Error Exponents for Composite Hypothesis Testing of Markov Forest Distributions

Vincent Tan, Anima Anandkumar, Alan S. Willsky

Stochastic Systems Group,

Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology

ISIT (Jun 18, 2010)

Hypothesis testing for i.i.d. forest-structured sources.

- Hypothesis testing for i.i.d. forest-structured sources.
- A continuation of a line of work on error exponents for learning tree-structured graphical models:
 - Discrete Case: Tan, Anandkumar, Tong, Willsky, ISIT 2009.

- Hypothesis testing for i.i.d. forest-structured sources.
- A continuation of a line of work on error exponents for learning tree-structured graphical models:
 - Discrete Case: Tan, Anandkumar, Tong, Willsky, ISIT 2009.
 - Gaussian Case: Tan, Anandkumar, Willsky, Trans. SP 2010.

- Hypothesis testing for i.i.d. forest-structured sources.
- A continuation of a line of work on error exponents for learning tree-structured graphical models:
 - Discrete Case: Tan, Anandkumar, Tong, Willsky, ISIT 2009.
 - Gaussian Case: Tan, Anandkumar, Willsky, Trans. SP 2010.
- Provides intuition for which classes of tree models are easy for learning in terms of the detection error exponent.

- Hypothesis testing for i.i.d. forest-structured sources.
- A continuation of a line of work on error exponents for learning tree-structured graphical models:
 - Discrete Case: Tan, Anandkumar, Tong, Willsky, ISIT 2009.
 - Gaussian Case: Tan, Anandkumar, Willsky, Trans. SP 2010.
- Provides intuition for which classes of tree models are easy for learning in terms of the detection error exponent.
- Is there a relation between the detection error exponent and the exponent associated to structure learning?

Background on Tree-Structured Graphical Models

- Graphical model: family of multivariate probability distributions that factorize according to a given graph G = (V, E).
- Vertices in the set $V = \{1, \dots, d\}$ correspond to variables and edges in $E \subset \binom{V}{2}$ to conditional independences.

Background on Tree-Structured Graphical Models

- Graphical model: family of multivariate probability distributions that factorize according to a given graph G = (V, E).
- Vertices in the set $V = \{1, ..., d\}$ correspond to variables and edges in $E \subset \binom{V}{2}$ to conditional independences.
- Example for tree-structured $P(\mathbf{x})$ with d=4.

Background on Tree-Structured Graphical Models

- Graphical model: family of multivariate probability distributions that factorize according to a given graph G = (V, E).
- Vertices in the set $V = \{1, \dots, d\}$ correspond to variables and edges in $E \subset \binom{V}{2}$ to conditional independences.
- Example for tree-structured $P(\mathbf{x})$ with d = 4.

- $V = \{1, 2, 3, 4\}.$
- $E = \{(1,2), (1,3), (1,4)\}.$
- $X_i \in \mathcal{X}$ discrete.

$$P(x_1, x_2, x_3, x_4) = P_1(x_1) \times \frac{P_{1,2}(x_1, x_2)}{P_1(x_1)} \times \frac{P_{1,3}(x_1, x_3)}{P_1(x_1)} \times \frac{P_{1,4}(x_1, x_4)}{P_1(x_1)}.$$

• Canonical Problem: Given $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} P$, learn structure of P.

4/17

- Canonical Problem: Given $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} P$, learn structure of P.
- If *P* is a tree, can use Chow and Liu (1968) as an efficient implementation of ML.

- Canonical Problem: Given $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} P$, learn structure of P.
- If P is a tree, can use Chow and Liu (1968) as an efficient implementation of ML.
- Denote set of distributions Markov on a tree $T_0 \in \mathcal{T}$ as $\mathcal{D}(T_0)$. Set of distributions Markov on any tree is $\mathcal{D}(\mathcal{T})$.

- Canonical Problem: Given $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} P$, learn structure of P.
- If P is a tree, can use Chow and Liu (1968) as an efficient implementation of ML.
- Denote set of distributions Markov on a tree $T_0 \in \mathcal{T}$ as $\mathcal{D}(T_0)$. Set of distributions Markov on any tree is $\mathcal{D}(\mathcal{T})$.
- Composite hypothesis testing problem considered here:

$$H_0: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \Lambda_0 \subset \mathcal{D}(\mathcal{T})$$

 $H_1: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \Lambda_1 \subset \mathcal{D}(\mathcal{T})$

 Characterization of type-II error exponent and generalized likelihood ratio test (GLRT).

