CS150A Database

Lu Sun

School of Information Science and Technology

ShanghaiTech University

Dec. 15, 2022

Today:

- Analytics and ML in Data Systems:
 - Part 2
 - Clustering

Readings:

 Database Management Systems (DBMS), Chapter 26

Machine Learning Lifecycle

- Typically a time consuming iterative batch process
 - Feature engineering
 - Validation

- Focus is on making fast robust predictions
 - Monitoring and tracking feedback
 - Materialization + fast model inference

Clustering

• Given a collection of images cluster them into meaningful groups.

• Given a collection of images cluster them into meaningful groups.

• Given a collection of images cluster them into meaningful groups.

- Unsupervised: The labels of the groups are not given in the training data
- Exploratory: overlaps with data mining

Given a collection of images cluster them into

meaningful groups.

How many clusters?

Where are the clusters?

• Given a collection of images cluster them into

magningful groups			
meaningful groups.	Image Id	Average Red	Average Green
Simplified Illustration	1	123	200
1	2	212	103
	3	55	35
Average Red		Where ar clusters? How man clusters?	
' Average Green			

Given a collection of images cluster them into

meaningful groups.

,		2
Average Red		
	Average Green	

 Image Id
 Average Red
 Average Green

 1
 123
 200

 2
 212
 103

 3
 55
 35

What makes a **good** clustering?

- All points are near the cluster center
- Spread between clusters > spread within clusters

• Given a collection of images cluster them into

meaningful groups.

IIIE	annigiui gioups.	Image Id	Average Red	Average Green
			123	200
1		2	212	103
		3	55	35
Average Red			What hap when a n arrives?	pens ew point
	Average Green			

Given a collection of images cluster them into

meaningful groups.

		Red	Green
	1	123	200
1	2	212	103
	3	55	35

What happens when a new point arrives?

Average

Image Id Average

Predict "label" based on existing clusters (Yellow)

• Given a collection of images cluster them into

meaningful groups.

1 123 200 2 212 103 3 55 35 How do we automatically cluster data?	mea	aningtui groups.	Image Id	Average Red	Average Green
How do we automatically cluster data?			1	123	200
How do we automatically cluster data?	1		2	212	103
Cluster data:			3	55	35
' Average Green	Average Red	Average Green	o a	utomatio	ally

How do we Compute a Clustering?

Many different clustering models and algorithms:

- Feature Based Clustering: Points in R^d
 - K-Means: EM on Symmetric Gaussians ← We will learn this one
 - Mixture Models: Generalized k-means
 - •
- <u>Spectral Methods</u>: *Similarity Function Between Items*
 - Similarity based clustering: A and B are co-purchased
 - Graph clustering: Cities based on road network
 - ...
- Hierarchical Clustering: clustering nested items
 - Latent Dirichlet Allocation: Documents based on words
 - Developed at Berkeley and widely used!

• ...

- Input K: The number of clusters to find
- Pick an initial set of points as cluster centers

For each data point find the cluster nearest center

For each data point find the cluster nearest center

• Compute mean of points in each "cluster"

• Adjust cluster centers to be the mean of the cluster

- Improved?
- Repeat

Assign Points

Assign Points

• Compute cluster means

• Update cluster centers

- Repeat?
 - Yes to check that nothing changes → Converged!

centers ← pick k initial Centers

```
while (centers are changing) {
    // Compute the assignments (E-Step)
    asg ← [(x, nearest(centers, x)) for x in data]
```

What do we mean by "nearest":

A: Euclidean Distance

$$\arg\min_{c \in \text{centers}} ||c - x||_2^2 = \sum_{i=1}^d (c_i - x_i)^2$$

```
centers ← pick k initial Centers
                                              Compute the
                                           "Expected" Assignment
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
                           Find centers that maximize the
      centers[i] =
                                data "likelihood"
         mean([x for (x, c) in asg if c == i])
```

centers ← pick k initial Centers

```
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
      centers[i] =
         mean([x for (x, c) in asg if c == i])
     Guaranteed to
                                   To a local
                                                Depends on
                    ... to what?
                                  optimum. 🕾
                                               Initial Centers
       converge!
```

```
centers ← pick k initial Centers
   How do we pick initial centers?
while (centers are changing) {
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
  for i in range(k):
      centers[i] =
         mean([x for (x, c) in asg if c == i])
                    ... to what?
```

Picking the Initial Centers

- Simple Strategy: select k points at random
 - What could go wrong?

Picking the Initial Centers

- Better Strategy: kmeans++
 - Randomized approx. algorithm
 - Intuition select points that are not near existing centers

K-Means++ Algorithm

```
centers ← set(randomly select a single point)
while len(centers) < k:</pre>
  # Compute the distance of each point
  # to its nearest center dSq = d^2
  dSq \leftarrow [(x, dist_to_nearest(centers, x)^2)  for x in data]
  # Sample a new point with probability
  # proportional to dSq
  c ← sample_one(data, prob = dSq / sum(dSq))
  # Update the clusters
  centers.add(c)
```

How do we choose K?

- Basic Elbow Method (Easy and what you do in HW)
 - Try range of K-values and plot average distance to centers
- Cross-Validation (Better)
 - Repeatedly split the data into training and validation datasets
 - Cluster the training dataset
 - Measure Avg. Dist. To Centers on validation data

K-Means +

How do we run k-means on the data warehouse / data lake?

Interacting With the Data

Good for smaller datasets

 Faster more natural Request Data Sample interaction

Lots of tools!

Compute Locally

> $\Sigma = \bigoplus$ $f_{\theta}(r)$ $r \in Data$

Learning Algorithm

Sample of Data

Can we send the computation to the data?

Yes!

Statistical Query Pattern Common Machine Learning Pattern

Computing aggregates of user defined functions

Interacting With the Data

Can we express K-Means in the Statistical Query Pattern?

```
centers ← pick k initial Centers
                                                          Merge with M-Step
                                          Query returns all
while (centers are changing):
                                            the data ...
                                                           Statistical Query
   // Compute the assignments (E-Step)
                                                               Pattern
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   for i in range(k): // Compute the new centers (M-Step)
       centers[i] = mean([x for (x, c) in asg if c == i])
centers ← pick k initial Centers
while (centers are changing):
   for i in range(k):
       new centers[i] =
           mean([x for x in data if nearest(centers, x) == i])
   centers = new centers
```

Can we express K-Means in the Statistical Query Pattern?

```
centers ← pick k initial Centers
while (centers are changing):
    for i in range(k):
        new_centers[i] =
            mean([x for x in data if nearest(centers, x) == i])
    centers = new_centers
```

Group by query:

```
SELECT nearest_UDF(centers, x) AS cid, mean_UDA(x)
FROM data GROUPBY cid
```

K-Means in Map-Reduce

- MapFunction(old_centers, x)
 - Compute the index of the nearest old center
 - Return ($key = nearest_centers$, value = (x, 1))
- ReduceFunction combines values and counts
 - For each cluster center (Group By)
- Data system returns aggregate statistics:

$$s_i = \sum_{x \in \text{Cluster } i} x_i \quad \text{and} \quad n_i = \sum_{x \in \text{Cluster } i} 1$$

• ML algorithm computes new centers: $\mu_i = s_i/n_i$

Can we express K-Means++ in the Statistical Query Pattern?

- Yes, however there is a better version: K-Means |
 - More complex but much faster
- Or you can parallelize K-Means++ directly
 - Requires more passes
- Challenging Step?
 - Parallel weighted sampling:

```
sample_one(data, prob = dSq / sum(dSq))
```

How do you select one point uniformly at random?

Res-A: weighted reservoir sampling

Goal: Sample k records from a stream where record
i is included in the sample with probability
proportional to w_i

How would we normally sample k records?

Draw a random number uniformly between 0 and 3.7

Sample the corresponding record and remove the weight.

Draw a random number uniformly between 0 and 3.1

We want to do this in **one pass** without ever knowing the **sum** of the weights!

Res-A: weighted reservoir sampling

Goal: Sample k records from a stream where record
 i is included in the sample with probability
 proportional to w_i

Algorithm:

For each record i draw a uniform random number:

$$u_i \sim \mathbf{Unif}(0,1)$$

• Select the top-k records ordered by: u_i^{1/w_i}

Common ML Pattern?

- Query Function: [pow(rand(), 1 / record.w), record]
- Agg. Function: top-k heap

Illustrating Res-A Algorithm

Basic Analysis Behind Res-A

- Define the random variable: $X_i = u_i^{1/w_i}$
- Then:

$$\mathbf{P}(X_i < \alpha) = \mathbf{P}\left(u_i^{1/w_i} < \alpha\right) = \mathbf{P}\left(u_i < \alpha^{w_i}\right) = \alpha^{w_i}$$

$$\mathbf{p}(X_i = \alpha) = w_i \alpha^{w_i - 1}$$
Derivative of CDF \rightarrow PDF

- Suppose we want to pick just one element (k=1)
 - Probability of selecting X_i is:

$$\int_{0}^{1} \mathbf{p} \left(X_{i} = \alpha \right) \prod_{j \neq i} \mathbf{P} \left(X_{j} < \alpha \right) d\alpha = \int_{0}^{1} \left(w_{i} \alpha^{w_{i} - 1} \right) \prod_{j \neq i} \alpha^{w_{j}} d\alpha$$

$$= \frac{w_{i}}{\sum_{i} w_{j}}$$
We won't test you

People who like Res-A also like...

- Algorithm R
 - Another reservoir filtering algorithm (recitation?)
- Bloom Filters
 - Efficient set membership with limited memory
- Count-Min
 - Efficient key-counting with limited memory
- Heavy Hitters Sketch
 - Top-k Elements with limited memory

Implementation Details: Statistical Query Pattern

- **Iterative** ML **\rightarrow** Data caching is important
 - Motivation behind Spark project

Map Reduce Dataflow View

Spark Opt. Dataflow

10-100× faster than network and disk

Spark Opt. Dataflow View

What happened to map-reduce?

Implementation Details: Common Machine Learning Pattern

- Iterative ML → Data caching is important
 - Motivation behind Spark project
- Need to watch out for large $oldsymbol{ heta}$ and $oldsymbol{\Sigma}$

Summary of Clustering

