

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta062

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Mil$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

În sistemul cartezian de coordonate xOy se consideră punctele $A(1,2\sqrt{3})$, $B(-1,2\sqrt{3})$, $C(0,\sqrt{3})$.

- (4p) a) Să se calculeze aria triunghiului ABC.
- (4p) b) Să se determine valorile lui a pentru care punctele $B(-1,2\sqrt{3})$, $C(0,\sqrt{3})$ și D(a,0) sunt coliniare.
- (4p) c) Să se arate că triunghiul *ABC* este echilateral.
- (4p) d) Să se determine lungimea înălțimii din B în triunghiul ABC.
- (2p) e) Să se afle distanța de la punctul O(0,0) la dreapta AB.
- (2p) | f) Să se determine suma soluțiilor complexe ale ecuației $z^4 = 1$.

SUBIECTUL II (30p)

1.

- (3p) a) Dacă ecuația $x^2 x + 1 = 0$ are rădăcinile complexe x_1, x_2 , să se calculeze $x_1^3 + x_2^3$.
- (3p) b) Să se determine al doilea termen al dezvoltării $(1+\sqrt{2})^{10}$.
- (3p) c) Să se afle numărul funcțiilor $f:\{1,2\} \rightarrow \{1,2,3\}$.
- (3p) d) Să se determine parametrii reali a, b astfel încât polinomul $f = X^3 3X^2 + aX + b$ să fie divizibil cu X 2 şi împărțit la X 1 să dea restul 4.
- (3p) e) Să se rezolve în R inecuația $2^x < 3^x$.
 - 2. Se consideră funcția $f:[1,\infty)\to \mathbf{R}$, $f(x)=\frac{2x}{1+x^2}$.
- (3p) a) Să se calculeze $f'(x), x \in [1, \infty)$.
- (3p) b) Să se arate că funcția f este strict descrescătoare pe intervalul $[1,\infty)$.
- (3p) c) Să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
- (3p) d Să se arate că $0 < f(x) \le 1, \forall x \in [1, \infty)$.
- (3p) e) Să se calculeze $\int_{1}^{2} f(x) dx$.

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră o funcție $f: \mathbf{Q} \to \mathbf{Q}$, cu proprietatea

$$f(x+y) = f(x) + f(y), \forall x, y \in \mathbf{Q}$$
.

- **(4p) a)** Să se arate că f(0) = 0.
- (4p) | b) Să se arate că $f(-x) = -f(x), \forall x \in \mathbf{Q}$.
- (4p) c) Să se demonstreze, utilizând metoda inducției matematice, că $f(x_1 + x_2 + ... + x_n) = f(x_1) + ... + f(x_n), \forall n \in \mathbf{N}^* \text{ si } \forall x_1, x_2, ..., x_n \in \mathbf{Q}.$
- (2p) d) Să se deducă egalitatea $f(nx) = nf(x), \forall x \in \mathbf{Q}, \forall n \in \mathbf{N}$.
- (2p) e) Notăm $a = f(1), a \in \mathbb{Q}$. Să se arate că $f(x) = a \cdot x$, $\forall x \in \mathbb{Q}$.
- (2p) | f) Să se arate că dacă $f(1) \neq 0$, atunci funcția f este bijectivă.
- (2p) g) Să se demonstreze că dacă (H,+) este subgrup al grupului (Q,+) și este izomorf cu grupul (Q,+), atunci H=Q.

SUBIECTUL IV (20p)

Se consideră funcțiile $f:(0,\infty) \to \mathbf{R}$, $f(x) = x \cos \frac{\pi}{x}$ și $g:\left[0,\frac{\pi}{2}\right] \to \mathbf{R}$, $g(x) = \cos x + x \sin x$.

- (4p) a) Să se calculeze g'(x), $x \in \left[0, \frac{\pi}{2}\right]$.
- (4p) b) Să se calculeze f'(x), $x \in (0, \infty)$.
- (4p) c) Să se verifice că g'(x) > 0, $\forall x \in \left(0, \frac{\pi}{2}\right)$.
- (2p) d) Să se arate că g(x) > 1, $\forall x \in \left(0, \frac{\pi}{2}\right)$.
- (2p) e) Utilizând teorema lui *Lagrange* pentru funcția f, să se demonstreze inegalitatea f(x+1) f(x) > 1, $\forall x > 2$.
- (2p) | f) Să se arate că f(n) > n-2, $\forall n \in \mathbb{N}$, $n \ge 3$
- (2p) g) Să se calculeze $\lim_{n\to\infty} \frac{f(1)+f(2)+...+f(n)}{n^2}$.