Soal dan Solusi UAS Teori Grup Hingga 2023

Wildan Bagus Wicaksono

МАТЕМАТІКА 2022

Question 1

Pandang grup (S_3, \circ) grup dari semua permutasi dari $S = \{1, 2, 3\}$. Didefinisikan suatu relasi $[,]: S_3 \times S_3 \to S_3$ di mana $[a, b] = a \circ b \circ a^{-1} \circ b^{-1}$ untuk setiap $a, b \in S_3$. Misalkan $H = \{[a, b] \mid a, b \in S_3\}$.

- (a). Tuliskan 3 buah elemen H.
- (b). Tunjukkan bahwa [a, a] merupakan elemen identitas pada H relatif terhadap operasi pada S_3 .
- (c). Tentukan $[a, b]^{-1}$.

Penyelesaian.

Tinjau bahwa $S_3 = \{(1), (12), (13), (132), (123)\}.$

(a). Tinjau $[(1), (1)] = (1)(1)(1)^{-1}(1)^{-1} = (1)$ karena $(1)^{-1} = (1)$, ini berarti $(1) \in H$. Tinjau $[(1\ 2), (1\ 3)] = (1\ 2)(1\ 3)(1\ 2)^{-1}(1\ 3)^{-1} = (1\ 2)(1\ 3)(1\ 2)(1\ 3) = (1\ 2\ 3)$

yang menunjukkan $(1\ 2\ 3) \in H$. Selanjutnya,

$$[(1\ 2),(1\ 3\ 2)] = (1\ 2)(1\ 3\ 2)(1\ 2)^{-1}(1\ 3\ 2)^{-1} = (1\ 2)(1\ 3\ 2)(1\ 2)(1\ 2\ 3) = (1\ 3\ 2)$$

yang menunjukkan $(1\ 3\ 2)\in H.$ Jadi, tiga buah elemen H diantaranya adalah $(1),(1\ 2\ 3),$ dan $(1\ 3\ 2).$

- (b). Perhatikan bahwa $[a, a] = a \circ a \circ a^{-1} \circ a^{-1} = a \circ (1) \circ a^{-1} = a \circ a^{-1} = (1)$. Karena setiap elemen H merupakan elemen S_3 serta (1) merupakan elemen identitas di S_3 , maka (1) juga berlaku elemen identitas pada H.
- (c). Klaim bahwa $[a,b]^{-1}=b\circ a\circ b^{-1}\circ a^{-1}$ karena memenuhi invers kiri dan invers kanan, yaitu

$$(a \circ b \circ a^{-1} \circ b^{-1}) \circ (b \circ a \circ b^{-1} \circ a^{-1}) = a \circ b \circ a^{-1} \circ (b^{-1} \circ b) \circ a \circ b^{-1} \circ a^{-1}$$

$$= a \circ b \circ a^{-1} \circ (1) \circ a \circ b^{-1} \circ a^{-1}$$

$$= a \circ b \circ (a^{-1} \circ a) \circ b^{-1} \circ a^{-1}$$

$$= a \circ b \circ (1) \circ b^{-1} \circ a^{-1}$$

$$= a \circ (b \circ b^{-1}) \circ a^{-1}$$

$$= a \circ (1) \circ a^{-1} = a \circ a^{-1} = (1).$$

$$\begin{array}{l} \left(b\circ a\circ b^{-1}\circ a^{-1}\right)\circ \left(a\circ b\circ a^{-1}\circ b^{-1}\right) = b\circ a\circ b^{-1}\circ \left(a^{-1}\circ a\right)\circ b\circ a^{-1}\circ b^{-1} \\ = b\circ a\circ b^{-1}\circ (1)\circ b\circ a^{-1}\circ b^{-1} \\ = b\circ a\circ \left(b^{-1}\circ b\right)\circ a^{-1}\circ b^{-1} \\ = b\circ a\circ (1)\circ a^{-1}\circ b^{-1} \\ = b\circ \left(a\circ a^{-1}\right)\circ b^{-1} \\ = b\circ b^{-1} \\ = (1). \end{array}$$

Karena memenuhi invers kiri dan invers kanan, terbukti bahwa $[a,b]^{-1}=b\circ a\circ b^{-1}\circ a^{-1}.$

 \blacksquare

Question 2

Misalkan p bilangan prima terkecil yang membagi order grup berhingga G. Buktikan bahwa sembarang subgrup dari G berindeks p adalah subgrup normal dalam G.

