ML Aplicat-Tema2 IA Minca Ecaterina – Ioana 334CA

1. Descriere generala

Am avut 2 seturi de date si a trebuit sa realizam o analiza a acestora si apoi sa aplicam 2 algoritmi pentru a putea sa prezicem pentru fiecare in functie de un tinta specifica, folosind regresie logistica si MLP.

2. Analiza date AVC

Avem atat date numerice, cat si numerice. Am ales sa fac analiza pe setul de date full. Variabila dupa care se face clasificarea este "cerebrovascular_accident".

2.1 Date continue

Data Full								
	count	mean	std	min	25%	50%	75%	max
mean_blood_sugar_level	5110.0	106.147677	45.283560	55.120000	77.245000	91.885000	114.090000	271.740000
body_mass_indicator	4909.0	28.893237	7.854067	10.300000	23.500000	28.100000	33.100000	97.600000
years_old	5110.0	46.568665	26.593912	0.080000	26.000000	47.000000	63.750000	134.000000
analysis_results	4599.0	323.523446	101.577442	104.829714	254.646209	301.031628	362.822769	756.807975
biological_age_index	5110.0	134.784256	50.399352	-15.109456	96.710581	136.374631	172.507322	266.986321

2.2 Date discrete AVC

Se poate observa ca avem lipsa niste valori la 'married'.

```
Data Full
Unique values:
cardiovascular issues: 2
job category: 5
sex: 2
tobacco usage: 4
high blood pressure: 2
married: 3
living area: 2
chaotic sleep: 2
cerebrovascular accident: 2
Not missing values:
cardiovascular issues: 5110
job_category: 5110
sex: 5110
tobacco usage: 5110
high blood pressure: 5110
married: 4599
living area: 5110
chaotic sleep: 5110
cerebrovascular_accident: 5110
```

2.3 BoxPlot date continue AVC

Se poate observa incadrat de acel dreptunghi la fiecare valoarea medie, iar linia de sus si jos sunt valorile minime si maxime, iar restul sunt outliers. Se poate observa de exemplu la "analysis results" ca are multe outliers.

2.4 Histograme date discrete AVC

Pentru fiecare coloana in parte, am relizat cate o histograma in care se va observa cate persoane sunt din fiecare categorie.

2,4,1 Tobacco usage

2.4.3 Married

2.4.4 Living area

2.4.5 Job category

2.4.6 High blood pressure

2.4.7 Chaotic sleep

2.4.8 Cerebrovascular accident

2.4.9 Cardiovascular issues

2.5 Analiza echilibru clasa train vs test AVC

Se poate observa ca este foarte dezechilibrata.

2.6 Analiza corelației între atribute AVC

2.6.1 Date numerce

2.6.2 Date categorice

2.7 Concluzie analiza AVC

Se poate observa ca avem o clasa destul de dezechilibrata si avem multe outliers, valori nule, valori extreme.

3. Analiza date Salary Classification

3.1 Date continue

Data Ful	ι							
	count	mean	std	min	25%	50%	75%	max
fnl	9999.0	190352.902090	106070.862686	19214.0	118282.5	178472.0	237311.0	1455435.0
hpw	9199.0	40.416241	12.517356	1.0	40.0	40.0	45.0	99.0
gain	9999.0	979.853385	7003.795382	0.0	0.0	0.0	0.0	99999.0
edu_int	9999.0	14.262026	24.770835	1.0	9.0	10.0	13.0	206.0
years	9999.0	38.646865	13.745101	17.0	28.0	37.0	48.0	90.0
loss	9999.0	84.111411	394.035484	0.0	0.0	0.0	0.0	3770.0
prod	9999.0	2014.927593	14007.604496	-28.0	42.0	57.0	77.0	200125.0

3.2 Date discrete

Data Full
Unique values:
relation: 6
country: 41
job: 14
work_type: 9

partner: 7
edu: 16
gender: 3
race: 5
gtype: 2
money: 2

Not missing values:

relation: 9999 country: 9999

job: 9999

work_type: 9999
partner: 9999

edu: 9999 gender: 9199 race: 9999 gtype: 9999 money: 9999 Se poate observa ca la 'gender' sunt valori lipsa.

3.3 BoxPlot date continue Salary Classification

La fel se observa multe outliers mai ales la fnl.

3.4 Histograme set date discrete

3.4.1 Country

3.4.2 Edu

3.4.3 Gender

3.4.4 Gtype

3.4.6 Money

3.4.7 Partner

3.4.8 Race

3.4.9 Relation

3.4.10 Work type

3.5 Analiza echilibru clasa train vs test Salary

Si pe acest set de date se vede iar o dezechilibrare mare.

3.6 Analiza corelației între atribute Salary 3.6.1 Date continue

2.6.2 Date discrete

3.7 Concluzie

Clasa este dezechilibrata si exista valori extreme si nume in setul de date.

4. Preprocesare

Am inlocuit la ambele seturi de date toate valorile nule si cele extreme si apoi am realizat o standardizare a datelor pentru a putea aplica algoritmii. Am aplicat SimpleImputer pentru a pune valori valori in locul celor nule si am pus la cele categorice valoarea cea mai intalnita per atribut si la cele numerice valoarea medie. Apoi valorile extreme le-am inlocuit cu media. Pentru stanadarizare am folosit StandardScaler.

