Extrait sujet 0

3.1. Mesure de la température de l'eau

Un capteur de température permet de surveiller la température de l'eau du bassin, car celleci doit absolument rester à l'état liquide pour alimenter les canons à neige.

Lors d'une opération de maintenance, le technicien relève une série de 10 valeurs successives de la température θ de l'eau.

Celles-ci sont reportées dans le tableau de mesures suivant :

Mesure	n° 1	n° 2	n° 3	n° 4	n° 5	n° 6	n° 7	n°8	n° 9	n° 10
θ (°C)	5,1	4,8	5,5	4,7	4,8	4,9	5,4	5,3	5,5	5,1

L'objectif de cette étude est de déterminer l'incertitude type de répétabilité sur la mesure de cette température.

- 3.1.1. Déterminer la valeur moyenne θ_{moy} de ces 10 mesures. $\theta_{moy} \approx 5$, $\theta_{moy} \approx 5$, $\theta_{moy} \approx 5$
- 3.1.2. Procéder à une évaluation de type A (approche statistique) de l'incertitude-type correspondant à cette série de mesure en vous aidant du document 3. $v(\theta_{mag}) = \frac{0.303}{2.03} = \frac{9}{2.03}$
- 3.1.3. Écrire la plage de valeurs attendues lors de cette mesure que devra rapporter 10 \approx 0,1 \approx 0

Document 3: Evaluation de type A d'une incertitude (à partir de n mesures)

Soit 11 mesures effectuées dans des conditions de répétabilité (même opérateur, même matériel, ...). Le meilleur estimateur de la valeur du mesurande M est la valeur moyenne \overline{m} des valeurs mesurées.

L'incertitude type qui lui est associée est définie par la relation : $\mathbf{u}(\mathbf{M}) = \frac{\sigma_{n-1}}{\sqrt{n}}$

Remarque : L'incertitude de répétabilité est évaluée de façon statistique (type A) dans le cas où les 11 mesures ont été effectuées <u>dans les mêmes conditions expérimentales</u> (même opérateur, même matériel, ...)

Rappel mathématique :

Ecart type (expérimental) d'un échantillon d'une population : $\sigma_{n-1} = \sqrt{\frac{\sum (m_i - \overline{m})^2}{n-1}}$ (statistique)