- 1.考虑文法 $S \rightarrow (L) \mid a$ $L \rightarrow L, S \mid S$
 - (a) 建立句子(a, (a, a))的分析树。
 - (b) 为(a)的句子构造最左推导和最右推导。
 - (c) 这个文法产生的语言是什么?

解:

- (c) 该文法产生的语言的句子(串) 按以下规则生成:
 - (i) 单个 a;
 - (ii) 如果 A 是该语言的句子,则(A)是该语言的句子:
- (iii) 如果 A₁、A₂、···、A_n (n>=2) 是该语言的句子,则(A₁, A₂, ···, A_n) 是该语言的句子;
 - (iv) 有限次使用(i)、(ii) 和(iii) 后所得到的句子是该语言的句子。
- 2.已知文法 $G[S]: S \rightarrow SaS \mid SbS \mid cSd \mid eS \mid f$, 证明该文法是二义的。

证明:考虑该文法的句子 efaf 有两颗不同的语法树,如下图所示:

3. 消除下列文法G[S]的左	- 递	自归	性。
-----------------	-----	----	----

(1)
$$S \rightarrow (L) \mid a \quad L \rightarrow L, S \mid S$$

解:

对 L→L,S|S 改造为: L→SL' L'→,SL'|ε 故,消除左递归后的文法为:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow S L'$$

$$L' \rightarrow , SL' \mid \epsilon$$

S→b

A→SA

A→a

解:	将与产生去	(代入到 A产业式、得。	$A \rightarrow ASA$
!			A →bA
X	22	2 ²⁰ 2	A→a
,	改造书:	A -> bAA' aA'	
¥ 84	* *	A'-> SAA' E	
	结果上:		2 8 9 8
9 3	* * *	S-AS b	F
**************************************	8	A -> bAA' aA'	
		A'-> SAA' E	
50.00 contra 12.00 con 0.00 pr (0.00 s)			

(3) $S \rightarrow Aalb$ $A \rightarrow SB$ $B \rightarrow ab$

解:

改写方法 1:用 A 规则的右部替换 S 规则右部的 A 得

S-SBalb

 $B \rightarrow ab$

消除左递归后的文法为

S→bS′

S'→BaS' | E

B→ab

改写方法 2:用 S 规则的右部替换 A 规则右部的 S 得

S-Aalb

 $A \rightarrow AaB \mid bB$

B→ab

消除左递归后的文法为

S-Aalb

A→bBA′

A'→aBA'|ε

B→ab

A→a

B→Ac

- (1) 求出各个 FIRST 集和 FOLLOW 集;
- (2) 将它改写为 LL(1) 文法。
- (3) 构造相应的LL(1)分析表。
- (4) 给出句子 bac 的分析过程。

一种。	(1)		
	产生式	FIRST JE	Followsk
	S→Sab	\$ b }	{\$,a,c}
· ·	s > bB	{ b }	
	A→S	१७१	{c}
	A→a	{a}	
<u> </u>	B→AC	{a,b}	{\$,a,c}

求名个 FIRST镇和 FOLLOW集: FIRST集 FOLLOW 863 8 5 P S -> bBS' s' - aBs' { \$, c } fai s'→ E 127 863 A > S 80 } f a } $A \rightarrow a$ fa. 63 BAC

Zt \uparrow \rightarrow S, \rightarrow a, \uparrow FIRST (S) \cap FIRST (a) = ϕ Zt \uparrow S' \rightarrow aBS', S' \rightarrow E, \uparrow Follow (S') = f s, c}.

FIRST (aBS') = f a?

Follow (s') A FLRST (aBS') = \$

满足 44(1)文法加建文,校改造后取新文法是 44(1)文法。新文法长:

S -> bBs', s' -> aBs'/E, A -> s/a, B -> Ac

(3) LL(1)分析表:

语法至	a	b	C	\$
C		S→bBS'	*	
3	s'→aBs'	7	5'→ €	5'→€
	$A \rightarrow a$	$A \rightarrow S$		
A	B→Ac	B→Ac		
				=

(4) 句子 bac 成分新过程

专骤	分析栈 \$ S	输入缓冲区 bac \$	翰虫(动作) 翰虫s→bBs!
2.	\$5'Bb	bac \$	正面とり
3.	\$ 5 B	ac \$	新 A B→Ac
4.	\$ 5'cA	ac\$	数 n A→a
5.	\$ s'ca	ac \$	压强企业
6.	\$ 5'c	c \$	THE C
7.	\$ s'	\$	衛出5/→至
8.	\$	\$	分析成功

5. 设文法 G[A]: A → * | ? | (B) B → B & A | A

请完成:

- (1) 消除文法 G 的左递归;
- (2) 经改写后的文法是否为 LL(1)文法? 为什么? 如果是 LL(1)文法,请构造相应的 LL(1)分析表。
- (3) 给出句子 (*) 的分析过程。

(1) 消除文法 G 的左递归后得:

$$A \rightarrow * \mid ? \mid (B)$$

 $B \rightarrow AB'$
 $B' \rightarrow &AB' \mid \varepsilon$

(2) 各非终结符号的 FIRST 集合 FOLLOW 集:

产生式	FIRST	FOLLOW
$A \rightarrow *$	{*}	
$A \rightarrow ?$	{?}	{ \$,), & }
$A \rightarrow (B)$	{(}	
$B \rightarrow AB'$	{*,?, (}	{)}
B' → &AB'	{ & }	
Β' → ε	{ε}	{)}

対于 $A \to *$ | ? | (B), 有 FIRST(*) \cap FIRST(?) \cap FIRST((B))= \emptyset ; 対于 $B' \to \&AB'$ | ϵ , 有 FIRST(&AB') \cap FIRST(ϵ)= \emptyset , FOLLOW(B') \cap FIRST(&AB')= \emptyset

满足 LL(1)文法的定义,故改写后的文法是 LL(1)文法。

LL(1)分析表如下:

	*	?	()	&	\$
A	$A \rightarrow *$	A → ?	$A \rightarrow (B)$			
В	$B \rightarrow AB'$	$B \rightarrow AB'$	$B \rightarrow AB'$			
В'				Β' → ε	B' → &AB'	

(3) 句子 (*) 的分析过程:

步骤	分析栈	输入缓冲区	输出(动作)
1	\$ A	(*) \$	$A \rightarrow (B)$
2	\$)B((*) \$	匹配 (
3	\$) B	*) \$	$B \to AB'$
4	\$)B'A	*) \$	$A \rightarrow *$
5	\$)B'*	*) \$	匹配 *
6	\$)B') \$	$B' \to \epsilon$
7	\$)) \$	匹配)
8	\$	\$	分析成功