Calculation of hourly solar radiation on tilted surface considering interaction between radiation and atmosphere

Jeonghun Song

April 21, 2017

Solar energy conversion: Photovoltaic panel, Solar water heater

- Large solar energy conversion capacity worldwide
 - PV panel: 227 GW, Solar water heater: 435 GW (2015)
 - ▶ Nuclear power plant 신고리1호기: 1.4 GW
 - ▶ In South Korea, PV panel 3.43 GW (2015)

Key of solar energy system analysis: Hourly solar radiation on a tilted plane

- Needed for calculating hourly energy production
 - Temporal operation of energy system (figure below)
 - Economic evaluation of solar energy system, and hybrid system including solar energy and other power sources

Complexities: Rotation & revolution, tilt angle, interaction with atmosphere

Global solar constant G_{SC} : Flux density of solar radiation on entry point into atmosphere

▶ About 1,367 W/m² with an uncertainty of ~1%

Extraterrestrial radiation on a horizontal plane at a certain place & a certain time G_0

Radiation on a plane at the outer edge of atmosphere

 $G_0 = G_{SC}(1 + 0.033\cos\frac{360^{\circ}n}{365})(\cos\phi\cos\delta\cos\omega + \sin\phi\sin\delta)$ Pole Star \rightarrow n: number of day (1 for Jan 1), ϕ : latitude, ω : hour angle, δ : declination angle $\delta = 23.45^{\circ} sin[\frac{360^{\circ}}{365}(284 + n)]$ 12:00 solar noon 11:00am 1:00pm 2:00 10:00 15° 9:00 Hour Sun's angle Equator 8:00 Rays 7:00 -75° 6:00

Total extraterrestrial solar energy for an hour on a horizontal plane I_o

- Integration of G_0 from corresponding hour angle ω_1 to $\omega_2 = \omega_1 + 15^0$

 - $I_0 = \frac{12}{\pi} G_{SC} \left(1 + 0.033 \cos \frac{360^{\circ} n}{365} \right)$
 - $\times \left[cos\phi cos\delta (sin\omega_2 sin\omega_1) + \frac{\pi(\omega_2 \omega_1)}{180} sin\phi sin\delta \right]$

From horizontal plane to tilted plane: Angle of incidence θ

- Angle between the beam on a plane and the normal to the plane
 - $cos\theta = sin\delta sin\phi cos\beta sin\delta cos\phi sin\beta cos\gamma$ $+ cos\delta cos\phi cos\beta cos\omega + cos\delta sin\phi sin\beta cos\gamma cos\omega$ $+ cos\delta sin\beta sin\gamma sin\omega$
 - $cos\theta_z = cos\theta(\beta = 0) = sin\phi sin\delta + cos\phi cos\delta cos\omega$

Interaction between radiation and atmosphere: Reflection, direct radiation, diffuse radiation

- Fraction of reflected energy (albedo) $ho_{g} pprox 0.35$
- \triangleright Direct radiation (I_b), diffuse radiation (I_d)
 - ▶ Hourly terrestrial total radiation (horizontal surface) $I = I_b + I_d$

Calculation of hourly terrestrial total radiation on a tilted plane I_T : HDKR model

 Consideration of beam, isotropic diffuse, ground reflectance, horizon brightening

$$I_{T} = \left(I_{b} + \frac{I_{d}I_{b}}{I_{o}}\right) \frac{\cos\theta}{\cos\theta_{z}} + I_{d} \left(1 - \frac{I_{b}}{I_{o}}\right) \left(\frac{1 + \cos\beta}{2}\right) \left[1 + \sqrt{\frac{I_{b}}{I}} \sin^{3}\left(\frac{\beta}{2}\right)\right] + I\rho_{g}\left(\frac{1 - \cos\beta}{2}\right)$$

Abbreviation for Hay, Davies, Klucher, Reindl

Problem of using HDKR model: No values of I_d & I_b in published data

▶ Ex> Datasheet published by 기상청

임의기간(시별): 2017-04-20 00시 ~ 2017-04-20 23시				
	지점번호	지점	일시	일사 (MJ/m²)
7	108	서울	2017-04-20 06	0,00
8	108	서울	2017-04-20 07	0,08
9	108	서울	2017-04-20 08	0,32
10	108	서울	2017-04-20 09	0,55
11	108	서울	2017-04-20 10	0,49
12	108	서울	2017-04-20 11	0,59
13	108	서울	2017-04-20 12	1,16
14	108	서울	2017-04-20 13	1,88
15	108	서울	2017-04-20 14	1,74
16	108	서울	2017-04-20 15	1,11
17	108	서울	2017-04-20 16	0,76
18	108	서울	2017-04-20 17	0,90
19	108	서울	2017-04-20 18	0,47
20	108	서울	2017-04-20 19	0,20
21	108	서울	2017-04-20 20	0,02

Value of $I = I_b + I_d$, but values of I_b and I_d are required for obtaining I_T

Clearness index & Erbs' correlation: Calculation of I_d with I in published data

Clearness index

$$K_T = I/I_o$$

- Erbs' correlation: I_d/I as a function of K_T
 - $I_d/I = 1 0.09 K_T$ for $K_T \le 0.22$
 - $I_d/I = 0.9511 0.1604K_T + 4.388K_T^2$ $-16.638K_T^3 + 12.336K_T^4$ for $0.22 < K_T \le 0.80$
 - $I_d/I = 0.165 \text{ for } K_T > 0.80$
- $I_b = I I_d$, able to obtain I_T

Validation with measured data: PV panel in Incheon airport

- Measured hourly power generation of the PV panel
 - Comparison with simulation data
 - Calculation of hourly power with calculated I_T
 - ightharpoonup Calculation of hourly I_T with published I in Incheon

Conversion of solar radiation to electricity: Performance curve of a PV panel

- Ex> A module of Hanhwa Q-Cell
 - ▶ 300 W per module (1.97m²), conversion efficiency 15.1%

Calculation of I_T with $\beta = 20^{\circ}$, $\gamma = 0$

Simulated data and measured data: Good match

- Ex> May 2016
 - ▶ 27th~30th day: under maintenance

Summary: Calculation process

References

- AI-Hallaj, S., & Kiszynski, K. (2011). Hybrid hydrogen systems: stationary and transportation applications. Springer Science & Business Media.
- Cooper, P. I. (1969). The absorption of radiation in solar stills. Solar energy, 12(3), 333-346.
- Shyam S, C., & Rajeev K, A. (2011). Estimation of hourly solar radiation on horizontal and inclined surfaces in Western Himalayas. Smart grid and renewable energy, 2011.
- ▶ Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar energy, 28(4), 293-302.