Analysis 2B

Luc Veldhuis

12 april 2017

Middelwaardestelling

Definitie voor in $\mathbb{R} \to \mathbb{R}$

$$f: I \subseteq \mathbb{R} \to \mathbb{R}$$
 met $[a, b] \subseteq I$
 $\exists \xi \in [a, b]$ zodanig dat $f(a) - f(b) = f'(\xi)(b - a)$
Richtingscoefficient van de lijn door $(a, f(a))$ en $(b, f(b))$:
 $\frac{f(b) - f(a)}{b - a} = f'(\xi)$

Vraag

Geldt de middelwaardestelling ook voor algemene afbeeldingen

 $F: \mathbb{R}^n \to \mathbb{R}^m$?

Nee!

Bijvoorbeeld: $f: \mathbb{R} \to \mathbb{R}^2$, $f(t) = (\cos(t), \sin(t))$

f differentieerbaar.

Bestaat er $\xi \in [0, 2\pi]$ zodat

$$(0,0) = f(2\pi) - f(0) = f'(\xi)2\pi = (-\sin(t),\cos(t))2\pi \neq (0,0)$$

Middelwaardestelling voor functies $\mathbb{R}^n \to \mathbb{R}$

Middelwaardestelling voor $\mathbb{R}^n \to \mathbb{R}$

 $f: \mathcal{U} \subseteq \mathbb{R}^n \to \mathbb{R}$, $a, b \in \mathcal{U}$ en differentieerbaar

Definieer $L(a,b) = \{a(1-t) + bt : t \in [0,1]\}$ het segment van a naar b en neem aan dat $L(a,b) \subseteq \mathcal{U}$.

Dan bestaat er een $c \in L(a,b)$ zodanig dat

 $f(b) - f(a) = \nabla f(c) \cdot (b - a)$, met \cdot het inproduct in \mathbb{R}^n .

De stelling geldt voor elke a en b als $\mathcal{U} = \text{domein}(f)$ convex is.

Definitie

 $\mathcal{U} \subseteq \mathbb{R}^n$ heet **convex** dan en slechts dan als $\forall x, y \in \mathcal{U}$,

$$L(x, y) \subseteq \mathcal{U}$$
.

Bijvoorbeeld, \mathbb{R}^n en $\overline{B_1(0)}$ zijn convex.

Twee disjuncte verzamelingen zijn nooit convex.

Middelwaardestelling voor functies $\mathbb{R}^n \to \mathbb{R}$

Relatie met de kettingregel

Het bewijs van de middelwaardestelling gebruikt de kettingregel.

Definieer
$$\phi(t) = a(1-t) + bt$$
, $t \in (-\epsilon, 1+\epsilon)$

$$\epsilon > 0$$
 klein, zodat $\mathsf{Im}(\phi) \subseteq \mathcal{U}$

Dan kunnen we de samenstelling beschouwen:

$$(-\epsilon, 1+\epsilon) \to^{\phi} \mathcal{U} \to^{f} \mathbb{R}$$

$$g = f \circ \phi \text{ met } g: (-\epsilon, 1+\epsilon) o \mathbb{R}$$

g is differentieerbaar, want f en ϕ zijn differentieerbaar.

Middelwaarde voor functies van 1 variabele $\Rightarrow \exists \xi \in [0,1]$ zodat

$$\nabla f(\phi(\xi)) \cdot \phi'(\xi) =_{kettingregel} g'(\xi) \cdot (1-0) = g(1) - g(0) = g(1) \cdot g(1)$$

$$f(b) - f(a)$$

Noem
$$\phi(\xi) = c$$

Dan geldt
$$f(b) - f(a) = \nabla f(c) \cdot \phi'(\xi) = \nabla f(c) \cdot (b - a)$$

$$\phi(t) = (1-t)a + tb = (b-a)t + a,$$

$$\phi'(t) = b - a$$

Definitie

 $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$

f heeft een **lokaal maximum** in hetpunt $a \in D$ dan en slechts dan als $\exists r > 0$ zodat $f(a) \ge f(x)$ voor alle $x \in B_r(a) \cap D$

Definitie

 $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$

f heeft een **lokaal minimum** in het punt $a \in D$ dan en slechts dan als $\exists r > 0$ zodat $f(a) \le f(x)$ voor alle $x \in B_r(a) \cap D$

Opmerking

Als f een lokaal minimum/maximum in een inwendig punt a heeft, dan moet gelden $\nabla f(a) = (0, \dots, 0)$

