Institutionen för data- och informationsteknik CHALMERS TEKNISKA HÖGSKOLA

Tentamen

EDA216, EDA217, EDA433 EDA452, DIT791

Grundläggande datorteknik / Digital och datorteknik

Måndag 8 Januari 2018 kl. 8:30 – 12:30

Examinator

Rolf Snedsböl, tel. 772 16 65

Kontaktperson under tentamen

Jonas Duregård, tel. 031 772 1028

Tillåtna hjälpmedel

Instruktionslista för FLISP

I denna får varken anteckningar eller understrykningar finnas.

Lösningar

Anslås dagen efter tentamen via kursens hemsida.

Granskningstillfällen

Tid och plats för granskning anges på kursens hemsida efter att resultatet rapporterats till LADOK.

Allmänt

Tentamen är uppdelad i del A och del B. På varje del kan maximalt 30 poäng uppnås.

Poängsättning anges för varje uppgift. Siffror inom parentes anger poängintervallet på uppgiften. Observera att felaktigt svarsalternativ i del A kan ge poängavdrag. En obesvarad uppgift ger alltid 0 poäng. Svaren till del A (uppgift 1.x) lämnas på bifogad svarsblankett.

De olika svarsalternativen, inklusive alternativet "Inget rätt svarsalternativ", kan bedömas som: (Tilldelade poäng för en 2-poänggsuppgift ges inom parentes.)

- korrekt svar (2p)
- mestadels korrekt svar (1p)
- felaktigt svar (0p)
- felaktigt svar som dessutom visar på avsevärd brist i grundläggande förståelse (-1)

Om du väljer att avstå från dessa svarsalternativ ska du istället kryssa i alternativet:

• uppgiften besvaras ej (0p)

Endast ett kryss tillåts per uppgift och uppgifterna poängsätts individuellt.

För att del B av tentamen skall granskas och rättas krävs minst 20 poäng på del A.

Siffror inom parentes anger här maximal poäng på uppgiften. För full poäng krävs att:

- redovisningen av svar och lösning är läslig och tydlig.
- varje lösningsblad endast innehåller redovisningsdelar som hör ihop med en uppgift.
- lösningen ej är onödigt komplicerad.
- val och ställningstaganden är välmotiverade
- redovisning av hårdvarukonstruktioner innehåller funktionsbeskrivning, lösning och realisering.
- redovisning av mjukvarukonstruktioner i assembler är dokumenterade.

Betygsättning

För godkänt slutbetyg på kursen fordras att både tentamen och laborationer är godkända. Slutbetyg bestäms av tentamenspoäng enligt följande:

Del A	Del B	Betyg EDA	Betyg DIT
< 20	Bedöms ej	Underkänd	Underkänd
≥ 20	< 10	3	G
≥ 20	$\geq 10 \text{ och} < 20$	4	
≥ 20	≥ 20	5	
≥ 20	≥ 16		VG

DEL A – Fyll i Svarsblankett för del A

Talomvandling, aritmetik, flaggor och koder.

I uppgifterna 1.1 t.o.m. 1.4 används 5-bitars tal där $X = (11001)_2$ och $Y = (11110)_2$

Uppgift 1.1 (-1, 1)

Tolka X och Y som tal utan tecken. Vilket av alternativen anger deras decimala motsvarigheter?

a	X = 9, Y = 14
b	X = 25, Y = 14
c	X = -7, Y = -11
d	X = 9, Y = 30
e	X = -7, Y = 14
f	X = 25, Y = 30
g	X = 9, Y = -11
h	X=25, Y=30

Uppgift 1.2 (-1, 1)

Tolka X och Y som tal med tecken (tvåkomplementsrepresentation). Vilket av alternativen anger deras decimala motsvarigheter?

a	X=7, Y=-2
b	X = 8, Y = -14
c	X = 7, Y = -14
d	X = -8, Y = -6
e	X = -7, Y = -2
f	X = -8, Y = 31
g	X = -7, Y = 31
h	X = 8, Y = -14

Uppgift 1.3 (-1, 1)

Utför subtraktionen R = X - Y som den utförs i FLISP:s dataväg (men med en 5-bitars ALU). Vilket av alternativen anger R decimalt? Tolka X, Y och R som tal med tecken.

a	R= -5
b	R= -8
c	R= -9
d	R= 4
e	R= 2
f	R= 7
g	R= 11
h	R= 23

Uppgift 1.4 (-1, 1)

Utför additionen R = X + Y som den utförs i FLISP:s dataväg (men med en 5-bitars ALU).

