Expected Versus Unexpected Fiscal Policy Multipliers

James Murray
Department of Economics
University of Wisconsin - La Crosse

Friday, June 7, 2013

- Estimate the impact of predicted versus unexpected fiscal policy.
- Contribute to an unsettled fiscal multiplier literature using SVARs.
 - Size of the multiplier, statistical significance, impact on spending components
 - Identification strategy
 - Hebous (Journal of Economic Surveys, 2007)
- Least-squares adaptive expectations.
 - Surveys: Evans and Honkapohja (2008, 2010)
 - Fiscal multipliers with adaptive expectations: Mitra, Evans and Honkapohja (2012).

- Baseline model (SVAR): estimate the impact of fiscal policy on macro outcomes.
- ② Fiscal policy uncertainty
 - Expectations framework
 - Decompose actual fiscal policy into expected and unexpected components.
- Extended model (SVAR): estimate the impact on macro outcomes for
 - Expectations for fiscal policy (predicted value)
 - Unexpected fiscal policy (residual)

Baseline Structural VAR

Baseline model:

$$A_0x_t = \alpha_0 + \alpha_1t + A(L)x_t + z_t,$$

- Includes a constant and a linear trend.
- Endogenous vector:

$$x_t = \begin{bmatrix} y_t \\ c_t \\ i_t \\ u_t \\ t_t \\ g_t \end{bmatrix} = \begin{bmatrix} & \text{Real GDP per capita} \\ & \text{Consumption per capita} \\ & \text{Investment per capita} \\ & \text{Unemployment Rate} \\ & \text{Taxes net of transfers per capita} \\ & \text{Government consumption per capita} \end{bmatrix}$$

- A₀ captures contemporaneous causal relationships
 - Identified with zero-restrictions on contemporaneous relationships.

Identification Strategy

- Implementation lag for government spending: g_t does not contemporaneously respond to anything.
- Taxes contemporaneously respond to everything: real GDP, consumption, investment, unemployment, government expenditures.
- Consumption contemporaneously responds to taxes, government expenditures, real GDP, and unemployment.
- Investment contemporaneously responds to taxes, government expenditures, and real GDP.
- Real GDP contemporaneously determined by its components: c_t , i_t , and g_t .
- Labor market frictions prevent unemployment from contemporaneously responding to anything.

Identification Strategy

These restrictions leads to the following structure:

$$\begin{bmatrix} 1 & a_{y,c} & a_{y,i} & 0 & 0 & a_{y,g} \\ a_{c,y} & 1 & 0 & a_{c,u} & a_{c,t} & a_{c,g} \\ a_{i,y} & 0 & 1 & 0 & a_{i,t} & a_{i,g} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ a_{t,y} & a_{t,c} & a_{t,i} & a_{t,u} & 1 & a_{t,g} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_t \\ c_t \\ i_t \\ u_t \\ t_t \\ g_t \end{bmatrix} = A(L) \begin{bmatrix} y_{t-1} \\ c_{t-1} \\ i_{t-1} \\ u_{t-1} \\ t_{t-1} \\ g_{t-1} \end{bmatrix} + \begin{bmatrix} z_{y,t} \\ z_{c,t} \\ z_{i,t} \\ z_{u,t} \\ z_{t,t} \\ z_{g,t} \end{bmatrix},$$

- A(L): first-order distributed lag.
- z_{k,t}: independently and identically distributed shocks to endogenous variables.
- Fiscal policy responses: IRFs of macro outcomes to taxes $(z_{t,t})$ and government expenditures $(z_{g,t})$.

Fiscal Policy Responses to Own Shocks

Government expenditures shock is very persistent

Taxes? Problem with Identification Scheme?

Impulse Response: Shock to Taxes

Fiscal Policy Multiplier

Cumulative multiplier for each period after the shock.

$$\mathsf{Multiplier}_T \equiv m_T = rac{\displaystyle\sum_{ au=0}^T y_ au^{\mathsf{resp}}}{\displaystyle\sum_{ au=0}^T f_ au^{\mathsf{resp}}}$$

- y_T^{resp} is the response of real GDP, T periods after the initial shock.
- f_T^{resp} is the response of the fiscal policy variable, g_T and t_T in turn.

Fiscal Policy Multipliers

Government consumption multiplier is very close to zero

Tax multiplier has the opposite sign than expected.

Knowledge of Fiscal Policy

- Market participants' set of knowledge at any point in the sample period, is not equal to my estimated SVAR from June 2013.
- Market participants are less informed:
 - Knowledge of the nature of fiscal policy at time t depends on data prior to t.
- Might be more informed:
 - Structural change not captured by my SVAR, agents at time t have a better perception of their structure, using data near t.
 - Announcements or news of economic events (not in this paper though).
- Might have misconceptions:
 - Past data may be a poor guide to upcoming policy.

