fAssets 包学习笔记

邓一硕

dengyishuo@163.com http://yishuo.org

目录

Part	I 收益率和风险计算	. 4
	1.1 计算投资组合的组合收益率	4
	1.2 计算投资组合的平均组合收益率	4
	1.3 计算投资组合的风险	4
	1.4 计算投资组合的 VaR	4
	1.5 计算投资组合的 CVaR	4
	1.6 计算投资组合的 CVaR+	5
	1.7 计算 lambda	5
	1.8 计算下偏矩	5
	1.9 计算投资组合的最大损失:	5
	1.10 异常值分析	5
	1.11 投资组合的选择	6
	1.12 数据重排	6
Part	Ⅱ 分布拟合与模拟	. 7
	2.1 计算投资组合的均值和协方差矩阵	7
	2.2 投资组合的正态性检验	
	2.3 拟合投资组合的收益率分布	
	2.4 模拟投资组合	8
Part	Ⅲ 画图	
	3.1 投资组合收益率的直方图	
	3.2 投资组合的序列图	
	3.3 投资组合的收益率图	
	3.4 投资组合的累计收益率图	
	3.5 投资组合的风险收益图	
	3.6 逆高斯分布形状参数三角图	
	3.7 投资组合的 QQ 图	
	3.8 投资组合的基本统计图	
	3.9 投资组合的各阶矩图	
	3.10 投资组合的箱线元素图	
	3.11 投资组合的逆高斯分布参数图	
	3.12 投资组合的直方图	
	3.13添加投资组合的密度曲线图	
	3.14 投资组合的二维直方图	
	3.15 投资组合的箱线图	
	3.16 投资组合的百分比箱线图	
	3.17 投资组合的散点矩阵图	.12

3.18 投资组合的相关矩阵图	12
3.19 投资组合的相关系数检验图	12
3.20 投资组合的相关系数颜色图	12
3.21 投资组合的相关矩阵对比图	13
3.22 投资组合的谱系图	13
3.23 投资组合的载荷图	13
3.24 树状图	13

引言

fAssets 包是一个用来描述资产特征的一个 R 包,它的主要作用是计算投资组合的收益率、风险价值、矩等性质,并用简单明了的图形将其可视化。fAssets 包主要在确定量化投资策略的前期使用。

目前,fAssets 包尚处于开发过程中,因此,尚有许多功能不够完善。

安装 fAssets 包最最简单的方法是打开 R, 敲入如下代码:

install.packages("fAssets")

当然,你也可以手动下载 fAssets 包到本地自行安装。

使用 fAssets 包中的函数或者数据集时,需要敲入代码:

library(fAssets)

或者:

require(fAssets)

Part I 收益率和风险计算

1.1 计算投资组合的组合收益率

投资组合的组合收益率是衡量投资组合业绩的重要指标之一。fAssets 包中的 pfolioReturn()函数可以计算投资组合的组合收益率。该函数返回的结果是一个收益率 组成的列向量。

例子:

myAssets = 100/12 * assetsSim(n = 120, dim = 4)
equalWeights = rep(1/4, 4)
r = pfolioReturn(myAssets, equalWeights)
head(r)

1.2 计算投资组合的平均组合收益率

fAssets 包提供了 pfolioTargetReturn()函数来计算投资组合的平均组合收益率。例子:

pfolioTargetReturn(myAssets, equalWeights)

1.3 计算投资组合的风险

根据现代投资学理论,投资组合的方差是度量投资组合风险的重要指标之一。fAssets 包中的 pfolioTargetRisk()能够计算出投资组合的这一风险指标。

例子:

pfolioTargetRisk(myAssets, equalWeights)

1.4 计算投资组合的 VaR

VaR 是现代金融领域中广泛应用的一种风险度量指标。fAssets 包中的 pfolioVaR()可以用来计算投资组合的 VaR 值。

例子:

pfolioVaR(myAssets, equalWeights, alpha) peformanceAny 包中有一个更高等的的 VaR()函数。

1.5 计算投资组合的 CVaR

VaR 指标无法度量投资组合在小概率事件发生时所面临的风险。CVaR 指标对此有所改进。fAssets 包中的 pfolioCVaR()函数可以计算投资组合的 CVaR。

例子:

pfolioCVaR(myAssets, equalWeights, alpha)

