L-9: Predictive Analytics & Revision

Agenda

- > Review of last session
- >Introduction to regression
- >Method of least squares
- >Simple linear regression

Covaniance of X and T

$$Cov(x,y) = \frac{E(x) \cdot 2x P(x)}{\cdot (x-\mu_x)(y-\mu_y)} \cdot \frac{1}{2} \cdot \frac{1}{$$

$$Cov\left(x,\gamma\right)$$

$$\frac{2}{i-1}\left(x-\mu_x\right)\left(y-\mu_y\right)$$

$$\frac{1}{2}\left(x-\mu_x\right)\left(y-\mu_y\right)$$

innovate achieve lead

And also

Farmer has an impression that
if he uses more fentilizers, then the
crop yield increases.

we need to validate this?

How ->?

Coefficient of correlation:

$$\mathcal{I} = \frac{\text{Cov}(x,y)}{\sqrt{x}} = \frac{2 \times y}{\sqrt{2} \times 2}$$

$$\text{where } x = x - \overline{x}$$

$$y = y - \overline{y}$$

$$x^{2} = (x - \overline{x})^{2}$$

$$y^{2} = (y - \overline{y})^{2}$$

Coefficient of Correlation

 $\pi=1 \Rightarrow$ Perfect and positive relation $\pi=-1 \Rightarrow$ " negative relation $\pi=0 \Rightarrow \text{No relation}$ ocn <1 \Rightarrow Pantial Positive relation -1< $\pi<0 \Rightarrow$ " negative "

Example-1

7	\ \	2.	3	4	5	6	٦	ਠੋ	9	
	10									

$$\frac{7}{3} = \frac{25}{9} = \frac{5}{9}$$
 $\frac{7}{9} = \frac{5}{9} = \frac{126}{9} = \frac{14}{9}$

K	X =	X	<u> </u>	7	Y2	/ *\
	-4	16	10	- Y-12 - 4	16	16
2	-3	9	11	-3	9	9
3	-2	4	12	-2	Ч	Ч
4	-1	1	14	O	0	0
5	0	O	13	-1	1	0
S	1	ſ	15	J	1	(
7	2	Ч	16	2	4	4
8	3	9	17	3	9	9
9	4	16	18	4	16	16
		60)	isal Tashaisan		50	(59)

<i>9</i> \ :	£ x γ √ ξ x 2 ξ γ 2
	59
	V60×60
_	0 9 0 22

				(•		innovate achieve lead
N	X = 71-5	M	- (4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	72	· / *~	J. (A.A)
	/ \ 3			- 7-12	+		C01(%(9)
l	-4		10	-4	[]	16	(a,d)
2	-3	9	11	-3	d	9	2 77-1
3	-2	4	12	-2	L	Ч	z <u>59</u>
4	-1		14	O	φ	0	8
5	0	\mathcal{O}	13	-1		0	(=7.375)
S	i	ſ	15	1	I	(
7	2	1	16	2	4	4	
8	3	97	17	3	9	9	
9	4	6	18	4	16	16	
·		(0)	((59)	
	AdVar	iced Statisti	cal Techniques	for Analytics		19-11-2018	Slide 13

Coefficient of Determination

nis coeff. of correlation

n² is coeff of determination

the disches the which

Indicates the extent to which vaniation in one variable is explained by the variation in the other.

n=0.9 => π^2 = 0.81 i 81./ of the variation in y due to variation in x remaining 19/. is due to some other factors.

