

Occlusion-Aware Visual Object Tracking to Handle Complex and Persistent Occlusions

Kourosh MESHGI, Shin-ichi MAEDA, Shigeyuki OBA, Shin ISHII Department of Systems Science, Graduate School of Informatics, Kyoto University

TRACKING CHALLENGES

TRACKING APPLICATIONS

OCCLUSION TYPES

HANDLING PARTIAL OCCLUSIONS

Learning an Observation Mask from data Undermining the impact of occluded parts of the template

HANDLING FULL OCCLUSIONS

Switching Sampling Method and Motion Model of Candidates between:

- **Template Matching Particles that keep track of target**
- Occlusion Detecting Particles that expand search area for occluded target

Occlusion Recovery

Full Occlusion

EMPLOYING MULTIPLE FEATURES AND SMART UPDATE

Fusing multiple Features from Color and Depth domains Updating the template only when no occlusion is detected Reduce the effect of partially occluded observations using observation mask

Frame

Target Type

target Size

Observation Confidence

Good Model Update

RESULTS

Movement

Occlusion

-RGBDOcc+OF (1.64) -SAMF+Depth (5.45)

Tracking Date

Motion Type