Data Intelligence Applications Pricing and Matching

Ivan Cavadini (941927) Simone Marforio (944320) Nicolò Molinari (942404)

2020/2021

Contents

Introduction	2
Formal Model	4
Random Varaibles	8
Online pricing for first item	12
Online pricing for first item with purchase simulation	16
Matching problem: promo assignment	18
Pricing and Matching problem	20
Seasonal Pricing and Matching problem: Sliding Window	21
Seasonal Pricing and Matching problem: Change Detection	23
Folder Structure	26
References	26

Introduction

Scenario

Consider the scenario in which a shop has a number of promo codes to incentivize the customers that buy an item to buy a different item. The customers can belong to different classes and the promo codes can provide different discounts.

Environment

Imagine two items (referred to as first and second items; for each item we have an infinite number of units) and four customers' classes. The daily number of customers of each class is described by a potentially different (truncated) Gaussian probability distribution. Each class is also associated with a potentially different conversion rate returning the probability that the user will buy the first item at a given price.

Once a buyer has bought the item, she/he can decide to buy the second item that can be or not promoted. There are four different promos P0, P1, P2, P3, each corresponding to a different level of discount. P0 corresponds to no discount. Given the total number of customers, the business unit of the shop decides the number of promos as a fraction of the total number of the daily customers and is fixed (use two different settings in your experiments that you are free to choose). Each customers' class is also associated with a potentially different conversion rate returning the probability that the user will buy the second item at a given price after she/he has bought the first. The promos will affect the conversion rate as they actually reduce the price. Every price available is associated with a margin obtained by the sale that is known beforehand. This holds both for the first and the second item. The conversion rates will change during time according to some phases due to, e.g., seasonality.

Steps

1. Provide a mathematical formulation of the problem in the case in which the daily optimization is performed using the average number of customers per class. Provide an algorithm to find the optimal solution in the offline case in which all the parameters are known. Then, during the day when customers arrive, the shop uses a randomized approach to assure that a fraction of the customers of a given class gets a specified promo according to the optimal solution. For instance, at the optimal solution, a specific fraction of the customers

- of the first class gets P0, another fraction P1, and so on. These fractions will be used as probabilities during the day.
- 2. Consider the online learning version of the above optimization problem, identify the random variables, and choose a model for them when each round corresponds to a single day. Consider a time horizon of one year.
- 3. Consider the case in which the assignment of promos is fixed and the price of the second item is fixed and the goal is to learn the optimal price of the first item. Assume that the number of users per class is known as well as the conversion rate associated with the second item. Also assume that the prices are the same for all: the classes (assume the same in the following) and that the conversion rates do not change unless specified differently below. Adopt both an upper-confidence bound approach and a Thompson-sampling approach and compare their performance.
- 4. Do the same as Step 3 when instead the conversion rate associated with the second item is not known. Also assume that the number of customers per class is not known.
- 5. Consider the case in which prices are fixed, but the assignment of promos to users need to be optimized by using an assignment algorithm. All the parameters need to be learnt.
- 6. Consider the general case in which the shop needs to optimize the prices and the assignment of promos to the customers in the case all the parameters need to be learnt.
- 7. Do the same as Step 6 when the conversion rates are not stationary. Adopt a sliding-window approach.
- 8. Do the same as Step 6 when the conversion rates are not stationary. Adopt a change-detection test approach.

Context Modeling

We have considered a ski shop that sells racing skis as first item and racing ski helmets as second item. The optimization problem have a time horizon of one year, splitted in three seasons that change the conversion rates of the two items. Customers are splitted into four different categories that define their purchasing behavior (conversion rates), according to the season and the price of the item.

	Racing Skis	Professional racing skis	
Items	Racing Ski Helmet	Professional racing skis helmet	
Customer	Sport addicted	Who loves and practices ski frequently	
	Gifter	Who wants to give away the both items	
categories	Worried	Who pays a lot of attention to the price of the	
		items	
	Amateur	Who sometimes practices ski	
	Spring-Summer	Buyers are not tempted to spend a lot, ski season	
seasons		is far away	
	Autumn	Buyers are willing to spend in anticipation of the	
		arrival of the ski season	
	Winter	Ski season has begun, those who have not yet	
		bought the equipment have hurried to buy it so	
		as not to waste the season	

Assumption

- Seasonality is taken into account only for the 7th, 8th requests, while for all the other, the seasonality of the products is not considered and the conversion rates remain static. For this requests the default season is the first one, in our context called Spring.
- In our mathematical formulation, for the total reward maximization problem, we consider the production cost of both the items equal to zero.

