Paper Number(s): E3.02

AM4

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2000

MSc and EEE PART III/IV: M.Eng., B.Eng. and ACGI

INSTRUMENTATION

Thursday, 18 May 2000, 10:00 am

There are SIX questions on this paper.

Answer FOUR questions.

Corrected Copy

All questions carry equal marks.

Time allowed: 3:00 hours

Examiners: Dr A.J. Payne, Dr C. Papavassiliou

- 1. (a) Various sensors are available which produce an output variation in response to some change in input, including the measurement of (i) temperature, (ii) strain, (iii) light, (iv) position. Describe (with the aid of diagrams where appropriate) a possible sensor for the measurements (i)-(iv) above, outlining in each case the basic operation of the sensor, and how it should be configured to perform the required measurement.
 - (b) A resistive temperature detector (RTD) is used as one arm of a Wheatstone Bridge. The RTD has a resistance of 280 Ω at 25 °C and a temperature coefficient (assumed to be linear) of 0.5 Ω /°C. The other three arms of the bridge contain dummy resistors of value 280 Ω , with a bridge supply voltage of 10 V. Calculate the expected bridge output voltage at 77 °C. In practice the output voltage magnitude at 77 °C is measured to be 0.2 V. If this error is assumed to be due to the temperature variation of the dummy resistors, calculate the first order temperature coefficient of the dummy resistors (you may assume that the dummy resistors are at the same temperature as the RTD, and the nominal dummy resistor value of 280 Ω was measured at 25 °C). It is later discovered that the dummy resistors have a temperature sensitivity of 2.5x10⁻⁴ (quoted relative to the nominal 280 Ω). The remaining error is attributed to the second order temperature sensitivity of the RTD, hence calculate the second order temperature coefficient of the RTD.

- at a maximum rate of 500 M/s, and saves these samples in memory for subsequent processing and display. Outline why sampling a signal at the Nyquist rate is likely to lead to a distorted output on the DSO screen, if the resulting samples are directly displayed. Describe how the technique of interpolation is used to overcome this distortion, and calculate the approximate maximum input signal frequency which can be displayed without significant distortion if the DSO uses (i) no interpolation, (ii) linear interpolation, (iii) sine interpolation.
 - (b) Explain how the process of sampling may distort the spectrum of the sampled signal, and calculate the attenuation of a 500 kHz signal which is sampled at 3 MHz. Outline how a reconstruction filter may be used to eliminate this distortion.
 - (c) The DSO described above is used to perform an ensemble average to recover a periodic signal which is obscured by white noise. The periodic signal has an rms amplitude of 220 μ V and frequency 5 MHz, while the rms amplitude of the noise is 7 mV. The DSO sampling frequency is set to the maximum value. If the analog-to-digital converter (ADC) within the DSO has a resolution of 10 bits, calculate the number of sampling periods required to give a final signal-to-noise ratio of 25 dB. If the ADC adjusts its gain such that the samples always exploit the full dynamic range, calculate the minimum total memory required to perform the ensemble average, and the time taken to perform this average.

- 3. (a) An integrated circuit (IC) digital-to-analogue converter (DAC) is implemented using weighted current sources as shown in *Figure 3a*. Outline the purpose of the lower devices and explain why it is necessary to use asymmetrical switching signals B/BN. The matching of the DAC current sources is required to be better than +/- 0.5 LSB. Calculate the required matching accuracy of the DAC MSB current source if this architecture is extended to implement (i) an 8-bit DAC, (ii) a 12-bit DAC.
 - (b) The dynamic performance of a weighted current-source DAC can be improved by using thermometer decoding. Briefly describe the principle of operation of a thermometer-decoded current-source DAC, and give one disadvantage of this method.
 - (c) An analogue input signal is to be digitised using the system shown in *Figure 3b*. The maximum input signal frequency is 35 kHz, and the analogue-to-digital converter (ADC) sampling frequency is 100 kHz. The sample-and-hold circuitry is used to maintain a constant input signal to the ADC while the conversion takes place. The ADC is an 8-bit converter which is adjusted to ensure that the maximum input signal fills all levels of the converter. Calculate:
 - (i) the maximum acquisition time of the sample-and-hold circuit, if the sampling error is to be less than 0.5 LSB,
 - (ii) the maximum ADC conversion time
 - (iii) the minimum order of the antialiasing filter, if aliasing errors are to be less than 0.5 LSB.

