الجمهوريـة الجزائريــة الديـمقراطيـة الـشعبيـة REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التكوين والتعليم المهنيين

Ministère de la Formation et de l'Enseignement Professionnels

Centre National de l'Enseignement Professionnel à Distance (CNEPD)

COURS DE RECHERCHE OPÉRATIONNELLE

SERIE N° 03

RECHERCHE D'UN CHEMIN DE LONGUEUR MINIMALE ET DE LONGUEUR MAXIMALE DANS UN GRAPHE VALUE METHODE DE FORD.

OBJECTIF PEDAGOGIE: À la fin cette série, le stagiaire doit être capable de trouver un chemin de longueur minimale et un chemin de longueur maximale dans un graphe valué.

PLAN DE LA LEÇON:

I - NTRODUCTION

II- FORMULATION DU PROBLEME

III- RESOLUTION DU PROBLEME

- 1- Principe de la méthode de FORD (pour le minimum).
- **2-** Application : recherche de chemin de longueur minimale à l'aide d'un graphe valué.
- **3-** Principe de la méthode de FORD (pour le maximum).
- **4-** Application : recherche de chemin de longueur maximale à l'aide d'un graphe valué.

CONCLUSION EXERCICES CORRIGES

INTRODUCTION:

Supposons que dans un graphe orienté, on décide d'attribuer à chaque arc une longueur positive ou nulle, il est alors naturel de définir la longueur d'un chemin quelconque comme la somme des longueurs des arcs qui les composent. Un problème fondamental et qui se pose fréquemment dans les applications de la théorie des graphes, est celui de la recherche d'un chemin de longueur minimale ou maximale.

I- FORMULATION DU PROBLEME:

- Soit G (X, U) un graphe orienté sans boucle comportant n sommets.
- A tout arc (x_i, x_j) ∈ U est associé à un nombre réel l_{ij} appelé longueur de l'arc (x_i, x_j).La longueur d'un chemin M quelconque notée l (M) est alors définie comme la somme des longueurs des arcs qui le composent.

$$l\left(M\right) = \sum_{(x_{i}, x_{j}) \in M} \, l_{ij}$$

 Un chemin joignant un sommet xi à un sommet xj est dit de longueur minimale s'il minimise cette longueur l(M) dans l'ensemble de tous les chemins joignant xi à xj. La longueur d'un tel chemin est appelée distance minimale.

Remarque:

- 1- Par abus de langage et bien que l'unicité ne soit pas nécessairement réalisée. On parle parfois de plus court chemin de x_i à x_j;
- 2- Si à tout arc (x_i, x_j) d'un graphe G(X, U) est associée une longueur, G est dite un graphe valué.

II- RÉSOLUTION DU PROBLEME :

1- Principe de la méthode de FORD (pour le minimum) :

1ère Etape:

Numérotation des sommets du graphe valué dans n'importe quel ordre, mais en commençant par x_0 et en finissant par x_{n-1} (le nombre de sommets est n).

2ème Etape:

Affectation d'une valeur $t_i = +\infty$ avec $1 \le i \le n-1$ à tous les sommets sauf pour le sommet initial auquel on attribue la valeur $t_0 = 0$.

Remarque:

La valeur $t_i = \infty$ peut être considérée comme la solution initiale.

Exemple:

Mettre $t_2 = +\infty$ signifie l'existence d'un chemin de x_0 vers x_2 et qui est de longueur $+\infty$, évidement ce n'est pas le chemin de longueur minimale. $t_0 = 0$ signifie que le plus court chemin de x_0 vers luimême est de longueur nulle. La troisième étape à pour objectif d'améliorer cette solution.

3ème étape:

Pour chaque arc (x_i, x_j) , si la valeur t_j est supérieure à la quantité $t_i + l_{ij}$, on remplace alors t'_j par $t_j = t_i + l_{ij}$. Par contre, si tj est inférieure à $t_i + l_{ij}$ alors on ne change rien.

Remarque:

À cette étape, la comparaison est faite entre deux solutions ; la solution actuelle : t_j est pour l'instant la meilleure solution pour le problème de chemin de longueur minimale de x_0 vers x_j . La deuxième solution (éventuelle) :

Cette deuxième solution suppose l'existence d'un plus court chemin de x_0 vers x_i ; de longueur t_i .

La comparaison $t_j > t_i + l_{ij}$ répond à la question : peut-on trouver, à partir de x_i , un plus court chemin de x_0 vers x_i ;

4ème étape:

On répète la 3^{ème} étape jusqu'à ce qu'aucun arc ne permette plus de diminuer les t_i.

