

Nirmal R. Saxena NVIDIA Jan 5, 2020

Tutorial Flow

- Auto Safety Standard
 - Driverless Car Model
 - Resiliency & Testability Requirements
- Testability Evaluation, Solutions & Challenges
 - Transient & Permanent Faults
 - Use Case Application Resiliency Characteristics (AVF)
 - Permanent Fault Coverage & Availability Challenges
- Road to Resiliency
 - Reliability Models
 - Latent Fault Coverage
 - Need for Diversity

 Systematic Faults

3/15/2016, N. Saxena

Control System Model – Autonomous Car

Object Detection & Path Planning

ISO26262 Auto Safety Specification

Random Hardware Faults Requirement

Hardware Random Fault Metrics	ASIL B	ASIL C	ASIL D
Permanent Fault Coverage (SPFM)	90%	97%	99%
Transient Fault Coverage (SPFM)	90%	97%	99%
Latent Fault Coverage (LFM)	60%	80%	90%
Hardware Failure Probability (PMHF)	$100 FIT$ $\leq 10^{-7}/hr$	$100 FIT$ $\leq 10^{-7}/hr$	$10 FIT$ $\leq 10^{-8}/hr$

FIT = Failures in Time, Time = 10^9 Hours. 1 FIT = 10^{-9} failures/hour

ASIL	Automotive Safety Integrity Level
SPFM	Single Point Fault Metric
LFM	Latent Fault Metric
PMHF	Probabilistic Metric for Hardware Failures

FIT Failure Rate Model

 λ failure rate: *failures* in an hour

FIT: failures in time (time=10⁹ hours)

$$\lambda = FIT \times 10^{-9}$$

Arrival of failure events

Follow exponential distribution at **constant rate** λ

Poisson's Model

Probability of n failures in time
$$t = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

Exponential Distribution

R(t): Probability of no failure up to time t

$$R(t) = e^{-\lambda t} \cong 1 - \lambda t, \lambda t < \epsilon$$

F(t): Probability of a failure in time $\leq t$

$$F(t) = 1 - e^{-\lambda t} \cong \lambda t, \lambda t < \epsilon$$

$$\frac{dP_G(t)}{dt} = -\lambda P_G(t), P_G(0) = 1$$

$$\int \frac{dP_G(t)}{P_G(t)} = \ln(P_G(t)) = -\int \lambda dt = -\lambda t$$

ISO262 Fault Definitions and Raw Failure Rates

Safe Faults:

- Fault whose occurrence will not cause violation of a safety goal.
 - Example– Fault in the unused logic of a processor element.
 - This type of fault is characterized by a fault rate λ_S .

Single-Point Faults:

- Faults not detected because of the absence of a checking mechanism
 - Have the potential to cause a safety violation.
- This type of fault is characterized by a fault rate λ_{SPF} .

ISO262 Fault Definitions and Raw Failure Rates

Residual Faults:

- Faults not detected by Checking Mechanism (Safety Mechanism).
 - Have the potential to cause a safety violation.
 - This type of fault is characterized by a fault rate λ_{RF} .

Multi-Point Faults:

- Multiple Independent Faults that in Combination
 - Have the potential to cause a safety violation.
 - Subset of these faults are either detected (checker) or perceived (user)
- Characterized by a fault rates $\lambda_{MPF,det}$ and $\lambda_{MPF,per}$.

ISO262 Fault Definitions and Raw Failure Rates

Latent Fault:

- A Multi-Point Fault Neither Perceived Nor Detected
 - By itself has no potential to cause a safety violation
 - In combination with another fault has the potential to cause safety violation.
- Characterized by a fault rate $\lambda_{MPF,lat}$

$$\lambda = \lambda_S + \lambda_{SPF} + \lambda_{RF} + \lambda_{MPF,lat} + \lambda_{MPF,det} + \lambda_{MPF,per}$$

SDC- Silent Data Corruption

DUE- Detected Uncorrected Error

SPFM & LFM

$$SPFM = 1 - \frac{\sum(\lambda_{SPF} + \lambda_{RF})}{\sum \lambda}$$

$$LFM = 1 - \frac{\sum \lambda_{MPF,lat}}{\sum (\lambda - \lambda_{SPF} - \lambda_{RF})}$$

Fault Tolerant Time Interval (FTTI)

