0.0.1 Current-Controlled Voltage Source

Figure 1: H — current-controlled voltage source element.

Form:	
	urceName Transresistance
,	$Voltage Source Name_1 \dots Voltage Source Name_D \ Polynomial Coeffi-$
cients	v vollagesourcestantes vollagesourcestantes soughonitaleoess
N_{+}	is the positive voltage source node.
$N_{-}^{'}$	•
Voltage Source Name	
J	the controlling current. The voltage source must be a V element.
Transresistance	is the Transresistance of the element.
POLY	is the identifier for the polynomial form of the element.
D	is the degree of the polynomial. The number of
	pairs of controlling nodes must be equal to <i>Degree</i> .
$Voltage Source Name_i$	is the name of the voltage source the current through
•	which is the ith controlling current. The voltage source must be a V element
Polynomial Coefficients	is the set of polynomial coefficients which must be specified
	in the standard polynomial coefficient format discussed in the description.

Example:

H1 2 3 14 1 2.0

Description:

Polynomial expressions can be used with the controlled source elements $(E,\,F,\,G$ and H) to realize nonlinear controlled sources. The specification of the polynomial must be at the end of the input line and has two forms.

The format for a current-controlled voltage source (the H element) is

POLY is the keyword indicating that that a polynomial description follows.

N is the degree of the polynomial.

VoltageSourceName₁ is the name of the voltage source the current through

which is control current I_1 .

 $VoltageSourceName_N$ is the name of the voltage source the current through

which is control current I_N .

 C_0 C_1 ... are the polynomial coefficients.

For these elements the output is calculated as

OUTPUT =
$$C_0$$

 $+C_1V_1 + \ldots + C_NV_N$
 $+C_{N+1}V_1V_1 + C_{N+2}V_1V_2 + \ldots + C_{N+N}V_1V_N$
 $+C_{2N+1}V_2V_2 + C_{2N+2}V_2V_3 + \ldots + C_{2N+N-1}V_2V_N$
 \vdots
 $+C_{N!/(2(N-2)!)+2N}V_NV_N$
 $+C_{N!/(2(N-2)!)+2N+1}V_1V_1V_1 + C_{N!/(2(N-2)!)+2N+2}V_1V_1V_2$ (1)
 $+ \ldots + C_{N!/(2(N-2)!)+3N}V_1V_2V_2 + \ldots + C_{N!/(2(N-2)!)+3N+N-2}V_1V_2V_N$
 \vdots (2)

An example of a current-controlled voltage source is:

H1 2 3 POLY(2) VIN V2 0.5 1 1 0.2 0.3 0.2

Linear Transresistance Instance

 $Hname\ N_{+}\ N_{-}\ N_{C+}\ N_{C-}\ Transresistance$

The value of the voltage generator is linearly proportional to the controlling current:

$$v_o = Transresistance v_c$$
 (3)

POLYnomial Instance

Hname N_+ N_- POLY(D) (N_{C1+} N_{C1-}) ... (N_{CD+} N_{CD-}) PolynomialCoefficients

The value of the voltage generator is a polynomial function of the controlling voltages:

$$v_o = f(i_{c1}, ..., i_{ci}, ... i_{cD}) \tag{4}$$

where the number of controlling currents is D — the degree of the polynomial specified on the element line. i_{ci} is the *i*th controlling current and is the current flowing from the +

terminal to the - terminal in the ith voltage source of name VoltageSourceName.

Notes:

The actual element in $f\mathsf{REEDA}^\mathsf{TM}$ is the \mathtt{H} element. See \mathtt{H} for full documentation.

 ${ Credits: \atop {\rm Name} }$

Affiliation Date Links

Satish Uppathil svuppath@eos.ncsu.edu

NC State University Sept 2000 NC STATE UNIVERSITY www.ncsu.edu