Sistem za upravljanje glukozom u krvi kod osoba sa dijabetesom tip 1 1. Spisak članova tima Balša Bulatović 2. Motivacija

insulina, dodatni unos hrane, prilagođavanje aktivnosti). Komercijalna rešenja su često zatvorena i teško

Dijabetes tip 1 zahteva kontinuirano praćenje glukoze i brze, kontekstualne odluke (korektivna doza brzog

prilagodljiva. Rule-based pristup (Drools) obezbeđuje transparentna, izmenjiva pravila i preciznu personalizaciju (doba dana, intenzitet aktivnosti, senzitivnost na insulin, nutritivni profil hrane).

3. Opis problema

Sistem u intervalima od X minuta prima merenja CGM-a, beleži obroke i doze insulina, te predlaže konkretne akcije: tačne namirnice/porcije ili korektivne doze, uz uvažavanje ugljenih hidrata (UH), masti i glikemijskog indeksa (GI). Potrebno je rešiti: 1. pravovremeno otkrivanje rizika (hipo/hiper, trendovi),

2. preporuku tačne hrane (iz SQL baze), 3. izbegavanje "stack-ovanja" insulina (IOB),

4. lako prilagođavanje logike pravilima i template-ima (bez rekompajliranja). 4. Metodologija rada 4.1 Ulazi u sistem

ActivationEvent (umesto ActivityEvent): type, intensity (LOW/MED/HIGH/NONE), startTime,

duration_min • UserProfile: carbRatio (g/U), correctionFactor (mmol/L po U), targetRange (min, max), insulinActionHours, time-of-day factors SystemState (derivisano): iob (U)

4.2 Izlazi iz sistema Predlozi akcija: Korektivna doza (npr. "uzeti 1.5 U insulina", izračunato iz pravila/servisa). • Lista predloženih namirnica iz SQL baze (ne tekstualni gram-iznosi): npr. "jabuka 180 g", "ovsene 40 g + jogurt 100 ml", "pirinčani keks 2×10 g".

• $IOB(t) = \Sigma$ remaining_i(t) za sve InsulinShotEvent sa ts \leq t.

GlucoseMeasurement(value >= 4.0, value < 6.0) &&

GlucoseMeasurement(value >= 4.0, value < 4.8) &&

insertLogical(new FoodConstraint(25, 40, 10, "MED"));

insertLogical(new AvoidProfile(giClass="HIGH", fatMin=15));

and GlucoseMeasurement(this after[10m] \$g1, value > \$g1 + 1.5)

// dalje obrađuje servis: predlog doze + eventualno FoodConstraint za low GI/masti

Pored trenutnog merenja glukoze, sistem mora da uvaži i **nedavni istorijat ishrane**. Zato se koristi

Food(\$gi: glycemicIndex, \$f: fat_g, \$c: carbs_g) over window:time(4h),

accumulate kako bi se na osnovu unosa hrane u prethodnom periodu izračunali agregirani indikatori:

Ako je \$sumCarb u poslednja 4 sata > 150 g, sistem pooštrava korektivni faktor (manje toleriše dodatne

Ako je \$avgGi > 65 i \$avgFat > 20, preporučene namirnice moraju imati niži GI i manje masti.

Ako je \$maxCarb (jedan obrok) > 80 g, sistem detektuje "težak obrok" i aktivira dodatno praćenje za

and GlucoseMeasurement(this after[10m] value > \$g1 + 3.0)

D) Blizu donje granice + predstoji zahtevnija aktivnost:

Trend(direction == UP, strength >= 2) &&

GlucoseMeasurement(value >= 9.0)

GlucoseMeasurement(\$g1: value)

insert(new Trend(UP, strength:2));

Trend(direction == UP, strength >= 2) &&

not InsulinShotEvent(this after[0m,2h])

insertLogical(new FoodConstraint(10, 20, 8, "LOW"));

4.3.3 Accumulate (dinamičko prilagođavanje pravila)

GlucoseMeasurement(value > 10) &&

insert(new CorrectionNeeded());

3. Akcije nad hranom i/ili insulinom

: average(\$gi),

kasni porast glukoze (spajanje sa CEP).

A) Brzi pad (rizik hipo) – detekcija i reakcija:

\$a : GlucoseMeasurement(\$v1: value)

4.3.4 CEP (Complex Event Processing)

\$avgFat : average(\$f),

\$sumCarb : sum(\$c), \$maxCarb : max(\$c)

ugljene hidrate).

