Introduction to Machine Learning

Amo G. Tong

Lecture 8 Supervised Learning

- · Artificial Neural Networks
- · Backpropagation Algorithm
- Some materials are courtesy of Vibhave Gogate, Eric Xing and Tom Mitchell.
- All pictures belong to their creators.

ection to Machine Learning

Pr[x|y] and Pr[y] are hard to compute. No good form for $\Pr[y|x]$ No prior Knowledge on f(x).

You can try Neural Networks.

• Estimate $\Pr[y|x]$ by Bayesian Theory: $\Pr[y|x] = \frac{\Pr[x|y]\Pr[y]}{\Pr[x]}$

• Estimate Pr[y|x] directed by assuming a certain form

Neural Networks

- Input x, output y
- Given x, how to compute y?
- x and y are generally real vectors.

Neural Networks

- Input x, output y
- Given x, how to compute y?
- x and y are generally real vectors.

Introduction to Machine Learning Amo G. Tong

Neural Networks

- Input x, output y
- Given x, how to compute y?

Supervised Learning

 $\bullet < x, y >$

• Naïve Bayes.

• Error-driven.

· Logistic regression.

• x and y are generally real vectors.

- · Many neuron-like units (perceptron, sigmoid)
- · Weighted interconnections between units.
- · Parallel distributed process.

Introduction to Machine Learning Amo G. Tong

Neural Networks

- Input x, output y
- Given x, how to compute y?
- x and y are generally real vectors.
- Design a neural network:
- · What is the function within each unit?
- How are the units connected?

Neural Networks

- Input x, output y
- ullet Given x, how to compute y?
- x and y are generally real vectors.
- Units:
- Input Unit
- Processing Units
- Receive input from other units
- Output result to other units
- Edges
- weights

Examples

- Linear function $y = \omega_1 x_1 + \dots + \omega_n x_n$
- Input (x_1, \dots, x_n) output y.

Introduction to Machine Learning Amo G. Tong

Examples

- Quadratic function $y = (\omega_{11}x_1 + \omega_{12}x_2)(\omega_{21}x_1 + \omega_{22}x_2)$
- Input $(x_1, ..., x_n)$ output y.

roduction to Machine Learning

Amo G. Tong

Train a Neural Network

- Define the error E
- Update the weight ω of each edge to minimize E
- $\omega \leftarrow \omega \eta \frac{\partial E}{\partial \omega}$ (delta rule)

Calculate $\frac{\partial E}{\partial \omega}$

- Batch Mode
- E: the total error among training data.
- · Consider all the training data each time.
- Incremental Mode
 - E: the error for one training instance.
 - · Consider training instances one by one.

ntroduction to Machine Learning

Amo G. Tong

Train a Neural Network

- Define the error E
- Update the weight ω of each edge to minimize E
- $\omega \leftarrow \omega \eta \frac{\partial E}{\partial \omega}$ (delta rule)

Calculate $\frac{\partial E}{\partial \omega}$

- Incremental Mode
- E: the error for one training instance.

Amo G. Tong

· Consider training instances one by one.

tion to Machine Learning

Neural Networks

- One layer of sigmoid with one output
- Two layers of single functions
- Two layers of multiple sigmoid units with one output.
- Two layers of multiple sigmoid units with multiple outputs.
- Goal: how to find the parameters that can minimize the error.

Introduction to Machine Learning

Amo G. Tong

Neural Networks

• One layer of sigmoid with one output

$$\frac{\partial E_x}{\partial \omega_i} = -(t_x - o_x) \frac{\partial o_x}{\partial \omega_i} = -(t_x - o_x) \cdot x_i \cdot o_x (1 - o_x)$$

Introduction to Machine Learning

no G. Tong

Neural Networks

Multilayers

• Update ω_1 or ω_2 first?

Introduction to Machine Learning Amo G. Tong

Neural Networks

• Two layers of multiple sigmoid units with one output.

Neural Networks

• Two layers of multiple sigmoid units with one output.

$$\frac{\partial E_X}{\partial \omega_j} = -(t_X - o_X) \frac{\partial o_X}{\partial \omega_j} = -(t_X - o_X) \cdot h_X^j \cdot o_X (1 - o_X)$$

Neural Networks

• Two layers of multiple sigmoid units with one output.

$$\frac{\partial E_x}{\partial \omega_{i,j}} = -(t_x - o_x) \frac{\partial o_x}{\partial \omega_{i,j}} = -(t_x - o_x) \frac{\partial o_x}{\partial h_x^j} \frac{\partial h_x^j}{\partial \omega_{i,j}}$$

Amo G. Tong 17 Introduction to Machine Learning Amo G. Tong

Neural Networks

• Two layers of multiple sigmoid units with one output.

$$\frac{\partial o_x}{\partial h_x^j} = \omega_j \cdot o_x (1 - o_x)$$

$$\frac{\partial h_x^j}{\partial \omega_{i,j}} = x_i \cdot h_x^j (1 - h_x^j)$$

Introduction to Machine Learning

mo G. Tong

Neural Networks

• Two layers of multiple sigmoid units with one output.

duction to Machine Learning

Neural Networks

• Two layers of multiple sigmoid units with one output.

