导数习题课2(导数定义,10个题)

1.设
$$f(x)$$
在 x_0 处可导,则 $\lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{2h} =$

(A)
$$-f'(x_0)$$
 (B) $f'(-x_0)$ (C) $f'(x_0)$ (D) $2f'(x_0)$

2.设函数
$$f(x)$$
在 x_0 可导,则 $\lim_{t\to 0} \frac{f(x_0+t)+f(x_0-3t)}{t} =$

(A)
$$f'(x_0)$$
 (B) $-2f'(x_0)$ (C) ∞ (D) 不能确定

3.设
$$f(x)$$
在 $x = 0$ 处可导,且 $f(0) = 0$,求 $\lim_{x \to 0} \frac{f(tx) - f(x)}{x}$

4.设 f(x) 是 定 义 在 区 间 [-1,1] 上 的 有 界 函 数 , 且 $g(x) = f(x) \sin(x^2)$, 求 g'(0).

5.设
$$f(x)$$
在点 x_0 可导,证明: $\lim_{x \to x_0} \frac{xf(x_0) - x_0 f(x)}{x - x_0} = f(x_0) - x_0 f'(x_0)$.

6.设f(x)可导, $F(x) = f(x)(1 + |\sin x|)$. 若使F(x)在x = 0处可导,则必有

(A)
$$f(0) = 0$$
 (B) $f'(0) = 0$

(C)
$$f(0) + f'(0) = 0$$
 (D) $f(0) - f'(0) = 0$

7.若
$$f(x)$$
在 $x = 0$ 点连续,且 $\lim_{x \to 0} \frac{f(x)}{x}$ 存在,证明 $f(x)$ 在 $x = 0$ 点可导.

8.设函数
$$f(x)$$
在 $(-\infty, +\infty)$ 上有定义,且对任意 x_1, x_2 ,有 $f(x_1 + x_2) = f(x_1) f(x_2)$, $f(x) = 1 + xg(x)$,其中 $\lim_{x \to 0} g(x) = 1$,证明 $f(x)$ 在 $(-\infty, +\infty)$ 上处处可导.

- 9.设 f(x)的 定 义 域 为 所 有 非 零 实 数 之 全 体 , 对 任 何 非 零 的 实 数 x、 y,均 有 : f(xy) = f(x) + f(y),且 f'(1)存 在 , 证 明 : f(x)在 $x \neq 0$ 的 所 有 点 处 是 可 导 的 .
- 10.已 知 函 数 f(x)满 足 对 任 意 的 x_1 、 x_2 , 有 $\left| f(x_2) f(x_1) \right| \leq (x_2 x_1)^{\alpha}$ ($\alpha > 1$)成 立 , 证 明 f'(x)处 处 存 在 并 求 出 f'(x).

答案

1.
$$\lim_{h \to 0} \frac{f(x_0 - 2h) - f(x_0)}{2h} = -\lim_{h \to 0} \frac{f(x_0 - 2h) - f(x_0)}{-2h} = -f'(x_0)$$

故选 (A).

2.由
$$f(x)$$
 在 x_0 点可导,则 $\lim_{t\to 0} [f(x_0+t)+f(x_0-3t)] = 2f(x_0)$

当
$$f(x_0) \neq 0$$
 时,则有 $\lim_{t \to 0} \frac{f(x_0 + t) + f(x_0 - 3t)}{t} = \infty$

当
$$f(x_0) = 0$$
 时,则有

$$\lim_{t \to 0} \frac{f(x_0 + t) + f(x_0 - 3t)}{t}$$

$$= \lim_{t \to 0} \left[\frac{f(x_0 + t) - f(x_0)}{t} + \frac{f(x_0 - 3t) - f(x_0)}{-3t} \cdot (-3) \right]$$

$$= f'(x_0) - 3f'(x_0) = -2f'(x_0)$$

3. 由题设有
$$f'(0) = \lim_{x \to 0} \frac{f(x)}{x}$$
,

当
$$t = 0$$
 时, $\lim_{x \to 0} \frac{f(tx) - f(x)}{x} = \lim_{x \to 0} \left[-\frac{f(x)}{x} \right] = -f'(0);$

当
$$t \neq 0$$
时, $\lim_{x \to 0} \frac{f(tx) - f(x)}{x} = \lim_{x \to 0} \frac{tf(tx)}{tx} - \lim_{x \to 0} \frac{f(x)}{x} = (t-1)f'(0).$

$$4.g'(0) = \lim_{\Delta x \to 0} \frac{g(0 + \Delta x) - g(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\Delta x)\sin(\Delta x)^{2}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (\Delta x) f(\Delta x) = 0.$$

$$5.\lim_{x \to x_0} \frac{xf(x_0) - x_0 f(x)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{x f(x_0) - x_0 f(x_0) + x_0 f(x_0) - x_0 f(x)}{x - x_0}$$

$$= f(x_0) - x_0 \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f(x_0) - x_0 f'(x_0).$$

6.
$$F(x) = \begin{cases} f(x)(1-\sin x), & x < 0 \\ f(0), & x = 0 \\ f(x)(1+\sin x), & x > 0 \end{cases}$$

$$F'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x)(1 - \sin x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} - \lim_{x \to 0^{-}} f(x) \cdot \frac{\sin x}{x}$$
$$= f'(0) - f(0)$$

$$F'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x)(1+\sin x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} + \lim_{x \to 0^{+}} f(x) \cdot \frac{\sin x}{x}$$

= f'(0) + f(0)

若使 F(x) 在 x = 0 处可导,则必须 $F'_{-}(0) = F'_{+}(0)$.则 f(0) = 0. 因此应选(A).

因为 f(x) 在 x = 0 连续,所以 $\lim_{x \to 0} f(x) = f(0) = 0$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = A.$$

8. 证 明 : 任 取 $x_0 \in (-\infty, +\infty)$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0) f(\Delta x) - f(x_0)}{\Delta x}$$

$$= f(x_0) \lim_{\Delta x \to 0} \frac{f(\Delta x) - 1}{\Delta x} = f(x_0) \lim_{\Delta x \to 0} \frac{1 + \Delta x g(\Delta x) - 1}{\Delta x}$$

$$= f(x_0) \lim_{\Delta x \to 0} g(\Delta x) = f(x_0)$$
由 x_0 的任意性,故 $f(x)$ 在 $(-\infty, +\infty)$ 上处处可导。

由 x_0 的任意性,故 f(x) 在 $(-\infty, +\infty)$ 上处处可导.

9. 证:对
$$\forall x \neq 0$$
, $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

$$= \lim_{\Delta x \to 0} \frac{f[x(1 + \frac{\Delta x}{x}) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(1 + \frac{\Delta x}{x}) - f(1)}{\Delta x} \quad (\because f(1) = 0)$$

$$= \lim_{\Delta x \to 0} \frac{f\left(1 + \frac{\Delta x}{x}\right) - f\left(1\right)}{x \cdot \frac{\Delta x}{x}} = \frac{1}{x} f'(1).$$

10. 证明 $\forall x_0 \in (-\infty, +\infty)$

考虑
$$0 \le \left| \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \right| \le \left| \frac{(\Delta x)^{\alpha}}{\Delta x} \right| = (\Delta x)^{\alpha - 1}.$$

故当 $\Delta x \rightarrow 0$ 时, $\alpha > 1$ 由夹逼定理得 $f'(x_0) = 0$.