《微积分A1》第十九讲

教师 杨利军

清华大学数学科学系

2020年11月18日

任意分割的 Darboux 下和 < 任意分割的 Darboux 上和

Lemma

<u>引理三</u>:设 P_1 和 P_2 为[a,b]的任意两个分割,则 $L_{P_1} \leq U_{P_2}$.

Proof.

证明: 记 $P = P_1 \cup P_2$, 即 P 为分割 P_1 和 P_2 分点的合并, 则 P

既是 P_1 又是 P_2 的加密分割. 根据引理二可知

$$L_{P_1} \leq L_P \leq U_P \leq U_{P_2}.$$

证毕.

Darboux 上积分与 Darboux 下积分

设 f(x) 是 [a,b] 上的有界函数, 即 $m \le f(x) \le M$, $\forall x \in [a,b]$, 则对 [a,b] 的任何分割 P, $m(b-a) \le L_P \le U_P \le M(b-a)$.

Definition

定义: 分别称

$$\int_{a}^{b} f(x) dx \stackrel{\triangle}{=} \inf \{ U_{P} \} \quad \not = \quad \int_{a}^{b} f(x) dx \stackrel{\triangle}{=} \sup \{ L_{P} \}$$

为有界函数 f(x) 在 [a,b] 上的 Darboux 上积分和下积分.

显然对 [a,b] 的任意分割 P,

$$L_P \leq \int_a^b \! f(x) dx \leq \int_a^{\overline{b}} \! f(x) dx \leq U_P.$$

Darboux 引理

Lemma

引理:设f为[a,b]上的有界函数,则

$$\underset{\|P\|\rightarrow 0}{\text{lim}}\, U_P = \, \int_a^{\bar b} \! f(x) dx, \quad \underset{\|P\|\rightarrow 0}{\text{lim}}\, L_P = \, \underline{\int}_a^b \! f(x) dx.$$

证明:只证第一个等式. 第二个等式的证明类似. 要证第一个等式, 即要证对任意 $\varepsilon>0$, 存在 $\delta>0$, 使得

$$\forall \, \mathsf{P} : \|\mathsf{P}\| < \delta, \quad 0 \leq \mathsf{U}_\mathsf{P} - \int_\mathsf{a}^\mathsf{b} \mathsf{f}(\mathsf{x}) \mathsf{d}\mathsf{x} < \varepsilon.$$

证明,续一

由 Darboux 上积分的定义知, 任意 $\varepsilon > 0$, 存在分割 P_0 , 使得 $U_{P_0} < \int_a^b f(x) dx + \varepsilon$. 设分割 P_0 有 k 个内分点 (除去两个端点的分点), 则对任意分割 P, 作加密分割 $P' = P \cup P_0$, 即分割 P' 可看作在分割 P 中再添加至多 k 个新分点所得到的分割. 由加密分割的性质可知

$$\begin{split} &U_{P'} \leq U_P \leq U_{P'} + k\omega \|P\| \quad \mathbb{H} \quad U_{P'} \leq U_{P_0} \\ \\ \Rightarrow \quad &0 \leq U_P - \int_a^{\overline{b}} f(x) dx \leq U_{P'} + k\omega \|P\| - \int_a^{\overline{b}} f(x) dx \\ \\ &\leq U_{P_0} - \int_a^{\overline{b}} f(x) dx + k\omega \|P\| < \varepsilon + k\omega \|P\| < 2\varepsilon, \end{split}$$

证明,续二

最后一个不等式成立, 只要分割 $\|P\| < \frac{\varepsilon}{1+k\omega}$ 即可, 其中 ω 表示 f(x) 在区间 [a,b] 上的振幅, 即 $\omega = M-m$, $m \le f(x) \le M$, $\forall x \in [a,b]$. 证毕.

