Nestandardne origami konstrukcije

Marija Stanojević Gimnazija Svetozar Marković Niš mstanojevic118@gmail.com Jelena Maleš AB Gimnazija Banja Luka jelena_males@yahoo.com

Rezime

Ovde je opisana osnova origami konstrukcija koju čini sedam aksioma, poznate kao Huzito-Hatori aksiome, kao i nestandardno proširenje koje nam omogućava da vršimo složenije konstrukcije. Ovim aksiomama pokušavale smo da rešimo problem trisekcije ugla. Takođe, približene su konstrukcije pravilnih mnogouglova, a poseban akcenat je stavljen na konstrukciju sedmougla pomoću origamija. Jednačine četvrtog i petog stepena rešavale smo višestrukim savijanjem papira. **Ključne reči**: nabor, brazda, presavijanje, papir...

1 Uvod

Pored standardnih geometrijskih konstrukcija pomoću lenjira i šestara, postoje i drugi načini konstruisanja, kao što su origami konstrukcije. U geometriji se javljaju neki problemi koji se ne mogu rešiti lenjirom i šestarom, zato pokušavamo da ih rešimo pomoću origamija.

Origami je jedan od načina konstruisanja figura savijanjem papira bez upotrebe makaza i lepka. Ova umetnost vodi poreklo iz Japana, a od 1880. godine naziva se origamijem (ori znači savijati, a kami znači papir).

Začetnik origami konstrukcija u matematici je Robert Lang (Robert Lang) koji je prvi rešio neke matematičke probleme pomoću origamija.

Savijanjem papira nastaju udubljenje i ispupčenja. Udubljenja se nazivaju brazdama, a ispupčenja naborima.

Slika 1 : Nabor (levo) i brazda (desno)

Definicija 1. Jednostruko savijanje definišemo preko minimalnog skupa pravila koji daje jednan nabor ili brazdu na konačnom delu Euklidovog prostora sa konačnim brojem rešenja.

Kombinovanjem pravila iz minimalnog skupa koji zadovoljava prethodnu definiciju dobijamo sedam osnovnih aksioma. Ovom metodom možemo rešiti mnoge

geometrijske probleme koje ne možemo da rešimo lenjirom i šestarom, a mi ćemo se najviše orijentisati na konstruisanje pravilnih mnogouglova. Međutim, probleme trisekcije ugla i konstrukcijsko nalaženje rešenja jednačine četvrtog stepena možemo rešiti samo pomoću dvostrukog istovremenog savijanja, pri čemu dobijamo dva nabora odjednom.

Definicija 2. Dvostruko savijanje definišemo preko minimalnog skupa pravila koji daje dva nabora ili dve brazde istovremeno na konačnom delu Euiklidske površine sa konačnim brojem rešenja.

Rešenja jednačine petog stepena dobijamo trostrukim istovremenim savijanjem. Dakle za jednačine n-tog stepena potrebna su n-2 istovremeno dobijena nabora [6].

2 Metode

2.1 Huzita-Hatori aksiome

Da bismo rešavali složene konstrukcijske probleme moramo opisati skup aksioma koji ćemo koristiti. Šest aksioma je ustanovio japansko-italijanski matematičar Humijaki Huzita (Humiaki Huzita) 1992. godine. Sedmu aksiomu je otkrio Koširo Hatori (Koshiro Hatori) 2002. godine, po kome je i dobila naziv Huzito-Hatori aksioma.

Aksiome koje se koriste pri rešavanju origami problema su:

- 1. Ako su date dve tačke P_1 i P_2 , onda postoji jedinstveno presavijanje koje prolazi kroz njih.
- 2. Ako su date dve tačke P_1 i P_2 , onda postoji jedinstveno presavijanje koje tačku P_1 slika u tačku P_2 .
- 3. Ako su date dve prave L_1 i L_2 , onda postoji jedinstveno presavijanje koje pravu L_1 slika u pravu L_2 .
- 4. Ako su date tačka P_1 i prava L_1 , onda postoji jedinstveno presavijanje koje prolazi kroz tačku P_1 i normalno je na pravu L_1 .
- 5. Ako su date dve tačke P_1 i P_2 i prava L_1 , onda postoji presavijanje koje tačku P_1 slika na pravu L_1 i prolazi kroz tačku P_2 .
- 6. Ako su date dve tačke P_1 i P_2 i dve prave L_1 i L_2 , onda postoji presavijanje koje tačku P_1 slika na pravu L_1 i tačku P_2 slika na pravu L_2 .
- 7. Ako je data tačka P i dve prave L_1 i L_2 , onda postoji presavijanje koje tačku P slika na pravu L_1 i to presavijanje normalno je na pravu L_2 .

