Systèmes multi-corps et paramétrage cartésien

Modélisation et simulation dynamique

- Déterminer les équations de mouvement d'un système étant données les actions externes qui s'appliquent dessus
- Equations de mvt : système algébro-différentielle
- Savoir comment prendre en compte les différentes forces et les intégrer dans les équations de Lagrange
- Savoir comment calculer les forces de réaction dans chaque liaison reliant deux corps
- Savoir étudier les configurations d'équilibre, analyse leur stabilité, la réponse temporelle du système linéarisé
- Résoudre numériquement le système d'équation algébro-différentiel

Problèmes typiques en analyse et simulation multi-corps

- Géométrique : problème d'assemblage
- Cinématique : analyse des vitesses et accélérations
- Dynamique : problème direct
- Dynamique : problème inverse
- Statique : analyse des équilibres, stabilité
- Dynamique : analyse linéaire vibratoire

Paramétrage cartésien : Problème plan

Dans le plan, le paramétrage cartésien d'un solide i est $\mathbf{q}^i = [r_x^i, r_u^i, \theta^i]^T$

- \blacksquare Position : $\mathbf{r}^i = (r_x^i, r_y^i)$
- lacksquare Orientation : $heta^i$

Pour un système à N corps mobiles, le vecteur des paramètres cartésiens

$$\mathbf{q} = [\mathbf{q}^1, ..., \mathbf{q}^N]^T = [r_x^1, r_y^1, \theta^1, ..., r_x^N, r_y^N, \theta^N]^T$$

Rappel sur les Notations

Pour un point P attaché au corps i, le vecteur \vec{u}_P admet comme composantes

- lacksquare dans \mathcal{R}^i , le vecteur constant $ar{\mathbf{u}}_P^i$
- lacksquare dans \mathcal{R}^0 , le vecteur \mathbf{u}_P^i

avec

$$\mathbf{u}_P^i = \mathbf{R}^i \bar{\mathbf{u}}_P^i$$

$$\mathbf{r}_P = \mathbf{r}^i + \mathbf{R}^i \bar{\mathbf{u}}_P^i$$

avec \mathbf{R}^i la matrice rotation du corps i par rapport au référentiel fixe

$$\mathbf{R}^{i} = \begin{pmatrix} \cos \theta^{i} & -\sin \theta^{i} \\ \sin \theta^{i} & \cos \theta^{i} \end{pmatrix}$$

Problème plan : Contraintes d'une liaison pivot

La contrainte d'une liaison pivot dans le plan : 2 points coïncidants à tout instant

$$\mathbf{r}_{P^i} = \mathbf{r}_{P^j}$$

$$\mathbf{\Phi}(\mathbf{q}^i, \mathbf{q}^j) = \mathbf{r}^i + \mathbf{R}^i \bar{\mathbf{u}}_{P^i} - \mathbf{r}^j - \mathbf{R}^j \bar{\mathbf{u}}_{P^j} = \mathbf{0}$$

On note $\bar{\mathbf{u}}_{P^i} = [\bar{x}_{P^i} \ \bar{y}_{P^i}]^T$, $\bar{\mathbf{u}}_{P^j} = [\bar{x}_{P^j} \ \bar{y}_{P^j}]^T$ deux vecteurs constants. On obtient deux équations scalaires de la forme

$$\left\{ \begin{array}{l} r_x^i + \bar{x}_{p^i}\cos\theta^i - \bar{y}_{p^i}\sin\theta^i - r_x^j - \bar{x}_{p^j}\cos\theta^j + \bar{y}_{p^j}\sin\theta^j = 0 \\ r_y^i + \bar{x}_{p^i}\sin\theta^i + \bar{y}_{p^i}\cos\theta^i - r_y^j - \bar{x}_{p^j}\sin\theta^j - \bar{y}_{p^j}\cos\theta^j = 0 \end{array} \right.$$

