

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2015

MEMORANDUM

MARKS: 150 *PUNTE: 150*

This memorandum consists of 25 pages. *Hierdie memorandum bestaan uit* 25 *bladsye*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing.

<u> ₹ € =≈</u>	11011/1/1/110 1	
1.1.1	$x^2 - 9x + 20 = 0$	(6.1
	(x-4)(x-5)=0	✓ factors
		$\checkmark x = 4$
	x = 4 or $x = 5$	$\checkmark x = 5 \tag{3}$
1.1.2	$3x^2 + 5x - 4 = 0$	✓ standard form
	$x = \frac{-5 \pm \sqrt{(5)^2 - 4(3)(-4)}}{2(3)}$	✓ substitution into correct formula
	$x = \frac{-5 \pm \sqrt{73}}{6}$ $x = -2,26 \text{ or } x = 0,59$ \mathbf{OR}/\mathbf{OF}	✓✓ answers (4)
	$x^{2} + \frac{5}{3}x + \frac{25}{36} = \frac{4}{3} + \frac{25}{36}$ $\left(x + \frac{5}{6}\right)^{2} = \frac{73}{36}$	✓ for adding $\frac{25}{36}$ on both sides
	$x + \frac{5}{6} = \pm \frac{\sqrt{73}}{6}$	$-5\pm\sqrt{73}$
	$x = \frac{-5 \pm \sqrt{73}}{6}$	$\checkmark x = \frac{-5 \pm \sqrt{73}}{6}$
	x = -2,26 or $x = 0,59$	✓✓ answers (4)
1.1.3	$2r^{\frac{-5}{3}} - 64$	
	$2x^{\frac{-5}{3}} = 64$ $x^{\frac{-5}{3}} = 32$	✓ dividing both
		sides by 2
	$x = (2^5)^{\frac{-3}{5}}$	$\sqrt{32} = 2^5$ or $64 = 2^6$
	$x = 2^{-3}$ or $\frac{1}{8}$ or 0,125	$\sqrt[64-2]{}$ raising RHS to $\frac{-3}{5}$
	8	√answer
	OR/OF	(4)

NSC/NSC – Memorandum		
	$2x^{\frac{-5}{3}} = 64$ $x^{\frac{-5}{3}} = 32$ $x = (32)^{\frac{-3}{5}}$ $x = \sqrt[5]{32^{-3}}$ $x = 2^{-3} \text{ or } \frac{1}{8} \text{ or } 0,125$ \mathbf{OR}/\mathbf{OF}	✓ dividing both sides by 2 ✓ raising RHS to $\frac{-3}{5}$ ✓ $\sqrt[5]{32^{-3}}$ ✓ answer (4)
	$\left(2x^{\frac{-5}{3}}\right)^{\frac{-3}{5}} = 64^{\frac{-3}{5}}$ $0,659x = 0,0825$ $x = 0,125$ OR/OF $x^{\frac{-5}{3}} = 32$ $\frac{-5}{3}\log x = \log 32$	✓ raising both sides to \[\frac{-3}{5} \] ✓ 0,659 and 0,0825 ✓ dividing both sides by 0,659 ✓ answer (4) ✓ dividing both sides by 2 ✓ logs on both sides
	$\log x = \frac{3}{-5} \log 32$ $\log x = -0.903$ $x = 10^{-0.903}$ $= 0.125 \text{ or } \frac{1}{8}$	$\checkmark \log x = -0.903$ ✓ answer (4)
1.1.4	$\sqrt{2-x} = x - 2$ $2 - x = (x - 2)^{2}$ $2 - x = x^{2} - 4x + 4$ $x^{2} - 3x + 2 = 0$ $(x - 1)(x - 2) = 0$ $x = 1 \text{ or } x = 2$ $\text{if } x = 1, \sqrt{2 - x} = 1 \text{ and } x - 2 = -1$ $x = 2 \text{ only}$	✓ squaring both sides ✓ factors ✓ $x = 1$ or $x = 2$ ✓ $x = 2$ only
	OR/OF	(4)

