Considere o seguinte problema de programação linear com apenas uma restrição.

max
$$5x_1 - 6x_2 + 3x_3 - 5x_4 + 12x_5$$

suj. a $x_1 + 3x_2 + 5x_3 + 6x_4 + 3x_5 \le 90$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

- a) Construa o quadro simplex com a solução básica inicial para este problema.
- b) Numa solução básica deste problema, há quantas variáveis básicas e não básicas?
- c) Sabendo que apenas uma das variáveis irá ter valor positivo na solução óptima, qual deverá ser a variável básica na solução óptima?
- d) Qual a solução óptima do problema e qual o valor óptimo da função objectivo?
- e) Resolva o problema pelo método simplex para verificar o resultado obtido na alínea anterior.

a) Construa o quadro simplex com a solução básica inicial para este problema.

max
$$5x_1 - 6x_2 + 3x_3 - 5x_4 + 12x_5$$

suj. a $x_1 + 3x_2 + 5x_3 + 6x_4 + 3x_5 \le 90$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

4.2												
			Z	x1	x2	х3	x4	x5	s1			
		s1	0	1	3	5	6	3	1	90		
		Z	1	-5	6	-3	5	-12	0	0		

4.2 b) Numa solução básica deste problema, há quantas variáveis básicas e não básicas? **x1** x2 **x**3 x4 x5 **s**1 Ζ 6 **s**1 0 3 5 3 1 90 -5 6 -3 5 0 1 0 -12 Z

O número de variáveis básicas é igual a: 1

O número de vars não-básicas é igual a: 5

c) Sabendo que apenas uma das variáveis irá ter valor positivo na solução óptima, qual deverá ser a variável básica na solução óptima?

		Z	x1	x2	х3	x4	x5	s1	
	s1	0	1	3	5	6	3	1	90
	Z	1	-5	6	-3	5	-12	0	0

max
$$5x_1 - 6x_2 + 3x_3 - 5x_4 + 12x_5$$
 max $\sum_{j=1}^{n} p_j x_j$
suj. a $x_1 + 3x_2 + 5x_3 + 6x_4 + 3x_5 \le 90$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$ suj. a $\sum_{j=1}^{n} w_j x_j \le W$

- As variáveis x2 e x4 não serão positivas na solução óptima, porque se está a maximizar. Até poderiam ser retiradas do modelo.
- Interessa ver qual variável tem maior contribuição por unidade de recurso usada:

- Solução óptima é usar recurso todo com x1, i.e., x1* = 90, restantes vars = 0 e z* = 450

Se se sabe qual é a variável básica na solução óptima (x1), em vez de usar a regra de Dantzig para a selecção da coluna pivô, pode escolher-se logo x1.

 e) Resolva o problema pelo método simplex para verificar o resultado obtido na alínea anterior.

	Z	x1	x2	х3	x4	x5	s1			
s1	0	1	3	5	6	3	1	90		
Z	1	-5	6	-3	5	-12	0	0		
	Z	x1	x2	x3	x4	x5	s1			
x5	0	1/3	1	5/3	2	1	1/3	30		
	1	-1	18	17	29	0	4	360		
	Z	x1	x2	х3	x4	x5	s1			
x1	0	1	3	5	6	3	1	90		
	1	0	21	22	35	3	5	450		