14: Hybrid Systems & Games

Logical Foundations of Cyber-Physical Systems

André Platzer

Outline

- Learning Objectives
- Motivation
 - A Gradual Introduction to Hybrid Games
 - Choices & Nondeterminism
 - Control & Dual Control
 - Demon's Derived Controls
- Differential Game Logic
 - Syntax of Hybrid Games
 - Syntax of Differential Game Logic Formulas
 - Examples
 - Push-around Cart
 - Robot Dance
 - Example: Robot Soccer
- An Informal Operational Game Tree Semantics
- Summary

- Learning Objectives
- - Choices & Nondeterminism
 - Control & Dual Control
- - Syntax of Hybrid Games

Learning Objectives

Hybrid Systems & Games

fundamental principles of computational thinking logical extensions PL modularity principles compositional extensions differential game logic best/worst-case analysis models of alternating computation

adversarial dynamics conflicting actions multi-agent systems angelic/demonic choice multi-agent state change **CPS** semantics reflections on choices

- Motivation
 - - Choices & Nondeterminism
 - Control & Dual Control
- - Syntax of Hybrid Games

6

Challenge (Games)

Game rules describing play evolution with both

- Angelic choices (player > Angel)
- Demonic choices (player Demon)

Challenge (Hybrid Games)

Game rules describing play evolution with

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)
- Adversarial dynamics
 (Angel > vs. Demon □)

CPSs are Multi-Dynamical Systems

CPS Dynamics

CPS are characterized by multiple facets of dynamical systems.

CPS Compositions

CPS combines multiple simple dynamical effects.

Descriptive simplification

Tame Parts

Exploiting compositionality tames CPS complexity.

Analytic simplification

Dynamic Logics for Dynamical Systems

differential dynamic logic

$$dL = DL + HP$$

differential game logic

$$dGL = GL + HG$$

stochastic differential DL

$$SdL = DL + SHP$$

quantified differential DL

$$QdL = FOL + DL + QHP$$

→ Outline

- Learning Objectives
- 2 Motivation
 - A Gradual Introduction to Hybrid Games
 - Choices & Nondeterminism
 - Control & Dual Control
 - Demon's Derived Controls
- Differential Game Logic
 - Syntax of Hybrid Games
 - Syntax of Differential Game Logic Formulas
 - Examples
 - Push-around Cari
 - Robot Dance
 - Example: Robot Soccer
- 5 An Informal Operational Game Tree Semantics
- 6 Summary

Definition (Hybrid program α)

$$x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Definition (dL Formula P)

$$e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Definition (dL Formula *P*)

$$e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Differential Dynamic Logic dL: Nondeterminism

Nondet. Choice

Definition (Hybrid program α)

$$x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Definition (dL Formula *P*)

$$e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Nondeterminism during HP runs

Differential Dynamic Logic dL: Nondeterminism

Differential Rondet. Choice

Definition (Hybrid program α) $x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$

Definition (dL Formula *P*)

$$e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Nondeterminism during HP runs

Differential Dynamic Logic dL: Nondeterminism

$$e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Modality decides the mode: help/hurt

$$e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Modality decides the mode: help/hurt

 $[\alpha_1]\langle \alpha_2 \rangle [\alpha_3]\langle \alpha_4 \rangle P$ only fixed interaction depth

Control & Dual Control Operators

Let Angel be one player

Control & Dual Control Operators

Angel Ops

 \cup choice * repeat x' = f(x) evolve ?Q challenge

Demon Ops

 \bigcap_{\times} choice $f(x)^d$ repeat $f(x)^d$ evolve $f(x)^d$ challenge

Let Angel be one player

Let Demon be another player

Control & Dual Control Operators

Rame Operators

Rame Operators

Rame Operators

$$\begin{array}{l} \operatorname{if}(Q)\,\alpha\,\mathsf{else}\,\beta\equiv \\ \mathsf{while}(Q)\,\alpha\equiv \\ \alpha\cap\beta\equiv \\ \alpha^\times\equiv \\ (x'=f(x)\,\&\,Q)^\mathsf{d} \quad x'=f(x)\,\&\,Q \\ (x:=e)^\mathsf{d} \quad x:=e \\ ?\,Q^\mathsf{d} \quad ?\,Q \end{array}$$

