Recuperatorio Segundo Parcial DNI:	Nombre y Apellido: _	
Universidad Nacional de La Matanza - Base de datos		06/07/2023

ALGEBRA RELACIONAL - PRÁCTICA

1- Dado el siguiente esquema (Referencia: PK, FK, PK+FK):

Tecnico (<u>Legajo</u> , nombre, apellido)	Vehículo (<u>Patente</u> , <i>idMarca</i>)
Repara (<i>Legajo, Patente</i> , fecha)	Marca (<u>idMarca</u> , nombre)

Seleccionar la opción que permite listar el legajo de los técnicos que jamás repararon vehículos de la marca "FIAT".

- a. Π legajo (Repara |X| Vehiculo |X| (σ nombre='FIAT' (Marca))) Π legajo (Tecnico)
- b. Π legajo (Tecnico) U Π legajo (Repara |X| Vehiculo |X| (σ nombre='FIAT' (Marca)))
- c. Π legajo (Tecnico) Π legajo (Repara |X| Vehiculo |X| (σ nombre='FIAT' (Marca)))
- d. Π legajo (Repara |X| Vehiculo |X| (σ nombre='FIAT' (Marca))) \cap Π legajo (Tecnico)
- e. Ninguna de las opciones es correcta

SQL - PRÁCTICA

2- Dadas las siguientes sentencias SQL:

create table empleado (dni int primary key, legajo int, apellido varchar(50)) create table asignado (legajo int, proyecto varchar(50), fecha_inicio date, CONSTRAINT fk_empleado FOREIGN KEY (legajo) REFERENCES empleado(Legajo))

Seleccione la afirmación verdadera, teniendo en cuenta el orden en que se escribieron para su ejecución:

- a- El orden de la creación de las tablas es incorrecto. Primero debe crearse la tabla "asignado" y luego la tabla "empleado", ya que existe una Foreign Key en "asignado".
- b- La ejecución daría error ya que no pueden crearse tablas que no tengan una clave primaria.
- c- La ejecución daría error ya que en la tabla "asignado" se intenta crear una Foreign Key a un campo que no es clave primaria en la tabla "empleado".
- d- La ejecución no da error y las tablas se crean correctamente.
- e- Ninguna es verdadera
- 3- Dadas las siguientes sentencias SQL:

create table asignado (legajo int not null, proyecto varchar(50) not null, fecha_inicio date not null) alter table asignado add constraint pk_asignado PRIMARY KEY (legajo, proyecto, fecha_inicio)

Seleccione la afirmación verdadera, teniendo en cuenta el orden en que se escribieron para su ejecución:

- a- El alter table podría evitarse reescribiendo el create de la siguiente forma: create table asignado (legajo int PRIMARY KEY, proyecto varchar(50) PRIMARY KEY, fecha_inicio date PRIMARY KEY)
- b- La ejecución daría error ya que no es posible crear tablas con más de dos campos como clave primaria.
- c- La ejecución daría error ya que la sentencia del alter table tiene errores sintácticos.
- d- La ejecución daría error porque no es posible definir un campo del tipo varchar como parte de una Primary Key.
- e- Las sentencias se ejecutan correctamente, sin errores.
- 4- Dada la siguiente función:

CREATE FUNCTION f_recuperatorio (@titulo_id CHAR(6))

RETURNS INT AS

BEGIN

DECLARE @cant INT

SET @cant = (SELECT MAX(Cantidad) FROM VentaLibros WHERE titulo_id = @titulo_id)

RETURN ISNULL(@cant, 0)

END

Recuperatorio Segundo Parcial DNI: Nombre y Apel	llido:
Universidad Nacional de La Matanza - Base de datos	06/07/2023
Nota: La estructura de VentaLibros es: VentaLibros (id int, titulo_id CHAR(6), fecha date, Cantidad int)	
Seleccione la afirmación verdadera: a- La función no debiera ser escalar, ya que el select interno devuelve una tabla. b- La función siempre devolverá 0. Para evitar este problema, hay que quitar la fu c- La función devolverá la mayor cantidad de ejemplares vendidos, en una venta, d- La función devolverá la cantidad total de libros vendidos para el título enviado e- Ninguna de las opciones anteriores es verdadera	, para el título enviado por parámetro.
5) Seleccione cuál de las siguientes sentencias se encuentra escrita correctament a- insert into tabla1 (id, nombre) values (1,'Pedro'), (2,'Maria') b- alter table tabla2 drop constraint restriccionTabla2 b- alter table tabla3 add campo3 varchar(200) d- delete from table4 where campo4 > 300 e- Todas las opciones anteriores son correctas	te (No tiene errores sintácticos):
6) Dada la siguiente consulta SQL, indique su correspondiente enunciado:	
PARTIDO (idPartido, Fecha, idEquipoVisitante, idEquipoLocal, CantGolesLocal, Ca	nt Goles Visitante)
SELECT * FROM Equipo WHERE id NOT IN (SELECT idEquipoLocal FROM Partido WHERE CantGolesLocal < CantGolesVisitante) AND id NOT IN (SELECT idEquipoVisitante FROM Partido WHERE CantGolesVisitante > CantGolesLocal)	
a) Equipos que no perdieron ningún partido de local y que empataron todos los p b) Equipos que no perdieron ningún partido de local y que no perdieron ningún p c) Equipos que ganaron todos los partidos de local y que no perdieron ningún pa d) Equipos que ganaron todos los partidos de local y que no ganaron ningún part e) Equipos que no perdieron ningún partido de local y que no ganaron ningún pa	partido de visitante. rtido de visitante. tido de visitante.
7) Dado el siguiente enunciado, indique la correspondiente consulta SQL que lo r	resuelve:
PERSONA (dni, nombre, apellido, fecha_nacimiento, sexo, dni_madre, dni_padre La columna sexo tiene los siguientes valores: M=Masculino, F=Femenino.	e)
Listar el DNI de las Madres y la cantidad de hijos hombres que tienen.	
a) SELECT a.dni, count(*) FROM Persona a, Persona b WHERE a.dni = b.dni_madr b) SELECT a.dni, count(*) FROM Persona a, Persona b WHERE a.dni_madre = b.dr	

