

密码学

第四章 分组密码

网络空间安全学院 胡 伟 朱丹 weihu/zhudan@nwpu.edu.cn ◆ DES – Data Encryption Standard (数据加密标准)

- ✓ DES是公开征集的算法标准,算法是公开的
- ✓ DES算法启用是现代密码算法发展的两大代表性事件之一,另一个是公钥密码概念的提出

- ♪ 分组密码:明文、密文和密钥的分组长度都是64位
- 参 基本结构属于Feistel结构(Horst Feistel最早提出)
- ♪ 对合运算:
 - $f = f^{-1}$
 - 加解密共用同一算法,使工程实现的工作量减半
- **☞** 面向二进制数据的密码算法: 适于计算机实现

- グ 逆初始置换IP-1: IP与IP-1互逆
- ◆ 例:在IP中把输入的第1位置换到第40位,而在IP-1中把输入的第40位置换回第1位
- ✔ 保密作用不大: 没有密钥参与, IP和IP-1均公开, 保密意义不大

	58	50	42	34	26	18	10	2		40	8	48	16	56	24	64	32
	60	52	44	36	28	20	12	4	,,	39	7	47	15	55	23	63	31
	62	54	46	38	30	22	14	6	,/	38	6	46	14	54	22	62	30
ID	64 _	_56	48	40	32	24	16	8	,' 'IP-1	37	5	45	13	53	21	61	29
11	57	49	41	33	-25	17	9	1 '	IF 1	36	4	44	12	52	20	60	28
	59	51	43	35	27	19	11	3		-35	3	43	11	51	19	59	27
	61	53	45	37	29	21	13	5		34	2	42	10-	50_	_18	58	26
	63	55	47	39	31	23	15	7		33	1	41	9	49	17	57	25

✓ IP置换的本质: 比特级别的置换,置乱

✓ IP对安全性的贡献:置乱,打破明文的跟随关系,但是对提升安全性意义不大

♪ 加密函数 f: DES的轮函 数, DES保密的核心

- 理解f函数对于DES算法安全性的重要作用,非线性函数
- ♂ S盒的混淆作用,S盒和P盒结合使用起到混淆和扩散的效果

- グ 选择运算E: 把32位输入扩充为48位中间数据
- ◆ 通过重复使用数据,实现数据扩充
- ◈ 选择矩阵

= . 	32	1	2	3	4	5	4	5	6	7	8	9
 	8	9	10	11	12	13	12	13	14	15	16	17
	16	17	18	19	20	21	20	21	22	23	24	25
I ,	24	25	26	27	28	29	28	29	30	31	32	1

♂ 从信息论的角度看,48比特的选择运算结果有冗余

- ♪ DES代替函数组S (S盒)
 - ▶ 每个S盒有6个输入,4个输出,是非线性压缩变换
 - 设输入为 $b_1b_2b_3b_4b_5b_6$,则以 b_1b_6 组成的二进制数为行号, $b_2b_3b_4b_5$ 组成的二进制数为列号。行列交点处的数为输出

		$\mathbf{b_2b_3}\mathbf{b_4b_5}$															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
۱. [0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
q^1q^0	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
L	- 3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

✓ S盒的查表规则: 行号和列号的确定方法

- ◆ 置换运算P: 把数据打乱重排,在保密性方面,起扩散作用:
 - ₹ 因为S盒是6位输入,4位输出,其非线性作用是局部的
 - ₹ 因此,需要把S盒的混淆作用扩散开来
 - ₹ S盒与P置换的互相配合,共同确保DES的安全
- ♪ 置换矩阵:

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

▶ 64位密钥经过置换选择1、

循环左移、置换选择2等

变换产生出16个子密钥:

 K_1 , K_2 , ..., K_{16}

- ♪ 置换选择1
 - ★ 去掉密钥中的8个奇偶校验位(有效密钥长度56位)
 - ∮ 打乱重排,形成C₀(左28位), D₀(右28位)
- ♪ 置换矩阵

			\mathbf{C}_{0}							\mathbf{D}_0			
57	49	41	33	25	17	9	63	55	47	39	31	23	15
1	58	50	42	34	26	18	7	62	54	46	38	30	22
10	2	59	51	43	35	27	14	6	61	53	45	37	29
19	11	3	60	52	44	36	21	13	5	28	20	12	4

例,矩阵中第一个数字57,表明原密钥中的第57位移到 C_0 中的第一位

灣理解DES的有效密钥长度为56比特,太短,对安全性不利

瀏置换选择1:64比特去掉8比特校验位后重排

知识回顾 – DES密钥扩展

- 循环移位表

迭代 次数	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
移位 次数	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

知识回顾 - DES密钥扩展

- ♪ 置换选择2
 - ✗ 从Ci 和 Di (56位)中选出48位的子密钥Ki
- ♪ 置换矩阵

			1	4 .			
	5	1	24	11	17	14	
选自 C_{i}	10	21	6	15	28	3	
	8	26	4	12	19	23	
	2	13	20	27	7	16	
	55	47	37	31	52	41	
半 白ヵ	48	33	45	51	40	30	
选自 D_{i}	53	34	56	39	49	44	
	32	29	36	30	42	46	

从Ci中取出24位,从Di 中取出24位,形48位的子密钥Ki

 $K_{:}$

知识回顾 - DES安全性

- ◊ 攻击类型
 - 穷举攻击:目前最有效的方法
 - ✔ 侧信道攻击:能量分析,故障注入分析
 - ₱ 差分攻击: E. Biham和A. Shamir提出
 - ፆ 线性攻击: M. Matsui提出
- ◈ 安全脆弱点:
 - 密钥太短:有效密钥长度只有56位(64位密钥含8位奇偶校验位)
 - 学 存在弱密钥: 设C = DES(M, K), M = DES(C, K)
 - ▶ 存在互补对称性:由异或运算导致

设C = DES(M, K), 则有 $\overline{C} = DES(\overline{M}, \overline{K})$

E.Biham A.Shamir. Differential Cryptanalysis of DES-like Cryptosystems, 1999

M. Matsui. Linear Cryptoanalysis Method for DES Cipher, 1993.

- ※ 采用DES算法进行三轮加密来扩展密钥长度
- ◈ 密钥长度112位、168位
 - ▶ 112位:第一重和第三重密钥相同
 - ▶ 168位:三重的密钥都不相同

练习题

- ♪ DES属于何种密码网络结构()?
- ♪ DES的有效密钥长度为()?
- ♪ DES的轮密钥长度为()?
- ◆ DES代替函数组S (S盒) 的输入为101010, 其输出为 ()?

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

章节安排

Outline

AES算法概述

AES数学基础

AES加解密算法

AES密钥扩展算法

AES安全性分析

章节安排

Outline

AES算法概述

AES数学基础

AES加解密算法

AES密钥扩展算法

AES安全性分析

4.7(1) AES的产生背景

- ◆ 1984年12月,美国里根总统下令由国家安全局(NSA)研制新密码标准,以取代DES
- ▶ 1991年新密码开始试用并征求意见
- ◆ 1994年颁布新密码标准 (EES, Escrowed Encryption Standard)
 - 不公开算法,只提供芯片
 - 學 每个芯片中的单元(或用户)密钥在政府完全控制之下
 - **卢** 通过法律允许可破译监听
- ◆ 1995年5月,贝尔实验室的博士生M. Blaze在PC 机上用45分钟攻击 法律监督字段获得成功
- グ 1995年7月美国政府放弃用EES加密数据

4.7(1) AES的产生背景

- グ 1984年12月,里根总统下令由国家安全局(NSA)研制新密码标准,以取代DES
- ◆ 2022年6月,西北工业大学声明遭受来自美国国家安全局(NSA)的网络攻击

