Plan Execution
Practical Applications of Al Planners

- Planning for Execution
- Deep Space 1 and Remote Agent Experiment
- Practical Applications of Al Planners
- Common Themes

- Planning for Execution
- Deep Space 1 and Remote Agent Experiment
- Practical Applications of Al Planners
- Common Themes

Plan Execution & Monitoring

- STRIPS PLANEX Fikes, Hart & Nilsson 1971
- NOAH Engineer's Apprentice Sacerdoti 1977
- Nonlin Goal Structure Condition Monitoring Tate 1984
- SIPE Recovering from Execution Errors Wilkins 1986
- PRS Procedural Reasoning Georgeff & Lansky 1986
- IPEM Integrated Planning & Execution Monitoring Ambros-Ingerson & Steel 1987
- RAP Reactive Plan Executor Firby 1987
- O-Plan Repairing Plans Drabble et al. 1997

- Planning for Execution
- Deep Space 1 and Remote Agent Experiment
- Practical Applications of Al Planners
- Common Themes

Deep Space 1 – 1998-2001

DS 1 at Comet Borrelly

Photos: NASA

DS1 Domain Requirements

Achieve diverse goals on real spacecraft:

- High Reliability
 - single point failures
 - multiple sequential failures
- Tight resource constraints
 - resource contention
 - conflicting goals
- Hard-time deadlines
- Limited Observability
- Concurrent Activity

DS1 Remote Agent Approach

- Constraint-based planning and scheduling
 - supports goal achievement, resource constraints, deadlines, concurrency
- Robust multi-threaded execution
 - supports reliability, concurrency, deadlines
- Model-based fault diagnosis and reconfiguration
 - supports limited observability, reliability, concurrency
- Real-time control and monitoring

DS1 Levels of Autonomy

Listed from least to most autonomous mode:

- 1. single low-level real-time command execution
- 2. time-stamped command sequence execution
- 3. single goal achievement with auto-recovery
- 4. model-based state estimation & error detection
- 5. scripted plan with dynamic task decomposition
- 6. on-board back-to-back plan generation, execution, & plan recovery

DS 1 Levels of Autonomy

Level	Ground System	On-board Planner/Scheduler	On-board EXEC
1	Prepare real-time commands	None	None (executed without using EXEC)
2	Prepare sequence	None	Execute sequence
3	Prepare plan, upload to EXEC as script	None	Execute plan in "Scripted Mode"
4	Prepare plan, upload to Planner as goals	Confirm and pass through to Planner	Execute plan in "Planner Mode"
5	Prepare plan, including some unexpanded goals	Complete the plan	Execute plan
6	Define goals	Prepare plans	Execute plan

DS 1 Systems

DS 1 Systems

DS1 RAX Functionality

Planner Scheduler/Mission Manager (PS/MM)

- generate plans on-board the spacecraft
- reject low-priority unachievable goals
- re-plan following a simulated failure
- enable modification of mission goals from ground

Executor (EXEC)

- provide a low-level commanding interface
- initiate on-board planning
- execute plans generated both on-board and on the ground
- recognize and respond to plan failure
- maintain required properties in the face of failures

Mode Identification and Recovery (MIR)

- confirm executive command execution
- demonstrate model-based failure detection, isolation, and recovery
- demonstrate ability to update on-board state via ground commands

DS1 Diversity of Goals

Final state goals

- "Turn off the camera once you are done using it"

Scheduled goals

- "Communicate to Earth at pre-specified times"

Periodic goals

"Take asteroid pictures for navigation every 2 days for 2 hours"

Information-seeking goals

– "Ask the on-board navigation system for the thrusting profile"

Continuous accumulation goals

"Accumulate thrust with a 90% duty cycle"

Default goals

– "When you have nothing else to do, point HGA to Earth"

DS1 Diversity of Constraints

State/action constraints

- "To take a picture, the camera must be on."
- Finite resources
 - power
- True parallelism
 - the ACS loops must work in parallel with the IPS controller
- Functional dependencies
 - "The duration of a turn depends on its source and destination."
- Continuously varying parameters
 - amount of accumulated thrust
- Other software modules as specialized planners
 - on-board navigator

