

Everlasting Iatric Researcher (Eir): Identifying the Article and Reading for Genetic Association Knowledge

Xiang Liu, Wenting Ye, Haohan Wang

Language Technologies Institute, School of Computer Science, Carnegie Mellon University

Contribution

- We propose to directly simulate the behavior of a researcher (i.e. selecting papers and reading for details) instead of universally examining the entire corpus.
- We develop a deep reinforcement learning model that can select both authentic and informative articles to read.
- We maintain a cutting-edge genetic association relationship database that can be easily queried.

Introduction

• Traditional biomedical text mining learns a massive amount of unreliable knowledge, because the papers themselves are questionable.

• Eir, behaves like human, only reads the paper that she considers trustworthy, and construts knowledge base accordingly.

Deep Reinforcement Learning

Since our model involves a continuous state space *S*, we employ a deep Q-network (DQN) to learn the policy of agent with loss function:

$$L(\theta) = E_{\hat{s},\hat{a}}[(y - Q(\hat{s}, \hat{a}; \theta))^2]$$

where $y = r + \gamma \max_{a'} Q(\hat{s}', a'; \theta_t)$, and $(\hat{s}, \hat{a}, \hat{s'}, r)$ is selected transition.

- Learn the parameters θ of the DQN using stochastic gradient descent
- Use a (separate) target Q-network to calculate the expected Q-value for "stable update"
- Employ an experience replay memory D to store transitions

Model Framework

Eir's research process is a Markov decision process (MDP), which can be represented as a tuple $\langle S, A, T, R \rangle$, where S = s is the space of all possible states, A = a is the set of all actions, R(s, a) is the reward function and $T(s' \mid s, a)$ is the transition function.

Figure 2: Overview of Eir's possible behaviors

States: The state *s* in the MDP describes the research status of Eir. The information of the state depends on which status Eir is in.

Eir's state	Information		
Read the title	TitleJournal informationAuthor information		
Read the abstract	Association entityConfidenceContext information		

Table 1: Component of Eir's state in different scenarios

Dataset

- Genetic Association Database (GAD) (Becker et al., 2004)
 - A manually crafted database of 142,000 high quality articles with the association it describes.
- PubMed
 - An online library which contains more than 27 million citations for biomedical literature

Result and Future Work

Observations

At current stage of this project, we obtain the first 4,000 gene-trait associations in GAD with 5,331 articles, and download 35,178 relevant articles from PubMed. The results are showed below.

Entity	Correctness
Gene	83.5%
Trait	76.2%

	Title	Abstract
Precision	30.9%	54.6%
Recall	24.6%	46.6%
F ₁	0.261	0.50

Figure 3a. Entity correctness

Figure 3b. Selection accuracy

Figure 3c. Average reward

Future works

- A larger amount of text resources
- More powerful text mining tools
- Construction of other biomedical knowledge database, i.e. gene-gene interaction

Contact

Haohan Wang (haohanw@cs.cmu.edu)

Eir's Origin

Eir is the name of the goddess of medical knowledge and skills in Norse mythology. With current technology, we are hoping to realize the mythology in this modern world.