

Enabling Reconstruction of Attacks on Users via Efficient Browsing Snapshots

Phani Vadrevu*, Jienan Liu*, Bo Li*, Babak Rahbarinia*, Kyu Hung Lee* and Roberto Perdisci*

* University of Georgia, Athens, USA † Auburn University in Montgomery, Alabama, USA

Social Engineering Attack!

We need ...

13

Requirements

A tool that can record and reconstruct user-browser interactions and browser state.

- 1. Forensic Rigor
 - Browser state should be fully captured synchronously i.e. before input is processed by the browser
- 2. Efficiency (always-on)
 - HCI research states that a lag < 150 ms is practically unnoticeable to end users^[1]
- 3. Transparency
 - Should not be easily detected by adversaries
- 4. Portablitity
 - Should work on all platforms (mobile)

Related Work

- Network:
 - WebWitness (USENIX SEC 2014): DPI to reconstruct path to attack pages; visual reconstruction not possible
- Browser based record-and-replay:
 - WebCapsule (CCS 2015): Instrument Blink to record and replay all browser actions; not fully deterministic and is complex
- Whole system record-and-replay:
 - ReVirt (OSDI 2002): Record and guest OS's execution at an instruction level; heavy-weight and difficult to deploy on mobile devices

ChromePic

 An always-on, lightweight, efficient and portable forensic engine embedded inside the Chromium browser

 It synchronously records user-browser interactions and the browser state into rich forensic logs called webshots

Webshot

Trigger Events

Trigger Events

Mouse: left click, right click

Touch device: tap

Keyboard: return, space, tab, esc, back space, arrows

ChromePic in Action

Building ChromePic

Extensions not viable

Browser Instrumentation <

Chromium Architecture

Browser process

Renderers

Chromium Architecture

Renderers

Browser Instrumentation

Use as much underlying code as possible:

- CaptureVisibleTab(): asynchronous
 screenshots
- SaveAsMHTML(): asynchronous DOM
 snapshots

Browser Instrumentation

Use as much underlying code as possible:

- CaptureVisibleTab(): asynchronous
 screenshots
- SaveAsMHTML(): asynchronous DOM
 snapshots

both are asynchronous need synchronous and efficient versions

ChromePic Design

ChromePic Trigger Input Processing

ChromePic Design

ChromePic Trigger Input Processing

Synchronous by design

ChromePic Design

- Next efficiency needs to be ensured for both:
 - Screenshots
 - DOM Snapshots

Efficient screenshots

Efficient screenshots

Chromium MHTML Code

Chromium MHTML Code

"the render thread is a scary place"
on ARM, stalls can be seconds long"
- Chromium Docs

Efficient DOM Snapshots

- Process all frame in a single task.
- Piggyback on input processing task.

DOM Snapshots: Comparison

Original MHTML Code

ChromePic DOM Snapshots

Evaluation

- Reconstructing attacks on users
- Used ChromePic on various UI attack pages
 - 1. An in-the-wild social engineering attack
 - 2. Real-world phishing pages
 - 3. Clickjacking attacks from WOOT '14 [2]

Social engineering attack

Alert Box (from DOM Snapshot)

WARNING! This Google Pixel C is infected with viruses and your browser is seriously damaged. You need to remove viruses and make corrections immediately. It is necessary to remove and fix now. Don't close this window. ** If you leave, you will be at risk**

User Study

- Measure performance on real user behavior
- 15 minutes limit for each user/device

	ubuntu	ubuntu	CIOSCOID	Total
# Users	11	15	16	22 (unique)
Browsing Time (minutes)	286	346	363	995
# Domains	65	80	92	204 (unique)
# Webshots	1376	2145	2428	5949

Screenshot Overhead

Original Screenshot Code

ChromePic - Optimized

	Median(ms)	98% (ms)
Tablet	65.7	110
Laptop	36.2	71
Desktop	39	118

	Median(ms)	98% (ms)
Tablet	13	25.9
Laptop	5.38	27.7
Desktop	2.7	23.8

Total Webshot Overhead

Screenshot Overhead

	Median(ms)	98% (ms)
Tablet	13	25.9
Laptop	5.38	27.7
Desktop	2.7	23.8

DOM Snapshot Overhead

	Median(ms)	98% (ms)
Tablet	59.5	203
Laptop	33.3	109.6
Desktop	19	76.1

Total Webshot Overhead

89% < 150 ms

Screenshot Overhead

	Median(ms)	98% (ms)
Tablet	13	25.9
Laptop	5.38	27.7
Desktop	2.7	23.8

DOM Snapshot Overhead

	Median(ms)	98%_ms)
Tablet	59.5	203
Laptop	33.3	109.6
Desktop	19	76.1

Performance Overhead

Storage

Dlatform	Uncompre	Uncompressed		sed
Platform	Screenshots	DOM	Screenshots	DOM
Android	6.80	11.62	0.31	0.54
Linux laptop	4.66	11.33	0.15	0.88
Linux desktop	2.31	8.07	0.09	0.83

Storage requirements in MB/Minute

- Maximum requirement of about 1.03 MB/minute of active browsing
- At this rate, a 1000 employee corporate network would generate 72 TB of log data per year

Discussion on Privacy

- Disable on HTTPS connections using valid SSL certificates
- Whitelist sensitive websites
- Site-based encryption scheme based on a keyescrow agent.
 - Each site's data is encrypted with a separate key
 - When an incident happens, the investigator gets only keys to the relevant sites.
 - Forward secure encryption schemes can be used to extend this for devices that are not always connected to the key escrow agent

Conclusion

- ChromePic is a lightweight and portable forensic engine.
- It can accurately log important user inputs and the associated browser states.
- ChromePic can help reconstruct real world UI attacks.
- ChromePic has imperceptible latency and requires only moderate disk space for logs.

Thank You!

Source code to be released soon! Binaries already available!!

https://github.com/chromepic/chromepic-browser

