Total No. of Questions : 6]	SEAT No.:
P5847	[Total No. of Pages : 4

BE/Insem./Oct.-506 B.E. (Civil) ADVANCED CONCRETE TECHNOLOGY (2015 Pattern) (Semester - I) (Elective - I)

Time	e:11	Hour] [Max.]	Marks: 30				
Insti	ructio	ions to the candidates:					
	<i>1)</i>	Answer Q1 or Q2, Q3 or Q4, and Q5 or Q6.					
	2)	Neat diagrams must be drawn wherever necessary.					
	3)	Figures to the right indicate full marks.					
	4)	Your answers will be valued as a whole.					
	5)	Use of electronic pocket calculator is allowed.					
Q1)	a)	What is heat of hydration? Explain the factors affecting	ig heat of				
		hydration.	[4]				
	b)	What is copper slag? Explain its effect on workability & s	strength of				
		concrete.	[6]				
		OR O	. ,				
Q 2)	a)	"Manufactured sand is best alternative to natural sand", Justi	fy. [4]				
	b)	What are the factors affecting strength of concerete? Describe the influence					
		of gel space ratio on strength of concrete.	[6]				
Q3)	a)	Write a short note on structural light weight concrete?	[4]				
<i>Q3)</i>			[6]				
	b)	·					
		i) Gap graded concrete	7				
		ii) Mass concrete					
		OR					
04)	- \	96	C-1 C				
Q4)	a)	What are the different types of industrial waste materials					
		construction industry? Explain any one waste material used i					
		in detail.	[4]				
	b)	Write a short note on:	[6]				
		i) Ultra light weight concrete					
		ii) Vacuum concrete					
		,					

- **Q5)** A) Using Indian Standard recommended guidelines, design a concrete mix for a reinforced concrete structure to be subjected to the very severe exposure conditions for the following requirements: [10]
 - a) Stipulations for proportioning
 - i) Grade designation: M45
 - ii) Standard deviation, S=5
 - iii) Type of cement: OPC 43 grade conforming to IS 8112
 - iv) Maximum water cement ratio: 0.45
 - v) Workability: 125 mm (slump)
 - vi) Degree of supervision: Good
 - vii) Type of aggregate: Crushed Angular aggregate,
 - viii) Minimum Cement content: 320 kg/m3
 - ix) Method of concrete placing pumping
 - x) Chemical admixture type. Super plasticizer having efficiency 25 %
 - xi) Assume dose of admixture 1.2% by weight of cement.
 - b) Test data for materials
 - i) Specific gravity of cement: 3.15
 - ii) Specific gravity of admixture: 1.1
 - iii) Specific gravity of
 - 1) Coarse aggregate 2.80
 - 2) Fine aggregate 2.70
 - iv) Water absorption
 - 1) Coarse aggregates 0.5%
 - 2) Fine aggregates 1.00%
 - v) Free surface moisture
 - 1) Coarse aggregates Nil
 - 2) Fine aggregates Nil

vi) Sieve analysis

1) Coarse aggregate:

IS	Analysis of Percentage of Different					Remarks
Sieve sizes Coarse (mm) aggregate Fraction			Percentage of Different Fractions			
0.7%	I	II	I (60%)	II (40%)	Combined (100%)	Confirming
20	100	100	60	40 %	100	of Table 2
10	0	71.2	0)	28.5	28.5	of IS 383
4.75		9.40	2	3.7	3.7	
2.36		0				

²⁾ Fine aggregate: Conforming to grading zone II

c) Design considerations:

Table 1: From IS 10262; Maximum water content per cubic meter of concrete

Sr. No	Nominal Maximum size of	Maximum Water Content
	Aggregate (mm)	(kg)
i)	10	208
ii)	20	186
iii)	40	165

Table 2: From IS 10262; Volume of Coarse Aggregate per Unit Volume of Total Aggregate

SI.	Nominal	Volume of Coarse Aggregate per			
No.	Maximum size of	Unit Volume of Total Aggregate			
	Aggregate (mm)	For Different Zones of Fine Aggregate			
		Zon	e Zone	Zone	Zone
	2,8	IV	III	II	I
i)	10	0.50	0.48	0.46	0.44
ii)	20	0.66	0.64	0.62	0.60
iii)	40	0.75	0.73	0.71	0.69

OR

- Explain the role of NDT Testing in civil engineering structures. **Q6)** a) **[4]**
 - b) Write a short note on:
 - Nuclear method. i)
 - Ground penetration Radar. ii)

[6]

