目录

1. 项目要求	
1.1 主要内容和目标	1
1.2 完成的具体指标	1
1.3 主要阶段和步骤	1
2. 项目装置设计与制作	2
2.1 硬件设计	2
2.2 PS2 遥控器部分设计	3
2.2.1 控制思路	3
2.2.2 控制原理	3
2.3 电机部分设计	5
2.3.1 电机选择	5
2.3.2 霍尔传感器	6
2.3.3 电机驱动	6
2.4 液晶显示屏部分设计	7
2.4.1 液晶显示屏选择	7
2.4.2 写操作时序	7
2.5 小车底盘部分设计	8
参考文献	9

装

订

线

1. 项目要求

1.1 主要内容和目标

基于 51 单片机,利用 PS2 手柄实现遥控小车。

利用全向轮轮,通过速度的分解与合成,实现小车的前进、后退、左平移、右平移、左前方 移动、右前方移动、左后方移动、右后方移动、顺时针旋转、逆时针旋转、改变速度。

采用 lcd1602 液晶显示屏,显示轮子的转速,用于调试小车。

1.2 完成的具体指标

完成实物的制作并完成演示,成果包含可控小车一件、代码一份、报告一份。

1.3 主要阶段和步骤

步骤 1: 完成硬件设计并采购;

步骤 2: 完成 PS2 手柄控制程序,实现手柄对 LED 灯亮灭的控制;

步骤 3: 完成电机转动及测速程序,利用 PWM 波对电机转速进行控制,利用安装于电机上的霍尔传感器,实现对电机转速的读取;

步骤 4: 合并两部分程序,并在硬件上测试;

步骤 5: 完成最终报告。

-- 订 --- -- -- -- 线 --- -- -- -- --

装

2. 项目装置设计与制作

2.1 硬件设计

车底盘 x 1,89C51 单片机 x 1,L298N 驱动 x 2,带霍尔传感器的直流电机 x 4,全向轮轮 x 4,18650 锂电池 x 3,PS2 手柄及其接收器 x 1,1cd1602 液晶显示屏 x 1,导线若干。 各元件接线如下图所示(只用于展示接线,省略了部分电阻、电容等元件):

图 2.1-1 硬件接线图

其中由于引脚个数有限,每次测速时仅选择 1 个霍尔传感器,将其信号输出端口与单片机 P3^3 引脚相连。

实物图如下:

装

订

线

图 2.1-2 无线遥控小车实物图

2.2 PS2 遥控器部分设计

2.2.1 控制思路

装

订

线

ps2 手柄兼容索尼的 PlayStation2 游戏机的遥控手柄。索尼的 psx 系列游戏主机在全球很是畅销。后来有人破解了通讯协议,使得手柄可以接在其他器件上遥控使用,比如遥控我们熟悉的机器人。突出的特点是这款手柄性价比极高,按键丰富,方便扩展到其它应用中。

PS2 手柄采用 2.4G 无线技术,有两种控制模式,本项目只使用绿灯模式。(绿灯模式时左右摇杆模拟值为无效,且摇杆按下的键值 L3、R3 无效;红灯模式时左右摇杆发送模拟值,0x00~OxFF 之间,且摇杆按下的键值 L3、R3 有效)

PS2 手柄绿灯模式下的按键排布如下:

图 2.2-1 PS2 手柄按键发布图

各按键所设计的对应的功能如下表:

按键名 功能 按键名 功能 按键名 功能 前进 右前方平移 逆时针旋转 LU RU L1 LD 后退 RD 左后方平移 L2 顺时针旋转 LL 左向平移 RL左前方平移 占空比加十 R1 右向平移 LR RR 右前方平移 R2 占空比减十

表 6.2-1 PS2 手柄各按键功能

2.2.2 控制原理

PS2 手柄由手柄与接收器两部分组成,手柄主要负责发送按键信息;接收器与单片机(也可叫作主机,可直接用在 PS2 游戏机上)相连,用于接收手柄发来的信息,并传递给单片机,单片机也可通过接收器,向手柄发送命令,配置手柄的发送模式。

