Planejamento de Capacidade: Definindo SLAs para Infraestrutura em Nuvem

Breno Pires Santos Matheus Fagundes Araújo Vinícius Miranda de Araújo

Junho de 2025

1. Contextualização da Empresa

A **AgroSmart Analytics** é uma empresa fictícia de tecnologia agrícola que fornece uma plataforma em nuvem para monitoramento remoto de propriedades rurais. O sistema integra dados de sensores climáticos, de solo e produtividade, gerando alertas e recomendações em tempo real para produtores.

O ambiente de uso exige alta disponibilidade, respostas rápidas e escalabilidade conforme a sazonalidade das atividades no campo (ex: plantio e colheita). Os SLAs contratados com a nuvem são aplicados diretamente em três componentes-chave: a API de consulta de sensores (latência e disponibilidade), o processamento de dados para análises e alertas (taxa de processamento), e a interface de visualização web/móvel (tempo de resposta).

O orçamento mensal com infraestrutura em nuvem está limitado a R\$ 20.000,00, exigindo planejamento cuidadoso e priorização de SLAs que realmente impactem a experiência do usuário e a continuidade do serviço.

2. Escolha dos SLAs e Justificativa de Pesos

Para este estudo, os SLAs foram ponderados conforme sua relevância para a continuidade e utilidade do serviço:

- Disponibilidade (SLAa) 40%: Essencial para acesso 24/7, evitando falhas no agendamento de tarefas agrícolas e garante que sensores e alertas operem continuamente, inclusive durante períodos críticos como colheita.
- Tempo de Resposta (SLAr) 30%: Impacta diretamente a usabilidade da interface e rapidez nas decisões, melhorando a experiência de agricultores no campo.
- Taxa de Processamento (SLAx) 30%: Necessária para o cálculo de alertas e processamento de dados de sensores e cobre picos diários de uso, com possibilidade de escalar por auto-scaling.

Essa distribuição prioriza a disponibilidade como o fator mais crítico para operações ininterruptas no campo, mantendo performance adequada para decisões em tempo real.

3. Valores Estimados de Mercado

Abaixo estáo os custos estimados por serviço, com base em preços de mercado:

Serviço Cloud	Configuração Estimada	Custo Mensal
Compute Engine	3x n1-standard-2 (2 vCPUs, 7.5 GB RAM)	R\$ 7.500,00
Cloud SQL	1x db-standard (1 vCPU, 3.75 GB RAM)	R\$ 6.000,00
Armazenamento em nuvem	1000 GiB (alta durabilidade)	R\$ 3.500,00
Monitoramento e APIs	Cloud Monitoring, Logging, APIs REST	R\$ 3.000,00
Total	_	R\$ 20.000,00

Tabela 1: Estimativa de distribuição de custos e recursos na nuvem

Cada requisição tem custo médio aproximado de R\$ 0,70, valor usado como base para as simulações do Solver.

4. Modelo de Otimização com Solver

A análise utilizou o plugin Solver do Excel para resolver um modelo de otimização multiobjetivo com três SLAs:

- SLAr: tempo de resposta (quanto menor, melhor)
- SLAx: taxa de processamento (quanto maior, melhor)
- SLAa: disponibilidade do serviço (quanto maior, melhor)

A função de utilidade total U foi definida como:

$$U = 0.3 \cdot SLAr + 0.3 \cdot SLAx + 0.4 \cdot SLAa \tag{1}$$

Essa configuração prioriza a disponibilidade como fator mais crítico, mantendo um balanço entre desempenho e responsividade para operações agrícolas.

5. Resultados Otimizados com Solver

Através do uso do Solver, foram simuladas diversas combinações de SLAs respeitando os pesos estabelecidos e o orçamento de R\$ 20.000,00. Após sucessivas iterações, foi encontrada uma configuração que equilibra custo e utilidade com desempenho satisfatório. O tempo de resposta (SLAr) atingiu o nível 1.0, considerado médio na escala de latência, adequado para as operações da AgroSmart no campo. A taxa de processamento (SLAx)

ficou em 50.0 unidades relativas, o que garante estabilidade nos períodos de pico de leitura dos sensores. A disponibilidade (SLAa) foi fixada em 0.99, assegurando operação quase contínua com mínima interrupção.

Essa combinação resultou em uma **utilidade total de 0,78** com custo por requisição de **R\$ 0,70**. A solução representa o melhor ponto de operação frente às restrições do problema, sendo fruto de ajustes nos pesos, testes de limite de orçamento e simulações de carga.

Parâmetro	Valor Ótimo	Unidade	Fonte
Tempo de Resposta (SLAr)	1.00	Nível relativo	Solver
Taxa de Processamento (SLAx)	50.00	Unidade abstrata	Solver
Disponibilidade (SLAa)	0.99	Proporção	Solver
Custo por requisição	R\$ 0,70	R\$ / req	Solver
Utilidade Total	0,78	Valor normalizado	Solver

Tabela 2: Resultados otimizados obtidos via Solver

6. Análise de Viabilidade

Com base no custo unitário de R\$ 0,70 por requisição, estima-se:

- $10.000 \text{ requisições/mês} \Rightarrow R\$ 7.000,00 \text{ (viável)}$
- $50.000 \text{ requisições/mês} \Rightarrow R\$ 35.000,00 \text{ (excede orçamento)}$

Portanto, para manter-se dentro do orçamento, recomenda-se otimizar requisições com cache, uso sazonal e escalonamento dinâmico.

7. Conclusão

O planejamento de capacidade da AgroSmart Analytics utilizou simulações e um modelo de otimização com Solver para identificar SLAs que maximizam a utilidade do serviço ao menor custo possível. O ponto **ótimo** obtido (SLAr=1.0, SLAx=50, SLAa=0.99) resultou em uma utilidade total de 0,78 e custo unitário de R\$ 0,70 por requisição.

Apesar de o custo unitário ser elevado para grandes volumes, o modelo permite reconfiguração flexível conforme sazonalidade e uso real. Conclui-se que é viável atingir alta qualidade percebida e resiliência operacional com controle de custos, desde que os SLAs sejam dinamicamente ajustáveis e alinhados às metas do negócio.