

- Números enteros y fraccionarios signados
- ALU
- Números reales
- Notación de punto fijo y punto Flotante

Profesor: Fabio Bruschetti Ayudante: Pedro Iriso

Ver 2020

4

Números enteros SIN signo

- Los n bits son usados para la magnitud del número. No hay bit de signo.
 - Ejemplo: Número de 4-bits: 0000_b 1111_b, es decir, desde 0_d hasta 15_d
- Ejemplos
 - $\mathbf{11}_{b} = 3_{d} = +3_{d}$
 - \bullet 1001_b = 9_d = +9_d
 - Recordamos el rango de representación para n bits

$${0;2^n-1}$$

Números enteros CON signo

- Convenios
 - Signo y Magnitud
 - Complemento a 1
 - Complemento a 2
- Se desplaza la recta de representación
 - Exceso 2ⁿ⁻¹

Convenio de Signo y Magnitud (SyM)

- Necesito usar 1 bit para el signo
- El bit más significativo será el del signo
 - 0 = positivo
 - 1 = negativo
- Los restantes bits codifican la magnitud
- ¿Cuál es la ventaja? → Tengo signo! → 1 bit
- ¿Cuál es la desventaja? → Perdí un dígito para la magnitud... El rango de representación cambiará. Tengo n-1 bits para la magnitud

Convenio de Signo y Magnitud (SyM)

Ejemplos

$$+12_d = 00001100_b$$

$$-1_d = 10000001_b$$

Problema: no sirve para las matemáticas

С	В	Α	#
0	0	0	+0
0	0	1	+1
0	1	0	+2
0	1	1	+3
1	0	0	-0
1	0	1	-1
1	1	0	-2
1	1	1	-3

NO SIRVE PARA HACER CUENTAS

Convenio de Signo y Magnitud (SyM)

- Rango de representación
 - Con n bits se pueden representar 2ⁿ combinaciones posibles
 - Al perder 1 bit por el signo, la mitad de los valores posibles serán número negativos y la otra mitad positivos
 - 2ⁿ⁻¹ valores positivos y 2ⁿ⁻¹ negativos
 - En este caso habrá un +0 y un -0 que duplican el valor de dos combinaciones distintas de bits
 - Rango de representación para n bits $\{-(2^{(n-1)}-1);+(2^{(n-1)}-1)\}$

C B A # O O O +0 O D 1 +1 O D 1 +2 O D 1 +3 D D 0 -0 D D 0 -0 D D 0 -2				
0 0 1 +1 0 1 0 +2 0 1 1 +3 1 0 0 -0 1 0 1 -1	С	В	Α	#
0 1 0 +2 0 1 1 +3 1 0 0 -0 1 0 1 -1	0	0	0	+0
0 1 1 +3 1 0 0 -0 1 0 1 -1	0	0	1	+1
1 0 0 -0 1 0 1 -1	0	1	0	+2
1 0 1 -1	0	1	1	+3
 	1	0	0	-0
1 1 0 -2	1	0	1	-1
	1	1	0	-2
1 1 1 -3	1	1	1	-3

- Números positivos = Igual que el convenio de SyM
- Números negativos = Se representan con el Complemento a 1 (Ca1) de su correspondiente número binario positivo
- Complemento a 1 de un bit o "flipp"
 - Ca1 de 1 \rightarrow 0
 - Ca1 de $0 \rightarrow 1$
- Ca1 de una variable A se pude decir el "Complemento" de A

4

Convenio de complemento a 1 (Ca1)

- Complemento a 1 de n-bits:
 - Complemento de cada bit por separado
- Ejemplo
 - $+12_d = 00001100_b$ ■ $-1_d = Ca1 de (+1) \rightarrow +1 = 00000001_b$ Ca1 = $\mathbf{1}11111110_b = -1_d$
- Problema: no sirve para las matemáticas

$$+ \frac{11111110}{1111100} + \frac{-1_d}{-1_d}$$
 NO SIRVE PARA HACER CUENTAS -3_d Ca1 $00000011_b \rightarrow +3_d \rightarrow \text{Resultado}=-3$

- Rango de representación
 - En este caso también tenemos dos combinaciones binarias que valen
 +0 y -0 que indican el mismo valor
 - Rango de representación para n bits

$$\{-(2^{(n-1)}-1);+(2^{(n-1)}-1)\}$$

С	В	Α	#
0	0	0	+0
0	0	1	+1
0	1	0	+2
0	1	1	+3
1	0	0	-3
1	0	1	-2
1	1	0	-1
1	1	1	-0

4

Convenio de complemento a 2 (Ca2)

