UFPE – Cin – Matemática Discreta para Engenharia da Computação – IF670 Prova 1 – 02/05/2017

- **1. (2,4)** Sejam A, B e C, conjuntos arbitrários. Determine se as seguintes sentenças são verdadeiras ou falsas. Justifique apresentando uma prova ou um contra-exemplo.
- a) O conjunto N×N, onde N é o conjunto os números naturais, é enumerável.
- **b)** $\wp(A \times B) = \wp(A) \times \wp(B)$. Onde $\wp(S)$ signitica o conjunto das partes de S.
- c) B $(A \cap C) = B (A \cap B \cap C)$. Use as identidades entre conjuntos para justificar a sua resposta.
- **d)** Considerando que $A \subset B$ então $A \cap (U B) = \emptyset$.
- **e)** Se $\{2\} \in A$ e $\{3\} \in A$ então $\{2,3\} \subseteq A$.
- f) Sejam as funções, f, g e h= $g^{\circ}f$, onde f: A \rightarrow B, g:B \rightarrow C, h: A \rightarrow C e a função g é bijetora. Logo, se a função f é injetora então a função h é bijetora.
- 2. (0,4) Qual é o conjunto S, definido recursivamente como a seguir?
 - 3 ∈ S
 - Se $x e y \in S$ então $(x + y) \in S$ e $(x y) \in S$
- **3. (1,2)** Seja F_n um número de Fibonacci. Use indução matemática e a identidade de Pascal para provar a seguinte equação:

$$F_{n+1} = \binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots$$
, para $n \in \mathbb{N}$, onde \mathbb{N} é o conjunto os números naturais.

- 4. (2,0) Responda e justifique apropriadamente:
- a) Sabendo que MDC(m, n) = 1 e que m e n possuem, respectivamente, 8 e 12 divisores positivos, quantos divisores possui o número m.n?
- **b)** Use o algoritmo de Euclides para encontrar inteiros m e n, de forma que MDC(72,164) = 72m + 164n
- c) Sejam $a \in n$ dois números inteiros. Prove que $(n a)^2 \equiv a^2 \pmod{n}$.
- **d)** Use o pequeno teorema de Fermat para encontrar o 3⁹⁰⁰ mod 29, sabendo que 29 é um número primo.
- **5. (1,0)** Aplique o teorema chinês do resto para responder essa questão. Um bando de 19 piratas roubam uma sacola com moedas de ouro. Quando eles tentaram dividir a fortuna em partes iguais, sobraram 3 moedas. Na discussão sobre quem ficava com as três moedas que sobraram, um pirata foi morto. A seguir, na divisão das moedas em partes iguais entre os sobreviventes, sobraram 10 moedas. Novamente, surgiu uma disputa pela posse das dez moedas que sobraram e um pirata foi morto. Agora, o total das moedas foi distribuído, igualmente, entre os sobreviventes sem sobrar qualquer moeda. Qual é o menor número de moedas que a sacola poderia conter?

Extra: 2ª chamada de uma MP ou para substituir uma menor nota

Seja n um inteiro positivo. Mostre por argumento combinatório que

$$\binom{2n}{n+1} + \binom{2n}{n} = \frac{\binom{2n+2}{n+1}}{n+1}$$

(você também pode usar alguma(s) das identidades estudadas no assunto de contagem)