Vad blir flaggbitarna NZVC efter räkneoperationen?

a	NZVC=0010
b	NZVC=0000
c	NZVC=1111
d	NZVC=0011
e	NZVC=1100
f	NZVC=1001
g	NZVC=1011
h	NZVC=0101

Uppgift 1.5 (-1, 2)

Bitmönstret (10101010)₂ kan samtidigt representera:

	ASCII-kod 1	Negativt tal	Ett naturligt binärtal	Gray-kod för ett tal	Två 4-bitars	Två NBCD-siffror
	för en versal	på 2k-form	större än 100 ₁₀	mindre än 100 ₁₀	binära tal	
a	Ja	Ja	Nej	Ja	Ja	Ja
b	Nej	Nej	Nej	Ja	Ja	Nej
c	Ja	Ja	Nej	Nej	Nej	Ja
d	Nej	Nej	Ja	Ja	Ja	Nej
e	Nej	Ja	Ja	Nej	Ja	Ja
f	Ja	Ja	Ja	Nej	Ja	Nej
g	Nej	Nej	Ja	Nej	Ja	Nej
h	Nej	Ja	Ja	Nej	Nej	Ja

¹ Versal: Stor bokstav. ASCII-tabell, se Appendix

Kombinatorik, switchnätalgebra

Uppgift 1.6 (-1, 2)

Du har följande funktion: $f(x, y, z) = \overline{(\overline{x} + yz)} + x\overline{y} + \overline{z}(x + \overline{y} + \overline{x}y)$ Ange vilket av följande alternativ som utgör funktionen på konjunktiv normal form.

a	$f(x,y,z) = (\bar{x} + \bar{y} + z) \cdot (x + \bar{y} + z)$
b	$f(x,y,z) = \bar{x}\bar{y} + x\bar{z}$
c	$f(x, y, z) = (\bar{y} + \bar{z}) \cdot (y + z) \cdot (y + z)$
d	$f(x,y,z) = \bar{x}yz + \bar{x}y\bar{z} + x\bar{y}\bar{z}$
e	$f(x,y,z) = (\bar{x} + \bar{y} + \bar{z}) \cdot (x + \bar{y} + \bar{z}) \cdot (x + y + \bar{z}) \cdot (x + y + z)$
f	$f(x,y,z) = \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}y\bar{z}$
g	$f(x,y,z) = (x+y+\bar{z})\cdot(x+\bar{y}+\bar{z})\cdot(\bar{x}+\bar{y}+\bar{z})$
h	$f(x,y,z) = \bar{x}y\bar{z} + x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z}$

Uppgift 1.7 (-1, 2)

En boolesk funktion beskrivs av Karnaughdiagrammet till höger. Vilket av följande alternativ utgör funktionens disjunktiva minimala form?

		y∠			
		00	01	11	10
.,	0	1	0	1	1
Х	1	1	1	0	1

a	$f(x,y,z) = (x+y+z) \cdot (\bar{x}+y+\bar{z}) \cdot (\bar{x}+\bar{y}+\bar{z}) \cdot (\bar{x}+\bar{y}+z)$
b	$f(x,y,z) = \bar{z} + \bar{x}y + x\bar{y}$
c	$f(x,y,z) = (\bar{x} + \bar{y})(\bar{x} + \bar{z})(x + y + z)$
d	$f(x,y,z) = (y+\bar{z})(\bar{x}+\bar{y})$
e	$f(x,y,z) = \bar{y}\bar{z} + \bar{x}y$
f	$f(x, y, z) = z + \bar{x}z + x\bar{y}\bar{z}$
g	$f(x,y,z) = \bar{x}\bar{y}\bar{z} + \bar{x}yz + x\bar{y}\bar{z} + xy\bar{z}$
h	$f(x,y,z) = xyz + \bar{x}yz + x\bar{y}\bar{z} + \bar{x}\bar{y}z$

Uppgift 1.8 (-1, 1)

Ett minimalt kombinatoriskt nät med följande funktionstabell skall konstrueras:

Х	У	Z	W	f
0	0	0	0	1
0	0	0	1	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1 1 1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	1	1	0

Vilket av Karnaugh-diagrammen skall då användas?

