Name: Mathav Krishnan

Reg no: 20BCE1139

Problem Statement: House Price Prediction

Description:

House price prediction is a common problem in the real estate industry and involves predicting the selling price of a house based on various features and attributes. The problem is typically approached as a regression problem, where the target variable is the price of the house, and the features are various attributes of the house.

The features used in house price prediction can include both quantitative and categorical variables, such as the number of bedrooms, house area, bedrooms, furnished, nearness to main road, and various amenities such as a garage and other factors that may influence the value of the property.

Accurate predictions can help agents and appraisers price homes correctly, while homeowners can use the predictions to set a reasonable asking price for their properties. Accurate house price prediction can also be useful for buyers who are looking to make informed decisions about purchasing a property and obtaining a fair price for their investment.

Attribute Information:

Name - Description

- 1- Price-Prices of the houses
- 2- Area- Area of the houses
- 3- Bedrooms- No of house bedrooms
- 4- Bathrooms- No of bathrooms
- 5- Stories- No of house stories
- 6- Main Road- Weather connected to Main road
- 7- Guestroom-Weather has a guest room
- 8- Basement-Weather has a basement
- 9- Hot water heating- Weather has a hot water heater
- 10-Airconditioning-Weather has a air conditioner

▼ Building a Regression Model

- 1. Download the dataset: Dataset
- 2. Load the dataset into the tool.
- 3. Perform Below Visualizations.
 - Univariate Analysis
 - Bi-Variate Analysis
 - Multi-Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Check for Missing values and deal with them.
- 6. Find the outliers and replace them outliers
- 7. Check for Categorical columns and perform encoding.
- 8. Split the data into dependent and independent variables.
- 9. Scale the independent variables
- 10. Split the data into training and testing
- 11. Build the Model
- 12. Train the Model
- 13. Test the Model
- 14. Measure the performance using Metrics.

▼ Importing necessary libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1. Download the dataset: Dataset

Housing.csv downloaded.

2. Load the dataset into the tool

```
data = pd.read_csv('Housing.csv')
data.head()
```

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	h
0	13300000	7420	4	2	3	yes	no	no	
1	12250000	8960	4	4	4	yes	no	no	
2	12250000	9960	3	2	2	yes	no	yes	
3	12215000	7500	4	2	2	yes	no	yes	
4	11410000	7420	4	1	2	yes	yes	yes	

data.isnull().any()

price	False
area	False
bedrooms	False
bathrooms	False
stories	False
mainroad	False
guestroom	False
basement	False
hotwaterheating	False
airconditioning	False
parking	False
furnishingstatus	False
dtvpe: bool	

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	price	545 non-null	int64
1	area	545 non-null	int64
2	bedrooms	545 non-null	int64
3	bathrooms	545 non-null	int64
4	stories	545 non-null	int64
5	mainroad	545 non-null	object
6	guestroom	545 non-null	object
7	basement	545 non-null	object
8	hotwaterheating	545 non-null	object
9	airconditioning	545 non-null	object
10	parking	545 non-null	int64
11	furnishingstatus	545 non-null	object

dtypes: int64(6), object(6) memory usage: 51.2+ KB

▼ 3. Perform Below Visualizations.

• Univariate Analysis

- Bi-Variate Analysis
- Multi-Variate Analysis

Univariate Analysis

Distribution plot

```
sns.distplot(data['price'], color = 'b')
```

/var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_10415/972929096.py:1

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(data['price'], color = 'b')
<Axes: xlabel='price', ylabel='Density'>
```


Box plot

sns.boxplot(data['price'])

<Axes: >

Scatter plot

sns.scatterplot(data['price'])

<Axes: ylabel='price'>

Joint plot

sns.jointplot(data['price'])

<seaborn.axisgrid.JointGrid at 0x1429800d0>

Bar plot

x = data.furnishingstatus.value_counts()
sns.barplot(x=x.index, y=x.values)

Pie plot

Bivariate analysis

Bar plot

sns.barplot(x=data.furnishingstatus, y=data.price)

<Axes: xlabel='furnishingstatus', ylabel='price'>

Pair plot

sns.pairplot(data)

Multivariate Analysis

bedrooms -

