Simple Substitution

- □ Plaintext: fourscoreandsevenyearsago
- □ Key:

Plaintext a b c d e f g h i j k l m n o p q r s t u v w x y z

Ciphertext DEFGHIJKLMNOPQRSTUVWXYZABC

□ Ciphertext:

IRXUVFRUHDQGVHYHQBHDUVDJR

Shift by 3 is "Caesar's cipher"

Ceasar's Cipher Decryption

□ Suppose we know a Caesar's cipher is being used:

Plaintext a b c d e f g h i j k l m n o p q r s t u v w x y z

Ciphertext DEFGHIJKLMNOPQRSTUVWXYZABC

- □ Given ciphertext: VSRQJHEREVTXDUHSDQWV
- □ Plaintext: spongebobsquarepants

Not-so-Simple Substitution

- □ Shift by n for some $n \in \{0,1,2,...,25\}$
- □ Then key is n
- \blacksquare Example: key n = 7

Plaintext

Ciphertext

a	b	С	d	e	f	9	h		j	k		m	n	0	р	q	r	S	†	u	V	W	X	У	Z
Н	I	J	K	L	W	2	0	Р	Ø	R	5	T	C	\	W	X	У	Z	A	В	C	О	Е	F	G

Cryptanalysis I: Try Them All

- \square A simple substitution (shift by n) is used
 - o But the key is unknown
- □ Given ciphertext: CSYEVIXIVQMREXIH
- □ How to find the key?
- Only 26 possible keys try them all!
- □ Exhaustive key search
- \square Solution: key is n = 4

Simple Substitution: General Case

- In general, simple substitution key can be any permutation of letters
 - o Not necessarily a shift of the alphabet
- For example

Plaintext Ciphertext

	1	b	С	d	e	f	9	h	i	j	k	1	m	n	0	р	q	r	S	†	u	٧	w	X	У	z
•)	Γ	Ι	C	A	X	S	E	>	>	۵	K	W	В	Ø	T	Z	α	Ι	۴	M	Ρ	2	J	L	G	0

□ Then $26! > 2^{88}$ possible keys

Cryptanalysis II: Be Clever

- We know that a simple substitution is used
- But not necessarily a shift by n
- □ Find the key given the ciphertext:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOX BTFXQWAXBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQ WAEBIPBFXFQVXGTVJVWLBTPQWAEBFPBFHCVLXBQUFEVWLXGD PEQVPQGVPPBFTIXPFHXZHVFAGFOTHFEFBQUFTDHZBQPOTHXTY FTODXQHFTDPTOGHFQPBQWAQJJTODXQHFOQPWTBDHHIXQV APBFZQHCFWPFHPBFIPBQWKFABVYYDZBOTHPBQPQJTQOTOGHF QAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFFACFCCFHQWAUVWF LQHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFHFQAITIXPFH XAFQHEFZQWGFLVWPTOFFA

Cryptanalysis II

- \Box Cannot try all 288 simple substitution keys
- □ Can we be more clever?
- □ English letter frequency counts...

Cryptanalysis II

□ Ciphertext:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOXBTFXQWAXBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFQVXGTVJVWLBTPQWAEBFPBFHCVLXBQUFEVWLXGDPEQVPQGVPPBFTIXPFHXZHVFAGFOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFQPBQWAQJJTODXQHFOQPWTBDHHIXQVAPBFZQHCFWPFHPBFIPBQWKFABVYYDZBOTHPBQPQJTQOTOGHFQAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFFACFCCFHQWAUVWFLQHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFHFQAITIXPFHXAFQHEFZQWGFLVWPTOFFA

Analyze this message using statistics below

Ciphertext frequency counts:

	В															•									
21	26	6	10	12	51	10	25	10	9	3	10	0	1	15	28	42	0	0	27	4	24	22	28	6	8

Cryptanalysis: Terminology

- Cryptosystem is secure if best know attack is to try all keys
 - o Exhaustive key search, that is
- Cryptosystem is insecure if any shortcut attack is known
- But then insecure cipher might be harder to break than a secure cipher!
 - o What the ...?

