Probability and Statistics _____ Tutorial 11

Siyi Wang

Southern University of Science and Technology

11951002@mail.sustech.edu.cn

December 5, 2020

1/98

Outline

Review

2 Homework

Supplement Exercises

1. Population and Samples

(1). Samples $X_1, ..., X_N$ are i.i.d random variables. (2). Sample Size: N.

2. Some Statistics

3. Sample Mean and Sample Variance

设总体 X 的均值和方差 $E(X) \triangleq \mu, D(X) \triangleq \sigma^2$ 都存在. X_1, X_2, \dots, X_n 是来自总体 X 的样本,则 $E(\bar{X}) = \mu, D(\bar{X}) = \frac{\sigma^2}{\mu}, E(S^2) = \sigma^2$

4. Distributions Derived From Normal Distribution

排计量的转迹	抽样分布做准确数	101.UE	2.00
	$p(\gamma) = \frac{1}{t(\frac{n}{2})^{2^{-1}}} \hat{\tau}^{\pm 1} e^{\pm \frac{\pi}{2}} (\gamma > 0)$		2×
$F = \frac{(y_1^k + \cdots + y_n^k)/m}{(x_1^k + \cdots + x_n^k)/m}$	$p(s) = \frac{\Gamma\left(\frac{m+s}{2}\right) \left(\frac{m}{s}\right)^{-m/2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{m}{2}\right)} r^{\frac{m}{2}-1} \left(1 + \frac{m}{n}\right).$	φ <u>n</u> (n ⇒ 2)	$\frac{2n^{3}(n+n-2)}{m(n-2)^{3}(n-4)}$ $(n>4)$
1 - N	$\rho(z) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{y^2}{n}\right)^{\frac{n+1}{2}}$ $(-n \le y \le n)$	0 (a > 1)	$\frac{\frac{n}{n-2}}{(n>2)}$

- 4. Distributions Derived From Normal Distribution (1). $\chi^2(n)$
 - ② χ^2 -分布的可加性 设 $\chi_1^2 \sim \chi^2(n_1), \chi_2^2 \sim \chi^2(n_2), \underline{\mathbf{1}} \chi_1^2, \chi_2^2$ 相互独立,则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$
 - ② χ^2 -分布的数字特征 设 $\chi^2 \sim \chi^2(n)$, 则 $E(\chi^2) = n$, $D(\chi^2) = 2n$
 - χ²(n)的α分位点记为χ²(n)

- 4. Distributions Derived From Normal Distribution
- (2). t(n)
- 1-分布的密度函数及图形

$$f(x) = \frac{\Gamma[(n+1)/2]}{(n\pi\Gamma(n/2))} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2} , -\infty < x < \infty$$

易知: f(-x) = f(x)

$$f'(x) > 0 \ (x < 0)$$

$$f'(x) < 0 \ (x > 0)$$

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to +\infty} f(x) = 0$$

- 4. Distributions Derived From Normal Distribution
- (3). $F(n_1, n_2)$
 - F 分布的重要性质 若 F ~ $F(n_1, n_2)$, 则 $\frac{1}{F}$ ~ $F(n_2, n_1)$

着
$$F \sim F(n_1, n_2)$$
 则 $F^{-1} \sim F(n_2, n_1)$ "三反"公式。
此 $F_{\omega}(n_1, n_2) = \frac{1}{F_{\omega,\omega}(n_1, n_1)}$

F(n₁,n₂)的α分位点记为F_α(n₁,n₂)

- 4. Distributions Derived From Normal Distribution
- (4). Five Important Theorems

定理 — 设
$$X_1, X_2, \cdots, X_n$$
是来自总体 $X \sim N(\mu, \sigma^1)$ 的样本, 则
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

- 4. Distributions Derived From Normal Distribution
- (4). Five Important Theorems

定理二 设 X_1, X_2, \dots, X_n 是总体 $X \sim N(\mu, \sigma^2)$ 的样本, \bar{X}_1, S^2 分别为样本均值和样本方差,则有

- $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

- 4. Distributions Derived From Normal Distribution
- (4). Five Important Theorems

定理三 设 X_1, X_2, \dots, X_n 是总体 $X \sim N(\mu, \sigma^2)$ 的样本, \bar{X}, S^2 分别为样本均值和样本方差,则有 $\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$

- 4. Distributions Derived From Normal Distribution
- (4). Five Important Theorems

定理四 设 X_1, X_2, \dots, X_n 是总体 $X \sim N(\mu_1, \sigma_1^2)$ 的样本; Y_1, Y_2, \dots, Y_n , 是总体 $Y \sim N(\mu_1, \sigma_1^2)$ 的样本, 且两样本相互独立, 两样本均值和样本方差分别为 $\bar{X}, \bar{Y}, S_1^2, S_2^2, \mathbb{Q}$

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$$

- 4. Distributions Derived From Normal Distribution
- (4). Five Important Theorems

定理五 设 X_1, X_2, \dots, X_{n_1} 是总体 $X \sim N(\mu_1, \sigma^2)$ 的样本; Y_1, Y_2, \dots, Y_{n_2} 是总体 $Y \sim N(\mu_2, \sigma^2)$ 的样本,且两样本相互独立,两样本均值和样本方差分别为 $\bar{X}, \bar{Y}, S_1^2, S_2^2$.则 $\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_{n_1} + \frac{1}{n_2}} \sim t(n_1 + n_2 - 2)$

- 5. Point Estimation
- (1). Method of Moment (MoM)
 - 8.4 矩方法

概率律的 4 阶矩定义为

$$\mu_{\theta} = E(X^{\theta})$$

其中 X 差限从概率律的類似变量 (当然。仅当期望存在时才有定义). 如果 X_1, X_2, \cdots, X_n 是取自总体的 i1.d 随机变量。k 款样本题(sample moment) 定义为

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

我们将 A。视为 A。的估计,矩方法首先利用最低阶矩表示估计参数。然后转样本矩代入表达式。 最后将到参数的估计量。

- 5. Point Estimation
- (1). Method of Moment (MoM)

例如, 假设我们希望估计两个参数 6, 程 9, 如果 6, 程 6, 可以用前两款矩表示成

$$\theta_1 = f_1(\mu_1, \mu_2)$$

$$\theta_2 = f_2(\mu_1, \mu_2)$$

那么矩估计方法是

$$\hat{\theta}_1 = f_1(\hat{\mu}_1, \hat{\mu}_2)$$

 $\hat{\theta}_2 = f_2(\hat{\mu}_1, \hat{\mu}_2)$

矩估计方法包括三个基本步骤:

