Приклад розв'язання завдань контрольної роботи на основі розв'язання Дейнеко І. В. та задач підручника Жураковського Ю. П., Полторака В. П. "Теорія інформації та кодування"

Завдання 1. Алфавіт джерела повідомлень місить 879 символів. Кожне повідомлення складеться з 57 рівноймовірних знаків. Передано 555 повідомлень. Яка загальна кількість інформації?

Розв'язання:

$$m = 879, n = 57$$

Кількість інформації, яка міститься в одному повідомленню обраховується за формулою Хартлі:

$$I = n \cdot log_2 m = 57 \cdot log_2 879 = 57 \cdot 9.7797 = 557.444$$
 біт

Загальна кількість інформації:

$$I_{555} = I \cdot 555 = 557.444 \cdot 555 = 309381.4 \, 6im$$

Завдання 2. Джерела A та B мають розподіли ймовірностей повідомлень, наведені нижче. Ентропія якого джерела більша? Яка максимальна ентропія цього джерела та за якої умови?

$$P_A = \{0,007;0,003;0,007;0,003;0,98\} \qquad P_B = \{0,007;0,003;0,007;0,003;0,98\}$$

Розв'язання:

ai	a ₁	a ₂	a₃	a ₄	a ₅
Pa	0,005	0,0025	0,0025	0,005	0,985
I(ai)	7,643856	8,643856	8,643856	7,643856	0,021804

$$H(A) = \sum_i P(\alpha_i) I(\alpha_i) = \sum_i P(\alpha_i)$$

H(A)=	0,038219	0,02161	0,02161	0,038219	0,021477
					0 1/11135

bi	b ₁	b₂	b₃	b₄	b₅
Pb	0,007	0,003	0,007	0,003	0,98
I(ai)	7,158429	8,380822	7,158429	8,380822	0,029146

$$H(B) = \sum_i P(b_i) I(b_i) = \sum_i P(b_i)$$

Завдання 3. При передачі інформації рядками по 80 цифр на кожні 25 рядків цифра 5 зустрічається 40 разів, цифра 9 — 30 разів, число 59 — 20 разів, 95 — 16 разів. Визначити ймовірності появи цифр 5 та 9, чисел 59 та 95, умовну ймовірність появи цифри 5, якщо з'явилася цифра 9 та цифри 9, якщо з'явилася цифра 5.

Розв'язання:

Завдання 4. Ансамбль повідомлень джерела A визначено як $A = \{0,1\}$ та $P_A = \{0,95;0,05\}$. Статистична залежність повідомлень характеризується умовними ймовірностями P(0/1) = 0,05, P(1/0) = 0,07. Визначити часткову та загальну ентропію цього джерела.

Розв'язання:

P(0/1)=	0,05	k=	2	$H_0(A)=$	0,338856	P(0)=	0,95
P(1/0)=	0,07	l=	2	H₁(A)=	0,24796	P(1)=	0,004
P(1/1)=	0,95	P(0)=	0,004	H(A)=	0,248323		
P(0/0)=	0,93	P(1)=	0,996				

Завдання 5. Дослідження каналу зв'язку між джерелом A та спостерігачем B виявило такі умовні ймовірності вибору повідомлень $b_i \in B$:

$$p(b_j | a_i) = \begin{bmatrix} 0.9 & 0.01 & 0.09 \\ 0.04 & 0.06 & 0.9 \\ 0.05 & 0.9 & 0.05 \end{bmatrix}$$

Визначити часткову та загальну умовну ентропію в цьому каналі при рівноймовірному виборі джерелом A та при $P_A = \{0,3; 0,3; 0,4\}$.

Розв'язання:

Часткова умовна ентропія обраховується за формулою:

$$H(B|a_i) = -\sum_{j=1}^n p(b_j|a_i) \cdot \log_2(b_j|a_i), i = \overline{1,n}$$

$$H(B|a_1) = -(0.9 \cdot \log_2 0.9 + 0.01 \cdot \log_2 0.01 + 0.09 \cdot \log_2 0.09) =$$

0.515895 6im

$$H(B|a_2) = -(0.04 \cdot \log_2 0.04 + 0.06 \cdot \log_2 0.06 + 0.9 \cdot \log_2 0.9) = 0.566091 \, \delta im$$

$$H(B|a_3) = -(0.05 \cdot \log_2 0.05 + 0.9 \cdot \log_2 0.9 + 0.05 \cdot \log_2 0.05) = 0.568996 \, \delta im$$

Загальна умовна ентропія обраховується за формулою:

$$H(B|A) = \sum_{i=1}^{n} p(a_i) \cdot H(B|a_i)$$

Загальна умовна ентропія при рівноймовірному виборі джерелом А:

$$H(B|A) = \frac{1}{3}(0.515895 + 0.566091 + 0.568996) = 0.550327 \, \text{fim}$$

