OUTLIER EXPOSURE WITH CONFIDENCE CONTROL FOR OUT-OF-DISTRIBUTION DETECTION

Aristotelis-Angelos Papadopoulos & Mohammad Reza Rajati & Nazim Shaikh & Jiamian Wang University of Southern California
Los Angeles, CA 90089, USA
{aristop, rajati, nshaikh, jiamianw}@usc.edu

[Submitted on 8 Jun 2019 (v1), last revised 5 Jun 2020 (this version, v3)]

- 1. Intro
- · 2. Related works
- 3. Methodology
- 4. Experiments and Results
- 5. Conclusion

Anomaly Detection의 필요성

Anomaly Detection Task는 보편적인 패턴(representation into train-set)에서 벗어나는 패턴(Outlier)을 감지하여

-> 전체 시스템의 Totally Performance를 높이는데 이용

OoD(Out of Distribution)

- $P_{in}(x,y)$ 로 부터 <u>먼 거리에 존재하는 sample의 Distribution</u> input $x \in X$, lable $y \in \{1, ..., K\}$
- 특정 학습시점(time step t시점)에 보유하고 있는 In-distribution 外 <u>나머지 모든 sample에서 distance가 먼(outbound)</u>

+ 시인성이 있는 sample

+ 새로운 class로 분류

Solving the OoD(Out of Distribution) task

- Train-time : 보유하고 있는 In-distribution을 이용하여, multi-classification 모델 학습
- Inference-time : Unseen에 대하여 두 가지 goal을 만족
 - In-distribution class를 기존 defined class로 정확히 분류
 - (시인성이 있는) Out-of-distribution class(new class, Unknown class) 정확히 분류 reject
- -> Open-set에 대하여 전체(Totally) AI 시스템(classifier)의 Continuous Performance를 높이는데 이용

Outlier Exposure(OE)²⁰¹⁹ method

- Training time에 Out-of-Distribution sample을 같이 노출 -> Anomaly Detection -> Increase Model Performance !

Confidence Score

- Entropy가 낮은 NN의 Output status(~ In Distribution)

Over Confident

- Training-set(~ In Distribution)에서 N개의 class 중 특정 1개의 Known class 높은 Prediction Probability로 분류

Confident Penalty

- Training-set에 대해 Over Confident한 Model(Over-fit)을 Regularization 하는 Term

OOD Score

- Confidence Score의 반대
- -> Confidence Score가 Over Confident 한 모델에 Confident Penalty 하여 Entorpy가 높은 sample에 대하여 OOD하는 것이 바로 = Confidence Control 스킬

Skill (1) + Skill (2)

OUTLIER EXPOSURE WITH CONFIDENCE CONTROL FOR OUT-OF-DISTRIBUTION DETECTION

Solving the problem!

Aristotelis-Angelos Papadopoulos & Mohammad Reza Rajati & Nazim Shaikh & Jiamian Wang University of Southern California Los Angeles, CA 90089, USA

{aristop, rajati, nshaikh, jiamianw}@usc.edu

[Submitted on 8 Jun 2019 (v1), last revised 5 Jun 2020 (this version, v3)]

Related works

A Baseline for Detecting Misclassified and OOD in NN ICLR, 2017	Training Confidence-Calibrated Classifiers for Detecting OOD ICLR, 2018	Deep Anomaly Detection with OE ICLR, 2019
 In-Distribution vs. OOD를 판단하는 거리를 구하는 Softmax Prediction 확률을 제안 MSP(Maximum Softmax Prediction) Error and Success Prediction - In-and out-of-distribution 	 KLD 기반의 loss function 제안 Sample들 간 거리 output distribution given by softmax GAN에서 생성된 샘플들의 Uniform Distribution 간의 거리 	 최초의 Outlier exposure 제안 - Outlier를 사전에 정의 및 보유 해야한다는 가정이 필요) OE방식은 model의 calibration을 증가 시킴

