

Exercise 3D

Question 8:

$$8x + 5y - 9 = 0$$

$$kx + 10y - 15 = 0$$

These equations are of the form

$$a_1 \times + b_1 y + c_1 = 0$$
, $a_2 \times + b_2 y + c_2 = 0$

where,
$$a_1 = 8$$
, $b_1 = 5$, $c_1 = -9$ and

$$a_2 = k$$
, $b_2 = 10$, $c_2 = -15$

For no solution, we must have $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

Now,
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\Rightarrow \frac{8}{k} = \frac{5}{10} \neq \frac{-9}{-15}$$

$$\Rightarrow \quad \frac{8}{k} = \frac{1}{2} \neq \frac{3}{5}$$

$$\Rightarrow \frac{8}{k} = \frac{1}{2} \text{ and } \frac{8}{k} \neq \frac{3}{5}$$

$$\Rightarrow$$
 k = 16 and k $\neq \frac{40}{3}$

Clearly, k = 16 also satisfies the condition

$$k \neq \frac{40}{3}$$

Hence, the given system will have no solution when k = 16.

Question 9:

$$kx + 3y - 3 = 0$$
 —-(1)
 $12x + ky - 6 = 0$ —(2)
 $a_1 = k$, $b_1 = 3$, $c_1 = -3$
 $a_2 = 12$, $b_2 = k$, $c_2 = -6$

These equations are of the form

$$a_1 \times + b_1 y + c_1 = 0$$
, $a_2 \times + b_2 y + c_2 = 0$

for no solution, we must have $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

Now,
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\Rightarrow \frac{k}{12} = \frac{3}{k} \neq \frac{-3}{-6}$$

$$\Rightarrow \frac{k}{12} = \frac{3}{k} \text{ and } \frac{3}{k} \neq \frac{1}{2}$$

$$k^2 = 36 \text{ and } k \neq 6$$

Hence, k = -6

Hence, the given system will have no solution when k = -6

Question 10:

$$3x + y - 1 = 0$$

 $(2k - 1)x + (k - 1)y - (2k + 1) = 0$

These equations are of the form

$$a_1 \times + b_1 y + c_1 = 0$$
, $a_2 \times + b_2 y + c_2 = 0$
where, $a_1 = 3$, $b_1 = 1$, $c_1 = -1$
 $a_2 = (2k - 1)$, $b_2 = (k - 1)$, $c_2 = -(2k + 1)$

For no solution, we must have $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

Now,
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\frac{3}{2k-1} = \frac{1}{k-1} \neq \frac{-1}{-(2k+1)}$$

$$\Rightarrow \frac{3}{2k-1} = \frac{1}{k-1} \text{ and } \frac{1}{k-1} \neq \frac{1}{2k+1}$$

$$3k-3 = 2k-1 \text{ and } (2k+1) \neq (k-1)$$

$$k = 2 \text{ and } k \neq -2$$

Thus,

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 hold when k = 2

Hence the given equation has no solution when k = 2

******* END *******