第一编集合论第3章习题分析

中国海洋大学 计算机系

Exercises 1.

解答属于A + B的有: R_2, R_3, R_6, R_7

属于 $A \rightarrow B$ 的有: R_2 , R_6

Exercises 2.

2.设f,g∈A→B,且f∩g \neq Ø,f∩g,f∪gE函数吗?如果是函数,还属于A→B**吗**?

解: $f \cap g$ 是函数,不一定属于 $A \rightarrow B$, $f \cup g$ 不一定是函数。 先证明 $f \cap g$ 是函数.

任意 $x \in A$,设存在 $y_1 \in B$, $y_2 \in B$ 使得 $y_1 = f \cap g(x)$, $y_2 = f \cap g(x)$,

 $\Rightarrow <x,y_1> \in f \cap g \land <x,y_2> \in f \cap g$

 $\Rightarrow <x,y_1> \in f \land <x,y_1> \in g \land <x,y_2> \in f \land <x,y_2> \in g$

 $\Rightarrow y_1 = y_2$

所以 $f \cap g$ 是单值的,是函数. $f \cap g$ 不一定属于 $A \rightarrow B$.

反例

比如:

$$A = \{a,b,c\},B = \{1,2,3\}$$
 $f = \{\langle a,1\rangle,\langle b,1\rangle,\langle c,2\rangle\},g = \{\langle a,1\rangle,\langle b,3\rangle,\langle c,2\rangle\}$
 $f \cap g = \{\langle a,1\rangle,\langle c,2\rangle\}$ 是函数,但不属于 $A \rightarrow B$ 。
 $f \cup g = \{\langle a,1\rangle,\langle b,1\rangle,\langle c,2\rangle,\langle b,3\rangle\}$ 不是函数。

Exercises 3

■ 解答

只是单射函数: (2) ((1), (6) (10))

只是满射函数: (4)(5)(9)((1),(6)(10))

只是双射函数: (1),(6)(10)

Exercises 11.

- 设 $f:A \rightarrow B$,定义 $g:B \rightarrow P(A)$ 如下: 对于任意的 $b \in B$, $g(b)=\{x|x\in A \land f(x)=b\}$,试证明当f为满射时,g为单射.
- **解**: 因为 f满射, $\forall b \in B$, $\exists x \in A$, f(x)=b, 设 $\forall b_1,b_2 \in B$, $\diamondsuit g(b_1)=g(b_2)$, $g(b_1)=\{x|x\in A \land f(x)=b_1\}$ $g(b_2)=\{x|x\in A \land f(x)=b_2\}$, 因为 $g(b_1)=g(b_2)$, f满射, 则 $g(b_1)=g(b_2)\neq\emptyset$, $\forall x,(x\in g(b_1)\Leftrightarrow x\in g(b_2)\Rightarrow f(x)=b_1\land f(x)=b_2\Rightarrow b_1=b_2$ 故 g为单射.

Exercise 12.

证: 先证f,g都是满射.

任取 $y \in R, \langle y, 0 \rangle \in R \times R$, 使得 $f(\langle y, 0 \rangle) = y$ (或者 $\langle \langle y, 0 \rangle, y \rangle \in f$), 因此f是满射.

任取 $y \in R, \langle y, 1 \rangle \in R \times R$, 使得 $g(\langle y, 1 \rangle) = y($ 或者 $\langle \langle y, 1 \rangle, y \rangle \in g)$, 因此g是满射.

 $\forall < x,y> \in R \times R, \exists x \neq y,$ 都有f(< x,y>) = f(< y,x>)和g(< x,y>) = g(< y,x>),因此f,g都不是单射 (或者: $<< x,0>,x> \in f, << x-1,1>,x> \in f; << x,1>,x> \in g, << 1,x>,x> \in g$)

比如:

$$f(<2,3>)=f(<1,4>)=f<3,2>=f<4,1>=5$$

 $g(<4,4>)=g(<2,8>)=16$

14.

证明 先证明S具有自反性.

任意 $f \in A$, $\forall x \in [0,1], f(x)-f(x)=0$,因此 $< f, f> \in S$.

再证S具有反对称性.

设任意 $< f,g> \in S, < g,f> \in S$. 则由S的定义知, $\forall x \in [0,1], f(x) - g(x) \ge 0$ 且 $g(x) - f(x) \ge 0$,

即 $f(x) \ge g(x)$ 且 $g(x) \ge f(x)$.

