Scaling Trustless DNN Inference with zkml and its Applications

Daniel Kang

2023-Aug-02, **ZKProof** 5.5

ML is eating the world

Can we execute ML models trustlessly?

How can we verify computation?

MPC

Zero Knowledge Proofs (ZKP)

- Prove computation happened correctly
- Anyone can verify!

Performance considerations

- Can give privacy and validity
- No interaction required
- High compute overhead

ZKP

This talk: efficient ZKPs for ML, image edits

ZKPs: proofs of computation

Prover Verifier
$$w \to F(x,w) \to \pi$$
 $\pi \to F(x,w)$
Private Proof Proof

Proofs can be computed on-demand, after-the-fact

What can zkml do today?

CIFAR 10 (10 classes, 32x32)

ImageNet (1000 classes, 224x224)

We SNARKed ImageNet

We SNARKed The Algorithm

We SNARKed GPT-2

Outline

- » Applications
 - » Trustless audits
 - » Decentralized prompt marketplaces
 - » Trustless biometric identification / fighting deepfakes
- » Open-sourcing zkml

Trustless audits

Prove that you ran the FDA regulated model

Prove that my timeline isn't biased

ML service providers are proliferating

Core challenge: how can we *verify* that a machine learning model was run?

"... did you really?"

Model Consumer Model Provider "Classify this image" Hacked model: Correct model: no disease disease

What is F(x, w) for inference?

- » Functional view of inference
 - » Forward(weights, data) → output
- » Inference:
 - » x (public): commitments to weights, data, output
 - w (hidden): weights, data

Proof of training

$$H_1$$
 H_2
 \longrightarrow
 W
 H_3

Commit to training data

Produce ZK-SNARKs of training

What is F(x, w) for training?

- » Functional view of inference, SGD
 - » Forward(weights, data) → output
 - » SGD(weights, data) → new weights

» SGD:

- » x (public): commitments to weights, data
- w (hidden): weights, data

Test-time trustless audit

- » Data isn't biased
- » Model performs well
- **»** ...

$$F(H_1, H_2, \ldots, H_n; W)$$

Compute audit functions over data, weights

Outline

- » Applications
 - » Trustless audits
 - » Decentralized prompt marketplaces
 - » Trustless biometric identification / fighting deepfakes
- » Open-sourcing zkml

Generative Al requires prompts

Prompts are valuable and difficult!

Cinematic, off-center, two-shot, 35mm film still of a 30-year-old french man, curly brown hair and a stained beige polo sweater, reading a book to his adorable 5-year-old daughter, wearing fuzzy pink pajamas, sitting in a cozy corner nook, sunny natural lighting, sun shining through the glass of the window, warm morning glow, sharp focus, heavenly illumination, unconditional love --ar 16:9

Credit:

https://twitter.com/nickfloats/status/1640827136809345024

Drip pope???

Al 'prompt engineer' jobs can pay up to \$335,000 a year and don't always require a background in tech

Britney Nguyen Mar 31, 2023, 2:33 PM Read in app

The rise of generative AI tools like ChatGPT is creating a hot market for "prompt engineers" who test and improve chatbot answers. Getty Images

Proof of prompt

Cinematic, off-center, two-shot, 35mm film still of a 30-year-old french man, curly brown hair and a stained beige polo sweater, reading a book to his adorable 5-year-old daughter, wearing fuzzy pink pajamas, sitting in a cozy corner nook, sunny natural lighting, sun shining through the glass of the window, warm morning glow, sharp focus, heavenly illumination, unconditional love --ar 16:9

What is F(x, w) for prompt marketplaces?

- » Functional view of inference
 - » Forward(weights, data) → output
- » Prompt marketplace:
 - » x (public): weights, commitment to data
 - » w (hidden): data

Outline

- » Applications
 - » Trustless audits
 - » Decentralized prompt marketplaces
 - » Trustless biometric identification / fighting deepfakes
- » Open-sourcing zkml

Deepfakes

Deepfakes are on the rise

- » Used by state actors to spread misinformation
- » Trick businesses into miswiring funds

» ...

Attested cameras can help

Photo takers want to edit images privately

Private credit card information!

Crop picture privately for face ID

zk-img: attesting to image edits securely and privately

Hidden

zk-img: the edit was done properly

Revealed

What is F(x, w) for zk-img?

