Определение. Последовательность случацных величин $(X_n)_{n=1}^{\infty}$ сходится по вероятности к случайной величине X, если

$$\forall \varepsilon > 0 \lim_{n \to \infty} \mathbb{P}\left(\{|X_n - X| > \varepsilon\}\right) = 0$$

Обозначение: $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ при $n \to \infty$

Свойства сходимости по вероятности:

- 1. Если $X_n \stackrel{\mathbb{P}}{\longrightarrow} a, Y_n \stackrel{\mathbb{P}}{\longrightarrow} b$, то $X_n + Y_n \stackrel{\mathbb{P}}{\longrightarrow} a + b$
- 2. Если X_N

Теорема. (Слуцкого) Пусть $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$ и g(x) — непрерывная функция в точке a, тогда $g(X_n) \stackrel{\mathbb{P}}{\longrightarrow} g(a)$

Теорема. Пусть $X_n \stackrel{\mathbb{P}}{\longrightarrow} a, Y_n \stackrel{\mathbb{P}}{\longrightarrow} b$ и g(x,y) — непрерывная в точке (x,y) = (a,b), тогда $g(X_n,Y_n) \stackrel{\mathbb{P}}{\longrightarrow} g(a,b)$

Теорема. Закон больщих чисел. Пусть $(X_n)_{n=1}^{\infty}$ — последовательность одинаково распределенных с конечным математическим ожиданием, тогда

$$\overline{X_n} \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}\left[X_i\right]$$
 при $n \to \infty$, где $\overline{X_n} = \frac{X_1 + \ldots + X_n}{n}$

Задача 1.2

Теорема. (достаточное условие сходимости по вероятности)

Пусть выполнено

- 1. $\mathbb{E}[X_n] \to a$
- $2. \ \mathbb{D}\left[X_n\right] \to 0$

Тогда, $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$