BEST AVAILABLE COPY

US03/03967

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 861 896 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 02.09.1998 Patentblatt 1998/36

(21) Anmeldenummer: 98101338.6

(22) Anmeldetag: 27.01.1998

(51) mt. Ct.6: C12N 15/54, C12N 9/12, C07K 14/705, C12Q 1/68, C12Q 1/48, G01N 33/573, C07K 16/40, A61K 31/70, A61K 38/45

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 28.02.1997 DE 19708173

(71) Anmeider: de Behring Marburg GmbH 35001 Marburg (DE)

(72) Erfinder:

 Lang, Florian, Prof. Dr. 72076 Tübingen (DE)

 Waldegger, Siegfried, Dr. 72071 Tübingen (DE)

(54) Zelivolumenregulierte humane Kinase h-sgk

(57) Die vorliegende Erfindung betrifft die Klonierung und Charakterisierung einer humanen
Serin/Threonin-Kinase (h-sgk: serum and glucocorticoid dependent kinase). Weiterhin betrifft die Erfindung
Reagenzien für die Diagnostik von Zuständen, die mit
einer Änderung des Zelivolumens und/oder des
"macromolecular crowdings" im Körper einhergehen,
wie beispielsweise Hypernatriämie, Hyponatriämie,
Diabetes mellitus, Niereninsuffizienz, Hyperkatabolismus, hepatische Encephalopathie, Entzündungen und
mikrobielle oder virale Infektionen. Die vorliegende
Erfindung betrifft außerdem Arzneimittel, enthaltend die
h-sgk, Nukleinsäuren, welche für die h-sgk kodieren
oder Rezeptoren, insbesondere Antikorper, die spezifisch an die h-sgk binden.

Beschreibung

Die vorliegende Erfindung betrifft die Klonierung und Charakterisierung einer humanen Serin/Threonin-Kinase (h-sak: serum and alucocorticoid dependent kinase). Weiterhin betrifft die Erfindung Reagenzien für die Diagnostik von Zuständen, die mit einer Änderung des Zellvolumens und/oder des "macromolecular crowdings" im Körper einhergehen, wie beispielsweise Hypematriamie, Hyponatriamie, Diabetes mellitus, Nie- 10 reninsuffizienz, Hyperkatabolismus, hepatische Encephalopathie, Entzündungen und mikrobielle oder virale Infektionen. Die vorliegende Erfindung betrifft außerdem Arzneimittel, enthaltend die h-sgk, Nukleinsäuren, welche für die h-sgk kodieren oder Rezeptoren, insbesondere Antikorper, a spezifisch an die hagk bin-

Selbst bei konstanter extrazellulärer Osmolarität ist die Konstanz des Zellvolumens ständig durch Transport über Zellmembranen und zellulären Metabolismus, d.h. Bildung und Abbau osmotisch aktiver Substanzen

Zellschwellung und -schrumpfung stören das intrazelluläre Milieu durch Verdünnung bzw. Konzentrierung von zellulären Makromolekülen, die zu massiver Beeinträchtigung der zellulären Funktionen führen. Daher haben Zellen eine Vielzahl von Zellvolumen-regulierenden Mechanismen entwickelt. Zellschwellung führt in den meisten Geweben zu einer zellulären Abgabe von ionen durch Aktivierung von Ionenkanälen und KCI-Cotransport. Zellschrumpfung führt umgekehrt zu zellulärer Aufnahme von lonen durch Aktivierung des NaCl/KCl-Cotransporters und Na+/H+-Austauschers.

Darüberhinaus stimuliert Zellschrumpfung die zelluläre Akkumulierung und Zellschwellung die zelluläre Abgabe von Osmolyten, Molekülen, die speziell zur Erzeugung intrazellulärer Osmolarität eingesetzt werden [Burg, M. B. Am. J. Physiol. 268:F983-F996, 1995].

Schließlich beeinflussen Änderungen des Leberzellvolumens hepatozellulären Stoffwechsel und Genexpression [Haussinger et al. (1994) Am. J. Physiol. 267, E343-E355]. Zellschwellung wirkt wie ein anaboles Signal, das Protein- und Glykogensynthese stimuliert sowie Protein- und Glykogenabbau hemmt. Umgekehrt wirkt Zellschrumpfung als kataboles Signal, indem es den Abbau von Glykogen und Proteinen fördert und den Aufbau von Proteinen und Glykogen hemmt [Häussinger et al. (1994) Am. J. Physiol. 267, E343-E355].

Das Zellvolumen wurde als entscheidendes Element in der Regulation des Leberzellstoffwechsels durch Hormone, zelluläre Aminosäure-Aufnahme und oxidativen Stress erkannt.

Die Signalmechanismen, die die Zellfunktion an die Änderungen des zellulären Hydratationszustandes koppeln, sind weitgehend unbekannt. Änderungen des Zellvolumens erzielen ihre vielfältigen Wirkungen auf die Zellfunktion z.T. durch Stimulation oder Unterdrückung der Expression bestimmter Gene, deren Produkte dann

die Expression oder Aktivität einer Vielzahl von Zellkomponenten beeinflussen. Um Gene aufzudecken, die bei Zellschwellung vermehrt exprimiert werden, führten wir einen differentiellen mRNA fingerprinting Assay an cDNAs aus Hepatocyten durch, die entweder isotoner oder anisotoner extrazellulärer Flüssigkeit ausgesetzt worden waren. Dabei wurden mehrere Banden erhalten, die bei Verwendung unterschiedlicher Primer differentielle Expressionsraten aufwiesen.

Es wurde überraschenderweise gefunden, daß die Expression einer dieser Banden unter hypertonen Bedingungen stimuliert und unter hypotonen Bedingungen gehemmt wurde. Die cDNA-Sequenz dieser in besonderer Weise durch Zellvolumenänderungen in ihrer Expression beeinflußten Bande, wurde genauer analysiert. Durch Sequenzvergleich wurde gefunden, daß keine Ähnlichkeit zu irgendeinem bereits bekannten menschlichen Gen gegeben ist. Das gefundene Gen, dessen Nukleotidsequenz in Fig. 1 dargestellt wird, kodiert überraschenderweise für eine Kinase, eine putative Serin-Threoninkinase. Ihre Sequenz ist in Fig. 2 sowie in Fig. 1 dargestellt. Sie ist hoch-homolog zur bereits bekannten Ratten-sgk (serum and glucocorticoid dependent kinase), einer Kinase, deren Expression durch Serum und Glucocorticoide gesteigert wird. Eine Zellvolumenabhängigkeit der Ratten-sgk ist bisher jedoch nicht beschrieben.

Die vorliegende Erfindung betrifft folglich eine humane zellvolumenregulierte Kinase (h-sgk), sowie Verfahren zu ihrer gentechnischen Herstellung.

Die Expression der h-sgk ist in hohem Maße vom Zellvolumen abhängig. Zellschwellung hemmt die Expression der h-sgk, während Zellschrumpfung die Expression der h-sgk stimuliert. Darüberhinaus wird die Expression der h-sgk durch Harnstoff gehemmt. Harnstoff beeinträchtigt wie Zellvolumenänderungen die Stabilität und damit die Funktion zellulärer Proteine, bzw. die Packungsdichte der zellulären Makromoleküle, das sog, macromolecular crowding [Minton, A.P., Mol. Cell. Biochem. 55: 119-140, 1983). Die h-sgk-Expression ist daher ein Maß für das zelluläre "macromolecular crowding". Die Transskription der h-sgk wird jedoch, im Gegensatz zur Ratten-sgk, weder durch Corticoide noch durch fötales Kälberserum (FCS) beeinflußt.

Die h-sgk wird in einer Vielzahl menschlicher Gewebe exprimiert, wie Leber, Herz, Pankreas, Muskel, Niere, Lunge, Plazenta, Lymphocyten und mehreren Strukturen des Gehirns (Hippokampus, nucleus caudatus, corpus callosum, substantia nigra, nucleus subthalamicus und thalamus).

Es hat sich gezeigt, daß die h-sgk bei vielen Krankheiten, bei denen Zellvolumenanderungen eine entscheidende pathophysiologische Rolle spielen, ein beträchtliches diagnostisches Potential besitzt. Die Expression der h-sgk kann durch Nachweis und/ oder Quantifizierung der mRNA mit Hilfe geeigneter Probes, beispielsweise im Northern blot oder mittels In-Situ-Hybridisierung, und die h-sgk selbst kann beispielsweise mit Hilfe geeigneter Antikörper im Western blot oder durch Immunhistochemie nachgewiesen werden. Geeignete Probes bzw. Antikörper wurden bereits mit Erfolg auf Tauglichkeit überprüft.

