Ecología de comunidades en R- clase 3

Ph D.Stephanie Hereira-Pacheco CTBC UATx

15 - 03 - 2022

Análisis multivariados en datos ecológicos

En este capítulo vamos a explorar las diferentes técnicas de análisis multivariado para explorar nuestros datos ecológicos o biológicos.

- Matrices de distancia
- Análisis de cluster
- Métodos de ordenación: PCA, PCoA, CCA, NMDS
- perMANOVA

Como lo vimos en el módulo teórico las matrices de dis(similitud) son de gran utilidad para muchos análisis en ecología de comunidades. Así que primero veamos como obtener nuestras matrices.

R posee una función predeterminada para obtenerla: dist(). Inicialmente llamaré al paquete vegan para cargar la data de varespec, esta data nos presenta 44 especies de pastos de liquenes (lichen pastures), los nombres de las columnas son nombres formados de los nombres científicos de estas especies y los valores que nos presenta son de cobertura estimada:

```
library(vegan)
data("varespec")
varespec[1:6, 1:4]
```

```
##
     Callvulg Empenigr Rhodtome Vaccmyrt
        0.55
                11.13
                        0.00
                                0.00
## 18
                                0.35
## 15
        0.67
                0.17
                        0.00
## 24
        0.10
                1.55
                        0.00
                                0.00
## 27
        0.00
               15.13
                        2.42
                                5.92
## 23
        0.00
               12.68
                        0.00
                                0.00
## 19
        0.00
                8.92
                        0.00
                                2.42
```

Ahora sí apliquemos la función dist() para obtener una matriz euclidiana:

```
eucl_dist<- dist(varespec, method = "euclidean")</pre>
```

eucl_dist

##		18	15	24	27	23	19	22
##	15	40.37368						
##	24	46.27477	28.35874					
##	27	59.87344	30.49724	39.77855				
##	23	24.54328	26.60815	33.21226	41.78866			
##	19	34.27126	31.61316	36.60304	44.23517	27.04775		
##	22	49.33512	30.86003	45.82774	48.59480	38.64358	43.91427	
##	16	35.98314	27.72034	40.70025	48.96734	31.22161	35.84254	19.69141
##	28	76.28558	42.45458	50.01474	25.42484	59.74367	58.06714	60.04516
##	13	29.72944	47.05861	53.53636	67.42766	42.33547	40.18469	54.19887
##	14	35.94866	38.79924	42.90444	61.39094	35.65736	38.80321	41.17716
##	20	22.06805	27.36560	31.18323	46.93335	14.46833	25.17124	39.18976
##	25	40.47882	21.53302	20.39499	37.83977	25.72712	30.43738	32.24576
##	7	28.69034	57.88555	64.55017	77.62356	50.38028	56.44443	67.09804
##	5	43.55582	65.97081	70.81557	83.18682	60.33552	64.61900	74.62079
##	6	27.15780	57.20421	63.97989	77.36307	49.50250	51.52029	66.54232
##	3	56.62383	71.76913	74.05306	84.19067	65.99354	47.35542	76.83357
##	4	33.67680	50.83691	54.76934	69.60520	45.05405	31.23740	58.31114
##	2	75.42232	87.14308	87.93849	94.99337	80.91850	60.42866	90.50360

92.53898

99.39486

86.92633

92.84378

Dentro de los métodos que podemos escoger con esta función encontramos: "euclidean", "maximum", "manhattan", "canberra", "binary" o "minkowski". Como vemos la mayoria de estas distancias no son tan aplicadas en ecologia sino en otros tipos de datos como los económicos.

El paquete **vegan()** tiene también su función para obtener las matrices de distancia y es **vegdist()**, siguiendo el ejemplo anterior:

```
eucl_dist<- vegdist(varespec, method = "euclidean")</pre>
```

