CS & IT ENGINEERING

Theory of Computation

Regular Languages

Lecture No.- 22

Topic

Model IX (Start, End, Contain)

Topics to be Covered

Topic

Model X (Position based)

Topic

Model XI (Multiple Conditions-Remainder)

, - Simple

(75)
$$L = (a+b)^{*}a(a+b)$$

Min=aa or ab

aaa

10th Symbol from end is b

1

= 1024 states in min DFA

$$(77)$$
 L= $(a+b)^9 b (a+b)^*$

$$(10+1)+1=12$$
 States in min DFA

Note:

Model-XI [Multiple Conditions - remainder based]

$$(79)$$
 $\{\omega\}$ " or "

(80)
$$e^{\omega}$$
 | " , " But not "

(81) of W | ", $N_b(\omega)$ is div by 2 But not $N_a(\omega)$ is div by 2

Remainders 0, 1 #05%2

GUA

#65%9

 $\frac{1}{a}$ $\frac{2}{a}$ $\frac{3}{b}$ $\frac{4}{b}$

a: #as isekn

a, : #as is odd

bo: #65 is ever

1: #65 is odd

Remainders 0, 1 #05%2

OR

#65%9

 $\frac{1}{a}$ $\frac{1}$

au: #as isekn

a, : #as is odd

bo: #65 is even

b1: #65 is odd

Remainders

#05%2

Buk not

#65%2

a

a: #as isern

a, : #asisodd

bo: #65 is even

1: #65 is odd

65 %2=0 AND # ais %2 + 0 # ais %2=1

Remainders 0, 1

ao: #as isern

a, : #as is odd

bo: #65 is even

1: #65 is odd

(89)
$$\mathcal{L}_{\omega} = \mathcal{L}_{\omega} = \mathcal{L}_$$

D) 2 x 3 = 6 states

Composition Algorithm (FA, XFA2)

$$L = \{ \omega \mid \omega \in \{a,b\}^*, N_a(\omega) \% 2 = 0 \text{ AND } N_b(\omega) \% 3 = 0 \}$$

Note:

$$\int_{\mathbb{R}^{N}} |w \in \{a,b\}^{*}, |fa|^{2} |K_{1}| = 0$$
AND $\int_{\mathbb{R}^{N}} |fa|^{2} |K_{2}| = 0$
BUT NOT

I

No. of states in min DFA = K, XK2

(83) & w | w ∈ {a,b}*, #as is div by 2 AND #as is div by 4}

#as is div by 4

31 # as = 0, 2, 4, 6, 8, ... 31 # as = 0, 4, 8, ... AND
= 0, 4, 8, ...

4 States

Model-XII [Multiple Conditions - Remainder but Simple]

(84) & w | w ∈ {a,b}*, #as is div by 2 or #as is div by 4}

#as is div by 2

= 0, 2, 4, 6, 8, . - -

2 States

Model-XIII Multiple conditions - Start/end/contain]

Sende wilk as or 65
$$(87) L = (a+b)^{*} (aa+bb) (a+b)^{*}$$

Secontains an or bb
$$L = (a+b)^{*} aa (a+b)^{*} bb (a+b)^{*} + (a+b)^{*} bb (a+b)^{*} aa (a+b)^{*}$$

5 Contains bolt aa and bb

2 mins Summary

Topic

Model X (Position based)

Topic

Model XI (Multiple Conditions-Remainder)

THANK - YOU