

AMERICAN INTERNATIONAL UNIVERSITY- BANGLADESH (AIUB)

Introduction to Electrical Circuit

FALL 2023-2024

Section: L, Group: 07

LAB REPORT ON

Study of 'Nodal Analysis' in R-L-C combination circuit in AC Supervised By

MD. SHAHARIAR PARVEZ

Name	ID				
1.MD. Abdullah	22-48065-2				
2.Azmir Islam Kafi	22-47981-2				
3.Mohammad Ansar Uddin	22-47975-2				
4.Chinmoy Guha	22-48056-2				
5.Suvra Chakraborty	22-48067-2				

Abstract:

The purpose of the experiment was to develop an understanding of the method of determining voltage and current using 'Nodal Analysis' in an R-L-C AC circuit. Circuits containing R, L, and C components were constructed, and the objective was to analyze the outputs of R-L-C series-parallel combination circuits to obtain practical values as well as simulated or theoretical results. Additionally, the experiment involved determining the phase relationship between V and I in an R-L-C combination circuit and drawing a complete vector diagram to comprehend the method of using Nodal analysis.

Circuit diagram:

Figure 1: Circuit diagram for Nodal Analysis

Apparatus:

a) Oscilloscope, b) Function generator c) Resistor: 100 ohm - 5 pcs d) Inductor: 6.3 mH e) Capacitor: 4.7 microF and 10 microF, f) Connecting wire, g) Bread board

Experimental Procedure:

The circuit illustrated in Fig. 1 was successfully constructed, with channel 1 of the oscilloscope connected across the function generator and channel 2 across R2. The amplitude of the input signal was set at 10V peak, and the frequency was adjusted to 1 kHz, with a sinusoidal wave shape selected. Measurements were taken for the values of VA and the current IV A-B. The phase relationship between the supply voltage V and the node voltage at VA was determined. Subsequently, channel 2 of the oscilloscope was connected across R3, and the phase relationship between the waves was determined. The values of VC and IV B-C were measured, and the phase relationship between the supply voltage V and the node voltage at VC was determined. Further analysis involved determining IV A-C, IV A-G, and IV C-G. All the obtained currents were compared with their theoretical values, and the percentage error was calculated for comprehensive assessment.

Result analysis:

Data Table:

		Practical Value									Error	
Freq.(1 (kHz)		I _{V B-A} Mag. Pha		Mag	V B-C	Mag.	V A-C	I _{V A-G} Mag. Pha se		I _{V C-G} Mag. Pha se		%Error= (Theoretic al – Practical value/The oretical value) *100
		I _{VB-A} (mA)	se θ (°)	. I _V B-C (mA	se θ (°)	I _{V A-C} (mA)	se θ (°)	I _{V A-G} (mA)	θ (°)	I _{V C-G} (mA)	θ (°)	
1kH	z 7.07V rms	66.9 64	3.3 4	68. 21 2	3.3 4	134 .60 5	1.2	69. 874	24.7 4	69.7 31	15.2	5%

Simulation:

Figure: Currents for the circuit.

Calculation:

$$T_s = \frac{7.07}{63.22+6.3; n} = 0.11-0.011;$$

$$I_{R_2} = \frac{Z_{\Gamma}}{R_1} \times I_S = \frac{63.22 + 6.3j \cdot \Omega}{100} \times 0.11 - 0.011j$$

$$= 0.07/-3.34°$$

$$I_{R_3} = \frac{Z_T}{R_3} \times I_s = 0.069 \ \text{C} - 3.34^\circ$$

$$I_{R23} = \frac{Z_{L}}{R_{23}} \times I_{8} = 0.14 \text{ C1.2}^{\circ}$$

Discussion

The purpose of the experiment was to develop an understanding of the method of determining voltage and current using 'Nodal Analysis' in an R-L-C AC circuit. Circuits containing R, L, and C components were constructed, and the objective was to analyze the outputs of R-L-C series-parallel combination circuits to obtain practical values as well as simulated or theoretical results. Additionally, the experiment involved determining the phase relationship between V and I in an R-L-C combination circuit. All of these were successfully demonstrated and found. The phase of each I was calculated through theoretical calculations and we found that there was a bit of a difference between the calculated values and practical values.

Conclusion:

By completing this experiment we had become familiar with the method of determining voltage and current using Nodal Analysis in an RLC AC circuit.