NSC/NSC – Memorandum			
	$\sqrt{2-x} = x - 2$ $2-x = (x-2)^{2}$ $2-x = (2-x)^{2}$ $2-x = 1 \text{ or } 2-x = 0$	✓ squaring both sides \checkmark 2-x=1 or 2-x=0	
	$x = 1 \text{or} x = 2$ if $x = 1$, $\sqrt{2 - x} = 1$ and $x - 2 = -1$ $\therefore x = 2 \text{ only}$	$\checkmark x = 1 \text{ or } x = 2$	
	OR/OF	$\checkmark x = 2 \text{ only}$ (4)	
	$\sqrt{2-x} = x - 2$ $2 - x \ge 0 \text{and} x - 2 \ge 0$	$\checkmark 2 - x \ge 0$ $\checkmark x - 2 \ge 0$	
	$x \le 2$ and $x \ge 2$	$\checkmark x - 2 \ge 0$ $\checkmark x \le 2 \text{ and } x \ge 2$	
1.1.5	$\therefore x = 2 \text{ only}$ $x^2 + 7x < 0$	$\checkmark x = 2 \tag{4}$	
	x(x+7) < 0	✓ factors	
	$ \begin{array}{cccc} & \mathbf{OR}/ & & & & & \\ \hline & -7 & & \mathbf{OF} & & \\ & & -7 & & 0 \end{array} $ $ -7 < x < 0 \mathbf{OR}/\mathbf{OF} x \in (-7; 0) $	✓ inequality or interval (3)	

1.2	The square of any number is always positive or zero		
	So for the sum of two squares to be zero, both squares must be		
	zero, i.e.		
	Die kwadraat van enige getal is altyd positief of nul. Vir die som		
	van twee kwadrate om nul te wees, moet beide die kwadrate nul		
	wees, d.i.		
	$(3x-y)^2 = 0$ and/en $(x-5)^2 = 0$	$\checkmark 3x - y = 0$ $\checkmark x - 5 = 0$	
		$\checkmark x - 5 = 0$	
	3x - y = 0 and/en x - 5 = 0	$\checkmark x = 5$	
	x = 5		
	3(5) - y = 0 $y = 15$	$\checkmark y = 15$	
	y = 15		(4)

1.3

$$x^{2} + x = k$$

$$x^{2} + x - k = 0$$

$$\Delta < 0$$

$$b^{2} - 4ac < 0$$

$$1^{2} - 4(1)(-k) < 0$$

$$1 + 4k < 0$$

OR/OF

$$R/OF$$

$$x^{2} + x = k$$

$$x^{2} + x + \frac{1}{4} = k + \frac{1}{4}$$

 $\left(x + \frac{1}{2}\right)^2 = k + \frac{1}{4}$ for nonreal roots $k + \frac{1}{4} < 0$

$$k < \frac{-1}{4}$$

OR/OF

Consider the functions $y = x^2 + x$ and y = kBeskou die funksies $y = x^2 + x$ en y = k

Turning point of/*Draaipunt van* $y = x^2 + x$ is $\left(\frac{-1}{2}, \frac{-1}{4}\right)$

 $x^2 + x = k$ does not have real roots when the line y = k does not intersect $y = x^2 + x$.

 $x^2 + x = k$ het geen reële wortels as die lyn y = k nie met $y = x^2 + x$ sny nie.

Therefore
$$k < \frac{-1}{4}$$

✓ standard form

$$\checkmark \Delta < 0$$

$$\checkmark 1^2 - 4(1)(-k)$$

$$\checkmark k < \frac{-1}{4} \tag{4}$$

 \checkmark adds $\frac{1}{4}$ to both

$$\checkmark \left(x + \frac{1}{2}\right)^2 = k + \frac{1}{4}$$

$$\checkmark k + \frac{1}{4} < 0$$

$$\checkmark k < \frac{-1}{4}$$

(4)

✓sketch or explanation

$$\sqrt{x} = -\frac{1}{2}$$

$$y = -\frac{1}{4}$$

$$\sqrt{k} < \frac{-1}{4}$$

(4) [26]

