Day 8 Lab Assignments

Q#	Experiment Details	Input	Output
1.	WAP to print Fibonacci series	SET 1	SET 1
	up to n terms.	n=5	0 1 1 2 3
		SET 2	SET 2
		n=10	0 1 1 2 3 5 8 13 21
		11 10	34
2	WAP to test whether a number	SET 1	SET 1
	is Perfect Number or not.	n=7	The given number is
	(A number is said to be Perfect	a== 0	not Perfect
	when the sum of factors	SET 2	SET 2
	excluding the number itself is	n=28	The given number is
	equal to the original number. Ex-6)		Perfect
3	WAP to check whether a	Set 1:	Set 1:
	number n is prime number or	Enter a number:17	You have entered
	not.		17, 17 is a prime
		2 4 2	number
		Set 2 : Enter a number:25	Set 2:
		Enter a number:25	You have entered
			25, 25 is NOT a
			prime number
4	The first few numbers of the		
	Lucas sequence which is a	1 3 4 7 11 18	1 3 4 7 11 18
	variation on the Fibonacci	29	29
	sequence are:		
	1 3 4 7 11 18 29		
	WAP to generate the Lucas		
5	sequence. WAP to print GCD and LCM of	12	GCD of 12 and 18 is
	two numbers.	18	6
	two fidingers.		LCM of 12 and 18 is
			36
6	WAP to find out factorial of a	SET 1	SET 1
	number.	n=5	Factorial is 120
		SET 2	SET 2
	WAD	n=4	Factorial is 24
7	WAP to test whether an	SET 1	SET 1 The given number is
	inputted number is a strong	n=145	The given number is

number or not. (A number is said to be Strong if	SET 2	Strong SET 2
sum of factorial of digits is		The given number is
equal to the original number)		not Strong

Home Assignments

Q#	Experiment Details	Input	Output
1.	WAP to sum the following series S=1+(1+2)+(1+2+3)++(1+2+3++n)	Enter the value of n: 4	20
2.	WAP to find out 1/n!	Enter the value of n:	The value of 1/6! is 0.001389
3.	WAP to find out x ⁿ /n!	Enter the value of x and n: 2 2	The value is 2.0
4.	WAP to find out sum of series up to n terms. (1+1/2+1/3)	Enter the range: 13	The sum of series is 3.180134
5.	WAP to find out sum of series up to n terms. Sum = $\frac{\chi^{4} + \chi^{2} + \chi^{4}}{2}$ $\frac{1}{4}$ $\frac{\chi^{6}}{6!}$ $\frac{\chi^{n}}{n!}$	Enter the value of x and n: 2 2	The value is 4.0

Logic of the lab assignment-8

1. Fibonacci Series in C: In case of fibonacci series, next number is the sum of previous two numbers for example 0, 1, 1, 2, 3, 5, 8, 13, 21 etc. The first two numbers of fibonacci series are 0 and 1.

Logic

- for(i=2;i<number;++i)//loop starts from 2 because 0 and 1 are already printed
 - {
- n3=n1+n2;
- printf(" %d",n3);
- n1=n2;
- n2=n3;
- •

Logic sum of factor

```
    for(i = 1; i < num; i++)</li>
    rem = num % i;
    if (rem == 0)
    sum = sum + i;
    }
```

3. Logic for prime number

```
    m=n/2;
    for(i=2;i<=m;i++)</li>
    {
        if(n%i==0)

    printf("Number is not prime");
    flag=1;
    break;
    }
```

5. <u>LCM</u>

```
while (1) {
    if ((max % n1 == 0) && (max % n2 == 0)) {
        printf("The LCM of %d and %d is %d.", n1, n2, max);
        break;
    }
    ++max;
}
```

GCD

```
for(i=1; i <= n1 && i <= n2; ++i)
{
    // Checks if i is factor of both integers
    if(n1%i==0 && n2%i==0)
        gcd = i;
}</pre>
```

6.

```
// shows error if the user enters a negative integer
if (n < 0)
    printf("Error! Factorial of a negative number doesn't exist.");
else {
    for (i = 1; i <= n; ++i) {</pre>
```

```
fact *= i;
}
printf("Factorial of %d = %llu", n, fact);
}
```