Formal Model

Variables definition

- i = user category
- j = promotional discount: $P_0 = 0\%$, $P_1 = 10\%$, $P_2 = 20\%$, $P_3 = 30\%$
- p1 = full price of the first item (Racing skis)
- p2 = full price of second item (Racing ski helmet)
- ullet $p2_j = \text{price of the } Racing \ ski \ helmet \ when applied the promo \ j$

- $c1 = \text{production cost of } Racing \ skis = 0$
- $c2 = \text{production cost of } Racing \ ski \ helmet = 0$
- $q1_i(p1) = \text{conversion rate for user category } i$, for $Racing\ skis\ \text{sold}\$ at the price p1
- $q2_i(p2) = \text{conversion rate for user category } i$, for $Racing\ ski\ helmet\ \text{sold}$ at price the p2
- $s_{ji}(p2) = \text{discounted price of } Racing \ ski \ helmet$, for user category i, according to promo discount j
- $d_{ij} = \text{amount of promo } j \text{ distributed to user category } i$
- $d_{max} = \text{maximum number of promos to be to distributed } (\#P_1 + \#P_2 + \#P_3)$
- $avgCustomer_i = average number of customers for category i$

Formulation of elaborated variables

- $p1 * q1_i(p1) * avgCustomer_i$ = revenue for the sale of Racing skis at price p1 to user category i
- $s_{ji}(p2) * q2_i(s_{ji}(p2)) * d_{ij} * avgCustomer_i$ = revenue for the sale of Racing ski helmet at the discounted price p2, according to the user-promo assignment
- $(p1 * q1_i(p1) c1 * q1_i(p1)) * avgCustomer_i =$ revenue for the sale of Racing skis taking into account the production cost c1
- $(q2_i(p2) * (s_{ji}(p2)) * q2_i(s_{ji}(p2)) * d_{ij} q2_i(s_{ji}(p2))) * c2) * avgCustomer_i =$ revenue for the sale of *Racing ski helmet* taking into account the production cost c2

Objective Function

We have a maximization problem with the following objective function:

$$\max(\sum_{i=0,j=0}^{i=4,j=4}[(p1*q1_i(p1)-c1*q1_i(p1)+q2_i(p2)(s_{ji}(p2)*q2_i(s_{ji}(p2))*d_{ij}-q2_i(s_{ji}(p2))*c2))*c2))*avgCustomer_i])$$

s.t:
$$\forall j > 0 : [\sum_{i=0}^{i=4} d_{ij}] = d_{max}$$

We have fixed the full prices of the two items: p1, p2. We retrieve the discounted prices of p2, applying the promos j.

We know: the average number of customers per category i, $avgCustomer_i$, the conversion rate for both products $(q1_i(p1), q2_i(p2))$ and the maximum number of promos to distribute (d_{max}) .

As assumption the production costs of the two items is zero (c1 = 0, c2 = 0).

It is possible to retrieve the total revenue for $Racing\ skis$ as the product between the full price of the first item, the conversion rate for the considered user category and the average number of customers for that category: $(p1*q1_i(p1)*avgCustomer_i)$. For the second item the calculation of the reward is the same except for the fact that the product is buyed only if also the first one is purchased (so we multiply also the conversion rate of the first item) and the considered price have to be discounted according to the assigned promotion.

The solution of our optimization problem consists in the distribution of the fraction of promo codes among the user categories.

Offline problem - designed algorithm

In this scenario we have to find the optimal solution in an offline manner (a solution to our maximization problem knowing all the parameters), considering the constraints that the shop uses a randomized approach to assure that a fraction of the customers of a given category gets a specified promotion according to the optimal solution.

We achieve the solution of the problem using a matching approach. To reach the optimal solution we have used an iterative approach: we build a matrix category-promotion containing the mean expected rewards for every couple, calculated as the conversion rate of the *Racing ski helmet* multiplied with its discounted price. The goal is to obtain, for each category-promotion couple the fraction of customers that will receive this discount.

We exploit this matrix to perform the matching between the customer classes and the promo types, in order to maximize the total reward.

We select the best reward for every class, for four times, retrieving, at every iteration, the four best combination of category-promotion and assigning an infinite weight to the obtained sub-optimal matching.

Every matching is represented by a reward configuration that maximize the total reward. Every iteration is weighted and represent a different goodnesses of the solution, the first is the best, the last is the worst.

