CS3485 Deep Learning for Computer Vision

Lec 7: Data Augmentation and Deep CNNs

Announcement

- Grades for Lab 1: they are available and *visible* now.
- Searles Social at 4:30 today!

(Tentative) Lecture Roadmap

Ways to improve

- Last time, we saw that we can improve the classification task in the FashionMNIST dataset by using Convolutional Neural Networks.
- Despite our final classification outcome being pretty good, we can still improve it in some ways that we haven't tried last time:
 - By adding **regularization** (dropout, for example) and **Batch Normalization** to the network.
 - By training the network for **longer** (more than 5 epochs).
 - By tuning some of the network constants (also called **hyperparameters**), such as the optimizer's learning rate, the batch size, the number of strides and the padding of each ConvLayer.
 - By trying different amount of units/filters per layer to be learned.
 - By using data augmentation.
 - By adding more layers and making the network able to learn more complex image features.
- Today, we'll focus our efforts on the last two options: we'll see how making the **data (the input)** or the **network (the model)** "richer" can improve our classification performance.

Issues with Shifting

- Last time, we saw that CNNs do much better at classifying Fashion MNIST data than simple Multilayer Perceptrons.
- Today, we'll check how well their classifier works when we slightly change some of the images in a way that their classes would still be recognizable.
- This happens when you shift the image below some pixels to the right and to the left:

In these examples, the original class ("trouser") shouldn't become less recognizable because of the shifts.

Trying out the CNN on the shifted images

Let's see how the model trained in the last class predicts the classes of the trouser shifted 1 to 5 pixels to the right and to the left*:

```
softmax = nn.Softmax() # Define the softmax function (remember that the more does not output probs.)
preds = []
  img rolled = np.roll(img, px, axis=1) # Roll the image by "px" pixels
  img rolled = torch. Tensor (img rolled / 255.) \ # Scale and reshape the image to the image
                            .view(-1, 1, 28, 28) \ # format used during learning. Register the
                            .to(device) # result to the GPU
  pred = softmax(model(img rolled)) # Apply our learned model to predict the class probabilities
  preds.append(pred.cpu().detach().numpy()) # Post process the prediction and then save it to the list,
```

^{*} In the code above, we are using the variable names and libraries from the previous class. It's like its continuation.

Trying out the CNN on the shifted images

- Now we can plot the probabilities of each shifted image to belong to each of the 10 possible classes.
- For most shifts, the network finds the right class "trouser".
- But, unexpectedly, the network makes very bad guesses for the images shifted closer to the border of the image.

- In fact, it seems to be sure that the image on the left is a sandal!
- What can we do to fix this?

Prob. of each class for various shifts (CNN) -1.00.01 0.20 0.00 0.01 0.18 0.00 0.04 0.00 0.56 0.00 -0.8-0.60.00 0.00 0.00 -0.2 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 Shirt

(A digression) CNNs and their receptive field

- To be fair with the CNN model, it does quite a good work when compared to the Multilayer Perceptron model (on the right).
- The improvement CNN adds to the pure fully connected MLP is related to the receptive field of convolutional and pooling layers.

- This means that later individual units have information about greater areas of the original image.
- This enables capturing of some shifting.

Prob. of each class for various shifts (MLP) -1.00.00 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.95 0.00 0.00 0.00 -0.80.01 0.00 0.00 0.13 0.46 0.00 0.39 0.00 0.00 0.00 -0.60.19 0.42 0.02 0.14 0.01 0.00 0.19 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 3 -0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Sandal Shirt

Data augmentation as a solution

- But back to CNNs! We noticed that these issues with image shifting can have on a model's prediction accuracy.
- However, in the real world, we might encounter various scenarios, such as the following:
 - Images are rotated slightly,
 - Images are zoomed in/out (scaled),
 - Some amount of noise is present in the image,
 - Images have low brightness,
 - Images have been flipped,
 - Images have been sheared (one side of the image is more twisted).
- A neural network that does not take the preceding scenarios into consideration won't provide accurate results.
- One solution to that issue is to artificially change the data in the dataset in a way to consider the above settings. This is called Data Augmentation*.

^{*} In other contexts, augmentation can also mean "make the dataset larger", but in the end of the day, it is the same as we are doing.

Data augmentation via transformations

- The strategy we'll take consists in making random changes in each of our datapoints before they enter in our train batch function.
- We'll use the very handy transforms from torchvision, usually imported as:

from torchvision.transforms import transforms

■ A useful tool found in there is the **affine transformation** using RandomAffine:

transforms.RandomAffine(degrees, translate=None, scale=None, shear=None)

whose objects are functions (nn.Modules, in fact) that perform either a random rotation, translation, scaling, shearing or any subset of them. Its parameters are:

- degrees (a number): Range of degrees to select from
- translate (a tuple): Maximum image fraction for horizontal and vertical shifts.
- scale (a number or a tuple): Scaling factor interval
- shear (a number): Range of pixels in the image will be sheared horizontally.

