Name: Purushottam Tiwari

Roll No.: 19074029 Branch: CSE(IDD)

Subject: CSE-241(Artificial Intelligence)

Excercise-7.2

Ans: 1. For any sentence α that has ground term g, and for any variable v not occurring in α we have,

$$\frac{\alpha}{\mathsf{3VSubs}_1(\{\mathsf{g/v}\},\,\boldsymbol{\alpha})}$$

Where Subs₁ is a function that substitutes a single occuence of g with v. Likes (Jerry, Ice Cream) - $\exists x$ likes(x, Ice Cream)

 \forall x Likes(x, Ice Cream) is equivalent to $\neg \exists$ x \neg Likes(x, Ice Cream) Now, \forall is really a conjunction over the universe of objects and \exists is a disjuction. So from DeMorgan's rules for quantified and unquantified sentences:

$$\forall x \neg P \equiv \neg \exists x P$$

 $\neg \forall x P \equiv \exists x \neg P$
 $\forall x P \equiv \neg \forall x \neg P$

A universally quantified sentence can be replaced by set of all possible instantiations.

So we can write general inference rule, as

Ans: 2(a). We have:

 $S_0 = \{P(A,B,B) ; P(X,Y,Z)\}$

following progressive unification

substitute z with $A\{A/x\}$

 $S_1 = \{ P(A,B,B) ; P(A,y,z) \}$

now, substitute y with $B\{B/y\}$

 $S_2 = \{ P(A,B,B) ; P(A,B,z) \}$

then, substitute z with $B \{ B/z \}$

 $S_3 = \{ P(A,B,B) ; P(A,B,B) \} => unification successful$

Unifier is $\{A/x, B/y, B/z\}$

Ans: 2(b).

We have:

 S_o = Knows(Father(y), y), Knows (x, x) following progressive unfication we have:

Knows(Father(y), \underline{y}), Knows(Father(y), $\underline{Father(y)}$) : {x/Father(y)}

Cannot unify variable y with Father(y) as it is a term referring to variable y. Therefore cannot unify.