(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-323056 (P2002-323056A)

(43)公開日 平成14年11月8日(2002.11.8)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)		
F16C	41/00		F16C	41/00			3 D 0 4 6	
B60B	35/18		B 6 0 B	35/18		Α	3 J O 1 6	
B 6 0 T	8/00		B60T	8/00		Α	3 J 0 1 7	
F16C	19/52		F16C	19/52			3 J 1 O 1	
· · · ·	33/60		33/60					
		審査請求	未開求開	杉項の数11	OL	(全 10 頁)	最終頁に続く	
(21)出願番号		特願2001-126189(P2001-126189)	(71)出願人 000102692 エヌティエヌ株式会社					
(22)出願日		平成13年4月24日(2001.4.24)	(72)発明:	大阪府大阪市西区京町堀1丁目3番17号)発明者 田島 英児 静岡県磐田市東貝塚1578番地 エヌティエ ヌ株式会社内				
			(72)発明	者 ▲高▼	木 万		丁目3番17号	
			(74)代理/		584	株式会社内 省吾 (外	3名)	

最終頁に続く

(54) 【発明の名称】 車輪軸受装置

(57)【要約】

【課題】 ABS用の車輪回転速度検出手段の検出精度を向上させ得る車輪軸受装置を提供する。

【解決手段】 軸受すきまを寸法管理によって負すきまに設定し、軸受剛性を向上させる。回転側となるシール装置13のスリンガに、多磁極を有するエンコーダ81を装着すると共に、固定側となる外方部材10にエンコーダ81の回転で生じた磁束変化を検出するセンサ部82を設け、センサ部82からの検出データに基づいて回転側の回転数を検出する。軸受の高剛性化により、軸受装置にモーメント荷重が負荷された場合でも、エンコーダ81とセンサ部82の間のエアギャップの幅が高精度に維持される。

【特許請求の範囲】

【請求項1】 内周に複列のアウタレースを有する外方部材と、アウタレースとそれぞれ対向する複列のインナレースを外周に有する内方部材と、外方部材と内方部材のレース間に組み込まれた複列の転動体とを具備し、外方部材と内方部材のうちの何れか一方に車輪取り付けフランジを設け、車体に対して車輪を回転自在に支持する車輪軸受装置において、

軸受すきまが寸法管理された負すきまであり、かつ回転側に取り付けられ、多磁極を有するエンコーダと、エン 10 コーダの回転で生じた磁束変化を検出するセンサ部とを備え、センサ部からの検出データに基づいて回転側の回転数を検出する回転速度検出手段を具備することを特徴とする車輪軸受装置。

【請求項2】 内方部材と外方部材の間の空間を密封するシール装置を備え、シール装置のうち、回転側となるスリンガに上記エンコーダを取り付けた請求項1記載の車輪軸受装置。

【請求項3】 車輪取り付けフランジの側面をブレーキロータ取り付け面とし、このブレーキロータ取り付け面 20の面振れ幅を規格値内に規制した請求項1または2記載の車輪軸受装置。

【請求項4】 上記ブレーキロータ取り付け面の面振れ幅を、外方部材および内方部材のうち、固定側の部材を基準に回転駆動させた状態で最大振れ幅が50μm以下となるよう規制した請求項3記載の車輪軸受装置。

【請求項5】 内方部材に、インナレースのうちの一方を有する第一内側部材と、他方を有する第二内側部材とを設けた請求項1~4何れか記載の車輪軸受装置。

【請求項6】 第一内側部材がハブ輪で、第二内側部材がハブ輪の外周に嵌合した内輪である請求項5記載の車輪軸受装置。

【請求項7】 第一内側部材がハブ輪で、第二内側部材が等速自在継手の外側継手部材である請求項5記載の車輪軸受装置。

【請求項8】 第一内側部材および第二内側部材が、突合せ配置した二つの内輪である請求項5記載の車輪軸受装置。

【請求項9】 第一内側部材と第二内側部材を加締めによって結合した請求項6~8何れか記載の車輪軸受装

【請求項10】 車輪取り付けフランジを、ハブ輪に形成した請求項6または7記載の車輪軸受装置。

【請求項11】 車輪取り付けフランジを、外方部材に 形成した請求項8記載の車輪軸受装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車等において、車輪を車体に対して回転自在に支持する車輪軸受装置(ハブベアリング)に関するものである。

