Theorem 1.5.3: Suppose that the language L and L' is an expansion of the language L. Then,

- a) $Term_L \subseteq Term_{L'}$
- b) $AtForm_L \subseteq AtForm_{L'}$
- c) $Form_L \subseteq Form_{L'}$
- d) $Sent_L \subseteq Sent_{L'}$

NOTE: We will format our induction proofs similar to Thm 2.1.11 in the booklet and the PHLC51 notes on induction.

Proof of a) $Term_L \subseteq Term_{L'}$

Proof. Proof by induction on $t \in Term_L$.

1. Base Case: $t \in Vble \cup Const_L$

Show: $t \in Term_{L'}$.

Case 1: If $t \in Vble$, then since the set of variable symbols are common to all first-order languages, we know that $t \in Term_{L'}$.

Case 2: If $t \in Const_L$, then since L' is an expansion of L and every constant symbol of L is a constant symbol of L', we know that $t \in Const_{L'}$. Hence, $t \in Term_{L'}$.

2. Inductive Step

IH: $t_i \in Term_{L'}$ for i = 1, ..., n. Show: $ft_1...t_n \in Term_{L'}$.

Let f be an n-ary function symbol of L. Since L' is an expansion of L and every function symbol of L is a function symbol of L', we know that f is a function symbol of L'. And by **IH**, since each $t_i \in Term_{L'}$, we conclude that $ft_1...t_n \in Term_L'$.

This completes the proof.

Proof of b) $AtForm_L \subseteq AtForm_{L'}$

Proof. Let $\phi \in AtForm_L$. We want to show that $\phi \in AtForm_{L'}$.

We know that ϕ could have two possible forms.

Case 1: ϕ is of the form $Pt_1...t_n$ where P is some n-ary predicate symbol of L and each $t_i \in Term_L$. Since L' is an expansion of L and every predicate symbol of L is a predicate symbol of L', we know that P is a predicate symbol of L'. And in part a) we proved that $Term_L \subseteq Term_{L'}$. Since each $t_i \in Term_L$ we have that each $t_i \in Term_{L'}$. Hence,

 $Pt_1...t_n \in AtForm_{L'}$. i.e. $\phi \in AtForm_{L'}$.

Case 2: If L has the equals sign, then ϕ could be of the form $= t_1t_2$ where $t_1, t_2 \in Term_L$. Since L' is an expansion of L and L contains the equals sign, we must have that L' contains the equals sign. And in part a) we proved that $Term_L \subseteq Term_{L'}$. Since each $t_i \in Term_L$ we have that each $t_i \in Term_{L'}$. Hence, $= t_1t_2 \in AtForm_{L'}$. i.e. $\phi \in AtForm_{L'}$.

In either case $\phi \in AtForm_{L'}$. This completes the proof.

Proof of c) $Form_L \subseteq Form_{L'}$

Proof. Proof by induction on $\phi \in Form_L$.

1. Base Case: $\phi \in AtForm_L$.

Show: $\phi \in Form_{L'}$.

In part b) we showed that $AtForm_L \subseteq AtForm_{L'}$. Since $\phi \in AtForm_L$, we have that $\phi \in AtForm_{L'}$. Also, $AtForm_{L'} \subseteq Form_{L'}$. Since $\phi \in AtForm_{L'}$ we have that $\phi \in Form_{L'}$.

2. Inductive Step \sim

IH: $\phi \in Form_{L'}$.

Show: $\sim \phi \in Form_{L'}$.

By **IH**, since $\phi \in Form_{L'}$, we have that $\sim \phi \in Form_{L'}$ by Def 1.2.4.

3. Inductive Step \rightarrow

IH1: $\phi \in Form_{L'}$. IH2: $\psi \in Form_{L'}$.

Show: $(\phi \to \psi) \in Form_{L'}$.

By **IH1** and **IH2**, we have that $\phi, \psi \in Form_{L'}$. Hence, $(\phi \to \psi) \in Form_{L'}$ by Def 1.2.4.

4. Inductive Step \leftrightarrow

IH1: $\phi \in Form_{L'}$.

IH2: $\psi \in Form_{L'}$.

Show: $(\phi \leftrightarrow \psi) \in Form_{L'}$.

By IH1 and IH2, we have that $\phi, \psi \in Form_{L'}$. Hence, $(\phi \leftrightarrow \psi) \in Form_{L'}$ by Def 1.2.4.

5. Inductive Step \vee

IH1: $\phi \in Form_{L'}$.

IH2: $\psi \in Form_{L'}$.

Show: $(\phi \lor \psi) \in Form_{L'}$.

