MA 111 Tut 1

January 2021

1 Solutions

1(a):

$$f(x,y) = |x| + |y| + 1, \ x, y \in R = [0,1] \times [0,1]$$

Consider the partition $\mathcal{P}_n = \{(x_i, y_j) \mid i, j \in \{0, 1, 2\}\}$. Taking

$$0 = x_0 < x_1 = 1 - \frac{1}{n} < x_2 = 1$$
, and $0 = y_0 < y_1 = 1 - \frac{1}{n} < y_2 = 1$

$$L(\mathcal{P}_n, f) = \sum_{i=0}^{1} \sum_{j=0}^{1} m_{ij}(f) \Delta_{ij}$$
 and $U(\mathcal{P}_n, f) = \sum_{i=0}^{1} \sum_{j=0}^{1} M_{ij}(f) \Delta_{ij}$

But $f(x,y) = 1 \ \forall \ x, y \in [0,1) \times [0,1),$

So

$$m_{ij}(f) = \min_{(x,y)\in[x_i,x_{i+1}]\times[y_j,y_{j+1}]} f(x,y) = 1 \ \forall \ i,j\in\{0,1,2\}$$

Let

$$M_{ij}(f) = \max_{(x,y)\in[x_i,x_{i+1}]\times[y_i,y_{i+1}]} f(x,y)$$

Thus, $M_{00}(f) = 1$, $M_{01}(f) = M_{10}(f) = 2$ and $M_{11}(f) = 3$ Therefore,

$$L(\mathcal{P}_n, f) = 1 \ \forall \ n \in \mathbb{N}$$

$$U\left(\mathcal{P}_{n},f\right) = \Delta_{00} + 2\Delta_{01} + 2\Delta_{10} + 3\Delta_{11} = \left(1 - \frac{1}{n}\right)^{2} + 2\times2\times\left(1 - \frac{1}{n}\right)\cdot\left(\frac{1}{n}\right) + 3\cdot\left(\frac{1}{n}\right)^{2} = 1$$
Since,
$$\lim_{n \to \infty} U\left(\mathcal{P}_{n},f\right) = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{2} = 1 = \lim_{n \to \infty} L\left(\mathcal{P}_{n},f\right),$$

$$\int \int_{\mathbb{R}} f\left(x,y\right) d\left(x,y\right) = 1$$

2(a):

 $R = [-1,0] \times [0,\pi/2]$ with $z = f(x,y) = \sin y$ Using Fubini's Theorem, $Volume(V) = \iint_R f(x, y) dx dy$ $V = \int_{y=0}^{\pi/2} (\int_{x=-1}^0 \sin y dx) dy$

$$V = \int_{y=0}^{\pi/2} (\int_{x=-1}^{0} \sin y \, dx) \, dy$$

$$V = \int_{y=0}^{\pi/2} [x \sin y]_{x=-1}^{0} dy$$

$$V = \int_{y=0}^{\pi/2} [x \sin y]_{x=-1}^{0} dy$$

$$V = \int_{y=0}^{y=0} (J_{x=-1} \sin y \, dx) \, dy$$

$$V = \int_{y=0}^{\pi/2} [x \sin y]_{x=-1}^{0} \, dy$$

$$V = \int_{y=0}^{\pi/2} \sin y \, dy = [\cos y]_{y=0}^{\pi/2}$$

$$V = 1$$

 $R = [0,3] \times [0,3] \text{ with } z = f(x,y) = \sqrt{9-y^2}$ Using Fubini's Theorem,

$$Volume(V) = \iint_R f(x, y) dx dy$$

$$Volume(V) = \iint_{R} f(x, y) \, dx \, dy$$

$$V = \iint_{y=0}^{3} \left(\int_{x=0}^{3} \sqrt{9 - y^2} \, dx \right) \, dy$$

$$V = \iint_{y=0}^{3} \left[x \sqrt{9 - y^2} \right]_{x=0}^{3} \, dy$$

$$V = \iint_{y=0}^{3} 3\sqrt{9 - y^2} \, dy$$

$$V = \frac{27\pi}{4}$$

$$V = \int_{y=0}^{3} [x\sqrt{9 - y^2}]_{x=0}^{3} \, dy$$

$$V = \int_{y=0}^{3} 3\sqrt{9 - y^2} \, dy$$

$$V = \frac{27\pi}{4}$$

3:

$$f(x,y) = \begin{cases} 1 - \frac{1}{q} & x = \frac{p}{q}, p, q \in \mathbb{N}; \ y \in \mathbb{Q} \\ 1 & \text{otherwise.} \end{cases}$$