Ej definierade kombinationer i funktionstabellen kan inte förekomma som indata.

	a)	ZW				
		00	01	11	10	
	00	1	1	0	_	
	01	0	0	1	0	
ху	11	_	_	0	_	
	10	0	1	0	1	

	c)	ZW				
		00	01	11	10	
	00	1	1	0	_	
	01	0	0	0	1	
ху	11	_	_	0	_	
	10	0	1	1	0	

	e)		ZW						
		00	01	11	10				
	00	0	0	1	0				
W	01	1	1	1	1				
ху	11	1	1	1	0				
	10	1	1	0	0				

	g)		Z١			
		00	01	11	10	
	00	1	1	0	_	
	01	0	0	_	0	
ху	11	_	0	0	_	
	10	0	1	1	1	

	b)	ZW									
		00	01	11	10						
	00	1	1	0	-						
37.3.7	01	0	0	_	0						
хy	11	1	-	0	_						
	10	0	1	1	0						

	a)	ZW								
		00	01	11	10					
	00	1	1	0	-					
хy	01	0	0	0	1					
	11	_	1	0	_					
	10	0	1	1	0					

00 01 11 1	_
	0
00 1 1 0 -	-
01 0 0 - 0)
xy 11 1 - 0 -	-
10 0 1 1 0)

	h)	ZW									
		00	01	11	10						
	00	1	1	0	_						
****	01	0	0	0	0						
ху	11	-	_	1	_						
	10	1	0	1	0						

Sekvensnät

Uppgift 1.9 (-1, 1)

Ange funktionstabellen för en JK vippa.

a)		b)		c)		d)		e)		f)	
QQ	JK	QQ^{+}	J K	QQ^{+}	J K	JK	Q^{\dagger}	J K	Q^{+}	J K	Q^{+}
0.0	- 0	0.0	0 1	0.0	0 -	0.0	Q	0.0	Q	0.0	0
0.1	0.1	0.1	- 1	0 1	10	0 1	0	0 1	1	0.1	1
10	1 0	10	1 -	10	0 1	10	1	10	0	10	1
1 1	0 -	1 1	10	1 1	- 0	1 1	*	11	\overline{Q}	1 1	Q

Uppgift 1.10 (-1, 1)

Ange excitationstabellen för en SR vippa.

a)			b)		c)		d)		e)		f)	
	S R	Q^{+}	S R	Q^{+}	S R	Q^{\dagger}	QQ^{+}	S R	QQ^{+}	S R	QQ^{+}	S R
_	0 0	1	0.0	*	0.0	Q	0.0	0 -	0.0	0 -	0.0	- 0
	0 1	0	0.1	0	0 1	0	0 1	10	0 1	1 -	0 1	1 -
	10	1	10	1	10	1	10	0 1	10	- 1	10	- 1
	1 1	*	11	Q	1 1	*	1 1	- 0	11	- 0	1 1	0 -

Uppgift 1.11 (-1, 3)

Analysera räknaren nedan. Vilken tabell visar sekvensen för räknaren?

a)		b)		c)		d)		e)		f)		g)		h)	
Q	Q^+	Q	Q^{+}	Q	Q^{+}	Q	Q^{+}	Q	Q^+	Q	Q^{+}	Q	Q^{+}	Q	Q^+
0	0	0	0	0	4	0	4	0	0	0	4	0	4	0	0
1	1	1	1	1	5	1	5	1	0	1	4	1	2	1	1
2	7	2	7	2	7	2	3	2	6	2	5	2	3	2	7
3	6	3	6	3	6	3	2	3	7	3	5	3	4	3	6
4	2	4	2	4	2	4	6	4	3	4	2	4	5	4	2
5	3	5	3	5	1	5	7	5	2	5	2	5	6	5	5
6	5	6	1	6	0	6	5	6	0	6	7	6	7	6	5
7	4	7	4	7	0	7	4	7	1	7	7	7	3	7	4