Darboux 可积性定理

$\mathsf{Theorem}$

定理:设f(x)为[a,b]上的有界函数,则下述条件等价

- (i) f 在 [a, b] 上可积;
- (ii) 对任意 $\varepsilon > 0$, 存在分割 P, 使得 Up Lp $< \varepsilon$;
- (iii) $\underline{\int}_a^b f(x) dx = \overline{\int}_a^b f(x) dx$.
- 以下证(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).
- (i) \Rightarrow (ii): 设 f 在 [a,b] 上可积. 记 J = $\int_a^b f(x) dx$. 根据可积定义知对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得

证明,续一

$$\left|\sum_{i=1}^n f(\xi_i) \triangle x_i - J\right| < \frac{\varepsilon}{3}, \quad \forall P: \|P\| < \delta, \quad \forall \xi = \{\xi_i\}.$$

于上式中关于样点集ξ分别取上确界和下确界就得到

$$|U_P - J| \le \varepsilon/3$$
 以及 $|L_P - J| \le \varepsilon/3$. 于是

$$0 \leq U_P - L_P = U_P - J - (L_P - J)$$

$$|\leq |\mathsf{U}_\mathsf{P} - \mathsf{J}| + |\mathsf{L}_\mathsf{P} - \mathsf{J}| \leq rac{arepsilon}{3} + rac{arepsilon}{3} < arepsilon.$$

即条件(ii)成立.

证明,续二

(ii) \Rightarrow (iii): 假设条件 (ii) 成立, 即对任意 $\varepsilon > 0$, 存在分割 P, 使 得 $U_P - L_P < \varepsilon$, 则根据定义得

$$0 \le \int_a^{\bar{b}} f(x) dx - \int_a^b f(x) dx \le U_P - L_P < \varepsilon.$$

由 $\varepsilon > 0$ 的任意性知 $\int_a^b f(x) dx = \int_a^b f(x) dx$, 即条件 (iii) 成立.

(iii) \Rightarrow (i): 假设条件 (iii) 成立, 即 $\int_a^b f(x) dx = \int_a^b f(x) dx$, 要证 f 可积.

证明,续三

记 Darboux 上积分与 Darboux 下积分的共同值为 J. 对任意分割 P, 以及任意样点集 $\xi = \{\xi_i\}$, 显然成立

$$L_P \leq \sum_{i=1}^n f(\xi_i) \triangle x_i \leq U_P. \quad (*)$$

由 Darboux 定理知当 $\|P\| \to 0$ 时, $U_P \to \int_a^b f(x) dx = J$,以及 $L_P \to \int_a^b f(x) dx = J$.于不等式 (*) 中关于 $\|P\| \to 0$ 取极限,并根据极限的两边夹法则即得

$$\lim_{\|P\|\to 0}\sum_{i=1}^n f(\xi_i)\triangle x_i=J.$$

即条件(i)成立. 定理得证.

Dirichlet 函数不可积

例: Dirichlet 函数 D(x) 在任何闭区间 [a, b] 上不可积, 其中

$$D(x) = \left\{ \begin{array}{ll} 1, & x \ \text{\mathcal{T}} \ \text{x} \ \text{\mathcal{T}} \ \text{$\mathcal{T$$

 $\underline{u \oplus n}$: 对 [a,b] 的任意分割 $P: a = x_0 < x_1 < \cdots < x_n = b$,

$$M_i=\sup\{D(x), x\in [x_{i-1},x_i]\}=1,$$

$$m_i = \inf\{D(x), x \in [x_{i-1}, x_i]\} = 0,$$

其中 $i = 1, 2, \dots, n$. 于是

Dirichlet 函数不可积, 续

$$\begin{split} U_P &= \sum_{i=1}^n M_i \triangle x_i = \sum_{i=1}^n \triangle x_i = b - a, \\ L_P &= \sum_{i=1}^n m_i \triangle x_i = 0. \\ \Rightarrow & \int_a^b D(x) dx = inf\{U_P\} = b - a, \\ \int_a^b D(x) dx = sup\{L_P\} = 0. \end{split}$$

根据 Darboux 可积性定理知 Dirichlet 函数 D(x) 在任意有界闭区间 [a,b] 上不可积. 证毕.

函数的一致连续性

Definition

定义: 区间 J 上的函数 f(x) 称为在 J 上一致连续 (uniformly continuous), 如果对任意 $\varepsilon > 0$, 存在 $\delta = \delta_{\varepsilon} > 0$ (δ 仅与 ε 有 关), 使得只要 $|x - x'| < \delta$, $\forall x, x' \in J$, 就有 $|f(x) - f(x')| < \varepsilon$.

显然若函数 f(x) 在区间 J 上一致连续,则 f(x) 在区间 J 上处处连续. 反之不然. 请看下例.

函数 $\frac{1}{x}$ 在(0,1)上非一致连续

Example

例: 函数 $\frac{1}{x}$ 在 (0,1) 上非一致连续.

证明: 反证. 假设 $\frac{1}{x}$ 在(0,1)上一致连续,则对于 $\varepsilon_0 = \frac{1}{2}$,存在

$$\delta_0>0$$
, 使得当 $|\mathsf{x}-\mathsf{x}'|<\delta_0$, $orall \mathsf{x},\mathsf{x}'\in(0,1)$, 就有 $|rac{1}{\mathsf{x}}-rac{1}{\mathsf{x}'}|<rac{1}{2}.$

取 $x_k = \frac{1}{k}$, 由于 $|x_k - x_{k+1}| = \frac{1}{k(k+1)} < \frac{1}{k^2} < \delta_0$, 只要 k 充分大,

故

$$\left|\frac{1}{\mathsf{x}_{\mathsf{k}}} - \frac{1}{\mathsf{x}_{\mathsf{k}+1}}\right| = |\mathsf{k} - \mathsf{k} - 1| = 1 > \frac{1}{2} = \varepsilon_0.$$

这就得到一个矛盾. 证毕.

非一致连续性的充要条件

Lemma

<u>引理</u>:设 f(x) 为在区间 J 定义的函数,则 f(x) 在 J 上非一致连续,当且仅当存在 $\varepsilon_0 > 0$,以及存在 $x_n, x_n' \in J$,使得

$$|\mathsf{x}_\mathsf{n} - \mathsf{x}_\mathsf{n}'| < \frac{1}{\mathsf{n}}, \quad \text{if} \quad |\mathsf{f}(\mathsf{x}_\mathsf{n}) - \mathsf{f}(\mathsf{x}_\mathsf{n}')| \ge \varepsilon_0, \quad \forall \mathsf{n} \ge 1.$$

证明

Proof.

证明: 依定义 f 在区间 J 上一致连续 \iff 对任给 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $|x - x'| < \delta$, $\forall x, x' \in J$, 就有 $|f(x) - f(x')| < \varepsilon$. 因此 f 在区间 J 上非一致连续 \iff 存在 $\varepsilon_0 > 0$, 对任给 $\delta > 0$, 存在 $x_\delta, x'_\delta \in J$, $|x_\delta - x'_\delta| < \delta$, 使得 $|f(x_\delta) - f(x'_\delta)| \ge \varepsilon_0$. 因此, 如果取 $\delta = \frac{1}{n}$, 则存在 $x_n, x'_n \in J$, $|x_n - x'_n| < \frac{1}{n}$, 使得 $|f(x_n) - f(x'_n)| > \varepsilon_0$.

Cantor 定理

Theorem

定理: 有界闭区间上的连续函数必一致连续.

证明: 设函数 f 在有界闭区间 [a,b] 上连续. 要证 f 在 [a,b] 上一致连续. 反证. 若不然,则存在 $\varepsilon_0 > 0$,且存在 $x_n, x_n' \in [a,b]$,使得 $|x_n - x_n'| < \frac{1}{n}$,但 $|f(x_n) - f(x_n')| \ge \varepsilon_0$.由于 $\{x_n\} \subset [a,b]$ 有界,由 B-W 定理知序列 $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$.设 $x_{n_k} \to x^*$, $k \to +\infty$.再由 f(x) 的连续性知 $f(x_{n_k}) \to f(x^*)$, $k \to +\infty$.

证明续

另一方面由
$$|x_{n_k}-x'_{n_k}|<\frac{1}{n_k}$$
 知 $x'_{n_k}\to x^*$,故 $f(x'_{n_k})\to f(x^*)$, $k\to +\infty$. 于是

$$0<\varepsilon_0\leq |f(x_{n_k})-f(x_{n_k}')|$$

$$\leq |f(x_{n_k}) - f(x^*)| + |f(x^*) - f(x'_{n_k})| \to 0, \quad k \to +\infty.$$

矛盾. 矛盾说明函数 f 在 [a, b] 上一致连续. 定理得证.

连续函数可积

Theorem

定理: 若函数f在闭区间 [a,b] 上连续,则f在 [a,b] 上可积.

