Univerzita Karlova v Praze Pedagogická fakulta

SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY **DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH**

2003/2004 Cifrik C.

Zadání:

Najděte pět kritérií pro dělitelnost v jiných soustavách než desítkových.

Vypracování:

Opakování důležitých pojmů

Dělitelnost v oboru celých čísel

V oboru Z pro libovolnou dvojici celých čísel $a, b \neq 0$ definujeme: Číslo a je dělitelné číslem b, právě když existuje takové celé číslo k, že platí a = bk, tj. když číslo a je násobkem [k-násobkem] čísla b. Říkáme pak též, že číslo b je dělitelem čísla a nebo že číslo b dělí číslo a. Píšeme $b \mid a$.

- číslo k se nazývá podíl čísla a při dělení číslem b
- v oboru Z mají čísla a, a právě tytéž dělitele
- čísla 1, -1, a, -a se nazývají nevlastní [samozřejmí, triviální] dělitelé čísel a, -a v oboru Z; existují-li další dělitelé čísla $a \in Z$, nazývají se vlastní [nesamozřejmí, netriviální] dělitelé
- každé celé číslo je dělitelem nuly, ale nula není dělitelem žádného celého čísla různého od nuly

Prvočísla, složená čísla

Prvočíslo je každé celé číslo $p(|p| \neq 1, p \neq 0)$, které má jen <u>nevlastní dělitele</u> (někdy se za prvočísla považují jen všechna kladná celá čísla n > 1, vyhovující uvedeným podmínkám).

Každé celé číslo různé od nuly, které má aspoň jednoho <u>vlastního dělitele</u>, se nazývá složené.

Čísla 1, −1 nejsou ani složenými čísly, ani prvočísly.

Věta o dělení se zbytkem v oboru celých čísel

$$\forall a, b \in Z, b \neq 0, \exists u, v \in Z : (a = bu + v \land 0 \le v < |b|)$$

- číslo *u* se nazývá částečný [neúplný] podíl čísel *a*, *b* (v tomto pořadí)
- číslo v se nazývá nejmenší nezáporný zbytek čísla a při dělení číslem b [nejmenší nezáporný zbytek čísla a podle modulu b], stručně: zbytek při dělení

Číselné soustavy

Množina určitých znaků s pravidly, která slouží k zobrazení čísel, se nazývá číselná soustava.

K zápisu reálných čísel používáme pozičních soustav, u nichž význam znaku závisí na jeho poloze v zápisu a z nichž nejrozšířenější jsou polyadické číselné soustavy.

Polyadické číselné soustavy

V *z*-adické číselné soustavě lze každé přirozené číslo *p* vyjádřit ve tvaru tzv. *z*-adického rozvoje

$$p = \sum_{i=0}^{n} a_i z^i = a_n z^n + a_{n-1} z^{n-1} + \dots + a_2 z^2 + a_1 z^1 + a_0 z^0,$$

kde $z \in N \setminus \{1\}$, $a_i \in \{1, 2, 3, ..., z-1\}$, a pak zapsat pomocí tzv. z-adického zápisu $(\alpha_n \alpha_{n-1} ... \alpha_2 \alpha_1 \alpha_0)_z$.

Zde z se nazývá základ z-adické číselné soustavy a α_i jsou znaky reprezentující čísla a_i . Znaky α_i (popř. někdy také čísla a_i) se nazývají číslice [cifry]. Index i číslice a_i , resp. pozice, která tomuto indexu v číselném obrazu přísluší, se nazývá řád číslice a_i , resp. řád obrazu číslice a_i . Číslice s indexem i se nazývá číslice řádu i nebo číslice i-tého řádu. Nenulová číslice, která je v číselném obrazu přirozeného čísla p první zleva, se nazývá číslice největšího řádu čísla p. Řád číslice největšího řádu přirozeného čísla p se nazývá řád přirozeného čísla p. Přirozené číslo řádu n-1 se nazývá n-ciferné.

