1. Basics of kallisto single cell — introduction

Overview of kallisto single cell: https://pachterlab.github.io/kallisto/singlecell.html

Quick start of kallisto: https://pachterlab.github.io/kallisto/starting

Presentation materials: https://github.com/caltech-bioinformatics-resource-center/bioinformatics-

symposium-2019

2. Hands-on exercise

2.1 Software installation and configuration

This exercise covers installation of kallisto, bustools, Jupyter Notebook, R-studio, Scanpy and Seurat software tools and download of demo datasets.

Bioinformatics server users, please open a terminal window (install putty on Windows https://www.putty.org)

ssh user@bioinformatics.caltech.edu

Mac and Linux laptop users, please open a terminal window.

2.1.1 Installation of kallisto

Visit http://pachterlab.github.io/kallisto/download from any web browser

Download Mac or Linux executables from the version: v0.45.0

Mac users

cd /home/user

wget https://github.com/pachterlab/kallisto/releases/download/vo.45.0/kallisto_mac-vo.45.0.tar.gz tar -xvzf kallisto_mac-vo.45.0.tar.gz

Linux (server and laptop) users

cd /home/user

wget https://github.com/pachterlab/kallisto/releases/download/vo.45.o/kallisto_linux-vo.45.o.tar.gz

tar -xvzf kallisto_linux-vo.45.0.tar.gz

CBRC 2019 hands-on workshop1

kallisto single-cell RNA-Seq: how to run it

Test executable kallisto

export PATH="/home/user/kallisto_linux-vo.45.0:\$PATH"

kallisto bus

2.1.2 Installation of **bustools**

git clone https://github.com/BUStools/bustools.git

cd bustools

mkdir build

cd build

<mark>cmake ..</mark>

<mark>make</mark>

Test executable bustools

cd /home/user

export PATH="/home/user/bustools/build/src:\$PATH"

bustools

2.1.3 Installation of Anaconda (https://repo.continuum.io/archive/)

We have tested Anaconda3-5.2.0-Linux-x86_64.sh (Linux)

Bioinformatics Server Users:

export PATH="/home/software/anaconda3.5.2/bin:\$PATH"

Linux laptop users:

cd /home/user

wget https://repo.continuum.io/archive/Anaconda3-5.2.o-Linux-x86.sh

bash Anaconda3-5.2.0-Linux-x86.sh

2.1.4 Installation of R / R-studio (not necessary for Bioinformatics Server Users)

R (https://www.r-project.org/)

R-studio (https://www.rstudio.com/products/rstudio/download/)

2.1.5 Installation of Scanpy (not necessary for Bioinformatics Server Users)

Scanpy https://scanpy.readthedocs.io/en/latest/installation.html

2.1.6 Installation of Seurat (not necessary for Bioinformatics Server Users)

CBRC 2019 hands-on workshop1

kallisto single-cell RNA-Seq: how to run it

Seurat https://satijalab.org/seurat/install.html

- 2.2 Bash command lines for data processing
- 2.2.1 Download demo scripts and data in the terminal

cd /home/user

svn checkout https://github.com/caltech-bioinformatics-resource-center/bioinformatics-symposium-2019/trunk/Hands-on%20Part1%20BASH/demo cd demo

more run_script

Copy/paste to run each line of **run_script** to process the demo data.

2.2.2 Download GRCh38 transcript annotation file

wget ftp://ftp.ensembl.org/pub/current_fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz

2.2.3 Generate kallisto index file

kallisto index -i Homo_sapiens.GRCh38.cdna.all.kidx Homo_sapiens.GRCh38.cdna.all.fa.gz

2.2.4 Uncompress GRCh38 transcript annotation file

gunzip Homo_sapiens.GRCh38.cdna.all.fa.gz

2.2.5 Generate tr2g (transcript-gene symbol-gene name) index file

bash run_tr2g_gen Homo_sapiens.GRCh38.cdna.all.fa

2.2.6 Run kallisto bus

kallisto bus -i Homo_sapiens.GRCh38.cdna.all.kidx -x 10Xv2 -t 2 -o kallisto_out pbmc4k_S1_L001_R1_001_400k.fastq.gz pbmc4k_S1_L001_R2_001_400k.fastq.gz

2.2.7 Run bustools to sort output binary file

bustools sort -t 2 -o kallisto_out/output.sort.bus kallisto_out/output.bus

2.2.8 Run bustools to convert sorted binary file to human readable text file

bustools text -o kallisto_out/output.sort.txt kallisto_out/output.sort.bus

2.2.9 Run busparser.py to convert bustools output text file to matrix market format (cellranger output)

python busparser.py kallisto_out ../tr2g.txt 100 10000

Please feel free to ask the tutors if you have problems!