[0002]

【従来の技術】自動車の車輪軸受装置には駆動輸用と従 動輪用とがあり、それぞれ用途に応じて種々の構造が提 案されている。

2

【0003】図11は駆動輪用の車輪軸受装置の一例を示すもので、内周に複列のアウタレース1aを有する外方部材1と、アウタレース1aに対向するインナレース2a,2bを有する内方部材2と、外方部材1と内方部材2との間に介在する複列の転動体5とを主要構成要素とする。内方部材2は、ハブ輪3と、その外周に圧入した内輪4とからなり、複列のインナレース2a,2bのうちの一方2aが内輪4の外周に、他方2bがハブ輪3の外周にそれぞれ形成されている。ハブ輪3には車輪取付けフランジ3aが設けられ、この車輪取付けフランジ3aに図示しない車輪が取付けられる。

【0004】駆動輪用の車輪軸受装置においては、ハブ輪3が等速自在継手6の外側継手部材6aに結合される。外側継手部材6aは、椀状のマウス部6alと中実のステム部6a2とからなり、ステム部6a2にてハブ輪3とセレーション依合されている。ステム部6a2の軸端にナット7を螺合させて締付けることにより、内輪4の端面が外側継手部材6aの肩部6cに押付けられ、ハブ輪3および内輪4が軸方向で位置決めされると共に、転動体5に予圧が付与される。複列の転動体5はそれぞれ接触角を有しており、前述の予圧によって軸受剛性を高めると共に、モーメント荷重を受けられる構造になっている。

[0005]

【発明が解決しようとする課題】近年では、車輪周辺構造のコンパクト化、軽量化、さらには設計自由度の向上等の観点から、ABS(アンチロックブレーキシステム)用の車輪回転速度検出手段を上記車輪軸受装置に一体に組み込む事例が増えている。

【0006】ところで、走行中の車両が旋回等すると車輪軸受装置に曲げモーメントが作用し、このモーメント 荷重によって軸受装置の構成部品に弾性変形を生じる場合がある。上記回転速度検出手段を組み込んだ車輪軸受 装置においては、この弾性変形によってABS用センサ の位置や姿勢にずれを生じ、ABSの基礎データとなる 40 車輪回転数の検出精度が低下するおそれがある。

【0007】特に近年のように車輪回転速度検出手段として着磁エンコーダを採用する場合、エアギャップの微小変化でセンサの検出精度が悪影響を受けるため、レーンチェンジ等の僅かな操舵に伴うごく小さい弾性変形でも検出精度が影響を受ける可能性があり、改善が要望されている。

【0008】そこで、本発明は、車輪回転数を高精度に 検出できるABS用車輪回転速度検出手段を備えた車輪 軸受装置の提供を目的とするものである。

50 [0009]

【課題を解決するための手段】本発明の対象となる車輪軸受装置は、内周に複列のアウタレースを有する外方部材と、アウタレースとそれぞれ対向する複列のインナレースを外周に有する内方部材と、外方部材と内方部材のレース間に組み込まれた複列の転動体とを具備し、外方部材と内方部材のうちの何れか一方に車輪取り付けフランジを設け、車体に対して車輪を回転自在に支持するものである。

【0010】この種の車輪軸受装置において、上記エアギャップの微小変化を小さくするためには、軸受すきま 10を負の状態にして軸受剛性を上げ、モーメント荷重による弾性変形を抑える必要がある。従来では、車体への組み付け前の軸受の初期すきまを、ナットの締め付けによる軸受すきまの減少分等を見込んで正の値に設定し、組み付け後のナットの締め付け力によって負の軸受すきまを得るようにしているが、最適な予圧量(負すきま)に設定しても、実際上これを実測する手段がなく、また、ナットの締め付けトルクにバラツキがあるため、予圧量を精度よく管理することは難しい。以上の理由から、ナットの締め付け後も軸受すきまが負とならず、正のまま 20の状態に残ることがあった。

