Notas de Aula - Capítulo 2

Probabilidade

Caio Gomes Alves

19/03/2025

1 Variáveis Aleatórias

1.1 Variáveis aleatórias e funções de distribuição

Example 1.1. Considere um experimento em que uma moeda é lançada duas vezes. Seja X = total de caras nos dois lançamentos. Denotemos o evento cara como H e coroa como T. Logo:

Espaço Amostral (Ω)	X
HT	1
TH	1
HH	2
TT	0

Logo, $X: \mathcal{F} \to \mathbb{R}$. Vale também que, $\forall x$ valor na imagem de $X, X^{-1}(x) \in \mathcal{F}$. Por exemplo:

$$x = 1 \Rightarrow X^{-1}(1) = \{HT, TH\}$$

 $x = 2 \Rightarrow X^{-1}(2) = \{HH\}$
 $x = 0 \Rightarrow X^{-1}(0) = \{TT\}$

Definition 1.1 (Variável aleatória). Seja (Ω, \mathcal{F}, P) um espaço de probabilidades. Uma função $X : \mathcal{F} \to \mathbb{R}$ é variável aleatória se $[x \in I] \in \mathcal{F}, \ I \in \mathbb{R}$ (ou, equivalentemente, se $\{\omega : X(\omega) \in I\} \in \mathcal{F}; \ X^{-1}(I) \in \mathcal{F}$).

Definition 1.2 (Distribuição Acumulada). Considere um espaço de probabilidades (Ω, \mathcal{F}, P) e $X : \mathcal{F} \to \mathbb{R}$ uma variável aleatória, defina $F(r) = P(X \le r) = P(\{\omega : X(\omega) \le r\})$.

Example 1.2. Seja X = número de caras em dois lançamentos de moeda (honesta). Temos que as probabilidades de X são dadas por:

$$P(X = 0) = P(\{TT\}) = \frac{1}{4}$$

$$P(X = 1) = P(\{TH, HT\}) = \frac{2}{4}$$

$$P(X = 2) = P(\{HH\}) = \frac{1}{4}$$

Para encontrarmos a função de distribuição acumulada, podemos particinar o espaço e "acumular" as probabilidades. Para r < 0:

$$F(r) = P([X \le r]) = P(\emptyset) = 0$$

Para $r \in [0, 1)$:

$$F(r) = P([X \le r]) = P(X \le 0) = \frac{1}{4}$$

Para $r \in [1, 2)$:

$$F(r) = P([X \le r]) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{3}{4}$$

Para $r \geq 2$:

$$F(r) = P([X \le r]) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 1$$

Logo, F é dada por:

$$F(r) = \begin{cases} 0, & r < 0 \\ \frac{1}{4}, & r \in [0, 1) \\ \frac{3}{4}, & r \in [1, 2) \\ 1, & r \ge 2 \end{cases}$$

Distribuição de probabilidades acumulada

Theorem 1.1 (Propriedades da distribuição acumulada). Seja X uma variável aleatória definida em (Ω, \mathcal{F}, P) , então a f.d.a. de X (F_X ou F) verifica:

- a) F é monótona não decrescente;
- b) F é contínua à direita;
- c) $\lim_{t\to-\infty} F(t) = 0$ $e \lim_{t\to\infty} F(t) = 1$.

Proof.

- a) Dados $a, b \in \mathbb{R} : a \le b$; $[X \le a] \subseteq [X \le b] \Rightarrow P([X \le a]) \le P([X \le b]) \Rightarrow F(a) \le F(b)$.
- b) Se $X_n \downarrow x$, quando $n \to \infty$, temos que $\{[X \le x_n]\}_{n \ge 1}$ é tal que $\bigcap_{n \ge 1} [X \le x_n] = [X \le x]$. Isso significa que $[X \le x]$ acontece se e somente se $[X \le x_n] \ \forall n$. Além disso, $[X \le x_n] \downarrow [X \le x]$ quando $n \to \infty$, logo, pela continuidade da função de probabilidade $P([X \le x_n]) \downarrow P([X \le x]), n \to \infty$.
- c) Considere agora que $x_n \downarrow -\infty \Rightarrow [X \leq x_n] \downarrow \emptyset$, $n \to \infty \Rightarrow F(x_n) = P([X \leq x_n]) \downarrow P(\emptyset) = 0$, $n \to \infty$. Se $x_n \uparrow \infty \Rightarrow [X \leq x_n] \uparrow \Omega$, $n \to \infty \Rightarrow F(x_n) = P([X \leq x_n]) \uparrow P(\Omega) = 1$, $n \to \infty$.

