Lecture 11: Vectors

Last Time: (1) Non - Existence of Limits

6 Showing the limit along different directions has different values.

(2) Existence of Limits

G Squeeze Theorem.

(3) Continuity

Recall: Squeeze Theorem

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = \lim_{(x,y)\to(0,0)} 3y \cdot \frac{x^2}{x^2+y^2}$$

We noted that $0 \le x^2 \le x^2 + y^2 \implies 0 \le \frac{x^2}{x^2 + y^2} \le 1$

In addition $-|y| \le y \le |y| \implies -3|y| \le 3y \le 3|y|$

So combining these \Rightarrow - 3|y| $\frac{\chi^2}{\chi^2+y^2} \le 3y \frac{\chi^2}{\chi^2+y^2} \le 3|y| \frac{\chi^2}{\chi^2+y^2}$

$$0 \le -3|y| \frac{\chi^2}{\chi^2 + y^2} \le 3y \frac{\chi^2}{\chi^2 + y^2} \le 3|y| \frac{\chi^2}{\chi^2 + y^2} \le 3|y|$$

be then have the following 05 3y 22 tyz 5 3 ly 1

Take $g(x_1y) = 0$ and $h(x_1y) = 3|y|$

Then by the squeeze theorem we have that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Recall: Continuity

Q: Were is I continuous.

is cont. at all pts $(x_{iy}) \neq (o_{i0})$ since it is a ratimal fct

b Chick continuity at (0,01 i.e. $\lim_{(x_1,y_1) \to (0,0)} \frac{x^2 - y^2}{x^2 + y^2} \stackrel{?}{=} 0$

S By the previous ex we saw that this limit DNE

S. f(x,y) cont only on 12 / {(0,0)}.

Addition:	The sum	→ +w	of two	vectors	is be	Combined	displacement
	esulting for	m - [1rs+	applying	v and	than in	and 1s	Computed
Addition: The sum \vec{v} the of two vectors is the combined displacered resulting from first applying \vec{v} and then \vec{w} and \vec{v} component wise. $ \begin{bmatrix} v_1 & v_1 \\ v_2 & v_3 \end{bmatrix} $ (Similarly for subtraction) \Rightarrow The difference $\vec{v} = \vec{w}$ is the div. that when added to \vec{w} gives \vec{v} (i.e. $\vec{v} = \vec{w} + (\vec{v} - \vec{w})$) $ \begin{bmatrix} v_1 & v_2 \\ v_3 & v_3 \end{bmatrix} $ (Scaling: If \vec{v} is a scalar and \vec{v} is a dv. the scalar mult.							
		V. Abr					
	→ →	V(- W)					
	V ()S -	15 + 10 5					
			<u>'</u>				
(Similarly	for sub-	traction)	→ The	difference	<u> </u>	> 15 the	d.v. that
			when	added	to w	gives ?	j.e.,
			→ √ =	$= \overrightarrow{W} + (\overrightarrow{V})$	- w)		
				The and then is and is computed. difference $\vec{v} - \vec{w}$ is the divitant that in added to \vec{w} gives \vec{v} i.e. $= \vec{w} + (\vec{v} - \vec{w})$ $v_1 - w_1$ $v_2 - w_2$ $v_3 - w_3$			
			¬ → =	VL-WZ			
Scaling:	If I is	s a s	calar a	nd V i	ca d	v. He «	scalar mult.
				·	5 , ,		. Same direction
						•	
(2	1) the m	vag of	z) VK	121 41	nec the	mag of	→ (x.

	λv,	
λ√ =	N/2	
	7V3	

Q: Why do we have that $\vec{v} - \vec{w} = \vec{v} + (-1) \cdot \vec{n}$?

	v w.		v, + (-1) w,		٧,		\ \v(
√ -	Vz - ωz	Ħ	V2 + (-1)W2	נו	٧	1 (-1)	w ₂	
	V3 - W3		V3 + (-1) W3		- \ ₃ -		W 3 -	

= Y + (-1) W

Unit Vectors: These are vectors of length I and are obtained by normalizing the given vector and they pt in the same alrection as the vector.

 $\overrightarrow{V} \quad \text{for} \quad \overrightarrow{V} = \frac{\overrightarrow{V}}{\|\overrightarrow{V}\|}$

$$\frac{1}{1} = \langle 1, 0, 0 \rangle$$

$$\frac{1}{1} = \langle 0, 1, 0 \rangle$$

$$\frac{1}{1} = \langle 0, 1, 0 \rangle$$

Remark: We can always decompose a vector into a linear combination of basis vectors.

Q: Unit vectors correspond to pts on which shape in 3-space? A: The sphere i.e. $(x^2+y^2+z^2=1)$ then $\|\vec{y}\| = 1 \iff \sqrt{\chi^2 + y^2} + z^2 = 1$ (\Rightarrow) $x^2+y^2+z^2=1$