9.4 GPIO registers

This section gives a detailed description of the GPIO registers.

For a summary of register bits, register address offsets and reset values, refer to Table 57.

The peripheral registers can be written in word, half word or byte mode.

9.4.1 GPIO port mode register (GPIOx_MODER) (x = A to G)

Address offset:0x00

Reset value: 0xABFF FFFF (for port A)
Reset value: 0xFFFF FEBF (for port B)
Reset value: 0xFFFF FFFF (for ports C..G)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODE	15[1:0]	MODE	14[1:0]	MODE	13[1:0]	MODE	12[1:0]	MODE	11[1:0]	MODE	10[1:0]	MODE	E9[1:0]	MODE	E8[1:0]
rw	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	E7[1:0]	MODE	E6[1:0]	MODE	E5[1:0]	MODE	E4[1:0]	MODE	3[1:0]	MODE	2[1:0]	MODE	E1[1:0]	MODE	E0[1:0]
rw	rw														

Bits 31:0 **MODE[15:0][1:0]:** Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O mode.

00: Input mode

01: General purpose output mode

10: Alternate function mode

11: Analog mode (reset state)

Note: It is recommended to set PB8 to a different mode than the analog one to limit the consumption that would occur if the pin is left unconnected.

9.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A to G)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 OT15	14 OT14	13 OT13	12 OT12	11 OT11	10 OT10	9 OT9	8 OT8	7 OT7	6 OT6	5 OT5	4 OT4	3 OT3	2 OT2	1 OT1	0 OT0

RM0440 Rev 7 361/2124

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OT[15:0]**: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O output type.

0: Output push-pull (reset state)

1: Output open-drain

9.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A to G)

Address offset: 0x08

Reset value: 0x0C00 0000 (for port A)

Reset value: 0x0000 0000 (for the other ports)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ED15 OSPEED14 OSPEED13 0] [1:0] [1:0]				ED12 :0]		ED11 :0]		ED10 :0]		EED9 :0]		EED8 :0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EED7 :0]					EED4 :0]		EED3 :0]		EED2 :0]		EED1 :0]		EED0 :0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **OSPEED[15:0][1:0]**: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O output speed.

00: Low speed

01: Medium speed

10: High speed

11: Very high speed

Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed..

9.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A to G)

Address offset: 0x0C

Reset value: 0x6400 0000 (for port A)
Reset value: 0x0000 0100 (for port B)
Reset value: 0x0000 0000 (for other ports)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPD	15[1:0]	PUPD	14[1:0]	PUPD	13[1:0]	PUPD	12[1:0]	PUPD	11[1:0]	PUPD	10[1:0]	PUPE	9[1:0]	PUPD	8[1:0]
rw	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPE	7[1:0]	PUPD	06[1:0]	PUPD	5[1:0]	PUPD	04[1:0]	PUPD	3[1:0]	PUPD	2[1:0]	PUPE	01[1:0]	PUPD	00[1:0]
rw	rw														

Bits 31:0 **PUPD[15:0][1:0]:** Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up 10: Pull-down 11: Reserved

9.4.5 GPIO port input data register (GPIOx_IDR) (x = A to G)

Address offset: 0x10

Reset value: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 ID15	14 ID14	13 ID13	12 ID12	11 ID11	10 ID10	9 ID9	8 ID8	7 ID7	6 ID6	5 ID5	4 ID4	3 ID3	2 ID2	1 ID1	0 ID0

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ID[15:0]**: Port x input data I/O pin y (y = 15 to 0)

These bits are read-only. They contain the input value of the corresponding I/O port.

9.4.6 GPIO port output data register (GPIOx_ODR) (x = A to G)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OD15	OD14	OD13	OD12	OD11	OD10	OD9	OD8	OD7	OD6	OD5	OD4	OD3	OD2	OD1	OD0

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OD[15:0]:** Port output data I/O pin y (y = 15 to 0)

These bits can be read and written by software.

Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the $GPIOx_BSRR$ register (x = A...F).

9.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A to G)

Address offset: 0x18

T

RM0440 Rev 7 363/2124

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	W	w	W	w	w	W	W	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15	14 BS14	13 BS13	12 BS12	11 BS11	10 BS10	9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	4 BS4	3 BS3	2 BS2	1 BS1	0 BS0

Bits 31:16 **BR[15:0]**: Port x reset I/O pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODx bit

1: Resets the corresponding ODx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BS[15:0]**: Port x set I/O pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODx bit

1: Sets the corresponding ODx bit

9.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A to G)

This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit, the value of this port bit can no longer be modified until the next MCU reset or peripheral reset.