2- Application : Recherche de chemin de longueur minimale à l'aide d'un graphe valué :

Trouver le chemin de longueur minimale du sommet x_0 vers le sommet x_7 dans le graphe valué suivant :

Remarque:

- **1-** la longueur de l'arc $(x_0, x_1) = 12$, c'est-à-dire $l_{01} = 12$.
- **2-** M = { (x_0, x_1) , (x_1,x_6) , (x_6, x_7) } est un chemin de x_0 vers x_7 la longueur de ce chemin $l(M) = l_{01} + l_{16} + l_{67} = 12 + 24 + 21 = 57$.

Application de la méthode de FORD:

- 1- Les sommets sont déjà numérotés
- 2- $t_0 = 0$ et $t_i = +\infty$, $1 \le i \le 7$
- **3-** A partir du sommet x_0 : (x_0, x_1) et (x_0, x_3)

Pour l'arc (x_0, x_1) : $t_1 = \infty$ et $t_0 + l_{01} = 0 + 12 = 12$.

 $t_1 > 12$, on remplace alors t_1 par $t'_1 = t_0 + l_{01} = 12$.

Pour l'arc (x_0, x_3) : de même $t_3 = \infty$, $t_3 > t_0 + l_{03}$.

On remplace alors t_3 par $t'_3 = t_0 + l_{03} = 0 + 14 = 14$.

 (x_1, x_6) et (x_1, x_2) .

Pour l'arc (x_1, x_6) : $t_1 = 12$ et $t_6 = \infty$, $t_{16} = 24$.

 $t_6 > t_1 + l_{16}$ on remplace t_6 par $t_1 + l_{16} = 12 + 24 = 36$.

Pour l'arc (x_1, x_2) : $t_1 = 12$, $t_2 = \infty$, $l_{12} = 13$.

 $t_2 > t_1 + l_{12}$, on remplace t_2 par $t'_2 = 12 + 13 = 25$.

Remarque:

A chaque fois qu'on remplace t_i par une autre valeur ; ceci indique qu'on a trouvé un autre chemin de plus petite longueur.

Exemple:

 $t_2 = \infty$ remplacé par $t'_2 = 25$, indique qu'on a trouvé (à partir du sommet x_1) un chemin de x_0 vers x_2 de longueur 25, rappelons que $t_2 = \infty$ indique qu'on n'a pas encore trouvé un chemin de x_0 vers x_2 .

Continuons l'application de l'algorithme de FORD.

A partir du sommet x_2: (x_2, x_6) , (x_2, x_5) , (x_2, x_4) .

Pour l'arc (x_2, x_6) : $t_2 = 25$, $t_6 = 36$ et $l_{26} = 3$.

 $t_6 > t_2 + l_{26}$, on remplace t_6 par $t'_6 = t_2 + l_{26} = 28$.

Pour l'arc (x_2, x_5) : $t_2 = 25$, $t_5 = \infty$, $l_{25} = 7$.

 $t_5 > t_2 + l_{25}$, on remplace t_5 par $t'_5 = t_2 + l_{25} = 32$.

Pour l'arc (x_2, x_4) : $t_2 = 25$, $t_4 = \infty$, $l_{24} = 1$.

 $t_4 > t_2 + l_{24}$, on remplace t_4 par $t_4' = t_2 + l_{24} = 26$.

A partir du sommet x_3 : (x_3, x_2) , (x_3, x_4) :

Pour l'arc (x_3, x_2) : $t_3 = 14$, $t_2 = 25$, $t_{32} = 10$.

 $t_2 > t_3 + l_{32}$, on remplace t_2 par $t'_2 = t_3 + l_{32} = 24$.

Pour l'arc (x_3, x_4) : $t_3 = 14$, $t_4 = 26$ et $l_{34} = 16$.

 $t_u < t_3 + l_{34}$, alors on ne change pas la valeur de t_4 .

Remarque:

À partir du sommet x_3 , on a pu trouver un plus court chemin de x_0 vers x_2 qui est de longueur 24, alors que le sommet x_2 a déjà été exploré (quand $t_2 = 25$) et a permis de modifier t_6 , t_5 et t_4 . Il convient alors de reprendre le sommet x_2 .

A partir du sommet x_2: (x_2, x_6) , (x_2, x_5) , (x_2, x_4)

Pour l'arc (x_2, x_6) : $t_2 = 24$, $t_6 = 28$, $t_{26} = 3$.

