Chapter 9 Section 7

TOPICS

- FIND POLYNOMIAL APPROXIMATIONS OF ELEMENTARY FUNCTIONS AND COMPARE THEM WITH THE ELEMENTARY FUNCTIONS
- FIND TAYLOR AND MACLAURIN POLYNOMIAL APPROXIMATIONS OF ELEMENTARY FUNCTIONS
- USE THE REMAINDER OF A TAYLOR POLYNOMIAL

TEXT READING ASSIGNMENT FOR 9.7

PAGE 648,649,650,651,652,653,654,655

TEXT HOMEWORK EXCERCISES FOR 9.7

PAGE 656#15,17,19,21,25,27,29 PAGE 657#45,49,51 PAGE 658#57,59

• FIND POLYNOMIAL APPROXIMATIONS OF ELEMENTARY FUNCTIONS AND COMPARE THEM WITH THE ELEMENTARY FUNCTIONS

In calculus I, much time is spent finding the equation of the tangent line y = mx + b to a function y = f(x) at a point $(x_0, f(x_0))$.

Student Exercise: Find the equation of the tangent line to $f(x) = \sin x$ at (0,0).

Student Exercise Solution 9.7.1

The equation of the tangent line to y = f(x) at a point $(x_0, f(x_0))$ agrees with the point and slope of y = f(x) at the point $(x_0, f(x_0))$. For example, in the student exercise you found the equation of the tangent line to $f(x) = \sin x$ at (0,0) to be y = x. Both equation and tangent line satisfy y(0) = 0 and y'(0) = 1.

In this section we will study how to find a polynomial that agrees with y = f(x) and its first n derivatives at a point $(x_0, f(x_0))$. This is called the n th **Taylor Polynomial** for y = f(x) centered at x_0 .

Example The first Taylor Polynomial for $f(x) = \sin x$ at (0,0) is just the tangent line at (0,0) y = x.

Worked Example 9.7.2

In the worked example above we found for $f(x) = \sin x$ at (0,0), the first and third Taylor polynomials are $p_1(x) = x$ and $p_3(x) = x - \frac{1}{3}x^3$. The larger values of n correspond to better Taylor polynomial approximations to $f(x) = \sin x$ near the center (0,0). This is true in general of Taylor polynomials.

• FIND TAYLOR AND MACLAURIN POLYNOMIAL APPROXIMATIONS OF ELEMENTARY FUNCTIONS

Let's find a formula for the coefficients a_0 , a_1 , a_2 , K, a_n of the n th Taylor polynomial for y = f(x) centered at 0. Compute n derivatives of $p_n(x) = a_0 + a_1x + a_2x^2 + K + a_nx^n$ and y = f(x) and evaluate at 0.

k	$p_n^k(x)$	$p_n^k(0)$	$f^k(0)$	Conclusion
0	$a_0 + a_1 x + a_2 x^2 + K + a_n x^n$	a_0	f(0)	$a_0 = f(0)$
1	$a_1 + 2a_2x + K + na_nx^{n-1}$	a_1	f'(0)	$a_1 = f'(0)$
2	$2a_2 + \mathbf{K} + n(n-1)a_n x^{n-2}$	$2a_2$	f "(0)	$a_2 = \frac{1}{2} f''(0)$
N	N	Ν	N	N
n	$n!a_n$	$n!a_n$	$f^{(n)}(0)$	$a_n = \frac{1}{n!} f^{(n)}(0)$

The *n* th Taylor polynomial for y = f(x) centered at 0 is $p_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + K + \frac{f^{(n)}(0)}{n!}x^n$, provided f is n times differentiable at 0. When a Taylor polynomial is centered at 0, it is called a *Maclaurin Polynomial*.

The formula for the *n* th Taylor polynomial for y = f(x) centered at *c* is

$$p_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + K + \frac{f^{(n)}(c)}{n!}(x-c)^n$$
, provided f is n times differentiable at c .

Worked Example 9.7.3

To find the *n* th Taylor polynomial for y = f(x) centered at *c* use the steps below.

- 1) Compute derivatives f(x), f'(x), f''(x), K, $f^{(n)}(x)$.
- 2) Evaluate f(c), f'(c), f''(c), K, $f^{(n)}(c)$.
- 3) Form the sum $p_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + K + \frac{f^{(n)}(c)}{n!}(x-c)^n$.

Remark The k th term in the polynomial is $\frac{f^{(k)}(c)}{k!}(x-c)^k$, make sure to divide by k!, not just k (recall 0! = 1 and 1! = 1).

Student Exercise: Find the fifth Maclaurin polynomial for $f(x) = e^x$.

Student Exercise Solution 9.7.4

• USE THE REMAINDER OF A TAYLOR POLYNOMIAL

The remainder $R_n(x)$ of a function f(x) estimated by $p_n(x)$ is defined by $R_n(x) = f(x) - p_n(x)$. The error $|R_n(x)|$ of a function f(x) estimated by $p_n(x)$ is defined by $|R_n(x)| = |f(x) - p_n(x)|$.

Taylor's Theorem Suppose y = f(x) is an n+1 time differentiable function on an interval I containing c. For each fixed $x \in I$ there exists z between c and x so that

$$p_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + K + \frac{f^{(n)}(c)}{n!}(x-c)^n + R_n(x), \text{ where } R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}.$$

Remark This theorem usually takes a second or third reading to really understand.

Remark The part of this theorem that seems most unusual is the factor $f^{(n+1)}(z)$ in the remainder. When estimating the error $|R_n(x)|$, the theorem tells us $|R_n(x)| = \frac{M}{(n+1)!} |x-c|^{n+1}$, where M is the maximum of $|f^{(n+1)}(z)|$ for all z between c and x.

We will make the following four uses of Taylor's theorem.

- 1) Estimate the error $|R_n(a)|$ created by approximating f(a) with $p_n(a)$.
- 2) Determine n so that the approximation $p_n(a)$ will have a desired degree of accuracy.
- 3) Find an interval I for x so that $p_n(x)$ will approximate f(x) to a desired degree of accuracy on for all x in I.
- 4) Show the series of Taylor polynomials $\{p_n(x)\}$ converge to the function they represent f(x) (section 9.10).

Worked Example 9.7.5

Student Exercise: Determine n so that the Maclaurin polynomial approximation $p_n(.1)$ for $\cos(.1)$ will have error less than 0.000001. Hint: Since the derivatives of $\cos x$ are either $\pm \sin x$ or $\pm \cos x$, you can set the error $\frac{\left|f^{(n+1)}(z)\right|}{(n+1)!}\left|x-c\right|^{n+1} = \frac{1}{(n+1)!}\left|.1-0\right|^{n+1}$ less than 0.000001. Solve by trial and error with a calculator.

Student Exercise Solution 9.7.6

As our final example, we show how to determine the values of x so that the Maclaurin polynomial $p_3(x) = x - \frac{1}{6}x^3$ will approximate $f(x) = \sin x$ with $|R_2(x)| \le 0.001$.

Since the derivatives of $\sin x$ are either $\pm \sin x$ or $\pm \cos x$, you can set the error

$$\frac{\left|f^{(n+1)}(z)\right|}{(n+1)!}\left|x-c\right|^{n+1} = \frac{1}{(3+1)!}\left|x-0\right|^{3+1} = \frac{1}{24}x^4 \le 0.001. \text{ Solving by calculator, } -.3936 \le x \le .3936.$$