Violations in Assumptions of Regression Analysis

Assumptions of Regression Analysis:

Assumptions of Regression Analysis:

- For each X_i, there is a population of Y values whose mean lies on the 'true' regression line
 - For each X_i, the Y are a random sample
 - For each X_i, the Y are normally distributed
- Homoscedasticity
 - For every X_i, the variance of Y is equal
- Nothing is assumed about the distribution of X
 - It doesn't need to be normally distributed or randomly sampled - they might be fixed by the experimenter

Major types of violation:

- 1. Outliers
 - Violates homoscedasticity
 - Violates normality of Y
 - May make regression inappropriate
 - Especially if they occur at the boundaries of X
 - Compare results of regression with and without outlier
 - Transformation of data ?
- 2. Non-linearity (we are dealing with linear regression)
 - Usually done by visual inspection of a scatterplot

Residual plot:

- Help assess assumptions
- Residual ($Y_i \hat{Y}_i$) is plotted against X_i

- If assumptions about normality and homoscedasticity are correct:
 - Symmetric cloud of points above and below horizontal line
- Use a computer

Regression Assumption Violations

Transformations:

Non-linear relationships can sometimes be forced into linearity

Transformations:

- The usual suspects:
 - log transformation for power and exponential relationships

Measurement error:

- Biological traits can be difficult to measure accurately
- Effects of measurement error depends on the variable
 - If measurement error occurs on Y
 - Increase variance of residuals
 - Increases SE of slope
 - If measurement error occurs on X
 - Increases variance of residuals
 - Causes bias in estimate of b (underestimates slope)
 - » b will lie closer to 0 than β
 - » Remember: BIAS is really bad!

Measurement error:

What happens if transformations don't work?!

Or... linear regression is inappropriate?

Non-linear regression

Non-linear Regression:

 Same assumptions are linear regression but, obviously, doesn't assume a linear relationship

Keep it simple

- Don't over fit
 - It is possible to get a curve that fits each and every point (MS_{residual} = 0) but it will not predict future points since the curve **doesn't describe a general trend**

Curve with Asymptote	Quadratic curve	Binary response Variable	Smoothing
$Y = \frac{aX}{b+X}$	Y=a+bX+cX ²	Log-odds(Y)=a+bX	depends on data
Michaelis- menten eq ⁿ	Parabolic relationships	Dose response curve	Diagnosis of exclusion
0 0.5 1.0 1.5 2.0 2.5 Iron concentration (μ.mol)	10 10 8 10 10 10 10 10 10 10 10 10 10	1.0	150 140 140 150

Interleaf 11: Using species as data points

- Species are not *independent* because they share a common evolutionary history
- Phylogenies illustrate (hypothesized) ancestordescendant relationship
 - Phylogenetically independent contrasts (Felsenstein, 1985) a little like a paired t-test for each node:
 - http://ib.berkeley.edu/courses/ib200b/lect/ib200b_lect08_Ginger_Jui_PICs.pdf
 - https://slideplayer.com/slide/7838671/
 - https://biology.ucr.edu/people/faculty/Garland/Garland_JoeFest_1_Upload_Post.pdf
 - Many computer programs to deal with this issue but they all have their own baked-in assumptions that you should understand
 - Most commonly based on "random walk"/"Brownian motion"

Interleaf 11: Using species as data points

Species are not *independent* because they share a common evolutionary history

https://biology.ucr.edu/people/faculty/Garland/Garland_JoeFest_1_Upload_Post.pdf

