# A Duality-Based Convex Framework for the Control of Coupled Differential-Difference Equations

Matthew M. Peet Arizona State University Tempe, AZ USA

joint work with Guoying Miao and Keqin Gu International Federation of Automatic Control 2017 Toulouse. France





# Control of Coupled Differential Difference Equations

Consider a MIMO Linear Differential-Difference Equation.

$$\dot{x}(t) = Ax(t) + By(t-r) + Fu, \tag{1}$$

$$y(t) = Cx(t) + Dy(t-r), (2)$$

Stability Analysis of linear discrete-delay systems is a CLOSED PROBLEM.

• Lets move on to optimal control.

We would like to use *asymptotic algorithms* to design controllers for this system.

Recall:

- LMIs optimize positive matrices
- SOS optimizes positive polynomials



Figure: Comparison of asymptotic algorithms for maximum stable delay

## Full-State Feedback Control of **ODE** Systems

Our Template is the LMI Framework

The goal is to find  $K \in \mathbb{R}^{m \times n}$  such that

$$\dot{x} = Ax + Bu, \qquad u = Kx$$
 is Stable

**Step 1:** DUALITY says the following are equivalent for fixed A, B, K:

- 1.  $\exists P > 0$  such that  $P(A + BK) + (A + BK)^T P < 0$ .
- 2.  $\exists Q > 0$  such that  $(A + BK)Q + Q(A + BK)^T < 0$ .

Step 2: Variable Substitution - Define variable Z=KQ. The Synthesis condition becomes

$$AQ + BZ + QA^T + Z^TB^T < 0 \qquad Q > 0, \quad Z \in \mathbb{R}^{m \times n}$$

**Step 3:** Controller Reconstruction. Given solution Q, Z, the controller is

$$K = ZQ^{-1}$$

## In this Paper:

A Linear Operator Inequality (LOI) Framework for Synthesis

MAIN IDEA: Replace the Word MATRIX with **OPERATOR**. An **Operator Differential Equation**:

$$\dot{x} = \mathcal{A}x + \mathcal{B}u, \qquad u = \mathcal{K}x,$$

- $\mathcal{A}: \underbrace{W^2}_X \to \underbrace{L_2}_Z$  and  $\mathcal{B}: \underbrace{\mathbb{R}^m}_U \to \underbrace{L_2}_Z$ ,  $\mathcal{K}: \underbrace{W^2}_X \to \underbrace{\mathbb{R}^m}_U$  are **OPERATORS**.
- We CAN Optimize Operators Linear Operator Inequalities (LOIs).

**Primal Stability (No Feedback):**  $\mathcal A$  is exp. stable iff [Curtain, Zwart] there exists a  $\mathcal P>0$ 

$$\langle x, \mathcal{P}\mathcal{A}x \rangle_Z + \langle \mathcal{P}\mathcal{A}x, x \rangle_Z < 0 \qquad \forall x \in X$$

**The First Main Result is Duality:**  $\mathcal{A}$  is exp. stable if there exists a  $\mathcal{Q}:X\to X$  such that  $\mathcal{Q}>0$  and

$$\langle x, \mathcal{A}\mathcal{Q}x \rangle + \langle \mathcal{A}\mathcal{Q}x, x \rangle < 0$$

#### Other Main Results:

- Solving LOIs with SDP
- Reconstructing K (Inverting the Controller).

## The Duality Theorem

Formal Statement. Applies to any Strongly Continuous Semigroup

#### Theorem 1.

Suppose that  $\mathcal A$  generates a strongly continuous semigroup on Hilbert space Z with domain X. Further suppose there exists an  $\epsilon>0$  and a bounded, coercive linear operator  $\mathcal P:X\to X$  with  $\mathcal P(X)=X$  and which is self-adjoint with respect to the Z inner product and satisfies

$$\langle \mathcal{AP}z, z \rangle_Z + \langle z, \mathcal{AP}z \rangle_Z \le -\epsilon ||z||_Z^2$$

for all  $z \in X$ . Then  $\dot{x}(t) = \mathcal{A}x(t)$  generates an exponentially stable semigroup.

#### Key Restriction: $\mathcal{P}: X \to X$ . Not Conservative?

- When X is a Hilbert Subspace of Z.
- But this is not true for Delay systems.

So now we have An LOI for Controller Synthesis!!!