La dérivées par rapport au temps de cette contrainte

$$\begin{bmatrix} \mathbf{I} & \mathbf{R}_{\theta}^{i} \bar{\mathbf{u}}_{P^{i}} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{r}}^{i} \\ \dot{\theta}^{i} \end{bmatrix} - \begin{bmatrix} \mathbf{I} & \mathbf{R}_{\theta}^{j} \bar{\mathbf{u}}_{P^{j}} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{r}}^{j} \\ \dot{\theta}^{j} \end{bmatrix} = \mathbf{0}$$

soit

$$\dot{\mathbf{\Phi}}(\mathbf{q}^i,\mathbf{q}^j,\dot{\mathbf{q}}^i,\dot{\mathbf{q}}^j) = egin{bmatrix} \mathbf{I} & \mathbf{R}^i_ heta \ddot{\mathbf{u}}_{P^i} \end{bmatrix} \dot{\mathbf{q}}^i - egin{bmatrix} \mathbf{I} & \mathbf{R}^j_ heta \ddot{\mathbf{u}}_{P^j} \end{bmatrix} \dot{\mathbf{q}}^j &= \mathbf{0} \end{bmatrix}$$

avec

$$\mathbf{R}_{\theta}^{i} = \frac{\partial \mathbf{R}^{i}}{\partial \theta^{i}} = \begin{pmatrix} -\sin \theta^{i} & -\cos \theta^{i} \\ \cos \theta^{i} & -\sin \theta^{i} \end{pmatrix}$$

Ce qui permet de déduire les termes de la jacobienne des équations de contraintes

$$\frac{\partial \boldsymbol{\Phi}}{\partial \mathbf{q}^i} = \begin{bmatrix} \mathbf{I} & \mathbf{R}_{\theta}^i \bar{\mathbf{u}}_{P^i} \end{bmatrix} \qquad \quad \frac{\partial \boldsymbol{\Phi}}{\partial \mathbf{q}^j} = -\begin{bmatrix} \mathbf{I} & \mathbf{R}_{\theta}^j \bar{\mathbf{u}}_{P^j} \end{bmatrix}$$

$$\underbrace{ \begin{bmatrix} \mathbf{o}_{2,3} & \cdots & \mathbf{o}_{2,3} & \mathbf{I}_2 & \mathbf{R}_{\theta}^i \ddot{\mathbf{u}}_{P^i} & \mathbf{o}_{2,3} & \cdots & \mathbf{o}_{2,3} & -\mathbf{I}_2 & -\mathbf{R}_{\theta}^j \ddot{\mathbf{u}}_{P^j} & \mathbf{o}_{2,3} & \cdots & \mathbf{o}_{2,3} \end{bmatrix}}_{\mathbf{\Phi}_{\mathbf{q}}} = \mathbf{0}$$

Dans le cas où le corps i est relié au bâti au point P^i , la contrainte s'écrit par

$$\mathbf{r}^i + \mathbf{R}^i \bar{\mathbf{u}}_{P^i} - \mathbf{c} = \mathbf{0}$$

où c est un vecteur constant et la Jacobienne associée

Problème plan : Contraintes d'une liaison glissière

1ière contrainte : Orientation relative constante

$$\theta^i - \theta^j - \mathsf{cte} = 0$$

Les dérivées partielles de cette contrainte

$$\frac{\partial \Phi}{\partial \mathbf{r}^i} = \mathbf{0}$$

$$\frac{\partial \Phi}{\partial \theta^i} = 1$$

$$\frac{\partial \Phi}{\partial \mathbf{r}^j} = \mathbf{0}$$

$$\frac{\partial \Phi}{\partial \theta^j} = -$$

2nd contrainte : un point du solide j sur une droite du solide i

$$\mathbf{h}^i \times \mathbf{d} = 0$$

avec

$$\mathbf{d} = \mathbf{r}_{P^i} - \mathbf{r}_{P^j}$$
$$= \mathbf{r}^i + \mathbf{R}^i \bar{\mathbf{u}}_{P^i} - \mathbf{r}^j - \mathbf{R}^j \bar{\mathbf{u}}_{P^j}$$

$$\begin{aligned} \mathbf{h}^i &=& \mathbf{r}_{P^i} - \mathbf{r}_{Q^i} \\ &=& \mathbf{r}^i + \mathbf{R}^i \bar{\mathbf{u}}_{P^i} - \mathbf{r}^i - \mathbf{R}^i \bar{\mathbf{u}}_{Q^i} \\ &=& \mathbf{R}^i (\bar{\mathbf{u}}_{P^i} - \bar{\mathbf{u}}_{Q^i}) \end{aligned}$$

$$\Phi(\mathbf{q}^i, \mathbf{q}^j) = \mathbf{R}^i (\bar{\mathbf{u}}_{P^i} - \bar{\mathbf{u}}_{Q^i}) \times (\mathbf{r}^i + \mathbf{R}^i \bar{\mathbf{u}}_{P^i} - \mathbf{r}^j - \mathbf{R}^j \bar{\mathbf{u}}_{P^j})$$

