

- 1. Data란
- 2. Data 와 IT
- 3. 데이터 가공 플랫폼
- 4. 데이터 활용 전략

Data의 성장

Source of Data

Data 종류

데이터 활용 사례

데이터 활용 사례

Suspected Hijackers

American Airlines Flight 77

8:10 a.m. departed Washington Dulles for Los Angeles 9:39 a.m. crashed into the Pentagon

Possible Saudi

Possible resident of San Diego, California, and New York

Alias: Sannan Al-Makki; Khalid Bin Muhammad: 'Addallah Al-Mihdhar; Khalid Mohammad Al-Sagaf

Possible Saudi Possible Saudi

Alias: Majed M.GH Moqed; Majed Moged, Majed Mashaan

Alhazmi

national

Alias: Nawaf Al-Hazmi; Nawaf Al Hazmi; Nawaf M.S. Al Hazmi

Alhazmi Possible Saudi

national Possible resident of Fort Lee, New Jersey; Wayne, New Jersey

Possible resident of Phoenix, Arizona, and San Diego, California

Alias: Hani Saleh Hanjour; Hani Saleh; Hani Hanjour, Hani Saleh H. Hanjour

United Airlines Flight 93

8:01 a.m. departed Newark, New Jersey for San Francisco 10:10 a.m. crashed in Stony Creek Township, Pennsylvania

Alghamdi

Possible residence: Delray Beach, Florida

Alias: Abdul Rahman Saed Alghamdi; Ali S Alghamdi; Al-Gamdi; Saad M.S. Al Ghamdi; Sadda Al Ghamdi;Saheed Al-Ghamdi:

Seed Al Ghamdi

Al Haznawi Alnami Possible Saudi Possible national

7:58 a.m. departed Boston for Los Angeles 9:05 a.m. crashed into South Tower of the World Trade Center

Date of birth used: October 11, 1980

Possible residence: Delray Beach,

Alias: Ahmed Alhaznawi

United Airlines Flight 175

residence: Delray Beach, Florida

Alias: Ali Ahmed Alnami: Ahmed A. Al-Nami: Ahmed Al- Nawi

Jarreh Believed to be a

Alias: Zaid Jarrahi; Zaid Samr Jarrah: Ziad S. Jarrah: Ziad Jarrah Jarrat, Ziad Samir Jarrahi

American Airlines Flight 11

Moded

7:45 a.m. departed Boston for Los Angeles 8: 45 a.m. crashed into North Tower of the World Trade Center

Al Sugami Possible Saudi national

Dates of birth used: June 28, 1976: Last known address: United Arab

Possible Saudi national

Dates of birth used:

September 13. 1974; January 1, 1976; March 3, 1976; July 8, 1977;December 20,1978; May 11,1979; November 5, 1979

Possible residence(s): Hollywood, Florida;Orlando Florida; Daytona Beach, Florida

Believed to be a pillet

Wait M. Alshehri

Date of birth used:September 1, 1968

Possible residence(s): Hollywood. Florida: Newton. Massachusetts

Believed to be a pilot

Abdulaziz Possible Saudi national

Dates of birth used: December 24, 1972 and May 28, 1979

> residence(s): Hollywood, Florida

Believed to be a pillot

Mohamed Possible

Egyptian national

Date of birth used: September 1, 1968

Possible residence(s): Florida; Coral Springs, Florida; Hamburg, Germany

Believed to be a pillot

Alias: Mehan Atta; Mohammad FI Amir: Muhammad Atta: Mohamed El Sayed: Elsayed

Date of birth used: May 9,

1978 Possible residence(s): Hollywood. Florida

pillat

Alias: Marwan Yusif Muhammad Rashid Al-Shehi; Marwan Yusif Muhammad Rashid Lakrab Al-Shihhi; Abu Abdullah

Fayez Baniham

Possible residence(s): Delray Beach, Florida

Alias: Fayez Ahmad: Banihammad Favez Abu Dhabi Banihammad: Fayez Rashid Ahmed: Banihammad Fayez; Rasid Ahmed Hassen Algadi; Abu Dhabi Banihammad Ahmed Fayez: Faez Ahmed

Ahmed Alghamdi Alias: Ahmed Salah Alghamdi

Florida Alias: Hamza Al-Ghamdi: Hamza Ghamdi: Hamzah Alghamdi; Hamza Alghamdi Saleh

Hamza

Alghamdi

residence(s):

