4KIM

마스크착용영역복원및교체를통한인물식별

지도교수님 : 최유경 교수님

무인이동체 17011882 김우혁 / 무인이동체 17011874 김정호 스마트기기 17011791 김동균 / 스마트기기 19011798 김지수 제작동기문제인식 & 기대효과

02제품소개
기술 구조도 / 각 단계별 기능

지 차별점 핵심 아이디어 / 동양인 데이터 구축 및 전처리 다양한 실험을 통한 성능 개선 / 추가 성능 개선 및 하드웨어 구성

04 시연영상

"이은해도 마스크 쓰면 딴사람"...베테랑 형 사 속태우는 '마기꾼'

중앙일보 | 입력 2022.04.12.22:12 업데이트 2022.04.12.23:14

지면보기 ①

김민주 기자

"현상수배범 신고가 줄어들더라고요. 다들 마스크를 쓰고 다니니 그 영향이 있을 것 같아요."

부산 해운대경찰서의 베테랑 형사의 말이다. 그는 신종 코로나바이러스 감염증 (코로나19) 확산 이후 사건 현장에서 나타난 변화를 체감하고 있다고 했다. 이 추론은 통계상으로도 나타나고 있다. 대검찰청의 범죄분석 통계를 보면 코로나19 첫해인 2020년 살인 범죄자를 검거하는 데 3개월 넘게 걸린 사건의 비율은 12.0% (747건 중 90건)였다. 이전 10년에 비해 가장 높은 수치다.

코로나 이후 살인・강도 검거 늦어져

검찰과 경찰이 범죄자 추적과 검거에 어려움을 겪고 있다. 코로나 3년째에 접어들면서 일선서의 경찰들은 추적에 따르는 제약이 적지 않다고 호소하고 있다. 탐문 등 대민 활동, 범죄자 식별, 신고 등이 전반적으로 원활하지 않아서다. 마스크 착용이 일상화된 것이 대표적인 애로사항이다.범죄자들이 자연스럽게 마스크 뒤에 숨을 수 있기 때문이다. 크 썼을 때와 벗었을 때 얼굴이 다르다는 우스갯소리 '마기꾼'(마스크 쓴 사기꾼)이 일선 사건 현장에서는 농담이 아닌 현실로 나타나고 있다. 마기꾼은 따로 있었던 셈이다.

마스크 뒤에 숨는 범죄자

- 1. 경찰 추적의 한계
- 2. 원활하지 않은 탐문
- 3. 범죄자 식별의 어려움

기대효과

현장 출동

상황 발생 및 신고 접수

얼굴 하관 복원하여 용 의자 즉각 식별

탐색자 실시간 고해상 도 얼굴 획득

탐색자, 감독자 즉시 신 원조회 가능

거리두기 준수 및 탐색 자 감염 예방

포획 완료

상황 종료

각 단계별 기능

Face Detection & Classification

Super Resolution

Mask Detection

Face Restoration

Face Swapping

Face Detection & Classification

Super Resolution

Mask Detection

(using reduced ResNet-10)

BSRGAN(x4)
Deep Blind Image Super-Resolution

SSD MobileNet_v1

Face Restoration

DMFN (Dense Multi-scale Fusion Network)

Image Fine-grained Inpainting

Face Swapping

OpenCV & dlib

Concordance Rate: 1.9 %

Inconsistent

우리는 생성 모델과 함께 Face-Swap 활용

'식별화'

Concordance Rate: 1.9 %

차별점 ① 동양인 데이터 구축 및 전처리

차별점 ①

동양인 데이터 구축 및 전처리

AiHub : 한국인 안면 이미지

- **제공** : 한국과학기술원

- 목적 : 한국에 적용 가능한 기술 개발을 위해 한국 인 얼굴 특성에 맞는 데이터베이스 필요

- **공개수량**: 1,000명 (19년도 600명, 18년도 400명)

