

第4季

RISC-V体系结构介绍

笨叔

本节课主要内容

- 本章主要内容
 - ➤ RISC-V发展历史
 - ➤ RISC-V指令集介绍
 - > RISC-V体系结构基础知识

技术手册:

- 1. The RISC-V Instruction Set Manual Volume I: Unprivileged ISA
- 2. The RISC-V Instruction Set Manual Volume II: Privileged Architecture

扫码订阅RISC-V视频课程

本节课主要讲解书上第1章内容

RISC-V发展历史

- ➤ RISC-V是加州大学伯克利分校第5代RISC指令集
- ➤ RSIC: Reduced Instruction Set Computer, 精简指令集
- ▶ 2010年, 商用的复杂和臃肿而且授权费昂贵, 因此重新设计一套
- ➤ 2015年, RISC-V基金会成立, 维护指令集以及架构规范
- ➤ RSIC-V采用BSD开源协议
- ▶ 成立SiFive商业化公司,推动RISC-V商业化落地

RISC-II 1983

RISC-III (SOAR) 1984

RISC-IV (SPUR)

RISC-V 2013

RISC-V指令集的特点

- > 开源和免费
- ➤ 设计简洁,继承了MIPS的优点和风格
- ▶ 模块化设计
- > 丰富的软件生态

RISC-V指令集扩展

▶ 最小指令集合:

✓ RV32I: 32位整型最小指令集合

✓ RV64I: 64位整型最小指令集合

➤ M: 整型乘法和除法扩展指令

➤ G: 表示IMAFD

实现完这些最基本的指令就可以运行 ● 一个小OS

表 1.1 RISC-V 扩展指令集~

指令集扩展↩	说明↩
F-	单精度浮点数扩展指令←
D←	双精度浮点数扩展指令↩
Q←	四倍精度浮点数扩展指令↩
M⊖	整型乘法和除法扩展指令↩
C←	压缩指令↩
A←	原子操作指令↩
B↩	位操作指令←
E⊖	表示为嵌入式设计的整型指令↩
H↩	虚拟化扩展←
K↩	密码运算扩展←
V↩	可伸缩矢量扩展↩
P←	打包SIMD(Packed-SIMD)扩展-
J⊖	动态翻译语言(Dynamically Translated Languages)扩展←
T쓴	事务内存(Transactional Memory) ←
N⊖	用户态中断←

RISC-V体系结构特点

- 一个对学术界和工业界完全开放的指令集架构。
- 真正适合硬件实现的指令集架构,而不是一个模拟或者二进制翻译的指令集架构。
- ➤ RISC-V是一个通用的指令集架构,而不是针对某个特定微架构的实现。
- 实现最小集合的整数指令集作为最基础指令集,可以用于教学。在此基础上还实现众多可选 扩展指令,以支持通用软件开发。
- ▶ 支持IEEE-754浮点标准。
- 支持众多扩展指令集。
- ▶ 支持32位及64位地址空间。
- > 支持多核及异构架构。
- 支持可选的压缩指令编码,以提高性能、能源效率以及优化静态代码大小。
- ▶ 支持虚拟化扩展。
- ▶ 支持可伸缩矢量指令扩展(RISC-V V Vector Extension, RVV)。

RISC-V体系结构中的基本概念

➤ 执行环境 (Execution Environment Interface, EEI)

(b) 操作系统

(c) 虚拟化

哈特 (Hart)

- ➤ 在RISC-V手册里使用hart来表示一个CPU硬件执行单元。
- ➤ 类似x86架构定义的超线程(Simultaneous Multithreading, SMT)概念
- ➤ Armv8架构定义的处理机(Processing Element, PE)