By **IH1** and **IH2**, we have that $\phi, \psi \in Form_{L'}$. Hence, $(\phi \lor \psi) \in Form_{L'}$ by Def 1.2.4.

6. Inductive Step \wedge

IH1: $\phi \in Form_{L'}$. IH2: $\psi \in Form_{L'}$.

Show: $(\phi \wedge \psi) \in Form_{L'}$.

By **IH1** and **IH2**, we have that $\phi, \psi \in Form_{L'}$. Hence, $(\phi \wedge \psi) \in Form_{L'}$ by Def 1.2.4.

7. Inductive Step \forall

IH: $\phi \in Form_{L'}$.

Show: $\forall x \phi \in Form_{L'}$.

By IH, since $\phi \in Form_{L'}$, we have that $\forall x \phi \in Form_{L'}$ by Def 1.2.4.

8. Inductive Step \exists

IH: $\phi \in Form_{L'}$.

Show: $\exists x \phi \in Form_{L'}$.

By **IH**, since $\phi \in Form_{L'}$, we have that $\exists x \phi \in Form_{L'}$ by Def 1.2.4.

This completes the proof.

Proof of d) $Sent_L \subseteq Sent_{L'}$

Proof. Assume $\phi \in Sent_L$. We want to show that $\phi \in Sent_{L'}$.

We know that $Sent_L \subset Form_L$ since every L-sentence is an L-formula with no free variables. Hence, $\phi \in Form_L$.

In part c) we proved that $Form_L \subseteq Form_{L'}$. Since $\phi \in Form_L$, we have that $\phi \in Form_{L'}$.

But we know that every variable in $\phi \in Form_{L'}$ is under the scope of a quantifier since we assumed that ϕ was an L-sentence. i.e. there are no free variables in ϕ .

Since $\phi \in Form_{L'}$ has no free variables, we have that $\phi \in Sent_{L'}$.

This completes the proof, as required.

First Sentence

Given Infix Notation:
$$\forall \mathbf{v_3}(((\mathbf{v_3} + \sharp \mathbf{o}) = \sharp (\mathbf{v_3} + \mathbf{o})) \rightarrow \exists \mathbf{v_2}((\mathbf{v_2} \star \sharp \mathbf{v_2}) \triangleright ((\mathbf{v_3} \star \mathbf{o}) \star \mathbf{v_4})))$$

$$\text{Prefix Notation: } \forall \mathbf{v_3} (= + \mathbf{v_3} \sharp \mathbf{o} \sharp + \mathbf{v_3} \mathbf{o} \rightarrow \exists \mathbf{v_2} \rhd \star \mathbf{v_2} \sharp \mathbf{v_2} \star \star \mathbf{v_3} \mathbf{o} \mathbf{v_4})$$

Second Sentence

Given Prefix Notation: $\forall \mathbf{v_4} \exists \mathbf{v_1} \rhd \sharp + \sharp \mathbf{v_4} + \mathbf{o} \mathbf{v_1} + + \sharp \mathbf{v_3} \mathbf{v_3} + \sharp \mathbf{o} + \mathbf{v_5} \mathbf{v_5}$

 $\text{Infix Notation: } \forall \mathbf{v_4} \exists \mathbf{v_1} (\sharp (\sharp \mathbf{v_4} + (\mathbf{o} + \mathbf{v_1})) \rhd ((\sharp \mathbf{v_3} + \mathbf{v_3}) + (\sharp \mathbf{o} + (\mathbf{v_5} + \mathbf{v_5}))))$

NOTE: As in the assignment outline, we will be using \forall and \exists ambiguously in the metalanguage for metalinguistic universal and existential quantification.

NOTE: We will also be formatting the argument below similar to the format in the booklet on T-conditionals.

