§ 14. Поток событий (случайный процесс с дискретными состояниями и непрерывным временем)

- Определение. Поток событий это последовательность однородных событий, наступающих одно за другим в случайные промежутки времени.
- Определение. Интенсивность потока λ это среднее число событий в единицу времени. Интенсивность потока можно рассчитать экспериментально по формуле: $\lambda = N/T_H$, где N число событий, произошедших за время наблюдения T_H .
- Определение. Если интервал между событиями равен константе или определен какой-либо формулой в виде: $t_j = f(t_{j-1})$, то поток называется детерминированным. Иначе поток называется случайным.

Случайные потоки бывают:

- ✓ ординарные: вероятность одновременного появления двух и более событий равна нулю;
- \checkmark стационарные: частота появления событий $\lambda(t) = \text{const};$
- ✓ без последействия: вероятность появления случайного события не зависит от момента совершения предыдущих событий.

Определение. Поток, который обладает свойствами стационарности, отсутствия последействия и ординарности, называют пуассоновским (или простейшим).

Замечание. Для *простейшего потока* вероятность появления *m* событий за время τ равна: $P(m) = \frac{(\lambda \tau)^m}{m!} \cdot e^{-\lambda \tau}$

Вероятность того, что за время τ не появится ни одного события (m = 0) равна $P(0) = e^{-\lambda \tau}$

Вероятность появления хотя бы одного события $P(m>0) = 1 - e^{-\lambda \tau}$

Пример. Среднее число заказов такси, поступающих на диспетчерский пункт в одну минуту, равно трем. Найти вероятность того, что за 2 мин поступит:

- а) четыре вызова (0,135);
- б) не менее четырех вызовов (0,8475).

§ 15. Понятие случайной величины и её функции распределения вероятностей

• Определение. Случайной величиной X называется действительная $\mathit{числовая}$ функция $X = X(\omega)$, определенная на пространстве элементарных событий Ω и такая, что для любого $x \in \mathbb{R}$ множество тех ω , для которых $X(\omega) < x$, принадлежит алгебре событий данного эксперимента.

• Определение. Функцией распределения вероятностей случайной величины X называется функция F(x) = P(X < x).

Свойства функции распределения:

$$1. \ 0 \le F_X(x) \le 1 \qquad \forall x \in R$$

$$2. F_X(x_1) \leq F_X(x_2) \qquad \forall \ x_1 \leq x_2$$

(функция распределения – неубывающая функция)

$$F_X(x_2) = P(X < x_2) = P(X < x_1) + P(x_1 \le X \le x_2)$$

$$P(x_1 \le X \le x_2) \ge 0 => P(X < x_2) \ge P(X < x_1)$$

Следствие: $P(x_1 \le X < x_2) = F_X(x_2) - F_X(x_1)$

3.
$$F_X(-\infty) = 0$$
, $F_X(+\infty) = 1$

4. Функция распределения $F_X(x)$ непрерывна слева.