集合と位相

nukui

2017年1月9日

第I部

集合と写像

1 集合とは

1.1

- 1. 成り立つ。Y に含まれる要素は全て X に含まれる。
- 2. 成り立つ。 \cdots 3 は W に含まれるが Z に含まれない。
- 3. 成り立つ。 \because 4 は \lor に含まれるが、 \lor に含まれない。
- 4. 成り立たない。::4 は V に含まれるが X には含まれない。
- 5. 成り立たない。 $\because 1$ は X に含まれるが W に含まれない。
- 6. 成り立たない。:: V の全ての要素はW に含まれる。
- 7. 成り立つ。: V の全ての要素は Z に含まれる。
- 8. 成り立つ。 \odot 3 は X に含まれるが Z に含まれない。
- 9. 成り立たない。 \odot Y に含まれる全ての要素は Z に含まれる。
- 10. 成り立たない。::3 は W に含まれるが Y には含まれない。

1.2

- 1. D
- 2. B
- 3. C,E,F
- 4. B,D

- 1. 成り立たない。
- 2. 成り立つ。
- 3. 成り立つ。
- 4. 成り立つ。
- 5. 成り立たない。
- 6. 成り立つ。

集合 A が 1 個の元から成るとき、部分集合は A と \emptyset の 2 通り。よって n=1 のとき、命題は成り立つ。 集合 A が n 個の元から成り、その部分集合は全部で 2^n 個から成ると仮定する。今、集合 A に元 $X(X \notin A)$ を一つ加え、n+1 個の元から成る集合 $B(B=A \cup \{X\})$ を考える。集合 B の部分集合は、

- 1. 集合 A の部分集合と一致。 $(2^n$ 個)
- 2. 集合 A の部分集合に元 X を加えたものに一致。 $(2^n$ 個)

のいずれかである。よって、集合 B の部分集合の個数は $2^n+2^n=2^{n+1}$ 個になる。以上より、すべての自然数 n で命題は成り立つ。

2 集合の演算

2.1

意味を考えれば、確かに成り立つことがわかる。

2.2

1.

$$(A-B)\cup(A\cap B)=\{x|x\in(A-B)$$
 または $x\in(A\cap B)\}$
 $=\{x|(x\in A oo x\notin B)$ または $(x\in A oo x\in B)\}$
 $=\{x|x\in A oo (x\notin B statk x\in B)\}$
 $=\{x|x\in A\}$
 $=A$

2.

$$(A-B) \cup B = \{x | x \in (A-B)$$
または $x \in B\}$
 $= \{x | (x \in A$ かつ $x \notin B)$ または $x \in B\}$
 $= \{x | (x \in A$ または $x \in B)$ かつ $(x \notin B$ または $x \in B)\}$
 $= \{x | (x \in A$ または $x \in B)\}$
 $= A \cup B$

3.

$$B \cap (A - B) = \{x | x \in B \text{ かつ } x \in (A - B)\}$$

= $\{x | x \in B \text{ かつ } (x \in A \text{ かつ } x \notin B)\}$
= \emptyset

2.3

 $1. A_1 \subset A$ を仮定する。

$$x \in A_1$$
かつ $x \notin B \Longrightarrow x \in A$ かつ $x \notin B$

なので、 $x \in A_1 - B$ とすると、 $x \in A - B$ が示せる。つまり、 $A_1 - B \subset A - B$ 。

2. $B_1 \subset B$ を仮定する。

$$x \in A$$
 かつ $x \notin B \Longrightarrow x \in A$ かつ $x \notin B_1$

なので、 $x \in A-B$ とすると、 $x \in A-B_1$ が示せる。つまり、 $A-B \subset A-B_1$ 。

2.4

$$A-B=\{x|x\in A$$
 かつ $x\notin B\}$
$$=\{x|x\in A$$
 かつ $(x\notin A$ または $x\notin B)\}$
$$=\{x|x\in A$$
 かつ $x\notin A\cap B\}$

$$A = \{x | x \in A\}$$

なので、

$$A - B = A \iff A - B \supset A \iff A \cap B = \emptyset$$

となり、A-B=A と、 $A\cap B=\emptyset$ が同値であることを示せた。

2.5

1. 定義から、

$$A \cup B = \{x | x \in A$$
 または $x \in B\}$
$$B = \{x | x \in B\}$$

である。ここで、 $A \subset B$ を仮定すると、 $A \cup B = \{x | x \in B\} = B$ となる。逆に、 $A \cup B = B$ を仮定すると、 $A \cup B \subset B$ より、 $\forall x [x \in A \Longrightarrow x \in B]$ となるので、 $A \subset B$ 。

2. 定義から、

$$A \cap B = \{x | x \in A \text{ かつ } x \in B\}$$

 $A = \{x | x \in A\}$

である。ここで、 $A \subset B$ を仮定すると、 $A \cap B = \{x | x \in A\} = A$ となる。逆に、 $A \cap B = A$ を仮定すると、 $A \cap B \supset A$ より、 $\forall x [x \in A \Longrightarrow x \in B]$ となるので、 $A \subset B$ 。

3. 定義から

$$A - B = \{x | x \in A$$
かつ $x \notin B\}$

である。ここで、 $A\subset B$ を仮定すると、 $\forall x[x\in A\Longrightarrow x\in B]$ なので、 $A-B=\emptyset$ が成り立つ。逆に、 $A-B=\emptyset$ を仮定すると、 $\forall x[x\in A\Longrightarrow x\in B]$ になるので、 $A\subset B$ が成り立つ。

4. 定義から

$$A \cup (B-A) = \{x|x \in A$$
 または $x \in (B-A)\}$
= $\{x|x \in A$ または $(x \in B$ かつ $x \notin A)\}$
= $\{x|x \in A$ または $x \in B\}$
= $A \cup B$

よって、1と本質的に同じ問題なので、成立する。

5. 定義から

$$B - (B - A) = \{x | x \in B \text{ かつ } x \notin (B - A)\}$$

$$= \{x | x \in B \text{ かつ } (x \notin B \text{ または } x \in A)\}$$

$$= \{x | x \in B \text{ かつ } x \in A\}$$

$$= A \cap B$$

よって、本質的に2と同じ問題なので、成立する。

2.6

1.

