MIME LM115

TD 5: Intégrales

Rappel de cours :

Soit f une fonction continue sur un intervalle [a, b], soit ϕ une fonction définie sur [α , β] admettant une dérivée continue $\phi(\alpha) = a$ et $\phi(\beta) = b$.

Changement de variable $x = \phi(t)$:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f[\phi(t)]\phi'(t)dt.$$

La nouvelle intégrale définie portant sur la variable t s'obtient en remplaçant dans la première les bornes a et b par α et β , puis dans le symbole f(x)dx, f(x) par $f[\phi(t)]$ et dx par $\phi'(t)dt$

Exercice 1 L'objectif est de calculer les intégrales suivantes :

$$I = \int_0^1 \frac{dx}{\sqrt{x^2+1}}, J = \int_0^1 \frac{x^2}{\sqrt{x^2+2}} dx, K = \int_0^1 \sqrt{x^2+2} dx$$

- 1) Soit f la fonction définie sur [0,1] par $f(x) = \ln(x+\sqrt{x^2+1})$. Calculer sa dérivée, en déduire
- 2) Calcul de J et de K.
 - a) Montrer que J + 2I = K.
 - b) A l'aide d'une intégration par parties portant sur K, montrer que $K=\sqrt{3}-J$
 - c) En déduire les valeurs de J et de K.

- **Exercice 2** 1) Démontrer que $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ (question traitée dans le cours). 2) Soit $I_n = \frac{1}{n} \sum_{k=1}^{n} \frac{k^2}{n^2}$, montrer que $(I_n)_{n\geq 1}$ converge et calculer sa limite. Que représente cette limite?
- 3) Calculer à l'aide d'un primitive de x^2 , l'intégrale $\int_0^1 x^2 dx$.

Exercice 3 Utiliser la définition de l'intégrale pour montrer que la suite $(u_n)_{n\geq 1}$ définie par : $u_n = \frac{1}{n} \left(1 + \cos \frac{a}{n} + \cos \frac{2a}{n} + \dots + \cos \frac{(n-1)a}{n} \right)$, converge vers $\frac{\sin a}{a}$.

Exercice 4 1) Calculer $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$.

- 2) Calculer $I = \int_0^{1/2} \frac{x dx}{\sqrt{1-x^2}}$ avec le changement de variable $1-x^2=t$.
- 3) Démontrer que $I=\frac{1}{2}\arcsin(1/2)-\int_0^{1/2}\arcsin(x)dx$. Retrouver le résultat précédent en faisant un changement de variable dans $\int_0^{1/2}\arcsin(x)dx$.
- 4) Soit $b \ge a > 0$, calculer $J = \int_a^b \frac{x dx}{\sqrt{x^2 + 1}}$ en posant $t = x^2 + 1$. Donner une primitive de

Exercice 5 1) Déterminer une primitive de sin² à l'aide de la formule trigonométrique (à connaître):

$$\sin^2(t) = \frac{1 - \cos(2t)}{2}.$$

2) Soit a > 0, on cherche à calculer $I = \int_0^a \sqrt{a^2 - x^2} dx$. En effectuant le changement de variable défini par $x = a\cos(t)$ pour $t \in [0, \pi/2]$, montrer que

$$I = a^2 \int_0^{\pi/2} \sin^2(t) dt.$$

Justifier bien le changement de variable (attention aux bornes).

3) Déterminer la valeur de I.

Exercice 6 Calculs:

1)
$$\int_0^y \frac{(1-x)^2}{\sqrt{x}} dx$$

2)
$$\int_0^y \frac{x+3}{x+1} dx$$

3)
$$\int_0^y \frac{dx}{\sqrt{2x-x^2}}$$
 (on posera $x=2\sin^2 u$)

Exercice 7 Soit f une fonction définie et continue sur [-r, r]. Montrer que :

- 1) Si cette fonction est paire, $\int_{-r}^{r} f(x)dx = 2 \int_{0}^{r} f(x)dx$.
- 2) Si cette fonction est impaire, $\int_{-r}^{r} f(x)dx = 0$
- 3) Calculer les intégrales : $\int_0^{2\pi} |\cos x| dx \, ; \, \int_{-1}^2 |\cos x| dx \, ; \, \int_{-1}^1 x|x| dx.$

Exercice 8 Calculer:

$$-I = \int_0^{2\pi} (a\cos x + b\sin x) dx;$$

$$-I = \int_0^{2\pi} (a\cos x + b\sin x) dx;$$

- $J = \int_0^{2\pi} (a\cos^2 x + b\sin x \cos x + c\sin^2 x) dx;$

Exercice 9 On considère la fonction f définie par $f(x) = \int_0^x \sqrt{\cos 2t} dt$, avec $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$.

