高一年级数学分班模拟试题

- 1. α 是第一象限角, $\tan \alpha = \frac{3}{4}$,则 $\sin \alpha = ($

 - A. $\frac{4}{5}$ B. $\frac{3}{5}$
- C. $-\frac{4}{5}$ D. $-\frac{3}{5}$
- 2. 如图, $D \times E \times F$ 分别是 $\triangle ABC$ 的边 $AB \times BC \times CA$ 的中点,则(

- B. $\overrightarrow{BD} \overrightarrow{CF} + \overrightarrow{DF} = \overrightarrow{0}$
- C. $\overrightarrow{AD} + \overrightarrow{CE} \overrightarrow{CF} = \overrightarrow{0}$
- D. $\overrightarrow{BD} \overrightarrow{BE} \overrightarrow{FC} = \overrightarrow{0}$

- 3. 已知|a|=1,|b|=6,a (b-a)=2,则向量a与向量b 的夹角是(

- A. $\frac{\pi}{6}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$
- 4. sin 600°的值是()

- B, $-\frac{1}{2}$ C, $\frac{\sqrt{3}}{2}$ D, $-\frac{\sqrt{3}}{2}$
- 5. 在 $\triangle OAB$ 中, $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, M 为 OB 的中点, N 为 AB 的中点, ON, AM 交于点 P,则 $\overrightarrow{AP} =$

- A. $\frac{2}{3}a \frac{1}{3}b$ B. $-\frac{2}{3}a + \frac{1}{3}b$ C. $\frac{1}{3}a \frac{2}{3}b$ D. $-\frac{1}{3}a + \frac{2}{3}b$
- 6. 已知函数 $f(x) = \sin(x + \frac{\pi}{6})\cos(x + \frac{\pi}{6})$, 则下列判断正确的是
 - A. f(x) 的最小正周期为 2π , 其图象的一条对称轴为 $x = \frac{\pi}{12}$
 - B. f(x) 的最小正周期为 2π , 其图象的一条对称轴为 $x = \frac{\pi}{6}$
 - C. f(x) 的最小正周期为 π , 其图象的一条对称轴为 $x = \frac{\pi}{12}$

答案: C

- 7. 已知向量 $\mathbf{a} = (2,1)$, $\mathbf{a} \cdot \mathbf{b} = 10$, $|\mathbf{a} + \mathbf{b}| = 5\sqrt{2}$, 则 $|\mathbf{b}| = ($
 - A. $\sqrt{5}$
- B. $\sqrt{10}$
- C. 5
- D. 25
- 8. $(\sin 75^{\circ} \sin 15^{\circ})(\cos 15^{\circ} + \cos 75^{\circ})$ 的值是(
 - A. 1

- B. $\frac{1}{2}$
- c. $\frac{\sqrt{2}}{2}$
- D. $\frac{\sqrt{3}}{2}$

- 9. 已知非零向量 \overrightarrow{AB} 与 \overrightarrow{AC} 满足 $\left(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}\right) \cdot \overrightarrow{BC} = 0$ 且 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \cdot \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|} = \frac{1}{2}$, 则 $\triangle ABC$ 为(
- A. 三边均不相等的三角形 B. 直角三角形 C. 等腰非等边三角形
- D. 等边三角形
- 10. 若 $\frac{\cos 2\alpha}{\sin(\alpha \frac{\pi}{4})} = -\frac{\sqrt{2}}{2}$,则 $\sin \alpha + \cos \alpha$ 的值为)

 - A. $-\frac{\sqrt{7}}{2}$ B. $-\frac{1}{2}$ C. $\frac{1}{2}$
- D. $\frac{\sqrt{7}}{2}$
- 11. 已知 $f(\cos x) = \cos 2x$,则 $f(\sin 15^\circ)$ 的值等于

- A. $\frac{1}{2}$ B. $-\frac{1}{2}$ C. $\frac{\sqrt{3}}{2}$ D. $-\frac{\sqrt{3}}{2}$
- 12. 已知函数 $f(x) = A \sin(\omega x + \varphi) \left(x \in R, A > 0, \omega > 0, |\varphi| < \frac{\pi}{2} \right)$ 的图象(部
- 分)如图所示,则f(x)的解析式是

A.
$$f(x) = 2\sin\left(\pi x + \frac{\pi}{6}\right)(x \in R)$$

A.
$$f(x) = 2\sin\left(\pi x + \frac{\pi}{6}\right)(x \in R)$$
 B. $f(x) = 2\sin\left(2\pi x + \frac{\pi}{6}\right)(x \in R)$