- Números positivos = Igual que el convenio de SyM
- Números negativos = Se representan con el Complemento a 2 de su correspondiente positivo
- La magnitud de los números negativos se codifica como "flip & add" ("dar vuelta y sumar")
- Complemento a 2 de n-bits:
 - Complemento a 1 de los n-bits y luego...
 - Se suma 1 al bit menos significativo
- Ejemplo

■
$$+12_d = 00001100_b$$

■ $-1_d = Ca2 \text{ de } (+1) \rightarrow +1 = 00000001_b$
 $Ca1 = 111111110_b$
 $\frac{+}{}$
 $Ca2 = 111111111_b = -1_d$

- Hay una cuestión con el 100_b (ejemplo de 3 bits)
- Es un número negativo (empieza con 1)
- ¿Cuál es su valor decimal? ¿d?
- Hago el complemento a 2
 - Nro = 100_b
 - Ca1 = 011_b
 - Sumo 1 + $_{\underline{1}_{b}}$
 - 100_b (¿Da de nuevo negativo?)

С	В	Α	#		С	В	
0	0	0	+0		0	0	
0	0	1	+1		0	0	
0	1	0	+2		0	1	
0	1	1	+3		0	1	
1	0	0	? :	\rightarrow	1	0	
1	0	1	-3		1	0	
1	1	0	-2		1	1	
1	1	1	-1		1	1	
				-			

- Se resuelve así: Al convertir un número de positivo a negativo, el valor será el que resulte de la magnitud de todos los bits como si no tuviese signo
- En el ejemplo 100_b es negativo y su Ca2 da 100_b que es 4_d entonces → 100_b es -4_d

Veamos:

SIRVE PARA HACER CUENTAS

No se tiene en cuenta el accarreo o carry!

- Rango de representación
 - Rango de representación para n bits $\{-(2^{(n-1)});+(2^{(n-1)}-1)\}$
 - Ya no vemos el "-1" en la parte negativa

С	В	Α	#
0	0	0	+0
0	0	1	+1
0	1	0	+2
0	1	1	+3
1	0	0	-4
1	0	1	-3
1	1	0	-2
1	1	1	-1

Ejemplo:

■ Representación de −1 en complemento a 2 con 8 bits.

```
+1_{d} 0000 0001<sub>b</sub>
Ca1 1111 1110<sub>b</sub>
Sumar 1 + 1<sub>b</sub>
-1_{d} 1111 1111<sub>b</sub> = FF<sub>b</sub>
```

Operación de complemento a 2

Representación de 1 en complemento a 2 con 8 bits

$$\bullet$$
 +1_d 0000 0001_b = 01_h

Valor decimal del valor FE_h en complemento a 2

FE_h 1111 1110_b (Bit de signo = 1)
Ca1 0000 0001_b
Sumar 1
$$\pm \frac{1}{b}$$

Ca2 0000 0010_b = (bit de signo) 2_d = -2_d

Ejemplo:

- Encuentre el valor decimal del valor 79h en complemento a 2
 - Bit de signo = 0

$$0111\ 1001_b = 64+32+16+8+1 = 121_d$$

 $\mathbf{9}_{h} = +121_{d}$

Ejercicios:

- Encuentre el valor decimal del valor 90_h en complemento a 2
- Encuentre el valor decimal del valor 8D_h en complemento a 2
- Encuentre el valor decimal del valor 6F_h en complemento a 2

Convenio de Exceso 2ⁿ⁻¹

- Convenio de Exceso 2ⁿ⁻¹
 - Se desplaza la recta de representación en 2ⁿ⁻¹, sumándole ese valor a cada punto a representar.
 - Ejemplo n = 3 \rightarrow 2ⁿ⁻¹ = 2³⁻¹ = 2² = 4 \rightarrow Se sumará 4 a cada punto

Convenio de Exceso 2ⁿ⁻¹

Todos enteros positivos

- Rango de representación
 - Para 3 bits va del -4...0...+3
 - Rango para n bits: -2⁽ⁿ⁻¹⁾ ... 0 ... 2⁽ⁿ⁻¹⁾-1

	V		
С	В	Α	#
0	0	0	-4
0	0	1	-3
0	1	0	-2
0	1	1	-1
1	0	0	+0
1	0	1	+1
1	1	0	+2
1	1	1	+3

Veamos:

$$\begin{array}{cccc} & 010_{b} & -2_{d} \\ + & \underline{010}_{b} & + \underline{-2}_{d} \\ & 100_{b} & +0_{d} \end{array}$$

