NOIP2018 模拟赛

测试时间: 2018年10月21日8:00~11:30

题目名称	中间值	最小值	最大值
英文名称	median	min	max
输入文件名	median.in	min.in	max.in
输出文件名	median.out	min.out	max.out
时间限制	1s	1s	1s
空间限制	128MB	128MB	256MB
题目类型	传统	传统	传统
比较方式	全文比较	全文比较	全文比较

评测环境为 Windows, 使用 lemon 进行评测, 开启 O2 优化。

【比赛背景】

本场训练不按标题从小到大排序。

中间值 (median)

【题目背景】

Maxtir 喜欢序列的中间值。

【题目描述】

现在 Maxtir 有两个长度为n的非严格单调递增序列a,b。他想知道这两个序列中的某两个连续区间 $[l_1,r_1],[l_2,r_2]$ 合并后形成的新序列的中间值,这里我们保证这两个区间长度之和为奇数。

他觉得一直求相同序列的中间值太无聊了,于是他决定改变序列中的一些数,当然,他并不会让这个序列失去非严格单调递增这个美丽的性质。

【输入格式】

第一行输入两个正整数n,m,其中m是操作和询问次数。

接下来两行每行输入n个非负整数,每一行分别表示两个序列a,b的初始值。

接下来m行,每行输入一个操作或询问,以"1xyz或 $2l_1r_1l_2r_2$ "的形式给出。

对于 1 操作,保证 $x \in [0,1]$,若x = 0,将 a_y 修改成z,否则将 b_y 修改成z,保证修改前后序列a,b都是非严格单调递增的。

对于 2 操作,输出 a 序列的[l_1 , r_1]区间与的 b 序列的[l_2 , r_2]区间合并后形成的新区间的中间值,数据保证两个区间长度之和为奇数。

【输出格式】

对于每个询问,输出一行一个整数 ans 表示答案。

【样例输入】

5 5

12 41 46 68 69

35 61 82 84 96

2 1 4 3 5

```
10575
22434
23415
21424
【样例输出】
68
68
68
```

另有两个样例,见下发文件。

【数据范围】

对于 30% 的数据,满足 $n \le 1000, m \le 2000$ 对于 70% 的数据,满足 $n \le 10^5, m \le 2 \times 10^5$ 对于 100% 的数据,满足 $n \le 5 \times 10^5, m \le 10^6$ $0 \le a_i, b_i, z \le 10^9, 1 \le l_1 \le r_1 \le n, 1 \le l_2 \le r_2 \le n$

由于本题输入数据量较大,使用 scanf 读入数据也需要花费较多时间, 建议采用下面的代码来读入一个非负整数。

```
int ri() { char c = getchar(); int x = 0; for(;c < '0' \parallel c > '9'; c = getchar()); for(;c >= '0' && c <= '9'; c = getchar()) x = x * 10 - '0' + c; return x; }
```

最小值 (min)

【题目背景】

Maxtir 更喜欢序列的最小值。

【题目描述】

Maxtir 又有一个长度为n的整数序列a。

定义区间[l,r]的价值为 $f(\min_{i=l}^r a_i)$, $f(x) = Ax^3 + Bx^2 + Cx + D$ 。

特殊地,规定 $\min_{i=1}^{x} a_i = a_x$

现在 Maxtir 希望将序列分割成若干个区间,使得所有区间的价值之和最大。

【输入格式】

第一行输入一个正整数n和四个整数A,B,C,D。

第二行输入n个整数,第i个数表示 a_i 。

【输出格式】

输出一行一个整数ans表示答案。

【样例输入】

5 0 0 1 10

99526

【样例输出】

81

另有两个样例,见下发文件。

【数据范围】

对于10%的数据,满足 $n \le 100$

对于30%的数据,满足 $n \le 1000$

对于另外20%的数据,满足 $A=B=0,C\leq 0$

对于100%的数据,满足 $n \le 2 \times 10^5$, $\forall |f(a_i)| \le 10^{13}$,输入数据均在整数 int 范围内

最大值 (max)

【题目背景】

Maxtir 最喜欢最大值。

【题目描述】

Maxtir 有n个横向摆放的魔法阵,启动一个魔法阵要使用魔法晶石。

一个魔法晶石有三种属性, (x_i, y_i, p_i) ,表示它有 p_i 的概率在第 x_i 个魔法阵上出现,其能量为 y_i 。对于任意的魔法晶石,都有 $0 \le y_i \le k, k$ 为给定的常数。

任意一个时刻,某个魔法阵的能量 v_i 为在这个魔法阵上的所有魔法晶石的最小值,特殊地,规定没有魔法晶石的魔法阵能量为0。

现在 Maxtir 有m个魔法晶石,以及q次启动魔法阵的机会,第 i 次,他可以从第 l_i 到第 r_i 个魔法阵吸取能量,其吸取的能量为所有魔法阵的最大能量,即 $A_i = \max_{j=l_i}^{r_i} v_j$ (同上一题类似地规定 $\max_{i=x}^{x} v_i = v_x$)。同时,保证[l_i,r_i]互不包含,否则会出现不可描述的问题。

现在,他希望知道他q次吸取的能量的期望值之和,在 $mod10^{\circ}+7$ 意义下告诉他答案即可。

【输入格式】

第1行输入三个正整数n,m,q。

第2至m+1行中,第i+1行输入魔法晶石i的三种属性 (x_i,y_i,p_i) 。接下来q行,每行两个正整数 l_i,r_i ,数据保证 $[l_i,r_i]$ 互不包含。

【输出格式】

输出一行一个正整数 ans 表示答案。

【样例输入】

3 3 2

1 1 500000004

2 2 333333336

3 3 1

1 2

23

【样例输出】

4

【样例解释】

500000004 =
$$\frac{1}{2}$$
 mod(10° + 7),3333333336 = $\frac{1}{3}$ mod(10° + 7)
最终的魔法阵中的晶石序列可能是
(\otimes , \otimes ,3),(\otimes ,2,3),(1, \otimes ,3),(1,2,3) 四种,他们的概率分别是 $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{6}$
两次吸取的能量分别是(0,3),(2,3),(1,3),(2,3),最终的答案是 $3 \times \frac{1}{3} + 5 \times \frac{1}{6} + 4 \times \frac{1}{3} + 5 \times \frac{1}{6} = 4$ 。
另有两个样例,见下发文件。

【数据范围】

对于100%的数据,满足 $0 \le y_i \le 10^9, 1 \le q \le n, 0 \le p_i < 10^9 + 7$

测试点编号	数据范围	特殊性质
1	$n \le 20, m \le 20$	
2,3	$n \le 100, m \le 500$	
4	$n \le 1000, m \le 5000$	
5	$n \le 10^5, m \le 2 \times 10^5$	q = n
6	$n \le 10^5, m \le 2 \times 10^5$	q = n - 1
7,8,9,10	$n \leq 10^5, m \leq 2 \times 10^5$	