

Binary Independent Component Analysis: Theory and Applications in Networking

Huy Nguyen
WiSeR – Wireless System Research Group
Department of Computer Science
University of Houston, TX, USA

Ph.D. Showcase Presentation

Independent Component Analysis (ICA)

Cocktail Party Problem

 Given the linear mixture of some unknown variables

```
\mathbf{x} = \mathbf{G} \times \mathbf{y}
(data) (linear mixing matrix) (sources)
```

- y: mutually independent variables
- Revealing underlying sources
- Application: Image processing, document databases, financial analysis ...

Binary ICA with OR Mixtures

• Consider the model where observations (\mathbf{x}) are disjunctive mixtures of binary independent sources (\mathbf{y})

$$x_i = \bigvee_{j=1}^n (g_{ij} \wedge y_j), \ i = 1, \dots, m$$

- ICA assumes continuous variables \rightarrow not directly applicable
- Binary Independent Component Analysis: From observation matrix \mathbf{x} , infer the mixing matrix \mathbf{G} and activity matrix \mathbf{y}

10/08/2010 Ph.D. Showcase 3 / 9

Binary ICA Model

- *n* independent binary sources: $\mathbf{y} = [y_1, y_2, \dots, y_n]$
- m monitors: $\mathbf{x} = [x_1, x_2, \dots, x_m]$
- Binary mixing matrix:

$$G = g_{ij} \in \{0, 1\}, i = [1, \dots, m], j = [1, \dots, n]$$

• Binary ICA model: X

$$= G \choose (unknown)$$

y (unknown)

4/9

Binary ICA Inference Algorithm

- **Input**: Observation matrix X
- Output: Mixing matrix G, active probability p

Huy Nguyen and Rong Zheng, "Binary Independent Component Analysis with OR Mixtures", http://arxiv.org/abs/1007.0528

Problem: Maximize number of monitored users

x: binary observations from sniffers

y: user activities

G: relationship between sniffers and users

A. Chhetri, Huy Nguyen, G. Scalosub, and R. Zheng, "On Quality of Monitoring for Multi-channel Wireless Infrastructure Networks", In Proc. of Mobihoc'10

Application in Networking (2)

Problem: PU Separation

x: SU observations

y: PU activities

G: relationship between PUs

and SUs

Huy Nguyen, Rong Zheng, and Zhu Han, "Binary is Good: A Binary Inference Framework for Primary User Separation in Cognitive Radio Networks", In Proc. of CrownCom'10

Application in Networking (3)

Problem: Multicast topology inference

x: binary packet loss observations from monitors

y: link loss events

G: relationship between links and monitors

Huy Nguyen and Rong Zheng, "Revisiting Tree Topology Inference: A Binary Independent Component Analysis Approach", In submission to INFOCOM'11

nahuy@cs.uh.edu http://www2.cs.uh.edu/~nahuy/