CS1011: 數位電子導論

Introduction

Introduction

- Engineering is inherently interdisciplinary
- Electrical and Electronic Systems represent a major enabling technology
 - Important to all engineers and scientists
- A system approach to engineering combines
 - A top-down approach
 - A bottom-up approach

Systems

A system can be defined as

Any closed volume for which all the inputs and outputs are known

- Examples include:
 - An engine management system
 - An automotive system
 - A transportation system
 - An ecosystem
- Inputs and outputs will reflect the nature of the system

Electrical and Electronic Systems

- Basic functions include elements concerned with the manipulation of electrical energy
- Common functions are:
 - Generation
 - Transmission of communication
 - Control or processing
 - Utilization
 - Storage

A Power Distribution System Example

Domestic users

More System Examples

- Electrical and electronic systems often fall within a range of categories, such as those responsible for:
 - Power generation and distribution
 - Monitoring of some equipment or process
 - Control of some equipment or process
 - Signal processing
 - Communications
 - **•** ...

System Inputs and Outputs

Systems may often be described simply by their inputs, their output and the relationship between them

Input/Output Example

Nature of inputs/outputs will depend on where we draw our system boundaries. For example:

System Boundary Could be Changed

By changing the system boundary we change the nature of the inputs and outputs

Sensors and Actuators

- Components that interact with the outside world are termed sensors and actuators
 - In the previous example, the microphone represents a sensor
 - In the previous example, the loudspeaker represents an actuator
- We will look at sensors and actuators in more detail in later lectures

Physical Quantities & Electrical Signals

- The world about us is characterized by a number of physical properties or quantities
 - E.g., temperature, pressure, humidity, etc.
- Physical quantities may be continuous or discrete
- Continuous quantities change smoothly and can take an infinite number of values
 - Most real-world quantities are continuous
- Discrete quantities change abruptly from one value to another
 - Many man-made quantities are discrete

Analog Signals

- It is often convenient to represent physical quantities by electrical signals (could be continuous or discrete)
- Continuous signals are often described as analog signals

Digital and Binary Signals

 Discrete signals are often described as digital signals

(c) A binary signal

 Many digital signals take only two values and are referred to as binary signals

System Block Diagrams

It is often convenient to represent complex arrangements by a simplified block diagram

Source/Load for a Complete System

- In an electrical system, a flow of energy requires a circuit a system with a single input and a single output is shown below
 - this shows the input circuit and the output circuit
 - the sensor represents the source
 - the actuator represents the load

CONTROL OR PROCESSING

System Partition for a Complex System

- We often divide complex circuits into subsystems or modules as shown below
 - ◆ The output of each module represents a source for the following section
 - The input of each module represents a load to the previous section

COMPLETE SYSTEM SENSOR **ACTUATOR** Load Source Load Load Source Source Source Load Subsystem Subsystem Subsystem В Α

Key Points

- Engineering is inherently interdisciplinary
- Engineers often adopt a 'systems approach'
- Systems may be defined by their inputs, their outputs and the relationship between them
- Systems interact with the world using sensors and actuators
- Physical quantities can be either continuous or discrete
- Physical quantities are often represented by signals
- Complex systems are often represented by block diagrams