ESERCIZI DI FISICA GENERALE PER LA FACOLTÀ DI SCIENZE FARMACEUTICHE

In preparazione al corso Fisica e Informatica

Scritto Da

Davide Maria Tagliabue

Università degli Studi Milano

 $\frac{\mathcal{DMT}}{2024}$

Indice

		ione di venerdì 5 Aprile 2024
	1.1	Esercizi sulle cifre significative
		Esercizi sulla cinematica
	1.3	Esercizi sulla dinamica
	1.4	Esercizi sulla gravitazione
2	Lez	ione di venerdì 12 Aprile 2024
	2.1	Domande (18 punti)
	2.2	Esercizi (15 punti)

1 Lezione di venerdì 5 Aprile 2024

In questa lezione presentiamo affrontiamo i seguenti argomenti:

- esercizi sulle cifre significative,
- esercizi sulla cinematica,
- esercizi sulla dinamica,
- esercizi sulla gravitazione.

1.1 Esercizi sulle cifre significative

Esercizio 1.1

Un edificio a forma di parallelepipedo ha una base di area 225.4 m^2 e un'altezza di 63.2 m. Calcolare il suo volume, esprimendolo con il numero corretto di cifre significative.

Soluzione:

Il risultato di una moltiplicazione (o divisione) di due grandezze fisiche deve avere tante cifre significative quante ne ha la grandezza che ne contiene meno. In questo caso:

$$V = A \times h = (225.4 \text{ m}^2) \times (63.2 \text{ m}) = 142000 \text{ m}^3.$$
 (1.1)

Esercizio 1.2

In un esperimento di fisica, si misurano due lunghezze e si ottengono rispettivamente i valori x = 32.578 m e y = 5.6489 m. Si esprima la somma z = x + y con il numero corretto di cifre significative.

Soluzione:

Il risultato di una somma (o sottrazione) di due grandezze fisiche con una o più cifre decimali deve contenere un numero di cifre decimali pari a quello della grandezza che ne contiene di meno. In questo caso:

$$z = x + y = (32.578 \text{ m}) + (5.6489 \text{ m}) = 38.227 \text{ m}.$$
 (1.2)

1.2 Esercizi sulla cinematica

Esercizio 1.3

Partendo da una corsia esterna, un'auto si immette in autostrada con una velocità iniziale pari a $v_{\rm in}=35$ km/h. L'auto inizia poi ad accelerare con unaccelerazione costante di a=4 m/s², fino a raggiungere la velocità finale $v_{\rm f}=130$ km/h. Si calcolino:

- i) l'intervallo di tempo Δt necessario per passare da v_0 a $v_f,$
- ii) lo spazio Δx percorso nel mentre.

Soluzione:

L'auto si muove di moto rettilineo uniformemente accelarato. Questo implica che

$$a = \frac{\Delta v}{\Delta t} \implies \Delta t = \frac{\Delta v}{a}$$
. (1.3)

Utilizzando le unità del sistema internazionale, abbiamo $v_{\rm in}=9.7~{\rm m/s}$ e $v_f=36.1~{\rm m/s}$, da cui

$$\Delta t = \frac{\Delta v}{a} = 6.6 \text{ m/s}. \tag{1.4}$$

Questo risponde alla domanda i). Per quanto riguarda la domanda ii), ricordiamo che un oggetto che ha accelerazione lineare costante soddisfa la seguente equazione del moto:

$$\Delta x = v_{\rm in} \Delta t + \frac{1}{2} a \Delta t^2 \,. \tag{1.5}$$

Sostituendo i valori numerici di $v_{\rm in}$, Δt e a, e approssimando il risultato a due cifre significative, troviamo

$$\Delta x = 150 \text{ m}. \tag{1.6}$$

1.3 Esercizi sulla dinamica

Esercizio 1.4

I corpi 1, 2 e 3, di massa rispettivamente $m_1=2.0~{\rm kg},\,m_2=3.0~{\rm kg}$ e $m_3=4.0~{\rm kg},$ sono collegati come in figura tramite un filo inestendibile. Trascurando ogni attrito, si calcolino:

- i) l'accelerazione a del sistema,
- ii) le tensioni dei due fili.

