

Introduction to Heuristic Algorithms 152117127

Week 11: Ant Colony Optimization

Asst. Prof. Dr. Emrah ATILGAN

Ant Colony Optimization

Another Swarm Optimization Algorithm

- Remember the swarm behavior
 - No central control
 - Only simple rules for each individual
 - Emergent phenomena
 - Self-Organization

Ant Colony Optimization

Ant Colony Optimization

- Inspired by foraging behavior of ants.
- Ants find shortest path to food source from nest.
- Ants deposit pheromone along traveled path which is used by other ants to follow the trail.
- This kind of indirect communication via the local environment is called stigmergy.
 - Two individuals interact indirectly when one of them modifies the environment and the other responds to the new environment later.
- Has adaptability, robustness and redundancy.

Ant Colony Optimization

Pheromone

- A **pheromone** is a secreted or excreted chemical factor that triggers a social response in members of the same species.
- Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavior of the receiving individuals.
 - Aggregation
 - Alarm
 - Epideictic
 - Territorial
 - Trail
 - Sex
 - Other

Ant Colony Optimization

Foraging Behavior of Ants

• Two ants start with equal probability of going on either path.

Ant Colony Optimization

Foraging Behavior of Ants

• The ant on the shorter path reached the food earlier than the other.

Ant Colony Optimization

Foraging Behavior of Ants

• The density of pheromone on the shorter path is higher because of 2 passes by the ant (as compared to 1 by the other).

Ant Colony Optimization

Foraging Behavior of Ants

• The next ant takes the shorter route.

Ant Colony Optimization

Foraging Behavior of Ants

 As the iterations increases, more ants begin using the path with higher pheromone, thereby further reinforcing it.

Ant Colony Optimization

Foraging Behavior of Ants

• Eventually, the shorter path is almost exclusively used.

Pheromones accumulate with multiple ants using the path

Ant Colony Optimization

Self-adapting behavior

Ant Colony Optimization

Ant Colony Optimization Algorithm

- The algorithm was proposed by Marco Dorigo in 1992.
 - M. Dorigo, "Optimization, learning and natural algorithms (*in italian*)," Ph.D. dissertation, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.
- With contribution by other scientists:
 - M. Dorigo, V. Maniezzo, and A. Colorni, "Ant System: Optimization by a colony of cooperating agents," *IEEE Transactions on Systems, Man, and Cybernetics—Part B*, vol. 26, no. 1, pp. 29–41, 1996.
- Developed further in 1990s with more contribution.
- Nowadays, we have lots of variants of ACO.

Ant Colony Optimization

• Ant Colony Optimization (ACO) is a population based heuristic optimization method.

- It was originally designed for difficult combinatorial optimization problems.
 - Travelling Salesman
 - Vehicle Routing
 - Sequential ordering
 - Graph Coloring
 - Routing in communications network

Ant Colony Optimization

Main Idea

- Ant colony strategy formalized into a metaheuristic.
- Artificial ants build solutions to an optimization problem and exchange info on their quality.
- A combinatorial optimization problem reduced to a construction graph.
- Ants work concurrently and independently
- Ants build partial solutions in each iteration and deposit pheromone on each edge.
- This collective interaction via indirect communication leads to a good solution.

Ant Colony Optimization

ACO for Travelling Salesman Problem

- Initializing the pheromone amounts on each route to a positive, small random value.
- 2. A simple transition rule for choosing the next city to visit, is

$$\Phi_{ij,k}(t) = \begin{cases} \frac{\tau_{ij}(t)^a}{\sum_{c \in C_{i,k}} \tau_{ic}(t)^a} & if j \in C_{i,k} \\ 0 & if j \in C_{i,k} \end{cases}$$

where $\tau_{ij}(t)$ is the pheromone intensity on edge (i,j) between cities i and j, the k_{th} ant is denoted by k, a is a constant, and $C_{i,k}$ is the set of cities and k still have to visit from city i.