- 1. 计算低阶矩, 找出利用参数表示的矩表达式, 通常, 需要的低阶矩个数等同于参数个数.
- 2. 求解上一步的表达式。得到由矩表示的参数表达式。
- 3、香样木矩代入第二步的表达式。得到基于桿木矩的参数估计

- 5. Point Estimation
- (1). Method of Moment (MoM)

例 8.4.2(五态分布) 正态分布的一阶矩和二阶矩是

$$\mu_1 = E(X) = \mu$$

 $\mu_1 = E(X^2) = \mu^2 + \sigma^2$

因此。

$$\mu = \mu_1$$

$$\sigma^2 = \mu_2 - \mu_1^2$$

由样本矩得到的 μ和 σ² 的相应估计是

$$\bar{\mu} = \overline{X}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})$$

5. Point Estimation

(1). Method of Moment (MoM)

Example 7.2.2 (Binomial method of moments) Let $X_1, ..., X_n$ be ist $\operatorname{binomial}(k, p)$, that is,

$$P(X_i = x|k, p) = {k \choose x} p^x (1-p)^{k-x}, \quad x = 0, 1, \dots, k.$$

Here we assume that both k and p are unknown and we desire point estimators for both pursurence. (This somewhat unusual application of the biscerial model has been used to estimate crime rates for crimes that are known to have many unreported occurrences. For such a crime, both the true reporting rate, p, and the total number of occurrences. A are unknown;

Equating the first two sample moments to those of the population yields the system of equations

$$\hat{X} = kp,$$

$$\frac{1}{n} \sum_{i} X_{i}^{2} = kp(1-p) + k^{2}p^{3},$$

which raw must be solved for it and p. After a little algebra, we obtain the method of moments estimators

$$k = \frac{X^2}{X - (1/\pi)\sum(X_i - \bar{X})^2}$$

and

$$\vec{p} = \frac{\vec{X}}{\vec{k}}$$
.

- 5. Point Estimation
- (2). Maximum Likelihood Estimate (MLE)
- a. Likelihood Function and Log Likelihood Function

假收值机变量 X_1, \cdots, X_n 具有联合密度或频率函数 $f(x_1, x_2, \cdots, x_n | \theta)$. 给定度调值 $X_i = x_i$. 其中 $i = 1, \cdots, n$. 作为 x_1, x_2, \cdots, x_n . 的函数、 θ 的似数定义为

$$lik(\theta) = f(x_1, x_2, \dots, x_n|\theta)$$

注意,我们考虑作为 # 函数的联合密度。而不是 za 的函数. 如果分布是离散的。f 是撰率函数。标款函数给出了规则的论定数据的概率。它是参数 # 的函数. # 的最大假然估计(maximum likelihood setimate, mle) 是使得似然达到最大的 # 值 —— 也就是说,观测数据"最有可能"出现。

如果 X, 假设成 11.3 的。它们的联合密度是边际密度的乘积。似然是

$$\text{lik}(\theta) = \prod_{i=1}^{n} f(X_i | \theta)$$

有时领更容易最大化似然的自然对数。而不是最大化似然本身 (由于对数是单调函数。因此二者等价), 对于 Lid 样本。对数似然(log likelihood) 是

$$l(\theta) = \sum_{i=1}^{n} \log[f(X_i|\theta)]$$

(在本书中, "loc" 具是表示自然对数。)

5. Point Estimation

(2). Maximum Likelihood Estimate (MLE)

例 8.5.2 (主色分布) 如果 X₁, X₂,...,X_n 基 iiii 的 N(μ,σ²), 那么既合密度是法际密度的编织;

$$f(x_1,x_2,\cdots,x_n|x,\sigma) = \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left[\frac{x_i-\mu}{\sigma}\right]^2\right)$$

将其短为 1 和 1 的函数,这是伝统函数,因此,对数似然是

$$l(\mu, \sigma) = -n \log \sigma - \frac{n}{2} \log 2\pi - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$$

$$\begin{split} \frac{\partial l}{\partial \mu} &= \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) \\ \frac{\partial l}{\partial \sigma} &= -\frac{n}{\sigma} + \sigma^{-3} \sum_{i=1}^n (X_i - \mu)^2 \end{split}$$

$$\hat{\mu} \mapsto X$$

编导等于等。代人 » 的最大似然估计,我们得到 » 的最大似然

$$\hat{\sigma} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(X_{i}-X)^{2}}$$

- 5. Point Estimation
- (2). Maximum Likelihood Estimate (MLE)
 - 最大似然估计 利用"最大似然原理"获得的估计,它只能在总体概率 函数形式已知的情况下使用,具体步骤如下;设总体的概率函数为 p(x;θ),θ = Θ,z,...,z,是来自该总体的样本。
 - 写出似然函数 $L(\theta) = L(\theta; x_1, \dots, x_n) = p(x_1; \theta) \cdot p(x_2; \theta) \cdot \dots \cdot p(x_n; \theta)$;
 - 便似然函数 L(θ) 达到最大的统计量 θ = θ(s₁, ··· , s_n) 称为θ的最大似然估计, 简称 MLE, 即 θ 满足 L(θ) = maxL(θ).

注意:使得对数似然函数 $\ln L(\theta)$ 最大的 $\hat{\theta}$ 也使似然函数 $L(\theta)$ 最大,寻找最大值可以从定义出发,也可以对 $l(\theta) = \ln L(\theta)$ 使用微分法,后者更为常用。

5. Point Estimation

(1). Method of Moment (MoM)

Example 7.2.7 (Bernoulli MLE) Let $X_1, ..., X_n$ be i.d Bernoulli (p). Then the likelihood function is

$$\hat{L}(p|\mathbf{x}) = \prod_{i=1}^{n} p^{p_i} (1-p)^{1-p_i} = p^{p_i} (1-p)^{q_i-p_i}$$

where $y = \sum x_i$. While this function is not all that hard to differentiate, it is much easier to differentiate the log Rhelihood

$$\log L(p|\mathbf{x}) = p \log p + (n-p) \log(1-p).$$

If 0 < y < n, differentiating $\log L(p|x)$ and setting the result equal to 0 give the solution, $\hat{p} = y/n$. It is also straightforward to verify that y/n is the global maximum in this case. If y = 0 or y = n, then

$$\log L(p|\mathbf{x}) = \begin{cases} n \log(1-p) & \text{if } y = 0 \\ n \log p & \text{if } y = n. \end{cases}$$

In either case $\log L(p(\mathbf{x}))$ is a monotone function of p, and it is again straightforward to verify that $\hat{p} = y/n$ in each case. Thus, we have shown that $\sum X_i/n$ is the MLE of p.