↗ 思政案例:要学好知识本领、做国家网络安全的捍卫者

- ◆ 1997年美国国家标准与技术研究所 (NIST) 向社会公开征集高级数据加密标准 (AES, Advanced Encryption Standard)
- - 學 第一轮: 1998年8月20日从应征的21个算法中选出15个
 - 第二轮: 1999年8月又选出其中5个候选算法(RC6, Rijndael, SERPENT, Twofish和MARS)
 - 第 第 三 轮: 2000年10月2日再选出1个算法(Rijndael)
- ◆ 2001年11月26日, NIST接受 Rijndael 作为标准
- ◆ 2001年12月4日正式公布为联邦标准: FIPS 197
- AES英文全称
 AESTALL
 AESTALL

- ◆ 从DES到AES,反映了美国商用密码政策的变化
- 参 商业密码应当坚持公开设计原则
- 参 商业密码标准应当公布算法

Kerckhoffs

03

AES

更大范围公开征集 成功

グ 现代密码算法体制的安全性原则: 一切密码寓于密钥之中

- ▶ 许多国际组织都采纳为加密标准
- ▶ 产品形式: 软件和硬件形式
- 物联网等新兴领域也见应用

◈ 安全性:

- ✗ AES仍然是目前主流的数据加密标准
- ✔ AES主要的安全威胁来源于侧信道攻击

AES安全性受到侧信道 攻击威胁,为什么它还 是主流的数据加密标准?

- ♪ 分组密码:明文和密文分组长度为128位,密钥长度可为128/192/256位
- ♪ 基本轮函数迭代,轮数可为10/12/14(与密钥长度对应)
- ♪ 整体结构: S-P网络结构
- **◇** 不是对合运算:加解密算法存在差异
- 参 与DES类似,属于面向二进制的密码:便于计算机实现

✓ AES密码算法的参数:分组长度、密钥长度、轮数、网络结构✓ AES算法不是对合结构

章节安排

Outline

AES算法概述

AES数学基础

AES加解密算法

AES密钥扩展算法

AES安全性分析

- ◆ AES基于有限域GF(28)
- グ 有限域GF(28)上元素的GF(2)多项式表示
 - 字节 $B = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ 可表示成GF(2)上的多项式 $b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$
 - ∮ 例如, 0x57对应的二进制数为, 01010111
 - **卢** 相应的多项式为 $x^6 + x^4 + x^2 + x + 1$

- ◆ AES基于有限域GF(28)
- グ 有限域GF(28)上元素的GF(2)多项式表示
 - 字节 $B = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ 可表示成GF(2)上的多项式 $b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$

◆ 练习: 0xA9对应的二进制数为? 10101001

相应的多项式为?

$$x^7 + x^5 + x^3 + 1$$

- グ 有限域GF(28)上的加法
 - ₹ 对应多项式系数的模2加(异或)
 - ▶ 结果仍为GF(28)上的元素 (次数不超过7的多项式)
 - ∮ 例, 0x57 + 0x83 = ?

$$01010111 \oplus 10000011 = 11010100$$

$$(x^6+x^4+x^2+x+1)\oplus (x^7+x+1) = x^7+x^6+x^4+x^2$$

$$0x57 + 0x83 = 0xD4$$

- グ 有限域GF(28)上的加法
 - ₹ 对应多项式系数的模2加(异或)
 - ▶ 结果仍为GF(28)上的元素 (次数不超过7的多项式)
 - ∮ 练习: 0x2A + 0xD7 = ?

$$00101010 \oplus 11010111 = 11111101$$

$$(x^5+x^3+x)\oplus (x^7+x^6+x^4+x^2+x+1)=x^7+x^6+x^5+x^4+x^3+x^2+1$$

$$0x2A + 0xD7 = 0xFD$$

- グ 有限域GF(28)上的乘法

 - **№** AES选择 $m(x) = x^8 + x^4 + x^3 + x + 1$, 其16进制表示为0x11B
 - ∮ 多项式乘法对m(x)取模,结果仍为GF(28)上的元素(次数不超过7的多项式)
 - ∮ 例, 0x57×0x83 = ?

