# Paths of analysis\*

### Synthia

October 10, 2022

## 1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

#### Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

#### My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL\_COEF*FGI\_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON\_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$ 

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

<sup>\*</sup>The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

 ${f Strategies:}$  none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

## 2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

#### 2.1 Path 1

Score: 31.25



Figure 1: Outline of path 1

#### 2.1.1 Synthesis Of Alkyl Iodides Via Appel Reaction





#### Substrates:

1. 3-(4-Methoxyphenyl)prop-2-en-1-ol - available at Sigma-Aldrich

#### **Products:**

1. 1-(3-iodo-propenyl)-4-methoxy-benzene

Typical conditions: Imidazole.PPh3.I2

Protections: none

**Reference:** 10.1002/1099-0690(200102)2001:3<493::AID-EJOC493>3.0.CO2-B

(compound 20) and 10.1016/j.tet.2014.09.030

Retrosynthesis ID: 9990040

#### 2.1.2 Palladium catalysed alkylation of vinyl iodides



#### Substrates:

- 1. iodomethylene cyclohexane
- 2. 1-(3-iodo-propenyl)-4-methoxy-benzene

#### **Products:**

## $1. \ \, COc1ccc(/C=C/CC=C2CCCC2)cc1$

 $\textbf{Typical conditions:} \ [Pd]. catalyst$ 

Protections: none

**Reference:** 10.1016/j.bmcl.2005.12.066 and 10.1021/ol052070m and 10.1021/ol5023195 and 10.1002/anie.200703134 and 10.1016/j.bmcl.2005.09.084 and 10.1021/ol0344873

Retrosynthesis ID: 25165

#### 2.1.3 Tandem Birch reduction and hydrolysis of enol ethers



#### Substrates:

 $1. \ \, COc1ccc(/C=C/CC=C2CCCC2)cc1$ 

#### Products:

 $1. \ O{=}C1C{=}CC(/C{=}C/CC{=}C2CCCC2)CC1$ 

Typical conditions: 1. Li.NH3 2. HCl

Protections: none

**Reference:** DOI: 10.1002/anie.201304609 and 10.1021/jo00093a027

Retrosynthesis ID: 6985

## 2.1.4 DDQ mediated aromatization



#### Substrates:

 $1. \ O{=}C1C{=}CC(/C{=}C/CC{=}C2CCCC2)CC1$ 

#### **Products:**

## $1. \ \, \text{Oc1ccc}(/\text{C=C/CC=C2CCCC2}) \\ \text{cc1}$

Typical conditions:  $\operatorname{DDQ}$ 

Protections: none

**Reference:** 10.1021/ja054872i and 10.1021/ja00311a085 and

10.1021/ja00122a011

Retrosynthesis ID: 9999983

## 2.2 Path 2

Score: 31.25



Figure 2: Outline of path 2

## 2.2.1 HWE/Wittig Olefination

#### Substrates:

- 1. 1-bromo-4-(4-bromobut-1-en-1-yl)benzene available at Sigma-Aldrich
- 2. Cyclohexanone available at Sigma-Aldrich

#### **Products:**

1. Brc1ccc(/C=C/CC=C2CCCC2)cc1

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde

Protections: none

**Reference:** 10.1002/anie.200705005 and 10.1021/ol052106a and

10.1021/jo00075a064 and 10.1021/ol3027297

Retrosynthesis ID: 24425

#### 2.2.2 Br/Li exchange



#### Substrates:

- 1. Brc1ccc(/C=C/CC=C2CCCC2)cc1
- 2. n-BuLi available at Sigma-Aldrich

#### **Products:**

 $1. \ [\mathrm{Li}]c1ccc(/C=C/CC=C2CCCC2)cc1$ 

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

**Reference:** 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

Retrosynthesis ID: 30672

#### 2.2.3 Addition of electrophiles to lithiated arenes/heteroarenes



#### Substrates:

 $1. \ [Li]c1ccc(/C=C/CC=C2CCCC2)cc1$ 

## Products:

 $1. \ \, \mathrm{Oc1ccc}(/\mathrm{C{=}C/CC{=}C2CCCC2})\mathrm{cc1}$ 

Typical conditions: B(OMe)3 then H2O2.THF

Protections: none

Reference: 10.1039/C7CC09187G (SI) and 10.1002/ejoc.201701142 and

 $10.1021/acscatal.6b03380~({\rm SI,p.10})$  and  $10.1002/chem.201702143~({\rm SI})$ 

Retrosynthesis ID: 10019525

#### 2.3 Path 3

Score: 45.00



Figure 3: Outline of path 3

## 2.3.1 Demethylation of Phenols



#### Substrates:

1. (e)-2-(4-methoxyphenyl)-1-iodo-1-ethene

#### **Products:**

1. C8H7IO

Typical conditions: BBr3.CH2Cl2

Protections: none

**Reference:** DOI: 10.1021/ja00105a021 and 10.1021/jm00176a011 and 10.1021/jm970277i and 10.1021/ja0106164 and Patent: US2010/16298, 2010,

