EE5311 - Digital IC Design

Assignment 4 - Schematic of a signed 8-bit Carry Save Multiplier

Member 1: Srivenkat A(EE18B038)

Member 2: Hemanth Ram G K (EE18B132)

Member 3: Sidesh S(EE18B032)

Schematic of CSM

Multiplier Testbench

Simulation output for 127 * -128

Interpreted voltage values for 127 * -128

x: (round(v(x7))*(-128) + round(v(x6))*64 + round(v(x5))*32 + round(v(x4))*16 + round(v(x3))*8 + round(v(x2))*4 + round(v(x1))*2 + round(v(x0))*1)=127y: (round(v(y7))*(-128) + round(v(y6))*64 + round(v(y5))*32 + round(v(y4))*16 + round(v(y3))*8 + round(v(y2))*4 + round(v(y1))*2 + round(v(y0))*1)=-128z: (round(v(z15))*(-32768) + round(v(z14))*16384 + round(v(z13))*8192 + round(v(z12))*4096 + round(v(z11))*2048 + round(v(z10))*1024 + round(v(z9))*512 + round(v(z8))*256 + round(v(z7))*128 + round(v(z6))*64 + round(v(z5))*32 + round(v(z4))*16 + round(v(z3))*8 + round(v(z2))*4 + round(v(z1))*2 + round(v(z0))*1)=-16256

Interpreted voltage values for -128 * 127

x: (round(v(x7))*(-128) + round(v(x6))*64 + round(v(x5))*32 + round(v(x4))*16 + round(v(x3))*8 + round(v(x2))*4 + round(v(x1))*2 + round(v(x0))*1)=-128y: (round(v(y7))*(-128) + round(v(y6))*64 + round(v(y5))*32 + round(v(y4))*16 + round(v(y3))*8 + round(v(y2))*4 + round(v(y1))*2 + round(v(y0))*1)=127z: (round(v(z15))*(-32768) + round(v(z14))*16384 + round(v(z13))*8192 + round(v(z12))*4096 + round(v(z11))*2048 + round(v(z10))*1024 + round(v(z9))*512 + round(v(z8))*256 + round(v(z7))*128 + round(v(z6))*64 + round(v(z5))*32 + round(v(z4))*16 + round(v(z3))*8 + round(v(z2))*4 + round(v(z1))*2 + round(v(z0))*1)=-16256

Interpreted voltage values for 0 * 127

x: (round(v(x7))*(-128) + round(v(x6))*64 + round(v(x5))*32 + round(v(x4))*16 + round(v(x3))*8 + round(v(x2))*4 + round(v(x1))*2 + round(v(x0))*1)=0y: (round(v(y7))*(-128) + round(v(y6))*64 + round(v(y5))*32 + round(v(y4))*16 + round(v(y3))*8 + round(v(y2))*4 + round(v(y1))*2 + round(v(y0))*1)=127z: (round(v(z15))*(-32768) + round(v(z14))*16384 + round(v(z13))*8192 + round(v(z12))*4096 + round(v(z11))*2048 + round(v(z10))*1024 + round(v(z9))*512 + round(v(z8))*256 + round(v(z7))*128 + round(v(z6))*64 + round(v(z5))*32 + round(v(z4))*16 + round(v(z3))*8 + round(v(z2))*4 + round(v(z1))*2 + round(v(z0))*1)=0

Interpreted voltage values for -128 * 0

x: (round(v(x7))*(-128) + round(v(x6))*64 + round(v(x5))*32 + round(v(x4))*16 + round(v(x3))*8 + round(v(x2))*4 + round(v(x1))*2 + round(v(x0))*1)=-128y: (round(v(y7))*(-128) + round(v(y6))*64 + round(v(y5))*32 + round(v(y4))*16 + round(v(y3))*8 + round(v(y2))*4 + round(v(y1))*2 + round(v(y0))*1)=0z: (round(v(z15))*(-32768) + round(v(z14))*16384 + round(v(z13))*8192 + round(v(z12))*4096 + round(v(z11))*2048 + round(v(z10))*1024 + round(v(z9))*512 + round(v(z8))*256 + round(v(z7))*128 + round(v(z6))*64 + round(v(z5))*32 + round(v(z4))*16 + round(v(z3))*8 + round(v(z2))*4 + round(v(z1))*2 + round(v(z0))*1)=0

