- **(b) Algorithm Implementation** Write a computer code to solve the discretised problem with the indicated method.
 - Provide a print-out of your code in your report.
- **(c) Code Verification** Carry out a verification of your implementation by comparing computed approximations with the indicated exact solution:
 - Plot a sufficiently-coarse (but not too coarse) approximation and the exact solution in one figure. (The difference between both should be visible.) In case of a 2D domain, plot the approximation and solution versus x for $y=0.25,\,0.5$ and 0.75. In case of a time-dependent problem, plot the approximation and solution versus x for $t=0,\,T/2$ and T.
 - Study the convergence of the method: Define an appropriate norm. Provide a table with the norm of errors for a sequence of appropriate mesh-sizes (and corresponding time-step sizes in case of a time-dependent PDE). Plot the errors versus the mesh-widths (using double-log axes). Comment on the observed rates of convergence.

Choice FML (Finance and Machine Learning choice)

FML-1 1-D Elliptic PDE (See Lecture 6)

[15 marks]

First consider the 1D elliptic PDE for $u:(0,1)\to\mathbb{R}$ subject to Dirichlet BCs (boundary conditions):

$$-u'' = f \qquad \text{for } x \in (0,1) \tag{1a}$$

$$u(0) = \alpha \tag{1b}$$

$$u(1) = \beta \tag{1c}$$

with $f:(0,1)\to\mathbb{R}$, $\alpha\in\mathbb{R}$ and $\beta\in\mathbb{R}$.

- (a) PDE Discretisation [See Q-0(a)] Obtain the discretisation for a second-order difference scheme as explained in Chapter 2 in [LeVeque, 2007].
- (b) Algorithm Implementation [See Q-0(b)]
- (c) Code Verification [See Q-0(c)] Verify against the exact solution

$$u_{\text{exact}}(x) = x - \sin(\pi x), \qquad (2)$$

using the data:1

$$\begin{array}{cccc} & \alpha & \beta & f(x) \\ \hline \text{Case 1:} & 0 & 1 & -u_{\text{exact}}''(x) \\ \end{array}$$

¹The verification technique, where a given exact solution is used to generate the data in the problem, is referred to as the *manufactured-solution technique*.

FML-2 Heat Equation (See Lecture 7)

[15 marks]

Consider the parabolic PDE (heat equation) for $u(t,x) \in \mathbb{R}$ subject to Dirichlet BCs and an initial condition:

$$u_t - au_{xx} = 0$$
 for $t \in (0, T], x \in (0, 1)$ (3a)

$$u(t,0) = g_0 \tag{3b}$$

$$u(t,1) = g_1 \tag{3c}$$

$$u(0,x) = u_0(x) \tag{3d}$$

with a>0 (heat-conduction coefficient), T>0 and $u_0:(0,1)\to\mathbb{R}.$

The solution u(t,x) represents the temperature, at time t and position x, in a one-dimensional piece of conductive material.

- (a) PDE Discretisation [See Q-0(a)] Obtain the discretisation for the implicit method (backward difference in time, centred in space) as explained in Chapter 9 in [Epperson, 2013].
- (b) Algorithm Implementation [See Q-0(b)]
- (c) Code Verification [See Q-0(c)] Verify against the exact solution

$$u_{\text{exact}}(t, x) = e^{-4t} \sin(2\pi x) + x, \qquad (4)$$

using the data:

Hint: In studying the convergence, take $\Delta t = Ch^2$ for some chosen C (with h the mesh width and Δt the time-step size). Measure errors in the max-norm at the final time T, in other words,

$$\max_{i} |e_i^N| \,, \tag{5}$$

with N such that $N\Delta t = T$.

