Problem (Problem 1):

- (a) Show that \mathbb{R} is not a free \mathbb{Z} -module.
- (b) Compute $hom_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z})$ and $hom_{\mathbb{Z}}(\mathbb{R},\mathbb{Z})$.

Solution:

(a) Suppose toward contradiction that $\mathbb R$ were a free $\mathbb Z$ -module. Then, there would be some unique $\mathbb Z$ -linear combination

$$1 = z_1b_1 + \cdots + z_nb_n$$

with $b_1, \ldots, b_n \in B$, where B is the basis for \mathbb{R} . We observe now that for any $k \in \mathbb{Z}_{>0}$,

$$\frac{1}{k} = z_1'b_1' + \dots + z_m'b_m'$$

for some other basis elements $b_1', \ldots, b_m' \in B$ and integers z_1', \ldots, z_m' . Suppose toward contradiction that there were some b_i' such that $b_i' \notin \{b_1, \ldots, b_n\}$. Then, we would have

$$1 = k(z'_1b'_1 + \dots + z'_mb'_m)$$

= $kz'_1b'_1 + \dots + kz'_mb'_m$,

implying that 1 has a non-unique expression of integral linear combinations of basis elements, contradicting the assumption that \mathbb{R} is free over \mathbb{Z} .

There is some submodule $Y \supseteq \mathbb{Q}$ of \mathbb{R} defined by $\mathbb{Z}\langle b_1, \ldots, b_n \rangle$. The map

$$v: \mathbb{Z}^n \to Y$$

 $(z_1, \dots, z_n) \mapsto z_1 b_1 + \dots + z_n b_n$

is thus an isomorphism, as it is injective by the assumption that B is a basis and surjective by definition. Now, since $\mathbb{Q} \subseteq \mathbb{Y}$ is a submodule, we observe that $v^{-1}(\mathbb{Q}) \subseteq \mathbb{Z}^n$ is a submodule, as for any $w_1, w_2 \in v^{-1}(\mathbb{Q})$, we have $v(w_1), v(w_2) \in \mathbb{Q}$, whence $v(w_1 + w_2) \in \mathbb{Q}$, so that $w_1 + w_2 \in v^{-1}(\mathbb{Q})$, and $v(zw_1) = zv(w_1) \in \mathbb{Q}$ for any $z \in \mathbb{Z}$, whence $zw_1 \in v^{-1}(\mathbb{Q})$.

Now, since each $\mathbb Z$ is a PID (hence Noetherian), it follows that every $\mathbb Z$ -submodule(/ideal) of $\mathbb Z^n$ is also finitely generated, as it is of the form $I_1 \times \cdots \times I_n$ for ideals $I_1, \ldots, I_n \in \mathbb Z$. Thus, it follows that $\mathbb Q \cong \nu^{-1}(\mathbb Q)$, whence $\mathbb Q$ is then isomorphic to a finitely generated $\mathbb Z$ -module, which is a contradiction as it has been well-established that $\mathbb Q$ is not finitely generated as a $\mathbb Z$ -module.

(b) We claim that both $hom_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z})$ and $hom_{\mathbb{Z}}(\mathbb{R},\mathbb{Z})$ are zero. Toward this end, observe that

$$\varphi\left(\frac{a}{b}\right) = k\varphi\left(\frac{a}{kb}\right)$$

for all $\frac{a}{b} \in \mathbb{Q}$ with $\frac{a}{b} \neq 0$ and all $k \in \mathbb{Z}_{>0}$. Yet, this can only be the case if $\phi(\frac{a}{b}) = 0$, whence $hom_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}) \cong \{0\}$. Similarly, if $r \in \mathbb{R}$ is real with $r \neq 0$, then

$$\varphi(\mathbf{r}) = \mathbf{k}\varphi\left(\frac{\mathbf{r}}{\mathbf{k}}\right),$$

for all $k \in \mathbb{Z}_{>0}$, so that $\varphi(r) = 0$, and thus $hom_{\mathbb{Z}}(\mathbb{R}, \mathbb{Z}) \cong \{0\}$.

Problem (Problem 2): Let R be a commutative ring with 1. Suppose there are integers m_1 and m_2 such that $R^{m_1} \cong R^{m_2}$. Prove that $m_1 = m_2$.

