Chapter 1.1

These problems implicitly make use of the following lemma (stated casually in the book).

Lemma If (G, \star) is a group and $H \subseteq G$ is closed under \star , then \star is associative in H.

Proof. We know \star is associative in G by definition of a group. Now let $a,b,c\in H$. Since H is closed, $a\star(b\star c),(a\star b)\star c\in H$. However, since $a,b,c\in H$ implies $a,b,c\in G$ we also know $a\star(b\star c)=(a\star b)\star c$. Hence, \star is associative in H.

Problem 1.1.1 *Determine which of the following binary operations are associative:*

- (a) the operation \star on \mathbb{Z} defined $a\star b=a-b$
- (b) the operation \star on \mathbb{R} defined by $a\star b=a+b+ab$
- (c) the operation \star on \mathbb{Q} defind by $a\star b = \frac{a+b}{5}$
- (d) the operation \star on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a,b)\star (c,d) = (ad+bc,bd)$
- (e) the operation \star on $\mathbb{Q} \{0\}$ defined by $a \star b = \frac{a}{b}$.

Solution. (a) Not associative. For example, $(2 \star 1) \star 1 = 0 \neq 2 = 2 \star (1 \star 1)$.

(b) Associative, because

$$(a \star b) \star c = (a + b + ab) \star c = (a + b + ab) + c + (a + b + ab)c$$

= $a + (b + c + bc) + a(b + c + bc) = a + (b \star c) + a(b \star c) = a \star (b \star c).$

The intermediate steps follow because usual addition and multiplication is associative and commutative in \mathbb{Z} .

- (c) Not associative. For example, $(0 \star 0) \star 25 = 5 \neq 1 = 0 \star (0 \star 25)$.
- (d) Associative, because

$$\begin{split} ((a,b) \star (c,d)) \star (e,f) &= (ad+bc,bd) \star (e,f) = ((ad+bc)f + (bd)e,(bd)f) \\ &= (a(df) + b(cf+de),b(df)) = (a,b) \star (cf+de,df) \\ &= (a,b) \star ((c,d) \star (e,f)). \end{split}$$

Notice we could not say $(\mathbb{Z} \times \mathbb{Z}, \star)$ is isomorphic to $(\mathbb{Q}, +)$ even though intuitively $\frac{a}{b} + \frac{c}{d} = \frac{ab+bc}{bd}$, because this would exclude b or d equal to 0 (which is encompassed by the former).

(e) Not associative. For example, $(1 \star 1) \star 2 = \frac{1}{2} \neq 2 = 1 \star (1 \star 2)$.

Problem 1.1.2 Decide which of the binary operations in the preceding exercise are commutative.

Solution. (a) Not commutative. For example, $1 \star 0 = 1 \neq -1 = 0 \star 1$.

(b) Commutative, because

$$a \star b = a + b + ab = b + a + ba = b \star a$$

due to addition and multiplication being commutative in \mathbb{Z} .

(c) Commutative, because

$$a \star b = \frac{a+b}{5} = \frac{b+a}{5} = b \star a,$$

due to addition being commutative in \mathbb{Z} .

(d) Commutative, because

$$(a,b)\star(c,d) = (ad + bc,bd) = (cb + da,db) = (c,d)\star(a,b),$$

due to addition and multiplicaiton being commutative in \mathbb{Z} .

(e) Not commutative. For example, $2 \star 1 = 2 \neq \frac{1}{2} = 1 \star 2$.

Problem 1.1.3 Prove that the addition of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative (you may assume it is well defined).

Proof. Let $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}/n\mathbb{Z}$. Then $\overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b+c}$ (by definition--see page 9 in the book), which equals $\overline{a + (b+c)} = \overline{a+b+c}$ (again by definition). However,

$$\overline{a+b+c} = \overline{(a+b)+c} = \overline{a+b} + \overline{c} = \left(\overline{a} + \overline{b}\right) + \overline{c}. \ \Box$$

Problem 1.1.4 Prove that the multiplication of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative (you may assume it is well defined).

Proof. Let $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}/n\mathbb{Z}$. Then $\overline{a}(\overline{b} \cdot \overline{c}) = \overline{a} \cdot \overline{bc}$ (by definition--see page 9 in the book), which equals $\overline{a(bc)} = \overline{abc}$ (again by definition). However,

$$\overline{abc} = \overline{(ab)c} = \overline{ab} \cdot \overline{c} = (\overline{a} \cdot \overline{b})\overline{c}. \ \Box$$

Problem 1.1.5 Prove for all n > 1 that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes.

Proof. In the book, we've seen $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a group. Hence, $\overline{0}$ must be the guilty element of breaking this structure. Indeed, $\overline{0}$ has no inverse, since $\overline{0} \cdot \overline{a} = \overline{0} \cdot \overline{a} = \overline{0} = \overline{a} \cdot \overline{0} = \overline{a} \cdot \overline{0}$ for any $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$, and we know $\overline{1}$ is the identity since $\overline{1} \cdot \overline{a} = \overline{1} \cdot \overline{a} = \overline{a} = \overline{a} \cdot \overline{1} = \overline{a} \cdot \overline{1}$ for any $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$. Since there is no element \overline{a} such that $\overline{0} \cdot \overline{a} = \overline{1}$, $\overline{0}$ has no inverse and by definition $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes. \square

Problem 1.1.6 *Determine which of the following sets are groups under addition:*

- (a) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are odd
- (b) the set of rational numbers (inculding 0 = 0/1) in lowest terms whose denominators are even
- (c) the set of rational numbers of absolute value < 1
- (d) the set of rational numbers of absolute value > 1 together with 0
- (e) the set of rational numbers with denominators equal to 1 or 2
- (f) the set of rational numbers with denominators equal to 1, 2, or 3.

