ID:	Sec:	Name:

Set: 02

Brac University

Semester: Summer 2023 Final Exam
Course No: CSE251 Full Marks: 30
Course Title: Electronic Devices and Circuits Time: 1 hour 30 minutes

Section: 1 to 10 Date: 03 September, 2023

Answer any 3 out of 4 questions. All the questions carry equal marks.

Question 1 [CO3]

10

A Zener diode voltage regulator has a regulation voltage of 5.2 V when the current through the Zener diode is 40 mA. It is characterized by the parameters, $r_z = 100 \Omega$, $I_{\rm ZK} = 7 \text{ mA}$.

(a) **Determine** the cut-in voltage, V_{Z0} of the zener diode.

[1.5]

- (b) Assume, the nominal value of the supply voltage, $V_{\rm in}$ is 15 V and $R=200~\Omega$. Calculate I_R , R_L and I_L for the worst case scenario. [1+1+1]
- (c) Now, assume, R_L and R are both 100 Ω each. Calculate the minimum value of the supply voltage $V_{\rm in}$ at the worst case scenario.
- (d) The supply voltage of the regulator is now given as 10 ± 1 V. **Design** the voltage regulator circuit, i.e., **determine** the value of R, such that even in the worst-case scenario, voltage regulation is maintained and the circuit sustains a load current of 50 mA. [2.5]

Bonus: Analyze the effect of increasing the load resistance, R_L and explain briefly. [2]

Question 2 [CO1]

10

Rosa has a switching device, $\mathbf{D_1}$ built with 2 MOSFETs. The MOSFETs have the following parameters, k=5 m A/V^2 and $V_T=0.5$ V. The device turns ON an LED light in her dollhouse at night and turns the light OFF during the day. The supply voltage of the device is, $V_{SS}=12$ V and the load resistance is $R_L=12$ k Ω . The input voltage of the device, $v_{\text{in}_{D1}}$ is taken from the output voltage of an LDR Circuit Block, $v_{\text{out}_{LDR}}$ as shown in the diagram below. Rosa measured the voltages and made the following table where, $\mathbf{HIGH} \equiv 5$ V and $\mathbf{LOW} \equiv 1.5$ V.

Time	$v_{ m out_{LDR}}$	$v_{ m in_{D1}}$	$v_{ m out_{D1}}$
Day	LOW	LOW	LOW
Night	HIGH	HIGH	HIGH

- (a) **Identify** and **explain** the logical operation of the switching device, D_1 . [1+1]
- (b) **Draw** the circuit diagram of the device, D_1 with proper labeling. [2]
- (c) Calculate the on-state resistance, R_{ON} of the 1st MOSFET of the device. [2]
- (d) **Draw** the <u>Voltage Transfer Characteristic (VTC)</u> of the device with proper labeling. [2+2]

Bonus: **Determine** the W/L sizing of the 1st MOSFET. [2]

Equations for MOSFET

Cut-off: $I_D = 0$, if $V_{GS} < V_T$

Triode: $I_D = k \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$, if $V_{GS} \ge V_T$ and $V_{DS} < (V_{GS} - V_T)$

Saturation: $I_D = \frac{1}{2}k(V_{GS} - V_T)^2$, if $V_{GS} \ge V_T$ and $V_{DS} \ge (V_{GS} - V_T)$

Question 3 [CO3]

10

Answer the following questions for **Figure-1** where $R_1 = 1k\Omega$, $R_2 = 2k\Omega$, $R_3 = 3k\Omega$, $R_4 = 4k\Omega$.

- (a) Why a MOSFET can be used as a switch? **Explain** briefly. [2]
- (b) Analyze the circuit in Figure-1 to determine the values of I_C , I_B , I_E , v_C of T_1 . [3]
- (c) Analyze the circuit in Figure-1 to determine the value of I_{DS_2} , v_O of T_2 . [5]

Bonus: **Design** a circuit with the boolean inputs A, B, C, D using ideal MOSFETs (S-model) to implement the logic function, $f = \overline{A + C} + B.D$

Question 4 [CO1, CO3]

10

- (a) **Draw** the I-V characteristic of a BJT. **Indicate** the operating regions with proper labeling. [2]
- (b) A linear amplifier follows the equation, $V_{out} = -3V_{in}$ where the valid input range is -10V to +10V. Illustrate the Voltage Transfer Characteristic (VTC) of the amplifier with proper labels. [2]
- (c) For the BJT CE Amplifier of <u>Figure-2</u>, $v_{IN} = 2 + 0.3 \sin(100\pi t)$ and $v_O = 5 3 \sin(100\pi t)$. **Design** the Amplifier circuit, i.e., **calculate** the value of V_S , R_L and R_I . [2+2+2]

Bonus: Identify the highest value of the input voltage for which amplification occurs. Explain your reasoning. [2]

$\begin{aligned} & \underbrace{\mathbf{for} \ \mathbf{BJT}}_{\beta = 100} \\ & \alpha = 0.99 \\ & v_{BE(Active)} = 0.7V \\ & v_{BE(Saturation)} = 0.8V \\ & v_{CE(Saturation)} = 0.2V \\ & \underbrace{\mathbf{for} \ \mathbf{MOSFET}}_{V_T = 1V} \\ & k = 5mA/V^2 \end{aligned}$

Figure-1 Figure-2