Soluzione:

Cominciamo con il definire la dinamica di ciascuno dei tre corpi:

corpo 1:
$$\begin{cases} \vec{P}_1 - \vec{N}_1 = 0, \\ \vec{T}_1 = m_1 a \hat{x}, \end{cases}$$
 (1.7)

corpo 1:
$$\begin{cases} \vec{P}_1 - \vec{N}_1 = 0, \\ \vec{T}_1 = m_1 a \,\hat{\boldsymbol{x}}, \end{cases}$$
 (1.7)
corpo 2:
$$\begin{cases} \vec{P}_2 - \vec{N}_2 = 0, \\ \vec{T}_2 - \vec{T}_1 = m_2 a \,\hat{\boldsymbol{x}}, \end{cases}$$
 (1.8)

corpo 3:
$$\{\vec{P}_3 - \vec{T}_2 = m_3 a \,\hat{\boldsymbol{y}} \,,$$
 (1.9)

dove \hat{x} e \hat{y} sono i versori dei due assi. Per convenzione, abbiamo messo un segno meno davanti ai vettori delle forze che puntano nella direzione negativa degli assi. Notiamo inoltre che tutti e tre corpi si muovono con un'accelerazione che ha lo stesso modula a, in quanto vincolati da un filo inestensibile. Per trovare i moduli a, T_1 e T_2 , dobbiamo dunque risolvere il seguente sistema di tre equazioni in tre incognite:

$$\begin{cases}
T_1 = m_1 a, \\
T_2 - T_1 = m_2 a, \\
m_3 g - T_2 = m_3 a.
\end{cases}$$
(1.10)

Sostituiamo la prima equazione nella seconda, e poi la seconda nella terza, ottenendo:

$$\begin{cases}
T_1 = m_1 a, \\
T_2 = (m_1 + m_2) a, \\
m_3 g - (m_1 + m_2) a = m_3 a,
\end{cases}$$
(1.11)

da cui ricaviamo

$$a = \frac{m_3}{m_1 + m_2 + m_3} g = 4.4 \text{ m}^2,$$

$$T_1 = \frac{m_1 m_3}{m_1 + m_2 + m_3} g = 8.8 \text{ N},$$

$$T_2 = \frac{(m_1 + m_2)m_3}{m_1 + m_2 + m_3} g = 22 \text{ N}.$$
(1.12)

1.4 Esercizi sulla gravitazione

Esercizio 1.5

Un asteroide di massa m si muove lungo un'orbita circolare di raggio r attorno al Sole, alla velocità v. A un certo punto impatta con un altro asteroide di massa M e viene spinto in una nuova orbita circolare, lungo cui si muove a 1.5 v. Qual è il raggio della nuova orbita in termini di r?

Soluzione:

Prima dell'urto, l'asteroide di massa m orbita con moto circolare uniforme attorno al Sole. Ciò significa che la forza centripeta \vec{F}_c deve coincidere con la forza gravitazione \vec{F}_g , ossia $\vec{F}_g = \vec{F}_c$. Questo implica che

$$\frac{G \, m M_{\rm S}}{r^2} = m \frac{v^2}{r} \,, \qquad \Longrightarrow \qquad G M_{\rm S} = r v^2 \equiv {\rm costante} \,,$$
 (1.13)

ossia il prodotto rv^2 è costante. Pertanto, dopo l'urto, l'asteroide verrà spinto in una nuova orbita circolare con velocità $v_f = 1.5 v$, con un raggio r_f tale che

$$r_{\rm f}v_{\rm f}^2 = GM_{\rm S} \equiv rv^2 \,. \tag{1.14}$$

Troviamo quindi

$$r_{\rm f} = \frac{v^2}{v_{\rm f}^2} r = \frac{4}{9} v \,. \tag{1.15}$$

Esercizio 1.6

Il pianeta Giove possiede una massa circa 320 volte maggiore della Terra. Per questo motivo è stato affermato che una persona verrebbe schiacciata dalla forza di gravità di un pianeta delle dimensioni di Giove, poiché un uomo non può sopravvivere a più di qualche g.

