## МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

#### КАФЕДРА ИНФОРМАЦИОННО-СЕТЕВЫХ ТЕХНОЛОГИЙ

| КУРСОВАЯ РАБОТА (ПРОЕКТ ЗАЩИЩЕНА С ОЦЕНКОЙ            | )    |                        |                                  |  |  |  |
|-------------------------------------------------------|------|------------------------|----------------------------------|--|--|--|
| РУКОВОДИТЕЛЬ                                          |      |                        |                                  |  |  |  |
| доц., канд. техн. наук должность, уч. степень, звание | подп | ись, дата              | Т.Н. Соловьева инициалы, фамилия |  |  |  |
|                                                       |      | НАЯ ЗАПИС<br>ВТОЗАЧ ЙО | CKA                              |  |  |  |
| ГЕНЕРАТОР ПИЛООБРАЗНЫХ СИГНАЛОВ                       |      |                        |                                  |  |  |  |
| по дисциплине: МИКРОКОНТРОЛЛЕРНЫЕ СИСТЕМЫ             |      |                        |                                  |  |  |  |
|                                                       |      |                        |                                  |  |  |  |
|                                                       |      |                        |                                  |  |  |  |
| РАБОТУ ВЫПОЛНИЛ                                       |      |                        |                                  |  |  |  |
| СТУДЕНТ ГР. № 4143                                    |      |                        | Д.В. Пономарев                   |  |  |  |
|                                                       |      | подпись, дата          | инициалы, фамилия                |  |  |  |

Санкт-Петербург 2024

# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ–ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

#### ЗАДАНИЕ НА ВЫПОЛНЕНИЕ КУРСОВОГО ПРОЕКТА

| студенту группы                      | 4143                                        | Пономарев                 | у Дмитрию Валерьевичу       |  |  |
|--------------------------------------|---------------------------------------------|---------------------------|-----------------------------|--|--|
|                                      | номер                                       | фами                      | лия, имя, отчество          |  |  |
| на тему                              | ]                                           | Генератор пилообразных    | сигналов                    |  |  |
|                                      |                                             |                           |                             |  |  |
| Цель проекта:                        | разработка аппаратно-программного комплекса |                           |                             |  |  |
| генератора пи                        | лообразных                                  | к сигналов на базе микроп | контроллера серии 8051      |  |  |
| в сис                                | теме автома                                 | тизированного проектир    | ования Proteus.             |  |  |
|                                      |                                             |                           |                             |  |  |
| Задачи, подлежащие ре                | ешению: р                                   | еализация возможности     | задания частоты и амплитуды |  |  |
| сигнала,                             |                                             |                           |                             |  |  |
| генерация пилообразні                | ых импульс                                  | ов напряжения заданной    | амплитуды и частоты.        |  |  |
|                                      |                                             |                           |                             |  |  |
| Солоруучина подоцитал                | n noñ sanne                                 | ки (основные разделы):    |                             |  |  |
|                                      |                                             |                           |                             |  |  |
| проектирование аппара                | атного обес                                 | печения,                  |                             |  |  |
| проектирование програ                | аммного об                                  | еспечения,                |                             |  |  |
| тестирование и отладк                | а аппаратно                                 | -программного комплекс    | ca.                         |  |  |
|                                      |                                             |                           |                             |  |  |
|                                      |                                             |                           |                             |  |  |
| Срок сдачи работы «                  | 30 » 1                                      | ноября 2024               |                             |  |  |
|                                      |                                             |                           |                             |  |  |
| Руководитель                         |                                             |                           |                             |  |  |
| •                                    | ı.                                          |                           | Т.Н. Соловьева              |  |  |
| доц., канд. техн. наук подпись, дата |                                             | полпись, лата             | инициалы, фамилия           |  |  |
|                                      | 2001111                                     | medimez, dere             | ·, ψ······                  |  |  |
| -                                    |                                             |                           |                             |  |  |
| Задание принял к испо                | лнению                                      |                           |                             |  |  |
| студент группы №                     | 4143                                        |                           | Д.В. Пономарев              |  |  |
|                                      | <del>-</del>                                | полпись, лата             | инициалы, фамилия           |  |  |

## СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                                  | 4    |
|-----------------------------------------------------------|------|
| 1 Проектирование аппаратного обеспечения                  | 5    |
| 2 Проектирование программного обеспечения                 | . 10 |
| 3 Тестирование и отладка аппаратно-программного комплекса | . 12 |
| ЗАКЛЮЧЕНИЕ                                                | . 15 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ                          | . 17 |
| ПРИЛОЖЕНИЕ А. Схема                                       | . 18 |
| ПРИЛОЖЕНИЕ Б. Код                                         | . 19 |

#### **ВВЕДЕНИЕ**

В современном мире цифровая электроника находит применение в самых различных областях, от научных исследований до бытовой техники. Одной из ключевых задач в электронике является генерация сигналов различных форм для тестирования и настройки устройств, а также для применения в составе сложных систем. Одной из наиболее востребованных форм сигналов является пилообразный сигнал, который используется, например, в осциллографах, анализаторах спектра и системах управления.