NO SIRVE PARA HACER CUENTAS

C B A # 0 0 -4 0 0 1 -3 0 1 0 -2 0 1 1 -1 1 0 0 +0 1 0 1 +1 1 1 0 +2 1 1 1 +3				
0 0 1 -3 0 1 0 -2 0 1 1 -1 1 0 0 +0 1 0 1 +1 1 0 +2	С	В	Α	#
0 1 0 -2 0 1 1 -1 1 0 0 +0 1 0 1 +1 1 1 0 +2	0	0	0	-4
0 1 1 -1 1 0 0 +0 1 0 1 +1 1 1 0 +2	0	0	1	-3
1 0 0 +0 1 0 1 +1 1 1 0 +2	0	1	0	-2
1 0 1 +1 1 1 0 +2	0	1	1	-1
1 1 0 +2	1	0	0	+0
	1	0	1	+1
1 1 1 +3	1	1	0	+2
	1	1	1	+3

Implementación de la codificación Ca1

Recordemos la compuerta "o" exclusiva

G	Α	S
0	0	0
0	1	1
1	0	1
1	1	0

Implementación de la codificación Ca1

Voy a reacomodar la tabla de verdad

			ı			
G	A 0	S		G	s	, ^A
0	1	1		0	A	
1	0	1		1	Ā	† I
1	1	0				¹ G

- Si la señal "G" es 0, S=A
- Si la señal "G" es 1, S=A, o también !A
- Es un negador controlado por la señal "G"!!! → Si le sumamos un sumador, ¿podremos hacer un complementador a 2? Mmmm....veremos

Conceptos para Programador

- Representación Números Enteros (Resumen)
 - Módulo y Signo (-2ⁿ⁻¹ + 1 <= X <= 2ⁿ⁻¹ 1)
 - Por ejemplo, representar los números 10 y –10 con 8 bits.
 - 0 (+) 0 0 0 1 0 1 0 representa al número 10,
 - 1 (-) 0 0 0 1 0 1 0 representa al número –10.
 - Complemento a 1 $(-2^{n-1} + 1 \le X \le 2^{n-1} 1)$
 - Por ejemplo, representar los números 10 y −10 con 8 bits.
 - 0 (+) 0 0 0 1 0 1 0 representa al número 10,
 - 1 (-) 1 1 1 0 1 0 1 representa al número –10.
 - Complemento a 2 $(-2^{n-1} \le X \le 2^{n-1} 1)$ [Representación única del 0]
 - Por ejemplo, representar los números 10 y –10 con 8 bits.
 - 0 (+) 0 0 0 1 0 1 0 representa al número 10,
 - 1 (-) 1 1 1 0 1 1 0 representa al número –10.
 - **EXCESO** a 2^{n-1} ($-2^{n-1} \le X \le 2^{n-1} 1$) [Representación única del 0]
 - Por ejemplo, representar los números 10 y −10 con 8 bits.
 - 1 0 0 0 1 0 1 0 representa al número 10,
 - 0 1 1 1 0 1 1 0
 representa al número –10.
 - Se codifican sumando el exceso al número, para n=8, el exceso es de 128 :
 - 10 = 128 + 10 = 138
 - -10 = 128 10 = 118

Conceptos para Programador

Importante

- Valores binarios de longitud fija son utilizados para representar la información en computadores
- El computador trabaja con la representación binaria (no con la información)
- El mismo valor binario puede ser usado para representar información diferente

\\//

Ejemplo 8-bits: 11110000₂

Sin Signo (unsigned)240₁₀

Con Signo (signed) -16₁₀

ASCII de 8 bits

Otro ??

- Concepto de Overflow
 - Es el resultado de una operación fuera de rango que puede ser representado:
 - Se produce debido al rango limitado de una representación de tamaño fijo
 - Se genera un resultado, pero es sin sentido.

```
■ 255_{10} = 1111 \ 1111_b

■ + \ 1_{10} = 0000 \ 0001_b

■ 256_{10} = (1) \ 0000 \ 0000_b \rightarrow \text{Pero esto es } 0_{10}!!
```

- En este caso se necesitan 9 bits para representar el resultado
- Hemos sumado dos cifras binarias enteras sin signo
- Con un ancho fijo de 8-bits: Se produce OVERFLOW

• CF = 1 (CF
$$\rightarrow$$
 En 0 = "NC", en 1 = "CY" para el DEBUG)

■ En el caso de estar con números <u>sin signo</u>, el Carry es fundamental para la interpretación del resultado. Si hay Carry, hay overflow

- Concepto de Overflow
 - Suma de números con signo:

• El resultado es correcto (-1 + 1 = 0), sin embargo vemos que hay Carry pero no hay overflow!