Through the sub-optimal matchings, we have retrieved the fractions of different promos to assign to every customer categories, based on the proportional weight of the previous sub-optimal matching.

The proportions retrieved, are normalized category per category.

PESEUDOCODICE

```
Optimal solution: probability distribution of promos per class (rows: class, col: promos) [[0.12 0.28 0.52 0.08] [0.06 0.53 0.15 0.26] [0.52 0.07 0.28 0.14] [0.17 0.09 0.05 0.69]]
```


Random Varaibles

For the online problem have identified and modeled the following radom variables

Daily customers distribution

We modeled the daily customers distribution as a **Gaussian Distribution**, with a normalizing factor of 1000 daily customers. Average and variance of the Gaussian distribution are reported in the table below.

Customer Category	Average	Variance
Sport addicted	0.15	0.03
Gifter	0.20	0.03
Worried	0.40	0.05
Amateur	0.25	0.04

Conversions rates

The odds of buying one item are modelled with a **Bernulli Distribution** different for every user category and item price.

- \bullet Probability of buying Racing skis: Bernoulli $\tilde{0}{,}1$
- Probability of buying *Racing ski helmet*: Bernoulli $\tilde{0},1$

The following graphs are the demand curves of the two items: the first three graphs are the demand curves of the first item, associated to the three seasonality (Spring-Summer, Autumn, Winter), while the last three graphs are the demand curves of the second item with its respective seasonality.

Online Approach

Our general approach for the online problem is to simulate, day by day the shop, generating the customers and emulating their behavior, collecting the results and, according to the considered scenario and constraints, provide an optimal solution that maximise the reward.

Every day we retrieve the daily customer distribution per class using the previously presented random variable that model the daily customer distribution. Randomly we simulate the entry of a new customer, of which we know the category of belonging, in the shop. With an online approach we select the best price to be prosed to the client, in order to maximize the reward. The purchase is simulated with the previously presented random variable with a Bernulli distribution. The second item is proposed to the client only if the first has been purchased. The price at which it is proposed is retrieved with an online matching approach that try to sugget which is the best discout to apply to the user in oreder to maximize the reward.

This procedure is repeated for all clients during the entire time horizon of 356 days.

Online pricing for first item

Submission: Consider the case in which the assignment of promos is fixed and the price of the second itm is fixed and the goal is to learn the optimal price of the first item. Assume that the number of users per class is known as well as the conversion rate associated with the second item. Also assume that the prices are the same for all: the classes (assume the same in the following) and that the conversion rates do not change unless specified differently below. Adopt both an upper-confidence bound approach and a Thompson-sampling approach and compare their performance.

The request is to learn the optimal price of the first item, comparing the adoption of a Thompson-sampling approach and an Upper-Confidence Bound approach

Basic knowledge

The described problem is a combinatorial bandit problem, which is a decision making problem in where decision maker selects one single arm in each round, and observes a realization of the corresponding unknown reward distribution. Each decision is based on past observed rewards. The objective is to maximize the expected cumulative reward over some time horizon by balancing exploitation and exploration. We can solve it, through an online algorithm, where only for the feasible solutions we will have precise estimations. Thomspon-Sampling algorithm (TS) and Upper-Confidence Bound algorithm (UCB1) are well known algorithm used to solve combinatorial bandits problem.

Upper-Confidence Bound (UCB1)

- Every arm is associated with an upper confidence bound
- At every round, the arm with the highest upper confidence bound is chosen
- After having observed the realization of the reward of the arm, the upper confidence bound is updated

Notation:

- \bullet t time
- A set of arms

- \bullet a arm
- a_t arm played at time t
- a* optimal arm
- X_a random variable (bernoulli) associated to arm a
- μ_a expected value of random variable X_a
- $x_{a,t}$ realization of rv X_a at time t
- x_a realizations of X_a
- \bar{x}_a empirical mean of x_a
- $n_a(t)$ number of samples of arm a at time t

Pseudocode

- 1. Play once each arm $a \in A$
- 2. At every time t play arm a such that:

$$a_t \leftarrow \arg\max_{a} \left\{ \left[\bar{x}_a + \sqrt{\frac{2log(t)}{n_a(t-1)}} \right] \times a \right\}$$

Thompson Sampling (TS)

