

Đồ thị Euler

- Đồ thị Euler
 - □ Giới thiệu, định nghĩa
 - □ Các định lý và hệ quả
 - ☐ Thuật toán tìm chu trình Euler

Đồ thị Euler và Hamilton

- Đồ thị Euler
 - □ Giới thiệu, định nghĩa
 - □ Các định lý và hệ quả
 - ☐ Thuật toán tìm chu trình Euler
- Đồ thị Hamilton
 - □ Giới thiệu, định nghĩa
 - □Điều kiện đủ để là đồ thị Hamilton
 - □ Qui tắc chỉ ra chu trình Hamilton hay không Hamilton
 - ☐ Thuật toán tìm chu trình Hamilton

М

Câu hỏi???

■ Hình nào dưới đây có thể vẽ bằng 1 nét bút?

.

Giới thiệu

■ Bài toán 7 cây cầu

Hỏi có thể đi
qua cả 7 cây
cầu, mỗi cầu
đúng một lần,
rồi quay về chỗ
xuất phát được
hay không?

Giới thiệu (tt)

- 1736, nhà toán học Thuỵ sỹ, Leonhard Euler đã giải bài toán này.
- Lời giải của Ông cho bài toán bảy cây cầu ở Königsberg được coi là định lý đầu tiên của lý thuyết đồ thị.

Leonhard Euler (April 1707 – September 1783)

Các định nghĩa

- Đường đi qua tất cả các cạnh/cung của đồ thị, mỗi cạnh/cung đúng một lần gọi là đường đi Euler.
- Đường đi Euler có điểm đầu trùng với điểm cuối gọi là chu trình Euler.
- Đồ thị có đường đi Euler là đồ thị nửa Euler.
- Đồ thị có chu trình Euler gọi là đồ thị Euler.

Ví dụ

Chu trình Euler: E = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]

Các định lý, hệ quả

- Định lý 1: Đồ thị vô hướng, liên thông G là đồ thị Euler khi và chỉ khi mọi đỉnh của G đều có bậc chẳn.
- Hệ quả 1: Đồ thị vô hướng, liên thông G là nửa Euler khi và chỉ khi nó có không quá 2 đỉnh bậc lẻ.

Các định lý, hệ quả (tt)

- Định lý 2: Đồ thị có hướng liên thông mạnh G là đồ thị Euler khi và chỉ khi deg⁺(v)=deg⁻(v) ∀v ∈V
- Hệ quả 2: Đthị có hướng liên thông yếu, nếu tồn tại 2 đỉnh u và v: deg⁻(u)<deg⁺(u) 1 đơn vị, deg⁻(v)>deg⁺(v) 1 đơn vị, mọi đỉnh khác đều có deg⁻ = deg⁺ thì có đường đi Euler từ u tới v.

Thuật toán tìm chu trình Euler

(Thuật toán Fleury)

Xuất phát từ một đỉnh u nào đó của G, ta đi theo các cạnh của nó một cách tuỳ ý, chỉ cần tuân theo 2 qui tắc sau:

- Khi đi qua 1 cạnh thì xoá cạnh đó đi và xoá luôn đỉnh cô lập nếu có.
- Không bao giờ đi qua cầu (cạnh cắt) trừ khi không còn cách nào khác.

Ví dụ

■ Tìm chu trình Euler cho đồ thị:

- **B1.** Nạp 1 đỉnh u tuỳ ý của đthị vào stack (thường là đỉnh 1)
- B2. Thực hiện vòng lặp đến khi stack rỗng
 - Xét đỉnh x trên đỉnh stack:
 - Nếu là đỉnh cô lập thì lấy khỏi stack → kết quả.
 - Nếu còn đỉnh y kề với x thì nạp y vào stack và xoá cạnh xy.

Ví du

■ Tìm chu trình Euler cho đồ thị?

13

Đồ thị Hamilton

- Đồ thị Hamilton
 - □ Giới thiệu, định nghĩa
 - □Điều kiện đủ để là đồ thị Hamilton
 - □ Qui tắc chỉ ra chu trình Hamilton hay không Hamilton
 - □ Thuật toán tìm chu trình Hamilton

- William Rowan Hamilton là một nhà toán học, vật lý và thiên văn học người Ireland.
- Có 1 khối 12 mặt, mỗi mặt hình ngũ giác đều. Mỗi đỉnh trong 20 đỉnh của khối là tên của 1 TP. Hãy tìm đường xuất phát từ 1 TP, đi dọc theo các cạnh của khối ghé thăm mỗi TP đúng 1 lần, cuối cùng trở về TP ban đầu.

