Lecture 12: Axiomatic Semantics and Hoare Logic

17-355/17-655/17-819: Program Analysis

Rohan Padhye and Jonathan Aldrich

March 16, 2021

* Course materials developed with Claire Le Goues

Logical Reasoning about Code

- So far, we've reasoned about code using operational semantics
 - And built program analyses that abstract those semantics
- Axiomatic semantics define meaning of a program in terms of assertions
 - Enables logic-based reasoning about code
- Enables *verification*
 - Prove arbitrary properties about code not just ones built into a particular analysis
 - Goes back to Turing (1949): "Checking a Large Routine"
 - Hoare developed rules in the 1960s for verifying the WHILE language

Axiomatic Semantics

- An axiomatic semantics consists of:
 - A language for stating assertions about programs,
 - Rules for establishing the truth of assertions
- Some typical kinds of assertions:
 - This program terminates
 - If this program terminates, the variables x and y have the same value throughout the execution of the program
 - The array accesses are within the array bounds
- Assertions are in a logic, e.g. first-order logic
 - Alternatives include temporal logic, linear logic, etc.

Hoare Triple

```
\{P\}S\{Q\}
```

- P is the precondition
- Q is the postcondition
- S is any statement (in While, at least for our class)
- Semantics: if P holds in some state E and if $\langle S; E \rangle \downarrow E'$, then Q holds in E'
 - \circ This is *partial correctness*: termination of S is not guaranteed
 - \circ *Total correctness* additionally implies termination, and is written [P] S [Q]

Assertion Language

$$A ::= \text{true} \qquad | \text{false} \qquad | e_1 = e_2 \qquad | e_1 \geqslant e_2 \qquad | A_1 \wedge A_2 |$$

 $| A_1 \vee A_2 \qquad | A_1 \Rightarrow A_2 \qquad | \forall x.A \qquad | \exists x.A$

- x,y quantify over integers
 - We will be slightly sloppy and mix logical and program variables
- We'll treat Boolean expressions as a special case of assertions

Assertion Semantics

- $E \models A \text{ means } A \text{ is true in } E$
- Rules: $E \models \mathsf{true}$

$$E \models e_1 = e_2$$

$$E \models e_1 \geqslant e_2$$

$$E \models A_1 \land A_2$$

. . .

$$E \models \forall x.A$$

$$E \models \exists x.A$$

Assertion Semantics

• $E \models A \text{ means } A \text{ is true in } E$

• Rules:
$$E \models \text{true}$$
 $always$ $E \models e_1 = e_2$ $iff \langle E, e_1 \rangle \Downarrow n \text{ and } \langle E, e_2 \rangle \Downarrow n$ $E \models e_1 \geqslant e_2$ $iff \langle E, e_1 \rangle \Downarrow n_1, \langle E, e_2 \rangle \Downarrow n_2, \text{ and } n_1 \geqslant n_2$ $E \models A_1 \land A_2$ $iff E \models A_1 \text{ and } E \models A_2$... $E \models \forall x.A$ $iff \forall n \in \mathbb{Z}.E[x \mapsto n] \models A$ $E \models \exists x.A$ $iff \exists n \in \mathbb{Z}.E[x \mapsto n] \models A$

Practice: Exploring Hoare Triples

 What are reasonable pre- or post- conditions for the following incomplete Hoare triples?

Strongest Postconditions

Here are a number of valid Hoare Triples:

```
    {x = 5} x := x * 2 { true }
    {x = 5} x := x * 2 { x > 0 }
    {x = 5} x := x * 2 { x = 10 | | x = 5 }
    {x = 5} x := x * 2 { x = 10 }
```

Which one is best?