Voorbeeld

$$f(x,y) = 1 - x^2 - y^2$$

$$\nabla f(x,y) = (-2x, -2y)$$

$$\nabla f(0,0) = (0,0)$$

Bewijs

Definieer
$$g_i(t) = f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_n) = f(a + (t - a_i)e_i)$$

 $\frac{\partial f}{\partial x_i}(a) = \lim_{t \to a_i} \frac{f(a + (t - a_i)e_i) - f(a)}{t - a_i} = \lim_{t \to a_i} \frac{g_i(t) - g_i(a_i)}{t - a_i} = g'_i(a_i)$

Als f een lokaal maximum/minimum heeft in a, dan heeft $g_i(t)$ een lokaal maximum/minimum in a_i , $\forall i \in \{1, \ldots, n\}$

Dus

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right) = \left(g_1'(a_1), \dots, g_n'(a_n)\right) = (0, \dots, 0)$$

Voorbeeld

Vind maximum en minimum van de functie f(x, y) = xy over $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$

- Vind inwendige lokale maxima en minima door $\nabla f(x,y) = (0,0)$ op te lossen. $\nabla f(x,y) = (y,x)$ Dus 1 inwendig kritiek punt, namelijk $\nabla f(x,y) = 0$
- De rand onderzoeken. De rand van D is de cirkel $\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ is de **nulverzameling** van $g(x,y)=x^2+y^2-1$. Om het maximum en minima van f(x,y)=xy te vinden over $f_g=\{x^2+y^2-1=0\}$ te vinden, zoeken we oplossingen van het systeem $\nabla g(x,y)=\lambda \nabla f(x,y)$

Voorbeeld (vervolg)

Dus we moeten oplossen:

$$\nabla g(x, y) = (2x, 2y), \ \nabla f(x, y) = (y, x)$$

$$\begin{cases}
2x = \lambda y \\
2y = \lambda x \\
x^2 + y^2 = 1
\end{cases}$$

De λ heet de Lagrange multiplier.

Nulverzameling

Krommen in \mathbb{R}^2 als **nulverzameling** van een functie g(x,y). $f_g = \{(x,y) \in \mathbb{R}^2 : g(x,y) = 0\}$ is de nulverzameling van g met g differentieerbaar.

Als $p \in f_g$ met $\nabla g(p) \neq (0,0)$, dan bestaat er een (injectieve) differentieerbare kromme $\phi(\epsilon,\epsilon) \to \mathbb{R}^2$ met $\phi(0) = p, \ \phi'(0) \neq 0$ en zodat voor alle t geldt dat $\phi'(t) \in f_g$ Bijvoorbeeld, $\nabla g(x,y) = (2x,2y) \neq (0,0)$ in punten van f_g . (Neem $(\frac{1}{2}\sqrt{2},\frac{1}{2}\sqrt{2})$ op de cirkel)

Nulverzameling (vervolg)

Neem aan dat f een maximum/minimum heeft over f_g in het punt p en dat $\nabla g(x,y) \neq (0,0)$. Dan bestaat er een kromme $\phi: (-\epsilon,\epsilon) \to \mathbb{R}^2$ zodat $\phi(0) = p$, $\phi(0) \neq (0,0)$ en $\phi(t) \in f_g$ voor alle $t \in (-\epsilon,\epsilon)$.

Dus
$$g(\phi(t)) = 0 \ \forall t$$

$$0 = \frac{\partial}{\partial t} g(\phi(t)) = \nabla g(\phi(t)) \cdot \phi'(t)$$

t=0 invullen geeft $\nabla g(\phi(t)) \cdot \phi'(t) = 0$. f heeft een maximum/minimum over f_g in het punt p. Dus de functie $f \circ \phi$ heeft een maximum/minimum in t=0.

Maar $f \circ \phi : (-\epsilon, \epsilon) \to \mathbb{R}^2$ heeft een lokaal maximum in t = 0, dan moet $0 = (f \circ \phi)'(0) = \nabla f(\phi(0)) \circ \phi'(0) = \nabla f(p) \circ \phi'(0) = 0$ Conclusie: $\nabla f(p) \parallel \nabla g(p)$, dus $\exists \lambda \in \mathbb{R}$ zodat $\nabla g(p) = \lambda \nabla f(p)$

Niveaukromme

Een **niveaukromme** van $f: \mathbb{R}^2 \to \mathbb{R}$ is een deelverzameling van \mathbb{R}^2 van de vorm $\{(x,y) \in \mathbb{R}^2 : f(x,y) = k\}$ voor een constante $k \in \mathbb{R}$.

Voorbeeld

$$f(x, y) = xy$$

 $\{(x, y) \in \mathbb{R}^2 : xy = k\} \text{ met } k \text{ constant.}$