章节	试题数	占百分数(%)	总分数	占百分数(%)	每小题均分
I.1、绪论	3	2.88	25	1.67	8.33
I.2、拉(压)	8	7.69	85	5.67	10.63
I.3、剪切	3	2.88	28	1.87	9.33
I.4、扭转	9	8.65	146	9.73	16.22
I.5、弯曲内力	5	4.81	85	5.67	17.00
I.6、弯曲应力	6	5.77	93	6.20	15.50
I.7、弯曲变形	8	7.69	110	7.33	13.75
I.8、应力状态	5	4.81	52	3.47	10.40
I.9、强度理论	9	8.65	173	11.53	19.22
I.10、组合变形	10	9.62	136	9.07	13.60
I.11、压杆稳定	10	9.62	188	12.53	18.80
I.12、动载荷	7	6.73	125	8.33	17.86
I.A、图形几何性。	质 4	3.85	24	1.60	6.00
II.1、能量法	6	5.77	71	4.73	11.83
II.2、超静定	6	5.77	123	8.20	20.50
II.3、疲劳	3	2.88	18	1.20	6.00
Ⅱ.4、弯扭研究	2	1.92	18	1.20	9.00
合计	104		1500		14.42

第I部分考研试题精选中的 34 套试题和第II部分硕士研究生入学 考试材料力学试题精选的 16 套试题,合并共 50 套试题,按材料力学 基本内容涉及各章情况如下:

章节	试题数	占百分比(%)	总分数	占百分比(%)	每小题均分
1、绪论	11	2.1	57	0.88	5.18
2、拉(压)	56	10.7	547	8.47	9.77
3、剪切	13	2.5	110	1.70	8.46
4、扭转	38	7.3	431	6.67	11.3
5、弯曲内力	48	9.2	592	9.17	12.3
6、弯曲应力	49	9.4	707	11.0	14.4
7、弯曲变形	32	6.1	429	6.65	13.4
8、应力状态	37	7.1	442	6.85	11.9
9、强度理论	32	6.1	361	5.59	11.3
10、组合变形	39	7.5	541	8.38	13.9
11、压杆稳定	49	9.4	695	10.8	14.2
12、能量法	30	5.7	408	6.32	13.6
13、超静定	29	5.6	443	6.86	15.3
14、动载荷	36	6.9	544	8.43	15.1

		522		6455		
16、图	图形几何性质	14	2.7	112	1.74	8.0
15、 症	疲劳	09	1.7	36	0.56	4.0

绪论 知识结构框图

拉压杆 知识结构框图

剪切 知识结构框图

扭转 知识结构框图

弯曲内力 知识结构框图

弯曲强度 重点知识结构框图

0

弯曲变形 知识结构框图

平面图形性质 知识结构框图

应力状态 知识结构框图

组合变形 .知识结构框图

压杆稳定 知识结构框图

动载荷 知识结构框图

平面图形几何性质 知识结构框图

能量法 知识结构框图

能量原理(与功能有关的定理的统称)

功能原理 (固体的应变形 V_e 在数值上等于外力所做的功W,弹性范围 $V_e = W_1$ 非弹性范围 $V_e \neq W$)

$$V_{\varepsilon} = W = \frac{1}{2}F_{1}\delta_{1} + \frac{1}{2}F_{2}\delta_{2} + \dots + \frac{1}{2}F_{i}\delta_{i} + \dots = \sum_{i=1}^{n} \frac{1}{2}F_{i}\delta_{i}$$

$$(3)$$

(Clapeyron 原理, ①线弹性体, 小变形, ② 应变能不能叠加)

组合变形时
$$V_{\varepsilon} = \int_{l} \frac{F_{N}^{2}(x)dx}{2EA} + \int_{l} \frac{M_{y}^{2}(x)dx}{2EI_{y}} + \int_{l} \frac{M_{z}^{2}(x)dx}{2EI_{z}} + \int_{l} \frac{T^{2}(x)dx}{2GI_{p}} + k \int_{l} \frac{F_{s}^{2}(x)dx}{2GA}$$

 $F_1\delta_{12} = F_2\delta_{21}$ 功的互等定理 $\delta_{12} = \delta_{21}$ 位移互等定理

单位载荷法 (莫尔积分法)

的普遍

表

 $\Delta = \int_{l} \overline{F}_{N}(x) d(\Delta l) + \int_{l} \overline{M}(x) d\theta + \int_{l} \overline{F}_{s}(x) d\lambda + \int_{l} \overline{T}(x) d\phi$ $(\stackrel{\text{def}}{=} \overline{T}_{s} \stackrel{\text{def}}{=} L) \stackrel{\text{def}}{=} L \stackrel{\text{def$

(莫尔积分法的原形不涉及材料的 $F-\delta$ 关系)

$$\Delta = \int_{l} \frac{F_{N}(x)\overline{F}_{N}(x)dx}{2EA} + \int_{l} \frac{M_{y}(x)\overline{M}_{y}(x)dx}{2EI_{y}} + \int_{l} \frac{M_{z}(x)\overline{M}_{z}(x)dx}{2EI_{z}} + \int_{l} \frac{T(x)\overline{T}(x)dx}{2GI_{p}(I_{n})}$$

① 材料在线弹性范围; ② 卡氏定理中 $\frac{\partial M(x)}{\partial F_i} = \overline{M}(x)$,余项类推,③ 卡氏定理中仅求力的作用点

沿力方向的位移。在没有与位移相应的作用力时,采用附加力法,其综合起来同单位力法一致)

$$\Delta = \frac{\omega_{\rm N} \overline{F}_{\rm Nc}}{EA} + \frac{\omega_{\rm M} \overline{M}_{\rm c}}{EI} + \frac{\omega_{\rm T} \overline{T}_{\rm c}}{GI_{\rm P}}$$

(直杆,单位力作用下 $F_{N},\overline{M},\overline{T}$ 图或截荷图 F_{N},M,T 图必有一个为直线或折线

超静定 知识结构框图

交变载荷 知识结构框图

