Sistemas, Virtualización y Seguridad

https://github.com/valentinpuente/SVS

Motivation of The course

This figure is no longer "representative" for many computing system

Trends in current computing

- Mobility
- Cost optimization
- Productivity

- Rise the level of abstraction!
 - Conceptualize the computing resources like the electric "grid": just wall sockets no more gasoline generators!
 - Actually, in the origin (~2000), it was called "Grid Computing"

The Cloud

"Software" Computing Infrastructure

Cloud Characteristics

On demand self-service

Ubiquitous network access: Anywhere, Any device, Any Time

Location Independent resource pooling

Rapid Elasticity

Pay-as-you go

Supporting Factors of Cloud Computing

Processor advancements

Networking Technology

Virtualization Technology

Automated management

Fast and inexpensive hardware

The impact of cloud computing

Worldwide IT Spending on Servers, Power and Cooling, and Management

— Worldwide server installed base (M)

- Hardware cost reduction is noticeable
 - Moore's law+Cloud computing
 - Little to no overprovision
- Services are dominating
 - New market models
 - Optimization of HW resources

The Cloud Computing Stack

SaaS

- Software as a Service
- Book a room in a hotel

PaaS

- Platform as a Service
- Rent a furnished apartment

laaS

- Infrastructure as a Service
- Rent an unfurnished apartment

SaaS

Characteristics

- Highest level of abstraction
- No hardware of software to manage
- Services delivered through browser or custom clients

Advantages

- Pay per use
- Scalability, reliability, security
- Minimum management costs

Examples

- Salesforce (CRM)
- GotoMeeting (collaboration)
- Dropbox (Storage)
- Google Docs (Office Docs)

PaaS

Characteristics

- Medium level of abstraction
- Service provider supply OS and software-stack to deploy customer tools
- Services delivered through custom environment

Advantages

- Pay per use
- Scalability, reliability, security
- APIs

Examples

- Google App Engine
- Windows Azure
- AWS RDS

FaaS (Function as a Service)

Characteristics

- Like PaaS but without maintaining any infrastructure (some people says is a particular case of Pass)
- Serverless architecture
- Typically used when building <u>microservices</u> applications.
- Billed by transaction

Advantages

- Lower granularity in the cost
- Zero Maintenance cost
- API

Examples

- AWS Lambda
- GCE Function
- Apache OpenWisk

laaS

Characteristics

- Lowest level of abstraction
- Service provider supply computing resources, i.e. CPU, Memory, Network and Storage
- Services delivered through customized virtual machines, software defined network, etc...

Advantages

- Pay per use
- Scalability, reliability, security
- Flexibility

Examples

- AWS EC2
- AWS EBS
- AWS VPC

Perspectives in Cloud Computing

Cloud Computing Service Model

Impact of Cloud Computing

- More software companies and less hardware providers
 - Really easy to provide a service (if you have a ground-breaking idea)

- Start-up costs for service providing are almost zero
 - No CapEX to begin with

- Privacy is a big issue
 - Current support in hardware, start to address it (e.g., Secure Cloud in GCE)
 - Hardware issues

Cloud Market

Amazon vs AWS

SVS@UC

19

It is cloud Important for "you"?

- Two points of view: provider and customer
 - Companies should be "aware" of the cost optimizations that the "cloud" offers.
 - Focus on administrators
 - There is an open market for cloud providers
 - Specialize to compete with the big players (Amazon, Google, Microsoft)

Specialization requires a vertical view of the system

What it's next?

- Big Data & Data Economy
 - Turning knowledge (conscious or not) into economic benefits
 - Somehow related to cloud computing
 - Massive services (big data producers) running on it
 - Will turn back hardware as "key" (?)
 - Deep Learning

The Focus of this Course

laaS

Closest layer to the "classical" computing system layering

Traditional Architecture

Virtual Architecture

The actual view of computing systems

Understand the "support" for "Software Defined" Computing Systems

Virtualization is the key component

Consolidation, fault tolerance, easy deployment,

SVS@UC

24

Virtualization Layer

Is the key component to make "believe" the hosted OS/App that has "real" hardware resources

Virtualization introduces flexibility to allocate hardware resources under demand: scalability and availability

Issues we want to address?

- Understanding Key Operating System Concepts
 - Resource Virtualization
 - I/O Handling

- Understand Virtualization
 - What is the performance overhead of virtualization?
 - How does modern hardware mitigate the impact?

- Security (from an architectural perspective)
 - Support in stat-of-the-art hardware for security
 - Modern hardware issues

Objectives & Approach

OS becomes another app more

 Provide the basic foundations to understand the state-of-art computing infrastructure works

Outline

Review of Operating Systems

Virtualization

Virtualization without architectural support

Virtualization in x86

Architectural support for security

Security in modern processors

Lab

- Focus on papers to review
 - Set of selected papers for review
 - Available in repo
 - Owner assigned by pull request
 - Invite vpuente@unican.es to collaborate on forked repo
 - All personal work should be available in forked repo

Evaluation

 Depends on the quality of the available information in the repo and presentation

Material

OS review

 Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau, "Operating Systems: Three Easy Pieces", Arpaci-Dusseau Books, March, 2020

Virtualization

• E. Bugnion, J. Nieh, and D. Tsafrir, "Hardware and Software Support for Virtualization," *Synth. Lect. Comput. Archit.*, vol. 12, no. 1, pp. 1–206, Feb. 2017.

Security

• J. Szefer, "Principles of secure processor architecture design," *Synth. Lect. Comput. Archit.*, vol. 13, no. 3, pp. 1–173, 2019.

Disclaimer

■ 3-to-1