Math 501 Homework 12

Trevor Klar

December 5, 2017

1. Let X be a topological space, with \mathscr{B} a basis for the topology on X. Prove that if every open cover of X by sets in \mathscr{B} has a finite subcover, then X is compact.

PROOF Let $\{U_{\alpha}\}_{\alpha\in\Gamma}$ be an arbitrary open cover of X. Since each U_{α} is open, we know that for each $x\in U_{\alpha}$, there exists a basic open set B such that $x\in B\subset U_{\alpha}$. So for each $\alpha\in\Gamma$, and each $x\in U_{\alpha}$, let $B_{(\alpha,x)}$ denote a basic open set such that $x\in B\subset U_{\alpha}$. This means that $\bigcup_{\alpha\in\Gamma}\{B_{(\alpha,x)}:\forall x\in U_{\alpha}\}$ is an open cover of X by sets in \mathscr{B} , so it has a finite subcover $\{B_i\}_{i=1}^N$. Each B_i is a subset of some U_{α} , so for each $i\in\{1,\ldots,N\}$, let α_i be an element of Γ such that $B_i\subset U_{\alpha_i}$. Therefore, $\bigcup_{i=1}^N\{\{U_{\alpha_i}\}\}$ is a finite subcollection of $\{U_{\alpha}\}_{\alpha\in\Gamma}$ which covers X, so X is compact.

- 2. Let $\{X_{\alpha}\}_{{\alpha}\in\Gamma}$ be a collection of spaces.
 - (a) Prove that the projection $\pi_{\beta}: \prod_{\alpha \in \Gamma} X_{\alpha} \to X_{\beta}$ is not necessarily closed.

PROOF Consider the graph of $\tan \left|_{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)}\right|$ as a subset of \mathbb{R}^2_{usual} ; $S = \{(x, tan(x) : -\frac{\pi}{2} < x < \frac{\pi}{2}\}.$

This set S is closed in \mathbb{R}^2 , but $\pi_1(S) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is not closed in \mathbb{R} .

(b) Prove that $g: Y \to \prod_{\alpha \in \Gamma} X_{\alpha}$ is continuous if and only if $\pi_{\alpha} \circ g$ is continuous for each $\alpha \in \Gamma$.

PROOF (\Longrightarrow) Suppose $g: Y \to \prod_{\alpha \in \Gamma} X_{\alpha}$ is continuous. To show that $\pi_{\alpha} \circ g: Y \to X_{\alpha}$ is continuous for each $\alpha \in \Gamma$; let $\beta \in \Gamma$ be arbitrary, and let U_{β} be an arbitrary open set in X_{β} . Now,

$$\pi_{\beta}^{-1}(U_{\beta}) = U_{\beta} \times \prod_{\alpha \in (\Gamma - \beta)} X_{\alpha},$$

Which is open in $\prod_{\alpha \in \Gamma} X_{\alpha}$. Since g is continuous, then $g^{-1}\left(\pi_{\beta}^{-1}\left(U_{\beta}\right)\right) = (\pi_{\alpha} \circ g)^{-1}\left(U_{\beta}\right)$ is open in Y, and we are done.

¹There could be $U_{\alpha_i} = U_{\alpha_j}$ for some $i \neq j$, so this union notation is used to clarify the fact that this is a collection of sets which does not repeat. It is a union of singletons of sets, not a union of the sets themselves.

PROOF (\Leftarrow) Suppose that $\pi_{\alpha} \circ g : Y \to X_{\alpha}$ is continuous for each $\alpha \in \Gamma$. Let $U \in \prod_{\alpha \in \Gamma} X_{\alpha}$ be any basic open set. By definition,

$$U = \prod \begin{cases} U_{\alpha} & \alpha \in \{\alpha_1, \dots, \alpha_N\} \\ X_{\alpha} & \alpha \notin \{\alpha_1, \dots, \alpha_N\} \end{cases}$$

Now we can see that $g^{-1}(U)$ is open by the following diagram chase, since there are finitely many nontrivial component sets of U:

$$Y \xrightarrow{g} \prod_{\alpha \in \Gamma} X_{\alpha} \xrightarrow{\pi_{\alpha}} X_{\alpha}$$