- **데이터셋 분포:** 20대부터 50대의 다양한 사람이 고

르게 분포

AFAD (Aged Asian Face Dataset)

- 제공 : Wenzhi Caoa , Vahid Mirjalilib , Sebastian

Raschkaa

- 목적 : 동양인 안면 이미지를 이용한 나이 예측

Task를 수행하기 위해 구축

- 공개수량 : 165K, Lite Version: 60,000

- **데이터셋 분포:** 19세 ~ 39세, 남녀 데이터

		상세 설명구성 요소
안면 이미지 촬영 시스템	반구 형태의 프레임	좌우 90도, 상단 30도 / 하단 15도 커버
	최소 20대의 DSLR 및 Webcam	Canon EOS 100D
	Auto Illuminator	각도별, 조도별(Lux 단위) 조절 가능
안면 이미지 데이터	포즈	좌우 90도, 상단 30도 / 하단 15도 이내
	조명	30 가지 경우
	가림	일반 안경, 뿔테 안경, 선글라스, 모자
	표정	일반, 웃음, 찡그림
	해상도	고화질(864x576), 중화질(346x230), 저화질(173x115)
색인 정보	촬영 조건	폴더와 파일 이름으로 구분
	기타	특징점, 바운딩 박스 정보(특정 촬영 조건 내)

차별점 ②

다양한 실험을 통한 성능 개선

- 실험 설계

- * 마스크 착용 영역만 자연스러운 얼굴로 복원
- ⇒ Mask Box Position → 무작위 아닌 이미지의 ½(아래)로 지정
- ⇒ 좌/우 Margin → (20, 40, 60) Random 설정
- ⇒ 최종적으로 Facial Keypoints Detection 활용 정교한 마스킹
- * AiHub & AFAD Dataset → Face Detection 결과와 유사하도록 전처리
 - ⇒ Inference 시, Margin 등 인위적인 픽셀 조정 실시
- * Learning Rate, Epoch 등 하이퍼-파라미터 튜닝
 - ⇒ Learning Rate: 2e-4 2e-3 5e-4
 - ⇒ Iteration: 10000 20000 30000
- * 평가 방법: PSNR, SSIM, LPIPS

전이학습 조건

- Learning Rate: 2e-4

- Batch Size: 16

- Iterations: 30000 (about 9 epoch) ⇒ 12h

- Optimizer: Adam (b1=0.5, b2=0.9)

- GPU: Tesla P100-PCIE (13.7GB) ⇒ Colab-Pro

- Loss Weights: 25, 5, 0.003, 1

$$\mathcal{L}_{total} = \mathcal{L}_{mae} + \lambda \left(\mathcal{L}_{self-guided} + \mathcal{L}_{fm_vgg} \right) + \eta \mathcal{L}_{fm_dis} + \mu \mathcal{L}_{adv} + \gamma \mathcal{L}_{align},$$

Dataset: AiHub

- Total: 60,000 / Train: 54,000 / Val: 6,000

- Scaling: [-1, 1]

- Resizing: **256 x 256**

- Mask Box Size: Face Keypoints Detection

- Mask Box Position: Face Keypoints Detection

- Mask Box Max Size: Face Keypoints Detection

차별점 ② 다양한 실험을 통한 성능 개선

Original Model

avg_psnr = 20.883 avg_ssim = 0.770

LPIPS(squeezed_mean) = 0.066

Our Best Result

avg_psnr = 25.950 avg_ssim = 0.865

LPIPS(squeezed_mean) = 0.127

AiHub: 한국인 안면 이미지

차별점 ② 다양한 실험을 통한 성능 개선

학습 데이터를 테스트 혹은 시연에 활용하는 CHEATING X 데이터 전처리와 다양한 실험을 통해 동양인 복원 성능 개선

Our Best Result avg_psnr = 25.950 avg_ssim = 0.865 LPIPS(squeezed_mean) = 0.127

AlHub: 한국인 안면 어떠지

차별점 ③ 추가 성능 개선 및 하드웨어 구성

