- 1. Recall Properties of the Cross Product:
  - **11 Properties of the Cross Product** If **a**, **b**, and **c** are vectors and *c* is a scalar, then
  - 1.  $a \times b = -b \times a$
  - 2.  $(ca) \times b = c(a \times b) = a \times (cb)$
  - 3.  $a \times (b + c) = a \times b + a \times c$
  - 4.  $(a + b) \times c = a \times c + b \times c$
  - 5.  $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
  - 6.  $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$
  - (a) Prove that

$$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = 2(\mathbf{a} \times \mathbf{b})$$

(b) Prove that

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$$

- 2. Find the distance between the lines  $(1,-1,0) + \mathbb{R}(0,1,1)$  and  $(2,0,1) + \mathbb{R}(2,-1,0)$
- 3. Match the graphs and the standard forms of six basic types of quadric surfaces



a) 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 b)  $\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$  c)  $\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$  d)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$  e)  $\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$  f)  $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 

1. (a)

$$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = (\mathbf{a} - \mathbf{b}) \times \mathbf{a} + (\mathbf{a} - \mathbf{b}) \times \mathbf{b}$$

$$= \mathbf{a} \times \mathbf{a} + (-\mathbf{b}) \times \mathbf{a} + \mathbf{a} \times \mathbf{b} + (-\mathbf{b}) \times \mathbf{b} \quad (\mathbf{1} \text{ point})$$

$$= (\mathbf{a} \times \mathbf{a}) - (\mathbf{b} \times \mathbf{a}) + (\mathbf{a} \times \mathbf{b}) - (\mathbf{b} \times \mathbf{b})$$

$$= \mathbf{0} - (\mathbf{b} \times \mathbf{a}) + (\mathbf{a} \times \mathbf{b}) - \mathbf{0}$$

$$= (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{b})$$

$$= 2(\mathbf{a} \times \mathbf{b}) \quad (\mathbf{1} \text{ point})$$

(b)

$$\begin{aligned} \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) \\ &= \left[ (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \right] + \left[ (\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \right] + \left[ (\mathbf{c} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b} \right] \\ &= (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} + (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} + (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b} \\ &= \mathbf{0} \end{aligned} \tag{1 point}$$

- 2. span a plane C at the line  $L_1 = (2,0,1) + \mathbb{R}(2,-1,0)$  which is parallel to the line  $L_2 = (1,-1,0) + \mathbb{R}(0,1,1)$ , the normal vector of the plane can be  $n = \langle 1,2,-2 \rangle$  (1 point); choose a point (1,-1,0) on the line  $L_2$  and a point (2,0,1) on the plane C to make a vector  $v = \langle 1,1,1 \rangle$  (1 point), the distance is the projection of v on n,  $d = \left| \frac{v \cdot n}{|n|} \right| = \left| \frac{1 \times 1 + 1 \times 2 + 1 \times (-2)}{\sqrt{1^2 + 2^2 + (-2)^2}} \right| = \frac{1}{3}$  (1 point).
- 3. **(0.5 point each)** 
  - (a) Ellipsoid
  - (b) Cone
  - (c) Elliptic Paraboloid
  - (d) Hyperboloid of One Sheet
  - (e) Hyperbolic Paraboloid
  - (f) Hyperboloid of Two Sheets