SI251 Convex Optimization Homework 1

Instructor: Professor Ye Shi

Due on 23 Oct 23:59 UTC+8

Note:

- Please provide enough calculation process to get full marks.
- ullet Please submit your homework to Gradescope with entry code: **J7DK2D**.
- Please check carefully whether the question number on the gradescope corresponds to each question.

Exercise 1. Convex sets (40 pts)

- 1. (20 pts) Please prove that the following sets are convex:
 - 1) $\mathbf{S} = \{ \mathbf{x} \in \mathbb{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}, \text{ where } p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt.$ (5 pts)
 - 2) (Ellipsoids) $\left\{ \mathbf{x} | \sqrt{(\mathbf{x} \mathbf{x}_c)^T \mathbf{P} (\mathbf{x} \mathbf{x}_c)} \le r \right\}$ ($\mathbf{x}_c \in \mathbb{R}^n, r \in \mathbb{R}, \mathbf{P} \succeq \mathbf{0}$). (5 pts)
 - 3) (Symmetric positive semidefinite matrices) $\mathbb{S}_{+}^{n\times n} = \left\{ \mathbf{P} \in \mathbb{S}^{n\times n} | \mathbf{P} \succeq \mathbf{0} \right\}$. (5 pts)
 - 4) The set of points closer to a given point than a given set, i.e.,

$$\left\{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_0\|_2 \le \|\mathbf{x} - \mathbf{y}\|_2 \text{ for all } \mathbf{y} \in \mathbf{S} \right\}$$

where $\mathbf{S} \subseteq \mathbb{R}^n$. (5 pts)

Solution:

(1.1)

The set S can be expressed as the intersection of an infinite number of slabs: $S = \bigcap_{|t| \leq \frac{\pi}{3}} S_t$, where

$$S_t = \{x | -1 \le (\cos t, \cdots, \cos mt)^T x \le 1\}$$

A slab is an intersection of two halfspaces, hence it is a convex set. So S is convex.

(1.2)

Proof: First, note that

$$\|\alpha x\|_P = \sqrt{(\alpha x)^\top P(\alpha x)} = |\alpha| \cdot \sqrt{x^\top P x} = |\alpha| \cdot \|x\|_P$$
 (1)

Next, we observe that $||x||_P \ge 0$ and $||x||_P = 0$ iff x = 0 by the definition of P > 0. The third component of proving $||\cdot||_P$ is a norm is to show the triangle inequality holds. By the definition of the Mahalanobis norm, we have

$$||x+y||_P^2 = (x+y)^\top P(x+y) = x^\top P x + y^\top P y + 2x^\top P y.$$
 (2)

Since $P \succ 0$, P has the eigendecomposition $P = U\Lambda U^{\top}$, where U is an orthogonal matrix, Λ is a diagonal matrix with all diagonal entries being positive. Hence, $\Lambda^{1/2}$ is well defined, so is $P^{1/2}$ (defined as $U\Lambda^{1/2}U^{\top}$). From (2) and the definition of $\|\cdot\|_P$, it then follows that

$$||x+y||_{P}^{2} = ||x||_{P}^{2} + ||y||_{P}^{2} + 2x^{\top} P^{\frac{1}{2}} P^{\frac{1}{2}} y$$

$$\leq ||x||_{P}^{2} + ||y||_{P}^{2} + 2 ||P^{\frac{1}{2}} x||_{2} \cdot ||P^{\frac{1}{2}} y||_{2}$$

$$= ||x||_{P}^{2} + ||y||_{P}^{2} + 2||x||_{P} \cdot ||y||_{P}$$
(3)

where the inequality follows from the Cauchy-Schwarz inequality, and the last equality holds since $\|P^{1/2}x\|_2 = \sqrt{x^\top Px} = \|x\|_P$. Note that (3) can be rewritten as

$$||x+y||_P^2 \le (||x||_P + ||y||_P)^2$$

which is equivalent to the triangle inequality. Therefore, $\|\cdot\|_P$ is a norm.

Given that the Mahalanobis norm is indeed a norm, we can now show that an ellipsoid centered at x is a convex set.

