

Patent Claims:

1. Method for the indirect tire pressure monitoring, characterized by the steps of:
 - Learning of test variables (DIAG, SIDE, AXLE), which describe the rotational movements of the wheels,
 - Determining of rolling circumference differences (Δ DIAG, Δ SIDE, Δ AXLE) from actually determined test variables and the learnt test variables,
 - Learning of at least one torsion natural frequency f_p for at least one tire from the oscillation behavior of the individual tires,
 - Determining at least one shift of the torsion natural frequency Δf_p from at least one actually determined torsion natural frequency and from the at least one learnt torsion natural frequency, and
 - combining the rolling circumference differences (Δ DIAG, Δ SIDE, Δ AXLE) with the at least one shift of the torsion natural frequency f_p in a joint warning strategy for detecting and warning of tire inflation pressure loss.
2. Method as claimed in claim 1, characterized in that the learning operation is not started until an automatically or manually generated signal (reset).
3. Method as claimed in claim 1, characterized in that the learning operation is executed while the tires heat up and/or cool down.

4. Method as claimed in claim 1 or 3,
characterized in that the learning
operation is executed in several different speed
intervals, and/or wheel torque intervals, and/or lateral
acceleration intervals.
5. Method as claimed in claim 1,
characterized in that initially only the
rough position of the torsion natural frequency f_p is
determined in a wide frequency range, in particular in the
frequency range of roughly 20 hertz to roughly 60 hertz,
with a coarse frequency resolution, in particular with a
frequency resolution of 1 hertz approximately.
6. Method as claimed in claim 5,
characterized in that subsequently a range
is defined around the approximate position of the torsion
natural frequency f_p , in which the precise position of the
torsion natural frequency f_p is determined with a fine
frequency resolution, in particular with a frequency
resolution of 0.5 hertz approximately.
7. Method as claimed in claim 3,
characterized in that the complete heating
and/or cooling of the tires is detected from a uniform
increase or reduction of the torsion natural frequencies
 f_p of all tires to an almost constant final value.
8. Method as claimed in claim 3,
characterized in that the change of the
outside or ambient temperature is evaluated with respect
to the heating/cooling of the tires.

9. Method as claimed in claim 3,
characterized in that a rain sensor is evaluated with respect to the heating/cooling of the tires.
10. Method as claimed in claim 3,
characterized in that the length of a vehicle immobilization time allows obtaining information about the condition (cold or warm) of the tires.
11. Method as claimed in claim 1,
characterized in that a warning regarding tire inflation pressure loss is issued when at least one rolling circumference difference (Δ DIAG, Δ SIDE, Δ AXLE) or at least one shift of the torsion natural frequency Δf_p exceeds a previously fixed coarse threshold.
12. Method as claimed in claim 1,
characterized in that a warning regarding tire inflation pressure loss is issued when the shifts of the torsion natural frequencies Δf_p of all wheels exceed a previously fixed fine threshold.
13. Method as claimed in claim 1,
characterized in that a warning regarding tire inflation pressure loss is issued when at least one rolling circumference difference (Δ DIAG, Δ SIDE, Δ AXLE) as well as at least one shift of the torsion natural frequency Δf_p exceeds previously fixed fine thresholds.

14. Method as claimed in claim 13,
characterized in that a warning regarding
tire inflation pressure loss is issued only when the
correlation between the rolling circumference differences
(Δ DIAG, Δ SIDE, Δ AXLE) and the shifts of the torsion
natural frequencies Δf_p exceeds a predetermined limit
value which indicates tire inflation pressure loss with an
appropriate likelihood.
15. Method as claimed in claim 1,
characterized in that in the joint warning
strategy, the (warning) thresholds of the rolling
circumference differences (Δ DIAG, Δ SIDE, Δ AXLE) for
warning of tire inflation pressure loss are adapted
depending on the shift of the torsion natural frequency
 Δf_p .
16. Method as claimed in claim 1,
characterized in that in the joint warning
strategy, the (warning) thresholds of the rolling
circumference differences (Δ DIAG, Δ SIDE, Δ AXLE) for
warning of tire inflation pressure loss are adapted
depending on the shift of the torsion natural frequency
 Δf_p and on the correlation between the rolling
circumference differences (Δ DIAG, Δ SIDE, Δ AXLE), and on
the shifts of the torsion natural frequency Δf_p .
17. Computer program product,
characterized in that this product defines
an algorithm comprising a method as claimed in at least
any one of claims 1 to 16.