অনুশীলনী - ৩.২

মধ্যমা ও ভরকেন্দ্র:

- ত্রিভুজের যেকোনো শীর্ষ হতে
 বিপরীত বাহুর মধ্যবিন্দুর
 সংযোজক রেখাই ত্রিভুজের মধ্যমা।
- ত্রিভুজের মধ্যমাত্রয়ের ছেদবিন্দুই
 ভরকেন্দ্র (G)।
- ভরকেন্দ্র মধ্যমাকে 2:1
 অনুপাতে বিভক্ত করে।

অন্তঃকেন্দ্র ও অন্তর্বৃত্তঃ

- ত্রিভুজের কোণগুলোর সমদ্বিখণ্ডকত্রয়ের ছেদবিন্দুই অন্তঃকেন্দ্র (O)।
- ত্রিভুজে অভ্যন্তরে বাহুত্রয়কে
 স্পর্শকারী বত্ত অন্তর্বৃত্ত ।

পরিকেন্দ্র ও পরিবৃত্তঃ

- অভুজের বাহুগুলোর
 লম্বদ্বিখণ্ডকত্রয়ের ছেদবিন্দুই
 পরিকেন্দ্র (S)।
- ত্রিভুজের তিনটি শীর্ষগামী বৃত্তই ত্রিভুজের পরিবৃত্ত।

লম্ববিন্দুঃ

 শীর্ষত্রয় হতে বিপরীত বাহুত্রয়ের ওপর অঙ্কিত লম্বত্রয়ের ছেদবিন্দুই লম্ববিন্দু (O)।

উপপাদ্য ১০: ত্রিভুজের পরিকেন্দ্র, ভরকেন্দ্র ও লম্ববিন্দু সমরেখ।

ব্রহ্মণ্ডপ্তের উপপাদ্য: বৃত্তে অন্তর্লিখিত কোনো চতুর্ভুজের কর্ণ দুইটি যদি পরস্পর লম্ব হয়, তবে তাদের ছেদ বিন্দু হতে কোনো বাহুর উপর অঙ্কিত লম্ব বিপরীত বাহুকে দ্বিখণ্ডিত করে।

চিত্রমূলক ব্যাখ্যাঃ বৃত্তে অন্তর্লিখিত ABCD চতুর্ভুজের কর্ণদ্বয় AC ও BD পরস্পরকে M বিন্দুতে ছেদ করে। M হতে BC বাহুর ওপর ME লম্ব এবং বর্ধিত EM বিপরীত AD বাহুকে F বিন্দুতে ছেদ করে। তাই ব্রহ্মগুপ্তের উপপাদ্য অনুসারে AF=FD।

টলেমির উপপাদ্য: বৃত্তে অন্তর্লিখিত কোনো চতুর্ভুজের কর্ণদ্বয়ের অন্তর্গত আয়তক্ষেত্র ঐ চতুর্ভুজের বিপরীত বাহুদ্বয়ের অন্তর্গত আয়তক্ষেত্রের সমষ্টির সমান।

চিত্রমূলক ব্যাখ্যা: বৃত্তের অন্তর্লিখিত ABCD চতুর্ভূজের ক্ষেত্রে

- i. AC ও BD কর্ণদ্বয়ের অন্তর্গত আয়তক্ষেত্রের ক্ষেত্রফল = AC.BD
- ii. AB ও CD বিপরীত বাহুদ্বয় দারা গঠিত আয়তক্ষেত্রের ক্ষেত্রফল = AB.CD
- iii. AD ও BC বিপরীত বাহুদ্বয় দ্বারা গঠিত আয়তক্ষেত্রের ক্ষেত্রফল = AD.BC
 - \therefore টলেমির উপপাদ্য অনুসারে, AC.BD = AB.CD + BC.AD

নববিন্দু বৃত্তের নয়টি বিন্দু:

- i. ত্রিভুজের বাহুগুলোর মধ্যবিন্দু ৩টি (u, v, w) ।
- ii. শীর্ষ থেকে বিপরীত বাহুগুলোর ওপর অঙ্কিত লম্বের পাদবিন্দু ৩টি (D,E,F)।
- iii. শীর্ষবিন্দু ও লম্ববিন্দুর সংযোজক রেখাত্রয়ের মধ্যবিন্দু ওটি (M,N,P)।

u O P

এ নয়টি বিন্দু একই বৃত্তের উপরে অবস্থান করে বলে এসব বিন্দুগামী বৃত্তকে নববিন্দুবৃত্ত বলে। ত্রিভুজের লম্ববিন্দু ও পরিকেন্দ্রের সংযোজক রেখার মধ্যবিন্দুই নববিন্দু বৃত্তের কেন্দ্র।

MCQ এর জন্য গুরুত্বপূর্ণ তথ্য:

- ii. নববিন্দুর বৃত্তের ব্যাসার্ধ ত্রিভুজের পরিব্যাসার্ধের অর্ধেকের সমান।
- iii. কোনো ত্রিভুজের লম্ব বিন্দু থেকে শীর্ষের দূরতু ত্রিভুজের পরিকেন্দ্র থেকে ঐ শীর্ষের বিপরীত বাহুর লম্ব দূরতুের দ্বিগুণ।
- iv. দুইটি সদৃশ ত্রিভুজক্ষেত্রের ক্ষেত্রফলদ্বয়ের অনুপাত তাদের যেকোনো দুই অনুরূপ বাহুর ওপর অদ্ধিত বর্গক্ষেত্রের ক্ষেত্রফলদ্বয়ের অনুপাতের সমান।
- v. এছাড়া লম্ব অভিক্ষেপ, ব্রহ্মগুপ্তের উপপাদ্য, টলেমির উপপাদ্য ও এ্যাপোলোনিয়াসের উপপাদ্যের বর্ণনা ভালোভাবে পড়ে নাও।

অনুশীলনীর সমাধান

উত্তর: (খ)

ব্যাখ্যা: লম্ব অঙ্কনের মাধ্যমে অভিক্ষেপ নির্ণয় করা হয়। কোনো সরলরেখার দুই প্রান্ত থেকে কোনো রেখার ওপর লম্ব আঁকলে যে অংশ পাওয়া যায়, তাই ঐ রেখার লম্ব অভিক্ষেপ। AB রেখার B ও A বিন্দু থেকে XY এর উপর অঙ্কিত লম্বদ্বয়ের পাদবিন্দু যথাক্রমে B ও C।

সুতরাং, XY রেখাংশে AB এর লম্ব অভিক্ষেপ BC।

উত্তর: (ঘ)

ব্যাখ্যা: ত্রিভুজের তিনটি শীর্ষ বিন্দু হতে বিপরীত বাহুত্রয়ের ওপর অঙ্কিত লম্বত্রয় যে বিন্দুতে ছেদ করে তাই ত্রিভুজের লম্ববিন্দু অর্থাৎ ত্রিভুজের লম্বত্রয়ের ছেদবিন্দুই লম্ববিন্দু। চিত্রে শীর্ষ A,B ও C হতে বিপরীত বাহুত্রয়ের উপর অঙ্কিত লম্বত্রয় O বিন্দুতে ছেদ করেছে। তাই O বিন্দুটি লম্বিন্দু।

ত একটি সমবাহু ত্রিভুজের প্রতিটি মধ্যমার দৈর্ঘ্য 3 সে.মি. হলে প্রতিটি বাহুর দৈর্ঘ্য কত?

