# Title: Optimizing Trip Fare Prediction with Spark

Student: **Bhumit Kaushik** Student: **Trupti Unnithan**Student ID: 22203745 Student ID: 22206099

GitHub: https://github.com/Bhumit-k/COMP30770---Optimizing-Trip-Fare-Prediction-with-Spark

We Changed our dataset from airlines to this because of a lack of stability in that dataset. Vision is the same to get the difference and show how spark is better on scale.

For this project, we selected the **Taxi Trip Fare Data 2023** available on <u>Kaggle</u>, which contains millions of records representing real-world taxi trips. Each entry includes:

- 1. Trip distance
- 2. Passenger count
- 3. Fare amount
- 4. Trip duration
- 5. Payment type

The dataset is ideal for both statistical analysis and scalable machine learning due to its **size**, **structure**, **and numeric richness**.

| Tool/Setup         | Description                          |
|--------------------|--------------------------------------|
| IDE                | Visual Studio Code                   |
| Runtime            | Python 3.11                          |
| Big Data Framework | Apache Spark 3.1.2 (Standalone Mode) |
| Machine Used       | MacBook M4, 16GB RAM                 |
| Extras             | Google Colab (for graphing & export) |

## **Project Value & Objective Explanation**

The core objective of this big data project is to classify taxi trips into cost categories — cheap, medium, or expensive — using scalable big data techniques. By processing over 8 million real-world taxi records, the project demonstrates how Spark's MapReduce model can be used to:

- Extract actionable insights from large urban mobility datasets
- Predict trip fare behavior based on features like distance and passenger count
- Compare traditional vs distributed processing in terms of scalability, efficiency, and accuracy

## **Section 3: Traditional Solution**

Before implementing the full-scale Spark MapReduce solution, we developed and tested a **traditional** (non-parallel) prototype to validate our approach, understand the structure of the dataset, and establish a baseline for performance.

### Total Execution Time (Q3): ~6.25 seconds

| Task                     | Time Taken (s) | Memory Used |
|--------------------------|----------------|-------------|
| Profiling (describe)     | 1.2            | 0.1         |
| Count records            | 0.2            | NA          |
| Average fare & distance  | 0.3            | NA          |
| Passenger distribution   | 1.5            | 0.1         |
| Label generation & count | 2.5            | 0.1         |

These results confirm that **traditional solutions perform exceptionally well on medium-sized datasets**, and also allow for fast prototyping before applying big data solutions. Below are the code snippets for the above outputs.

| 1 | df.describe(["trip_distance", "fare_amount"]).show()                                                                |
|---|---------------------------------------------------------------------------------------------------------------------|
| 2 | df.count()                                                                                                          |
| 3 | df.selectExpr("avg(fare_amount) as average_fare").show() df.selectExpr("avg(trip_distance) as avg_distance").show() |
| 4 | df.groupBy("passenger_count").count().orderBy("count", ascending=False).show()                                      |
| 5 | from pyspark.sql.functions import when  df = df.withColumn("trip_label", when(df["fare_amount"] < 10, "cheap")      |
|   | df.groupBy("trip_label").count().show()                                                                             |





# **Section 4: MapReduce Optimization (Q4)**

## **Step 1: Identify Time-Consuming Step(s)**

From our traditional pipeline (Q3), the most time-consuming and potentially unscalable tasks were:

- Fare classification (label creation)
- GroupBy + aggregation logic for label distribution and summary
- Predicting and classifying fares based on trip features

#### **Step 2: Why Use MapReduce (Spark ML)**

Spark's MLlib API is built on **MapReduce principles** — it splits data across partitions, applies transformations (map), then aggregates results (reduce). By replacing single-threaded logic with **distributed pipelines**, we expected to:

- Handle large data volumes efficiently
- Reduce training time for classification models
- Maintain scalability for future real-time or streaming use cases

#### **Step 3: MapReduce-Based Solution**

We implemented a **Spark ML pipeline** using:

- 1. VectorAssembler for input feature transformation
- 2. StringIndexer to convert label column to numeric Two classifiers:
- 3. Naive Bayes fast, scalable
- 4. **Logistic Regression** interpretable baseline



| Aspect              | Expectation                       | Actual Result                           |
|---------------------|-----------------------------------|-----------------------------------------|
| Execution Time      | Faster than Q3 due to parallelism | Slower due to Spark overhead (JVM, RDD) |
| Memory Efficiency   | Distributed memory usage          | Minimal usage observed (within limit)   |
| Prediction Accuracy | ~80%+                             | 82–83% achieved                         |
| Scalability         | Better with larger data           | Holds true in theory and design         |





Spark MapReduce pipelines, while slower for this test dataset, provide **future-proof scalability**, **distributed parallelism**, and the ability to plug into real-time ML systems.

With minimal memory usage and high accuracy, our Q4 Spark ML implementation proves the advantage of MapReduce paradigms in Big Data processing.