Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 31

1. Пусть
$$z = \frac{\sqrt{3}}{2} - \frac{i}{2}$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\frac{1}{2} - \frac{\sqrt{3}i}{2}}$ имеет аргумент $\frac{11\pi}{42}$.

2. Решить систему уравнений:

$$\begin{cases} x(-15+7i) + y(9+5i) = -75 + 141i \\ x(-6+6i) + y(9-2i) = -36 + 64i \end{cases}$$

- 3. Найти корни многочлена $-5x^6 70x^5 405x^4 420x^3 + 3700x^2 + 8000x + 7500$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -5 5i$, $x_2 = -1 + i$, $x_3 = -5$.
- 4. Даны 3 комплексных числа: 24+19i, 23-12i, 25+23i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 3$, $z_2 = 3i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 5 - 2i| < 1\\ |arg(z+4)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (2, 2, 0), b = (3, 4, 5), c = (6, 6, -1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(14,12,10) и плоскость P:20x+40y+22z+262=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-11, 12, 6), $M_1(-3, -4, 8)$, $M_2(-6, -1, 8)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -13x - 9y - 33z + 689 = 0\\ -5x - 15y - 13z + 259 = 0 \end{cases} \qquad L_2: \begin{cases} -8x + 6y - 20z - 2070 = 0\\ 13x - 7y + 619 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .