Total No. of Questions: 3 Total No. of Printed Pages: 2

Enrollment No.....

Faculty of Pharmacy

End Sem (Even) Examination May-2022 PY3CO26 Biopharmaceutics & Pharmacokinetics

Programme: B. Pharma Branch/Specialisation: Pharmacy

Duration: 3 Hrs.		Hrs. Maximum Marl	Maximum Marks: 75		
Note: All questions are compulsory. Internal choices, if any, are indicated.					
Q.1	i.	Enlist mechanisms for absorption of the drug from GIT.	2		
	ii.	Explain the term 'apparent volume of distribution'.	2		
	iii.	Differentiate Phase -I with Phase -II metabolic reactions pathway.	2		
	iv.	Briefly describe levels of in-vitro in-vivo correlations (IVIVC).	2		
	v.	Briefly describe the physiological model.	2		
	vi.	Define terms: Duration of Action and Therapeutic window.	2		
	vii.	Differentiate the catenary model with the mammillary model.	2		
	viii.	Define Loading dose and Maintenance dose.	2		
	ix.	Discuss the importance of V_{max} in Michaelis-mention equation.	2		
	х.	Discuss the importance of K _m in Michaelis-mention equation.	2		
Q.2		Attempt any two:			
	i.	Enlist factors affecting drug absorption and describe physiological	10		
		and pharmaceutical factors in detail.			
	ii.	Define Bioavailability and Bioequivalence. Describe a study design with protocol for conduct of BA-BE study.	10		
	iii.	(a) Describe plasma protein binding and discuss its impact.	5		
		(b) Write a brief note on various pathways for renal clearance.	5		
Q.3		Attempt any seven: Two questions from each section is compulsory.			
		Section - A			
	i.	Describe the non-compartment model and the concept of Mean	5		
		Residence Time (MRT).			
	ii.	Discuss steady-state concentration and its relation with infusion rate. Give impact of simultaneous injection with an infusion.	5		
		P.	T.O.		

[2]

111.	Explain any one method to determine the absorption rate constant	5	
	for drugs following one-compartment model.		
	Section – B		
iv.	Write a note on the pharmacokinetics for intravenous injection of	5	
	drug following two-compartment model.		
v.	Discuss the effect of 'Dose-size' and 'Dose frequency' for	5	
	multiple dosage regimen.		
vi.	Discuss factors affecting the pharmacokinetics of a drug.	5	
	Section - C		
vii.	How will you detect non-linearity in pharmacokinetics?	5	
viii.	Describe factors causing non-linearity in pharmacokinetics.		
ix.	Describe any two methods to determine V_{max} and K_m .	5	
	•		

Marking Scheme PY3CO26 Biopharmaceutics & Pharmacokinetics

Q.1	i.	Mechanisms for absorption of the drug	2 marks	2
	ii.	Apparent volume of distribution	2 marks	2
	iii.	Phase -I with Phase -II	2 marks	2
	iv.	Levels of in-vitro in-vivo correlations	2 marks	2
	v.	Physiological model	2 marks	2
	vi.	Duration of Action and Therapeutic window	2 marks	2 2
	vii.	Catenary model with the mammillary model	2 marks	2
	viii.	Loading dose and Maintenance dose	2 marks	2
	ix.	Importance of V_{max} in Michaelis-mention equation	2 marks	2
	х.	Importance of K _m in Michaelis-mention equation	2 marks	2
Q.2		Attempt any two:		
	i.	Factors affecting drug absorption	2 marks	10
		Physiological factors	4 marks	
		Pharmaceutical factors	4 marks	
	ii.	Bioavailability	2 marks	10
		Bioequivalence	2 marks	
		Study design (3 marks * 2)	6 marks	
	iii.	(a) Definition, kinetics equation	3 marks	5
		Applications of PPB shidies on ADME	2 marks	
		(b) Various pathways for renal clearance.		5
		As per explanation		
Q.3		Attempt any seven: Two questions from each compulsory.	n section is	
	:	Section – A	3 marks	_
	i.	Non-compartment model		5
	::	Mean Residence Time (MRT), Graph	2 marks	_
	ii.	Steady-state concentration and its relation	2 marks	5
		Simultaneous injection with an infusion	3 marks	рπо
				P.T.O.

[2]

111.	Any one method	3 marks	5
	Graphical method	2 marks	
	Section – B		
iv.	Injection two-compartment model	3 marks	5
	Graphical methods	2 marks	
v.	'Dose-size'	2.5 marks	5
	'Dose frequency'	2.5 marks	
vi.	Factors affecting ADME	5 marks	5
	As per explanation		
	Section - C		
vii.	Detection of Non-linearity in pharmacokinetics		
	As per explanation		
viii.	Factors causing non-linearity in pharmacokinetics.		
	As per explanation		
ix.	Any two methods to determine V_{max} and	K _m .	5
		(2.5 marks * 2)	