- For every arm, we have a prior on its expected value
- In the case the arms' rewards are Bernoulli distribution, the priors are Beta distributions
- Notice that, with the opportune parameters, a Beta distribution is a uniform distribution
- For every arm, we draw a sample according to the corresponding Beta
- We choose the arm with the best sample
- We update the Beta distribution of the chosen arm according the observed realization

Notation (in addition to classical UCB):

- $\mathbb{P}(\mu_a = \theta_a)$ prior of the expected value of X_a
- θ_a variable of $\mathbb{P}(\mu_a = \theta_a)$
- $(\alpha_{a_t}, \beta_{a_t})$ parameters of the beta distribution $P(\mu_a = \theta_a)$

Pseudocode

- 1. At every time t for every arm a: $\tilde{\theta_a} \leftarrow Sample(\mathbb{P}(\mu_a = \theta_a))$
- 2. At every time t play arm a_t such that $a_t \leftarrow \arg\max_a \left\{\tilde{\theta_a} \times a\right\}$
- 3. Update beta distribution of arm a_t $(\alpha_{a_t}, \beta_{a_t}) \leftarrow (\alpha_{a_t}, \beta_{a_t}) + (x_{a_t,t}, 1 x_{a_t,t})$

Strategy

In our solution we simulate a random arrival of the customers, through two different leaner, TS learner and a UCB learner, we extract from our candidates two prices and we emulate the purchase phase using both prices. In case the customer buys the first item, we propose the second one at a fixed price, computed according to the customer category. In this case we do not simulate the purchase phase, but we use the knowledge of the conversion rate of the second item to compute the final customer reward.

Implementation

- No seasonality, conversion rate do no change
- Number of customers per class is known
- Candidates for the *Racing Skis* are: {2260.0,1910.0,2130.0, 2010.0, 2340.0}
- Conversion rate associated with the first item is not known
- Basic price of the Racing Ski Helmet is fixed to 630.0
- Promotion assignment is fixed, according to the results of our offline solution:

User category	Assigned promotion	Racing Ski Helmet price
Sport Addicted	$P_2: 20\%$	504.0
Gifter	$P_1: 10\%$	567.0
Amateur	$P_0:0\%$	630.0
Worried	$P_3: 30\%$	441.0

• Conversion rate associated with the second item is known

Both UCB and TS learner expect as learnign parameter a binomial value, while our reward is value composed by the sold of the first item plus the eventual sold of the second item. In order to normilize the reward to be passed learner, we divide the customer reward by the maximum achievable reward.

Optimal strategy In order to compute a regret, the simulated rewards are compared with an optimal solution that, accordingly to the conversion rates for the first items, is to offer the *Racing Skis* at the lower price (1910.0 according to our candidates prices).

Results

Days :10

Experiments number: 10

Both UCB and TS strategy converge on 1910.0

We decide to plot the regret of the first 5000 clients, since plotting the results of the entire time horizon made the plot unreadable

Considerations

As we can observe in the plot, both approach converge to a stable solution, however Thompson Sampling approach performs better than a UCB approach. Infact Thompson Sampling is faster to find the best price for the first item than UCB and this allow to have a lower regret.

Online pricing for first item with purchase simulation

Submission: Do the same as Step 3 when instead the conversion rate associated with the second item is not known. Also assume that the number of customers per class is not known.

The goal is the same of the previous problem: we have to learn the optimal price for the first item comparing TS and UCB approach. In addition, this time, we have no information about the conversion rate for the second item.

Strategy

The script that we have implemented is similar to the previous one. We simulate a random arrival of the customers, proposing the *Racing Skis* to them at the prices suggested by the two learners (UCB and TS) and simulating the purchase of it. In case the customer buys the first item, instead of empirically retrieve the reward of the second item using the conversion rate, we simulate the purchase of it proposing the *Racing Ski Helmet* at the disconted price accordingly to the user category. We calculate the total reward and we update the learners with the results, ad the prevoius submission, normilizing the reward.

Implementation

- No seasonality, conversion rate do no change
- The number of customers per class is not known
- The conversion rates associated to the second item are not known

- Candidates for the *Racing Skis* are: {2260.0,1910.0,2130.0, 2010.0, 2340.0}
- Conversion rate associated with the first item is not known
- Basic price of the Racing Ski Helmet is fixed to 630.0
- Promotion assignment is fixed, according to the results of our offline solution:

User category	Assigned promotion	Racing Ski Helmet price
Sport Addicted	$P_2: 20\%$	504.0
Gifter	$P_1: 10\%$	567.0
Amateur	$P_0:0\%$	630.0
Worried	$P_3: 30\%$	441.0

• Conversion rate associated with the second item is not known

Optimal strategy As in the previous submission, the regret is calculated comparing the online approach with an optimal solution. Again, the optimal solution, accordingly to the conversion rate, is to offer the first item at the lower price (1910.0 according to our candidates prices).