Si calcoli l'accelerazione, in termini di g, che una persona avvertirebbe se si trovasse all'equatore di Giove, tenendo conto anche della rotazione del pianeta. Si usino i seguenti dati:

- massa di Giove: $M_G = 1.9 \cdot 10^{27} kg$,
- raggio equatoriale di Giove: $R_{\rm G} = 7.1 \cdot 10^4 \, \rm km$,
- $-\,$ periodo di rotazione di Giove: $T_{\rm G}=9~{\rm h}~55~{\rm min}.$

Soluzione:

Una persona che si trova all'equatore risente dell'azione di tre forze:

- i) forza di gravità \vec{F}_q (diretta verso il centro del pianeta),
- ii) forza centrifuga \vec{F}_{cf} , dovuta alla rotazione del pianeta; ha la stessa direzione di \vec{F}_g , ma verso opposto (punta verso l'esterno del pianeta),
- iii) reazione vincolare \vec{N} della superficie di Giove.

Chiamando \hat{r} il raggio versore che punta verso l'esterno, scriviamo il seguente sistema di equazioni:

$$\begin{cases} \vec{F}_{g} + \vec{F}_{cf} + \vec{N} = 0, \\ \vec{F}_{g} = -\frac{G \, m M_{G}}{R_{G}^{2}} \, \hat{\boldsymbol{r}}, \\ \vec{F}_{cf} = m \frac{v^{2}}{R_{G}} \hat{\boldsymbol{r}}, \\ \vec{N} = m g_{G} \, \hat{\boldsymbol{r}}, \end{cases}$$
(1.16)

dove $g_{\rm G}$ indica l'accelerazione percepita dalla persona sulla superficie di Giove. Otteniamo pertanto

$$-\frac{G \, m M_{\rm G}}{R_{\rm G}^2} + m \frac{v^2}{R_{\rm G}} + m g_{\rm G} = 0.$$
 (1.17)

Notiamo che la massa m si semplifica, mentre la velocità tangenziale v si può esprimere come

$$v = \frac{2\pi R_{\rm G}}{T_{\rm C}} \,. \tag{1.18}$$

Pertanto, sostituendo tale espressione nell'Eq. (1.17), concludiamo che

$$g_{\rm G} = \frac{GM_{\rm G}}{R_{\rm G}^2} - \frac{4\pi^2 R_{\rm G}}{T_{\rm G}^2} = 23 \text{ m/s}^2,$$
 (1.19)

ossia

$$\frac{g_{\rm G}}{g} = 2.3$$
. (1.20)

2 Lezione di venerdì 12 Aprile 2024

In questa lezione presentiamo le soluzioni della Prova in itinere del 15 Aprile 2020.

2.1 Domande (18 punti)

Esercizio 2.1

Calcolare il risultato con il giusto numero di cifre significative delle seguenti grandezze:

- i) $A = (5.4 \text{ cm}) \times (3.95 \text{ cm});$
- ii) V = (62 m/s) + (10.2 m/s).

Soluzione:

Il risultato di una moltiplicazione (o divisione) di due grandezze fisiche deve avere tante cifre significative quante ne ha la grandezza che ne contiene meno. In questo caso:

$$A = (5.4 \text{ cm}) \times (3.95 \text{ cm}) = 21 \text{ cm}^2.$$
 (2.1)

Nel caso invece di una somma (o sottrazione) di due grandezze fisiche con una o più cifre decimali, il risultato deve contenere un numero di cifre decimali pari a quello della grandezza che ne contiene di meno. In questo caso,

$$V = (62 \text{ m/s}) + (10.2 \text{ m/s}) = 72 \text{ m/s}.$$
 (2.2)

Esercizio 2.2

Dire quali sono grandezze scalari e vettoriali: energia potenziale, pressione, carica elettrica, campo elettrico.

Soluzione:

Il campo elettrico è l'unica grandezza vettoriale, mentre energia potenziale, pressione e carica elettrica sono scalari.