Penyelesaian.

Definisikan aksi G pada G/H dengan $a \cdot gH = agH$ untuk setiap $a \in G$ dan $gH \in G/H$. Tinjau

$$1_G \cdot gH = 1_G gH = gH$$
 dan $a \cdot (b \cdot gH) = a \cdot bgH = abgH = (ab)gH = ab \cdot gH$

yang mana memenuhi aksioma grup aksi. Ambil sebarang $a \in G$, tinjau pemetaan $f_a : G/H \to G/H$ dengan $f_a(gH) = a \cdot gH = agH$.

- Akan dibuktikan f_a well-defined. Ambil sebarang $g_1H, g_2H \in G/H$ dengan $g_1H = g_2H$. Ini berarti $f_a(g_1H) = a(g_1H) = a(g_2H) = f_a(g_2H)$, terbukti.
- Akan dibuktikan f_a surjektif. Ambil sebarang $gH \in G/H$, tinjau $a^{-1}gH \in G/H$ memenuhi

$$f_a(a^{-1}qH) = a^{-1}(aqH) = (a^{-1}a)qH = 1_GqH = qH,$$

terbukti bahwa f_a surjektif.

• Akan dibuktikan bahwa f_a injektif. Ambil sebarang $g_1H, g_2H \in G/H$ yang memenuhi $f_a(g_1H) = f_a(g_2H)$. Ini berarti $a \cdot g_1H = a \cdot g_2H$. Ini menunjukkan

$$g_1 H = 1_G \cdot g_1 H = a^{-1} a \cdot g_1 H = a^{-1} \cdot (a \cdot g_1 H) = a^{-1} \cdot (a \cdot g_2 H) = a^{-1} a \cdot g_2 H = 1_G \cdot g_2 H = g_2 H$$
, terbukti bahwa f_a injektif.

Jadi, f_a merupakan fungsi bijektif (atau permutasi). Misalkan K = G/H, tinjau pemetaan $\tau : G \to S_K$ dengan $\tau(a) = f_a$. Ambil sebarang $a, b \in G$ yang memenuhi a = b, maka $\tau(a) = f_a = f_b = \tau(b)$. Untuk setiap $a, b \in G$, tinjau

$$\tau(ab) = f_{ab} = f_{ab}(x) = (ab) \cdot x = a \cdot (b \cdot x) = f_a(b \cdot x) = f_a(f_b(x)) = (f_a \circ f_b)(x) = f_a f_b = \tau(a)\tau(b)$$

sehingga τ merupakan homomorfisma. Perhatikan bahwa $1_{S_K}=\operatorname{id}$ dengan $\operatorname{id}(x)=x\ \forall\ x\in gH$ merupakan elemen identitas di S_K . Misalkan $a\in\ker\tau$, maka id $=\tau(a)=f_a$ yang berarti $\operatorname{id}(gH)=f_a(gH)\iff a\cdot gH=gH\iff (ag)H=gH$ untuk setiap $gH\in G/H$. Ini berarti $agg^{-1}\in H\iff a\in H$ yang menunjukkan bahwa $\ker\tau\subseteq H$. Karena $\ker\tau$ merupakan subgrup normal dari G dan menurut teorema Isomorfisma berlaku $\frac{G}{\ker\tau}\cong\tau(G)$ yang berarti $\left|\frac{G}{K}\right|=|\tau(G)|$, serta $\tau(G)$ adalah subgrup dari S_K . Karena |K|=[G:H]=p, ini menunjukkan $S_K\cong S_p$ yang menunjukkan bahwa $\tau(G)$ subgrup dari S_p . Dari Teorema Lagrange berlaku $|S_p|=p!$ habis dibagi $|\tau(G)|=\left|\frac{G}{\ker\tau}\right|=\frac{|G|}{|\ker\tau|}$. Berdasarkan Teorema Lagrange, |G| habis dibagi $|\ker\tau|$. Notasikan $\nu_q(n)=k$ sebagai $q^k\mid n$, namun $q^{k+1}\mid n$ di mana $n\in\mathbb{N},\ k\in\mathbb{N}\cup\{0\}$, dan q prima. Misalkan r sebarang faktor prima dari G yang lebih besar dari p, maka

$$A_r = \nu_r \left(\frac{|G|}{|\ker \tau|} \right) = \nu_r |G| - \nu_r |\ker \tau|.$$

