Languages Not Regular

Lin Chen

Email: Lin.Chen@ttu.edu

Grader: zulfi.khan@ttu.edu

$$L = \{0^n 1^n : n > 0\}$$

```
L = \{0^n 1^n : n > 0\}
Oblivious
```

- a DFA/NFA for $L'=\{(01)^n\colon n>0\}$ is easy, but $L\cdots$
- we need to keep track of the total number of ${\bf 0}$, then check whether there is the same number of ${\bf 1}$ s

$$L = \{0^n 1^n : n > 0\}$$

- a DFA/NFA for $L' = \{(01)^n : n > 0\}$ is easy, but L^{\dots}
- we need to keep track of the total number of $\mathbf{0}$, then check whether there is the same number of $\mathbf{1}$ s
 - The information (number) has to be stored using states
 - Finite states and infinite different numbers...

$$L = \{0^n 1^n : n > 0\}$$

- a DFA/NFA for $L' = \{(01)^n : n > 0\}$ is easy, but L^{\dots}
- we need to keep track of the total number of $\mathbf{0}$, then check whether there is the same number of $\mathbf{1}$ s
 - The information (number) has to be stored using states
 - Finite states and infinite different numbers...
- Probably the answer is "no", but how can we show it?

• Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- The machine only has finite states, so if n is sufficiently large, there must be some loop (pigeonhole principle).

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- For sufficiently large n, $0^n 1^n = xyz$

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- For sufficiently large n, $0^n 1^n = xyz$

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- For sufficiently large n, $0^n 1^n = xyz$
- The DFA also accept xz, xyyz, xyyyz,...
- What can be the possible *y*?

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- For sufficiently large n, $0^n 1^n = xyz$
- The DFA also accept xz, xyyz, xyyyz,...
- What can be the possible y?
 - $-y = 000 \cdots 0$
 - $y = 111 \cdots 1$
 - $-y = 000 \cdots 0111 \cdots 1$

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- For sufficiently large n, $0^n 1^n = xyz$
- The DFA also accept xz, xyyz, xyyyz,...
- What can be the possible *y*?

```
- y=000\cdots 0

- y=111\cdots 1 Impossible, because then xz will have different numbers of 0 and 1

- y=000\cdots 0111\cdots 1
```

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- For sufficiently large n, $0^n 1^n = xyz$
- The DFA also accept xz, xyyz, xyyyz,...
- What can be the possible y?

$$-y = 000 \cdots 0$$

$$- y = 111 \cdots 1$$

$$-y = 000 \cdots 0111 \cdots 1$$

Impossible, because then xyyz will have 10 as substring

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- For sufficiently large n, $0^n 1^n = xyz$
- The DFA also accept xz, xyyz, xyyyz,...
- What can be the possible y?
 - $-y = 000 \cdots 0$
 - $y = 111 \cdots 1$
 - $-y = 000 \cdots 0111 \cdots 1$
- Impossible to have such a DFA, $L = \{0^n 1^n : n > 0\}$ is non-regular

- If a language L is regular, then there exists some $n \ge 1$ such that
 - for any string $w \in L$, $|w| \ge n$, we have w = xyz such that
 - $-y \neq e$
 - $-|xy| \leq n$
 - $-xy^iz \in L$ for any $i \ge 0$

- If a language L is regular, then there exists some $n \ge 1$ such that
 - for any string $w \in L$, $|w| \ge n$, we have w = xyz such that
 - $-y \neq e$
 - $-|xy| \leq n$
 - $-xy^iz \in L$ for any $i \ge 0$

Repeating started once the length exceeds the total number of states

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- Exists some n, such that if $2m \ge n$, then $0^m 1^m = xyz$ such that
 - $-y \neq e$
 - $-|xy| \leq n$
 - $-xy^iz \in L \text{ for any } i \geq 0$

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- Exists some n, such that if $2m \ge n$, then $0^m 1^m = xyz$ such that
 - $-y \neq e$
 - $-|xy| \leq n$
 - $-xy^iz \in L \text{ for any } i \geq 0$
- Choose m = n
- $y = 00 \cdots 0$

- Suppose you have a magic DFA to accept $L = \{0^n 1^n : n > 0\}$
- Exists some n, such that if $2m \ge n$, then $0^m 1^m = xyz$ such that
 - $-y \neq e$
 - $-|xy| \leq n$
 - $-xy^iz \in L \text{ for any } i \geq 0$
- Choose m = n
- $y = 00 \cdots 0$
- The DFA should also accept xz, contradiction.

• Example: prove that $L = \{ww: w \in (a + b)^*\}$ is not regular

- Suppose $L = \{ww: w \in (a + b)^*\}$ is regular
- Exists some n, such that if $v \in L$, $|v| \ge n$, then v = xyz such that
 - $-y \neq e$
 - -|xy| < n
 - $-xy^iz \in L \text{ for any } i \geq 0$

- Suppose $L = \{ww: w \in (a + b)^*\}$ is regular
- Exists some n, such that if $v \in L$, $|v| \ge n$, then v = xyz such that
 - $-y \neq e$
 - $-|xy| \leq n$
 - $-xy^iz \in L$ for any $i \ge 0$
- Choose $v = a^n b a^n b$
 - $-x = a^i$, $y = a^k$ for some i, k
 - $-xy^2z = a^{n+k}ba^nb \notin L$

- ullet You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.
 - you: Language *L* is not regular!
 - adv: Yes it is! I have a DFA to prove it!
 - you: Oh really? How many states are in your DFA?
 - adv: *n*
 - you: OK, here's a string $w \in L$ with |w| > n. Your machine must accept w but since |w| > n, there must be a loop in your computation. Where's the loop?
 - adv: Right here! (breaks w into xyz, where y is the part of the string that goes through the loop)
 - you: Ah hah! If we go through the loop 2 times instead of 1, we get a string not in L that your machine will accept!
 - adv: ···

