Table des matières

1	Sign	nal et l	bruit
	1.1	Conve	entions, définitions
		1.1.1	Transformée de Fourier
		1.1.2	Propriétés de la TF
		1.1.3	Transformée de Fourier tronquée
		1.1.4	Transformée de Fourier discrète
		1.1.5	Produit de convolution
		1.1.6	Fonction d'auto-corrélation
		1.1.7	Densité spectrale de puissance
	1.2	Résolu	ıtion d'un Michelson
		1.2.1	Réponse spectrale
		1.2.2	Pouvoir de résolution

Chapitre 1

Signal et bruit

Conventions, définitions 1.1

Transformée de Fourier 1.1.1

On prend la définition "du physicien". Soit s(t) un signal, alors;

$$\tilde{s}_1(\omega) = \int_{-\infty}^{+\infty} s(t)e^{-i\omega t}dt \tag{1.1}$$

$$s(t) = \int_{-\infty}^{+\infty} \tilde{s}_1(\omega) e^{i\omega t} \frac{d\omega}{2\pi}$$
 (1.2)

On peut également choisir la convention :

$$\tilde{s}_2(\nu) = \int_{-\infty}^{+\infty} s(t)e^{-i2\pi\nu t}dt \tag{1.3}$$

$$s(t) = \int_{-\infty}^{+\infty} \tilde{s}_2(\nu) e^{i2\pi\nu t} d\nu \tag{1.4}$$

Et dans ce cas là tu as simplement $\tilde{s}_1(\omega) = \tilde{s}_2(2\pi\nu)$. Par contre les $\sqrt{2\pi}$ on oublie.

Dans tous les cas, ton spectre à pour dimension $[\tilde{s}] = [s] \cdot [Hz]^{-1}$

Propriétés de la TF 1.1.2

— Translation:

$$\tilde{f}(t-\tau)[\omega] = e^{-i\omega\tau}\tilde{f}(t)[\omega] \tag{1.5}$$

— Scaling:

$$\tilde{f}(a \cdot t)[\omega] = \frac{1}{|a|} \tilde{f}(t) \left[\frac{\omega}{a}\right]$$
 (1.6)

En particulier, $\tilde{f}(-t)[\omega] = \tilde{f}(t)[-\omega]$. C'est la "time reversibility"

- f réelle $\Longrightarrow \tilde{f}$ Hermitienne, soit $\tilde{f}^*(\omega) = \tilde{f}(-\omega)$ Inversement, si f est hermitienne (donc paire pour une fonction réelle), \tilde{f} est réelle.

— Convolution:

$$TF[(f * g)(\tau](\omega) = \tilde{f}(\omega)\tilde{g}(\omega)$$
(1.7)

— Auto-corrélation :

$$\begin{split} \tilde{S}_{ff}(\omega) &= TF[(f(t) * f^*(-t))] \\ &= TF[f(t)] \cdot TF[f^*(-t)] \\ &= TF[f(t)] \cdot TF[f(t)]^* \\ &= |\tilde{f}(\omega)|^2 \end{split}$$

1.1.3 Transformée de Fourier tronquée

L'infini c'est long, surtout dans le négatif. Donc expérimentalement on va plutôt utiliser la TF tronquée :

$$\hat{s}(\omega) = \frac{1}{\sqrt{T}} \int_0^T s(t)e^{-i\omega t} dt$$
 (1.8)

1.1.4 Transformée de Fourier discrète

1.1.5 Produit de convolution

$$(f * g)(\tau) = \int_{-\infty}^{+\infty} f(\tau - t)g(t)dt = \int_{-\infty}^{+\infty} f(t)g(\tau - t)dt$$
 (1.9)

1.1.6 Fonction d'auto-corrélation

La fonction d'auto-corrélation d'un signal est définie comme :

$$R_{ss}(t_1, t_2) = \langle s(t_1)s^*(t_2) \rangle$$
 (1.10)

où $\langle ... \rangle$ représente a priori une moyenne d'ensemble. Mais nous on aime bien les processus Markovien, donc R_{ss} n'est plus fonction que de $\tau = |t_1 - t_2|$. En plus de ça, on fait une petite hypothèse ergodique est la moyenne d'ensemble devient une moyenne temporelle, et on oublie au passage le facteur de normalisation Alors:

$$R_{ss}(\tau) = \int_{-\infty}^{+\infty} s(t)s^*(t-\tau) = (s(t)*s^*(-t))(\tau)$$
 (1.11)

Si jamais ton signal est réel, la fonction d'auto-corrélation est paire, donc $R_{ss}(\tau) = R_{ss}(-\tau)$. Si ton signal est complexe c'est un peu plus chiant.

La Fonction d'auto-covariance c'est simplement la fonction d'auto-corrélation à la quelle tu soustrais $\langle s(t) \rangle^2$.