1.6 计算投资组合的 CVaR+

如果将计算 CVaR 的指标提升为严格大于 VaR 的 VaR 序列的期望,此时,得到的是 CVaR+指标。fAssets 包中的 pfolioCVaRplus()函数可以用于计算 CVaR+。

例子:

pfolioCVaRplus(myAssets, equalWeights, alpha)

1.7 计算 lambda

lambdaCVaR(120, alpha)

1.8 计算下偏矩

下偏矩是金融套期保值中的重要指标。fAssets 包中的 assetsLPM()可以用来计算下偏矩指标。

例子:

LPP = as.timeSeries(data(LPP2005REC))[, 1:6] Lower Partial Moments: assetsLPM(LPP)

1.9 计算投资组合的最大损失:

比 CVaR+更加保守的一种风险评估指标是投资组合的最大损失。fAssets 包提供了pfolioMaxLoss()函数来计算这一指标。

例子:

```
myAssets = 100/12 * assetsSim(n = 120, dim = 4)
equalWeights = rep(1/4, 4)
pfolioMaxLoss(myAssets, equalWeights)
```

1.10 异常值分析

分析数据时,数据中的异常值通常会严重影响分析结论。所以,我们有必要对数据集中的异常值进行分析和剔除。相应的函数为 assetsOutliers()。

例子:

LPP = as.timeSeries(data(LPP2005REC))[, 1:6]

```
## assetsOutliers
assetsOutliers(LPP, colMeans(LPP), cov(LPP))
```

1.11 投资组合的选择

在进行投资组合的选择之前,人们通常会根据组合元素的相似性对投资组合进行分组。 fAssets 包中的 assetsSelect()函数提供了两种聚类方法来完成这一过程。

1.系统聚类方法

对应的参数为 method=c(measure="euclidean",method="complete")

例子:

```
LPP = as.timeSeries(data(LPP2005REC))

colnames(LPP)

hclust = assetsSelect(LPP, "hclust")

plot(hclust)
```

2.kmeans 聚类方法

kmeans 对应的参数为 method=c(centers=3, algorithm="Hartigan-Wong"). 例子:

```
LPP = as.timeSeries(data(LPP2005REC))
colnames(LPP)
assetsSelect(LPP, "kmeans", control = c(centers = 3, algorithm = "Hartigan-Wong"))
```

1.12 数据重排

有时候需要按照特定顺序重列数据。fAssets 包中提供了三种重列数据的方式:

- 1.按照主成分分析的特征根大小重列数据;
- 2.按照系统聚类重列数据;
- 3.按照首字母顺序进行重列数据;

相关的函数是 assetsArrange()。

例子:

```
## lppData
lppData = as.timeSeries(data(LPP2005REC))
## assetsArrange -
assetsArrange(lppData, "pca")
assetsArrange(lppData, "hclust")
assetsArrange(lppData, "abc")
```

Part Ⅱ 分布拟合与模拟

2.1 计算投资组合收益率的均值和协方差矩阵

很多时候,我们都需要计算投资组合中各个资产的均值和它们的协方差矩阵。在 fAssets 包中可以用 assetsMeanCov()函数来完成这一过程。

例子:

LPP -

LPP = as.timeSeries(data(LPP2005REC))[, 1:6]

colnames(LPP)

Sample Covariance Estimation:

assetsMeanCov(LPP)

Shrinked Estimation:

shrink = assetsMeanCov(LPP, "shrink")

shrink

从结果中提取协方差矩阵:

Extract Covariance Matrix:

getCovRob(shrink)

从结果中提取均值:

getCenterRob(shrink)

2.2 投资组合的正态性检验

投资组合的收益率很多时候都被假设为具有正态性,然而,这并不是一个理所当然的事情,我们需要对投资组合的正态性进行检验。fAssets 包中的 assetsTest()函数可以用来检验投资组合的正态性。检验方法有 shapiro 检验和 energy 检验两种。

例子:

LPP = as.timeSeries(data(LPP2005REC))[, 1:6]

colnames(LPP)

Multivariate Shapiro Test:

assetsTest(LPP, "shapiro")

Multivariate Energy Test:

assetsTest(LPP,"energy")