Strongest Postconditions

Here are a number of valid Hoare Triples:

```
    {x = 5} x := x * 2 { true }
    {x = 5} x := x * 2 { x > 0 }
    {x = 5} x := x * 2 { x = 10 | | x = 5 }
    {x = 5} x := x * 2 { x = 10 }
```

- All are true, but this one is the most useful
- x=10 is the strongest postcondition
- If {P} S {Q} and for all Q' such that {P} S {Q'}, Q \Rightarrow Q', then Q is the strongest postcondition of S with respect to P
 - check: $x = 10 \Rightarrow true$
 - \circ check: $x = 10 \Rightarrow x > 0$
 - \circ check: $x = 10 \Rightarrow x = 10 \mid x = 5$
 - \circ check: $x = 10 \Rightarrow x = 10$

Weakest Preconditions

Here are a number of valid Hoare Triples:

```
 (x = 5 && y = 10) z := x / y \{z < 1\} 
 (x < y && y > 0) z := x / y \{z < 1\} 
 (y \neq 0 && x / y < 1) z := x / y \{z < 1\}
```

Which one is best?

Weakest Preconditions

- Here are a number of valid Hoare Triples:
 - $\bigcirc \{x = 5 \&\& y = 10\} z := x / y \{z < 1\}$
 - $\bigcirc \{x < y \&\& y > 0\} z := x / y \{z < 1\}$
 - $\bigcirc \{y \neq 0 \&\&x/y < 1\} z := x/y \{z < 1\}$
 - All are true, but this one is the most *useful* because it allows us to invoke the program in the most general condition
 - $y \ne 0 \&\&x/y < 1$ is the *weakest precondition*
- If {P} S {Q} and for all P' such that {P'} S {Q}, P' \Rightarrow P, then P is the weakest precondition wp(S,Q) of S with respect to Q

Hoare Triples and Weakest Preconditions

- {P} S {Q} holds if and only if $P \Rightarrow wp(S,Q)$
 - In other words, a Hoare Triple is still valid if the precondition is stronger than necessary, but not if it is too weak
- Question: Could we state a similar theorem for a strongest postcondition function?
 - o e.g. $\{P\}$ S $\{Q\}$ holds if and only if $sp(S,P) \Rightarrow Q$

Hoare Triples and Weakest Preconditions

- $\{P\} S \{Q\} \text{ holds if and only if } P \Rightarrow wp(S,Q)$
 - In other words, a Hoare Triple is still valid if the precondition is stronger than necessary, but not if it is too weak
- Question: Could we state a similar theorem for a strongest postcondition function?
 - o e.g. $\{P\}$ S $\{Q\}$ holds if and only if $sp(S,P) \Rightarrow Q$
 - A: Yes, but it's harder to compute

Practice: More Hoare Triples

Consider the following Hoare triples:

```
A) {z = y + 1}x := z * 2 {x = 4}
B) {y = 7}x := y + 3 {x > 5}
C) {false}x := 2 / y {true}
D) {y < 16}x := y / 2 {x < 8}</li>
```

- Which of the Hoare triples above are valid?
- Considering the valid Hoare triples, for which ones can you write a stronger postcondition? (Leave the precondition unchanged, and ensure the resulting triple is still valid)
- Considering the valid Hoare triples, for which ones can you write a weaker precondition? (Leave the postcondition unchanged, and ensure the resulting triple is still valid)

- Assignment
 - $O \{P\}x := 3\{x+y>0\}$
 - What is the weakest precondition P?

- Assignment
 - $O \{P\}x := 3\{x+y>0\}$
 - What is the weakest precondition P?
 - What is most general value of y such that 3 + y > 0?
 - y>-3

- Assignment
 - $O \{P\}x := 3*y + z\{x*y-z>0\}$
 - What is the weakest precondition P?

