模拟与数字电路

Analog and Digital Circuits

课程主页 扫一扫

第八讲: 布尔逻辑的化简

Lecture 8: **Boolean Logic and Simplification**

主 讲: 陈迟晓

Instructor: Chixiao Chen

提纲

- 复习
 - 最典型逻辑门包括那些??

- 数字电路的二进制标达
- 二进制 反相器电路
- 基本逻辑门,及其CMOS拓扑电路结构

逻辑关系的组和

• 通过"与"、"或"、"非"的组 和,形成一些新的逻辑

• 或非门

• 异或门?

NOR	а	b	У
a —	0	0	1
1 + XX— y	0	1	0
b —/	1	0	0
	1	1	0

布朗代数表达式与逻辑电路

- 逻辑电路的布尔表达式
- 书写规则为从左到右,依次写出每个门的输出

布朗代数表达式与逻辑电路

- 逻辑电路的真值表
- A(B + CD)

INPUTS		OUTPUT		
A	В	C	D	A(B+CD)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

布朗代数基本定律

• 交換律: A + B = B + AAB = BA

• 结合律:
$$A + B + C = (A + B) + C = A + (B + C)$$

 $ABC = (AB)C = A(BC)$

• 分配律: A(B+C) = AB + ACA + BC = (A+B)(A+C)

分配律证明

• 求证分配律: A + BC = (A + B)(A + C)

• 证明:

A	B	C	BC	A+BC	A+B	A+C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

布朗代数基本定律

• 0 1律:
$$A \cdot 1 = A$$
 $A \cdot 0 = 0$

$$A + 1 = 1$$
 $A + 0 = A$

互补律: A·Ā = 0

$$A + \bar{A} = 1$$

• 重叠律: A + A = A $A \cdot A = A$

• 还原律: $\bar{A} = A$

• Demorgan定理: $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$

Demorgan定律及其证明

• 求证Demorgan定律: $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$

• 证明:

A	B	A•B	$\overline{A}+\overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

A	В	A+B	A • B
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

布朗代数定律汇总

01 律	$(1) A \cdot 1 = A$	(2) A + 0 = A
	$(3) A \cdot 0 = 0$	(4) A+1=1
交换律	$(5) A \cdot B = B \cdot A$	(6) $A + B = B + A$
结合律	$(7) A \cdot (B \cdot C) = (A \cdot B) \cdot C$	(8) $A + (B+C) = (A+B) + C$
分配律	(9) $A \cdot (B+C) = A \cdot B + A \cdot C$	(10) A+ (BC) = (A+B) (A+C)
互补律	$(11) \mathbf{A} \cdot \overline{A} = 0$	$(12) A + \overline{A} = 1$
重叠律	$(13) A \cdot A = A$	(14) A + A = A
反演律	$(15) \ \overline{AB} = \overline{A} + \overline{B}$	$(16) \ \overline{A+B} = \overline{A} \cdot \overline{B}$
还原律	$(17) \stackrel{=}{A} = A$	

布朗代数常用公式及证明

常用公式	证明
	$AB + A\overline{B} = A(B + \overline{B}) = A \cdot 1 = A$
	$A + AB = A(1 + B) = A \cdot 1 = A$
$3 A + \overline{A}B = A + B$	$A + \overline{A}B = (A + \overline{A})(A + B)$
	$=1 \cdot (A+B)=A+B$
$ 4 AB + \overline{A} C + BC = AB + \overline{A} C $	原式 $=AB+AC+BC(A+A)$
推论:	$=AB + \overline{A}C + ABC + \overline{A}BC$
$AB + \overline{A}C + BCDE = AB + \overline{A}C$	$= AB (1 + C) + \overline{A} C (1 + B)$
	$=AB+\overline{A}C$

