Poglavje 5

Strukture urejenosti

5.1 Delna in linearna urejenost

Definicija 1 Relaciji delne urejenosti $\leq v$ množici A priredimo relaciji < in < v množici A takole:

- 1. $\forall x, y \in A : (x < y \iff x \le y \land x \ne y),$
- 2. $\forall x, y \in A : (x \leqslant y \iff x \leqslant y \land \neg \exists z \in A : (x \leqslant z \land z \leqslant y)).$

 $Relacija < je \underline{stroga\ delna\ urejenost},\ prirejena\ relaciji \leq .$ Formulo x < y beremo: x je strogo pod y.

Relacija < je relacija neposrednega predhodnika, prirejena relaciji delne urejenosti
 \leq . Formulo x < y beremo: x je neposredni predhodnik y-a, ali: y je neposredni naslednik x-a.

Trditev 1 Naj bo \leq relacija delne urejenosti v A.

- 1. Relacija < je irefleksivna, asimetrična ter tranzitivna v A.
- 2. Relacija ≤ je irefleksivna, asimetrična ter intranzitivna v A.

Dokaz: Naj bodo $x, y, z \in A$ poljubni.

- 1. (a) $x < x \implies x \le x \land x \ne x \implies 1 \land 0 \implies 0$, torej je < irefleksivna.
 - (b) $x < y \land y < x \implies x \le y \land y \le x \land x \ne y \implies x = y \land x \ne y \implies 0$, torej je < asimetrična.
 - (c) Iz $x < y \land y < z$ sledi $x \le y \land y \le z$, od tod pa $x \le z$. Če je x = z, iz $x \le y$ dobimo $z \le y$ in zaradi antisimetričnosti relacije \le tudi y = z. To pa je v protislovju z y < z, torej je $x \ne z$ in je relacija < tranzitivna.

2. Ker iz $x \le y$ sledi x < y in je relacija < irefleksivna in asimetrična, je takšna tudi relacija \le . Naj bo $x \le y$ in $y \le z$. Potem je x < y in y < z, po definiciji relacije \le torej $\neg (x \le z)$, kar pomeni, da je relacija \le intranzitivna.

Grafična predstavitev končne delno urejene množice s Hassejevim diagramom

Definicija 2 Naj bo A končna množica, delno urejena z relacijo \leq . Grafično jo predstavimo s Hassejevim diagramom takole:

- elemente A narišemo kot točke v ravnini,
- $\check{c}e$ je x < y, $nari\check{s}emo$ x $ni\check{z}e$ kot y,
- če je $x \le y$, x in y povežemo z vzpenjajočo se črto.

Pripomba 1 Naj bo končna množica A delno urejena z relacijo \leq in naj bo H njen Hassejev diagram. Potem za vse $x, y \in A$ velja:

 $x \leq y \iff v \text{ diagramu } H \text{ obstaja vzpenjajoča se pot od } x \text{ do } y.$

Pri tem med vzpenjajoče se poti uvrščamo tudi prazne poti, ki se začnejo in končajo v isti točki in imajo dolžino 0.

Zgled 1 Oglejmo si nekaj Hassejevih diagramov.

1. $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, relacija deljivosti

2. $A = \mathcal{P}\{1,2,3\}$, relacija inkluzije \subseteq

3. $A = \{1, 2, 3, 4, 5\}$, relacija \leq (manjši ali enak)

Hassejev diagram končne linearno urejene množice lahko pregledno narišemo na (navpični) premici – od tod izvira ime "linearna urejenost":

5.2 Posebni elementi v delno urejenih množicah

Definicija 3 Naj bo množica A delno urejena z relacijo \leq in $a \in A$.

1. element a je minimalen $v A \iff \forall x \in A : (x \le a \Rightarrow x = a)$

- 2. element a je maksimalen v $A \iff \forall x \in A \colon (x \geq a \Rightarrow x = a)$
- 3. element a je prvi ali najmanjši v $A\iff \forall x\in A\colon a\leq x$
- 4. element a je zadnji ali največji v $A\iff \forall x\in A\colon x\leq a$

Zgled 2 1. $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, relacija deljivosti |

minimalni = prvi = 1 maksimalni: 6, 7, 8, 9, 10zadnji: /

2. $A \,=\, \mathcal{P}\{1,2,3\} \setminus \{\emptyset\},$ relacija inkluzije \subseteq

minimalni: $\{1\}$, $\{2\}$, $\{3\}$

prvi: /

maksimalni = zadnji: $\{1,2,3\}$

3. A poljubna množica, relacija enakosti id₄

minimalni: vsi maksimalni: vsi

Če je $A = \emptyset$ ali če ima A vsaj dva elementa, prvih in zadnjih elementov ni.

- 4. $A = \{1, 2, 3, 4, 5\}$, relacija \leq (manjši ali enak) minimalni = prvi = 1 maksimalni = zadnji = 5
- 5. $A = \mathbb{N}$, relacija deljivosti | minimalni = prvi = 1 ($\forall n \in \mathbb{N} : 1 \mid n$) maksimalni = zadnji = 0 ($\forall n \in \mathbb{N} : n \mid 0$)
- 6. $A = \mathbb{Z}$, relacija \leq posebnih elementov ni

Trditev 2 Naj bo množica A delno urejena.

- 1. Vsak prvi element A je minimalen.
- 2. Vsak zadnji element A je maksimalen.
- 3. Če v A obstaja prvi element, je en sam.
- 4. Če v A obstaja zadnji element, je en sam.

