## Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
```

## Importing Dataset

dataset=pd.read\_csv('car performance.csv')
dataset

|     | mpg  | cylinders | displacement | horsepower | weight | acceleration | model<br>year |
|-----|------|-----------|--------------|------------|--------|--------------|---------------|
| 0   | 18.0 | 8         | 307.0        | 130.0      | 3504   | 12.0         | 70            |
| 1   | 15.0 | 8         | 350.0        | 165.0      | 3693   | 11.5         | 70            |
| 2   | 18.0 | 8         | 318.0        | 150.0      | 3436   | 11.0         | 70            |
| 3   | 16.0 | 8         | 304.0        | 150.0      | 3433   | 12.0         | 70            |
| 4   | 17.0 | 8         | 302.0        | 140.0      | 3449   | 10.5         | 70            |
|     |      |           |              |            |        |              |               |
| 393 | 27.0 | 4         | 140.0        | 86.0       | 2790   | 15.6         | 82            |

# Finding missing data

dataset.isnull().any()

| mpg          | False |
|--------------|-------|
| cylinders    | False |
| displacement | False |
| horsepower   | True  |
| weight       | False |
|              |       |

X

origin False car name False dtype: bool

There are no null characters in the columns but there is a special character '?' in the 'horsepower' column. So we we replaced '?' with nan and replaced nan values with mean of the column.

```
dataset['horsepower']=dataset['horsepower'].replace('?',np.nan)
dataset['horsepower'].isnull().sum()
    6
dataset['horsepower']=dataset['horsepower'].astype('float64')
dataset['horsepower'].fillna((dataset['horsepower'].mean()),inplace=True)
dataset.isnull().any()
                    False
    mpg
    cylinders
                    False
    displacement
                    False
    horsepower
                    False
    weight
                    False
    acceleration
                    False
    model year
                    False
    origin
                    False
    car name
                    False
    dtype: bool
```

dataset.info() #Pandas dataframe.info() function is used to get a quick overview

```
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
#
    Column
                  Non-Null Count
                                 Dtype
    -----
- - -
                                  ----
0
    mpg
                  398 non-null
                                 float64
                398 non-null
 1
    cylinders
                                 int64
 2
    displacement 398 non-null
                                 float64
 3
                  398 non-null
                                 float64
    horsepower
                                 int64
 4
    weight
                  398 non-null
 5
    acceleration 398 non-null
                                 float64
 6
    model year 398 non-null
                                 int64
7
    origin
                  398 non-null
                                 int64
8
    car name
                  398 non-null
                                 object
```

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(4), int64(4), object(1)

memory usage: 28.1+ KB

dataset.describe() #Pandas describe() is used to view some basic statistical det

|             | mpg        | cylinders  | displacement | horsepower | weight      | accele |
|-------------|------------|------------|--------------|------------|-------------|--------|
| count       | 398.000000 | 398.000000 | 398.000000   | 398.000000 | 398.000000  | 398.   |
| mean        | 23.514573  | 5.454774   | 193.425879   | 104.469388 | 2970.424623 | 15.    |
| std         | 7.815984   | 1.701004   | 104.269838   | 38.199187  | 846.841774  | 2.     |
| min         | 9.000000   | 3.000000   | 68.000000    | 46.000000  | 1613.000000 | 8.     |
| 25%         | 17.500000  | 4.000000   | 104.250000   | 76.000000  | 2223.750000 | 13.    |
| <b>50</b> % | 23.000000  | 4.000000   | 148.500000   | 95.000000  | 2803.500000 | 15.    |
| <b>75</b> % | 29.000000  | 8.000000   | 262.000000   | 125.000000 | 3608.000000 | 17.    |
| max         | 46.600000  | 8.000000   | 455.000000   | 230.000000 | 5140.000000 | 24.    |

There is no use with car name attribute so drop it

dataset=dataset.drop('car name',axis=1) #dropping the unwanted column.

corr\_table=dataset.corr()#Pandas dataframe.corr() is used to find the pairwise c
corr\_table

|              | mpg       | cylinders | displacement | horsepower | weight    | acce |
|--------------|-----------|-----------|--------------|------------|-----------|------|
| mpg          | 1.000000  | -0.775396 | -0.804203    | -0.771437  | -0.831741 |      |
| cylinders    | -0.775396 | 1.000000  | 0.950721     | 0.838939   | 0.896017  |      |
| displacement | -0.804203 | 0.950721  | 1.000000     | 0.893646   | 0.932824  |      |
| horsepower   | -0.771437 | 0.838939  | 0.893646     | 1.000000   | 0.860574  |      |
| weight       | -0.831741 | 0.896017  | 0.932824     | 0.860574   | 1.000000  |      |
| acceleration | 0.420289  | -0.505419 | -0.543684    | -0.684259  | -0.417457 |      |
| model year   | 0.579267  | -0.348746 | -0.370164    | -0.411651  | -0.306564 |      |
| origin       | 0.563450  | -0.562543 | -0.609409    | -0.453669  | -0.581024 |      |

#### **Data Visualizations**

[ ] 😽 14 cells hidden

# The P-value is the probability value that the correlation between these two variables is statistically significant.

Normally, we choose a significance level of 0.05, which means that we are 95% confident that the correlation between the variables is significant.

By convention, when the

- p-value is \$<\$ 0.001: we say there is strong evidence that the correlation is significant.
- the p-value is \$<\$ 0.05: there is moderate evidence that the correlation is significant.
- the p-value is \$<\$ 0.1: there is weak evidence that the correlation is significant.
- the p-value is \$>\$ 0.1: there is no evidence that the correlation is significant.

| [ ] | ▶ 25 cells hidden |  |  |  |  |
|-----|-------------------|--|--|--|--|
|     |                   |  |  |  |  |

| Seperating into | Depender | nt and Inc | depend | lent vari | ab | les |
|-----------------|----------|------------|--------|-----------|----|-----|
|-----------------|----------|------------|--------|-----------|----|-----|

[ ] 4 cells hidden

# Splitting into train and test data.

[ ] 4 3 cells hidden

## decision tree regressor



### random forest regressor

[ ] 4 9 cells hidden

### linear regression

[ ] 4 8 cells hidden

Colab paid products - Cancel contracts here