HW5_Yun_Young

Problem 3 What are you thoughts for what makes a good figure? I think that a good figure should be able to present relationship between variables with clear axis and be easy to recognize.

Problem 4

4.a

```
#create a function that counts proportion of success by summing up the input and dividing by the length.
success <- function(x)
{
sum(x)/length(x)
}
```

4.b

```
#store data as follows
set.seed(12345)
P4b_data <- matrix(rbinom(10, 1, prob = (30:39)/100), nrow = 10, ncol = 10)
```

4.c

```
#compute the proportion of success in P4b_data by column and then by row apply(P4b_data, 2, FUN = success)
```

```
apply(P4b_data, 1, FUN = success)
```

```
## [1] 1 1 1 1 0 0 0 0 1 1
```

#The proportion of success is the same across column and row. The random draws were all identical.

4.d

```
#create function whose input is a probability and output is a vector whose elements are the outcomes of 10 flips of a coin. Then, use sapply to generate 1 0 coin flips for each probability.

flipCoin <- function(p)

{
    rbinom(10, 1, p)
}

prob <- (30:39)/100

P4b_data <- sapply(prob, flipCoin)
```

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 0 0 1 1 1 1 1 1 1 0

## [2,] 0 0 0 0 0 1 0 0 0 0 1 1

## [3,] 1 1 0 1 0 1 0 0 0 0 1

## [4,] 0 1 1 1 0 0 0 0 0 1

## [5,] 0 0 0 0 0 0 1 1 0 0 0 1

## [6,] 0 0 0 0 0 0 0 0 0 0 1

## [7,] 0 1 1 0 1 1 1 1 1 1

## [8,] 0 0 1 0 0 0 0 1 0 0 0

## [10,] 1 0 0 0 0 1 0 0 0
```

Problem #5

P4b_data

```
###This code creates scatterplot and boxplot of the data.
```

```
library(tidyr)
library(dplyr)
```

```
##
## Attaching package: 'dplyr'
```

```
##
     filter, lag
## The following objects are masked from 'package:base':
##
```

```
intersect, setdiff, setequal, union
##
```

```
url<-"http://www2.isye.gatech.edu/~jeffwu/book/data/starch.dat"
starchData <- read.table(url, header=T, skip=0, fill=T, stringsAsFactors = F)
#filter columns by starch
starch_CA <- filter(starchData, starch == "CA")
starch_CO <- filter(starchData, starch == "CO")
starch_PO <- filter(starchData, starch == "PO")
#create scatterplot of strength vs. thickness by starch
par(mfrow=c(1,3))
plot(starch\_CA\$thickness,\ starch\_CA\$strength,\ main = "strength\ vs.\ thickness\ of\ CA")
plot(starch\_CO\$thickness,\ starch\_CO\$strength,\ main="strength\ vs.\ thickness\ of\ CO")
plot(starch_PO$thickness, starch_PO$strength, main = "strength vs. thickness of PO")
```


The following objects are masked from 'package:stats':

#create boxplots comparing strength and thickness by starch. boxplot(strength~starch, starchData, main = "strength by starch") boxplot(thickness~starch, starchData, main = "thickness by starch")

strength by starch

thickness by starch

Problem #6

6.A Get and import a database of US cities and states.

CO

CA

PO

```
#read in data.
library(data.table)
```

Attaching package: 'data.table'

The following objects are masked from 'package:dplyr':
##
between, first, last

```
states <- fread("./us_cities_and_states/states.sql",skip = 23,sep = """, sep2 = ",", header = F, select = c(2,4))
cities <- fread(input = "./us_cities_and_states/cities.sql",skip = 23,sep = """, sep2 = ",", header = F, select = c(2,4))

#can you figure out how to limit this to the 50?
###Yes! Add the following: nrows = 50
```

6.B Create a summary table of the number of cities included by state.

###The states in cities column are unlisted, put into table and stored. By doing this, we obtain frequency of the states in the cities column.

citycounts <- as.data.frame(table(unlist(cities\$V4)))

colnames(citycounts) <- c("State", "City Count")

citycounts

лт С	toto C:	tu. Causat
## S ##1	AK	ty Count 229
## 2	AL	578
## 3	AR	605
## 4	AZ	264
## 5	CA	1239
## 6	CO	400
## 7	CT	269
## 8	DC	3
## 9	DE	57
## 10	FL	524
## 11	GA	628
## 12	HI	92
## 13	IA	937
## 14	ID	266
## 15	IL	1287
## 16	IN	738
## 17	KS	634
## 18	KY	803
## 19	LA	478
## 20	MA	511
## 21	MD	430
## 22	ME	461
## 23	MI	885
## 24	MN	810
## 25	MO	942
## 26	MS	440
## 27	MT	360
## 28	NC	762
## 29	ND	373
## 30	NE	528
## 31	NH	255
## 32	NJ	579
## 33	NM	346
## 34	NV	99
## 35	NY	1612
## 36	ОН	1069
## 37	OK	585
## 38	OR	379
## 39	PA	1801
## 40		99
## 41	RI	70
## 42	SC	377
## 43	SD	364
## 44	TN	548
## 45	TX	1466
## 46	UT	250
## 47	VA	839
## 48	VT	288
## 49	WA	493
## 50	WI WV	753
## 51 ## 52		753 176
ππ JZ	V V I	170

Part c. Create a function that counts the number of occurances of a letter in a string.

```
#This function counts the number of occurances of a given letter in a given string.
countLetter <- function(letter, state)
 state2 <- gsub(letter,"",state)
 return (nchar(state) - nchar(state2))
#counts occurrences of letters a~z in a given string using for-loop.
counts <- function(state)
 state <- tolower(state)
 Ocurrence <- vector('numeric')
 for(i in 1:26)
  Ocurrence <- combine (Ocurrence, \ count Letter (letters[i], \ state))
 return (Ocurrence)
#counts the occurrences of letters for each state, and name the column with letters
letter_count <- t(sapply(states$V2, counts))
colnames(letter_count) <- c(letters[1:26])
####This code creates a graphic of the United States, using ggplot, in which the states with 3 or more recurring letters are colored.
library(ggplot2)
library(fiftystater)
#creates a data.frame with state names and a blank column that will have 'TRUE' value if the states name has more than or equal to 3 recurring letters.
letter_count_three <- select(states, V2) %>% mutate(countGreaterThanThree = NA)
#for-loops once to go through letters a~z, and once again to go through 50 states, and fills the variable with 'TRUE' if the state had more than or equal to
3 recurring letters
for(i in 1:47)
 for(j in 1:26)
 if(letter count[i, j] >= 3)
 letter_count_three[i, 2] <- TRUE
#puts the above variable into data.frame, adding a column with small case state names.
letterCounts <- data.frame(state = tolower(states$V2), letter_count_three)
#uses ggplot to color the maps according to the column 'countGreaterThanTree'
p <- ggplot(letterCounts, aes(map_id = state)) +
 geom\_map(aes(fill = countGreaterThanThree), \ map = fifty\_states) \ +
 expand_limits(x = fifty_states$long, y = fifty_states$lat) +
 coord_map() +
 scale x continuous(breaks = NULL) +
 scale_y_continuous(breaks = NULL) +
```

###This code creates 2 functions that counts letters and uses 'sapply' to generate counts for each of the states.

labs(x = "", y = "") +

theme(legend.position = "bottom", panel.background = element_blank())

