

DATOS DE IDENTIFICACIÓN

MATERIA:	ESTRUCTURA DE DATOS				
CENTRO ACADÉMICO:	CENTRO DE CIENCIAS BÁSICAS				
DEPARTAMENTO ACADÉMICO:	SISTEMAS ELECTRÓNICOS				
PROGRAMA EDUCATIVO:	ING. EN SISTEMAS COMPUTACIONALES				
AÑO DEL PLAN DE ESTUDIOS:	2016	SEMESTRE:	3°	CLAVE DE LA MATERIA:	24935
ÁREA ACADÉMICA:	REDES Y COMUNICACIONES		PERIODO EN QUE SE IMPARTE:	AGOSTO-DICIEMBRE	
HORAS SEMANA T/P:	3/2		CRÉDITOS:	8	
MODALIDAD EDUCATIVA EN LA QUE SE IMPARTE:	PRESENCIAL		NATURALEZA DE LA MATERIA:	OBLIGATORIA	
ELABORADO POR:	GSP, ELMA, ESP, BGER, ABA, JJPG				
REVISADO Y APROBADO POR LA ACADEMIA DE:	REDES Y PROGRAMACION DE SISTEMAS		FECHA DE ACTUALIZACIÓN:	JULIO 2022	

DESCRIPCIÓN GENERAL

Curso teórico-práctico, que permite aplicar de manera combinada una serie de técnicas de programación, como son la recursividad, la búsqueda y el ordenamiento de datos; así como el manejo de un conjunto de estructuras de datos abstractas como son las pilas, colas, listas y estructuras no lineales. De manera que éstas puedan ser empleadas para la solución de una diversidad de problemas cotidianos y/o complejos presentes en la mayoría del software de base, con el propósito de mejorar el desempeño de dichas aplicaciones. Esta materia resulta indispensable, es posterior a Programación I y antecede a las materias de Sistemas Operativos, Matemáticas Discretas, Redes I, Base de Datos, Lenguaje de Base de Datos, Compiladores I y Compiladores II. Se cursa simultáneamente con Programación II.

OBJETIVO (S) GENERAL (ES)

Al finalizar el curso, el alumno evaluará las diversas estructuras de datos abstractas y las técnicas de programación que mejor se adapten a la solución y desarrollo de un sistema de software, de manera que puedan ser implementados en algún lenguaje de programación con iniciativa, creatividad y calidad.

*En caso de no aplicar algún elemento, escribir N/A

CONTENIDOS DE APRENDIZAJE

UNIDAD TEMÁTICA I: PILAS Y COLAS (15 horas aprox.)			
OBJETIVOS PARTICULARES	CONTENIDOS		
El estudiante conocerá y	Fundamentos de Estructuras de Datos	1, 2	
aprenderá el concepto y	1.1 Definición de estructuras de datos		
manejo de pilas, colas	1.2 Tipos de datos nativos		
simples y circulares.	1.3 Tipos de dato estructurado		
	1.4 Tipo de dato abstracto		
El estudiante identificará la	1.5 Memoria dinámica		
naturaleza del problema y	2. Definición de Pila		
aplicará las pilas y colas para	2.1 Representación de Pila		
su solución.	2.2 Operaciones para el manejo de pilas		
	2.3 Notación Infijo, Prefijo y Posfijo		
	2.4 Algoritmos para la conversión de expresiones		
	2.5 Evaluación de expresiones		
	3. Definición de Colas		
	3.1 Representación de Cola		
	3.2 Operaciones para el manejo de colas		
	3.3 Aplicaciones de las Colas		
	3.4 Algoritmos para el manejo de colas simples		
	3.5 Colas con prioridades		

UNIDAD TEMÁTICA II: RECURSIVIDAD (10 horas aprox.)			
OBJETIVOS PARTICULARES	CONTENIDOS	FUENTES DE CONSULTA	
El estudiante aprenderá y	1. Concepto de Recursividad	1, 2	
practicará el concepto de	2. Propiedades de los algoritmos recursivos		
recursividad, así como	3. Funcionamiento interno de la recursividad		
identificar los casos donde	4. Uso de pilas para simular la recursividad		
es factible su aplicación.	5. Recursividad vs iteración		
	6. Aplicación de la recursividad		
	7. Backtraking		

UNIDAD TEMÁTICA III: LISTAS ENLAZADAS (15 horas aprox.)		
OBJETIVOS PARTICULARES	CONTENIDOS FUENTES DE CONSULTA	
El estudiante conocerá y	1. Listas Enlazadas	1, 2 ,3
aprenderá los diferentes	1.1 Estructuras auto referenciadas	
tipos de listas enlazadas y	1.2 Listas simples enlazadas	
las diversas operaciones que	1.3 Listas doblemente enlazadas	
se pueden llevar a cabo con	1.4 Listas circulares	
cada una de ellas. Además,	1.5 Listas doblemente enlazadas circulares	
implementará los diversos	2. Implementación de listas enlazadas	

*En caso de no aplicar algún elemento, escribir N/A

algoritmos pilas, colas y	3. Aplicación de pilas y colas con listas	
plantillas.	4. Plantillas y sus aplicaciones	

