Pietro Terna¹ Stefano Terna²

¹Universita' di Torino (in pensione); F. Collegio Carlo Alberto, Torino, H. Fellow ²PhD; tomorrowdata.io

Circolo Subalpino – 8 febbraio 2022

Introduzione: modelli con agenti

From M. Galán, L.R. Izquierdo, S.S. Izquierdo, J.I. Santos, R. del Olmo, A. López-Paredes, B. Edmonds: Errors and artefacts in agent-based modelling. *Journal of Artificial Societies and Social Simulation*, 12 (1):1, 2009. ISSN 1460-7425.

http://jasss.soc.surrey.ac.uk/12/1/1.html

Modelli basati su agenti

G. Pescarmona, P. Terna, A. Acquadro, P. Pescarmona, G. Russo, E. Sulis, and S. Terna. An Agent-Based Model of COVID-19 Diffusion to Plan and Evaluate Intervention Policies, 2021. https://arxiv.org/abs/2108.08885.

Descrizione

- Un modello microfondato con agenti che interagiscono, seguendo regole comportamentali plausibili in un mondo dove l'epidemia di Covid-19 sta influenzando le azioni di tutti.
- Il modello opera con:
 - i agenti infetti classificati come sintomatici o asintomatici e
 - ii luoghi di contagio specificati in modo dettagliato, grazie alle capacità dei modelli basati sugli agenti.
- La trasmissione dell'infezione è collegata a tre fattori: le caratteristiche della persona infetta e quelle della persona suscettibile, più quelle dello spazio in cui avviene il contatto.

- La struttura microfondata del modello permette simulazioni fattuali, controfattuali e condizionali, per indagare lo sviluppo spontaneo o controllato dell'epidemia. Ad esempio:
 - i strategie alternative incentrate esclusivamente sulla difesa delle persone fragili;
 - ii tempi diversi nell'adozione delle misure di contenimento non farmaceutiche
- Il modello genera dinamiche epidemiche complesse, che emergono dalle conseguenze delle azioni e delle interazioni degli agenti, con un'alta variabiliti; ½ nei risultati, ma spesso con una riproduzione sorprendentemente realistica delle ondate di contagio.
- Teniamo conto della variabiliti; ½ dei percorsi epidemici all'interno di ogni simulazione, con lotti di 10.000 casi per ogni esperimento.

- Poiché gli agenti possono essere Suscettibili, Infetti, sintomatici, asintomatici e Recuperati, il nome del modello è S.I.s.a.R., con le lettere maiuscole che ricordano lo schema S.I.R.
- Usiamo lo strumento NetLogo (https://ccl.northwestern.edu/netlogo/).
- Il modello include i dati strutturali del Piemonte, ma possiamo facilmente calibrarlo per altre aree. La simulazione segue un calendario realistico con le decisioni del governo nazionale o locale.

- 1 : 1000, per una popolazione di 4.350.000 persone.
- Case.
- Scuole.
- Ospedali.
- RSA.
- Luoghi di lavoro.

Il nostro mondo in 3D

Modelli basati su agenti

Figure 1: Il mondo in 3D

Casi

- Vedremo delle figure denominate *mappe di calore*.
- Una mappa di calore riporta la durata di ogni epidemia simulata sull'asse x e il numero di agenti sintomatici, asintomatici e deceduti sull'asse y. L'asse z è rappresentato dai colori, indicati nella scala (logaritmica) a destra di ogni immagine.
- In ogni figura, 10.000 simulazoni.

10.000 epidemie senza controllo in Piemonte

Figure 2: Prima ondata senza misure di contenimento non farmaceutiche

10.000 epidemia con controllo di base in Piemonte

Figure 3: Prima ondata con misure di contenimento non farmaceutiche

Punti chiave nell'estate e nell'autunno 2020

Figure 4: Punti chiave della dinamica epidemica nell'estate e nell'autunno 2020

Serie aggiornata, con la terza e la quarta ondata, dati sino al 6 febbraio 2022

Casi

(1000)	Jun 1, 20		Sep 9, 20		Dec 15, 20		Feb 1, 21		May 1, 21		Dec 15, 20 to end	
cum. v.	sym.	all	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf. days
media	35.6	72.7	40.0	84.1	180.4	462.1	354.1	900.4	623.8	1563.3	726.6	1810.9 620.9

Prima ondata con misure di contenimento non farmaceutiche, seconda ondata con nuove misura specifiche

(1000)	Jun 1, 20		Sep 9, 20		Dec 15, 20		Feb 1, 21		May 1, 21		Dec 15, 20 to end		nd
cum. v.	sym.	all	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf	sympt.	totalInf.	days
media	35.6	72.7	40.0	84.1	130.0	340 .6	194.4	512.8	295.7	791.2	252.7	666.4	494.1

Stessa situazione, ma limitando il nuovo lockdown alle persone a rischio, per 60 giorni dal 5 ottobre 2020

(1000)	Jun 1, 20		· · · F · · /		Dec 15, 20		,				Dec 15, 20 to end		
	sym.	all	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	days
media	35.6	72.7	40.0	84.1	128.1	326.3	211.0	555.1	323.3	862.1	301.1	792.3	515.5

Stessa situazione, ma con tutte le misure specifiche per la seconda ondata anticipate di 20 giorni

(1000)	Jun 1, 20		Sep 9, 20		Dec 15, 20		Feb 1, 21		May 1, 21		Dec 15, 20 to end		nd
cum. v.	sym.	all	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	days
media	35.6	72.7	40.0	84.1	112.2	294.2	172.0	467.9	276.5	748.6	248.9	663.4	499.3

Un caso realistico, dinamica senza vaccinazioni

Figure 6: Serie sintomatici di base; la linea verticale al giorno 413 non è rilevante qui

Dinamica con la migliore strategia GA, i vaccinati diffondono l'infezione

Figure 7: La linea verticale al giorno 413 indica l'inizio delle vaccinazioni