Figure 3a

Figure 3b

- 4. (a) Figure 4 shows a circuit used to perform frequency-to-voltage conversion. Outline the operation of this circuit, and choose a suitable value for the sawtooth waveform slope given that the minimum input signal frequency is 200 Hz. You may assume that the maximum output signal from the sawtooth waveform generator is 10 V.
 - (b) The output voltage from this f-to-v converter is to be subsequently digitised. If a 10-bit analogue-to-digital converter (ADC) is available, calculate the minimum change in period which can be detected. Hence comment on the frequency resolution of the system at an input frequency of (i) 200 kHz, (ii) 500 Hz.
 - (c) Interference signals may be coupled into a circuit and corrupt the signal of interest. Describe how this problem is reduced by using balanced signals or by shielding. Show with the aid of a diagram how both of these techniques may be combined for very low level signal measurements.

- 5. (a) Figure 5 shows a circuit designed to measure temperature. Derive an expression showing how the output voltage varies with temperature, and hence choose suitable values for R1 and R2 to give an output voltage sensitivity of 0.1 V/°C, given that $V_{be} = 0.68 \text{ V}$ at T = 27 °C, and $\frac{dV_{be}}{dT} = -2.1 \text{ mV/°C}$. The output voltage at 0 °C should be 0 V.
 - (b) In practice the reference current $I_{\rm ref}$ may vary by up to 10 %. Calculate the resulting maximum error voltage at 0 °C due to this current uncertainty, and determine the tuning range of R2 required to null this offset voltage. What will be the variation in output sensitivity as R2 is tuned over this range? Show how the circuit could be modified to allow the output voltage at 0 °C to be nulled by a single resistor without altering the gain of the circuit.

(c) Show mathematically that the amplitude and phase of a sinusoidal signal buried in noise can be recovered by cross-correlating it with a signal of an appropriate frequency, and give a block diagram suggesting how this may be implemented in practice. If the frequency of the required signal is not known, suggest how this technique could be modified to allow the signal frequency to be determined.

- 6. (a) Figure 6a shows the block diagram of a phase-locked loop (PLL), which is implemented using a commercial IC (the 4046A PLL plus VCO) with an external loop filter. Derive an expression for the (small-signal) closed loop transfer function of this PLL, given that a simple first order lowpass filter is used. Given that the type 1 phase detector is to be used, and with reference to the 4046A data sheet extracts (Figures 6b, 6c), calculate appropriate values for the following components (you may assume $V_{CC}=5$ V, VCO gain $K_V=\frac{4\pi f_L}{V_{CC}}$ rad s⁻¹ V⁻¹, phase detector gain $K_D=\frac{V_{CC}}{\pi}$ V r⁻¹):
 - (i) VCO resistor and capacitor values to give a lock rage $2f_L = 350$ kHz and frequency offset 250 kHz.
 - (ii) Filter component values to give a natural (loop) frequency $\omega n = 100 \text{ kHz}$ With these component values, what is the resulting damping factor ζ of the loop? Comment briefly on the capture range and frequency stability of the resulting PLL, and calculate an approximate value for the voltage ripple at the VCO input when the input signal frequency is 250 kHz.
 - (b) Figure 6d shows a PLL with a dual modulus frequency divider used to implement a 'fractional-N' frequency synthesiser. The frequency divider is switched between its two different values by the control signal (CTL), such that the divide ratio = 8 when CTL is low, and divide ratio = 9 when CTL is high. Given that the reference signal frequency is 1 MHz, calculate the resulting average VCO output frequency if the periodic CTL signal is low for 20 cycles of the VCO output and high for 3 cycles of the VCO output. Sketch a rough diagram of the frequency spectrum of the VCO output signal.

