Centralna Komisja Egzaminacyjna

EGZAMIN MATURALNY 2013

MATEMATYKA POZIOM PODSTAWOWY

Kryteria oceniania odpowiedzi

Zadanie 1. (0-1)

Obszar standardów	Opis wymagań	Poprawna odpowiedź (1 p.)		
	Opis wymagan	Wersja arkusza A	Wersja arkusza B	
Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie pojęcia wartości bezwzględnej i jej interpretacji geometrycznej do wskazania zbioru rozwiązań nierówności typu $ x-a < b$	A	D	
	(II.1.f)			
Zadanie 2. (0–1)				
Modelowanie matematyczne	Zastosowanie pojęcia procentu (III.1.d)	В	С	

Zadanie 3. (0–1)

Wykorzystanie i tworzenie informacji	Wykonanie obliczeń z zastosowaniem wzorów na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym (I.1.h)	В	C
--------------------------------------	--	---	---

Zadanie 4. (0-1)

Wykorzystanie i tworzenie informacji	Rozwiązanie układu równań liniowych (I.3.c)	C	A	
--------------------------------------	---	---	---	--

Zadanie 5. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie interpretacji współczynników we wzorze funkcji liniowej (II.4.g)	D	A	
--	--	---	---	--

Zadanie 6. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Odczytanie ze wzoru funkcji kwadratowej współrzędnych wierzchołka paraboli (II.4.b)	D	C	
--	---	---	---	--

Zadanie 7. (0-1)

Wykorzystanie i tworzenie informacji	Posługiwanie się wzorami skróconego mnożenia (I.2.a)	C	В
--------------------------------------	--	---	---

Zada	nie	8.	(0-	-1)
Luuu	1111	O.	v	•,

Wykorzystanie i interpretowanie reprezentacji Badanie prostopadłości prostych na podstawie ich równań kierunkowych (II.8.c)	D	A	
---	---	---	--

Zadanie 9. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie współczynników we wzorze funkcji liniowej do określenia		C
	położenia prostej w układzie współrzędnych (II.4.g)	A	C

Zadanie 10. (0-1)

Wykorzystanie i tworzenie	Rozwiązanie nierówności liniowej		
informacji	i wskazanie najmniejszej liczby	В	C
	spełniającej tę nierówność (I.3)		

Zadanie 11. (0-1)

Wykorzystanie i tworzenie informacji	Wykorzystanie wykresu funkcji $y = f(x)$ do wskazania wykresu funkcji typu $y = f(x+a)$, $y = f(x-a)$, $y = -f(x)$, $y = f(-x)$ (I.4.d)	C	A
--------------------------------------	--	---	---

Zadanie 12. (0-1)

Wykorzystanie	Wykorzystanie własności ciągu	C	R
i interpretowanie reprezentacji	geometrycznego (II.5.c)	C	Б

Zadanie 13. (0-1)

Wykorzystanie	Wykorzystanie własności ciągu	D	C
i interpretowanie reprezentacji	arytmetycznego (II.5.c)	Ъ	C

Zadanie 14. (0-1)

Wykorzystanie	Zastosowanie prostych związków między		
i interpretowanie reprezentacji	funkcjami trygonometrycznymi kąta ostrego do obliczenia wartości wyrażenia	A	D
	(II.6.c)		

Zadanie 15. (0-1)

Wykorzystanie i tworzenie	Wykorzystanie związków między kątem	٨	D
informacji	wpisanym i środkowym (I.7.a)	A	D

Zadanie 16. (0-1)

Wykorzystanie i tworzenie informacji	Rozwiązanie równania wielomianowego (I.3.d)	С	В
--------------------------------------	---	---	---