Interpreted voltage values for -12 * 13

```
x: (\text{round}(v(x7))*(-128) + \text{round}(v(x6))*64 + \text{round}(v(x5))*32 + \text{round}(v(x4))*16 + \text{round}(v(x3))*8 + \text{round}(v(x2))*4 + \text{round}(v(x1))*2 + \text{round}(v(x0))*1)=-12}
y: (\text{round}(v(y7))*(-128) + \text{round}(v(y6))*64 + \text{round}(v(y5))*32 + \text{round}(v(y4))*16 + \text{round}(v(y3))*8 + \text{round}(v(y2))*4 + \text{round}(v(y1))*2 + \text{round}(v(y0))*1)=13}
z: (\text{round}(v(z15))*(-32768) + \text{round}(v(z14))*16384 + \text{round}(v(z13))*8192 + \text{round}(v(z12))*4096 + \text{round}(v(z11))*2048 + \text{round}(v(z10))*1024 + \text{round}(v(z9))*512 + \text{round}(v(z8))*256 + \text{round}(v(z7))*128 + \text{round}(v(z6))*64 + \text{round}(v(z5))*32 + \text{round}(v(z4))*16 + \text{round}(v(z3))*8 + \text{round}(v(z2))*4 + \text{round}(v(z1))*2 + \text{round}(v(z0))*1)=-156}
```

Interpreted voltage values for -1 * -1

```
x: (\text{round}(v(x7))*(-128) + \text{round}(v(x6))*64 + \text{round}(v(x5))*32 + \text{round}(v(x4))*16 + \text{round}(v(x3))*8 + \text{round}(v(x2))*4 + \text{round}(v(x1))*2 + \text{round}(v(x0))*1)=-1
y: (\text{round}(v(y7))*(-128) + \text{round}(v(y6))*64 + \text{round}(v(y5))*32 + \text{round}(v(y4))*16 + \text{round}(v(y3))*8 + \text{round}(v(y2))*4 + \text{round}(v(y1))*2 + \text{round}(v(y0))*1)=-1
z: (\text{round}(v(z15))*(-32768) + \text{round}(v(z14))*16384 + \text{round}(v(z13))*8192 + \text{round}(v(z12))*4096 + \text{round}(v(z11))*2048 + \text{round}(v(z10))*1024 + \text{round}(v(z9))*512 + \text{round}(v(z8))*256 + \text{round}(v(z7))*128 + \text{round}(v(z6))*64 + \text{round}(v(z5))*32 + \text{round}(v(z4))*16 + \text{round}(v(z3))*8 + \text{round}(v(z2))*4 + \text{round}(v(z1))*2 + \text{round}(v(z0))*1)=1
```

Interpreted voltage values for -128 * -128

```
x: (\text{round}(v(x7))^*(-128) + \text{round}(v(x6))^*64 + \text{round}(v(x5))^*32 + \text{round}(v(x4))^*16 + \text{round}(v(x3))^*8 + \text{round}(v(x2))^*4 + \text{round}(v(x1))^*2 + \text{round}(v(x0))^*1) = -128
y: (\text{round}(v(y7))^*(-128) + \text{round}(v(y6))^*64 + \text{round}(v(y5))^*32 + \text{round}(v(y4))^*16 + \text{round}(v(y3))^*8 + \text{round}(v(y2))^*4 + \text{round}(v(y1))^*2 + \text{round}(v(y0))^*1) = -128
z: (\text{round}(v(z15))^*(-32768) + \text{round}(v(z14))^*16384 + \text{round}(v(z13))^*8192 + \text{round}(v(z12))^*4096 + \text{round}(v(z11))^*2048 + \text{round}(v(z10))^*1024 + \text{round}(v(z9))^*512 + \text{round}(v(z8))^*256 + \text{round}(v(z7))^*128 + \text{round}(v(z6))^*64 + \text{round}(v(z5))^*32 + \text{round}(v(z4))^*16 + \text{round}(v(z3))^*8 + \text{round}(v(z2))^*4 + \text{round}(v(z1))^*2 + \text{round}(v(z0))^*1) = 16384
```

