21-127 Concepts of Mathematics – EXCEL

Topic: Math, Sets, Logic
EXCEL Leader: Sam Yong
Email: myong@andrew.cmu.edu

Session Date: Mon 10 Feb 19 Academic Development Cyert Hall B5 | 412-268-6878

Services available: Supplemental Instruction (SI), Academic Counseling in Study Skills, Individual & Walk-in Tutoring

"There are a lot of books on marketing out there. I wonder if you're safest just buying the most popular one."

A set is a collection of all objects that have a common, well-defined property. The objects contained
in a set are called of the set. The mathematical symbol represents the phrase "is an
element of", and the symbol represents "is not an element of".
The empty set is the set which has no elements. It is denoted by the symbol
The set of all natural numbers is denoted by=
The notation $[n]$ represents the set
The set of all integers is denoted by=
The set of all real numbers is denoted by, and the set of all complex numbers
Given two sets A and B, if every element of A is also an element of B, then we say
and the mathematical notation is If we want to indicate that, in addition, A is not equal to
B, we would write the notation and say that A is a
Given a set A, the power set of A is It
is denoted by .

	We say two sets <i>A</i> and <i>B</i> are equal if and only if	
>	Let A and B be any sets. The intersection of A and B is the set of elements that	It
	is denoted by Formally, =	. A and B are said
	to be disjoint if	
>	Let A and B be any sets. The union of A and B is the set of elements that	It is
	denoted by	
>	The difference between sets <i>A</i> and <i>B</i> , denoted by, is the set Formally, =	
>	The complement of set <i>A</i> is the set, denoted by	
	_	
>	The union of a collection of sets A_i indexed by the set I is	
>	The intersection of a collection of sets A_i indexed by the set I is	
>	Given two sets A and B, the Cartesian product of A and B denoted by	_ is defined as
>	The universal quantifier is the symbol, meaning the phrase	·
>	The existential quantifier is the symbol, meaning the phrase	·
	Let P and Q be mathematical statements. Consider the original claim $P \Rightarrow Q$. The c	onverse of the
	original claim is The contrapositive is	
	Let P and Q be mathematical statements. We write to indicate they are	elogically
	equivalent. This is also called	
	Let P and Q be mathematical statements. Suppose $P \Rightarrow Q$. We say is a suffic	cient condition for
	, and is a necessary condition for	

1. Show the following statements are logically equivalent. p, q, r are logical variables.

$$p \wedge (q \vee r)$$
$$(p \wedge q) \vee (p \wedge r)$$

2. Show the following statements are logically equivalent. p, q, r are logical variables.

$$\neg (p \land q)$$
$$\neg p \lor \neg q$$

- 3. Negate the following mathematical statements.
 - $\forall x \in \mathbb{N}. x^2 \text{ is even} \Rightarrow x \text{ is even.}$
 - $\exists x \in \mathbb{Z}. \forall y \in \mathbb{Z}. x + y = y.$

- 4. Prove the following statements.
 - $\bullet \quad (A \cup B)^{\mathcal{C}} = A^{\mathcal{C}} \cap B^{\mathcal{C}}$

• $(A \cup B) \cap A^C = B \setminus A$

5. Let *S* be a non-empty set of people in a bar. Express the following statement symbolically.

There is a person in the bar such that, if that person is drinking, then everyone else in the bar is drinking.

Prove that it is true.

- 6. Let $A = \{1, 2, 3\}, B = \{4, 5\}$. Write the following sets to show all the elements.
 - $A \cup B =$
 - \bullet A-B=
 - \bullet $A \times B =$

Space below is for your discussion on the mathematical games. You are in either group	1 or 2.
Group 1: the dollar game	
Group 2: the flipping card game	