Probabilidades e Aplicações LCC + LMAT 4.5 Transformadas

EMILIA ATHAYDE
DMAT, UNIVERSIDADE DO MINHO

2020/21

Resumo

- 1 Transformada de Laplace (de uma v.a.)
- 2 Propriedades
- 3 Exemplos
- 4 Aplicações
- 5 Transformada de Laplace (de um par aleatório)
- 6 OUTRAS TRANSFORMADAS
- A DISTRIBUIÇÃO GAMA
- 8 Mais aplicações

Definição

Dada uma v.a. X, consideremos o valor médio $E(e^{-tX})$, para valores de t reais. Se este valor médio existir numa vizinhança do ponto t=0, a função L_X definida nessa vizinhança por

$$L_X(t) = E(e^{-tX})$$

chama-se transformada de Laplace de X (ou da sua distribuição).

PROPRIEDADES ELEMENTARES:

- $L_X(0) = 1$
- ② a transformada de Laplace de $\ Y=a+bX\ (a,b\in\mathbb{R})$ é dada por

$$L_Y(t) = e^{-at} L_X(bt).$$

Sobre transformadas de Laplace

São válidos os seguintes resultados:

A transformada de Laplace identifica a distribuição da *v.a.*, i.e., a cada *f.d.* (com transformada de Laplace) corresponde uma única transformada de Laplace, e reciprocamente, a cada transformada de Laplace corresponde uma única *f.d.*.

A convergência em distribuição^a é equivalente à convergência das transformadas de Laplace para uma função contínua na origem.

^ai.e., a convergência das *f.d.* nos pontos de continuidade da função limite, também chamada *convergência fraca* ou *convergência em lei*.

Fórmula para cálculo dos momentos

A transformada de Laplace L_X está ainda relacionada com os momentos de X. De facto, se tal transformada existir, esta terá derivadas (de qualquer ordem) na origem, existirão todos os momentos de X (de qualquer ordem), e é válida a seguinte relação (que em muitos casos simplifica o cálculo dos momentos):

$$E(X^n) = (-1)^n L_X^{(n)}(0).$$

No entanto, note-se que podem existir os momentos de todas as ordens de uma v.a. X e não existir transformada de Laplace, tal como acontece no caso da distribuição lognormal^a ou no caso da f.d.p. dada por $f(x) = ce^{-|x|^{\alpha}}$, para $0 < \alpha < 1$.

 $^{{}^{\}mathit{a}}\mathsf{Diz}\text{-se}$ que Y tem distribuição lognormal se $Y=e^X$, sendo $X \frown N(\mu,\sigma).$

Exemplo

Transformada de Laplace da $Exp(\lambda)$ e momentos:

No caso $X \frown Exp(\lambda)$, $\lambda > 0$, a t. de Laplace existe e é dada por

$$L(t) = E(e^{-tX}) = \lambda \int_0^{+\infty} e^{-tx} e^{-\lambda x} dx =$$

$$= -\frac{\lambda}{\lambda + t} e^{-(\lambda + t)x} \Big|_0^{+\infty} = \frac{\lambda}{\lambda + t}, \text{ se } t > -\lambda$$

(note-se que para $t \leq -\lambda$ o integral não converge). Logo

$$L^{(n)}(t) = (-1)^n n! \frac{\lambda}{(\lambda + t)^{n+1}}$$

donde

$$E(X^n) = (-1)^n L^{(n)}(0) = \frac{n!}{\lambda^n}$$

Mais exemplos

TRANSFORMADA DE LAPLACE DA $Poisson(\lambda)$:

$$L(t) = E(e^{-tX}) = \sum_{j \ge 0} e^{-tj} e^{-\lambda} \frac{\lambda^j}{j!} = e^{-\lambda} \sum_{j \ge 0} \frac{1}{j!} (\lambda e^{-t})^j$$
$$= e^{-\lambda} e^{\lambda e^{-t}} = e^{-\lambda(1 - e^{-t})}, \quad t \in \mathbb{R}$$

Transformada de Laplace da bi(1,p):

$$L(t) = E(e^{-tX}) = e^{-t \times 0}(1-p) + e^{-t \times 1}p = 1 - p + pe^{-t}, t \in \mathbb{R}$$

