

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

عنوان: تکلیف اول درس مبانی رمزنگاری

نام و نام خانوادگی: علیرضا ابره فروش شماره دانشجویی: ۹۸۱۶۶۰۳ نیم سال تحصیلی: بهار ۱۴۰۱/۱۴۰۲ مدرّس: دکتر سیدمحمد دخیل علیان دستیاران آموزشی: گلاره عودی قدیم

١

١.١ سوال ٧.١

۱.۱.۱ سوال ۱.۷.۱

×	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

۲.۱.۱ سوال ۲.۷.۱

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

٣.١.١ سوال ٣.١.١

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

X	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

۴.۱.۱ سوال ۴.۱.۱

طبق جدول، ۲ در \mathbb{Z}_4 و ۲، ۳ و ۴ در \mathbb{Z}_6 فاقد وارون ضربی اند.

شرط لازم و کافی برای اینکه a به پیمانه m وارون ضربی داشته باشد این است که این دو عدد نسبت به هم اول باشند. از آنجایی که a عدد اول است، همه ی اعداد صحیح مثبت کمتر از a نسبت به a اول ند. پس وارون ضربی برای تمامی اعضای غیر صفر در a موجود است.

۲.۱ سوال ۸.۱

×	5
0	0
1	5
2	10
3	4
4	9
5	3
6	8
7	2
8	7
9	1
10	6

×	5
0	0
1	5
2	10
3	2
4	7
5	12
6	4
7	9
8	1
9	6
10	11
11	3
12	8

وارون ضربی ۵ در \mathbb{Z}_1 و \mathbb{Z}_1 و \mathbb{Z}_1 به ترتیب ۹، ۵ و ۸ است.

CrypTool 7

1.7

a 1.1.7

کلید Caesar cipher برابر M است که حرف ۱۲م الفبای انگلیسی است. پس در واقع هر حرفِ الفبا به صورت حلقوی ۱۲ واحد شیفت می خورد. پس در نهایت به صورت زیر رمز می شود.

X	A	1	i	r	e	Z	a	A	b	r	e	h	f	o	r	o	u	s	h
$E_{12}(x)$	M	X	u	d	q	1	m	M	n	d	q	t	r	a	d	a	g	e	t

در نرم افزار CrypTool به صورت زیر رمز می کنیم.

شکل ۱

شکل ۲

شکل ۳

۲.۲

 $9816603 \equiv 17 \mod 26$

کلید Substitution cipher برابر Substitution cipher و offset و fharjolyinectzspdbkwxgumvq برابر ۱۷ است. در واقع الفبای اگلیسی به ترتیب به map NECTZSPDBKWXGUMVQFHARJOLYI می شود. پس در نهایت به صورت زیر رمز می شود.

در نرم افزار CrypTool به صورت زیر رمز می کنیم.

شکل ۴

شکل ۵

CypTool 1.4.42 - [Substitution encryption of <cry-caesar-startingexample-en.txt-, <nectzs9dbxwxguny07hariouy1="" key="">]</cry-caesar-startingexample-en.txt-,>	- o x
The Edit View Encrypt/Decrypt Digital Signatures/PKI Indiv. Procedures Analysis Options Window Help	_ 6 :
Hrcczhh rhrnxxy cmgzh am admhz odm nfz amm erhy am ez xmmwbup smf ba.	
Press F1 to obtain help.	L:1 C:1 P:1 NUM

شکل ۶

٣.٢

a 1.٣.٢

در Vigenère cipher در الفبای انگلیسی از یک جدول با ابعاد 26×26 استفاده می شود که در سطر iام آن حروف انگلیسی به ترتیب به صورت حلقوی با شروع از حرف iام الفبا نوشته شده است.

	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	o	P	Q	R	S	T	U	V	W	X	Y	Z
A	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
В	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α
C	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В
D	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C
E	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D
F	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е
G	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F
H	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G
I	I	J	K	L	M	N	О	P	Q	R	S	Т	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н
J	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I
K	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J
L	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K
M	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L
N	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	I	J	K	L	M
o	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
P	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О
Q	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P
R	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q
S	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R
T	T	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S
U	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T
V	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U
W	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V
X	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W
Y	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X
Z	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y

همچنین کلید مورد استفاده در این الگوریتم به صورت زیر (سه حرف اول نام + سه حرف اول نام خانوادگی) ساخته می شود. $ALIREZA\ ABREHFOROUSH \Rightarrow key = ALIABR$