e) SELECT a.dni, count(*) FROM Persona a, Persona b WHERE a.sexo = 'F' AND a.sexo = 'M'.

c) SELECT a.dni, count(*) FROM Persona a, Persona b WHERE a.dni_madre = b.dni AND a.sexo = 'F'. d) SELECT a.dni, count(*) FROM Persona a, Persona b WHERE a.dni = b.dni_madre AND a.sexo = 'F'.

8) Dadas las siguientes las siguientes tablas, indique cuál de las sentencias SQL se utilizó para obtener ese Resultado.

Universidad Nacional de La Matanza - Base de datos

06/07/2023

Tabla1

Α	В
1	10
2	20
3	30

Tabla2

С	D
10	160
10	80
20	110
20	105
30	30
30	50

Resultado

В	SUMA	
10	160	
20	215	

- a) SELECT t1.b, sum(t2.d) SUMA FROM Tabla1 t1, Tabla2 t2 WHERE t1.b = t2.c GROUP BY t1.b
- b) SELECT t1.b, sum(t2.d) SUMA FROM Tabla1 t1, Tabla2 t2 WHERE t1.b = t2.c AND t2.d > 100 GROUP BY t1.b
- c) SELECT t1.b, sum(t2.d) SUMA FROM Tabla1 t1, Tabla2 t2 WHERE t1.b = t2.c GROUP BY t1.b HAVING sum(t2.d) > 100
- d) SELECT t1.b, sum(t2.d) SUMA FROM Tabla1 t1, Tabla2 t2 WHERE t1.b = t2.c AND t2.d > 150 GROUP BY t1.b
- e) SELECT t1.b, sum(t2.d) SUMA FROM Tabla1 t1, Tabla2 t2 WHERE t1.b = t2.c GROUP BY t1.b HAVING sum(t2.d) > 150

TRANSACCIONES - PRÁCTICA

9) Dadas las siguientes dos transacciones concurrentes:

¿Con cuál de los siguientes niveles de aislamiento se generaría Deadlock?

a) T1 = Repeatable Read
 b) T1 = Read Committed
 c) T1 = Serializable
 d) T1 = Serializable
 e) T1 = Repeatable Read
 T2 = Serializable
 T2 = Read Committed
 T2 = Repeatable Read
 T2 = Repeatable Read
 T2 = Repeatable Read

10) Dadas las siguientes tres transacciones concurrentes:

Transacción 1	Transacción 2	Transacción 3
SET TRANSACTION ISOLATION LEVEL READ COMMITED; BEGIN TRANSACTION;	SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; BEGIN TRANSACTION;	SET TRANSACTION ISOLATION
		LEVEL SERIALIZABLE; BEGIN TRANSACTION;
UPDATE Articulo	SELECT * FROM Articulo	Tiempo
SET precio = precio * 2		SELECT * FROM Proveedor WHERE ciudad = 'Canning'
	INSERT INTO Proveedor VALUES (158, 'Distribuidora Ramirez SRL')	*
SELECT * FROM Proveedor	SELECT * FROM Proveedor	SELECT * FROM Articulo.
COMMIT	СОММІТ	COMMIT

¿En qué orden finalizan?

- a) Primero finaliza T1, luego T2 y por último T3.
- b) Primero finaliza T2, luego T1 y por último T3.
- c) Primero finaliza T2, luego T3 y por último T1.
- d) Primero finaliza T3, luego T1 y por último T2.
- e) Primero finaliza T3, luego T2 y por último T1.