- » Functional view of image edits
 - » Edit(image) → output
- » zk-img:
 - » x (public): commitment to image
 - » w (hidden): output

zk-img in context

Attesting to multiple edits

Attesting to multiple edits

Trustless face ID

Private Public

Evaluation setup

- » HD images
- » Instance type: r6i.16xlarge (64 threads, 512GB RAM)
- » Metrics: key generation, proving/verification times

Benchmarks

Transformation	Key generation	Proving	Verification	Proof size	Peak memory usage
$\overline{\text{Crop (HD} \rightarrow \text{SD)}}$	243.7s	330.7s	5.41ms	3040 bytes	70.7 GB
Resize (HD \rightarrow SD)	247.7s	333.3s	5.95ms	3040 bytes	70.7 GB
Contrast	281.5s	363.9s	4.88ms	3712 bytes	85.3 GB
White balance	294.5s	362.7s	4.91ms	3776 bytes	87.9 GB
RGB2YCbCr	283.0s	607.5s	7.30ms	6592 bytes	91.6 GB
YCbCr2RGB	282.3s	608.8s	6.70ms	6592 bytes	91.6 GB
Convolution	339.7s	427.9s	5.89ms	4672 bytes	102.2 GB

Verification times as low as 4.9ms!

Outline

- » Applications
 - » Trustless audits
 - » Decentralized prompt marketplaces
 - » Trustless biometric identification / fighting deepfakes
- » Open-sourcing zkml

ZKPs for DNN inference

All prior work

This work

ZKML: verified DNN inference

Architecture

Arithmetization

Proving system

Optimized DNNs for ZK

- » Quantized models
- » Optimize layout in our framework
- » Can achieve high accuracy!

Optimized arithmetization

- » Linear layers via custom gates (polynomial constraints)
- » Non-linearities via lookups
- » Fused fixed-point arithmetic

Using zkml

```
# Installs rust, skip if you already have rust installed
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
git clone https://github.com/ddkang/zkml.git
cd zkml
rustup override set nightly
cargo build --release
mkdir params_kzg
mkdir params_ipa
# This should take ~8s to run the first time
# and ~4s to run the second time
./target/release/time_circuit examples/mnist/model.msgpack examples/mnist/inp.msgpack kzg
```

Evaluation

» Models: MobileNet v2

» Metrics: accuracy, key generation, proving/verification times

Performance benchmarks

Model	Accuracy (top-5)	Setup time	Proving time	Verification time
MobileNet, 0.35, 96	59.1%	93.9s	163.2s	0.74s
MobileNet, 0.5, 224	75.7%	937.7s	1530.7s	6.32s
MobileNet, 0.75, 192	79.2%	1341.2s	2457.5s	10.27s

Open-source release: 10% higher accuracy, 6x cheaper proving, 500x cheaper verification

Cost of verifying private model accuracy

ϵ	Sample size	Total cost	
5%	600	\$99.93	\$16.65
2.5%	2,396	\$399.08	\$66.51
1%	14,979	\$2494.90	\$415.81

Compared to \$85,000 for a moderate size dataset

Linear layers

- » Common operation: dot products
- » Split dot products across rows, accumulate
- » Two gates:

$$c_i = \sum_{j=1}^N (x_i^j - z) \cdot w_i^j$$

$$c_i = \sum_{j=1}^N x_i^j.$$

Non-linearities

- » Examples: ReLU, reciprocal square root, square root, ...
- » Lookup arguments

Shape operations

- » Examples: padding, split, concatenation
- » Copy constraints

Tricky operations

- » Max
- » Softmax
- » Variable division

Other considerations

- » How to represent floating point arithmetic?
- » How to hide weights?
- » Optimal circuit layout?

What's next?

Advances in hardware acceleration

ZK GPT2 Circuit

64-core CPU

- Degree = 25
- End-to-end time = 9591.2s

Our FPGA server + 64-core CPU

- Degree = 25
- End-to-end time = 190.32s
- End-to-end speedup = 50.396
- MSM + NTT percentage ~ 18.2%

50x faster proving with FPGAs!

Advances in proving systems

- » Faster lookups: log derivative arguments, cq, ...
- » Faster matrix multiplication: cqlin, ...

Advances in arithmetization

- » Improved circuit layout
- » Improved softmax, etc.

Conclusion

- » We are increasingly interacting with digital systems
- » ZKPs provide trust in the face of adversaries
 - » For ML models
 - » Against deepfakes
- » Much to come!

ddkang@g.illinois.edu

