# Introduction to Data Mining

Chapter 3

Classification:

Basic Concepts and Techniques

#### **Classification: Definition**

- Given a collection of records (training set )
  - Each record is characterized by a tuple (x,y),
     where x is the attribute set and y is the class
     label
    - ◆ x: attribute, predictor, independent variable, input
    - y: class, response, dependent variable, output

#### Task:

Learn a model that maps each attribute set x into one of the predefined class labels y

# **Examples of Classification Task**

| Task                        | Attribute set, x                                         | Class label, y                                   |
|-----------------------------|----------------------------------------------------------|--------------------------------------------------|
| Categorizing email messages | Features extracted from email message header and content | spam or non-spam                                 |
| Identifying<br>tumor cells  | Features extracted from MRI scans                        | malignant or benign cells                        |
| Cataloging galaxies         | Features extracted from telescope images                 | Elliptical, spiral, or irregular-shaped galaxies |

# **General Approach for Building Classification Model**



Training Set

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

**Test Set** 



#### **Classification Techniques**

- Base Classifiers
  - Decision Tree based Methods
  - Rule-based Methods
  - Nearest-neighbor
  - Neural Networks
  - Deep Learning
  - Naïve Bayes and Bayesian Belief Networks
  - Support Vector Machines
- Ensemble Classifiers
  - Boosting, Bagging, Random Forests

#### **Example of a Decision Tree**

categorical continuous

| ID | Home<br>Owner |          |      | Defaulted<br>Borrower |
|----|---------------|----------|------|-----------------------|
| 1  | Yes           | Single   | 125K | No                    |
| 2  | No            | Married  | 100K | No                    |
| 3  | No            | Single   | 70K  | No                    |
| 4  | Yes           | Married  | 120K | No                    |
| 5  | No            | Divorced | 95K  | Yes                   |
| 6  | No            | Married  | 60K  | No                    |
| 7  | Yes           | Divorced | 220K | No                    |
| 8  | No            | Single   | 85K  | Yes                   |
| 9  | No            | Married  | 75K  | No                    |
| 10 | No            | Single   | 90K  | Yes                   |

Splitting Attributes Home **Owner** Yes No NO **MarSt** Married Single, Dixorced **Income** NO > 80K < 80KYES NO

**Training Data** 

**Model: Decision Tree** 

#### **Another Example of Decision Tree**

categorical continuous

| ID | Home<br>Owner |          |      | Defaulted<br>Borrower |
|----|---------------|----------|------|-----------------------|
| 1  | Yes           | Single   | 125K | No                    |
| 2  | No            | Married  | 100K | No                    |
| 3  | No            | Single   | 70K  | No                    |
| 4  | Yes           | Married  | 120K | No                    |
| 5  | No            | Divorced | 95K  | Yes                   |
| 6  | No            | Married  | 60K  | No                    |
| 7  | Yes           | Divorced | 220K | No                    |
| 8  | No            | Single   | 85K  | Yes                   |
| 9  | No            | Married  | 75K  | No                    |
| 10 | No            | Single   | 90K  | Yes                   |



There could be more than one tree that fits the same data!

Start from the root of tree.



#### **Test Data**

| Home<br>Owner |         |     | Defaulted<br>Borrower |
|---------------|---------|-----|-----------------------|
| No            | Married | 80K | ?                     |



#### **Test Data**









#### **Decision Tree Classification Task**



**Test Set** 

#### **Decision Tree Induction**

- Many Algorithms:
  - Hunt's Algorithm (one of the earliest)
  - CART
  - ID3, C4.5
  - SLIQ,SPRINT

### **General Structure of Hunt's Algorithm**

Let D<sub>t</sub> be the set of training records that reach a node t

#### General Procedure:

- If D<sub>t</sub> contains records that belong the same class y<sub>t</sub>, then t is a <u>leaf</u> node labeled as y<sub>t</sub>
- If D<sub>t</sub> contains records that <u>belong to more than one</u> <u>class</u>, use an attribute test to <u>split</u> the data into smaller subsets. Recursively apply the procedure to each subset.

