below

 \vee write the function in the form y = f(u) and In Exercises u = g(x). Then find dy/dx as a function of x.

9.
$$y = (2x + 1)^5$$

10.
$$y = (4 - 3x)^9$$

14.
$$y = \left(\frac{x}{5} + \frac{1}{5x}\right)^5$$

In Exercises find a parametrization for the curve.

82. the line segment with endpoints (-1, 3) and (3, -2)

84. the left half of the parabola $y = x^2 + 2x$

Use implicit differentiation to find dy/dx in Exercises below.

[Ex 3.6, p211)

19.
$$x^2y + xy^2 = 6$$

20.
$$x^3 + y^3 = 18xy$$

25.
$$y^2 = \frac{x-1}{x+1}$$

The radius r and height h of a right circular cone are related to the cone's volume V by the equation $V = (1/3)\pi r^2 h$.

a. How is dV/dt related to dh/dt if r is constant?

b. How is dV/dt related to dr/dt if h is constant?

c. How is dV/dt related to dr/dt and dh/dt if neither r nor h is constant?