Evaluation of Classification Models

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS					
ACTUAL		Class=Yes	Class=No			
	Class=Yes	а	b			
CLASS	Class=No	С	d			

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS					
ACTUAL		Class=Yes	Class=No			
	Class=Yes	a (TP)	b (FN)			
CLASS	Class=No	c (FP)	d (TN)			

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS					
ACTUAL	C(i j)	Class=Yes	Class=No			
	Class=Yes	C(Yes Yes)	C(No Yes)			
CLASS	Class=No	C(Yes No)	C(No No)			

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS					
ACTUAL CLASS	C(i j)	+	-			
	+	-1	100			
	-	1	0			

Model M ₁	PREDICTED CLASS				
ACTUAL CLASS		+	-		
	+	150	40		
	•	60	250		

Model M ₂	PREDICTED CLASS			
		+	•	
ACTUAL CLASS	+	250	45	
CLASS	=	5	200	

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

Precision vs. Recall

$$Precision = \frac{|RelRetrieved|}{|Retrieved|}$$

$$Recall = \frac{|RelRetrieved|}{|Rel in Collection|}$$

Retrieved vs. Relevant Documents

Very high precision, very low recall

Retrieved vs. Relevant Documents

High recall, but low precision

Retrieved vs. Relevant Documents

High precision, high recall (at last!)

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Stratified sampling
 - Oversampling vs undersampling
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

10 Fold Cross Validation (Example)

- What if we don't have enough data to set aside a test dataset?
- Cross-Validation:
 - Each data point is used both as train and test data.
- Basic idea:
 - Fit model on 90% of the data; test on other 10%.
 - Now do this on a different 90/10 split.
 - Cycle through all 10 cases.
 - 10 "folds" a common rule of thumb.

10 Fold Cross Validation (Example)

- Divide data into 10 equal pieces P₁...P₁₀.
- Fit 10 models, each on 90% of the data.
- Each data point is treated as an outof-sample data point by exactly one of the models.

10 Fold Cross Validation (Example)

 Collect the scores from the red diagonal...

Instance Based Classifiers

Dr. Faisal Kamiran

Instance-Based Classifiers

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		С
		В

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

Atr1	 AtrN

Nearest Neighbor Classifiers

Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

Test Record

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

ION TECHNOLOGY

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - ◆ weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Instance Based Classifiers

Dr. Faisal Kamiran

Nearest Neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

VS

100000000000

$$d = 1.4142$$

000000000001

$$d = 1.4142$$

Distance Measures ...

- Choosing the correct distance function is essential
 - Eucledian, Minkowski
 - Simple Matching Coefficient
 - Jaccard measure
 - Cosine Measure

- Example: distance measure for strings
 - Edit distance

Edit Distance

- Distance between two strings: minimal number of operations to transform one into another
 - Insert a character
 - Delete a character
 - Replace a character with another
- Example:
 - Hello → Jello distance = 1
 - Good → Goodbyedistance = 3

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

DR. FAISAL KAMIRAN

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- □ (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshol	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\rightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

ROC Curve:

