BROUILLON – CONSTRUCTION SIMPLE DU LOGARITHME ET DE L'EXPONENTIELLE

CHRISTOPHE BAL

 $Document,\ avec\ son\ source\ L^{A}T_{E}\!X,\ disponible\ sur\ la\ page\\ https://github.com/bc-writings/bc-public-docs/tree/main/drafts.$

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Au commencement était le logarithme népérien	2
1.1.	. Définition intégrale	2
1.2.	. Equation fonctionnelle	2
2.	Puis vint l'exponentielle	2
2.1.	. Inverser le logarithme népérien	2
2.2.	. Equation fonctionnelle	2
2.3.	. Equation différentielle	3

Date: 18 Avril 2025.

L'objectif de ce texte est de construire la fonction exp de la manière la plus simple possible, en utilisant uniquement des notions connues d'un lycéen en 2025.

1. AU COMMENCEMENT ÉTAIT LE LOGARITHME NÉPÉRIEN

1.1. Définition intégrale.

Définition 1. Le « logarithme népérien » est la fonction ln définie sur \mathbb{R}_+^* par $\ln x = \int_1^x \frac{1}{t} dt$.

Fait 2. $\forall x \in \mathbb{R}_+^*$, $\ln' x = \frac{1}{x}$. En particulier, la fonction \ln est strictement croissante sur \mathbb{R}_+^* , et sa représentation graphique n'admet aucune tangente horizontale.

1.2. Equation fonctionnelle.

Fait 3.
$$\forall (a;b) \in (\mathbb{R}_+^*)^2$$
, $\ln(ab) = \ln a + \ln b$.

Démonstration. Par définition de ln, nous avons $\ln(ab) = \ln a + \int_a^{ab} \frac{1}{t} dt$. Concentrons-nous sur $I_{a,b} = \int_a^{ab} \frac{1}{t} dt$, et notons Γ la représentation graphique de ln. Faisons une dilatation verticale de coefficient a > 0, c'est-à-dire XXXX

2. Puis vint l'exponentielle

2.1. Inverser le logarithme népérien.

Fait 4. $\forall c \in \mathbb{R}, \ \exists ! x \in \mathbb{R}_+^* \ tel \ que \ \ln x = c.$

Définition 5. $\forall c \in \mathbb{R}$, l'unique solution de $\ln x = c$ est noté $\exp c$. On définit ainsi sur \mathbb{R} une fonction \exp nommée « exponentielle ».

Fait 6.
$$\forall x \in \mathbb{R}$$
, $\ln(\exp x) = x$, $et \ \forall x \in \mathbb{R}_+^*$, $\exp(\ln x) = x$.

Démonstration. Nous devons juste vérifier la 2e identité. En appliquant $\ln(\exp X) = X$ à $X = \ln x$, nous obtenons $\ln(\exp(\ln x)) = \ln x$. Par injectivité de la fonction \ln , nous arrivons à $\exp(\ln x) = x$ comme souhaité.

Fait 7. Soient \mathcal{L} et \mathcal{E} les représentations graphiques respectives des fonctions \ln et exp. Les courbes \mathcal{L} et \mathcal{E} sont symétriques orthogonalement par rapport à la 1^{re} bissectrice $\Delta : y = x$.

 $D\acute{e}monstration.~XXXX$

2.2. Equation fonctionnelle.

Fait 8.
$$\forall (a;b) \in (\mathbb{R})^2$$
, $\exp(a+b) = \exp a \cdot \exp b$.

Démonstration. L'injectivité de ln et les calculs suivants permettent de conclure.

$$\ln\left(\exp(a+b)\right)$$

$$= a+b$$

$$= \ln(\exp a) + \ln(\exp b)$$

$$= \ln(\exp a \cdot \exp b)$$
Définition de la fonction exp.
$$Definition de la fonction exp.
$$Definition de la fonction exp.$$$$

2.3. Equation différentielle.

Fait 9. $\forall x \in \mathbb{R}, \exp' x = \exp x$.

 $D\'{e}monstration.~XXXX$

