

# **IMAGERIE SCINTIGRAPHIQUE:**

#### I-A propos:

.Imagerie par émission des rayons X ou  $\gamma$  agissant dans le corps

.Imagerie **fonctionnelle et métabolique** représente la distribution d'un radiopharmaceutique dans le corps du patient dans des conditions physiologiques

.Imagerie de faible résolution spatiale(faiblement irradiante)

.Repose sur la détection externe par une camera a scintillation solide (gamma-camera) et sur un produit marquée par un élément radioactifs

→ Procédure: Administration d'un produit radio actif qui va se localiser dans un organe ou une structure puis détection externe par un détecteur à scintillation, permet d'avoir des renseignements sur le métabolisme, la fonction, la perfusion ou détecter une cible particulière

### **II-Radiopharmaceutiques:**

| Traceurs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marqueur:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .Un molécule simple(albumine ,pryphosphate) ou complexe(cellules, macro agrégats) .Peut se localiser de façon sélective au niveau d'une structure particulière de l'organisme: organe, secteur liquidien ou lésion « assure la bio distribution du marqueur »  Mécanisme: .Phénomène passif: purement physique, ex: blocage de macro agrégats au niveau des capillaires, traceurs vasculairesPhénomène métabolique actif, ex: fixation de l'iode par la thyroïde, les déphosphorâtes par les ostéoblastes, glucose par cellules cancéreuses .Phénomène excrétoire: traceurs à sécrétion urinaires (DTPA, MAG 3), salivaire,,, Réaction antigène-anticorps spécifique | Elément Radioactif Emetteur X ou gamma+++: détection externe Peut être le traceur lui-même ex: iode , thallium, gallium Peut être couplé à une molécule soit par substitution /chélation ou addition  → Anomalie observées: -hyperfixation : Accumulation dans le territoire -hypofixation : Faible captation dans le territoire -hypofixation : Faible captation dans le territoire -b Ces anomalies sont différentes selon: le traceur-la pathologie-le mécanisme mis en jeu - Caractéristique d'un bon marqueur: Une période: suffisamment longue pour pouvoir acquérir les images et suffisamment courte pour éviter une forte irradiation du patient Une énergie adaptée à l'épaisseur du cristal des détecteurs des gamma caméras (100 – 400 KeV) Disponibilité: inclut le coût, le demi-vie |

### III-Appareil de détection :

1-Les gamma-caméras standard << type Anger >>

| Composition:        | Caracteriqtique:                                                           |
|---------------------|----------------------------------------------------------------------------|
| <b>Un blindage:</b> | .Qui protège du rayonnement indésirable                                    |
|                     | -Pour la direction des photons incidents qui contient :                    |
| Un collimateur :    | .Blocs de plomb percés de milliers de canaux séparés par « septa »         |
|                     | Diffèrent selon : le diamètre des trous, l'épaisseur des septas des canaux |
|                     | .Permet le traverse seulement des photons émis dans l'axe d'un trou et     |

|                                | parvient au cristal, produit des scintillations et la localisation d'origine des |
|--------------------------------|----------------------------------------------------------------------------------|
| <b>Un collimateur :</b>        | rayonnements                                                                     |
|                                | -Excellente résolution spatiale de l'image : collimateur a canaux fins mais pas  |
|                                | large                                                                            |
|                                | -Emission des rayons visibles bleus détectables par la photocathode apres        |
|                                | l'interaction                                                                    |
| <b>Un cristal scintillant:</b> | -Bonne transparence optique: les photons ne sont pas absorbés par le cristal     |
|                                | Dans le cas idéal, lorsqu'un photon gamma interagit avec le cristal, il cède son |
|                                | énergie au cristal par effet photoélectrique                                     |
|                                |                                                                                  |
| <b>Photomultiplicateurs</b>    | . Est un Dispositif de localisation                                              |
| PM:                            | .Convertissent l'énergie lumineuse venant du cristal en signal électrique        |
|                                | qui est proportionnel à la quantité de lumière reçue et à l'énergie déposée      |
|                                | (des photons incidents) dans le cristal                                          |
|                                | L'analyse des quantités d'électricité résultantes permet de localiser le point   |
|                                | d'impact et                                  |
|                                | .Génère et stocke des images numériques restituées sur un système de             |
| Système informatique :         | visualisation                                                                    |
|                                |                                                                                  |

Les gamma caméras modernes disposent de 2, voire 3 têtes de détection.