Polyadická soustava se základem dvě se nazývá dvojková [binární, dyadická], se základem tři trojková [ternární], se základem osm osmičková [oktalová], se základem deset desítková [dekadická], se základem šestnáct šestnáctková [hexadecimální] atd.

Kritéria dělitelnosti

Veškeré naše další úvahy budou vycházet ze z-adického rozvoje přirozeného čísla $p = \overline{\ldots a_4 a_3 a_2 a_1 a_0}$, kde $a_0, a_1, a_2, a_3 \ldots$ jsou cifry, tj. ze zápisu

$$p = \dots + a_4 z^4 + a_3 z^3 + a_2 z^2 + a_1 z^1 + a_0 z^0$$

Výpočty budeme provádět v příslušných z-adických soustavách a čísla budeme zapisovat ve zkráceném z-adickém zápisu bez závorky a indexu označujícího základ, tj. místo $(a_n a_{n-1} \dots a_2 a_1 a_0)_z$ pouze $a_n a_{n-1} \dots a_2 a_1 a_0$.

Dělitelnost v Z₃

Dělitelnost dvěma

Pro nalezení kriteria dělitelnosti dvěma v trojkové soustavě použijeme rozklad čísla¹ $p = ... + a_4 10^4 + a_3 10^3 + a_2 10^2 + a_1 10^1 + a_0 10^0$ na

$$p = (\dots + 1111a_4 + 111a_3 + 11a_2 + a_1) \cdot 2 + (\dots + a_4 + a_3 + a_2 + a_1 + a_0).$$

Z tohoto zápisu je patrné, že číslo je dělitelné dvěma, právě když je dvěma dělitelný ciferný součet $\dots + a_4 + a_3 + a_2 + a_1 + a_0$ čísla p.

$$p = ... + a_4 3^4 + a_3 3^3 + a_2 3^2 + a_1 3^1 + a_0 3^0$$
.

Cifra 3 v trojkové soustavě neexistuje. Číslu 3 (tj. základu), odpovídá zápis (10)₃ (čteme jedna nula, nikoliv deset). Závorku a index označující základ budeme vynechávat, viz odstavec <u>Kriteria dělitelnosti</u>.

¹ Pracujeme v trojkové soustavě, v desítkové soustavě by zápis čísla *p* vypadal takto:

Dělitelnost základem

Čísla dělitelná základem končí ve všech z-adických soustavách cifrou 0.

Poznámka: V dalším textu se omezíme na vyšetřování kritérií dělitelnosti čísly menšími než je základ a nebudeme uvažovat dělitelnost číslem 1.

Dělitelnost v Z₄

Dělitelnost dvěma

Jelikož $p = (... + 2000a_4 + 200a_3 + 20a_2 + 2a_1) \cdot 2 + a_0$, je číslo p dělitelné dvěma, právě když je dělitelná dvěma cifra a_0 (tj. když číslo p končí 0 nebo 2).

Dělitelnost třemi

Platí
$$p = (...+1111a_4+111a_3+11a_2+a_1)\cdot 3+(...+a_4+a_3+a_2+a_1+a_0)$$

Číslo p je dělitelné třemi, právě když je třemi dělitelný ciferný součet $\dots + a_4 + a_3 + a_2 + a_1 + a_0$ čísla p.

Dělitelnost v Z₅

Dělitelnost dvěma

Jelikož $p = (... + 2222a_4 + 222a_3 + 22a_2 + 2a_1) \cdot 2 + (... + a_4 + a_3 + a_2 + a_1 + a_0)$, je číslo p dělitelné dvěma, právě když je dělitelný dvěma ciferný součet čísla p.

Dělitelnost třemi

$$p = (\dots + 1313a_4 + 131a_3 + 13a_2 + a_1) \cdot 3 + (\dots + a_4 + 2a_3 + a_2 + 2a_1 + a_0) =$$

$$= (\dots + 1313a_4 + 132a_3 + 13a_2 + 2a_1) \cdot 3 + (\dots + a_4 - a_3 + a_2 - a_1 + a_0) =$$

$$= (\dots + 1314a_4 + 131a_3 + 14a_2 + a_1 + a_0) \cdot 3 + (\dots - a_4 + a_3 - a_2 + a_1 - a_0) \cdot 2$$

Číslo p je dělitelné třemi, právě když je třemi dělitelný alternovaný ciferný součet čísla p.

Dělitelnost čtyřmi

Jelikož $p = (...+1111a_4+111a_3+11a_2+a_1)\cdot 4+(...+a_4+a_3+a_2+a_1+a_0)$, je číslo p dělitelné čtyřmi, právě když je dělitelný čtyřmi ciferný součet čísla p.

Dělitelnost v Z₆

Dělitelnost dvěma

Jelikož $p = (... + 3000a_4 + 300a_3 + 30a_2 + 3a_1) \cdot 2 + a_0$, je číslo p dělitelné dvěma, právě když je dělitelná dvěma cifra a_0 (tj. $a_0 \in \{0, 2, 4\}$).

Kriterium bychom mohli objevit i takto:

Ze zápisu $p = (...+1000a_4 + 100a_3 + 10a_2 + a_1) \cdot 10 + a_0$ je patrné, že poslední cifra a_0 rozhoduje o dělitelnosti čísla p všemi děliteli čísla 10, tj. čísly 2, 3 a 10 (číslo 1 zde neuvažujeme), neboť číslo $(...+1000a_4 + 100a_3 + 10a_2) \cdot 10$ čísly 2, 3 a 10 dělitelné je. Číslo p je dělitelné dvěma, právě když je dělitelná dvěma cifra a_0 .

Dělitelnost třemi

Jelikož $p = (... + 2000a_4 + 200a_3 + 20a_2 + 2a_1) \cdot 3 + a_0$, je číslo p dělitelné třemi, právě když je dělitelná třemi cifra a_0 (tj. $a_0 \in \{0, 3\}$).

Dělitelnost čtyřmi

Jelikož $p = (... + 1300a_4 + 130a_3 + 13a_2 + a_1) \cdot 4 + 2a_1 + a_0$, je číslo p dělitelné čtyřmi, právě když je dělitelné čtyřmi číslo $2a_1 + a_0$.

Jiné kritérium objevíme použitím zápisu $p = (...+100a_4+10a_3+a_2)\cdot 100+\overline{a_1a_0}$, z něhož je patrné, že poslední dvojčíslí $\overline{a_1a_0}$ rozhoduje o dělitelnosti čísla p všemi děliteli čísla 100, tj. čísly 2, 3, 4, 13, 20, 30 a 100, neboť číslo $(...+100a_4+10a_3+a_2)\cdot 100$ čísly 2, 3, 4, 13, 20, 30 a 100 dělitelné je. Proto číslo p je dělitelné čtyřmi, jeli čtyřmi dělitelné poslední dvojčíslí.

Dělitelnost pěti

Jelikož $p = (...+1111a_4+111a_3+11a_2+a_1)\cdot 5+(...+a_4+a_3+a_2+a_1+a_0)$, je číslo p dělitelné čtyřmi, právě když je dělitelný čtyřmi ciferný součet čísla p.

Dělitelnost v Z₇

Dělitelnost dvěma

Jelikož $p = (... + 3333a_4 + 333a_3 + 33a_2 + 3a_1) \cdot 2 + (... + a_4 + a_3 + a_2 + a_1 + a_0)$, je číslo p dělitelné dvěma, právě když je dělitelný dvěma ciferný součet čísla p.

Dělitelnost třemi

Jelikož $p = (... + 2222a_4 + 222a_3 + 22a_2 + 2a_1) \cdot 3 + (... + a_4 + a_3 + a_2 + a_1 + a_0)$, je číslo p dělitelné třemi, právě když je dělitelný třemi ciferný součet čísla p.

Dělitelnost čtyřmi

Jelikož $p = (...+1515a_4 + 152a_3 + 15a_2 + 2a_1) \cdot 4 + (...+a_4 - a_3 + a_2 - a_1 + a_0)$, je číslo p dělitelné čtyřmi, právě když je čtyřmi dělitelný alternovaný ciferný součet čísla p.

Dělitelnost pěti

Jelikož

$$p = (\dots + 1254125a_7 + 125424a_6 + 12541a_5 + 1254a_4 + 125a_3 + 12a_2 + a_1) \cdot 5 + \\ + (\dots + 3a_7 + 4a_6 + 2a_5 + a_4 + 3a_3 + 4a_2 + 2a_1 + a_0)$$

je číslo p dělitelné pěti, právě když je dělitelné pěti číslo

... +
$$3a_7 + 4a_6 + 2a_5 + a_4 + 3a_3 + 4a_2 + 2a_1 + a_0$$
 čísla p .

Úloha. Je-li $p = (23562)_7$, je

 $(1 \cdot 2)_7 + (3 \cdot 3)_7 + (4 \cdot 5)_7 + (2 \cdot 6)_7 + (1 \cdot 2)_7 = (2)_7 + (12)_7 + (26)_7 + (15)_7 + (2)_7 = (63)_7$, což je číslo dělitelné pěti a proto je dělitelné pěti i číslo $p = (23562)_7$ (pokud by nám

nestačilo k určení dělitelnosti pěti číslo (63), mohli bychom pokračovat:

$$(2 \cdot 6)_7 + (1 \cdot 3)_7 = (15)_7 + (3)_7 = (21)_7$$
 a $(2 \cdot 2)_7 + (1 \cdot 1)_7 = (5)_7$).

Dělitelnost šesti

Jelikož $p = (...+1111a_4+111a_3+11a_2+a_1)\cdot 6+(...+a_4+a_3+a_2+a_1+a_0)$, je číslo p dělitelné šesti, právě když je dělitelný šesti ciferný součet čísla p. (Poznámka: Číslo šest je číslo složené, porovnejte kritéria dělitelnosti.)

Dělitelnost v Z₈

Dělitelnost dvěma

Jelikož $p = (... + 4000a_4 + 400a_3 + 40a_2 + 4a_1) \cdot 2 + a_0$, je číslo p dělitelné dvěma, právě když je dělitelná dvěma cifra a_0 (tj. $a_0 \in \{0, 2, 4, 6\}$).

Dělitelnost třemi

Jelikož $p = (... + 2525a_4 + 253a_3 + 25a_2 + 3a_1) \cdot 3 + (... + a_4 - a_3 + a_2 - a_1 + a_0)$, je číslo p dělitelné třemi, právě když je třemi dělitelný alternovaný ciferný součet čísla p.

Dělitelnost čtyřmi

Jelikož $p = (... + 2000a_4 + 200a_3 + 20a_2 + 2a_1) \cdot 4 + a_0$, je číslo p dělitelné čtyřmi, právě když je dělitelná čtyřmi cifra a_0 (tj. $a_0 \in \{0, 4\}$).

Dělitelnost pěti

Jelikož

$$p = (\dots + 1463146a_7 + 146314a_6 + 14631a_5 + 1463a_4 + 146a_3 + 14a_2 + a_1) \cdot 5 + (\dots + 2a_7 + 4a_6 + 3a_5 + a_4 + 2a_3 + 4a_2 + 3a_1 + a_0)$$

je číslo p dělitelné pěti, právě když je dělitelné pěti číslo

$$\dots + 2a_7 + 4a_6 + 3a_5 + a_4 + 2a_3 + 4a_2 + 3a_1 + a_0$$

Dělitelnost šesti

Jelikož

$$p = (\dots + 12525a_5 + 1253a_4 + 125a_3 + 13a_2 + a_1) \cdot 6 + (\dots + 2a_5 - 2a_4 + 2a_3 - 2a_2 + 2a_1 + a_0),$$
 je číslo p dělitelné šesti, právě když je dělitelný šesti ciferný součet $\dots + 2a_5 - 2a_4 + 2a_3 - 2a_2 + 2a_1 + a_0$ čísla p . (Poznámka: Číslo šest je číslo složené, porovnejte kritéria dělitelnosti.)

Dělitelnost sedmi

Jelikož $p = (...+1111a_4+111a_3+11a_2+a_1)\cdot 7 + (...+a_4+a_3+a_2+a_1+a_0)$, je číslo p dělitelné sedmi, právě když je dělitelný sedmi ciferný součet čísla p.

Dělitelnost v Z₁₀ (dekadická soustava)

$$p = \dots + a_4 10^4 + a_3 10^3 + a_2 10^2 + a_1 10^1 + a_0 10^0$$

Tabulka 1: Tabulka zbytků vyjadřujících kritéria dělitelnosti jednotlivými přirozenými čísly:

	zbytku vyjaurujicich kriteria dentemosti jednotnyymi prirozenymi cisty:					
Dělitelnost	Kritérium dělitelnosti					
<u>čísla</u>						
$\dots a_4 a_3 a_2 a_1 a_0$						
číslem						
2	$a_0^{}$					
3	$\dots + a_4 + a_3 + a_2 + a_1 + a_0$					
4	$2a_1 + a_0$					
5	a_0					
6	$\dots + 4a_4 + 4a_3 + 4a_2 + 4a_1 + a_0$					
7	$\dots + 3a_7 + a_6 - 2a_5 - 3a_4 - a_3 + 2a_2 + 3a_1 + a_0$					
8	$4a_2 + 2a_1 + a_0$					
9	$\dots + a_4 + a_3 + a_2 + a_1 + a_0$					
10	a_0					
11	$\dots + a_4 - a_3 + a_2 - a_1 + a_0$					
12	$\dots + 4a_4 + 4a_3 + 4a_2 - 2a_1 + a_0$					
13	$\dots -3a_7 + a_6 + 4a_5 + 3a_4 - a_3 - 4a_2 - 3a_1 + a_0$					
14	$\dots + 2a_8 - 4a_7 - 6a_6 - 2a_5 + 4a_4 + 6a_3 + 2a_2 - 4a_1 + a_0$					
15	$\dots -5a_4 - 5a_3 - 5a_2 - 5a_1 + a_0$					
16	$8a_3 + 4a_2 - 6a_1 + a_0$					
17	$\dots + 2a_{10} + 7a_9 - a_8 + 5a_7 - 8a_6 + 6a_5 + 4a_4 - 3a_3 - 2a_2 - 7a_1 + a_0$					
18	$\dots -8a_4 - 8a_3 - 8a_2 - 8a_1 + a_0$					
19	$\dots + 9a_{10} - a_9 - 2a_8 - 4a_7 - 8a_6 + 3a_5 + 6a_4 - 7a_3 + 5a_2 - 9a_1 + a_0$					
20	$10a_1 + a_0$					

Úloha. Je-li n = 86415, je -3.8-1.6+2.4+3.1+1.5=-14, což je číslo dělitelné sedmi, a proto je dělitelné sedmi i číslo n = 86415.

Literatura

BARTSCH, H.-J.: Matematické vzorce. Praha, Mladá fronta 2002. ZHOUF, J.: Kriteria dělitelnosti. In: Jak učit matematice žáky ve věku 10 - 15 let, edit.: Hejný, Milan - Hrubý, Dag - Lišková, Hana - Stehlíková, Naďa - Sýkora, Václav, 1. vyd., Litomyšl, JČMF, 2002, s. 145-152, ISBN: 80-7015-840-9, stať ve sborníku z konference

Dodatek

V dodatku uvádíme zápis prvních padesáti čísel v soustavách o základu dvě až deset.