La Jacobienne de cette contrainte scalaire peut être remplie à partir des dérivées partielles

$$\begin{array}{lcl} \frac{\partial \Phi}{\partial \mathbf{r}^{i}} & = & \mathbf{S}(\mathbf{R}^{i}(\bar{\mathbf{u}}_{P^{i}} - \bar{\mathbf{u}}_{Q^{i}})) \\ \frac{\partial \Phi}{\partial \theta^{i}} & = & \mathbf{R}^{i}_{\theta}(\bar{\mathbf{u}}_{P^{i}} - \bar{\mathbf{u}}_{Q^{i}}) \times \left(\mathbf{r}^{i} + \mathbf{R}^{i}\bar{\mathbf{u}}_{P^{i}} - \mathbf{r}^{j} - \mathbf{R}^{j}\bar{\mathbf{u}}_{P^{j}}\right) + \\ & & \mathbf{R}^{i}(\bar{\mathbf{u}}_{P^{i}} - \bar{\mathbf{u}}_{Q^{i}}) \times \mathbf{R}^{i}_{\theta}\bar{\mathbf{u}}_{P^{i}} \\ \frac{\partial \Phi}{\partial \mathbf{r}^{j}} & = & -\mathbf{S}(\mathbf{R}^{i}(\bar{\mathbf{u}}_{P^{i}} - \bar{\mathbf{u}}_{Q^{i}})) \\ \frac{\partial \Phi}{\partial \theta^{j}} & = & -\mathbf{R}^{i}(\bar{\mathbf{u}}_{P^{i}} - \bar{\mathbf{u}}_{Q^{i}}) \times \mathbf{R}^{j}_{\theta}\bar{\mathbf{u}}_{P^{j}} \end{array}$$

En dimension 2, la matrice du préproduit vectoriel $\mathbf{S}(\mathbf{v}) = [-v_y \ v_x]$.

Problème plan : Contrainte d'une liaison appui mobile

Problème spatial : Paramétrage de l'orientation

Rappel: Quaternion fonction de l'axe de rotation \vec{v} et l'angle θ

$$\mathbf{p} = [\cos\frac{\theta}{2}, v_1 \sin\frac{\theta}{2}, v_2 \sin\frac{\theta}{2}, v_3 \sin\frac{\theta}{2}]^T$$

$$\mathbf{R} = \begin{bmatrix} 2[(p_1)^2 + (p_2)^2] - 1 & 2(p_2p_3 - p_1p_4) & 2(p_2p_4 + p_1p_3) \\ 2(p_2p_3 + p_1p_4) & 2[(p_1)^2 + (p_3)^2] - 1 & 2(p_3p_4 - p_1p_2) \\ 2(p_2p_4 - p_1p_3) & 2(p_3p_4 + p_1p_2) & 2[(p_1)^2 + (p_4)^2] - 1 \end{bmatrix}$$

Propriétés différentielles

- Factorisation : $\mathbf{R} = \frac{1}{4}\mathbf{G}\bar{\mathbf{G}}^T$,
- Différentiation : $\dot{\mathbf{R}} = \frac{1}{2}\dot{\mathbf{G}}\bar{\mathbf{G}}^T$
- Vitesse angulaire $\vec{\omega}(i/0)$: dans \mathcal{R}_0 , $\boldsymbol{\omega} = \mathbf{G}\dot{\mathbf{p}}$, dans \mathcal{R}_i . $\bar{\boldsymbol{\omega}} = \bar{\mathbf{G}}\dot{\mathbf{p}}$

G, G linéaire en fonction de p

$$\mathbf{G} = 2 \begin{bmatrix} -p_2 & p_1 & -p_4 & p_3 \\ -p_3 & p_4 & p_1 & -p_2 \\ -p_4 & -p_3 & p_2 & p_1 \end{bmatrix}$$

$$\mathbf{G} = 2 \begin{bmatrix} -p_2 & p_1 & p_4 & -p_3 \\ -p_3 & -p_4 & p_1 & p_2 \\ -p_4 & p_3 & -p_2 & p_1 \end{bmatrix}$$

$$\mathbf{\tilde{G}} = 2 \begin{bmatrix} -p_2 & p_1 & p_4 & -p_3 \\ -p_3 & -p_4 & p_1 & p_2 \\ -p_4 & p_3 & -p_2 & p_1 \end{bmatrix}$$

