# **Complex Analysis Qualifying Exam Review**

D. Zack Garza

## **Table of Contents**

### **Contents**

| Ta | Table of Contents 2                                        |    |  |
|----|------------------------------------------------------------|----|--|
| 1  | Useful Techniques                                          | 3  |  |
| 2  | Definitions                                                | 4  |  |
| 3  | Theorems                                                   | 5  |  |
|    | 3.1 Basics                                                 | 5  |  |
|    | 3.2 Holomorphic and Entire Functions                       | 6  |  |
|    | 3.2.1 Key Theorems                                         | 6  |  |
|    | 3.2.2 Others                                               | 7  |  |
|    | 3.3 Series and Analytic Functions                          | 8  |  |
|    | 3.4 Others                                                 | 9  |  |
| 4  | Residues                                                   | 10 |  |
| 5  | Conformal Maps                                             | 11 |  |
|    | 5.1 Plane to Disc                                          | 11 |  |
|    |                                                            | 12 |  |
|    | 5.3 Strip to Disc                                          | 12 |  |
| 6  | Schwarz Reflection 13                                      |    |  |
| 7  | Zeros and Poles                                            | 13 |  |
|    | 7.1 Singularities                                          | 13 |  |
|    | 7.2 Counting Zeros                                         | 13 |  |
| 8  | Linear Fractional Transformations                          | 14 |  |
| 9  | Appendix: Proofs of the Fundamental Theorem of Algebra     | 15 |  |
|    | 9.0.1 Fundamental Theorem of Algebra: Argument Principle   | 15 |  |
|    | 9.0.2 Fundamental Theorem of Algebra: Rouche's Theorem     | 15 |  |
|    | 9.0.3 Fundamental Theorem of Algebra: Liouville's Theorem  | 16 |  |
|    | 9.0.4 Fundamental Theorem of Algebra: Open Mapping Theorem | 16 |  |
| 10 | Appendix                                                   | 17 |  |
|    | 10.1 Misc Prerequisites                                    | 17 |  |

Table of Contents

# 1 | Useful Techniques

#### Showing a function is constant:

- Write f = u + iv and use Cauchy-Riemann to show  $u_x, u_y = 0$ , etc.
- Show that f is entire and bounded.

Showing a function is zero: Show f is entire, bounded, and  $\lim_{z\to\infty} f(z) = 0$ .

Things to know well:

- Estimates for derivatives, mean value theorem
- {=tex} \hyperref[CauchyTheorem]{Cauchy's Theorem}
- {=tex} \hyperref[CauchyIntegral]{Cauchy's Integral Formula}
- {=tex} \hyperref[CauchyInequality]{Cauchy's Inequality}
- {=tex} \hyperref[Morera]{Morera's Theorem}
- {=tex} \hyperref[SchwarzReflection]{The Schwarz Reflection Principle}
- {=tex} \hyperref[MaximumModulus]{Maximum Modulus Principle}
- {=tex} \hyperref[SchwarzLemma]{The Schwarz Lemma}
- {=tex} \hyperref[Liouville]{Liouville's Theorem}
- {=tex} \hyperref[Casorati]{Casorati-Weierstrass Theorem}
- {=tex} \hyperref[Rouche]{Rouché's Theorem}
- Properties of linear fractional transformations
- Automorphisms of  $\mathbb{D}, \mathbb{C}, \mathbb{CP}^1$ .

Computing Arguments: Arg(z/w) = Arg(z) - Arg(w).

Useful Techniques 3

2 Definitions

# 2 Definitions

#### **Definition 2.0.1** (Analytic)

A function  $f: \Omega \to \mathbb{C}$  is analytic at  $z_0 \in \Omega$  iff there exists a power series  $g(z) = \sum a_n(z - z_0)^n$  with radius of convergence R > 0 and a neighborhood  $U \ni z_0$  such that f(z) = g(z) on U.

