Chapter 7: Triangles

Main Concepts & Results

★ What is a Triangle?

A triangle is a polygon with 3 sides and 3 angles.

Congruence of Triangles (≅)

Two triangles are congruent if all their corresponding sides and angles are equal.

Notation:

 $\triangle ABC \cong \triangle PQR$ means:

- AB = PQ
- BC = QR
- CA = RP
- $\angle A = \angle P$, $\angle B = \angle Q$, $\angle C = \angle R$

Criteria for Congruence of Triangles

- SSS (Side-Side-Side): All three sides are equal
- 🗸 SAS (Side-Angle-Side): Two sides and the angle between them are equal
- 🗹 ASA (Angle-Side-Angle): Two angles and the included side are equal
- ✓ RHS (Right angle-Hypotenuse-Side): For right-angled triangles only
- AAS (Angle-Angle-Side): Is derived from ASA

🦖 Important Properties

- Angles opposite to equal sides are equal
- Sides opposite to equal angles are equal
- A point equidistant from two points lies on the perpendicular bisector
- A point equidistant from two intersecting lines lies on the angle bisector
- In any triangle:
 - Side opposite the greater angle is longer
 - o Angle opposite the longer side is greater
 - O Sum of any two sides > third side

MCQ Highlights

Sample:

If $\triangle ABC \cong \triangle PQR$ but not congruent to $\triangle RPQ$, then which statement is false?

Correct Answer: (A) BC = $PQ \times (corresponding sides mismatch)$

Identify incorrect congruence rules:

SSA X is not a valid criterion

Equilateral Triangle Angles:

All angles = 60°

Triangle with sides 5 cm, 1.5 cm, third side cannot be 3.6 cm — check triangle inequality!

Reasoning-Based Short Questions

Example:

In \triangle ABC and \triangle DEF, AB = DE, AC = EF — if \angle A = \angle E, then \triangle ABC \cong \triangle EDF (SAS) $\boxed{\checkmark}$

_

Application-Based Theorems and Properties

- 🗸 Vertically opposite angles are equal
- ▼ Triangle inequality: Sum of two sides > third
- Side opposite greater angle is longer
- ☑ If AD is the angle bisector and also bisects BC, then triangle is isosceles

_

♦ Important Geometry Results

- In an isosceles triangle, medians to equal sides are equal
- Exterior angle = sum of two opposite interior angles
- Equilateral triangle → All sides equal, all angles 60°
- lf two triangles have 2 equal angles and included side → congruent (ASA)

_

📏 Long Answer Sample (with Reasoning)

- \bigcirc Prove: In right triangle ABC, if \angle BCA = $2\angle$ BAC, then hypotenuse AC = 2BC
- → Use triangle construction + congruence + angle sum
- If angle bisector also bisects opposite side
 → triangle is isosceles
- → Use SAS congruence of two constructed triangles
- If S is inside ΔPQR, prove SQ + SR < PQ + PR</p>
- → Use triangle inequality in two parts and combine!

_

Real-World & Practical Thinking Problems

- 🧠 Equilateral triangle: All angles = 60° 🗸
- 🧠 Mirror image: Distance from object to mirror = distance of image behind mirror 🗸
- \bigcirc In ΔABC, AB = AC and AD \bot BC \rightarrow Prove ∠BAD = ∠CAD
- → Use congruence of triangles ABD & ACD

_

HOTS (Higher Order Thinking Skills)

- \bigcirc If AB = AD and CB = CD in quadrilateral ABCD → Diagonal AC bisects \angle A and \angle C
- ¶ If triangle has one side 9 cm and others 7 cm and 17 cm → Not possible (violates triangle inequality)

_

= Summary Table

Concept	Rule / Result
Triangle Congruence	SSS, SAS, ASA, RHS, AAS
Vertically Opposite Angles	Are always equal
Triangle Inequality	Any two sides' sum > third side
Angle-side relationship	Greater angle → longer opposite side
Exterior Angle Theorem	Ext. angle = sum of opposite interior angles
Perpendicular bisector properties	Equidistant from endpoints
Angle Bisector Properties	Point lies on bisector = equidistant from sides