Missing trequency math using median formula;

problem; An incomplete frequency distribution

in given below, where the median is 33.5

and total-incomplete missing frequency by applying

Median Johnula.

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	4	16	2	10.0	2	6	4

Som

•		
Frequency	Cumulative frequency	
4	4	
16	20	
77	20+1	
700	120+31	
12	120+11+12	
6	126+11+12	
4	130+11+12	
N=230		
	4 16 100 12 6	

Let the missing trequency of and of respectively "Here, N= 230

Therefore the equation is

$$130+1_1+1_2 = 230$$

We know.

e know,

Median, Me = L₁ +
$$\frac{N}{2}$$
 - $\frac{10-20}{5}$ \frac

Here

$$\frac{N}{2} = \frac{230}{2} = 115 \text{ th Observation}$$

: therefore median class is (30-40) 50-60 5 45HM

$$33.5 = 30 + \frac{115 - (20 + \frac{1}{1})}{100} \times 10$$

$$= 33.5 = 30 + \frac{95-11}{100} \times 10$$

$$= 33.5 - 30 = \frac{95 - 11}{10}$$

$$= 3.5 = \frac{95 - 1}{10}$$

Now puring the value of 11 in equation (i)

$$= 3$$
 $\frac{1}{2} = 100 - 60$

Therefore the missing trequency are 60 and 40