Efficient Visual Pretraining with Contrastive Detection

Ваньков Тимур Цыганов Артем Булатова Екатерина Першин Максим

План презентации

1. Докладчик

- 1.1. Проблематика и связанные работы
- 1.2. Система контрастного обнаружения
- 1.3. Unsupervised mask generation
- 1.4. Эксперименты и сравнения

2. Рецензент

- 2.1. Плюсы статьи
- 2.2. Минусы статьи

3. Практик-исследователь

- 3.1. Публикация
- 3.2. Авторы
- 3.3. Связанные статьи
- 3.4. Цитаты
- 3.5. Исследования

4. Хакер

- 4.1. Собрать colab-ноутбук с инференсом pretrained resnet-50, resnet-200 DetCon моделей.
- 4.2. Пример transfer learning classification на cifar/mnist/fashoinmnist с помощью pretrained DetCon модели.

Докладчик

Проблематика и связанные работы

SimCLR

BYOL

DetCon

Проблематика и связанные работы

SimCLR Framework

Проблематика и связанные работы

Figure 2: BYOL's architecture. BYOL minimizes a similarity loss between $q_{\theta}(z_{\theta})$ and $\operatorname{sg}(z'_{\xi})$, where θ are the trained weights, ξ are an exponential moving average of θ and sg means stop-gradient. At the end of training, everything but f_{θ} is discarded, and y_{θ} is used as the image representation.

Система контрастного обнаружения

$$m{h_m} = rac{1}{\sum_{i,j} m_{i,j}} \sum_{i,j} m_{i,j} \, m{h}[i,j],$$
 DetCon Objective v_m $v_m = g_{ heta}(m{h_m}), \quad v'_{m'} = g_{ heta}(m{h'_{m'}})$ Convolutional Features h $v_m = q_{ heta} \circ g_{ heta}(m{h_m}), \quad v'_{m'} = g_{\xi}(m{h'_{m'}})$ f Encoder resnet $\ell_{m,m'} = -\log rac{\exp(v_m \cdot v'_{m'})}{\exp(v_m \cdot v'_{m'}) + \sum_n \exp(v_m \cdot v_n)}$ f Training Image and Heuristic Masks

Unsupervised mask generation

used by the DetCon model. 1st column: random images from the COCO training set. column: masks based on spatial proximity only. Global masks (top) are implicitly used by methods such as SimCLR, MoCo, and BYOL. 3rd column: image-computable masks obtained from the Felzenszwalb-Huttenlocher (FH, [17]) algorithm, with s = 500. 4th column: imagecomputable masks inferred using Multiscale Combinatorial Grouping (MCG) [2]. column: "oracle" masks used to assess potential improvements from higher-quality segmentations.

Эксперименты и сравнения

Figure 4. Efficient ImageNet pretraining with DetCon_S. We pretrain networks with SimCLR, DetCon_S, or supervised learning on ImageNet for different numbers of epochs, and fine-tune them for COCO detection and instance segmentation (for 12 epochs), semantic segmentation on PASCAL or Cityscapes, or depth estimation on NYU v2. DetCon_S outperforms SimCLR, with up to 10× less pretraining.

pretrain	Data	Params	AP^{bb}	\mathbf{AP}^{mk}
Supervised [20]	IN-1M	250 M	45.9	41.0
SEER [20]	IG-1B	693 M	48.5	43.2
\mathbf{DetCon}_B	IN-1M	250 M	48.9	43.0

	Fine-tune $1\times$		Fine-tune 2×	
method	AP^{bb}	\mathbf{AP}^{mk}	AP^{bb}	\mathbf{AP}^{mk}
Supervised	42.0	37.3	43.4	38.4
SimCLR [9]	42.0	37.9	43.8	39.3
InfoMin [54]	42.9	38.6	44.5	39.9
BYOL [21]	43.7	38.8	44.3	39.4
\mathbf{DetCon}_B	45.2	40.0	45.7	40.4

(a) ResNet-101 feature extractor

method	Fine-tune 1×		Fine-tune 2×	
	APbb	AP^{mk}	APbb	AP^{mk}
Supervised	43.4	38.5	43.4	38.5
SimCLR [9]	43.6	39.1	44.9	40.0
BYOL [21]	44.9	40.0	45.7	40.6
DetCon _B	46.0	40.6	46.4	40.7

(b) ResNet-152 feature extractor

	Fine-tune 1×		Fine-tune 2×	
method	AP^{bb}	AP^{mk}	APbb	AP^{mk}
Supervised	43.2	38.3	43.5	38.5
SimCLR [9]	44.3	39.6	45.3	40.3
BYOL [21]	45.6	40.5	45.9	40.5
DetCon _B	47.1	41.3	47.2	41.5

(c) ResNet-200 feature extractor

Рецензент

Плюсы статьи

- Большое количество экспериментов
- Сравнения со state of the art подходами
- Все исследования сопровождаются графиками
- Имеется ссылка на код на языке Јах

Минусы статьи

- Скудное теоретическое обоснование
- Тяжела для чтения и понимания

Оценка 7

Уверенность 3

Практик-исследователь

Публикация

- Была опубликована на arxiv 19 марта 2021
- Принята на ICCV21 oral, второй день, 13 октября в 9 утра. Вся конференция проходила онлайн
- Не получила наград

Авторы

Skanda Koppula

Jean-Baptiste Alayrac

Data-efficient image recognition with contrastive predictive coding

Olivier J. Henaff

4 статьи за 2021, 2 из них про комбинацию contrastive learning и self-supervised методов

- Self-Supervised MultiModal Versatile Networks
- 9 статей в 2021, много про трансформеры и аудио

Авторы

Aaron van den Oord

- Representation learning with contrastive predictive coding
- Data-efficient image recognition with contrastive predictive coding
- 18 статей за 2021 год, много про self-supervision, генерацию, обработку последовательностей

Oriol Vinyals

17 статей за 2021, в основном языковые модели и биология

Joao Carreira

- CPMC: Automatic object segmentation using constrained parametric min-cuts
- 7 статей за 2021, в основном видео и аудио

Связанные статьи

• Базовые:

SimCLR и BYOL, из них берут архитектуры

• С похожими идеями:

- "Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals" (Wouter Van Gansbeke et al): ставится self-supervised задача с масками, полученными unsupervised методами. Акцент не на pretraining, специальные архитектуры для задач СОСО
- "Self-Supervised Visual Representation Learning from Hierarchical Grouping" (Xiao Zhang,
 Michael Maire): учимся накладывать маски, их используем в self-supervised задаче

• Предшественник:

• "Data-Efficient Image Recognition with Contrastive Predictive Coding" (Olivier J. Hénaff et al): пересечение в 2 автора: как уменьшить количество размеченных данных

Цитаты

- Ссылаются в основном как на pixe-level метод получения представлений с помощью contrastive loss
- Статьи, занимающиеся похожими темами ("конкуренты"):
 - "Object-Aware Cropping for Self-Supervised Learning" (Shlok Mishra et al): contrastive representations, улучшение cropping для обучения на менее систематизированных наборах данных
 - "DETReg: Unsupervised Pretraining with Region Priors for Object Detection" (Amir Bar et al):
 предобучают специальную сеть на обнаружение объектов

Исследования

- Уже проведено обширное исследование
- Можно попробовать заменить ResNet на другую архитектуру
- Об отсутствии теоретического обоснования: постараться подтвердить предположение о том, почему метод сработал так хорошо
- (предложено авторами) Насколько хорош наш метод как решение задачи instance segmentation, можно ли использовать его как unsupervised segmentation вместо того, что использовали мы?