

北京航空航天大學BEIHANGUNIVERSITY

第三十四届"冯如杯"竞赛创意赛道

一种基于 IATEX 的 开源冯如杯论文模板

---副标题

摘要

本项目提出了一种创新的基于三维压电滑台的自制扫描隧道显微镜(STM)设计方案,旨在为科研和教育领域提供一种具有高成本效益、操作简便的纳米级表面分析工具。该设计方案充分考虑了 STM 的核心原理,即量子隧道效应,以及实现原子级别分辨率成像所需的关键组件,包括探针、样品台、压电陶瓷扫描器、反馈控制系统和真空系统。我们详细讨论了在设计和构建过程中遇到的技术难点,例如如何制备具有纳米级锐度的探针、如何精确控制极小隧穿电流以及如何实现探针的纳米级精确移动。

为了解决这些挑战,我们采用了先进的电子电路设计,包括高精度的前置放大器和数字模拟转换器,以及基于 STM32F103C8T6 微控制器的固件程序。控制软件采用 Python 语言开发,提供友好的用户界面和强大的数据处理功能,能够将隧穿电流信号转换为样品表面的二维与三维图像。

此外,我们还探讨了自制 STM 在纳米科学、新材料开发、表面科学研究以及教育领域的广泛应用前景。在市场需求与商业化方面,我们分析了自制 STM 相对于市场上现有产品的竞争优势,并讨论了如何通过与工业界的合作,将这一技术转化为具有商业价值的产品。

最后,我们对自制 STM 的优劣进行了分析,并提出了未来优化的方向,包括提高系统的稳定性和可靠性,以及开发更加直观易用的用户界面。通过开源与社区合作,我们相信自制 STM 项目能够激发更广泛的科学兴趣,促进科学知识的传播和技术的创新。

关键词: 扫描隧道显微镜(STM),三维压电滑台,低成本,科研工具,教育应用, 开源硬件

目录

摘要	2					
目录	3					
插图目录	3					
表格目录	3					
1 引言	4					
2 图表示例	4					
3 用法参考	4					
3.1 伪代码	4					
插图目录 图 1 显微镜的发展历史: 光学显微镜						
图 1 显微镜的发展历史: 光学显微镜	4					
表格目录						
表 1 DIY-STM 接线表	5					

(a) Robert Hooke 制作的复合显 微镜

(b) Robert Hooke 观察栎树皮薄片

(c) 现代光学显微镜

图 1 显微镜的发展历史: 光学显微镜

1 引言

2 图表示例

3 用法参考

3.1 伪代码

使用 Algorithm2e 宏包实现。

表 1 DIY-STM 接线表

源 PCB	目标 PCB	源接口	目标接口	类型
Power_Board	Motor_Board	3V3_1	3V3	MMCX-MMCX
Power_Board	Motor_Board	+12	+12V	MMCX-MMCX
Power_Board	Motor_Board	-12	-12V	MMCX-MMCX
Power_Board	Motor_Board	+15_1	+15V	MMCX-MMCX
Power_Board	Motor_Board	-15_1	-15V	MMCX-MMCX
Power_Board	Controller_Board	3V3_2	3V3	MMCX-MMCX
Power_Board	Controller_Board	+15_2	+15V	MMCX-MMCX
Power_Board	Controller_Board	-15_2	-15V	MMCX-MMCX
Power_Board	Controller_Board	+15_3	+15V	MMCX-MMCX
Power_Board	Controller_Board	-15_3	-15V	MMCX-MMCX
Power_Board	ADC_And_MCU_Board	3V3_3	3V3	MMCX-MMCX
Power_Board	ADC_And_MCU_Board	5V	5V	MMCX-MMCX
Motor_Board	ADC_And_MCU_Board	SPI2	SPI2	IDC-IDC ¹
Controller_Board	ADC_And_MCU_Board	SPI1	SPI1	IDC-IDC
Power_Board	Connector_Board	+15_4	+15V	MMCX-MMCX
Power_Board	Connector_Board	-15_4	-15V	MMCX-MMCX
Power_Board	Connector_Board	GND	GND	MMCX-MMCX
Motor_Board	PZT_Slide_Table	X/Y/Z	X/Y/Z	MMCX-MMCX
Controller_Board	Connector_Board	Z+X / Z-X Z+Y / Z-Y	Z+X / Z-X Z+Y / Z-Y	MMCX-MMCX
Connector_Board	ADC_And_MCU_Board	ADC	ADC_IN	MMCX-MMCX

附注 1: IDC 插头型号为: 2.54-2×5P。

算法 1: How to write algorithms

```
Data: this text
  Result: how to write algorithm with LATEX2e
1 initialization;
2 while not at end of this document do
      read current;
3
      repeat
4
          do these things;
5
      until this end condition;
      if understand then
          go to next section;
          current section becomes this one;
10
          go back to the beginning of current section;
11
      end
12
      do
13
          do these things;
14
      while this end condition;
15
16 end
```