# MS BGD: MDI720 Statistiques, machine learning, modèle linéaire

François Portier, Anne Sabourin Telecom ParisTech

Septembre 2018

## Enseignants

#### • Anne Sabourin:

- Précédemment : Université Lyon 1, LSCE-CEA Saclay, Télécom Paris Tech
- Spécialités : statistiques des valeurs extrêmes, réduction de la dimension. Applications : détection d'anomalie, risques liés aux événements rares.
- $\bullet$  Email : anne.sabourin@telecom-paristech.fr
- Bureau : E307

#### • François Portier:

- Précédemment : Université de Rennes 1, Université catholique de Louvain, Télécom ParisTech
- Spécialités : régression parcimonieuse, bootstrap, estimation semi-paramétrique, méthodes à noyaux
- Email : fportier@enst.fr
- Bureau : E 302

### 1. Aspects pratiques du cours

## 2. Introduction général Modèle statistique Biais/Variance

## 3. Statistiques descriptives

Résumés basiques d'un jeu de données Corrélations/Nuage de points

## 4. Rappels de probabilités

Covariances Les lois gaussiennes

### Calendrier de validation

- Devoir maison 1 : 25% note finale
  - Sujet disponible le 02/10 à rendre avant 23h59 le vendredi 05/10
  - Correction par les pairs : à rendre pour le 12/10
- Devoir maison 2 : 25% note finale
  - Sujet disponible 31/10 et à rendre avant 23h59 le 4/11
  - Correction par les pairs : à rendre pour le 12/11

### ATTENTION : le travail rendu doit être personnel!!!

- Un examen final: 50% note finale
  - Date: 24/10
  - Format : 3h, sur des thèmes voisin du quizz disponible dès maintenant sur le site pédagogique.

### Plan du cours

- Séance 1. Anne Sabourin (19/09): Introduction Séance 2. (25/09): <u>TP non noté. Intro numérique</u> Séance 3. Anne Sabourin (26/09): Modèle linéaire (p<n)
- Seance 3. Anne Sabourin (26/09) : Modèle linéaire (p<
- Séance 4. (2/10) <u>TP #1 noté.</u>
- **Séance 5.** Anne Sabourin (3/10): Modèle linéaire (suite)
- **Séance 6.** François Portier (9/10): Intervalles de confiance et tests
- **Séance 7.** François Portier (10/10): IC et tests + Bootstrap
- **Séance 8.** François Portier (12/10) : Bootstrap Ridge
- **Séance 9.** François Portier (17/10): Ridge, PCA, SVD
- **Séance 10.** François Portier (19/10) : Sélection de variables / Lasso / Cross-validation
- Séance 11. (24/10): Examen final
- **Séance 12.** (31/10) : **TP** #2 : **noté**

## Prérequis - à revoir seul

- Bases de **probabilités** : probabilité, densité, espérance, loi des grands nombres, lois gaussiennes, théorème central limite Lecture : Foata et Fuchs (1996)
- Bases de l'**optimisation** : fonctions convexes, condition du premier ordre, descente de gradient, méthode de Newton Lecture : Boyd et Vandenberghe (2004), Bertsekas (1999)
- Bases de l'algèbre (bi-)linéaire : espaces vectoriels, normes, produit scalaire, matrices, déterminants, diagonalisation Lecture : Horn et Johnson (1994)
- Bases de l'algèbre linéaire numérique : résolution de système, factorisation de matrices, conditionnement, etc.

  Lecture : Golub et VanLoan (2013), Applied Numerical Computing par L. Vandenberghe

# Aspects algorithmiques : quelques conseils

Installation Python (3): Conda / Anaconda (tous OS)

Rem: sur ce point entraidez-vous!

#### Outils:

- Rendus Jupyter / IPython Notebook
- Projets plus importants : **IPython** + éditeur de texte avancé ; *e.g.* **Atom**, **Sublime Text**, **PyCharm**, etc.
  - Python, Scipy, Numpy: Reproducible Data Analysis in Jupyter (Tutos de Jake Vanderplas):

http://perso.telecom-paristech.fr/~gramfort/liesse\_python/

- Pandas: https://github.com/jorisvandenbossche/pandas-tutorial
- scikit-learn: http://scikit-learn.org/stable/tutorial/index.html

<u>Rem</u>: en TP, prenez vos portables si vous préférez garder votre environnement (packages, versions, etc.)

