

# COMP [56]630— Machine Learning

Lecture 3 – Linear Regression Pt. 1



### Logistics

- Assignment 0 due Friday 01/26 11:59 pm
- No Quiz this week



## Supervised Learning — Linear Models

Finally!



#### The basics

- Input: a set of inputs  $X = \{x_1, x_2, ... x_n\}$ , also called *features*
- Output: a set of expected outputs or *targets*  $Y = \{y_1, y_2, ..., y_n\}$
- Goal: to learn a function h: X → Y such that the function h(x<sub>i</sub>) is a good predictor of the corresponding value y<sub>i</sub>
  - h(x) is called the *hypothesis*
- If the target is continuous the problem setting is called *regression*.
- If the target is discrete or categorical, the problem is called *classification*.



#### Linear Classifier

- The simplest ML model
- Makes a *classification* decision based on the value of *a linear combination* of the characteristics (features).
- Black and white circles are different labels. H<sub>1</sub>, H<sub>2</sub>, ... represent different decision boundaries i.e. linear functions that best map the classification process.
  - *Goal:* find the best linear function that has highest accuracy





#### Linear Classifier (cntd.)

Mathematically represented as

$$y = Wx^T + b$$

where  $y \rightarrow labels$  (vector)

**W** → model parameter matrix

 $\mathbf{x} \rightarrow$  feature vector

b → bias term (scalar)

Very similar in the mathematical representation of a line

$$y = mx + c$$

→ Hence the term *linear classifier* 



### Linear Classifier (cntd.)







## Example

 Suppose we have a dataset giving the living areas and prices of 47 houses from Stillwater, OK

| Living area (ft²) | # bedrooms | Price (1000\$s) |
|-------------------|------------|-----------------|
| 1643              | 4          | 256             |
| 1356              | 3          | 202             |
| 1678              | 3          | 287             |
| •••               |            |                 |
| 3000              | 4          | 400             |



### Example

 Suppose we have a dataset giving the living areas and prices of 47 houses from Stillwater, OK

| Living area (ft <sup>2</sup> ) | # bedrooms | Price (1000\$s) |
|--------------------------------|------------|-----------------|
| 1643                           | 4          | 256             |
| 1356                           | 3          | 202             |
| 1678                           | 3          | 287             |
| •••                            |            | •••             |
| 3000                           | 4          | 400             |
|                                |            |                 |
|                                |            |                 |
| Features (X)                   |            | Targets (Y)     |



### Example

 Suppose we have a dataset giving the living areas and prices of 47 houses from Stillwater, OK

| Living area (ft²) | # bedrooms | Price (1000\$s) |
|-------------------|------------|-----------------|
| 1643              | 4          | 256             |
| 1356              | 3          | 202             |
| 1678              | 3          | 287             |
|                   |            |                 |
| 3000              | 4          | 400             |
|                   |            |                 |
|                   |            |                 |
| Features (X)      |            | Targets (Y)     |

Targets are continuous valued! => Task is regression



#### Linear Regression

- Goal: formulate a hypothesis function h(x) which will model the 2-d input feature (size, # bedrooms) and produce the expected target value (the house price in 1000\$s).
- We can say that the hypothesis function could be a linear function of x:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- Here,  $\theta_i$  represent the *parameters* or *weights* of the linear model characterizing  $X \rightarrow Y$
- A more simpler model then will be  $h(x) = \sum_{i=0}^{\infty} \theta_i x_i = \theta^T x$ ,



- $h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$
- We will need to use the *training* data to learn these parameters. This process is called *learning*
- What do we need to achieve this?



