CIRCUITOS LÓGICOS

ROTEIRO 1

Montagem de circuitos lógicos utilizando integrados da família TTL e introdução ao software Quartus II da Altera.

- 1. Circuitos Lógicos TTL
- 2. Circuito Combinacional: Detetor de RA
- 3. Implementação de um Flip-Flop
- 4. Quartus II da Altera

CIRCUITOS LÓGICOS TTL

MATERIAL

- 1 fonte
- 2 multímetros
- 1 Protoboard
- 1 Cl com 6 portas NOT

Foi ligado à protoboard uma tensão variável vindo da fonte e uma tensão nula (terra).

Depois ligado o CI na protoboard e conectados os cabos para que ele seguisse o circuito desejado.

Conseguiu se observar os períodos de funcionamento da porta *NOT*

Valor	Teórico	Experimental
Vih	[2.0V, 5.0V]	[2.9V, 5.0V]
Vil	[0.0V, 0.8V]	[0.0V, 0.4V]
Voh	[2.4V, 5.0V]	[3.7V, 5.0V]
Vol	[0.0V, 0.4V]	[0.0V, 0.4V]

A tensão onde ocorre a transição na entrada é o 2.9V, e na saída é o 3.7V

A faixa que podemos atribuit o com segurança é:

- 0 (low) [0.0V, 0.4V]
- 1 (high) [3.7, 5.0V]

CIRCUITO COMBINACIONAL: DETETOR DE RA

O circuito deve receber um número de 1 a 9 em BCD e verificar se ele está contido no RA 135216

MATERIAL

- 1 fonte
- 1 placa com switchs e leds
- 1 Protoboard
- 1 Cl com 6 portas NOT
- 1 Cl com 4 portas *OR* de 2 entradas
- 1 Cl com 4 portas *AND* de 2 entradas
- 1 Cl com 3 portas *AND* de 3 entradas

Foi criado um diagrama da função de mintermos adquirida do RA.

E conectado a protoboard na placa para receber o código BCD dos switchs e mostrar o resultado nos leds.

Entrada	Entrada (BCD)	Saída
0	0000	0
1	0001	1
2	0010	1
3	0011	1
4	0100	0

Entrada	Entrada (BCD)	Saída
5	0101	1
6	0110	1
7	0111	0
8	1000	0
9	1001	0

IMPLEMENTAÇÃO DE UM FLIP-FLOP

MATERIAL

- 1 fonte
- 1 placa com switchs e leds
- 1 Protoboard
- 3 CI com 6 portas NOT
- 2 Cl com 4 portas NAND de 2 entradas

Foi seguido o diagrama para montar o Latch, e depois transformá-lo em um flip flop.

Foram necessários 9 portas NOT ligadas em série para que o circuito pudesse funcionar apenas com a borda de subida do clock.

CLOCK

Para o latch funcionar apenas com a borda de subidas precisou-se implementar o seguinte circuito na entrada do clock.

CLOCK

Mas precisou-se de mais de 1 porta *NOT* para funcionar o circuito mostrado.

Para introduzir um delay na porta *NOT* e permitir que, por um pequeno tempo, tanto a entrada quanto sua negação sejam verdadeiras.