Perceptual test on StyleGAN3

Beozzo Emanuele Xompero Leonardo

Table of contents

1 Introduction

Study of the previous paper and StyleGAN3 material

Previous experiment

- "More Real than Real: A Study on Human Visual Perception of Synthetic Faces"
- Provides quantitative
 evidence on how the quality
 and realism of face images
 generated with cutting-edge
 Als makes it hard for human
 viewers to recognize them as
 synthetic
- Three GAN networks were tested and compared: PGGAN (AI-17), StyleGAN (AI-18) and StyleGAN2 (AI-19)

Generates state of the art results for un-aligned datasets and looks much more natural in motion (good for video and animation)

2 Dataset

Selection of image for the dataset

Datasets

FFHQ

(Flickr-Faces-HQ)

The dataset consists of 70,000 high-quality PNG images at 1024×1024 resolution and contains considerable variation in terms of age, ethnicity and image background.

StyleGAN3 - R

Example of images obtained from StyleGAN3 with config R (translation and rotation equiv.)

Selection criteria

We selected the images from each dataset with the following criteria:

- 30 images from FFHQ and 30 images from StyleGAN3-R
 - o 15 females and 15 males each
- Caucasian (since most datasets are still unbalanced toward this ethnicity)
- Age in the range 20-50 years
- High-quality images
 - Not blurry images
 - No contrasts or strange illumination
 - Frontal looks
 - Without reflections on the eyes

Examples

FFHQ

3 Interface

Implementation of the web page

How the application works

- Familiarization with one known image
- Retrieval of the images list for the trial
 - Creation of the user
 - Creation of the list of 30 images
 (15 real, 15 generated) based on the number of the user
- Load of each image
 - Displayed for 3 seconds
 - Evaluation (from 1 to 7) sent to the server and stored in the database where 1 is a real image and 7 a synthetic image
- Results calculation and display

Interface of the application

Trial

This image is synthetic.

Results

Real images evaluated correctly: 10/15 (66.67%) Generated images evaluated correctly: 5/15 (33.33%) Total images evaluated correctly: 15/30 (50.00%)

Thank you for the partecipation!

User 48

4 Experiment

How the experiment was conducted

Test

- Offline experiment (face to face)
- Setup:
 - External monitor
 - 50/60 cm of distance
 - o Images of 15x15 cm
- Briefly explanation of the goal and how the system works
- Supervision of evaluation process

Questionnaire

- After the test.
- Separate computer
- Through Google Form
- We filled it for them
- Questions about:
 - Demographic information (gender, age, country)
 - Use of glasses
 - Knowledge about Deep-fake
 - Strategies used during the experiment

5 Results

Analysis of collected data

Our participants

51 participants, most of them were Italian

Our participants

Knowledge of deep fake

Distribution of results

Distribution of evaluations

Metrics per users

Metrics per images

Relation between knowledge and users metrics

Relationship between accuracy and knowledge

Relationship between confidence and knowledge

Strategy used

6 Conclusions

Final words

Comparison of results: evaluations' distribution

Previous experiment

Comparison of results: realism rate

Previous experiment

Comparison of results: accuracy

Previous experiment

Comparison of results: confidence

Previous experiment

Comparison

StyleGAN-3 generates images that are more easily identifiable from the real ones

StyleGAN-2 produces better images

But StyleGAN-3 is better suited for video and animation (as stated in the paper)

Bonus

The best of the worst of StyleGAN3

StyleGAN is not infallible

StyleGAN is not infallible