$$\begin{aligned} \text{if}(Q) \, \alpha \, \text{else} \, \beta &\equiv (?Q;\alpha) \cup (?\neg Q;\beta) \\ \text{while}(Q) \, \alpha &\equiv \\ &\alpha \cap \beta &\equiv \\ &\alpha^{\times} &\equiv \\ &(x' = f(x) \& Q)^{\text{d}} \quad x' = f(x) \& Q \\ &(x := e)^{\text{d}} \quad x := e \\ &?Q^{\text{d}} \quad ?Q \end{aligned}$$

$$\begin{aligned} \text{if}(Q) \, \alpha \, \text{else} \, \beta &\equiv (?Q;\alpha) \cup (?\neg Q;\beta) \\ \text{while}(Q) \, \alpha &\equiv (?Q;\alpha)^*; ?\neg Q \\ \alpha \cap \beta &\equiv \\ \alpha^\times &\equiv \\ (x' = f(x) \& Q)^{\mathsf{d}} \quad x' = f(x) \& Q \\ (x := e)^{\mathsf{d}} \quad x := e \\ ?Q^{\mathsf{d}} \quad ?Q \end{aligned}$$

Definable Game Operators

$$\begin{aligned} \text{if}(Q) \, \alpha \, \text{else} \, \beta &\equiv (?Q;\alpha) \cup (?\neg Q;\beta) \\ \text{while}(Q) \, \alpha &\equiv (?Q;\alpha)^*; ?\neg Q \\ \alpha \cap \beta &\equiv \\ \alpha^\times &\equiv \\ (x' = f(x) \, \& \, Q)^{\mathsf{d}} \quad x' = f(x) \, \& \, Q \\ (x := e)^{\mathsf{d}} \quad x := e \\ ?Q^{\mathsf{d}} \quad ?Q \end{aligned}$$

Definable Game Operators

$$\begin{split} \text{if}(Q) \, \alpha \, \text{else} \, \beta &\equiv (?Q;\alpha) \cup (?\neg Q;\beta) \\ \text{while}(Q) \, \alpha &\equiv (?Q;\alpha)^*;?\neg Q \\ &\alpha \cap \beta \equiv (\alpha^{\mathsf{d}} \cup \beta^{\mathsf{d}})^{\mathsf{d}} \\ &\alpha^\times \equiv \\ (x' = f(x) \& Q)^{\mathsf{d}} \quad x' = f(x) \& Q \\ &(x := e)^{\mathsf{d}} \quad x := e \\ &? Q^{\mathsf{d}} \quad ? Q \end{split}$$

$$\begin{aligned} & \text{if}(Q) \, \alpha \, \text{else} \, \beta \equiv (?Q;\alpha) \cup (?\neg Q;\beta) \\ & \text{while}(Q) \, \alpha \equiv (?Q;\alpha)^*; ?\neg Q \\ & \alpha \cap \beta \equiv (\alpha^{\mathsf{d}} \cup \beta^{\mathsf{d}})^{\mathsf{d}} \\ & \alpha^{\times} \equiv ((\alpha^{\mathsf{d}})^*)^{\mathsf{d}} \\ & (x' = f(x) \& Q)^{\mathsf{d}} \quad x' = f(x) \& Q \\ & (x := e)^{\mathsf{d}} \quad x := e \\ & ?Q^{\mathsf{d}} \quad ?Q \end{aligned}$$