- 5. Point Estimation
- (3). Least Square Estimate (LSE) Further Reading.

3、 今 😿 是亲自于均值为 0、方差为 1 的 16 个独立正态随机变量的样本平均值。确定 c. 使其滴足

$$P(|\overline{X}| < c) = 0.5$$

Solution

3. Solution.
$$\bar{X} \sim \mathcal{N}(D, \frac{1}{16})$$

 $\frac{1}{4} = |P(|\bar{X}| > c))$
 $\frac{1}{4} = |P(|\bar{X}| > c))$
 $= |P(|\bar{X}| > c)$
 $= |P(|\bar{X}| > c)$

6. 证明: 如果 $T \sim t_n$, 那么 $T^2 \sim F_{1,n}$.

Solution

6. Proof. If
$$t \sim t$$
 cn. then $\exists X \sim \mathcal{N}(0.1)$. $Y \sim Y^2$ cn., X, Y independent such that $t = \frac{X}{\sqrt{Y/n}}$.

Then, $t^2 = \frac{X^2}{Y/n}$.

Since $X^4 \sim X^2$ (1), then $t^2 \sim F$ (1n).

8、证明: 如果 X 和 Y 是 $\lambda=1$ 的独立指数随机变量。那么 X/Y 服从 F 分布。同时指出自由度。

Solution

From Fig. 10 pass the following property content of the
$$X^*Y^* \sim Fig.(2)$$

If $X,Y \sim \mathcal{N}(0,\pm)$ and indiposite to the $X^*Y^* \sim Fig.(2)$

If it is the $X \sim X^*Y^*$
 $Y = \operatorname{Artim}(1-\frac{1}{X})$
 $Y \sim IR (1-\frac{1}{X})$
 $Y \sim IR (1-\frac{1}{X})$

Solution

Based on
$$(x)$$
, we have if $X.(\sim 5xp(2))$ ord independent, then $2X \cap X^{2}(2)$, $2Y \cap X^{2}(2)$.

Hence,
$$\frac{X}{Y} = \frac{\frac{2X}{2Y}}{\frac{2Y}{2}} \sim F(2,2)$$
.

从总体 N (240,20²) 中極立地进行两次抽秤,容量分别为 36 和 49, 那么这两个样本均值之差的绝对值不超过 10 的概率是多少?

Solution

1. Solution.
$$X \sim \mathcal{N}(240, (\frac{1}{6})^{2})$$

 $Y \sim \mathcal{N}(240, (\frac{1}{7})^{2})$
 $X - Y \sim \mathcal{N}(0, (\frac{1}{7})^{2} + (\frac{1}{7})^{2})$
 $P(||X - Y|| \leq ||0||) = 2|P(||X - Y| \leq ||0||) - ||$
 $= 2|P(\frac{(|X - Y|)}{||S||^{2}}|| \leq \frac{10}{||S|^{2}}||) - ||$
 $= 2|P(\frac{\frac{1}{17}}{||S||^{2}}||-1| \approx 0.9774. \Box$

2. 读
$$X_1 X_2 \cdots X_{10}$$
 为 $N(0,0.3^2)$ 的样本, 求 c 使 $P\left\{\sum_{i=1}^{10} X_i^2 \le C\right\} = 0.95$.

Solution

$$0.95 = \mathbb{P}\left(\frac{10}{12}X_{i}^{2} \leq C\right) = \mathbb{P}\left(\frac{10}{12}\frac{X_{i}^{2}}{0.3}f \leq \frac{C}{(0.7)^{2}}\right)$$

i.e.
$$C = \chi_{0.95}^2 (10) \times (0.3)^2 \approx 1.6479_{12}$$

3. 设
$$X_1, X_2$$
是来自 $N(0, \sigma^2)$ 的样本.

(1)承
$$\frac{(X_1 - X_2)^2}{(X_1 + X_2)^2}$$
的分布:

(2) 承常数
$$k$$
, 使 $P\left\{\frac{(X_1 + X_2)^2}{(X_1 + X_2)^2 + (X_1 - X_2)^2} > k\right\} = 0.10$.

Solution

3. Solution
$$V = X_1 + X_2$$

$$V = X_1 - X_2$$

$$\int_{U_1 V} (u, v) = \frac{1}{2\pi 16^2} \cdot \frac{1}{2} \cdot \exp(-\frac{1}{26^4} (\frac{1}{2} u^2 + \frac{1}{2} v^2))$$

$$= (\frac{1}{\sqrt{4\pi 6^2}} \exp(-\frac{u^2}{46^2})) (\frac{1}{\sqrt{4\pi 6^4}} \exp(-\frac{v^2}{46^2}))$$
Hence, $X_1 + X_2$ and $X_1 - X_2$ are independent.
$$X_1 + X_2 \sim \mathcal{N}(0, 26^4), X_1 - X_2 \sim \mathcal{N}(0, 26^2).$$

(1)
$$\frac{(X_{1}-X_{2})^{2}}{(X_{1}+X_{1})^{2}} = \frac{(\frac{X_{1}-X_{1}}{\sqrt{20}})^{2}}{(\frac{X_{1}+X_{2}}{\sqrt{20}})^{2}} \sim F(1,1).$$
(1)
$$0.1 = |P(\frac{U^{2}}{U^{2}} + V^{2})| = |P(\frac{V^{2}}{U^{2}} < \frac{1}{k} - 1)$$
Then,
$$\frac{1}{k} - 1 = F_{0.1}(1,1) = \frac{1}{F_{0.4}(1,1)} \approx 0.9755.$$

4, 设 $X_1, X_2, ..., X_n$ 是来自 $N(\mu, 16)$ 的样本。n 多大时才能使得 $P(|\overline{X} - \mu| < 1) \ge 0.95 成立。$

4. Solution.
$$\bar{X} - \mu \sim N(0, \frac{h}{h})$$

$$IP(1\bar{X} - \mu | < 1) = 2IP(\bar{X} - \mu < 1) - 1$$

$$= 2IP(\frac{\bar{X} - \mu}{\frac{h}{h}} < \frac{\sqrt{h}}{4}) - 1 = 2\bar{\Phi}(\frac{\sqrt{h}}{4}) - 1$$

$$2\bar{\Phi}(\frac{\sqrt{h}}{4}) - 1 > 0.95, \frac{m}{4} > \bar{\Phi}^{-1}(0.925)$$

$$N_{min} = 62. 17$$

5. 设
$$X_1, X_2, ..., X_m X_{m+1}$$
 为 $X \sim N(\mu_i \sigma^2)$ 的 并 本 , $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i, S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$,试来常数 C 使得 $t_n = c \frac{N_{m+1} - \overline{X_m}}{s_n}$ 服从 t 分布,并指出分布的自由度。

3. Solution Since Sn is independent of
$$X_n$$
 and X_{n+1} , then Sn is independent of $X_{m+1} - \overline{X}_n$. Also, we have $\frac{n-i}{6^+}S^2 \sim X^2(n-i)$. At the same time, we have $X_{m+1} - \overline{X}_n \sim W(D, \frac{n+i}{n}S^2)$. Then, $C = \sqrt{\frac{n+i}{1}S^2} = 1$, i.e. $C = \sqrt{\frac{n}{m+i}}$. Let $C = \sqrt{\frac{n}{1}S^2}$.

