

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

### 5. DIVIDE AND CONQUER I

- mergesort
- counting inversions
- closest pair of points
- randomized quicksort
- ▶ median and selection

Last updated on Oct 2, 2013 9:51 AM

# Algorithm Design Jon Kleinberg - Éva tardos

SECTION 5.1

### 5. DIVIDE AND CONQUER

### mergesort

- counting inversions
- ▶ closest pair of points
- randomized quicksort
- median and selection

### Divide-and-conquer paradigm

### Divide-and-conquer.

- Divide up problem into several subproblems.
- · Solve each subproblem recursively.
- · Combine solutions to subproblems into overall solution.

### Most common usage.

- Divide problem of size n into two subproblems of size n/2 in linear time.
- · Solve two subproblems recursively.
- Combine two solutions into overall solution in linear time.

### Consequence.

• Brute force:  $\Theta(n^2)$ .

• Divide-and-conquer:  $\Theta(n \log n)$ .



attributed to Julius Caesar

### Sorting problem

Problem. Given a list of n elements from a totally-ordered universe, rearrange them in ascending order.



### Sorting applications

### Obvious applications.

- · Organize an MP3 library.
- · Display Google PageRank results.
- · List RSS news items in reverse chronological order.

### Some problems become easier once elements are sorted.

- · Identify statistical outliers.
- · Binary search in a database.
- · Remove duplicates in a mailing list.

### Non-obvious applications.

- Convex hull.
- · Closest pair of points.
- Interval scheduling / interval partitioning.
- Minimum spanning trees (Kruskal's algorithm).
- Scheduling to minimize maximum lateness or average completion time.

•••

### 5

### Mergesort

- · Recursively sort left half.
- · Recursively sort right half.
- · Merge two halves to make sorted whole.





First Draft
of a
Report on the
EDVAC
John von Neumann

### Merging

Goal. Combine two sorted lists *A* and *B* into a sorted whole *C*.



- Scan A and B from left to right.
- Compare  $a_i$  and  $b_i$ .
- If  $a_i \le b_j$ , append  $a_i$  to C (no larger than any remaining element in B).
- If  $a_i > b_j$ , append  $b_j$  to C (smaller than every remaining element in A).

# 

### A useful recurrence relation

Def.  $T(n) = \max \text{ number of compares to mergesort a list of size } \le n.$ Note. T(n) is monotone nondecreasing.

Mergesort recurrence.

$$T(n) \le \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n & \text{otherwise} \end{cases}$$

Solution. T(n) is  $O(n \log_2 n)$ .

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace  $\leq$  with =.

### Divide-and-conquer recurrence: proof by recursion tree

Proposition. If T(n) satisfies the following recurrence, then  $T(n) = n \log_2 n$ .

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2 T (n/2) + n & \text{otherwise} \end{cases}$$

assuming n is a power of 2

Pf 1.



### **Proof by induction**

Proposition. If T(n) satisfies the following recurrence, then  $T(n) = n \log_2 n$ .

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2 T (n/2) + n & \text{otherwise} \end{cases}$$

assuming n is a power of 2

Pf 2. [by induction on n]

• Base case: when n = 1, T(1) = 0.

• Inductive hypothesis: assume  $T(n) = n \log_2 n$ .

• Goal: show that  $T(2n) = 2n \log_2 (2n)$ .

$$T(2n) = 2T(n) + 2n$$

$$= 2n \log_2 n + 2n$$

$$= 2n (\log_2 (2n) - 1) + 2n$$

$$= 2n \log_2 (2n). \quad \blacksquare$$

10

### Analysis of mergesort recurrence

Claim. If T(n) satisfies the following recurrence, then  $T(n) \le n \lceil \log_2 n \rceil$ .

$$T(n) \le \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n & \text{otherwise} \end{cases}$$

Pf. [by strong induction on n]

• Base case: n = 1.

• Define  $n_1 = \lfloor n/2 \rfloor$  and  $n_2 = \lceil n/2 \rceil$ .

