Prediction

WASHA, Takwimu, UKZN, 30 August 2023

Till Bärnighausen, Heidelberg Institute of Global Health, University Hospital and Medical Faculty, Heidelberg University

Quantitative analyses serve many important functions in health systems research

4 FUNCTIONS

- 1. Description
- 2. Discovery unsupervised machine learning
 - Dimension reduction: PCA
 - Cluster analysis: k means
- 3. Prediction supervised machine learning
 - Penalized regression
 - kNN
- 4. Causation
 - IV
 - RDD
 - FE

Causal and predictive analysis require very different approaches

COMPARISON

PSM = propensity score matching, IV = instrumental variable analysis, RDD = regression discontinuity design, kNN = k nearest neighbors

	_				
	Causation	Prediction			
Disciplines	EpidemiologyEconomics	Machine learningComputer science			
Foundation	Theory-basedHypothesis testing	AtheoreticalData-driven insight			
Purposes	UnderstandingPolicy guidanceRegulatory approval	Intervention targetingIntervention tailoringNow- and forecasting			
Goal of approach	Minimize bias	 Optimize bias-variance trade-off 			
Approach	• Estimation	Training-(validation)- testingComplexity reduction			
Example	Ordinary multiple regressionPSMIV and RDD	Regularized multiple regressionkNNNeural networks			

What is the generic objective in prediction?

MATHEMATICAL INTUITION

- **Data:** $(Y_i, x_{i1}, ..., x_{ip})$ for i = 1, ..., n
- Objective: predict Y for a given new input $x_{new} = (x_1, ..., x_p)$
- Two major categories are (machine learning language)
 - Regression: continuous data
 - Classification: discrete values representing clases

-	Cluster membership (reference: cluster 1)				
	Cluster 2	Cluster 3	Cluster 4	Cluster 5	
Age (years)	1.055***	1.038***	1.165***	1.084***	
	(0.0004)	(0.005)	(0.001)	(0.0004)	
Education (years)	0.986***	1.063***	1.007***	1.031***	
	(0.001)	(0.010)	(0.001)	(0.001)	
Wealth index (standard deviation)	0.910***	1.412***	1.443***	1.628***	
	(0.004)	(0.051)	(0.006)	(0.005)	
Rural Residence (reference: urban)	1.000***	0.951***	0.990***	1.116***	
	(0.009)	(0.091)	(0.012)	(0.009)	
Religion (reference: Hindu) Muslim	1.124***	1.373***	1.558***	1.522***	
	(0.011)	(0.116)	(0.015)	(0.011)	
Christian	1.289***	0.986***	1.570***	1.290***	
	(0.013)	(0.165)	(0.018)	(0.014)	
Sikh	0.919***	1.170***	2.189***	1.768***	
	(0.030)	(0.252)	(0.030)	(0.025)	
Buddhist	1.260***	0.915**	1.810***	1.228***	
	(0.033)	(0.410)	(0.040)	(0.035)	
Jain	1.290***	0.018***	1.199***	1.013***	
	(0.112)	(0.00005)	(0.128)	(0.105)	
Jewish	0.003***	0.526***	0.029***	1.334***	
	(0.00000)	(0.00001)	(0.00000)	(0.00001)	
Zoroastrian	4.175***	0.580***	3.354***	3.313***	
	(0.257)	(0.0002)	(0.278)	(0.282)	
No religion	2.492***	0.112***	5.235***	2.173***	
	(0.168)	(0.0002)	(0.193)	(0.186)	
Other religions	1.860***	0.190***	2.425***	1.505***	
	(0.031)	(0.001)	(0.041)	(0.036)	
Constant	0.244***	0.001	0.003	0.056***	
	(0.018)	(0.196)	(0.027)	(0.019)	

Penalized regression takes us away from the unbiased coefficient estimators – to achieve higher predictive accuracy