Figure 6d

Typical VCO frequency lock range (2f_L) versus the product R1C1

Figure 6b

Typical value of frequency offset as a function of C1

Figure 6c

- Resistive temp detector (RTS): metaluc, often platinum, fairly linear, positive tempos, RT = RTO (1+ xT) Usually used as one am of wheatstoxe bordge

2000

- Thormistor: generally non-linear change in resistance with negative tempes, R = Ro exp B (T-'-T.-')

Usually used as one am of wheatstone bridge

- Themocouple:

A Meter.

2 dussimilar metals joined at on and A voltage appears across themocouple which is proportional to temp difference between the two ends (Seeback effect). Must usually be Calibrated by a more accurate temp sensor. Con withstand high temperatures

-Solid state temperature sensor: The ube of a BJT is inversely proportional to temp gues a constant collector current, typically -2mv/°C. Fither measure this directly:

Vout = G. Vbe

or measure the temp difference between two BITS with different onlitter areas:

	AUDO = UDO1- UDO2 = V-In SICI A2 / = KT In (A2/A1)
	(10. A1) 9
	if Ic1=1c2, i.e proportional to absolute temp. (
	(ii) Straw: A Strawi gauge is a piezo-resistive
	(ii) Straw: A strawi gauge is a piezo-resistive clement whose resistance changes as force is applies
	Tension causes an increase in length 6 a decrease
make product of the second second second	in coss-sectional area, thus resistance increases (vice
	Versa for compression). A zig-zag structure is
	apical:
dador necessor and to a low too his horosta.	
	Generally used as one or more arms of a cheatelove bridge 3
***************************************	(iii) Light
	A photodiode increases its reverse (leakage) current when illuminated, due to the creation of extra hole-electron
	pairs. I
) J
	A phototrausistor is a BIT whose collector current flows when the base region is illuminated. The autaut current is typically higher than in a photoduode due to the auplification by B
	When the base region is illuminated. The autaut current
	is typically higher than in a photodiode due to the
	auphication by B.
	(iv) 140tion
,	eg potentioneter displacement transducer:
,	Vcc
	1 & Wiper is maveable leg
	> > 1 Vout = Vac. 2 attached to forward)
	\star \downarrow

```
RTD = 280 + 0.5(T-25)
      AE 19°, RTD= 306 sc
                2,306
                       4.98
                                Vout = ± 0.22V at 90°
                   `280
                                                            (4)
              Vout (77°) = 0.2V
In practice
                             R 10 = 4.8
              3-36-
                             R+306
                                   5.2R = 306 x 4.8
                                           R = 282.5
Thus
          282.5 = 280 + Tc (77-25)
                       Tc= 0.05-2/°C.
In practice, S_R^T = 250 \text{ ppu} = 0.00025
               S_R^T = \frac{L}{R} \frac{dR}{dT} \frac{1}{dT} \frac{dR}{dT} = 25 \times 10^4 \cdot 280
  1. R = 280 + 0.07(T-25) = 283.62 at 77°
```

RTD 4.8 = 283.6 · XIO 0 4.8 \$ 283.6 RTD + 283.6 RTD = 307.20 $307.2 = 280 + 0.5(T-25) + X(T-25)^{2}$ $= 306 + X(T-25)^2$ X = 2nd order tempco = 4.43 x 10-4 2/0C. 3 700九=25

-	5/20
• 	2 If no additional information is provided, the DSO is likely to display a hold the waveform samples, leading to a distorted output:
	input waveform
	=>
	The DSO must somehow fill in' the waveform between sampling instants. This is known as interpolation. The most simple mothed is linear interpolation:
	9
	More complex interpolation schances are used in practice. (i) NO 19terpolation: 2 25 Samples per period (ii) Linear 19terpolation 2 10 Samples per period (iii) Sine 19terpolation 2 25 Samples per period 1. maximum signal frequency (i) 20 HHz (ii) 50 MHz (iii) 200 HHz
	interpolation gives a 1 period delay, as interpolated value are calculated from current & following samples.

A Sample-6-hold circuit has a sinx/x frequency response, since while it is holding the sampled organistic is unable to respond to changes in the input until the next sample.