• Induction step: assume true for 1, 2, ..., n-1.

$$T(n) \leq T(n_{1}) + T(n_{2}) + n \qquad \leq \left\lceil 2^{\lceil \log_{2} n \rceil} / 2 \right\rceil$$

$$\leq n_{1} \lceil \log_{2} n_{1} \rceil + n_{2} \lceil \log_{2} n_{2} \rceil + n \qquad = 2^{\lceil \log_{2} n \rceil} / 2$$

$$\leq n_{1} \lceil \log_{2} n_{2} \rceil + n \qquad \log_{2} n_{2} \leq \lceil \log_{2} n \rceil - 1$$

$$\leq n \left( \lceil \log_{2} n \rceil - 1 \right) + n$$

$$= n \lceil \log_{2} n \rceil. \quad \blacksquare$$

 $n_2 = \lceil n/2 \rceil$ 



SECTION 5.3

### 5. DIVIDE AND CONQUER

- mergesort
- counting inversions
- closest pair of points
- > randomized quicksort
- median and selection

### Counting inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank:  $a_1, a_2, ..., a_n$ .
- Songs *i* and *j* are inverted if i < j, but  $a_i > a_i$ .

|     | А | В | С | D | E |
|-----|---|---|---|---|---|
| me  | 1 | 2 | 3 | 4 | 5 |
| you | 1 | 3 | 4 | 2 | 5 |

2 inversions: 3-2, 4-2

Brute force: check all  $\Theta(n^2)$  pairs.

Counting inversions: applications

- Voting theory.
- · Collaborative filtering.
- · Measuring the "sortedness" of an array.
- · Sensitivity analysis of Google's ranking function.
- · Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's tau distance).



### Counting inversions: divide-and-conquer

- Divide: separate list into two halves A and B.
- · Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with  $a \in A$  and  $b \in B$ .
- · Return sum of three counts.



### Counting inversions: how to combine two subproblems?

- Q. How to count inversions (a, b) with  $a \in A$  and  $b \in B$ ?
- A. Easy if *A* and *B* are sorted!

### Warmup algorithm.

Sort A and B.

- For each element  $b \in B$ ,
  - binary search in *A* to find how elements in *A* are greater than *b*.



### Counting inversions: how to combine two subproblems?

Count inversions (a, b) with  $a \in A$  and  $b \in B$ , assuming A and B are sorted.

- Scan A and B from left to right.
- Compare  $a_i$  and  $b_i$ .
- If  $a_i < b_j$ , then  $a_i$  is not inverted with any element left in B.
- If  $a_i > b_j$ , then  $b_j$  is inverted with every element left in A.
- Append smaller element to sorted list C.



Counting inversions: divide-and-conquer algorithm implementation

Input. List L.

Output. Number of inversions in *L* and sorted list of elements *L*'.



18

### Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a permutation of size n in  $O(n \log n)$  time.

Pf. The worst-case running time T(n) satisfies the recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{otherwise} \end{cases}$$



SECTION 5.4

# 5. DIVIDE AND CONQUER

- ▶ mergesort
- counting inversions
- closest pair of points
- > randomized quicksort
- median and selection

### Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

### Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems



### Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

Brute force. Check all pairs with  $\Theta(n^2)$  distance calculations.

1d version. Easy  $O(n \log n)$  algorithm if points are on a line.

Nondegeneracy assumption. No two points have the same *x*-coordinate.



### Closest pair of points: first attempt

### Sorting solution.

- Sort by *x*-coordinate and consider nearby points.
- Sort by y-coordinate and consider nearby points.



### Closest pair of points: first attempt

### Sorting solution.

- Sort by *x*-coordinate and consider nearby points.
- Sort by y-coordinate and consider nearby points.



### Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.



### Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.



## Closest pair of points: divide-and-conquer algorithm

• Divide: draw vertical line L so that n/2 points on each side.

• Conquer: find closest pair in each side recursively.

• Combine: find closest pair with one point in each side.

• Return best of 3 solutions.

seems like Θ(N2)

## How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance  $< \delta$ .

• Observation: only need to consider points within  $\delta$  of line L.



### How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance  $< \delta$ .

- Observation: only need to consider points within  $\delta$  of line L.
- Sort points in  $2\delta$ -strip by their *y*-coordinate.
- Only check distances of those within 11 positions in sorted list!





O(n)

O(n)

 $O(n \log n)$ 

### How to find closest pair with one point in each side?

Def. Let  $s_i$  be the point in the 2 $\delta$ -strip, with the  $i^{th}$  smallest y-coordinate.

Claim. If  $|i-j| \ge 12$ , then the distance between  $s_i$  and  $s_j$  is at least  $\delta$ .

