Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Aritmética modular
- * Congruencia lineal

Aritmética modular

Se basa en la operación residuo o módulo definida a continuación:

a mod b es el residuo de a div b

Aritmética modular

Se basa en la operación residuo o módulo definida a continuación:

a mod b es el residuo de a div b

• 0 ≤ a mod b < b

- 17 mod 5
- 9 mod 4
- -7 mod 3
- 2 mod 2
- -5 mod 2

- $17 \mod 5 = 2$
- 9 mod 4 = 1
- $-7 \mod 3 = 2$
- $2 \mod 2 = 0$
- $-5 \mod 2 = 1$

- -21 mod 9
- 4 mod 2
- 2 mod 4
- -12 mod 5

- $-21 \mod 9 = 6$
- $4 \mod 2 = 0$
- $2 \mod 4 = 2$
- $-12 \mod 5 = 3$

- -34 mod 4
- 7 mod 9
- 73 mod 8
- -24 mod 7

- $-34 \mod 4 = 2$
- $7 \mod 9 = 7$
- $73 \mod 8 = 1$
- $-24 \mod 7 = 4$

Calcule y compare los siguientes pares de valores:

- 7 mod 5, 2 mod 5
- 4 mod 3, 13 mod 3
- 11 mod 5, 21 mod 5
- 22 mod 4, 38 mod 4

Calcule y compare los siguientes pares de valores:

- $7 \mod 5 = 2 \mod 5 = 2$
- 4 mod 3 = 13 mod 3 = 1
- 11 $mod 5 = 21 \mod 5 = 1$
- 22 mod 4 = 38 mod 4 = 2

$a\equiv b \pmod{m}$

Se dice que a es congruente con b módulo m, si y solo si,
 a mod m = b mod m

$a \equiv b \pmod{m}$

- Se dice que a es congruente con b módulo m, si y solo si,
 a mod m = b mod m
- Para los casos anteriores se tiene que:

```
7 \equiv 2 \pmod{5}
4 \equiv 13 \pmod{3}
```

$$11 \equiv 21 \pmod{5}$$

$$22 \equiv 38 \pmod{4}$$

- $2 \equiv 20 \pmod{6}$
- $5 \equiv 16 \pmod{3}$

- $2 \equiv 20 \pmod{6}$. si, 2 mod 6=20 mod 6=2
- $5 \equiv 16 \pmod{3}$. **no**, 5 mod 3=2 y 16 mod 3=1

- $-7 \equiv -19 \pmod{4}$
- $3 \equiv 38 \pmod{7}$
- $-5 \equiv 5 \pmod{5}$

- $-7 \equiv -19 \pmod{4}$. si, $-7 \pmod{4} = -19 \pmod{4}$
- $3 \equiv 38 \pmod{7}$. si, 3 mod 7=38 mod 7=3
- $-5 \equiv 5 \pmod{5}$. si, $-5 \pmod{5} = 5 \pmod{5}$

Propiedades

• $a \equiv b \pmod{m}$, si y solo si, $m \mid (a-b)$

División

• Sean a y b dos enteros, $a\neq 0$, se dice que a divide a b de forma exacta si existe un entero c tal que a·c=b

División

- Sean a y b dos enteros, $a\neq 0$, se dice que a divide a b de forma exacta si existe un entero c tal que a·c=b
- a|b, si y solo si, existe un c tal que a·c=b
 - 3|6 porque 3.2=6
 - 4|28 porque 4.7=28
 - 2 1 5 porque no existe c

Propiedades

• $a \equiv b \pmod{m}$, si y solo si, $m \mid (a-b)$

Propiedades

• $a \equiv b \pmod{m}$, si y solo si, $m \mid (a-b)$

- $2 \equiv 20 \pmod{6}$
- $16 \equiv 4 \pmod{12}$
- $38 \equiv 3 \pmod{7}$
- $\bullet -5 \equiv 5 \pmod{5}$

Indique si se presenta cada una de las siguientes congruencias:

- $\bullet -29 \equiv 5 \mod 17$
- $-122 \equiv 5 \mod 17$
- $226 \equiv 5 \mod 17$

Indique si se presenta cada una de las siguientes congruencias:

- $-29 \equiv 5 \mod 17$. si porque $17 \mid (-29-5)$
- $-122 \equiv 5 \mod 17$. **no** porque 17/(-122-5)
- $226 \equiv 5 \mod 17$. si porque 17/(226-5)

Aplicación

- Tablas Hash
- Criptología

Tablas Hash

817449

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

509555

Tablas Hash

• Dado un **código k**, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

	/	
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(509555)=5

h(817449)=9

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(509555)=5

h(817449)=9

h(737459)=?