- $h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$
- We will need to use the *training* data to learn these parameters. This process is called *learning*
- What do we need to achieve this?
- We will define a function that measures the quality of predictions for each value of  $\theta$ .
- This is called the cost function or objective function



- $h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$
- We will need to use the *training* data to learn these parameters. This process is called *learning*
- What do we need to achieve this?
- We will define a function that measures the quality of predictions for each value of  $\theta$ .
- This is called the cost function or objective function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$



- $h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$
- We will need to use the *training* data to learn these parameters. This process is called *learning*
- What do we need to achieve this?
- We will define a function that measures the quality of predictions for each value of  $\theta$ .
- This is called the cost function or objective function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
. Ordinary least squares regression model



• Learning: Given this formulation, we will need to identify a way to find the values of  $\theta$ .

- $h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$
- We will need to use the *training* data to learn these parameters. This process is called *learning*
- What do we need to achieve this?
- We will define a function that measures the quality of predictions for each value of  $\theta$ .
- This is called the cost function or objective function

How to obtain parameter matrix using this objective function?

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2.$$

Ordinary least squares regression model



#### Learning

- Goal: To find a set of parameters  $\theta$  that will minimize the cost function  $J(\theta)$ .
- Common approach: gradient descent



#### Learning

- Goal: To find a set of parameters  $\theta$  that will minimize the cost function  $J(\theta)$ .
- Common approach: gradient descent
- What does it do?



#### Learning

- Goal: To find a set of parameters  $\theta$  that will minimize the cost function  $J(\theta)$ .
- Common approach: gradient descent
- What does it do?
  - Start with an initial "guess" for  $\theta$
  - Update values of  $\theta$  that will gradually move towards the "optimal solution"
  - What is the optimal solution?
  - The value of  $\theta$  that minimizes the cost function
- How do we do it computationally?



• How do we do it computationally? 
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- $\alpha$  is the learning rate
  - Modulates how much of the change that we need to propagate at each instant
- Each update of  $\theta$  will be a step in the steepest decrease of the cost function  $J(\theta)$
- How to Compute the derivative of the cost function  $J(\theta)$ ?

$$h_0(x) = 0^T x$$



$$J(0) = \frac{1}{2} \sum_{i=1}^{m} (h_0(x_i^2) - y_i^{(i)})^2$$

$$J(0) = \frac{1}{2} \sum_{i=1}^{m} (0^{T_{X}(i)} - y^{(i)})^{2}$$

$$\frac{dJ(0)}{d0} = \frac{d}{d0} \left[ \frac{1}{2} \underbrace{\sum_{i=1}^{m} (o^{T} x^{(i)} - y^{(i)})^{2}}_{z = 1} \right]$$



$$= \frac{1}{2} \cdot \frac{d}{do} \left[ \left( o^{\dagger} x \right) - y \right]^2$$

We know that 
$$\frac{\partial}{\partial z}(z^n) = n \cdot z^{n-1}$$

=) 
$$d \frac{7(0)}{d \cdot 0} = \frac{1}{2} \cdot \left[ 2 \cdot \frac{d}{d \cdot 0} (0^{T} x) - \frac{d}{d \cdot 0} (y) \right] (0^{T} x - y)$$



We know that y is the true label

$$\frac{d J(a)}{da} = \frac{2}{2} \left[ x - o \right] (0^{T} x - y)$$



Hence each update is given by

$$\theta_j := \theta_j + \alpha (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

- This is called the **LMS** update rule or the **Least Mean Squares** update rule.
  - Also known as the Widrow-Hoff learning rule.



- Has several properties:
  - Magnitude of update is proportional to the error (y h(x))
    - What does this mean?



- Has several properties:
  - Magnitude of update is proportional to the error (y h(x))
    - What does this mean?
    - If we have a very good prediction i.e.  $h(x) \approx y$ , then the update is very small.
    - Conversely, if the prediction is very far off i.e.  $h(x)\gg y$  or  $h(x)\ll y$  then the update will be large.
- For learning over the complete training set, we iteratively update the parameters as below

```
Repeat until convergence { \theta_j := \theta_j + \alpha \sum_{i=1}^m \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}. }
```



- If we use all the examples in the training set *at once*:
  - Batch gradient descent
- What if we update at every single data point?
  - Stochastic or incremental gradient descent

```
Loop { for i=1 to m, \{ \\ \theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)})\right) x_j^{(i)} \qquad (for every j). \} }
```





• Gradient Descent in 2D. Images Credit: http://vis.supstat.com/2013/03/gradient-descent-algorithm-with-r/





Will we always get an optimal solution?