Results

Days :10

Experiments number: 10

Both UCB and TS strategy converge on 1910.0

We decide to plot the regret of the first 5000 clients, since plotting the results of the entire time horizon made the plot unreadable

Considerations

The result shows that a Thompson Sampling approach performs better than a UCB approach, as in the previous problem. The regret curves of both the algorithm are slightly higher than the previous scenario, because, unlike the previous case, we do not know the conversion rates associated to the second item so we have a less precise value that will feed the two leaner, increasing the inaccracy of the estimations.

Matching problem: promo assignment

Submission: Consider the case in which prices are fixed, but the assignment of promos to users need to be optimized by using an assignment algorithm. All the parameters need to be learnt.

The problem requires to optimize the assignment of the problem using an assignment algorithm, in the following scenario:

- The prices are fixed
- All the parameter need to be learnt

Basic knowledge

DIRE CHE BANDIT PROBLEM è e RIVEDERE SE QUELLI PRECEDENTI SONO GIUSTI. AGGIUNGERE UN PO' DI TEORIA

UCB Matching Pseudocode

At t, play a superarm a_t such that:

$$a_t \leftarrow \arg\max_{\mathbf{a} \in M} \left\{ \sum_{a \in \mathbf{a}} \bar{x}_{a,t} + \sqrt{\frac{2log(t)}{n_a(t-1)}} \right\}$$

where M is the set of matches.

Strategy

We consider a time horizon of 60 days. We simulate the randomly arrival of the customers and the purchase of the first item. In case of purchase of the first item, we retrieve the optimal matching for the user categories from the learner (UCB matching) and we propose the second item to him, at the discounted price based on the matching suggested by the learner. The learner provides us a set of arms, so we cannot update it with the reward given by the single customer. We introduce two matrixes of shape (|User category |, |Type of promo|), every cell represents the matching between a specific customer category and a specific promo. The first matrix contains the sum of the rewards for that matching, the second contains the number of occurences that the matching has been chosen. At the beginning of the simulation, we use the first 1000 samples (customers) to initialize the two matrix, forcing all the possible combinations of matching. In this way we can update the learner, customer by customer, using the average reward for every matching.

Implementation

Optimal strategy

Results

Considerations

We can observe that the UCB Matching algorithm has a linear increase on the cumulative regret for the first thirty days, but after that, it becomes more and more stable on the optimal matching, and the cumulative regret does not increase so much.

Pricing and Matching problem

Submission: Consider the general case in which the shop needs to optimize the prices and the assignment of promos to the customers in the case all the parameters need to be learnt.

The problem requires to find the optimal prices for the two items and to optimize the assignment of the promos, in the scenario where all the parameters need to be learnt.

Strategy

We simulate the random arrival of the customers. For every customer we retrieve a superarm from the Thompson sampling learner. A superarm is associated to the couple of the candidates prices of the two items. We evaluate the purchase of the first item at the suggested price. In case the customer buys the first item, we pull the matching from the UCB learner, and we do the same procedure of purchase for the second item at the proposal discounted price. Before the arrival of a new customer, we update the TS learner with the entire reward given by the two items, and the UCB learner with the reward of the second item. We have used the same two matrixes in the same way of the previous request.

Implementation

Optimal strategy

Results

Considerations

We can notice that the learners take more time to learn the optimal solutions both for pricing and matching. The cumulative regret is increasing quite linearly until the day 200th, after that, they start to stabilize on the optimal solutions. The cumulative regret still be jagged, because both the learner can pull random arms with some probabilty, this has impact on the curve.

Seasonal Pricing and Matching problem: Sliding Window

Submission: Do the same as Step 6 when the conversion rates are not stationary. Adopt a sliding-window approach.

The goal is the same of the previous problem, but in this case the conversion rates are not stationary and is required to use a sliding-window approach.

Basic knowledge

Sliding-Window Thompson Sampling (SW-TS) We use a sliding window of length $\tau \in N$ such that the algorithm, at every round t, takes into account only the rewards obtained in the last τ rounds. Based on these realizations, we apply a TS-based algorithm to decide which is the arm to pull in the next round. In particular, the expected value of each arm is coupled with a posterior distribution from which we draw samples, and the arm with the highest value is the next arm to play.

