

Навчальна програма

Інформація про курс

Обговорення

Прогрес

Конспект лекцій

Будь ласка, зверніть увагу! Це завдання на оцінку, яка буде враховуватися для отримання сертифікату.

Для виконання завдання у вас є 2-3 спроби залежно від завдання! Зарахована буде оцінка за останню спробу.

ТЕСТОВЕ ЗАВДАННЯ 1 (3/3 балів)

ПИТАННЯ 1

Напівстепенем виходу вершини орієнтованого графу називається кількість орієнтованих ребер, які виходять з цієї вершини (тобто мають цю вершину в якості початкової). Аналогічно **напівстепенем входу** вершини називається кількість орієнтованих ребер, які входять в цю вершину.

Розглянемо представлення орієнтованого графу за допомогою списку суміжностей, де для кожної вершини v зберігається список вершин, в які з v виходять орієнтовані ребра. Оцініть скільки часу потрібно в найгіршому випадку для обрахунку напівстепеню входу для заданої вершини такого графу? Як і раніше, через n ми позначаємо кількість вершин графу, а через m - кількість ребер. Також позначимо через k максимальне значення напівстепеню у цьому графі.

 $\bigcirc \Theta(n)$

 $\bigcirc \Theta(k)$

Неможливо визначити за заданою інформацією

ПИТАННЯ 2

Розглянемо наступну задачу. Задано неорієнтований граф G (з n вершинами та m ребрами) разом із двома своїми вершинами s та t. Необхідно визначити чи існує хоча би один шлях з s до t. Якщо G заданий за допомогою списку суміжностей, то тоді наведена задача може бути розв'язана за час O(n+m), використовуючи обхід вшир чи вглиб. Якщо ж граф G заданий **матрицею суміжностей**, то тоді за який час можна буде розв'язати цю задачу в найгіршому випадку? Про всяк випадок: граф G не містить кратних ребер (коли між двома вершинами є більше ніж одне ребро).

 $\Theta(n^2)$ $\Theta(nm)$ $\Theta(n+m)$ $\Theta(m+n\log n)$

питання з

Степенем вершини v у неорієнтованому графі називається кількість ребер, які зв'язані з цією вершиною (позначимо степінь вершини через d(v)). З наведених нижче співвідношень оберіть правильне та те, яке є найбільш строгим? Тут m - кількість ребер у графі

$$\sum_{v \in V} d(v) = m$$

$$\sum_{v \in V} d(v) = 2m$$

$$\sum_{v \in V} d(v) \ge m/2$$

$$\sum_{v \in V} d(v) \le m/2$$

Остаточна перевірка

Зберегти

Показати відповідь

ТЕСТОВЕ ЗАВДАННЯ 2 (5/5 балів)

ПИТАННЯ 4

Розглянемо наступні метричні характеристики графів (тут ми будемо говорити тільки про зв'язні та неорієнтовані графи). **Діаметром графу** d називається максимальна найкоротша відстань між будь-якими двома вершинами s та t (нагадаємо, що відстань між вершинами ми вимірюємо кількістю ребер у маршруті, який з'єднує ці дві вершини).

Для деякої вершини s через l(s) позначимо максимальну з найкоротших відстаней між цією вершиною s та всіма іншими вершинами графу. **Радіусом графу** r називається найменше серед усіх значень l(s): $r = \min_{s \in V} (l(s))$.

Серед усіх наведених нижче нерівностей оберіть ті, які виконуються.

- $\Box r \geq d$
- $r \ge d/2$
- $abla r \leq d$
- $\Box r \leq d/2$

ПИТАННЯ 5

Розглянемо циклічний маршрут (маршрут, в якому перша та останні вершини однакові), який проходить по всіх ребрах неорієнтованого зв'язного графу точно один раз. При цьому одна й та сама вершина може зустрічатись в цьому маршруті більше ніж один раз. Оберіть нижче **необхідну умову** існування такого циклічного маршруту в довільному графі (n - кількість вершин; m кількість ребер; степінь вершини d(v) - кількість ребер, які з'єднані з цією вершиною v).

\bigcirc Для будь-якої пари несуміжних вершин v та u виконується нерівність: $d(v)+d(u)\geq n$
\bigcirc Для кожної вершини v виконується нерівність: $d(v) \ge n/2$
Пла кожної вершини у виконується нерівність: $d(y) < m/2$

ПИТАННЯ 6

Розглянемо матрицю суміжностей Δ деякого графу G. Нагадаємо, що її елемент $\delta_{ij}=1$, якщо вершини v_i та v_j суміжні, та $\delta_{ij}=0$ - в іншому випадку. Чому тоді будуть відповідати елементи δ_{ij}^2 матриці Δ^2 , тобто добутку матриці Δ на саму себе? Значення елементу c_{ij} результату добутку двох квадратних матриць однакової розмірності C=AB визначається за формулою: $c_{ij}=\sum_{k=1}^n a_{ik}b_{kj}$, де n - розмірність матриць A та B.

$\overline{}$	Будуть	вказувати,	чи існує	маршрут	між і	вершинами	V_i	та١) _i
	, _ , _ ,	J. (4.5)	.,, .	· · · · · · · · · · · · · · · · · · ·		- ор /	' ı	,	J

- \bigcirc Будуть вказувати, чи існує маршрут довжиною точно 2 ребра між вершинами v_i та v_j
- \bigcirc Будуть вказувати, чи існує маршрут довжиною не більше 2-х ребер між вершинами v_i та v_j
- ullet Будуть вказувати на кількість маршрутів довжиною точно 2 ребра між вершинами v_i та v_j

Остаточна перевірка Зберегти Показати відповідь

Ви використали 2 з 3 можливостей надіслати свої матеріали на розгляд.

Про нас Преса FAQ Контакти

© 2015 Prometheus, some rights reserved

- Умови надання послуг та Кодекс Честі