Die vorliegende Erfindung betrifft daher auch die 5 diagnostische Verwendung der h-sgk, ihrer Fragmente oder der jeweiligen dafür kodierenden Nukleinsauren: Die möglichen zum Einsatz kommenden diagnostischen Techniken sind dem Fachmann bekannt. Es können dies alle aus dem Stand der Technik bekannten Immunoassayformate sein, wie beispielsweise Western blot oder Enzyme Linked Immunosorbent Assay. (ELISA), aber auch homogene nicht festphasengebundene Assaylormate. Denkbar sind beispielsweise kompetitive Testvarianten, aber auch indirekte Teste oder Aufbauten nach dem Sandwich-Prinzip sind ohne weiteres möglich. Ebenso können die dem Fachmann bekannten Markierungstechniken eingesetzt werden. Es können auch alle Arten der Nukleinsäurenachweistechniken angewandt werden, wie beispielsweise Southern blot, Northern blot und alle Varianten der Hybridisierungstechniken einschließlich In-Situ-Hybridisierung.

Die h-sgk kann sowohl in Körperflüssigkeiten, beispielsweise Blut, Plasma oder Serum, als auch in festen Geweben, beispielsweise Biopsiematerial nachgewiesen werden. Der Nachweis der h-sgk ist überall dort angezeigt, wo Änderungen des Zellvolumens bzw. des "macromolecular crowdings" im Körper auftreten, wie bei Hypematriamie, Hyponatriamie, Diabetes mellitus, Niereninsuffizienz, Hyperkatabolismus, hepatischer Encephalopathie, Entündungen und Infektionen.

Darüberhinaus könnte eine gestörte Funktion der h-sgk zu einer gestörten Regulation des hepatischen Stoffwechsels führen. Ein Nachweis der h-sgk würde daher einer diagnostischen Abklärung von Fruktoseintoleranz, hyper- und hypoglykämischen Zuständen dienen.

Hypernatriamie: Dies ist eine lebensbedrohliche Störung, die beispielsweise bei osmotischer Diurese und Wasserdiurese durch zentralen oder nephrogenen Diabetes insipidus auftritt. Ein zentraler Diabetes insipidus ist Folge eines genetischen Defektes, Schädel-Him-Trauma, Schädigung der hypothalamischen Neudurch Entzündungen, Mangeldurchblutung, Tumore, Konsum von Alkohol, Opiaten und einigen Pharmaka. Ein nephrogener Diabetes insipidus ist Folge von genetischen Defekten, Hypokaliämie, Hypercalcâmie, Proteinmangel, Pyelonephritis, und Behandlung mit verschiedenen Pharmaka, etc.. Wie in Experimenten an kultivierten Leber- und Nierenzellen gezeigt wird, führt eine Zunahme der extrazellulären Na⁺ Konzentration, die immer auch mit einer Zunahme der extrazellulären Osmolarität verbunden ist, zu einer gesteigerten Expression der h-sgk. Die Kinase kann damit als Indikator für das Ausmaß an Zellschrumpfung herangezogen und zur Überprüfung der Therapie eingesetzt werden. Eine solche Kontrolle ist insofern

bedeutsam, als bei zu schneller Korrektur einer Hypernatriämie trotz extrazellulärer Hyperosmolarität mitunter eine letale Zellschwellung auftreten kann.

Hyponatriamle: Bei etwa 1 - 2 % aller hospitalisierten Patienten stellt man eine Hyponatriämie unter 130 mmol/l fest. Ursachen dieser lebensbedrohlichen Störung sind Diabetes mellitus, Ketonurie, Leberinsuffizienz, Diuretica, Opiate, verschiedene Pharmaka, osmotische Diurese, Bikarbonaturie, Nebenniereninsuffizienz, Salzverlust-Niere (-Nephritis), Nephrotisches Syndrom, gesteigerte Ausschüttung von ADH und Verluste von isotoner Flüssigkeit (z.B. Durchfälle) mit ausschließlichem Ersatz von Wasser. Ist die Hyponatriämie Folge einer Zunahme anderer Osmolyte im Blut, dann bleibenlumen und Expression der h-sgk normal. Reflektiert die Hyponatriamie jedoch eine Hyponamolarität mit Zellschwellung, dann ist die Expression der hsgk herabgesetzt. Die Messung der h-sgk erlaubt somit Rückschlüsse auf das Vorliegen einer Zellschwellung und ermöglicht eine rationale Entscheidung über das therapeutische Vorgehen. Während der Therapie kann die Kinase zur Verlaufskontrolle eingesetzt werden. Die zu schnelle Korrektur einer Hyponatriämie kann zu mitunter letaler Zellschrumpfung führen.

Diabetes mellitus: Bei Diabetes mellitus kommt es zur Hyperglykämie, die zum Anstieg der extrazellulären Osmolarität führt und damit eine Zellschrumpfung hervorruft. Die glomerulär filtrierte Glucose übersteigt die maximale renale Transportrate und erzwingt auf diese Weise eine osmotische Diurese, bei der Na+ und Wasser verloren gehen. Dadurch kann sich eine Hyponatriāmie entwickeln. Die gesteigerte extrazelluläre Osmolarität und das Überangebot an Glucose fördern die zelluläre Bildung von Sorbitol, das bei Absinken der extrazellulären Osmolarität zur Zellschwellung führt. Der Zellschrumpfung und der Zellschwellung bei Diabetes mellitus werden entscheidende Bedeutung bei der Pathophysiologie zugemessen [McManus et al., New England J. Med. 333: 1260-1266, Dermadash et al., Kidney intern 50:2032:2040, 1996]. Die Messung der h-sak bei einem Patienten mit Diabetes mellitus erlaubt die Abschätzung der Zellvolumenänderungen und schafft damit eine solide Grundlage für den Ausgleich von Elektrolystörungen. Auch dabei kann eine Verlaufsbeobachtung überschiessende Korrekturen verhindern.

NierenInsuffizienz: Bei der Niereninsuffizienz kommt es zu einer massiven Zunahme der Harnstoff-konzentration auf Werte, welche eine destabilisierende Wirkung auf Proteine ausüben, Zellen schrumpfen lassen und eine Abnahme der h-sgk -Expression bewirken. Die destabilisierende Wirkung von Harnstoff wird durch die Bildung von Trimethylaminen abgeschwacht. Bei schnellen Änderungen der Harnstoffkonzentration hält die Akkumulation von Trimethylaminen nicht Schritt, und es sind durch die Zellvolumenänderungen Störungen des Zellstoffwechsels zu erwarten. Die Bestimmung der h-sgk kann eine Imbalance zwischen destabilisierendem Harnstoff und stabilisierenden Tri-

methylaminen aufdecken. Gegebenenfalls wäre die therapeutische Applikation von Trimethylaminen bei stark unterdrückter h-sgk angezeigt.

Hepatische Encephalopathie: Es gibt überzeugende Beweise dafür, daß die hepatische Encephalopathie durch Schwellung von Gliazellen zustande kommt [Norenberg, M.D., Exp. Neurol. 53(3): 213-220, 1994]. Tatsächlich läßt sich bei Lebererkrankungen eine Abnahme des Osmolyten Inositol im Gehim nachweisen [Kreis et al., NMR Biomed. 4: 109-116, 1991]. Das völlige Verschwinden koinzidiert mit dem Eintreten einer Encephalopathie. Durch Entwicklung und Einsatz geeigneter Substrate für die h-sgk könnte die h-sgk Aktivität im Gehim gemessen und bereits vor Auftreten der Encephalopathie gegengesteuert werden. Gegenenenfalls könnte auch die h-sgk -Expression in besser zugänglichen Geweben als Indikator für Volumenänderungen in Gliazellen herangezogen werden.

Alzhelmersche Krankhelt: Neue Hinweise deuten auf eine Zunahme des Volumens peripherer Zellen bei der Alzheimerschen Erkrankung hin. Darüberhinaus ist der Osmolyt Inositol bei Patienten mit Alzheimerscher Erkrankung erhöht, nicht jedoch bei einer Demenz anderer Genese. Die h-sgk-Expression kann somit zur Diagnose der Alzheimerschen Erkrankung beitragen.

Infektionen/Entzündungen: Bei einer Sepsis kommt es zu massiver Zellschrumpfung [Häussinger et al., Lancet 1993, 341: 1330-1332] mit entsprechendem Auftreten von Hyperkatabolismus. Tatsächlich spielt beim Pathogen-Wirt-Verhältnis das Zellvolumen eine wichtige Rolle. Die Expression der h-sak könnte ein wertvoller Parameter zur Abschätzung der Pathophysiologie von Infektionen sein. In-Situ-Hybridisierungsexperimente zeigen einen deutlichen Anstieg der Gewebekonzentration der h-sgk bei entzündlichen Erkrankungen, wie beispielsweise Hepatitis, Pankreatitis, Morbus Crohn oder Glomerulonephritis. Darüberhinaus wird die h-sgk-Expression durch TGFB gesteigert, was mit einer progressiven Fibrose, wie beispielsweise Leberzirrhose, Lungenfibrose oder progressiver Niereninsuffizienz, in Zusammenhang gebracht wurde. Tatsächlich wurde gefunden, daß die h-sgk-Expression bei Patienten mit chronischer Niereninsuffizienz erhöht ist.

