

LTspice IV Intermediate Lab Class Volume 3

Presented by: Mats Hellberg

Linear Technology FAE

Topics

- 1. Creating a Schematic Symbol
- 2. Gain & Phase Analysis
- 3. Modeling MOSFETs
- 4. Modeling Coil Saturation

Creating a Schematic Symbol

Creating a Schematic Symbol

Creating a NPN Transistor Schematic Symbol

- 1. Open up LTspice
- 2. File pull down menu ---> New Symbol
- 3. Draw pull down menu ---> Line. Draft an NPN symbol.

5. Edit pull down menu ---> Attributes ---> Edit Attributes (to add attributes).

See the screen shot here ----->

6. Edit pull down menu ---> Attributes ---> Attribute Window (for attribute visibility) to make QN and NPN visible for the symbol

Creating a Schematic Symbol

Creating a NPN Transistor Schematic Symbol (continued.....)

- 7. Save the schematic symbol as "My_NPN.asy" in the same folder as the simulation file titled "NPN Schematic Symbol Import.asc"
- 8. Open up the simulation file titled "NPN Schematic Symbol Import.asc" and follow the instructions in the simulation file.

Gain & Phase Analysis

How Do I Do Stability Analysis Of Switching Power Supplies In LTspice?

LTC3412A Example

- * 5 Vin to 2.5 Vout @ 2.0 A
- ❖ DC652A Demoboard

LTC3412A Example

Simulation Command

Set simulation time to be as long as one period of the lowest frequency analyzed in the .step command plus the time to steady state.

Save data only after steady state is reached.

Limit maximum step size for proper measurement.

Run Simulation, Then.....

- After simulation is complete, from the "View" menu, select 'Spice Error Log'
 - Right click anywhere in new window
 - Select 'Plot .step'ed .meas data'
 - Select 'Yes' in the next dialog box
 - Right click anywhere in next window
 - Select 'Add Trace'
 - Select 'gain' and press 'OK'

Simulation Results – Long Run 30 Minute Run Time

Actual Measured Data

Simulation Speed Up Tips

Simulation Command

If frequency range in .step command is narrowed, then the total simulation time can be reduced to one period of the lowest frequency plus the time it takes to get to steady state.

Multi Output DC-DC Converter

Multi Output Converter Results

Output Imepedance

The same methodology can be applied to measure output impedance

Output Impedance Results

Conclusion

- 1. Possible to do small signal analysis of switching systems within Ltspice
- 2. Not limited to one output
- 3. Multiple inputs also possible. However, do not daisy chain DC-DC converters. The injected signal of the upstream converter interacts with the downstream converter.
- 4. Multioutput supplies consume a lot of memory. Sample data should be over a limited frequency range.

Modeling MOSFETs

A MOSFET is a Simple Device, Right?

Power MOSFET with Parasitic BJT, Diode and Capacitances

Power MOSFET Cross Section

LTspice VDMOS Model

- Traditional Models are complex and slow, building elaborate subcircuits to duplicate behavior
- LTspice MOSFET Model is a new intrinsic model
 - Speed
 - Convergence
 - Simplicity
- DC Model is the same as a Level 1 Pspice model
- AC Model is based on:
 - Gate to source capacitance is constant
 - Gate to drain capacitance follows an empirical curve based on hyperbolic tangent whose min and max point is based on:
 - MOSFET off, Vgd is negative, Cgd is at minimum
 - MOSFET on, Vgd is positive, Cgd is at maximum

Search, "M. MOSFET" in LTspice help section for further details

What do I need to make my own model?

- Datasheet of MOSFET
- Pspice model file

Explanation of Terms

- ❖ Rg Gate ohmic resistance
- Rd Drain ohmic resistance.
- Rs Source ohmic resistance.
- Vto Zero-bias threshold voltage.
- Kp Transconductance.
- Cgdmax Maximum gate to drain capacitance.
- Cgdmin Minimum gate to drain capacitance.
- Cgs Gate to source capacitance.
- Cjo Parasitic diode capacitance.
- Is Parasitic diode saturation current.
- Rb Body diode resistance.