This frequency response may shape the spectrum of the sample of signal, especially if we sample close to the Nyquist frequency:

S/H spectrum = $\frac{\sin x}{x}$ where $x = \frac{\pi x}{Rs}$

=7 Afferciation => $\frac{\sin(5\cos k \cdot \pi/3M)}{(5\cos k \cdot \pi)/3M} = \frac{0.5}{0.52} = 0.96$

Attenciation = 4%

A reconstruction filter corrects for the sinz/x attenuation by providing an apposite $(z/\sin z)$ response.

Since x/sinx will rise to infinity at some frequencies, the reconstruction filter usually has a sharp now off abavo FMX.

Initial SNR =
$$\frac{220\mu}{7m}$$
 = $\frac{31.4 \times 10^{-3}}{10.78}$
Final SNR = $10^{25/20}$ = 17.78
... 1.78 = 566.2
 1.4×10^{-3} = 17.78
 1.4×10^{-3} = 10.98

Signal frog = 5.4H3 Sampling freq = 500 4H3 1, 100 Samples per period

Initially, nouse fills the converter: LSB = 7 mV 210 = 6.84 uV

After 320 630 complete periods, signal will dominate.
1. Memory required:

 $220\mu V \times 320630 = 705V$

= 10 307 017 LSBS

= 24 bits

(3)

24 bits per sample x 100 samples per period = 2400 bits ensemble time = 320 630 x $\frac{1}{5M}$ = 64 m/S $\frac{3}{5}$

TOTAL = (25)

(3) The lower transistors are used as current steering switches, which direct the current either to the output or to ground.
These switches enable a constant current to be drawn from the surply, since the current source does not need to be switched on a off. This is turn reduces power supply variations / glitches.

we must ensure that both Stoering Switches do not turn off simultaneously, as this would saturate the current source causing a longer switching time. Thus asymmetrical drive signals are used to ensure 'make before break' operation.

DNL must be within ±0.5 LSB,

4) 4-bit DAC, motioning within $\frac{0.5}{8} \times 100 = 6.25\%$

(ii) 8-bit DAC, motching within $0.5 \times 100 = 0.39\%$

(311) 12-bit DAC, " $\frac{0.5}{2048} \times 100 = 0.02\%$.

With a weighted current source array, there are likely to be large girches when switching, eg gaing from 0111111 -> 10000000 we may pass through the fuu-scale output 11111111.

To eliminate this problem, we implement the DAC using 2N equal sized current sources. The themometer decoder efforces that we only over switch on current sources if the input is increasing, or switch off current

Sources of the input is decreasing. I.e. we never switch sources on a off when the input changes, thus we award overshoot (glitches).

Disadvantage of themometer decoding: larger area required for augital decoder than a simple weighted current source DAC.

(i)

2A = p-p amplitude

Require AV 4 0.5 LSB

Input 819nal = Asin (271f E)

 $\frac{\partial V_{IO}}{\partial t} = 2\pi f A \cos(2\pi f t)$

alling = 2TT fmax. A

.', AV = 2TT fmax. A · tacq tacq = S/H acquisition

 $LSB = \frac{2A}{2^{N-1}} \quad \text{i. 2TI from A. Eacq} < \frac{A}{2^{N-1}}$

tacq < 1 (28-1).2TT.35K

tacq < 17.8 ns

(4)

(ii) ADC sampling freq = 100KHs 1.è I sample every 10 µS. Maximum conversion time = 10 µS.

(2)

Above the cut-off frequency, assuming an other order filter with n identical poles

fc = 35K f = 100-35K = 65K(Goin of allowed components = $(35K)^n = (0.538)^n$

Aliased signals must be less than 0.5 LSB $2A\cdot(0.538)^n < A$ 2^{N-1}

 $0.538^{n} < 1.96 \times 10^{-3}$

n log(0.538) < log(1.96 x 10-3)

