Теория автоматов и формальных языков Регулярные языки

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

25 сентября 2020

В предыдущей серии

Конечный автомат — $\langle Q, \Sigma, \delta, q_0, F \rangle$

- $Q \neq \varnothing$ конечное множество состояний
- Σ Конечный входной алфавит
- δ функция переходов
 - lacktriangle Детерминированный КА: отображение типа $Q imes \Sigma o Q$
 - lacktriangle Недетерминированный КА: отображение типа $Q imes \Sigma o 2^Q$
- $q_0 \in Q$ начальное состояние
- $F \subseteq Q$ множество конечных состояний

В предыдущей серии: ДКА

В предыдущей серии: распознавание слова ДКА

В предыдущей серии: распознание слова ДКА

В предыдущей серии: распознание слова ДКА

Слово распознается за O(n)

В предыдущей серии: распознание слова НКА

Слово распознается за $O(|\omega|\sum_{t\in Q}\sum_{c\in\Sigma}|\delta(t,c)|)$

В предыдущей серии: детерминизация

В предыдущей серии: минимизация

Произведение автоматов

$$A_1=\langle \Sigma_1, Q_1, q_{1_0}, \delta_1, F_1
angle$$
 in $A_2=\langle \Sigma_2, Q_2, q_{2_0}, \delta_2, F_2
angle$ — KA

Произведением автоматов назовем $A = \langle \Sigma, Q, q_0, \delta, F \rangle$, где

- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $Q = Q_1 \times Q_2$
- $q_0 = (q_{1_0}, q_{2_0})$
- F ⊆ Q
 - ▶ $F = F_1 \times F_2$ распознает **пересечение** языков
 - $ightharpoonup F = (F_1 imes Q_2) \cup (Q_1 imes F_2)$ распознает **объединение** языков
 - ▶ $F = F_1 \times (Q_2 \setminus F_2)$ распознает **разность** языков
- $\delta((q_1, q_2), c) = (\delta_1(q_1, c), \delta_2(q_2, c))$

Интуиция: ищем пути в двух автоматах одновременно

Произведение автоматов: пример

Пересечение языков

Объединение языков

Разность языков

Замкнутость автоматных языков относительно операций

Автоматные языки замкнуты относительно операций:

- Объединения
- Пересечения
- Разности
- Дополнения
 - $\blacktriangleright \ \overline{X} = \Sigma^* \setminus X$

Регулярное множество (регулярный язык)

Регулярное множество в алфавите Σ определяется итеративно:

- \varnothing регулярное множество в алфавите Σ
- $\{a\}$ регулярное множество в алфавите Σ для каждого $a\in\Sigma$
- $\{\varepsilon\}$ регулярное множество в алфавите Σ
- ullet Если P и Q регулярные множества в алфавите Σ , то регулярны
 - $\triangleright P \cup Q$

(объединение) (конкатенация)

PQ = {pq | p ∈ P, q ∈ Q}
 P* = {ε} ∪ P ∪ PP ∪ PPP ∪ ...

- (итерация)
- ullet Ничто другое не является регулярным множеством в алфавите Σ
- Множество всех регулярных языков обозначим $\mathbb R$

Примеры регулярных языков

- Все конечные языки
 - ▶ $\{-2147483648, -2147483647, \dots, 2147483647\}$ все 32-разрядные целые числа
- $L_a = \{a^k \mid k odd\}$
- $L_b = \{b^l \mid l even\}$
- $L_{ab} = \{a^k b^l \mid k odd, l even\} = L_a L_b$
- $L = \{a^*\} = L_a^*$

Регулярное выражение

Регулярное выражение — способ записи регулярного множества

- Ø обозначает Ø
- *a* обозначает {*a*}
- ε обозначает $\{\varepsilon\}$
- Если *p* и *q* обозначают *P* и *Q*, то:
 - ▶ $p \mid q$ обозначает $P \cup Q$
 - ▶ ра обозначает PQ
 - р* обозначает Р*

Примеры регулярных выражений

- $-2147483648 \mid -2147483647 \mid \cdots \mid 2147483647$ все 32-разрядные целые числа
- $a(aa)^* : L_a = \{a^k \mid k odd\}$
- $(bb)^* : L_b = \{b^l \mid I even\}$
- $a(aa)^*(bb)^* : L_{ab} = \{a^k b^l \mid k odd, l even\} = L_a L_b$
- $a^*: L = \{a^*\} = L_a^*$