| ID | Home<br>Owner |          |      | Defaulted<br>Borrower |
|----|---------------|----------|------|-----------------------|
| 1  | Yes           | Single   | 125K | No                    |
| 2  | No            | Married  | 100K | No                    |
| 3  | No            | Single   | 70K  | No                    |
| 4  | Yes           | Married  | 120K | No                    |
| 5  | No            | Divorced | 95K  | Yes                   |
| 6  | No            | Married  | 60K  | No                    |
| 7  | Yes           | Divorced | 220K | No                    |
| 8  | No            | Single   | 85K  | Yes                   |
| 9  | No            | Married  | 75K  | No                    |
| 10 | No            | Single   | 90K  | Yes                   |



Defaulted = No

(7,3)

(a)

| ID | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
|----|---------------|-------------------|------------------|-----------------------|
| 1  | Yes           | Single            | 125K             | No                    |
| 2  | No            | Married           | 100K             | No                    |
| 3  | No            | Single            | 70K              | No                    |
| 4  | Yes           | Married           | 120K             | No                    |
| 5  | No            | Divorced          | 95K              | Yes                   |
| 6  | No            | Married           | 60K              | No                    |
| 7  | Yes           | Divorced          | 220K             | No                    |
| 8  | No            | Single            | 85K              | Yes                   |
| 9  | No            | Married           | 75K              | No                    |
| 10 | No            | Single            | 90K              | Yes                   |





| ID | Home<br>Owner |          |      | Defaulted<br>Borrower |
|----|---------------|----------|------|-----------------------|
| 1  | Yes           | Single   | 125K | No                    |
| 2  | No            | Married  | 100K | No                    |
| 3  | No            | Single   | 70K  | No                    |
| 4  | Yes           | Married  | 120K | No                    |
| 5  | No            | Divorced | 95K  | Yes                   |
| 6  | No            | Married  | 60K  | No                    |
| 7  | Yes           | Divorced | 220K | No                    |
| 8  | No            | Single   | 85K  | Yes                   |
| 9  | No            | Married  | 75K  | No                    |
| 10 | No            | Single   | 90K  | Yes                   |





(c)



|    |               |                   | ·             | ·                     |
|----|---------------|-------------------|---------------|-----------------------|
| ID | Home<br>Owner | Marital<br>Status | Annual Income | Defaulted<br>Borrower |
| 1  | Yes           | Single            | 125K          | No                    |
| 2  | No            | Married           | 100K          | No                    |
| 3  | No            | Single            | 70K           | No                    |
| 4  | Yes           | Married           | 120K          | No                    |
| 5  | No            | Divorced          | 95K           | Yes                   |
| 6  | No            | Married           | 60K           | No                    |
| 7  | Yes           | Divorced          | 220K          | No                    |
| 8  | No            | Single            | 85K           | Yes                   |
| 9  | No            | Married           | 75K           | No                    |
| 10 | No            | Single            | 90K           | Yes                   |



### **Design Issues of Decision Tree Induction**

- How should training records be split?
  - Method for specifying test condition
    - depending on attribute types
  - Measure for evaluating the goodness of a test condition

- How should the splitting procedure stop?
  - Stop splitting if all the records belong to the same class or have identical attribute values
  - Early termination

### **Methods for Expressing Test Conditions**

- Depends on <u>attribute types</u>
  - Binary
  - Nominal
  - Ordinal
  - Continuous

- Depends on <u>number of ways</u> to split
  - 2-way split
  - Multi-way split

#### **Test Condition for Nominal Attributes**

- Multi-way split:
  - Use as many partitions as distinct values.



- Binary split:
  - Divides values into two subsets



#### **Test Condition for Ordinal Attributes**

#### Multi-way split:

Use as many partitions as distinct values

#### Binary split:

- Divides values into two subsets
- Preserve order property among attribute values



#### **Test Condition for Continuous Attributes**



(i) Binary split



(ii) Multi-way split

# **Splitting Based on Continuous Attributes**

- Different ways of handling
  - Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
  - Dynamic repeat at each node
- Binary Decision: (A < v) or (A ≥ v)</li>
  - consider all possible splits and finds the best cut
  - can be more compute intensive