Examples of affine transformations

Here a some examples of random affine transformations on an image from Fashion MNIST using transforms.RandomAffine*:

^{*}Check the documentation here for more details on the layer and on other possible parameters.

Other Transformations

- The transforms library also provides more options of transformations*. For example:
 - Change the perspective (transforms.RandomPerspective):

• Cropping a part of the image out (transforms.RandomCrop):

• Add Gaussian noise (transforms.GaussianBlur):

^{*}Here you can find a list of all possible transforms available in PyTorch.

Other Transformations

• Invert the grayscale values / colors (transforms.RandomInvert):

- We can compose many different transformations using transforms.Compose that receives a list of transforms modules and processes them sequentially on the data.
- For example, the following code generates a transformation that first randomly rotates an image and then randomly inverts its colors.

transforms.Compose([transforms.RandomAffine(180), transforms.RandomInvert()])

Adding a transformation to the dataset

- The simplest way to add a transformation to the dataset is to apply it in the getitem function to the image being gotten.
- This way, this random transformation will happen whenever the DataLoader is fetching the data to compose the mini-batch.
- In our example, we wish the network to learn that horizontal shifts shouldn't change the object's class.
- Therefore we can augment the dataset by applying random horizontal shifts to the images.

Result of the augmentation

- By making just that change, we are able to achieve the result for the same trouser image from before.
- Notice that the network became more "invariant" to horizontal shifts, as it makes the right prediction with certitude despite the shifts.
- This, however, came at a price:
 - a. Adding the random shifting operation at each $_$ getitem $_$ made the overall 5 epoch learning take 6 min (from 53s).
 - b. The new test accuracy is at around 88% (from 91% from before)

Prob. of each class for various shifts (Augmented)

-1.0

-0.8

-0.6

-0.2

Problems with augmentation

- The problem a is easy to fix, as the purpose of the previous code was only to serve as an illustration of the augmentation process.
- In PyTorch there are ways to make the transformation application more efficient, by, for example, using them right when you load the data.

- and them changing other parts of the code so we don't need to instantiate our own Dataset object, which is inefficient (these details go beyond the scope of our course).
- Problem b, however, is harder to solve, since an augmented dataset is intrinsically richer and more complex than the original data.
- Typically, it'd require at least going through more training epochs or changing the network to more complex ones.

Exercise (In pairs)

Click here to open code in Colab

- Select one image from the FashionMINIST dataset and compose the following transforms:
 - Random Rotation + Random Color Invert,
 - Random Shifting (as much as you want) + Random Scaling,
 - Another combination of your choosing.

Generate 5 samples per transform. *Hint*: to get a function that applies a random rotation on an image of Fashion MNIST, for example, you can do this*:

```
import matplotlib.pyplot as plt
from torchvision.transforms import transforms

random rotation = transforms.RandomAffine(180)
x_fmnist = fmnist_train.data[0]
```

```
x_orig = torch.tensor(x_fmnist[None, :, :])
x = random_rotation(x_orig)

plt.imshow(x[0, :, :], cmap="gray")
plt.show()
```

^{*} Note that you have to add a "channel" dimension to the image, and then "remove" it in order to print the transformed image.

Making the model more complex

- We just saw that it is possible to learn a better classification model by presenting a richer variety of data, even if that data is artificially augmented.
- Another way to come up with a better model is by training a network whose feature learning phase can capture more nuanced and representative visual features.
- With such these more complex features, we hope that the final densely connected layers will be able to output good classifications.

Making the network deeper

- How to come up with better feature learners?
- Over the recent years, researchers have noticed that simply adding more ConvLayers before the dense classifier usually bring improvements.
- This pursuit of more layered nets gave rise to what is know as **Deep Learning**, which is, simply put, the feature learning process that uses multilayered neural networks.
- In other words, deep learning is, in many ways, just representation learning
- Later in the course, we'll see why going deeper helps learning.

The ImageNet Dataset

- Historically, Deep Learning started to impress the world in 2012, when a deep net called AlexNet broke the classification record on the ImageNet dataset.
- This dataset spans 1000 classes and contains 1,281,167 training and 100,000 test images* of various sizes.
- The images are very realistic, all hierarchically annotated by humans.

IM & GENET

*In fact, this is just a subset of +14 million images spanning more than 20k classes called the ImageNet project. More info on it here.

The ImageNet Challenge

- Since 2012, Deep Learning has outperformed every other method in the ImageNet's Top 5* Classification competition.
- Starting from 2014, it also overcame humans** when submitted to the same challenge.
- One common feature of all these winning networks is that they were getting deeper and deeper.
- Today we'll focus on one of the runner-ups from the 2014 edition: the VGG16 network.

^{*} The true class only need to be among the top 5 predicted classes to be considered a successful prediction.

^{**} Note that these methods need to identify 1 of a 1000 possible classes, while humans can recognize a much larger number of categories.