### Pf.

- No two points lie in same ½  $\delta$ -by-½  $\delta$  box.
- Two points at least 2 rows apart have distance ≥ 2 (½ δ).

31

39 ←

Fact. Claim remains true if we replace 12 with 7.

### Closest pair of points: divide-and-conquer algorithm

# Compute separation line L such that half the points are on each side of the line. $\delta_1 \leftarrow \text{CLOSEST-PAIR}$ (points in left half). $\delta_2 \leftarrow \text{CLOSEST-PAIR}$ (points in right half). $\delta \leftarrow \min \{\delta_1, \delta_2\}$ .

Delete all points further than  $\delta$  from line L.

Sort remaining points by *y*-coordinate.

CLOSEST-PAIR  $(p_1, p_2, ..., p_n)$ 

Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than  $\delta$ , update  $\delta$ .

Return  $\delta$ .

### Closest pair of points: analysis

Theorem. The divide-and-conquer algorithm for finding the closest pair of points in the plane can be implemented in  $O(n \log^2 n)$  time.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + O(n \log n) & \text{otherwise} \end{cases}$$

$$(x_1 - x_2)^2 + (y_1 - y_2)^2$$

Lower bound. In quadratic decision tree model, any algorithm for closest pair (even in 1D) requires  $\Omega(n \log n)$  quadratic tests.

### Improved closest pair algorithm

Q. How to improve to  $O(n \log n)$ ?

A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by *x*-coordinate, and all points sorted by *y*-coordinate.
- Sort by merging two pre-sorted lists.

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding the closest pair of points in the plane can be implemented in  $O(n \log n)$  time.

Pf. 
$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n) & \text{otherwise} \end{cases}$$

Note. See Section 13.7 for a randomized O(n) time algorithm.

not subject to lower bound since it uses the floor function

INTRODUCTION TO

ALGORITHMS

THISO EDITION

CHAPTER 7

### 5. DIVIDE AND CONQUER

- ▶ mergesort
- counting inversions
- closest pair of points
- randomized quicksort
- median and selection

### Randomized quicksort

### 3-way partition array so that:

- Pivot element *p* is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray M.
- Larger elements in right subarray R.

# the array A 7 6 12 3 11 8 9 1 4 10 2 P the partitioned array A 3 1 4 2 6 7 12 11 8 9 10

Recur in both left and right subarrays.



### Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array of n distinct elements is  $O(n \log n)$ .

Pf. Consider BST representation of partitioning elements.



### Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array of n distinct elements is  $O(n \log n)$ .

Pf. Consider BST representation of partitioning elements.

• An element is compared with only its ancestors and descendants.



### Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array of n distinct elements is  $O(n \log n)$ .

Pf. Consider BST representation of partitioning elements.

• An element is compared with only its ancestors and descendants.



### Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array of n distinct elements is  $O(n \log n)$ .

Pf. Consider BST representation of partitioning elements.

- An element is compared with only its ancestors and descendants.
- **Pr** [  $a_i$  and  $a_j$  are compared ] = 2 / |j i + 1|.

# first partitioning element (chosen uniformly at random) element in left subarray 3 Pr[2 and 8 compared] = 2/7 (compared if either 2 or 8 are chosen as partition before 3, 4, 5, 6 or 7) 1 1 2 4 6 5 7

### Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array of n distinct elements is  $O(n \log n)$ .

Pf. Consider BST representation of partitioning elements.

- An element is compared with only its ancestors and descendants.
- **Pr** [  $a_i$  and  $a_j$  are compared ] = 2 / |j i + 1|.

• Expected number of compares 
$$= \sum_{i=1}^N \sum_{j=i+1}^N \frac{2}{j-i+1} = 2\sum_{i=1}^N \sum_{j=2}^{N-i+1} \frac{1}{j}$$
 
$$\leq 2N \sum_{j=1}^N \frac{1}{j}$$
 
$$\sim 2N \int_{x=1}^N \frac{1}{x} \, dx$$
 
$$= 2N \ln N$$

Remark. Number of compares only decreases if equal elements.



