18.S096 Problem Set 2 Spring 2018 Due Date: 2/23/2018 Where: On Stellar, prior to 11:59pm

Collaboration on homework is encouraged, but you will benefit from independent effort to solve the problems before discussing them with other people. You must write your solution in your own words. List all your collaborators.

1. Moment-Generating Functions of linear transformations of random variables.

Suppose X is a random variable with density/pmf $f(x \mid \theta)$, indexed by the parameter θ and MGF:

$$M_X(t) = E[e^{tX} \mid \theta] = \int_{\mathcal{X}} e^{tx} f(x \mid \theta) dx$$
 or
$$(\sum_{\mathcal{X}} e^{tx} f(x \mid \theta) \text{ if } X \text{ discrete})$$

(1a) If $Y = \mu + \sigma \times X$, where $\mu \in R$ and $\sigma \in R^+$ are known constants then the MGF of Y is

$$M_Y(t) = e^{\mu t} M_X(\sigma t).$$

(1b) Suppose $X \sim N(0, 1)$, i.e.,

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, -\infty < x < +\infty$$

Compute the moment-generating function of X:

$$E[e^{tX}] = \int_{-\infty}^{+\infty} e^{tx} f(x) dx.$$

- (1c) Using the density of $X \sim N(0,1)$, derive the density of $Y = \mu + \sigma \times X$. (Hint: use Jacobian in computing density of transformed random variable.)
- (1d) Apply part (a) to find the MGF of the linear transformation of X: $Y = \mu + \sigma X$.

By the uniqueness of MGFs, recognize the MGF of Y as that of a $N(\mu, \sigma^2)$ distribution.

2. Normal Q-Q Plots: Motivation and Computational Derivation

In R, generate an i.i.d. sample n = 500 from the N(0,1) distribution in a vector X. Plot the histogram of X (using the freq = FALSE option) and super-pose the curve of its density function.

- > set.seed(1); n=500; X=rnorm(n)
- > hist(X, main="Normal(0,1) Sample (n=500)", freq=FALSE)
- > f=function(x){dnorm(x)}
- > X.density=curve(f, add=TRUE, col='blue')

Normal(0,1) Sample (n=500)

- (2a) Apply the function qqnorm() to X
 - > # The R function qqnorm() sorts the input vector
 - > # from smallest to largest values and plots these
 - > # on the vertical axis against horizontal values
 - > # equal to theoretical expected values for the
 - > #order statistics of a Normal(0,1) distribution.
 - > par(mfcol=c(1,1))
 - > qqnorm(X)

For a random sample of size n from a population,

$$x_1, x_2, \ldots, x_n$$

the sorted sample values constitute the n order statistics, ranging from the smallest to the largest. These are denoted by putting parentheses around the index:

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$$

Notationally $x_{(j)} = x_{i_j}$, where i_j is the index of the jth smallest x_i . The qqnorm plots the $x_{(j)}$ sorted values of X versus their expected values μ_j , i.e.,

$$\mu_{(j)} = E[x_{(j)}],$$

where $x_{(j)}$ is the jth order statistic from a simple random sample of size n of a N(0,1) population. These expected values are called theoretical quantiles.

- In the plot from qqnorm(), add a straight line with intercept 0, and slope 1 to the plot. (Use the R function abline() with arguments abline(a=0,b=1).) Do the points in the plot follow the line?
- Repeat the exercise of generating a random sample (n = 500) from a Normal(0,1) distribution and constructing a normal qq plot 4 times. creating a normal qq plot for 4 samples in each panel of a 2-by-2 display. (In R use par(mfcol = c(2,2)) to setup the display.)

Comment on the degree of consistency of how the plots look.

- (2b) Compute Y = 10.+5.*X. Plot the histogram of Y (using the freq = FALSE option) and super-pose a plot of the true density function. (The density function f should use the $mean = and \ sd = arguments$ when using the R function dnorm(), i.e., dnorm(x, mean = 10, sd = 5.)
- (2c) Compute the normal qq plot of Y using qqnorm()The points fall close to a line. What specification of the line abline(a = ?, b = ?) should fit the data?
- (2d) The function qqnorm() computes expected values of order statistics ("theoretical quantiles") from a N(0,1) sample using a theoretical formula. We now use R to compute numerical approximations of these theoretical values:

Generate $N^*=1000$ samples of size n=500 from the N(0,1) distribution. Order each sample from smallest to largest. These ordered values are the "order statistics" of each sample: $x_{(j)}, j=1,2,\ldots,n$. Compute the average value of each order statistic over the $N^*=1000$ samples.

