MASTER THESIS

zur Erlangung des akademischen Grades "Master of Science in Engineering" im Studiengang XXX

Arbeitstitel Arbeitstitel Arbeitstitel Arbeitstitel beitstitel Arbeitstitel

Ausgeführt von: Titel Vorname Name Titel Personenkennzeichen: XXXXXXXXXXX

BegutachterIn: Titel Vorname Name Titel
BegutachterIn: Titel Vorname Name Titel

Wien, 26. April 2012

Eidesstattliche Erklärung

Die aus fremden Quellen direkt oder indirekt übe gemacht. Die Arbeit wurde bisher weder in gleic	
fungsbehörde vorgelegt und auch noch nicht ver	
Version jener im Uploadtool entspricht."	
Ort, Datum	Unterschrift

"Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig angefertigt habe.

Kurzfassung Text Text Text Text Text ...

Schlagwort 1, Schlagwort 2, Schlagwort 3, Schlagwort 4, Schlagwort 5

Keywords: Keyword 1, Keyword 2, Keyword 3, Keyword 4, Keyword 5

Danksagung

Inhaltsverzeichnis

1	Aufo	jabenstellung	1			
	1.1	Warum Module im Sonnensimulator	1			
	1.2	Sonnensimulator Aufbau	1			
	1.3	Notwendigkeit der Ausleuchtungsmessung	1			
	1.4	Theorie Referenzzelle	1			
2	Entv	vicklungprozess	2			
	2.1	Hardwaredesign	2			
		2.1.1 Mecanum-Platform	2			
		2.1.2 Chassis	2			
	2.2	Steuerungselektronik	2			
		2.2.1 Motorensteuerung	2			
		2.2.2 Optische Sensorik	2			
		2.2.3 Spannungversorgung	2			
		2.2.4 Temperatursensoren	2			
	2.3	Softwareentwicklung	2			
		2.3.1 Entwicklungsumgebung	2			
		2.3.2 Auswertung optische sensoren	2			
		2.3.3 Auswertung ADCs	2			
		2.3.4 Programmablauf	2			
3	Kalil	oration	3			
•	3.1	Temperatursensoren	3			
	3.2	Messzelle	3			
	3.3	Strommessung	3			
	3.4	Thermische StabilitÄt	3			
4		sung	4			
	4.1	Messaufbau	4			
		4.1.1 Platten	4			
		4.1.2 Ablauf	4			
	4.2	Auswertung	4			
	4.3	Schlussfolgerung	4			
Lit	eratu	rverzeichnis	5			
Ab	bildu	ıngsverzeichnis	6			
Та	Tabellenverzeichnis					
Ab	Abkürzungsverzeichnis					

A	Sourcecode Arduino	9
В	Sourcecode Auswertung	10

1 Aufgabenstellung

1.1 Warum Module im Sonnensimulator

Was wird gepr $\tilde{A}\frac{1}{4}$ ft,

1.2 Sonnensimulator Aufbau

lampenanordnung, Windkanal

1.3 Notwendigkeit der Ausleuchtungsmessung

Akrreditierung, Begr $\tilde{A}\frac{1}{4}$ nung warum Messroboter, Alte ergebnisse, Alte messmethode

1.4 Theorie Referenzzelle

Referzelle, Temperaturabh Angikeit Messzelle, Kennlinine, Warum Kurzschlussstrom,...

2 Entwicklungprozess

2.1 Hardwaredesign

2.1.1 Mecanum-Platform

Warum die RAder, warum darf zelle nciht rotieren,

2.1.2 Chassis

2.2 Steuerungselektronik

2.2.1 Motorensteuerung

2.2.2 Optische Sensorik

warum so wie ist...

2.2.3 Spannungversorgung

Aku-handling, Mikrokontroller Arduino (was ist das), Shield, SD, Aref,

2.2.4 Temperatursensoren

Messprinzip, TemperaturstabilitÃt

2.3 Softwareentwicklung

2.3.1 Entwicklungsumgebung

2.3.2 Auswertung optische sensoren

Differentielle Messung, Mathematik Auswertung, Eckenbehandlung Anhaltepunkte

2.3.3 Auswertung ADCs

Mittelung, RauschgrĶÄŸen,

2.3.4 Programmablauf

3 Kalibration

- 3.1 Temperatursensoren
- 3.2 Messzelle
- 3.3 Strommessung
- 3.4 Thermische StabilitÃt

4 Messung

- 4.1 Messaufbau
- 4.1.1 Platten
- 4.1.2 Ablauf
- 4.2 Auswertung

wie von sd zu Bild, gemessene Verteilungen,

4.3 Schlussfolgerung

• Code: arduino, Matlab, fileformat

Literaturverzeichnis

- [1] H. Kopka, LaTeX, Band 1: Einführung, 3rd ed. Pearson Studium, München, 2005.
- [2] R. Willms, LaTeX: Für Schnelleinsteiger, 3rd ed. Franzis Verlag, Poing, Deutschland, 2006.
- [3] F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, and C. Rowley, *Der LaTeX Begleiter*, 2nd ed. Pearson Studium, München, 2005.
- [4] ——, The LaTeX Companion, 2nd ed. Addison-Wesley Longman, Reading, Massachusetts, 2004.
- [5] M. Jürgens, "LaTeX eine Einführung und ein bißchen mehr..." Skriptum, 2000, http://www.fernuni-hagen.de/zmi/katalog/A026.shtml [Zugang am 3.6.2010].
- [6] —, "LaTeX Fortgeschrittene Anwendungen (oder: Neues von den Hobbits)," Skriptum, 1995, http://www.fernuni-hagen.de/zmi/katalog/A027.shtml [Zugang am 3.6.2010].

Abbildungsverzeichnis

Tabellenverzeichnis

Abkürzungsverzeichnis

www World Wide Web

URL Uniform Resource Locator

A Sourcecode Arduino

B Sourcecode Auswertung