Towards Energy Efficiency in Ultra Dense Networks

Jaehyun Lee

DGIST

dlwogus4066@dgist.ac.kr

03/May/2019

UGRP

Background

- Multiple performance requirements
 - Thousand traffic volume
 - Multi-gigabit per second data rates
 - Communication devices on the other of hundreds of millions
- 5G relevant technology
 - UDN
 - MMwave
 - Massive MIMO

Motivation

- UDN consist of a massive number of BSs
 - Macro-cell BSs
 - Small-cell BSs
- Energy consumption of UDN is a critical issue
 - BSs consume more than 80% of energy in a network
- Energy efficiency scheme on the BS can be categorized as the BS energy consumption minimization

Problem Solving Idea

- BSs set sleep mode when no active UEs are connected
- For QoS, set some constraint
 - Coverage of Ues
 - Capacity of small-cell BSs
 - Data rate of UEs

Network Modeling

- UDN consists of macro cells, small cells and Ues
 - Macro cells: hexagonally deployed as the traditional cellular network
 - Small cells: deployed in outdoor open space(e.g. 1 km^2)
- Small cells have uniform configuration
 - Communication distance
 - Transmission power
 - Connection capacity
- UEs are randomly distributed in the network

Problem Formation

m small cells and n UEs

• Status information of awake/sleep mode equation

$$S_B = [s_1, \cdots, s_i, \cdots, s_m], i \in [i, m]$$

$$s_i = \begin{cases} 1 \ awake \\ 0 \ sleep \end{cases}, i \in [i, m]$$

Problem Formation

Connectivity information of UEs and BSs

Problem Formation

Objective function

$$\sum_{i=1}^{m} E \cdot s_i \ (1)$$

Constraint

$$\forall j \in (1, n), \sum_{i=1}^{m} w_{i,j} = 1 (2)$$

$$\forall j \in (1, n), \sum_{i=1}^{m} w_{i,j} \sqrt{\left(X_{B_i} - X_{U_j}\right)^2 + \left(Y_{B_i} - Y_{U_j}\right)^2} < D (3)$$

$$\forall j \in (1, n), \sum_{i=1}^{m} B \cdot w_{i,j} < C (4) (B \text{ is UE bandwidth, C is capacity of BS})$$

$$B \geq R (5) (R \text{ is the UE demand data rate})$$

Algorithm

Algorithm 1: BS awake/sleep control algorithm

Input: w = zeros(N), W = zeros(N), W stores the connectivity information, N demonstrates the equal number of BS and UE, A stores the distances of BS to each UE, R_{UE} is the communication range of UE, C_{BS} is the BS capacity, MinR constraints the number of UE connected to BS

```
Output: Result
1 CR = size(W) - \operatorname{tr}: \operatorname{GK(I)}, \operatorname{CR}(\operatorname{S})
2 if CR(2) \neq 1 then
       for i = 1 : CR(1) do
 3
            if (A(i, N + 1 - CR(2))) < R_{UE}(i) then
                W(i, N + 1 - CR(2)) = 1
 5
                w = zeros(CR(1), CR(2) - 1)
 6
                Algorithm 1(w, W, A, R_{UE}, C_{BS})
                w(i, 1) = 0
 8
                W(i, N + 1 - CR(2)) = 0
10 else
       for j = 1 : CR(1) do
11
            if (A(j, N + 1 - CR(2)) < R_{UE}(j)) then
12
                W(j, N + 1 - CR(1)) = 1
13
                if (\sum (W,1)) \leq C_{BS} then
14
                     if (length(find(\sum (W,1))) < MinR) then
15
                          Result=W
16
                          MinR = length(find(\sum(W, 1)))
17
                W(j, N + 1 - CR(1)) = 0
18
19 return Result
```


Evaluation Method

• Uniform and non-uniform distribution

Fig. 1: UE with uniform distribution

Fig. 4: UE with non-uniform distribution

Evaluation Method

• UE mobility model

Fig. 2: UE movement with random walk Fig. 3: An example of the UE movement

Fig. 5: UE movement with random walk Fig. 6: An example of the UE movement

Evaluation Model

Scenario 1

- UE is uniformly distributed in network
- UE's mobility model is a random walk

• Scenario 2

- UE is non-uniformly distributed in network
- UE's mobility model is random walk

• Scenario 3

- Network consists of different BS-UE density ratio where UE is uniformly distributed in the network
- UE's mobility model is random walk

Result

Fig. 7: Energy efficiency (uniform distribution)

Fig. 8: Energy efficiency (non-uniform distribution)

Fig. 9: Network throughput versus BS-UE density ratio

Conclusion

- UDN by designing an approach to optimally enable the small-cell BS awake/sleep mode scheduling
- problem of achieving the tradeoff between energy efficiency and network performance as an optimization problem
- Propose the optimazation algorism to solve the problem
- energy efficiency of the UDN is improved significantly in various UE distribution and UE mobility scenarios, while at the same time, the network performance is guaranteed.

Any Questions?

THANK YOU

Email: dlwogus4066@dgist.ac.kr