CorrectionNeeded()

eval(iob() < 1.0) &&

insertLogical(new FoodConstraint(20, 35, 12, "LOW"));

(ActivationEvent(intensity == LOW) || ActivationEvent(intensity == NONE))

ActivationEvent(intensity in (MED, HIGH), startTime after now, duration_min >= 30)

GlucoseMeasurement: value (mmol/L), timestamp

• InsulinShotEvent: units, timestamp

Food: name, carbs_g, fat_g, glycemicIndex, portionSize_g

4.3 Baza znanja

4.3.0 Računanje IOB (iz InsulinShotEvent)

IOB(t) = suma preostalih jedinica brzog insulina u trenutku t od svih prethodnih InsulinShotEvent. Jednostavan eksponencijalni model: • Za ubrizgavanje u u vreme ts: remaining(t) = u * exp(-k * Δh), gde je Δh = (t - ts) u satima, $k \approx 3 / insulinActionHours$.

4.3.1 Pravila A) Hipoglikemija → traži brze šećere iz baze (bez tekstualne poruke): when

GlucoseMeasurement(value < 3.9)</pre> then // ciljaj 15-18 g brzih UH, minimalne masti, HIGH/FAST GI insertLogical(new FoodConstraint(15, 18, 5, "HIGH")); B) Hiperglikemija bez nedavne korekcije (sprečavanje stack-a):

when GlucoseMeasurement(\$g : value > 10) && not InsulinShotEvent(this after[0m,2h] \$g) then insert(new CorrectionNeeded());

C) Postprandijalna modulacija (sporiji porast → low GI, umerene masti): when then

when then E) Visoka glukoza + trend ↑ (zabrana profila hrane):

when then 4.3.2 Forward chaining (3+ nivoa) Scenario: kasni porast zbog masti 1. Detekcija trenda when

2. Uslov za korekciju (IOB nizak, nema skoro date doze)

then

when

then

then

accumulate(

\$avgGi

)

when

when

and not InsulinShotEvent(this before[0m] \$b) then insert(new RapidDropEvent(delta: (\$v1 - value(\$b)))); end when RapidDropEvent(delta >= 1.5) && GlucoseMeasurement(value < 4.5)</pre>

B) "Fat-induced late spike" (kasni porast zbog masti):

MealEvent(totalFat_g >= 25) over window:time(3h) and GlucoseMeasurement(value >= 6.0, value <= 8.0)

and not Trend(direction == UP, strength >= 2)

and \$b : GlucoseMeasurement(this after[5m] \$a, value < \$v1 - 1.5)

insertLogical(new FoodConstraint(15, 20, 5, "HIGH")); // brzi UH iz baze

insert(new HighFatWatch(durationMin:180)); end when HighFatWatch() and GlucoseMeasurement(\$g1: value) and GlucoseMeasurement(this after[30m] \$g1, value >= \$g1 + 2.0) insertLogical(new FoodConstraint(10, 20, 8, "LOW")); // mini-užina sa low GI/mastima

4.3.5 Template — FoodRecommendationByContext → FoodConstraint (ulančavanje) Template ne emituje poruku; generiše **FoodConstraint** iz "konteksta" (glukoza + aktivnost). **CSV** primer:

glucoseMin,glucoseMax,activitySet,durationMin,carbsMin,carbsMax,fatMax,giClass 4.0,6.0, NONE | LOW, 30, 20, 35, 12, LOW

4.0,4.8,MED|HIGH,30,25,40,10,MED 7.0,10.0,NONE|LOW,0,10,20,12,LOW

template foodRecommendationByContext

glucoseMin glucoseMax activitySet durationMin carbsMin carbsMax fatMax giClass

GlucoseMeasurement(value >= @{glucoseMin}, value < @{glucoseMax})</pre>

Template (.drt):

when

28

then

end

));

((@{durationMin} == 0 && (ActivationEvent(intensity == NONE) || not ActivationEvent())) Ш (ActivationEvent((@{activitySet}).contains(intensity), duration_min >= @{durationMin})))

insertLogical(new FoodConstraint(

@{carbsMin}, @{carbsMax}, @{fatMax}, "@{giClass}"

4.3.6 Ulančavanje na template: izbor sve hrane iz SQL baze Varijanta A — SQL fetch (preporučeno): rule "Fetch foods for constraint" no-loop true salience 5 when

\$fc : FoodConstraint(\$cMin : carbsMin, \$cMax : carbsMax, \$fatMax : fatMax, \$gi : giClass) java.util.List<Food> foods = foodService.findByConstraints(\$cMin, \$cMax, \$fatMax, \$gi); for (Food f : foods) { insert(new SuggestedFood(f)); }

Varijanta B — in-memory simulacija:

no-loop true salience 5

when

then

giClass)

rule "Match foods for constraint (in-memory)"

fat_g <= \$fatMax)</pre>

\$f : Food(glycemicIndex == \$gi,

insert(new SuggestedFood(\$f));

\$fc : FoodConstraint(\$cMin : carbsMin, \$cMax : carbsMax, \$fatMax : fatMax, \$gi :

carbs_g >= \$cMin, carbs_g <= \$cMax,</pre>

end