Pricing and Hedging in the Black-Scholes Framework

Smile and Local Volatility

Patrick Hénaff

February 19, 2023

Implied Volatility

Calculation of implied volatility
Newton's method

The Breeden-Litzenberger Formula Interpretation

The Implied Volatility Problem

- \blacktriangleright In the BS formula, we use σ as an input.
- In reality, exchanges quote options in price.
- ► The BS formula is used to convert an option price into the corresponding volatility.

Given the observed price C^* of a call, compute the volatility σ such that:

$$C^* = C(S, K, T, r, \sigma)$$

= $f(\sigma)$

Option data: Settlement prices of options on the WTI Feb09 futures contract

NEW YORK MERCANTILE EXCHANGE NYMEX OPTIONS CONTRACT LISTING FOR 12/29/2008

					TODAY'S	PREVIOUS	ESTIMATED
CONTRACT					SETTLE	SETTLE	VOLUME
LC	02	09	P	30.00	. 53	. 85	0
LC	02	09	P	35.00	1.58	2.28	0
LC	02	09	P	37.50	2.44	3.45	0
LC	02	09	C	40.00	3.65	2.61	10
LC	02	09	P	40.00	3.63	4.90	0
LC	02	09	P	42.00	4.78	6.23	0
LC	02	09	C	42.50	2.61	1.80	0
LC	02	09	C	43.00	2.43	1.66	0
LC	02	09	P	43.00	5.41	6.95	100

Option data: Options on the S&P 500 Index (Source:CBOE)

```
SPX (SP 500 INDEX)
                                    1290.59
                                                 +7.24
Jan 24 2011 @ 14:03 ET
Calls
                                    Last Sale
                                                 Net
                                                          Bid
                                                                    Ask
                                                                             Vol
                                                                                    Open Int
11 Jan 1075.00 (SPXW1128A1075-E)
                                    0.0
                                                 0.0
                                                          215.30
                                                                   217.00
                                                          190.60
11 Jan 1100.00 (SPXW1128A1100-E)
                                    0.0
                                                 0.0
                                                                    191.80
```

ATM Volatility

WTI Option Implied Vol

Implied Volatility of S&P 500 Index Options (24-jan-2011)

The Implied Volatility

Option traders study the implied volatility rather than the option prices.

Why?

- ► A measure of value, irrespective of strike and maturity
- ► The BS model assumes a constant volatility: deviations from that assumption are useful to study

The Implied Volatility Problem

Given the observed price C^* of a call, compute the volatility σ such that:

$$C^* = C(S, K, T, r, \sigma)$$

= $f(\sigma)$

The Implied Volatility Problem

There is a change in convexity in $C = f(\sigma)$:

$$\frac{\partial C}{\partial \sigma} = Sn(d_1)\sqrt{T}$$

$$\frac{\partial^2 C}{\partial \sigma^2} = S\sqrt{T}n(d_1)\frac{1}{\sigma}\left[\frac{1}{\sigma^2 T}\ln(\frac{F}{K})^2 - \frac{1}{4}\sigma^2 T\right]$$

with $F = Se^{rT}$.

Thus, $C(\sigma)$ is convex on the interval $(0, \sqrt{\frac{2|\ln(\overline{F/K})|}{T}}]$, and concave otherwise.

Convergence of Newton's Method

To ensure convergence of Newton's method, one must carefully choose the initial point.

Theorem

Let f be defined on the interval [a, b] and assume that:

- 1. $f(x^*) = 0$ for some $x^* \in [a, b]$
- 2. f'(x) > 0
- 3. $f''(x) \ge 0$

Then Newton's method converges monotonically from $x_0 = b$. If

- 1. $f(x^*) = 0$ for some $x^* \in [a, b]$
- 2. f'(x) > 0
- 3. $f''(x) \leq 0$

Then Newton's method converges monotonically from $x_0 = a$.

Convergence of Newton's Method

Consider now Newton's method started at

$$\sigma_0 = \sqrt{\frac{2|\ln(F/K)|}{T}}$$

- ▶ If $f(\sigma_0) > 0$, we are in case I of theorem.
- ▶ If $f(\sigma_0) < 0$ we are in case II.

