ECE113: Digital Signal Processing

Homework 2 Due: Jan 19, 11pm, 2022

Instructions

- 1. Read Chapters 3 and 4.
- 2. For each of the questions below please submit your answers and plots (if any) as a combined PDF file.

Chapter 3

Periodic Sequences

1. Problem 3.17.

Find the period of the sequence

$$x(n) = \cos\left(\frac{\pi}{3}n + \frac{\pi}{6}\right) \cdot \sin\left(\frac{\pi}{6}n + \frac{\pi}{8}\right)$$

2. **Problem 3.35.** Consider the sequence $x(n) = e^{j\frac{5\pi}{12}n} + e^{j\frac{\pi}{12}n}$. Show that it can be written in the form

$$x(n) = A.e^{j\omega_0 n}.\cos(\omega_1 n)$$

for some positive real number A, and for some $\omega_0 > \omega_1$. Is x(n) periodic.

Chapter 4

Discrete-Time Systems

- 3. Problem 4.4. Determine whether each of the following systems is time-invariant:
 - 1. $y(n) = x(-n^2)$.
 - 2. y(n) = x(3n 2).
 - 3. y(n) = x(-n/4) when $n = 0, \pm 4, \pm 8, ...,$ and y(n) = 0 otherwise.
- 4. **Problem 4.11.** True or False? Explain or give counter-examples:

- 1. Every causal system is relaxed.
- 2. Every relaxed system is causal.
- 3. LTI systems that are causal are also relaxed.
- 5. **Problem 4.25.** Let $y(n) = x(n^2 1)$. Is the system linear? time-invariant? causal? stable?