处理器模式

➤ RISC-V处理器提供3种处理器模式。

机器模式 (M模式): 运行SBI固件,为操作系统提供服务。特权模式 (S模式): 运行OS内核,为应用程序提供服务。

▶ 用户模式 (U模式): 运行应用程序。

表	1.2	特权级别使用场景↩	

特权级别个数↩	支持的特权级别↩	使用场景↩
1↩	M↔	嵌入式系统↩
2↩	M 和 U↩	具有安全特性的嵌入式系统↩
3↩	M、S和U↩	通用操作系统↩

▶ 虚拟化扩展

▶ 新增了HS模式, VS, VU模式

SBI接口

- Supervisor Binary Interface:对所有RISC-V硬件平台中共性的功能做了抽象,为运行在S模式的操作系统或者HS模式的虚拟化管理软件提供统一的服务接口。
- ➤ SBI类似于操作系统中的系统调用层或者X86中的BIOS
- ▶ RISC-V有一个通用的SBI实现: OpenSBI
 - ✓ 为运行在低级别的处理器模式提供访问M模式硬件资源的抽象接口
 - ✓ 保证系统稳定和安全
 - ✓ 可移植性

RISC-V通用寄存器

- ▶ 64位的RISC-V架构提供32个64位的整型通用寄存器: x0~x31寄存器
- ▶ 对于浮点数运算,也提供32个浮点数通用寄存器: f0~f31寄存器

通用寄存器别名

- ▶ RISC-V为通用寄存器具有别名(花名)和特殊用途
 - > x0花名为zero。内容全是0,可以用作源寄存器,也可以用作目标寄存器。
 - > x1花名为ra,链接寄存器,保存函数返回地址。
 - > x2花名为sp, 栈帧寄存器, 指向栈的地址。
 - ▶ x3花名为gp,全局寄存器,用于松弛链接优化,见第6章。
 - > x4花名为tp,线程寄存器,在OS里保存指向进程控块task_struct数据结构的指针。
 - ▶ x5~x7以及x28~x31用于临时寄存器,花名分别是t0~t6。
 - ➤ x8~x9以及x19~x27的花名s0~s11。如果在函数调用过程中使用这些寄存器需要保存到 栈里。
 - ➤ x10~x17的花名为a0~a7,在函数调用时传递参数和返回值。

除用于数据运算和存储之外,通用寄存器还可以在函数调用过程中起到特殊作用

RISC-V系统寄存器

- RISC-V体系结构定义系统控制和状态寄存器(Control and Status Registers, CSRs)
- ▶ RISC-V体系结构支持如下3类系统寄存器(暂不考虑虚拟化):
 - ✓ M模式系统寄存器
 - ✓ S模式系统寄存器
 - ✓ U模式系统寄存器
- ▶ 软件通过CSR指令访问系统寄存器,例如CSRRW指令
- ➤ 在CSR指令编码中预留了12位编码空间 (csr[11:0]) 用来索引系统寄存器

- ▶ 12位CSR编码空间和分组
 - ✓ Bit[11:10]用来表示系统寄存器读写属性, 0b11表示只读,其余表示可读可写。
 - ✓ Bit[9:8]表示允许访问该系统寄存器的处理器模式,0b00表示U模式,0b01表示S模式,0b11表示M模式,0b10表示HS/VS模式
 - ✓ 详见《Privileged Architecture》

