Inteligência Artificial

Professor: Ricardo Fiera

ricardofiera@esucri.com.br

- Lógica
 - Estudo sobre a natureza do raciocínio;
 - Usada para formalizar e justificar os elementos do raciocínio;
 - Baseia-se em um mundo bivalente ou binário;
 - Representado por sentenças que podem assumir dois valores binários;
 - Verdadeiro ou falso.

- Lógica Proposicional;
 - Forma mais simples da lógica;
 - Representada por sentenças sem argumentos, chamadas de proposições;

Exemplo:

MUNDO REAL	PROPOSIÇÃO LÓGICA
Hoje está chovendo	Р
A rua está molhada	Q
Se está chovendo, então a rua está molhada.	$P \rightarrow Q$

- Definição de proposição:
 - Uma proposição é uma sentença, de qualquer natureza, que pode ser qualificada de verdadeiro ou falso;
 - Exemplo:
 - 1 + 1 = 2 (proposição verdadeira)
 - 0 > 1 (proposição falsa)

- Não representa uma proposição:
 - o 2+3*5
 - x+5=20 (sentença aberta, quem não sabe o valor de x, não se pode dizer se é verdadeiro ou falso, é uma sentença aberta)
 - Ele é rico (ele atua como o X)

As três leis da lógica;

- Lei do princípio da identidade:
 - \circ A = A;
 - Todo objeto é idêntico a si mesmo.

As três leis da lógica

- Lei do terceiro excluído:
 - Uma proposição é verdadeira ou é falsa, não existe uma terceira possibilidade;

As três leis da lógica

- Lei da não contradição:
 - Nenhuma proposição pode ser verdadeira ou falsa ao mesmo tempo;

Proposições compostas

- Duas ou mais proposições simples ligadas através de um conectivo;
 - Ex: Maria é rica e José é pobre;

Conectivos

- e;
- OU;
- se então;
- se somente se;
- não (conectivo ou modificador);

Representação de proposições

- Podem ser representadas por uma letra;
 - P = Maria é rica;
 - Q = José é pobre;

Representação dos conectivos

- $\wedge = e$;
- \bullet \vee = \circ U;
- -> = se então;
- <-> = se somente se;
- ~ = não;

Conectivo 'ou'

- Maria é rica ou josé é pobre;
 - o PVQ;
 - Disjunção das proposições simples;
 - Representa uma união de conjuntos;

Conectivo 'e'

- Maria é rica e josé é pobre;
 - P ^ Q;
 - Conjunção das proposições simples;
 - Representa uma intersecção de conjuntos;

Conectivo 'se então';

- Se Maria é rica então José é pobre;
 - P -> Q;
 - Único conectivo onde a ordem é importante;

- Conectivo 'se somente se';
- Se Maria é rica e se somente se josé é pobre;
 - P <-> Q;
 - Torna uma frase bicondicional;

Precedência dos conectivos

- Símbolos de pontuação (parenteses), assim como na matemática, são empregados para priorizar um "cálculo proposital";
- Estes símbolos podem ser omitidos quando isso não altera o significado da fórmula proposicional.
- Exemplo: ~(P v Q)
 - Se P = falso e Q = verdadeiro
 - ~ (Falso v Verdadeiro) = ~ Verdadeiro = Falso

Exercício

Elimine o maior número possível de parênteses da fórmula, sem alterar seu significado original:

 $((\sim P) \vee ((\sim (P \vee Q)) \vee Z))$

Resolução

```
((~P) v ((~(P v Q)) v Z))
(~P) v ((~(P v Q)) v Z)
(~P) v (~(P v Q) v Z)
~P v (~(P v Q) v Z)
```

> Conectivo 'e':

P	Q	PΛQ
V	V	V
V	F	F
F	V	F
F	F	F

> Conectivo 'ou':

P	Q	P v Q
V	V	V
V	F	V
F	V	V
F	F	F

Conectivo 'se então':

