

Цель работы

Построить модель, способную рассчитывать данные по выбросам СО2

- Стремительное изменение климата;
- Повышение уровня выбросов газов в 7 раз;
- Повышение средней температуры поверхности планеты на 1.3 градуса
- Увеличение количества катастроф в 4 раза;

Источники

Максимальная модель – лесной массив, с максимальным запасом лесных горючих материалов.

Задачи и план работы

Задачи работы

- 1.Подготовить Датасет, подходящий для классификации "сгоревший" и "обычный" земной покров (лес).
- 2.Построить и обучить сверточную нейронную сеть классифицировать изображения.
- 3.Посчитать метрики и сделать выводы.

План проведения исследования

- 1.Поиск и отбор фотографий со спутника
- 2. Работа с изображениями.
- 3.Создание директорий, оценка сбалансированности классов.
- 4.Создание Датасетов для нейронной сети
- 5.Построение архитектуры нейронной сети. Обучение модели.
- 6. Анализ проделанной работы

Визуализация изображений датасета

Визуализация работы

Rescale

минимальное значение пикселей - 0.0026535017 максимальное значение пикселей - 0.78094256

data_augmentation

Визуализация свертки

Архитектура модели

Layer (type)	Output Shape	Param #
sequential_4 (Sequential)		0
sequential_5 (Sequential)	(None, 250, 250, 3)	0
Conv2D_1 (Conv2D)	(None, 248, 248, 16)	448
MaxPooling2D_1 (MaxPooling2 D)	(None, 124, 124, 16)	9
Conv2D_2 (Conv2D)	(None, 122, 122, 32)	4640
MaxPooling2D_2 (MaxPooling2))	(None, 61, 61, 32)	0
Conv2D_3 (Conv2D)	(None, 59, 59, 64)	18496
MaxPooling2D_3 (MaxPooling2 D)	(None, 29, 29, 64)	0
Conv2D_4 (Conv2D)	(None, 27, 27, 64)	36928
MaxPooling2D_4 (MaxPooling2 D)	(None, 13, 13, 64)	e

Conv2D_5 (Conv2D)	(None, 11, 11, 64)	36928
MaxPooling2D_5 (MaxPooling2 D)	(None, 5, 5, 64)	0
Conv2D_6 (Conv2D)	(None, 3, 3, 64)	36928
Flatten (Flatten)	(None, 576)	0
Dense_1 (Dense)	(None, 512)	295424
Dense_2 (Dense)	(None, 512)	262656
Dense_output (Dense)	(None, 1)	513
otal params: 692 961		
Total params: 692,961		

Total params: 692,961 Trainable params: 692,961 Non-trainable params: 0

Модели нейронных сетей

Без аугментации

С аугментацией

Выводы по моделям:

Модель с аугментацией данных показала гораздо большую устойчивость к переобучению на имеющихся данных при заданных настройках гиперпараметров. При этом предсказание на небольшой тестовой выборке у обеих моделей сравнимо по качеству, обе модели ошиблись один раз из 9.

Максимальное значение ассuracy у обеих моделей также совпало - 0.82, однако у первой модели это значение было достигнуто на 17-й итерации, после чего началось переобучение, вторая модель достигла этого значения на 26-й итерации.

Все это говорит о том, что аугментация на 30 итерациях не добавила модели ассигасу, при этом без аугментации на текущих данных того же результата можно было достичь при значительно меньшем количестве итераций.

План развития

Алгоритмы:

SGD, RMSprop, Adam.

Метрики:

- если классы сбалансированы accuracy,
- если классы не сбалансированы precision, recall и их производные ROC_AUC и F1-мера.

Функция потерь и функция активации на последнем слое:

- для бинарной классификации binary_crossentropy и sigmoid,
- для мультиклассовой классификации sparse_categorical_crossentropy и softmax.

Спасибо за внимание