

Graphen-Färben Vorlesung am 29.04.2015

Institut für Theoretische Informatik · Prof. Dr. Dorothea Wagner

Gesehen:

Planare Graphen sind 5-färbbar.

Jetzt:

Planare Graphen sind 5-listen-färbbar.

Instanz von Listenfärbung:

- Graph G = (V, E)
- Liste S_v von Farben für jedes $v \in V$

Lässt sich jedem Knoten v eine Farbe aus S_v zuordnen, sodass G korrekt gefärbt ist?

Ein Graph ist k-listen-färbbar, wenn das obige Probleme für jede Familie $(S_v)_{v \in V}$ mit $|S_v| = k$ für all $v \in V$ lösbar ist.

Satz

Jeder planare Graph ist 5-listen-färbbar.

Beweis: Beweise Induktionsinvariante für alle Graphen mit mindestens drei Knoten.

- G planarer Graph
- innere Facetten Dreiecke
- \blacksquare Äußere Facette durch Kreis $C = v_1 \cdots v_k v_1$ begrenzt
- v₁ mit Farbe 1 gefärbt
- v₂ mit Farbe 2 gefärbt
- Jeder Knoten auf C ist mit Liste assoziiert, die mindestens drei Farben enthält.
- lacktriangle Knoten aus G-C haben mindestens fünf mögliche Farben.

Dann lässt sich die Färbung von v_1 und v_2 zu einer Färbung von G aus den gegebenen Listen erweitern.

Es gibt eine Sehne:

- Färbe erst den Teil der v₁ v₂ enthält.
- Färbe dann den anderen Teil, gib dabei Farben der Sehnenknoten vor.

Es gibt keine Sehne:

- Reserviere zwei Farben von v_k aus den Listen seiner Inneren Nachbarn.
- Färbe Rest induktiv, v_{k-1} kann nicht beide reservierten Farben verbrauchen.

Satz

Es gibt planare Graphen, die nicht 4-listen-färbbar sind.

Satz

Es gibt planare Graphen, die nicht 4-listen-färbbar sind.

