進捗報告

表 1: GA の設定 () は遺伝子座ごと

個体数	10
世代数	20
選択	TD 選択
温度	$10 \rightarrow 2$
交叉	一様交叉
交叉率	0.5 (0.5)
変異	ガウス分布
変異率	0.2 (0.1)

1 今週やったこと

● TDGA の実装

2 エントロピーの定義の変更

$$H = \sum_{k \in \mathcal{P}} \sqrt{\text{MSE}(\alpha_k, \bar{\alpha})}$$
 (1)

標準偏差の和とした.

3 トイ問題

- 個体は 3x3 のゼロ行列
- 適応度は各要素の総和
- 最小化問題

4 実験設定

表 1 に実験の設定を示す. 比較のためトーナメント 選択 (サイズ 2) でも同様に実験する.

5 結果

図 1 に世代ごとの適応度の結果を示す. 折れ線が各世代の最良個体で, 領域が平均と標準偏差を示す. 最小化問題なので適応度は低いほうが良い.

図 1: 適応度の比較

多様性を示す H をエントロピーから標準偏差に変えてみたが、単純ながらも予想より優れた結果が出た。 多様性も選択の方法だけで常に確保できている事がわかった.

温度の設定は勘で決めたが、ここのパラメータ調整は 難しそうな気がする.

6 今後の予定

- 個体の圧縮処理
- DARTS への実装