#### **Definition 2.0.2** (Holomorphic)

A function  $f: \mathbb{C} \to \mathbb{C}$  is *holomorphic* at  $z_0$  if the following limit converges:

$$\lim_{h\to 0} \frac{1}{h} (f(z_0+h) - f(z_0)) := f'(z_0).$$

Examples:

- $f(z) = \frac{1}{z}$  is holomorphic on  $\mathbb{C} \setminus \{0\}$ .
- $f(z) = \bar{z}$  is *not* holomorphic, since  $\frac{\bar{h}}{h}$  does not converge (but is real differentiable).

#### **Definition 2.0.3** (Entire)

A function that is holomorphic on  $\mathbb{C}$  is said to be *entire*.

#### **Definition 2.0.4** (Meromorphic)

A function  $f:\Omega\to\mathbb{C}$  is meromorphic iff there exists a sequence  $\{z_n\}$  such that

- $\{z_n\}$  has no limit points in  $\Omega$ .
- f is holomorphic in  $\Omega \setminus \{z_n\}$ .
- f has poles at the points  $\{z_n\}$ .

If f is either holomorphic or has a pole at  $z = \infty$  is said to be meromorphic on  $\mathbb{CP}^1$ .

#### **Definition 2.0.5** (Harmonic)

A real function of two variables u(x,y) is harmonic iff its Laplacian vanishes:

$$\Delta u \coloneqq \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u = 0.$$

**Definition 2.0.6** (Cauchy-Riemann Equations)

$$u_x = v_y$$
 and  $u_y = -v_x$   
 $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$  and  $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$ 

Definitions 4

#### **Definition 2.0.7** (Principal Part and Residue)

In a Laurent series  $f(z) = \sum_{n \in \mathbb{Z}} c_n (z - z_0)^n$ , the principal part of f at  $z_0$  consists of terms with negative degree:

$$P_f(z) \coloneqq \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}.$$

The residue of f at  $z_0$  is the coefficient  $c_{-1}$ .

#### **Definition 2.0.8** (Removable Singularities)

If  $z_0$  is a singularity of f and there exists a g such that f(z) = g(z) for all z in some deleted neighborhood  $U \setminus \{z_0\}$ , then  $z_0$  is a removable singularity of f.

#### **Definition 2.0.9** (Pole Terminology)

A pole  $z_0$  of a meromorphic function f(z) is a zero of  $g(z) = \frac{1}{f(z)}$ . If there exists an n such that

$$\lim_{z\to z_0} (z-z_0)^n f(z)$$

is holomorphic and nonzero in a neighborhood of  $z_0$ , then the minimal such n is the *order* of the pole. A pole of order 1 is said to be a *simple pole*.

The pole  $z_0$  is *isolated* iff there exists a neighborhood of  $z_0$  containing no other poles of f.

#### **Definition 2.0.10** (Essential Singularity)

A singularity  $z_0$  is essential iff it is neither removable nor a pole.

Equivalently, a Laurent series expansion about  $z_0$  has a principal part with infinitely many terms.

# 3 | Theorems

3.1 Basics

#### Theorem 3.1.1 (Green's Theorem).

If  $\Omega \subseteq \mathbb{C}$  is bounded with  $\partial \Omega$  piecewise smooth and  $f, g \in C^1(\overline{\Omega})$ , then

$$\int_{\partial\Omega} f \, dx + g \, dy = \iint_{\Omega} \left( \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA.$$

Theorem 3.1.2 (Summation by Parts).

Theorems 5

Define the forward difference operator  $\Delta f_k = f_{k+1} - f_k$ , then

$$\sum_{k=m}^{n} f_k \Delta g_k + \sum_{k=m}^{n-1} g_{k+1} \Delta f_k = f_n g_{n+1} - f_m g_m$$

Note: compare to  $\int_a^b f \, dg + \int_a^b g \, df = f(b)g(b) - f(a)g(a)$ .

### 3.2 Holomorphic and Entire Functions



#### 3.2.1 Key Theorems

Theorem 3.2.1 (Cauchy's Theorem ).