【0011】軸受すきまを負の状態にできれば、軸受の転動寿命、剛性、フレッティング等の面でも有利であり、この面からも確実な負隙間の実現が望まれているところである。

【0012】以上の点に鑑み、本発明では、上記車輪軸 受装置の軸受すきまを寸法管理された負すきまとし、か つこの車輪軸受装置に、回転側に取り付けられ、多磁極 を有するエンコーダと、エンコーダの回転で生じた磁束 変化を検出するセンサ部とを備え、センサ部からの検出 30 データに基づいて回転側の回転数を検出する回転速度検 出手段を設けた。

【0013】このように軸受すきまを寸法管理することにより、確実にかつ精度よく所定の負すきまを得ることができ、軸受剛性や転動寿命の向上、フレッティングの低減を図ることができる。負すきまによって軸受が高剛性化される結果、車両の走行状態の変化により、軸受に曲げモーメントが作用した際にも軸受部品の弾性変形を抑えることができ、回転速度検出手段による車輪回転数の検出精度を高めることができる。

【0014】上記車輪軸受装置が、内方部材と外方部材の間の空間を密封するシール装置を備える場合、シール装置のうち、回転側となるスリンガに上記エンコーダを取り付けることによって、薄型コンパクトで軽量の回転速度検出手段を提供することができる。

【0015】この車輪軸受装置では、車輪取り付けフランジの側面がブレーキロータ取り付け面となる。この場合、ブレーキロータ取り付け面の面振れ幅を規格値内に規制することにより、取付け面に取付けられるブレーキロータの振れを所望の範囲内に抑えてブレーキング時の 50

振動やブレーキの偏摩耗を抑制することができる。この際、ブレーキロータ組付け後の面倒な振れ調整作業も不要となる。本発明では、上述のように寸法管理した負すきまによって軸受剛性を向上させているため、軸受部品の変形やガタを防止することができ、これによりブレーキロータ取付け面の面振れ精度をさらに向上させることができる。

【0016】規格値としては、ブレーキロータ取り付け面の面振れ幅を、外方部材および内方部材のうち、固定側の部材を基準に回転駆動させた状態で最大振れ幅が 50μ m以下となるように設定するのが望ましい。

【0017】以上に述べた車輪軸受装置の内方部材には、インナレースのうちの一方を有する第一内側部材と、他方を有する第二内側部材とを設ける。

【0018】具体的には、例えば第一内側部材をハブ輪、第二内側部材をハブ輪の外周に嵌合した内輪とする、あるいは第一内側部材をハブ輪、第二内側部材を等速自在継手の外側継手部材とすることができる。外側継手部材は、等速自在継手の構成部品で、内周に複数のトラック溝を有するものである。何れの場合でも、車輪取り付けフランジはハブ輪に形成することができ、これにより内方部材が回転側、外方部材が固定側となる。

【0019】この他、第一内側部材および第二内側部材を、突合せ配置した二つの内輪で形成することもできる。この場合、車輪取り付けフランジは外方部材に形成することができ、これによって上記とは逆に内方部材が固定側、外方部材が回転側となる。

【0020】上記何れの場合でも、第一内側部材と第二 内側部材は、ナットを用いて結合する他、加締めによっ て結合することもできる。

[0021]

【発明の実施の形態】以下、本発明の実施形態を図1~ 図10に基づいて説明する。なお、以下の説明において は、車両に組付けた状態で車両の外側寄りとなる側をアー ウトボード側といい、車両の中央寄りとなる側をインボード側という。図3および図6を除く上記各図において は、図面左側がアウトボード側となり、図面右側がイン ボード側となる。

【0022】図1は、本発明の第一の実施形態である駆動輪用の車輪軸受装置を例示している。この軸受装置は、複列の軸受Bと、等速自在継手60とをユニット化した構造を有する。