Find Q, Z such that  $Q: X \to X$ ,

$$\langle (\mathcal{AQ} + \mathcal{BZ})x, x \rangle + \langle x, (\mathcal{AQ} + \mathcal{BZ})x \rangle_Z < 0 \qquad \mathcal{Q} > 0, \quad \mathcal{Z} \in \mathcal{L}(X, U)$$

Question: How to Solve LOIs????

## What is an LOI

And How do I solve one?

#### First Rule of LOIs: NO DISCRETIZATION

#### Formal Definition:

An LOI is a TUPLE  $(Z, X, \mathbb{P}, \mathcal{H}, \mathcal{G})$  which defines the feasibility problem: Find  $\mathcal{P} \in \mathbb{P}$  such that

$$\mathcal{HPG} + (\mathcal{HPG})^* > 0, \qquad \mathcal{P} \in \mathbb{P}$$

where the inequality is shorthand for

$$\langle \mathcal{HPG}x, x \rangle_Z + \langle x, \mathcal{HPG}x \rangle_Z \ge 0$$
 for all  $x \in X \subset Z$ 

The key features of an LOI are

- **1.** Inner Product Space Z is an inner-product space (the meaning of  $\geq 0$ ).
- **2. State Space**  $X \subset Z$  quantifies "for all  $x \in X$ ".
- **3. Variables** The operator  $\mathcal{P}$  is constrained to lie in set  $\mathbb{P}$ .
- **4.** Data  $\mathcal{H}$  and  $\mathcal{G}$  are operators and may be unbounded.
- **5.** Well-posed Given  $\mathcal{H}$  and  $\mathcal{G}$ , the inner product  $\langle x, \mathcal{HPG}x \rangle_Z$  must be well-defined for all  $\mathcal{P} \in \mathbb{P}$  and  $x \in X$ .

# Applying the LOI Framework to Delay Systems

Represent

$$\dot{x} = Ax + By(t-r) + Fu(t),$$

$$y(t) = Cx(t) + Dy(t-r).$$

#### as An Operator Differential Equation:

$$\dot{x} = \mathcal{A}x + \mathcal{B}u, \qquad u = \mathcal{K}x,$$

In this case

$$\mathcal{A} \begin{bmatrix} x \\ y_t \end{bmatrix} := \begin{bmatrix} Ax + By(t-r) \\ \frac{d}{ds}y_t(s) \end{bmatrix}, \qquad (\mathcal{B}u)(s) := \begin{bmatrix} Fu \\ 0 \end{bmatrix}.$$

Furthermore, we define the inner product and state spaces as

$$Z := L_2^{m+n}[-r, 0]$$

$$X:=\left\{\left[\begin{array}{c}\psi\\\phi\end{array}\right]\in\mathbb{R}^m\times L_2^n[-r,0]\left|\dot{\phi}(s)\in L_2,\phi(0)=C\psi+D\phi(-r)\right.\right\},$$

**Find**  $Q, Z \in \mathbb{P}$  such that Q > 0 and

$$\langle (\mathcal{AQ} + \mathcal{BZ})x, x \rangle_{L_2} + \langle x, (\mathcal{AQ} + \mathcal{BZ})x \rangle_{L_2} < 0 \qquad \forall x \in X$$

## Solving LOIs

**The Operators**  $\mathbb{P}$ : The Variables. Our Dual LOI uses operators  $\mathbb{P}$  of the form

$$\left( \mathcal{P}_{\{P,Q,S,R\}} \left[ \begin{array}{c} \psi \\ \phi \end{array} \right] \right)(s) = \left[ \begin{array}{c} P\psi + \int_{-r}^{0} Q(s)\phi(s)ds \\ rQ^{T}(s)\psi + \int_{-r}^{0} R(s,\theta)\phi(\theta)d\theta + S(s)\phi(s) \end{array} \right],$$

#### Where:

- Polynomials  $P, Q(s), S(s), R(s, \theta)$  parameterize the operator.
- ullet Real numbers parameterize the polynomials if we restrict the degree to  $\leq d$ .

#### Steps To Solving an LOI:

- 1. Reduce your LOI to one which has already been solved.
- 2. Done

Question: Which LOIs are Solveable?

