Лабораторная работа № 1 ДО ПРОХОЖДЕНИЕ СИГНАЛОВ ЧЕРЕЗ RC-ЦЕПИ

Исследование частотных характеристик RC-фильтров

4.1. Исследование НЧ-фильтра

$$R_1 = (1 + 0.15M + 0.17N) = 2.88$$
 кОм, $C_1 = (1 + 0.15M + 0.17N) = 2.88$ нФ.

4.2. Исследование ВЧ-фильтра

$$R_2 = (2 + 0.15M + 0.17N) = 3.88 \text{ кОм}, C_2 = (50 + 0.15M + 0.17N) = 51.88 \text{ н}\Phi.$$

f_н= 789.444 Гц

 t_{MBX} = 0.1*tau = 0.1*201.2944 = 20.12944 MKC

 $\partial u = 2\pi f_{\text{H}} t_{\text{MBX}} * 100\% = 2\pi * 789.444 \Gamma \mu * 20.12944 \text{MKC} * 100\% = 0.09985 * 100\% = 9,985\%$

Исследование временных характеристик RC-фильтров

Максимальное значение входного и выходного сигнала

$$U_m = (2 + 0.3 \text{ M} + 0.25 \text{ N}) = 5.4 \text{ B}$$

4.3. *RC*-схема с интегрирующим конденсатором.

4.4. *RC*-схема с разделительным конденсатором.

 $\Delta u = u_2 - u_1 = 5.3975 - 4.8870 = 0.5105$ $\partial u = \Delta u / u_{max} = (0.5105 / 5.400) * 100% = 0.09454 * 100% = 9.454%$ $f_{rp} = \partial u / (2π*t_{MBX}) = 0.09454 / (2π*20.12944μκc) = 747.488 Γμ$

Схема	<i>RC</i> -цепь с интегрирующим			<i>RC</i> -цепь с разделительным	
	конденсатором			конденсатором	
Параметр	$f_{\scriptscriptstyle m B}$, к Γ ц	t_{Φ} , мкс	$t_{\rm c}$, MKC	$f_{\scriptscriptstyle m H}$, к Γ ц	δ <i>u</i> , %
Теоретический	19,188	17,8	***	790,658	9,517
расчет					
Эксперимент	19,169	17,95	18,22	789,444	9,454
Расчет по формулам связи	19,499	18,2586	***	747,488	9,985

4.5. *RC*-схема с дифференцирующим конденсатором.

Рабочая *RC*-схема с дифференцирующим конденсатором

 R_2 = 3.88 кОм, C_2 = 518.8 пФ, t_{H} = 20.12944 мкс.

Временные диаграммы RC-схемы с дифференцирующим конденсатором

 $t_{\text{и вых}}^{+} = 1,3962 \text{ мкс}$

 $t_{\text{h bmx}}^{-} = t_{\text{-}} - t_{\text{m}} = (21,526-2012944) \text{ MKC} = 1,3966 \text{ MKC}$

	$t_{_{ m HBbix}}^{^+}$, MKC	$t_{_{ m HBMX}}$, MKC
Эксперимент	1,3962	1,3966
Расчет	1,4091	1,4091

$$t_{_{\mathrm{H\,BMX}}}^{^{+}}=0.7$$
*R $_{2}$ С $_{2}$ = 0.7*3.88кОм*518.8пФ = 1,4091 мкс

$$t_{\text{и вых}}^{\text{-}} = 0.7 \text{*R}_2 \text{C}_2 = 0.7 \text{*3.88} \text{кОм*518.8} \text{пФ} = 1,4091 \text{ мкс}$$