【0023】軸受Bは、外方部材10、内方部材20、 および両部材10,20間に組み込んだ複列の転動体5 0を備える。図示例では、内方部材20を回転側、外方 部材10を静止側とした場合を例示している。複列の転 動体50は保持器51で円周方向等間隔に保持され、複 列のアウタレース11とインナレース21、22の間に 介在して各レース11、21、22上を転動する。ここ では転動体50としてボールを使用する場合を例示して

あるが、円すいころを使用することもできる。

【0024】外方部材10は、内周に複列のアウタレー ス11を備え、外周に車体側の取付け部材、例えば懸架 装置から延びるナックルに取付けるための車体取付けフ ランジ12を一体に備える。外方部材10の両端開口部 にシール装置13、14が装着されており、このシール 装置13、14によって外方部材10と内方部材20の 間の空間がその軸方向両側でシールされ、軸受内部に充 填したグリースの漏洩、ならびに軸受内部への外部から の水や異物の侵入が防止される。

【0025】図2に示すように、軸受内部のインボード 側をシールするシール装置13は、固定側の部材(本実 施形態では外方部材10)に取付けられるシールリング 131 と、回転側の部材(本実施形態では内方部材2 0) に取付けられるスリンガ132 とを具備する。シ ールリング131 は、外方部材10の端部内周に圧入 される円筒部133aを外周部に備えた略円板状の芯金 133 にゴム等の弾性体134 を固着し、その弾性体 134 の内周部に二つのインナーリップ134a、1 3 4 b を設け、かつインボード側の側面にサイドリップ 20 134cを設けた構造である。一方、スリンガ132 は、内方部材20外周のランド部41に圧入される円筒 部132aと、この円筒部132aの一端に設けられた 半径方向に延びる部分132b (円板部) とで構成され る。円筒部132aの外周面に上記インナーリップ13 4 a 、 1 3 4 b が弾性接触し、円板部 1 3 2 b の内側面 (アウトボード側の面)に上記サイドリップ134cが 弾性接触している。スリンガ132 のうち、円板部1 3 2 b の外側面に後述する多磁極化されたエンコーダ 8 1が装着される。

【0026】なお、軸受内部のアウトボード側をシール するシール装置14については、その詳細構造の図示を 省略しているが、例えば図2に示すシールリング131 と同様に3つのリップを有する弾性体シールを使用す ることができる。この場合、シールリング131 の円 筒部133aに相当する部分を外方部材10のアウトボ ード側の端部内周に圧入し、二つのインナーリップ13 4a、134bに相当する部分を後述するハブ輪30の 外周に弾性接触させ、かつサイドリップ134cに相当 する部分を後述する車輪取付けフランジ31の側面に弾 性接触させる。

【0027】内方部材20は、第一内側部材30と第二 内側部材40とで構成される。本実施形態は、第一内側 部材としてのハブ輪30の外周に第二内側部材としての リング状の内輪40を嵌合した場合を例示している。ハ ブ輪30のアウトボード側の外周には車輪を取付けるた めの車輪取付けフランジ31が一体に形成され、一方、 インボード側の外周には小径円筒部32があって、この 小径円筒部32の外間に内輪40が圧入されている。イ ンナレース21、22のうち、インボード側のレース2-50-

1は内輪40の外周に形成され、アウトボード側のレー ス22は、ハブ輪30の外周に直接形成されている。本 実施形態においては、図2に示すように、内輪40の外 周に上記ランド部41が形成され、このランド部41に インボード側シール装置13のスリンガ132 の一部 (円筒部132a) が圧入されている。内方部材20の 軸芯部には、等速自在継手60の外側継手部材61(後 述する)を取付けるための貫通孔が形成されている。

【0028】車輪取付けフランジ31のアウトボード側 10 の側面33は、ブレーキロータ70を取付けるための取 付け面となる。プレーキロータ70は図示しないボルト によって車輪取付けフランジ31の取付け面33に取付 けられる。このブレーキロータ70を介し、図示しない 車輪がハブボルト35によって車輪取付けフランジ31 の取付け面33に締付け固定される。

