Solution Section 4.1 – Infinite Sequences and Summation Notation

Exercise

Find the first four terms and the eight term of the sequence: $\{12-3n\}$

Solution

$$a_n = 12 - 3n$$

$$a_1 = 12 - 3(1) = 9$$

$$a_2 = 12 - 3(2) = 6$$

$$a_3 = 12 - 3(3) = 3$$

$$a_4 = 12 - 3(4) = 0$$

$$a_8 = 12 - 3(8) = -12$$

Exercise

Find the first four terms and the eight term of the sequence: $\left\{\frac{3n-2}{n^2+1}\right\}$

$$a_n = \frac{3n-2}{n^2+1}$$

$$a_1 = \frac{3-2}{1^2+1} = \frac{1}{2}$$

$$a_2 = \frac{3(2) - 2}{2^2 + 1} = \frac{4}{5}$$

$$a_3 = \frac{3(3) - 2}{3^2 + 1} = \frac{7}{10}$$

$$a_4 = \frac{3(4) - 2}{4^2 + 1} = \frac{10}{17}$$

$$a_8 = \frac{3(8) - 2}{8^2 + 1} = \frac{22}{65}$$

Find the first four terms and the eight term of the sequence: {9}

Solution

- $a_1 = 9$
- $a_2 = 9$
- $a_3 = 9$
- $a_4 = 9$
- $a_8 = 9$

Exercise

Find the first four terms and the eight term of the sequence: $\left\{ \left(-1\right)^{n-1} \frac{n+7}{2n} \right\}$

Solution

$$a_1 = (-1)^{1-1} \frac{1+7}{2(1)} = 4$$

$$a_2 = (-1)^{2-1} \frac{2+7}{2(2)} = -\frac{9}{4}$$

$$a_3 = (-1)^{3-1} \frac{3+7}{2(3)} = \frac{5}{3}$$

$$a_4 = (-1)^{4-1} \frac{4+7}{2(4)} = -\frac{11}{8}$$

$$a_8 = (-1)^{8-1} \frac{8+7}{2(8)} = -\frac{15}{16}$$

Exercise

Find the first four terms and the eight term of the sequence: $\left\{\frac{2^n}{n^2+2}\right\}$

$$a_1 = \frac{2^1}{1^2 + 2} = \frac{2}{3}$$

$$a_2 = \frac{2^2}{2^2 + 2} = \frac{2}{3}$$

$$a_3 = \frac{2^3}{3^2 + 2} = \frac{8}{11}$$

$$a_4 = \frac{2^4}{4^2 + 2} = \frac{8}{9}$$

$$a_8 = \frac{2^8}{8^2 + 2} = \frac{128}{33}$$

Find the first four terms and the eight term of the sequence: $\left\{ (-1)^{n-1} \frac{n}{2n-1} \right\}$

Solution

$$a_1 = (-1)^0 \frac{1}{2-1} = 1$$

$$a_2 = (-1)^1 \frac{2}{4-1} = -\frac{2}{3}$$

$$a_3 = (-1)^2 \frac{3}{6-1} = \frac{3}{5}$$

$$a_4 = (-1)^3 \frac{4}{8-1} = -\frac{4}{7}$$

$$a_8 = (-1)^7 \frac{8}{16-1} = -\frac{8}{15}$$

Exercise

Find the first four terms and the eight term of the sequence: $\left\{\frac{2^n}{3^n+1}\right\}$

$$a_1 = \frac{2^1}{3^1 + 1} = \frac{2}{4} = \frac{1}{2}$$

$$a_2 = \frac{2^2}{3^2 + 1} = \frac{4}{10} = \frac{2}{5}$$

$$a_3 = \frac{2^3}{3^3 + 1} = \frac{8}{28} = \frac{2}{7}$$

$$a_4 = \frac{2^4}{3^4 + 1} = \frac{16}{82} = \frac{8}{41}$$

$$a_8 = \frac{2^8}{3^8 + 1} = \frac{256}{6562} = \frac{128}{3281}$$

Find the first four terms and the eight term of the sequence: $\left\{\frac{n^2}{2^n}\right\}$

