

Assignment 2 - Planning & Scheduling

Due date:

Assignment should be submitted to Canvas before 11PM Tuesday May 7th

Problem 1 - Johnson's rule (30 Marks):

Consider the following instance of the two machine flow shop with the makespan as objective (i.e., an instance of F2|| C_{max}), which is a special case of J2|| C_{max})

Jobs	1	2	3	4	5	6	7	8	9	10	11
P _{1j}	3	6	4	3	4	2	7	5	5	6	12
p _{2j}	4	5	5	2	3	3	6	6	4	7	2

- A) Write a python program to construct a schedule implementing the Johnson's rule
- B) Map out the solution of this problem on a Gantt chart and calculate the makespan

Rubric

The implementation is logically well designed without inappropriate design choices (e.g., unnecessary loops)	The implementation always works properly and meets the specification of the algorithm	The implementation works properly in limited cases	The implementation is incorrectly implemented
The Gantt chart is logically well designed and properly documented	Code is clean, understandable, and well-organized		

(24-30 Marks) (15	5 - 23 Marks)	(8-14 Marks)	(0-7 Marks)
-------------------	---------------	--------------	-------------

Problem 2 (Tabu search) 40 Marks:

Write a python program to apply Tabu search to the following instance of F3|prmu, $p_{ij} = p_j \mid \Sigma w_j T_j$ with the following 4 jobs.

Jobs	1	2	3	4
pj	9	9	12	3
dj	10	8	5	28
wi	14	12	1	12

- Choose as the neighbourhood all schedules that can be obtained through adjacent pairwise interchanges
- Start out with sequence 3, 1, 4, 2 (the starting sequence needs to be a parameter of the algorithm)
- Keep the length to the Tabu list equal to 2 (this needs to be a parameter of the algorithm)

The implementation is logically well designed without inappropriate design choices (e.g., unnecessary loops) Code is well-commented	The implementation always works properly and meets the specification of the algorithm Code is clean, understandable, and well-organized	The implementation works properly in limited cases	The implementation is incorrectly implemented
(30-40 Marks)	(19 - 30 Marks)	(9-18 Marks)	(0-8 Marks)

Problem 3 (Timetabling) 30 Marks:

Edmund, Graham, Kath and Sanja are university lecturers attending a conference. During this conference they have to attend in total 7 meetings. The table below contains the meetings that each of the lecturers has to attend. The field in the table contains 1 if the lecturer has to attend the meeting.

Meetings	1	2	3	4	5	6	7
Edmund	1	0	0	1	1	0	1
Graham	1	1	1	0	0	0	0
Kath	0	0	1	0	1	1	0
Sanja	1	0	1	1	1	0	0

Write a python program to formulate this problem as a graph coloring problem to schedule all seven meetings in a single afternoon between 2pm and 6pm so that the four lecturer can be present at all the meetings that he/she has to attend.

Implement the largest degree first heuristic and another heuristic of your choice to solve this problem. Give a brief description of the two heuristics and critically compare them.

Rubric:

The implementation is logically well designed without inappropriate design choices (e.g., unnecessary loops)	The implementation always works properly and meets the specification of the algorithm	The implementation works properly in limited cases	The implementation is incorrectly implemented
Code is well-commented	Code is clean, understandable, and well-organized		

(24-30 Marks) (15 - 23 Marks) (8-14 Marks) (0-7 Marks)
--