Problem Set #4, Due: Wednesday February 15 by 11:00am

PHY 362K - Quantum Mechanics II, UT Austin, Spring 2017 (Dated: February 15, 2017)

I. PERTURBED HARMONIC OSCILLATOR

Consider a perturbed Harmonic oscillator with Hamiltonian:

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{1}$$

where the "bare" Hamiltonian is:

$$\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \tag{2}$$

and we perturb with a linear potential:

$$\hat{V} = g\hat{x} \tag{3}$$

where g is a constant.

1. Perturbatively compute the energy levels of \hat{H} to second order in V and the energy eigenstates to first order in V.

Solution: The first order correction to the energy levels is given by

$$E_n^1 = \langle n^0 | \hat{V} | n^0 \rangle = g \langle n^0 | \hat{x} | n^0 \rangle$$

We can write $\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a} + \hat{a}^{\dagger})$, making this substitution and recalling that $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$ and $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$, we find:

$$\begin{split} E_n^1 &= g \sqrt{\frac{\hbar}{2m\omega}} \left(\langle n^0 | \hat{a} | n^0 \rangle + \langle n^0 | \hat{a}^\dagger | n^0 \rangle \right) \\ &= g \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{n} \langle n^0 | (n-1)^0 \rangle + \sqrt{n+1} \langle n^0 | (n-1)^0 \rangle \right) \end{split}$$

but the states $|n^0\rangle$ are orthogonal, so this expression reduces to

$$E_n^1 = 0 (4)$$

The second order correction to the energy levels is given by

$$E_n^2 = \sum_{\substack{m=0 \\ m \neq n}}^{\infty} \frac{|\langle m^0 | \hat{V} | n^0 \rangle|^2}{E_n^0 - E_m^0} = g^2 \sum_{\substack{m=0 \\ m \neq n}}^{\infty} \frac{|\langle m^0 | \hat{x} | n^0 \rangle|^2}{E_n^0 - E_m^0}$$

writing \hat{x} in terms of the creation and annihilation operators, this becomes

$$E_n^2 = g^2 \frac{\hbar}{2m\omega} \sum_{\substack{m=0\\m \neq n}}^{\infty} \frac{|\langle m^0 | \hat{a} + \hat{a}^{\dagger} | n^0 \rangle|^2}{E_n^0 - E_m^0}$$

but we know that the ground state energies of the unperturbed harmonic oscillator are $E_n^0 = \hbar\omega(n+1/2)$, so we can write

$$\begin{split} E_n^2 &= g^2 \frac{\hbar}{2m\omega} \sum_{\substack{m=0\\ m \neq n}}^{\infty} \frac{|\langle m^0 | \hat{a} | n^0 \rangle + \langle m^0 | \hat{a}^\dagger | n^0 \rangle|^2}{\hbar\omega(n+1/2) - \hbar\omega(m+1/2)} \\ &= \frac{g^2}{2m\omega^2} \sum_{\substack{m=0\\ m \neq n}}^{\infty} \frac{|\sqrt{n} \langle m^0 | (n-1)^0 \rangle + \sqrt{n+1} \langle m^0 | (n+1)^0 \rangle|^2}{n-m} \\ &= \frac{g^2}{2m\omega^2} \left(\frac{|\sqrt{n}|^2}{n-(n-1)} + \frac{|\sqrt{n+1}|^2}{n-(n+1)} \right) \end{split}$$

where the last line follows from the orthogonality of the energy eigenstates of the unperturbed Hamiltonian, $|n^0\rangle$. Simplifying, we find

$$E_n^2 = -\frac{g^2}{2m\omega^2} \tag{5}$$

The first order correction to the energy eigenstates is given by

$$\begin{split} |n^{1}\rangle &= \sum_{\substack{m=0\\m\neq n}}^{\infty} \frac{\langle m^{0}|\hat{V}|n^{0}\rangle}{E_{n}^{0} - E_{m}^{0}} |m^{0}\rangle = g\sqrt{\frac{\hbar}{2m\omega}} \sum_{\substack{m=0\\m\neq n}}^{\infty} \frac{\langle m^{0}|\hat{a} + \hat{a}^{\dagger}|n^{0}\rangle}{\hbar\omega(n+1/2) - \hbar\omega(m+1/2)} |m^{0}\rangle \\ &= \frac{g}{\hbar\omega}\sqrt{\frac{\hbar}{2m\omega}} \sum_{\substack{m=0\\m\neq n}}^{\infty} \frac{\sqrt{n}\langle m^{0}|(n-1)^{0}\rangle + \sqrt{n+1}\langle m^{0}|(n+1)^{0}\rangle}{n-m} |m^{0}\rangle \\ &= \frac{g}{\hbar\omega}\sqrt{\frac{\hbar}{2m\omega}} \left[\frac{\sqrt{n}}{n-(n-1)} |(n-1)^{0}\rangle + \frac{\sqrt{n+1}}{n-(n+1)} |(n+1)^{0}\rangle \right] \end{split}$$

