

CLASSROOM STUDY PACKAGE

MATHEMATICS

ARITHMETIC PROGRESSION

CHAPTER -1

ARITHMETIC PROGRESSION

CONTENTS

KEY CONCEPTS - 2 - 7

EXERCISE-I - 8

EXERCISE-II - 9 - 11

ANSWER KEY - 12

KEY CONCEPTS

Sequence A succession of numbers a_1 , a_2 ,, a_n formed according to some definite rule is called a sequence.

A sequence is a function whose domain is the set N of natural numbers and range a subset of real numbers of complex numbers.

A sequence whose range is a subset of real numbers is called a real sequence. Since we shall be dealing with real sequences only, we shall use the term sequence to denote a real sequence.

Notation The different terms of a sequence are usually denoted by a_1 , a_2 , a_3 ,.....or by t_1 , t_2 , t_3 , The subscript (always a natural number) denotes the position of the term in the sequence. The term at the nth place of a sequence, i.e., t_n is called the general term of the sequence.

A sequence is said to be finite or infinite according to whether it has finite or infinite number of terms.

Progression If the terms of a sequence follow certain pattern, then the sequence is called a progression.

Introduction to Arithmetic Progression (A.P.)

Consider this collection of balls one row above the other.

Such that last row consists of 11 balls, last but one consists of 9 balls, second last has 7 balls and so on. If we want to add these balls we get

Now let us suppose we have 99 balls in last row and with gap of 9, 18, 27 and so on as we move towards the top. i.e. 99 + 90 +81 + + 9

Summing them up like this will be a bit time consuming.

Arithmetic Progression (A.P.)

A sequence whose terms increase or decrease by a fixed number (common difference) is called A.P. The common difference may be +ve or -ve or zero.

In an A.P., the first term is usually denoted by 'a', the common difference by 'd' and the nth term by 't_n'. Obviously

$$d = t_n - t_{n-1}$$

thus, an A.P. can be written as

$$a, a + d, a + 2d, \dots a + (n - 1) d, \dots$$

For example,

(i) 1, 3, 5, 7, 9,....

Since, 2^{nd} term -1^{st} term $=3^{rd}$ term -2^{nd} term $=4^{th}$ term -3^{rd} term

The sequence 1, 3, 5, 7, ... are in A.P. whose first term is 1 and common difference is 2.

(ii) 5, 3, 1, -1, -3, -5, -7,..... are in A.P. whose first term is 5 and common difference is -2.

The nth term of an Arithmetic Progression

To understand the nth term of an A.P. let us take an A.P. with first term 'a' and common difference 'd'.

Now A.P. is a_1, a_2, a_3,a_n

Where $a_1 = a$

$$a_2 = a + d$$

$$a_3 = (a + d) + d = a + 2d$$

$$a_4 = (a + 2d) + d = a + 3d$$

.....

.....

$$a_n = a_{n-1} + d = [a + (n-2)d] + d$$

$$\Rightarrow$$
 a_n =a + (n - 1)d

NOTE:

- (i) If an A.P. has n terms, then the nth term is called the last term of A.P. and it is denoted by I. That is I = a + (n 1) d.
- (ii) Three numbers a, b, c are in A.P. if and only if b a = c b, i.e., if and only if a + c = 2b.
- (iii) If a is the first term and d the common difference of an A.P. having m terms, then nth term from the end is $(m-n+1)^{th}$ term from the beginning. Thus nth term from the end = a + (m-n)d.

Sum of n terms of an A.P. The sum of n terms of an A.P. with first term 'a' and common difference 'd' is given by

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Let, us derive the result for sum of the first 'n' terms of an A.P.

A.P. is given by

$$a, a + d, a + 2d,$$

Now, nth term is
$$[a + (n-1)d]$$

Let, S_n be the sum of first 'n' terms of an A.P.

