电工技术与电子技术

第3章 电路的暂态分析

主讲教师: 王香婷 教授

主讲教师: 王香婷 教授

主要内容:

RC电路的零状态响应分析;时间常数的概念。

重点:

RC电路的零状态响应中电压、电流的变化规律; 时间常数对暂态过程的影响。

零状态响应: 储能元件的初始能量为零, 仅由电源激励所产生的电路的响应。

实质: RC电路的充电过程

分析: 在t=0时,合上开关 S,此时,电路为输入一个阶跃电压 u。

电压
$$u$$
 表达式 $u = \begin{cases} 0 & t < 0 \\ U & t \ge 0 \end{cases}$

- 1.uc的变化规律
- (1) 列 KVL方程

方程的通解 =方程的特解 + 对应齐次方程的通解

$$\mathbb{P} \quad u_C(t) = u_C' + u_C''$$

(2)解方程

求特解
$$u'_{c}$$

求特解
$$u'_{C}$$
 $u'_{C}(t) = u_{C}(\infty) = U$

求对应齐次微分方程的通解 u_c''

通解即:
$$RC \frac{du_C}{dt} + u_C = 0$$
 的解

其解:
$$u_C'' = Ae^{pt} = Ae^{-RC}$$

微分方程的通解为

$$u_C = u_C' + u_C'' = U + Ae^{-\frac{t}{\tau}} \qquad (\diamondsuit \tau = RC)$$

$$(\diamondsuit \tau = RC)$$

确定积分常数A

根据换路定则在 t=0, 时, $u_C(0_+)=0$,则A=-U

(3) 电容电压 u_C 的变化规律 $u_C = U - Ue^{-\frac{t}{RC}}$

(3) 电容电压 u_C 的变化规律

$$u_C = U - Ue^{-\frac{t}{RC}}$$

$$u_{c} = U (1-e^{-\frac{t}{RC}}) = U (1-e^{-\frac{t}{\tau}}) \quad (t \ge 0)$$

 $1.u_C$ 的变化规律

$$u_C = U (1 - e^{-\frac{t}{RC}}) \quad t \ge 0$$

2. 电流 i_C 的变化规律

$$i_C = C \frac{\mathrm{d}u_C}{\mathrm{d}t} = \frac{U}{R} e^{-\frac{t}{\tau}} \quad t \ge 0$$

 $3. u_{C}$ i_{C} 变化曲线

为什么在 t=0 时电流最大? \bigcirc

 $1.u_{C}$ 的变化规律

$$u_C = U (1 - e^{-\frac{t}{RC}}) \quad t \ge 0$$

2. 电流 i_C 的变化规律

$$i_C = C \frac{\mathrm{d}u_C}{\mathrm{d}t} = \frac{U}{R} e^{-\frac{t}{\tau}} \quad t \ge 0$$

- $3. u_{C}$ i_{C} 变化曲线
- 4. 时间常数 τ 的物理意义

当
$$t = \tau$$
时

$$u_C(\tau) = U(1 - e^{-1}) = 63.2 \% U$$

 τ 表示电容电压 u_C 从 初始值上升到 稳态值的 63.2% 时所需的时间。

t	0	τ	2 au	3τ	4 au	5τ	6τ
u_{c}	0	0.632 <i>U</i>	0.865 <i>U</i>	0.950 <i>U</i>	0.982 <i>U</i>	0.993 <i>U</i>	0.998 <i>U</i>

结论:

 τ 越大,曲线变化越慢, u_c 达到稳态时间越长。

当 $t = 5\tau$ 时,暂态基本结束, u_C 达到稳态值。

例: 电路如图, t=0时合上开关S, 合S 前电路已处于稳态。

试求电容电压 u_C 的变化规律。

解: 据换路定则:
$$u_C(\mathbf{0}_+) = u_C(\mathbf{0}_-) = \mathbf{0}$$

换路后,将电容以外的有源二端网 络用戴维宁定理等效电路替代。

$$E = \frac{9}{3+6} 6 = 6 \text{ V}$$
 $R_0 = \frac{3 \times 6}{3+6} = 2 \Omega$

电路的时间常数

$$\tau = R_0 C = 2 \times 5 = 10 \,\mu\text{F}$$

电容电压 u_C 的变化规律(RC零状态响应)

$$u_C = 6 (1 - e^{-10^{5t}}) V$$

小 结

1. 零状态响应过程中各电压、电流的变化规律。

$$u_{c} = U (1-e^{-\frac{t}{RC}}) = U (1-e^{-\frac{t}{\tau}}) \quad (t \ge 0)$$

- 2. 零状态响应过程中各电压、电流的变化曲线。
- 3. 影响电压、电流变化快慢的因数 时间常数。

$$\tau = RC$$

 τ 表示电容电压 u_C 从初始值上升到稳态值的63.2%时所需的时间。