T. LAPLACE DA
$$geom(p)$$
: $L(t) = \frac{pe^{-t}}{1 - (1 - p)e^{-t}}, \ t > \log(1 - p)$

Transformada de Laplace da normal

Transformada de Laplace da N(0,1):

$$L_Z(t) = E(e^{-tZ}) = \int_{-\infty}^{+\infty} e^{-tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x+t)^2 + \frac{1}{2}t^2} dx$$

$$= e^{\frac{1}{2}t^2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x+t)^2} dx = e^{\frac{1}{2}t^2}, \quad t \in \mathbb{R}$$

Transformada de Laplace da $N(\mu, \sigma)$:

$$L_X(t) = E(e^{-t(\mu+\sigma Z)}) = e^{-t\mu}L_Z(\sigma t) = e^{-t\mu+\frac{1}{2}\sigma^2 t^2}, \quad t \in \mathbb{R}$$

Somas de v.a. independentes

Dadas X e Y, com f.d. F e G, respetivamente, chama-se convolução destas duas distribuições à f.d. (ou à correspondente f.d.p./f.m.p. no caso contínuo/discreto) de X+Y, com notação F*G. No caso de X e Y serem independentes e absolutamente contínuas, com f.d.p. f e g, respectivamente, reduz-se à fórmula (correspondente a uma versão generalizada do TPT)

$$F * G (s) = P(X + Y \le s) = \int_{-\infty}^{+\infty} P(X \le s - y \mid Y = y) \ g(y) dy$$
$$= \int_{-\infty}^{+\infty} F(s - y) \ g(y) dy$$

ou seja, a
$$\int_{-\infty}^{+\infty} F(s-y) \ g(y) dy$$
 ou $\int_{-\infty}^{+\infty} G(s-x) \ f(x) dx$

Estes integrais podem ser trabalhosos (as fórmulas para o caso discreto são semelhantes, com somatórios em vez de integrais).

Transf. Laplace da soma de v.a. independentes

No entanto, a transformada de Laplace de X+Y vai ser o produto das transformadas de Laplace de X e de Y. De facto (recorde-se que o valor médio do produto de v.a. independentes é igual ao produto dos valores médios, e que funções de v.a. independentes são ainda v.a. independentes), temos

$$L_{X+Y}(t) = E\left(e^{-t(X+Y)}\right) = E\left(e^{-tX}e^{-tY}\right) = E\left(e^{-tX}\right)E\left(e^{-tY}\right) =$$
$$= L_X(t)L_Y(t).$$

Generalização à soma de n v.a. independentes

Sejam X_1,X_2,\ldots,X_n , independentes, com respectivas transf. de Laplace $L_1(t),L_2(t),\ldots,L_n(t)$, e seja $S_n=X_1+X_2+\ldots+X_n$. Então $L_{S_n}(t)=L_1(t)L_2(t)\ldots L_n(t)$. Em particular, se X_i forem *i.i.d.*, então $L_{S_n}(t)=(L(t))^n$

Aplicação a algumas distribuições

Recorrendo a transformadas de Laplace conclui-se imediatamente que a soma de n v.a. independentes X_i com distribuição $Poisson(\lambda_i), \quad bi(n_i,p), \quad N(\mu_i,\sigma_i), \text{ tem distribuição resp.}$ $Poisson(\sum \lambda_i), \ bi(\sum n_i,p), \ N(\sum \mu_i, \sqrt{\sum \sigma_i^2}).$

Soma de v.a. normais independentes

Dadas n v.a. $X_i
ightharpoonup N(\mu_i, \sigma_i)$ e $S_n = \sum_{i=1}^n X_i$, temos

$$L_{S_n}(t) = \prod_{i=1}^n e^{-t\mu_i + \frac{1}{2}\sigma_i^2 t^2} = e^{-t\sum \mu_i + \frac{1}{2}t^2\sum \sigma_i^2}$$

donde $S_n \frown N\left(\sum \mu_i, \sqrt{\sum \sigma_i^2}\right)$. No caso particular de v.a. i.i.d., i.e., $X_i \frown N(\mu, \sigma)$ independentes, temos $S_n \frown N(n\mu, \sigma\sqrt{n})$

Transformada de Laplace de um par aleatório

Define-se a transformada de Laplace de um par aleatório (X,Y) por

$$L(t, u) = E(e^{-tX - uY})$$

desde que este valor médio exista numa vizinhança de (t, u) = (0, 0).

Esta transformada de Laplace identifica a lei conjunta do par.