Zadanie 17. (0–1)			
Wykorzystanie	Obliczanie odległości punktów na	D	В
i interpretowanie reprezentacji	płaszczyźnie i obwodu rombu (II.8.e)	D	В
Zadanie 18. (0–1)			
Wykorzystanie	Wykorzystanie współrzędnych środka		
i interpretowanie reprezentacji	odcinka do wyznaczenia jednego z	C	D
	końców tego odcinka (II.8.f)		
Zadanie 19. (0–1)			
Wykorzystanie	Posługiwanie się równaniem okręgu		
i interpretowanie reprezentacji	$(x-a)^2 + (y-b)^2 = r^2$ (II.8.g)	A	C
Zadanie 20. (0–1)			
Wykorzystanie i tworzenie	Wyznaczanie związków miarowych	В	C
informacji	w wielościanie (I.9.b)		
Zadanie 21. (0–1)			
Wykorzystanie	Wyznaczanie związków miarowych	C	В
i interpretowanie reprezentacji	w bryłach obrotowych (II.9.b)		
Zadanie 22. (0–1)			
Modelowanie matematyczne	Stosuje twierdzenie znane jako klasyczna		
	definicja prawdopodobieństwa do	В	C
	obliczania prawdopodobieństw zdarzeń (III.10.d)		
Zadanie 23. (0–1)	(111.10.4)		
Wykorzystanie i tworzenie	Wykonywanie obliczeń na liczbach		
informacji	rzeczywistych, w tym obliczeń na	В	C
	pierwiastkach (I.1.a)		
Zadanie 24. (0–1)			
Wykorzystanie	Obliczanie mediany uporządkowanego	D	A
i interpretowanie reprezentacji	zestawu danych (II.10.a)		
Zadanie 25. (0–1)			
Wykorzystanie	Wykorzystanie związków miarowych w		
i interpretowanie reprezentacji	graniastosłupie do obliczenia jego	В	C
	objętości (II.9.b)		

Schemat oceniania do zadań otwartych

Zadanie 26. (0-2)

Rozwiaż równanie $x^3 + 2x^2 - 8x - 16 = 0$.

Wykorzystanie	Rozwiązanie równania wielomianowego metodą rozkładu
i interpretowanie	na czynniki (II.3.d)
reprezentacji	

I sposób rozwiązania (metoda grupowania)

Przedstawiamy lewą stronę równania w postaci iloczynu stosując metodę grupowania wyrazów:

$$x(x^2-8)+2(x^2-8)=0$$
 lub $x^2(x+2)-8(x+2)=0$
 $(x+2)(x^2-8)=0$.

Stad x = -2 lub $x = -\sqrt{8} = -2\sqrt{2}$ lub $x = \sqrt{8} = 2\sqrt{2}$.

Schemat oceniania I sposobu rozwiązania

 $(x+2)(x-\sqrt{8})(x+\sqrt{8})$, przy czym postać ta musi być otrzymana w sposób poprawny i na tym poprzestanie lub dalej popełni błędy.

II sposób rozwiązania (metoda dzielenia)

Stwierdzamy, że liczba –2 jest pierwiastkiem wielomianu $x^3 + 2x^2 - 8x - 16$. Dzielimy wielomian $x^3 + 2x^2 - 8x - 16$ przez dwumian (x+2). Otrzymujemy iloraz $(x^2 - 8)$.

Zapisujemy równanie w postaci $(x+2)(x^2-8)=0$. Stąd $(x+2)(x+\sqrt{8})(x-\sqrt{8})=0$ i x=-2 lub $x=-\sqrt{8}=-2\sqrt{2}$ lub $x=\sqrt{8}=2\sqrt{2}$.

Schemat oceniania II sposobu rozwiązania

Zadanie 27. (0-2)

Kąt α jest ostry i $\sin \alpha = \frac{\sqrt{3}}{2}$. Oblicz wartość wyrażenia $\sin^2 \alpha - 3\cos^2 \alpha$.

Wykorzystanie	Zastosowanie prostych związków między funkcjami
i interpretowanie	trygonometrycznymi kąta ostrego do obliczenia wartości
reprezentacji	wyrażenia (II.6.c)

<u>I sposób rozwiązania</u> (wykorzystanie znanych wartości funkcji trygonometrycznych)

Ponieważ α jest ostry i $\sin \alpha = \frac{\sqrt{3}}{2}$, więc $\alpha = 60^{\circ}$. Zatem $\cos \alpha = \cos 60^{\circ} = \frac{1}{2}$.

Stad $\sin^2 \alpha - 3\cos^2 \alpha = \left(\frac{\sqrt{3}}{2}\right)^2 - 3\left(\frac{1}{2}\right)^2 = 0$.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania (wykorzystanie związków między funkcjami trygonometrycznymi)

Obliczamy $\sin^2 \alpha = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}$, następnie korzystając z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$

obliczamy $\cos^2 \alpha = \frac{1}{4}$, stąd $\sin^2 \alpha - 3\cos^2 \alpha = 0$

albo

korzystając z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$, przekształcamy wyrażenie $\sin^2 \alpha - 3\cos^2 \alpha$ do postaci $4\sin^2 \alpha - 3$, a następnie obliczamy jego wartość: $4\sin^2 \alpha - 3 = 0$.

Schemat oceniania II sposobu rozwiązania

• obliczy $\cos^2 \alpha = \frac{1}{4}$

albo

• zapisze wyrażenie w postaci $\sin^2 \alpha - 3(1 - \sin^2 \alpha)$ i na tym poprzestanie lub dalej popełni błędy.

III sposób rozwiązania (trójkat prostokatny)

Z twierdzenia Pitagorasa otrzymujemy $b^2 = (2x)^2 - (\sqrt{3}x)^2$, więc b = x.

Stad
$$\cos \alpha = \frac{x}{2x} = \frac{1}{2}$$
, wiec $\sin^2 \alpha - 3\cos^2 \alpha = \left(\frac{\sqrt{3}}{2}\right)^2 - 3\left(\frac{1}{2}\right)^2 = 0$.

Schemat oceniania III sposobu rozwiązania

Zdający otrzymuje1 pkt gdy:

• narysuje trójkąt prostokątny o przyprostokątnej długości $\sqrt{3}$ i przeciwprostokątnej długości 2 (lub ich wielokrotności), obliczy długość drugiej przyprostokątnej, zaznaczy w tym trójkącie poprawnie kąt, obliczy cosinus tego kąta i na tym zakończy lub dalej popełnia błędy

albo

• obliczy długość przyprostokątnej trójkąta prostokątnego o przyprostokątnej długości $\sqrt{3}$ i przeciwprostokątnej długości 2 (lub ich wielokrotności) z błędem rachunkowym, obliczy cosinus tego kąta $\cos \alpha$ (o ile otrzymana wartość jest dodatnia i mniejsza od 1) i konsekwentnie obliczy wartość wyrażenia $\sin^2 \alpha - 3\cos^2 \alpha$.

Zadania 28. (0-2)

Udowodnij, że dla dowolnych liczb rzeczywistych x, y, z takich, że x+y+z=0, prawdziwa jest nierówność $xy+yz+zx \le 0$.

Możesz skorzystać z tożsamości $(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$.

Rozumowanie i argumentacja	Uzasadnienie prawdziwości nierówności algebraicznej
	(V.2.b)

I sposób rozwiązania

Podnosimy obie strony równości x + y + z = 0 do kwadratu i otrzymujemy równość równoważna

$$x^2 + y^2 + z^2 + 2xy + 2xz + 2yz = 0$$
.

Stad

$$xy + xz + yz = -\frac{1}{2}(x^2 + y^2 + z^2).$$

Ponieważ suma kwadratów liczb x, y, z jest nieujemna, więc $-\frac{1}{2}(x^2 + y^2 + z^2) \le 0$, czyli $xy + yz + zx \le 0$, co kończy dowód.

Schemat oceniania I sposobu rozwiązania

$$xy + xz + yz = -\frac{1}{2}x^2 - \frac{1}{2}y^2 - \frac{1}{2}z^2$$
 lub $2xy + 2xz + 2yz = -x^2 - y^2 - z^2$

i na tym dowód zakończy nie uzasadniając znaku wyrażenia $-\frac{1}{2}x^2 - \frac{1}{2}y^2 - \frac{1}{2}z^2$ lub $-x^2 - y^2 - z^2$.

II sposób rozwiązania

Z równości x + y + z = 0 wyznaczamy jedną z liczb, np. z = -x - y. Wtedy otrzymujemy

$$xy + xz + yz = xy + x(-x - y) + y(-x - y) = xy - x^{2} - xy - xy - y^{2} =$$

$$= -x^{2} - xy - y^{2} = -(x^{2} + xy + y^{2}).$$

Wyrażenie $x^2 + xy + y^2$ traktujemy jak trójmian kwadratowy zmiennej x. Wówczas jego wyróżnik jest równy $\Delta = y^2 - 4 \cdot 1 \cdot y^2 = -3y^2 \le 0$. To, wraz z dodatnim znakiem współczynnika przy x^2 , oznacza, że trójmian przyjmuje jedynie wartości nieujemne, czyli $x^2 + xy + y^2 \ge 0$. Stąd $xy + xz + yz = -\left(x^2 + xy + y^2\right) \le 0$.

Możemy również zauważyć, że $x^2 + xy + y^2 = \left(x + \frac{1}{2}y\right)^2 + \frac{3}{4}y^2$. Jest to suma dwóch liczb nieujemnych, a więc jest nieujemna. Stąd $xy + xz + yz = -\left(x^2 + xy + y^2\right) \le 0$.