• Gradient Descent in 2D. Images Credit: http://vis.supstat.com/2013/03/gradient-descent-algorithm-with-r/



## Not really...





## Is the learning rate that important?



**Smaller Learning Rate** 



## Is the learning rate that important?





© Sathyanarayanan Aakur



## Is the learning rate that important?





#### Is there a non-iterative solution?



#### Is there a non-iterative solution?

- Yes! We can directly find the solution using "Normal Equations".
- It is an analytical approach used for optimization
- Can be done as follows:
  - Set the partial derivatives of the cost function  $J(\theta)$  to zero
    - Remember, vectorized version of  $J(\theta) = \frac{1}{2}(X\theta \vec{y})^T(X\theta \vec{y})$
    - Hence, taking the Partial Derivative gives us

$$\nabla_{\theta} J(\theta) = X^T X \theta - X^T \vec{y}$$



#### Is there a non-iterative solution?

- Yes! We can directly find the solution using "Normal Equations".
- It is an analytical approach used for optimization
- Can be done as follows:
  - Set the partial derivatives of the cost function  $J(\theta)$  to zero
  - Then you can estimate the parameters as follows:

$$\nabla_{\theta} J(\theta) = X^T X \theta = X^T \vec{y}$$

$$\Theta = (X^T X)^{-1} X^T y$$

- Where X is the input feature vector
- y is the expected target value



# Linear Regression with Basis Functions



- Sometimes, you will need to have some fixed pre-processing of the input data.
  - Also called feature extraction
- Linearity is often a good assumption when many inputs influence the output
  - Natural examples include F = ma



- Sometimes, you will need to have some fixed pre-processing of the input data.
  - Also called feature extraction
- Linearity is often a good assumption when many inputs influence the output
  - Natural examples include F = ma
- But in general, it is rather unlikely that a true function is linear



- Sometimes, you will need to have some fixed pre-processing of the input data.
  - Also called feature extraction
- Linearity is often a good assumption when many inputs influence the output
  - Natural examples include F = ma
- But in general, it is rather unlikely that a true function is linear How do we handle non-linear relationships?



- Sometimes, you will need to have some fixed pre-processing of the input data.
  - Also called feature extraction
- Linearity is often a good assumption when many inputs influence the output
  - Natural examples include F = ma
- But in general, it is rather unlikely that a true function is linear

How do we handle non-linear relationships?

• Simple! In addition to the original features, add more features that are deterministic functions of the original features



- If the original variables comprise the vector x, then the features can be expressed in terms of basis functions  $\{\phi_i(x)\}$
- By using nonlinear basis functions, we allow the hypothesis function h(x,w) to be a nonlinear function of the input vector x
  - They are linear functions of parameters, yet are nonlinear with respect to the input variables
- You can have multiple basis functions to model different nonlinearities

$$y(x,w) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x)$$



- If the original variables comprise the vector x, then the features can be expressed in terms of basis functions  $\{\varphi_i(x)\}$
- By using nonlinear basis functions, we allow the hypothesis function h(x,w) to be a nonlinear function of the input vector x
  - They are linear functions of parameters, yet are nonlinear with respect to the input variables
- You can have multiple basis functions to model different nonlinearities

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$
Basis functions



More generally,

$$y(\mathbf{x},\mathbf{w}) = \sum_{j=0}^{M-1} w_j \boldsymbol{\phi}_j(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$$

where 
$$w = (w_0, w_1, ..., w_{M-1})$$
 and  $\Phi = (\varphi_0, \varphi_1, ..., \varphi_{M-1})^T$ 