$$\begin{aligned} \text{if}(Q) \, \alpha \, \text{else} \, \beta &\equiv (?Q;\alpha) \cup (?\neg Q;\beta) \\ \text{while}(Q) \, \alpha &\equiv (?Q;\alpha)^*; ?\neg Q \\ \alpha \, \cap \, \beta &\equiv (\alpha^{\mathsf{d}} \cup \beta^{\mathsf{d}})^{\mathsf{d}} \\ \alpha^\times &\equiv ((\alpha^{\mathsf{d}})^*)^{\mathsf{d}} \\ (x' = f(x) \& Q)^{\mathsf{d}} \not\equiv x' = f(x) \& Q \\ (x := e)^{\mathsf{d}} \quad x := e \\ ?Q^{\mathsf{d}} \quad ?Q \end{aligned}$$

$$\begin{aligned} \text{if}(Q) \, \alpha \, \text{else} \, \beta &\equiv (?Q;\alpha) \cup (?\neg Q;\beta) \\ \text{while}(Q) \, \alpha &\equiv (?Q;\alpha)^*; ?\neg Q \\ \alpha \, \cap \, \beta &\equiv (\alpha^{\mathsf{d}} \cup \beta^{\mathsf{d}})^{\mathsf{d}} \\ \alpha^\times &\equiv ((\alpha^{\mathsf{d}})^*)^{\mathsf{d}} \\ (x' = f(x) \& Q)^{\mathsf{d}} \not\equiv x' = f(x) \& Q \\ (x := e)^{\mathsf{d}} &\equiv x := e \\ ?Q^{\mathsf{d}} &?Q \end{aligned}$$

$$\begin{aligned} &\text{if}(Q)\,\alpha\,\text{else}\,\beta\equiv(?Q;\alpha)\cup(?\neg Q;\beta)\\ &\text{while}(Q)\,\alpha\equiv(?Q;\alpha)^*;?\neg Q\\ &\alpha\cap\beta\equiv(\alpha^{\mathsf{d}}\cup\beta^{\mathsf{d}})^{\mathsf{d}}\\ &\alpha^{\times}\equiv((\alpha^{\mathsf{d}})^*)^{\mathsf{d}}\\ &(x'=f(x)\,\&\,Q)^{\mathsf{d}}\not\equiv x'=f(x)\,\&\,Q\\ &(x:=e)^{\mathsf{d}}\equiv x:=e\\ &?Q^{\mathsf{d}}\not\equiv ?Q \end{aligned}$$

A Outline

- Learning Objectives
- 2 Motivation
- A Gradual Introduction to Hybrid Games
 - Choices & Nondeterminism
 - Control & Dual Control
 - Demon's Derived Controls
- Differential Game Logic
 - Syntax of Hybrid Games
 - Syntax of Differential Game Logic Formulas
 - Examples
 - Push-around Cart
 - Robot Dance
 - Example: Robot Soccer
- 5 An Informal Operational Game Tree Semantics
- Summary

Definition (Hybrid game α)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

Discrete Test Differential Equation Choice Seq. Repeat Game
$$\alpha$$

Definition (Hybrid game α)

 $\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$

Discrete Assign Game Equation Choice Seq. Repeat Game Game Game
$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

