MIT OpenCourseWare http://ocw.mit.edu

18.701 Algebra I Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.701 Problem Set 3

due Wednesday, September 26

- 1. Let S be a subset of \mathbb{R}^k , and let $a=(a_1,...,a_k)$ and b be points in S. A path in S from a to b is a continuous function x(t) from the interval [0,1] to \mathbb{R}^k such that $x(t) \in S$ for all t, x(0) = a, and x(1) = b. Define a relation on S by $a \sim b$ if there is a path in S from a to b.
- (a) Prove that \sim is an equivalence relation on S.
- (b) A subset S of \mathbb{R}^k is path connected if there is a path in S joining any pair of points. Prove that the equivalence classes for the relation \sim are path connected.
- 2. The real general linear group GL_n is generated by elementary matrices. Prove that the first and third types suffice to generate, i.e., that one doesn't need to use the matrices that act by switching rows.
- 3. Let S be a subgroup of GL_n . This is a subset of the space $\mathbb{R}^{n\times n}$ of all $n\times n$ real matrices. Let A,B,C,D be matrices in S. Prove that if if $A\sim B$ in S and $C\sim D$ in S, then $AC\sim BD$ in S.
- 4. Let S be a subgroup of GL_n . The equivalence class in S that contains the identity is called the *connected* component of S, and is often denoted by S° . Prove that the connected component S° is a normal subgroup of S.
- 5. Identify the connected component of the group $S = GL_n$, and describe the quotiebut group S/S° .