Dataset

MNIST Dataset

- Mixed National Institute of Standards and Technology
- Manuscript Digits from 0 to 9
- Black&White Images 28x28
- 60 000 training data
- 10 000 test data

30

Example of results on a simple CNN

Results from tensorflow

Layer	Output shape	Number of parameters	Kernel (If conv2D)
Input	(28, 28, 1)	-	
Conv2D layers	(26, 26, 2)	20	3x3
Flatten	(1352)	_	
Dense layers	(10)	13,530	
Total trainable	13,550		
parameters			
Number of Epochs	3		

Results from STMCubeAl

	Туре	Param #	MACC	MACC (%)	ROM (bytes)	ROM (%)	Bytes per Param
Layer 1	Conv2D	20	13 522	49,7	80	0,1	4
Layer 2	Dense	13530	13 520	49,7	54,120	99,9	4
•••	DenseNL		150	0,6		0	
TOTAL			27192	100	5.4 , 200 _{mond}	100	4

Total memory 128kB RAM 1MB Flash

Validation on desktop

Results during inference	Number of inferences (test dataset)	Accuracy	RMSE	MAE	MACC	ROM (bytes)
Original model (result from TF)	250	96,3	0.069338	0.0131	27,192	54,200
Without compression		97,2	0.069338	0.013095	27 , 192	54,200
Compression X4		97,2	0.069323	0.013082	27 , 192	14,664
Compression X8		97,2	0.070925	0.013352	27,192	6,944

Validation on target

)					
Results	Number	Accuracy	RMSE	Total	CPU	Cycles /
during	of	without		latency	cycles	MACC
inference	inferences	compression		(ms)		
	(test					
	dataset)					
Original		97,2				
model						
(result from						
TF)						
Model		97,2				
validated on						
Laptop	250					
without						
compression						
Model		97,2	0.069338	5.413	433025	15.92
validated on						
Target						
without						
compression						
Model		97,2	0.069323	5.758	460646	16.94
validated on						
Target with						
compression						
X4						
Model		97,2	0.070925	5.462	436952	16.07
validated on						
Target with						
compression		R	Miramond			
X4		Б.	IVIII allioliu			

Labs sessions

- Lab 1: installation and first execution of CNN on MCU
 - Validation on MNIST dataset
 - Learn a model and optimize it
- Lab 2: optimization of CNN on MCU v1
 - Propose a model, learn and test
 - Application on MNIST and HAR dataset
- Break
- Lab 3: Apply to real data
 - Get data either from the shield or from the smartphone
 - Constitute a specific test set
 - Test onto the MCU
- Lab 4: Introduction to MicroAl
 - Directly export and generate code from TF

Session 2

Labs sessions

- Session 1: installation and first execution of CNN on MCU
 - Validation on MNIST dataset
 - Learn a model and optimize it
- Session 2: optimization of CNN on MCU v1 MNIST and HAR
 - Propose a model, learn and test
 - Application on MNIST dataset
- Break
- Session 3: programmation of the MCU with MicroAl
 - Propose a model, learn and test
 - Application on HAR dataset
- Session 4: Apply to real data
 - Get data either from accelerometer
 - Constitute a specific test set
 - Test onto the MCU

UCA HAR Dataset

http://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

- 6 activity classes
- 30 subjects (19 to 48 years old)
- Data acquisition from a smartphone
- Laboratory conditions but subject perform the scenario freely
- Classification results using SVM up to 96% accuracy (but only 88% recall on sitting)

Data

- Median filter
- 3rd order 20Hz low-pass filter (99% of the signal energy is below 15Hz)
- Linear acceleration and gravity separated by 0.3Hz low-pass filter
- 2.56s windows at 50Hz = 128 samples
- 90-130 steps/min on average, at least 1.5 step/s = 2 step per window

• Available from UC Irvine Machine Learning Repository

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity, Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

Exemple of results on the HAR classes

No.	Static	Time (sec)	No.	Dynamic	Time (sec)
0	Start (Standing Pos)	0	7	Walk (1)	15
1	Stand (1)	15	8	Walk (2)	15
2	Sit (1)	15	9	Walk Downstairs (1)	12
3	Stand (2)	15	10	Walk Upstairs (2)	12
4	Lay Down (1)	15	11	Walk Downstairs (1)	12
5	Sit (2)	15	12	Walk Upstairs (2)	12
6	Lay Down (2)	15	13	Walk Downstairs (3)	12
			14	Walk Upstairs (3)	12
			15	Stop	0
Recall		Total	192		

	WK	WU	WD	ST	SD	LD	Recall
Walking	492	1	3	0	0	0	99%
W. Upstairs	18	451	2	0	0	0	96%
W. Downstairs	4	6	410	0	0	0	98%
Sitting	0	2	0	432	57	0	88%
Standing	0	0	0	14	518	0	97%
Laying Down	0	0	0	0	0	537	100%
Precision	96%	98%	99%	97%	90%	100%	96%

e 1: Protocol of activities for the HAR Experiment.