Styrenheten

Uppgift 1.12 (-1, 2)

I tabellen intill visas styrsignalerna för en FLISP-instruktions exekveringsfas. Vilken instruktion är det? Q anger aktuellt tillstånd

Q	Styrsignaler (= 1)
4	LD _T , MR,
5	MR, g ₁₃ , g ₁₂ , f ₃ , f ₂ , f ₁ , f ₀ , LD _{CC} ,LD _R
6	OFR. MW. NF

a	LSR n,X	b	ASR n,X	c	ROR n, Y
d	LSR Adr	e	ASR n,Y	f	ROR Adr

Uppgift 1.13 (-1, 3)

Ange vilken tabell som beskriver utförandet av operationen enligt nedanstående RTN-beskrivning:

RTN-beskrivning: $6A - B + 2 \rightarrow A$

Förutsätt att register A och B innehåller de data som skall beräknas. Register B får inte ändras. Förutsätt vidare att ALU:n i datavägen är den som hittas i FLISP:s instruktionslista.

Varje RTN-uttryck (varje rad) måste kunna utföras på en klockcykel i datavägen (undvik busskollisioner, ogiltiga ALU-funktioner osv.). Använd så få klockcykler som möjligt. Vilket svarsalternativ väljer du (ett av alternativen är rätt)?

a	
S	RTN-beskrivning
1	$2R \rightarrow R, R \rightarrow T$
2	R+T+1→R
3	$B \rightarrow T$
4	R-T+1→R
5	$R \rightarrow A$

b	
S	RTN-beskrivning
1	2A→R
2	$2R \rightarrow R, R \rightarrow T$
3	R+T+1→R
4	R-B+1→R
5	$R \rightarrow T$
3	R+T+1→R R-B+1→R

c
S RTN-beskrivning
1 2A+1→R
$2 \text{ 2R} \rightarrow \text{R}, \text{R} \rightarrow \text{T}$
$3 R+T\rightarrow R$
4 B→T
5 R-T→R
6 R →A

d	
S	RTN-beskrivning
1	2A→R
2	2R→R, R→T
3	R+T+1→R
4	$B \rightarrow T$
5	R-T+1→R
6	$R \rightarrow A$

e	
S RTN-beskrivning	
1 6A→R	
$2 R+B\rightarrow R$	
3 R+2→R	
4 A→R	
5 R→A	

f	
S RTN-beskrivning	
1 3A→R	
2 R→B	
3 3A→R	
$4 B+R\rightarrow R$	
5 R→A	

Uppgift 1.14 (-1, 3)

Vilket av svarsalternativen anger RTN-beskrivningen för utförandefasen av FLISP-instruktionen:

INC A, Y. (Q anger aktuellt tillstånd)

a	
Q	RTN-beskrivning
4	$A \rightarrow T$
5	$M(Y+T)+1 \rightarrow R; N,Z,V,C \rightarrow CC$
6	$R \rightarrow M(Y+T)$; NF

U	
Q	RTN-beskrivning
4	M(PC)→T; PC+1→PC
	$M(SP+T-1)\rightarrow R$; Flaggor $\rightarrow CC$
6	R→M(SP+T-1) ; NF

С	
	RTN-beskrivning
4	A→T; PC+1→PC
5	$M(Y+T)+1 \rightarrow R; N,Z,V \rightarrow CC$
6	$R \rightarrow M(Y+T)$; NF

d	
Q	RTN-beskrivning
4	$M(Y) \rightarrow T$; PC+1 \rightarrow PC
5	$M(Y+A)+1\rightarrow R; N,Z,V \rightarrow CC$
6	$R \rightarrow M(Y+A)$; NF

e	
Q	RTN-beskrivning
4	$M(Y) \rightarrow TA$,
5	M(PC)→R
6	R→M(TA), NF

f	
Q	RTNbeskrivning
4	A→T
5	$M(Y+T)+1 \rightarrow R; N,Z,V \rightarrow CC$
6	$R \rightarrow M(Y+T)$; NF

Assemblerprogrammering för FLISP-datorn

Uppgift 1.15 (-1, 3)

Till höger är tre nerkortade delar av samma program. Processorn börjar exekvera koden med startadress på 30₁₆. Ange innhållet i stacken när processorn har exekverat kod fram tills kommentaren "Ange stack!"