Double Transposition

□ Plaintext: attackxatxdawn

Permute rows and columns

	col 1	col 3	col 2
row 3	x	t	a
row 5	w	x	n
row 1	a	t	t
row 4	x	a	d
row 2	a	k	с

- □ Ciphertext: xtawxnattxadakc
- □ Key is matrix size and permutations: (3,5,1,4,2) and (1,3,2)

One-Time Pad: Encryption

```
e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111
```

Encryption: Plaintext Key = Ciphertext

```
e i l h i t l
 Plaintext:
              000
          001
                  010
                      100 001
                              010
                                  111
                                      100
                                          000
                                              101
     Key:
          111 101 110
                                  000
                      101 111 100
                                      101
                                          110
                                             000
Ciphertext:
           110
              101
                  100
                      001 110 110 111 001
                  l h s s t
```

One-Time Pad: Decryption

```
e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111
```

Decryption: Ciphertext Key = Plaintext

```
hsst
Ciphertext:
                                110
            110
                101
                    100
                        001 110
                                             110
                                     111
                                         001
      Key:
                                    000
            111 101
                    110
                        101 111
                                100
                                         101
                                             110
                                                 000
 Plaintext:
                000
                    010
            001
                        100 001 010
                                    111
                                         100
                                             000
                             h i t
```

One-Time Pad

Double agent claims following "key" was used:

```
r l h s s t
Ciphertext:
           110
              101 100
                       001 110 110
                                      001
                                               101
    "key":
          101 111 000 101 111 100
                                  000
                                       101
                                          110
                                              000
"Plaintext":
               010
           011
                  100
                       100 001
                              010
                                  111
                                       100
                                          000
                                              101
               i l l h i t l
e = 000
       h=001 i=010
                    k=011 l=100 r=101 s=110
                                              t = 111
```

One-Time Pad

Or claims the key is...

```
s r l h s s t h s
Ciphertext:
         110 101 100 001 110
                             110
                                 111
                                     001
                                             101
    "key": 111 101 000 011 101 110
                                 001
                                     011
                                         101
                                             101
"Plaintext":
          001
              000
                  100
                      010 011
                             000 110
                                     010
                                         011
                                             000
               e l i k e s i
                                             e
e = 000
       h=001 i=010 k=011 l=100 r=101 s=110
                                            t = 111
```

One-Time Pad Summary

- Provably secure
 - o Ciphertext gives no useful info about plaintext
 - o All plaintexts are equally likely
- BUT, only when be used correctly
 - o Pad must be random, used only once
 - o Pad is known only to sender and receiver
- Note: pad (key) is same size as message
- So, why not distribute msg instead of pad?

Codebook Cipher

- Literally, a book filled with "codewords"
- □ Zimmerman Telegram encrypted via codebook

Februar	13605
fest	13732
finanzielle	13850
folgender	13918
Frieden	17142
Friedenschluss	17149
:	:

- Modern block ciphers are codebooks!
- More about this later...

Codebook Cipher: Additive

- □ Codebooks also (usually) use additive
- Additive book of "random" numbers
 - Encrypt message with codebook
 - Then choose position in additive book
 - Add in additives to get ciphertext
 - Send ciphertext and additive position (MI)
 - Recipient subtracts additives before decrypting
- Why use an additive sequence?

Chapter 3: Symmetric Key Crypto

The chief forms of beauty are order and symmetry...

— Aristotle

Symmetric Key Crypto

- Stream cipher generalize one-time pad
 - Except that key is relatively short
 - o Key is stretched into a long keystream
 - Keystream is used just like a one-time pad
- Block cipher generalized codebook
 - o Block cipher key determines a codebook
 - o Each key yields a different codebook
 - o Employs both "confusion" and "diffusion"

Stream Ciphers

Stream Ciphers

- Once upon a time, not so very long ago... stream ciphers were the king of crypto
- Today, not as popular as block ciphers
- We'll discuss two stream ciphers:
- □ *A*5/1
 - Based on shift registers
 - Used in GSM mobile phone system
- □ RC4
 - Based on a changing lookup table
 - Used many places

One-Time Pad: Encryption

```
e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111
```

