Relational Algebra

Basic Operations Algebra of Bags

What is an "Algebra"

- Mathematical system consisting of:
 - Operands --- variables or values from which new values can be constructed.
 - Operators --- symbols denoting procedures that construct new values from given values.

What is Relational Algebra?

- An algebra whose operands are relations or variables that represent relations.
- Operators are designed to do the most common things that we need to do with relations in a database.
 - The result is an algebra that can be used as a query language for relations.

Core Relational Algebra

- Union, intersection, and difference.
 - Usual set operations, but both operands must have the same relation schema.
- Selection: picking certain rows.
- Projection: picking certain columns.
- Products and joins: compositions of relations.
- Renaming of relations and attributes.

Selection

- R1 := $\sigma_{c}(R2)$
 - C is a condition (as in "if" statements) that refers to attributes of R2.
 - R1 is all those tuples of R2 that satisfy C.

Example: Selection

Relation Sells:

bar	beer	price	
Joe's		d 2.	50
Joe's		ler 2.	75
Sue's		d 2.	50
Sue's	s Mil	ler 3.	00

JoeMenu := $\sigma_{\text{bar}=\text{``loe's''}}$ (Sells):

bai		beer	3	price	
Joe	Ś	Bu	d	2.50	
Joe	e's	Mil	ler	2.75	

Projection

- R1 := $\pi_{L}(R2)$
 - L is a list of attributes from the schema of R2.
 - R1 is constructed by looking at each tuple of R2, extracting the attributes on list L, in the order specified, and creating from those components a tuple for R1.
 - Eliminate duplicate tuples, if any.

Example: Projection

Relation Sells:

baı	•	beer		price	
Joe	'S	Bu	d	2.50	
Joe		Mil	ler	2.75	
Su	e's	Bu	d	2.50	
Sue	e's	Mil	ler	3.00	

Prices := $\pi_{\text{beer,price}}(\text{Sells})$:

be	er	price
Bu		2.50
Mil		2.75
Mil	ler	3.00

Extended Projection

- Using the same π_L operator, we allow the list L to contain arbitrary expressions involving attributes:
 - 1. Arithmetic on attributes, e.g., A+B->C.
 - 2. Duplicate occurrences of the same attribute.

Example: Extended Projection

$$\pi_{A+B->C,A,A}(R) = C$$
A1 A2

7 3 3 1 1
7 3 3

Product

- R3 := R1 X R2
 - Pair each tuple t1 of R1 with each tuple t2 of R2.
 - Concatenation t1t2 is a tuple of R3.
 - Schema of R3 is the attributes of R1 and then R2, in order.
 - But beware attribute A of the same name in R1 and R2: use R1.A and R2.A.

Example: R3 := R1 X R2

R3(Α,	R	1.B,	R2	2.B,	O)
1	2	5	6				
1	2	7	8				
1	2	9		10			
3	4	5	6				
3	4	7	8				
3	4	9		10			

Theta-Join

- R3 := R1 \bowtie_{C} R2
 - Take the product R1 X R2.
 - Then apply σ_c to the result.
- As for σ, C can be any boolean-valued condition.
 - Historic versions of this operator allowed only A θ B, where θ is =, <, etc.; hence the name "theta-join."

Example: Theta Join

```
Sells( bar, beer, price )
Joe's Bud 2.50
Joe's Miller 2.75
Sue's Bud 2.50
Sue's Coors 3.00
```

```
Bars( name, addr )
Joe's Maple St.
Sue's River Rd.
```

```
BarInfo := Sells ⋈ Sells.bar = Bars.name Bars
```

BarInfo(bar,	beer,	price,	name,	addr
Joe's	Bud	2.50	Joe's	Maple	St.
Joe's	Miller	2.75	Joe's	Maple	St.
Sue's	Bud	2.50	Sue's	River I	Rd.
Sue's	Coors	3.00	Sue's	River I	Rd.

14

Natural Join

- A useful join variant (*natural* join) connects two relations by:
 - Equating attributes of the same name, and
 - Projecting out one copy of each pair of equated attributes.
- Denoted R3 := R1 ⋈ R2.

Example: Natural Join

Sells(ba	r, be	er, price)	Bars(bar,	addr)
Joe's	Bud	2.50		Joe's	Maple	St.	
Joe's	Miller	2.75		Sue's	River	Rd.	
Sue's	Bud	2.50					
Sue's	Coors	3.00					

BarInfo := Sells ⋈ Bars

Note: Bars.name has become Bars.bar to make the natural join "work."

BarInfo(bar,	beer,	price,	addr)
Joe's	Bud	2.50	Maple	St.	
Joe's	Miller	2.75	Maple	St.	
Sue's	Bud	2.50	River I	Rd.	
Sue's	Coors	3.00	River I	Rd.	16

Renaming

- The ρ operator gives a new schema to a relation.
- R1 := $\rho_{R1(A1,...,An)}$ (R2) makes R1 be a relation with attributes A1,...,An and the same tuples as R2.
- Simplified notation: R1(A1,...,An) := R2.

Example: Renaming

```
Bars( name, addr
Joe's Maple St.
Sue's River Rd.
```

R(bar, addr) := Bars

```
R( bar, addr
Joe's Maple St.
Sue's River Rd.
```

Building Complex Expressions

- Combine operators with parentheses and precedence rules.
- Three notations, just as in arithmetic:
 - 1. Sequences of assignment statements.
 - 2. Expressions with several operators.
 - 3. Expression trees.

Sequences of Assignments

- Create temporary relation names.
- Renaming can be implied by giving relations a list of attributes.
- Example: R3 := R1 $\bowtie_{\mathcal{C}}$ R2 can be written:

$$R4 := R1 X R2$$

$$R3 := \sigma_{C}(R4)$$

Expressions in a Single Assignment

- Example: the theta-join R3 := R1 $\bowtie_{\mathcal{C}}$ R2 can be written: R3 := $\sigma_{\mathcal{C}}$ (R1 X R2)
- Precedence of relational operators:
 - 1. $[\sigma, \pi, \rho]$ (highest).
 - 2. [X, ⋈].
 - 3. ∩.
 - 4. [U, —]

Expression Trees

- Leaves are operands --- either variables standing for relations or particular, constant relations.
- Interior nodes are operators, applied to their child or children.

Example: Tree for a Query

 Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

As a Tree:

Example: Self-Join

- Using Sells(bar, beer, price), find the bars that sell two different beers at the same price.
- Strategy: by renaming, define a copy of Sells, called S(bar, beer1, price). The natural join of Sells and S consists of quadruples (bar, beer, beer1, price) such that the bar sells both beers at this price.

The Tree

Schemas for Results

- Union, intersection, and difference: the schemas of the two operands must be the same, so use that schema for the result.
- Selection: schema of the result is the same as the schema of the operand.
- Projection: list of attributes tells us the schema.

Schemas for Results --- (2)

- Product: schema is the attributes of both relations.
 - Use R.A, etc., to distinguish two attributes named A.
- Theta-join: same as product.
- Natural join: union of the attributes of the two relations.
- Renaming: the operator tells the schema.

Relational Algebra on Bags

- A bag (or multiset) is like a set, but an element may appear more than once.
- Example: {1,2,1,3} is a bag.
- Example: {1,2,3} is also a bag that happens to be a set.

Why Bags?

- SQL, the most important query language for relational databases, is actually a bag language.
- Some operations, like projection, are more efficient on bags than sets.

Operations on Bags

- Selection applies to each tuple, so its effect on bags is like its effect on sets.
- Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates.
- Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.

Example: Bag Selection

R(Α,	В)	
	1	2		
	5	6		
	1	2		

$$\sigma_{A+B<5}(R) = AB$$
1 2
1 2

Example: Bag Projection

R(Α,	В)	
	1	2		
	5	6		
	1	2		

$$\mathbf{\Pi}_{A}(R) = \mathbf{A}$$

$$1$$

$$5$$

$$1$$

Example: Bag Product

R(Α,	В)	S(В,	C)
	1	2		3	4		
	5	6		7	8		
	1	2					

RXS =	Α	R.B	S.BC	
1	2	3 4	4	
1	2	7 8	8	
5	6	3 4	4	
5	6	7 8	8	
1	2	3 4	4	
1	2	7 8	8	

Example: Bag Theta-Join

R(Α,	В)	S(В,	C)
	1	2		3	4		
	5	6		7	8		
	1	2					

$R \bowtie_{R.B < S.B} S$	=	Α	R.B	S.BC	
1	2	3	4		
1	2	7	8		
5	6	7	8		
1	2	3	4		
1	2	7	8		

Bag Union

- An element appears in the union of two bags the sum of the number of times it appears in each bag.
- Example: $\{1,2,1\} \cup \{1,1,2,3,1\} = \{1,1,1,1,1,2,2,3\}$

Bag Intersection

- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
- Example: $\{1,2,1,1\} \cap \{1,2,1,3\} = \{1,1,2\}.$

Bag Difference

- An element appears in the difference A

 B of bags as many times as it appears in A, minus the number of times it appears in B.
 - But never less than 0 times.
- Example: $\{1,2,1,1\} \{1,2,3\} = \{1,1\}$.

Beware: Bag Laws != Set Laws

- Some, but not all algebraic laws that hold for sets also hold for bags.
- Example: the commutative law for union $(R \cup S = S \cup R)$ does hold for bags.
 - Since addition is commutative, adding the number of times x appears in R and S doesn't depend on the order of R and S.

Example: A Law That Fails

- Set union is *idempotent*, meaning that S
 U S = S.
- However, for bags, if x appears n times in S, then it appears 2n times in S U S.
- Thus $S \cup S != S$ in general.
 - e.g., $\{1\} \cup \{1\} = \{1,1\} != \{1\}.$