Глава «Основы векторного анализа»

§ 1. Основные понятия

Определение (вектор-функция)

Говорят, что *вектор*—*функция* скалярного аргумента задана, если установлено правило, согласно которому для любого параметра t, принадлежащего области A, в свою очередь являющейся частью R, ставится в соответствие вектор \bar{r} .

Обозначение:
$$\vec{r} = \vec{r}(t)$$
 или $\vec{r} = \vec{f}(t)$

Замечание:

Пусть в R^3 задана ПДСК.

Пусть вектор \bar{r} имеет координаты $\{x, y, z\}$.

Пусть вектор-функция $\overline{f}(t)$ имеет координаты $\{\varphi(t), \psi(t), \lambda(t)\}$.

яТогда для задания вектор-функции достаточно задать систему:

$$x = \varphi(t)$$

$$y = \psi(t)$$

$$z = \lambda(t)$$

$$\forall t \in A$$

Определение (годограф)

Пусть $\overline{f}(t)$ – некоторая функция $\forall t \in A$.

Поместим $\overline{f}(t_1)$, $\overline{f}(t_2)$, $\overline{f}(t_3)$, ..., $\overline{f}(t_n)$ в начало координат.

Множество точек, образованное концами этих векторов, называется $\operatorname{годографом}$ вектор—функции $\overline{f}(t)$. См. рисунок ниже.

Определение (предел вектор-функции)

Пределом вектор—функции $\overline{f}(t)$ называется вектор \overline{c} при $t \to t_0$, если для любого сколько угодно малого числа $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$, такое, что: $0 < |t - t_0| < \delta$, и выполняется неравенство $|\overline{f}(t) - \overline{c}| < \varepsilon$.

Обозначение:
$$\lim_{t \to t_0} \overline{f}(t) = \overline{c}$$

Замечание:

Пусть предел вектор \bar{c} имеет координаты $\{c_1, c_2, c_3\}$.

Пусть вектор—функция $\overline{f}(t)$ имеет координаты $\{\varphi(t), \psi(t), \lambda(t)\}$.

Тогда, если
$$\lim_{t \to t_0} \overline{f}(t) = \overline{c}$$
, то
$$\begin{cases} \lim_{t \to t_0} \varphi(t) = c_1 \\ \lim_{t \to t_0} \psi(t) = c_2 \\ \lim_{t \to t_0} \lambda(t) = c_3 \end{cases}$$

Свойства пределов вектор-функций

1)
$$\lim_{t \to t_0} \overline{r}(t) = \overline{c} \Rightarrow \lim_{t \to t_0} |\overline{r}(t)| = |\overline{c}|;$$

2)
$$\lim_{t \to t_0} (\overline{r_1}(t) + \overline{r_2}(t)) = \lim_{t \to t_0} \overline{r_1}(t) + \lim_{t \to t_0} \overline{r_2}(t)$$
;

3)
$$\lim_{t\to t_0} \alpha(t) \cdot \overline{r}(t) = \lim_{t\to t_0} \alpha(t) \cdot \lim_{t\to t_0} \overline{r}(t)$$
;

4)
$$\lim_{t \to t_0} \overline{r_1}(t) \cdot \overline{r_2}(t) = \lim_{t \to t_0} \overline{r_1}(t) \cdot \lim_{t \to t_0} \overline{r_2}(t)$$
;

5)
$$\lim_{t\to t_0} \left|\overline{r_1}(t)\right| = 0$$
, $\left|\overline{r_2}(t)\right| - o\varepsilon p$. $\Rightarrow \lim_{t\to t_0} \left|\overline{r_1}(t) \times \overline{r_2}(t)\right| = 0$;

Доказательство:

$$\left| \overline{r_1}(t) \times \overline{r_2}(t) \right| = \left| \overline{r_1}(t) \right| \cdot \left| \overline{r_2}(t) \right| \cdot \sin(\overline{r_1}(t); \overline{r_2}(t)) \le \left| \overline{r_1}(t) \right| \cdot \left| \overline{r_2}(t) \right| \xrightarrow{t \to t_0} 0$$

6)
$$\lim_{t \to t_0} (\overline{r_1}(t) \times \overline{r_2}(t)) = \lim_{t \to t_0} \overline{r_1}(t) \times \lim_{t \to t_0} \overline{r_2}(t)$$
.

Доказательство:

Пусть
$$\lim_{t \to t_0} \overline{r_1}(t) = \overline{c_1}$$
 и $\lim_{t \to t_0} \overline{r_2}(t) = \overline{c_2}$

Тогда с учетом свойства 1 достаточно доказать $\lim_{t\to t_0} \left| \overline{r_1}(t) \times \overline{r_2}(t) \right| = \left| \overline{c_1} \times \overline{c_2} \right|$:

$$\lim_{t \to t_0} \overline{r_1}(t) = \overline{c_1} \Leftrightarrow \overline{r_1}(t) = \overline{c_1} + \overline{\alpha_1}(t)$$
, где $\overline{\alpha_1}(t) \underset{t \to t_0}{\longrightarrow} 0$

$$\lim_{t \to t_0} \overline{r_2}(t) = \overline{c_2} \Leftrightarrow \overline{r_2}(t) = \overline{c_2} + \overline{\alpha_2}(t)$$
, где $\overline{\alpha_2}(t) \underset{t \to t_0}{\longrightarrow} 0$