ORG \$30 ANDCC #\$0 LDSP #\$14 LDA #\$70 PSHA ADDA #21 JSR \$68	ORG \$85 TFR SP,X PSHX * Ange stack!
---	--------------------------------------

Vilket alternativ nedan väljer du?

a	b	c		d	e		f	
Adr S	Stack S	tack	Stack	Stack	1	Stack		Stack
	09			0F		0F		
	72	10	10	6C		6C		10
	FF	70	72	FF		0A		6C
11	91	09	??	85		85		09
12	39	91	91	39		39		85
13	70	37	37	70		70		37
14		70	70					70
15								

Uppgift 1.16 (-1, 3)

Skriv en rutin som hela tiden läser den 8-bitars $[b_7..b_0]$ varibeln P $[-128 \le P < 128]$ från inporten och skriver ut värden till utporten. Om P > 4 och bit 2 i P = 0 skall värdet 1 skrivas till utporten. Annars skall värdet 2 skrivas. Anta att utporten finns på adress \$FB och att inporten finns på adress \$FC. Vilket svarsalternativ väljer du?

a			_	b			_	c		
Ett	EQU	1		Ett	EQU	1		Ett	EQU	1
Tva	EQU	2		Tva	EQU	2		Tva	EQU	2
L1:	LDA	\$FC		L1:	LDA	\$FC		L1:	LDA	\$FC
	CMPA	#\$4			CMPA	#4			CMPA	#\$4
	BLE	L2			BLS	L2			BLE	L2
	BITA	#4			ANDA	#4			CMPA	#4
	BNE	L2			BNE	L2			BEQ	L2
	LDA	#Ett			LDA	Ett			LDA	#Ett
	STA	\$FB			STA	\$FB			STA	\$FB
	BRA	L3			BRA	L3			BRA	L3
L2:	LDA	#Tva		L2:	LDA	Tva		L2:	LDA	#Tva
	STA	\$FB			STA	\$FB			STA	\$FB
L3:	BRA	L1		L3:	BRA	L1		L3:	BRA	L1
d			-	e			_	f		
Ett	EQU	1		Ett	EQU	1		Ett	EQU	1
Tva	EQU	2		Tva	EQU	2		Tva	EQU	2
L1:	LDA	\$FC		L1:	LDA	\$FC		L1:	LDA	\$FC
	CMPA	#\$4			CMPA	#\$4			BITA	#4
	BLO	L2			BLT	L2			BNE	L2
	TSTA	#4			BITA	#4			ANDA	#4
	BEQ	L2			BNE	L2			BNE	L2
	LDA	#Ett			LDA	Ett			LDA	#Ett
	STA	\$FB			STA	\$FB			STA	\$FB
	BRA	L3			BRA	L3			BRA	L3
L2:	BRA LDA	L3 #Tva		L2:	BRA LDA	L3 Tva		L2:	BRA LDA	L3 #Tva
L2:				L2:				L2:		

DEL B – Svara på separata ark. Blanda inte uppgifter på samma ark.

Uppgift 2 (10 poäng)

Ett sekvensnät har en 3-bitars binär utsignal $A = a_2a_1a_0$, som har följande sekvens: **1,3,3,7,**1,3,3,7,1..... Konstruera detta sekvensnät.

Du har tillgång till <u>två</u> JK-vippor och valfritt antal vanliga grindar (AND, NAND, OR, NOR, XOR och Inverterare). Visa hur du resonerat och rita upp din konstruktion.

