Gesamtschaltbilder:

MES.DWG <-> Meßwert-Erfassungs-System (Prinzipschaltbild)

IOBOX.DWG <-> Interface-Box (Prinzipschaltbild)

EINSCHUB.DWG <-> Z80-ECB Subcomputer (19"-Einschub-Rack)

TOOLS.DWG <-> Entwicklungsumgebung (Hard- & Software)

TURBO.DWG <-> Speicheraufteilung Pascal (Memorymap)

Timerkarte:

TIMERK.DWG <-> Bestückungsplan

TIMERPLN.DWG <-> Gesamtschaltplan

TIMERCTC.DWG <-> CTC-Beschaltung & Timerkarten-Ausgänge

PC-I/O-Wrap Karte:

PCWRAP1.DWG <-> Bestückungsplan

PCWRAP2.DWG <-> Gesamtschaltplan

PCWRAP3.DWG <-> PPI-Reset-Save-Logic

FIFO-Karte:

FIF01.DWG <-> Bestückungsplan

FIFO2.DWG <-> Gesamtschaltplan

 $\verb|FIFO3.DWG| & <-> & Steckerbelegung FIFO-Karte|\\$

FIFO4.DWG <-> Rechnerkopplungsschema (IBM PC XT <-> Z80-ECB)

FIFO5.DWG <-> Treiberbeschaltung BUS-IN

```
FIFO6.DWG <-> Treiberbeschaltung BUS-OUT
```

 $\tt Z8038FIO.DWG <-> FIFO-Bauteil für Bibliothek (Pinbelegung)$

FIFO-Treiberkarte:

FIFODRV1.DWG <-> Bestückungsplan

FIFODRV2.DWG <-> Gesamtschaltplan

PIO-Treiberkarte (IOB):

PIODRV1.DWG <-> Bestückungsplan

PIODRV2.DWG <-> Gesamtschaltplan

VFC-Wandlerkarte:

VFC1.DWG <-> Bestückungsplan

VFC2.DWG <-> Schaltplan eines VFC's (OpAmp-VFC)

VFC3.DWG <-> Schaltplan Stromversorgung

Zählerkarte:

COUNTER1.DWG <-> Bestückungsplan TTL-Zähler

COUNTER2.DWG <-> Gesamtschaltplan TTL-Zähler

COUNTER3.DWG <-> Bestückungsplan ECL-Zähler

TIMCOUNT.DWG <-> Timingdiagramm der Zähleransteuerung

Frequenz-Dekaden Interface:

FREQU1.DWG <-> computerseitiger Schaltplan (alter I/O-Bus)

FREQU2.DWG <-> Dekadenseitiger Schaltplan

FREQU3.DWG <-> Frequenz-Dekadeninterface (Prinzipschaltbild)

FREQU4.DWG <-> Frequenz-Dekadeninterface (Bestückungsplan)

TIMFREQU.DWG <-> Timingdiagramm der HF-Dekadenansteuerung

Testmeßprogramm FLUOTEST:

FLOWFLUO.DWG <-> Flußdiagramm FLUOTEST

TIMFLUO.DWG <-> Timingdiagramm FLUOTEST

ZUSTFLUO.DWG <-> Zustandsdiagramm FLUOTEST

Simulationsprogramm SPEKTRUM:

FLOWSPK1.DWG <-> Flußdiagramm SPEKTRUM

FLOWSPK2.DWG <-> Flußdiagramm SPEKTRUM

FLOWSPK3.DWG <-> Flußdiagramm SPEKTRUM

Verschiedene:

LASER.DWG <-> Experimentaufbau : Optogalvanik

 ${\tt POLSPEC.DWG} \qquad {\tt <->} \quad {\tt Experimentaufbau} : {\tt Polarisationsspektroskopie}$

RECHNKOP.DWG <-> Arten der Rechnerkopplungen

(Seriell, Parallel, Dual-Port-RAM, FIFO)

SIGNAL.DWG <-> Prinzip der "Dual-Line-Übertragung"

(Gerichteter Zustandsgraph, Subgraph)Š

Z80MAP.DWG <-> Speicherbelegung des Z80-Subrechners

REALTIM1.DWG <-> Bisherige Scanverfahren

REALTIM2.DWG <-> Neues Scanverfahren (mit "Echtzeit"-ANALYSE)