DS1 Plan Fragment

DS1 Remote Agent EXEC Status Tool

DS1 Remote Agent Ground Tools

DS1 RAX – Flight Experiments 17th – 21st May 1999

- RAX was activated and controlled the spacecraft autonomously.
 Some issues and alarms did arise:
- Divergence of model predicted values of state of Ion Propulsion System (IPS) and actual observed values – due to infrequency of real time monitor updates.
- EXEC deadlocked in use. Problem diagnosed and fix designed but not uploaded to DS1 for fears of safety of flight systems.
- Condition had not appeared in thousands of ground tests indicating needs for formal verification methods for this type of safety/mission critical software.
- Following later experiments, RAX was deemed to have achieved its aims and objectives.

DS1 RAX Experiment 2 Day Scenario

Figure 1415: First day of the 2-day scenario

Figure 1617: Second day of the 2-day scenario

DS1 RAX Summary Objectives and Capabilities

Validation Objectives

- •Initiate and generate flexible plans on -board
- ·Reject low-priority, unachievable goals
- Execute plans generated both on-board and from Ground
- . Confirm execution of commands
- Demonstrate model-based failure detection and recovery
- •Maintain required spacecraft states in the face of failures
- •Re-plan following a failure
- Generate back-to-back plans
- ·Modify mission goals from Ground
- ·Execute low-level commands from Ground
- Update estimated spacecraft state database from Ground

Capabilities

- Robust Goal-based commanding
 - -Planner expands high-level goals into flexible plans
 - -Executive decomposes plans into low-level spacecraft commands and monitors that the states commanded to are achieved and maintained
- ·Fail-operational model-based fault recovery
 - Livingstone identifies faults and suggests recoveries that the Executive uses to continue plan execution
 - -If necessary, Executive requests the Planner to generate a new plan in light of failure

DS1 RAX Features

- Al planner outer level with re-planning capability
- Detailed constraint handling (e.g. time and resources)
- Integration with system diagnostics and analysis
- Integration of plan execution and monitoring
- Rich knowledge modelling languages
- Comprehensive user interfaces

- Planning for Execution
- Deep Space 1 and Remote Agent Experiment
- Practical Applications of Al Planners
- Common Themes

Practical Al Planners

Planner	Reference	Applications
STRIPS	Fikes & Nilsson 1971	Mobile Robot Control, etc.
HACKER	Sussman 1973	Simple Program Generation
NOAH	Sacerdoti 1977	Mechanical Engineers Apprentice Supervision
NONLIN	Tate 1977	Electricity Turbine Overhaul, etc.
NASL	McDermott 1978	Electronic Circuit Design
ОРМ	Hayes-Roth & Hayes-Roth 1979	Journey Planning
ISIS-II	Fox et. al. 1981	Job Shop Scheduling (Turbine Production)
MOLGEN	Stefik 1981	Experiment Planning in Molecular Genetics
DEVISER	Vere 1983	Spacecraft Mission Planning
FORBIN	Miller et al. 1985	Factory Control
SIPE-2	Wilkins 1988	Oil Spill Response, Military Planning, etc.
O-Plan	Currie & Tate 1991	Search and Rescue, Spacecraft Operations, etc.
SHOP/SHOP-2	Nau et al. 1999	Evacuation Planning, Forest Fires, Bridge Baron, etc.
I-X/I-Plan	Tate et al. 2000	Emergency Response, etc.