Problème spatiale : Contraintes d'une liaison rotule

2 points coincidants à tout instant

$$\mathbf{r}_{P^i} = \mathbf{r}_{P^j}$$

$$\mathbf{\Phi}(\mathbf{q}^i, \mathbf{q}^j) := \mathbf{r}^i + \mathbf{R}^i \bar{\mathbf{u}}_{P^i} - \mathbf{r}^j - \mathbf{R}^j \bar{\mathbf{u}}_{P^j}$$

La dérivée % temps

Problème spatiale : Contraintes d'une liaison Cardan

Contrainte d'une liaison rotule

$$\mathbf{r}_{P^i} = \mathbf{r}_{P^j}$$

+ orthogonalité des 2 axes du croisillon

$$\Phi := \mathbf{h}^i.\mathbf{h}^j$$

Problème spatiale : Contraintes d'une liaison pivot-glissant

2 vecteurs colinéaires

$$\Phi_1 := \mathbf{h}^i \times \mathbf{h}^j$$

Un point P^i de i sur une droite (P^j,\mathbf{h}^j) de j

$$\begin{split} \boldsymbol{\Phi}_2 &:= & (\mathbf{r}_{P^i} - \mathbf{r}_{P^j}) \times \mathbf{h}^j \\ &= & (\mathbf{r}^i + \mathbf{R}^i \bar{\mathbf{u}}_{P^i} - \mathbf{r}^j - \mathbf{R}^j \bar{\mathbf{u}}_{P^j}) \times \mathbf{h}^j \end{split}$$

P hi

et leurs dérivées par rapport au temps

$$\begin{split} \dot{\boldsymbol{\Phi}}_1 &:= & \dot{\mathbf{h}}^i \times \mathbf{h}^j + \mathbf{h}^i \times \dot{\mathbf{h}}^j = \mathbf{S}(\mathbf{h}^j) \; \mathbf{S}(\mathbf{h}^i) \; \mathbf{G}^i \; \dot{\mathbf{p}}^i - \mathbf{S}(\mathbf{h}^i) \; \mathbf{S}(\mathbf{h}^j) \; \mathbf{G}^j \; \dot{\mathbf{p}}^j \\ \dot{\boldsymbol{\Phi}}_2 &:= - \mathbf{S}(\mathbf{h}^j) \left(\dot{\mathbf{r}}^i - \mathbf{S}(\mathbf{u}_{P^i}) \mathbf{G}^i \dot{\mathbf{p}}^i - \dot{\mathbf{r}}^j + \mathbf{S}(\mathbf{u}_{P^j}) \mathbf{G}^j \dot{\mathbf{p}}^j \right) - \mathbf{S}(\mathbf{r}_{P^i} - \mathbf{r}_{P^j}) \mathbf{S}(\mathbf{h}^j) \mathbf{G}^j \dot{\mathbf{p}}^j \end{split}$$

Problème spatiale : Contraintes d'une liaison pivot

Contrainte d'une liaison rotule

+

2 vecteurs colinéaires

$$\Phi := \mathbf{h}^i \times \mathbf{h}^j$$

Problème spatiale : Contraintes d'une liaison glissière

Contrainte d'une liaison pivot glissant

Une contrainte bloquant la rotation (angle constant)

$$\Phi := \mathbf{s}^i.\mathbf{s}^j - \mathsf{Cte}$$

Analyse de la mobilité

L'ensemble des n_c contraintes dans les liaisons regroupées : $\Phi(\mathbf{q}) = \mathbf{0}$ Pour vérifier si ces équations sont dépendantes ou non, il faut les dériver par rapport au temps

$$\dot{\Phi}(\mathbf{q}) = \underbrace{\left[\frac{\partial \Phi}{\partial \mathbf{q}}\right]}_{\Phi_{\mathbf{q}}} \dot{\mathbf{q}} = \mathbf{0}$$

$$\boxed{\Phi_{\mathbf{q}} \dot{\mathbf{q}} = \mathbf{0}}$$

La mobilité (Nbre param. cin. indép.)
$$\boxed{m = \underbrace{dN_C}_{\text{3,6 x Nb corps}} - \underbrace{\text{rg}(\Phi_{\mathbf{q}})}_{\text{Nb cont. indép.}}}$$

