Exercise 1.28

Nolan Hauck

Last updated Sunday 12th May, 2024 at 16:54

Let F be increasing and right continuous, and let μ_F be the associated measure. Then $\mu_F(\{a\}) = F(a) - F(a-)$, $\mu_F([a,b]) = F(b-) - F(a-)$, $\mu_F([a,b]) = F(b) - F(a-)$, and $\mu_F((a,b)) = F(b-) - F(a)$.

Solution. The singleton $\{a\}$ can be written as $\bigcap_{n=1}^{\infty} (a-1/n,a]$. Then since μ_F is a measure, it is continuous from above, and since $\mu_F((a-1,a]) = F(a) - F(a-1) < \infty$ and $(a-1/n,a] \supset (a-1/(n+1),a]$ for all n, we have

$$\mu_F(\{a\}) = \mu_F\left(\bigcap_{n=1}^{\infty} (a - 1/n, a]\right) = \lim_{n \to \infty} \mu_F((a - 1, a])$$

$$= \lim_{n \to \infty} (F(a) - F(a - 1/n)) = F(a) - F(a - 1).$$
(1)

Next, $[a, b) = (\{a\} \cup (a, b]) \setminus \{b\}$, so since all sets are of finite measure and $\{a\} \cap (a, b] = \emptyset$, we have

$$\mu_F([a,b)) = \mu_F(\{a\}) + \mu_F((a,b]) - \mu_F(\{b\})$$

$$= F(a) - F(a-) + F(b) - F(a) - F(b) + F(b-)$$

$$= F(b-) - F(a-).$$
(2)

Next, $[a, b] = \{a\} \cup (a, b]$, so

$$\mu_F([a,b]) = \mu_F(\{a\}) + \mu_F((a,b])$$

$$= F(a) - F(a-) + F(b) - F(a) = F(b) - F(a-).$$
(3)

Finally, $(a, b) = (a, b] \setminus \{b\}$, so

$$\mu_F((a,b)) = F(b) - F(a) - F(b) + F(b-) = F(b-) - F(a). \tag{4}$$