Tabulka 2: Tabulka prvních padesáti čísel v příslušné z-adické soustavě

	1			el v příslušn	1	1		
\mathbf{Z}_2	\mathbf{Z}_3	Z_4	\mathbf{Z}_5	\mathbf{Z}_6	\mathbf{Z}_7	Z_8	\mathbf{Z}_9	$oldsymbol{Z}_{10}$
1	1	1	1	1	1	1	1	1
10	2	2	2	2	2	2	2	2
11	10	3	3	3	3	3	3	3
100	11	10	4	4	4	4	4	4
101	12	11	10	5	5	5	5	5
110	20	12	11	10	6	6	6	6
111	21	13	12	11	10	7	7	7
1000	22	20	13	12	11	10	8	8
1001	100	21	14	13	12	11	10	9
1010	101	22	20	14	13	12	11	10
1011	102	23	21	15	14	13	12	11
1100	110	30	22	20	15	14	13	12
1101	111	31	23	21	16	15	14	13
1110	112	32	24	22	20	16	15	14
1111	120	33	30	23	21	17	16	15
10000	121	100	31	24	22	20	17	16
10001	122	101	32	25	23	21	18	17
10010	200	102	33	30	24	22	20	18
10011	201	103	34	31	25	23	21	19
10100	202	110	40	32	26	24	22	20
10101	210	111	41	33	30	25	23	21
10110	211	112	42	34	31	26	24	22
10111	212	113	43	35	32	27	25	23
11000	220	120	44	40	33	30	26	24
11001	221	121	100	41	34	31	27	25
11010	222	122	101	42	35	32	28	26
11011	1000	123	102	43	36	33	30	27
11100	1001	130	103	44	40	34	31	28
11101	1002	131	104	45	41	35	32	29
11110	1010	132	110	50	42	36	33	30
11111	1011	133	111	51	43	37	34	31
100000	1012	200	112	52	44	40	35	32
100001	1020	201	113	53	45	41	36	33
100010	1021	202	114	54	46	42	37	34
100011	1022	203	120	55	50	43	38	35
100100	1100	210	121	100	51	44	40	36
100101	1101	211	122	101	52	45	41	37
100110	1102	212	123	102	53	46	42	38
100111	1110	213	124	103	54	47	43	39
101000	1111	220	130	104	55	50	44	40
101001	1112	221	131	105	56	51	45	41
101010	1120	222	132	110	60	52	46	42
101011	1121	223	133	111	61	53	47	43
101100	1122	230	134	112	62	54	48	44
101101	1200	231	140	113	63	55	50	45
101110	1201	232	141	114	64	56	51	46
101111	1202	233	142	115	65	57	52	47
110000	1210	300	143	120	66	60	53	48
110001	1211	301	144	121	100	61	54	49
110010	1212	302	200	122	101	62	55	50

Obsah

Opakování důležitých pojmů	1
Dělitelnost v oboru celých čísel	1
Prvočísla, složená čísla	
Věta o dělení se zbytkem v oboru celých čísel	1
Číselné soustavy	1
Polyadické číselné soustavy	2
Kritéria dělitelnosti	
Dělitelnost v Z ₃	
Dělitelnost dvěma	
Dělitelnost základem	3
Dělitelnost v Z ₄	3
Dělitelnost dvěma	3
Dělitelnost třemi	3
Dělitelnost v Z ₅	3
Dělitelnost dvěma	
Dělitelnost třemi	3
Dělitelnost čtyřmi	3
Dělitelnost v Z ₆	
Dělitelnost dvěma	
Dělitelnost třemi	4
Dělitelnost čtyřmi	
Dělitelnost pěti	
Dělitelnost v Z_7	4
Dělitelnost dvěma	
Dělitelnost třemi	4
Dělitelnost čtyřmi	4
Dělitelnost pěti	4
Dělitelnost šesti	5
Dělitelnost v Z ₈	5
Dělitelnost dvěma	
Dělitelnost třemi	
Dělitelnost čtyřmi	
Dělitelnost pěti	
Dělitelnost šesti	
Dělitelnost sedmi	
Dělitelnost v Z ₁₀ (dekadická soustava)	
Literatura	
Dodatek	
Obsah	ς