### **How to determine the Best Split**

Before Splitting: 10 records of class 0, 10 records of class 1

| Customer Id | Gender       | Car Type | Shirt Size  | Class |
|-------------|--------------|----------|-------------|-------|
| 1           | M            | Family   | Small       | C0    |
| 2           | M            | Sports   | Medium      | C0    |
| 3           | $\mathbf{M}$ | Sports   | Medium      | C0    |
| 4           | $_{ m M}$    | Sports   | Large       | C0    |
| 5           | $_{ m M}$    | Sports   | Extra Large | C0    |
| 6           | M            | Sports   | Extra Large | C0    |
| 7           | F            | Sports   | Small       | C0    |
| 8           | $\mathbf{F}$ | Sports   | Small       | C0    |
| 9           | F            | Sports   | Medium      | C0    |
| 10          | F            | Luxury   | Large       | C0    |
| 11          | M            | Family   | Large       | C1    |
| 12          | $\mathbf{M}$ | Family   | Extra Large | C1    |
| 13          | M            | Family   | Medium      | C1    |
| 14          | $_{ m M}$    | Luxury   | Extra Large | C1    |
| 15          | F            | Luxury   | Small       | C1    |
| 16          | F            | Luxury   | Small       | C1    |
| 17          | F            | Luxury   | Medium      | C1    |
| 18          | F            | Luxury   | Medium      | C1    |
| 19          | F            | Luxury   | Medium      | C1    |
| 20          | F            | Luxury   | Large       | C1    |







Which test condition is the best?

# **How to determine the Best Split**

- Greedy approach:
  - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

High degree of impurity

Low degree of impurity

# **Measures of Node Impurity**

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropy

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

Misclassification error

$$Error(t) = 1 - \max_{j} p(j | t)$$

# **Finding the Best Split**

- Compute impurity measure (P) <u>before</u> splitting
- 2. Compute impurity measure (M) <u>after</u> splitting
  - Compute impurity measure of each child node
  - M is the weighted impurity of children
- Choose the attribute test condition that produces the <u>highest gain</u>

$$Gain = P - M$$

or equivalently, <u>lowest impurity</u> measure after splitting (M)

# **Finding the Best Split**



#### **Measure of Impurity: GINI**

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j/t) is the relative frequency of class j at node t).

- Maximum (1 1/n<sub>c</sub>) when records are <u>equally</u> <u>distributed</u> among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

#### **Measure of Impurity: GINI**

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j/t) is the relative frequency of class j at node t).

- For 2-class problem (p, 1 - p):

• GINI = 
$$1 - p^2 - (1 - p)^2 = 2p (1-p)$$

| C1         | 0 |  |
|------------|---|--|
| C2         | 6 |  |
| Gini=0.000 |   |  |

| C1         | 1 |  |
|------------|---|--|
| C2         | 5 |  |
| Gini=0.278 |   |  |

| C1         | 3 |  |
|------------|---|--|
| C2         | 3 |  |
| Gini=0.500 |   |  |

### **Computing Gini Index of a Single Node**

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$p(C1) = 0/6 = 0$$
  $p(C2) = 6/6 = 1$   
 $Gini = 1 - p(C1)^2 - p(C2)^2 = 1 - 0 - 1 = 0$ 

$$p(C1) = 1/6$$
  $p(C2) = 5/6$   
 $Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$ 

$$p(C1) = 2/6$$
  $p(C2) = 4/6$   
Gini = 1 -  $(2/6)^2$  -  $(4/6)^2$  = 0.444

#### **Computing Gini Index for a Collection of Nodes**

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where,  $n_i$  = number of records at child i,  $n_i$  = number of records at parent node p.