Consider the following.

```
\begin{split} &M\models \forall \mathbf{v_1}(\triangleright \mathbf{v_1o}\rightarrow \exists \mathbf{v_2}(\triangleright \mathbf{ov_2}\wedge = +\mathbf{v_2v_1o}))\\ &\text{iff}\quad M\models \forall \mathbf{v_1}(\triangleright \mathbf{v_1o}\rightarrow \exists \mathbf{v_2}(\triangleright \mathbf{ov_2}\wedge = +\mathbf{v_2v_1o}))[s]\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ M\models \triangleright \mathbf{v_1o}\rightarrow \exists \mathbf{v_2}(\triangleright \mathbf{ov_2}\wedge = +\mathbf{v_2v_1o})[s_{v_1}^q]\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ M\models \triangleright \mathbf{v_1o}[s_{v_1}^q]\ \text{or}\ M\models \exists \mathbf{v_2}(\triangleright \mathbf{ov_2}\wedge = +\mathbf{v_2v_1o})[s_{v_1}^q]\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ if\ M\models \triangleright \mathbf{v_1o}[s_{v_1}^q]\ \text{, then}\ M\models \exists \mathbf{v_2}(\triangleright \mathbf{ov_2}\wedge = +\mathbf{v_2v_1o})[s_{v_1}^q]\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ \text{if}\ M\models \triangleright \mathbf{v_1o}[s_{v_1}^q]\ \text{, then}\ \exists p\in \mathbb{Q}^+,\ M\models \triangleright \mathbf{ov_2}\wedge = +\mathbf{v_2v_1o}[(s_{v_1}^q)_{v_2}^p]\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ \text{if}\ M\models \triangleright \mathbf{v_1o}[s_{v_1}^q]\ \text{, then}\ \exists p\in \mathbb{Q}^+,\ M\models \triangleright \mathbf{ov_2}[(s_{v_1}^q)_{v_2}^p]\ \text{and}\ M\models = +\mathbf{v_2v_1o}[(s_{v_1}^q)_{v_2}^p]\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ \text{if}\ \langle Val_{M,s_{v_1}^q}(\mathbf{v_1}), Val_{M,s_{v_1}^q}(\mathbf{o})\rangle \in I(\triangleright)\ \text{, then}\ \exists p\in \mathbb{Q}^+,\ \text{both}\\ &\langle Val_{M,(s_{v_1}^q)_{v_2}^p}(\mathbf{o}), Val_{M,(s_{v_1}^q)_{v_2}^p}(\mathbf{v_2})\rangle \in I(\triangleright)\ \text{ and}\ Val_{M,(s_{v_1}^q)_{v_2}^p}(+\mathbf{v_2v_1}) = Val_{M,(s_{v_1}^q)_{v_2}^p}(\mathbf{o})\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ \text{if}\ \langle s_{v_1}^q(\mathbf{v_1}), I(\mathbf{o})\rangle \in I(\triangleright)\ \text{, then}\ \exists p\in \mathbb{Q}^+,\ \text{both}\ \langle (I(\mathbf{o}),(s_{v_1}^q)_{v_2}^p(\mathbf{v_2})\rangle \in I(\triangleright)\\ &\text{and}\ I(+)\Big(Val_{M,(s_{v_1}^q)_{v_2}^p}(\mathbf{v_2}), Val_{M,(s_{v_1}^q)_{v_2}^p}(\mathbf{v_1})\Big) = I(\mathbf{o})\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ \text{if}\ \langle q,1\rangle \in I(\triangleright)\ \text{, then}\ \exists p\in \mathbb{Q}^+,\ \text{both}\ \langle 1,p\rangle \in I(\triangleright)\ \text{ and}\ I(+)(p,q) = 1\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ \text{if}\ \langle q,1\rangle \in I(\triangleright)\ \text{, then}\ \exists p\in \mathbb{Q}^+,\ \text{both}\ \langle 1,p\rangle \in I(\triangleright)\ \text{ and}\ I(+)(p,q) = 1\\ &\text{iff}\quad \forall q\in \mathbb{Q}^+,\ \text{if}\ q\leq 1,\ \text{then}\ \exists p\in \mathbb{Q}^+,\ \text{both}\ 1\leq p\ \text{ and}\ (p\times q) = 1\\ \end{cases}
```

Therefore, we have proven the following T-biconditional.

$$\forall \mathbf{v_1}(\triangleright \mathbf{v_1o} \to \exists \mathbf{v_2}(\triangleright \mathbf{ov_2} \land = +\mathbf{v_2v_1o}))$$
 is true in M

iff

$$\forall q \in \mathbb{Q}^+$$
, if $q \leq 1$, then $\exists p \in \mathbb{Q}^+$, both $1 \leq p$ and $(p \times q) = 1$

First Sentence

$$\forall \mathbf{v_1} \forall \mathbf{v_2} (\triangleright \mathbf{v_1} \mathbf{v_2} \rightarrow \triangleright \sharp \mathbf{v_2} \sharp \mathbf{v_1})$$

iff

For every
$$p \in \mathbb{Q}^+$$
, for every $q \in \mathbb{Q}^+$, if $p \leq q$, then $\frac{1}{q} \leq \frac{1}{p}$

Second Sentence

$$\forall v_2(\triangleright + v_2v_2v_2 \rightarrow \triangleright o\sharp + v_2o)$$

iff

For every
$$p \in \mathbb{Q}^+$$
, if $(p \times p) \leq p$, then $1 \leq \frac{1}{p \times 1}$