Solving Corresponding Parts of Congruent Triangles

Jonathan R. Bacolod

Sauyo High School

Reminder

To solve the corresponding parts of congruent triangles, remember:

Reminder

To solve the corresponding parts of congruent triangles, remember:

The Corresponding Parts of Congruent Triangles are Congruent (CPCTC).

Given: $\triangle MHT \cong \triangle MAT$

Given: $\triangle MHT \cong \triangle MAT$

Find: x

 $\overline{\mathit{HT}}\cong$

Given: $\triangle MHT \cong \triangle MAT$

Find: x

 $\overline{\mathit{HT}}\cong\overline{\mathit{AT}}$

Given: $\triangle MHT \cong \triangle MAT$

Find: x

 $\overline{HT} \cong \overline{AT}$ $m\overline{HT} = m\overline{AT}$

Given: $\triangle MHT \cong \triangle MAT$

Find: x

 $\overline{HT} \cong \overline{AT}$ $m\overline{HT} = m\overline{AT}$ 5x = 3x + 4

Given: $\triangle MHT \cong \triangle MAT$

$$\overline{HT} \cong \overline{AT}$$
 $m\overline{HT} = m\overline{AT}$
 $5x = 3x + 4$
 $5x - 3x = 3x - 3x + 4$

Given: $\triangle MHT \cong \triangle MAT$

$$\overline{HT} \cong \overline{AT}$$
 $m\overline{HT} = m\overline{AT}$
 $5x = 3x + 4$
 $5x - 3x = 3x - 3x + 4$
 $2x = 4$

Given: $\triangle MHT \cong \triangle MAT$

$$\overline{HT} \cong \overline{AT}$$

$$m\overline{HT} = m\overline{AT}$$

$$5x = 3x + 4$$

$$5x - 3x = 3x - 3x + 4$$

$$2x = 4$$

$$\frac{2x}{2} = \frac{4}{2}$$

Given: $\triangle MHT \cong \triangle MAT$

$$\overline{HI} \cong \overline{AI}$$

$$m\overline{HI} = m\overline{AI}$$

$$5x = 3x + 4$$

$$5x - 3x = 3x - 3x + 4$$

$$2x = 4$$

$$\frac{2x}{2} = \frac{4}{2}$$

$$x = 2$$

Given: $\triangle HRU \cong \triangle HRT$

Given: $\triangle HRU \cong \triangle HRT$

Find: x

 $\overline{HU}\cong$

Given: $\triangle HRU \cong \triangle HRT$

Find: x

 $\overline{HU} \cong \overline{HT}$

Given: $\triangle HRU \cong \triangle HRT$

Find: x

 $\overline{HU}\cong\overline{HT}$

 $m\overline{HU} = m\overline{HT}$

Given: $\triangle HRU \cong \triangle HRT$

Find: x

 $\overline{HU} \cong \overline{HT}$ $m\overline{HU} = m\overline{HT}$

2x - 3 = x + 5

Given: $\triangle HRU \cong \triangle HRT$

$$\overline{HU} \cong \overline{HT}$$
 $m\overline{HU} = m\overline{HT}$

$$2x - 3 = x + 5$$

$$2x - x - 3 + 3 = x - x + 5 + 3$$

Given: $\triangle HRU \cong \triangle HRT$

Find.
$$x$$

$$\overline{HU} \cong \overline{HT}$$

$$m\overline{HU} = m\overline{HT}$$

$$2x - 3 = x + 5$$

$$2x - x - 3 + 3 = x - x + 5 + 3$$

$$x = 8$$

Given: $\triangle OCU \cong \triangle RTU$

Given: $\triangle OCU \cong \triangle RTU$

Find: x

 $\overline{CU} \cong$

Given: $\triangle OCU \cong \triangle RTU$

Find: x

 $\overline{CU}\cong \overline{TU}$

Given: $\triangle OCU \cong \triangle RTU$

Find: x

 $\overline{CU} \cong \overline{TU}$ $\overline{mCU} = \overline{mTU}$

Given: $\triangle OCU \cong \triangle RTU$

Find: x

 $\overline{CU} \cong \overline{TU}$ $m\overline{CU} = m\overline{TU}$ 7x - 4 = x + 2