Możemy również zauważyć, że $x^2+xy+y^2=\frac{1}{2}x^2+\frac{1}{2}(x+y)^2+\frac{1}{2}y^2$. Jest to suma trzech liczb nieujemnych, a więc jest nieujemna. Stąd $xy+xz+yz=-\left(x^2+xy+y^2\right)\leq 0$. To kończy dowód.

Schemat oceniania II sposobu rozwiazania

Zdający otrzymuje2 pkt gdy przeprowadzi pełny dowód.

Zadania 29. (0-2)

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla $x \in \langle -7, 8 \rangle$.

Odczytaj z wykresu i zapisz:

- a) największą wartość funkcji f,
- b) zbiór wszystkich argumentów, dla których funkcja przyjmuje wartości ujemne.

Wykorzystanie	Odczytywanie z wykresu funkcji zbioru jej wartości oraz
i interpretowanie	przedziałów w których funkcja przyjmuje wartości ujemne
reprezentacji	(II.4.b)

Rozwiazanie

Odczytujemy z wykresu największą wartość funkcji f. Jest ona równa 7. Podajemy zbiór tych wszystkich argumentów, dla których funkcja f przyjmuje wartości ujemne: (-3,5).

Schemat oceniania

- poda największą wartość funkcji: 7 i nie poda zbioru tych wszystkich argumentów, dla których funkcja *f* przyjmuje wartości ujemne albo
- poda zbiór tych wszystkich argumentów, dla których funkcja f przyjmuje wartości ujemne: (-3,5) i nie poda największej wartości funkcji f.

Uwaga

Akceptujemy zapisy: $x \in (-3,5)$ lub -3 < x < 5 lub x > -3 i x < 5 lub x > -3, x < 5.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki W rozwiązaniu podpunktu b) akceptujemy zapisy: $x \in (5,-3)$, $x \in (3,5)$, $x \in (3,-5)$.

Zadania 30. (0-2)

Rozwiąż nierówność $2x^2 - 7x + 5 \ge 0$.

Wykorzystanie i interpretowanie	Rozwiązanie nierówności kwadratowej (II.3.a)
reprezentacji	

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap rozwiązania:

Znajdujemy pierwiastki trójmianu kwadratowego $2x^2 - 7x + 5$

• obliczamy wyróżnik tego trójmianu:

$$\Delta = 49 - 4 \cdot 2 \cdot 5 = 9$$
 i stąd $x_1 = \frac{7 - 3}{4} = 1$ oraz $x_2 = \frac{7 + 3}{4} = \frac{5}{2}$

albo

• stosujemy wzory Viète'a:

$$x_1 \cdot x_2 = \frac{5}{2}$$
 oraz $x_1 + x_2 = \frac{7}{2}$, stąd $x_1 = 1$ oraz $x_2 = \frac{5}{2}$

albo

 podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu lub postać iloczynową trójmianu lub zaznaczając je na wykresie

$$x_1 = 1$$
, $x_2 = 2\frac{1}{2}$ lub $2(x-1)(x-\frac{5}{2})$

Drugi etap rozwiązania:

Podajemy zbiór rozwiązań nierówności: $\left(-\infty,1\right) \cup \left\langle \frac{5}{2},+\infty\right\rangle$ lub $x \in \left(-\infty,1\right) \cup \left\langle \frac{5}{2},+\infty\right\rangle$ lub ($x \le 1$ lub $x \ge \frac{5}{2}$).

Schemat oceniania

Zdający otrzymuje1 pkt gdy:

• zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np.

- obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = 1$, $x_2 = \frac{5}{2}$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
- zaznaczy na wykresie miejsca zerowe funkcji $f(x) = 2x^2 7x + 5$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
- rozłoży trójmian kwadratowy na czynniki liniowe, np. $2\left(x-\frac{10}{4}\right)\left(x-\frac{4}{4}\right)$ i na tym poprzestanie lub błędnie rozwiąże nierówność,
- zapisze nierówność $\left|x \frac{7}{4}\right| \ge \frac{3}{4}$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,

albo

- realizując pierwszy etap popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np.
- popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność,
- błędnie zapisze równania wynikające ze wzorów Viète'a, np.: $x_1 \cdot x_2 = -\frac{5}{2}$ oraz $x_1 + x_2 = \frac{7}{2}$ i konsekwentnie do popełnionego błędu rozwiąże nierówność,
- błędnie zapisze nierówność, np. $\left|x + \frac{7}{4}\right| \ge \frac{3}{4}$ i konsekwentnie do popełnionego błędu rozwiąże nierówność.