Le modèle statique $|\mathbf{\Phi}_{\mathbf{q}}^T\mathbf{f} = \mathbf{w}|$

- f forces dans les liaisons associées aux contraintes Φ . $\mathbf{f} \equiv \lambda$ (multiplicateurs de Lagrange)
- $\mathbf{w} = [(\mathbf{w}^1)^T, \dots, (\mathbf{w}^N)^T]^T, \mathbf{w}^i$ torseurs des forces externes appliquées au corps i,

Mobilité et hyperstatisme

L'hyperstatisme (nombre de contraintes surabondantes) est donc

$$h = \dim(\mathbf{\Phi}) - \operatorname{rg}(\mathbf{\Phi}_{\mathbf{q}})$$

sachant que $\operatorname{rg}(\mathbf{\Phi}_{\mathbf{q}}) = \operatorname{rg}(\mathbf{\Phi}_{\mathbf{q}}^T)$.

En paramétrage cartésien, l'indice de mobilité (Gruebler)

$$i_m = \dim(\mathbf{q}) - \dim(\mathbf{\Phi}) = n - n_c$$

la mobilité étant

$$m = \dim(\mathbf{q}) - \operatorname{rg}(\mathbf{\Phi}_{\mathbf{q}})$$

On vérifie bien

$$i_m = m - h$$

Configurations singulières (des mécanismes)

ullet Singularité de type **bifurcation** : dégénérescence locale du rang de la Jacobienne $(\Phi_{f q})$

• Singularité de type **blocage** : \exists une sous-matrice de $\Phi_{\mathbf{q}}(\mathbf{q}^*)$ de dimension $r \times r, r < \mathsf{rg}(\Phi_{\mathbf{q}})$ dont le déterminant est nul.

Mécanisme : Problème d'assemblage

Ce problème consiste à déterminer tous les paramètres du système étant données les paramétres indépendants \mathbf{q}_i . Il faut donc résoudre en \mathbf{q}_d

$$\Phi(\mathbf{q}_{\mathrm{de}},\mathbf{q}_{\mathrm{in}})=\mathbf{0}$$

Supposons que les n_c contraintes sont indépendantes, donc les nombres de paramétres indépendants et dépendants sont $n-n_c$ et n_c . Cela revient à résoudre un système à n_c équations et n_c inconnues, qui

peut être résolu avec l'algorithme itératif Newton-Raphson.

Résoudre en
$$\mathbf{x} = \mathbf{q}_{\mathrm{de}}$$
 l'éq. vectorielle $\mathbf{\Phi}(\mathbf{x}) = 0$

l'algorithme itératif de Newton-Raphson s'écrit

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \mathbf{\Phi_x}^{-1}(\mathbf{x}_i)\mathbf{\Phi}(\mathbf{x}_i)$$

où ${\Phi_{\mathbf{x}}}^{-1}(\mathbf{x}_i)$ est la matrice inverse de la jacobienne $\Phi_{\mathbf{x}} = \frac{\partial \Phi}{\partial \mathbf{x}}$, évaluée en $\mathbf{x} = \mathbf{x}_i$.

Pb plan : Matrice masse en paramétrage cartésien

Rappelons le paramétrage suivant

$$\mathbf{q} = [\mathbf{q}^1, ..., \mathbf{q}^N]^T = [r_x^1, r_y^1, \theta^1, ..., r_x^N, r_y^N, \theta^N]^T.$$

Si O^i est au au centre de gravité, l'énergie cinétique du corps i,

$$E_c^i = \frac{1}{2}m^i((\dot{r}_x^i)^2 + (\dot{r}_y^i)^2) + \frac{1}{2}I^i(\dot{\theta}^i)^2$$
 $E_c = \sum_{i=1}^N E_c^i$

 I^i est le moment d'inertie du corps i par rapport à l'axe $(O^i, \vec{z_0})$. La matrice masse s'écrit donc

$$\mathbf{M} = \left(\begin{array}{cccc} \mathbf{M}^1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^2 & & \mathbf{0} \\ \vdots & & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{M}^N \end{array} \right) = \mathbf{Cte} \quad \text{avec} \quad \mathbf{M}^i = \left(\begin{array}{cccc} m^i & 0 & 0 \\ 0 & m^i & 0 \\ 0 & 0 & I^i \end{array} \right)$$