Search, "M. MOSFET" in LTspice help section for further details

Example – IRF7456 MOSFET

- What is needed?
 - Spice Model provided by the vendor.
 - Datasheet provided by the vendor.
- Open LTspice. If you use Vista, you must run LTspice as the administrator.
- From the File tab, select 'Open'
- C: Program Files
 - LTC folder
 - LTspiceIV
 - Lib
 - * CMP
 - Standard.mos

Example – IRF7456 MOSFET

Go to Text File and Datasheet

Warning!!!!

Do not trust the vendor spice model to be correct

Comments about the Spice Model

All parameters should be in the Level 1 section

Gate threshold and Gate capacitance do not match the datasheet

```
.MODEL NM NMOS LEVEL=1 IS=1e-32

+VTO=2.07545 LAMBDA 0.0453657 KP=119.186

+CGSO=3.37108e-05 .GDO=1.97763e-09

RS 8 3 0.0001

D1 3 1 MD

.MODEL MD D IS=1.87521e-13 RS=0.013756 N= .919559 BV=20

+IBV=0.00025 EG=1 XTI=1 TT=0

+CJO=3.98952e-09 VJ=0.635683 M=0.361988 FC=0.5

RDS 3 1 1e+06

RD 9 1 0.002047

RG 2 7 1.73819

D2 4 5 MD1
```

Diode resistance is within the diode subcire

IRF7456 Gate to Drain Capacitance

Always compare spice model to datasheet.
Sometimes the numbers in the spice model don't pass the 'common sense test'.

Term	Value	Source
Rg	1.74	Spice Model
Rd	0.0001	Spice Model
Rs	0.0027	Spice Model
Vto	1.3	Data Sheet Electrical Table
Кр	119	Spice Model
Cgdmax	1200 e-12	Data Sheet Curve
Cgdmin	250 e-12	Data Sheet Curve
Cgs	3.37e-9	Data Sheet Electrical Table
Cjo	3.99e-9	Spice Model
Is	1.87e-13	Spice Model
Rb	0.013	Spice Model

Add New Model Within LTSpice

Completing the Model

- Must save file, quit LTspice and then reopen to access the new model.
- Sometimes, not all data is in Pspice file. You will need to pull more data from the datasheet.

Rdson Model Validation

Switching Speed Model Validation

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Vin, drain resistance, gate drive voltage, and gate resistance will be defined in the datasheet.

.measure t2 find time when V(Drain)=9 fall=1 .measure t3 find time when V(Drain)=1 fall=1 .measure t4 find time when V(Gate)=4.05 fall=1 .measure t5 find time when V(Drain)=1 rise=1 .measure t6 find time when V(Drain)=9 rise=1

.measure tdon param t2-t1
.measure trise param t3-t2
.tran 15m
.measure tdoff param t5-t4
.measure tfall param t6-t5

V(Gate) and V(Drain) voltage thresholds corespond to 10% and 90% values.

Switching Speed Model Validation **Turn On Delay**

Switching Speed Model Validation

Conclusions

- Creating your own model takes a little time
- Requires a spice model and datasheet from the manufacturer
- Must use common sense as you review the information provided
- Review performance of new device. Some iteration may be required.

First, characterize the saturation curve of the physical coil in the lab

Nota: you can use a RLC meter if available!

- Use "Voltage Dependent Voltage Source" or "Voltage Dependent Current Source" in order to model the coil saturation curve using the look up table capability of these behavioral sources
- A look-up table is used to specify the transfer function. The table is a list of pairs of numbers. The second value of the pair is the output voltage when the control voltage is equal to the first value of that pair. The output is linearly interpolated when the control voltage is between specified points. If the control voltage is beyond the range of the look-up table, the output voltage is extrapolated as a constant voltage of the last point of the look-up table.

Plotting V(in+) vs. I(I1) to check the model!

Variable Capacitor vs. Voltage ...

