DEFINITION:

The <u>null space</u> of an $m \times n$ matrix A, written as Nul A, is the set of all solutions to the homogeneous equation

$$A\bar{x}=\bar{0}.$$

DEFINITION':

The <u>null space</u> of an $m \times n$ matrix A is the <u>set</u> of all \bar{x} in R^n that are mapped into the zero vector $\bar{0}$ in R^m by the linear transformation

$$\bar{x}\longmapsto A\bar{x}$$
.

EXAMPLE:

Let

$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}.$$

Determine if $\bar{u}=\begin{bmatrix}5\\3\\-2\end{bmatrix}$ belongs to the null space of A.

SOLUTION:

Since

$$Aar{u} = \left[egin{array}{ccc} 1 & -3 & -2 \ -5 & 9 & 1 \end{array}
ight] \left[egin{array}{c} 5 \ 3 \ -2 \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \end{array}
ight],$$

 \bar{u} is in Nul A.

THEOREM:

The null space of an $m \times n$ matrix A is a subspace of R^n . Equivalently, the set of all solutions to a system $A\bar{x} = \bar{0}$ of m homogeneous linear equations in n unknowns is a subspace of R^n .

EXAMPLE:

Find a spanning set for the null space of the matrix

$$A = \left[egin{array}{ccccc} -3 & 6 & -1 & 1 & -7 \ 1 & -2 & 2 & 3 & -1 \ 2 & -4 & 5 & 8 & -4 \end{array}
ight].$$

SOLUTION:

We find the general solution of $A\bar{x} = \bar{0}$:

$$[A\ ar{0}] \sim \left[egin{array}{cccc} 1 & -2 & 0 & -1 & 3 & 0 \ 0 & 0 & 1 & 2 & -2 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{array}
ight],$$

therefore

$$\begin{cases} x_1 - 2x_2 - x_4 + 3x_5 = 0 \\ x_3 + 2x_4 - 2x_5 = 0, \end{cases}$$

so
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix}$$
$$= x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix},$$

so Nul $A = \text{Span } \{\bar{u}, \bar{v}, \bar{w}\}.$

DEFINITION:

The <u>column space</u> of an $m \times n$ matrix A, written as Col \overline{A} , is the set of all linear combinations of the columns of A.

REMARK:

So, if
$$A = [\bar{a}_1 \dots \bar{a}_n]$$
, then
Col $A = \operatorname{Span}\{\bar{a}_1, \dots, \bar{a}_n\}$.

THEOREM:

The column space of an $m \times n$ matrix is a subspace of R^m .

EXAMPLE:

Let

$$A = \left[egin{array}{ccc} 2 & 4 & -2 & 1 \ -2 & -5 & 7 & 3 \ 3 & 7 & -8 & 6 \end{array}
ight].$$

Find a nonzero vector in Col A and a nonzero vector in Nul A.

SOLUTION:

1. Any column of A is a nonzero vector

in Col A. For example,
$$\begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} 4 \\ -5 \\ 7 \end{bmatrix} + 0 \begin{bmatrix} -2 \\ 7 \\ 8 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}.$$

2. To find a nonzero vector in Nul A, we row reduce the augmented matrix $[A \ \bar{0}]$:

$$[A \,\, ar{0}] \sim \left[egin{array}{cccc} 1 \,\, 0 & 9 \,\, 0 \,\, 0 \ 0 \,\, 1 \,\, -5 \,\, 0 \,\, 0 \ 0 \,\, 0 \,\, 1 \,\, 0 \end{array}
ight],$$

therefore any vector

$$ar{x} = egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} = egin{bmatrix} -9x_3 \ 5x_3 \ x_3 \ 0 \end{bmatrix}$$

is in Nul A. For example, if we put $x_3 = 1$, we get

$$ar{u} = egin{bmatrix} -9 \ 5 \ 1 \ 0 \end{bmatrix}$$

is in Nul A.