Encryption: Plaintext Key = Ciphertext

```
e i l h i t l
 Plaintext:
              000
          001
                  010
                      100 001
                              010
                                  111
                                      100
                                         000
                                             101
     Key:
          111 101 110
                                 000
                      101 111 100
                                      101
                                          110
                                             000
Ciphertext:
           110
              101
                  100
                      001 110 110 111 001
                  l h s s t
```

One-Time Pad: Decryption

```
e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111
```

Decryption: Ciphertext Key = Plaintext

```
hsst
Ciphertext:
                                110
            110
                101
                    100
                        001
                            110
                                     111
                                         001
                                             110
      Key:
                                    000
            111 101
                    110
                        101 111
                                100
                                         101
                                             110
                                                 000
 Plaintext:
                000
                    010
            001
                        100 001 010
                                    111
                                         100
                                             000
                             h i t
```

A5/1: Shift Registers

- □ A5/1 uses 3 *shift registers*
 - o X: 19 bits $(x_0,x_1,x_2,...,x_{18})$
 - o Y: 22 bits $(y_0,y_1,y_2,...,y_{21})$
 - o Z: 23 bits $(z_0,z_1,z_2,...,z_{22})$

A5/1: Keystream

- □ At each iteration: $m = maj(x_8, y_{10}, z_{10})$
 - Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1
- \square If $x_8 = m$ then X steps
 - o $t = x_{13} \oplus x_{16} \oplus x_{17} \oplus x_{18}$
 - o $x_i = x_{i-1}$ for i = 18, 17, ..., 1 and $x_0 = t$
- □ If $y_{10} = m$ then Y steps
 - o $t = y_{20} \oplus y_{21}$
 - o $y_i = y_{i-1}$ for i = 21,20,...,1 and $y_0 = t$
- \square If $z_{10} = m$ then Z steps
 - $t = z_7 \oplus z_{20} \oplus z_{21} \oplus z_{22}$
 - o $z_i = z_{i-1}$ for i = 22,21,...,1 and $z_0 = t$
- □ Keystream bit is $x_{18} \oplus y_{21} \oplus z_{22}$

A5/1

- Each variable here is a single bit
- Key is used as initial fill of registers
- □ Each register steps (or not) based on maj (x_8, y_{10}, z_{10})
- Keystream bit is XOR of rightmost bits of registers

A5/1

- □ In this example, $m = \text{maj}(x_8, y_{10}, z_{10}) = \text{maj}(\mathbf{1}, \mathbf{0}, \mathbf{1}) = \mathbf{1}$
- lue Register X steps, Y does not step, and Z steps
- Keystream bit is XOR of right bits of registers
- □ Here, keystream bit will be $0 \oplus 1 \oplus 0 = 1$

Shift Register Crypto

- Shift register crypto efficient in hardware
- Often, slow if implemented in software
- □ In the past, very, very popular
- Today, more is done in software due to fast processors
- Shift register crypto still used some
 - o Especially in resource-constrained devices

RC4

- A self-modifying lookup table
- □ Table always contains a permutation of the byte values 0,1,...,255
- Initialize the permutation using key
- At each step, RC4 does the following
 - Swaps elements in current lookup table
 - Selects a keystream byte from table
- Each step of RC4 produces a byte
 - o Efficient in software
- □ Each step of A5/1 produces only a bit
 - o Efficient in hardware

RC4 Initialization

```
\square S[] is permutation of 0,1,...,255
□ key[] contains N bytes of key
      for i = 0 to 255
            S[i] = i
            K[i] = key[i \pmod{N}]
      next i
      j = 0
      for i = 0 to 255
            j = (j + S[i] + K[i]) \mod 256
            swap(S[i], S[j])
      next i
      i = j = 0
```

RC4 Keystream

At each step, swap elements in table and select keystream byte

```
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap(S[i], S[j])
t = (S[i] + S[j]) mod 256
keystreamByte = S[t]
```

- Use keystream bytes like a one-time pad
- Note: first few hundreds bytes should be discarded
 - o Otherwise, related key attack exists

Stream Ciphers

- Stream ciphers were popular in the past
 - o Efficient in hardware
 - o Speed was needed to keep up with voice, etc.
 - Today, processors are fast, so software-based crypto is usually more than fast enough
- □ Future of stream ciphers?
 - o Shamir declared "the death of stream ciphers"
 - May be greatly exaggerated...

