INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS

Apuntes de Cálculo 3

Imparte la Dra. Laura Roció Gózalez

Autor: Francisco Alexis Franco Camacho

Febrero 2023

Índice general

1.	Intr	roducción	5
	1.1.	Objetivo	5
	1.2.	Temario	5
	1.3.	Bibliografía	6
	1.4.	Evaluación	6
		1.4.1. Quizes	6
2.	R^n	como espacio euclidiano.	7
	2.1.	El espacio R^n	7
		2.1.1. Definición de la suma y multiplicación por escalar	7
		2.1.2. Tarea	7
	2.2.	Hipótesis	8
3.	Res	ultados	9
	3.1.	Simulación de resultados	9
		3.1.1. Suposiciones	9
		3.1.2. Modelos	9
	3.2.	Resultados preliminares	9
	3.3.	Resultados postprocesados	9
		3.3.1. Valores atípicos	9
		3.3.2. Correlaciones	9
4.	Con	nclusiones	11

Introducción

1.1. Objetivo

Cálculo diferencial en varias variables de manera teórica y con aplicaciones.

1.2. Temario

- lacksquare R^n como espacio euclidiano
- Norma, distancia y desigualdad del triangulo.
- Conjuntos abiertos, cerrados.
- Conexidad.
- Sucesiones en \mathbb{R}^n .
- Convergencia, compacidad.
- Teorema de Bolzano-weirstrass.*
- Teorema de Heine-Borel.* *Propiedades de compacidad.
- Limite de transformaciones.
- Continuidad de transformación.
- Continuidad de inversa de transformación.
- La diferencial de una transformación.
- Transformaciones diferenciales.
- Regla de la cadena.
- Derivada direccional.

- Funciones clase C^n .
- Teorema de función inversa y Teorema de función implícita.
- Diferenciales de orden superior.
- Teorema de Taylor. Aplicaciones a máximos y mínimos.

1.3. Bibliografía

- Elementary Classical Analysis-Marsden and Hoffman.
- Mathematical Analysis, Apostol.
- Analysis on manifolds, Munkres.
- Mathematical Analysis, Rudin.*
- Calculus on manifolds, Spivak.* *Densos,

1.4. Evaluación

- Primer Parcial 25 %.
- Segundo Parcial 25 %.
- Tercer Parcial 25 %.
- Quizes 25 %.

1.4.1. Quizes

- Son de opción múltiple.
- \blacksquare Son sorpresa.
- Se elimina el Quiz que tenga la calificación mas baja.
- Se saca promedio al final del semestre.

\mathbb{R}^n como espacio euclidiano.

2.1. El espacio R^n .

Se define el n-espacio euclidiano de n-tuplas en R como:

$$R^n = \{(x_1, x_2, ..., x_n) \mid x_i \in R, 1 \le i \le n\}$$

Es decir:

$$R^n = R * R * R * \dots * R$$

Sea:

$$\overrightarrow{x} \in \mathbb{R}^n$$

Entonces: \overrightarrow{x} es un punto en \mathbb{R}^n o un vector en el R-espacio vectorial.

2.1.1. Definición de la suma y multiplicación por escalar.

Sea:

$$\overrightarrow{x} = (x_1, x_2, ..., x_n) \in R^n$$

$$\overrightarrow{y} = (y_1, y_2, ..., y_n) \in R^n$$

$$\alpha \in R$$

Se define la suma:

$$\vec{x} + \vec{y} := (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

Se define la multiplicación por escalar:

$$\alpha \overrightarrow{x} := (\alpha x_1, \alpha x_2, ..., \alpha x_n)$$

2.1.2. Tarea

Demostrar que $(R^n, +, *)$ es un R-espacio vectorial de dimensión n.

Demostración de que \mathbb{R}^n es un espacio vectorial

Sean:
$$\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z} \in R^n$$

 $\overrightarrow{x} = (x_1, x_2, ..., x_n)$
 $\overrightarrow{y} = (y_1, y_2, ..., y_n)$
 $\overrightarrow{z} = (z_1, z_2, ..., z_n)$
1. $\forall \overrightarrow{x}, \overrightarrow{y} \in R^n \longrightarrow \overrightarrow{x} + \overrightarrow{y} \in R^n$
Demostración:
Como cada una de las entradas son números reales:
 $\longrightarrow (x_i + y_i) \in R, i = 1, 2, ..., n$
 $\longrightarrow (\overrightarrow{x} + \overrightarrow{y}) \in R^n$
2. $\forall \overrightarrow{x}, \overrightarrow{y} \in R^n \longrightarrow \overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$
Demostracion:
 $\overrightarrow{x} + \overrightarrow{y} = (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n)$
 $\overrightarrow{x} + \overrightarrow{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$
Por asociatividad en los reales
 $\overrightarrow{x} + \overrightarrow{y} = (y_1 + x_1, y_2 + x_2, ..., y_n + x_n)$
 $\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$
3. $\forall \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z} \in R^n \longrightarrow (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z} = \overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z})$
Demostración: $\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) + (z_1, z_2, ..., z_n)$

Demostración de que su dimensión es n

2.2. Hipótesis

Resultados

- 3.1. Simulación de resultados
- 3.1.1. Suposiciones
- 3.1.2. Modelos
- 3.2. Resultados preliminares
- 3.3. Resultados postprocesados
- 3.3.1. Valores atípicos
- 3.3.2. Correlaciones

Conclusiones