2.1	$r = \frac{T_2}{T_1}$ $= \frac{5}{10}$ $= \frac{1}{2}$ $T_5 = 1,25 \left(\frac{1}{2}\right)$ $= \frac{5}{8} \text{ or } 0,625$ OR/OF $= \frac{5}{8} \text{ or } 0,625$ OR/OF $= \frac{5}{8} \text{ or } 0,625$	$\checkmark r = \frac{1}{2}$ \checkmark answer (2)
2.2	$T_n = 10 \left(\frac{1}{2}\right)^{n-1}$	✓ substitutes $a = 10$ into GP formula ✓ substitutes $r = \frac{1}{2}$ into GP formula
2.3	For convergence/Om te konvergeer $-1 < r < 1$ Since/Aangesien $r = \frac{1}{2}$ and/en $-1 < \frac{1}{2} < 1$	\checkmark -1 < r < 1 \checkmark show that $r = \frac{1}{2}$ is $-1 < r < 1$
	the sequence converges/die ry konvergeer	(2)
2.4	$S_{\infty} - S_{n} = \frac{a}{1 - r} - \frac{a(1 - r^{n})}{1 - r}$ $= \frac{10}{1 - \frac{1}{2}} - \frac{10\left(1 - \frac{1}{2}^{n}\right)}{1 - \frac{1}{2}}$ $= 20 - 20\left(1 - \frac{1}{2}^{n}\right)$ $= 20 - 20 + 20\left(\frac{1}{2}^{n}\right)$ $= 20\left(\frac{1}{2}^{n}\right)$	$ \sqrt{\frac{10}{1 - \frac{1}{2}}} $ $ \sqrt{\frac{10\left(1 - \frac{1}{2}^{n}\right)}{1 - \frac{1}{2}}} $ $ \sqrt{20\left(1 - \frac{1}{2}^{n}\right)} $ $ \sqrt{\text{answer}} $ (4)
	OR/OF	
		✓ constructing the series

(4)

$$S_{\infty} - S_{n} = T_{n+1} + T_{n+2} + T_{n+3} + \dots$$

$$= 10 \left(\frac{1}{2}\right)^{n} \left[1 + \frac{1}{2} + \frac{1}{4} + \dots\right]$$

$$= 10 \left(\frac{1}{2}\right)^{n} \left[\frac{1}{1 - \frac{1}{2}}\right]$$

$$= 20 \left(\frac{1}{2}\right)^{n}$$

$$10\left(\frac{1}{2}\right)^{n}\left[1+\frac{1}{2}+\frac{1}{4}+\dots\right]$$

$$\checkmark \frac{1}{1-\frac{1}{2}}$$

$$\checkmark \text{engwer}$$

OR/OF

$$S_{\infty} - S_n = \frac{a}{1-r} - \frac{a(1-r^n)}{1-r}$$

$$= \frac{a-a+ar^n}{1-r}$$

$$= \frac{ar^n}{1-r}$$

$$= \frac{10(\frac{1}{2})^n}{\frac{1}{2}}$$

$$= 20(\frac{1}{2})^n$$

$$\sqrt{\frac{a-a+ar^n}{1-r}}$$

$$\sqrt{\frac{ar^n}{1-r}}$$

$$\sqrt{\frac{10\left(\frac{1}{2}\right)^n}{\frac{1}{2}}}$$

$$\sqrt{\text{answer}}$$
(4)
[10]

2.1	d=8	✓ d value
3.1	$ T_k = a + (k-1)d $	• a value
	= -3 + (k-1)(8)	
	= -3 + 8k - 8	
	= 8k - 11	✓answer
	- 0/V 11	(2)
3.2	$\sum_{i=1}^{n} (0, i + 1) = \sum_{i=1}^{n-1} (0, i +$	✓ for general term
	$\sum_{k=1}^{n} (8k-11) \mathbf{OR}/\mathbf{OF} \sum_{k=0}^{n-1} (8(k+1)-11) = \sum_{k=0}^{n-1} (8k-3)$	✓ lower and upper
		values in sigma notation
		(2)
3.3	$S_n = \frac{n}{2} [2a + (n-1)d]$	√formula
	$\begin{bmatrix} s_n \\ 2 \end{bmatrix}$	✓ substitution
	$= \frac{n}{2} [2(-3) + (n-1)(8)]$	Substitution
	$=\frac{n}{2}\left[-6+8n-8\right]$	
	$=\frac{n}{2}[8n-14]$	$\sqrt{\frac{n}{2}}[8n-14]$
	= n(4n-7)	(3)
	$=4n^2-7n$	
	- m /n	
	OR/OF	
	$\begin{bmatrix} S & -n \\ S & -n \end{bmatrix}$	✓ formula
	$S_n = \frac{n}{2} [2a + (n-1)d]$	
	$= \frac{n}{2} [2(-3) + (n-1)(8)]$	✓substitution
	_	n_{Γ_0}
	$=\frac{n}{2}\left[-6+8n-8\right]$	$\sqrt[4]{\frac{n}{2}[8n-14]}$
	$=\frac{n}{2}[8n-14]$	(3)
	2	
	$=4n^2-7n$	
	OR/OF	
	n_{Γ} .	✓ formula
	$S_n = \frac{n}{2} [a+l]$	
	$=\frac{n}{2}[-3+8n-11]$	✓substitution
	2	/ ⁿ [0 14]
	$=\frac{n}{2}[8n-14]$	$\sqrt[4]{\frac{n}{2}[8n-14]}$
	$=4n^2-7n$	(3)