- Choose the attribute that minimizes weighted average Gini index of the children
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

#### **Binary Attributes: Computing GINI Index**

- Splits into two partitions
- Effect of Weighing partitions:

 $GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$ 

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

Larger and Purer Partitions are sought for.



|      | Parent  |  |
|------|---------|--|
| C1   | 7       |  |
| C2   | 5       |  |
| Gini | = 0.486 |  |

#### Gini(N1)

$$= 1 - (5/6)^2 - (1/6)^2$$

= 0.278

#### Gini(N2)

$$= 1 - (2/6)^2 - (4/6)^2$$

= 0.444

|            | N1 | N2 |
|------------|----|----|
| C1         | 5  | 2  |
| C2         | 1  | 4  |
| Gini=0.361 |    |    |

Weighted Gini of N1 N2

$$= 6/12 * 0.278 +$$

$$= 0.361$$

$$Gain = 0.486 - 0.361 = 0.125$$

## **Categorical Attributes: Computing Gini Index**

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

|      | CarType |        |        |  |  |  |  |  |  |
|------|---------|--------|--------|--|--|--|--|--|--|
|      | Family  | Sports | Luxury |  |  |  |  |  |  |
| C1   | 1       | 8      | 1      |  |  |  |  |  |  |
| C2   | 3       | 0      | 7      |  |  |  |  |  |  |
| Gini | 0.163   |        |        |  |  |  |  |  |  |

Two-way split (find best partition of values)

|      | CarType          |          |  |  |  |  |  |
|------|------------------|----------|--|--|--|--|--|
|      | {Sports, Luxury} | {Family} |  |  |  |  |  |
| C1   | 9                | 1        |  |  |  |  |  |
| C2   | 7                | 3        |  |  |  |  |  |
| Gini | 0.468            |          |  |  |  |  |  |

|      | CarType  |                  |  |  |  |  |  |
|------|----------|------------------|--|--|--|--|--|
|      | {Sports} | {Family, Luxury} |  |  |  |  |  |
| C1   | 8        | 2                |  |  |  |  |  |
| C2   | 0        | 10               |  |  |  |  |  |
| Gini | 0.167    |                  |  |  |  |  |  |

Which of these is the best?

- Use Binary Decisions based on one value
- Several Choices for the splitting value
  - Number of possible splitting values
     Number of distinct values (±1)
- Each splitting value has a count matrix associated with it
  - Class counts in each of the partitions, A ≤ v and A > v
- Simple method to choose best v
  - For each v, scan the database to gather count matrix and compute its Gini index
  - Computationally Inefficient!
     Repetition of work.

| ID | Home<br>Owner | Marital<br>Status | Annual Income | Defaulted |
|----|---------------|-------------------|---------------|-----------|
| 1  | Yes           | Single            | 125K          | No        |
| 2  | No            | Married           | 100K          | No        |
| 3  | No            | Single            | 70K           | No        |
| 4  | Yes           | Married           | 120K          | No        |
| 5  | No            | Divorced          | 95K           | Yes       |
| 6  | No            | Married           | 60K           | No        |
| 7  | Yes           | Divorced          | 220K          | No        |
| 8  | No            | Single            | 85K           | Yes       |
| 9  | No            | Married           | 75K           | No        |
| 10 | No            | Single            | 90K           | Yes       |



- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index

| ĺ             | Cheat         | No | No | No | Yes | Yes   | Yes      | No  | No  | No  | No  |
|---------------|---------------|----|----|----|-----|-------|----------|-----|-----|-----|-----|
|               |               |    |    |    |     | Annua | al Incom | е   |     |     |     |
| Sorted Values | $\rightarrow$ | 60 | 70 | 75 | 85  | 90    | 95       | 100 | 120 | 125 | 220 |

- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index

|                 | Cheat      |     | No  |     | No | )            | N   | 0   | Ye | s   | Ye | s            | Υє     | es         | N            | 0   | N  | lo           | N  | lo           |           | No        |    |
|-----------------|------------|-----|-----|-----|----|--------------|-----|-----|----|-----|----|--------------|--------|------------|--------------|-----|----|--------------|----|--------------|-----------|-----------|----|
|                 |            |     |     |     |    |              |     |     |    |     | Ar | nnua         | ıl Ind | come       | <del>)</del> |     |    |              |    |              |           |           |    |
| Sorted Values   | <b>→</b>   |     | 60  |     | 70 |              | 7   | 5   | 85 | ,   | 90 | )            | 9      | 5          | 10           | 00  | 12 | 20           | 12 | 25           |           | 220       |    |
| Split Positions | <b>3</b> → | 5   | 5   | 6   | 5  | 7            | 2   | 8   | 0  | 8   | 7  | 9            | 2      | 9          | 7            | 11  | 0  | 12           | 22 | 17           | <b>72</b> | 23        | 0  |
| Ī               |            | <=  | >   | <=  | >  | <b>&lt;=</b> | >   | <=  | >  | <=  | >  | <b>&lt;=</b> | >      | <=         | >            | <=  | >  | <b>&lt;=</b> | >  | <b>&lt;=</b> | >         | <b>\=</b> | >  |
|                 | Yes        | 0   | 3   | 0   | 3  | 0            | 3   | 0   | 3  | 1   | 2  | 2            | 1      | 3          | 0            | 3   | 0  | 3            | 0  | 3            | 0         | 3         | 0  |
|                 | No         | 0   | 7   | 1   | 6  | 2            | 5   | 3   | 4  | 3   | 4  | 3            | 4      | 3          | 4            | 4   | 3  | 5            | 2  | 6            | 1         | 7         | 0  |
|                 | Gini       | 0.4 | 120 | 0.4 | 00 | 0.3          | 375 | 0.3 | 43 | 0.4 | 17 | 0.4          | 100    | <u>0.3</u> | <u>800</u>   | 0.3 | 43 | 0.3          | 75 | 0.4          | 00        | 0.4       | 20 |

### **Measure of Impurity: Entropy**

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

(NOTE: p(j/t) is the relative frequency of class j at node t).

- Maximum (log n<sub>c</sub>) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

# **Computing Entropy of a Single Node**

$$Entropy(t) = -\sum_{j} p(j|t) \log_{2} p(j|t)$$

$$p(C1) = 0/6 = 0$$
  $p(C2) = 6/6 = 1$ 

Entropy = 
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$p(C1) = 1/6$$
  $p(C2) = 5/6$ 

Entropy = 
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$p(C1) = 2/6$$
  $p(C2) = 4/6$ 

Entropy = 
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

## **Computing Information Gain After Splitting**

#### Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n<sub>i</sub> is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

## Problem with large number of partitions

 Node impurity measures tend to prefer splits that result in large number of partitions, each being small but pure



 Customer ID has highest information gain because entropy for all the children is zero

### Prevent large number of partitions

- Generate only binary decision trees
  - Avoid the difficulty of handling attributes with varying number of partitions
  - CART

- Modify the splitting criterion
  - Take into account the number of partitions produced by the attribute
  - C4.5 (Gain ratio)

#### **Gain Ratio**

Gain Ratio: 🥫

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n<sub>i</sub> is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
  - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n_i} Entropy(i)\right)$$

 $|Entropy(t)| = -\sum_{j} p(j|t) \log_2 p(j|t)$ 

**Example**

$$\frac{GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{Entropy(i)}\right)}{\sum_{i=1}^{k} Entropy(i)} = \frac{GAIN_{split}}{SplitINFO} = \frac{GAIN_{split}}{SplitINFO} = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

Entropy(parent) = 
$$-\frac{10}{20}\log_2\frac{10}{20} - \frac{10}{20}\log_2\frac{10}{20} = 1$$

#### **Before Splitting:**

C0: 10, C1: 10

#### Gender

Entropy(children) = 
$$\frac{10}{20} \left[ -\frac{6}{10} \log_2 \frac{6}{10} - \frac{4}{10} \log_2 \frac{4}{10} \right] \times 2 = 0.971$$
  
Gain Ratio =  $\frac{1 - 0.971}{-\frac{10}{20} \log_2 \frac{10}{20} - \frac{10}{20} \log_2 \frac{10}{20}} = \frac{0.029}{1} = 0.029$ 

#### **Car Type**

Entropy(children) = 
$$\frac{4}{20} \left[ -\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4} \right] + \frac{8}{20} \times 0$$
  
  $+ \frac{8}{20} \left[ -\frac{1}{8} \log_2 \frac{1}{8} - \frac{7}{8} \log_2 \frac{7}{8} \right] = 0.380$ 

Gain Ratio = 
$$\frac{1 - 0.380}{-\frac{4}{20}\log_2\frac{4}{20} - \frac{8}{20}\log_2\frac{8}{20} - \frac{8}{20}\log_2\frac{8}{20}} = \frac{0.620}{1.52} = 0.41$$