```
sns.heatmap(data.corr(), annot=True)
      /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_10415/1119197534.py:
        sns.heatmap(data.corr(), annot=True)
     <Axes: >
                                                                             - 1.0
                             0.54
                                                        0.42
                                                                 0.38
            price -
                      1
                                      0.37
                                               0.52
                                                                             - 0.8
                    0.54
                                      0.15
                                               0.19
                                                       0.084
                                                                 0.35
             area
                               1
```

0.37

0.41

0.14

0.6

▼ 4. Perform descriptive statistics on the dataset.

0.15

1

0.37

Measure of central tendency - Mean, Median and Mode

```
data.mean()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_10415/531903386.py:1
       data.mean()
     price
                   4.766729e+06
     area
                   5.150541e+03
                   2.965138e+00
     bedrooms
     bathrooms
                   1.286239e+00
     stories
                   1.805505e+00
     parking
                   6.935780e-01
     dtype: float64
data.median()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_10415/4184645713.py:
       data.median()
     price
                   4340000.0
     area
                      4600.0
     bedrooms
                         3.0
     bathrooms
                         1.0
     stories
                         2.0
```

parking 0.0

dtype: float64

data.mode()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	h
0	3500000	6000.0	3.0	1.0	2.0	yes	no	no	
1	4200000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

Measure of variability:

Kurtosis

data.kurt()

/var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_10415/2907027414.py:
 data.kurt()

price 1.960130 area 2.751480

bedrooms 0.728323 bathrooms 2.164856 stories 0.679404 parking -0.573063

dtype: float64

Range

data.max()

price	13300000
area	16200
bedrooms	6
bathrooms	4
stories	4
mainroad	yes
guestroom	yes
basement	yes
hotwaterheating	yes
airconditioning	yes
parking	3
furnishingstatus	unfurnished
dtype: object	

data.min()

price 1750000

```
1650
     area
     bedrooms
     bathrooms
                                    1
                                    1
     stories
     mainroad
                                   no
     guestroom
                                   no
     basement
                                   no
     hotwaterheating
                                   no
     airconditioning
                                   no
                                    0
     parking
     furnishingstatus
                           furnished
     dtype: object
Range = data.max()['price'] - data.min()['price']
print(Range)
     11550000
```

Skewness

```
data.skew()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_10415/1188251951.py:
       data.skew()
     price
                  1.212239
     area
                  1.321188
                  0.495684
     bedrooms
     bathrooms
                  1.589264
     stories
                  1.082088
                  0.842062
     parking
     dtype: float64
```

Interquartile range - for price

