

Explainability of stacking model for prediction of corporate CO2 emissions

NGUEMKAM TEBOU Ingrid Pamela 1

TSOPZE Norbert ¹

TCHUENTE Dieudonné²

¹ University of yaoundé 1, Yaoundé, Cameroon ² Toulouse Business School, Toulouse, France

December 2024

Plan

Context

Artificial Intelligence (AI)

- Artificial Intelligence widely used
- Efficient Machine Learning models but bigger complexity
- Prediction logic of model's output dificult to unsderstand by users
- Problem of trustworthy

Explainable Artificial Intelligence (XAI)

Definitions

- Artificial Intelligence
 - Explainable Artificial Intelligence
 - Explainability
 - Explanation
 - Global explanation
 - Local explanation
 - Explain a prediction
 - Feature based explainability

State of art: Explainability methods

Authors	Principle	Method	Advantages	Limits
Bach et al. (2015)	Redistribute the prediction starting from the output layer of the network and back-propagating to the input layer	LRP	Conservation of contributions,Stable explanation	Limited to neural networks
Ribeiro et al. (2016)	Locally approximate the blackbox model by a simpler model using the neighbourhood of the instance to be explained	LIME	- Simple, - Can be applied to any model	 Quality of explanation depends on the choice of neighbourhood, Explanation may be unstable
Lundberg et Lee. (2017)	Using Shapley values as variable contributions by transposing game theory to machine learning	SHAP	Fair distribution of contributions,Can be applied to any model,	Long execution time,Explanation may be unstable

Stacked Generalization Model (stacking)

Two levels:

- 1- Base learners
- ~ individual predictions
- 2- Meta-learner
- ~ combining predictions

Research question

Taking into account the contributions of all the base learners could provide better explanations

Given an output \tilde{y} provided by the meta-learner on an input x, how to provide contributions of the attributes of x on the calculation of \tilde{y} , taking into account the contributions of all the base learners?

Layerwise Relevance Propagation-LRP

Source - G. Montavon et al, 2019

Propagation formula

$$R_{j \leftarrow k}^{(l,l+1)} = R_k^{(l+1)} \cdot \frac{a_j w_{jk}}{\sum_h a_h w_{hk}}$$

With

$$a_{j=output\ of\ neuronj}$$
 $W_{jk=weight\ between\ neurons\ jand\ k}$
 $R_{k=Relevance\ of\ neuron\ k}$
 $l=layer\ of\ neuron\ k$
 $l+1=layer\ of\ neuron\ k$

SHapley Additive exPlanations - SHAP

- Transposing game theory into machine learning
- In game theory: shapley value is the solution to fairly distribute a payoff among players
- Game = explain prediction, players = variables, payoff = predicted value
- Shapley values as variable contributions

$$\varphi_{val}(i) = \sum_{S \subseteq F\{i\}} \frac{|S|! (p - |S| - 1)!}{p!} \Delta_{val}(i, S) \qquad \text{With} \qquad \begin{cases} \varphi_{val}(i) = Shapley \ values \\ S = coalition \\ p = number \ of \ features \end{cases}$$

$$\Delta_{val}(i, S) = val(S \cup \{i\}) - val(S)$$

Our approach: Description 1/2

$$\mathsf{LRP}\left(\begin{array}{c} R_{i\leftarrow k}^{(l\cdot l+1)} = R_k^{(l+1)}.\frac{a_iw_{ik}}{\sum_h a_hw_{hk}} \end{array}\right)$$

 $a_{j=output\ of\ neuron\ j}$ W_{jk} =weight between neurons j and k $R_{k=Relevance\ of\ neuron\ k}$ *l=layer of neuron j* $l+1=layer\ of\ neuron\ k$

→Output

Our approach: Description 2/2

Steps:

- 1- Contributions of base learners on prediction of meta-learner
- 2- Contributions of the features to those of the base learners
- 3- Aggregation of contributions

- LRP
- SHAP
 - LRP

Our approach: Properties

- Local and Global Explainability
- Specific to Stacking model
- Exponential complexity

$$O(p.2^m)$$
 with $C_{SHAP} = O(2^m)$

Experiments

Dataset: Thompson Reuters ESG

dataset on the quantity of CO2 emitted by some Corporate around the World based on their environmental, societal and Governance characteristics

Experiments

Dataset

Thompson Reuters ESG

Preprocessing (14531 x 113 → 14531 x 53) : *MICE*

Stacked Generalization (Nguyen et al., 2021)