CHAPTER 9

### 5. DIVIDE AND CONQUER

- ▶ mergesort
- counting inversions
- closest pair of points
- randomized quicksort
- ▶ median and selection

### Quickselect analysis

Intuition. Split candy bar uniformly  $\Rightarrow$  expected size of larger piece is  $\frac{3}{4}$ .

$$T(n) \leq T(\sqrt[3]{n}) + n \Rightarrow T(n) \leq 4n$$

Def.  $T(n, k) = \text{expected } \# \text{ compares to select } k^{\text{th}} \text{ smallest in an array of size } \le n.$ Def.  $T(n) = \max_k T(n, k)$ .

Proposition.  $T(n) \le 4n$ .

Pf. [by strong induction on n]

• Assume true for  $1, 2, \dots, n-1$ .

can assume we always recur on largest subarray since T(n) is monotonic and we are trying to get an upper bound

• T(n) satisfies the following recurrence:

 $T(n) \le n + 2/n [T(n/2) + ... + T(n-3) + T(n-2) + T(n-1)]$   $\le n + 2/n [4n/2 + ... + 4(n-3) + 4(n-2) + 4(n-1)]$  = n + 4(3/4n)= 4n.

### -----

### Quickselect

### 3-way partition array so that:

- Pivot element *p* is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray M.
- Larger elements in right subarray R.

Recur in one subarray—the one containing the  $k^{\text{th}}$  smallest element.

QUICK-SELECT (A, k)Pick pivot  $p \in A$  uniformly at random.  $(L, M, R) \leftarrow \text{PARTITION-3-WAY } (A, p)$ .

IF  $k \leq |L|$  RETURN QUICK-SELECT (L, k).

ELSE IF k > |L| + |M| RETURN QUICK-SELECT (R, k - |L| - |M|)ELSE RETURN p.

Selection. Given n elements from a totally ordered universe, find k<sup>th</sup> smallest.

- Minimum: k = 1; maximum: k = n.
- Median:  $k = \lfloor (n+1)/2 \rfloor$ .
- O(n) compares for min or max.
- $O(n \log n)$  compares by sorting.
- $O(n \log k)$  compares with a binary heap.

Applications. Order statistics; find the "top k"; bottleneck paths, ...

- Q. Can we do it with O(n) compares?
- A. Yes! Selection is easier than sorting.

### Selection in worst case linear time

Goal. Find pivot element p that divides list of n elements into two pieces so that each piece is guaranteed to have  $\leq 7/10 n$  elements.

Q. How to find approximate median in linear time?

A. Recursively compute median of sample of  $\leq 2/10 n$  elements.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(7/10 \ n) + T(2/10 \ n) + \Theta(n) & \text{otherwise} \end{cases}$$
two subproblems
of different sizes!

45

### Choosing the pivot element

• Divide n elements into  $\lfloor n/5 \rfloor$  groups of 5 elements each (plus extra).

## Choosing the pivot element

- Divide n elements into  $\lfloor n/5 \rfloor$  groups of 5 elements each (plus extra).
- Find median of each group (except extra).



### Choosing the pivot element

• Divide n elements into  $\lfloor n/5 \rfloor$  groups of 5 elements each (plus extra).

N = 54

- Find median of each group (except extra).
- Find median of  $\lfloor n/5 \rfloor$  medians recursively.
- Use median-of-medians as pivot element.



N = 54

### Median-of-medians selection algorithm

```
MOM-SELECT (A, k)

n \leftarrow |A|.

If n < 50 RETURN k^{th} smallest of element of A via mergesort.

Group A into \lfloor n/5 \rfloor groups of 5 elements each (plus extra).

B \leftarrow median of each group of 5.

p \leftarrow MOM-SELECT(B, \lfloor n/10 \rfloor) \leftarrow median of medians

(L, M, R) \leftarrow PARTITION-3-WAY (A, p).

If k \leq |L| RETURN MOM-SELECT (L, k).

ELSE IF k > |L| + |M| RETURN MOM-SELECT (R, k - |L| - |M|)
ELSE RETURN p.
```

Analysis of median-of-medians selection algorithm

• At least half of 5-element medians  $\leq p$ .



N = 54

### Analysis of median-of-medians selection algorithm

- At least half of 5-element medians  $\leq p$ .
- At least  $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$  medians  $\leq p$ .

# median of medians p 29 10 38 37 2 55 18 24 34 35 36 22 44 52 11 53 12 13 43 20 4 27 28 23 6 26 40 19 1 46 31 49 8 41 45 39 50 15 25 16 41 17 22 7

N = 54

## Analysis of median-of-medians selection algorithm

- At least half of 5-element medians  $\leq p$ .
- At least  $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$  medians  $\leq p$ .
- At least  $3 \lfloor n/10 \rfloor$  elements  $\leq p$ .