Hyperglykāmie-Hypoglykāmie-Laktazidose:

Eine herabgesetzte oder gesteigerte Expression und/oder Funktion der h-sgk könnte zu Störungen des Kohlehydratstoffwechsels führen, wie sie bei Zellschrumpfung und Zellschwellung beobachtet wird [Lang et al., Pflügers Arch. 413: 209-216, 1989]. Eine herabgesetzte Funktion hätte zur Folge, daß eine Hypoglykämie droht. Eine gesteigerte Funktion könnte einerseits Hyperglykämie, andererseits Lactazidose nach sich ziehen. Bei der diagnostischen Abklärung von Hyperglykämie, Hypoglykämie und Lactacidosen unklarer Genese könnte daher immer auch die h-sgk Expression und Funktion untersucht werden.

Die vorliegende Erfindung wird außerdem durch die folgende detaillierte Beschreibung n\u00e4her erf\u00e4utert und dar\u00fcberhinaus durch die Foispiele sowie die Patentanspr\u00fcche beschrieben.

Detaillierte Beschreibung der Erfindung

Materialien und Methoden

Materialien: Fötales Kälberseturn und DMEM (Dulbeccos modifiziertes Eagles Medium) wurden von GIBCO/BRL (Eggenstein, Deutschland) bezogen. Enzyme von STRATAGENE (Heidelberg, Deutschland) und BOEHRINGER MANNHEIM (Mannheim, Deutschland), a-[35S]-dATP von ICN (Eschwege, Deutschland), SuperScript® reverse Transcriptase von GIBCO/BRL PCR® (Polymerasekettenreaktionen) wurden in einem Crocodile® II Thermocycler (APPLIGENE ONCOR, Heidelberg, Germany) mit Hilfe von Prime Zyme® DNA polymerase und PCR Puffer von BIOMETRA (Göttingen, Deutschland) durchgeführt. RAP-PCR Primer wurden von STRATAGENE, Sequenzierprimer von MWG (Ebersberg, Deutschland) erworben. Manuelle Sequenzierung wurde auf einem S2-Sequenzierapparat von GIBCO/BRL mit Hilfe des Fidelity® DNA Sequenzier-Systems (APPLIGENE ONCOR) durchgeführt.

Zellkultur: HepG2 humane Hepatomzellen wurden in Dulbeccos modifiziertem Eagles Medium (DMEM) mit 5 % CO₂, 5 mM Glucose bei 37°C, pH 7.4 kultiviert, das mit 10% (vol/vol) fötalen Kälberserum (FCS) angereichert war. Vor der RNA-Isolierung wurden die Zellen bis zu 90%iger Konfluenz kultiviert und für 12 Stunden in basalem Eagle Medium (BME, GiBCO/BRL) ohne fötalem Kälberserum gehalten. Die extrazelluläre Osmolarität wurde über Zugabe bzw. Wegnahme definierter Mengen von Kochsalz ohne Änderungen der anderen Komponenten des BME-Mediums variiert. In Experimenten, in denen die Wirkungen von Aminosäuren geprüft wurden, wurden die Zellen zwei Stunden vor Zugabe der Aminosäuren in einer aminosäurefreien extrazellulären Lösung gehalten.

RAP-PCR: RNA fingerprinting PCR (RAP-PCR) wurde wie früher beschrieben [McClelland et al. 1994, Nucleic Acids Res. 22, 4419-4431] durchgeführt. Nach Elektrophorese durch ein 4% Acrylamid / 7M Harnstoff Polyacrylamid-Gel, wurden die PCR-Produkte durch

Silberfärbung sichtbar gemacht [Sanguinetti et al., Biotechniques 17, 914-921, 1994]. Alle Banden, die nur unter einer Bedingung (hyperton oder hypoton) sichtbar waren, wurden in der Folge durch reverse Transskription und PCR mit RNA aus neuen Kulturen bestätigt. Die RAP-PCR wurde mit vier verschiedenen Primerpaaren für die cDNA Synthese und PCR Amplifizierung durchgeführt. Zusätzlich wurden unterschiedliche Temperaturen zwischen 30°C und 40°C in der ersten Runde der Amplifizierung gewählt. Zusammen mit diesen Modifikationen wurden insgesamt 64 PCR-Durchgänge durchgeführt.

Die Gewinnung der Benden: Benden, die reproduzierbare Unterschiede zeigten, wurden unter sterilen Bedingungen ausgeschnitten. Das Amplicc.. wurde über Nacht bei 70 °C in 100 µl Puffer (50 mM KCl, 10mM TRIS-Cl pH 9.0, 0.1% Triton X 100) eluiert. Reamplifizierung durch PCR wurde mit 3.0 µl Eluat durchgeführt, mit geeigneten Primer (250 nM), 200 µM dNTP, 1x salzarmem Puffer (STRATAGENE) mit 1.5 mM MgCl₂ und 5 Einheiten Taq+® DNA Polymerase (STRATAGENE) bei folgenden Temperatur-Zyklusprofilen: Ein Zyklus bei 95 °C für 60 sec, 30 Zyklen bei 95 °C (15 sec), 55 °C (15 sec), 72 °C (60 sec) und zuletzt bei 72 °C für 5 Minuten. Nach Bestätigung durch PAGE, daß nur ein definiertes Amplicon mit der erwarteten Länge erzeugt worden war, wurde dieses Amplicon direct für die Bildung der Probe verwendet.

Northern Analyse: Digozigenin (DIG)-gekoppelte Proben wurden durch direktes PCR-labeling der unterschiedlichen Amplicons erzeugt, mit Hilfe der geeigneten Primer und den Bedingungen, wie sie oben beschrieben wurden, außer, daß folgende dNTP Konzentrationen verwendet wurden: 200 µM dATP, 200 µM dCTP, 200 µM dGTP, 190 µM dTTP und 10 µM DIGdUTP (BOEHRINGER). Northern blots wurden mit 20 μg totaler RNA oder mit 2 μg poly(A)-RNA hergestellt. die durch 1% Agarose Gele in Anwesenheit von 2.2M Formaldehyd elektrophoretisch getrennt worden waren. Äquivalentes Laden von Proben bei der Untersuchung von poly(A)-RNA wurde durch Färbung mit Ethidiumbromid der ribosomalen RNA Banden oder durch DIGgelabelte Antisense-RNA probe gegen das humane heterogene nuclear ribonucleoprotein C1 als internem Standard überprüft. Die Größe der RNA wurde mit dem DIG-gelabelten Molekülgewicht-Marker I (BOEHRIN-GER) abgeschätzt. Vacuum blotting (APPLIGENE ONCOR Trans DNA Express Vacuum Biotter) wurde zum Transfer auf positiv geladene Nylonmembranen (BOEHRINGER) eigesetzt, die dann durch Ultraviolett-Licht vernetzt wurden (STRATAGENE UV Stratalinker® 2400). Hybridisierung wurde über Nacht in DIG-Easy-Hyb® (BOEHRINGER) bei einer Probenkonzentration von 25 ng/ml oder 100 ng/ml bei 50 °C oder 65 °C für DNA - Proben oder RNA - Proben durchgeführt. Proben, die unterschiedliche Expression zeigten, wurden mit dem pCR-Script SK(+) Cloning Kit (STRATAGENE) subkloniert und in Northern blots überprüft. Die im folgenden gezeigten Northern blots wurden von diesen Subclones abgeleitet.

Weltere Methoden: DNA Sequenzierung vom pCR clone wurde mit dem Fidelity® DNA Sequencing System (APPLIGENE ONCOR) durchgeführt. Sequenzierungsprodukte wurden mit a-[35S]-dATP markiert und auf einem 6% Polyacrylamide / 8M Harnstoff Sequenzierungsgel aufgetrennt. Die GenBank-Daten wurden nach homologen Sequenzen mit dem FASTA computer program [Pearson, W.R. & Lipman, D.J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444-2448] abgesucht. Die Sequenz der vollständigen h-sgk cDNA wurde mit Hilfe des I.M.A.G.E. Consortium Clone ID 42669 von der TIGR/ATCC Special Collection of Human cDNA Clones gewonnen. Die Gendaten wurden mit Hilfe des European Molecular Biology Laboratory EMBL (Heidelberg), dem BLAST network service und - für die Protein alignments - dem BLITZ server an der neuesten Ausgabe der SwissProt protein database untersucht.