Актуальность темы разработки генератора пилообразного сигнала обусловлена его широкой применимостью в схемотехнике и необходимости компактных, программируемых решений для реализации такой функции. Использование микроконтроллеров, таких как AT89C51, позволяет создавать универсальные и гибкие генераторы сигналов, которые могут быть адаптированы под различные задачи.

Цель работы: разработать программируемый генератор пилообразного сигнала на базе микроконтроллера AT89C51 с возможностью изменения параметров сигнала (амплитуды и частоты) через матричную клавиатуру.

#### Задачи работы:

- Разработать алгоритм формирования пилообразного сигнала с фиксированным числом шагов.
- Реализовать функцию управления параметрами сигнала (амплитудой и частотой) через интерфейс матричной клавиатуры.
- Протестировать работу генератора на микроконтроллере AT89C51 и проверить корректность изменения параметров сигнала.
- Обеспечить возможность использования разработанного устройства для тестирования и настройки электронной аппаратуры.

Данный проект демонстрирует возможности интеграции программного

и аппаратного обеспечения для создания функционального устройства, что делает его полезным как для образовательных целей, так и для практического применения.

#### 1. Проектирование аппаратного обеспечения

#### Обзор существующих решений

Для генерации аналоговых сигналов существует несколько подходов:

- 1. Использование специализированных микросхем позволяет генерировать сигналы высокой точности и стабильности, но такие решения часто ограничены функционально или дорогостоящи.
- 2. Программная генерация с использованием микроконтроллеров дает большую гибкость и возможность программной настройки параметров сигнала.
- 3. Применение FPGA обеспечивает высокую производительность и универсальность, но требует глубоких знаний цифровой схемотехники.

Наиболее оптимальным для данной задачи является использование микроконтроллера (например, AT89C51) в комбинации с цифровым-аналого-преобразователем (DAC), так как это позволяет программно изменять параметры сигнала (амплитуда и частота), сохраняя при этом простоту и доступность реализации.

#### Выбор аппаратной реализации

Для реализации генератора пилообразного сигнала выбран микроконтроллер AT89C51 и цифровой-аналого-преобразователь LTC1450. Это решение обусловлено следующими факторами:

- AT89C51 предоставляет достаточный объем портов ввода-вывода для подключения клавиатуры и DAC.
- LTC1450 имеет простое управление через цифровые входы и позволяет генерировать стабильные аналоговые сигналы.

Дополнительно используется матричная клавиатура для пользовательского ввода параметров.

#### Разработка схемы проекта

#### Схема включает:

- 1. Микроконтроллер AT89C51 (U1) (рис.1):
  - Управляет работой системы и реализует генерацию сигнала.
  - Порт Р1 используется для передачи данных на DAC.
  - Порт Р2 используется для подключения матричной клавиатуры.



Рисунок 1- Микроконтроллер АТ89С51

2. Матричная клавиатура (рис.2):

- Служит для ввода параметров сигнала (амплитуды и частоты).
- Подключена к порту Р2 микроконтроллера.



Рисунок 2- Матричная клавиатура

#### 3. DAC LTC1450 (U2) (рис.3):

- Преобразует цифровое значение сигнала в аналоговый сигнал.
- Подключен к выходу порта Р1 микроконтроллера.



#### Рисунок 3- DAC LTC1450 (U2)

- 4. Осциллограф (рис.4):
  - 1. Обеспечивает вывод на экран.



Рисунок 4- Осциллограф

#### Характеристики элементов и их назначение

#### 1. AT89C51:

- 1. Характеристики:
  - 8-разрядный микроконтроллер.
  - 4 КБ встроенной памяти для программ.
  - Поддержка портов общего назначения (GPIO).
- 2. Назначение:
  - Управление процессом генерации сигнала.
  - Опрос клавиатуры и обработка пользовательского ввода.

