Lista 2

Seleção de exercícios do livro do Paulo Winterle

1) Dados os vetores $\vec{u} = 2\vec{i} - 3\vec{j}$, $\vec{v} = \vec{i} - \vec{j}$ \vec{e} $\vec{w} = -2\vec{i} + \vec{j}$, determinar:

a)
$$2\vec{u} - \vec{v}$$
 b) $\vec{v} - \vec{u} + 2\vec{w}$ c) $\frac{1}{2}\vec{u} - 2\vec{v} - \vec{w}$ d) $3\vec{u} - \frac{1}{2}\vec{v} - \frac{1}{2}\vec{w}$

Respostas

a)
$$(3,-5)$$
 b) $(-5,4)$ c) $\left(1,-\frac{1}{2}\right)d\left(\frac{13}{2},-9\right)$

2) Dados $\vec{u} = (3,-1)$, $\vec{v} = (-1,2)$, determine \vec{x} , sabendo que:

a)
$$4(\vec{u} - \vec{v}) + \frac{1}{3}\vec{x} = 2\vec{u} - \vec{x}$$
 b) $3\vec{x} - (2\vec{v} - \vec{u}) = 2(4\vec{x} - 3\vec{u})$

Respostas

a)
$$\left(-\frac{15}{2}, \frac{15}{2}\right) b) \left(\frac{23}{5}, -\frac{11}{5}\right)$$

3) Dados os vetores $\vec{u} = (2, -4)$, $\vec{v} = (-5, 1)$ $\vec{e} = (-12, 6)$, determinar $\vec{a_1} = \vec{a_2}$ tais que $\vec{w} = \vec{a_1} \vec{u} + \vec{a_2} \vec{v}$.

Respostas: $a_1 = -1 \ e \ a_2 = 2$

4) Dados os pontos A(-5,1) e B(1,3). Determinar o vetor $\vec{v} = (a,b)$, tal que

a)
$$B = A + 2\vec{v}$$
 b) $A = B + 3\vec{v}$

Construir o gráfico correspondente de cada situação.

Respostas

a)
$$\vec{v} = (3,1)$$
 b) $\vec{v} = \left(-2, -\frac{2}{3}\right)$

5) Representar no gráfico o vetor \overline{AB} e o correspondente vetor posição, nos casos:

- a) A (-1,3) e B(3,5)
- b) A (-1,4) e B (4,1)
- c) $A(4,0) \in B(0,-2)$
- d) A (3,1) e B (3,4)

6) Qual o ponto inicial do segmento orientado que representa o vetor $\vec{v} = (-1,3)$, sabendo que sua extremidade está em (3,1)? Representar graficamente este segmento. Resposta: (4,-2)

- 7) No mesmo sistema cartesiano xOy, representar:
- a) Os vetores $\vec{u} = (2,-1)$ \vec{e} $\vec{v} = (-2,3)$, com origem nos pontos A(1,4) e B(1,-4), respectivamente;
- b) Os vetores posição de \vec{u} e \vec{v}
- 8) Encontrar o vértice oposto a B, no paralelogramo ABCD, para
 - a) A (-3,-1), B (4,2) e C (5,5)
 - b) A (5,1), B (7,3) e C (3,4)

Respostas: a) D (-2,2) b) D (1,2)

9) Dados os pontos A (-3,2) e B (5,-2), determinar os pontos M e N pertencentes ao segmento AB tais que $\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB}$ e $\overrightarrow{AN} = \frac{2}{3} \overrightarrow{AB}$. Construir o gráfico, marcando os pontos A, B, M e N.

Respostas:
$$M(1,0)$$
, $N\left(\frac{7}{3}, -\frac{2}{3}\right)$

10) Sendo A (-2,3) e B (6,-3) extremidades de um segmento, determinar os pontos F e G que dividem o segmento AB em três partes de mesmo comprimento.

