Electromania lecture and problem statement discussion

ELECTRONICS CLUB

A quick review

Electronic Circuits: Analog and Digital

Digital Electronics

- Deals with discrete values
- Voltage higher than a particular threshold corresponds to 1.
- Voltage lower than that threshold corresponds to o.

What's a clock?

* At the basic level, just a special waveform.

What hardware do we need?

- * IC(s)
- * Breadboards

Breadboard

What's an IC?

- An integrated circuit.
- For our purposes, we will treat it as a black box.
- We do not concern ourselves about the insides of an IC.
- We look at it from the outside, from an input/output standpoint.

What's inside an IC?

We will learn several ICs today

- 555
- 4029
- **-**7447
- Mux-Demux (4051/4052)
- Flipflops (4027)
- Logic Gates (AND/OR/NOT)

The Clock – 555 (Astable Mode)

555 in Monostable Mode

Generates Clock pulse when triggered

OUTPUT

The Counter - 4029

The Display

The Problem - Binary to Decimal?

The Solution - 7447

The Final Circuit

How do I put the 'Logic'?

AND GATE

Truth Table(A.B)

INPUT		OUTPUT
A	В	A AND B
О	0	0
О	1	0
1	O	0
1	1	1

OR GATE

Truth Table(A+B)

INPUT		OUTPUT
Α	В	A AND B
0	0	0
0	1	1
1	0	1
1	1	1

NOT GATE

Truth Table(~A)

INPUT	ОИТРИТ
Α	NOT A
0	1
1	0

NAND, NOR

XOR GATE

Truth Table

INPUT		OUTPUT
Α	В	A AND B
0	0	0
0	1	1
1	0	1
1	1	0

Multiplexers and Demultiplexers

Multiplexers

- Multiple input, one output
- A single line is connected electrically to the output
- The selection of the input which is to be connected to the output is done via selection pins

Electrical Connection

Demultiplexers

- A mirror of the multiplexer
- Multiple output, one input
- One of the output is electrically connected to the input
- The selection of the input which is to be connected to the output is done via selection pins

Do we need two separate devices? No!

Flipflops (4027)

* Flipflops are the memory devices. They remember the last output and changes its state according to two inputs J and K.

J	K	$Q_{(t+}$	<u>1)</u>
0	0	$Q_{(t)}$	unchanged
0	1	0	reset
1	0	1	set
1	1	$\overline{\overline{Q}}_{(t)}$	output inversion

Using switches

Never leave a input pin unconnected.

• Pull Up/Pull Down.

Some Useful Advice

- Tight, clean, non-overlapping connections, which must follow wire colour conventions
- Test each and every small part of the circuit, do not allow the circuit to grow too big before testing it.
- Use gates for combining input, do not combine by direct shorting.
- Do NOT leave any input pin unconnected, pull it up/down.
- Do NOT divide one output into many wires.
- Be very careful while making power connections: this may burn your IC.
- Regularly meet club secretaries, and when needed, the coordinators.

Join Us

Website: http://students.iitk.ac.in/eclub/

FB Group: https://www.facebook.com/groups/eclub.iitk/

E-mail : eclub.iitk@gmail.com

YouTube : http://www.youtube.com/user/electronicsclub

Contact Us

Pratik Bhangale 215 / Hall 3 pratikab@iitk.ac.in 8960742030

Ganesh Seelam
215 / Hall 3
gmspavan@iitk.ac.in
7755057757

Shivashish Gupta E-207 /Hall 5 kgshiva@iitk.ac.in 7755047940