Se existir a transformada de Laplace do par (X,Y), existem os momentos conjuntos de qualquer ordem, que são dados por

$$E(X^{m}Y^{n}) = (-1)^{m+n} \left. \frac{\partial^{m+n}L(t,u)}{\partial t^{m}\partial u^{n}} \right|_{(t,u)=(0,0)}$$

$$X \in Y \text{ independentes } \iff L(t, u) = L(t, 0)L(0, u)$$

1 2 3 4 5 **6** 7 8

Outras transformadas: f.g.m. e f.g.p.

função geradora de momentos

A função geradora de momentos (f.g.m.) de X é definida por $M(t)=E(e^{tX})$, caso este valor médio exista numa vizinhança da origem (|t|< a). Temos assim M(t)=L(-t), para |t|< a. O nome desta transformada deriva do facto de o momento de ordem n ser obtido à sua custa pela fórmula $E(X^n)=M^{(n)}(0)$.

função geradora de probabilidades

A função geradora de probabilidades (f.g.p.), utilizada sobretudo para v.a.'s discretas com suporte $\{0, 1, 2, \dots\}$, é definida por $G(z) = E(z^X)$, convergindo pelo menos para $|z| \leq 1$. Então, as probabilidades $p_n = P(X=n)$, $n=0,1,2,\dots$, satisfazem à relação $p_n = \frac{1}{n!}G^{(n)}(0)$, justificando o seu nome. Gera também os momentos factoriais de ordem r, $E(X(X-1)\dots(X-r+1)) = G^{(r)}(1)$.

Outras transformadas: função característica

função característica

A função característica (f.c.), $\phi: \mathbb{R} \longrightarrow \mathbb{C}$ é definida para $t \in \mathbb{R}$ por $\phi(t) = E(e^{itX})$, ou seja, é a transformada de Fourier de f (f.m.p. / f.d.p. de X).

Note-se que a f.c. tem a vantagem (em relação à transformada de Laplace e à f.g.m.) de existir sempre (para qualquer t real e para qualquer v.a. X). De facto, como $|e^{itx}| \leq 1$, $\forall x, t \in \mathbb{R}$, então

$$\left| E(e^{itX}) \right| = \left| \int e^{itx} dF(x) \right| \le \int \left| e^{itx} \right| dF(x) \le \int dF(x) = 1$$

Nota: A notação genérica $\int \dots dF(x)$ engloba a versão $\int \dots f(x)dx$ para v.a. contínuas com f.d.p. f, e a versão $\sum_i \dots f(x_i)$ para v.a. discretas com f.m.p. f (o integral relativo a uma medida discreta reduz-se a uma soma).

A função gama de Euler

A função gama de Euler (também devida a D. Bernoulli) é definida por

$$\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha - 1} e^{-t} dt$$

para $\alpha>0$ (mais geralmente, está definida para $\operatorname{Re}(\alpha)>0$). Tem-se (integrando por partes) $\Gamma(\alpha+1)=\alpha$ $\Gamma(\alpha)$ e como $\Gamma(1)=1$, conclui-se que $\Gamma(n+1)=n!$, para $n=1,2,3,\ldots$ Portanto, a função gama estende a noção de "factorial" de um inteiro positivo a qualquer número real positivo. Tem-se ainda $\Gamma(\frac{1}{2})=\sqrt{\pi}$. No MATLAB e no R obtém-se o valor de $\Gamma(x)$ com o comando $\operatorname{gamma}(x)$.

Fazendo uma mudança de variável, $t = \lambda x \text{ (com } \lambda > 0)$, obtém-se

$$\Gamma(\alpha) = \int_0^{+\infty} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x} dx$$

A distribuição $Gama(\alpha, \lambda)$

Da fórmula anterior resulta que $\ 1=\int_0^{+\infty} \frac{1}{\Gamma(\alpha)} \lambda^\alpha x^{\alpha-1} e^{-\lambda x} dx$, donde se conclui que

$$f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x} I_{]0, +\infty[}(x)$$

é uma família de f.d.p., para $\alpha>0$ e $\lambda>0$ (α é um parâmetro de forma). Esta distribuição é conhecida por $Gama(\alpha,\lambda)$.

Em particular, a lei $Gama(1, \lambda)$ coincide com a $Exp(\lambda)$.

A transformada de Laplace é $L(t)=\left(\frac{\lambda}{\lambda+t}\right)^{\alpha},\;t>-\lambda.$

Logo a soma de v.a. independentes $Gama(\alpha_i, \lambda)$ é $Gama(\sum \alpha_i, \lambda)$.

