Mathematics 554H/701I Homework

We now review a bit from the beginning of the term. Let $f: E \to E'$ be a map between sets. Recall that if $A \subseteq E$, then the *image* of A under f is

$$f(S) = \{ f(x) : x \in A \}.$$

And if $B \subseteq E'$ the **preimage** of B under f is

$$f^{-1}(B) = \{ x \in E : f(x) \in B \}.$$

We recall that taking preimages behaves well with respect to taking unions and intersections.

Proposition 1. Let $f: E \to E'$ be a map between sets and let $\{S_{\alpha}\}_{{\alpha} \in I}$ be a collections of subsets of E'. (That is for each ${\alpha} \in A$ the $S_{\alpha} \subseteq E'$.) Then

$$f^{-1}\left(\bigcup_{\alpha \in I} S_{\alpha}\right) = \bigcup_{\alpha \in I} f^{-1}(S_{\alpha}) \quad and$$
$$f^{-1}\left(\bigcap_{\alpha \in I} S_{\alpha}\right) = \bigcap_{\alpha \in I} f^{-1}(S_{\alpha}),$$

Proof. To prove the first equality:

$$x \in f^{-1}\Big(\bigcup_{\alpha \in I} S_{\alpha}\Big) \iff f(x) \in \bigcup_{\alpha \in I} S_{\alpha}$$

$$\iff f(x) \in S_{\alpha} \quad \text{for at least one } \alpha \in I$$

$$\iff x \in f^{-1}(S_{\alpha}) \quad \text{for at least one } \alpha \in I$$

$$\iff x \in \bigcup_{\alpha \in I} f^{-1}(S_{\alpha}).$$

This shows that $f^{-1}\left(\bigcup_{\alpha\in I}S_{\alpha}\right)$ and $\bigcup_{\alpha\in I}f^{-1}(S_{\alpha})$ have the same elements and therefore are equal.

Likewise

$$x \in f^{-1}\Big(\bigcap_{\alpha \in I} S_{\alpha}\Big) \iff f(x) \in \bigcap_{\alpha \in I} S_{\alpha}$$

$$\iff f(x) \in S_{\alpha} \quad \text{for all } \alpha \in I$$

$$\iff x \in f^{-1}(S_{\alpha}) \quad \text{for all } \alpha \in I$$

$$\iff x \in \bigcap_{\alpha \in I} f^{-1}(S_{\alpha}).$$

and therefore $f^{-1}(\bigcap_{\alpha\in I} S_{\alpha})$ and $f^{-1}(\bigcap_{\alpha\in I} S_{\alpha})$.

Problem 1. As a review let $f: E \to E'$ be a function between sets and let $S_1, s_2 \subseteq E'$. Then show directly the equalities

$$f^{-1}(S_1 \cup S_2) = f^{-1}(S_1) \cup f^{-1}(S_2)$$
 and $f^{-1}(S_1 \cap S_2) = f^{-1}(S_1) \cap f^{-1}(S_2)$.

hold. \Box

We recall that in the books notation if S is a subset of some set E then the **compliment** of S in E is

$$\mathcal{C}(S) = \{ x \in E : x \notin S \}.$$

That is C(S) is the set of points of E that are not in S. Taking compliments is also well behaved with respect to taking preimages.

Proposition 2. Let $f: E \to E'$ be a map between sets and let $S \subseteq E'$. Then

$$f^{-1}(\mathcal{C}(S)) = \mathcal{C}(f^{-1}(S)).$$

(Here C(S) is the compliment of S in E' and $C(f^{-1}(S))$ is the compliment of $f^{-1}(S)$ in E.)

Problem 2. Prove this.

We summarize this as

Taking preimages preserves unions, intersections, and compliments.

We now relate continuity of functions to taking preimages of open sets.

Lemma 3. Let $f: E \to E'$ be a map between metric spaces. Then the following are equivalent:

- (a) For every open subset $S \subseteq E'$ the preimage $f^{-1}(S)$ is open in E. (That is the preimages of open sets are open.)
- (b) For every closed subset $S \subseteq E'$ the preimage $f^{-1}(S)$ is closed in E. (That is the preimages of closed sets are closed.)