Given: $\triangle OCU \cong \triangle RTU$

$$\overline{CU} \cong \overline{TU}$$
 $m\overline{CU} = m\overline{TU}$
 $7x - 4 = x + 2$
 $7x - x - 4 + 4 = x - x + 2 + 4$

Given: $\triangle OCU \cong \triangle RTU$

$$\overline{CU} \cong \overline{TU}$$

$$m\overline{CU} = m\overline{TU}$$

$$7x - 4 = x + 2$$

$$7x - x - 4 + 4 = x - x + 2 + 4$$

$$6x = 6$$

Given: $\triangle OCU \cong \triangle RTU$

$$\overline{CU} \cong \overline{TU}
m\overline{CU} = m\overline{TU}
7x - 4 = x + 2
7x - x - 4 + 4 = x - x + 2 + 4
6x = 6
\frac{6x}{6} = \frac{6}{6}$$

Given: $\triangle OCU \cong \triangle RTU$

$$\overline{CU} \cong \overline{TU}$$

$$m\overline{CU} = m\overline{TU}$$

$$7x - 4 = x + 2$$

$$7x - x - 4 + 4 = x - x + 2 + 4$$

$$6x = 6$$

$$\frac{6x}{6} = \frac{6}{6}$$

Given: $\triangle OFH \cong \triangle GFD$ Find: mOH and $m\angle DFG$

Given: $\triangle OFH \cong \triangle GFD$ Find: \overrightarrow{mOH} and \overrightarrow{m}/DFG

 $\overline{OH}\cong$

Given: $\triangle OFH \cong \triangle GFD$ Find: mOH and $m\angle DFG$

 $\overline{OH}\cong\overline{GD}$

Given: $\triangle OFH \cong \triangle GFD$ Find: mOH and $m\angle DFG$

 $\overline{OH} \cong \overline{GD}$ $m\overline{OH} = m\overline{GD}$

Given: $\triangle OFH \cong \triangle GFD$ Find: mOH and $m\angle DFG$

 $\overline{OH} \cong \overline{GD}$ $m\overline{OH} = m\overline{GD}$ 7x = 4x + 15

Given: $\triangle OFH \cong \triangle GFD$ Find: mOH and $m\angle DFG$

 $\overline{OH} \cong \overline{GD}$ $m\overline{OH} = m\overline{GD}$ 7x = 4x + 157x - 4x = 4x - 4x + 15

Given: $\triangle OFH \cong \triangle GFD$ Find: mOH and $m\angle DFG$

$$\overline{OH} \cong \overline{GD}$$
 $m\overline{OH} = m\overline{GD}$
 $7x = 4x + 15$
 $7x - 4x = 4x - 4x + 15$
 $3x = 15$

Given: $\triangle OFH \cong \triangle GFD$ Find: mOH and $m\angle DFG$

$$\overline{OH} \cong \overline{GD}$$

$$m\overline{OH} = m\overline{GD}$$

$$7x = 4x + 15$$

$$7x - 4x = 4x - 4x + 15$$

$$3x = 15$$

$$\frac{3x}{3} = \frac{15}{3}$$

$$\overline{OH} \cong \overline{GD}$$

$$m\overline{OH} = m\overline{GD}$$

$$7x = 4x + 15$$

$$7x - 4x = 4x - 4x + 15$$

$$3x = 15$$

$$3x = 15$$

$$3x = 15$$

$$x = 5$$

$$\overline{OH} \cong \overline{GD}$$

$$m\overline{OH} = m\overline{GD}$$

$$7x = 4x + 15$$

$$7x - 4x = 4x - 4x + 15$$

$$3x = 15$$

$$\frac{3x}{3} = \frac{15}{3}$$

$$x = 5$$

$$m\overline{OH} = 7x$$

$$\overline{OH} \cong \overline{GD}$$

$$m\overline{OH} = m\overline{GD}$$

$$7x = 4x + 15$$

$$7x - 4x = 4x - 4x + 15$$

$$3x = 15$$

$$\frac{3x}{3} = \frac{15}{3}$$

$$x = 5$$

$$m\overline{OH} = 7x$$

 $m\overline{OH} = 7(5)$

$$\overline{OH} \cong \overline{GD}$$

$$m\overline{OH} = m\overline{GD}$$

$$7x = 4x + 15$$

$$7x - 4x = 4x - 4x + 15$$

$$3x = 15$$

$$\frac{3x}{3} = \frac{15}{3}$$

$$x = 5$$

$$m\overline{OH} = 7x$$

 $m\overline{OH} = 7(5)$
 $m\overline{OH} = 35$ units

Given: $\triangle OFH \cong \triangle GFD$ Find: \overrightarrow{mOH} and $\overrightarrow{m} \angle DFG$

Given: $\triangle OFH \cong \triangle GFD$ Find: $m\overline{OH}$ and m/DFG

/DFG ≅

Given: $\triangle OFH \cong \triangle GFD$ Find: \overrightarrow{mOH} and \overrightarrow{m}/DFG

 $\angle DFG \cong \angle HFO$

Given: $\triangle OFH \cong \triangle GFD$

Find: $m\overline{OH}$ and $m\angle DFG$

 $\angle DFG \cong \angle HFO$ $m\angle DFG = m\angle HFO$

Given: $\triangle OFH \cong \triangle GFD$ Find: mOH and m/DFG

 $\angle DFG \cong \angle HFO$ $m\angle DFG = m\angle HFO$

 $m\angle DFG = 85^{\circ}$

Given: $\triangle ESR \cong \triangle QSR$

Find: $m\overline{SQ}$

Given: $\triangle ESR \cong \triangle QSR$

Find: $m\overline{SQ}$

 $\overline{\mathit{SQ}}\cong$

Given: $\triangle ESR \cong \triangle QSR$

Find: mSQ

 $\overline{SQ}\cong \overline{SE}$

Given: $\triangle ESR \cong \triangle QSR$

Find: mSQ

 $\overline{SQ} \cong \overline{SE}$ $m\overline{SQ} = m\overline{SE}$

Given: $\triangle ESR \cong \triangle QSR$

Find: mSQ

 $\overline{SQ} \cong \overline{SE}$ $m\overline{SQ} = m\overline{SE}$ 3x + 10 = 5x

