INCREASING AND DECREASING FUNCTIONS

INCREASING AND DECREASING FUNCTIONS

DEFINITION

A function f is said to be **increasing** if $f(x_2) \geq f(x_1)$ whenever $x_2 \geq x_1$.

A function f is said to be **decreasing** if $f(x_2) \leq f(x_1)$ whenever $x_2 \geq x_1$.

$$f(x) = x^2$$

FIRST DERIVATIVE

THEOREM

Let f be a differentiable function.

Increasing $f' \geq 0$

Decreasing: $f' \leq 0$

$$f(x) = \cos x$$
.

MINIMUM AND MAXIMUM

MINIMUM AND MAXIMUM

DEFINITION

Minimum: $f(x) \geq f(x_{\min})$

Maximum: $\overline{f(x)} \leq \overline{f(x_{\mathrm{max}})}$

EXTREME VALUE THEOREM

THEOREM

A continuous function defined on a closed, bounded interval $\left[a,b\right]$ attains both a maximum and minimum.

$$f(x)=x^2+1$$
 for $x\in[-2,1]$.

LOCAL MIN AND MAX

DEFINITION

A function f has a **local minimum** at x_0 if $f(x) \geq f(x_0)$ for every x in some open interval containing x_0 .

A function f has a **local maximum** at x_0 if $f(x) \leq f(x_0)$ for every x in some open interval containing x_0 .

$$f(x) = x^3 - x = x(x-1)(x+1).$$

CRITICAL POINTS

CRITICAL POINTS

DEFINITION

A **critical point** for a function f is point x where f'(x) = 0 or f'(x) is not defined.

Let
$$f(x) = x^3 - x = x(x-1)(x+1)$$
.

FIRST DERIVATIVE TEST

LEMMA

If a function f has a local minimum or maximum at the point x, then x is a critical point.

$$f(x) = x^3 - x$$

Let
$$f(x) = |x|$$
.

CONCAVITY

SECOND DERIVATIVE

DEFINITION

Let f be a differentiable function. If f' is also differentiable, we say that f is twice differentiable and write f'' for the derivative of f'.

SECOND DERIVATIVE TEST

THEOREM

local minimum: $f'' \geq 0$

local maximum: $f'' \leq 0$

$$f(x) = x^2$$

$$f(x) = x^4$$

$$f(x) = x^3$$

ASYMPTOTES

VERTICAL ASYMPTOTE

DEFINITION

Vertical asymptote: $\lim_{x o x_0^\pm}=\pm\infty$

$$f(x) = \frac{1}{x^2}$$

$$f(x) = \frac{1}{x-1}$$

LIMITS AT INFINITY

DEFINITION

If f(x) approaches L as x becomes arbitrarily large we write

$$\lim_{x o\infty}f(x)=L.$$

Similarly for $\lim_{x o -\infty}f(x)=L$.

$$\lim_{x o\infty}x^2=\infty$$

$$f(x) = rac{x}{x+1}$$

$$f(x) = rac{x}{x^2+1}$$

HORIZONTAL ASYMPTOTE

DEFINITION

If $\overline{\lim}_{x o \pm \infty} f(x) = L$ then f has a horizontal asymptote L at $\pm \infty$.

$$f(x) = rac{x}{x+1}$$