## Conseils généraux pour l'année

- Utilisez un système de versionnement de fichiers pour vos travaux en groupe : Git (e.g. Bitbucket, Github, etc.)
- Adoptez des règles d'écriture de code et tenez-y vous! <u>Exemple</u>:
   PEP8 pour Python (utiliser AutoPEP8,
   https://github.com/kenkoooo/jupyter-autopep8)
- Utilisez **Markdown** (.md) (markdown-preview-plus avec **Atom**), e.g. pour les parties rédigées / comptes-rendus
- Apprenez de bons exemples (ouvrez les codes sources!): https://github.com/scikit-learn/, http://jakevdp.github.io/, etc.

### 1. Aspects pratiques du cours

## 2. Introduction générale Modèle statistique Biais/Variance

## 3. Statistiques descriptives Résumés basiques d'un jeu de données Corrélations/Nuage de points

## 4. Rappels de probabilités Covariances Les lois gaussiennes

## Cadre statistique standard

On notera  $\mathbb{P}, \mathbb{E}$  pour probabilité et l'espérance

- On observe des réalisations  $(y_1, \ldots, y_n)$  de variables aléatoires inconnues (éventuellement vectorielles)
- On suppose ici que les variables sont indépendantes et identiquement distribuées (i.i.d.) selon une loi  $\mathbb{P}_{Y}$

Rem: on note souvent Y une variable aléatoire et y une réalisation

#### **Estimation**

Comment apprendre certaines caractéristiques de  $\mathbb{P}_{Y}$  seulement à partir des observations  $(y_1, \ldots, y_n)$ ?

#### Prédiction

On se prépare à observer  $y_{n+1}$ : comment approcher  $y_{n+1}$ , quantifier une incertitude sur cette grandeur, etc.?

### Vocabulaire

- Observations  $\mathbf{y} = y_{1:n} = (y_1, \dots, y_n)$ : échantillon de taille n
- Grandeurs théoriques : dépendent de la loi  $\mathbb{P}_Y$  (inconnue) et contrôlent la génération des observations Exemple : l'espérance  $\mathbb{E}(Y)$  ou la variance  $\mathbb{V}$ ar(Y) de Y
- Grandeurs empiriques : calculées à partir des observations  $y_i$ Exemple : la moyenne empirique  $\bar{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$
- Objectif général : apprendre les caractéristiques théoriques de  $\mathbb{P}_Y$  à partir de résumés empiriques.

Rem: les grandeurs théoriques dépendent de  $\mathbb{P}_{Y}$  alors que les grandeurs empiriques dépendent de  $\mathbb{P}_{n} := \frac{1}{n} \sum_{i=1}^{n} \delta_{y_{i}}$  (ici  $\delta_{y_{i}}$  est la mesure de Dirac au point  $y_{i}$ )

### 1. Aspects pratiques du cours

- 2. Introduction générale Modèle statistique Biais/Variance
- 3. Statistiques descriptives
- 4. Rappels de probabilités

## Modèle statistique : contexte

## Rappel

- On observe des réalisations  $(y_1, \ldots, y_n)$  de variables aléatoires inconnues (éventuellement vectorielles)
- On suppose ici que les variables sont indépendantes et identiquement distribuées (i.i.d.) selon une loi  $\mathbb{P}_{Y}$
- Selon la situation, la loi  $\mathbb{P}_Y$  a certaines caractéristiques. Exemple : "Pile ou face" : on sait que  $\mathbb{P}_Y$  = Bernoulli( $\theta$ ) pour un certain  $\theta \in [0,1]$  inconnu
- Reformulation : on dispose d'une famille de lois candidates, (parfois naturelle) pour  $\mathbb{P}_{Y}$ <u>Exemple</u> : la famille des lois de Bernoulli

Exo: Quel est un modèle naturel pour "un lancer de dé"?

## Modèle statistique

• La loi cible  $\mathbb{P}_Y$  est indexée par un **paramètre**  $\theta \in \Theta : \mathbb{P}_Y = \mathbb{P}_\theta$  pour un  $\theta$  inconnu, et  $\Theta$  est l'ensemble d'indexation

Exemple : "Pile ou face",  $\theta \in \Theta = [0,1]$  et  $\mathbb{P}_{\theta} = \operatorname{Bernoulli}(\theta)$ 

#### Définition

Un modèle statistique est une famille de lois

$$\mathcal{M} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$$

indexée par un ensemble de paramètres  $\Theta$ .

**Exo**: Proposer un modèle  $\mathcal{M}$  pour le "lancer de dé".

# Modèle statistique paramétrique

#### Définition

Un modèle paramétrique est une famille de lois  $\mathcal{M} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$  indexée par un nombre fini p de paramètres :  $\Theta \subset \mathbb{R}^p$ . On note aussi  $\mathbb{E}_{\theta}$  l'espérance associée.