1.1.7 Densité spectrale de puissance

On peut définir proprement la DSP à partir de la TF tronquée :

$$S_{ss}(\omega) = \lim_{T \to \infty} \langle |\hat{s}(\omega)|^2 \rangle \tag{1.12}$$

Or,

$$\begin{split} \langle |\hat{s}(\omega)|^2 \rangle &= \langle \hat{s}(\omega) \hat{s^*}(\omega) \rangle \\ &= \langle \frac{1}{T} \int_0^T s(t) e^{-i\omega t} dt \int_0^T s^*(t') e^{i\omega t'} dt' \rangle \\ &= \frac{1}{T} \int_0^T \int_0^T \langle s(t) s^*(t') \rangle e^{i\omega(t-t')} dt \ dt' \end{split}$$

Et donc tu vois que, en posant $\tau = t - t'$ et en bidouillant un peu les bornes d'intégrations, tu te retrouves avec :

$$S_{ss}(\omega) = \int_{-\infty}^{\infty} R_{ss}(\tau)e^{-i\omega\tau} d\tau = \tilde{R}_{ss}(\omega) = |\tilde{s}(\omega)|^2$$
 (1.13)

La densité spectrale de puissance est la TF de la fonction d'auto-corrélation (pour un processus Markovien). C'est le théorème de **Wiener-Khinchin**.

La version plus sale c'est d'écrire la DSP comme :

$$\langle \tilde{s}(\omega)\tilde{s}^*(\omega')\rangle = S_{ss}(\omega)2\pi\delta(\omega-\omega')$$
 (1.14)

1.2 Résolution d'un Michelson

Michelson mais ça marche pour toutes les interférences à deux ondes (Ramsay entre autre).

1.2.1 Réponse spectrale

On va commencer par la réponse spectrale d'un Micheslon, c'est à dire le rapport des densités spectrales de puissance en entrée $(I_{in}(\omega))$ et en sortie $(I_{out}(\omega))$ de l'interféromètre. On note A les amplitudes correspondantes, et τ le retard dans l'interféromètre. Alors :

$$I_{in}(\omega) = \tilde{A}_{in}(\omega)\tilde{A}_{in}^*(\omega) = |\tilde{A}_{in}(\omega)|^2 = |TF[A_{in}(t)](\omega)|^2$$
 (1.15)

et

$$I_{out}(\omega) = |TF[A_{out}(t)](\omega)|^2$$

$$= |TF[\frac{1}{2}(A_{in}(t) + A_{in}(t - \tau)](\omega)|^2$$

$$= \left|TF[(A_{in}(t)](\omega)\left(\frac{1 + e^{i\omega\tau}}{2}\right)\right|^2$$

$$= I_{in}(\omega)\left(\frac{1 + e^{i\omega\tau}}{2}\right)^2$$

$$= I_{in}(\omega)\left(\frac{1 + \cos\omega t}{2}\right)$$

Remarque : le 1/2 dans le $A_{out}(t)$ vient du fait que tu as deux séparatrices, qui ajoutent $1/\sqrt{2}$ chacune.

On trouve donc l'intervalle spectral libre :

$$\Delta \nu = \frac{1}{\tau} = \frac{(2)l}{c} \tag{1.16}$$

En résonnant maintenant en nombre de particules (photon ou autre), en supposant que le flux incident comporte N particules et le flux sortant (flux transmis, ou nombre d'atomes excités dans le cas de Ramsay) est N_e , on a tout simplement

$$N_e = N\left(\frac{1 + \cos\Phi}{2}\right) \tag{1.17}$$

Avec Φ le déphasage entre les deux voies.

1.2.2 Pouvoir de résolution

On va maintenant considérer que N_e est une variable aléatoire, chaque particule ayant une chance $p_e=\frac{1+\cos\Phi}{2}$ de passer. On a donc :

$$\langle N_e \rangle = N \left(\frac{1 + \cos \Phi}{2} \right) \tag{1.18}$$

$$\Delta^2 N_e = N(p_e)(1 - p_e) = N \frac{\sin^2 \Phi}{4}$$
 (1.19)

$$\Delta N_e = \sqrt{N} \frac{|\sin \Phi|}{2} \tag{1.20}$$

Maintenant pour s'intéresser au pouvoir de résolution, on va considérer un résultat N_{e1} de N particules à ω (où Δ pour un Ramsay) et un autre résultat N_{e2} de N particules à $\omega + \delta \omega$. Pour pouvoir distinguer le résultat entre les deux pulsations, il faut que la différence des valeurs moyennes soit plus grande que $(\sqrt{2} \text{ fois})$ l'écart type du résultat. $(\sqrt{2} \text{ car il y a deux variables aléatoires dont tu fais la différence, donc tu sommes les variances, un peu comme une mesure à la règle. Mais en vrai c'est du chipotage). D'où :$

$$\langle N_e(\omega + \delta\omega) \rangle - \langle N_e(\omega) \rangle \approx -N\tau \frac{\sin \omega \tau}{2} \ge \sqrt{2N} \frac{\sin \omega \tau}{2}$$
 (1.21)

D'où finalement

$$\delta\omega \ge \frac{\sqrt{2}}{\sqrt{N}\tau} \tag{1.22}$$

On constate que le pouvoir de résolution d'un Michelson ne dépend pas de la phase : Le signal et le bruit sont tous les deux plus importants quand ta phase vaut $\pi/2$

On remarque également qu'on a une limite en $1/\tau$, qui vient de la transformée de Fourier / Heisenberg temps/énergie, et en $1/\sqrt{N}$, qui est la limite "classique" pour tout processus stochastique à N particules. En utilisant des états quantiques à N particules (intriquées donc) on peut idéalement monter à des résolutions en 1/N.