Cloudera Administrator Apache Hadoop Parte 03-2

Configuração Avançada e Gerenciamento de Recursos

Marco Reis http://marcoreis.net

Agenda

- Configuração avançada dos serviços
 - HDFS
 - YARN
 - Hive
 - Spark
 - Impala
- Gerenciamento de recursos

HDFS

HDFS - Configuração

- Replicação
- Balancer
- Diretório trash
- Quotas
- HDFS Fuse
- Cache
- Visualização com filtros de status (disponível em todos os serviços)
 - Error
 - Warning
 - Edited
 - Non-default
 - Has Overrides

Replicação

- Define a replicação para os novos arquivos gravados no cluster
 - Procure pelo parâmetro dfs.replication
- Altere o fator de replicação para 2, salve e reinicie o serviço
 - A replicação 2 pode ser aplicada em clusters com até 5 datanodes
 - As alterações são propagadas para todos os hosts
- Para alterar a replicação dos arquivos já gravados use o comando
 - \$ sudo -u hdfs hdfs dfs -setrep 2 -r /

Balancer

- Durante a operação do cluster é natural haver desbalanceamentos entre as cargas, como na imagem abaixo
- O CDH permite o balanceamento pela interface web (imagem ao lado)
- O HDFS permite pela linha de comando, com o usuário hdfs
 - \$ sudo -u hdfs hdfs balancer
- A largura de banda para transferência de arquivos do balancer é limitada pelo parâmetro dfs.balance.bandwidthPerSec
 - Durante a manutenção dos discos a banda pode ser aumentada para agiliar os procedimentos

Capacidade reservada

- Veja que uma boa quantidade do disco não é utilizada no HDFS porque está reservada para o SO
- Esta reserva é definida no parâmetro dfs.datanode.du.reserved
- Altere conforme a imagem, reinicie o serviço e verifique novamente a capacidade do cluster
- Note que essa reserva é importante para o SO se manter operacional, principalmente por causa dos logs
- O valor sugerido pelo CDH é 10 GiB

Cache

- O parâmetro dfs.datanode.max.locked.memory define a memória usada para cache
- O valor sugerido pela Cloudera é 4 GiB

HDFS Fuse

- O HDFS pode ser usado como um mapeamento no sistema de arquivos do sistema operacional por meio do Fuse
- Instale no host cliente do Hadoop, crie o diretório local para o HDFS e faça o mapeamento
- Exemplo:
 - \$ sudo apt-get install -y hadoop-hdfs-fuse
 - \$ sudo mkdir /mnt/hdfs
 - \$ sudo hadoop-fuse-dfs dfs://headnode.lab:8020 /mnt/hdfs
- Adicione o diretório no /etc/fstab
 - hadoop-fuse-dfs#dfs://headnode.lab:8020 /mnt/hdfs fuse allow_other,usetrash,rw 2 0

Maximum File Descriptors

- Você pode alterar o parâmetro para cada um do serviços
- Na aba Configuration procure pela propriedade rlimit_fds
- Não existe um valor ideal, devendo ser adaptado para a carga de trabalho e capacidade do cluster
- Caso não preencha, será usado o valor do SO

Maximum Process File	DataNode Default Group	and 6 others
Descriptors		
Edit Individual Values		

HDFS Cache

- Arquivos frequentemente acessados devem ser registrados no cache, uma estratégia que melhora a utilização de memória do NameNode
 - Uma sugestão é aplicar o cache em tabelas do Hive e do Impala
 - O cache está disponível em vários recursos do CDH, inclusive no Spark
- Para listar as opções de cache no HDFS:
 - \$ hdfs cacheadmin
- O diretório para cache deve ser adicionado a um pool de tamanho adequado, ou seja, o pool deve ser de um tamanho superior ao do diretório
- Exemplo: para criar um pool de 600 MiB:
 - \$ hdfs cacheadmin -addPool dataPool -limit 600000000
 - \$ hdfs cacheadmin -listPools
- Exemplo 2: para adicionar um diretório ao pool, com Ttl (time to live) de 1h:
 - \$ hdfs cacheadmin -addDirective -path /user/hive/warehouse/datalake.db/userstackoverflow -pool dataPool -ttl 1h
 - \$ hdfs cacheadmin -listDirectives -stats

Histórico de versões

- As alterações de configuração do cluster podem ser desfeitas a partir do histórico de versões
- Selecione a aba Configuration → History and Rollback
- Verifique a última alteração feita e clique em Details
- Para reverter, clique no botão Revert Configuration Changes
 - Provavelmente será necessário reiniciar o serviço