(ক) 4.5 সে.মি.

(খ) 3.46 সে.মি.

(গ) 4.24 সে.মি.

(ঘ) 2.59 সে.মি.

উত্তর: (খ)

ব্যাখ্যা: কোনো ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য যথাক্রমে a, b ও c এবং মধ্যমাত্ররের দৈর্ঘ্য যথাক্রমে d, e ও f হলে,

আমরা জানি, $3(a^2 + b^2 + c^2) = 4(d^2 + e^2 + f^2)$

সমবাহু ত্রিভুজের ক্ষেত্রে a=b=c এবং d=e=f

$$\therefore 3(a^2 + a^2 + a^2) = 4(d^2 + d^2 + d^2)$$

বা,
$$3 \times 3a^2 = 4.3d^2$$

বা,
$$9a^2 = 4 \times 3 \times 3^2$$
 ; [: $d = 3$]

বা,
$$a^2 = 12$$

$$\therefore a = \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} = 3.46$$
 সে.মি.

উপরের চিত্রে $D,\ E,\ F$ যথাক্রমে $BC,\ AC$ ও AB এর মধ্যবিন্দু। সেই আলোকে 8–৬ নং প্রশ্নের উত্তর দাওঃ

8 G বিন্দুর নাম কি?

(ক) লম্ববিন্দু

(খ) অন্তঃকেন্দ্ৰ

(গ) ভরকেন্দ্র

(ঘ) পরিকেন্দ্র

উত্তর: (গ

ব্যাখ্যা: ΔABC -এর AD, BE ও CF মধ্যমাত্রয় G বিন্দুতে ছেদ করে আর ত্রিভুজের মধ্যমাত্রয়ের ছেদবিন্দুই ভরকেন্দ্র। সুতরাং G বিন্দুটি ত্রিভুজ ABC এর ভরকেন্দ্র।

$\triangle ABC$ এর শীর্ষ বিন্দু দিয়ে অঙ্কিত বুত্তের নাম কী?

(ক) পরিবৃত্ত

(খ) অন্তঃবৃত্ত

(গ) বহিঃবৃত্ত

(ঘ) নববিন্দুবৃত্ত

উত্তব: (ক

ব্যাখ্যা: ত্রিভুজের তিনটি শীর্ষবিন্দু দিয়ে গমনকারী বৃত্তকে ত্রিভুজের পরিবৃত্ত বলে। চিত্রে বৃত্তটি ΔABC এর তিনটি শীর্ষ A,B ও C বিন্দু দিয়ে গমন করে। সুতরাং, ΔABC এর শীর্ষবিন্দু দিয়ে অঙ্কিত বৃত্তটি পরিবৃত্ত।

উ $\triangle ABC$ এর ক্ষেত্রে নিচের কোনটি এ্যাপোলোনিয়াসের উপপাদ্যকে সমর্থন করে?

$$(\Phi) AB^{2} + AC^{2} = BC^{2}$$

$$(\forall) AB^2 + AC^2 = 2(AD^2 + BD^2)$$

(
$$\mathfrak{I}$$
) $AB^2 + AC^2 = 2(AG^2 + GD^2)$

$$(\nabla) AB^2 + AC^2 = 2(BD^2 + CD^2)$$

উত্তর: (খ)

ব্যাখ্যা: এ্যাপোলোনিয়াসের উপপাদ্য: ত্রিভুজের যেকোনো দুই বাহুর উপর অন্ধিত বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টি, তৃতীয় বাহুর অর্ধেকের উপর অন্ধিত বর্গক্ষেত্রের ক্ষেত্রফল এবং ঐ বাহুর সমন্বিখণ্ডক মধ্যমার উপর অন্ধিত বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টির দিগুণ।

চিত্রে, ΔABC -এর AB ও AC বাহুর উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টি = $AB^2 + AC^2$

তৃতীয় বাহু BC এর অর্ধেক BD এর উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল = BD^2 এবং তৃতীয় বাহু BC এর সমদ্বিখণ্ডক মধ্যমা AD এর উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল = AD^2

এ্যাপোলোনিয়াসের সূত্রানুসারে, ত্রিভুজের যেকোনো দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রর সমষ্টি = 2(তৃতীয় বাহুর অর্ধেকের উপর অঙ্কিত বর্গক্ষেত্র + তৃতীয় বাহুর সমদ্বিখণ্ডক মধ্যমার উপর অঙ্কিত বর্গক্ষেত্র)

$$AB^2 + AC^2 = 2(AD^2 + BD^2)$$

$oxed{9}$ ABC ত্রিভুজের পরিবৃত্তস্থ যেকোনো বিন্দু P থেকে BC ও CA এর উপর PD ও PE লম্ব অঙ্কন করা হয়েছে। যদি ED রেখাংশ AB কে O বিন্দুতে ছেদ করে, তবে প্রমাণ কর যে, PO রেখা AB এর উপর লম্ব, অর্থাৎ $PO \perp AB$ ।

সমাধানঃ

বিশেষ নির্বচন: দেওয়া আছে, ABC ত্রিভুজের পরিবৃত্তস্থ যেকোনো Pবিন্দু থেকেে BC ও CA এর উপর PD ও PE লম । D, E যোগ করে বর্ধিত করায় ইহা BA এর বর্ধিতাংশকে O বিন্দুতে ছেদ করে। P, Oযোগ করি। প্রমাণ করতে হবে যে, $PO \perp AB$ ।

অঙ্কনঃ P, A; P, C যোগ করি।

প্রমাণ: $PE \perp CA$ এবং $PD \perp BC$ ।

সুতরাং $\angle PEC = \angle PDC =$ এক সমকোণ।

কিন্তু, এ কোণদ্বয় P ও C বিন্দুদ্বয়ের সংযোজক সরলরেখার একই পার্ম্বে অবস্থিত দু'টি সমান সমান কোণ[े]।

আমরা জানি, দু'টি বিন্দুর সংযোজক রেখাংশ তার একই পার্শ্বে অপর দুই বিন্দুতে সমান কোণ উৎপন্ন করলে বিন্দু চারটি সমবৃত্ত হবে।

অর্থাৎ PCDE বৃত্তস্থ চতুর্ভুজ।

আবার, একটি বৃত্তস্থ চতুর্ভুজের দুই বিপরীত অন্তঃস্থ কোণ পরস্পর

 \therefore ∠PED + ∠<math>PCD =দুই সমকোণ

আবার $\angle PEO + \angle PED = 180^\circ$; [$\therefore D, E, O$ বিন্দুত্রয় সমরেখ] ∴ ∠*PCD* = ∠*PEO*

APCB বৃত্তস্থ চতুর্ভুজের $\angle PAB + \angle PCB =$ দুই সমকোণ

বা, $\angle PAB + \angle PCD =$ দুই সমকোণ

বা, $\angle PAB + \angle PEO =$ দুই সমকোণ $[\because \angle PCD = \angle PEO]$ আবার, $\angle PAB + \angle PAO = 180^\circ$;[$\therefore B, A, O$ বিন্দুত্রয় সমরেখ] $\therefore \angle PEO = \angle PAO$

∴ ∠POA + ∠PEA = দুই সমকোণ ।কিন্তু, $\angle PEA =$ এক সমকোণ ; $[\because PE \perp AC]$

