Homework 4

- 1. Determine the five-digit chopping and rounding values of the irrational number π .
- 2. Determine the absolute and relative errors when approximating x by \hat{x} when
 - (a) $x = 0.3000 \times 10^{-3}$ and $\hat{x} = 0.3100 \times 10^{-3}$
 - (b) x = 8! and $\hat{x} = 39900$
- 3. Suppose that $x = \frac{5}{7}$ and $y = \frac{1}{3}$. Use five-digit chopping for calculating $x + y, x y, x \times y, x/y$. Find Absolute and relative errors in each case.
- 4. Let x = 0.54617 and y = 0.54611. Use four-digit arithmetic to approximate x + y and determine the absolute and relative errors using rounding. How many significant digits does the result have?
- 5. Let $f(x) = \frac{x\cos x \sin x}{x \sin x}$
 - (a) Find $\lim_{x\to 0} f(x)$;
 - (b) Use four-digit rounding arithmetic to evaluate f(0.1);
 - (c) Replace each trigonometric function with its third Maclaurin polynomial, and repeat part (b);
 - (d) The actual value is f(0.1) = -1.99899998. Find the relative error for the values obtained in parts (b) and (c).
- 6. Convert the following base 10 numbers to binary:
 - (a) 13
 - (b) $\frac{3}{8}$
 - (c) 1.32
- 7. Convert the following binary numbers to base 10:
 - (a) 1010101
 - (b) 1011.101
 - (c) $10111.\overline{01}$
- 8. Find the two's complement in 8-bit representation of the following numbers:

- (a) -5
- (b) -17
- 9. Interpret 1001 1111 as a two's complement binary number, and give its decimal equivalent.