CapECL1

15/04/2025

Durée: 2h30

La présentation, la lisibilité et l'orthographe, ainsi que la rédaction, la clarté et la précision des raisonnements, entreront pour une part importante dans l'appréciation des copies.

Exercice 1 (8 points)

Soit n un entier supérieur ou égal à 2. Soit $M=(m_{i,j})\in M_n(\mathbb{R})$. On rappelle que

$$\operatorname{Tr}(M) = \sum_{i=1}^{n} m_{i,i}.$$

On définit ainsi une application de $M_n(\mathbb{R})$ dans \mathbb{R} :

$$\operatorname{Tr}: M_n(\mathbb{R}) \to \mathbb{R}, \quad M \mapsto \operatorname{Tr}(M).$$

Le but de l'exercice est d'étudier l'application

$$f: M_n(\mathbb{R}) \to M_n(\mathbb{R}), \quad M \mapsto \operatorname{Tr}(A) M - \operatorname{Tr}(M) A,$$

où A est une matrice de $M_n(\mathbb{R})$ fixée vérifiant $\mathrm{Tr}(A) \neq 0$.

1. Partie 1 : questions préliminaires

- (a) Montrer que Tr est linéaire. Quelle est la nature de cette application linéaire?
- (b) Montrer que f est un endomorphisme de $M_n(\mathbb{R})$.

2. Partie 2 : étude d'un exemple

Dans cette partie, n = 2 et $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

- (a) Calculer f(M) pour $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$.
- (b) En déduire des bases de Ker(f) et Im(f).

3. Partie 3 : cas général

On revient au cas général, $n \geq 2$ et $A \in M_n(\mathbb{R})$ fixé vérifiant $\operatorname{Tr}(A) \neq 0$.

- (a) Montrer que si une matrice $M \in M_n(\mathbb{R})$ est dans $\operatorname{Ker}(\operatorname{Tr})$, alors $M \in \operatorname{Vect}(A)$.
- (b) Montrer que Ker(f) = Vect(A).
- (c) Déterminer Im(Tr) puis en déduire la dimension de Ker(Tr).
- (d) En déduire alors que Im(f) = Ker(Tr).

Exercice 2 (12 points)

1. Partie 1 : un résultat préliminaire.

Soit v un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension 3. On suppose que v est de rang 2 avec $v^2 \neq 0_E$ et $\operatorname{Ker}(v^2) \neq \operatorname{Ker}(v)$.

- (a) Montrer que $Ker(v) \subseteq Ker(v^2)$.
- (b) Déterminer la dimension de $Ker(v^2)$.
- (c) Soit x un vecteur de $Ker(v^2)$ qui n'appartient pas à Ker(v). Montrer que la famille (x, v(x)) est une base de $Ker(v^2)$.

2. Partie $\mathbf{2}$: étude d'un endomorphisme

Soit
$$A=\begin{pmatrix}4&1&-1\\1&2&-1\\2&1&1\end{pmatrix}$$
 et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à $A.$ On

note I_d l'application identité de \mathbb{R}^3 et I la matrice identité de $M_3(\mathbb{R})$. On note enfin $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

(a) Soit $\lambda \in \mathbb{R}$. Montrer que $A - \lambda I$ est inversible si et seulement si $\lambda \neq 2$ et $\lambda \neq 3$.

CapECL1

15/04/2025 Durée : 2h30

(b) Calculer les rangs des matrices A - 2I et A - 3I.

- (c) Justifier que $\operatorname{Ker}((f-2I_d)^2) \cap \operatorname{Ker}(f-3I_d) = \{0_{\mathbb{R}^3}\}.$
- (d) Calculer la matrice $(A-2I)^2$ et déterminer son rang.
- (e) En déduire que $\operatorname{Ker}((f-2I_d)^2) \oplus \operatorname{Ker}(f-3I_d) = \mathbb{R}^3$.
- (f) Déterminer un vecteur e_3 de $\text{Ker}(f 3I_d)$ de la forme (1, *, *) et un vecteur e_2 de $\text{Ker}((f 2I_d)^2)$ de la forme (1, 1, *).
- (g) On pose $e_1 = f(e_2) 2e_2$; à l'aide de la partie 1, justifier que $\mathcal{C} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .
- (h) Déterminer la matrice de T de f dans cette nouvelle base C.