- Tổ chức tour du lịch: sao cho người du lịch thăm quan mỗi thắng cảnh trong thành phố đúng một lần
- Bài toán mã đi tuần: cho con mã đi trên bàn cờ vua sao cho nó đi qua mỗi ô đúng một lần.

1	2	3	4
5	6	7	8
9	10	11	12

Các định nghĩa

- Đường đi qua tất cả các đỉnh của đồ thị, mỗi đỉnh đúng một lần gọi là đường đi Hamilton.
- Chu trình đi qua tất cả các đỉnh, mỗi đỉnh đúng 1 lần (trừ đỉnh đầu trùng đỉnh cuối) gọi là chu trình Hamilton.
- 3. Đồ thị có đường đi Hamilton là đồ thị **nửa Hamilton.**
- 4. Đồ thị có chu trình Hamilton gọi là **đồ thị Hamilton.**

17

18

Ví dụ

Tính chất HAMILTON trong đồ thị đầy đủ

- Đồ thị đầy đủ luôn là đồ thị Hamilton.
- Với n lẻ và n>=3 thì Kn có (n-1)/2 chu trình Hamilton đôi một không có cạnh chung

- Định lý 1 (Dirak): Đơn đồ thị vô hướng G với n>2 đỉnh, mỗi đỉnh có bậc không nhỏ hơn n/2 là đồ thị Hamilton.
- 2. Định lý 3: Nếu G là đơn đồ thị có hướng liên thông mạnh n đỉnh và deg⁺(v)>=n/2, deg⁻(v)>=n/2 ∀v thì G là đồ thị Hamilton.

Qui tắc

Chỉ ra chu trình Hamilton H hay chỉ ra G không là Hamilton (đthị vô hướng)

- Qt1. Mọi cạnh kề với đỉnh bậc 2 đều phải thuộc chu trình H.
- Qt2. Không có chu trình con nào được tạo thành trong khi xây dựng H.
- Qt3. Sau khi đã lấy 2 cạnh tới đỉnh x đặt vào chu trình H rồi thì xoá tất cả những cạnh còn lại mà kề với x. Khi đó có thể tạo ra những đỉnh bậc 2 mới (áp dụng Qt1).
- Qt4. Nếu ∃ 1 đỉnh của G có bậc <=1 thì G không có chu trình Hamilton.

21

Ví dụ

Xét xem đồ thị sau có là đồ thị Hamilton không?

Ví dụ

Xét xem đồ thị sau có là đồ thị Hamilton không?

Thuật toán tìm chu trình Hamilton

- Có thể sử dụng thuật toán quay lui để tìm chu trình Hamilton
 - □ Lưu trữ đồ thị đã cho dưới dạng danh sách Ke(v)
 - □ Liệt kê các chu trình Hamilton thu được bằng việc phát triển dãy các đỉnh (X[1], ..., X[k-1])

Thuật toán tìm chu trình Hamilton (tt)

- B1: Bắt đầu từ đỉnh 1, x[1]=1
- B2: Tìm và lưu đỉnh có cạnh nối với x[i] và và đỉnh j này chưa thăm trước đó
- B3: Nếu đỉnh j này là x[n] và x[1] có cạnh nối với nó thì xuất ra đồ thị Hamilton Nếu đỉnh j vẫn chưa phải là x[n] thì tiếp tục B2

25

27

Thuật toán tìm chu trình Hamilton (tt)

Procedure Hamilton(k);

```
\begin{aligned} & \text{for } y \in \text{Ke}(X[k\text{-}1]) \text{ do} \\ & \text{if } (k = N+1) \text{ and } (y = v0) \text{ then} \\ & \text{Ghinhan}(X[1], \dots, X[n], v0) \\ & \text{else if Chuaxet}[y] \text{ then} \\ & \text{begin} \\ & & X[k] := y; \\ & \text{Chuaxet}[y] := \text{false}; \\ & \text{Hamilton}(k+1); \\ & \text{Chuaxet}[y] := \text{true}; \\ & \text{end}; \\ & \text{END}; \end{aligned}
```

Thuật toán tìm chu trình Hamilton (tt)

```
(* Main program*)

BEGIN

for v ∈ V do

Chuaxet[v]:=true;

X[1]:=v0; (* v0: 1 đỉnh bất kỳ *)

Chuaxet[v0]:=false;

Hamilton(2);

END
```


