

CHAPTER 1

SATSER, DEFINITIONER

Note:-

Synonymer för bildrummet av matrisen A: Im(A), Range(A), Col(A)

Note:-

Synonymer för nollrummet av matrisen A: ker(A), null(A)

Sats 1.0.1 Matrisen som projekterar på $ec{v}$

För att slippa hålla på med beräkningar med bråktal för att hitta matrisen som beskriver projektionen på vektorn \vec{v} , så kan man använda formeln nedan:

$$A = \frac{1}{\vec{v} \cdot \vec{v}} \vec{v} \vec{v}^T$$

Därmed projektionen av vektorn \vec{x} på vektorn \vec{v} beskrivs av matrismultiplikationen $proj_{\vec{v}}\vec{x} = A\vec{x}$

${f Sats}$ 1.0.2 Matrisen som projekterar på vektorrummet V

Om vektorummet definieras som V := col(A), då beskrivs matrisen som projekterar på vektorrummet V på följande sättet:

$$P = A(A^T A)^{-1} A^T$$

Alltså för att projektera givna vektorn \vec{x} på vektorummet V, så använder man följande matrismultiplikation $P\vec{x}$. **Notera** att det är exakt samma metod som används för minstakvadratmetoden. Projektionen av en vektor på en vektorummet ger den bästa approximationen av givna vektorn på vektorrummet.

Sats 1.0.3 Ortogonala komplementet till delrummet $V \in \mathbb{R}^n$

Om man vill hitta ortogonala komplementet (också delrum) till delrummet V med villkorn att V inte spannar hela \mathbb{R}^n , så använder man formeln nedan. **Observera** att V := col(A)

$$V^{\perp} = ker(A^T) = null(A^T)$$

Varför: En ortogonal komplement V^{\perp} till delrummet V innebär att $\forall \vec{v} \in V^{\perp}$, $\forall \vec{u} \in V \implies v \cdot u = 0$. Om A beskrivs som $[w_1 \ldots w_k]$ så kommer A^T beskrivas på sättet nedan.

$$A^T = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix}$$

Om man multiplicerar A^T med en vektor \vec{x} och försöker bestämma noll-rummet så bestämmer vi per definition ortogonala komponentet. D.v.s rummet där varje vektor $\vec{x} \in \mathbb{R}^n$ ger 0 med skalärprodukten av varje vektor som spannar V $(w_1, \dots w_k)$, som det kan ses nedan.

$$null(A^T) = ker(A^T) := \begin{bmatrix} w_1 \cdot \vec{x} \\ \vdots \\ w_k \cdot \vec{x} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Sats 1.0.4 En vektor \vec{x} kan skrivas som projektionen på en vektorrum + projektionens ortogonala komplement För att kunna bevisa 1.0.2 så brukar man använda denna sats som beskrivs nedan.

$$\vec{x} = proj_W \vec{x} + proj_{W^{\perp}} \vec{x}$$

$$proj_{W^{\perp}}\vec{x} = \vec{x} - proj_{W}\vec{x}$$

Sats 1.0.5 Hitta resterande basvektorer i \mathbb{R}^n utifrån en mängd linjärt oberoende vektorer S

För det, måste storleken av S vara mindre än n, annars är S redan en bas för \mathbb{R}^n . Om $S = \{w_1, \dots, w_k\}$, så sätter vi upp dessa vektorer som kolumnelement och sedan löser noll-rummet, som det kan ses nedan.

$$A = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix}; B := null(A) = ker(A)$$

Varför: Som i 1.0.3 så försöker vi hitta en mängd vektorer (B) som är ortogonala och därmed linjärt oberoende mot varje vektor i S. Detta är ekvivalent med att varje vektor i mängden vektorer vi försöker lösa, B, har skalärprodukten 0 med varje vektor i S. Enligt kraven för linjärt oberoendet av basvektorerna så blir mängden $S \cup B$ en bas för \mathbb{R}^n .

Note:-

 $A^T A$ och AA^T är symmetriska matriser!

