398

9 Fluid Dynamics

9.29 In prob. (9.28) if the tubes are connected in series then what quantity will flow through the composite tube?

9.3 Solutions

9.3.1 Bernoulli's Equation

9.1 From continuity equation

$$A_1 v_1 = A_2 v_2$$

$$\therefore v_2 = \frac{A_1 v_1}{A_2} = \frac{\pi r_1^2 v_1}{\pi r_2^2} = \frac{10^2 \times 4}{5^2} = 16 \,\text{m/s}$$

9.2
$$v_x = 3x^2 - xy + 2z^2$$

 $v_y = 2x^2 - 6xy + y^2$
 $v_z = -2xy - yz + 2y^2$
 $\therefore \frac{\partial v_x}{\partial x} = 6x - y; \frac{\partial v_y}{\partial y} = -6x + 2y; \frac{\partial v_z}{\partial z} = -y$
 $\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = (6x - y) + (-6x + 2y) - y = 0$

Thus the continuity equation for steady incompressible flow is satisfied.

9.3 Pressure difference across the wing

$$\Delta p = \frac{1}{2}\rho(v_1^2 - v_2^2)$$

$$= \frac{1}{2} \times 1.293 \times (70^2 - 55^2) = 1212 \,\text{Pa}$$

(a) Lift = (pressure difference) (area)
=
$$1212 \times 4 = 4848 \text{ N}$$

$$=4848 - (300 \times 9.8)$$

= 1908 N in the upward direction

9.4
$$\Delta P = \frac{1}{2}\rho v^2 \left(\frac{A^2}{a^2} - 1\right)$$

 $\frac{A}{a} = \frac{\pi R^2}{\pi r^2} = \left(\frac{10}{5}\right)^2 = 4$

$$60,000 - 45,000 = \frac{1}{2} \times 1000 \times 15v^2$$

or $v = 1.414 \,\text{m/s}$ (throat)

Rate of flow of water

$$Q = vA = (1.414)(\pi \times 0.01^2) = 0.0444 \,\mathrm{m}^3/\mathrm{s}$$

9.5
$$v = \sqrt{\frac{2gh\rho'}{\rho}} = \sqrt{\frac{2 \times 9.8 \times 0.15 \times 810}{1.293}} = 42.9 \,\text{m/s} = 154.5 \,\text{km/h}$$

9.6 Total area of the holes

$$A = 80 \times 2.5 \times 10^{-6} \,\mathrm{m}^2 = 2 \times 10^{-4} \,\mathrm{m}^2$$

$$Q = Av$$

$$v = \frac{Q}{A} = \frac{2 \times 10^{-3}}{2 \times 10^{-4}} = 10 \,\mathrm{m/s}$$

9.7 (a)
$$v_x = 3xy + y^2$$
 $v_y = 5xy + 2x$

$$\frac{\partial v_x}{\partial x} = 3y; \frac{\partial v_y}{\partial y} = 5x$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 3y + 5x \neq 0$$

Therefore, steady incompressible flow is not possible.

(b)
$$v_x = 3x^2 + y^2$$
 $v_y = -6xy$

$$\frac{\partial v_x}{\partial x} = 6x; \quad \frac{\partial v_y}{\partial y} = -6x$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 6x - 6x = 0$$

Thus, steady incompressible flow is possible.

9.8
$$\Delta P = \frac{1}{2}\rho(v_1^2 - v_2^2)$$

 $v_1 = \sqrt{\frac{2\Delta P}{\rho} + v_2^2} = \sqrt{\frac{2 \times 1000}{1.293} + 100^2} = 107.45 \,\text{m/s}$

9.9 (a) $Q = v_{\text{throat}}a = v_{\text{pipe}}A$

$$\therefore v_{\text{throat}} = v_{\text{pipe}} \frac{A}{a} = v_{\text{pipe}} \frac{D^2}{d^2} = 10 \times \frac{4^2}{2^2} = 40 \,\text{m/s}$$

(b)
$$\Delta p = \frac{1}{2}\rho v^2 \left(\frac{A^2}{a^2} - 1\right)$$

= $\frac{1}{2} \times 1000 \times 40^2 \left(\frac{4^4}{2^4} - 1\right) = 12 \times 10^6 \,\text{Pa}$

9.10 Reynold's number $R = \frac{\rho Dv}{\eta}$, where ρ is density, D diameter, v velocity and η coefficient of viscosity.