where the last line follows from the orthogonality of the energy eigenstates of the unperturbed Hamiltonian. Simplifying, we find

$$|n^{1}\rangle = \frac{g}{\hbar\omega}\sqrt{\frac{\hbar}{2m\omega}}\left[\sqrt{n}|(n-1)^{0}\rangle - \sqrt{n+1}|(n+1)^{0}\rangle\right]$$
(6)

2. What is the condition on g for this perturbative approximation to be accurate?

Solution: The energy scale of the problem is given by $\hbar\omega$, and the length scale of the problem is given by the coefficient of the creation and annihilation operators in the expression for \hat{x} , $\sqrt{\frac{\hbar}{2m\omega}}$. Now, g has units of energy per length, and the energy per length scale of the problem is given by $\frac{\hbar\omega}{\sqrt{\frac{\hbar}{2m\omega}}} = \sqrt{2m\hbar\omega^3}$. Therefore, we can say that the perturbative approximation is accurate as long as

$$\frac{|g|}{\sqrt{2m\hbar\omega^3}} \ll 1$$

3. Why does the first order correction to energy vanish? (Hint: consider the symmetries of the $\frac{1}{2}m\omega^2\hat{x}^2$ potential). Similarly, can you explain the presence/absence of even/odd n terms in the first order correction to the energy eigenstates?

Solution: Let \hat{P} be the parity operator, which is a unitary operator that maps \hat{x} to $-\hat{x}$ and \hat{p} to $-\hat{p}$. Note that since all occurrences of \hat{x} and \hat{p} in \hat{H}_0 are raised to an even power, \hat{H}_0 is unaffected by the parity operator, which is to say that $\hat{P}^{\dagger}\hat{H}_0\hat{P} = \hat{H}_0$. However, since $\hat{V} = g\hat{x}$, \hat{V} switches signs under the parity operator, which is to say that $\hat{P}^{\dagger}V\hat{P} = -\hat{V}$. Now, note that since \hat{P} is unitary,

$$\hat{P}^{\dagger}\hat{H}_{0}\hat{P} = \hat{H}_{0} \implies \hat{H}_{0}\hat{P} = \hat{P}\hat{H}_{0}$$

which is to say that \hat{H}_0 and \hat{P} commute. Therefore \hat{H}_0 and \hat{P} have simultaneous eigenstates. Therefore $\hat{P}|n^0\rangle = \lambda|n^0\rangle \implies |n^0\rangle = \frac{\hat{P}|n^0\rangle}{\lambda}$. So we can write

$$E_n^1 = \langle n^0 | \hat{V} | n^0 \rangle = \frac{\langle n^0 | \hat{P}^\dagger \hat{V} \hat{P} | n^0 \rangle}{\lambda^* \lambda} = \frac{\langle n^0 | (-\hat{V}) | n^0 \rangle}{\lambda^* \lambda}$$

but \hat{P} is unitary, so $|\lambda|^2 = 1$, therefore

$$E_n^1 = -\langle n^0 | \hat{V} | n^0 \rangle = -E_n^1 \implies E_n^1 = 0$$

So the fact that H_0 is symmetric under parity while the perturbation \hat{V} is antisymmetric forces the first order correction to the energy to vanish.

For odd n, the $|n^1\rangle$ correction is a superposition of only even $|m^0\rangle$ states, while for even n, the $|n^1\rangle$ correction is a superposition of only even $|m^0\rangle$ states. This is because the perturbation is proportional to \hat{x} , which is in turn proportional to $\hat{a}^{\dagger} + \hat{a}$. This sum of creation and annihilation operators has the effect of transforming a state $|n^0\rangle$ to a sum of states $|(n-1)^0\rangle$ and $|(n+1)^0\rangle$. It follows that if n is even (odd) this is a sum of two odd (even) n terms.

4. This problem can also be exactly solved (without much effort – try changing variables to re-write it as a different harmonic oscillator Hamiltonian). What are the exact energies? How does this compare to the perturbative approximation for small g? (Hint: you might also use this to check your answer to the previous parts.)