Zdający otrzymuje2 pkt gdy:

• poda zbiór rozwiązań nierówności: $\left(-\infty, 1\right) \cup \left(\frac{5}{2}, +\infty\right)$ lub $x \in \left(-\infty, 1\right) \cup \left(\frac{5}{2}, +\infty\right)$ lub $\left(x \le 1 \text{ lub } x \ge \frac{5}{2}\right)$,

albo

• sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: $x \le 1$, $x \ge \frac{5}{2}$

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Akceptujemy sytuację, gdy zdający poprawnie obliczy pierwiastki trójmianu $x_1 = 1$, $x_2 = \frac{5}{2}$ i zapisze, np. $x \in \left(-\infty, -1\right) \cup \left(\frac{2}{5}, +\infty\right)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $x \in \left(-\infty, \frac{5}{2}\right) \cup \left\langle 1, +\infty \right\rangle$, to otrzymuje **2 punkty**.

Zadania 31. (0-2)

Wykaż, że liczba $6^{100} - 2 \cdot 6^{99} + 10 \cdot 6^{98}$ jest podzielna przez 17.

Rozumowanie i argumentacja	Przeprowadzenie dowodu algebraicznego (V.1.g)
----------------------------	---

Rozwiązanie

Wyłączamy wspólny czynnik przed nawias $6^{98} \cdot (6^2 - 2 \cdot 6 + 10)$. Doprowadzamy do postaci $6^{98} \cdot 2 \cdot 17$.

Schemat oceniania rozwiązania

Zadania 32. (0-4)

Punkt *S* jest środkiem okręgu opisanego na trójkącie ostrokątnym *ABC*. Kąt *ACS* jest trzy razy większy od kąta *BAS*, a kąt *CBS* jest dwa razy większy od kąta *BAS*. Oblicz kąty trójkąta *ABC*.

Użycie i tworzenie strategii Wyznaczanie związków miarowych w figurach płaskich (IV.7.c)	3	Wyznaczanie związków miarowych w figurach płaskich (IV.7.c)
--	---	---

I sposób rozwiązania

Ponieważ trójkąt ABC jest ostrokątny, więc środek okręgu opisanego na tym trójkącie leży wewnątrz tego trójkąta. Niech α oznacza miarę kąta BAS. Wówczas

$$| \angle CBS | = 2\alpha \text{ i } | \angle ACS | = 3\alpha$$
.

Każdy z trójkątów ABS, BCS i CAS jest równoramienny, więc

$$| \langle ABS | = | \langle BAS | = \alpha, | \langle BCS | = | \langle CBS | = 2\alpha, | \langle CAS | = | \langle ACS | = 3\alpha.$$

Miary katów trójkata ABC są więc równe

$$| \langle BAC | = 4\alpha, | \langle CBA | = 3\alpha, | \langle ACB | = 5\alpha.$$

Suma miar kątów trójkąta jest równa 180°, zatem

$$4\alpha + 3\alpha + 5\alpha = 180^{\circ},$$
$$12\alpha = 180^{\circ},$$
$$\alpha = 15^{\circ}.$$

Wiec
$$| \angle BAC | = 4\alpha = 4.15^{\circ} = 60^{\circ}$$
, $| \angle CBA | = 3\alpha = 3.15^{\circ} = 45^{\circ}$, $| \angle ACB | = 5\alpha = 5.15^{\circ} = 75^{\circ}$.

Schemat oceniania I sposobu rozwiazania

• Zapisanie miar kątów *BAS*, *ACS* i *CBS* w zależności od jednej zmiennej, np.: $| < BAS | = \alpha$, $| < CBS | = 2\alpha$ i $| < ACS | = 3\alpha$

albo

• wykorzystanie faktu, że co najmniej dwa spośród trójkątów *ABS*, *BCS* i *CAS* są równoramienne, np.: | < ABS | = | < BAS |, | < BCS | = | < CBS |, | < CAS | = | < ACS |.

Rozwiązanie, w którym jest istotny postęp2 pkt

• Zapisanie miar kątów *BAS*, *ACS* i *CBS* w zależności od jednej zmiennej, np.: $| \angle BAS | = \alpha$, $| \angle CBS | = 2\alpha$ i $| \angle ACS | = 3\alpha$

oraz

• wykorzystanie faktu, że co najmniej dwa spośród trójkątów *ABS*, *BCS* i *CAS* są równoramienne, np.: $| \langle ABS | = | \langle BAS |$, $| \langle BCS | = | \langle CBS |$, $| \langle CAS | = | \langle ACS |$.

