Лабораторная работа №3. Сжатие звуковой информации

1. Цель работы

Исследовать влияние сжатия звуковых сигналов различными методами на качество звука, оцениваемое на слух.

2. Описание лабораторного стенда

Основой лабораторного стенда является персональный компьютер, на котором установлены программа преобразования формата кодирования «Media Coder» и программа анализа звуковых сигналов «Foobar2000». В экспериментах используются файлы с аудиофрагментами, записанными в формате без сжатия. Для прослушивания звуковых файлов необходимы наушники.

- 3. Задание для предварительной подготовки
- 3.1. По рекомендованной литературе и лекциям изучить методы сжатия звуковой информации.
 - 3.2. Создать файл MS Word для отчета по лабораторной работе.
 - 4. Задание к экспериментальной части работы
- 4.1. Осуществить сжатие с потерями двух аудиофрагментов с 4 значениями выходного битрейта для каждого фрагмента.
- 4.1.1. Включить персональный компьютер. Создать на рабочем столе папку для хранения файлов с аудиофрагментами. Адрес папки не должен содержать кириллицы.
- 4.1.2. Выбрать в указанной преподавателем папке два аудиофрагмента для проведения экспериментов. Один из аудиофрагментов должен содержать музыку, исполняемую оркестром или ансамблем разных инструментов, возможно, с участием голоса человека, а второй музыку, исполняемую, преимущественно, на одном инструменте, или голос человека с минимальным инструментальным сопровождением. Прослушивать аудиофрагменты можно с помощью программы «Windows Media Player». Прослушивать следует через наушники. Выбранные аудифайлы скопировать в рабочую папку.
- 4.1.3. Запустить программу «Media Coder». Нажать кнопку «Add» или выбрать в меню «File» «Add File». Выбрать файл с первым аудиофрагментом. Название файла появится в окне. Выбрать вкладку «Audio» в нижней левой части окна программы. Выбрать там же формат «MP3». В правой нижней части окна выбрать вкладку «LAME MP3». Установить способ кодирования «CBR» (Constant Bitrate). Нажав кнопку «...» в правом верхнем углу окна программы,

указать путь к рабочей папке.

4.1.4. Задать битрейт 256 кбит/с. Нажать кнопку «Start». По завершению преобразования переписать из окна с результатами в табл. 3.1 значения «Time Elapsed» (время, затраченное на сжатие), «Total Duration» (продолжительность воспроизведения файла), «Compression Ratio» (коэффициент сжатия). Закрыть окно с результатами, нажать кнопку «Open» в правом верхнем углу, зайти в рабочую папку и переименовать преобразованный файл так, чтобы потом можно было определить, что в нем содержится и каковы параметры сжатия. Новое имя с расширением также записать в табл. 3.1.

Таблица 3.1 (3.2). Результаты сжатия аудиофайла «Имя файла»

Столичест	Битрейт	Time Elapsed	Total Duration	Compression	Имя файла	
Стандарт	кбит/с	секунд	секунд	Ratio		
MP3	256					
	128					
	64					
	32					
AAC	256					
	128					
	64					
	32					
Vorbis	256					
	128					
	64					
	32					

- 4.1.5. Повторить п. 4.1.4 для значений битрейта 128, 64 и 32 кбит/с.
- 4.1.6. Установить формат LC-AAC. В правой части окна выбрать вкладку «Nero Encoder». Установить режим кодирования «CBR». На вкладке «Container» выбрать «Default». Повторить операции по пп.4.1.4 и 4.1.5, получая файлы формата «m4a».
- 4.1.7. Установить формат Vorbis. Установить режим кодирования «Average Bitrate». На вкладке «Container» выбрать «OGG» или «Default». Повторить операции по пп.4.1.4 и 4.1.5, получая файлы формата «ogg».
- 4.1.8. Повторить операции по пп. 4.1.3 4.1.7 для второго аудиофрагмента. Результаты записывать в табл. 3.2 аналогичную табл.3.1.
- 4.2. Оценить качество звука сжатых аудиофрагментов и исследовать наблюдаемые искажения.
- 4.2.1. Для первого и второго аудиофрагментов приготовить таблицы, соответственно, 3.4 и 3.5 по приведенному ниже образцу и записать в их верхние

строки название, исходный битрейт и тип этих аудиофрагментов.