- 据设 X 是离款箱机变量,具有 P(X = 1) = 6 和 P(X = 2) = 1 8 敬 X 的三个独立 $1, x_3 = 2, x_3 = 2.$
 - a. 计算点的矩方法估计。

 - b. 似然函数是什么。
 - e. 9 的最大似然估计是什么?
 - d。 無是 O 的先融分布是 30,1] 上的均匀分布。后数密度是什么?

5. Solution. (a)
$$\mathbb{E} X = \theta + 2(1-\theta) = 2-\theta$$
.
 $2-\hat{\theta} = \frac{1}{3}(1+2+2)$, i.e. $\hat{\theta} = \frac{1}{3}$.
(b) $\angle (\theta; x_1, x_1, x_2) = |P(X_1 = X_1, X_2 = x_1, X_2 = x_2)$
 $= \frac{1}{1}\theta^{2-X_1}(1-\theta)^{X_1-1} = \theta^{6-\frac{1}{2}X_1}(1+\theta)^{\frac{1}{2}X_1-3}$
(c) $\hat{\theta} = \underset{\theta \in [0,1]}{\operatorname{arg we}} P(X_1 = 1, X_2 = 2, X_3 = 2)$
 $= \underset{\theta \in [0,1]}{\operatorname{corg we}} \theta \in (1-\theta)^2$
 $= \frac{1}{3}$.

1. 设总体 X 具有密度函数

$$f(x:\theta) = \begin{cases} \frac{2}{\theta^3}(\theta - x), & 0 < x < \theta \\ 0, & \sharp \cong \end{cases}$$

 X_1, X_2, \dots, X_n 是其样本, 求 θ 的矩估计。

1. Solution,
$$(EX = \int_0^0 \frac{2}{3}(0-x)x dx = \frac{6}{3}$$

 $\frac{6}{3} = X_n$, i.e. $\frac{1}{3} = 3X_n$.

设总体 X 的密度函数为 f(x,θ), X_i, X_j,···, X_j, 为其样本, 求下列情况下θ的最大似然估计。

(1)
$$f(x;\theta) = \begin{cases} \frac{\theta^x}{x!}e^{-\theta}, & x = 0,1,2... \\ 0, & \text{RE} \end{cases}$$
 $(\theta > 0)$

(2)
$$f(x;\theta) = \begin{cases} \theta \alpha x^{\alpha-1} e^{-\theta x^{\alpha}}, & x > 0 \\ 0, & 其它 \end{cases}$$
 (α记知)

2. Solution. (c)
$$L(0;\vec{x}) = \frac{1}{\frac{1}{4!}(x_{i}!)} e^{-n\theta} e^{\frac{i\pi}{2}x_{i}} \cdot 1_{\{x_{0}, > 0\}}.$$

$$\ell(0) = \ell_{n} L(0) = \ell_{n}(\frac{1}{4!}(x_{i}!)) - n0 + n\bar{x}\ell_{n}\theta, \ x_{0} > 0.$$

$$\theta = \underset{\theta>0}{\operatorname{argmox}} \ell(0) = \underset{\theta>0}{\operatorname{argmox}} n(\bar{x}\ell_{n}\theta - \theta)$$

$$= \bar{x} = \frac{1}{4!} x_{i}.$$

(b)
$$L(\theta; \vec{x}) = Q^{n}(f_{1}^{n}x_{1}^{n}, \theta^{n}, \theta^{-\theta}, \xi^{n}x_{1}^{n}, 1_{1}^{n}x_{1}, 20)$$
.
 $L(\theta) = \ln L(\theta) = n \log + (Q-1) \sum_{i=1}^{n} \ln x_{i} + n \log - \theta \sum_{i=1}^{n} x_{i}^{n}$.
 $\theta = argmax \ L(\theta) = \frac{n}{\sum_{i=1}^{n} x_{i}^{n}}$.

3. 设总体X具有密度函数=

$$f(x;\theta) = \begin{cases} \theta(1-x)^{\theta-1}, & 0 \le x \le 1 \\ 0, & \text{#$^{\text{c}}$} \end{cases}$$

 X_1, X_2, \cdots, X_n 是其样本、求 θ 的矩估计及最大似然估计。

Solution

3. Solution.

O moment extinate.

$$EX = \int_{0}^{1} \theta \times (1-x)^{\theta-1} dx$$

$$= (-(1-x)^{\theta} \cdot x) \Big|_{0}^{1} + \int_{0}^{1} (1-x)^{\theta} dx = \frac{1}{\theta+1}$$
Then, $\overline{X}_{n} = \frac{1}{\theta+1}$, i.e. $\overline{\theta} = \frac{1}{x} - 1$.

② MLE.

$$L(0; \vec{x}) = 0^n \stackrel{\text{T}}{=} (Fx_i)^{\theta-1} 1_{\{0 \le x_{iij} \le x_{iij} \le 1\}}$$

 $\ell(0) = n \ell_{ii} 0 + (\theta-1) \stackrel{\text{T}}{=} \ell_{ii} CFx_i)$
 $\delta = argmax n \ell_{ii} 0 + (\theta-1) \stackrel{\text{T}}{=} \ell_{ii} CFx_i)$
 $0 > 0$
 $= -\frac{\eta}{\frac{\pi}{2} \ell_{ii} CFx_i} = \frac{1}{2}$

5. 某厂生产的电容器的使用寿命服从指数分布。为了解其平均寿命,从中抽出 n 件产品测其实际使用寿命,试说明什么是总体,什么是样本。并指出样本的分布。

Solution

解 总体是该厂生产的电容器的寿命全体,或者可以说总体是指数分布, 其分布为 Exp(λ);

样本是该厂中抽出的 n 个电容器的寿命;

记第i个电容器的寿命为z;,则z; - Exp(λ),i=1,2,...,n,样本(x;,...,x,)

的分布为 ∏ λe-44, = λ*e-44, 其中 t = x, + ··· + x,.

