№ 1(d1)[Каргальцев] Теорема Ферма при n=3 с использованием чисел Эйзенштейна

Нам нужно доказать, что $x^3 + y^3 = z^3$ неразрешимо в \mathbb{Z} . (нетривиальным образом).

▶ Пусть разрешимо, тогда можно поделить на (x,y,z) (НОД) и получить взаимно простые в совокупности x,y,z. Заметим, что если простое $p|x,p|y \Rightarrow p|x^3+y^3=z^3 \Rightarrow p|z^3$, То есть p|(x,y,z). То есть (x,y)=(y,z)=(x,z)=1.

По задаче $6.8~\lambda|xyz$ в $\mathbb{Z}[\omega]$.

- **№** 5 [Каргальцев] Если кольцо K факториально, то K[x] тоже факториально
 - ▶ Известное всем утверждение: если K область целостности, то и K[x] область целостности, причем $\deg ab \geqslant \deg a, \deg b$. (Ссылка!!!)

Для начала покажем, что если p неразложим в K, то p неразложим в K[x]. Действительно, пусть $\deg p \leqslant 0, p = ab$. Тогда $\deg a, \deg b \leqslant 0$, то есть $a \in K, b \in K$. Но поскольку p неразложим в K, то $a \in K^* \vee b \in K^*$. А поскольку обратимые элементы K — это в точности обратимые элементы K[x] (в силу того, что единица одна и та же и соображений степеней), получаем требуемое утверждение.

Теперь покажем, что если p неразложим в K, то p прост в K[x].

Пусть p|gh. Посмотрим на g и h как на элементы (K/(p))[x]. (то есть рассмотрим коэффициенты по модулю p). (Обозначим их как \overline{g} и \overline{h} соответственно).

Поскольку p неприводим в K и K факториально, то p прост в K (7.3), а значит, (K/(p)) — область целостности (6.9), а значит (K/(p))[x] — область целостности.

$$p|gh \Rightarrow \overline{g}\overline{h} = 0 \Rightarrow \overline{g} = 0 \lor \overline{h} = 0 \Rightarrow p|g \lor p|h.$$

(Тут неявно используется простое утверждение, что $K \ni p|g \Leftrightarrow$ все коэффициенты g делятся на p: просто вынести p за скобку или наоборот, внести).

Теперь пусть f примитивный элемент K[x] (то есть НОД всех его коэффициентов равен единице). Пусть $f = g \cdot h$ в Quot(K)[x], причем $\deg g, \deg h \geqslant 1$. Тогда существуют такие $\hat{g}, \hat{h} \in K[x] : f = \hat{g} \cdot \hat{h}, \deg \hat{g}, \deg \hat{h} \geqslant 1$.

В дальнейших рассуждениях, когда я буду говорить числитель" изнаменатель", я буду иметь в виду, что все дроби записаны в несократимом виде (то есть что числитель и знаменатель взаимно просты)

Действительно, пусть $c_g = \frac{\text{НОД всех числителей g}}{\text{НОК всех знаменателей g}}$

Обозначим $\hat{g} = \frac{1}{c_g} g, \hat{h} = \frac{1}{c_h} h.$

Утверждение: \hat{q} — примитивный многочлен из K[x].

Доказательство утверждения: Пусть a_n, \ldots, a_0 — числители g, b_n, \ldots, b_0 — знаменатели. Обозначим за (a, b) НОД двух (или более) чисел, за [a, b] — НОК.

Пусть $a_i = (a_0, \ldots, a_n) \cdot a'_i, b'_i = [b_n, \ldots, b_0]/b_i$.

 a_0,\dots,a_n делятся на $(a_0,\dots,a_n)\cdot (a_0',\dots,a_n')\Rightarrow (a_0,\dots,a_n)\cdot (a_0',\dots,a_n')|(a_0,\dots,a_n)$ (поскольку (a_0,\dots,a_n) — НОД). Но это значит, что $(a_0',\dots,a_n')=1$ и значит a_i' взаимно просты.

 b_i' тоже взаимно просты: $b_i|[b_0,\ldots,b_n]/b_i'\Rightarrow b_i|[b_0,\ldots,b_n]/(b_0',\ldots,b_n') \forall i\Rightarrow [b_0,\ldots,b_n]|[b_0,\ldots,b_n]/(b_0',\ldots,b_n')$ (в силу определения НОК).