# We CAN solve LOIs on $X = L_2[-r_K, 0]$ using SDP

We can solve tuples of the following form  $(Z, X, \mathbb{P}, \mathcal{H}, \mathcal{G})$ 

- 1.  $Z = L_2$
- 2.  $X = L_2$

3. 
$$\mathcal{P} \in \mathbb{P} := \{\mathcal{P} : (\mathcal{P}_{M,N}x)(s) := M(s)x(s) + \int_{-r}^{0} N(s,\theta)x(\theta)d\theta.\}$$
 where  $M$ ,  $N$  are piecewise Polynomial

4.  $H, G \in \mathbb{P}$ 

Then  $\mathcal{HPG} \in \mathbb{P}$ , and we can test whether  $\mathcal{P}_{M,N} > 0$ 

#### Theorem 2.

For any functions  $Y_1, Y_2$ , let

$$M(s) = Y_1(s)^T Q_{11} Y_1(s)$$

$$N(s,\theta) = Y_1(s)Q_{12}Y_2(s,\theta) + Y_2(\theta,s)^T Q_{12}^T Y_1(\theta) + \int_{-r}^0 Y_2(\omega,s)^T Q_{22}Y_2(\omega,\theta) d\omega$$

where 
$$Q=\begin{bmatrix}Q_{11}&Q_{12}\\Q_{12}^T&Q_{22}\end{bmatrix}\geq 0.$$
 Then  $\langle\mathcal{P}_{M,N}x,x\rangle_{L_2}>0$  for all  $x\in L_2^n[-r,0].$ 

# We CAN solve LOIs on $X = \mathbb{R}^m \times L_2^n[-r, 0]$

By reduction to an LOI on  $X = L_2^{m+n}[-r, 0]$ 

**Equivalence:**  $(L_2, \mathbb{R}^m \times L_2^n, \mathcal{P} \in \mathbb{P}, \mathcal{P} > 0)$  is feasible iff

$$(L_2, L_2^{m+n}, (\mathcal{P} \in \mathbb{P}, \mathcal{T} \in \mathbb{T}), \mathcal{P} + \mathcal{T} > 0)$$

is feasible, where  $\mathbb{T}:=\{\mathcal{T}: \langle x,\mathcal{T}x\rangle=0,\, \forall x\in\mathbb{R}^m\times L_2^n\}.$ 

 ${\mathbb T}$  can be parameterized as:

 $\mathbb{T}:=\Big\{\mathcal{P}_{F,H}\ :\ \text{ such that for some functions }K,L_{11},L_{12},L_{21},$ 

$$F(s) = \begin{bmatrix} K(s) + \int_{-r-r}^{0} \int_{-r-r}^{0} \frac{L_{11}(\omega,t)}{r} d\omega dt & \int_{-r}^{0} L_{12}(\omega,s) d\omega \\ \int_{-r}^{0} L_{21}(s,\omega) d\omega & 0 \end{bmatrix}$$

$$H(s,\theta) = -\begin{bmatrix} L_{11}(s,\theta) & L_{12}(s,\theta) \\ L_{21}(s,\theta) & 0 \end{bmatrix}, \qquad \int_{-r}^{0} K(s)ds = 0$$

## Illustration: Primal Stability of Time-Delay Systems

**Theorem:** Stability of

$$\dot{x} = Ax + By(t-r), \qquad y(t) = Cx(t) + Dy(t-r).$$

is equivalent to existence of P,Q,S,R such that

$$\mathcal{P}_{\{P-\epsilon I,Q,S,R\}} \geq 0 \qquad \text{and} \qquad \mathcal{P}_{\{D_1,V,-\dot{S},G\}} < 0$$

where

$$D_{1} := \begin{bmatrix} \Delta_{0} + \epsilon I & \Delta_{1} \\ \Delta_{1}^{T} & D^{T}S(0)D - S(-r) \end{bmatrix}$$

$$\Delta_{0} = A^{T}P + PA + Q(0)C + C^{T}Q(0)^{T} + C^{T}S(0)C,$$

$$\Delta_{1} = PB + Q(0)D - Q(-r) + C^{T}S(0)D,$$

$$V(s) = \begin{bmatrix} A^{T}Q(s) - \dot{Q}(s) + C^{T}R^{T}(s, 0) \\ B^{T}Q(s) + D^{T}R^{T}(s, 0) + R^{T}(s, -r) \end{bmatrix},$$

$$G(s, \theta) = -\frac{\partial}{\partial s}R_{ij}(s, \theta) - \frac{\partial}{\partial \theta}R_{ij}(s, \theta).$$

In Lyapunov Form:  $V = \langle x, \mathcal{P}_{\{P,Q,S,R\}} x \rangle_{L_2} \geq 0$  for all  $x \in X$  and  $\dot{V}(x) = \langle z, \mathcal{P}_{\{D_1,V,-\dot{S},G\}} z \rangle_{L_2} \leq 0$  for all  $z \in \mathbb{R}^{n+m} \times L_2^n$ .