eucl_dist

##		18	15	24	27	23	19	22
##	15	40.37368						
##	24	46.27477	28.35874					
##	27	59.87344	30.49724	39.77855				
##	23	24.54328	26.60815	33.21226	41.78866			
##	19	34.27126	31.61316	36.60304	44.23517	27.04775		
##	22	49.33512	30.86003	45.82774	48.59480	38.64358	43.91427	
##	16	35.98314	27.72034	40.70025	48.96734	31.22161	35.84254	19.69141
##	28	76.28558	42.45458	50.01474	25.42484	59.74367	58.06714	60.04516
##	13	29.72944	47.05861	53.53636	67.42766	42.33547	40.18469	54.19887
##	14	35.94866	38.79924	42.90444	61.39094	35.65736	38.80321	41.17716
##	20	22.06805	27.36560	31.18323	46.93335	14.46833	25.17124	39.18976
##	25	40.47882	21.53302	20.39499	37.83977	25.72712	30.43738	32.24576
##	7	28.69034	57.88555	64.55017	77.62356	50.38028	56.44443	67.09804
##	5	43.55582	65.97081	70.81557	83.18682	60.33552	64.61900	74.62079
##	6	27.15780	57.20421	63.97989	77.36307	49.50250	51.52029	66.54232
##	3	56.62383	71.76913	74.05306	84.19067	65.99354	47.35542	76.83357
##	4	33.67680	50.83691	54.76934	69.60520	45.05405	31.23740	58.31114
##	2	75.42232	87.14308	87.93849	94.99337	80.91850	60.42866	90.50360
##	9	85.79913	92.53898	92.84378	99.39486	86.92633	65.93488	95.29205

La ventaja de esta función es que posee métodos como "manhattan", "canberra", "clark", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao", "mahalanobis", "chisq" ó "chord" que suelen ser distancias más conocidas y aplicables en ecología de comunidades.

El análisis de clusters o agrupamiento se aplica sobre una matriz de distancia previamente obtenida. Como vimos en el módulo teórico hay varios métodos para realizar este clustering, tales como: simple (single), completo (complete) y promedio (average).

La función **hclust()** de R nos permite explorar todas estas formas y otras más como ward.D2, mendian y centroid, comúnmente usados en análisis de datos biológicos.

Apliquémosla sobre nuestra matriz previamente generada:

```
clusters<-hclust(eucl_dist, method = "complete")</pre>
```

Para visualizar nuestros clusters o mejor llamado dendograma usamos la función **plot()**: plot(clusters)

Con el paquete ape() podemos formatear de diferentes formas nuestro dendograma:

```
library("ape")
par( mfrow= c(1,3) )
plot(as.phylo(clusters), cex = 0.6)
plot(as.phylo(clusters), cex = 0.6, type = "unrooted")
plot(as.phylo(clusters), type = "fan")
```


Medida de la distorsión

Si nos interesa evaluar la bondad o qué tan bien nuestro dendograma explica nuestros datos entonces debemos medirlo a través de una matriz cofenética. En primer lugar se calcula la matriz cofenética con la función **cophenetic()**, que resulta de obtener una nueva matriz a partir del dendrograma y luego se calcula la correlación de Pearson entre la matriz cofenética y la matriz original.

```
mat.clusters<- cophenetic(clusters)
cor(mat.clusters, eucl_dist, method = "pearson")</pre>
```

```
## [1] 0.8052116
```

En este caso el coeficiente nos dio 0.8 lo cual está bien, entre más cercano a 1 nos dice qué tan bien correlacionados están y que mi dendograma explica en buena medida mis datos.

Análisis de ordenación canónica

Hay diversos tipos métodos de ordenación con los que podemos explorar nuestros datos ecológicos. R presenta diversas funciones para obtenerlas:

Método de Ordenación	Función	Paquete
PCA	princomp	stats
	prcomp	stats
	PCA	FactoMineR
	rda	vegan
PCoA	cmdscale	stats
	pcoa	ape
	wcmdscale	vegan
NMDS	metaMDS	vegan
	isoMDS	MASS
CA	CA	FactoMineR
	corresp	MASS
	cca	vegan

La función en vegan para PCA es rda(), que técnicamente significa Análisis de redundancia. No entraré en RDA (que al fin no tratamos previamente), pero cuando se ejecuta esta función sobre una matriz de especies sin ninguna variable ambiental, hace un PCA. En este ejemplo trabajaremos con otra data de ejemplo llamada dune, que son datos de vegetación de praderas de dunas, dunas, tienen valores de clase de cobertura de 30 especies en 20 sitios:

```
data("dune")
data("dune.env")
```

head(dune)

##		Achimill	Agrostol	Airaprae	Alopgeni	Anthodor	Bellpere	Bromhord	Chenalb
##	1	1	0	0	0	0	0	0	
##	2	3	0	0	2	0	3	4	
##	3	0	4	0	7	0	2	0	
##	4	0	8	0	2	0	2	3	
##	5	2	0	0	0	4	2	2	
##	6	2	0	0	0	3	0	0	
##		${\tt Cirsarve}$	${\tt Comapalu}$	Eleopalu	Elymrepe	Empenigr	Hyporadi	Juncarti	Juncbuf
##	1	0	0	0	4	0	0	0	
##	2	0	0	0	4	0	0	0	
##	3	0	0	0	4	0	0	0	
##	4	2	0	0	4	0	0	0	
##	5	0	0	0	4	0	0	0	
##	6	0	0	0	0	0	0	0	
##		Lolipere	Planlanc	Poaprat I	Poatriv R	anuflam R	umeacet Sa	agiproc Sa	alirepe
##	1	7	0	4	2	0	0	0	0
##	2	5	0	4	7	0	0	0	0
##	3	6	0	5	6	0	0	0	0
##	4	5	0	4	5	0	0	5	0

head(dune.env)

