Updates on Inelasticity and PID Reconstruction with 2D CNNs

Josh Peterson 2023 IceCube Collaboration Meeting Oscillations Parallel Session

Motivation

- Maria and I developed a deep convolutional neural network for PID, I then used the same model for inelasticity
 - Links to presentations on these networks: <u>Link</u>, <u>Link</u>
- PID classification is one of the main limiting factors in current oscillation studies
- Inelasticity could be used to statistically separate neutrinos from antineutrinos
 - MSW resonance only occurs for neutrinos or antineutrinos depending on the NMO
 - This could help with studies about NMO, tomography, breaking the octant degeneracy of θ_{23} , BSM studies at higher energies (arXiv:1303.0758, arXiv:1406.3689)

Data Input

- Each row represents a DOM on the string
 - Only use DOMs below the dust layer
- Each column is a slice in time
- The value of each pixel represents the total charge detected

New Geometry

- I use DeepCore and the IceCube strings that surround DeepCore (shown in the blue hexagon)
- Only DOMs below the dust layer are used
- In later slides, I will refer to this portion of the detector as "DeepCore Plus"

CNN Information

10 layer convolutional neural network

- 8 convolution layers
- 2 fully connected layers

Trained on level 3 data with some simple charge and containment cuts

- Low level data chosen for larger training set
- Can apply network to higher levels

For inelasticity:

- Train with v_{μ} events
- Utilize the L1 loss

For PID:

- Train with v_{μ} and v_{e} events
- Utilize a modified binary cross entropy loss

y Results at Different Energies

- Failure to reconstruct y for events below 30 GeV
 - Matter effects with standard three flavor oscillations are below 20 GeV
- Reconstruction performance improves with larger energies (expected)

Why a Flat Distribution?

Seeing similar behavior with transformers

Likely, there just isn't enough information for effective reconstruction and so the optimal thing to do is guess the mean

v_{μ} / $\overline{v_{\mu}}$ Separation

- The reconstructed inelasticity distribution isn't completely flat
 - May have some neutrino/antineutrino separation power with just two reconstructed inelasticity bins
- Bin the track events with true energies from 3 GeV to 30 GeV into two bins, above and below the mean reconstructed inelasticity

Bin	$\overline{ u_{\mu}}/(\overline{ u_{\mu}}+ u_{\mu})$
$ > y_{reco} = 0.33 $	0.30
$< y_{reco} = 0.33$	0.33

Improving Higher Energy Reconstruction

Training set energy: 3 GeV to 1 TeV

Training set energy: 30 GeV to 1 TeV

• Definite improvement in reconstruction of larger inelasticities when we remove events with energies below 30 GeV from the training set

- The difference vs. energy plot (left) shows a skewing of reconstruction above 300 GeV
 - Skewing is towards higher inelasticity values, suggesting that the outgoing muon is escaping, which means we see less of the track
 - This gives an upper-end energy limit on what we can do with the "DeepCore Plus" volume
- The difference vs. true inelasticity plot shows a "squeezing" of the CNN output

Escaping Muons

End of Track Distribution (Upgoing)

160

Containment Cuts

Veto region:

DeepCore Plus:

Track Event:

- Since we are only using part of the detector, we can use the rest of the detector as a veto region
 - Calculate the ratio of charge in DeepCore Plus to total charge, cut harshly on that ratio (I used 0.99)
- Use the bottom layer of DOMs as a veto region for down going events. If any charge is seen on the bottom layer, we cut the down going event
 - Cannot make charge cuts on muons that escape out the bottom of the detector, since there aren't any DOMs to pick up charge

Cut Results

- With these new cuts we see significantly less events escaping the DeepCore Plus volume
- Currently training CNNs for PID and y with FLERCNN Level 6 & 8 MC sets using these new cuts
 - Also limiting the energy to 300 GeV