Solution: Let I be a maximal ideal of R, and let K = R/I. We claim that if $M_1 \cong M_2$ are isomorphic R-modules, then $M_1/IM_1 \cong M_2/IM_2$ are isomorphic as R/I-vector spaces. Toward this end, we let

$$\psi: M_1 \to M_2/IM_2$$

be a surjective homomorphism of R-modules defined by $M_1 \xrightarrow{\phi} M_2 \xrightarrow{\pi} M_2/IM_2$, whence $ker(\psi) = IM_1$, as

$$\psi(v_1) = 0 + IM_2$$

if and only if $\varphi(v_1) \in IM_2$, whence $\varphi(v_1) = i\varphi(w_1)$ with $i \in I$, or that $\varphi(iw_1) \in IM_2$, so $iw_1 \in IM_1$. The reverse inclusion follows from the first isomorphism theorem, as $IM_1 \subseteq \ker(\psi)$ by observation. Thus, we have an isomorphism $\overline{\psi} \colon M_1/IM_1 \to M_2/IM_2$.

We claim that the action

$$(r+I) \cdot (m+IM_1) = r \cdot m + IM_1$$

is a well-defined action of R/I on M_1/IM_1 . Toward this end, we let $r_1 + I = r_2 + I$, whence $r_1 - r_2 \in I$. For any $m + IM_1 \in M_1/IM_1$, we have (as the quotient module M_1/IM_1 is well-defined)

$$\begin{split} (r_1 + I) \cdot (m + IM_1) &= r_1 \cdot m + IM_1 \\ &= (r_1 - r_2 + r_2) \cdot m + IM_1 \\ &= ((r_1 - r_2) \cdot m + IM_1) + (r_2 \cdot m + IM_1) \\ &= (0 + IM_1) + (r_2 \cdot m + IM_1) \\ &= r_2 \cdot m + IM_1. \end{split}$$

The rest of the axioms for the action of R/I on M_1/IM_1 follow from the axioms of R-modules.

Thus, it follows that if $R^{m_1} \cong R^{m_2}$, then we have

$$R^{m_1}/IR^{m_1} \cong R^{m_2}/IR^{m_2}$$
 $K^{m_1} \cong K^{m_2}$.

whence $m_1 = m_2$ by the invariance of dimension for vector spaces.

Problem (Problem 4): Let R be a local ring with maximal ideal I.

- (a) Show that if M is a finitely generated module with $I \cdot M = M$, then $M = \{0\}$.
- (b) If M is a finitely generated R-module, and $y_1, ..., y_m \in M$ are such that $\overline{y_1}, ..., \overline{y_m} \in M/IM$ generate M/IM, then $y_1, ..., y_m$ generate M.

Solution:

(a) Let $M = \langle x_1, \dots, x_n \rangle$, and suppose IM = M. Then, it follows that there are $v_1, \dots, v_n \in I$ such that

$$x_n = v_1 \cdot x_1 + \cdots + v_n \cdot x_n,$$

whence

$$(1-\nu_n)\cdot x_n = \nu_1\cdot x_1 + \cdots + \nu_{n-1}\cdot x_{n-1},$$

whence, since I is a local ring,

$$x_n = (1 - v_n)^{-1} (v_1 \cdot x_1 + \dots + v_{n-1} \cdot x_{n-1}),$$

meaning that $M = \langle x_1, \dots, x_{n-1} \rangle$. Inductively, any generating subset of M can be reduced in this fashion until $M = \{0\}$.

(b) Let $N = \langle y_1, \dots, y_m \rangle$. We wish to show that

$$M = N + IM$$
.

Toward this end, let $v \in M$. If $v \in IM$, then we are done. Else, if $v \notin IM$, it follows that $v + IM \neq 0 + IM$, so there are $\alpha_1, \ldots, \alpha_m$ such that

$$v + IM = \alpha_1 \cdot (y_1 + IM) + \dots + \alpha_m \cdot (y_1 + IM)$$
$$= (\alpha_1 \cdot y_1 + \dots + \alpha_m \cdot y_m) + IM.$$

In particular, this means there is some $q \in IM$ such that

$$v = (\alpha_1 \cdot y_1 + \cdots + \alpha_m \cdot y_m) + q,$$

whence M = N + IM.