Rem: le modèle est indexé par un nombre ou un vecteur réel; p est la dimension du modèle

### Exemple:

- Modèle de Bernoulli (ou "Pile ou face") :  $\Theta = [0,1].$
- Modèle gaussien :  $\theta = (\mu, \sigma^2), \Theta = \mathbb{R} \times \mathbb{R}_+^*$ .

Rem:le modèle est dit non-paramétrique s'il n'est pas indexable par un paramètre de dimension finie, e.g.  $\{f: \int f = 1, \text{ et } f \geq 0\}$ 

Rem:dans le cadre **fréquentiste**, on suppose qu'il existe un vrai paramètre inconnu, tel que  $\mathbb{P}_{Y} = \mathbb{P}_{\theta}$ 

### Estimateur

• Objectif : estimer une quantité  $g = g(\theta)$  qui ne dépend que de la loi  $\mathbb{P}_{\theta}$  des observations. g est une constante inconnue déterministe i.e.non aléatoire.

Exemple : espérance, quantile, variance, écart-type, etc.

• Intuition : un estimateur  $\hat{g}$  est calculé à partir de l'échantillon  $(y_1, \ldots, y_n)$ , dans le but d'approcher  $g(\theta)$ .

#### Définition

Un estimateur  $\hat{g}$  de g est une fonction des observations :

$$\widehat{g}:(y_1,\ldots,y_n)\mapsto \widehat{g}(y_1,\ldots,y_n)$$

Rem:un estimateur est parfois aussi appelé une statistique

Rem:en pratique l'estimateur doit être calculable efficacement

### 1. Aspects pratiques du cours

## 2. Introduction générale Modèle statistique Biais/Variance

- 3. Statistiques descriptives
- 4. Rappels de probabilités

## Propriétés d'un estimateur : le biais

#### Définition

Le biais d'un estimateur  $\widehat{\pmb g}$  est l'espérance de son écart au paramètre :

$$\operatorname{Biais}(\widehat{g},g) = \mathbb{E}_{\theta}(\widehat{g}(Y_1,\ldots,Y_n)) - g(\theta) \qquad (\text{dépend de } \theta)$$

#### Définition

Un estimateur  $\hat{g}$  de g est dit non biaisé (ou sans biais) si :

$$\forall \theta \in \Theta, \quad \mathbb{E}_{\theta}(\widehat{g}(Y_1, \ldots, Y_n)) = g(\theta)$$

Rem: le biais mesure l'erreur systématique d'un estimateur

# Estimateur sans biais de l'espérance

- L'espérance 'théorique' dépend de la loi  $\mathbb{P}_{\theta}$
- On cherche ici à estimer  $g(\theta) = \mathbb{E}_{\theta}(Y)$

#### Théorème

Sous l'hypothèse que l'échantillon est i.i.d., la moyenne empirique  $\overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$  est un estimateur sans biais de l'espérance  $\mathbb{E}(Y)$ 

#### Démonstration:

$$\mathbb{E}_{\theta}\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right)=\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}(Y_{i})=\mathbb{E}(Y)$$

 $\operatorname{car} \mathbb{E}(Y_i) = \mathbb{E}(Y) \text{ (caractère } i.i.d.\operatorname{des } Y_i)$ 

Rem:  $\widehat{g}(y_1,\ldots,y_n)=y_1$  est un estimateur sans biais de l'espérance

## Estimateur sans biais de la variance

- La variance 'théorique' dépend de la loi  $\mathbb{P}_{\theta}$
- On cherche ici à estimer  $g(\theta) = \mathbb{V}ar_{\theta}(Y)$

#### Théorème

L'estimateur 
$$\widehat{g}(y_1, \dots, y_n) = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y}_n)^2$$
 est un estimateur sans biais de la variance  $\mathbb{V}ar_{\theta}(Y)$ 

Rem: l'estimateur 
$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y}_n)^2$$
 est lui biaisé

Exo: Vérifier cette propriété par le calcul

## Propriétés d'un estimateur : la variance

#### Définition

La variance d'un estimateur  $\hat{g}$  est sa variance théorique :

$$\operatorname{Var}_{\theta}(\widehat{g}) = \operatorname{Var}_{\theta}(\widehat{g}(Y_1, \dots, Y_n)) = \mathbb{E}_{\theta}(\widehat{g} - \mathbb{E}_{\theta}(\widehat{g}))^2$$
 (dépend de  $\theta$ )

