S^2 の基本群

1

命題 1.1. X が基点 $p\in X$ を含む弧状連結な開集合 $\{U_{\lambda}\}$ の和で表され,任意の共通部分 $U_{\lambda}\cap U_{\lambda}\mu$ は弧状連結であるとする.このとき,X の任意のループは,適当な U_{λ} に含まれるループの連結とホモトピックである.(たとえば, U_{λ} に含まれるループと, U_{μ} に含まれるループの連結など.)

証明・ $p \in X$ を基点とするループ $f:[0,1] \to X$ をとる。f([0,1]) はコンパクトなので,有限部分被覆 $\{U_i\}$ がとれる。任意の $t \in [0,1]$ に対して f(t) は適当な U_i に含まれているので,f の連続性から,t の開近 V_t で, $f(V_t)$ が U_i に含まれるものがとれる。 $(a,b) = V_t$ の境界の点 a,b の像 f(a), f(b) が境界 ∂U_i に属する場合は,(a,b) を十分小さく縮めて $(a+\varepsilon,b-\varepsilon)$ とし,これを改めて V_t とすることで, $f(\overline{V}_t) \subset U_i$ となるようにしておく。このような V_t の族は [0,1] の開被覆であるので,コンパクト性から有限部分被覆をとる。

$$V_{i_1}, V_{i_2}, \ldots, V_N$$

と適当にうまく並べて, $[s_{i_2}, t_{i_2}] = V_{i_2}$ と表しておいて,

$$[0, t_{i_1}], [t_{i_1}, t_{i_2}], \dots, [t_N, 1]$$

と分割することで、 $f([t_{i_n}, t_{i_m}])$ が適当な U_{λ} に含まれるようにしておく.

$$t_{i_k} \in V_{i_k} \cap V_{i_{k+1}}$$

であり, $f(t_{i_k}) \in U_\alpha \cap U_\beta$ であり, $U_\alpha \cap U_\beta$ は弧状連結なので, $p \in f(t_{i_k})$ を結ぶ道 c_k がとれる.

$$f_1 := [0, t_{i_1}], f_2 := f|_{[t_i, t_{i_2}]}, \dots, f_{N+1} := f|_{[t_N, 1]}$$

と定め,

 $f_1 \downarrow \bar{c}_1 \downarrow c_1 \downarrow f_2 \downarrow \bar{c}_2 \downarrow c_2 \downarrow f_3 \cdots \downarrow c_N \downarrow f_{N+1}$

を考えると、これがもとめる

命題 1.2.

$$\pi_1(S^2) = 0$$

証明、 S^2 は適当に赤道上に基点 p をとって、北半球を少し広げたもの (N で表す)と、南半球を少し広げたもの (S で表す)で被覆する。それらは前述の命題の条件を満たしているので S^2 の任意のループは N のループと S のループの連結とホモトピックである。N,S はともに \mathbb{R}^2 と同相であるので、これらのループは可縮である。従って、 S^2 の任意のループは自明なループとホモトピックである。