Exp. No.:

MEASUREMENT OF h - PARAMETERS OF TRANSISTOR IN CE CONFIGURATIONS

AIM: To measure the h-parameters of the transistor AC126 at 1 KHz.

APPARATUS:

S.No.	Name of the Apparatus	Range	Quantity
1.	h- parameters module	-	1No.
2.	AF Oscillator	0-30V	2No.
3.	Voltmeter	0-10V	2No.
4.	Ammeter	0-10mA	1No.

CIRCUIT DIAGRAM:

PROCEDURE:

- 1. Switch on the supply with the help of Main switch.
- 2. To set the desired biasing condition, first connect the ammeter as shown in fig and now with the help of P_1 and P_2 the desired biasing current and voltage can be adjusted say $I_c=2mA$ and $V_{CE}=-5V$.
- 3. Connect AF Oscillator between the terminals 1 and 2 and set the frequency at 1KHZ and voltage of about 10mV to 20mV.
- 4. Switch ON S₁.
- 5. Measure voltages V_{23} , V_{31} , V_{46} and V_{56} .

Exp. No.:

6. Disconnect the AF Oscillator and now connect it across the terminals 5¹ and 6¹. Set the frequency at 1 KHZ and voltage of about 250mV (200-300mV).

- 7. Switch OFF S₁.
- 8. Measure voltages $V_3{}^1{}_2{}^1,\,V_4{}^1{}_6{}^1$ and $V_5{}^1{}_6{}^1$.

READINGS:

i.
$$S_1$$
 is ON i.e., $V_C = 0$

$$V_{23} =$$

$$V_{31} =$$

$$V_{56} =$$

ii.
$$S_1$$
 is OFF i.e., $I_b=0$

CALCULATIONS:

$$h_{ie} = \frac{V_b}{I_b}, V_C = 0$$

$$h_{fe} = \frac{I_C}{I_h}, V_C = 0$$

$$h_{re} = \frac{V_b}{V_c}, I_b = 0$$

$$h_{oe} = \frac{I_c}{V_C}, I_b = o$$

But
$$V_b = V_{23} =$$

$$I_b = \frac{V_{31}}{R_1} =$$

Exp. No.:

$$I_{c} = \frac{V_{46} - V_{56}}{R_{2}} for V_{c} = 0; =$$

$$V_b = V_{3'2'}$$
, =

$$I_C = \frac{V_{5'6'} - V_{4'6'}}{R_2} =$$

and
$$V_C = V_{4'6'} for I_b = 0$$

Therefore, $h_{ie} = \frac{R_1 V_{23}}{V_{31}} ohms =$

$$h_{fe} = \frac{(V_{46} - V_{56})R_1}{R_2 V_{31}} = \frac{R_1}{R_2 V_{31}} (V_{46} - V_{56}) =$$

$$h_{re} = \frac{V_{3'2'}}{V_{4'6'}} =$$

$$h_{oe} = \frac{V_{5'6'} - V_{4'6'}}{R_2 V_{4'6'}} mhos =$$

RESULTS:

The measured h-parameters for the given transistor AC 126 at 1 KHZ.

h_{ie}=

 $h_{re} =$

h_{fe}=

h_{oe}=

standard values: h_{ie} = 1.0 to 3.8 k Ω

$$h_{fe}$$
= (10 - 50) x 10^{-4}

 $h_{oe} =$ < 170μ mhos