

Creating a Visualization

Scientific Visualization reference model

(adapted from Schroeder et al., 2006)

The visualization creator is involved in all phases

Visual mapping

- It is necessary to decide:
 - which visual structures use to **represent** the data
 - their location in the display
- Some types of data can be easily mapped to a spatial location
- Examples:
- . data with a topological or geographical structure
- Abstract data don't have an easy correspondence with the dimensions of the physical space around us

Three **structures** must be defined in the **visual mapping/encoding**:

- spatial substrate
- graphical elements
- graphical properties
- Spatial substrate dimensions in physical space where the visual representation is created (can be defined in terms of axes and type of data)
- **Graphical elements** anything visible appearing in the space points, lines, surfaces, volumes
- **Graphical properties** properties of the graphical elements to which the human retina is very sensitive **retinal variables**:

size, orientation, color, texture, and shape

- **Spatial substrate** axes (x, y, ...) type of data (quantitative, ordinal, categorical)

- Graphical elements points lines surfaces volumes

- **Graphical properties** retinal variables:

size, orientation color (depends on physiology and culture) texture shape

How to select visual encodings?

How to select visual encodings to accurately represent quantity?

The relative difficulty of **assessing quantitative value** as a function of encoding mechanism, as established by Cleveland and McGill (Spence, 2007)

In a nut shell:

Do you have a lot of data?

Visualization may be the solution (or part of it)

- Creating a Visualization has several phases
- Visual mapping is core
- There are several possible visual encodings/ visualization techniques
- But,
 How to select techniques? → next topic

Mapping - Visually encoding value

Remember:

 The Human Visual system is the product of millions of years of evolution

 Although very flexible, it is tuned to data represented in specific ways

 If we understand how its mechanisms work we will be able to produce better results

Pre-attentive attributes can help observers to see before though

Example: Count the number of 7s

https://www.youtube.com/watch?time continue=121&v=AiD6etOB6qI • Other visual attributes as size, proximity are also quickly processed by visual perception, before the cognitive processes come into play

Example: mapping numerical values to the length of bars:

Procedure to follow to create visual representations of data

- 1. Define the problem and the users' questions
- 2. Examine the nature of the data to represent and pre-process the data
- 3. Determine the number of attributes/variables/dimensions
- 4. Choose the visual structures to map

test several ideas ...

nature of the problem communicate explore confirm

nature of the data to represent ordinal categorical

number of attributes

univariate
bivariate
trivariate
multivariate

Next: visualization techniques organized according the n. of attributes

dataset types

tables
networks
spatial or geographical
fields
geometry

• • •

of tabular data

Common Visualization Techniques to visually represent univariate, bivariate data

Representing univariate data

A more common situation consists in representing a set of values

But new ones can be invented!

Example:

Price for a number of cars:

- dots on a linear scale
- box plot(that will answer many questions: median value, outliers,...)

(Spence, 2007)

https://www.data-to-viz.com/caveat/boxplot.html

Two common techniques not to be confounded!

Histogram represents a distribution of numerical data

Bar chart represents the number of occurrences of a categorical/

ordinal data

Both represent data by rectangular bars(vertical or horizontal) with length proportional to the values they represent

Another simple (and too common) technique

Pie Chart

Represents numerical proportion, parts of an whole

The arc length of each slice (its central angle and area), is proportional to the quantity it represents

Are much controversial: many experts recommend avoiding them http://www.perceptualedge.com/articles/08-21-07.pdf

It is difficult to compare different sections of a pie chart, or to compare data across different pie charts

speaking population

Variations of pie charts:

- Simple criteria to determine whether a pie chart is acceptable
- Consider it only if:
- The parts make up a meaningful whole
- The parts are mutually exclusive
- There are <6 parts and slices have not very different sizes

If the main purpose is to compare between the parts, use a different chart!

https://eagereyes.org/techniques/pie-charts

Representing bivariate data

The scatterplot is the conventional representation

Each observation is represented by a point on a two dimensional space.