接收器引脚输出为:

表 2.2-2 接收器引脚输出

1	2	3	4	5	6	7	8	9
DI/DAT	DO/CMD	NC	GND	VDD	CS/SEL	CLK	NC	ACK

接收器实物图如下:

图 2.2-2 接收器实物图

其中:

装

订

线

DI/DAT: 信号流向,从手柄到主机,此信号是一个8bit的串行数据,同步传送于时钟的下降沿。信号的读取在时钟由高到低的变化过程中完成。

DO/CMD: 信号流向,从主机到手柄,此信号和 DI 相对,信号是一个 8bit 的串行数据, 同步传送于时钟的下降沿。

NC: 空端口;

GND: 电源地;

VDD: 接收器工作电源, 电源范围 3~5V;

CS/SEL: 用于提供手柄触发信号。在通讯期间,处于低电平;

CLK: 时钟信号, 由主机发出, 用于保持数据同步;

NC: 空端口;

ACK: 从手柄到主机的应答信号。此信号在每个 8bits 数据发送的最后一个周期变低并且 CS—直保持低电平。在编程时未使用 ACK 端口。

通讯时序图如下:

图 2.2-3 通讯时序图

在时钟下降沿时,完成数据(lbit)的发送与接收,发送和接收是同时完成的。当单片机想读手柄数据或向手柄发送命令时,将会拉低 CS 线电平,并发出一个命令"0x01";手柄会回复它的 ID"0x41=绿灯模式,0x73=红灯模式";在手柄发送 ID 的同时,单片机将传送 0x42,请求数据;随后手柄发送出 0x5A,告诉单片机"数据来了"。

共 9 页 第 4 页

一个通讯周期有9个字节(8位),这些数据是依次按位传送。 各数据意义对照表如下:

表 2.2-3 通讯各数据意义

顺序	DO	DI	Bit0, Bit1, Bit2, Bit3, Bit4, Bit5, Bit6, Bit7		
0	0x01	idle			
1	0x42	ID			
2	Idle	0x5A			
3	WW	data	SELECT, L3, R3, START, UP, RIGHT, DOWN, LEFT		
4	YY	data	$L2, R2, L1, R1, \triangle, \bigcirc, \times, \Box$		
5	idle	data	PSS_RX (0x00=left, 0xFF=right)		
6	idle	data	PSS_RY (0x00=up, 0xFF=down)		
7	idle	data	PSS_LX (0x00=left, 0xFF=right)		
8	idle	data	PSS_LY (0x00=up, 0xFF=down)		

当有按键按下,对应位为"0",其他位为"1",例如当键"SELECT"被按下时,Data[3]=11111110B。

idle 表示数据线空闲。

WW, YY 用于控制手柄震动,本项目中未使用。

5, 6, 7, 8用于红灯模式的模拟量,本项目中未使用。

2.3 电机部分设计

装

订

线

2.3.1 电机选择

采用 GM-25-370 直流电机,带霍尔传感器用于测速,其基本参数如下表所示:

表 2.3-1 GM-25-370 直流电机基本参数

名称	GM-25-370直流碳刷电机
输出速率	150±10% rpm
最小负载电流	200mA (Max)
堵转电流	4500 mA (Max)
负载转速	100±10 % rpm
堵转力矩	9.5 kg · cm
负载力矩	3000 g · cm
负载电流	1200 mA (Max)
负载噪声	56 dB
工作电压	9 V (6-9 V即可正常工作)
轴伸尺寸	14.5 mm
轴向间隙	0.05 – 0.50 mm
安装螺丝孔	M 3.0
电机轴径	4 mm, D3.5
码盘参数	2个脉冲/图
备注	自带霍尔传感器、码盘测速

共 9 页 第 5 页

2.3.2 霍尔传感器

每个电机自带一个霍尔传感器用于测对应电机转速,霍尔传感器部分电源输入电压为 DC5.0V 供电,信号输出有两个端口 S1 与 S2,除可以测得转速外,还可以判断电机转动方向,在本项目中,由于只需要测得转速,只使用其中一个端口。