Proof: Since $(y-x)^{\top}P(y-x) = ||y-x||_P^2$, we can redefine ellipsoid as

$$\mathcal{E}(\mathbf{x}) = \left\{ y \in \mathbb{R}^d : ||y - x||_P^2 \le r, P \succ 0, x \in \mathbb{R}^d \right\},\,$$

or, equivalently,

$$\mathcal{E}(\mathbf{x}) = \left\{ y \in \mathbb{R}^d : ||y - x||_P \le r, P \succ 0, \mathbf{x} \in \mathbb{R}^d \right\}.$$

To show $\mathcal{E}(x)$ is convex, we need to show that for any $y_1, y_2 \in \mathcal{E}(x)$ and any $\alpha \in [0, 1]$, $\alpha y_1 + (1 - \alpha)y_2 \in \mathcal{E}(x)$, i.e. $\|\alpha y_1 + (1 - \alpha)y_2 - x\|_P \leq r$ holds. This is equivalent to showing

$$\|\alpha y_1 - \alpha x + (1 - \alpha)y_2 - (1 - \alpha)x\|_P \le r.$$
 (4)

Applying the triangle inequality gives

$$\begin{aligned} \|\alpha y_1 - \alpha x + (1 - \alpha)y_2 - (1 - \alpha)x\|_P &\leq \|\alpha y_1 - \alpha x\|_P + \|(1 - \alpha)y_2 - (1 - \alpha)x\|_P \\ &= \alpha \cdot \|y_1 - x\|_P + (1 - \alpha) \cdot \|y_2 - x\|_P \\ &\leq r, \end{aligned}$$

where the last inequality follows from the assumption that $y_1, y_2 \in \mathcal{E}(x)$. Hence, inequality (4) holds and $\mathcal{E}(x)$ is convex.

(1.3)

Let $A \succeq 0, B \succeq 0$ and $\lambda \in [0, 1]$. For any $y \in \mathbb{R}^n$, we have

$$y^{T}(\lambda A + (1 - \lambda)B)y = \lambda y^{T}Ay + (1 - \lambda)y^{T}By \ge 0$$

So $S_+^{n \times n}$ is convex.

(1.4)

This set is convex because it can be expressed as

$$\bigcap_{y \in S} \{x \mid ||x - x_0||_2 \le ||x - y||_2\},\,$$

i.e., an intersection of halfspaces. (For fixed y, the set $\{x \mid ||x - x_0||_2 \leq ||x - y||_2\}$ is a halfspace).

- 2. (10 pts) Example of convex set
 - Show that if $a, b \ge 0$ and $0 \le \theta \le 1$, then $a^{\theta}b^{1-\theta} \le \theta a + (1-\theta)b$. Hint: Use concavity of log functions.
 - Show the $\mathbf{S}_n = \{x \in \mathbb{R}^n_+ | \prod_{i=1}^n x_i \ge 1\}$ is convex.

Solution: This inequality still holds when a=0 or b=0. So we consider the case when a>0 and b>0. According to what we have learned in class, the logarithmic function $\log(x)$ is a concave function. According to the definition of a concave function, for any x,y>0 and $0 \le \lambda \le 1$, we have:

$$\log(\lambda x + (1 - \lambda)y) \ge \lambda \log(x) + (1 - \lambda)\log(y)$$

Let x = a, y = b, so we have

$$\log(a^{\theta}b^{1-\theta}) = \log(a^{\theta}) + \log(b^{1-\theta}) = \theta \log(a) + (1-\theta)\log(b)$$

According to the concavity of the logarithmic function, we have:

$$\log(\theta a + (1 - \theta)b) \ge \theta \log(a) + (1 - \theta) \log(b)$$
$$e^{\log(\theta a + (1 - \theta)b)} \ge e^{\theta \log(a) + (1 - \theta) \log(b)}$$
$$\theta a + (1 - \theta)b \ge a^{\theta}b^{1 - \theta}$$

Assume that $\prod_i x_i \ge 1$ and $\prod_i y_i \ge 1$. Using the inequality we proved above, we have

$$\prod_{i} (\theta x_{i} + (1 - \theta)y_{i}) \ge \prod_{i} x_{i}^{\theta} y_{i}^{1 - \theta} = (\prod_{i} x_{i})^{\theta} (\prod_{i} y_{i})^{1 - \theta} \ge 1, \theta \in [0, 1]$$

Thus we prove that S_n is a convex set.

3. (10 pts) Consider a convex set C defined as $C = \{x \in \mathbb{R}^n : ||x||_2 \le \sqrt{n}r\}$. Proof that $\sum_{i=1}^n x_i \le nr$ for all $x \in C$ using the Supporting Hyperplane Theorem (Otherwise you will get almost zero point).

