Chapter 1

29/09/2020

1.1 Basis of Topology

Definition 1. Let X be a nonempty set and $B \subseteq \mathcal{P}(X)$. Then \mathcal{B} is the basis of some topology on X if and only if:

- 1. $X = \bigcup_{B_i \in \mathcal{B}} B_i$
- 2. for all $B_i, B_i \in \mathcal{B}$ implies that $B_i \cap B_i \in \mathcal{B}$.

Proof. Let X be a nonempty set. Suppose that \mathcal{B} is a basis of a topology \mathcal{T} on X. Then X is a union of members of B, hence $X = \bigcup_{B \in \mathcal{B}} B$. Additionally let $B_i, B_j \in \mathcal{B} \subseteq \mathcal{T}$ then the intersection is in \mathcal{T} and therefore a union of members of \mathcal{B} . Now assume that \mathcal{B} generates some topology \mathcal{T} , that $X = \bigcup_{B \in \mathcal{B}} B$ and the union of subsets of \mathcal{B} is in \mathcal{B} . Then

- 1. X, \emptyset are a union of subsets of \mathcal{B} , hence in \mathcal{T} .
- 2. Let $A, B \in \mathcal{T}$. We have that for some families of elements of \mathcal{B} that $A = \bigcup_{i \in I} B_i$ and $B = \bigcup_{j \in J} B_j$. Then

$$A \cap B = \left(\bigcup_{i \in I} B_i\right) \cap \left(\bigcup_{j \in J} B_j\right) = \bigcup_{i \in I} \bigcup_{j \in J} \left(B_i \cap B_j\right) \in \mathcal{T}$$

3. The union of subsets of \mathcal{T} translates to the union of unions of subsets of \mathcal{B} , and therefore a union of subsets of \mathcal{B} .

Definition 2. Let \mathcal{B} be the set of rectangles of the form $(a_1, b_1) \times (a_2, b_2)$, with $a_i, b_i \in \mathbb{R}$ and $a_i < b_i$ for $i \in \{1, 2\}$.

Remark. Notice that the union of all these rectangles is the \mathbb{R} plane and that the intersection of rectangles is either empty or also a rectangle. Therefore \mathcal{B} is the basis for some topology in \mathbb{R}^2 . This is the **euclidean topology** in \mathbb{R}^2 .

This procedure is analogous to generate the euclidean topology in \mathbb{R}^n .

Definition 3. Let (X, \mathcal{T}) be a topological space and let $\mathcal{B} \in \mathcal{P}(X)$. Then \mathcal{B} is a basis of \mathcal{T} if and only if

- 1. $B \subseteq \mathcal{T}$
- 2. for all $A \in \mathcal{T}$ and $a \in A$, there exists some $B \in \mathcal{B}$ such that $a \in B \subseteq A$.

Proof. Let (X, \mathcal{T}) be a topological space and $\mathcal{B} \subseteq \mathcal{P}(X)$. Assume that \mathcal{B} is a basis of \mathcal{T} . Then obviously $B \subseteq \mathcal{T}$. Every set $A \in \mathcal{T}$ is a union of elements of \mathcal{B} . Thus for an element $a \in A$ there exists some B_j in \mathcal{B} such that $a \in B_j \subseteq A$.

Now assume that $B \subseteq \mathcal{T}$ and that for every element $a \in A$, there exists some $B \in \mathcal{B}$ such that $a \in B \subseteq A$. We must show that every element of \mathcal{T} is a union of members of B. Take any subset $A \in \mathcal{T}$. Then for every element $a \in A$ we find a subset $B_a \in \mathcal{B}$ contained in A that contains a. Hence $A = \bigcup_{a \in A} B_a \subseteq A$, therefore $A = \bigcup_{a \in A} B_a$.

Definition 4. Let X be a nonempty set. Let \mathcal{B} and \mathcal{B}' be basis of X. Then we say \mathcal{B} and \mathcal{B}' are equivalent basis if they generate the same topology.

Let \mathcal{B} and \mathcal{B}' be basis of topologies on a nonempty set. These are equivalent if and only if

- 1. for all $B \in \mathcal{B}$ and element $b \in B$ there exists some $B' \in \mathcal{B}'$ such that $b \in B' \subseteq B$
- 2. for all $B' \in \mathcal{B}'$ and element $b' \in B'$ there exists some $B \in \mathcal{B}$ such that $b' \in B \subseteq B'$.

Proof. The direct consequence follows from the application of definition 3. Assume now that \mathcal{B} and \mathcal{B}' generate topologies \mathcal{T} and \mathcal{T}' , respectively. Take an element $a \in A \subseteq \mathcal{T}$, then $b \in B_a$ for some $B_a \in \mathcal{B}$. From the the aforementioned conditions if follows that there exists some B'_a such that $a \in B'_a \subseteq B_a$. Then we have that

$$A = \bigcup_{a \in A} a \subseteq \bigcup_{a \in A} B'_a \subseteq \bigcup_{a \in A} B_a = A$$

which implies that any subset $A \in \mathcal{T}$ is a union of subsets $B' \in B'$, that is, $\mathcal{T} \subseteq \mathcal{T}'$. Applying the same argument switching \mathcal{T} and \mathcal{T}' we conclude the proof.