Solution

$$a_1 = \frac{1^2}{2^1} = \frac{1}{2}$$

$$a_2 = \frac{2^2}{2^2} = 1$$

$$a_3 = \frac{3^2}{2^3} = \frac{9}{8}$$

$$a_4 = \frac{4^2}{2^4} = \frac{16}{16} = 1$$

$$a_8 = \frac{8^2}{2^8} = \frac{64}{256} = \frac{1}{4}$$

Exercise

Find the first four terms and the eight term of the sequence: $\left\{\frac{n}{e^n}\right\}$

Solution

$$a_1 = \frac{1}{e^1} = \frac{1}{e}$$

$$a_2 = \frac{2}{e^2}$$

$$a_3 = \frac{3}{e^3}$$

$$a_4 = \frac{4}{e^4}$$

$$a_8 = \frac{8}{e^8}$$

Exercise

Find the first four terms and the eight term of the sequence: $\{c_n\} = \{(-1)^{n+1} n^2\}$

$$c_1 = (-1)^2 1^2 = 1$$

$$c_2 = (-1)^3 2^2 = -4$$

$$c_3 = (-1)^4 3^2 = 9$$

$$c_4 = (-1)^5 4^2 = -16$$

$$c_8 = (-1)^9 8^2 = -64$$

Find the first four terms and the eight term of the sequence: $\{c_n\} = \left\{\frac{(-1)^n}{(n+1)(n+2)}\right\}$

Solution

$$c_1 = \frac{\left(-1\right)^1}{2 \cdot 3} = -\frac{1}{6}$$

$$c_2 = \frac{\left(-1\right)^2}{3 \cdot 4} = \frac{1}{12}$$

$$c_3 = \frac{\left(-1\right)^3}{4 \cdot 5} = -\frac{1}{20}$$

$$c_4 = \frac{\left(-1\right)^4}{5 \cdot 6} = \frac{1}{30}$$

$$c_8 = \frac{\left(-1\right)^8}{9 \cdot 10} = \frac{1}{90}$$

Exercise

Find the first four terms and the eight term of the sequence: $\left\{c_n\right\} = \left\{\left(\frac{4}{3}\right)^n\right\}$

$$c_1 = \left(\frac{4}{3}\right)^1 = \frac{4}{3}$$

$$c_2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$$

$$c_3 = \left(\frac{4}{3}\right)^3 = \frac{64}{27}$$

$$c_4 = \left(\frac{4}{3}\right)^4 = \frac{256}{81}$$

$$c_8 = \left(\frac{4}{3}\right)^8 = \frac{65,536}{6,561}$$

Find the first four terms and the eight term of the sequence: $\{b_n\} = \left\{\frac{3^n}{n}\right\}$

Solution

$$b_1 = \frac{3^1}{1} = 3$$

$$b_2 = \frac{3^2}{2} = \frac{9}{2}$$

$$b_3 = \frac{3^3}{3} = 9$$

$$b_4 = \frac{3^4}{4} = \frac{81}{4}$$

$$c_8 = \frac{3^8}{8} = \frac{6,561}{8}$$

Exercise

Graph the sequence $\left\{\frac{1}{\sqrt{n}}\right\}$

Solution

$$\left\{ \frac{1}{\sqrt{n}} \right\} = \left\{ \frac{1}{\sqrt{1}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}}, \dots \right\}$$

$$\approx 1, 0.71, 0.58, 0.5, 0.45$$

Exercise

Find the first four terms of the sequence of partial sums for the given sequence. $\left\{3 + \frac{1}{2}n\right\}$

$$S_1 = a_1 = 3 + \frac{1}{2}(1)$$

Find the first five terms of the recursively defined infinite sequence: $a_1 = 2$, $a_{k+1} = 3a_k - 5$ **Solution**

$$k = 1 \rightarrow \underline{a_2} = 3a_1 - 5 = 3(2) - 5 = 1$$

 $k = 2 \rightarrow \underline{a_3} = 3a_2 - 5 = 3(1) - 5 = -2$
 $k = 3 \rightarrow \underline{a_4} = 3a_3 - 5 = 3(-2) - 5 = -11$
 $k = 4 \rightarrow \underline{a_5} = 3a_4 - 5 = 3(-11) - 5 = -38$

Exercise

Find the first five terms of the recursively defined infinite sequence: $a_1 = -3$, $a_{k+1} = a_k^2$

$$k = 1 \rightarrow [a_2 = a_1^2 = (-3)^2 = 9]$$

 $k = 2 \rightarrow [a_3 = a_2^2 = (9)^2 = 81]$
 $k = 3 \rightarrow [a_4 = a_3^2 = (3^4)^2 = 3^8]$
 $k = 4 \rightarrow [a_5 = a_4^2 = (3^8)^2 = 3^{16}]$