(a)
$$R = \frac{1 \times 0.1 \times 300}{0.018} = 1667$$

Flow is steady because $R < 2200$

(b)
$$R = \frac{1 \times 0.1 \times 300}{0.008} = 3750$$

Flow is turbulent because
$$R > 2200$$

(c) $R = \frac{1 \times 0.1 \times 300}{0.004} = 7500$

Flow is turbulent because R > 2200

9.11 Consider a mass element dm of the fluid at distance x from the vertical axis. The centrifugal force on dm is

$$dF = dm \,\omega^2 x = dm \frac{dv}{dt} = dm \frac{dv}{dx} v$$

 $v dv = \omega^2 x dx$

$$\int v \, \mathrm{d}v = \omega^2 \int x \, \mathrm{d}x$$

$$\frac{v^2}{2} = \frac{\omega^2}{2} x^2 \Big|_{L-l}^{L}$$

$$\therefore \quad v = \omega l \sqrt{\frac{2L}{l} - 1}$$

$$v = \omega l \sqrt{\frac{2L}{l} - 1}$$

9.12 Applying Bernoulli's equation to points A and B,

$$p_{\rm A} + \frac{1}{2}\rho_{\rm g}v^2 = P_{\rm B} \tag{1}$$

$$p_{\rm A} + \rho_{\rm L}gh = P_{\rm B} \tag{2}$$

Comparing (1) and (2)

$$v = \sqrt{\frac{2gh\rho_{\rm L}}{\rho_{\rm g}}}$$

9.13 Apply Bernoulli's equation at the sections A_1 and A_2 :

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2 \tag{1}$$

401

$$\therefore p_2 - p_1 = \Delta p = \Delta h \rho g = \frac{1}{2} \rho (v_1^2 - v_2^2)$$

$$\therefore \quad 2g\Delta h = v_1^2 - v_2^2 \tag{2}$$

$$Q = v_1 A_1 = v_2 A_2 (3)$$

$$v_2 = \frac{v_1 A_1}{A_2} \tag{4}$$

Using (4) in (2)

$$2g\Delta h = v_1^2 \frac{(A_2^2 - A_1^2)}{A_2^2}$$

$$v_1 = A_2 \sqrt{\frac{2g\Delta h}{A_2^2 - A_1^2}}$$

$$Q = A_1 v_1 = A_1 A_2 \sqrt{\frac{2g\Delta h}{A_2^2 - A_1^2}}$$

9.14 Volume of water flowing out per second

$$Q = sv \tag{1}$$

where v is the speed and s is the cross-sectional area. Volume flowing out

$$V = Qt = svt (2)$$

$$\frac{1}{2}\rho v^2 = P = \frac{F}{A} = \frac{FL}{AL} = \frac{W}{V} \tag{3}$$

where L is the length of the cylinder and W is the work done.

$$\therefore \quad W = \frac{1}{2} \frac{\rho V^3}{s^2 t^2} \tag{4}$$

where we have used (2).

9.15 (a) The components of $m\omega^2 r$ parallel to the x-axis and z-axis are $m\omega^2 x$ and $m\omega^2 z$, respectively. Taking y in the upward direction

$$dp = \rho(\omega^2 x dx + \omega^2 z dz - g dy) \tag{1}$$

In the x - z-plane, y = constant. Hence dy = 0. Integrating (1)

$$p = \frac{\rho\omega^2 x^2}{2} + \frac{\rho\omega^2 z^2}{2} + C$$

where C is the constant of integration.

$$p = \frac{\rho\omega^2}{2}(x^2 + z^2) + C$$
$$= \frac{1}{2}\omega^2 r^2 + C$$

$$p = p_0$$
 at $r = 0$, then $C = p_0$

$$p = p_0 + \frac{1}{2}\rho\omega^2 r^2$$

(b) Particle at P is in equilibrium under centrifugal force and gravity, Fig. 9.6. Let PM be tangent at P(r, y) making an angle θ with the r-axis. PN is normal at P. If N is the normal reaction

$$N\cos\theta = mg$$

$$N\sin\theta = m\omega^2 r$$

$$\therefore \quad \tan \theta = \frac{\omega^2 r}{g}$$

Fig. 9.6

$$\therefore \frac{dy}{dr} = \frac{\omega^2 r}{g}$$

$$y = \int dy = \frac{\omega^2}{g} \int r dr + c$$

$$y = \frac{\omega^2 r^2}{2g} + c$$

$$y = 0, r = 0, c = 0$$

$$y = \frac{1}{2} \frac{\omega^2 r^2}{g}$$

Figure of revolution of the curve is a paraboloid.

9.3.2 Torricelli's Theorem

9.16 Using Bernoulli's equation

$$P_2 + \frac{1}{2}\rho v_2^2 = P_1 + \frac{1}{2}\rho v_1^2$$
$$3.1 \times 10^5 + \frac{1}{2} \times 1000v_2^2 = 3.5 \times 10^5 + 0$$
$$v_2 = 8.94 \,\text{m/s}$$

9.17 (a) Use Bernoulli's equation at two points A and B at height $h_{\rm A}$ and $h_{\rm B}$, respectively, Fig. 9.7.

$$P + \rho g h_{\rm A} = P + \rho g h_{\rm B} + \frac{\rho v^2}{2} \tag{1}$$

where P is the atmospheric pressure, ρ is the density of water and v is the efflux velocity.