#### **Customer ID**

Entropy(children) = 
$$\frac{1}{20} \left[ -\frac{1}{1} \log_2 \frac{1}{1} - \frac{0}{1} \log_2 \frac{0}{1} \right] \times 20 = 0$$
  
Gain Ratio =  $\frac{1-0}{-\frac{1}{20} \log_2 \frac{1}{20} \times 20} = \frac{1}{4.32} = 0.23$ 



50

## **Measure of Impurity: Classification Error**

Classification error at a node t :

$$Error(t) = 1 - \max_{j} p(j \mid t)$$

- Maximum (1 1/n<sub>c</sub>) when records are <u>equally</u> distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most interesting information

# **Computing Error of a Single Node**

$$Error(t) = 1 - \max_{j} p(j \mid t)$$

$$p(C1) = 0/6 = 0$$
  $p(C2) = 6/6 = 1$   
Error = 1 - max (0, 1) = 1 - 1 = 0

$$p(C1) = 1/6$$
  $p(C2) = 5/6$   
Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6

$$p(C1) = 2/6$$
  $p(C2) = 4/6$   
Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

# **Comparison among Impurity Measures**

#### For a 2-class problem:



## **Misclassification Error vs Gini Index**



|             | Parent |  |  |
|-------------|--------|--|--|
| C1          | 7      |  |  |
| C2          | 3      |  |  |
| Gini = 0.42 |        |  |  |

Gini(N1)  
= 
$$1 - (3/3)^2 - (0/3)^2$$
  
= 0

Gini(N2)  
= 
$$1 - (4/7)^2 - (3/7)^2$$
  
= 0.489

|            | N1 | N2 |  |  |  |
|------------|----|----|--|--|--|
| C1         | 3  | 4  |  |  |  |
| C2         | 0  | 3  |  |  |  |
| Gini=0.342 |    |    |  |  |  |

Gini(Children)

= 3/10 \* 0

+ 7/10 \* 0.489

= 0.342

Gini improves but error remains the same!!

## **Misclassification Error vs Gini Index**



|             | Parent |  |  |  |
|-------------|--------|--|--|--|
| C1          | 7      |  |  |  |
| C2          | 3      |  |  |  |
| Gini = 0.42 |        |  |  |  |

|            | N1 | N2 |  |  |  |
|------------|----|----|--|--|--|
| C1         | 3  | 4  |  |  |  |
| C2         | 0  | 3  |  |  |  |
| Gini=0.342 |    |    |  |  |  |

|            | N1 | N2 |  |  |
|------------|----|----|--|--|
| C1         | 3  | 4  |  |  |
| C2         | 1  | 2  |  |  |
| Gini=0.416 |    |    |  |  |

Misclassification error for all three cases = 0.3!

### **Decision Tree Based Classification**

#### Advantages:

- Inexpensive to construct
- No parameter is required
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Can easily handle redundant or irrelevant attributes (unless the attributes are interacting)
- Can deal with multiclass problems (vs. binary classifiers)

#### Disadvantages:

- Space of possible decision trees is exponentially large. Greedy approaches are often unable to find the best tree.
- Does not take into account interactions between attributes
- Each decision boundary involves only a single attribute

### **Interactions between Attributes**



**+: 1000 instances** 

**Entropy (X): 0.99 Entropy (Y): 0.99** 

o: 1000 instances

### **Interactions between Attributes**



+: 1000 instances

o: 1000 instances

Adding Z as a noisy attribute generated from a uniform distribution

Entropy (X): 0.99 Entropy (Y): 0.99 Entropy (Z): 0.98

Attribute Z will be chosen for splitting!



#### Limitations of single attribute-based decision boundaries





Both positive (+) and negative (o) classes generated from skewed Gaussians with centers at (8,8) and (12,12) respectively.