حال key را مکررا تکرار می کنیم تا طول آن برابر طول رشته ی که می خواهیم آن را رمز کنیم بشود (یا به عبارتی کاراکتر نظیر باقیمانده ی به پیمانه ی طول کلید (۶) را در کلید به دست آوریم). برای رمز کردن کاراکترِ iام در رشته، کاراکترِ اندیسِ باقیمانده ی باقیمانده ی طول کلید (۶) در کلید (key_i) به همراه خود کاراکترِ iام (x_i) به دست می آوریم. i بیمانه ی طول کلید (x_i) به همراه خود کاراکترِ (x_i) به دست می آوریم. (key_i) نظیر (x_i) باست.

key	Α	1	i	a	ь	r	а	T	1	i	a	ь	r	a	1	Τ	i	a	ь	r	8	ı	1	i	T	a	ь		а	1	П	i	а	ь	П	r	а	1	1	8	a I	ь	r	а	1	i	i	а	ь	П	r	a	Τ	ı	i	а	ь	r	a	1	П	i	a	ь	П	r	a	
х	S	u	с	с	e	s	s	T	u	s	u	a	1	1	у	Τ	c	0	m	e	3	3	t	c	,	t	h	o	s	e	П	w	h	o	П	a	r	e	-		0	ь	ь	u	s)	/	t	o	П	ь	e	Т	ı	0	o	k	i	n	g	П	f	0	r	П	i	t	
E(x)	S	f	k	с	f	j	s	T	f	a	u	b	с	1	j	Τ	k	0	n	v	3	3	c	v	7	t	i	f	s	p		е	h	p	П	r	r	p	1	, (0]	Р	s	u	d	g	3	t	p	П	s	c	,	v ·	w	0	1	z	n	r	П	n	0	s	П	z	t	П

در نرم افزار CrypTool به صورت زیر رمز می کنیم.

شکل ۷

شکل ۸

شکل ۹

b 7.٣.٢

مشابه قسمت قبل (صرفا تغییر کلید) داریم:

$ALIREZA\ ABREHFOROUSH \Rightarrow key = ALIREZAABREHFOROUSH$

در نرم افزار CrypTool به صورت زیر رمز می کنیم.

شکل ۱۰

شکل ۱۱

شکل ۱۲

٣.٣.٢

4.7

در نرم افزار CrypTool به صورت زیر رمزگشایی می کنیم. طول کلید (به طور پیشفرض) ۵ است و کلید در Vigenère cipher برابر SMILE به دست می آید.

شکل ۱۳

شکل ۱۴

شکل ۱۵

شکل ۱۶

شکل ۱۷

نمودار رسم شده autocorrelation را نشان می دهد. match می متن را با نسخههای مختلف شیفت یافته ی آن (به طول یکسان) مقایسه می کند. در هر حالت کاراکترهایی که باهم match می شوند (یکساناند) را تعیین می کنیم. در نمودار رسم شده تعداد کاراکترهای مقالشده بر اساس تعداد واحد شیفت داده شده نمایش داده شده است. توجه شود که فقط حروف الفبای انتخاب شده (انگلیسی یا آلمانی برای مثال) تجزیه و تحلیل می شوند. همچنین تعداد جابه جایی ها به طول متن بستگی دارد (شما می توانید متشکل از ۲ کاراکتر را حداکثر ۱ واحد جابجا کنید، سپس آنها به نوعی زیر یکدیگر قرار می گیرند). به مثال زیر توجه کنید.

در این مثال در شیفت ۶ واحد، تعداد کاراکترهای matchشده برابر Λ است.

۵.۲

a 1.Δ.Υ

plaintext مذکور را با OTP Key مذکور به شکل زیر با تکنیک one-time pad رمز می کنیم.

شکل ۱۸

شکل ۱۹

b 7.2.7

plaintext مذکور را به شکل زیر با تکنیک one-time pad رمز میکنیم (از آنجایی که طول کلید OTP بایستی بزرگتر مساوی طول رشته). رشته که میخواهیم رمز کنیم باشد؛ کلید OTP را برابر تکرار رشته Alireza Abrehforoush قرار میدهیم).

شکل ۲۰

 ${f c}$ ۳.۵.۲ به شکل زیر تحلیل برای کشف کلید OTP به ترتیب برای قسمت ${f a}$ و b انجام می شود.

XOR Analysis	×
Derived key length:	1
Expected most common cha	aracter (hex): 00

شکل ۲۱

شکل ۲۲

شکل ۲۳

شکل ۲۴

شکل ۲۵

شکل ۲۶

منابع

