

Digital Arithmetic

Computer Systems 2016

Oleks

DIKU

September 14, 2016

Truth-Tables

NOT						
\boldsymbol{A}	\overline{A}					
0	1					
1	0					

Truth-Tables

NOI		
\boldsymbol{A}	\overline{A}	
0	1	
1	0	

	AN	D	OK				
\boldsymbol{A}	B	$A \cdot B$		\boldsymbol{A}	B	A+B	
0	0	0		0	0	0	
0	1	0		0	1	1	
1	0	0		1	0	1	
1	1	1		1	1	1	

More Truth-Tables

XOR		NAND				NOR			
A	В	$A \oplus B$	\boldsymbol{A}	В	$A \uparrow B$		A	В	$A \downarrow B$
0	0	0	0	0	1	-	0	0	1
0	1	1	0	1	1		0	1	0
1	0	1	1	0	1		1	0	0
1	1	0	1	1	0		1	1	0

Gates

More Gates

Functional Completeness

Definition

Given a set $\mathbb{B} = \{ 0, 1 \}$, a set of functions $F = \{ f_i : \mathbb{B}^{n_i} \to \mathbb{B} \}$ is *functionally complete* if all functions $f : \mathbb{B}^n \to \mathbb{B}$, for all $n \ge 1$, can be generated by the functions in F.

Examples of fnctionally complete sets:

- ▶ { NAND }, { NOR },

Consequence: Any boolean function can be built by combining functions from a functionally complete set.