Given: $\triangle ESR \cong \triangle QSR$

Find: mSQ

$$\overline{SQ} \cong \overline{SE}$$

$$m\overline{SQ} = m\overline{SE}$$

$$3x + 10 = 5x$$

$$3x - 5x + 10 - 10 = 5x - 5x - 10$$

$$3x + 10$$

R

Given: $\triangle ESR \cong \triangle QSR$

$$\overline{SQ} \cong \overline{SE}$$

$$m\overline{SQ} = m\overline{SE}$$

$$3x + 10 = 5x$$

$$3x - 5x + 10 - 10 = 5x - 5x - 10$$

$$-2x = -10$$

$$3x + 10$$

Given: $\triangle ESR \cong \triangle QSR$

$$\overline{SQ} \cong \overline{SE}$$

$$m\overline{SQ} = m\overline{SE}$$

$$3x + 10 = 5x$$

$$3x - 5x + 10 - 10 = 5x - 5x - 10$$

$$-2x = -10$$

$$\frac{-2x}{-2} = \frac{-10}{-2}$$

$$3x + 10$$

Given: $\triangle ESR \cong \triangle QSR$

$$\overline{SQ} \cong \overline{SE}$$

$$m\overline{SQ} = m\overline{SE}$$

$$3x + 10 = 5x$$

$$3x - 5x + 10 - 10 = 5x - 5x - 10$$

$$-2x = -10$$

$$\frac{-2x}{-2} = \frac{-10}{-2}$$

$$x = 5$$

Given: $\triangle ESR \cong \triangle QSR$

$$\overline{SQ} \cong \overline{SE}$$

$$m\overline{SQ} = m\overline{SE}$$

$$3x + 10 = 5x$$

$$3x - 5x + 10 - 10 = 5x - 5x - 10$$

$$-2x = -10$$

$$\frac{-2x}{-2} = \frac{-10}{-2}$$

$$x = 5$$

$$m\overline{SQ} = 3x + 10$$

Given: $\triangle ESR \cong \triangle QSR$

$$\overline{SQ} \cong \overline{SE}$$

$$m\overline{SQ} = m\overline{SE}$$

$$3x + 10 = 5x$$

$$3x - 5x + 10 - 10 = 5x - 5x - 10$$

$$-2x = -10$$

$$\frac{-2x}{-2} = \frac{-10}{-2}$$

$$x = 5$$

$$m\overline{SQ} = 3x + 10$$

$$m\overline{SQ} = 3x + 10$$
$$m\overline{SQ} = 3(5) + 10$$

Given: $\triangle ESR \cong \triangle QSR$

Find: mSQ

$$\overline{SQ} \cong \overline{SE}$$

$$m\overline{SQ} = m\overline{SE}$$

$$3x + 10 = 5x$$

$$3x - 5x + 10 - 10 = 5x - 5x - 10$$

$$-2x = -10$$

$$\frac{-2x}{-2} = \frac{-10}{-2}$$

$$x = 5$$

$$3x + 10 = 5x - 5x - 10$$

 $m\overline{SQ} = 3x + 10$ $m\overline{SQ} = 3(5) + 10$ $m\overline{SQ} = 25$ units

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

Find: $m\overline{XW}$ and $m\angle K$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

Find: $m\overline{XW}$ and $m\angle K$

 $\overline{XW}\cong$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

Find: mXW and $m\angle K$

 $\overline{XW}\cong \overline{VK}$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

Find: mXW and $m\angle K$

 $\overline{XW} \cong \overline{VK}$ $m\overline{XW} = m\overline{VK}$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

Find: mXW and $m\angle K$

 $\overline{XW} \cong \overline{VK}$ $m\overline{XW} = m\overline{VK}$ 2x + 7 = 4x + 5

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

$$\overline{XW} \cong \overline{VK}$$

$$m\overline{XW} = m\overline{VK}$$

$$2x + 7 = 4x + 5$$

$$2x - 4x + 7 - 7 = 4x - 4x + 5 - 7$$

$$4x + 5$$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

$$\overline{XW} \cong \overline{VK}$$

$$m\overline{XW} = m\overline{VK}$$

$$2x + 7 = 4x + 5$$

$$2x - 4x + 7 - 7 = 4x - 4x + 5 - 7$$

$$-2x = -2$$

$$W$$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

$$\overline{XW} \cong \overline{VK}$$

$$m\overline{XW} = m\overline{VK}$$

$$2x + 7 = 4x + 5$$

$$2x - 4x + 7 - 7 = 4x - 4x + 5 - 7$$

$$-2x = -2$$

$$-2x = -2$$

$$0$$

$$W$$

$$V$$

Given: $\triangle XVW \cong \triangle VXK$, $m \angle W = 70^{\circ}$

Find: $m\overline{XW}$ and $m\angle K$

$$\overline{XW} \cong \overline{VK}$$

$$m\overline{XW} = m\overline{VK}$$

$$2x + 7 = 4x + 5$$

$$2x - 4x + 7 - 7 = 4x - 4x + 5 - 7$$

$$-2x = -2$$

$$-2x = -2$$

$$x = 1$$

$$W$$

$$V$$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

$$\overline{XW} \cong \overline{VK}$$

$$m\overline{XW} = m\overline{VK}$$

$$2x + 7 = 4x + 5$$

$$2x - 4x + 7 - 7 = 4x - 4x + 5 - 7$$

$$-2x = -2$$

$$-2x = -2$$

$$-2 = -2$$

$$x = 1$$

$$m\overline{XW} = 2x + 7$$

Given: $\triangle XVW \cong \triangle VXK$, $m \angle W = 70^{\circ}$

$$\overline{XW} \cong \overline{VK}$$

$$m\overline{XW} = m\overline{VK}$$

$$2x + 7 = 4x + 5$$

$$2x - 4x + 7 - 7 = 4x - 4x + 5 - 7$$

$$-2x = -2$$

$$\frac{-2x}{-2} = \frac{-2}{-2}$$

$$x = 1$$

$$m\overline{XW} = 2x + 7$$
$$m\overline{XW} = 2(1) + 7$$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