Clearly, $f(x,y) \in [0,1] \ \forall (x,y) \in R = [0,1] \times [0,1]$. Consider some $\epsilon > 0$. Define for some y

$$S = \{x \mid 1 - f(x, y) \ge \epsilon, 0 \le x \le 1; 0 \le y \le 1, y \in \mathbb{Q}\}\$$

Thus, \mathcal{S} has all rational numbers $0 \leq \frac{p}{q} \leq 1$ that satisfies $q \leq \frac{1}{\epsilon}$; $q \in \mathbb{N}$. Note that \mathcal{S} is a **finite set** and has a finite number of, say l, elements. Now, consider a partition $\mathcal{P}_{\epsilon} = \{x_0, x_1, \cdots, x_m\} \times \{y_0, y_1, \cdots, y_n\}$ with $x_0 = y_0 = 0$ and $x_m = y_n = 1$ so that $x_j - x_{j-1} < \frac{\epsilon}{l} \ \forall \ j \in \{1, 2, \cdots, m\}$ and $y_k - y_{k-1} < \frac{\epsilon}{l} \ \forall \ k \in \{1, 2, \cdots, m\}$ $\{1,2,\cdots,n\}$, i.e., $||\mathcal{P}_{\epsilon}||<\frac{\epsilon}{l}$. We define some notations for ease

$$\mathcal{P}_{\epsilon jk} = [x_{j-1}, x_j] \times [y_{k-1}, y_k]$$

$$\Delta_{jk} = (x_j - x_{j-1})(y_k - y_{k-1})$$

$$m_{jk} = \inf_{x, y \in \mathcal{P}_{\epsilon jk}} f(x, y) \quad \text{and} \quad M_{jk} = \sup_{x, y \in \mathcal{P}_{\epsilon jk}} f(x, y)$$

Note that $M_{jk} = 1 \, \forall j, k$. This follows from the fact that between any two numbers, there are infinitely many irrational numbers. $m_{jk} = \min\{1 - \frac{1}{a}\}\$ for some $q \in \mathbb{N}$. Thus,

$$U(f, \mathcal{P}_{\epsilon}) - L(f, \mathcal{P}_{\epsilon}) = \sum_{j=1}^{m} \sum_{k=1}^{n} M_{jk} \Delta_{jk} - \sum_{j=1}^{m} \sum_{k=1}^{n} m_{jk} \Delta_{jk} = \sum_{j=1}^{m} \sum_{k=1}^{n} (M_{jk} - m_{jk}) \Delta_{jk}$$

At this point, we shall split this sum into two parts, namely a part that contains at least one point with $x \in \mathcal{S}$ and thus satisfies $M_{jk} - m_{jk} \ge \frac{1}{q} = \epsilon$. However, we do have an upper bound on $M_{jk} - m_{jk}$, namely $M_{jk} - m_{jk} \le 1$. Note that \mathcal{S} has l elements and hence can be "covered" by at-most 2l of the partitions $\{x_0, x_1, \dots, x_n\}$. Then, using the fact that $M_{jk} - m_{jk} \le 1$,

$$\sum_{\substack{j=1\\ \mathcal{S}\cap[x_{j-1},x_j]\neq\emptyset}}^m \sum_{k=1}^n (M_{jk}-m_{jk}) \Delta_{jk} \leq \sum_{\substack{j=1\\ \mathcal{S}\cap[x_{j-1},x_j]\neq\emptyset}}^m \sum_{k=1}^n \Delta_{jk} \leq 2l\left(\frac{\epsilon}{l}\times 1\right) \leq 2\epsilon$$

Since there are at the most 2l number of $\left(\frac{\epsilon}{l} \times 1\right)$ rectangles $\subseteq \mathcal{P}_{\epsilon jk}$ for some j, k such that $S \cap [x_{j-1}, x_j] \neq \emptyset$.

