

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева Академия базовой подготовки

Институт, группа	К работе допущен	
		(дата, подпись преподавателя)
Студент	Работа выполнена	
		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
-		(пата полнись преполавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № К-12

Изучение температурной зависимости электрического

сопротивления полупроводников и металлов

1. Запишите цель проводимого эксперимента:
2. Как возникают энергетические зоны? Какие бывают зоны?
3. Как с точки зрения зонной теории объяснить характер зависимости сопротивления от температуры для металла?
4. Как с точки зрения зонной теории объяснить характер зависимости сопротивления от температуры для металла?
5. Сформулируйте физический смысл энергии Ферми. Как она связана с шириной запрещенной зоны?
6. Нарисуйте зонные структуры для металла, полупроводника и диэлектрика.

7. Заполните таблицу измерений в лаборатории.

№	<i>t</i> , ⁰ C	Т, К	$\frac{1}{T} \cdot 10^{-4}$, K ⁻¹	металл	полуп	роводник
			$\overline{T}^{\cdot 10^{-1}, K^{-1}}$	R, Om	R, Om	lnR
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						

8. График зависимости сопротивления от температуры R(T).

Металл (образец № 2)

Полупроводник (образец № 3)

9. Определение ширины запрещенной зоны аналитическим методом для полупроводника (образец № 3).

№ опытов	T_i , K	R_i , Om	T_i , K	R_i , Ом	ΔE_{ij} , Дж
<i>i</i> = <i>j</i> =	-	-	,	,	3
$ \begin{array}{ccc} i = \dots & j = \dots \\ i = 1 & j = 3 \end{array} $					
i=2 $j=4$					
i=5 $j=7$					
i=6 j=9					
i=3 $j=8$					
i=4 j=6					

10. Среднее значение энергии:

$$\langle \Delta E \rangle = \frac{\Delta E_{13} + \Delta E_{24} + \Delta E_{57} + \Delta E_{69} + \Delta E_{38} + \Delta E_{46}}{6} =$$

11. Перевод из Дж в эВ: $\langle \Delta E \rangle =$ эВ

12. Определение ширины запрещенной зоны графическим методом для полупроводника (образец № 3): график lnR от $\frac{1}{r}$.

Полупроводник (образец № 3)

13. Тангенс угла наклона прямой:

$$tg \beta = \frac{\ln R_2 - \ln R_1}{\left(\frac{1}{T_2} - \frac{1}{T_1}\right) \cdot 10^{-4}} =$$

14. Вычислить ширину запрещенной зоны ($k=1.38\cdot 10^{-23}$ Дж/К):

$$\langle \Delta E_{\rm rp} \rangle = 2k \cdot \operatorname{tg} \beta =$$

14. Вычислить степень несовпадения:

$$\delta = \left| \frac{\langle \Delta E \rangle - \langle \Delta E_{\rm rp} \rangle}{\langle \Delta E \rangle} \right| =$$

15. Вычислить абсолютные погрешности:

$$\Delta(\langle \Delta E \rangle) = \langle \Delta E \rangle \cdot \delta =$$

$$\Delta(\Delta E_{\rm rp}) = \langle \Delta E_{\rm rp} \rangle \cdot \delta =$$

15. Записать окончательный результат и по таблице 4 в МУ определить какому полупроводнику или соединению соответствует полученное значение ширины запрещенной зоны:

$$\Delta E = \langle \Delta E \rangle \pm \Delta (\langle \Delta E \rangle)$$

$$\Delta E_{\rm rp} = \langle \Delta E_{\rm rp} \rangle \pm \Delta (\Delta E_{\rm rp})$$

$$\Delta E =$$

$$\Delta E =$$

16. Сформулируйте общий вывод по выполненной работе

та	стуле	пись	Ол
----	-------	------	----