Sats 1.0.6 Sambandet mellan matrisen A och A^TA , samt AA^T

Theoreum 7.5.8 & 7.5.9 i boken Contemporary Linear Algebra (s. 365)

- \bullet A och AA^T har samma kolumnrum
- $A \text{ och } A^T A \text{ har samma radrum}$
- Om A har full kolumnrank $\implies det(A^TA) \neq 0$
- Om A har full radrank $\implies det(AA^T) \neq 0$

Vad kan man använda detta till? Om man vill kolla för en större matris om raderna eller kolumnerna är linjärt oberoende, så kan man bestämma determinanten av A^TA respektive AA^T . Om determinanten $\neq 0$ då medför det att kolumerna respektive raderna i matrisen A är linjärt oberoende. **OBS**: AA^T och A^TA är kvadratiska matriser.

Sats 1.0.7 Ortogonal diagonalisering

Symmetriska matriser $(A^{-1} = A^T)$ är ortogonalt diagonaliserbara och kan därmed utryckas som $A = PDP^T$. Dessutom när det kommer till egenvärde och diagonalisering har symmetriska matriser följande egenskaper (A är en $n \times n$ symmetrisk matris):

- \bullet A har n olika reella egenvärden, räknade med multiplicitet.
- Dimensionen av varje egenrum överensstämmer med tillhörande egenvärdes multiplicitet som rot till karaktäristiska ekvationen.
- ullet Egenvektorerna från de olika egenvärden är ortogonala mot varandra \Longrightarrow spannar upp hela \mathbb{R}^n .

Sats 1.0.8 Symmetriska matriser för kvadratiska former

Om A är en symmetrisk matris för den kvadratiska formen x^TAx så gäller följande satser:

- x^TAx är positivt definit $(x^TAx > 0, \forall x \neq \vec{0})$ om och endast om **alla** egenvärden av A är positiva
- x^TAx är negativt definit $(x^TAx < 0, \forall x \neq \vec{0})$ om och endast om **alla** egenvärden av A är negativa
- x^TAx är indefinit $(x^TAx > 0 \land x^TAx < 0, \forall x)$ om och endast om A har minst en positiv och en negativ egenvärde

Sats 1.0.9 Cayley-Hamilton sats

S. 474 i boken "Contemporary Linear Algebra"

En kvadratisk matris A med storleken $n \times n$ uppfyller sin motsvarande karaktäristiska ekvation, det vill säga att om karaktäristiska ekvationen för matrisen A är:

$$\lambda^n + c_1 \lambda^{n-1} + \dots + c_n = 0$$

Så gäller följande:

$$A^n + c_1 A^{n-1} + \dots + c_n I = 0$$

3

Sats 1.0.10 Multiplikation mellan en matris och en vektor

S. 106 i boken "Contemporary Linear Algebra"

Följande två viktiga satser gäller för multiplikationen av vektorerna \vec{u}, \vec{v} med matrisen A.

- $\bullet \ \ A\vec{u}\cdot\vec{v}=\vec{u}\cdot A^T\vec{v}$
- $\vec{u} \cdot A \vec{v} = A^T \vec{u} \cdot \vec{v}$

Sats 1.0.11 Fundamentala sambandet mellan rummet col(A) och dess ortogonala komplement

S. 344—345 i boken "Contemporary Linear Algebra".

Följande samband gäller som kan vara praktiska under tentan.

$$row(A)^{\perp} = null(A), \quad null(A)^{\perp} = row(A)$$

$$col(A)^{\perp} = null(A^T), \quad null(A^T)^{\perp} = col(A)$$

Definition 1.0.1: Extra om isomorfism

Isomorfism = bijektiv.

Läs mer om isomorfism i linjär algebra, här.