Rem: la variance mesure la dispersion autour de l'espérance

## Biais ou variance?



Erreurs systématiques

Erreurs stochastiques

### Biais ou variance?



1

 $\bullet$  Si  $\widehat{g}_0$  et  $\widehat{g}_1$  sont sans biais, on préfère avoir une faible variance

### Biais ou variance?



 $\bullet$  Si  $\widehat{g}_0$  et  $\widehat{g}_1$  ont la même variance, on préfère un biais faible

# Risque quadratique / compromis biais-variance

#### Définition

Le risque quadratique d'un estimateur  $\hat{g}$  est l'espérance de son erreur au carré :

$$R(\widehat{g}) = \mathbb{E}\left[(\widehat{g} - g)^2\right]$$

Règle de choix : prendre l'estimateur dont le risque est le plus petit

Théorème : décomposition biais / variance

$$Risque(\widehat{g}) = Variance(\widehat{g}) + (Biais(\widehat{g}))^2$$

 $\underline{\text{D\'emonstration}}$ : faire apparaître le biais  $B = \mathbb{E}\left(\widehat{g}\right) - g$ ; développer

$$R(\widehat{g}) = \mathbb{E}\left[(\widehat{g} - \mathbb{E}(\widehat{g}) + B)^{2}\right]$$

$$= \mathbb{E}\left[(\widehat{g} - \mathbb{E}(\widehat{g}))^{2} + B^{2} + 2B(\widehat{g} - \mathbb{E}(\widehat{g}))\right]$$

$$= \mathbb{V}\operatorname{ar}(\widehat{g}) + B^{2} + 2B\underbrace{\mathbb{E}\left[\widehat{g} - \mathbb{E}(\widehat{g})\right]}_{=0} = \mathbb{V}\operatorname{ar}(\widehat{g}) + B^{2}$$

### 1. Aspects pratiques du cours

## 2. Introduction général Modèle statistique Biais/Variance

## 3. Statistiques descriptives Résumés basiques d'un jeu de données Corrélations/Nuage de points

## Rappels de probabilités Covariances Les lois gaussiennes

- 1. Aspects pratiques du cours
- 2. Introduction générale
- 3. Statistiques descriptives Résumés basiques d'un jeu de données Corrélations/Nuage de points
- 4. Rappels de probabilités

## Statistique exploratoire et descriptive

- Première analyse sans hypothèse sur la loi  $\mathbb{P}_{Y}$ .
- Analyse qualitative du jeu de données / échantillon
- Visualisation du jeu de données / échantillon

Rappel: statistique = estimateur, c'est une fonction (mesurable) des observations  $(y_1, \ldots, y_n)$  (et qu'on espère être une fonction calculable des observations  $(y_1, \ldots, y_n)$ !)

Rem:les enjeux computationnels seront a prendre en compte dans la plupart de vos applications pratiques

# Moyenne (arithmétique)



#### **Définition**

Moyenne (arithmétique) : 
$$\overline{y}_n = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Si 
$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i$$
 (produit scalaire) et  $\mathbb{1}_n = (1, \dots, 1)^{\top} \in \mathbb{R}^n$ :
$$\overline{y}_n = \left\langle \mathbf{y}, \frac{\mathbb{1}_n}{n} \right\rangle$$

**Exo**: Le vecteur  $\overline{y}_n \mathbb{1}_n$  est la projection de **y** sur l'espace vect $(\mathbb{1}_n)$ 

## Médiane



On ordonne les  $y_i$  dans l'ordre croissant :  $y_{(1)} \le y_{(2)} \le ... \le y_{(n)}$ 

#### **Définition**

**Médiane**: 
$$\mathsf{Med}_n(\mathbf{y}) = \begin{cases} \frac{y_{(\frac{n}{2})} + y_{(\frac{n}{2}+1)}}{2}, & \text{si } n \text{ est pair} \\ y_{(\frac{n+1}{2})}, & \text{si } n \text{ est impair} \end{cases}$$

Rem:la définition d'une médiane est non-unique, et peut être parfois ambiguë...

# Moyenne tronquée



Pour un paramètre  $\alpha$  (e.g.  $\alpha=15\%$ ), on calcule la moyenne en enlevant les  $\alpha\%$  plus grandes et plus petites valeurs

#### Définition

Moyenne tronquée (à l'ordre  $\alpha$ ) :  $\overline{y}_{n,\alpha} = \overline{z}_n$ où  $\mathbf{z} = (y_{(|\alpha n|)}, \dots, y_{(|(1-\alpha)n|)})$  est l'échantillon  $\alpha$ -tronqué

Rem: |u| est le nombre entier tel que  $|u| - 1 < u \le |u|$ 

# Moyenne vs médiane



- Les trois statistiques ne coïncident pas
- Moyennes tronquées et médianes sont robustes aux points atypiques ( cutliers), la moyenne non!