Ant Colony Optimization

ACO for Travelling Salesman Problem

$$\Phi_{ij,k}(t) = \begin{cases} \frac{\tau_{ij}(t)^a}{\sum_{c \in C_{i,k}} \tau_{ic}(t)^a} & if j \in C_{i,k} \\ 0 & if j \in C_{i,k} \end{cases}$$

The transition rule above can be improved by including local information on the desirability of choosing city j when currently in city i, i.e.the next city to visit, is

$$\frac{\tau_{ij}(t)^a \eta_{ij}^{\beta}}{\sum_{c \in C_{i,k}} \tau_{ic}(t)^a \eta_{ic}^{\beta}}$$

where α and β are adjustable parameters that control the weight of pheromone intensity and

$$\eta_{ij} = \frac{1}{d_{ij}}$$
 is the attractiveness

Ant Colony Optimization

ACO for Travelling Salesman Problem

 d_{ij} is the Euclidean distance between cities i and j

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

And the end of each route, τ_k , constructed by ant k, the pheromone intensity τ_{ij} on the edges of that route is updated, using

$$\tau_{ij}(t+1) = (1-\rho)\tau_{ij}(t) + \Delta\tau_{ij}(t)$$

where,

$$\Delta \tau_{ij}(t) = \sum_{k=1}^{m} \Delta \tau_{ij,k}(t)$$

Ant Colony Optimization

ACO for Trayelling Salesman Problem

$$\Delta \tau_{ij,k}(t) = \begin{cases} \frac{Q}{L_k(t)} & if (i,j) \in T_k(t) \\ 0 & if (i,j) \in T_k(t) \end{cases}$$

- The parameter Q has a value of the same order of the length of the optimal route, $L_k(t)$ is the length of the route traveled by ant k, and m is the total number of ants.
- The constant $p \in [0,1]$, is referred to as the forgetting factor, which models the evaporation over time of pheromone deposits.

ACO Algorithm

Input:pd, N

%%%% pd number of decision variables in ant, N iterations, Present position (ant) in the search universe X_{id} , ρ evaporation rate, %%%%%%%

Output: Best_Solution

- 1: Initianlize_Node_Graph();
- 2: Initialize_Phermoni_Node();
- 3: While (num_of_Iterations>0) do
- 4: for each Ant
- 5: $\eta_i \leftarrow$ objective function of the search space

6: TRANSITION_RULE[j]=
$$p_j^m(t) = \frac{[\eta_j] \times [\tau_{ij}(t)]}{\sum_{i \in I_m} [\eta_i] \times [\tau_{ij}(t)]}$$

- 7: Select node with the highest $p_i^m(t)$
- 8: Update Pheromone level $\tau_{ij}(t+1) = (1-\rho).\tau_{ij}(t) + \Delta\tau_{ij}(t)$
- 9: num_of_Iterations--;
- 10: end While
- 11:Best_sol \leftarrow solution with best η_j
- 12: output(Best_sol)

Pseudocode

Ant Colony Optimization

Advantages:

- Retains memory of entire colony instead of previous generation only.
- Less affected by poor initial solutions (due to combination of random path selection and colony memory).
- Has been applied to a wide variety of applications.

Disadvantages:

- Theoretical analysis is difficult:
 - Due to sequences of random decisions (not independent).
 - Probability distribution changes by iteration.
- Convergence is guaranteed, but time to convergence uncertain.
- Coding is somewhat complicated, not straightforward
- Pheromone "trail" additions/deletions, global updates and local updates.

Ant Colony Optimization – Codes

- Python Codes
 - https://github.com/rochakgupta/aco-tsp
 - https://github.com/HaaLeo/swarmlib

Matlab Codes

- https://www.mathworks.com/matlabcentral/fileexchange/52859-ant-colonyoptimization-aco
- https://www.mathworks.com/matlabcentral/fileexchange/69028-ant-colony-optimiztion-aco?sid=srchtitle