Delray Beach,

Possible

Mohand Alshehri Possible residence(s): Deiray Beach, Florida

Allias Mohammed Alshehhi; Mohamd Alshehri: Mohald Alshehri

SOURCE: Federal Bureau of Investigation

GRAPHIC BY ERIC TELCHIN - WASHINGTONPOST.COM

Acxiom(액시엄)

Acxiom 은 세계 최대 개인 정보 (개인 1인당 1,500 가공정보 와 1,000개의 추정정보: 정형 빅 데이터) 보유 하고 다국적 글로벌 회사에 데이터 판매와 컨설팅

History of Acxiom Offerings (the portfolio grows)

Marketing Services & Consulting

Internet & Online

Data Warehousing

Data Access

Data Content

Data Center Outsourging

List Enhancement **Marketing Databases**

Mailing List Processing

1990s

Marketing Databases Mailing List Processing

2000s

Business Information Grid™

Data Factory Integrated Marketing Services

Personicx® International

Fraud Prevention & Risk Mitigation Customer Information Infrastructure (CII)

Sentricx®

Personicx®

Opticx®

Acxiom Interactive Solutions

AbiliTec® & Interactive Delivery

Marketing Services & Consulting

Internet & Online

Data Warehousing

Data Access

Data Content

Data Center Outsourcing

List Enhancement

acxiem. PHIL MUI
CHEF PRODUCT & ENCAPERAGE DIFFICULTY SCOTT HOWE

현재 Acxiom 최고상품 개발 담당 (2012년 4월 입사) 전 구글 최고 상품 개발 담당 전 마이로 소프트 상품 개발 담당

Marketing Databases Mailing List Processing

PG 503

1970s

Mailing List Processing 1980s

Data Center Outsourcing

List Enhancement

Marketing Databases

미국의 데이터 가공 및 브로커 산업 역할

데이터 수집, 가공, 데이터 인사이트 필요(속도와 효율성 핵심 경쟁력)

소비

성향

선호

Acxiom

가공 데이터

1270	Personicx Refresh - Cluster Code & Indicator(그룹 세분 코드)	\$30
1271	Personicx Refresh - LifeStage Group Code & Indicator	\$30
1274	Personicx Refresh - Insurance Groups & Indicator(그룹 보험관련)	\$30
1275	Personicx Refresh - Financial Groups & Indicator(그룹 금융관련)	\$30
2705	Social Network - Number of Sites - Input Individual(SN 사용 사이트 수)	\$25
2706	Commercial Network Membership - Input Individual(쇼핑 사이트 멤버 수)	\$25
2829	Income Deciles(소득)	\$7
8851	Home Market Value Quality Indicator (replaces 8850)(부동산 가치)	\$10

Element	Description	\$/M	Available	
Licinciic	Description	Matched	/ (Vallable	
2701	Social Network - First Reported Activity	\$15	Now	
2702	Social Network - Last Reported Activity	\$15	Now	
2707	Social Network Interest	\$15	August	
2705	Social Network - Number of Sites	\$35	Now	
2704	Social Network - Number of Friends	\$35	Now	
2703	Social Network - Membership	\$35	Now	
2706	Commercial Network - Membership	\$35	Now	
2708	Social Network - Facebook	\$35	July	
2709	Social Network - LinkedIn	\$35	July	
2710	Social Network - MySpace	\$35	July	
2711	Social Network - Twitter Followers	\$35	August	
2712	Social Network - Twitter Following	\$35	August	
2714	Social Activity Segments	\$35	August	

외부, 구매 데이터의 기업 설립 역사

데이터와 IT 활용의 목적: 의사결정 지원

데이터: 순간의 경험과 지식, IT: 전달 하는 수단

Think arathon Runner	Mode 1		Mode 2	Think
A CONTROLLED	Reliability	Goal	Agility	Sprinter
	Price for performance	Value	Revenue, brand, customer experience	
1000	Waterfall, V-Model, high-ceremony IID	Approach	Agile, Kanban, low-ceremony IID	
1	Plan-driven, approval-based	Governance	Empirical, continuous, process-based	•
6	Enterprise suppliers, long-term deals	Sourcing	Small, new vendors, short-term deals	AU .
1 3	Good at conventional process, projects	Talent	Good at new and uncertain projects	M
7.0	IT-centric, removed from customer	Culture	Business-centric, close to customer	1 11
	Long (months)	Cycle times	Short (days, weeks)	a> • ±