布朗代数化简例题-i

• 化简
$$A + AB + A\overline{B}C$$

•
$$\rightarrow A + A\bar{B}C$$

$$\bullet \to A$$

$$A + AB = A$$

• 化简
$$AB + A(B + C) + B(B + C)$$

•
$$\rightarrow AB + AB + AC + BB + BC$$

$$\bullet \rightarrow AB + AC + B + BC$$

$$\bullet \rightarrow AB + B + AC$$

$$\bullet \rightarrow B + AC$$

布朗代数化简例题-i

• 根据公式 A + A = A, 为某项配上其所能合并的项

• 化简
$$ABC + A\bar{B} + A\bar{C}$$

•
$$\rightarrow ABC + A(\bar{B} + \bar{C})$$

•
$$\rightarrow ABC + A\overline{BC}$$

•
$$\rightarrow A(BC + \overline{BC})$$

$$\bullet \to A$$

$$Y = ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC$$

$$= (ABC + AB\overline{C}) + (ABC + A\overline{B}C) + (ABC + \overline{A}BC)$$

$$= AB(C + \overline{C}) + AC(B + \overline{B}) + BC(A + \overline{A})$$

$$= AB + AC + BC$$

布朗代数化简例题

将
$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

化简为最简与或式。

$$Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$$

$$=\overline{A}B(\overline{C}+C)+A\overline{B}C+AB(\overline{C}+C)$$

$$=\overline{A}B+A\overline{B}C+\underline{A}B$$

利用C+C=1

$$=(\overline{A}+A)B+A\overline{B}C$$

$$=B+AC$$

将Y化简为最简与或式。

$$Y = A\overline{B} + (\overline{A} + B)CD$$

解:
$$Y = A\overline{B} + (\overline{A} + B)CD$$

$$= A\overline{B} + (\overline{A} + B)CD$$

$$= A\overline{B} + A\overline{B} CD$$

$$=A\overline{B}+CD$$

$$A=\overline{\overline{A}}$$

SOP表达法及其电路

- SOP(Sum-of-Product) Form
 - e.g. AB + ABC, $ABC + CDE + \bar{B}CD$
 - SOC表达式的AND/OR实现

AND/OR实现

NAND/NOR实现

SOP表达法及其电路

- 将一般表达式转化为SOP形式
 - e.g. $AB + B(CD + EF) \rightarrow AB + BCD + BEF$
- 标准SOP形式
 - 所有变量都要出现在表达式中
 - e.g. $A\bar{B}CD + \bar{A}\bar{B}CD$
 - $A\bar{B}C + \bar{A}\bar{B} + AB\bar{C}D$ 转化为标准SOP形式

$$\begin{array}{l} A\,\bar{B}\,C = A\,\bar{B}\,C\,(D + \bar{D}) = A\,\bar{B}\,C\,D + A\,\bar{B}\,C\,\bar{D} \\ \bar{A}\,\bar{B} = \bar{A}\,\bar{B}\,(C + \bar{C}) = \bar{A}\,\bar{B}\,C + \bar{A}\,\bar{B}\,\bar{C} \\ \bar{A}\,\bar{B} = \bar{A}\,\bar{B}\,C + \bar{A}\,\bar{B}\,\bar{C} = \bar{A}\,\bar{B}\,C\,(D + \bar{D}) + \bar{A}\,\bar{B}\,\bar{C}\,(D + \bar{D}) = \bar{A}\,\bar{B}\,C\,D + \bar{A}\,\bar{B}\,C\,\bar{D} + \bar{A}\,\bar{B}\,\bar{C}\,D + \bar{A}\,\bar{B}\,\bar{C$$

真值表与SOP表达法

- 将SOP表达式转化为真值表
 - e.g. 求表达式 $\bar{A}B\bar{C} + A\bar{B}C$ 的 真值表

Inputs		Output		
A	В	C	X	Product Term
0	0	0	0	
0	0	1	0	
0	1	0	1	$\overline{A} B \overline{C}$
0	1	1	0	
1	0	0	0	
1	0	1	1	$A \overline{B} C$
1	1	0	0	
1	1	1	0	

真值表与SOP表达法(例题)

• 举重比赛A、B、C三个裁判,判杠铃完全举起为成功。按一下按钮,只有当两个或两个以上裁判判断成功才表明成功,表决电路灯亮。

Α	В	C	Υ
A 0 0	0	0	0
0	0	1	0
0	1	0	0
0	1		1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Hardware Description Language

- HDL=Hardware Description Language
- RTL=Register-Transfer-Level
- Behavior vs. Structural Modeling
- Combinational vs. Sequential logic
- Verilog HDL vs. VHDL vs. SystemVerilog

Arithmetic and Logistic Expression in Verilog

- Logical operation vs. Bit-wise operation :
- Logical shift vs. arithmetic shift :
- Concatenation operation:
- Logistic operation:
- Ternary conditional operation:
- Conversion between signed and unsigned:
- Vector slicing:

• Use Assignment to perform combinational logic:

```
• assign \{a[2], a[0]\} = 2'b10;
```

• begin a = b; c = a; end

Verilog LAB

 Design Digital Systems using FPGA and Vivado

• 请自行下载Vivado (Xilinx官方网 站需要下载过程科学上网,可搜 索百度网盘等,10G左右)