7. 设有 N 个产品,其中有 M 个次品,进行放回抽样,定义 *; 如下:

求样本 *(.**, , *。的联合分布.

Solution

解 总体的分布列为

$$P(X=1) = \frac{M}{N}, P(X=0) = 1 - \frac{M}{N},$$

也可以写成

$$P(X=x) = \left(\frac{M}{N}\right)^{x} \left(1 - \frac{M}{N}\right)^{1-x}, \quad x=0,1.$$

因此样本 x, ,x,, …, x, 的联合分布列为

$$P(x_1,x_2,\cdots,x_n) = \prod_{i=1}^n \left(\frac{M}{N}\right)^{x_i} \left(1-\frac{M}{N}\right)^{x_i-x_i} = \left(\frac{M}{N}\right)^i \left(1-\frac{M}{N}\right)^{x_i-x_i}, \quad x_i = 0,1,$$

其中1==,+…+=,

2. 证明:对任意常数 e,d,有

$$\sum_{i=1}^{n} (x_i - c) (y_i - d) = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y}) + n(\overline{x} - c) (\overline{y} - d).$$

Solution

$$\mathbb{E} \sum_{i=1}^{n} (s_i - e) (y_i - d) = \sum_{i=1}^{n} (s_i - \overline{s} + \overline{s} - e) (y_i - \overline{y} + \overline{y} - d)$$

$$= \sum_{i=1}^{n} (s_i - \overline{s}) (y_i - \overline{y}) + \sum_{i=1}^{n} (\overline{s} - e) (y_i - \overline{y}) + \sum_{i=1}^{n} (s_i - e) (\overline{y} - d),$$

$$\dot{\mathbf{H}} \sum_{i=1}^{n} (x_i - \bar{x}) = 0, \quad \sum_{i=1}^{n} (y_i - \bar{y}) = 0, \forall \mathbf{B}$$

$$\dot{\nabla} (x_i - c)(y_i - d) = \dot{\nabla} (x_i - \bar{x})(y_i - \bar{y}) + n(a_i)$$

 $\sum_{i=1}^{n} (x_i - e) (y_i - d) = \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) + n(\bar{x} - e) (\bar{y} - d),$

因而结论成立.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

从同一总体中抽取两个容量分别为 a, m 的样本, 样本均值分别为 x, x, x,
 样本方差分别为 x, x, 将两组样本合并, 其均值、方差分别为 x, x, i 证明;

$$\ddot{s} = \frac{n \, \ddot{s_1} + m \, \ddot{s_2}}{n + m},$$

$$s^2 = \frac{(n-1) \, s_1^2 + (m-1) \, s_2^2}{n + m - 1} + \frac{n \, m \, (\ddot{s_1} - \ddot{s_2})^2}{(n + m) \, (n + m - 1)}.$$

14. 利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝土的频率落在(0.4,0.6) 间的概率至少为 0.9. 如何才能更精确地计算这个次数? 是多少?

Solution

解 均匀硬币正面侧上的概率p=0.5,设x,为n次指硬币中正面侧上的次数,则有x,-b(n,p). 据题意选取次数 n 应调足

$$P(0.4 < \frac{x_n}{n} < 0.6) \ge 0.9$$

此式等价于 $P(|x_n = 0.5n| \ge 0.1n) < 0.1$,利用切比雪夫不等式估计上式左端 概率的上界

Solution

$$P(\mid x_n = 0.5n \mid \ge 0.1n) \le \frac{n \times 0.5(1 - 0.5)}{(0.1n)^2} = \frac{25}{n},$$

再由不等式²⁵ ≈ 0.1 可得粗糙的估计 n ≥ 250. 即推均匀硬币 250 次后可满足要求。

讨论:利用证的渐近正态性可以得到更精确的结论。由中心极限定理知,样

本均值
$$\bar{x} = \frac{\pi_*}{n} \sqrt{n} (\bar{x} - 0.5) / \sqrt{0.5 \times 0.5} \stackrel{\sim}{\sim} N(0.1)$$
,故

$$P(0.4 < \bar{x} < 0.6) = P(\sqrt{n} | \bar{x} = 0.5 | /0.5 < \sqrt{n}/5)$$

= $2\Phi(\sqrt{n}/5) - 1 \ge 0.9$,

即 $\phi(\sqrt{n}/5) > 0.95$, $\dot{m}\sqrt{n}/5 > 1.645$, 这就给出校情确的上界 $n > (5 \times 1.645)^2 = 67.65$, 这表明只需抛均匀硬币 68 次就可调足要求。两个结果差异很大,说明切比雪夫不等式是一个较为粗糙的不等式。在能够使用大样本结果的情况下应尽量使用中心极限定理。

4. 由正态总体
$$N(μ, σ^2)$$
 抽取容量为 20 的样本,试求 $P(10σ^2 \le \sum_{i=1}^{m} (x_i - x_i)$

 $|\mu\rangle^2 \leqslant 30\sigma^2$).

Solution

解 因为
$$x_i = N(\mu, \sigma^2)$$
,所以 $\frac{x_i - \mu}{\sigma} = N(0, 1)$, $\sum_{i=1}^{24} \frac{(x_i - \mu)^2}{\sigma^2} = \chi^2(20)$

用 k₂₀(x) 表示服从 χ¹(20) 的随机变量的分布 函数值,则

$$P(10\sigma^2 \le \sum_{i=1}^{20} (s_i - \mu)^2 \le 30\sigma^2) = P\left(10 \le \frac{\sum_{i=1}^{20} (s_i - \mu)^2}{\sigma^2} \le 30\right)$$

= $k_{12}(30) - k_{22}(10)$.

7. 设随机变量 X ~ F(n,n),证明 P(X < 1) = 0.5.

1, 1 may 2:531

Solution

证 若随机变量 X = F(n,n), 则 Y = 1/X 也服从 F(n,n), 从而 P(X < 1) = P(Y < 1) = P(1/X < 1) = P(X > 1).

糖

$$P(X < 1) + P(X > 1) = 1$$
,

这就证明了 P(X < 1) = 0.5.

设 x₁, ··· , z_s 是来自 N(μ₁, σ²) 的样本, y₁, ··· , y_m 是来自 N(μ₂, σ²) 的样本, 两总体独立, c_sd 是任意两个不为 0 的常数, 证明

$$t = \frac{c(\vec{x} - \mu_1) + d(\vec{y} - \mu_2)}{s_a \sqrt{\frac{c^2}{n} + \frac{d^2}{m}}} - t(n + m - 2),$$

其中 $s^{2} = \frac{(n-1)s^{2} + (m-1)s^{2}}{n+m-2}$, $s^{2} = 5s^{2}$ 分別是两个样本方差.

