## 习题 1.9

## 1、选择题

(1) 设函数 f(x) 和 g(x) 在点  $x_0$  处不连续, 而函数 h(x) 在点  $x_0$  处连续, 则下列函数在  $x_0$  处 必不连续的是( ).

A. f(x) + g(x)

B. f(x)g(x)

C. f(x)h(x)

D. f(x) + h(x)

(2) 函数 f(x) 在  $\mathbb{R}$  上连续,且  $f(x) \neq 0$ ,  $\varphi(x)$  在  $\mathbb{R}$  上有间断点,则下列陈述正确的是 ) .

A.  $\varphi(f(x))$  必有间断点

B.  $\varphi^2(x)$  必有间断点

C.  $f(\varphi(x))$  未必有间断点

D.  $\frac{\varphi(x)}{f(x)}$  未必有间断点

(3) 设函数 f(x) 在点  $x_0$  处连续,则下列函数一定在点  $x_0$  处连续的是(

A. |f(x)| B.  $\ln f(x)$  C.  $\frac{1}{f(x)}$ 

D. arccos f(x)

(4) 函数  $f(x) = \frac{\ln(x+2)}{x+2} + \frac{1}{1+x}$  的连续区间是(

A.  $(-\infty, -2)$ 

B.  $(-2,+\infty)$ 

C.  $(-\infty, -1)$ 

D.  $(-2,-1),(-1,+\infty)$ 

2、填空题

(1) 设函数  $f(x) = \begin{cases} \frac{1}{x} \sin x + a, & x < 0 \\ k, & x = 0, \\ x \sin \frac{1}{x} + 1, & x > 0 \end{cases}$  , k =\_\_\_\_\_时, f(x) 在聚 内连续.

(2) 已知  $\lim_{x \to 0} f(x) = 1$ ,则  $\lim_{x \to 0} \ln[f(x)] \frac{\sin x}{x} = \underline{\hspace{1cm}}$ 

(3)  $\[ \[ \] \lim_{x \to \infty} \left( \frac{x - k}{x} \right)^{-2x} = \lim_{x \to 0} e^{x \sin \frac{2}{x} + 2}, \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[\] \[ \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[$ 

(4)  $\lim_{x \to 0} \sqrt{1 - \frac{\sin x}{x}} = _{----}, \lim_{x \to \infty} \sqrt{1 - \frac{\sin x}{x}} = _{---}$ 

## 3、解答题

(1) 求下列极限:

 $\lim_{x\to+\infty} \left( \sin \sqrt{x+1} - \sin \sqrt{x} \right);$ 



$$4 \lim_{x\to 0} (2\sin x + \cos x)^{\frac{1}{x}};$$

(2) 设 
$$f(x) = \begin{cases} \frac{\cos x}{x+2}, & x \ge 0 \\ \frac{\sqrt{a} - \sqrt{a-x}}{x}, & x < 0 \ (a > 0) \end{cases}$$
, 当  $a$  为何值时,  $f(x)$  在  $x = 0$  处连续

