

Лекция 4

Методы снижения размерности
Линейные методы выделения признаков

Владимир Гулин https://goo.gl/Df4u7W

20 февраля 2016 г.

План лекции

Мотивация

Методы выделения признаков (feature extraction)

PCA

Kernel PCA

ICA

MNIST

```
3471956218

8912506640

3779466123

2934365723

15983650893

150849

15047063

170647069
```

Latent data structure

Задача выделения/синтеза признаков

Feature Extraction

Дано. N обучающих D-мерных объектов $\mathbf{x}_i \in \mathcal{X}$, образующих тренировочный набор данных (training data set) \mathbf{X} .

Найти. Найти преобразование $A: \mathcal{X} \to \mathcal{P}$, $dim(\mathcal{P}) = d < D$, сохранив при этом большую часть "полезной информации" об \mathcal{X} .

Что мы рассмотрим:

- ► PCA
- ► ICA
- Autoencoders with bottleneck

Johnson-Lindenstrauss lemma

Lemma

Для любого $0<\varepsilon<1/2$ и ${\bf x}_1,\dots,{\bf x}_N\in R^D$, существует линейное преобразование $f:\mathcal{R}^D\to\mathcal{R}^k$, $k=O(\varepsilon^{-2}logN)$, такое что, для любых i,j справедливо неравентсво

$$(1-\varepsilon)\|\mathbf{x}_i-\mathbf{x}_j\|_2 \leq \|f(\mathbf{x}_i)-f(\mathbf{x}_j)\|_2 \leq (1+\varepsilon)\|\mathbf{x}_i-\mathbf{x}_j\|_2$$

Toy example

Постановка задачи

Данные - серия записи с камер (N)

$$X(D \times N)$$

Каждое наблюдение - вектор-столбец из D=6 элементов

$$col = \begin{bmatrix} x_A \\ y_A \\ x_B \\ y_B \\ x_C \\ y_C \end{bmatrix}$$

Задача:

Ищем базис, который будет фильтровать шум и отражать скрытую структуру данных.

Signal-to-noise ratio

$$SNR = rac{\sigma_{signal}^2}{\sigma_{noise}^2}$$

Redundancy

минимизируем избыточность информации в измерениях

Выборочная матрица ковариации

Для двух множеств измерений

$$A = \{a_1, \ldots, a_N\}, \quad B = \{b_1, \ldots, b_N\}$$

с дисперсиями

$$\sigma_A^2 = \frac{1}{N} \sum_{i=1}^{N} a_i^2, \quad \sigma_B^2 = \frac{1}{N} \sum_{i=1}^{N} b_i^2$$

Ковариация

$$cov(A,B) = \frac{1}{N} \sum_{i=1}^{N} a_i b_i$$

- ightharpoonup cov(A,B)=0 тогда и только тогда, когда A и B некоррелированы
- ightharpoonup $cov(A,B)=\sigma_A^2$, если A=B

Выборочная матрица ковариации

Матрица наблюдений $(D \times N)$

Матрица ковариации

$$\mathbf{\Sigma} = \frac{1}{N} \mathbf{X} \mathbf{X}^T, \quad (D \times D)$$

Свойства

- ▶ Σ квадратная симметричная матрица
- Диагональные элементы Σ это дисперсии соотвествующих измерений
- ▶ Внедиагональные элементы Σ попарные ковариации измерений

Principal Component Analysis MNIST

Principal Component Analysis

PCA (Principal Component Analysis) - анализ главных компонент. В теории информации известен также как преобразование Карунена-Лоева.

Суть метода:

Ищем гиперплоскость заданной размерности, такую что ошибка проектирования выборки на данную гиперплоскость была бы минимальной.

Principal Component Analysis

Будем искать преобразование в семействе линейных функций:

$$\mathbf{x} = \mathbf{A}\mathbf{p} + \mathbf{b}$$
, где

- $ightharpoonup \mathbf{x} \in \mathcal{R}^D$ представление объекта в исходном пространстве,
- ightharpoonup $\mathbf{p} \in \mathcal{R}^d$ новые координаты объекта
- ▶ $\mathbf{b} \in \mathcal{R}^D$, $\mathbf{A} \in \mathcal{R}^{D \times d}$

$$\mathbf{x}_j = \sum_{i=1}^D (\mathbf{x}_j^T \mathbf{a}_i) \mathbf{a}_i$$
 - исходные точки

$$\mathbf{ ilde{x}}_j = \sum_{i=1}^d p_{j,i} \mathbf{a}_i + \sum_{i=d+1}^D b_i \mathbf{a}_i$$
 - проекции