FML-3 Black-Scholes Equation (European option) (Cf. Lecture 7, 8)

[20 marks]

Consider the parabolic PDE (Black–Scholes equation) for $v(t,x) \in \mathbb{R}$ subject to time-dependent Dirichlet BCs and an initial condition:

$$\frac{\partial v}{\partial t} - \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 v}{\partial x^2} - r x \frac{\partial v}{\partial x} + r v = 0 \qquad \text{for } t \in (0, T], x \in (0, R)$$
 (6a)

$$v(t,0) = f_0(t) \tag{6b}$$

$$v(t,R) = f_R(t) \tag{6c}$$

$$v(0,x) = g(x) \tag{6d}$$

with $\sigma > 0$ (constant volatility), r > 0 (interest rate), T > 0, R > 0, $f_0 : (0,T] \to \mathbb{R}$, $f_R : (0,T] \to \mathbb{R}$, and $g : \mathbb{R} \to \mathbb{R}$ (pay-off function).

The solution v(t,x) represents the value of a European option with maturity time T, at time-to-maturity t and spot price x.²

- (a*) PDE Discretisation [See Q-0(a)] Use the following *implicit* finite-difference scheme for (6a)–(6d): Consider the PDE (6a) at an arbitrary point $(x,t)=(x_i,t_{n+1})$, then replace $\frac{\partial v}{\partial t}$ by $\frac{v_i^{n+1}-v_i^n}{\Delta t}$, replace $\frac{\partial^2 v}{\partial x^2}$ by the standard second-order central difference approximation at t_{n+1} , replace $\frac{\partial v}{\partial x}$ by $\frac{v_{i+1}^{n+1}-v_i^{n+1}}{h}$, and replace v by v_i^{n+1} .
- (b*) Algorithm Implementation [See Q-0(b)]
- (c*) Code Verification I [See Q-0(c)] Verify against the exact solution

$$v_{\text{exact}}(t,x) = Ke^{-rt} \Phi(-d_{-}(t,x)) - x \Phi(-d_{+}(t,x)),$$
 (10)

where

$$d_{\pm}(t,x) := \frac{1}{\sigma\sqrt{t}} \left(\ln\left(x/K\right) + \left(r \pm \frac{\sigma^2}{2}\right) t \right) \tag{11}$$

and $\Phi(\cdot)$ is the cumulative distribution function³ of the standard normal distribution:

$$\Phi(d) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d} e^{-z^2/2} \, \mathrm{d}z \,, \tag{12}$$

using the data:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 V}{\partial x^2} + r x \frac{\partial V}{\partial x} - r V = 0, \qquad (7)$$

subject to the *terminal* condition V(T,x)=g(x). The value of the European option is given by the (discounted) expected pay-off at maturity:

$$V(t,x) = e^{-r(T-t)} \mathbb{E}\left[g(S(T)) \mid S(t) = x\right], \tag{8}$$

where $S(t) = S_0 e^{(r-\sigma^2/2)t + \sigma W(t)}$ is the stock price according to the stochastic differential equation:

$$dS = rS dt + \sigma S dW. (9)$$

The connection between (8) and (7) is given by the Feynman–Kac formula.

²In particular, v is related to V by v(T-t,x)=V(t,x), where V(t,x) is the value of the European option in *forward* time t, and which satisfies

³It is recommended to use a built-in function for this Gaussian cumulative distribution function. For example,

	r	σ	T	R	$f_0(t)$	$f_R(t)$	\overline{K}
Case 3(i):	0	0.5	5	300	$K e^{-rt}$	$v_{\text{exact}}(t,R)$	100

 and^{4}

$$g(x) = \begin{cases} K - x & \text{if } x < K, \\ 0 & \text{otherwise}. \end{cases}$$
 (13)

(d*) Code Verification II Repeat Question (c) but now for the data:

	r	σ	T	R	$f_0(t)$	$f_R(t)$	K
Case 3(ii):	0.1	0.1	5	300	$K e^{-rt}$	$v_{\text{exact}}(t,R)$	100

 $\Phi(x)$ is related to built-in functions erf and erfc:

$$\Phi(x) = \frac{1}{2} \mathrm{erfc} \big(-\frac{x}{\sqrt{2}} \big) = \frac{1}{2} \Big(1 - \mathrm{erf} \big(-\frac{x}{\sqrt{2}} \big) \Big)$$

 $^{^4}$ The pay-off in (13) is typical for a *put* option with strike price K.

