$\longrightarrow x$

 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

Point: (1,1)

Point: $(1,1) \in \mathbb{R}^2$

Point: $(1,2) \in \mathbb{R}^2$

Point: $(1, 2.5) \in \mathbb{R}^2$

Point: $(3,2) \in \mathbb{R}^2$

 $\{(1,1),(1,2),(1,3)\}$

$$S := \{(1,1), (1,2), (1,3)\}$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line,

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

$$\{(x,y)\in\mathbb{R}^2\}$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

$$\{(x,y) \in \mathbb{R}^2 \mid \}$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

$$\{(x,y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

Examples.

1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- $2. \{x \in \mathbb{R}\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- $2. \{x \in \mathbb{R} \mid \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- $2. \{ x \in \mathbb{R} \mid \alpha < x \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- $2. \{ x \in \mathbb{R} \mid \alpha < x < \beta \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- $2. := \{ x \in \mathbb{R} \mid \alpha < x < \beta \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- $3. \{x \in \mathbb{R}\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $\{x \in \mathbb{R} \mid \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $\{x \in \mathbb{R} \mid \alpha < x\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- $3. \{ x \in \mathbb{R} \mid \alpha < x \le \beta \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- $3. := \{ x \in \mathbb{R} \mid \alpha < x \le \beta \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{ x \in \mathbb{R} \mid \alpha < x \le \beta \}$
- $4. \{x \in \mathbb{R}\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{ x \in \mathbb{R} \mid \alpha < x \le \beta \}$
- $4. \{x \in \mathbb{R} \mid \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{ x \in \mathbb{R} \mid \alpha < x \le \beta \}$
- 4. $\{x \in \mathbb{R} \mid \alpha \leq x\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $\{x \in \mathbb{R}\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $\{x \in \mathbb{R} \mid \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $\{x \in \mathbb{R} \mid \alpha \leq x\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $\{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. := $\{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $\{x \in \mathbb{R}\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $\{x \in \mathbb{R} \mid \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $\{x \in \mathbb{R} \mid \alpha < x\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- $6. := \{x \in \mathbb{R} \mid \alpha < x\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $(\alpha, := \{x \in \mathbb{R} \mid \alpha < x\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $(\alpha, \infty) := \{x \in \mathbb{R} \mid \alpha < x\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $(\alpha, \infty) := \{x \in \mathbb{R} \mid \alpha < x\}$
- 7. $\{x \in \mathbb{R}\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $(\alpha, \infty) := \{x \in \mathbb{R} \mid \alpha < x\}$
- 7. $\{x \in \mathbb{R} \mid \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \leq \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $(\alpha, \infty) := \{x \in \mathbb{R} \mid \alpha < x\}$
- 7. $\{x \in \mathbb{R} \mid x \leq \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $(\alpha, \infty) := \{x \in \mathbb{R} \mid \alpha < x\}$
- $7. := \{ x \in \mathbb{R} \mid x \le \beta \}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $(\alpha, \infty) := \{x \in \mathbb{R} \mid \alpha < x\}$
- 7. $(-\infty) := \{x \in \mathbb{R} \mid x \leq \beta\}$

$$S := \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$$

A line, defined by points (x, y) in the plane so that y = x - 1.7

$$C := \{(x, y) \in \mathbb{R}^2 \mid y = x - 1.75\}$$

- 1. \mathbb{R} : set of all real numbers. $2, \pi$ etc $\in \mathbb{R}$
- 2. $(\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha < x < \beta\}$
- 3. $(\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha < x \le \beta\}$
- 4. $[\alpha, \beta) := \{x \in \mathbb{R} \mid \alpha \le x < \beta\}$
- 5. $[\alpha, \beta] := \{x \in \mathbb{R} \mid \alpha \le x \le \beta\}$
- 6. $(\alpha, \infty) := \{x \in \mathbb{R} \mid \alpha < x\}$
- 7. $(-\infty, \beta] := \{x \in \mathbb{R} \mid x \leq \beta\}$

 $\{(x,y)\}$

 $\{(x,y)\in\mathbb{R}^2\}$

 $\{(x,y)\in\mathbb{R}^2\mid\}$

$$\{(x,y)\in\mathbb{R}^2\mid y=x\}$$

$$\{(x,y) \in \mathbb{R}^2 \mid y = x, 0 < x\}$$

$$\{(x,y) \in \mathbb{R}^2 \mid y = x, 0 < x < 3\}$$

$$L := \{(x, y) \in \mathbb{R}^2 \mid y = x, 0 < x < 3\}$$

$$L := \{(x, y) \in \mathbb{R}^2 \mid y = x, x \in (0, 3)\}$$

 $\mathbb{R} o \mathbb{R}$

 $f: \mathbb{R} \to \mathbb{R}$

 $f: \mathbb{R} \to \mathbb{R}$ f(x) = x - 1.75

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x - 1.75$$

$$g: \{1,2\} \to \{1,2,3\}$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$\mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f((x,y)) = x - y$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: \mathbb{R} \to \mathbb{R}^2$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: \mathbb{R} \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: [0, 2\pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

 $f: \mathbb{R} \to \mathbb{R}$ f(x) = x - 1.75

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve"

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, γ

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma:(\alpha,\beta)$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve:

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image γ

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2\}$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$

 $\gamma(t) = (\cos(t), \sin(t))$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), \}$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$

 $\gamma(t) = (\cos(t), \sin(t))$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty)$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma:(\alpha,\beta)\to\mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4})$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in P$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma: (\alpha, \beta) \to \mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in P$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \to \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma:(\alpha,\beta)\to\mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in P$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma:(\alpha,\beta)\to\mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in P$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$
$$\gamma : (-\infty, \infty)$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma:(\alpha,\beta)\to\mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in P$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma:(\alpha,\beta)\to\mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in P$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t^2, t)$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma:(\alpha,\beta)\to\mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in P$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t^2, t) \in P$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x - 1.75$$

$$g: \{1, 2\} \rightarrow \{1, 2, 3\}$$

 $g(1) = 3$
 $g(2) = 1$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x - y$$

$$\gamma: (-\pi, \pi) \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))$$

Definition. A "parametrized plane curve" is a function, $\gamma:(\alpha,\beta)\to\mathbb{R}^2$.

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in P$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t^2, t) \in P$$