证明: 由 Cantor 定理知 f(x) 于 [a,b] 上一致连续,即对任意 $\varepsilon > 0$,存在 $\delta > 0$,使得当 $|x-x'| < \delta$, $\forall x,x' \in [a,b]$, $|f(x)-f(x')| < \varepsilon$.对区间 [a,b] 的任意一个分割 $P:a=x_0$ $< x_1 < \cdots < x_n = b$,根据连续函数的最值性质知

$$M_i = sup\left\{f(x), x \in [x_{i-1}, x_i]\right\}$$

$$= \max \left\{ f(x), x \in [x_{i-1}, x_i] \right\} = f(\xi_i), \ \xi_i \in [x_{i-1}, x_i],$$

证明续一

$$\begin{split} m_i &= inf \left\{ f(x), x \in [x_{i-1}, x_i] \right\} \\ &= min \left\{ f(x), x \in [x_{i-1}, x_i] \right\} = f(\eta_i), \ \eta_i \in [x_{i-1}, x_i], \end{split}$$

于是对应分割 P 的 Darboux 上和与下和可表为

$$\begin{split} U_P &= \sum_{i=1}^n M_i \triangle x_i = \sum_{i=1}^n f(\xi_i) \triangle x_i, \\ L_P &= \sum_{i=1}^n m_i \triangle x_i = \sum_{i=1}^n f(\eta_i) \triangle x_i. \end{split}$$

证明续二

当 $\|P\|$ < δ 时,

$$\begin{split} 0 & \leq U_P - L_P \\ & \leq \sum_{i=1}^n [f(\xi_i) - f(\eta_i)] \triangle x_i \\ & < \varepsilon \sum_{i=1}^n \triangle x_i = \varepsilon (b-a). \end{split}$$

由 Darboux 可积性定理知 f(x) 在区间 [a,b] 上可积. 定理得证.

例子

例: 设 f(x) 在 [0,1] 上连续, g(x) 在 [m,M] 上连续且下凸, 这里 M 和 m 分别是 f(x) 的一个上界和一个下界, 即 $m \leq f(x) \leq M$, $\forall x \in [0,1]$. 证明

$$g\left(\int_0^1 f(x)dx\right) \le \int_0^1 g(f(x))dx.$$

<u>证明</u>: 由于 f, g 均连续, 故复合函数 g(f(x)) 也连续, 从而在 [0,1] 上可积. 记 $x_i = \frac{i}{n}$, $i = 1, 2, \dots, n$, 由 f 的可积性知

$$\sum_{i=1}^n f\left(x_i\right) \frac{1}{n} = \frac{1}{n} \sum_{i=1}^n f\left(x_i\right) \to \int_0^1 \! f(x) dx.$$

例子续

再由g的连续性和下凸性可得

$$\begin{split} g\left(\int_0^1 &f(x)dx\right) = g\left(\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n f\left(x_i\right)\right) \\ &= \lim_{n \to +\infty} g\left(\frac{1}{n} \sum_{i=1}^n f\left(x_i\right)\right) \leq \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n g\left(f\left(x_i\right)\right) \\ &= \int_0^1 &g(f(x))dx. \end{split}$$

命题得证.

单调函数可积

Theorem

定理: 有界闭区间上的单调函数可积.

证明:设 f(x) 是闭区间 [a,b] 上的单调函数.不妨设 f 为单调增加.对 [a,b] 作分割 $P:a=x_0< x_1<\cdots< x_n=b$,我们有

$$M_i = sup\left\{f(x), x \in [x_{i-1}, x_i]\right\} = f(x_i),$$

$$m_i=\inf\left\{f(x), x\in [x_{i-1},x_i]\right\}=f(x_{i-1}).$$

于是

证明续

$$\begin{split} 0 & \leq U_P - L_P = \sum_{i=1}^n M_i \triangle x_i - \sum_{i=1}^n m_i \triangle x_i \\ & = \sum_{i=1}^n f(x_i) \triangle x_i - \sum_{i=1}^n f(x_{i-1}) \triangle x_i = \sum_{i=1}^n [f(x_i) - f(x_{i-1})] \triangle x_i \\ & \leq \sum_{i=1}^n [f(x_i) - f(x_{i-1})] \|P\| = [f(b) - f(a)] \|P\|. \end{split}$$

若 f(b)=f(a),则 f 为常数函数,可积.设 f(b)>f(a),则对任意 $\varepsilon>0$,存在 $\delta=\frac{\varepsilon}{f(b)-f(a)}$,使得当分割 P 满足 $\|P\|<\delta$ 时, $U_P-L_P<\varepsilon$. 由可积性定理知 f(x) 在 [a,b] 上可积.定理得证.

