verbenevary

1) Die Buteilwerte einer R(glieder

$$\Omega = \frac{V}{4}$$

$$F = \frac{s}{\Omega} = \frac{4s}{V}$$

$$T = \frac{V}{A} \cdot \frac{A_s}{V} = S$$

2) g)

$$\underline{G}(j\omega) = \frac{1}{1+j\omega RC}$$

$$\frac{w_{4}}{we} = \frac{z_{c}}{R + z_{c}} = \frac{1}{\sqrt{3wc}} = \frac{1}{7 + \sqrt{3wc}} = 6(3w)$$

b)

of the destable of the state of the state of the stimen.

$$f_y = \frac{1}{27T}$$
 and $T = 0,455.t_x$

fy
$$\alpha$$
 bzw.
$$t_{V} = \frac{0.35}{t_{V}} t_{V} = 0.455 \cdot t_{r} \text{ und } f_{\theta} = \frac{1}{2\pi T} = \frac{0.35}{t_{r}}$$

$$t_{90} = -t \ln \left(\frac{o_{19} u_{0}}{u_{0}} \right) = -t \cdot \ln \left(o_{19} \right) = t \cdot \ln \left(\frac{10}{9} \right)$$
 $t_{70} = -t \ln \left(\frac{o_{11} u_{0}}{u_{0}} \right) = -t \ln \left(o_{11} \right) = t \ln \left(10 \right)$

$$t_{V} = t_{10} - t_{90} = t_{90} = t_{90} = t_{90} = t_{90} = t_{90}$$

62W

 $Z_L = \frac{R_0}{1 + j\omega R_0(C_K + C_0)}$ Level

 $U_{e} = \sqrt{U_{R}^{2} + U_{C}^{2}}$ $U_{e} = \sqrt{U_{R}^{2} + U_{L}^{2}}$ $\tan \varphi = \frac{U_{R}}{U_{C}}$ $\tan \varphi = \frac{U_{L}}{U_{R}}$ bei gleichen Spannungswerten folgt $\begin{aligned} & X_{C} - \frac{1}{2\pi fC} & X_{L} - 2\pi fL \\ & \text{bei } R - X \\ & f_{g} - \frac{1}{2\pi RC} & f_{g} - \frac{R}{2\pi L} \\ \end{aligned} \\ \text{Ue} & \text{bei } U_{g} - U_{X} - U_{R} \\ & U_{g} - \sqrt{2U_{g}^{2}} - U_{g}\sqrt{2} \\ & U_{g} - \frac{1}{16} \cdot U_{g} - 0.707 \cdot U_{g} \end{aligned}$

$$\frac{w_a}{w_e} = \frac{z_c}{R + z_c} = \frac{1}{\frac{3\omega c}{R + \frac{1}{3\omega c}}} = \frac{1}{\frac{1}{1 + 3\omega Rc}} = \frac{1}{\frac{1}{1$$

 $\underline{U}_{n}(j\omega) = G(j\omega) \cdot \underline{U}_{p}(j\omega). \qquad \text{if } \underline{I} = \frac{\underline{U}_{p}}{R+Z_{C}} \text{ and } \underline{I} = \frac{\underline{U}_{n}}{Z_{C}} \text{ gill}$

$$wy = \frac{1}{p_c}$$
; $-2 = \frac{f}{fy} = \frac{w}{wy}$

$$\frac{1}{7 + 3uR} = \frac{1}{1 + 3uR$$

$$\begin{split} & \underbrace{\mathcal{G}(js)}_{} = \underbrace{\frac{\mathsf{J}_{2}}{\mathsf{J}_{2}}}_{} = \underbrace{\frac{1}{j\,g\,C}}_{} & \underbrace{\frac{1}{j\,g\,C}}_{} & \text{as } 2f\, \in \mathcal{F}_{ext} \text{tmodeletels} \\ & \underbrace{\mathcal{G}(js)}_{} = \frac{1}{1+\frac{1}{j\,g\,C}}, & \text{as } 2f\, \in \mathcal{F}_{ext} \\ \text{on } t & a_{p} = \frac{1}{k^{2}}, & \frac{1}{4}, & \text{otherwise} \text{ if } \\ \mathbf{m} t & a_{p} = \frac{1}{k^{2}}, & \frac{1}{4}, & \text{otherwise} \\ & \underbrace{\mathcal{G}(js)}_{} = \frac{1}{4+\frac{1}{k^{2}}}, & \frac{1}{4+\frac{1}{k^{2}}}, & \frac{1}{2}, & \frac{1}{2}, & \frac{1}{2}, \\ & \underbrace{\mathcal{G}(js)}_{} = \frac{1}{1+\frac{1}{k^{2}}}, & \frac{1}{k^{2}}, & \frac{1}{k^{2}}, & \frac{1}{k^{2}}, & \frac{1}{k^{2}}, \\ & \underbrace{\mathcal{G}(js)}_{} = \frac{1}{1+\frac{1}{k^{2}}}, & \underbrace{\mathcal{G}(js)}_{} = \frac{1}{1+\frac{1}{k^{2}}}$$

