情報統計 第13-15回

2023年8月4日 神奈川工科大学

櫻井 望

公益財団法人かずさDNA研究所 先端研究開発部 シーズ開拓研究室 藻類代謝エンジニアリングチーム

補足

- 数学記号
- ログ変換
- 主成分分析の例

2群の t 検定(独立2群)

等分散が仮定できない場合 ウェルチの方法

1群目:標本数 n1, 不変標本分散 s1, 標本平均 $\overline{x1}$

2群目:標本数 n2, 不変標本分散 s2, 標本平均 $\overline{x2}$

検定統計量
$$t = \frac{x1 - x2}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}}$$

(近似)自由度
$$v \approx \frac{\left(\frac{s1^2}{n1} + \frac{s2^2}{n2}\right)^2}{\frac{s1^4}{n1^2(n1-1)} + \frac{s2^4}{n2^2(n2-1)}}$$

帰無仮説: 2群の母集団の平均値は等しい

で、同様に検定できます

参考まで

ほぼ等しい

数学記号

		· · · · · · · · · · · · · · · · · · ·
0	合成写像	「 $f\circ g$ 」は写像 g と写像 f の合成を表す。すなわち $(f\circ g)(x)=f(g(x))$ である。
Im, Image, \bullet [\bullet]	像	写像 φ に対して、Image φ はその写像の像全体の集合(値域)を表す。写像 $\varphi\colon X \to Y$ に対して $\varphi[X]$ とも書く。

二項関係演算

記号	意味	解説
=	相等	x = y は x と y が等しいことを表す。
<i>≠</i>	不一致	$x \neq y$ は $x \geq y$ が等しくないことを表す。
≒, ≈	ほぼ等しい	$ \lceil x = y $

順序構造

記号	意味	角军記允
		$[x < y]$ は $x \ge y$ の間に何 Wikipedia 方が [先] であることを示す。 Wikipedia
<.>	大小関係、順序	方が「先しであることを示す。 WIKIDEOI

Excelで数式表示

補足

- 数学記号
- ログ変換
- 主成分分析の例

生物の遺伝子情報の流れとオミクス

オミクス それぞれの要素を一斉に検出し ようとする技術・学問 一見、正規分布のように見えないデータでも、ログスケール(対数)にすることで、 正規分布に近い分布になることがある

- ✓ 遺伝子発現量データ
- ✓ 質量分析での化合物検出データ

など

大葉(しそ)で検出された代謝物質

- 液体クロマトグラフィー-質量分析
- ESIポジティブモード

計5760ピーク

検出値 (リニアスケール)

log10変換後 (ログスケール)

Excel関数: LOGなど

ログスケールにするメリット

シグナル強度によるばらつき(分散)の変化を打ち消 すことができる

例)強度10のピークの10%のばらつきは1の差なのに対し、 強度1000のピークでは、同じ10%のばらつきで100の差に なる。

logに変換すると、どんな強度でも同じ数値幅のばらつきにすることができる(等分散)

データの分布をExcelで描いて判断

補足

- 数学記号
- ログ変換
- 主成分分析の例

課題検討

発表会