För att bevisa att transformationen $T:V\mapsto W$ med matrisen A är isomorfisk så måste man bevisa följande 3 punkter:

- $T(\vec{x})$ är en linjär transformation ($T(k\vec{x}) = kT(\vec{x})$; $T(\vec{a} + \vec{b}) = T(\vec{a}) + T(\vec{b})$)
- $T(\vec{x}) = T(\vec{y}) \implies \vec{x} = \vec{y}$ (Injektiv, \vec{x} är unik)
- $\vec{w} \in W \implies \exists \vec{v} \in V \text{ så att } T(\vec{v}) = \vec{w}$

Sista punkten kallas för att vara *Onto* på engelska. Att **inte** vara *Onto* kan beskrivas på dessa tre ekvivalenta sätt:

- dim(V) < dim(W)
- Det existerar en vektor $\vec{b} \in W$ så att $T(\vec{x}) = \vec{b}$ inte har en lösning.
- Det existerar en vektor i W som inte är en output av transformationen T.

För att bevisa att transformationen T med matrisen A följer punkt 2, måste man visa att ker(A) består endast av $\vec{0}$, alltså att ker(A) inte har icke-triviala lösningar.

För att bevisa att transformationen T med matrisen A följer punkt 3, måste man visa att $A\vec{x} = \vec{b}$ uppfylls för varje möjlig \vec{b} . Detta görs genom att Gauss-eliminiera matrisen $\begin{bmatrix} A & | & \vec{b} \end{bmatrix}$ och undersöka att högersidan kan alltid uppfyllas.

4

Definition 1.0.2: U + V

Suppose V is a finite-dimensional vector space over some scalar field. Let U,V be subspaces of V. Then we make the following definition:

$$U + V = \{u + v : u \in U \& v \in V\}$$

Note:-

Ni kommer inte finna denna definition direkt användbar, det är inte någon formel på det viset. Tanken är att det hjälper med resonemangsförmågan att tänka i termer om delrum och summor av delrum.

Example 1.0.1 (orthogonal complements)

If R is the row space of a matrix M, and U is the null space of M, then the domain V of M can be described by the vector space sum V = R + U. This sum is not just any sum, it is a direct sum, which means that any vector v in V is uniquely represented as: v = r + u. $r \in R$, $u \in U$.

Sats 1.0.12 Dimension of vector space sums

 $\dim U + V = \dim U + \dim V - \dim U \cap V$

BEVISTEKNIKER OCH TIPS

Bevisteknik 2.0.1 Tenta 2021-04-09 6b, (Använd att A och A^TA har samma radrum och att A^TA är alltid symmetrisk)

Låt A vara en $m \times n$ matris och A^T dess transponat. **Bevisa** att om $n \ge 2$ då existerar n ortogonala enhetsvektorer $\vec{u_1}, \vec{u_2}, \cdots, \vec{u_n} \in \mathbb{R}^n$ sådana att $A\vec{u_1}, A\vec{u_2}, \cdots, A\vec{u_n}$ är också ortogonala.

Eftersom A^TA är en symmetrisk matris så ger spektralsatsen en ortonormal bas $B = \{\vec{e_1}, \vec{e_2}, \cdots, \vec{e_n}\} \in \mathbb{R}^n$ som består av ortogonala egenvektorer till matrisen A^TA och med längd 1, (enhetsvektorer). Låt $\vec{e_i}, \vec{e_j} \in B \implies \vec{e_i} \cdot \vec{e_j} = 0$:

$$(A\vec{e_i}) \cdot (A\vec{e_j}) \iff (A\vec{e_i})^T (A\vec{e_j}) \iff \vec{e_i}^T A^T A \vec{e_j} \iff \vec{e_i}^T \lambda_j \vec{e_j} \iff \lambda_j (\vec{e_i} \cdot \vec{e_j}) = 0$$

Tips 2.0.1 Hur beräknar man $A^n\vec{x}$ om A **inte** är diagonaliserbar?

Om A inte är diagonaliserbar, kan man testa utrycka \vec{x} som en linjär kombination av egenvektorerna för A. Om den **inte** kan utryckas som en linjär kombination av egenvektorerna så fungerar **inte** denna metod.