Solution. For each respective problem, call the group G.

(a) This is a group. First, if $\frac{a}{b}$, $\frac{c}{d} \in G$ with $2 \not| b$ and $2 \not| d$ (i.e., both are odd) and (a,b) = (c,d) = 1, then

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \in G$$

since $2 \not\mid bd$; hence we have closure. We know it is associative since $\mathbb Q$ is on addition and $G \subset \mathbb Q$. The identity is 0/1 since $\frac{0}{1} + \frac{a}{b} = \frac{a}{b} = \frac{a}{b} + \frac{0}{1}$ for all $\frac{a}{b} \in G$. Finally, each element has an inverse since $\frac{a}{b} + \frac{-a}{b} = \frac{0}{1}$ for any $\frac{a}{b} \in G$.

- (b) This is not a group because it does not have closure. For example, $\frac{1}{2} \in G$ but $\frac{1}{2} \frac{1}{2} = \frac{1}{1} \notin G$ since $\frac{1}{1}$ is in lowest terms and the denominator is odd (not even).
- (c) This is not a group because it does not have closure. For example, $\frac{1}{2} \in G$ since $\left|\frac{1}{2}\right| \leq 1$ but $\frac{1}{2} + \frac{1}{2} = 1 \notin G$ since $\left|1\right| \not < 1$.
- (d) This is not a group since it fails closure. For example, $\frac{3}{2}$, $-1 \in G$ since $\left|\frac{3}{2}\right| > |-1| \ge 1$, but $\frac{3}{2} + (-1) = \frac{1}{2} \notin G$ since $\left|\frac{1}{2}\right| \not \ge 1$ and $\frac{1}{2} \ne 0$.
- (e) Assume each rational number is in lowest form. This is a group. First, take $\frac{a}{b}, \frac{c}{d} \in G$ with the greatest common divisor of a and b, and c and d equal to 1. Consider b=d=2. Then $\frac{a}{2}+\frac{c}{2}=\frac{a+c}{2}\in G$. Otherwise, $\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\in G$ since bd=1 or 2 since $\gcd(bd,ad+bc)=1$ or 2 (if bd=2 and ad+bc is even, the gcd becomes 1). Hence, G is closed. We know it is associative since $\mathbb Q$ is on addition and $G\subset \mathbb Q$. The identity is 0/1 since $\frac{0}{1}+\frac{a}{b}=\frac{a}{b}=\frac{a}{b}+\frac{0}{1}$ for all $\frac{a}{b}\in G$. Finally, each element has an inverse since $\frac{a}{b}+\frac{-a}{b}=\frac{0}{1}$ for any $\frac{a}{b}\in G$. By definition, G is a group.
- (f) This is not a group because it is not closed. For example, $\frac{1}{2}, \frac{-1}{3} \in G$ but $\frac{1}{2} + \frac{-1}{3} = \frac{1}{6} \notin G$. \square

Problem 1.1.7 Let $G = \{x \in \mathbb{R} \mid 0 \le x < 1\}$ and for $x, y \in G$ let $x \star y$ be the fractional part of x + y (i.e., $x \star y = x + y - [x + y]$ where [a] is the greatest integer less than or equal to a). Prove that \star is a well-defined binary operation on G and that G is an abelian group under \star (called the real numbers mod 1).

Proof. To show the operation is well-defined, notice either $0 \le x + y < 1$ or $1 \le x + y < 2$. In the former case, [x+y] = 0 so that $x \star y = x + y - [x+y] = x + y$. Otherwise, [x+y] = 1 so that $x \star y = x + y - 1$. Hence, \star is a well-defined binary operation on G. To show closure, again consider the two cases mentioned earlier. In the former, $x \star y = x + y$ and since $0 \le x + y = x \star y < 1$ by assumption, $x \star y \in G$. In the latter case, $x \star y = x + y - 1$ and since $1 \le x + y < 2$ we have $1 - 1 = 0 \le x + y - 1 = x \star y < 2 - 1 = 1$ so again $x \star y \in G$. Therefore, G is closed. To show it is associative, notice for $x, y, z \in G$,

$$(x \star y) \star z = (x + y + [x + y]) \star z = (x + y - [x + y]) + z - [x + y - [x + y] + z] =$$

$$= x + y + z - [y + z] - [x + y + z - [y + z]] = x + (y \star z) - [x + (y \star z)] = x \star (y \star z).$$

The middle equality holds because [x+y]+[x+y-[x+y]+z]=[y+z]+[x+y+z-[y+z]] which needs to be explicitly justified case-by-case. Assume $0 \le x+y \le 1$ and $0 \le y+z \le 1$, or $1 \le x+y < 2$ and $1 \le y+z < 2$. Then [x+y]=[y+z]=1 so the equation holds. Otherwise, assume without loss of generality $0 \le x+y \le 1$ and $1 \le y+z < 2$. Then [x+y]=0 and [y+z]=1, so that

$$[x+y] + [x+y - [x+y] + z] = [x+y+z] = 1 + [x+y+z-1] = [y+z] + [x+y+z - [y+z]].$$

Hence, the operation is associative. Furthermore, 0 is the identity since 0+x+[0+x]=x+0+[x+0]=x+[x] for any $x\in G$. Finally, each element has an inverse, since x+(-x)+[x+(-x)]=(-x)+x+[(-x)+x]=0+[0]=0 for each $x\in G$. Therefore, G is a group. Finally, G is abelian since for any $x,y\in G$, we have that x+y+[x+y]=y+x+[y+x] since addition is commutative in \mathbb{R} . Hence, G is an abelian group. \square

Problem 1.1.8 Let $G = \{z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+\}.$

- (a) Prove that G is a group under multiplication (called the group of roots of unity of \mathbb{C}).
- (b) Prove that G is not a group under addition.