## How to ensure $\mathcal{P}(X) = X$

Recall we have operators of the form

$$\left(\mathcal{P}_{\{P,Q,S,R\}} \begin{bmatrix} x \\ \phi \end{bmatrix}\right)(s) := \begin{bmatrix} Px + \int_{-r}^{0} Q(s)\phi(s)ds \\ rQ(s)^{T}x + rS(s)\phi(s) + \int_{-r}^{0} R(s,\theta)\phi(\theta)\,d\theta. \end{bmatrix}$$

with

$$X:=\left\{\begin{bmatrix}x\\\phi\end{bmatrix}\in\mathbb{R}^m\times L^n_2[-r,0]\,:\, \begin{smallmatrix}\phi\in W^n_2[-r,0]\text{ and }\\\phi(0)=Cx+D\phi(-r)\text{ for all }\end{smallmatrix}\right\}.$$

#### Lemma 3.

Suppose that S,R are polynomial ,

$$rQ^{T}(0) + rS(0)C = CP + rDQ^{T}(-r),$$
 (3)

$$R(0,s) = CQ(s) + DR(-r,s), \quad \forall s,$$
(4)

$$DS(-r) = rS(0)D. (5)$$

Then  $\mathcal{P}_{\{P,Q,S,R\}}(X) = X$ .

# Dual Stability Theorem for Time-Delay Systems

#### Theorem 4.

The system

$$\dot{x} = Ax + By(t-r),$$
  $y(t) = Cx(t) + Dy(t-r)$ 

is stable if there exist P,Q,S,R such that  $\mathcal{P}_{\{P,Q,S,R\}}(X)=X$  and

$$\mathcal{P}_{\{P,Q,S,R\}} \geq 0 \qquad \text{and} \qquad \mathcal{P}_{\{D_1,V,\dot{S},G\}} < 0.$$

Where

$$\begin{split} D_1 &:= \begin{bmatrix} D_{11} + D_{11}^T & D_{12} \\ D_{12}^T & -S(-r) + D^T S(0) D \end{bmatrix}, \\ D_{11} &:= AP + r(BQ(-r)^T + \frac{1}{2}C^T S(0)C), \qquad D_{12} := rBS(-r) + C^T S(0)D, \\ V(s) &:= \begin{bmatrix} AQ(s) + \dot{Q}(s) + BR(-r,s) \\ 0 \end{bmatrix}, \qquad G(s,\theta) := \frac{\partial}{\partial s}R(s,\theta) + \frac{\partial}{\partial \theta}R(s,\theta)^T. \end{split}$$

## In Case you are NOT sold on LOIs

A Dual Lyapunov-Krasovskii (Old-School) Formulation for Single Delay Case

$$\dot{x}=Ax+By(t-r),~y(t)=Cx(t)+Dy(t-r)$$
 is stable if there exist  $P,Q,R,S$  such that  $\mathcal{P}_{\{P,Q,S,R\}}(X)=X$  and

$$V(\phi) = \int_{-r}^{0} \begin{bmatrix} x \\ \phi(s) \end{bmatrix}^{T} \begin{bmatrix} P & rQ(s) \\ rQ(s) & rS(s) \end{bmatrix} \begin{bmatrix} x \\ \phi(s) \end{bmatrix} ds + \int_{-r}^{0} \int_{-r}^{0} \phi(s)^{T} R(s, \theta) \phi(\theta) d\theta ds \ge \left\| \begin{bmatrix} x \\ \phi \end{bmatrix} \right\|^{2}$$