Теперь покажем, что $a_i' \cdot b_i'$ взаимно просты. (Эти числа и будут коэффициентами \hat{g}). Пусть они все делятся на какоето необратимое число p. В силу факториальности K p можно считать простым. Каждое число $a_i' \cdot [b_0, \ldots, b_n]/b_i$ делится на p, значит, в силу определения простоты, для любого i либо a_i делится на p, либо $[b_0, \ldots, b_n]/b_i$ делится на p.

Все a_i одновременно делится на p не могут. Пусть k такое, что b_k делится на максимальную степень p (среди b_i). Пусть $p^l|b_k; p^{l+1} \nmid b_k$. Заметим, что именно на такую степень делится $[b_0, \ldots, b_n]$ (меньше не может быть, ведь $b_k|[b_0, \ldots, b_n]$, Пусть $p^{l+1}|[b_0, \ldots, b_n]$. $\forall i[b_0, \ldots, b_n] = b_i' \cdot b_i$. Поскольку в разложении на неразложимые в левой части p входит в хотя бы p^{l+1} степени, а $p^{l+1} \nmid b_i$, то все b_i' делятся на p, что невозможно в силу их взаимной простоты).

Рассмотрим $a'_k \cdot [b_0, \dots, b_n]/b_k$. С одной стороны, a'_k взаимно просто с b_k (так как a_k взаимно просто с b_k , а $a'_k|a_k$, то есть $p \nmid a'_k$. С другой стороны, в разложение на неразложимые $[b_0, \dots, b_n]$ и b_k p входит в одной и той же степени). Значит, $[b_0, \dots, b_n]/b_k$ не делится на p. Противоречие.

Продолжим.

Тогда $g=c_g\hat{g},\,h=c_h\hat{h},$ где $\hat{g},\hat{h}\in K[x]$ — примитивные многочлены.

Пусть $c_g \cdot c_h = \frac{u \cdot p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k}}{v \cdot q_1^{\beta_1} \cdot \dots \cdot q_l^{\beta_l}}$. (Разложили числитель и знаменатель дроби на неразложимые и обратимые. Напомню, что мы считаем, что числитель и знаменатель взаимно просты).

Рассмотрим $q_1.\ q_1\cdot v\cdot q_1^{\beta_1-1}\cdot\ldots\cdot q_l^{\beta_l}\cdot f=u\cdot p_1^{\alpha_1}\cdot\ldots\cdot p_k^{\alpha_k}\cdot \hat{g}\cdot \hat{h}$, то есть $u\cdot p_1^{\alpha_1}\cdot\ldots\cdot p_k^{\alpha_k}\cdot \hat{g}\cdot \hat{h}$ делится на q_1 в K. q_1 прост в K, значит он прост в K[x]. Тогда либо $u\cdot p_1^{\alpha_1}\cdot\ldots\cdot p_k^{\alpha_k}$ делится на q_1 (что не так в силу взаимной простоты числителя и знаменателя), либо \hat{g} делится на q_1 либо \hat{h} . Но это тоже не так в силу примитивности \hat{g},\hat{h} . То есть на самом деле никакого знаменателя нет (можно считать, что нет даже "обратимой" его части (v) так как ее всегда можно засунуть в \hat{g} , например. Давайте также считать, что и u=1).

Итак, $f = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k} \cdot \hat{g}\hat{h}$. В силу примитивности f все α_i равны нулю, так что $f = \hat{g} \cdot \hat{h}$. Поскольку $\deg \hat{g} = \deg g$, $\deg \hat{h} = \deg h$ заключаем требуемое.

