Задача А3. Быстрее Штрассена!

Вы планируете разработать алгоритм MULT, предназначенный для умножения двух квадратных матриц A и B размерности $N \times N$ и асимптотически более эффективный, чем алгоритм Штрассена. Разрабатываемый алгоритм будет также использовать стратегию «разделяй—и–властвуй».

Исходные матрицы A и B разделяются на неизвестное количество фрагментов размера $N/4 \times N/4$ для дальнейшей рекурсивной обработки. Асимптотическая точная граница общих временных затрат на выполнение шагов CONQUER и COMBINE алгоритма MULT — $\Theta(N^2)$. Таким образом, временная сложность алгоритма MULT будет описываться рекуррентным соотношением $T(N) = a \cdot T(N/4) + \Theta(N^2)$, где коэффициент a отвечает за количество решаемых подзадач — количество блоков-подматриц размерности $N/4 \times N/4$. Например, для алгоритма Штрассена в соответствии с рекуррентным соотношением $T(N) = 7 \cdot T(N/2) + \Theta(N^2)$ известно, что для каждой задачи решается T подзадач $\theta deoe$ меньшего размера.

1. В каком диапазоне должен находиться параметр *a* разрабатываемого вами алгоритма MULT для того, чтобы в результате он был асимптотически более эффективным по временной сложности в сравнении с алгоритмом Штрассена? Обоснуйте свой ответ.

Необходимо проанализировать временные сложности обоих алгоритмов, используя мастер-теорему.

Алгоритм Штрассена

$$T_{\rm S}(N) = 7 \cdot T_{\rm S}\left(\frac{N}{2}\right) + \Theta(N^2)$$

Используя мастер-теорему, временная сложность алгоритма Штрассена определяется как:

$$T_{\rm S}(N) = \Theta\left(N^{\log_2 7}\right)$$

Поскольку $\log_2 7 \approx 2{,}807$, временная сложность составляет примерно $\Theta(N^{2,807})$.

Анализ алгоритма MULT

$$T_{\mathrm{M}}(N) = a \cdot T_{\mathrm{M}}\left(\frac{N}{4}\right) + \Theta(N^2)$$

Применим мастер-теорему для общего вида рекуррентного соотношения $T(N) = a \cdot T\left(\frac{N}{h}\right) + f(N)$:

Если
$$f(N) = O\left(N^{\log_b a - \epsilon}\right)$$
 для некоторого $\epsilon > 0$, то $T(N) = \Theta\left(N^{\log_b a}\right)$.

Если $f(N) = \Theta\left(N^{\log_b a} \cdot \log^k N\right)$ для некоторого $k \geq 0$, то $T(N) = \Theta\left(N^{\log_b a} \cdot \log^{k+1} N\right)$.

Если $f(N) = \Omega\left(N^{\log_b a + \epsilon}\right)$ для некоторого $\epsilon > 0$ и $a \cdot f\left(\frac{N}{b}\right) \le c \cdot f(N)$ для некоторого c < 1, то $T(N) = \Theta(f(N))$.

Сравнение f(N) и $N^{\log_b a}$

Пусть $s = \log_4 a$. Тогда $N^{\log_4 a} = N^s$.

Случай 1: s < 2

 $N^s < N^2$

$$f(N) = \Theta(N^2) = \Omega\left(N^{s+\epsilon}\right)$$
 для $\epsilon = 2-s > 0$

По третьему случаю мастер-теоремы, $T(N) = \Theta(N^2)$

Временная сложность $\Theta(N^2)$, что не лучше алгоритма Штрассена.

Случай 2: s=2

$$N^s = N^2$$

 $f(N) = \Theta(N^{\log_b a})$ - По второму случаю мастер-теоремы, $T(N) = \Theta(N^2 \log N)$

Временная сложность $\Theta(N^2 \log N)$, что лучше $\Theta(N^{2,807})$.

Случай 3: s > 2

 $N^s > N^2$

$$f(N) = O\left(N^{s-\epsilon}\right)$$
 для $\epsilon = s-2 > 0$

По первому случаю мастер-теоремы, $T(N) = \Theta(N^s)$

Нам нужно, чтобы s < 2,807, чтобы превзойти алгоритм Штрассена.

Нахождение диапазона a

Требуется $s = \log_4 a < 2{,}807$, то есть:

$$a = 4^s$$
 и $s \in (2, 2, 807)$

При s=2:

$$a = 4^2 = 16$$

При s = 2,807:

$$a = 4^{2,807} = e^{2,807 \cdot \ln 4} = e^{2,807 \cdot \ln 2} = e^{5,614 \cdot \ln 2} = 2^{5,614} \approx 2^5 \cdot 2^{0,614} \approx 32 \cdot 1,53 \approx 49$$

Вывод

Чтобы обеспечить $T_{\rm M}(N) = \Theta(N^s)$ асимптотически меньше $\Theta(N^{2,807})$: Параметр a должен удовлетворять неравенству:

Это соответствует диапазону s:

Для 16 < a < 49, s находится в диапазоне 2 < s < 2,807, что приводит к временной сложности $\Theta(N^s)$, где s < 2,807.

Таким образом, $T_{\mathrm{M}}(N) = \Theta(N^s)$ будет асимптотически быстрее, чем $\Theta(N^{2,807}).$