所以 $\forall x \in [0,1], f(x)=g(x),$ 即f=g,所以S具有反对称性.

最后证S具有传递性.

设任意 $< f,g> \in S, < g,h> \in S$. 则由S的定义知, $\forall x \in [0,1], f(x) - g(x) \ge 0$ 且 $g(x) - h(x) \ge 0$,所以 $f(x) - h(x) \ge 0$.

即<f,h>∈S,S具有传递性.

综上所述,S是A上的偏序关系

下面说明S不是全序关系.

$$\diamondsuit f:[0,1] \to R, f(x)=x, g:[0,1] \to R, g(x)=1-x;$$

$$f(0)-g(0)=-1<0$$

$$f(1)-g(1)=1>0$$

因此, $\forall x \in [0,1]$,f(x)-g(x)既有可能大于0,也可能小于0,所以f和g不可比。

15.

15. 由 $f: A \rightarrow B$ 导出的A上的等价关系定义为 $\mathbf{R} = \{ \langle x, y \rangle | x \in \mathbf{A} \land y \in \mathbf{A} \land f(x) = f(y) \},$ 设 $f_1, f_2, f_3, f_4 \in \mathbb{N} \rightarrow N, \mathbb{R}$,为 f_i 导出的 \mathbb{N} 上的等价关系, $f_1(n)=n$; (N上的恒等关系: I_N) $f_2(n)=1$ n为奇数 0, n为偶数; $f_3(n)=j$, n=3k+j, j=0,1,2, $k \in N$; (模3同余关系) $f_4(n)=j$, n=6k+j, j=0,1,...5, $k \in \mathbb{N}$; (模6同余关系)

- (1) 求商集N/ R_i ,i=1,2,3,4;
- (2) 画出偏序集< $\{N/R_1, N/R_2, N/R_3, N/R_4\}$, <>的哈斯图,其中<为加细关系。
- (3) 求 $H = \{10k | k \in \mathbb{N}\}$ 在 f_1, f_2, f_3, f_4 下的像。

Exercises 15.

解 (1)
$$R_1 = \{\langle x,y \rangle | f_1(x) = f_1(y)\} = \{\langle x,y \rangle | x = y\}$$

即 $\langle x,y \rangle \in R_1 \Leftrightarrow x = y$,显然 R_1 是恒等关系.
 $N/R_1 = \{\{k\} | k \in \mathbb{N}\}$
 $\langle x,y \rangle \in R_2 \Leftrightarrow x = y$ 同为奇数或者同为偶数.
 $N/R_2 = \{\{x | x = 2k, k \in \mathbb{N}\}, \{x | x = 2k + 1, k \in \mathbb{N}\}\}$
 $\langle x,y \rangle \in R_3 \Leftrightarrow f_3(x) = f_3(y) \Leftrightarrow x \mod 3 = y \mod 3$
 $N/R_3 = \{\{x | x = 3k, k \in \mathbb{N}\}, \{x | x = 3k + 1, k \in \mathbb{N}\}, \{x | x = 3k + 2, k \in \mathbb{N}\}\},$
 $\langle x,y \rangle \in R_4 \Leftrightarrow f_4(x) = f_4(y) \Leftrightarrow x \mod 6 = y \mod 6$
 $N/R_4 = \{\{x | x = 6k, k \in \mathbb{N}\}, \{x | x = 6k + 1, k \in \mathbb{N}\}, \{x | x = 6k + 2, k \in \mathbb{N}\}\},$
 $\{x | x = 6k + 3, k \in \mathbb{N}\}, \{x | x = 6k + 4, k \in \mathbb{N}\}, \{x | x = 6k + 5, k \in \mathbb{N}\}\}$

(2)画出偏序集< $\{N/R_1,N/R_2,N/R_3,N/R_4\}$, < >的哈斯图,其中< 为加细关系.

解: N/
$$R_1$$
={{0},{1}, ...,{ k }, ...}, k ∈N
N/ R_2 ={{0,2,4, ...}, {1,3,5, ...}}
N/ R_3 ={{0,3,6,...}, {1,4,7,...}, {2,5,8,...}}
N/ R_4 ={{0,6,12,...}, {1,7,13,...},
{2,8,14,...},{3,9,15,...},
{4,10,16,...}, {5,11,17,...}}

(3)求H = $\{10k|k \in \mathbb{N}\}$ 在 f_1, f_2, f_3, f_4 下的像。

解:
$$f_1(H)=H$$
,
 $f_2(H)=\{0\}$;
 $f_3(H)=\{0,1,2\}$
 $f_4(H)=\{0,2,4\}$

Exercises 16.