То есть мы доказали, что если f — примитивный элемент K[x], то он неразложим тогда и только тогда, когда f неразложим в Quot(K)[x].

Покажем, что если f неразложим в K[x], то f прост в K[x].

Если $\deg f \leqslant 0$ то мы это уже показывали. Если $\deg f > 0$ и f не примитивный, то он не неразложим (f делится на НОД своих коэффициентов). Иначе же f неразложим в $\operatorname{Quot}(K)[x]$, следовательно, прост в $\operatorname{Quot}(K)[x]$. (Так как многочлены над полем — евклидово кольцо).

Пусть $f|gg_1$ в K[x]. Тогда $f|gg_1$ в $\mathrm{Quot}(K)[x]$, и значит $f|g\vee f|g_1$. Пусть, без потери общности, $f|g\Rightarrow fh=g$ в $\mathrm{Quot}(K)$. Заметим, что $f,g\in K[x]$. Покажем, что $h\in K[x]$.

 $h = c_h \cdot \hat{h}$, где \hat{h} — примитивный. f тоже примитивный и, значит, у c_h нет знаменателя (рассуждение недавно проводилось выше — пусть есть, возьмем простой делитель . . .), то есть $h \in K[x]$.

Таким образом мы показали, что любой неразложимый элемент K[x] прост.

Покажем существование разложения индукцией по степени.

Если $\deg f \leqslant 0$ то разложение совпадает с разложением в K.

Пусть $\deg f \neq 0$. Тогда $f = c_f \cdot \hat{f}$, где \hat{f} — примитивный. У c_f есть разложение. Пусть \hat{f} разложим, тогда $\hat{f} = gh$, где $\deg g$, $\deg h < \deg \hat{f} = \deg f$ (в силу примитивности \hat{f}), и значит, у g,h существуют разложения по предположению индукции. Перемножая разложения c_f,g,h получим разложение f в неразложимые.

Остается воспользоваться утверждением 7.2, и требуемое доказано.

№ 7 [Каргальцев] Эквивалентность определений нормального сепарабельного расширения (расширения Галуа).

Пусть $K \supset F$ — конечное сепарабельное расширение. Тогда следуещие условия эквивалентны:

- 1. Для любого элемента $\alpha \in K$, любой сопряженный к α над F тоже лежит в K
- $2.\ K$ является полем разложения какого-либо многолена над F
- 3. $|Aut_F K| = [K : F]$
- 4. $K^{Aut_FK} = F$

Такое расширение называется **нормальным**, или **расширением Галуа**.

 $ightharpoonup 1 \Rightarrow 2$

Так как расширение конечное, $K = F(\alpha_1, ..., \alpha_n)$.

Положим $f:=m_{\alpha_1,F}\cdot\ldots\cdot m_{\alpha_n,F}$. Тогда, поскольку все сопряженные к α_1,\ldots,α_n лежат в K,K содержит все корни f. С другой стороны, если $K\supset L$ содержит все корни F, то $\alpha_1,\ldots,\alpha_n\in L\Rightarrow F(\alpha_1,\ldots,\alpha_n)\subset L\Rightarrow K\subset L\subset K\Rightarrow L=K,$ то есть K— поле разложения f над F.

 $2 \Rightarrow 3$

Утверждение 1. Любой гомоморфизм $\varphi K \to \overline{F}$, сохраняющий F переводит элементы K в сопряженные к ним над F.

Доказательство утверждения 1:

Пусть
$$\alpha \in K, m_{\alpha,F} = \sum_{k=0}^{n} a_k x^k . m_{\alpha,F}(\alpha) = 0 \Rightarrow \varphi(m_{\alpha,F}(\alpha)) = \varphi(0) = 0.$$

С другой стороны $0 = \varphi(m_{\alpha,F}(\alpha)) = \varphi(\sum_{k=0}^n a_k \alpha^k) = \sum_{k=0}^n a_k \varphi(\alpha)^k = m_{\alpha,F}(\varphi(\alpha))$, что и означает, что $\varphi(\alpha)$ сопряжен к α над F.