```
IQR = quantiles.iloc[0]-quantiles.iloc[1]
IQR
     2310000.0
Upper extreme Q3 + 1.5*IQR
quantiles.iloc[0] + (1.5*IQR)
     9205000.0
Lower extreme Q1 - 1.5*IQR
quantiles.iloc[1] - (1.5*IQR)
     -35000.0
Standard deviation
data.std()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_10415/2723740006.py:
       data.std()
                   1.870440e+06
     price
                   2.170141e+03
     area
                   7.380639e-01
     bedrooms
     bathrooms
                   5.024696e-01
     stories
                   8.674925e-01
     parking
                   8.615858e-01
     dtype: float64
Variance
data.var()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_10415/445316826.py:1
       data.var()
                   3.498544e+12
     price
                   4.709512e+06
     area
                   5.447383e-01
     bedrooms
     bathrooms
                   2.524757e-01
                   7.525432e-01
     stories
     parking
                   7.423300e-01
     dtype: float64
```

data.describe()

	price	area	bedrooms	bathrooms	stories	parking
count	5.450000e+02	545.000000	545.000000	545.000000	545.000000	545.000000
mean	4.766729e+06	5150.541284	2.965138	1.286239	1.805505	0.693578
std	1.870440e+06	2170.141023	0.738064	0.502470	0.867492	0.861586
min	1.750000e+06	1650.000000	1.000000	1.000000	1.000000	0.000000
25%	3.430000e+06	3600.000000	2.000000	1.000000	1.000000	0.000000
50%	4.340000e+06	4600.000000	3.000000	1.000000	2.000000	0.000000
75%	5.740000e+06	6360.000000	3.000000	2.000000	2.000000	1.000000
max	1.330000e+07	16200.000000	6.000000	4.000000	4.000000	3.000000

▼ 5. Check for Missing values and deal with them.

data.isnull().sum()

price	0
area	0
bedrooms	0
bathrooms	0
stories	0
mainroad	0
guestroom	0
basement	0
hotwaterheating	0
airconditioning	0
parking	0
furnishingstatus	0
dtype: int64	

No missing values

▼ 6. Find the outliers and replace the outliers

Removing outliers

sns.boxplot(data.price)

<Axes: >
1e7

1.2 -

quant99 = data.price.quantile(0.99)
upper_array = np.where(data.price>quant99)[0]

data.drop(index=upper_array, inplace=True)

data.reset_index(drop = True, inplace=True)
data

price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement
10150000	8580	4	3	4	yes	no	no
10150000	16200	5	3	2	yes	no	no
9870000	8100	4	1	2	yes	yes	yes
9800000	5750	3	2	4	yes	yes	no
9800000	13200	3	1	2	yes	no	yes
1820000	3000	2	1	1	yes	no	yes
1767150	2400	3	1	1	no	no	no
1750000	3620	2	1	1	yes	no	no
1750000	2910	3	1	1	no	no	no
1750000	3850	3	1	2	yes	no	no
	10150000 10150000 9870000 9800000 1820000 1767150 1750000	10150000 8580 10150000 16200 9870000 8100 9800000 5750 9800000 13200 1820000 3000 1767150 2400 1750000 3620 1750000 2910	10150000 8580 4 10150000 16200 5 9870000 8100 4 9800000 5750 3 9800000 13200 3 1820000 3000 2 1767150 2400 3 1750000 3620 2 1750000 2910 3	10150000 8580 4 3 10150000 16200 5 3 9870000 8100 4 1 9800000 5750 3 2 9800000 13200 3 1 1820000 3000 2 1 1767150 2400 3 1 1750000 3620 2 1 1750000 2910 3 1	10150000 8580 4 3 4 10150000 16200 5 3 2 9870000 8100 4 1 2 9800000 5750 3 2 4 9800000 13200 3 1 2 1820000 3000 2 1 1 1767150 2400 3 1 1 1750000 3620 2 1 1 1750000 2910 3 1 1	10150000 8580 4 3 4 yes 10150000 16200 5 3 2 yes 9870000 8100 4 1 2 yes 9800000 5750 3 2 4 yes 9800000 13200 3 1 2 yes 1820000 3000 2 1 1 yes 1767150 2400 3 1 1 no 1750000 3620 2 1 1 yes 1750000 2910 3 1 1 no	10150000 8580 4 3 4 yes no 10150000 16200 5 3 2 yes no 9870000 8100 4 1 2 yes yes 9800000 5750 3 2 4 yes yes 9800000 13200 3 1 2 yes no 1820000 3000 2 1 1 yes no 1767150 2400 3 1 1 yes no 1750000 3620 2 1 1 yes no 1750000 2910 3 1 1 no no

539 rows × 12 columns

sns.boxplot(data['price'])

<Axes: >


```
data['price']
             10150000
     1
             10150000
     2
              9870000
     3
              9800000
     4
              9800000
     534
              1820000
     535
              1767150
     536
              1750000
     537
              1750000
     538
              1750000
```

Name: price, Length: 539, dtype: int64

▼ 7. Check for Categorical columns and perform encoding

Encoding techniques

Label encoding

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

data.head()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	ł
0	10150000	8580	4	3	4	yes	no	no	
1	10150000	16200	5	3	2	yes	no	no	
2	9870000	8100	4	1	2	yes	yes	yes	
3	9800000	5750	3	2	4	yes	yes	no	
4	9800000	13200	3	1	2	yes	no	yes	

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 539 entries, 0 to 538
Data columns (total 12 columns):
                      Non-Null Count
    Column
                                       Dtype
                      539 non-null
 0
                                       int64
     price
                                       int64
 1
     area
                      539 non-null
```

```
2
    bedrooms
                      539 non-null
                                       int64
3
                      539 non-null
    bathrooms
                                       int64
4
    stories
                      539 non-null
                                       int64
5
                      539 non-null
                                       object
    mainroad
6
    guestroom
                      539 non-null
                                       object
7
                      539 non-null
                                       object
    basement
8
    hotwaterheating
                      539 non-null
                                       object
                                       object
9
    airconditioning
                      539 non-null
10
   parking
                      539 non-null
                                       int64
11
   furnishingstatus 539 non-null
                                       object
```