Solution:

First, observe that the point $x_0 = [r, r, r, ..., r]^T$ is a boundary point of C. This is because the Euclidean norm of x_0 is:

$$||x_0||_2 = \sqrt{r^2 + r^2 + r^2 + \dots + r^2} = \sqrt{nr}.$$
 (1)

Consider the vector $a = [1, 1, 1, ..., 1]^T \in \mathbb{R}^n$ which is parallel to $\nabla ||x||_2$ in the point x_0 , The hyperplane defined by the equation $\{x|a^Tx = a^Tx_0\}$ is the supporting hyperplane to C where a^Tx_0 can be computed as follows:

$$a^T x_0 = [1, 1, 1, ..., 1][r, r, r, ..., r]^T = nr.$$
 (2)

Therefore, for all $x \in C$, we have

$$a^{T}x \leq a^{T}x_{0}$$

$$[1, 1, 1, ..., 1]x \leq [1, 1, 1, ..., 1][r, r, r, ..., r]^{T}$$

$$\sum_{i=1}^{n} x_{i} \leq nr.$$
(3)

which completes the proof that $\sum_{i=1}^{n} x_i \leq nr$ for all $x \in C$.

Exercise 2. Convex functions (30 pts)

1. (5 pts) Monotone Mappings. A function $\psi : \mathbb{R}^n \to \mathbb{R}^n$ is called monotone if, for all $\mathbf{x}, \mathbf{y} \in \mathbf{dom} \, \psi$,

$$(\psi(\mathbf{x}) - \psi(\mathbf{y}))^T(\mathbf{x} - \mathbf{y}) \ge 0.$$

Suppose $f:\mathbb{R}^n\to\mathbb{R}^n$ is a differentiable convex function. Prove that its gradient ∇f is monotone.

Solution:

Due to that f is a differentiable convex function, we have

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

$$f(\mathbf{x}) \ge f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}).$$

Add them together, we have

$$f(\mathbf{y}) + f(\mathbf{x}) \ge f(\mathbf{x}) + f(\mathbf{y}) + (\nabla f(\mathbf{y}) - \nabla f(\mathbf{x}))^T (\mathbf{x} - \mathbf{y})$$
$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^T (\mathbf{x} - \mathbf{y}) \ge 0.$$

So gradient ∇f is monotone.

2. (10 pts) For the following function, find the range of values of β that makes the function convex:

$$f(x, y, z) = 5x^2 + 5y^2 + 4z^2 - 6xz + 2\beta xy - 4yz$$

Solution: First we need to transform the function f(x, y, z) into quadratic form. For real symmetric matrices, semi-positive definiteness can also be determined by having all of their leading principal minors be non-negative. So to guarantee the convexity of f(x, y, z), all the principal minors should be non-negative.

f(x, y, z) can be written as:

$$f(x, y, z) = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 5 & \beta & -3 \\ \beta & 5 & -2 \\ -3 & -2 & 4 \end{bmatrix} \begin{bmatrix} x & y & z \end{bmatrix}^T = \begin{bmatrix} x & y & z \end{bmatrix} \mathbf{Q} \begin{bmatrix} x & y & z \end{bmatrix}^T$$

First-order principal minors: They are the diagonal elements of the matrix \mathbf{Q} , which are all non-negative.

Second-order principal minors: including

1)
$$\begin{vmatrix} 5 & \beta \\ \beta & 5 \end{vmatrix} = 25 - \beta^2 \ge 0 \Longrightarrow \beta \in [-5, 5]$$

2)
$$\begin{vmatrix} 5 & -3 \\ -3 & 4 \end{vmatrix} = 20 - 9 = 11 > 0$$

3)
$$\begin{vmatrix} 5 & -2 \\ -2 & 4 \end{vmatrix} = 20 - 4 = 16 > 0$$

Third-order principal minors:

$$\begin{vmatrix} 5 & \beta & -3 \\ \beta & 5 & -2 \\ -3 & -2 & 4 \end{vmatrix} = -4\beta^2 + 12\beta + 35 \ge 0 \Longrightarrow \beta \in \left[\frac{3}{2} - \sqrt{11}, \frac{3}{2} + \sqrt{11}\right]$$

Combining the above conditions on β , the range of values of β that guarantees convexity of f is:

$$f \in [\frac{3}{2} - \sqrt{11}, \frac{3}{2} + \sqrt{11}]$$

3. (15 pts) Let $f = (f_1, \dots, f_m)$, where each $f_i : \mathbb{C} \to \mathbb{R}$ for $i = 1, \dots, m$ is a convex function and $\mathbb{C} = dom(f)$. Also, consider a function $g : \mathbb{R}^m \to \mathbb{R}$ that is both convex and monotonically nondecreasing over the set $\{f(x) | x \in \mathbb{C}\}$. This means for any l_1, l_2 in this set with $l_1 \leq l_2$, it holds that $g(l_1) \leq g(l_2)$. Proof that the function h, specified by h(x) = g(f(x)) is convex using the definition of convex functions $(f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y))$.

