

## TRIGONOMETRY



Chapter 1

LEVEL

Razones trigonométricas de ángulos agudos



## TRIGONOMETRY

### indice

01. MotivatingStrategy 🕥

02. HelicoTheory

03. HelicoPractice

04. HelicoWorkshop



Video: Historia de la trigonometría



### MOTIVATING STRATEGY

### HISTORIA DE LAS RAZONES TRIGONOMÉTRICAS



Resumen



# HELICO THEORY

#### RAZONES TRIGOMÉTRICAS DE UN ÁNGULO AGUDO

¿Qué entendemos por razón trigonométrica de un ángulo agudo?

Es el cociente entre las longitudes de dos lados de un triángulo rectángulo, tomando como referencia uno de sus ángulos agudos.



a: ángulo agudo de referencia

H:Longitud de la hipotenusa

CO: Longitud del cateto opuesto a a

CA: Longitud del cateto adyacente a a

Teorema de Pitágoras:  $H^2 = (CA)^2 + (CO)^2$ 

#### Definición de las razones trigonométricas

| senα | cosα | tanα            | cotα            | secα            | cscα            |
|------|------|-----------------|-----------------|-----------------|-----------------|
| CO   | CA   | CO              | CA              | Н               | Н               |
| H    | H    | $\overline{CA}$ | $\overline{CO}$ | $\overline{CA}$ | $\overline{CO}$ |

MÉTODO NEMOTÉCNICO: "COCA COCA HELADA HELADA"

EJEMPLO: Calcula las razones trigonométricas (RT) de α



| senα                 | cosα                 | tanα                        | cotα                        | seca                 | cscα                 |
|----------------------|----------------------|-----------------------------|-----------------------------|----------------------|----------------------|
| $\frac{\sqrt{2}}{3}$ | $\frac{\sqrt{7}}{3}$ | $\frac{\sqrt{2}}{\sqrt{7}}$ | $\frac{\sqrt{7}}{\sqrt{2}}$ | $\frac{3}{\sqrt{7}}$ | $\frac{3}{\sqrt{2}}$ |

 $\bigcirc$ 

Problema 01

Problema 02

Problema 03

Problema 04

Problema 05







Del gráfico, calcule:  $\mathbf{M} = \mathbf{sec}\alpha + \mathbf{tan}\alpha$ 



Del gráfico, se observa:

$$\rightarrow$$
 CO = 5  $\rightarrow$  CA = 12

Calculando la hipotenusa:

$$H^2 = (5)^2 + (12)^2$$

$$H^2 = 169$$
  $H = 13$ 



#### **RECORDEMOS**

**Teorema de Pitágoras:** 

$$H^2 = (CO)^2 + (CA)^2$$

$$sec\alpha = \frac{H}{CA}$$
  $tan\alpha = \frac{CO}{CA}$ 

Reemplazando:

$$M = \left(\frac{13}{12}\right) + \left(\frac{5}{12}\right) = \frac{3}{12}$$

Respuesta

$$M = 1, 5$$







Si 
$$\csc\theta = \frac{61}{60}$$
,  $\theta$  es agudo;

Calcule:

$$M = \csc\theta - \cot\theta$$

Del dato:

$$\csc\theta = \frac{61}{60} = \frac{H}{CO}$$

$$\rightarrow$$
 H = 61  $\rightarrow$  CO = 60

Calculando el cateto adyacente:

$$(61)^2 = (60)^2 + (CA)^2$$

$$(CA)^2 = 121$$
 CA = 11



#### **RECORDEMOS**

Teorema de Pitágoras:

$$H^2 = (CO)^2 + (CA)^2$$

$$\csc\alpha = \frac{H}{CO}$$

$$\cot \alpha = \frac{CA}{CO}$$

Reemplazando:

$$\mathsf{M} = \left(\frac{61}{60}\right) - \left(\frac{11}{60}\right) = \frac{50}{60}$$

$$M = \frac{5}{6}$$

Del gráfico, efectúe:

$$S = \cot\alpha.\cot\theta$$



Del gráfico:



#### **RECORDEMOS**

$$cot\alpha = \frac{CA}{CO}$$

Reemplazando:

$$S = \cot \alpha \cdot \cot \theta$$

$$S = \left(\frac{3x}{b}\right) \left(\frac{2b}{x}\right)$$

Respuesta

 $\therefore$  S = 6



N

Pedro adquiere un terreno en forma de triángulo rectángulo; se sabe que el perímetro del terreno es 150 metros y la cosecante de uno de sus ángulos agudos es 2,6. Determine el área de dicho terreno.

Del dato:

$$\csc\alpha = 2, 6 = \frac{13k}{5k} = \frac{H}{CO}$$

$$\rightarrow H = 13k \qquad \rightarrow CO = 5k$$

Calculando el cateto adyacente:

$$(13k)^2 = (5k)^2 + (CA)^2$$
  
 $(CA)^2 = 144k^2 \rightarrow CA = 12k$ 

Graficamos:



#### **RECORDEMOS**

Teorema de Pitágoras:

$$H^2 = (CO)^2 + (CA)^2$$

Del dato: 2p = 150 m

30k = 150 m

$$k = 5 m$$

Calculando el área:

Área = 
$$\frac{(25m) (60m)}{2}$$

Respuesta :: Área =  $750 \text{m}^2$ 





Carolina desea cercar su establo en forma de triángulo rectángulo para cuidar a sus animales. Si se sabe que es un triángulo ABC (B=90°), además se cumple que 8.cscA.cotC=17, y que la hipotenusa mide 68 m. Determine el perímetro de dicho establo.

#### **Graficamos:**



Del dato:

$$8 \cdot \csc A \cdot \cot C = 17$$

$$8 \cdot \left(\frac{b}{c}\right) \left(\frac{a}{c}\right) = 17$$

$$\left(\frac{\mathbf{b}}{\mathbf{c}}\right) = \frac{17k}{8k}$$

#### **RECORDEMOS**

$$csc\alpha = \frac{H}{CO} \qquad cot\alpha = \frac{CA}{CO}$$

Del dato: H = 68 m

$$17k = 68 \text{ m}$$

$$k = 4 m$$

Calculando el perímetro:

$$2p = 8k + 15k + 17k$$

$$2p = 40 k$$

**Respuesta** :: 2p = 160 m

#### Problemas Propuestos



 $\bigcirc$ 

 $\bigcirc$ 

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

### HELICO WORKSHOP







Problema 08



Sea  $\alpha$  un ángulo agudo para lo cual  $sen\alpha=\frac{3}{7}$  , calcule el valor de:

$$S = 7\cos^2\alpha + 3\sin\alpha$$



De la figura, calcule  $\csc\alpha$ 



Calcule  $tan \theta$ ,  $si tan \alpha = \frac{3}{4}$ 





En un triángulo ABC (B=90°), se sabe que 5senA.senC=2 y L=tanA+tanC. Se sabe que Alex recibe de propina 4L soles diarios. Determine la propina que recibe Alex en una semana.

De la figura mostrada, se sabe que la edad de Luis esta representada por la  $\cot^2 \alpha$ , y la edad de su hermano, Rodrigo, está representada por la  $\csc^2 \alpha$ . Dé como respuesta la suma de las edades. (en años)