【0029】等速自在継手60は、ドライブシャフトか らのトルクを内側継手部材62およびトルク伝達ボール 63を介して外側継手部材61に伝達する。外側継手部 材61は、一端(アウトボード側)を閉じると共に、他 端(インボード側)を開口したカップ状のマウス部61 aと軸状のステム部61bとを備え、マウス部61 a'の 内周部には、複数のトラック溝64が形成されている。 このトラック溝64と内側継手部材62の外周部に設け た複数のトラック溝65との協働で複数のボールトラッ クが形成され、各ボールトラックにトルク伝達ボール 6 3を配置することで等速自在継手60が構成される。各 トルク伝達ボール63は、ケージ66によって二軸間の 二等分面上に保持されている。

【0030】ハブ輪30内周の貫通孔に外側継手部材6 1のステム部61bを圧入し、ステム部61b外周をハ ブ輪30内周とセレーション嵌合することにより、内方 部材20と外側継手部材61がトルク伝達可能に結合さ れる。その後、ステム部61bの軸端に形成されたねじ 部にナット68をねじ込み、これを締め付けることによっ り、内輪40とハブ輪30とが一体化され、内輪40の 両端面がマウス部61aの肩部61a1とハブ輪30の 肩面36にそれぞれ当接し、内輪40が軸方向で位置決 めされる。

【0031】本発明の車輪軸受装置には、回転速度検出 40 手段80が設けられる。この回転速度検出手段80は、 ABS用に車輪の回転数を検出するもので、図2に示す ように、インボード側シール装置13のうち、回転側と なるスリンガ132の円板部132b外側面に取付けら れたエンコーダ81と、このエンコーダ81に面して固 定側の外方部材10に固定されたセンサ部82とで構成 される。

【0032】エンコーダ81は、図3に示すように、例 えばNSの磁極を円周方向に交互に多極着磁させたリン グ状の弾性磁性体で構成される。この弾性磁性体は、ゴ ムやゴム質の合成樹脂(例えばポリアミド、ポリオレフ

イン、エチレン系重合体等)と磁性粉末(例えばバリウムフェライト、希土類磁性粉末等)とを均一に混練して得られる複合磁性材料を、ゴムの場合は架橋させた上で、リング状に成形し、次いでこれを多極着磁ヨーク等の一般的着磁手段で着磁することにより形成される。このようにして得られた弾性磁性体は、加硫、あるいは接着等の手段でスリンガ132の円板部132b外側面に固着される。ゴムとして、NBR(ニトリル系)、アクリルゴム系エラストマー、フッ素ゴム系エラストマー、シリコーン系エラストマー等を使用することができ、これらのうちで特に耐熱性の高いエラストマー(アクリルゴム系、フッ素ゴム系、シリコーン系)を使用すれば、ブレーキの作動に伴う発熱の影響を最小限に抑えることができる。

【0033】エンコーダ81の取り付け位置は、回転側であれば特に問わず、スリンガ132の他、内方部材10に取り付けることもできる。

【0034】図示例のセンサ部82は、エンコーダ81とアキシャルギャップを介して対向配置され、図2に示すように外周に設けられた取付け部82aを外方部材10の端面にねじ83等で締付けることによって外方部材10に固定される。センサ部82としては、例えば、ホール素子、磁気抵抗素子など、磁束の流れ方向に応じて出力を変化させる磁気検出素子と、この磁気検出素子の出力波形を整形する波形整形回路を組み込んだICとにより構成されるアクティブ型のセンサを使用することができる。このセンサ部82は、エンコーダ81の回転による磁束の変化をセンシングし、その検出信号に基づいて内方部材20の回転速度を検出し、車輪の回転数情報としてABSの制御装置に伝送する。

【0035】なお、センサ部82は、外方部材10だけでなく、他の固定側の部材、例えばナックル等の車体側の取付け部材に取付けることもできる。

【0036】このように本発明では、エンコーダ81を円周方向に多磁極を有するものとしているのでその薄肉化が可能である。従って、これをシール装置13のスリンガ132に取付けることにより、薄型コンパクトで軽量の検出手段80を構成することができ、車輪周辺のコンパクト化、軽量化、さらには設計自由度の向上を図ることができる。