Note:

A specific write sequence is used to write to the GPIOx_LCKR register. Only word access (32-bit long) is allowed during this locking sequence.

Each lock bit freezes a specific configuration register (control and alternate function registers).

Address offset: 0x1C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	LCKK
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.

0: Port configuration lock key not active

1: Port configuration lock key active. The GPIOx_LCKR register is locked until the next MCU reset or peripheral reset.

LOCK key write sequence:

WR LCKR[16] = '1' + LCKR[15:0]

WR LCKR[16] = '0' + LCKR[15:0]

WR LCKR[16] = '1' + LCKR[15:0]

RD LCKR

RD LCKR[16] = '1' (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit returns '1' until the next MCU reset or peripheral reset.

Bits 15:0 **LCK[15:0]**: Port x lock I/O pin y (y = 15 to 0)

These bits are read/write but can only be written when the LCKK bit is '0.

0: Port configuration not locked

1: Port configuration locked

9.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A to G)

Address offset: 0x20

Reset value: 0x0000 0000

31	30	29	28	21	26	25	24	23	22	21	20	19	18	17	16
	AFSEL7[3:0]				AFSEL	_6[3:0]			AFSE	L5[3:0]			AFSE	L4[3:0]	-
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFSEI	_3[3:0]			AFSEL	2[3:0]	_		AFSE	L1[3:0]	_		AFSE	L0[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

RM0440 Rev 7 365/2124

Bits 31:0 **AFSEL[7:0][3:0]:** Alternate function selection for port x I/O pin y (y = 7 to 0)

These bits are written by software to configure alternate function I/Os.

0000: AF0

0001: AF1

0010: AF2

0011: AF3

0100: AF4

0101: AF5

0110: AF6

0111: AF7

4000- 450

1000: AF8

1001: AF9 1010: AF10

1011: AF11

1100: AF12

1101: AF13

1110: AF14

1111: AF15

9.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A to G)

Address offset: 0x24

Reset value: 0x0000 0000

31	30	29	20	21	20	25	24	23	22	21	20	19	10	17	10
	AFSEL		AFSEL	14[3:0]			AFSEL	.13[3:0]			AFSEL	.12[3:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFSEL	.11[3:0]			AFSEL	10[3:0]			AFSE	L9[3:0]			AFSE	L8[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **AFSEL[15:8][3:0]:** Alternate function selection for port x I/O pin y (y = 15 to 8)

These bits are written by software to configure alternate function I/Os.

0000: AF0

0001: AF1

0010: AF2

0011: AF3

0100: AF4

0101: AF5

0110: AF6

0111: AF7

1000: AF8

1001: AF9

1010: AF10

1011: AF11

1100: AF12

1101: AF13

1110: AF14

1111: AF15

9.4.11 GPIO port bit reset register (GPIOx_BRR) (x = A to G)

Address offset: 0x28

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BR15	14 BR14	13 BR13	12 BR12	11 BR11	10 BR10	9 BR9	8 BR8	7 BR7	6 BR6	5 BR5	4 BR4	3 BR3	2 BR2	1 BR1	0 BR0

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **BR[15:0]**: Port x reset IO pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODx bit

1: Reset the corresponding ODx bit

9.4.12 GPIO register map

The following table gives the GPIO register map and reset values.