$$(A \cup B) \cap (A \cup C) \cap (B \cup C) = ((A \cup B) \cap (A \cup C)) \cap (B \cup C)$$

$$= ((A \cup B) \cap A) \cup ((A \cup B) \cap C)) \cap (B \cup C)$$

$$= (A \cup ((A \cup B) \cap C)) \cap (B \cup C)$$

$$= (A \cup ((A \cap C) \cup (B \cap C))) \cap (B \cup C)$$

$$= (A \cup (B \cap C)) \cap (B \cup C)$$

$$= (A \cap (B \cup C)) \cup ((B \cap C) \cap (B \cup C))$$

$$= ((A \cap B) \cup (A \cap C)) \cup (B \cap C)$$

$$= (A \cap B) \cup (A \cap C) \cup (B \cap C)$$

2.1 の結果を用いる。

```
\begin{split} &(A \cup B) \cap (A \cup C) \cap (A \cup D) \cap (B \cup C) \cap (B \cup D) \cap (C \cup D) \\ &= ((A \cup B) \cap (A \cup C) \cap (B \cup C)) \cap ((A \cup D) \cap (B \cup D) \cap (C \cup D)) \\ &= ((A \cap B) \cup (A \cap C) \cup (B \cap C)) \cap (D \cup (A \cap B \cap C)) \\ &= (((A \cap B) \cup (A \cap C) \cup (B \cap C)) \cap D) \cup ((((A \cap B) \cup (A \cap C) \cup (B \cap C)) \cap (A \cap B \cap C)) \\ &= ((A \cap B \cap D) \cup (A \cap C \cap D) \cup (B \cap C \cap D)) \cup (A \cap B \cap C) \\ &= (A \cap B \cap C) \cup (A \cap B \cap D) \cup (A \cap C \cap D) \cup (B \cap C \cap D) \end{split}
```

3 ド・モルガンの法則

3.1

$$(A^c)^c = (X - A)^c$$

= $\{x | x \in X - (X - A)\}$
= $\{x \in X | x \notin X - A\}$
= $\{x \in X | {}^{\mathsf{T}} x \in X$ かつ $x \notin A$ 」ではない $\}$
= $\{x \in X | x \notin X$ または $x \in A\}$
= $\{x \in X | x \in A\}$
= A

2.
$$X^c = X - X = \{x | x \in X \text{ かつ } x \notin X\} = \emptyset$$

3.
$$\emptyset^c = X - \emptyset = \{x | x \in X \text{ かつ } x \notin \emptyset\} = X$$

 $A \cup A^c = \{x | x \in A$ または $x \in A^c \}$ = $\{x \in X | x \in A$ または $x \notin A \}$ = X

5.
$$A \cap A^c = (A^c)^c \cap A^c = (A^c \cup A)^c = X^c = \emptyset$$

6. $A - B = \{x \in X | x \in A \text{ かつ } x \notin B\}$ $= \{x | x \in A \text{ かつ } x \in X - B\}$ $= \{x | x \in A \text{ かつ } x \in B^c\}$

7.
$$(A^c \cap B^c)^c = (A^c)^c \cup (B^c)^c = A \cup B$$

3.2

1.

2.

 $(A \cup B) - C = \{x | x \in A \cup B \text{ かつ } x \notin C\}$ $= \{x | (x \in A \text{ または } x \in B) \text{ かつ } x \notin C\}$ $= \{x | (x \in A \text{ かつ } x \notin C) \text{ または } (x \in B \text{ かつ } x \notin C)\}$

 $=A\cap B^c$

 $= \{x | x \in A - C \not\equiv \text{tid } x \in B - C\}$ $= (A - C) \cup (B - C)$

 $= (A - C) \cup (B - C)$

$$(A \cap B) - C = \{x | x \in A \cap B \text{ かつ } x \notin C\}$$

$$= \{x | (x \in A \text{ かつ } x \in B) \text{ かつ } x \notin C\}$$

$$= \{x | (x \in A \text{ かつ } x \notin C) \text{ かつ } (x \in B \text{ かつ } x \notin C)\}$$

$$= \{x | x \in A - C \text{ かつ } x \in B - C\}$$

$$= (A - C) \cap (B - C)$$

3.3 1.(a)

 $A \circ B = (A - B) \cup (B - A)$ $= (B - A) \cup (A - B)$ $= B \circ A$

(b)

$$\begin{split} (A \circ B) \circ C &= ((A \circ B) - C) \cup (C - (A \circ B)) \\ &= (((A - B) \cup (B - A)) - C) \cup (C - ((A - B) \cup (B - A))) \\ &= (((A - B) - C) \cup ((B - A) - C)) \cup ((C - (A - B)) \cap (C - (B - A))) \\ &= ((A - (B \cup C)) \cup (B - (A \cup C))) \cup (((C - A) \cup (C \cap B)) \cap ((C - B) \cup (C \cap A))) \\ &= ((A - (B \cup C)) \cup (B - (A \cup C))) \cup \\ &\qquad ((C - A) \cap (C - B)) \cup ((C - A) \cap (C \cap A)) \cup ((C \cap B) \cap (C - B)) \cup ((C \cap B) \cap (C \cap A)) \\ &= ((A - (B \cup C)) \cup (B - (A \cup C))) \cup ((C - (A \cup B)) \cup \emptyset \cup \emptyset \cup (A \cap B \cap C)) \\ &= (A - (B \cup C)) \cup (B - (C \cup A)) \cup (C - (A \cup B)) \cup (A \cap B \cap C) \end{split}$$

ここで、

$$C-(A-B)=\{x|x\in C ext{ かつ }x\notin (A-B)\}$$

$$=\{x|x\in C ext{ かつ }(x\notin A ext{ または }x\in B))\}$$

$$=\{x|(x\in C ext{ かつ }x\notin A) ext{ または }(x\in C ext{ かつ }x\in B)\}$$

$$=(C-A)\cup (C\cap B)$$

という結果を、3行目から4行目への変形で用いた。また、

$$(A \cup B) \cap (C \cup D) = (A \cap (C \cup D)) \cup (B \cap (C \cup D))$$
$$= (A \cap C) \cup (A \cap D) \cup (B \cap C) \cup (B \cap D)$$

という結果を、4行目から(5,6行目)への変形で用いた。

さて、 $(A\circ B)\circ C=(A-(B\cup C))\cup (B-(C\cup A))\cup (C-(A\cup B))\cup (A\cap B\cap C)$ と変形できるので、 $(A\circ B)\circ C$ は、A,B,C が全く同等で、任意の二つを入れ替えても同じ値であることがわかる。よって、 $(A\circ B)\circ C=A\circ (B\circ C)$ 。

(c)

$$A \circ A = (A - A) \cup (A - A) = \emptyset$$

$$A \circ \emptyset = (A - \emptyset) \cup (\emptyset - A) = A$$

2.

$$A \circ X = B$$

$$\iff (A \circ X) - B = \emptyset \text{ thing } B - (A \circ X) = \emptyset$$

$$\iff ((A \circ X) - B) \cup (B - (A \circ X)) = \emptyset$$

$$\iff ((A \circ X) \circ B) = \emptyset$$

$$\iff ((A \circ B) \circ X) = \emptyset$$

$$\iff ((A \circ B) - X) \cup (X - (A \circ B)) = \emptyset$$

$$\iff ((A \circ B) - X) = \emptyset \text{ thing } (X - (A \circ B)) = \emptyset$$

$$\iff A \circ B = X$$

ここで、 $((A\circ X)\circ B)=\emptyset\iff ((A\circ B)\circ X)=\emptyset$ という変形には、1 の結果を用いた。以上より、集合 A,B を任意に与えたとき、 $A\circ X=B$ を満足する集合 X が $A\circ B$ と表せるので、X はただ一つ存在することが示せた。