In the second part, $m_{jk} > 1 - \frac{1}{q}$ and thus $M_{jk} - m_{jk} < \frac{1}{q} = \epsilon$. The upper limit of summation of Δ_{jk} over all values of j and k is the area of $R = [0, 1] \times [0, 1]$, which is 1.

$$\sum_{j=1}^{m} \sum_{k=1}^{n} (M_{jk} - m_{jk}) \Delta_{jk} \le \epsilon \times \sum_{j=1}^{m} \sum_{k=1}^{n} \Delta_{jk} \le \epsilon$$

$$S \cap [x_{j-1}, x_j] \neq \emptyset$$

Thus,

$$U(f, \mathcal{P}_{\epsilon}) - L(f, \mathcal{P}_{\epsilon}) \le 2\epsilon + \epsilon \Rightarrow U(f, \mathcal{P}_{\epsilon}) - L(f, \mathcal{P}_{\epsilon}) \le 3\epsilon$$

which can be made arbitrarily small for smaller and smaller values of ϵ . Thus, f(x,y) is **integrable** on $R=[0,1]\times[0,1]$.

What about the iterated integrals? We first consider the iterated integral over x then y and then the other way round.

CASE I: First over x, then over y

Define

$$\Phi^y(x) = f(x,y)$$
 for fixed y

Then, we have

$$\Phi^{y}(x) = \begin{cases} \begin{cases} 1 - \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q}, \ p, q \in \mathbb{N} \\ 1 & \text{otherwise} \end{cases} & y \in \mathbb{Q} \\ y \notin \mathbb{Q} \end{cases}$$

Thus, for a given y, $\Phi^y(x)$ is either the constant function 1 or 1— the Thomae's function in x, both of which are integrable for $x \in [0,1]$. This yields

$$\int_0^1 \Phi^y(x) \, dx = \begin{cases} \int_0^1 1 - \text{Thomae}(x) \, dx & y \in \mathbb{Q} \\ \int_0^1 1 \, dx & y \notin \mathbb{Q} \end{cases}$$

Using the fact that the integral of the Thomae's function over any interval is 0, we get

$$\int_0^1 \Phi^y(x) \, dx = \begin{cases} 1 & y \in \mathbb{Q} \\ 1 & y \notin \mathbb{Q} \end{cases} \Rightarrow \int_0^1 \Phi^y(x) = 1$$

Now,

$$\int_0^1 \int_0^1 f(x,y) \, dx \, dy = \left(\int_0^1 \Phi^y(x) \, dx \right) \, dy = \int_0^1 1 \, dy = 1$$

Thus, the iterated integral exists in this case and is equal to 1.

CASE II: First over y, then over x

Define

$$\Phi^x(y) = f(x,y)$$
 for fixed x

For a given $x = \frac{p}{q} \in \mathbb{Q}$, let $k_x = \frac{1}{q}$. Then, we have

$$\Phi^{x}(y) = \begin{cases} \begin{cases} 1 - k_{x} & y \in \mathbb{Q} \\ 1 & y \notin \mathbb{Q} \end{cases} & x = \frac{p}{q} \in \mathbb{Q}, \ p, q \in \mathbb{N} \\ 1 & \text{otherwise} \end{cases}$$

Thus, for a given x, $\Phi^x(y)$ is either the constant function 1 or 1— the Dirichlet's function in y. However, the Dirichlet's function is not integrable for $y \in [0, 1]$. Thus, the **iterated integral does not exist in this case**.

4

Observe that f is not bounded in $R = [0,1] \times [0,1]$ (why?). Thus, we can immediately claim that f is not integrable in R. However, this *does not* imply that the iterated integrals do not exist.