零测集

Definition

定义: 设 $S \subset \mathbb{R}$ 为一实数集. 如果对于任意 $\varepsilon > 0$, 存在一列开区间 $J_k = (\alpha_k, \beta_k)$ (有限个或可数无穷个), 使得

$$S \subset \bigcup_{k \geq 1} J_k \quad \mathbb{L} \quad \sum_{k \geq 1} |J_k| < \varepsilon,$$

则称数集 S 为零测集, 其中 $|J_k| = \beta_k - \alpha_k$.

 \underline{i} : 设 $\{a_k\}$ 为一个数列,称 $\sum_{k=1}^{+\infty} a_k$ 为无穷级数;称 $S_n = \sum_{k=1}^n a_k$ 该无穷级数的前 n 项和(部分和). 若数列 $\{S_n\}$ 收敛,即极限 $\lim_{n \to +\infty} S_n$ 存在,记作 S,则称无穷级数 $\sum_{k=1}^{+\infty} a_k$ 收敛,其和为 S,即 $\sum_{k=1}^{+\infty} a_k \stackrel{\triangle}{=} \lim_{n \to +\infty} \sum_{k=1}^n a_k$.

零测集性质,性质一和性质二

性质一: 有限点集为零测集.

证明: 设 $S = \{x_1, x_2, \dots, x_m\} \subset \mathbb{R}$ 为有限点集, 作开区间

$$J_k=(x_k-\delta,x_k+\delta)$$
,其中 $\delta=rac{arepsilon}{2m+1}$,则 $|J_k|=2\delta$.于是

$$S \subset \bigcup_{k=1}^m J_k \quad \mathbb{H} \quad \sum_{k=1}^m |J_k| = 2m\delta = \frac{2m\varepsilon}{2m+1} < \varepsilon.$$

故点集 S 为零测集. 证毕.

性质二: 零测集的任意子集也是零测集.

证明: 结论显然. 证明略去.

性质三

性质三: 可数无穷点集为零测集.

证明: 设 $S=\{x_1,x_2,\cdots\}\subset IR$ 为可数无穷点集. 对 $\forall \varepsilon>0$, 作 开区间 $J_k=(x_k-\frac{\delta}{2^k},x_k+\frac{\delta}{2^k})$, 其中 $\delta=\frac{\varepsilon}{3}$, 则 $|J_k|=\frac{\delta}{2^{k-1}}$. 于是

$$S \subset \bigcup_{k=1}^{+\infty} J_k \quad \mathbb{L} \quad \sum_{k=1}^{+\infty} |J_k| = \sum_{k=1}^{+\infty} \frac{\delta}{2^{k-1}} = \delta \sum_{k=0}^{+\infty} \frac{1}{2^k}.$$

由于等比级数 $\sum_{k=0}^{n} \frac{1}{2^k} = \frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}} \to 2$,故级数 $\sum_{k=0}^{+\infty} \frac{1}{2^k} = 2$. 因此 $\sum_{k=1}^{+\infty} |J_k| = \delta \sum_{k=1}^{+\infty} \frac{1}{2^k} = 2\delta < \frac{2\varepsilon}{3} < \varepsilon$. 故点集 S 为零测集. 证毕.

性质四

性质四:设A和B均为零测集,则A∪B也是零测集.

证明:由假设A和B均为零测集,故存在两个至多可数的开区间Jk和J',使得

$$\begin{split} A \subset \bigcup_{k \geq 1} J_k & \ \mathbb{H} & \sum_{k \geq 1} |J_k| < \frac{\varepsilon}{2}, \\ & B \subset \bigcup_{j \geq 1} J_j' & \ \mathbb{H} & \sum_{j \geq 1} |J_j'| < \frac{\varepsilon}{2}, \\ \\ \Rightarrow & A \cup B \subset \bigcup_{k > 1, j > 1} (J_k \cup J_j') & \ \mathbb{H} & \sum_{k > 1} |J_k| + \sum_{j > 1} |J_j'| < \varepsilon. \end{split}$$

故A∪B是零测集. 证毕.