$$\begin{split} & \left| \mathcal{Q}(ja) \right| = \sqrt{Re^2 + Im^2} \\ & \left| \mathcal{Q}(ja) \right| = \sqrt{\left(\frac{1}{1 + \Omega^2} \right)^2 + \left(\frac{-\Omega}{1 + \Omega^2} \right)^2} = \sqrt{\frac{1 + \Omega^2}{(1 + \Omega^2)^2}} \end{split}$$

$$\begin{split} & \underline{\mathcal{Q}}(ju) \big| = \frac{1}{\sqrt{1 + D^2}} \quad \text{bei fg mit } \Omega = 1 \iff |G| = 0,70^{\circ} \\ & \text{Ampitudengang} \\ & \mathscr{G}(ju) = \arctan\left(\frac{Im}{Re}\right) = \arctan\left(\frac{-D}{1 + D^2}\right) \\ & \frac{1}{1 + D^2} \end{split}$$

 $g(j\omega) = -\arctan(D)$ beifg $\Leftrightarrow \phi = -$ Phasengang

Der nachkeil, durs der Signal un den Falster 1/16 genhärelt mid stell gegen über dem ver Teil, dan die greghegren un der Ruhter 10 Steigt.

producing with viel larger als seine progable

Om Orginalvendare zu giattern und nonemequente Otordingen zu mindern, werden Tiefpassfilter eingesetzt. Am einfachsten ist der RC-Tiefpass

Wegen $\underline{I}=\frac{y_s}{R+Z_C}$ und $\underline{I}=\frac{y_a}{Z_C}$ gilt in der Zeigerdarstellung mit komplexen Impedanzen auch die Spannungsteilerregel

$$\frac{\underline{U}_{a}}{\underline{U}_{x}} = \frac{Z_{C}}{R + Z_{C}} = \frac{1}{\frac{J\omega C}{R + \frac{1}{J\omega C}}} = \frac{1}{1 + j\omega RC}$$

Für die Amplituden gilt

$$\frac{\widehat{U}_a}{\widehat{U}_e} = \left| \frac{\underline{U}_a}{\underline{U}_e} \right| = \frac{1}{\sqrt{1 + \omega^2 R^2 C^2}}$$

Die Spannungsverstärkung der Schaltung ist also von der Frequenz abhängig und

Wegen $\underline{I}=\frac{\underline{u}_x}{R+Z_C}$ und $\underline{I}=\frac{\underline{u}_a}{Z_C}$ gilt in der Zeigerdarstellung mit komplexen Impedanzen

auch die Spannungsteilerregel

Grenzfrezumz aus $|G(j \cup j)| = \frac{\max(|G(j)|)}{2}$ $\frac{\underline{U}_{\alpha}}{\underline{U}_{e}} = \frac{Z_{C}}{R + Z_{C}} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{1 + j\omega RC}$ Wg = 2 ₹ fg

Für die Amplituden gilt ($\Im \operatorname{curpfund}$) $\frac{U_a}{U_e} = \frac{|U_a|}{|U_e|} = \frac{1}{\sqrt{1 + \omega^2 R^2 C^2}}$ Verstarbung von V_e an V_o , the queup oblinging.

Die Spannungsverstärkung der Schaltung ist also von der Frequenz abhängig und geht für sehr hohe Frequenzen $(\omega o \infty)$ gegen Null.

Man nennt das Verhältnis der Spannungszeiger den <u>Frequenzgang</u> der Filterschaltung und schreibt