• En el caso de estar con números con signos, el Carry en el bit más significativo, no es importante para la interpretación del resultado.

Overflow:

- Carry Flag (CF) para números sin signo
 - CF \rightarrow En 0 = "NC", en 1 = "CY" para el DEBUG
- Overflow Flag (OF) para números con signo
 - OF \rightarrow En 0 = "NV", en 1 = "OV" para el DEBUG

Concepto de Overflow

```
\begin{array}{lll} \bullet & 32_{10} & = & 0010\ 0000_{\rm b} \\ \bullet & -65_{10} & = & 0100\ 0001_{\rm b} \\ \bullet & -33_{10} & = & (1)1101\ 1111_{\rm b}\ (223\ {\rm sin}\ {\rm signo}) \end{array}
```

- La resta de valores sin signo, "pedir prestado" para realizar la resta implica la existencia de un overflow. El resultado es erróneo.
- Si los valores son tomados con signo, no hay overflow; se ignora el "pedir prestado" y el resultado es correcto.
- Si el resultado de una operación arroja un número con el bit más significativo en 1, el SF=1 indicando que es negativo. En caso contrario dará SF=0.
- En este ejemplo: CF = 1, OF = 0, SF=1
 - SF \rightarrow En 0 = "PL", en 1 = "NG" para el DEBUG

- Concepto de Overflow
 - Otro ejemplo

	Sin signo	Con signo
0111 1111 _b	127	127
0000 0001 _b	+ 1	+ 1
1000 0000 _b	128	- 128
	CORRECTO	INCORRECTO

- Hay overflow aún cuando no hay Carry y el resultado es negativo
 - CF=0, OF=1, SF=1

- Concepto de Overflow (Resumen)
 - Sin Signo:
 - Carry o Borrow (pedir prestado) implican Overflow

```
borrow 0 2N-1 carry
```

- Con Signo:
 - Se ignoran el Carry o Borrow
 - OverFlow es posible:
 - Positivo + Positivo = Negativo
 - (positivo negativo = negativo)
 - Negativo + Negativo = Positivo
 - (negativo positivo = positivo)
 - OverFlow es imposible:
 - Positivo + negativo (positivo positivo)
 - Negativo + positivo (negativo negativo)

- Sumador aritmético
 - $S = A \oplus B$
 - Cy = A.B

Α	В	S	Су
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Sumador completo
 - $S_0 = A \oplus B \oplus Cy_{-1}$
 - $Cy_0 = A.B + Cy_{-1}.A + Cy_{-1}.B$

Су_1	A ₀	B ₀	S ₀	Cyo
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sumador de 4 bits

Aritmética sin signo

Aritmética con signo

Restas en binario:

- Negar y sumar: X Y = X + (-Y)
- Ejemplo: 32 65 = 32 + (-65)
 - $32_{10} = 0010\ 0000_b$
 - $+ -65_{10} = 1011 \ 1111_b \ (0100 \ 00002 \ +1 = 41_h = 65_d)$
 - -33₁₀= 1101 1111_b (0010 00002 +1 = 21_h = 33_d)

Sumador/restador de 4 bits

Multiplicación binaria

 Procedimiento de resolución del cálculo de forma idéntica al de la multiplicación decimal

$$\begin{array}{c}
1101 & \longrightarrow & \text{Multiplicando} \\
\times & 101 & \longrightarrow & \text{Multiplicador} \\
1101 & + & 0000 \\
\hline
 & 1101 \\
\hline
 & 1000001
\end{array}$$

- Por cada cifra del multiplicador, me desplazo en la suma final
- Por cada 1 del multiplicador, repito el multiplicando en la suma final
- La multiplicación es una "sucesión de sumas y desplazamientos"
- Multiplicar 2 cifras binarias de n bits darán como resultado otra cifra binaria de 2.n bits! (1111_b x 1111_b = 11100001_b)

División binaria

 Procedimiento de resolución del cálculo de forma idéntica al de la división decimal

- Ejemplo: 27 / 5 = 5 con resto 2
- ¿Cómo se implementa esto?
- Se implementa como una sucesión de restas y desplazamientos

Números Reales

{RANGO DE REPRESENTACIÓN} DISTANCIA O PRECISIÓN

A mayor rango de representación, menor precisión (o viceversa)

Con una cantidad fija de dígitos -> Rango de representación vs. Precisión

- El rango de los números reales comprende desde -∞ hasta +∞.
- Los registros de un procesador tienen resolución finita.
- Por lo tanto un computador solo puede representar un subconjunto de R. (No es solo un tema de magnitud sino de resolución)

