Laurea Triennale in Informatica, Università di Roma Tor Vergata

Calcolo delle Probabilità e Statistica (ed insegnamenti mutuati)

Anno accademico: 2010-2011. Titolare del corso: Claudio Macci

Appello del 19 Luglio 2011

Esercizio 1. Un'urna ha 3 palline con i numeri 1,2,3. Si estraggono a caso 4 palline, una alla volta e con reinserimento.

- D1) Calcolare la probabilità di estrarre la sequenza (1, 2, 2, 3).
- D2) Trovare la densità della variabile aleatoria X che conta il numero di volte che viene estratto il numero 2.

Esercizio 2. Abbiamo due urne: la prima con 3 palline bianche e 2 nere; la seconda con 2 palline bianche e 3 nere. Si sceglie un'urna a caso e si estraggono a caso 2 palline in blocco dall'urna scelta.

- D3) Trovare la densità della variabile aleatoria X che conta il numero di palline bianche estratte.
- D4) Calcolare la probabilità di aver scelto la prima urna sapendo di aver estratto due palline con colori diversi (quindi una pallina bianca e una nera).

Esercizio 3. Consideriamo la seguente densità congiunta: $p_{X_1,X_2}(k,1) = p_{X_1,X_2}(k,2) = (\frac{1}{2})^k$ per $k \geq 2$ intero.

- D5) Trovare la densità marginale di X_2 e calcolare $\mathbb{E}[X_2]$.
- D6) Calcolare $P(X_1 + X_2 \leq 4)$.

Esercizio 4. Sia X una variabile aleatoria con densità continua $f_X(t) = \frac{1}{\log 2} \frac{2t}{1+t^2} 1_{(0,1)}(t)$.

- D7) Trovare la funzione di distribuzione di X.
- D8) Trovare la densità di $Y = 1 + X^2$.

Esercizio 5. Sia $N_t = \sum_{n \geq 1} 1_{T_n \leq t}$ (per $t \geq 0$) un processo di Poisson con intensità di $\lambda = 2$.

- D9) Calcolare $P(N_4 = 3)$.
- D10) Calcolare $\mathbb{E}[T_{20}]$.

Esercizio 6. Sia X una variabile aleatoria con distribuzione normale con media 0 e varianza 121.

- D11) Calcolare P(X > 22).
- D12) Calcolare $P(X + Y \le \frac{3}{4}\sqrt{242})$ dove Y è una variabile aleatoria con la stessa distribuzione di X (normale con media 0 e varianza 121) e indipendente da X.

Esercizio 7 (solo per ST-Materiali). Consideriamo una catena di Markov omogenea $\{X_n : n \ge 0\}$ con spazio degli stati $E = \{1, 2\}$ e matrice di transizione

$$P = \left(\begin{array}{cc} \frac{3}{4} & \frac{1}{4} \\ q & 1 - q \end{array}\right).$$

D13) Calcolare $P(X_1 = 1)$ nel caso in cui la distribuzione iniziale è $P(X_0 = 1) = P(X_0 = 2) = \frac{1}{2}$ e $q = \frac{1}{4}$.

D14) Determinare per quali valori di q si ha $P(X_1=2,X_2=1|X_0=2)=\frac{6}{49}$.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

- D1) La probabilità richiesta è $\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}=\frac{1}{81}$. D2) La variabile aleatoria ha distribuzione binomiale con parametri n=4 (numero di estrazioni) e $p=\frac{1}{3}$ (probabilità di estrarre il numero 2 in ogni estrazione). Quindi $p_X(k)=(\frac{4}{k})(\frac{1}{3})^k(1-\frac{1}{3})^{4-k}$ per $k\in\{0,1,2,3,4\}$: $p_X(0)=\frac{16}{81}, p_X(1)=\frac{32}{81}, p_X(2)=\frac{24}{81}, p_X(3)=\frac{8}{81}, p_X(4)=\frac{1}{81}$.

Esercizio 2. Sia U_i l'evento "si sceglie l'urna i-sima".