Proof. (a) To prove closure, let $w,z\in G$. Then $\exists n,m\in\mathbb{Z}^+$ such that $w^n=z^m=1$. Then $(wz)^{nm}=(w^n)^m(z^m)^n=1^m1^n=1$ and since $nm\in\mathbb{Z}^+$ (the positive integers are closed under multiplication), by definition $wz\in G$. Hence, G is closed. Associativity is guaranteed since $\mathbb{C}\setminus\{0\}$ is a group under multiplication, and $G\subset\mathbb{C}\setminus\{0\}$ (notice $0\notin G$ since there is no $n\in\mathbb{Z}^+$ such that $0^n=1$). The identity is 1 since for $n=1\in\mathbb{Z}^+$ we have $1^1=1$ so that $1\in G$, and furthermore for all $z\in G$, $1\cdot z=z\cdot 1=z$. Finally, each element has an inverse since for each $z\in G$ there is an $n\in\mathbb{Z}^+$ such that $z^n=1$, so that $z^{n-1}z=z\cdot z^{n-1}=z^n=1$. Therefore, (G,\cdot) is a group. \square

(b) Since $1 \in G$, it can not be a group under multiplication since $1 + 1 = 2 \notin G$ as there is no $n \in \mathbb{Z}^+$ such that $2^n = 1$ (and hence G is not closed). \square

Problem 1.1.9 Let $G = \left\{ a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q} \right\}$.

- (a) Prove that G is a group under addition.
- (b) Prove that the nonzero elements of G are a group under multiplication.

Proof. (a) Let $a+b\sqrt{2}, c+d\sqrt{2} \in G$. Then $\left(a+b\sqrt{2}\right)+\left(c+d\sqrt{2}\right)=(a+c)+(b+d)\sqrt{2}$ is in the group, because $a+c, b+d \in \mathbb{Q}$ (since $(\mathbb{Q},+)$ is a group). Associativity is guaranteed since $G \subset \mathbb{R}$ and $(\mathbb{R},+)$ is a group. The identity is $0+0\sqrt{2}$ since $\left(0+0\sqrt{2}\right)+\left(a+b\sqrt{2}\right)=\left(a+b\sqrt{2}\right)+\left(0+0\sqrt{2}\right)=a+b\sqrt{2}$ for any $a+b\sqrt{2} \in G$. Finally, each element has an inverse since for $a+b\sqrt{2} \in G$, $\left(a+b\sqrt{2}\right)+\left(-a+(-b)\sqrt{2}\right)=\left(-a+(-b)\sqrt{2}\right)+\left(a+b\sqrt{2}\right)=0+0\sqrt{2}$. Therefore, G is a group under addition. \Box

(b) Let $a+b\sqrt{2}, c+d\sqrt{2} \in G$. Then $\left(a+b\sqrt{2}\right)\left(c+d\sqrt{2}\right)=(ac+2bd)+(ad+bc)\sqrt{2}$ is in the group, because $ac+2bd, ad+bc \in \mathbb{Q}$ (since $(\mathbb{Q},\,\cdot\,)$ is a group). Associativity is guaranteed since $G\subset \mathbb{R}$ and $(\mathbb{R},\,\cdot\,)$ is a group. The identity is $1+0\sqrt{2}$ since $\left(1+0\sqrt{2}\right)\left(a+b\sqrt{2}\right)=\left(a+b\sqrt{2}\right)\cdot\left(1+0\sqrt{2}\right)=a+b\sqrt{2}$ for any $a+b\sqrt{2}\in G$. Finally, each element has an inverse since for $a+b\sqrt{2}\in G$, $\left(a+b\sqrt{2}\right)\left(\frac{a}{a^2-2b^2}-\frac{b}{a^2-2b^2}\sqrt{2}\right)=\left(\frac{a}{a^2-2b^2}-\frac{b}{a^2-2b^2}\sqrt{2}\right)\left(a+b\sqrt{2}\right)=1+0\sqrt{2}$ (this was obtained by solving for c and d in ac+2bd=1, ad+bc=0). We know $\frac{a}{a^2-2b^2}-\frac{b}{a^2-2b^2}\sqrt{2}\in G$ since $\frac{a}{a^2-2b^2}, \frac{-b}{a^2-2b^2}\in G$ (notice the denominator can never be 0 or that would contradict $a,b\in \mathbb{Q}$, and neither can both the terms be 0 since $0\notin G\setminus\{0\}$). Therefore, $G\setminus\{0\}$ is a group under multiplication. \square

Problem 1.1.10 Prove that a finite group is abelian if and only if its group table is a symmetric matrix.

Proof. Assume $G = \{g_1, ..., g_n\}$ is a finite abelian group. Then the i, j entry in its group table is the group element $g_ig_j = g_jg_i$. The j, i entry in its group table is the group element $g_jg_i = g_ig_j$. Hence, by definition, the group table is a symmetric matrix. Now assume $G = \{g_1, ..., g_n\}$ is a finite group with a symmetric matrix. Then the i, j entry is the same as the j, i entry, that is, $g_ig_j = g_jg_i$. However, this holds for

any two elements $g_i, g_j \in G$ so that $g_ig_j = g_jg_i$ for all elements of G. This is precisely the definition of an abelian group. \square

Problem 1.1.11 Find the orders of each element of the additive group $\mathbb{Z}/12\mathbb{Z}$.