Objective Function

 $y: class\ given\ input\ x, \qquad L_{CE}: cross-entropy\ function, \qquad K: num\ of\ classes\ in\ D_{in}$

z: vector representation of example $x^{(i)}$, A_{tr} : training accuracy

 $minimize_{\theta} E_{(x,y)\sim D_{in}}[L_{CE}(f_{\theta}(x),y)]$

$$subject\ to \quad E_{x\sim D_{in}}\left[\max_{l=1,\dots k}(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}})\right] = A_{tr}$$

$$\max_{l=1,\dots k} \left(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}} \right) = \frac{1}{K'} \ \forall x^{(i)} \sim D_{out}^{OE}$$

Objective Function

 $y: class\ given\ input\ x, \qquad L_{CE}: cross-entropy\ function, \qquad K: num\ of\ classes\ in\ D_{in}$

z: vector representation of example $x^{(i)}$, A_{tr} : training accuracy

 $minimize_{\theta} E_{(x,y)\sim D_{in}}[L_{CE}(f_{\theta}(x),y)]$

$$\max_{l=1,...k} \left(rac{e^{z_l}}{\sum_{j=1}^{K} e^{z_j}}
ight) = rac{1}{K'} \ orall \chi^{(i)} \sim D_{out}^{OE}$$
 unknown class의 sample(Dout)에 대해서는 NN이 uncertain(=output으로 Uniform-distribution출력)

Objective Function

 $y: class\ given\ input\ x, \qquad L_{CE}: cross-entropy\ function, \qquad K: num\ of\ classes\ in\ D_{in}$ $z: vector\ representation\ of\ example\ x^{(i)}, \qquad A_{tr}: training\ accuracy, \qquad \lambda_2:\ Lagrange\ multiplier$

$$minimize_{\theta} \quad E_{(x,y)\sim D_{in}}[L_{CE}(f_{\theta}(x),y)]$$

$$+ \lambda_1 \left(A_{tr} - E_{x \sim D_{in}} \left[\max_{l=1,\dots k} \left(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}} \right) \right] \right)$$

$$+ \lambda_2 \sum_{x^{(i)} \sim D_{\text{out}}^{OE}} \left(\frac{1}{K} - \max_{l=1,\dots k} \left(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}} \right) \right)$$

Objective Function

 $y: class\ given\ input\ x, \qquad L_{CE}: cross-entropy\ function, \qquad K: num\ of\ classes\ in\ D_{in}$ $z: vector\ representation\ of\ example\ x^{(i)}, \qquad A_{tr}: training\ accuracy, \qquad \lambda_2:\ Lagrange\ multiplier$

 $minimize_{\theta} \quad E_{(x,y)\sim D_{in}}[L_{CE}(f_{\theta}(x),y)]$

$$+\lambda_1\left(A_{tr}-E_{x\sim D_{in}}\left[\max_{l=1,...k}(rac{e^{z_l}}{\sum_{j=1}^K e^{z_j}})
ight]
ight)$$
 -이번 변형은 특별한 케이스로, 모든 $x^{(i)}\sim \mathcal{D}_{out}^{out}$ 이 대해 같은 Lagrange multiplier(λ 2)를 범용적으로 사용한다.

+
$$\lambda_2$$
 $\sum_{x(i) \in \mathbf{D}^{OE}} \left(\frac{1}{K} - \max_{l=1,\dots k} \left(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}} \right) \right)$ -Validation technique를 통해 알맞은 λ_1 , λ_2 값 을 구한다.

Objective Function

 $y: class \ given \ input \ x, \qquad L_{CE}: cross-entropy \ function, \qquad K: num \ of \ classes \ in \ D_{in}$ $z: vector \ representation \ of \ example \ x^{(i)}, \qquad A_{tr}: training \ accuracy, \qquad \lambda_2: \ Lagrange \ multiplier$

 $minimize_{\theta} \quad E_{(x,y)\sim D_{in}}[L_{CE}(f_{\theta}(x),y)]$

$$+\lambda_1\left(A_{tr}-E_{x\sim D_{in}}\left[\max_{l=1,...k}(rac{e^{z_l}}{\sum_{j=1}^K e^{z_j}})
ight]
ight)$$
 -Training Accuracy와 average confidence 의 차이를 최소화

$$+\lambda_2\sum_{x(i)\sim D^{OE}}\left(rac{1}{K}-rac{max}{l=1,...k}\left(rac{e^{z_l}}{\sum_{j=1}^K e^{z_j}}
ight)
ight)$$
 -- Uniform distribution과 softmax layer를 통해 얻은 distribution 차이 를 최소화

Objective Function

 $y: class\ given\ input\ x, \qquad L_{CE}: cross-entropy\ function, \qquad K: num\ of\ classes\ in\ D_{in}$ $z: vector\ representation\ of\ example\ x^{(i)}, \qquad A_{tr}: training\ accuracy, \qquad \lambda_2:\ Lagrange\ multiplier$

$$minimize_{\theta} \quad E_{(x,y)\sim D_{in}}[L_{CE}(f_{\theta}(x),y)]$$

$$+ \lambda_1 \left(A_{tr} - E_{x \sim D_{in}} \left[\max_{l=1,\dots k} \left(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}} \right) \right] \right)$$

$$+ \lambda_2 \sum_{x^{(i)} \sim D_{out}^{OE}} \left(\frac{1}{K} - \max_{l=1,\dots k} \left(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}} \right) \right)$$
 (2)

Objective Function

 $y: class \ given \ input \ x, \qquad L_{CE}: cross-entropy \ function, \qquad K: num \ of \ classes \ in \ D_{in}$ $z: vector \ representation \ of \ example \ x^{(i)}, \qquad A_{tr}: training \ accuracy, \qquad \lambda_2: \ Lagrange \ multiplier$

Objective function의 Regularization Term이

최소화(=0) 하려면,

$$\lambda_2 \sum_{x^{(i)} \sim D_{out}^{OE}} \left(\frac{1}{K} - \max_{l=1,\dots k} \left(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}} \right) \right)$$
 음수가 되지 않게 하고 &&&

-> 모든 class를 동시에 1/k로 조절(regularization) 해야 함

Objective Function

 $y: class\ given\ input\ x, \qquad L_{CE}: cross-entropy\ function, \qquad K: num\ of\ classes\ in\ D_{in}$ $z: vector\ representation\ of\ example\ x^{(i)}, \qquad A_{tr}: training\ accuracy, \qquad \lambda_2: \ Lagrange\ multiplier$

$$minimize_{\theta} \quad E_{(x,y)\sim D_{in}}[L_{CE}(f_{\theta}(x),y)]$$

$$+ \lambda_1 \left(A_{tr} - E_{x \sim D_{in}} \left[\max_{l=1,\dots,k} \left(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}} \right) \right] \right)^2$$

$$+ \lambda_2 \sum_{x^{(i)} \sim D_{out}^{OE}} \sum_{l=1}^{K} \left| \frac{1}{K} - \frac{e^{z_l}}{\sum_{j=1}^{K} e^{z_j}} \right|$$

Objective Function

$$y: class\ given\ input\ x, \qquad L_{CE}: cross-entropy\ function, \qquad K: num\ of\ classes\ in\ D_{in}$$
 $z: vector\ representation\ of\ example\ x^{(i)}, \qquad A_{tr}: training\ accuracy, \qquad \lambda_2: Lagrange\ multiplier$

 $minimize_{\theta} \quad E_{(x,y)\sim D_{in}}[L_{CE}(f_{\theta}(x),y)]$

$$+ \lambda_2 \sum_{x^{(i)} \sim D_{out}^{OE}} \sum_{l=1}^{K} \left| \frac{1}{K} - \frac{e^{z_l}}{\sum_{j=1}^{K} e^{z_j}} \right|$$

l1norm이 모든 prediction probabilities를 균등하게 1/K 로 reguralrization (Uniform distribution 화)