∴ ∠POA = এক সমকোণ

একই পাশে অবস্থিত দু'টি সমান কোণ।

 $\therefore PO \perp AB$ (প্রমাণিত)

কিন্তু, $\angle PEO$ ও $\angle PAO$ কোণদ্বয় P,O বিন্দুদ্বয়ের সংযোজক রেখার

 $\therefore O, P, E, A$ বিন্দু চারটি সমবৃত্ত। অর্থাৎ OPEA বৃত্তস্থ চতুর্ভুজ।

বিশেষ নির্বচন: P, ΔABC এর পরিবৃত্তস্থ যেকোনো একটি বিন্দু। P বিন্দু হতে $PD \perp BC$ ও $PE \perp CA$ লম্ব অঙ্কন করা হলো। ED রেখাংশ ABকে O বিন্দতে ছেদ করে। প্রমাণ করতে হবে যে, $PO \perp AB$ ।

প্রমাণ: আমরা জানি, ত্রিভুজের পরিবত্তস্থ কোনো বিন্দু হতে ঐ ত্রিভুজের বাহুত্রয়ের উপর অঙ্কিত লম্বত্রয়ের পাদবিন্দুগুলো সমরেখ।

এখানে, PD \perp BC, PE \perp AC এবং ED রেখাংশ AB কে O বিন্দুতে ছেদ করায় D, E, O সমরেখ। সুতরা O বিন্দু অবশ্যই P হতে AB এর ওপর লম্বের পাদবিন্দু হবে।

∴ PO ⊥ *AB* (প্রমাণিত)

oxdot জেনে রাখা ভালো: ABC ত্রিভুজ সম্পর্কে DEO সরলরেখাকে Pবিন্দুর পাদরেখা (Pefal line) বা সিমসন রেখা (Simson line) বা ওয়ালেস রেখা (Wallace line) বলা হয়।

lacktriangle ΔABC এর $oldsymbol{\angle}C$ সমকোণ। C থেকে অতিভূজের ওপর অঙ্কিত লম্ব CD হলে, প্রমাণ কর যে, $CD^2=AD.$ BD।

সমাধানঃ

বিশেষ নির্বচন: ΔABC -এর $\angle C$ সমকোণ। C থেকে অতিভূজ AB এর উপর অঙ্কিত লম্ব CD। প্রমাণ করতে হবে যে, $CD^2 = AD$. BD

প্রমাণ: $\triangle ABC$ -এ $\angle C = 90^\circ$

 $\therefore \angle ACD + \angle BCD = 90^{\circ} \dots \dots (1)$

আবার, $\triangle ADC$ -এ $\angle ADC = 90^{\circ}$ $[:: CD \perp AB]$

 $\therefore \angle CAD + \angle ACD = 90^{\circ} \dots \dots \dots (2)$

[∵ ত্রিভুজের তিন কোণের সমষ্টি 180°]

সমীকরণ (1) ও (2) হতে পাই,

 $\angle ACD + \angle BCD = \angle CAD + \angle ACD$

 $\therefore \angle BCD = \angle CAD$

এখন ΔADC ও ΔBDC -এ

 $\angle ADC = \angle BDC = 90^{\circ}$

এবং $\angle CAD = \angle BCD$

অবশিষ্ট ∠ACD = অবশিষ্ট ∠CBD

সুতরাং ত্রিভুজ দুটি সদৃশকোণী ও তাই সদৃশ

 $\therefore \frac{AD}{CD} = \frac{CD}{BD} \ [\because$ সৃদশকোণী ত্রিভুজের অনুরূপ বাহুগুলো সমানুপাতিক] অর্থাৎ, $CD^2 = AD$. BD (প্রমাণিত)

সমাধান (দ্বিতীয় পদ্ধতি)

বিশেষ নির্বচনঃ দেওয়া আছে, ΔABC এর $\angle C$ সমকোণ। C থেকে অতিভুজ BA এর উপর অঙ্কিত লম্ব CD।

প্রমাণ করতে হবে যে, $CD^2 = AD$. BD

অঙ্কন: AB কে ব্যাস ধরে বৃত্ত অঙ্কন করি যা $A, B \circ C$ বিন্দুগামী। CD কে বর্ধিত করি যা বৃত্তকে E বিন্দুতে ছেদ করে।

A, E যোগ করি।

প্রমাণ: আমরা জানি, বৃত্তের একই চাপের উপর দণ্ডায়মান বৃত্তস্থ কোণগুলো পরস্পর সমান।

এখন, ΔADE ও ΔBDC এর মধ্যে

 $\angle BAE = \angle BCE$ [একই চাপ BE এর ওপর দণ্ডায়মান বৃত্তস্থ কোণ] $\angle AEC = \angle ABC$ [একই চাপ AC এর ওপর দণ্ডায়মান বৃত্তস্থ কোণ] $\angle ADE = \angle BDC$ [বিপ্রতীপ কোণ]

.: ত্রিভুজদ্বয় সদৃশকোণী এবং সদৃশ।

যেহেতু সদৃশকোণী ত্রিভুজের অনুরূপ বাহুগুলো সমানুপাতিক।

$$\therefore \frac{AD}{CD} = \frac{DE}{BD}$$

 $\therefore \frac{AD}{CD} = \frac{CD}{BD}$ ্বিন্দুতে অঙ্কিত লম্ব CE জ্যাকে D বিন্দুতে সমদ্বিখণ্ডিত করে $\therefore CD = DE$

 $\therefore CD^2 = AD. BD$ (প্রমাণিত)

সমাধান (তৃতীয় পদ্ধতি)

বিশেষ নির্বচনঃ দেওয়া আছে, ABC একটি সমকোণী ত্রিভুজ যার $\angle C=$ এক সমকোণ। C বিন্দু হতে AB অতিভূজের উপর CD লম্ব। প্রমাণ করতে হবে যে, $CD^2=AD$. BD

প্রমাণ: ADC সমকোণী ত্রিভুজে পিথাগোরাসের উপপাদ্য হতে পাই,

$$AC^2 = CD^2 + AD^2$$

বা,
$$CD^2 = AC^2 - AD^2$$

বা,
$$CD^2 = AB^2 - BC^2 - AD^2$$
;

[::ABC] সমকোণী ত্রিভুজের $AC^2=AB^2-BC^2$]

বা,
$$CD^2 = (AB^2 - AD^2) - BC^2$$

বা,
$$CD^2 = (AB - AD)(AB + AD) - BC^2$$

বা,
$$CD^2 = BD(AB + AD) - BC^2$$
; [: $AB - AD = BD$]

বা,
$$CD^2 = AD.BD + AB.BD - BC^2$$

বা,
$$CD^2 = AD.BD + AB.BD - CD^2 - BD^2$$
;

 $[\because BCD$ সমকোণী ত্রিভুজে $BC^2 = CD^2 + BD^2]$

বা,
$$CD^2 + CD^2 = AD.BD + AB.BD - BD^2$$

বা,
$$2CD^2 = AD.BD + BD(AB - BD)$$

বা,
$$2CD^2 = AD.BD + AD.BD$$
 ; [:: $AB - BD = AD$]

বা,
$$2CD^2 = 2AD.BD$$

$$\therefore CD^2 = AD.BD$$
 (প্রমাণিত)