A1, page 185

Retrosynthesis ID: 10011837

## 2.3.2 Suzuki coupling of alkyl-9-BBNs with vinyl iodides



#### Substrates:

 $1. \ 9\hbox{-}(3,3\hbox{-pentamethyleneallyl})\hbox{-}9\hbox{-borabicyclo} 3.3.1 nonane$ 

2. C8H7IO

#### **Products:**

 $1. \ \, Oc1ccc(/C=C/CC=C2CCCC2)cc1$ 

Typical conditions: Pd catalyst.base.solvent

Protections: none

**Reference:** 10.1021/jo015995y and 10.1016/j.tetlet.2010.11.139 And 10.1021/ol0600741 and 10.1055/s-2002-32602 and 10.1002/anie.200501760

Retrosynthesis ID: 25168

#### 2.4 Path 4

Score: 45.00



Figure 4: Outline of path 4

## 2.4.1 Suzuki coupling of alkyl-9-BBNs with vinyl bromides



#### Substrates:

1. 1,2-Dibromoethylene - available at Sigma-Aldrich

 $2. \ 9\hbox{-}(3,3\hbox{-pentamethyleneallyl})\hbox{-}9\hbox{-borabicyclo} 3.3.1 no nane$ 

#### **Products:**

 $1.\ Br/C{=}C/CC{=}C1CCCCC1$ 

Typical conditions: Pd catalyst.base.solvent

Protections: none

**Reference:** 10.1021/ja00183a048 and 10.1039/b707338k and 10.1016/j.tet.2015.05.039 and 10.1021/jo991064z and 10.1021/ol060290+ and 10.1246/bcsj.65.2863

Retrosynthesis ID: 25174

## ${\bf 2.4.2} \quad {\bf Suzuki\ coupling\ of\ arylboronic\ pinacol\ esters\ with\ vinyl\ Bromides}$



#### Substrates:

- 1. 4-Hydroxyphenylboronic acid pinacol ester available at Sigma-Aldrich
- $2.\ Br/C{=}C/CC{=}C1CCCCC1$

#### **Products:**

1. Oc1ccc(/C=C/CC=C2CCCC2)cc1

Typical conditions: Pd catalyst.base.solvent

Protections: none

**Reference:** 10.1021/cr00039a007 and  $10.1007/3418\_2012\_32$  and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

#### 2.5 Path 5

**Score:** 51.25



Figure 5: Outline of path 5

#### 2.5.1 Esters reduction with LAH



#### Substrates:

1. C8H16O2Si

## Products:

 $1. \ (e)\hbox{-}4\hbox{-}trimethylsilyl-}3\hbox{-}buten-}1\hbox{-}ol$ 

Typical conditions: LiAlH4.THF.0-20  $\rm C$ 

Protections: none

**Reference:** 10.1016/j.ejmech.2019.112011 p. 5, 10 and

10.1016/j.ejmech.2020.112910 p. 3, 7

## 2.5.2 Appel Reaction



#### Substrates:

1. (e)-4-trimethylsilyl-3-buten-1-ol

#### Products:

1. (4-bromo-but-1-enyl)-trimethyl-silane

Typical conditions: PPh3.CBr4

Protections: none

**Reference:** 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

Retrosynthesis ID: 9990037

## 2.5.3 HWE/Wittig Olefination



#### Substrates:

1. Cyclohexanone - available at Sigma-Aldrich

2. (4-bromo-but-1-enyl)-trimethyl-silane

#### **Products:**

1. C[Si](C)(C)/C=C/CC=C1CCCCC1

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde

Protections: none

**Reference:** 10.1002/anie.200705005 and 10.1021/ol052106a and

10.1021/jo00075a064 and 10.1021/ol3027297

Retrosynthesis ID: 24425

#### 2.5.4 Iodination of Silyl Derivatives



#### Substrates:

1. C[Si](C)(C)/C=C/CC=C1CCCCC1

 $2. \ \ N\text{-}Iodosuccinimide} \ - \quad \quad \textit{available at Sigma-Aldrich}$ 

#### **Products:**

1. I/C=C/CC=C1CCCCC1

Typical conditions: NIS. 50C. MeCN

Protections: none

**Reference:** DOI: 10.1016/j.tetlet.2011.02.057 or DOI: 10.1016/S0040-0.001

4039(96)02000-X or DOI: 10.1016/S0040-4020(02)00334-4

## 2.5.5 Suzuki coupling of arylboronic acids with vinyl iodides



#### Substrates:

- $1. \ I/C = C/CC = C1CCCCC1$
- 2. 4-Hydroxyphenylboronic acid available at Sigma-Aldrich

#### Products:

 $1. \ \, Oc1ccc(/C{=}C/CC{=}C2CCCC2)cc1$ 

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$ 

Protections: none

**Reference:** 10.1021/cr00039a007 and  $10.1007/3418\_2012\_32$  and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H