IC Design Flow

Example:

```
module mux2_1( b, a, c, sel);
input a, c, sel;
output b;

wire sel;
wire [3:0] a, b, c;

assign b= (sel == 1)? a : c;
endmodule
```


Specification

Figure A.2 Specification

High-level design

Figure A.3 High-level design

Low-level design

Figure A.4 Low-level design

RTL coding

```
//Clock
module processor (clk,
                reset
                         //Reset
                inputs;
                outputs);
     input clk;
     input reset;
     input inputs;
     output outputs
     controller
                      proc_ctrl(clk, reset, signals)
     datapath
                      proc_dp(clk, reset, signals)
     registerfile
                      proc_rf(clk, reset, signals)
     interfaces
                      proc_if(clk, reset, signals)
endmodule
```

Simulation

Figure A.5 Simulation

Synthesis

Figure A.6 Synthesis

Placement and routing

Figure A.7 Placement and routing

What is Verilog HDL?

- Hardware description language
- Mixed level modeling
 - Behavioral
 - Algorithmic
 - Register transfer
 - Structural
 - Gate
 - Switch
- Single language for design and simulation
- Built-in primitives and logic functions
- User-defined primitives
- Built-in data types
- High-level programming constructs

