The Approximation Ratio of the 2-Opt Heuristic for the Metric Traveling Salesman Problem

Stefan Hougardy Fabian Zaiser Xianghui Zhong

December 21, 2019

Figure: A TSP tour (left) and the tour obtained after replacing the edges (a,b) and (x,y) with the edges (a,x) and (b,y) (right). The orientation of the tour segment between the vertices b and x has been reversed in the new tour.

$$c(a, x) + c(b, y) < c(a, b) + c(x, y)$$

Upper Bound	Lower Bound	Reference
	$\sqrt{n/8}$	1987 AMUC
$4\sqrt{n}$		1999 SIAM J. Comput
$2\sqrt{n}$		2013 Networks

This leaves a gap of factor 8 between the upper bound $2\sqrt{2n}$ and the lower bound $\sqrt{n/8}$. The main result of this paper determines the exact approximation ratio of the 2-Opt.

$\mathsf{Theorem}$

The length of a 2-optimal tour in a metric TSP instance with n cities is at most $\sqrt{n/2}$ times the length of a shortest tour and this bound is tight.

Upper Bound	Lower Bound	Reference
	$\sqrt{n/8}$	1987 AMUC
$4\sqrt{n}$		1999 SIAM J. Comput
$2\sqrt{n}$		2013 Networks

This leaves a gap of factor 8 between the upper bound $2\sqrt{2n}$ and the lower bound $\sqrt{n/8}$. The main result of this paper determines the exact approximation ratio of the 2-Opt.

$\mathsf{T}\mathsf{heorem}$

The length of a 2-optimal tour in a metric TSP instance with n cities is at most $\sqrt{n/2}$ times the length of a shortest tour and this bound is tight.

Upper Bound	Lower Bound	Reference
	$\sqrt{n/8}$	1987 AMUC
$4\sqrt{n}$		1999 SIAM J. Comput
$2\sqrt{n}$		2013 Networks

This leaves a gap of factor 8 between the upper bound $2\sqrt{2n}$ and the lower bound $\sqrt{n/8}$. The main result of this paper determines the exact approximation ratio of the 2-Opt.

Theorem

The length of a 2-optimal tour in a metric TSP instance with n cities is at most $\sqrt{n/2}$ times the length of a shortest tour and this bound is tight.

The approximation ratio of the 2-Opt on metric TSP is at most $\sqrt{\frac{n}{2}}$.

$$S_{r_1,r_2}(u,v) = \{(x,y) \in [0,1) \times [0,1) \mid d(x,i_{r_1}(u)) + d(y,i_{r_2}(v)) < c(u,v)\}$$

$$c(u_1, u_2) + c(v_1, v_2) \le d(i_{r_1}(u_1), i_{r_1}(u_2)) + d(i_{r_2}(v_1), i_{r_2}(v_2))$$

$$\le d(i_{r_1}(u_1), x) + d(x, i_{r_1}(u_2)) + d(i_{r_2}(v_1), y) + d(y, i_{r_2}(v_2))$$

$$< c(u_1, v_1) + c(u_2, v_2)$$

$$\frac{\sum_{e \in E(T')} c(e)}{n} \le \sqrt{\frac{\sum_{e \in E(T')} c(e)^2}{n}} \le \frac{1}{\sqrt{2n}}$$

The approximation ratio of the 2-Opt on metric TSP is at most $\sqrt{\frac{n}{2}}$.

$$S_{r_1,r_2}(u,v) = \{(x,y) \in [0,1) \times [0,1) \mid d(x,i_{r_1}(u)) + d(y,i_{r_2}(v)) < c(u,v)\}.$$

$$c(u_1, u_2) + c(v_1, v_2) \le d(i_{r_1}(u_1), i_{r_1}(u_2)) + d(i_{r_2}(v_1), i_{r_2}(v_2))$$

$$\le d(i_{r_1}(u_1), x) + d(x, i_{r_1}(u_2)) + d(i_{r_2}(v_1), y) + d(y, i_{r_2}(v_2))$$

$$< c(u_1, v_1) + c(u_2, v_2)$$

$$\frac{\sum_{e \in E(T')} c(e)}{n} \le \sqrt{\frac{\sum_{e \in E(T')} c(e)^2}{n}} \le \frac{1}{\sqrt{2n}}$$

The approximation ratio of the 2-Opt on metric TSP is at most $\sqrt{\frac{n}{2}}$.

$$S_{r_1,r_2}(u,v) = \{(x,y) \in [0,1) \times [0,1) \mid d(x,i_{r_1}(u)) + d(y,i_{r_2}(v)) < c(u,v)\}.$$

$$\begin{split} c(u_1,u_2) + c(v_1,v_2) &\leq d(i_{r_1}(u_1),i_{r_1}(u_2)) + d(i_{r_2}(v_1),i_{r_2}(v_2)) \\ &\leq d(i_{r_1}(u_1),x) + d(x,i_{r_1}(u_2)) + d(i_{r_2}(v_1),y) + d(y,i_{r_2}(v_2)) \\ &< c(u_1,v_1) + c(u_2,v_2) \end{split}$$

$$\frac{\sum_{e \in E(T')} c(e)}{n} \le \sqrt{\frac{\sum_{e \in E(T')} c(e)^2}{n}} \le \frac{1}{\sqrt{2n}}$$