$$(x^6+x^4+x^2+x+1)\otimes (x^7+x+1) = x^7+x^6+1 \mod m(x)$$

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

$$(x^{6}+x^{4}+x^{2}+x+1)\otimes (x^{7}+x+1) = x^{13}+x^{11}+x^{9}+x^{8}+x^{7}+x^{7}+x^{5}+x^{3}+x^{2}+x+1$$

 $x^{6}+x^{4}+x^{2}+x+1$

$$x^{13} + x^{11} + x^9 + x^8 + x^5 + x^3 + x^6 + x^4 + 1 - m(x) \ x^5 = x^{13} + x^{11} + x^9 + x^8 + x^5 + x^3 + x^6 + x^4 + 1 + x^9 + x^8 + x^6 + x^5 = x^{11} + x^3 + x^4 + 1$$

$$x^{11}+x^3+x^4+1-m(x)$$
 $x^3 = x^{11}+x^3+x^4+1+x^{11}+x^7+x^6+x^4+x^3$
= x^7+x^6+1

$$(x^6+x^4+x^2+x+1)\otimes (x^7+x+1) = x^7+x^6+1 \mod m(x)$$
 57×83 = C1

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

∮ 例, 92×B4 = ?

$$x^{14} + x^{12} + x^5 + x^3 - m(x)$$
 $x^6 = x^{14} + x^{12} + x^5 + x^3 + x^{14} + x^{10} + x^9 + x^7 + x^6 = x^{12} + x^5 + x^3 + x^{10} + x^9 + x^7 + x^6$

$$x^{12} + x^{10} + x^9 + x^7 + x^6 + x^5 + x^3 - m(x) \ x^4 = x^{12} + x^{10} + x^9 + x^7 + x^6 + x^5 + x^3 + x^{12} + x^8 + x^7 + x^5 + x^4$$
$$= x^{10} + x^9 + x^6 + x^8 + x^4 + x^3$$

$$x^{10} + x^9 + x^6 + x^8 + x^4 + x^3 - m(x) \ x^2 - m(x) = x^{10} + x^9 + x^6 + x^8 + x^4 + x^3 + x^{10} + x^6 + x^5 + x^3 + x^2 + x^4 + x^3 + x^4 +$$

$$x^9 + x^5 + x^3 + x^2 + x + 1 - m(x) x = x^9 + x^5 + x^3 + x^2 + x + 1 + x^9 + x^5 + x^4 + x^2 + x = x^4 + x^3 + 1$$

$$(x^7+x^4+x)\otimes (x^7+x^5+x^4+x^2) = x^4+x^3+1 \mod m(x)$$
 92×B4 = 19

加法或者减法均为异或操作

- ♪ 乘法逆元:
 - 学 设a(x)的逆元为b(x),则 $a(x)b(x) = 1 \mod m(x)$
 - ♥ 可根据广义Euclid算法求出b(x)

◆ 有限域GF(28)上的x乘法(xtime), 定义为

$$x \otimes (b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0)$$

= $b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x$

- ♪ 计算规则:
 - ₹ 若 b_7 = 0,次数不超过7,直接得到结果
 - F 否则, 乘法结果减去m(x), 即与m(x)做异或
- 通过系数直接计算
 - $F B = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ 左移一位,最低位补0(乘2)
 - ▶ 若 b_7 = 0,直接得到结果
 - $^{\sharp}$ 否则, $b_6b_5b_4b_3b_2b_1b_0$ 0再与0x1B做异或
 - ✗的更高次的乘法可以重复应用xtime实现

x time(37) = ? **6E**

xtime(C5) = ? 91

夕 有限域GF(28)上的x乘法(xtime)是通用乘法的特例,其中一个乘数为x,也成为倍乘
夕 x乘法(xtime)有固定的规则,利用二进制形式计算更简便,可用于实现更高次的乘法