Theorem 1.2. Se F é a f.d.a. da variável aleatória X, então:

- a) Existem e são finitos os limites laterais $\lim_{t\to r^-} F(t), \lim_{t\to r^+} F(t), \forall r\in\mathbb{R}$ e $\lim_{t\to r^-} F(t)\leq \lim_{t\to r^+} F(t);$
- b) $\lim_{t\to r^+} F(t) = F(r), \forall r \in \mathbb{R};$
- c) $F \notin descontinua\ em\ r, r \in \mathbb{R}\ se\ e\ somente\ se\ \lim_{t\to r^-} F(t) < F(r),\ com\ um\ salto\ de\ tamanho\ F(r) \lim_{t\to r^-} F(t);$
- d) $\forall r \in \mathbb{R}, P(X = r) = F(r) \lim_{t \to r^{-}} F(t);$
- e) Existem no máximo um total enumerável de descontinuidades em F.

Proof.

- a) F é monótona e limitada $(0 \le F \le 1)$. Logo, os limites laterais existem e são limitados.
- b) Como F é monótona não-decrescente, $\forall x,y:x\leq y\Rightarrow F(x)\leq F(y)$. Logo $\lim_{t\to r^-}F(t)\leq \lim_{t\to r^+}F(t)$.
- c) Como F é monótona não-decrescente, uma descontinuidade só ocorre se e somente se $\lim_{t\to r^-} F(t) < \lim_{t\to r^+} F(t) = F(r)$.
- d) Seja $r \in \mathbb{R}$. $[X \le r] = \bigcap_{n=1}^{\infty} (r \frac{1}{n} < x \le r)$, logo:

$$P([X=r]) = P\left(\bigcap_{n=1}^{\infty} \left(r - \frac{1}{n} < x \le r\right)\right)$$

$$\downarrow \text{(Teorema da continuidade)}$$

$$= \lim_{n \to \infty} P\left(\left(r - \frac{1}{n} < x \le r\right)\right)$$

$$= \lim_{n \to \infty} \left(F(r) - F\left(r - \frac{1}{n}\right)\right)$$

$$= F(r) - \lim_{n \to \infty} F\left(r - \frac{1}{n}\right)$$

$$P([X=r]) = F(r) - \lim_{n \to \infty} F(t)$$

e) Seja \mathcal{D} o conjunto de pontos de descontinuidades de F, e seja $\lim_{t\to x^-} F(t) = F(x^-)$. Logo:

$$\mathcal{D} = \{ x \in \mathbb{R} : F(x) - F(x^{-}) > 0 \}$$

Seja \mathcal{D}_n o conjunto de pontos para os quais a amplitude do salto é maior ou igual a $\frac{1}{n}$. Logo:

$$\mathcal{D}_n = \left\{ x \in \mathbb{R} : F(x) - F(x^-) \ge \frac{1}{n} \right\} \Rightarrow \#D = |D| \le n$$

Se $x \in \mathcal{D} \Rightarrow \exists n_0 > 1 : F(x) - F(x^-) \ge \frac{1}{n_0} \Rightarrow x \in \bigcup_{n=1}^{\infty} \mathcal{D}_n$. Se $x \in \bigcup_{n=1}^{\infty} \mathcal{D}_n \Rightarrow \exists n_1 : x \in \mathcal{D}_n \Rightarrow x \in \mathcal{D}$. \mathcal{D} portanto é a união enumerável de conjuntos finitos, logo é enumerável.

