Finding High-Quality Content in Social Media

Proceedings of the 2008 International Conference on Web Search and Data Mining. ACM, 2008. Eugene Agichtein et al.

Identifying Topical Authorities in Microblogs

Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM, 2011. Aditya Pal and Scott Counts

Presented by Matt Chaney CS 834 - Presentation 5

Web is Changing

1990s - traditional content producers / consumers

2000s - user-generated content → "pro-sumers"

- Blogs
- Photo/Video sharing
- Social Networking
- Question / Answer
 - Yahoo! Answers

Focus on Question/Answer

 Quality of content - traditional content quality range is much narrower than unmediated, user-generated content

- Additional content sources
 - Document content
 - Link analysis
 - User-to-document relation types
 - User-to-user interactions

How to find high quality question/answer content?

Study Outline

- Three key questions:
 - 1. What are the elements of social media that can be used to facilitate automated discovery of high-quality content?
 - 2. How are these different factors related? Is content alone enough for identifying high-quality items?
 - 3. Can community feedback approximate judgments of specialists?
- First large-scale study combining content analysis with user-generated content
- Model user-interactions with graph-based framework
- Combine evidence from many sources into overall quality classification

Yahoo! Answers

- Users ask questions / provide answers on any topic
- Actively regulate the system through democratic quality management
 - Mark an "interesting" question
 - Vote on answers thumbs up / down
 - o Report offensive / inappropriate behavior
- Users have threefold role
 - 1. Asker
 - 2. Answerer
 - 3. Regulator
- Results in a heterogeneous web of social interactions

Question Lifecycle

- Question is Open about 90,000 questions per day
- Other users submit answers
- Question becomes Closed
 - Asker closes question to more answers
 - Time limit reached 4 (or 8) days
- Question becomes Resolved
 - Other users vote on the best answer
 - Asker selects best answer

Related Work

- Link Analysis in Social Media
- Propagating Reputation
- Question / Answering Portals
- Expert Finding
- Content Quality Text Analysis
- Implicit Feedback Ranking

Hue scale representing node betweenness on a graph. Claudio Rocchini. CC-BY 2.5. 2007.

Identifying Quality Content

- Intrinsic content quality, primarily text-related
 - Punctuation / typos
 - Syntactic and semantic complexity
 - Grammaticality
- User relationships
 - Answerer (u) answers user (v) question $U \rightarrow V$
- Usage statistics
 - Click count / dwell time
- Classification → High Quality vs The Rest

A directed, acyclic graph (DAG). Maat. Public Domain. 2010.

User Relationships

Figure 1. Partial entity-relationship diagram of answers. Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Figure 2: Interaction of users-questions-answers modeled as a tri-partite graph. Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Answer Feature Space Answers to questions asked Answer being Questions asked evaluated Answers given Answerer Votes given Asker of question being answered Other answers to the same question Question being answered

Figure 3: Types of features available for inferring the quality of an answer. Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Question Feature Space

Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Implicit User-User Relationships

Graph G = (V, E)

- \bullet V = users
- $E = edges connecting users \rightarrow E = \{ E_a \cup E_b \cup E_v \cup E_s \cup E_t \cup E_s \}$
- Apply HITS and PageRank on each graph

Graph $G_x = (V, E_x)$

- h_{\downarrow} + HITS Hub scores
- a_{\downarrow} + HITS Authority scores
- p_x → PageRank scores

QA Features

- Content
 - Directly use semantic features
 - Rely on classifier to identify the most salient features
 - Model the relationship between question and answer
 - KL-divergence between LM of two texts
 - Non-stopword overlap
 - Ratio between lengths

- Usage Features
 - Question-Answer page click count
 - Temporal statistics
 - Categorical click expectations

Experimental Setup

- 6,665 questions
- 8,366 Question-Answer pairs
- Labeled for quality by human editors
 - Well-formedness
 - Readability
 - Utility
 - Interestingness
 - Answers → Correctness
 - Type association → Informational, advice, opinion, poll
- Agreement for "question quality" $\rightarrow \kappa = 0.68$
- 10-Fold cross validation
- 80% used as training

Graph Analysis for Finding Relationships

Figure 5: Sketch showing how do we find related questions and answers. Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Statistics

Question Quality Results

	High qual.		Normal/low qual.		
Method	Р	R	P	R	AUC
Text (Baseline)	0.654	0.481	0.762	0.867	0.523
Usage	0.594	0.470	0.755	0.836	0.508
Relation	0.694	0.603	0.806	0.861	0.614
Intrinsic	0.746	0.650	0.829	0.885	0.645
T+Usage	0.683	0.571	0.798	0.865	0.575
T+Relation	0.739	0.647	0.828	0.881	0.659
T+Intrinsic	0.757	0.650	0.830	0.891	0.648
T+Intr.+Usage	0.717	0.690	0.845	0.861	0.686
T+Relation+Usage	0.722	0.690	0.845	0.865	0.679
T+Intr.+Relation	0.798	0.752	0.874	0.901	0.749
All	0.794	0.771	0.885	0.898	0.761

Table 2: Precision P, Recall R, and Area Under the ROC Curve for the task of finding high-quality questions. Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Receiver Operating Characteristic (ROC) Results

Figure 8. ROC curve for the best-performing classifier, for the task of finding high-quality questions (left) and high-quality answers (right). Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Finding High-Quality Content in Social Media

Proceedings of the 2008 International Conference on Web Search and Data Mining. ACM, 2008. Eugene Agichtein et al.