ISO26262 does not Quantify FTTI

Key-On, Drive-Time, Key-Off

1.25 Million Road Traffic Deaths Globally in 2013

https://en.wikipedia.org/wiki/List_of_countries_by_traffic-related_death_rate

Accident Statistics— US

Reference: National Highway Traffic Safety Administration (NHTSA): www.nhtsa.gov

Description	2013 Statistics	2015 Statistics	
Fatal Crashes	30,057	35,092	
Driver Related Fatal Crashes	10,076	10,265	
Non-Fatal Crashes	5,657,000	6,263,834	
Number of Registered Vehicles	269,294,000	281,312,446	
Licensed Drivers	212,160,000	218,084,465	
Vehicle Miles Travelled	2,988,000,000,000	3,095,373,000,000	
Fatal Crash Rate in FITs	250 – 500	283 - 566	
Non-Fatal Crash Rate in FITs	46K – 92K	51K – 102K	
ASIL D 10 FITs is ~ 50x Improvement over Fatal Crash Rate & 4 Orders of Improvement in Non-Fatal CR FITs			

Economic Cost of Traffic Crashes (2010) \$242 Billion

Google Non-Fatal Crash FIT Rate = 150K

FIT Range Distribution in the US-1988 through 2017

2013 Accident Statistics—India

Ministry of Transportation (India) https://en.wikipedia.org/wiki/List_of_countries_by_traffic-related_death_rate

Description	Statistics
People Killed in Fatal Crashes	238,562
Driver Related Fatal Crashes	
Total Number of Accidents	497,686
Number of Registered Vehicles	160,000,000
Licensed Drivers	
Vehicle Miles Travelled	
Number of People Killed per 100,000 Vehicles (India)	130
Number of People Killed per 100,000 Vehicles (US)	12
Fatality Rate Compared to US is 10x	

Biggest Impact in Developing Countries

Deep Learning (DL) Accuracy vs. Resilience?

Why Require ≤ 1 Failure in 10^8 Hours (= 10^{13} Frames) when

99% Object Detection Accuracy is Equivalent to 1 Missed Frame in 10^2 Frames?

22

Perceptron—A Compute Model of Neuron

Single Layer Perceptron

Input Vector (X_1, X_2, X_3) Weight Vector (W_1, W_2, W_3) Dot Product = $W_1X_1 + W_2X_2 + W_3X_3$

3/15/2016, N. Saxena

Handwritten Digit Recognition Dataset

• 5000 Training Examples

- Each Digit 20 x 20 Pixels
- Flattened to 400 Elements

- Each Pixel Greyscale Shading
- Floating Point Number

Supervised Learning

Handwritten Digit Recognition Neural Network

Gradient Descent Algorithm

$$oxed{J(heta) = rac{1}{m} \sum_{i=1}^{m=5000} [-y^{(i)}log(h_{ heta}(x^{(i)})) - (1-y^{(i)})log(1-h_{ heta}(x^{(i)}))]}$$
 Cost Function

$$oxed{rac{\partial J(heta)}{\partial heta_j} = rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}}$$

 $h_{ heta}(x) \ far \ away \ from \ y$

 $h_{ heta}(x) \ close \ to \ y$

50 Iterations, 20mins > 95% Accuracy 400 Iterations, 3hrs > 99% Accuracy

Test Examples – Resilient Learning

Labeled as 2 but Detected as 1

Labeled as 9 but Detected as 0

Deep Learning-North American Bird-ID

Spotted-Owlet in Rajasthan—North India

What Processing Power Per Frame is Needed?

Discounting Network Time

Image Classification Takes 6 Secs

Merlin Bird-ID Hosted on AWS

Possibly uses Single Xeon Server

To Classify Image in 33ms

Need 6000ms/33ms = 180 Xeons...

Supercomputer in a Car

CES 2016: NVIDIA Drive PX 2 supercomputer for self-driving cars like having 150 MacBook Pros in your trunk

NVIDIA plans to put a supercomputer and deep-learning neural network in the truck of every self-driving car.

By Bill Detwiler y | January 5, 2016, 12:42 AM PST

150 MACBOOK PROS IN YOUR TRUNK

6 TITAN X = 42 TFLOPS, Core i7 = 280 GFLOPS, 42 / 0.28 = 150 MacBook Pros

NVIDIA Drive-PX Pegasus GTC-Europe-2017

https://www.anandtech.com/show/11913/nvidia-announces-drive-px-pegasus-at-gtc-europe-2017-feat-nextgen-gpus

Architectural Vulnerability Factor (AVF)

SDC AVF

- Bit Error Results in Corrupted Output
- DUE AVF
- Bit Error Detected and Signaled
- Low AVF → <u>Architectural Fault Avoidance</u>
- AVF Function Of
- Design Structure
- Application's Static & Dynamic Behavior

PMHF =
$$(1 - SPFM) \lambda$$

$$PMHF = AVF_{SDC}\lambda = SDC FITS$$

Source: Xilinx Device Reliability Report (11/17) – UG116

Knights Corner
Xeon-Phi Measured
Max SDC FIT = 193

(Assuming 5000 Raw FITs)

Derived SPFM is ~ 96%

SC17, November 12-17, 2017, Denver, CO, USA D. Oliveira, L. Pilla, N. DeBardeleben, S. Blanchard, H. Quinn et al.