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(509555)=5

h(817449)=9

h(737459)=9

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(509555)=5

h(817449)=9

h(737459)=9

A pesar de las colisiones la búsqueda es rápida

Tablas Hash

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

La función h(k)=k mod 10 indica en cuál espacio del arreglo colocar el dato k

Tablas Hash

La función h(k)=k mod 10 indica en cuál espacio del arreglo colocar el dato k

Tablas Hash

Para **resolver la colisión** se utiliza una lista en cada espacio del arreglo

Tablas Hash

Una tabla hash permite ordenar los datos de tal forma que la recuperación sea rápida

Criptología

Escitala Espartana

- Usada en la antigua Grecia en el año 400a.c
- Se enrolla una cinta sobre un vara
- El ancho con el cual fue escrito el mensaje corresponde con la vara adecuada para descifrar el mensaje

E

ERTTIODCAEEPAARTANSDEUSVIRABTESSDE

E

E S T U D I E B A S T A N T E O V A A P E R D E R D E T A S

Criptología

• Es el estudio de técnicas que permitan transformar un mensaje en otro, que oculta el significado del original

Método de Julio Cesar

- 1. Transforme cada letra a un número, para ello, utilice la posición relativa en el alfabeto. A es 0, B es 1, C es 2 ...
- 2. Aplique la función $f(p)=(p+3) \mod 26$ para cada número
- 3. Transforme cada número a letra y envíe el mensaje

Método de Julio Cesar

- 1. Transforme cada letra a un número, para ello, utilice la posición relativa en el alfabeto. A es 0, B es 1, C es 2 ...
- 2. Aplique la función $f(p)=(p+3) \mod 26$ para cada número
- 3. Transforme cada número a letra y envíe el mensaje

Para decodificar el mensaje

- 1. Transforme cada letra a número
- 2. Utilice la función f⁻¹(p)=(p-3) mod 26
- 3. Transforme cada número a letra

Α	0	N	13		
В	1	0	14		
С	2	Р	15		
D	3	Q	16		
E	4	R	17		
F	5	5	18		
G	6	T	19		
Н	7	U	20		
I	8	V	21		
J	9	W	22		
K	10	X	23		
L	11	У	24		
M	12	Z	25		

- Encriptar el mensaje "HOLA"
- Encriptar el mensaje "MUERTE"
- · Desencriptar el mensaje "HVWXGLHRYDDSHUGHU"

· Encriptar el mensaje "HOLA"

• El mensaje encriptado es "KROD"

• Desencriptar el mensaje "HVWXGLHRYDDSHUGHU"

	Н	٧	W	X	G	L	H	R	У	D	D	S	Н	J	G	Н	C
р	7	21	22	23	6	11	7	17	24	3	3	18	7	20	6	7	20
f-1(p)	4	18	19	20	3	8	4	14	21	0	0	15	4	17	3	4	17
	Е	S	Τ	כ	۵	I	Е	0	V	Α	Α	Р	Е	R	٥	E	R

- Calcule los siguientes módulos:
 - -19 mod 7
 - -127 mod 4
- Indique si se presenta cada una de las siguientes congruencias. Justifique sus respuestas
 - $52 \equiv 31 \mod 7$
 - $-31 \equiv 60 \mod 7$

- * Algoritmo de Euclides
- * Combinación lineal
- * Inverso de a mod m

Algoritmo de Euclides

```
public int mcd(int a, int b){
 x=a;
 int x, r;
 while (y = 0)
    r= x \mod y;
    x=y;
    y= r;
return x;
```

Aplicar el algoritmo de Euclides para encontrar mcd(287,91)

287 91

•
$$287 = 91 \cdot 3 + 14$$

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot ? + ?$

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot 6 + 7$

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot 6 + 7$
 $14 = 7 \cdot ? + ?$

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot 6 + 7$
 $14 = 7 \cdot 2 + 0$

Aplicar el algoritmo de Euclides para encontrar mcd(287,91)