• Neyman-Pearson setup. Acceptance regions $\{A_n\}$.

- Neyman-Pearson setup. Acceptance regions $\{A_n\}$.
- Def: Type-II error exponent for a fixed $Q \in \Lambda_1$ given $\{A_n\}$:

$$J(\Lambda_0,Q;\{\mathcal{A}_n\}) := \liminf_{n \to \infty} -\frac{1}{n} \log Q^n(\mathcal{A}_n)$$

- Neyman-Pearson setup. Acceptance regions $\{A_n\}$.
- Def: Type-II error exponent for a fixed $Q \in \Lambda_1$ given $\{A_n\}$:

$$J(\Lambda_0,Q;\{\mathcal{A}_n\}) := \liminf_{n \to \infty} -\frac{1}{n} \log Q^n(\mathcal{A}_n)$$

Def: Optimal Type-II error exponent

$$J^*(\Lambda_0, Q) := \sup_{\{\mathcal{A}_n: P^n(\mathcal{A}_n) \leq \alpha, \forall P \in \Lambda_0\}} J(\Lambda_0, Q; \mathcal{A}_n)$$

- Neyman-Pearson setup. Acceptance regions $\{A_n\}$.
- Def: Type-II error exponent for a fixed $Q \in \Lambda_1$ given $\{A_n\}$:

$$J(\Lambda_0,Q;\{\mathcal{A}_n\}) := \liminf_{n \to \infty} -\frac{1}{n} \log Q^n(\mathcal{A}_n)$$

Def: Optimal Type-II error exponent

$$J^*(\Lambda_0, Q) := \sup_{\{\mathcal{A}_n: P^n(\mathcal{A}_n) \leq \alpha, \forall P \in \Lambda_0\}} J(\Lambda_0, Q; \mathcal{A}_n)$$

Def: Worst-Case Optimal Type-II error exponent

$$J^*(\Lambda_0,\Lambda_1) := \inf_{Q \in \Lambda_1} J^*(\Lambda_0,Q)$$

- Neyman-Pearson setup. Acceptance regions $\{A_n\}$.
- Def: Type-II error exponent for a fixed $Q \in \Lambda_1$ given $\{A_n\}$:

$$J(\Lambda_0, Q; \{A_n\}) := \liminf_{n \to \infty} -\frac{1}{n} \log Q^n(A_n)$$

Def: Optimal Type-II error exponent

$$J^*(\Lambda_0, Q) := \sup_{\{\mathcal{A}_n: P^n(\mathcal{A}_n) \leq \alpha, \forall P \in \Lambda_0\}} J(\Lambda_0, Q; \mathcal{A}_n)$$

Def: Worst-Case Optimal Type-II error exponent

$$J^*(\Lambda_0,\Lambda_1) := \inf_{Q \in \Lambda_1} J^*(\Lambda_0,Q)$$

• Optimizing distribution Q^* called the least favorable distribution.

- Many trees: If there are d nodes, there are d^{d-2} trees!
- Searching for the dominant error event may be intractable.

- Many trees: If there are d nodes, there are d^{d-2} trees!
- Searching for the dominant error event may be intractable.

Natural Questions:

- Any closed-form expressions for the worst-case error exponent for special Λ₀, Λ₁?
- How does this depend on the true distribution?

- Many trees: If there are d nodes, there are d^{d-2} trees!
- Searching for the dominant error event may be intractable.

Natural Questions:

- Any closed-form expressions for the worst-case error exponent for special Λ₀, Λ₁?
- How does this depend on the true distribution?
- Connections to learning?
- Intuition and characterization of the least favorable distribution?

A Simplification

Assume that H_0 is simple and P is Markov on $T_0 = (V, E_0)$.

$$H_0: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \{P\}$$

 $H_1: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \Lambda_1 = \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(T_0)$

A Simplification

Assume that H_0 is simple and P is Markov on $T_0 = (V, E_0)$.

$$H_0: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \{P\}$$

 $H_1: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \Lambda_1 = \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(T_0)$

A Simplification

Assume that H_0 is simple and P is Markov on $T_0 = (V, E_0)$.

$$H_0: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \{P\}$$

 $H_1: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \Lambda_1 = \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(T_0)$

$$J^*(P) := J^*(\{P\}, \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(T_0))$$

7/17

For a non-edge e' = (i, j), let Path(e') be the unique path joining i and j.

