MATH3322 Matrix Computation Homework 4

Due date: 12 April, Monday

- 1. Let $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ be two vectors satisfying $||x||_2 = ||y||_2$.
 - (a) Find a Householder matrix H such that Hx = y.
 - (b) Prove $\mathbf{H}\mathbf{y} = \mathbf{x}$ as well.
- 2. As the first sub-step of the QR algorithm for A, we used an orthogonal matrix Q_1 to reduce the first column a_1 to a multiple of e_1 . We have seen in class that two following approaches are used.
 - (i) In the Householder QR algorithm, we choose Q_1 to be the Householder matrix such that $Q_1a_1 = \|a_1\|_2e_1$. (Here without loss of generality, we assumed a_1 is reduced to $\|a_1\|_2e_1$ rather than $-\|a_1\|_2e_1$.)
 - (ii) In the Givens QR algorithm, we use the product of a series of Givens rotations $Q_1 = G_{n-1}^{(1)} \cdots G_1^{(1)}$ such that $Q_1 a_1 = ||a_1||_2 e_1$.

Prove that the two Q_1 's in (i) and (ii) are different if all entries of a_1 are non-zero. (Actually, there are many other different ways to orthogonally reduce a_1 to a multiple of e_1 .)

3. Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ and have full column rank. Let $\begin{bmatrix} \hat{r} \\ \hat{x} \end{bmatrix}$ be the solution of

$$egin{bmatrix} egin{bmatrix} A & A \ A^T & 0 \end{bmatrix} egin{bmatrix} r \ x \end{bmatrix} = egin{bmatrix} b \ 0 \end{bmatrix}$$

Prove that \hat{x} is also the solution of the least squares problem $\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2$. This gives us a new method to solve the least squares problem.

4. Write a code to use QR least squares to solve the linear regression with polynomial functions. An incomplete sample code QRLS_poly.m is provided. Submit your code and the plotted graph. You will see *over-fitting* of the high-degree polynomial regression. (If you cannot see it, run the code again.)