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot 6 + 7$
 $14 = 7 \cdot 2 + 0$

Se toma el último residuo diferente de 0, en este caso, mcd(287,91)=7

Aplicar el algoritmo de Euclides para encontrar mcd(91,287)

$$mcd(91,287)=7$$

• Para aplicar el algoritmo de Euclides se inicia siempre dividiendo el mayor (287) entre el menor (91)

$$287 = 91 \cdot 3 + 14$$

$$91 = 14 \cdot 6 + 7$$

$$14 = 7 \cdot 2 + 0$$

Aplicar el algoritmo de Euclides para encontrar:

• mcd(342,76)

• mcd(342,76)

$$342 = 76 \cdot 4 + 38$$

$$76 = 38 \cdot 2 + 0$$

• mcd(342,76) = 38

Aplicar el algoritmo de Euclides para encontrar:

• mcd(48,512)

• mcd(48,512)

$$512 = 48 \cdot 10 + 32$$

$$48 = 32 \cdot 1 + 16$$

$$32 = 16 \cdot 2 + 0$$

• mcd(48,512) = 16

Aplicar el algoritmo de Euclides para encontrar:

mcd(252,198)

• mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

 \cdot mcd(252,198) = 18

Teorema: si a y b son enteros positivos, entonces existen enteros s y t tales que $mcd(a,b)=a\cdot(s) + b\cdot(t)$

Teorema: si a y b son enteros positivos, entonces existen enteros s y t tales que $mcd(a,b)=a\cdot(s) + b\cdot(t)$

El mcd(a,b) se puede expresar como una combinación lineal de a y b

mcd(252,198) = 18

```
public int mcd(int a, int b){
    x=a;
    y=b;
    int x, r;
    while (y != 0){
        r= x mod y;
        x= y;
        y= r;
    }
    return x;
}
```

```
252 \mod 198 \qquad 198 \mod 54 = 36
x = 252
y = 198
Y = 252 \mod 198 = 54
x = 36
x = 198
y = 54
y = 36
x = 198
y = 54
y = 18
y = 36
x = 198
y = 54
y = 18
y = 36
y = 18
y = 36
y = 18
```

$$mcd(252,198) = 18 = 252 \cdot x + 198 \cdot y$$

$$mcd(252,198) \neq 18 = 252\cdot(4) + 198\cdot(-5)$$

• mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

 $198 = 54 \cdot 3 + 36$
 $54 = 36 \cdot 1 + 18$
 $36 = 18 \cdot 2$

• mcd(252,198) = 18

· mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

• mcd(252,198) = 18

Se despejan los residuos

$$|8=54-|98+54\times3$$

 $|8=4\times54-|98$
 $|8=4(252-|98(1))=|98$

$$18 = (4)(252) - 198(4) - 198$$

$$18 = 252(4) + 198(-5)$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$\cdot$$
 mcd(252,198) = 18

$$36 = 198 - 54.3$$

Se reemplazan siempre en la ecuación que tiene al mcd

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = 54 - (198 - 54.3).1$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = 54 - 198.1 + 54.3$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$18 = 54.4 - 198.1$$

$$36 = 18 \cdot 2$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = (252 - 198.1).4 - 198.1$$

• mcd(252,198)

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = 252.4 - 198.4 - 198.1$$

• mcd(252,198)

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = 252.4 - 198.5$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$\cdot$$
 mcd(252,198) = 18

$$18 = 252 \cdot (4) + 198 \cdot (-5)$$

• Exprese el mcd(512(48)=16 como una combinación lineal

$$512 = 48 \cdot 10 + 32$$

$$48 = 32 \cdot 1 + 16$$

$$32 = 16 \cdot 2 + 0$$

$$32 = 512 - 48(10)$$

$$16 = 48 - 32(1)$$

$$|6=48-(512-48(10))|$$
 $32=|6\times2+0\times16=48-512+48(10)|$

16 = 48(11) + 512(-1)