霍尔传感器的接线方式如下:

图 2.3-1 带霍尔传感器的电机接线方式

电机每转动一周,霍尔传感器输出两个脉冲,将信号输出 S1 或 S2 与单片机的 P3³ 引脚相连,利用 INT1(外部中断 1)方式在一定时间内对脉冲进行计数,就可以计算得到电机的转速,并通过 lcd1602 液晶显示屏进行显示。

2.3.3 电机驱动

装

订

线

本项目采用 L298N 电机驱动模块, 其实物图及各接口分布如下:

图 2.3-2 L298N 驱动模块接口

外部 12V 供电(本项目采用三节 18650 锂电池供电),供电 GND 与电源、单片机 GND 共地,同时可以输出 5V 电压用于单片机供电。

输出 A、输出 B 分别与电机正负极相连,用于给电机供电,通道 A/B 使能高电平有效,可通过输入 PWM 波控制电机的转速,逻辑输入通道共四个引脚,分别控制两个电机的正反转。

本项目采用两块 L298N 驱动模块共控制四个电机,三节 18650 锂电池并联同时给二者供电,其中一个驱动模块输出 5V 电压给单片机供电。详细接线见图 1.1-1

2.4 液晶显示屏部分设计

2.4.1 液晶显示屏选择

本项目采用 lcd1602 液晶显示屏为 5V 电压驱动,带背光,可显示两行,每行 16 个字符,能显示汉字,内置含 128 个字符的 ASCII 字符集字库,只有并行接口,无串行接口。

1602 型液晶接口信号说明如下表:

编号	符号	引脚说明	编号	符号	引脚说明	
1	vss	电源地	9	D2	数据	
2	VDD	电源正极	10	D3	数据	
3	VL	液晶显示偏压	11	D4	 数据	
4	RS	数据/命令选择	12	D 5	数据	
5	R/W	读/写选择	13	D6	数据	
6	E	使能信号	14	D 7	数据	
7	D0	数据	15	BLA	背光源正极	
8	D1	数据	16	BLK	背光源负极	

表 2.4-1 1602 型液晶接口信号说明

液晶 1,2 端为电源; 15,16 为背光电源;

液晶 3 端为液晶对比度调节端,通过一个电位器接地来调节液晶显示对比度;

液晶 4 端为向液晶控制器写数据/写命令选择端,接单片机 P3.5 口;

液晶 5 端为读/写选择端,在本项目中只相其写入命令和显示数据,所以此端口始终为写状态,即低电平接地;

液晶 6 端为使能信号,是操作时必需的信号,接单片机 P3.4 口。

2.4.2 写操作时序

装

订

线

1602 液晶写操作时序图如下:

图 2.4-1 1602 液晶写操作时序图

2.5 小车底盘部分设计

装

订

线

四个全向轮采用正方形对角排布:

图 2.5-1 全向轮发布示意图及实物图

定义图中的箭头方向为轮的正转方向。

根据运动学分解与合成,可得到小车运动的控制策略如下表:

表 2.5-2 小车运动控制策略

小车运动方式	A 轮	B轮	C轮	D轮
前进	正转	正转	正转	正转
后退	反转	反转	反转	反转
左向平移	反转	正转	反转	正转
右向平移	正转	反转	正转	反转
右前方平移	正转	不转	正转	不转
左后方平移	反转	不转	反转	不转
左前方平移	不转	正转	不转	正转
右前方平移	不转	反转	不转	反转
逆时针旋转	反转	正转	正转	反转
顺时针旋转	正转	反转	反转	正转

共 9 页 第 8 页

参考文献

- [1] 郭天祥. 51 单片机 C语言教程. 电子工业出版社, 2009.
- [2] 手柄参考代码. http://www.pudn.com/Download/item/id/3705135.html
- [3] STC12C5A60S2 系列单片机器件手册

装

订

线