Herbst 24 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Gegeben sei auf dem \mathbb{R}^2 das folgende System von autonomen Differentialgleichungen (2):

$$x' = y^3 - x^2 y,$$

$$y' = xy^2 - x^3.$$

- a) Bestimmen Sie alle Ruhelagen von (2). Entscheiden Sie begründet, ob (2) eine asymptotisch stabile Ruhelage besitzt, so dass für $t \to \infty$ alle Lösungen gegen diese Ruhelage konvergieren.
- b) Zeigen Sie, dass $E(x,y)\coloneqq y^2-x^2$ eine Erhaltungsgröße, (d. h. ein Erstes Integral) von (2) ist.
- c) Bestimmen Sie für c > 0 die eindeutige maximale Lösung von (2) zum Anfangswert (x(0), y(0)) = (c,0) und entscheiden Sie mit Begründung, ob die Ruhelage (0,0) stabil ist.

Hinweis: Man kann mittels Teilaufgabe b) zeigen, dass jede Lösung φ von (2) zum Anfangswert $\varphi(0) = (c,0)$ ein geeignetes lineares Differentialgleichungssystem löst.

Lösungsvorschlag:

der Fall ist.

- a) Wir bestimmen die Nullstellen der Strukturfunktion. Aus $y^3 x^2y = y(y^2 x^2) = 0$ folgt y = 0 oder $x^2 = y^2 \implies |x| = |y|$. Aus $xy^2 x^3 = x(y^2 x^2) = 0$ folgt x = 0 oder $x^2 = y^2 \implies |x| = |y|$. Daher sind alle Ruhelagen von der Form (c, c) oder (c, -c) mit $c \in \mathbb{R}$. Nachdem es verschiedene Ruhelagen gibt und jede konstante Lösung nur gegen diese konvergiert, kann es keine Ruhelage geben gegen die alle Lösungen konvergieren. Wäre (x_0, y_0) eine Ruhelage mit der gesuchten Eigenschaft, so müsste auch die Funktion $(x(t), y(t)) = (|x_0| + 1, |y_0| + 1)$ dagegen konvergieren, was natürlich nicht
- b) Es gilt $\nabla E(x,y)^{\mathrm{T}} f(x,y) = -xy^3 + x^3y + xy^3 yx^3 = 0$ für alle $(x,y)^{\mathrm{T}} \in \mathbb{R}^2$.
- c) Weil E ein Erstes Integral ist, muss jede Lösung $\varphi(t)=(x(t),y(t))$ auch $E(\varphi(t))=E(c,0)=-c^2$ für alle t erfüllen, d. h. es muss $y^2(t)-x^2(t)=-c^2 \implies x^2(t)=y^2(t)+c^2$ gelten. Dies lässt sich zu $x(t)=\sqrt{y^2(t)+c^2}$ umformen, weil die Anfangsbedingung insbesondere x(0)>0 impliziert. Die erste Gleichung $x'=y^3-x^2y$ wird außerdem zu $x'=-c^2y$. Zusammen folgt also $-c^2y(t)=x'(t)=\frac{y(t)y'(t)}{\sqrt{y^2(t)+c^2}},$ wobei verwendet wurde, dass wegen c>0 der Wurzelausdruck $\sqrt{y^2(t)+c^2}$ stets positiv ist, und die Ableitung daher für jedes t existiert. Mit der Anfangsbedingung y(0)=0 erhält man durch Trennung der Variablen die Lösung $y(t)=c \sinh(-c^2t),$ woraus man $x(t)=c \cosh(-c^2t)$ erhält. Die Lösung existiert also global und ist durch $\varphi(t)=(x(t),y(t))=c(\cosh(-c^2t),\sinh(-c^2t))$ gegeben. Für jeden Startwert c>0 gilt $\lim_{t\to\infty}\varphi(t)=(\infty,-\infty),$ weshalb die Ruhelage (0,0) nicht stabil ist. (Auch diese Lösungen divergieren für $t\to\infty$ was das Ergebnis aus a) bestätigt.)

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$