#### 3. LTC1450:

- 1. Характеристики:
  - 12-разрядный ЦАП.
  - Выходное напряжение 0–5 В.

• Простое управление через цифровой интерфейс.

#### 2. Назначение:

• Преобразование цифрового значения пилообразного сигнала в аналоговый.

#### 3. Матричная клавиатура:

- 1. Характеристики:
  - 4 строки × 3 столбца.
  - Поддерживает 12 клавиш для ввода чисел и команд.
- 2. Назначение:
  - Ввод значений амплитуды и частоты пользователем.

#### 3. Осциллограф:

- 1. Назначение:
  - Используется для визуализации выходного сигнала DAC.

#### Принцип работы схемы

- 1. Микроконтроллер генерирует цифровые значения пилообразного сигнала.
- 2. Параметры сигнала (амплитуда и частота) изменяются пользователем через клавиатуру.
- 3. Цифровые значения передаются в LTC1450 через порт Р1.
- 4. LTC1450 преобразует цифровое значение в аналоговый сигнал, который подается на выход.

Схема обеспечивает гибкость настройки параметров сигнала и наглядное отображение результата на осциллографе.

#### 2. Проектирование программного обеспечения

#### Назначение программы

Разрабатываемое программное обеспечение предназначено для управления генератором пилообразного сигнала на базе микроконтроллера AT89C51. Программа обеспечивает генерацию пилообразного сигнала с заданными параметрами (амплитудой и частотой), которые могут быть изменены пользователем через матричную клавиатуру. Основные функции ПО включают:

- 1. Формирование пилообразного сигнала.
- 2. Обеспечение взаимодействия с пользователем через интерфейс матричной клавиатуры.
- 3. Изменение параметров сигнала (амплитуды и частоты) в реальном времени.

#### Процесс разработки программы

Разработка программы выполнялась поэтапно, начиная с анализа требований и проектирования структуры, заканчивая написанием кода и тестированием. Основные этапы:

- 1. Определение структуры программы и выделение ключевых функций.
- 2. Написание модулей для генерации сигнала и обработки ввода с клавиатуры.
- 3. Интеграция функций в единый алгоритм работы.
- 4. Тестирование программы на симуляторе и в реальных условиях.

#### Обобщенная структура программы

Программа состоит из следующих основных модулей:

#### 1. Модуль управления клавиатурой:

- Реализует опрос матричной клавиатуры для определения нажатых клавиш.
- Позволяет вводить значения амплитуды и частоты сигнала.

#### 2. Модуль генерации сигнала:

- Формирует пилообразный сигнал с заданным количеством шагов.
- Выводит сигнал на порт микроконтроллера.

#### 3. Модуль управления параметрами сигнала:

• Обрабатывает ввод пользователя и изменяет параметры (амплитуду и частоту) в реальном времени.

#### 4. Главный цикл программы:

• Координирует работу всех модулей.

#### Описание отдельных алгоритмов

#### 1. Алгоритм опроса клавиатуры

Осуществляется последовательное сканирование строк и столбцов матричной клавиатуры для определения нажатой клавиши. При нахождении нажатой клавиши выполняется соответствующее действие (например, ввод числа или завершение ввода параметров).

#### 2. Алгоритм ввода параметров

Пользователь вводит числовые значения параметров (амплитуда или частота) с клавиатуры. Ввод завершается нажатием \* для амплитуды или # для частоты.

#### 3. Алгоритм формирования пилообразного сигнала

Сигнал формируется за FIXED\_STEPS шагов. На каждом шаге значение сигнала вычисляется по формуле:

$$Output = \frac{count \times amplitude}{FIXED\_STEPS}$$

После каждого шага происходит задержка, определяемая параметром delayTime.

4. Алгоритм главного цикла программы

Главный цикл программы выполняет непрерывный опрос клавиатуры, генерацию сигнала и обработку ввода параметров.

#### Пример взаимодействия модулей

- 1. Пользователь нажимает клавишу \*, программа переходит в режим изменения амплитуды.
- 2. Пользователь вводит числовое значение амплитуды, которое сохраняется после повторного нажатия \*.
- 3. Главный цикл программы использует новое значение амплитуды для генерации сигнала.

Программа построена таким образом, чтобы обеспечить гибкость в настройке параметров сигнала, простоту использования и возможность модификации для добавления новых функций.

**3.** Тестирование и отладка аппаратно-программного комплекса Тестирование схемы.



Рисунок 5 - Начальный экран после запуска

Для начала изменим значение амплитуды. Для этого нажимаем \* и вводим значение например 100. Результат изменений показан на рисунке 6.



