NSR Search Results Page 1 of 4

Visit the <u>Isotope Explorer</u> home page!

20 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ -Ray Data Evaluation of Thermal-Neutron Capture for A = 1 ϑ 25

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n,γ),E=thermal; compiled, evaluated prompt γ-ray data.

Keynumber: 1992WA06

Reference: Phys.Rev. C45, 1597 (1992)

Authors: T.A. Walkiewicz, S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn

Title: Thermal-Neutron Capture by Magnesium Isotopes

Keyword abstract: NUCLEAR REACTIONS 24 , 25 , 26 Mg(n,γ),E=thermal; measured Eγ,Iγ; deduced capture σ. 26 , 27 , 25 Mg deduced levels,neutron separation energies,γ-multipolarity. Direct capture

theory.

Keynumber: <u>1992KI23</u>

Reference: Phys.Rev. C46, 2364 (1992)

Authors: H.Kitazawa, M.Igashira, M.Shimizu, K.Muto, T.Oda, Y.Achiha, Y.-H.Lee, N.Mukai

Title: Electric and Magnetic Dipole Transitions from Broad s-Wave Neutron Resonance in Even-Even

sd-Shell Nuclei

Keyword abstract: NUCLEAR REACTIONS 24 Mg(n,γ),E=658 keV; 28 Si(n,γ),E=180 keV; 32 S (n,γ),E=103 keV; measured Eγ,Iγ,σ(E,Eγ) at 125 0 . 25 Mg, 29 Si, 33 S levels deduced transition γ-multipolarity,partial radiative widths. Valence capture shell models,configuration mixing.

Keynumber: 1991MIZQ

Reference: Proc.Int.Conf.Capture Gamma-Ray Spectroscopy, Pacific Grove, Calif., R.W.Hoff, Ed.,

p.393 (1990); AIP Conf.Proc. 238 (1991)

Authors: S.Michaelsen, K.P.Lieb, L.Ziegeler, T.von Egidy

Title: Precision Gamma-Ray Measurements in ²⁵Mg following Thermal Neutron Capture in ²⁴Mg

Keyword abstract: NUCLEAR REACTIONS 24 Mg(n, γ),E=thermal; measured E γ ,I γ . 25 Mg deduced γ

transitions, neutron binding energy.

Keynumber: 1990UC01

Reference: Phys.Rev. C41, 862 (1990)

Authors: T.Uchiyama, M.Igashira, H.Kitazawa

Title: Mechanism for Electric Dipole Transitions from the Broad p-Wave Neutron Resonance in 24 Mg **Keyword abstract:** NUCLEAR REACTIONS 24 Mg(n, γ), E=84-431 keV; measured capture σ (E,E γ) at

125⁰. ²⁵Mg deduced resonance J.Γγ. Natural target.

Keynumber: 1990KUZC

Reference: Proc.8th Seminar on Precise Measurements in Nucl.Spectrosc., Uzhgorod, p.85 (1990)

Authors: V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Measurements of Lifetime of High-Energy States Excited in (n, γ) Reaction on Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁴Mg, ²⁷Al, ³¹P, ⁵⁴, ⁵⁷Fe(n,γ),E=thermal; measured

NSR Search Results Page 2 of 4

DSA. 25 Mg, 28 Al, 32 P, 55 , 58 Fe levels deduced $T_{1/2}$. Enriched targets, NaI(Tl), hyperpure Ge detectors.

Kevnumber: 1990KOZT

Reference: Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.48

Authors: Yu.E.Koshutsky, V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: New Data on Lifetimes of Highly-Excited States of ²⁵Mg and ³²P

Keyword abstract: NUCLEAR REACTIONS ²⁴Mg, ³¹P(n,γ),E=thermal; measured DSA. ²⁵Mg, ³²P

levels deduced $T_{1/2}$.

Keynumber: 1990KO43

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 844 (1990); Bull.Acad.Sci.Ussr, Phys.Ser. 54, No.5, 27

(1990)

Authors: Yu.E.Koshutsky, V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: New Lifetime Data on the Highly Excited States of ²⁵Mg and ³²P

Keyword abstract: NUCLEAR REACTIONS 24 Mg, 31 P(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ -coin,DSA.

