Exercise sheet for Algebraic Topology II Week 8

Lennart Meier

March 27, 2019

Below you are already allowed to use the main result of this lecture, namely that the morphism

$$[X,Y]^{\bullet} \to \widetilde{H}^n(X;Z), \qquad f \mapsto f^* \iota_n$$

is an isomorphism for X a CW-complex, Y a $K(\mathbb{Z}, n)$ and ι_n a generator of $\widetilde{H}^n(K(\mathbb{Z}, n); \mathbb{Z}) \cong \mathbb{Z}$.

Exercise 1. Show the existence of a map $\mathbb{RP}^{\infty} \to \mathbb{CP}^{\infty} = K(\mathbb{Z}, 2)$, which induces the trivial map on $\widetilde{H}_*(-;\mathbb{Z})$, but a non-trivial map on $\widetilde{H}^*(-;\mathbb{Z})$. How is this compatible with the universal coefficient sequence?

- **Exercise 2.** (a) Let *Y* be a path-connected H-group and *X* be an arbitrary pointed space. Show that the map $[X,Y]^{\bullet} \rightarrow [X,Y]$ is a bijection.
 - (b) Let X be a CW-complex and Y be a K(A, n) for an abelian group A. Deduce that [X, Y] is naturally isomorphic to $H^n(X; A)$.

Exercise 3 (Homework). Let *X* be an *n*-dimensional CW-complex. Show that $H^n(X; \mathbb{Z}) \cong [X, S^n]$ for $n \geq 1$.

Exercise 4 (Homework). Let $p: E \to B$ be a Serre fibration. Denote for $b \in B$ by F_b the fiber $p^{-1}(b)$.

(a) Define for every path $\gamma : e_0 \leadsto e_1$ in E a natural map

$$\pi_n(F_{p(e_0)}, e_0) \to \pi_n(F_{p(e_1)}, e_1).$$

Show how this behaves with respect to composition of paths.

- (b) Assume that B is path connected and that the fibers F_{b_0} and F_{b_1} are path-connected for $b_0, b_1 \in B$. Then the homotopy groups of F_{b_0} and F_{b_1} are isomorphic.
- (c) Choose $b_0 \in B$ and specialize to $E = W(\{b_0\} \hookrightarrow E)$ so that $F_{b_0} = \Omega B$. Show that this gives rise to an action of $\pi_1(B, b_0)$ on $\pi_n(B, b_0)$. Identify this action for n = 1.