SOLACE: A DUAL-AXIS SOLAR TRACKER WITH WEATHER MONITORING STATION

GROUP NO. 6: MECHANICAL ENGINEERING (Section-A)

ANKUR DAS: Ideation, Prototype & Poster Design, Assembly PRANAV JADHAL: Ideation, Hardware, Algorithm Development SREE RAM PM: Prototype Design, Assembly, Programming PANCHAM DEVAM: Hardware, Theory & Data Analysis

JOHAN SURESH: Hardware, Budget & Cost Analysis LAKSHYA TIWARI: Pros & Cons Analysis, Value Proposition SRIVISHNU: Documentation, Overall Presentation Design

PROJECT GOALS & OBJECTIVES

- To optimize the performance of a solar PV system through continuous tracking of the position of the sun and simultaneously adjusting the orientation of the panels to ensure maximum capture of solar radiation.
- To monitor weather conditions such as temperature, humidity and rainfall which ensures longevity of the system thereby significantly reducing maintenance costs
- To creates awareness and promote sustainability by encouraging the use of solar energy

CHALLENGES FACED BY CONVENTIONAL PANELS

- > Limited efficiency leading to reduced energy output
- Fixed orientation leading to potential shading issues
- > Prone to damage under extreme-weather conditions
- > Space-consuming which increases installation expenses

HOW DOES THIS PROJECT ADDRESS THESE CHALLENGES?

- Ensures that the incident solar radiation is always perpendicular to the panel thereby increasing output.
- Follows the position of the sun continuously reducing chances of shading or obstacles.
- Real-time weather monitor alerts the user regarding extreme weather thereby triggering shutdown of system.
- > Higher energy density than conventional panels.

WORKING PRINCIPLE & OPERATING MECHANISM

- > Based on principle of maximum power point tracking (MPPT)
- Solar radiation is detected by LDRs which relays analog signals to the Arduino which is then converted to digital signals and processed by the Arduino program.
- The processed data controls servo motors that adjust the direction of the solar panel.
- The DHT11 sensor and rainfall sensor are connected to the Arduino using the I2C module for data communication which can be then visualized via an Arduino algorithm and Matplotlib.

METHODOLOGY

- > Ideation & Design
- > Assembly-Mechanical & Electrical
- Development of Arduino Programs & Algorithms
- Data Logging & Visualization
- > Testing & Calibration

TIMEFRAME OF PROJECT

- > Planning and Research: 7-8 days
- > Hardware Assembly: 5-6 days
- > Program Development: 1 day
- > Testing and Debugging: 1 day
- Documentation and Finalization: 2-3 days

BUDGET & COST BR	LAKUUWN
------------------	----------------

Items	Quantity	Cost per item (INR)	Total cost (INR)
LDR	4	7.5	30
Arduino UNO R3	1	650	650
10 kΩ Resistor	4	10	40
Servo Motor	2	150	300
Solar Cell	1	120	120
DHT11 sensor	1	110	110
I2C Module	1	125	125
16x2 LCD Screen	1	155	155
Jumper Wires	1 set	250	250
Basic Tools	-	350	350
Foamboard	5	40	200
Other Expenses	-	500	500
Grand Total			~2830

SCHEMATIC BLOCK DIAGRAM

CONCLUSION & RESULTS

- Enhancing of overall energy output
- Improving the reliability on solar energy
- > Promising a sustainable future

- Higher Return on Investment (ROI)
- > Utilizing and allocating energy resources optimally
- > Adaptability to diverse locations