Утверждение 2. Пусть $\varphi: K \to \overline{F}$ — гомоморфизм, сохраняющий F. Тогда φ является автоморфизмом K.

Действительно, пусть K — поле разложения f над F, и $\alpha_1, \ldots, \alpha_n$ — корни f.

Тогда
$$K = F(\alpha_1, \ldots, \alpha_n)$$
.

Поскольку для любого $i:m_{\alpha_i,F}|f\Rightarrow$, все сопряженные к α_i над F находятся среди корней f.

По утверждению 1 множество $\{\alpha_1, \dots, \alpha_n\}$ переходит в свое подмножество, а учитывая, что любой нетривиальный гомоморфизм полей инъективен, то на самом деле оно переходит само в себя (в силу конечности). Тогда φ задает на множестве индексов корней f некую перестановку σ .

Пусть
$$\beta \in K$$
, $\beta = \sum_{k=0}^{n} a_k \alpha_k$, $a_k \in F$. Тогда $\varphi(\beta) = \varphi(\sum_{k=0}^{n} a_k \alpha_k) = \sum_{k=0}^{n} a_k \alpha_{\sigma(k)} \in K$.

To есть $\varphi(K) \subset K$.

С другой стороны
$$\varphi(\sum_{k=0}^n a_k \alpha_{\sigma^{-1}(k)}) = \sum_{k=0}^n a_k \alpha_k = \beta$$
. То есть $\varphi(K) = K$.

Итого, $\varphi: K \to K$ — сюръективный гомоморфизм полей, а значит — автоморфизм K.

Поскольку $K \supset F$ — конечное сепарабельное, то по теореме о примитивном элементе найдется такое γ , что $K = F(\gamma)$.

Пусть $\gamma = \gamma_1, \gamma_2, \ldots, \gamma_m$ — корни $m_{\gamma, F}$.

Вспомним утверждение 6.13 (точнее, его доказательство).

$$K = F(\gamma_1) \stackrel{\varphi}{\cong} F(\gamma_i)$$
, причем φ сохраняет F и $\varphi(\gamma_1) = \gamma_2$.

 $\varphi: K \to \overline{F}$ — гомоморфизм, сохраняющий F, следовательно, по утверждению 2 он является автоморфизмом K, сохраняющем F. То есть для любого i существует $\varphi \in Aut_FK: \varphi(\gamma_1) = \gamma_i \Rightarrow |Aut_FK| \geqslant m$.

С другой стороны, тем, куда переходит $\gamma = \gamma_1$ автоморфизм, сохраняющий F полностью определяется (поскольку любой элемент K разлагается по степеням γ с коэффициентами из F). Значит, $Aut_FK \leqslant m$. Значит, $Aut_FK = m = \deg m_{\gamma,F} = [K:F]$, что и требовалось доказать.

$$3 \Rightarrow 4$$

Пусть
$$K^{Aut_FK} = L.K \supset L \supset F$$
 (5.31)

Пусть, по-прежнему, $K = F(\gamma)$. Мы уже выяснили, что при автоморфизме K, сохраняющем F γ переходит в корень $m_{\gamma,F}$, причем тем, куда переходит γ полностью определяется автоморфизм.

Заметим, что $K = L(\gamma)$, и что все вышесказанное справедливо и для расширения $K \supset L$, то есть $|Aut_LK| \le \deg m_{\gamma,L} = [K:L]$

Все автоморфизмы, сохраняющие F сохраняют и L (по определению L), значит, $|Aut_FK| \leq |Aut_LK| \leq [K:L] \leq [K:F]$.

