Sur/name:

#:

1. For given transformation matrices of T_{base1}^{tool} , T_{base1}^{mouse} and T_{camera}^{mouse} , find T_{tool}^{camera} and T_{mouse}^{tool} . (15 points)

Sur/name:

#:

- 2. Given the homogenous transformation matrix
 - a. Sketch the location of frame 1 relative to base frame. Label joint variable. Assume the home position is zero . (8 points)
 - b. Consider a point in L_1 frame: $\{x^1, y^1, z^1\} = \{1,2,4\}$. Find the point in base coordinates when θ_1 =45° (7 points)

$$T_0^1 = \begin{bmatrix} C_1 & -S_1 & 0 & 0 \\ S_1 & C_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_0' = \begin{bmatrix} c_1 & -s_1 & 0 & 0 \\ s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
rotation around $\neq +no$ translation

$$\begin{bmatrix} \chi^{\circ} \\ y^{\circ} \\ \overline{z}^{\circ} \end{bmatrix} = T_{0}^{\prime} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} \sqrt{2}/2 - 2\sqrt{2}/2 \\ \sqrt{2}/2 + 2\sqrt{2}/2 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} \sqrt{2}/2 \\ \frac{3}{2}\sqrt{2} \\ \frac{4}{1} \end{bmatrix}$$

Sur/name: #:

3. A three axis spherical robot is sketched. Joints 1 and 2 are revolute and Joint 3 is prismatic. Assign link coordinate frames using Denavit-Hartenberg representation. Label the link parameters θ_i , d_i , α_i , and a_i . (15 points)

Sur/name:

#:

4. A four axis cylindirical robot is sketched below. Link coordinate frames have been assisgned. Fill in the link parameter table. (15 points)

Sur/name: #:

5. The figure below shows a three degree of freedom robot with a revolute joint (#1), a prismatic joint (#2) and another revolute joint (#3) that provides tool roll. The following arm matrix transforms tool coordinates to the base.

- a. find the tool configuration vector (5 points)
- b. find the inverse kinematics, q₁, q₂ and q₃ (15 points)

$$w(q) = \begin{bmatrix} S_1(d_2 + d_3) \\ -C_1(d_2 + d_3) \\ d_1 \\ S_1 e^{\frac{q_3}{\pi}} \\ -C_1 e^{\frac{q_3}{\pi}} \\ 0 \end{bmatrix}$$

$$g_3 = \pi \ln \sqrt{\omega_y^2 + \omega_s^2}$$
Chech: $\omega_y^2 + \omega_s^2 = e^{\frac{2g_3}{3}}\pi$

$$\sqrt{\omega_y^2 + \omega_s^2} = e^{\frac{8g_3}{3}}\pi$$

$$\ln \sqrt{\omega_y^2 + \omega_s^2} = \frac{g_3}{\pi}$$
Other possibilities: $g_2 = S_1 \omega_1 - C_1 \omega_2 - d_3$
 $g_1 = aton^2 (\omega_y, -\omega_s), g_3 = \pi \ln \left[S_1 \omega_y - C_1 \omega_s \right]$

g1 = atar 2 (ω1, -ω2)

the projection of the p-vector onto the x^2-y^2 plane only depends on d_2 (= g_2).

($u_1^2+u_2^2=(d_2+d_3)^2=\int d_2=g_2=\sqrt{u_1^2+u_2^2}-d_3$

Sur/name: #:

6. A scara robot is used to insert a printed circuit board in a slot as shown below. The printed circuit board is 4"x4". Assume the gripper grasps the board on the edges and 1" below the top. Find the tool configuration vector, w, to carry out this task. Specify w just as the printed circuit board is about to enter the slot. (20 points)

$$e^{8\pi/\pi} = 78u = 84 = -74$$
 $W = \begin{bmatrix} 20 \\ 10 \\ 3 \\ 0 \\ -e^{1/4} \\ -e^{-1/4} \end{bmatrix}$

Sur/name: #:

$$Rot(x,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\theta & -S\theta \\ 0 & S\theta & C\theta \end{bmatrix} \quad Rot(y,\theta) = \begin{bmatrix} C\theta & 0 & S\theta \\ 0 & 1 & 0 \\ -S\theta & 0 & C\theta \end{bmatrix} \quad Rot(z,\theta) = \begin{bmatrix} C\theta & -S\theta & 0 \\ S\theta & C\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Kinematic Parameters: 2 joint (Joint angle (θ_k) ve Joint distance (d_k)) + 2 link (Link

length (a_k) ve Twist angle (α_k)

$$[q]^{k-1} = T_{k-1}^{k} \cdot [q]^{k}$$

$$T_{k-1}^{k} = \begin{bmatrix} C\theta_{k} & -C\alpha_{k}S\theta_{k} & S\alpha_{k}S\theta_{k} & a_{k}C\theta_{k} \\ S\theta_{k} & C\alpha_{k}C\theta_{k} & -C\theta_{k}S\alpha_{k} & a_{k}S\theta_{k} \\ 0 & S\alpha_{k} & C\alpha_{k} & d_{k} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & p \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{base}^{tool}(q)$$

