

Multidimensiona Scaling

Non-metric Multidimensional Scaling

Lecture 14

Multidimensional Scaling

Reading: Izenman Chapter 13

The main reference for these slides is from Dr. Markus Kalisch's Lecture Notes at https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v4.1.pdf

DSA 8070 Multivariate Analysis November 28- December 2, 2022

> Whitney Huang Clemson University

Agenda

Multidimensional Scaling

Main Idea

Classical Multidimensional Scaling

> on-metric ultidimensional caling

Main Idea

Classical Multidimensional Scaling

Non-metric Multidimensional Scaling

Basic Idea of Multidimensional Scaling (MDS)

- Represent high-dimensional point cloud in low (usually 2) dimensional Euclidean space while preserving as well as possible the inter-point distances
- Classical/Metric MDS: Use a clever projection
- Non-metric MDS: Squeeze data on table

Source: Dr. Markus Kalisch's Lecture Notes on MDS

Multidimensional Scaling

Main Idea

Multidimension Scaling

ion-metric Multidimension: Scaling

- Goal: Given pairwise distances among points, recover the position of the points!
- Example: Distance between 10 US major cities

> UScitiesD

	Attunta	Chicago	penver.	nouston	Losangeles	MLami	NewTork	SanFrancisco	Seattle
Chicago	587								
Denver	1212	920							
Houston	701	940	879						
LosAngeles	1936	1745	831	1374					
Miami	604	1188	1726	968	2339				
NewYork	748	713	1631	1420	2451	1092			
SanFrancisco	2139	1858	949	1645	347	2594	2571		
Seattle	2182	1737	1021	1891	959	2734	2408	678	
Washington.DC	543	597	1494	1220	2300	923	205	2442	2329

```
CLEMS N
```

Classical Multidimensional Scaling

Non-metric Multidimensiona Scaling

cmdscale(UScitiesD)

Miami Houston

LosAngeles

Atlanta

SanFranc

Denver

Nashington.DC Chicago

NewYork

Seattle

```
# Flip Axes
```

```
x1 <- -loc[, 1]; y1 <- -loc[, 2]
plot(x1, y1, type = "n", xlab = "", ylab = "", asp = 1,
    axes = FALSE, main = "cmdscale(UScitiesD)")
```

text(x1, y1, rownames(loc), cex = 0.8)

cmdscale(UScitiesD)

Seattle

NewYork

Chicago

Washington.DC

Denver

Francisco

Atlanta

LosAngeles

Houston

Miami

Another Example: Air Pollution in US Cities

> summary(dat)

S02	temp	manu	popul	
Min. : 8.00	Min. :43.50	Min. : 35.0	Min. : 71.0	
1st Qu.: 13.00	1st Qu.:50.60	1st Qu.: 181.0	1st Qu.: 299.0	
Median : 26.00	Median :54.60	Median : 347.0	Median : 515.0	
Mean : 30.05	Mean :55.76	Mean : 463.1	Mean : 608.6	
3rd Qu.: 35.00	3rd Qu.:59.30	3rd Qu.: 462.0	3rd Qu.: 717.0	
Max. :110.00	Max. :75.50	Max. :3344.0	Max. :3369.0	
wind	precip	predays		
Min. : 6.000	Min. : 7.05	Min. : 36.0		
1st Qu.: 8.700	1st Qu.:30.96	1st Qu.:103.0		
Median : 9.300	Median :38.74	Median :115.0		
Mean : 9.444	Mean :36.77	Mean :113.9		
3rd Qu.:10.600	3rd Qu.:43.11	3rd Qu.:128.0		
Max. :12.700	Max. :59.80	Max. :166.0		

- Range of manu and popul is much bigger than range of wind
- Need to standardize to give every variable equal weight

Multidimensional Scaling

Main Idea

Dassical Multidimensional Scaling

Multidimension Scaling

Classical Multidimensiona Scaling

lon-metric Iultidimensional caling

- Input: $D = \{d_{ij}\}_{i,j=1}^n$, the Euclidean distances between n objects in p dimensions
- Output: $\{X_i\}_{i=1}^n$, the "position" of points up to rotation, reflection, shift
- Two steps:
 - Compute inner products matrix $B = XX^T$ from distance

$$b_{ij} = -\frac{1}{2}(d_{ij}^2 - d_{i.}^2 - d_{.j}^2 + d_{..}^2)$$

 Perform spectral decomposition to compute positions from B (see next slide)