Many Reconstruction Algorithms

- At this point in time, we have multiple reconstruction algorithms for PID, Energy, etc.
- Rather than sticking with one, it might be worth using multiple
 - Stacked Generalization Use outputs of many classifiers / regressors as input for another classifier / regressor
 - Voting select classification based on majority vote
 - Averaging
- Going to investigate combining FLERCNN and my 2D CNNs for improved PID classification

Binning w/ Decision Trees

- Can use a decision tree to generate binning schemes
- Bin sizes correspond to the amount of information available in that region of parameter space
 - Can enforce minimum bin counts, good for hypersurfaces!
- Vedant Basu and I are working on figuring out how to encode physics information into the generation of the decision trees
- Maybe applicable to oscillation analyses as well?

Summary

- Have trained 2D CNNs for inelasticity and PID reconstruction
 - Can reconstruct inelasticity above 30 GeV
 - Minimal neutrino / antineutrino separation below 30 GeV
- Determined better energy cuts and developed new containment cuts for training
- Coming in the near future:
 - CNNs trained with new energy and containment cuts
 - Combining FLERCNN and my 2D CNNs for PID
 - Binning with decision trees?

- $v_{\mu} \rightarrow v_{e}$ probability increases when $\theta_{23} > 45^{\circ}$ and decreases when $\theta_{23} < 45^{\circ}$
 - \Rightarrow suppression of track events for $\theta_{23} > 45^{\circ}$
 - \Rightarrow enhancement of track events for $\theta_{23} < 45^{\circ}$
- $P_{\mu e} = 4s_{13}^2 s_{23}^2 \frac{\sin^2(A-1)\Delta}{(A-1)^2} + H.O.T.$
- Leading probability term is asymmetric about $\theta_{23} = 45^{\circ}$

18

$$A = \frac{2E}{\Delta m_{31}^2} (7.56 \times 10^{-14} eV) \left(\frac{\rho(x)}{g/cm^3}\right) Y_e(x)$$

Breaking the Octant Degeneracy

- Referring to the oscillogram difference plots on slide 2, I wanted to check the baseline corresponding to the maximum difference from $\theta_{23}=45^{\circ}$
- Δm_{31}^2 seems to have a significant impact on the survival probability, and introduces degenerate solutions
- The next plots will show the degeneracy gets worse with increasing energy

Inelasticity

- Bjorken $y := \frac{p_2 \cdot (p_1 p_3)}{p_2 \cdot p_1}$
- In the high energy limit:

$$y = \frac{E_{\nu} - E_{\mu}}{E_{\nu}}$$

arXiv:1406.3689

- Neutrinos have a higher average inelasticity than antineutrinos
- At GeV energies, the outgoing muon is a minimum ionizing particle ⇒ average track length is directly proportional to muon energy
 - Determining inelasticity could then also be determined through topology, so a natural candidate for our CNN

Other Things I Tried That Didn't Help

- Jason Koskenan suggested I try having the NN output a beta probability distribution instead of a measured y
 - NN outputs the concentrations, α and β , of the beta distribution
 - The loss you minimize is $-Log(Beta(y_{true}; \alpha, \beta))$
 - Your measurement is then the mode of the distribution
- I tried incorporating spatial information through additional channels per image, and then you convolve with a 4-dimensional kernel
 - Kind of strange since I'm only adding information

Impact of >300 GeV Events

Better fit at lower inelasticity values

Cut Results

Before containment cuts

After containment cuts

With the new cuts we also see a significant reduction in the tail of the distribution towards high energies 23

PID Results

- Receiver Operating Characteristic (ROC)
 Curves for the 2D CNN and BDT
- Plots include numu, nue, and nutau events
 - Nutau events are labeled as cascade
- Events are weighted with the atmospheric weights (assume 10 years of livetime)

PID Results

- Histogram of test set events binned by assigned track score
- Same events as the previous plot
- Events are weighted with the atmospheric weights (assume 10 years of livetime)

