

ENERGY AND ENVIRONMENTAL TECHNOLOGIES FOR BUILDING SYSTEMS

Master of Science Energy Engineering in Renewables and Environmental Sustainability (RES)

School of Industrial and Information Engineering (Piacenza Campus)

Open Studio Project

PROFESSOR:

BEHZAD NAJAFI

GROUP:

Ana Blanco Hernández Helen Córdoba Giulia Sora

INDEX

1.	Intro	duction.
First	part: com	parison between cities
2.	Naple	es (Italy) - Base case
	2.1.	ANNUAL OVERVIEW
	2.1.1.	End and energy use.
	2.2.	MONTHLY OVERVIEW.
	2.2.1.	District Cooling Consumption (MBtu).
	2.2.2.	District Heating Consumption (MBtu).
	2.2.3.	District Cooling Peak Demand (kBtu/hr)
	2.2.4.	District Heating Peak Demand (kBtu/hr)4
3.	San Ju	uan (Puerto Rico).
	3.1.	ANNUAL OVERVIEW
	3.1.1.	End and energy use.
	3.2.	MONTHLY OVERVIEW.
	3.2.1.	District Cooling Consumption (MBtu).
	3.2.2.	District Heating Consumption (MBtu)5
	3.2.3.	District Cooling Peak Demand (kBtu/hr)5
	3.2.4.	District Heating Peak Demand (kBtu/hr)5
4.	Helsir	nki (Finland) 6
	4.1.	ANNUAL OVERVIEW
	4.1.1.	End and energy use
	4.2.	MONTHLY OVERVIEW.
	4.2.1.	District Cooling Consumption (MBtu)
	4.2.2.	District Heating Consumption (MBtu)6
	4.2.3.	District Cooling Peak Demand (kBtu/hr)
	4.2.4.	District Heating Peak Demand (kBtu/hr)6
Seco	nd part: c	omparison between walls composition
5.	Base	Case- Naples (Italy)
	5.1.	Wall Composition
	5.2.	Consumption over the year.
6.	Best (Case- Naples (Italy) 8
	6.1.	Wall Composition
	6.2.	Consumption over the year.
7.	Wors	t Case- Naples (Italy)
	7.1.	Wall Composition
	7.2.	Consumption over the year.
8.	Concl	usions

1. Introduction.

We designed an office building of three floors, that consists in six offices for floor and in each floor; there is a corridor, where people working could stretch up or talk with other people that are not in their same office.

In the first part of the project, the main objective is to simulate and run our designed building in three different cities in order to compare the yearly heating and cooling consumptions. The three cities will be:

Naples (Italy)	San Juan (Puerto Rico)	Helsinki (Finland)
 Latitude: 40.85º Altitude: 14.30º Climatic Zone (CZ): 3 	 Latitude: 18.43º Altitude: -66.0º Climatic Zone (CZ): 1 	 Latitude: 60.32º Altitude: 24.97º Climatic Zone (CZ): 7

We have set Naples as the base case. Then, we will compare the yearly consumptions of the other two cities to the base case.

In the second part of the project, the main objective is to select a base case, that is already selected, which is Naples. This base case will have a wall composition that will give a cooling and heating load. The objective is to change the wall composition and to see how much change our loads by having a worst and best case.

First part: comparison between cities

2. Naples (Italy) - Base case.

2.1. ANNUAL OVERVIEW.

2.1.1. End and energy use.

End Use	Consumption (MBtu)	%
Heating	73.181	3.22
Cooling	824.279	36.30
Lighting (interior)	681.234	30.00
Equipment (interior)	692.039	30.48

Consumption (MBtu)	%
1,373.273	60.48
824.279	36.30
73.181	3.22
	1,373.273 824.279

(Note: Lighting and equipment consumptions are default values. They will be the same in all the cities.)

According to the end and energy use, it can be demonstrated that cooling is relatively higher than heating consumption. Moreover, cooling represents approximately one third of the total consumption, whereas heating consumption is less than 5%.

