DIGITAL ELECTRONIC CIRCUITS LAB EXPERIMENT 10

Utkarsh Patel (18EC30048)

Objective

• To implement a (4×4) bit serial parallel multiplier

Required Components

S. No.	Component	Use
1	IC 7495	It is a 4 – bit shift register. Required for getting each bit of
		multiplier one at a time from LSB to MSB.
2	IC 7483	It is a 4 – bit adder. Two of them are required in this
		experiment to design 8 – bit adder.
3	IC 74273	It is an 8 – bit positive edge triggered DFF with active low MR.
		It is required to store the current partial sum.

Circuit Diagram

Fig 1. Circuit designed for the experiment

Discussion

- 1. In this experiment, a (4×4) bit serial parallel multiplier is to be designed.
- 2. Let $A = a_3 a_2 a_1 a_0$ be the multiplicand and $B = b_3 b_2 b_1 b_0$ be the multiplier. The standard multiplication algorithm is used in this experiment. Let $P = p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0$ be the required product. Then, it is known that $P = 2^3 P P_3 + 2^2 P P_2 + 2^1 P P_1 + 2^0 P P_0$ where $P P_i = A * b_i$ is the partial product. Multiplying by powers of 2 simply left shifts the given partial product.
- 3. **Algorithm used:** For computing the final product, we need to compute the partial products first. We designed an 8 bit adder that computes $Z = \frac{1}{2}(X + Y)$, and instead of realizing PP_i , we computed 2^4PP_i , $i = 0 \dots 3$. The algorithm is as follows:

```
\begin{split} Z &:= 0, i \coloneqq 0 \\ LOOP \\ X &\coloneqq 2^4 PP_i; \ Z \coloneqq \frac{1}{2}(Z+X); \ i \coloneqq i+1; \\ UNTIL(i < 4) \end{split}
```

When the loop terminates, it is easy to observe that Z = P.

4. SIMULATION

- The multiplier $B = b_3b_2b_1b_0$ is fed to IC 7495 by connecting b_3, b_2, b_1, b_0 to D_0, D_1, D_2, D_3 respectively and S is set to low, and a manual clock is provided and then S is set to high again. Doing this we will have $Q_0Q_1Q_2Q_3 = b_3b_2b_1b_0$, Q_0 is the MSB here, and Q_3 is the LSB.
- o For computing the partial products, S must be set to low all the times. The required bit of multiplier can be accessed from Q_3 terminal. We then apply a manual clock pulse. During the 1-0 transition, $Q_0Q_1Q_2Q_3$ becomes $D_sQ_0Q_1Q_2$. As D_s is set to logic low, this operation is a right shift. This 1-0 transition is basically a 0-1 transition for IC 74273 (as 3 inverters are placed in its path, it is also done to generate a delay for the proper operation) and then it performs the operation for the given iteration as specified in the algorithm.
- o After 4 such operations, the required product will be computed.