MATH 250A LECTURE RECAPS (FIELDS)

PATRICK OARE

Let L/K be a field extension unless otherwise specified.

- 1. 10/31 (FIELD EXTENSIONS, ALGEBRAIC CLOSURE)
- Fields: A field is a commutative division ring. We say that L/K, or $K \leq L$, is a field extension if K is a subfield of L. The degree of a field extension is denoted:

and is the dimension of L as a K-vector space. An extension L/K is **finite** if [L:K] is finite.

- Algebraic Extensions: An element $\alpha \in L$ is called algebraic over K if it is the root of a nontrivial polynomial over K, i.e. if $\exists p(x) \in K[X] \setminus \{0\}$ with $p(\alpha) = 0$. L/K is called an algebraic extension if every element in L is algebraic over K. Every finite extension is algebraic, as if $\alpha \in L/K$ is in a finite extension, $\{1, \alpha, \alpha^2, ...\}$ is K-linearly dependent and terminates, giving a nontrivial relation among the powers of α with coefficients in K.
- Tower Law: Let L/K and K/F be field extensions. Then:

$$[L:F] = [L:K][K:F]$$

Take bases $\{u_i\}_{i=1}^n$ and $\{v_j\}_{j=1}^m$ of L over K and of K over F. Then $\{u_iv_j\}_{i,j=1,1}^{n,m}$ is a basis of L as an F-vector space.

- Splitting Fields: Given a polynomial in $f \in K[X]$, we can construct a field extension L/K such that p has a root in L. Indeed, if p|f is an irreducible polynomial, then L := K[X]/(p) is a field as irreducible elements generate maximal ideals, and p(x) has a root in L, namely $x \mod (p)$. If $p \in K[X]$, we call L a splitting field of p if:
 - (1) p splits into linear factors over L.
 - (2) L is generated over K by the roots of p.

To construct the splitting field L of p, we keep extending K with more roots of p until we have all of them. If deg(p) = n, then $[L:K] \leq n!$ (I believe it actually divides n!). The splitting field L is unique up to an isomorphism fixing K.

• Finite Fields: The finite field \mathbb{F}_p is isomorphic to $\mathbb{Z}/p\mathbb{Z}$. For each prime power p^n , there is a unique finite field \mathbb{F}_{p^n} , which we may construct as the splitting field of $x^{p^n} - x$ over $F_p[x]$. The derivative of $x^{p^n} - x$ is $p^n x^{p^n-1} - 1 = -1$, which is coprime to $x^{p^n} - x$, and so the polynomial is separable and has p^n roots. The roots

are closed under $+, -, \cdot$ and division, and so form a field of order p^n . It is unique, as it is the splitting field of the polynomial.

- Algebraic Closure: We call L the algebraic closure of K if:
 - (1) Any element of L is algebraic over K.
 - (2) Any polynomial in L[X] has a root in L.

Any field K is contained in an algebraic closure L. Furthermore, L is unique up to isomorphism.

- 2. 11/7 (NORMAL, SEPARABLE, GALOIS EXTENSIONS)
- Normal Extensions: An algebraic extension L/K is normal if whenever an irreducible polynomial $p \in K[X]$ has a root in L, it splits into linear factors in L[X].

For an algebraic extension L/K, TFAE:

- (1) L/K is normal.
- (2) L is the splitting field of a family of polynomials in K[X].

Proof. Suppose ii, and that $p \in K[X]$ is irreducible and has a root in $\alpha \in L$. Let M be the algebraic closure of L. We may extend any homomorphism $\phi : K(\alpha) \to M$ to a homomorphism $\psi : L \to M$ because M is algebraically closed. But, we have $im(\psi) = L$ because L is the uniquely determined splitting field of a family of polynomials, and this implies $\alpha \in L$ (this part makes no sense).

For example, $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is normal, as it is the splitting field of $x^2 - 2$. But, $\mathbb{Q}(2^{\frac{1}{3}})/\mathbb{Q}$ is not normal; $x^3 - 2$ has one root in the field, but the other roots are not in the field.

• Separable Extensions: A polynomial is called separable if it has no multiple roots, i.e. p and p' are coprime. If L/K is a field extension, an element $\alpha \in L$ is separable if its minimal polynomial over K is separable. An extension is called separable if every element is separable over the base field.

Theorem 2.1. If char(K) = 0, then L/K is a separable extension.

This follows because if p(x) is the minimal polynomial of α over K, then because $deg(p') < deg(p) \implies$ these can have no common factors since p is irreducible unless p' = 0, and $p' = 0 \implies p$ is constant and has no multiple roots. If $char(p) \neq 0$, then the derivative of p can be 0 while p is not constant, so this proof only holds in char(p).

Furthermore, any extension $\mathbb{F}_q/\mathbb{F}_p$ of finite fields is separable. This follows because if $q = p^n$, any element x of \mathbb{F}_q satisfies $x^q - x = 0$, and this has derivative -1 and so is separable.

Ex of a non-separable extension: Take t transcendental over \mathbb{F}_p . Then the extension $\mathbb{F}_p(t)/\mathbb{F}_p(t^p)$ is degree p as the minimal poly of t over $\mathbb{F}_p(t^p)$ is $x^p - t^p$. However, this polynomial factors over $\mathbb{F}_p(t)$ as $(x-t)^p$, so this polynomial is not separable and this is not a separable extension.

• Extending field homomorphisms:

Lemma 2.2. Suppose L/K is a field extension of degree n. Then if M/K is any field extension, there are at most n ways to define a field homomorphism $L \to M$ which fixes K.

Proof. Let σ be such a homomorphism. Suppose first that $L = K(\alpha)$. Then α is a root of some $f \in K[X]$ of degree $\leq n$, and so σ must map α to another root of f as it fixes K, so as σ is completely determined by its action on α , we have $\leq n$ possibilities for σ . Now, suppose $L = K(\alpha_1, ..., \alpha_n)$. The tower of primitive extensions $K \leq K(\alpha_1) \leq ... \leq K(\alpha_1, \alpha_n) = L$ has number of extensions of each previous map \leq its degree, and so if we combine them, we reproduce the tower law and have $\leq [L:K]$ ways to define σ .

Lemma 2.3. Let L/K be an algebraic extension, and let $f: K \to \Omega$ be a homomorphism into an algebraically closed field Ω . Then, we may extend f to a homomorphism $F: L \to \Omega$ with $F|_{K} = f$.

 $Check \ out \ this \ link \ for \ a \ proof \ of \ this: \ https://math.stackexchange.com/questions/897660/extending \ homomorphism-into-algebraically-closed-field$