Solution: By completing the square, we can write

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2 + g\hat{x} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\left(\hat{x} + \frac{g}{m\omega^2}\right)^2 - \frac{g^2}{2m\omega^2}$$

if we then make the change of variables $\hat{y} = \hat{x} + \frac{g}{m\omega^2}$, the Hamiltonian becomes

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{y}^2 - \frac{g^2}{2m\omega^2}$$

Applying \hat{H} to an eigenstate, $|n\rangle$ of the harmonic oscillator Hamiltonian $\frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{y}^2$, we find

$$\hat{H}|n\rangle = \left(\frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{y}^2\right)|n\rangle - \frac{g^2}{2m\omega^2}|n\rangle = \left(\hbar\omega(n+1/2) - \frac{g^2}{2m\omega^2}\right)|n\rangle$$

so the exact energies are

$$E_n = \hbar\omega(n+1/2) - \frac{g^2}{2m\omega^2}$$
 (7)

This agrees exactly with our perturbative approximation.

II. HIGHER ORDERS IN PERTURBATION THEORY AND WAVE-FUNCTION RENORMALIZATION

Consider a generic Hamiltonian:

$$\hat{H} = \hat{H}_0 + \lambda \hat{V} \tag{8}$$

As in class, we will treat $\lambda \hat{V}$ as a perturbation and expand the full eigenstates, $|n\rangle$, and eigenenergies, ε_n of \hat{H} in a power series in λ :

$$|n\rangle = \sqrt{Z_n} \left(\sum_{k=0}^{\infty} \lambda^k |n^k\rangle \right)$$

$$\varepsilon_n = \sum_{k=0}^{\infty} \lambda^k \varepsilon_n^k$$
(9)

where $|n^0\rangle$ are the eigenstates of the unperturbed Hamiltonian, \hat{H}_0 : $\hat{H}_0|n^0\rangle = \varepsilon_n^0|n^0\rangle$ You may assume that: $\varepsilon_n^0 \neq \varepsilon_m^0$ for all $m \neq n$ (i.e. there are no degeneracies).

In class we worked out expressions for $|n^1\rangle$ and $\varepsilon_n^{1,2}$.

- 1. Wave-function (re)normalization: The normalization constant Z_n dropped out of the eigenvalue equation for \hat{H} . However, properly normalizing $|n\rangle$ becomes important if we want to compute, say, the expectation value $\langle n|\hat{O}|n\rangle$ of other observables, \hat{O} . Note that since $Z_n = |\langle n_0|n\rangle|^2$, we can physically interpret this quantity as the probability that a particle in the exact \hat{H} -eigenstate $|n\rangle$ is measured in the the unperturbed eigenstate $|n^0\rangle$.
 - (a) Find Z_n up to second order in λ so that $|n\rangle$ is properly normalized ($\langle n|n\rangle = 1$). At what order in λ does the first non-zero correction to $Z_n^0 = 1$ appear?

Solution: For $|n\rangle$ to be properly normalized, we must have $\langle n|n\rangle = 1$. Substituting the power series expression for $|n\rangle$, we find:

$$\langle n|n\rangle = 1$$

$$\left(\sqrt{Z_n} \sum_{m=0}^{\infty} \lambda^m \langle n^m| \right) \left(\sqrt{Z_n} \sum_{k=0}^{\infty} \lambda^k |n^k\rangle \right) = 1$$

$$Z_n \sum_{m,k=0}^{\infty} \lambda^{m+k} \langle n^m |n^k\rangle = 1$$

expanding to second order in λ , we find

$$\langle n|n\rangle = Z_n \left(\langle n^0|n^0\rangle + \lambda(\langle n^0|n^1\rangle + \langle n^1|n^0\rangle) + \lambda^2(\langle n^1|n^1\rangle + \langle n^2|n^0\rangle + \langle n^0|n^2\rangle) \right) = 1$$

Since we can write $|n^1\rangle$ and $|n^2\rangle$ as linear combinations of $|m^0\rangle$, $m \neq n$, it follows from the orthogonality of the unperturbed eigenstates that $\langle n^1|n^0\rangle = \langle n^0|n^1\rangle = \langle n^2|n^0\rangle = \langle n^0|n^2\rangle = 0$. Therefore,

$$\langle n|n\rangle = Z_n \left(1 + \lambda^2 \langle n^1|n^1\rangle\right) = 1$$