dtypes: int64(6), object(6)
memory usage: 50.7+ KB

```
columns = ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning']
for col in columns:
  data[col] = le.fit_transform(data[col])
```

data.head()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	ł
0	10150000	8580	4	3	4	1	0	0	
1	10150000	16200	5	3	2	1	0	0	
2	9870000	8100	4	1	2	1	1	1	
3	9800000	5750	3	2	4	1	1	0	
4	9800000	13200	3	1	2	1	0	1	

One Hot Encoding

```
data = pd.get_dummies(data, columns=['furnishingstatus'])
```

data

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement
0	10150000	8580	4	3	4	1	0	0
1	10150000	16200	5	3	2	1	0	0
2	9870000	8100	4	1	2	1	1	1
3	9800000	5750	3	2	4	1	1	0
4	9800000	13200	3	1	2	1	0	1

▼ 8. Split the data into dependent and independent variables.

Dependent variable

```
y = data.loc[:, 'price':'price']
y
```

	price
0	10150000
1	10150000
2	9870000
3	9800000
4	9800000
•••	•••
534	1820000
535	1767150
536	1750000
537	1750000
538	1750000
539 ro	ws × 1 columns

Independent variable

```
X = data.drop(columns=['price'], axis=1)
X
```

	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwater
0	8580	4	3	4	1	0	0	
1	16200	5	3	2	1	0	0	
2	8100	4	1	2	1	1	1	
3	5750	3	2	4	1	1	0	
4	13200	3	1	2	1	0	1	
•••								
534	3000	2	1	1	1	0	1	
535	2400	3	1	1	0	0	0	
536	3620	2	1	1	1	0	0	
537	2910	3	1	1	0	0	0	
538	3850	3	1	2	1	0	0	

539 rows × 13 columns

▼ 9. Scale the independent variables

Scaling

```
StandardScaler --> mean=0 std=1
MinMaxScaler --> scale between 0 to 1
```

```
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
```

```
name = X.columns
X_scaled = scale.fit_transform(X)
```

X_scaled

```
array([[0.47628866, 0.6
                                 , 1.
                                                                , 1.
        0.
                   ],
                   , 0.8
       [1.
                                 , 1.
                                                                , 0.
        1.
       [0.44329897, 0.6
                                              , ..., 1.
                                                                , 0.
                                 , 0.
        0.
                   ],
       [0.13539519, 0.2
                                 , 0.
                                                                , 0.
                  ],
                                              , ..., 1.
       [0.08659794, 0.4
                                 , 0.
                                                                , 0.
        0.
                   ],
```

X = pd.DataFrame(X_scaled, columns=name)

	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwa
0	0.476289	0.6	1.0	1.000000	1.0	0.0	0.0	
1	1.000000	0.8	1.0	0.333333	1.0	0.0	0.0	
2	0.443299	0.6	0.0	0.333333	1.0	1.0	1.0	
3	0.281787	0.4	0.5	1.000000	1.0	1.0	0.0	
4	0.793814	0.4	0.0	0.333333	1.0	0.0	1.0	
•••								
534	0.092784	0.2	0.0	0.000000	1.0	0.0	1.0	
535	0.051546	0.4	0.0	0.000000	0.0	0.0	0.0	
536	0.135395	0.2	0.0	0.000000	1.0	0.0	0.0	
537	0.086598	0.4	0.0	0.000000	0.0	0.0	0.0	
538	0.151203	0.4	0.0	0.333333	1.0	0.0	0.0	