Table 57. GPIO register map and reset values

			Iabi					IIIap									
Offset	Register name	30	29	27	25	23	20	18	17	15 4	13	1 5	၈ ဆ	2	დ 4	8 2	0
0x00	GPIOA_MODER	MODE15[1:0]	MODE14[1:0]	MODE13[1:0]	MODE12[1:0]	MODE11[1:0]	MODE10[1:0]	MODE9[1:0]	MODE8[1:0]	MODE7[1:0]	MODE6[1:0]	MODE5[1:0]	MODE4[1:0]	MODE3[1:0]	MODE2[1:0]	MODE1[1:0]	MODE0[1:0]
	Reset value	1 0	1 0	1 0	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
0x00	GPIOB_MODER	MODE15[1:0]	MODE14[1:0]	MODE13[1:0]	MODE12[1:0]	MODE11[1:0]	MODE10[1:0]	MODE9[1:0]	MODE8[1:0]	MODE7[1:0]	MODE6[1:0]	MODE5[1:0]	MODE4[1:0]	MODE3[1:0]	MODE2[1:0]	MODE1[1:0]	MODE0[1:0]
	Reset value	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 0	1 0	1 1	1 1	1 1
0x00	GPIOx_MODER (where x = CG)	MODE15[1:0]	MODE14[1:0]	MODE13[1:0]	MODE12[1:0]	MODE11[1:0]	MODE10[1:0]	MODE9[1:0]	MODE8[1:0]	MODE7[1:0]	. MODE6[1:0]	MODE5[1:0]	MODE4[1:0]	MODE3[1:0]	MODE2[1:0]	MODE1[1:0]	MODE0[1:0]
	Reset value	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
0x04	GPIOx_OTYPER (where x = AG)	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	OT15 OT14	OT13 OT12	OT11 OT10	OT9 OT8	OT7 OT6	OT5 OT4	OT3 OT2	OT0
	Reset value									0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x08	GPIOA_OSPEEDR	OSPEED15[1:0]	OSPEED14[1:0]	OSPEED13[1:0]	OSPEED12[1:0]	OSPEED11[1:0]	OSPEED10[1:0]	OSPEED9[1:0]	OSPEED8[1:0]	OSPEED7[1:0]	OSPEED6[1:0]	OSPEED5[1:0]	OSPEED4[1:0]	OSPEED3[1:0]	OSPEED2[1:0]	OSPEED1[1:0]	OSPEED0[1:0]
	Reset value	0 0	0 0	1 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x08	GPIOx_OSPEEDR (where x = A to G)	OSPEED15[1:0]-	OSPEED14[1:0]	OSPEED13[1:0].	OSPEED12[1:0]-	OSPEED11[1:0]	OSPEED10[1:0]	OSPEED9[1:0]	OSPEED8[1:0]	OSPEED7[1:0]	OSPEED6[1:0]	OSPEED5[1:0]	OSPEED4[1:0]	OSPEED3[1:0]	OSPEED2[1:0]	OSPEED1[1:0]	OSPEED0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x0C	GPIOA_PUPDR	PUPD15[1:0]	PUPD14[1:0]	PUPD13[1:0]	PUPD12[1:0]	PUPD11[1:0]	PUPD10[1:0]	PUPD9[1:0]	PUPD8[1:0]	PUPD7[1:0]	PUPD6[1:0]	PUPD5[1:0]	PUPD4[1:0]	PUPD3[1:0]	PUPD2[1:0]	PUPD1[1:0]	PUPD0[1:0]
	Reset value	0 1	1 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x0C	GPIOB_PUPDR	PUPD15[1:0]	PUPD14[1:0]	PUPD13[1:0]	PUPD12[1:0]	PUPD11[1:0]	PUPD10[1:0]	PUPD9[1:0]	PUPD8[1:0]	PUPD7[1:0]	PUPD6[1:0]	PUPD5[1:0]	PUPD4[1:0]	PUPD3[1:0]	. PUPD2[1:0]	PUPD1[1:0]	. PUPD0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0
0x0C	GPIOx_PUPDR (where x =)	PUPD15[1:0]	PUPD14[1:0]	PUPD13[1:0]	PUPD12[1:0]	PUPD11[1:0]	PUPD10[1:0]	PUPD9[1:0]	PUPD8[1:0]	PUPD7[1:0]	PUPD6[1:0]	PUPD5[1:0]	PUPD4[1:0]	PUPD3[1:0]	PUPD2[1:0]	PUPD1[1:0]	PUPD0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x10	GPIOx_IDR (where x = A to G) Reset value	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	x x ID15	x x ID13	x x D11	6 B x x	x x	x x	x x	x x
	1 tooot value									_^ _^	_^ _^	_ ^ _ ^	_^_^	_^ _^	^ _^	^ ^	^ ^

Table 57. GPIO register map and reset values (continued)

						_	_	_	_			_				_					_		_		_		_	_	_	_	_	_	
Offset	Register name	31	30	53	28	27	56	22	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	œ	7	9	2	4	က	2	1	0
0x14	GPIOx_ODR (where x = A to G)	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	OD15	OD14	OD13	OD12	OD11	OD 10	6 Q O	9D0	0D7	OD6	OD5	OD4	OD3	OD2	OD1	OD0
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x18	GPIOx_BSRR (where x = A to G)	BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0	BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x1C	GPIOx_LCKR (where x = A to G)	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	LCKK	LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
	Reset value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x20	GPIOx_AFRL (where x = A to G)	7[3:0]				6[3:0]				5[3:0]			4[3:0]				3[3:0]			2[3:0]			1[3:0]				0[3:0]						
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x24	GPIOx_AFRH (where x = A to G)	15[3:0]				14[3:0]				13[3:0]					12[3:0]				11[3:0]				10[3:0]			9[3:0]				8[3:0]			
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x28	GPIOx_BRR (where x = A to G))	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Refer to Section 2.2 on page 81 for the register boundary addresses.

RM0440 Rev 7 369/2124