1) Considere o grafo orientado abaixo e assinale com "X" na tabela o resultado da análise de cada situação:

Considere o grafo offeniado abaixo	c abbiliate con	ii 11 iiu tuociu	o resultado d	a anambe ae ee	iaa sitaaqao.
a1 v ₂ a3	Grafo	Vértices	Elementar	Não Elementar	Simples
V ₁ a2	Caminho	1,2,3,4,5	X		X
a5	Caminho	2,3,4,5,1	X		X
(V ₃)	Caminho	1,2, 2 ,3		Repete v2	X
a9 a8	Circuito	2,2	X		X
a6	Circuito	3,4,5,1,2,1,3		Repete v1	X
(v_5) a7 (v_4)	Circuito	1,3,4,5,1	X		X
				•	

CAMINHO: sucessão de arcos em que um arco está ligado a outro (finito ou infinito).

CIRCUITO: caminho finito em que as extremidades inicial e final coincidem.

CAMINHO/CIRCUITO ELEMENTAR: sem repetição de vértices, exceto inicial e final.

CAMINHO/CIRCUITO SIMPLES: sem repetição de arcos.

2) Considere o grafo não orientado da figura abaixo, assinalando com (S)im ou (N)ão na tabela o resultado da análise das situações propostas.

	Descrição	Cadeia Elementar	Ciclo	Ciclo Elementar	
2 1 3	1,3,6,5,2,1	S	S	8	
	2,4,6,3,1,5,2	S	S	S	
	4,6,5,2, 2 ,1,3	N, repete 2	N	N	
	1,5,2, 2,5 ,1	N, repete 2 e 5	S	N	

CADEIA: sucessão de arestas em que a aresta ak está ligada à aresta ak por um extremo e à aresta ak pelo outro extremo.

CICLO: cadeia finita que tem início e fim no mesmo vértice.

CADEIA/CICLO ELEMENTAR: sem repetição de vértices, exceto inicial e final.

- 3) Considerando o grafo ao lado determine:
 - a) matriz de adjacência que o representa
 - b) matriz de incidência que o representa
 - c) lista de adjacência que o representa
 - d) Γ^3 (x5) e Γ^{-3} (x5) e) Γ^2 (x2) e Γ^{-2} (x2)

 - f) semigraus $d_e(x6)$ e $d_s(x6)$
 - a) matriz de adjacência que o representa

		x1	x2	х3	x4	x5	x6
Ì	x 1	0	1	0	0	0	0
Ì	x2	0	0	0	0	1	0
Ì	х3	0	1	0	0	0	1
Ì	x4	1	0	0	0	0	0
	х5	0	0	0	1	0	1
	x6	0	0	1	0	0	0

b) matriz de incidência que o representa (-1E/+1S)

b) mainz de moidendia que o representa (12/110)								
	a1	a2	a3	a4	a5	a6	a7	a8
x1	1	0	-1	0	0	0	0	0
x2	-1	-1	0	1	0	0	0	0
х3	0	1	0	0	-1	1	0	0
x4	0	0	1	0	0	0	-1	0
x5	0	0	0	-1	0	0	1	1
x6	0	0	0	0	1	-1	0	-1

d)
$$\Gamma^3$$
 (x5) = {x2,x6}
 Γ^{-3} (x5) = {x4,x6}

e)
$$\Gamma^2$$
 (x2) = {x4,x6}
 Γ^{-2} (x2) = {x4,x6}

c) lista de adjacência que o representa

f)
$$d_e(x3) = 2$$

 $d_s(x3) = 1$

4) Nos grafos abaixo existe Ciclo de Hamilton e/ou de Euler?? Se sim, indique a sequência de vértices. CICLO DE HAMILTON: ciclo elementar (sem repetir vértices, exceto inicial e final) que contém todos os vértices do grafo. CICLO EULER: ciclo simples (sem repetir arestas) que contém todas as arestas do grafo.