2.3 拟合投资组合的收益率分布

fAssets 包中的 assetsFit()函数是一个很好用的工具,它可以用来拟合投资组合中各个资产的收益率的分布。这对全面了解投资组合的性质十分重要。

例子:

```
LPP = 100 * as.timeSeries(data(LPP2005REC))[, 1:6]
colnames(LPP)
## assetsFit
# Fit a Skew-Student-t Distribution:
fit = assetsFit(LPP)
print(fit)
# Show Model Slot:
print(fit@model)
@call
            命令
            数据对象
@data
@description 操作日期等的简要说明
@fit
            分布的拟合结果
            分布类型。"norm", "snorm", "st"三选一
@method
@model
            分布的参数, mu, Omega, alpha, df.等
@title
            标题
@fit slot
             列表(包含 fit$dp,fit$se 等)
@fit$dp
            包含 Beta、Omega、alpha 等一系列形状参数的向量。
@fit$se
            Beta.alpha 等信息
@optim
            优化过程中的一些参数
```

2.4 模拟投资组合

有时候,为了分析的方便,我们需要模拟一定量的投资组合。fAssets 包中的 assetsSim() 函数可以帮助我们作到这一点。

例子:

```
set.seed(1953)

lppSim = assetsSim(n = nrow(LPP), dim = ncol(LPP), model = fit@model)

colnames(lppSim) <- colnames(LPP)

rownames(lppSim) <- rownames(LPP)

head(lppSim)
```

Part Ⅲ 画图

3.1 投资组合收益率的直方图

```
myAssets = 100/12 * assetsSim(n = 120, dim = 4)
equalWeights = rep(1/4, 4)
alpha = 0.10
pfolioHist(myAssets,equalWeights, alpha, n = 20)
返回投资组合的收益率的直方图,均值, VaR(蓝线), CVaR+(红线),最大损失(绿线)。
```

3.2 投资组合的序列图

assetSeriesPlot 函数将返回资产组合的线图。

例子:

assetsSeriesPlot(LPP[, c("LMI", "ALT")],col =c("orange", "brown"))

3.3 投资组合的收益率图

assetsReturnPlot()可以绘制投资组合的收益率图。其实,这个功能完全可以自己写函数来实现,没有必要依赖于 assetsReturnPlot()函数。毕竟,其没有 plot 灵活好用。

例子:

assetsReturnPlot(LPP[, 1:3])

3.4 投资组合的累计收益率图

assetsCumulatedPlot()可以绘制资产组合的累计收益率图。这个过程其实可以分解为求累计收益率(涉及到函数 cumsum())和绘制线图(plot())两个步骤。同样的,你可以手动完成上述这两个步骤,不必依赖于 assetsCumulatedPlot()函数。

例子:

assetsCumulatedPlot(LPP[, "LPP40"],col = "red")

3.5 投资组合的风险收益图

assetsRiskReturnPlot()函数可以绘制风险收益率。其中,纵轴为收益率,横轴为风险值。

例子:

assetsRiskReturnPlot(LPP)

3.6 逆高斯分布形状参数三角图

assetsNIGShapeTrianglePlot 绘制逆高斯分布形状参数的三角图。了解一下逆高斯分布和三角图很容易理解这一个绘图过程。

例子:

assetsNIGShapeTrianglePlot(LPP)

3.7 投资组合的 QQ 图

assetsQQNormPlot()可以绘制投资组合的QQ图。跟qqnorm()和qqline()一样,其可以与相关的正态分布检验配合使用。

例子:

```
## LPP2005REC

LPP = as.timeSeries(data(LPP2005REC))

## assetsQQNormPlot

# par(mfrow = c(2, 2))

assetsQQNormPlot(LPP[, 1:3])
```

3.8 投资组合的基本统计图

计算资产组合的一些基本统计量如均值,分位数,下偏矩等,并用花瓣图表现出来。 例子:

```
LPP =as.timeSeries(data(LPP2005REC))

## assetsBasicStatsPlot -
par(mfrow = c(1, 1))
assetsBasicStatsPlot(LPP,title = "", description = "")
```

3.9 投资组合的各阶矩图

assetsMomentsPlot()主要用来计算均值,标准差,偏度和峰度并用花瓣图表现出来。 例子:

assetsMomentsPlot(LPP,title = "", description = "")

3.10 投资组合的箱线元素图

assetsBoxStatsPlot()计算绘制箱线图所需的各个统计量,并用花瓣图表现出来。例子:

assetsBoxStatsPlot(LPP,title = "", description = "")

3.11 投资组合的逆高斯分布参数图、

assetsNIGFitPlot()对投资组合中的各个资产(的收益率)拟合逆高斯分布,计算出逆高斯分布的参数,并用花瓣图表现出来。

例子:

assetsNIGFitPlot(LPP,title = "", description = "")