If f is holomorphic on  $\Omega$ , then

$$\int_{\partial\Omega}f(z)\,dz=0.$$

Slogan: closed path integrals of holomorphic functions vanish.

Theorem 3.2.2 (Morera's Theorem ).

If f is continuous on a domain  $\Omega$  and  $\int_T f = 0$  for every triangle  $T \subset \Omega$ , then f is holomorphic.

Slogan: if every integral along a triangle vanishes, implies holomorphic.

Theorem 3.2.3 (Liouville's Theorem ).

If f is entire and bounded, f is constant.

Theorem 3.2.4(Cauchy Integral Formula).

Suppose f is holomorphic on  $\Omega$ , then

$$f(z) = \frac{1}{2\pi i} \oint_{\partial\Omega} \frac{f(\xi)}{\xi - z} d\xi$$

and

$$\frac{\partial^n f}{\partial z^n}(z) = \frac{n!}{2\pi i} \int_{\partial \Omega} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi.$$

#### 3.2.2 Others

Theorem 3.2.5 (Holomorphic functions have harmonic components).

If f(z) = u(x, y) + iv(x, y), then u, v are harmonic.

Theorem 3.2.6 (Holomorphic functions are continuous.).

f is holomorphic at  $z_0$  iff there exists an  $a \in \mathbb{C}$  such that

$$f(z_0+h)-f(z_0)-ah=h\psi(h), \quad \psi(h) \stackrel{h\to 0}{\to} 0.$$

In this case,  $a = f'(z_0)$ .

Proposition 3.2.7 (Cauchy-Riemann implies holomorphic).

If f = u + iv with  $u, v \in C^1(\mathbb{R})$  satisfying the Cauchy-Riemann equations on  $\Omega$ , then f is holomorphic on  $\Omega$  and  $f'(z) = \frac{\partial f}{\partial z} = \frac{1}{2} \left( \frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) f$ .

Proposition 3.2.8 (Polar Cauchy-Riemann equations).

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and  $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$ .

Proof.

#### Concepts Used:

- See walkthrough here.
- See problem set 1.
- Take derivative along two paths, along a ray with constant angle  $\theta_0$  and along a circular arc of constant radius  $r_0$ .
- Then equate real and imaginary parts.

Theorem 3.2.9 (Open Mapping).

Any holomorphic non-constant map is an open map.

### 3.3 Series and Analytic Functions

7

#### Proposition 3.3.1(Power Series are Smooth).

Any power series is smooth and its derivatives can be obtained using term-by-term differentiation.

#### Proposition 3.3.2 (Uniform Convergence of Series).

A series of functions  $\sum_{n=1}^{\infty} f_n(x)$  converges uniformly iff

$$\lim_{n\to\infty} \left\| \sum_{k\geq n} f_k \right\|_{\infty} = 0.$$

### Theorem 3.3.3 (Weierstrass M-Test).

If  $\{f_n\}$  with  $f_n: \Omega \to \mathbb{C}$  and there exists a sequence  $\{M_n\}$  with  $\|f_n\|_{\infty} \leq M_n$  and  $\sum_{n \in \mathbb{N}} M_n < \infty$ ,

then  $f(x) = \sum_{n} f_n(x)$  converges absolutely and uniformly on  $\Omega$ .

Moreover, if the  $f_n$  are continuous, by the uniform limit theorem, f is again continuous.

### Proposition 3.3.4 (Exponential is uniformly convergent in discs).

 $f(z) = e^z$  is uniformly convergent in any disc in  $\mathbb{C}$ .

Proof.

Apply the estimate

$$|e^z| \le \sum \frac{|z|^n}{n!} = e^{|z|}.$$

Now by the M-test,

$$|z| \le R < \infty \implies \left| \sum \frac{z^n}{n!} \right| \le e^R < \infty.$$

#### Proposition 3.3.5 (Checking radius of convergence).

For a power series  $f(z) = \sum a_n z^n$ , define R by

$$\frac{1}{R} \coloneqq \limsup |a_n|^{\frac{1}{n}}.$$

Then f converges absolutely on |z| < R and diverges on |z| > R.