Em particular, a soma de n v.a. $Exp(\lambda)$ independentes é $Gama(n, \lambda)$.

Gráficos de f.d.p. de leis $Gama(\alpha, 1)$

Gráfico da função Gama

Ainda a distribuição Gama

Transformada de Laplace da $Gama(\alpha, \lambda)$:

$$\begin{split} L(t) &= E(e^{-tX}) = \int_0^{+\infty} e^{-tx} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \ x^{\alpha-1} e^{-\lambda x} dx = \\ &= \frac{\lambda^{\alpha}}{(\lambda + t)^{\alpha}} \int_0^{+\infty} \frac{(\lambda + t)^{\alpha}}{\Gamma(\alpha)} \ x^{\alpha-1} e^{-(\lambda + t)x} dx = \\ &= \left(\frac{\lambda}{\lambda + t}\right)^{\alpha}, \quad t > -\lambda \end{split}$$

uma vez que a função integranda acima é uma f.d.p. se $\lambda+t>0$

$$\begin{split} &\text{Ent\~ao } L^{(r)}(t) = (-1)^r \lambda^{-r} \alpha(\alpha+1) \ldots (\alpha+r-1) \left(\frac{\lambda}{\lambda+t}\right)^{\alpha+r}, \\ &t > -\lambda \text{, donde } E(X^r) = (-1)^r L^{(r)}(0) = \frac{\Gamma(\alpha+r)}{\Gamma(\alpha)} \lambda^{-r}. \end{split}$$

Distribuição da diferença de duas v.a. i.i.d. $Exp(\lambda)$

Dadas X e Y i.i.d. com distribuição $Exp(\lambda)$ temos, para $|t| < \lambda$, $L_{X-Y}(t) = L_X(t)L_{-Y}(t) = L_X(t)L_Y(-t) = \frac{\lambda}{\lambda + t} \frac{\lambda}{\lambda - t} = \frac{1}{1 - (\frac{t}{\tau})^2}.$

A distribuição de $Laplace(\mu, \delta)$, também chamada exponencial bilateral, é uma família de localização-escala, definida pela f.d.p. $f(x) = \frac{1}{2\delta} e^{-\left|\frac{x-\mu}{\delta}\right|}, \ x \in \mathbb{R}$. Para $\mu = 0$ a transformada de Laplace é

$$L(t) = \int_{-\infty}^{0} e^{-tx} \frac{1}{2\delta} e^{\frac{x}{\delta}} dx + \int_{0}^{+\infty} e^{-tx} \frac{1}{2\delta} e^{-\frac{x}{\delta}} dx$$

donde, pela fórmula da t. Laplace da $Exp(1/\delta)$, temos

$$L(t) = \frac{1}{2} \frac{\frac{1}{\delta}}{\frac{1}{\delta} - t} + \frac{1}{2} \frac{\frac{1}{\delta}}{\frac{1}{\delta} + t} = \frac{1}{2} \frac{2}{1 - \delta^2 t^2} = \frac{1}{1 - \delta^2 t^2}, \ |t| < \frac{1}{\delta},$$

que é a t. Laplace de X-Y obtida acima, com $\delta=\frac{1}{\lambda}$. Logo, $X - Y \frown Laplace(0, \frac{1}{\lambda}).$ ←□ → ←□ → ← □ → ← □ → □ □

A distribuição Laplace(0,1)

Sejam X e Y v.a. i.i.d. Exp(1).

$$T \sim Laplace(0,1) \iff T \stackrel{d}{=} X - Y$$

(a) f.d.p. de T

(b) transf. Laplace de T

Simulação da distribuição de Laplace

Considere a distribuição $Laplace(\mu, \delta)$, com f.d.p.

$$f(x) = \frac{1}{2\delta} e^{-\left|\frac{x-\mu}{\delta}\right|}, \ x \in \mathbb{R}.$$

Para o caso particular $T \frown Laplace(0, \delta)$,

- o determine a correspondente f.d.
- determine a f.d. inversa (i.e., a função quantil)
- prove que $|T| \frown Exp(\frac{1}{\delta})$
- o simule NPAs da v.a. T usando
 - o método de inversão da f.d.
 - o facto T = X Y com X, Y i.i.d. $Exp(\frac{1}{\delta})$
 - \bullet o facto $|T| \frown Exp(\frac{1}{\delta})$.
 - o package extraDistr

Generalize para a simulação de uma $Laplace(\mu, \delta)$