

# Exercise 10.4

Q.1 In  $\triangle PAB$  of figure  $\overline{PQ} \perp \overline{AB}$  and  $\overline{PA} \cong \overline{PB}$  prove that  $\overline{AQ} \cong \overline{BQ}$  and  $\angle APQ \cong \angle BPQ$ 

### Given:

In  $\Delta PAB$ 

 $\overline{PQ} \perp \overline{AB}$  and  $\overline{PA} \cong \overline{PB}$ 

### To prove

$$\overline{AQ} \cong \overline{BQ}$$
 and  $\angle APQ \cong \angle BPQ$ 

### **Proof**



| Statements                                       | Reasons                                     |
|--------------------------------------------------|---------------------------------------------|
| In $\triangle APQ \leftrightarrow \triangle BPQ$ |                                             |
| $\overline{PA} \cong \overline{PB}$              | Given                                       |
| $\angle AQP \cong \angle BQP$                    | Given $\overline{PQ} \perp \overline{AB}$   |
| $\overline{PQ} \cong \overline{PQ}$              | Common                                      |
| $\therefore \Delta APQ \cong \Delta BPQ$         | H.S≅H.S                                     |
| $So \overline{AQ} \cong \overline{BQ}$           | Corresponding sides of congruent triangles  |
| and $\angle APQ \cong \angle BPQ$                | Corresponding angles of congruent triangles |

Q.2 In the figure  $m\angle C \cong m\angle D = 90^{\circ}$  and  $\overline{BC} \cong \overline{AD}$  prove that  $\overline{AC} \cong \overline{BD}$  and  $\angle BAC \cong$ 

### **∠ABD**

### Given

In the figure given  $m\angle C = m\angle D = 90^{\circ}$ 

$$\overline{BC}\cong\overline{AD}$$

### To Prove

$$\overline{AC} \cong \overline{BD}$$

$$\angle BAC \cong \angle ABD$$





| Statements                                       | Reasons                                     |
|--------------------------------------------------|---------------------------------------------|
| In $\triangle ABD \leftrightarrow \triangle BAC$ |                                             |
| $\overline{AD} \cong \overline{BC}$              | Given                                       |
| $\angle D \cong \angle C$                        | Each 90°                                    |
| $\overline{AB} \cong \overline{BA}$              | Common                                      |
| Thus $\triangle ABD \cong \triangle BAC$         | H-S ≅ H-S                                   |
| $\therefore \overline{AC} \cong \overline{BD}$   | Corresponding sides of congruent triangles  |
| ∴ ∠BAC ≅ ∠ABD                                    | Corresponding angles of congruent triangles |

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 1 OF 2]



# Q.3 In the figure, $m\angle B = m\angle D = 90^{\circ}$ and $\overline{AD} \cong \overline{BC}$ prove that ABCD is a rectangle

### Given

In the figure

 $m \angle B = m \angle D$  90° and  $\overline{AD} \cong \overline{BC}$ 

### To prove

ABCD is a rectangle

### Construction

Join A to C

### **Proof**



| Statements                                       | Reasons                                     |
|--------------------------------------------------|---------------------------------------------|
| In $\triangle ABC \leftrightarrow \triangle CDA$ |                                             |
| $\angle B \cong \angle D$                        | Given each angle = 90°                      |
| $\overline{AC} \cong \overline{CA}$              | Common                                      |
| $\overline{BC} \cong \overline{DA}$              | Given                                       |
| $\therefore \triangle ABC \cong \triangle CDA$   | H-S ≅ H-S                                   |
| $\overline{AB} \cong \overline{CD}$              | Corresponding sides of congruent triangles  |
| and $\angle ACB \cong \angle CAD$                | Corresponding angles of congruent triangles |
| Hence ABCD is a rectangle                        | le veri                                     |

## **Last Updated: September 2020**

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM]

[EMAIL: FREEILM786@GMAIL.COM]

[PAGE: 2 OF 2]