Группа	P3110	К работе допущен
--------	-------	------------------

Студент: Лебедев Вадим Работа выполнена

Преподаватель: М.П.Коробков Отчет принят_____

Рабочий протокол и отчет по лабораторной работе №

1. Цель работы.

- 1) Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2) Определение величины ускорения свободного падения g.
- 2. Задачи, решаемые при выполнении работы.
 - 1) Измерение времени движения тележки по рельсу с фиксированным углом наклона.
 - 2) Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
 - 3) Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
 - 4) Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.
- 3. Объект исследования.

Движение тележки по наклонному рельсу

4. Метод экспериментального исследования.

Многократное измерение времени движения тележки по рельсу при различном расстоянии между оптическими воротами; при различном угле наклона рельса.

5. Рабочие формулы и исходные данные.

Задание 1.

$$Y = x_2 - x_1$$

$$\Delta_a = 2\sigma_a,$$

$$Z = \frac{t_2^2 - t_1^2}{2}$$

$$\varepsilon_a = \frac{\Delta a}{a} \cdot 100\%.$$

$$\varepsilon_a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2}; \quad \sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum_{i=1}^{N} Z_i^2}},$$

Задание 2.

$$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x} \qquad \Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{H2})^2 + (\Delta x_{H1})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2} \qquad B \equiv g = \frac{\sum\limits_{i=1}^N a_i \sin \alpha_i - \frac{1}{N} \sum\limits_{i=1}^N a_i \sum\limits_{i=1}^N \sin \alpha_i}{\sum\limits_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \left(\sum\limits_{i=1}^N \sin \alpha_i\right)^2}}$$

$$A = \frac{1}{N} \left(\sum\limits_{i=1}^N a_i - B \sum\limits_{i=1}^N \sin \alpha_i\right) \quad \sigma_g = \sqrt{\frac{\sum\limits_{i=1}^N d_i^2}{D(N-2)}}$$

$$d_i = a_i - (A + B \sin \alpha_i) \qquad D = \sum\limits_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \left(\sum\limits_{i=1}^N \sin \alpha_i\right)^2$$

6. Измерительные приборы.

Представлены в таблице 1.

7. Схема установки (перечень схем, которые составляют Приложение 1).

РИС. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Таблицы вложены отдельными листами.

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Задание 1:

Расчет ускорения.

$$\begin{split} \mathbf{Y}_1 &= \mathbf{x}2 - \mathbf{x}1 = 0,4 - 0,15 = 0,25 \text{M}. \\ \mathbf{Z}_1 &= t \frac{t_2^2 - t_1^2}{2} = \frac{\left((2,4*2,4) - (1,3*1,3)\right)}{2} = 2,035c^2 \\ \mathbf{Y}_1 * \mathbf{Z}_1 &= 0,25 * 2,035 = 0,50875 \text{M*c}^2 \\ \mathbf{Z}_1^2 &= 0,26c^4 \\ a &= \frac{sum(Yi*Zi)}{sum(Zi*Zi)} \approx 0,20 \text{M/c}^2 \end{split}$$

Результаты всех вычислений:

(Yi, m	Zi, c^2	Yi*Zi, m*c^2	Сумм(Yi*Zi), m*c^2	Zi^2, c^4	a, м/c^2
	0,25	2,035	0,50875		0,258826563	
	0,35	2,535	0,88725		0,787212563	
	0,55	4,6	2,53	15,608	6,4009	0,196876656
	0,75	6	4,5		20,25	
	0,95	7,56	7,182		51,581124	

Задание 2:

Расчёт угла наклона рельса к горизонту и ускорения.

$$\sin a1 = \frac{h_0 - h_1 - (h'_0 - h'_1)}{x' - x} = \frac{h'_{0\phi \text{AKT}} - h'_{1\phi \text{AKT}} - (h_{0\phi \text{AKT}} - h_{1\phi \text{AKT}})}{x' - x} = 0,0012^\circ$$

$$< t1 >_{(1)} = \frac{\sum_1^5 t1}{5} = \frac{6.4}{5} = 1,28c$$

$$< t2 >_{(1)} = \frac{\sum_1^5 t2}{5} = \frac{20.2}{5} = 4,04c$$

$$< a >_{(1)} = \frac{2(x_2 - x_1)}{\langle t \rangle_2^2 - \langle t \rangle_1^2} = \frac{0.5}{14.69} = 0,03\text{M/c}^2$$

Результаты для остальных расчетов представлены в приложении №1 (табл.5)

Расчет коэффициентов А и В:

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i * \sin a_i - \frac{1}{N} * \sum_{i=1}^{N} a_i * \sum_{i=1}^{N} \sin a_i}{\sum_{i=1}^{N} \sin a_i^2 - \frac{1}{N} (\sum_{i=1}^{N} \sin a_i)^2} = \frac{0.0138312}{0.0018374} = 7.52 \text{M/c}^2$$

$$A = \frac{1}{N} * \left(\sum_{i=1}^{N} a_i - B * \sum_{i=1}^{N} \sin a_i \right) = \frac{1}{5} * (-0.15) = -0.03 \text{M/c}^2$$

10. Расчет погрешностей измерений (*для прямых и косвенных измерений*). Задание 1:

Расчет погрешности для ускорения.

