

Lecture 5: DC & Transient Response

Outline

- Pass Transistors
- □ DC Response
- ☐ Logic Levels and Noise Margins
- □ Transient Response
- ☐ RC Delay Models
- Delay Estimation

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

Pass Transistors

- We have assumed source is grounded
- ☐ What if source > 0?
 - e.g. pass transistor passing V_{DD}
- - Hence transistor would turn itself off
- \Box nMOS pass transistors pull no higher than V_{DD} - V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
- $f \square$ pMOS pass transistors pull no lower than V_{to}
- ☐ Transmission gates are needed to pass both 0 and 1

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

DC Response

- ☐ DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter

 - $$\begin{split} &- \text{ When } V_{in} = 0 & -> & V_{out} = V_{DD} \\ &- \text{ When } V_{in} = V_{DD} & -> & V_{out} = 0 \end{split}$$
 - In between, V_{out} depends on transistor size and current
 - By KCL, must settle such that $I_{dsn} = |I_{dsp}|$
 - We could solve equations
 - But graphical solution gives more insight

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

Transistor Operation

- ☐ Current depends on region of transistor behavior
- $\hfill \Box$ For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

Transient Response

- $\hfill \square$ \hfill DC analysis tells us V_{out} if V_{in} is constant
- \Box Transient analysis tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
- ☐ Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

Inverter Step Response

Ex: find step response of inverter driving load cap

$$V_{in}(t) =$$
 $V_{out}(t < t_0) =$
 $\frac{dV_{out}(t)}{dt} =$
 $t \le t_0$
 $V_{out} < V_{DD} - V_t$
 $V_{out} < V_{DD} - V_t$

5: DC and Transient Response CMOS VLSI Design 4th Ed. 19

Delay Definitions

- □ t_{cdr}: rising contamination delay
 - From input to rising output crossing $V_{DD}/2$
- □ t_{cdf}: falling contamination delay
 - From input to falling output crossing $\rm V_{\rm DD}\!/2$
- ☐ t_{cd}: average contamination delay

$$- t_{pd} = (t_{cdr} + t_{cdf})/2$$

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

21

Simulated Inverter Delay

- ☐ Solving differential equations by hand is too hard
- □ SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- ☐ But simulations take time to write, may hide insight

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

Delay Estimation

- ☐ We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- ☐ The step response usually looks like a 1st order RC response with a decaying exponential.
- ☐ Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that t_{pd} = RC
- ☐ Characterize transistors by finding their effective R
 - Depends on average current as gate switches

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

23

Effective Resistance

- ☐ Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- □ Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{qs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- ☐ Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

RC Delay Model

- ☐ Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- ☐ Capacitance proportional to width
- ☐ Resistance inversely proportional to width

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

2

RC Values

- □ Capacitance
 - C = C $_{g}$ = C $_{s}$ = C $_{d}$ = 2 fF/ μm of gate width in 0.6 μm
 - Gradually decline to 1 fF/μm in nanometer techs.
- □ Resistance
 - − R ≈ 6 KΩ* μ m in 0.6 μ m process
 - Improves with shorter channel lengths
- Unit transistors
 - May refer to minimum contacted device (4/2 λ)
 - Or maybe 1 μm wide device
 - Doesn't matter as long as you are consistent

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

- ON transistors look like resistors
- ☐ Pullup or pulldown network modeled as RC ladder
- ☐ Elmore delay of RC ladder

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

31

☐ Estimate worst-case rising and falling delay of 3-input NAND driving *h* identical gates.

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

Delay Components

- Delay has two parts
 - Parasitic delay
 - 9 or 11 RC
 - · Independent of load
 - Effort delay
 - 5h RC
 - · Proportional to load capacitance

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

33

Contamination Delay

- ☐ Best-case (contamination) delay can be substantially less than propagation delay.
- ☐ Ex: If all three inputs fall simultaneously

$$R \stackrel{\text{RERE}}{=} R \stackrel{\text{Y}}{=} C \qquad t_{cdr} = \left[\left(9 + 5h \right) C \right] \left(\frac{R}{3} \right) = \left(3 + \frac{5}{3}h \right) RC$$

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