#### Theorem 3.3.6 (Maximum Modulus ).

If f is holomorphic and nonconstant on an open region  $\Omega$ , then |f| can not attain a maximum on  $\Omega$ .

If  $\Omega$  is bounded and f is continuous on  $\overline{\Omega}$ , then  $\max_{\overline{\Omega}} |f|$  occurs on  $\partial \Omega$ .

Conversely, if f attains a local maximum at  $z_0 \in \Omega$ , then f is constant on  $\Omega$ .

#### 3.4 Others



#### Theorem 3.4.1 (Casorati-Weierstrass).

If f is holomorphic on  $\Omega \setminus \{z_0\}$  where  $z_0$  is an essential singularity, then for every  $V \subset \Omega \setminus \{z_0\}$ , f(V) is dense in  $\mathbb{C}$ .

The image of a disc punctured at an essential singularity is dense in  $\mathbb{C}$ .

#### Theorem 3.4.2 (Little Picard).

Todo

#### Theorem 3.4.3 (Continuation Principle / Identity Theorem).

If f is holomorphic on a bounded connected domain  $\Omega$  and there exists a sequence  $\{z_i\}$  with a limit point in  $\Omega$  such that  $f(z_i) = 0$ , then  $f \equiv 0$  on  $\Omega$ .

Two functions agreeing on a set with a limit point are equal on a domain.

#### Corollary 3.4.4.

The ring of holomorphic functions on a domain in  $\mathbb{C}$  has no zero divisors.

Find the proof!

Proof. ???

#### Proposition 3.4.5 (Injectivity Relates to Derivatives).

If  $z_0$  is a zero of f' of order n, then f is (n+1)-to-one in a neighborhood of  $z_0$ .

Proof.

.

Proposition 3.4.6 (Bounded Complex Analytic Functions form a Banach Space). For  $\Omega \subseteq \mathbb{C}$ , show that  $A(\mathbb{C}) \coloneqq \{ f : \Omega \to \mathbb{C} \mid f \text{ is bounded} \}$  is a Banach space.

Proof.

Apply Morera's Theorem and Cauchy's Theorem

3.4 Others 9

# 4 Residues

#### Theorem 4.0.1 (Cauchy's Inequality).

For  $z_o \in D_R(z_0) \subset \Omega$ , we have

$$|f^{(n)}(z_0)| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{||f||_{\infty}}{R^{n+1}} R d\theta = \frac{n! ||f||_{\infty}}{R^n},$$

where  $||f||_{\infty} \coloneqq \sup_{z \in C_R} |f(z)|$ .

Slogan: the nth Taylor coefficient of an analytic function is at most  $\sup_{|z|=R} |f|/R^n$ .

Proof.

- Given  $z_0 \in \Omega$ , pick the largest disc  $D_R(z_0) \subset \Omega$  and let  $C_R = \partial D_R$ .
- Then apply the integral formula.

#### Theorem 4.0.2 (The Residue Theorem).

If f is holomorphic on an open set  $\Omega$  containing a curve  $\gamma$  and its interior  $\gamma^{\circ}$ , except for finitely many poles  $\{z_k\}_{k=1}^N \subset \gamma^{\circ}$ . Then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{N} \operatorname{Res}_{z_k} f.$$

#### Proposition 4.0.3 (For simple poles).

If  $z_0$  is a simple pole of f, then

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z).$$

Example: Let 
$$f(z) = \frac{1}{1+z^2}$$
, then Res $(i, f) = \frac{1}{2i}$ .

#### Proposition 4.0.4 (For higher order poles).

If f has a pole  $z_0$  of order n, then

$$\operatorname{Res}_{z=z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \left( \frac{\partial}{\partial z} \right)^{n-1} (z - z_0)^n f(z).$$

Residues 10

# **Conformal Maps**

Notation:

- $S \coloneqq \{x + iy \mid x \in \mathbb{R}, \ 0 < y < \pi\}.$   $\mathbb{D}$  the disc
- $\mathbb{H}$  the upper half plane
- $X_{\frac{1}{2}}$ : a "half" version of X.

