DIC HW3

312510190 張家瑋

(1). Without Pipeline:

Without Pipeline								
Cycle Period (ps)	Area	Latency (ps)	Throughput (G OP/S)	Timing				
1250	34511.9	95625	4.705	MET				
1200	32586.6	91800	4.9019	MET				
1150	33492.2	87975	5.115	MET				
1100	34633.6	84150	5.347	VIOLATE				
1050	35000.3	80325	5.602	VIOLATE				

(2). With Pipeline:

```
always @(posedge clk) begin
if(curr_state == CAL_OUT) begin
    mul_out[0] <= mul_a[0]*Weight_Buffer[0];</pre>
    mul_out[1] <= mul_a[1]*Weight_Buffer[1];</pre>
    mul_out[2] <= mul_a[2]*Weight_Buffer[2];</pre>
    mul out[3] <= mul a[3]*Weight Buffer[3];</pre>
    mul_out[4] <= mul_a[4]*Weight_Buffer[4];</pre>
    mul_out[5] <= mul_a[5]*Weight_Buffer[5];</pre>
    mul_out[6] <= mul_a[6]*Weight_Buffer[6];</pre>
    mul_out[7] <= mul_a[7]*Weight_Buffer[7];</pre>
    mul out[8] <= mul a[8]*Weight Buffer[8];</pre>
end else begin
    mul_out[0] <= 0;
    mul_out[1] <= 0;
    mul_out[2] <= 0;
    mul_out[3] <= 0;
    mul_out[4] <= 0;
    mul_out[5] <= 0;
    mul_out[6] <= 0;
    mul_out[7] <= 0;
    mul_out[8] <= 0;
end
```

With Pipeline								
Cycle Period (ps)	Area	Latency (ps)	Throughput (G op/s)	Timing				
1150	35736.1	89125	5.049	MET				
1000	35076.4	77500	5.806	MET				
900	36406.6	69750	6.451	MET				
850	37371.4	65875	6.831	MET				
800	37879	62000	7.258	MET				
700	38180	54250	8.189	VIOLATE				

(3)Optimistic

	OPTIMISTIC						
Cycle Period (ps)	Area	Latency (ps)	Throughput (G op/s)	Area Efficient (Gops/mm)	Timing		
850	36072.7	45475	9.895	274.3	MET		
700	36097.9	37450	12.016	332.8	MET		
600	37057.2	32100	14.018	378.2	MET		
550	37796.9	29425	15.293	404.6	MET		
500	39154.6	39750	16.822	429.6	VIOLATE		