Lecture 16 — Techniques of Differentiation

K The Core Idea

Remember:

A derivative tells us **how fast a function changes** — its *rate of change* or *slope*.

So if a function **never changes**, what's its rate of change?

Zero.

That's the logic behind the first rule.

Theorem 3.3.1 — Derivative of a Constant Function

lf

•
$$f(x) = c$$
 (where c is a constant)

then

•
$$f'(x) = 0$$

***** Explanation

Think about what a constant function looks like. For example:

•
$$f(x) = 5$$

This means no matter what x is — 2, 10, or 1000 — the output is always 5.

That's a **flat**, **horizontal line** on the graph.

And what's the slope of a flat line?

Right — **0**.

So the rate of change (derivative) is 0 everywhere.

Mathematically:

- f(x) = 5
- f'(x) = 0

Theorem 3.3.2 — The Power Rule

lf

• $f(x) = x^n$ (where n is a positive integer)

then

$$\bullet \quad f'(x) = n \cdot x^{n-1}$$

***** Explanation

Let's think step by step.

We start from the definition of the derivative:

•
$$f'(x) = \lim (h \to 0) [f(x + h) - f(x)] / h$$

Now substitute $f(x) = x^n$:

$$f'(x) = \lim (h -> 0) [(x + h)^n - x^n]/h$$

Using the Binomial Theorem

The Binomial Theorem expands $(x + h)^n$ as:

$$(x + h)^n = x^n + n * x^n(n-1) * h + (n(n-1)/2) * x^n(n-2) * h^2 + ... + h^n$$

Plug this expansion into the derivative formula:

$$f'(x) = \lim (h -> 0) [(x^n + n^*x^n(n-1)^*h + h^2 terms) - x^n]/h$$

The x^n terms cancel, leaving:

$$f'(x) = \lim (h -> 0) [n*x^{(n-1)}h + h^2 terms]/h$$

Divide every term by h:

$$f'(x) = \lim (h \rightarrow 0) [n*x^{(n-1)} + (terms containing h)]$$

As h -> 0 all terms that contain h go to 0, so we are left with:

Result:
$$f'(x) = n * x^{(n-1)}$$

A quick example (n = 3)

Let
$$f(x) = x^3$$
.

1. Expand $(x + h)^3$:

$$(x + h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$

2. Subtract x^3:

$$(x + h)^3 - x^3 = 3x^2h + 3xh^2 + h^3$$

3. Divide by h:

$$[(x + h)^3 - x^3]/h = 3x^2 + 3x^*h + h^2$$

4. Take the limit as h -> 0:

$$\lim (h -> 0) (3x^2 + 3x^2 + h^2) = 3x^2$$

So $f'(x) = 3x^2$, which matches the power rule.

Intuitive takeaway

The Binomial Theorem gives the algebraic expansion that reveals a single leading term containing h linearly: $n * x^{(n-1)} * h$. After dividing by h and taking the limit, all higher-power h terms disappear, leaving $n * x^{(n-1)}$. In plain language: multiply by the exponent, then reduce the exponent by one.

Examples

- 1. If
- $f(x) = x^2$

then

- f'(x) = 2x
- 2. If
- $f(x) = x^3$

then

- $f'(x) = 3x^2$
- 3. If
- $\bullet \quad f(x) = x^5$

then

•
$$f'(x) = 5x^4$$

This simple rule — *multiply by the power and reduce the exponent by one* — is one of the most used rules in calculus.

Theorem 3.3.3 — Constant Multiple Rule

If c is a constant and f(x) is a differentiable function, then the derivative of $c \cdot f(x)$ is:

•
$$d/dx [c \cdot f(x)] = c \cdot f'(x)$$

***** Explanation

Constants don't affect the "shape" of a curve — they only scale it.

So multiplying a function by a constant just multiplies its slope by that same constant.

Example

Let's say

•
$$f(x) = x^2$$

then

•
$$d/dx [3 \cdot x^2] = 3 \cdot (d/dx [x^2])$$

By the power rule:

•
$$d/dx [x^2] = 2x$$

So:

•
$$d/dx [3 \cdot x^2] = 3 \cdot (2x) = 6x$$

Geometric Intuition

- $\bullet \quad \text{A constant function} \text{ is perfectly flat} \rightarrow \text{slope 0}.$
- A **power function** grows faster as n increases \rightarrow slope gets steeper with higher x.
- A **constant multiple** just stretches or compresses the graph vertically, so the slope scales by that factor.

