Fiche d'entraînement : fonctions de degré 2 (aspect calculs)

Exercice 1:

Dans chacun des cas suivants, déterminez l'axe de symétrie de la courbe (a), les coordonnées de son sommet (b), son tableau de variations (c) et son tableau de signes sur \mathbb{R} (d) :

1)
$$f_1(x) = 2(x+3)(x-5)$$

2)
$$f_2(x) = -3(x-2)(x+4)$$

3)
$$f_3(x) = 4(x-1)(x-7)$$

4)
$$f_4(x) = -2(x+6)(x+2)$$

5)
$$f_5(x) = 5(x-1)(x+4)$$

6)
$$f_6(x) = -6(x+3)^2$$

7)
$$f_7(x) = -(x-1)^2$$

8)
$$f_8(x) = (x+4)^2$$

Exercice 2:

- 1) f_1 est la fonction définie sur \mathbb{R} par $f_1(x) = 2x^2 + 2x 12$.
 - a) Vérifier que $\alpha = 2$ est une racine du polynôme.
 - **b)** Factoriser $f_1(x)$.
- 2) f_2 est la fonction définie sur \mathbb{R} par $f_2(x) = -3x^2 + 9x + 12$.
 - a) Vérifier que $\alpha = 4$ est une racine du polynôme.
 - **b)** Factoriser $f_2(x)$.
- 3) f_3 est la fonction définie sur \mathbb{R} par $f_3(x) = x^2 + x 6$.
 - **a)** Vérifier que $\alpha = -3$ est une racine du polynôme.
 - **b)** Factoriser $f_3(x)$.
- 4) f_4 est la fonction définie sur \mathbb{R} par $f_4(x) = -x^2 2x + 8$.
 - a) Vérifier que $\alpha = -4$ est une racine du polynôme.
 - **b)** Factoriser $f_4(x)$.
- 5) f_5 est la fonction définie sur \mathbb{R} par $f_5(x) = -4x^2 + 4$.
 - a) Vérifier que $\alpha = 1$ est une racine du polynôme.
 - **b)** Factoriser $f_5(x)$.

Solutions

- 1) **a)** $f_1(2) = 2 \times 2^2 + 2 \times 2 12 = 8 + 4 12 = 0$
 - **b)** $f_1(x) = 2(x-2)(x-\beta) = 2(x^2 \beta x 2x + 2\beta)$ = $2x^2 - 2\beta x - 4x + 4\beta$ = $2x^2 + 2x - 12$ donc $\beta = -3$ donc $f_1(x) = 2(x-2)(x+3)$
- 2) a) $f_2(4) = -3 \times 4^2 + 9 \times 4 + 12 = -48 + 36 + 12 = 0$
 - **b)** $f_2(x) = -3(x-4)(x-\beta)$ $= -3(x^2 - \beta x - 4x + 4\beta)$ $= -3x^2 + 3\beta x + 12x - 12\beta$ $-3x^2 + 9x + 12$ donc $\beta = -1$ donc $f_2(x) = -3(x-4)(x+1)$
- **3) a)** $f_3(-3) = (-3)^2 + (-3) 6 = 9 3 6 = 0$
 - **b)** $f_3(x) = (x+3)(x-\beta) = x^2 \beta x + 3x$ -3β = $x^2 + x$ -6 donc $\beta = 2$ donc $f_3(x) = (x+3)(x-2)$
- **4) a)** $f_4(-4) = -(-4)^2 2 \times (-4) + 8 = -16 + 8 + 8 = 0$
 - **b)** $f_4(x) = -(x+4)(x-\beta) = -(x^2 \beta x + 4x 4\beta)$ $= -x^2 + \beta x - 4x + 4\beta$ $= -x^2 - 2x + 8$ donc $\beta = 2$ donc $f_4(x) = -(x+4)(x-2)$
- **5) a)** $f_5(1) = -4 \times 1^2 + 4 = -4 + 4 = 0$
 - **b)** $f_5(x) = -4(x-1)(x-\beta) = -4(x^2 \beta x x + \beta)$ = $-4x^2 + 4\beta x + 4x - 4\beta$ = $-4x^2 + 4$ donc $\beta = -1$ donc $f_5(x) = -4(x-1)(x+1)$

Solutions

Exercice 1:

- 1) a) $x = \frac{-3+5}{2} = 1$
 - **b)** S(1; -32)

c)	x	$-\infty$	1	+∞
	$f_1(x)$		-32	

d)	x	$-\infty$		-3		5		+∞
	2		+		+		+	
	<i>x</i> + 3		-	0	+		+	
	<i>x</i> – 5		_		_	0	+	
	$f_1(x)$		+	0	_	0	+	

- **2) a)** $x = \frac{2-4}{2} = -1$
 - **b)** S(-1; 27)
 - c) $-\infty$ -1 $+\infty$ 27 $f_2(x)$

d)	x	$-\infty$	-4		2		+∞
	-3		2	-		/	
	<i>x</i> – 2			5	0	+	
	<i>x</i> + 4		0	+		+	
	$f_2(x)$	-	0	+	0	-	

- **3) a)** $x = \frac{1+7}{2} = 4$ **b)** S(4; -36)

c)	x	$-\infty$	4	+∞
	$f_3(x)$		-36	

d)	x	-∞ 4	1		7		+∞
	4	+		+		+	
	<i>x</i> – 1	_	0	+		+	
	<i>x</i> – 7			_	0	+	
	$f_3(x)$	4	0	_	0	+	

- - **b)** S(-4; 8)

c)	x	$-\infty$	-4	+∞
	$f_4(x)$	/	8	_

d)	x	$-\infty$		-6		-2		+∞
	-2		-		_		_	
	<i>x</i> + 6		-	0	+		+	
	<i>x</i> + 2		_		-	0	+	
	$f_4(x)$		_	0	+	0	_	

5) a)
$$x = \frac{1-4}{2} = -\frac{3}{2} = -1,5$$

b)
$$S(-1,5; -31,25)$$

c)	x	$-\infty$	-1,5	+∞
	$f_5(x)$		-31,25	

d)	x	$-\infty$		-4		1		+∞
	5		+		+		+	
	x - 1		-		-	0	+	
	<i>x</i> + 4		-	0	+		+	
	$f_5(x)$		+	0	_	0	+	

6) a)
$$x = \frac{-3-3}{2} = -3$$

b)
$$S(-3;0)$$

c)	x	$-\infty$	-3	+∞
	$f_6(x)$	/	0	•

d)	x	$-\infty$		-3		+∞
	-6		-			
	<i>x</i> + 3			0	+	
	<i>x</i> + 3	75~	-	0	+	
	$f_6(x)$		-	0	2	

7) **a)**
$$x = \frac{1+1}{2} = 1$$

b) $S(1; 0)$

c)	x	$-\infty$	1	+∞
	<i>f</i> ₇ (<i>x</i>)		0	

d)	x	$-\infty$	1	+∞	
	-1				
	<i>x</i> – 1		0	+	
	<i>x</i> – 1		0	+	
	$f_7(x)$		0	_	

8) a)
$$x = \frac{-4-4}{2} = -4$$

c)	x	$-\infty$	-4	+∞
	$f_8(x)$		0	

i)	х	$-\infty$		-4		+∞
	<i>x</i> + 4		_	0	+	
	<i>x</i> + 4		_	0	+	
	$f_8(x)$		+	0	+	