For each $\alpha_i \in \{\alpha_1, \dots, \alpha_N\}$, denote the preimage

$$(\pi_{\alpha_i} \circ g)^{-1} (U_{\alpha_i}) = V_{\alpha_i}.$$

Note that V_{α_i} may differ from $g^{-1}(U)$, since $\pi_{\alpha_i}^{-1}(\pi_{\alpha_i}(U))$ may differ from U. However, $g^{-1}(U) \subset V_{\alpha_i}$. We know that V_{α_i} is open, since $\pi_{\alpha_i} \circ g$ is continuous. Now we are done, since $\bigcap V_{\alpha_i} = g^{-1}(U)$ is a finite intersection of open sets, and thus is open. To see that this equality holds, let $p \in \bigcap V_{\alpha_i}$. So, for every $\alpha \in \Gamma$,

$$(\pi_{\alpha} \circ g)(p) \in \begin{cases} U_{\alpha} & \alpha \in \{\alpha_{1}, \dots, \alpha_{N}\} \\ X_{\alpha} & \alpha \notin \{\alpha_{1}, \dots, \alpha_{N}\} \end{cases}$$

so $g(p) \in U$. Thus, $\bigcap V_{\alpha_i} \subset g^{-1}(U)$. Now we show that $\bigcap V_{\alpha_i} \supset g^{-1}(U)$. Let $p \in g^{-1}(U)$. So $g(p) \in U$, and

$$(\pi_{\alpha} \circ g)(p) \in \begin{cases} U_{\alpha} & \alpha \in \{\alpha_{1}, \dots, \alpha_{N}\} \\ X_{\alpha} & \alpha \notin \{\alpha_{1}, \dots, \alpha_{N}\} \end{cases}$$

thus, $p \in \bigcap V_{\alpha_i}$ by definition of V_{α_i} . Thus, we have shown that for every basic open set $U, g^{-1}(U)$ is open, therefore g is continuous.

3. Describe the box topology on $\prod_{x \in X} \{0, 1\}_X$. Show that the box topology on $\prod_{x \in X} \{0, 1\}_X$ is not necessarily compact.

Answer: The space itself is the set of all functions $f: X \to \{0,1\}$ such that for all $x \in X$, f(x) = 0 or f(x) = 1. The topology is the discrete topology, since a set U is open in $\prod_{x \in X} \{0,1\}_X$ if $\pi_x(U)$ is open for all $x \in X$, and each $\{0,1\}$ has the discrete topology.

PROOF To show that the box topology on $\prod_{x \in X} \{0,1\}_X$ is not necessarily compact, consider $\{0,1\}^{\mathbb{N}}$ where $\mathbb{N} = \{1,2,\ldots\}$. For each $i \in \mathbb{N}$, let $S_i = \{f : \mathbb{N} \to \{0,1\} | f(i) = 1\}$, and let S_0 be the singleton set $\{f \equiv 0\}$.

Now $\{S_i\}_{i=0}^{\infty}$ is an open cover of $\{0,1\}^{\mathbb{N}}$, since if $f \not\equiv 0$ then there is some $i \in \mathbb{N}$ such that f(i) = 1. Also, this open cover has no finite subcover, since removing any element S_j of the cover results in a collection which does not contain $f: \mathbb{N} \to \{0,1\}$ such that f(j) = 1 and f(i) = 0 for all $i \neq j$.

5. Prove the converse to the Tychonoff Theorem: If the product topology $\prod_{\alpha \in \Gamma} X_{\alpha}$ is compact, then each X_{α} is compact.

PROOF Suppose $X = \prod_{\alpha \in \Gamma} X_{\alpha}$ is compact. Let $\alpha_0 \in \Gamma$ be arbitrary, and let $\{U_{\beta_{\alpha_0}}\}_{\beta \in \Delta}$ be an arbitrary open cover of $X\alpha_0$. Let

$$\{U_{\beta}\}_{\beta \in \Delta} = \left\{ U_{\beta_{\alpha_0}} \times \prod_{\alpha} U_{\beta_{\alpha}} : \beta \in \Delta, \, \alpha \in (\Gamma - \alpha_0) \right\}$$

be an arbitrary open cover of X. Since X is compact, $\{U_{\beta}\}$ has a finite subcover

$$\{U_{\beta^i}\}_{i=1}^N = \left\{ \prod_{\alpha \in \Gamma} U_{\beta^i_\alpha} \right\}_{i=1}^N$$

where each $\beta^i \in \Delta$. Now consider the image of this collection in the projection π_{α_0} :

$$\{\pi_{\alpha_0} (U_{\beta^i})\}_{i=1}^N = \{U_{\beta_{\alpha_0}^i}\}_{i=1}^N$$

Observe that $\{U_{\beta_{\alpha_0}^i}\}_{i=1}^N \subset \{U_{\beta_{\alpha_0}}\}_{\beta \in \Delta}$, and it also covers all of X_{α_0} (since $\{U_{\beta^i}\}_{i=1}^N$ covers X). Thus, we have produced a finite subcover of any open cover of any X_{α} , so we are done.