Manifolds

David Wiedemann

Table des matières

1	Rec	ар	2
2		nifolds Smooth maps	3
\mathbf{L}	ist	of Theorems	
	1	Definition (Basis)	3
	2	Definition (Chart)	3
	3	Definition (Manifold)	3

Lecture 1: Introduction

Wed 12 Oct

1 Recap

Recall theorems about differentiable maps

— Implicit function theorem

For $U \subset \mathbb{R}^p$, $V \subset \mathbb{R}^q$, $f \in C^k(U \times V, \mathbb{R}^q)$, $1 \le k \le \infty$ and $(a, b) \in U \times V$ st.

$$D_2 f(a,b) = D(f(a,-))(b)$$

is invertible. Then there exists $a\in U_1\subset U, b\in V_1\subset V$ and $\phi\in C^k(U_1,V_1)$ such that

$$f(x, x') = y_0$$

iff $x' = \phi(x)$

— Inverse function theorem

If $U \subset \mathbb{R}^p$ is open and $f \in C^k(U, \mathbb{R}^q), 1 \leq k \leq \infty, a \in U$ such that

is invertible, then there are $a \in U_1 \subset U$ and $f(a) \in V_1 \subset \mathbb{R}^q$ open such that

$$f|_{U_1}:U_1\to V_1$$

is a diffeomorphism and

$$Df^{-1}|_{U}(x) = (Df(f^{-1}|_{U}(x)))^{-1}$$

for all $x \in U$ in particular f^{-1} is C^k

— Rank theorem

 $U\subset\mathbb{R}^p$ open and $f\in C^k(U,\mathbb{R}^q), 1\leq k\leq\infty,\ a\in U, b\coloneqq f(a), r=rank(Df(a))$ then there are diffeomorphisms

$$\psi: U_{\psi} \to V_{\psi}$$
 and $\phi: U_{\phi} \to V_{\psi}$

with $U_{\psi}, V_{\psi} \subset \mathbb{R}^p$ and $U_{\phi}, V_{\phi} \subset \mathbb{R}^q$ such that

$$\phi \circ f \circ \psi(x_1, \dots, x_p) = (x_1, \dots, x_r, \tilde{f}(x_1, \dots, x_p))$$

If rk(D(f)) is contant around r, then we can obtain $\tilde{f} = 0$

2 Manifolds

Definition 1 (Basis)

A basis for a topology on X is a collection B of open sets such that every open set in X is the union of sets in B.

X is called second countable if it has a countable topological basis.

Definition 2 (Chart)

Let X be a topological space

- 1. A chart on X is a pair (U, ϕ) where $U \subset X$ open and $\phi : U \to \mathbb{R}^n$ for some n which is a homeomorphism onto an open subset.
- 2. An atlas is a collection of charts $A = \{(U_i, \phi_i) | i \in I\}$ such that $X = \bigcup_{i \in I} U_i$
- 3. A is called smooth (C^k , continuous, holomorphic, algebraic,...) if and only if for any

$$(U_i, \phi_i)_{i \in \{1,2\}} \in A$$

we have $\phi_1 \circ \phi_2^{-1}$ is smooth (C^k ,...) wherever it is defined.

4. A chart (U, ϕ) is compatible with an atlas A if and only if

$$A \cup \{(u,\phi)\}$$

 $is\ smooth$

5. An atlas A is maximal if it contains all charts compatible with A. For any atlas A (not necessarily maximal), denote A_{max} the maximal atlas containing it.

 $This\ maximal\ atlas\ is\ necessarily\ unique$

Definition 3 (Manifold)

A smooth manifold of dimension n is a second countable Hausdorrf space with a maximal smooth atlas of dimension n.

Why Hausdorff?

Consider \mathbb{R}/\sim , $x\sim y\iff |x|=|y|>1$, this space is locally homeomorphic to \mathbb{R} but the points x and y cannot be separated.

Why second countable?

Take a disjoint union of infinitely many manifolds. For a connected example, take $\aleph_1 \times [0,1)$ with the order topology.

2.1 Smooth maps

A function $f:M\to N$ between smooth manifolds is called smooth if for each $p\in M$, there are charts $(U,\phi),(V,\psi)$ $p\in U\subset M, f(p)\in V\subset N$ such that

$$\psi \circ f \circ \phi^{-1}$$

is smooth. $\,$

f smooth implies $\tilde{\psi} \circ f \circ \tilde{\phi}^{-1}$ is smooth for any charts $(\tilde{U}, \tilde{\phi}), (\tilde{V}, \tilde{\psi})$ where this is defined.