Table 4: Confusion Matrix of the classification results on the test data using the multiclass SVM. Rows represent the actual class and columns the predicted class. Activity names on top are abbreviated.

B. Miramond

Mean accuracy for several methods

Supervised Machine Learning		Unsupervised Machine	Learning	Neural Networks		
Nearest Neighbours[2]		K-means[2]	52.1	PNN[3]	92.4	
Decision Tree[2]	87.4	Mini Batch K-means[2]	50.7	RNN[3]	95.1	
Random Forest[2]	91.4	Spectral Clustering[2]	57.8	BPNN[3]	94.7	
SVM[2]	90.7	Gaussian Mixture[2]	49.8	Deep Convolutional NN [4]	95.75	
AdaBoost[2]	40.8	DBSCAN[2]	16.4	Stacked Autoencoder [5]	92.16	
Naive Bayes[2]	88.9			Denoising Autoencoder [5]	90.50	
QDA[2]	90.0			CNN (3 layers)*[6]	92.71	
Multi-Class SVM [1]	96			LSTM (standard / bidirectional)[6]	89.1 / 89.40	
OVO multiclass linear SVM with majority voting [7]	96.4			MLP[6]	86.83	
A sparse kernelized matrix learning vector quantization model [8]	96.23					
Confidence-based boosting algorithm Conf-AdaBoost [9]	94.33					
Two-Stage Continuous Hidden Learning Markov Models [10]	91.76					

Example of results on different topologies on 2 different MCU

N°	Avg t	ime(s)	Accuracy (%)	ROM	ROM (B)		ver (mW)	Battery	runtime (h)
	Ambiq	STM		Ambiq	STM	Ambiq	STM	Ambiq	STM
M1	0.085	0.0051	84.87	108270	103780	0.66	0.20	136.27	452.50
M2	0.095	0.0074	85.94	109340	104776	0.74	0.29	121.88	312.86
M3	0.117	0.0126	88.03	140647	136140	0.91	0.49	99.30	184.07
M4	1.249		88.94	469450		9.66		9.32	
C1	0.071		77.95	79222		0.55		163.85	
C2	0.078	0.0025	87.11	81820	80052	0.61	0.10	148.62	930.76
C3	0.081	0.0030	88.40	80487	78696	0.63	0.11	143.32	768.43
C4	0.085	0.0052	89.89	153956	150256	0.66	0.20	136.50	449.68
C5	0.113	0.0103	90.26	222916	221336	0.88	0.40	102.81	225.07
C6	0.166	0.0220	91.46	366876	365296	1.29	0.85	70.00	105.72
C7	0.352	0.0633	92.58	554124	552616	2.72	2.45	33.06	36.78
C8	0.601	0.1185	92.88	758348	808920	4.65	4.58	19.36	19.64

Power consumption measurement

How get the best results?

Epochs and learning rate

Often conducting to exploding gradient problem => Loss = NaN

Importance of learning rate tuning

Plotting training evolution

history = model.fit(x_train, y_train, epochs=25, validation_data=(x_test, y_test))

```
# Plot training & validation accuracy values
plt.plot(history.history['categorical accuracy'])
plt.plot(history.history['val_categorical_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
# Plot training & validation loss values
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
```


Labs sessions

- Session 1: installation and first execution of CNN on MCU
 - Validation on MNIST dataset
 - Learn a model and optimize it
- Session 2: optimization of CNN on MCU v1 MNIST and HAR
 - Propose a model, learn and test
 - Application on MNIST dataset
- Break
- Session 3: programmation of the MCU with MicroAl
 - Propose a model, learn and test
 - Application on HAR dataset
- Session 4: Apply to real data
 - Get data either from accelerometer
 - Constitute a specific test set
 - Test onto the MCU