

Techniques to 'stationarize' Time Series

Aria Alinejad, Cameron Louis Penne, Giacomo Melloni, Johannes Djupesland, Niclas Flehmig, Simen Dymbe, Thale Eliassen Fink

Contents

- Motivation
- What is stationarity
- Tests
- Methods for stationarizing
- Code example
- Conclusion

Making Time Series Stationary

MOTIVATION

Time Series

 A set of regularly or irregularly taken time-ordered numerical observations of some phenomena

4

What is Stationarity?

- The statistical properties of a process generating a time series do not change over time.
 - Mean, Variance, Seasonality/trends

Why do we need Stationarity?

Statistical Forecasting

Process of predicting future event. Assumes stationary data

Modeling Assumptions

 Many time series models require stationary data (e.g. ARIMA, SARIMA)

6

How to know if your series is stationary?

TEST FOR STATIONARITY

Common tests for stationarity

- Statistical tests to check for (trend-)stationarity
- Hypothesis testing with null and alternate hypothesis
- Perform inference based on test statistic and p-values to decide on hypothesis test
- p-value must be below significance level (e.g. 0.05) to reject null hypothesis
- Existence of unit root which indicates non-stationarity
- Time lag refers to time interval between observations in a dataset

Augmented Dickey-Fuller (ADF)

- Check for stationarity in data
- Null hypothesis: Series has a unit root. -> non-stationary
- Alternate hypothesis: Series has no unit root. -> stationary
- Intuition:
 - If unit root: the lagged observations do not provide relevant information to me
 - If no unit root: the lagged observations provide relevant information to me

Example

Results of Dickey-Fuller Test:	
Test Statistic	-2.837781
p-value	0.053076
#Lags Used	8.000000
Number of Observations Used	300.000000
Critical Value (1%)	-3.452337
Critical Value (5%)	-2.871223
Critical Value (10%)	-2.571929
dtype: float64	

- p-value is larger than significance level (0.05)
- Used 8 lags
- Critical value represents the confidence interval
- Use test statistic to compare to critical values

Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

- Check for stationarity in presence of deterministic trend
 - 'deterministic trend' slope of trend does not change permanently
- Null hypothesis: Process is trend stationary.
- Alternate hypothesis: Series has a unit root. -> non-stationary

Example

Results of KPSS Test:

Test Statistic 0.669866
p-value 0.016285
Lags Used 7.000000
Critical Value (10%) 0.347000
Critical Value (5%) 0.463000
Critical Value (2.5%) 0.574000
Critical Value (1%) 0.739000

dtype: float64

- p-value is smaller than significance level
- Reject the null hypothesis

Application

- ADF and KPSS should not be used interchangeable
- Rejecting null hypothesis has almost opposite meaning in ADF and KPSS
- Good practice to always use both to ensure stationarity
 - Case 1: both tests conclude non-stationarity -> non-stationarity
 - Case 2: both tests conclude stationarity -> stationarity
 - Case 3: KPSS stationarity, ADF non-stationarity -> trend stationarity, detrending is to be used
 - Case 4: KPSS non-stationarity, ADF stationarity -> difference stationarity, differencing is to be used

Stationarizing Time Series

METHODS

Differencing

$$y_t = y_{t-1} + \varepsilon_t$$

- Where $\varepsilon_t \sim some \ distrubtion(with \ constant \ parameters)$

 Taking the difference between samples gives us a stationary timeseries:

$$\varepsilon_t = y_t - y_{t-1}$$

Second degree differencing:

$$x_t = x_{t-1} + v_t$$

$$v_t = v_{t-1} + a_t$$

 $a_t \sim some \ distrubtion(with \ constant \ params)$

Differencing twice!

Seasonal differencing

- Assume seasonal model: $y_t = y_{t-m} + \varepsilon_t$
 - Where m is the period in samples of the seasonal effect
 - $\varepsilon_t \sim$ some distrubtion(with constant parameters)
- Seasonal differencing: $\varepsilon_t = y_t y_{t-m}$

De-trending

- Identify and remove long-time trends in time series
- Common trend identification-methods:
 - Regression
 - Moving average smoothing

Seasonal adjustments

- Identify and remove repeating patterns in a time series
- Common methods:
 - Decomposition
 - EMD
 - Wavelet transform
 - FFT
 - Moving average smoothing

Decomposition example

Surface wave-turbulence interaction

Wave component

Turbulence component

Decomposition example

- Not a perfect decomposition
 - Did not completely remove wave motion
 - Removed some of the turbulence motion

Code Example - Dataset

Stationarity tests

ADF test:

• p-value: 0.775

ADF statistic: -0.938

Critical values:

1%	5%	10%
-3.5	-2.9	-2.6

H0: Non-stationary

- The p-value is above 0.05
 - → fail to reject H0
- ADF statistic > critical values of all significance levels
 - → fail to reject H0

KPSS test:

p-value: 0.036

KPSS statistic: 0.523

Critical values:

1%	2.5%	5%	10%
0.74	0.574	0.46	0.35

H0: stationary

- The p-value is below 0.05
 - → reject H0
- 5% < KPSS statistic < 2.5%
 - → reject H0 at 5% significance

Detrending methods

Detrending with Moving average

Detrending with Polynomial regression (order=4)

Mean is adjusted for, but both still have varying std

Detrending with Box Cox

- 1. Box cox adjusts variance
- 2. Detrend adjusts mean

Stationarity tests AGAIN!

ADF test:

• p-value: $3.84 * 10^{-26}$

• ADF statistic: -14.002

Critical values:

1%	5%	10%
-3.5	-2.9	-2.6

H0: Non-stationary

- The p-value is below 0.05
 - → reject H0
- ADF statistic < critical values of all significance levels
 - → reject H0

KPSS test:

p-value: 0.1

KPSS statistic: 0.0339

Critical values:

1%	5%	10%
0.74	0.46	0.35

H0: stationary

- The p-value is above 0.05
 - → keep H0
- KPSS statistic < critical values of all significance levels
 - \rightarrow keep H0

CONCLUSION

Conclusion

Why:

Want to model/predict → need stationarity

How to check:

- Visually
- ADF
- KPSS

How to "fix":

- Differencing
- De-trending
- Seasonal adjustment
- Box Cox + De-trending
- Other...

Last slide ©