0.9600

009465 用一根长为 l 的铁丝制成一个矩形框架. 当长和宽分别为多少时, 该框架的面积最大?

007822 用一根长为 l 的铁丝制成一个矩形框架. 当长、宽分别为多少时, 框架的面积最大?

0.9278

009552 已知 $\cot \alpha = \frac{1}{3}$, 求 $\sin \alpha$ 、 $\cos \alpha$ 及 $\tan \alpha$.

008144 已知 $\cot \alpha = -\frac{1}{2}$,求 $\sin \alpha$ 、 $\cos \alpha$ 和 $\tan \alpha$ 的值.

0.9630

009592 作出函数 $y = \sin x, x \in [-\pi, \pi]$ 的大致图像.

008239 作出函数 $y = 1 + \sin x$, $x \in [-\pi, \pi]$ 的大致图像.

0.9259

009592 作出函数 $y = \sin x, x \in [-\pi, \pi]$ 的大致图像.

008261 作出函数 $y = |\sin x|, x \in [\pi, 3\pi]$ 的大致图像.

0.9851

009816 求与圆 $x^2 + y^2 = 25$ 外切于点 P(4, -3) 且半径为 1 的圆的方程.

008866 求与圆 $x^2 + y^2 = 25$ 外切于点 P(4, -3), 且半径为 1 的圆的方程.

1.0000

009830 在下列双曲线中,以 $y=\pm\frac{1}{2}x$ 为渐近线的是(). A. $\frac{x^2}{16}-\frac{y^2}{4}=1$ B. $\frac{x^2}{4}-\frac{y^2}{16}=1$ C. $\frac{x^2}{2}-y^2=1$ D. $x^2-\frac{y^2}{2}=1$

A.
$$\frac{x^2}{16} - \frac{y^2}{4} = 1$$

B.
$$\frac{x^2}{4} - \frac{y^2}{16} = 1$$

C.
$$\frac{x^2}{2} - y^2 = 1$$

D.
$$x^2 - \frac{y^2}{2} = 1$$

008909 在下列双曲线中,以 $y=\pm\frac{1}{2}x$ 为渐近线的是(). A. $\frac{x^2}{16}-\frac{y^2}{4}=1$ B. $\frac{x^2}{4}-\frac{y^2}{16}=1$ C. $\frac{x^2}{2}-y^2=1$ D. $x^2-\frac{y^2}{2}=1$

A.
$$\frac{x^2}{16} - \frac{y^2}{4} = 1$$

B.
$$\frac{x^2}{4} - \frac{y^2}{16} = 1$$

C.
$$\frac{x^2}{2} - y^2 = 1$$

D.
$$x^2 - \frac{y^2}{2} = 1$$

0.9867

009880 已知数列 $\{a_n\}$ 的前 n 项和 $S_n = n^2 - 3n$, 求证: 数列 $\{a_n\}$ 是等差数列.

008433 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = n^2 - 3n$, 求证: 数列 $\{a_n\}$ 是等差数列.

0.9744

009885 已知等比数列 $\{a_n\}$ 的前 5 项和为 10, 前 10 项和为 50. 求这个数列的前 15 项和.

008454 已知等比数列 $\{a_n\}$ 的前 5 项和为 10, 前 10 项和为 50, 求这个数列的前 15 项和.

1

0.9153

009900 已知数列 $\{a_n\}$ 满足 $a_1=1, a_n+1=\frac{3a_n}{a_n+3}, a_n\neq 0.$

(2) 猜想数列 $\{a_n\}$ 的通项公式, 并用数学归纳法加以证明.

008473 已知数列 $\{a_n\}$ 满足: $a_1=1, a_{n+1}=\frac{3a_n}{a_n+3}, a_n\neq 0 (n\in \mathbf{N}^*).$

(1) $\vec{\mathbf{x}}$ $a_2, a_3, a_4;$

(2) 猜想 $\{a_n\}$ 的通项公式, 并用数学归纳法加以证明.

0.9204

一批产品的二等品率为 0.3. 从这批产品中每次随机取一件, 并有放回地抽取 20 次. 用 X 表示抽到 二等品的件数, 求 D[X].

一批产品的二等品率为 0.02. 从这批产品中每次随机取一件, 有放回地抽取 100 次. 用 X 表示抽到的二等品件数, 求 D[X].