The VGG16 Network

- The VGG16 net, for Visual Geometry Group (VGG) at University of Oxford, who developed the network in 2014, is a simple, by very deep network, with 16 layers!
- While the input RGB image has to be reshaped to 244×244 pixels, it uses many ConvLayers and max-poolings to gradually decrease its size, before the dense layers.

VGG16 in PyTorch

In a simplified way, the VGG16 can be summarized as follows:

Although I'm sure you can code that network up from scratch, PyTorch also provides the model as it was conceived via in tourchvision:

from torchvision import models
model = models.vgg16()

The summary of VGG16

```
from torchsummary import summary
summary(model.to(device), (3, 224, 224))
```

Layer (type)	Output Shape	Param #
 Conv2d-1	[-1, 64, 224, 224]	1,792
ReLU-2	[-1, 64, 224, 224]	0
Conv2d-3	[-1, 64, 224, 224]	36 , 928
ReLU-4	[-1, 64, 224, 224]	0
MaxPool2d-5	[-1, 64, 112, 112]	0
Conv2d-6	[-1, 128, 112, 112]	73 , 856
ReLU-7	[-1, 128, 112, 112]	0
Conv2d-8	[-1, 128, 112, 112]	147,584
ReLU-9	[-1, 128, 112, 112]	0
MaxPool2d-10	[-1, 128, 56, 56]	0
Conv2d-11	[-1, 256, 56, 56]	295,168
ReLU-12	[-1, 256, 56, 56]	. 0
Conv2d-13	[-1, 256, 56, 56]	590,080
ReLU-14	[-1, 256, 56, 56]	0
Conv2d-15	[-1, 256, 56, 56]	590,080
ReLU-16	[-1, 256, 56, 56]	0
MaxPool2d-17	[-1, 256, 28, 28]	0
Conv2d-18	[-1, 512, 28, 28]	1,180,160
ReLU-19	[-1, 512, 28, 28]	0

```
Conv2d-20
                           [-1, 512, 28, 28]
                                                 2,359,808
                           [-1, 512, 28, 28]
                           [-1, 512, 28, 28]
                                                 2,359,808
                           [-1, 512, 28, 28]
        MaxPool2d-24
                           [-1, 512, 14, 14]
           Conv2d-25
                           [-1, 512, 14, 14]
                                                 2,359,808
                           [-1, 512, 14, 14]
                           [-1, 512, 14, 14]
                                                 2,359,808
                           [-1, 512, 14, 14]
                           [-1, 512, 14, 14]
                                                 2,359,808
             ReLU-30
                           [-1, 512, 14, 14]
        MaxPool2d-31
                        [-1, 512, 7, 7]
AdaptiveAvgPool2d-32 ←
                           \neg [-1, 512, 7, 7]
           Linear-33
                                               102,764,544
                                  [-1, 4096]
                        A new
                                  [-1, 4096]
                                                16,781,312
                        type of
                                  [-1, 4096]
                         layer.
                                  [-1, 1000]
                                                 4,097,000
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
```

Adaptative Average Pooling and Other VGG's

 As you may have noticed on the previous summary, VGG16 utilizes a layer we haven't yet learned, the Adaptive Average Pooling layer.

```
(...)

ReLU-30

MaxPool2d-31

AdaptiveAvgPool2d-32

Linear-33

(...)

(...)

(...)

(...)

(...)

(...)

(...)

(...)

(...)

(...)

(...)
```

- It is similar to nn.AvgPool2d, which returns the average of a section instead of the maximum, which nn.MaxPool2d does. In both cases, we set the kernel size.
- In nn.AdaptativeAvgPool2d, we instead set the output size and it automatically computes the kernel size so that the specified size is returned.
- This layer plays an important role in the transition from the feature learning phase to the classifier and will be important in our next class.
- This layer is present is many networks, such as VGG16's "siblings": VGG13 and VGG19, width 13 and 19 layers, respectively, which can be used in PyTorch via models.vgg13(), and models.vgg19().

The challenges of Deep Nets

- Note that in VGG16 we have to train more than 135 million parameters on RGB images of size 224×224 !
- Using a simple GPU, we were taking ~ 1 min to learn 800k weights for just 5 epochs on 60000 grayscale images of size 28×28 .
- For most applications, **it is not worth** to retrain these networks, especially if one is running on a low computational/memory budget.
- \blacksquare Also, the dataset VGG16 was trained on (ImageNet) has +1 million images to be trained on.
- Two issues that are very common in most deep learning applications:
 - a. The **models are huge** and most companies can't afford the of computational requirement.
 - b. These models need to be **trained on very large datasets** so to justify their complexity. In many applications, the datasets are very small (one could recur to data augmentation in this case).
- Next class, we'll see how we can still leverage the capacities of deep learning models in the applications at a considerably low computational cost.

Exercise (In pairs)

Go back the VGG16's <u>summary</u> and explain how the output sizes change as they do (remember that each ConvLayer uses 3×3 kernels). *Hint*: try to **print** the model and see is it gives you any help:

```
from torchvision import models
model = models.vgg16()
print(model)
```

Video: Deep Learning is eating the Scientific World!