 $\frac{n > 2.9}{2.69} \simeq 10$

9

TOTA = 25

((4) The U	Sput 8191	al is com	verted to	o a square	wwe
en v aardenaarinee black en vank praktik (**dentarine	by the	Comparate	n The	nsuig e	edge of the)
	Compara	ato outp	UE GIGG	iers the	monostable	
	Monostal	ble rising	odge n	esets th	é saistoot)	wweform
	Which b	pogens to	ramp y	xwords.		
anned fråder (som a videlangsk fri di ne vore med sålengsk å gal	71 /	,) ,	//-			
	II)e (max	<u>(mum) Vola</u>	ge Nat	the su	atouth reach	u bofore
	being re	yet depe	ands on	the time	between r	2010Stable
		1.e ogen	II O) (NO	e proqu	ency of t	<u> </u>
,	Input.		Totale we also included the second constitution of the second constitution			
	This was	14000 is s	amolod 1	21 814	CIÒNIF MIK	mhas
	the mon	ngahlo 15	rasot	9 90	circuit just	Defore
ACRES TO MAKE THE PROPERTY AND ARROYMENT AND ARROYMENT AND ARROYMENT AND ARROYMENT AND ARROYMENT AND ARROYMENT						5
					M1	mosable
V-10		1				
						both
					α	1 fput.
		\				
		21				(2)
	1700.4	10 1/ -	d ()	T .		
	Umax	= 10 V =	<u>dV</u> . D	Tmax		
	DIMOX =	1	ims :	dV -	2000 V/US	
ana nganggapa, mga kali i api abaphini, apa ka abaga i apiga		200		dE.	······································	(2)

10-bit ADC is available
$$3^{10} = 1024$$

USB = 10 _ 9.8 mV

 $3^{10} = 1$

The minimum charge in period wie can detect:

$$AV = dV \cdot AT$$

$$dc$$

$$98m = 3000 \ AT$$

$$AT = 4.9 \mu S$$

(1) At $f = 200 \ \text{kHz}$, $T = 5 \mu S$

$$10 \ \text{Nort} = 10 \ \text{mV} \approx 1 \ \text{LSB}$$

Nort 'step' occurs when $Vac = 2 \ \text{LSB} = 19 \ \text{CmV}$

$$T = 98 \mu S$$

$$f = 102 \ \text{KHz}$$

$$1e \approx 100 \ \text{kHz}$$

$$per step!$$
(3)

(ii) At $f = 500 \ \text{Hz}$, $T = 2 \ \text{mS}$

$$Vac = 4 \ \text{V} = 408 \ \text{LSB}$$

Step above, $Vac = 409 \ \text{LSB} = 4.0082 \ \text{V}$

$$f = 498.98 \ \text{Hz}$$
(8)

Resolution to within $\approx 1/2 \ \text{Hz}$

(9. Signals can coude into a circuit via electric
	9. Signals can couple with a circuit via electric or magnetic fields which radiate from any
	voltage source eg mais
	Balanced circuits reject common-mode signals
	Thus externe vorse / interference which couples
,	ea into priser supply ground or input leads
***************************************	eg into power supply, ground, or input leads Will appear as a cru signal & will be rejected (2)
	Screened cable can be used to shield input
(temisals from interference However this can
	add significant capacitance to the viput
	teminals.
	(2)
	V(r) o ‡ †
	π Γ
A CANADA AND A PARK TO A P	
	A solution is to use a guard shield:
(
	, AVIO
	effective capacitance: Lc
	Typ
	1c - sC(Vin - 4Vin) = sC(1-A)Vin
(ie Ceffectuse reduced if A=1 (2)
	'/

Balanced guard Ohielding:

70TA = (25)

```
Ø5.
@ Vout = Ube(1+R2/R1) - Irof R2
   Ube = Vbe(27) + Tc(T-27)
   !. Vout = Ube(27)[1+R2/RI) + Tc((+R2/R1)(T-27) - Inof R2
    2 Vout - Tc (1+ R2/R1)
    Tc = 20be/2T = -2.1 x 10-3 V/°C
   Require Nout/dT = 0.1 V/°C 1, 1+R2/R1 = 49.6
  At 0°C:
     Vout = (De(27)(1+ RD/RI) + Tc(1+ RD/R1)-27) - Ind. R2
         = 0.68 x 47.6 - (2.1 x 10-3) (47.6)(-27) - Ind R2
         = 32.36 + 2.7 - Irgf. R2
         = 0
         1. R2 = 35.06/Iref = 35.06K12
        => R1 = 75212
  Iref in practice 0.9-1.1 mA
    Vout = 35.06 - Irof. (35.06K) at 0℃
    @ 0.9 mA: Vout (0°) = 3.5V
    D 1.1 m4: Vout (0°) = -3.5V.
  At 0.9m4 require R_2 = 38.95 \text{KSL} (assuming R2/R, is fixed)
 At 1.1mA require R_2 = 31.89 \text{ k}\Omega ("
     Thus R2 31.87 -> 38.95 KD ]
            R_1 683 \rightarrow 836 \Omega
```