2.2 Konstrukcije duži

Da bismo predstavili dužine na papiru moramo da dogovorimo jediničnu duž na papiru. Problem predstavljanja racionalnih brojeva na papiru možemo rešiti konstruisanjem delova određenih duži koje su već konstruisane na papiru. Ako krajeve neke dužine predstavimo kao tačke i iskoristimo drugu aksiomu dobijeni

nabor u preseku sa datom duži daje njenu polovinu. Ovom binarnom metodom možemo bilo kojom podeliti na 2n jednaka dela.

Racionalni brojevi koji se ne mogu konstruisati binarnom metodom konstruisu se pomoću dijagonale kvadrata ili drugih konstrukcija razlomljenih delova kao što su Fudžimotove konstrukcije (Fujimoto's constructions), Nomaova (Noma) i Hagaova (Haga) metoda [4] .

2.3 Lillov metod

Ovom metodom možemo konstruisati rešenje realnog polinoma. Da bismo rešili jednačinu

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x^{1} + a_{0} = 0.$$

Prvo formiramo stazu od isečaka, konstruišući te dužine nekom od gore navedenih metoda, počevši iz tačke O, pa do tačke T u kojoj su dužine isečaka zapravo koeficijenti jednačine. Počinjemo sa koeficijentom jedan, a završavamo sa a_0 . Sledeći segment nanosimo levo ako je koeficijent pozitivan, i desno u odnosu na prethodni ako je negativan. Svaki sledeći segment se konstruiše pod pravim uglom u odnosu na dati. Zatim postavimo iz O, pod nekim uglom, liniju koja će da seče sledeću duž. Ponavljamo ovaj postupak tako da iz prethodne presečne tačke postavljamo duž pod uglom dok ne stignemo do duži na kojoj je T. Zatim menjamo ugao sve dok nam zadnja linija ne prolazi kroz T. Kada su dati uslovi zadovoljeni prvi odsečak koji dobijemo daje traženu duž. Ovaj metod može da reši i jednačine sa većim stepenom. Od stepena jednačine zavisi i strategija kojom nalazimo ugao pod kojim sečemo date duži.

Slika 2 : Lilov metod i konstruisanje rešenja polinoma drugog stepena

3 Trisekcija ugla

Trisekcija ugla je deljenje ugla na tri jednaka dela. Uzmimo papir kvadratnog oblika i nadimo trećine proizvoljnog oštarog ugla $\angle ABC$. Na osnovu aksiome 4 možemo konstruisati pravu p normalnu na pravu AB u tački B. Zatim na pravoj p odredimo dve tačke D i E takve da je BD = DE. Na osnovu aksiome (4) možemo konstruisati normale p_1 i p_2 na pravu p u tačkama D i E. Na osnovu aksiome (6) možemo presaviti papir tako da se tačka E preslika na pravu BC, a tačka E na pravu E1. Neka su tačke E2, E3 i ugao E4 deli u odnosu E4: 1, dok E5 deli u odnosu E6: 1, dok E6 deli u odnosu E7 slika prave E8. Slika prave E9 kada uglovi sa paralelnim kracima). Pošto je E8 deli u odnosu E9 kada uglovi sa paralelnim kracima). Pošto je E9 kada uglovi sa paralelnim kracima).

 E_1B_1B jednakokrak, pa je $\angle B_1BD_1=\angle D_1BE_1=a$. A pošto je trougao O_DBB_1 jednakokrak, tada je i $\angle BB_1D=\angle B_1BO_B=a$, pa data prava zaista deli ugao u odnosu 2:1.