Then,

$$S_n = a + (a + d) + (a + 2d) + ... + [a + (n - 1)d]$$
(i)

Rewriting in reverse order

$$S_n = [a + (n-1)d] + [a + (n-2)d] + ... + a$$
(ii)

Adding (i) and (ii) we get

$$2S_n = [2a + (n-1)d] + [2a + (n-1)d] + + [2a + (n-1)d]$$

$$\Rightarrow$$
 2S_n = n [2a + (n - 1)d]

$$\Rightarrow S_n = \frac{n}{2} [2a + (n-1)d]$$

Which is the sum of first 'n' terms. Now, $S_n = \frac{n}{2}[a + a + (n-1)d]$ $S_n = \frac{n}{2}[a + a_n]$

We know, $a_n = I = last term$

$$\Rightarrow$$
 $S_n = \frac{n}{2}[a + /]$

NOTE:

- (i) The nth term is given by $t_n = S_n - S_{n-1}$.
- (ii) Sum of first 'n' odd natural numbers = n^2
- (iii) Sum of first 'n' even natural numbers = n(n + 1)

SELECTION OF TERMS IN AN A.P.: Sometimes we require certain number of terms in A.P. The following ways of selecting terms are generally very convenient.

Number of terms	Terms	common difference
3	a – d, a, a + d	d
4	a - 3d, $a - d$, $a + d$, $a + 3d$	2 <i>d</i>
5	a – 2d, a – d, a, a + d, a + 2d	d
6	a - 5d, $a - 3d$, $a - d$, $a + d$, $a + 3d$, $a + 5d$	2d

NOTE: We select them in this way because if we add them, 'd' gets cancelled out, so we have just one variable that can be easily eliminated.

PROPERTIES OF A.P.

- (i) If a_1 , a_2 , a_3 , ... a_n are in A.P, then
- (A) $a_1 + k$, $a_2 + k$, ..., $a_n + k$ are also in A.P.
- (B) $a_1 k$, $a_2 k$,, $a_n k$ are also in A.P.
- (C) ka_1 , ka_2 , ka_n are also in A.P.
- (D) a_1/k , a_2/k ,..... a_n/k , $k \neq 0$ are also in A.P.
- (ii) If a_1 , a_2 , a_3 , ... a_n and b_1 , b_2 , b_3 , ... are two A.P.s, then
- (A) $a_1 + b_1$, $a_2 + b_2$, $a_3 + b_3$, are also in A.P.
- (B) $a_1 b_1$, $a_2 b_2$, $a_3 b_3$, are also in A.P.
- (iii) If a_1 , a_2 , a_3 , ... a_n are in A.P, then

(A)
$$a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \dots$$

(B)
$$a_r = \frac{a_{r-k} + a_{r+k}}{2}$$
, $0 \le k \le r - 1$.

- (iv) If nth term of a sequence is a linear expression in 'n' then the sequence is an A.P.
- (v) If the sum of first n terms of a sequence is a quadratic expression in 'n' of form An2 + Bn, then the sequence is an A.P.

ARITHMETIC MEAN (A.M.)

Single Arithmetic Mean: A number 'A' is said to be the single A.M. between two given numbers 'a' and 'b' provided a, A, b are in A.P.

For example, since 2, 4, 6 are in A.P., therefore, 4 is the single A.M. between 2 and 6.

n-Arithmetic Means: The numbers A_1, A_2, \dots, A_n are said to be 'n' arithmetic means between two given numbers 'a' and 'b' provided

a, A_1 , A_2 , A_n , b are in A.P.

For example, since 2, 4, 6, 8, 10, 12 are in A.P. therefore, 4,6,8,10 are the four arithmetic means between 2 and 12.

Inserting Single A.M. between Two given Numbers: Let 'a' and 'b' be two given numbers and 'A' be the A.M. between them. Then a, A, b are in A.P. Thus A = (a + b)/2

Inserting n-Arithmetic Means between Two given Numbers: Let A₁, A₂, A_n be the n arithmetic means between two given numbers 'a' and 'b'. Then a, A_1, A_2, \dots, A_n , b are in A.P.

Now, b = (n + 2)th term of A.P.

$$= a + (n + 2 - 1)d = a + (n + 1)d$$

Or $d = \frac{b-a}{b+1}$, where d is common difference of A.P.

And
$$A_1 = a + d = a + \left(\frac{b-a}{n+1}\right)$$
,

$$A_2 = a + 2d = a + 2\left(\frac{b-a}{n+1}\right),$$

: : :

$$A_n = a + nd = a + n\left(\frac{b-a}{n+1}\right).$$

NOTE: The sum of n arithmetic means between two given numbers is n times the single A.M. between them, i.e. if a and b are two given numbers and A_1, A_2, \dots, A_n are n arithmetic means between them, then

$$A_1 + A_2 + \dots + A_n = n \left(\frac{a+b}{2} \right).$$

MOREOVER:

For given two real numbers 'a' & 'b': (i)

$$\rightarrow$$
 A.M. = $\frac{a+b}{2}$

$$\rightarrow \qquad \text{G.M.} = \sqrt{ab} \ (a > 0, b > 0)$$

$$\rightarrow \qquad \text{H.M.} = \frac{2ab}{a+b} \ (a, b \neq 0)$$

where, A.M. = Arithmetic Mean

G.M. = Geometric Mean

H.M. ≡ Harmonic Mean

(ii)
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

(iii)
$$\sum_{i=1}^{n} i^2 = \frac{n (n+1)(2n+1)}{6}$$

(iv)
$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

 a_1 , a_2 , a_3 ,, a_n , where $a_1 \neq 0$, are said to be in G.P. (Geometric Progression) if $\frac{a_{i+1}}{a_i} = r$ (common ratio) (v)

$$\forall i \in \{1, 2,, (n-1)\}$$

eg:

(vi)
$$a_1, a_2, a_3, \dots, a_n$$
, where

 $a_i \neq 0$, are said to be in H.P. (Harmonic Progression) if

$$\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \dots, \frac{1}{a_n}$$
 are in A.P.

eg:
$$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$$

$$\frac{5}{3}$$
, 1, $\frac{5}{7}$, $\frac{5}{9}$

SOME SOLVED ILLUSTRATIONS

ILLUSTRATION: If five times 3rd term is equal to three times the 5th term and A.P. is made up to all natural numbers then prove that 3rd term is divisible by 3.

SOLUTION: According to question let, first term = a

And common difference = d

Since all terms are natural numbers, 'a' and 'd' are natural numbers too.

Now,
$$5a_3 = 3a_5$$

$$5(a + 2d) = 3(a + 4d)$$

$$\Rightarrow$$
 5a + 10d = 3a + 12d

$$\Rightarrow$$
 2a = 2d

$$\Rightarrow$$
 a = d

Now,
$$a_3 = a + 2d = d + 2d \implies a_3 = 3d$$

ILLUSTRATION: If the mth term of an A.P. is (1/n) and the nth terms is (1/m), show that the sum of mn terms is

$$\frac{1}{2}$$
(mn + 1).

SOLUTION: Let a be the first and d the common difference of the given A.P., then,

$$a_m = a + (m-1)d = (1/n)$$
 (i)

[:
$$a_m = (1/n)$$
 given in this]

and
$$a_n = a + (n - 1)d = (1/m)$$

Subtracting above, we get

$$a_m - a_n = (m - n)d = (1/n) - (1/m)$$

$$\Rightarrow$$
 $(m-n)d = [(m-n)/(mn)]$ \Rightarrow $d = (1/mn)$

Substituting this value of d in (i), we get $a + (m-1) \times (1/mn) = (1/n)$

$$\Rightarrow$$
 a + (1/n) - (1/mn) = (1/n) \Rightarrow a = (1/mn)

Now,
$$S_{mn} = (mn/2)[2a + (mn - 1)d]$$

$$= [mn/2] [2 \times (1/mn) + (mn - 1) \times (1/mn)]$$

$$= [mn/2] [(2/mn) + 1 - (1/mn)]$$

$$= (mn/2) [1 + (1/mn)] = (mn/2) x (mn +1)/(mn)$$

$$= \frac{1}{2} (mn + 1)$$

ILLUSTRATION: Fourth term of an arithmetic progression is 8. what is the sum of the first 7 terms of the arithmetic progression:

SOLUTION : Fourth term = 8
$$\Rightarrow$$
 a + 3d = 8 sum of terms = S₇ = (7/2) [2a + (7 - 1)d] = (7/2) × 2 (a + 3d) = 7 × 8 = 56

ILLUSTRATION: If the sum of the first 2n terms of 2, 5, 8...is equal to the sum of the first n terms of 57, 59, 61 ...then n is equal to:

SOLUTION: Given,
$$(2n/2) \{2x2 + (2n-1)3\} = (n/2) \{2x57 + (n-1)2\}$$

Or 2 $(6n + 1) = 112 + 2n$ or $10n = 110$, so $n = 11$

ILLUSTRATION: The sum of 24 terms of the following series: $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \dots$

SOLUTION: We have
$$\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \dots$$

= $1\sqrt{2} + 2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} + \dots = \sqrt{2} [1 + 2 + 3 + 4 + \dots \text{upto } 24 \text{ terms}]$
= $[\sqrt{2} \times (24 \times 25)/2] = 300\sqrt{2}$

ILLUSTRATION: The ratio of sum of m and n terms of an AP is m²: n². The find the ratio of mth term to nth term.