Fiscal Policy Uncertainty

- Exact conduct of fiscal policy decisions is unknown.
- Boundedly rational: agents expect tax and government spending decisions respond to:
 - Macroeconomic variables: Unemployment, real GDP.
 - Fiscal variables: own lag, debt.
- Agents use least-squares regression models to forecast fiscal variables.
- Expectations are adaptive:
 - Agents re-estimate a regression model every quarter, updating their information set with new observation from the previous quarter.
 - Agents put more weight on more recent observations: Constant gain, weighted least-squares forecast.

Motivation for Least-Squares Learning

- Taxes and transfers: respond contemporaneously to economic conditions.
- Government spending:
 - Even announcements could be subject to legislative adjustments or reversals.
 - Stimulus policies are complicated mixtures of taxes, transfers, and spending.
 - Stimulus policies involve complicated implementation lags.
 - Forecast is for the national entire portfolio of federal, state, and local spending.
- Cognitive consistency principle (Evans and Honkapohja, 2010)

Fiscal Policy Rules

Fiscal policy forecasting models

$$g_t = \alpha_0 + \rho_g g_{t-1} + \alpha_y(L) y_t + \alpha_u(L) u_t + \alpha_d d_{t-1} + \epsilon_{g,t}$$

$$t_t = \beta_0 + \rho_t t_{t-1} + \beta_u(L) y_t + \beta_u(L) u_t + \beta_d d_{t-1} + \epsilon_{t,t},$$

Notation

- g_t : Gov spending
- t_t: Net taxes
- y_t: Real GDP
- u_t : Unemployment
- d_t: Government debt

- α_0 , β_0 : constant terms
- ρ_g , ρ_t : persistence
- α_d , β_d : response to debt
- $\alpha_y(L)$, $\alpha_u(L)$: 2nd order distributed lag polynomials.

Least-Squares Learning

OLS Regression

Time *t* estimates of the regression coefficients:

$$\hat{\Phi}_t = \left(\sum_{ au=0}^t X_ au X_ au'_ au
ight)^{-1} \left(\sum_{ au=0}^t X_ au'_ au f_ au
ight)$$

- $f_{\tau} \in \{g_{\tau}, t_{\tau}\}$ is fiscal policy policy variable.
- X_τ is the vector of explanatory variables in the regression equation (per-determined at τ).
- Predicted fiscal policy: f̂_t = X'_t Φ̂_{t-1}
- Unexpected policy: $\hat{\epsilon}_{f,t} = f_t X_t' \hat{\Phi}_{t-1}$

Recursive Formulation

The OLS regression coefficients can be rewritten as:

$$R_{t} = R_{t-1} + \gamma_{t} (X_{t} X'_{t} - R_{t-1}),$$

$$\hat{\Phi}_{t} = \Phi_{t-1} + \gamma_{t} R_{t}^{-1} X_{t} (f_{t} - X'_{t} \hat{\Phi}_{t-1})$$

where $\gamma_t = 1/t$ is the **learning gain**.

Constant Gain Learning

Constant gain framework

- Replace γ_t with a constant, $\gamma \in (0,1)$.
- Weighted least squares more recent observations have more weight.

Ideal situations for constant gain learning

- Precedence of structural changes.
- No a-priori knowledge on menu of structural changes and probability distributions.
- Reasonable that learning dynamics should not disappear with time.

Constant-Gain Learning

Constant Gain Recursive Formulation

$$R_{t} = R_{t-1} + \gamma (X_{t}X'_{t} - R_{t-1}),$$
$$\hat{\Phi}_{t} = \Phi_{t-1} + \gamma R_{t}^{-1}X_{t}(f_{t} - X'_{t}\hat{\Phi}_{t-1})$$

- Learning gain, $\gamma \in (0,1)$, is constant, related to the weight assigned to most recent observation.
- \bullet Typical estimates for $\gamma \sim$ 0.02 (Milani (2008), Slobodyan and Wouters (2008)).

Standard Formulation

$$\hat{\Phi}_t = \left((1-\gamma) \sum_{ au=1}^t \gamma^ au \mathsf{X}_{t- au} \mathsf{X}_{t- au}'
ight)^{-1} \left((1-\gamma) \sum_{ au=1}^t \gamma^ au \mathsf{X}_{t- au} \mathit{f}_{t- au}
ight).$$

Weight on t- au observation declines geometrically with au: $\omega_{ au}=(1-\gamma)\gamma^{ au}$.