1.2 Natureza das variáveis aleatórias

- a) X é uma variável aleatória discreta se os valores que ela toma pertencem a um conjunto enumerável, logo $X: \Omega \to \{x_1, x_2, \ldots\}$ (ou seja, $X(\omega) \in \{x_1, x_2, \ldots\}, \forall \omega \in \Omega$) e $P: \{x_1, x_2, \ldots\} \to [0, 1]$ é dado por $P(x_i) = P\{\omega : \omega \in \Omega \in X(\omega) = x_i\} \forall i \ge 1.$
- b) X é uma variável aleatória absolutamente contínua se $\exists f$ (uma função) tal que $f(x) \geq 0, \forall x \in \mathbb{R}$ e $F_X(x) = \int_{-\infty}^x f(t)dt$ (onde f é chamada de densidade de X).
- Sob (a) temos que $[X \le x] = \bigcup_{i:x_i \le x} [X = x_i]$. Logo $F_x(x) = \sum_{i:x_i \le x} P(x_i)$.
- Sob (b) estamos afirmando que F_X é a integral de f (ou seja, f é a sua derivada) para todo x exceto em um conjunto de medida de Lebesgue nula, ou seja, se seu comprimento for zero $(\int_a^a f(t)dt = 0)$. Ainda sob (b), se f é uma função de densidade podemos definir $F(x) = \int_{-\infty}^{x} f(t)dt$ e F verifica:
 - 1. $x \le y \Rightarrow F(x) \le F(y)$;

 - 2. Se $x_n \downarrow x \Rightarrow F(x_n) \downarrow F(x)$; 3. Se $x_n \downarrow -\infty \Rightarrow F(x_n) \downarrow 0$ e se $x_n \uparrow \infty \Rightarrow F(x_n) \uparrow 1$.

Dada uma variável aleatória com distribuição F_X , X tem densidade se:

- (i) F_X é contínua;
- (ii) F_X é derivável por partes (ou derivável no interior de um número finito ou enumerável de intervalos fechados cuja união é igual a \mathbb{R}), ou derivável para todo x exceto um número finito (enumerável) de pontos.

Example 1.3.

$$F_X(x) = \begin{cases} 0, & x < 0 \\ x, & x \in [0, 1] \\ 1, & x > 1 \end{cases}$$

Notas:

- F_X é contínua; - $\{0,1\}$ são pontos sem derivada;

• Podemos definir os seguintes intervalos em que F_X é derivável: $(-\infty,0),(0,1),(1,\infty)$;

• $F'_X(x) = \begin{cases} 1, & x \in (0,1) = f_X(x) \\ 0, & c.c. \end{cases}$; • f(0) = f(1) podem ser definidos como zero ou um, já que tais definições não alteram $F_X(x) = f(x)$

Em contrapartida, considere:

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Notas:

• F_X não é contínua; • $P(X=0)=\lim_{x\to 0^+}F_X(x)-\lim_{x\to 0^-}F_X(x)=1.$

Example 1.4. Considere a densidade triangular:

$$f_X(x) = \begin{cases} x, & \text{se } 0 \le x < 1\\ 2 - x, & \text{se } 1 \le x < 2\\ 0 & c.c. \end{cases}$$

Por definição, $f(x) \ge 0 \ \forall x$. Para verificarmos que a probabilidade total é igual a um, podemos realizar a seguinte integração por partes:

$$\int_{-\infty}^{x} f_X(x) dx = \int_{0}^{2} f_X(x) dx$$

$$= \int_{0}^{1} x dx + \int_{1}^{2} (2 - x) dx$$

$$= \frac{x^2}{2} \Big|_{0}^{1} + 2x \Big|_{1}^{2} - \frac{x^2}{2} \Big|_{1}^{2}$$

$$= 1$$

O que demonstra que $f_X(x)$ é densidade de probabilidade.