Given	$f(x) = 2^{x+1} - 8$	
4.1	y = -8	$\checkmark y = -8 \tag{1}$
4.2	y y y y y y y y y y	✓ x-intercept ✓ y-intercept ✓ shape ✓ asymptote (only if the graph does not cut the asymptote)
	l e	(4)
4.3	$g(x) = 2^{-x+1} - 8$	✓answer (1)
	OR/OF	
	$g(x) = \left(\frac{1}{2}\right)^{x-1} - 8$	✓ answer (1) [6]

Given	$h(x) = 2x - 3$ for $-2 \le x \le 4$.	
	-2 O P 4	
5.1	For x-intercepts, $y = 0$ 2x - 3 = 0 x = 1,5 Q(1,5;0)	$\checkmark x = 1.5$ $\checkmark y = 0$ (2)
5.2	h: x = -2: $y = 2(-2) - 3 = -7x = 4$: $y = 2(4) - 3 = 5Domain of h^{-1}: -7 \le x \le 5 OR/OF [-7; 5]$	$\checkmark h(-2) = -7$ $\checkmark h(4) = 5$ $\checkmark -7 \le x \le 5$ (3)
5.3	$ \begin{array}{c c} & & \\$	✓ y-intercept on a straight line ✓ line segment ✓ accurate endpoints (x or y or both)
	OR/OF 1,5 0 -2	(3)

Mathe	ematics/P1/Wiskunde V1	NSC/ <i>NSC</i> – Memorandum	DBE/November 2015
5.4	h(x) = 2x - 3	NOCHISC Wellorandum	
	For the inverse of h , $x = 2y - 3$ $y = \frac{x+3}{2}$		$\checkmark y = \frac{x+3}{2}$
	$h^{-1}(x) = \frac{x+3}{2}$ $h(x) = h^{-1}(x)$ $2x-3 = \frac{x+3}{2}$		$\checkmark 2x - 3 = \frac{x+3}{2}$
	4x - 6 = x + 3 $x = 3$ OR/OF		$\checkmark x = 3 \tag{3}$
	$h(x) = 2x - 3$ h and h^{-1} intersect when $y =$	= <i>x</i>	
	h(x) = x		$\checkmark h(x) = x$ $\checkmark 2x - 3 = x$
	2x - 3 = x $x = 3$		$\checkmark 2x - 3 = x$ $\checkmark x = 3$
	\mathbf{OR}/\mathbf{OF} $h(x) = 2x - 3$		(3)
	For the inverse of h , $x = 2y - 3$		$\checkmark y = \frac{x+3}{2}$
	$y = \frac{x+3}{2}$ $h^{-1}(x) = x$ $\frac{x+3}{2} = x$		$\checkmark \frac{x+3}{2} = x$
1	<u> </u>		

x + 3 = 2x

x = 3

 $\checkmark x = 3$

(3)

	NSC/NSC – Memorandum	
5.5	$OP^{2} = (x-0)^{2} + (y-0)^{2}$	$\checkmark OP^2 = x^2 + y^2$
	$=x^2+(2x-3)^2$	✓substitute
	$= x^2 + 4x^2 - 12x + 9$	y = 2x - 3
	$=5x^2-12x+9$	$\checkmark 5x^2 - 12x + 9$
	For OP to be at its minimum, OP^2 has to be a minimum	
	Vir OP om minimum te wees, moet OP^2 'n minimum wees	
	$\frac{d(OP^2)}{dx} = 0 \qquad OR/OF \qquad x = -\frac{b}{2a}$	
	$10x - 12 = 0 = -\frac{-12}{2(5)}$	
	$\therefore x = \frac{6}{5}$	✓x-value
	Minimum length of OP = $\sqrt{5\left(\frac{6}{5}\right)^2 - 12\left(\frac{6}{5}\right) + 9} = \sqrt{\frac{9}{5}}$ or $\frac{3}{\sqrt{5}}$ or 1,34 units	✓answer
	OR/OF	(5)
	For minimum distance OP \perp the line	
	$m_h = 2$ (given)	
	$m_{\rm OP} = \frac{-1}{2}$	
	$\therefore \text{ OP has equation } y = \frac{-1}{2}x$	
	$\int \frac{-1}{2}x = 2x - 3$	
	-x = 4x - 6	
	5x = 6	$ \checkmark m_{\rm OP} = \frac{-1}{2} $
	$x_P = 1,2$	2
	$y_P = -\frac{1}{2}(1,2) = -0.6$	✓ equation of OP
	$OP = \sqrt{(1,2-0)^2 + (-0,6-0)^2}$	$\sqrt{\frac{-1}{2}}x = 2x - 3$
	$=1,34 \text{ or } \sqrt{1,8} \text{ units}$	2
		✓x-value
		✓answer (5)