- Assignment
 - $O \{P\}x := 3\{x+y>0\}$
 - What is the weakest precondition P?
- Assignment rule
 - o wp(x := e, P) = [e/x] P
 - Resulting triple: { [e/x] P} x := e { P}

- Assignment
 - $O \{P\}x := 3\{x+y>0\}$
 - What is the weakest precondition P?
- Assignment rule
 - o wp(x := e, P) = [e/x] P
 - Resulting triple: { [e/x] P} x := e { P}
 - \circ [3 / x] (x + y > 0)
 - $\circ = (3) + y > 0$
 - \bigcirc = y > -3

- Assignment
 - $O \{P\}x := 3*y + z\{x*y-z>0\}$
 - What is the weakest precondition P?
- Assignment rule
 - o wp(x := e, P) = [e/x] P

- Assignment
 - $O \{P\}x := 3*y + z\{x*y-z>0\}$
 - What is the weakest precondition P?
- Assignment rule
 - o wp(x := e, P) = [e/x] P
 - \circ [3*y+z/x] (x * y z > 0)

- Assignment
 - $O \{P\}x := 3*y + z\{x*y-z>0\}$
 - What is the weakest precondition P?
- Assignment rule
 - o wp(x := e, P) = [e/x] P
 - \circ [3*y+z/x] (x * y z > 0)
 - $\circ = (3*y+z)*y-z>0$

- Assignment
 - $O \{P\}x := 3*y + z\{x*y-z>0\}$
 - What is the weakest precondition P?
- Assignment rule
 - o wp(x := e, P) = [e/x] P
 - \circ [3*y+z/x] (x * y z > 0)
 - $\circ = (3*y+z)*y-z>0$
 - $\circ = 3*y^2 + z*y z > 0$

- Sequence
 - $O \{P\}x := x + 1; y := x + y \{y > 5\}$
 - What is the weakest precondition P?

- Sequence
 - $O \{P\}x := x + 1; y := x + y \{y > 5\}$
 - What is the weakest precondition P?
- Sequence rule
 - $\bigcirc wp(S;T,Q) = wp(S, wp(T,Q))$
 - \circ *wp*(x:=x+1; y:=x+y, y>5)

- Sequence
 - $O \{P\}x := x + 1; y := x + y \{y > 5\}$
 - What is the weakest precondition P?
- Sequence rule
 - $\bigcirc wp(S;T,Q) = wp(S, wp(T,Q))$
 - \circ *wp*(x:=x+1; y:=x+y, y>5)
 - $\bigcirc = wp(x:=x+1, wp(y:=x+y, y>5))$

Sequence

- $O \{P\}x := x + 1; y := x + y \{y > 5\}$
- What is the weakest precondition P?

Sequence rule

- $\bigcirc wp(S;T,Q) = wp(S, wp(T,Q))$
- \circ *wp*(x:=x+1; y:=x+y, y>5)
- $\bigcirc = wp(x:=x+1, wp(y:=x+y, y>5))$
- $\bigcirc = wp(x:=x+1, x+y>5)$

Sequence

- O {P}x:=x+1;y:=x+y{y>5}
- What is the weakest precondition P?

Sequence rule

- $\bigcirc wp(S;T,Q) = wp(S, wp(T,Q))$
- \circ *wp*(x:=x+1; y:=x+y, y>5)
- $\bigcirc = wp(x:=x+1, wp(y:=x+y, y>5))$
- $\bigcirc = wp(x:=x+1, x+y>5)$
- \bigcirc = x+1+y>5

Sequence

- O {P}x:=x+1;y:=x+y{y>5}
- What is the weakest precondition P?

Sequence rule

- $\bigcirc wp(S;T,Q) = wp(S, wp(T,Q))$
- \circ *wp*(x:=x+1; y:=x+y, y>5)
- $\bigcirc = wp(x:=x+1, wp(y:=x+y, y>5))$
- $\bigcirc = wp(x:=x+1, x+y>5)$
- $\bigcirc = x+1+y>5$
- \Rightarrow = $\chi+y>4$

- Conditional
 - O { P} if x > 0 then y := z else y := -z { y > 5 }
 - What is the weakest precondition P?

Conditional

- O { P} if x > 0 then y := z else y := -z { y > 5 }
- What is the weakest precondition P?

Conditional rule

- o wp(if B then S else T, Q) = B $\Rightarrow wp$ (S,Q) && \neg B $\Rightarrow wp$ (T,Q)
- \circ wp(if x>0 then y:=z else y:=-z, y>5)

Conditional

- O { P} if x > 0 then y := z else y := -z { y > 5 }
- What is the weakest precondition P?