Pb plan : Eq. de mouvement en paramétrage cartésien

$$\mathbf{M} = \mathsf{Cte} \qquad \Rightarrow \qquad \mathbf{Q}_v = -\dot{\mathbf{M}}\dot{\mathbf{q}} + \left(\frac{\partial E_c}{\partial \mathbf{q}}\right)^T = \mathbf{0}$$

$$\left\{egin{array}{l} \mathbf{M}\ddot{\mathbf{q}}+\mathbf{\Phi}_{\mathbf{q}}^Toldsymbol{\lambda}=\mathbf{Q}_{co}+\mathbf{Q}_{nc}\ \mathbf{\Phi}(\mathbf{q})=\mathbf{0} \end{array}
ight.$$

Pb. spatial : Eq. de mvt en paramétrage cartésien

Si
$$O^i$$
 est au au centre de gravité du corps i , et $\mathbf{q} = [\mathbf{q}^1,...,\mathbf{q}^N]^T, \mathbf{q}^i = [r_x^i,r_y^i,r_z^i,p_1^i,p_2^i,p_3^i,p_4^i]^T$.

$$\begin{split} \mathbf{M}^i = \begin{pmatrix} m^i \mathbf{1}_{3,3} & \mathbf{0}_{3,4} \\ & \mathbf{0}_{4,3} & \bar{\mathbf{G}}^{iT} \bar{\mathbf{I}}^i \bar{\mathbf{G}}^i \end{pmatrix} & \mathbf{M} = \begin{pmatrix} \mathbf{M}^1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^2 & & \mathbf{0} \\ \vdots & & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{M}^N \end{pmatrix} \\ & \begin{cases} \mathbf{M}\ddot{\mathbf{q}} + \mathbf{\Phi}_{\mathbf{q}}^T \boldsymbol{\lambda} = \mathbf{Q}_{co} + \mathbf{Q}_{nc} + \mathbf{Q}_v \\ \mathbf{\Phi}(\mathbf{q}) = \mathbf{0} \end{split}$$

$$\mathbf{Q}_v = \left[egin{array}{c} \mathbf{Q}_v^1 \ dots \ \mathbf{Q}_v^N \end{array}
ight], \qquad \mathbf{Q}_v^i = -\dot{\mathbf{M}}^i \dot{\mathbf{q}}^i + \left(rac{\partial E_c^i}{\partial \mathbf{q}^i}
ight)^T = \left[egin{array}{c} \mathbf{0}_3 \ -2 \dot{\mathbf{G}}^{iT} ar{\mathbf{I}}^i ar{m{\omega}}^i \end{array}
ight]$$

Un corps flottant : Equations de Lagrange \equiv Newton-Euler

- lacksquare Pas de contrainte cinématique : $oldsymbol{\Phi}=\emptyset$
- $\bar{\omega} = \bar{\mathbf{G}}\dot{\mathbf{p}}$
- $\bar{\mathbf{G}}$ permet de passer de l'espace des dérivées des quaternions à l'espace des vitesses angulaires autour des axes du solide

Si on multiplie par $\bar{\mathbf{G}}$ les éq. de Lagrange associées aux paramètres des quaternions on obtient les équations d'Euler (moment dynamique autour du centre de gravité). Les équations de Newton-Euler d'un solide rigide

$$\left\{egin{array}{l} m\ddot{\mathbf{r}}=\mathbf{f}_e \ ar{\mathbf{I}}\dot{oldsymbol{\omega}}=ar{\mathbf{m}}_e-ar{oldsymbol{\omega}} imesig(ar{\mathbf{I}}ar{oldsymbol{\omega}}
ight) \end{array}
ight.$$

- $lackbox{f f}_e, ar{{f m}}_e$ force et moment externes (moment exprimé au centre de gravité)
- $oldsymbol{m}$ $oldsymbol{ar{\Pi}}$ masse et matrice d'inertie exprimée dans le repère du solide

Newton-Euler vs Lagrange

	Newton-Euler	Lagrange
+	Basée sur les forces Adaptée aux corps flottants Adaptée aux robots arborescents	Basée sur l'énergie Adaptée aux mécanismes complexes Adaptée aux robots parallèles Plus générique Forme explicite des éq. de mvt
-	N'élimine pas les forces de liaisons Pas adaptée aux systèmes complexes	Plus de paramètres et d'équations Peut être moins efficace