Pokonanie zasadniczych trudności zadania......3 pkt

Zapisanie równania z jedną niewiadomą pozwalającego obliczyć miary kątów trójkąta ABC, np.: $4\alpha + 3\alpha + 5\alpha = 180^{\circ}$.

II sposób rozwiazania

Przyjmijmy oznaczenia jak na rysunku.

Ponieważ trójkąt *ABC* jest ostrokątny, więc środek okręgu opisanego na tym trójkącie leży wewnątrz tego trójkąta.

Z twierdzenia o kącie środkowym i wpisanym otrzymujemy

$$| ASB | = 2\gamma + 2z$$
, $| SC | = 2\alpha + 2x$, $| CSA | = 2\beta + 2y$.

Suma kątów w każdym z trójkątów *ABS*, *BCS* i *CAS* jest równa 180°, więc otrzymujemy układ równań

$$\alpha + y + (2\gamma + 2z) = 180^{\circ} i \beta + z + (2\alpha + 2x) = 180^{\circ} i \gamma + x + (2\beta + 2y) = 180^{\circ}$$
.

Ponieważ $\beta = 2\alpha$ i $\gamma = 3\alpha$, więc układ możemy zapisać w postaci

$$\alpha + y + (6\alpha + 2z) = 180^{\circ} i 2\alpha + z + (2\alpha + 2x) = 180^{\circ} i 3\alpha + x + (4\alpha + 2y) = 180^{\circ},$$

$$7\alpha + y + 2z = 180^{\circ} i 4\alpha + 2x + z = 180^{\circ} i 7\alpha + x + 2y = 180^{\circ}.$$

Mnożąc strony pierwszego równania przez -2, drugiego przez 4 otrzymujemy

$$-14\alpha - 2y - 4z = -360^{\circ}$$
 i $16\alpha + 8x + 4z = 720^{\circ}$ i $7\alpha + x + 2y = 180^{\circ}$.

Dodając stronami otrzymujemy

$$9\alpha + 9x = 540^{\circ},$$

$$\alpha + x = 60^{\circ}$$
.

czyli $| ABC | = 60^{\circ}$. Zatem $| SC | = 120^{\circ}$.

Trójkąt *BSC* jest równoramienny, więc $| \ll SBC | = | \ll SCB | = \frac{180^{\circ} - 120^{\circ}}{2} = 30^{\circ}$, zatem

$$2\alpha = 30^{\circ}$$
, czyli $\alpha = 15^{\circ}$. Stąd $| < CBA | = 45^{\circ}$, $| < ACB | = 75^{\circ}$.

Schemat oceniania II sposobu rozwiązania

• Zapisanie miar kątów BAS, ACS i CBS w zależności od jednej zmiennej, np.: $| \not \prec BAS | = \alpha$,

$$| \langle CBS | = 2\alpha \text{ i } | \langle ACS | = 3\alpha |$$

albo

• wykorzystanie zależności między kątami środkowymi *ASB*, *BSC* i *ASC* oraz odpowiednimi kątami wpisanymi i zapisanie układu co najmniej trzech równań, np.:

$$\alpha + y + (2\gamma + 2z) = 180^{\circ} \text{ i } \beta + z + (2\alpha + 2x) = 180^{\circ} \text{ i } \gamma + x + (2\beta + 2y) = 180^{\circ},$$

gdzie $x = | \angle CAS|, y = | \angle ABS|, z = | \angle BCS|, \beta = | \angle CBS|, \gamma = | \angle ACS|.$

Rozwiązanie, w którym jest istotny postęp2 pkt

• Zapisanie miar kątów *BAS*, *ACS* i *CBS* w zależności od jednej zmiennej, np.: $| < BAS | = \alpha$,

$$| \angle CBS | = 2\alpha \text{ i } | \angle ACS | = 3\alpha$$

oraz

 wykorzystanie zależności między kątami środkowymi ASB, BSC, ASC oraz odpowiednimi kątami wpisanymi i zapisanie układu co najmniej trzech równań z czterema niewiadomymi, np.:

$$\alpha + y + (6\alpha + 2z) = 180^{\circ} i 2\alpha + z + (4\alpha + 2y) = 180^{\circ} i 3\alpha + x + (4\alpha + 2y) = 180^{\circ}.$$

Zadanie 33. (0-4)

Pole podstawy ostrosłupa prawidłowego czworokątnego jest równe 100 cm², a jego pole powierzchni bocznej jest równe 260 cm². Oblicz objętość tego ostrosłupa.