Conditional rule

- o wp(if B then S else T, Q) = B $\Rightarrow wp$ (S,Q) && \neg B $\Rightarrow wp$ (T,Q)
- wp(if x>0 then y:=z else y:=-z, y>5) = x>0 $\Rightarrow wp$ (y:=z,y>5) && x≤0 $\Rightarrow wp$ (y:=-z,y>5)

Conditional

- O { P} if x > 0 then y := z else y := -z { y > 5 }
- What is the weakest precondition P?

Conditional rule

- o wp(if B then S else T, Q) = B $\Rightarrow wp$ (S,Q) && \neg B $\Rightarrow wp$ (T,Q)
- wp(if x>0 then y:=z else y:=-z, y>5) = x>0 $\Rightarrow wp$ (y:=z,y>5) && x≤0 $\Rightarrow wp$ (y:=-z,y>5) = x>0 \Rightarrow z > 5 && x≤0 \Rightarrow -z>5

Conditional

- O { P} if x > 0 then y := z else y := -z { y > 5 }
- What is the weakest precondition P?

Conditional rule

- o wp(if B then S else T, Q) = B $\Rightarrow wp$ (S,Q) && \neg B $\Rightarrow wp$ (T,Q)
- $wp(\text{if x>0 then y:=z else y:=-z, y>5}) = x>0 \Rightarrow wp(y:=z,y>5) && x\leq 0 \Rightarrow wp(y:=-z,y>5)$ $= x>0 \Rightarrow z>5 && x\leq 0 \Rightarrow -z>5$

 $= x>0 \Rightarrow z > 5 \&\& x \le 0 \Rightarrow z < -5$

Practice: Preconditions/Postconditions

Fill in the missing pre- or post-conditions with predicates that make each Hoare triple valid.

```
A) \{x = y\} x := y * 2 \{
```

B)
$$\{x := x + 3 \{x = z\}$$

C) {
$$x := x + 1; y := y * x { y = 2 * z }$$

D) { if
$$(x > 0)$$
 then $y := x$ else $y := 0$ { $y > 0$ }

Hoare Logic Rules

- Loops
 - O { P} while (i < x) f=f*i; i := i + 1 { f = x! }
 - What is the weakest precondition P?

Hoare Logic Rules

- Loops
 - O { P} while (i < x) f=f*i; i := i + 1 { f = x! }
 - What is the weakest precondition P?

Intuition

- Must prove by induction
 - Only way to generalize across number of times loop executes
- Need to guess induction hypothesis
 - Base case: precondition P
 - Inductive case: should be preserved by executing loop body

Proving loops correct

- First consider *partial correctness*
 - The loop may not terminate, but if it does, the postcondition will hold
- {P} while B do S {Q}
 - Find an invariant Inv such that:
 - $Arr P \Rightarrow Inv$
 - The invariant is initially true
 - { Inv && B } S {Inv}
 - Each execution of the loop preserves the invariant
 - (Inv && $\neg B$) \Rightarrow Q
 - The invariant and the loop exit condition imply the postcondition

Practice: Loop Invariants

Consider the following program:

```
{ N >= 0 }
i := 0;
while (i < N) do
i := N
{ i = N }
```

Correctness Conditions

 $P\Rightarrow Inv$ The invariant is initially true { Inv && B } S {Inv}
Loop preserves the invariant (Inv && $\neg B$) \Rightarrow Q
Invariant and exit implies postcondition

Which of the following loop invariants are correct? For those that are incorrect, explain why.