#### Theorem 5.0.1 (Classification of Conformal Maps).

There are 8 major types of conformal maps:

| Type/Domains                                                                                                                | Formula                                                |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Translation/Dilation/Rotation                                                                                               | $z \mapsto e^{i\theta}(cz+h)$                          |
| Sectors to sectors                                                                                                          | $z \mapsto z^n$                                        |
| $\mathbb{D}_{\frac{1}{2}} \to \mathbb{H}_{\frac{1}{2}}$ , the first quadrant                                                | $z \mapsto \frac{1+z}{1-z}$ $z \mapsto \log(z)$        |
| $\mathbb{H} \to S$                                                                                                          | $z \mapsto \log(z)$                                    |
| $\mathbb{D}_{\frac{1}{2}} \to S_{\frac{1}{2}}$                                                                              | $z \mapsto \log(z)$                                    |
| $\begin{array}{c} \mathbb{D}_{\frac{1}{2}} \to S_{\frac{1}{2}} \\ S_{\frac{1}{2}} \to \mathbb{D}_{\frac{1}{2}} \end{array}$ | $z \mapsto e^{iz}$                                     |
| $\mathbb{D}_{rac{1}{2}}	o\mathbb{H}$                                                                                       | $z \mapsto \frac{1}{2} \left( z + \frac{1}{z} \right)$ |
| $S_{\frac{1}{2}} 	o \mathbb{H}$                                                                                             | $z \mapsto \sin(z)$                                    |

Conformal maps  $\mathbb{D} \to \mathbb{D}$  have the form

$$g(z) = \lambda \frac{1-a}{1-\bar{a}z}, \quad |a| < 1, \quad |\lambda| = 1.$$

### 5.1 Plane to Disc

$$\varphi : \mathbb{H} \to \mathbb{D}$$

$$\varphi(z) = \frac{z - i}{z + i} \qquad f^{-1}(z) = i \left(\frac{1 + w}{1 - w}\right).$$

### 5.2 Sector to Disc

11 Conformal Maps

For  $S_{\alpha} \coloneqq \left\{ z \in \mathbb{C} \mid 0 < \arg(z) < \alpha \right\}$  an open sector for  $\alpha$  some angle, first map the sector to the half-plane:

$$g: S_{\alpha} \to \mathbb{H}$$
$$g(z) = z^{\frac{\pi}{\alpha}}.$$

Then compose with a map  $\mathbb{H} \to \mathbb{D}$ :

$$f: S_{\alpha} \to \mathbb{D}$$

$$f(z) = (\varphi \circ g)(z) = \frac{z^{\frac{\pi}{\alpha}} - i}{z^{\frac{\pi}{\alpha}} + i}.$$



### 5.3 Strip to Disc

- Map to horizontal strip by rotation  $z \mapsto \lambda z$ .
- Map horizontal strip to sector by z → e<sup>z</sup>
  Map sector to ℍ by z → z<sup>π/α</sup>.
- Map  $\mathbb{H} \to \mathbb{D}$ .

#### Theorem 5.3.1 (Riemann Mapping).

If  $\Omega$  is simply connected, nonempty, and not  $\mathbb{C}$ , then for every  $z_0 \in \Omega$  there exists a unique conformal map  $F: \Omega \to \mathbb{D}$  such that  $F(z_0) = 0$  and  $F'(z_0) > 0$ .

Thus any two such sets  $\Omega_1, \Omega_2$  are conformally equivalent.

12 5.2 Sector to Disc

# 6 | Schwarz Reflection

#### Theorem $6.0.1(Schwarz\ Reflection\ ).$

If f is continuous and holomorphic on  $\mathbb{H}^+$  and real-valued on  $\mathbb{R}$ , then the extension defined by  $F(z) = \overline{f(\overline{z})}$  for  $z \in \mathbb{H}^-$  is a well-defined holomorphic function on  $\mathbb{C}$ .