UNIDAD TEMÁTICA IV: ÁRBOLES Y GRAFOS (20 horas aprox.)		
OBJETIVOS PARTICULARES	CONTENIDOS	FUENTES DE CONSULTA
El estudiante aplicará los	1. Árboles Generales	1, 2, 3
conceptos de árbol general,	2. Árboles Binarios.	
binario y AVL y los aplicará	2.1. Arboles como expresiones	
en la solución de problemas.	2.2. Recorrido de árboles	
	2.3. Algoritmos para el manejo de arboles	
El estudiante entenderá y	2.4. Arboles Balanceados	
aplicará los conceptos de	3. Grafos	
grafos a problemas	3.1. Tipos de grafos	
complejos de manera que	3.2. Representación de grafos	
pueda dar solución	3.3. Estructuras de datos para grafos	
empleando la mejor	3.4. Recorrido de grafos	
representación.	3.5. Aplicaciones de los grafos	
	3.6. Algoritmos para manejo de grafos	

UNIDAD TEMÁTICA V: ORDENACIÓN Y BÚSQUEDA (15 horas aprox.)			
OBJETIVOS PARTICULARES	CONTENIDOS	FUENTES DE CONSULTA	
El estudiante comprenderá	1. Análisis de algoritmos	1, 2, 4	
el concepto de complejidad	1.1. Complejidad en tiempo		
de los algoritmos y su	1.2. Complejidad en espacio		
aplicación en la selección de	1.3. Eficiencia de algoritmos		
los mismos.	2. Características del ordenamiento		
	2.1. Algoritmos de ordenación		
El estudiante aplicará y	2.2. Comparación de los métodos de ordenación		
analizará los algoritmos de	3. Características de la búsqueda		
ordenación y búsqueda de	3.1. Algoritmos de búsqueda		
datos en problemas	3.2. Diccionario de datos (Hash Table)		
concretos.			

METODOLOGÍA DE ENSEÑANZA - APRENDIZAJE

- 1. Exposiciones verbales por parte del profesor, de acuerdo a los temas establecidos en el programa de estudios, apoyándose en la bibliografía del mismo.
- 2. Realización de un número suficiente de ejercicios frente a grupo.
- Se usará un lenguaje de programación sugerido por el profesor como herramienta de apoyo en la solución de problemas.
- Realización por parte de alumnos, de ejercicios o trabajos extra clase para verificar el dominio de los temas estudiados en clase.
- Realización de ejercicios en el aula por parte de los alumnos, donde se apliquen los conocimientos adquiridos en la clase.
- Juicio crítico del profesor que le permita en caso de falta de tiempo seleccionar los contenidos y objetivos básicos de cada unidad; previo visto bueno del coordinador de academia correspondiente.

Código: FO-030200-13 Revisión: 02

Emisión: 13/12/11

7. Juicio crítico del profesor que le permita en caso contar con tiempo extra para seleccionar temas de interés para el grupo; previo visto bueno del coordinador de academia correspondiente.

RECURSOS DIDÁCTICOS

Tradicionales: pizarrón, material de apoyo, notas de la materia Nuevas Tecnologías: Proyector, Computadora, Plataforma Moodle

EVALUACIÓN DE LOS APRENDIZAJES

1er. Parcial	25%
2º. Parcial	25%
Examen Final	30%
Proyecto Final	20%
TOTAL	100%

Notas:

- 1. El lenguaje a manejar será sugerido por el profesor
- 2. La calificación de cada parcial se integra de actividades sumativas.
- 3. La calificación final de cada parcial será reportada en el sistema de acuerdo como marca el reglamento (7 días naturales a partir del fin del período de exámenes).

FUENTES DE CONSULTA

BÁSICAS:

- 1. Cairó, Osvaldo; Guardati, Silvia, Estructura De Datos, 2da Edición, Editorial Mcgraw-Hill, ISBN 9701035348
- 2. Tanenbaum, Aaron M.; Augenstein, Moshe J.; Langsam, Yedidyah, Estructuras De Datos En C, Primera Edición, Editorial Prentice-Hall, Año 1993. ISBN 968-880-256-5
- 3. Aho, Alfred V. Estructura de Datos y Algoritmos. Editorial Adisson Wesley Longman, ISBN 968 444 345 5
- 4. Joyanes Aguilar, Luis. Programación en Java 2: algoritmos, estructuras de datos y programación orientada a objetos, McGraw-Hill, ISBN 8448132904
- Joyanes Aguilar, Luis. Estructura de datos, algoritmos, abstracción y objetos. McGraw Hill. 1ºEdición, 2001

COMPLEMENTARIAS:

- 6. Bowman, Charles F.; López Hernández, Sergio Gerardo, Algoritmos Y Estructuras De Datos: Aproximación En C, Primera Edición, Editorial Oxford University Press, Año 1999. ISBN 970-613-459-X
- 7. Franch Gutierrez, Xavier. Estructura de datos: especificación, diseño e implementación. Alfaomega. 4ª Edición, 2002
- 8. Garrido Carrillo, Antonio. Abstracción y estructuras de datos en C++. Delta Publicaciones. 1ªEdición, 2012
- 9. Joyanes Aguilar, Luis; Zahonero Martínez, Ignacio, Estructura De Datos Algoritmos, Abstracción Y Objetos, Primera Edición, Editorial Mcgraw Hill, Año 1998, ISBN 8448120426
- 10. Sznajdleder Augusto, Pablo. Algoritmos a fondo: con implementaciones en C y Java. Alfaomega. 1ªEdición, 2012
- 11. Tanenbaum, Aaron M. Estructuras De Datos En C, Prentice-Hall. 1ª Edición, 1993.
- 12. Wirth, Niklaus, Algoritmos y Estructuras De Datos, Editorial Prentice Hall, Año 1987, ISBN 968-880-113-5

*En caso de no aplicar algún elemento, escribir $\,$ N/A $\,$