- A) i = 0
- B) i = N
- C) N >= 0
- D) $i \le N$

Loop Example

```
    Prove array sum correct
```

```
\{ N \ge 0 \}

j := 0;

s := 0;
```

How can we find a loop invariant?

```
while (j < N) do j := j + 1; s := s + a[j]; Replace N with j Add information on range of j \\ Result: 0 \le j \le N && s = (\Sigma i \mid 0 \le i < j \bullet a[i]) end \{s = (\Sigma i \mid 0 \le i < N) \bullet a[i])\}
```

Loop Example

Prove array sum correct $\{N \geq 0\}$ j := 0;s := 0; $\{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i])\}$ while (j < N) do $\{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \&\& j < N\}$ j := j + 1;s := s + a[j]; $\{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i])\}$ end $\{s = (\Sigma i \mid 0 \le i < \mathbb{N} \cdot a[i])\}$

Loop Example

```
Prove array sum correct
\{N \geq 0\}
j := 0;
                                                             -Proof obligation #1
s := 0;
\{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i])\}
while (j < N) do
    \{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \&\& j < N\}
    j := j + 1;
                                                                             -Proof obligation #2
    s := s + a[j];
    \{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i])\}
                               Proof obligation #3
end
\{s = (\Sigma i \mid 0 \le i < N \cdot a[i])\}
```

Invariant is initially true

```
\{ N \ge 0 \}

j := 0;

s := 0;

\{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i]) \}
```

Invariant is initially true

```
\{ N \ge 0 \}

j := 0;

s := 0;

\{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i]) \}
```

Invariant is maintained

```
\{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \&\& j < N\}

j := j + 1;

s := s + a[j];

\{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i])\}
```

Invariant is initially true

```
\{ N \ge 0 \}

j := 0;

s := 0;

\{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}
```

Invariant is maintained

```
\{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i]) \&\& j < N\}

j := j + 1;

s := s + a[j];

\{0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i])\}
```

Invariant and exit condition imply postcondition

```
0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \&\& j \ge N
\Rightarrow s = (\Sigma i \mid 0 \le i < N \bullet a[i])
```

• Invariant is initially true

```
\{ N \ge 0 \}

j := 0;

s := 0;

\{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \cdot a[i]) \}
```

• Invariant is initially true

```
\{ N \ge 0 \}

j := 0;

\{ 0 \le j \le N \&\& 0 = (\Sigma i \mid 0 \le i < j \bullet a[i]) \} // by assignment rule

s := 0;

\{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}
```

Invariant is initially true

```
 \{ N \ge 0 \}   \{ 0 \le 0 \le N \&\& 0 = (\Sigma i \mid 0 \le i < 0 \bullet a[i]) \}  // by assignment rule  j := 0;   \{ 0 \le j \le N \&\& 0 = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}  // by assignment rule  s := 0;   \{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}
```

Invariant is initially true

```
 \{ N \ge 0 \}   \{ 0 \le 0 \le N \&\& 0 = (\Sigma i \mid 0 \le i < 0 \bullet a[i]) \}  // by assignment rule  j := 0;   \{ 0 \le j \le N \&\& 0 = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}  // by assignment rule  s := 0;   \{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}
```

```
(N \ge 0) \Longrightarrow (0 \le 0 \le N \&\& 0 = (\Sigma i \mid 0 \le i < 0 \bullet a[i]))
```

Invariant is initially true

```
 \{ N \ge 0 \}   \{ 0 \le 0 \le N \&\& 0 = (\Sigma i \mid 0 \le i < 0 \bullet a[i]) \}  // by assignment rule  j := 0;   \{ 0 \le j \le N \&\& 0 = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}  // by assignment rule  s := 0;   \{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}
```

Invariant is initially true

```
 \{ N \ge 0 \}   \{ 0 \le 0 \le N \&\& 0 = (\Sigma i \mid 0 \le i < 0 \bullet a[i]) \}  // by assignment rule  j := 0;   \{ 0 \le j \le N \&\& 0 = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}  // by assignment rule  s := 0;   \{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}
```

Invariant is initially true

```
 \{ \ N \ge 0 \}   \{ 0 \le 0 \le N \&\& 0 = (\Sigma i \mid 0 \le i < 0 \bullet a[i]) \}  // by assignment rule  j := 0;   \{ 0 \le j \le N \&\& 0 = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}  // by assignment rule  s := 0;   \{ 0 \le j \le N \&\& s = (\Sigma i \mid 0 \le i < j \bullet a[i]) \}
```