Esercizio 2.3

Indicare l'unità di misura di $GM_{\rm T}/R_{\rm T}^2$, dove G è la costante di gravitazione universale, $M_{\rm T}$ è la massa della terra e $R_{\rm T}$ è il raggio della terra.

Soluzione:

Notiamo che

$$F_g = \frac{G \, m M_{\rm T}}{R_{\rm T}^2} \tag{2.3}$$

esprime il modulo della forza di gravità che lega un corpo di massa m alla Terra. Pertanto,

$$a_g = \frac{F_g}{m} = \frac{GM_{\rm T}}{R_{\rm T}^2} \tag{2.4}$$

deve avere la dimensione di un'accelerazione, ossia m/s².

Esercizio 2.4

In un moto circolare uniforme di periodo $T=3.5~\mathrm{s}$ e raggio $R=140.5~\mathrm{cm}$, calcolare la frequenza di rotazione, la velocità tangenziale e l'accelerazione centripeta.

Soluzione:

In un moto circolare uniforme, la frequenza di rotazione è pari a

$$f = \frac{1}{T} = 0.29 \text{ Hz},$$
 (2.5)

la velocità angolare a

$$v = \frac{2\pi R}{T} = 2.5 \text{ m/s},$$
 (2.6)

dove abbiamo usato R=1.405 m, e l'accelerazione centripeta a

$$a_{\rm cp} = \frac{v^2}{R} = 4.5 \text{ m/s}^2.$$
 (2.7)

Esercizio 2.5

Il peso di un corpo è maggiore o minore se misurato sul monte Everest rispetto al livello del mare? Spiegare perché. Quanto varia l'accelerazione di gravità g? Si consideri la massa della Terra $M_{\rm T} = 5.98 \cdot 10^{24}$ kg, il raggio delle Terra $R_{\rm T} = 6.380$ km e l'altezza del monte Everest h = 8.90 km.

Soluzione:

Il modulo della forza di gravità che lega un corpo di massa m alla Terra è pari a

$$F_g = \frac{G \, m M_{\rm T}}{r^2} \,, \tag{2.8}$$

dove r è la distanza del corpo dal centro del pianeta. L'accelerazione di gravità sarà pertanto

$$a_g = \frac{F_g}{m} = \frac{GM_{\rm T}}{r^2} \,. \tag{2.9}$$

Al crescere di r, a_g diminuisce, quindi ci aspettiamo che l'accelerazione di gravità sia maggiore al livello del mare, dove troviamo come valore numerico

$$a_g = \frac{GM_{\rm T}}{R_{\rm T}^2} = 9.80 \text{ m/s}^2.$$
 (2.10)

Sulla punta del monte Everest varrà invece

$$a_g = \frac{GM_{\rm T}}{(R_{\rm T} + h)^2} = 9.77 \text{ m/s}^2.$$
 (2.11)

Esercizio 2.6

Un oggetto di massa m=1.2 kg è fermo su un piano scabro nonostante che venga applicata una forza orizzontale di 2.3 N. Calcolare tutte le forze agenti sul corpo e indicarne il modulo, la direzione e il verso.

Soluzione:

Sul corpo agiscono quattro forze:

i) la forza peso \vec{P} , diretta verso il centro della Terra, di modulo

$$P = mg = 12 N; (2.12)$$

- ii) la reazione vincolare del piano $\vec{N} = -\vec{P}$, con stesso modulo e direzione di \vec{P} , ma verso opposto;
- iii) una forza esterna di modulo F = 2.3 N, parallela al piano;
- iv) la forza d'attrito $\vec{F}_{\rm a} = -\vec{F}$, con stesso modulo e direzione di \vec{F} , ma verso opposto.

Ricordiamo che la forza d'attrito statico non ha un valore intrinseco, ma assume il modulo della forza cui si oppone, fino al valore massimo $F_s^{\text{max}} = \mu_s N$.

Esercizio 2.7

Determinare lo spazio percorso da un oggetto lasciato cadere da una torre sotto l'azione della gravità dopo 1.3 s. Quale sarà lo spazio percorso tra $t_1 = 1.5$ s e $t_2 = 2.5$ s?

