Jegyzőkönyv a mikroszkóp vizsgálatáról (8)

Készítette: Tüzes Dániel

Mérés ideje: 2008-10-08, szerda 14-18 óra

Jegyzőkönyv elkészülte: 2008-10-15

A mérés célja

A feladat egy mikroszkópon lévő lencsék jellemzőinek meghatározása, úgymint a fókusztávolság, a numerikus apertúra és a nagyítás. Továbbá ezen adatok felhasználásával a Newton-gyűrűk vizsgálata és lencsék görbületi sugarának meghatározása.

Feladat továbbá egy Abbe-féle refraktométerrel ismeretlen összetételű glicerinoldat tömegszázalékának meghatározása.

Elvi alapok

A mikroszkóp nagyításának mértékét összesen az objektív és az okulár határozza meg. Célunk csak az objektív nagyításának meghatározása. Ha az okulár és az objektív közé, valamint a tárgy helyére is teszünk egy ismert skálájú mérőeszköz a skálák arányításával pont az objektív nagyítását kapjuk meg, mert feltételezzük, hogy az okulár mindkét skálát egyenlő arányban nagyítja.

A lencse fókusztávolságát közvetlenül nem tudjuk lemérni, de elméleti megfontolásokkal az alábbi kifejezésre jutunk¹: $N_{ob} = \frac{K}{T} = \frac{\Delta}{f_1}$, ahol N_{ob} az objektív nagyítása, Ka képméret az okulár és az objektív között, Ta tárgyméret, Δ a tubushossz, f_1 pedig az objektív fókusztávolsága. A tubushossz ismert megváltoztatásával lemérhető az objektív

nagyításának változása, melyekből számolások után azt kapjuk, hogy $f_1=\frac{\Delta_2-\Delta_1}{N_{ob2}-N_{ob1}}$, vagyis a fókusztávolság meghatározható.

A numerikus apertúra meghatározásához tekintsük először a definíciót, hogy mikor különböztethető meg a tárgy két, egymástól d távolságra lévő részletei! A definíció szerint ennek értéke $d=\frac{\lambda}{n\sin u}$, ahol λ a fény hullámhossza, n a minta és a objektív között lévő közeg törésmutatója, u pedig az objektívre eső fénynyaláb fél-nyílásszöge, mint ahogy az 5. ábrán láthatjuk. A definícióból leolvashatjuk, hogy ebből a mikroszkópra jellemző értéke az $A=n\sin u$, melyet numerikus apertúrának nevezünk. Ha a tárgy a P pontban volt fókuszban, A pontban még nem látható, B pontban pedig meg már nem, akkor ezekből meghatározható az u fél nyílásszög: u=arc tg $\frac{a}{2h}$,

képsík

ebből pedig
$$A = n \frac{a/(2h)}{\sqrt{1 + (a/(2h))^2}}$$
.

A Newton-gyűrűk a fény hullámtermészetének egy bizonyítéka. A jelenség előállítása elődeink esetében megdöbbenést váltott ki, mi korunkban azonban annyira elfogadott a fény hullámtermészete, hogy ezt felhasználva a Newton-gyűrűk segítségével – beteg módon – az azt előállító eszközök tulajdonságait mérjük meg. A mellékelt irodalmon túl számos² további foglalkozik a jelenséggel. Newton-gyűrűk előállításához számos mérési elrendezés tartozhat, azonban most tekintsük az [1]-es mellékelt irodalomban szereplőt! Az elméleti levezetésből következően egy Newton-gyűrű sugara $r_N = \sqrt{R\lambda N}$, ahol Ra lencse görbületi sugara, λ a megvilágító fény hullámhossza, Npedig a Newton-gyűrű sorszáma (a legkisebbtől a nagyobb felé sorszámozva). Több

kör átmérőjét meghatározva, az előbbi képletet átalakítva látható, hogy $r(N)^2 = R\lambda N := mN$, vagyis ábrázolva N függvényében r^2 -et, annak m meredekségéből kiszámítható a görbületi R sugár: $R = m/\lambda$. Homorú lencsék esetében egy ismert görbületi sugarú lencsével továbbra is megmérhető a görbületi sugár, jelen esetünkben a homorú lencsénél kisebb görbületi sugarú domború lencsével. Ennek megméréséhez a homorú lencsébe helyezzük a domború lencsét. Az elméleti levezetést nélkülözve elmondhatjuk, hogy ekkor a domború lencse – homorú lencse lencserendszernek az előbbi módszerrel megegyező módon történő $R_{\it eff}$ görbületi sugara alapján a homorú lencse görbületi sugara

$$R_h = \left(\frac{1}{R_d} - \frac{1}{R_{eff}}\right)^{-1}$$
, ahol R_d az ismert domború lencse görbületi sugara.

