Drugi međuispit

10. svibnja 2010.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (6 bodova)

Antena za praćenje satelita opisana je sljedećim matematičkim modelom:

$$J\ddot{\Theta} + B\dot{\Theta} = M_m + M_v$$
,

gdje je J moment inercije antene, B faktor prigušenja (usred trenja), M_m moment motora i M_v moment smetnje (usred naleta vjetra).

- a) (1 bod) Zadani sustav prikažite u prostoru stanja. U sustavu se mjeri kut Θ . Koristite oznake $a = \frac{B}{J}$ i $u = \frac{M_m}{B}$. Diskretizirajte sustav uz vrijeme diskretizacije T = 0.1s, koje je dovoljno malo za razmatrani sustav (a = 0.02).
- b) (3 boda) Projektirajte diskretni neprediktivni estimator stanja tako da u prvom slučaju svi polovi dinamike pogreške estimacije budu u nuli $(z_p = 0)$, a u drugom u 0.6 $(z_p = 0.6)$.
- c) (2 boda) Pretpostavimo da u sustavu postoji mjerni šum v_k očekivane vrijednosti nula i varijance R ($v_k \sim N(0, R)$). Obrazložite koji bi od dvaju projektiranih regulatora imao bolje vladanje s obzirom na šum. Napišite izraz za dinamiku pogreške estimacije uz postojanje mjernog šuma u sustavu.

2. zadatak (6 bodova)

U akvariju se nalaz x_p pirana i x_g akvarijskih ribica. Ribice hranite jednom tjedno hranom u. Također, svaki tjedan pirane pojedu nekoliko ribica. Natalitet pirana proporcionalan je populaciji ribica, a mortalitet je proporcionalan njihovoj vlastitoj populaciji (zbog prenapučenosti). Natalitet ribica proporcionalan je količini hrane u (uz konstantu proporcionalnosti 1), a mortalitet je proporcionalan populaciji pirana.

- a) (2 boda) Napišite model zadanog sustava u prostoru stanja. Uzmite da konstante proporcionalnosti (za koje nije drugačije rečeno) iznose $\frac{1}{2}$, a nesigurnost modela izrazite bijelim šumom jedinične varijance uz očekivanu vrijednost 0 ($w \sim N(0,1)$). Pirane zbog veličine možete točno prebrojiti, dok za ribice pretpostavljate mjerni šum jedinične varijance i nulte očekivane vrijednosti.
- b) (2 boda) U početnom trenutku imamo točan broj pirana i ribica (x_{p0} i x_{g0}). Kalmanovim filtrom estimiramo populaciju ribica. Koliko iznosi varijanca estimiranog broja ribica nakon 2 tjedna?
- c) (2 boda) Koliko iznosi omjer populacija pirana i ribica u ustaljenom stanju? Za ovaj dio zadatka pretpostavite da nema procesnog šuma.