ENS Cachan, DPT Maths

Optimisation numérique M1 – TD7 – Optimisation sous contraintes 3

Florian De Vuyst, Adrien Le Coënt - CMLA UMR 8536, ENS Cachan 10 Novembre

Un problème d'approximation matricielle

Soit $\mathcal{M}_n(\mathbb{R})$ structuré en espace euclidien grâce au produit scalaire usuel $\langle \langle A, B \rangle \rangle := tr(A^{\top}B)$; on note $||| \cdot |||$ la norme matricielle associée. Soit

$$S := \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \det M = 1 \};$$

$$\Sigma := \{ M \in \mathcal{M}_n(\mathbb{R}) \mid M \text{ est orthogonale et } \det M = 1 \}.$$

L'objet de l'exercice est de montrer que les matrices de S les plus proches de l'origine (au sens de la distance induite par $||| \cdot |||$) sont les matrices de Σ .

- 1. Formaliser le problème énoncé ci-dessus commme celui de la minimisation d'une fonction différentiable sur une contrainte définie par une égalité.
- 2. (a) Grâce à la condition nécessaire d'optimalité du premier ordre de Lagrange, montrer que toutes les matrices candidates à être solutions du problème sont orthogonales.
 - (b) Vérifier que toutes les matrices orthogonales de déterminant 1 sont bien solutions du problème posé.

Minimisation d'une fonction quadratique sur le simplexe unité

Pour $n \geq 2$, soit

$$S := \left\{ x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_i \ge 0 \text{ pour tout } i \text{ et } \sum_{i=1}^n x_i = 1 \right\}$$

et

$$f: \mathbb{R}^n \to \mathbb{R}$$

 $x = (x_1, \dots, x_n) \longmapsto f(x) := \sum_{i \neq j} x_i x_j.$

- 1. f est-elle convexe sur \mathbb{R}^n ? concave sur \mathbb{R}^n ? Mêmes questions à propos de la restriction de f à S.
- 2. Résoudre le problème d'optimisation suivant :

 (\mathcal{P}) Maximiser f sur S.

Maximisation d'une fonction produit sur la sphèreunité

Déterminer la valeur maximale de la fonction

$$f: \mathbb{R}^n \to \mathbb{R}$$

 $x = (x_1, \dots, x_n) \longmapsto f(x) := \prod_{i=1}^n x_i^2.$

sous la contrainte $\sum_{i=1}^n x_i^2 = 1$. En déduire l'inégalité suivante, valable pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$:

$$\left| \prod_{i=1}^{n} x_i \right| \le \left(\frac{\|x\|}{\sqrt{n}} \right)^n,$$

où $\|\cdot\|$ désigne la norme euclidienne usuelle dans \mathbb{R}^n .