Test condition: x + y < 20



### **Classification Errors**

- Training errors (apparent errors)
  - Errors committed on the training set

- Test errors
  - Errors committed on the test set

- Generalization errors
  - Expected error of a model over random selection of records from same distribution

# **Example Data Set**



#### Two class problem:

- +: 5200 instances
  - 5000 instances generated from a Gaussian centered at (10,10)
  - 200 noisy instances added
- o: 5200 instances
  - Generated from a uniform distribution

10 % of the data used for training and 90% of the data used for testing

#### **Increasing number of nodes in Decision Trees**



#### **Decision Tree with 4 nodes**



#### **Decision Tree with 50 nodes**



#### Which tree is better?



# **Model Overfitting**



Underfitting: when model is too simple, both training and test errors are largeOverfitting: when model is too complex, training error is small but test error is large

# **Model Overfitting**



Using twice the number of data instances

- If training data is under-representative, testing errors increase and training errors decrease on increasing number of nodes
- Increasing the size of training data reduces the difference between training and testing errors at a given number of nodes

# **Model Overfitting – Another Example**



Use 30% of the data for training and 70% of the data for testing

Using only X and Y as attributes





## **Model Overfitting – Another Example**



Use 30% of the data for training and 70% of the data for testing

Use additional 100 noisy variables generated from a uniform distribution along with X and Y as attributes.





Using additional 100 noisy variables

# **Notes on Overfitting**

- Reasons for Model Overfitting
  - Limited Training Size
  - High Model Complexity
- Overfitting results in decision trees that are <u>more complex</u> than necessary
- Training error does not provide a good estimate of how well the tree will perform on previously unseen records
- Need ways for estimating generalization errors

### **Model Selection**

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
  - Using Validation Set
  - Incorporating Model Complexity
  - Estimating Statistical Bounds

#### **Model Selection:**

# **Using Validation Set**

- Divide <u>training</u> data into two parts:
  - Training set:
    - use for model building
  - Validation set:
    - use for estimating generalization error
    - Note: validation set is not the same as test set
- Drawback:
  - Less data available for training

#### **Model Selection:**

# **Incorporating Model Complexity**

- Rationale: Occam's Razor
  - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
  - A complex model has a greater chance of being fitted accidentally by errors in data
  - Therefore, one should include model complexity when evaluating a model

```
Gen. Error(Model) = Train. Error(Model, Train. Data) + \alpha x Complexity(Model)
```

### **Estimating the Complexity of Decision Trees**

#### Resubstitution Estimate:

- Using training error as an optimistic estimate of generalization error
- Referred to as optimistic error estimate



Decision Tree, T<sub>1</sub>

Decision Tree, T<sub>R</sub>

### **Estimating the Complexity of Decision Trees**

Pessimistic Error Estimate of decision tree T with k leaf nodes:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

- err(T): error rate on all training records
- $\Omega$ : trade-off hyper-parameter (similar to  $\alpha$ )
  - Relative cost of adding a leaf node
- k: number of leaf nodes
- N<sub>train</sub>: total number of training records

#### **Estimating the Complexity of Decision Trees: Example**



Decision Tree, T<sub>1</sub>

Decision Tree, T<sub>R</sub>

$$e_{qen}(T_L) = 4/24 + 1*7/24 = 11/24 = 0.458$$

$$e_{gen}(T_R) = 6/24 + 1*4/24 = 10/24 = 0.417$$





# **Minimum Description Length (MDL)**



- Cost(Model, Data) = Cost(Data|Model) + α x Cost(Model)
  - Cost is the number of bits needed for encoding.
  - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

## **Estimating Statistical Bounds**





$$e'(N,e,\alpha) = \frac{e + \frac{z_{\alpha/2}^2}{2N} + z_{\alpha/2}\sqrt{\frac{e(1-e)}{N} + \frac{z_{\alpha/2}^2}{4N^2}}}{1 + \frac{z_{\alpha/2}^2}{N}}$$