Training

Training

Metric

- 1. FPRN(False Positive Rate at N% True Positive Rate:
- ✓ Maximum Softmax Probability threshold가 특정 값으로 정해져 있을 때의 OOD Detector의 성능 N%의 OOD Sample이 감지되어야 한다고 가정하고 threshold를 지정.
- ✓ 이때의 threshold로 FPR(실제로는 In-distribution이지만 OOD로 잘못 판단한 비율) 계산
- 2. AUROC(Area Under the Receiver Operating Characteristic Curve):
- ✓ threshold 값을 다르게 할 때의 각각의 OOD detector의 성능을 표현
- 3. AUPR(Area Under the precision-Recall Curve):
- ✓ OOD와 In-distribution간의 imbalance가 있을 때 모델 성능 측정

Dataset

- ✓ D_{in} 분포에서 만들어진 example: 'In-Distribution'
- ✔ D_{out} 분포에서 만들어진 example: 'Out-of-Distribution', OOD
- ✔ Training에 쓰이는 sample들의 분포 : D_{in} , D_{out}^{OE} / Test에 쓰이는 sample들의 분포 : D_{out}^{test}
- ✓ In : out = 5:1

Image Classification & Text Classification Out-of-distribution Detection Results with OE(SOTA)

✓ Metric : FPRN, AUROC, AUPR✓ +OE : Fine-tuning with OE

✓ +OECC : Fine-tuning with OECC

✓ Averaged over 10 runs and over 8 OOD datasets

✓ densenet100, resnet34

uc	riscrict roo,	I CSI IC CS	, T						
		FPF	R95↓	AUI	ROC↑	AU	$AUPR\uparrow$		
D_{in}	D_{out}^{test}	+OE	OECC	+OE	OECC	+OE	OECC		
	Gaussian	0.0	0.0	100.	100.	100.	99.4		
	Bernulli	0.0	0.0	100.	100.	100.	99.2		
_	Blobs	0.0	0.0	100.	100.	100.	99.6		
Ħ	Icons-50	0.3	0.1	99.8	99.9	99.2	99.5		
SVHN	Textures	0.2	0.1	100.	100.	99.7	99.6		
ν ₁	Places 365	0.1	0.0	100.	100.	99.9	99.7		
	LSUN	0.1	0.0	100.	100.	99.9	99.7		
	CIFAR-10	0.1	0.0	100.	100.	99.9	99.7		
	Mean	0.10	0.03	99.98	99.99	99.83	99.55		
	Gaussian	0.7	0.7	99.6	99.8	94.3	99.0		
	Rademacher	0.5	1.1	99.8	99.6	97.4	97.6		
2	Blobs	0.6	1.5	99.8	99.1	98.9	91.7		
<u>~</u>	Textures	12.2	4.0	97.7	98.9	91.0	95.0		
Ψ	SVHN	4.8	1.4	98.4	99.6	89.4	97.9		
CIFAR-10	Places 365	17.3	13.3	96.2	96.9	87.3	89.5		
	LSUN	12.1	6.7	97.6	98.4	89.4	91.9		
	CIFAR-100	28.0	23.8	93.3	94.9	76.2	82.0		
	Mean	9.50	6.56	97.81	98.40	90.48	93.08		
	Gaussian	12.1	0.7	95.7	99.7	71.1	97.2		
	Rademacher	17.1	0.7	93.0	99.7	56.9	96.2		
8	Blobs	12.1	1.3	97.2	99.6	86.2	96.3		
CIFAR-100	Textures	54.4	50.1	84.8	87.8	56.3	61.5		
	SVHN	42.9	16.7	86.9	94.9	52.9	74.1		
兽	Places 365	49.8	47.8	86.5	88.1	57.9	58.5		
)	LSUN	57.5	56.6	83.4	85.9	51.4	53.0		
	CIFAR-10	62.1	57.2	75.7	78.7	32.6	35.2		
	Mean	38.50	28.89	87.89	91.80	58.15	71.50		

