Art gallery problem

Luka Horvat Gregor Boris Banušić Jelena Držaić

PMF - Matematički odsjek Sveučilište u Zagrebu

22. listopada 2015.

Sadržaj

- Opis problema
- 2 Varijante problema
- Osadašnja istraživanja
- 4 Naš pristup
- Realizacija
- 6 Literatura

Formalna definicija problema

Definicija

U kontekstu problema, poligon $P \subseteq \mathbb{R}^2$ definiramo kao kompaktan skup omeđen s n bridova $v_1v_2, v_2v_3, ..., v_{n-1}v_n, v_nv_1$ takvih da $\forall i \neq j, v_i \neq v_j$.

Definicija

Kažemo da točka $x \in P$ pokriva (vidi) točku $y \in P$ ako je segment xy podskup od P; $xy \subseteq P$.

Podrazumijevamo da je rub od P podskup od P.

Formalna definicija problema (2)

Definicija

Za poligon P, definiramo G(P) kao minimalni broj točaka koje pokrivaju P. Nadalje, definiramo g(n) kao max $_PG(P)$, gdje su P poligoni s n vrhova.

Originalni problem bio je problem pronalaženja $g(n), \forall n \in \mathbb{N}$.

Povijest

- Problem je postavio **Victor Klee** 1973. godine.
- 1975. Vasek Chvatal dokazuje teorem poznat pod nazivom "Chvatals Art Gallery Theorem" ili "watchman teorem".

Teorem

Jednostavan poligon P ("poligon bez rupa") možemo pokriti s $\lfloor n/3 \rfloor$ točaka iz P.

Napomena

Za poligone s "rupama" vrijedi slično svojstvo.

Neka je P poligon s n vrhova i $h \in \mathbb{N}$ rupa. Tada ga možemo pokriti s $\lfloor (n+h)/3 \rfloor$ točaka.

Problem u primjeni

- U primjeni, problem se svodi na minimizaciju broja kamera/stražara potrebnih za osiguravanje galerije.
- U osnovnoj verziji problema, kamere imaju sposobnost okretanja za 360°.
- Unos algoritma je tlocrt galerije koju je potrebno osigurati.
- Pod dopustivim rješenjem problema podrazumijevamo raspored kamera takav da je svaka točka galerije sadržana u vidnom polju barem jedne kamere.
- Problem je NP-težak.

Grafički prikaz

Varijante problema

Postoje razne varijante osnovnog problema:

- Kamere je moguće postaviti samo u vrhove poligona.
 - ► Konstruiran relativno efikasan algoritam koji daje optimalna rješenja.
- Kamere je moguće postaviti samo na rubove poligona.
- Poligon je ortogonalan.
- Kamere imaju vidno polje od 180°.

U ovom projektu pokušat ćemo konstruirati efikasan algoritam za općeniti problem (u 2D).

Dosadašnja istraživanja

Problem je popularan zbog poprilično direktne primjene, pa postoje mnoga rješenja koja koriste različite pristupe.

- Heuristički algoritmi
 - Genetski algoritmi
- Algoritmi temeljeni na cijelobrojnom linearnom programiranju
- Aproksimacijski algoritmi

Naš pristup

- Ideja je testirati nekoliko klasičnih Meta-heuristika te usporediti njihovu efikasnost i optimalnost.
- Pokušati poboljšati rješenja kombiniranjem algoritama.
- Implementirati algoritam po uzoru na članak [2].
- Dati varijantu algoritma s dodatnim parametrom $\alpha \in [0,1]$ td. za njegovu fiksiranu vrijednost algoritam osigurava pokrivenost galerije od $(1-\alpha)$ ukupne površine.
 - Bitno za primjenu.

Testove ćemo provoditi prvenstveno na instancama iz [3].

Realizacija

- Plan je koristiti kombinaciju programskih jezika Java i Haskell.
- Za rješavanje geometrijskih komponenti problema koristit ćemo CGAL(The Computational Geometry Algorithms Library), library korišten i u [2].

Literatura

- J.O,Rourke (1987): Art Gallery Theorems and Algorithms, Oxford University Press, New York.
 - J. Amit, J.S.B. Mitchell, E.Packer (2010): Locating guards for visibility coverage of polygons, International Journal of Computational Geometry & Applications.
- Benchmark instance: http://www.ic.unicamp.br/ cid/Problem-instances/Art-Gallery/AGPPG/index.html
- Chaitanya, Manoy, S.Chaudhury, A. Bhattacharyya: *Optimal Visual Sensor Placement using Evolutionary Algorithm*, Delhi College of Engineering, Indian Institute of Technology.