and

$$V_{D}(\phi) = \int_{-r}^{0} \begin{bmatrix} x \\ \phi(-r) \\ \phi(s) \end{bmatrix}^{T} \begin{bmatrix} D_{11} + D_{11}^{T} & D_{12} & rD_{13}(s) \\ D_{12}^{T} & -S(-r) + D^{T}S(0)D & 0_{n} \\ rD_{13}(s)^{T} & 0_{n} & r\dot{S}(s) \end{bmatrix} \begin{bmatrix} x \\ \phi(-r) \\ \phi(s) \end{bmatrix} ds + \int_{-r}^{0} \int_{-r}^{0} \phi(s)^{T} \left( \frac{d}{ds} R(s, \theta) + \frac{d}{d\theta} R(s, \theta) \right) \phi(\theta) d\theta ds \le -\epsilon \left\| \begin{bmatrix} x \\ \phi \end{bmatrix} \right\|.$$

where

where 
$$\begin{array}{l} D_{11}:=AP+r(BQ(-r)^T+\frac{1}{2}C^TS(0)C),\\ D_{12}:=rBS(-r)+C^TS(0)D, & D_{13}(s):=AQ(s)+\dot{Q}(s)+BR(-r,s). \end{array}$$

**IMPORTANT:**  $V_D$  is NOT the derivative of V!!!

## Compare with the Primal L-K Formulation

Note Reduced Sparsity

$$\dot{x} = Ax + By(t-r), \; y(t) = Cx(t) + Dy(t-r)$$
 is stable if there exist  $P,Q,R,S$  such that

$$V(\phi) = \int_{-r}^{0} \begin{bmatrix} \phi(0) \\ \phi(s) \end{bmatrix}^{T} \begin{bmatrix} P & rQ(s) \\ rQ(s)^{T} & rS(s) \end{bmatrix} \begin{bmatrix} \phi(0) \\ \phi(s) \end{bmatrix} ds + r \int_{-r}^{0} \int_{-r}^{0} \phi(s)^{T} R(s, \theta) \phi(\theta) d\theta ds \ge \| [\phi] \|^{2}$$

$$\dot{V}(\phi) = \int_{-r}^{0} \begin{bmatrix} \phi(0) \\ \phi(-r) \\ \phi(s) \end{bmatrix}^{T} \begin{bmatrix} D_{11} + D_{11}^{T_{1}} & D_{12} & rD_{13}(s) \\ D_{12}^{T_{2}} & D^{T}S(0)D - S(-r) & rD_{23}(s) \\ rD_{13}(s)^{T} & rD_{23}(s)^{T} & -r\dot{S}(s) \end{bmatrix} \begin{bmatrix} \phi(0) \\ \phi(-r) \\ \phi(s) \end{bmatrix} ds - r \int_{-r}^{0} \int_{-r}^{0} \phi(s)^{T} \left( \frac{d}{ds}N(s,\theta) + \frac{d}{d\theta}N(s,\theta) \right) \phi(\theta) d\theta ds \le -\epsilon \| [\phi(0)] \|^{2}.$$

$$D_{11} = PA + Q(0)C + \frac{1}{2}C^{T}S(0)C, \quad D_{12} = PB - Q(-r) + Q(0)D + C^{T}S(0)D,$$

$$D_{23} = B^{T}Q(s) + D^{T}R(0,s) + R(-r,s), \quad D_{13} = A^{T}Q(s) - \dot{Q}(s) + C^{T}R(0,s).$$

# Complexity and Accuracy of Dual Stability Conditions

$$\dot{x}(t) = -x(t - \tau)$$

|   | d               | 1     | 2      | 3      | 4      | analytic |
|---|-----------------|-------|--------|--------|--------|----------|
| _ | $\tau_{ m max}$ | 1.408 | 1.5707 | 1.5707 | 1.5707 | 1.5707   |
| - | CPU sec         | .18   | .21    | .25    | .47    |          |

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & .1 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} x(t - \tau)$$

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & .1 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} x(t - \tau/2) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} x(t - \tau)$$

$$\dot{x}(t) = (A - BKC)x(t) + (A + BKC)x(t - \tau),$$
 where  $K = 1$ ,  $\tau = 3$ 

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -10 & 10 & 0 & 0 \\ 5 & -15 & 0 & -.25 \end{bmatrix}, \ B = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \ C = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T$$

Complexity Scaling Results: Single Delay Case

- 10 State Example (d=2): 22s
- 20 State Example (d=2): 951s

Further reduction possible using Differential-Difference Formulation.

