Zadanie: OBI

Obiad

Warsztaty ILO, grupa olimpijska, dzień 7. Dostępna pamięć: 128 MB.

Przemek przejął kuchnie na obozie ILOCAMP i uznał, że sam przygotuje obiad dla wszystkich uczestników. Uznał, że idealną potrawą będzie ciasto. Okazało się, że na obozie każdy z m uczestników ma swój preferowany rodzaj ciasta i nie je żadnego innego. Rodzajów ciasta jest n i kuchnia ma na stanie pewną ilość każdego z ciast, ale Przemek może też dokupić pewną ilość ciast. Każde z ciast ma ustaloną cenę za Bitogram, która również jest Przemkowi znana.

Przemek ma fundusz s Bajtalarów na cały obiad i zdecydował się dokupić pewną ilość ciasta, tak żeby uczestnicy zjedli jak najwięcej. Jednakże żeby było sprawiedliwie, Przemek chce, żeby wszyscy zjedli po tyle samo, więc zdecydował się wydawać wszystkim porcje o tej samej wadze.

Jako, że Przemek nie zajmuje się już programowaniem, oblicz ile maksymalnie Bitogramów może ważyć porcja.

Wejście

W pierwszym wierszu wejścia znajdują się trzy liczby całkowite n, m, s $(1 \le n, m \le 2 \cdot 10^5, 1 \le s \le 10^9)$ oznaczające kolejno liczbę rodzajów ciast, liczbę uczestników obozu, oraz fundusze przeznaczone na obiad.

W kolejnym wierszu znajduje się m liczb p_i ($1 \le p_i \le n$), są to preferowane rodzaje ciasta przez kolejnych uczestników.

W kolejnych n wierszach znajdują się pary liczb $a_i, c_i \ (0 \le a_i \le 10^4, 1 \le c_i \le 10^4)$, jest to kolejno ilość ciasta i-tego rodzaju posiadanego przez kuchnie, oraz cena dokupienia dodatkowego Bitograma ciasta.

Ilości dostępnych do kupienia ciast są nieograniczone.

Wyjście

Na wyjściu powinna znaleźć się jedna liczba zmiennoprzecinkowa, oznaczająca maksymalną wagę porcji obiadowej w Bitogramach którą może wydać Przemek przy funduszu s Bitolarów na dokupienie dodatkowego ciasta. Liczba zostanie zaakceptowana, jeśli będzie się różnić od poprawnego wyniku o co najwyżej 10⁻⁹.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

3 7 37 2.7777777777778

3 3 2 3 1 2 3

2 2

3 1 Dla danych wejściowych: poprawnym wynikiem jest:

1 2 1 1.000000000000000 1 1

1 1

1 6

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n, m, s \le 10$	21
2	$n, m \le 1000$	19
3	$a_i = 0$	22
4	brak dodatkowych założeń	38