Forrelation: A Problem that Optimally Separates Quantum from Classical Computing

Authors: Scott Aaronson & Andris Ambianis (2015)

Manish Kumar

Quantum Tech. (M. Tech) IISc Bengaluru

- Results
 - FORRELATION: Definition
 - Quantum and Classical Query Complexity
 - BQP-completeness of k-fold FORRELATION
- 2 Algorithms and Proof techniques
- 3 Conclusion

- Results
 - FORRELATION: Definition
 - Quantum and Classical Query Complexity
 - BQP-completeness of k-fold FORRELATION
- 2 Algorithms and Proof techniques
- 3 Conclusion

FORRELATION (Fourier Correlation)

Definition

Let two Boolean functions $f, g : \{0, 1\}^n \to \{-1, 1\}$. An estimation of the correlation between f and the Fourier transform of g be defined as:

$$\Phi_{f,g} := \frac{1}{2^{3n/2}} \sum_{x,y \in \{0, 1\}^n} f(x)(-1)^{x \cdot y} g(y)$$

Promise Problem:

Given Oracle access to Boolean functions f and g, determine if $\Phi_{f,g} \leq t_1$ or $\Phi_{f,g} \geq t_2$, where $t_1, t_2 \in (0,1)$ is specified before hand.

Quantum and Classical Query Complexity

The (strict) lower bound on Quantum and Classical query complexities are as follows:

Quantum:

One query is sufficient.

Reason: An explicit algorithm exists.

Classical

 $\Omega(\frac{\sqrt{N}}{\log N})$ query required.

Reason: Due to Theorem 1 from the paper.

Theorem 1: Any classical randomised algorithm for FORRELATION must make $\Omega(\frac{\sqrt{N}}{\log N})$.

BQP completeness of k-fold FORRELATION

Guiding Question

- Classical random sampling could be said to capture the advantage of randomized over deterministic query complexity
- Is there a single problem or technique that captures the advantage of quantum over classical query complexity?

k-fold FORRELATION

It is a generalization of the FORRELATION problem to k different Boolean functions. It is among the hardest problems in (promise)BQP. **Reason**: Due to Theorem 5 from the paper

Theorem 5: If $f_1, ..., f_k$ are described explicitly (say, by circuits to compute them), and k = poly(n), then k-fold FORRELATION is a BQP-complete promise problem.

- Results
 - FORRELATION: Definition
 - Quantum and Classical Query Complexity
 - BQP-completeness of k-fold FORRELATION
- 2 Algorithms and Proof techniques
- 3 Conclusion

Quantum Algorithm for Forrelation

Key Observation

$$\Phi_{f,g} = \langle 0^n | (H^{\otimes n})(U_f)(H^{\otimes n})(U_g)(H^{\otimes n}) | 0^n \rangle$$

Quantum Algorithm:

• Step I: Use the oracle to generate the below quantum states as:

$$|\psi_x\rangle = \sum_{n=1}^{N} x_i |i\rangle \text{ and } |\psi_y\rangle = \sum_{n=1}^{N} y_i |i\rangle$$

- Step II: Apply QFT to $|\psi_y\rangle$, i.e, $QFT |\psi_y\rangle$
- Step III: Use the SWAP test between $|\psi_x\rangle$ and $QFT |\psi_y\rangle$.
- Step IV: Match the output of Step III with the condition given in the FORRELATION promise problem

Techniques to prove classical lower bound on Forrelation

Proof Strategy for Theorem 1

- Reduction: REAL FOORELATION (RF) → FORRELATION (F)
- Any query complexity lower bound on $RF \implies$ same lower bound for F

Techniques:

- Benefit of analysis on RF: It is a (real-valued) continuous version of F. Hence, the probabilistic analysis becomes (relatively) easier.
- It allows a geometric interpretation of the problem: to distinguish if there is a confined subspace (\mathbb{R}^N) in the given space (\mathbb{R}^{2N}) .
- Analysing lower bound on RF is equivalent to a lower bound on a known problem in statistics named GAUSSIAN DISTINGUISHING

Remark: This is my partial understanding of the proof.

- Results
 - FORRELATION: Definition
 - Quantum and Classical Query Complexity
 - BQP-completeness of k-fold FORRELATION
- 2 Algorithms and Proof techniques
- 3 Conclusion

Conclusions

Main points

- In the oracle model, FORRELATION offers optimal separation between Quantum and Classical computation
- Generalization of FORRELATION is shown to be among the hardest problems in BQP. [BQP-completness of k-FORRELATION]
- An independent research of Raz-Tal(2018) used a modified version of FORRELATION to shown an oracle separation of BQP with Polynomial Hierarchy(PH)
- It is still unknown if this oracle separation can be used to produce a real-world separation. [Does FORRELATION solve a real-world problem of 'interest'?]

Thank You for Your Attention!