TEXT OOD DETECTION RESULTS

		FPR90↓		AUI	ROC↑	AUPR↑		
D_{in}	D_{out}^{test}	+OE	OECC	+OE	OECC	+OE	OECC	
	SNLI	12.5	2.1	95.1	97.1	86.3	93.0	
Sd	IMDB	18.6	2.5	93.5	98.2	74.5	92.9	
뒴	Multi30K	3.2	0.1	97.3	99.4	93.7	98.6	
Ř	WMT16	2.0	0.2	98.8	99.8	96.1	99.4	
W _C	Yelp	3.9	0.4	97.8	99.6	87.9	97.9	
20 Newsgroups	EWT-A	1.2	0.2	99.2	99.8	97.3	98.4	
8	EWT-E	1.4	0.1	99.2	99.9	97.2	98.9	
	EWT-N	1.8	0.5	98.7	99.2	95.7	94.5	
	EWT-R	1.7	0.1	98.9	99.4	96.6	98.3	
	EWT-W	2.4	0.1	98.5	99.4	93.8	98.3	
	Mean	4.86	0.63	97.71	99.18	91.91	97.02	
	SNLI	4.2	0.8	98.1	99.1	91.6	94.9	
	IMDB	0.6	0.6	99.4	98.9	97.8	97.1	
	Multi30K	0.3	0.2	99.7	99.9	99.0	99.6	
- BC	WMT16	0.2	0.2	99.8	99.9	99.4	99.6	
TREC	Yelp	0.4	0.8	99.7	99.1	96.1	92.9	
	EWT-A	0.9	4.0	97.7	98.0	96.1	95.6	
	EWT-E	0.4	0.3	99.5	99.2	99.1	98.1	
	EWT-N	0.3	0.2	99.6	99.9	99.2	99.6	
	EWT-R	0.4	0.2	99.5	99.6	98.8	98.9	
	EWT-W	0.2	0.2	99.7	99.6	99.4	98.9	
	Mean	0.78	0.75	99.28	99.32	97.64	97.52	
	SNLI	33.4	7.4	86.8	95.8	52.0	76.4	
	IMDB	32.6	10.8	85.9	95.8	51.5	77.6	
	Multi30K	33.0	5.1	88.3	97.9	58.9	86.9	
H	WMT16	17.1	3.6	92.9	98.3	68.8	88.1	
SST	Yelp	11.3	15.6	92.7	95.2	60.0	81.1	
	EWT-A	33.6	21.4	87.2	92.7	53.8	70.8	
	EWT-E	26.5	22.6	90.4	92.4	63.7	67.7	
	EWT-N	27.2	19.2	90.1	93.6	62.0	67.4	
	EWT-R	41.4	36.7	85.6	88.1	54.7	62.5	
	EWT-W	17.2	36.7	92.8	88.1	66.9	62.5	
	Mean	27.33	17.91	89.27	93.79	59.23	74.10	

-> SOTA를 달성한 OE보다 거의 모든 데이터셋의 3가지 지표에 대해 월등한 높은 성능

Image Out-of-distribution Detection Results with OE(SOTA)

minimize
$$\mathbb{E}_{(x,y)\sim D_{in}}[\mathcal{L}_{CE}(f_{\theta}(x),y)]$$

$$+\lambda_{1}\left(A_{tr} - \mathbb{E}_{x\sim D_{in}}\left[\max_{l=1,\dots,K}\left(\frac{e^{z_{l}}}{\sum_{j=1}^{K}e^{z_{j}}}\right)\right]\right)^{2}$$

$$+\lambda_{2}\sum_{x^{(i)}\sim D_{out}^{CE}}\sum_{l=1}^{K}\left|\frac{1}{K} - \frac{e^{z_{l}}}{\sum_{j=1}^{K}e^{z_{j}}}\right|$$
(3)

