Instituto Superior de Engenharia de Lisboa Licenciatura em Engenharia Informática e de Computadores

Sistemas Operativos

Espaços de Endereçamento

Execução isolada

Mecanismos de proteção do sistema

- Sistemas asseguram isolamento em duas vertentes
 - Distinção entre recursos de sistema e recursos acessíveis aos programas
 - Há instruções e registos do CPU utilizáveis apenas pelo sistema
 - <u>Todas as outras proteções dependem desta.</u>
 - Há zonas de memória (código e dados) acessíveis apenas pelo sistema
 - Os dispositivos hardware são tipicamente acedidos apenas pelo sistema
 - Cada processo é executado em isolamento em relação aos outros
 - Acesso à sua parte da memória através do seu espaço de endereçamento
 - Acesso à sua quota de processador por escalonamento das suas threads
 - Acesso a dispositivos hardware, aos recursos do sistema e a comunicação com outros processos apenas através de operações de sistema (API de sistema)
- CPU fornece <u>níveis de privilégio</u> e <u>espaços de endereçamento</u>

Memory management unit

- Componente do processador responsável pelos acessos à memória
- Consulta informação configurada pelo sistema operativo para:
 - Validar o acesso aos endereços de memória
 - Realizar a tradução de endereços virtuais para físicos

Arquitetura de memória segmentada

- Espaço de endereçamento virtual segmentado
 - Cada processo tem acesso a um ou mais segmentos de memória
 - Cada segmento de memória tem uma base e um limite (ou dimensão)
 - Base: endereço físico de memória onde está localizado o segmento
 - Limite: último endereço físico válido do segmento
 - Configuração de segmentos é ação privilegiada
 - Programas são construídos com endereços no formato (segmento, offset)
 - Segmento (implícito ou explícito): indica qual dos segmentos será acedido
 - Offset: distância desde a base do segmento
 - Em cada acesso à memória, CPU calcula endereço físico com:
 - physical address = segment base + offset [check: <= segment limit]</p>

Arquitetura de memória segmentada

- Mecanismo simples para cálculo dos endereços físicos
- Quantidade reduzida de informação sobre segmentos

- Segmentos de dimensão variável dificultam gestão de memória física
- Modelo de ponteiros complexo
- Transferência de segmentos entre memória e disco pouco eficiente

Arquitetura de memória paginada

- Espaço de endereçamento virtual paginado
 - Memória física dividida em páginas físicas (page frames), em geral todas do mesmo tamanho
 - Espaço de endereçamento linear de cada processo dividido em páginas virtuais
 - Páginas virtuais e páginas físicas em geral todas com o mesmo tamanho
 - Cada processo tem uma tabela para mapear endereços virtuais em físicos
 - Configuração de mapeamentos é ação privilegiada
 - Em cada acesso à memória, CPU calcula endereço físico:
 - virtual page number = virtual address / page size offset = virtual address % page size
 - physical page frame number = map(virtual page number) [check: map entry is valid]
 - physical address = physical page frame number * page size + offset

Arquitetura de memória paginada

Arquitetura de memória paginada

- Quantidade possivelmente elevada de informação sobre páginas
- Dimensão (e organização) da tabela de mapeamento torna o mecanismo mais complexo do que o de segmentação

- Páginas de dimensão fixa facilitam gestão de memória física
- Modelo de ponteiros simples
- Transferência eficiente de páginas entre memória e disco

Translation lookaside buffer

Caches de endereços e dados

