = f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0)$$

ce нарича допирателна (тангенциална) равнина в точкат M_0 към повърхнината S и представлява графиката на f(x,y).

Дефиниция 4.3.2 Векторите n_1, n_2

$$n_1(-f'_x(x_0, y_0), -f'_y(x_0, y_0), 1)$$
 $n_2(f'_x(x_0, y_0), f'_y(x_0, y_0), -1),$

които са нормални вектори на тангенциалната равнина, се наричат нормални вектори и за пов ${\it т}$ рхнината S.

 $n_1 = -n_2$ Това позволява да се използват за ориентация на повърхината S

Горната страна се дефинира с вектора n_1 за който вгел $\measuredangle(n_1,k)$ е остър.

Дефиниция 4.3.3 Правата п, зададена с уравнение

$$n: \frac{x - x_0}{-f'_x(x_0, y_0)} = \frac{y - y_0}{-f'_y(x_0, y_0)} = \frac{z - z_0}{1}$$

се нарича нормала към повърхнината S към точка M_0

Ако прекараме две равнини през $_0$ съответно $\alpha: x = x_0$ и $\beta: y = y_0$ всяка от тях пресича повърхнината в крива линия съответно

$$C_1: x = x_0, y = y, z = f(x_0, y)$$
 $C_2: x = x, y = y_0, z = f(x, y_0)$

 t_1 е направляващ вектор на допирателната права на кривата C_1 в точката $_0$, а с t_2 - направляващ вектор на допирателната права на кривата C_1 в същата точката, то

$$t_1(0,1,f_y'(x_0,y_0), t_2(1,0,f_x'(x_0,y_0))$$

Равнината τ е компланарна с векторите t_1, t_2 то нейния нормален вектор може да се получи от векторното им произведение

$$n_1 = t_2 \times t_1 \qquad n_2 = t_1 \times t_2$$

Пример 4.3.1 За повърхнина S, зададена c уранение $S: z = x^2 + y^2 + 3$, да ce напишат:

- а) допирателната равнина $\tau z M_0(0,0,3)$
- б) нормалните вектори на τ в m. $_0$.
- в) нормалата на повърхнината S в m. 0.

Решение

$$\begin{array}{l} z_x' = 2x \ ; z_y' = 2y \ ; M_0(0,0,3) = M_0(x_0,y_0,z_0) \\ z_x'(x_0,y_0) = z_x'(0,0) = 0 \ ; z_y'(x_0,y_0) = z_y'(0,0) = 0 \\ a) \ \tau : z - z_0 = z_x'(x_0,y_0)(x-x_0) + z_y'(x_0,y_0)(y-y_0) \\ \tau : z - 3 = 0x + 0y \Leftrightarrow \tau : z = 3 \end{array}$$

$$\begin{aligned} 6)\vec{n_1} &= (-f_x'(x_0, y_0), -f_y'(x_0, y_0), 1) = (0, 0, 1) \\ \vec{n_2} &= (f_x'(x_0, y_0), f_y'(x_0, y_0), -1) = (0, 0, -1) \end{aligned}$$

6)
$$n: \frac{x - x_0}{-f'_x(x_0, y_0)} = \frac{y - y_0}{-f'_y(x_0, y_0)} = \frac{z - z_0}{1}$$

 $n: \frac{x - 0}{0} = \frac{y - 0}{0} = \frac{z - 3}{1} = \lambda$
 $n(0, 0, \lambda + 3), \lambda \in \mathbb{R}$

5 Лекция 5: