COMP30026 Models of Computation

Lecture 9: Finite Automata

Mak Nazecic-Andrlon and William Umboh

Semester 2, 2024

Machines vs Languages

An Example Automaton

A state diagram for simple controller for lighting and ventilation:

Start in the "none" state. We can then toggle the light (L) or the fan (F). LFLFFF is accepted: it finishes in the "none" state.

LLFFL is rejected: it finishes in the "light" state.

Example 2

Here is an automaton for recognising Haskell variable identifier:

s is an abbreviation for a, \ldots, z (the small or lower-case letters) I is an abbreviation for A, \ldots, Z (the large or upper-case letters) d is an abbreviation for $0, \ldots, 9$ (the digits)

Formal Definition

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- Σ is a finite alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ are the accept states.

Here δ is a total function, that is, δ must be defined for all possible inputs.

Back to Example 2

To make it clear that the transition function is total, we should add a new state 4 and arcs to state 4 from state 1:

Strings and Languages

An alphabet Σ can be any non-empty finite set.

The elements of Σ are the symbols of the alphabet. Usually we choose symbols such as a, b, c, 1, 2, 3,

A string over Σ is a finite sequence of symbols from Σ .

We write the concatenation of string x with a string y as xy.

The empty string is denoted by ϵ .

A language (over alphabet Σ) is a (finite or infinite) set of strings over Σ .

 Σ^* denotes the set of all strings over Σ .

Examples of Languages over Alphabet $\Sigma = \{0,1\}$

```
• 0
\bullet \{\epsilon\}
• \{\epsilon, 0, 1\}
• {00, 01, 10, 11}
• \{\epsilon, 0, 00, 000, \dots\}
\bullet {\epsilon, 0, 1, 00, 11, 000, 111, ...}
\bullet {\epsilon, 01, 0011, 000111, . . . }
• \{w \in \Sigma^* \mid w \text{ contains odd number of } 0\}
• \{w \in \Sigma^* \mid \text{the length of } w \text{ is a multiple of } 3\}
• \{w \in \Sigma^* \mid w \text{ is not empty string}\}
• \{w \in \Sigma^* \mid w \text{ does not contain } 001\}
\bullet \Sigma^*
```

Example 3

The automaton M_1 (above) can be described precisely as

$$M_1 = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_1\})$$
 with

δ	0	1
q_1	q_1	q_2
q_2	q_1	q_3
q ₃	q_1	q_1

$$L(M_1) = \left\{ w \in \Sigma^* \,\middle|\, \begin{array}{l} w \text{ is } \epsilon, \text{ or ends with '0', or the number of} \\ \text{'1' symbols ending } w \text{ is a multiple of 3} \end{array} \right\}$$
 is the language recognised by M_1 .

Example 4

Which language is recognised by this machine?

Acceptance, Formally

What does it mean for an automaton to accept a string?

Let $M = (Q, \Sigma, \delta, q_0, F)$ and let $w = v_1 v_2 \cdots v_n$ for some $v_i \in \Sigma$.

M accepts w iff there is a sequence of states r_0, r_1, \ldots, r_n , with each $r_i \in Q$, such that

- 1. $r_0 = q_0$
- 2. $\delta(r_i, v_{i+1}) = r_{i+1}$ for i = 0, ..., n-1
- 3. $r_n \in F$

Let A be the set of all strings accepted by a machine M. We say A is the language of M and write L(M) = A.

We also say M recognises A.

Regular Languages

Definition

A language is regular iff there is a finite automaton that recognises it.

We shall soon see that there are languages which are not regular.

Regular Operations

Let A and B be languages (i.e. sets of strings).

The regular operations are:

- Union: $A \cup B$
- Concatenation: $A \circ B = \{xy \mid x \in A, y \in B\}$
- Kleene star: $A^* = \{x_1x_2 \cdots x_k \mid k \geq 0, \text{ each } x_i \in A\}$

Note that the empty string, ϵ , is always in A^* .

Regular Operations: Example

Closure

Theorem

If A and B are regular languages, then so are $A \cup B$, $A \circ B$, and A^* .

That is, the regular languages are closed under regular operations.

How to prove? Nondeterminism.

Nondeterminism

The type of machine we have seen so far is called a deterministic finite automaton, or DFA.

We now turn to non-deterministic finite automata, or NFAs.

Here is an NFA that recognises the language

$$\left\{ w \,\middle|\, \begin{array}{l} w \in \{0,1\}^* \text{ has length 3 or more,} \\ \text{and the third last symbol in } w \text{ is 1} \end{array} \right\}$$

Note: No transitions from q_4 , and two possible transitions when we meet a 1 in state q_1 .

Nondeterminism

The NFA is more intelligible than a DFA for the same language:

This is the simplest DFA that will do the job!

Epsilon Transitions

NFAs may also be allowed to move from one state to another without consuming input.

Such a transition is an ϵ transition.

Among other things, this gives us an easy way to construct a machine to recognise the union of two languages:

Formal Definition of NFA

For any alphabet Σ let Σ_{ϵ} denote $\Sigma \cup \{\epsilon\}$.

An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- \bullet Σ is a finite alphabet,
- $\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ is the transition function,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ are the accept states.

NFA Acceptance, Formally

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and let $w = v_1 v_2 \cdots v_n$ where each v_i is a member of Σ_{ϵ} .

N accepts w iff there exists a sequence of states r_0, r_1, \ldots, r_n , with each $r_i \in Q$, such that

- 1. $r_0 = q_0$
- 2. $r_{i+1} \in \delta(r_i, v_{i+1})$ for i = 0, ..., n-1
- 3. $r_n \in F$

Next Lecture: Being Regular

More on regular languages in the next lecture.

In particular we shall see that NFAs are no more powerful than DFAs.