Find the first five terms of the recursively defined infinite sequence: $a_1 = 5$, $a_{k+1} = ka_k$

Solution

$$k = 1 \rightarrow a_2 = 1a_1 = 5$$

$$k = 2 \rightarrow a_3 = 2a_2 = 2(5) = 10$$

$$k = 3 \rightarrow a_4 = 3a_3 = 3(10) = 30$$

$$k = 4 \rightarrow a_5 = 4a_4 = 4(30) = 120$$

Exercise

Find the first five terms of the recursively defined infinite sequence: $a_1 = 2$, $a_n = 3 + a_{n-1}$

Solution

$$a_2 = 3 + a_1 = 3 + 2 = 5$$

$$a_3 = 3 + a_2 = 3 + 5 = 8$$

$$a_{4} = 3 + a_{3} = 3 + 8 = 11$$

$$a_5 = 3 + a_4 = 3 + 11 = 14$$

Exercise

Find the first five terms of the recursively defined infinite sequence: $a_1 = 5$, $a_n = 2a_{n-1}$

$$a_2 = 2a_1 = 2(5) = 10$$

$$a_3 = 2a_2 = 2(10) = 20$$

$$a_4 = 2a_3 = 2(20) = 40$$

$$a_5 = 2a_4 = 2(40) = 80$$

Find the first five terms of the recursively defined infinite sequence: $a_1 = \sqrt{2}$, $a_n = \sqrt{2 + a_{n-1}}$

Solution

$$a_{2} = \sqrt{2 + a_{1}} = \underline{\sqrt{2 + \sqrt{2}}}$$

$$a_{3} = \sqrt{2 + a_{2}} = \underline{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}$$

$$a_4 = \sqrt{2 + a_3} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}$$

$$a_5 = \sqrt{2 + a_4} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}$$

Exercise

Find the first five terms of the recursively defined infinite sequence: $a_1 = 2$, $a_{n+1} = 7 - 2a_n$

Solution

$$a_2 = 7 - 2a_1 = 7 - 4 = 3$$

$$a_3 = 7 - 2a_2 = 7 - 6 = 1$$

$$a_4 = 7 - 2a_3 = 7 - 2 = 5$$

$$a_5 = 7 - 2a_4 = 7 - 10 = -5$$

Exercise

Find the first five terms of the recursively defined infinite sequence: $a_1 = 128$, $a_{n+1} = \frac{1}{4}a_n$

$$a_2 = \frac{1}{4}a_1 = \frac{1}{4}128 = 32$$

$$a_3 = \frac{1}{4}a_2 = \frac{32}{4} = 8$$

$$a_4 = \frac{1}{4}a_3 = \frac{8}{4} = 2$$

$$a_5 = \frac{1}{4}a_4 = \frac{2}{4} = \frac{1}{2}$$

Find the first five terms of the recursively defined infinite sequence: $a_1 = 2$, $a_{n+1} = (a_n)^n$

Solution

$$a_2 = \left(a_1\right)^1 = 2$$

$$a_3 = (a_2)^2 = 2^2 = 4$$

$$a_4 = (a_3)^3 = 4^3 = 64$$

$$a_5 = (a_4)^4 = 64^4$$

Exercise

Find the first five terms of the recursively defined infinite sequence: $a_1 = A$, $a_n = a_{n-1} + d$

Solution

$$a_2 = a_1 + d = A + d$$

$$a_3 = a_2 + d = A + d + d = A + 2d$$

$$a_4 = a_3 + d = A + 3d$$

$$a_5 = a_4 + d = \underline{A + 4d}$$

Exercise

Find the first five terms of the recursively defined infinite sequence: $a_1 = A$, $a_n = ra_{n-1}$, $r \neq 0$ **Solution**

$$a_2 = ra_1 = rA$$

$$a_3 = ra_2 = Ar^2$$

$$a_2 = ra_1 = rA$$
 $a_3 = ra_2 = Ar^2$ $a_4 = ra_3 = Ar^3$ $a_5 = ra_4 = Ar^4$

$$a_5 = ra_4 = Ar^4$$

Exercise

Find the first 5 terms of the recursively defined infinite sequence: $a_1 = 2$, $a_2 = 2$; $a_n = a_{n-1} \cdot a_{n-2}$ **Solution**