触发非法指令异常。

- ✓ 访问不存在或者没有实现的系统寄存器。
- ✓ 尝试写如只具有只读属性的系统寄存器。
- ✓ 在低级别的处理器模式下访问高级别的处理器模式的系统寄存器

表 1.3 CSR 地址空间映射<

地址范围↩		CSR 编码↩		访问模式↩	访问权限↩			
	Bit[11:10]₽	Bit[9:8]∉	Bit[7:4]∉	1				
0x000-0x0FF←	00↩	00←⊒	XXXX₽	U⇔	读写点			
0x400-0x4FF₽	01↩	00←3	XXXX₽	U⇔	读写∉			
0x800-0x8FF	10↩	00↩	XXXX₽	U⇔	读写(用户自定义系统寄存 器)4			
0xC00-0xC7F←	11₽	00←3	0XXX₽	U⇔	读写₽			
0xC80-0xCBF₽	11↩	00←3	10XX⇔	U⇔	读写↩			
0xCC0-0xCFF₽	11↩	00←3	11XX₽	U⇔	读写∉			
0x100-0x1FF←	00↩	01↩	XXXX₽	S⇔	读写↩			
0x500-0x57F←	01↩	01↩	0XXX¢	Sċ□	读写₽			
0x580-0x5BF₽	01↩	01←3	10XX⇔	Sċ□	读写₽			
0x5C0-0x5FF↩	01↩	01₽	11XX₽	S⇔	读写(用户自定义系统寄存 器)4			
0x900-0x97F←	10↩	01↩	0XXX₽	S₽	读写₽			
0x980-0x9BF₽	10↩	01↩	10XX₽	S⇔	读写₽			
0x9C0-0x9FF↩	10↩3	01₽	11XX/2	S⇔	读写 (用户自定义系统寄存器) 🖟			
0xD00-0xD7F₽	11↩	01↩	0XXX¢3	S⇔	只读₽			
0xD80-0xDBF↔	11↩	01↩	10XX←	S⇔	只读₽			
0xDC0-0xDFF↔	11↩	014	11XX₽	S⇔	只读(用户自定义系统寄存 器)←			
0x300-0x3FF	00€3	11∉	XXXX₽	M⇔	读写↩			
0x700-0x77F←	01↩	11↩	0XXX₽	M⇔	读写₽			
0x780-0x79F←	01↩	11↩	100X←3	M⇔	读写₽			
0x7A0-0x7AF⇔	01↩	11∉	1010←3	M⇔	读写,用于调试寄存器₽			
0x7B0-0x7BF⇔	01↩	11≓	1011↩	Mċ	只能用于调试寄存器₽			
0x7C0-0x7FF₽	01↩	11↩	11XX∉	M↔	读写 (用户自定义系统寄存器)			
0xB00-0xB7F₽	10↩3	1143	0XXX₽	Mċ	读写₽			
0xB80-0xBBF₽	10↩	11∉1	10XX⇔	M⇔	读写点			
0xBC0-0xBFF∉	10€3	11₽	11XX∉	M↔	读写 (用户自定义系统寄存器) 🗗			
0xF00-0xF7F₽	11₽	11↩	0XXX₽	M↔	只读₽			

U模式下的CSRs

表 1.4 U 模式系统寄存器←

地址↩	CSR 名称↩	属性↩	说明↩
0x001←	fflags€	URW↩	浮点数累积异常(Accrued Exceptions)←
0x002←	frm←	URW↩	浮点数动态舍入模式(Dynamic Rounding Mode)↵
0x003←	fcsr←l	URW↩	浮点数控制和状态寄存器↩
0xC00←	cycle€	URO←	读取时钟周期(Cycle counter),映射到 RDCYCLE伪指令中
0xC01←	time€	URO↩	读取 time 计数,映射到 RDTIMER 伪指令↩
0xC02€	instret∈	URO↩	执行指令数目,映射到 RDINSTRET 伪指令↩
0xC03 ~ 0xC1F←	hpmcounter3 ~ hpmcounter3 1←3	URO↩	性能监测寄存器↩

S模式下的CSRs

表 1.5 S 模式系统寄存器↔

地址↩	CSR 名称↩	属性↩	说明↩
0x100←	sstatus€	SRW↩	S 模式的处理器状态寄存器
0x104←	sie←	SRW€	S 模式的中断使能寄存器↩
0x105↩	stvec€	SRW↩	S 模式的异常向重入口地址寄存器←
0x106←	scounteren⊖	SRW€	S 模式的计数使能寄存器←
0x10A←	senvcfg←	SRW€	S 模式的环境配置寄存器←
0x140←	sscratch₽	SRW↩	用于异常处理的临时寄存器↩
0x141←	sepc↩	SRW↩	S模式异常模式程序计数器(PC)寄存器←
0x142←	scause↩	SRW↩	S 模式的异常原因寄存器←
0x143←	stval←	SRW€	S 模式的异常向重寄存器←
0x144€	sip←	SRW↩	S模式中断待定寄存器↩
0x180←	satp€	SRW€	S 模式的地址转换与保护寄存器←
0x5A8←	scontext⊡	SRW€	S 模式的上下文寄存器 (用于调试) ←