使 単条件有
$$c(\bar{x} - \mu_1) = N(0, \frac{e^2\sigma^4}{n}), d(\bar{y} - \mu_2) = N(0, \frac{d^2\sigma^3}{n}),$$

$$\frac{(n-1)s_1^2}{\sigma^2} = \chi^3(n-1), \quad \frac{(m-1)s_1^4}{\sigma^4} = \chi^3(m-1),$$

$$E(\bar{x}, \bar{y}, s_1^2, s_2^3, d\bar{x}) = (\bar{x} - \mu_1) + d(\bar{y} - \mu_2) = N(0, \frac{e^2\sigma^2}{x} + \frac{d^2\sigma^2}{m}),$$

$$\frac{(n+m-2)s_2^2}{\sigma^2} = \frac{(n-1)s_2^2}{\sigma^2} + \frac{(m-1)s_2^4}{\sigma^2} = \chi^2(n+m-2),$$

$$T E$$

$$r = \frac{e(\bar{x} - \mu_1) + d(\bar{y} - \mu_2)}{s_2\sqrt{\frac{e^2}{n} + \frac{d^2}{m}}}$$

$$= \frac{[e(\bar{x} - \mu_1) + d(\bar{y} - \mu_2)]/\sqrt{\frac{e^2\sigma^4}{n} + \frac{d^2\sigma^4}{m}}}{\sqrt{(n+m-2)s_2^2}/(n+m-2)} = t(n+m-2).$$

19. 设 x₁,x₂,…,x₆ 是来自某连续总体的一个样本. 该总体的分布函数F(x)

是连续严增函数,证明:统计量 $T=-2\sum_{i=1}^{n} \ln F(x_i)$ 服从 $\chi^2(2n)$.

Solution

证 分几步进行:

(1) 者X = P(z),且F(z) 为连续严增函数,则Y = F(X) = U(0,1),这是因为F(z) 的反函数 F^{-1} 也存在,于是Y = F(X) 的分布函数为

$$F_{\tau}(y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = F(F^{-1}(y)) = y$$

其中ye(0,1),当y<0,
$$F_y(y)=0$$
,当y>1, $F_y(y)=1$,所以 $F(X)=U(0,1)$.

(2) 若 Y - U(0,1), 與 Z = - ln Y - x2(2), 这是由于 y 仅在(0,1) 上取值,

$$F_{z}(z) = P(-\ln Y \le z) = P(Y \ge e^{-z}) = 1 - e^{-z}$$

这是参数 为 1 的 指数 分 布 函数, 也是 自由 度 为 2 的 χ² 分 布 函数, 即 Z = - le Y -χ²(2)。

(3)由X₁,X₂,···,X_a的相互独立性可导致F(X₁),F(X₂)。···,F(X_a)相互独

立。由(1) 与(2) 可知
$$u = -2\sum_{i=1}^{n} \ln F(x_i) - \chi^2(2n)$$
.

4. 设总体
$$X=N(\mu,\sigma^2)$$
 、 x_1,\cdots,x_n 是来自该总体的一个样本、试确定常数 e 使 $e\sum_{i=1}^{n-1}(x_{i+1}-x_i)^k$ 为 σ^2 的无偏估计。

解 由于总体
$$X = N(\mu_1, \sigma^1)$$
 ,这给出
 $E(s_i^2) = \sigma^2 + \mu^1$,
 $E(s_i s_{i-1}) = E(s_i) E(s_{i-1}) = \mu^1$, $i = 1, 2, \dots, n$,
于是
 $E\left(\sum_{i=1}^{n-1} (s_{i+1} - s_i)^2\right) = E(s_i^2 + 2s_i^2 + \dots + 2s_{n-1}^2 + s_n^2 - 2s_i s_i - \dots - 2s_{n-1} s_n)$
 $= [2(n-1)(\sigma^1 + \mu^1) - 2(n-1)\mu^2] = 2(n-1)\sigma^2$.

若要使
$$c\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$
 为 σ^2 的无偏估计,即 $cE(\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2) = \sigma^2$, 这给出 $c = \frac{1}{2(n-1)}$.

11. 设总体 X 服从正态分布 $N(\mu, \sigma^1)$ $, x_1, x_2, \cdots, x_n$ 为来自总体 X 的样本,为 了得到标准差 σ 的估计量,考虑统计量:

$$y_{i} = \frac{1}{n} \sum_{i=1}^{n} |x_{i} - \bar{x}|, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad n \ge 2,$$
$$y_{2} = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{i=1}^{n} |x_{i} - x_{i}|, \quad n \ge 2,$$

求常数 C_1 与 C_2 , 使得 C_1 y, 与 C_2 y, 都是 σ 的无偏估计。

Solution

解 由期望的公式及对称性,我们只需要求出 5 | x, - x | 和 5 | x, - x | 即

可, 注意到x₁ - x - N(0, n - 1 σ²)(为什么?)和x₁ - x₂ - N(0, 2σ³),我们只需

要求出如下期領即可完成本題:设y - N(0,σ²),頻

$$E[|y| = 2\int_0^{\pi} \frac{1}{\sqrt{2\pi}\sigma} y e^{-\frac{y^2}{2\sigma^2}} dy$$

$$= \int_0^{\pi} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} dx = \int_0^{\pi} \frac{\sqrt{2}\sigma}{\sqrt{\pi}} e^{-x} dx = \frac{\sqrt{2}\sigma}{\sqrt{\pi}}.$$

于是有
$$E[x_1 - \bar{x}] = \sqrt{\frac{n-1}{n}} \sqrt{\frac{2\sigma}{n}}$$
和 $E[x_1 - x_2] = \frac{2\sigma}{\sqrt{\pi}}$,从而给出 $C_1 = \sqrt{\frac{n\pi}{2(n-1)}}$ 。

$$C_1 = \frac{\sqrt{\pi}}{2}$$

- 14. 设 x1, ··· , x 是来自二点分布 b(1, p) 的一个样本,
- (1) 寻求 p² 的无偏估计;
- (2) 寻求 p(1-p) 的无偏估计;
- (3) 证明 $\frac{1}{p}$ 的无偏估计不存在.