Рисунок 5 – Ожидание ввода занчения



Рисунок 6 – Результат изменения амплитуды

Далее изменим значение частоты. Для этого нажимаем # и вводим значение например 1. Результат изменений показан на рисунке 7.



Рисунок 7 — Результат изменения частоты

#### ЗАКЛЮЧЕНИЕ

Разработанное устройство представляет собой генератор пилообразных сигналов, выполненный на базе микроконтроллера AT89C51 и цифрового-аналого-преобразователя LTC1450. Устройство позволяет генерировать стабильные пилообразные сигналы с настраиваемыми параметрами амплитуды и частоты, что делает его универсальным инструментом для применения в различных областях электроники.

#### Назначение и функции устройства

- Назначение: генерация пилообразного сигнала с возможностью гибкой настройки параметров.
- Функции:
  - 1. Программная установка амплитуды сигнала через матричную клавиатуру.
  - 2. Программная настройка частоты сигнала через матричную клавиатуру.
  - 3. Генерация аналогового пилообразного сигнала с использованием цифрового значения, преобразованного через ЦАП.
  - 4. Визуализация выходного сигнала на осциллографе.

#### Основные технические характеристики

- Тип сигнала: пилообразный.
- Амплитуда сигнала: от 0 до 255 шагов, программно настраиваемая пользователем.
- Частота сигнала: регулируется пользователем, минимальная задержка между отсчетами 5 мс.
- Элементы управления: матричная клавиатура (12 клавиш: ввод числовых значений и управление режимами).
- Выходное напряжение: 0–5 В (максимальное значение ограничено характеристиками LTC1450).
- Питание устройства: 6 В (блок батарей или сетевой адаптер).

#### Область применения

Разработанный генератор пилообразных сигналов может применяться в следующих областях:

1. Обучение и исследовательская деятельность:

- Использование в лабораторных работах по электронике и электротехнике для изучения работы генераторов сигналов.
- Исследование параметров пилообразного сигнала в учебных процессах.

#### 2. Разработка и тестирование устройств:

- Применение в качестве источника тестовых сигналов при разработке аналоговых и цифровых устройств.
- Проверка работы усилителей, фильтров и других компонентов.

#### 3. Индустриальная автоматика:

• Использование в системах управления, где требуется генерация пилообразного сигнала для тестирования или управления.

Устройство отличается простотой схемотехнической реализации, доступностью компонентов и гибкостью настроек, что делает его полезным как для образовательных целей, так и для инженерных разработок.

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Документация для AT89C51:
   <a href="https://www.romstore.ru/system/storage/download/AT89C51.pdf">https://www.romstore.ru/system/storage/download/AT89C51.pdf</a>
- 2. Документация для LTC1450: https://www.farnell.com/datasheets/1575719.pdf
- 3. Учебно-методические материалы к выполнению лабораторной работы №8 по дисциплине «Схемотехника» (2-й семестр изучения дисциплины)// Жаринов. О.О. URL.: <a href="https://pro.guap.ru/inside/student/tasks/ad082e0862c9584d5144a1bd553cf8b">https://pro.guap.ru/inside/student/tasks/ad082e0862c9584d5144a1bd553cf8b</a> <a href="https://pro.guap.ru/inside/student/tasks/ad082e0862c9584d5144a1bd553cf8b">https://pro.guap.ru/inside/student/tasks/ad082e0862c9584d5144a1bd553cf8b</a>

## приложение а

### Схема



Рисунок 8 – Результат изменения частоты

#### ПРИЛОЖЕНИЕ Б

#### Код

#include <REG51.h> // Подключаем заголовочный файл для работы с микроконтроллером 8051

#include <stdio.h> // Подключаем стандартную библиотеку для ввода/вывода

#define FIXED\_STEPS 255 // Константа, определяющая количество шагов для генерации сигнала (255 шагов)

unsigned char count; // Счетчик для формирования сигнала xdata unsigned char out; // Выходной регистр для передачи данных на внешний периферийный компонент

unsigned char amplitude = 220; // Амплитуда сигнала, по умолчанию 220 unsigned int delayTime = 5; // Время задержки между изменениями сигнала, по умолчанию 5 миллисекунд

unsigned int mode0=0; // Режим для ввода амплитуды (по умолчанию выключен)

unsigned int mode1 = 0; // Режим для ввода частоты (по умолчанию выключен)

char keys[4][3] = { // Массив для хранения значений клавиш на клавиатуре (матрица 4x3)

```
{'1', '2', '3'},
{'4', '5', '6'},
{'7', '8', '9'},
{'*', '0', '#'}
```

