

Aula 9.3

Compressão de Imagens

d.

www.imageprocessingbook.com

Image Compression

Erros Maiores

9 0 S Ш

Erros Menores

A maioria dos sistemas práticos usa a DCT

© 2002 R. C. Gonzalez & R.

Seleção do tamanho da subimagem

O processamento de imagens muito grandes se torna muito complexo computacionalmente, por isto, geralmente, as imagens são divididas em <u>blocos</u> (subimagens) e processadas individualmente

Além disso, o tamanho das subimagens é um fator significante, que afeta o erro

Tamanho dos blocos-

s

© 2002 R. C. Gonzalez & R. E. Woods

Erro de reconstrução versus tamanho da subimagem.

www.imageprocessingbook.com

Seleção do tamanho da subimagem

Original

- a) Zoom da original
- b) Aproximações de (a) usando 25% dos coeficientes da DCT e blocos 2x2
- a) blocos 4x4
- b) blocos 8x8

© 2002 R. C. Gonzalez & R. E. Woods

A transformada do Cosseno é a mais usada na prática, sendo empregada no formato JPEG, MPEG, etc.

TDC

$$C(i,j) = \alpha(i)\alpha(j) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos\left(\frac{(2x+1)i\pi}{2N}\right) \cos\left(\frac{(2y+1)j\pi}{2N}\right)$$

$$\alpha(x) = \begin{cases} \frac{1}{\sqrt{N}} & \text{se } x = 0\\ \sqrt{\frac{2}{N}} & \text{para } x = 1, 2, ..., N-1 \end{cases}$$

$$\mathbf{TDC} \ f(x,y) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \alpha(i)\alpha(j)C(i,j)\cos\left(\frac{(2x+1)i\pi}{2N}\right)\cos\left(\frac{(2y+1)j\pi}{2N}\right)$$

Codificação por Zona - Como as transformadas tendem a manter a maior parte da informação nos coeficientes próximos de 0,0, são usadas funções de mascaramento, como:

$$\chi(u,v) = \begin{cases} 0 & \text{se } T(u,v) \text{ satisfaz um critério de} \\ & \text{truncamento específico} \\ 1 & \text{caso contrário} \end{cases}$$

 $\chi(u,v) = \begin{cases} 0 & \text{se } T(u,v) \text{ satisfaz um critério de} \\ & \text{truncamento específico} \end{cases}$ $1 & \text{caso contrário} \end{cases}$

1	1	1	1	1	0	0	0
1	1	1	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0-	-1	5	-6	14	15	27	28
2	4	7	13	16	26	29	42
3	8	12	17	25	30	41	43
9	11	18	24	31	40	44	53
10	19	23	32	39	45	52	54
20	22	33	38	46	51	55	60
21	34	37	47	50	56	59	61
35	36	48	49	57	58	62	63

zig-zag

Codificação por Limiarização — Enquanto a codificação por zonas costuma ser implementada por meio de uma única máscara fixa para todas as subimagens, a codificação por limiarização é adaptativa, pois a posição dos coeficientes da transformada a serem preservados varia de uma subimagem para outra

Há três formas básicas de limiarizar uma subimagem:

- 1) Um único limiar global, a ser aplicado em todas as subimagens
- 2) Um limiar diferente para cada subimagem
- 3) O limiar pode variar em função da posição de cada coeficiente dentro da subimagem

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Matriz de Limiarização usada no JPEG - pondera cada coeficiente de uma subimagem transformada, de acordo com a sua importância perceptual e psicovisual

Seja a subimagem 8x8

52	55	61	66	70	61	64	73
63	59	66	90	109	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	63	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94

-128

-76	-73	-67	-62	-58	-67	-64	-55
-65	-69	-62	-38	-19	-43	-59	-56
-66	-69	-60	-15	16	-24	-62	-55
-65	-70	-57	-6	26	-22	-58	-59
-61	-67	-60	-24	-2	-40	-60	-58
-49	-63	-68	-58	-51	-65	-70	-53
-43	-57	-64	-69	-73	-67	-63	-45
-41	-49	-59	-60	-63	-52	-50	-34