Números Reales

- En general se puede formalizar la representación de un número real expresado en los siguientes formatos:
 - Punto Fijo: SIN sigo y CON signo
 - Con Módulo y signo
 - Con complemento a 1
 - Con complemento a 2
 - Con exceso a 2ⁿ⁻¹
 - Punto Flotante
- Punto Fijo con signo
 - Se representan mediante una expresión del tipo
 - $(a_n a_{n-1} ... a_0 . a_{-1} a_{-2} ... a_{-m})_2 = (-1)^s (a_n 2^n + ... + a_0 2^0 + a_{-1} 2^{-1} + a_{-2} 2^{-2} + ... + a_{-m} 2^{-m})$
 - Donde: s=0 si el número es positivo o =1 si el número es negativo
 - ai es un entero y $0 \le a_i \le 1$, para todo i = -m, ...-1, 0, 1, ...n
 - Distancia entre dos números consecutivos es 2^{-m}
 - Deja de ser un rango continuo de números y pasa a ser un rango discreto.

Números Reales

m = cantidad de dígitos fraccionarios. Distancia = 2^{-m}

$$m = 0$$

Distancia
 $2^{-0} = 1$

$$m = 1$$

Distancia
 $2^{-1} = 0.5$

$$m = 2$$

Distancia
 $2^{-2} = 0.25$

$$m = 3$$

Distancia $2^{-3} = 0,125$

$$\begin{bmatrix}
--, -_{b} \\
00, 0_{b} \\
00, 1_{b}
\end{bmatrix}$$

$$\begin{bmatrix}
1/2=0.5 \\
1/2=0.5
\end{bmatrix}$$

$$01, 0_{b}$$

111,_b

Números Reales

- Punto Fijo con notación complemento a 2
 - El problema del punto fijo con signo consiste en representar los números negativos
 - La solución: el mismo criterio utilizado con los enteros, el complemento a 2.
 - Para representar el número –N en punto fijo con notación complemento a 2 se hace 2ⁿ – N.
- Como convertir un número decimal fraccionario a binario:

$$\bullet$$
 0,5 * 2 = 1 0,828125 = 0,110101

4

Números reales

- Pasar a binario 29,5625_d
- 1. Parte entera a binario \rightarrow 29_d = **11101**_b
- 2. Parte fraccionaria a binario \rightarrow 0,5625d = ?

```
■ 0.5625 * 2 = 1.1250 \rightarrow 0.1...
```

■
$$0,125 * 2$$
 = $0,25 \rightarrow 0,10...$ _b

■
$$0.25 * 2$$
 = $0.5 \rightarrow 0.100...$

■
$$0.5 * 2$$
 = $1.0 \rightarrow 0.1001...$ _b

Parte fraccionaria a binario \rightarrow 0,5625_d = **0,1101**_b

3. Unimos \rightarrow 29,5625_d = $\frac{11101}{1101_b}$

4

Números reales

- Pasar a binario -29,5625_d
- 1. Parte entera a binario $\rightarrow 29_d = 011101_b$
- 2. Parte fraccionaria a binario $\rightarrow 0,5625_d = 0,1101_b$
- 3. Unimos \rightarrow 29,5625_d = $\frac{011101}{1101}$
- 4. Hacemos el Ca2 de 011101,1101_b

```
    011101,1101<sub>b</sub>
    Ca1
    + 100010,0010<sub>b</sub>
    100010,0011<sub>b</sub>
```

• Pasar a binario $-29,5625_d = 100010,0011_b$

-

Números reales

- Pasar a binario 12,2_d
- 1. Parte entera a binario $\rightarrow 12_d = 1100_b$
- 2. Parte fraccionaria a binario \rightarrow 0,2 = ?
 - $0.2 * 2 = 0.4 \rightarrow 0.0...$
 - $0,4*2 = 0,8 \rightarrow 0,00...$
 - $0.8 * 2 = 1.6 \rightarrow 0.001...$
 - $0.6 * 2 = 1.2 \rightarrow 0.0011..._b$
 - $0,2 * 2 = 0,4 \rightarrow 0,00110...$ b Empieza de nuevo...
 - $0,4*2 = 0,8 \rightarrow 0,001100..._b$
 - $0.8 * 2 = 1.6 \rightarrow 0.0011001..._b$
 - $0.6 * 2 = 1.2 \rightarrow 0.00110011..._b$

Parte fraccionaria a binario \rightarrow 0,00110011..._d = $0,0011_b$ periódico!