$$a_3 = a_2 \cdot a_1 = 2 \cdot 2 = 4$$

$$a_4 = a_3 \cdot a_2 = 4 \cdot 2 = 8$$

$$a_5 = a_4 \cdot a_3 = 8 \cdot 4 = 32$$

$$a_6 = a_5 \cdot a_4 = 32 \cdot 8 = 256$$

Express each sum using summation notation 1+2+3+...+20

Solution

$$1+2+3+4+\cdots+20 = \sum_{k=1}^{20} k$$

Exercise

Express each sum using summation notation 1+2+3+...+40

Solution

$$1+2+3+\ldots+40 = \sum_{k=1}^{40} k$$

Exercise

Express each sum using summation notation

$$1^3 + 2^3 + 3^3 + \dots + 8^3$$

Solution

$$1^3 + 2^3 + 3^3 + \dots + 8^3 = \sum_{k=1}^{8} k^3$$

Exercise

Express each sum using summation notation

$$1^2 + 2^2 + 3^2 + \dots + 15^2$$

Solution

$$1^2 + 2^2 + 3^2 + \dots + 15^2 = \sum_{k=1}^{15} k^2$$

Exercise

Express each sum using summation notation

$$2^2 + 2^3 + 2^4 + \dots + 2^{11}$$

$$2^{2} + 2^{3} + 2^{4} + ... + 2^{11} = \sum_{k=2}^{11} 2^{k}$$

Express each sum using summation notation

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{13}{14}$$

Solution

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{13}{14} = \sum_{k=1}^{13} \frac{k}{k+1}$$

Exercise

Express each sum using summation notation $1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + (-1)^6 \frac{1}{36}$

$$1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + (-1)^6 \frac{1}{3^6}$$

Solution

$$1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + (-1)^{6} \frac{1}{3^{6}} = \sum_{k=0}^{6} (-1)^{k} \frac{1}{3^{k}}$$

Exercise

Express each sum using summation notation

$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \dots + (-1)^{12} \left(\frac{2}{3}\right)^{11}$$

Solution

$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \dots + (-1)^{12} \left(\frac{2}{3}\right)^{11} = \sum_{k=1}^{11} (-1)^{k+1} \left(\frac{2}{3}\right)^k$$

Exercise

Express each sum using summation notation

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{14}{14+1}$$

Solution

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{14}{14+1} = \sum_{k=1}^{14} \frac{k}{k+1}$$

Exercise

Express each sum using summation notation

$$\frac{1}{e} + \frac{2}{e^2} + \frac{3}{e^3} + \dots + \frac{n}{e^n}$$

$$\frac{1}{e} + \frac{2}{e^2} + \frac{3}{e^3} + \dots + \frac{n}{e^n} = \sum_{k=1}^n \frac{k}{e^k}$$

Find the sum:
$$\sum_{k=1}^{5} (2k-7)$$

Solution

$$\sum_{k=1}^{5} (2k-7) = (-5) + (-3) + (-1) + 1 + 3$$

$$= -5$$

Exercise

Find the sum:
$$\sum_{k=0}^{5} k(k-2)$$

Solution

$$\sum_{k=0}^{5} k(k-2) = 0 + (-1) + 0 + 3 + 8 + 15$$

$$= 25$$

Exercise

Find the sum:
$$\sum_{k=1}^{5} (-3)^{k-1}$$

Solution

$$\sum_{k=1}^{5} (-3)^{k-1} = 1 + (-3) + 9 + (-27) + 81$$
$$= 61 \mid$$

Exercise

Find the sum:
$$\sum_{k=253}^{571} \left(\frac{1}{3}\right)$$

$$\sum_{k=253}^{571} \left(\frac{1}{3}\right) = (571 - 253 + 1)\left(\frac{1}{3}\right)$$

$$= \frac{319}{3}$$

$$\sum_{k=m}^{n} c = (n-m+1)c$$

Find the sum: $\sum_{k=1}^{50} 8$

$$\sum_{k=1}^{50} 8$$

Solution

$$\sum_{k=1}^{50} 8 = (50 - 1 + 1)8$$

$$= 400$$

$$\sum_{k=m}^{n} c = (n-m+1)c$$

Exercise

Find the sum:

$$\sum_{k=1}^{40} k$$

Solution

$$\sum_{k=1}^{40} k = \frac{40(41)}{2}$$
= 820 |

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Exercise

Find the sum: $\sum_{k=1}^{5} (3k)$

$$\sum_{k=1}^{5} 3k = 3(1) + 3(2) + 3(3) + 3(4) + 3(5)$$

$$= 45$$

Find the sum:
$$\sum_{k=1}^{10} (k^3 + 1)$$

Solution

$$\sum_{k=1}^{10} (k^3 + 1) = \sum_{k=1}^{10} k^3 + \sum_{k=1}^{10} 1$$

$$= \frac{10^2 (10 + 1)^2}{4} + 10(1)$$

$$= \frac{12100}{4} + 10$$

$$= 3025 + 10$$

$$= 3035$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2 (n+1)^2}{4}$$

Exercise

Find the sum:
$$\sum_{k=1}^{24} \left(k^2 - 7k + 2 \right)$$

Solution

$$\sum_{k=1}^{24} (k^2 - 7k + 2) = \frac{24(24+1)(2 \cdot 24+1)}{6} - 7\frac{24(24+1)}{2} + 2(24) \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$= 2848$$

Exercise

Find the sum:
$$\sum_{k=6}^{20} (4k^2)$$

$$\sum_{k=6}^{20} (4k^2) = 4 \left(\sum_{k=1}^{20} k^2 - \sum_{k=1}^{5} k^2 \right)$$

$$= 4 \left(\frac{20(20+1)(2 \cdot 20+1)}{6} - \frac{5(5+1)(2 \cdot 5+1)}{6} \right)$$

$$= 4 \left(\frac{20(21)(41)}{6} - \frac{5(6)(11)}{6} \right)$$

$$=4(2870-55)$$

=11,260

Find the sum: $\sum_{k=1}^{16} (k^2 - 4)$

Solution

$$\sum_{k=1}^{16} (k^2 - 4) = \sum_{k=1}^{16} k^2 - \sum_{k=1}^{16} 4$$

$$= \frac{16(16+1)(2\cdot 16+1)}{6} - 4(16)$$

$$= 1496 - 64$$

$$= 1432$$

Exercise

Find the sum: $\sum_{k=1}^{6} (10-3k)$

Solution

$$\sum_{k=1}^{6} (10-3k) = 7+4+1-2-5-8$$

$$= -3$$

Exercise

Find the sum: $\sum_{k=1}^{10} \left[1 + \left(-1\right)^k \right]$

Solution

$$\sum_{k=1}^{10} \left[1 + (-1)^k \right] = 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 = 10$$

 $\sum_{n=0}^{\infty} k^2 = \frac{n(n+1)(2n+1)}{6}$

Find the sum:
$$\sum_{k=1}^{6} \frac{3}{k+1}$$

Solution

$$\sum_{k=1}^{6} \frac{3}{k+1} = \frac{3}{2} + 1 + \frac{3}{4} + \frac{3}{5} + 2 + \frac{3}{7}$$
$$= \frac{879}{140}$$

Exercise

Find the sum:
$$\sum_{k=137}^{428} 2.1$$

Solution

$$\sum_{k=137}^{428} 2.1 = (428 - 137 + 1)2.1 = (292)2.1$$

$$= 613.2$$

$$\sum_{k=m}^{n} c = (n-m+1)c$$

Exercise

Write out each sum
$$\sum_{k=1}^{n} (k+2)$$

Solution

$$\sum_{k=1}^{n} (k+2) = 3+5+7+9+\dots+(n+2)$$

Exercise

Write out each sum
$$\sum_{k=1}^{n} k^2$$

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$$

$$=1+4+9+16+\cdots+n^2$$

Write out each sum
$$\sum_{k=2}^{n} (-1)^k \ln k$$

Solution

$$\sum_{k=2}^{n} (-1)^k \ln k = (-1)^2 \ln 2 + (-1)^3 \ln 3 + (-1)^4 \ln 4 + (-1)^5 \ln 5 + \dots + (-1)^n \ln n$$