Solution

解 (1) 2 是 p 的一个直现估计,但不是 p 的无偏估计,这是因为

$$E(\tilde{x}^2) = Var(\tilde{x}) + [E(\tilde{x})]^2 = \frac{p(1-p)}{n} + p^2 = \frac{p}{n} + \frac{n-1}{n}p^2 \neq p^2,$$

由此可见 $\bar{p}' = \frac{n}{n-1} \left[\bar{x}^2 - \frac{\bar{x}}{n} \right] \stackrel{\cdot}{\mathcal{L}} p^2$ 的无偏估计。

(2) $\bar{s}(1-\bar{s})=\bar{s}-\bar{s}^*$ 是p(1-p) 的直裹估计。但不是p(1-p) 的无偏估计。

这是因为

$$E(\bar{x} - \bar{x}^2) = p - \left(\frac{p(1-p)}{n} + p^2\right) = \frac{\kappa_s - 1}{n}p(1-p) \neq p(1-p)$$

由此可见 $\frac{n}{n-1}\bar{s}(1-\bar{s})$ 是p(1-p) 的一个无偏估计.

Solution

(3) 反证法、钱若 $g(s_1, \cdots, s_n)$ 是 $\frac{1}{p}$ 的无偏估计,则有

$$\sum_{x_1,\cdots,x_n} g(x_1,\cdots,x_n) \rho_{i=1}^{\sum_{i=1}^n i} (1-p)^{n-\sum_{i=1}^n i} = \frac{1}{p},$$

戒者

$$\sum_{n_1,\dots,n_k} g(x_1,\dots,x_k) p_{(n)}^{\frac{1}{2}n_1+1} (1-p)^{n-\frac{1}{2}n_1} - 1 = 0,$$

上式是p的n+1次方程,它最多有n+1个实根。而p可在(0,1) 取无穷多个值。 所以不论取什么形式都不能使上述方程在 $0 上成立。这表明 <math>\frac{1}{p}$ 的无偏估 计不存在。

4. 设总体密度函数如下, x,, · · · , x。是样本, 试求未知参数的矩估计。

(1)
$$p(x;\theta) = \frac{2}{\theta^2}(\theta - x), 0 < x < \theta, \theta > 0$$
;

(2)
$$p(x;\theta) = (\theta + 1)x^{\theta}, 0 < x < 1, \theta > 0$$
;

(3)
$$p(\pi;\theta) = \sqrt{\theta} x^{\theta-1}, 0 < \pi < 1, \theta > 0$$
;

(4)
$$p(x;\theta,\mu) = \frac{1}{\theta}e^{\frac{-x-\mu}{\theta}}, x > \mu, \theta > 0.$$

Solution

(4) 先计算总体均值与方差

$$\begin{split} E(X) &= \int_{u}^{\infty} x \frac{1}{\theta} e^{-\frac{i\pi \theta}{2}} dx + \int_{u}^{\infty} t \frac{1}{\theta} e^{-\frac{i}{\tau}} dt + \int_{u}^{\infty} \frac{1}{\theta} \mu e^{-\frac{i}{\theta}} dt \\ &= \theta + \mu , \\ E(X^{2}) &= \int_{u}^{\infty} x^{2} \frac{1}{\theta} e^{-\frac{i\pi \theta}{\theta}} dx = \int_{u}^{\infty} (t + \mu)^{2} \frac{1}{\theta} e^{-\frac{i}{\theta}} dt \\ &= \int_{u}^{\infty} t^{2} \frac{1}{\theta} e^{-\frac{i}{\theta}} dt + \int_{u}^{\infty} 2\mu t \frac{1}{\theta} e^{-\frac{i}{\theta}} dt + \int_{u}^{\infty} \mu^{2} \frac{1}{\theta} e^{-\frac{i}{\theta}} dt \\ &= 2\theta^{2} + 2\mu \theta + \mu^{2} , \end{split}$$

$$Var(X) &= E(X^{2}) - (E(X))^{2} = \theta^{2}. \end{split}$$

由此可以推出 $\theta = \sqrt{Var(X)}$ $\mu = \mathcal{E}(X) - \sqrt{Var(X)}$ 从而参数 θ μ 的矩估计为 $\hat{\theta} = s$, $\hat{\mu} = \bar{s} - s$.

8. 设工,,…,工,是来自对数级数分布

$$P(X = k) = -\frac{1}{\ln(1-p)} \cdot \frac{p^{*}}{k}, 0$$

的一个样本,求参数 p 的矩估计。

Solution

$$EX = \sum_{k=1}^{\infty} kP(X = k) = -\frac{1}{\ln(1-p)} \sum_{k=1}^{\infty} p^k = -\frac{p}{(1-p)\ln(1-p)},$$

$$EX^2 = \sum_{k=1}^{\infty} k^2 P(X = k) = -\frac{1}{\ln(1-p)} \sum_{k=1}^{\infty} kp^k = -\frac{p}{(1-p)^2 \ln(1-p)},$$

$$\sum_{k=1}^{\infty} p^k = -\frac{p}{(1-p)^2 \ln(1-p)},$$

因此有 $1-p=\frac{EX}{EX^2}$, 从而得到 p 的一个矩估计 $\hat{p}=1-\frac{\sum x_i}{\sum x_i^2}$

1. 设总体概率函数如下,x,, · · · ,x, 是样本,试求未知参数的最大似然估计。

(1)
$$p(x_1\theta) = \sqrt{\theta} x^{(\theta-1)}, 0 < x < 1, \theta > 0$$

(2)
$$p(x;\theta) = \theta e^{x} e^{-(\theta+1)}, x > e, e > 0 \square m, \theta > 1.$$

Solution

(1) 似然函数为 $L(\theta) = (\sqrt{\theta})^*(x_1 \cdots x_n)^{(t-1)}$,其对数似然函数为

$$\ln L(\theta) = \frac{n}{2} \ln \theta + (\sqrt{\theta} - 1) (\ln x_1 + \dots + \ln x_n).$$

Solution

幣 ln L(θ) 关于θ求导并令其为0即得到似然方程

$$\frac{\partial \ln L(\theta)}{\partial \theta} = \frac{n}{2\theta} + (\ln x_1 + \dots + \ln x_n) \frac{1}{2\sqrt{\theta}} = 0$$

解之得

$$\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} \ln x_i\right)^{-2}.$$

曲于

$$\left. \frac{\partial^2 \ln L(\theta)}{\partial \theta^2} \right|_{\theta} = \left(\frac{n}{2\theta^2} \frac{\sum \ln x_i}{4\theta^{3/2}} \right) \left|_{\theta} = \frac{3(\sum \ln x_i)^4}{4n^2} < 0,$$

所以 θ 是 θ 的最大似然估计.