4 直積集合

4.1

1.

$$A imes (B \cup C) = \{(x,y) | x \in A$$
 かつ $y \in (B \cup C)\}$

$$= \{(x,y) | (x \in A$$
かつ $y \in B)$ または $(x \in A$ かつ $y \in C)\}$

$$= \{(x,y) | (x,y) \in (A \times B)$$
 または $(x,y) \in (A \times C)\}$

$$= (A \times B) \cup (A \times C)$$

2.

$$A imes (B \cap C) = \{(x,y) | x \in A \text{ かつ } y \in (B \cap C)\}$$

$$= \{(x,y) | (x \in A \text{ かつ } y \in B) \text{ かつ } (x \in A \text{ かつ } y \in C)\}$$

$$= \{(x,y) | (x,y) \in (A \times B) \text{ かつ } (x,y) \in (A \times C)\}$$

$$= (A \times B) \cap (A \times C)$$

3.

$$(A \cup B) \times C = \{(x,y) | x \in (A \cup B) \text{ かつ } y \in C\}$$

$$= \{(x,y) | (x \in A \text{ かつ } y \in C) \text{ または } (x \in B \text{ かつ } y \in C)\}$$

$$= \{(x,y) | (x,y) \in A \times C \text{ または } (x,y) \in B \times C\}$$

$$= (A \times C) \cup (B \times C)$$

4.

$$(A \cap B) \times C = \{(x,y) | x \in (A \cap B) \text{ かつ } y \in C\}$$

= $\{(x,y) | (x \in A \text{ かつ } y \in C) \text{ かつ } (x \in B \text{ かつ } y \in C)\}$
= $\{(x,y) | (x,y) \in A \times C \text{ かつ } (x,y) \in B \times C\}$
= $(A \times C) \cap (B \times C)$

4.2

$$(X \times Y) - (A \times B) = \{(s,t) | (s,t) \in (X \times Y) \text{ かつ } (s,t) \notin (A \times B)\}$$

$$= \{(s,t) | (s \in (X-A) \text{ かつ } t \in Y)$$
または $(s \in X \text{ かつ } t \in (Y-B))\}$

$$= \{(s,t) | (s,t) \in ((X-A) \times Y) \text{ または } (s,t) \in (X \times (Y-B))\}$$

$$= ((X-A) \times Y) \cup (X \times (Y-B))$$

5 写像

5.1

$$(f \circ q)(x) = f(x^2 + 1) = x^2 + 3$$

2.
$$(g \circ f)(x) = g(x+2) = (x+2)^2 + 1 = x^2 + 4x + 5$$

3.
$$(f \circ f)(x) = f(x+2) = x+4$$

4.
$$(g \circ g)(x) = g(x^2 + 1) = (x^2 + 1)^2 + 1 = x^4 + 2x^2 + 2$$

1.

$$\begin{split} (\bigcup_{\lambda \in \Lambda} A_{\lambda}) \cap B &= \{x | x \in \bigcup_{\lambda \in \Lambda} A_{\lambda} \text{かつ } x \in B\} \\ &= \{x | \exists \lambda \in \Lambda[x \in A_{\lambda}] \text{ かつ } x \in B\} \\ &= \{x | \exists \lambda \in \Lambda[x \in A_{\lambda} \text{かつ } x \in B]\} \\ &= \{x | \exists \lambda \in \Lambda[x \in (A_{\lambda} \cap B)]\} \\ &= \bigcup_{\lambda \in \Lambda} (A_{\lambda} \cap B) \end{split}$$

2.

$$\begin{split} (\bigcap_{\lambda \in \Lambda} A_{\lambda}) \cup B &= \{x | x \in \bigcap_{\lambda \in \Lambda} A_{\lambda} \text{\tt \sharp $\rlap{$t$}$ it } x \in B\} \\ &= \{x | \forall \lambda \in \Lambda[x \in A_{\lambda}] \text{\tt \sharp $\rlap{$t$}$ it } x \in B\} \\ &= \{x | \forall \lambda \in \Lambda[x \in A_{\lambda} \text{\tt \sharp $\rlap{$t$}$ it } x \in B]\} \\ &= \{x | \forall \lambda \in \Lambda[x \in (A_{\lambda} \cup B)]\} \\ &= \bigcap_{\lambda \in \Lambda} (A_{\lambda} \cup B) \end{split}$$

5.3

1.

$$\begin{split} (\bigcup_{\lambda \in \Lambda} A_{\lambda})^{c} &= (X - \bigcup_{\lambda \in \Lambda} A_{\lambda}) \\ &= \{x | x \in X \text{ かつ } \ulcorner \exists \lambda \in \Lambda[x \in A_{\lambda}] \text{ ではない」} \} \\ &= \{x | x \in X \text{ かつ } \forall \lambda \in \Lambda[x \notin A_{\lambda}] \} \\ &= \{x | \forall \lambda \in \Lambda[x \in X \text{ かつ } x \notin A_{\lambda}] \} \\ &= \bigcap_{\lambda \in \Lambda} (A_{\lambda}^{c}) \end{split}$$

$$\begin{split} (\bigcap_{\lambda \in \Lambda} A_{\lambda})^c &= (X - \bigcap_{\lambda \in \Lambda} A_{\lambda}) \\ &= \{x | x \in X \text{ かつ } \ulcorner \forall \lambda \in \Lambda[x \in A_{\lambda}] \text{ ではない」} \} \\ &= \{x | x \in X \text{ かつ } \exists \lambda \in \Lambda[x \notin A_{\lambda}] \} \\ &= \{x | \exists \lambda \in \Lambda[x \in X \text{ かつ } x \notin A_{\lambda}] \} \\ &= \bigcup_{\lambda \in \Lambda} (A_{\lambda}^c) \end{split}$$

1.

$$\begin{split} f(\bigcup_{\lambda \in \Lambda} A_{\lambda}) &= \{ y \in Y | \exists x \in (\bigcup_{\lambda \in \Lambda} A_{\lambda}) [f(x) = y] \} \\ &= \{ y \in Y | \exists \lambda \in \Lambda [\exists x \in A_{\lambda} [f(x) = y]] \} \\ &= \{ y \in Y | \exists \lambda \in \Lambda [y \in f(A_{\lambda})] \} \\ &= \bigcup_{\lambda \in \Lambda} f(A_{\lambda}) \end{split}$$

2.

$$y\in f(\bigcap_{\lambda\in\Lambda}A_\lambda)$$

と仮定すると、

$$\exists x \in (\bigcap_{\lambda \in \Lambda} A_{\lambda})[f(x) = y]$$

が言える。これは、

$$\exists x \in X [\forall \lambda \in \Lambda[x \in A_{\lambda} \quad$$
かつ $f(x) = y]]$