51



N = 54

### Analysis of median-of-medians selection algorithm

• At least half of 5-element medians  $\geq p$ .



# Analysis of median-of-medians selection algorithm

- At least half of 5-element medians  $\geq p$ .
- Symmetrically, at least  $\lfloor n/10 \rfloor$  medians  $\geq p$ .



### Analysis of median-of-medians selection algorithm

- At least half of 5-element medians  $\geq p$ .
- Symmetrically, at least  $\lfloor n/10 \rfloor$  medians  $\geq p$ .
- At least 3 | n / 10 | elements  $\geq p$ .

# median of medians p 29 10 38 37 2 55 18 24 34 35 36 22 44 52 11 53 12 13 43 20 4 27 28 23 6 26 40 19 1 46 31 49 8 14 9 5 3 54 30 48 47 32 51 21 45 39 50 15 25 16 41 17 22 7

### Median-of-medians selection algorithm recurrence

### Median-of-medians selection algorithm recurrence.

- Select called recursively with  $\lfloor n/5 \rfloor$  elements to compute MOM p.
- At least  $3 \lfloor n/10 \rfloor$  elements  $\leq p$ .
- At least  $3 \lfloor n/10 \rfloor$  elements  $\geq p$ .
- Select called recursively with at most  $n-3 \lfloor n/10 \rfloor$  elements.

Def.  $C(n) = \max \# \text{ compares on an array of } n \text{ elements.}$ 

$$C(n) \le C(\lfloor n/5 \rfloor) + C(n-3\lfloor n/10 \rfloor) + \frac{11}{5}n$$

median of

recursive select

computing median of 5 (6 compares per group) partitioning

partitioning (n compares)

### Now, solve recurrence.

- Assume *n* is both a power of 5 and a power of 10?
- Assume C(n) is monotone nondecreasing?

N = 54 55

### Median-of-medians selection algorithm recurrence

Analysis of selection algorithm recurrence.

- $T(n) = \max \# \text{ compares on an array of } \le n \text{ elements.}$
- T(n) is monotone, but C(n) is not!

$$T(n) \le \begin{cases} 6n & \text{if } n < 50 \\ T(|n/5|) + T(n-3|n/10|) + \frac{11}{5}n & \text{otherwise} \end{cases}$$

Claim.  $T(n) \leq 44 n$ .

- Base case:  $T(n) \le 6n$  for n < 50 (mergesort).
- Inductive hypothesis: assume true for 1, 2, ..., n-1.
- Induction step: for  $n \ge 50$ , we have:

$$T(n) \leq T(\lfloor n/5 \rfloor) + T(n-3 \lfloor n/10 \rfloor) + 11/5 n$$

$$\leq 44 (\lfloor n/5 \rfloor) + 44 (n-3 \lfloor n/10 \rfloor) + 11/5 n$$

$$\leq 44 (n/5) + 44 n - 44 (n/4) + 11/5 n \quad \text{for } n \geq 50, \ 3 \lfloor n/10 \rfloor \geq n/4$$

$$= 44 n. \quad \blacksquare$$

57

### Linear-time selection postmortem

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a compare-based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan

### Abstract

The number of comparisons required to select the i-th smallest of n numbers is shown to be at most a linear function of n by analysis of a new selection algorithm -- PICK. Specifically, no more than 5.4505 n comparisons are ever required. This bound is improved for

Practice. Constant and overhead (currently) too large to be useful.

Open. Practical selection algorithm whose worst-case running time is O(n).

### Linear-time selection postmortem

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a compare-based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection

bv

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan

### Abstract

The number of comparisons required to select the i-th smallest of n numbers is shown to be at most a linear function of n by analysis of a new selection algorithm -- PICK. Specifically, no more than 5.4305 n comparisons are ever required. This bound is improved for

### Theory.

- Optimized version of BFPRT:  $\leq 5.4305 n$  compares.
- Best known upper bound [Dor-Zwick 1995]:  $\leq 2.95 n$  compares.
- Best known lower bound [Dor-Zwick 1999]:  $\geq (2 + \epsilon) n$  compares.