Práctica 10

Capa de Enlace - Parte I

- 1. ¿Qué función cumple la capa de enlace? Indique qué servicios presta esta capa.
- 2. Compare los servicios de la capa de enlace con los de la capa de transporte.
- 3. Direccionamiento Ethernet:
 - ¿Cómo se identifican dos máquinas en una red Ethernet?
 - ¿Cómo se llaman y qué características poseen estas direcciones?
 - ¿Cuál es la dirección de broadcast en capa de enlace? ¿Qué función cumple?
- 4. Sobre los dispositivos de capa de enlace:
 - Enumere dispositivos de capa de enlace y explique sus diferencias.
 - ¿Qué es una colisión?
 - ¿Qué dispositivos dividen dominios de broadcast?
 - ¿Qué dispositivos dividen dominios de colisión?
- 5. Describa el algoritmo de acceso al medio en Ethernet. ¿Es orientado a la conexión?
- 6. Investigue los comandos *arp* e *ip neigh*. Inicie una topología con CORE, cree una máquina y utilice en ella los comandos anteriores para:
 - Listar las entradas en la tabla ARP.
 - Borrar una entrada en la tabla de ARP.
 - Agregar una entrada estática en la tabla de ARP.
- 7. Dado el siguiente esquema de red, responda:

Página 1 de 3

- a. Suponiendo que las tablas de los switches están llenas con la información correcta, responda quién escucha el mensaje si:
 - i. La estación 1 envía una trama al servidor 1.
 - ii. La estación 1 envía una trama a la estación 11.
 - iii. La estación 1 envía una trama a la estación 9.
 - iv. La estación 4 envía una trama a la MAC de broadcast.
 - v. La estación 6 envía una trama a la estación 7.
 - vi. La estación 6 envía una trama a la estación 10.
- b. ¿En qué situaciones se pueden producir colisiones?
- 8. Utilizando la máquina virtual provista por la cátedra, arme una red como la siguiente, con un segmento de LAN usando un HUB y otro segmento de LAN usando un SWITCH:

- a. Observar las diferencias en el funcionamiento de un hub y de un switch realizando las siguientes tareas:
 - i. Envíe un ping desde la PC1_HUB a PC2_HUB y monitoree el tráfico en PC3_HUB (botón derecho ->Tcpdump ->eth0) ¿Se pueden ver los pings?
 - ii. Envíe un ping desde la PC1_SW a PC2_SW y monitoree el tráfico en la PC3_SW (botón derecho ->Tcpdump ->eth0) ¿Se pueden ver los pings? ¿En PC3 HUB debería poder ver algo?
- 9. ¿Cuál es la finalidad del protocolo ARP?
- 10. Usando la topología anterior:
 - a. Analizar el protocolo ARP y su encapsulamiento Ethernet:
 - i. Visualice la dirección IP y la dirección MAC de la interface de red de PC1_HUB.
 - ii. Obtenga las entradas cargadas en la tabla ARP en PC1 HUB.
 - iii. Monitoree el tráfico ARP en PC3_HUB ejecutando **tcpdump -n -e -i eth0 -p arp** o con botón derecho ->Tcpdump ->eth0.

- iv. Envíe un ping desde PC1_HUB a PC2_HUB y vuelva a observar la tabla ARP de PC1_HUB.
- v. Analice la información capturada en PC3_HUB a fin de observar la información tanto del ARP REQUEST y del ARP REPLY como la información de la trama Ethernet que los encapsula.
- b. Analizar el protocolo ICMP y su encapsulamiento IP y Ethernet:
 - i. Envíe un ping desde PC1_HUB a PC2_HUB.
 - ii. Monitoree el tráfico ICMP en PC3_HUB ejecutando **tcpdump -n -e -i eth0 -p icmp** o con botón derecho ->Tcpdump ->eth0.
 - iii. Analice la información capturada en PC3_HUB a fin de observar la información de capa 2 y capa 3 que encapsulan el ICMP ECHO REQUEST y el ICMP ECHO REPLY.
 - Capa 2 (Ethernet): MAC origen / MAC destino.
 - Capa 3 (IP): IP origen / IP destino.

c. Conclusiones.

- i. Borre todas las entradas de la tabla ARP de PC1_HUB.
- ii. Desde PC1_HUB con la tabla ARP vacía, haga un ping a PC2_SW. En base a lo observado previamente, ¿cuáles de los paquetes ARP e ICMP se deberían poder observar en PC3_SW?