- ➤ S模式下的处理器状态
- > 异常和中断相关的寄存器
- ➤ MMU处理相关寄存器
- ▶ 性能相关的寄存器。
- > 其他寄存器

sstatus寄存器:表示处理器状态

	63	62 34	33	32	31		20	19	18	17	
	SD	WPRI	UXL[[1:0]		WPRI		MXR	SUM	WPRI	
_	1	29	2			12		1	1	1	_

	-0 -0		12 11	20 0		•				_	
	XS[1:0]	FS[1:0]	WPRI	VS[1:0]	SPP	WPRI	UBE	SPIE	WPRI	SIE	WPRI
_	2	2	2	2	1	1	1	1	3	1	1

表 1.6 sstatus 寄存器←

	ilus 奇仔語∈	
字段↩	位段↩	说明↩
SIE←	<u>Bit[</u> 1]∉	中断使能位,用来使能和关闭 S 模式中所有的中断。←
SPIE↩	<u>Bit[</u> 5]←	中断使能保存位。当一个异常陷入到 S 模式,SIE 的值保存到 SPIE 中, SIE 设置为 0。当调用 SRET 指令返回时,从 SPIE 中恢复 SIE,然后 SPIE 设置为 1。↩
UBE↩	<u>Bit[</u> 6]←	用来控制 U 模式加载和存储内存访问的大小端模式。 ↔
		0: <u>小端模式</u> ⊌ 1: 大端模式⊌
SPP←	<u>Bit</u> [8]←	陷入到 S 模式之前 CPU 的处理模式。←
		0:表示从 U 模式陷入到 S 模式
		1:表示在 S 模式触发的异常←
VS↩	<u>Bit</u> [10:9]←	用来使能可伸缩矢量扩展(RVV)↩
FS↩	<u>Bit</u> [14:13]←	用来使能浮点数单元中
XS€	<u>Bit</u> [16:15]←	用来使 <u>能其他</u> U 模式扩展的状态←
SUM↩	<u>Bit</u> [18]←	S 模式下能否允许访问 U 模式的内存。 ↔
		0: S模式访问 U模式的内存时会触发异常。←
		1: S模式可以访问 U模式的内存←
MXR€	<u>Bit</u> [19]←	访问内存的权限←
		0:可以加载只读页面↔
		1:可以加载可读和可执行的页面↵
UXL₽	<u>Bit</u> [33:32]∉	用来表示 U 模式的寄存器长度,通常是一个只读字段,并且 U 模式的寄存器长度等于 S 模式下的寄存器长度。4-
SD←	<u>Bit</u> [63]←	用来表示 VS、FS 以及 XS 中任意一个字段已经设置。↩

- > sie寄存器用来使能和关闭S模式下的中断
- > stvec寄存器用来在S模式下配置异常向量表入口地址和异常访问模式
- > scounteren寄存器是一个32位寄存器,用来使能U模式下的硬件性能监测和和计数寄存器
- > sscratch寄存器是一个专门给S模式使用的临时寄存器,它主要用途是当处理器运行在U模式时,它用来保存S模式下进程控制块的指针
- > sepc寄存器: 当处理器陷入到S模式时,被中断或遇到异常的指令的虚拟地址会写入到sepc寄存器中
- > Scause寄存器: S模式下的异常原因。
- > Stval寄存器: 当处理器陷入到S模式时, stval寄存器记录了发生异常的虚拟地址
- > sip寄存器用来表示哪些中断处于待定 (pending) 状态
- > satp寄存器用于地址转换和保护