解

 $g^{\circ}f(x)=x^2+2$,显然 $g^{\circ}f$ 既不是满射也不是单射; $f^{\circ}g(x)=x^2+8x+14$,显然 $f^{\circ}g$ 既不是满射也不是单射; f既不是满射也不是单射,故不存在反函数; g是双射, $g^{-1}(x)=x-4$ h是双射, $h^{-1}(x)=\sqrt[3]{x+1}$

Exercises 17.

解:一般情况下,自然映射是满射但不一定是单射,所以不是双射。

如果R是恒等关系,则 $A/R=\{\{x\}|x\in A\}$,则自然映射 $f:A\to A/R$, $f(x)=\{x\}$ 是单射是满射,故而是双射,因此 f有反函数,

 $f^1:A/R\to R$, 任意 $\{x\}\in A/R$, $f^1(\{x\})=x$

Exercises 19

设
$$f: N \rightarrow N$$
, $f(x)=x+1$, $x=0,1,2,3$
 $f(x)=0$, $x=4$
 $f(x)=x$, $x \ge 5$,
 $g: N \rightarrow N$, $g(x)=x/2$, x 为偶数
 $g(x)=3$, x 为奇数
(1)设 $A_1=\{0,1,2\}$, $B_1=\{0,1,5,6\}$, 求 $f(A_1)$, $f^1(B_1)$
(2)设 $A_2=\{x|x\in N,x$ 为偶数}, $B_2=\{3\}$, 求 $g(A_2)$, $g^{-1}(B_2)$
解: (1) $f(A_1)=\{1,2,3\}$, $f^1(B_1)=\{4,0,5,6\}$
(2) $g(A_2)=N$, $g^{-1}(B_2)=N_{\widehat{\oplus}}\cup\{6\}$

19(3)

(3) f与g都有反函数吗?

解: ƒ是双射,故有反函数.

设:
$$f^1: \mathbb{N} \to \mathbb{N}$$
, $f^1(x) = 4$, $x = 0$,
$$f^1(x) = x - 1, x = 1, 2, 3, 4$$

$$f^1(x) = x, x \ge 5,$$

g不是双射(不是单射,是满射),故g无反函数。

20

- 设 g: A \rightarrow B, f:B \rightarrow C,
- (1) 已知 $f \circ g$ 是单射,且g是满射,证明f是单射。

证明: [欲证明: $\forall x_1, x_2 \in \mathbf{B}$, 若 $f(x_1) = f(x_2)$,证明 $x_1 = x_2$]

设 $f(x_1)=f(x_2)$, g为满射,则存在 a_1 , $a_2 \in A$,令 $g(a_1)=x_1$, $g(a_2)=x_2$,

即 $f \circ g(a_1) = f \circ g(a_2)$,因为 $f \circ g$ 是从A到C的单射函数,则一定有 $a_1 = a_2$ 。

故 $g(a_1)=g(a_2)$, 即 $x_1=x_2$ 。

或 假设f不是单射,则与 $f \circ g$ 是单射矛盾。

20(2)

设 g: A \rightarrow B, f:B \rightarrow C,

(2)已知 $f \circ g$ 是满射,且f是单射,证明g是满射。

证明: 假设g不是满射,则 $\exists b \in B$,不存在 $x \in A$ 使得g(a)=b,

f为单射,对b,存在唯一的c,f(b)=c,

 $f \circ g$ 是满射,故 $\exists a \in A$ 使得 $f \circ g(a) = c$,

即有 f(b)=f(g(a))=c,

f为单射,故b=g(a),这与假设矛盾,故g为满射。

或 任取 $b \in B$,证存在 $a \in A$ 使得g(a)=b.

Ch 5 Exercises 3

- 3. 设 a,b为任意实数,且a < b,证明 $[0,1] \approx [a,b] \approx \mathbb{R}$.
- 证明:

先证 $[0,1] \approx [a,b]$,构造双射函数。

$$f:[a,b] \to [0,1], f(x)=(x-a)/(b-a).$$

$$f(x)$$
是双射,故 $[0,1] \approx [a,b]$ 。

因此
$$[0,1] \approx [a,b]$$
.

再证[0,1]≈(0,1),构造两个单射函数

$$h_1: [0,1] \rightarrow (0,1), h_1(x) = \frac{1}{2}x + \frac{1}{4}$$

$$h_2: (0,1) \rightarrow [0,1], h_2(x) = x$$

最后证(0,1)≈R

存在函数g: $(0,1) \to \mathbb{R}$, $g(x) = tg \frac{2x-1}{2}\pi$ $\forall x \in (0,1)$ 显然g(x)是双射,所以 $(0,1) \approx \mathbb{R}$.

因此得到[0,1] \approx [a,b], [0,1] \approx (0,1), (0,1) \approx R, 所以[0,1] \approx R, 从而有[0,1] \approx [a,b] \approx R

Exercises 11

- 11. 设A= $\{n^7|n \in \mathbb{N}, n\neq 0\}$, B= $\{n^{109}|n \in \mathbb{N}, n\neq 0\}$,求
 (1)card A; (2) card B; (3) card(A \cup B); (4) card(A \cap B)
 解(1) (2) 令 $f: N \rightarrow A$; $f(n) = (n+1)^7, n \in \mathbb{N}$. $g: N \rightarrow B$; $f(n) = (n+1)^{109}, n \in \mathbb{N}$. f, g 双射,故 $N \approx A \approx B$, card A= card B= \aleph_0 (3) A \subseteq A \cup B \subseteq N,故 card A \subseteq card A \cup B \subseteq card N.
 - (3) $A \subseteq A \cup B \subseteq N$, 放 card $A \le card A \cup B \le card N$. $\aleph_0 \le card A \cup B \le \aleph_0$. card $A \cup B = \aleph_0$
 - (4) 设 $C = \{(n^{7 \times 109} | n \in \mathbb{N}, n \neq 0\}, \text{则}C \subseteq A \cap B$ 且 $cardC = \aleph_0$,所以 $cardA \cap B \geq \aleph_0$ 。

 $A \cap B \subseteq A$, card $A \cap B \leq \text{card } A = \aleph_0$. card $A \cap B \leq \aleph_0$. 则 card $A \cap B = \aleph_0$

Exercises 12.

- 设A,B为两集合,证明:如果A≈B,则 cardP(A)=cardP(B).
- 证 分析: 构造双射函数 $h:P(A) \rightarrow P(B)$

由于A \approx B,故存在双射函数f:A \rightarrow B.

 $\diamondsuit h: P(A) \rightarrow P(B), \forall X \subseteq P(A), h(X) = \{f(x) | x \subseteq X\}$

显然 $h(X)=f(X)\in P(B)$,下面证明h是双射函数.

 $\forall A_1, A_2 \in P(A), \Leftrightarrow h(A_1) = h(A_2),$

 $\forall x \in A_1 \Leftrightarrow f(x) \in f(A_1) \Leftrightarrow f(x) \in h(A_1) \Leftrightarrow f(x) \in h(A_2)$

 $\Leftrightarrow f(x) \subseteq f(A_2) \Leftrightarrow x \subseteq A_2.$

故 $A_1 = A_2$.因此h是单射的.

■ \forall Y ∈ P(B), \diamondsuit X={x∈A \exists y(y∈Y \land f(x)=y)}= f^1 (Y) 因为f是双射,故h(X)=h(f^1 (Y))=f(f^1 (Y))=f(f(f^1 (Y))=f(f(f(Y))=f(f(f(Y))=f(f(f(Y))=f(f(f(Y))=f(f(f

证明[a,b] ≈(a,b) ≈(a,b] ≈[a,b)

证明: (可以按照直线来构造单射) (1) $f: [a,b] \rightarrow (a,b), f(x) = x/2 + (a+b)/4$ $g: (a,b) \to [a,b], g(x) = x$ f, g都是入射,∴ [a,b] ≈(a,b) (2) $f: (a,b) \to (a,b], f(x) = x$ $g: (a,b) \to (a,b), g(x) = x/2 + (a+b)/4$ f, g都是入射,∴ (a,b) ≈(a,b] (3) $f: (a,b) \rightarrow [a,b), f(x) = x/2 + (a+b)/4$ $g: [a,b) \to (a,b]$, g(x) = x/2 + (a+b)/4f. g都是入射, ∴ (a,b] ≈[a,b) (4)) $f: [a,b) \to [a,b], f(x) = x$ $g: [a,b] \rightarrow [a,b), g(x) = x/2 + (a+b)/4$ f. g都是入射, ∴ [a,b) ≈[a,b]