

ROLLING SMARTS:

YOU DON'T ALWAYS FIND WHAT YOU WANT, BUT IF YOU TRY SOMETIMES, YOU FIND WHAT YOU NEED

Roger Sayle and John Mayfield
NextMove Software, Cambridge, UK

FOR THE YOUNGER GENERATION...

- "We need a president with tremendous... SMARTS..."
 - Donald J. Trump

WHAT IS SMARTS?

- SMARTS is a line notation for specifying substructural patterns in (or queries on) chemical substructures.
- SMARTS are to SMILES, as regular expressions (regex) are to strings, and Biovia query files are to Mol files.

intramolecular H Bonds

[aD3]a!@-a([aD3])[aD3]

biaryl atropisomers

SMARTS ATOM PRIMITIVES

• The portable subset of atom primitives include:

Symbol	Name	Definition	Default
<symbol></symbol>	(arom)element	IUPAC symbol (upper=A, lower=a)	(no default)
*	wildcard		(no default)
#n	atomic number	atomic number <n></n>	(no default)
Α	aliphatic	aliphatic	(no default)
а	aromatic	aromatic	(no default)
R<0>	ring membership	in ring	any ring atom
X <n></n>	connectivity	<n> total connections</n>	exactly one
D <n></n>	degree	<n> explicit connections</n>	
H <n></n>	total H count	<n> attached hydrogens</n>	
h <n></n>	Implicit H count	<n> implicit hydrogens</n>	at least one
v <n></n>	valence	total bond order <n></n>	exactly one
x <n></n>	ring connectivity	<n> total ring connections</n>	any ring atom
r <n></n>	smallest ring size	in smallest ring of size <n></n>	any ring atom
+ <n></n>	positive charge	+ <n> formal charge</n>	+1 charge
- <n></n>	negative charge	- <n> formal charge</n>	-1 charge

SMARTS ATOM PRIMITIVE EXTENSIONS

Additional atom primitives include:

Symbol	Definition	Toolkits
R <n></n>	Input order dependent SSSR membership	Daylight
R <n></n>	Symmetrized SSSR membership	RDKit
R <n></n>	Number of ring bonds	OpenEye (NextMove)
z <n></n>	Heteroatom neighbor count	RDKit, CACTVS
Z <n></n>	Aliphatic heteroatom neighbor count	RDKit, CACTVS
Z <n></n>	In Ring of size <n></n>	NextMove
G <n></n>	Group <n> element</n>	CCG MOE
a <n></n>	<n> aromatic bonds</n>	CACTVS, NextMove
i<0>	Saturated or unsaturated atom	Lilly, CACTVS, NextMove
^ <n></n>	Hybridization (i.e. sp, sp ² , sp ³ etc.)	RDKit, OpenEye

- Several toolkits support ranges: X{m-n}, X{m-}, X{-n}
- Several toolkits support bounds: X>m, X<n

SMARTS ALGEBRA: X = D + h

• The most important axiom of SMARTS algebra is that X, the connectivity, is the degree (D) plus the implicit hydrogen count (h).

valence ٧ X connectivity Н total hcount h implicit hcount degree D ring bonds Χ aromatic bonds a hetero neighbors (RDKit) 7 7 aliphatic hetero neighbors (RDKit)

LOGICAL OPERATORS

- SMARTS primitives can be negated with! prefix.
- Primitives can be combined by conjunction (AND) and disjunction (OR).
- The (often optional) & operator has the highest priority, and binds tighter than OR.
- Atom lists are implemented by the "," disjunction operator, for example the familiar "[F,Cl,Br,I]".
- The low priority AND operator ";" can be used for constraining disjunctive lists.

DE MORGAN'S LAWS

- Arbitrarily complex Boolean expressions can be expressed in SMARTS, thanks to De Morgan's laws.
- e.g. The negation of "[F,Cl,Br,I]" is "[!F!Cl!Br!I]".
- The stable isotopes of hydrogen are "[0#1,1#1,2#1]", so unstable H isotopes "[#1;!0,!#1;!1,!#1;!2,!#1]".

