## MAT 161 - CLASS NOTES - Section 2.7: Inverse Functions

- 1) Function a relationship where each input has one distinct output
- 2) One-to-one function
- 3) Inverse If f is a one-to-one function, then the inverse of f, denoted  $f^{-1}(x)$ , is the function formed by reversing all the ordered pairs in f. If f is not one-to-one, then it does not have an inverse.
  - a) Domain of  $f^{-1}(x)$  = Range of f
  - b) Range of  $f^{-1}(x)$  = Domain of f
- 4) Examples



5) Does the function have an inverse function? If so, complete a table for  $y = f^{-1}(x)$ .

a)

| х    | -3 | -2 | -1 | 0 | 1 | 2  |
|------|----|----|----|---|---|----|
| f(x) | 10 | 6  | 4  | 1 | 3 | 10 |

| b) |      |     |    |    |    |   |   |  |
|----|------|-----|----|----|----|---|---|--|
|    | х    | -3  | -2 | -1 | 0  | 1 | 2 |  |
|    | f(x) | -10 | -7 | -4 | -1 | 2 | 5 |  |

6) Determine if  $f(x) = \sqrt{x+3}$  is a one-to-one function. If so make a table for and graph  $f^{-1}(x)$ .

| Х    |  |  |
|------|--|--|
| f(x) |  |  |

| x           |  |  |
|-------------|--|--|
| $f^{-1}(x)$ |  |  |



## 7) Horizontal Line Test

If a horizontal line can be drawn such that it touches more than one point on the graph, then it is **not one-to-one function**.

8) Does the function have an inverse function?

a)



b)



## 9) To find a functions inverse

- a) Be sure the function is one-to-one.

- b) Set y = f(x)c) Interchange x and y d) Solve for y this is  $f^{-1}(x)$

## 10) Find each functions inverse: a) f(x) = -3x - 2

a) 
$$f(x) = -3x - 2$$

$$b) \quad f(x) = \frac{3x+1}{x}$$

c) 
$$f(x)=x^2-1, x \ge 0$$

- 11) If 2 functions are inverses of each other then  $f(f^{-1}(x)) = x$  and  $f^{-1}(f(x)) = x$ .
- 12) Verify that  $f(x) = -\frac{1}{2}x + 2$  and g(x) = -2x + 4 are inverses.