Consider the subspace I(M/N) of M/N. We seek to show that I(M/N) = M/N. Let $v + N \in M/N$. Since $v \in M$, it follows that there are $r_1, \ldots, r_n \in I$ and $q \in IM$ such that

$$v = \sum_{i=1}^{n} r_i \cdot y_i + q.$$

In particular, this means that v + N = q + N. Since q + N = ip + N for some $p \in M$, we have i(p + N) = v + N, whence I(M/N) = M/N, meaning that by part (a), we have $M/N \cong \{0\}$, or that M = N. Thus, y_1, \ldots, y_n generate N.

Problem (Problem 6): Let R be a ring, M an R-module, and let $S \subseteq R$ be multiplicative.

- (a) Mimic the construction of the localization $S^{-1}R$ to define the localization $S^{-1}M$ making it into an R-module.
- (b) Show that $S^{-1}M$ gains the structure of an $S^{-1}R$ -module.

Solution:

(a) Let $\overline{M} = M \times S$, and define a relation $(m_1, s_1) \sim (m_2, s_2)$ if there exists $s \in S$ such that $s(s_2m_1 - s_1m_2) = 0$.

We claim that this is an equivalence relation.

- Reflexivity is clear from the fact that we may choose s = 1, whence $(m_1, s_1) \sim (m_1, s_1)$ if and only if $s_1 m_1 s_1 m_1 = 0$.
- Symmetry follows from the fact that, if $(m_1, s_1) \sim (m_2, s_2)$, then

$$s(s_2m_1 - s_1m_2) = 0$$

$$= (-1) \cdot 0$$

$$= (-1)(s(s_2m_1 - s_1m_2))$$

$$= s(s_1m_2 - s_2m_1),$$

meaning that $(m_2, s_2) \sim (m_1, s_1)$.

• Finally, for transitivity, we let $(m_1, s_1) \sim (m_2, s_2)$ and $(m_2, s_2) \sim (m_3, s_3)$. Then,

$$s(s_2m_1 - s_1m_2) = 0$$

 $t(s_3m_2 - s_2m_3) = 0.$

We seek to find $r \in S$ such that $r(s_3m_1 - s_1m_3) = 0$. Toward this end, we multiply the first equation by ts_3 and the second equation by ss_1 . This gives

$$sts_3(s_2m_1 - s_1m_2) = 0$$

$$sts_1(s_3m_2 - s_2m_3) = 0.$$

Distributing these sums out, we get

$$sts_2s_3m_1 - sts_1s_3m_2 = 0$$

 $sts_1s_3m_2 - sts_1s_2m_3 = 0$.

Adding, we get

$$sts_2s_3m_1 - sts_2s_1m_3 = 0$$
,

whence

$$sts_2(s_3m_1 - s_1m_3) = 0,$$

and since $s, t, s_2 \in S$, so too is sts_2 , whence $(m_1, s_1) \sim (m_3, s_3)$.

We write $\frac{m}{s} \equiv [(m, s)]$. We may define R-operations by taking

$$r \cdot \left(\frac{m}{s}\right) = \frac{rm}{s} \frac{m_1}{s_1} + \frac{m_2}{s_2} = \frac{s_2m_1 + s_1m_2}{s_1s_2}.$$

We claim that both of these operations are well-defined. To start, if $(m_1, s_1) \sim (m_2, s_2)$, then

$$s(s_2m_1 - s_1m_2) = 0$$

$$rs(s_2m_1 - s_1m_2) = 0$$

$$s(s_2rm_1 - s_1rm_2) = 0$$

whence $\frac{rm_1}{s_1} = \frac{rm_2}{s_2}$.

