

<u>.</u>

FIG. 4

FIG. 5

FIG. 6

FIG. 6A

FIG. 7

6 <u>9</u>

$$324 \begin{cases} y_{ij} = I_{ij} & f_{i} = F_{l} \\ c_{ikji} = -\frac{\partial F_{ij}}{\partial (\frac{\partial u_{k}}{\partial x_{i}})} & \alpha_{ikj} = -\frac{\partial F_{lj}}{\partial u_{k}} \\ \beta_{iki} = -\frac{\partial F_{l}}{\partial (\frac{\partial m_{k}}{\partial x_{i}})} & a_{ik} = -\frac{\partial F_{l}}{\partial u_{k}} \\ \beta_{l} = G_{l} & r_{l} = R_{l} \\ g_{l} = -\frac{\partial G_{l}}{\partial u_{k}} & h_{ik} = -\frac{\partial R_{l}}{\partial u_{k}} \end{cases}$$

-1G. 10

$$\left\{ F_{lj} = -c_{lkji} \frac{\partial^{u}k}{\partial x_{l}} - \alpha_{lkj}u_{k} + y_{lj} \right.$$

$$\left. F_{l} = f_{l} - \beta_{lki} \frac{\partial^{u}k}{\partial x_{i}} - a_{lk}u_{k} \right.$$

$$\left. G_{l} = g_{l} - q_{lk}u_{k} \right.$$

$$\left. G_{l} = g_{l} - q_{lk}u_{k} \right.$$

$$\left. G_{l} = g_{l} - q_{lk}u_{k} \right.$$

$$\begin{cases}
\int_{\Omega} \left[\left(\int_{R_j i} \frac{\partial u_k}{\partial x_i} + \alpha_{R_j u_k} \right) \frac{\partial v}{\partial x_j} + \left(\int_{\Omega} \frac{\partial u_k}{\partial x_j} + \beta_{R_j i} \frac{\partial u_k}{\partial x_i} + \beta_{R_j u_k} \right) v \right] dx + \\
\int_{\partial \Omega} \int_{\Omega} dR_k v ds = \int_{\Omega} \left[v \int_{\Omega} \frac{\partial v}{\partial x_j} + f_1 v \right] dx + \int_{\Omega} (g_1 - h_{ml} \lambda_m) v ds
\end{cases}$$

$$\begin{cases}
\int_{\Omega} \mu h_k u_k ds = \int_{\Omega} \mu r_m ds
\end{cases}$$

$$\begin{cases}
\int_{\Omega} \left[\Gamma_{lj} \frac{\partial v}{\partial x_{j}} + F_{l'} - d_{alk} \frac{\partial^{u}_{k}}{\partial l} v \right] dx + \int_{\partial \Omega} + \left[G_{l} + \frac{\partial R_{m}}{\partial u_{l}} \lambda_{m} \right] v ds = O
\end{cases}$$

$$\begin{cases}
\int_{\Omega} R_{m} \mu ds = O
\end{cases}$$

<u>|</u>G. 13

$$A_{m}(x) = \sum_{k=1}^{N_{c}} \sum_{L=l}^{n} A_{K,L,m} \Psi_{K,L} (...)$$

$$\begin{cases}
\int_{t}^{t} \left(c_{Ikji} U_{I,k} \frac{\partial \Phi_{I}}{\partial x_{i}} + \alpha_{Ikj} U_{I,k} \Phi_{I} \right) \frac{\partial \Phi_{J}}{\partial x_{j}} dx + \\
\int_{t}^{t} \left(d_{a} \frac{\partial U_{I,k}}{\partial l} \Phi_{I} + \beta_{Iki} U_{I,k} \frac{\partial \Phi_{I}}{\partial x_{i}} + a_{Ik} U_{I,k} \Phi_{I} \right) \Phi_{J} dx + \\
\int_{\partial t}^{t} q_{Ik} U_{I,k} \Phi_{I} \Phi_{J} ds = \int_{t}^{t} \left(y_{Ij} \frac{\partial \Phi_{J}}{\partial x_{j}} + f_{I} \Phi_{J} \right) dx + \\
\int_{\partial t}^{t} (g_{I} h_{m} l^{k} K_{L,m}^{k} W_{K,L}) \Phi_{J} ds
\end{cases}$$

