

Tyagı, Kumar Mukhopadhyay, Arnab Vij, Shubha

<120> A novel gene Osisapi of rice confers tolerance to stresses and a method thereof

<130> 4544-051956

<140> US 10/540,956

<141> 2006-03-13

<150> PCT/IN2003/000397

<151> 2003-12-23

<160> 3

<170> Microsoft Word 2003

<210> 1

<211> 844

<212> DNA

<213> Oryza sativa

<220>

<400> 1

gatctctcct	gcaatcctca	tcacacagca	aacccaaacc	gcgagcggaa	tcctcagcct	60
gctgagagag	cctgagacca	agagggggat	tcttttttgg	ttattgacga	tggcgcagcg	120
cgacaagaag	gatcaggagc	cgacggagct	cagggcgccg	gagatcacgc	tgtgcgccaa	180
cagctgcgga	ttcccgggca	acccggccac	gcagaacctc	tgccagaact	gcttcttggc	240
ggccacggcg	tccacctcgt	cgccgtcttc	tttgtcgtca	ccggtgctcg	acaagcagcc	300
gccgaggccg	gcggcgccgc	tggttgagcc	tcaggctcct	ctcccaccgc	ctgtggagga	360
gatggcctcc	gcgctcgcga	cggcgccggc	gccggtcgcc	aagacgtcgg	cggtgaaccg	420
gtgctccagg	tgccggaagc	gtgtcggcct	caccgggttc	cggtgccggt	gcggccacct	480
gttctgcggc	gaacaccggt	actccgaccg	ccacggctgc	agctacgact	acaagtcggc	540
ggcaagggac	gccatcgcca	gggacaaccc	ggtggtgcgc	gcggccaaga	tcgttaggtt	600
ctgagaggca	aacaaaatta	aaaaaaaat	ctactgtttt	agcaagaaat	ggagaaaaaa	660
attgggaatt	gaaggtgtgg	atgttattat	tatgctgttc	tcttctcgca	attgttttc	720
cctttttatt	ctttttaatt	gcaaacggga	ggataagtgg	tggaaaagga	atagtgtaac	780
aataatggtg	atgtgaggtg	gttgagggaa	aaagaatcga	agaacaaaaa	aaaaaaaaa	840

aaaa 844

<210> 2 <211> 164

<212> PRT

<213> Oryza sativa

<220>

<400> 2

Met Ala Gln Arg Asp Lys Lys Asp Gln Glu Pro Thr Glu Leu Arg Ala 1 5 10 15

Pro Glu Ile Thr Leu Cys Ala Asn Ser Cys Gly Phe Pro Gly Asn Pro 20 25 30

Ala Thr Gln Asn Leu Cys Gln Asn Cys Phe Leu Ala Ala Thr Ala Ser 35 40 45

Thr Ser Ser Pro Ser Ser Leu Ser Ser Pro Val Leu Asp Lys Gln Pro 50 55 60

Pro Arg Pro Ala Ala Pro Leu VAl Glu Pro Gln Ala Pro Leu Pro Pro 65 70 75 80

Pro Val Glu Glu Met Ala Ser Ala Leu Ala Thr Ala Pro Ala Pro Val 85 90 95

Ala Lys Thr Ser Ala Val Asn Arg Cys Ser Arg Cys Arg Lys Arg Val 100 105 110

Gly Leu Thr Gly Phe Arg Cys Arg Cys Gly His Leu Phe Cys Gly Glu 115 120 125

His Arg Tyr Ser Asp Arg His Gly Cys Ser Tyr Asp Tyr Asn Ser Ala 130 135 140

Ala Arg Asp Ala Ile Ala Arg Asp Asn Pro Val Val Arg Ala Ala Lys
145 150 155 160

Ile Val Arg Phe

<210> 3

<211> 38

<212> PRT

<213> Oryza sativa

<220>

<221> CDS

<222> (2)..(5)

<223> xaa can be any amino acid and some may be missing

<222> (7)..(18)

<223> xaa can be any amino acid and some may be missing

<222> (20)..(21)

<223> xaa can be any amino acid and some may be missing

<222> (23)..(26)

<223> xaa can be any amino acid and some may be missing

<222> (28)..(29)

<223> xaa can be any amino acid and some may be missing

<222> (31)..(35)

<223> xaa can be any amino acid and some may be missing

<222> (37)

<223> xaa can be any amino acid

<400> 3

cys xaa xaa xaa xaa cys xaa xaa xaa xaa xaa xaa xaa xaa xaa 5

xaa xaa cys xaa xaa cys xaa xaa xaa cys xaa xaa his xaa xaa
20
25
30

xaa xaa xaa his xaa cys 35