Base learners: OLS, Elastic Net, KNN, Random Forest, XGBoost et MLP

Meta-learner: mean, Elastic Net, OLS

Evaluation metrics

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \tilde{y}_i|$$

$$\sim \qquad R^2 = 1 - \frac{\sum (y_i - \tilde{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

	Mean of predictions	Meta-Elastic Net	Meta-OLS
MAE	0.161	0.158	0.116
R ²	0.758	0.739	0.856

LSMeta – Local Explanation

Example: Aggreko PLC

Features	Contribution	Features
GovernancePillarScore	1,29E-03	ExecutiveMembersGenderDiversi
PolicyExecutiveCompensationES	1,25E-03	ESGControversiesScore
CEOChairmanSeparation	6,83E-04	EnvironmentalSupplyChainManag
FossilFuelDivestmentPolicy	6,53E-04	PolicyEnvironmentalSupplyCha
CEOChairmanSeparation	5,97E-04	ChairmanisexCEO

Table – Top-5 Features with positive *contributions*

Table – Top-5 Features with negatives contributions

Contribution

-1,54E-04

-1,60E-04

-2,32E-04

-2,89E-04

-5,58E-04

LSMeta – Global Explanation

NAICSSubsectorCode, BoardGenderDiversityPercent, ESGControversiesScore, ProductResponsibilityScore, PolicyEnvironmentalSupplyChai

EnvironmentalRestorationInitia, BiodiversityImpactReduction, CSRStrategyScore, EmployeesFullTimeFullTime, GovernancePillarScore

Experiments

Evaluation metrics

Explainability

Fidelity score :
$$\frac{1}{n} \sum_{i=1}^{n} |\tilde{y}_i - \tilde{y}_{i \setminus A}|$$

Stability score: Variable Stability Index (Visani et al., 2020)

Evaluation – fidelity score

Evaluation process

- 1. Top-5 of most importants features
- 2. Average of fidelity scores

	SHAP	LSMeta
Average fidelity	0.216 (±0.742)	0.096 (±0.256)

Table – Average fidelity scores

Evaluation- fidelity & stability

Evaluation process

- 1. Calculation of the fidelity/stability of each observation
- 2. Comparison of scores between SHAP and LSMeta
- 3. Counting the number of times LSMeta is bigger
- 4. Percentage

Number of important features	1	1/10	1/4	1/3	1/2
Fidelity LSMeta >= SHAP (%)	34.25	41.07	55.62	58.17	65.67
Stability LSMeta >= SHAP (%)	97.83	98.42	98.38	98.31	97.76

Table – Proportion of individual fidelity/stability scores

Conclusion and perspectives

- Explain prediction made by meta-learner
- Stacked Generalization Model and LSMeta (combining LRP and SHAP)
- Dataset of Corporate CO2 emissions
- Stable explanations and faithful to model output
- Environmental implications
 - Identification of important factors of CO2 emissions
 - Identification of high and low risk corporate

Perspectives

- Consult experts about the explanations provided
- Use other variants of LRP and SHAP
- Identify the types of problem/data suitable for LSMeta

<u>Paper</u>

Ingrid Pamela Nguemkam Tebou, Norbert Tsopze and Dieudonné Tchuente.

Explaining the predictions of a meta-learner: case of corporate CO2 emissions.

- Accepted to Conférence de Recherche en Informatique, édition 2023
- DOI:

https://link.springer.com/chapter/10.1007/978-3-031-63110-8_8

References

- Matthew Brander and Gary Davis. Greenhouse gases, co2, co2e, and carbon: What do all these terms mean. *Econometrica, White Papers*, 2012
- Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifer decisions by layer-wise relevance propagation. *PloS one*, 10(7):e0130140, 2015.
- Scott M Lundberg and Su-In Lee. A unifed approach to interpreting model predictions. Advances in neural information processing systems, 30, 2017
- Quyen Nguyen, Ivan Diaz-Rainey, and Duminda Kuruppuarachchi. Predicting corporate carbon footprints for climate finance risk analyses: a machine learning approach. Energy Economics, 95:105129, 2021.
- Matthieu Bellucci, Nicolas Delestre, Nicolas Malandain, and Cecilia Zanni-Merk. Towards a terminology for a fully contextualized xai. *Procedia Computer Science*, 192:241–250, 2021.
- Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on explainable artifcial intelligence (xai). *IEEE access*, 6:52138–52160, 2018

For your kind attention