- D3) Per la formula delle probabilità totali si ha $p_X(k) = P(X = k) = \sum_{i=1}^{2} P(X = k|U_i)P(U_i) =$ $\frac{1}{2} \left(\frac{\binom{3}{k}\binom{2}{2-k}}{\binom{5}{2}} + \frac{\binom{2}{k}\binom{3}{2-k}}{\binom{5}{2}} \right) \text{ per } k \in \{0,1,2\}; \text{ quindi si ha } p_X(0) = \frac{1}{2} \left(\frac{1}{10} + \frac{3}{10} \right) = \frac{1}{5}, p_X(1) = \frac{1}{2} \left(\frac{6}{10} + \frac{6}{10} \right) = \frac{1}{2} \left(\frac{1}{10} + \frac{3}{10} \right) = \frac{1}{2} \left(\frac{1}{10} + \frac{3}{10}$ $\frac{3}{5}$, $p_X(2) = \frac{1}{2}(\frac{3}{10} + \frac{1}{10}) = \frac{1}{5}$. D4) Per la formula di Bayes (e per il valore di P(X = 1) calcolato prima) si ha $P(U_1|X = 1) = \frac{1}{5}$
- $\frac{P(X=1|U_1)P(U_1)}{P(X=1)} = \frac{\frac{1}{2}\frac{6}{10}}{\frac{3}{5}} = \frac{3}{10}\frac{5}{3} = \frac{1}{2}.$

Esercizio 3.

- D5) Per $h \in \{1,2\}$ si ha $p_{X_2}(h) = \sum_{k=2}^{\infty} p_{X_1,X_2}(k,h) = \sum_{k=2}^{\infty} (\frac{1}{2})^k = \frac{(\frac{1}{2})^2}{1-\frac{1}{2}} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$. Quindi
- $\mathbb{E}[X_2] = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = \frac{1+2}{2} = \frac{3}{2}.$ D6) Si ha $P(X_1 + X_2 \le 4) = p_{X_1, X_2}(2, 1) + p_{X_1, X_2}(2, 2) + p_{X_1, X_2}(3, 1) = (\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^3 = \frac{1}{4} + \frac{1}{4} + \frac{1}{8} = \frac{2+2+1}{8} = \frac{5}{8}.$

Esercizio 4.

- D7) Si ha banalmente $F_X(t) = 0$ per $t \le 0$ e $F_X(t) = 1$ per $t \ge 1$. Inoltre, per $t \in (0,1)$, si ha $F_X(t) = \int_0^t \frac{1}{\log 2} \frac{2x}{1+x^2} dx = \frac{1}{\log 2} [\log(1+x^2)]_{x=0}^{x=t} = \frac{\log(1+t^2)}{\log 2}$.

 D8) Si vede che $P(1 \le 1 + X^2 \le 2) = 1$, da cui $F_Y(y) = 0$ per $y \le 1$ e $F_Y(y) = 1$ per $y \ge 2$. Per
- $y \in (1,2)$ si ha $F_Y(y) = P(1+X^2 \le y) = P(X^2 \le y-1) = P(X \le \sqrt{y-1}) = \int_0^{\sqrt{y-1}} \frac{1}{\log 2} \frac{2x}{1+x^2} dx = \int_0^{\sqrt{y-1}} \frac{1}{\log 2} \frac{2x}{1+x^2} dx$ $\frac{1}{\log 2}[\log(1+x^2)]_{x=0}^{x=\sqrt{y-1}} = \frac{\log y}{\log 2}. \text{ Quindi la densità è } f_Y(y) = \frac{1}{y\log 2} 1_{(1,2)}(y).$

- D9) Si ha $P(N_4=3)=\frac{(2\cdot 4)^3}{3!}e^{-2\cdot 4}=\frac{512}{6}e^{-8}=\frac{256}{3}e^{-8}.$ D10) Si ha $\mathbb{E}[T_{20}]=\frac{20}{2}=10.$

Esercizio 6.