$$\left| \overline{r_1(t)} \times \overline{r_2}(t) \right| = \left| \left(\overline{c_1} + \overline{\alpha_1}(t) \right) \times \left(\overline{c_2} + \overline{\alpha_2}(t) \right) \right| = \left| \overline{c_1} \times \overline{c_2} + \overline{\alpha_1}(t) \times \overline{c_2} + \overline{c_1} \times \overline{\alpha_2}(t) + \overline{\alpha_1}(t) \times \overline{\alpha_2}(t) \right| \le \left| \overline{c_1} \times \overline{c_2} \right| + \left| \overline{\alpha_1}(t) \times \overline{c_2} \right| + \left| \overline{c_1} \times \overline{\alpha_2}(t) \right| + \left| \overline{\alpha_1}(t) \times \overline{\alpha_2}(t) \right| \\
\xrightarrow{\to 0 \text{ npu} \ t \to t_0}$$

$$\lim_{t \to t_0} \left| \overline{r_1}(t) \times \overline{r_2}(t) \right| = \left| \overline{c_1} \times \overline{c_2} \right|$$

Определение (непрерывность вектор-функции в точке)

Вектор-функция $\bar{r}(t)$ называется непрерывной в точке t_0 , если:

1) $r(t_0)$ определена;

$$2) \exists \lim_{t \to t_0} \bar{r}(t);$$

3)
$$\lim_{t \to t_0} \bar{r}(t) = \bar{r}(t_0)$$
.

Замечание:

Пусть вектор—функция $\bar{r}(t)$ имеет координаты $\{\varphi(t), \psi(t), \lambda(t)\}$.

$$\lim_{t \to t_0} \bar{r}(t) = \bar{r}(t_0) \iff \begin{cases} \lim_{t \to t_0} \varphi(t) = \varphi(t_0) \\ \lim_{t \to t_0} \psi(t) = \psi(t_0) \\ \lim_{t \to t_0} \lambda(t) = \lambda(t_0) \end{cases}$$

т.е. $\varphi(t), \psi(t), \lambda(t)$ — непрерывны в точке t_0 .

Определение (непрерывность)

Вектор-функция $\bar{r}(t)$ называется непрерывной в точке t_0 , если $\lim_{\Delta t \to 0} \Delta \bar{r}(t) = 0$.

Определение (производная вектор-функции в точке)

Производной вектор—функции $\vec{r}(t)$ в точке t_0 называется $\lim_{\Delta t \to 0} \frac{\vec{\Delta r}(t)}{\Delta t} = \vec{r}'(t) = \frac{d\vec{r}}{dt}$, где $\vec{\Delta r}(t) = (\vec{r}(t_0 + \Delta t) - \vec{r}(t_0))$.

Замечания:

1) О геометрическом смысле производной от вектор-функции.

Геометрический смысл производной от вектор—функции в точке t_0 - касательная к годографу вектор—функции в точке t_0 . См. рисунок ниже.

2) Физический смысл производной от вектор-функции.

$$\frac{d\bar{r}}{dt} = \bar{v}(t)$$

Определение (дифференцируемость)

Вектор—функция $\bar{r}(t)$ называется $\partial u \phi \phi$ еерицируемой в мочке t_0 , если $\bar{\Delta r}(t) = \bar{c} \cdot \Delta t + \bar{\alpha}(t) \cdot \Delta t$, где $\bar{\alpha}(t) \xrightarrow[t \to t_0]{} 0$.

Тогда
$$\bar{c}(t) = \bar{r}'(t)$$

Определение (дифференциал)

 \mathcal{L}_0 \mathcal{L}_0 называется главная часть приращения функции, линейного относительно Δt .

$$d\overline{r} = \overline{r}'(t_0) \cdot \Delta t$$

Приращение независимой переменной совпадает с дифференциалом независимой переменной.

$$\Delta t = dt \Rightarrow d\bar{r} = \bar{r}'(t_0) \cdot dt$$

Определение (определенный интеграл для вектор-функции)

Пусть вектор—функция $\bar{r}(t)$ определена $\forall t \in [a;b] \subset R$.

Пусть
$$\{t_i\}_{i=0}^N$$
: $a = t_0 < t_1 < ... < t_N = b$.

Пусть
$$\{\Delta t_i\}_{i=1}^N$$
: $\Delta t_i = t_i - t_{i-1}$, $\{\xi_i\}_{i=1}^N$: $\xi_i \in [t_{i-1};t_i]$

Тогда $\bar{I}(\Delta t_i; \xi_i) = \sum_{i=1}^N \bar{r}(\xi_i) \cdot \Delta t_i$ — векторная интегральная сумма Римана для вектор—функции $\bar{r}(t)$.

Пусть
$$\lambda = \max_{i=1,\dots,N} \Delta t_i$$

$$\int\limits_a^b \overline{r}(t)dt = \lim_{\lambda \to 0} \sum_{i=1}^N \overline{r}(\xi_i) \cdot \Delta t_i - onpe \partial e$$
ленный интеграл от вектор—функции.

Замечание:

Пусть вектор—функция r(t) имеет координаты $\{\varphi(t), \psi(t), \lambda(t)\}$.

$$\int_{a}^{b} r(t)dt = \left\{ \int_{a}^{b} \varphi(t)dt; \int_{a}^{b} \psi(t)dt; \int_{a}^{b} \lambda(t)dt \right\}$$