ALGEBRA RELACIONAL - TEORÍA

- 11- Dados R(a,b,c); S(b,d,e); T(b,f); W(f,g) ¿Cuál de las siguientes igualdades es correcta?
 - a. $S \cap W = S |X| W$
 - b. $S \cap W = S X W$
 - c. S | X | W = S X W
 - d. TXR = R|X|T
 - e. Ninguna es correcta

SQL - TEORÍA

- 12- Indique cuál es la sentencia DDL para eliminar una tabla:
- a- DELETE TABLE
- b- REMOVE TABLE
- c- DROP TABLE
- d-TRUNCATE TABLE
- e- Todas son correctas
- 13- Seleccione la afirmación incorrecta:
- a- Los Stored Procedure se utilizan para procesos complejos o grandes que podrían requerir la 'ejecución' de varias consultas SQL, tales como la manipulación de un 'dataset' enorme para producir un resultado resumido.
- b- Una de las ventajas de un Stored Procedure es que permite la reutilización de código.
- c- Las tablas INSERTED, DELETED y UPDATED son tablas virtuales que se pueden utilizar dentro de los Triggers
- d- Las Funciones, a diferencia de los Stored Procedures, siempre deben retornar un valor.
- e- Todas las opciones son verdaderas
- 14- Dada la función escalar f mi funcion, la manera de ejecutarla es:

Recuperatorio Segundo Parcial DNI:	Nombre y Apellido:	
Universidad Nacional de La Matanza - Base de datos	- , ,	06/07/2023

- a- EXEC f_mi_funcion
- b- EXEC f_mi_funcion (@parametro)
- c- EXECUTE FUNCTION (f_mi_funcion)
- d-tg_mi_trigger()
- e- Ninguna de las anteriores
- 15) Indique cuál de las siguientes opciones es verdadera:
 - a. Las restricciones de integridad referencial no pueden definirse usando ALTER TABLE
 - b. Las restricciones de clave primaria no pueden definirse usando ALTER TABLE
 - c. En ningún caso es posible modificar el tipo de datos de un campo que no es clave, utilizando un ALTER TABLE
 - d. En ningún caso es posible agregar un nuevo campo a una tabla existente, utilizando ALTER TABLE
 - e. Ninguna de las anteriores es verdadera
- 16) Indique cuál de las siguientes afirmaciones es falsa:
 - a) Las cláusulas SOME y ANY son exactamente iguales, solo existen ambas por compatibilidad.
 - b) La cláusula IN permite verificar si un valor pertenece o no a un conjunto de valores.
 - c) La cláusula EXCEPT devuelve las filas que están en la primera consulta y no están en la segunda consulta.
 - d) Para poder hacer un UNION entre dos consultas, ambas tienen que ser compatibles.
 - e) Si hacemos un FULL JOIN entre dos tablas que tienen 3 filas cada una, el resultado tendrá siempre 6 o más filas.
- 17) Indique cuál de las siguientes afirmaciones es falsa:
 - a) La función de agregación COUNT(), cuando se le coloca el nombre de una columna, devuelve la cantidad de valores distintos que tiene esa columna. Por ejemplo: SELECT count(ciudad) FROM Empleado.
 - b) Es posible colocar el número de columna en el ORDER BY. Por ejemplo: SELECT * FROM Empleado ORDER BY 2
 - c) Es posible colocar en el HAVING una condición sobre una columna normal, siempre y cuando esa columna exista luego de la agrupación. Por ejemplo: SELECT ciudad, count(*) FROM Empleado GROUP BY ciudad HAVING ciudad <> 'CABA'
 - d) El Producto Cartesiano entre dos tablas de 5 filas cada una, dará siempre como resultado 25 filas.
 - e) La cláusula EXISTS verifica la existencia de filas en una subconsulta. Si la subconsulta devuelve una o más filas, el EXISTS será verdadero.

TRANSACCIONES - TEORÍA

- 18) El nivel de aislamiento Read Uncommited anula principalmente la siguiente propiedad de las transacciones:
 - a) Atomicidad
 - b) Conservación de la consistencia
 - c) Aislamiento
 - d) Durabilidad
 - e) Ninguna de las anteriores
- 19) Indique cuál de las siguientes afirmaciones es Verdadera:
 - a) El nivel de aislamiento Read Uncommited evita la Lectura Sucia.
 - b) El nivel de aislamiento Read Commited evita la Lectura Fantasma.
 - c) El nivel de aislamiento Repeatable Read no evita la Lectura Fantasma.
 - d) El nivel de aislamiento Serializable no evita la Lectura Fantasma.
 - e) El nivel de aislamiento Serializable evita los deadlocks.
- 20) El Gestor de Recuperación es el responsable de garantizar la siguiente propiedad:
 - a) Atomicidad
 - b) Conservación de la Consistencia
 - c) Aislamiento
 - d) Durabilidad
 - e) Ninguna de las anteriores

Recuperatorio Segundo Parcial DNI:	Nombre y Apellido:	
Universidad Nacional de La Matanza - Base de datos		06/07/2023

RESPUESTAS

	А	В	С	D	E
1			Х		
2			Х		
3					Х
4			Х		
5					Х
6					Х
7	Х				
8		Х			
9	Х				
10					Х
11			Х		
12			х		
13			Х		
14					Х
15					X
16					Х
17	Х				
18			Х		
19			Х		
20				Х	