UVOD V GEOMETRIJSKO TOPOLOGIJO: 1. TEST 3. 4. 2015

1. NALOGA (5 točk)

Na množici X zvezno odvedljivih preslikav $[0,1] \to \mathbb{R}$ sta podani metriki d_0 in d_1 :

$$d_0(f,g) = \sup \{ |f(x) - g(x)| \mid x \in [0,1] \},$$

$$d_1(f,g) = d_0(f,g) + d_0(f',g').$$

- a. Obravnavaj konvergenco zaporedja $f_n(x) = \frac{1}{n}\sin(n^2x)$ glede na d_0 in d_1 . b. Dokaži, da je preslikava $\Phi \colon (X, d_0) \to (X, d_1)$, podana s predpisom

$$\Phi(f)(x) = \int_0^x f(\xi) d\xi,$$

zvezna.

c. Dokaži, da je množica vseh polinomov gosta v (X, d_1) .

2. NALOGA (5 točk)

Na ravnini \mathbb{R}^2 je podana naslednja ekvivalenčna relacija:

(*)
$$(x,y) \sim (u,v) \iff (x,y) = (u,v) \text{ ali } (x = u = 0 \text{ in } \{y,v\} \in [-1,1]).$$

- a. Naj bo $K = [-1,1] \times [-1,1]$. Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru prostora K po zožitvi relacije (\star) .
- b. Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru ravnine \mathbb{R}^2 po relaciji (*).
- c. (*) Naj bo $X=(\mathbb{R}\setminus\{0\}\times\mathbb{R})\cup(\{0\}\times[-1,1])$. Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru prostora X po zožitvi relacije (\star) .

Rešitve oziroma odgovore utemelji.

TEORETIČNA NALOGA (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna (P) oziroma napačna (N). Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Naj bo $f: \mathbb{R} \to \mathbb{R}$ zvezna funkcija. Tedaj obstaja tak polinom p , da velja $ f(x) - p(x) < 12$ za vsa realna števila $x \in [-12, 12]$.
Množice $G(K,V)=\{f\in C(X,Y) f(K)\subset V\}$, kjer je K kompaktna podmnožica v X in V odprta podmnožica v Y , tvorijo podbazo kompaktno odprte topologije na $C(X,Y)$.
Če je X kompakten topološki prostor, Y pa metrični prostor, je topologija, ki jo porodi metrika enakomerne konvergence na $C(X,Y)$, strogo finejša od kompaktno odprte topologije.
Kvocientni prostor $\mathbb{R}/\big((-\infty,-1]\cup[1,\infty)\big)$ je homeomorfen intervalu $[-1,1]$.
Naj bo \sim ekvivalenčna relacija na prostoru X . Kvocientni prostor X/\sim je diskreten natanko tedaj, ko so ekvivalenčni razredi odprti v X .
Vsaka zvezna surjekcija iz Hausdorffovega v metrični prostor je kvocientna.
Kvocientni prostor kompaktnega prostora je kompakten.
Naj topološka grupa G deluje na prostoru X . Kvocientna projekcija $X \to X/G$ je vedno odprta.
Kvocientni prostor nepovezanega prostora je nepovezan.
Naj bo $q\colon X\to Y$ kvocientna preslikava. Množica $A\subset X$ je nasičena glede na q , če velja $A=q^{-1}(q(A)).$