## Now Recall Our ODE Roadmap

The goal is to find  $K \in \mathbb{R}^{m \times n}$  such that

$$\dot{x} = Ax + Bu, \qquad u = Kx \qquad \qquad \text{is Stable}$$

**Step 1:** DUALITY says the following are equivalent for fixed A, B, K:

- **1.**  $\exists P > 0$  such that  $P(A + BK) + (A + BK)^T P < 0$ .
- 2.  $\exists Q > 0$  such that  $(A + BK)Q + Q(A + BK)^T < 0$ .

**Step 2:** Variable Substitution - Define variable Z=KQ. The Synthesis condition becomes

$$AQ + BZ + QA^{T} + Z^{T}B^{T} < 0$$
  $Q > 0, Z \in \mathbb{R}^{m \times n}$ 

**Step 3:** Controller Reconstruction. Given solution Q, Z, the controller is

$$K = ZQ^{-1}$$

## Recall the Controller Synthesis LOI

Find  $\mathcal{P}$ ,  $\mathcal{Z}$  such that  $\mathcal{P}(X)=X$ ,  $\mathcal{P}>0$ 

$$\begin{split} \langle \mathcal{AP}x, x \rangle + \langle x, \mathcal{AP}x \rangle + \langle \mathcal{BKP}x, x \rangle + \langle x, \mathcal{BKP}x \rangle \\ &= \langle \hat{x}, P_{\{D_1, V, \dot{S}, G\}} \hat{x} \rangle + \langle \mathcal{BZ}x, x \rangle + \langle x, \mathcal{BZ}x \rangle < 0 \end{split}$$

We already discussed  $\langle x, \mathcal{D}x \rangle$ . Now examine the new variable  $\mathcal{Z} = \mathcal{KP}$ .

ullet Since  ${\cal B}$  is not differential, it helps to let  ${\cal K}$  have the form

$$\left(\mathcal{K}\left[\begin{array}{c} x \\ \phi \end{array}\right]\right)(s) = K_0 x + K_1 \phi(-\tau) + \int_{-\tau}^0 K_2(s)\phi(s)ds,$$

• Then if  $\mathcal{Z} = \mathcal{KP}$ , we can prove that  $\mathcal{Z}$  has the form

$$\left(\mathcal{Z}\begin{bmatrix} x \\ \phi \end{bmatrix}\right)(s) = Z_0 x + Z_1 \phi(-\tau) + \int_{-\tau}^0 Z_2(s)\phi(s)ds,$$

 $\mathcal{B}$  is simply  $(\mathcal{B}u)(s)$ 

$$\left( \mathcal{BZ} \begin{bmatrix} x \\ \phi \end{bmatrix} \right) (s) = \begin{bmatrix} FZ_0x + FZ_1\phi(-\tau) + \int_{-\tau}^0 FZ_2(s)\phi(s)ds \\ 0 \end{bmatrix}$$

### Full-State Feedback Controllers

#### Theorem 5.

The System

$$\dot{x}(t) = Ax(t) + By(t-r) + Fu(t), \tag{6}$$

$$y(t) = Cx(t) + Dy(t-r), (7)$$

is full-state-feedback stabilizable if there exist P,Q,S,R,  $Z_0$ ,  $Z_1$  and  $Z_2$  such that

$$\mathcal{P}_{\{P,Q,S,R\}} \geq 0 \qquad \text{and} \qquad \mathcal{P}_{\{D_1,V,\dot{S},G\}} + \mathcal{P}_{\{L_1,L_2,0,0\}} < 0$$

where  $D_1, V, G$  are as previously defined and

$$L_1 = \begin{bmatrix} FZ_0 + (FZ_0)^T & FZ_1 \\ (FZ_1)^T & 0 \end{bmatrix}, \qquad L_2 = \begin{bmatrix} rFZ_2(s) \\ 0 \end{bmatrix}$$