The axes are associated with these two attributes

This representation affords awareness of:

- general trends
- local trade-offs
- outliers

Correlation is not causation

Representing bivariate data

The line chart

One of the oldest known and ubiquitous Visualizations

Inclination of orbits along the time - Xth century (Tufte, 1983)

 A line chart or line plot or line graph or curve chart displays information as a series of data points called 'markers' connected by straight line segments

- Basic type of chart common in many fields
- Often used to visualize a trend in data over intervals of time

Common Visualization Techniques to represent trivariate data

Trivariate data surface plot contour plot 3D representation bubble plot

- - -

Representing Trivariate data

 Since we live in a 3D world, representing trivariate data as points in a 3D space and displaying a 2D view is natural

 However, these representations of abstract data can be ambiguous

 This can be solved by interaction, allowing the user to reorient the representation

"for 3D to be useful, you' ve got to be able to move it" (Spence, 2007)

Other Simple (and common) representations of trivariate data

• In a **bubble chart** data are represented as a disk that expresses two of the values through the disk's *xy* location and the third through its

size (radius or area?)

 Mapping the variable to size must be done carefully. The interpretation of size may be ambiguous

 Representing one more dimension through color

https://visage.co/data-visualization-101-bubble-charts/

Techniques for Multivariate (or Hypervariate) data

Coordinate plots ——parallel coordinate plots

star (radar/spider) plots

Scatterplot Matrix

Maps

Icons/glyphs

The scatterplot matrix (SPLOM) is applicable to higher n. of variables

However, as the number of attributes increase, the number of different pairs

of attributes increases rapidly:

- 2 variables-> 1 scatterplot
- 3 variables -> 3 scatterplots
- 4 variables -> 6 scatterplots

We may try to reduce the number of dimensions keeping the more relevant:

Dimensionality reduction!

Scatterplot matrix for 6 attributes of a car dataset

Choropleth maps - A standard approach to communicating aggregated data by geographical areas using color encoding of the geographic area

They require some care: what are the possible issues?

https://www.nytimes.com/interactive/2020/world/coronavirus-maps.html

Visualizations of the US 2020 Election (choropleth + bar) the bar helps better understand the ratio of votes

Simple representations of attributes on a map

- Graduated Symbol Maps are an alternative to the choropleth map;
- Symbols are placed over an underlying map; may show more dimensions
- Avoid confounding geographic area with data values

(Heer et al., 2010)

Seismic activity:
Is something missing in this visualization?

https://www.ipma.pt/pt/geofisica/sismicidade/index.jsp

Glyph chart example

The physical properties of the shape represent different categorical variables sized according to the associated quantitative value and distinguished through color

Small multiples:

arrangement approach that facilitates efficient and effective comparisons

(Kirk, 2012)

nature of the data to represent ordinal categorical

number of attributes

bivariate

trivariate

multivariate

multivariate

univariate

bivariate

trivariate

multivariate

number of attributes

Next: visualization techniques

organized according the n. of

attributes

. . .

Representations of a scalar in a 2D field

- Contour plots
- contour line (also isoline, isopleth, or equipotential curve) of a function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value.
- Typical in meteorological charts (isobars and isothermal curves)
- and maps (to represent altitude or depth)

- Surface plots
- May be combined with color

(preferably in a redundant way and carefully selecting the scale)

Representations of scalars and vectors in a 3D field

Four-dimensional data visualization: in 3D space a fourth scalar variable

is visualized using colored glyphs

Glyphs for Visualizing a 3D Vector Field

 These are only some of the visualization techniques to represent a value

There are a lot more ...

And we may visually want to visually represent beyond

value: relation

Networks

Hierarchical data

Bibliography

- Spence, R., *Information Visualization, Design for Interaction*, 2nd ed., Prentice Hall, 2007
- Kirk, A., Data Visualisation: A Handbook for Data Driven Design, 2nd. Ed., Sage, 2019
- Mazza, R., Introduction to Information Visualization, Springer, 2009
- Ware, C., *Information Visualization, Perception to Design*, 2nd ed., Morgan Kaufmann, 2004
- Tufte, E., The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001
- Heer, J., Bostock, M., & Ogievetsky, V. A tour through the visualization zoo.
 Communications of the ACM, vol. 8, n.1, 2010
 https://doi.org/10.1145/1743546.1743567