Regra de Três Composta

Prof^a Ariel Marczaki

<u>Definição</u>: Regra de três é o procedimento para resolver um problema que envolva grandezas relacionadas onde determinamos por proporção o valor de uma destas, conhecendo a relação desta proporção com a proporção das demais grandezas. Este procedimento chama-se regra de três simples quando temos apenas 2 grandezas e do contrário chama-se regra de três composta, ou seja, quando temos mais de 2 grandezas.

Procedimento:

1ª etapa - Identificar as grandezas e a relação entre elas (diretamente ou inversamente proporcionais);

2ª etapa - Montar a Tabela com as proporções;

3^a etapa - Montar e resolver as proporções.

Regra de Três Composta

Como já foi dito antes, na regra de três composta ocorrem três ou mais grandezas relacionadas entre si. Nesse caso, em apenas uma grandeza é dado um valor conhecido e para as demais grandezas são dados dois valores.

Na resolução desse tipo de situação-problema, vamos utilizar um método semelhante ao utilizado na resolução de regras de três simples.

Trabalhando 8 horas por dia, durante 12 dias, 30 operários produzem 1 000 unidades de determinado eletrodoméstico. Quantos dias serão necessários para que 48 operários, trabalhando 6 horas por dia, produzam 1 200 unidades desse mesmo produto?

SOLUÇÃO:

1º. passo: Organizar os dados em um quadro de comparação das grandezas, colocando os valores numéricos nas colunas de suas respectivas grandezas. Colocando sempre na 1º coluna a grandeza uqe pretende determinar.

DIAS	HORAS/DIA	OPERÁRIOS	PRODUÇÃO
12	8	30	1 000
X	6	48	1 200

2º. passo: Identificar as grandezas em inversamente ou diretamente proporcionais. A indicação das setas será feita comparando-se cada uma das grandezas com a que apresenta o termo desconhecido.

Observamos a variação de cada par de grandezas, considerando que as demais grandezas permanecem inalteradas.

a) Comparando dias e horas por dia:

Se o número de horas por dia de trabalho diminui, devemos trabalhar um número maior de dias para realizar o mesmo trabalho. Ou seja, essas grandezas são inversamente proporcionais. Assim, as setas apontam para direções opostas.

DIAS	HORAS/DIA	
12	8	
X	6	

b) Comparando dias e operários:

Se o número de operários aumenta, podemos diminuir o número de dias para realizar um trabalho. Ou seja, essas duas grandezas são inversamente proporcionais. Assim, as setas apontam em direções opostas.

c) Comparando dias e produção:

Quando o número de unidades a serem produzidas aumenta, precisamos de mais dias para essa produção. Por isso, as grandezas produção e dias são diretamente proporcionais. Assim, as setas apontam para a mesma direção.

DIAS	PRODUÇÃO	
12	1 000	
X	1 200	

3º. passo: Construir a esquematização geral a partir da primeira tabela construída no Passo 1 e colocar as setas nas posições encontradas.

DIAS	HORAS/DIA	OPERÁRIOS	PRODUÇÃO	
12	8	30	1 000	
X	6	48	1 200	

A partir da seta da grandeza que tem o valor desconhecido (neste caso, dias), colocaremos as setas das demais grandezas. Quando as grandezas comparadas são diretamente proporcionais, as setas indicam a mesma direção ou, caso as grandezas envolvidas sejam inversamente proporcionais, as setas apresentadas indicam direções opostas. Lembre-se de que, nesse exemplo, somente as grandezas 'operários' e 'produção' são grandezas diretamente proporcionais.

4º. passo: Montar a proporção e calcular o valor desconhecido.

A solução por esse processo é a proporção obtida da igualdade entre a razão que apresenta o valor desconhecido e o produto das demais razões (após a inversão das que apresentam grandezas inversamente proporcionais a que apresenta o x). Observ

$$\frac{12}{x} = \frac{6}{8} \cdot \frac{48}{30} \cdot \frac{1000}{1200}$$

Multiplicando os valores dos numeradores e denominadores, temos:

$$\frac{12}{x} = \frac{288000}{288000}$$

Simplificando a razão do 2° membro, temos:

$$\frac{12}{x} = \frac{1}{1}$$

Aplicando o produto dos meios pelos extremos, temos:

$$1 \cdot x = 12 \cdot 1$$

 $x = 12$

Resposta: Seriam necessários 12 dias, nessas condições, para realizar o mesmo trabalho.

Regra de três simples X Regra de Três Composta

Aumenta a quantidade de grandezas

Aumenta a dependência de interpretação de situações

Inversamente e diretamente proporcional na mesma situação

Maiores desafios, maiores chances de erros

Exercícios

- 1. Em 30 dias, uma frota de 25 táxis consome 100000 litros de combustível. Em quantos dias uma frota de 36 táxis consumiria 240000 litros de combustível?
- 2. Em determinada fábrica de calçados, 16 operários produzem 240 pares de calçados por dia, trabalhando 8 horas diárias. Quantos operários, com a mesma qualificação dos primeiros, conseguiriam produzir 600 pares de calçados por dia, trabalhando 10 horas por dia?
- 3. Dois carregadores transportam caixas de um depósito para um caminhão. Um deles leva 4 caixas por vez e demora 3 minutos para ir e voltar. O outro leva 6 caixas por vez e demora 5 minutos para ir e voltar. Enquanto o mais rápido leva 240 caixas, quantas caixas leva o outro?
- 4. O engenheiro responsável pela obra sabe que para construir uma laje de 6cm de espessura são gastos 30 sacos de cimentos com 40 kg cada um. A) quanto de cimento a menos se usa para construir uma laje de 5 cm de espessura? B) nesse caso, quantos sacos de cimentos eles gastariam para fazer essa laje se casa saco contivesse 50 kg de cimento?