$$(Y_1 - a * (Z_1))^2 = (0.25 - 0.2 * 2.035)^2 = 0.022 \text{m}^2$$

$$\sigma a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - a(Z_i))^2}{N - 1(\sum_{i=1}^{N} (Z_i)^2)}} = 0.045 \text{m/c}^2$$

$$\Delta a = 2\sigma a = 0.09 \text{ m/c}^2$$

$$\varepsilon_a = \frac{\Delta a}{a} = \frac{0.09}{0.2} = 0.45$$

Результаты всех вычислений:

	(Yi - a*Zi)^2, m^2	Сүмма С25-С29	число изм N	среднее отклонение сигма, м/с^2	
	0,022693614				
Г	0,022225539				
	0,12647456	0,647239973	5	0,045177912	
	0,185985135				
Т	0,289861125				

Задание 2:

Расчет СКО, доверительного интервала (для а = 0,95), абсолютной и относительной погрешности:

$$S_{t1}^{-} = \sqrt{\frac{\sum_{i=1}^{n} (t1_{i-\frac{1}{t1}})^{2}}{N(N-1)}} = 0,04$$

$$\Delta_{t1}^{-} = t_{a,n} * S_{t1}^{-} = 0,11$$

$$\Delta_{t1}^{-} = \sqrt{\Delta_{t1}^{2} + (\frac{2}{3} * \Delta_{Ht1})^{2}} \approx 0,13$$

$$\varepsilon_{t1}^{-} = \frac{\Delta_{t1}}{\bar{t}_{1}} * 100\% = 10,1\%$$

Аналогично для t₂

Результаты всех вычислений для t₁ и t₂:

Nº	S_{t1}^-	$\Delta_{\frac{1}{t}}$	Δ_{t1}	$arepsilon_{t1}$
1	0,04	0,11	0,13	10,1
2	0,08	0,22	0,23	18
3	0,09	0,27	0,28	28
4	0,08	0,22	0,23	32
5	0,07	0,2	0,2	29

Nº	S_{t2}^-	Δ <u>:::</u>	Δ_{t2}	ε_{t2}
1	0,04	0,11	0,13	3,25
2	0,09	0,27	0,28	8,3
3	0,1	0,29	0,3	11
4	0,1	0,29	0,3	13
5	0,18	0,5	0,5	22,7

Расчет погрешности для ускорения:

$$\Delta a = * \sqrt{\frac{\(\Delta_{xu_2}\)^2 + \(\Delta_{xu_1}\)^2}{\(x_2 - x_1\)^2} + 4 * \frac{\(\langle t_1 \rangle * \Delta_{t_1}\)^2 + \(\langle t_2 \rangle * \Delta_{t_2}\)^2}{\(\langle t_2 \rangle^2 - \langle t_1 \rangle^2\)^2}} = 0.06$$

Результаты для остальных расчетов представлены в приложении №1 (табл.5)

Расчет СКО для коэф.B(g).

$$d_1 = a_1 - (A + B * sina_1) = 0.03 + 0.021 = 0.051$$
м/с² Аналогично для остальных і:

d1	d2	d3	d4	d5
0,051	-0,05	-0,055	0,0125	0,04

$$D = \sum_{i=1}^{N} \sin a_i^2 - \frac{1}{N} * \left(\sum_{i=1}^{N} \sin a_i\right)^2 = 0,001837452$$

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} d_i^2}{D(N-2)}} = 1,34$$

$$\Delta_g = 2,68$$

$$\varepsilon_g = 35,7\%$$

Сравнение абсолютной погрешности g с фактической разницей g табл. и g:

$$g_{\text{санкт}}=9,82 \text{ м/}c^2$$

$$\Delta g(\phi$$
актич.) = $|g_{\text{табл}}-g_{\text{эксп}}|=2,31 \text{ м/}c^2$ $\varepsilon_{\text{g}}(\phi$ актич.)=2,31/9,82 * 100%=23,5%

11. Графики (перечень графиков, которые составляют Приложение 2).

Приложение 2 вложено отдельно.

- 12. Окончательные результаты.
 - График зависимости Y=Y(Z)
 - График зависимости $a=a(\sin \alpha)$

a =
$$(0.2\pm0.09)$$
 M/c²; ε_a =4,5%; a = 0.90.
g = (7.5 ± 2.68) M/c²; ε_q = 35,7% a = 0.95.

$$\Delta g$$
 (фактич.) = 2,31 м/с²; $\varepsilon_{\rm g}$ (фактич.) = 23,5%

13. Вывод и анализ результатов работы:

Задание 1:

Мы провели экспериментальную проверку равноускоренности движения тележки по наклонной плоскости и посчитали погрешности значений времени и ускорения. Смотря на полученные результаты можно прийти к выводу, что движение тележки по наклонной плоскости при фиксированном угле наклона является равноускоренным, это подтверждает график1 и низкая погрешность измерений.

Задание 2:

В результате измерений был получен g = 7,5, что значительно $(\varepsilon_g(\phi a \kappa \tau) = 23.5\%)$ отличается от табличного значения g = 9.82. Это связано с систематической погрешностью (методика обработки данных, неточность измерительного инструмента, различные внешние факторы, влияющие на точность измерений).

14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).