OR/OF

For minimum distance OP \perp the line

$$O(0;0) \quad P(x; 2x-3) \quad Q(\frac{3}{2};0)$$

$$OP^2 + PQ^2 = OQ^2$$
 (pythag)

$$(x-0)^2 + PQ^2 = OQ^2 \quad \text{(pyth)}$$
$$(x-0)^2 + (2x-3-0)^2 + \left(x-\frac{3}{2}\right)^2 + (2x-3-0)^2 = \left(\frac{3}{2}\right)^2$$

$$x^{2} + 4x^{2} - 12x + 9 + x^{2} - 3x + \frac{9}{4} + 4x^{2} - 12x + 9 = \frac{9}{4}$$

$$10x^2 - 27x + 18 = 0$$

$$(5x-6)(2x-3)=0$$

$$x = \frac{6}{5} \text{ or } \frac{3}{2}$$

$$\checkmark OP^2 = x^2 + y^2$$

$$y = 2x - 3$$

$$10x^2 - 27x + 18$$

 $\checkmark x$ -value

Hence,
$$x = \frac{6}{5}$$
 at P

$$OP^{2} = x^{2} + (2x - 3)^{2}$$

$$= \left(\frac{6}{5}\right)^{2} + \left(2\left(\frac{6}{5}\right) - 3\right)^{2}$$

$$= \frac{36}{25} + \frac{9}{25}$$

$$= \frac{9}{5}$$

✓answer

(5)

OR/OF

OP = 1,34

For minimum distance OP \perp the line

$$\tan \hat{Q} = 2$$

$$\hat{Q} = 63,43^{\circ}$$

$$\sin 63,43^{\circ} = \frac{OP}{1,5}$$

$$OP = 1,34$$

✓
$$\tan \hat{Q} = 2$$

✓ $\hat{Q} = 63,43^{\circ}$

$$\checkmark \hat{Q} = 63,43^{\circ}$$

$$\checkmark \frac{OP}{1,5}$$

✓ answer

(5)

OR/OF

$$OP = \sqrt{(x-0)^2 + (y-0)^2}$$

$$= \sqrt{(x-0)^2 + (2x-3-0)^2}$$

$$= \sqrt{x^2 + 4x^2 - 12x + 9}$$

$$= \sqrt{5x^2 - 12x + 9}$$

$$\checkmark$$
 $OP = \sqrt{(x-0)^2 + (y-0)^2}$

Zaubatituta

$$y = 2x - 3$$

By using the chain rule (which is not in the CAPS):

By using the chain rule (which is not
$$\frac{dOP}{dx} = \frac{1}{2} (5x^2 - 12x + 9)^{-\frac{1}{2}} \cdot (10x - 12)$$

$$0 = \frac{1}{2} (5x^2 - 12x + 9)^{-\frac{1}{2}} \cdot (10x - 12)$$

$$0 = \frac{1}{2} (10x - 12)$$

$$0 = 5x - 6$$

$$x = \frac{6}{5}$$

 $X = \frac{5}{5}$ $OP = \sqrt{5\left(\frac{5}{6}\right)^2 - 12\left(\frac{6}{5}\right) + 9}$ = 1,34

(5)

OR/OF

For minimum distance OP \perp the line Let the *y*-intercept be R

OR = 3 units

$$OQ = \frac{3}{2}$$
 units

$$RQ = \frac{3}{2}\sqrt{5} \quad (Pythagoras)$$

Area OQR = $\frac{1}{2} \times base \times \perp height$

$$\frac{1}{2}.OR.OQ = \frac{1}{2}.\left(\frac{3}{2}\sqrt{5}\right).OP$$

$$\frac{1}{2}.3.\left(\frac{3}{2}\right) = \frac{1}{2}.\left(\frac{3}{2}\sqrt{5}\right).OP$$

$$OP = \frac{3}{\sqrt{5}} = 1,34$$

$$\checkmark RQ = \frac{3}{2}\sqrt{5}$$

$$\checkmark \frac{1}{2} \left(\frac{3}{2} \sqrt{5} \right)$$
.OP

$$\checkmark \frac{1}{2}.3.\left(\frac{3}{2}\right)$$

(5)