A törésmutató a mikroszkopikus jelenségek fenomenológiai, makroszkopikus megfogalmazása. Jelen esetünkben feltételezzük a törésmutató skalár voltát. Az anyagok törésmutatója a legtöbb anyagi tulajdonságnak a függvénye, így adott oldószer és oldott anyag esetében a tömegszázaléknak is. A törésmutató egyik meghatározási módja, ha azt ismert közegbe helyezve meghatározzuk a teljes visszaverődés szögét. Ha a beérkező fény a teljes visszaverődés során a prizmával β szöget zár be, akkor a minta n törésmutatójának értéke $n=\sin\varphi\sqrt{n_0^2-\sin^2\beta}-\sin\beta\cos\varphi$, ahol φ a prizma törőszöge. Feltéve továbbá a törésmutató vizsgált intervallumban való folytonosságát (sőt, a tömegszázalékkal hozzávetőleg lineáris voltát), különböző, ismert összetételű anyagok segítségével felvehetünk egy $n\left(\frac{m}{m}\%\right)$ függvényt, majd az ismeretlen minta törésmutatóját megmérve meghatározhatjuk interpolálással a tömegszázalékát.

A mérési módszer ismertetése

A mikroszkóp nagyításának mértéke és fókusztávolsága

A használt mikroszkóp vázlatos képét az ábra mutatja. Egy kicsi, 0,1mm léptékű, átlátszó mikrométert teszünk a tárgy helyére, és egy okulár-mikrométert az okulár helyére. Ez utóbbi egy csavarmikrométerrel mozgatható szálkeresztet tartalmaz, melynek helyzetének leolvasási pontossága 0,01mm. A szálkereszt K_1 helyzetét a minta egy T_1 osztásához igazítjuk, majd egy T_2 osztásához, K_2 helyzetben. Ezekből megkapjuk a mikroszkóp objektívének $N_{ob} = \frac{K}{T} = \frac{K_2 - K_1}{T_2 - T_1}$ nagyítását. Ezt a mérést elvégezzük a mikroszkóphoz tartozó 3 objektív-rendszer közül a 2 nem félig-áteresztővel. Az előretekintés végett ugyanezeket

megismételjük a tubushosszabbítóval is, így az elvi alapokból következően meghatározhatjuk az egyes objektívek fókusztávolságát. A tubushosszabbító az okulár elé jön. Az okulár a tubusról eltávolítható a rögzítő csavar kilazítása után, majd a tubushosszabbító megfelelő beillesztése után arra ugyanúgy felszerelhető.

A mérés során igyekeztem minél távolabbi osztások távolságát leolvasni a kisebb relatív hiba érdekében. A szálkereszt helyzete a csavarmikrométerről $\pm 0,005mm$ pontossággal volt leolvasható, azonban a minta osztásai kiterjedt voltuk miatt $\pm 0,01mm$ pontatlanságot eredményeztek a leolvasásban.

numerikus apertúra meghatározása

Egy magasító plexi lapra helyezünk egy éles határral rendelkező tárgyat (borotvapengét), majd élesre fókuszáljuk. Ezután kivesszük a minta alól a h magasságú plexi lapot, és az okulárt lyukblendére cseréljük. A pengét úgy mozgatjuk, hogy a blendén át egyáltalán ne lehessen látni azt, az ehhez tartozó T_A tárgyhelyzetet a tárgytartóról leolvassuk. A pengét ekkor úgy mozgatjuk, hogy a blendén át tekintve teljesen kitöltse a látómezőt (eltakarja a megvilágítást), majd az ehhez tartozó T_B tárgyhelyzetet is leolvassuk. Az így kapható $a = |T_A - T_B|$ értékből az elméleti alapokból következően meghatározható a numerikus apertúra.