5. Regresie logistica

- Am folosit ca encoder pentru atributele categorice LabelEncoder
- Setarile algoritmului de optimizare de tip gradient descent: tip optimizator(cel simplu)

6. MLP

- Arhitectura: am folsit la implementarea de mana straturi:
 - → Linear: ca input numarul de coloane primit din setul de date si ca out HIDDEN_UNITS=300(ca in laborator)
 - → activari RELU
- Configurarea optimizatorului:mode= 'SGB', lr = 0.005 (si in cel de la laborator si cel din sklearn)

7.Evaluare algoritmi AVC

7.1 Descriere a setului de hiperparametrii

7.1.1 AVC

Regresie Logistica: LR = 0.01, NUMBER_EPOCH = 100

Regresie Logistica: maxiters = 700, solver = liblinear

MLP: maxiters = 700, solver = SGD

MLP laborator: BATCH_SIZE = 128, HIDDEN_UNITS = 300, NUMBER_EPOCH = 100, solver = SGD si LR = 0.005

7.1.2 Salary

Regresie Logistica: LR = 0.01, NUMBER_EPOCH = 100

Regresie Logistica: maxiters = 700, solver = liblinear

MLP: maxiters = 700, solver = SGD

MLP laborator: BATCH_SIZE = 128, HIDDEN_UNITS = 300, NUMBER_EPOCH = 100, solver = SGD si LR = 0.005

7.2 Matrice de confuzie si tabel comparativ AVC

LR laborator

[[931	16]
[73	2]]

LR SKLEARN

[[946	1]
[75	0]]

MLP SKLEARN

[[947	0]
[75	0]]

MLP laborator

[[946	1]
[75	0]]

Tabel comparativ AVC

LR laborator

	precision	recall	f1-score	support	
without avc	0.9273	0.9831	0.9544	947	
with avc	0.1111	0.0267	0.0430	75	
accuracy	0 5103	0. 5040	0.9129	1022	
macro avg	0.5192	0.5049	0.4987	1022	
weighted avg	0.8674	0.9129	0.8875	1022	

LR sklearn

	precision	recall	f1-score	support	
without avc with avc	0.9265 0.0000	0.9989 0.0000	0.9614 0.0000	947 75	
accuracy macro avg weighted avg	0.4633 0.8585	0.4995 0.9256	0.9256 0.4807 0.8908	1022 1022 1022	

MLP sklearn

	precision	recall	f1-score	support	
without avc with avc	0.9266 0.0000	1.0000 0.0000	0.9619 0.0000	947 75	
accuracy macro avg weighted avg	0.4633 0.8586	0.5000 0.9266	0.9266 0.4810 0.8913	1022 1022 1022	

MLP laborator

	precision	recall	f1-score	support	
without avc	0.9265	0.9989	0.9614	947	
with avc	0.0000	0.0000	0.0000	75	
accuracy			0.9256	1022	
macro avg	0.4633	0.4995	0.4807	1022	
weighted avg	0.8585	0.9256	0.8908	1022	
				32 - FE	

7.3 Concluzie AVC

Se poate observa ca din punct de vedere acuratete MLP este mai bun decat regresia logistica. Totusi, doar regresia de la laborator a putut sa-mi detecteze si persoanele cu AVC, in rest pare ca nu prea exista. Acest lucru e destul de firesc sa se intample uitandu-ne pe clasa cine are si nu are "cerebrovascular_accident", deoarece sunt foarte multe cu nu si putine cu da, atat pe train cat si pe test, ceea ce indica un dezechilibru mare. Totusi se poate observa dupa acuratetea de la ambele ca au prezis destul de bine.

7.4 Matrice de confuzie si tabel comparativ Salary Classification

LR laborator

LR sklearn

[[1329	184]
[372	115]]

MLP sklearn

[[1329	184]
[372	115]]

MLP laborator

[[1402	111]
[239	248]]

Tabel comparativ

LR laborator

100	precision	recall	f1-score	support
<= 50K > 50K	0.7813 0.3846	0.8784 0.2361	0.8270 0.2926	1513 487
accuracy macro avg weighted avg	0.5830 0.6847	0.5573 0.7220	0.7220 0.5598 0.6969	2000 2000 2000

LR sklearn

	precision	recall	f1-score	support
<= 50K > 50K	0.8361 0.6980	0.9405 0.4271	0.8852 0.5299	1513 487
accuracy macro avg weighted avg	0.7670 0.8025	0.6838 0.8155	0.8155 0.7076 0.7987	2000 2000 2000

MLP sklearn

	precision	recall	f1-score	support
<= 50K > 50K	0.8426 0.7374	0.9484 0.4497	0.8924 0.5587	1513 487
accuracy macro avg weighted avg	0.7900 0.8170	0.6991 0.8270	0.8270 0.7255 0.8111	2000 2000 2000

MLP laborator

	precision	recall	f1-score	support
<= 50K > 50K	0.8544 0.6908	0.9266 0.5092	0.8890 0.5863	1513 487
accuracy macro avg weighted avg	0.7726 0.8145	0.7179 0.8250	0.8250 0.7377 0.8153	2000 2000 2000

7.5 Concluzii Salary Classification

Spre deosebire de setul de date trecut, aici avem mult mai multe preziceri, dar care nu sunt neaparat unele bune. Datele sunt mult mai multe decat la AVC si la fel clasele sunt dezechilibrate. Cel mai bine pare ca a prezis MLP implementat la laborator care

are si acuratetea cea mai mare si in matricea de confuzie, nu a gresit la fel de des la negative si are mai multe true negative decat celelalte.

Pentru ambele seturi de date am ales la algoritmi hiperparametrii care dadeau cele mai bune rezultate.