Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Термодинамика и молекулярная физика

2.4.1. Определение теплоты испарения жидкости

Глаз Роман Сергеевич Группа Б01-007

Долгопрудный 2021

Содержание

1	Теоретическое введение	1
2	Эксперементальная установка	2
3	Снятие данных	2
4	Аппроксимация полученных данных	4
5	Заключение	7
6	Список используемой литературы	8

Цель работы: измерение давления насыщенного пара жидкости при разной температуре; вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

Используемое оборудование: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп.

1. Теоретическое введение

Теплоту парообразования жидкостей можно измерить непосредственно при помощи калориметра. Такой метод, однако, не позволяет получить точных результатов из-за неконтролируемых потерь тепла, которые трудно сделать малыми. В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V2 — объем пара, V_1 — объем жидкости. Найдя из опыта $\frac{dP}{dT},\ T,\ V_2$ и $V_1,$ можно определить L путем расчета. Величины $L,\ V_2$ и V_1 в формуле (1) должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю. В нашем приборе измерения производятся при давлениях ниже атмосферного. В этом случае задача существенно упрощается.

С помощью уравнения Ван-дер-Ваальса можно получить зависимость P(T), с помощью которой определить искомую величину:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT
\tag{2}$$

В таблице ниже приведены все значения параметров различных жид-

костей уранения Ван-дер-Ваальса в условиях данного опыта. Откуда видно, что $\frac{V_1}{V_2} < 0,005$, а $\frac{a}{PV^2} < 0,03$, ошибка метода измерений равна 4%, тогда записав уравнение Клапейрона-Менделеева для насыщенного пара, получим: $V=rac{RT}{P}$. Пренебрегая V_1 (который не превосходит 0,5% от V_2), запишем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{3}$$

Эта формула является окончательной.

	$T_{\kappa u \pi}$	V_1 ,	V_2 ,	b,	a	a/V_2^2
Вещество		10^{-6}	10^{-3}	10^{-6}		
	K	моль	$\frac{_{\rm M}3}{_{\rm MOЛЬ}}$	моль	$\frac{\Pi a \cdot M^6}{MOJD^2}$	кПа
Вода	373	18	31	26	0,4	0,42
CCl_4	350	97	29	126	1,95	2,3
Этиловый эфир	307	104	25	137	1,8	2,9
Этиловый спирт	351	58	29	84	1,2	1,4

2. Эксперементальная установка

Схема установки изображена на рисунке 1. Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, подогреваемой электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряется термометром 5. В термостат погружен запаянный прибор 6 с исследуемой жидкостью. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединенному с исследуемым объемом. Отсчет показаний манометра производится при помощи микроскопа.

3. Снятие данных

Измерим разность уровней в ртутном U-образном манометре с помощью микроскопа и температуру по термометру. H - высота высокого колена, h - низкого. При этом будем настраивать микроскоп так, чтобы каждый раз основание мениска было у метки прибора (в дальнейшем считаем, что высота мениска не меняется, не смотря на то что поверхностное натяжение ртути на самом деле зависит от температуры и высота немного должна меняться). Результаты представлены в таблицах 1 и 2. Под P_0 подразумевается давление 1 мм рт.ст.

Приведём формулы для рассчётов погрешностей. Поскольку давление напрямую зависит от разности уровней ртути (пренебрегаем давлением насыщенных паров ртути, так как при комнатной температуре оно приблизительно равно $0,24~\Pi a, a$ так же изменением уровня столба воды, так как он слишком мал), то для погрешности давления P воспользуемся

Рис. 1: Схема установки для определения теплоты испарения

следующей формулой:

$$\sigma_P = P_{\text{atm}} \cdot \frac{\sigma_{H-h}}{H_0} \tag{4}$$

где под H_0 подразумевается 760 мм, а под $P_{\text{атм}}=101325~\Pi \text{а}$ - нормальное атмосферное давленине. В качестве σ_{H-h} будем брать 2 мм, поскольку точность измерения каждого из уровня 0,1 мм, а так же мы будем учитывать, что U-образный манометр в нашей установке был не вертикален, а немного наклонён.

$$\sigma_{\ln \frac{P}{P_0}} = \frac{\sigma_P}{P} \tag{5}$$

Погрешность определения температуры возьмём учитывая точность прибора и тот факт, что во время измерений уровней температура могла немного изменяться: $\sigma_T=0,2~K$.

Соответсвенно

$$\sigma_{\frac{1}{T}} = \frac{\sigma_T}{T^2} \tag{6}$$

Снимем все точки данных, проведя сам эксперимент (см. таблицы).

4. Аппроксимация полученных данных

Как было сказано в теоретическом введении, согласно формуле (3), график зависимости $ln(P)\left(\frac{1}{T}\right)$ – убывающая прямая. Учитывая, что известны погрешности $\sigma_{ln(P)}\gg\sigma_{\frac{1}{T}}$, определим характеристики прямой графика с помощью метода Пирсона (хи-квадрат) по следующим формулам:

$$L = -\frac{\langle \frac{\ln(P)}{T} \rangle' - \langle \ln(P) \rangle' \langle \frac{1}{T} \rangle'}{\langle \frac{1}{T^2} \rangle' - (\langle \frac{1}{T} \rangle')^2}$$
 (7)

$$C = \langle ln(P)\rangle' + L\langle \frac{1}{T}\rangle' \tag{8}$$

$$ln(P) = -\frac{L}{T} + C \tag{9}$$

По этим формулам получим следующие значения при нагревании:

$$L_{\text{\tiny H}} = 4,431 \cdot 10^4 \, \frac{\text{Дж}}{\text{K}}, \Delta L_{\text{\tiny H}} = 9,867 \cdot 10^2 \, \frac{\text{Дж}}{\text{K}}$$
 (10)

$$C_{\rm H} = 23,079, \ \Delta C_{\rm H} = 0,445$$
 (11)

$$L_{\text{охл}} = 4,508 \cdot 10^4 \, \frac{\text{Дж}}{\text{K}}, \Delta L_{\text{охл}} = 9,654 \cdot 10^2 \, \frac{\text{Дж}}{\text{K}}$$
 (12)

$$C_{\text{охл}} = 23,399, \ \Delta C_{\text{охл}} = 0,427$$
 (13)

Так как $C_{\text{охл}} - C_{\text{н}} = 0,320 < \Delta C \cong 0,43$ (в качестве оценки), то различить две отдельные прямые для нагревания и охлаждения невозможно.

Заметим, что значение удельной теплоты парообразования воды при нагревании сходится с табличным значением больше, чем при охлаждении ($L=4,04\cdot 10^4 \, \frac{\mathcal{J}^{\mathbf{x}}}{\mathcal{K}}$)

Теперь нужно учесть погрешности, вызванные методическими приближениями.

Первое, что нужно учесть – давление насыщенного пара ртути, которым мы пренебрегли при расчёте погрешностей ввиду его малости по сравнению с атмосферным давлением:

$$\frac{\Delta L_P}{L} = \frac{P_s}{P} = \frac{0.26}{3 \cdot 10^3} = 8,667 \cdot 10^{-5} \tag{14}$$

Рис. 2: P(T) при нагревании

Эта формула следует напрямую из уравнения Клапейрона-Клаузиуса. Теперь посчитаем относительную погрешность:

$$\frac{\Delta L_{\text{охл}}}{L_{\text{охл}}} = 0,0214 \tag{15}$$

$$\frac{\Delta L_{\rm H}}{L_{\rm H}} = 0,0223\tag{16}$$

Стоить отметить, что погрешности вышли заниженными, так как следует учитывать также следующие факторы, которые измерить тяжело: температура термометра в точности не совпадает с температурой пара из-за неравномерности распределения температуры в термостате, из-за капиллярных эффектов давление насыщенного пара должно быть больше, чем просто разность высот в трубках.

Всё же можно видеть, что полученные значения хорошо соответствуют ранее описанной теории. Для убедительности построим графики P(T) и $ln(P)\left(\frac{1}{T}\right)$.

Также оценим качество аппроксимации прямой методом хи-квадрат. При нормальном распределении величина $\chi^2=n-p$, где n – количество параметров завимости, а p=2, где n-p – количество линейно независимых параметров в системе уравнений хи-квадрат. В нашем случаем

Рис. 3: P(T) при охлаждении

Рис. 4: $ln(P)(\frac{1}{T})$ при нагревании

Рис. 5: $ln(P)(\frac{1}{T})$ при охлаждении

имеем:

$$\left(\frac{\chi^2}{n-p}\right)_{\rm H} = \frac{27,453}{19} = 1,445\tag{17}$$

$$\left(\frac{\chi^2}{n-p}\right)_{\text{OXJ}} = \frac{27,178}{19} = 1,431 \tag{18}$$

Значения в точности не могут быть равны единице по следующим причинам: во-первых, распределение в данном случае отличается от нормального, во-вторых, погрешность $\frac{1}{T}$ так же стоит брать в учёт, а в методе хи-квадрат в формулах ей пренебрегают.

5. Заключение

В работе изучалась зависимость давления насыщенного пара воды от температуры. По полученным данным были найдены коэффициенты удельного испарения воды при нагревании и охлаждении жидкости. Все возникшие параметры были проверены на аппроксимацию и были вычислены все возможные погрешности полученных величин.

6. Список используемой литературы

- Гладун А. Д. Лабораторный практикум по общей физике. Термодинамика и молекулярная физика
 - Описание лабораторных работ на кафедре общей физики МФТИ

Таблица 1: При нагреве

h, cm	7,73	7,71	7,66	7,60	7,55	7,465	7,38		
H, cm	9,91	9,94	9,97	10,05	10,13	10,18	10,24		
$P \cdot 10^2$, Πa	28,99	29,53	30,72	32,59	34,31	36,17	38,04		
$\sigma_P, \Pi a$	266								
$\frac{\ln(P)}{\ln(P)}$	7,970	7,990	8,031	8,090	8,141	8,193	8,244		
$\sigma_{\ln(P)} \cdot 10^{-2}$	9,207	9,007	8,659	8,162	7,753	7,354	6,992		
T, K	291,81	292,84	294,00	295,14	296,60	298,14	299,15		
σ_T, K				0,2					
$\frac{10^3}{T}, K^{-1}$	3.427	3,414	3,401	3,388	3,371	3,354	3,343		
$\sigma_{\frac{1}{T}} \cdot 10^{-6}, K^{-1}$	2.292	2.263	2.242	2.223	2.206	2.183	2.154		
h, cm	7,28	7,10	6,75	6,63	6,46	6,39	6,27		
H, cm	10,39	10,61	10,92	11,09	11,22	11,34	11,47		
$P \cdot 10^2$, Πa	41,36	46,68	55,46	59,32	63,31	65,84	69,16		
$\sigma_P,\Pi \mathrm{a}$				266					
ln(P)	8,328	8,449	8,620	8,688	8,753	8,792	8,842		
$\sigma_{\ln(P)} \cdot 10^{-2}$	6,431	5,698	4,796	4,484	4,201	4,040	3,846		
T, K	301,11	303,35	306,75	308,25	309,53	310,55	311,73		
σ_T, K	0,2								
$\frac{10^3}{T}, K^{-1}$	3,321	3,297	3,260	3,244	3,231	3,220	3,208		
$\sigma_{\frac{1}{T}} \cdot 10^{-6}, K^{-1}$	2.292	2.263	2.242	2.223	2.206	2.183	2.154		
h, cm	6,07	5,90	5,71	5,44	5,26	4,79	4,55		
H, cm	11,72	11,88	12,08	12,32	12,56	13,03	13,32		
$P \cdot 10^2$, Πa	75,15	79,67	84,72	91,50	97,09	109,59	116,64		
$\sigma_P, \Pi a$	266								
ln(P)	8,925	8,983	9,044	9,122	9,181	9,302	9,364		
$\sigma_{\ln(P)} \cdot 10^{-2}$	3,539	3,339	3,140	2,907	2,739	2,427	2,280		
T, K	313,15	314,37	315,75	317,05	318,38	320,63	321,90		
σ_T, K	·								
$\frac{10^3}{T}, K^{-1}$	3,193	3,180	3,167	3,154	3,141	3,119	3,107		
$\sigma_{\frac{1}{T}} \cdot 10^{-6}, \ K^{-1}$	2.292	2.263	2.242	2.223	2.206	2.183	2.154		

Таблица 2: При охлаждении

h,	4,79	5,07	5,42	5,57	5,95	6,12	6,33	
H,	13,20	12,72	$12,\!42$	12,04	11,84	11,62	11,46	
$P \cdot 10^2$, Πa	111,85	101,75	93,10	86,05	78,34	73,15	68,23	
$\sigma_P, \Pi a$		266						
ln(P)	9,322	9,228	9,139	9,060	8,996	8,898	8,828	
$\sigma_{\ln(P)} \cdot 10^{-2}$	2,378	2,614	2,857	3,093	3,395	3,630	3,899	
T, K	320,15	318,15	316,05	314,15	312,45	311,15	309,65	
σ_T, K		0,2						
$\frac{10^3}{T}, K^{-1}$	3,124	3,143	3,164	3,183	3,200	3,214	3,230	
$\sigma_{\frac{1}{T}} \cdot 10^{-6}, K^{-1}$	2.215	2.191	2.177	2.169	2.134	2.123	2.107	
h,	6,49	6,59	6,66	6,79	6,86	6,97	7,04	
H,	11,23	11,14	11,01	10,93	10,80	10,73	10,64	
$P \cdot 10^2$, Πa	63,04	60,52	57,85	55,06	52,40	50,00	47,88	
$\sigma_P, \Pi a$		266						
ln(P)	8,749	8,708	8,663	8,614	8,564	8,517	8,474	
$\sigma_{\ln(P)} \cdot 10^{-2}$	4,219	4,395	4,598	4,831	5,076	5,320	5,555	
T, K	307,95	307,15	306,15	305,15	304,15	303,15	302,15	
σ_T, K 0,2								
$\frac{10^3}{T}, K^{-1}$	3,247	3,256	3,266	3,277	3,288	3.299	3,309	
$\sigma_{\frac{1}{T}} \cdot 10^{-6}, K^{-1}$	2.215	2.191	2.177	2.169	2.134	2.123	2.107	
h,	7,13	7,19	7,26	7,34	7,41	7,46	7,53	
H,	10,56	10,45	10,39	10,32	10,24	10,17	10,12	
$P \cdot 10^2$, Πa	45,62	43,42	41,63	39,63	37,51	36,04	34,45	
$\sigma_P, \Pi a$	266							
ln(P)	8,426	8,376	8,333	8,285	8,230	8,190	8,144	
$\sigma_{\ln(P)} \cdot 10^{-2}$	5,830	6,126	6,389	6,712	7,091	7,380	7,721	
T, K	301,15	300,15	299,15	298,15	297,15	296,15	295,15	
σ_T, K 0,2								
$\frac{10^3}{T}, K^{-1}$	3,320	3,332	3,343	3,354	3,365	3,376	3,387	
$\sigma_{\frac{1}{T}} \cdot 10^{-6}, \ K^{-1}$	2.215	2.191	2.177	2.169	2.134	2.123	2.107	