Problem 3. Prove this. *Hint:* Let $S \subseteq E'$. Then we have seen that $f^{-1}(\mathcal{C}(S)) = \mathcal{C}(f^{-1}(S))$. Assume that (a) holds, that is that the preimages under f of open sets are open. Let S be closed. Then $\mathcal{C}(S)$ is open and therefore $f^{-1}(\mathcal{C}(S))$ is open. But then $\mathcal{C}(f^{-1}(\mathcal{C}(S))) = f^{-1}(\mathcal{C}(\mathcal{C}(S)))$ is closed. But what is $\mathcal{C}(\mathcal{C}(S))$? This shows that (b) holds and thus that (a) implies (b). Do a similar argument to show that (b) implies (a).

Theorem 4. Let $f: E \to E'$ be a map between metric spaces. Then then the following are equivalent

- (a) f is continuous.
- (b) For every open set $S \subseteq E'$ the preimage $f^{-1}(S)$ is open in E.
- (c) For every closed set $S \subseteq E'$ the preimage $f^{-1}(S)$ is closed in E.

Problem 4. Prove this. *Hint:* (b) \iff (c) holds is is covered by 3. So we only need to show that (a) \iff (b) holds.

(a) \Longrightarrow (b). Assume that f is continuous and that $S \subseteq E'$ is open. We need to show that $f^{-1}(S)$ is open. That is for any $p_0 \in f^{-1}(S)$ we need to show that $f^{-1}(S)$ contains a ball about p_0 . As S open in E' there is a $\varepsilon > 0$

such that $B(f(p_0), \varepsilon) \subseteq S$. Use that f is continuous at p_0 to show that there is a $\delta > 0$ such that for all $p \in B(p_0, \delta)$ we have $f(p) \in B(f(p_0), \varepsilon) \subseteq S$ and use this to show $B(p_0, \delta) \subseteq f^{-1}(S)$ and therefore that $f^{-1}(S)$ contians a ball about p_0 .

(b) \Longrightarrow (a). Assume that (b) holds, that is that the preimage of open sets by f are open and we wish to show that f is continuous at all points of E. Let $p_0 \in E$ and $\varepsilon > 0$. Then the ball $B(f(p_0), \varepsilon)$ is an open set in E' and therefore the preimage $f^{-1}(B(f(p_0)))$ is open. As $p_0 \in f^{-1}(B(f(p_0)))$ and $f^{-1}(B(f(p_0)))$ is open we have that $f^{-1}(B(f(p_0)))$ contains an open ball about p_0 , say $B(p_0, \delta) \subseteq f^{-1}(B(f(p_0)))$. Use this to show that if $d(p, p_0) < \delta$, then $d'(f(p), f(p_0)) < \varepsilon$ and therefore f is continuous at p_0 .

At first it may not seem that rewriting the condition of f being continuous in terms of preimages of open sets is useful, but we now show that it makes some proofs easy.

Recall that a set in a metric space is connected if and only if it is not the disjoint union of two disjoint nonempty open sets.

Theorem 5. Let E be a connected metric space and $f: E \to E'$ a continuous function. Then the image f(E) is connected.

Problem 5. Prove this. *Hint:* Toward a contradiction assume that f(E) is not connected. Then f(E) has a disconnection. That is $f(E) = U \cup V$ where U and V are nonempty open sets in f(E) and $U \cap V = \emptyset$. Now show $E = f^{-1}(U) \cup f^{-1}(V)$ is a disconnection of E, contradicting that E is connected.

Recall that we have shown that the only connected subsets of $\mathbb R$ are the intervals. We now combine this with Theorem 5 to prove the intermediate value theorem.

Theorem 6 (General Intermediate Value Theorem). Let E be a connected metric space and let $f: E \to \mathbb{R}$ be a continuous function. Let $p_0, p_1 \in E$ with $f(p_0) < f(p_1)$. Then for every real number y with $f(p_0) < y < f(p_1)$ there is a $x \in E$ with f(x) = y.

Problem 6. Prove this. *Hint:* By Theorem 5 the set f(E) is a connected subset of \mathbb{R} and therefore f(E) is an interval. We have $f(p_0), f(p_1) \in f(E)$ and as f(E) is an interval this implies that f(E) contains every point between $f(p_0)$ and $f(p_1)$.

Theorem 7 (Intermediate Value Theorem). Let [a,b] be a closed interval in \mathbb{R} and $f:[a,b] \to \mathbb{R}$ a continuous function with $f(a) \neq f(b)$. Then for every y between f(a) and f(b) the equation f(x) = y has a solution with a < x < b.

Problem 7. (a) Prove this as a corollary of Theorem 6 and the fact that [a, b] is connected.