Ho
$$|Aut_FK| = [K:F] \Rightarrow [K:L] = [K:F] \Rightarrow L = F.$$

 $4 \Rightarrow 1$

Рассмотрим вспомогательное утверждение:

Пусть $K^H = F$. Тогда для любого $\beta \in K : |H| \geqslant m_{\alpha,F}$ (это нам конкретно сейчас не понадобится) и любой сопряженный к β над F лежит в K (а вот это будем использовать).

Докажем его. Рассмотрим
$$f_{\beta} = \prod_{h \in H} (x - h(\beta)).$$

Рассмотрим действие элементами H на элементах K[x] :

$$H \ni h \mapsto \alpha_h(\sum a_k x^k) = \sum h(a_k) x^k.$$

Проверим, что это действие (напомню: действие, это гомомофизм из H в группу биекций K[x]).

1) Инъективность:

Пусть $\alpha_h(g_1) = \alpha_h(g_2)$, тогда образы всех коэффициенто g_1 совпадают с образами всех коэффициентов g_2 . Но h — автоморфизм, так что все коэффициенты g_1 совпадают с коэффициентами g_2

2) Сюръективность:

$$\alpha_h(\sum h^{-1}(\alpha_k)x^k) = \sum \alpha_k x^k$$

3) Гомоморфность:

$$\alpha_{h_1} \circ \alpha_{h_2}(\sum a_k x^k) = \alpha_{h_1}(\sum h_2(a_k)x^k) = \sum h_1 h_2(a_k)x^k = \alpha_{h_1 h_2}$$

Заметим также, что
$$\alpha_h((\sum a_k x^k)(\sum b_k x^k)) = \alpha_h(\sum (\sum_{i+j=k} a_i b_j) x^k) = \sum h(\sum_{i+j=k} a_i b_j) x^k = \sum (\sum_{i+j=k} h(a_i) h(b_j)) x^k = (\sum h(a_k) x^k)(\sum h(b_k) x^k) = \alpha_h(\sum a_k x^k) \alpha_h(\sum b_k x^k).$$

Иными словами, $\alpha_h(fg) = \alpha_h(f)\alpha_h(g)$.

Возьмем произвольный $g \in H$. Учитывая вышесказанное

 $\alpha_g(f_\beta) = \prod_{h \in H} \alpha_g(x - h(\beta)) = \prod_{h \in H} (x - gh(\beta))$. Но умножение на элемент группы есть автоморфизм группы, то есть gH = H, то есть $\alpha_g(f_\beta) = f_\beta$. То есть все коэфиициенты f_β сохраняются под действием любого элемента H. Поскольку $K^H = F$, все коэффициенты f_β лежат в F, то есть $f_\beta \in F[x]$.

Поскольку $id \in H \Rightarrow f_{\beta}(\beta) = 0 \Rightarrow m_{\beta,F}|f_{\beta}$. То есть, во первых, $\deg m_{\beta,f} \leqslant \deg f_{\beta} = |H|$ (последнее равенство – из определения f_{β}).

Во-вторых, все корни $m_{\beta,f}$ являются корнями f_{β} , то есть образами β при каком-то автоморфизме K, то есть лежат в K.

Значит, все сопряженные к β лежат в K.

По условию $K^{Aut_FK} = F$, значит, по утверждению, любой сопряженный к любому элементу K лежит в K. Что и требовалось доказать.

№ 8 [Каргальцев] Основная теорема теории Галуа

Пусть $K\supset F$ — расширение Галуа. Тогда: 1) Существует биективное соответствие между подполями $K\supset L\supset F$ и подгруппами Aut_FK , задаваемое отображениями: $\varphi:L\mapsto Aut_LK$ и $\psi:H\mapsto K^H$ 2) $L\supset F$ нормальное тогда и только тогда, когда Aut_LK нормальна в Aut_FK . 3) $[L:F]=[Aut_FK:Aut_LK]$

▶ 1) Заметим, что если $K \supset L \supset F$, то $K \supset L$ — расширение Галуа, поскольку K является полем разложения некоторого многочлена f над F (в силу нормальности $K \supset F$), а значит, K является полем разложения f над L (f раскладывается к K на линейные множители, а если есть какое-то промежуточное поле $K \supset K' \supset L$, что в K' f раскладывается на линейные множители, то существует $K \supset K' \supset F$ с нужными свойствами, что противоречит тому, что K — поле разложения f над F)

Итак, $\psi(\varphi(L)) = \psi(Aut_L K) = K^{Aut_L K} = L$ в силу 3-го определения расширения Галуа.