 $t_6 > t_2 + l_{26}$, on remplace t_6 par $t'_6 = 27$.

Pour l'arc (x_2, x_5) : $t_2 = 24$, $t_5 = 32$, $l_{25} = 7$.

 $t_5 > t_2 + l_{25}$, on remplace t_5 par $t'_5 = 31$.

Pour l'arc (x_2, x_4) : $t_2 = 24$, $t_4 = 26$, $t_{24} = 1$.

 $t_4 > t_2 + l_{24}$ on remplace t_4 par $t'_4 = 25$.

A partir du sommet x₄: (x₄, x₇)

Pour l'arc (x_4, x_7) : $t_4 = 25$, $t_7 = \infty$, $t_{47} = 26$.

 $t_7 > t_4 + l_{47}$, on remplace t_7 par $t'_7 = t_4 + l_{47} = 51$.

A partir du sommet x_5 : (x_5, x_6) , (x_5, x_7)

Pour l'arc (x_5, x_6) : $t_5 = 31$, $t_6 = 27$, $t_{56} = 5$.

 $t_6 < t_5 + l_{56}$, on ne change pas la valeur de t_6 .

Pour l'arc (x_5, x_7) : $t_5 = 31$, $t_7 = 51$, $t_{57} = 2$.

 $t_7 > t_5 + l_{57}$, on remplace t_7 par $t'_7 = t_5 + l_{57} = 33$.

A partir du sommet x_6 : (x_6, x_7)

Pour l'arc (x_6, x_7) : $t_7 = 33$, $t_6 = 27$, $t_{67} = 21$. $t_7 < t_6 + t_{67}$, on ne change pas la valeur de t_7 .

Ainsi, on a exploré tous les sommets, c'est la fin de l'application de la méthode de FORD.

En définitive, on obtient comme plus court chemin $(x_0, x_3, x_2, x_5, x_7)$, représenté en traits discontinus sur le graphe.

3- Principe de la méthode de FORD (pour le maximum) :

1ère étape:

Numérotation des sommets du graphe valué dans n'importe quel ordre, mais en commençant par x_0 et en finissant par x_{n-1} (avec n : nombre total de sommet).

2ème étape :

Affectation d'une valeur $t_i=0$ avec $0, \leq i \leq n$ à tous les sommets du graphe valué.

3ème étape:

Pour tout arc (x_i, x_j) , si la valeur t_j est inférieure à la quantité $t_i + l_{ij}$, on remplace alors t_j par $t'j = t_i + l_{ij}$. Par contre, si t_j est supérieur à $t_j + l_{ij}$ alors on ne change rien.

4ème étape :

On répète la $3^{\text{ème}}$ étape jusqu'à ce qu'aucun arc ne permette plus d'augmenter les t_i .

Remarques:

- 1- L'étape de numérotation est importante mais peut être faite d'une autre manière : 1, 2,...,n ou A,B,C.....
- **2-** A l'étape $N^{\circ}2$; $t_i = 0$ peut être comme une solution initiale.

Exemple:

Mettre $t_2 = 0$, signifie l'existence d'un chemin de x_0 vers x_2 et qui est de longueur zéro évidement, ce n'est pas le chemin de longueur maximale.

3- La 3^{ème} étape a pour objectif d'améliorer la solution initiale de l'étape N°2.

À cette étape, la comparaison est faite entre 2 solutions, la solution actuelle : tj est pour l'instant la meilleure solution pour le problème de chemin de longueur maximale de x_o vers x_j . La $2^{\grave{e}me}$ solution (éventuelle), suppose l'existence d'un plus long chemin de x_o vers x_i , de longueur t_i .

La comparaison $t_j < t_i + l_{ij}$ répond à la question : peut- on trouver, à partir de x_i , un plus long chemin de x_o vers x_i .

4- Application : recherche d'un chemin de longueur maximale à l'aide d'un graphe valué :

Trouver le chemin de longueur maximale du sommet x_0 vers le sommet x_7 dans le graphe valué suivant :

- **1-** On affecte à chaque sommet x_i , la valeur $t_i = 0$.
- **2-** (A partir du sommet x_0): (x_0, x_1) et (x_0, x_3)

Pour l'arc (x_0, x_1) : $t_1 = 0$ et $t_0 + l_{01} = 12$.

 $t_1 < 1_2$, on remplace t_1 par $t'_1 = t_o + l_{01} = 12$.