Remark. It is important to remember that to show that some family of subsets \mathcal{B} is a basis a given topological space, then one must check that \mathcal{B} is a basis of a topology, and then that that topology is the one topology one is analyzing.

Remark. In general, topologies are not countable. For example, the euclidean topology on \mathbb{R} is not countable. But a non countable topology may admit a countable basis. If this is the case, we say that the topological space obeys the **second axioms of countability**.

Example 1. $\mathcal{B} = \{(p,q) : p,q \in \mathbb{Q}\}$ is a countable basis of the euclidean topology on \mathbb{R} .

1.2 Subbasis of Topology

Theorem 1. Let X be a nonempty set. For all $\lambda \in \Lambda$, let \mathcal{T}_{λ} be a topology on X. Then $\bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$ is a topology on X.

Proof. Take X as nonempty set and \mathcal{T}_{λ} a topology on X for every $\lambda \in \Lambda$.

- 1. $X, \emptyset \in \mathcal{T}_{\lambda}$ for all $\lambda \in \Lambda$, so they are contained in the intersection.
- 2. Let $A, B \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$. Therefore $A, B \in \mathcal{T}_{\lambda}$ for all $\lambda \in \Lambda$. As such, the intersection $A \cap B \in \mathcal{T}_{\lambda}$ for each \mathcal{T}_{λ} , hence $A \cap B \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$.
- 3. Take a family open sets $A_i \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$ for $i \in I$. Then, each A_i is contained in each \mathcal{T}_{λ} and by the axioms of a topology, the arbitrary union $\bigcup_{i \in I} A_i$ is too. Thus $\bigcup_{i \in I} A_i \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$.

Definition 5. Let X be a nonempty set and $S \in \mathcal{P}(X)$. We define \mathcal{T}_{S} as the intersection of all topologies on X that contain S. This is the smallest topology on X that contains S.

Remark. The discrete topology is always one of these topologies, therefore $\mathcal{T}_{\mathcal{S}}$ is well defined.

Definition 6. Let \mathcal{T} and \mathcal{T}' be topologies on X such that $\mathcal{T}' \subseteq \mathcal{T}$. Then we say that \mathcal{T} is a finer topology on X than \mathcal{T}' or, inversely, that \mathcal{T}' is **coarser** than \mathcal{T} .

Additionally, one may say that $\mathcal{T}_{\mathcal{S}}$ is the topology generated by \mathcal{S} on X.

Definition 7. Let X be a nonempty set and $S \subseteq \mathcal{P}(X)$. Then

$$\mathcal{B} = \{X\} \cup \left\{ \bigcap_{j=1}^{n} A_j : n \ge 1, A_j \in \mathcal{S} \right\}$$

is a basis for $\mathcal{T}_{\mathcal{S}}$.

Proof. Obviously, every $A_i \in \mathcal{S} \subseteq \mathcal{T}_{\mathcal{S}}$, hence $\bigcap_{j=1}^n A_j \in \mathcal{T}_{\mathcal{S}}$. Additionally, $X \in \mathcal{T}_{\mathcal{S}}$, hence $\mathcal{B} \subseteq \mathcal{T}_{\mathcal{S}}$. This implies that \mathcal{B} is a basis for some topology on X.

We shall now prove that the topology \mathcal{T} generated by \mathcal{B} is equal to $\mathcal{T}_{\mathcal{S}}$. By considering one element intersections, we have that $\mathcal{S} \subseteq \mathcal{T}$. Hence the definition of $\mathcal{T}_{\mathcal{S}}$, it follows that $\mathcal{T}_{\mathcal{S}} \subseteq \mathcal{T}$. On the other hand, we have that $\mathcal{B} \subseteq \mathcal{T}_{\mathcal{S}}$, so $\mathcal{T} \subseteq \mathcal{T}_{\mathcal{S}}$. Thus $\mathcal{T} = \mathcal{T}_{\mathcal{S}}$.

Definition 8. Let (X, \mathcal{T}) be a topological space. We say $S \in \mathcal{P}(X)$ is a **subbasis** of \mathcal{T} if $\mathcal{T} = \mathcal{T}_S$.

Example 2. We have that $S = \{(-\infty, a) : a \in \mathbb{R}\} \cup \{(b, \infty) : b \in \mathbb{R}\}$ is a basis for the euclidean topology on \mathbb{R} .

Proof. Notice that the intersection of elements $(-\infty, a) \cap (b, \infty) = (a, b)$ which generate the euclidean topology on \mathbb{R} .