MULTIVARIABLE CALCULUS MATH2007

2.2 Scalar Path Integrals (Part 1)

Definition (2.2.1). Let the curve Γ be parametrised by $\underline{\gamma}(t)$, $t \in [a, b]$. Let f be a real-valued function defined on Γ . We define the **scalar path integral** of f over Γ by:

$$\int_{\Gamma} f \ d\underline{s} := \int_{a}^{b} f(\underline{\gamma}(t)) \ ||\underline{\gamma}'(t)|| \ dt.$$

Note. We may thus formally consider

$$ds = ||\underline{\gamma}'(t)|| dt.$$

Note. The length of the curve Γ is $\int_{\Gamma} 1 \ ds$.

Theorem (2.2.3). The value of the scalar integral of \mathcal{F} along Γ is independent of the orientation of Γ .

$$\int_{\Gamma} f \ ds = \int_{\Gamma^{-}} f \ ds.$$

Proposition. The value of the scalar integral of F along Γ is independent of the parametrization and orientation of Γ .

MULTIVARIABLE CALCULUS MATH2007

2.2 Scalar Path Integrals (Part 2)

Example. Let $\underline{r}(t) = (a\cos t, a\sin t, bt), \quad t \in [0, 3] \text{ and } F(x, y, z) = z^3.$ Then $\Gamma = \{\underline{r}(t) : t \in [0, 3]\}$ is a helix. Let F denote the mass mass per unit length of Γ . Find the mass of Γ .

helix. Let
$$F$$
 denote the mass $\frac{1}{1}$ per unit length of Γ . Find the mass of Γ .

Mass of $\Gamma \approx 5$ length (segment) (mass per unit length)

Segments

mass of
$$\Gamma = \int_{\Gamma} F \cdot ds = \int_{0}^{3} F(\underline{\Gamma}(t)) \left\| \frac{d\underline{\Gamma}}{dt} \right\| dt$$

$$\frac{d\underline{r}}{dt} = (-a\sin t, a\cos t, b) \qquad \left\| \frac{d\underline{r}}{dt} \right\| = \sqrt{a^{2}\sin^{2}t + a^{2}\cos^{2}t + b^{2}}$$

$$dt = (-a\sin t, a\cos t, b)$$

$$||at|| = \int a^{2}\sin^{2}t + a^{2}\cos^{2}t + b$$

$$= \int a^{2}+b^{2}$$

$$= \int a^{2}+b^{2} dt$$

$$= \int a^{2}+b^{2} \int a^{2}t + b^{2} dt$$

$$= \int a^{2}+b^{2} \int a^{2}t + b^{2} dt$$

$$= \int a^{2}+b^{2} \int a^{2}t + b^{2} \int a^{2}t + b^{2} \int a^{2}t + b^{2}t + a^{2}t + a^{2}t + b^{2}t + a^{2}t + a^{2}t + b^{2}t + a^{2}t + a$$

mass of
$$\Gamma = \int_0^3 F(a\cos t, b\sin t, bt)$$
. $\sqrt{a^2 + b^2} dt$

$$= \sqrt{a^2 + b^2} \int_0^3 (bt)^3 dt = \sqrt{a^2 + b^2} \int_0^3 b^3 t^3 dt$$

$$= b^3 \sqrt{a^2 + b^2} \left[\frac{t^4}{4} \right]_0^3$$

 $= \frac{81b^3}{\mu} \sqrt{a^2 + b^2}.$

MULTIVARIABLE CALCULUS MATH2007

2.2 Scalar Path Integrals (Part 3)

Example. Compute the scalar integral of $F(x,y) = \sqrt{\left(\frac{bx}{a}\right)^2 + \left(\frac{ay}{b}\right)^2}$ over the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Example. Compute the scalar integral of
$$F(x,y) = \sqrt{\frac{a}{a}} + \sqrt{\frac{b}{b}}$$
 over the empse $\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$.

$$\cos^2 t + \sin^2 t = 1$$

Let
$$\Gamma(t) = \begin{pmatrix} a \cos t \\ b \sin t \end{pmatrix}$$
 $t \in [0, 2\pi]$

$$\Gamma'(t) = \begin{pmatrix} -a \sin t \\ b \cos t \end{pmatrix} \qquad ||\Gamma'(t)|| = \int a^2 \sin^2 t + b^2 \cos^2 t$$

$$\int_{\Gamma} F ds = \int_{0}^{2\pi} f\left(\underline{\Gamma}(t)\right) \|\underline{\Gamma}'(t)\| dt = \int_{0}^{2\pi} F\left(a\cos t, b\sin t\right) Ja^{2}\sin^{2}t + b^{2}\cos^{2}t dt$$

$$= \int_{0}^{2\pi} Jb^{2}\cos^{2}t + a^{2}\sin^{2}t Ja^{2}\sin^{2}t + b^{2}\cos^{2}t dt$$

$$\int_{\Gamma} F \, ds = \int_{0}^{2\pi} f(\Gamma(t)) \|\Gamma'(t)\| \, dt = \int_{0}^{2\pi} F(a\cos t, b\sin t) \int_{0}^{2\pi} \sin^{2}t \, dt$$

$$= \int_{0}^{2\pi} \int_{0}^{$$

$$= \int_{0}^{2\pi} \left(a^2 \sin^2 t + b^2 \cos^2 t\right) dt$$

$$= \int_{0}^{2\pi} \left(a^{2} \frac{1-\cos 2t}{2} + b^{2} \frac{1+\cos 2t}{2}\right) dt$$

$$= \left[\frac{a^{2}}{2}t - \frac{a^{2}}{4}\sin 2t + \frac{b^{2}}{2}t + \frac{b^{2}}{4}\sin 2t\right]_{0}^{2\pi}$$

 $=\frac{1}{2}(a^2+b^2)2\pi = (a^2+b^2)\pi$.