기업의 IT 아키텍처

Solution Architecture for bigdata

Business Architecture

Information Architecture

Infrastructure Architecture

Data Architecture

Integration Architecture

Service Architecture

Information, Business Layers

데이터 활용 프로세스

기업, 기관의 운영 속도와 효율성 높여 수익 극대화 및 최적화 제공이 핵심

		데이터 플랫폼 통합수행	내역(용역 =	· 면)	 인공지능	
조치(Action)	시각화, 대시보드, 시뮬레이션(Human Action)			Decision, Alerts, Curricula (Machine Action)		
	브라우저, 모바일 디바이스, 배치 작업		웹 서	웹 서비스, FTP, Sockets		
접근	분석 결과 데이터베이스	대량 데이터의 최적화 접근	OLAF	P, RDBMS, Mem/C	ashed	
	모형(Model) 적용, 수행	의사결정을 위한 비즈니스 룰	분석!	분석 모형 결합(Ensembles)		
분석	분석모형,기계학습개발	SVM, Neural Nets, Regression	SVM, Neural Nets, Regression, K-NN, SVD, Matrix Factorization, GEO- Distance 등등			
군식	데이터 신호, 패턴 선택	PCA, Decision tree, Chart, Clustering,		, 감성 분석, Regression, Outlier 등등		
	정제된 데이터베이스	데이터 접근의 최적화	NOS	QL, 인 메모리, RDBN	<i>I</i> IS	
신호 생성	데이터 신호, 패턴 구별	신호 생성 알고리즘 들	니즘들 시계열, 통계, 이벤트, 지리 위치 등		위치 등	
	데이터 저장(data store)	저 ᅰ 자연	의 60~70	0/_		
 ETL, 가공	데이터 가공(Transform)	데이터에 맞는둘 사용		Hadoop, 구매 ETL	툴, 자체 개발 툴	
	데이터 수집(Extract)	융통성 있는 데이터 수집 인터페	이스 웹 서	비스. 소켓(Sockets)	, FTP, SQL., SAP	
데이터 소스	전사운영데이터: 고객,오라클,SAP등	구매데이터: 실시간 구매, 배치 구매	웹 데이터: 정형, 비정형 데		기계, 위치 데이터: 정형, 비정형 데이터	

데이터 활용의 트렌드

산업혁명 4.0: 데이터와 연결화

데이터 혁명

Data Science vs. Artificial Intelligence vs. Big Data(IOT) 관계

시대별 데이터 분석(알고리즘) 단계

시대별 데이터 분석(알고리즘) 단계

Data Mining vs. Data Farming

효과 테스트(A/B Test)

데이터 활용 프로세스

기업, 기관의 운영 속도와 효율성 높여 수익 극대화 및 최적화 제공이 핵심

정제 → 가공 → 신호, 패턴(인사이트) → 분석 모형 개발 → 모형 적용 → 수행 프로세스정립 → 평가

	데	이터 플랫폼 통합수행 니	H역(용역 측면)		
조치(Action)	시각화, 대시보드, 시뮬레이션(Human Action)		Score, Decision	Score, Decision, Alerts, Curricula (Machine Action)	
	브라우저, 모바일 디바이스, 배치 작업		웹 서비스, FTP, Sockets		
접근	분석 결과 데이터베이스	대량 데이터의 최적화 접근	OLAP, RDBMS,	Mem/Cashed	
	모형(Model) 적용, 수행	의사결정을 위한 비즈니스 룰	분석 모형 결합(Ensembles)	
분석	분석모형,기계학습개발	SVM, Neural Nets, Regression, K-NN, SVD, Matrix Factorization, GEO-Distance 등등			
군식	데이터 신호, 패턴 선택	PCA, Decision tree, Chart, Clu	stering, 감성 분석, Regressid	g, 감성 분석, Regression, Outlier 등등	
	정제된 데이터베이스	데이터 접근의 최적화	NOSQL, 인 메모	리, RDBMS	
신호 생성	데이터 신호, 패턴 구별	신호 생성 알고리즘 들	시계열, 통계, 이	벤트, 지리 위치 등	
	데이터 저장(data store)	현업에 맞는 환경 구축	Hadoop, 인 메드	리, RDBMS	
 ETL, 가공	데이터 가공(Transform)	데이터에 맞는 툴 사용	SAS, Hadoop,	구매 ETL 툴, 자체 개발 툴	
	데이터 수집(Extract)	융통성 있는 데이터 수집 인터페이.	십 서비스. 소켓(Sockets), FTP, SQL., SAP	
데이터 소스	전사운영데이터: 고객,오라클,SAP등	구매데이터:	웹 데이터:	기계, 위치 데이터: 정형, 비정형 데이터	

