

Markov chains and hidden Markov models

Niko Beerenwinkel

Outline

- Markov chains
- HMM for a single sequence
- CpG islands and genome annotations
- Viterbi decoding
- Forward algorithm
- Backward algorithm
- Baum-Welch algorithm

Markov chain

- Let $\{X_1, ..., X_L\}$ be discrete r. v. with common state space $[K] = \{1, ..., K\}$.
- We always have the factorization

$$P(x_{1},...,x_{L}) = P(x_{1},...,x_{L-1})P(x_{L} | x_{L-1},...,x_{1})$$

$$= P(x_{1},...,x_{L-2})P(x_{L-1} | x_{L-2},...,x_{1})P(x_{L} | x_{L-1},...,x_{1})$$
...
$$= P(x_{1})P(x_{2} | x_{1})P(x_{3} | x_{2},x_{1})...P(x_{L} | x_{L-1},...,x_{1})$$

• $\{X_n\}$ is a Markov chain if the **Markov property** holds, i.e., if

$$P(X_n \mid X_{n-1}, \dots, X_1) = P(X_n \mid X_{n-1})$$

for all n = 2, ..., L.

$$X_1$$
 X_2 X_3 $X_{n+1} \perp X_{n-1} \mid X_n$

Transition matrix

A Markov chain {X_n} is homogeneous, if

$$P(X_n \mid X_{n-1}) = P(X_2 \mid X_1)$$
 for all $n \ge 2$

- A homogeneous Markov chain is determined by
 - the initial state distribution $I \in \Delta_{\kappa-1}$ defined by

$$I_k = P(X_1 = k)$$

- and the K \times K transition matrix $T = (T_{kl})$ given by

$$T_{kl} = P(X_{n+1} = l \mid X_n = k)$$

Markov chain model

• The probability of an observation $x = (x_1, ..., x_L)$ in the Markov chain model MC(I, T) is

$$P(X = x) = P(X_1 = x_1) \prod_{n=1}^{L-1} P(X_{n+1} = x_{n+1} \mid X_n = x_n)$$
$$= I_{x_1} \prod_{n=1}^{L-1} T_{x_n, x_{n+1}}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DNA example

$$I = \begin{array}{c} A \\ C \\ G \\ T \end{array} \begin{array}{c} .3 \\ .4 \\ .2 \\ .1 \end{array}$$

- We consider DNA sequences
 x ∈ {A,C,G,T}* as observations of a
 homogeneous Markov chain {X_i}.
- For example, $P(ACCTA) = 0.3 \cdot 0.1 \cdot 0.1 \cdot 0.4 \cdot 0.3$

Likelihood

The likelihood of observed data $X = (X^{(1)}, ..., X^{(N)})$ is

$$L(I,T) = \prod_{i=1}^{N} \left[I \prod_{X_{1}^{(i)}} \prod_{n=1}^{L-1} T_{X_{n}^{(i)}, X_{n+1}^{(i)}} \right]$$
$$= \prod_{k \in [K]} I_{k}^{N_{k}} \prod_{k,l \in [K]} T_{kl}^{N_{kl}}$$

where N_k is the number of times a chain started in state k, and N_{kl} the total number of k-to-l transitions in the data.

Chapman-Kolmogorov equations

Denote the probability to jump from state k to state l in n steps by

$$T_{kl}^{(n)} = P(X_{n+j} = l \mid X_j = k)$$

The Chapman-Kolmogorov equations are

$$T_{kl}^{(n+m)} = \sum_{j=1}^{K} T_{kj}^{(n)} T_{jl}^{(m)}, \quad n, m \ge 1$$

or $T^{(n+m)} = T^{(n)}T^{(m)}$ in matrix notation.

• It follows that $T^{(n)} = T^n$.