3.12 投资组合的直方图

fAssets 包中的 assetsHistPlot()函数可以绘制投资组合中单个资产中的收益率的直方图。

例子:

```
x=as.timeSeries(data(LPP2005REC))

## assetsHistPlot -
par(mfrow = c(2, 2))
assetsHistPlot(x[, 1:4])
```

3.13 添加投资组合的密度曲线图

fAssets 包中的 assetsLogDensityPlot()可以绘制投资组合中单个资产的对数密度曲线图。这个过程可以自行完成,不必过于依赖此函数。

例子:

```
## assetsLogDensityPlot -
par(mfrow = c(1, 1))
assetsLogDensityPlot(x[, "ALT"], estimator = "both")
```

这里用来估计密度的有三种方法,分别是: "huber", "sample", or "both".

3.14 投资组合的二维直方图

有时候,了解投资组合中的联合分布很重要。二维直方图就是将这种联合分布可视化的一种方式。fAssets 包中的 assetsHistPairsPlot()函数可以绘制二维直方图。

例子:

```
## LPP2005REC

LPP = as.timeSeries(data(LPP2005REC))

## assetsHistPairsPlot -
assetsHistPairsPlot(LPP[, c("LMI", "ALT")])
assetsHistPairsPlot(LPP[, c("LMI", "ALT")], method = "hex")
```

3.15 投资组合的箱线图

用 assetsBoxPlot()函数可以用来绘制投资组合的箱线图。例子:

```
## LPP

LPP = as.timeSeries(data(LPP2005REC))
head(LPP)

## assetsBoxPlot
assetsBoxPlot(LPP)
```

3.16 投资组合的百分比箱线图

百分比箱线图与箱线图类似。

例子:

assetsBoxPercentilePlot - assetsBoxPercentilePlot(LPP)

3.17 投资组合的散点矩阵图

与 base 包中的 Pairs()函数类似,assetsParisPlot()函数可以绘制投资组合中各个资产的散点矩阵图。

例子:

assetsPairsPlot(LPP[, 1:6])

3.18 投资组合的相关矩阵图

为了将投资组合的相关系数矩阵进行可视化,fAssets 包提供了 assetsCorgramPlot() 函数。

例子:

```
assetsCorgramPlot(LPP[, 1:6], method = "pie")
assetsCorgramPlot(LPP[, 1:6], method = "shade")
```

3.19 投资组合的相关系数检验图

assetsCorTestPlot()函数可以绘制相关系数检验图。它的原理是将相关系数和相关系数矩阵图放置在同一张图上。

例子:

assetsCorTestPlot(LPP[, 1:6])

3.20 投资组合的相关系数颜色图

还可以把相关系数矩阵用颜色图进行可视化。这需要用到 assetsCorlmagePlot()函数。例子:

assetsCorImagePlot(LPP[, 1:6])

3.21 投资组合的相关矩阵对比图

covEllipsesPlot()函数用来绘制相关矩阵的对比图,该图的主要作用是对比用不同方法求出的协方差矩阵的异同。

例子:

```
## LPP -
    LPP = as.timeSeries(data(LPP2005REC))[, 1:6]
    head(LPP)

## cov -
    Cov = cov(LPP)
    robustCov = assetsMeanCov(LPP, "MCD")$Sigma

## covEllipsesPlot -
    covEllipsesPlot(list(Cov, robustCov))
```

3.22 投资组合的谱系图

分类是个永恒的话题,研究投资组合时也需要将投资组合中的各个资产的相似性研究透彻。谱系图就是一个很常用的方式。assetsDendrogramPlot()可以完成这一过程。

例子:

LPP2005REC

LPP = as.timeSeries(data(LPP2005REC))

assetsDendrogramPlot

assetsDendrogramPlot(LPP)

3.23 投资组合的载荷图

为了研究投资组合中各个资产之间的关系,提取投资组合相关矩阵的前两个特征值来描述他们的关系。所用到的函数是 assetsCorEignPlot()函数。

例子:

assetsCorEigenPlot(LPP)

3.24 最小支撑树

assetsTreePlot()可以绘制最小支撑树。

例子:

```
## LPP2005REC -
LPP = as.timeSeries(data(LPP2005REC))
## assetsTreePlot -
par(mfrow = c(2, 2))
assetsTreePlot(LPP)
```

for (i in 1:3) assetsTreePlot(LPP)