Imports

```
In [2]:
         import sys
         sys.executable
        '/Users/parrt/opt/anaconda3/bin/python'
Out[2]:
In [3]:
         import sys
         import os
         # add library module to PYTHONPATH
         sys.path.append(f"{os.getcwd()}/../")
         import sklearn
         from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
         import xgboost as xgb
         from xgboost import plot_importance, plot_tree, plotting
         from dtreeviz import trees
         import graphviz
         import matplotlib.pyplot as plt
         from matplotlib.pylab import rcParams
         import pandas as pd
         import numpy as np
         from dtreeviz.models.shadow decision tree import ShadowDecTree
         from dtreeviz.models.xgb_decision_tree import ShadowXGBDTree
In [4]:
         pd.options.display.max_rows = 999
```

Train

```
In [5]:
         random_state = 1234
         dataset = pd.read_csv("../data/titanic/titanic.csv")
         # Fill missing values for Age
         dataset.fillna({"Age":dataset.Age.mean()}, inplace=True)
         # Encode categorical variables
         dataset["Sex_label"] = dataset.Sex.astype("category").cat.codes
         dataset["Cabin_label"] = dataset.Cabin.astype("category").cat.codes
         dataset["Embarked_label"] = dataset.Embarked.astype("category").cat.codes
         features = ["Pclass", "Age", "Fare", "Sex_label", "Cabin_label", "Embarked_label"]
         target = "Survived"
In [6]:
         dtrain = xgb.DMatrix(dataset[features], dataset[target])
In [7]:
         params = {"max_depth":3, "eta":0.05, "objective":"binary:logistic", "subsample":1}
         xgb_model = xgb.train(params=params, dtrain=dtrain, num_boost_round=8)
In [8]:
         xgb_model.trees_to_dataframe().query("Tree == 0")
                         ID
                               Feature
                                       Split Yes
                                                   No Missing
                                                                    Gain Cover
            Tree Node
Out[8]:
         0
               0
                     0
                        0-0
                              Sex_label
                                        1.00
                                             0-1
                                                  0-2
                                                          0-1 246.604279 222.75
               0
                     1
                        0-1
                                Pclass
                                       3.00
                                             0-3
                                                  0-4
                                                          0-3
                                                                60.127525
                                                                         78.50
```

	Tree	Node	ID	Feature	Split	Yes	No	Missing	Gain	Cover
2	0	2	0-2	Cabin_label	4.00	0-5	0-6	0-5	29.516968	144.25
3	0	3	0-3	Leaf	NaN	NaN	NaN	NaN	0.087356	42.50
4	0	4	0-4	Fare	23.35	0-7	0-8	0-7	17.870434	36.00
5	0	5	0-5	Age	3.50	0-9	0-10	0-9	14.429703	118.25
6	0	6	0-6	Age	17.50	0-11	0-12	0-11	8.358520	26.00
7	0	7	0-7	Leaf	NaN	NaN	NaN	NaN	0.017355	29.25
8	0	8	0-8	Leaf	NaN	NaN	NaN	NaN	-0.067742	6.75
9	0	9	0-9	Leaf	NaN	NaN	NaN	NaN	0.022222	3.50
10	0	10	0-10	Leaf	NaN	NaN	NaN	NaN	-0.075378	114.75
11	0	11	0-11	Leaf	NaN	NaN	NaN	NaN	0.066667	2.00
12	0	12	0-12	Leaf	NaN	NaN	NaN	NaN	-0.022000	24.00

```
# rcParams['figure.figsize'] = 50,30
plot_tree(xgb_model)
```

Out[9]: <AxesSubplot:>

save the model

```
import joblib
# joblib.dump(xgb_model, "xgb_model")
```

Init shadow tree

```
In [11]:    d = dataset[features + [target]]
    d_matrix = xgb.DMatrix(d)

In [12]:    xgb_shadow = ShadowXGBDTree(xgb_model, 1, d[features], d[target], features, target, class_names=[0, 1])
```