১ ΔABC এর শীর্ষত্রয় থেকে বিপরীত বাহুগুলোর ওপর লম্ব AD, BE ও CF রেখাত্রয় O বিন্দুতে ছেদ করে। প্রমাণ কর যে, AO. OD = BO. OE = CO. OF | [সংকেত: ΔBOF এবং ΔCOE সদৃশ। ∴ BO: CO = OF: OE |]

<u>সমাধান</u>:

বিশেষ নির্বচন: ΔABC -এর শীর্ষ বিন্দুগুলো থেকে বিপরীত বাহুত্রয়ের উপর লম্ব AD, BE ও CF পরস্পার O বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, AO. OD = BO.OE = CO. OF

প্রমাণ: ΔBOF ও ΔCOE -এ

$$\angle OFB = \angle OEC = 90^\circ$$
 $[\because CF \perp AB, BE \perp AC]$ এবং $\angle BOF = \angle COE$ [বিপ্রতীপ কোণ বলে]

ত্রিভুজ দুটি সদৃশকোণী সুতরাং তারা সদৃশ।

$$\therefore \frac{BO}{CO} = \frac{OF}{OE} [\because$$
 সদৃশকোণী ত্রিভুজের অনুরূপ বাহুগুলো সমানুপাতিক]

আবার, ΔBOD ও ΔAOE -এ

$$\angle ODB = \angle OEA = 90^{\circ}$$
 [:: $AD \perp BC, BE \perp AC$] এবং $\angle BOD = \angle AOE$. [বিপ্রতীপ কোণ]

.. ত্রিভুজ দুটি সদৃশকোণী সুতরাং তারা সদৃশ।

$$\overrightarrow{RO} \cdot \overrightarrow{OD}$$

$$\therefore \frac{BO}{AO} = \frac{OD}{OE}$$

সমীকরণ (i) ও (ii) হতে পাই,

$$\therefore AO.OD = BO.OE = CO.OF$$
 (প্রমাণিত)

$oxed{DO}$ AB ব্যাসের উপর অঙ্কিত অর্ধবৃত্তের দুইটি জ্যা AC ও BD পরস্পর P বিন্দুতে ছেদ করে। প্রমাণ কর যে, $AB^2=AC$. AP+BD. BP।

সমাধানঃ

বিশেষ নির্বচন: মনে করি, AB ব্যাসের উপর ADCB একটি অর্ধবৃত্ত। যার AC ও BD জ্যাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, $AB^2 = AC.AP + BD.BP$

অঙ্কন: $PQ \perp AB$ অঙ্কন করি। A,D ও B,C যোগ করি।

প্রমাণ: ΔAPQ ও ΔABC -এ

 $\angle PQA = \angle ACB$ [প্রত্যেকে এক সমকোণ]

 $\angle PAQ = \angle CAB$ [সাধারণ কোণ]

এবং অবশিষ্ট $\angle APQ$ = অবশিষ্ট $\angle ABC$ অতএব ত্রিভুজদ্বয় সদৃশকোণী ও সদৃশ

$$\therefore \frac{AQ}{AP} = \frac{AC}{AB}$$

বা, AC. AP = AQ. AB ... (i)

অনুরূপভাবে, দেখানো যায় যে, ΔABD ও ΔBPQ ত্রিভুজদ্বয় সদৃশ।

$$\therefore \frac{BP}{BQ} = \frac{AB}{BD}$$

বা, BP. BD = AB. BQ (ii)

সমীকরণ (i) ও (ii) যোগ করে পাই,

$$AC. AP + BP. BD = AQ. AB + AB. BQ$$

$$= AB(AQ + BQ)$$

$$= AB. AB$$

$$= AB^{2}$$
 (প্রমাণিত)

বিশেষ নির্বচন: মনে করি, AB ব্যাসের উপর ADCB একটি অর্ধবৃত্ত। যার AC ও BD জ্যাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে।

প্রমাণ করতে হবে যে, $AB^2 = ACAP + BD.BP$

অঙ্কন: A,D;B,C ও C,D যোগ করি।

প্রমাণ: ΔCPD ও ΔAPB -এ

 $\angle PDC = \angle PAB$ [একই চাপ BC-এর উপর অবস্থিত]

এবং $\angle DPC = \angle APB$ [বিপ্রতীপ কোণ বলে]

এবং অবশিষ্ট $\angle PCD =$ অবশিষ্ট $\angle ABP$

সুতরাং ত্রিভুজ দুটি সদৃশকোণী ও সদৃশ।

$$\therefore \frac{AP}{DP} = \frac{BP}{CP}$$
 [সদৃশকোণী ত্রিভুজে অনুরূপ বাহুগুলো সমানুপাতিক]

বা, AP.CP = BP.DP

বা, $AP.CP + AP^2 = BP.DP + AP^2$ [উভয়পক্ষে AP^2 যোগ করে]

বা, $AP(CP + AP) = BP.DP + AP^2$

এখন, AB ব্যাস বলে $\angle ADP = \angle ADB = 90^\circ$

তাহলে $AP^2 = AD^2 + DP^2$

 $\therefore AP(AP + CP) = BP.DP + AD^2 + DP^2$

বা, $AP.AC = DP (BP + DP) + AD^2$

আবার, $\angle ADB = 90^\circ$ বলে $\triangle ABD$ -এ $AB^2 = AD^2 + BD^2$

বা, $AD^2 = AB^2 - BD^2$

 $\therefore AP.AC = DP.BD + AB^2 - BD^2$

বা, $AP.AC = AB^2 - BD (BD - DP)$

বা, $AP.AC = AB^2 - BD.BP$

বা, $AB^2 = AP.AC + BD.BP$ (প্রমাণিত)

趾 কোনো সমবাহু ত্রিভুজের পরিবৃত্তের ব্যাসার্ধ 3 সে. মি. হলে, ঐ ত্রিভুজের বাহুর দৈর্ঘ্য নির্ণয় কর।

সমাধান:

মনে করি. $\triangle ABC$ সমবাহু ত্রিভুজের AB = BC = AC = aএবং $O, \Delta ABC$ সমবাহু ত্রিভুজের পরিকেন্দ্র। দেওয়া আছে, $\triangle ABC$ এর পরিবৃত্তের ব্যাসার্ধ, R=3 সে.মি. $\therefore \Delta ABC$ সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য, a= ? এখন, $AD \perp BC$ আঁকি যা BC কে D বিন্দুতে ছেদ করে। B, O যোগ করি। আমরা জানি, সমবাহু ত্রিভুজের ভূমির উপর অঙ্কিত লম্ব ভূমিকে সমন্বিখণ্ডিত করে।

$$\therefore BD = \frac{1}{2}BC = \frac{1}{2}a$$

সূতরাং \triangle ABC -এ BC বাহুর লম্ব সমদ্বিখণ্ডক AD।

∴ AD বাহু অবশ্যই O বিন্দুগামী।

[: ত্রিভুজের লম্ব সমদ্বিখণ্ডকত্রয়ের ছেদবিন্দুই পরিকেন্দ্র] এখন ΔABD —এ পিথাগোরাসের উপপাদ্য অনুসারে, $AB^2 = AD^2 + BD^2$

$$AB^2 = AD^2 +$$

বা,
$$a^2 = AD^2 + \left(\frac{1}{2}a\right)^2$$

বা,
$$a^2 = AD^2 + \frac{1}{4}a^2$$

বা,
$$AD^2 = \frac{3}{4} a^2$$

$$\therefore AD = \frac{\sqrt{3}}{2} a$$

ব্রহ্মগুপ্ত এর উপপাদ্য থেকে আমরা জানি, AB.AC = 2R.AD

বা,
$$a.a = 2 \times 3 \times \frac{\sqrt{3}}{2}$$
 a

বা,
$$a^2 = 6 \times \frac{\sqrt{3}}{2} a$$

 \therefore ΔABC - এর বাহুর দৈর্ঘ্য $3\sqrt{3}$ সে.মি.