Respostas:
$$F\left(\frac{2}{3},1\right)$$
, $G\left(\frac{10}{3},-1\right)$

11) Dados os vetores $\vec{u} = (1,-1), \vec{v} = (-3,4) \text{ e } \vec{w} = (8,-6), \text{ calcular:}$

a)
$$|\vec{u}|$$
 b) $|\vec{v}|$ c) $|\vec{w}|$ d) $|\vec{u} + \vec{v}|$ e) $|2\vec{u} - \vec{w}|$ f) $|\vec{v}|$ g) $|\vec{u}|$

Respostas:

a)
$$\sqrt{2}$$
 b) 5 c) 10 d) $\sqrt{13}$ e) $2\sqrt{13}$ f) $\left(-\frac{3}{5}, \frac{4}{5}\right)$ g) 1

12) Calcular os valores de a para que o vetor $\vec{u} = (a, -2)$ tenha módulo 4.

Resposta:
$$a = \pm 2\sqrt{3}$$

- 13) Encontrar um ponto P do eixo Ox de modo que a sua distância ao ponto A (2,-3) seja igual a 5. Resposta: (6,0) ou (-2,0)
- 14) Dado o vetor $\vec{v} = (1, -3)$, determinar o vetor paralelo a \vec{v} e que tenha:
- a) Sentido contrário ao de \overrightarrow{v} e duas vezes o módulo de \overrightarrow{v}
- b) O mesmo sentido de \vec{v} e módulo 2;
- c) Sentido contrário ao de \vec{v} e módulo 4.

Respostas:

a)
$$(-2,6)$$
 b) $\left(\frac{2}{\sqrt{10}}, -\frac{6}{\sqrt{10}}\right)$ c) $\left(-\frac{4}{\sqrt{10}}, \frac{12}{\sqrt{10}}\right)$

15) A figura a seguir representa um paralelepípedo retângulo de arestas paralelas aos eixos coordenados e de medidas 2,1 e 3. Determine as coordenadas dos vértices, dado A (2,-1,2)

Fonte: Winterle (2007, p. 43)

- 16) Traçar no mesmo sistema de eixos os retângulos de vértices
 - a) A (0,0,1), B (0,0,2), C (4,0,2) e D (4, 0,1)
 - b) A(2,1,0), B (2,2,0), C (0,2,2) e D (0,1,2)
- 17) Construir o cubo constituído dos pontos (x,y,z), de modo que
- a) $2 \le x \le 4$, $1 \le y \le 3$ $e \ 0 \le z \le 2$
- b) $0 \le x \le 3$, $1 \le y \le 3$ $e \ 1 \le z \le 4$
- 18) Dados os pontos A (2,-2,3), B (1,1,5) e o vetor $\vec{v} = (1,3,-4)$, calcule:
- a) $A + 3\vec{v}$
- b) B + 2(B A)

Respostas a) (5,7,-9) b) (-1,7,9)

19) Representar no sistema cartesiano Oxyz o vetor $\vec{v} = (1, -1, 3)$ com origem nos pontos O (0,0,0), B(-3,-4,0) e C (-2,4,2).

- 20) Verifique se os pontos são colineares:
- a) A (2,1,-1), B (3,-1,0) e C (1,0,4) Resposta: não
- b) A (-1,4,-3), B (2,1,3) e C (4,-1,7) Resposta: sim
- 21) Sabendo que o ponto P (m,4, n) pertence à reta que passa pelos pontos A (-1,-2,3) e
- B (2,1,-5), calcule m e n. Resposta: m=5, n=-13
- 22) Verificar se são unitários os seguintes vetores:

a)
$$\vec{u} = (1,1,1)$$
 b) $\vec{v} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$

Respostas: a) não b) sim

- 23) O ponto A é um dos vértices de um paralelepípedo e os três vértices adjacentes são B, C e D. Se AA' é uma diagonal do paralelepípedo, determinar o ponto A', nos seguintes casos:
- a) A (3,5,0), B (1,5,0), C (3,5,4) e D (3,2,0)
- b) A (-1,2,1), B (3,-1,2), C (4,1,-3) e D (0,-3,1)

Respostas: a) (1,2,4) b) (9,-7,-4)