

The Universal and Diagonalization Languages Chapter 5: Undecidability

Prof. Riddhi Atulkumar Mehta Assistant Professor Department of Computer Science and Engineering

Parul® University

Content

1.	Learning Objectives	1
2.	The Universal Language Lu	2
	Properties of Lu	
4.	Diagonalization Language Ld	.4
	Diagonalization: The Idea	
6.	Summary of Languages	6
	Applications	

Learning Objectives

By the end of this lecture, you should be able to:

- Define the universal language LuL u
- Define the diagonalization language LdL d
- Understand the concepts of encoding, simulation, and self-reference
- Use diagonalization to prove undecidability

The Universal Language Lu

Definition:

- Lu={(M,w)|M is a TM and M accepts w}
- It contains all encodings of TMs and inputs such that the machine accepts the input.
- Captures the behavior of any TM on any input.

Properties of Lu

- Recursively Enumerable (RE):
 - There exists a TM (UTM) that accepts all strings in Lu
- Not Recursive (Decidable):
 - There is no TM that can decide for *every* input whether it's in Lu.
- The Halting Problem is reducible to Lu

Diagonalization Language Ld

Definition:

- Ld={(M)|M is a TM and M does not accept (M)}
- Think of M being run on its own description.
- Ld contains all TMs that do NOT accept themselves.

Diagonalization: The Idea

- Inspired by Cantor's diagonal argument
- Show that Ld is not recursively enumerable (not RE)
- Suppose Ld is RE
 - There is a TM D accepting it
 - Ask: Does D accept (D)?
 - Leads to contradiction

Parul® University

Summary of Languages

Language	Definition	RE?	Recursive?
L_u	$\langle M,w angle$ where $M(w)$ accepts	✓ Yes	× No
L_d	$\langle M angle$ where M does not accept $\langle M angle$	× No	× No

Applications

Forms the basis for:

- The Halting Problem
- Rice's Theorem
- Proving undecidability of other decision problems
- Foundational for complexity theory and logic

https://paruluniversity.ac.in/