Dependent variable: Government Consumption

Evolution of Coefficients

Real GDP

(Expect: Negative)

Government Debt

(Expect: Negative)

Dependent variable: Government Consumption

Evolution of Coefficients

Unemployment (Expect: Positive)

Own Lag

(Expect: Between 0 and 1)

Dependent variable: Government Consumption

Predicted and Unexpected Government Consumption

Dependent variable: Taxes

Evolution of Coefficients

Real GDP (Expect: Positive)

Government Debt

(Expect: Positive)

Dependent variable: Taxes

Evolution of Coefficients

Unemployment (Expect: Negative)

Own Lag

(Expect: Between 0 and 1)

Dependent variable: Taxes

Predicted and Unexpected Taxes Net of Transfers

Model:

$$A_0x_t=A(L)x_t+z_t,$$

Endogenous vector:

$$x_t = \begin{bmatrix} y_t \\ c_t \\ i_t \\ u_t \\ \hat{\epsilon}_{t,t} \\ \hat{\epsilon}_{g,t} \\ \hat{g}_t \end{bmatrix} = \begin{bmatrix} \text{Real GDP} \\ \text{Consumption} \\ \text{Investment} \\ \text{Unemployment Rate} \\ \text{Unexpected Net Taxes} \\ \text{Unexpected Government Spending} \\ \text{Expected Net Taxes} \\ \text{Expected Government Spending} \end{bmatrix}$$

Identification Restrictions

- Similar to above: treat unexpected fiscal policies in the same manner as fiscal policy in the baseline.
- Expectations of fiscal policy in the current period are predetermined.
 - Nothing contemporaneously affects expected fiscal policy.
 - Expected fiscal policy may contemporaneously affect consumption, investment, unemployment, unexpected fiscal policy.

Identification Strategy

Structural VAR with identification restrictions:

$$\begin{bmatrix} 1 & a_{y,c} & a_{y,i} & 0 & 0 & a_{y,g} & 0 & a_{\zeta}^e, g \\ 0 & 1 & 0 & a_{c,u} & a_{c,t} & a_{c,g} & a_{c,t}^e & a_{c,g}^e, g \\ a_{i,y} & 0 & 1 & 0 & a_{i,t} & a_{i,g} & a_{i,t}^e & a_{i,g}^e, g \\ 0 & 0 & 0 & 1 & 0 & 0 & a_{u,t}^e, & a_{u,g}^e, g \\ a_{t,y} & a_{t,c} & a_{t,i} & a_{t,u} & 1 & a_{t,g} & a_{t,t}^e, a_{u,g}^e, g \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix} \begin{bmatrix} y_t \\ c_t \\ i_t \\ u_t \\ \hat{\epsilon}_t, t \\ \hat{\epsilon}_g, t \\ \hat{\epsilon}_g, t \\ \hat{\epsilon}_g, t \\ \hat{\epsilon}_g, t \end{bmatrix} = A(L) \begin{bmatrix} y_{t-1} \\ c_{t-1} \\ i_{t-1} \\ c_{t,t-1} \\ \hat{\epsilon}_g, t \end{bmatrix}$$

Impulse response functions to measure the impact of fiscal policy:

- Expected fiscal policy: innovations to $z_{\hat{t},t}$ and $z_{\hat{g},t}$.
- ullet Unexpected fiscal policy: innovations to $z_{t,t}^\epsilon$ and $z_{g,t}^\epsilon$

Fiscal Policy Responses to Own Shocks

Expected Gov Expenditures

Expected Taxes

Unexpected Gov Expenditures

Unexpected Taxes

Impulse Response: Government Expenditures

Expected Gov Expenditures Unexpected Gov Expenditures

Impulse Response: Net Taxes

Expected Net Taxes

Unexpected Net Taxes

Fiscal Policy Multipliers

$$\begin{aligned} \text{Multiplier}_T &= \frac{\displaystyle\sum_{\tau=0}^T y_{\tau}^{\textit{resp}}}{\displaystyle\sum_{\tau=0}^T \hat{f}_{\tau}^{\textit{resp}} + \hat{\epsilon}_{f,\tau}^{\textit{resp}}} \end{aligned}$$

- y_T^{resp} is the response of real GDP, T periods after the initial shock.
- \hat{t}_T^{resp} is the response of the predicted fiscal policy variable, \hat{g}_T and \hat{t}_T , in turn.
- $\hat{\epsilon}_{f,\tau}^{resp}$ is the response of the unexpected (residual) fiscal policy variable, $\hat{\epsilon}_{g,T}$ and $\hat{\epsilon}_{t,T}$, in turn.

Fiscal Policy Multipliers

Expected fiscal policy multiplier is larger in longer horizons

Something's wrong.

Conclusions for Fiscal Policy

- Government spending:
 - Timing of the response different for shocks to expected versus unexpected policy.
 - Consumption responses to expected fiscal policy are statistically significant.
 - Consumption responses to unexpected fiscal policy are not statistically significant.
 - Expected fiscal policy multiplier is larger in longer horizons.
- Taxes:
 - Responses to unexpected shocks similar to baseline model tax shocks.
 - Unexpected tax shocks are muted net taxes are an automatic stabilizer.

Moving Forward

- Sign restrictions identification strategy (Mountford and Uhlig, 2009).
- Minimal assumptions to identify minimal shocks:
 - Business cycle or monetary shock: increase output, consumption, and investment; decrease unemployment.
 - Fiscal policy shock: fiscal policy variable increases, shock is orthogonal to shock above.