Slika 3 : Trisekcija ugla

4 Analiza konstrukcije rešenja realnog polinoma

Neka je polinom koji rešavamo n-tog stepena. Funkcija $P:K\to Y$, gde $y=P_{(k)}=a_nk^n+a_{n-1}k^{n-1}+\cdots+a_1k+a_0$ i $k\in K\subseteq R$ i $y\in Y\subseteq R$, svako k slika u ogovarajuće y. Neka je x jedna od nula datog polinoma, tj. važi $a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0$, gde $x\in R$. Odavde sledi da ovaj polinom mozemo predstaviti kao P(k)=(k-x)Q(k), gde je $P(k)=a_nk^n+a_{n-1}k^{n-1}+\cdots+a_1k+a_0$, a Q(k) je polinom n-1 stepena. Zatim na sličan način možemo da nađemo jednu od nula polinoma n-1 stepena i da deljenjem sa k-x dobijemo polinom n-2 stepena. Kada dođemo do polinoma prvog stepena, dobijamo da je k=x. Na ovaj način smo našli sve brojeve koji su rešenja traženog polinoma. Ako bismo dati polinom predstavili u ravni, tako da je svako k predstavljeno na x-osi i dobijena vrednost P(k) na y-osi, dobili bismo parabole.

Koristeći ova svojstva i Lilov metod možemo konstruisati rešenja polinoma *n*tog stepena. Posto svaku jednačinu drugog stepena možemo da predstavimo kao jednu parabolu, mi ćemo svaki polinom svoditi na nekoliko jednačina drugog stepena. Koristeći origami savijanja i značajne tačke parabola kao što direktrisa, žiža i tangenta na parabolu koje će ujedno predstavljati i važne konstrukcijske tačke konstruisaćemo rešenja polinoma.

Kvadratne jednačine na koje čemo da razložimo dati polinom biće u stvari polinomi drugog stepena oblika $x^2 + a_1x + a_0 = 0$. Origami konstrukciju ovih jednačina drugog stepena zasnovaćemo takođe na Lilovoj konstrukciji uz neke izmene. Koeficijente polinoma drugog stepena uredimo u stazu: OA dužine 1, AB dužine a_1 , BT dužine a_0 . Zamislimo parabolu sa žižom u tački O i temenom u tački A. Konstruišemo njenu direktrisu tako što prenesemo duž OA sa suprotne strane A od O. Tangenta na tu parabolu u onoj tački u kojoj dodiruje parabolu je jednako udaljena od direktrise, tj. to je simetrala duži koju određuju neke tačke na direktrisi i žiže O. Ova prava treba da sadrži tačku T da bi predstavljala oštar ugao koji povezuje tačke O i T. Pomoću aksiome 5 teme O presavijamo na direktrisu, tako da se na naboru nalazi tačka T. Presek duži AB i duži koja seče pod oštrim uglom AB je tačka X. Dužina AX predstavlja rešenje ovog polinoma.

Slike 4 (levo) i 5 (desno) : Rešenje jednačine četvrtog stepena origami konstrukcijama

4.1 Rešavanje jednačine četvrtog stepena

Polinom $x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0$ možemo da rešimo preko prethodno datih metoda i postupaka. Nanosimo koeficijente: OA dužine 1, AB dužine a_3 , BC dužine a_2 , CD dužine a_1 i DT dužine a_0 . Ovaj polinom možemo napisati i ovako:

$$x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = x^2(x^2 + a_3x - x_1) + (a_2 + x_1)x^2 + a_1x + a_0$$

Na ovaj način jednačinu razlažemo na dva polinoma $x^2 + a_3x - x_1 = 0$ i $(a_2 + x_1)x^2 + a_1x + a_0 = 0$. Zbog dva polinoma drugog stepena, imamo dve različite parabole sa žižama O i T i odgovarajućim direktrisama koje konstruišemo na rastojanju OA, odnosno CT. Tangente ovih parabola moraju da se seku pod pravim uglom na pravoj BC. Zato ovde moramo da upotrebimo dvostruko savijanje koje će tačku O da slika na direktrisu parabole sa žižom O, tačku T da slika na direktrisu parabole sa žižom T, tako da se dva dobijena nabora seku pod pravim uglom i da presek pripada pravoj BC.

Ovaj presek obeležimo sa Y. Dužina BY predstavlja dužinu x_1 , a dužina CY a_2+x_1 , gde se za pozitivnu vrednost x_1 nalazi levo, a za negativnu desno u odnosu na B na pravoj BC. Ove dve linije će dati jedinstveni oštar ugao i primenom Lilovog metoda dobijamo tačku X kao presek AB sa duži pod dobijenim uglom. Dužina AX je u stvari dužina x koja predstavlja rešenje jednačine četvrtog stepena.