と同値。このとき、

$$\forall \lambda \in \Lambda[\exists x \in A_{\lambda}[f(x) = y]]$$

がいえる*1ので、

$$y\in \bigcap_{\lambda\in\Lambda} f(A_\lambda)$$

3.

$$f^{-1}(\bigcup_{\mu \in M} B_{\mu}) = \{x \in X | f(x) \in (\bigcup_{\mu \in M} B_{\mu})\}$$

$$= \{x \in X | \exists \mu \in M [f(x) \in B_{\mu}]\}$$

$$= \{x \in X | \exists \mu \in M [x \in f^{-1}(B_{\mu})]\}$$

$$= \bigcup_{\mu \in M} f^{-1}(B_{\mu})$$

$$f^{-1}(\bigcap_{\mu \in M} B_{\mu}) = \{x \in X | f(x) \in (\bigcap_{\mu \in M} B_{\mu})\}$$

$$= \{x \in X | \forall \mu \in M [f(x) \in B_{\mu}]\}$$

$$= \{x \in X | \forall \mu \in M [x \in f^{-1}(B_{\mu})]\}$$

$$= \bigcap_{\mu \in M} f^{-1}(B_{\mu})$$

 $^{^{*1}}$ 逆は必ずしも真ではない。 つまり $\forall \lambda \in \Lambda[\exists x \in A_{\lambda}[f(x)=y]]$ だからといって、 $\exists x \in X[\forall \lambda \in \Lambda[x \in A_{\lambda} \quad$ かつ f(x)=y]] はいえない。

n=2 のとき

$$A_1 \cup A_2 = A_1 \cup A_2$$

となり、主張は正しい。n=m のとき、主張が正しいと仮定する。つまり、

$$\bigcap_{1 \le i < j \le m} (A_i \cup A_j) = \bigcup_{1 \le i \le m} (A_1 \cap \dots \cap A_{i-1} \cap A_{i+1} \cap \dots \cap A_m)$$

が成り立つと仮定すると、

$$\bigcap_{1 \leq i < j \leq m+1} (A_i \cup A_j)$$

$$= (\bigcap_{1 \leq i < j \leq m} (A_i \cup A_j)) \cap (\bigcap_{1 \leq i \leq m} (A_i \cup A_{m+1}))$$

$$= (\bigcup_{1 \leq i \leq m} (A_1 \cap \dots \cap A_{i-1} \cap A_{i+1} \cap \dots \cap A_m)) \cap ((\bigcap_{1 \leq i \leq m} A_i) \cup A_{m+1})$$

$$= \bigcup_{1 \leq i \leq m} (A_1 \cap \dots \cap A_{i-1} \cap A_{i+1} \cap \dots \cap A_m \cap ((\bigcap_{1 \leq i \leq m} A_i) \cup A_{m+1}))$$

$$= (\bigcap_{1 \leq i \leq m} A_i) \cup (\bigcup_{1 \leq i \leq m} (A_1 \cap \dots \cap A_{i-1} \cap A_{i+1} \cap \dots \cap A_{m+1}))$$

$$= \bigcup_{1 \leq i \leq m+1} (A_1 \cap \dots \cap A_{i-1} \cap A_{i+1} \cap \dots \cap A_{m+1})$$

となり、n=m+1 のときも成り立つ。以上より、 $n\geqq 2$ のすべての自然数 n で主張は成り立つ。

5.6

1.

$$x \in \liminf_{n \to \infty} E_n$$

と仮定すると、定義より

$$\exists k \ge 1 [\forall n \ge k [x \in E_n]]$$

が成り立つ。よって、

$$\forall s \ge 1[\exists k \ge 1[(m \ge k \text{ かつ } m \ge s) \Longrightarrow x \in E_m]]$$

となるので、

$$\forall s \ge 1[\exists m \ge s[x \in E_m]]$$

定義より、

$$x \in \limsup_{n \to \infty} E_n$$

2.

$$x \in \liminf_{n \to \infty} A_n$$

と仮定すると、定義より、

$$\exists k \ge 1 [\forall n \ge k [x \in A_n]]$$

ここで、 $\forall n \in N[A_n \subset B_n]$ なので、

$$\exists k \ge 1 [\forall n \ge k [x \in B_n]]$$

が言える。結局、

$$x \in \liminf_{n \to \infty} B_n$$

lim sup の場合も同様に示せる。

3.

$$\begin{split} &\limsup_{n\to\infty}(A_n\cup B_n)=\{x|\forall k\geqq 1[\exists n\geqq k[x\in (A_n\cup B_n)]]\}\\ &=\{x|\forall k\geqq 1[\exists n\geqq k[x\in A_n\texttt{\it stil}\ x\in B_n]]\}\\ &=\{x|\forall k\geqq 1[(\exists n\geqq k[x\in A_n])\ \texttt{\it stil}\ (\exists m\geqq k[x\in B_m])]\}\\ &=\{x|(\forall k\geqq 1[\exists n\geqq k[x\in A_n]])\ \texttt{\it stil}\ (\forall s\geqq 1[\exists m\geqq s[x\in B_m]])\}\\ &=\{x|x\in (\limsup_{n\to\infty}A_n)\cup (\limsup_{n\to\infty}B_n)\}\\ &=(\limsup_{n\to\infty}A_n)\cup (\limsup_{n\to\infty}B_n)\end{split}$$

ここで、3 行目 $\Longrightarrow 4$ 行目 を示すには、(4 行目でない $\Longrightarrow 3$ 行目でない」を示せば良い。

4.

$$\begin{split} & \liminf_{n \to \infty} (A_n \cap B_n) = \{x | \exists k \geqq 1 [\forall n \geqq k[x \in (A_n \cap B_n)]] \} \\ & = \{x | \exists k \geqq 1 [\forall n \geqq k[x \in A_n \not h) \Rightarrow x \in B_n]] \} \\ & = \{x | \exists k \geqq 1 [(\forall n \geqq k[x \in A_n]) \not h) \Rightarrow (\forall m \geqq k[x \in B_m])] \} \\ & = \{x | (\exists k \geqq 1 [\forall n \geqq k[x \in A_n]]) \not h) \Rightarrow (\exists s \geqq 1 [\forall m \geqq s[x \in B_m]]) \} \\ & = \{x | x \in (\liminf_{n \to \infty} A_n) \cap (\liminf_{n \to \infty} B_n) \} \\ & = (\liminf_{n \to \infty} A_n) \cap (\liminf_{n \to \infty} B_n) \end{split}$$

5.7

1.

各 $n\in N$ に対して、 $E_n\subset E_{n+1}$ のとき、 $\bigcap_{n=k}^\infty E_n=E_k$ なので、

$$\lim_{n \to \infty} E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$$
$$= \bigcup_{k=1}^{\infty} E_k$$

2.