Nucleotidsequenz-Zugangsnummer: Die h-sgk cDNA-Sequenz wurde in die GenBank-Database unter der Zugangsnummer Y10032 eingegeben und bis zum 1. März 1997 gesperrt.

Ergebnisse

Differentielle Genexpression in HepG2-Zellen in hypotoner, isotoner und hypertoner extrazellulärer Flüssigkeit: mRNA wurde von HepG2 Zellen isoliert, die für 1 oder 2 Stunden mit hypotoner (hypoton I: minus 100 mosmol/I durch Entfernung von 50 mM NaCl und hypoton II: minus 50 mosmol/l durch Entfernung von 25 mM NaCl im Vergleich mit isotonem Kontrollmedium), isotoner (mit gesamter Osmolarität von 290 mosmol/l und einer NaCl - Konzentration von 114 mM) oder hypertoner (plus 50 mosmol/i durch Zugabe von 50 mM Raffinose) Medium vorbehandelt wurden. Die mRNA wurde als Template für die RAP - PCR mit arbiträren Primern verwendet. Die Produkte der RAP - PCR wurden auf denaturierten Polyacrylamid-Gelen aufgetragen und zum Vergleich in parallelen Bahnen aufgetrennt. Mehrere Banden zeigten differentielle Expression bei Verwendung mehrerer Primer. Vier differentielle Banden der RAP-PCR Gele wurden weiter analysiert: Zwei erwiesen sich bei der folgenden Northern bot Analyse als falsch positiv, eine Bande wurde durch hypotone und hypertone Bedingungen gesteigert, aber ihre Sequenz zeigte keine Ähnlichkeit zu irgend einem bisher bekannten klonierten Gen. Eine Bande von etwa 500 Basenpaaren zeigte eine zunehmende Expression mit zunehmender extrazellulärer Osmolarität (hypoton Ihypoton II - isoton - hyperton). Diese Bande wurde aus dem Gel gereinigt und mit Hilfe von Primer RAP-A4 reamplifiziert. Nach Markierung mit Digoxigenin durch PCR, wurden Northern blots mit diesem Amplican angefertigt, um die differentielle Expression in verschiedenen Zellpräparationen zu bestätigen, die für zwei Stunden mit hypotonem I, isotonem und hypertonem Medium vorbehandelt worden waren.

Ein einzelnes Transcript von etwa 2.6 Kilobasen war in hohem Maße durch die Änderungen der extrazellulären Osmolarität beeinflußt (Abb. 1). Die Transkriptmenge wurde bei Abnahme der Osmolarität gesenkt und bei Zunahme der Osmolarität gesteigert.

Klonierung und Sequenzierung des differentiell regulierten h-sgk Gens. Das 500 Basenpaare lange PCR-Produkt wurde in den PCR II Vektor subkloniert und eine neue Probe mit diesem Konstrukt erzeugt, um eine Identität zwischen dem ursprünglichen und dem subklonierten DNA-Fragment nachzuweisen. Rehybridisierung eines Northern blots mit dieser Probe führte zu identischen Ergebnissen wie die ursprüngliche Probe. Zusätzlich wurde eine Southern blot - Analyse mit dem neuen Konstrukt durchgeführt und mit dem ursprünglichen Konstrukt hybridisiert. Eine starke Hybridisierung nach zwei high stringency washes bestätigte die Identität der Sequenz.

Sequenzanalysen in beide Richtungen zeigten die Anwesenheit der verwendeten Primer an beiden Seiten des Amplicons. Eine Anninosäuresequenz, die von einem Leserahmen der Nucleotidsequenz translatiert wurde, zeigte eine 95 %ige Identität zur carboxyterminalen Aminosäuresequenz der Ratten-sgk (serum and glucocorticoid regulated protein kinase), einem neuen Mitglied der Serin/Threonin-Proteinkinase Proteinfamilie, das aus einer Ratten- Brustdrüsen-Tumorzellinie geklont wurde (Webster et al., Mol. Cell. Biol. 13, 2031-2040, 1993a). Wegen der hohen Ähnlichkeit wurde die Bezeichnung h-sgk (human-) für das neue Protein gewählt.

Genbank-Database wurde auf ähnliche menschliche Sequenzen mit dem FASTA Computerprogramm durchsucht. Mehrere EST (Expressed Sequence Tags) DNA Sequenzen aus der TIGR/ATCC Special Collection of Human cDNA Clones zeigten 100 % Sequenzübereinstimmmung mit Teilen der h-sgk cDNA Fragmente. Nach vielfachen alignments von 30 verschiedenen TIGR/ATCC humanen cDNA Klonen mit der Ratten-sgk-cDNA-Sequenz (Genbank Zugangsnummer L01624) und mit dem h-sgk DNA Fragment. wurde angenommen, daß das I.M.A.G.E. Consortium Konstrukt mit dem Clone ID 42669 einer menschlichen Kinderhirn-Library die vollständige kodierende Sequenz der h-sgk aufweist. Sequenzanalyse dieses Konstruktes mit übereinstimmenden Sequenzen in Sense- and Antisense-Richtung ergab eine cDNA Sequenz von etwa 2.4 Kilobasen. Um die Beteiligung der vollständigen h-sgk nachzuweisen, wurde das 5' Ende des Klons (Nucleotide 1 - 285 der kodierenden Sequenz) in den pCR II vector subidoniert und damit eine neue Probe mit diesem Konstrukt erzeugt. Hybridisierung eines Northem blots mit dieser Probe resultierte in identischen Ergebnissen wie die ursprünglichen Proben (Abb. 1). Der längste Leserahmen des untersuchten Klons (1.3 kb) ergab ein 431-Aminosäure-Protein mit einer Identität von insgesamt 98 % zu dem Ratten-sgk Protein.

Regulation der h-sgk Expression durch Änderungen der extrazellulären Osmolarität: Um den Einfluß von Änderungen der extrazellulären Osmolarität auf die h-sgk-Transskriptmengen zu untersuchen, wurden HepG2 Zellen unterschiedlich lang in hypotonem (190 mol/l), isotonem (290 mosmol/l) und hypertonem (390 mosmol/l) BME Medium ohne FCS inkubiert. Die h-sgk mRNA Konzentrationen nahmen binnen 60 min in hypertoner Lösung stark zu. Der erste Anstieg war innerhalb von 30 Minuten erkennbar und erreichte ein Maximum innerhalb von zwei Stunden. Die Induktion der h-sgk folgt daher unmittelbar nach Änderung der Osmolarität. Die Transskriptkonzentrationen stiegen binnen 4 bis 8 Stunden in hypertonem extrazellulären BME-Medium weiter an, und fielen dann allmählich wieder innerhalb der folgenden 16 bis 24 Stunden auf die Ausgangskonzentrationen ab. Andererseits fielen die hsgk-Transskriptkonzentrationen in hypotoner extrazellullärer Lösung schnell ab, wobei der Abfall bereits nach 30 Minuten erkennbar war und ein Maximum innerhalb von zwei Stunden erreicht wurde.

Unterschiedliche Osmolaritäten (140, 190, 240, 290, 340, 390 und 440 mosmol/l) zeigten binnen zwei Stunden unterschiedliche Expressionen der h-sak Über dem gesamten Bereich war eine steile Korrelation der h-sgk Expression mit der extrazellulären Osmolarität nachweisbar. Eine 30%ige Zunahme der Osmolarität ging in etwa mit einer Verdreifachung der Kinaseexpression einher. Eine Zunahme der Osmolarität von 290 auf 340 mosmol/i, und eine Abnahme der Konzentration von 290 auf 240 mosmol/l induzierten signifikante Änderungen der h-sgk Expression. Der transskriptionelle Kontrollmechanismus reagiert also offenbar sehr empfindlich auf Änderungen der Osmolarität. Die Induktion der h-sgk-RNA war unabhängig von einer de novo Proteinsynthese. Der Anstieg der Transskriptkonzentration in hypertonem BME Medium ist in Anwesenheit des Proteinsynthesehemmers Cycloheximid (10µg/ml) grō-Ber als in Abwesenheit des Hemmstoffes.