Ergodicity

- A discrete Markov chain is ergodic if it is
 - aperiodic (return to any state is always possible, without a period),
 - 2) irreducible (any state is accessible from any other, in some #steps),
 - positive recurrent (any state will eventually be reached with probability 1 and the mean recurrence time is finite).
- **Theorem**: An ergodic Markov chain has a unique stationary distribution $\pi = (\pi_l)_{l \in [K]}$ such that

$$\lim_{n\to\infty}T^n_{kl}=\pi_l=\sum_{k\in[K]}\pi_kT_{kl}, \quad l\in[K], \ \sum_{l\in[K]}\pi_l=1$$

independent of the initial distribution *I*.

• In matrix notation, π is the solution of $\pi^t = \pi^t T$.

https://www.probabilitycourse.com/chapter11/11_2_1_introduction.php

Markov chain for DNA sequences

• Add begin state \mathcal{B} with $x_0 = \mathcal{B}$ and end state \mathcal{E} with $x_L = \mathcal{E}$.

CpG islands

- CpG islands are stretches of mammalian genomes enriched for the dinucleotide CG, typically 300 to 3,000 bases long.
- Methylated CpG sites tend to mutate as CG > TG, which results in their under-representation: P(CG) < P(C)P(G).
- But in promoter regions, this effect is suppressed and hence CpG islands are more common.

How can we find CpG islands in a genome?

Annotating genomic sequences

Two Markov chain models

CpG island

Non-CpG island

Markov chains for discrimination

- In a supervised learning setting, we are given two sets of DNA sequences labeled as either
 - CpG islands (+), or
 - non-CpG islands (-)
- From each set separately, we estimate the Markov models

$$T_{st}^+$$
 and T_{st}^-

and consider the log-odds score for discrimination:

$$S(x) = \log \frac{P(x \mid T^+)}{P(x \mid T^-)} = \log \prod_{n=1}^{L} \frac{T_{x_{n-1},x_n}^+}{T_{x_{n-1},x_n}^-}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Recognition of CpG islands

$$S(x) = \sum_{n=1}^{L} \left(\log_2 T_{x_{n-1}, x_n}^+ - \log_2 T_{x_{n-1}, x_n}^- \right)$$

Hidden Markov model (HMM)

- Hidden (non-observable) random variables $\{Z_n\}$ form a homogeneous Markov chain (the annotation).
 - For example, Z_n indicates whether sequence position n belongs to a CpG island or not, $Z_n \in \{+, -\}$.
- Observed random variables $X_n \in \{A,C,G,T\}$ result from hidden states emitting symbols.

Definitions

- Initial state probabilities: $I_k = P(Z_1 = k)$
- Transition probabilities: $T_{kl} = P(Z_n = l \mid Z_{n-1} = k)$
- Emission probabilities: $E_{kx} = P(X_n = x \mid Z_n = k)$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Joint probability

$$P(X,Z) = P(Z_1) \prod_{n=1}^{L} P(X_n \mid Z_n) P(Z_{n+1} \mid Z_n)$$
$$= I_{Z_1} \prod_{n=1}^{L} E_{Z_n,X_n} T_{Z_n,Z_{n+1}}$$

where
$$P(Z_{L+1} | Z_L) = T_{Z_L, Z_{L+1}} \equiv 1$$

For convenience, use begin and end states:

• Then, with $Z_0 = Z_{L+1} = 0$,

$$P(X,Z) = T_{0,Z_1} \prod_{n=1}^{L} E_{Z_n,X_n} T_{Z_n,Z_{n+1}}$$

omitting *I*.

State path

- We observe the DNA sequence X, but we are interested in the hidden states Z of the Markov chain (the annotation).
- Each $z = (z_1, ..., z_L)$ is called a state path. There are K^L possible paths, where K is the number of (hidden) states.
- Different state path can give rise to the same sequence of observed symbols, but with different probabilities.