各 $n\in N$ に対して、 $E_n\supset E_{n+1}$ のとき、 $\bigcup_{n=k}^\infty E_n=E_k$ なので、

$$\lim_{n \to \infty} E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$
$$= \bigcap_{k=1}^{\infty} E_k$$

5.8

1. 問 5.6(3) より、

$$\lim_{n\to\infty}(A_n\cup B_n)=\limsup_{n\to\infty}(A_n\cup B_n)=\limsup_{n\to\infty}A_n\cup\limsup_{n\to\infty}B_n=\lim_{n\to\infty}A_n\cup\lim_{n\to\infty}B_n$$

2. 問 5.6(4) より、

$$\lim_{n \to \infty} (A_n \cap B_n) = \liminf_{n \to \infty} (A_n \cap B_n) = \liminf_{n \to \infty} A_n \cap \liminf_{n \to \infty} B_n = \lim_{n \to \infty} A_n \cap \lim_{n \to \infty} B_n$$

5.9

1.

$$\begin{split} & \limsup_{n \to \infty} E_n = \{x | \forall k \geqq 1 [\exists n \geqq k [x \in E_n]] \} \\ & = \{x | \forall k \geqq 1 [\exists n [2n-1 \geqq k \text{ かつ } (x \in E_{2n} \texttt{または} \ x \in E_{2n-1})]] \} \\ & = \{x | \forall k \geqq 1 [\exists n [2n-1 \geqq k \text{ かつ } (x \in A \texttt{ または} \ x \in B)]] \} \\ & = \{x | x \in A \texttt{ または} \ x \in B \} \\ & = A \cup B \end{split}$$

2.

$$\begin{split} & \liminf_{n \to \infty} E_n = \{x | \exists k \geqq 1 [\forall n \geqq k[x \in E_n]] \} \\ & = \{x | \exists k \geqq 1 [\forall n[2n-1 \geqq k \Longrightarrow (x \in E_{2n-1} \not h) \supset x \in E_{2n})]] \} \\ & = \{x | \exists k \geqq 1 [\forall n[2n-1 \geqq k \Longrightarrow (x \in A \not h) \supset x \in B)]] \} \\ & = \{x | x \in A \not h \supset x \in B \} \\ & = A \cap B \end{split}$$

第川部

濃度の大小と二項関係

6 全射・単射

6.1

 $1. \ f:A \rightarrow B$ が単射と仮定する。

(a)

$$y \in f(A_1) \cap f(A_2)$$

と仮定すると、y=f(x) となる x が存在し、 $x\in A_1$ かつ $x\in A_2$ となる。(もしも $x\notin A_1$ または $x\notin A_2$ とすると、f が単射でないことになってしまう。) よって、

$$y \in f(A_1 \cap A_2)$$

(b) 任意の x について $f^{-1}(f(x)) = x$ なので、 $x \in f^{-1}(f(A_1))$ と仮定すると $x \in A_1$ である。

(c)
$$y \in f(A_1 - A_2)$$

と仮定すると、f(x)=y となる $x\in A_1-A_2$ がただ一つ存在する。よって、 $y\in f(A_1)$ かつ $y\notin f(A_2)$ である。

$$f: A \to B$$

が全射とする。 $y\in B_1$ と仮定すると、f(x)=y となる $x\in f^{-1}(B_1)$ が存在する。よって、 $y\in f(f^{-1}(B_1))$ 。

6.2

1. g ∘ f が単射と仮定すると、

$$\forall x_1, x_2 \in A[x_1 \neq x_2 \Longrightarrow g \circ f(x_1) \neq g \circ f(x_2)]$$

ここで、 $f(x_1) = f(x_2) \Longrightarrow g \circ f(x_1) = g \circ f(x_2)$ なので、

$$\forall x_1, x_2 \in A[x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)]$$

が成り立つ。よって、fは単射である。

2. g ∘ f が全射と仮定すると、

$$\forall c \in C[\exists a \in A[g \circ f(a) = c]]$$

ここで、 $\forall a \in A[f(a) \in B]$ なので、

$$\forall c \in C[\exists b \in B[g(b) = c]]$$

6.3

$$\forall n \in \mathbb{N}[\forall x \in X[h^n(x) \neq x]]$$

と仮定すると、任意の $n \in \mathbb{N}, x \in X$ について、 $x, h(x), h^2(x), \dots, h^n(x)$ は互いに異なる値となる。つまり、 $h: X \to X$ より、X に無限個の元が存在することになってしまい、矛盾。よって、

$$\exists n \in \mathbb{N}[\exists x \in X[h^n(x) = x]]$$

6.4

たとえば、 $y = \frac{d-c}{b-a}x + \frac{bc-ad}{b-a}$ は、条件を満たす。

6.5

f は全射かつ単射である。実際、

$$\begin{cases} y=\frac{1}{2}$$
ならば、 $x=0\\ y=\frac{1}{2^n}\quad (n=2,3,\dots) \text{ ならば、} x=4y \end{cases}$ それ以外ならば、 $x=y$

というように、任意の y に関して、f(x) = y となる x がただ一つ存在するので、f は全単射。

以下のように定義された写像 f は条件を満たす。

$$f(x) = \begin{cases} 1, & x = 0\\ \frac{x}{2}, & x = \frac{1}{2^n} (n = 0, 1, 2, \dots)\\ x, & x \neq 0, \frac{1}{2^n} (n = 0, 1, 2, \dots) \end{cases}$$

7 濃度の大小

7.1

- 1. 恒等写像 $1_A:A\to A$ は全単射である。
- $2.~A\sim B$ と仮定すると、全単射の写像 $f:A\to B$ が存在する。ここで、f の逆写像 f^{-1} も全単射である。よって、 $B\sim A$ 。
- $3.~A\sim B$ かつ $B\sim C$ と仮定すると、全単射の写像 $f:A\to B$ と、 $g:B\to C$ が存在する。ここで、 $g\circ f:A\to C$ も全単射である。よって、 $A\sim C$ 。

7.2

 $F(A \times B, C)$ の元である写像 $f: A \times B \to C$ が与えられた時、F(A, F(B, C)) の元である写像 $g: A \to F(B, C)$ を以下のように定義することで対応させるとする。

$$(g(a))(b) = f(a, b)$$

このとき、任意の $g:A\to F(B,C)$ に対して、対応する $f:A\times B\to C$ がただ一つ存在する。実際、任意の g に対して、f(a,b)=(g(a))(b) という $f:A\times B\to C$ がただ一つ存在する。よって、 $F(A\times B,C)$ の元と F(A,F(B,C)) の元が一対一に対応付けできた。以上より、 $F(A\times B,C)\sim F(A,F(B,C))$ が示された。