The approximation ratio of the 2-Opt on metric TSP is at most $\sqrt{\frac{n}{2}}$.

$$S_{r_1,r_2}(u,v) = \{(x,y) \in [0,1) \times [0,1) \mid d(x,i_{r_1}(u)) + d(y,i_{r_2}(v)) < c(u,v)\}.$$

$$\begin{split} c(u_1,u_2) + c(v_1,v_2) &\leq d(i_{r_1}(u_1),i_{r_1}(u_2)) + d(i_{r_2}(v_1),i_{r_2}(v_2)) \\ &\leq d(i_{r_1}(u_1),x) + d(x,i_{r_1}(u_2)) + d(i_{r_2}(v_1),y) + d(y,i_{r_2}(v_2)) \\ &< c(u_1,v_1) + c(u_2,v_2) \end{split}$$

$$\frac{\sum_{e \in E(T')} c(e)}{n} \le \sqrt{\frac{\sum_{e \in E(T')} c(e)^2}{n}} \le \frac{1}{\sqrt{2n}}$$

The approximation ratio of the 2-Opt on metric TSP is at least $\sqrt{\frac{n}{2}}$.

Let G be a complete graph on $n:=2\cdot k^2$ nodes with vertex set $V(G):=\{v_{i,j}\mid 1\leq i,j\leq k\}\cup\{w_{i,j}\mid 1\leq i,j\leq k\}$. For each i with $1\leq i\leq k$, we call $V_i:=\{v_{i,j}\mid 1\leq j\leq k\}$ and $W_i:=\{w_{i,j}\mid 1\leq j\leq k\}$ a section of V(G) and the v-vertices and w-vertices the two halves of V(G).

We define a distance function $c: \overline{E(G)} \to \mathbb{R}_{\geq 0}$ as follows

$$c(v_{i,j}, w_{i',j'}) = 1$$
 for all $1 \le i, i', j, j' \le c(v_{i,j}, v_{i',j'}) = \begin{cases} 0 & i = i' \\ 2 & i \ne i' \end{cases}$ for all $1 \le j, j' \le c(w_{i,j}, w_{i',j'}) = \begin{cases} 0 & i = i' \\ 2 & i \ne i' \end{cases}$ for all $1 \le j, j' \le c(w_{i,j}, w_{i',j'}) = \begin{cases} 0 & i = i' \\ 2 & i \ne i' \end{cases}$

The approximation ratio of the 2-Opt on metric TSP is at least $\sqrt{\frac{n}{2}}$.

Let G be a complete graph on $n:=2\cdot k^2$ nodes with vertex set $V(G):=\{v_{i,j}\mid 1\leq i,j\leq k\}\cup\{w_{i,j}\mid 1\leq i,j\leq k\}$. For each i with $1\leq i\leq k$, we call $V_i:=\{v_{i,j}\mid 1\leq j\leq k\}$ and $W_i:=\{w_{i,j}\mid 1\leq j\leq k\}$ a section of V(G) and the v-vertices and w-vertices the two halves of V(G).

We define a distance function $c: \overline{E(G)} \to \mathbb{R}_{\geq 0}$ as follows:

$$c(v_{i,j}, w_{i',j'}) = 1$$
 for all $1 \le i, i', j, j' \le k$
$$c(v_{i,j}, v_{i',j'}) = \begin{cases} 0 & i = i' \\ 2 & i \ne i' \end{cases}$$
 for all $1 \le j, j' \le k$
$$c(w_{i,j}, w_{i',j'}) = \begin{cases} 0 & i = i' \\ 2 & i \ne i' \end{cases}$$
 for all $1 \le j, j' \le k$

$$E(T) = \{(v_{i,j}, v_{i,j+1}) \mid 1 \le i \le k, 1 \le j < k\} \cup \{(w_{i,j}, w_{i,j+1}) \mid 1 \le i \le k, 1 \le j < k\} \cup \{(v_{i,k}, w_{i,1}) \mid 1 \le i \le k\} \cup \{(w_{i,k}, v_{i+1,1}) \mid 1 \le i < k\} \cup \{(w_{k,k}, v_{1,1})\}$$

$$\begin{split} E(T') &= \{(v_{i,j}, w_{j,i}) \mid 1 \leq i, j \leq k\} \cup \\ &\quad \{(w_{j,i}, v_{i,j+1}) \mid 1 \leq i \leq k, 1 \leq j < k\} \cup \\ &\quad \{(w_{k,i}, v_{i+1,1}) \mid 1 \leq i < k\} \cup \\ &\quad \{(w_{k,k}, v_{1,1})\} \end{split}$$