SOLUTION: Given that :
$$\frac{\frac{m}{2}[2a + (m-1)d]}{\frac{n}{2}[2a + (n-1)d]} = \frac{m^2}{n^2}$$

$$\frac{[2a + (m-1)d]}{[2a + (n-1)d]} = \frac{m}{n} \Rightarrow \frac{a + \frac{1}{2}(m-1)d}{a + \frac{1}{2}(n-1)d} = \frac{m}{n}$$

$$\varnothing$$
 an + $\frac{1}{2}$ (m-1)nd = am + $\frac{1}{2}$ (n -1)md
$$a (n - m) + \frac{d}{2} [mn - n - mn + m] = 0$$

$$a(n-m) + \frac{d}{2}(m-n) = 0$$

$$(a - \frac{d}{2})(n - m) = 0$$

Since
$$m \neq n$$
, $a = \frac{d}{2}$ or $d = 2a$

so required ratio,
$$\frac{T_m}{T_n} = \frac{a + (m-1)d}{a + (n-1)d} = \frac{a + (m-1)2a}{a + (n-1)2a}$$

$$\Rightarrow \frac{1+2m-2}{1+2n-2} = \frac{2m-1}{2n-1}$$

ILLUSTRATION: If S_1 , S_2 and S_3 denote the sum of first n_1 , n_2 and n_3 terms respectively of A.P.,

find
$$(S_1/n_1)(n_2-n_3) + (S_2/n_2)(n_3-n_1) + (S_3/n_3)(n_1-n_2)$$

SOLUTION: We have,
$$S_1 = (n_1/2) [2a + (n_1 - 1)d]$$

$$\Rightarrow$$
 (2S₁/n₁) = 2a +(n₁-1)d

$$S_2 = (n_2/2)[2a + (n_2 - 1)d]$$
 \Rightarrow $(2S_2/n_2) = 2a + (n_2 - 1)d$

$$S_3 = (n_3/2)[2a + (n_3 - 1)d]$$
 \Rightarrow $(2S_3/n_3) = 2a + (n_3 - 1)d$

$$(2 {\sf S}_1/{\sf n}_1)({\sf n}_2-{\sf n}_3) + (2 {\sf S}_2/{\sf n}_2)({\sf n}_3-{\sf n}_1) + (2 {\sf S}_3/{\sf n}_3)({\sf n}_1-{\sf n}_2)$$

=
$$[2a + (n_1 - 1)d] (n_2 - n_3) + [2a + (n_2 - 1)d] (n_3 - n_1) + [2a + (n_3 - 1)d] (n_1 - n_2) = 0$$

EXERCISE-I

If pth, qth and rth terms of an A.P. are a, b, c respectively, then show that : 1.

(i)
$$a(q-r) + b(r-p) + c(p-q) = 0$$
 (ii) $(a-b)r + (b-c)p + (c-a)q = 0$

- 2. If m times the mth term of an A.P is equal to n times its nth term, show that the (m + n)th term of the A.P is zero.
- 3. How many numbers of two digits are divisible by 7?
- Find the sum of first 24 terms of the A.P $a_1 a_2, a_3, a_3, a_4$ if it is known that $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$. 4.
- If the first term of an A.P is 2 and the sum of first five terms is equal to one-fourth of the sum of the next five 5. terms, find the sum of first 30 terms.
- The sum of n terms of three A.P. are S_1 , S_2 and S_3 . The first term of each is unity and the common differences 6. are 1, 2 and 3 respectively. Prove that $S_1 + S_3 = 2S_2$.
- If pth term of an A.P is a and qth term is b. Prove that the sum of its (p + q) terms is 7. $0.5 \times (p + q) [a + b + (a - b)/(p - q)].$
- 8. If a, b, c are in A.P., prove that the following are also in A.P.