$$\overline{XW} \cong \overline{VK}$$

$$m\overline{XW} = m\overline{VK}$$

$$2x + 7 = 4x + 5$$

$$2x - 4x + 7 - 7 = 4x - 4x + 5 - 7$$

$$-2x = -2$$

$$-2x = -2$$

$$-2 = -2$$

$$x = 1$$

$$mXW = 2x + 7$$

 $m\overline{XW} = 2(1) + 7$
 $m\overline{XW} = 9$ units

Given: $\triangle XVW \cong \triangle VXK$, $m \angle W = 70^{\circ}$

Find: $m\overline{XW}$ and $m\angle K$

Given: $\triangle XVW \cong \triangle VXK$, $m\angle W = 70^{\circ}$

Find: $m\overline{XW}$ and $m\angle K$

 $\angle K \cong$

Given: $\triangle XVW \cong \triangle VXK$, $m \angle W = 70^{\circ}$

Find: $m\overline{XW}$ and $m\angle K$

$$\angle K \cong \angle W$$

Given: $\triangle XVW \cong \triangle VXK$, $m \angle W = 70^{\circ}$

Find: $m\overline{XW}$ and $m\angle K$

$$\angle K \cong \angle W$$

 $m\angle K = m\angle W$

Given: $\triangle XVW \cong \triangle VXK$, $m \angle W = 70^{\circ}$

Find: $m\overline{XW}$ and $m\angle K$

 $\angle K \cong \angle W$ $m\angle K = m\angle W$ $m/K = 70^{\circ}$

Given: $\triangle TAC \cong \triangle TAK$

Given: $\triangle TAC \cong \triangle TAK$

Find: x

 $\overline{\textit{TC}}\cong$

Given: $\triangle TAC \cong \triangle TAK$

Find: x

 $\overline{\textit{TC}}\cong \overline{\textit{TK}}$

Given: $\triangle TAC \cong \triangle TAK$

Find: x

 $\overline{TC} \cong \overline{TK}$ $m\overline{TC} = m\overline{TK}$

Given: $\triangle TAC \cong \triangle TAK$

$$\overline{TC} \cong \overline{TK}$$

 $m\overline{TC} = m\overline{TK}$
 $28 = 9x + 1$

Given: $\triangle TAC \cong \triangle TAK$

$$\overline{TC} \cong \overline{TK}$$

$$m\overline{TC} = m\overline{TK}$$

$$28 = 9x + 1$$

$$28 - 28 - 9x = 9x - 9x + 1 - 28$$

$$C = A$$

$$K$$

Given: $\triangle TAC \cong \triangle TAK$

$$\overline{TC} \cong \overline{TK}$$

$$m\overline{TC} = m\overline{TK}$$

$$28 = 9x + 1$$

$$28 - 28 - 9x = 9x - 9x + 1 - 28$$

$$-9x = -27$$

Given: $\triangle TAC \cong \triangle TAK$

$$\overline{IC} \cong \overline{IK}$$

$$m\overline{IC} = m\overline{IK}$$

$$28 = 9x + 1$$

$$28 - 28 - 9x = 9x - 9x + 1 - 28$$

$$-9x = -27$$

$$\frac{-9x}{-9} = \frac{-27}{-9}$$

Given: $\triangle TAC \cong \triangle TAK$

$$\overline{IC} \cong \overline{IK}$$

$$m\overline{IC} = m\overline{IK}$$

$$28 = 9x + 1$$

$$28 - 28 - 9x = 9x - 9x + 1 - 28$$

$$-9x = -27$$

$$-9x = -27$$

$$-9x = -27$$

$$x = 3$$

Given: $\triangle BXH \cong \triangle GXD$,

 $m\angle BXH = y + 30, m\angle DXG = 3y + 10$

Given: $\triangle BXH \cong \triangle GXD$,

$$m\angle BXH = y + 30, m\angle DXG = 3y + 10$$

Find: x and y

 $\overline{XG}\cong$

Given: $\triangle BXH \cong \triangle GXD$,

$$m\angle BXH = y + 30, m\angle DXG = 3y + 10$$

Find: x and y

 $\overline{XG}\cong \overline{XB}$

Given: $\triangle BXH \cong \triangle GXD$,

$$m\angle BXH = y + 30, m\angle DXG = 3y + 10$$

$$\overline{XG} \cong \overline{XB}$$

 $m\overline{XG} = m\overline{XB}$

Given: $\triangle BXH \cong \triangle GXD$.

$$m\angle BXH = y + 30, m\angle DXG = 3y + 10$$

$$\overrightarrow{XG} \cong \overrightarrow{XB}$$
 $\overrightarrow{mXG} = \overrightarrow{mXB}$