7.3

- $1. \ A \sim A' \$ かつ $B \sim B' \$ と仮定すると、全単射の写像 $f_1: A \to A' \$ と $f_2: B \to B' \$ が存在する。今 $g: A \times B \to A' \times B' \$ を $g(a,b) = (f_1(a),f_2(b)) \$ として定義すれば、これは全単射の写像である。 また、 $h_1 \in F(A,B)$ に対して、 $h_2(a') = f_2(h_1(f_1^{-1}(a')))$ として定義された $h_2 \in F(A',B')$ を対応づけるとする。このとき、任意の $h_2 \in F(A',B')$ に対して、 $h_1 \in F(A,B)$ がただ一つ存在する。実際、任意の h_2 に対して、 $h_1(a) = f_2^{-1}(h_2(f_1(a)))$ という $h_1 \in F(A',B')$ がただ一つ存在している。以上より、 $F(A,B) \sim F(A',B')$ が示された。
- 2. $A \sim B$ と仮定すると、全単射の写像 $f: A \to B$ が存在する。今、 $g: \mathfrak{P}(A) \to \mathfrak{P}(B)$ を、

$$g(A') = \{b \in B | a \in A'$$
かつ $b = f(a)\}$

と定義する(ここで $A'\subset A$)。このとき、g は全単射である。実際、逆写像 g^{-1} が以下のように定義できる。

$$q^{-1}(B') = \{a \in A | b \in B'$$
かつ $b = f(a)\}$

1. 関数 f(n) は自然数から偶数への全単射の写像。よって、偶数全体の集合は可算集合。

$$f(n) = egin{cases} -n+1 & & (n$$
 は奇数) $n & & (n$ は偶数)

2. 関数 f(n) は自然数から奇数への全単射の写像。よって、奇数全体の集合は可算集合。

$$f(n) = egin{cases} n & (n \ \mbox{は奇数}) \ -n+1 & (n \ \mbox{は偶数}) \end{cases}$$

3. 関数 f(n) は自然数から整数への全単射の写像。よって、整数全体の集合は可算集合。

$$f(n) = egin{cases} rac{-n+1}{2} & (n$$
 は奇数) $rac{n}{2} & (n$ は偶数)

4. 以下のように、直積を並べ、順番に 1,2,... と番号を振る。

 $(0,0),(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1),(2,-1),(2,0),(2,1),(2,2),(1,2),(0,2),\dots$ この規則性を図に表すと、図 1 のようになる。このとき、それぞれの点の番号と点の位置の関係は、自然数全体の集合から $\mathbb{N}\times\mathbb{N}$ への全単射の写像になっている。

5.~4 と同様に、直積を順番に考え、今度は (x,y) の代わりに $rac{x}{y}$ として並べる。つまり

$$\frac{0}{0}, \frac{1}{0}, \frac{1}{1}, \frac{0}{1}, \frac{-1}{1}, \frac{-1}{0}, \frac{-1}{-1}, \frac{0}{-1}, \frac{1}{-1}, \frac{2}{-1}, \frac{2}{0}, \frac{2}{1}, \frac{2}{2}, \frac{1}{2}, \frac{2}{2}, \frac{1}{2}, \frac{-2}{2}, \frac{-2}{1}, \frac{-2}{0}, \frac{-2}{-1}, \frac{-2}{-2}, \frac{-1}{-2}, \frac{0}{-2}, \dots$$

ここで、

- (a) 分母が 0 になっているものを削除。
- (b)約分すると同じ値になるものは、後に出現しているものを削除。

という操作をして、並べ直すと、

$$\frac{1}{1}, \frac{0}{1}, \frac{-1}{1}, \frac{2}{-1}, \frac{2}{1}, \frac{1}{2}, \frac{-1}{2}, \dots$$

ここで、それぞれの分数の現れる順番と分数の値の関係は、自然数の集合から有理数全体の集合への全 単射の写像になっている。よって、有理数全体の集合 ① は可算集合。

6. ある集合 A が可算集合とする。このとき、A の無限部分集合 $X(X\subset A)$ について考える。A は可算集合なので、自然数から A への全単射の写像 $f:\mathbb{N}\to A$ が存在する。ここで、A の集合を以下のように並べる。

$$f(1), f(2), f(3), f(4), \dots$$

さらに、この順番を保ちながら、X に含まれていない要素を取り除き、順番に番号を振る。この番号とそれぞれの要素の対応は、自然数の集合から X への全単射になっている。

7.5

 $f: A \to \mathfrak{P}(A)$ が全射とする。

$$X = \{ b \in A | b \notin f(b) \} \tag{7.5.1}$$

とすると、 $X\in\mathfrak{P}(A)$ かつ f が全射なので、f(x)=X となる $x\in A$ が存在する。 もし、 $x\in X$ と仮定すると、x は (7.5.1) の条件を満たすはずなので、 $x\notin X$ となり、矛盾。 もし、 $x\notin X$ と仮定すると、x は (7.5.1) の条件を満たさないはずなので、 $x\in f(x)$ となり、矛盾。 いずれにしても矛盾するので、f は全射ではないことが示された。

7.6

 $\mathfrak{P}(\mathbb{N})$ を次のような三つの部分集合族 P_1,P_2,P_3 に分割する。 \mathbb{N} の有限部分集合の全体を P_1 、 \mathbb{N} の部分集合で補集合が有限集合であるものの全体を P_2 、それ以外の \mathbb{N} の部分集合の全体を P_3 とする。 P_1,P_2 および $P_1\cup P_2$ は加算集合である。実際、 $f_1:\mathbb{N}\to P_1$ を以下のように定義する。

$$f_1(1) = \emptyset$$

$$f_1(2) = \{1\}$$

$$f_1(3) = \{2\}$$

$$f_1(4) = \{1, 2\}$$

$$f_1(5) = \{3\}$$

$$f_1(6) = \{1, 3\}$$

$$f_1(7) = \{2, 3\}$$

$$f_1(8) = \{1, 2, 3\}$$

$$f_1(9) = \{4\}$$

. . .

このとき、 f_1 は全単射になる。

また、 $f_2:\mathbb{N} o P_2$ を $f_2(n)=\mathbb{N}-f_1(n)$ と定義すれば、これは全単射になる。

さらに $g: \mathbb{N} \to P_1 \cup P_2$ を

$$g(n) = egin{cases} f_1(rac{n}{2}) & (n % 関数) \\ f_2(rac{n+1}{2}) & (n % fs数) \end{cases}$$

と定義すれば、これは全単射になる。

 $P_1 \cup P_2 \sim \mathbb{N}$ かつ、 $P_2 \sim \mathbb{N}$ なので、 $P_1 \cup P_2 \sim P_2$ 。 $\mathfrak{P}(\mathbb{N}) = P_1 \cup P_2 \cup P_3$ なので、結局、 $\mathfrak{P}(\mathbb{N}) \sim P_2 \cup P_3$ 。また、I = (0,1] とすると、 $\mathbb{R} \sim I$ であることが 6 章の議論でわかるので、以下では、 $P_2 \cup P_3 \sim I$ を証明する。

今、 $x\in(0,1]$ を $x=0.11010100\dots$ のように 2 進数で表示することにする。ただし、x=0.1 は $x=0.0\dot{1}$ のように、必ず無限小数で表すことにする *2 。