Slika 7 : Rešavanje jednačine četvrtog stepena

4.2 Rešavanje jednačine petog stepena

Pokušaćemo da damo rešenje za polinom $x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0=0$ pomoću origami konstrukcija. Formiramo stazu $OA,\ AB,\ BC,\ CD,\ DE$ i ET

gde su njinove dužine redom 1, a_4 , a_3 , a_2 , a_1 i a_0 . Polinom možemo napisati i ovako

$$x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 = x^3 (a_5 x^2 + a_4 x - a_3') + x^2 ((a_3 + a_3') x + (a_2 + a_2')) + (-a_2' x^2 + a_1 x + a_0).$$

Dakle, ovaj polinom možemo predstaviti preko dva polinoma drugog stepena i jednog polinoma prvog stepena. Rešenja polinoma drugog stepena predstavljamo parabolama sa žižama u O i T i odgovarajućim direktrisama. Da bismo dobili jedinstveno rešenje ovog polinoma moramo presavijanjem dobiti tri preseka odjednom, tako da su tangente na parabole međusobno paralelne, a treća prava normalna na njih.

Obeležimo tangentu na parabolu sa žižom O sa F_a , a tangentu na parabolu sa žižom T sa F_b , treću pravu obeležimo sa F_c . Presek F_a i F_c treba da se nalazi na pravoj BC da bismo dobili odsečke a_3' i $a_3 + a_3'$. Obeležimo presek sa Y i neka odsečak BY ima vrednost a_3' , a CY vrednost $a_3 + a_3'$. Ukoliko je vrednost a_3' pozitivna on se nalazi levo od B, ako je negativna nalazi se desno od B na pravoj BC. Presek nabora F_2 i F_3 , tačka Z, mora biti na pravoj CD i on određuje dužinu a_2' koja je pozitivna ako se Z nalazi levo od C i negativna ako se Z nalazi desno od C na pravoj CD. Ovi konstruisani prevoji daju oštar ugao koji primenjujemo u Lilovom metodu i kao presek prave AB i prave koja polazi iz O pod datim uglom koji obeležavamo sa X dobijamo dužinu AX koja predstavlja rešenje datog polinoma.

Slika 6 : Rešavanje jednačine petog stepena

5 Diskusija

Pošto je dobijena dužina x uvek nenegativna, definisaćemo u kojim slučajevima je smatramo pozitivnim, a u kojim negativnim brojem pri zameni u jednačinu. Treba da imamo na umu da ako se neka od duži dobijenih presekom staze i ove izlomljene linije koja zaklapa određeni ugao sa stazom nalazi levo od prethodne duži u stazi onda ima pozitivan predznak, ako se nalazi sa desne strane, onda ima negativan predznak.

Lilova metoda nalazi rešenje nekog polinoma ukoliko je koeficijent ispred najvećeg stepena jednak jedan. Ako je ovaj koeficijent različit od jedinice, obeležimo ga sa a_n , rešenje x dobijamo kao tangens oštrog ugla koji smo našli, tj. deljenjem duži x sa duži a_n . Drugi način da je da podelimo ceo polinom tim koeficijentom, pa tek onda da konstruišemo novodobijene koeficijente, gde će onaj ispred x^n biti jedinica.

Kada krenemo sa pravljenjem staze čiji delovi imaju dužine koeficijenata dobijamo iz tačke O povlačimo vertikalnu liniju, svaki koeficijent a_{n-2k} konstruišemo horizontalno, a a_{n-2k+1} koeficijent konstruišemo vertikalno. Ukoliko je neki od koeficijenata jednak nuli sledeći koeficijent različit od nule se konstruiše zavisno od indeksa u vertikalnom ili horizontalnom smeru, a zavisno od znaka koeficijenta levo ili desno u odnosu na tačku iz koje polaze.

Ukoliko je neki od koeficijenata nula dolazi do deformacije staze, pa samim tim i ugla koji će da se dobije, koji u nekim slučajevima može da bude 0^{o} (kao na primer $x^{4} - 1 = 0$).

Na ovaj način dobijamo samo realna rešenja polinoma, pa ćemo samo neke polinome potpuno rešiti, dok je za druge potrebno da nađemo kompleksna rešenja da bismo ih potpuo rešili.

Da dobijena dužina x zaista predstavlja jedno od rešenja polinoma možemo dokazati geometrijskom analizom slike koristeći sličnost pravouglih trouglova. Nazovimo dobijeni ugao α , onda je $x=\sin\alpha$, a $\cos\alpha=1$, pa je $\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=x$.