Użycie i tworzenie strategii	Wyznaczanie związków miarowych w wielościanach. (IV.9.b)
------------------------------	--

Rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Pole podstawy ostrosłupa jest równe 100, więc $a^2 = 100$. Stąd a = 10.

Pole powierzchni bocznej jest równe 260, więc $4 \cdot \frac{1}{2} ah = 260$. Stąd i z poprzedniego wyniku

$$2 \cdot 10h = 260$$
, wiec $h = 13$.

Ponieważ trójkat EOS jest prostokatny, wiec

$$\left(\frac{1}{2}a\right)^{2} + H^{2} = h^{2},$$

$$5^{2} + H^{2} = 13^{2},$$

$$H^{2} = 144,$$

$$H = 12$$

Objętość ostrosłupa jest zatem równa

$$V = \frac{1}{3}P_pH = \frac{1}{3} \cdot 100 \cdot 12 = 400$$
.

Odpowiedź: Objętość ostrosłupa jest równa 400 cm³.

Schemat oceniania

Jeżeli zdający obliczy wysokość ściany bocznej h = 13 i nie traktuje jej jako wysokości ostrosłupa i na tym zakończy, to otrzymuje **2 punkty**. Jeżeli natomiast przyjmuje, że obliczona wysokość ściany bocznej jest wysokością ostrosłupa, to otrzymuje co najwyżej **1 punkt** za całe rozwiązanie.

Uwagi

- 1. Nie zwracamy uwagi na jednostki (zdający może je pominąć).
- 2. Jeżeli zdający przyjmie, że pole powierzchni bocznej ostrosłupa jest polem powierzchni całkowitej, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.

3. Jeżeli zdający przyjmie, że pole powierzchni bocznej ostrosłupa jest polem jednej ściany bocznej i konsekwentnie do tego błędu obliczy objętość ostrosłupa, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.

Zadanie 34. (0-5)

Dwa miasta łączy linia kolejowa o długości 336 kilometrów. Pierwszy pociąg przebył tę trasę w czasie o 40 minut krótszym niż drugi pociąg. Średnia prędkość pierwszego pociągu na tej trasie była o 9 km/h większa od średniej prędkości drugiego pociągu. Oblicz średnią prędkość każdego z tych pociągów na tej trasie.

Modelowanie matematyczne	Rozwiązanie zadania, umieszczonego w kontekście praktycznym, prowadzącego do równania kwadratowego (III.3.b)
	(III.3.b)

Rozwiązanie

Niech v oznacza średnią prędkość (w km/h) pierwszego pociągu na tej trasie, t - czas przejazdu (w godzinach) pierwszego pociągu na tej trasie. Wtedy v-9 oznacza średnią prędkość drugiego pociągu na tej trasie, $t+\frac{2}{3}$ - czas przejazdu drugiego pociągu na tej trasie. Zapisujemy układ równań

$$\begin{cases} v \cdot t = 336 \\ (v-9)\left(t + \frac{2}{3}\right) = 336 \end{cases}$$

Z pierwszego równania wyznaczamy $t = \frac{336}{v}$ i podstawiamy do równania drugiego.

Otrzymujemy równanie z niewiadomą v, które przekształcamy równoważnie

$$(v-9)\left(\frac{336}{v} + \frac{2}{3}\right) = 336,$$

$$\frac{2}{3}v - \frac{9 \cdot 336}{v} - 6 = 0,$$

$$\frac{2}{3}v^2 - 6v - 9 \cdot 336 = 0 \text{ (lub } 2v^2 - 18v - 9072 = 0 \text{ lub } v^2 - 9v - 4536 = 0).$$

Równanie to ma dwa rozwiązania

$$v_1 = 72$$
, $v_2 = -63 < 0$.

Drugie z tych rozwiązań odrzucamy (prędkość nie może być ujemna).

Gdy v = 72, to wtedy v - 9 = 63.

Odpowiedź: Średnia prędkość pierwszego pociągu jest równa 72 km/h, średnia prędkość drugiego pociągu równa się 63 km/h.