Soluzione:

Un corpo in caduta libera soddisfa la seguente legge oraria:

$$x_{\rm f} = x_{\rm in} + v_{\rm in}(t_{\rm f} - t_{\rm in}) - \frac{1}{2}g(t_{\rm f} - t_{\rm in})^2,$$
 (2.13)

dove abbiamo preso l'asse delle ordinate diretto verso l'alto. Siamo liberi di fissare $t_{\rm in}=0$ s, e poiché in tale istante abbiamo $v_{\rm in}=0$ m/s, l'Eq. (2.13) si riduce a

$$x_{\rm f} = x_{\rm in} - \frac{1}{2}g\,t_{\rm f}^2\,,$$
 (2.14)

Assumendo $t_{\rm f} = 1.3$ s, troviamo

$$\Delta x = x_{\rm f} - x_{\rm in} = -\frac{1}{2}g t_{\rm f}^2 = -8.3 \text{ m},$$
 (2.15)

dove il segno — indica che il corpo, cadendo, si sta avvicinando all'origine del nostro sistema di riferimento, ossia il terreno.

Per trovare lo spazio percorso tra gli intervalli di tempo t_1 e t_2 , utilizziamo l'Eq. (2.14) per entrambi questi tempi, come segue:

$$\begin{cases} x(t_1) = x_{\text{in}} - \frac{1}{2}g t_1^2, \\ x(t_2) = x_{\text{in}} - \frac{1}{2}g t_2^2. \end{cases}$$
 (2.16)

Sottraiamo la prima equazione del sistema alla seconda, ottenendo:

$$\Delta x_{21} = x(t_2) - x(t_1) = -\frac{1}{2}g(t_2^2 - t_1^2) = -19.6 \text{ m}.$$
 (2.17)

Esercizio 2.8

In un urto completamente anelastico un corpo di massa m=1.2 kg e velocità v=10.2 m/s urta su un corpo di massa M=12.0 kg a riposo. Calcolare l'impulso e l'energia cinetica prima e dopo l'urto del sistema. Commentare il risultato.

Soluzione:

Per definizione, in un urto completamente anaelastico due corpi rimangono attaccati tra loro dopo l'impatto. Ciò significa che la quantità di moto finale sarà pari a $p_f = (m + M)v_f$. Per quanto riguarda la quantità di moto iniziale, questa corrisponde semplicemente a $p_{in} = mv$, poiché prima dell'impatto il corpo di massa M è fermo. Quindi

$$p_{\rm in} = p_{\rm f} \implies mv = (m+M)v_{\rm f} \implies v_{\rm f} = \frac{m}{m+M}v = 0.93 \text{ m/s},.$$
 (2.18)

La differenza tra la quantità di moto finale e iniziale del corpo di massa m ci restituisce l'impulso che esso ha subito dall'impatto con il corpo di massa M, e corrisponde a

$$\Delta p = m(v_{\rm f} - v) = -11 \text{ kg m/s}.$$
 (2.19)

Il segno - indica che l'impulso ha verso opposto alla direzione iniziale del moto del corpo di massa m.

Esercizio 2.9

Se il lavoro delle forze non conservative effettuato su un sistema è $W_{\rm nc}=-10.3~{\rm J}$ e la variazione dell'energia potenziale del sistema è $\Delta U=13.0~{\rm J}$, quanto vale la variazione dell'energia cinetica ΔK del sistema considerato?

Soluzione:

Ricordiamo che il teorema delle forze vive afferma che

$$W_{\text{tot}} = W_{\text{c}} + W_{\text{nc}} = \Delta K, \qquad (2.20)$$

dove il lavoro conservativo corrisponde a $W_c = -\Delta U$. Nel nostro caso,

$$\Delta K = W_{\rm nc} - \Delta U = -23.3 \text{ J}.$$
 (2.21)

Esercizio 2.10

Calcolare l'allungamento di una molla di costante elastica $k=45.7~\mathrm{N/m}$ alla quale viene applicata una forza $F=10.5~\mathrm{N}.$

Soluzione:

È sufficiente usare la legge di Hooke:

$$F = k\Delta x \implies \Delta x = \frac{F}{k} = 0.230 \text{ m}.$$
 (2.22)

2.2 Esercizi (15 punti)

Esercizio 2.11: (nome originale: A)

Due asteroidi si urtano frontalmente: prima dell'urto l'asteroide A ($m_A = 6.9 \cdot 10^{12}$ kg) ha un velocità di 2.9 km/s e l'asteroide B ($m_B = 1.20 \cdot 10^{13}$ kg) ha un velocità di 1.9 km/s orientata in senso opposto. Se gli asteroidi si uniscono, quale sarà la velocità (direzione e modulo) del nuovo asteroide dopo l'urto? Calcolare l'energia cinetica prima e dopo l'urto e spiegare il risultato ottenuto.

Soluzione:

Trattandosi di un urto totalmente anaelastico, si conserva la quantità di moto totale, ma non l'energia cinetica. La quantità di moto prima dell'urto è data da

$$\vec{p}_{\rm in} = m_A \vec{v}_{\rm in}^A + m_B \vec{v}_{\rm in}^B \,,$$
 (2.23)

mentre quella dopo l'urto corrisponde a

$$\vec{p}_{\rm f} = (m_A + m_B)\vec{v}_{\rm f} \,.$$
 (2.24)

Prendendo il versore \hat{x} con stessa direzione e verso di $\vec{v}_{\rm in}^A$, abbiamo

$$\vec{p}_{\rm in} = \vec{p}_{\rm f} \implies (m_A v_{\rm in}^A - m_B v_{\rm in}^B) \,\hat{\boldsymbol{x}} = (m_A + m_B) v_{\rm f} \,\hat{\boldsymbol{x}} \,,$$
 (2.25)

da cui otteniamo

$$v_{\rm f} = \frac{m_A v_{\rm in}^A - m_B v_{\rm in}^B}{m_A + m_B} = -0.15 \text{ km/s} = -1.5 \cdot 10^2 \text{ m/s}.$$
 (2.26)

 $\vec{v}_{\rm f}$ ha pertanto la stessa direzione e verso di $\vec{v}_{\rm in}^B.$

Per quanto concerne la variazione di energia cinetica, troviamo

$$\Delta K = K_{\rm f} - K_{\rm in} = \frac{1}{2} (m_A + m_B) v_{\rm f}^2 - \frac{1}{2} \left(m_A (v_{\rm in}^A)^2 + m_B (v_{\rm in}^B)^2 \right) = -2.9 \cdot 10^{19} \text{ J}.$$
 (2.27)

Come ci aspettavamo, durante l'urto è andata persa parte dell'energia cinetica. È importante sottolineare che, per il calcolo di ΔK , tutte le velocità devono essere espresse in m/s.

Esercizio 2.12: (nome originale: B)

Un corpo di massa m=3.2 kg, attaccato ad una molla con costante elastica k=290 N/m, compie un moto armonico. A distanza di d=2.5 cm dalla posizione diequilibrio il corpo si muove con velocità v=0.90 m/s. Calcolare

- i) l'ampiezza del moto,
- ii) la massima velocità scalare raggiunta dal corpo.

Soluzione:

Per trovare l'ampiezza del moto, è sufficiente applicare la conservazione dell'energia meccanica (si noti che la forza elastica è conservativa):

$$K_{\rm in} + U_{\rm in} = K_{\rm f} + U_{\rm f}$$
 (2.28)

La posizione iniziale è quella in cui conosciamo i dati d e v, mentre la posizione finale quella corrispondente al massimo allungamento della molla, che è proprio l'ampiezza A del moto. In tale posizione, la velocità è nulla, da cui $K_{\rm f}=0$ J. Quindi,

$$\frac{1}{2}mv^2 + \frac{1}{2}kd^2 = \frac{1}{2}kA^2 \qquad \Longrightarrow \qquad A = \sqrt{\frac{mv^2 + kd^2}{k}} = 0.098 \text{ m}, \qquad (2.29)$$

dove abbiamo usato d = 0.025 m.