$$((a:=1 \cup a:=-1); (d:=1 \cup d:=-1)^d; \{x'=v, v'=a+d\})^*$$

$$((a:=1 \cup a:=-1); (d:=1 \cup d:=-1)^d; \{x'=v, v'=a+d\})^*$$

$$((d := 1 \cup d := -1)^d; (a := 1 \cup a := -1); \{x' = v, v' = a + d\})^*$$

$$((a:=1 \cup a:=-1); (d:=1 \cap d:=-1); \{x'=v, v'=a+d\})^*$$

$$((d:=1 \cap d:=-1); (a:=1 \cup a:=-1); \{x'=v, v'=a+d\})^*$$

$$((a:=1 \cup a:=-1); (d:=1 \cap d:=-1); \{x'=v, v'=a+d\})^*$$

$$((d:=1 \cap d:=-1); (a:=1 \cup a:=-1); \{x'=v, v'=a+d\})^*$$

HP
$$((d:=1 \cup d:=-1); (a:=1 \cup a:=-1); \{x'=v, v'=a+d\})^*$$

$$((a:=1 \cup a:=-1); (d:=1 \cap d:=-1); \{x'=v, v'=a+d\})^*$$

$$((d:=1 \cap d:=-1); (a:=1 \cup a:=-1); \{x'=v, v'=a+d\})^*$$

HP
$$((d:=1 \cup d:=-1); (a:=1 \cup a:=-1); \{x'=v, v'=a+d\})^*$$

Hybrid systems can't say that a is Angel's choice and d is Demon's

Definition (Hybrid game α)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

Definition (Hybrid game α)

$$\alpha,\beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha;\beta \mid \alpha^* \mid \alpha^d$$

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

Discrete Assign Game Equation Choice Game Game Game

Definition (Hybrid game
$$\alpha$$
)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha]P$$

Discrete Assign Game Equation Choice Game Game Game Game Game Game
$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

Discrete Test Differential Equation Choice Seq. Repeat Game Game Game Game
$$\alpha$$
, $\beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

Discrete Test Differential Equation Choice Seq. Repeat Game Game Game Game
$$\alpha$$
, $\beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$

$$P,Q ::= e \geq \tilde{e} | \neg P | P \wedge Q | \forall x P | \exists x P | \langle \alpha \rangle P | [\alpha] P$$

Simple Examples

$$\langle (x := x + 1; (x' = 1)^d \cup x := x - 1)^* \rangle (0 \le x < 1)$$

$$\langle (x := x + 1; (x' = 1)^d \cup (x := x - 1 \cap x := x - 2))^* \rangle (0 \le x < 1)$$

$$\models \langle (x := x + 1; (x' = 1)^d \cup x := x - 1)^* \rangle (0 \le x < 1)$$

$$\langle (x := x+1; (x'=1)^d \cup (x := x-1 \cap x := x-2))^* \rangle (0 \le x < 1)$$

$$\models \langle (x := x + 1; (x' = 1)^{d} \cup x := x - 1)^{*} \rangle (0 \le x < 1)$$

$$\not\models \langle (x := x + 1; (x' = 1)^d \cup (x := x - 1 \cap x := x - 2))^* \rangle (0 \le x < 1)$$

$$v \ge 1 \to$$

$$\left[\left((\mathbf{d} := 1 \cup \mathbf{d} := -1)^{\mathbf{d}}; (\mathbf{a} := 1 \cup \mathbf{a} := -1); \{x' = v, v' = \mathbf{a} + \mathbf{d}\} \right)^{*} \right] v \ge 0$$

$$[(d := 1 \cap d := -1); (a := 1 \cup a := -1); \{x' = v, v' = a + d\})^*] v \ge 0$$

$$\vDash v \ge 1 \rightarrow$$

d before a can compensate

$$[((\mathbf{d}:=1\cap\mathbf{d}:=-1);(a:=1\cup a:=-1);\{x'=v,v'=a+\mathbf{d}\})^*]v \ge 0$$

$$x \ge 0 \land v \ge 0 \rightarrow$$

$$[((\mathbf{d}:=1\cap\mathbf{d}:=-1);(a:=1\cup a:=-1);\{x'=v,v'=a+\mathbf{d}\})^*]x > 0$$

$$\models v > 1 \rightarrow$$

d before a can compensate

$$\big[\big(({\color{red} a}:=1\cap {\color{red} a}:=-1);(a:=1\cup a:=-1);\{x'=v,v'=a+{\color{red} a}\}\big)^*\big]v\geq 0$$

$$\langle ((d:=1 \cap d:=-1); (a:=1 \cup a:=-1); \{x'=v, v'=a+d\})^* \rangle x \geq 0$$

$$\vdash v \ge 1 \to d$$
 before a can compensate $\left[\left((d:=1 \cap d:=-1); (a:=1 \cup a:=-1); \{x'=v, v'=a+d\}\right)^*\right] v \ge 0$
 $\not\models$ counterstrategy $d:=-1$ $\langle \left((d:=1 \cap d:=-1); \{a:=1 \cup a:=-1\}; \{x'=v, v'=a+d\}\right)^* \rangle x \ge 0$