2.2. MONTHLY OVERVIEW.

2.2.1. District Cooling Consumption (MBtu).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tot
3.75	2.37	13.48	27.74	80.09	128.42	168.49	182.49	115.74	73.05	22.65	5.8	824.28

2.2.2. District Heating Consumption (MBtu).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tot
18.88	13.52	11.28	3.02	1.0	0.17	0.03	0.0.	0.19	0.91	6.36	17.78	73.18

2.2.3. District Cooling Peak Demand (kBtu/hr).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
103.22	115.56	194.42	307.20	470.06	719.78	721.18	731.38	596.33	527.47	330.28	154.35

2.2.4. District Heating Peak Demand (kBtu/hr).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
853.88	687.27	686.80	365.04	202.65	43.53	8.0	7.32	54.76	266.4	610.55	1008.52

The following conclusions are reached according to the monthly overview:

- Related to district cooling, the highest consumptions take place between May-October (agreeing with Spring and Summer seasons in the north hemisphere, when temperatures are higher). The highest peak demand takes place in August.
- Related to district heating, the highest consumptions take place between November-March (agreeing with Autumn and Winter seasons in the north hemisphere, when temperatures are lower). The highest peak demand takes place in January. However, the peak is much smaller than cooling peak.

3. San Juan (Puerto Rico).

3.1. ANNUAL OVERVIEW.

3.1.1. End and energy use.

End Use	Consumption (MBtu)	%
Heating	95	2.51
Cooling	2,316.730	61.21
Lighting (interior)	681.234	18.00
Equipment (interior)	692.039	18.28

Energy use	Consumption (MBtu)	%
Electricity	1,373.273	36.28
District	2,316.730	61.21
Cooling		
District	95	2.51
Heating		

According to the end and energy use, cooling is much higher than heating consumption. Moreover, cooling represents approximately two thirds of the total consumption, whereas heating consumption is less than 5% (almost equal to the base case).

Comparing to the base case (Naples), cooling consumption is duplicated as heating consumption maintains almost the same value.

3.2. MONTHLY OVERVIEW.

3.2.1. District Cooling Consumption (MBtu).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tot
158.94	142.48	172.22	171.42	204.46	220.3	219.14	232.47	221.79	214.53	190.71	168.27	2316.73

3.2.2. District Heating Consumption (MBtu).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tot
0.03	0.03	0.01	0	-	-	0	0	-	-	0	0.03	0.1

3.2.3. District Cooling Peak Demand (kBtu/hr).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
651.45	651.81	690.49	765.12	739.03	838.71	858.81	820.40	840.43	804.85	783.70	769.19

3.2.4. District Heating Peak Demand (kBtu/hr).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
5.86	6.00	1.97	3.42	-	-	2.39	0.52	-	-	0.76	7.05

The following conclusions are reached from the monthly overview:

- The performance shows an almost equilibrated cooling consumption during all the year, being the highest value only 30% more than the lowest. The highest peak demand takes place in July. Comparing to the base case, the total cooling consumption is three times more than the base case.
- Related to district heating, the consumption values are very small, almost negligible if it is compared with the base case.

4. Helsinki (Finland).

4.1. ANNUAL OVERVIEW.

4.1.1. End and energy use.

End Use	Consumption (MBtu)	%
Heating	445.408	21.04
Cooling	297.690	14.07
Lighting (interior)	681.234	32.19
Equipment (interior)	692.039	32.70

Energy use	Consumption (MBtu)	%
Electricity	1.373,273	64.89
District	297.690	14.07
Cooling		
District	445.408	21.04
Heating		

According to the end and energy use, heating represents around the 20% of the total (considerably bigger than in the other two cases). Cooling energy represents around the 15% (considerably lower than in the base case)

4.2. MONTHLY OVERVIEW.

4.2.1. District Cooling Consumption (MBtu).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tot
-	-	0.01	5.78	35.05	65.27	84.68	80.33	24.43	2.17	-	-	297.69