-1G. 15

16/86

308
$$\begin{cases} \int_{t}^{h} mk^{U}_{l,k} \Phi_{l}^{\Psi}_{K,L} ds = \int_{r}^{m} \Psi_{K,L} ds \\ \partial_{t} \end{cases}$$

$$\begin{cases} \int_{t} \left[\Gamma_{lj} \frac{\partial \Phi_{j}}{\partial x_{j}} + F_{l} \Phi_{j} - d_{alk} \frac{\partial u_{k}}{\partial t} \Phi_{J} \right] dx + \int_{0} \int_{0}^{t} + \left[G_{l} + \frac{\partial R_{m}}{\partial u_{l}} \Lambda_{K,L,m}^{T} K_{,L} \right] \Phi_{J} ds = O \\ \int_{0}^{t} R_{m}^{T} K_{,L} ds = O \end{cases}$$

18/86

$$DA_{(J,l),(I,k)} = \int_{t} d a l k^{\Phi} I^{\Phi} J^{dx}$$

$$C_{(J,l),(I,k)} = \int_{t}^{c} \frac{\partial \Phi_{I}}{\partial x_{i}} \frac{\partial \Phi_{J}}{\partial x_{i}} \frac{\partial \Phi_{J}}{\partial x_{j}} dx$$

$$AL_{(J,l),(I,k)} = \int_{t} \alpha_{lkj} \Phi_{I} ? \frac{\partial \Phi_{J}}{\partial x_{j}} dx$$

$$BE_{(J,l),(I,k)} = \int_{t} \beta_{lki} \frac{\partial \Phi_{I}}{\partial x_{i}} \Phi_{J} dx$$

$$A_{(J,l),(I,k)} = \int_{t}^{a} a_{lk} \Phi_{I} \Phi_{J} dx$$

$$Q_{(J,l),(I,k)} = \int_{\partial t} q_{lk} \Phi_I \Phi_J ds$$

$$GA_{(J,l)} = \int_{t} \mathcal{Y}_{lj} \frac{\partial \Phi_{J}}{\partial x_{j}} dx$$

$$F_{(J,l)} = \int_t f_l \Phi_J dx$$

$$G_{(J,l)} = \int_{\partial t} g_l \Phi_J ds$$

$$H_{(K,L,m),(I,k)} = \int_{\partial t} h_{mk} \Phi_I \Psi_{K,L} ds$$

$$R_{(K,L,m)} = \int_{\partial t} r_m \Psi_{K,L} \, ds$$

320
$$\begin{cases} DA \frac{\partial U}{\partial t} + (C + AL + BE + A + Q) U + H^{T} A = GA + F + G \\ + U = R \end{cases}$$

$$322 \left\{ DA \frac{\partial U}{\partial t} + H^{T}A = GA + F + G \right.$$

$$R = O$$

326
$$\begin{cases} J(U^{(k)})\Delta U^{(k)} = -\rho(U^{(k)}) \\ U^{(k+1)} = U^{(k)} + \lambda_k \Delta U^{(k)} \end{cases}$$

FIG. 23

FIG. 24

	 ✓			١			√ 5004		
	PARENT CLASS	flpdedf	flpdeht			PARENT CLASS	flpdecf(n)	flpdegt <i>(n)</i>	
1-D PHYSICS APPLICATION MODES	CLASS NAME	flpdedf1d	flpdeht1d		1-D PDE APPLICATION MODES	CLASS NAME	(u) tlbdect1d(u)	flpdegt1d <i>(n)</i>	
1-D PHYSICS	APPLICATION MODE	DIFFUSION	HEAT TRANSFER		1-D PDE A	APPLICATION MODE	COEFFICIENT PDE MODEL, n VARIABLES	GENERAL PDE MODEL, n VARIABLES	

