Partiel du 28 Octobre 2021

Probabilités

Durée 3 heures

Les calculettes, téléphones, pigeons voyageurs, avions en papier, sarbacanes et tout autre moyen de communication avec autrui sont prohibés.

Les correcteurs apprécieront sous forme de points toute forme d'égard : des arguments bien exposés, une présentation soignée, des résultats soulignés.

Vous avez le droit d'admettre des résultats de questions que vous n'arrivez pas à traiter.

On rappelle l'inégalité de Cauchy -Schwarz pour toutes variables X et Y de carré intégrable i.e. telles que $E[X^2] < \infty$ et $E[Y^2] < \infty$: $E[XY]^2 \le E[X^2]E[Y^2]$.

On rappelle que le coefficient de corrélation de deux variables X et Y est donné par le quotient : $\frac{Cov(X,Y)}{\sqrt{\sigma^2(X)\sigma^2(Y)}}$.

Exercice 1

On définit l'univers $\Omega := \{1, 2, 3, 4, 5, 6\}.$

- 1 Donner la liste des 8 parties de Ω qui constituent la plus petite tribu \mathcal{F} contenant les parties $\{1, 2, 3\}, \{4, 5\}$ et $\{4, 5, 6\}$.
- 2 Soit X la fonction de Ω dans $\mathbb R$ définie pour tout $\omega\in\Omega,$ par $X(\omega)=1$ si ω est impair et 0 si ω est pair. La fonction X est elle une variable aléatoire pour la tribu $\mathcal F$?
- 3 Combien existe-t-il de variables aléatoires pour la tribu $\mathcal{F},$ à valeurs dans $\{0,1\}$?

Exercice 2

Soient X et Y deux variables aléatoires à valeurs dans $\mathbb R$ définies sur un espace muni d'une tribu $(\Omega, \mathcal F)$. Montrer que :

- 1 La fonction X^2 est une variable aléatoire.
- 2 La fonction $\max(X, Y)$ est une variable aléatoire.

Exercice 3

Soit X une variable aléatoire positive qui admet une espérance finie et $\theta \in]0,1[.$

1 - En écrivant que $X = X1_{\{X < \theta E[X]\}} + X1_{\{X > \theta E[X]\}}$, montrer que

$$E[X] \le \theta E[X] + E[X1_{\{X > \theta E[X]\}}].$$

2 - En déduire, en appliquant l'inégalité de Cauchy-Schwarz, que

$$(1-\theta)^2 \frac{E[X]^2}{E[X^2]} \le P(\{X \ge \theta E[X]\})$$

où le terme de droite est égal à 0 si $E[X^2] = +\infty$.

- 3 Traduire l'inégalité précédente lorsque X suit une loi uniforme sur [0,1] et vérifier par le calcul qu'elle est bien vraie dans ce cas particulier.
 - 4 Montrer en utilisant l'inégalité de Markov que

$$P(\{X \ge \theta E[X]\}) \le \frac{E[X^2]}{\theta^2 E[X]^2}.$$

Exercice 4

Soit X une variable aléatoire réelle de valeur absolue majorée par 1 presque sûrement.

- 1 Montrer que $\lim_{n\to+\infty} E\left[\frac{X^{2n}}{1+X^{2n}}\right] = \frac{1}{2}(P(X=1) + P(X=-1)).$
- 2 (*) À quelle condition la suite $E[\frac{X^n}{1+X^n}]$ a-t-elle une limite ?

Exercice 5

Soit X une variable aléatoire suivant une loi normale de moyenne m et de variance σ^2 .

- 1 Rappeler la densité de probabilité de la loi de X.
- 2 Montrer par le calcul que la moyenne est bien m et que la variance est bien $\sigma^2.$

Exercice 6

Soit X une variable aléatoire dont la loi est donnée par la densité de probabilité,

$$f_X(x) = x1_{[0,1]}(x) + C1_{[1,3]}(x)$$

pour un certain C > 0

- 1 Préciser C pour que f_X soit une densité.
- 2 Donner la fonction de répartition de X et tracer son graphique.
- 2 Calculer $P(X \in [\frac{1}{2}, \frac{3}{2}])$.
- 3 Calculer l'espérance de X.
- 4 Donner la loi de $\frac{1}{X}$.

Exercice 7

Soit X et Y deux variables aléatoires discrètes dont la loi du couple est donnée par

$$P((X,Y) = (1,1)) = 1/8$$
, $P((X,Y) = (1,2)) = 1/8$, $P((X,Y) = (1,3)) = 1/4$
 $P((X,Y) = (2,1)) = 1/6$, $P((X,Y) = (2,2) = 1/6$, $P((X,Y) = (2,3)) = 1/6$.

- 1 Donner la loi de X et de Y.
- 2 Calculer le coefficient de corrélation de X et Y.

Exercice 8

Soit
$$D := \{(x, y) : x > 0, 0 < y < e^{-3x}\}.$$

Soit (X,Y) un couple de va réelles dont la loi est donnée, pour une certaine constante C, par la densité de probabilité,

$$f_{X,Y}(x,y) = C1_D(x,y).$$

- 1 Trouver la valeur de la constante ${\cal C}.$
- 2 Donner les lois de X et de Y.
- 3 Calculer $\sigma^2(X),\,\sigma^2(Y),\,Cov(X,Y)$ puis le coefficient de corrélation de X et Y.
 - 4 Que vaut P(X < 1, Y < 1)?