(i)
$$\frac{1}{\sqrt{b} + \sqrt{c}}$$
, $\frac{1}{\sqrt{c} + \sqrt{a}}$, $\frac{1}{\sqrt{a} + \sqrt{b}}$ (ii) a(1/b + 1/c), b(1/c + 1/a), c(1/a + 1/b)

- (i) The nth term of the series is given to be (3 + n)/4, find the sum of 105 terms of this series. 9.
 - (ii) Find $a_1 + a_6 + a_{11} + a_{16}$ if it is known that a_1, a_2, a_3, \dots is an A.P and $a_1 + a_4 + a_7 + \dots + a_{16} = 147$.
- A class consist of a number of boys whose ages are in A.P the common difference being 4 months. If the 10. youngest boy is just 8 years old & if the sum of the ages is 168 years, find the no. of boys.
- Find four numbers in A.P whose sum is 20 and the sum of whose squares is 120. 11.
- 12. The ratio of the sum of n terms of 2 A.P's is (7n + 1): (4n + 27). Find the ratio of their mth terms.
- If S_1 , S_2 , ..., S_m are the sums of n terms of m A.P's whose first terms are 1,2,3,...,m and common differ-13. ences are 1,3,5...,(2m-1) respectively. Show that : $S_1 + S_2 + S_3 + ... + S_m = \frac{mn}{2} (mn + 1)$.
- If (b+c-a)/a, (c+a-b)/b, (a+b-c)/c are in A.P., prove that : 1/a, 1/b, 1/c are also in A.P. 14.
- If $(b-c)^2$, $(c-a)^2$, $(a-b)^2$ are in A.P., prove that : 1/(b-c), 1/(c-a), 1/(a-b) are in A.P. 15.
- 16. Two cars start together in the same direction from the same place. The 1st goes with uniform speed of 10 km/h. The 2nd goes at a speed of 8 km/h in the first hour and increases the speed by ½ km/hr each succeeding hr. After how many hrs. will the 2nd car overtake the 1st car if both cars go non-stop?
- 17. Show that the sum of an A.P whose first term is a, second term is b and the last term is c is equal to [(a + c)(b + c - 2a)]/2(b - a).
- 18. Show that the sum of all odd numbers between 1 and 1000, which are divisible by 3 is 83667.
- Divide 28 into four parts in A.P. so that the ratio of the product of 1st and 3rd with the product of 2nd and 4th is 19. 8:15.
- 20. The sum of two numbers is 13/6. An even number of arithmetic means are being inserted between them and their sum exceeds their number by 1. Find the number of means inserted.