Solution. The group is $\mathbb{Z}/12\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, ..., \overline{11}\}$. Then the orders, respectively, are 1, 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, and 12. Notice these are $|G|/\gcd(x, |G|)$. Indeed, this will be proven later. \square

Problem 1.1.12 Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/12\mathbb{Z})^{\times}$: $\overline{1}, \overline{-1}, \overline{5}, \overline{7}$, $\overline{-7}, \overline{13}$.

Solution. The identity is 1, so the order for \overline{x} is the smallest $n \in \mathbb{Z}^+ \cup \{\infty\}$ such that $x^n = 1$ (with $x^\infty = 1$). Respectively, these are 1, 2, 2, 2, 4, and 1 (since $\overline{13} = \overline{1}$). \square

Problem 1.1.13 Find the orders of the following elements of the additive group $\mathbb{Z}/36\mathbb{Z}$: $\overline{1}$, $\overline{2}$, $\overline{6}$, $\overline{9}$, $\overline{10}$, $\overline{12}$, $\overline{-1}$, $\overline{-10}$, $\overline{-18}$.

Solution. The identity is 0, so the order for \overline{x} is the smallest $n \in \mathbb{Z}^+ \cup \{\infty\}$ such that nx = 0 (with $\infty x = 0$). Respectively, these are 36, 18, 6, 4, 18, 3, 36, 18, 2. \square

Problem 1.1.14 Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/36\mathbb{Z})^{\times}$: $\overline{1}$, $\overline{-1}$, $\overline{5}$, $\overline{13}$, $\overline{-13}$, $\overline{17}$.

Solution. The identity is 1, so the order for \overline{x} is the smallest $n \in \mathbb{Z}^+ \cup \{\infty\}$ such that $x^n = 1$ (with $x^\infty = 1$). Respectively, these are 1, 2, 6, 3, 6, 2. \square

Problem 1.1.15 Prove that $(a_1 a_2 ... a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} ... a_1^{-1}$

Proof. Assume $(a_1a_2...a_n)x=1$ so that $x=(a_1a_2...a_n)^{-1}$. Then $a_1^{-1}(a_1a_2...a_n)x=a_1^{-1}\cdot 1$ so that $(a_1^{-1}a_1)(a_2a_3...a_n)x=(a_2a_3...a_n)x=a_1^{-1}$. Similarly, $(a_3a_4...a_n)x=a_2^{-1}a_1^{-1}$. Applying this n times results in $x=a_n^{-1}a_{n-1}^{-1}...a_1^{-1}$, as desired. \square

Problem 1.1.16 Let x be an element of G. Prove that $x^2 = 1$ if and only if |x| is either 1 or 2.

Proof. Assume $x^2=1$. If x=1, then |x|=1. Otherwise, $|x|\neq 1$ (only the identity has order 1) so that |x|=2 by definition since 2 would be the smallest power x need be raised to in order to obtain the identity. On the other hand, assume |x| is either 1 or 2. If |x|=1, then x=1 as only the identity has order 1. Otherwise |x|=2 so by definition of order, $x^2=1$. \square

Problem 1.1.17 Let x be an element of G. Prove that if |x| = n for some positive integer n then $x^{-1} = x^{n-1}$.

Proof. Let |x|=n. By definition, $x^n=1$. Hence, $x\cdot x^{n-1}=x^{n-1}\cdot x=1$. This is precisely the definition of $x^{-1}=x^{n-1}$. \square

Problem 1.1.18 Let x and y be elements of G. Prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.

Proof. Assume $x, y \in G$ and xy = yx. Multiplying by y^{-1} on the left, $y^{-1}xy = y^{-1}yx = x$. Now assume $y^{-1}xy = x$. Multiplying by x^{-1} on the left, $x^{-1}y^{-1}xy = x^{-1}x = 1$. Finally, assume $x^{-1}y^{-1}xy = 1$.

Multipling by yx on the left, $(yx)x^{-1}y^{-1}xy = y(x \cdot x^{-1})y^{-1}xy$ [generalized associativity] $= (y \cdot y^{-1})xy = xy = 1 \cdot (yx) = yx$. \square

Problem 1.1.19 Let $x \in G$ and let $a, b \in \mathbb{Z}^+$.

- (a) Prove that $x^{a+b} = x^a x^b$ and $(x^a)^b = x^{ab}$.
- (b) *Prove that* $(x^a)^{-1} = x^{-a}$.
- (c) Establish part (a) for arbitrary integers a and b (positive, negative, or zero).

Proof. Notice it is obvious $x^a = x^{a-1}x$ for all $a \in \mathbb{Z}^+$. This is because we can recursively define x^a . If a = 0, then $x^a = 1$. Otherwise, $x^a = x^{a-1} \cdot x$. \dagger Similarly, $x^{-a} = x^{-a+1} \cdot x^{-1}$.

