

Fonctions polynômes du second degré

1. Forme canonique

Définition : Fonction polynôme de degré 2

Soit a, b, c trois nombres réels avec $a \neq 0$.

On appelle <u>fonction</u> polynôme de degré 2 toute fonction P définie sur \mathbb{R} pouvant être exprimée sous la forme : $P(x) = ax^2 + bx + c$.

On parle aussi de fonction trinôme.

Propriété

Soit P une fonction polynôme du second degré exprimée sous la forme $P(x)=ax^2+bx+c$. Il existe deux nombres réels α et β permettant d'écrire P sous le forme :

$$P(x) = a(x - \alpha)^2 + \beta.$$

Cette forme s'appelle forme canonique.

2. Étude d'une fonction trinôme

Propriété : sens de variations.

Soit a, α , β trois nombres réels et f une fonction polynôme de degré 2 définie sur $\mathbb R$ par sa forme canonique $f(x) = a(x-\alpha)^2 + \beta$.

Extremum d'une fonction.

Soit a, α , β trois nombres réels.

f une fonction polynôme de degré 2 définie sur $\mathbb R$ par sa forme canonique

$$f(x) = a(x - \alpha)^2 + \beta.$$

Sur R, la fonction f admet β comme extremum. Il est atteint pour $x = \alpha$.

C'est un maximum si α est négatif.

C'est un minimum si α est positif.

Signe d'une fonction.

Soit a, α , β trois nombres réels et f une fonction polynôme de degré 2 définie sur \mathbb{R} par sa forme canonique $f(x) = a(x - \alpha)^2 + \beta$.

Le signe d'une fonction trinôme dépend du signe de a et du signe de β .

Si a < 0 et $\beta \le 0$, alors la fonction est toujours négative.

Si a > 0 et $\beta \ge 0$ alors la fonction est toujours positive.

Dans les autres cas,

la fonction change de signe sur l'intervalle $]-\infty;\alpha[$;

la fonction change à nouveau de signe sur l'intervalle α ; $+\infty$ [.

Méthode : étudier une fonction trinôme du second degré.

EXEMPLE:

On considère la fonction f définie sur $\mathbb R$ par $f(x)=-2(x-0,\,25)^2-8$. Déterminer :

- 1) son sens de variation;
- 2) son extremum;
- 3) le signe de la fonction.

CORRECTION:

Dans le cas de la fonction f :

- $\alpha = 0$, 25 $\beta = -8$ a = -2
- 1) a est négatif donc la fonction f est croissante sur $]-\infty; 0, 25[$ et décroissante sinon.
- 2) Elle admet un maximum en $x = \alpha = 0$, 25. Il vaut f (0, 25) = -8.

3) La fonction f est négative sur \mathbb{R} .

3. Représentation graphique de fonctions

Définition:

La courbe représentative d'une fonction trinôme est une parabole.

Propriété:

Soit a, α , β trois nombres réels et f une fonction trinôme définie sur $\mathbb R$ par sa forme canonique $f(x) = a(x-\alpha)^2 + \beta$. La courbe représentative de cette fonction est une parabole qui admet un axe de symétrie : la droite d'équation $\mathbf x = \alpha$.

EXEMPLE:

Tracer les courbes représentatives des fonctions suivantes :

•
$$f(x) = -0, 5(x+2)^2 + 3$$

•
$$g(x) = 2(x-3)^2 - 2$$

Donner leurs sens de variations et leur éventuel extremum.

CORRECTION

La fonction f :

- est croissante sur $]-\infty;-2[$;
- est décroissante sur $]-2;+\infty[$;
- elle admet un maximum en −2 qui vaut 3.

La fonction g :

- est décroissante sur $]-\infty$; 3[;
- est croissante sur]3;+ ∞ [;
- elle admet un minimum en 3 qui vaut –2.