সমাধান (দ্বিতীয় পদ্ধতি)

মনে করি, $\triangle ABC$ সমবাহু ত্রিভুজের AB = BC = AC = aএবং O, Δ ABC সমবাহু ত্রিভুজের পরিকেন্দ্র। দেওয়া আছে, ΔABC এর পরিবৃত্তের ব্যাসার্ধ, R=3 সে.মি. $\therefore \Delta ABC$ সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য, a=?এখন, $AD \perp BC$ আঁকি যা BC কে D বিন্দুতে ছেদ করে। B, O এবং C, O যোগ করি। ABD ও ACD সমকোণী ত্রিভুজদ্বয়ের

অতিভুজ AB = অতিভুজ ACএবং AD = AD (সাধারণ বাহু)

 $\therefore \Delta ABD \cong \Delta ACD$ সুতরাং BD=CD অর্থাৎ AD একটি মধ্যমা। $\therefore BD = \frac{1}{2}BC = \frac{1}{2}a$ সে.মি.

এখন, যেহেতু D,BC এর মধ্যবিন্দু এবং $AD\perp BC$ সেহেতু AD অবশ্যই কেন্দ্র O দিয়ে যাবে। সুতরাং $O,\Delta ABC$ এর ভরকেন্দ্র। আমরা জানি, ত্রিভুজের মধ্যমা ভরকেন্দ্রে 2 : 1 অনুপাতে বিভক্ত হয়।

$$\therefore AO: OD = 2: 1$$
বা, $\frac{AO}{OD} = \frac{2}{1}$
 $\therefore OD = \frac{1}{2}AO = \frac{1}{2} \times 3$ সে.মি. $= \frac{3}{2}$ সে.মি.

 OBD সমকোণী ত্রিভুজে, $OB^2 = OD^2 + BD^2$
বা, $3^2 = \left(\frac{3}{2}\right)^2 + \left(\frac{a}{2}\right)^2$
বা, $9 = \frac{9}{4} + \frac{a^2}{4}$

বা,
$$\frac{a^2 + 9}{4} = 9$$

বা, $a^2 + 9 = 36$
বা, $a^2 = 27$
বা, $a = \sqrt{27}$ [: দৈৰ্ঘ্য ঋণাত্মক হতে পাৱে না]
 $\therefore a = 3\sqrt{3}$ সে.মি.

সুতরাং $AB = BC = CA = 3\sqrt{3}$ সে.মি. অর্থাৎ, ঐ ত্রিভুজের প্রতিটি বাহুর দৈর্ঘ্য $3\sqrt{3}$ সে.মি.।

সমাধান (তৃতীয় পদ্ধতি)

মনে করি, $\triangle ABC$ সমবাহু ত্রিভুজের AB=BC=AC=aএবং O, ΔABC সমবাহু ত্রিভুজের পরিকেন্দ্র। দেওয়া আছে, $\triangle ABC$ এর পরিবৃত্তের ব্যাসার্ধ, OA = OB = OC = 3 সে.মি. এখন. BC চাপের ওপর দণ্ডায়মান কেন্দ্রস্থ $\angle BOC$ এবং বৃত্তস্থ $\angle BAC$ $\therefore \angle BOC = 2\angle BAC = 2 \times 60^{\circ} = 120^{\circ}$

[একই চাপের উপর দণ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ] $OD \perp BC$ হওয়ায় সমকোণী ΔBOD ও ΔCOD -এ

অতিভূজ OB = অতিভূজ OC

$$OD = OD$$
 [সাধারণ বাহু]
∴ $\Delta BOC \cong \Delta COD$ [অতিভুজ-বাহু উপপাদ্য]

$$\therefore \angle BOD = \frac{1}{2} \angle BOC = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

সমকোণী $\triangle BOD$ -এ $\sin \angle BOD = \frac{BD}{OB} \left[\because \sin\theta = \frac{\text{লম্ব}}{\text{অতিজ্জ}}\right]$ ৰা, $\sin 60^\circ = \frac{BD}{3}$ [: ব্ভের ব্যাসার্ধ OB = 3]

বা,
$$\frac{\sqrt{3}}{2} = \frac{BD}{3}$$

$$\therefore BD = \frac{3\sqrt{3}}{2}$$

আবার, BC = BD + CD = BD + BD [(i) নং হতে BD = CD বসিয়ে] $= \frac{3\sqrt{3}}{2} + \frac{3\sqrt{3}}{2} = 3\sqrt{3}$ $\therefore AB = BC = CA = 3\sqrt{3}$

$|oldsymbol{oldsymbol{eta}}|$ ABC সমদ্বিবাহু ত্রিভুজের শীর্ষ বিন্দু A হতে ভূমি BC এর উপর অঙ্কিত লম্ব AD এবং ত্রিভুজের পরিব্যাসার্ধ R হলে প্রমাণ কর যে, AB^2 = $2R_cAD$ ।

সমাধান:

বিশেষ নির্বচন: মনে করি, ABC একটি সমদ্বিবাহু ত্রিভুজ যার AB = AC ${f A}$ থেকে ভূমি ${f BC}$ এর উপর ${f AD}$ লম্ব এবং ত্রিভুজের পরিব্যাসার্ধ ${f R}$ । প্রমাণ করতে হবে যে, $AB^2 = 2R$. AD।

অঙ্কন: AD কে AE পর্যন্ত বর্ধিত করা হলো যা পরিবৃত্তকে E বিন্দুতে ছেদ করে। C ও E যোগ করি।

প্রমাণ: এখন $AD \perp BC$ হওয়ায় AD,BC এর সমন্বিখণ্ডক । $[::\Delta ABC$ সমন্বিবাহু] ∴ AD, বুত্তের কেন্দ্র দিয়ে যায় কারণ কেন্দ্র থেকে জ্যা এর উপর অঙ্কিত লম জ্যাকে সমদ্বিখণ্ডিত করে।

সুতরাং AE, ΔABC -এর পরিবৃত্তের ব্যাস।

তাহলে $\angle ACE$ অর্ধবৃত্তস্থ কোণ

∴ ∠ACE = 90°

সমকোণী ΔADC ও ΔAEC -এ

 $\angle ADC = \angle ACE$

 $\angle DAC = \angle EAC$ [সাধারণ কোণ]

এবং অবশিষ্ট $\angle ACD =$ অবশিষ্ট $\angle AEC$

∴ ত্রিভুজদ্বয় সদৃশকোণী তথা সদৃশ।

সুতরাং
$$\frac{AD}{AC} = \frac{AC}{AE}$$

বা, $AC^2 = AE$. AD

 $\mathbf{q}, AB^2 = AE. AD \quad [\because AB = AC]$

অর্থাৎ, $AB^2=2R$. $AD~[\because AE^-$ পরিবৃত্তের ব্যাস=2R] **(প্রমাণিত)**

বি.দ্র: C, E এর পরিবর্তে B, E যোগ করে বর্ণিত পদ্ধতিতে প্রশ্নটি প্রমাণ করা যায়।

১০ ABC ত্রিভুজের $\angle A$ এর সমদ্বিখণ্ডক BC কে D বিন্দুতে এবং ABC পরিবৃত্তকে E বিন্দুতে ছেদ করেছে। দেখাও যে, $AD^2=AB.AC-BD.DC$ ।