For a non-edge e' = (i,j), let Path(e') be the unique path joining i and j.

Figure: Path(e') = {(i, k), (k, j)}

For a non-edge e' = (i, j), let Path(e') be the unique path joining i and j.

Figure: Path(e') = {(i, k), (k, j)}

Let L(i,j) be the number of hops between i and j.

For a non-edge e' = (i, j), let Path(e') be the unique path joining i and j.

Figure: Path(e') = {(i, k), (k, j)}

Let L(i,j) be the number of hops between i and j.

Mutual information of joint distribution $P_e = P_{i,j}$ denoted as $I(P_e)$.

Proposition

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{\substack{e \in \text{Path}(e')}} \big\{ I(P_e) - I(P_{e'}) \big\},$$

Proposition

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{\substack{e \in \text{Path}(e') \\ }} \{ I(P_e) - I(P_{e'}) \},$$

Illustration:

Proposition

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{e \in \text{Path}(e')} \{ I(P_e) - I(P_{e'}) \},$$

Illustration:

Proposition

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{e \in \text{Path}(e')} \{ I(P_e) - I(P_{e'}) \},$$

Illustration:

Least Favorable Distribution

The least favorable distribution Q^* is characterized by

$$E_{Q^*} = \underset{E \neq E_0, E \text{ acyclic}}{\operatorname{argmax}} \sum_{e \in E} I(P_e)$$

a second-best max-weight spanning tree problem,

Least Favorable Distribution

The least favorable distribution Q^* is characterized by

$$E_{Q^*} = \underset{E \neq E_0, E \text{ acyclic}}{\operatorname{argmax}} \sum_{e \in E} I(P_e)$$

a second-best max-weight spanning tree problem, and

$$Q_i^*(x_i) = P_i(x_i), \qquad \forall i \in V$$

$$Q_{i,j}^*(x_i, x_j) = P_{i,j}(x_i, x_j), \qquad \forall (i,j) \in E_{Q^*}$$

Proof Outline

Optimization for worst-case exponent is

$$\inf_{Q\in\mathcal{D}(\mathcal{T})\setminus\mathcal{D}(\{T_0\})}D(Q\,||\,P)$$

Optimization for worst-case exponent is

$$\inf_{Q \in \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(\{T_0\})} D(Q \,||\, P) = \min_{T \in \mathcal{T} \setminus \{T_0\}} \left[\inf_{Q \in \mathcal{D}(T)} D(Q \,||\, P) \right]$$

Optimization for worst-case exponent is

$$\inf_{Q \in \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(\{T_0\})} D(Q \, || \, P) = \min_{T \in \mathcal{T} \setminus \{T_0\}} \left[\inf_{Q \in \mathcal{D}(T)} D(Q \, || \, P)
ight]$$

Use tree decomposition (junction tree theorem)

$$Q(\mathbf{x}) = \prod_{i \in V(T)} Q_i(x_i) \prod_{(i,j) \in E(T)} \frac{Q_{i,j}(x_i, x_j)}{Q_i(x_i)Q_j(x_j)}$$

Optimization for worst-case exponent is

$$\inf_{Q \in \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(\{T_0\})} D(Q \,||\, P) = \min_{T \in \mathcal{T} \setminus \{T_0\}} \left[\inf_{Q \in \mathcal{D}(T)} D(Q \,||\, P) \right]$$

Use tree decomposition (junction tree theorem)

$$Q(\mathbf{x}) = \prod_{i \in V(T)} Q_i(x_i) \prod_{(i,j) \in E(T)} \frac{Q_{i,j}(x_i, x_j)}{Q_i(x_i)Q_j(x_j)}$$

• Emulate Chow and Liu (1968).

Optimization for worst-case exponent is

$$\inf_{Q \in \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(\{T_0\})} D(Q \,||\, P) = \min_{T \in \mathcal{T} \setminus \{T_0\}} \left[\inf_{Q \in \mathcal{D}(T)} D(Q \,||\, P) \right]$$

Use tree decomposition (junction tree theorem)

$$Q(\mathbf{x}) = \prod_{i \in V(T)} Q_i(x_i) \prod_{(i,j) \in E(T)} \frac{Q_{i,j}(x_i, x_j)}{Q_i(x_i)Q_j(x_j)}$$

- Emulate Chow and Liu (1968).
- Second-best max-weight spanning tree differs from best one by a single edge [Cormen et al. 2003].