Die schnelle Abnahme der h-sok Transskriptkonzentrationen gleich nach Senkung der extrazellulären Osmolarität legt eine kurze Halbwertszeit der h-sokmRNA nahe. Um die Abnahmerate der h-sok Transcriptkonzentrationen zu untersuchen, wurden HepG2 Zellen für zwei Stunden mit hypertonem Medium (390 mosmol/l) behandelt, um einen maximalen Anstieg der h-sgk Transplaiptkonzentrationen zu erzielen. Dann wurde ein Teil der Zellen dem RNA-Polymerasehemmer Actinomycin D (5µg/ml) ausgesetzt, der andere Teil der Zellen hypotonem Medium (190 mosmol/l). Nach verschiedenen Zeitpunkten wurde RNA präpariert und die Transskriptkonzentrationen der beiden Zellgruppen verglichen. Actinomycin D Behandlung führte zu einem schneilen Abfall der h-sak Transskriptkonzentrationen mit einer geschätzten Halbwertszeit von etwa 30 Minuten. Behandlung der Zellen mit hypotonem extrazellulären Medium führte zu einem gleichermaßen schnellen Abfall der Transskriptkonzentrationen.

Regulation der h-sgk Transskriptkonzentrationen durch isotone Zellvolumen-Änderugen. Um zwischen den Wirkungen von Änderungen des Zellvolumens, der lonenstärke und der Osmolarität unterscheiden zu können, wurde das Zellvolumen 5 durch zwei verschiedene Methoden bei gleichbleibender lonenstärke und Osmolarität manipuliert. Binnen zwei Stunden isotoner Zellschrumpfung durch Hemmung des NaCl/KCl-Kotransporters und des Na+ /H+ -Austauschers mit Burnetanid und 3-Methylsulfonyl-4-(1piperidino)-benzoylguanidin (EP-0 416 499) war die Expression der h-sgk gesteigert, eine Wirkung, die durch zusätzliche Zunahme der extrazellulären Osmolarität noch verstärkt wurde. Zellschwellung durch Angebot von verschiedenen Aminosäuren (Aminosaure-Mischung von 1x BME Aminosauren, GIBCO/BRL) führte umgekehrt binnen zwei Stunden zu einem Abfall der h-sgk-Transskript-Konzentrationen. Es ist also das Zellvolumen, nicht die Osmolarität oder die lonenstärke, welches die Expression der h-sgk regu- 20 liert.

Um zu prüfen, ob die Expression der h-sgk in HepG2 Zellen, ähnlich wie die der Ratten-sgk in Brustdrüsentumorzellen [Webster, M.K. (1993) Mol. Cell. Biol. 13, 2031-2040.] durch Glucocorticoide oder fötales 25 Kälberserum (FCS) reguliert wird, wurden HepG2 Zellen mit Dexamethason (1µM) oder mit FCS (10 %) für zwei bis 12 Stunden inkubiert. In Northern blots konnte kein Einfluß von Glucocorticoiden oder FCS auf die Transskript-Konzentrationen von h-sgk in HepG2-Zellen 30 gefunden.

Regulation der sgk Transskriptkonzentrationen durch die extrazelluläre Osmolarität in Madin Darby Canine Kidney (MDCK) Zellen. Um zu prüfen, ob die beobachtete Zellvolumen-Abhängigkeit der Expression von h-sgk eine Besonderheit der HepG2-Zellen ist, wurden die Hunde-Nierenepithelzellen MDCK für zwei Stunden hypotonem (190 mosmol/l) und hypertonem (390 mosmol/l) BME Medium ausgesetzt. h-sgk-Transskripte mit einer Länge von etwa 2.6 Kilobasen konnten auch nach mehreren High-Stringency-Waschschritten mit 0.5 x SSC (standard saline citrate) bei 65 °C nachgewiesen werden, ein Hinweis auf hohe Sequenzhomologie der sgk-Gene zwischen verschiedenen Species. Änderungen der extrazellulären Osmolarität übten in MDCK-Zellen einen ähnlichen Einfluß auf die Transskriptkonzentrationen aus wie in HepG2-Zellen.

Gewebsspezifische Expression der h-sgk. Ein vorgefertigter Multiple Tissue Northern Blot (CLON-TECH, Heidelberg, Germany) wurde mit der h-sgk DNA 50 Probe untersucht. Die h-sgk Expression zeigt eine gewisse Gewebsspezifität, mit höchster Expression in Pancreas, Leber, und Herzmuskel. Eine etwas geringere Expression zeigt sich in Placenta, Lunge und Skelettmuskel. Niedrige aber erkennbare Expressionen 55 finden sich in Gehirn und Niere. In menschlichem Gehirngewebe ist die Expression in der substantia nigra und dem corpus callosum am höchsten, in den corpora

amygdala, Hippocampus, nucleus caudatus und nucleus subthalamicus durchschnittlich und im Thalamus am geringsten. Interessanterweise wurde ein zweites Transskript von 7 Kilobasen in tast allen Geweben gefunden, mit höchster Expression im Pancreas. Dieses Transskript ist möglicherweise eine weitere h-sgkmRNA durch alternatives splicing oder ein zur h-sgkhomologes Gen. Das 7 Kilobasen-Transcript war in HepG2 Northern blots nicht gefunden worden.

Regulation der h-sgk Expression durch Harnstoff: Die h-sgk-Expression ist durch die Anwesenheit von Harnstoff im Extrazellulärraum unterdrückt. Die Expression der h-sgk war bei 50mmol/l Harnstoff mässig, bei 100 mmol/l Harnstoff massiv eingeschränkt.

Diskussion

Die h-sgk, ein humanes Gen, dessen Transskription durch Anderungen des Zellvolumens reguliert wird, kodiert für eine putative Serin/Threonin-Proteinkinase mit hoher Sequenzhomologie zu Ratten-sgk, die kürzlich als Serum- und Glucocorticoid-reguliertes Gen von Ratten-Brustdrüsen-Turnorzellen, als Läsions-induziertes Gen nach ZNS-Läsionen im Rattenhim [Imaizumi et al., Mol. Brain Res. 26, 189-196, 1994] und als Testosteron- und Follikel-stimulierendes Hormon- induziertes Gen in Granulosa-Zellen des Ratten-Ovars [Richards et al., Recent Prog. Horm. Res. 50, 223-254, 1995] beschrieben wurde. Das 49 kD h-sgk Protein zeigt annähernd 98 % Hömologie mit dem Ratten sgk Protein mit weitgehend konservativen Aminosäureaustauschen. Es weist etwa 50% Homologie in seiner katalytischen Domane mit mehreren Kinasen der "second messenger" Familie auf, wie rac Protein-kinase, Protein kinase C, ribosomale protein S6 kinase, and cAMPabhängige Protein kinase [Webster et al., (1993b) J. Biol. Chem. 268, 11482-11485, Webster et al., (1993a) Mol. Cell. Biol. 13, 2031-2040].

Der Expressionsgrad des 2.6 Kilobasen h-sgk Transkripts in HepG2 Zellen wird in hohem Maße durch Änderungen der extrazellulären Osmolarität beeinflußt. Gesteigerte Transkript-Konzentrationen konnten binnen 30 Minuten nach Zunahme der extrazellulären Osmolarität gefunden werden. Diese Induktion war unabhängig von einer de novo Protein-Synthese. Die Transkriptkonzentrationen sinken binnen 30 Minuten nach Senkung der extrazellulären Osmolarität. Der Abfall war gleichermassen schnell wie der Abfall nach Hemmung der Transkription durch Aktinomycin D.

Zellvolumenänderungen beeinflussen demnach die Transskriptionsrate von h-sgk. Die herabgesetzte h-sgk Transskriptionsrate nach osmotischer Zellschweilung und die kurze Halbwertszeit gewährleisten eine schnelle und effiziente Regulation der Transskript-Konzentrationen von h-sgk RNA in HepG2 Zellen.

Isosmotische Änderungen des Zellvolumens beeinflussen gleichermassen die h-sgk-Expression. Zellschrumpfung wurde durch Hemmung der wesentlichen 10

lonentransportmechanismen Na⁺ / H⁺ -Austauscher und NaCl / KCl - Cotransporter durch deren spezifische Blocker 3-Methylsulfonyl-4-(1-piperidino)-benzoylguanidin (EP-0 416 499) und Bumetanid erreicht. Zellschwellung wurde durch die Zugabe von Aminosäuren und die folgende hepatozelluläre Akkumulierung der Aminosäuren über Na⁺ - abhängige Aminosäuretransporter wie etwa System A, N, und ASC bewirkt. Die Transskriptkonzentrationen korrelierten mit dem Zellvolumen, nicht mit der Osmolarität.

Nach langanhaltender osmotischer Zellschrumpfung nahmen die Transskriptkonzentrationen innerhalb der ersten halben Stunde steil zu und blieben dann für 8 Stunden erhöht, bevor sie wieder allmählich abnahmen. Diese langanhaltende Zunahme stehl im scheinbaren Widerspruch zum schnellen Zeitgang der Zellvolumenregulation. Osmotisch geschrumpfte oder geschwollene Leberzellen regulieren ihr Zellvolumen jedoch nicht völlig, sondem bleiben nach der schnellen Phase der Volumenregulation noch mässig geschrumpft bzw. geschwollen [Häussinger et al.,. (1994) Am. J. Physiol. 267, E343-E355].

