The University of Melbourne School of Engineering

Semester 1 Assessment 2012

ENGR30001 - Fluid Mechanics & Thermodynamics

Exam Duration:

3 hours

This paper has FIFTEEN (15) pages consisting of EIGHT (8) questions.

Authorized material:

Electronic calculators approved by the School of Engineering may be used. Three tables, one chart and a table of formulae are attached.

Instructions to Invigilators:

Script books to be provided.

Instructions to Students:

All questions are to be attempted.

Full marks will be awarded for obtaining 100 marks of a potential 110 marks

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

This paper is to be held by the Baillieu Library

- i) Sketch a T v diagram for H_20 showing the liquid, saturation and superheated regions and at least one isobar passing through each of these regions. Also indicate the critical point on the diagram. (3 marks)
- ii) An open container of water, initially at sea-level, is transported up Mt Jackson, Colarado, where the atmospheric pressure is 70.11kPa. Has the H₂0 boiling point temperature increased, decreased or remained the same during transport? (1 mark)
- iii) Determine the saturation temperature for H_20 on Mt Jackson. (1 mark)
- iv) A worker at an observatory on Mt Jackson needs to produce superheated steam. Using steam tables, calculate the heat energy (in Joules) required to raise the temperature of 0.5kg of dry saturated H₂0 by 10°C above the saturation temperature.

 (4 marks)
- v) What is the specific volume of H_2O at $T = 250^{\circ}C$ and p = 132.15 kPa? (2 marks)

(Total for Question 1 = 11 marks)

Question 2

- i) Consider the compression of a hot gas by a piston in a leakproof cylinder. Is this system definitely open, closed or isolated? (1 mark)
- ii) State the first law of thermodynamics and the non-flow energy equation (2 marks)
- iii) Calculate the specific volume of air at a gauge pressure of 500 kPa and temperature of 25°C. $\overline{R} = 287 \text{ J/(kg K)}$ for air. Assume $p_{atm} = 101.3 \text{ kPa}$. (2 marks)

(Question 2 continues on next page)

Question 2 (continued)

- Consider the flow of H_20 through a turbine. The process is adiabatic (no heat is transferred). The turbine inlet pressure is $p_1 = 4$ MPa, with $T_1 = 400$ °C. The inlet velocity is $V_1 = 30$ m/s. The exit pressure, $p_2 = 0.1$ MPa with $T_2 = 90$ °C and exit velocity of $V_2 = 20$ m/s. Using the steady flow energy equation, determine the specific work done by the turbine. (5 marks)
- v) Determine the mass flow rate required for the turbine to produce 1 MW of power.

 (1 mark)
- vi) In one or two sentences, explain why this turbine could not work in practice. (1 mark)

(Total for Question 2 = 12 marks)

Question 3

- i) Sketch a p v property diagram illustrating the Joule-Brayton Cycle. (2 marks)
- ii) Sketch a T s diagram for the Joule-Brayton Cycle. You may need to make use of the equation to relate entropy to temperature and pressure:

$$s_2 - s_1 = C_p \ln \left(\frac{T_2}{T_1}\right) - \overline{R} \ln \left(\frac{p_2}{p_1}\right)$$

(Note: only a sketch is required – the equation above is only provided to help you qualitatively estimate the shape of the T-s curves for the processes in the cycle)

(2 marks)

(Question 3 continues on next page)

Question 3 (continued)

iii) Show that the thermal efficiency of a Gas Turbine engine (using the Joule-Brayton cycle) is given by:

$$\eta = 1 - r_p^{\frac{1-\gamma}{\gamma}}$$

Note that for adiabatic compression or expansion:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}$$

(4 marks)

- iv) What are the two main purposes of the turbine stage of a gas turbine engine in a helicopter (i.e., what does the turbine drive). (2 marks)
- Consider two engines, a Gas Turbine (Joule-Brayton Cycle) and a Spark Ignition Internal Combustion engine (Otto cycle). If air can be supplied to these engines at p = 101.3kPa and T = 25°C (representing min. pressure and temperature), and after combustion T = 800°C and p = 3 MPa (max. temperature and pressure), determine which engine has the higher efficiency. $\overline{R} = 287$ J/(kg K) and $\gamma = 1.4$ for air.

The efficiency of the Otto cycle is given by:

$$\eta = 1 - \frac{1}{r^{\gamma - 1}},$$

where r_v is the ratio between the maximum and minimum volumes during the cycle. (2 marks)

(Total for Question 3 = 12 marks)

A 1.0 m long solid cylinder hinged at point A is used as an automatic gate, as shown in the figure. When the water (of density 1000 kg/m^3) reaches the level of 5 m (h = 5 m), the gate opens by turning about the hinge at point A.

- (a) Determine the net horizontal and vertical forces acting on the gate when the gate is just about to open. (Hint: you do *not* need to integrate along the curved surface to resolve these forces.)

 (7 marks)
- (b) From this, determine the total hydrostatic force acting on the gate and its line of action when the gate is just about to open. (3 marks)
- (c) Calculate the mass of the gate. (You may assume that the resultant hydrostatic force acts along a line that passes through the center of the circle.) (5 marks)

(Total for Question 4 = 15 marks)

Water of density 1000 kg/m^3 is pumped between two large reservoirs through a pipe that has an internal diameter of 300 mm and a roughness length of 1.2 mm. The inlet tank is open to atmosphere (where $P_{atm} = 101 \text{ kPa}$), while the discharge tank is sealed and is maintained at a pressure of 10 kPa above atmospheric pressure. Loss coefficients for minor losses are as follows:

Minor Loss	Loss coefficient
Inlet loss	0.5
Exit loss	1.0

- (a) Given that the pipe flow is in the fully rough regime, write an expression for the system head purely as a function of the volume flow rate Q. (8 Marks)
- (b) The manufacturer of the pump provides details of the performance of the pump, where the pump head (in m) as a function of volume flow rate (in m³/s) is given by $h_p = 150 25Q^2$

Determine the volume flow rate at the operating point of the system. (4 Marks)

(Question 5 continues on next page)

Question 5 (continued)

- (c) The required Net Positive Suction Head (NPSH_R) supplied by the pump manufacturer is 3 m. Determine whether the pump is within the permissible operating range at the operating point. The vapour pressure of water at the operating conditions is 2000 Pa. (5 Marks)
- (d) If the mechanical efficiency of the pump is $\eta = 0.65$, determine the mechanical brake power supplied to the pump at the operating condition. (3 Marks)

(Total for Question 5 = 20 marks)

Question 6

The mechanical energy equation for horizontal, isothermal, ideal gas flow in a pipe of uniform cross-section is

$$\frac{P_2^2 - P_1^2}{2(RT/M)} + \left(\frac{G}{A}\right)^2 \ln\left(\frac{P_1}{P_2}\right) + \frac{2fL}{D}\left(\frac{G}{A}\right)^2 = 0$$

where all symbols have their usual meaning. You may ignore the kinetic energy term when using this equation to calculate pressure. Otherwise, you should retain the kinetic energy term.

(Question 6 continues on next page)

Question 6 (continued)

Natural gas flows through a pipeline 100 km long and 25 cm in diameter to a receiving station A. At a point 20 km before A, a branch leads off from the main pipeline and runs to a receiving station B. The pressure at the beginning of the pipeline is 1000 kPa, the pressure at station A is 400 kPa, and the mass flow rate entering station A is 0.75 kg/s. The Fanning friction factor for all pipes is f = 0.005. Assume that the flow is isothermal at 30°C. Ignore energy losses at the branch point.

Gram molecular weight of natural gas

Gas constant R

8.314 J mol⁻¹ K⁻¹

d) Calculate the mass flow rate of gas entering station B

a) Calculate the velocity of the gas entering station A (5 marks)
b) Calculate the pressure where the pipe branches (5 marks)
c) Calculate the mass flow rate of gas entering the main pipeline (4 marks)

(Total for Question 6 = 16 marks)

(2 marks)

- (a) Define the modified Froude number for stirred tanks, stating the meaning of each symbol used. (2 marks)
- (b) The Froude number can be interpreted as the ratio of which two forces?

 (1 mark)
- (c) Under what conditions is the modified Froude number important in stirred tanks?

 (1 mark)
- (d) Describe the type of flow produced in a stirred tank by using (i) a flat blade turbine and (ii) a propeller. Draw a sketch for each case to illustrate the flow pattern.

 (4 marks)

(Total for Question 7 = 8 marks)

QUESTION 8 IS ON THE NEXT PAGE

An incompressible Newtonian fluid flows steadily between two infinitely long, concentric cylinders having radii R_0 and R_1 as shown in the diagram. The outer cylinder is fixed, but the inner cylinder moves with an axial velocity V_0 . The fluid is also being driven in the z-direction due to a constant applied pressure gradient $\frac{\partial p}{\partial z} = -B$. The flow is steady and axially symmetric, with flow directed only in the z-direction.

a) Show that the axial velocity v_z is only a function of the radius r

(2 marks)

b) Find an expression for the velocity profile of the liquid in the annular region.

(6 marks)

c) Hence find an expression for the volumetric flow rate when B = 0.

(8 marks)

(Total for Question 8 = 16 marks)

(Total for paper = 110 marks)

Table 2, Temperature Saturation

Saturated Water & Steam

Temperatures from 1 to 120 $^{\circ}\text{C}$

°C	kN/m^2	m³/kg	m³/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	k.J/kg	kJ/kg K	kJ/kg K	kJ/kg K	°C
T	p	v_f	v _s	u_f	u g	h_f	h fg	h_g	s_f	S fg	Sg	T
1	0.657	0.001000	192.6	4.174	2376.9	4.174	2499.2	2503,4	0.0153	9.116	9.131	1
2	0.705	0.001000	179.9	8.386	2378.3	8.387	2496.8	2505.2	0.0306	9.074	9.105	2
4	0.813	0.001000	157.3	16.80	2381.1	16.80	2492.1	2508.9	0.0611	8.992	9.053	4
6	0.935	0.001000	137.8	25.21	2383.8	25.21	2487.4	2512.6	0.0913	8.910	9.001	6
8	1.072	0.001000	121.0	33.60	2386.6	33.60	2482.6	2516.2	0.1213	8.830	8.951	8
10	1.227	0.001000	106.4	41.99	2389.3	41.99	2477.9	2519.9	0.1510	8.751	8.902	10
12	1.401	0.001000	93.84	50.38	2392.1	50.38	2473.2	2523.6	0.1805	8.673	8.854	12
14	1.597	0.001001	82.90	58.75	2394.8	58.75	2468.5	2527.2	0.2098	8.596	8.806	14
16	1.817	0.001001	73.38	67.12	2397.6	67.13	2463.8	2530,9	0.2388	8.521	8.759	16
18	2.062	0.001001	65.09	75.49	2400.3	75.50	2459.0	2534.5	0.2677	8.446	8.713	18
20	2.337	0.001002	57.84	83.86	2403.0	83.86	2454.3	2538.2	0.2963	8.372	8.668	20
22	2.642	0.001002	51.49	92.22	2405.8	92.23	2449.6	2541.8	0.3247	8.299	8.624	22
24	2.982	0.001003	45.93	100.6	2408.5	100.6	2444.9	2545.5	0.3530	8.228	8.581	24
26	3.360	0.001003	41.03	108.9	2411.2	108.9	2440.2	2549.1	0.3810	8.157	8.538	26
28	3.778	0.001004	36.73	117.3	2414.0	117.3	2435.4	2552.7	0.4088	8.087	8.496	28
30	4.241	0.001004	32.93	125.7	2416.7	125.7	2430.7	2556.4	0.4365	8.018	8.455	30
32	4.753	0.001005	29.57	134.0	2419,4	134.0	2425.9	2560.0	0.4640	7.950	8.414	32
34	5.318	0.001006	26.60	142.4	2422.1	142.4	2421.2	2563.6	0.4913	7.883	8.374	34
36	5.940	0.001006	23.97	150.7	2424.8	150.7	2416.4	2567.2	0.5184	7.816	8.335	36
38	6.624	0.001007	21.63	159.1	2427.5	159.1	2411.7	2570.8	0.5453	7.751	8.296	38
40	7.375	0.001008	19.55	167.4	2430.2	167.5	2406.9	2574.4	0.5721	7.686	8.258	40
42	8.198	0.001009	17.69	175.8	2432.9	175.8	2402.1	2577.9	0.5987	7.622	8.221	42
44	9.100	0.001009	16.04	184.2	2435.6	184.2	2397.3	2581.5	0.6252	7.559	8.184	44
46	10.09	0.001010	14.56	192.5	2438.3	192.5	2392.5	2585.1	0.6514	7.497	8.148	46
48	11.16	0.001011	13.23	200.9	2440.9	200.9	2387.7	2588.6	0.6776	7.435	8.113	48
50	12.34	0.001012	12.05	209.2	2443.6	209.3	2382.9	2592.2	0.7035	7.374	8.078	50
52	13.61	0.001013	10.98	217.6	2446.2	217.6	2378.1	2595.7	0.7293	7.314	8.043	52
54	15.00	0.001014	10.02	226.0	2448.9	226.0	2373.2	2599.2	0.7550	7.254	8.009	54
56	16.51	0.001015	9.159	234.3	2451.5	234.4	2368.4	2602.7	0.7804	7.195	7.976	56
58	18.15	0.001016	8.381	242.7	2454.1	242.7	2363.5	2606.2	0.8058	7.137	7.943	58
60	19.92	0.001017	7.679	251.1	2456.8	251.1	2358.6	2609.7	0.8310	7.080	7.911	60
62	21.84	0.001018	7.044	259.4	2459.4	259.5	2353.7	2613.2	0.8560	7.023	7.879	62
64	23.91	0.001019	6.469	267.8	2462.0	267.8	2348.8	2616.6	0.8809	6.967	7.848	64
66	26.15	0.001020	5.948	276.2	2464.5	276.2	2343.9	2620.1	0.9057	6.911	7.817	66
68	28.56	0.001022	5.476	284.6	2467.1	284.6	2338.9	2623.5	0.9303	6.856	7.786	68
70	31.16	0.001023	5.046	292.9	2469.7	293.0	2334.0	2626.9	0.9548	6.802	7.756	70
72	33.96	0.001024	4.656	301.3	2472.2	301.4	2329.0	2630.3	0.9792	6.748	7.727	72
74	36.96	0.001025	4.300	309.7	2474.8	309.7	2324.0	2633.7	1.003	6.695	7.698	74
76	40.19	0.001027	3.976	318.1	2477.3	318.1	2318.9	2637.1	1.027	6.642	7.669	76
78	43.65	0.001028	3.680	326.5	2479.8	326.5	2313.9	2640.4	1.051	6.590	7.641	78
80	47.36	0.001029	3.409	334.9	2482.3	334.9	2308.8	2643.8	1.075	6.538	7.613	80
82	51.33	0.001031	3.162	343.3	2484.8	343.3	2303.8	2647.1	1.099	6.487	7.586	82
84	55.57	0.001032	2.935	351.7	2487.3	351.7	2298.6	2650.4	1.123	6.436	7.559	84
86	60.11	0.001033	2.727	360.1	2489.7	360.1	2293.5	2653.6	1.146	6.386	7.532	86
88	64.95	0.001035	2.536	368.5	2492.2	368.5	2288.4	2656.9	1.169	6.336	7.506	88
90	70.11	0.001036	2.361	376.9	2494.6	376.9	2283.2	2660.1	1.193	6.287	7.480	90
92	75.61	0.001038	2.200	385.3	2497.0	385.4	2278.0	2663.4	1.216	6.239	7.454	92
94	81.46	0.001039	2.052	393.7	2499.4	393.8	2272.8	2666.6	1.239	6.190	7.429	94
96	87.69	0.001041	1.915	402.1	2501.8	402.2	2267.5	2669.7	1.261	6.143	7.404	96
98	94.30	0.001042	1.789	410.5	2504.1	410.6	2262.2	2672.9	1.284	6.095	7.380	98
100	101.3	0.001044	1.673	419.0	2506.5	419.1	2256.9	2676.0	1.307	6.049	7.355	100
105	120.8	0.001048	1.419	440.0	2512.3	440.2	2243.6	2683.7	1.363	5.933	7.296	105
110	143.3	0.001052	1.210	461.2	2518.0	461.3	2230.0	2691.3	1.418	5.820	7.239	110
115	169.1	0.001056	1.036	482.3	2523.5	482.5	2216.2	2698.7	1.473	5.710	7.183	115
120	198.5	0.001061	0.892	503.5	2529.0	503.7	2202.2	2706.0	1.528	5.602	7.129	120

	MN/m ²																								
	1	0.001	0.01	0.02	0.05	0.1	0.5	1	2	4	6	8	10	15	20	25	30	35	40	45	50	60	80	100 p	<u> </u>
°C	$T \mid 0$	999.8	999.8	999.8	999.8	999.8	1000	1000	1001	1002	1003	1004	1005	1007	1010	1012	1014	1017	1019	1022	1024	1028	1037	1046	T
	5	999.9 0.00766	999.8 999.8	999.8	999.8	999.8	1000	1000	1001	1002	1003	1004	1005	1007	1009	1012	1014	1016	1019	1021	1023	1028	1036	1044	5
•	10 20	0.00788	999.8	999.8 998.3	999.8 998.3	999.8 998.3	1000 998.5	1000 998.7	1001 999.2	1002 1000	1003 1001	1004 1002	1004 1003	1007 1005	1009 1007	1011 1009	1014 7012	1016 1014	1018 1016	1020 1018	1022 1020	1027 1024	1035 1032	1043 1040	10 20
	25	0.00727	997.0	997.0	997.0	997.0	997.2	997.4	997.9	998.8	999.7	1001	1001	1004	1006	1008	1010	1012	1014	1016	1018	1022	1030	1038	25
1	30 40	0.00715 0.00692	995.7 992.3	995.7 992.3	995.7 992.3	995.8 992.3	995.9 992.5	996.2 992.7	996.6 993.1	997.5 994.0	998.4	999.2 995.7	1000 996.6	1002 998.7	1004	1007 1003	1009 1005	1011	1013 1009	1015	1017	1021 1017	1029	1036	30 40
	50	0.00692	0.0673	988.0	988.0	988.1	988.2	988.5	988.9	989.8	994.9 990.6	993.7	992.4	994.5	1001 996.6	998.7	1003	1007 1003	1009	1011 1007	1013 1009	1017	1025 1020	1032 1027	50
4	60	0.00651	0.0652	981.9	983.2	983.2	983.4	983.6	984.0	984.9	985.8	986.6	987.5	989.6	991.8	993.8	995.9	997.9	999.9	1002	1004	1008	1015	1023	60
- 1	70	0.00632	0.0633	0.1269	977.7	977.7	977.9	978.1	978.5	979.4	980.3	981.2	982.1	984.2	986.4	988.5	990.6	992.6	994.7	996.7	998.6	1003	1010	1017	70
- 1	80 90	0.00614 0.00597	0.0615	0.1232	971.6 0.301	971.7 965.1	971.8 965.3	972.1 965.5	972.5 966.0	973.4 966.9	974.3 967.9	975.2 968.8	976.1 969.7	978.3 972.0	980.5 974.2	982.7 976.4	984.8 978.5	986.9 980.7	988.9 982.8	990.9 984.8	993.0 986.9	996.9 990.9	1005 998.7	1012 1006	80 90
	00	0.00581	0.0582	0.1165	0.293	0.590	958.3	958.6	959.0	960.0	960.9	961.9	962.8	965.1	967.4	969.7	971.9	974.1	976.2	978.3	980.4	984.5	992.5	1000	100
1	25	0.00544	0.0545	0.1091	0.274	0.550	938.8	939.1	939.6	940.6	941.7	942.7	943.7	946.2	948.7	951.1	953.5	955.9	958.2	960.4	962.7	967.0	975.5	983.5	125
- 1	50	0.00512	0.0512	0.1026	0.257	0.516	916.8 2.504	917.1 892.1	917.7 892.8	918.8 894.1	920.0 895.4	921.1 896.7	922.2 898.0	925.0 901.1	927.7 904.2	930.4 907.2	933.0 910.1	935.6 912.9	938.1 915.7	940.5 918.4	943.0 921.1	947.7 926.3	956.7 936.2	965.3 945.5	150 175
1 -	00	0.00454	0.0458	0.0908	0.230	0.460	2.353	4.856	865.0	866.6	868.1	869.6	871.1	874.7	878.2	881.6	884.9	888.1	891.3	894.3	897.3	903.1	914.0	943.3	200
	25	0.00435	0.0435	0.0871	0.218	0.437	2.223	4.554	9.643	835.1	837.0	838.8	840.6	844.9	849.0	853.0	856.9	860.6	864.3	867.8	871.2	877.7	889.9	901.1	225
1	50 75	0.00414	0.0414	0.0829	0.207 0.198	0.416 0.396	2.108 2.006	4.296 4.073	8.973 8.429	799.2 18.34	801.5 759.3	803.8 762.2	806.1 765.2	811.4 772.3	816.5 778.9	821.3 785.1	826.0 790.9	830.4 796.4	834.7 801.6	838.8 806.6	842.7 811.3	850.3 820.2	864.1 836.2	876.6 850.4	250 275
1 "	00	0.00378	0.0378	0.0756	0.189	0.379	1.914	3.876	7.968	17.00	27.67	41.21	715.4	725.7	735.0	743.3	751.0	758.1	764.7	770.9	776.7	787.5	806.4	822.7	300
3	25	0.00362	0.0362	0.0725	0.181	0.363	1.830	3.700	7.569	15.94	25.42	36.54	50.40	663.6	679.0	691.8	703.0	712.9	721.8	729.9	737.5	751.0	773.9	792.9	325
1	50	0.00348	0.0348	0.0696	0.174	0.348	1.754	3.541	7.217 6.902	15.05	23.68	33.39	44.60	87.24	600.1	625.0	643.5	658.6	671.4	682.6	692.6	710.0	738.1	760.6	350
	75	0.00334 0.00322	0.0334	0.0669 0.0644	0.167 0.161	0.335 0.322	1.685 1.620	3.396 3.263	6.617	14.29 13.63	22.29 21.11	31.04 29.15	40.76 37.87	72.04 63.85	132.0 100.5	488.7 166.3	555.4 353.3	586.5 473.8	608.5 523.8	625.9 555.1	640.4 578.3	664.2 612.6	699.7 658.8	726.5 691.4	375 400
4	25	0.00310	0.0310	0.0621	0.155	0.311	1.561	3.141	6.357	13.04	20.09	27.57	35.55	58.37	87.21	127.0	189.3	292.3	390.6	455.0	497.2	551.1	613.6	653.9	425
1	50	0.00300	0.0300	0.0599	0.150	0.300	1.506	3.028	6.119	12.51	19.19	26.22	33.62	54.20	78.70	109.0	148.5	201.8	272.1	343.2	401.3	479.9	564.3	613.9	450
- 1	75	0.00290 0.00280	0.0290	0.0579 0.0561	0.145 0.140	0.290 0.280	1.455 1.407	2.923 2.825	5.900 5.696	12.02 11.58	18.39 17.67	25.03 23.98	31.97 30.53	50.87 48.09	72.54 67.70	97.92 89.86	128.3 115.2	165.4 144.4	210.5 178.1	262.9 216.2	315.9 257.6	403.9 338.8	510.8 457.0	571.2 528.2	475 500
1	50	0.00263	0.0263	0.0527	0.132	0.263	1.320	2.649	5.331	10.80	16.41	22.17	28.09	43.65	60.43	78.61	98.37	119.9	143.2	168.5	195.6	253.3	361.8	445.3	550
1	00	0.00248	0.0248	0.0496	0.124	0.248	1.244	2.494	5.012	10.13	15.34	20.66	26.10	40.19	55.06	70.79	87.44	105.0	123.6	143.2	163.6	206.8	295.9	374.8	600
	50 00	0.00235 0.00223	0.0235	0.0469 0.0445	0.117	0.235	1.176	2.356 2.233	4.731 4.481	9.537	14.42 13.61	19.38 18.26	24.41 22.96	37.36 34.98	50.83 47.37	64.87 60.13	79.48 73.28	94.68 86.80	110.5 100.7	126.8 115.0	143.7 129.5	178.7 159.5	251.6 221.3	322.0 282.8	700
1	50	0.00223	0.0223	0.0443	0.111 0.106	0.223 0.212	1.115 1.060	2.123	4.461	9.017 8.555	12.89	17.28	21.70	32.94	44.45	56.21	68.24	80.52	93.04	105.8	118.8	145.2	199.3	253.0	750
	00	0.00202	0.0202	0.0404	0.101	0.202	1.011	2.023	4.054	8.140	12.26	16.41	20.58	31.17	41.94	52.89	64.03	75.33	86.80	98.42	110.2	134.0	182.5	230.4	800
T	sat	6.98	45.83	60.09	81.35	99.63	151.8	179.9	212.4	250.3	275.5	295.0	311.0	342.1	365.7										
F) _f	999.9	989.9	983.1	970.8	958.4	915.0	887.0	849.9	798.7	758.3	722.4	688.4	603.2	490.9										
1 6)g	0.00774	0.0681	0.1307	0.309	0.590	2.669	5.147	10.05	20.10	30,83	42.51	55.43	96.71	170.2										

Density of Water & Steam kg/m³

М	N/m²						·			***************************************														
	p 0.001	0.01	0.02	0.05	0.1	0.5	1	2	4	6	8	10	15	20	25	30	35	40	45	50	60	80	100 p	<u>)</u>
Γ	00.0	0.043	0.010	0.042	0.044	0.071			0.101					0.400										
5	0.042 21.02	0.042 21.02	0.043	0.043 21.02	0.044 21.02	0.054 21.02	0.065 21.02	0.088 21.02	0.131	0.173 21.01	0.213	0.250 21.00	0.336 20.98	0.409 20.95	0.469 20.91	0.517 20.86	0.553 20.81	0.577 20.74	0.590 20.67	0.592 20.58	0.571 20.40	0.454 19.96	0.324 19.50	
10	2389	41.99	41.99	41.99	41.99	41.98	41.97	41.95	41.90	41.85	41.80	41.75	41.62	41.49	41.35	41.21	41.06	40.90	40.74	40.57	40.22	39.47	38.68	
20	2403	83.86	83.86	83.86	83.85	83.83	83.80	83.74	83.62	83.50	83.38	83.26	82.96	82.66	82.36	82.06	81.77	81.47	81.17	80.87	80.27	79.05	77.83	l
25	2410	104.8	104.8	104.8	104.8	104.7	104.7	104.6	104.5	104.3	104.2	104,0	103.6	103.3	102.9	102.5	102.2	101.8	101.4	101.1	100.4	98.96	97.56	
30	2417	125.7	125.7	125.7	125.7	125.6	125.6	125.5	125.3	125.1	124.9	124.7	124.3	123.9	123.4	123.0	122.6	122.1	121.7	121.3	120.5	118.9	117.3	1
40	2431	167.4	167.4	167.4	167.4	167.4	167.3	167.2	167.0	166.7	166.5	166.2	165.7	165.1	164.5	164.0	163.4	162.9	162.3	161.8	160.8	158.8	156.9	1
50 60	2445 2460	2444 2458	209.2 251.1	209.2 251.1	209.2 251.1	209.2 251.0	209.1 250.9	208.9 250.7	208.6 250.4	208.3 250.0	208.1 249.7	207.8 249.3	207.0 248.5	206.3 247.6	205.7 246.8	205.0 246.0	204.3 245.2	203.7 244.5	203.0 243.7	202.4 243.0	201.1 241.5	198.8 238.8	196.5 236.2	
70	2474	2473	2471	292.9	292.9	292.8	292.7	292.5	292.1	291.7	291.3	290.9	289.9	289.0	288.0	287.1	286.2	285.3		283.6	282.0	278.8	275.9	
80	2488	2487	2486	334.9	334.9	334.8	334.6	334.4	333.9	333.5	333.0	332.6	331.5	330.4	329.3	328.3	327.2	326.2	325.3	324.3	322.4	318.9	315.6	
90	2502	2501	2500	2497	376.9	376.8	376.6	376.4	375.8	375.3	374.8	374.3	373.1	371.8	370.6	369.5	368.3	367.2	366.1	365.0	362.9	359.0	355.3	
100	2516	2516	2515	2512	2507	418.8	418.7	418.4	417.8	417.2	416.7	416.1	414.7	413.4	412.1	410.8	409.5	408.2	407.0	405.8	403.5	399.1	395.1	1
125	2552	2552	2551	2549	2545	524.7	524.5	524.1	523.4	522.6	521.9	521.2	519.4	517.7	516.0	514.4	512.8	511.2	509.6	508.1	505.2	499.7	494.6	1
150	2588	2588	2587	2586	2583	631.6	631.4	630.9	630.0	629.1	628.2	627.3	625.0	622.9	620.8	618.7	616.8	614.8	612.9	611.0	607.4	600.7	594.4	l
175	2625	2625	2624	2623	2620	2601	740.1	739.5	738.3	737.1	736.0	734.9	732.1	729.4	726.8	724.3	721.8	719.4	717.1	714.8	710.4	702.2	694.6	
200	266 2 2699	2661 2699	2661 2698	2660 2697	2658 2696	2643 2684	2621 2667	850.2 2627	848.8 962.5	847.3 960.6	845.9 958.8	844.4 957.0	841.0 9 52. 6	837.7 948.4	834.4 944.3	831.3 940.4	828.3 936.6	825,3 933.0	822.5 929.5	819.7 926.1	814.3 919.5	804.4 907.5	795.3 896.7	
250	2736	2736	2736	2735	2734	2724	2710	2679	1081	1078	1076	1073	1068	1062	1057	1052	1047	1043	1038	1034	1026	1012	998.9	
275	2774	2774	2774	2773	2772	2764	2753	2728	2668	1203	1200	1196	1188	1181	1174	1168	1162	1156	1150	1145	1135	1118	1102	
300	2812	2812	2812	2811	2811	2803	2794	2774	2727	2668	2593	1329	1318	1307	1298	1289	1281	1273	1266	1259	1247	1225	1207	
325	2851	2851	2851	2850	2849	2843	2835	2818	2780	2734	2680	2612	1464	1447	1432	1419	1407	1397	1387	1378	1362	1335	1313	
350	2890	2890	2890	2889	2889	2883	2876	2862	2829	2792	2750	2702	2523	1614	1585	1563	1545	1530	1516	1504	1483	1447	1419]:
375	2929	2929	2929	2929	2928	2923	2917	2904	2876	2846	2811	2773	2652	2442	1814	1739	1703	1677	1656	1639	1610	1567	1534	
400	2969	2969	2969	2969	2968	2964	2958	2946	2922	2896	2867	2836	2744	2622	2432	2077	1919	1858	1820	1791	1749	1693	1653	- 1 '
425	3009	3009	3009	3009	3008	3004	2999	2989	2967	2944	2919	2893	2818	2727	2611	2455	2254	2107	2022	1968	1900	1822	1771	1
450 475	3050 3091	3050 3091	3050 3091	3049 3091	3049 3090	3045 3087	3041 3082	3031 3073	3011 3056	2991 3037	2969 3018	2946 2997	2883 2942	2810 2881	2725 2812	2623 2735	2503 2648	2369 2552	2253 2453	2169 2363	2062 2231	1952 2086	1888 2006	1
500	3132	3132	3132	3132	3132	3128	3124	3116	3100	3083	3065	3047	2999	2946	2888	2825	2756	2682	2605	2529	2393	2222	2127	
550	3217	3217	3217	3216	3216	3213	3210	3202	3188	3174	3159	3144	3105	3063	3019	2972	2923	2872	2819	2765	2659	2487	2369	
600	3303	3303	3303	3302	3302	3300	3296	3290	3278	3265	3252	3239	3207	3172	3137	3100	3062	3023	2983	2943	2861	2710	2 591	1
650	3390	3390	3390	3390	3390	3388	3385	3379	3368	3357	3346	3335	3307	3278	3248	3218	3186	3155	3123	3091	3027	2902	2795	- (
700	3480	3480	3480	3480	3479	3477	3475	3470	3460	3451	3441	3431	3407	3382	3356	3330	3304	3278	3251	3224	3171	3067	2971	
750	3571	3571	3571	3571	3570	3569	3567	3562	3554	3545	3537	3528	3507	3485	3463	3441	3418	3396	3373	3350	3304	3215	3131	
800	3663	3663	3663	3663	3663	3662	3660	3656	3649	3641	3634	3626	3607	3588	3569	3550	3530	3511	3491	3471	3432	3354	3280	:
T sat	6.98	45.83	60.09	81.35	99.63	151.8	179.9	212.4	250.3	275.5	295.0	311.0	342.1	365.7										
u_f	29.33	191.8	251.4	340.5	417.4	639.6	761.5	906.2	1082	1206	1306	1394	1586	1786										
u_g	2385	2438	2457	2484	2506	2560	2582	2598	2601	2590	2572	2547	2460	2301										

Specific Internal Energy of Water & Steam kJ/kg

Page 13 of 15

Moody Diagram

Page 14 of 15

Reynolds number $Re = \frac{\rho VD}{u}$

adapted by NH from Metzger & Willard, Inc.

Continuity and Navier-Stokes equations for incompressible homogeneous fluids in Cartesian, cylindrical, and spherical coordinates

Spherical		$\frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (v_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} = 0$		$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2 + v_\theta^2}{r} \right)$ $= -\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial v_r}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_r}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta^2} - \frac{2v_\theta \cot \theta}{r^2} - \frac{2}{r^2 \sin \theta} \frac{\partial v_\theta}{\partial \theta} \right]$	$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} + \frac{v_r v_{\theta}}{r} - \frac{v_r^2 \cot \theta}{r}\right)$ $= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial v_{\theta}}{\partial r}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_{\theta}}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_{\theta}}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \phi} \left(\sin \theta \frac{\partial v_{\theta}}{\partial \theta}\right) \right]$	$\rho\left(\frac{\partial v_{\phi}}{\partial t} + v_{r} \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r} v_{\phi}}{r} + \frac{v_{\theta} v_{\phi} \cot \theta}{r}\right)$ $= -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} + \mu \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial v_{\phi}}{\partial r}\right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \theta}\right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \theta}\right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial}{\partial \phi} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \theta}\right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial}{\partial \phi} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \phi}\right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial}{\partial \phi} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \phi}\right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial}{\partial \phi} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \phi}\right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial v_{\phi}}{\partial \phi} \right)$
Cylindrical	Continuity equation	$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{1}{r}\left(\frac{\partial v_\theta}{\partial \theta}\right) + \frac{\partial v_z}{\partial z} = 0$	Navier-Stokes equation	$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_z}{\partial z}\right)$ $= -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r)\right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2}\right]$	$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r} v_{\theta}}{r} + v_{z} \frac{\partial v_{\theta}}{\partial z}\right)$ $= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_{\theta})\right) + \frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \theta^{2}} + \frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta} + \frac{\partial^{2} v_{\theta}}{\partial z^{2}}\right]$	$\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right)$ $= -\frac{\partial \rho}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$
Cartesian		$0 = \frac{z\rho}{\partial x} + \frac{\lambda \rho}{\partial x} + \frac{\lambda \rho}{\partial z} = 0$		$\rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} + v_z \frac{\partial v_x}{\partial z}\right)$ $= -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right)$	$\rho\left(\frac{\partial v_y}{\partial t} + v_1 \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right)$ $= -\frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right)$	$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right)$ $= -\frac{\partial p}{\partial z} + \mu\left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right)$

Library Course Work Collections

Author/s:

School of Engineering

Title:

Fluid Mechanics & Thermodynamics, 2012 Semester 1, ENGR30001

Date:

2012

Persistent Link:

http://hdl.handle.net/11343/7206

File Description:

Fluid Mechanics & Thermodynamics, 2012 Semester 1, ENGR30001