GroupRepresentation 5

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年10月27日

ROBEM I K is a field, A is algebra on K, $\emptyset \neq A_1 \subset A$, we call A_1 is a subalgebra of A, if A_1 is a subring of A which contains 1 of A and A_1 is a subspace of A on K and is also an algebra on K. Let $Z(A) := \{c \in A : ca = ac, \forall a \in A\}$. Prove: Z(A) is a subalgebra of A, we call Z(A) is the center of algebra A.

- SOUTION. 1. Z(A) is a subring of A which contains 1 of A: Since $\forall a \in A$, A is a ring, then 1a = a1. So $1 \in Z(A)$. $\forall c_1, c_2 \in Z(A)$, $\forall a \in A$, $(c_1 c_2)a = (c_1 + (-c_2))a = c_1a + (-1)c_2a = ac_1 + (-1)ac_2 = ac_1 + a(-1)c_2 = a(c_1 + (-1)c_2) = a(c_1 c_2)$, then $c_1 c_2 \in Z(A)$. $(c_1c_2)a = c_1(c_2a) = c_1(ac_2) = (c_1a)c_2 = (ac_1)c_2 = a(c_1c_2)$, then $c_1c_2 \in A$.
 - 2. Z(A) is a subspace of A on $K: \forall k \in K$, $\forall c, c_1, c_2 \in Z(A)$, $\forall a \in A$, since A is an algebra on K, then (kc)a = k(ca) = k(ac) = a(kc), then $kc \in Z(A)$. And by Item 1, we get $c_1 + c_2 \in Z(A)$.

3. By Item 1, Item 2, we get Z(A) is also an algebra on K. So Z(A) is a subalgebra of A.

 \mathbb{R}^{OBEM} II Let G is infinite group, K is a field. Prove:

- 1. $\sum_{g \in G} g \in Z(K[G]);$
- 2. $C_a := \{gag^{-1} : g \in G\}, \sum_{x \in C_a} x \in Z(K[G]).$
- 2. $\forall \sum_{h \in G} a_h h \in K([G])$, then $\sum_{x \in C_a} x \sum_{g \in G} a_g g = \sum_{x \in C_a} \sum_{g \in G} x a_g g = \sum_{x \in C_a} \sum_{g \in G} a_g x g = \sum_{g \in G} \sum_{x \in C_a} \sum_{g \in G} \sum_{x \in C_a} \sum_{g \in G} \sum_{x \in C_a} a_g x g = \sum_{g \in G} \sum_{x \in C_a} a_g x g = \sum_{g \in G} \sum_{x \in C_a} a_g x g = \sum_{g \in G} \sum_{x \in C_a} a_g x g = \sum_{g \in G} a_g x g$

1