Equations of States (EOS) — Volume Shift — SRK & PR EOS

A comparison of the predicted liquid molar volume by leading two parameter EOS with experimental

data of pure compounds generally shows a systematic deviation.

$$V_{\rm corr}^{\rm L} = V^{\rm L} - \sum_{i} (x_i c_i)$$

$$V_{\rm corr}^{\rm v} = V^{\rm v} - \sum_{i} (y_i c_i)$$

$$c_i = (0.0115831168 + 0.411844152\omega_i) \left(\frac{T_{ci}}{p_{ci}}\right)$$

Component	PR EOS	SRK EOS		
N ₂	-0.1927	-0.0079		
CO ₂	-0.0817	0.0833		
H ₂ S	-0.1288	0.0466		
C ₁	-0.1595	0.0234		
C ₂	-0.1134	0.0605		
C ₃	-0.0863	0.0825		
i-C ₄	-0.0844	0.0830		
n-C ₄	-0.0675	0.0975		
i-C ₅	-0.0608	0.1022		
n-C ₅	-0.0390	0.1209		
n-C ₆	-0.0080	0.1467		
n-C ₇	0.0033	0.1554		
n-C ₈	0.0314	0.1794		
n-C ₉	0.0408	0.1868		
n-C ₁₀	0.0655	0.2080		

EOS 7

Equations of States (EOS) – Volume Shift – SRK & PR EOS – Example 10

Rework Example 9 by incorporating volume corrections.

$$c_i = (0.0115831168 + 0.411844152\omega_i) \left(\frac{T_{ci}}{p_{ci}}\right)$$

Component	x_i	$p_{\rm c}$	$T_{\rm c}$	ω_i	c_i	$c_i x_i$	y _i	$c_{i}y_{i}$
C_1	0.45	666.4	343.33	0.0104	0.00839	0.003776	0.86	0.00722
C_2	0.05	706.5	549.92	0.0979	0.03807	0.001903	0.05	0.00190
C_3	0.05	616.0	666.06	0.1522	0.07729	0.003861	0.05	0.00386
C ₄	0.03	527.9	765.62	0.1852	0.1265	0.00379	0.02	0.00253
C_5	0.01	488.6	845.8	0.2280	0.19897	0.001989	0.01	0.00198
C_6	0.01	453	923	0.2500	0.2791	0.00279	0.005	0.00139
C ₇₊	0.40	285	1160	0.5200	0.91881	0.36752	0.005	0.00459
\sum						0.38564		0.02349

$$V^{\mathbf{v}} = \frac{RTZ^{\mathbf{v}}}{p} = \frac{(10.73)(620)(0.9267)}{4000} = 1.54119 \text{ ft}^3/\text{mol}$$

$$V^{\mathbf{L}} = \frac{RTZ^{\mathbf{L}}}{p} = \frac{(10.73)(620)(1.4121)}{4000} = 2.3485 \text{ ft}^3/\text{mol}$$

$$V_{\text{corr}}^{\mathbf{L}} = V^{\mathbf{L}} - \sum_{i} (x_i c_i) = 2.3485 - 0.38564 = 1.962927 \,\text{ft}^3/\text{mol}$$
$$V_{\text{corr}}^{\mathbf{v}} = V^{\mathbf{v}} - \sum_{i} (y_i c_i) = 1.54119 - 0.02394 = 1.5177 \,\text{ft}^3/\text{mol}$$

S 74

Equations of States (EOS) – Volume Shift – SRK & PR EOS – Example 10 – Cont.

$$Z_{\text{corr}}^{\text{v}} = \frac{(4000)(1.5177)}{(10.73)(620)} = 0.91254$$

$$Z_{\text{corr}}^{\text{L}} = \frac{(4000)(1.962927)}{(10.73)(620)} = 1.18025$$

$$\rho = \frac{pM_a}{RTZ}$$

$$\rho^{v} = \frac{(4000)(20.89)}{(10.73)(620)(0.91254)} = 13.767 \text{lb/ft}^3$$

$$\rho^{L} = \frac{(4000)(100.25)}{(10.73)(620)(1.18025)} = 51.07 \text{lb/ft}^3$$

EOS

Equations of States (EOS) – Summary

EOS	p repulsion	p attraction	а	Ь
Ideal	$\frac{RT}{V}$	0	0	0
vdW	$\frac{RT}{V-b}$	$\frac{a}{V^2}$	$\Omega_{\rm a} \frac{R^2 T_{\rm c}^2}{p_{\rm c}}$	$\Omega_{\rm b} \frac{RT_{\rm c}}{p_{\rm c}}$
RK	$\frac{RT}{V-b}$	$\frac{a}{V(V+b)\sqrt{T}}$	$\Omega_{\rm a} \frac{R^2 T_{\rm c}^{2.5}}{p_{\rm c}}$	$\Omega_{b} \frac{RT_{c}}{p_{c}}$
SRK	$\frac{RT}{V-b}$	$\frac{a\alpha(T)}{V(V+b)}$	$\Omega_{\rm a} \frac{R^2 T_{\rm c}^2}{p_{\rm c}}$	$\Omega_{\rm b} \frac{RT_{\rm c}}{p_{\rm c}}$
PR	$\frac{RT}{V-b}$	$\frac{a\alpha(T)}{V(V+b)+b(V-b)}$	$\Omega_{\rm a} \frac{R^2 T_{\rm c}^2}{p_{\rm c}}$	$\Omega_{\rm b} \frac{RT_{\rm c}}{p_{\rm c}}$

FOS

Fugacity — I

- The fugacity "f" is a measure of the molar Gibbs energy of a real gas.
- The tendency of the molecules from one phase to escape into the other.

$$f^{o} = p \exp \left[\int_{o}^{p} \left(\frac{Z-1}{p} \right) dp \right]$$

 f^{o} = fugacity of a pure component, psia

p =pressure, psia

Z = compressibility factor

OS APPLICATIONS 77

Fugacity - II

- □ Physically, the fugacity of a **component** *i* in one phase with respect to the fugacity of the component in a second phase is a measure of *the potential for transfer of the component between phases*.
- The phase with the *lower component fugacity* accepts the component from the phase with a higher component fugacity.
- **Equal fugacities** of a component in the two phases results in a **zero net transfer**.
- □ A zero transfer for all components implies that the hydrocarbon system is in thermodynamic equilibrium.

$$f_i^{\text{v}} = f_i^{\text{L}}, \quad 1 \le i \le n$$

 f_i^{v} = fugacity of component i in the gas phase, psi f_i^{L} = fugacity of component i in the liquid phase, psi n = number of components in the system

Fugacity Coefficient (ϕ)

The ratio of the <u>fugacity to the pressure</u>. The fugacity coefficient of component *i* in a hydrocarbon liquid mixture or hydrocarbon gas mixture is **a function of the system pressure**, **mole fraction, and fugacity of the component**.

For a component **i** in the **gas phase**:
$$\phi_i^v = \frac{f_i^v}{y_i p}$$

For a component
$$i$$
 in the **liquid phase**: $\phi_i^L = \frac{f_i^L}{x_i p}$

Fugacity Coefficient (ϕ) - K_i

$$K_i = \frac{y_i}{x_i}$$

When two phases exist in equilibrium, it suggests that $f_i^L = f_i^v$, which leads to redefining the K-value in terms of the fugacity of components as:

OS ADDITICATIONS 80

Fugacity Coefficient (ϕ) – Calculations – SRK EOS

$$\ln\left(\Phi_{i}^{L}\right) = \frac{b_{i}(Z^{L}-1)}{b_{m}} - \ln\left(Z^{L}-B\right) - \left(\frac{A}{B}\right) \left[\frac{2\Psi_{i}}{\left(a\alpha\right)_{m}} - \frac{b_{i}}{b_{m}}\right] \ln\left[1 + \frac{B}{Z^{L}}\right]$$

$$\Psi_i = \sum_j \left[x_j \sqrt{a_i a_j \alpha_i \alpha_j} \left(1 - k_{ij} \right) \right]$$

$$(a\alpha)_{\rm m} = \sum_{i} \sum_{j} \left[x_i x_j \sqrt{a_i a_j \alpha_i \alpha_j} \left(1 - k_{ij} \right) \right]$$

$$\ln\left(\boldsymbol{\Phi}_{i}^{\mathbf{v}}\right) = \frac{b_{i}(Z^{\mathbf{v}}-1)}{b_{\mathbf{m}}} - \ln(Z^{\mathbf{v}}-B) - \left(\frac{A}{B}\right) \left[\frac{2\boldsymbol{\Psi}_{i}}{\left(a\boldsymbol{\alpha}\right)_{\mathbf{m}}} - \frac{b_{i}}{b_{\mathbf{m}}}\right] \ln\left[1 + \frac{B}{Z^{\mathbf{v}}}\right]$$

$$\Psi_{i} = \sum_{j} \left[y_{j} \sqrt{a_{i} a_{j} \alpha_{i} \alpha_{j}} \left(1 - k_{ij} \right) \right]$$

$$(a\alpha)_{m} = \sum_{i} \sum_{j} \left[y_{i} y_{j} \sqrt{a_{i} a_{j} \alpha_{i} \alpha_{j}} \left(1 - k_{ij} \right) \right]$$

OS APPLICATIONS 81

Fugacity Coefficient (ϕ) – Calculations – PR EOS

$$\Rightarrow \ln \phi_i^L = \frac{b_i(Z^L - 1)}{b_m} - \ln(Z^L - B) - \frac{A}{2\sqrt{2}B} \left[\frac{2\psi_i}{(a\alpha)_m} - \frac{b_i}{b_m} \right] \ln \left[\frac{Z^L + (1 + \sqrt{2}B)}{Z^L + (1 - \sqrt{2}B)} \right]$$

$$\Rightarrow \ln \phi_i^v = \frac{b_i(Z^v - 1)}{b_m} - \ln(Z^v - B) - \frac{A}{2\sqrt{2}B} \left[\frac{2\psi_i}{(a\alpha)_m} - \frac{b_i}{b_m} \right] \ln \left[\frac{Z^v + (1 + \sqrt{2}B)}{Z^v + (1 - \sqrt{2}B)} \right]$$

The parameters are the same as before.

OS APPLICATIONS 8

EOS – Applications - Equilibrium Ratio

APPLICATIONS 83

EOS – Applications – Bubble Point

A saturated vapor exists for a given temperature at the pressure at which an **infinitesimal amount of liquid** first appears.

$$n_t = n_L + n_v$$

$$z_i n_t = x_i n_L + y_i n_v$$

$$z_i = x_i n_L + y_i n_v$$

$$z_i = x_i n_L + y_i n_v$$

$$z_i = x_i(1) + y_i(0)$$

$$z_i = x_i$$

$$z_i = \frac{k_i}{y_i}$$

$$\sum \frac{z_i}{k_i} = 1 \Longrightarrow \sum \frac{\mathbf{z}_i}{\boldsymbol{\phi}_i^L/\boldsymbol{\phi}_i^v}$$

EOS – Applications – Dew Point – Cont.

$$\sum \frac{z_i}{k_i} = 1 \xrightarrow{\bigoplus_{i=0}^{K_i}} \sum \frac{z_i}{\phi_i^L/\phi_i^v} = 1 \xrightarrow{\phi_i^v = \frac{f_i^v}{y_i p}} \sum \left[\left(\frac{z_i}{\phi_i^L} \right) \frac{f_i^v}{z_i p} \right] = 1$$

$$\Rightarrow p_d = \sum \left[\frac{f_i^v}{\phi_i^L} \right] \Rightarrow f(p_d) = \sum \left[\frac{f_i^v}{\phi_i^L} \right] - p_d = 0$$

It can be solved for the dew-point pressure by using the Newton-Raphson iterative method.

os applications 85