$$= \ln 2 - \ln 3 + \ln 4 - \ln 5 + \dots + (-1)^n \ln n$$

Exercise

Write out each sum
$$\sum_{k=3}^{n} (-1)^{k+1} 2^k$$

Solution

$$\sum_{k=3}^{n} (-1)^{k+1} 2^k = (-1)^4 2^3 + (-1)^5 2^4 + (-1)^6 2^5 + (-1)^7 2^6 + \dots + (-1)^{n+1} 2^n$$

$$= 8 - 16 + 32 - 64 + \dots + (-1)^{n+1} 2^n$$

Exercise

Write out each sum
$$\sum_{k=0}^{n} \frac{1}{3^k}$$

$$\sum_{k=0}^{n} \frac{1}{3^{k}} = 1 + \frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \dots + \frac{1}{3^{n}}$$

Fred has a balance of \$3,000 on his card which charges 1% interest per month on any unpaid balance. Fred can afford to pay \$100 toward the balance each *month*. His balance each month after making a \$100 payment is given by the recursively defined sequence

$$B_0 = \$3,000$$
 $B_n = 1.01B_{n-1} - 100$

Determine Fred's balance after making the first payment. That is, determine B_1

Solution

$$B_1 = 1.01B_0 - 100$$
$$= 1.01(3,000) - 100$$
$$= $2,930 \mid$$

Fred's balance is \$2,930 after making the first payment.

Exercise

A pond currently has 2,000 trout in it. A fish hatchery decides to add an additional 20 trout each month. Is it also known that the trout population is grwoing at a rate of 3% per *month*. The size of the population after *n* months is given but he recursively defined sequence

$$P_0 = 2,000$$
 $P_n = 1.03P_{n-1} + 20$

How many trout are in the pond after 2 months? That is, what is P_2 ?

Solution

$$P_1 = 1.03P_0 + 20$$

$$= 1.03(2,000) + 20$$

$$= 2,080$$

$$P_2 = 1.03P_1 + 20$$

$$= 1.03(2,080) + 20$$

$$= 2,162.4$$

There are approximately 2162 *trout* in the pond after 2 *months*.

Fred bought a car by taking out a loan for \$18,500 at 0.5% interest per month. Fred's normal monthly payment is \$434.47 per month, but he decides that he can afford to pay \$100 extra toward the balance each month. His balance each month is given by the recursively defined sequence

$$B_0 = \$18,500$$
 $B_n = 1.005B_{n-1} - 534.47$

Determine Fred's balance after making the first payment. That is, determine B_1

Solution

$$B_1 = 1.005B_0 - 534.47$$
$$= 1.005(18,500) - 534.47$$
$$= $18,058.03 \mid$$

Fred's balance is \$18.058.03 after making the first payment.

Exercise

The Environmental Protection Agency (EPA) determines that Maple Lake has 250 *tons* of pollutant as a result of industrial waste and that 10% of the pollutant present is neuttralized by solar oxidation every year. The EPA imposes new pollution control laws that result in 15 *tons* of new pollutant entering the lake each year. The amount of pollutant in the lake after *n* years is given by the recursively defined sequence

$$P_0 = 250$$
 $P_n = 0.9P_{n-1} + 15$

Determine the amount of pollutant in the lake after 2 years? That is, what is P_2 ?

Solution

There are 231 *tons* of pollutants after 2 *years*.

A colony of rabbits begins with one pair of mature rabbits, which will produce a pair of offspring (one male, one female) each month. Assume that all rabbits mature in 1 month and produce a pair of offspring (one male, one female) after 2 months. If no rabbits ever die, how many pairs of mature rabbits are there after 7 months?

Solution

$$a_1 = 1$$

$$a_2 = 1$$

$$a_3 = 2$$

$$a_4 = 3$$

$$a_{5} = 5$$

$$a_6 = 8$$

$$a_7 = 13$$

$$a_8 = 21$$

: :

$$a_n = a_{n-1} + a_{n-2}$$

After 7 months there are 21 mature pairs of rabbits.