Interpreted voltage values for 103 * -57

```
x: (\text{round}(v(x7))^*(-128) + \text{round}(v(x6))^*64 + \text{round}(v(x5))^*32 + \text{round}(v(x4))^*16 + \text{round}(v(x3))^*8 + \text{round}(v(x2))^*4 + \text{round}(v(x1))^*2 + \text{round}(v(x0))^*1)=103
y: (\text{round}(v(y7))^*(-128) + \text{round}(v(y6))^*64 + \text{round}(v(y5))^*32 + \text{round}(v(y4))^*16 + \text{round}(v(y3))^*8 + \text{round}(v(y2))^*4 + \text{round}(v(y1))^*2 + \text{round}(v(y0))^*1)=-57
z: (\text{round}(v(z15))^*(-32768) + \text{round}(v(z14))^*16384 + \text{round}(v(z13))^*8192 + \text{round}(v(z12))^*4096 + \text{round}(v(z11))^*2048 + \text{round}(v(z10))^*1024 + \text{round}(v(z9))^*512 + \text{round}(v(z8))^*256 + \text{round}(v(z7))^*128 + \text{round}(v(z6))^*64 + \text{round}(v(z5))^*32 + \text{round}(v(z4))^*16 + \text{round}(v(z3))^*8 + \text{round}(v(z2))^*4 + \text{round}(v(z1))^*2 + \text{round}(v(z0))^*1)=-5871
```

Interpreted voltage values for -50 * 50

```
x: (\text{round}(v(x7))*(-128) + \text{round}(v(x6))*64 + \text{round}(v(x5))*32 + \text{round}(v(x4))*16 + \text{round}(v(x3))*8 + \text{round}(v(x2))*4 + \text{round}(v(x1))*2 + \text{round}(v(x0))*1)=-50}
y: (\text{round}(v(y7))*(-128) + \text{round}(v(y6))*64 + \text{round}(v(y5))*32 + \text{round}(v(y4))*16 + \text{round}(v(y3))*8 + \text{round}(v(y2))*4 + \text{round}(v(y1))*2 + \text{round}(v(y0))*1)=50}
z: (\text{round}(v(z15))*(-32768) + \text{round}(v(z14))*16384 + \text{round}(v(z13))*8192 + \text{round}(v(z12))*4096 + \text{round}(v(z11))*2048 + \text{round}(v(z10))*1024 + \text{round}(v(z9))*512 + \text{round}(v(z8))*256 + \text{round}(v(z7))*128 + \text{round}(v(z6))*64 + \text{round}(v(z5))*32 + \text{round}(v(z4))*16 + \text{round}(v(z3))*8 + \text{round}(v(z2))*4 + \text{round}(v(z1))*2 + \text{round}(v(z0))*1)=-2500}
```

Interpreted voltage values for 79 * 81

```
x: (\text{round}(v(x7))*(-128) + \text{round}(v(x6))*64 + \text{round}(v(x5))*32 + \text{round}(v(x4))*16 + \text{round}(v(x3))*8 + \text{round}(v(x2))*4 + \text{round}(v(x1))*2 + \text{round}(v(x0))*1)=79
y: (\text{round}(v(y7))*(-128) + \text{round}(v(y6))*64 + \text{round}(v(y5))*32 + \text{round}(v(y4))*16 + \text{round}(v(y3))*8 + \text{round}(v(y2))*4 + \text{round}(v(y1))*2 + \text{round}(v(y0))*1)=81
z: (\text{round}(v(z15))*(-32768) + \text{round}(v(z14))*16384 + \text{round}(v(z13))*8192 + \text{round}(v(z12))*4096 + \text{round}(v(z11))*2048 + \text{round}(v(z10))*1024 + \text{round}(v(z9))*512 + \text{round}(v(z8))*256 + \text{round}(v(z7))*128 + \text{round}(v(z6))*64 + \text{round}(v(z5))*32 + \text{round}(v(z4))*16 + \text{round}(v(z3))*8 + \text{round}(v(z2))*4 + \text{round}(v(z1))*2 + \text{round}(v(z0))*1)=6399
```

Critical Path of CSM modelled separately

Inputs to Full Adders in Critical Path

- 1. Input Cin is closer than A, B to output and critical input is connected to Cin in every full adder.
- 2. For an edge in Cin, sum delay for different combinations of A, B in a Full Adder:

Inputs to (A,B) \ Cin Edge Type	Rising	Falling	
00	62.6ps	26.7ps	
01	46.9ps	34.7ps	
10	43.3ps	35.2ps	
11	30.1ps	49.4ps	

So, for max delay in sum propagation over both rising and falling edges, fix A=0, B=0.