A Hypothetical SPFM & PMHF Projection

> 50 FITs @ 99% SPFM

Intrinsic Application Resilience

Less Than 1% Average SDC AVF in DL Classification

- GTC-2017 Conference
 - Richard Bramley
- GIE GoogLeNet
 - 67 Kernels for 67 Network Layers
- Faults in Latter Kernels
 - Generally Higher SDC AVF
- Weighted Average Safeness > 99 %
 - $Safeness = 1 AVF_{SDC}$

AVF for Feature X_i Error—Very Low

Higher DL Performance through Reduced Precision

 $32 - Bit X_i$ Features, Θ Weights and Y_i Outputs

 $16 - Bit X_i$ Features, Θ Weights and Y_i Outputs

Performance Improvement!!

DL Resilience with Reduced Precision?

Precision	Vulnerable Bits (Average)	Vulnerable Fraction (Average)	Raw FITs/Word (Relative)	Effective FITs/Word (Relative)
int32	22	68.75%	2	1.375
int16	14	87.50%	1	0.875
fp32	21	65.63%	2	1.313
fp16	12	75.00%	1	0.750

Resiliency Gets Better with Reduced Precision

DL Resilience for Control-Flow Faults?

- Neural Networks Implemented as Program Code
- Errors in Control-Flow
 - Program Counter, Instruction Bits
- SDC-AVF in the Range 20% to 40%
 - Requires Parity Protection & Self-Checking Code
- Recovery Strategy— Detect and Retry
 - Works for Transient Errors

N. Saxena 43

Resiliency of Automotive Object Detection Networks on GPU Architectures

ITC 2019
Atieh Lotfi, Saurabh Hukerikar,
Keshav Balasubramanian, Paul Racunas,
Nirmal Saxena, Richard Bramley,
Yanxiang Huang

What we already know ...

Image classification networks are somewhat resilient to transient faults

Are object detection networks resilient to random hardware faults?

Object Detection Networks for Autonomous Driving

Object Detection: Image Classification + Object Localization

Path Planning and Navigation

Safety in Autonomous Driving

ISO26262 failure rate requirement: 10 FIT for ASIL D compliance

Random Hardware Faults in Automotive Object Detection networks

Does it violate safety goals?

Action: Brake

Incorrect location detected

Action: Drive at 60 MPH

Object Detection Inference Networks

- 1. Discarding bounding boxes with low confidence
- 2. Clustering bounding boxes that have enough overlap:
 - Area of intersection \Rightarrow Threshold
 - Sum of confidence > Confidence_level

Fault Vulnerability Evaluation in Object Detection Networks

Fault Injection Outcome Comparison

SDC: Silent Data Corruption

Bounding box in golden network

Bounding box in faulty network

Platform

- Automotive object detection network from NVIDIA DRIVE™ platform
 - TensorRT framework

- Inference on NVIDIA Volta Family GPU
 - HBM2
 - ECC
 - On-chip SRAMs
 - ECC or Parity

Transient Fault Injection

Accelerated Neutron Beam Testing

- Radiation experiments beam testing campaigns
 - Weapons Neutrons Research @ LANSCE
 - ChipIR microelectronics @ Rutherford Appleton Laboratory
- 2000 years of exposure to terrestrial neutron flux

Flight path of neutron beam

Experiment Design

DRAM ECC	SRAM ECC	
OFF	OFF	
ON	OFF	
ON	ON	

Accelerated Beam Testing Results

Accelerated Beam Testing Results

Accelerated Beam Testing Results

Zero SDC Events

Evaluation of Chip-level Protection Mechanisms in GPUs

Permanent Fault Injection

Permanent Fault Injection

- Simulate injection of single-bit random permanent faults
 - Bit-flip in input image
 - Perturbing network weights

Permanent fault experiments is a proxy

Permanent Fault injection on Network Weights

Permanent Fault Injection Results

■ Faults in input batches: SDC (+ inclusion) < 1.8%

Faults in weights:

Object detection networks are vulnerable to permanent faults

Object Detection Conclusion

- Without protection—object detection networks show high SDC rate
 - Unlike classification networks that show resilience to transient errors

- Zero SDC with chip-level protections
 - For transient faults
- Not all permanent fault are detected by ECC/Parity:
 - Raw permanent FIT rate (hundreds) vs raw transient FIT rate (tens of thousands)
 - Offline structural tests during key-off and key-on events,
 - Online periodic tests (meeting FTTI requirement)

Leveraging Test Compression

- VLSI Test Principles and Architectures, 2006, Edited by: L-T Wang et. al.
- Chapter 6 [X. Li, K-J Lee, Nur Touba]
- [Reddy et. al. 2002] [Wûrtenberger 2004][[Jas 2003][Reda 2002][Han 2005b]
- [Chandra 2001][Krishna 2003][Rajski 2004][Hamzaoglu and Patel 1999][Li 2004]
- [Wang 2004][Wohl 2001][Das 2003][Mitra 2004]

Permanent Fault Coverage—Power Law

N. Saxena 165t Fatterns 66

Permanent Fault Coverage Challenges

- Test Time < 3 millisecond
 - Fraction of Frame Time to Reduce Testing Overhead (< 10%)
- Periodic Test Power Usage
- Fast Context Switch
- Run-Time Process and Offline Structural Test
- Periodic Software Test as an Alternative
- Solves the Context-Switch Problem
- Coverage Evaluation Still an Issue (Hard to Meet 99% @FTTI)

Comments on Achievable SPFM Coverage

- ECC/Parity Achieves 100% Transient and Single Memory Element Permanent Faults
 - Not All SRAMs/Flip-Flops/Latches Can Be Parity Protected
 - Inefficient to Protect Logic Gates with Parity Protection
- Technical Approach to Address Uncovered Faults
 - SDC AVF for Applications with Natural Resilience
 - Augment Applications with Concurrent Error Detection (ABFT)
 - Periodic Software Diagnostic Tests to Meet FTTI for Permanent Faults
- 99% Permanent Fault Coverage Still NP-Complete Problem
 - Let Alone 99% @FTTI

N. Saxena 68

Road to Resiliency

Redundant Execution— One Solution to Achieve > 99% SPFM (Internal Redundancy)

Detect & Retry Does Not Work for Permanent Faults

Error Signals Still Needed

Single-Point Fault Tolerance

Similar to Erasure Codes

- Mirrored RAID
- Identify Correct Copy

Execution Instances

On Non-Overlapping Hardware

N. Saxena 70

Markov Chain Analysis – Need Physical Redundancy

Availability is Important Here

For Driverless Car

Loss of Frames => Loss of Life

For 3 Frame-Tolerance, Need

$$\frac{1}{\mu} < 100ms$$

N. Saxena

Dual Redundant System

Relaxed Constraints on Repair Rate

$$\frac{1}{\mu_a} < \frac{1}{\lambda_b}$$

$$\frac{1}{\mu_b} < \frac{1}{\lambda_a}$$

 $\frac{1}{\lambda_a}$ or $\frac{1}{\lambda_b}$ in the order 1000's of hours

Repair can wait till the next Key-Off Event

Backup Standby Model – Markov Chain

Probability of Backup Markov Chain States

Probability of being in M, B state, $P_{m,b}(t) = e^{-2\lambda t}$

Probability of being in B state,
$$P_b(t) = \frac{\lambda_{due}}{\lambda} (e^{-\lambda t} - e^{-2\lambda t})$$

Probability of being in M state, $P_m(t) = e^{-\lambda t} - e^{-2\lambda t}$

Probability of being in Fail State,
$$F(t) = 1 - \left(\frac{\lambda + \lambda_{due}}{\lambda}\right)e^{-\lambda t} + \frac{\lambda_{due}}{\lambda}e^{-2\lambda t}$$

$$MTTF = \int_0^\infty t \frac{dF(t)}{dt} dt = \frac{1}{\lambda} + \frac{\lambda_{due}}{2\lambda^2}$$
 asymtotically approaches $\frac{3}{2\lambda}$ (when $\lambda_{sdc} = 0$)

1.5x Gain in MTTF over Simplex or 1.5x Reduction in Effective Failure Rate over an infinite drive time

Is MTTF Sufficient to Distinguish Two Systems?

