Характеристика электромагнитных помех по показателям частоты, интенсивности времени воздействия и последствиям

Выполнил: студент гр. 9492

Викторов А.Д.

Санкт-Петербург 2024 г.

Характеристика электромагнитных помех по показателям частоты

- низкочастотные электромагнитные помехи;
- высокочастотные электромагнитные помехи;
- электростатические разряды.

Согласно ГОСТ Р 51317.2.5-2000

В контексте настоящего стандарта понятие "низкие частоты" означает, что преобладающая часть частотного спектра электромагнитной помехи лежит ниже 9 кГц, а понятие "высокие частоты" - что она расположена на частотах (много) больших, чем 9 кГц.

Низкочастотные помехи

Кондуктивные низкочастотные электромагнитные помехи:

- гармоники, интергармоники напряжения электропитания;
- напряжения сигналов, передаваемых в системах электропитания;
- колебания напряжения электропитания;
- провалы, кратковременные прерывания *и выбросы* напряжения электропитания;
- отклонения напряжения электропитания;
- несимметрия напряжений в трехфазных системах электроснабжения;
- изменения частоты питающего напряжения;
- наведенные низкочастотные напряжения;
- постоянные составляющие в сетях электропитания переменного тока. Излучаемые низкочастотные электромагнитные помехи:
- магнитные поля;
- электрические поля.

Высокочастотные помехи

Кондуктивные высокочастотные электромагнитные помехи:

- наведенные напряжения или токи непрерывных колебаний;
- апериодические переходные процессы;
- колебательные переходные процессы.

Излучаемые высокочастотные электромагнитные помехи:

- магнитные поля;
- электрические поля;
- электромагнитные поля, в том числе вызываемые: непрерывными колебаниями, переходными процессами. электростатические разряды

Кроме того, должны быть учтены электромагнитный импульс высотного ядерного взрыва и другие электромагнитные явления и процессы большой энергии, которые могут представлять угрозу для ТС гражданского назначения.

Характеристика электромагнитных помех по степени интенсивности

 Степень интенсивности электромагнитной помехи - условная величина, характеризующая диапазон уровней электромагнитной помехи определенного вида в рассматриваемом месте размещения ТС.

		Порядок гармоник																
Степень интенсивности электромагнитной помехи	K _{HC}	Не	Нечетные гармоники (не кратные 3)					Нечетные гармоники (кратные 3)				Четные гармоники						
		5	7	11	13	17	19	23- 25	>25	3	9	15	21	>21	2	4	6-10	>10
Α		В соответствии с требованиями к ТС конкретного вида																
1	8	6	5	3,5	3	2	1,5	1,5	*	5	1,5	0,3	0,2	0,2	2	1	0,5	0,2
2	10	8	7	5	4,5	4	4	3,5	**	6	2,5	2	1,7	1	3	1,5	1	1
X		В соответствии с характеристиками места размещения ТС																

Характеристика электромагнитных помех по степени интенсивности

- 1 Степень интенсивности А применяется для систем электроснабжения, защищенных от электромагнитных помех, и для ТС, которые могут быть восприимчивы к гармоникам напряжений в питающей сети (контрольно-измерительное лабораторное оборудование, средства управления технологическими процессами и вычислительной техники).
- 2 Степень интенсивности 1 соответствует уровню электромагнитной совместимости, установленному в [2] для низковольтных систем электроснабжения общего назначения. Она может применяться также для систем электроснабжения промышленных предприятий при малом уровне электромагнитных помех (малые и средние промышленные предприятия).
- 3 Степень 2 применяется для электрических сетей промышленных предприятий (см. <u>ГОСТ Р</u> <u>51317.2.4</u>).
- 4 Степень X применяется для систем электроснабжения промышленных предприятий с повышенным уровнем электромагнитных помех (металлургические предприятия и т.д.).

Характеристика электромагнитных помех повремени воздействия

Параметр и степень	Вид апериодической импульсной помехи								
интенсивности									
электромагнитной помехи									
	Наносекундной	Микросекундно	Миллисекундной						
	длительности		длительности						
Типовой источник	Контактное	Молниевый	Молниевый	Плавкий					
	искрение*	разряд на	разряд на	предохранитель**					
		расстоянии	расстоянии						
		менее 1 км*	более 1 км*						
Длительность фронта***	5 нс	1 мкс	10 мкс	0,1 мс					
Длительность****	50 нс	50 мкс	1000 мкс	1 MC					
Частота появления	Пачки	Многократные	Многократные	Редкие импульсы					
	импульсов	импульсы	импульсы						
Полная длительность	Миллисекунды	Миллисекунды	Секунды	Одиночное					
события****				событие					
Внутреннее	50 Ом	1-10 Ом	20-300 Ом	02-2 Ом					
сопротивление источника									
Α	В соотве	тного вида							
1	0,5 кВ	1 кB	0,5 кВ	Помехи					
				отсутствуют					
2	1 кВ	2 кВ	1 кВ	0,5 U _{max}					
3	2 кВ	4 кВ	1,5 кВ	1,0 U _{max}					
4	4 кВ	8 кВ	2 кВ	2,0 U _{max}					
X	В соответствии с характеристиками мест размещения ТС								

Характеристика электромагнитных помех по последствиям

- A Отсутствие влияния помехи
- ▶ В Помеха вызывает временное ухудшение качества функционирования
- С Помеха вызывает временное прекращение функционирования, требуется вмешательство оператора
- ▶ D Помеха вызывает потерю функции оборудования в следствие выхода его из строя

Спасибо за внимание!