# Dispersion : variance / écart-type



### **Définitions**

Variance: 
$$\operatorname{var}_n(\mathbf{y}) = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y}_n)^2 = \frac{1}{n} \|\mathbf{y} - \overline{y}_n \mathbb{1}_n\|^2$$

**Écart-type**: 
$$s_n(\mathbf{y}) = \sqrt{\operatorname{var}_n(\mathbf{y})}$$
 (où  $\|\mathbf{z}\|^2 = \sum_{i=1}^n z_i^2$ )

**Exo**: Quels sont les vecteurs  $\mathbf{y} \in \mathbb{R}^n$  tels que  $\operatorname{var}_n(\mathbf{y}) = 0$ ?

## Dispersion: MAD



### Définition

Déviation médiane absolue ( : Mean Absolute Deviation ) :

$$\mathsf{MAD}_n(\mathbf{y}) = \mathsf{Med}_n\left(|\mathsf{Med}_n(\mathbf{y}) - \mathbf{y}|\right)$$

## Estimation de la densité : histogramme



<u>Rem</u>:en Python, on compte le nombre ou la proportion de données par case, par exemple avec normed=False(True) dans la fonction hist

## Estimation de la densité : méthode à noyau



• Méthode à noyau ( $\blacksquare \Xi$ : Kernel Dénsity Estimation, KDE): approche non-paramétrique estimant la densité par une fonction continue – généralisation de l'histogramme

Pour plus de détails voir le livre Silverman (1986)

### Densité bi-dimensionnelle (spatiale)



 $\verb|http://scikit-learn.org/stable/_downloads/plot_species_kde.py|$ 

# Fonction de répartition



### Définition : fonction de répartition

**Théorique**: 
$$F(u) = \mathbb{P}(Y \le u) = \int_{-\infty}^{u} f_Y(x) dx$$

Empirique: 
$$F_n(u) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i \leq u\}$$

Interprétation: proportion d'observations sous un certain niveau

## Fonction quantile



#### Définition

Pour  $p \in ]0,1]$ ,

Quantile théorique (d'ordre 
$$p$$
):  $F^{\leftarrow}(p) = \inf\{u \in \mathbb{R} : F(u) \ge p\}$   
Quantile empirique (d'ordre  $p$ ):  $F_p^{\leftarrow}(p) = y_{(\lfloor (p-1)p \rfloor + 1)}$ 

Rem: c'est l'inverse (généralisée) de la fonction de répartition; sa définition admet plusieurs conventions, c.f. percentile in Numpy

- 1. Aspects pratiques du cours
- 2. Introduction générale
- 3. Statistiques descriptives
  Résumés basiques d'un jeu de données
  Corrélations/Nuage de points
- 4. Rappels de probabilités

# Covariances et corrélations empiriques

### Covariance empirique

Pour deux échantillons  $\mathbf{x}$  et  $\mathbf{y}$  de moyennes et variances empiriques  $\overline{x}_n$ ,  $\overline{y}_n$  et  $\text{var}_n(\mathbf{x})$ ,  $\text{var}_n(\mathbf{y})$ :

$$cov_n(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n) (y_i - \overline{y}_n) \quad \text{c'est-à-dire}$$
$$cov_n(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \langle \mathbf{x} - \overline{x}_n \mathbb{1}_n, \mathbf{y} - \overline{y}_n \mathbb{1}_n \rangle$$

### Corrélation empirique

$$\rho = \operatorname{corr}_{n}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{cov}_{n}(\mathbf{x}, \mathbf{y})}{\sqrt{\operatorname{var}_{n}(\mathbf{x})}\sqrt{\operatorname{var}_{n}(\mathbf{y})}}, \quad \text{c'est-à-dire}$$

$$\rho = \frac{\langle \mathbf{x} - \overline{\mathbf{x}}_{n} \mathbb{1}_{n}, \mathbf{y} - \overline{\mathbf{y}}_{n} \mathbb{1}_{n} \rangle}{\|\mathbf{x} - \overline{\mathbf{x}}_{n} \mathbb{1}_{n}\| \|\mathbf{y} - \overline{\mathbf{y}}_{n} \mathbb{1}_{n}\|} = \operatorname{cos}(\mathbf{x} - \overline{\mathbf{x}}_{n} \mathbb{1}_{n}, \mathbf{y} - \overline{\mathbf{y}}_{n} \mathbb{1}_{n})$$