Neural Networks

Neural Networks

• Two layers of multiple sigmoid units with multiple outputs.

Neural Networks

• Two layers of multiple sigmoid units with multiple outputs.

Neural Networks

• Two layers of multiple sigmoid units with multiple outputs.

Amo G. Tong

Neural Networks

• Two layers of multiple sigmoid units with multiple outputs.

One output: $\delta_x^{h,j} = h_x^j (1 - h_x^j) \, \omega_j \, \delta_x^o$ Multiple output: $\delta_x^{h,j} = h_x^j (1 - h_x^j) \, \sum_k \omega_{j,k} \delta_x^{o,k}$

Neural Networks

• Two layers of multiple sigmoid units with multiple outputs.

ne Learning Amo G. Tong 26 Introduction to Machine Learning Amo G. Tong

Neural Networks

• Two layers of multiple sigmoid units with multiple outputs.

Neural Networks

- Two layers of multiple sigmoid units with multiple outputs.
- Initialize the weights with random values.
- Do until converge
 - For each $x \in D$
 - (Forward) Calculate h_x^j and o_x^k
 - (Backward) calculate $\delta_x^{o,k}$ and $\delta_x^{h,j}$
 - Update $\omega_{j,k}$ and $\omega_{i,j}$

 $\Delta\omega_{j,k} = \eta \ h_x^j \ \delta_x^{o,k}$ $\Delta\omega_{i,j} = \eta \ x_i \ \delta_x^{h,j}$

$$\delta_x^{o,k} = (t_x^k - o_x^k) o_x^k (1 - o_x^k)$$
$$\delta_x^{h,j} = h_x^j (1 - h_x^j) \sum_k \omega_{j,k} \delta_x^{o,k}$$

 $\omega \leftarrow \omega + \Delta \omega$

to Machine Learning Amo G. Tong 29

Neural Networks

- Train a neural network with:
- · One sigmoid units.
- Two layers of multiple sigmoid units with one output.
- Two layers of multiple sigmoid units with multiple outputs.
- Backpropagation framework: any units, any acyclic graph.
- · Update the weight from right to left.

roduction to Machine Learning

Amo G. 1

Neural Networks

- · Backpropagation framework
- · Good news: using the network is fast.
- · Bad news: training the network is slow
- · More bad news: it may converge to local minima.
- More good news: it performs well in practice.
- To avoid local minima
- Add a momentum
 - $\Delta\omega_n^* = \Delta\omega_n + \alpha\Delta\omega_{n-1}^*$
- · Train with different initializations.

Introduction to Machine Learning Amo G. Tong

Neural Networks

- Representational Power of Neural Networks.
- Boolean functions: every Boolean function can be represented exactly by some network with two layers of units.
- Continuous functions: every bounded continuous function can be approximated with arbitrarily small error by a network with two layers of units. (sigmoid + linear will do)
- Arbitrary function: any function can be approximated to arbitrary accuracy by a network with three layers of units. (sigmoid + sigmoid+ linear will do)

ction to Machine Learning Amo G. Tong 32

An example (Mitchell)

• Learn an identity function with eight training examples.

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

ction to Machine Learning Amo G. Tong

An example (Mitchell)

• Learn an identity function with eight training examples.

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

An example (Mitchell)

• Learn an identity function with eight training examples.

Input	Hidden				Output		
Values							
10000000	\longrightarrow	.89	.04	.08	\rightarrow	10000000	100
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000	001
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000	010
00010000	\longrightarrow	.99	.97	.71	\rightarrow	00010000	111
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000	000
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100	011
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010	101
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001	110

Overfitting

- · Overfitting is everywhere...
- · Overfitting may happen, when
- · The learned model is too complicated
- Fitting data too well when data has noise
- · When training set is small
- · Avoid large parameters.

roduction to Machine Learning Am G. Tong 34 Introduction to Machine Learning Am G. Tong 35 Introduction to Machine Learning Am G. Tong

Overfitting

· Overfitting is everywhere...

Introduction to Machine Learning Amo G. Tong

Overfitting

· Overfitting is everywhere...

Introduction to Machine Learning Amo G. Tong 38

Overfitting

- · Overfitting is everywhere...
- Weight Decay:
- Decrease each weight by some small factor during each iteration?
- Penalize large weights:
- $Error = Error + \gamma \sum \omega_i^2$
- Using Validation data.

Introduction to Machine Learning Amo G. Tong

Summary

- What is an artificial neural network?
- Process the input by the connected units.
- How to training a neural network?
- Error-driven.
- Backpropagation algorithm.
 - Two layers of sigmoid units.

Introduction to Machine Learning Amo G. Tong

Overfitting

- · Overfitting is everywhere...
- · Weight Decay:
- Decrease each weight by some small factor during each iteration?
- Penalize large weights:
- $Error = Error + \gamma \sum \omega_i^2$
- Using Validation data.

Introduction to Machine Learning Amo G. Tong