Given: $\triangle BXH \cong \triangle GXD$,

$$m\angle BXH = y + 30, m\angle DXG = 3y + 10$$

$$\overline{XG} \cong \overline{XB}$$

 $m\overline{XG} = m\overline{XB}$
 $2x + 6 = 20$
 $2x + 6 - 6 = 20 - 6$

Given: $\triangle BXH \cong \triangle GXD$,

$$m\angle BXH = y + 30, m\angle DXG = 3y + 10$$

$$\overline{XG} \cong \overline{XB}$$

 $m\overline{XG} = m\overline{XB}$
 $2x + 6 = 20$
 $2x + 6 - 6 = 20 - 6$
 $2x = 14$

Given:
$$\triangle BXH \cong \triangle GXD$$
,

$$m\angle BXH = y + 30, m\angle DXG = 3y + 10$$

$$\overline{XG} \cong \overline{XB}$$

$$m\overline{XG} = m\overline{XB}$$

$$2x + 6 = 20$$

$$2x + 6 - 6 = 20 - 6$$

$$2x = 14$$

$$\frac{2x}{2} = \frac{14}{2}$$

Given: $\triangle BXH \cong \triangle GXD$,

$$m\angle BXH = y + 30, m\angle DXG = 3y + 10$$

$$\overline{XG} \cong \overline{XB}$$

$$m\overline{XG} = m\overline{XB}$$

$$2x + 6 = 20$$

$$2x + 6 - 6 = 20 - 6$$

$$2x = 14$$

$$\frac{2x}{2} = \frac{14}{2}$$

$$x = 7$$

Given: $\triangle BXH \cong \triangle GXD$, $m \angle BXH = y + 30$, $m \angle DXG = 3y + 10$ Find: x and y

Given: $\triangle BXH \cong \triangle GXD$, $m\angle BXH = y + 30$, $m\angle DXG = 3y + 10$ Find: x and y

Given: $\triangle BXH \cong \triangle GXD$, $m\angle BXH = y + 30$, $m\angle DXG = 3y + 10$ Find: x and y $\angle DXG \cong \angle BXH$

Given: $\triangle BXH \cong \triangle GXD$, $m\angle BXH = y + 30$, $m\angle DXG = 3y + 10$ Find: x and y $\angle DXG \cong \angle BXH$ $m\angle DXG = m\angle BXH$

Given: $\triangle BXH \cong \triangle GXD$, $m\angle BXH = y + 30, m\angle DXG = 3y + 10$ Find: x and y $\angle \mathsf{DXG} \cong \angle \mathsf{BXH}$

Given:
$$\triangle BXH \cong \triangle GXD$$
,
 $m \angle BXH = y + 30$, $m \angle DXG = 3y + 10$
Find: x and y

$$\angle DXG \cong \angle BXH$$

$$m \angle DXG = m \angle BXH$$

$$3y + 10 = y + 30$$

$$3y - y + 10 - 10 = y - y + 30 - 10$$

Given:
$$\triangle BXH \cong \triangle GXD$$
,
 $m \angle BXH = y + 30$, $m \angle DXG = 3y + 10$
Find: x and y

$$\angle DXG \cong \angle BXH$$

$$m \angle DXG = m \angle BXH$$

$$3y + 10 = y + 30$$

$$3y - y + 10 - 10 = y - y + 30 - 10$$

$$2y = 20$$

Given:
$$\triangle BXH \cong \triangle GXD$$
,
 $m \angle BXH = y + 30$, $m \angle DXG = 3y + 10$
Find: x and y

$$\angle DXG \cong \angle BXH$$

$$m \angle DXG = m \angle BXH$$

$$3y + 10 = y + 30$$

$$3y - y + 10 - 10 = y - y + 30 - 10$$

$$2y = 20$$

$$\frac{2y}{2} = \frac{20}{2}$$

Given:
$$\triangle BXH \cong \triangle GXD$$
,
 $m \angle BXH = y + 30$, $m \angle DXG = 3y + 10$
Find: x and y

