Assignment: Design and Simulate the schematic and corresponding optimized layout of an inverter chain with optimized number of inverters to get the minimum delay for a load capacitance of 100 fF.

Input Gate Calculation:

from 7SH a Dava Shut we get
$$6x = 8.58 \times 10^{-3}$$

YIMOS $C_{\text{gate}} = 8.58 \times 10^{-3} \times 270 \text{m} \times 180 \text{n}$
 $U = 270 \text{nm}$
 $U = 270 \text{nm}$

$$C_{3}$$
 dep = 8.58 × 180 n × 5 40 n = 0.83 $\frac{1}{3}$ $\frac{1}{5}$ $\frac{1}{5}$

from equation 2

winsin equation 1

for 3 stages

$$\frac{1}{126} = 15.89$$

$$D_7 = 15.89$$

 $D_4 = 15.938$

D3 L Dy - So Thru Stages will give The option um

Results.

Since Now we know that There are Three stays we (on Calculate for the steet Stay year)

LAYOUT

OBSERVATION MADE:

CIRCUIT	DELAY(SECONDS)
SINGLE INVERTER (SCHEMATIC, CL=100fF)	2.82834e-009
INVERTER CHAIN(SCHEMATIC, CL=100fF)	1.21055e-009
INVERTER CHAIN(LAYOUT)	1.75892e-010

We can clearly observe that the Delay has reduced significantly upon increasing the stages to an optimum level as calculated above.