	NSC/NSC – Memorandum	
5.6.1	$f'(x) = 2x - 3$ Turning point at $x = \frac{3}{2}$ $f''(x) = 2 > 0 \text{ or } f''\left(\frac{3}{2}\right) > 0$ $f \text{ has a local minimum at } x = \frac{3}{2}$ $f \text{ het 'n lokale minimum by } x = \frac{3}{2}$ \mathbf{OR}/\mathbf{OF}	✓ Turning point at $x = \frac{3}{2}$ ✓ $f''(x) = 2 > 0$ (2)
	$h(x) = f'(x) < 0$ for $x \in (-2; 1.5) \Rightarrow f$ is decreasing on the left of Q / fis dalend links van Q. $h(x) = f'(x) > 0$ for $x \in (1.5; 4) \Rightarrow f$ is increasing on the right of Q / fis stygend regs van Q. $\therefore f(x)$ has a local minimum when $x = \frac{3}{2}$ / $\therefore f(x)$ het 'n lokael minimum by $x = \frac{3}{2}$	✓ decreasing left of Q ✓ increasing right of Q (2)
	OR/OF $f(x) = x^{2} - 3x + c$ f has a minimum value since $a > 0$ f het 'n minimum waarde omdat $a > 0$	$f(x) = x^2 - 3x + c$ <pre> ✓ explanation (2)</pre>
5.6.2	m = f'(4) = h(4) = 5	✓ answer (1) [19]

6.1.1	T(0;18)	√ (0;18)
		(1)
6.1.2	$-2x^2 + 18 = 0$	✓ <i>y</i> = 0
	(x-3)(x+3)=0	✓ factors
	Q(3;0)	$\checkmark x = 3 \tag{3}$
		(3)
	OR/OF	✓ <i>y</i> = 0
	$-2x^2 + 18 = 0$	$\checkmark y = 0$ $\checkmark x^2 = 9$ $\checkmark x = 3$
	$x^2 = 9$	
	Q(3;0)	(3)
6.1.3	x-coordinate of S is 4,5/x-koördinaat van S is 4,5	
	By symmetry about the line $x = 4.5/Deur$ simmetrie om die	$\checkmark x = 6$
	lyn x = 4,5: $R = (4,5+4,5-3;0) = (6;0)$	$\checkmark x = 0$ $\checkmark y = 0$
		(2)
6.1.4	For all $x \in \mathbf{R}$ \mathbf{OR}/\mathbf{OF} $(-\infty, \infty)$	✓✓answer
		(2)
6.2	If $C(x; y)$ is the centre of the hyperbola/As $C(x; y)$ die middelpunt is van	
	die hiperbool	
	y = x + 6 and x = -2	
	$\therefore y = -2 + 6 = 4$	/ /
	† ↑ v	asymptote
		y = 4
		✓asymptote
	y = 4	x = -2
		✓ shape
		(increasing hyperbolic
		function)
	$x = -2 \psi $	(4)
		[12]

7.1	R450 000	✓answer (1)
7.2	$A = P(1-i)^n$	
	$f(x) = 450000(1-i)^x$	✓ substitution of 450 000 into correct formula
	$243\ 736,90 = 450000(1-i)^4$	✓ substitution of (4; 243 736,90) into correct formula
	$i = 1 - \sqrt[4]{\frac{243 \ 736,90}{450000}}$ $i = 0,1421$	✓ making <i>i</i> the subject
	The rate of depreciation is 14,21% p.a. Die waardeverminderingskoers is 14,21% p.j.	✓answer (4)
7.3	At T:	(.)
	$A = P(1+i)^n$	
	$g(x) = 450000(1+i)^{x}$ $a = 450000(1+0.081)^{4}$	\checkmark <i>i</i> = 0,081 & <i>n</i> = 4 \checkmark correct substitution into formula
	= R614490,66	✓answer (3)
7.4	Future Value = R614 490, 66 – R243 736, 90 = R370 753, 76	✓R370 753,76
	Let x be the value of monthly payment $F_v = \frac{x[(1+i)^n - 1]}{i}$	$\checkmark i = \frac{0,062}{12}$ $\checkmark n = 36$
	$370753,76 = \frac{x \left[\left(1 + \frac{0.062}{12} \right)^{36} - 1 \right]}{0.062}$	✓ substitution into correct formula
	x = R9397,11	✓answer (5) [13]