M模式下的CSRs

表 1.7 M 模式系统寄存器←

地址↩	CSR 名称↩	属性↩	说明↩
0xF11←	mvendorid∈	MRO€	机器厂商 ID 寄存器←
0xF12←	marchid←	MRO€	架构编号寄存器↩
0xF13←	mimpid∈	MRO€	实现编号寄存器↩
0xF14←	mhartid∈	MRO€	处理器硬件线程编号寄存器↩
0xF15←	mconfigptr↩	MRO€	配置数据结构寄存器↩
0x300←	mstatus∈	MRW←	M 模式处理器状态寄存器↩
0x301←	misa∈□	MRW∈	指令集架构和扩展寄存器↩
0x302←	medeleg⊖	MRW↩	M 模式异常委托寄存器↩
0x303€	mideleg↩	MRW∈	M 模式中断委托寄存器←
0x304←	mie∈	MRW∈	M 模式中断使能寄存器↩
0x305€	mtvec↩	MRW∈	M 模式的异常向量入口地址寄存器↩
0x306€	mcounteren∈	MRW€	M 模式的计数使能寄存器↩
0x340←	mscratch←	MRW←	用于异常处理的临时寄存器↩
0x341€	mepc↩	MRW€	M 模式异常模式程序计数器(PC)寄存器↩
0x342€	mcause€	MRW€	M 模式的异常原因寄存器↩
0x343€	mtval←	MRW€	M 模式的异常向里寄存器←
0x344←	mip←	MRW←	M 模式中断待定寄存器↩
0x34A←	mtinst∈	MRW€	M 模式陷入指令(用于虚拟化)←
0x34B←	mtval2↩	MRW€	M 模式的异常向量寄存器 (用于虚拟化) ←

mstatus寄存器:表示处理器状态

63	62	38	37	36	35	34	33	32	31	23	22	21	20	19	18	
SD	WPI	RI	MBE	SBE	SXL	[1:0]	UXI	[1:0]	WP	RI	TSR	TW	TVM	MXR	SU	M
1	25		1	1	2	2		2	9		1	1	1	1	1	
17	16 15	14 13	12	11	10	9	8	7	6	5	4		3	2	1	0
MPRV	XS[1:0]	FS[1:0]	MPF	[1:0]	VS[1:	0] [5	PP	MPIE	UBE	SPIE	WPF	RI M	IIE W	PRI	SIE	WPRI
1	2	2	2	2	2		1	1	1	1	1		1	1	1	1

表 1.9 mstatus 寄存器←

字段↩	位段↩	说明↩
SIE↩	<u>Bit[</u> 1]←	中断 使能位,用来 使能和 关闭 S 模式中 所有的中断 ₽
MIE€	<u>Bit</u> [3]←	中断使能位,用来使能和关闭 M 模式中所有的中断₽
SPIE←	<u>Bit[</u> 5]←	中断使能保存位。当一个异常陷入到 S 模式, SIE 的值保存到 SPIE 中, SIE 设置为 0。当调用 SRET 指令返回时,从 SPIE 中恢复 SIE,然后 SPIE 设置为 1。←
UBE∉	<u>Bit[</u> 6]∉	用来控制 U 模式加载和存储内存访问的大小端模式。← 0: 小端模式← 1: 大端模式←
MPIE↩	<u>Bit[</u> 7]←	中断使能保存位。当一个异常陷入到 M 模式,MIE 的值保存到 MPIE 中, MIE 设置为 0。当调用 MRET 指令返回时,从 MPIE 中恢复 MIE,然后 MPIE 设置为 1。←
SPP€	<u>Bit[</u> 8]∉	陷入到 S 模式之前 CPU 的处理模式。 ← 0:表示从 U 模式陷入到 S 模式← 1:表示在 S 模式触发的异常←
VS₽	<u>Bit</u> [10:9]←	用来使能可伸缩矢里扩展(RVV)↩
MPP€	<u>Bit</u> [12:11]€	陷入到 M 模式之前 CPU 的处理模式。 ↔ 0:表示从 U 模式陷入到 M 模式 ↔ 1:表示从 S 模式陷入到 M 模式 ↔ 2:表示在 M 模式触发的异常→
FSċ	<u>Bit</u> [14:13]←	用来使能浮点数单元中
XS₽	<u>Bit</u> [16:15]←	用来使 <u>能其他</u> U模式扩展的状态₽

