UNIR – Fundação Universidade Federal de Rondônia CIÊNCIA DA COMPUTAÇÃO – 2º Período – 2º Sem. / 2021 – Geometria Analítica Lista de Exercícios nº 5 – VETORES

1 – Represente no plano cartesiano os vetores:

- a) $\mathbf{u} = (3, 2)$
- b) v = (2, 3)
- c) $\mathbf{w} = (-1, 4)$
- d) z = (-4, -1)

2 – Determine o módulo:

- a) Dos vetores dos itens a e c do exercício anterior
- b) Do vetor $\mathbf{r} = (a, b)$
- c) Do vetor $\mathbf{s} = (-2, -1, -5)$
- d) Do vetor $\mathbf{t} = (a, b, c)$

3 – Dados o ponto P = (2, 1) e o vetor v = (5, 3), determine o ponto Q de modo que P + v = Q.

 $\mathbf{4}$ – Dados os pontos $\mathbf{P} = (2, 4)$ e $\mathbf{Q} = (-3, 5)$, determine o vetor \mathbf{v} de modo que $\mathbf{Q} + \mathbf{v} = \mathbf{P}$.

5 – Dados os vetores $\mathbf{u} = (4, 3)$, $\mathbf{v} = (-5, 1)$ e $\mathbf{w} = (3, 0)$, determine $\mathbf{u} - \mathbf{v} + \mathbf{w}$.

6 – Determine o valor de **k** de modo que o vetor $\mathbf{w} = (1,-2, \mathbf{k})$ possa ser escrito como combinação linear dos vetores $\mathbf{u} = (3, 0, -2) \mathbf{v} = (2, -1, -5)$.

7 – Determine \mathbf{k} de forma que $\mathbf{u} = (1, k, 2), \mathbf{v} = (3, 1, 1)$ e $\mathbf{w} = (2, 1, 2)$ sejam linearmente independentes.

8 – Verifique se (1, 1, 1), (1, 2, 3) e (2, -1, 1) formam uma base de \mathbb{R}^3 .

9 – Cada vetor (a, b, c) de \mathbb{R}^3 pode ser escrito como uma combinação linear dos vetores $\mathbf{i} = (1, 0, 0)$, $\mathbf{j} = (0, 1, 0)$ e $\mathbf{k} = (0, 0, 1)$. Escreva os vetores a seguir como combinação linear de \mathbf{i} , \mathbf{j} e \mathbf{k} .

- a) (-3, 4, 5)
- b) (0, 3, 0)
- c) (-1, 0, 0)
- d) (0, 0, 3)

10 – Dado o vetor $\mathbf{v} = (4, 14) \in \mathbb{R}^2$, determine o vetor coordenadas de \mathbf{v} em relação à base {(3, 4), (1, -3)}.

OBSERVAÇÃO: Corrigir o texto, conforme a notação correta para vetores. *Exemplo:* \vec{u} , \vec{v} , \vec{w} , ...