Revision Details									
Message Service hdfs' config update from API. 🏥 Sep 6, 2018 501:54 PM EDT 🛔 admin									
Property	Value	Description							
DataNode Group 1 Settings									
Cgroup CPU Shares	00 -1,1 +1,1 00 1 -1024 1 41000	Number of CPU shares to assign to this role. The greater the number of shares, the larger the share of the hoars CPUs that will be given to this cale when the hoat superiences CPU contention. Must be between 2 and 262144. Detaulat to 1024 for processes not managed by Clouders Minanger.							
Cgroup I/O Weight		Weight for the read I/O requests issued by this role. The greater the weight, the higher the priority of the requests when the host experiences I/O contention. Mast be between 100 and 1000. Defaults to 1000 for processes not managed by Cloudem Manager.							
Java Heap Size of DataNode in Bytes	00 -1,1 +1,1 00 1 -411 MiB 1 +1 G1B	Maximum size in bytes for the Java Process heap memory. Passed to Java-Xmx.							
Maximum Memory Used for Caching		The maximum amount of memory a DataNode may use to cache data blocks in memory. Setting it to zero will disable caching.							
dn-group-2-disks Settings									
Java Heap Size of DataNode in Bytes		Maximum size in bytes for the Java Process heap memory. Passed to Java -Xmx.							
DataNode Default Group Settings									
Java Heap Size of DataNode in Bytes	00 -1,1 +1,1 00 1 -548 MiB	Maximum size in bytes for the Java Process heap memory. Passed to Java-Xmx.							

Portas

- Os serviços do HDFS (e todos os demais serviços) estão disponíveis em portas HTTP
- Selecione a aba Configuration → Filters → Category → Ports and Address

DataNode Protocol Port dfs.datanode.ipc.address Edit Individual Values	DataNode Default Groupand 2 others 50020
DataNode Transceiver Port dfs.datanode.address Edit Individual Values	DataNode Default Groupand 2 others
DataNode HTTP Web UI Port dfs.datanode.http.address Edit Individual Values	DataNode Default Groupand 2 others
Secure DataNode Web UI Port (TLS/SSL) dfs.datanode.https.address Edit Individual Values	DataNode Default Groupand 2 others 50475
REST Port hdfs.httpfs.http.port	HttpFS Default Group
Administration Port hdfs.httpfs.admin.port	HttpFS Default Group
JournalNode RPC Port dfs.journalnode.rpc-address	JournalNode Default Group
JournalNode HTTP Port dfs.journalnode.http-address	JournalNode Default Group
Secure JournalNode Web UI Port (TLS/SSL)	JournalNode Default Group

dfs.iournalnode.https-address

YARN

YARN - Configurações

- O YARN é rico em configurações, especialmente de memória e CPU
 - O Hadoop usa o conceito de vcores no lugar de CPU
- Uma configuração adequada permite uma boa performance no cluster, evitando a ociosidade dos recursos
- As configurações abaixo são recomendações da Cloudera, mas devem ser adaptadas para a carga de trabalho de cada cluster
 - As configurações podem ser feitas a nível de aplicação, ou seja, a aplicação pode enviar as próprias configurações que serão usadas no lugar dos valores definidos no cluster
- A seguir são listas as propriedades e seu valor sugerido:
 - Mínimo de memória para cada container: yarn.scheduler.minimum-allocation-mb → 0
 - Máximo de memória para cada container: yarn.scheduler.maximum-allocation-mb → memória disponível no host
 - Incremento de memória no container: yarn.scheduler.increment-allocation-mb → use um valor ponderado
 - Memória para cada map: mapreduce.map.memory.mb → 1 GB
 - Memória para cada reduce: mapreduce.reduce.memory.mb → 1 GB
 - Memória do ApplicationMaster: yarn.app.mapreduce.am.resource.mb → 1 GB
 - Memória disponível para o YARN no host: yarn.nodemanager.resource.memory-mb → total de memória do host menos 1 GB para o SO
 - Número de CPUs disponíveis para o YARN: yarn.nodemanager.resource.cpu-vcores → total de processadores do host menos 1 para o SO
 - Número máximo de CPUs para uso no cluster: yarn.scheduler.maximum-allocation-vcores → deve ser <= yarn.nodemanager.resource.cpu-vcores
- Observação: a configuração da memória deve considerar um overhead aproximado de 20% na JVM (Xmx), assim, o Java Heap deve estar entre 75% e 90% da memória
 - É o caso dos parâmetros mapreduce.map.java.opts e mapreduce.reduce.java.opts

YARN - Otimização

- Durante a configuração do YARN devem ser observados os valores sugeridos para os outros serviços do cluster
 - Considerando que há outros serviços rodando além do próprio YARN, como Hive, Spark, Impala etc.
- Sugestões:
 - Sistema Operacional 1 GB a 4 GB / 1 vcore
 - Cloudera Manager agent 1 GB / 1 vcore
 - Java Heap Size of DataNode 1 GB / 1 vcore
 - Java Heap Size of NameNode 1GB / 1 vcore
 - Java Heap Size of NodeManager 1 GB / 1 vcore
 - Impala daemon 16 GB por host
- Para otimizações mais específicas, a Cloudera disponibiliza uma planilha que ajuda na configuração no link:
 - http://tiny.cloudera.com/yarn-tuning-guide

