Classification

Classification

- Binary
- Multiclass

Classification problem

Outlook	Temperature	Humidity	Windy	Play golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mil	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes

Classification predictions

Play golf	Model
No	No
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
Yes	Yes
No	Yes
Yes	Yes

Play golf	Model
No	No
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
Yes	Yes
No	Yes
Yes	Yes

		Predicted class	
		Positive	Negative
True	Positive		
class	Negative		

Play golf	Model
No	No
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
Yes	Yes
No	Yes
Yes	Yes

		Predicted class	
		Positive	Negative
True	Positive	4	
class	Negative		

Play golf	Model
No	No
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
Yes	Yes
No	Yes
Yes	Yes

		Predicted class	
		Positive	Negative
True	Positive	4	1
class	Negative		

Play golf	Model
No	No
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
Yes	Yes
No	Yes
Yes	Yes

		Predicted class	
		Positive	Negative
True class	Positive	4	1
	Negative	2	

Play golf	Model	
No	No	
No	Yes	
Yes	Yes	
Yes	Yes	
Yes	No	
No	No	
Yes	Yes	
No	Yes	
Yes	Yes	

		Predicted class	
		Positive	Negative
True class	Positive	4	1
	Negative	2	2

Play golf	Model
No	No
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
Yes	Yes
No	Yes
Yes	Yes

		Predicted class	
		Positive Negative	
True	Positive	TP = 4	FN = 1
class	Negative	FP = 2	TN = 2

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

		Predicted class	
		Positive Negative	
True	Positive	TP = 4	FN = 1
class	Negative	FP = 2	TN = 2

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{4+2}{4+2+2+1} = \frac{6}{9} = 66.7\%$$

		Predicted class	
		Positive Negative	
True	Positive	TP = 4	FN = 1
class	Negative	FP = 2	TN = 2

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{4+2}{4+2+2+1} = \frac{6}{9} = 66.7\%$$

Not always works well!

		Predicted class	
		Positive Negat	
True class	Positive	TP = 4	FN = 1
	Negative	FP = 2	TN = 2

100 patients:

99 without cancer 1 with cancer

Great model idea:

Always predict no cancer

100 patients:
99 without cancer
1 with cancer

Great model idea:
Always predict no cancer

		Predicted class	
			Negative
True	Positive	TP = 0	FN = 1
class	Negative	FP = 0	TN = 99

100 patients:
99 without cancer
1 with cancer

Great model idea:
Always predict no cancer

		Predicted class	
		Positive Negative	
True	Positive	TP = 0	FN = 1
class	Negative	FP = 0	TN = 99

$$Accuracy = \frac{99}{100} = 99\%$$

$$Recall = TPR = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = TPR = \frac{TP}{TP + FN}$$

		Predicted class	
		Positive Negativ	
True class	Positive	TP = 4	FN = 1
	Negative	FP = 2	TN = 2

Recall = TPR =
$$\frac{TP}{TP + FN} = \frac{4}{4+1} = \frac{4}{5} = 80\%$$

		Predicted class	
		Positive Negative	
True class	Positive	TP = 4	FN = 1
	Negative	FP = 2	TN = 2

$$Precision = \frac{TP}{TP + FP}$$

		Predicted class	
		Positive Negative	
True	Positive	TP = 4	FN = 1
class	Negative	FP = 2	TN = 2

Precision =
$$\frac{TP}{TP + FP} = \frac{4}{4+2} = \frac{4}{6} = 66.7\%$$

		Predicted class	
		Positive Negativ	
True	Positive	TP = 4	FN = 1
class	Negative	FP = 2	TN = 2

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{4+2}{4+2+2+1} = \frac{6}{9} = 66.7\%$$

Recall = TPR =
$$\frac{TP}{TP + FN} = \frac{4}{4+1} = \frac{4}{5} = 80\%$$

Precision =
$$\frac{TP}{TP + FP} = \frac{4}{4+2} = \frac{4}{6} = 66.7\%$$

Classification - Metrics: Cancer

100 patients:
99 without cancer
1 with cancer

Great model idea:
Always predict no cancer

		Predicted class	
		Positive Negative	
True	Positive	TP = 0	FN = 1
class	Negative	FP = 0	TN = 99

Accuracy = 99%

Classification - Metrics: Cancer

100 patients:
99 without cancer
1 with cancer

Great model idea:
Always predict no cancer

		Predicted class	
		Positive	Negative
True class	Positive	TP = 0	FN = 1
	Negative	FP = 0	TN = 99

Accuracy = 99%

Recall = 0%

Precision = NaN

https://en.wikipedia.org/wiki/Precision and recall

Logistic Regression

Logistic Regression

Logistic Regression - Non-linear

Log-Loss

$$P(y=1|X) = \operatorname{sigmoid}(z) = \frac{1}{1+e^{-z}}$$

$$z = \hat{eta_0} + \hat{eta_1} x_1 + \hat{eta_2} x_2 + ... + \hat{eta_k} x_k$$

Minimize Log-Loss

$$LogLoss = \sum_{(x,y) \in D} -y \, log(y') - (1-y) \, log(1-y')$$

Logistic Regression: Important Hyperparams.

- penalty: None, I1, I2, elasticnet
- C:
 - Regularization parameter.
 - Only used when penalty is not None.
 - Large C can lead to overfitting.
 - Small C can lead to underfitting.
- solver:
 - Algorithm to use for optimization of the model.
 - Different solvers can handle different types of data.
 - Different solvers have different performance characteristics.
 - Check the documentation for specific information.

$$J(w) = C \cdot \text{LogLoss}(w) + \text{EN(w)}$$

Logistic Regression: Penalty & C

• L1:
$$J(w) = C \cdot \text{LogLoss}(w) + \sum_{j=1}^{n} |w_j|$$

• L2:
$$J(w) = C \cdot \operatorname{LogLoss}(w) + \frac{1}{2} \sum_{j=1}^{n} w_j^2$$

• EN:
$$J(w) = C \cdot \text{LogLoss}(w) + \text{EN}(w)$$

K-Nearest Neighbors

KNN

Decision Tree

DT

Impurity Criterion

Gini Index

$I_G = 1 - \sum_{j=1}^{c} p_j^2$

p_j: proportion of the samples that belongs to class c for a particular node

Entropy

$$I_H = -\sum_{j=1}^c p_j log_2(p_j)$$

p_j: proportion of the samples that belongs to class c for a particular node.

*This is the the definition of entropy for all non-empty classes ($p \neq 0$). The entropy is 0 if all samples at a node belong to the same class.

Gini Gain

$$Gini_{gain} = Gini_{parent} - \left(\frac{N_{left}}{N_{total}}Gini_{left} + \frac{N_{right}}{N_{total}}Gini_{right}\right)$$