Fig. 9.7

404 9 Fluid Dynamics

Calling
$$h_{\rm A} - h_{\rm B} = h$$
 (2)

$$v = \sqrt{2gh} \tag{3}$$

Using simple kinematics, the range

$$R = vt = \sqrt{2gh} \sqrt{\frac{2(H-h)}{g}}$$

$$R = 2\sqrt{h(H-h)}$$
(4)

- **(b)** In (4) R is unchanged if we replace h by H-h. Therefore, the second hole must be punched at a depth H-h to get the same range.
- **9.18** From prob. (9.17)

$$R = 2\sqrt{h(H - h)} \tag{1}$$

Maximum range is obtained by setting $\mathrm{d}R/\mathrm{d}h=0$ and holding H as constant. This gives h=H/2 and substituting this value in (1), we get $R_{\mathrm{max}}=H$.

9.19 For the water level to remain stationary volume efflux = rate of filling = x

$$vA = \left(\sqrt{2gh}\right)A = x = 70 \text{ cm}^3/\text{s}$$

$$h = \frac{x^2}{2gA^2} = \frac{(70)^2}{2 \times 980 \times (0.25)^2} = 40 \text{ cm}$$

9.20 Let the water level be at a height x at any instant. The efflux velocity will be $v = \sqrt{2gx}$. As the water flows out, the level of water comes down, Fig. 9.8.

Fig. 9.8

Volume flux,
$$Q = av = a\sqrt{2gx}$$

Volume flux is also equal to $Q = A\frac{dx}{dt}$

We then have
$$a\sqrt{2gx} = A\frac{\mathrm{d}x}{\mathrm{d}t}$$

$$t = \int dt = \frac{A}{a\sqrt{2g}} \int_{h_2}^{h_1} \frac{dx}{\sqrt{x}} = \frac{A}{a} \sqrt{\frac{2}{g}} \left[\sqrt{h_1} - \sqrt{h_2} \right]$$

9.21 Pressure at the bottom due to water column = (3 - 1) atm = 2 atm = 2×10^5 Pa

405

$$P = h\rho g$$

$$h = \frac{P}{\rho g} = \frac{2 \times 10^5}{1000g} = \frac{200}{g}$$

$$v = \sqrt{2gh} = \sqrt{2g\frac{200}{g}} = 20 \,\mathrm{m/s}$$

Second method

Apply Bernoulli's equation

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$

where the left side refers to the point inside the tank and right side to a point outside the tank.

$$3 \times 10^5 + 0 = 1 \times 10^5 + \frac{1}{2} \times 1000v_2^2$$

$$v_2 = 20 \,\mathrm{m/s}$$

9.22
$$Q = v_1 A_1 = v_2 A_2$$

$$\left(\sqrt{2gh_1}\right) (2A_2) = \left(\sqrt{2gh_2}\right) A_2$$

$$\therefore \quad \frac{h_1}{h_2} = \frac{1}{4}$$

9.23 Apply Bernoulli's equation to a point just outside the hole and a point at the top of the kerosene surface. If P is the atmospheric pressure, h_1 and h_2 the heights of water and kerosene columns, respectively, ρ_1 and ρ_2 the respective densities,

406

$$P + \frac{1}{2}\rho_1 v_1^2 = P + h_1 \rho_1 g + h_2 \rho_2 g$$

$$\therefore v_1 = \sqrt{2g \left(h_1 + \frac{h_2 \rho_2}{\rho_1}\right)}$$

Substituting $h_1=60$ cm, $h_2=40$ cm, $\rho_1=1$, $\rho_2=0.8$ and g=980, we find $v_1=425$ cm/s or 4.25 m/s.

9.24 Volume efflux at A and B, Fig. 9.9

Fig. 9.9

$$\begin{aligned} Q_{\rm A} &= v_{\rm A} S \\ Q_{\rm B} &= v_{\rm B} S \\ ({\rm Mass~efflux})_{\rm A} &= \rho v_{\rm A} S \\ ({\rm Mass~efflux})_{\rm B} &= \rho v_{\rm B} S \end{aligned}$$

Force F_A = (rate of change of momentum)_A

$$\begin{split} &= \rho v_{\rm A} S v_{\rm A} = \rho S v_{\rm A}^2 \\ &= \rho S (2gh) = 2 \rho S g h \\ F_{\rm B} &= 2 \rho S g (h + \Delta h) \\ F_{\rm B} - F_{\rm A} &= 2 \rho S g \, \Delta \, h \\ \text{(because the vector force is in the opposite direction)} \\ &= 2 \times 1000 \times 1.0 \times 10^{-4} \times 9.8 \times 0.51 = 1.0 \, \text{N} \end{split}$$