DCT

-415	-29	-62	25	55	-20	-1	3
7	-21	-62	9	11	-7	-6	6
-46	8	77	-25	-30	10	7	-5
-50	13	35	-15	-9	6	0	3
11	-8	-13	-2	-1	1	-4	1
-10	1	3	-3	-1	0	2	-1
-4	-1	2	-1	2	-3	1	-2
-1	-1	-1	-2	-1	-1	0	-1

3	-1	-20	55	25	-62	-29	-415
6	-6	-7	11	9	-62	-21	7
-5	7	10	-30	-25	77	8	-46
3	0	6	-9	-15	35	13	-50
1	-4	1	-1	-2	-13	-8	11
-1	2	0	-1	-3	3	1	-10
-2	1	-3	2	-1	2	-1	-4
-1	0	-1	-1	-2	-1	-1	-1

exemplo

$$\hat{T}(0,0) = \operatorname{arred}\left[\frac{T(0,0)}{Z(0,0)}\right]$$
$$= \operatorname{arred}\left[\frac{-415}{16}\right] = -26$$

		_					
16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

-26	-3	-6	2	2	0	0	0
1	-2	-4	0	0	0	0	0
-3	1	5	-1	-1	0	0	0
-4	1	2	-1	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Zig-Zag

Em seguida, codifica, usando Huffman com uma tabela de códigos fixa

Codificação e decodificação Baseline JPEG Decodificação

		7					
-26	-3	-6	2	2	0	0	0
1	-2	-4	0	0	0	0	0
-3	1	5	-1	-1	0	0	0
-4	1	2	-1	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Monta a matriz a partir dos valores no arquivo

 $\dot{T}(0,0) = \hat{T}(0,0)Z(0,0) = (-26)(16) = -416$

-416	-33	-60	32	48	0	0	0
12	-24	-56	0	0	0	0	0
-42	13	80	-24	-40	0	0	0
-56	17	44	-29	0	0	0	0
18	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	O	0	0
0	0	0	0	0	0	0	0

Codificação e decodificação Baseline JPEG Decodificação

-416	-33	-60	32	48	0	0	0
12	-24	-56	0	0	0	0	0
-42	13	80	-24	-40	0	0	0
-56	17	44	-29	0	0	0	0
18	0	0	0	0	0	0	0
0	0	0	0	0	O	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

IDCT

-70	-64	-61	-64	-69	-66	-58	-50
-72	-73	-61	-39	-30	-40	-54	-59
-68	-78	-58	-9	13	-12	-48	-64
-59	-77	-57	0	22	-13	-51	-60
-54	-75	-64	-23	-13	-44	-63	-56
-52	-71	-72	-54	-54	-71	-71	-54
-45	-59	-70	-68	-67	-67	-61	-50
-35	-47	-61	-66	-60	-48	-44	-44

-70	-64	-61	-64	-69	-66	-58	-50
-72	-73	-61	-39	-30	-40	-54	-59
-68	-78	-58	-9	13	-12	-48	-64
-59	-77	-57	0	22	-13	-51	-60
-54	-75	-64	-23	-13	-44	-63	-56
-52	-71	-72	-54	-54	-71	-71	-54
-45	-59	-70	-68	-67	-67	-61	-50
-35	-47	-61	-66	-60	-48	-44	-44

+128

58	64	67	64	59	62	70	78
56	55	67	89	98	88	74	69
60	50	70	119	141	116	80	64
69	51	71	128	149	115	77	68
74	53	64	105	115	84	65	72
76	57	56	74	75	57	57	74
83	69	59	60	61	61	67	78
93	81	67	62	69	80	84	84

Original

Decodificada

~ C.		11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1					
52	55	61	66	70	61	64	73
63	59	66	90	109	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	63	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94

58	64	67	64	59	62	70	78
56	55	67	89	98	88	74	69
60	50	70	119	141	116	80	64
69	51	71	128	149	115	77	68
74	53	64	105	115	84	65	72
76	57	56	74	75	57	57	74
83	69	59	60	61	61	67	78
93	81	67	62	69	80	84	84