Dokaz: 1. Naj bo $a \in A$ prvi element in $x \in A$ poljuben. Potem je $a \le x$. Če je tudi $x \le a$, je zaradi antisimetričnosti x = a, torej je a minimalen.

3. Naj bosta $a_1, a_2 \in A$ oba prva elementa. Ker je a_1 prvi, je $a_1 \leq a_2$. Ker je a_2 prvi, je tudi $a_2 \leq a_1$, torej je zaradi antisimetričnosti $a_1 = a_2$.

Trditev 3 Naj bo množica A linearno urejena.

- 1. Element $a \in A$ je prvi natanko tedaj, ko je minimalen.
- 2. Element $a \in A$ je zadnji natanko tedaj, ko je maksimalen.

Dokaz: 1. Naj bo a prvi element A. Po trditvi 2 je a minimalen.

Pokažimo še obratno: Naj bo $a \in A$ minimalen in $x \in A$. Ker je relacija linearne urejenosti strogo sovisna, je $a \le x$ ali $x \le a$. Ker je a minimalen, iz $x \le a$ sledi x = a. Torej v obeh primerih velja $a \le x$ in je a prvi element A.

Pripomba 2 Naj bo množica A delno urejena z relacijo R in naj bo $B \subseteq A$. Potem je množica B delno urejena z relacijo $R|_B = R \cap (B \times B)$, ki jo imenujemo zožitev relacije R na podmnožico B. Zato lahko govorimo o minimalnih, maksimalnih, prvih, zadnjih elementih poljubne podmnožice $B \subseteq A$.

Oznake.

- 1. Če ima $B\subseteq A$ prvi element, ga imenujemo tudi minimum množice B in ga označimo z min B.
- 2. Ĉe ima $B \subseteq A$ zadnji element, ga imenujemo tudi maksimum množice B in ga označimo z max B.

Definicija 4 Naj bo A delno urejena in naj bo $B \subseteq A$.

- 1. Element $a \in A$ je zgornja meja za B v množici A, če $\forall x \in B : x \leq a$.
- 2. Element $a \in A$ je spodnja meja za B v množici A, če $\forall x \in B : a \leq x$.

Zgled 3 1. $A = \mathbb{R}$, relacija \leq (manjši ali enak), B = odprti interval (0,1) Zgornje meje za B so vsi $a \geq 1$. Spodnje meje za B so vsi a < 0.

2. $A = \mathbb{N}$, relacija deljivosti | , $B = \{12, 18, 24\}$ Zgornje meje za B so vsi skupni večkratniki števil 12, 18 in 24. Spodnje meje za B so vsi skupni delitelji števil 12, 18 in 24, torej 1, 2, 3 in 6.

Definicija 5 Naj bo A delno urejena in naj bo $B \subseteq A$.

- 1. Naj bo $M = \{a \in A; a \text{ je zgornja meja za } B\}$. Če M ima prvi element, je to supremum ali najmanjša (ali natančna) zgornja meja za B v množici A.
- 2. Naj bo $m = \{a \in A; a \text{ je spodnja meja za } B\}$. Če m ima zadnji element, je to infimum ali največja (ali natančna) spodnja meja za B v množici A.

Oznake. Supremum množice B označimo s sup B, infimum množice B pa z inf B.

Zgled 4 1.
$$A = \mathbb{R}$$
, relacija \leq (manjši ali enak), $B =$ odprti interval $(0, 1)$: inf $B = \underline{0}$, sup $B = \underline{1}$

- 2. $A = \mathbb{N}$, relacija deljivosti |, $B = \{12, 18, 24\}$: inf B = D(12, 18, 24) = 6, sup B = v(12, 18, 24) = 72
- 3. $A=\mathcal{P}S$, relacija inkluzije \subseteq , $B=\{A_1,A_2\}$ za poljubni $A_1,A_2\subseteq S$: inf $B=A_1\cap A_2$, sup $B=A_1\cup A_2$

Pripomba 3 Naj bo A delno urejena in naj bo $B \subseteq A$.

- 1. Če B ima zadnji element $\max B$, je to tudi $\sup B$.
- 2. Če B ima prvi element min B, je to tudi inf B.

Zgled 5 $A = \mathbb{R}$, relacija \leq (manjši ali enak)

1. B = zaprti interval [0, 1] $\max B = \sup B = 1$

 $\min B = \inf B = 0$

2. B = odprti interval (0,1)

 $\max B$ ne obstaja, $\sup B = 1$ $\min B$ ne obstaja, $\inf B = 0$

5.3 Dobra urejenost in Zornova lema

Definicija 6 Naj bo $R \subseteq A \times A$.

Relacija R dobro ureja množico A, če

- 1. R delno ureja A,
- 2. vsaka neprazna podmnožica $B \subseteq A$ ima prvi element glede na $R|_B$.

Trditev 4 $\check{C}e\ R$ dobro ureja A, potem R linearno ureja A.

Dokaz: Zadošča dokazati, da je relacija dobre urejenosti sovisna. Naj bo A z R dobro urejena in naj bosta $x,y \in A$. Potem je $\{x,y\}$ neprazna podmnožica množice A, torej ima prvi element. Če je to x, velja xRy. Če je to y, velja yRx. V vsakem primeru torej velja: $xRy \vee yRx$.