 We now need M weights for basis functions instead of D weights for features



### Types of Basis Functions

Linear Basis function:

$$y(x, \mathbf{w}) = \sum_{j=0}^{M-1} w_{j} \phi_{j}(x) = \mathbf{w}^{T} \phi(x)$$

- Polynomial Basis Function:
  - Model with M-1 degree polynomial

$$\phi_j(x) = x^j$$

• Works really well for 1-d feature vector i.e. only modelling one variable x



# Types of Basis Functions

Linear Basis function:

$$y(x, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(x) = \mathbf{w}^T \phi(x)$$

- Polynomial Basis Function:
  - Model with M-1 degree polynomial

$$\phi_j(x) = x^j$$

• Works really well for 1-d feature vector i.e. only modelling one variable x





## Types of Basis Functions

Linear Basis function:

$$y(x,\mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(x) = \mathbf{w}^T \phi(x)$$
• Polynomial Basis Function: 
$$\phi_i(x) = \mathbf{w}^T \phi(x)$$
• Model with M-1 degree polynomial 
$$\phi_i(x) = x^{-j}$$

- - Model with M-1 degree polynomial
  - Works really well for 1-d feature vector i.e. only modelling one variable x
- Disadvantage
  - Global:
    - changes in one region of input space affects others
  - Difficult to formulate
    - Number of polynomials increases exponentially with M
  - Can divide input space into regions
    - use different polynomials in each region
    - equivalent to spline functions





# Example



**Linear Basis Function** 



# Example



**Linear Basis Function** 

2<sup>nd</sup> order basis Function i.e. add x<sup>2</sup> feature



# Example



**Linear Basis Function** 

2<sup>nd</sup> order basis Function i.e. add x<sup>2</sup> feature

5<sup>th</sup> order basis Function i.e. add up to x<sup>5</sup> feature

$$y = \sum_{j=0}^{5} \theta_j x^j$$



### Other Basis Functions

- Gaussian Radial Basis function:
  - $\mu_i$  govern the locations of the basis functions
    - Can be an arbitrary set of points within the range of the data
      - Can choose some representative data points
  - σ governs the spatial scale
    - Could be chosen from the data set e.g., average variance

$$\phi_{_j}(x) = \exp\!\left(\!rac{(x-\mu_{_j})^2}{2\sigma^2}
ight)$$



### Other Basis Functions

- Gaussian Radial Basis function:
  - $\mu_i$  govern the locations of the basis functions
  - σ governs the spatial scale
    - Could be chosen from the data set e.g., average variance

$$\phi_{_j}(x) = \exp\!\left(\!rac{(x-\mu_{_j})^2}{2\sigma^2}\!
ight)$$





### Other Basis Functions

• Sigmoid: 
$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

- Fourier
  - Expansion in sinusoidal functions
- Signal Processing
  - Also called wavelets
    - Functions grounded in time and frequency
- Linear
  - $\varphi(x) = x$







**Linear Basis Function** 

2<sup>nd</sup> order basis Function i.e. add x<sup>2</sup> feature

5<sup>th</sup> order basis Function i.e. add up to x<sup>5</sup> feature

$$y = \sum_{j=0}^{5} \theta_j x^j$$





**Linear Basis Function** 



2<sup>nd</sup> order basis Function i.e. add x<sup>2</sup> feature

5<sup>th</sup> order basis Function i.e. add up to x<sup>5</sup> feature

$$y = \sum_{j=0}^{5} \theta_j x^j$$





**Linear Basis Function** 



2<sup>nd</sup> order basis Function i.e. add x<sup>2</sup> feature

5<sup>th</sup> order basis Function i.e. add up to x<sup>5</sup> feature

$$y = \sum_{j=0}^{5} \theta_j x^j$$









You don't want your model to be other kind!