-1G. 25

					\ 506					
	PARENT CLASS	flpdec2d	flpdedc	flpdedf	flpdees	flpdems	flpdeht	flpdens	flpdec2d	flpdec2d
ICATION MODES	CLASS NAME	flpdeac	flpdedc2d	flpdedf2d	flpdees2d	flpdems2d	flpdeht2d	flpdens2d	flpdeps	llpdepn
2-D PHYSICS APPLICATION MODES	APPLICATION MODE	AC POWER ELECTROMAGNETICS	CONDUCTIVE MEDIA DC	DIFFUSION	ELECTROSTATICS	MAGNETOSTATICS	HEAT TRANSFER	INCOMPRESSIBLE NAVIER-STOKES	STRUCTURAL MECHANICS, PLANE STRESS	STRUCTURAL MECHANICS, PLANE STRAIN

=1G. 26

(0
•	•
-	\sim

	APPLICATION OBJECT PROPERTIES	S
Property name	Description	Data type
dim	Names of the dependent variables	Cell array of strings
form	PDE form	String (coefficient/general)
name	Application name	String
parent	Parent class names	String, cell array of strings, or the empty
sdim	Names of the independent variables (space dimensions)	Cell array of strings
epomqns	Name of current submode	String (std/wave)
tdiff	Time differentiation flag	String (on/off)

FIG. 27

obj.name = 'My first FEMLAB application';
obj.parent = 'flpdeht2d':
%MYAPP is a subclass of FLPDEHT2D;
p1 = flpdeht2d;
obj = class(obj,'myapp',p1);
sat(obj,'dim',default_dim(obj));

512

%MYAPP Constructor for a FEMLAB appplication object.

function obj = myapp()

29/86

PHYSICS MODELING METHODS

-		
	FUNCTION	PURPOSE
	appspec	Return application specifications
	bnd_compute default bnd	Convert application-dependent boundary conditions to generic boundary coefficients. Default boundary conditions.
	_ default_dim	Default names of dependent variables.
	default_equ	Default PDE coefficients/material parameters.
	default_init	Default intitial conditions.
	default_sdim	Default space dimension variables.
	default_var	Default application scalar variables.
	dim_compute	Return dependent variables for an application
	equ_compute	Convert application-dependent material parameters to generic PDE coefficients.
	form_compute	Return PDE form.
	init_compute	Convert application-dependent initial conditions to generic initial conditions.
(posttable	Define assigned variable names and post-processing information.

514

FIG. 30

$$530 \left\{ \Delta E_z + (2\pi i k)^2 E_z = 0 \right.$$

$$532 \left\{ k = \frac{1}{\lambda} = \frac{f}{c} \right.$$

$$534 \left\{ \tilde{n}, (\nabla E_z) + 2\pi i k_x E_z = 4\pi i k_x \sin\left(\frac{\pi}{d}(y - y \theta)\right) \right.$$

$$536 \left\{ k^2 = k_x^2 + k_y^2 \right.$$

$$538 \left\{ k_x = \sqrt{\frac{1}{\lambda^2} - \frac{1}{(2d)^2}} \right.$$

$$540 \left\{ n \cdot (\nabla E_z) + 2\pi i k_x E_z = 0 \right.$$

$$542 \left\{ E_z = \theta \right.$$

$$544 \left\{ f_c = \frac{c}{2d} \right.$$

%FLWAVEGUIDE Constructor for a Waveguide application object. function obj = flwaveguide(varargin)

obj.name = 'In-Plane Waveguide';
obj.parent = 'flpdeac';

%FLWAVEGUIDE is a subclass of FLPDEAC; p1 = flpdeac; obj = class(obj,'flwaveguide',p1); set(obj,'dim',default_dim(obj));

-1G. 32

fem user field	tion	1-by-2 structure of	geometry parameters.	ndex to the entry boundary.	ndex to the exit boundary.	Frequency vector
fem ı	description	1-by-2	geomet	Index to	Index to	Freque
	field	geomparam		entrybnd	exitbnd	freds
			<u>_</u>			
			552	1		

-1G. 33

fem user field	description	Index of the lower left	corner point of the	waveguide.	Type of waveguide. ('straight	or 'elbow)	
	field	startpt			type		
			554				_