- D_{in} : CIFAR-10 데이터 셋, <u>비행기/자동차/새 등의 동물/배/트럭</u>총 10개의 레이블의 사진을 담고 있음.
- D_{out}^{test} : Places365 데이터 셋, <u>풍경 사진을</u> 담고 있음.
- 결과: OECC로 fine-tuning후, 성격이 다른 두 데이터를 잘 구분해내고 있음

[MSP Detector Fine-tuned with OECC]

Figure 1: Histogram of soft-max probabilities with CIFAR-10 asDinand Places365 asDtestout(1,000 samples fromeach dataset). Top: MSP base-line detector. Bottom: MSP de-tector fine-tuned with (3).

Regularization Term

D_{in}	λ_{1}	λ_2	FPR95↓	AUROC↑	AUPR↑	Test Accuracy (D_{in})
	-	-	34.94	89.27	59.16	94.65
CIFAR-10	-	\checkmark	8.87	96.72	77.65	92.72
	\checkmark	\checkmark	6.56	98.40	93.08	93.86
	-	-	62.66	73.11	30.05	75.73
CIFAR-100	-	\checkmark	26.75	91.59	68.27	71.29
	\checkmark	\checkmark	28.89	91.80	71.50	73.14

- λ_1 과 λ_2 를 순차적으로 추가하며 성능을 측정
- 추가로 D_{in} 의 sample들을 test sample들로 실험 수행
- 결과 : Test $Accuracy(D_{in}$)의 성능이 조금 줄어든 것에 비해 $OECC(\lambda_1$ 과 λ_2 모두 존재)가 다른 모델보다 성능이 월등하게 증가한 것을 확인할 수 있음.

OECC + post-training method - Mahalanobis Detection

✓ OECC와 post-training method를 결합: Standard cross-entropy loss function으로 DNN을 학습 시키고 OECC 로 fine-tuning한 후, post-training method 적용

✓ Post-training method : Mahalanobis Detection Method

: Confidence Score를 Mahalanobis 거리로 측정

$$: M(x) = \max_{c} - (f(x) - \widehat{\mu_c})^T \widehat{\Sigma}^{-1} (f(x) - \widehat{\mu_c})$$

x: test sample, f(x): softmax neural classifier

 $\widehat{\mu_c}$: mean of multivariate Gaussian distribution of class $c \in \{1,...,C\}$

		TNR95↑		AUROC↑		$\mathrm{DAcc}{\uparrow}$		
D_{in}	D_{out}^{test}	GM	OECC+GM	GM	OECC+GM	GM	OECC+GM	
CIFAR-10	SVHN	96.0	98.5	99.1	99.6	95.8	97.4	
	TinyImageNet	98.8	99.3	99.7	99.8	97.9	98.3	
	LSUN	99.5	99.8	99.9	99.9	97.9	99.0	
	SVHN	89.4	88.9	97.4	97.0	92.4	92.1	
CIFAR-100	TinyImageNet	95.8	96.2	99.0	99.0	95.6	95.7	
	LSUN	97.3	98.1	99.4	99.3	96.4	97.0	
	CIFAR-10	80.2	98.5	95.5	99.6	89.0	97.5	
SVHN	TinyImageNet	99.1	99.9	99.7	100.0	97.9	99.7	
	LSUN	99.5	100.0	99.8	100.0	98.5	99.9	

- -> Mahalanobis-distance based Detector 보다 모든 결과에 대해 우수한 성능
- -> 모든 pre-trained softmax classifier에 적용 가능

OECC + post-training method - Gram Detection Method

-> Gram-Detector 보다 모든 결과에 대해 우수한 성능

Calibration Experiment

• Calibration : 모델의 출력 값이 실제 confidence(=calibrated confidence)를 반영하도록 만들어 confidence 와 accuracy가 일치하도록 하는 것.

