1. Sample Solution

Let $u, v, w, z \in \mathbb{R}^+$.

#Proof by contrapositive.

Assume $\frac{u+z}{v+w} \geqslant \frac{z}{w}$.

Then $uw + zw \geqslant vz + wz$.

Then $uw \geqslant vz$.

Then $\frac{u}{v} \geqslant \frac{z}{w}$.

Then $\frac{u+z}{v+w} \geqslant \frac{z}{w} \Rightarrow \frac{u}{v} \geqslant \frac{z}{w}$.

Then $\frac{u}{v} < \frac{z}{w} \Rightarrow \frac{u+z}{v+w} < \frac{z}{w}$.

Therefore $\forall u, v, w, z \in \mathbb{R}^+ : \frac{u}{v} < \frac{z}{w} \Rightarrow \frac{u+z}{v+w} < \frac{z}{w}$.

2. Sample Solution

Let $x, y \in \mathbb{R}$.

#Proof by contrapositive.

Assume y > x.

Then y - x > 0.

Then $x^2 + y^2 > 0$. #if x = 0 then $y \neq 0$ and vice versa

Then $(y-x)(x^2+y^2) > 0(x^2+y^2)$.

Then $yx^2 + y^3 - x^3 - xy^2 > 0$.

Then $y^3 + yx^2 > x^3 + xy^2$.

Then $x > y \Rightarrow y^3 + yx^2 > x^3 + xy^2$.

Then $(y^3 + yx^2 \leqslant x^3 + xy^2) \Rightarrow (y \leqslant x)$.

Therefore $\forall x, y \in R : (y^3 + yx^2 \leqslant x^3 + xy^2) \Rightarrow (y \leqslant x)$.

3. Sample Solution

Let $n \in \mathbb{N}$.

#Proof by contrapositive.

Assume E(n).

Then $\exists k \in \mathbb{N} : n = 2k$.

Then let $k_0 \in \mathbb{N}$ be s.t. $n = 2k_0$.

Then $n^2 + 3 = 4k_0^2 + 3$.

$$= 2(2k_0^2 + 1) + 1.$$
Let $k_1 = 2k_0^2 + 1$.
Then $k_1 \in \mathbb{N}$.
Then $n^2 + 3 = 2k_1 + 1$.
Then $\exists k \in \mathbb{N} : n^2 + 3 = 2k + 1$.
Then $O(n^2 + 3)$.
Then $E(n) \Rightarrow O(n^2 + 3)$.
Then $E(n^2 + 3) \Rightarrow O(n)$.

Therefore $\forall n \in \mathbb{N} : E(n^2 + 3) \Rightarrow O(n)$

4. Sample Solution

Let $n \in \mathbb{N}$.

Assume $\exists a, b \in \mathbb{Z} : n = 5a + 7b$.

Let $a_0, b_0 \in \mathbb{Z}$ such that $n = 5a_0 + 7b_0$.

Then, $n + 1 = 5a_0 + 7b_0 + 1$.

Then, $n + 1 = 5a_0 + 7b_0 - 20 + 20 + 1$.

Then, $n + 1 = 5a_0 + 7b_0 - 5(4) + 21$.

Then, $n + 1 = 5a_0 + 7b_0 - 5(4) + 7(3)$.

Then, $n + 1 = 5(a_0 - 4) + 7(b_0 + 3)$.

Let $a_1 = a_0 - 4$.

Then, $a_1 \in \mathbb{Z}$.

Let $b_1 = b_0 + 3$.

Then, $b_1 \in \mathbb{Z}$.

Then, $n+1=5a_1+7b_1$.

Then, $\exists a, b \in \mathbb{Z} : n+1 = 5a + 7b$.