(b)	Draw some pictures i	illustrating why	the theorem is true.	
----	---	----------------------	------------------	----------------------	--

The intermediate value theorem is useful in showing that equations have solutions, even in cases where we can not solve them explicitly. Here is an example: the equation $x^7 - 3x + 1 = 0$ has at least some solution with 0 < x < 1. To see this note that $f(x) = x^7 - 3x + 1$ is continuous on [0, 1]. Also f(0) = 1 is positive, and f(1) = -1 is negative. Therefore by Theorem 7 f takes on the value 0 at some point in (0,1). That is there is x_0 with $0 < x_0 < 1$ with $f(x_0) = x_0^7 - 3x_0 + 1 = 0$.

Problem 8. Show that the following have solutions.

- (a) $x^3 = \sqrt{7+x}$ on the interval [0,2]. *Hint:* This can be rewritten as $x^3 \sqrt{1+x} = 0$.
- (b) $x^3 + 2x + 2 = 0$ on [-2, 2]. (c) $x^5 4x^3 + x 9 = 0$ on [-3, 3].

Proposition 8. Every polynomial of degree 3 has at least one real root. That is if $f(x) = a_3x^3 + a_2x^2 + a_1x^1 + a_0$ with $a_3 \neq 0$ there is a real number $x_0 \text{ with } f(x_0) = 0.$

Proof. We wish to solve

$$a_3x^3 + a_2x^2 + a_1x + a_0 = 0.$$

As $a_3 \neq 0$ we can divide by a_3 and get the equivalent equation

$$x^3 + b_2 x^2 + b_1 x + b_0 = 0$$
 where $b_i = \frac{a_j}{a_3}$ for $j = 0, 1, 2$.

Let

$$f(x) = x^3 + b_2 x^2 + b_1 x + b_0.$$

We will now find a c_0 such that f(c) > 0 and f(-c) < 0 and therefore f(x) = 0 with have a solution $x = x_0$ with $-c < x_0 < c$ by the Intermediate value Theorem. We start by writing f(x) as

$$f(x) = x^3 \left(1 + \frac{b_2}{x} + \frac{b_1}{x^2} + \frac{b_2}{x^3} \right) = x^3 q(x)$$

where

$$q(x) = 1 + \frac{b_2}{x} + \frac{b_1}{x^2} + \frac{b_2}{x^3}.$$

Now note if $|x| \ge 1$ that

$$q(x) = 1 + \frac{b_2}{x} + \frac{b_1}{x^2} + \frac{b_2}{x^3}$$

$$\geq 1 - \left| \frac{b_2}{x} \right| - \left| \frac{b_1}{x^2} \right| - \left| \frac{b_2}{x^3} \right|$$

$$\geq 1 - \frac{|b_2|}{|x|} - \frac{|b_1|}{|x|} - \frac{|b_0|}{|x|}$$

$$= 1 - \frac{|b_2| + |b_1| + |b_0|}{|x|}$$
(as $|x| \geq 1$)

Therefore if $|x| \ge 2(|b_2| + |b_1| + |b_0|)$ we have

$$q(x) \ge 1 - \frac{|b_2| + |b_1| + |b_0|}{|x|} \ge 1 - \frac{|b_2| + |b_1| + |b_0|}{2(|b_2| + |b_1| + |b_0|)} = \frac{1}{2}.$$

Whence if we set $c = 2(|b_2| + |b_1| + |b_0|)$ we have that

$$|x| \ge c$$
 implies $q(x) > \frac{1}{2} > 0$

Thus q(q) and q(-c) are both positive numbers and so

$$f(c) = c^3 q(c) > 0$$
, and $f(-c) = (-c)^3 q(-c) = -c^3 q(-c) < 0$.

Therefore f(x) change sign on [-c, c] and f is continuous so by the Intermediate Value Theorem f(x) = 0 has a solution on [-c, c].

Problem 9. For any even integer n=2k given an example of a polynomial f(x) such that f(x)=0 has no solutions for any $x \in \mathbb{R}$. *Hint:* For n=2 and example is $f(x)=x^2+1$.

Theorem 9. Let f(x) be a polynomial of odd degree. Then there is a real number x_0 with $f(x_0) = 0$. That is all polynomial of odd degree have at least one root.

Problem 10. Prove this for polynomial of degree 5. *Hint*: Look at the proof of Proposition 8. \Box