##		A1	Moisture	Management	Use	Manure
##	1	2.8	1	SF	Haypastu	4
##	2	3.5	1	BF	Haypastu	2
##	3	4.3	2	SF	Haypastu	4
##	4	4.2	2	SF	Haypastu	4
##	5	6.3	1	HF	Hayfield	2
##	6	4.3	1	HF	Haypastu	2

```
Ahora corremos el PCA:
dune_pca <- rda(dune)</pre>
sum_dune_pca <- summary(dune_pca)</pre>
head(sum_dune_pca)
##
## Call:
## rda(X = dune)
##
## Partitioning of variance:
##
                   Inertia Proportion
## Total
                     84.12
## Unconstrained
                     84.12
##
## Eigenvalues, and their contribution to the variance
##
## Importance of components:
                                         PC2
                                                  PC3
                                                           PC4
                                                                   PC5
##
                                 PC1
                                                                            PC6
                            24.7953 18.1466 7.62913 7.15277 5.6950 4.33331 3.1
## Eigenvalue
## Proportion Explained 0.2947 0.2157 0.09069 0.08503 0.0677 0.05151 0.0
## Cumulative Proportion 0.2947 0.5105 0.60115 0.68618 0.7539 0.80539 0.8
Ph D Stephanie Hereira-Pacheco CTRC HATY
                              Ecología de comunidades en R- clase 3
                                                                                20 / 36
                                                                15 - 03 - 2022
```

Para visualizarlo usamos la función biplot()

PCoA

Usaremos la misma matriz para calcular PCoA y dibujar el diagrama de ordenación. Recuerden que la ventaje de este método es poder uscar cualquier tipo de matriz de distancia que deseemos:

```
d <- vegdist(dune, method = "jaccard")
ord <- wcmdscale(d, eig = TRUE)</pre>
```

PCoA

PCoA

El objetivo de NMDS es colapsar la información de múltiples dimensiones (p. ej., de múltiples comunidades, sitios, etc.) en solo unas pocas, para que puedan visualizarse e interpretarse.

```
nmds <- metaMDS(dune, distance = "bray", k = 2)</pre>
## Run 0 stress 0.1192678
## Run 1 stress 0.1183186
## ... New best solution
## ... Procrustes: rmse 0.02026955 max resid 0.06495869
## Run 2 stress 0.1192679
## Run 3 stress 0.1183186
## ... Procrustes: rmse 9.525465e-06 max resid 3.036745e-05
## ... Similar to previous best
## Run 4 stress 0.1939202
## Run 5 stress 0.1183186
## ... New best solution
## ... Procrustes: rmse 7.381406e-06 max resid 2.41098e-05
## ... Similar to previous best
## Run 6 stress 0.1183186
## ... Procrustes: rmse 1.5004e-05 max resid 4.817011e-05
```

Visualizando:

plot(nmds)


```
ordiplot(nmds,type="n")
orditorp(nmds,display="species",col="red",air=0.01)
orditorp(nmds,display="sites",cex=1.25,air=0.01)
ordihull(nmds, groups = dune.env$Management, col = c("red", "green", "blue"
```


Ecología de comunidades en R- clase 3

De esta manera visualizamos nuestros datos o coordenadas:

```
head(scores(nmds, display = "species"))
##
                NMDS1
                            NMDS2
## Achimill -0.8228068 0.04327339
## Agrostol 0.7109646 -0.28923693
## Airaprae -0.5282192 1.67986433
## Alopgeni 0.3909736 -0.58595489
## Anthodor -0.7202345 0.65913519
## Bellpere -0.4783773 -0.24447320
head(scores(nmds, display = "sites"))
##
         NMDS1
                     NMDS2
## 1 -0.8405272 -0.71585098
## 2 -0.5048507 -0.40894087
## 3 -0.0826648 -0.43667799
```

4 -0.1156159 -0.52224373 ## 5 -0.6265428 -0.08670114 ## 6 -0.5426932 0.11315163

También conocido como análisis de correspondencia canónica.