EXERCISE-II

			is (D) None of these	
. ,	. , ,	. , , .		
(A) 57	(B) 19	(C) 38	(D) None of these	
In the series 3, 7, 11, 15, (A) 21	and 2, 5, 8, each con (B) 27	tinued to 100 terms, the nu (C) 25	umber of terms that are identical is (D) None of these	
If m times the mth term (A) 1	of an A.P. is equal to n ti (B) -1	imes the nth term, then it (C) 0	s (m + n)th term is - (D) None of these	
The sum of first 24 term (A) 865	ns of the A.P. a ₁ ,a ₂ ,a ₃ ,if (B) 900	it known that a ₁ +a ₅ +a ₁₀ + (C) 930	-a ₁₅ +a ₂₀ +a ₂₄ = 225, is : (D) None of these	
The maximum sum of the series 20 + 19 (1/3) + 18 (2/3) + 18 +is				
(A) 310	(B) 290	(C) 320	(D) None of these	
The sum of 11 terms of (A) 320	an A.P. whose middle ter (B) 330	rm is 30, is (C) 340	(D) 350	
The sum of an A.P. is 5. (A) 3/2	25. If its first term is 3 and (B) 1	d last term is 39, then the (C) 1/2	common difference is (D) None of these	
		rm is 100 and the sum of	whose first six terms is five times $(D) - 5$	
		•	of all the terms of the A.P. and the (D) None of these	
The sum of all two digit (A) 1100				
$d = S_n - kS_{n-1} + S_{n-2}$ the	en k =			
(A) 1	(B) 2	(C) 3	(D) None of these	
k is equal to				
(A) 1/n	(B) (n – 1)/n	(C) (n + 1)/2n	(D) (n + 1)/n	
If S_1 , S_2 , S_3 are the sun (A) S_3	n of n, 2n, 3n terms of an (B) 2S ₃	A.P., then $3(S_2 - S_1) =$ (C) $4S_3$	(D) None of these	
If the first, second and (A) [ab]/[2(b – a)]		a, b then 2a respectively, (C) [3ab]/[2(b – a)]	then its sum is (D) None of these	
5:9, then the value of	m is		f the 7^{th} and $(m-1)^{th}$ means is (D) 14	
	(A) 0 The number of number (A) 57 In the series 3, 7, 11, 15, (A) 21 If m times the mth term (A) 1 The sum of first 24 term (A) 865 The maximum sum of the (A) 310 The sum of 11 terms of (A) 320 The sum of an A.P. is 5 (A) 3/2 The common difference the sum of the next six (A) 10 The first and last terms common difference is (A) S The sum of all two digit (A) 1100 Let S_n denotes the set of S_n denotes t	The number of numbers lying between 100 and (A) 57 (B) 19 In the series 3, 7, 11, 15, and 2, 5, 8, each con (A) 21 (B) 27 If m times the mth term of an A.P. is equal to n to (A) 1 (B) -1 The sum of first 24 terms of the A.P. $a_1, a_2, a_3,$ if (A) 865 (B) 900 The maximum sum of the series 20 + 19 (1/3) + (A) 310 (B) 290 The sum of 11 terms of an A.P. whose middle terms of an A.P. whose first terms is 3 and (A) 3/2 (B) 1 The common difference of an A.P., whose first terms umon the next six terms, is (A) 10 (B) -10 The first and last terms of an A.P. are a and I responsible to (A) S (B) 2S The sum of all two digit numbers which when diventify (A) 1100 (B) 1200 Let S_n denotes the sum of n terms of an A d = $S_n - kS_{n-1} + S_{n-2}$ then $k =$ (A) 1 (B) 2 If the sum of the first n even natural numbers is end is equal to (A) 1/n (B) (n-1)/n If S_1, S_2, S_3 are the sum of n, 2n, 3n terms of an (A) S_3 (B) 2S ₃ If the first, second and last terms of an A.P. are and (A) S_3 (B) 2S ₃ If the first, second and last terms of an A.P. are and (A) S_3 (B) S_3 If the first, second and last terms of an A.P. are and (A) S_3 (B) S_3	The number of numbers lying between 100 and 500 that are divisible by 7 (A) 57 (B) 19 (C) 38 In the series 3, 7, 11, 15, and 2, 5, 8, each continued to 100 terms, the number of the series 3, 7, 11, 15, and 2, 5, 8, each continued to 100 terms, the number of the series 3, 7, 11, 15, and 2, 5, 8, each continued to 100 terms, the number of 100 terms, the number of 100 terms, the number of 100 terms of 100 terms, the number of 100 terms of 100 terms, the number of 100 terms of 11 terms of an A.P. is equal to n times the number of 11 terms of an A.P. whose middle term is 30, is (A) 310 (B) 290 (C) 320 (D) 340	

17.	(A) n : (n + 1)	(B) (n + 1) : n	(C) (n – 1) : n	(D) None of these
18.	If the ratio of the sum of r	n terms of two A.P.s is (3n-	13) :(5n+21), then ratio of	24 th terms of the two progressions
	(A) 2:3	(B) 2:1	(C) 1:2	(D) None of these
19.	If a is the first term, d the independent of x.	he common difference a	nd S_k the sum to k terms	s of an A.P., then for S_{kx}/S_x to be
	(A) a = 2d	(B) a = d	(C) $2a = d$	(D) None of these
20.	Let a_1 , a_2 , a_3 a_n be If $1/(a_1a_n) + 1/(a_2a_{n-1})$ (A) 1		+ a_n) [(1/ a_1) + (1/ a_2) + (C) 3	+ $(1/a_n)$], then k is equal to : (D) None of these
21.	If x, y, z are in A.P., the (A) 4xyz	n(x + 2y - z) (2y + z - x) (B) 2xyz	(z + x - y) (C) xyz	(D) None of these
22.		, 3,,m respectively, the	***	
23.	The middle term in the f $(A) - 46$	following arithmetic progr (B) – 76	ession 20, 16, 12,, -18 (C) - 80	30 is (D) None of these
24.	Find the sum to 200 ter (A) 30,400	rms of the series 1 + 4 + (B) 29,800	6 + 5 + 11 + 6 + (C) 30,200	(D) None of these
25.	If $S_n = nP + n (n-1)Q$, wh (A) $2P + 3Q$	here S_n denotes the sum of (B) P + Q	of the first n term of an A.P (C) Q	a, then the common difference is : (D) 2Q
26.		he arithmetic progression nd the third term of the prog (B) 5	•	for the first term, is 99, and except (D) 10
27.	8 th term of the series 2	$\sqrt{2}$, $\sqrt{2}$, 0, will be :		
	$(A) - 5\sqrt{2}$	(B) 5√2	(C) $10\sqrt{2}$	(D) $-10\sqrt{2}$
28.	difference.		` '	n 25(7/16), then find the common
	(A) – 43/18	(B) – 45/17	(C) – 47/16	(D) None of these
29.	If the first, second and $(A) [(a + b)(a + c - 2b)]$ (C) $[(a + c)(b + c - 2a)]$		re a, b, c respectively, the (B) $[(b + c)(a + b - 2c)]$. (D) None of these	
30.	If $(b + c - a)/a$, $(c + a - (A) a,b,c)$	b)/b, $(a + b - c)/c$ are in a (B) a^2,b^2,c^2		owing is in A.P. – (D) None of these
31.		AP where $a_i > 0 \ \forall i$, then f $ \frac{1}{\left(\sqrt{a_{n-1}} + \sqrt{a_n}\right)} + \dots + \frac{1}{\left(\sqrt{a_{n-1}} + \sqrt{a_n}\right)} $		
	(A) $\frac{1}{\left(\sqrt{a_1} + \sqrt{a_n}\right)}$	(B) $\frac{1}{\left(\sqrt{a_1}-\sqrt{a_n}\right)}$	(C) $\frac{n}{\left(\sqrt{a_1} - \sqrt{a_n}\right)}$	(D) $\frac{n-1}{\left(\sqrt{a_1}+\sqrt{a_n}\right)}$