As a Lyapunov function

$$V_{D}(x) = \underbrace{\langle \mathcal{A}\mathcal{P}x, x \rangle + \langle x, \mathcal{A}\mathcal{P}x \rangle_{L_{2}}}_{\langle \hat{x}, \mathcal{P}_{\{D_{1}, V, \dot{S}, G\}} \hat{x} \rangle} + \underbrace{\langle \mathcal{B}\mathcal{Z}x, x \rangle + \langle x, \mathcal{B}\mathcal{Z}x \rangle_{L_{2}}}_{\langle \hat{x}, \mathcal{P}_{\{L_{1}, L_{2}, 0, 0\}} \hat{x} \rangle_{L_{2}}}$$
$$= \langle \hat{x}, \mathcal{P}_{\{D_{1}, V, \dot{S}, G\}} \hat{x} \rangle + \langle \hat{x}, \mathcal{P}_{\{L_{1}, L_{2}, 0, 0\}} \hat{x} \rangle_{Z}$$

# Again Recall Our ODE Roadmap

The goal is to find  $K \in \mathbb{R}^{m \times n}$  such that

$$\dot{x} = Ax + Bu, \qquad u = Kx \qquad \qquad \text{is Stable}$$

**Step 1:** DUALITY says the following are equivalent for fixed A, B, K:

- **1.**  $\exists P > 0$  such that  $P(A + BK) + (A + BK)^T P < 0$ .
- 2.  $\exists Q > 0$  such that  $(A + BK)Q + Q(A + BK)^T < 0$ .

**Step 2:** Variable Substitution - Define variable Z=KQ. The Synthesis condition becomes

$$AQ + BZ + QA^{T} + Z^{T}B^{T} < 0$$
  $Q > 0, Z \in \mathbb{R}^{m \times n}$ 

**Step 3:** Controller Reconstruction. Given solution Q, Z, the controller is

$$K = ZQ^{-1}$$

# Analytic Formula for Operator Inversion [Significant!!!]

Suppose  $\mathcal{P} > 0$  where

$$\mathcal{P} \begin{bmatrix} \psi \\ \phi \end{bmatrix} (s) = \begin{bmatrix} P\psi + \int_{-r}^{0} Q(\theta)\phi(\theta)d\theta \\ rQ^{T}(s)\psi + \int_{-r}^{0} R(s,\theta)\phi(\theta)d\theta + S(s)\phi(s) \end{bmatrix}$$
$$R(s,\theta) = Y^{T}(s)\Gamma Y(\theta), \qquad Q(s) = HY(s),$$

Then the inverse  $\mathcal{P}^{-1}$  is given by

$$\mathcal{P}^{-1} \left[ \begin{array}{c} \psi \\ \phi \end{array} \right] (s) = \left[ \begin{array}{c} \hat{P}\psi + \int_{-r}^{0} \hat{Q}(\theta)\phi(\theta)d\theta \\ r\hat{Q}^{T}(s)\psi + \hat{S}(s)\phi(s) + \int_{-r}^{0} \hat{R}(s,\theta)\phi(\theta)d\theta \end{array} \right],$$

where  $\hat{R}(s,\theta)$ ,  $\hat{Q}(\theta)$  and  $\hat{S}(s)$  are given as follows

$$\begin{array}{lll} \hat{R}(s,\theta) & = & \hat{Y}^T(s)\hat{\Gamma}\hat{Y}(\theta), \\ \hat{Q}(\theta) & = & \hat{H}\hat{Y}(\theta), & \hat{S}(s) = S^{-1}(s), & \hat{Y}(s) = Y(s)S^{-1}(s) \\ \hat{H} & = & -P^{-1}HT, & \hat{P} = [I + rP^{-1}HTKH^T]P^{-1}, \\ \hat{\Gamma} & = & [rT^TH^TP^{-1}H - \Gamma](I + K\Gamma)^{-1}, & T = (I + K\Gamma - rKH^TP^{-1}H)^{-1}, \end{array}$$

where  $K = \int_{-r}^{0} Y(s) S^{-1}(s) Y^{T}(s) ds$ ,

## A Full-State Feedback Controller

Finally, we recover the controller as

$$u(t) = K_0 x(t) + K_1 y(t-r) + \int_{-r}^{0} K_2(s) y(t+s) ds$$

where

$$K_{0} = Z_{0}\hat{P} + rZ_{1}\hat{Q}^{T}(-r) + r\int_{-r}^{0} Z_{2}(s)\hat{Q}^{T}(s)ds,$$

$$K_{1} = Z_{1}\hat{S}(-r),$$

$$K_{2}(s) = Z_{0}\hat{Q}(s) + Z_{1}\hat{R}(-r,s) + Z_{2}(s)\hat{S}(s) + \int_{-r}^{0} Z_{2}(\theta)\hat{R}(\theta,s)d\theta.$$

Note: This is Full-State Feedback.