Nulling Vout using a single resistor: llret RI Voit = Ube ((+R2/R1) - Iref R2 + Iref Rz (I+R2/R1) Vout can be neved by varying Rz Suppose we have a noisy sinusoid:

Vs coswst + n(t) We cross-correlate this with a signal of the same Vrcos (wst+0) $R_{xy}(z) = \frac{1}{T} \int \left[V_s \cos \omega_s(t-z) + n(t-z) \right] V_r \cos(\omega_s(t+\varphi)) d\xi$ The cross-correlation of the reference Vr with noise n(t) will be zero provided the vitegration time t is long. Thus the resulting output: $Rxy(z) = \frac{1}{\pi} \int V_S V_T \cos \omega_S(\xi - z) \cdot \cos(\omega_S(\xi + \beta)) d\xi$ $\frac{V_{S}V_{r}}{2}\cos(\omega\tau+\beta)$

We adjust t until Rxy(t) is a maximum. This also gives phase information.
 Block diagram:
x(t) — Time Dolay
$\begin{array}{c c} & & & \times \\ & \times \\ & & \times \\ & \times$
If the signal frequency is not known we multiply the signal with a time-delayed version of itself (auto-correlation)
$Rxy(z) = \int_{0}^{\infty} \left[V_{S} \cos \omega_{S}(t-z) + n(t-z) \right] \left[V_{S} \cos \omega_{S}(t+n(t)) \right] dt$
Cross correlation function between signou 6 nouve will be zero. The autocorrelation function of the signoul will be superimposed on the nowe, & will be periodic. Hence signou period can be determined for subsequent cross-correlation
(5)
TOTA = 25

02 / 9/2 / 1/2/2	
$S^2 + S\omega\rho + KoKd\omega\rho$	
=> S ² + S(ZWn) + Wh ²	
$W_1^2 = K_0 K_0 W_p$ $Z = \sqrt{W_p/K_0 K_0}$	
Ko = 4TIfc/Vcc = 440 × 103	r V-1
Kd = Vcc = 1.59	
T	OR: IF THEY TAKE
	$\omega_{0}^{2} = \left[2\pi \cdot 100 \cdot 10^{3}\right]^{2}$
$[.100 \cdot 10^{3}]^{2} = 1.59 \cdot 440 \times 10^{3} \omega p$	Wp = 564.3 Kr/s
$\omega p = 14.3 \text{K rs}^{-1} ($ $f p = 2.27 \text{KH}_3$	$\mathcal{Z} = 0.9$
ž = 0·14 · 2	
Lightly damped: Likely to lose lock Very noisy	If uput is
Capture range is wide, as the filter banx	dwidth is wide (1)
Wide filter bandwidth will gue less otten PD output 81 gnal, ie modulation of	vation of
Filter gain = 1 = fp f 1+ Jf/fp f	f>>> fp
	<u>v</u> 0.0045
0.0045x 5 = 0.02 V ripple! (OR 8 0.9V if THEY USE fp = 89.8K	H_3 :/-)

*	
(Fractional N 8 guthesison:
	Average divide natio = $20x8 + 3x9 = 8.13$
	". Average VCD output frequency = 8:1314/3 (9)
	The fractional-N 81debands Will be spaced at (MUKIPLES of the modulation frequency, which is 23 cycles of the VOD output, ie at fm= 353.5kHz
(.	VCO orutput spoctrum:
	353 KH ₃
	8-13MH ₃
(70TAL = 25.