Загальна умовна ентропія при $P_A = \{0,3; 0,3; 0,4\}$:

$$H(B|A) = 0.3 \cdot 0.515895 + 0.3 \cdot 0.566091 + 0.4 \cdot 0.568996 = 0.552194$$
 $6im$

Завдання 6. Два статистично незалежних джерела A та В визначаються матрицею сумісних імовірностей:

$$p(a_i, b_j) = \begin{bmatrix} 0.1 & 0.1 & 0.1 \\ 0.1 & 0.2 & 0.2 \\ 0.05 & 0.02 & 0.13 \end{bmatrix}$$

Визначити часткову та загальну умовну ентропію, ентропію об'єднання, безумовну ентропію цих джерел, а також кількість інформації, що припадає на пару повідомлень $oldsymbol{a_i,b_j}$.

Розв'язання:

Знаходимо розподіл ймовірностей джерел A та B:

$$p(a_1) = 0.1 + 0.1 + 0.05 = 0.25$$

$$p(a_2) = 0.1 + 0.2 + 0.02 = 0.32$$

$$p(a_2) = 0.1 + 0.2 + 0.13 = 0.43$$

$$p(b_1) = 0.1 + 0.1 + 0.1 = 0.3$$

$$p(b_1) = 0.1 + 0.2 + 0.2 = 0.5$$

$$p(b_1) = 0.05 + 0.02 + 0.13 = 0.2$$

Обраховуємо матриці умовних ймовірностей:

$$p(a|b) = \frac{p(a,b)}{p(b)}, p(b|a) = \frac{p(a,b)}{p(a)}$$

$$p(a_i|b_j) = \begin{bmatrix} \frac{0.1}{0.3} & \frac{0.1}{0.3} & \frac{0.1}{0.3} \\ \frac{0.1}{0.5} & \frac{0.2}{0.5} & \frac{0.2}{0.5} \\ \frac{0.05}{0.2} & \frac{0.02}{0.2} & \frac{0.13}{0.2} \end{bmatrix} = \begin{bmatrix} 0.3333 & 0.3333 & 0.3333 \\ 0.2 & 0.4 & 0.4 \\ 0.25 & 0.1 & 0.65 \end{bmatrix}$$

$$p(b_i|a_j) = \begin{bmatrix} \frac{0.1}{0.25} & \frac{0.1}{0.32} & \frac{0.1}{0.43} \\ \frac{0.1}{0.25} & \frac{0.2}{0.32} & \frac{0.2}{0.43} \\ \frac{0.05}{0.25} & \frac{0.02}{0.32} & \frac{0.13}{0.43} \end{bmatrix} = \begin{bmatrix} 0.4 & 0.3125 & 0.232558 \\ 0.4 & 0.625 & 0.465116 \\ 0.2 & 0.0625 & 0.302325 \end{bmatrix}$$

Часткова умовна ентропія:

$$H(A|b_j) = -\sum_{j=1}^n p(a_i|b_j) \cdot \log_2(a_i|b_j), i = \overline{1,n}$$

$$H(A|b_1) = -(0.3333 \cdot \log_2 0.3333 + 0.3333 \cdot \log_2 0.3333 + 0.3333$$

 $\cdot \log_2 0.3333) = 1.584962$

$$H(A|b_2) = -(0.2 \cdot \log_2 0.2 + 0.4 \cdot \log_2 0.4 + 0.4 \cdot \log_2 0.4) = 1.521928$$

$$H(A|b_3) = -(0.25 \cdot \log_2 0.25 + 0.1 \cdot \log_2 0.1 + 0.65 \cdot \log_2 0.65) = 1.23616$$

$$H(B|a_i) = -\sum_{j=1}^n p(b_j|a_i) \cdot \log_2(b_j|a_i), i = \overline{1,n}$$

$$H(B|a_1) = -(0.4 \cdot \log_2 0.4 + 0.4 \cdot \log_2 0.4 + 0.2 \cdot \log_2 0.2) = 1.521928$$

$$H(B|a_2) = -(0.3125 \cdot \log_2 0.3125 + 0.625 \cdot \log_2 0.625 + 0.0625 \cdot \log_2 0.0625)$$

= 1.198192

$$H(B|a_3) = -(0.232558 \cdot \log_2 0.232558 + 0.465116 \cdot \log_2 0.465116 + 0.302325 \cdot \log_2 0.302325) == 1.524787$$

Загальна умовна ентропія:

$$H(A|B) = \sum_{i=1}^{n} p(b_i) H(A|b_i) = 0.25 \cdot 1.584962 + 0.32 \cdot 1.521928 + 0.43 \cdot 1.23616 = 1.414806$$

$$H(B|A) = \sum_{i=1}^{n} p(a_i)H(B|a_i) = 0.3 \cdot 1.521928 + 0.5 \cdot 1.198192 + 0.2 \cdot 1.524787 = 1.360632$$