Substituting the expression for $|n^1\rangle$ in terms of the unperturbed eigenstates, $|n^1\rangle=\sum_{\substack{m=0\\m\neq n}}^{\infty}\frac{\langle m^0|\hat{V}|n^0\rangle}{E_n^0-E_m^0}|m^0\rangle$, we find

$$Z_{n} \left(1 + \lambda^{2} \sum_{\substack{m=0 \ m \neq n}}^{\infty} \sum_{\substack{k=0 \ m \neq n}}^{\infty} \frac{\langle n^{0} | \hat{V} | m^{0} \rangle}{E_{n}^{0} - E_{m}^{0}} \frac{\langle k^{0} | \hat{V} | n^{0} \rangle}{E_{n}^{0} - E_{k}^{0}} \langle m^{0} | k^{0} \rangle \right) = 1$$

$$Z_{n} \left(1 + \lambda^{2} \sum_{\substack{m=0 \ m \neq n}}^{\infty} \frac{|\langle n^{0} | \hat{V} | m^{0} \rangle|^{2}}{(E_{n}^{0} - E_{m}^{0})^{2}} \right) = 1$$

where the last line follows from the orthonormality of the unperturbed eigenstates. Therefore,

$$Z_n = \left(1 + \lambda^2 \sum_{\substack{m=0\\m \neq n}}^{\infty} \frac{|\langle n^0 | \hat{V} | m^0 \rangle|^2}{(E_n^0 - E_m^0)^2}\right)^{-1}$$

If we now perform a binomial expansion to second order in lambda, we find

$$Z_n = 1 - \lambda^2 \sum_{\substack{m=0\\m\neq n}}^{\infty} \frac{|\langle n^0 | \hat{V} | m^0 \rangle|^2}{(E_n^0 - E_m^0)^2}$$
(10)

The first non-zero correction to $Z_n = 1$ occurs at second order in λ .

(b) Show, to this order, that $Z_n = \frac{\partial \varepsilon_n}{\partial \varepsilon_n^0}$ (Note: though you will demonstrate this up to second order in λ , this relationship actually holds to all orders!).

Solution: We know that we can write $E_n = \sum_{k=0}^{\infty} \lambda^k E_n^k$, expanding this to second order in λ , we have $E_n = E_n^0 + \lambda E_n^1 + \lambda^2 E_n^2$. But $E_n^1 = \langle n^0 | \hat{V} | n^0 \rangle$ and $E_n^2 = \sum_{\substack{m=0 \ m \neq n}}^{\infty} \frac{|\langle n^0 | \hat{V} | m^0 \rangle|^2}{E_n^0 - E_n^0}$, so we can write

$$E_n = E_n^0 + \lambda \langle n^0 | \hat{V} | n^0 \rangle + \lambda^2 \sum_{\substack{m=0 \\ m \neq n}}^{\infty} \frac{|\langle n^0 | \hat{V} | m^0 \rangle|^2}{E_n^0 - E_m^0}$$

Differentiating with respect to E_n^0 , we obtain

$$\frac{\partial E_n}{\partial E_n^0} = 1 - \lambda^2 \sum_{\substack{m=0\\m \neq n}}^{\infty} \frac{|\langle n^0 | \hat{V} | m^0 \rangle|^2}{(E_n^0 - E_m^0)^2}$$

However, to second order in λ , this equals the expression we obtained for Z_n in part (a), therefore $Z_n = \frac{\partial E_n}{\partial E_n^0}$.

2. Next Higher order terms: Compute the expression for the second order correction to the energy eigenstates, $|n^2\rangle$, and third order correction to the energies, ε_n^3 in terms of the unperturbed eigenstates and energies of \hat{H}_0 .

Solution: Substituting the power series expansion of $|n\rangle$ and E_n into the time independent Schrödinger equation, $\hat{H}|n\rangle = E_n|n\rangle$ produces

$$(\hat{H}_0 + \lambda \hat{V}) \sum_{k=0}^{\infty} \lambda^k |n^k\rangle = \left(\sum_{m=0}^{\infty} \lambda^m E_n^m\right) \left(\sum_{k=0}^{\infty} \lambda^k |n^m\rangle\right)$$

collecting like powers of λ and equating, we find that the coefficients of λ^2 produce the equation

$$\hat{H}_0|n^2\rangle + \hat{V}|n^1\rangle = E_n^0|n^2\rangle + E_n^1|n^1\rangle + E_n^2|n^0\rangle \tag{11}$$

and the coefficients of λ^3 produce the equation

$$\hat{H}_0|n^3\rangle + \hat{V}|n^2\rangle = E_n^0|n^3\rangle + E_n^1|n^2\rangle E_n^2|n^1\rangle + E_n^3|n^0\rangle \tag{12}$$