Visualisations classifier

viz_leaf_samples

```
In [13]: trees.viz_leaf_samples(xgb_model, d[features], features, tree_index=1)
```


ctreeviz_leaf_samples

dtreeviz

Out[18]:

Out[19]

describe_node_sample

In [19]: trees.describe_node_sample(xgb_model, 1, d[features], feature_names=features, tree_index=1)

:		Pclass	Age	Fare	Sex_label	Cabin_label	Embarked_label
	count	314.000000	314.000000	314.000000	314.0	314.000000	314.000000
	mean	2.159236	28.216730	44.479818	0.0	23.745223	1.401274
	std	0.857290	12.877543	57.997698	0.0	43.225526	0.863605
	min	1.000000	0.750000	6.750000	0.0	-1.000000	-1.000000
	25%	1.000000	21.000000	12.071875	0.0	-1.000000	1.000000
	50%	2.000000	29.699118	23.000000	0.0	-1.000000	2.000000
	75%	3.000000	35.000000	55.000000	0.0	35.750000	2.000000
	max	3.000000	63.000000	512.329200	0.0	145.000000	2.000000

In [20]: trees.describe_node_sample(xgb_shadow, 1)

Out[20]: **Pclass** Fare Sex_label Cabin_label Embarked_label 314.000000 314.000000 314.000000 314.000000 314.000000 count 314.0 23.745223 1.401274 2.159236 28.216730 44.479818 0.0 mean 0.857290 12.877543 43.225526 0.863605 std 57.997698 0.0 min 1.000000 0.750000 6.750000 0.0 -1.000000 -1.000000 25% 1.000000 -1.000000 1.000000 21.000000 12.071875 0.0 50% 2.000000 29.699118 23.000000 -1.000000 2.000000 75% 3.000000 35.000000 55.000000 35.750000 2.000000 max 3.000000 63.000000 512.329200 145.000000 2.000000

explain_prediction_path

```
In [22]:
                              3.0
Out[22]: Pclass
                              4.0
         Age
         Fare
                             16.7
         Sex_label
                              0.0
         Cabin label
                            145.0
         Embarked_label
                              2.0
         Name: 10, dtype: float64
In [23]:
          print(trees.explain_prediction_path(xgb_model, X, dataset[features], dataset[target], explanation_type=
         3.0 <= Pclass
         Fare < 23.35
         Sex_label < 1.0
In [24]:
          print(trees.explain prediction path(xgb shadow, X, explanation type="plain english"))
         3.0 <= Pclass
         Fare < 23.35
         Sex_label < 1.0
```

Regressor

Visualisations regressor

```
In [25]: features_reg = ["Pclass", "Survived", "Fare", "Sex_label", "Cabin_label", "Embarked_label"]
In [26]: dtrain_reg = xgb.DMatrix(dataset[features_reg], dataset[target_reg])
    params_reg = {"max_depth":3, "eta":0.05, "objective":"reg:squarederror", "subsample":1}
    xgb_model_reg = xgb.train(params=params_reg, dtrain=dtrain_reg, num_boost_round=8)
In [27]: xgb_shadow_reg = ShadowXGBDTree(xgb_model_reg, 1, dataset[features_reg], dataset[target_reg], features_reg]
```

dtreeviz

```
In [28]: trees.dtreeviz(xgb_shadow_reg)
```


viz_leaf_samples

In [29]: | trees.viz_leaf_samples(xgb_model_reg, dataset[features_reg], features_reg, tree_index=1)

describe_node_sample

In [31]: trees.describe_node_sample(xgb_model_reg, node_id=9, x_data=dataset[features_reg], feature_names=feature