সমাধান:

বিশেষ নির্বচন: ΔABC এর $\angle A$ এর সমদ্বিখণ্ডক BC কে D বিন্দুতে এবং ABC বৃত্তকে E বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে, $AD^2 = AB$. AC - BD. DC

অঙ্কন: C ও E যোগ করি।

প্রমাণ: ΔABD ও ΔACE -এ

 $\angle BAD = \angle CAE$ $[::AD, \angle A$ এর সমদ্বিখণ্ডক]

 $\angle ABC = \angle AEC$ $[\because$ একই চাপ AC এর বৃত্তাংশস্থিত কোণ]

বা, $\angle ABD = \angle AEC$

এবং অবশিষ্ট $\angle ADB$ = অবশিষ্ট $\angle ACE$

ত্রিভুজদ্বয় সদৃশকোণী; সুতরাং তারা সদৃশ

$$\therefore \frac{AD}{AC} = \frac{AB}{AE}$$

বা,
$$AB$$
. $AC = AD$. AE (i)

আবার, $\triangle ABD$ ও $\triangle CDE$ -এ

$$\angle ABC = \angle CEA \ [\because$$
 একই চাপ AC এর দণ্ডায়মান বৃত্তস্থ কোণ]

বা,
$$\angle ABD = \angle CED$$

 $\angle ADB = \angle CDE$ [বিপ্রতীপ কোণ]

এবং অবশিষ্ট $\angle BAD$ = অবশিষ্ট $\angle DCE$

.: ত্রিভুজদ্বয় সদৃশকোণী ও সদৃশ।

$$\therefore \frac{BD}{DE} = \frac{AD}{DC}$$

অর্থাৎ, AD. DE = BD. DC (ii)

(i) নং সমীকরণ হতে পাই.

$$AB. AC = AD. AE$$

$$= AD (AD + DE)$$
 [:: $AE = AD + DE$]

$$= AD. AD + DE. AD$$

$$= AD^2 + AD. DE$$

বা, $AD^2 = AB$. AC - AD. DE

 $\therefore AD^2 = AB \cdot AC - BD \cdot DC$ [(ii) হতে মান বসিয়ে]

অর্থাৎ, $AD^2 = AB$. AC - BD. DC (প্রমাণিত)

ক্রো ক্রেনে নাও: দুইটি ত্রিভুজের একটি দুই কোণ অপরটির দুই কোণের

 সমান হলেই ত্রিভুজ দুইটি সদৃশকোণী এবং তার ফলে সদৃশ হয়।

 কেননা প্রত্যেকটি ত্রিভুজের তিন কোণের সমষ্টি দুই সমকোণের সমান।

ΔBC ত্রিভুজের AC ও AB বাহুর ওপর যথাক্রমে BE ও CF লম্ব। দেখাও যে, $\Delta ABC:\Delta AEF=AB^2:AE^2$ ।

সমাধানঃ

বিশেষ নির্বচন: দেওয়া আছে, ABC ত্রিভুজের AC ও AB বাহুর উপর যথাক্রমে BE ও CF লম্ব ।

প্রমাণ করতে হবে যে, $\triangle ABC: \triangle AEF = AB^2: AE^2$

অঙ্কন: E, F যোগ করি।

প্রমাণ: $\triangle ABE$ ও $\triangle ACF$ এর

 $\angle BEA = \angle CFA =$ এক সমকোণ

এবং $\angle BAE = \angle CAF$ সাধারণ কোণ

∴ ∆ABE ও ∆ACF সদৃশকোণী এবং সদৃশ।

$$\therefore \frac{AB}{AC} = \frac{AE}{AF}$$

সুতরাং
$$\frac{AB}{AE} = \frac{AC}{AE}$$
 ; [একান্তরকরণ করে]

তাহলে, ΔABC ও ΔAEF -পাই $\angle BAC = \angle EAF$ এবং $\frac{AB}{AE} = \frac{AC}{AF}$

আমরা জানি, দুইটি ত্রিভুজের একটির এক কোণ অপরটির এক কোণের সমান হলে এবং সমান সমান কোণ সংলগ্ন বাহুদ্বয় সমানুপাতিক হলে ত্রিভুজদ্বয় সদৃশ হবে।

∴ ΔABC ও ΔAEF সদৃশ।

দুইটি সদৃশ ত্রিভূজক্ষেত্রের ক্ষেত্রফলদ্বয়ের অনুপাত তাদের যেকোনো দুই অনুরূপ বাহুর ওপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফলের অনুপাতের সমান।

$$\therefore \frac{\Delta ABC}{\Delta AEF} = \frac{AB^2}{AE^2}$$

অর্থাৎ $\triangle ABC$: $\triangle AEF = AB^2$: AE^2 (প্রমাণিত)

সমাধান (দ্বিতীয় পদ্ধতি)

বিশেষ নির্বচন: দেওয়া আছে, ABC ত্রিভুজের AC ও AB বাহুর উপর যথাক্রমে BE ও CF লম।

প্রমাণ করতে হবে যে, $\triangle ABC: \triangle AEF = AB^2: AE^2$

অঙ্কন: E, F যোগ করি।

প্রমাণ: BC কে ব্যাস ধরে বৃত্ত অঙ্কন করলে বৃত্তটি E ও F বিন্দু দিয়ে যাবে। কারণ $\angle BEC=90^\circ$ এবং $\angle BFC=90^\circ$ হওয়ায় এরা অর্ধবৃত্তস্থ কোণ হবে।

∴ BCEF একটি বৃত্তস্থ চতুর্ভুজ অর্থাৎ B, C, E, F বিন্দুগুলো সমবৃত্ত। আবার, বৃত্তস্থ চতুর্ভুজের ক্ষেত্রে দুটি বিপরীত কোণের সমষ্টি 180° হবে।

$$\therefore \angle ABC + \angle CEF = 180^{\circ}$$

$$\therefore$$
 \angle ABC + \angle CEF = \angle AEF + \angle CEF

$$\therefore$$
 \angle ABC = \angle AEF

অনুরূপভাবে, ∠AFE = ∠ACB

 ΔABC ও ΔAEF এর মধ্যে

 $\angle ABC = \angle AEF$ এবং $\angle ACB = \angle AFE$.