데이터 관련 산업의 본질 파악이 최우선

- 1. 우리가 보는 성공 사례들은 B2C 영역
- 2. 빅데이터 관련 산업은 B2B 영역(플랫폼, 데이터 유통)
- 3. 빅데이터 수요자(중간자 B)가 아직 준 내부활용 미진한 상태(기업이나 기관)

기업의 데이터 활용 5단계

기업 데이터 활용 프레임 워크와 발전 단계

	1단계	2단계	3단계	4단계	5단계
비전 (Vision)	없음	생산 성과 비전 시도	각 영역별채널의효율성	전사내부통합	<mark>연결</mark> 된가치 부여 및 인식
전략 (Strategy)	없음	고립적 프로젝트, 아래로부터시도	좀더 협력적 생각, 여전히 사일로 존재	전사적 통합 CRM 프로그램	서로의이익을위해 <mark>협력</mark> 하는가치인식
고객 경험 (Customer Experience)	개념 없음	개념 없음	이해하는사일로 수준에서집중	각 영역별 연결된 비즈니스 로 이해하고 집중 한국	좀더 넓은 영역이해, 협력
협력 (Collaboratio n)	내부 영역별로집중, 사일로(Silo)구조	초기 편협적 고객 위주, 사일로적	문화나동기의변화, 여전히사일로적	고객 중심, 분야별, 영역별, 재 구조 조정	고객 중심 공유, 목표 연합적 협력
프로세스 (Process)	내부 영역별로집중, 사일로적	초기 자동화시기, 사일로적	사일로수준에서 비용과가치의최 <mark>적화</mark>	<mark>전사 수준에서</mark> 비용과 가치의 최적화	초기부터 끝까지 실제적 최 적화 프로세스
정보공유 (Information)	기본적정보의산재	팀 기준, 산재, 최소의 인사이트	사일로수준정보공유, 인사이트발전과정	전사 관여 정보 공유 및 인사이트	미국 기업을 넘어선 인사이트와 정보 공유, 외부 데이터 활 용
기술 (Technology)	몹시 산재되고미미한 기술	산재 존재, 한정된역할과집중	사일로내에서 높은 수준의 역할	전사 통합 수준의 높은 수준의 역할	기업을 넘어선 높은 수준 의 역할
집중 영역 (Metrics)	적은내부적집중영역	산재되고한정된집중 영역, 운영 내부적집중	사일로내에서 효율적, 고객 집중 부족	<mark>전사적고객집중/</mark> 균형 있는 구조	목표 공유, 균형 있는 구조, 잘 연결, 정리된
			미국 2000년 초	빅데(이터(IOT, 외부 데이터, 소셜)

데이터 통합의 필요성

데이터 가공 플랫폼(DMP): data siloes effects

데이터 통합 → 빅데이터

데이터 가공 플랫폼(Data Management Platform)

데이터 가공 플랫폼(DMP)의 필요성: Reusable, automatous

- 1. 복잡성 -> 단순화
- 2. 일관성과 점진적, 지속적 발전 유지
- 3. 빠른 적용, 적응력
- 4. 유연성 향상
- 5. 반복적 데이터 접근 패턴
- 6. 반복적 통합 패턴
- 7. 반복적 시스템 적용 패턴
- 8. 반복적 데이터 디자인 패턴

데이터 자산화의 인식: 데이터 거버넌스

데이터 자산화 에 대한 인식의 단계

데이터 거버넌스의 발전 단계

데이터 거버넌스의 틀

논리적 데이터 아키텍처 vs. 물리적 데이터 아키텍처

모바일, 미디어, 마케팅, 테크널리지 발전

성공적 데이터 활용의 5가지 요소

데이터 활용의 성공을 위한 Key Factors

데이터 과학이란?

DATA SCIENCE ROLES

데이터 과학의 도전(50% 데이터, 50% 현업 비즈니스적용)

데이터 과학자로서의 가장 큰 도전은 무엇입니까?

빅데이터 생태계에서의 데이터과학 역할

데이터 전략: Andrew Ng

STRATEGIC DATA **NEW JOB UNIFIED DATA** CENTRALIZED **ACQUISITION** WAREHOUSE DESCRIPTIONS AI TEAM Companies will play Businesses should Al will introduce Due to the lack of "multiyear chess integrate data Al talent, companies new processes and games," acquiring repositories into workflows, requiring should assemble a data from one source a single, unified product managers central Al group to that will eventually be framework. and engineers to support departments monetized elsewhere. communicate in across an organization. new ways. 데이터 수집전략 데이터 가공전략 New 프로세스전략 S.W.A.T

IT 주도 모델-> 연대 협력 모델

대한민국 21세기 생존전략 :데이터 경제