3. Unimos \rightarrow 12,2_d = 1100,001 $\hat{1}_b$

ALU con binarios SIN signo

$$001,0$$
 1,0 $00,10$ 0,50 + $101,1$ + $5,5$ + $10,11$ + $2,75$ 110,1 6,5 11,01 3,25

ALU con binarios CON signo

$$001,0$$
 +1,0 $00,10$ +0,50
+ $101,1$ + $-2,5$ + $10,11$ + $-1,25$
110,1 -1,5 11,01 -0,75

$$0,010$$
 $+0,250$ $,0010$ $+0,1250$ $+ 1,011$ $+ -0,625$ $+ 1011$ $+ -0,3125$ $-0,375$ $+ 101$ $+ -0,1875$

La ALU suma binario puro, la interpretación es del usuario

Números Reales – Punto Fijo

- Cuando la cantidad de dígitos disponible no alcanza para representar el número ...
 - Problema: Representar un número de n dígitos fraccionarios en un sistema con m dígitos fraccionarios, siendo m < n

Truncamiento:

 Descarta los dígitos fraccionarios de orden mayor a m. El error máximo es de 1 bit en el digito fraccionario m, o sea 2^{-m}.

Redondeo:

- Descarta los dígitos fraccionarios de orden mayor a m pero se suma 1 al menos significativo en caso que el bit inmediato descartado valga 1. Equivale a sumarle 0,5*2-m y truncar. El error es de ½ bit.
- Para Complemento a 2
 - Cuando se desee hallar el complemento de una cifra binaria con punto fijo, primero se deberá:
 - Calcular la aproximación por truncamiento o redondeo
 - Calcular el complemento del número aproximado

Números Reales – Punto Fijo

Números <u>positivos</u> truncados y redondeados. 11 bits, 4 fraccionarios
 Sea el siguiente número: +31,906025_d

```
31,906025_{10} = 0011111.111010_{2}
```

Si solo se trunca en 4 bits

```
0011111.1110 \searrow_2 \rightarrow 00111111.1110_2 = 31,875_{10}
```

Si se redondea en 4 bits y luego se trunca

```
+ 0011111.1110 10<sub>2</sub>

1 0011111.1111 0= 31,921875<sub>10</sub>
```

Haciendo cuentas:

```
31,906025 - 31,875 = 0,031025 < 0,0625 = 2^{-4}

31,921875 - 31,906025 = 0,015850 < 0,01953125 = 2^{-5}
```

 El número 31,906025 no es representable en 11 bits con 4 fraccionarios. Se podrán representar o el 31,875_d o el 31,921875_d.

Números Reales – Punto Fijo

 Números <u>negativos</u> truncados y redondeados. 11 bits, 4 fraccionarios Sea el siguiente número: -31,96875_d

```
+31,96875_{10} = 0011111.11111100_{2}
-31,96875_{10} = 1100000.0000100_{2}
```

Si solo se trunca en 4 bits

```
1100000.0000 \Rightarrow 1100000.0000_2 = -32_{10}
```

Si se redondea en 4 bits y luego se trunca

Haciendo cuentas:

```
-31,9453125 - (-32) = 0,0546875 < 0,0625 = 2^{-4}

-31,9375 - (-31,9453125) = 0,0078125 < 0,01953125 = 2^{-5}
```

El número -31,9453125 no es representable en 11 bits con 4 fraccionarios. Se podrán representar o el -32_d o el -31,9375_d.

- Para el caso de los números reales se trabaja en notación científica.
 - $-725,832 = -7,25832 \cdot 10^2 = -725,832 \times 10^0$
 - $3,14 = 0,314 * 10^1 = 3,14 * 10^0$
 - \bullet 0,000001 = 0,1 * 10⁻⁵ = 1,0 * 10⁻⁶
 - $1941 = 0,1941 * 10^4 = 1,941 * 10^3$
- Para unificar la representación se recurre a la notación científica normalizada, en donde
 - n = ±m *10^{±e} → m= mantisa y e= exponente
 0,1 ≤ m < 1
- En el sistema binario la expresión de un número en notación científica normalizada es:
 - $n = \pm m * 2^{\pm e}$
 - $0.1_b \le m < 1_b --- 0.5_d \le f < 1_d$

