

Hadoop Ecosystem

K V Subramaniam

Computer Science and Engineering

Hadoop Ecosystem Overview

Hadoop Ecosystem

What we have learnt so far..

HDFS for storage

And MapReduce (Hadoop) for computation

So where does it all fit in the bigger scheme of a Big Data architecture

Hadoop Ecosystem

Hadoop Workflows: Oozie

Oozie: Motivational exercise

Suppose we want to build a recommendation system like in AMAZON

What inputs would we need?

How often would we need to update the recommendations (every hour? Every day? EVERY week?)

Is it enough to just build a recommendation algorithm?

work PROVIDED the right inputs are given to it.

Hadoop Ecosystem

Workflow Definition

The sequence of steps is called a *Workflow*

Workflows are common in data centers

Users would like to

Specify the steps
Specify when the steps are to be run

Maybe periodically

Run the Workflow

What to do in case of error

Oozie Architecture

Image courtesy:

https://oyermolenko.blog/2017/10/01/scheduling-jobs-in-hadoop-through-oozie/

Oozie Workflow (pictorial)

Action nodes

Does something, e.g., run Mapreduce

Every action node has a normal exit and an error exit

Control nodes

Start is the beginning of a Workflow

End and kill are the end

Other control nodes

Fork (start parallel tasks) and Join (merge parallel tasks)

Decision: like switch

DAG Expressing Workflow

Oozie References

- T1 Chapter 2.6.1.2
- T2 Chapter 7.5

http://oozie.apache.org/docs/4.3.0/index.html

Official Oozie Homepage

https://oyermolenko.blog/2017/10/01/scheduling-jobs-in-hadoop-through-oozie/

A very good introduction to Oozie

Hadoop Workflows: Ambari

Ambari : Deploy and Manage Hadoop Clusters

Simplifies Installation, Configuration and Management

Easy, efficient, repeatable creation of clusters

Manages and Monitors clustering

Ambari Architecture

Ambari Stacks

Describes the applications to be installed, eg, Hadoop, its components and its structure

Ambari Blueprints

Creation of the cluster

Ambari Views

User interface

<u>Source: https://www.slideshare.net/hortonworks/managing-enterprise-hadoop-clusters-with-apache-ambari</u>

Ambari Stacks

What do we need to define in Ambari to install a cluster?

Term	Meaning		
Stack	Set of services, where to get the software packages, e.g. HDP (Hortonworks Data Platform)		
Service	Components that make up the service e.g, HDFS		
Component	Building blocks of the service Namenode, Datanode		
Category	Master, slave, client		

Hadoop Ecosystem

Which nodes do you want to install Hadoop on?

We will use the SSH private key for the roof user and a file containing a list of hostnames to perform installation on your nodes. The corresponding public key must already be in authorized_keys on all the nodes.

Hadoop Ecosystem

Hadoop Ecosystem

7 Review & Deploy

Which services do you want to install?

We will automatically take care of dependencies (e.g., HBase requires ZooKeeper, etc.)

- Select all
- ☑ HDFS Apache Hadoop Distributed File System
- ✓ MapReduce Apache Hadoop Distributed Processing Framework
- ✓ Ganglia Ganglia-based Metrics Collection for HDP
- ✓ Nagios Nagios-based Monitoring for HDP
- HBase Apache HDFS-based Non-relational Distributed Database
- Pig Platform for Analyzing Large Data Sets
- Sqoop Tool for transferring bulk data between Apache Hadoop and structured datastores such as relational databases
- Oozie Workflow/Coordination system to manage Apache Hadoop jobs
- Hive/HCatalog Hive Data Warehouse system for Apache Hadoop, HCatalog Table and Storage Management service for data created using Apach Hadoop
- ▼ Templeton Webservice APIs for Apache Hadoop
- ZooKeeper Centralized Service for Configuration Management and Distribution Synchronization

Select Services

Hadoop Ecosystem

Hadoop Ecosystem

Dashboard start

Ganglia start

Deployment Progress Cluster install Completed HDFS start Completed HDFS test Completed MapReduce start In Progress MapReduce test Pending ZooKeeper start Pending ZooKeeper test Pending Pending HBase start Pending Pending Sqoop test Pending Oozie start Pending Oozie test Pending Hive/HCatalog start Pending Hive/HCatalog test Pending Templeton start Pending Pending

Pending Pending

Pending

Pig: Building High-Level Dataflows over Map Reduce

Disadvantages of MapReduce

PES UNIVERSITY ONLINE

For Data analysis, Map-Reduce is too low-level Writing Map and Reduce code requires retraining.

Something SQL-Like may be better
HIVE is an option (which we will look at later)
But how about a scripting language

PIG Introduction

PES

Complex data transformations using scripts
Builtin operators

Interactive shell Grunt

Language Pig Latin

Scripts are internally converted to Map Reduce jobs.

Created @Yahoo

Image courtesy: Big Data Analytics,

Rajkamal, Preeti Saxena

Example Data Analysis Task

Find the top 10 most popular IPL matches in each venue.

Visits

User	matchId	Time
RajniKan	Match 400	2:00
RajniKan	Match 201	5:00
Superman	Match 42	10:05
Spiderman	Match 108	13:03

MatchInfo

matchId	Venue	Winner
Match 108	Chennai	CSK
Match 201	Bengaluru	RCB
Match 42	Kolkata	DC
Match 400	Mumbai	RCB

Data Flow

Hadoop Ecosystem

PES UNIVERSITY ONLINE

Compilation into Map-Reduce

In Pig Latin

```
= load /ipldata/visits as (user, matchid, time);
visits
gMatches
           = group visits by matchId;
matchPopularity = foreach gMatches generate matchId,
count(visits);
               = load /ipldata/matchInfo as (url, venue,
matchInfo
winner);
venueCounts = join gMatches by matchld, matchinfo by
matchId;
gVenues = group venueCounts by venue;
topMatches = foreach gVenues generate
top(matchPopularity,10);
store topMatches into /data/topMatches;
```


Pig References

T1 Chapter 4.6 you are not expected to memorize the syntax of Pig. Just the basics and how it is converted to map reduce tasks. Please go through the entire section if you want to learn to code.

T2 Chapter 7.5

SQOOP

BIG DATA SQOOP

Why Sqoop?

Sometimes we need to use data periodically from a

Data warehouse

SQL database

For performing analytics

And store the data back into an SQL database

SQOOP SQL to Hadoop provides this functionality

What is SQOOP?

Bulk Data Transfer Tool voluminous data

Import/Export data to/from SQL

Defines schema for import

Integrates with Oozie as an action Support plugins for data sources

supported by default.

How does sqoop work?

(IMPORT)

Inspects database to gather necessary metadata on data being imported

Step 2

Transfers the data

Map only hadoop job

Stores data to hdfs

directory

Imports into csv file, with newline as record separator

https://blogs.apache.org/sqoop/entry/apache_sqoop_overview

FLUME

What is Flume?

Meant for collecting large amounts of streaming data

Events

Logs like web server logs

Architecture

Sources accept data from an application

Sinks receive data and store into HDFS

Channels connect sources to sinks

Agents run the sources and sinks within Flume

THANK YOU

K V Subramaniam

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu