EE 112-2016 Tutorial 2 (MBP/JJ)

active and saturation regions, and $V_{CE}^{\text{sat}} = 0.2 \,\text{V}$. For pnp transistors, the same numbers correspond to V_{EB} and V_{EC}^{sat} , respectively.

- 1. In the circuit shown in the figure, V_{CC} and V_{EE} are 5 V each. Assume that the transistor is in the active region, and $\alpha \approx 1$.
 - (a) Find R_E such that $I_E = 2 \text{ mA}$.
 - (b) Given that $I_E = 2 \text{ mA}$, find R_C such that $V_{BC} = 1 \text{ V}.$
 - (c) Given that $I_E = 2 \text{ mA}$, find the maximum value of R_C such that the transistor is in the active region. (Reference: Bobrow)

- 2. In the current source circuit shown in the figure, $V_Z = 5.1 \, \text{V}.$
 - (a) Find I_L (neglect base current).
 - (b) What is the range of R_L for which the current delivered to the load is I_L ?

3. A BJT inverter is shown in the figure. Sketch V_o versus V_i for $0 < V_i < 10 \text{ V}$ with (a) $\beta = 40$, (b) $\beta = 80$.

Note: For npn transistors, assume $V_{BE} = 0.7 \,\mathrm{V}$ in 4. For the BJT circuit shown in the figure, find I_C and V_{CE} . What is the special feature of this circuit?

5. Find all voltages and currents if $\beta = 30$. (Reference: Sedra/Smith)

6. Measured voltages are shown. Find β in each case. (Reference: Sedra/Smith)

- 7. The transistor in the circuit shown in the figure has $\beta = 100$. The other parameters are $R_1 = 60 \,\mathrm{k}\Omega$, $R_2 = 30 \,\mathrm{k}\Omega$, $R_C = 1 \,\mathrm{k}\Omega$, $R_E = 100 \,\Omega$, $V_{CC} = 6 \,\mathrm{V}$.
 - (a) Assuming that the transistor is operating in the active mode, find I_B , I_C , and V_{CE} . Check if the assumption of active mode is correct.
 - (b) What is the minimum value of R_E for the BJT to operate in the active mode? (Reference: Bobrow)

- 8. The transistor of P-7 has $\beta = 100$. Given $R_1 = 60 \,\mathrm{k}\Omega$, $R_2 = 30 \,\mathrm{k}\Omega$, $V_{CC} = 6 \,\mathrm{V}$, find R_C and R_E such that the BJT is biased in the active region with $I_C = 2 \,\mathrm{mA}$, $V_{CE} = 2.1 \,\mathrm{V}$. (Reference: Bobrow)
- 9. A common-emitter amplifier is shown in the figure.
 - (a) Draw the midband equivalent circuit.
 - (b) Find v_o/v_i , v_o/v_s , $R_{\rm in}$, $R_{\rm out}$, assuming $\beta = 50$, $V_T = 26$ mV.
 - (c) Repeat if the bypass capacitor C_E is removed.