【0037】本発明においては、車輪軸受装置の軸受すきま(アキシャル軸受すきま)が、ナット68の締め付け前の寸法管理によって予め負すきまに設定される。ここでいう寸法管理は、軸受部品(これらのアセンブリも含む)の寸法計測値に基づいて軸受すきまを管理するもので、例えば以下の手順で行うことができる。

【0038】先ず、図4に示すように、軸受部品の加工後に、外方部材10のアウターレース11のピッチP。とレース径、ハブ輪30のアウトボード側のレース22から肩面36までの軸方向寸法P」とレース径、および

内輪40のインナレース21からアウトボード側端面42までの軸方向寸法Poを個々に測定する。組立に際して複列アンギュラ玉軸受の構成要件であるP0>P1+P2の関係式を満たすような軸受部品10、30、40の組み合わせを選択することにより、組立後の軸受すきまを負に管理することができる。

【0039】このようにして得られた負の軸受すきま∆ aは、ハブ輪30外周に内輪40を圧入する工程におい て、以下の手順で実測することができる。

【0040】先ず、図5に示すように、ハブ輪30の外周に内輪40を圧入し、軸受すきまが正の状態、すなわち内輪40のアウトボード側端面42がハブ輪30の肩面36にある程度接近したところで圧入を止め、両面36、42間のすきまSを計測する。このときのすきまSの測定方法は限定されないが、例えばハブにすきまSに連通するエアー通路を形成し、このエアー通路からすきまSに圧縮エアーを噴出させ、そのきの圧縮エアの背圧、流量、流速等を測定することによって求めることができる。

【0041】次に、外方部材10を軸方向に往復移動させて、その最大移動量から正の軸受アキシャルすきまΔa'を測定する。その後、内輪40をハブ輪30の肩面36に当接するまで圧入して圧入完了とする。このときの圧入ストロークはSである。以上からΔa'ーSを演算することにより、負の軸受アキシャル軸受すきまΔaを測定することができる。

【0042】以上の手順により、軸受装置の負の軸受すきまが保証され、かつその実際の負すきま量も正確に測定することが可能となる。従って、従来のようにナット68の締め付けトルクによってすきま管理を行うことができる。なお、以上のすきま管理を行った場合、ナット68の締め付けは、最低限ハブ輪30と内輪40の分離を防止できる程度の低い締め付けトルクで足りる。もちろん、必要に応じてナット68をさらに締め付けることで、予圧量を最終調整するようにしても構わない。

【0043】上述のように本発明では、確実に負の軸受すきまを得ることができ、軸受剛性を向上させることができるので、車両の旋回等により、車輪軸受装置にモー40メント荷重が付与された際にも軸受部品が弾性変形することはなく、回転速度検出手段80のエンコーダ81とセンサ部82との間のエアギャップ(図示例ではアキシャルギャップ)が安定して保持される。そのため、回転速度検出手段80の検出精度を高めることができ、ABSの作動性を向上させることが可能となる。

【0044】ところで、従来品では、ブレーキロータ70を介して車輪取り付けフランジ31に車輪を取り付ける際に、ハブボルト35の締め付け力によりブレーキロータ70の締結部分が変形する場合がある。この変形

50 は、ブレーキロータ70単体に存在する加工精度・誤差

と相俟って、組み付け後のブレーキロータの制動面(ブレーキパッドと摺接する面)に面振れを生じる要因となっている。従来では、組立工場において、納入された車輪軸受装置の車輪取付けフランジ31に、別部品として納入されたブレーキロータ70を組付ける際に、車輪取付けフランジ31の面振れとブレーキロータ70の面振れとを位相合わせする等の調整作業を行っているが、この方法は甚だ面倒で作業性が悪い。

【0045】これに対し、本発明では、ブレーキロータ取付け面33の面振れ幅を規格値内に規制した。このよ 10 うに面振れを規制することにより、ブレーキ取付け面33の面振れに起因する、ブレーキング時の振動(ブレーキジャダー)やブレーキの偏摩耗を抑制することが可能となる。規格値は、固定側の部材(本実施形態では外方部材10)を基準として回転駆動させた際のブレーキロータ取付け面33の最大振れ幅で規定され、その値は 50μ m以下、望ましくは 30μ m以下とするのが望ましい。