Identifying Topical Authorities in Microblogs

Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM, 2011. Aditya Pal and Scott Counts

Presented by Matt Chaney CS 834 - Presentation 5

Advent of Microblogging

Short, simple messaging services, in the form of a blog, but on a much smaller scale

Study Goals

- Huge number of content producers
 - + Great diversity
 - Finding quality difficult
- Identify *topical* authorities
 - Avoid overgeneralized, well-known authorities, e.g. news outlets
 - Topical authority authors may not exist until an event occurs
- Graph analysis metrics insufficient
 - Sensitive to celebrity authors
 - Computationally infeasible for large-sized datasets in real time
- Algorithm that finds topical authorities automatically in near real-time using clustering

Related Work

- TwitterRank
 - Latent Dirichlet Allocation
 - Weighted user graph → weight = topical similarity
 - Variant of PageRank
 - Method differs in using **clustering** over graph analysis and using additional **author features**
- PageRank; HITS
- Prior automatic authority identification
 - Community Question and Answering
- Most prior work dominated by computationally expensive network analysis approaches

Authority Features

- Focus on message impact metrics
 - Original Tweet (OT)
 - Conversational Tweet (CT)
 - Repeated Tweet (RT)
 - Mentions (M)
 - Graph Characteristics (G)
- Self Similarity $S(s1, s2) = \frac{|s1 \cap s2|}{|s1|}$

$$S(a) = \frac{2 \cdot \sum_{i=1}^{n} \sum_{j=1}^{i-1} S(s_i, s_j)}{(n-1) \cdot n}$$

ID	Feature			
OT1	Number of original tweets			
OT2	Number of links shared			
OT3	Self-similarity score that computes how similar			
	is author's recent tweet w.r.t. to her previous			
	tweets			
OT4	Number of keyword hashtags used			
CT1	Number of conversational tweets			
CT2	Number of conversational tweets where conver-			
	sation is initiated by the author			
RT1	Number of retweets of other's tweet			
RT2	Number of unique tweets $(OT1)$ retweeted by			
	other users			
RT3	Number of unique users who retweeted author's			
	tweets			
M1	Number of mentions of other users by the au-			
	thor			
M2	Number of unique users mentioned by the au-			
	thor			
M3	Number of mentions by others of the author			
M4	Number of unique users mentioning the author			
G1	Number of topically active followers			
G2	Number of topically active friends			
G3	Number of followers tweeting on topic after the			
	author			
G4	Number of friends tweeting on topic before the			
	author			

Table 1: List of metrics of potential authorities.

Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Feature List

Topical signal
$$(TS) = \frac{OT1 + CT1 + RT1}{|\# \text{ tweets}|}$$

Signal strength
$$(SS) = \frac{OT1}{OT1 + RT1}$$

Non-Chat signal
$$(\bar{C}S) = \frac{OT1}{OT1 + CT1} + \lambda \frac{CT1 - CT2}{CT1 + 1}$$

$$\lambda < \frac{OT1}{OT1 + CT2} \cdot \frac{CT1 + 1}{OT1 + CT1}$$

ID	Feature				
$\overline{OT1}$	Number of original tweets				
OT2	Number of links shared				
OT3	Self-similarity score that computes how similar				
	is author's recent tweet w.r.t. to her previous				
	tweets				
OT4	Number of keyword hashtags used				
CT1	Number of conversational tweets				
CT2	Number of conversational tweets where conver-				
	sation is initiated by the author				
RT1	Number of retweets of other's tweet				
RT2	Number of unique tweets $(OT1)$ retweeted by				
	other users				
RT3	Number of unique users who retweeted author's				
	tweets				
$\overline{M1}$	Number of mentions of other users by the au-				
	thor				
M2	Number of unique users mentioned by the au-				
	thor				
M3	Number of mentions by others of the author				
M4	Number of unique users mentioning the author				
$\overline{G1}$	Number of topically active followers				
G2	Number of topically active friends				
G3	Number of followers tweeting on topic after the				
	author				
G4	Number of friends tweeting on topic before the				
	author				

Table 1: List of metrics of potential authorities.

Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Feature List

Retweet impact $(RI) = RT2 \cdot \log(RT3)$

Network score $(NS) = \log(G1+1) - \log(G2+1)$

Information diffusion $(ID) = \log(G3+1) - \log(G4+1)$

Mention impact $(MI) = M3 \cdot \log(M4) - M1 \cdot \log(M2)$

ID	Feature				
$\overline{OT1}$	Number of original tweets				
OT2	Number of links shared				
OT3	Self-similarity score that computes how similar				
	is author's recent tweet w.r.t. to her previous				
	tweets				
OT4	Number of keyword hashtags used				
CT1	Number of conversational tweets				
CT2	Number of conversational tweets where conver-				
	sation is initiated by the author				
RT1	Number of retweets of other's tweet				
RT2	Number of unique tweets $(OT1)$ retweeted by				
	other users				
RT3	Number of unique users who retweeted author's				
	tweets				
M1	Number of mentions of other users by the au-				
	thor				
M2	Number of unique users mentioned by the au-				
	thor				
M3	Number of mentions by others of the author				
M4	Number of unique users mentioning the author				
G1	Number of topically active followers				
G2	Number of topically active friends				
G3	Number of followers tweeting on topic after the				
	author				
G4	Number of friends tweeting on topic before the				
	author				

Table 1: List of metrics of potential authorities.

Finding High-Quality Content in Social Media. Eugene Agichtein et al. 2008.

Gaussian Mixture Model

Group users into two clusters over entire feature space

Probabilistic model

Reduce the size of the target cluster (most authoritative users)

Less sensitive to outliers (celebrities)

Maximizing Likelihood of the data

Consider n data points $x = \{x_1, x_2, ..., x_n\}$ in d-dimensional space density of a point x:

$$p(x|\pi,\Theta) = \sum_{z=1}^{k} p(z|\pi) \cdot p(x|\theta_z)$$

With Θ = { θ_z : $1 \le z \le k$ } as model parameters of k Gaussian distributions i.e. θ_z = { μ_z , Σ_z }

$$p(x|\theta_z) = \frac{1}{((2\pi)^d |\Sigma_z|)^{\frac{1}{2}}} \exp\{-\frac{1}{2}(x-\mu_z)^T \Sigma_z^{-1} (x-\mu_z)\}$$

Expectation Maximization Overview

Assuming points are independent and identically distributed (i.i.d.), likelihood is:

$$p(\mathbf{x}|\pi, \Theta) = \prod_{i=1}^{n} P(x_i|\pi, \Theta)$$
$$= \prod_{i=1}^{n} \sum_{z=1}^{k} p(z|\pi) \cdot p(x_i|\theta_z)$$

Expectation Maximization (EM) - Iterative algorithm with 2 steps

- 1. E-Step \Rightarrow Compute probability of k Gaussian components given data points using Bayes' theorem
- 2. M-Step → Compute model parameters to maximize the likelihood of the data

Expectation Maximization Steps

1. E-Step

$$p(z|x_i, \pi, \Theta) = \frac{p(x_i|\theta_z) \cdot p(z|\pi)}{\sum_{z=1}^k p(x_i|\theta_z) \cdot p(z|\pi)}$$

2. M-Step

$$\mu_z = \frac{\sum_{i=1}^{n} x_i \cdot p(z|x_i, \pi, \Theta)}{\sum_{i=1}^{n} p(z|x_i, \pi, \Theta)}$$

$$\Sigma_z = \frac{\sum_{i=1}^{n} (x_i - \mu_z) \cdot (x_i - \mu_z)^T \cdot p(z|x_i, \pi, \Theta)}{\sum_{i=1}^{n} p(z|x_i, \pi, \Theta)}$$

$$p(z|\pi) = \frac{\sum_{i=1}^{n} p(z|x_i, \pi, \Theta)}{\sum_{z=1}^{k} \sum_{i=1}^{n} p(z|x_i, \pi, \Theta)}$$

Ranking within clusters

Gaussian Ranking Algorithm

$$R_G(x_i) = \prod_{f=1}^d \int_{-\infty}^{x_i^f} N(x; \mu_f, \sigma_f)$$

- N (x; μ_f , σ_f) is the univariate Gaussian distribution with model parameters as μ_f and σ_f
- Computes Gaussian Cumulative Distribution (GCD)
 - Monotonically increasing function, useful for ranking
 - Scoring can be high or low with modification to the integral

Dataset

- All tweets posted from June 6th 2010 to June 10th 2010
- 89,622,039 tweets in total
- Three topics

	U	OT	CT	RT
iphone	430,245	658,323	242,000	$129,\!560$
oil spill	64,892	111,000	8,140	29,224
world cup	44,387	308,624	28,612	47,837

Table 2: Dataset statistics. IUI, IOTI, ICTI, IRTI are overall count of users, original tweets, conversational tweets and retweets, respectively. Identifying Topical Authorities in Microblogs. Aditya Pal and Scott Counts. 2011.

Baselines for Comparison

• our - The authors' model

• **b1** - Graph Properties { RI, MI, ID, NS }

• **b2** - Textual Properties { TS, SS, CS }

• **b3** - Random selection of authors that fall outside target cluster

Evaluation - User Study

Comparison of our vs three baselines b1, b2, and b3

48 participants

- Users presented with 40 screens
 - o 20 anonymous author
 - o 20 author shown

Validated statistical significance of results using one-sided paired t-tests

Results

Figure 3: Average ratings per model per participating user. Identifying Topical Authorities in Microblogs. Aditya Pal and Scott Counts. 2011.