TD 4 2013 - 2014

Processus stochastiques en temps discret

TD 4 - Convergences des martingales

17 octobre 2013

Si vous repérez des erreurs dans les feuilles d'exercices ou si vous avez des questions, n'hésitez pas à m'envoyer un mail à l'adresse suivante : jhihhuang.li@gmail.com

Exercice 4.1 (processus de branchement).

On considère μ une loi de reproduction, c'est-à-dire, si X est une variable aléatoire suivant μ , alors X est à valeurs dans \mathbb{N} . On note son espérance m et sa distribution $p_k = \mathbb{P}(X = k)$ pour tout $k \in \mathbb{N}$. On a $\sum_{k \in \mathbb{N}} p_k = 1$. On suppose que $p_0 > 0$.

Soit $(\xi_{n,m})_{n,m\in\mathbb{Z}}$ une famille de variables alétoires *i.i.d.* de loi μ . On note \mathcal{F}_n la filtration $\mathcal{F}_n = \sigma(\xi_{k,m}, k \leq n, m \in \mathbb{N})$. On définit le processus de branchement $(Z_n)_{n\in\mathbb{N}}$ de loi de reproduction μ de manière suivante :

$$Z_0 = 1,$$

$$\forall n \in \mathbb{N}, Z_{n+1} = \sum_{k=1}^{Z_n} \xi_{n,k}.$$

On note $X_n = \frac{Z_n}{m^n}$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que $X := \lim_{n \to \infty} X_n$ existe p.s.
- 2. On suppose m < 1. Montrer que $Z_n \to 0$ p.s. et dans \mathbb{L}^1 .
- 3. On suppose m=1. Montrer que X_n ne converge pas vers X dans \mathbb{L}^1 .
- 4. On suppose m > 1.
 - (a) Montrer que la martingale (X_n) est borné dans \mathbb{L}^2 . (Indication, utiliser le crochet $\langle X \rangle_n$.
 - (b) Montrer que $X_n \xrightarrow{\mathbb{L}^1} X$. En déduire que $\mathbb{P}(X > 0) > 0$.
 - (c) Montrer que X > 0 sur l'événement $\{Z_n > 0, \forall n \in \mathbb{N}\}$, en déduire que si la population survit, alors elle croît exponentiellement vite.

Exercice 4.2 (Théorème de Kakutani).

Soit X_1, \ldots, X_n une suite de variables aléatoires indépendantes positives de moyenne 1. Pour $n \in \mathbb{N}$, on pose

$$M_n = \prod_{k=1}^n X_k.$$

1. Montrer que (M_n) est une martingale qui converge p.s. vers une martingale limite, qu'on appelle M_{∞} . On pose, pour tout $n \in \mathbb{N}^*$, $a_n = \mathbb{E}[X_n^{1/2}]$ et

$$N_n = \prod_{k=1}^n \frac{X_k^{1/2}}{a_k}.$$

TD 4 2013 - 2014

- 2. Vérifier que $0 < a_n \le 1$.
- 3. En utilisant le processus (N_n) , montrer que les conditions suivantes sont équivalentes :
 - (a) $\mathbb{E}[M_{\infty}] = 1$,
 - (b) $M_n \xrightarrow{\mathbb{L}^1} M_\infty$ quand $n \to \infty$,
 - (c) la martingale (M_n) est uniformément intégrable,
 - (d) $\prod_{k=1}^{\infty} a_k > 0$,
 - (e) $\sum_{k=1}^{\infty} (1 a_k) < \infty$.

Exercice 4.3. On considère une équation d'évolution aléatoire :

$$X_{n+1} = (1 + r_{n+1})X_n, \ X_0 = 1,$$

où les r_k sont des variables aléatoires bornées à valeurs dans $]-1,+\infty[$. On note

$$R_n = \sum_{k=1}^n r_k, \ R_0 = 0.$$

- 1. On note $\mathcal{F}_n^X = \sigma(X_0, \dots, X_n)$ et $\mathcal{F}_n^R = \sigma(R_0, \dots, R_n)$. Que dire des filtrations $(\mathcal{F}_n^X)_{n \in \mathbb{N}}$ et $(\mathcal{F}_n^R)_{n \in \mathbb{N}}$?
- 2. Montrer que $(X_n)_{n\in\mathbb{N}}$ est une martingale si et seulement si $(R_n)_{n\in\mathbb{N}}$ l'est.
- 3. Soit $\epsilon \in]0,1[$. On suppose que les r_k sont i.i.d. de loi commune

$$\mathbb{P}(r_1 = \epsilon) = \mathbb{P}(r_1 = -\epsilon) = \frac{1}{2}.$$

- (a) Montrer que quand $n \to \infty$, X_n tend vers 0 p.s. La convergence a-t-elle lieu dans L^1 .
- (b) Soit z>1 fixé. On note T_z le temps de premier passage de X_n au dessus de z :

$$T_z = \inf\{n \ge 1, X_n \ge z\}.$$

Sur $\{T_z<+\infty\}$, déterminer une borne supérieure et une borne inférieure pour X_{T_z} . Montrer que

$$\frac{1}{z(1+\epsilon)} \le \mathbb{P}(T_z < \infty) \le \frac{1}{z}.$$