$$\angle DXG \cong \angle BXH$$

$$m \angle DXG = m \angle BXH$$

$$3y + 10 = y + 30$$

$$3y - y + 10 - 10 = y - y + 30 - 10$$

$$2y = 20$$

$$\frac{2y}{2} = \frac{20}{2}$$

$$y = 10$$

Given: $\triangle XWK$ is an equilateral triangle,

V is the midpoint of \overline{WK}

Given: $\triangle XWK$ is an equilateral triangle,

V is the midpoint of \overline{WK}

Find: $m\overline{WV}$

 $\overline{XW} \cong$

Given: $\triangle XWK$ is an equilateral triangle,

V is the midpoint of \overline{WK}

Find: $m\overline{WV}$

 $\overline{XW} \cong \overline{XK}$

Given: $\triangle XWK$ is an equilateral triangle,

V is the midpoint of WK

Find: $m\overline{WV}$

 $\overline{XW} \cong \overline{XK}$ $m\overline{XW} = m\overline{XK}$

Given: $\triangle XWK$ is an equilateral triangle, V is the midpoint of \overline{WK}

Find: $m\overline{WV}$

 $\overline{XW} \cong \overline{XK}$ $m\overline{XW} = m\overline{XK}$ 3x + 2 = 2x + 6

Given: $\triangle XWK$ is an equilateral triangle,

V is the midpoint of \overline{WK}

Find: mWV

$$\overline{XW} \cong \overline{XK}$$

 $m\overline{XW} = m\overline{XK}$
 $3x + 2 = 2x + 6$
 $3x - 2x + 2 - 2 = 2x - 2x + 6 - 2$

Given: $\triangle XWK$ is an equilateral triangle,

V is the midpoint of \overline{WK}

$$\overline{XW} \cong \overline{XK}$$

$$m\overline{XW} = m\overline{XK}$$

$$3x + 2 = 2x + 6$$

$$3x - 2x + 2 - 2 = 2x - 2x + 6 - 2$$

$$x = 4$$

Given: $\triangle XWK$ is an equilateral triangle,

V is the midpoint of \overline{WK}

$$\overline{XW} \cong \overline{XK}$$

$$m\overline{XW} = m\overline{XK}$$

$$3x + 2 = 2x + 6$$

$$3x - 2x + 2 - 2 = 2x - 2x + 6 - 2$$

$$x = 4$$

$$m\overline{WV} = \frac{1}{2}m\overline{WK}$$

Given: $\triangle XWK$ is an equilateral triangle,

V is the midpoint of \overline{WK}

Find: mWV

$$\overline{XW} \cong \overline{XK}$$

$$m\overline{XW} = m\overline{XK}$$

$$3x + 2 = 2x + 6$$

$$3x - 2x + 2 - 2 = 2x - 2x + 6 - 2$$

$$x = 4$$

$$m\overline{WV} = \frac{1}{2}m\overline{WK} = \frac{1}{2}(2x + 6)$$

Given: $\triangle XWK$ is an equilateral triangle, V is the midpoint of \overline{WK}

$$\overline{XW} \cong \overline{XK}$$

$$m\overline{XW} = m\overline{XK}$$

$$3x + 2 = 2x + 6$$

$$3x - 2x + 2 - 2 = 2x - 2x + 6 - 2$$

$$x = 4$$

$$m\overline{WV} = \frac{1}{2}m\overline{WK} = \frac{1}{2}(2x + 6) = \frac{1}{2}(2(4) + 6)$$

Given: $\triangle XWK$ is an equilateral triangle, V is the midpoint of \overline{WK}

$$\overline{XW} \cong \overline{XK}$$

$$m\overline{XW} = m\overline{XK}$$

$$3x + 2 = 2x + 6$$

$$3x - 2x + 2 - 2 = 2x - 2x + 6 - 2$$

$$x = 4$$

$$m\overline{WV} = \frac{1}{2}m\overline{WK} = \frac{1}{2}(2x + 6) = \frac{1}{2}(2(4) + 6)$$

$$m\overline{WV} = \frac{1}{2}(14)$$

Given: $\triangle XWK$ is an equilateral triangle, V is the midpoint of \overline{WK}

$$\overline{XW} \cong \overline{XK}$$

$$m\overline{XW} = m\overline{XK}$$

$$3x + 2 = 2x + 6$$

$$3x - 2x + 2 - 2 = 2x - 2x + 6 - 2$$

$$x = 4$$

$$m\overline{WV} = \frac{1}{2}m\overline{WK} = \frac{1}{2}(2x + 6) = \frac{1}{2}(2(4) + 6)$$

$$m\overline{WV} = \frac{1}{2}(14) = 7 \text{ units}$$

Thank you for watching.