Lebesgue 定理

Theorem

定理: 设 f 为区间 [a,b] 上的有界函数,则 f 于 [a,b] 可积 \iff f 在 [a,b] 上的间断点集为零测集.

证明有点长. 略去. 详见常庚哲史济怀《数学分析教程》(上册), 第三版, 第271页.

术语: 当函数 f 在 [a,b] 上的间断点集为零测集,或等价地说,f 在 [a,b] 上除去一个零测集外处处连续时,我们常说函数 f 在 [a,b] 上几乎处处 (almost everywhere) 连续,并记作 f 连续 a.e. on [a,b].

Lebesgue 定理的应用

例一: 符号函数 sgn(x) 在任何闭区间上可积.

例二: 取整函数 [x] 在任何闭区间上可积.

例三: Dirichlet 函数 D(x) 在任何闭区间 [a,b] 上不可积. 因为函数 D(x) 在 [a,b] 上的间断点集为整个区间,而非零测集. 故 D(x) 在 [a,b] 上不可积.

积分性质一: 积分区间可加性

Theorem

<u>定理</u>: 设 f(x) 为 [a,b] 上的有界函数, $c \in (a,b)$, 则

- (i) f 在 [a, b] 上可积 ⇔ f 在 [a, c] 和 [c, b] 上均可积;
- (ii) 当f在[a,b]上可积时,

$$\int_a^b \! f = \int_a^c \! f + \int_c^b \! f.$$

证 (i): f在 [a, b] 上可积

⇔ f 连续 a.e. on [a, b]

⇔ f 连续 a.e. on [a, c] 和 [c, b]

← f 在 [a, c] 和 [c, b] 上均可积.

证明续一

证 (ii): 当 f 在 [a,b] 上可积时,根据结论 (i) 知, f 在 [a,c] 和 [c,b] 上均可积.取 [a,c] 的一个分割 P_1 ,以及 [c,b] 的一个分割 P_2 ,则 $P = P_1 \cup P_2$ 为 [a,b] 的一个分割.于是函数 f 关于分割 P 的任意一个 Riemann 和可表为

$$\sum_i f(\xi_i) \triangle x_i = \sum_{i \in J_1} f(\xi_i) \triangle x_i + \sum_{i \in J_2} f(\xi_i) \triangle x_i,$$

其中 $J_1 = \{i, [x_{i-1}, x_i] \subset [a, c]\}$, $J_2 = \{i, [x_{i-1}, x_i] \subset [c, b]\}$. 因此上式右端的两个和式分别为 f 在区间 [a, c] 和 [c, b] 上的 Riemann 和,分别关于分割 P_1 和 P_2 .

证明续二

显然 $\|P\| = \max\{\|P_1\|, \|P_2\|\}$. 因此在等式

$$\sum_i f(\xi_i) \triangle x_i = \sum_{i \in J_1} f(\xi_i) \triangle x_i + \sum_{i \in J_2} f(\xi_i) \triangle x_i$$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

结论(ii)得证. 从而定理得证.

积分性质二: 绝对可积性

Theorem

<u>定理</u>: 若 $f \in R[a,b]$, 则其绝对值函数 $|f| \in R[a,b]$, 且

$$\int_a^b \! f \le \int_a^b \! |f|.$$

Proof.

证明: $f \in R[a, b]$

⇒ f于[a,b]上几乎处处连续

⇒ |f| 于 [a, b] 上几乎处处连续

 $\Rightarrow |f| \in R[a, b].$

由不等式 $f(x) \le |f(x)|$, $\forall x \in [a,b]$ 得 $\int_a^b f \le \int_a^b |f|$.

积分性质三: 乘积可积性

Theorem

<u>定理</u>: 设 $f,g \in R[a,b]$, 则乘积函数 $fg \in R[a,b]$.

Proof.

证明: f,g∈R[a,b]

⇒ f和g在[a,b]上均几乎处处连续

⇒ 乘积 fg 在 [a, b] 上几乎处处连续

 \Rightarrow 乘积 fg ∈ R[a,b].

命题得证.

第二个蕴含关系: 记 C_f 和 D_f 为 f 的连续点集和间断点集, 则 $C_f \cap C_g \subset C_{fg}$,

从而 $D_f \cup D_g \supset D_{fg}$. 由于 D_f 和 D_g 均为零测集, 故 D_{fg} 也为零测集.