Pour l'arc (x_0, x_3) , $t_3 = 0$ et $t_0 + l_{03} = 0 + 14$.

 $t_3 < 14$, on remplace alors t_3 par $t'_3 = t_0 + l_{03} = 14$.

A partir du sommet x_1 : (x_1, x_6) et (x_1, x_2)

Pour l'arc (x_1, x_6) : $t_6 = 0$, $t_1 = 12$, $t_1 + l_{16} = 12 + 24 = 36$.

 $t_6 < 36$, on remplace t_6 par $t'_6 = 36$.

Pour l'arc (x_1, x_2) : $t_2 = 0$, $t_1 = 12$, $l_{12} = 13$; $t_1 + l_{12} = 25$.

 $t_2 < 25$, on remplace alors t_2 par $t'_2 = 25$.

A partir du sommet x_2: $(x_2, x_4), (x_2, x_5), (x_2, x_6)$.

Pour l'arc (x_2, x_4) : $t_4 = 0$, $t_2 = 25$, $t_2 + 1_{24} = 26$.

 $t_4 < 26$, on remplace alors t_4 par $t'_4 = t_2 + l_{24} = 26$.

Pour l'arc (x_2, x_5) : $t_5 = 0$, $t_2 = 25$, $t_2 + l_{25} = 25 + 7 = 32$.

 $t_5 < 32$, on remplace alors t_5 par $t'_5 = t_2 + l_{25} = 32$.

Pour l'arc (x_2, x_6) : $t_6 = 36$, $t_2 = 25$, $t_2 + l_{26} = 25 + 3 = 28$.

 $t_6 > 28$, on ne change pas la valeur de t_6 .

A partir du sommet x_3: $(x_3, x_2), (x_3, x_4)$:

Pour l'arc (x_3, x_2) : $t_2 = 25$, $t_3 = 14$, $t_3 + 1_{32} = 14 + 10 = 24$.

 $t_2 > 24$, on ne change pas la valeur de t_2 .

Pour l'arc (x_3, x_4) : $t_4 = 26$, $t_3 = 14$, $t_3 + 1_{34} = 14 + 16 = 30$.

 $t_4 < 30$, on remplace alors t_4 , par $t'_4 = t_3 + l_{34} = 30$.

A partir du sommet x_4 : (x_4, x_7)

Pour l'arc (x_4, x_7) : $t_7 = 0$, $t_4 = 30$, $t_{47} = 26$, t_{4+} $t_{47} = 56$.

 $t_7 < 56$, on remplace alors t_7 par $t'_7 = t_4 + l_{47} = 56$.

A partir du sommet x5: $(x_5, x_4), (x_5, x_6), (x_5, x_7)$:

Pour l'arc (x_5, x_4) : $t_4 = 30$, $t_5 = 32$, $t_{54} = 4$, $t_{5} + t_{54} = 36$.

 $t_4 < 36$, on remplace t_4 par $t'_4 = t_5 + l_{54} = 36$.

Pour l'arc (x_5, x_6) : $t_6 = 36$, $t_5 = 32$, $t_5 + 1_{56} = 32 + 5 = 37$.

 $t_6 < 37$, on remplace alors t_6 par $t'_6 = t_5 + 1_{56} = 37$.

Pour l'arc (x_5, x_7) : $t_7 = 56$, $t_5 = 32$, $t_5 + 1_{57} = 32 + 2 = 34$.

 $t_7 > 34$, on ne change pas la valeur de t_7 .

Puisque la valeur de t_4 a changé ($t_4 = 36$), on reprend alors les arcs qui partent du sommet x_4 , il s'agit de (x_4 , x_7) seulement :

$$t_7 = 56$$
, $t_4 = 36$, $l_{47} = 26$, $t_4 + l_{47} = 62$.

 $t_7 < 62$, on remplace t_7 par $t'_7 = 62$.

A partir du sommet x_6 : (x_6, x_7) :

$$t_7 = 62$$
, $t_6 = 37$, $t_6 + l_{67} = 37 + 21 = 58$.

 $t_7 > 58$, on ne change pas la valeur de t_7 .

A la fin de l'application de la méthode de FORD, le chemin le plus long mesure 62.

En définitive, on obtient comme chemin le plus long $(x_0, x_1, x_2, x_5, x_4, x_7)$ représenté en traits discontinus sur le graphe.