(a) We will induct on a and b using strong induction. First, notice $x^{1+1}=x^2=x\cdot x$ [definition] $=x^1x^1$. Now assume $x^{n+m}=x^nx^m$ for all $m\leq n$ and $n\leq k$ for some $k\in\mathbb{Z}^+$. Then inductively we show $x^{(k+1)+m}=x^{k+1}x^m$ for all $m\leq k+1$. First, $x^{k+1}=x^kx^1$ so that $x^{k+1}x=\left(x^kx\right)x=x^k(xx)=x^kx^2$ [definition] $=x^{k+2}$. The last step follows because if k=1, $x^1x^2=xxx=x^3=x^{1+2}$. Otherwise, we use our inductive assumption. Since $x^{k+2}=x^{(k+1)+1}$, we have shown $x^{(k+1)+1}=x^{k+1}x$. Now assume $x^{(k+1)+q}=x^{k+1}x^q$ for some $q\leq k$. Then $x^{k+1}x^{q+1}=x^{k+1}x^qx=x^{(k+1)+q}x$ [inductive assumption] $=x^{(k+1)+q+1}x=x^{(k+1)+(q+1)}$. \square

Similarly, we can show $(x^a)^b = x^{ab}$. First, notice $(x^1)^1 = x^{1 \cdot 1}$. Now assume $(x^n)^m = x^{nm}$ for all $m \le n$ and $n \le k$ for some $k \in \mathbb{Z}^+$. Then inductively we show $(x^{n+1})^m = x^{(n+1)m}$ for all $m \le n+1$. First, $(x^{n+1})^1 = x^{(n+1)1}$. Now assume $(x^{n+1})^k = x^{(n+1)k}$ for some $k \le n$. Then $(x^{n+1})^{k+1} = (x^{n+1})^k (x^{n+1})$ [part (a)] = $x^{(n+1)k}x^{(n+1)} = x^{(n+1)k+(n+1)}$ [part (a)] = $x^{(n+1)(k+1)}$. \square

- (b) As in part (a), we can show this inductively. First, $(x^1)^{-1} = x^{-1}$. Assume $(x^k)^{-1} = x^{-k}$. Then $x^{-(k+1)} = x^{-(k+1)+1} \cdot x^{-1} = x^{-k} \cdot x^{-1} = (x^k)^{-1} x^{-1} = (x \cdot x^k)^{-1}$ [Proposition 1.1.1(4)] $= (x^{k+1})^{-1}$. Hence, $(x^a)^{-1} = x^{-a}$ in general. \square
- (c) Let a be any integer. Then $x^{a+0}=x^{0+a}=x^a=x^0x^a=x^ax^0$, and $x^{0\cdot a}=x^{a\cdot 0}=1^a=(x^0)^a=1^0=(x^a)^0$. Hence, part (a) is valid when a or b is zero. Otherwise, consider when a and b are negative. Then we know $x^{-(a+b)}=x^{-a}x^{-b}=x^{-b}x^{-a}$ by part (a). Then $\left(x^{-(a+b)}\right)^{-1}=\left(x^{-b}x^{-a}\right)^{-1}$ and using part (b) and Proposition 1.1.1(4), this yields $x^{-(-(a+b))}=(x^{-a})^{-1}\left(x^{-b}\right)^{-1}=x^{-(-a)}x^{-(-b)}$ so that $x^{a+b}=x^ax^b$. Now without loss of generality assume a is positive and b is negative. Consider $|a|\geq |b|$. Then a=(a+b)-b with both parts positive. Hence, $x^ax^b=x^{(a+b)-b}x^b=x^{a+b}x^{-b}x^b=x^{a+b}$. Now assume |a|<|b|. Then a=(a+b)-b with -b, a+b negative, and $|-b|\geq |a+b|$, so by what we have just proved, $x^a=x^{a+b}x^{-b}$. Therefore, $x^ax^b=x^{a+b}x^{-b}x^b=x^{a+b}$. \square

Problem 1.1.20 For x an element in G show that x and x^{-1} have the same order.

Proof. Assume $|x| = n \in \mathbb{Z}^+$. By part (b) of the previous exercise, $(x^{-1})^n = x^{-n} = (x^n)^{-1} = 1$. All that remains to be shown is that this is the least n. Assume there is a $m \in \mathbb{Z}^+$ such that m < n and $(x^{-1})^m = 1$. Then $(x^m)^{-1} = 1$ so that $((x^m)^{-1})^{-1} = x^m = 1^{-1} = 1$. However, this would contradict the assumption |x| = m. Hence, $|x^{-1}| = n$. Now assume $|x| = \infty$. Suppose x^{-1} has finite order, n. Then

[†]This is justified because $x^a = \prod_{i=1}^a x = \left(\prod_{i=1}^{a-1} x\right) x = x^{a-1} x$.

 $(x^{-1})^n = (x^n)^{-1} = 1$ so again $((x^n)^{-1})^{-1} = x^n = (1^{-1}) = 1$. However, this would mean x has finite order, a contradiction. Therefore, $|x^{-1}| = \infty$. \square

Problem 1.1.21 Let G be a finite group and let x be an element of order n. Prove that if n is odd, then $x = (x^2)^k$ for some k.

Proof. If n=1, x is the identity so the problem is trivial. Otherwise, let $m\in\mathbb{Z}^+$ be such that n=2m+1. Then by the previous exercise, $(x^{-1})^m=1$ so that $(x^{-1})^m=(x^{-1})^{2m+1}=(x^{-1})^{2m}x^{-1}=1$. Multiplying by x on the right hand side, $(x^{-1})^{2m}x^{-1}x=(x^{-1})^{2m}=(x^{2m})^{-1}=x$. Then $\left((x^{2m})^{-1}\right)^{-1}=x^{2m}=x^{-1}$. But by the previous exercise, $x^{2m}=(x^2)^m$. Hence, $x^{-1}=(x^2)^m$ so that $(x^{-1})^{-1}=x=\left((x^2)^{-m}\right)^{-1}=(x^2)^{-m}=(x^2)^k$ for k=-m. If we wish to have a positive k, let r be the least positive integer such that rn>m. Then $x=(x^2)^k\cdot 1^{2r}=(x^2)^k\cdot (x^n)^{2r}=(x^2)^k(x^2)^{rn}=(x^2)^{k+rn}$. \square

Problem 1.1.22 If x and g are elements of the group G, prove that $|x| = |g^{-1}xg|$. Deduce that |ab| = |ba| for all $a, b \in G$.