Exercise

Let
$$u_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$$

Define the *n*th term of a sequence

- a) Show that $u_1 = 1$ and $u_2 = 1$
- b) Show that $u_{n+2} = u_{n+1} + u_n$
- c) Draw the conclusion that $\{u_n\}$ is a Fibonacci sequence
- d) Find the first ten terms of the sequence from part (c)

$$a) \quad u_1 = \frac{\left(1+\sqrt{5}\right)^1 - \left(1-\sqrt{5}\right)^1}{2^1\sqrt{5}}$$

$$= \frac{2\sqrt{5}}{2\sqrt{5}}$$

$$= 1 \rfloor$$

$$u_2 = \frac{\left(1+\sqrt{5}\right)^2 - \left(1-\sqrt{5}\right)^2}{2^2\sqrt{5}}$$

$$= \frac{\left(1+\sqrt{5}-1+\sqrt{5}\right) - \left(1-\sqrt{5}+1-\sqrt{5}\right)}{2^2\sqrt{5}}$$

$$= \frac{4\sqrt{5}}{4\sqrt{5}}$$

$$= 1 \rfloor$$

$$b) \quad u_{n+1} + u_n = \frac{\left(1+\sqrt{5}\right)^{n+1} - \left(1-\sqrt{5}\right)^{n+1}}{2^{n+1}\sqrt{5}} + \frac{\left(1+\sqrt{5}\right)^n - \left(1-\sqrt{5}\right)^n}{2^n\sqrt{5}}$$

$$= \frac{\left(1+\sqrt{5}\right)^{n+1} - \left(1-\sqrt{5}\right)^{n+1} + 2\left(1+\sqrt{5}\right)^n - 2\left(1-\sqrt{5}\right)^n}{2^{n+1}\sqrt{5}}$$

$$= \frac{\left(1+\sqrt{5}\right)^n \left(1+\sqrt{5}+2\right) - \left(1-\sqrt{5}\right)^n \left(1-\sqrt{5}+2\right)}{2^{n+1}\sqrt{5}}$$

$$= \frac{\left(1+\sqrt{5}\right)^n \left(3+\sqrt{5}\right) - \left(1-\sqrt{5}\right)^n \left(3-\sqrt{5}\right)}{2^{n+1}\sqrt{5}}$$

$$= \frac{\left(1+\sqrt{5}\right)^{n+2} \frac{3+\sqrt{5}}{1+2\sqrt{5}+5} - \left(1-\sqrt{5}\right)^{n+2} \frac{3-\sqrt{5}}{1-2\sqrt{5}+5}}{2^{n+1}\sqrt{5}}$$

$$= \frac{\left(1+\sqrt{5}\right)^{n+2} \frac{3+\sqrt{5}}{1+2\sqrt{5}+5} - \left(1-\sqrt{5}\right)^{n+2} \frac{3-\sqrt{5}}{1-2\sqrt{5}+5}}{2^{n+1}\sqrt{5}}$$

$$= \frac{\frac{1}{2}\left(1+\sqrt{5}\right)^{n+2} \frac{3+\sqrt{5}}{3+\sqrt{5}} - \frac{1}{2}\left(1-\sqrt{5}\right)^{n+2} \frac{3-\sqrt{5}}{3-\sqrt{5}}}{3-\sqrt{5}}$$

$$= \frac{1}{2}\frac{\left(1+\sqrt{5}\right)^{n+2} \frac{3+\sqrt{5}}{3+\sqrt{5}} - \frac{1}{2}\left(1-\sqrt{5}\right)^{n+2} \frac{3-\sqrt{5}}{3-\sqrt{5}}}{2^{n+1}\sqrt{5}}$$

$$= \frac{1}{2}\frac{\left(1+\sqrt{5}\right)^{n+2} - \left(1-\sqrt{5}\right)^{n+2}}{2^{n+1}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^{n+2} - (1-\sqrt{5})^{n+2}}{2^{n+2}\sqrt{5}}$$

$$= u_{n+2} \checkmark$$

- c) Since $u_1 = 1$ and $u_2 = 1$ and $u_{n+2} = u_{n+1} + u_n$ $\therefore \{u_n\}$ is a Fibonacci sequence
- e) $u_1 = 1$ $u_2 = 1$ $u_3 = u_2 + u_1 = 1 + 1 = 2$ $u_4 = u_3 + u_2 = 2 + 1 = 3$ $u_5 = u_4 + u_3 = 3 + 2 = 5$ $u_6 = u_5 + u_4 = 5 + 3 = 8$ $u_7 = u_6 + u_5 = 8 + 5 = 13$ $u_8 = u_7 + u_5 = 13 + 8 = 21$ $u_9 = u_8 + u_7 = 21 + 13 = 34$ $u_{10} = u_9 + u_8 = 34 + 21 = 55$