			0: 加载和存储指令按照当前的处理器模式进行地址转换与内存保护。← 1: 加载和存储指令将按照 MPP 字段中存储的处理器模式的权限进行内存保护检查。←
	SUM€	<u>Bit</u> [18]←	S模式下能否允许访问U模式的内存。← 0:S模式访问U模式的内存时会触发异常。← 1:S模式可以访问U模式的内存←
	MXR←	<u>Bit</u> [19]↔	访问内存的权限。 0:可以加载只读页面。 1:可以加载可读和可执行的页面。
	TVM↔	<u>Bit[</u> 20]₽	支持拦截 S 模式的虚拟内存管理操作。← 0:在 S 模式可以正常访问_satp 系统寄存器或者执行 SFENCE.VMA/ SINVAL.VMA 指令。← 1:在 S 模式访问 satp 系统寄存器或者执行 SFENCE.VMA/ SINVAL.VMA 指 令会触发一个非法指令异常。←
	TW↔	<u>Bit[</u> 21]₽	支持拦截 WFI 指令。↩ 0: WFI 指令可以在低权限模式下执行↩ 1: 如果 WFI 以任何低特权模式执行,并且它没有在 <u>持定实现</u> 中约定的有限时间内完成,WFI 指令会触发一个非法指令异常。↩
	TSR₽	<u>Bit</u> [22]∉	支持拦截 SRET 指令。中 0:在 S 模式正常执行 SRET 指令中 1:在 S 模式执行 SRET 指令会触发一个非法指令异常中
	UXL€	<u>Bit</u> [33:32]∉	用来表示 U 模式的寄存器长度 ↩
	SXL↩	<u>Bit</u> [35:34]←	用来表示 S 模式的寄存器 长度↩
	SBE∉	<u>Bit</u> [36]∉	用来控制 S 模式加载和存储内存访问的大小端模式。 ← 0: 小端模式 ← 1: 大端模式 ←
.	MBE∉	<u>Bit</u> [37]∉	用来控制 M 模式加载和存储内存访问的大小端模式。4 0: <u>小端模式</u> 4 1: 大端模式4
A HOUSE AND A SECOND CONTRACTOR OF THE SECOND	SD←□	<u>Bit[</u> 63]←	用来表示 VS、FS 以及 XS 中任意一个字段已经设置↵

用来修改有效特权模式。↩

 $MPRV^{\scriptscriptstyle \leftarrow}$

<u>Bit</u>[17]∈

Thanks

文字不如声音,声音不如视频

扫描订阅RISC-V视频课程

第4季 奔跑吧Linux社区 视频课程

RISC-V体系结构编程与实践

主讲: 笨叔

课程名称	进度	时长 (分钟)
第1课:课程介绍 <mark>(免费)</mark>	完成	20
第2课: RISC-V体系结构介绍 (免费)	完成	47
第3课:RISC-V处理器微架构(免费)	完成	48
第4课:搭建RISC-V开发环境(免费)	完成	30
第5课:RISC-V指令集(免费)	完成	128
第6课:RISC-V函数调用规范	完成	40
第7课:RISC-V GNU AS汇编器	完成	42
第8课:RISC-V GNU 链接脚本	完成	90
第9课:RISC-V GNU 内嵌汇编	完成	52
第10课:RISC-V异常处理	完成	80
第11课:RISC-V中断处理	完成	52
第12课:RISC-V内存管理	完成	116
第13课:内存管理实验讲解	完成	36
第14课:cache基础知识	完成	78
第15课:缓存一致性	完成	96
第16课: RISC-V TLB管理	完成	54
第17课:RISC-V原子操作	未录制	
第18课:RISC-V内存屏障	未录制	
第19课:BenOS操作系统相关知识	未录制	
第20课:RVV可伸缩矢量计算	未录制	
第21课:RISC-V压缩指令	未录制	
第22课: RISC-V虚拟化	未录制	
		总计17小时

视频课程持续更新中...

