

$$M_1 = 1$$
 $K_1 = 25$ $C_1 = 0.5$
 $M_2 = 1$ $K_2 = 15$ $C_2 = 0.3$ (consistent units)
 $M_3 = 1$ $K_3 = 15$ $C_3 = 0.3$

For the system shown, determine:

- 1. The real modes from the undamped system, $\left[\begin{pmatrix} \hat{\phi}_1 \end{pmatrix} \quad \begin{pmatrix} \hat{\phi}_2 \end{pmatrix} \quad \begin{pmatrix} \hat{\phi}_3 \end{pmatrix} \right]$.
- 2. The complex modes from the damped system.
- 3. The natural frequencies and damping of the system (#2), ω_r and ζ_r .
- 4. Diagonalize the mass and stiffness matrices using the results from 1 and 2 show that they are the same. Use the mass-normalized eigenvectors.
- 5. Change $K_1 = 15$ and repeat the above steps. What changes and why?
- 6. Write out the equation to generate the FRF $\frac{X_1}{F_1}$. DO NOT SOLVE.