Original – Decodificada =

-6	-9	-6	2	11	-1	-6	-5
7	4	-1	1	11	-3	-5	3
2	9	-2	-6	-3	-12	-14	9
-6	7	0	-4	-5	-9	-7	1
-7	8	4	-1	6	4	3	-2
3	8	4	-4	2	6	1	1
2	2	5	-1	-6		-2	5
-6	-2	2	6	-4	-4	-6	10

Exemplo: compressão usando a DCT

QUANTIZAÇÃO

A TDC ocupa mais espaço do que a matriz original, pois os coeficientes da TDC são reais;

Quantização: processo de reduzir o número de bits;

É neste processo que acontece a perda da informação;

No padrão JPEG:

$$Q[i][j] = 1 + (1 + i + j) * fator_de _qualidade$$

Fator_de_qualidade: 1 a 25

$$Valor_quantizado [i][j] = \frac{DCT[i][j]}{Q[i][j]}$$

Curva de quantização

São usadas para obter os valores que dividirão os coeficientes, com o objetivo de reduzir e até eliminá-los

Em geral, os coeficientes menores são aqueles associados às altas-frequências da imagem, e que correspondem aos pequenos detalhes, que se omitidos, não causam muitas perdas.

Matriz de quantização

Image Compression

obtida com a função

$$Q[i][j] = 1 + (1 + i + j) * fator_de _qualidade$$

Ex. fator de qualidade = 2

	0	1	2	3	4	5	6	7
0	3	5	7	9	11	13	15	17
1	5	7	9	11	13	15	17	19
2	7	9	11	13	15	17	19	21
	9	11	13	15	17	19	21	23
3	11	13	15	17	19	21	23	25
4	13	15	17	19	21	23	25	27
5	15	17	19	21	23	25	27	29
	17	19	21	23	25	27	29	31
6	19	21	23	25	27	29	31	33
7	21	23	25	27	29	31	33	35

Esquema zig-zag

Usando apenas 25% dos coeficientes da DCT

Original ampliada

Bloco 2x2

Bloco 4x4

Bloco 8x8

Exemplo: compressão usando a DCT

Armazenamento e transmissão

São armazenados ou transmitidos apenas os coeficientes que possuem outros coeficientes diferentes de zero adiante.

No processo inverso, estes coeficientes são recuperados e colocados em suas respectivas posições, usando o zig-zag.

Em seguida é aplicada a desquantização

E a transformada inversa

Com certeza ocorrem erros, mas, em geral, são aceitáveis

O padrão JPEG ainda inclui a codificação de Huffman no processo

Exemplo: compressão usando a DCT

Fator de qualidade 2

(BMP)193kbytes

Compression Level

JPG(50)12kbytes

© 2002 R. C. Gonzalez & R. E. Woods

JPG(1)58kbytes

JPG(15)24kbytes

JPG(50)12kbytes

JPG(99)3kbytes

Compressão de vídeos

- As técnicas usadas com imagens, foram adaptadas para fazer a compressão de vídeos, que consideram as modificações de tons e cores nos frames (imagens), de um pixel para o outro e, também, de um frame para o outro
- exemplo: JPEG para imagens
 MPEG para vídeos

Prática para entregar

1) Suponha a imagem 8x8 em que cada valor representa um tom de cinza $(0\rightarrow15)$, ou seja 4 bits por pixel

0	0	0	0	1	6	6	6
0	0	0	0	1	5	5	5
0	0	0	0	3	3	3	3
2	2	2	2	3	3	4	4
4	7	7	7	8	8	9	9
7	7	7	7	8	8	9	9
7	7	7	7	10	10	11	11
12	12	13	13	14	14	15	15

a) Calcule o tamanho total desta imagem **em bits**

	0	0	0	1	6	6	6
0	0	0	0	1	5	5	5
0	0	0	0	3	3	3	3
2	2	2	2	3	3	4	4
4	7	7	7	8	8	9	9
7	7	7	7	8	8	9	9
7	7	7	7	10	10	11	11
12	12	13	13	14	14	15	15

b) Aplique o RLE e calcule o tamanho (Suponha a imagem sendo um vetor obtido, juntando todas as linhas da matriz - de cima para baixo) e obtenha o tamanho <u>em</u> <u>bits</u>

Use byte para as quantidades Use Nyble para as tonalidades

*Nibble ou Nyble