✓ Summary Table

Function Type	Function f(x)	Derivative f'(x)
Constant	С	0
Power	Xn	n·x ⁿ⁻¹
Constant × Function	c·f(x)	c·f'(x)

DERIVATIVE OF SUMS AND DIFFERENCES OF FUNCTIONS

If f and g are differentiable functions at x, then their sum (f + g) is also differentiable, and

$$d/dx [f(x) + g(x)] = f'(x) + g'(x)$$

Similarly,

$$d/dx [f(x) - g(x)] = f'(x) - g'(x)$$

STEP-BY-STEP EXPLANATION

Let's start from the definition of the derivative:

$$f'(x) = \lim (h -> 0) [f(x + h) - f(x)] / h$$

Now apply this to the sum (f + g):

$$d/dx [f(x) + g(x)]$$

= $\lim (h -> 0) [(f(x + h) + g(x + h)) - (f(x) + g(x))] / h$

Simplify the numerator:

=
$$\lim (h \rightarrow 0) [(f(x + h) - f(x)) + (g(x + h) - g(x))] / h$$

We can split this fraction into two separate parts:

$$= \lim (h -> 0) [f(x + h) - f(x)] / h + \lim (h -> 0) [g(x + h) - g(x)] / h$$

Now, each of these is just the derivative of f and g respectively:

$$= f'(x) + g'(x)$$

That's it!

We've shown that the derivative of a sum is the **sum of the derivatives**.

EXAMPLE 1

Let's find the derivative of:

$$y = x^4 + x^3$$

Using the sum rule:

$$d/dx [x^4 + x^3] = d/dx [x^4] + d/dx [x^3]$$

Now apply the Power Rule:

$$= 4x^3 + 3x^2$$

So,
$$dy/dx = 4x^3 + 3x^2$$

QUICK NOTE (FOR DIFFERENCE)

If you had $y = x^4 - x^3$, then $d/dx [x^4 - x^3] = 4x^3 - 3x^2$ Same logic — subtraction works exactly the same way.

DERIVATIVE OF A PRODUCT

If f and g are differentiable at x, then their product f(x) * g(x) is also differentiable, and

$$d/dx [f(x) * g(x)] = f(x) * g'(x) + g(x) * f'(x)$$

INTUITIVE EXPLANATION

Think of f(x) and g(x) as two changing quantities.

When both change together, the rate of change of their product depends on **both changing at** the same time.

So the derivative is not just f'(x) * g'(x).

You need to account for the fact that while one changes, the other may also be changing.

That's why there are **two parts**:

- 1. The change due to f (keeping g fixed)
- 2. The change due to g (keeping f fixed)

EXAMPLE 2

Let's find the derivative of:

$$y = x^2 * (x^3 + 1)$$

```
Here f(x) = x^2 and g(x) = (x^3 + 1)
```

Using the product rule:

$$d/dx [f(x) * g(x)] = f'(x) * g(x) + f(x) * g'(x)$$

Compute each part:

$$f'(x) = 2x$$

$$g'(x) = 3x^2$$

Now substitute:

$$= (2x)(x^3 + 1) + (x^2)(3x^2)$$

$$= 2x^4 + 2x + 3x^4$$

$$= 5x^4 + 2x$$

So the derivative is:

$$dy/dx = 5x^4 + 2x$$

INTUITIVE TAKEAWAY

For sums or differences — derivatives act independently and simply add or subtract. For products — the changes of both functions interact, so you apply the **product rule**.

In short:

- (1) Derivative of sum/difference \rightarrow add/subtract the derivatives
- (2) Derivative of product \rightarrow fg' + gf'

***** THEOREM 3.3.6 — DERIVATIVE OF A QUOTIENT

If f and g are differentiable at x, and $g(x) \neq 0$, then the derivative of their quotient is:

 $d/dx [f(x)/g(x)] = [g(x) * f'(x) - f(x) * g'(x)]/[g(x)]^{2}$

Step-by-Step Intuition

Let's think like Feynman — intuitively, not mechanically.