We will begin by finding the second order correction to the energy eigenstates, $|n^2\rangle$. If we take the inner product of both sides of equation 11 with $|m^0\rangle$, where $m \neq n$, then we find

$$\langle m^{0}|\hat{H}_{0}|n^{2}\rangle + \langle m^{0}|\hat{V}|n^{1}\rangle = E_{n}^{0}\langle m^{0}|n^{2}\rangle + E_{n}^{1}\langle m^{0}|n^{1}\rangle + E_{n}^{2}\langle m^{0}|n^{0}\rangle$$

rearranging and using the hermiticity of \hat{H}_0 to write $\langle m_0|\hat{H}_0|n^2\rangle=E_m^0\langle m^0|n^2\rangle$, we have

$$\begin{split} (E_m^0 - E_n^0) \langle m^0 | n^2 \rangle &= E_n^1 \langle m^0 | n^1 \rangle - \langle m^0 | \hat{V} | n^1 \rangle \\ \langle m^0 | n^2 \rangle &= \frac{E_n^1 \langle m^0 | n^1 \rangle - \langle m^0 | \hat{V} | n^1 \rangle}{E_m^0 - E_n^0} \end{split}$$

We can write $|n^2\rangle = \sum_{\substack{m=0 \ m\neq n}}^{\infty} \langle m^0 | n^2 \rangle |m^0\rangle$, therefore the second order correction to the energy eigenstates is

$$|n^{2}\rangle = \sum_{\substack{m=0\\m\neq n}}^{\infty} \frac{E_{n}^{1}\langle m^{0}|n^{1}\rangle - \langle m^{0}|\hat{V}|n^{1}\rangle}{E_{m}^{0} - E_{n}^{0}} |m^{0}\rangle$$

$$(13)$$

Now, to find the third order correction to the energies, E_n^3 , we will take the inner product of both sides of equation 12 with $|n^0\rangle$. This produces

$$\langle n^{0}|\hat{H}_{0}|n^{3}\rangle + \langle n^{0}|\hat{V}|n^{2}\rangle = E_{n}^{0}\langle n^{0}|n^{2}\rangle + E_{n}^{1}\langle n^{0}|n^{2}\langle +E_{n}^{2}\langle n^{0}|n^{1}\rangle + E_{n}^{3}\langle n^{0}|n^{0}\rangle$$

rearranging and using the hermiticity of \hat{H}_0 to write $\langle n^0|\hat{H}_0|n^3\rangle=E_n^0\langle n^0|n^3\rangle$, we obtain

$$E_n^3 = \langle n^0 | \hat{V} | n^2 \rangle - E_n^1 \langle n^0 | n^2 \rangle - E_n^2 \langle n^0 | n^1 \rangle$$

However, we can write $|n^1\rangle$ and $|n^2\rangle$ as a linear combination of $|m^0\rangle$, with $m \neq n$, therefore $\langle n^0|n^1\rangle = \langle n^0|n^2 = 0$, so the expression simplifies to

$$E_n^3 = \langle n^0 | \hat{V} | n^2 \rangle$$

substituting the expression for $|n^2\rangle$ that we found in the last problem, we obtain

$$E_n^3 = \sum_{\substack{m=0\\m \neq n}}^{\infty} \frac{E_n^1 \langle m^0 | n^1 \rangle - \langle m^0 | \hat{V} | n^1 \rangle}{E_m^0 - E_n^0} \langle n^0 | \hat{V} | m^0 \rangle$$
(14)

III. DEGENERATE PERTURBATION THEORY EXAMPLE – TWO SPINS-1/2

Consider two spins-1/2, with spin-operators $\hat{\mathbf{S}}_{1,2} = \frac{\hbar}{2}\hat{\boldsymbol{\sigma}}$, where $\sigma^{x,y,z}$ are Pauli operators, and Hamiltonian:

$$H = J\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 + g\hat{S}_1^x \left(\frac{1}{\hbar}\hat{S}_2^z + \frac{1}{2}\right)$$

$$\tag{15}$$

Suppose that, J, g > 0, and $g \ll J$, and compute the energy-eigenstates to first order in g, and the energies to second order in g (be sure to properly take care of any degeneracies).

Hint: to solve for the unperturbed eigenstates with g = 0, you can use that $\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 = \frac{1}{2} \left[\left(\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2 \right)^2 - \hat{\mathbf{S}}_1^2 - \hat{\mathbf{S}}_2^2 \right]$, and the properties of adding angular momentum that you learned last semester.