- > # Create matrix of of the 1000 samples of size 500
- > nsamples=1000
- > samplesize=500
- > mat.samples=matrix(rnorm(nsamples*samplesize),
- + nrow=samplesize, ncol=nsamples)
- > # Use apply() to sort each column of mat.samples
- > # so that each row consists of random sample
- > # of the respective order statistic
- > mat.samples.orderstats=apply(mat.samples,2,sort)
- > # Use rowMeans() to approximate the expected value of order statistics
- > mat.samples.orderstats.rowMeans=rowMeans(mat.samples.orderstats)
 - Plot the sorted values of X against the row-means of the order statistics. Compare this plot to the plot generated by qqnorm().
 - For Y = 10.+5*X, plot the sorted sample Y against the same approximate expected values. Compare this plot to that produced using qqnorm().

3. Suppose $X \sim Gamma(\alpha, \beta)$ with density:

$$f(x \mid \alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\beta x}, \ 0 < x < \infty$$

- 3(a) Compute the MGF of X.
- 3(b) If X₁, X₂,..., X_n denotes an i.i.d. sample from the Gamma(α, β) distribution prove that the distribution of S_n = X₁ + X₂ + ··· X_n is Gamma(α_{*}, β_{*}), where α_{*} = n × α and β_{*} = β.
 (Hint: Compute the MGF of S_n and identify the underlying distribution using the uniqueness property of MGFs.)
- 3(c) In R, use the function rgamma() to fill a 500×10 matrix X1 with random variates from an Exponential(1) = Gamma(shape = 1, scale = 1) distribution. Define the vector Y1 to be the row-sums of X1.
 - > nrow0=500
 - > ncol0=10
 - > X1=matrix(rgamma(nrow0*ncol0, shape=1, scale=1), nrow=nrow0)
 - > Y1=rowSums(X1)
 - Plot the histogram of Y1 (use the density scale)
 - What is the probability distribution of the sample values in Y1?
 - What are the mean and variance of this distribution?
 - Add the probability density curve to the histogram plot (use the R function dgamma() to compute values of a Gamma density function).
- 4. Simulation Exercise: Comparing Method-of-Moments Estimates for Poisson Distribution

Simulate M=1000 random samples (sample size n=50) from a $Poisson(\lambda)$ distribution with $\lambda=5$.

- > # Create matrix of of the 1000 samples of size 500
- > nsamples=1000
- > samplesize=50
- > mat.samples=matrix(rpois(nsamples*samplesize, lambda=5), nrow=samplesize, ncol=nsampl
- > # Use apply to compute MOM estimates
- > mat.samples.mom1<-colMeans(mat.samples)</pre>
- > mat.samples.mom2<-colMeans(mat.samples^2) colMeans(mat.samples)^2
- 4(a) For each sample compute the two method-of-moments estimates of λ :

$$\hat{\lambda}_{MOM1} = \hat{\mu}_1 \text{ and } \hat{\lambda}_{MOM2} = \hat{\mu}_2 - (\hat{\mu}_1)^2.$$

Compare the two estimates using the simulated sampling distribution of the estimation error. Using the Mean-Squared-Error (equivalently RMSE) criterion:

$$\begin{split} MSE(\hat{\lambda}) &= \tfrac{1}{M} \sum_{j=1}^{M} (\hat{\lambda}_j - \lambda)^2. \\ RMSE(\hat{\lambda}) &= \sqrt{MSE(\hat{\lambda})}. \end{split}$$
 Which estimator is better?

- 4(b) Are the two MOM estimates dependent? Construct a scatterplot of the two estimates and compute their correlation over the M=1000pairs of simulated estimates.
- 4(c) Construct Normal Q-Q Plots of the simulated samples of each methodof-moments estimate. Which estimate has a simulation distribution which is closer to a Normal distribution? Explain why this is true.