- Since $B = XX^T$, we need the "square root" of B
- Since B is a symmetric and positive definite n x n matrix
 ⇒ B can be diagonalized:

$$\boldsymbol{B} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^T$$

 Λ is a diagnoal matrix with $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ on diagonal

 Assuming the rank of B = p, so that the last n − p of its eigenvalues will be zero ⇒ B can be written as

$$\boldsymbol{B} = \boldsymbol{V}_1 \boldsymbol{\Lambda}_1 \boldsymbol{V}_1^T,$$

where V_1 contains the first p eigenvectors and Λ_1 the p non-zero eigenvalues. Take "square root": $X = V_1 \Lambda_1^{-\frac{1}{2}}$

- Keep only few (e.g. 2) largest eigenvalues and corresponding eigenvectors
- ullet The resulting $oldsymbol{X}$ will be the low-dimensional representation we were looking for
- "Goodness of fit" (GOF) if we reduce to m dimensions:

$$\text{GOF} = \frac{\sum_{i=1}^{m} \lambda_i}{\sum_{i=1}^{n} \lambda_i}$$

Finds "optimal" low-dim representation: Minimizes

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(d_{ij}^{2} - (d_{ij}^{m})^{2} \right)^{2}$$

Classical MDS: Pros and Cons

Main Idea

Classical Multidimensional Scaling

lon-metric Multidimensional

- + Optimal for Euclidean input data
- + Still optimal, if B has non-negative eigenvalues
- + Very fast to compute
- There is no guarantee it will be optimal if B has negative eigenvalues

- Sometimes, there is no well-defined metric on original points
- Absolute values are not that meaningful, but the ranking is important
- Non-metric MDS finds a low-dimensional representation, which respects the ranking of distances

- δ_{ij} is the true dissimilarity, d_{ij} is the distance of representation
- Minimize STRESS:

$$S = \frac{\sum_{i < j} (\theta(\delta_{ij}) - d_{ij})^2}{\sum_{i < j} d_{ij}^2},$$

where $\theta(\cdot)$ is an increasing function

- ullet Optimize over both position of points and heta
- $\hat{d}_{ij} = \theta(\delta_{ij})$ is called "disparity"
- Solved numerically (isotonic regression); Classical MDS as starting value; very time consuming

Main Idea

Classical Multidimensional Scaling

Non-metric Multidimensional Scaling

on-metric ultidimensional caling

- +: Fulfills a clear objective (minimize STRESS) without many assumptions
- +: Results don't change with rescaling or monotonic variable transformation
- +: Works even if you only have rank information
- -: computation can be slow in "large" problems
- -: Usually only local (not global) optimum found
- -: Only gets ranks of distances right

Non-metric Multidimensiona Scaling

Romesburg (1984) gives a set of data that shows the number of times 15 congressmen from New Jersey voted differently in the House of Representatives on 19 environmental bills

>	voting	[1:6,	1:6]
---	--------	-------	------

	Hunt(R)	Sandman(R)	Howard(D)	Thompson(D)	Freylinghuysen(R)	Forsythe(R)
Hunt(R)	0	8	15	15	10	9
Sandman(R)	8	0	17	12	13	13
Howard(D)	15	17	Θ	9	16	12
Thompson(D)	15	12	9	Θ	14	12
Freylinghuysen(R)	10	13	16	14	0	8
Forsythe(R)	9	13	12	12	8	Θ

Question: Do people in the same party vote alike?

Non-metric MDS: Voting Example

Main Idea

Multidimensional Scaling

Non-metric Multidimensional Scaling

Classical Multidimensional Scaling

Non-metric Multidimensiona Scaling

Classical MDS:

- Finds low-dim projection that respects distances
- Optimal for euclidean distances
- No clear guarantees for other distances
- Fast to compute (can use cmdscale in R)

Non-metric MDS:

- Squeezes data points on table
- respects only rankings of distances
- (locally) solves clear objective
- Computation can be slow (can use isoMDS from the R package "MASS")