Possiamo trovare una via alternativa per risolvere il problema. Sappiamo che la legge oraria per un corpo che si muove di moto circolare uniforme corrisponde a

$$x(t) = A\sin(\omega t + \phi), \qquad \omega = \sqrt{\frac{k}{m}},$$
 (2.30)

dove ϕ è una generica fase. La legge della velocità è invece

$$v(t) = A\omega\cos(\omega t + \phi). \tag{2.31}$$

Sappiamo che al tempo $t_{\rm in}$ il sistema si trova nella posizione $x(t_{\rm in})=d$ con una velocità $v(t_{\rm in})=v$. Pertanto, abbiamo che

$$\begin{cases} A\sin(\omega t_{\rm in} + \phi) = d, \\ A\omega\cos(\omega t_{\rm in} + \phi) = v. \end{cases}$$
(2.32)

Dividiamo la prima equazione per la seconda, così da trovare:

$$\frac{1}{\omega}\tan(\omega t_{\rm in} + \phi) = \frac{d}{v} \qquad \Longrightarrow \qquad \omega t_{\rm in} + \phi = \tan^{-1}\left(\frac{\omega d}{v}\right). \tag{2.33}$$

A questo punto, invertiamo la prima equazione in (2.32) per ottenere l'ampiezza:

$$A = \frac{d}{\sin(\omega t_{\rm in} + \phi)} = \frac{d}{\sin(\tan^{-1}(\frac{\omega d}{v}))} = 0.098 \text{ m},$$
 (2.34)

che coincide con il risultato ottenuto tramite la conservazione dell'energia.

Da ultimo, per quanto riguarda la velocità scalare massima, dall'Eq. (2.31) troviamo:

$$v(t) = A\omega\cos(\omega t + \phi) \le \omega A = \sqrt{\frac{k}{m}} A \equiv v_{\text{max}} = 0.93 \text{ m/s}.$$
 (2.35)

Esercizio 2.13: (nome originale: C)

Un corpo di massa m=12.0 kg si trova su un piano inclinato scabro con angolo $\alpha=30^{\circ}$ rispetto al superficie orizzontale. Il coefficiente di attrito statico è $\mu_s=0.42$. Determinare se il corpo scivola o se rimane fermo sul piano inclinato. Qual è l'angolo massimo consentito affinché il corpo di massa m non scivoli?

Soluzione:

Dividiamo la forza peso \vec{P} in due componenenti $\vec{P}_{||}$ e \vec{P}_{\perp} , la prima parallela e la seconda perpendincolare al piano inclinato. \vec{P}_{\perp} è compensata dalla normale al piano, ossia

$$\vec{P}_{\perp} + \vec{N} = 0. {(2.36)}$$

Prendendo i moduli di entrambi i vettori, troviamo:

$$mg\cos(\alpha) - N = 0 \implies N = mg\cos(\alpha)$$
. (2.37)

Conoscendo N, possiamo calcolare la forza di attrito statico massima, che corrisponde a

$$F_{\rm s}^{\rm max} = \mu_{\rm s} N = \mu_{\rm s} mg \cos(\alpha) = 43 \text{ N}.$$
 (2.38)

Notiamo che $\vec{F}_{\rm s}^{\rm max}$ è diretta lungo la componente parallela al piano, ma in verso opposto a $\vec{P}_{||}$. Il sistema è in equilibrio se e solo se $P_{||} \leq F_{\rm s}^{\rm max}$. Tuttavia, $P_{||}$ è pari a

$$P_{||} = mg\sin(\alpha) = 58.8 \text{ N},$$
 (2.39)

quindi il sistema non è in equilibrio.

Affinché il sistema risulti in equilibrio, deve valere la condizione:

$$P_{||} \le F_{\rm s}^{\rm max} \Longrightarrow mg\sin(\alpha) \le \mu_{\rm s} mg\cos(\alpha),$$
 (2.40)

condizione soddisfatta solo se

$$\tan(\alpha) \le \mu_{\rm s} \implies \alpha \le \tan^{-1}(\mu_{\rm s}) = 23^{\circ}.$$
 (2.41)