RADIOACTIVE SMARTS

[!0,!#1;!1,!#1;!2,!#1;!0,!#2;!3,!#2;!4,!#2;!0,!#3;!6,!#3;!7,!#3;!0,!#4;!9,!#4;!0,!#5;!10,!#5;!11,!#5;!0,!#6;!12,!#6;!13,!#6;!0,!#7;!14,! #7;!15,!#7;!0,!#8;!16,!#8;!17,!#8;!18,!#8;!0,!#9;!19,!#9;!0,!#10;!20,!#10;!21,!#10;!22,!#10;!0,!#11;!23,!#11;!0,!#12;!24,!#12;!25,! #12:126,1#12:10,1#13:127,1#13:10,1#14:128,1#14:129,1#14:130,1#14:10,1#15:131,1#15:10,1#16:132,1#16:133,1#16:134,1#16:136,1#16:10,1#16:136,1 !#17;!35,!#17;!37,!#17;!0,!#18;!36,!#18;!38,!#18;!40,!#18;!0,!#19;!39,!#19;!41,!#19;!0,!#20;!40,!#20;!42,!#20;!43,!#20;!44,!#20; !46,!#20;!0,!#21;!47,!#21;!0,!#22;!46,!#22;!47,!#22;!48,!#22;!49,!#22;!50,!#22;!0,!#23;!51,!#23;!0,!#24;!50,!#24;!52,!#24;!53,!# 24;!54,!#24;!0,!#25;!55,!#25;!0,!#26;!54,!#26;!56,!#26;!57,!#26;!58,!#26;!0,!#27;!59,!#27;!0,!#28;!58,!#28;!60,!#28;!61,!#28;!62, !#28;!64,!#28;!0,!#29;!63,!#29;!65,!#29;!0,!#30;!64,!#30;!66,!#30;!67,!#30;!68,!#30;!70,!#31;!0,!#31;!69,!#31;!71,!#31;!0,!#32;! 70,!#32;!72,!#32;!73,!#32;!74,!#32;!0,!#33;!75,!#33;!0,!#34;!74,!#34;!76,!#34;!77,!#34;!78,!#34;!80,!#34;!0,!#35;!79,!#35;!81,!# 35;!0,!#36;!79,!#36;!80,!#36;!82,!#36;!83,!#36;!84,!#36;!86,!#36;!0,!#37;!85,!#37;!0,!#38;!84,!#38;!86,!#38;!87,!#38;!88,!#38;!0, !#39;!89,!#39;!0,!#40;!90,!#40;!91,!#40;!92,!#40;!94,!#40;!96,!#40;!0,!#41;!93,!#41;!0,!#42;!92,!#42;!94,!#42;!95,!#42;!96,!#42; !97,!#42;!98,!#42;!0,!#44;!96,!#44;!98,!#44;!99,!#44;!100,!#44;!101,!#44;!102,!#44;!104,!#44;!0,!#45;!103,!#45;!0,!#46;!102,!#4 6;!104,!#46;!105,!#46;!106,!#46;!108,!#46;!110,!#46;!0,!#47;!107,!#47;!109,!#47;!0,!#48;!106,!#48;!108,!#48;!110,!#48;!111,!# 48;!112,!#48;!114,!#48;!0,!#49;!113,!#49;!0,!#50;!112,!#50;!114,!#50;!115,!#50;!116,!#50;!117,!#50;!118,!#50;!119,!#50;!120,! #50;!122,!#50;!124,!#50;!0,!#51;!121,!#51;!123,!#51;!0,!#52;!120,!#52;!122,!#52;!123,!#52;!124,!#52;!125,!#52;!126,!#52;!0,!#5 3;!127,!#53;!0,!#54;!124,!#54;!126,!#54;!128,!#54;!129,!#54;!130,!#54;!131,!#54;!132,!#54;!134,!#54;!136,!#54;!0,!#55;!133,!# 55;!0,!#56;!130,!#56;!132,!#56;!134,!#56;!135,!#56;!136,!#56;!137,!#56;!138,!#56;!0,!#57;!139,!#57;!0,!#58;!136,!#58;!138,!#5 8;!140,!#58;!142,!#58;!0,!#59;!141,!#59;!0,!#60;!142,!#60;!143,!#60;!146,!#60;!146,!#60;!148,!#60;!0,!#62;!144,!#62;!149,!#62; !150,!#62;!152,!#62;!154,!#62;!0,!#63;!153,!#63;!0,!#64;!154,!#64;!155,!#64;!156,!#64;!157,!#64;!158,!#64;!160,!#64;!0,!#65;!1 59,!#65;!0,!#66;!156,!#66;!158,!#66;!160,!#66;!161,!#66;!162,!#66;!163,!#66;!164,!#66;!0,!#67;!165,!#67;!0,!#68;!162,!#68;!16 4,!#68;!166,!#68;!167,!#68;!168,!#68;!170,!#68;!0,!#69;!169,!#69;!0,!#70;!168,!#70;!170,!#70;!171,!#70;!172,!#70;!173,!#70;**!**1 74,!#70;!176,!#70;!0,!#71;!175,!#71;!0,!#72;!176,!#72;!177,!#72;!178,!#72;!179,!#72;!180,!#72;!0,!#73;!180,!#73;!181,!#73<mark>;!0,!</mark> #74;!182,!#74;!183,!#74;!184,!#74;!186,!#74;!0,!#75;!185,!#75;!0,!#76;!184,!#76;!187,!#76;!188,!#76;!189,!#76;!190,!#76;!192, !#76;!0,!#77;!191,!#77;!193,!#77;!0,!#78;!192,!#78;!194,!#78;!195,!#78;!196,!#78;!198,!#78;!0,!#79;!197,!#79;!0,!#80;**!1**96,!#80 ;!198,!#80;!199,!#80;!200,!#80;!201,!#80;!202,!#80;!204,!#80;!0,!#81;!203,!#81;!205,!#81;!0,!#82;!204,!#82;!206,!#82;!207,!#8 2;!208,!#82]