Solution: First, we will find the eigenstates of the unperturbed Hamiltonian, $\hat{H}_0 = J\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 = J(S_1^x S_2^x + S_1^y S_2^y + S_1^z S_2^z)$. By direct calculation, we find

$$J\hat{\mathbf{S}}_{1}\cdot\hat{\mathbf{S}}_{2}|\uparrow\uparrow\rangle = J\frac{\hbar^{2}}{4}(|\downarrow\downarrow\rangle + i^{2}|\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle) = J\frac{\hbar^{2}}{4}|\uparrow\uparrow\rangle$$

$$J\hat{\mathbf{S}}_{1}\cdot\hat{\mathbf{S}}_{2}|\downarrow\downarrow\rangle = J\frac{\hbar^{2}}{4}(|\uparrow\uparrow\rangle + i^{2}|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle) = J\frac{\hbar^{2}}{4}|\downarrow\downarrow\rangle$$

$$J\hat{\mathbf{S}}_{1}\cdot\hat{\mathbf{S}}_{2}\left[\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)\right] = J\frac{\hbar^{2}}{4\sqrt{2}}(|\downarrow\uparrow\rangle+|\uparrow\downarrow\rangle-i^{2}|\downarrow\uparrow\rangle-i^{2}|\uparrow\downarrow\rangle-|\uparrow\downarrow\rangle-|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle) = J\frac{\hbar^{2}}{4\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)$$

$$J\hat{\mathbf{S}}_{1}\cdot\hat{\mathbf{S}}_{2}\left[\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)\right] = J\frac{\hbar^{2}}{4\sqrt{2}}(|\downarrow\uparrow\rangle-|\uparrow\downarrow\rangle-i^{2}|\downarrow\uparrow\rangle+i^{2}|\uparrow\downarrow\rangle-|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle) = J\frac{3\hbar^{2}}{4\sqrt{2}}(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)$$

Therefore, the eigenvectors of the unperturbed Hamiltonian are $|1^0\rangle=|\uparrow\uparrow\rangle$ with eigenvalue $E_1^0=J\frac{\hbar^2}{4},\ |2^0\rangle=|\downarrow\downarrow\rangle$ with eigenvalue $E_2^0=J\frac{\hbar^2}{4},\ |3^0\rangle=\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)$ with eigenvalue $E_3^0=J\frac{\hbar^2}{4},$ and $|4^0\rangle=\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)$ with eigenvalue $E_4^0=-J\frac{3\hbar^2}{4}.$

Note that there are three degenerate states that share the energy $J\frac{\hbar^2}{4}$. We will now construct the matrix that represents the perturbation, $\hat{V} = g\hat{S}_1^x \left(\frac{1}{\hbar}\hat{S}_2^z + \frac{1}{2}\right)$, in the subspace spanned by these degenerate states. We begin by computing

$$\begin{split} \hat{V}|1^0\rangle &= g\hat{S}_1^x \left(\frac{1}{\hbar}\hat{S}_2^z + \frac{1}{2}\right)|\uparrow\uparrow\rangle = \frac{g\hbar}{2}|\downarrow\uparrow\rangle \\ \hat{V}|2^0\rangle &= g\hat{S}_1^x \left(\frac{1}{\hbar}\hat{S}_2^z + \frac{1}{2}\right)|\downarrow\downarrow\rangle = 0 \\ \hat{V}|3^0\rangle &= g\hat{S}_1^x \left(\frac{1}{\hbar}\hat{S}_2^z + \frac{1}{2}\right) \left[\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)\right] = \frac{g\hbar}{2\sqrt{2}}|\uparrow\uparrow\rangle \end{split}$$

we can now find the matrix form of \hat{V} :

$$\begin{pmatrix} \langle 1^0 | \hat{V} | 1^0 \rangle & \langle 1^0 | \hat{V} | 2^0 \rangle & \langle 1^0 | \hat{V} | 3^0 \rangle \\ \langle 2^0 | \hat{V} | 1^0 \rangle & \langle 2^0 | \hat{V} | 2^0 \rangle & \langle 3^0 | \hat{V} | 2^0 \rangle \\ \langle 3^0 | \hat{V} | 1^0 \rangle & \langle 3^0 | \hat{V} | 2^0 \rangle & \langle 3^0 | \hat{V} | 3^0 \rangle \end{pmatrix} = \begin{pmatrix} 0 & 0 & \frac{g\hbar}{2\sqrt{2}} \\ 0 & 0 & 0 \\ \frac{g\hbar}{2\sqrt{2}} & 0 & 0 \end{pmatrix}$$