 $h:(0,1]\to P_2\cup P_3$ を以下のように定義する。

 $h(x) = \{n \in \mathbb{N} | x$ を 2 進数表示したときの小数第 n 位が 1 となる $\}$

h は全単射となるので、 $P_2 \cup P_3 \sim I$ が示された *3 。結局、 $\mathfrak{P}(\mathbb{N}) \sim \mathbb{R}$ が示された。

7.7

1.

$$f: \mathbb{Z} \times (0,1] \to \mathbb{R}$$

を

$$f(x,y) = x + y$$

と定義すれば、f は全単射である。よって、 $\mathbb{N} \times \mathbb{R} \sim \mathbb{Z} \times (0,1] \sim \mathbb{R}$ 。

 $2. \mathfrak{P}(A) \sim F(A, \{0,1\})$ である。実際、任意の $X \in \mathfrak{P}(A)$ に対して、

$$f_X(x) = \begin{cases} 1 & (x \in X) \\ 0 & (x \notin X) \end{cases}$$

と定義される $f_X\in F(A,\{0,1\})$ を対応させればこれは全単射になる。よって、 $\mathfrak{P}(A)\sim F(A,\{0,1\})$ がわかる。

また、問 7.2 により、 $F(A \times B, C) \sim F(A, F(B, C))$ である。以上より、

$$F(\mathbb{R}, \mathbb{R}) \sim F(\mathbb{R}, \mathfrak{P}(\mathbb{N}))$$

$$\sim F(\mathbb{R}, F(\mathbb{N}, \{0, 1\}))$$

$$\sim F(\mathbb{R} \times \mathbb{N}, \{0, 1\})$$

$$\sim F(\mathbb{R}, \{0, 1\})$$

$$\sim \mathfrak{P}(\mathbb{R})$$

7.8

実数値連続関数 f_1, f_2 が任意の $x \in \mathbb{Q}$ で $f_1(x) = f_2(x)$ ならば、 f_1 と f_2 は同一である。よって、実数値連続関数全体の集合と $F(\mathbb{Q}, \mathbb{R})$ は濃度が等しい。

問 7.4 より、 $\mathbb{Q} \sim \mathbb{N}$ かつ $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$ なので、 $\mathbb{Q} \times \mathbb{N} \sim \mathbb{N}$ である。

$$\begin{split} F(\mathbb{Q},\mathbb{R}) &\sim F(\mathbb{Q},\mathfrak{P}(\mathbb{N})) \\ &\sim F(\mathbb{Q},F(\mathbb{N},\{0,1\})) \\ &\sim F(\mathbb{Q}\times\mathbb{N},\{0,1\}) \\ &\sim F(\mathbb{N},\{0,1\}) \\ &\sim \mathfrak{P}(\mathbb{N}) \\ &\sim \mathbb{R} \end{split}$$

 $^{^{*2}}$ 任意の $x \in (0,1]$ が、この無限小数の形式で一意に表現できることは、証明すべきことだと思う。ここでは省略する。

 $^{^{*3}}$ h(x) が無限集合なので、 $P_1 \cup P_2 \cup P_3$ でなく、 $P_2 \cup P_3$ を考える必要があった。

整数係数の多項式

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \quad (n \ge 1, a_n \ne 0)$$

に対して、

$$H(f) = n + |a_0| + |a_1| + \dots + |a_n|$$

とおく。H(f) は 2 以上の自然数である。今、自然数 $h\geq 2$ に対して、整数係数の多項式の集合 F_h を

$$F_h = \{f | H(f) = h\}$$

と定義する。 F_h は有限集合である。また、n 次多項式の根は高々 n 個なので、 F_h に属する多項式の根となるような複素数の集合も有限集合である。つまり、 $h\geq 2$ に対して、 F_h に属する多項式の根を一列に並べることができる *4 。以上の議論より、任意の代数的数に対して、自然数 $n\in\mathbb{N}$ を対応させる全単射の写像を作ることができることがわかる。よって、代数的数全体の集合は可算集合である。

7.10

z を整数係数の多項式 f(x) の根とする。よって、

$$f(z) = 0$$

p を自然数とすれば

$$f(px) = a_0 + a_1px + a_2p^2x^2 + \dots + a_np^nx^n$$

は整数係数の多項式になり、 $\frac{z}{p}$ は f(px) の根である。したがって、 α をある超越数とすれば、全ての自然数 p に対して $p\alpha$ も超越数であることがわかる *5 。代数的数であるような実数の全体は可算集合であり、実数全体の集合 $\mathbb R$ は非可算であるから、超越数の存在がわかる。その一つを α とする。 $\mathbb R$ を次のような三つの部分集合 A_1,A_2,A_3 に分割する。代数的数であるような実数の全体を A_1 とする。

$$A_2 = \{p\alpha | p \in \mathbb{N}\}$$

とする。 A_1, A_2 に属さない実数の全体を A_3 とする。

 $A_2 \cup A_3$ は超越数全体の集合である。 A_1 は問 7.9 で証明したように加算集合である。

$$g_1(n) = \alpha n$$

という関数 $g_1:\mathbb{N}\to A_2$ が全単射になるので、 A_2 は加算集合である。 $g_2:\mathbb{N}\to A_1$ を全単射の写像とすると、

$$h(n) = egin{cases} g_1(rac{n+1}{2}) & (n \ extit{n}$$
 奇数) $g_2(rac{n}{2}) & (n \ extit{n}$ (加 が偶数)

という写像 $h:\mathbb{N}\to A_1\cup A_2$ が全単射になるので、 $A_1\cup A_2$ も可算集合である。特に、 $A_1\cup A_2\sim A_2$ となる。よって、 $\mathbb{R}=A_1\cup A_2\cup A_3\sim A_2\cup A_3$ 。

 $^{^{*4}}$ たとえば、複素数の実部で昇順に並べて、そのあと虚部で昇順に並べるなどの方法が考えられる

 $^{^{*5}}$ plpha が超越数でない、つまり代数的数であると仮定すると、lpha も代数的数であることになってしまい矛盾。

8 二項関係

- 1. $G(\rho_1) = \{(x,y)|x \ge 0, y \ge 0\}$ について
 - (a) 反射律 満たさない
 - x=-1 のとき、 $x
 ho_1 x$ を満たさない。 (b)対称律 満たす
 - $x\geq 0, y\geq 0$ ならば、 $y\geq 0, x\geq 0$ である。
 - (c) 推移律 満たす x > 0 y > 0 かつ y > 0 ならば x > 0 である
 - $x\geq 0, y\geq 0$ かつ $y\geq 0, z\geq 0$ ならば $x\geq 0, z\geq 0$ である。 (d) 反対称律 満たさない
 - x=1,y=2 のとき、 $x\geq 0,y\geq 0$ かつ $y\geq 0,x\geq 0$ だが、 $x\neq y$ 。
- 2. $G(\rho_2) = \{(x,y) | x \leq y \}$ について
 - (a) 反射律 満たす $x \le x$ である。
 - (b) 対称律 満たさない x=1,y=2 のとき、 $x\leq y$ だが、 $y\leq x$ でない。
 - (c) 推移律 満たす $x \le y$ かつ $y \le z$ ならば、 $x \le z$ 。
 - (d)反対称律 満たす $x \le y$ かつ $y \le x$ ならば x = y である。
- $G(\rho_3)=\{(x,y)|(x-y)(x+y-1)=0\}$ について f(x,y)=(x-y)(x+y-1) とおく。
 - (a) 反射律 満たす x-x=0 なので f(x,x)=0 である。
 - x-x=0 なので f(x,x)=0 である。 (b) 対称律 満たす
 - f(x,y)=0 のとき、 f(y,x)=(y-x)(y+x-1)=-f(x,y)=0。 (c) 推移律 満たす