Тогда критерий выбора гиперплоскости имеет вид:

$$J = \frac{1}{N} \sum_{j=1}^{N} \|\mathbf{x}_j - \tilde{\mathbf{x}}_j\|^2 \to \min_{\mathbf{a}, \mathbf{p}, \mathbf{b}}$$

Principal Component Analysis

$$J = \frac{1}{N} \sum_{j=1}^{N} \|\mathbf{x}_j - \tilde{\mathbf{x}}_j\|^2 \to \min_{\mathbf{a}, \mathbf{p}, \mathbf{b}}$$

Несложно показать, что решение будет иметь вид:

$$p_{j,i} = \mathbf{x}_j^T \mathbf{a}_i$$

 $b_i = \mathbf{\bar{x}}^T \mathbf{a}_i$

где

$$\mathbf{\bar{x}} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{x}_{j}$$

$$\mathbf{R} = cov(\mathbf{X}) = \frac{1}{N} \sum_{j=1}^{N} (\mathbf{x}_{j} - \mathbf{\bar{x}})^{T} (\mathbf{x}_{j} - \mathbf{\bar{x}})$$

 ${f a}_i,\ i=1,\ldots,d$ - базис из собственных векторов ковариационной матрицы ${f R}$, отвечающих d наибольших собственным значениям $\lambda_1>\lambda_2>\ldots>\lambda_d$

Иллюстрация РСА

- ▶ Сдвигаем начало координат в центр выборки
- ▶ Поворачиваем оси, чтобы признаки не коррелировали
- ▶ Избавляемся от координат с малой дисперсией

Eigenfaces

Eigenfaces

▶ Eigenfaces = Главные компоненты на датасете из лиц

Связь PCA & SVD

$$X = U\Sigma V^T$$

где

 ${\bf U}(N \times N)$ - ортогональная матрица левых собственных векторов (собственные вектора матрицы ${\bf X}{\bf X}^T$)

 $\mathbf{V}(D \times D)$ - ортогональная матрица правых собственных векторов (собственные вектора матрицы $\mathbf{X}^T\mathbf{X}$)

 $\mathbf{\Sigma}(N \times D)$ - диагональная матрица с сингулярными числами на главной диагонали

Матрица главных компонет может быть вычислена:

$$\boldsymbol{X}\boldsymbol{V}=\boldsymbol{U}\boldsymbol{\Sigma}$$

Сжатие данных при помощи РСА

▶ Вместо исходной матрицы размера $N \times D$ можем хранить две матрицы $d \times N$ и $D \times d$ + вектор из d сингулярных чисел = d(N+D+1)

Вопрос:

▶ Каким образом выбрать d?

Выбор размерности редуцированного пространства Критерий

$$J = \frac{1}{N} \sum_{j=1}^{N} \|\mathbf{x}_j - \tilde{\mathbf{x}}_j\|^2$$

Выбор размерности редуцированного пространства

Поскольку собственные значения ковариационной матрицы ${\bf R}$ отсортированы в порядке убывания $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$

Критерий выбора размерности будет иметь вид:

$$d: rac{\sum\limits_{i=1}^d \lambda_i}{\sum\limits_{i=1}^n \lambda_i} \geq \eta,$$
где $\eta = \{0.95, 0.99\}$

Применение РСА

А всегда ли все хорошо?

PCA Fails

Kernel PCA

Идея

Выберем некоторое нелинейное преобразование $\phi: R^D \to H$, при котором в новом простренстве нелинейное многообразие выборки переходит в гиперплоскость. (Как это сделать?)

Kernel PCA

Пусть далее известно, что скалярное произведение может быть вычислено с помощью функции от данных в исходном пространстве, тогда схему метода главных компонент можно переписать в терминах скалярных произведений

$$\phi(\mathbf{x})^T\phi(\mathbf{y})=K(\mathbf{x},\mathbf{y})$$

Достоиснтва и недостатки РСА

- + Алгоритм прост
- + С помощью "kernel trick" адаптируется на нелинейный случай (Kernel PCA)
- Проблема с вычислением собсвенных векторов ковариационной матрицы в случае большого количества данных
- Координаты объектов в новом пространстве определены неоднозначно

Вопрос:

При каких условиях можно использовать представление данных в виде главных компонент для обучения?

Задача слепового разделения сигналов

Задача повышения четкости фото

blury image = original image * motion trajectory

Independent Component Analysis

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

- ightharpoonup X_i, S_k случайные величины
- ▶ X наблюдаемые данные
- A матрица смешивания
- S неизвестный сигнал

Задача:

Оценить **A** и восстановить исходные сигналы $\hat{\mathbf{S}} = \mathbf{A}^{-1}\mathbf{X} = \mathbf{W}\mathbf{X}$.