**Remark 6.0.2:**  $\mathbb{H}^+, \mathbb{H}^-$  can be replaced with any region symmetric about a line segment  $L \subseteq \mathbb{R}$ .

# **7** | Zeros and Poles

#### 7.1 Singularities

#### Theorem 7.1.1 (Riemann's Removable Singularity Theorem).

If f is holomorphic on  $\Omega$  except possibly at  $z_0$  and f is bounded on  $\Omega \setminus \{z_0\}$ , then  $z_0$  is a removable singularity.

### 7.2 Counting Zeros

#### Theorem 7.2.1 (Argument Principle).

For f meromorphic in  $\gamma^{\circ}$ , if f has no poles and is nonvanishing on  $\gamma$  then

$$\Delta_{\gamma} \arg f(z) = \int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi (Z_f - P_f),$$

where  $Z_f$  and  $P_f$  are the number of zeros and poles respectively enclosed by  $\gamma$ , counted with multiplicity.

#### Theorem 7.2.2 (Rouché's Theorem).

If f, g are analytic on a domain  $\Omega$  with finitely many zeros in  $\Omega$  and  $\gamma \in \Omega$  is a closed curve surrounding each point exactly once, where |g| < |f| on  $\gamma$ , then f and f + g have the same number of zeros.

Alternatively:

Suppose f = g + h with  $g \neq 0, \infty$  on  $\gamma$  with |g| > |h| on  $\gamma$ . Then

$$\Delta_{\gamma} \arg(f) = \Delta_{\gamma} \arg(h)$$
 and  $Z_f - P_f = Z_g - P_g$ .

**Example 7.2.3:** • Take  $P(z) = z^4 + 6z + 3$ .

Schwarz Reflection 13

- On |z| < 2:
  - Set  $f(z) = z^4$  and g(z) = 6z + 3, then  $|g(z)| \le 6|z| + 3 = 15 < 16 = |f(z)|$ .
  - So P has 4 zeros here.
- On |z| < 1:

  - Set f(z) = 6z and  $g(z) = z^4 + 3$ . Check  $|g(z)| \le |z|^4 + 3 = 4 < 6 = |f(z)|$ .
  - So P has 1 zero here.

• Claim: the equation  $\alpha z e^z = 1$  where  $|\alpha| > e$  has exactly one solution in  $\mathbb{D}$ . Example 7.2.4:

- Set  $f(z) = \alpha z$  and  $g(z) = e^{-z}$ .
- Estimate at |z| = 1 we have  $|g| = |e^{-z}| = e^{-\Re(z)} \le e^1 < |\alpha| = |f(z)|$
- f has one zero at  $z_0 = 0$ , thus so does f + g.

# **Linear Fractional Transformations**

#### **Definition 8.0.1** (Linear Fractional Transformation)

A map of the following form is a linear fractional transformation:

$$T(z) = \frac{az+b}{cz+d},$$

where the denominator is assumed to not be a multiple of the numerator.

These have inverses given by

$$T^{-1}(w) = \frac{dw - b}{-cw + a}.$$

#### Theorem 8.0.2 (Cayley Transform).

The fractional linear transformation given by  $F(z) = \frac{i-z}{i+z}$  maps  $\mathbb{D} \to \mathbb{H}$  with inverse  $G(w) = \frac{i-z}{i+z}$ 

#### Theorem 8.0.3 (Schwarz Lemma).

If  $f: \mathbb{D} \to \mathbb{D}$  is holomorphic with f(0) = 0, then

- 1.  $|f(z)| \le |z|$  for all  $z \in \mathbb{D}$ 2.  $|f'(0)| \le 1$ .