Andaikan $A_r \neq 0$, maka p! tidak akan habis dibagi $\frac{|G|}{|\ker tau|}$ yang mana kontradiksi. Jadi, $\nu_r\left(\frac{|G|}{|\ker \tau|}\right) = 0$ untuk setiap prima r > p. Di sisi lain, $A_p = \nu_p |G| - \nu_p |\ker \tau| = 1$ karena p! habis dibagi p, namun

tidak habis dibagi p^2 . Jadi, $\frac{|G|}{|\ker \tau|} = p \iff |G| = p |\ker \tau|$. Di sisi lain, $[G:H] = p \iff |G| = p |H|$ yang menunjukkan $|H| = |\ker \tau|$. Karena $\ker \tau \subseteq H$, ini berarti haruslah $H = \ker \tau$ yang menunjukan subgrup normal dari G.

Question 3

Misalkan G grup, X merupakan G-set dan $a \in G$. Definisikan suatu pemetaan $\sigma_a : X \to X$ di mana $\sigma_a(x) = a \cdot x$ untuk setiap $x \in X$.

- (a). Buktikan σ_a pemetaan bijektif/permutasi dari X.
- (b). Misalkan S_X himpunan semua permutasi dari X. Buktikan pemetaan $\theta: G \to S_X$ di mana $\theta(a) = \sigma_a$ untuk semua $a \in G$. Buktikan θ homomorfisma.
- (c). Buktikan $\ker(\theta) = \{a \in G \mid a \cdot x = x \ \forall \ x \in G\}.$

Penyelesaian.

(a). Akan dibuktikan σ_a well-defined, ambil sebarang $x, y \in X$ yang memenuhi x = y. Maka $\sigma_a(x) = a \cdot x = a \cdot y = \sigma_a(y)$. Akan dibuktikan σ_a injektif. Ambil sebarang $x, y \in X$ yang memenuhui $\sigma_a(x) = \sigma_a(y) \iff a \cdot x = a \cdot y$. Ini berarti

$$x = 1_G \cdot x = (a^{-1}a) \cdot x = a^{-1} \cdot (a \cdot x) = a^{-1} \cdot (a \cdot y) = (a^{-1}a) \cdot y = 1_G \cdot y = y,$$

terbukti σ_a injektif. Akan dibuktikan σ_a surjektif. Ambil sebarang $x \in X$, tinjau $a^{-1} \cdot x \in X$ memenuhi

$$\sigma_a\left(a^{-1}\cdot x\right) = a\cdot\left(a^{-1}\cdot x\right) = aa^{-1}\cdot x = 1_G\cdot x = x,$$

terbukti.

(b). Akan dibuktikan θ well-defined, ambil sebarang $a, b \in G$ yang memenuhi a = b. Maka $\theta(a) = \sigma_a = \sigma_b = \theta(b)$ yang mana terbukti. Akan dibuktikan θ homomorfisma, ambil sebarang $a, b \in G$. Untuk setiap $x \in X$ berlaku

$$\sigma_{ab}(x) = (ab) \cdot x = a \cdot (b \cdot x) = \sigma_a(b \cdot (x))\sigma_a(\sigma_b(x)) = (\sigma_a \circ \sigma_b)(x).$$

Karena berlaku untuk setiap $x \in X$, maka $\sigma_{ab} = \sigma_a \sigma_b \iff \theta(ab) = \theta(a)\theta(b)$, terbukti.

(c). Tinjau id(x) = x untuk setiap $x \in X$ merupakan permtuasi identitas di S_X . Jika $a \in \ker \theta$, ini berarti $\theta(a) = id \iff \sigma_a = id$ sehingga $\sigma_a(x) = id(x) = x \iff a \cdot x = x$ untuk setiap $x \in X$.

V

Question 4

Perhatikan teorema Sylow berikut: Misal G grup berhingga. Jika p suatu bilangan prima dan p^k membagi |G| untuk suatu $k \geq 0$, maka G mempunyai suatu subgrup berorder p^k . Tuliskan satu contoh subgrup yang memenuhi teorema Sylow jika |G|=36 dan $k\geq 2$.

Penyelesaian.

Tinjau |G| = 36 habis dibagi $9 = 3^2$, ini berarti terdapat subgrup dari G dengan order $3^2 = 9$ sebagai salah satu contohnya.