Solution:

Let $x, y \in \mathbb{R}^n$ and let $\alpha \in [0, 1]$. By the definitions of h and f, we have

$$h(\alpha x + (1 - \alpha)y) = g(f(\alpha x + (1 - \alpha)y))$$

$$= g(f_1(\alpha x + (1 - \alpha)y), \dots, f_m(\alpha x + (1 - \alpha)y))$$

$$\leq g(\alpha f_1(x) + (1 - \alpha)f_1(y), \dots, \alpha f_m(x) + (1 - \alpha)f_m(y))$$

$$= g(\alpha f_1(x), \dots, \alpha f_m(x) + (1 - \alpha)f_1(y), \dots, (1 - \alpha)f_m(y))$$

$$\leq \alpha g(f_1(x), \dots, f_m(x)) + (1 - \alpha)g(f_1(y), \dots, f_m(y))$$

$$= \alpha g(f(x)) + (1 - \alpha)g(f(y))$$

$$= \alpha h(x) + (1 - \alpha)h(y).$$
(4)

where the first inequality follows by convexity of each f_i and monotonicity of g, while the second inequality follows by convexity of g.

Exercise 3. Convex Optimization Problems (30 pts)

1. (30 pts) Consider the following quadratic programming

$$\min \qquad \frac{1}{2} \mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{q}^T \mathbf{x}$$

s.t.
$$\mathbf{A} \mathbf{x} \prec \mathbf{b}.$$

Here, we only introduce error to the matrix \mathbf{P} while maintaining other parameters known. This leads to robust variation of quadratic programming. The robust quadratic programming is defined as

min
$$\sup_{\mathbf{P} \in \mathcal{E}} \left(\frac{1}{2} \mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{q}^T \mathbf{x} \right)$$
s.t.
$$\mathbf{A} \mathbf{x} \leq \mathbf{b},$$

where \mathcal{E} is the set of possible matrices \mathbf{P} .

For each of the following sets \mathcal{E} , express the robust QP as a convex problem in a standard form (e.g., QP, QCQP, SOCP, SDP).

- (a) A finite set of matrices: $\mathcal{E} = \{\mathbf{P}_1, \dots, \mathbf{P}_K\}$, where $\mathbf{P}_i \in \mathbb{S}^n_+$, $i = 1, \dots, K$. (5 pts)
- (b) A set specified by a nominal value $\mathbf{P}_0 \in \mathbb{S}_+^n$ plus a bound on the eigenvalues of the deviation $\mathbf{P} \mathbf{P}_0$:

$$\mathcal{E} = \{ \mathbf{P} \in \mathbb{S}^n | -\gamma \mathbf{I} \leq \mathbf{P} - \mathbf{P}_0 \leq \gamma \mathbf{I} \},$$

where $\gamma \in \mathbb{R}$ and $\mathbf{P}_0 \in \mathbb{S}^n_+$. (10 pts)

(c) An ellipsoid of matrices:

$$\mathcal{E} = \left\{ \mathbf{P}_0 + \sum_{i=1}^K \mathbf{P}_i u_i \mid ||\mathbf{u}||_2 \le 1 \right\}.$$

You can assume $\mathbf{P}_i \in \mathbb{S}^n_+$, $i = 0, \dots, K$. (15 pts)

Solution:

(a) We can set the upper bound of $\frac{1}{2}\mathbf{x}^T\mathbf{P}\mathbf{x} + \mathbf{q}^T\mathbf{x}$ as t. Thus we have

min
$$t$$

s.t. $\frac{1}{2}\mathbf{x}^T\mathbf{P}_i\mathbf{x} + \mathbf{q}^T\mathbf{x} \le t, \quad i = 1, \dots, K$
 $\mathbf{A}\mathbf{x} \le \mathbf{b},$

which is a QCQP in the variables \mathbf{x} and t.