∴ ত্রিভুজ দুটি সদৃশকোণী।

যেহেতু AB ও AE তাদের অনুরূপ বাহু।

দুইটি সদৃশ ত্রিভুজক্ষেত্রের ক্ষেত্রফলদ্বয়ের অনুপাত তাদের যেকোনো দুই অনুরূপ বাহুর ওপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফলের অনুপাতের সমান।

$$\therefore \frac{\Delta ABC}{\Delta AEF} = \frac{AB^2}{AE^2}$$

অর্থাৎ $\triangle ABC$: $\triangle AEF = AB^2$: AE^2 (প্রমাণিত)

ΔPQR -এ PM,QN ও RS মধ্যমাত্রয় O বিন্দুতে ছেদ করেছে।

- ক. O বিন্দুটির নাম কী? O বিন্দু PM কে কী অনুপাতে বিভক্ত করে?
- খ. ΔPQR হতে $PQ^2+PR^2=2(PM^2+QM^2)$ সম্পর্কটি প্রতিষ্ঠিত কর।
- গ. দেখাও যে, ΔPQR -এর বাহু তিনটির বর্গের সমষ্টি O বিন্দু হতে শীর্ষবিন্দু তিনটির দূরত্বের বর্গের সমষ্টির তিনগুণ।

সমাধান:

 $\therefore O$ বিন্দুটির নাম ভরকেন্দ্র এবং O বিন্দুটি মধ্যমা PM কে 2:1 অনুপাতে অন্তর্বিভক্ত করে।

খ

দেওয়া আছে, ΔPQR -এ PM, QN ও RS মধ্যমাত্রয় O বিন্দুতে ছেদ করেছে। ΔPQR হতে $PQ^2 + PR^2 = 2(PM^2 + QM^2)$ সম্পর্কটি প্রতিষ্ঠা করতে হবে ।

অঙ্কন: *OR* এর উপর *PE* লম্ব টানি।

অপর দুই বাহু PM ও QM এবং QM রেখার উপর PM রেখার লম্ব অভিক্ষেপ ME।

 $PQ^2 = PM^2 + QM^2 + 2QM ME \dots (i)$

আবার, ΔPMR -এ $\angle PMR$ সূক্ষ্কেণণ, অপর দুই বাহু PM ও MR এবং MR রেখার উপর PM রেখার লম্ব অভিক্ষেপ ME।

 $\therefore PR^2 = PM^2 + MR^2 - 2MR.ME \dots (ii)$

সমীকরণ (i) ও (ii) যোগ করে পাই,
$$PQ^2 + PR^2 = PM^2 + QM^2 + 2QM.ME + PM^2 + MR^2 - 2MR.ME$$
$$= 2PM^2 + QM^2 + 2QM.ME + QM^2 - 2QM.ME \quad [PM$$
 মধ্যম হওয়া, $QM = MR$]
$$= 2PM^2 + 2QM^2$$
$$= 2PM^2 + 2PM^2 + 2QM^2 + 2PM^2 +$$

∴ $PQ^2 + PR^2 = 2(PM^2 + QM^2)$ [সম্পর্কটি প্রতিষ্ঠিত হলো]

গ

দেওয়া আছে, ΔPQR -এ PM,QN ও RS মধ্যমাত্রয় O বিন্দুতে ছেদ করেছে। O হতে শীর্ষ বিন্দু তিনটির দূরত্ব যথাক্রমে OP,OQ এবং ORপ্রমাণ করতে হবে যে, $PQ^2 + QR^2 + PR^2 = 3(OP^2 + OQ^2 + OR^2)$ প্রমাণ: 'খ' হতে পাই, $PQ^2 + PR^2 = 2(PM^2 + QM^2)$

at,
$$PQ^2 + PR^2 = 2\left\{PM^2 + \left(\frac{1}{2} \times QR\right)^2\right\}$$
 [∴ $QM = \frac{1}{2}QR$]
at, $PQ^2 + PR^2 = 2PM^2 + 2 \cdot \frac{1}{4}QR^2$
at, $PQ^2 + PR^2 = 2PM^2 + \frac{1}{2}QR^2$
at, $2(PQ^2 + PR^2) = 4PM^2 + QR^2$
∴ $PM^2 = \frac{2(PQ^2 + PR^2) - QR^2}{4}$ (i)

(i) নং এর অনুরূপে অন্য দুটি মধ্যমার ক্ষেত্রে পাই,
$$QN^2 = \frac{2(PQ^2 + QR^2) - PR^2}{4} \dots \dots \dots (ii)$$
 ও $RS^2 = \frac{2(QR^2 + PR^2) - PQ^2}{4} \dots \dots \dots (iii)$

$$\Re RS^2 = \frac{2(QR^2 + PR^2) - PQ^2}{4} \dots \dots \dots (iii)$$

(i), (ii) ও (iii) নং যোগ করে পাই,
$$PM^2 + QN^2 + RS^2 = \frac{2(PQ^2 + PR^2) - QR^2 + 2(PQ^2 + QR^2) - PR^2 + 2(QR^2 + PR^2) - PQ^2}{4}$$

$$= \frac{4PQ^2 + 4PR^2 + 4QR^2 - QR^2 - PR^2 - PQ^2}{4}$$

$$= \frac{3PQ^2 + 3PR^2 + 3QR^2}{4}$$
 বা, $4(PM^2 + QN^2 + RS^2) = 3(PQ^2 + PR^2 + QR^2)$

 $4(PM^2 + QN^2 + RS^2) = 3(PQ^2 + PR^2 + QR^2)$

:.
$$PQ^2 + PR^2 + QR^2 = \frac{4}{3} (PM^2 + QN^2 + RS^2) \dots \dots \dots (iv)$$

এখন, O ভরকেন্দ্র হওয়ায়, O বিন্দুটি প্রত্যেক মধ্যমাকে 2:1 অনুপাতে বিভক্ত করে।

$$\frac{PM}{OP} = \frac{3}{2}$$

বা,
$$PM = \frac{3}{2} OP$$

অনুরূপভাবে, $RS = \frac{3}{2} OR$ এবং $QN = \frac{3}{2} OQ$

 $(\mathrm{i} v)$ নং এ $PM,\,RS$ ও QN এর মান বুসিয়ে পাই

$$PQ^{2} + PR^{2} + QR^{2} = \frac{4}{3} \left[\left(\frac{3}{2} OP \right)^{2} + \left(\frac{3}{2} OQ \right)^{2} + \left(\frac{3}{2} OR \right)^{2} \right]$$
$$= \frac{4}{3} \left(\frac{9}{4} OP^{2} + \frac{9}{4} OQ^{2} + \frac{9}{4} OR^{2} \right)$$
$$= \frac{4}{3} \times \frac{9}{4} (OP^{2} + OQ^{2} + OR^{2})$$

 $PQ^2 + PR^2 + QR^2 = 3(OP^2 + OQ^2 + OR^2)$

অর্থাৎ, ΔPQR -এর বাহু তিনটির বর্গের সমষ্টি O বিন্দু হতে শীর্ষবিন্দু তিনটির দূরত্বের বর্গের সমষ্টির তিনগুণ । **(দেখানো হলো**)

📣 দৃষ্টি আকর্ষণ: এ প্রশ্নের আরও একটি বিকল্প সমাধানের জন্য অনুশীলনী ৩.১ এর ৭নং প্রশ্নের সমাধান দেখে নাও।

১৫ (গ) সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, ΔPQR -এ PM, QN ও RS মধ্যমাত্রয় O বিন্দুতে ছেদ করেছে। O হতে শীর্ষ বিন্দু তিনটির দূরত্ব যথাক্রমে OP, OQ এবং OR প্রমাণ করতে হবে যে, $PQ^2 + QR^2 + PR^2 = 3(OP^2 + OQ^2 + OR^2)$

প্রমাণ: যেহেতু ∆PQR এর PM মধ্যমা,

$$\therefore PQ^2 + PR^2 = 2(PM^2 + QM^2)$$
 [এ্যাপোলোনিয়াসের উপপাদ্য অনুসারে]

