Lecture 6 - Orientation Averaging

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

February 18, 2021

1

schedule

- Feb 18 Orientation Averaging (HW2 Due)
- Feb 23 Variational Calculus
- Feb 25 Variational Calculus (HW3 Due)
- Mar 2 Physical measurements

outline

- orientation averaging
- closure approximations
- variational calculus

orientation average

_

orientation tensor

- Within a given volume, a distribution of fibers can be defined by some orientation distribution function, $\psi(\theta, \phi)$.
- Advani and Tucker introduced tensor representations of fiber orientation distribution functions

$$a_{ij} = \oint p_i p_j \psi(p) dp$$

And

$$a_{ijkl} = \oint p_i p_j p_k p_l \psi(p) dp$$

 Note: any order tensor may be defined in this manner, the orientation distribution function must be even, due to fiber symmetry, and thus any odd-ordered tensor will be zero.

orientation averaging

- Consider T(p) to be some tensor property of a material, as a function of material orientation
- The orientation average of T(p) is denoted by angle brackets and is given by

$$\langle T \rangle = \oint T(p)\psi(p)dp$$

 For a uni-directional fiber, we would expect \(\T \) to be transversely isotropic, which for a second-order tensor requires

$$\langle T_{ii} \rangle = A_1 \langle p_i p_i \rangle + A_2 \delta_{ii}$$

• but $\langle n, n_i \rangle$ is the second-order orientation tensor

orientation averaging

 Similarly, if T is a fourth-order tensor property then transverse isotropy requires that

$$\begin{split} \langle T_{ijkl} \rangle &= B_1 a_{ijkl} + B_2 (a_{ij} \delta_{kl} + a_{kl} \delta_{ij}) + \\ B_3 (a_{ik} \delta_{jl} + a_{il} \delta_{jk} + a_{jl} \delta_{ik} + a_{jk} \delta_{il}) + \\ B_4 (\delta_{ij} \delta_{kl}) + B_5 (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \end{split}$$

- We can solve for B_{α} by considering fibers aligned in the three-direction, we have a3333 = 1 and all other aijkl = 0.
- We can choose any values of i, j, k, l that would give 5 unique equations to solve equations for B_o

6

orientation averaging

 Here we will consider T1111, T3333, T1122, T2233, T1313.

$$T_{1111} = B_4 + 2B_5$$

$$T_{3333} = B_1 + 2B_2 + 4B_3 + B_4 + 2B_5$$

$$T_{1122} = B_4$$

$$T_{2233} = B_2 + B_4$$

$$T_{1313} = B_3 + B_5$$

7

• After some manipulation, we find

$$\begin{split} B_1 &= T_{1111} + T_{3333} - 2T_{2233} - 4T_{1313} \\ B_2 &= T_{2233} - T_{1122} \\ B_3 &= T_{1313} - \frac{1}{2} (T_{1111} - T_{1122}) \\ B_4 &= T_{1122} \\ B_5 &= \frac{1}{2} (T_{1111} - T_{1122}) \end{split}$$

Ĭ

closure approximations

closure approximations

- While theoretically any-order orientation tensor is possible, in practice only the second-order tensor is used
- Microscopic measurements do not give enough information for higher-order tensors to be useful
- Software simulations have not implemented the fourth-order tensor
- To predict stiffness, we need the fourth-order tensor
- Closure Approximations are a way to approximate the fourth-order tensor from the second-order tensor

9

linear closure approximate

• For 3D orientations, the linear approximation is given by

$$\begin{aligned} a_4^I &= -\frac{1}{35} (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) + \\ \frac{1}{7} (a_{ij} \delta_{kl} + a_{ik} \delta_{jl} + a_{il} \delta_{jk} + a_{kl} \delta_{ij} + a_{jl} \delta_{ik} + a_{jk} \delta_{il}) \end{aligned}$$

■ For planar orientations we simply replace the two coefficients with $-\frac{1}{24}$ and $\frac{1}{6}$

quadratic closure

• We can also use a quadratic closure method

$$a_4^q = a_{iikl}$$

- If the fibers are randomly aligned, the linear closure will give the exact result
- If the fibers are perfectly oriented, the quadratic closure will give the exact result

11

hybrid closure

- Advani proposed a hybrid closure to take advantage of both the linear and quadratic methods
- We will introduce a parameter f and use it to combine both linear and quadratic closures

$$a_4^h = (1 - f)a_4^l + fa_4^q$$

- Ideally, we would like f to be 1 for perfectly oriented fibers and 0 for random fibers
- Advani proposes

$$f = Aa_{ij}a_{ji} - B$$

• Where A = 3/2 and B = 1/2 for 3D orientations and A =

orthotropic fitted closure

- A more recent method that is commonly used is known as the orthotropic fitted closure
- The fourth-order tensor is approximated in the principal direction, then rotated back out if necessary
- In the principal direction, the fourth-order tensor will be orthotropic (represented in 6x6 as)

$$A_4 = \begin{bmatrix} A_{11} & A_{12} & A_{13} & 0 & 0 & 0 \\ A_{12} & A_{22} & A_{23} & 0 & 0 & 0 \\ A_{13} & A_{23} & A_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & A_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & A_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & A_{66} \end{bmatrix}$$