Die verbleibenden Zellvolumenänderungen könnten für die veränderte Expression der h-sgk verantwortlich sein.

Neben dem Zellvolumen selbst übt Harnstoff einen massiven Einfluß auf die Expression der h-sgk aus. Harnstoff übt eine destabilisierende Wirkung auf Proteine aus und imitiert auf diese Weise die Wirkung einer Zellschwellung. Die h-sgk wäre somit ein Sensor der Proteinstabilität bzw. der Packungsdichte der zellulären Makromoleküle. Die destabilisierende Wirkung von Harnstoff wird durch die Bildung von Trimethylaminen abgeschwächt, wodurch wahrscheinlich die destabilisierende Wirkung von Harnstoff bei Niereninsuffizienz abgeschwächt wird.

Die zellulären Wirkungen der h-sgk sind noch unsicher. Insbesondere läßt sich derzeit noch nicht mit Sicherheit feststellen, ob die Wirkungen der h-sgk eine Rolle für die Zellvolumenregulation spielen. Für einen Einsatz der h-sgk als Diagnostikum ist die Wirkung der h-sgk jedoch belangtos.

Trotz der auffälligen Sequenzhomologie zur Rattensak konnten wir keine Parallelen zur Regulation der Ratten-sgk feststellen. Weder Serum (FCS) noch Glucocorticoide (Dexamethason), die beide in Ratten-Brustdrüsen-Tumorzellen einen starken Einfluß auf die sgk Transcription gezeigt hatten, beeinflußten die Expression von h-sgk in HepG2 Zellen, In den verschiedenen Zelltypen scheinen daher unterschiedliche h-sok Promotersequenzen die Expression des Proteins zu regulieren. Es ist also denkbar, daß die Expression der h-sgk nicht ausschließlich durch das Zellvolumen bzw. die Padaungsdichte reguliert wird. Eine Zellvolumen-Abhängigkeit der h-sgk Expression konnten wir auch in Nierenepithelzellen (MDCK) und in Makrophagen nachweisen. Die Zellvolumenabhängigkeit der h-sgk-Expression ist also keine Besonderheit der HepG2 Zellen. Die h-sgk 5'flankierenden Sequenzen in den verschiedenen Zellen könnten die regulierenden Elemente aufdecken, die für die unterschiedlioche Expression der sgk Transskripte verantwortlich sind. Wie die früher beschriebene Glucocorticoid- und Serum induzierte Expression von sgk in der Ratte benötigt die Zelivolumen induzierte Expression der h-sgk RNA nur 30 Minuten. Die Halbwertszeit der h-sgk Transskripte in HepG2 Zellen ist mit 30 Minuten ebenso kurz wie die sgk Halbwertszeit in Ratten-Brustdrüsentumorzellen, wie die Experimente mit dem RNA-Polymerasehemmer Actinomycin D zeigen.

Das h-sgk-Transskript wird in allen bisher untersuchten menschlichen Geweben exprimiert. Besonders hoch ist die Expression in Pancreas und Leber, möglicherweise aufgrund der spezialisierten Epitheltunktion dieser Gewebe.

Proteinphosphorylierung ist ein schneller und reversibler Mechanismus, um Signale aus dem Extrazellulärraum in die Änderungen von einer Vielzahl von Zellfunktionen umzusetzen. Die h-sgk-Proteinkinase könnte durch Phosphorylierung spezifischer Proteine einen Teil der zellvolumenregulatorischen Mechanismen auslösen und ein bisher unbekanntes Bindeglied zwischen zellulärer Hydratation und Zellfunktion darstellen.

Beispiele:

1. Durchführung der Northern Hybridisierungen:

10-20 mg Gesamt-RNA bzw. 1-2 mg poly(A)-RNA wurden elektrophoretisch in einem 1%igen Agarosegel in Gegenwart von 2.2M Formaldehyd aufgetrennt. Der Transfer auf eine positiv geladene Nylonmembran erfolgte mit Hilfe eines Vacuum Blotters mit 10x SSC als Transferpuffer für einen Zeitraum von zwei Stunden. Anschließend wurde die RNA durch UV-Bestrahlung mit kontrollierter Leistung kovalent an die Membran quervernetzt. Die Hybridisierung der spezifischen Sonde (25ng/ml) wurde bei 50°C über Nacht durchgeführt in einem speziell für den Zweck der nichtradioaktiven Hybridisierung entwickelten Puffer (DIG Easy Hyb. BOEHRINGER). Die dabei verwendete Sonde wurde mittels der Polymerasen Ketten Reaktion aus dem 3 Ende der kodierenden Sequenz der betreffenden hsgk (Nucleotid 980-1480) amplifiziert und gleichzeitig durch Einschluß von DIG-dUTP im Reaktionspuffer markiert. Nach zweimaligem Waschen der Blots in 2x-SSC bei Raumtemperatur und in 0.5x SSC bei 65°C erfolgte die Detektion der markierten Sonde durch einen ELISA mit einem Anti-Digoxigenin Antikorper. dessen angekoppelte alkalische Phosphatase eine Chemolumineszenzreaktion in CDP-Star (BOEHRIN-GER) erzeugte, die autoradiographisch festgehalten wurde (durchschnittliche Expositionszeit ca. zwei Minuten).

2. Western Biot Analyse:

Details zur Antikörperherstellung: Zur Immunisierung der Kaninchen wurden zwei Peptide aus der hsgk-Aminosäurensequenz verwendet: Pos.386-Pos.404 5 (DPEFTEEPVPNSIGKSPDS), Pos.416-Pos.431 (EAFLGFSYAPPTDSFL). Beide Peptide wurden mit KLH bzw. mit MAP als Carrier konjugiert und mit komplettem bzw. inkomplettem Freund schen Adjuvans intracutan injiziert. Das Injektions- und Blutungsprotokoll folgte den Standardvorschriften. Die Immunseren wurden affinitätschromatographisch gereinigt, und die Antikörperfraktionen wurden bei einer Konzentration von ca. 1 mg/ml aufgefangen und verwendet.

Immunoblot-Analyse: Ca. 60mg zelluläres Gesamtprotein wurden elektrophoretisch durch ein SDS-7.5% Polyacrylamid Gel fraktioniert und auf eine Nitrozellulose-Membran transferiert. Die Membranen wurden über Nacht in 3% BSA - 5% Trockenmilch - 0.06% Tween 20 in PBS blockiert. Primärer (affinitätsgereinigter anti-h-sgk) und sekundärer (horseradish-Peroxidase konjugierter goat anti-rabbit IgG, Bio-Rad) wurden für je eine Stunde bei Raumtemperatur in 3% BSA-0.06% Tween in PBS inkubiert. Für die Immunodetektion wurde ein Enhanced Chemolumineszenz Kit (ECL, Amersham) verwendet.

3. In Situ-Hybridisierung:

15 mm Gefrierschnitte wurden für 20 Minuten in Formaldehyd 4% nachfixiert, gefolgt von zwei Waschschritten in 100mM Phosphatpuffer pH 7.2 von jeweils 5 Minuten. Nach einer Proteinase K Behandlung (1mg/100ml) folgte eine 10 minütige Inkubation in 0.1M Triethanolamin / 0.225% Essigsäure. Erneut wurde mit 100 mM Phosphatpuffer gewaschen und die Schnitte in einer aufsteigenden Alkoholreihe entwässert. Die Prähybridisierung erfolgte bei 50 °C im Hybridisierungspuffer, die Hybridisierung wurde über Nacht durchgeführt. Die verwendete Sonde entspricht der Sonde, die bei den Northern Blots beschrieben wurde. Die Detektion erfogte durch enzymatische Spaltung einer X-Phosphatlösung, katalysiert durch eine anti-digoxigenin-antikörper-gekoppelte alkalische Phosphatase.

Patentansprüche

- Nukleinsäure, kodierend für die humane zellvolumenregulierte Kinase h-sgk mit derAminosäuresequenz gemäß Fig. 2.
- Nukleinsäure mit der Nukleotidsequenz gemäß Fig.
 1.
- Nukleinsäure, die mit der Nukleinsäure gemäß 55
 Anspruch 1 oder 2 unter stringenten Bedingungen hybridisiert und die für eine funktionell aktive zellvolumenregulierte Kinase kodiert, deren Transskript

ion weder mit fötalem Kälberserum (FCS) noch einem Glucocorticoid induzierbar ist.