Duplex System

$$Duplex MTTF = \frac{3}{2\lambda}$$

Simplex System

Simplex MTTF =
$$\frac{3}{2\lambda}$$

Failure Probability Reduction metric as a function of mission time distinguishes various redundant systems [Mitra, Saxena, McCluskey 2004]. A related work was cited in ISO DIS 26262-11:2016(E)

- S. Mitra, N.R. Saxena, and E.J. McCluskey, "Efficient Design Diversity Estimation for Combinational Circuits," *IEEE Trans. Comp.*, Vol. 53, Issue 11, pp. 1,483-1,492, Nov. 2004
- S. Mitra, N.R. Saxena and E.J. McCluskey, "Common-Mode Failures in Redundant VLSI Systems: A Survey," *IEEE Trans. Reliability*, Special Issue on Fault-Tolerant VLSI Systems, Vol. 49, Issue 3, pp. 285-295, Sept. 2000.

Reliability Gain with Perfect Duplex $\times 10^6$ in 2 Hour Drive Time

Drive Time in Hours

 $\lambda = 200 \, FITs$

Drive Time in Hours

Back-Up Standby Model—SPFM Sensitivity

Duplex System with Decoupled Checker

Probability Drive System Fails == Mission Primary Fails & Checker Fails

$$(1 - e^{-PMHF_1 \times T/10^9})(1 - e^{-PMHF_2 \times T/10^9})$$

Decoupled Checker Avoids Lock-Step Requirement Between Primary & Secondary

Important for Primary & Secondary Diversity

Duplex with Decoupled Checker—SPFM Sensitivity

Mission Raw Failure Rate (FITs)	Mission SPFM	Mission PMHF	Checker PMHF	Drive System PMHF (MT = 1Hr)	Drive System PMHF (MT = 10Hrs)	Drive System PMHF (MT = 1000 Hrs)
1000	50%	500	10	0.0003	0.003	0.3
2000	60%	800	100	0.0006	0.006	0.6
4000	60%	1600	200	0.003	0.03	3.0
8000	70%	2400	500	0.006	0.06	6.0
10000	50%	5000	500	0.025	0.25	25.0

Latent Fault Metric-LFM

Percentage of Fault-Secure Permanent Faults in the Checker

How to Detect Latent Fault?

- Use Permanent Fault Tests
 — Works Only During Periodic Tests
 - Not an Issue as MTTI is Drive Time
- Self-Checking Checker

 Works During Run-Time
- Software Based Checker

 Use Algorithm Based Fault Tolerance (ABFT)
- Totally Self-Checking Circuits [Andersen & Metze 1973]
- [Ashjaee & Reddy 1976] and ABFT [Huang & Abraham]

N. Saxena

Relationship of LFM and PMHF?

$$PMHF = \lambda_{RF} + \lambda_{SPF} + f(\lambda_{RF} + \lambda_{SPF}, \lambda_{MPF,lat}, \mu, \lambda) = AVF_{SDC}\lambda + f(AVF_{SDC}\lambda, \lambda_{MPF,lat}, \mu, \lambda)$$

What is the Current FIT Rate for Systematic Faults?

Systematic Faults	Observed Bug Rate	FIT Rate	
Hardware Design Faults	3 Bugs in 48 Years	7000	
Software Design Faults	1 Bug Every Year	100000	

Mitigating Factors

Automotive Environment is More Constrained

Hardware Design Quality— Need Three Orders of Improvement Software Design Quality— Need Four Orders of Improvement

N. Saxena 82

Design Diversity

Coping with Systematic Hardware and Software Design Errors

- [Siewiorek et. al. 1978] (byte reversal copies C.mmp processor)
- [Sedmak and Liebergot 1980] (complementary function diversity in VLSI)
- [Chen and Avizienis 1978] (N-version programming, SIFT software implemented fault-tolerance)
- [Horning et. al 1974] (Recovery Blocks) [Patel] RESO Technique
- [Amman and Knight 1987] (Data Diversity)
- [McCluskey, Saxena, Mitra 1998] Diversity for Reconfigurable Logic & Quantifying Diversity

Conclusions

PMHF Metric is the Only Metric that Matters

- ASIL Compliance of SPFM Coverage Metric is Neither Necessary Nor Sufficient Road to Resiliency ⇒ Dual Physical Redundancy
- Concurrent Permanent Fault Testing
 - SPFM 100% @FTTI for Hardware Random Faults
- Higher Availability During Drive Time (Mission Time)
 - Almost Zero PMHF for Drive Times Less than 100 Hours

Systematic Faults

- Rigorous Testing and Validation
 Need 3-to-4 Orders of Improvement
- Physical Redundancy with Design Diversity

N. Saxena 84