

Dr Duncan Sutherland

Today's talk

Introduction

- My place in wildfire science
- Simulation method

Physics-based fire simulations

- Validation study
- The effect of ignition protocol
- Junction and oblique line fires

Future (and other present) work

- Gravity currents
- Ember storms

Today's talk

Introduction

- My place in wildfire science
- Simulation method

Physics-based fire simulations

- Validation study
- The effect of ignition protocol
- Junction and oblique line fires

Future (and other present) work

- Gravity currents
- Ember storms

Today's talk

Introduction

- My place in wildfire science
- Simulation method

Physics-based fire simulations

- Validation study
- The effect of ignition protocol
- Junction and oblique line fires

Future (and other present) work

- Gravity currents
- Ember storms

Wildfires (bushfires) are devastating

What is my research and why do I do it?

Research identity

- Applied mathematics PhD numerical methods for 2D turbulence
- Postdoc in a fire safety engineering group Vic Uni
- Lecturer (maths), bushfire research group UNSW
- Primarily working on fluid dynamics problems motivated by wildfire
- Additional mathematical problems motivated by wildfire

Research identity

Simulations inform:

- Classical applied mathematics modelling
- Stochastic PDE simulations
- Dynamical systems analysis
- Machine Learning models
- Experimental practice
- Sustainable development of the built environment
- Fire management practice

Network

Aix*Marseille

THE UNIVERSITY OF MELBOURNE

San José State

Important factors in bushfires

Important factors in bushfires

Wind and buoyancy

Heat transfer by radiation

Heat transfer by convection

Prediction of rate of spread

Cheney, N.P., Gould, J.S. and Catchpole, W.R., 1993. The influence of fuel, weather and fire shape variables on fire-spread in grasslands. *International Journal of Wildland Fire*, *3*(1), pp.31-44.

Moinuddin, K.A.M., Sutherland, D. and Mell, W., 2018. Simulation study of grass fire using a physics-based model: striving towards numerical rigour and the effect of grass height on the rate of spread. *International Journal of Wildland fire*, *27*(12), pp.800-814.

Effect of ignition protocol

Sutherland, D., Sharples, J.J. and Moinuddin, K.A., 2020. The effect of ignition protocol on grassfire development. *International journal of wildland fire*, 29(1), pp.70-80.

Effect of ignition protocol

Effect of ignition protocol

 x_* (m)

Animation of an extreme case

Multiple propagation modes

Apte, V.B., Bilger, R.W., Green, A.R. and Quintiere, J.G., 1991. Wind-aided turbulent flame spread and burning over large-scale horizontal PMMA surfaces. *Combustion and Flame*, *85*(1-2), pp.169-184.

Fuel bed

(a)

Wind-driven fire

Dold, J., 2011, December. Fire spread near the attached and separated flow transition, including surge and stall behaviour. In *Proc. 19th Int. Congress on Modelling and Simulation* (pp. 200-206).

Fuel bed

(b)

Buoyancy-driven fire

Merging fires

$$N_c = \frac{2gQ}{(U_{10} - R)^3 \rho c_p T_a}.$$

Recall:

Understanding the Origin and Development of Extreme and Mega Bushfires

- All fires start small
- Small fires can merge to become large
- The dynamic merger process is not well understood
- Predict the rate of spread
- Better manage fire suppression and evacuations

Junction fires are made of two ignition lines in v-configuration, with fuel in between

Experimental studies

Previous attention has focused on the spread rate of the apex

The apex of a quasi-steady junction fire in zero wind should spread proportional to $cosec\ \alpha$

A junction fire in nonzero wind conditions should be compared to an equivalent oblique line fire

WFDS - fuel parameters: Grass (Moinuddin et al. 2018) Ignition line length: 48 m instant ignition (Sutherland et al. 2020) u=3, 6, 10 m/s α =15, 30, 45, 60, 90 deg

Using a constant ignition line length means the final width of the fire depends on α

The oblique and junction fires both straighten (u=3 m/s, α =15 deg)

We have a set of buoyancy dominated fires, a set of intermediate fires, and a set of wind dominated fires

$$N_c = \frac{2g\dot{Q}}{\rho c_p T_a |U_W - R(t)|^3}$$

The junction fires (typically) move faster than oblique line fires, but spread rate depends on fire width

Buoyancy-dominated oblique line fires have a (largely) super-geometric spread rate

Wind-dominated (and intermediate) oblique line fires have a (more) geometric spread rate

Wind-dominated (and intermediate) oblique line fires have a (more) geometric spread rate

Buoyancy-dominated junction fires have a supergeometric spread rate, but not as much as oblique line fires

Intermediate junction fires have an early period of super-geometric spread rate at constant apex angle

Wind-dominated junction fires have a geometric spread rate

Buoyancy-dominated and intermediate fires tend to spread by both mechanisms of heat transfer; slight dominance of radiation and convection respectively

Wind-dominated fires are dominated by convective heat transfer

Future goals

- Understanding the Origin and Development of Extreme and Mega Bushfires
 - Merging fires on slopes, more complicated geometries
 - Comparison to experimental fires, development of better experimental protocols
 - Development of reduced models for operational purposes
- Gravity Current Driven Smoke Dispersion In a Stratified Ambient:
 - Understand the dynamics
 - Mixing and mixing efficiency
- Ember Storm Mitigation on the Urban Fringe:
 - Threshold model relating forest and weather conditions to the onset of ember storms
 - Identification of forest and urban development features that increase and decrease ember accumulation

Future goals

- Understanding the Origin and Development of Extreme and Mega Bushfires
 - Merging fires on slopes, more complicated geometries
 - Comparison to experimental fires, development of better experimental protocols
 - Development of reduced models for operational purposes
- Gravity Current Driven Smoke Dispersion In a Stratified Ambient:
 - Understand the dynamics
 - Mixing and mixing efficiency
- Ember Storm Mitigation on the Urban Fringe:
 - Threshold model relating forest and weather conditions to the onset of ember storms
 - Identification of forest and urban development features that increase and decrease ember accumulation

Future goals

- Understanding the Origin and Development of Extreme and Mega Bushfires
 - Merging fires on slopes, more complicated geometries
 - Comparison to experimental fires, development of better experimental protocols
 - Development of reduced models for operational purposes
- Gravity Current Driven Smoke Dispersion In a Stratified Ambient:
 - Understand the dynamics
 - Mixing and mixing efficiency
- Ember Storm Mitigation on the Urban Fringe:
 - Threshold model relating forest and weather conditions to the onset of ember storms
 - Identification of forest and urban development features that increase and decrease ember accumulation

Photo: Saeed Khan / AFP

Questions