积分性质四: Cauchy-Schwarz 不等式

Theorem

定理: 设f,g∈R[a,b],则

$$\left(\int_a^b fg\right)^2 \le \int_a^b f^2 \int_a^b g^2. \quad (*)$$

比较有限型或离散型 Cauchy-Schwarz 不等式:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

不等式(*)可看作连续型Cauchy-Schwarz不等式.

证明大意:由乘积fg的可积性知

$$\sum_{i=1}^n f(\xi_i) g(\xi_i) \triangle x_i \to \int_a^b f(x) g(x) dx.$$

另一方面根据离散型 Cauchy-Schwarz 不等式得

$$\begin{split} \left(\sum_{i=1}^n f(\xi_i) g(\xi_i) \triangle x_i\right)^2 &= \left(\sum_{i=1}^n f(\xi_i) \sqrt{\triangle x_i} g(\xi_i) \sqrt{\triangle x_i}\right)^2 \\ &\leq \left(\sum_{i=1}^n \left[f(\xi_i) \sqrt{\triangle x_i}\right]^2\right) \left(\sum_{i=1}^n \left[g(\xi_i) \sqrt{\triangle x_i}\right]^2\right) \\ &\leq \left(\sum_{i=1}^n f^2(\xi_i) \triangle x_i\right) \left(\sum_{i=1}^n g^2(\xi_i) \triangle x_i\right) \to \int_a^b f^2 \int_a^b g^2. \quad \Box \end{split}$$

积分性质五: 积分中值定理

Theorem

定理: 设 $f,g \in R[a,b]$, 且 g(x) 在 [a,b] 上不变号, 则

$$\int_a^b f(x)g(x)dx = \mu \int_a^b g(x)dx,$$

其中 m $\leq \mu \leq$ M, m $= \inf_{[a,b]} \{f(x)\}$, M $= \sup_{[a,b]} \{f(x)\}$. 当 f 连续时, 存在 $\xi \in [a,b]$, 使得

$$\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx.$$

几何意义

当 $g(x) \equiv 1$, 且 f(x) 连续时, 积分中值定理有如下形式

$$\int_a^b f(x)dx = f(\xi)(b-a).$$

上式的几何意义就是曲边四边形的面积,等于某个矩形面积. 如图所示.

定理证明

证明: 不失一般性设 $g(x) \ge 0$, $\forall x \in [a,b]$. 由 $m \le f(x) \le M$ 可得 mg(x) < f(x)g(x) < Mg(x), $\forall x \in [a,b]$. 于是

$$m {\int_a^b} g \le {\int_a^b} \, fg \le M {\int_a^b} \, g. \quad (*)$$

如果 $\int_a^b g = 0$, 则必有 $\int_a^b fg = 0$. 于是所要证的不等式

$$\int_a^b f(x)g(x)dx = \mu \int_a^b g(x)dx$$

对任意 $\mu \in \mathbb{R}$ 成立. 设 $\int_a^b g > 0$, 则由式(*)得

$$m \le \frac{\int_a^b fg}{\int_a^b g} \le M.$$

证明续

于是取

$$\mu = \frac{\int_{\mathsf{a}}^{\mathsf{b}} \mathsf{f} \mathsf{g}}{\int_{\mathsf{a}}^{\mathsf{b}} \mathsf{g}},$$

所要证的不等式

$$\int_a^b f(x)g(x)dx = \mu \int_a^b g(x)dx$$

成立. 当 f(x) 连续时, 由介值定理知存在 $\xi \in [a,b]$, 使得 $f(\xi) = \mu$. 因此不等式

$$\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx.$$

成立. 命题得证.

例子

Example

例:证明

$$\lim_{n \to +\infty} \int_{n}^{n+\pi} \frac{\sin x}{x} dx = 0. \quad (*)$$

证明: 由积分中值定理知

$$\int_{n}^{n+\pi} \frac{\sin x}{x} dx = \frac{\pi \sin \xi_{n}}{\xi_{n}}, \quad \xi_{n} \in [n, n+\pi].$$

由此立刻得到极限式(*)成立. 证毕.

作业

课本习题5.1 (pp.135): 4, 5, 6, 9, 10, 14, 15(1)(3).

课本习题5.2 (pp.140-141): 4, 5, 6.