3. For an edge in Carry in, Full Adder should be in propagation stage for max delay. Delays for different combinations of A/B in Full Adder:

Inputs to (A, B) \ Cin Edge Type	Rising	Falling	
01	30.2ps	9.37ps	
10	27.7ps	9.27ps	

So, for rising/falling edge in Cin, A=0, B=1 for max delay in carry propagation

Schematic of Full Adder used

Schematic of NAND gate used

Schematic of Inverter used

Schematic of AND gate used

Simulation of Critical Path Delay swept across possible gate size combinations

Simulation of Vector Merge outputs for critical input

Critical Path Delay tabulated across gate size combinations

step				Crit-Path-Rise	Crit-Path-Fall	Max t_pd	Area (unit_sq)
1	wc=1	ws=1	wg=1	5.15E-10	5.47E-10	5.47E-10	9049
2	wc=2	ws=1	wg=1	4.23E-10	4.22E-10	4.23E-10	9751
3	wc=3	ws=1	wg=1	4.10E-10	3.98E-10	4.10E-10	10679
4	wc=1	ws=2	wg=1	5.58E-10	6.19E-10	6.19E-10	11315
5	wc=2	ws=2	wg=1	4.14E-10	4.37E-10	4.37E-10	12017
6	wc=3	ws=2	wg=1	3.77E-10	3.86E-10	3.86E-10	12945
7	wc=1	ws=3	wg=1	6.34E-10	7.11E-10	7.11E-10	13899
8	wc=2	ws=3	wg=1	4.44E-10	4.76E-10	4.76E-10	14601
9	wc=3	ws=3	wg=1	3.87E-10	4.06E-10	4.06E-10	15529
10	wc=1	ws=1	wg=2	5.12E-10	5.44E-10	5.44E-10	9049
11	wc=2	ws=1	wg=2	4.16E-10	4.17E-10	4.17E-10	9751
12	wc=3	ws=1	wg=2	4.01E-10	3.91E-10	4.01E-10	10679
13	wc=1	ws=2	wg=2	5.51E-10	6.13E-10	6.13E-10	11315
14	wc=2	ws=2	wg=2	4.05E-10	4.29E-10	4.29E-10	12017
15	wc=3	ws=2	wg=2	3.66E-10	3.77E-10	3.77E-10	12945
16	wc=1	ws=3	wg=2	6.25E-10	7.03E-10	7.03E-10	13899
17	wc=2	ws=3	wg=2	4.33E-10	4.66E-10	4.66E-10	14601
18	wc=3	ws=3	wg=2	3.75E-10	3.95E-10	3.95E-10	15529
19	wc=1	ws=1	wg=4	5.15E-10	5.48E-10	5.48E-10	9049
20	wc=2	ws=1	wg=4	4.16E-10	4.17E-10	4.17E-10	9751
21	wc=3	ws=1	wg=4	4.00E-10	3.90E-10	4.00E-10	10679
22	wc=1	ws=2	wg=4	5.52E-10	6.13E-10	6.13E-10	11315
23	wc=2	ws=2	wg=4	4.03E-10	4.27E-10	4.27E-10	12017
24	wc=3	ws=2	wg=4	3.62E-10	3.73E-10	3.73E-10	12945
25	wc=1	ws=3	wg=4	6.24E-10	7.02E-10	7.02E-10	13899
26	wc=2	ws=3	wg=4	4.29E-10	4.63E-10	4.63E-10	14601
27	wc=3	ws=3	wg=4	3.69E-10	3.90E-10	3.90E-10	15529

For Cout=3x, Sum=2x, Nand=4x min delay is observed.

For Cout=3x, Sum=2x, Nand=1x, only a 3.5% delay improvement is observed but a much smaller nand gate is used.

But combination Cout=3x, Sum=1x, Nand-1x has only a 6% higher delay and 18% lesser area. So, chosen sizes are 3x for carry out block, 1x for sum block, 1x for the standard gates.

Chosen Gate sizes

Full Adder:

Cout-bar: 3x

Sum-bar: 1x

Standard Cells:

NAND, AND, INV: 1x