Practical Applications of Al Planners

SIPE-2: System for Interactive Planning and Execution

David Wilkins, Al Center SRI International

Practical Applications of Al Planners SIPE-2 Features

- Supports interactive planning, allowing humans and the system to cooperate in mixed-initiative planning
- Efficiently reasons about actions to generate a novel sequence of actions that responds precisely to the situation at hand
- Supports the giving of advice to the planner
- Plans hierarchically at different levels of abstraction
- Replans during execution
- Generates parallel plans (allowing multiple agents)
- Posts constraints and reasons about resources
- Interacts with users through a graphical interface

Practical Applications of Al Planners SIPE-2 Applications

- Air campaign planning
- Military operations planning
- Oil spill response
- Production line scheduling
- Construction planning
- Planning the actions of a mobile robot
- A range of toy problems and puzzles, such as Missionaries and Cannibals

Practical Applications of Al Planners O-Plan – Open Planning Architecture

Practical Applications of Al Planners O-Plan Features

- Domain knowledge elicitation
- Rich plan representation and use
- Hierarchical Task Network Planning
- Detailed constraint management
- Goal structure-based plan monitoring
- Dynamic issue handling
- Plan repair and re-planning in low and high tempo situations
- Interfaces for users with different roles
- Management of planning and execution workflow

Practical Applications of Al Planners O-Plan Applications

O-Plan has been used in a variety of realistic applications:

- Construction Planning (Currie and Tate, 1991 and others)
- Search & Rescue Coordination (Kingston et al., 1996)
- Spacecraft Mission Planning (Drabble et al., 1997)
- Engineering Tasks (Tate, 1997)
- US Army Hostage Rescue (Tate et al., 2000a)
- Noncombatant Evacuation Operations (Tate, et al., 2000b)
- Biological Pathway Discovery (Khan et al., 2003)
- Unmanned Autonomous Vehicle Command and Control
- Web Services Composition and Workflow Management
- O-Plan's design was also used as the basis for Optimum-AIV (Arup et al., 1994), a deployed system used for assembly, integration and verification in preparation of the payload bay for flights of the European Space Agency Ariane IV launcher.

Practical Applications of Al Planners SHOP/SHOP2 – Simple Hierarchical Ordered Planner

Image: Dana Nau CC-BY

Practical Applications of Al Planners SHOP2 Features

- Hierarchical Task Network Planner
- Selects activities to include in the plan in the order they will be executed
- But can interleave multiple goal and sub-goal achievement
- Axiomatic inference, quantifiers and conditional effects
- Temporal constraints
- Mixed symbolic/numeric computations
- Calls to external programs to constrain the plan
- Rich domain model and operator choice advice

Practical Applications of Al Planners SHOP/SHOP2 Applications

- Evacuation Planning
- Evaluating Terrorist Threats
- Fighting Forest Fires
- Controlling Multiple UAVs
- Software Systems Integration
- Automated Composition of Web Services
- Business Workflow Management
- Project Planning
- Related Domain-Specific Planning Apps.
 - Manufacturing Automation
 - Bridge Baron (Commercial Product)

- Planning for Execution
- Deep Space 1 and Remote Agent Experiment
- Practical Applications of Al Planners
- Common Themes

Common Features for Practical Al Planners

- Outer HTN "human-relatable" approach
- Underlying detailed constraint handling (e.g. time and resources)
- Integration with simulation and analysis
- Integration with plan execution and monitoring
- Rich knowledge modelling languages
- Comprehensive user interfaces

Al Planning Applications - Summary

- Planning for Execution
- Deep Space 1 and Remote Agent Experiment
- Practical Applications of Al Planners
- Common Themes

Readings

Deep Space 1 Papers

- Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C. (1998) "Remote Agent: to boldly go where no AI system has gone before", in Special issue on "Artificial Intelligence 40 Years Later", Artificial Intelligence, Vol. 103, Nos. 1/2, pp. 5-48, August, 1998, Elsevier.
- Ghallab, M., Nau, D. and Traverso, P., Automated Planning Theory and Practice, chapter 19, Elsevier/Morgan Kaufmann, 2004.

Other Practical Planners

- Tate, A. and Dalton, J. (2003) O-Plan: a Common Lisp Planning Web Service, invited paper, in Proceedings of the International Lisp Conference 2003, October 12-25, 2003, New York, NY, USA, October 12-15, 2003.
- Ghallab, M., Nau, D. and Traverso, P., Automated Planning Theory and Practice, chapters 22 and 23. Elsevier/Morgan Kaufmann, 2004