### IV- Image scintigraphique:

-Comprend trois informations de base:

La localisation des scintillations dans le cristal - leur nombre - l'énergie des  $\gamma$ 

#### 1-Localisation des événements :

.Est dans le cristal qui est découpée en pixels (qui identifie de façon unique par ses coordonnées dans un repère orthonormé, qui correspond a chaque scintillation)
.La localisation d'un point d'interaction=le point d'émission de la lumière

### Dénombrent des événements :

- -Détection est simultané, Scintillation surviennent à des endroits éloignés dans le cristal, si elles sont proches impossible de déterminer l'énergie et la position
- -Avec 2 groupes de PM différents pour chaque scintillations
- -Seuls les photons de même énergie sont considérés pour former une image.
- -La somme des signaux émis par les PM est proportionnelle à l'énergie du photon gamma incident et établissement d'une calibration

### 2-Etapes pour faire un examen scintigraphique :

.Préparation par un détecteur solides et vérification

- .Administration (++par voie veineuse), immédiatement ou après un délai
- .Visualisation, interprétation et traitement d'image (statiques, balayages, séquences dynamiques et tomographies)



## 3-Modes d'acquisitions :

| Modes:                        | A propos :                                                                       |
|-------------------------------|----------------------------------------------------------------------------------|
|                               | -Enregistrement d'une zone de l'organisme, le patient et le détecteur            |
|                               | immobiles pendant quelques minutes.                                              |
| <b>Acquisition Statique:</b>  | L'enregistrement est interrompu par :                                            |
|                               | .Au bout d'un temps prédéfini : mode pré-temps                                   |
|                               | .Ou quand un nombre prédéfini de photons a été détecté : mode pré-               |
|                               | coups                                                                            |
|                               | -Les acquisitions sont obtenues <mark>en déplaçant lentement</mark> le détecteur |
| <b>Acquisition Balayage:</b>  | sur le patient pour enregistre toutes l'activité du corps                        |
|                               | Image de très grande hauteur générée <mark>en 15 à 30 minutes</mark> , les       |
|                               | photons détectés étant affectés aux pixels correspondants                        |
|                               | - Séries d'images d'une même zone, chaque image ayant une durée                  |
|                               | prédéfinie qui <mark>permet de :</mark>                                          |
| <b>Acquisition Dynamique:</b> | .Suivre la progression du traceur (temps)                                        |
|                               | .Synchroniser la fixation sur un signal physiologique (ECG)                      |
|                               | .La dynamique du traceur marque                                                  |
|                               | -Réalisé avec 1 ou2,rarement trois détecteurs, au cours de la rotation           |
|                               | de la caméra, on reconstruit des coupes transversales, sagittales et             |
|                               | axiales et permet de : localisation des lésions selon trois dimensions.          |
|                               | 1- Tomographie par émission de positons << TEP-TDM >> :                          |
|                               | Machines actuelles couplées à la Tomodensitométrie (TDM =                        |
| Acquisition Tomographique     | scanner)                                                                         |
| (SPECT):                      | .Se fait par annihilation, et les β+ ne peuvent pas être détectés                |
|                               | .Ne contient pas de collimateurs                                                 |
|                               | . Ont <mark>une grande efficacité géométrique</mark>                             |
|                               | .Détectées par scintillations solide, par technique de coïncidence               |
|                               | -Permet de <mark>corriger des artefacts</mark> d'atténuation et localisation     |
|                               | anatomique                                                                       |