Interpretation

Regression

Regression:

when 2 = 7: 4 = ?

correlation

Regression

- Jegres of the relationship between two variables
- -> no estimation
- > both variables are independent

- -> Having an algebraie equation between two variables
 - astimation
- -> one is dept varialled and other indepr

Method of Least squares

Method of Least squares

"minimizing the

e, + e2 + e2 + - - e10

innovate achieve lead

Method of Least squares

Method of Least squares

$$S(\beta_0, \beta_1) = \sum_{i=1}^{\infty} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial S}{\partial \beta_0} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(-1)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 - \beta_1 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow x = (y_i - \beta_0 x_i)(2)(-x_i)$$

$$\frac{\partial S}{\partial \beta_1} = 0 \Rightarrow$$

Linear regression
$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_0 x$$

$$y = \beta$$

Regression Coefficients

J= a+bol regression line
of y or 2 byn: Regression coeff 2 = C + dy Tregression line
of x on y of your

Correlation coefficient The Jyn x bay

Example:	~
----------	---

company	Adve	Sales
1 0	2777:	Revenue
A	1	τ
B	3	2
C	4	2
D	6	4
E	8	6
F	9	8
Q	11	8
H	lЦ	9

innovate	achieve	lead

Examp	ole:-
-------	-------

	<u> </u>			
Sales	Advi		1	
Revenue	expt.	o si	sy	をすこから、十月、それ
	1	l		Eny = B, En +B, En2
2	3	9	. 6	7 40 = 8 Bo + 56 PI
2	4	16	8	373 = 56 Bo + 524B
4	6	36	24	on solving
6	8	64	`4 8	Bo = 0.072
8	9	81	72	B1 = 0.704 1: 4: (0.072) +
8	11	121	28	(0.704) T
<i>o</i>	 L4	196	126	
100	256	2524	2373	

ii
$$y = (0.072) + (0.704) \%$$

when $x = 0.075$, when
 $y = (0.072) + (0.704)(0.075)$
 $= 0.1248 \approx 12.48 \%$

Example:

Consider une following data

74		2	4	O	
J	0.5	1	2	0	

Fit a linear regression line Estimate y when x = 5.

		,	ſ	innovate achieve lead
n	5	ry	2	7 = 130 + 131 x
1	0.5	0.5	1	5y : m Bo + B1 Ex
2	1	2	4	ミスタ 2 Bo ミス, 七 B, ミスト 3.5 = 4 Bo ナ B, (7)
4	2	8	16	10.5 = 7 Bo + \$3, (21)
O	0	0	O	on solving these
2 = 7	5 3, 5	5 <u>5</u>	5 2	$y = 0 + (0.5) \alpha$
			when	$x = 5$, $y = (0.5)^{5}$

Linear regression (Multiple regression)

Example:-

5 0	Si3e	2000	1/00-12	Ageod	poice Laxby
1	2000	5	2	45	4000
1	1400	3	1	40	2000
1	1600	3	2	30	3000
1	800	2)	35	2000
	24.1	7/	4	7 4	7

Multiple Linear regression

other regressions just a look

Suppose y=ae_ lead (loga) + b(logx) A + b X 12 Ey= An+bEX-5 xy = A 5x + b 5x2Suppose y = axb

Power Curre

Matrix Approach:

Let
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$
observations $y_1 = 1, 2, \dots m \rightarrow by$ a vector $y_1 = 1, 2, \dots p_{p-1} \rightarrow y_1 = 1$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_1 = y_2 + y_3 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_2 = y_3 + y_4 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_3 = y_4 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_4 = y_5 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_5 = y_5 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_5 = y_5 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_5 = y_5 + y_5 + y_5 + \dots + y_{p-1} \rightarrow y_1 = 1$$

$$y_5 = y_5 + y_5 +$$

Find 13 to minimize $S(\beta) = \sum_{i=1}^{\infty} (y_i - \beta_0 - \beta_1 x_1 - \beta_2 x_2 - \cdots)^2$ = || Y - x | = | | Y - Ý || = Diff 5 wot to each B we get hinear eggs XXB = XY _ normal egres If x1x is non-singular, the soln's 育=(メナス)、オイ

computationally, it is sometimes unwise even to form the normal equations because the multiplications involved in forming xTx can introduce undesinable mound - off errol.

-> If xTx is mon-invertible....? Redundant features 1 too many features

Revision

Revision

Revision

Thanks