বা,
$$PQ^2 + PR^2 = 2PM^2 + 2QM^2 \dots (i)$$

অনুরূপভাবে,
$$QN$$
 মধ্যমার ক্ষেত্রে : $QR^2 + PQ^2 = 2RN^2 + 2QN^2 \dots (ii)$

এবং
$$RS$$
 মধ্যমার ক্ষেত্রে :: $PR^2 + QR^2 = 2QS^2 + 2RS^2 \dots \dots (iii)$

(i), (ii) ও (iii) যোগ করে,

$$2(PQ^2 + QR^2 + PR^2) = 2QM^2 + 2RN^2 + 2QS^2 + 2(PM^2 + QN^2 + RS^2)$$

বা,
$$4(PQ^2+QR^2+PR^2)=4QM^2+4RN^2+4QS^2+4(PM^2+QN^2+RS^2)$$
 [উভয়পক্ষকে 2 দ্বারা গুণ করে পাই]

বা,
$$3(PQ^2 + QR^2 + PR^2) = 4(PM^2 + QN^2 + RS^2) \dots \dots \dots (iv)$$

আবার, O মধ্যমা তিনটির ছেদবিন্দু / ভরকেন্দ্র বলে মধ্যমাত্রয় পরস্পরকে 2:1 অনুপাতে বিভক্ত করে।

$$\frac{PM}{OP} = \frac{2}{3}$$
, $\frac{QN}{OQ} = \frac{2}{3}$ এবং $\frac{RS}{OR} = \frac{2}{3}$

বা,
$$PM = \frac{3}{2} OP$$
, $QN = \frac{3}{2} OQ$ এবং $RS = \frac{3}{2} OR$

(iv) নং সমীকরণে সংশ্লিষ্ট মান বসিয়ে পাই,

$$3(PQ^{2} + QR^{2} + PQ^{2}) = 4\left\{ \left(\frac{3}{2}OP\right)^{2} + \left(\frac{3}{2}OQ\right)^{2} + \left(\frac{3}{2}OR\right)^{2} \right\}$$
$$= 4\left(\frac{9}{4}OP^{2} + \frac{9}{4}OQ^{2} + \frac{9}{4}OR^{2}\right)$$
$$= 9(OP^{2} + OQ^{2} + OR^{2})$$

$$\therefore PQ^2 + QR^2 + PQ^2 = 3(OP^2 + OQ^2 + OR^2)$$
 (প্রমাণিত)

oxdot নিচের চিত্রে, $S,\,O$ যথাক্রমে $\Delta ext{ABC}$ এর পরিকেন্দ্র ও লম্ববিন্দু। AP মধ্যমা, $\,BC=a,AC=b\,$ এবং $AB=c\,$ ।

[সি.বো-'১৭]

- ক. OA এবং SP এর মধ্যে সম্পর্ক নির্ণয় কর।
- খ. দেখাও যে, S, G, O একই সরল রেখায় অবস্থিত।
- গ. $\angle C$ সুক্ষাকোণ হলে a.CD = b.CE সমীকরণটি প্রতিষ্ঠিত কর।

সমাধানঃ

ক

আমরা জানি, কোনো ত্রিভুজের লম্ব বিন্দু থেকে শীর্ষের দূরত্ব, ত্রিভুজের পরিকেন্দ্র থেকে ঐ শীর্ষের বিপরীত বাহুর দূরত্বের দিগুণ। এখানে, $\triangle ABC$ এর লম্ব বিন্দু O থেকে শীর্ষ A এর দূরত্ব OA এবং পরিকেন্দ্র S থেকে A শীর্ষের বিপরীত বাহু BC এর দূরত্ব SP। $\therefore OA = 2SP$ এটিই নির্দের সম্পর্ক। (Ans.)

খ

দেওয়া আছে, ΔABC এর পরিকেন্দ্র S ও লম্ববিন্দু O এবং AP মধ্যমা। প্রমাণ করতে হবে যে, S, ভরকেন্দ্র এবং O একই সরল রেখায় অবস্থিত।

প্রমাণ: $\triangle ABC$ এর লম্ববিন্দু O, পরিকেন্দ্র S এবং AP একটি মধ্যমা । AP মধ্যমা SO রেখাকে G বিন্দুতে ছেদ করে। এখন G বিন্দুটি ভরকেন্দ্র হলে বলা যায় S, ভরকেন্দ্র এবং O একই সরল রেখায় অবস্থিত।

'ক' থেকে পাই, OA = 2SP (i)

এখন যেহেতু AD ও SP উভয়ই BC এর ওপর লম্ব সেহেতু $AD \parallel SP$

 $\therefore \angle PAD = \angle APS$ [একান্তর কোণ] অর্থাৎ, $\angle OAG = \angle SPG$ এখন, ΔAGO এবং ΔPGS এর মধ্যে $\angle AGO = \angle PGS$ [বিপ্ৰতীপ কোণ] $\angle OAG = \angle SPG$ [একান্তর কোণ] অবশিষ্ট $\angle OGA =$ অবশিষ্ট $\angle GPS$ $\therefore \Delta AGO$ এবং ΔPGS সদৃশকোণী ও সদৃশ। সুতরাং $\frac{AG}{GP} = \frac{OA}{SP}$ বা, $\frac{AG}{GP} = \frac{2SP}{SP}$ বা, $\frac{AG}{GP} = \frac{2}{1}$ $\therefore AG: GP = 2:1$ অর্থাৎ, G বিন্দু AP মধ্যমাকে 2:1 অনুপাতে বিভক্ত করে। আমরা জানি, ভরকেন্দ্র মধ্যমাকে 2:1 অনুপাতে বিভক্ত করে। সুতরাং G বিন্দু, ΔABC এর ভরকেন্দ্র। তাহলে বলা যায় ত্রিভুজের পরিকেন্দ্র, ভরকেন্দ্র ও লম্ববিন্দু সমরেখ। সুতরাং, S,G,O একই সরলরেখায় অবস্থিত। (দেখানো হলো)

এখন, $AD \parallel SP$ এবং AP এদের ছেদক।

প্রমাণ করতে হবে যে, a.CD = b.CEপ্রমাণ করতে হবে যে, a.CD = b.CEপ্রমাণ: $AD \perp BC$ হওয়ায় ΔABC এর $\angle ACB$ সৃক্ষকোণ।
সৃক্ষকোণের বিপরীত বাহু AB এবং অপর বাহুদ্বয় হলো AC ও BC এবং CD, BC বাহুতে AC বাহুর লম্ব অভিক্ষেপ।
অতএব, $AB^2 = AC^2 + BC^2 - 2BC.CD$ (i)
অনুরূপভাবে ΔABC -এ সৃক্ষকোণ $\angle C$ এর বিপরীত বাহু AB এবং অপর বাহুদ্বয় AC ও BC আবার, CE, AC বাহুতে BC বাহুর লম্ব অভিক্ষেপ।
∴ $AB^2 = BC^2 + AC^2 - 2AC.CE$ (ii)
(i) নং ও (ii) নং সমীকরণ তুলনা করে পাই, $AC^2 + BC^2 - 2BC.CD = BC^2 + AC^2 - 2AC.CE$ বা, $AC^2 + BC^2 - 2AC.CE$ বা, $AC^2 + BC^2 - 2AC.CE$ আ, $AC^2 + BC^2$

ক) দৃষ্টি আকর্ষণ: এ প্রশ্নের বিকল্প সমাধানের জন্য অনুশীলনী ৩.১ এর
৪নং প্রশ্নের সমাধান দেখ।