Пусть $\psi(H) = K^H =: L$, тогда пусть $\varphi(\psi(H)) = Aut_L K =: H'$. Заметим, что из определения $L H \subset H'$. Поскольку $K \supset L$ — расширение Галуа, а значит конечное и сепарабельное, можно применить теорему о примитивном элементе (или ее конечный аналог — теорему о цикличности мультипликативной группы поля), то есть $K = L(\gamma)$.

С другой стороны, по утверждению из доказательства 9.1, примененного к расширению $K \supset L$ и $H: |H| \geqslant \deg m_{\gamma,L} = [K:L] = |H'|$. То есть на самом деле H' = H.

Таким образом, φ и ψ — взаимно обратные преобразования, а значит биекции.

2) Возьмем $g \in Aut_F K$. $K^{gHg^{-1}} = \{x \in K \mid \forall h \in Hghg^{-1}(x) = x\} = \{x \in K \mid \forall h \in Hhg^{-1}(x) = g^{-1}(x) = \{x \in gK \mid \forall h \in Hh(x) = x\} = gK^H$

To есть $H \triangleleft Aut_F K \Leftrightarrow \forall q \in Aut_F K \ qHq^{-1} = H \stackrel{\varphi - \text{ биекция}}{\Leftrightarrow} \forall q \in Aut_F K K^H = K^{gHg^{-1}} = qK^H$

Покажем, что $\forall g \in Aut_F KK^H = gK^H \Leftrightarrow K \supset K^H$ — нормальное.

 \Rightarrow

Пусть $\forall g \in Aut_FK\ K^H = gK^H$. Пусть $\alpha \in K^H$. Поскольку группа Галуа Aut_FK действует транзитивно на корнях $m_{\alpha,F}$, для любого β сопряженного с α над F существует $g \in Aut_FK: g(\alpha) = \beta$. Но $\alpha \in K^H \Rightarrow \beta \in g(K^H) = K^H$, то есть все сопряженные к любому элементу K^H лежат в K^H , то есть $K^H \supset F$ — нормальное.

 \Leftarrow

Поскольку $\forall \alpha \in K^H, \forall g \in Aut_FK : g(\alpha)$ сопряжен к α , а все сопряженные к α элементы лежат в K^H поскольку $K^H \supset F$ — нормальное, то $g(K^H) \subset K^H \forall g \in Aut_FK$.

Hо тогда
$$g^{-1}(K^H) \subset K^H \Rightarrow g(K^H) = K^H$$
.

Что и требовалось доказать.

- 3) $[L:F]=[K:F]/[K:L]=|Aut_FK|/|Aut_LK|=[Aut_FK:Aut_LK]$. Второе равенство выполнено, так как $K\supset L$ и $K\supset F$ расширения Галуа.
- 4) (Бонус) Если $K \supset L \supset F$, и $K \supset F$, $L \supset F$ нормальные, то $Aut_FL \cong Aut_FK / Aut_LK$.

Доказательство: Построим гомоморфизм $\varphi: Aut_FK \to Aut_FL$ следующим образом: $\varphi(g) = g|_L$. Это определение корректно, так как $g|_L$ — гомоморфизм из L в \overline{F} , а значит, по утверждению из доказательства 9.1, $g|_L$ — автоморфизм L. Ядро же этого гомоморфизма, очевидно Aut_LK .

Применим основную теорему о гомоморфизмах: $Aut_FL \gtrsim Aut_FK / Aut_LK$. Но по пункту 3 порядки этих групп равны, то есть $Aut_FL \cong Aut_FK / Aut_LK$, что и требовалось.