C.
$$f(x) = 2\sin\left(\pi x + \frac{\pi}{3}\right)(x \in R)$$

C.
$$f(x) = 2\sin\left(\pi x + \frac{\pi}{3}\right)(x \in R)$$
 D. $f(x) = 2\sin\left(2\pi x + \frac{\pi}{3}\right)(x \in R)$

- 时, $f(x) = x^2$, 则当 $x \in [2, 3]$ 时, 函数f(x)的解析式为 ()

- A. $x^2 4$ B. $x^2 + 4$ C. $(x+4)^2$ D. $(x-4)^2$
- 14. CD 是△ABC 的边 AB 上的高,且 $\frac{CD^2}{4C^2} + \frac{CD^2}{BC^2} = 1$,则()

 - A. $A + B = \frac{\pi}{2}$ B. $A + B = \frac{\pi}{2}$ $\vec{\boxtimes} A B = \frac{\pi}{2}$

 - C. $A+B=\frac{\pi}{2}$ of $B-A=\frac{\pi}{2}$ D. $A+B=\frac{\pi}{2}$ of $A-B=\frac{\pi}{2}$
- 15. 定义行列式运算 $\begin{vmatrix} a_1 & a_2 \\ a_2 & a_4 \end{vmatrix} = a_1 a_4 a_2 a_3$. 将函数 $f(x) = \begin{vmatrix} \sqrt{3} & \sin x \\ 1 & \cos x \end{vmatrix}$ 的图象向左平移 $n \in \{n > 0\}$ 个单位,所
- 得图象对应的函数为偶函数,则n的最小值为(
- A. $\frac{p}{6}$ B. $\frac{p}{3}$ C. $\frac{5}{6}p$ D. $\frac{2}{3}p$

16. 已知 O , N , P 在 \triangle ABC 所 在 平 面 内 , 且 $\left|\overline{OA}\right| = \left|\overline{OB}\right| = \left|\overline{OC}\right|$, $\overline{NA} + \overline{NB} + \overline{NC} = 0$, 且

 $\overrightarrow{PA} \cdot \overrightarrow{PB} = \overrightarrow{PB} \cdot \overrightarrow{PC} = \overrightarrow{PC} \cdot \overrightarrow{PA}$, 则点O, N, P 依次是 $\triangle ABC$ 的 ()

(A) 重心 外心 垂心 (B) 重心 外心 内心 (C) 外心 重心 垂心 (D) 外心 重心 内心 (注: 三角形的三条高线交于一点,此点为三角型的垂心)

- 17. 已知 $f(x) = 2 + \log_3 x (1 \le x \le 9)$, 则函数 $y = [f(x)]^2 + f(x^2)$ 的最大值为
 - A 6
- В. 13
- C. 22
- D. 33

18. $\triangle ABC$ 中, $AB=2\sqrt{2}$, $AC=\sqrt{2}$,BC=2 ,设 P 为线段 BC 上一点,且 $\frac{1}{2} \le PB \le \frac{3}{2}$,则一定有(

- A. $AB \cdot AC > PA^2$, $AB \cdot AC > PB \cdot PC$
- B. $PA^2 > AB \cdot AC$, $PA^2 > PB \cdot PC$
- C. $PB \cdot PC > AB \cdot AC$, $PB \cdot PC > PA^2$
- D. $AB \cdot AC > PB \cdot PC$, $PA^2 > PB \cdot PC$

19. 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线 y=f(x),一种是平均价格曲线 y=g(x) (如 f(2)=3 表示开始交易后第 2 小时的即时价格为 3 元; g(2)=4 表示开始交易后两个小时内所有成交股票的平均价格为 4 元). 下面所给出的四个图象中,实线表示 y=f(x),虚线表示 y=g(x),其中可能正确的是 ()

20. 设 *a*=sin15°+*c*os15°, *b*=sin17°+*c*os17°, 则下列各式中正确的是 ()

$$A, a < \frac{a^2 + b^2}{2} < b$$

$$B, \quad a < b < \frac{a^2 + b^2}{2}$$

$$C, b < \frac{a^2 + b^2}{2} < a$$

D,
$$b < a < \frac{a^2 + b^2}{2}$$

参考答案:

数学分班试题

1. B 2. A. 3. C 4. D 5. B 6. C 7. C 8. D 9. D 10. C

11. D 12. A 13. D 14. D 15. C 16. C 17. B 18. D 19. C 20. B