8.1	$f(x+h) = (x+h)^2 - 3(x+h)$	\checkmark finding $f(x+h)$
	$= x^{2} + 2xh + h^{2} - 3x - 3h$ $C(x+h) = C(x) + x^{2} + 2xh + h^{2} + 3x - 3h + (x^{2} - 2x)$	
	$f(x+h) - f(x) = x^2 + 2xh + h^2 - 3x - 3h - (x^2 - 3x)$ $= 2xh + h^2 - 3h$	$\checkmark 2xh + h^2 - 3h$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula
	$=\lim_{h\to 0}\frac{2xh+h^2-3h}{h}$	
	$=\lim_{h\to 0}\frac{h(2x+h-3)}{h}$	✓ factorisation
	$=\lim_{h\to 0}(2x+h-3)$	
	=2x-3	✓answer (5)
	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula
	$= \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) - (x^2 - 3x)}{h}$	\checkmark finding $f(x+h)$
	$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 3x - 3h - x^2 + 3x}{h}$	
	$=\lim_{h\to 0}\frac{2xh+h^2-3h}{h}$	
	$=\lim_{h\to 0}\frac{h(2x+h-3)}{h}$	$\checkmark 2xh + h^2 - 3h$
	$= \lim_{h \to 0} (2x + h - 3)$	✓ factorisation
	=2x-3	✓answer
		(5)
8.2.1	$y = \left(x^2 - \frac{1}{x^2}\right)^2$	
	$y = x^4 - 2 + \frac{1}{x^4}$	$\checkmark x^4 - 2 + \frac{1}{x^4}$
	$= x^4 - 2 + x^{-4}$	
	$\frac{dy}{dx} = 4x^3 - 4x^{-5}$	$\checkmark 4x^3$ $\checkmark -4x^{-5}$
	OR/OF	(3)

	NSC/NSC – Memorandum	
	By using the chain rule (which is not part of CAPS): $y = (x^2 - x^{-2})^2$	
	$\frac{dy}{dx} = 2(x^2 - x^{-2})(2x + 2x^{-3})$	$2(x^{2}-x^{-2})(2x+2x^{-3})$
	$= 2(2x^{3} + 2x^{-1} - 2x^{-1} - 2x^{-5})$ $= 2(2x^{3} - 2x^{-5})$	(3)
	$=4x^3-4x^{-5}$, ,
8.2.2	$D_{x} \left[\frac{(x-1)(x^2+x+1)}{x-1} \right]$	✓ factorisation
	$= D_x \left[x^2 + x + 1 \right]$	$\checkmark x^2 + x + 1$ $\checkmark 2x + 1$
	=2x+1	$\checkmark 2x + 1$ (3)
	OR/OF	(0)
	By using the quotient rule (with is not part of CAPS): $D_x \left[\frac{x^3 - 1}{x - 1} \right]$	
	$= \frac{3x^{2}(x-1) - (x^{3}-1)}{(x-1)^{2}}$	$\begin{vmatrix} \checkmark \checkmark \checkmark \\ 3r^2(r-1) - (r^3 - 1) \end{vmatrix}$
	$=\frac{1}{(x-1)^2}$	$\frac{3x^{2}(x-1)-(x^{3}-1)}{(x-1)^{2}}$
		(3) [11]

9.1	Substitute Q(2; 10) into	
	$h(x) = -x^3 + ax^2 + bx$	✓ substitute Q into
	$-2^3 + a(2^2) + b(2) = 10$	$\mid h \mid$
	-8+4a+2b=10	
	2a + b = 9line 1	√ finding
	$h'(x) = -3x^2 + 2ax + b$	derivative
	At Q: $h'(2) = 0$	$\checkmark h'(2)$ ✓ equating
	$-3(2)^2 + 2a(2) + b = 0$	derivative to 0
	-12 + 4a + b = 0	
	4a + b = 12line 2	
	line 2 – line 1: $2a = 3$	✓solving
	3	simultaneously
	$a=\frac{3}{2}$	for a and b
	Substitute in line 1: $b = 6$	(5)
		(5)
9.2	$f(-1) = -(-1)^3 + \frac{3}{2}(-1)^2 + 6(-1)$	$\checkmark f(-1) = -3.5$
	=-3.5	
	Average gradient/Gemiddelde gradiënt = $\frac{f(x_Q) - f(x_P)}{x_Q - x_P}$	√formula
	Average gradient/ Gemiddelde gradiënt = $\frac{10 - (-3,5)}{2 - (-1)}$	✓substitution
	= 4,5	✓answer
		(4)