6 Konstrukcije mnogouglova

Specifičan problem koji su pokušavali da reše još u antičko doba bila je konstrukcija pravilnih n-touglova za malo n. Ova konstrukcija je uspešno izvršena za $n=4,\ 6,\ 8,\ 10$ i 12, ali ne i za $n=3,\ 5,\ 7,\ 9$ ili 11. Za praktičnu primenu gde delimo ceo krug na N delova, postoje konstrukcije koje je dao Austrijski matematičar Robert Geretšleger (Robert Geretschläger). Konstrukcija sedmouglova Euklidovim metodama je nemoguća.

6.1 Sedmougao

Sedmougao možemo jasno naći pomoću origami savijanja. Sedam temena dobijamo kao rešenja jednačine:

$$z^7 - 1 = 0 (1)$$

u kompleksnoj ravni. Odavde sledi da je krug opisan oko sedmougla jedinični i da je jedan ugao sedmougla tačka z_1 na realnoj osi. Pošto je jedno rešenje poznato, ostalih šest su koreni iz

$$\frac{z^7 - 1}{z - 1} = z^6 + z^5 + z^4 + z^3 + z^2 + z^1 + 1 = 0 \tag{2}$$

Za bilo koji z koji zadovoljava jednačinu, konjugacija \overline{z} je takođe rešenje, pošto je realna osa na osi simetrije pravilnog sedmougla. Takođe, pošto $|z|=|\overline{z}|=1$, imamo da je $\overline{z}=\frac{1}{z}$. Sada možemo definisati

$$\varsigma = z + \frac{1}{z} = z + \overline{z} = 2 \cdot Re(z) \tag{3}$$

$$\begin{array}{lll} z_1 = 1 + i \cdot 0 & z_2 = \cos \frac{2\pi}{7} + i \cdot \sin \frac{2\pi}{7} & z_3 = \cos \frac{4\pi}{7} + i \cdot \sin \frac{4\pi}{7} \\ z_4 = \cos \frac{6\pi}{7} + i \cdot \sin \frac{6\pi}{7} & z_5 = \overline{z_4} = \cos \frac{8\pi}{7} + i \cdot \sin \frac{8\pi}{7} \\ z_6 = \overline{z_3} = \cos \frac{10\pi}{7} + i \cdot \sin \frac{10\pi}{7} & z_7 = \overline{z_2} = \cos \frac{12\pi}{7} + i \cdot \sin \frac{12\pi}{7} \\ a = \cos \frac{2\pi}{7} = Re(z_2) = Re(z_7) & b = \cos \frac{4\pi}{7} = Re(z_3) = Re(z_6) \end{array}$$

$$c = \cos \frac{6\pi}{7} = Re(z_4) = Re(z_5)$$

Prilikom deljenja sa z^3 , uočavamo da je jednačina (2) ekvivalentna sa

$$z^{3} + z^{2} + z^{1} + 1 + \frac{1}{z} + \frac{1}{z^{2}} + \frac{1}{z^{3}} = 0$$

pošto 0 nije koren i pošto

$$\varsigma^{3} = \left(z + \frac{1}{z}\right)^{3} = z^{3} + 3z + \frac{3}{z} + \frac{1}{z^{3}} = z^{3} + \frac{1}{z^{3}} + 3\left(z + \frac{1}{z}\right) = z^{3} + \frac{1}{z^{3}} + 3\varsigma \Longleftrightarrow \varsigma^{3} - 3\varsigma = z^{3} + \frac{1}{z^{3}}$$

i

$$\varsigma^2 = \left(z + \frac{1}{z}\right)^2 = z^2 + 2 + \frac{1}{z^2} \iff \varsigma^2 - 2 = z^2 + \frac{1}{z^2},$$

zamenom dobijamo

$$\left(z^3+\frac{1}{z^3}\right)+\left(z^2+\frac{1}{z^2}\right)+\left(z+\frac{1}{z}\right)+1=0 \Longleftrightarrow \varsigma^3-3\varsigma+\varsigma^2-2+\varsigma+1=\Longleftrightarrow \varsigma^3+\varsigma^2-2\varsigma-1=0.$$

Iz jednačine, vidimo da je svaki koren jednačine (3): $\varsigma^3 + \varsigma^2 - 2\varsigma - 1 = 0$ (4) realan i jednak dvostrukoj zajedničkoj realnoj komponenti dva konjugovano kompleksna rešenja jednačine (1).

