Analysis of Qatar Airways Customer Reviews

A SENTIMENT ANALYSIS APPROACH

GROUP MEMBERS: DHARVIN SHAH KUMAR & TAN FU SHUN

SECTION: TT5L

Introduction

- Objective: Analyze customer reviews of Qatar Airways to predict sentiment (Positive, Negative, Neutral).
- Approach: Sentiment classification using machine learning models.

Data Overview

- Dataset: Qatar Airways reviews dataset
- Columns: Review Text, Rating, Traveler Info, Date, Flight Info, and more.
- Sample Review: "Service was ok, pretty good on my aisle and the food was decent."

named: 0	Date Published	Rating	Max Rating	Title	Author	Country	Date		Type Of Traveller	Seat Type	Route	Date Flown	Recommended	Aircraft	Verified
0	2024-03- 02	1.0	10.0	"marred by inconveniences"	Mary Le	United Kingdom		The delay of my flight from Haneda to Doha ca	Solo Leisure	Economy Class	Tokyo to London Heathrow via Doha	March 2024	no	NaN	0.0
1	2024-02- 29	1.0	10.0	"seat wouldn't stay up"	Brian English	Canada	2024- 02-29	They convinced me that I needed to pay \$1500	Couple Leisure	Business Class	Doha to Montreal	February 2024	no	NaN	1.0
2	2024-02- 29	1.0	10.0	"no attempt to address our complaint"	Wayne Burgess	Australia	2024- 02-29	I have sent 5 emails and have only received 	Business	Economy Class	Doha to Perth	November 2023	no	A380	1.0
				"I leave the				We flew on			Dalasta				

Data Preprocessing

- Text Preprocessing Steps:
- Tokenization
- Stopword Removal
- Lemmatization
- Vectorization (TF-IDF)
- Why It's Important: Preparing text data for machine learning.

Exploratory Data Analysis (EDA)

- WordCloud: Most frequent words in the reviews.
- Sentiment Distribution: Distribution of positive, negative, and neutral reviews.
- Text Length Distribution: Average length of reviews.

Machine Learning Models

- Traditional Models Used:
- Logistic Regression
- Naive Bayes
- Support Vector Machine (SVM)
- Deep Learning Models Used:
- Bidirectional Long Short-Term Memory (BiLSTM)
- Convolutional Neural Network (CNN)
- Transformer Based Models Used:
- Distilbert
- Bidirectional Encoder Representations from Transformers (BERT)
- A Robustly Optimized BERT Approach (RoBERTa)
- Goal: To classify reviews into Positive, Neutral, or Negative sentiment.

Model Evaluation

- Metrics:
- Accuracy
- Precision, Recall, F1-Score
- Confusion Matrix
- Class Imbalance: Use of SMOTE to handle imbalance.

Results

- Best Model: Show which model performed best based on evaluation metrics.
- Confusion Matrix: Show how well the model distinguishes between different sentiments.

	Model	Accuracy	F1
0	Logistic Regression	0.87	0.86
1	Naive Bayes	0.86	0.82
2	SVM	0.86	0.85
3	BiLSTM	0.90	0.89
4	CNN	0.89	88.0
5	DistilBERT	0.86	0.85
6	BERT	0.89	0.87
7	RoBERTa	0.88	0.86

Conclusion

- ▶ Key Findings:
- The model accurately predicts sentiment for most reviews.
- Recommendations for improving the service based on negative feedback.
- ► Future Work:
- Fine-tuning the models.
- Expanding the dataset with more reviews.

Thank you

GROUP MEMBERS:

DHARVIN SHAH KUMAR & TAN FU SHUN

SECTION: TT5L