## 《线性代数》作业 9

截止时间: 11 月 26 日 18:00。注明姓名, 学号和组号。 纸质。请写出完整的计算等解题过程。提交于课堂或近春园西楼入口处我的信箱。

1. 证明:设  $\mathcal{L}$  是  $\mathbb{R}^3$  中的直线:

$$\mathcal{L}: \left\{ \begin{array}{rclrr} x_1 & + & x_2 & - & 3x_3 & = & 1, \\ 2x_1 & - & x_2 & - & 3x_3 & = & 5. \end{array} \right.$$

求  $\mathbb{R}^3$  中一点  $\boldsymbol{b} = [1 \quad 0 \quad 2]^{\mathrm{T}}$  到直线  $\mathcal{L}$  上的投影。

注: 当直线  $\mathcal{L}_1$  经过原点时,可以自然的定义一个向量  $\boldsymbol{b}$  在直线  $\mathcal{L}_1$  上的正交投影,因为直线  $\mathcal{L}_1$  构成一个子空间,其中的任意向量都以原点为起点。注意到  $\boldsymbol{b}$  及其投影共享一个起点,即原点。构造出的直角三角形对应着  $\boldsymbol{b}$  关于  $\mathcal{L}_1$  的正交分解。



当直线  $\mathcal{L}_2$  不经过原点时,会讨论一点或一个向量  $\boldsymbol{b}$  到这条直线的投影,而不是正交投影。注意到这个投影是落在直线  $\mathcal{L}_2$  上,需要同时记录起点和终点,记为  $\vec{c} = \{\boldsymbol{c}_1, \boldsymbol{c}_2\}$ 。即使将  $\vec{c}$  平移到原点,应得到  $\boldsymbol{c}_3 = \boldsymbol{c}_2 - \boldsymbol{c}_1$ ,和  $\boldsymbol{b}$  构造出一个直角三角形。另一个直角边长度  $\|\boldsymbol{b} - \boldsymbol{c}_3\|$  也失去了  $\boldsymbol{b}$  到  $\mathcal{L}_2$  的距离这一解释。简单来说,因为  $\mathcal{L}_2$  不包含零向量,不能构成子空间,所以无法定义其正交投影。

2. 计算下列行列式。

(a) 
$$\begin{bmatrix} 1 & 5 & 0 \\ -1 & 2 & 1 \\ 2 & 3 & 4 \end{bmatrix}$$
 (b) 
$$\begin{bmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{bmatrix}$$
 (c) 
$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & 0 & 0 \\ d_1 & d_2 & 0 & 0 \end{bmatrix}$$
 (d) 
$$A = \begin{bmatrix} i+j \end{bmatrix}_{n \times n}$$
 (e) 
$$A = \begin{bmatrix} ij \end{bmatrix}_{n \times n}$$

- 3. 设 A 是 3 阶方阵,det(A) = 5. 求下列矩阵 B 的行列式。
  - (a)  $B = 2A, -A, A^2$ .

(b) 
$$B = \begin{bmatrix} a_1^{\mathrm{T}} - a_3^{\mathrm{T}} \\ a_2^{\mathrm{T}} - a_1^{\mathrm{T}} \\ a_3^{\mathrm{T}} - a_2^{\mathrm{T}} \end{bmatrix}$$
,其中  $A = \begin{bmatrix} a_1^{\mathrm{T}} \\ a_2^{\mathrm{T}} \\ a_3^{\mathrm{T}} \end{bmatrix}$ .

- $4. \ \ \overset{\text{\tiny $V$}}{\not\sim} A_x = \left[ \begin{array}{cc} -1 & 1 \\ -6 & 4 \end{array} \right] + xI_2.$ 
  - (a) 求  $A_0, A_1, A_2, A_3$  的行列式。
  - (b) 求  $A_x$  的行列式,并将其写成 (x+a)(x+b) 的形式。
  - (c) 分别求  $A_0^2$ ,  $A_0^2 + I_2$ ,  $A_0^2 + 3A_0 + 2I_2$ ,  $A_0^3 2A_0^2 + 3A_0 4I_2$  的行列式,并分析它们与 a, b 的 关系。
- 5. 设方阵 A 具有 QR 分解  $A=Q\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$ . 求  $\det(A)$  的所有可能值。
- 6. 给定一个  $m \times n$  矩阵 A, 且 m > n, rank(A) = n. 计算其正交投影矩阵 P 的行列式:

$$\det(P) = \det(A(A^{T}A)^{-1}A^{T}) = \frac{\det(A)\det(A^{T})}{\det(A^{T}A)} = 1.$$

然而正交投影矩阵常常不可逆。错误在哪里?

- 7. 设 A 可逆,D 是方阵。B, C 是相应阶数的矩阵。证明: $\det\left(\left[\begin{array}{cc}A & B\\ C & D\end{array}\right]\right)=\det(A)\det(D-CA^{-1}B)$ .
- 8. 设 A, B 是 n 阶方阵。证明:  $\det \left( \begin{bmatrix} A & B \\ B & A \end{bmatrix} \right) = \det(A+B) \det(A-B)$ .

9. 给定方阵 
$$A_n = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & \ddots & & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}, \quad B_n = \begin{bmatrix} 1 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}.$$

- (a) 利用展开式得到  $det(B_n)$  关于 n 的递推关系,并计算  $det(B_n)$ .
- (b) 利用  $A_n$  和  $B_n$  的关系,计算  $\det(A_n)$ .

- 10. 设 A 是正交矩阵,且  $\det(A) < 0$ . 证明:  $I_n + A$  不可逆。由此可得,存在非零向量 x,使得 Ax = -x.
- 11. 利用 Cramer 法则把未知数  $x_1, x_2$  表示成 t 的函数:

$$\begin{cases} e^t x_1 + e^{-2t} x_2 = 3\sin t, \\ e^t x_1 - 2e^{-2t} x_2 = t\cos t. \end{cases}$$