Slika 8 : Konstrukcija sedmougla

6.2 Konstrukcija sedmougla

Za konstrukciju koristimo kvadratni papir. U prvom koraku presavijemo naspramne ivice tako da dobijemo koordinatni sistem sa centrom u tački M(0,0). Sredine ivica imaju koordinate (-2,0), (2,0), (0,-2) i (0,2), tj. smatraćemo da je papir veličine $4\cdot 4$. Kao sto je pokazano u Lilovoj metodi [6], rešenja jednačine trećeg stepena $x^3+px^2+qx+r=0$ je tangens ugla koji grade staza koeficijenata i zajednička tangenta parabola p_1 i p_2 definisanih fokusima $F_1\left(-\frac{p}{2}+\frac{r}{2},\frac{q}{2}\right)$ i $F_2\left(0,\frac{1}{2}\right)$ i direktrisama $l_1:x=-\frac{p}{2}-\frac{r}{2}$ i $l_2:y=-\frac{1}{2}$. Ako postvimo ove fokuse u tačkama $F_1(-1,-1)$ i $F_2\left(0,\frac{1}{2}\right)$ i direktrise dobijamo $l_1:x=0$ i $l_2:y=-\frac{1}{2}$. Mozemo, zatim, da transliramo ceo ovaj sistem paralelno po y-osi za jednu polovinu i dobićemo žiže $F_1\left(-1,-\frac{1}{2}\right)$ i $F_2(0,1)$ i direktrise $l_1:x=0$ i $l_2:y=0$. Ovo je urađeno u koracima 2-5. F_1 je u tački A i F_2 je u tački B. Zajednička tangenta ovih dveju parabola koju konstruišemo u koraku 4 je linija sa jednačinom $2\cos\frac{2\pi}{7}$, pa je 4. korak jedini koji se ne može konstruisati pomoću

lenjira i šestara. U koracima od 6 do 8 konstruišemo linije tako da u jednom od preseka dobijemo tačku E sa y koordinatom $-2\cos\frac{2\pi}{7}$. Pošto je rastojanje od tačke M(0,0) do tačke 1(0,-2) u koraku 9 dužine 2. Rastojanje između tačke M(0,0) i tačaka 2 i 7 su takođe 2 i tačke 7, 1 i 2 su tri susedna ugla sedmougla. U koraku 10 konstruišemo prve dve stranice trougla, a u koracima od 11 do 13 simetričnim preslikavanjem dobijenog dela sedmougla konstruišemo temena 3 i 6, a zatim i temena 4 i 5. Dobijeni sedmougao je prikazan u koraku 14.

Slika 10 : Konstrukcija mnogougla

7 Zaključak

Origami konstrukcije mogu da reše neke geometrijske probleme koji se ne mogu rešiti pomoću lenjira i šestara. Ovde je prikazana konstrukcija trisekcije ugla. U ovom radu rešeni su zanimljivi problemi konstrukcije pravilnog sedmougla. U nekim budućim radovima mogla bi se prikazati konstrukcijska rešenja deljenja uglova na 9, 11,... delova i pomoću njih mogao bi se prikazati bilo koji pravilan mnogougao. Takođe, u ovom radu su konstrukcijski nađena rešenja jednačine četvrtog i petog stepena za njihove opšte oblike. Ova rešenja su konstruisana preko origami aksioma sa proširenjem pravila pri dvostrukom i trostrukom savijanju. Takođe, date su smernice za konstruisanje realnih rešenja bilo kog stepena.

Literatura

- [1] http://nyjm.albany.edu:8000/j/2000/6 8.pdf
- [2] http://en.wikipedia.org/wiki/Huzita's_axioms
- [3] http://www.math.sjsu.edu/alperin/Alhazen.pdf
- [4] http://www.langorigami.com/science/hha/origami_constructions.pdf
- [5] http://journals.cms.math.ca/cgi bin/vault/public/view/CRUXv23n2/body/PDF/page81 88.pdf?i
- [6] http://www.sjsu.edu/alperin/Alperinlang.pdf
- [7] http://www.concentric.net/pvb/ALG/rightpaths.html

Abstract

The base of origami constructions are origami axioms, known as Huzita-Hatori's axioms. We considered other origami alignments which we used to define two-fold and three-fold simultaneous creases. We used multi-fold creases to solved problem of angle trisection. Also, we used it in constructions solving of equations of fourth and fifth degree. We considered constructions regular poligons and constructed regular heptagon with origami.