Hive

Hive - Configurações

- A configuração do Hive usa, em grande medida, os parâmetros do HDFS, YARN e Spark (se estiver ativo) para gerenciamento de recursos
- O Spark é executado a partir de executors e vcores, de forma que o mesmo número de vcores deve ser usado em todos os hosts
 - Exemplo VCores: 15 processadores e 5 vcores = 3 executors com 5 vcores cada
- Alguns parâmetros merecem atenção:
 - Spark Driver Maximum Java Heap Size: spark.driver.memory → ao menos 1 GB
 - Spark Executor Cores: spark.executor.cores → a recomendação é usar por volta de 5 vcores, dependendo do yarn.nodemanager.resource.cpu-vcores
 - A fórmula é yarn.nodemanager.resource.cpu-vcores / spark.executor.cores e você deve selecionar o valor que deixe menos vcores ociosos
 - Exemplo: para 15 vcores, selecione spark.executor.cores=5. Veja que 15 / 6 = 2, sobrando 3 e 15 / 4 = 3, sobrando 2 vcores, enquanto que 15 / 5 = 3 e não sobra nenhum vcore
 - Spark Executor Maximum Java Heap Size: spark.executor.memory → (memória YARN / num-executors) overhead = 12 GB
 - spark.yarn.executor.memoryOverhead → por volta de 20% da memória em cada executor, ou seja, a equação é 0.2 * (memória YARN / num-executors) = 3 GB

Impala

Impala – Configuração

- O Impala não tem configurações de recursos rígidas, apenas valores sugeridos para o Catalog Server (150 MB) e para o StateStore (64 MB)
- Para o Impala Daemon, o limite de memória sugerido é memória do host * 0.64

Configuração do Pool de Recursos

Dynamic Resource Pool Configuration

- É natural que alguns usuários tenham preferência na execução das aplicações
- No CM isso é feito por meio do Dynamic Resource Pool, que é uma política de configuração e agendamento de recursos baseada em usuários
- O agrupamento define os limites de concorrência e prioridade entre aplicações em execução
 - Se n\u00e3o forem usados os recursos ficam dispon\u00edveis, assim, um pool pode usar at\u00e9 100% do cluster
 - O pool é sempre limitado ao Max Resources, ou seja, mesmo com ociosidade, não é possível usar mais do que está definido neste valor
- Para criar novos pools selecione o botão Edit → Create Subpool em root.users. Serão 2 novos pools:
 - root.users.datascientist: 80% Max Resources
 - root.users.dataengineer: 40% Max Resources
- Clique no botão Refresh Dynamic Resource Pools

Dynamic Pool em ação

- Rode novamente as aplicações e perceba que os recursos estão limitados ao Max Resources
- O dimensionamento dos recursos é calculado a partir da CPU e memória utilizada pelo algoritmo DRF (Dominant Resource Fairness)

application_1536409474975_0016	Total por município	MAPREDUCE	root.users.scientist	Sat Sep 8 10:50:45 -0300 2018	N/A	RUNNING	UNDEFINED	4	4	4096	0	0	<u>ApplicationMaster</u>
application_1536409474975_0015	Total por município	MAPREDUCE	root.users.dataengineer	Sat Sep 8 10:50:44 -0300 2018	N/A	RUNNING	UNDEFINED	2	2	2048	0	0	<u>ApplicationMaster</u>

Seleção do pool na aplicação

- O YARN permite a passagem de parâmetros para personalizar da aplicação, como por exemplo memória, vcores etc.
- Para mudar o pool padrão da aplicação use o parâmetro mapreduce.job.queuename.
 Exemplo:
 - \$ yarn jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar pi
 -Dmapreduce.job.queuename=root.users.datascientist 100 1000
 - \$ yarn jar analisador-hadoop.jar net.marcoreis.hadoop.mapreduce.parte2.TotalPorMunicipioDriver
 -Dmapreduce.job.queuename=root.users.dataengineer /user/dataengineer/dados/bolsafamilia/
 saida/bolsafamilia/
- Atenção para a combinação entre usuário do Kerberos e permissão de acesso no HDFS
 - O usuário que submete a aplicação precisa gravar em seu diretório HDFS

Pool para produção e desenvolvimento

- Uma sugestão de configuração para um cluster seria usar um pool para produção e outro para desenvolvimento
 - Pode ser uma alternativa a ter de usar 2 clusters separados
 - Um pool para root.production (90%) e outro root.development (20%)

Static Service Pools

- Permite limitar os recursos do cluster (CPU, memória e IO) para cada serviço (HDFS, YARN e Impala), de forma que a sobrecarga de um serviço não impacta nos demais
- O administrador define um limite percentual para cada serviço e o CM sugere alterações nas configurações dos workernodes
- Essas alterações são estáticas, uma vez que são feitas nos arquivos de configuração

Configuration Issues

- O Cloudera Manager dispõe de uma facilidade para configuração, na qual são mostrados alertas referentes aos valores que estão fora do padrão
- A funcionalidade está disponível nágina inicial do Cloudera Manager → aba Configuration → Configuration Issues
- Os alertas s\(\tilde{a}\) o referentes aos servi\(\tilde{c}\) os do CDH e de pr\(\tilde{p}\) rio CM
- Para eliminar o alerta de uma configuração, clique na opção Suppress e escreva a justificativa da anulação

cloudera MANAGER

All Health Issues

 Problemas críticos no cluster são listados na aba All Health Issues

Dúvidas?

Marco Reis http://marcoreis.net