Example: WALL-E and EVE Robot Dance

EVE at e plays Angel's part controlling g

WALL-E at w plays Demon's part controlling u

Example: WALL-E and EVE Robot Dance and the World

EVE at e plays Angel's part controlling g

WALL-E at w plays Demon's part controlling u and world time

Example: WALL-E and EVE

WALL-E at w plays Demon's part controlling u and world time EVE at e plays Angel's part controlling g

Example: Goalie in Robot Soccer

$$x < 0 \land v > 0 \land y = g \rightarrow$$

$$\langle (w := +w \cap w := -w);$$

$$((u := +u \cup u := -u); \{x' = v, y' = w, g' = u\})^* \rangle x^2 + (y - g)^2 \le 1$$

Example: Goalie in Robot Soccer

$$x < 0 \land v > 0 \land y = g \rightarrow$$

$$\langle (w := +w \cap w := -w);$$

$$((u := +u \cup u := -u); \{x' = v, y' = w, g' = u\})^* \rangle x^2 + (y - g)^2 \le 1$$

$$x < 0 \land v > 0 \land y = g \rightarrow$$

$$\langle (w := +w \cap w := -w);$$

$$((u := +u \cup u := -u); \{x' = v, y' = w, g' = u\})^* \rangle x^2 + (y - g)^2 \le 1$$

$$x < 0 \land v > 0 \land y = g \rightarrow$$

$$\langle (w := +w \cap w := -w);$$

$$((u := +u \cup u := -u); \{x' = v, y' = w, g' = u\})^* \rangle x^2 + (y - g)^2 \le 1$$

$$x < 0 \land v > 0 \land y = g \rightarrow$$

\(\langle (w:=+w\cap w:=-w);\)\((u:=+u\cup u:=-u);\{x'=v,y'=w,g'=u\}\)^*\rangle x^2+(y-g)^2\leq 1

→ Outline

- Learning Objectives
- 2 Motivation
- A Gradual Introduction to Hybrid Games
 - Choices & Nondeterminism
 - Control & Dual Control
 - Demon's Derived Controls
- Differential Game Logic
 - Syntax of Hybrid Games
 - Syntax of Differential Game Logic Formulas
 - Examples
 - Push-around Car
 - Robot Dance
 - Example: Robot Soccer
- 6 An Informal Operational Game Tree Semantics
- 6 Summary