Замкнутость регулярных языков относительно операций

Регулярные языки замкнуты ($A \in \mathbb{R}, B \in \mathbb{R} \Rightarrow A \diamond B \in \mathbb{R}$) относительно операций:

- Конкатенации (L_1L_2) , объединения $(L_1 \cup L_2)$, итерации (L^*)
- Пересечения $(L_1 \cap L_2)$, дополнения $(\neg L)$, разности $(L_1 \setminus L_2)$
- Обращения $(L_{rev} = \{\omega^R = a_m a_{m-1} \dots a_1 \mid a_1 a_2 \dots a_m = \omega \in L\})$
- ullet Гомоморфизма цепочек ϕ

 - $\phi(\alpha\beta) = \phi(\alpha)\phi(\beta)$
- Обратного гомоморфизма цепочек

Теорема Клини

Теорема

Классы автоматных и регулярных языков эквивалентны

НКА с ε -переходами: почему бы и нет?

Ничего не поломалось?

Эквивалентность НКА с ε -переходами и НКА без ε -переходов

- НКА без arepsilon-переходов частный случай НКА с arepsilon-переходами
- В обратную сторону можно построить ε -замыкание
 - ▶ Транзитивное замыкание: для каждого подграфа, состоящего только из ε -переходов, делаем ε -замыкание
 - ▶ Добавление терминальных состояний: для ε -перехода из состояния u в v, где v терминальное, добавляем u в терминальные
 - ▶ Добавление ребер: $\forall u, v, c, w : \delta(u, \varepsilon) = v, \delta(v, c) = w$, добавим переход $\delta(u, c) = w$
 - ▶ Устранение ε -переходов

ε -замыкание

Теорема Клини: доказательство ←

Теорема

Классы автоматных и регулярных языков эквивалентны

Доказательство.

⇐: Построим по регулярному выражению КА (НКА с

 ε -переходами)

Построение KA по PB: ε

Построение КА по РВ: символ

Построение KA по PB: объединение $p \mid q$

Построение КА по РВ: конкатенация ра

Построение KA по PB: итерация p^*

Теорема Клини: доказательство ⇒

Теорема

Классы автоматных и регулярных языков эквивалентны

Доказательство.

⇒: Построим регулярное выражение по конечному автомату методом исключения состояний

Идея: на ребрах пишем регулярные выражения, соответсвующие путям между вершинами, последовательно исключаем состояния

Исключение состояния *s*

Исключение состояния s: удаление ребер и вершины

Исключение состояний: последний шаг

$$(R^* \mid SU^*T)^*SU^*$$

Исключение состояний: последний шаг

 R^*

Исключение состояний: пример

 $1*0(\varepsilon \mid 01*0)*1(11)*$

Свойства регулярных выражений

- a | a = a
- $a \mid \varnothing = a$
- a | b = b | a
- $a \mid (b \mid c) = (a \mid b) \mid c$
- a(bc) = (ab)c
- $\{\varepsilon\}a = a\{\varepsilon\} = a$
- $\varnothing a = a\varnothing = \varnothing$
- a(b | c) = ab | ac
- (a | b)c = ac | bc
- $\{\varepsilon\} \mid aa^* \subseteq a^*$
- $\{\varepsilon\} \mid a^*a \subseteq a^*$
- $ab \subseteq b \Rightarrow a^*b \subseteq b$
- $ab \subseteq a \Rightarrow ab^* \subseteq a$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

• A o aB, A o a или A o arepsilon, где $A, B \in V_N, a \in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

• A o Ba, A o a или A o arepsilon, где $A, B \in V_N, a \in V_T$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

• A o aB, A o a или A o arepsilon, где $A, B \in V_N, a \in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba, A o a или A oarepsilon, где $A, B\in V_N, a\in V_T$

Теорема

Пусть L — формальный язык.

- $\exists G_r$ праволинейная грамматика, т.ч. $L = L(G_r) \Leftrightarrow$
- $\exists G_l$ леволинейная грамматика, т.ч. $L = L(G_l)$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB,A o a или A o arepsilon, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Bа,A o а или A oarepsilon, где $A,B\in V_N,$ а $\in V_T$

Теорема

Пусть L — формальный язык.