- Para que las representaciones sean únicas, la mantisa deberá estar normalizada.
- Normalización → Una cifra tiene:
 - Parte entera = 0 (cero)
 - Parte fraccionaria = su dígito más significativo es distinto de 0
- Ejemplos
 - $+1000 \rightarrow \text{Normalizado} = +0.1 \times 10^{+3}$
 - -3,141592... → Normalizado = -0,3141592... x 10^{+1}
 - $+0,00125 \rightarrow \text{Normalizado} = +0,125 \times 10^{-2}$

- Representación en Punto Flotante
- El rango de representación en punto flotante debe ser analizado teniendo en cuenta los máximos y mínimos valores representables tanto con signo positivo como negativo:
 - mP (mín número positivo) = + mantisa mín * base exponente máx
 - MP (máx número positivo) = + mantisa máx * base + exponente máx
 - mN (mín número negativo) = mantisa máx * base exponente máx
 - MN (máx número negativo) = mantisa mín * base + exponente máx

- Punto Flotante: Formato IEEE 754 (Institute of Electrical and Electronics Engineers, año 1985 y actualizada 2008)
- Base binaria
 - Precisión media (16 bits)
 - Precisión simple (32 bits)
 - Precisión simple extendida (≥ 43 bits), no usada
 - Precisión doble (64 bits)
 - Precisión cuádruple (128 bits)
 - Precisión óctuple (256 bits)

Data Type	Length	Precision	Approximate Normalized Range		
		(Bits)	Binary	Decimal	
Single Precision	32	24		1.18 × 10 ⁻³⁸ to 3.40 × 10 ³⁸	
Double Precision	64	53	2 ⁻¹⁰²² to 2 ¹⁰²³	2.23 × 10 ⁻³⁰⁸ to 1.79 × 10 ³⁰⁸	
Double Extended Precision	80	64	2 ⁻¹⁶³⁸² to 2 ¹⁶³⁸³	3.37 × 10 ⁻⁴⁹³² to 1.18 × 10 ⁴⁹³²	

Sigr	ı Integer	Bit	Davids Fidended Decision
			Double Extended Precision Floating Point
797	8 646362	2	•

- Representación en Punto Flotante Precisión Simple:
 - Máscara o plantilla

- bits 0 al 22 (b₀ a b₂₂) representa la parte fraccionaria de la mantisa normalizada
- bits 23 al 30 (b₂₃ a b₃₀) representa el exponente con exceso 127 (exponente obtenido luego de normalizar y sumándole 127)
- bit 31 (b_{31}), será el signo de la mantisa, 0 = (+) y 1 = (-)
- el 0_d se representa con los 32 bits en 0.
- Exponente sesgado en 127
 - El sesgo es 2^{n-1} = 128 pero en este caso se suma 127 quedando los exponentes posibles desde 1_d a 254_d (01_h a FE_h)
 - Los exponentes 0_d a 255_d (00_h a FF_h) se utilizan para casos especiales

- Ej: Representar el número +12,25 en formato de 32 bits:
 - Paso 1 Pasar a binario

•
$$+12,25_d = +1100,01_b * 2^0 = +1,10001_b * 2^{+3}$$

- Paso 2 Normalizar IEEE
 - El exponente de valor +3 en exceso a 127 es: +3 + 127 = 130_d (número entero binario sin signo) = 10000010_b
- Paso 3 Signo de la mantisa
 - El signo de la mantisa es + → 0
- Paso 4 Completar la plantilla
- Representándolo en hexadecimal será:
 - 0100-0001-0100-0100-0000-0000-0000_b
 - 4 1 C 4 0 0 0 h
 - 41C40000_h

Ej: Determinar el valor decimal de C3CC7000_h representado en IEEE 754 SP:

- Paso 1 Pasar el IEEE de hexadecimal a binario
 - C3CC7000_h
- Paso 2 Aplicar la plantilla
- Paso 3 Signo de la mantisa
 - 1_b → El signo de la mantisa es (–)
- Paso 4 Determinar el exponente sin exceso
 - Exponente = $10000111_{b} = 135_{d} \rightarrow 135_{d} 127_{d} = 8_{d}$
- Armar el binario:
 - 1,10011000111b x $2^8 = -110011000,111b \times 2^9 = -408,875_d$

- El estándar IEEE 754 define los siguientes conjuntos de los valores posibles que pueden representarse:
 - Cero
 - Ceros signados
 - Valores finitos normalizados y desnormalizados
 - Valores especiales
 - Infinitos (+∞ y -∞)
 - NaN (Not a Number)
- Define 5 algoritmos de redondeo. Si un número cae en medio de dos representaciones, se puede redondear de la siguiente manera:
 - Se elige el más cercano que termine en cero (LSB = 0)
 - Se elige el más cercano hacia arriba (para +) o hacia abajo (para -)
 - Redondeos directos a:
 - cero (llamado truncamiento)
 - +∞
 - -∞