- Nukleinsäure, die mit der Nukleinsäure gemäß Anspruch 1 oder 2 unter stringenten Bedingungen hybridisiert und die für eine funktionell aktive zellvolumenregulierte Kinase kodiert, welche nicht identisch ist mit der Ratten-sgk.
- Nukleinsäurefragmente, enthaltend ungefähr den Bereich von Nukleotid Position 980 bis 1480 der Nukleinsäure gemäß Anspruch 1 oder 2.
- Nukleinsäurefragmente, kodierend für immunologisch aktive Fragmente der humanen zellvorumengulierten Kinase h-sgk.
 - Nukleinsäurefragmente gemäß Anspruch 6, kodierend für Fragmente mit mindestens einer der folgenden Aminosauresequenzen:

DPEFTEEPVPNSIGKSPDS (1) EAFLGFSYAPPTDSFL (2)

- 8. Humane zellvolumenregulierte Kinase h-sgk oder Fragmente davon, erhältlich durch rekombinante Expression der Nukleinsäure gemäß einem oder mehreren der Ansprüche 1 bis 7.
- Humane zellvolumenregulierte Kinase h-sgk mit der Aminosauresequenz gemäß Fig. 2.
 - Immunogenes Peptid mit mindestens einer der folgenden Aminosauresequenzen:

DPEFTEEPVPNSIGKSPDS (1) EAFLGFSYAPPTDSFL (2)

- Rezeptoren, die spezifisch an die humane zellvolumenregulierte Kinase h-sgk gemäß Anspruch 8 oder 9 binden.
- Rezeptoren gemäß Anspruch 11, dadurch gekennzeichnet, daß sie monoklonale oder polyklonale
 Antikörper sind.
 - 13. Verwendung der Nukleinsäure gemäß einem oder mehreren der Ansprüche 1 bis 7 oder eines Fragments dieser Nukleinsäure zum Nachweis einer für die humane zellvolumenregulierte Kinase h-sgk kodierenden Nukleinsäure.
 - 14. Verwendung der Nukleinsäure gemäß einem oder mehreren der Ansprüche 1 bis 7 oder eines Fragments dieser Nukleinsäure zum Nachweis einer für die humane zellvolumenregulierte Kinase h-sgk kodierenden Nukleinsäure im Northern blot oder durch Hybridisierung.

50

- 15. Verwendung der humanen zellvolumenregulierten Kinase h-sgk gemäß einem der Ansprüche 8 oder 9 oder eines Peptids gemäß Anspruch 10 zum Nachweis von Rezeptoren, welche an die h-sgk binden.
- 16. Verwendung von Rezeptoren gemäß einem der Ansprüche 11 oder 12 zum qualitativen oder quantitativen Nachweis der humanen zellvolumenregulierten Kinase h-sak.
- 17. Verwendung gemäß Anspruch 16, beinhaltend ein immunchemisches Verfahren.
- 18. Verlahren zur Herstellung von polyklonale oder monoklonalen Antikörpern, dadurch gekennzeichnet, daß mind litens eines der Peptide gemäß Anspruch 10 zur Immunisierung von Versuchstieren verwendet wird.
- 19. Verwendung der Nukleinsäure gemäß einem oder 20 mehreren der Ansprüche 1 bis 4 oder eines Fragments gemäß einem oder mehreren der Ansprüche 5 bis 7 oder der humanen zellvolumenregulierten Kinase h-sgk gemäß Anspruch 8 oder 9 oder der Peptide gemäß Anspruch 10 zum Nachweis von 25 Zellvolumenänderungen.
- 20. Arzneimittel, enthaltend die Nukleinsäure gemäß einem oder mehreren der Ansprüche 1 bis 4 oder ein Fragment gemäß einem oder mehreren der 30 Ansprüche 5 bis 7 oder die hurnane zellvolumenregulierte Kinase h-sgk gemäß einem oder mehreren der Ansprüche 8 und 9 oder ein Peptid gemäß Anspruch 10 oder Rezeptoren gemäß einem oder mehreren der Ansprüche 11 und 12.

50

35

Fig. 1
SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

CACGAGGGAG CGCTAACGTC TTTCTGTCTC CCCGCGGTGG TG ATG ACG GTG AAA Met Thr Val Lys								
ACT GAG GCT GCT AAG GGC ACC CTC ACT TAC TCC AGG ATG AGG GGC ATG Thr Glu Ala Ala Lys Gly Thr Leu Thr Tyr Scr Ar Met Arg Gly Met 5 10 15 20	102							
GTG GCA ATT CTC ATC GCT TTC ATG AAG CAG AGG AGG ATG GGT CTG AAC Val Ala Ile Leu Ile Ala Phe Met Lys Gln Arg Arg Met Gly Leu Asn 25 30 35	150							
GAC TIT ATT CAG AAG ATT GCC AAT AAC TCC TAT GCA TGC AAA CAC CCT Asp Phe Ile Gln Lys Ile Ala Asn Asn Ser Tyr Ala Cys Lys His Pro 40 45 50	198							
GAA GTT CAG TCC ATC TTG AAG ATC TCC CAA CCT CAG GAG CCT GAG CTT Glu Val Gln Ser Ile Leu Lys Ile Ser Gln Pro Gln Glu Pro Glu Leu 55 60 65	246							
ATG AAT GCC AAC CCT TCT CCT CCA CCA AGT CCT TCT CAG CAA ATC AAC Met Asn Ala Asn Pro Ser Pro Pro Pro Ser Pro Ser Gln Gln Ile Asn 70 75 80	294							
CTT GGC CCG TCG TCC AAT CCT CAT GCT AAA CCA TCT GAC TTT CAC TTC Leu Gly Pro Ser Ser Asn Pro His Ala Lys Pro Ser Asp Phe His Phe 85 90 95 100	342							
TTG AAA GTG ATC GGA AAG GGC AGT TTT GGA AAG GTT CTT CTA GCA AGA Leu Lys Val Ile Gly Lys Gly Ser Phe Gly Lys Val Leu Leu Ala Arg 105 110 115	390							
CAC AAG GCA GAA GAA GTG TTC TAT GCA GTC AAA GTT TTA CAG AAG AAA His Lys Ala Glu Glu Val Phe Tyr Ala Val Lys Val Leu Gln Lys Lys 120 125 130	438							
GCA ATC CTG AAA AAG AAA GAG GAG AAG CAT ATT ATG TCG GAG CGG AAT Ala Ile Leu Lys Lys Glu Glu Lys His Ile Met Ser Glu Arg Asn 135 140 145	486							
GTT CTG TTG AAG AAT GTG AAG CAC CCT TTC CTG GTG GGC CTT CAC TTC Val Leu Leu Lys Asn Val Lys His Pro Phe Leu Val Gly Leu His Phe 150 155 160	. 534							
TCT TTC CAG ACT GCT GAC AAA TTG TAC TTT GTC CTA GAC TAC ATT AAT Ser Phe Gln Thr Ala Asp Lys Leu Tyr Phe Val Leu Asp Tyr Ile Asn 165 170 175 180	582							
GGT GGA GAG TTG TTC TAC CAT CTC CAG AGG GAA CGC TGC TTC CTG GAA Gly Gly Glu Leu Phe Tyr His Leu Gln Arg Glu Arg Cys Phe Leu Glu 185 190 195	630							