32.	· = •	belongs to A.P. such that + b_{28} = 220, then the va + b_{28} equals	alue of		
	(A) 616	(B) 308	(C) 2,464	(D) 1,232	
33.		+ a), c ² (a + b) are in A.P., th = 0 (B) a + b + c = 0	nen, either a, b, c are in a (C) a – b -		= 0
34.	The n th term of th	ne series 1^2 , $(1^2 + 2^2)$, $(1^2 +$	$(2^2 + 3^2)$, is		
	(A) n	(B) $\frac{n(n+1)}{2}$	(C) $\frac{n^2(n+1)^2}{2}$	(D) $\frac{n(n+1)(2n+1)}{6}$	
35.		A_1 is contained in the interid A_1 , A_2 , $A_1 + A_2$ are in A.P.		area $A_1 + A_2$. If the radius of the maller circle is	ne large
	(A) $\frac{\sqrt{3}}{2}$ unit	(B) 1 unit	(C) $\frac{2}{\sqrt{3}}$ unit	(D) $\sqrt{3}$ unit	
36.	If the p th , q th and (A) 0	r th terms of an A.P. are P, Q (B) pq + qr + rp	e, R respectively, then P((C) pqr	(q - r) + Q(r - p) + R(p - q) = 0 (D) p + q + r	quals
37.	In an A.P., if it is of (A) 2t _{p+q+1}	given that $t_{p+1} = 2t_{q+1}$, the (B) $2t_{p+q-1}$	n, t _{3p+1} is equal to (C) 2t _{p-q+1}	(D) 2t _{p-q-1}	
38.		nd 'b' is $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$, then t		' '	
	(A) 1	(B) $\frac{1}{2}$	(C) – 1	(D) 0	
39.	sum of the first n t	erms of arithmetic progress	ion 17, 19, 21 If for	on 8, 12, 16, and let $s_2(n)$ some value of n, $s_1(n) = s_2(n)$	
	(A) not uniquely d (C) 216	eterminable	(B) 260 (D) 200		
40.	The sum of 7 cons	secutive positive integers is g the 12 numbers ?	` ,	next five consecutive integers [KVP]	. What is Y 2008]
	(A) 24				

ANSWER KEY EXERCISE-I

3. 13 4. 900 5. -2550 **9.** (i)1470 (ii)98 10. 11. 16 2,4,6,8

12. (14m - 6) : (8m + 23)16. 9 hours 19. 4,6,8,10 20. 6

EXERCISE-II

1. (A) (C) 2. 3. (C) 4. (C) 5. (B) 6. (A) 7. (B)

8. (A) (B) 10. (B) 11. (C) 12. (B) 13. (D) 14. (A)

15. (C) 16. (D) 17. (B) 18. (C) 19. (C) 20. (A) 21. (A)

22. (A) 23. (C) 24. (C) 25. (D) 26. (B) 27. (A) 28. (C)

29. (C) 30. (C) 31. (D) 32. (A) 33. (A) 34. (D) (D) 35.

36. (A) 37. (A) 38. (D) 39. (B) 40. (B)