9.3	$h'(x) = -3x^2 + 3x + 6$	
	h''(x) = -6x + 3	$\checkmark h''(x) = -6x + 3$
	=-3(2x-1)	
	$h''(x) > 0 \qquad \qquad h''(x) < 0$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{2}$	
	For $x < \frac{1}{2}$, h is concave up and for $x > \frac{1}{2}$, h is concave down	✓ explanation
	Vir $x < \frac{1}{2}$, is h konkaaf na bo en vir $x > \frac{1}{2}$, is h konkaaf na onder	using $h''(x)$
	2,33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(3)
	1.	
	\therefore concavity changes at $x = \frac{1}{2}$	
	\therefore konkwiteit verander by $x = \frac{1}{2}$	
	1.6000000000000000000000000000000000000	
9.4	The graph of h has a point of inflection at $x = \frac{1}{2}$	✓answer
	1	(1)
	Die grafiek van h het 'n buigpunt by $x = \frac{1}{2}$.	
	OR/OF	
	The graph of h changes from concave up to concave down at	
	$x = \frac{1}{2}$ / Die grafiek van h verander by $x = \frac{1}{2}$ van konkaaf op	✓answer
	2	(1)
	na konkaaf af	(1)
9.5	Gradient of g is $-12/Gradient van g is -12$	
	Gradient of tangent is/Gradient van die raaklyn is: $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{2}{2} \cdot \frac{2}{2} $	1
	$h'(x) = -3x^{2} + 3x + 6$ h'(x) = -12	
	$h(x) = -12$ $-3x^2 + 3x + 6 = -12$	n(x) = 12
	$-3x + 3x + 6 = -12$ $3x^2 - 3x + 18 = 0$	
	$3x^2 - 3x + 18 = 0$ $x^2 - x + 6 = 0$	
		✓factors
	(x-3)(x+2) = 0	✓ selection of
	x = -2 only	x-value (4)
		[17]

10.1	$\frac{h}{r} = \tan 60^{\circ}$	$\checkmark \frac{h}{r} = \tan 60^{\circ}$
	$r = \frac{h}{\tan 60^{\circ}}$	
	$\therefore r = \frac{h}{\sqrt{3}}$	✓answer (2)
10.2	$V_{\text{cone}} = \frac{1}{3} \pi r^2 h$	✓ formula
	$= \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h$ $= \frac{1}{9}\pi h^3$	✓ substitution of the value of <i>r</i> in terms of <i>h</i> ✓ simplified volume answer
	$\frac{dV}{dh} = \frac{1}{3}\pi h^2$	✓ derivative
	$\frac{dV}{dh}\Big _{h=9} = \frac{1}{3}\pi (9)^2$ = 27 π or 84,82 cm ³ /cm	✓ answer (5) [7]

11.1	$P(A) \times P(B)$	✓0,2×0,63
	$=0.2\times0.63$	
	=0.126	\checkmark P(A)×P(B)=P(A
	i.e. $P(A) \times P(B) = P(A \text{ and } B)$	and B)
	Therefore A and B are independent/Dus is A en B onafhanklik	✓conclusion
		(3)
11.2.1	$7^7 = 823\ 543$	$\checkmark\checkmark7^{7}$
		(2)
11.2.2	7!=5040	√ √7!
		(2)
11.2.3	There are 3 vowels \Rightarrow 3 options for first position	√×3
	There are 4 consonants \Rightarrow 4 options for last position	✓×4
	The remaining 5 letters can be arranged in $5 \times 4 \times 3 \times 2 \times 1$ ways	$\checkmark 5 \times 4 \times 3 \times 2 \times 1$
	$3 \times (5 \times 4 \times 3 \times 2 \times 1) \times 4 = 1440$	✓answer
	Daar is 3 klinkers \Rightarrow 3 opsies vir die eerste posisie	
	Daar is 4 konsonante \Rightarrow 4 opsies vir die laaste posisie	
	Die oorblywende 5 letters kan as volg gerangskik word	
	$5 \times 4 \times 3 \times 2 \times 1$ ways/maniere	
	$3\times(5\times4\times3\times2\times1)\times4=1440$	(4)