【0046】図6は、ブレーキロータ取付け面33の面振れ幅の測定方法を例示しており、外方部材10を測定20台90に固定し、この固定された外方部材10を基準に内方部材20を一回転させ、その際のブレーキロータ取付け面33の振れ幅をダイヤルゲージ等の測定器91で測定するものである。ブレーキロータ取付け面33の面振れは、車輪取付けフランジ31の外径側ほど大きいので、面振れ幅の管理を厳しく行えるように、測定器91の当接位置は、ハブボルト35の圧入用ボルト孔31aの外接円と、車輪取付けフランジ31の外周との中間位置としている。

【0047】ブレーキロータ取付け面33の面振れ対策 30 としては、

①従来、一回切削で仕上げられていたブレーキロータ取付け面33を二回切削し、当該取付け面33を、表面粗さRa(中心線平均粗さ:JISB0601)3μm以下に仕上げる:

②車輪軸受装置の組立終了後にプレーキロータ取付け面33に切削等の仕上げ加工を行い、組立誤差(ミスアライメント)に起因するプレーキロータ取付け面33の面振れを抑制する:

③ブレーキロータ70の取付け後に、ブレーキロータ70の両側面、特に図示しないブレーキパッドとの摺接面(制動面)に切削等の仕上げ加工を施す。仕上げ精度は、固定側の部材を基準として回転駆動させた際の制動面の最大振れ幅が100μm以下、望ましくは60μm以下となるようにする:

④ボルト孔31a周辺を未焼入れ部分とし、この部分に、ボルト圧入に伴う歪みを吸収できる程度の延性を確保する:

⑤ボルト孔31aにボルト圧入による余肉の盛上りを吸収できる程度の面取り加工を施す:

⑥軸受の予圧量を981~9810Nとし、内輪40とハブ輪30の結合力を従来より高めて、自動車旋回時のモーメント荷重等によって生じた反予圧方向の荷重による両者のガタを防止する: 等が考えられる。

【0048】なお、上記に例示した面振れ対策を全て採用する必要は必ずしもなく、使用条件、用途等に応じて何れか一つを選択し、あるいはこれらを適宜組合わせて採用することができる。

【0049】以下、本発明の他の実施形態を図面に基づいて説明する。なお、以下の説明においては、図1と共通の部材、あるいは対応する部材には同じ参照番号を付して重複説明を省略する。

【0050】図7に示す車輪軸受装置は、ハブ輪30と内輪40を加締めによって結合した例である。すなわち、内方部材20のインボード側の軸端、すなわちハブ輪30の小径円筒部32の軸端を加締めて外径側に塑性変形させることにより、フランジ状の加締め部39によって内輪40の位置決めが行われる。図1に示す実施形態と同様に、図4および図5に示す手段等により、軸受すきまを上記寸法管理によって負に設定することにより、回転速度検出手段80の検出精度を高めることができる。

【0051】図8は駆動輪用の軸受装置の他の実施形態を示すもので、内方部材20をハブ輪30と外側継手部材61とで構成した例である。この場合、アウトボード側のインナレース22が、第一内側部材としてのハブ輪30外周に形成され、インボード側のインナレース21が、第二内側部材としての外側継手部材61の外周に直接形成される。図面では、ハブ輪30の内周に外側継手部材61を嵌合しているが、これとは逆にハブ輪30の外周に外側継手部材61を嵌合しているが、これとは逆にハブ輪30の外周に外側継手部材61を嵌合することもできる。

【0052】ハブ輪30と外側継手部材61は、両部材の嵌合部95を半径方向に加締め、少なくとも部分的に拡径または縮径(図示例では拡径)させることによって結合される。この際、嵌合部95に凹凸部96を介在させることにより、嵌合部95の拡径(または縮径)に伴って凹凸部96が嵌合相手面に食い込むので、より強固な結合力を得ることができる。このような拡径または縮径加締めによる他、図7と同様に、内方部材20の端部に形成したフランジ状の加締め部39で両部材30,61を結合することもできる。

