線形代数学・同演習 B

1 月 17 日分 演習問題*1

1. 次の \mathbb{R}^2 の基底 $(oldsymbol{v}_1,\,oldsymbol{v}_2)$ を $\operatorname{Gram-Schmidt}$ の直交化法により直交化せよ .

$$(1) \begin{pmatrix} 3 & 1 \\ 2 & -2 \end{pmatrix} \quad (2) \begin{pmatrix} 1 & -3 \\ -1 & -1 \end{pmatrix} \quad (3) \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \quad (4) \begin{pmatrix} 4 & 2 \\ 2 & -3 \end{pmatrix}$$

 2^{\dagger} 次の \mathbb{R}^3 の基底 $(oldsymbol{v}_1,oldsymbol{v}_2,oldsymbol{v}_3)$ を $\operatorname{Gram-Schmidt}$ の直交化法により直交化せよ.

- 3. 次の $\mathbb{R}[x]_2$ の基底を Gram-Schmidt の直交化法により直交化せよ.ただし内積は $(f|g)=\int_{-1}^1 f(x)g(x)\,dx$ とする.
 - (1) $p_1(x) = 1$, $p_2(x) = x$, $p_3(x) = x^2$.
 - (2) $q_1(x) = x^2$, $q_2(x) = x$, $q_3(x) = 1$.
 - (3) $r_1(x) = -x$, $r_2(x) = -x^2 + x$, $r_3(x) = -x^2 + x 1$.
- $4. \mathbb{R}^2$ の正規直交基底は次の形のもので尽くされることを示せ.

(1)
$$\mathbf{u}_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$ (2) $\mathbf{v}_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$

- 5.2次の直交行列をすべて求めよ.
- 6^{\dagger} 任意の 3 次正則行列 A は,ある直交行列 P と上三角行列 U を用いて A=PU という積でかけることを示せ *2 .
- 7.* 整数 $n=0,1,2,3,\ldots$ に対して $H_n(x):=(-1)^ne^{x^2}\left(\frac{d^n}{dx^n}e^{-x^2}\right)$ とおく* 3 . また,二つの多項式 f,g に対して $(f|g)_H:=\int_{-\infty}^\infty f(x)g(x)e^{-x^2}\,dx$ とする* 4 .
 - (1) n=0,1,2,3,4 に対して $H_n(x)$ を求めよ.
 - (2) 各 $H_n(x)$ は n 次の多項式となることを示せ.
 - $(3) (\cdot | \cdot)_H$ は $\mathbb{R}[x]_n$ (n は任意の自然数) の内積を定めることを示せ.
 - (4) この内積 $(\cdot|\cdot)_H$ に関して,多項式 $H_n(x)$ $(n=0,1,2,\ldots)$ は直交していることを示せ.
- 8* n 次直交行列全体のなす集合を O(n) とするとき,O(n) は群になることを示せ.すなわち,以下の 3 つが成り立つことを確かめよ.
 - (1) $E_n \in O(n)$,
 - (2) $P, Q \in O(n) \Rightarrow PQ \in O(n)$,
 - (3) $P \in O(n) \Rightarrow P^{-1} \in O(n)$.

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.

 $^{*^2}$ ヒント:Gram-Schmidt の直交化法 . これは任意の n 次正則行列で成り立つ .

^{*3} この多項式を Hermite 多項式という.

 $^{^{*4}}$ 重み e^{-x^2} を持つ積分である.