$$f(x,y) = 0$$
 と $f(y,z) = 0$ を仮定する。

i.
$$x - y = 0, y - z = 0$$
 のとき

$$x-z=0$$
 となるので、 $f(x,z)=0$ 。

ii.
$$x-y=0, y+z-1=0$$
 のとき
$$x+z-1=0$$
 となるので、 $f(x,z)=0$ 。

iii.
$$x + y - 1 = 0, y - z = 0$$
 のとき

$$x+z-1=0$$
 とのあるので、 $f(x,z)=0$ 。

iv.
$$x + y - 1 = 0, y + z - 1 = 0$$
 のとき

- x-z=0 となるので、f(x,z)=0。
- (d)反対称律 満たさない

$$x=0.7,y=0.3$$
 のとき、 $f(x,y)=0$ かつ $f(y,x)=0$ だが、 $x\neq y$ 。

4.
$$G(\rho_4) = \{(x,y)|(x-y)(x-y+1)(x-y-1)=0\}$$
 について $g(x,y) = (x-y)(x-y+1)(x-y-1)$ とおく。

(a) 反射律 満たす

$$x-x=0$$
 なので $g(x,x)=0$ 。

(b)対称律 満たす

(c)推移律 満たさない

$$x = 2, y = 1, z = 0$$
 のとき、 $g(x, y) = 0$ かつ $g(y, z) = 0$ だが、 $g(x, z) \neq 0$ 。

(d)反対称律 満たさない

$$x=2,y=1$$
 のとき、 $g(x,y)=0$ かつ $g(y,x)=0$ だが、 $x\neq y$ 。

8.2

定義より、 $A\rho B \iff (A-B) \cup (B-A)$ が有限集合。

1. 反射律

$$A-A=\emptyset$$
 なので、 $A\rho A$ 。

2. 対称律

$$(A-B)\cup (B-A)=(B-A)\cup (A-B)$$
 なので、 $A\rho B$ ならば $B\rho A_{\bullet}$

3. 推移律

$$(A-B) \cup (B-A) = X, (B-C) \cup (C-B) = Y$$
 が有限集合とする。

$$(A-C)\cup(C-A)=\{x|(x\in A \text{ かつ }x\notin C)\text{ または }(x\in C \text{ かつ }x\notin A)\}$$

$$=\{x|(x\in A \text{ かつ }x\in B \text{ かつ }x\notin C)\text{ または }(x\in A \text{ かつ }x\notin B \text{ かつ }x\notin C)\text{ または }(x\in C \text{ かつ }x\notin B \text{ かつ }x\notin A)\}$$

$$(x\in C \text{ かつ }x\in B \text{ かつ }x\notin A)\text{ または }(x\in C \text{ かつ }x\notin B \text{ かつ }x\notin A)\}$$

$$\subset\{x|(x\in B \text{ かつ }x\notin C)\text{ または }(x\in A \text{ かつ }x\notin B)\text{ または }(x\in B \text{ かつ }x\notin A)\text{ または }(x\in C \text{ かつ }x\notin B)\}$$

$$=\{x|x\in X\text{ または }x\in Y\}$$

よって、 $(A-C) \cup (C-A)$ も有限集合

 $= X \cup Y$

8.3

1. 反射律

$$\forall x \in X[f(x) = f(x)]$$

2. 対称律

$$\forall x, y \in X[f(x) = f(y) \Longrightarrow f(y) = f(x)]$$

3. 推移律

$$\forall x,y,z \in X[f(x)=f(y)$$
 かつ $f(y)=f(z) \Longrightarrow f(x)=f(z)]$

よって、 $G(\rho)$ は反射律、対称律、推移律を満たす。

今、 $C(x)=\{a\in X|f(a)=f(x)\}$ なので、 $\forall a\in C(x)[f(a)=f(x)]$ 。よって、g(C(x))=f(x) とすれば、関数 $g:X/\rho\to Y_1$ が一意に定義できる。

g は全射である。実際、 $f(X)=\{f(x)\in Y|x\in X\}=Y_1$ だから、任意の $y\in Y_1$ に対して、f(x)=y となる x が存在する。よって、任意の $y\in Y_1$ に対して、g(C(x))=y となる $C(x)\neq\emptyset$ が存在する。

g は単射である。実際、g(A)=g(B)=f(x) とすると、 $x\in A$ かつ $x\in B$ となる。 A と B が交わっているので、A=B。

8.4

図 2、図 3、図 4、図 5 がそれぞれ答え。

図2 反射律と対称律を満足するもの

図3 反射律と推移律を満足するもの

図 4 対称律と推移律を満足するもの

図 5 同値関係であるもの

 $\mathfrak{P}(A)$ の任意の部分集合 \mathfrak{U} に対して、

$$\inf\mathfrak{U}=\bigcap(E|E\in\mathfrak{U})$$

$$\sup\mathfrak{U}=\bigcup(E|E\in\mathfrak{U})$$

と定義すれば、確かに

$$\forall B\in \mathfrak{U}[\inf \mathfrak{U}\subset B]$$

$$\forall B\in\mathfrak{U}[B\subset\sup\mathfrak{U}]$$

が成り立つ。

5 元束と6 元束については、巻末の解答を参照。7 元束は図6 のように53 種類考えられる *6 。

図6 7元束

8.7

 $\mathfrak{U}=\{A\in X|A\subset \varphi(A)\}$ とする。 $\emptyset\subset \varphi(\emptyset)$ なので、 \mathfrak{U} は空集合にはならない。 $E_0=\bigcup (A|A\in \mathfrak{U})$ とおけば、 $\forall A\in \mathfrak{U}[A\subset \varphi(A)\subset \varphi(E_0)]$ なので、 $E_0\subset \varphi(E_0)$ である。 $E_0\subsetneq \varphi(E_0)$ とすると、 $\varphi(E_0)\in \mathfrak{U}$ であることに矛盾。よって、 $E_0=\varphi(E_0)$ である。

 $^{^{*6}}$ 点の色に特別に意味はない。場合分けの際にわかりやすくするために色付けした。