FIG. 34

	geoparam fields	rields	
field	description	defaults for	default for
		elbow	straight
entrylength	Length of the entrance part of the waveguide.	0.1	0.1
exitlength	Length of the exit part of the waveguide.	0.1	not used
radius	Outer radius of the waveguide bend.	0.05	not used
width	Width of the waveguide.	0.025	0.025
cavityflag	Turn resonance cavity on or off.	0	0
cavitywidth	Width of the resonance cavity.	0.025	0.025
postwidth	Width of the protruding posts.	0.005	0.005
postdepth	Depth of the protruding posts.	0.005	0.005

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG. 40

$$\begin{cases}
0 = \int W^{(2)} dA \int W^{(1)} ds + \sum W^{(0)} + \\
\Omega & B \\
+ \int V_l \frac{\partial R}{\partial U_l} \mu^{(2)} dA + \int V_l \frac{\partial Rm}{\partial u_l} \mu^{(1)} ds + \sum V_l \frac{\partial Rm}{\partial u_l} \mu^{(0)} \\
+ \int V_l \frac{\partial R}{\partial U_l} \mu^{(2)} dA + \int V_l \frac{\partial Rm}{\partial u_l} \mu^{(0)} ds + \sum V_l \frac{\partial Rm}{\partial u_l} \mu^{(0)} \\
0 = R^{(2)} \quad \text{on } B
\end{cases}$$

$$1104 \begin{cases}
0 = R^{(2)} \quad \text{on } B \\
0 = R^{(0)} \quad \text{on } P
\end{cases}$$

FIG. 41

$$\begin{cases} W(n) = W(n) + \Gamma_{Ij} \frac{\partial v_L}{\partial x_j} + F_I v_I \\ W(nt) = W(nt) + d_{alk} \frac{\partial u_k}{\partial t} v_I \\ W(n-l) = W(n-l) + G_I v_I \end{cases}$$

$$R(n) = R_m$$

FIG. 42

FIG. 43

FIG. 44

FIG. 45A

FIG. 45B

FIG. 45C

FIG. 46

FIG. 47

FIG. 50

FIG. 51

FIG. 54

FIG. 55A

FIG. 55B

RETURN THE SUMS Σ UI *Fi(pj),WHERE THE SUM IS TAKEN OVER ALL INDICES I OF THE DEGREES OF FREEDOM, FOR pj IN THE SET P

FIG. 55D

FIG. 55F

FIG. 55G

FIG. 55H

FIG. 55J

FIG. 55L

FIG. 55M

,		_	71/	′ 86			
		dysəm			eb		
elem {elcplscalar, elcplextr, elcplproj}		pnt	ind		pnt	ind	
			var			var	
		брә	pui		bpe	ind	
			var			var	
		puq	pui		puq	ind	
			var			var	
		nbə	ind		nbə	pui	
			var			var	
elem	src	ත		dst	ත		
3020	3022 🥠			3026			

FIG. 57

FIG. 58

3260	
Options Menu	
Post	
Solve Ctrl+N	

Point Boundary Subdomain Mesh

Options Draw

Eile Edit New...

-3254

3252

Open

Save As

Save

3250

File Menu

Ctrl+5

Sub 3262 3264 3265 3268 3270 Ctite Boundary Add/Edit <u>M</u>aterial Parameters... Edge Application Scalar <u>V</u>ariables.∺ Add/Edit Coupling Variables.. Assigned Variable Names..-Add/Edit Expressions.:-Differentiation Rules.: Draw Point Add/Edit Constants.. Axes/Grid Settings... X Axis Equal Labels Options Options **Z** Axis **Z** Spig

Import from Workspace

Reset Model M-file... Save Model Image Model Properties...

Insert from Workspace

Import from Eile

Visualization/Selection Settings... Zoom Window Zoom Out Renderer Zoom In

Customize...

Cfrl+F

Export FEM Structure as 'fem'

Export to Workspace

Export to File

Import Properties...

Insert from File

Export State-Space Model...

Print...

Export Simulink Model...

Zoom Extents

Refresh

FIG. 60

Ctrl+W

3 C:\MATLA86p1\...\Equation_Based\eigenmodes_of_square.mat

2 C:\MATLA86p1\...\Multiphysics\]micro_robot.mat 1 C:\MATLA86p1\...\Physics\hydrogen_atom.mat

4 C:\MTLA86p1\...\Acoustics\humming_machinery.mat

翼

FIG. 59

FIG. 61

ASSIGNED UARIABLE NAMES...