Block Ciphers

(Iterated) Block Cipher

- Plaintext and ciphertext consist of fixed-sized blocks
- Ciphertext obtained from plaintext by iterating a round function
- Input to round function consists of key and output of previous round
- Usually implemented in software

Feistel Cipher: Encryption

- □ Feistel cipher is a type of block cipher
 - Not a specific block cipher
- □ Split plaintext block into left and right halves: $P = (L_0, R_0)$
- \square For each round i = 1, 2, ..., n, compute

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

where F is round function and K_i is subkey

 \Box Ciphertext: $C = (L_n, R_n)$

Feistel Cipher: Decryption

- \Box Start with ciphertext $C = (L_n, R_n)$
- \square For each round i = n, n-1, ..., 1, compute

$$R_{i-1} = L_i$$

$$L_{i-1} = R_i \oplus F(R_{i-1}, K_i)$$

where F is round function and K_i is subkey

- \square Plaintext: $P = (L_0, R_0)$
- Decryption works for any function F
 - o But only secure for certain functions F

Data Encryption Standard

- □ DES developed in 1970's
- Based on IBM's Lucifer cipher
- □ DES was U.S. government standard
- Development of DES was controversial
 - NSA secretly involved
 - Design process was secret
 - o Key length reduced from 128 to 56 bits
 - Subtle changes to Lucifer algorithm

DES Numerology

- DES is a Feistel cipher with...
 - o 64 bit block length
 - 56 bit key length
 - o 16 rounds
 - o 48 bits of key used each round (subkey)
- Round function is simple (for block cipher)
- Security depends heavily on "S-boxes"
 - Each S-box maps 6 bits to 4 bits

DES Expansion Permutation

□ Input 32 bits

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
```

□ Output 48 bits

```
31 0 1 2 3 4 3 4 5 6 7 8
7 8 9 10 11 12 11 12 13 14 15 16
15 16 17 18 19 20 19 20 21 22 23 24
23 24 25 26 27 28 27 28 29 30 31 0
```

DES S-box

- 8 "substitution boxes" or S-boxes
- □ Each S-box maps 6 bits to 4 bits
- ☐ Here is S-box number 1

DES P-box

□ Input 32 bits

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
```

□ Output 32 bits

```
15 6 19 20 28 11 27 16 0 14 22 25 4 17 30 9
1 7 23 13 31 26 2 8 18 12 29 5 21 10 3 24
```

DES Subkey

- □ 56 bit DES key, numbered 0,1,2,...,55
- □ Left half key bits, LK

```
49 42 35 28 21 14 7
0 50 43 36 29 22 15
8 1 51 44 37 30 23
16 9 2 52 45 38 31
```

Right half key bits, RK

```
55 48 41 34 27 20 13
6 54 47 40 33 26 19
12 5 53 46 39 32 25
18 11 4 24 17 10 3
```

DES Subkey

- \square For rounds $i=1,2,\ldots,16$
 - Let $LK = (LK \text{ circular shift left by } r_i)$
 - Let $RK = (RK \text{ circular shift left by } r_i)$
 - o Left half of subkey K_i is of LK bits

```
13 16 10 23 0 4 2 27 14 5 20 9
22 18 11 3 25 7 15 6 26 19 12 1
```

o Right half of subkey K_i is RK bits

```
12 23 2 8 18 26 1 11 22 16 4 19
15 20 10 27 5 24 17 13 21 7 0 3
```

DES Subkey

- □ Bits 8,17,21,24 of LK omitted each round
- □ Bits 6,9,14,25 of RK omitted each round
- □ Compression permutation yields 48 bit subkey K_i from 56 bits of LK and RK
- □ Key schedule generates subkey

Security of DES

- Security depends heavily on S-boxes
 - Everything else in DES is linear
- 35+ years of intense analysis has revealed no back door
- Attacks, essentially exhaustive key search
- □ Inescapable conclusions
 - Designers of DES knew what they were doing
 - Designers of DES were way ahead of their time (at least wrt certain cryptanalytic techniques)