CONCLUSION:

Dans ce cours, on a utilisé le concept de graphe pour représenter un problème économique, c'est celui de la recherche de chemin de longueur minimale on maximale. Ainsi on a présenté une méthode (ou algorithme) appelée méthode de FORD, pour résoudre ce problème, cette méthode a comme principe de donner une solution initiale et de procéder par comparaison entre deux solutions, jusqu'à ce qu'il n'y a plus de comparaisons possibles.

EXERCICES CORRIGES:

EXERCICE N° 1 :

En appliquant la méthode de FORD, trouver le chemin de longueur minimale de x_0 vers x_5 dans le graphe suivant :

EXERCIE N° 02:

En appliquant la methode de FORD, trouver le chemin de longueur maximale de x_1 vers x_9 dans le graphe suivant :

SOLUTIONS:

EXERCICE N° 1:

- 1- Les sommets sont déjà numérotés.
- 2- Puisqu'il s'agit de la recherche d'un chemin de longueur minimale, on affecte au sommet x_0 la valeur $t_0 = 0$ et au reste des sommets les valeurs : $t_1 = t_2 = t_3 = t_4 = t_5 = +\infty$.

3- A partir du sommet x_0 : $(x_0, x_1), (x_0, x_2), (x_0, x_3)$

Pour l'arc
$$(x_0, x_1)$$
: $t_0 + l_{01} = 0 + 3 = 3$ et $t_1 = +\infty$.

 $t_1 > 3$, alors on remplace t_1 par $t'_1 = 3$.

Pour l'arc (x_0, x_2) : de même on remplace $t_2 = +\infty$ par $t'_2 = t_0 + l_{02} = 8$.

Et pour l'arc (x_0, x_3) : de même, on remplace $t_3 = +\infty$ par $t'_3 = t_0 + l_{03} = 6$.

A partir du sommet x_1 : $(x_1, x_3), (x_1, x_4)$

Pour l'arc (x_1, x_3) : $t_3 = 6$, $t_1 = 3$, $t_1 + l_{13} = 5$.

 $t_3 > 5$, on remplace alors t_3 par $t'_3 = t_1 + l_{13} = 5$.

Pour l'arc (x_1, x_4) : $t_4 = +\infty$, $t_1 + l_{14} = 3 + 6 = 9$.

 $t_4 > 9$, on remplace alors t_4 par $t'_4 = t_1 + 1_{14} = 3 + 6 = 9$.

A partir du sommet x2:

Pour l'arc (x_2, x_4) : $t_4 = 9$, $t_2 = 8$, $t_2 + 1_{24} = 8 + 1 = 9$.

 $t_4 = 9$, la valeur reste $t_4 = 9$.

Remarque:

Cette comparaison, entre deux valeurs égales, indique qu'il existe 2 chemins différents de x_0 vers x_4 et qui sont de même longueur, ce sont : (x_0, x_2, x_4) et (x_0, x_1, x_4)

A partir du sommet x $_3$: $(x_3, x_2), (x_3, x_5)$.

Pour l'arc (x_3, x_2) : $t_2 = 8$, $t_3 = 5$, $t_3 + l_{32} = 5 + 2 = 7$.

 $t_2 > 7$, on remplace alors t_2 par $t'_2 = t_3 + l_{32} = 7$.

Pour l'arc
$$(x_3, x_5)$$
: $t_5 = \infty$, $t_3 = 5$, $t_3 + 1_{35} = 5 + 7 = 12$

 $t_5 > 12$, on remplace alors t_5 par $t'_5 = t_3 + l_{35} = 12$.

Remarque:

A partir du sommet x_3 , on a changé la valeur de t_2 , il convient alors de réexaminer le sommet x_2 :

A partir de somme x_2 : (x_2, x_4) :

Pour l'arc (x_2, x_4) : $t_4 = 9$, $t_2 = 7$, $t_2 + l_{24} = 7 + 1 = 8$.

 $t_4 > 8$, on remplace t_4 par $t'_4 = t_2 + l_{24} = 8$.

Continuons l'application de la méthode de FORD.

A partir du sommet x_4 : (x_4, x_5)

Pour l'arc (x_4, x_5) : $t_5 = 12$, $t_4 = 8$, $t_4 + 1_{45} = 8 + 2 = 10$.

 $t_5 > 10$, on remplace t_5 par $t'_5 = t_4 + l_{45} = 10$.

En définitive, on obtient le plus court chemin de x_0 vers x_5 de longueur 10, le chemin est : $(x_0, x_1, x_3, x_2, x_4, x_5)$.