- a) En utilisant un changement de variable, montrer que f est une fonction impaire.
- b) Montrer que si $0 \le x \le \pi/4, f(x) \le x$.

Exercice 10 Calculer les intégrales suivantes :

- 1) a) $\int_{-1}^{1} (x^2 1) dx$, b) $\int_{0}^{4} \frac{x dx}{\sqrt{1 + 3x^2}}$, c) $\int_{0}^{1} \frac{\arctan x}{1 + x^2} dx$, d) $\int_{0}^{1} x^2 \sqrt{1 + x^3} dx$, e) $\int_{0}^{\pi/2} x \cos x dx$, f) $\int_0^1 \arcsin x dx$
- 2) Démontrer que $\int_0^1 \arcsin(x) dx = \frac{\pi}{2} \int_0^1 \frac{x}{\sqrt{1-x^2}} dx$, déduire de f), la valeur de $\int_0^1 \frac{x}{\sqrt{1-x^2}} dx$.

Exercice 11 1) Calculer $I_n = \int_0^1 x^n dx$, quelle est la limite de nI_n quand n tend vers $+\infty$?

2) Calculer $J_n = \int_0^1 x^n (1-x^n) dx$, quelle est la limite de nJ_n quand n tend vers $+\infty$?

Exercice 12 p et q étant des entiers positifs, calculer les intégrales : $I = \int_0^{2\pi} \cos(px) \cos(qx) dx$; $J = \int_0^{2\pi} \cos(px) \sin(qx) dx$; $K = \int_0^{2\pi} \sin(px) \sin(qx) dx$.

Exercice 13 Calculer l'intégrale : $\int_0^{\pi/2} x^2 \sin(x) dx$

Exercice 14 f est définie et continue sur [a, b], et vérifie :

$$f(a+b-x) = f(x),$$

pour tout $x \in [a, b]$.

- 1) Que peut on dire du graphe de f?
- 2) A l'aide d'un changement de variable simple, montrer que

$$\int_{a}^{b} x f(x) dx = \frac{a+b}{2} \int_{a}^{b} f(x) dx.$$

3) Appliquer ce qui précède au calcul de $I = \int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} dx$, et en déduire que $I = \pi^2/4$

Exercice 15 f étant une fonction continue, montrer que $x \to \int_x^{x^2+1} f(t)dt$ est une fonction dérivable et calculer sa dérivée

Exercice 16 Déterminer les fonctions continues f telles que la fonction $F(x) = \int_{x-1}^{x+1} f(t) dt$ soit constante.

Exercice 17 f étant continue sur [a, b], démontrer que :

$$\forall \alpha, \beta \in [a, b] \int_{\alpha}^{\beta} f(x) dx = 0 \iff \forall x \in [a, b], f(x) = 0$$

Exercice 18 f étant une fonction continue **positive** sur [a,b], démontrer que $\int_a^b f(x)dx =$ $0 \Longleftrightarrow \forall x \in [a, b], f(x) = 0$

Exercice 19 On considère l'intégrale $I_n = \int_{-1}^1 (x^2 - 1)^n dx$.