By inspection, we can see that the eigenvalues of this matrix are $|1^{0\prime}\rangle = \frac{1}{\sqrt{2}}(|1^{0}\rangle + |3^{0}\rangle)$ with eigenvalue $\frac{g\hbar}{2\sqrt{2}}$, $|2^{0}\rangle$ with eigenvalue 0, and $|3^{0\prime}\rangle = \frac{1}{\sqrt{2}}(|1^{0}\rangle - |3^{0}\rangle)$ with eigenvalue $-\frac{g\hbar}{2\sqrt{2}}$. So in the

new basis $\{|1^{0\prime}\rangle, |2^{0}\rangle, |3^{0\prime}\rangle, |4^{0}\rangle\}$, the matrix representing \hat{V} is diagonal and we can use the results of non-degenerate perturbation theory.

Now the first order energy corrections are

$$\begin{split} E_1^1 &= \langle 1^{0\prime} | \hat{V} | 1^{0\prime} \rangle = \frac{g\hbar}{2\sqrt{2}} \\ E_2^1 &= \langle 2^0 | \hat{V} | 2^0 \rangle = 0 \\ E_3^1 &= \langle 3^{0\prime} | \hat{V} | 3^{0\prime} \rangle = -\frac{g\hbar}{2\sqrt{2}} \\ E_4^1 &= \langle 4^0 | \hat{V} | 4^0 \rangle = -\frac{g\hbar}{4\sqrt{2}} (\langle \uparrow \downarrow | - \langle \uparrow \downarrow |) | \uparrow \uparrow \rangle = 0 \end{split}$$

The second order energy corrections are

$$\begin{split} E_1^2 &= \frac{|\langle 2^0 | \hat{V} | 1^{0\prime} \rangle|^2}{E_1^0 - E_2^0} + \frac{|\langle 3^{0\prime} | \hat{V} | 1^{0\prime} \rangle|^2}{E_1^0 - E_3^0} + \frac{|\langle 4^0 | \hat{V} | 1^{0\prime} \rangle|^2}{E_1^0 - E_4^0} \\ &= \frac{|\langle 4^0 | \hat{V} | 1^{0\prime} \rangle|^2}{E_1^0 - E_4^0} = \frac{\left|\frac{g\hbar}{4} (\langle \downarrow \uparrow | - \langle \uparrow \downarrow |) (|\downarrow \uparrow \rangle + \frac{1}{\sqrt{2}} |\uparrow \uparrow \rangle)\right|^2}{J\hbar^2 (\frac{1}{4} + \frac{3}{4})} \\ &= \frac{\left|\frac{g\hbar}{4}\right|^2}{J\hbar^2} = \frac{g^2}{16J} \\ E_2^2 &= \frac{|\langle 1^{0\prime} | \hat{V} | 2^0 \rangle|^2}{E_2^0 - E_1^0} + \frac{|\langle 3^{0\prime} | \hat{V} | 2^0 \rangle|^2}{E_2^0 - E_3^0} + \frac{|\langle 4^0 | \hat{V} | 2^0 \rangle|^2}{E_2^0 - E_4^0} \\ &= \frac{|\langle 4^0 | \hat{V} | 2^0 \rangle|^2}{E_2^0 - E_4^0} = \frac{|0|^2}{E_2^0 - E_4^0} = 0 \\ E_3^2 &= \frac{|\langle 1^{0\prime} | \hat{V} | 3^{0\prime} \rangle|^2}{E_3^0 - E_1^0} + \frac{|\langle 2^0 | \hat{V} | 3^{0\prime} \rangle|^2}{E_3^0 - E_2^0} + \frac{|\langle 4^0 | \hat{V} | 3^{0\prime} \rangle|^2}{E_3^0 - E_4^0} \\ &= \frac{|\langle 4^0 | \hat{V} | 3^{0\prime} \rangle|^2}{E_3^0 - E_1^0} + \frac{|\langle 2^0 | \hat{V} | 4^0 \rangle|^2}{E_2^0 - E_2^0} + \frac{|\langle 4^0 | \hat{V} | 3^{0\prime} \rangle|^2}{E_3^0 - E_4^0} = 0 \\ E_4^2 &= \frac{|\langle 4^0 | \hat{V} | 3^{0\prime} \rangle|^2}{E_4^0 - E_1^0} + \frac{|\langle 2^0 | \hat{V} | 4^0 \rangle|^2}{E_4^0 - E_2^0} + \frac{|\langle 3^{0\prime} | \hat{V} | 4^0 \rangle|^2}{E_4^0 - E_3^0} \\ &= -\frac{1}{J\hbar^2} \left| -\frac{g\hbar}{2\sqrt{2}} \right|^2 \left(|\langle 1^{0\prime} | \downarrow \downarrow \rangle |^2 + |\langle 2^0 | \downarrow \downarrow \rangle |^2 + |\langle 3^{0\prime} | \downarrow \downarrow \rangle |^2 \right) = -\frac{g^2}{8J} \end{split}$$