**}**;

// Определения линий для работы с клавишами (строки и столбцы)

```
sbit r1 = P2^0;
      sbit r2 = P2^1;
      sbit r3 = P2^2;
      sbit r4 = P2^3:
      sbit c1 = P2^4;
      sbit c2 = P2^5:
      sbit c3 = P2^6;
      // Функция задержки, используемая для временных пауз в
миллисекундах
      void delay(unsigned int ms) {
        unsigned int i, j;
        for (i = 0; i < ms; i++) // Цикл для выполнения задержки
          for (j = 0; j < 120; j++); // Увеличиваем время задержки, чтобы она
была более заметной
      }
      // Функция для получения нажатой клавиши с клавиатуры
      char getKey() {
        unsigned char row, col;
        for (row = 0; row < 4; row++) \{ // Перебираем все строки
          r1 = r2 = r3 = r4 = 1; // Устанавливаем все строки в высокий
уровень
          switch (row) { // Устанавливаем только одну строку в низкий
уровень для сканирования
             case 0: r1 = 0; break;
             case 1: r2 = 0; break;
             case 2: r3 = 0; break;
```

```
case 3: r4 = 0; break;
          }
          // Проверяем, какая клавиша нажата в текущей строке
          if (c1 == 0) { while (c1 == 0); return keys[row][0]; }
          if (c2 == 0) { while (c2 == 0); return keys[row][1]; }
          if (c3 == 0) { while (c3 == 0); return keys[row][2]; }
        }
        return 0; // Возвращаем 0, если не была нажата никакая клавиша
      }
     // Функция для ввода амплитуды сигнала с клавиатуры
      void inputAmplitude() {
        unsigned char inputValue = 0; // Переменная для хранения введенного
значения амплитуды
        char key;
        while (1) { // Цикл, пока не введена амплитуда
          key = getKey(); // Получаем нажатую клавишу
          if (key != 0) { // Если клавиша нажата
             if (key >= '0' && key <= '9') { // Если это цифра
               inputValue = (inputValue * 10) + (key - '0'); // Формируем число
из цифр
             } else if (key == '*') { // Если нажата клавиша '*'
               amplitude = inputValue; // Присваиваем введенную амплитуду
               mode0 = 0; // Отключаем режим ввода амплитуды
               break; // Выходим из цикла
             }
           }
```

```
}
     // Функция для ввода частоты сигнала с клавиатуры
      void inputFrequency() {
        unsigned int inputValue = 0; // Переменная для хранения введенного
значения частоты
        char key;
        while (1) { // Цикл, пока не введена частота
          key = getKey(); // Получаем нажатую клавишу
          if (key >= '0' && key <= '9') { // Если это цифра
            inputValue = (inputValue * 10) + (key - '0'); // Формируем число
из цифр
          } else if (key == '#') { // Если нажата клавиша '#'
            delayTime = inputValue; // Присваиваем введенную частоту
            mode1 = 0; // Отключаем режим ввода частоты
            break; // Выходим из цикла
          }
     void main(void) {
        char key;
        while (1) { // Главный цикл программы
          // Генерация сигнала по фиксированным шагам
          for (count = 0; count <= FIXED_STEPS; count++) {
            key = getKey(); // Получаем нажатую клавишу с клавиатуры
            if (key == keys[3][0]) { // Если нажата клавиша '*'
```

```
mode0 = 1; // Включаем режим ввода амплитуды
            } else if (key == keys[3][2]) { // Если нажата клавиша '#'
              mode1 = 1; // Включаем режим ввода частоты
            }
            P1 = (count * amplitude) / FIXED STEPS; // Генерируем
выходной сигнал в зависимости от амплитуды
            out = P1; // Выводим сигнал на внешний выход
            delay(delayTime); // Пауза между шагами
            // Проверка, нужно ли вводить амплитуду или частоту
            if (mode0 == 1) {
              inputAmplitude(); // Вводим амплитуду
            } else if (mode1 == 1) {
              inputFrequency(); // Вводим частоту
            }
          }
          Р1 = 0; // Останавливаем сигнал
          delay(delayTime); // Пауза после завершения генерации сигнала
          // Сброс режима ввода
          mode0 = 0;
          mode1 = 0;
      }
```