- a) Euler 1,2,3,4,5,3,6,7,1,3,7,2,6,1 (passa pelas 13 arestas uma única vez) / Hamilton não tem como passar por todos os vértices uma única vez (repete o vértice u3)
- b) Euler não / Hamilton não
- c) Euler 2,1,0,3,4,0,2 (passa pelas 6 arestas uma única vez) / Hamilton não, repete o vértice 0

TEOREMA GRAFO HAMILTONIANO: Se G é um grafo de ordem p (>=3) tal que o grau(v) >= p/2 para cada vértice v de G, então G é hamiltoniano. Esta condição é suficiente para garantir que um grafo G seja hamiltoniano, mas certamente ela não é necessária. Por exemplo, G pode ser simplesmente um ciclo, caso em que cada vértice tem exatamente grau dois, e ainda assim ser hamiltoniano.

TEOREMA GRAFO EULERIANO: Um multigrafo M é euleriano se, e somente se, M é conexo e cada vértice de M tem grau par.

5) Dado o grafo 2.1, veja entre os grafos 2.2 a 2.4 qual(is) é(são) subgrafo ou grafo parcial do original. SUBGRAFO: formado por subconjunto de vértices e subconjunto de arestas/arcos do grafo original (correção) GRAFO PARCIAL: formado por todos os vértices de um grafo G, contendo um subconjunto de arestas/arcos (incluido nos slides)

GRAFO PARCIAL SUBGRAFO SUBGRAFO

6) Responda e exemplifique:

a) O que é um grafo simples? Um grafo onde entre cada par de vértices distintos deve existir no máximo uma aresta e se, além disso, não contiver laços(incluído nos slides).	0 0
b) O que é um grafo completo?	<u>a</u> b
Todos os pares de vértices são adjacentes (tudo conectado).	0
6) c) O que é um grafo conexo?	(a)
Há cadeia/caminho entre qualquer par de vértices (talvez não adjacente	
mas se chega a ele por algum lugar).	(d) (e)
d) Um grafo G (não orientado) que tem um ciclo que inclui todas as arestas é um ciclo de Euler?	a
Sim, para isso o grafo G deve ser conexo.	0 0

7) Desenhe os grafos direcionados abaixo e identifique os conjuntos de antecessores e sucessores:

8) Exemplifique um grafo fortemente conexo e um grafo desconexo, ambos com no mínimo 6 vértices.

GRAFO DESCONEXO: se há pelo menos um par de vértices que não está ligado por nenhuma cadeia (incluído nos slides)

9) Apresente 2 ciclos de Euler deste grafo:

CICLO EULER: ciclo simples (sem repetição de arestas, exceto inicial e final) que contém todas as arestas do grafo.

- a) (A,B),(B,D),(D,B),(B,C),(C,D),(D,E),(E,D),(D,A)
- b) (D,B),(B,D),(D,E),(E,D),(D,A),(A,B),(B,C),(C,D)

10) Aplique o método de **PRIM** nos grafos para calcular a árvore geradora mínima (AGM). Desenhe as árvores finais e indique os custos.

As árvores estão destacadas em vermelho e os custos são:

AGM1=> 0-5, 5-4, 4-6, 6-1, 1-2, 6-3 = 107

AGM2 => s-y, y-x, x-t, y-z = 15

AGM3=> a-b, b-c, b-g, c-e, e-f, f-d = 10

11) Aplique os algoritmos de **busca em largura e busca em profundidade** nos grafos ao lado. A saída será de **0** e deve-se visitar todos os nós. Mostre a evolução dos algoritmos e desenhe as árvores finais, para visualização da ordem de visitação aos vértices.


```
Vértices Marcados=\emptyset; Fila(Q)=\emptyset
Marcados=0; Fila(Q)=0.
Marcados=0; Fila(Q)=\emptyset; T(0)=1,5
Marcados=0,1; Fila(Q)=1; explora(0,1)
Marcados=0,1,5; Fila(Q)=1,5; explora(0,5)
Marcados=0,1,5; Fila(Q)=5; T(1)=0,2,6
Marcados=0,1,5,2; Fila(Q)=5,2; explora(1,2)
Marcados=0,1,5,2,6; Fila(Q)=5,2,6; explora(1,6)
Marcados=0,1,5,2,6; Fila(Q)=2,6; T(5)=0,4
Marcados=0,1,5,2,6,4; Fila(Q)=2,6,4; explora(5,4)
Marcados=0,1,5,2,6,4; Fila(Q)=6,4; T(2)=1
Marcados=0,1,5,2,6,4; Fila(Q)=4; T(6)=1,3,4
Marcados=0,1,5,2,6,4,3; Fila(Q)=4,3; explora(6,3); explora(6,4)
Marcados=0,1,5,2,6,4,3; Fila(Q)=3; T(4)=5,6
\frac{Marcados=0,1,5,2,6,4,3}{marcados=0}; T(3)=6
Saída BFS a partir do vértice 0: 0 1 5 2 6 4 3
```

```
Vértices Marcados=0; BP(0)

Marcados=0; T(0)=1,5; w=1; explora(0,1); BP(1)

Marcados=0,1; T(1)=0,2,6; w=2; explora(1,2); BP(2)

Marcados=0,1,2; T(2)=1; Encerra BP(2);

Retoma BP(1); w=6; explora(1,6); BP(6)

Marcados=0,1,2,6; T(6)=1,3,4; w=3; explora(6,3); BP(3)

Marcados=0,1,2,6,3; T(3)=6; Encerra BP(3);

Retoma BP(6); w=4; explora(6,4); BP(4)

Marcados=0,1,2,6,3,4; T(4)=5,6; w=5; explora(4,5); BP(5)

Marcados=0,1,2,6,3,4,5; T(5)=0,4; w=0; explora(5,0);

Encerra BP(5); Encerra BP(4); Encerra BP(6);

Encerra BP(1); Encerra BP(0)
```


