

FIG. 1

2/16

FIG. 2

3/16

FIG. 3

Summary of Polymerization Data

Entry	Moles of Catalyst ($\times 10^{-3}$)	Temp. (°C)	Time (min)	Yield (g)	TON^a ($\times 10^{-3}$)	TOF^b ($\times 10^{-3}/h$)	M_w ($\times 10^{4-5}$)	M_n ($\times 10^{4-5}$)	PDI	Branches Per 1000 carbons
1	1	30	5	3.48	124	1 491	320	413	1.29	66
2	1	30	10	6.70	239	1 436	288	374	1.30	73
3	1	30	15	9.25	331	1 321	294	386	1.31	67
4	1	50	5	3.20	114	1 371	248	305	1.23	80
5	1	50	10	6.85	245	1 468	652	834	1.28	84
6	1	50	15	9.00	321	1 286	342	422	1.23	85
7	1	70	5	3.11	111	1 333	323	468	1.45	91
8	1	70	10	6.10	218	1 307	619	886	1.43	89
9	1	70	15	7.35	263	1 050	429	605	1.41	91
10	1	90	5	2.50	89	1 071	252	433	1.72	97
11	1	90	10	4.70	168	1 007	462	756	1.64	96

^aExperimental condition: in 200 mL of toluene, cocatalyst MMAO (Al:Ni \approx 3000), 200 psi ethylene pressure.^bTON = turnover number, which was calculated as the moles of ethylene per mole of catalyst; TOF = turnover frequency, i.e., TON per hour.

FIG. 4A
Examples of bidentate ligands

FIG. 4B
Examples of bidentate ligands (continued)

FIG. 4C
Examples of bidentate ligands (continued)

FIG. 4D Examples of bidentate ligands (continued)

FIG. 4E

Examples of bidentate ligands (continued)

$B_1 = B_2 = -T\text{-Ar-T-}$ <p>25.</p>	$B_1 = B_2 = -T\text{-Ar-T-}$ <p>26.</p> <p>half-cyclic structure for any of the above ligands</p>
	<p>27.</p>
	<p>28.</p>

FIG. 5A

Examples of tridentate ligands

<p>H₁, H₂, G = Heteroatoms selected from O, P, S, N, etc.</p> <p>29.</p>	<p>G =</p> <p>Heteroatoms selected from O, P, S, N, etc.</p> <p>30.</p>
<p>H₁, H₂, G = Heteroatoms selected from O, P, S, N, etc.</p> <p>31.</p>	<p>G = Heteroatoms selected from O, P, S, N, etc.</p> <p>32.</p>

FIG. 5B
Examples of tridentate ligands (continued)

FIG. 6A

Examples of preference of metals for different types of ligands

	<p>For this type of ligand, preferred M are late transition metals such as Fe, Ru, Os, Rh, Ir, Ni, Pd, Pt, Cu, and most preferred are Ni and Pd.</p>	<p>35</p>
	<p>For this type of ligand, preferred M are early transition metals such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, and most preferred are Ti, Zr, Hf, V, and Cr.</p>	<p>36</p>
	<p>For this type of ligand, preferred M are early transition metals such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, and most preferred are Ti, Zr, Hf, V, and Cr.</p>	<p>37</p>

FIG. 6B
Examples of preference of metals for different types of ligands (continued)

FIG. 6C
Examples of preference of metals for different types of ligands (continued)

In structures 1 through 42, Q, n, R₄ and R₅ are as defined in Formula 1 in the specification, n' is 1 through 4, and R' and R'' are alkyl, alkaryl, aryl, aralkyl, or cycloalkyl.

14/16

FIG. 7
(Prior Art)

FIG. 8

FIG. 9

15/16

FIG. 10

Polymerization of 1-Hexene
(Catalyst Activity and Molecular Weight Data at 0 °C and at 25 °C)

entry	c at	Load (mmol)	Temp (°C)	Yield (g)	TON	Mw	Mn	PDI	DSC (°C)	Branch /1000c
F62	2	0.005	0	0.33	784	170 K	96 K	1.77	T _m 58	65
F36	2	0.01	0	0.41	488	305 K	292 K	1.05	T _m 63	61
F84	1	0.005	0	1.62	3850	719 K	627 K	1.15	T _m -42	104
Ref JACS 95, 6414	1	0.017 activated by Et ₂ AlCl	0	2.1	1468	310 K	140 K	2.2	T _m -20 T _g -57	100
F60	2	0.005	25	1.68	3992	623 K	510 K	1.22	T _m 62	57
F72	1	0.005	25	1.90	4515	817 K	543 K	1.50	T _m -50	108
Ref JACS 96, 11664	1	0.017 3.2 M; 30 min rxn.	23	----	2800	129 K	84 K	1.54	T _m -17 T _g -57	120
F74	3	0.005	25	0.80	1901	88 K	83 K	1.06	T _m 56	35
F42	2	0.005	75	2.21	5466	622 K	529 K	1.17	T _m 59	52
F68	1	0.005	75	0.43	1022	415 K	279 K	1.49	T _m -53	111
F70	3	0.005	75	0.26	618	131 K	92 K	1.43	T _m 73	38
F46	2	0.005	95	1.6	3802	252 K	125 K	2.00	T _m 57	54
F48	1	0.005	95	0.47	1117	287 K	171 K	1.68	T _m -53	113
F50	3	0.005	95	0.59	1402	77 K	59 K	1.29	T _m 76	40

16/16

FIG. 11