FML-4 Gradient Methods (See Lecture 5)

[25 marks]

Consider the 1D-input-1D-ouput classification problem, where the goal is to construct the map $F:(0,1)\to\mathbb{R}$ that minimizes

Cost =
$$\frac{1}{N} \sum_{i=1}^{N} \underbrace{\frac{1}{2} (y(x_i) - F(x_i))^2}_{= C_{x_i}}$$
 (14)

where $y(x_i)$ is a given output for the input data x_i , $i=1,\ldots,N$. For this Problem Set, let $F(\cdot)$ be given by a simple linear polynomial, i.e.,

$$F(x) = w x + b,$$

where the parameters w and b are to be trained.

- (a) Algorithm Implementation I Write a computer code that implements for this problem the *Gradient Descent Method* with learning-rate parameter η , initial parameter guess $\boldsymbol{p}^{(0)} = (w^{(0)}, b^{(0)})$, and maximum number of iterations MaxIter.
 - Provide a print-out of your code in your report.
- (b) Code Verification I Consider the following data

	3.7		(0)	7(0)			1	2	3
					MaxIter	$\overline{x_i}$:	0	0.5	1
Case 4	3	0.75	0.5	0.5		$y(x_i)$:	0	1	1

(For this simple F, one can compute the (LSQ) minimizer: $(w_{\min}, b_{\min}) = (1, \frac{1}{6})$.)

- Generate a table with the first 16 values of the parameters $(w^{(j)},b^{(j)})$ and the first 16 values of the corresponding Cost.
- Plot in a figure the Cost versus the iteration number $j=0,1,2,\ldots,$ MaxIter.
- (c) Algorithm Implementation II Write now a computer code that implements the *Stochastic Gradient Method* with learning-rate parameter η , initial parameter guess $\boldsymbol{p}^{(0)} = (w^{(0)}, b^{(0)})$, and maximum number of iterations MaxIter.
 - Provide a print-out of your code in your report.
- (d) Code Verification II Consider the same data as before, but do some numerical experiments yourself to find proper values for η and MaxIter.
 - · Which values work well?
 - Generate a table with the first 16 values of the parameters $(w^{(j)},b^{(j)})$ and the first 16 values of the corresponding Cost.
 - Plot in a figure the Cost versus the iteration number $j = 0, 1, 2, \dots$, MaxIter.

FML-5 Deep Learning Problem (See Lecture 5)

[25 marks]

Consider finally the problem discussed at the beginning of Section 2 and in Section 6 of [Higham, Higham, 2019]. This is a 2D-input-2D-output classification problem with map $\mathbf{F}:(0,1)\times(0,1)\to\mathbb{R}^2$ given by an Artificial Neural Network, which minimizes

$$Cost = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left\| \underline{y}(\underline{x}^{\{i\}}) - \underline{F}(\underline{x}^{\{i\}}) \right\|^{2}$$

$$= C_{x^{\{i\}}}$$
(15)

Note that the data is given by:

	,									
<i>i</i> :	1	2	3	4	5	6	7	8	9	10
$x_1^{\{i\}}:$	0.1	0.3	0.1	0.6	0.4	0.6	0.5	0.9	0.4	0.7
$x_2^{\{i\}}:$	0.1	0.4	0.5	0.9	0.2	0.3	0.6	0.2	0.4	0.6
$y_1(\underline{\boldsymbol{x}}^{\{i\}}):$	1	1	1	1	1	0	0	0	0	0
$y_2(\underline{\boldsymbol{x}}^{\{i\}}):$	0	0	0	0	0	1	1	1	1	1

(a*) Algorithm Implementation

- If not using Matlab: Write code that implements the same neural network and the same stochastic gradient method with backpropagation step, as described in Section 6 of [Higham, Higham, 2019]. In other words, you can simply convert the Matlab code in Section 6 into your own language. Provide a print-out of your code in your report.
- If using Matlab: Since Section 6 of [Higham, Higham, 2019] already has working Matlab code, you are asked to extend that code by implementing a generalization of the neural network. For example, your network has more layers and/or more units per layer. Provide a print-out of your code in your report.
- (b*) Code Verification Come up with a verification of your code, and give a brief description. Mention all the parameters that you have set. Think about important outputs such as a plot of the Cost versus iterations during training, and the classification of example input values, etc.