Saída DFS a partir do vértice 0: 0 1 2 6 3 4 5

```
Vértices Marcados=Ø; Fila(Q)=Ø

Marcados=0; Fila(Q)=0.

Marcados=0, Fila(Q)=Ø; T(0)=2,3,4

Marcados=0,2; Fila(Q)=2; explora(0,2)

Marcados=0,2,3; Fila(Q)=2,3; explora(0,3)

Marcados=0,2,3,4; Fila(Q)=2,3,4; explora(0,4)

Marcados=0,2,3,4; Fila(Q)=3,4; T(2)=4; explora(2,4)

Marcados=0,2,3,4; Fila(Q)=4; T(3)=4,5; explora(3,4)

Marcados=0,2,3,4,5; Fila(Q)=4,5; explora(3,5)

Marcados=0,2,3,4,5; Fila(Q)=5; T(4)=5; explora(4,5)

Marcados=0,2,3,4,5; Fila(Q)=Ø; T(5)=1;

Marcados=0,2,3,4,5,1; Fila(Q)=1; explora(5,1)

Marcados=0,2,3,4,5,1; Fila(Q)=Ø; T(1)=2,4; explora(1,2); explora(1,4)
```


Saída BFS a partir do vértice 0: 0 2 3 4 5 1

```
Vértices Marcados=0; BP(0)

Marcados=0; T(0)=2,3,4; w=2; explora(0,2); BP(2)

Marcados=0,2; T(2)=4; w=4; explora(2,4); BP(4)

Marcados=0,2,4; T(4)=5; w=5; explora(4,5); BP(5)

Marcados=0,2,4,5; T(5)=1; w=1; explora(5,1); BP(1)

Marcados=0,2,4,5,1; T(1)=2,4; w=2; explora(1,2); w=4

explora(1,4); Encerra BP(1); Retoma BP(5); Encerra BP(5)

Retoma BP(4); Encerra BP(4); Retoma BP(2); Encerra BP(2)

Retoma BP(0)

Marcados=0,2,4,5,1; T(0)=2,3,4; w=3; explora(0,3); BP(3)

Marcados=0,2,4,5,1,3; T(3)=4,5; w=4; explora(3,4); w=5; explora(3,5); Encerra BP(3); Retoma BP(0)

Marcados=0,2,4,5,1,3; T(0)=2,3,4; w=4; explora(0,4); Encerra BP(0)
```


Saída DFS a partir do vértice 0: 0 2 4 5 1 3

12) Encontre as componentes fortemente conexas dos grafos ao lado, através da aplicação do Algoritmo de Roy.

- +-1 Rotulação+ {4,2,5,3,6,1}
 - Rotulação {2,4,1} / S1={1,2,4}
- +-3 Rotulação+ {6} e Rot.- {5} / S2={3}
- +-5 Rotulação+ {6} e Rot.- { } / S3={5}
- +-6 Rotulação+ { } e Rot.- { } / S4={6}

+-1 Rotulação+ {2,6,3,9,5,8,4,7,1} Rotulação - {4,5,7,8,9,6,2,3,1} S1={1,2,3,4,5,6,7,8,9}