Mecânica Analítica

2020-2021

Série 1

Responsável: Hugo Terças

Nesta série, exploramos os conceitos de ligação e alguns exemplos de problemas de cálculo variacional.

- \star Problema 1. O disco que não desliza. Considere um disco de raio a que rola, sem deslizar, sobre a superfície de uma mesa. Seja θ o ângulo definido entre a posição do ponto de contacto e a origem, e φ o ângulo de rotação em relação ao eixo do disco.
- a) Mostre que as equações de ligação podem ser escritas na forma diferencial

$$g_i(x_i)dx_i = 0,$$

onde $x_i = \{x, y, \theta, \varphi\}.$

b) Uma ligação deste tipo será holónoma se uma função integranda do tipo $f(\{x_i\}) = 0$ existir para cada ligação, tornando g_i num diferencial exacto. Como sabe, tal acontece se

$$\frac{\partial (fg_i)}{\partial x_j} = \frac{\partial (fg_j)}{\partial x_i}.$$

Mostre que não existe nenhuma função f que satisfaça esta condição para quaisquer dos constrangimentos g_i . Conclua se a ligação é holónoma ou não-holónoma.

- ** Problema 2. Duas rodas ligadas. Considere duas rodas de raio a cujos eixos estão ligados através de uma barra de comprimento L, assumindo que as duas rodas podem girar de forma independente. Assuma, ainda, que o conjunto rola, sem deslizar, num plano de inclinação θ .
- a) Denominando φ e φ' os ângulos de rotação de cada uma das rodas, mostre que existem duas equações de ligação não-holónomas que escrevem na forma

$$\cos\theta dx + \sin\theta dy = 0,$$

$$\sin\theta dx - \cos\theta dy = \frac{a}{2} \left(d\varphi + d\varphi' \right),\,$$

onde (x, y) são as coordenadas do ponto médio da barra.

b) Obtenha ainda a ligação holónoma de equação

$$\theta = C - \frac{a}{L} \left(\varphi - \varphi' \right),\,$$

onde C é uma constante.

- * Problema 3. Partícula livre. Determine as equações do movimento de uma partícula livre, a duas dimensões, em coordenadas polares, a partir das equações de Euler-Lagrange.
- * Problema 4. Força central. Considere uma partícula a mover-se no plano (x, y), sujeita a uma força que está dirigida para a origem do referencial O = (0, 0) e cuja magnitude é proporcional à distância, $F = -k\sqrt{x^2 + y^2}$ (com k > 0). Escreva o Lagrangiano e determine as equações do movimento:
- (a) Em coordenadas cartesianas;
- (b) Em coordenadas hiperbólicas definidas como:

$$2xy = \mu, \quad x^2 - y^2 = \lambda.$$

* Problema 5. Coordenadas solidárias. Em cosmologia, é comum introduzir-se as coordenadas comóveis, por forma a que as coordenadas de partículas que se afastam devido à expansão do Universo não dependam explicitamente do tempo, ou seja,

$$\mathbf{r}(t) = a(t)\mathbf{r}',$$

onde $\mathbf{r}(t)$ são as coordenadas inerciais e \mathbf{r}' as coordenadas comóveis. Determine a equação do movimento para uma partícula a propagar-se neste sistema de coordenadas quando sujeita a um potencial $V(\mathbf{r}') = m\Phi(\mathbf{r}')$.

- \star Problema 6. O pêndulo simples. Considere um pêndulo de massa m, ligado por um fio (sem massa) de comprimento ℓ a um ponto de rotação. Quais são as equações do movimento do pêndulo para pequenas oscilações? Resolva este problema pelo formalismo de Newton e convença-se de qual dos métodos prefere.
- ** Problema 7. Caixa numa rampa móvel. Considere uma caixa de massa m, deslizando, sem atrito, sobre a hipotenusa de uma rampa de massa M que faz um ângulo θ com a vertical. Assuma que a rampa também desliza sem atrito sobre a superfície da mesa.
- (a) Defina as coordenadas generalizadas necessárias ao problema.
- (b) Obtenha o Lagrangeano do sistema e escreva as equações do movimento.
- (c) Identifique a(s) quantidade(s) conservada(s).
- (d) Determine a aceleração de cada uma das caixas.
- $\star\star\star$ O pêndulo de Huygens. O pêndulo ciclóide foi inventado por Christian Huygens, um dos mais reputados relojoeiros do séc. XVII. A ideia principal era eliminar o assincronismo introduzido pelas engrenagens dos relógios. Assim, Huygens fez com que um pêndulo de massa m e comprimento $\ell=4a$ se movimenta-se sobre uma ciclóide (ver Figura).
 - a) Comece por considerar a parametrização seguinte para a curva ciclóide,

$$x = a(\theta - \sin \theta), \quad y = a(\cos \theta - 1),$$

onde θ (θ /2) é o ângulo que parametriza a ciclóide (que o pêndulo faz com a vertical). Use a segunda Lei de Newton para mostrar que o pêndulo ciclóide obedece à seguinte equação diferencial

$$\frac{d^2}{dt^2}\cos\frac{\theta}{2} + \omega^2\cos\frac{\theta}{2} = 0,$$

onde $\omega = \sqrt{g/\ell}$. Compare com a equação diferencial obtida para o pêndulo simples no problema anterior. O que é que podemos concluir imediatamente?

b) Faça uso do método variacional, i.e. expresse o elemento infinitesimal, para determinar a porção enrolada do pêndulo, $\lambda(\theta)$, e obtenha

$$\lambda(\theta) = \ell \left[1 - \sqrt{\frac{1 + \cos \theta}{2}} \right].$$

De seguida, escreva a equação para as coordenadas da massa m, X e Y, tendo em conta a fracção não enrolada do pêndulo tem comprimento $\ell - \lambda(\theta)$. Deverá, assim, obter

$$X = x + (\ell - \lambda)\cos\varphi, \quad Y = y + (\ell - \lambda)\sin\varphi,$$

onde φ é uma quantidade auxiliar definida como $\tan \varphi = dy/dx$.

c) Partindo do resultado anterior, defina o elemento de tempo $dt=d\theta/\dot{\theta}$ (prove!) e mostre que o período do pêndulo de Huygens é robusto a flutuações de ângulo, i.e., que o seu período é independente da amplitude de oscilação

$$T = 2\pi \sqrt{\frac{\ell}{g}} = \frac{2\pi}{\omega}.$$

Não é fascinante?