Schemat oceniania

W poniżej zamieszczonym schemacie używamy niewiadomych *v*, *t* oznaczających odpowiednio, prędkość i czas. Oczywiście w pracach maturalnych te niewiadome mogą być oznaczane w inny sposób. Nie wymagamy, aby te niewiadome były wyraźnie opisane na początku rozwiązania, o ile z postaci równań jasno wynika ich znaczenie.

$$(v-9)\left(t+\frac{2}{3}\right) = 336$$
 albo $(v+9)\left(t-\frac{2}{3}\right) = 336$.

$$v \cdot t = 336 \text{ i } \left(v - 9\right) \left(t + \frac{2}{3}\right) = 336 \text{ albo } v \cdot t = 336 \text{ i } \left(v + 9\right) \left(t - \frac{2}{3}\right) = 336.$$

Pokonanie zasadniczych trudności zadania......3 pkt Zdający zapisze równanie z jedną niewiadomą *v* lub *t*.

$$(v-9)\left(\frac{336}{v} + \frac{2}{3}\right) = 336 \text{ albo } \left(\frac{336}{t} - 9\right)\left(t + \frac{2}{3}\right) = 336$$

albo $(v+9)\left(\frac{336}{v} - \frac{2}{3}\right) = 336 \text{ albo } \left(\frac{336}{t} + 9\right)\left(t - \frac{2}{3}\right) = 336.$

<u>Uwaga</u>

Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. drobne błędy rachunkowe lub wadliwe przepisanie)4 pkt

- zdający rozwiąże równanie z niewiadomą v lub t z błędem rachunkowym i konsekwentne do popełnionego błędu zapisze prędkości obu pociągów albo
- zdający rozwiąże równanie kwadratowe i zapisze prędkość tylko jednego pociągu.

Uwagi

- 1. Oceniamy na **0 punktów** rozwiązania, w których ułożone równania zawierają niezgodność typu wielkości po obu stronach: po jednej stronie prędkość, po drugiej czas lub niezgodność jednostek: prędkość w kilometrach na godzinę, czas w minutach, o ile nie są zapisane jednostki.
- 2. Jeżeli zdający oznaczy średnią prędkość pierwszego pociągu przez v (w km/h), a przez t czas przejazdu pierwszego pociągu na tej trasie, a potem zapisze, że prędkość średnia drugiego pociągu jest równa v+9 i czas przejazdu drugiego pociągu na tej trasie

jest równy $t-\frac{2}{3}$, a następnie zapisze układ równań $v \cdot t = 336$ i $(v+9) \cdot \left(t-\frac{2}{3}\right) = 336$

i doprowadzi go do równania z jedną niewiadomą, to otrzymuje **1 punkt**. Jeśli rozwiąże to równanie, to otrzymuje **2 punkty**, a jeśli doprowadzi rozwiązanie zadania do końca konsekwentnie do ułożonego układu równań lub przyjętych oznaczeń, to otrzymuje **3 punkty** (otrzymując odpowiednio v = 63 i v + 9 = 72 albo v = 63 i v - 9 = 54).

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki Przykład 1.

Jeśli zdający przedstawi następujące rozwiązanie:

v - prędkość pierwszego pociągu, t - czas pokonania całej trasy w godzinach przez pierwszy pociąg

$$v-9 = \frac{336}{t + \frac{2}{3}}$$

$$\begin{cases} 336 = v \cdot t \\ 336 = (v-9)t + \frac{2}{3} \end{cases}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie, w którym jest istotny postęp** i przyznajemy **2 punkty**, mimo że w drugim równaniu układu zdający nie ujął wyrażenia $t + \frac{2}{3}$ w nawias. Zapis równania $v - 9 = \frac{336}{t + \frac{2}{3}}$ wskazuje na poprawną

interpretację zależności między wielkościami.

Przykład 2.

Jeśli zdający przedstawi następujące rozwiązanie:

v - prędkość pierwszego pociągu, t - czas pokonania całej trasy w godzinach przez pierwszy pociąg

$$v-9 = \frac{336}{t+\frac{2}{3}} \begin{cases} v = \frac{336}{t} \\ v-9 = \frac{336}{t+\frac{2}{3}} \end{cases} \frac{363}{t} - 9 = \frac{336}{t+}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Pokonanie zasadniczych trudności zadania** i przyznajemy **3 punkty,** mimo że w równaniu $\frac{363}{t} - 9 = \frac{336}{t+}$ zdający przestawił cyfry w zapisie liczby 336 i pominął liczbę $\frac{2}{3}$ w mianowniku ułamka.

Przykład 3.

Jeśli zdający otrzyma inne równanie kwadratowe, np. $v^2 + 9v - 4536 = 0$ zamiast równania $v^2 - 9v - 4536 = 0$ (np. w wyniku złego przepisania znaku lub liczby), konsekwentnie jednak rozwiąże otrzymane równanie kwadratowe, odrzuci ujemne rozwiązanie i pozostawi wynik,

który może być realną prędkością jednego z pociągów, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie pelne** i przyznajemy **5 punktów**.