CERTIFICATE

It is certified that MS(CS) thesis titled "Offline Signature Recognition Using Neural Network" prepared by Ms. Sadaf Ambreen Abbasi, enrollment number 5706 has been approved for submission

Dr. Imran Shafi

Thesis Supervisor

Abstract

Signature is one of the most important entity to recognize a person. Verification using signature of an individual can be either offline or on line based on the nature of application. For online signature verification systems the signatures are capture at run time means at the time the signature is made. Online verification is much costly as compare to offline. The offline systems need scanned images of signatures. Our method of research is offline signature verification using a simple shape based geometric features, global features and texture features of scanned image. The geometric features that are used are Aspect Ratio, Normalized Area, Center of Gravity and the Slope of the line joining the Centers of Gravity of two halves of a signature image. The global features are Image Cropping, Maximum Horizontal Projection, Maximum Vertical Projection, and Edge Point Calculation. Before extracting the features, preprocessing of a scanned image is necessary to isolate the signature part and to remove any spurious noise present. The system is initially trained using a database of signatures obtained from those individuals whose signatures have to be authenticated by the system. Feedfarward neural net is used for our system verification process.

Declaration Form

I Sadaf Ambreen Abbasi declare that the thesis titled "Offline Signature Recognition Using Neural Network" submitted by me in fulfillment of the requirement for the degree of MS. This thesis represents research carried out at Iqra University Islamabad Campus and aims encouraging disucusion and comment. The observations and viewpoints expressd are the sole responsibility of the author. It does not necessarily to represten position of Iqra University Islamabad Campus or its faculity. I also understand that if evidence of plagiarism is found in my thesis at any stage, even after the award of a degree the wor may be cancelled and the degree revoke.

Sadaf Ambreen Abbasi

Registration No. 5706

Dedication

I would like to dedicate this thesis to my brother and parents who have been a great source of inspiration throughout my life and they have provided a lot of moral support to me and enable me to become what I am today. I would also like to dedicate this thesis to my honourable teachers who gave me precious knowledge.

Acknowledgement

All praise to the ALLAH the praise worthy, the merciful, the kind and every blessing of

the ALLAH be on His Holy PROPHET MUHAMMAD (PBUH) who is always a source

of guidance and wisdom for humanity as a whole. ALLAH blessed us towards the

completion of this project.

I gratefully acknowledge the supervision of my supervisor Dr. Imran Shafi who

supervised me at every stage of my thesis. He was very helpful to apply knowledge,

valuable guidance, attitude, positive criticism and experience during my thesis.

His guidance kept me at on the right track and at the right direction.

My special thanks to Mr. Ahsan Danish, (MS-ld-Ph.D. Student, Iqra University) who

properly guide me during thesis completion, especially in neural net.

I would like to offer thanks to Mr Azhar Khawaja, Mr Ahsan Danish & Miss Affifa that

not only supported me morally but also technically from which I get support for

completion of the MS.

Sadaf Ambreen Abbasi

vi

Table of Contents

CERTIFIC	CATES	I]
ABSTRA	CT	III
DEDICATION		IV
ACKNOV	WLEDGEMENT	V
СНАРТЕ	ERS	
1. INT	RODUCTION	01
1.1	Introduction to Recognition	01
1.2	Proposed Systems	02
1.2.1 Preprocessing		02
1.2.	.2 Features Extraction	02
1.2.	.3 Verification	03
1.3	Objective of thesis	04
1.3.1 General Objectives of thesis		04
1.3.2 Specific Objectives of thesis		04
1.4	Scope	05
1.5 Data Collection and Methodology		05
2 Dayler	round	0.7
S		
2.1	Hidden Markov Model	
2.2	Graph Matching Method	
2.3	Support Vector Machine	08
2.4	Fuzzy Logic Approach	
2.5	Neural Network Based	

3. Proposed System	
3.1 Preprocessing	10
3.1.1 Back Ground Elimination	10
3.1.1.1 Grey Scale Image	10
3.1.1.2 Binary Image	11
3.1.2 Noise Elimination	11
3.1.2.1 Median Filter	12
3.1.3 Width Normalization	12
3.1.4 Image Thinning	13
3.2 Features Extraction	14
3.2.1 Geometric Features	14
3.2.1.1 Aspect Ratio	14
3.2.1.2 Normalized Area of Signature	15
3.2.1.3 Center of Gravity	15
3.2.1.4 Slope of Signature	16
3.2.2 Texture Features	16
3.2.3 Global Features	17
3.2.3.1 Maximum Vertical Projection	17
3.2.3.2 Maximum Horizontal Projection	17
3.2.3.3 Edge Points Calculation	17
3.2.3.4 Image Cropping	19
3.3 Neural Network Design	20
3.3.1 Feedfarward Network	21
3.3.1.1 Assemble the training data	22
3.3.1.2 Network Creation	22
3.3.1.3 Training	23
3.3.1.4 Simulation	23
3.3.2 Test	23

4. Implementation and Results	24
4.1 Introduction	24
4.2 Training Results of 2 Person Sample Signatures4.3 Training Results of 25 Person Signature with 7	-
person	28
4.4 Regression	29
4.5 Validation Test Result	30
4.5 Performance Result	31
5. Code	32
5.1Preprocessing Code	32
5.1.1 Background Elimination	32
5.1.2 Noise Elimination	32
5.1.3 Width Normalization	32
5.1.5 Image Thinning	32
5.2 Features Extraction	33
5.2.1 Aspect Ratio	33
5.2.2 Center of Gravity	33
5.2.3 Slop	33
5.2.4 Area Normalization	33
5.2.5 Image Crop	34
5.2.6 Maximum horizontal and vertical Projection -	34
5.2.7 Edge Detection	35
5.2.8 Texture Features	35
5.3 Test code	37
5.4 Neural Network Work Code	37
5.5 Sample Signatures	38

6. Conclusion and Future Work	41
6.1 Conclusion	41
6.2 Future Work	41
REFERENCES	42

Figure Number & Heading

Page No

Fig 1.1: Training and verification process	03
Fig 1.2: Goal of signature recognition	04
Fig 1.3: Steps for Offline Signature Recognition.	06
Fig 3.1: RGB to Grey Scale image	11
Fig 3.2: Grey Scale image to Binary image	11
Fig 3.3 Noise Elimination – Median Filter	12
Fig 3.4 Normalized Width	13
Fig 3.5 Thinning.	13
Fig 3.6 Normalized Area.	15
Fig 3.7 Slope.	16
Fig 3.8 Edge Points.	17
Fig 3.9 Image Crop	19
Fig 3.10Network Design.	21
Fig 3.11 A one-layer network with R input elements and S neurons	22
Fig 4.1 Regression	29
Fig 4.2Validation Test Result.	30
Fig 4.3Performance Result	31
Fig 5.1Sample Signatures.	39

List of Tables

Table Number & Heading	Page No.
Table 4.1 Learning Rate of Sample with different parameter	25
Table 4.2 Learning Rate of Sample of 25 people, 7 from each people	28