$$65|2 = 48x|0 + 32$$

$$512 = 48 \cdot 10 + 32$$
 $32 = 512 - 48.10$

$$32 = 512 - 48.10$$

$$32 = 16 \cdot 2 + 0$$

$$512 = 48 \cdot 10 + 32$$

$$48 = 32 \cdot 1 + 16$$

$$32 = 16 \cdot 2 + 0$$

$$16 = 48 - (512 - 48.10).1$$

$$16 = 48 - 512.1 + 48.10$$

$$16 = 48.11 - 512.1$$

$$16 = 48 \cdot (11) + 512 \cdot (-1)$$

$$322 = 51 \cdot 6 + 16$$

$$51 = 16 \cdot 3 + 3$$

$$16 = 3 \cdot 5 + 1$$

$$3 = 1 \cdot 3 + 0$$

$$322 = 51 \cdot 6 + 16$$

$$16 = 322 - 51.6$$

$$51 = 16 \cdot 3 + 3$$

$$3 = 51 - 16.3$$

$$16 = 3 \cdot 5 + 1$$

$$1 = 16 - 3.5$$

$$3 = 1 \cdot 3 + 0$$

$$322 = 51 \cdot 6 + 16$$

$$16 = 322 - 51.6$$

$$51 = 16 \cdot 3 + 3$$

$$3 = 51 - 16.3$$

$$16 = 3 \cdot 5 + 1$$

$$1 = 16 - 3.5$$

$$3 = 1 \cdot 3 + 0$$

$$1 = 322 \cdot (16) + 51 \cdot (-101)$$

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$235 = 37 \cdot 6 + 13$$

$$13 = 235 - 37.6$$

$$37 = 13 \cdot 2 + 11$$

$$11 = 37 - 13.2$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$1 = 11 - 2.5$$

$$2 = 1 \cdot 2 + 0$$

$$235 = 37 \cdot 6 + 13$$
 $13 = 235 - 37.6$

$$13 = 235 - 37.6$$

$$37 = 13 \cdot 2 + 11$$
 $11 = 37 - 13.2$

$$11 = 37 - 13.2$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$1 = 11 - 13.5 + 11.5 = 11.6 - 13.5$$

$$2 = 1 \cdot 2 + 0$$

$$235 = 37 \cdot 6 + 13$$
 $13 = 235 - 37 \cdot 6$
 $37 = 13 \cdot 2 + 11$
 $13 = 11 \cdot 1 + 2$

$$11 = 2 \cdot 5 + 1$$
 $1 = 37.6 - 13.12 - 13.5 = 37.6 - 13.17$

$$2 = 1 \cdot 2 + 0$$

$$235 = 37 \cdot 6 + 13$$
 $37 = 13 \cdot 2 + 11$
 $13 = 11 \cdot 1 + 2$
 $11 = 2 \cdot 5 + 1$
 $1 = 37 \cdot 6 - (235 - 37 \cdot 6) \cdot 17$
 $2 = 1 \cdot 2 + 0$

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 37.6 - 235.17 + 37.102$$

$$1 = 37.108 - 235.17$$

$$1 = 37 \cdot (108) + 235 \cdot (-17)$$

$$mcd(426,37) = \frac{4}{2} = 426 \cdot (\frac{7}{2}) + 37 \cdot (\frac{-23}{2})$$
 $mcd(1101,73) = 1101() + 73()$
 $mcd(3456,113) = 3456() + 113()$

$$426 \mod 37$$
 $426 = 37(11) + 19$
 $19 = 426 - 37 \times (21)$
 $37 \mod 19$ $37 = 19(1) + 18$
 $18 = 37 - 19(1)$

$$\begin{array}{lll}
1 &= 19 - 9(z) \\
1 &= 19 - (z)(47 - 19(z)) \\
2 &= 19(5) - (z) 47 \\
1 &= (5)(66 - 47) - (z) 47 \\
1 &= (5)(66 - (7)47) \\
1 &= (5)(66 - (7)(13 - 66)) \\
1 &= (12)(66 - (7)113) \\
1 &= (12)(3486 - (13(30)) - 7(113)) \\
1 &= (12)(3486 - (367)(113))
\end{array}$$

El inverso de a mod m

• Dado a mod m, su inverso se denota como \overline{a}

El inverso de a mod m

- Dado a mod m, su inverso se denota como \overline{a}
- Se cumple que $\overline{a} \cdot a \equiv 1 \pmod{m}$

El inverso de a mod m

- Dado a mod m, su inverso se denota como a
- Se cumple que $\overline{a} \cdot a \equiv 1 \pmod{m}$ $q = 2 \pmod{m}$