D-BSSEDepartment of Biosystems Science and Engineering

Decoding

 For given parameters, the decoding problem is to find the most probable state path z* for a given observation x:

$$z^* = \underset{z}{\operatorname{argmax}} P(X = x, Z = z)$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Viterbi algorithm: basic idea

- Define v_k(n) as the probability of z* ending in state k with observation X_n
- If v_k(n) is known for all states k, then v_l(n+1) is obtained by maximizing over all states:

$$v_l(n+1) = E_{l,x_{n+1}} \max_k v_k(n) T_{kl}$$

Viterbi algorithm

- Initialization:
 - $V_0(0) = 1$
 - $v_k(0) = 0$ for all k > 1
- Recursion: for n = 1, ..., L,
 - $v_l(n) = E_{l,x_n} \max_k v_k(n-1)T_{kl}$ for all l = 1, ..., K
 - $ptr_n(I) = argmax_k v_k(n-1)T_{kl}$ for all I = 1, ..., K
- Termination (assuming an end state):
 - $P(x, z^*) = \max_k v_k(L)T_{k0}$
 - $z^*_L = \operatorname{argmax}_k v_k(L) T_{k0}$
- Traceback: for n = L, ..., 1,
 - $z^*_{n-1} = ptr_n(z^*_n)$
- Dynamic programming, O(LK²) despite K^L paths!

Probability of an observed sequence

Same trick works for computing

$$P(X) = \sum_{Z} P(X, Z)$$

Let

$$f_k(n) := P(X_1 = x_1, \dots, X_n = x_n, Z_n = k)$$

be the joint probability of the <u>sub</u>sequence $x_1, ..., x_n$, and the Markov chain ending in state k. Then

$$f_l(n+1) = E_{l,x_{n+1}} \sum_k f_k(n) T_{kl}$$

Forward algorithm

- Initialization:
 - $f_0(0) = 1$
 - $f_k(0) = 0$ for all k > 1
- Recursion: for n = 1, ..., L,
 - $f_I(n) = E_{Ix_n} \Sigma_k f_k(n-1)T_{kI}$, for all I = 1, ..., K
- Termination (assuming an end state):
 - $P(x) = \Sigma_k f_k(L) T_{k0}$
- O(LK²) despite computing a sum over K^L paths!

Posterior state probabilities

We want to compute the posterior of each single state,

$$P(Z_n = k \mid x) = \frac{P(x, Z_n = k)}{P(x)}$$

where P(x) is shorthand for P(X = x), etc.

For the joint probability in the numerator, we find

$$P(x, Z_n = k) =$$

$$P(x_1, \dots, x_n, Z_n = k) P(x_{n+1}, \dots, x_L \mid Z_n = k)$$

$$= f_k(n)$$

$$=: b_k(n)$$

Backward algorithm

- Initialization (assuming an end state):
 - $b_k(L) = T_{k0}$ for all k
- Recursion: for n = L 1, ..., 1,
 - $b_k(n) = \sum_i T_{ki} E_{ix_{n+1}} b_i(n+1)$, for all k = 1, ..., K
- Termination:
 - $P(x) = \sum_{i} T_{0i} E_{ix_1} b_i(1)$
- O(LK²)

Posterior decoding of CpG islands

$$P(x_n \text{ is CpG}) = P(Z_n = + \mid x)$$

is the posterior probability that the base at position *n* lies in a C/G-rich genomic region of *x* and hence may belong to a CpG island.

Predicted CpG islands

sequence position, n

Parameter estimation for HMMs

- Suppose we observe sequences $X = \{X^{(1)}, ..., X^{(N)}\}.$
- Let us summarize the model parameters T_{kl} and E_{kx} by θ .
- For ML estimation, we have to solve

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmax}} \log \sum_{Z} P(X, Z \mid \theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \log \sum_{Z^{(1)}} \cdots \sum_{Z^{(N)}} \prod_{i=1}^{N} P(X^{(i)}, Z^{(i)} \mid \theta)$$

We can use the EM algorithm!