STYLISH SMARTS

- Like programming languages, the formal specification or grammar defines what is acceptable, but often provide no guidance on preferred forms.
- Good style improves readability.
 - SMILES: [13CH3-]
 - SMARTS1? [#6&13;H3-1A]
 - SMARTS2? [!c13-#6H3]
 - SMARTS3? [13&C;H3&-]
- Good style sometimes benefits performance
 - $[C,c] \rightarrow [#6]$ [X0D0R0h0A] \rightarrow [X0] [#26] \rightarrow [Fe]

ROBOCHEMISTRY AND THE BLACK SWAN

- A common source of "poor" SMARTS is observational bias, where an author makes assumptions about chemistry based on limited sampling.
- These SMARTS patterns are "good enough for government work".
- An author may use the SMARTS "C" when they probably intended "[Cv4+0]", after all aren't all carbons neutral and four valent.
- Transformation rules misfiring on unanticipated input data leads to what PubChem calls "robochemistry".

POP QUIZ: FIND BENZENE

- Consider the challenge of finding benzene and only benzene in a SMARTS search.
- c1ccccc1 is a substructure.
- c:1:c:c:c:c:: just ensures the bonds are aromatic.
- [0cv4+0]:1:[0cv4+0]:[0cv4+0]:[0cv4+0]:[0cv4+0]:...
- [0cD2h1+0]:1:[0cD2h1+0]:[0cD2h1+0]:[0cD2h1+0]:...
- [0cX3H1+0]:1:[0cX3H1+0]:[0cX3H1+0]:[0cX3H1+0]:...
- [0c+0;D2h1,D3h0\$(*-[0#1D1h0+0])]:1:...

POP QUIZ: MATCH NITRO GROUPS

- Likewise, if we assume RDKit has normalized nitro groups to *[N+](=O)[O-]
- [NX3v4+1](=[OD1h0+0])[OD1h0-1])
- [ND3h0v4+1](=[OD1h0+0])[OD1h0-1]

- For carboxylic acids and carboxylates
- [CX3v4+0](=[OD1h0+0])[OD1;h0-1,h1+0]
- And esters
- [CX3v4+0](=[OD1h0+0])[O+0;D1h1,X2v2]

RECURRING IDIOMS

- Degree, implicit hydrogen count and formal charge are often specified together: D?h?+?
- Connectivity and valence and formal charge are often specified together: X?v?+?

SKETCH SEMANTICS

 SMARTS (mostly) has rigorous semantics that retrieve exactly what a cheminformatician asks for; unfortunately <1% of chemists can write SMARTS.

 The universal way of entering a substructure query is via a sketcher/structure editor such as JSME, Marvin, ChemDraw, Biovia Draw.

 Matching what a chemist believes they are asking for is a tricky challenge.

THE ROOT OF ALL EVIL: AROMATICITY

• The classic challenge of chemical search is that 1,2dichlorobenzene should match itself independent of the Kekule form used to represent it.

$$\begin{array}{c|c} CI & CI & CI \\ \hline \end{array}$$

- In theory, chemists could mark bonds aromatic.
- Take home #1: Sketch bonds may be aromatic.

THINGS ARE RARELY THAT SIMPLE

• These queries should(?) match the targets below.

 Queries drawn as aromatic may match aliphatic substructures, queries drawn as aliphatic may match aromatic substructures, and sometimes both.

