Madeline C. Hayes

mchayes@bu.edu | Cell: 585-406-7553

EDUCATION:

Master of Science in Remote Sensing and Geospatial Sciences

Expected May 2022

Boston University, Boston, MA

GPA: 4.0

Bachelor of Science in Environmental Sciences

May 2019

University of Vermont, Burlington, VT

Concentration: Environmental Analysis and Assessment | Minor: Geospatial Technologies

GPA: 3.6

Honors and Awards:

Presidential Scholar, University of Vermont Dean's List, University of Vermont

August 2015 - May 2019

Fall 2018 - Spring 2019

PROFESSIONAL EXPERIENCE:

Remote Sensing Analyst and Unoccupied Aircraft Systems (UAS) Pilot

Dec 2019 - Aug 2021

Duke University, Marine Robotics and Remote Sensing Lab

- Piloted fixed wing and multi-rotor platforms for UAS-based data collection
- Generated UAS data products with structure from motion techniques for GIS integration
- Developed automated classification algorithms and machine learning models for geospatial analysis of animal and habitat data

GIS Technician Team Lead and Unoccupied Aircraft Systems (UAS) Pilot

Jun 2018 - Nov 2019

University of Vermont, Spatial Analysis Lab

- Led UAS operations, including flight planning, data acquisition, data processing, and GIS integration
- Created and integrated GIS data layers to manually correct land cover data
- Performed quality assurance and quality control on complex imagery and LiDAR datasets

U360 Business Sustainability Intern

Jan 2018 - May 2018

Manomet, Inc

- Streamlined collection of business sustainability data through cultivation of relationships with small business owners
- Runner-up for the Manomet Next Generation Scholar Award

RESEARCH EXPERIENCE:

Remote Sensing for Water Quality Research

Jul 2020 - Jul 2021

Duke University, Marine Robotics and Remote Sensing Lab

- Collaborated with the North Carolina Department of Environmental Quality to determine utility of drone technology for water quality assessment
- Conducted multispectral drone flight operations before, during, and after dredging events
- Created a Python programming workflow to extract turbidity measurements from raw images, including radiometric calibration and georeferencing of imagery
- Generated turbidity heat maps and image mosaics for comparison to in-situ measurements

Artificial Intelligence for Seabird Population Monitoring Research

Jan 2020 - May 2021

Duke University, Marine Robotics and Remote Sensing Lab

 Processed drone imagery collected by the Wildlife Conservation Society in Argentina to generate orthorectified maps with photogrammetric techniques

- Built, trained, validated, and deployed a convolutional neural network for the automated detection and enumeration of seabirds in the Falkland Islands, Argentina
- Ran inference on entire seabird colony areas to generate automated detections
- Evaluated geostatistical techniques for breeding pair and active nest analysis

Drones for Invasive Species Management Research

Jun 2018 - Nov 2019

University of Vermont, Spatial Analysis Lab

- Collaborated with the Vermont Department of Environmental Conservation to test the viability of drone technology for aquatic invasive species management
- Conducted drone flight operations and generated geospatial products to support the survey and removal of aquatic invasive species in the Lake Champlain Basin
- Analyzed true color and multispectral imagery to generate automated feature extraction algorithms for identification and quantification of the aquatic invasive species

PRESENTATIONS

- **Hayes, M.C.** (April 2021). "Deep learning and drones to automate seabird population counts," ESRI Imagery and Remote Sensing Educators Summit.
- **Hayes, M.C.** (March 2021). "Deep learning and drones to automate seabird population counts," Drones in the Coastal Zone Workshop.
- **Hayes, M.C.** (November 2019). "Mapping water chestnut from above," North American Lake Management Society Symposium, Burlington, VT.
- **Hayes, M.C.** (April 2019). "Mapping water chestnut from above," University of Vermont Student Research Conference, Burlington, VT.

PAPERS

Hayes, M.C., P.C. Gray, G. Harris, W.C. Sedgwick, V.D. Crawford, N. Chazal, S. Crofts, and D.W. Johnston (2021). Drones and deep learning produce accurate and efficient monitoring of large-scale seabird colonies. *Ornithological Applications*, *123*, 1-16. DOI: 10.1093/ornithapp/duab022

Hayes, M.C., B. Puckett, C. Deaton, J.T. Ridge (2021). Estimating dredge-induced turbidity using drone imagery [under review].

TEACHING EXPERIENCE:

TEACHING EXI ENTEROL.	
Crises of Planet Earth	Jan 2022 - May 2022
Boston University, College of Arts and Sciences	
Introduction to Climate and Earth System Science	Sep 2021 - Dec 2021
Boston University, College of Arts and Sciences	
Intro to GIS	Aug 2018 - Dec 2018
University of Vermont, Rubenstein School of Environment and Natural Resources	
U360 Alumni Assistant	Sep 2018 - May 2021
Manomet, Inc	

SKILLS AND CERTIFICATIONS:

ArcGIS, Python, R, QT Modeler, ERDAS Imagine, ENVI ITT, Pix4D, eMotion, eCognition FAA Part 107 Licensed Remote Pilot, 100+ flight hours