When you divide one function by another, like y = f(x) / g(x), both the top (f) and bottom (g) are changing.

You can't just differentiate the top or bottom separately — you have to see how their changes interact.

The quotient rule tells us exactly how to balance those two motions.

How It Comes Together (Derivation)

We know the **Product Rule**:

$$d/dx [f(x) * g(x)] = f'(x) * g(x) + f(x) * g'(x)$$

Now, notice that a quotient can be written as:

$$f(x) / g(x) = f(x) * (1 / g(x))$$

Let's apply the product rule to that:

$$d/dx [f(x) * (1/g(x))] = f'(x) * (1/g(x)) + f(x) * d/dx (1/g(x))$$

So we just need to find the derivative of (1/g(x)).

* THEOREM 3.3.7 — DERIVATIVE OF A RECIPROCAL

If g(x) is differentiable and $g(x) \neq 0$, then:

$$d/dx [1/g(x)] = -g'(x)/[g(x)]^2$$

Intuitive Explanation

Think of 1/g(x) as "how much of g fits into 1."

If g increases, the reciprocal decreases — hence the negative sign.

If g changes fast, the reciprocal changes even faster in the opposite direction, and the squared denominator keeps everything balanced.

Plugging It Back Into the Quotient Rule

Substitute this into our earlier product rule:

$$d/dx [f(x) * (1/g(x))] = f'(x) * (1/g(x)) + f(x) * [-g'(x) / g(x)^{2}]$$

Simplify:

=
$$[f'(x) * g(x) - f(x) * g'(x)] / [g(x)]^2$$

And that's our Quotient Rule!

▼ Final Formula (Simplified)

$$d/dx [f(x)/g(x)] = [g(x) * f'(x) - f(x) * g'(x)]/[g(x)]^{2}$$

Intuitive Picture

Imagine f(x) and g(x) as two dancers — both moving at different speeds.

When one moves up (increases) and the other down (decreases), their ratio changes — and this rule perfectly captures that motion.

The minus sign shows they move in opposite directions, and the square of the denominator keeps everything balanced.

Example

```
Let:

f(x) = x^2

g(x) = x^3 + 1

Then:

f'(x) = 2x
```

 $g'(x) = 3x^2$

Now apply the Quotient Rule:

```
d/dx [f(x) / g(x)]
= [g(x)*f'(x) - f(x)*g'(x)] / [g(x)]<sup>2</sup>
= [(x<sup>3</sup> + 1)(2x) - (x<sup>2</sup>)(3x<sup>2</sup>)] / (x<sup>3</sup> + 1)<sup>2</sup>
= [2x<sup>4</sup> + 2x - 3x<sup>4</sup>] / (x<sup>3</sup> + 1)<sup>2</sup>
= (-x<sup>4</sup> + 2x) / (x<sup>3</sup> + 1)<sup>2</sup>
```

Final Answer: $dy/dx = (-x^4 + 2x) / (x^3 + 1)^2$

Memory Trick (Rhyme)

"Low d High minus High d Low, Square the bottom, and away we go!"

- $\bullet \text{ "Low"} \to \text{denominator (g)}$
- "High" → numerator (f)

* THEOREM 3.3.8 — GENERALIZED POWER RULE (USING RECIPROCAL IDEA)

Now that we can differentiate reciprocals, we can extend the Power Rule to all integers, even negative ones.

If n is any integer, then: $d/dx [x^n] = n * x^{n-1}$

✓ Works for all n — positive, zero, or negative.

Example:

If
$$f(x) = x^{-2} = 1 / x^2$$

Then by the rule:

$$f'(x) = (-2) * x^{-3} = -2 / x^3$$

It matches perfectly with what we'd get using the reciprocal rule.

1 Summary

Rule	Formula	Meaning
Product Rule	(fg)' = f'g + fg'	Two functions multiplying
Quotient Rule	$(f/g)' = (g \cdot f' - f \cdot g') / g^2$	Two functions dividing
Reciprocal Rule	$(1/g)' = -g'/g^2$	Inverse of a function
General Power Rule	$(x^n)' = n \cdot x^{n-1}$	Works for all integers n