• Contrast with output feedback: u(t) = Kx(t) or u(t) = Ky(t-r).

Response: Design an Observer.

• Ongoing Research.

# Conclusion: YOU can do controller synthesis!!!

 $\dot x=Ax+By(t-r)+Fu(t),\ y(t)=Cx(t)+Dy(t-r)$  is stabilizable if there exist  $P,Q,R,S,Z_0,Z_1,Z_2$  such that

$$\int_{-r}^{0} \begin{bmatrix} x \\ \phi(s) \end{bmatrix}^{T} \begin{bmatrix} P & rQ(s) \\ rQ(s) & rS(s) \end{bmatrix} \begin{bmatrix} x \\ \phi(s) \end{bmatrix} ds + \int_{-r}^{0} \int_{-r}^{0} \phi(s)^{T} R(s,\theta) \phi(\theta) d\theta ds \geq \epsilon \left\| \begin{bmatrix} x \\ \phi \end{bmatrix} \right\|^{2}$$

and

$$\int_{-r}^{0} \begin{bmatrix} x \\ \phi(-r) \\ \phi(s) \end{bmatrix}^{T} \begin{bmatrix} D_{11} + D_{11}^{T} & D_{12} & rD_{13}(s) \\ D_{12}^{T} & -S(-r) + D^{T}S(0)D & 0_{n} \\ rD_{13}(s)^{T} & 0_{n} & rS(s) \end{bmatrix} \begin{bmatrix} x \\ \phi(-r) \\ \phi(s) \end{bmatrix} ds \\
+ \int_{-r}^{0} \int_{-r}^{0} \phi(s)^{T} \left( \frac{d}{ds} R(s, \theta) + \frac{d}{d\theta} R(s, \theta) \right) \phi(\theta) d\theta ds \leq -\epsilon \| \begin{bmatrix} x \\ \phi \end{bmatrix} \|.$$

where

$$D_{11} := AP + r(BQ(-r)^T + \frac{1}{2}C^TS(0)C) + FZ_0,$$

$$D_{12} := rBS(-r) + C^TS(0)D + FZ_1,$$

$$D_{13}(s) := AQ(s) + \dot{Q}(s) + BR(-r,s) + FZ_2(s),$$

$$rQ^T(0) + rS(0)C = CP + rDQ^T(-r), \quad R(0,s) = CQ(s) + DR(-r,s),$$

$$DS(-r) = rS(0)D.$$

## Full-state Feedback Controller: Numerical Example

Consider a numerical example.

Results: Unstable without controller for any delay.

- Computation time 3s.
- No delay for which we cannot find a controller.

## Numerical Example

Using a value of r=1.6s, we compute the following controller:

$$u(t) = \begin{bmatrix} -1.874 & 2.232 & -0.830 & 3.099 & 0.030 & -1.033 \end{bmatrix} x(t) + \begin{bmatrix} -0.239 \\ -0.343 \end{bmatrix}^{T} y(t-1.6)$$

$$+ \int_{-1.6}^{0} \begin{bmatrix} -0.246 + 0.221s + 0.122s^{2} - 0.012s^{3} - 0.032s^{4} \\ 0.238 - 0.398s + +0.007s^{2} + 0.037s^{3} + 0.010s^{4} \end{bmatrix}^{T} y(t+s)ds$$



Figure: Trajectory of a delayed system (r = 1.6s) with full-state feedback

## **Conclusions:**

- A Dual approach to controller synthesis
  - Convexifies the problem
  - Can be applied to any Lyapunov-Krasovskii-based approach.
  - NOT limited to SOS.

- Practical Implications
  - First numerical solution to Full-State Feedback of multi-state delayed systems.
  - No Analytic Solution to operator inversion in multi-delay case.

## **Numerical Code Produced:**

- LOI Toolbox
  - Packaged as DelayTools
  - But limited Functionality
  - Can declare L<sub>2</sub>-positive operator variables
- Available for download at http://control.asu.edu

- Next Talk
  - Observer-Based Controller Synthesis
  - Preliminary Work by Guoying