# Interprétation pour n = 3 et $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$



# Exemples de corrélations



## Exemples de corrélations proches de zéro



## Exemples de corrélations proches de zéro



# Exemples de corrélations proches de zéro



### Nuages de points / Scatter plot / PairGrid



### Covariance $\neq$ causalité

### US spending on science, space, and technology

Suicides by hanging, strangulation and suffocation



Corrélation: 0.9979

c.f. http://www.tylervigen.com/spurious-correlations

#### 1. Aspects pratiques du cours

### 2. Introduction général Modèle statistique Biais/Variance

# 3. Statistiques descriptives

Résumés basiques d'un jeu de données Corrélations/Nuage de points

### 4. Rappels de probabilités

Covariances Les lois gaussiennes

- 1. Aspects pratiques du cours
- 2. Introduction générale
- 3. Statistiques descriptives
- 4. Rappels de probabilités Covariances

Les lois gaussiennes

### Covariance d'un couple de V.A.

Soient X et Y des variables aléatoires <u>réelles</u> de carré intégrable.

#### **Définition**

La covariance de X et Y est la moyenne des fluctuations jointes :

$$\mathbb{C}$$
ov $(X, Y) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)\left(Y - \mathbb{E}(Y)\right)\right]$ 

Propriété : la covariance est bilinéaire, pour tous  $\alpha, \beta \in \mathbb{R}$  et toutes variables aléatoires réelles  $X_1, X_2, Y_1, Y_2$  on a

$$\mathbb{C}\text{ov}(\alpha X_1 + \beta X_2, Y_1) = \alpha \mathbb{C}\text{ov}(X_1, Y_1) + \beta \mathbb{C}\text{ov}(X_2, Y_1)$$
$$\mathbb{C}\text{ov}(X_1, \alpha Y_1 + \beta Y_2) = \alpha \mathbb{C}\text{ov}(X_1, Y_1) + \beta \mathbb{C}\text{ov}(X_1, Y_2)$$

Rappel : inégalité de Cauchy-Schwarz dans ce cadre

$$|\mathbb{C}\mathrm{ov}(X,Y)| \leq \sqrt{\mathbb{V}\mathrm{ar}(X)\,\mathbb{V}\mathrm{ar}(Y)}$$

### Matrice de covariance d'un vecteur aléatoire

Notation: 
$$X = (X_1, ..., X_p)^{\top}$$
 est vecteur aléatoire t.q.  
 $\forall j \in \{1, ..., p\}, \mathbb{E}(X_j^2) < +\infty$  et  $\sigma_{i,j} = \text{cov}(X_i, X_j)$   $(\sigma_{i,i} = \text{var}(X_i))$ 

#### **Définition**

La matrice de covariance du vecteur X est la matrice  $\mathbb{C}\text{ov}(X)$ , de taille  $p \times p$ , formée par les  $\sigma_{i,j}$  ( $i^e$  ligne,  $j^e$  colonne). Ainsi,

$$\mathbb{C}\mathrm{ov}(X) = \begin{pmatrix} \mathrm{var}(X_1) & \mathrm{cov}(X_1, X_2) & \dots & \mathrm{cov}(X_1, X_p) \\ \mathrm{cov}(X_2, X_1) & \mathrm{var}(X_2) & & \vdots \\ \vdots & & \ddots & \vdots \\ \mathrm{cov}(X_p, X_1) & \dots & & \mathrm{var}(X_p) \end{pmatrix} \in \mathbb{R}^{p \times p}$$

$$\underline{\mathrm{Version~condens\acute{e}}}:~\mathbb{C}\mathrm{ov}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)\left(X - \mathbb{E}(X)\right)^\top\right]$$

**Exo**: Montrer que pour  $\mu$  déterministe  $\mathbb{C}\text{ov}(X + \mu) = \mathbb{C}\text{ov}(X)$ 

## Quelques propriétés de la covariance

• Une matrice de covariance est symétrique :

$$\mathbb{C}\mathrm{ov}(X) = \mathbb{C}\mathrm{ov}(X)^\top \Leftrightarrow \forall (i,j) \in \{1,\ldots,p\}^2, \, \mathbb{C}\mathrm{ov}(X_i,X_j) = \mathbb{C}\mathrm{ov}(X_j,X_i)$$