Los métodos de ordenación anteriores son ordenaciones "sin restricciones", lo que significa que la ordenación se realiza solo considerando los recuentos de especies (counts).

La ordenación restringida es apropiada para lo que es común en los datos ecológicos: una matriz de comunidades y otra matriz de características ambientales o fisicoquímicas.

Con la ordenación restringida, podemos preguntarnos cómo se relacionan las variables ambientales con la composición de la comunidad.

```
Veámoslo con un ejemplo:
```

```
data("varespec") #especies
data("varechem") #fisicoquímicos

varespec[1:4, 1:4]

## Callvulg Empenigr Rhodtome Vaccmyrt
## 18     0.55     11.13     0.00     0.00
## 15     0.67     0.17     0.00     0.35
## 24     0.10     1.55     0.00     0.00
## 27     0.00     15.13     2.42     5.92

varechem[1:4, 1:4]
```

```
## N P K Ca
## 18 19.8 42.1 139.9 519.4
## 15 13.4 39.1 167.3 356.7
## 24 20.2 67.7 207.1 973.3
## 27 20.6 60.8 233.7 834.0
```

```
vares_cca <- cca(varespec ~ N+P+K+Ca+Mg+S+Al+Fe+Mn+Zn+Mo+Baresoil+Humdepth+
                 data=varechem)
summary(vares_cca)
##
## Call:
## cca(formula = varespec ~ N + P + K + Ca + Mg + S + A1 + Fe +
                                                                     Mn + Z
##
## Partitioning of scaled Chi-square:
##
                 Inertia Proportion
## Total
                2.0832
                              1.000
## Constrained 1.4415 0.692
## Unconstrained 0.6417
                        0.308
##
## Eigenvalues, and their contribution to the scaled Chi-square
##
## Importance of components:
                                  CCA2
                                          CCA3
                                                  CCA4
                                                          CCA5
                                                                  CCA6
##
                           CCA1
                        0.4389 0.2918 0.16285 0.14213 0.11795 0.08903 0.07
## Eigenvalue
## Proportion Explained 0.2107 0.1401 0.07817 0.06823 0.05662 0.04274 0.03
## Cumulative Proportion 0.2107 0.3507 0.42890 0.49713 0.55375 0.59649 0.63
##
                            CCA8
                                    CCA9
                                            CCA10
                                                     CCA11
                                                              CCA12
                                                                       CCA1
```

Ahora, visualicemos los resultados en un biplot:

plot(vares_cca)

Mo

Si queremos saver cuales son las variables con más peso en el análisis ocupamos la función envfit().

```
envfit(vares_cca ~ N+P+K+Ca+Mg+S+A1+Fe+Mn+Zn+Mo+Baresoil+Humdepth+pH ,
      data=varechem )
##
## ***VECTORS
##
                        CCA2 r2 Pr(>r)
##
               CCA1
          -0.36715 -0.93016 0.2781 0.025 *
## N
## P
           -0.49393 0.86950 0.3861 0.008 **
## K
          -0.76057 0.64926 0.2028 0.089 .
## Ca
          -0.72500 0.68875 0.3355 0.012 *
## Mg
         -0.78169 0.62367 0.2703 0.036 *
## S
          -0.08664 0.99624 0.1505 0.184
## Al
          0.99584 -0.09111 0.5130 0.002 **
## Fe
           0.98659 -0.16322 0.3716 0.014 *
           -0.94705 0.32108 0.5003 0.001 ***
## Mn
## Zn
           -0.72738 0.68624 0.2133 0.086 .
```

0.88340 -0.46863 0.0462 0.607

perMANOVA

Análisis de varianza multivariante permutacional (perMANOVA).

La evaluación de las diferencias en la composición de la comunidad se realiza con el análisis de varianza multivariado permutacional.

Estas pruebas se realizan sobre distancias, es decir, evalúan las diferencias entre comunidades en función de la disimilitud.

perMANOVA

perMANOVA

dune_perm; dune_perm2

```
##
## Call:
## adonis(formula = dune ~ Management + Use + Moisture, data = dune.env,
##
## Permutation: free
## Number of permutations: 999
##
## Terms added sequentially (first to last)
##
##
            Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
## Management 3 555.38 185.128 3.2580 0.34747 0.001 ***
## Use 2 136.15 68.077 1.1981 0.08518 0.270
## Moisture 3 281.76 93.919 1.6528 0.17628 0.049 *
## Residuals 11 625.05 56.823 0.39106
                                       1,00000
## Total 19 1598.35
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Call:
```