

ZDD - DAISY

UbiComp – Teil 2: Technologien Eine Übersicht

Prof. Dr.-Ing. Dorothea Schwung

Quiz zur Wiederholung

www.kahoot.it

Anknüpfung

Vision des Ubiquitous Computing

- Computer durchdringen unseren Alltag.
- Computer werden "unsichtbar" ("Computing without Computers").
- Computer unterstützen uns durch eigene Wahrnehmung, proaktives Handeln und Kooperation untereinander.

Im UbiComp-Zeitalter werden "alle" Dinge "intelligent", d.h.

- Sie nehmen ihren Kontext wahr.
- Sie können eigene Schlussfolgerungen ziehen.
- Sie kooperieren untereinander.
- Sie passen sich an die Bedürfnisse des Benutzers an.
 - Führt das zu mehr Komplexität?
 - Wollen wir mehr Komplexität?
 - Was könnten wir gegen mehr Komplexität unternehmen?

Lernziele Teil 2

- 1. Sie können die wegbereitenden Technologien für das UbiComp benennen.
- 2. Sie wissen, wodurch sich verteilete Systeme kennzeichnen.
- 3. Sie können die RFID Technologie erklären und kennen mögliche Ausführungen und Anwendungen.
- 4. Sie können die RFID Typen klassifizieren.

Entscheidende **Entwicklungen** in den letzten 50 Jahren:

1. Leistungsfähige Mikroprozessoren und Speicher

- CPU: 8 Bit -> 64 Bit
- Steigende Taktraten und Integrationsdichte
- Preisleistungssteigerung um den Faktor 10 ** 13

2. Hochgeschwindigkeitsrechnernetzwerke

- LANs (Local Area Networks, Lokale Netzwerke):
 hunderte von Rechnern innerhalb eines Gebäudes
- WANs (Wide Area Networks, Weitverkehrsnetze): Kommunikation rund um die Erde

=> Übergang vom zentralen System zum verteilten System

Verteilte Systeme - Definition

[Tanenbaum]:

Ein verteiltes System ist eine Menge voneinander unabhängiger Rechner, die dem Benutzer wie ein einzelnes, kohärentes System erscheinen.

Zwei Aspekte:

- 1. Hardware: **autonome** Rechner
- 2. Software: Benutzer sehen ein **einziges** System

Eine generelle Beschreibung:

Ein verteiltes System ist ein System, in dem

- Hard- und Softwarekomponenten,
- die sich auf miteinander vernetzten Computern befinden,
- miteinander kommunizieren und ihre Aktionen koordinieren,
- indem sie Nachrichten austauschen.

Verteilte Systeme - Eigenschaften

- Für Benutzer nicht sichtbar:
 - unterschiedliche Rechner
 - 2. unterschiedliche **Kommunikationsarten**
 - interne Organisation
- Einheitliche, konsistente Kommunikation zwischen Benutzern und Anwendungen
- Software-Schicht (Middleware) verdeckt heterogene Rechner und Netzwerke
- 4. Skalierbarkeit: Rechner hinzufügen oder ersetzen

Beispiele: WWW oder Informationssystem in einem Unternehmen

Verschiedene Blickwinkel auf verteilter Systeme

Anforderungen an/Ziele von verteilte Systeme

- gemeinsame Ressourcennutzung, Performance (Parallelität, Kommunikation)
- Verteilungstransparenz
- Zuverlässigkeit (Fehlertoleranz, Sicherheit)
- Offenheit
- Skalierbarkeit

Verteilte Systeme – Zugriff auf Ressourcen

- Ziele für Benutzer:
 - 1. Einfacher Zugriff auf entfernte Ressourcen (BM)
 - **2. Gemeinsame Ressourcennutzung** mit anderen Benutzern, z.B. Drucker, Daten, Superrechner, ...
 - 3. Vereinfachte **Zusammenarbeit** und **Informationsaustausch**
- Ergebnis: virtuelle Organisationen mit
 - weitläufig verteilten Mitarbeitern
 - Zusammenarbeit über Groupware-Anwendungen
- Problem: Hohe Anforderungen an die Sicherheit
 - Überwachung der Benutzer anhand Kommunikation
 - Ziel: Schutz der Privatsphäre

Verteilte Systeme – Verteilungstransparenz I

Transparenz: Heterogenität und Verteilung verbergen:

- Zugriffstransparenz: einheitlicher Zugriff auf Systeme trotz
 - unterschiedlicher Namenskonventionen
 - Unterschiede in der Datendarstellung, z.B. Little Endian und Big Endian
- Ortstransparenz:
 - physikalischer Aufenthaltsort der Ressourcen
 - Realisierung von logischen Namen wie URLs
- Migrationstransparenz:
 - Ressource werden verschoben
 - Zugriff bleibt erhalten
- Replikationstransparenz:
 - mehrere Kopien einer Ressource
 - konsistente Daten

Verteilte Systeme – Verteilungstransparenz II

Nebenläufigkeitstransparent:

- gleichzeitige Ressourcennutzung durch konkurrierende Benutzer
- geeignete Synchronisation ist notwendig

– Fehlertransparenz:

- Ausfall und Wiederherstellung von Ressourcen
- Problem: Unterscheidung zwischen ausgefallenen und überlasteten Systemen

Persistenztransparenz:

- Ressource sind im Hauptspeicher oder auf der Festplatte
- Aufgabe: Aktivierung/Deaktivierung von Ressourcen

– Aber:

- Transparenz ist nicht 100% erreichbar
- WAN-Kommunikation dauert länger als LAN-Kommunikation

Performance

- einer der Hauptanwendungsgebiete verteilter Systeme: Parallelisierbarkeit
- Parallelisierbarkeit bei z.B. :
 - Simulation
 - Dateizugriff
 - > Login
 - > E-mail Diensten verschiedener Benutzer
- Erzielbare Wirkung hängt ab von:
 - dem Grad der Parallelisierbarkeit des Problems
 - Kommunikationsvolumen zwischen Komponenten
 - > Fehlertoleranzstrategien
 - Sicherheitsstrategien (evtl. aufwendige Verschlüsselungsmechanismen)
- Methoden zur Erzielung von Parallelität:
 - > Algorithmenentwurf
 - Komponentenentwurf: Trennung von Diensten, Mehrfachinstallation
 - Aufgabenverteilung und Koordination
 - Lastverteilungsschemata, Migration

Zuverlässigkeit

- Verfügbarkeit
 - > ein weiteres wichtiges Pro für verteilte Systeme
 - bei einem Ausfall arbeitet das Restsystem (mit verminderter Leistung) theoretisch weiter
 - Redundanz
- Sicherheit

Ziele:

- Schutz gegen unbefugten Zugriff auf Daten oder deren Manipulation
- Nicht Abstreitbarkeit eingegangener Verpflichtungen
- Schutz gegen unbefugte Ressourcenreservierung
- Verletzung der Schutzmechanismen erheblich schwieriger als bei monolithischen Systemen durch:
 - offene, unkontrollierbare Umgebung
 - unterschiedliche Betriebssysteme

Skalierbarkeit

- Eigenschaft eines (verteilten) Systems, seine Größe ohne Veränderung von System- und Anwendersoftware modifizieren zu können
- Anzahl der Benutzer, Workstations, Servermaschinen, Subjekte, Objekte, Clients, Servers sind variabel
- Problembereiche sind zentrale Tabellen, Komponenten, Algorithmen

Offenheit

- Eigenschaft eines (verteilten) Systems, seine Funktionalität oder Größe erweitern zu können und verschiedene Komponenten auf verschiedenen Verarbeitungsknoten verarbeiten zu können (→ Portabilität).
 - Hardware: neue Komponenten und Systeme
 - Software: neue Dienste, Protokolle
- Methoden zur Erzielung von Offenheit:
 - Offenlegung von Schnittstellen (Standardschnittstellen)
 - Standardisierte IPC

Klassen verteilter Systeme

- 1. Verteilte Computersysteme für Hochleistungs-berechnungen
 - 1. Cluster-Computersysteme
 - 2. Grid-Computersysteme
- 2. Verteilte Informationssysteme
 - Systeme zur Transaktionsverarbeitung
 - 2. Integration von Unternehmensanwendungen
- 3. Verteilte Pervasive Systeme
 - 1. Haus- und Multimedia- Systeme
 - 2. Informationssysteme im Gesundheitswesen
 - 3. Sensornetze

Verteilte pervasive Systeme

- Bisher (1. und 2.) stabile Systeme
 - Fixe Knoten und permanente, hochwertige Verbindungen
 - Verteilungstransparenz relativ einfach, wenige Fehler
- Pervasive Systeme
 - Mobile und eingebettete Systeme
 - Häufig kleine, batteriebetriebene Geräte mit Funkverbindung
 - Grundsätzliches Fehlen von administrativer Steuerung

Anforderungen für pervasive Systeme

- 1. Erfassen kontextueller Veränderungen
 - Gerät achtet kontinuierlich auf Veränderungen seiner Umgebung
 - Beispiel: Netzwerk ist nicht mehr verfügbar
- 2. Unterstützung der Ad-hoc-Zusammensetzung
 - Geräte werden von unterschiedlichen Benutzern unterschiedlich genutzt
 - Konfiguration automatisch oder einfach durch Benutzer
- 3. Gemeinsame Nutzung als Standard
 - Geräte treten einem System bei, um auf Informationen zuzugreifen oder Informationen bereitzustellen
 - Durch wechselnde Verbindungen stehen wechselnde Informationen bereit

Schlussfolgerung:

Anwendungsabhängige Anpassung an lokale Umgebung

Haus- und Multimedia-Systeme

- Zunehmend Hausnetzwerke mit PCs und Unterhaltungselektronik (TV, Audio, Video, PDA, ...)
- Zukünftig: Küchengeräte, Überwachungskameras, Beleuchtungs-steuerung, ... in einem verteilten System
- Herausforderungen:
 - Vollständig selbstkonfigurierend und selbstverwaltend
 - Momentan: UPnP (Universal Plug and Play)
 - Automatisch IP-Adresse zuweisen
 - Gegenseitige Erkennung
 - Weitere Anforderung: automatische Updates
- Weiteres Thema: persönlicher Raum
 - Persönliche Dinge speichern mit permanentem Zugriff
 - Andere nur über autorisierte Zugriffe
 - Problem: Riesige Mengen von Daten
 - Kleine Speicher mit großer Kapazität mildern das Problem

Informationssysteme im Gesundheitswesen

- Neue Geräte überwachen Wohlergehen von Einzelpersonen
- Bei Bedarf wird Arzt automatisch kontaktiert
- System besteht aus Sensoren zur Gesundheitsvorsorge
- Bevorzugt kabellos für minimale Behinderung
- BAN (Body Area Network) + Rechner + Externe Verbindung
- Fragen:
 - Wo und wie sollen Überwachungsdaten gespeichert werden?
 - 2. Wie kann der Verlust kritischer Daten verhindert werden?
 - 3. Welche Infrastruktur wird benötigt, um Alarme auszulösen?
 - 4. Wie können Ärzte Online-Feedback leisten?
 - 5. Wie kann eine äußerste Robustheit des Systems gewährleistet werden?
 - 6. Welche Sicherheitsaspekte gibt es und wie lassen sich geeignete Verfahren durchsetzen?

Überwachung einer Person mittels pervasivem System

Sensornetze

- Sensornetze bilden die Grundlage f
 ür pervasive Systeme
- Ein Sensornetz besteht aus 10 bis etwa 1000 kleinen Knoten mit Messgeräten
- Meist batteriebetrieben und drahtlos
- Begrenzte Ressourcen, eingeschränkte Kommunikationsmöglichkeiten und geringer Leistungsbedarf
- Mess- und Überwachungsanwendungen
- Alternative Ansätze:
 - 1. Sensoren geben nur Messwerte an die Anwendung
 - 2. Sensoren bereiten die Daten auf
 - 3. Mischform: Datenaggregation an Zwischenknoten mit mehr Ressourcen

Alternative Sensornetze

Verteilte Systeme - Zusammenfassung

Verteilte Systeme

- bestehen aus autonomen Rechnern
- Sicht auf ein einziges, kohärentes System
- Vorteile:
 - einfacherer Erstellung von Anwendungen
 - gute Skalierbarkeit
- Nachteile:
 - komplexere Software
 - Leistungseinbußen durch Verteilungstransparenz

Klassen verteilter Systeme

- Verteilte Computersysteme
- Verteilte Informationssysteme
- Verteilte Pervasive Systeme

RFID

- Anwendungsgebiete von RFID (Radio Frequency Identification)
 - Identifizierung
 - > Zutrittskontrolle
 - Produktetikette
 - Diebstahlsicherung
 - Positionsortung
 - > etc.

RFID – Was genau ist das?

Was ist RFID?

- Technologie zur berührungslosen Übertragung binär kodierter Daten
- Kein Sichtkontakt erforderlich
- Als Identifikationsmerkmal werden Transponder eingesetzt (von Transmitter und Responder)
- Transponder enthalten
 - Identifikationsnummer
 - Optional auch Daten
- Einsatzzweck: Kennzeichnung von
 - Gegenständen
 - Tieren
 - Personen

RFID - Arbeitsweise

Prinzipielle Arbeitsweise

- Beteiligte Komponenten:
 - Transponder (kurz: Tag)
 - > RFID-Lesegerät
 - ➤ Koppelelement (z.B. Spule, Kondensator, Antenne)
- Lesegerät und Tag enthalten integrierte Schaltungen
 - A/D-Wandler
 - D/A-Wandler
 - > Steuerlogik
 - Speicher (ROM/RAM)
- Tag kann über eine eigene Energieversorgung verfügen

RFID - Klassifikation

Klassifikation

- RFID-Systeme werden häufig unterteilt nach
 - > Energieversorgung
 - > Frequenzbereich
 - Übertragungsverfahren
 - > Ausführungsform
 - > Speichertyp & -Größe

RFID - Energieversorgung

Energieversorgung

- Energieversorgung des Transponders (engl. Tag) ist ein wesentliches Unterscheidungsmerkmal
- Art der Energieversorgung hat Einfluss auf: Reichweite, Lebensdauer, Kosten und Baugröße
- Klassifizierung anhand der Energieversorgung nicht immer einheitlich!
- Wichtiges Unterscheidungsmerkmal: "Wie kommuniziert der Tag mit dem Lesegerät?"
 - Manipulation des Antennenfeldes
 - Erzeugung und Aussenden eines eigenen Signals (Kurzstreckenfunkgeräte, Telemetriesender)

RFID - Energieversorgung

Energieversorgung

- Passive Transponder (Häufigste Variante)
 - Energieversorgung des Chips: Aus dem Antennenfeld
 - ➤ Kommunikation: Manipulation des Antennenfelds
 - > Reichweite: bis ca. 15m
- Aktive Transponder (Kurzstreckenfunkgeräte)
 - Energieversorgung des Chips: Aus Batterie
 - Kommunikation: Erzeugung eines eigenen Felds
 - > Reichweite: mehrere hundert Meter
- Semi-Passive Transponder (geringe Verbreitung!)
 - Energieversorgung des Chips: Aus Batterie
 - ➤ Kommunikation: Manipulation des Antennenfelds
 - Reichweite: bis ca. 15m

RFID – Die Frequenzen

Frequenzbereiche

Frequenzbereich	\mathbf{Typ}	Reichweite	${ m kbit/s}$
125-135 kHz (LF)	passiv	einige Zentimeter	4
13,56 MHz (HF)	passiv	bis zu einem Me- ter	26
433 und 868 MHz (UHF)	aktiv/passiv	mehrere Meter	40
2,45 GHz (Mikrowelle)	aktiv	bis zu mehreren hundert Metern	320

RFID - Übertragungsprinzipien

Übertragungsprinzipien

- Verfahren der Kopplung von Tag und Leser
 - Kapazitive Kopplung
 - Induktive Kopplung
 - Elektromagnetische Kopplung
- Zugrundeliegendes physikalische Prinzip hat Auswirkung auf
 - Bauweise des Koppelelements
 - > Störquellen
 - Reichweite (wenige mm bis ca. 15m)
- Klassifizierung
 - Close-Coupling-Systeme (bis ca. 1 cm)
 - Remote-Coupling-Systeme (bis ca. 1 m)
 - Long-Range-Systeme (>> 1 m)

RFID - kapazitiv

Kapazitive Kopplung

- Plattenkondensatoren oder Elektroden als Koppelelement
- Lesegerät erzeugt elektrisches Feld
- Varianten:
 - Close-Coupling
 - Remote-Coupling
 - Tag dämpft durch Ein- und Ausschalten eines Widerstandes Schwingkreis im Lesegerät (Lastmodulation)
- Merkmale:
 - Stark wechselnde Lesereichweiten
 - Geringe Verbreitung

RFID - induktiv

Induktive Kopplung

- Spulen als Koppelelement
- Lesegerät erzeugt magnetisches Wechselfeld
- Varianten:
 - Close Coupling
 - Remote Coupling
 - Basiert häufig auf Lastmodulation

- Merkmale:
 - Hohe Verbreitung
 - Transponder entzieht dem Feld des Lesegeräts Energie
 - ➤ Reichweite kann stark von der Lage des Transponders abhängen

RFID - elektromagnetisch

Elektromagnetische Kopplung

- Dipol-Antennen als Koppelelement
- Lesegerät erzeugt elektromagnetisches Wechselfeld
- Varianten:
 - Long Range (passiv) bis ca. 15 m
 - Long Range (aktiv) mehrere 100m

- Merkmale:
 - ➤ Backscatter-Verfahren, d.h. Tag reflektiert/absorbiert elektromagnetische Wellen gezielt
 - Reichweite kann stark von der Lage des Transponders abhängen

RFID – Ein Transponder

Ausführung von Transpondern

- Disks und Münzen:
 - ABS-Spritzguss- oder PS-Gehäuse (bis 10 cm)
 - Bis 200°C & 1400 bar

- Plastikgehäuse
 - Häufig bei semi-passiven Tags

- Glasröhrchen:
 - Wenige mm bis 36 mm lang
 - Wenige mm dick

Einsatz:

Sicherheitssysteme

- Schlüssel
- Zugangskarten

- Smart-I abels:
 - Abmessung ca. 4x8cm
 - Dicke <1 mm
 - Mit Barcode bedruckbar

Einsatz:

Auf metallischen Objekten

In Plastikgehäusen

RFID - Beispiel

Smart Labels

- Zwei Zustände:
 - > Transponder im Lesebereich
 - Transponder nicht im Lesebereich
- Meistverbreiteter Transpondertyp
- Einsatz zur elektronischen Warensicherung
- Technische Ausführungen:
 - Radiofrequenz-Verfahren
 - Mikrowellenverfahren
 - Akustomagnetisches Verfahren
 - Etc.

RFID - Beispiel

Akustomagnetische 1-Bit Transponder

- Aufbau:
 - Tag: Magnetostriktives, amorphes Metallplättchen P
 - Generatorspule S1
 - Sensorspule S2
- Funktionsweise:
 - S1 erzeugt magnetisches Wechselfeld
 - P fängt an zu schwingen
 - > S1 wird zyklisch abgeschaltet
 - P schwingt weiter und erzeugt magn. Wechselfeld
 - S2 detektiert Wechselfeld

Tag speichert Referenz-ID

Data-on-Network

- Zentrale Datenhaltung
- Eindeutige Produktidentifikation
- Einmal beschreiben, mehrfach lesen
- Einfache und günstige Transponder
- Informationsaustausch an Übergabepunkten
- Hoher Kommunikationsaufwand
- Tags als Barcode-Ersatz

Tag speichert Referenz

Data-on-Tag

- Dezentrale Datenhaltung
- Informationsmengen > 1 kByte
- Redundanz
- Mehrfach beschreiben, mehrfach lesen
- Synchronisation an jeder beliebigen Stelle und zu jeder Zeit

→ Einsatz in der Steuerung oder zur Erhöhung der Datenverfügbarkeit

RFID Varianten: LF RFID

- Low Frequency (LF) RFID-Systeme arbeiten im niedrigen Frequenzbereich von 125 135 kHz
- Merkmale:
 - Nutzen passive Transponder
 - Geringe Speicherkapazität (wenige 100 Bit)
 - Arbeiten i.d.R. mit induktiver Kopplung
 - Unempfindlich gegen Feuchtigkeit und Nässe
 - Probleme mit Metallen
 - Proprietäre Unterschiede
- Einsatzbeispiele:
 - Nutz- und Haustierkennzeichnung (z.B. TASSO)
 - Wegfahrsperre
 - > Etc.

RFID Varianten: HF RFID

- High Frequency (HF) RFID-Systeme arbeiten im hohen Frequenzbereich von 13,56 MHz
- Merkmale:
 - Nutzen hauptsächlich passive Transponder
 - Unterschiedliche Speicherkapazität (bis mehrere kByte)
 - Arbeiten i.d.R. mit induktiver Kopplung
 - Unempfindlich gegen Feuchtigkeit und Nässe
 - Probleme mit Metallen
 - Standards verfügbar (ISO 15693, ISO 14443)
 - Pulkfähigkeit (Multitag)
- Einsatzbeispiele:
 - Logistik
 - Zugangskontrolle zu Gebäuden

RFID Varianten: UHF RFID

- Ultra High Frequency (UHF) RFID-Systeme arbeiten im sehr hohen Frequenzbereich (z.B. 868 MHz)
- Merkmale:
 - Nutzen passive und aktive Transponder
 - Geringe Speicherkapazität (bis 512 Bit)
 - Arbeiten mit elektromagnetischer Kopplung
 - Dielektrische Verluste bei Wasser
 - Reflexionen an Metallen
 - Standards verfügbar (ISO 18000*, EPC gen2)
 - Pulkfähigkeit (Multitag)
- Einsatzbeispiele:
 - Logistik
 - Produktion

RFID Varianten: Mikrowellen RFID

- Mikrowellen RFID-Systeme arbeiten im sehr hohen Frequenzbereich (z.B. 2,45 bzw. 5,8 GHz)
- Merkmale:
 - Nutzen ausschließlich aktive Transponder
 - Arbeiten mit elektromagnetischer Kopplung
 - Reichweite mehrere hundert Meter

- Einsatzbeispiel:
 - Ortung auch über größere Distanzen (>100m) (Container, Fahrzeuge, Personen)

Anwendungen

- Positionserfassung von Einschienenhängebahn
- Lesegeräte an der Einschienenhängebahn
- 13,56 MHz Transponder an der Schiene
- Seitliche Anbringung der Transponder ermöglicht Richtungserkennung
- Erprobt bis 3 m/s, im Einsatz bei max. 2,7 m/s

Anwendungen

- Intelligente Behälter durch programmierbare Datenträger
- Steuerungsinformationen am Gut
- Dynamisches Routing-on-Tag
- Wegfindung ohne zentrale Steuerungsinstanz

RFID – weitere Anwendungsbereiche

Weitere Anwendungen

- RFID im Gesundheitswesen:
 - Kennzeichnung von Blutkonserven
 - Überwachung kardiologischer Werte
- RFID beim Marathon
 - Passive Tags, Daten über WLAN an zentralen Computer
 - Automatische zentrale Erfassung, Streckenkontrolle per SMS
- RFID und Bücher
 - Realisierung von Komfortfunktionen in Bibliotheken und Museen
 - Einsatz in Zentralbibliothek Wien

Ausblick

WSN, IoT, Netzwerktopologien & Digitalisierung von Informationen

Dezimal	Binär	Hexadez.
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7

ZDD - DAISY

UbiComp – Teil 2: Technologien Eine Übersicht

Fragen?

Prof. Dr.-Ing. Dorothea Schwung