EXERCICE N° 2:

- 1- Les sommets sont numérotés.
- **2-** $t_1 = t_2 = \dots = t_9 = 0$
- 3- A partir de x_1 : $(x_1, x_2), (x_1, x_3), (x_1, x_4)$

Pour l'arc (x_1, x_2) : $t_2 = 0$, $t_1 = 0$, $t_1 + l_{12} = 0 + 2 = 2$.

 $t_2 < 2$, on remplace t_2 par $t'_2 = t_1 + l_{12} = 2$.

Pour l'arc (x_1, x_3) : $t_3 = 0$, $t_1 = 0$, $t_1 + l_{13} = 0 + 3 = 3$.

 $t_3 < 3$, on remplace t_3 par $t'_3 = t_1 + l_{13} = 3$.

Pour l'arc (x_1, x_4) : $t_4 = 0$, $t_1 = 0$, $t_1 + 1_{14} = 0 + 5 = 5$.

 $t_4 < 5$, on remplace t_4 par $t'_4 = t_1 + l_{14} = 5$.

A partir de x_2: $(x_2, x_4), (x_2, x_5)$

Pour l'arc (x_2, x_4) : $t_4 = 5$, $t_2 = 2$, $t_2 + l_{24} = 5$.

 $t_4 = 5$, la valeur de t_4 ne change pas.

Pour l'arc (x_2, x_5) : $t_5 = 0$, $t_2 = 2$, $t_2 + 1_{25} = 2 + 5 = 7$.

 $t_5 < 7$, on remplace t_5 par $t'_5 = t_2 + l_{25} = 7$.

A partir de x_3: $(x_3, x_4), (x_3, x_7)$

Pour l'arc (x_3, x_4) : $t_4 = 5$, $t_3 = 3$, $t_3 + 1_{34} = 3 + 4 = 7$.

 $t_4 < 7$, on remplace t_4 par $t'_4 = t_3 + l_{34} = 7$.

Pour l'arc (x_3, x_7) : $t_7 = 0$, $t_3 = 3$, $t_3 + 1_{37} = 3 + 4 = 7$.

 $t_7 < 7$, on remplace t_7 par $t'_7 = t_3 + l_{37} = 7$

A partir du sommet x_4: $(x_4, x_6), (x_4, x_7), (x_4, x_8)$

Pour l'arc (x_4, x_6) : $t_6 = 0$, $t_4 = 7$, $t_4 + t_{46} = 7 + 4 = 11$.

 $t_6 < 11$, on remplace t_6 par $t'_6 = t_4 + l_{46} = 11$.

Pour l'arc (x_4, x_7) : $t_7 = 7$, $t_4 = 7$, $t_4 + l_{47} = 7 + 7 = 14$.

 $t_7 < 14$, on remplace t_7 par $t'_7 = t_4 + l_{47} = 14$.

Pour l'arc (x_4, x_8) : $t_8 = 0$, $t_4 = 7$, $t_{4+} \cdot l_{48} = 7 + 2 = 9$.

 $t_8 < 9$, on remplace t_8 par $t_8' = t_4 + l_{48} = 9$.

A partir du sommet x_5 : (x_5, x_6)

Pour l'arc (x_5, x_6) : $t_6 = 11$, $t_5 = 7$, $t_5 + 1_{56} = 7 + 1 = 8$.

 $t_6 > 8$, on ne change pas la valeur de t_6 .

A partir du sommet x_6 : (x_6, x_9)

Pour l'arc (x_6, x_9) : $t_9 = 0$, $t_6 = 11$, $t_6 + t_{69} = 11 + 5 = 16$

 $t_9 < 16$, on remplace alors t_9 par $t_9 = t_6 + t_{69} = 16$

A partir du sommet x_7 : (x_7, x_8)

Pour l'arc (x_7, x_8) : $t_8 = 9$, $t_7 = 14$, $t_7 + 1_{78} = 14 + 3 = 17$

 $t_8 < 17$, on remplace t_8 par $t'_8 = t_7 + l_{78} = 17$

A partir du sommet x_8 : (x_8, x_9)

Pour l'arc (x_8, x_9) : $t_9 = 16$, $t_8 = 17$, $t_8 + 1_{89} = 17 + 3 = 20$

 $t_9 < 20$, on remplace t_9 par $t_9 = t_8 + t_{89} = 20$

Ainsi, on obtient, un plus long chemin de x_1 vers x_9 de longueur 20, c'est: $(x_1, x_3, x_4, x_7, x_8, x_9)$.