9.3.3 Viscosity

9.25 Volume of liquid flowing per second

$$V = \frac{\pi r^4 P}{8\eta l}$$

$$P = \frac{8\eta lV}{\pi r^4} = \frac{8 \times 0.001 \times 4000 \times 0.002}{3.14 \times (0.04)^4} = 0.0796 \times 10^5 \,\text{Pa}$$

$$Pressure \text{ head } h = \frac{P}{\rho g} = \frac{0.0796 \times 10^5}{1000 \times 9.8} = 0.8 \,\text{m}$$

Pressure head
$$h = \frac{P}{\rho g} = \frac{0.0796 \times 10^5}{1000 \times 9.8} = 0.8 \,\text{m}$$

9.26
$$P_{A} - P_{B} = \frac{8\eta l_{1}Q}{\pi r^{4}} = \frac{8\eta Q}{\pi} \frac{(0.16)}{(2 \times 10^{-3})^{4}} = \frac{8\eta Q (0.01)}{\pi \times 10^{-12}}$$
 (1)
 $P_{B} - P_{0} = \frac{8\eta Q \times (0.04)}{\pi \times 10^{-12}}$ (2)

$$P_{\rm B} - P_0 = \frac{8\eta Q \times (0.04)}{\pi \times 10^{-12}} \tag{2}$$

Adding (1) and (2)

$$P_{\rm A} - P_0 = \frac{8\eta Q \times 0.05}{\pi \times 10^{-12}} \tag{3}$$

Dividing (2) by (3)

$$\begin{aligned} \frac{P_{\rm B} - P_0}{P_{\rm A} - P_0} &= 0.8 \\ \therefore \quad P_{\rm B} - P_0 &= 0.8 \times (P_{\rm A} - P_0) = 0.8 \times 3 = 2.4 \, \text{cm of water.} \end{aligned}$$

9.27 The terminal velocity $v_{\rm T}$ is given by

$$v_{\rm T} = \frac{2}{9}r^2g\frac{(\rho_1 - \rho_2)}{\eta} \tag{1}$$

where r is the radius of the drop, ρ_1 and ρ_2 are the densities of the drop and air, respectively, g is the gravity and η is the coefficient of viscosity. If the new radius is r' and the new terminal velocity $v'_{\rm T}$, then

$$\frac{v_{\rm T}'}{v_{\rm T}} = \frac{r'^2}{r^2} \tag{2}$$

Under the assumption that the drops are incompressible, the volume remains

$$\frac{4\pi}{3}(r')^3 = 2 \times \frac{4\pi}{3}r^3$$

$$\therefore r' = 2^{1/3}r$$
(3)

Using (3) in (2)

$$v_{\rm T}' = 2^{2/3} v_{\rm T} = 4^{1/3} v_{\rm T}$$

408

9 Fluid Dynamics

9.28 For the first tube
$$Q_1 = \frac{\pi P r^4}{8\eta l} = Q$$

9.28 For the first tube
$$Q_1 = \frac{\pi P r^4}{8\eta l} = Q$$

For the second tube $Q_2 = \frac{\pi P (2r)^4}{8\eta l/2} = \frac{32\pi P r^4}{8\eta l} = 32Q$
Total quantity of water flowing is

$$Q_1 + Q_2 = Q + 32Q = 33Q$$

9.29 Let the pressure at the beginning of the first tube be P_1 and at the end P_2 . Since the water flow must be continuous, the rate of flow in the two tubes must be identical, that is, $Q_1 = Q_2$. Let the atmospheric pressure be P_0 .

$$P_1 - P_2 = \frac{8\eta l Q_1}{\pi r^4} \quad \text{(for the first tube)} \tag{1}$$

$$P_1 - P_2 = \frac{8\eta l Q_1}{\pi r^4} \quad \text{(for the first tube)}$$

$$P_2 - P_0 = \frac{8\eta (l/2) Q_2}{\pi (2r)^4} = \frac{8\eta l Q_1}{32\pi r^4} \quad \text{(for the second tube)}$$
(2)

Adding (1) and (2)

$$P_1 - P_0 = \frac{8\eta l}{\pi r^4} \frac{33Q_1}{32}$$
But $P_1 - P_0 = \frac{8\eta l Q}{\pi r^4}$ (for single tube of length l and radius r) (4)

But
$$P_1 - P_0 = \frac{8\eta l Q}{\pi r^4}$$
 (for single tube of length l and radius r) (4)

Comparing (3) and (4), we get
$$Q_1 = \frac{32Q}{33}$$
.