• Une matrice de covariance est (semi-définie) positive :

$$\forall u \in \mathbb{R}^p, \ u^{\top} \mathbb{C}\mathrm{ov}(X) u \geq 0$$

#### Démonstration:

$$u^{\top} \mathbb{C}\mathrm{ov}(X) u = \sum_{i=1}^{p} \sum_{j=1}^{p} u_i u_j \mathbb{C}\mathrm{ov}(X_i, X_j) = \underbrace{\mathbb{C}\mathrm{ov}(\sum_{i=1}^{p} u_i X_i, \sum_{j=1}^{p} u_j X_j)}_{= \mathbb{V}\mathrm{ar}(\sum_{j=1}^{p} u_j X_j) \ge 0}$$

**Exo**:  $\mathbb{C}\text{ov}(AX) = A\mathbb{C}\text{ov}(X)A^{\top}$ , pour toute matrice  $A \in \mathbb{R}^{m \times p}$ 

## La décomposition spectrale

#### Théorème spectral

Une matrice symétrique  $S \in \mathbb{R}^{n \times n}$  est diagonalisable en base orthonormée, *i.e.* il existe  $\lambda_1 \geq \cdots \geq \lambda_n$  et une matrice orthogonale  $U \in \mathbb{R}^{n \times n}$  telle que :

$$S = U \operatorname{diag}(\lambda_1, \dots, \lambda_n) U^{\top}$$
 ou  $SU = U \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ 

Rappel: une matrice orthogonale  $U \in \mathbb{R}^n$  est une matrice telle que  $U^{\top}U = UU^{\top} = \mathsf{Id}_n$  ou  $\forall (i,j) \in \{1,\ldots,n\}, \mathbf{u}_i^{\top}\mathbf{u}_i = \langle \mathbf{u}_i, \mathbf{u}_i \rangle = \delta_{i,i}$ 

Rem: si l'on écrit  $U=[\mathbf{u}_1,\ldots,\mathbf{u}_n]$  ce la signifie que :

$$S = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top} \quad \text{et} \quad \forall i \in \{1, \dots, n\}, \ S \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

#### Vocabulaire:

- les  $\lambda_i$  sont les valeurs propres de S ( $\gt$ : eigenvalues)
- les  $u_i$  sont les vecteurs propres de S ( $\ge 8$ : eigenvectors)

## La décomposition spectrale : exemple

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 1 & 2 & 0 \\ 0 & 2 & 1 & 2 \\ 2 & 0 & 2 & 1 \end{pmatrix} = UDU^{\top}$$

avec

$$D = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix} \quad \text{et} \quad U = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

### La décomposition spectrale : numérique

```
import numpy as np
from scipy.linalg import toeplitz
from numpy.linalg import eigh
A = toeplitz([1, 2, 0, 2])
[Dint, Uint] = eigh(A)
# use eigh not eig for symmetric matrices
idx = Dint.argsort()[::-1]
D = Dint[idx]
U = Uint[:, idx]
print(np.allclose(U.dot(np.diag(D)).dot(U.T), A))
```

- 1. Aspects pratiques du cours
- 2. Introduction générale
- 3. Statistiques descriptives
- 4. Rappels de probabilités Covariances

Les lois gaussiennes

### Loi normale unidimensionnelle

• Une v.a. réelle X suit une « loi normale standard » (ou « loi gaussienne » ou « loi de Laplace-Gauss ») si sa densité vaut

$$\varphi_{0,1}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

On note alors  $X \sim \mathcal{N}(0,1)$ .

• Une v.a. Y suit une loi normale de paramètres  $\mu$  et  $\sigma^2$  si

$$Y = \mu + \sqrt{\sigma^2} X$$
, où  $X \sim \mathcal{N}(0,1)$ , et on note  $Y \sim \mathcal{N}(\mu,\sigma^2)$ 

Densité: 
$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$





















### Vecteurs gaussiens

En dimension p, les lois gaussiennes ont des densités de la forme :

$$\boxed{\varphi_{\mu,\Sigma}(\mathbf{x}) = \frac{1}{(2\pi)^{p/2}\sqrt{|\Sigma|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right\}}.$$

La fonction  $\varphi_{\mu,\Sigma}$  est gouvernée par deux paramètres :

- le vecteur d'espérance  $\mu \in \mathbb{R}^p$
- la matrice de covariance  $\Sigma \in \mathbb{R}^{p \times p}$

Notation: lorsque le vecteur aléatoire X suit une loi normale d'espérance  $\mu$  et de covariance  $\Sigma$ , on note  $X \sim \mathcal{N}(\mu, \Sigma)$  qu'on suppose définie positive