SKETCH SEMANTICS: 2ND ATTEMPT

- Allow atoms and bonds that could be aromatic, to be aromatic.
 - Benzene: [#6]1:,=[#6][#6]:,=[#6][#6]:,=[#6]1
 - Cyclohexane: [#6]1[#6][#6][#6][#6][#6]1
 - Cubane: [#6]12[#6]3[#6]4[#6]1[#6]5[#6]4[#6]3[#6]25

SKETCH SEMANTICS: 3RD ATTEMPT

- An atom that is unsaturated in the query, must be unsaturated in the target.
 - Benzene: [#6i]1:,=[#6i][#6i]:,=[#6i][#6i]:,=[#6i]1
- Saturated atoms drawn with 2 neighbors may only be aromatic if saturated or unsaturated degree 3.
 - Cyclohexane: [#6;A,!i,D3]1[#6;A,!i,D3][#6;A,!i,D3] [#6;A,!i,D3][#6;A,!i,D3][#6;A,!i,D3]1
- Saturated atoms drawn with 3 neighbors may only be aromatic if they remain saturated.
 - Cubane: [#6;A,!i]12[#6;A,!i]3[#6;A,!i]4[#6;A,!i]1[#6;A,!i]5 [#6;A,!i]4[#6;A,!i]3[#6;A,!i]25

FEATURES FOR POWER USERS

- Biovia query conversion should also support all of the expected features: atom lists, halogens, ring/chain topology, substitution count, bond logic,ring bond count, saturation/unsaturation etc.
- One cool feature supported by RDKit (and NextMove Software) is support for ChemAxon's "M MRV SMA" field, which allows arbitrary SMARTS to be associated with an atom in a Biovia query.

SKETCH INTERPRETATION "SETTINGS"

Lock Ring systems

 A ring in a query always has to match a ring in the target. Locking ring systems prevents rings from forming parts of larger rings systems, i.e. benzene match naphthalene. Implemented by adding x2 constraints to ring atoms.

Lock Chains

Acyclic query atoms must be acyclic in target.

Lock Properties

- Atoms without charge/isotope require no charge/isotope in target.
- Ignore stereochemistry/isotopes/charges.
 - Default behaviour of PubChem/CACTVS search.

THE PROBLEM WITH TAUTOMERS

Tautomerism causes problems for SMARTS matching.

quinone_C filter

CID 5409668

$$\begin{array}{c} NH_2 \\ NH$$

het_65_G filter

CID 4060544

AND WITH RESONANCE FORMS

As do resonance forms (and nitro representation &.)

het_5_inium filter

CID 720071 (Oct 2018)

CID 720071 (Feb 2019)

ONE WAY OF SOLVING THIS

- Is to enumerate all possible (tautomeric/resonance) forms, and then search for each of them.
- This is the approach used by RDKit::TautomerQuery which uses MolStandardize::TautomerEnumerator.
- Something similar could in theory be implemented using RDKit::ResonanceMolSupplier.

 This extremely powerful technique can also solve the aromaticity problem (by enumerating Kekulé forms) and canonicalization (by enumerating SMILES paths).

DEMOCRITUS TO BORN-OPPENHEIMER

"All that exists are atoms in space all else is conjecture"

GUANINE TAUTOMERS SMARTS

- Carbons are constrained to be sp2, heteroatoms to standard valences.
- (Non-triple) bonds become single, double or aromatic.
- [#7]1-,=,:[#6]-,=,:[#7]-,=,:[#6]2-,=.:[#6]-,=,:1-,=,:[#7]-,=,:[#6](-,=,:[#7]) ,=,:[#7]-,=,:[#6] -,=,:2-,=,:[#8]
- Carbons: [#6X3v4i+0,#6X3v3-1,#6X3v3+1]
- Nitrogens: [#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]
- Oxygens: [#8X1v2+0,#8X1v1-1,#8X2v2+0,#8X2v3+1,#8X3v3+1]

GUANINE TAUTOMERS SMARTS

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ H_2N & & & \\ N & & & \\ N & & \\ N & & \\ \end{array}$$

[#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]1-,=,: [#6X3v4i+0]-,=,: [#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]-,=,: [#6X3v4i+0]2-,=,: [#6X3v4i+0]-,=,: [#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1]-,=,: [#6X3v4i+0](-,=,: [#7X2v3+0,#7X3v3+0,#7X3v4+1,#7X4v4+1])-,=,: [#7X2v3+0,#7X3v3+0,#7X3v4+1]-,=,: [#6X3v4i+0]-,=,:2-,=,: [#8X1v2+0,#8X1v1-1,#8X2v2+0,#8X2v3+1,#8X3v3+1]

GUANINE TAUTOMERS RESULTS

Without post-processing, the raw results look like:

NETQ & TOTX: CONSERVATION OF X

 Identifying/filtering relevant tautomers (perhaps via SubstructMatchParameters::extraFinalCheck)

```
int netq = 0;
unsigned int totx = 0;
for (unsigned int idx : match) {
   Atom *atm = mol->getAtomWithIdx(idx);
   netq += atm->getFormalCharge();
   totx += atm->getTotalDegree();
}
// Gaunine tautomers have totx of 29, and 0 netq.
return totx+netq >= 29;
```

• Under reasonable valence constraints $\Sigma(Xi+qi)$ is a conserved quantity of substituted tautomers/protomers.