【0053】この実施形態においても、図1、および図7に示す実施形態と同様に、軸受すきまを寸法管理によって負すきまとすることができ、これにより回転速度検出手段80の検出精度を高めることができる。

【0054】図9は、図1、図7、および図8の実施形態とは逆に外方部材10を回転させて用いる車輪軸受装置(従動輪用)の実施形態である。外方部材10の外周面に車輪取付けフランジ31が形成され、このフランジ

50

31に図示しないプレーキロータおよび車輪がそれぞれ 固定される。内方部材20は、それぞれの外周にインナ レース21、22を有する二つの内輪40a、40bで 構成されており、両内輪40a、40bは車体側に設け られた車軸93の外周に突合せ状態で圧入される。この 実施形態においては、二つの内輪40a、40bうちの 一方(図示例ではアウトボード側の内輪40b)が上記 第一内側部材に相当し、他方が上記第二内側部材に相当 する。

【0055】インボード側シール装置13は、図2と同 10 方部材回転)。 様にシールリング131 およびスリンガ132 を具備 しているが、シールリング131 が固定側となる内輪 40aに、スリンガ132 が回転側となる外方部材1 0の内周にそれぞれ固定される点で図2とは異なる。回 転側となる外方部材10やスリンガ132に上記エンコ ーダ81を装着し(図面は外方部材10に装着した場合 を例示する)、このエンコーダ81と対向させて固定側 の車軸93にセンサ部82を装着することにより、上記 と同様の機能を有する回転速度検出手段80が構成され

【0056】図9ではエンコーダ81とセンサ部82と の間にアキシャルギャップを介在させているが、図10 に示すようにラジアルギャップを介在させることもでき る。また、図示は省略するが、二つの内輪40a,40 b を車輪取り付けフランジを有するハブ輪の外周に圧入 し、両内輪40a,40bとハブ輪とで内方部材20を 構成することもできる。

[0057]

【発明の効果】このように本発明によれば、軸受すきま を負すきまに管理することにより、軸受を高剛性化して 30 いるので、車両の旋回やレーンチェンジ等に伴う車輪回 転速度検出手段の検出精度の低下を回避することがで き、ABSの作動性を向上させることができる。

【図面の簡単な説明】

【図1】本発明にかかる車輪軸受装置の一実施形態を示 す断面図である(内方部材回転)。

【図2】図1に示す車輪軸受装置の要部を拡大した断面 図である。

【図3】エンコーダの斜視図である。

【図4】外方部材、ハブ輪、および内輪の寸法関係を示 す断面図である。

【図5】 寸法管理の手順を示す断面図である。

【図6】ブレーキロータの面振れ幅の測定装置を示す断 面図である。

【図7】本発明の他の実施形態を示す断面図である(内

【図8】本発明の他の実施形態を示す断面図である(内 方部材回転)。

【図9】本発明の他の実施形態を示す断面図である (外 方部材回転)。

【図10】本発明の他の実施形態を示す断面図である (外方部材回転)。

【図11】従来の車輪軸受装置の断面図である。 【符号の説明】

- 10 外方部材
- 20 1 1 アウタレース
 - 13 シール装置
 - 14 シール装置
 - 2.0 内方部材
 - インナレース (インボード側) 2.1
 - 22 インナレース (アウトボード側)
 - 30 ハブ輪
 - 3 1 車輪取付けフランジ
 - 40
 - 40 a 内輪
 - 40 b 内輪
 - 60 等速自在継手
 - 6 1 外側継手部材
 - 8 0 回転速度檢出手段
 - 8 1 エンコーダ
 - 8 2 センサ部
 - 132 スリンガ

【図2】 【図3】 [図4]

特(9)2002-323056 (P2002-323056A)

【図10】

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

F 1 6 C 33/78

43/04

F 1 6 C 33/78

43/04

Z

Fターム(参考) 3D046 BB00 BB28 HH36 LL14

3J016 AA01 BB05 BB16 CA03

3J017 DB08 HA02

3J101 AA02 AA32 AA43 AA54 AA62

BA53 BA66 FA41 GA01 GA02