UNIDAD 3: ANÁLISIS DE VÍNCULOS

ALGORITMO HITS

Blanca Vázquez y Gibran Fuentes-Pineda Octubre 2020

Introducción

Introducción

- · ¿Cómo 'sabe' Google qué páginas debe devolver?
- · ¿Qué páginas debe poner primero?

Un poco de historia

- 1960: surgen los inicios de la recuperación automática de información (antes de la creación de WWW)
- Se diseñó para buscar en los repositorios artículos, documentos legales basados en palabras claves.

RECUPERACIÓN DE INFORMACIÓN POR PALABRAS CLAVES

RETOS EN LAS PALABRAS CLAVES

- · Son limitadas
- Son cortas
- · No expresivas
- · Problemas de sinonimia
- · Problemas de polisemia

RETOS EN LAS PALABRAS CLAVES

Un poco de historia

- 1980: la recuperación automática de información se convirtió en pieza importante para los bibliotecarios, abogados de patentes... realizaban consultas efectivas / complejas para la búsqueda de documentos.
 - · Vocabularios específicos
 - Estilos

La llegada de la WWW

World Wide Web

The WorldWideWeb (W3) is a wide-area hypermedia information retrieval initiative aiming to give university

Everything there is online about W3 is linked directly or indirectly to this document, including an executiv

What's out there?

Pointers to the world's online information, subjects, W3 servers, etc.

Help

on the browser you are using

Software Products

A list of W3 project components and their current state. (e.g. Line Mode ,X11 Viola , NeXTStep , Se

Technical

Details of protocols, formats, program internals etc

Bibliography

Paper documentation on W3 and references.

People

A list of some people involved in the project.

History

A summary of the history of the project.

How can I help?

If you would like to support the web..

Getting code

Getting the code by anonymous FTP, etc.

World Wide Web: creada por Tim Berners-Lee, 1989

OBJETIVOS DE LA WWW

De manera simplificada, la concepción de la WWW tenía dos objetivos:

- Compartir información que estuviera disponible para cualquiera
 - · A través de la creación de páginas web
- Proporcionar una manera para que todos pudieran acceder a esa información
 - · A través de un buscador

SECUENCIAS DE PÁGINAS DENTRO DE UN BUSCADOR

La organización de la información en la web puede verse como un grafo dirigido. Imagen tomada de Easley, 2010.

HIPERTEXTO

La idea del hipertexto es reemplazar una estructura lineal de texto hacia una estructura de red. Imagen tomada de Pimentel, 2011

EXPANSIÓN Y CRECIMIENTO DE LA WEB

EXPANSIÓN Y CRECIMIENTO DE LA WEB

Retos

- No es posible usar las técnicas tradicionales de recuperación de información
- · Crecimiento constante (no. páginas)
- Cantidad y tipo de contenido (audio, vídeo, imágenes, texto)
- Discrepancia: entre hechos que sucedían al momento vs historia
- · Pasamos de la escasez a la abundancia.

EXPANSIÓN Y CRECIMIENTO DE LA WEB

¿Cómo filtrar de un conjunto de millones de páginas, las más relevantes?

DUDA

Dada la palabra de búsqueda UNAM, ¿cuáles son las pistas que sugieren que nos referimos a la página oficial?

VOTACIÓN POR ENLACES

- La importancia de una página no se decide únicamente por las características internas de la página
- Su 'calidad' puede ser juzgada a partir de los enlaces que apuntan a la página.
- · Los enlaces son un respaldo colectivo
- Se llama respaldo colectivo cuando una página recibe enlaces de otras páginas relevantes.
- Los enlaces serán claves para la relevancia de una página (críticas, anuncios pagados)

Contando enlaces de páginas para la consulta *newpapers*. Imagen tomada de Easley, 2010.

- Contar los votos / enlaces es un tipo de medida simple para descubrir la relevancia de una página web.
- Y si, ¿existieran páginas que compilen listas de recursos relevantes?

Encontrando listas para la consulta *newpapers* Imagen tomada de Easley, 2010.

El valor de una página como lista es igual a la suma de los votos recibidos por todas las páginas. Imagen tomada de Easley, 2010.

LISTAS DE ALTO VALOR

Uso de listas en nuestra vida diaria

PRINCIPIO DE MEJORA REPETIDA

Cada refinamiento de un lado de la figura permite un refinamiento adicional al otro lado. Imagen tomada de Easley, 2010.

¡REVISEMOS OTRO ENFOQUE!

ALGORITMO DE HITS

- HITS es el acrónimo de *Hypertext Induced Topic Selection* conocido como el algoritmo de *Hubs y autoridades*
- · Desarrollado por Jon Kleinberg.
- Es un algoritmo de análisis de enlaces web para descubrir y clasificar las páginas relevantes a partir de una búsqueda.

MOTIVACIÓN

HITS está inspirado en el método de clasificación de las revistas académicas. Imagen tomada de 2011 Journal Citation Reports.

La idea básica del algoritmo HITS

La importancia de una página web se mide por 2 indicadores: el valor de autoridad (*Authority*) y el valor de hub (*Hub*)

Indicadores de importancia: *hub* y *authority* Imagen tomada de Hussain,2019.

HUBS Y AUTORIDADES

Dada una consulta en un buscador:

- Las páginas Hubs son aquellas que no aportan mucha información sobre un tema, pero enlazan a otras que si lo hacen.
- Las páginas *Authority* son aquellas que aportan mucha información sobre un tema y por ello muchas páginas *Hubs* la enlazan.

HUBS Y AUTORIDADES

- Una buena página *Hub* es aquella que apunta a muchas páginas de autoridad.
- Una buena página *Authority* es aquella que es apuntada por muchas páginas hub.
- Toda página tiene dos indicadores: uno de Hub y uno de autoridad.
- Ambos indicadores son interdependientes y se influyen mutuamente.

EJEMPLO DE HUBS Y AUTORIDADES

Ejemplos de hubs: blogs, foros, sitios de renta Ejemplo de autoridad: sitios oficiales de fabricantes de coches Imagen tomada de Cornell, 2009.

INDICADOR DE AUTORIDAD

$$auth(p) = \sum_{i=1}^{n} hub(i)$$

dónde n es el número total de páginas enlazadas a p e i es una página conectada a p.

• Por lo tanto, auth(p) es la suma de todas las puntuaciones de hub de las páginas que apuntan a ella.

INDICADOR DE HUB

$$hub(p) = \sum_{i=1}^{n} auth(i)$$

dónde n es el número total de páginas enlazadas desde p e i es una página conectada desde p.

 Por lo tanto, hub(p) es la suma de todas las puntuaciones de auth de todas sus páginas de enlace

Normalización

El cálculo de los indicadores de *auth* y *hub* se realiza a través de un algoritmo de *k* iteraciones.

- Debido a que los valores finales de auth y hub pueden ser divergentes, al final se aplica un proceso de normalización, consiste en:
 - Dividir cada valor final de auth de cada página entre la suma total de todos los valores auth
 - Dividir cada valor final de hub de cada página entre la suma total de todos los valores hub

ALGORITMO DE HITS

- 1. Sea k el número de iteraciones
- 2. Cada nodo se asigna a un valor hub = 1 y un valor de auth = 1
- 3. Repetimos k veces:
 - 3.1 Actualizamos $auth(p) = \sum_{i=1}^{n} hub(i)$
 - 3.2 Actualizamos $hub(p) = \sum_{i=1}^{n} auth(i)$
- 4. Normalizamos* auth(p) y hub(p)

Calcular el indicador de *auth* y *hub* del siguiente grafo (k=3):

Nodo	Inicio			
	Hub	Auth		
Α	1	1		
В	1	1		
С	1	1		
D	1	1		
E	1	1		
F	1	1		
G	1	1		
Н	1	1		

Nodo	In	icio	1ra iteración		
	Hub	Auth	Hub	Auth	
Α	1	1	1	3	
В	1	1	2	1	
С	1	1	1	5	
D	1	1	1	2	
E	1	1	4	1	
F	1	1	2	1	
G	1	1	2	0	
Н	1	1	1	1	

Nodo	Inicio		1ra iteración		2da iteración		
	Hub	Auth	Hub	Auth	Hub	Auth	
Α	1	1	1	3			
В	1	1	2	1			
С	1	1	1	5			
D	1	1	1	2			
Е	1	1	4	1			
F	1	1	2	1			
G	1	1	2	0			
Н	1	1	1	1			

	Nodo	Inicio		1ra iteración		2da iteración		3ra iteración	
		Hub	Auth	Hub	Auth	Hub	Auth	Hub	Auth
	Α	1	1	1	3	2	4		
)	В	1	1	2	1	6	4		
	С	1	1	1	5	3	11		
	D	1	1	1	2	5	5		
	E	1	1	4	1	3	2		
	F	1	1	2	1	6	4		
	G	1	1	2	0	8	0		
	Н	1	1	1	1	3	2		

RECORDEMOS LA BÚSQUEDA DE NEWSPAPER

RESUMEN DEL ALGORITMO HITS

- · Calcula la relevancia de una página a través de auth y hub.
- · Se realiza sobre conjuntos pequeños de páginas.
- · Normalmente se despliega en el lado del cliente.