Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x, y \in V$ and $c \in \mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that scalar multiplication is associative: $a \odot (b \odot x) = (ab) \odot x$.
- (b) Determine if V is a vector space or not. Justify your answer

C411 V9	Mark	:						
Standard V3.				_				
Determine if the vectors	$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$,	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and	$\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$	span \mathbb{R}^4

Standard V4.	Mark:

Let W be the set of all complex numbers a+bi satisfying a=2b. Determine if W is a subspace of \mathbb{C} .

Determine if the set
$$\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^4 .

Additional Notes/Marks