- El estándar define cinco excepciones que permitirán manejar los problemas que surgen en las operaciones con punto flotante. Estos son:
 - Operación inválida (x ej. √-2) → NaN
 - Cero dividido cero → NaN
 - Overflow (el resultado es tan grande no puede representarse correctamente dentro del rango de números finitos) → Infinitos
 - Underflow (ídem para números muy pequeños) → Desnormalización
 - Inexacto → Redondeo

- Cero y ceros signados
 - El cero es representado por el +0 (cero positivo) pero tiene el mismo valor que el -0 (cero negativo)
 - El resultado puede ser +0 o -0 dependiendo de la operación.
 Por ejemplo:
 - -0/x = -0 (si x es positiva)
 - (-0)(-0) = +0
 - Los ceros signados ayudan a interpretar el intervalo aritmético en el que se ubicaría el resultado si la precisión aritmética fuese mayor (el resultado ha sido redondeado)
 - Indican la dirección desde la cual ocurrió el redondeo a cero, o el signo de un infinito que fue invertido.

- Números finitos normalizados
 - El rango de éstos números se compone de todos los valores finitos distintos de cero codificables en formato de números reales entre 0 y ±∞
 - En el formato de simple precisión (32 bits) incluyen números cuyos exponentes van de van de 2⁻¹²⁶ a 2¹²⁷ y se representan con exceso de 127 (exponentes van desde 1 a 254)
 - La parte fraccionaria se normaliza de la siguiente forma: 1.xxxxxx... siendo xxxxxxx... la mantisa → Permite ganar 1 bit más!
 - Números menores a 2⁻¹²⁶ no pueden expresarse en este formato ya que el rango del exponente no puede compensar el desplazamiento a izquierda del punto decimal, se pasa al rango de-normalizado

- Números finitos denormalizados (subnormal)
 - Su parte fraccionaria se representa como 0.xxxxxx..., siendo xxxxxxx... la mantisa
 - El exponente es siempre 0 (2⁻¹²⁶)
 - Si operamos con números normalizados, un underflow podrá expresarse en forma denormalizada
 - Ej:

Operation	Sign	Exponent*	Significand	
True Result	0	-129	1.0101110000000	
Denormalize	0 –128 0.10101110000		0.1010111000000	
Denormalize	0	-127	0.0101011100000	
Denormalize	0	-126	0.0010101110000	
Denormal Result	0	-126	0.0010101110000	

^{*} Expressed as an unbiased, decimal number.

Infinitos signados

- $+\infty$ y $-\infty$, representan los máximos números reales positivo y negativo representables en formato punto flotante
- La mantisa siempre es 1.000..00 y el máximo exponente desplazado representable (ej. 255 para simple precisión)

NaNs (Not a Number)

- Se utilizan para expresar un resultado imposible de calcular como las raíces cuadradas negativas, las indeterminaciones (0/0, 0*∞, ∞+[-∞]), log n siendo n < 1, etc.</p>
- Exites 2 tipos:
 - QNaN: Quiet NaN tiene el bit más significativo fraccional en 1.
 Pueden propagarse por posteriores operaciones sin generar una excepción
 - SNaN: Signalling NaN. Tiene el bit más significativo fraccional en 0.
 Resulta de una operación inválida

NOTES:

- Integer bit of fraction implied for single-precision floating-point format.
- 2. Fraction must be non-zero.
- Sign bit ignored.

Números Reales – Resumen

Class		Sign	Biased Exponent	Significand	
				Integer¹	Fraction
Positive	+∞	0	1111	1	0000
	+Normals	0	1110	1	1111
		. 0	0001	1	0000
	+Denormals	0	0000	0	11.11
		0	0000	ó	0001
	+Zero	0	0000	0	0000
Negative	-Zero	1	0000	0	0000
	-Denormals	1	0000	0	0001
		i	0000	Ö	1111
	-Normals	1	0001	1	0000
		i	1110	1	1111
		1	1111	1	0000
NaNs	SNaN	Х	1111	1	0XXX ²
	QNaN	Х	1111	1	1XXX
	QNaN Floating-Point Indefinite	1	1111	1	1000
Single-Precision: Double-Precision: Double Extended-I		n: d-Precision:	← 8 Bits → ← 11 Bits → ← 15 Bits →		

El bit entero está implícito y no se almacena para formatos single-precision y double-precision.

^{2.} La fracción para codificación de SNaN debe ser distinta de cero, con el bit mas significativo en 0.