

Discrete Probability Distributions

Dr. John S. Butler

Types of Distributions

Discrete Random Variables and Probability Distributions

A random variable (RV) is a real-valued function defined on the sample space S of a random experiment. A discrete RV is one can take a finite or countably infinite number of values (i.e. Values can be listed).

Discrete Random Variables and Probability Distributions

Notation:

- Capital letter, e.g., X, = a Random Variable
- Corresponding small letter e.g. x, one of its values
- Thus, x is an observation on X

Each possible value x of X represents an event i.e., a subset of the sample space, and hence has an associated probability

Example 1

- Toss 2 distinguishable coins, S has 4 outcomes E_1 =HH, E_2 =HT, E_3 =TH, E_4 =TT
- Let X=number of heads obtained
- Then
 - X=2, if E_1 occurs $E_1 \rightarrow 2$
 - X=1, if E_2 occurs $E_2 \rightarrow 1$
 - X=1, if E_3 occurs $E_3 \rightarrow 1$
 - X=o, if E_4 occurs $E_4 \rightarrow o$

Example

- Time to failure of an item of equipment S={t|t>o}
- Suppose we define:
- X=1, if o <t <100
- X=2, if 100 <t <500
- X=3, if 500 >t
- This is an example of a discrete random variable defined on a continuous sample space

Probability distribution

Suppose X is a discrete RV which can take the values

$$X_1, X_2, ..., X_k$$

- where $x_1 < x_2 < ... < x_k$
- (k can be finite of infinite)
- The probability distribution can be written in tabular form

X	X ₁	X_2	 x_k
p(x)	p(x ₁)	p(x ₂)	 p(x _k)

Probability distribution

The probability distribution can be written in tabular form

X	X ₁	X ₂	 x_k
p(x)	p(x ₁)	p(x ₂)	 p(x _k)

- The distribution can also be represented by a mathematical function that give the probability of each x occurring
- Pr(x) = function of x, known as the Probability mass function

Properties of a Probability Mass function

- 1. $p(x) \ge 0$ for x
- 2. The following must hold

$$\sum_{j=1}^k p(x_j) = 1$$

3. Each elementary event in S maps onto exactly one x_i Hence

$$\sum_{j=1}^{k} p(x_j) = p(S) = 1$$

Probability Mass function

Any function p(x) satisfying these properties may be considered as a probability density mass function

- Tossing 2 fair distinct coins
- Let X be the number of heads obtained

- What is the probability distribution?
- What is the cumulative probability distribution?

Tossing two coins

The probability mass function

X	O	1	2
p(x)	0.25	0.5	0.25

Cumulative Distribution Function

The Function

$$F(r) = p(X \le r), \qquad -\infty < r < \infty$$

is called the **Cumulative Distribution Function(CDF)** of the RV X

$$F(r) = p(X \le r) = \sum_{x \le r} p(X = x) = \sum_{x \le r} p(x)$$

Where $\sum_{x < r}$ denotes summation over the values of x

Properties of a Cumulative Distribution Function

1.
$$F(r) = 0$$
 when $r < x_1$

2.
$$F(r) = 1$$
 when $r > x_k$

3.
$$0 \le F(r) \le 1$$

4.
$$F(\infty)=1$$

5.
$$F(a) < F(b)$$
 when $a < b$

Calculating a Distribution Function from CDF

We can derive the probability function from the CDF as we have:

$$p(x_1) = F(x_1)$$

•
$$p(x_j) = F(x_j) - F(x_{j-1})$$
, for $j = 2, ..., k$

$$p(a < X \le b) = \sum_{a < X \le b} p(x)$$

$$= \sum_{X \le b} p(x) - \sum_{X \le a} p(x) = F(b) - F(a)$$

Calculating a Distribution Function from CDF

and

$$p(a \le X \le b) = p((X = a) \cup (a < X \le b))$$

= $p(a) + p(a < X \le b)$
= $p(a) + F(b) - F(a)$

Cumulative Distribution Function

 The cumulative probability distribution can be written in tabular form

r	< X ₁	x ₁ <=r <x<sub>2</x<sub>	 r>X _k
F(r)	0	p(x ₁)	 1

Example-Tossing two coins

Cumulative Probability Function

r	<0	0<=r<1	1<=r<2	r<=2
F(r)	0	0.25	0.75	1

Tossing two coins

Example 2- Die roll

- Rolling a die let X be the number on the die
- What is the probability mass distribution
- What is the cumulative probability distribution

Expectation: Mean

The expected value (or expectation) of a random variable (RV) X is denoted by E[X] or μ. For a discrete random variable the expected value is defined as

$$E[X] = \sum_{j=1}^{k} x_j p(x_j)$$

- lacksquare Other terms for E[X]
- The mean of the probability distribution of X
- Mean value of X
- The population mean

Expectation: Mean

• E[X] gives some ideas of the "center" of the distribution of the values $x_1, x_2, ..., x_k$ taking into account the probability distribution

E[X] does not have to be possible value in set.