Безумовна ентропія:

$$\begin{split} H(A) &= -\sum_{i=1}^n p(a_i) \cdot log_2(a_i) = -(0.25 \cdot log_2 0.25 + 0.32 \cdot log_2 0.32 + 0.43 \cdot log_2 0.43) = 1.549598 \\ H(B) &= -\sum_{i=1}^n p(b_i) \cdot log_2(b_i) = -(0.3 \cdot log_2 0.3 + 0.5 \cdot log_2 0.5 + 0.2 \cdot log_2 0.2) = 1.485479 \end{split}$$

Ентропія об'єднання:

$$H(AB) = H(A) + H(B|A) = H(B) + H(A|B) = 1.549598 + 1.360632 \approx 2.9$$

Також ентропію об'єднання можна обрахувати за формулою:

$$H(AB) = -\sum_{i=1}^{n} \sum_{j=1}^{n} p(a_i, b_j) \log_2 p(a_i, b_j)$$

Кількість інформації, що припадає на пару повідомлень $a_i, b_j = 2,9$ біт.

Завдання 7. Повідомлення передаються взаємонезалежними, рівноймовірними символами тривалістю $62 \cdot 10^{-5}$ с. Визначити продуктивність джерела повідомлень та швидкість передачі кожного символу, якщо обсяг алфавіту дорівнює 72.

Розв'язання:

Так як повідомлення передаються рівноймовірними символами, середня тривалість передачі одного символу:

$$\tau_{cep} = \tau_i = 62 \cdot 10^{-5}$$

Обсяг алфавіту: m=72.

Безумовна ентропія джерела А:

$$H(A) = log_2 m = log_2 72 = 6.169925$$
 біт

$$I(A,B) = H(A)$$

Для каналу зв'язку без завад

Продуктивність джерела повідомлень та швидкість передачі кожного символу:

$$V_{\partial \infty} = \frac{H(A)}{\tau_{cep}} = \frac{\log_2 72}{62 \cdot 10^{-5}} = 9951.49 \, \text{6im/c}$$

Завдання 8. Визначити пропускну здатність каналу зв'язку між джерелами A та B матриця ймовірностей якого при $\tau = 5 \cdot 10^{-5}$ с має вигляд:

$$p(a_i, b_j) = \begin{bmatrix} 0.08 & 0.1 & 0.08 \\ 0.3 & 0.2 & 0.05 \\ 0.05 & 0.02 & 0.12 \end{bmatrix}$$

Розв'язання:

$$p(b_1) = 0.08 + 0.1 + 0.08 = 0.26$$

$$p(b_2) = 0.3 + 0.2 + 0.05 = 0.55$$

$$p(b_1) = 0.05 + 0.02 + 0.12 = 0.19$$

Обраховуємо матрицю умовних ймовірностей $p(a|b) = \frac{p(a,b)}{p(b)}$:

$$p(a_i|b_j) = \begin{bmatrix} \frac{0.08}{0.26} & \frac{0.1}{0.26} & \frac{0.08}{0.26} \\ \frac{0.3}{0.55} & \frac{0.2}{0.55} & \frac{0.05}{0.55} \\ \frac{0.05}{0.19} & \frac{0.02}{0.19} & \frac{0.12}{0.19} \end{bmatrix} = \begin{bmatrix} 0.307692 & 0.384615 & 0.307692 \\ 0.545455 & 0.363636 & 0.0909099 \\ 0.263158 & 0.105263 & 0.631579 \end{bmatrix}$$

Часткові умовні ентропії:

$$H(A | b_j) = -\sum_{i=1}^{n} p(a_i | b_j) \log_2(a_i | b_j), \ j = \overline{1, n}$$

$$\begin{split} H(A|b_1) &= -(0.307692 \cdot log_2 0.307692 + 0.384615 \cdot log_2 0.384615 + 0.307692 \cdot log_2 0.307692) = 1.576621 \\ H(A|b_2) &= -(0.545455 \cdot log_2 0.545455 + 0.363636 \cdot log_2 0.363636 + 0.090909 \cdot log_2 0.090909) = 1.322179 \\ H(A|b_3) &= -(0.263158 \cdot log_2 0.263158 + 0.105263 \cdot log_2 0.105263 + 0.631579 \cdot log_2 0.631579) = 1.267444 \end{split}$$

Загальна умовна ентропія:

$$H(A|B) = \sum_{i=1}^{n} p(b_i) \cdot H(A|b_i) = 1.576621 \cdot 0.26 + 1.322179 \cdot 0.55 + 1.267444 \cdot 0.19 = 1.377934$$

Безумовна ентропія:

$$H(A) = log_2 m = log_2 3 = 1.584963$$

Пропускна здатність каналу зв'язку:

$$C = \frac{H(A) - H(A|B)}{\tau} = \frac{1.584963 - 1.377934}{5 \cdot 10^{-5}} = 4140.56 \text{ fit/c}$$