2. 设总体概率函数如下。*、, · · · · · *、是样本。试求未知参数的最大似然估计。

(1)
$$p(x;\theta) = c\theta^*x^{-(x+1)}, x > \theta, \theta > 0, c > 0 已知;$$

(2)
$$p(x;\theta,\mu) = \frac{1}{\theta}e^{\frac{-t\cdot\mu}{\theta}}, x > \mu, \theta > 0;$$

(3)
$$p(x;\theta) = (k\theta)^{-1}, \theta < x < (k+1)\theta, \theta > 0.$$

Solution

解 (1) 样本 x,, · · · , x, 的似然函数为

$$L(\theta) = e^* \theta^* (\pi_1 \cdots \pi_n)^{-(ret)} I_{(\pi_1, \dots, \pi_n)}$$

要使 $L(\theta)$ 达到最大,首先示性函数应为1,其次是 θ "尽可能大,由于 $\epsilon > 0$,故 θ "是 θ 的单类增温数,所以 θ 的取值应尽可能大,但示性函数的存在决定了 θ 的取值不能大于 ϵ_{111} ,由此给出 θ 的最大似然估计为 ϵ_{112} 。

Solution

(3) 设有样本 =,, …, =, 其似然函数为

$$L(\theta) = \left(\frac{1}{k\theta}\right)^{-\epsilon} I_{(\theta = \epsilon_{(1)} + \epsilon_{(2)} + (d+1)\theta)}$$

由于 $L(\theta)$ 的主体 $\left(\frac{1}{k\theta}\right)^{\sigma}$ 是关于 θ 的单调漆减函数,要使 $L(\theta)$ 达到最大、 θ 应尽

可能小,但由限制 $\theta \le x_{(1)} \le x_{(n)} \le (k+1)\theta$ 可以得到 $\frac{x_{(n)}}{k+1} \le \theta \le x_{(1)}$,这说明 θ

不能小于 $\frac{s_{(i)}}{k+1}$,因而 θ 的最大似然估计为 $\hat{\theta} = \frac{s_{(i)}}{k+1}$.

3. 设总体概率函数如下。**、***、**。是样本、试求未知参数的最大似然估计。

(1)
$$p(x;\theta) = \frac{1}{2\theta}e^{-|x|/\theta}, \theta > 0;$$

(2)
$$p(x_1\theta) = 1, \theta - 1/2 < z < \theta + 1/2$$

$$(3)\ p(x;\theta_1,\theta_1)=\frac{1}{\theta_1-\theta_1},\theta_1< x<\theta_1.$$

Solution

解 (1) 不难写出似然函数为

$$L(\theta) = \left(\frac{1}{2\theta}\right)^s e^{-\frac{\sum_{i=1}^s \left(a_i\right)}{\theta}}$$

对数似然函数为

$$\ln L(\theta) = -n \ln 2\theta - \frac{\sum_{i=1}^{n} |x_i|}{\theta}$$

Solution

(2) 此处的似然函数为

$$L(\theta) = I_{\{\theta = \frac{1}{2} : \theta_{(1)} : \theta_{(2)} : \theta = \frac{1}{2}\}}$$

它只有两个取值:0和1、为使得似然函数取1、 θ 的取值范围应是 $s_{(a)} - \frac{1}{2} < \theta <$

$$s_{(1)}+rac{1}{2}$$
,因而 $heta$ 的最大似然估计 $\hat{ heta}$ 可取 $\left(s_{(a)}-rac{1}{2},s_{(1)}+rac{1}{2}
ight)$ 中的任意值. 这说

明 MLE 可能不止一个。

Solution

(3) 由条件,似然函数为

$$L(\theta) = \frac{1}{(\theta_2 - \theta_1)^n} I_{\theta_1 \in \epsilon_{(1)} \in \epsilon_{(n)} \in \theta_2}.$$

要使 $L(\theta)$ 尽量大, 背先示性函数应为 1、这说明 $\theta_1 < \pi_{(1)} < \pi_{(n)} < \theta_2$; 其次 $\theta_2 - \theta_1$ 要尽量小, 综上可知 θ_1 的最大似然估计应为 $\pi_{(n)}, \theta_2$ 的最大似然估计应为 $\pi_{(n)}, \theta_2$ 的最大似然估计应 为 $\pi_{(n)}$.

4. 一地质学家为研究密歇艇期的湖滩地区的岩石成分,随机地自该地区取 100 个样品,每个样品有 10 块石子,记录了每个样品中属石灰石的石子数. 假设 这 100 次观察相互独立,求这地区石子中石灰石的比例 p 的最大似然估计. 该地 质学家所得的数据如下:

样本中的石子教	0	350	2	3	4	5	6	7	*	9	10
神品小飯	0	1	15	4	27	26	31	12	3	1	0

Solution

解 本題中,总体 X 为样品中石灰石的个数、且 X 服从参数为(10,p)的二项分布,即

Solution

$$p(X = x) = {10 \choose x} p^x (1-p)^{16-x},$$

*, **, **, ***, 为样本,则其似然消散为(忽略常数)

$$L(p) = p \sin^{n} (1 - p)^{\frac{n}{n+(n)} \sum_{i=1}^{n} n_i},$$

对数似然函数为

$$\ln L(p) = \sum_{i=1}^{nm} z_i \ln p + (10 \times 100 - \sum_{i=1}^{nm} z_i) \ln (1 - p).$$

韩对数似然函数关于p求导并令其为0得到但然方程

$$\frac{\partial \ln L(p)}{\partial p} = \frac{\sum_{i=1}^{100} z_i}{p} - \frac{10 \times 100 - \sum_{i=1}^{100} z_i}{1 - p} = 0,$$

新之得

$$\hat{p} = \frac{\sum_{i=1}^{100} x_i}{1.000}$$

Solution

由于

$$\frac{1}{2} \int_{0}^{1} x_{i} = 1000 - \sum_{i=0}^{100} x_{i}$$

E WAY

由二阶导数的性质知识的最大似然估计为

$$\hat{\rho} = \frac{\sum_{i=1}^{100} x_i}{1.000} = \frac{499}{1.000} = 0.499.$$

11. 证明:对正态分布 $N(\mu, \sigma^1)$,若只有一个观测值,则 σ^2 的最大似然估计不存在.

Solution

证 在只有一个观测值场合,对数似然函数为

$$l(\mu, \sigma^2; x) = -\ln(\sqrt{2\pi}\sigma) - \frac{(x - \mu)^2}{2\sigma^2}$$

该函数在 $\sigma \to 0$ 时趋于 ∞ 。这说明该函数没有最大值。或者说极大值无法实现, 从而 σ^1 的最大似然估计不存在。

Further Reading

1. LSE

Reference. [Casella, Berger] Statistical Inference, Chapter 12, Regression Models

Thank you!