Proof. First, we will show $(g^{-1}xg)^n=g^{-1}x^ng$. Inductively, when n=1 we have $(g^{-1}xg)^1=g^{-1}x^1g$. Otherwise, assume $(g^{-1}xg)^k=g^{-1}x^kg$. Then $(g^{-1}xg)^{k+1}=(g^{-1}xg)^k(g^{-1}xg)=(g^{-1}x^kg)\cdot(g^{-1}xg)=g^{-1}x^k(gg^{-1})xg=g^{-1}x^kxg=g^{-1}x^{k+1}g$. Hence, $(g^{-1}xg)^n=g^{-1}x^ng$. Then if $|x|=n\in\mathbb{Z}^+$ we see $(g^{-1}xg)^n=g^{-1}x^ng=g^{-1}g=1$. Now assume there is a $m\in\mathbb{Z}^+$ such that m< n and $(g^{-1}xg)^m=1$. Then $g^{-1}x^mg=1$ so left and right multiplication by g and g^{-1} , respectively, yields $gg^{-1}x^mgg^{-1}=gg^{-1}$ so that $x^m=1$. However, this contradicts the assumption |x|=n. Hence, $|g^{-1}xg|=n=|x|$. Let x=ab and $g=b^{-1}a$. Then $|ab|=|(ba^{-1})(ab)(b^{-1}a)|=|ba|$. \square

Problem 1.1.23 Suppose $x \in G$ and $|x| = n < \infty$. If n = st for some positive integers s and t, prove that $|x^s| = t$.

Proof. First, it is clear $(x^s)^t = x^{st} = x^n = 1$. Assume there is a $m \in \mathbb{Z}^+$ such that m < t and $(x^s)^m = 1$. Then $x^{sm} = 1$, but sm < st = n, so this contradicts the fact |x| = n. \square

Problem 1.1.24 If a and b are commuting elements of G, prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$.

Proof. Inductively, $(ab)^1=a^1b^1$. Assume $(ab)^k=a^kb^k$. Then $(ab)^{k+1}=(ab)^k(ab)=a^kb^kab=(a^ka)b^kb=a^{k+1}b^{k+1}$. Notice the penultimate step is justified by commutativity of a and b. Hence, $(ab)^n=a^nb^n$ for all $n\in\mathbb{Z}^+$. When n=0, $(ab)^0=1=a^0b^0$. Finally, when $n\in\mathbb{Z}^-$, we know $(ab)^{-n}=a^{-n}b^{-n}$ by what we have just shown, but a and b commute so $(ab)^{-n}=(ba)^{-n}=b^{-n}a^{-n}$. Then $((ab)^{-n})^{-1}=(ab)^n=(b^{-n}a^{-n})^{-1}=(a^{-n})^{-1}(b^{-n})^{-1}=a^nb^n$. \square

Problem 1.1.25 Prove that if $x^2 = 1$ for all $x \in G$ then G is abelian.

Proof. Let $x,y\in G$. Then $(xy)^2=1$ since $xy\in G$. Hence, xyxy=1 so $xy=y^{-1}x^{-1}$. However, notice that $(yx)^2=1$ since $yx\in G$, so yxyx=1 and consequently $yx=x^{-1}y^1$. Then $(xy)(yx)=y^{-1}x^{-1}x^{-1}y^{-1}=1$. This implies $xy=x^{-1}y^{-1}=yx$. Hence, xy=yx for all $x,y\in G$ and by definition G is abelian. \square

Problem 1.1.26 Assume H is a nonempty subset of (G, \star) which is closed under the binary operation on G and is closed under inverses, i.e., for all h and $k \in H$, hk and $h^{-1} \in H$. Prove that H is a group under the operation \star restricted to H (such a subset is called a subgroup of G).

Proof. Closure is given. Associativity follows from the lemma at the beginning of this section's solutions. For each $h \in H$, $1_G \star h = h \star 1_G = h$. Hence, $1_H = 1_G$. Finally, for each $h \in H$, there is an $h^{-1} \in H$ (by our assumption of closure of inverses) such that $hh^{-1} = h^{-1}h = 1_G = 1_H$. Hence, H is a group under the operation. \square

Problem 1.1.27 Prove that if x is an element of the group G then $\{x^n \mid n \in \mathbb{Z}\}$ is a subgroup of G (called the cyclic subgroup of G generated by x).

Proof. Call the set $H=\{x^n\mid n\in\mathbb{Z}\}$. Let $h,k\in H$. Then there are $p,q\in\mathbb{Z}$ such that $h=x^q$ and $k=x^p$. Then $hk=x^qx^p=x^{q+p}$ (exercise 19). Since $q+p\in\mathbb{Z}$, $hk\in H$ by definition. Therefore, H is closed under the operation of G. Finally, if $h^{-1}=x^{-q}$, then $hh^{-1}=x^qx^{-q}=1$ and $h^{-1}h=x^{-q}x^q=1$. Since $-q\in\mathbb{Z}$, $h^{-1}\in H$ by definition, so H is closed under inverses. By the previous exercise, H is a subgroup of G. \square

Problem 1.1.28 Let (A, \star) and (B, \diamond) be groups and let $A \times B$ be their direct product. Verify all the group axioms for $A \times B$:⁺.