Optimization for worst-case exponent is

$$\inf_{\mathcal{Q} \in \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(\left\{T_{0}\right\})} D(\mathcal{Q} \,||\, P) = \min_{T \in \mathcal{T} \setminus \left\{T_{0}\right\}} \left[\inf_{\mathcal{Q} \in \mathcal{D}(T)} D(\mathcal{Q} \,||\, P) \right]$$

Use tree decomposition (junction tree theorem)

$$Q(\mathbf{x}) = \prod_{i \in V(T)} Q_i(x_i) \prod_{(i,j) \in E(T)} \frac{Q_{i,j}(x_i, x_j)}{Q_i(x_i)Q_j(x_j)}$$

- Emulate Chow and Liu (1968).
- Second-best max-weight spanning tree differs from best one by a single edge [Cormen et al. 2003].
- Data processing inequality.

Intuition

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{\substack{e \in \text{Path}(e') \\ }} \{I(P_e) - I(P_{e'})\},$$

 Smaller the difference between MI on true edge and MI on non-edge (along path), smaller the detection error exponent.

Intuition

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{\substack{e \in \text{Path}(e')}} \big\{ I(P_e) - I(P_{e'}) \big\},$$

- Smaller the difference between MI on true edge and MI on non-edge (along path), smaller the detection error exponent.
- Detection error exponent depends only on bottleneck edges.

Comparison to Existing Results

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{\substack{e \in \text{Path}(e')}} \big\{ I(P_e) - I(P_{e'}) \big\},$$

Intuitive in light of the Chow-Liu algorithm for learning trees.

$$\hat{E}_{\mathrm{ML}} := \underset{E \text{ acyclic}}{\operatorname{argmax}} \sum_{e \in E} I(\hat{\mu}_e)$$

where $\hat{\mu}_e$ is the pairwise type on edge e.

Comparison to Existing Results

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{\substack{e \in \operatorname{Path}(e')}} \big\{ I(P_e) - I(P_{e'}) \big\},$$

Intuitive in light of the Chow-Liu algorithm for learning trees.

$$\hat{E}_{\mathrm{ML}} := \underset{E \text{ acyclic}}{\operatorname{argmax}} \sum_{e \in E} I(\hat{\mu}_e)$$

where $\hat{\mu}_e$ is the pairwise type on edge e.

Learning error exponent in very-noisy regime

$$\widetilde{K}(P) := \min_{e' \notin E_0} \min_{e \in Path(e')} \frac{(I(P_e) - I(P_{e'}))^2}{2Var(S_e - S_{e'})}$$

Comparison to Existing Results

$$J^*(P) = \min_{\substack{e' = (i,j) \notin E_0 \\ L(i,j) = 2}} \min_{\substack{e \in \operatorname{Path}(e')}} \big\{ I(P_e) - I(P_{e'}) \big\},$$

Intuitive in light of the Chow-Liu algorithm for learning trees.

$$\hat{E}_{\mathrm{ML}} := \underset{E \text{ acyclic}}{\operatorname{argmax}} \sum_{e \in E} I(\hat{\mu}_e)$$

where $\hat{\mu}_e$ is the pairwise type on edge e.

Learning error exponent in very-noisy regime

$$\widetilde{K}(P) := \min_{e' \notin E_0} \min_{e \in Path(e')} \frac{(I(P_e) - I(P_{e'}))^2}{2Var(S_e - S_{e'})}$$

ullet $J^*(P)$ and $\widetilde{K}(P)$ depend on the difference of mutual informations.

- Known that the worst-case error exponent is achieved by the Hoeffding Test.
- But hard to implement for tree distributions.