Evaluating iterated integrals:

For
$$y = 0$$
, $f(x,y) = 0$ and thus $\int_{x=0}^{1} f(x,y) dx = 0$.
For $y \in (0,1]$, $\int_{x=0}^{1} f(x,y) dx = \int_{x=0}^{y} f(x,y) dx + \int_{x=y}^{1} f(x,y) dx$.
Then, $\int_{x=0}^{1} f(x,y) dx = \int_{x=0}^{y} \frac{-1}{y^2} dx + \int_{x=y}^{1} \frac{1}{x^2} dx$

$$\implies \int_{x=0}^{1} f(x,y) dx = \frac{-1}{y} + \frac{1}{y} - 1 = -1$$
Thus, define

$$B(y) = \int_{x=0}^{1} f(x, y) dx = \begin{cases} 0 & \text{for } y = 0 \\ -1 & \text{for } y \in (0, 1) \end{cases}$$

This function is bounded and has a single point of discontinuity, and hence Riemann integrable.

$$\int_{y=0}^{1} \left(\int_{x=0}^{1} f(x,y) \, dx \right) \, dy = \int_{y=0}^{1} B(y) \, dy = -1$$

Similarly, let's evaluate the iterated integral: $\int_{x=0}^{1} (\int_{y=0}^{1} f(x,y) \, dy) \, dx$ by repeating the above procedure.

Ing the above procedure. For
$$x = 0$$
, $f(x,y) = 0$ and thus $\int_{y=0}^{1} f(x,y) \, dy = 0$. For $x \in (0,1]$, $\int_{y=0}^{1} f(x,y) \, dy = \int_{y=0}^{x} f(x,y) \, dy + \int_{y=x}^{1} f(x,y) \, dy$ $\implies \int_{x=0}^{1} f(x,y) \, dx = \int_{y=0}^{x} \frac{1}{x^2} \, dy + \int_{y=x}^{1} \frac{-1}{y^2} \, dy$ $\implies \int_{x=0}^{1} f(x,y) \, dx = \frac{1}{x} + 1 - \frac{1}{x} = 1$ Thus, define

$$D(x) = \int_{x=0}^{1} f(x,y) dx = \begin{cases} 0 & \text{for } x = 0\\ 1 & \text{for } x \in (0,1) \end{cases}$$

As discussed above, this function is Riemann integrable (why?). Hence, the iterated integral: $\int_{x=0}^{1} \left(\int_{y=0}^{1} f(x,y) \, dy \right) \, dx = \int_{y=0}^{1} D(x) \, dx = 1$

Let's split the domain into three set E_1 , E_2 , E_3 .

On set $E_1 = \{(x,y): x^2 + y^2 < 1\}$, We have the function f(x,y) = x+y which is simple continuous function

But on the set $E_2 = \{ (x,y): x^2 + y^2 = 1 \}$, if we approach any point on E_2 from E_1 we get f(x,y) = x+y

Now if we approach from $\tilde{E_3}=\mathrm{R}$ - $(E_1\cup E_1)$, we get $\mathrm{f(x,y)}=0$, which is clearly discontinuous

Note an interesting point when x+y=0 on E_2 i.e. $x=\pm \frac{1}{\sqrt{2}}$ and $y=\mp \frac{1}{\sqrt{2}}$, we have the continuity, since function goes to zero at these two points.

So f(x,y) is discontinuous on E_2 - $\{(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}),(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})\}$ Recall the definition of content zero, we can apply and state that the function is integrable over R

$$\begin{split} \iint_R f(x,y) \, dx \, dy &= \iint_{E_1} f(x,y) \, dx \, dy = \iint_{E_1} (x+y) \, dx \, dy = \iint_{E_1} x \, dx \, dy + \iint_{E_1} y \, dx \, dy \\ &= \int_{-1}^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} x \, dx \, dy + \int_{-1}^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} y \, dx \, dy = 0 \end{split}$$

Answer Key

- 1 a 1
 - $b \frac{7}{6}$

$$4 \int_{y=0}^{1} \int_{x=0}^{1} f(x,y) dx dy = -1 \text{ and } \int_{x=0}^{1} \int_{y=0}^{1} f(x,y) dy dx = 1$$

- 5 a Equal, 4ln(2) 2
 - b Equal, $\frac{\sin(1)}{9}$
- 6 b $\frac{(2^{r+1}-1)(2^{s+1}-1)}{(r+1)(s+1)}$
- 7 a 50 b $\frac{45}{4} + \frac{15}{2}log(\frac{3}{2})$