Visa tydligt alla dina steg i konstruktionsarbetet och rita upp din koppling.

Uppgift 3 (12 poäng)

Du skall skriva kod för ett FLISP-system. Systemet ska fungera som styrenhet för en digital termometer och ska hålla reda på nuvarande och maximal uppmätt temperatur.

Temperaturer representeras av 16-bitars binära tal. Nuvarande temperatur kan avläsas från de två 8-bitars inportarna (strömbrytare i prototypen, senare en temperatursensor).

Programmets huvudloop ska läsa av och uppdatera nuvarande och maximala temperaturvärdet i varje varv av loopen. Direkt efter varje avläsning ska endera nuvarande eller maximal temperatur skrivas till två 8-bitars Hex-displayer på maskinens utportar.

Vid avbrott ska programmet växla mellan att visa nuvarande temperatur eller maximal uppmätt temperatur (inledningsvis ska systemet visa nuvarande temperatur).

- a) Skriv kod för nödvändiga initieringar och definitioner av variabler och IO-portar så att systemet fungerar som tänkt. (Vilka fysiska adresser du föreslår är valfritt). Definiera särskilt två variabler **temp** och **maxtemp** för 16-bitars temperaturvärden (nuvarande och maximal uppmätt temperatur), inledningsvis ska båda vara 0.
- b) Skriv en subrutin **compare** som kontrollerar ifall temp > maxtemp, och i så fall uppdaterar maxtemp.
- c) Skriv kod för huvudloopen.
- d) Skriv avbrottsrutinen switchmode

För full poäng skall du lämna in både väldokumenterad kod och flödesplaner.

Uppgift 4 (8 poäng)

Vi har ett synkront system med 16-bitars adressbuss, en 8-bitars databuss och MR/MW signaler motsvarande de minnesmodulen i FLISP använder. Till centralenheten ska följande moduler anslutas:

- 16 KiB (1 KiB = 2¹⁰ byte) RWM med start på adress 0 (utför minnesläsning/-skrivning till/från databussen beroende på MW/MR)
- 8 KiB ROM med slut på adress FFFF (utför alltid läsning till databussen om CS är aktiv)
- a) Konstruera först *fullständig adressavkodningslogik*, dvs. ange booleska uttryck för "chip select"-signalerna. CS-signalerna (CS_{RWM} och CS_{ROM}) är aktiva låga.
- b) Konstruera sedan en ofullständig adressavkodningslogik (så få grindar som möjligt).
- c) Ange, för din lösning i b) de eventuella adressintervall där RWM-modulen och ROM-modulen kommer att speglas.
- d) Utöka lösningen från b) med en 16-bytes IO-area (CS_{IO}) i adressområdet FFF0-FFFF. Denna skall vara dubbelmappad (överlagrad) med ROM-modulen. Ange den modifierade adressavkodningslogiken.

Observera minnesmodulerna aldrig får läsa till databussen när MW är aktiv!

poäng

Anonym kod:							Poäng på uppgiften: (fylls i av lärare)					Löpande sidnr:		
												Uppgift nr 1		
¹⁾ Vid sk	uggad ruta fa	år inte detta alt	loss		nke					in de	n.			
Uppgift	uppgiften besvaras inte	inget rätt svars- alternativ ¹⁾	a	b	c	d	e	f	g	h		poäng		
1.1														
1.2														
1.3														
1.4														
1.5														
	uppgiften besvaras inte	inget rätt svars- alternativ ¹⁾	a	В	c	d	e	f	g	h		poäng		
1.6														
1.7														
1.8														
			T		1	1	1	T						
	uppgiften besvaras inte	inget rätt svars- alternativ ¹⁾	a	b	c	d	e	f	g	h		poäng		
1.9														
1.10														
1.11														
			r		•	•	•	T	-					
	uppgiften besvaras inte	inget rätt svars- alternativ ¹⁾	a	b	c	d	e	f				poäng		
1.12												<u>.</u>		
1.13														
1.14														

d

e

b

c

a

f

uppgiften besvaras

inte

1.15 1.16 inget rätt

svarsalternativ ¹⁾