NEXT GEN. SMARTS OPTIMIZATION

- A significant development in the field of SMARTS optimization has been the development of next generation search engines.
 - Uniform performance of all non-recursive atom expressions through the use of atom typing.
 - No penalty for [I,Br,F,Cl,C,c,#6,C]
 - 2. Atom and bond ordering in SMARTS patterns is now irrelevant.
 - BrCCC is no longer faster than CCCBr.
 - 3. Complex/distinctive expressions are now optimal.
 - [CD>3v4Z5Z6i0+0]

(PATSY) SMARTS OPTIMIZATION 2020

Intramolecular H Bonds

- Input: O=[C,N]aa[N,O;!H0]
- Internal: [O&i]=[C,N;D>1v>2i]-[aD3]:[aD3]-[N,O;!H0!D0]

Biaryl atropisomers

- Input: [aD3]a!@-a([aD3])[aD3]
- Internal: [aD3]:[aD3x2]!@-[aD3x2](:[aD3]):[aD3]

Cubane

- Input: C12C3C4C1C5C4C3C25
- Internal: [CZ4Z6Z8x>2]12-@[CZ4Z6Z8x>2]3-@[CZ4Z6Z8x>2]4-@[CZ4Z6Z8x>2]-@1-@[CZ4Z6Z8x>2]5-@[CZ4Z6Z8x>2]-@4-@[CZ4Z6Z8x>2]-@3-@[CZ4Z6Z8x>2]-@2-@5

SUMMARY & CONCLUSIONS

- SMARTS is incredibly expressive.
- Writing SMARTS well is challenging.
- Divergence in implementations doesn't help.
- The situation is (hopefully) improving.
- Significant recent technical advances.
- Sketch semantics lowers the barrier to entry.
- But opens up new opportunities/challenges.

ACKNOWLEDGEMENTS

- John Mayfield, NextMove Software
- Richard Gowers, NextMove Software
- Ingvar Lagerstedt, NextMove Software
- Franziska Kruger and Nikolaus Stiefl, Novartis
- Greg Landrum
- David Weininger
- Wolf-Dietrich Ihlenfeldt
- OpenEye Scientific Software
- ChemAxon

FOR GREG #1: FASTER ATOM MATCHING

Current code

```
static inline int makeAtomType(int atomic_num, bool aromatic) {
  return atomic_num + 1000 * static_cast<int>(aromatic);
}
static inline void parseAtomType(int val, int &atomic_num, bool &aromatic) {
  if (val > 1000) {
    aromatic = true;
    atomic_num = val - 1000;
  } else {
    aromatic = false;
    atomic_num = val;
  }
}
```

Suggestion

```
static inline int makeAtomType(int atomic_num, bool aromatic) {
  return (atomic_num<<1) + (aromatic?1:0);
}
static inline void parseAtomType(int val, int &atomic_num, bool &aromatic) {
  atomic_num = val >> 1;
  aromatic = val & 1;
}
```


FOR GREG #2: FASTER ATOM METHODS

```
namespace RDKit {
struct FastAtom : public Atom {
 ROMol &fast getOwningMol() const { return *dp mol; }
};
RDKit::ROMol &Atom getOwningMol old(const RDKit::Atom *at) {
  return at->getOwningMol();
RDKit::ROMol &Atom getOwningMol new(const RDKit::Atom *at) {
  return ((const RDKit::FastAtom*)at)->fast getOwningMol();
unsigned int Atom getDegree new(const RDKit::Atom *at) {
  unsigned int idx = at->getIdx();
  const RDKit::MolGraph &graph = at->getOwningMol().getTopology();
  return (unsigned int) graph.m vertices[idx].m out edges.size();
unsigned int Atom getDegree newer(const RDKit::Atom *at) {
  unsigned int idx = at->getIdx();
  const RDKit::FastAtom *fat = (const RDKit::FastAtom *)at;
 const RDKit::MolGraph &graph = fat->fast getOwningMol().getTopology();
  return (unsigned int)graph.m vertices[idx].m out edges.size();
```