Équations de Bellman pour la valeur optimale

 Les équations de Bellman nous donnent une condition qui est garantie par la valeur V* des plans optimaux

$$V^*(s) = R(s) + \max_{\alpha} \gamma \sum_{s' \in S} P(s'|s,\alpha) V^*(s') \quad \forall s \in S$$

- Deux algorithmes différents pour le calcul du plan optimal:
 - itération par valeurs (value iteration)
 - itération par politiques (policy iteration)

Algorithme policy iteration

- 1. Choisir un plan arbitraire π'
- 2. Répéter jusqu'à ce que le plan ne change pas $(\pi = \pi')$:
 - $\pi \leftarrow \pi'$
 - II. pour tout s dans S, calculer $V(\pi,s)$ en résolvant le système de |S| équations et |S| inconnues

$$V(\pi,s) = R(s) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V(\pi,s')$$

III. pour tout s dans S, s'il existe une action a telle que $[R(s) + \gamma \sum_{s' \in s} P(s'|s,a) V(\pi,s')] > V(\pi,s)$

alors
$$\pi'(s) := a \text{ sinon } \pi'(s) := \pi(s)$$

3. Retourne π

Policy iteration: initialisation

Plan initial choisi arbitrairement:

$$\pi' = \{ s_0 \rightarrow a_2, \\ s_1 \rightarrow a_2, \\ s_2 \rightarrow a_4 \}$$

Policy iteration: itération #1

- l. π ← π
- II. Équations: v_0 =0+0.5*(1* v_0); v_1 =0+0.5*(1* v_0); v_2 =1+0.5*(1* v_1)

Solution: $v_0 = 0$, $v_1 = 0$, $v_2 = 1$

III.
$$s_0 \rightarrow a_1$$
: 0+0.5*(0.2*0+0.8*0)=0;
 $s_1 \rightarrow a_3$: 0+0.5*(1*1)=0.5 > 0;
 $s_2 \rightarrow a_5$: 1+0.5*(1*1)=1.5 > 1;
 $\pi' = \{ s_0 \rightarrow a_2 , s_1 \rightarrow a_3 , s_2 \rightarrow a_5 \}$

ne change pas change change

Policy iteration: itération #2

- l. π ← π
- II. Équations: v_0 =0+0.5*(1* v_0); v_1 =0+0.5*(1* v_2); v_2 =1+0.5*(1* v_2)

Solution: $v_0 = 0$, $v_1 = 1$, $v_2 = 2$

III. $s_0 \rightarrow a_1$: 0+0.5(0.2*0+0.8*1)=0.4 > 0; $s_1 \rightarrow a_2$: 0+0.5(1*0)=0 < 1; $s_2 \rightarrow a_4$: 1+0.5(1*1)=1.5 < 2; $\pi' = \{ s_0 \rightarrow a_1, s_1 \rightarrow a_2, s_2 \rightarrow a_5 \}$

change ne change pas ne change pas

Policy iteration: itération #3

- . π ← π
- II. Équations: $v_0=0+0.5*(0.2*v_0+0.8*v_1)$; $v_1=0+0.5*(1*v_2)$; $v_2=1+0.5*(1*v_2)$

Solution: $v_0=4/9$, $v_1=1$, $v_2=2$

III. $s_0 \rightarrow a_2$: 0+0.5(1*0.4)=0.2 < 4/9; ne change pas $s_1 \rightarrow a_2$: 0+0.5(1*0.4)=0.2 < 1; ne change pas $s_2 \rightarrow a_4$: 1+0.5(1*1)=1.5 < 2; ne change pas $\pi' = \{ s_0 \rightarrow a_1, s_1 \rightarrow a_3, s_2 \rightarrow a_5 \}$, c-à-d. π

Solution trouvée

Rappel: systèmes d'équations linéaires

Soit le système d'équations:

```
v_0 = 0 + 0.5 * (0.2*v_0+0.8*v_1);

v_1 = 0 + 0.5 * (1*v_2);

v_2 = 1 + 0.5 * (1*v_2)
```

• En mettant toutes les variables à droite, on peut l'écrire sous la forme:

$$0 = -0.9 v_0 + 0.4 v_1$$
 (1)

$$0 = -v_1 + 0.5 v_2$$
 (2)

$$-1 = -0.5 v_2$$
 (3)

- De l'équation (3), on conclut que $v_2 = -1 / -0.5 = 2$
- De l'équation (2), on conclut que $v_1 = 0.5 v_2 = 1$
- De l'équation (1), on conclut que $v_0 = 0.4 v_1 / 0.9 = 4/9$

Rappel: systèmes d'équations linéaires

• Soit le système d'équations:

$$v_0 = 0 + 0.5 * (0.2*v_0+0.8*v_1);$$

 $v_1 = 0 + 0.5 * (1*v_2);$
 $v_2 = 1 + 0.5 * (1*v_2)$

• En mettant toutes les variables à droite, on peut l'écrire sous la forme:

$$0 = -0.9 v_0 + 0.4 v_1$$
 (1)

$$0 = -v_1 + 0.5 v_2$$
 (2)

$$-1 = -0.5 v_2$$
 (3)

• Approche alternative: on écrit sous forme matricielle b = A v, où

$$A = \begin{pmatrix} -0.9 & 0.4 & 0 \\ 0 & -1 & 0.5 \\ 0 & 0 & -0.5 \end{pmatrix} \quad b = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \quad v = \begin{pmatrix} v_0 \\ v_1 \\ v_2 \end{pmatrix}$$

Hugo Larochelle et Froduald Kabanza

Rappel: systèmes d'équations linéaires

- Suffit alors d'inverser A pour obtenir v = A-1 b
 - on peut utiliser une librairie d'algèbre linéaire (ex.: Numpy en Python):

$$A = \begin{bmatrix} -0.9 & 0.4 & 0 \\ 0 & -1 & 0.5 \\ 0 & 0 & -0.5 \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \quad v = \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix}$$

Hugo Larochelle et Froduald Kabanza