

Algoritmos e Programação: Estruturas de Dados

## Prova do Grau A

|    | _   |          | ,         |         | 1        | . ~          |
|----|-----|----------|-----------|---------|----------|--------------|
| 1. | Com | base nas | arvores a | seguir. | responda | as questões: |

| a) | A             |                                                                                                                                     |
|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
|    | B C F G       | É binária? É BST? É AVL? Grau da árvore: Grau do nó D: Profundidade do nó L: Altura do nó B: Número de folhas:                      |
| b) | 1 3 6 7 9     | É binária?<br>É BST?<br>É AVL?<br>Grau da árvore:<br>Grau do nó 2:<br>Profundidade do nó 9:<br>Altura do nó 8:<br>Número de folhas: |
| c) | M S T T P R Z | É binária? É BST? É AVL? Grau da árvore: Grau do nó D: Profundidade do nó L: Altura do nó B: Número de folhas:                      |

2. Baseado na árvore da subquestão c) do exercício 1, realize os caminhamentos:

| a) Pré ordem |  |
|--------------|--|
| b) Em ordem  |  |
| c) Pós ordem |  |



| d) Em largura | ı |  |  |  |
|---------------|---|--|--|--|
|---------------|---|--|--|--|

- **3.** Acrescente os nodos U e V na árvore da subquestão c) do exercício 1. Se ficar desbalanceada, aplique a(s) rotação(ões) corretas para balancear. Mostre o fator de balanceamento de cada nodo após as inserções.
- **4.** Considerando como alfabeto os algarismos do sistema hexadecimal (0 a F), monte a TRIE com as cores 000000, FFFFFF, FF0000, 00FF00, 0000FF, FF00FF, FFFF00, 00FFFF.
- **5.** Dada uma grid 8x8 abaixo, representando uma imagem binária (pixels pretos e brancos) e a quadtree correspondente (representação separada pelos quadrantes iniciais NW, NE, SW e SE, como representada na grid), preencha a grid (pinte ou use **x** para representar pixels pretos e para representar pixels brancos).





Dica: lembre-se que um problema complexo pode ser decomposto em problemas menores.