The first order eigenstate corrections are:

$$\begin{split} |1^{1}\rangle &= \frac{\langle 2^{0}|\hat{V}|1^{0\prime}\rangle}{E_{1}^{0}-E_{2}^{0}}|2^{0}\rangle + \frac{\langle 3^{0\prime}|\hat{V}|1^{0\prime}\rangle}{E_{1}^{0}-E_{3}^{0}}|3^{0}\rangle + \frac{\langle 4^{0}|\hat{V}|1^{0\prime}\rangle}{E_{1}^{0}-E_{4}^{0}}|4^{0}\rangle \\ &= \frac{\langle 4^{0}|\hat{V}|1^{0\prime}\rangle}{E_{1}^{0}-E_{4}^{0}}|4^{0}\rangle = -\frac{g}{4J\hbar}|4^{0}\rangle \\ |2^{1}\rangle &= \frac{\langle 1^{0\prime}|\hat{V}|2^{0}\rangle}{E_{2}^{0}-E_{1}^{0}}|1^{0\prime}\rangle + \frac{\langle 3^{0\prime}|\hat{V}|2^{0}\rangle}{E_{2}^{0}-E_{3}^{0}}|3^{0\prime}\rangle + \frac{\langle 4^{0}|\hat{V}|2^{0}\rangle}{E_{2}^{0}-E_{4}^{0}}|4^{0}\rangle = \frac{\langle 4^{0}|\hat{V}|2^{0}\rangle}{E_{2}^{0}-E_{4}^{0}}|4^{0}\rangle \\ &= \frac{0}{E_{4}^{0}-E_{2}^{0}}|4^{0}\rangle = 0 \\ |3^{1}\rangle &= \frac{\langle 1^{0\prime}|\hat{V}|3^{0\prime}\rangle}{E_{3}^{0}-E_{1}^{0}}|1^{0\prime}\rangle + \frac{\langle 2^{0}|\hat{V}|3^{0\prime}\rangle}{E_{3}^{0}-E_{2}^{0}}|3^{0\prime}\rangle + \frac{\langle 4^{0}|\hat{V}|3^{0\prime}\rangle}{E_{3}^{0}-E_{4}^{0}}|4^{0}\rangle = \frac{\langle 4^{0}|\hat{V}|3^{0}\rangle}{E_{4}^{0}-E_{3}^{0}}|4^{0}\rangle \\ &= -\frac{g}{4J\hbar}|4^{0}\rangle \\ |4^{1}\rangle &= \frac{\langle 1^{0\prime}|\hat{V}|4^{0}\rangle}{E_{1}^{0}-E_{4}^{0}}|1^{0\prime}\rangle + \frac{\langle 2^{0}|\hat{V}|4^{0}\rangle}{E_{2}^{0}-E_{4}^{0}}|2^{0}\rangle + \frac{\langle 3^{0}|\hat{V}|4^{0}\rangle}{E_{3}^{0}-E_{4}^{0}}|3^{0}\rangle \\ &= 0 + 0 + \frac{g}{2\sqrt{2}J}|2^{0}\rangle = \frac{g}{2\sqrt{2}J}|2^{0}\rangle \end{split}$$

So to second order in g, the energies are

$$E_{1} = J\frac{\hbar^{2}}{4} + \frac{g\hbar}{2\sqrt{2}} + \frac{g^{2}}{16J}$$

$$E_{2} = J\frac{\hbar^{2}}{4}$$

$$E_{3} = J\frac{\hbar^{2}}{4} - \frac{g\hbar}{2\sqrt{2}}$$

$$E_{4} = -J\frac{3\hbar^{2}}{4} - \frac{g^{2}}{8J}$$
(16)

To first order in g, the eigenstates are:

$$|1\rangle = \frac{1}{\sqrt{2}}(|\uparrow\uparrow\rangle + \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)) - \frac{g}{4J\hbar} \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$|2\rangle = |\downarrow\downarrow\rangle$$

$$|3\rangle = \frac{1}{\sqrt{2}}(|\uparrow\uparrow\rangle - \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)) - \frac{g}{4J\hbar} \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$|4\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) + \frac{g}{2\sqrt{2}J}|\uparrow\uparrow\rangle$$

$$(17)$$