Compression avec l'algorithme de Hauffman

Loïc Haas & Romain Maillard 19 septembre 2014

1 Réalisation du code

La structure des classes étant imposée la réalisation du code était relativement vite faite.

Amélioration possible

- Format du stockage de l'arbre de Hauffman, par exemple le linéariser et stoker uniquement les valeur binaires des octets de chaque feuille.
- Pour la décompression utiliser un tableau avec comme index les valeurs valeurs binaire de chaque feuille de l'arbre.
- Lors de la décompression lire plus d'information dans le buffer. Par exemple lire kilo octet par kilo octet au-lieu de le faire par octet.

2 Comparaison des résultats

Résultats obtenus

Format de fichier	Taille initiale	Taille après compression	Proportion de compression ¹
txt	1015k	576k	57%
txt	79o	251o	318%
$_{ m bmp}$	23829ko	6381ko	27%
jpg	302k	287k	95%
pdf	28163o	29250o	103%
pdf	13386ko	12305ko	91%
flac	21329ko	21311ko	100%

Discutions des résultats

^{1.} Proportion par rapport a la taille initiale par exemple si le fichier initiale fait 1024 Ko et le fichier de destination fais 512 Ko la proportion sera de 50%