重庆大学

学生作业报告

课程名称 _	数学实验				
组员1姓名	马梓恒	学 号	<u>† 20233124</u>		
组员2姓名	周宏仰	学 气	<u>† 20232647</u>		
组员3姓名		学 号	20230692		
开课时间,	至	<u>2025</u> 学	年第 <u>一</u> 学期		

总 成 绩

开课学院、实验室: 航空航天学院

实验时间: 2024年 9月 16日

课	数学实验	实验	项目	MATLAB 初步	实验项目类型				
程		名	称		验	演	综	设	其
名					证	示	合	计	他
称									
指	肖剑	成	绩						
导									
教									
师									

题目1

用 MATLAB 软件计算 1 道极限问题或积分问题。

$$\int_0^1 \left(x^2 + 3x + 2 \right) dx = \left[\frac{x^3}{3} + \frac{3x^2}{2} + 2x \right]_0^1 = \frac{23}{6}$$

程序

```
syms x;
result = int(x^2 + 3*x + 2, x, 0, 1);
disp(result);
```

结果

 $\frac{23}{6}$

分析

首先,代码通过 syms x 定义了一个符号变量 x,接着利用 int 函数计算多项式 $\int_0^1 (x^2 + 3x + 2) dx = \left[\frac{x^3}{3} + \frac{3x^2}{2} + 2x \right]_0^1 = \frac{23}{6}$ 在区间 [0, 1] 上的定积分。这个多项式的定积分相当于求

该函数在指定区间内的面积。最后,disp(result) 将计算出的积分结果输出到命令窗口。核心思路是通过符号运算方式计算定积分,以得到特定区间内函数的累积值。

程序

结果

寻找自然数因数乘积为111 的组合:

111=3*37

寻找自然数因数乘积为 1111 的组合:

```
1111=11*101
寻找自然数因数乘积为 11111 的组合:
11111 = 41 * 271
```

分析

这段代码首先定义了一个包含多个目标数字的数组 numbers,接着通过循环逐个处理这些数字,并在每次迭代中打印出当前数字。然后,代码确定因数的搜索范围,从 2 遍历到当前数字的平方根,以寻找可能的因数。在检查每个因数时,使用 mod 函数判断当前数字能否被该因数整除,如果能,则记录下这个因数。之后,代码计算另一个因数,即将当前数字除以找到的因数,并确保这个因数不为 1,最后以可读的格式输出有效的因数组合。整体思路是找出每个目标数字的自然数因数组合,并将结果整齐地显示出来。

选做题

用牛顿迭代法求方程的一个根,牛顿迭代法可以百度其公式,迭代的终止条件为前后两次求出的的差的 绝对值小于.

程序

结果

经过 4 次迭代, 方程的一个根为: 1.414214

分析

首先,初始化了一些参数,其中 x=1 是初始猜测值,tolerance = 1e-5 是设定的终止条件,确保迭代在两次猜测值差异足够小时停止。此外, max_i terations 设置最大迭代次数为 100,以防止无限循环,并用 iteration 记录当前的迭代次数。

接着,进入迭代过程的 while 循环,循环的条件是当前差值大于容忍度,并且迭代次数未达到上限。在

循环内部,使用牛顿迭代公式 $x_{\text{new}} = x - \frac{x^2 - 2}{2x}$ 计算新的猜测值。随后,计算前后两次猜测值的差 diff,

并用新值更新 x。每次迭代完成后, 迭代次数加一。

循环结束后,使用 fprintf 函数输出迭代次数和计算得到的根,格式化为小数点后六位。这段代码的最终目的是找出 22 的数值解。

