Recall K-Means Algorithm

metric that assesses the performance of K-means (smaller values better)

/ actual data point n

- 1. Choose k random points as cluster centers
- 2. For each data point, assign it the cluster whose centroid is the closest
- 3. Using these assignments, recalculate the centers
- 4. Reiterate from step (2) until convergence:
- cluster membership does not change
- center only changes very very little

$$\frac{dJ}{d\mu_{k}} = 2$$

hard assignmen

$$r_{nk}(x_n \quad \mu_k) - \sigma = \sum_n r_{nk}$$

 $r_{nk}x_n$

minimizes

optimal value for μ_k minimizing our loss is the mean of all data points in that cluster

GMM: EM Algorithm

- 1. Choose **k** random points to be cluster centers (or estimate using k-means...)
- 2. For each data point, calculate the probability of belonging to each cluster
- 3. Using these probability weights, recalculate the means + variances (and weights)
- 4. Repeat 2 and 3 until distributions converge