Before splitting: e = 2/7, e'(7, 2/7, 0.25) = 0.503

$$e'(T) = 7 \times 0.503 = 3.521$$

#### After splitting:

$$e(T_L) = 1/4$$
,  $e'(4, 1/4, 0.25) = 0.537$ 

$$e(T_R) = 1/3$$
,  $e'(3, 1/3, 0.25) = 0.650$ 

$$e'(T) = 4 \times 0.537 + 3 \times 0.650 = 4.098$$

Therefore, do not split

#### **Model Selection for Decision Trees**

- Pre-Pruning (Early Stopping Rule)
  - Stop the algorithm before it becomes a fully-grown tree
  - Typical stopping conditions for a node:
    - Stop if all instances belong to the same class
    - Stop if all the attribute values are the same
  - More restrictive conditions:
    - Stop if number of instances is less than some user-specified threshold
    - Stop if class distribution of instances are independent of the available features (e.g., using  $\chi^2$  test)
    - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
    - Stop if estimated generalization error falls below certain threshold

### **Model Selection for Decision Trees**

- Post-pruning
  - Grow decision tree to its entirety
  - Subtree replacement
    - Trim the nodes of the decision tree in a bottom-up fashion
      - If generalization error improves after trimming, replace sub-tree by a leaf node
      - Class label of leaf node is determined from majority class of instances in the sub-tree
  - Subtree raising
    - Replace subtree with most frequently used branch

## **Example of Post-Pruning**



Training Error (Before splitting) = 10/30

**Pessimistic error** = (10 + 0.5)/30 = 10.5/30

**Training Error (After splitting) = 9/30** 

**Pessimistic error (After splitting)** 

$$= (9 + 4 \times 0.5)/30 = 11/30$$



| PRUNE!        |                                                         |
|---------------|---------------------------------------------------------|
| $\triangle 1$ |                                                         |
|               |                                                         |
| <del></del>   | $\mathcal{I} = \mathcal{I} = \mathcal{I} = \mathcal{I}$ |
| $2\pi^{-7}$   |                                                         |
| 30            | _                                                       |
|               | /                                                       |

| Class = Yes | 8 |
|-------------|---|
| Class = No  | 4 |

| Class = Yes | (3) |
|-------------|-----|
| Class = No  | 4   |

| Class = Yes | 4 |
|-------------|---|
| Class = No  | 1 |

| Class = Yes | 5 |
|-------------|---|
| Class = No  |   |

## **Examples of Post-pruning**



**Decision Tree:** 

```
depth = 1:
  breadth > 7 : class 1
  breadth \leq 7:
    breadth <= 3:
       ImagePages > 0.375 : class 0
       ImagePages <= 0.375:
         totalPages <= 6 : class 1
         totalPages > 6:
            breadth <= 1 : class 1
            breadth > 1 : class 0
     width > 3:
       MultilP = 0:
       | ImagePages <= 0.1333 : class 1
        ImagePages > 0.1333 :
            breadth <= 6 : class 0
           breadth > 6 : class 1
       MultiIP = 1:
         TotalTime <= 361 : class 0
         TotalTime > 361 : class 1
depth > 1:
  MultiAgent = 0:
  | depth > 2 : class 0
   l | depth <= 2 :
      MultiIP = 1: class 0
      MultiIP = 0:
         breadth <= 6 : class 0
         breadth > 6:
            RepeatedAccess <= 0.0322 : class 0
           RepeatedAccess > 0.0322 : class 1
  MultiAgent = 1:
    totalPages <= 81 : class 0
    totalPages > 81 : class 1
```

```
<u>Simplified Decision Tree:</u>
               depth = 1:
               | ImagePages <= 0.1333 : class 1
Subtree
                 ImagePages > 0.1333:
Raising
                   breadth <= 6 : class 0
                   breadth > 6 : class 1
               depth > 1:
                 MultiAgent = 0: class 0
                 MultiAgent = 1:
                   totalPages <= 81 : class 0
                   totalPages > 81 : class 1
      Subtree
   Replacement
```

### **Model Evaluation**

#### • Purpose:

 To estimate performance of classifier on previously unseen data (test set)

#### Holdout

- Reserve k% for training and (100-k)% for testing
- Random subsampling: repeated holdout



### **Model Evaluation**

- F
- Cross validation \_
  - Partition data into k disjoint subsets
  - k-fold: train on k-1 partitions, test on the remaining one
  - Some variations:
    - Leave-one-out
    - Complete cross-validation
    - Repeated with random partitioning
    - Stratified cross-validation



