EECS 340: Assignment 3

Shaochen (Henry) ZHONG, sxz517 Yuhui ZHANG, yxz2052

Due and submitted on 02/20/2020 EECS 340, Dr. Koyutürk

Problem 1

(a)
$$T(n) = bT(n/a) + \Theta(n)$$

For this recurrance, we have a comparsion between $n^{\log_a b}$ and n. Since it is given that 1 < a < b, there must be $\log_a b > 1$. Therefore we may say that there must be a $n^{\epsilon} = \frac{n^{\log_a b}}{n}$ where $0 < \epsilon = \log_a b - 1$.

Now we have $f(n) = n = O(n^{(\log_a b) - \epsilon})$, where $0 < \epsilon = \log_a b - 1$, we can apply case 1 of the master theorem and conclude that the solution is $T(n) = \Theta(n)$.

(b)
$$T(n) = a^2 T(n/a) + \Theta(n^2)$$

For this recurrence, we have a comparison between $n^{\log_a a^2}$ and n^2 , thus n^2 and n^2 . As now we have $f(n) = \Theta(n^2)$, we can apply case 2 of the master theorem and conclude that the solution is $T(n) = \Theta(n \cdot \log n)$

(c)
$$T(n) = T(\lambda n) + n^{\lambda}$$

We may rewrite it as $T(n) = T\left(\frac{n}{\frac{1}{\lambda}}\right) + n^{\lambda}$. Thus, we have a comparsion between $n^{\log_{\frac{1}{\lambda}} 1}$ and n^{λ} , which is equivalent as n^0 and n^{λ} , then we have $f(n) = \Omega(n^{\log_b a + \epsilon})$ for $\epsilon = \lambda$. We may also show $af(\frac{n}{b}) \leq cf(n)$ for $1 \cdot f\left(\frac{n}{\frac{1}{\lambda}}\right) = f(\lambda n)$. Combined, together, we can apply case 3 of the master theorem and conclude that the solution is $T(n) = \Theta(n^{\lambda})$.

(d)
$$T(n) = aT(\frac{n}{a}) + \Theta(n^{\lambda}(\log n)^b)$$

For this recurrence, we have a comparsion between $n^{\log_a a}$ and $n^{\lambda}(\log n)^b$, which is equivalent to comparing n and $n^{\lambda}(\log n)^b$. We may prove that n is polynomially larger than $n^{\lambda}(\log n)^b$) by analyzing:

W.T.S.
$$\lim_{n \to \infty} \frac{n^{\epsilon} \cdot n^{\lambda} (\log n)^{b}}{n} = 0$$

$$\lim_{n \to \infty} \frac{n^{\lambda} (\log n)^{b}}{n^{1 - \epsilon - \lambda}} = 0$$

$$\implies 1 - \epsilon - \lambda > 0 \Rightarrow \epsilon < 1 - \lambda$$
(2)

Thus, we have $f(n) = O(n^{\log_b a - \epsilon})$ for $\epsilon < 1 - \lambda$. Then, we can apply *case 1* of the master theorem and conclude that the solution is $T(n) = \Theta(n)$.

Problem 2

Problem 3

Problem 4

Algorithm 1 QuickMiss(C, D, start, end)

```
1: procedure QuickMiss(C, D, start, end)
2: if p < r then
3: left, q, right \leftarrow Partition(C, D, start, end)
4: if left < right then
5: Partition(C, q + 1, r)
6: else if right > left then
7: Partition(C, p, q - 1)
8: else
9: return D[q]
```

Algorithm 2 Partition(C, D, p, r)

```
1: procedure Partition(C, D, p, r)
        r \leftarrow r + 1
        C[r] \leftarrow D[\frac{p+r}{2}]
 3:
 4:
        q \leftarrow p
        for i \leftarrow p to r-1 do
 5:
            if Compare-Strings(C[i], C[r]) then
 6:
                 SWAP(C[i], C[q])
 7:
                 q \leftarrow q + 1
 8:
        SWAP(C[q], C[r])
 9:
        return q
10:
```