Görbületi sugarak meghatározása

A méréshez szükséges monokromatikus fényt egy Na spektrállámpa biztosította mérésünk során (köszönet érte), melynek hullámhossza $\lambda_{Na}=589nm$ volt, melynek színe sárgás. A domború lencsét a tárgy helyére, annak tetejére egy plán-parallelt lemezt helyezve világítottam meg a lencsét. Ehhez szükség volt a mikroszkóp félig-áteresztő objektívének használtára. A fényforrás úgy helyeztem, hogy a féligáteresztő tükrön át a fénye a vizsgált mintára essen. A mikroszkópban a képet élesre állítottam, majd megkerestem a Newton-gyűrűket. A szálkeresztet a 3. gyűrűhöz úgy igazítottam, hogy azok a gyűrű érintői legyenek, ezzel biztosítva, hogy a szélkereszt mozgatásával egy átmérő mentén fogok mozogni. A szálkereszt metszéspontját egy körvonalra mozgattam, majd az okulár-mikrométer helyzetét leolvastam. A vizsgált lencsén és üveglemezen lévő karcolások és porszemek miatt az a műszer által elérhető $\pm 0,005mm$ leolvasási pontosság helyett ez $\pm 0,01mm$ -re változott. Így feljegyeztem több Newton-gyűrű átmérőjének ellentétes oldalainak helyzetét, melyből megkaphatjuk az eszköz hitelesítésével a gyűrűk valódi átmérőjét. Az objektív hitelesítése a mikroszkóp 2 másik objektívének nagyításának mérésével azonos módon történt.

A mérés során törekedtem arra, hogy mind több gyűrű méretét lemérhessem, azonban az egyre sűrűbb körök miatt ennek az emberi képességeim határt szabtak. Megemlítendő továbbá, hogy ügyelni kellett arra, hogy a mikroszkóp ne legyen rezgéseknek kitéve. A mérési elrendezésből következően ez nehéz feladat volt, mivel erre 3 mérőtársammal együtt kellett figyelnünk a mérés 30-60 percén át.

Törésmutató mérése Abbe-féle refraktométerrel

A mérési eszköz vázlata jobbra látható. Az Abbe-féle refraktométer lelke egy prizma, amelyben egy plán-parallel rétegben a vizsgálandó mintát helyezzük el. A gyakorlatban ez úgy történik, hogy a két prizma közé – azok kettényitása után – néhány csepp folyadékot juttatunk. A beérkező fénysugár és a prizma helyzetét változtatva egy tekerővel elérhető a teljes visszaverődés. Az Abbe-féle refraktométerben ennek helyzetét könnyen beállíthatjuk, majd a műszer előre-kalibrálásának köszönhetően ebből egyből leolvashatjuk a minta törésmutatóját. Az eszköz igen felhasználóbarát, az eszköz megfelelő használatának ismeretében minden elméleti alapot nélkülözve, számolás nélkül meghatározható a folyékony anyagok törésmutatója.

Jelen esetünkben a feladatunk egy ismeretlen tömegszázalékú glicerin oldat vizsgálata, melyhez 5 ismert tömegszázalékú glicerin oldat áll rendelkezésünkre.

Mérési eredmények, hibaszámítás

A mikroszkóp nagyításának mértéke és fókusztávolsága

Az egyes objektívekhez tartozó összetartozó értékpárokat táblázatban foglalom össze.

	3.2/0.1 (<i>mm</i>)	6.3/0.16 (<i>mm</i>)	3.2/0.1 tubussal (<i>mm</i>)	6.3/0.16 (<i>mm</i>) tubussal
okulár-mikrométer	$K_1 = 8,04 \ K_2 = -0,64$	$K_1 = 0.2$ $K_2 = 8.22$	$K_1 = 0,41 \ K_2 = 8,09$	$K_1 = 7,64$ $K_2 = 0,46$
objektív-mikrométer	$T_1 = 2,2 \ T_2 = 0,0$	$T_1 = 0.5 \ T_2 = 1.6$	$T_1 = 0.5 \ T_2 = 2.0$	$T_1 = 1,4 T_2 = 0,6$

A táblázat adatai alapján $N_{3.2/0.1}=3,94$, $N_{6.3/0.16}=7,29$, valamint felhasználva, hogy a tubushosszabbító hossza $\Delta_2-\Delta_1=40,1mm$: $f_{3.2/0.1}=34,98mm$ és $f_{6.3/0.16}=23,80mm$. A tubushosszabbító hosszának értékét $\pm 0,05mm$ -es, a K értékeit $\pm 0,01mm$ pontossággal tudtam leolvasni.

