Compositional Analysis of Boolean Networks Using Local Fixed-Point Iterations

RP 2016, Aalborg, Denmark

Adrien Le Coënt ¹, Laurent Fribourg ², Romain Soulat ³

September 22, 2016

¹CMLA Centre de Mathématiques et de Leurs Applications

²LSV Laboratoire de Spécification et Vérification

³Thales Research & Technology

- 1 Synchronous Boolean Networks
- 2 Iterative reduction of local fixed-points
- 3 Application to railways interlocking

- 1 Synchronous Boolean Networks
- 2 Iterative reduction of local fixed-points
- 3 Application to railways interlocking

Synchronous Boolean Networks

A Boolean network (BN) is a discrete-time dynamical system subject to the rules

$$x(t+1) = f(x(t)) \tag{1}$$

where

- $\blacksquare x$ is a vector of n Boolean variables and
- \bullet f is a vector of n Boolean functions on these variables.

Let $S = \{0,1\}^n$ be the set of all instances of x. We have: $f: S \to S$.

Decomposition

We suppose x decomposed into two vectors x_1 and x_2 of n_1 and n_2 components resp. $(n = n_1 + n_2)$.

Let $S_1 = \{0,1\}^{n_1}$ and $S_2 = \{0,1\}^{n_2}$ be the sets of all instances of x_1 and x_2 resp. We have: $S = S_1 \times S_2$.

The BN can be written:

$$x_1(t+1) = f_1(x_1(t), x_2(t)) (2)$$

$$x_2(t+1) = f_2(x_1(t), x_2(t)) (3)$$

with $f_1: S_1 \times S_2 \to S_1$ and $f_2: S_1 \times S_2 \to S_2$.

<u>NB</u>: Way of partioning x, e.g., by exploiting the oriented graph associated to f, out of the scope of this work (see, e.g., [Akutsu]).

Example

Consider
$$x = (A, B, C, E, F, G, H, I)$$
,
 $x_1 = (A, F, G, H, I)$, $x_2 = (B, C, E)$
and the functions f_1 and f_2 defined by the systems:

$$A(t+1) = 1 \land H(t)$$

$$F(t+1) = E(t) \land (E(t) \lor G(t))$$

$$G(t+1) = 1 \land (B(t) \lor E(t))$$

$$H(t+1) = F(t) \land (F(t) \lor G(t))$$

$$I(t+1) = H(t) \land (H(t) \lor I(t))$$

$$B(t+1) = A(t) \wedge (A(t) \vee C(t))$$

$$C(t+1) = I(t)$$

$$E(t+1) = 1 \wedge C(t) \wedge (C(t) \vee F(t))$$

Attractors

- Major interest of BNs: Finding its cycles. In industrial case studies, such as railway interlocking, one for example wants to show no cycle of length >1.
- Since f deterministic and S finite, every derivation ends to a cycle.
 The set of elements composing this cycle is called an attractor.
 An attractor of length 1 is called a stationary state
- Complexity of finding all the attractors of a BN is NP-hard [zhang2007].

Let F^* denote the union of all the attractors of the BN defined by f.

- 1 Synchronous Boolean Networks
- 2 Iterative reduction of local fixed-points
- 3 Application to railways interlocking

Lifting f to the powerset

■ The "lifted" version $f: 2^S \to 2^S$ is defined, for all $X \subseteq S$, by:

$$f(X) = \{ y \mid y = f(x) \text{ for } x \text{ in } X \}$$

■ A fixed-point of f is a set $X \subseteq S$ s.t. f(X) = X. By Knaster-Tarski th., there is a greatest fixed-point of f given by:

$$gfp(f) = \bigcap_{k>0} f^k(S)$$

- Proposition:
 - 1 The set F^* of attractors is given by: $F^* = gfp(f)$
 - 2 If $X \supseteq F^*$ then $F^* = \bigcap_{k>0} f^k(X)$

Constructing an overapproximation of F^*

■ <u>Abstraction</u> ("separation"): $\alpha: 2^S \to 2^{S_1} \times 2^{S_2}$ is defined, for all set $X \subseteq S$, by:

$$\alpha(X) = (\pi_1(X), \pi_2(X))$$

where π_1 and π_2 are the 1st and 2nd projection of S to S_1 and S_2

■ Concretization ("glueing"): $\gamma: 2^{S_1} \times 2^{S_2} \to 2^S$ is defined, for all sets $X_1 \subseteq S_1$, $X_2 \subseteq S_2$ by:

$$\gamma(X_1, X_2) = X_1 \times X_2$$

Proposition: α and γ satisfy the properties of a Galois connection:

- \bullet $\alpha(\gamma(X_1, X_2)) \subseteq (X_1, X_2)$, for all $X_1 \subseteq S_1, X_2 \subseteq S_2$
- $\gamma(\alpha(X)) \supseteq X, \text{ for all } X \subseteq S$

Constructing an overapproximation of F^* (cont'd)

■ Abstract function \tilde{f} Let $\tilde{f}: 2^{S_1} \times 2^{S_2} \to 2^{S_1} \times 2^{S_2}$ defined by $\tilde{f} = \alpha f \gamma$, i.e., for all $X_1 \subseteq S_1$ and $X_2 \subseteq S_2$:

$$\tilde{f}(X_1, X_2) = (f_1(X_1, X_2), f_2(X_1, X_2))$$

■ By Cousot's theorem, we have:

$$\gamma(gfp(\tilde{f})) \supseteq gfp(f)$$
, hence: $\gamma(\bigcap_{k\geq 0} \tilde{f}^k((S_1, S_2))) \supseteq F^*$

Let us denote $\bigcap_{k>0} \tilde{f}^k((S_1, S_2))$ by (F_1^*, F_2^*) . We have:

Proposition:

1
$$F_1^* \times F_2^* \supseteq F^*$$

$$F^* = \bigcap_{k>0} f^k(F_1^* \times F_2^*)$$

Construction of F_1^* , F_2^* by "iterative reduction"

Extensions

- Decomposition of the BN into more than 2 sub-systems
- 2 Basins of attraction
- Controlled Boolean networks (x(t+1) = f(x(t), u(t)))
- Use of the ℓ -th power $g=f^{\ell}$ of f in order to refine the over-approximation, i.e., use of $\tilde{g}=\tilde{f}^{\ell}$ and computation of $G_1^*\times G_2^*\subseteq F_1^*\times F_2^*$

Example of (A,B,C,E,F,G,H,I) system

S has 256 elements. Let $\ell=2$

$G_{1,0} = S_1$	$G_{2,0} = S_2$
$G_{1,1} = \{00000, 00001, 00100, \dots, 11110\}$	$G_{2,1} = \{000, 001, 011, 101\}$
$G_{1,2} = \{10000, 11000, 11010, \dots, 10100\}$	$G_{2,2} = G_{2,1}$
$G_{1,3} = G_{1,2}$	$G_{2,3} = G_{2,1}$

Hence $G_1^* \times G_2^*$ has $9 \times 4 = 36$ elements.

 $F^* = f^{10}(G_1^* \times G_2^*)$ has 8 elements (unique cycle).

Comparison with other compositional methods for BNs

Our method

- 1 Partitioning the set of variables
- 2 Iterative reduction: repeated computation of local fixed-points $(F_1^*$ and $F_2^*)$
- Global f-reduction of $F_1^* \times F_2^*$

<u>Closer related method</u> (e.g. [Guo-Yang-Wu-Le-Sun 2014])

- Decomposing the set of variables with common shared variables
- 2 Finding local attractors for each subsystem
- 3 Recombining local attractors in order to maintain compatibility for shared variables

- 1 Synchronous Boolean Networks
- 2 Iterative reduction of local fixed-points
- 3 Application to railways interlocking

Application to railways interlocking (NXSYS)

NXSYS, Signalling and Interlocking Simulator

- 50 Boolean variables
- Decomposition into 4 subsystems
- Computation of $F_1^* \times F_2^* \times F_3^* \times F_4^*$ takes 2 hours
- Computation of F^* by subsequent f-applications takes 12 hours.
- $|F^*| = 24M$

 $\overline{\text{NB}}$: Other tools of the state-of-art seem slower/unable to finding the attractors of such a BN with high node connectivity (indegree > 7)

Contribution and future work

Contribution

- First application of "iterative reduction" compositionality method to compute attractors of BNs
- Successful application to a railways example with 50 variables

Future work

- parallel implementation
- symbolic representation (BDD, SAT)
- application to a French railways station model (200 variables)