Låt $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + \vec{v_n}$, där $\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}$ är egenvektorer till A med de motsvarande egenvärden $\lambda_1, \lambda_2, \dots, \lambda_k$. Då kan $A^n \vec{x}$ beräknas på följande sätt:

$$A^n \vec{x} = c_1 \lambda_1^n \vec{v_1} + c_2 \lambda_2^n \vec{v_2} + \dots + c_n \lambda_k^n \vec{v_k}$$

$$\tag{2.1}$$

Varför: Om $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} + \cdots + \vec{v_n}$, så är $A\vec{x}$:

$$A\vec{x} = A(c_1\vec{v_1}) + A(c_2\vec{v_2}) + \dots + A(c_k\vec{v_k}) \iff c_1\lambda_1\vec{v_1} + c_2\lambda_2\vec{v_2} + \dots + c_k\lambda_k\vec{v_k}$$

Eftersom $c_i \lambda_i$ är konstanter och $A^n \vec{x}$ kan utryckas som:

$$\underbrace{A(A(A(A(\cdots A(A\vec{x})\cdots))))}_{n}$$

så bevisar det ekvationen 2.1.

Bevisteknik 2.0.2 Tenta 2020-10-19 5b, (Motsägelsebevis)

Låt A vara en 2×2 symmetrisk matris. Utan att använda Spektralsatsen visa att det existerar en bas för \mathbb{R}^2 bestående av egenvektorer för A.

Låt matrisen A definieras på följande sätt: $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$; $a,b,c \in \mathbb{R}$. Genom att lösa ut $det(\lambda I - A) = 0$ så får vi att egenvärdena är beroende av matrisens värden på följande sätt:

$$\lambda_{1,2} = \frac{(a+c) \pm \sqrt{(a-c)^2 + 4b^2}}{2}$$

Vi börjar med att anta att $\sqrt{(a-c)^2+4b^2}=0$. Notera att detta är sant endast när a=b=c=0 eftersom funktionen $x^2\geqslant 0, \forall x\in\mathbb{R}$. Nollrummet för en **noll** 2×2 matris har baserna $\begin{bmatrix}1\\0\end{bmatrix}, \begin{bmatrix}0\\1\end{bmatrix}$, eftersom $\forall \vec{x} \implies O\vec{x}=\vec{0}$, där O är nollmatrisen.

För att bevisa att alla andra möjliga egenvärden har också egenvektorer som spannar upp \mathbb{R}^2 så kan vi använda en motsägelsebevis. Vi antar att $\vec{v_1}, \vec{v_2}$ är egenvektorer med egenvärdena $\lambda_1, \lambda_2 \lambda_1 \neq \lambda_2$ och att $\vec{v_2} = k\vec{v_1}, k \in \mathbb{R}, k \neq 0$. Då är **inte** $\vec{v_1}, \vec{v_2}$ baser för \mathbb{R} eftersom de är linjärt beroende. Genom att anta att $\lambda_1 \neq \lambda_2$, antar att vi $\sqrt{(a-c)^2+4b^2} \neq 0$ (ingen dubbelrot). Vi definierar ytterligare $\vec{v_1} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$. Då kan man ställa upp följande 2 system av ekvationer:

$$\begin{cases} (\lambda_1 - a)v_x - bv_y = 0\\ -bv_x + (\lambda_1 - c)v_y = 0 \end{cases}$$

$$\begin{cases} k((\lambda_2 - a)v_x - bv_y) = 0\\ k(-bv_x + (\lambda_2 - c)v_y) = 0 \end{cases}$$

Observera att k kan divideras i andra system av ekvationer. För att både system av ekvationer ska gälla så måste $\lambda_1 = \lambda_2$ som **inte** är möjligt eftersom vi antog att $\lambda_1 \neq \lambda_2$. Detta medför en motsägelse som implicerar att egenvektorerna $\vec{v_1}, \vec{v_2}$ måste vara linjärt oberoende och därmed fylla villkorn för att spanna \mathbb{R}^2 .