- ❖ xtime计算举例, 计算57×13
- *▶* 13 = 01 ⊕ 02 ⊕ 10
- $57 \times 01 = 57$
- $57 \times 02 = x \text{time}(57) = AE$
- $57 \times 04 = x$ time(AE) = (AE << 1) ⊕ 1B = 47
- $57 \times 08 = x \text{time}(47) = 8E$
- $57 \times 10 = x \text{time}(8E) = 07$

- ❖ xtime计算练习, 计算A2×09
- **⋄** 09 = 01 ⊕ 08
- $A2 \times 01 = A2$
- $A2 \times 02 = x \text{time}(A2) = (A2 << 1) \oplus 1B = 5F$
- $A2 \times 04 = x \text{time}(5F) = (5F << 1) = BE$
- ∧ A2 × 08 = xtime(BE) = (BE << 1) ⊕ 1B = 67
- $A2 \times 09 = A2 \times (01 \oplus 08) = A2 \oplus 67 = C5$

- ▲ AES数据处理的单位是字节(byte)、字(word)和状态(state)
 - ▶ 一个字 = 4个字节 = 32位, 状态为128位
 - ▶ 一个字可表示为系数取自GF(28)上的次数低于4次的多项式
 - 例, 字: 57 83 4A D1 -- 57 x^3 + 83 x^2 + 4Ax + D1
- ♪ 字加法: 两多项式系数按位模2加

》 例,
$$(57x^3 + 83x^2 + 4Ax + D1) + (Ax^3 + B3x^2 + EF)$$

= $5Dx^3 + 30x^2 + 4Ax + 3E$

- ◈ 状态 (128位)
 - 加解密过程中的中间数据
 - ▶ 以字节为元素的矩阵或二维数组

状态矩阵

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

◇ 字乘法:设a和c是两个字,a(x)和c(x)为对应的字多项式,AES定义a和c的乘积b为

$$b(x) = a(x)c(x) \bmod x^4 + 1$$

♪ 假设

$$a(x) = a3x^3 + a2x^2 + a1x + a0$$

$$c(x) = c3x^3 + c2x^2 + c1x + c0$$

$$b(x) = b3x^3 + b2x^2 + b1x + b0$$

沙 则, $b(x)=a(x)c(x) \mod x^4 + 1$ 为

$$b0 = a0c0 + a3c1 + a2c2 + a1c3$$
 四次项和常量
 $b1 = a1c0 + a0c1 + a3c2 + a2c3$ 一次项
 $b2 = a2c0 + a1c1 + a0c2 + a3c3$ 二次项
 $b3 = a3c0 + a2c1 + a1c2 + a0c3$ 三次项

- ◆ 字乘法的矩阵表示
- x^4 + 1= (x^2 + 1)(x^2 + 1), 是可约多项式,字c(x)不一定存在逆元
- ◆ AES选择的c(x)有逆, $c(x) = 03x^3 + 01x^2 + 01x + 02$

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} c_0 & c_3 & c_2 & c_1 \\ c_1 & c_0 & c_3 & c_2 \\ c_2 & c_1 & c_0 & c_3 \\ c_3 & c_2 & c_1 & c_0 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

❖ 字的x乘法: 设b(x)是一个字,

$$p(x) = xb(x) \mod x^4 + 1$$

$$= b_3x^4 + b_2x^3 + b_1x^2 + b_0x \mod x^4 + 1$$

$$= b_2x^3 + b_1x^2 + b_0x + b_3$$

- ▶ 因为模x⁴ + 1,字的x乘法相当于按字节循环移位
- 参 写成矩阵形式

- FIPS 197 Advance Encryption Standard (AES), https://www.nist.org/nist_plugins/content/content.php?content.39
- Mini-AES,
 https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/block_
 cipher/miniaes.html
- R. C.-W. Phan. Mini advanced encryption standard (mini-AES): a testbed for cryptanalysis students. Cryptologia, 26(4):283–306, 2002