- (a) prove that the associative law holds: for all $(a_i, b_i) \in A \times B$, i = 1, 2, 3, $(a_1, b_1)[(a_2, b_2)(a_3, b_3)] = [(a_1, b_1)(a_2, b_2)](a_3, b_3)$,
- (b) prove that (1,1) is the identity of $A \times B$, and
- (c) prove that the inverse of (a, b) is (a^{-1}, b^{-1}) .

Proof. (a) Let $(a_i, b_i) \in A \times B$ with i = 1, 2, 3. Then

$$(a_1, b_1)[(a_2, b_2)(a_3, b_3)] = (a_1, b_1)(a_2 \star a_3, b_2 \diamond b_3) = (a_1 \star (a_2 \star a_3), b_1 \diamond (b_2 \diamond b_3))$$

$$= ((a_1 \star a_2) \star a_3, (b_1 \diamond b_2) \diamond b_3) = (a_1 \star a_2, b_1 \diamond b_2)(a_3, b_3)$$

$$= [(a_1, b_1)(a_2, b_2)](a_3, b_3).$$

The intermediate step follows because $a_1 \star (a_2 \star a_3) = (a_1 \star a_2) \star a_3$ and $b_1 \diamond (b_2 \diamond b_3) = (b_1 \diamond b_2) \diamond b_3$ by the fact associativity holds for these elements because A and B is a group. \square

(b) Let
$$(a,b) \in A \times B$$
. Then $(1,1)(a,b) = (1 \star a, 1 \diamond b) = (a,b) = (a\star 1, b\diamond 1) = (a,b)(1,1)$. \square

(c) Let
$$(a,b) \in A \times B$$
. Then $(a,b)(a^{-1},b^{-1}) = (a \star a^{-1},b \diamond b^{-1}) = (1,1) = (a^{-1} \star a,b^{-1} \diamond b) = (a^{-1},b^{-1})(a,b)$. \square

Problem 1.1.29 Prove that $A \times B$ is an abelian group if and only if both A and B are abelian.

Proof. Assume $A \times B$ is abelian. Then for all $a_1, a_2 \in A$ and $b_1, b_2 \in B$, it is true $(a_1, b_1)(a_2, b_2) = (a_2, b_2)(a_1, b_1)$. However, $(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2)$ and $(a_2, b_2)(a_1, b_1) = (a_2a_1, b_2b_1)$. But then $(a_1a_2, b_1b_2) = (a_2a_1, b_2b_1)$, and the components must be equal by definition, so that $a_1a_2 = a_2a_1$ and $b_1b_2 = b_2b_1$. Hence, A and B are abelian. Now assume this. Let $(a_1, b_1), (a_2, b_2) \in A \times B$ with $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Then $(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2) = (a_2a_1, b_2b_1) = (a_2, b_2)(a_1, b_1)$. The intermediate step is justified since we assumed A and B are abelian. By definition, we now know $A \times B$ is abelian. \Box

Problem 1.1.30 Prove that the elements (a, 1) and (1, b) of $A \times B$ commute and deduce the order of (a, b) is the least common multiple of |a| and |b|.

Proof. We see $(a,1)(1,b)=(a\cdot 1,1\cdot b)=(1\cdot a,b\cdot 1)=(1,b)(a,1).$ The intermediate step is justified because $a\in A, b\in B$, and A and B are groups so multiplying a or b by the identity is commutative. Let |a|=n and |b|=m. Then $(a,1)^n=(a^n,1^n)$ (by a trivial inductive argument) and so $(a,1)^n=(1,1).$ If there were a $k\in \mathbb{Z}^+$ with k< n such that $(a,1)^k=(1,1).$ then $(a^k,1^k)=(a^k,1)=(1,1)$ so that $a^k=1$, contradicting the fact |a|=n. Hence, |(a,1)|=n=|a|. Similarly, |(1,b)|=m=|b|. Now let $\gamma=\mathrm{lcm}(m,n)$ with $\gamma=\alpha m$ and $\gamma=\beta n$ for $\alpha,\beta\in\mathbb{Z}^+.$ Then $(a,b)^\gamma=(a^\gamma,b^\gamma)=(a^{\alpha m},b^{\beta n})=\left((a^m)^\alpha,(b^n)^\beta\right)=\left(1^\alpha,1^\beta\right)=(1,1).$ Now assume there is a $\delta\in\mathbb{Z}^+$ such that $\delta<\gamma$ and $(a,b)^\delta=1.$ Then $(a^\delta,b^\delta)=1$ so that $a^\delta=b^\delta=1.$ Assume $n\not|\delta$ so that $\delta=pn+r$ for some $p,r\in\mathbb{Z}^+\cup\{0\}$ with 0< r< n. Then $a^\delta=a^{pn+r}=a^{pn}a^r=(a^n)^pa^r=1^pa^r=a^r=1.$ However, this again contradicts the fact |a|=n since r< n, so that $n\mid\delta.$ Similarly, $m\mid\delta.$ But then by definition $\delta\geq \mathrm{lcm}(m,n)=\gamma,$ a contradiction. Hence, $|a,b|=\mathrm{lcm}(m,n).$

Problem 1.1.31 Prove that any finite group G of even order contains an element of order 2.