$$\langle (x := 0 \cap x := 1)^* \rangle x = 0$$

Filibusters & The Significance of Finitude

$$\langle (x := 0 \cap x := 1)^* \rangle x = 0$$

$$\stackrel{\mathsf{wfd}}{\leadsto}$$
 false unless $x = 0$

Filibusters & The Significance of Finitude

$$\langle (x'=1^d;x=0)^*\rangle x=0$$

$$\langle (x := 0; x' = 1^d)^* \rangle x = 0$$

$$\langle (x := 0 \cap x := 1)^* \rangle x = 0$$

$$\stackrel{\mathsf{wfd}}{\leadsto}$$
 false unless $x = 0$

$$\langle (x'=1^d;x=0)^*\rangle x=0$$

$$\langle (x := 0; x' = 1^d)^* \rangle x = 0$$

$$\langle (x := 0 \cap x := 1)^* \rangle x = 0$$

$$\stackrel{\mathsf{wfd}}{\leadsto}$$
 false unless $x = 0$

$$\langle (x'=1^d;x=0)^*\rangle x=0$$

$$\langle (x := 0; x' = 1^d)^* \rangle x = 0$$

$$\langle (x := 0 \cap x := 1)^* \rangle x = 0$$

$$\stackrel{\mathsf{wfd}}{\leadsto}$$
 false unless $x = 0$

Well-defined games can't be postponed forever

Outline

- Learning Objectives
- 2 Motivation
 - A Gradual Introduction to Hybrid Games
 - Choices & Nondeterminism
 - Control & Dual Control
 - Demon's Derived Controls
- Differential Game Logic
 - Syntax of Hybrid Games
 - Syntax of Differential Game Logic Formulas
 - Examples
 - Push-around Cart
 - Robot Dance
 - Example: Robot Soccer
- 5 An Informal Operational Game Tree Semantics
- Summary

Discrete Test Differential Equation Choice Seq. Repeat Game Game Game Game
$$\alpha$$
, $\beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$

Definition (dGL Formula *P*)

$$P,Q ::= e \geq \tilde{e} | \neg P | P \wedge Q | \forall x P | \exists x P | \langle \alpha \rangle P | [\alpha] P$$

differential game logic

$$dGL = GL + HG = dL + d$$

- Logic for hybrid games
- Compositional PL + logic
- Discrete + continuous + adversarial
- Operational semantics (informally)

Next chapter

Formal semantics

Example: Robot Factory Decentralized Automation

Mode

- (x,y) robot coordinates
- (v_x, v_y) velocities
- conveyor belts may instantaneously increase robot's velocity by (c_x, c_y)

Primary objectives of the robot

- ullet Leave igotimes within time arepsilon
- Never leave outer

Challenges

- Distributed, physical environment
- Possibly conflicting secondary objectives

$$((?true \cup (?(x < e_x \land y < e_y \land eff_1 = 1); \ v_x := v_x + c_x; \ eff_1 := 0) \ // \ belt$$

$$\cup (?(e_x \le x \land y \le f_y \land eff_2 = 1); \ v_y := v_y + c_y; \ eff_2 := 0));$$


```
(?true \cup (?(x < e_x \land y < e_y \land eff_1 = 1); v_x := v_x + c_x; eff_1 := 0)
                                                                                      // belt
         \cup (?(e_x \le x \land y \le f_v \land eff_2 = 1); v_y := v_y + c_y; eff_2 := 0);
 (a_x := *; ?(-A < a_x < A);
   a_v := *; ?(-A \le a_v \le A); // "independent" robot acceleration
   t_{\rm s} := 0)^{\rm d}:
```



```
(?true \cup (?(x < e_x \land y < e_y \land eff_1 = 1); v_x := v_x + c_x; eff_1 := 0)
                                                                                       // belt
         \cup (?(e_x \le x \land y \le f_v \land eff_2 = 1); \ v_v := v_v + c_v; \ eff_2 := 0));
 (a_x := *; ?(-A < a_x < A);
   a_v := *; ?(-A \le a_v \le A); // "independent" robot acceleration
  t_s := 0)^d:
 (x' = v_x, y' = v_y, v_x' = a_x, v_y' = a_y, t' = 1, t_s' = 1 \& t_s \le \varepsilon);
```


$$\left((?true \cup (?(x < e_x \land y < e_y \land eff_1 = 1); \ v_x := v_x + c_x; \ eff_1 := 0) \ // \ belt$$

$$\cup (?(e_x \le x \land y \le f_y \land eff_2 = 1); \ v_y := v_y + c_y; \ eff_2 := 0) \right);$$

$$(a_x := *; \ ?(-A \le a_x \le A);$$

$$a_y := *; \ ?(-A \le a_y \le A); \ // \ \text{"independent" robot acceleration }$$

$$t_s := 0 \right)^d;$$

$$((x' = v_x, y' = v_y, v_x' = a_x, v_y' = a_y, t' = 1, t_s' = 1 \ \& \ t_s \le \varepsilon);$$

$$\cap (?(a_x v_x \le 0 \land a_y v_y \le 0)^d; \ // \ brake$$

$$\text{if } v_x = 0 \ \text{then } a_x := 0 \ \text{fi}; \ // \ per \ direction: no \ time \ lock$$

