

SRM Institute of Science and Technology Department of Mathematics 18MAB204T-Probability and Queueing Theory Unit – I: Random Variables Tutorial Sheet - 2

S.No	Questions	Answers					
Part – A							
1	State the Properties of MGF.						
2	If the r th moment of a continuous RV X about the origin is r!, find the MGF of X	Ans: $M_X(t) = \frac{1}{1-t}$					
3	Find the moment generating function of X whose moments are $E[X^r] = (r+1)! 2^r$	Ans: $M_x(t) = \frac{1}{(1-2t)^2}$					
4	If the pdf of a RV X is given by $f(x) = \begin{cases} \frac{1}{2}e^{-x/2}, & x > 0 \\ 0, & \text{elsewhere} \end{cases}$ find the moment generating function, mean and variance of X.	Ans: $M_x(t) = \frac{1}{1-2t}$ E[X]=2, V[X]=4					
5	If the pdf of a RV X is $f(x) = ce^{- x }$, $-\infty < x < \infty$. Find the value of c and moment generating function of X.	Ans: $c = \frac{1}{2}$, $M_x(t) = \frac{1}{1-t}$					
6	If the MGF of a RV X is $\frac{2}{2-t}$, find the SD of X.	Ans: $E[X] = \frac{1}{2}$, $V[X] = \frac{1}{4}$, $SD = \frac{1}{2}$					
Part – B							
7	Find the probability distribution of the total number of heads obtained in four tosses of a balanced coin. Hence obtain the MGF of X, mean and variance of X.	Ans: $\begin{array}{ c c c c c c c c c }\hline x & 0 & 1 & 2 & 3 & 4 \\\hline p_x & \frac{1}{16} & \frac{4}{16} & \frac{6}{16} & \frac{4}{16} & \frac{1}{16} \\\hline M_x(t) = & \frac{1}{16} (1 + 4e^t + 6e^{2t} + 4e^{3t} + e^{4t}) \\\hline E[X] = 2, \\V[X] = 1 \end{array}$					
8	Find the MGF of the random variable X having the pdf $f(x) = \begin{cases} \frac{x}{4}e^{-x/2}, & x > 0\\ 0, & \text{elsewhere} \end{cases}$ also deduce the first four moments about the origin.	Ans: $M_x(t) = \frac{1}{(1-2t)^2}$ $\mu_1' = 4$, $\mu_2' = 24$, $\mu_3' = 192$ $\mu_4' = 1920$					
9	The first four moments of a distribution about $X=4$ are 1, 4, 10 and 45 respectively. Show that the mean is 5, variance is 3, $\mu_3 = 0$ and $\mu_4 = 26$.						
10	If the moments of a RV X are defined by $E[X^r] = 0.6; r = 1,2,3,$ Show that $P(X=0) = 0.4, P(X=1) = 0.6, P(X \ge 2) = 0.$						