Pseudocode:

- 1. At every time t for every arm a: $\tilde{\theta_a} \leftarrow Sample(\mathbb{P}(\mu_a = \theta_a))$
- 2. At every time t play arm a_t such that $a_t \leftarrow \arg\max_{a \in A} \left\{ \tilde{\theta_a} \right\}$
- 3. Update beta distribution of arm a_t if $t \leq \tau$: $(\alpha_{a_t}, \beta_{a_t}) \leftarrow (\alpha_{a_t}, \beta_{a_t}) + (x_{a_t,t}, 1 x_{a_t,t})$ if $\tau < t$: $(\alpha_{a_t}, \beta_{a_t}) \leftarrow \max \{(1, 1), (\alpha_{a_t}, \beta_{a_t}) + (x_{a_t,t}, 1 x_{a_t,t}) (x_{a_{t-\tau},t-\tau}, 1 x_{a_{t-\tau},t-\tau})\}$

Strategy

In a non-stationary environment the conversion rates are not stationary, so they change due to the seasonalities. We exploit the sliding-window approach combined with the Thompson sampling algorithm (SW-TS) to solve this problem. It is an algorithm that exploits a Sliding-Window approach to forget past information during the learning, which could provide a bias to the estimation process.

Implementation

Optimal strategy

Results

Considerations

We can observe that in the first season the SW-TS algorithm has an higher regret than the TS algorithm, because the first has a number of samples that is equal to the dimension of the window, instead the second collects all the samples. The SW-TS has a better performance from the second season, due to the sliding-window approach, it stabilizes faster than the TS, and at the end, the cumulative regret for the SW-TS is about 4 times less than the TS.

Seasonal Pricing and Matching problem: Change Detection

Submission: Do the same as Step 6 when the conversion rates are not stationary. Adopt a change-detection test approach.

The goal is the same of the previous problem, but instead of a sliding-window approach, is required to adopt a change-detection test approach.

Basic knowledge

Change Detection (CUSUM) The first M valid samples are used to produce the reference point.

Empirical mean of arm a over the first M valid samples \bar{X}_a^0

From the M+1-th valid sample on, we check whether there is a change

Positive deviation from the reference point at $t-s_a^+(t)=(x_a(t)-\bar{X}_a^0(t))-\epsilon$

Negative deviation from the reference point at $t-s_a^-(t)=-(x_a(t)-\bar{X}_a^0(t))-\epsilon$

Cumulative positive deviation from the reference point at $t - g_a^+(t) = \max\{0, g_a^+(t-1) + s_a^+(t)\}$

Cumulative negative deviation from the reference point at $t-g_a^-(t)=\max\left\{0,g_a^-(t-1)+s_a^-(t)\right\}$

We have a change if $g_a^-(t) > h$ or $g_a^+(t) > h$

CD-UCB Pseudocode:

- 1. Initialize $\tau_a = 0$ for $a \in A$
- 2. For each time t:

$$a_t \leftarrow \arg\max_{a \in A} \left\{ \bar{x}_{a,\tau_a,t} + \sqrt{\frac{2log(n(t))}{n_a(\tau_a,t-1)}} \right\} \text{ with probability } 1 - \alpha$$

 $a_t \leftarrow \text{random arm with probability } 1 - \alpha$

n(t) is total number of valid samples

 $\bar{x}_{a,\tau_a,t}$ is the empirical mean of arm a over the last valid samples

 $n_a(\tau_a, t-1)$ is the number of valid samples for arm a

- 3. Collect reward r_t
- 4. If $CD_a(r_\tau, ..., r_t) = 1$ then $\tau_a = t$ and restart CD_a

Strategy

In order to solve this problem we have used a change detection (CUSUM) algorithm and a bandit algorithm (UCB). At each time t, the UCB outputs a decision $I_t \in K$, where K is a set of arms, based on its past observations of the bandit environment. The environment generates the corresponding reward of arm I_t , which is observed by both the bandit algorithm and the change detection algorithm. The change detection algorithm monitors the distribution of each arm, and sends out a positive signal to restart the bandit algorithm once a breakpoint is detected.

Implementation

Optimal strategy

Results

Considerations

We can observe that the change-detection approach performs better than without it, this can be seen from the second season to the end. In the first season, the cumulative regret is higher with the change-detection approach, because it catch some false-positive detection, that can change the solution that it suggests.

Folder Structure