Module Design Goals

Multifunctionality:

- automated workflows like in &AiiDA
- manual data analysis with Python

no boiler code!

- Desktop

Preprocessor Module

Input: Hierarchical Data Format (HDF).

Module uses type introspection to enable features:

- modular output types for application domain (e.g. viz)
- dependency resolution

Data Selection for Viz

The main compute-intensive routine:

$$W_{s,\mathbf{k},\nu}^{\mathrm{eff}} = \begin{pmatrix} \sum\limits_{\substack{g \in \mathrm{groups} \\ c \in \mathrm{characters}}} n_{s,\mathbf{k},\nu,g,I} G_g \\ \frac{\sum\limits_{\substack{g \in \mathrm{all \ groups} \\ c \in \mathrm{all \ characters}}} \end{pmatrix} \left(W_{s,\mathbf{k},\nu}^{\mathrm{unf}}\right)^{\alpha}$$

Theory: *I*-like charge density:

$$n_{\nu,l}^{\mu}(\mathbf{k}) = \int_{MT^{\mu}} |\psi_{\nu,l}^{\mu}(\mathbf{k}, \mathbf{r})|^2 d^3 r :\approx n_{s,\mathbf{k},\nu,g,l}$$

Faster rendering

Typically, $\sim 10^7$ data points are accessed.

Optimizations:

- reshaping $(\mathbf{k}, \nu) \rightarrow (\mathbf{k} \cdot \nu)$
- weight filter t: $W_{s,\mathbf{k},\nu}^{\text{eff}} > t$
- using optimized numpy functions for tensor product
- buffering on selection change

TODO → Result: speedup of about ???factor???

Visualization Module

- Abstract interfaces for different viz. libs and applications
- InteractiveControlDisplay as frontend contracts

Desktop Frontend

TODO Praneeth?

Preprocessor Interactive Visualization Desktop Frontend Web Frontend

Web Frontend

TODO Selection Process from Notes

Implementation

Preprocessor Interactive Visualization Desktop Frontend Web Frontend

TODO Selection Process Choices from Notes