Р	Q	P -> Q
V	V	V
V	F	F
F	V	V
F	F	V

Conectivo 'se então':

Ficar atendo a ordem das proposições;

Conectivo 'se então'

- Se chover então eu vou embora;
- Choveu, fui embora, verdadeira;
- Choveu, não fui embora, falsa; (quebrei a regra)
- Não choveu, fui embora, verdadeira;
- Não choveu, não fui embora, posso ir, como posso não ir, verdadeira;

P	Q	P -> Q
V	V	V
V	F	F
F	٧	V
F	F	V

Conectivo 'se somente se':

Р	Q	P <-> Q
V	V	V
V	F	F
F	V	F
F	F	V

Conectivo 'se somente se'

- Se chover e se somente se eu vou embora;
- Se choveu e eu fui embora, verdadeira;
- Se choveu, e eu n\u00e3o fui embora, falsa; (quebrei a regra)
- Se Não choveu e eu fui embora, falsa;
- Se Não choveu e eu não fui embora, verdadeira;

P	Q	P <-> Q
V	V	V
V	F	F
F	٧	F
F	F	V

Modificador 'não'

P	Q	~(P v Q)
V	V	F
V	F	F
F	V	F
F	F	V

Exercício

1. Para as seguintes proposições: P: Bebo; Q: Dirijo;

Considerando P = falso (não bebo) e Q = Verdadeiro (dirijo);

Informe o resultado para as seguintes proposições compostas:

PvQ:	\sim (P -> \sim P) \wedge Q:
P ^ Q:	~(~P) v ~Q:
P -> Q:	~(P <-> ~P) v ~Q:
Q <-> P:	\sim (P $\land \sim$ P) <-> \sim Q:
Q -> P:	(P -> P) v Q:
~(Q v ~P):	~(~P -> P) ^ ~Q:
~Q -> P:	\sim (P v (P->Q)) \land (Q <-> P):

Tautologia

 Definição: Toda proposição composta que apresenta como resultado da última coluna de sua tabela verdade somente o valor verdadeiro (V);

 \sim Exemplo: \sim (P \wedge \sim P)

Tautologia

$$\sim (P \land \sim P)$$

P	~P	P ∧ ~P	~(P ^ ~P)
V	F	F	V
F	V	F	V

Contradição

 Definição: Toda proposição composta que apresenta como resultado da última coluna de sua tabela verdade somente o valor falso (F);

Exemplo: \sim (P \vee \sim (P \wedge Q))

Contradição

Exemplo: \sim (P \vee \sim (P \wedge Q))

P	Q	PΛQ	~(P ^ Q)	P v ~(P ^ Q)	~(P v ~(P ^ Q))
V	V	V	F	V	F
V	F	F	V	V	F
F	V	F	V	V	F
F	F	F	V	V	F

Contingência

 Definição: Toda proposição composta em que na última coluna de sua tabela verdade aparecem os valores verdadeiro (V) ou falso (F) pelo menos uma vez cada;

Exemplo: $(P \lor Q) \rightarrow P$

Contingência

Exemplo: \sim (P \vee \sim (P \wedge Q))

P	Q	PvQ	P v Q -> P
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	V

Exercício

- 2. Faça as tabelas verdade para as seguintes fórmulas proposicionais:
- a. Q -> (P -> Q)
- b. $P \wedge Q \wedge (\sim P \vee \sim Q)$
- c. $(P \vee Q) \wedge (\sim S > Q)$
- d. \sim (P v \sim (P \wedge Q))
- e. \sim (P <-> Q) \wedge (S \vee Q)

Exercício

3. Monte a tabela verdade das duas proposições e identifique se a proposição corresponde a uma Tautologia, contradição ou contingência:

```
a) ((P) \land ((\sim (P \lor Q)) \lor Z))
```

b)
$$(P \land Q) \lor (\sim P \lor \sim Q)$$

c) (P)
$$\vee$$
 ((\sim P \vee Q) \vee Z)

d)
$$P \wedge (\sim P)$$