Now, we observe that addition as defined is commutative, so we only need to check well-definedness in the case of one summand. Therefore, if $(m_1,s_1) \sim (n_1,t_1)$, we have some $\nu \in S$ such that

$$v(t_1m_1 - s_1n_1) = 0.$$

We claim now that

$$\frac{s_2m_1+s_1m_2}{s_1s_2}=\frac{s_2n_1+t_1m_2}{t_1s_2}.$$

Indeed, we observe that

$$v(t_1s_2^2m_1 + t_1s_1s_2m_2 - s_1s_2^2n_1 - t_1s_1s_2m_2) = vs_2^2(t_1m_1 - s_1n_1)$$

$$= s_2^2(v(t_1m_1 - s_1n_1))$$

$$= 0.$$

Now, addition is associative, since

$$\frac{m_1}{s_1} + \left(\frac{m_2}{s_2} + \frac{m_3}{s_3}\right) = \frac{m_1}{s_1} + \left(\frac{s_3 m_2 + s_2 m_3}{s_2 s_3}\right)$$

$$= \frac{s_2 s_3 m_1 + s_1 s_3 m_2 + s_1 s_2 m_3}{s_1 s_2 s_3}$$

$$= \frac{s_2 m_1 + s_1 m_2}{s_1 s_2} + \frac{m_3}{s_3}$$

$$= \left(\frac{m_1}{s_1} + \frac{m_2}{s_2}\right) + \frac{m_3}{s_3}.$$

Furthermore, we observe that scalar multiplication comports with addition in both R and $S^{-1}M$, as

$$(r_1 + r_2)\frac{m}{s} = \frac{(r_1 + r_2)m}{s}$$

$$= \frac{r_1m + r_2m}{s}$$

$$= \frac{r_1m}{s} + \frac{r_2m}{s}$$

$$= r_1\frac{m}{s} + r_2\frac{m}{s}$$

$$r\left(\frac{m_1}{s_1} + \frac{m_2}{s_2}\right) = r\left(\frac{s_2m_1 + s_1m_2}{s_1s_2}\right)$$

$$= \frac{rs_2m_1 + rs_1m_2}{s_1s_2}$$

$$= \frac{s_2rm_1 + s_1rm_2}{s_1s_2}$$

$$= \frac{rm_1}{s_1} + \frac{rm_2}{s_2}$$

$$= r\frac{m_1}{s_1} + r\frac{m_2}{s_2}.$$

Finally, we observe that

$$\frac{m_1}{s_1} + \frac{0}{1} = \frac{m_1}{s_1},$$

whence $\frac{0}{1}$ is the additive identity in S⁻¹M, and

$$1\frac{m}{s}=\frac{m}{s},$$

whence $1 \cdot v = v$ in $S^{-1}M$. Thus, we find that $S^{-1}M$ takes on a structure as an R-module.

(b) To extend the structure of $S^{-1}M$ to yield an $S^{-1}M$ -module, we take the scalar multiplication

$$\frac{r}{s} \cdot \frac{m}{t} = \frac{rm}{st}.$$

Now, we observe that

$$\begin{split} \left(\frac{r_1}{s_1} + \frac{r_2}{s_2}\right) \frac{m}{t} &= \left(\frac{r_1 s_2 + r_2 s_1}{s_1 s_2}\right) \frac{m}{t} \\ &= \frac{(r_1 s_2 + r_2 s_1)m}{s_1 s_2 t} \\ &= \frac{r_1 s_2 m + r_2 s_1 m}{s_1 s_2 t} \\ &= \frac{r_1 m}{s_1 t} + \frac{r_2 m}{s_2 t} \\ &= \frac{r_1}{s_1} \frac{m}{t} + \frac{r_2}{s_2} \frac{m}{t} \\ \frac{r}{s} \left(\frac{m_1}{t_1} + \frac{m_2}{t_2}\right) &= \frac{r}{s} \left(\frac{t_2 m_1 + t_1 m_2}{t_1 t_2}\right) \end{split}$$

$$= \frac{rt_2m_1 + rt_1m_2}{st_1t_2}$$

$$= \frac{rm_1}{st_1} + \frac{rm_2}{st_2}$$

$$= \frac{r}{s}\frac{m_1}{t_1} + \frac{r}{s}\frac{m_2}{t_2},$$

meaning that scalar multiplication by elements of $S^{-1}R$ comports with addition in $S^{-1}M$ and vice versa. Finally, we also observe that

$$\frac{0}{1}\frac{m}{s} = \frac{0}{s}$$
$$= \frac{0}{1}$$
$$\frac{1}{1}\frac{m}{s} = \frac{m}{s}.$$

Thus, $S^{-1}M$ takes on the structure of an $S^{-1}R$ -module.