 25 Mg, 32 P levels deduced $T_{1/2}$.

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: 1985ZE07

Reference: Chin.J.Nucl.Phys. 7, 273 (1985)

Authors: Zeng Xiantang, Shi Zongren Guo, Taichang Li Guohua

Title: Three Crystal Pair Spectrometer

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ²⁴Mg, ²³Na(n,γ),E not given; measured Eγ,Ιγ,γγcoin; deduced double escape peak to background improvement factor. Three crystal pair spectrometer.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ),

 $(n,p), (n,\alpha), (p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), {}^{70}Zn(p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), E=low;$ compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1982HU02

Reference: Nucl.Instrum.Methods 192, 609 (1982)

Authors: P.Hungerford, H.H.Schmidt

Title: Neutron Binding and Excitation Energies of Some Magnesium Isotopes

NSR Search Results Page 3 of 4

Keyword abstract: NUCLEAR REACTIONS ²⁴, ²⁵, ²⁶Mg(n,γ),E=thermal; measured Eγ. ²⁵, ²⁶, ²⁷Mg deduced levels, neutron binding energy.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS 22 , 23 Na,Mg, 24 , 25 , 26 Mg, 27 Al,Si, 28 , 29 , 30 Si, 31 P,S, 32 , 33 , 34 S,Cl, 35 , 36 , 37 Cl,Ar, 36 , 38 , 40 Ar,K, 39 , 40 , 41 K,Ca, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 , 46 Sc,Ti, 46 , 47 , 48 , 49 , 50 Ti,V, 50 , 51 V,Cr, 50 , 52 , 53 , 54 Cr,Fe, 54 , 56 , 57 , 58 Fe, 59 Co,Ni, 58 , 59 , 60 , 61 , 62 , 64 Ni,Cu, 63 , 65 Cu,Zn, 64 , 66 , 67 , 68 , 70 Zn,Ga, 69 , 71 Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

Keynumber: 1980AL19

Reference: J.Phys.(London) G6, 1173 (1980) **Authors:** B.J.Allen, D.D.Cohen, F.Z.Company

Title: Radiative Widths of Neutron Scattering Resonances

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²⁴Mg, ²⁷Al, ²⁸Si, ⁵⁶Fe, ²⁰⁷Pb(n,γ),E=20-80 keV; measured $\sigma(E\gamma,E)$. ²⁰F, ²⁵Mg, ²⁸Al, ²⁹Si, ⁵⁷Fe, ²⁰⁸Pb deduced resonances,Γn,L,J, π ,Γγ. Moxon-Rae detectors, Monte-Carlo analysis.

Keynumber: 1970JAZN **Coden:** REPT PH-7,J Jafar

Keyword abstract: NUCLEAR REACTIONS ²⁰Ne, ²⁴Mg, ³⁰Si, ³²S, ³⁴S, ³⁶Ar, ⁴⁰Ca, ²⁷Al (n,γ),E=thermal; surveyed,analyzed Eγ,Iγ data. ²¹Ne, ²⁵Mg, ³¹Si, ³³, ³⁵S, ³⁷Ar, ⁴¹Ca, ²⁸Al deduced

levels, γ -branching.

Keynumber: 1969HAZC

Reference: Proc.Intern.Symp.Neutron Capture Gamma-Ray Spectroscopy, Studsvik,

Intern.At.En.Agency, Vienna, p.209 (1969)

Authors: R.Hardell

Title: Gamma Rays from Thermal Neutron Capture in ²⁴Mg

Keyword abstract: NUCLEAR REACTIONS 24 Mg(n, γ),E=thermal; measured E γ ,I γ ; deduced Q-value.

²⁵Mg deduced levels,γ-branching.

Keynumber: 1967SP05

Reference: Nucl.Phys. A102, 209 (1967)

Authors: P.Spilling, H.Gruppelaar, A.M.F.Op Den Kamp

Title: Thermal-Neutron Capture Gamma Rays from Natural Magnesium and Enriched ²⁵Mg **Keyword abstract:** NUCLEAR REACTIONS ²⁴, ²⁵, ²⁶Mg, ⁵⁶Fe, ⁶³Cu, ²⁰⁷Pb(n,γ), E=thermal;

NSR Search Results Page 4 of 4

measured $\sigma(E\gamma)$; deduced Q. 25 , 26 , 27 Mg deduced levels, branching. Enriched 25 Mg target, Ge(Li) detector.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁸¹Ta, ¹⁸²W, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁹Hg, ²⁰³Tl, ²⁰⁷Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.

Keynumber: 1967BE36

Reference: Phys.Rev. 158, 1049(1967)

Authors: I.Bergqvist, J.A.Biggerstaff, J.H.Gibbons, W.M.Good

Title: Gamma Rays from keV Resonance Neutron Capture in Some (2s-1d)-Shell Nuclei

Keyword abstract: NUCLEAR REACTIONS 19 F, 23 Na, 24 Mg, 27 Al, 32 S, 35 Cl(n, γ),E=20-120 keV;

measured Eγ.Iγ. ²⁰F. ²⁴Na. ²⁵Mg. ²⁸Al. ³³S. ³⁶Cl deduced resonances, level-width, J.π.
