Лабораторная работа № 2.01

Изучение законов идеального газа на примере воздуха. Определение температуры абсолютного нуля

Содержание

Введение	2
Экспериментальная установка	7
Проведение измерений	10
Обработка результатов	12
Контрольные вопросы	15
Список литературы	16
Приложение	17

Цели работы

- 1. Экспериментальная проверка уравнения состояния идеального газа.
- 2. Определение температуры абсолютного нуля по шкале Цельсия.

Задачи

- 1. Получить зависимости давления $p(V_{\rm ц})$ при различных температурах t.
- 2. Построить графики зависимости $V_{\rm II}(1/p)$ при различных температурах и p(T) при разных значениях $V_{\rm II}$.

Введение

В том случае, когда состояние газа далеко от области фазовых превращений, его с достаточной степенью точности можно считать идеальным. В качестве идеального газа в работе используется обычный атмосферный воздух. Для произвольной массы m идеального газа справедливо следующее уравнение состояния

$$pV = \frac{m}{\mu}RT\tag{1}$$

где p — давление, V — объем, μ — молярная масса, T — абсолютная температура газа, R — универсальная газовая постоянная. Это уравнение называется уравнением Менделеева-Клапейрона. Нулю абсолютной температуры по шкале Цельсия соответствует значение $t_* = -273,15$ °C. Градусы шкалы абсолютной температуры (шкалы Кельвина) и шкалы Цельсия выбраны одинаковыми. Поэтому значение абсолютной температуры связано со значением температуры по шкале Цельсия формулой

$$T(K) = t(^{\circ}C) - t_* = t(^{\circ}C) + 273,15(^{\circ}C)$$
 (2)

Рис. 1. Схема лабораторной установки

Пусть исследуемый газ находиться в цилиндре с контролируемым рабочим объемом $V_{\rm II}$ (см. Рис. 1), масса газа в цилиндре $m_{\rm II}$. Температура t цилиндра с газом поддерживается постоянной. Датчик давления, работающий при комнатной температуре, вынесен за пределы рабочего объема и соединен с последним трубкой. Объем газа V_x в этой трубке мал по сравнению с рабочим объемом $V_{\rm II}$. В соединительной трубке также находится газ массой m_x при

некоторой неизвестной средней температуре t_x , лежащей в интервале от комнатной температуры до температуры t рабочего объема. В работе измеряется зависимость давления газа p от величины рабочего объема $V_{\rm ц}$ при разных значениях температуры t (от 20°C до 60°C). Выведем соотношение, связывающее рабочий объем и давление газа при постоянной температуре. Общее количество вещества в рабочем объеме и соединительной трубке:

$$\nu = \frac{m_{\rm II} + m_{\rm X}}{\mu},\tag{3}$$

в течение всей работы остается постоянным. Выражая массы газа $m_{\text{ц}}$ и m_x из уравнения состояния (1), абсолюнтую температуру из соотношения (2), и подставляя найденные выражения в формулу

(3), получим:

$$\nu = \frac{pV_{II}}{R(t - t_*)} + \frac{pV_x}{R(t_x - t_*)}.$$
 (4)

Из этого уравнения найдем искомое соотношение:

$$V_{\rm II} = \frac{\nu R(t - t_*)}{p} - \frac{V_x(t - t_*)}{(t_x - t_*)}.$$
 (5)

Из-за перераспределения газа между объемами $V_{\rm L}$ и V_x в процессе измерения температура t_x может изменяться. Однако, при относительно малой величине V_x изменением второго слагаемого в формуле (5) можно пренебречь. Поэтому при неизменной температуре t зависимость рабочего объема $V_{\rm L}$ от обратного давления 1/p является линейной. Угловой коэффициент этой зависимости

$$K = \nu R(t - t_*),\tag{6}$$

в свою очередь, линейно меняется с температурой и обращается в нуль при абсолютном нуле температур. Таким образом, изучение зависимости K(t) позволяет найти значение t_* .

Рассмотрим другой, более точный, способ определения величины t_* . Если для разных температур измерение давления проводить при одних и тех же значениях объема, то полученные данные легко преобразуются в зависимость давления от температуры при разных значениях рабочего объема газа. Теоретический вид этой зависимости получается из уравнения (5):

$$p = \frac{\nu R(t - t_*)}{V_{\text{II}}(1 + x(t))} \approx \frac{\nu R(t - t_*)}{V_{\text{II}}} (1 - x(t)), \tag{7}$$

где $x(t) = \frac{V_x(t-t_*)}{V_{\Pi}(t_x-t_*)}$. Справедливость приближенного равенства

в формуле (7) обусловлена тем, что значения функции x(t) малы, и для малых x можно воспользоваться формулой приближенных вычислений:

$$(1+x)^{\alpha} \approx 1 + \alpha x. \tag{8}$$

в данном случае $\alpha = -1$.

При неизменном рабочем объеме $V_{\rm ц}$ график зависимости давления от температуры в соответствии с формулой (7) должен быть почти линейным. Причем давление должно обращаться в нуль как раз при $t=t_*$. Из-за малости функции x(t) отклонение от линейности невелико, и при измерении в ограниченном диапазоне температур практически незаметно.

Рис. 2. Жирная линия — экстраполяция реальной параболической зависимости, обычная линия — экстраполяция с помощью аппроксимирующей прямой, проведенной по точкам в рабочем диапазоне температур.

Но, если искать значение t_* с помощью линейной апрроксимации экспериментальной зависимости p(t), продолжая (экстраполируя) аппроксимирующую прямую до пересечения с осью t, то найденное приближение значение \widetilde{t}_* окажется систематически смещенным влево относительно истинного значения t_* (см. Рис. 2). Причина этого в следующем. Величина x(t) в первом приближении линейно растущая функция температуры, с учетом этого график

функции p(t) из уравнения (7) оказывается параболой выпуклой вверх. Аппроксимирующая прямая, параметры которой найдены по точкам в рабочем диапазоне температур, идет практически по ка-

сательной к этому графику, «промахиваясь» мимо истинного значения t_* , как изображено на Рис. 1. Однако, можно показать, что разность $\widetilde{t_*}-t_*$ при малом отношении $V_x/V_{\rm ц}$ должна убывать обратно пропорционально объему $V_{\rm ц}$. Поэтому, правильное значение температуры абсолютного нуля может быть найдено как предел:

$$t_* = \lim_{1/V_{\rm II} \to 0} \widetilde{t_*} \tag{9}$$

линейным продолжением графика зависимости $\widetilde{t_*}$ от $1/V_{\rm II}$ к значению $1/V_{\rm II}=0.$

Экспериментальная установка

Общий вид лабораторной установки показан на Рис. 3. Исследуемый газ находится под поршнем в цилиндре 1, закрепленном на опорной площадке 2. Шток поршня имеет винтовую нарезку и вставлен в гайку, также закрепленную на опорной площадке. Гайка удерживает шток в заданном положении и с ее помощью осуществляется преобразование вращения штока в поступательное перемещение поршня (один оборот маховика штока соответствует изменению объема на 5 мл). Рабочий объем цилиндра определяется по шкале на цилиндре. Если шкала не видна, то изменение объема от некоторого заданного значения можно определить, отсчитывая обороты маховика штока. Роль термостата 3 выполняет металлический термос, заполняемый водой разной температуры, в которую погружается цилиндр 1. Измерение температуры производится с помощью датчика температуры закрепленного на конце щупа 4, погружаемого вместе с цилиндром в термостат. Давление измеряется манометрическим дифференциальным датчиком 5, который закреплен на стенде 6, и соединяется трубкой с рабочим объемом. С помощью преобразователя сигналов 7 датчики соединяются с цифровым измерительным прибором 8. Прибор показывает текущую температуру t (в градусах Цельсия) датчика температуры и разность $\Delta P = p - p_0$ (в килопаскалях) между давлением p газа в рабочем объеме и давлением p_0 окружающего воздуха в лаборатории.

Рис. 3. Состав лабораторной установки

- 1. цилиндр с поршнем
- 2. опорная площадка цилиндра
- 3. термостат
- 4. щуп с датчиком температуры
- 5. манометрический датчик
- 6. стенд
- 7. преобразователь сигналов
- 8. измерительный прибор ПКЦ-3
- 9. кружка
- 10. поддон
- 11. лопатка

Исходно в термостате находится вода комнатной температуры. Отливая холодную и добавляя горячую воду, можно изменять рабочую температуру термостата. Для переливания воды использует-

ся пластиковая кружка 9. Для уменьшения вероятности попадания воды на рабочий стол воду переливают над поддоном 10, на который также ставится термостат во время проведения измерений. Для перемешивания воды в термостате используется лопатка 11. В помещении с установками имеются емкости для использованной воды и электрический калорифер с горячей водой.

Техника безопасности

Перед началом выполнения лабораторной работы следует проверить комплектность и исправность лабораторного оборудования, приспособлений и инструментов, необходимых для ее выполнения. При обнаружении расхождений в комплектации экспериментальной установки по отношению к информации в данном методическом руководстве следует сообщить о этом инженеру лабораторного зала или преподавателю, ведущему занятие.

С объектами измерения следует обращаться аккуратно, не допускать их механических повреждений или загрязнения. Категорически запрещается оставлять на поверхности объектов какие-либо следы пишущих инструментов: ручек, фломастеров и т.п.

После завершения процесса всех измерений в лабораторной работе следует сдать экспериментальную установку в исходном состоянии инженеру лабораторного зала, получив его подпись на бланке протокола.

Проведение измерений

- 1. С помощью лабораторного барометра определить текущее атмосферное давление p_0 и записать его значение в протокол работы.
- 2. Включить цифровой измерительный прибор в режиме измерения температуры и давления (включение производит дежурный инженер). Установить рабочий объем цилиндра 100 мл (обратите внимание на положение визирной стрелки на маховике штока поршня). Залить в термостат четыре с половиной кружки воды комнатной температуры. Аккуратно поместить в термостат цилиндр 1 с датчиком температуры так, чтобы опорная площадка цилиндра легла на горлышко термостата.
- 3. Подождать пока показания давления перестанут изменяться (приблизительно 1–2 минуты). При этом рабочий объем газа придет в тепловое равновесие с термостатом. Записать значение t_1 температуры термостата (около $20^{\circ}\mathrm{C}$) в Таблицу 1. Последовательно изменяя рабочий объем газа с шагом 10 мл сначала в сторону уменьшения до 50 мл, затем в сторону увеличения до 120 мл и обратно до 100 мл, дважды измерить разность давлений Δp для каждого значения V_{q} в Таблице 1. Результаты заносятся в ячейки третьего и четвертого столбцов таблицы по часовой стрелке.

- 4. Аккуратно вынуть рабочий цилиндр с датчиком температуры из термостата, положить на поддон. Отлить из термостата приблизительно три четверти кружки воды. Вылить воду из кружки в емкость для использованной воды. Налить из нагревателя три четверти кружки горячей воды в термостат. Перемешать воду в термосе. Поместить в термостат цилиндр с датчиком температуры. В термостате должна установиться новая температура t_2 (около 30°C). Повторить измерения п.3. Занести результаты в Таблицу 1.2, аналогичную Таблице 1.
- 5. Последовательно изменяя температуру термостата до значений $t_3 \approx 40^{\circ}\text{C}$, $t_4 \approx 50^{\circ}\text{C}$, $t_5 \approx 60^{\circ}\text{C}$, как описано в п.4, записать получившиеся значения температур и произвести измерения п.3. Занести результаты в Таблицы 1.3, 1.4, 1.5, аналогичные Таблице 1.
- 6. После выполнения всех измерений выключить цифровой измерительный прибор, вынуть цилиндр с датчиком температуры и положить на поддон. Вылить воду из термостата в емкость для использованной воды.

Обработка результатов

1. Если показания лабораторного барометра были даны в миллиметрах ртутного столба, перевести их в паскали:

$$p_0(\Pi a) = p_0(\text{MM.pt.ct.}) \cdot 10^{-3} \frac{M}{MM} \cdot \rho \cdot g.$$
 (10)

Здесь $\rho=13.55\cdot 10^3$ кг/м³ — плотность ртути, g=9.819 м/с² — ускорение свободного падения на широте Санкт-Петербурга.

2. Для каждой из Таблиц 1.1 – 1.5 вычислить давление газа p по формуле

$$p = p_0 + \frac{\Delta p_1 + \Delta p_2}{2},\tag{11}$$

обратное давление 1/p и заполнить пятую и шестую колонки таблиц.

- 3. По данным Таблиц 1.1-1.5 для температур $t_1, t_2, ... t_5$ построить на одной координатной сетке графики зависимости рабочего объема $V_{\rm ц}$ от обратного давления 1/p. Убедиться, что зависимость $V_{\rm ц}$ от 1/p во всех пяти случаях является прямолинейной.
- 4. Перенести значения рабочих температур $t_1, t_2, ... t_5$ во второй столбец Таблицы 2. Для каждого из графиков $V_{\rm ц}$ от 1/p рассчитать угловой коэффициент K по формулам, приведенным в дополнении к работе. Обратите внимание в каких единицах получается K, если расчеты проводятся для объема в миллилитрах и давления в килопаскалях. Значения K также занести в таблицу.
- 5. По Таблице 2 построить график зависимости K(t). Как следует из формулы (6) этот график должен «идти» прямолинейно и пересекать ось t при температуре абсолютного нуля. По найденным экспериментальным точкам найти угловой коэффициент A и свободное слагаемое C для зависимости K(t) по формулам (16), (17).

Рассчитать температуру абсолютного нуля:

$$t_* = -\frac{C}{A} \tag{12}$$

По формулам (18), (19) найти погрешности ΔA , ΔC и вычислить погрешность температуры абсолютного нуля:

$$\Delta t_* = t_* \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta C}{C}\right)^2} \tag{13}$$

- 6. По данным Таблиц 1.1-1.5 заполнить Таблицу 3. Пользуясь Таблицей 3 для значений объема цилиндра 50, 90, 120 мл на одной координатной сетке построить графики p(t), убедиться, что они «идут» прямолинейно.
- 7. Для каждого из объемов в Таблице 3 найти значение обратного объема $1/V_{\rm q}$ и рассчитать величину $\widetilde{t_*}$ по формуле

$$\widetilde{t_*} = -\frac{c}{a} \tag{14}$$

где a и c, соответственно, угловой коэффициент и свободное слагаемое для зависимости p(t), вычисляемые по формулам (16), (17). Занести значения в Таблицу 3.

- 8. Пользуясь Таблицей 3, по приведенным ниже формулам (16), (17) найти угловой коэффициент A' и свободное слагаемое C' для зависимости $\widetilde{t}_*(1/V_{\rm I})$. Величина C' фактически есть предел формулы (9), т.е. совпадает со значением t_* . На координатной сетке \widetilde{t}_* от $1/V_{\rm II}$ отметить экспериментальные точки и начертить прямую, соответствующую найденным параметрам A' и C'. Продолжить прямую до пересечения с осью ординат.
- 9. Рассчитать погрешность Δt_* как $\Delta C'$ по формулам (18)–(19).

Дополнение. Вычисление наиболее вероятных параметров прямой линии (по методу наименьших квадратов)

Пусть $X_1, X_2...X_N$ - абциссы, $Y_1, Y_2...Y_N$ - ординаты графика некоторой экспериментально измеренной зависимости Y(X). Если предполагается, что эта зависимость линейна, т.е. Y(X) = AX + C, то наиболее вероятные значения углового коэффициента A и свободного слагаемого C можно найти из требования минимальности суммы квадратов отклонений ординат экспериментальных точек от искомой прямой (см. метод наименьших квадратов в пособии «Обработка экспериментальных данных» из списка литературы):

$$\sum_{i=1}^{N} (Y_i - (AX_i + C))^2 = min.$$
 (15)

Исходя из условия (15) можно получить следующие выражения

$$A = \frac{1}{D} \sum_{i=1}^{N} (X_i - \overline{X}) Y_i, \quad C = \overline{Y} - A \overline{X},$$
 (16)

где

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i, \quad \overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i, \quad \overline{D} = \sum_{i=1}^{N} (X_i - \overline{X})^2$$
 (17)

Погрешности коэффициента и слагаемого вычисляются по формулам

$$\Delta A = \sqrt{E/D}, \quad \Delta C = \sqrt{\left(\frac{1}{N} + \frac{\overline{X}^2}{D}\right) \cdot E}$$
 (18)

где

$$E = \frac{1}{N-2} \sum_{i=1}^{N} (Y_i - AX_i - C)^2.$$
 (19)

Вычисления удобно проводить с помощью какого-нибудь математического пакета или электронных таблиц, например Microsoft Excel.

Контрольные вопросы

- 1. Идеальный газ. Уравнение состояния.
- 2. Макроскопическое состояние. Термодинамический процесс.
- 3. Атомная масса химического элемента, молекулярная масса вещества. Атомная единица массы. Число Авогадро. Молярная масса вещества.
- 4. Как определяется молярная масса смеси газов, например, воздуха?
- 5. Изохорный процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V, p-T, V-T).
- 6. Изотермический процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V, p-T, V-T).
- 7. Изобарный процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V,p-T,V-T).
- 8. Дайте определение температуры: идеальногазовой; газокинетической; термодинамической.
- 9. Дайте определение температуры с точки зрения статистической физики.
- 10. Как ведет себя макроскопическая система при приближении к абсолютному нулю температуры?

Список литературы

- 1. Савельев И.В. Курс физики (в трех томах), т. 1,-М. Наука, 1990.
- 2. Детлаф А.А., Яворский Б.М. Курс физики, М. Высшая школа, 2000.
- 3. Трофимова Т.И. Курс физики: Учеб. пособие для вузов. –М.: Академия, 2005. 542 с.
- Курепин В.В., Баранов И.В. Обработка экспериментальных данных: Метод. указания к лабораторным работам для студентов всех спец./ Под ред. В.А. Самолетова. – СПб.: СПбГУНиПТ, 2003. – 57 с.

Приложение

Таблица 1: Зависимость давления от объема при температуре $t_1 = \dots$.

№, п.п.	$V_{\rm ц}$, мл	Δp_1 , к Πa	Δp_2 , к Π а	р, кПа	$1/p$, к Π а
1	50				
2	60				
3	70				
4	80				
5	90				
6	100				
7	110				
8	120				

Приборные погрешности: $\Delta V=1$ мл, $\Delta p=0.1$ кПа.

Таблица 2: Зависимость углового коэффициента графика $V_{\rm II}(1/p)$ от температуры газа.

№, п.п.	$t, ^{\circ}\mathrm{C}$	К, Дж
1		
2		
3		
4		
5		

Таблица 3: Зависимость давления газа от температуры при разных значениях объема

$V_{\mathtt{ц}}$, мл	50	60	70	80	90	100	110	120
t, °C	p , к Π а							
$1/V_{\rm II}$, мл ⁻¹								
$1/V_{\text{II}}$, MJI^{-1} \widetilde{t}_* , $^{\circ}\text{C}$								