4.2.2. District Heating Consumption (MBtu).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tot
96.67	90.64	53.24	16.9	3.17	0.81	0.51	0.75	4.21	16.57	71.13	90.8	445.41

4.2.3. District Cooling Peak Demand (kBtu/hr).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
-	-	6.15	196.35	355.52	414.68	548.19	525.49	326.35	69.66	-	-

4.2.4. District Heating Peak Demand (kBtu/hr).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1402.40	1479.90	1338.05	1062.33	513.03	298.91	107.50	121.71	765.19	1036.63	1510.77	1440.81

The following conclusions are reached from the monthly overview:

- Cooling consumption takes places between May and August, but the consumption quantity is considerably fewer than Naples case. The highest peak demand takes place in July. Comparing to the base case, the total cooling consumption is less than a half of the base case total consumption.
- Related to district heating, the consumption increases during the Autumn-Winter period (from November to March), where the heating consumption values are bigger than cooling. The peak demand during November-March is really high, tripling the peak demand values of the base case.

Second part: comparison between walls composition

5. Base Case- Naples (Italy).

5.1. Wall Composition.

Base Case	Thickness(m)	Conductivity (W/m.K)
1 in stucco	0.0253	0.6918
8 in concrete HW	0.2033	1.7296
Wall Insultation [31]	0.0337	0.0432
½ in Gypsum	0.0127	0.16

For this composition, OpenStudio shows a value of R=8.77 ft^2*h*R/Btu and this correspond to U=0.1140 Btu/ft^2*h*R.

5.2. Consumption over the year.

Energy use	Consumption (MBtu)	%
Electricity	1,373.273	60.48
District	824.279	36.30
Cooling		
District	73.181	3.22
Heating		

6. Best Case- Naples (Italy).

6.1. Wall Composition.

Best Case	Thickness(m)	Conductivity (W/m.K)
G05 25 mm wood	0.0254	0.15
8 in concrete HW	0.2033	1.7296
Wall Insultation [44]	0.1104	0.0432
½ in Gypsum	0.0127	0.16

For this composition, OpenStudio show a value of R= 16.59 ft^2*h*R/Btu and this correspond to U= 0.0603 Btu/ft^2*h*R.

6.2. Consumption over the year.

Energy use	Consumption (MBtu)	%
Electricity	1,373.273	60.97
District	736.710	32.71
Cooling		
District	142.419	6.32
Heating		

7. Worst Case- Naples (Italy).

7.1. Wall Composition.

Worst Case	Thickness(m)	Conductivity (W/m.K)
1 in stucco	0.0253	0.6918
Mat 4 HW concrete	0.1016	1.311
Wall Insultation [31]	0.0337	0.0432
½ in Gypsum	0.0127	0.16

For this composition, OpenStudio shows a value of R= 5.53 ft^2*h*R/Btu and this correspond to U= 0.1808 Btu/ft^2*h*R.

7.2. Consumption over the year.

Energy use	Consumption (MBtu)	%
Electricity	1,373.273	59.98
District	834.619	36.46
Cooling		
District	81.522	3.56
Heating		

8. Conclusions.

<u>Conclusion:</u> For our *base case*, we got an U=0.1140 Btu/ ft^2*h*R, and we can greatly see that for *best case* is reduced and the value is U= 0.0603 Btu/ ft^2*h*R, therefore, we will have <u>less consumption</u> and this is good mainly for our *cooling load*, because the location that we chose need more cooling than heating. As we can see, in the *base case* we have a district cooling consumption of 824.279 and for the *best case* is 736.710. In the case of the *worst case* the U=0.1808 Btu/ ft^2*h*R, therefore we will have <u>more consumption</u>, and these will cause <u>more cost</u> to our system, since in this case our district consumption is 834.619. So, choosing the best material for our walls, is important for our loads and for economic benefits.