539 rows × 13 columns

▼ 10. Split the data into training and testing

Train-Test Split

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

X_train

	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwa
470	0.288660	0.4	0.0	0.333333	1.0	0.0	1.0	
208	0.185567	0.2	0.0	0.000000	1.0	0.0	1.0	
250	0.161512	0.4	0.0	0.333333	1.0	0.0	0.0	
157	0.355670	0.4	0.0	0.000000	1.0	1.0	1.0	
118	0.335052	0.4	0.5	1.000000	1.0	0.0	0.0	
•••								
70	0.327835	0.4	0.5	0.666667	1.0	0.0	0.0	
277	0.186254	0.6	0.0	0.333333	1.0	0.0	0.0	

y_train

	pi icc
170	2940000

4865000

4480000

5425000

5950000

•••

6650000

4270000

9100000

3703000

4935000

431 rows × 1 columns

X_test

	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwa
172	0.373540	0.4	0.0	0.000000	1.0	1.0	1.0	
469	0.092784	0.2	0.0	0.333333	1.0	0.0	0.0	
196	0.169759	0.2	0.0	0.000000	1.0	0.0	1.0	
417	0.144330	0.4	0.0	0.000000	1.0	0.0	0.0	
535	0.051546	0.4	0.0	0.000000	0.0	0.0	0.0	
•••								
494	0.079038	0.4	0.0	0.000000	1.0	0.0	0.0	
225	0.183505	0.4	0.0	0.000000	1.0	0.0	0.0	

y_test

price
5229000
2961000
4900000
3360000
1767150
2660000
4690000
3850000
4007500
9100000

108 rows × 1 columns

▼ 11. Build the Model

from sklearn.linear_model import LinearRegression
lr=LinearRegression()

▼ 12. Train the Model

```
#train the model
lr.fit(X_train,y_train)
```

LinearRegression
LinearRegression()

▼ 13. Test the Model

```
#test the model
y_pred=lr.predict(X_test)
y_pred #prediction
     array([[5281792.],
             [3493888.],
             [3919872.],
             [2830336.],
             [2392064.],
             [4204544.],
             [2787328.],
             [4632576.],
             [4763648.],
             [5349376.],
             [4687872.],
             [6633472.],
             [2289664.],
             [3727360.],
             [5038080.],
             [4087808.],
             [2799616.],
             [2863104.],
             [3217408.],
             [5285888.],
             [4990976.],
             [3926016.],
             [6561792.],
             [2770944.],
             [5769216.],
             [3248128.],
             [3549184.],
             [3889152.],
             [6043648.],
             [6610944.],
             [5998592.],
             [5677056.],
             [5738496.],
             [3211264.],
             [6684672.],
             [4429824.],
             [2723840.],
             [4894720.],
```

```
[4349952.],
[4374528.],
[6273024.],
[3588096.],
[4759552.],
[5040128.],
[6402048.],
[2598912.],
[6078464.],
[5457920.],
[3825664.],
[6146048.],
[3424256.],
[5564416.],
[7649280.],
[3786752.],
[4186112.],
[7493632.],
[6588416.],
[4704256.],
```

y_test # Actual outcome

	price				
172	5229000				
469	2961000				
196	4900000				
417	3360000				
535	1767150				
•••	•••				
494	2660000				
225	4690000				
337	3850000				
318	4007500				
10	9100000				
108 ro	108 rows × 1 columns				

▼ 14. Measure the performance using Metrics.

 $from \ sklearn.metrics \ import \ mean_squared_error, r2_score, \ mean_absolute_error$

error=y_test-y_pred

error

	price				
172	-52792.0				
469	-532888.0				
196	980128.0				
417	529664.0				
535	-624914.0				
•••					
494	56992.0				
225	1261648.0				
337	583440.0				
318	-788916.0				
10	2210528.0				
108 ro	108 rows × 1 columns				

Square error

se=error*error

se

```
469 2.839696e+11
      196 9.606509e+11
 Mean square error
mse=np.mean(se)
     /Users/akashr/anaconda3/lib/python3.10/site-packages/numpy/core/fromnumeric.py:
       return mean(axis=axis, dtype=dtype, out=out, **kwargs)
mse
     price
              1.003011e+12
     dtype: float64
mse2=mean_squared_error(y_test,y_pred)
mse2
     1003011179983.2963
 Mean absolute eroor
mae=mean_absolute_error(y_test,y_pred)
mae
     785114.574074074
rmse=np.sqrt(mse2)
rmse
     1001504.4582942686
 R2 Score
acc=r2_score(y_pred,y_test)
acc
```

price

172 2.786995e+09

0.4931216347655545