- $\exists G_r$ праволинейная грамматика, т.ч. $L = L(G_r) \Leftrightarrow$
- $\exists G_l$ леволинейная грамматика, т.ч. $L = L(G_l)$

Регулярная грамматика — праволинейная или леволинейная грамматика

Эквивалентность регулярной грамматики и НКА

Алгоритм построения НКА $\langle Q, \Sigma, q_0, \delta, F \rangle$ по праволинейной грамматике $\langle V_T, V_N, P, S \rangle$

- $Q = V_N \cup \{q_f\}$
- $\forall (A \rightarrow aB) \in P : \delta(A, a) = B$
- $\forall (A \rightarrow a) \in P : \delta(A, a) = q_f$
- $q_0 = S$
- $\forall (B \to \varepsilon) \in P : B \in F$

Пример построения НКА по регулярной грамматике

$$S \rightarrow aA \mid aS \mid \varepsilon$$

 $A \rightarrow bA \mid b$

Эквивалентность регулярной грамматики и НКА

Алгоритм построения праволинейной грамматики $\langle V_T, V_N, P, S \rangle$ по НКА $\langle Q, \Sigma, q_0, \delta, F \rangle$

- $V_N = Q$
- $V_T = \Sigma$
- $\forall \delta(A, a) = B : (A \rightarrow aB) \in P$
- $\forall B \in F : (B \to \varepsilon) \in P$
- $S = q_0$
- ullet Опционально: удалить arepsilon-правила и бесполезные символы

Пример построения регулярной грамматики по НКА

$$S \rightarrow aB \mid aS \mid \varepsilon$$

 $B \rightarrow bB \mid aF$
 $F \rightarrow \varepsilon$

Пример построения регулярной грамматики по НКА

$$S
ightarrow aB \mid aS \mid \varepsilon$$

 $B
ightarrow bB \mid a$

Лемма о разрастании (о накачке)

Теорема

L — регулярный язык над $\Sigma \Rightarrow \exists n: orall \omega \in L, |\omega| > n$

 $\exists x, y, z \in \Sigma^* : xyz = \omega, y \neq \varepsilon, |xy| \leq n,$

 $\forall k \geq 0 : xy^k z \in L$

Доказательство.

Строим автомат, распознающий L.

Обозначаем за n число состояний автомата.

Слово длины большей, чем n, обязано при разборе пройти через одно состояние дважды — получили цикл.

Метка цикла — искомое у, по циклу можно пройти сколько угодно раз.

Использование леммы о накачке

$$L = \{ \binom{k}{k} \mid k \ge 0 \}$$

- Предполагаем, что L регулярный язык, значит выполняется лемма о накачке
- Берем n из леммы, рассматриваем слово $\binom{n}{n}$
- Его можно разбить на $xyz, y \neq \varepsilon, |xy| \leq n$
- $|xy| \le n \Rightarrow y = (b, b > 0)$
- Берем k=2 : $xy^kz=(^{n+b})^n$, что не принадлежит L
- Получили противоречие $\Rightarrow L$ не регулярен

Использование леммы о накачке

$$L = \{a^{k^2} \mid k \ge 0\}$$

- Предполагаем, что L регулярный язык, значит выполняется лемма о накачке
- Берем n из леммы, рассматриваем слово $a^{(n+1)^2}$
 - ightharpoonup Слово a^{n^2} не подойдет, потому что $|a^{n^2}|=n,\,$ где n=1
- Его можно разбить на $xyz, y \neq \varepsilon, |xy| \leq n$
- Берем $k = 0 : xy^0z = xz$
- $n^2 < n^2 + n + 1 = (n+1)^2 n \le |xz| \le (n+1)^2 1 < (n+1)^2$
- Длина слова xz находится между двумя соседними полными квадратами, поэтому это слово не в L
- Получили противоречие $\Rightarrow L$ не регулярен

Резюме

- ДКА, НКА, НКА с ε-переходами, регулярные выражения, регулярные грамматики — все эти формализмы задают один класс (регулярных) языков и эквивалентны друг другу
- Проверка принадлежности слова регулярному языку осуществляется за O(n) и не требует дополнительной памяти
- Класс регулярных языков обладает хорошими свойствами, прост и нагляден
- С помощью леммы о накачке можно доказать нерегулярность языка