Implied Volatility by Newton's Method

The following algorithm generates a monotonic series (σ_n) :

1. Set
$$\sigma_0 = \sqrt{\frac{2|\ln(F/K)|}{T}}$$

2. While
$$|C(\sigma_n) - C^*| > \epsilon$$
:

$$\sigma_{n+1} = \sigma_n + \frac{C^* - C(\sigma_n)}{\frac{\partial C}{\partial \sigma}}$$

$$2.2 n \leftarrow n + 1$$

The Breeden-Litzenberger Formula

Probability Distribution Implied by Option prices

The Breeden-Litzenberger formula

Risk-neutral density of the underlying asset at maturity T as a function of derivative prices:

$$p_{T}(K) = e^{rT} \frac{\partial^{2} C(S, K, T)}{\partial K^{2}}$$
 (1)

where C(S, K, T) is the price of a call of strike K, maturity T, when the current spot is S.

The Breeden-Litzenberger formula

By definition of the risk-neutral probability,

$$C(S, K, T) = e^{-rT} \int_{K}^{\infty} (S_T - K) p(S_T) dS_T$$
 (2)

Applying Leibniz's Rule to get:

$$\frac{\partial C(S, K, T)}{\partial K} = -e^{-rT} \int_{K}^{\infty} p(S_T) dS_T$$

Let F(K) the cumulative density function of S_T ,

$$e^{rT} \frac{\partial C(S, K, T)}{\partial K} = -\int_{K}^{\infty} p(S_T) dS_T$$

= $F(K) - 1$

The Breeden-Litzenberger formula

Differentiate again with respect to K to get:

$$\frac{\partial^2 C}{\partial K^2} e^{rT} = p(K) \tag{3}$$

Local Vol: Interpretation

Consider a butterfly spread centered at K, and scaled to yield a maximum payoff of 1. Let $\phi(S_T)$ be the payoff function. The value of the butterfly is:

$$V = \frac{1}{\Delta K} [C(K + \Delta K) - 2C(K) + C(K - \Delta K)]$$
$$= e^{-rT} \int_0^\infty \phi(S) \rho(S) dS$$

Local Vol: Interpretation

In the interval $[K - \Delta K, K + \Delta K]$, approximate p(S) by the constant p(K) to get:

$$V = e^{-rT} p(K) \int_0^\infty \phi(S) dS$$
$$= e^{-rT} p(K) \Delta K$$

Finally, use the definition of the derivative:

$$\lim_{\Delta K \to 0} \frac{1}{\Delta K^2} \left[C(K + \Delta K) - 2C(K) + C(K - \Delta K) \right] = \frac{\partial^2 C(K)}{\partial K^2}$$
(4)

to get:

$$p_{T}(K) = e^{rT} \frac{\partial^{2} C(K)}{\partial K^{2}}$$
 (5)

Analytical expression for the density of S_T

$$p(K) = n(d_2) \{$$

$$\frac{1}{K\sigma\sqrt{T}} + \frac{\partial\sigma}{\partial K} \frac{2d_1}{\sigma} +$$

$$\left(\frac{\partial\sigma}{\partial K}\right)^2 \frac{\sqrt{T}Kd_1d_2}{\sigma} +$$

$$\frac{\partial^2\sigma}{\partial K^2}K\sqrt{T} \}$$
(6)

Illustration: Shimko's Model

Fit a quadratic model to the implied volatility, in order to get analytical expressions for $\frac{\partial \sigma}{\partial K}$, $\frac{\partial^2 \sigma}{\partial K^2}$:

Figure: Quadratic Volatility Model

Illustration: Shimko's Model

The density implied from the quadratic volatility smile cleary exhibit "fat tails".

Figure: Density of S_T , with constant volatility and quadratic model for implied volatility.

Consequence for Option Pricing

To illustrate the importance of correctly accounting for the volatility smile, we now consider a digital option maturing at the same time as our European options. We want to price this option in a way that is consistent with the observed volatility smile. A naive approach would be to look up the Black-Scholes volatility corresponding to the strike, and price the digital option accordingly. The price of a digital cash-or-nothing call is given by:

$$C = e^{-rT}\Phi(d_2) \tag{7}$$

with:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}x^{2}}$$

$$d_{2} = \frac{\ln \frac{S}{K} + (r - d - \frac{\sigma^{2}}{2})T}{\sigma\sqrt{T}}$$

Consequence for Option Pricing

However, since we know the density of S_T , we can directly compute the expected discounted value of the digital payoff:

$$C = e^{-rT} \int_{K}^{\infty} p(S_T) dS_T$$

Digital Price with and without Smile

Figure: Comparison of prices of a digital option, using a log-normal density for S_T , and using the density implied by the volatility smile fitted to a quadratic function.

WTI Smile

Figure: Implied volatility of WTI NYMEX options on the December

WTI Smile

Figure: Implied density of F_T , the December 2009 WTI Nymex Futures contract. Calculation is performed by finite difference, with implied

References