MATHEMATICAL INTUITION

• **OLS** min *RSS*

• LASSO $\min(RSS + \delta_1 \sum_{j=1}^{r} |\beta_j|)$

• Ridge $\min(RSS + \delta_2 \sum_{j=1}^{r} \beta_j^2)$

Elastic net

$$\min(RSS + +\delta_1 \sum_{j=1}^{p} |\beta_j| + \delta_2 \sum_{j=1}^{p} |\beta_j^2|$$

For best prediction, we trade-off bias and variance

CONCEPTS

Source:

https://www.geeksfor geeks.org/ml-biasvariance-trade-off/

We expect/hope to find a minimum in a loss **function** value **EXAMPLE**

RMSE = root mean squared error

k-nearest neighbors (kNN) is a simple nonparametric supervised learning method

OVERVIEW

- Fix & Hodges 1951
- Non-parametric
- Memoryless
- Choice of k defines locality
- As a local method: strong for low-dimensional large data
- Weak for understanding

How do we define near?

MINKOWSKI – DISTANCE METRICS

In \mathbb{R}^q

$$\|\mathbf{x}' - \mathbf{x}_j\|^p = \left(\sum_{i=1}^q |(x_i)' - (x_i)_j|^p\right)^{1/p}$$

For the binary case, the intuition is the majority vote

BASIC IDEA

kNN works for binary classification ...

FORMULA

$$\mathcal{Y} = \{1, -1\}$$

$$f_{\text{KNN}}(\mathbf{x}') = \begin{cases} 1 & \text{if } \sum_{i \in \mathcal{N}_K(\mathbf{x}')} y_i \ge 0 \\ -1 & \text{if } \sum_{i \in \mathcal{N}_K(\mathbf{x}')} y_i < 0 \end{cases}$$

... and for multiple-class classification ...

FORMULA

$$f_{\text{KNN}}(\mathbf{x}') = \arg \max_{y \in \mathcal{Y}} \sum_{i \in \mathcal{N}_K(\mathbf{x}')} \mathcal{I}(y_i = y)$$

... as well as for regression

FORMULA

$$\mathbf{f}_{KNN}(\mathbf{x}') = \frac{1}{K} \sum_{i \in \mathcal{N}_K(\mathbf{x}')} \mathbf{y}_i$$

Weighted knn may boost performance

WEIGHTED KNN AND KERNEL TRICK

$$K(x, y) = \langle \varphi(x), \varphi(y) \rangle$$

We can use kernel functions for weighting distance

KERNEL TYPES

kNN needs to be 'tuned'

EXAMPLE

James, Witten, Hastie, Tibshirani An Introduction to Statistical Learning 2017

Hyperparameters are used during the learning process – parameters are the result

EXAMPLES

Hyperparmeters

- Train-test split ratio
- Choice of optimization algorithm
- Number of principal components in PCA
- Kernel size
- K in k means cluster analysis
- K in knn analysis
- Penalty term weights in penalized regression

Parameters

- Weights that generate principal components as linear combinations of the original data
- Cluster centroids in cluster analysis
- The actual nearest neighbors in knn
- Coefficients in penalized regression

Predictive practice is fundamentally different from causal practice

VALIDATION DATASET FOR HYPERPARAMETER TUNING

K-FOLD

MONTE CARLO

Train

Test

LEAVE POUT, LEAVE ONE OUT

LEAVE POUT, LEAVE ONE OUT

The curse of dimensionality is particularly problematic for similarity-based algorithms

BELLMAN 1961

- General: Sample size needed to estimate a function with a given level of accuracy grows exponentially with the dimensionality of the data
- <u>Specifically</u> for our topic: For similarity-based algorithms (k means, knn), the number of instances that need to be accessed for precise estimation grows exponentially with data dimensionality

Dimension reduction is typically an important data preprocessing step for kNN

EXAMPLES

- Linear
 - Unsupervised: PCA, FA, SVM, ...
 - Supervised: LDA, PLS ...
- Non-linear kernel PCA, FAMD, t-SNE, ...

PCA = principal component analysis, SVM = support vector machine, LDA = linear discrimnant analysis, PLS = partial least squares, FAMD = factor analysis for mixed data, t-SNE = t-distributed stochastic neighbor embedding