- D11) Si ha $P(X > 22) = P(\frac{X}{\sqrt{121}} > \frac{22}{\sqrt{121}}) = 1 \Phi(\frac{22}{11}) = 1 \Phi(2) = 1 0.97725 = 0.02275.$ D12) La variabile aleatoria X + Y ha distribuzione normale di media 0 + 0 = 0 e varianza 121 + 121 = 242. Dunque si ha $P(X + Y \le \frac{3}{4}\sqrt{242}) = P(\frac{X+Y}{\sqrt{242}} \le \frac{\frac{3}{4}\sqrt{242}}{\sqrt{242}}) = \Phi(\frac{3}{4}) = 0.77337$.

Esercizio 7.

D13) Si ha $P(X_1 = 1) = \sum_{j=1}^{2} P(X_1 = 1 | X_0 = j) P(X_0 = j) = \frac{1}{2} \frac{3}{4} + \frac{1}{2} \frac{1}{4} = (\frac{3}{4} + \frac{1}{4}) \frac{1}{2} = \frac{1}{2}.$ D14) Si deve considerare l'equazione $p_{22}p_{21} = \frac{6}{49}$, da cui segue $(1 - q)q = \frac{6}{49}$, $q - q^2 = \frac{6}{49}$, $q^2 - q + \frac{6}{49} = 0$, $q_{\pm} = \frac{1 \pm \sqrt{1 - 4 \cdot \frac{6}{49}}}{2} = \frac{1 \pm \sqrt{1 - \frac{24}{49}}}{2} = \frac{1 \pm \sqrt{\frac{25}{49}}}{2} = \frac{1 \pm \frac{5}{7}}{2}$. Quindi abbiamo due valori di q che realizzano la condizione richiesta: $q=q_+=\frac{\frac{12}{7}}{\frac{2}{7}}=\frac{6}{7}$ e $q=q_-=\frac{\frac{2}{7}}{\frac{2}{7}}=\frac{1}{7}$.

Commenti.

La somma dei valori di ciascuna densità discreta che appare è 1 in accordo con la teoria.

D1) Ciascuna delle $3^4 = 81$ sequenze ordinate di 4 elementi di $\{1, 2, 3\}$ (con ripetizioni) ha la stessa

probabilità.

- D4) Gli eventi U_1 e $\{X=1\}$ sono indipendenti; infatti abbiamo che $P(U_1|X=1)=P(U_1)$. Questo non accade se consideriamo U_1 e $\{X=k\}$ per $k\in\{0,2\}$. Infatti si ha $P(U_1|X=0)=\frac{P(X=0|U_1)P(U_1)}{P(X=0)}=\frac{\frac{1}{10}\frac{1}{2}}{\frac{1}{5}}=\frac{1}{4}$ e $P(U_1|X=2)=\frac{P(X=2|U_1)P(U_1)}{P(X=2)}=\frac{\frac{3}{10}\frac{1}{2}}{\frac{1}{5}}=\frac{3}{4}$. Si osservi che non è sorprendente riscontrare le disuguaglianze $P(U_1|X=0)< P(U_1)$ e $P(U_1|X=2)>P(U_1)$. Infatti se si sa di aver ottenuto "0 teste" ("2 teste", rispettivamente) diminuisce (aumenta, rispettivamente) la probabilità di aver scelto l'urna 1, che è l'urna con una maggiore probabilità di ottenere palline bianche.
- D5) Le variabili aleatorie X_1 e X_2 sono indipendenti. Infatti la densità marginale di X_1 è $p_{X_1}(k)=p_{X_1,X_2}(k,1)+p_{X_1,X_2}(k,2)=(\frac{1}{2})^k+(\frac{1}{2})^k=2(\frac{1}{2})^k$ per $k\geq 2$ intero, da cui segue che $p_{X_1}(k)p_{X_2}(h)=2(\frac{1}{2})^k\frac{1}{2}=(\frac{1}{2})^k=p_{X_1,X_2}(k,h)$ per ogni $(k,h)\in\{2,3,4,\ldots\}\times\{1,2\}.$
- D13) Ovviamente si ha anche $P(X_1 = 2) = \frac{1}{2}$ e quindi la distribuzione iniziale scelta è stazionaria. Questo è in accordo con quanto osservato nei commenti alle soluzioni dell'appello precedente perché per $q = \frac{1}{4}$ si ha una matrice la cui somma degli elementi di ciascuna colonna è uguale a 1.