Proof. Let |G|=2n. If there was an element of order 2, say x, we would have $x^2=1$ so that $x=x^{-1}$. Let $H=\{g\in G\mid g\neq g^{-1}\}$. Clearly, $1\notin H$. Furthermore, consider the following procedure. Let $H_0=H$ and define H_{i+1} by removing some pair $\{g_i,g_i^{-1}\}$ from H_i with $g_i\in H_i$; that is $H_{i+1}=H_i\setminus\{g,g^{-1}\}$. In each iteration, we know $g\neq g^{-1}$ so that two elements are removed. Since H is finite (as G is finite), eventually $H_k=\emptyset$ for some k. But then $|H_{k-1}|=|H_k|+2=2$, $|H_{k-2}|=|H_{k-1}|+2=4$, etc., so that $|H_0|=|H|=2m$ for some $m\in\mathbb{Z}^+$. Therefore, H has an even number of elements. Since $1\notin H$, |H|<|G|. It is impossible that |H|=|G|-1 since |G|-1 is odd. Hence, |H|<|G|-1. In other words, $G\setminus (H\cup\{1\})\neq \emptyset$. But this means there is some $x\in G$ such that $x\neq 1$ with $x=x^{-1}$ ($x\notin H$ by definition). That is, |x|=2. □

Problem 1.1.32 If x is an element of finite order n in G, prove that the elements $1, x, x^2, ..., x^{n-1}$ are all distinct. Deduce that $|x| \leq |G|$.

Proof. Assume $x^i = x^j$ for some $i \neq j$ $(0 \leq i, j < n)$. Without loss of generality, let i > j. Then $x^{i-j} = 0$, but i - j < n, so this contradicts the fact |x| = n. Hence, $1, x, x^2, ..., x^{n-1}$ are all distinct. There are n of these elements, so |G| > n = |x|. \square

Problem 1.1.33 Let x be an element of finite order n in G.

- (a) Prove that if n is odd then $x^i \neq x^{-i}$ for all i = 1, 2, ..., n 1.
- (b) Prove that if n = 2k and $1 \le i \le n$ then $x^i = x^{-i}$ if and only if i = k.

Proof. (a) If n=1 there is nothing to prove so assume n>1. Assume $x^i=x^{-i}$ for some $1\leq i\leq n-1$. Then $x^ix^i=1$ so that $x^{2i}=1$. Clearly, $2i\neq n$ since 2i is even and n is odd. If $2i\leq n$ there would thus be a contradiction (since |x|=n>2i). Since i< n, we then know n<2i<2n so that 0<2i-n< n. However, $x^{2i}=x^{(2i-n)+n}=x^{2i-n}x^n=x^{2i-n}=1$. In other words, we found a positive integer less than n such that x to the power of that integer is 1. But this contradicts the fact |x|=n. Hence, $x^i\neq x^{-i}$ for all 1< i< n-1. \square

(b) Let $x^i = x^{-i}$ for $1 \le i \le n$ and assume $i \ne k$. Then $x^i x^i = 1$ so that $x^{2i} = 1$. By assumption, $2i \ne n$. If $2i \le n$ there would thus be a contradiction (since |x| = n > 2i). Since i < n, we then know n < 2i < 2n so

that 0 < 2i - n < n. However, $x^{2i} = x^{(2i-n)+n} = x^{2i-n}x^n = x^{2i-n} = 1$. In other words, we found a positive integer less than n such that x to the power of that integer is 1. But this contradicts the fact |x| = n. Hence, i = k. Now assume i = k. Since $1 = x^n = x^{2k} = x^k x^k$, we have $x^k = x^{-k}$, or $x^i = x^{-i}$. \square

Problem 1.1.34 If x is an element of infinite order in G, prove that the elements x^n , $n \in \mathbb{Z}$ are all distinct.

Proof. Assume $x^i=x^j$ for some $i,j\in\mathbb{Z}$ with $i\neq j$. Then $x^{i-j}=1$. If i-j>0, this contradicts the assumption x has infinite order. If i-j<0, $(x^{i-j})^{-1}=1^{-1}=1$ so that $x^{-(i-j)}=x^{j-i}=1$. Then j-i>0, but again this contradicts the assumption x has infinite order. Hence, $x^i\neq x^j$ for all $i,j\in\mathbb{Z}$ with $i\neq j$; that is, the elements $x^n, n\in\mathbb{Z}$ are all distinct. \square

Problem 1.1.35 If x is an element of finite order n in G, use the Division Algorithm to show that any integral power of x equals one of the elements in the set $\{1, x, x^2, ..., x^{n-1}\}$ (so these are all the distinct elements of the cyclic subgroup of G generated by x).

Proof. Let $k \in \mathbb{Z}$. Then k = qn + r for some $q \in \mathbb{Z}$, $r \in \mathbb{Z}$ with $0 \le r < n$ by the Division Algorithm. Hence,

$$x^{k} = x^{qn+r} = x^{qn}x^{r} = (x^{n})^{q}x^{r} = 1^{q}x^{r} = x^{r}$$

with $0 \le r < n$ as required. \square

Problem 1.1.36 Assume $G = \{1, a, b, c\}$ is a group of order 4 with identity 1. Assume also that G has no elements of order 4. Use the cancellation laws to show that there is a unique group table for G. Deduce that G is abelian.

Proof. Assume there are two group tables M_1 and M_2 with the same rows and colums both "representing" 1, a, b, and c, in that order (so that $g_2 = a$, $g_3 = b$, and $g_4 = c$). Now assume there is some i, j such that $M_1(x_{ij}) \neq M_2(x_{ij})$ where $M_k(x_{ij})$ is the ijth entry of group table (matrix) M_k .