:[31]:		Pclass	Survived	Fare	Sex_label	Cabin_label	Embarked_label
	count	414.000000	414.0	414.000000	414.000000	414.000000	414.000000
	mean	2.792271	0.0	11.021476	0.855072	1.966184	1.678744
	std	0.406173	0.0	5.698663	0.352454	20.066568	0.664333
	min	2.000000	0.0	0.000000	0.000000	-1.000000	0.000000
	25%	3.000000	0.0	7.750000	1.000000	-1.000000	2.000000
	50%	3.000000	0.0	8.050000	1.000000	-1.000000	2.000000
	75%	3.000000	0.0	13.000000	1.000000	-1.000000	2.000000
	max	3.000000	0.0	27.750000	1.000000	145.000000	2.000000

In [32]: trees.describe_node_sample(xgb_shadow_reg, node_id=9)

 Out[32]:
 Pclass
 Survived
 Fare
 Sex_label
 Cabin_label
 Embarked_label

 count
 414.000000
 414.0
 414.000000
 414.000000
 414.000000
 414.000000

	Pclass	Survived	Fare	Sex_label	Cabin_label	Embarked_label
mean	2.792271	0.0	11.021476	0.855072	1.966184	1.678744
std	0.406173	0.0	5.698663	0.352454	20.066568	0.664333
min	2.000000	0.0	0.000000	0.000000	-1.000000	0.000000
25%	3.000000	0.0	7.750000	1.000000	-1.000000	2.000000
50%	3.000000	0.0	8.050000	1.000000	-1.000000	2.000000
75%	3.000000	0.0	13.000000	1.000000	-1.000000	2.000000
max	3.000000	0.0	27.750000	1.000000	145.000000	2.000000

explain_prediction_path

```
In [33]:
          X_reg = dataset[features_reg].iloc[10]
          X_reg
                              3.0
Out[33]: Pclass
         Survived
                             1.0
                            16.7
         Fare
         Sex_label
                             0.0
         Cabin label
                            145.0
         Embarked_label
                             2.0
         Name: 10, dtype: float64
In [34]:
          print(trees.explain_prediction_path(xgb_shadow_reg, X_reg, explanation_type="plain_english"))
         2.0 <= Pclass
         1.0 <= Survived
         Fare < 27.83
```

viz_leaf_target

In [35]: trees.viz_leaf_target(xgb_model_reg, dataset[features_reg], dataset[target_reg], feature_names=features_

In [36]: trees.viz_leaf_target(xgb_shadow_reg)

rtreeviz_univar

In progress...

```
In [37]: # features_reg_univar = ["Pclass"]
# target_reg_univar = "Age"

# dtrain_reg_univar = xgb.DMatrix(dataset[features_reg_univar], dataset[target_reg_univar])
# params_reg_univar = {"max_depth":3, "eta":0.05, "objective":"reg:squarederror", "subsample":1}
# xgb_model_reg_univar = xgb.train(params=params_reg_univar, dtrain=dtrain_reg_univar, num_boost_round=8

# xgb_shadow_reg_univar = ShadowXGBDTree(xgb_model_reg_univar, 1, dataset[features_reg_univar], dataset[
# trees.rtreeviz_univar(xgb_shadow_reg_univar, dataset[features_reg_univar], dataset[target_reg_univar],
```

Unit test

The following code will help us during unit testing process

Save the model

```
In [41]: import joblib

In [42]: #joblib.dump(xgb_model_reg_test, "/Users/tudorl/Documents/workspace/personal/dtreeviz/testing/dtreeviz/m

In [43]: rcParams['figure.figsize'] = 15,10
    plot_tree(xgb_model_reg_test, num_trees=1)

Out[43]: <AxesSubplot:>
```


In [44]: node_data = dataset_reg_test.query("Cabin_label < 137 and Pclass >= 2.5 and Fare >= 19.5375004")
node_data

Out[44]:		Pclass	Age	Fare	Sex_label	Cabin_label	Embarked_label	Survived
	7	3	2.0	21.075	1	-1	2	0
	13	3	39.0	31.275	1	-1	2	0
	16	3	2.0	29.125	1	-1	1	0

```
In [45]: np.mean(node_data["Age"])
```

Out[45]: 14.3333333333333333