A leolvasási pontatlanság alapján a hiba $\Delta N_{3.2/0.1}=0,009$, $\Delta N_{6.3/0.16}=0,017$, valamint $\Delta f_{3.2/0.1}=0,34mm$ és $\Delta f_{6.3/0.16}=0,26mm$.

numerikus apertúra meghatározása

A magasító plexilemez vastagsága $h=(20,1\pm0,05)\,mm$ volt. A 3.2/0.1 jelzésű objektív esetén $T_A=68,6mm$ és $T_B=64,6mm$ volt. Ezen adatok alapján $A_{3.2/0.1}=0,097$ és $A_{3.2/0.1}=0,162$. A leolvasási pontatlanság meglehetősen nagy volt, mert a lencsehibák ill. fényelhajlás miatt nem volt egyértelműen meghatározható a nyitás és zárás helyzete, a leolvasási pontosság így az elérhető $\pm 0,05mm$ helyett $\pm 0,1mm$ volt. Ezek alapján a hiba $\Delta A_{3.2/0.1}=0,005$ és $\Delta A_{6.2/0.16}=0,0055$.

• görbületi sugarak meghatározása

A mért eredményeket táblázatban foglalom össze.

	kör átmérőinek átellenes pontjainak látszólagos helyzete (mm)														
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.
I-es domború	3,68	3,34	3,09	2,86	2,79	2,51	2,37	2,23	2,09	1,96	1,84	1,73	1,62	1,51	1,41
lencse	4,72	5,14	5,38	5,59	5,70	5,96	6,10	6,23	6,37	6,49	6,59	6,71	6,84	6,94	7,05
II-es homorú	4,34	5,05	5,46	5,79	6,08	6,33	6,55	6,74	6,93	7,09	7,27	7,43			
lencse	3,34	2,69	2,29	1,94	1,67	1,43	1,19	1,01	0,81	0,64	0,46	0,31			

A látszólagos átmérőből hogy valódit kapjunk, meg kell határozni a féligáteresztő objektív nagyításának mértékét. A korábbiakkal megegyező módon tettem ezt, a kapott eredmények: $T_1=6.7\,mm$, $T_2=8.8\,mm$, valamint $K_1=0.06\,mm$ és $K_2=7.96\,mm$. Ezek alapján a nagyítás mértéke: $N_{1/2}=3.77$. A hiba nagyságát a leolvasási hibából kaphatjuk, $\Delta N_{1/2}=0.009$. A következő grafikon tartalmazza a kioltási maximumok függvényében a Newton-gyűrűk sugarainak négyzetét. Ezt a fenti adattömbből úgy nyerhetem, ha az egymáshoz tartozó értékpárok különbségét elosztom a nagyítás mértékével, négyzetre emelem, majd ezt ábrázolom rendre a pozitív egész számok függvényében.

Ezek alapján az I-es domború lencse görbületi sugara $R_{_I}=6,52cm$, a homorú lencséé pedig (felhasználva az effektív görbületi sugárra vonatkozó képletet), $R_{_B}=12,64cm$.

A hibát az egyenes illesztés hibájából és az objektív nagyításának mértékéből becsülhetjük. A standard hibájából az illesztéseknek $\Delta m_I/m_I=\pm 0,003\Rightarrow \Delta R_I=0,02cm$, a nagyítás mértékéből pedig $\Delta m_I/m_I=\pm 0,002\Rightarrow \Delta R_I=\pm 0,02cm$. A két mennyisség egymással összevethető, így az eredő hiba (további számjegyek figyelembe vételével) $\Delta R_I=\pm 0,04cm$. Gyors elméleti megfontolásokkal láthatjuk, hogy a homorú lencse valódi sugarának kiszámításakor már pontatlan adattal számoltunk, és további, még1x ekkora hiba jön be a mérés során, így a homorú lencse görbületi sugarának hibája $\Delta R_{II}=0,08cm$.

Törésmutató mérése Abbe-féle refraktométerrel

A mért értékpárokat az alábbi táblázatban és a grafikonon láthatjuk:

tömeg ‰	0	100	138	169	n/a	198	261
törésmutató	1,333	1,345	1,35	1,3535	1,356	1,357	1,364

A törésmutató leolvasásának pontossága $\pm 0,0005$. Az egyenesillesztés standard hibájából, a megadott tömeg%-ok pontosságából, valamint az egyenes meredekségéből a vizsgált anyag tömeg%-a $(19,1\pm 0,3)\frac{m}{m}$ % .

Mellékletek

[1]: Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös Kiadó, Budapest, 2003.

[2]: http://www.citycollegiate.com/newtons_rings.htm