Expectation: Variance

The variance of a RVX (or the variance of the probability distribution of X or the population variance) is denoted by Var[X] or sigma² and defined as

$$Var[X] = \sigma^2 = E[(X - \mu)^2] = \sum_{j=1}^{\kappa} (x_j - \mu)^2 p(x_j)$$

 It is a measure of a variation (or spread) of the values of X and the mean, considering the probability distribution of X.

Expectation: Variance

- Note that Var[X]>=o.
- The larger Var[X], the more spread out are its values
- Var[X] are in units squared
- A related measure of variation is the standard deviation (SD)

$$SD(X) = \sigma = \sqrt{Var[X]}$$

Expectation: Variance alternative calculation

The variance of a RVX (or the variance of the probability distribution of X or the population variance) is denoted by Var[X] or sigma² and defined as

$$Var[X] = \sigma^2 = E[X^2] - E[X]^2 = E[X^2] - \mu^2$$

Properties of the Variance Operator Var[]

- g(X)=a+X where a is a constant then Var[a+X]=Var[X]
- 2. g(X)=bX where b is a constant then $Var[bX]=b^2 Var[X]$
- 3. g(X)=a+bX, where a and b are constants $Var[a+bX]=b^2 Var[X]$

Properties of the Variance Operator Var[]

4. Two discrete Random Variables are termed independent if $p(x \cap y) = p(x)p(y)$ for all variables x and y If X,Y are independent Random Variables, then Var[X+Y]=Var[X]+Var[Y] and Var[X-Y]=Var[X]+Var[Y] More generally for a linear combination, if $X_1 \dots X_n$ are n random variables and $a_1 \dots a_n$ are constants and $Y = \sum_{i=1}^n a_i X_i$ then

$$Var[Y] = Var\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} Var[a_i X_i] = \sum_{i=1}^{n} a_i^2 Var[X_i]$$

- Tossing 2 fair distinct coins
- Let X be the number of heads obtained

×	0	1	2
p(x)	0.25	0.5	0.25

- What is the expected value?
- What is the Variance?

What is the expected value?

X	O	1	2
p(x)	0.25	0.5	0.25
xp(x)	$0 \times 0.25 = 0$	$1 \times 0.5 = 0.5$	$2 \times 0.25 = 0.5$

$$E[X] = \sum_{j=1}^{k} x_j p(x_j) = 0 \times 0.25 + 1 \times 0.5 + 2 \times 0.25 = 1$$

What is the Variance?

What is the Variance?

X	o	1	2
p(x)	0.25	0.5	0.25
xp(x)	О	0.5	0.5
(x-1) ² p(x)	$(0-1)^2 \times 0.25 = 0.25$	$(1-1)^2 \times 0.5 = 0$	$(2-1)^2 \times 0.25 = 0.25$

$$Var[X] = \sum_{j=1}^{k} (x_j - \mu)^2 p(x_j) = 0.25 + 0 + 0.25 = 0.5$$

What is the Variance (alternative calculation)?

X	o	1	2
p(x)	0.25	0.5	0.25
X ²	0	1	4
x ² p(x)	$0^2 \times 0.25 = 0$	1 ² ×0.5=0.5	2 ² ×0.25=1.0

$$E[X^2] = \sum_{j=1}^k x^2 p(x_j) = 0 + 0.5 + 1 = 1.5$$

$$Var[X] = E[X^2] - \mu^2 = 1.5 - 1^2 = 0.5$$

x	o	1	2	Sum
p(x)	0.25	0.5	0.25	1
xp(x)	0	0.5	0.5	1
(x-1) ² p(x)	0.25	0	0.25	5

$$E[X] = 1$$
$$Var[X] = 0.5$$

Tossing two coins

Example 2- Die

- Rolling a die
- Let X be the number on the die

- What is the expected value?
- What is the Variance?

Bernoulli Distribution