Moreover, if  $|f(z_0)| = |z_0|$  for any  $z_0 \in \mathbb{D}$  or |f'(0)| = 1, then f is a rotation

# Appendix: Proofs of the Fundamental Theorem of Algebra

#### 9.0.1 Fundamental Theorem of Algebra: Argument Principle

- Let  $P(z) = a_n z^n + \dots + a_0$  and g(z) = P'(z)/P(z), note P is holomorphic
- Since  $\lim_{|z|\to\infty} P(z) = \infty$ , there exist an R > 0 such that P has no roots in  $\{|z| \ge R\}$ .
- Apply the argument principle:

$$N(0) = \frac{1}{2\pi i} \oint_{|\xi|=R} g(\xi) d\xi.$$

- Check that  $\lim_{|z\to\infty|}zg(z)=n,$  so g has a simple pole at  $\infty$
- Then g has a Laurent series  $\frac{n}{z} + \frac{c_2}{z^2} + \cdots$
- Integrate term-by-term to get N(0) = n.

#### 9.0.2 Fundamental Theorem of Algebra: Rouche's Theorem

- Let  $P(z) = a_n z^n + \dots + a_0$
- Set  $f(z) = a_n z^n$  and  $g(z) = P(z) f(z) = a_{n-1} z^{n-1} + \dots + a_0$ , so f + g = P. Choose  $R > \max\left(\frac{|a_{n-1}| + \dots + |a_0|}{|a_n|}, 1\right)$ , then

$$\begin{split} |g(z)| &\coloneqq |a_{n-1}z^{n-1} + \dots + a_1z + a_0| \\ &\le |a_{n-1}z^{n-1}| + \dots + |a_1z| + |a_0| \quad \text{by the triangle inequality} \\ &= |a_{n-1}| \cdot |z^{n-1}| + \dots + |a_1| \cdot |z| + |a_0| \\ &= |a_{n-1}| \cdot R^{n-1} + \dots + |a_1|R + |a_0| \\ &\le |a_{n-1}| \cdot R^{n-1} + |a_{n-2}| \cdot R^{n-1} + \dots + |a_1| \cdot R^{n-1} + |a_0| \cdot R^{n-1} \quad \text{since } R > 1 \implies R^{a+b} \ge R^a \\ &= R^{n-1} \left( |a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0| \right) \\ &\le R^{n-1} \left( |a_n| \cdot R \right) \quad \text{by choice of } R \\ &= R^n |a_n| \\ &= |a_n z^n| \\ &\coloneqq |f(z)| \end{split}$$

• Then  $a_n z^n$  has n zeros in |z| < R, so f + g also has n zeros.

#### 9.0.3 Fundamental Theorem of Algebra: Liouville's Theorem

- Suppose p is nonconstant and has no roots, then  $\frac{1}{n}$  is entire
- Write  $g(z) := \frac{p(z)}{z^n} = a_n \left( \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right)$  Outside a disc:
- - Note  $\lim_{z\to\infty} = 0$  for the parenthesized terms, so there exists an R large enough such that  $|g(z)| \ge \frac{1}{2} |a_n|$
  - Then  $|p(z)| \ge \frac{R^n}{2} |a_n|$  implies  $\frac{1}{n}$  is bounded in |z| > R
- Inside a disc:
  - p is continuous with no roots so p is bounded below on |z| < R.
  - -p is continuous on a compact set and thus achieves a min A
  - Set  $B = \min(A, \frac{R^n}{2} |a_n|)$ , then  $p \ge B$  on |z| < R.
- Thus p is bounded below everywhere and thus  $\frac{1}{p}$  is bounded above everywhere, thus bounded.
- Thus  $\frac{1}{n}$  is constant, forcing p to be constant.

#### 9.0.4 Fundamental Theorem of Algebra: Open Mapping Theorem

- p induces a continuous map  $\mathbb{CP}^1 \to \mathbb{CP}^1$
- The continuous image of compact space is compact;
- Since the codomain is Hausdorff space, the image is closed.
- p is holomorphic and non-constant, so by the Open Mapping Theorem, the image is open.
- Thus the image is clopen in  $\mathbb{CP}^1$ .
- The image is nonempty, since  $p(1) = \sum a_i \in \mathbb{C}$
- $\mathbb{CP}^1$  is connected
- But the only nonempty clopen subset of a connected space is the entire space.
- So p is surjective, and  $p^{-1}(0)$  is nonempty.
- So p has a root.