Joint probability of observation and state path

- For a given path z,
 - let $N_{kl}(z)$ be the number of $k \to l$ transitions in z, and
 - let $N_{kx}(z)$ be the number of x emissions when z is in state k.
- Then the joint probability of X and Z is

$$P(X, Z = z \mid \theta) = \prod_{k,x} E_{kx}^{N_{kx}(z)} \prod_{k,l} T_{kl}^{N_{kl}(z)}$$

E step

• With $\theta' = \theta^{\text{old}}$, the expected hidden log-likelihood is

$$\begin{split} & \text{E}[\ell_{\mathsf{hid}}(\theta)] \ = \ \sum_{Z} P(Z \mid X, \theta') \log P(X, Z \mid \theta) \\ & = \ \sum_{i=1}^{N} \sum_{Z^{(i)}} P(Z \mid X, \theta') \left[\sum_{k, x} N_{kx}(Z^{(i)}) \log E_{kx} + \sum_{k, l} N_{kl}(Z^{(i)}) \log T_{kl} \right] \\ & = \ \sum_{k, x} N_{kx} \log E_{kx} + \sum_{k, l} N_{kl} \log T_{kl} \end{split}$$

where the expected counts are

$$N_{kl} = \mathsf{E}_{Z|X,\theta'} \left[\sum_{i} N_{kl}(Z^{(i)}) \right], \quad N_{kx} = \mathsf{E}_{Z|X,\theta'} \left[\sum_{i} N_{kx}(Z^{(i)}) \right]$$

M step

Maximization w.r.t. θ yields

$$\widehat{T}_{kl} = \frac{N_{kl}}{\sum_{l'} N_{kl'}}$$

$$\hat{E}_{kx} = \frac{N_{kx}}{\sum_{x'} N_{kx'}}$$

The counts N_{kl} and N_{kx} are the sufficient statistics of the model.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Computing the sufficient statistics N_{kl}

$$f_k(n) = P(x_1, \dots, x_n, Z_n = k)$$

 $b_l(n+1) = P(x_{n+2}, \dots, x_L \mid Z_{n+1} = l)$

$$\Rightarrow P(Z_n = k, Z_{n+1} = l \mid x) P(x) = = P(Z_n = k, Z_{n+1} = l, x) = f_k(n) T_{kl} E_{lx_{n+1}} b_l(n+1)$$

$$\Rightarrow N_{kl} = \sum_{i} \frac{1}{P(x^{(i)})} \sum_{n} f_k^{(i)}(n) T_{kl} E_{lx_{n+1}^{(i)}} b_l^{(i)}(n+1)$$

Computing the sufficient statistics N_{kx}

Similarly, one finds

$$N_{ky} = \sum_{i} \frac{1}{P(x^{(i)})} \sum_{\{n \mid x_n^{(i)} = y\}} f_k^{(i)}(n) b_k^{(i)}(n)$$

Baum-Welch algorithm (EM for HMMs)

- Initialization:
 - Pick any model parameters
- Recurrence:
 - Set all T and E variables to zero (or add a pseudocount)
 - For each observation i = 1, ..., N,
 - Compute f_k⁽ⁱ⁾(n), for all k, using the forward algorithm
 - Compute b_k(i)(n), for all k, using the backward algorithm
 - Add contribution to T and E.
 - Compute new model parameters
 - Compute new log-likelihood
- Termination:
 - Stop if change in log-likelihood is small

Summary

- Markov chains can model temporal or spatial (linear) dependencies.
- HMMs consist of a hidden state space with a Markov chain structure emitting observable symbols.
- HMMs are frequently used for genome annotation, for example, CpG islands, gene finding, etc.
- The Viterbi algorithm computes the most probable state path and the forward and backward algorithms the likelihood in an efficient way.
- Parameter estimation can be performed using the EM algorithm (Baum-Welch algorithm).

References

- Durbin R, Eddy S, Krogh A, Mitchinson G. <u>Biological</u> <u>Sequence Analysis</u>. Cambridge University Press, 2004. Chapter 3.
- Beerenwinkel N and Siebourg J. Statistics, probability, and computational science. In Maria Anisimova, editor, *Evolutionary Genomics: Statistical and Computational Methods, Volume 1*, chapter 3, pages 77–110. Springer, New York, 2012. DOI: 10.1007/978-1-61779-582-4 3. Section 6.