- № 10 [Каргальцев | Основная теорема алгебры
 - \mathbb{C} алгебраически замкнутое поле.
 - ▶ Нам понадобятся два следующих утверждения:
 - 1) Над \mathbb{R} не бывает нетривиальных конечных расширений нечетной степени.

Доказательство: Пусть $K \supset \mathbb{R}$ — конечное расширение.

По теореме о примитивном элементе $K = \mathbb{R}(\gamma)$. deg $m_{\gamma,\mathbb{R}} = [K : \mathbb{R}]$. Если $[K : \mathbb{R}]$ нечетно, то по известному факту из анализа, $m_{\gamma,\mathbb{R}}$ имеет корень. Но тогда, в силу неприводимости, его степень равна единице, то есть расширение — тривиально.

2) Над С не существует расширений второй степени.

Пусть $K \supset \mathbb{C}$ — расширение второй степени, то есть

 $K = \mathbb{C}(\gamma)$, где $\deg m_{\gamma,\mathbb{C}} = 2$. Но над \mathbb{C} не бывает неприводимых многочленов второй степени (поскольку можно найти корни через формулу с дискриминантом и разложить по теореме Виетта на два линейных сомножителя).

Теперь, пусть над \mathbb{C} есть нетривиальное алгебраическое расширение K_1 . Выберем $\gamma \in K_1 \setminus \mathbb{C}$. $\mathbb{C}(\gamma) \supset \mathbb{C} \supset \mathbb{R}$ — башня конечных алгебраических расширеший. Рассмотрим поле разложения $m_{\gamma,\mathbb{R}}$ над \mathbb{C} .

Лемма. Пусть $K \supset L \supset F$ и $L \supset F$ — нормальное, а K является полем разложения $f \in F[x]$ над L. (Соответственно, $K \supset L$ нормально). Тогда $K \supset F$ — нормально.

Пусть $\alpha_1, \ldots, \alpha_n$ — корни f, тогда $K = L(\alpha_1, \ldots, \alpha_n)$. Пусть L является полем разложения g над F, и корнями g являются β_1, \ldots, β_m . Тогда $L = F(\beta_1, \ldots, \beta_m)$. Тогда $K = F(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m)$, и, значит, K является полем разложения fg над F. То есть $K \supset F$ — нормальное.

Продолжим.

Итак, $\mathbb{C} \supset \mathbb{R}$ нормально (как поле разложения $x^2 + 1$), и K является полем разложения многочлена с коэффициентами из \mathbb{R} над \mathbb{C} . (Многочлен $-m_{\gamma,\mathbb{R}}$).

То есть K нормально над \mathbb{R} . Пусть $[K : \mathbb{C}] = t$, и $t = 2^{n-1} \cdot m$, где (m, 2) = 1.

Пусть также $G = Aut_{\mathbb{R}}K$. Так как расширение нормально, $|G| = [K:\mathbb{R}] = 2^n \cdot m$. По теореме Силова в |G| есть подгруппа порядка 2^n . Ей соответствует некоторое подполе $L:K\supset L\supset\mathbb{R}$, причем $[L:\mathbb{R}]=m$ (по основной теореме теории Галуа). Но так как m нечетно, то по первому утверждению m=1.

То есть $[K:C]=2^{n-1}$. Это расширение также нормально, пусть H — его группа Галуа. Тогда в ней есть подгруппа порядка 2^{n-2} (если $n\geqslant 2$) [Это факт из ТГ, например, следует из доказательства теоремы Силова, приведенного в Кострикине]. Тогда есть соответствующее ей подполе $L:K\supset L\supset \mathbb{C}$, причем $[L:\mathbb{C}]=2$, чего не бывает. То есть n=1 и $K=\mathbb{C}$, то есть над \mathbb{C} нет нетривиальных алгебраических расширений. Что и требовалось доказать.