(b) For given \mathbf{x} , let $\Delta \mathbf{P} = \mathbf{P} - \mathbf{P}_0$, the supremum of $\mathbf{x}^T \Delta \mathbf{P} \mathbf{x}$ over $-\gamma \mathbf{I} \leq \Delta \mathbf{P} \leq \gamma \mathbf{I}$ is given by

$$\sup_{-\gamma \mathbf{I} \le \Delta \mathbf{P} \le \gamma \mathbf{I}} \mathbf{x}^T \Delta \mathbf{P} \mathbf{x} = \gamma \mathbf{x}^T \mathbf{x}.$$

Therefore we can express the robust QP as

min
$$\frac{1}{2}\mathbf{x}^{T}(\mathbf{P}_{0} + \gamma \mathbf{I})\mathbf{x} + \mathbf{q}^{T}\mathbf{x}$$

s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$,

which is a QP.

(c) Step 1: For given \mathbf{x} , we express the optimization variables as $\mathbf{P} = \mathbf{P}_0 + \sum_{i=1}^K \mathbf{P}_i u_i$. We have the objective function as

$$\frac{1}{2} \left(\mathbf{x}^T \mathbf{P}_0 \mathbf{x} + \sup_{\|\mathbf{u}\|_2 \le 1} \sum_{i=1}^K u_i (\mathbf{x}^T \mathbf{P}_i \mathbf{x}) \right) + \mathbf{q}^T \mathbf{x}.$$

Due to that

$$\sup_{\|\mathbf{u}\|_{2} \leq 1} \sum_{i=1}^{K} u_{i} \left(\mathbf{x}^{T} \mathbf{P}_{i} \mathbf{x} \right) = \left(\sum_{i=1}^{K} \left(\mathbf{x}^{T} \mathbf{P}_{i} \mathbf{x} \right)^{2} \right)^{\frac{1}{2}}.$$

So we can express the objective function as

$$\frac{1}{2} \left(\mathbf{x}^T \mathbf{P}_0 \mathbf{x} + \left(\sum_{i=1}^K \left(\mathbf{x}^T \mathbf{P}_i \mathbf{x} \right)^2 \right)^{\frac{1}{2}} \right) + \mathbf{q}^T \mathbf{x}.$$

Step 2: We further define the upper bound of $\frac{1}{2}\mathbf{x}^T\mathbf{P}_i\mathbf{x}$ as y_i , then we have

min
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}_{0}\mathbf{x} + ||\mathbf{y}||_{2} + \mathbf{q}^{T}\mathbf{x}$$
s.t.
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}_{i}\mathbf{x} \leq y_{i}, \quad i = 1, \dots, K$$

$$\mathbf{A}\mathbf{x} \prec \mathbf{b}.$$

Step 3: We further reduce the problem to an SOCP problem. Here, first provide the upper bound of $||\mathbf{y}||_2$

min
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}_{0}\mathbf{x} + \mathbf{q}^{T}\mathbf{x} + t$$
s.t.
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}_{i}\mathbf{x} \leq y_{i}, \quad i = 1, \dots, K$$

$$||\mathbf{y}||_{2} \leq t$$

$$\mathbf{A}\mathbf{x} \leq \mathbf{b}.$$

Then provide the upper bound of $\frac{1}{2}\mathbf{x}^T\mathbf{P}_0\mathbf{x} + \mathbf{q}^T\mathbf{x}$

min
$$u + t$$

s.t. $\frac{1}{2}\mathbf{x}^T\mathbf{P}_i\mathbf{x} \le y_i, \quad i = 1, ..., K$
 $\frac{1}{2}\mathbf{x}^T\mathbf{P}_0\mathbf{x} + \mathbf{q}^T\mathbf{x} \le u$
 $||\mathbf{y}||_2 \le t$
 $\mathbf{A}\mathbf{x} \le \mathbf{b}.$

Finally, reduce the quadratic constraint to an SOC constraint.

min
$$u + t$$

s.t.
$$\left\| \begin{bmatrix} \mathbf{P}_i^{\frac{1}{2}} \mathbf{x} \\ \frac{1}{2} - y_i \end{bmatrix} \right\|_2 \le \frac{1}{2} + y_i, \quad i = 1, \dots, K$$

$$\left\| \begin{bmatrix} \mathbf{P}_0^{\frac{1}{2}} \mathbf{x} \\ \frac{1}{2} + \mathbf{q}^T \mathbf{x} - u \end{bmatrix} \right\|_2 \le \frac{1}{2} - \mathbf{q}^T \mathbf{x} + u$$

$$||\mathbf{y}||_2 \le t$$

$$\mathbf{A} \mathbf{x} \le \mathbf{b}.$$