Таблица 3.3 (3.4) Анализ искажений при сжатии аудиофрагмента «Имя файла»

							11		
Аудио	офрагм	ент							
MP3		AAC			Vorbis				
Битрейт	Оцен-	Xapa	ктеристи-	Битрейт	Оцен-	Характеристи-	Битрейт	Оцен	Характеристи-
кбит/с	ка	ка ис	кажений	кбит/с	ка	ка искажений	кбит/с	ка	ка искажений
256				256			256		
128				128			128		
64				64			64		
32				32			32		

- 4.2.2. Сравнивая качество звука сжатых аудиофрагментов с несжатыми, оценить заметность искажений для каждого сжатого аудиофрагмента по пятибалльной шкале. Шкала оценок дана в разделе 3.6 электронного учебного пособия «Современные системы цифрового телевидения». Записать оценки в соответствующие клетки таблицы. Прослушивание выполнять с помощью наушников, обобщая результаты, получаемые всеми членами бригады. Для прослушивания можно использовать плеер, входящий в состав программы «Media Coder» (перед тем, как прослушивать другой файл, плеер необходимо закрывать) или любой другой плеер, воспроизводящий полученные форматы файлов.
- 4.2.3. Для каждого сжатого аудиофрагмента кратко охарактеризовать наблюдаемые искажения и записать эти характеристики в соответствующие клетки таблицы. Показатели качества звука, по которым могут быть отмечены искажения:
 - громкость;
- динамический диапазон отношение максимальной и минимальной воспроизводимой громкости;
 - диапазон частот может быть ограничен сверху и/или снизу;
 - тембр состав частотного спектра, воспринимаемый на слух;
 - нелинейные искажения создают высшие гармоники, которые слышны

как хрипящие, дребезжащие и подобные звуки;

- прозрачность звучания возможность различать и выделять звуки отдельных музыкальных инструментов;
- передача пространственной информации нарушения стереоэффекта, восприятия расположения источников звука в пространстве;
 - шумы и помехи;
 - возникновение повторов, эхо.
- 4.2.4*. Сделать выводы о допустимых значениях битрейта для аудиофрагментов двух типов при сжатии исследованными методами. Предложить объяснение возможных различий допустимых значений битрейта для разных типов звукового контента. (Символом «*» отмечены пункты, выполнять которые следует при оформлении отчета после завершения всех экспериментов.)
 - 4.3. Исследовать влияние сжатия на спектр звукового сигнала.
- 4.3.1. Запустить программу «Foobar2000». Зайдя в меню «View Vizualization», открыть окна «Oscilloscope», «Spectrum» и «Spectrogram». В последнем окне отображается изменение спектра во времени. По горизонтальной оси спектрограммы откладывается время, по вертикальной частота, а уровень звука отображается яркостью графика.
- 4.3.2. Открыть в программе «Foobar2000» первый из использовавшихся звуковых фрагментов —несжатый файл. Включить воспроизведение. Выбрав момент, когда звук достаточно широкополосный и громкий, остановить воспроизведение. Скопировать (Alt+PrtScr) окна спектра и спектрограммы в отчет.
- 4.3.3. Повторить п. 4.3.2 для файла со сжатием, создающим едва заметные искажения и для файла со сжатием, создающим сильные искажения. При этом необходимо фиксировать спектры в тот же момент времени от начала файла. Каким кодеком созданы используемые файлы значения не имеет.
 - 4.3.4. Повторить пп. 4.3.2 и 4.3.3 для второго аудиофрагмента.
- 4.3.5*. Сравнив полученные спектры и спектрограммы, записать в отчет выводы о влиянии сжатия на спектр звукового сигнала. Отметить различия в спектрах и спектрограммах между двумя аудиофрагментами как до сжатия, так и после него.
 - 4.4. Исследование возможностей сжатия звуковой информации без потерь.
- 4.4.1. Сжать первый аудиофрагмент в формате без потерь FLAC. Регулировку «Compression Level» установить в положение «Lowest». Записать размеры в табл. 3.5 время, затраченное на сжатие, и коэффициент сжатия.
- 4.4.2. Повторить п. 4.4.1, установив регулировку «Compression Level» в положение «Highest».

- 4.4.3. Повторить п. 4.4.1 и 4.4.2 для второго аудиофрагмента.
- 4.4.4. Записать выводы о возможностях сжатия без потерь звуковых фрагментов разного типа. Дать объяснение выявленных различий. Предложить объяснение влияния регулировки «Compression Level» на затраты времени и коэффициент сжатия.

Таблица 3.5. Результаты сжатия аудиофрагментов без потерь

Название фрагмента	Compression Level	Time Elapsed	Коэфф. сжатия
	Lowest		
	Highest		
	Lowest		
	Highest		

- 5. Контрольные вопросы
- 5.1. Как устроен орган слуха человека?
- 5.2. Каковы частотный и динамический диапазоны воспринимаемых человеком звуков?
 - 5.3. Какие свойства слуха лежат в основе сжатия звуковых сигналов?
 - 5.4. Как осуществляется сжатие звуковых сигналов по методу МРЗ?
 - 5.5. В чем основные различия форматов МРЗ и ААС?
 - 5.6. В чем заключается механизм регулировки выходного битрейта?
 - 5.7. Каковы принципы работы кодека Vorbis?
 - 5.8. На чем основано сжатие звуковой информации без потерь?
 - 5.9. Какие виды искажений звука возникают при сжатии?
- 5.10. Объяснить причины возникновения линейных искажений звука при сжатии.