CCA CGG GCT CGT TTC TAT GCT GCT GAA ATA GCC AGT GCC TTG GGC TAC Pro Arg Ala Arg Phe Tyr Ala Ala Glu Ile Ala Ser Ala Leu Gly Tyr 200 205 210	678
CTG CAT TCA CTG AAC ATC GTT TAT AGA GAC TTA AAA CCA GAG AAT ATT Leu His Ser Leu Asn Ile Val Tyr Arg Asp Leu Lys Pro Glu Asn Ile 215 220 225	726
TTG CTA GAT TCA CAG GGA CAC ATT GTC CTT ACT GAT TTC GGA CTC TGC Leu Leu Asp Ser Gln Gly His Ile Val Leu Thr Asp Phe Gly Leu Cys 230 235 240	774
AAG GAG AALr GAA CAC AAC AGC ACA ACA TCC ACC TTC TUT TOW ACG Lys Glu Asn Ile Glu His Asn Ser Thr Thr Ser Thr Phe Cys Gly Thr 245 250 255 260	822
CCG GAG TAT CTC GCA CCT GAG GTG CTT CAT AAG CAG CCT TAT GAC AGG Pro Glu Tyr Leu Ala Pro Glu Val Leu His Lys Gln Pro Tyr Asp Arg 265 270 275	870
ACT GTG GAC TGG TGG TGC CTG GGA GCT GTC TTG TAT GAG ATG CTG TAT Thr Val Asp Trp Trp Cys Leu Gly Ala Val Leu Tyr Glu Met Leu Tyr 280 285 290	918
GGC CTG CCG CCT TTT TAT AGC CGA AAC ACA GCT GAA ATG TAC GAC AAC Gly Leu Pro Pro Phe Tyr Ser Arg Asn Thr Ala Glu Met Tyr Asp Asn 295 300 305	966
ATT CTG AAC AAG CCT CTC CAG CTG AAA CCA AAT ATT ACA AAT TCC GCA Ile Leu Asn Lys Pro Leu Gln Leu Lys Pro Asn Ile Thr Asn Ser Ala 310 315 320	1014
AGA CAC CTC CTG GAG GGC CTC CTG CAG AAG GAC AGG ACA AAG CGG CTC Arg His Leu Leu Glu Gly Leu Leu Gln Lys Asp Arg Thr Lys Arg Leu 325 330 335 340	1062
GGG GCC AAG GAT GAC TTC ATG GAG ATT AAG AGT CAT GTC TTC TCC Gly Ala Lys Asp Asp Phe Met Glu Ile Lys Ser His Val Phe Phe Ser 345 350 355	1110
TTA ATT AAC TGG GAT GAT CTC ATT AAT AAG AAG ATT ACT CCC CCT TTT Leu Ile Asn Trp Asp Asp Leu Ile Asn Lys Lys Ile Thr Pro Pro Phe 360 365 370	1158
AAC CCA AAT GTG AGT GGG CCC AAC GAG CTA CGG CAC TTT GAC CCC GAG Asn Pro Asn Val Ser Gly Pro Asn Glu Leu Arg His Phe Asp Pro Glu 375 380 385	1206
TTT ACC GAA GAG CCT GTC CCC AAC TCC ATT GGC AAG TCC CCT GAC AGC Phe Thr Glu Glu Pro Val Pro Asn Ser Ile Gly Lys Ser Pro Asp Ser 390 395 400	1254
GTC CTC GTC ACA GCC AGC GTC AAG GAA GCT GCC GAG GCT TTC CTA GGC Val Leu Val Thr Ala Ser Val Lys Glu Ala Ala Glu Ala Phe Leu Gly 405 410 415 420	1302
TIT TCC TAT GCG CCT CCC ACG GAC TCT TTC CTC TGAACCCTGT TAGGGCTTGC Phe Ser Tyr Ala Pro Pro Thr Asp Ser Phe Leu 425 430	3 1355

TTTTAAAGGA	TITTATGTGT	GTTTCCGAAT	GTTTTAGTTA	GCCTTTTGGT	GGAGCCGCCA	1415
GCTGACAGGA	CATCTTACAA	GAGAATTTGC	ACATCTCTGG	AAGCTTAGCA	ATCTTATTGC	1475
ACACTGTTCG	CTGGAATTTT	TTGAAGAGCA	CATTCTCCTC	AGTGAGCTCA	TGAGGTTTTC	1535
ATTITTATTC	TTCCTTCCAA	CGTGGTGCTA	TCTCTGAAAC	GAGCGTTAGA	GTGCCGCCTT	1595
AGACGGAGGC	AGGAGTTTCG	TTAGAAAGCG	GACCTGTTCT	AAAAAAGGTC	TCCTGCAGAT	1655
CTGTCTGGGC	TGTGATGACG	AATATTATGA	AATGTGCCTT	TTCTGAAGAG	ATTGTGTTAG	1715
CTCCAAAGCT	TTTCCTATCG	CAGTGTTTCA	GITCTTTATT	TTCCCTTGTG	GATATGCTGT	1775
GTGAACCGTC	GTGTGAGTGT	GGTATGCCTG	ATCACAGATG	GATTTTGTTA	TAAGCATCAA	1835
TGTGACACTT	GCAGGACACT	ACAACGTGGG	ACATTGTTTG	TTTCTTCCAT	ATTTGGAAGA	1895
TAAATTTATG	TGTAGACTIT	TTTGTAAGAT	ACGGTTAATA	ACTAAAATTT	ATTGAAATGG	1955
TCTTGCAATG	ACTCGTATTC	AGATGCCTAA	AGAAAGCATT	GCTGCTACAA	ATATTTCTAT	2015
TTTTAGAAAG	GGTTTTTATG	GACCAATGCC	CCAGITGTCA	GTCAGAGCCG	TTGGTGTTTT	2075
TCATTGTTTA	AAATGTCACC	TGTAAAATGG	GCATTATTTA	TGTTTTTTT	TTTGCATTCC	2135
TGATAATTGT	ATGTATTGTA	TAAAGAACGT	CTGTACATTG	GGTTATAACA	CTAGTATATT	.2195
TAAACTTACA	GGCTTATTTG	TAATGTAAAC	CACCATTTTA	ATGTACTGTA	ATTAACATGG	2255
TTATAATACG	TACAATCCTT	CCCTCATCCC	ATCACACAAC	TITITIGIG	TGTGATAAAC	2315
TGATTTTGGT	TTGCAATAAA	ACCTTGAAAA	ATAAAAAAA	АААААААА	AAAAA	2370

_					
(xi)	SEC	UEN:	ZBES	HRE	EBI
Met 1	Thr	Val	Lys	Thr 5	G
Met	Arg	Gly	Met 20	Val	A.
Met	Gly	Leu 35	Asn	Asp	Pì
C/0	Tara	Uia	DTO	<i>c</i> 1	***

Fig. 2

UNG: SEQ ID NO: 2:

lu Ala Ala Lys Gly Thr Leu Thr Tyr Ser Arg

la Ile Leu Ile Ala Phe Met Lys Gln Arg Arg 25

he Ile Gln Lys Ile Ala Asn Asn Ser Tyr Ala

His Pro Glu Val Gln Ser Ile Leu Lys Ile Ser Gln Pro Gln 55

Glu Pro Glu Leu Met Asn Ala Asn Pro Ser Pro Pro Pro Ser Pro Ser 70

Gln Gln Ile Asn Leu Gly Pro Ser Ser Asn Pro His Ala Lys Pro Ser 85

Asp Phe His Phe Leu Lys Val Ile Gly Lys Gly Ser Phe Gly Lys Val

Leu Leu Ala Arg His Lys Ala Glu Glu Val Phe Tyr Ala Val Lys Val 120

Leu Gln Lys Lys Ala Ile Leu Lys Lys Lys Glu Glu Lys His Ile Met 1.35

Ser Glu Arg Asn Val Leu Leu Lys Asn Val Lys His Pro Phe Leu Val 150

Gly Leu His Phe Ser Phe Gln Thr Ala Asp Lys Leu Tyr Phe Val Leu 170

Asp Tyr Ile Asn Gly Gly Glu Leu Phe Tyr His Leu Gln Arg Glu Arg 185

Cys Phe Leu Glu Pro Arg Ala Arg Phe Tyr Ala Ala Glu Ile Ala Ser 200

Ala Leu Gly Tyr Leu His Ser Leu Asn Ile Val Tyr Arg Asp Leu Lys 215

Pro Glu Asn Ile Leu Leu Asp Ser Gln Gly Example Val Leu Thr Asp

Phe Gly Leu Cys Lys Glu Asn Ile Glu His Asn Ser Thr Thr Ser Thr 245

Phe Cys Gly Thr Pro Glu Tyr Leu Ala Pro Glu Val Leu His Lys Gln 265

Pro Tyr Asp Arg Thr Val Asp Trp Trp Cys Leu Gly Ala Val Leu Tyr 275 280

Glu	Met 290	Leu	Tyr	Gly	Leu	Pro 295		Phe	Tyr	Ser	Arg 300	Asn	Thr	Ala	Glu
Met 305	Tyr	Asp	Asn	Ile	Leu 310	Asn	Lys	Pro	Leu	Gln 315	Leu	Lys	Pro	Asn	Ile 320
Thr	Asn	Ser	Ala	Arg 325	His	Leu	Leu	Glu	Gly 330	Leu	Leu	Gln	Lys	Авр 335	Arg
Thr	Lys	Arg	Leu 340	Gly	Ala	Lys	qaA	Asp 345	Phe	Met	Glu	Ile	Lys 350		His
Val	Phe	Phe 355		Leu	Ile	Asn	Trp 360	Asp	Авр	Leu		Asn 365	Lys	Lys	Ile
Thr	Pro 370	Pro	Phe	Asn-	Pro	Asn 375	Val	Ser	Gly	Pro	Asn 380	Glu	Leu	Arg	His
Phe 385	Asp	Pro	Glu	Phe _.	Thr 390	Glu	Glu	Pro	Val	Pro 395	Asn	Ser	Ile	Gly	Lys 400
Ser	Pro	Двр	Ser	Val 405	Leu	Val	Thr	Ala	Ser 410	Val	Lys	Gľu	Ala	Ala 415	Glu
Ala	Phe	Leu	Gly 420	Phe	Ser	Tyr	Ala	Pro 425	Pro	Thr	Авр	Ser	Phe 430	Leu	