Then, $[\exists a, b \in \mathbb{Z} : n = 5a + 7b] \Rightarrow [\exists a, b \in \mathbb{Z} : n + 1 = 5a + 7b].$

Then, $\forall n \in \mathbb{N} : [\exists a, b \in \mathbb{Z} : n = 5a + 7b] \Rightarrow [\exists a, b \in \mathbb{Z} : n + 1 = 5a + 7b].$

5. Sample Solution.

(a) False, so disproof. Write the negation symbolically:

$$\exists r, s \in \mathbb{R} : (r > 0 \land s > 0) \land \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}$$

Let $r_0 = 1, s_0 = 1$ # the first, and easiest, reals to work with to introduce \exists

Then $r_0, s_0 \in \mathbb{R}$ # $r_0 = s_0 = 1 \in \mathbb{R}$

Then $r_0 > 0 \land s_0 > 0$ # 1 > 0

Then $\sqrt{r_0} + \sqrt{s_0} = \sqrt{1} + \sqrt{1} = 1 + 1 = 2 \neq \sqrt{2} = \sqrt{1+1} = \sqrt{r_0 + s_0}$ # substitute $r_0 = s_0 = 1$

Then $\exists r, s \in \mathbb{R} : (r > 0 \land s > 0) \land \sqrt{r} + \sqrt{s} \neq \sqrt{r+s} \quad \text{\# introduced } \exists$

(b) True, write the statement symbolically:

$$\forall r \in \mathbb{R} : \forall s \in \mathbb{R} : r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}$$

Let $r, s \in \mathbb{R}$.

```
# proof by contraposition (indirect proof)
     Assume \sqrt{r} + \sqrt{s} = \sqrt{r+s}.
          Then, (\sqrt{r} + \sqrt{s})^2 = (\sqrt{r+s})^2. # square both sides
          Then, (\sqrt{r})^2 + 2\sqrt{r}\sqrt{s} + (\sqrt{s})^2 = r + s. # expand both sides
          Then, 2\sqrt{rs} = 0. # subtract r + s from both sides
          Then, rs = 0. # divide by 2 and square both sides
          Then, r = 0 \lor s = 0.
          # Now, do a sub-proof by cases.
          Case 1: Assume r = 0.
             Then, r \geq 0.
             Then, r \not > 0 \lor s \not > 0.
             Then, \neg (r > 0 \land s > 0).
          Case 2: Assume s = 0.
             Then, s \not > 0.
             Then, r \not > 0 \lor s \not > 0.
             Then, \neg (r > 0 \land s > 0).
          Then, \neg (r > 0 \land s > 0). # for both cases
     Then, \sqrt{r} + \sqrt{s} = \sqrt{r+s} \Rightarrow \neg (r > 0 \land s > 0).
                                                                      # introduced contrapositive
     Then, r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}.
Then, \forall r \in \mathbb{R} : \forall s \in \mathbb{R} : r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}.
```

6. Sample Solution.

```
Let x \in \mathbb{Q}.
Assume x \neq 0.
Then \exists p, q \in \mathbb{Z} : q \neq 0 \land x = p/q.
Let p_0, q_0 \in \mathbb{Z} : x = p_0/q_0.
Then p_0 = xq_0 \neq 0.
Let a_0 = \sqrt{2}.
Then a_0 \in \mathbb{I}. #proved in class.
Let b_0 = x/\sqrt{2}.
\# Will prove that b is irrational by contradiction.
Suppose b_0 \notin \mathbb{I}.
Then b_0 \in \mathbb{Q}. # b is real number so if it is not irrational, has to be rational.
Then \exists s_0, t_0 \in \mathbb{Z} : b_0 = s_0/t_0.
Let r_0 = xt_0/s_0.
Then r_0 \in \mathbb{Q}.
Also \sqrt{2} = r_0.
Then \sqrt{2} \in \mathbb{Q}. #contradicts the known fact \sqrt{2} \in \mathbb{I}.
Then b_0 \in \mathbb{I}.
Then x = a_0 b_0.
Then \exists a, b \in \mathbb{I} : x = ab.
Then x \neq 0 \Rightarrow \exists a, b \in \mathbb{I} : x = ab.
Therefore \forall x \in \mathbb{Q} : x \neq 0 \Rightarrow [\exists a, b \in \mathbb{I} : x = a \cdot b].
```