(4) Assigned Variables	ables			X
Fixed name:	Description:	Assigned name:		
rho	space charge density	rho_es	4	Š
Px	polarization vector	Px_es		
Py	polarization vector	Py_es		Cancel
ല	polarization	P_es		
ж¤	electric field	Ex_es		Annly
EV	electric field	Ey_es		622
ı Ei	electric field	E es		•
Dx	electric displacement	Dx_es		
Dy	electric displacement	Dy_es		
۵	electric displacement	Des		
nD	surface charge	nD_es		
			D	
∇				Set
Assigned name rho	o: rho_es			

FIG. 62

APPLICATION SCALAR UARIABLES...

Ð	Application Scalar Variables	alar Variables			X
Ä	Assigned name:	Description:		Value:	
	epsilon0_qvp	permittivity		8.85399999999992e·012	9992e-012
E	dvp_0um	permeability		1.2566370614	1.2566370614359173e·006
— <u>'</u>	dvp_	time constant		1.00000000000	1.000000000000001e-017
ō	omega_ac	angular frequency	ıcy	314.15926535897933	5897933
			Ą	Cancel	Apply

FIG. 63

DIFFERENTIATION RULES...

(a) Differen	Ø Differentiation Rules			×
Function:		Derivative:		
atanh		1 /(1-x.^2)	Ą	
foo		foo(x) /(1+foo(x))./x		7 [
bar		3*bar(x)./x	Cancel	
			Apply	
		D		
∇			Set	
Name:			Delete	
Derivative:	3'bar[x]./x			

FIG. 64

FIG. 66

FIG. 68

FIG. 70

FIG. 71

FIG. 72

84/86	
Multiphysics	Apply
e Multigrid lon Lation tiation	Cancel
srentiat	OK
	Solve
inear Timestepping Solver options Adaption Adaption Multigrid solver I lterative solver Streamline diffusion Scale factor Automatic Automatic Orthonormal [thnulforth] Context: Local workspace	
Solve Problem Ctrl+E Matrix M-file Parameters General Adaption Solver type Solver type Solver type O Stationery linear O Stationery linear C Stationery linear O Stationery linear C Stationery linear Advanced C Eigenvalue C Eigenvalue D Eigenvalue Elimination Jacobian: Fixed-position iteratic Direct linear solver: Matlab	
	700

<u>|</u>|G, 7

8	Solver Parameters	rameters						× -
<u> </u>	General	Adaption	Nonlinear	Timestepping	Eigenvalue	Iterative	Multigrid	Multiphysics
$\overline{}$	Solve for variables-	ariables ——			-Update mechanism for initial value u-	ism for initial ∿	alue u	
	Show variables	ariables			Store Solution			
	Geom1: 2	variable coef	Geom1: 2 variable coefficient form PDE [c1]	•DE [c1] △	Store solution automatically	n automatical		
					Use solution number	mber 1		
								,
				D				
] 				L4	Solve	Š	Cancel	Apply

FIG. 74

	ADD/EDIT MODES		<u></u>
Multiphysics Window Help	砂 Model Navigator	×	
fodes	New Model Library User Models Multiphysics Preferences		
Solve for <u>V</u> ariables	Geometry name: Geom2		
1 Geom1: 2 variable coefficient PDE (c1)	Dimension: O1-D O2-D @3-D Solver type: Linear stationary	ationary $ abla$	
✓ 3 GEom2: Electrostatics (es)	Independent variables: xyz Solution form: Coefficient	nt 🔻	
3392	ia DC Geom1: PDE, Geom1: Condu	coefficient form a	
	Geom2:	Mechanics	
	Incompressible Navier-Stokes		
3384 7	PDE, coefficient form		
	Weak, subdomain		
	Weak, point Weak, boundary constraint		
	4	٥	
	Application mode name: dc2 Application mode name: sm	: sm	
	Dependent variables: V3 Dependent variables:	u2 v2 w2	
	Element: Lagrange - Quadratic ∇ Submode:	Standard ∇	_
		OK Cancel	
	0000	86,	
16.75	0600	/86	