HAI713I exemple de corrigé TD3 Exercice 1

Cours et TD de B. Durand Correction rédigée par Ch. Retoré

Exercice 1 Réductions On considère $A = \{x \mid \forall y [x|y] \downarrow \}$ — en d'autres termes A est l'ensemble des (codes de) programmes qui convergent pour chaque entrée.

Montrer que A n'est pas récursif.

On utilise le théorème de Rice. La propriété $\forall y[x|y] \downarrow$ est une propriété de la fonction réalisée par le programme x : cette fonction doit être totale (définie sur tout N). Ainsi, A est exactement l'ensemble des programmes qui calculent une fonction ayant cette propriété et on peut donc appliquer le théorème de Rice.

D'après ce théorème, il suffit que A ne soit ni \mathbb{N} ni \emptyset pour que A ne soit pas récursif. Comme (un code quelconque de) la fonction $Id: x \mapsto x$ appartient à A et que (un code quelconque de) la fonction $\perp : x \mapsto \perp$ n'appartient pas à A, le théorème de Rice permet d'affirmer que A n'est pas récursif.

1(b) Montrer que K < A ($K = \{x \mid [x|x] \downarrow \}$)

Il faut trouver une fonction calculable totale telle que :

 $x \in K$ si et seulement si $f(x) \in A$.

Définition de la fonction de réduction

Considérons le programme a :

$$a\langle x,z\rangle$$
: if $[x|x]\downarrow$ then z

La fonction $S_1^1\langle a,x\rangle$ (a est déjà fixé, et de plus on fixe x) définit une fonction : — soit $S_1^1\langle a,x\rangle=Id:z\mapsto z$ quand $[x|x]\downarrow$ — soit $S_1^1\langle a,x\rangle=\underline{\bot}:z\mapsto \bot$ quand $[x|x]\uparrow$ On propose la réduction $f:x\mapsto S_1^1\langle a,x\rangle=S_1^1\langle a,x\rangle$ est une fonction!

— soit
$$S_1^1\langle a, x\rangle = Id: z \mapsto z \text{ quand } [x|x] \downarrow$$

— soit
$$S_1^{\bar{1}}\langle a,x\rangle=\underline{\perp}:z\mapsto \perp quand\ [x|x]\uparrow$$

La réduction est une fonction calculable totale

La fonction $x \mapsto S_1^1\langle a, x \rangle$ est calculable totale qui associe le code d'un programme à savoir $S_1^1\langle a,x\rangle$ — attention! cela ne veut pas dire que $S_1^1\langle a,x\rangle$ soit un programme total!

La réduction envoie K *dans* A Si $x \in K$ alors $S_1^1\langle a,x\rangle \in A$ car $S_1^1\langle a,x\rangle = Id$.

Lorsqu'un réduit est dans A, il provient de K

Si $S_1^1\langle a,x\rangle\in A$ alors $S_1^1\langle a,x\rangle=Id$ (on a le choix entre Id et $\underline{\perp}\not\in A$) et c'est donc que $[x|x] \downarrow c$.-à-d. $x \in K$

1(c) Montrer que $K < \bar{A} = \{x \mid \exists y \ [x|y] \uparrow \}$

On procède un peu comme précédemment, mais cette fois on souhaite que f(x) ne converge pas partout quand $[x|x]\downarrow$.

Définition de la réduction

Soit le programme b défini comme suit :

$$b\langle x,z\rangle$$
: if $step(x,x,z)=0$ then 0 else \perp .

Alors $S_1^1\langle b,x\rangle$ est le programme suivant :

- soit $[x|x] \downarrow$ $(x \in K)$ et c'est la fonction $z \mapsto z$ tant que z < t $(t : nombre de pas pour que <math>[x|x] \downarrow$) puis \perp dès que $z \geq t$ donc $S_1^1 \langle b, x \rangle \not\in A$ quand $x \in K$
- soit $[x|x]\uparrow$ $(x \notin K)$ et c'est la fonction identité $z \mapsto z$ donc $S_1^1\langle b, x \rangle \in A$ quand $x \notin K$

La réduction est une fonction calculable totale

La fonction $x \mapsto S_1^1 \langle b, x \rangle$ est calculable totale (la fonction de $x \, x \mapsto S_1^1 \langle b, x \rangle$ est bien définie, même si la fonction de $z \mapsto S_1^1 \langle b, x \rangle z$ peut valoir \perp pour certaines valeurs de z).

La réduction envoie K dans \bar{A} et \bar{K} dans $A = \bar{\bar{A}}$

Les deux items ci-dessus montrent que si $x \in K$ alors $S_1^1\langle b, x \rangle \in \bar{A}$ et si $x \notin K$ alors $S_1^1\langle b, x \rangle \notin \bar{A}$, on a donc bien $x \in K$ si et seulement si $S_1^1\langle b, x \rangle \in \bar{A}$.

1(d) En déduire que ni A ni \bar{A} ne sont énumérables.

On a vu dans les question précédente que K < A et $K < \overline{A}$.

Comme vu en cours, M < N ssi $\bar{M} < \bar{N}$ (ce n'est pas difficile à vérifier avec la définition de <, il suffit de prendre le même f) on a donc aussi $\bar{K} < \bar{A}$ (*) et $\bar{K} < A$ (**).

D'après les propriétés de <, si \bar{A} était énumérable, \bar{K} le serait aussi d'après (*) et si A était énumérable \bar{K} le serait aussi d'après (**).

Comme \bar{K} n'est pas énumérable (sinon K serait récursif) ni \bar{A} ni A ne sont énumérables.