Rem: $|\Sigma|=det(\Sigma)$  est le produit des valeurs propres de  $\Sigma$ . On parle de cas dégénéré quand  $det(\Sigma)=0$ 

$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix},$$



$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 0$$



$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 1 \cdot \pi/5$$



$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 2 \cdot \pi/5$$



$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 3 \cdot \pi/5$$



$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 4 \cdot \pi/5$$



### Propriétés des vecteurs gaussiens

### Proposition

Si X est un vecteur gaussien de  $\mathbb{R}^p$ , et si A est une matrice de  $\mathbb{R}^{m \times p}$  et que b est un vecteur de  $\mathbb{R}^m$  alors Y = AX + b est un vecteur gaussien de  $\mathbb{R}^m$ 

#### Construction

Soit  $X \in \mathbb{R}^p$  un vecteur gaussien centré-réduit  $X \sim \mathcal{N}(0, \mathsf{Id}_p)$ . Supposons que l'on connaisse  $L \in \mathbb{R}^{p \times p}$  telle que  $LL^\top = \Sigma$ , alors pour tout  $\mu \in \mathbb{R}^p$ ,  $Y = \mu + LX \sim \mathcal{N}(\mu, \Sigma)$ 

$$\underline{\mathrm{D\acute{e}monstration}}: \mathbb{C}\mathrm{ov}(Y) = \mathbb{C}\mathrm{ov}(LX) = L\mathbb{C}\mathrm{ov}(X)L^\top = L\operatorname{Id}_pL^\top = \Sigma$$

Rem: L peut être obtenue par la factorisation de Cholesky

# Factorisation de Cholesky

#### Théorème

Toute matrice symétrique définie positive  $\Sigma \in \mathbb{R}^{p \times p}$  peut s'écrire  $\Sigma = LL^{\top}$  pour une matrice L triangulaire inférieure

$$L = \begin{bmatrix} L_{11} & 0 & \cdots & 0 \\ L_{21} & L_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ L_{\rho 1} & L_{\rho 2} & \cdots & L_{\rho \rho} \end{bmatrix}$$

Rem: on peut imposer que les éléments diagonaux de la matrice L soient tous positifs; la factorisation correspondante est alors unique

Rem: numériquement L est obtenue par la méthode du pivot de Gauss, e.g. avec numpy.linalg.cholesky

### Bibliographie

#### DataScience:

- Blog + videos de Jake Vanderplas : http://jakevdp.github.io/, http://jakevdp.github.io/blog/2017/03/03/ reproducible-data-analysis-in-jupyter/
- VanderPlas (2016), Müller et Guido (2016): statistiques/apprentissage avec Python
- Exemples d'application de scikit-learn:
   http://www.baglom.com/b/10-scikit-learn-case-studies-examples-tutorials-cm572/?utm\_content=bufferbde5d&utm\_medium=social&utm\_source=twitter.com&utm\_campaign=buffer

#### Math:

- Hastie et al.(2009): Elements of Statistical Learning
- James et al.(2013): An introduction to statistical learning (version simplifiée du précédent)
- Tsybakov (2006) cours de "Statistique appliquée"
- Delyon (2015) cours de Régression

#### Références I

- Bertsekas, D. P. (1999). Nonlinear programming. Athena Scientific.
- Boyd, S. and Vandenberghe, L. (2004). *Convex optimization*. Cambridge University Press, Cambridge.
- Delyon, B. (2015). Régression. https: //perso.univ-rennes1.fr/bernard.delyon/regression.pdf.
- Foata, D. and Fuchs, A. (1996). Calcul des probabilités : cours et exercices corrigés. Masson.
- Golub, G. H. and van Loan, C. F. (2013). *Matrix computations*. Johns Hopkins University Press, Baltimore, MD, fourth edition.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning. Springer Series in Statistics. Springer, New York, second edition.
  - http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

### Références II

- Horn, R. A. and Johnson, C. R. (1994). Topics in matrix analysis. Cambridge University Press, Cambridge. Corrected reprint of the 1991 original.
- James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning, volume 6. Springer.
- Müller, A. C. and Guido, S. (2016). *Introduction to Machine Learning with Python:* A Guide for Data Scientists. O'Reilly Media, early access edition.
- Silverman, B. W. (1986). Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London.
- Tsybakov, A. B. (2006). Statistique appliquée. http://josephsalmon.eu/enseignement/ENSAE/StatAppli\_tsybakov.pdf.
- VanderPlas, J. (2016). Python Data Science Handbook. O'Reilly Media.