Se tiene 3 mod 7

$$\overline{a} = -2$$

Se puede verificar que:

$$(-2)\cdot 3 \equiv 1 \mod 7$$

El inverso de a mod m

Solo existe un inverso si mcd(a,m)=1

El inverso de a mod m

- Para encontrar \overline{a} , calcule mcd(a,m), debe ser 1
- Exprese mcd(a,m)=1 como una combinación lineal

$$1 = (a \cdot (s)) + m \cdot (t)$$

• El coeficiente que acompaña a a, es decir s, es el inverso a

$$mcd(235, 37) = (1);$$
 $235mo(37) = 235 = 37 \times 6 + 13$
 $(13) = 235 = 37(6)$

$$37 \text{ mod}(3)$$
 $37 = 13(2) + 11$ $(11) = 37 - 13(2)$

$$|3 \mod 11| \begin{cases} 13 = 21 + 2 \\ 27 = 13 - 11 \end{cases}$$
 $|3 \mod 11| \begin{cases} 13 = 21 + 2 \\ 27 = 13 - 11 \end{cases}$
 $|3 \mod 2| \begin{cases} 11 = 2(s) + 1 \end{cases}$

$$1 = 11 - 2(5)$$

$$1 = 11 - (8)(13 - 11)$$

$$1 = (6)11 - (3)(5)$$

$$2 = (6)(37 - 13(2)) - 13(5)$$

$$2(-17)(235) + (108)37$$

$$235 = 37 \cdot 6 + 13$$

$$-|7 \times 23S = 1 \mod 37$$

$$-3995 \mod 37 = 1 \mod 37$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$-399S = -3996 + 1$$

$$1 = -399S = -3996 + 1$$

$$1 = -399S = -3996 + 1$$

$$1 = -399S = -3996 + 1$$

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 37 \cdot (108) + 235 \cdot (-17)$$

• Encuentre el inverso de 235 mod 37

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 37 \cdot (108) + 235 \cdot (-17)$$

El coeficiente que acompaña a 235, es decir -17, es el inverso de 235 mod 37

- mcd(235,37) = 1
- 1 = $235 \cdot (-17) + 37 \cdot (108)$
- -17 es el inverso de 235 mod 37

· Se puede verificar que

$$\overline{a} \cdot a \equiv 1 \pmod{m}$$

ya que

$$-17 \cdot 235 \equiv 1 \pmod{37}$$

$$-3995 \equiv 1 \pmod{37}$$

$$mcJ(3) = 1 V$$

$$3 = 7 \times 0 + 3$$

 $3 = 3 - 7 \times 0$
 $7 = 3 \times 2 + 1$
 $1 = 7 - 3 \times 2$
 $3 = 0$

$$1 = 3(-2) + 7(2)$$

$$Q = -2$$

$$3 \times Q = 2 \mod 7$$

$$-6 = 2 \mod 7$$

$$-6 \mod 7 = 2 \mod 7$$

$$-6 = 7(-2) + 2 \mod 7$$

$$7 = 3 \cdot 2 + 1$$

$$3 = 1 \cdot 3 + 0$$

• Encuentre el inverso de 3 mod 7

$$7 = 3 \cdot 2 + 1$$

$$3 = 1 \cdot 3 + 0$$

Se verifica que mcd(7,3)=1

• Encuentre el inverso de 3 mod 7

$$7 = 3 \cdot 2 + 1$$

$$3 = 1 \cdot 3 + 0$$

• Se verifica que mcd(7,3)=1. Ahora se expresa como combinación lineal

• Encuentre el inverso de 3 mod 7

$$7 = 3 \cdot 2 + 1$$

 $3 = 1 \cdot 3 + 0$

• Se verifica que mcd(7,3)=1. Ahora se expresa como combinación lineal

$$1 = 7 - 3.2$$
$$1 = 3.(-2) + 7.(1)$$

• El inverso de 3 mod 7 es -2

• Encuentre el inverso de 7 mod 3

$$7 = 3 \cdot 2 + 1$$

 $3 = 1 \cdot 3 + 0$

• Se verifica que mcd(7,3)=1. Ahora se expresa como combinación lineal

$$1 = 7 - 3.2$$
$$1 = 3.(-2) + 7.(1)$$

• El inverso de 7 mod 3 es 1

Encuentre el inverso de:

• 5 mod 7

• Encuentre el inverso de 5 mod 7

$$7 = 5.1 + 2$$

$$5 = 2.2 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(5,7)=1. Ahora se expresa como combinación lineal

• Encuentre el inverso de 5 mod 7

$$7 = 5.1 + 2$$

$$5 = 2.2 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(5,7)=1. Ahora se expresa como combinación lineal

$$1 = 5 \cdot (3) + 7 \cdot (-2)$$

• Encuentre el inverso de 5 mod 7

$$7 = 5.1 + 2$$

$$5 = 2.2 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(5,7)=1. Ahora se expresa como combinación lineal

$$1 = 5 \cdot (3) + 7 \cdot (-2)$$

• El inverso de 5 mod 7 es 3

Encuentre el inverso de:

• 3 mod 17

$$m(d(3, 17) = 1)$$

 $3 mod (7) = 3 + 17 \times 0 + 3$
 $17 mod (3) = 17 \times 0 + 3$
 $2 = 17 - 3 \times 5$
 $3 mod (2) = 3 - 2 \times 1 + 1$
 $2 mod (2) = 3 - 2 \times 1$
 $2 mod (2) = 3 - 2 \times 1$

$$1 = 3 - 2x1$$

$$1 = 3 - (17 - 3xS)$$

$$1 = 3(6) + 17(-1)$$

$$3 = 6$$

$$3 \times 6 \mod 17 = 1 \mod 17$$

$$1 \otimes \mod 17 = 1$$

• Encuentre el inverso de 3 mod 17

$$17 = 3.5 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(3,17)=1. Ahora se expresa como combinación lineal

• Encuentre el inverso de 3 mod 17

$$17 = 3.5 + 2$$
 $3 = 2.1 + 1$
 $2 = 1.2 + 0$

• Se verifica que mcd(3,17)=1. Ahora se expresa como combinación lineal

$$1 = 3 \cdot (6) + 17 \cdot (-1)$$

• Encuentre el inverso de 3 mod 17

$$17 = 3.5 + 2$$
 $3 = 2.1 + 1$
 $2 = 1.2 + 0$

• Se verifica que mcd(3,17)=1. Ahora se expresa como combinación lineal

$$1 = 3 \cdot (6) + 17 \cdot (-1)$$

• El inverso de 3 mod 17 es 6

• Encuentre el inverso de 7 mod 26

$$26 = 7 \cdot 3 + 5$$

$$7 = 5 \cdot 1 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$2 = 1 \cdot 2 + 0$$

• Se verifica que mcd(26,7)=1. Ahora se expresa como combinación lineal

$$26 = 7 \cdot 3 + 5$$

$$5 = 26 - 7.3$$

$$7 = 5 \cdot 1 + 2$$

$$2 = 7 - 5.1$$

$$5 = 2 \cdot 2 + 1$$

$$1 = 5 - 2.2$$

$$2 = 1 \cdot 2 + 0$$

$$26 = 7 \cdot 3 + 5$$

$$5 = 26 - 7.3$$

$$7 = 5 \cdot 1 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$1 = 5 - (7 - 5.1) \cdot 2 = 5.3 - 7.2$$

$$2 = 1 \cdot 2 + 0$$

$$26 = 7 \cdot 3 + 5$$

$$7 = 5 \cdot 1 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$1 = (26 - 7.3).3 - 7.2$$

$$2 = 1 \cdot 2 + 0$$

$$26 = 7 \cdot 3 + 5$$

$$7 = 5 \cdot 1 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$1 = 26.3 - 7.9 - 7.2 = 26.3 - 7.11$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 26 \cdot (3) + 7 \cdot (-11)$$

• Encuentre el inverso de 7 mod 26

$$26 = 7 \cdot 3 + 5$$
 $7 = 5 \cdot 1 + 2$
 $5 = 2 \cdot 2 + 1$
 $1 = 26 \cdot 3 - 7 \cdot 9 - 7 \cdot 2 = 26 \cdot 3 - 7 \cdot 11$
 $2 = 1 \cdot 2 + 0$
 $1 = 26 \cdot (3) + 7 \cdot (-11)$

• Como 1 = $26 \cdot (3) + 7 \cdot (-11)$, el inverso de 7 mod 26 es -11

- > Encuentre el inverso de:
 - 9 mod 32