# **1** () | Appendix

$$dz = dx + i \ dy$$

$$d\overline{z} = dx - i \ dy$$

$$f_z = f_x = i^{-1} f_y$$

$$\int_0^{2\pi} e^{i\ell x} dx = \begin{cases} 2\pi & (\ell = 0) \\ 0 & (\ell \neq 0) \end{cases}.$$

Appendix

### 10.1 Misc Prerequisites



• Circle:  $x^2 + y^2 = r^2$ • Ellipse:  $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ • Hyperbola:  $\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$ 

– Rectangular Hyperbola:  $xy = \frac{c^2}{2}$ .

• Parabola:  $-4ax + y^2 = 0$ .

Mnemonic: Write  $f(x,y) = Ax^2 + Bxy + Cy^2 + \cdots$ , then consider the discriminant  $\Delta = B^2 - 4AC$ :

• 
$$\Delta < 0 \iff ellipse$$

$$- \ \Delta < 0 \ and \ A = C, B = 0 \iff circle$$

• 
$$\Delta = 0 \iff parabola$$

• 
$$\Delta > 0 \iff hyperbola$$

#### Completing the square:

$$x^{2} - bx = (x - s)^{2} - s^{2}$$
 where  $s = \frac{b}{2}$   
 $x^{2} + bx = (x + s)^{2} - s^{2}$  where  $s = \frac{b}{2}$ .

#### **Useful Properties**

• 
$$\Re(z) = \frac{1}{2}(z + \bar{z})$$
 and  $\Im(z) = \frac{1}{2i}(z - \bar{z}).$ 

- $z\bar{z} = |z|^2$
- Exponential forms of cosine and sine:

$$-\cos(\theta) = \frac{1}{2} \left( e^{i\theta} + e^{-i\theta} \right)$$
$$-\sin(\theta) = \frac{1}{2i} \left( e^{i\theta} - e^{-i\theta} \right).$$

#### **Useful Series**

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

$$\log(z) = \sum_{j=0}^{\infty} (-1)^j \frac{(z-a)^j}{j} \frac{\partial}{\partial z} \sum_{j=0}^{\infty} a_j z^j \qquad = \sum_{j=0}^{\infty} a_{j+1} z^j$$

The sum of the interior angles of an *n*-gon is  $(n-2)\pi$ , where each angle is  $\frac{n-2}{n}\pi$ .

**Basics** 

- Show that  $\frac{1}{z}\sum_{k=1}^{\infty}\frac{z^k}{k}$  converges on  $S^1\smallsetminus\{1\}$  using summation by parts.
- Show that any power series is continuous on its domain of convergence.
- Show that a uniform limit of continuous functions is continuous.

??

- Show that if f is holomorphic on  $\mathbb{D}$  then f has a power series expansion that converges uniformly on every compact  $K \subset \mathbb{D}$ .
- Show that any holomorphic function f can be uniformly approximated by polynomials.
- Show that if f is holomorphic on a connected region  $\Omega$  and  $f' \equiv 0$  on  $\Omega$ , then f is constant on  $\Omega$ .
- Show that if |f| = 0 on  $\partial \Omega$  then either f is constant or f has a zero in  $\Omega$ .
- Show that if  $\{f_n\}$  is a sequence of holomorphic functions converging uniformly to a function f on every compact subset of  $\Omega$ , then f is holomorphic on  $\Omega$  and  $\{f'_n\}$  converges uniformly to f' on every such compact subset.

• Show that if each  $f_n$  is holomorphic on  $\Omega$  and  $F := \sum f_n$  converges uniformly on every compact subset of  $\Omega$ , then F is holomorphic.

• Show that if f is once complex differentiable at each point of  $\Omega$ , then f is holomorphic.

10.1 Misc Prerequisites 19