$$\text{if } v_y = 0 \ \text{then } a_y := 0 \ \text{fi}; \ // \ per \ direction: no \ time \ lock$$

$$\text{if } v_y = 0 \ \text{then } a_y := 0 \ \text{fi}; \ // \ per \ direction: no \ time \ lock$$

$$\text{if } v_y = 0 \ \text{then } a_y := 0 \ \text{fi}; \ // \ per \ direction: no \ time \ lock$$

$$\text{if } v_y = 0 \ \text{then } a_y := 0 \ \text{fi}; \ // \ per \ direction: no \ time \ lock$$

$$\text{if } v_y = 0 \ \text{then } a_y := 0 \ \text{fi}; \ // \ per \ direction: no \ time \ lock$$

$$\text{if } v_y = 0 \ \text{then } a_y := 0 \ \text{fi}; \ // \ per \ direction: no \ time \ lock$$

$$\text{if } v_y = 0 \ \text{then } a_y := 0 \ \text{fi}; \ // \ per \ direction: no \ time \ lock$$

Proposition (Robot stays in \square)

$$\models (x = y = 0 \land v_x = v_y = 0 \land \bullet Controllability Assumptions)$$

$$\rightarrow [RF](x \in [l_x, r_x] \land y \in [l_y, r_y])$$

Proposition (Stays in and leaves on time)

 $RF|_x$: RF projected to the x-axis

$$\models (x = 0 \land v_x = 0 \land \underbrace{\quad \quad \quad \quad \quad \quad }_{Controllability \ Assumptions})$$

$$\rightarrow [RF|_x](x \in [I_x, r_x] \land (t \geq \varepsilon \rightarrow x \geq x_b))$$


```
André Platzer.
```

Logical Foundations of Cyber-Physical Systems.

Springer, Switzerland, 2018.

URL: http://www.springer.com/978-3-319-63587-3, doi:10.1007/978-3-319-63588-0.

Differential game logic.

ACM Trans. Comput. Log., 17(1):1:1-1:51, 2015. doi:10.1145/2817824.

Logics of dynamical systems.

In LICS [12], pages 13-24. doi:10.1109/LICS.2012.13.

Logic & proofs for cyber-physical systems.

In Nicola Olivetti and Ashish Tiwari, editors, *IJCAR*, volume 9706 of *LNCS*, pages 15–21, Berlin, 2016. Springer. doi:10.1007/978-3-319-40229-1 3.

André Platzer.

Differential dynamic logic for hybrid systems.

J. Autom. Reas., 41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

André Platzer.

A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 59(2):219-265, 2017. doi:10.1007/s10817-016-9385-1.

André Platzer.

Differential hybrid games.

ACM Trans. Comput. Log., 18(3):19:1–19:44, 2017. doi:10.1145/3091123.

André Platzer.

The complete proof theory of hybrid systems.

In LICS [12], pages 541-550.

doi:10.1109/LICS.2012.64.

André Platzer.

A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems.

Log. Meth. Comput. Sci., 8(4:17):1–44, 2012. Special issue for selected papers from CSL'10. doi:10.2168/LMCS-8(4:17)2012.

Stochastic differential dynamic logic for stochastic hybrid programs. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, *CADE*, volume 6803 of *LNCS*, pages 446–460, Berlin, 2011. Springer. doi:10.1007/978-3-642-22438-6 34.

Jan-David Quesel and André Platzer.

Playing hybrid games with KeYmaera.

In Bernhard Gramlich, Dale Miller, and Ulrike Sattler, editors, *IJCAR*, volume 7364 of *LNCS*, pages 439–453, Berlin, 2012. Springer. doi:10.1007/978-3-642-31365-3_34.

Logic in Computer Science (LICS), 2012 27th Annual IEEE Symposium on, Los Alamitos, 2012. IEEE.