예시) X의 Y1에 대한 모델의 출력이 0.8 -> 80% 확률로 Y1일 거라는 의미를 갖도록 만드는 것

[CIFAR-100으로 측정한 Image data의 ECE와 MCE]

[SST으로 측정한 Text data의 ECE와 MCE]

- ECE(Expected Calibration Error): confidence
 의 평균값과 accuracy의 평균값의 차이
- MCE(Maximum Calibrated Error): worstcase일 때의 confidence와 accuracy의 차의 분산

• 결과 : OURS(OECC로 fine-tuning한 모델)이 ECE, MCE 면에서 월등하게 성능이 좋아짐을 알 수 있음

• 결론 : $\left(A_{tr}-E_{x\sim D_{in}}\left[\max_{l=1,...k}(\frac{e^{z_l}}{\sum_{j=1}^K e^{z_j}})\right]\right)^2$ 값을 최소화하면 OOD의 탐지 성능 뿐만 아니라 더 'Calibrated'한 모델을 얻을 수 있음

Conculsion

Experiments and Result

- 기존 OE에 단순한 2개의 가정을 추가한 OECC기법을 적용하였고 OOD에 우수한 성능
- OECC + SOTA Post-training 조합에 대한 baseline을 제시
- calibration 문제 또한 OE SOTA보다 좋아짐을 실험으로 증명

감사합니다

Conclusion and Follow-ups

- Demonstrated a softmax prediction probability baseline for error, out-of-distribution detect
- Presented the abnormality module (+ gain)
- Presented Evaluation Metric in OOD task(property)

Deep Anomaly Detection with Outlier Exposure, 2019 ICLR

	FPR95 ↓		AUR	OC ↑	AUPR ↑		
\mathcal{D}_{in}	MSP +OE		MSP	MSP +OE		+OE	
SVHN	6.3	0.1	98.0	100.0	91.1	99.9	
CIFAR-10	34.9	9.5	89.3	97.8	59.2	90.5	
CIFAR-100	62.7	38.5	73.1	87.9	30.1	58.2	
Tiny ImageNet	66.3	14.0	64.9	92.2	27.2	79.3	
Places365	63.5	28.2	66.5	90.6	33.1	71.0	

Table 1: Out-of-distribution image detection for the maximum softmax probability (MSP) baseline detector and the MSP detector after fine-tuning with Outlier Exposure (OE). Results are percentages and also an average of 10 runs. Expanded results are in Appendix A.

	FPR95↓			AUROC ↑			AUPR ↑		
\mathcal{D}_{in}	MSP	+GAN	+OE	MSP	+GAN	+OE	MSP	+GAN	+OE
CIFAR-10	32.3	37.3	11.8	88.1	89.6	97.2	51.1	59.0	88.5
CIFAR-100	66.6	66.2	49.0	67.2	69.3	77.9	27.4	33.0	44.7

Table 4: Comparison among the maximum softmax probability (MSP), MSP + GAN, and MSP + GAN + OE OOD detectors. The same network architecture is used for all three detectors. All results are percentages and averaged across all \mathcal{D}_{out}^{test} datasets.

- Outlier Exposure는 기존 방법들에 독립적으로 추가가 가능한 아이디어
- 기존 detector들에 Outlier Exposure를 추가하였을 때 얼마나 성능이 향상되는지를 논문에서 결과로 제시
- 다만 Outlier Exposure로 어떤 데이터 셋을 사용하는지에 따라 성능이 크게 달라질 수 있다는 점이 풀어야 할 문제(Future work)
- Gaussian noise나 GAN으로 생성한 sample 등을 활용하는 것은 크게 효과적이지 않음
- 반면, Outlier Exposure로 사용하는 데이터 셋을 최대한 realistic 하면서 size도 크고, 다양하게 구축하는 것이 좋은 성능을 달성하는 데 도움을 준다고 가이드를 제시해주고 있음
- 기존에 존재하던 Out-of-distribution Detection 알고리즘들에 **추가로 적용**이 가능하면서도 **손쉽게 구현**이 가능한 방법론을 제안하였고, 실제로 효과적인 성능 향상