Предположение:

lackbox $lackbox{\sf S}_i$ статистически независимы $p(lackbox{\sf S}_1,lackbox{\sf S}_2)=p(lackbox{\sf S}_1)p(lackbox{\sf S}_2)$

Cocktail party problem

Cocktail party problem

Whitening

SVD for $\boldsymbol{\mathsf{A}}$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

$$\boldsymbol{\mathsf{W}} = \boldsymbol{\mathsf{A}}^{-1} = \boldsymbol{\mathsf{V}}\boldsymbol{\mathsf{\Sigma}}^{-1}\boldsymbol{\mathsf{U}}^{T}$$

Предположим, что

$$\mathbf{SS}^{\mathcal{T}} = \mathbf{I}$$

Whitening

С одной стороны

$$\mathbf{X}\mathbf{X}^T = \mathbf{E}\mathbf{D}\mathbf{E}^T$$

С другой

$$\begin{aligned} \mathbf{X}\mathbf{X}^T &= \mathbf{A}\mathbf{S}(\mathbf{A}\mathbf{S})^T = \\ &= \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{S}(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{S})^T = \\ &= \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T(\mathbf{S}\mathbf{S}^T)\mathbf{V}\mathbf{\Sigma}\mathbf{U}^T \\ &= \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T \end{aligned}$$

Таким образом

$$\mathbf{W} = \mathbf{V} \mathbf{D}^{-1/2} \mathbf{E}^T$$

- ▶ D собственные значения выборочной ковариационной матрицы
- ▶ Е матрица собственных векторов ковариационной матрицы

Whitening

$$\mathbf{X}_w = \mathbf{D}^{-1/2} \mathbf{E}^T \mathbf{X}, \quad \mathbf{X}_w \mathbf{X}_w^T = \mathbf{I}$$

The statistics of independence

Статистическая независимость

$$P(\mathbf{S}) = \prod_{i} P(\mathbf{S}_{i})$$

Взаимная информация

$$I(\mathbf{y}) = \int P(\mathbf{y}) log_2 \frac{P(\mathbf{y})}{\prod_i P(\mathbf{y})} d\mathbf{y}$$

$$H[\mathbf{y}] = -\int P(\mathbf{y}) log_2 P(\mathbf{y}) d\mathbf{y}$$

$$I(\hat{\mathbf{S}}) = \sum_i H[(\mathbf{V}\mathbf{X}_w)_i] - H[\mathbf{V}\mathbf{X}_w] = \sum_i H[(\mathbf{V}\mathbf{X}_w)_i] - (H[\mathbf{X}_w] + log_2 |\mathbf{V}|)$$

$$\mathbf{V} = arg \min_{\mathbf{V}} \sum_i H[(\mathbf{V}\mathbf{X}_w)_i]$$

Independent Component Analysis

Схема

- 1. Центрируем данные $\mathbf{X_i} \leftarrow (\mathbf{X_i} \mathbf{\bar{X}}) : \mathbf{\bar{X}} \leftarrow \frac{1}{N} \sum_{i=1}^{N} \mathbf{X_i}$
- 2. "Отбеливаем" данные

$$\mathbf{X}_w = \mathbf{D}^{-1/2} \mathbf{E}^T \mathbf{X}$$

- 3. Находим ортогональную матрицу **V**
 - ► Infomax
 - FastICA
 - JADE

PCA vs ICA

Геометрическая интерпретация

PCA vs ICA

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] \left[\begin{array}{c} s_1 \\ s_2 \end{array}\right]$$

► Сравнение PCA vs ICA на искуственном временном ряде, смоделированном по 1000 равномерно расспределенным точкам.

Применение ICA

Методы основанные на автоэнкодерах

$$J(\mathbf{w}) = \sum_{i=1}^{N} \|f(\mathbf{x}_i, \mathbf{w}) - \mathbf{x}_i\|^2 \to \min$$

Замечание

Если в сети всего один скрытый слой, тогда результат эквивалентен PCA.

PCA vs Autoencoder

Задача визуализации тематических текстовых документов

- ▶ D = 2000 "мешок слов"
- ▶ $N = 4 \cdot 10^5$ документов

"Бабушкин" нейрон

- Andrew Ng
- 9-ти слойный разряженный автоэнкодер
- Асинхронный градиентный спуск
- 10 млн. кадров случайно взятых из роликов youtube
- Удалось найти нейрон, отвечающий за наличие лица в кадре

▶ http://habrahabr.ru/post/146077/

Вопросы

