

Linear Algebra II Real Canonical Forms

Ming-Hsuan Kang

Introduction

Recall that for a real normal matrix, it can be only diagonalized under a complex basis. In practice, we would like only use real base. In this case, is there standard way to represent a linear transform?

Complex Invariant Subspaces

Let A be a real matrix with a non-real eigenvalue λ . Let \vec{v} be an eigenvector corresponding to λ . Note that

$$A\vec{v} = \lambda \vec{v} \quad \Rightarrow \quad A\overline{\vec{v}} = \overline{A}\,\overline{\vec{v}} = \overline{\lambda}\,\overline{\vec{v}}.$$

Therefore, $\overrightarrow{\vec{v}}$ is an eigenvector corresponding to the eigenvalue $\overline{\lambda}$. Let W be a subspace with basis $\alpha = \{\vec{v}, \vec{\vec{v}}\}$. Then

$$\operatorname{Rep}_{\alpha} L_{A}|_{W} = \begin{pmatrix} \lambda & \underline{0} \\ 0 & \overline{\lambda} \end{pmatrix}.$$

For a real matrix, its complex eigenvalues will always occur in complex conjugate pairs.

Real Invariant Subspaces

Set
$$\lambda = a - bi$$
, $\vec{v}_1 = \text{Re}(\vec{v})$, and $\vec{v}_2 = \text{Im}(\vec{v})$. Then

$$A(\vec{v}_1 + i\vec{v}_2) = (a - bi)(\vec{v}_1 + i\vec{v}_2) = (a\vec{v}_1 + b\vec{v}_2) + i(-b\vec{v}_1 + a\vec{v}_2).$$

We conclude that

$$A\vec{v}_1 = a\vec{v}_1 + b\vec{v}_2$$
 and $A\vec{v}_2 = -b\vec{v}_1 + a\vec{v}_2$.

Set $\beta = \{\vec{v}_1, \vec{v}_2\}$, which is another basis of W. Then

$$\operatorname{Rep}_{\beta}(L_A|_W) = \begin{pmatrix} a - b \\ b & a \end{pmatrix}.$$

Example

Example

Let $A=\begin{pmatrix} 5 & -2 \\ 5 & -1 \end{pmatrix}$ which eigenvalues are $2\pm i$. Let $\vec{v}=\begin{pmatrix} 3-i \\ 5 \end{pmatrix}$ be an eigenvector corresponding to the eigenvalue $\lambda=2-i$. Then, $\overline{\vec{v}}=\begin{pmatrix} 3+i \\ 5 \end{pmatrix}$ is an eigenvector corresponding to the eigenvalue $\overline{\lambda}=2+i$. Note that $\vec{v}=\begin{pmatrix} 3-i \\ 5 \end{pmatrix}=\begin{pmatrix} 3 \\ 5 \end{pmatrix}+i\begin{pmatrix} -1 \\ 0 \end{pmatrix}$. Let $P=\begin{pmatrix} 3 & -1 \\ 5 & 0 \end{pmatrix}$. Then

$$A = P\left(\begin{smallmatrix} 2 & -1 \\ 1 & 2 \end{smallmatrix}\right) P^{-1}.$$

Real Canonical Form of Complex Diagonalizable Matrices

Let A be a complex diagonalizable real matrix with pairs of complex eigenvalues $\lambda_1, \bar{\lambda}_1, \cdots, \lambda_k, \bar{\lambda}_k$ and real eigenvalues $\lambda_{k+1}, \cdots, \lambda_{k+r}$. Let $\vec{v_j}$ be the eigenvector corresponding to λ_j . Write $\vec{v_j} = \vec{u_j} + i\vec{w_j}$ for j=1 to k. Then

$$\alpha = \{\vec{u}_1, \vec{w}_1, \cdots, \vec{u}_k, \vec{w}_k, \vec{v}_{k+1}, \cdots, \vec{v}_{k+r}\}$$

forms a basis of \mathbb{R}^{2k+r} . Moreover, let $\lambda_j = a_j - ib_j$. Then

$$\operatorname{Rep}_{lpha}(\mathcal{L}_{A}) = egin{pmatrix} a_{1} & & & & & \\ b_{1} & a_{1} & & & & \\ & & \ddots & & & \\ & & & a_{k} - b_{k} & & \\ & & & b_{k} & a_{k} \end{pmatrix} \lambda_{k+1} & & & \\ & & & \ddots & & \\ & & & & \lambda_{k+r} \end{pmatrix}$$

Real Canonical Form of Orthogonal Matrices

In the previous slide, suppose A is an orthogonal matrix. For $1 \leq j \leq k$, $\lambda_j = e^{-i\theta_j} = \cos\theta_j - i\sin\theta_j$ for some θ_j and $\lambda_{k+j} = \pm 1$ for $1 \leq j \leq r$. In this case,

$$\operatorname{Rep}_{eta}(L_A) = egin{pmatrix} \cos heta_1 & -\sin heta_1 \ & \sin heta_1 & \cos heta_1 \end{pmatrix} \cdot \cdot \cdot \ & \cos heta_k & -\sin heta_k \ & \sin heta_k & \cos heta_k \end{pmatrix} \cdot \cdot \cdot \cdot + 1$$

Corollary

Every orthogonal matrix is a composition of rotations on 2-dimensional plans and reflections on 1-dimensional lines.