- a) A l'aide d'une intégration par parties, démontrer la formule de récurrence : $I_n = -\frac{2n}{2n+1}I_{n-1}$
- b) En déduire la valeur de I_n

Exercice 20 Soit f continue et positive sur [a,b] dans \mathbb{R} . On pose $M=\sup\{f(x);x\in[a,b]\}$. 1) Montrer que $(\int_a^b f(x)^n dx)^{1/n} \leq M(b-a)^{\frac{1}{n}}$. 2) Montrer que pour tout $\epsilon\in]0,M]$, il existe $\eta>0$ tel que pour tout $n\in\mathbb{N}$:

$$\int_{a}^{b} f(x)^{n} dx \ge 2\eta (M - \epsilon)^{n}.$$

3) En déduire que $\left(\int_a^b f(x)^n dx\right)^{1/n} \xrightarrow[n \to \infty]{} M$

Exercice 21 Soit $b \ge a > 0$, calculer $I = \int_a^b \tan(x) dx$. Donner une primitive de tan

Exercice 22 Soit f continue sur [a, b], avec a < b. Montrer qu'il existe c dans [a, b] tel que :

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

Indication: Etudier $\phi(x) = f(x) - \frac{1}{b-a} \int_a^b f(t) dt$

Exercice 23 Soit f continue sur [a, b] Montrer que si $|\int_a^b f(x)dx| = \int_a^b |f(x)|dx$ alors f garde un signe constant sur [a, b].

Exercice 24 Une intégrale issue d'une annale :

L'objectif est de donner une valeur de

$$I = \int_0^{1/2} \frac{e^{-t}}{1 - t} dt.$$

- 1) Justifier l'existence de ${\cal I}.$
- 2) Calculer l'intégrale $J = \int_0^{1/2} e^{-t} (1+t)$.
- 3) a) Montrer que, pour tout $t \neq 1$,

$$\frac{1}{1-t} = 1 + t + \frac{t^2}{1-t}.$$

b) Montrer que pour tout $t \in [0, 1/2]$, on a :

$$t^2 \le \frac{e^{-t}}{1-t} - e^{-t}(1+t) \le 2\frac{t^2}{\sqrt{e}}.$$

c) En déduire un encadrement de I.

Exercice 25 Soit f une fonction continue de [0,1] dans [0,1] telle que f(1)=0.

- 1) Montrer que $\lim_{n\to\infty} n \int_0^1 x^n f(x) dx = 0$.
- 2) En déduire que $\int_0^1 f(x^{1/n}) x^{1/n} dx \xrightarrow[n \to \infty]{} 0$.

- **Exercice 26** Soit f une fonction continue sur l'intervalle [a,b]. 1) Montrer que pour tout $c \in [a,b[,\frac{1}{h}\int_c^{c+h}f(t)dt]$ a une limite quand h tend vers 0, calculer cette limite.
- 2) On définit la fonction F par :

$$F(x) = \int_{a}^{b} f(x+t)\cos(t)dt$$

Montrer que F est dérivable et calculer sa dérivée.

Exercice 27 Propriété de Riemann-Lebesgue

Soit f une fonction continue, démontrer que la suite définie par $u_n := \int_a^b f(t) \sin(nt) dt$ tend vers 0 quand n tend vers ∞

Exercice 28 Soit f une fonction telle que $f(x) \underset{x \to \infty}{\to} l$ pour un certain réel l.

Démontrer que $\frac{1}{n} \int_0^n f(x) dx \to l$.

Exercice 29 On définit la suite $(u_n)_{n\geq 1}$ par :

$$u_n = \int_0^{\pi/2} \sin^n(x) dx.$$

4

Montrer que (u_n) converge vers 0.

Exercice 30 Prolongement par continuité

Soit f une fonction continue sur [a,b]. Soit $z \in]a,b[$. On définit la fonction suivante :

$$F_z: x \to \frac{1}{2x} \int_{x-z}^{x+z} f(t)dt$$

- 1) Donner le domaine de définition de F_z .
- 2) Montrer que $F_z(x) f(z) = \frac{1}{2x} \int_{x-z}^{x+z} (f(t) f(z)) dt$.
- 3) Montrer que $F_z(x) \underset{x\to 0}{\to} f(z)$.
- 4) Déterminer une fonction continue G_z de $[0, \min(b-z, z-a)]$, telle que $G_z(x) = F_z(x)$ pour tout x dans le domaine de définition de F_z .

Exercice 31 Soit f une fonction continue sur [0,1]. On définit F sur [0,1] par :

$$F(x) = \int_0^1 \min(x, t) f(t) dt$$

- 1) Montrer que F est C^2
- 2) Calculer F'', en déduire que :

$$\forall x \in [0,1], F(x) = \int_0^x \left(\int_u^1 f(t)dt \right) du.$$