- Your adversary picks an n
 - because you do not know this n
- You pick a $w \in L$ (such that |w| > n)
- Your adversary breaks w into xyz (subject to $|xy| \le n$, |y| > 0)
 - because you do not know how exactly it is split
- You pick an i such that $xy^iz \notin L$

• Example: prove that $L = \{w : w = a^p, p \text{ is prime}\}$ is not regular

- Suppose $L = \{w: w = a^p, p \text{ is prime}\}$ is regular
- Exists some n, such that if $w \in L$, $|w| \ge n$, then w = xyz such that
 - $-y \neq e$
 - $-|xy| \leq n$
 - $-xy^iz \in L \text{ for any } i \geq 0$

- Suppose $L = \{w: w = a^p, p \text{ is prime}\}$ is regular
- Exists some n, such that if $w \in L$, $|w| \ge n$, then w = xyz such that
 - $-y \neq e$
 - $-|xy| \leq n$
 - $-xy^iz \in L \text{ for any } i \geq 0$
- Pick |w| = n + 2
 - $x=a^{\alpha}$, $y=a^{\beta}$, $z=a^{\gamma}$ such that
 - $-\beta \geq 1$, $\alpha + \beta < n$, $\alpha + i\beta + \gamma$ is always prime for any $i \geq 0$
 - choose $i = \alpha + \gamma$, then $\alpha + i\beta + \gamma = (\alpha + \gamma)(\beta + 1)$

 What happens if we try to apply Pumping lemma to a regular language

- What happens if we try to apply Pumping lemma to a regular language
- Consider $L = \{w: w = a^p, p \text{ is even}\}$
 - -Exists some n, such that if $w \in L$, $|w| \ge n$, then w = xyz such that
 - $-y \neq e$
 - $-|xy| \le n$
 - $xy^iz \in L$ for any $i \ge 0$
 - Choose some $w = a^{2k}$ for $2k \ge n$
 - $x = a^{\alpha}$, $y = a^{\beta}$, $z = a^{\gamma}$ such that
 - $-\beta \ge 1$, $\alpha + \beta + \gamma = 2k$, $\alpha + i\beta + \gamma$ is always even for any $i \ge 0$

- What happens if we try to apply Pumping lemma to a regular language
- Consider $L = \{w: w = a^p, p \text{ is even}\}$
 - -Exists some n, such that if $w \in L$, $|w| \ge n$, then w = xyz such that
 - $-y \neq e$
 - -|xy| < n
 - $xy^iz \in L$ for any $i \ge 0$
 - Choose some $w = a^{2k}$ for $2k \ge n$
 - $x = a^{\alpha}$, $y = a^{\beta}$, $z = a^{\gamma}$ such that
 - $-\beta \ge 1$, $\alpha + \beta + \gamma = 2k$, $\alpha + i\beta + \gamma$ is always even for any $i \ge 0$

This can be correct if β is even – we have no control on the values of α , β , γ , so no contradiction

- Not able to apply pumping lemma to show a language is nonregular does not necessarily mean this language is regular
 - To show it is regular, create a regular expression or DFA/NFA

- Not able to apply pumping lemma to show a language is nonregular does not necessarily mean this language is regular
 - To show it is regular, create a regular expression or DFA/NFA
- Not able to create a DFA/NFA for a language does not necessarily mean this language is non-regular
 - To show it is non-regular, apply pumping lemma suitably

 Besides creating DFA/NFA or using pumping lemma, is there any other way to assert a language is regular or non-regular

- Besides creating DFA/NFA or using pumping lemma, is there any other way to assert a language is regular or non-regular
- We may utilize the closure properties
 - Is L_{REG} closed under union?

$$L1 = L[r1], L2 = L[r2], \text{ then } L1 \cup L2 = L[(r1 + r2)]$$

- Besides creating DFA/NFA or using pumping lemma, is there any other way to assert a language is regular or non-regular
- We may utilize the closure properties
 - Is L_{REG} closed under union? $L1 = L[r1], L2 = L[r2], \text{ then } L1 \cup L2 = L[(r1 + r2)]$
 - Is L_{REG} closed under complementation?

```
Given a DFA M=(K,\Sigma,\delta,s,F) for L_{REG}, we create M'=(K,\Sigma,\delta,s,K-F)
```

- Besides creating DFA/NFA or using pumping lemma, is there any other way to assert a language is regular or non-regular
- We may utilize the closure properties
 - Is L_{REG} closed under union? $L1 = L[r1], L2 = L[r2], \text{ then } L1 \cup L2 = L[(r1 + r2)]$
 - Is L_{REG} closed under complementation? Given a DFA $M=(K,\Sigma,\delta,s,F)$ for L_{REG} , we create $M'=(K,\Sigma,\delta,s,K-F)$
 - Is L_{REG} closed under intersection? $A \cap B = \overline{A} \cup \overline{B}$

• Prove that $L = \{w \in \{a, b\}^* : w \text{ has an equal number of } a \text{ and } b\}$

- Prove that $L = \{w \in \{a, b\}^* : w \text{ has an equal number of } a \text{ and } b\}$
 - a^*b^* is regular
 - $-L \cap a^*b^* = \{a^nb^n : n \ge 0\}$

- Prove that $L = \{w \in \{a, b\}^* : w \text{ has an equal number of } a \text{ and } b\}$
 - a^*b^* is regular
 - $-L \cap a^*b^* = \{a^nb^n : n \ge 0\}$
 - we have shown $\{a^nb^n: n \ge 0\}$ is not regular
 - if L is regular, then by closure property $L \cap a^*b^*$ is regular
 - so L is not regular