13

orthotropic fitted closure

- The symmetry of the orientation tensor requires that A66 (which is a1212) be equal to A12 (which is a1122).
- By the same symmetry, we have A55 = A13 and A44 = A23.
- We also know that aijkk = aij, which imposes the following equations:

$$A_{11} + A_{66} + A_{55} = a_{11}$$

$$A_{66} + A_{22} + A_{44} = a_{22}$$

$$A_{55} + A_{44} + A_{33} = a_{33}$$

orthotropic fitted closure

- This leaves only three independent variables in the fourth-order tensor that need to be found.
- Different authors have proposed different functions to fit these three independent variables
- They are fit to give the best mold simulation predictions, but do not necessarily have any physical application

15

discrete calculations

 To compare with our laminate analogy we can calculate the orientation tensor for discrete orientation states

$$a_{ij} = \frac{1}{N} \sum p_i p_j$$

for second-order tensors and

$$a_{ijkl} = \frac{1}{N} \sum p_i p_j p_k p_l$$

example

- Compare Mori-Tanaka stiffness predictions for direct calculation and orientation averaging
- Compare [0/90]S, $[\pm 45]S$, and $[0/\pm 45/90]S$
- link¹
- Also compare the results with a closure approximation of the fourth-order tensor

17

variational calculus

¹http://nbviewer.jupyter.org/github/ndaman/multiscale/blob/master/examples/Orientation%20Averaging.ipynb

differential and variational statements

- A differential statement includes a set of governing differential equations established inside a domain and a set of boundary conditions to be satisfied along the boundaries
- A variational statement is to find stationary conditions for an integral with unknown functions in the integrand
- Variational statements are advantageous in the following aspects
 - Clear physical meaning, invariant to coordinate system
 - Can provide more realistic descriptions than differential statements (concentrated loads)
 - More easily suited to solving problems numerically or approximately
 - Can be more systematic and consistent than building a set of differential equations

stationary problems

- If the function F(u1) is defined on a domain, then at $\frac{dF}{du} = 1$ it is considered to be stationary
- This stationary point could be a minimum, maximum, or saddle point
- We use the second derivative to determine which of these it is: >0 for a minimum, <0 for a maximum and =0 for a saddle point
- For a function of n variables, F(un) the stationary points are

$$\frac{\partial F}{\partial u_i} = 0$$

for all values of i - and to determine the type of stationary point we use

19

18

lagrange multipliers

 Let us now consider a function of several variables, but the variables are subject to a constraint

$$f(u_1, u_2, ...) = 0$$

- Algebraically, we could use each provided constraint equation to reduce the number of variables
- For large problems, it can be cumbersome or impossible to eliminate some variables
- The Lagrange Multiplier method is an alternative, systematic approach

20

lagrange multiplier

 For a constrained problem at a stationary point we will have

$$dF = \frac{\partial F}{\partial u_1} du_1 + ... + \frac{\partial F}{\partial u_n} du_n = 0$$

 The relationship between dui can be found by differentiating the constraint

$$df = \frac{\partial f}{\partial u_1} du_1 + ... + \frac{\partial f}{\partial u_n} du_n = 0$$

 We can combine these two equations using a Lagrange Multiplier

lagrange multiplier

- The Lagrange Multiplier, λ is an arbitrary function of ui
- We can choose the Lagrange Multiplier such that

$$\frac{\partial F}{\partial u_n} + \lambda \frac{\partial f}{\partial u_n} = 0$$

Which now leaves

$$\frac{\partial F}{\partial u_i} + \lambda \frac{\partial f}{\partial u_i} = 0 \qquad i = 1, 2, ..., n - 1$$

• We now define a new function $F^* = F + \lambda f$

22

lagrange multiplier

- This converts a constrained problem in n variables to an unconstrained problem in n + 1 variables
- Notice that while the stationary values of F* will be the same as the stationary values to F, they will not necessarily correspond
- For example, a minimum in F^* might be a maximum in F
- This provides a systematic method for solving problems with any number of variables and constraints, and is also well-posed for numeric solutions

example

- Design a box with given surface area such that the volume is maximized
- The box has no cover along one of the surfaces (open-face box)
- This gives the surface area as A = xy + 2 yz + 2 xz = C
- worked example²

²http://nbviewer.jupyter.org/github/ndaman/multiscale/blob/master/examples/Lagrange%20Multipliers.ipynb