- Known that the worst-case error exponent is achieved by the Hoeffding Test.
- But hard to implement for tree distributions.
- The generalized likelihood ratio test (GLRT) has acceptance regions

$$\mathcal{A}_n := \left\{ \mathbf{x}^n : \frac{1}{n} \log \frac{\max_{Q \in \Lambda_1} Q^n(\mathbf{x}^n)}{\max_{P \in \Lambda_0} P^n(\mathbf{x}^n)} \ge \gamma \right\}$$

- Known that the worst-case error exponent is achieved by the Hoeffding Test.
- But hard to implement for tree distributions.
- The generalized likelihood ratio test (GLRT) has acceptance regions

$$\mathcal{A}_n := \left\{ \mathbf{x}^n : \frac{1}{n} \log \frac{\max_{Q \in \Lambda_1} Q^n(\mathbf{x}^n)}{\max_{P \in \Lambda_0} P^n(\mathbf{x}^n)} \ge \gamma \right\}$$

When the null hypothesis is simple, the GLRT also simplifies.

- Known that the worst-case error exponent is achieved by the Hoeffding Test.
- But hard to implement for tree distributions.
- The generalized likelihood ratio test (GLRT) has acceptance regions

$$\mathcal{A}_n := \left\{ \mathbf{x}^n : \frac{1}{n} \log \frac{\max_{Q \in \Lambda_1} Q^n(\mathbf{x}^n)}{\max_{P \in \Lambda_0} P^n(\mathbf{x}^n)} \ge \gamma \right\}$$

When the null hypothesis is simple, the GLRT also simplifies.

$$H_0: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \{P\}$$

 $H_1: \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} \Lambda_1 = \mathcal{D}(\mathcal{T}) \setminus \mathcal{D}(T_0)$

The Generalized Likelihood Ratio Test

- Denote the joint type of \mathbf{x}^n as $\hat{\mu} := \hat{\mu}(\cdot; \mathbf{x}^n)$.
- Denote the pairwise type on e as $\hat{\mu}_e$.
- True set of edges: E_0 .

Proposition

The GLRT simplifies as

$$\mathcal{A}_n = \left\{ \mathbf{x}^n : \sum_{e \in E^*} I(\hat{\mu}_e) - \sum_{e \in E_0} I(\hat{\mu}_e) \ge \gamma \right\}$$

where the "dominating edge set" is

$$E^* = \underset{E \neq E_0, E \text{ acyclic}}{\operatorname{argmax}} \sum_{e \in E} I(\hat{\mu}_e)$$

• Easy to implement the GLRT for testing between trees.

¹VTan, A. Anandkumar, A. Willsky "Learning High-Dimensional Markov Forest Distributions: Analysis of Error Rates", Submitted to JMLR, May 2010.

- Easy to implement the GLRT for testing between trees.
- Can find the tree structure E^* efficiently once pairwise types $\hat{\mu}_e$ have been computed.

¹VTan, A. Anandkumar, A. Willsky "Learning High-Dimensional Markov Forest Distributions: Analysis of Error Rates", Submitted to JMLR, May 2010.

- Easy to implement the GLRT for testing between trees.
- Can find the tree structure E^* efficiently once pairwise types $\hat{\mu}_e$ have been computed.
- Extensions to forest-structured distributions for error exponent and GLRT are straightforward.

¹VTan, A. Anandkumar, A. Willsky "Learning High-Dimensional Markov Forest Distributions: Analysis of Error Rates", Submitted to JMLR, May 2010.

- Easy to implement the GLRT for testing between trees.
- Can find the tree structure E^* efficiently once pairwise types $\hat{\mu}_e$ have been computed.
- Extensions to forest-structured distributions for error exponent and GLRT are straightforward.
- Recent work on high-dimensional learning of forest-structured distributions.

¹VTan, A. Anandkumar, A. Willsky "Learning High-Dimensional Markov Forest Distributions: Analysis of Error Rates", Submitted to JMLR, May 2010.

- Analyzed the worst-case type-II error exponent for composite hypothesis testing of Markov forest distributions.
- Close relations to learning.

- Analyzed the worst-case type-II error exponent for composite hypothesis testing of Markov forest distributions.
- Close relations to learning.
- Possible extension 1: Bayesian formulation (Chernoff Information).

- Analyzed the worst-case type-II error exponent for composite hypothesis testing of Markov forest distributions.
- Close relations to learning.
- Possible extension 1: Bayesian formulation (Chernoff Information).
- Possible extension 2: Decomposable graphical models.

- Analyzed the worst-case type-II error exponent for composite hypothesis testing of Markov forest distributions.
- Close relations to learning.
- Possible extension 1: Bayesian formulation (Chernoff Information).
- Possible extension 2: Decomposable graphical models.
- Possible extension 3: Connections to source coding of tree models?