Intelligence artificielle

Satisfaction de contraintes

Elise Bonzon elise.bonzon@u-paris.fr

LIPADE - Université de Paris http://www.math-info.univ-paris5.fr/~bonzon/

Problèmes de satisfaction de contraintes

1. Exemples de CSP

2. Recherche en arrière pour les CSPs (backtracking search)

- 3. Structure des problèmes
- 4. Conclusion

Exemples de CSP

Problèmes de satisfaction de contraintes (CSP)

- Problèmes de recherche "classiques" :
 - Un état est une "boite noire"
 - N'importe quelle structure de données qui contient un test pour le but, une fonction d'évaluation, une fonction successeur

CSP :

- Un état est défini par un ensemble de variables X_i, dont les valeurs appartiennent au domaine D_i
- Le test pour le but est un ensemble de contraintes qui spécifient les combinaisons autorisées pour les valeurs sur des sous-ensembles de variables
- Exemple simple d'un langage formel de représentation
- Permet d'utiliser des algorithmes généraux plus efficaces que les algorithmes de recherche standards

• Variables : WA, NT, SA, Q, NSW, V, T

• **Domaines** : $D_i = \{rouge, vert, bleu\}$

• Contraintes : régions adjacentes de couleurs différentes

• Variables : WA, NT, SA, Q, NSW, V, T

• **Domaines** : $D_i = \{rouge, vert, bleu\}$

• Contraintes : régions adjacentes de couleurs différentes

ullet Par exemple, $W\!A
eq NT$ (si le langage le permet)

- Variables : WA, NT, SA, Q, NSW, V, T
- **Domaines** : $D_i = \{rouge, vert, bleu\}$
- Contraintes : régions adjacentes de couleurs différentes
 - Par exemple, $WA \neq NT$ (si le langage le permet)
 - $\bullet \ \ \mathsf{Ou} \ (\mathit{WA}, \mathit{NT}) \in \{(\mathit{rouge}, \mathit{vert}), (\mathit{rouge}, \mathit{bleu}), (\mathit{vert}, \mathit{rouge}), \ldots\}$

• Les solutions sont des affectations qui satisfont toutes les contraintes

- Les solutions sont des affectations qui satisfont toutes les contraintes
- Par exemple, {WA = rouge, NT = vert, Q = rouge, NSW = vert, V = rouge, SA = bleu, T = vert}

Variétés de CSPs

- Variables discrètes
 - Domaines finis : si de taille d, il y a $O(d^n)$ affectations complètes
 - Par exemple, CSPs booléens, d=2
 - Domaines infinis (entiers, caractères...)
 - Par exemple, mise en place d'un planning, avec date de début/de fin pour chaque tâche
 - Nécessite un langage de contraintes. Eg $StartJob_1 + 5 \le StartJob_5$
 - Si les contraintes sont linéaires, le problème est soluble
 - Si les contraintes sont non linéaires, problème indécidable
- Variable continues
 - Par exemple, temps de début/fin pour les observations du télescope de Hubble
 - Contraintes linéaires solubles en temps polynomial en utilisant des méthodes de programmation linéaire

Variétés de contraintes

- Contraintes unaires, ne concernent qu'une seule variable
 - Par exemple, $SA \neq vert$
- Contraintes binaires, concernent une paire de variables
 - Par exemple, $SA \neq WA$
- Contraintes d'ordre plus élevé, concernent 3 variables ou plus
 - Par exemple, contraintes sur les puzzles cryptarithmétiques
- Préférences (ou contraintes souples)
 - Par exemple, rouge est mieux que vert
 - Souvent représentable par un coût associé à chaque affectation de variable
 - ⇒ Problèmes d'optimisation de variables

Graphe de contraintes

- CSP binaires : chaque contrainte lie au maximum deux variables
- Graphe de contraintes : les nœuds sont des variables, les arcs représentent les contraintes

- Les algorithmes CSP utilisent les graphes de contraintes
- Permet d'accélerer la recherche : par exemple, colorier la Tasmanie est un sous-problème indépendant

Exemple: puzzle cryptarithmétique

- Variables : F, T, U, W, R, O, X₁, X₂, X₃
- **Domaines** : $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Contraintes :
 - *Alldiff*(*F*, *T*, *U*, *W*, *R*, *O*)
 - $O + O = R + 10X_1$
 - $X_1 + W + W = U + 10X_2$
 - . . .

q

Problèmes CSPs du monde réel

- Problèmes d'affectation (eg. qui enseigne quel cours?)
- Problèmes d'emploi du temps
- Configuration de matériels
- Planification pour les transports
- Planification dans les usines
- Allocation de salles
- ...
- Note : beaucoup de problèmes du mondé réel impliquent des variables à valeurs réelles

Formulation de la recherche standard (recherche incrémentale)

- Les états sont définis par les valeurs des variables déjà affectées
- Etat initial : un ensemble d'affectations vides {}
- Fonction successeur : attribuer une valeur à une variable non encore affectée, de façon cohérente (vis à vis des contraintes) à l'affectation actuelle
- Test du but : toutes les variables sont affectées

Formulation de la recherche standard (recherche incrémentale)

- Cet algorithme de recherche marche pour tous les CSPs
- Chaque solution apparait à une profondeur de n s'il y a n variables
 - ightarrow Utiliser la recherche en profondeur d'abord
- n : nombre de variables; d : taille du domaine des variables; b : facteur de branchement
- b = (n p)d à profondeur p
 - $\rightarrow n!d^n$ feuilles
 - \rightarrow alors qu'il n'y a que d^n affectations possible!!

Recherche en arrière pour les CSPs (backtracking search)

Backtracking search

- L'affectation des variables est commutative
 - L'ordre dans lequel on affecte les variables n'a pas d'importance
 - WA = rouge puis NT = vert est la même chose que NT = vert puis WA = rouge
- Il n'y a donc besoin de ne considérer qu'une seule variable par profondeur de l'arbre de recherche
 - $\rightarrow b = d$, et donc d^n feuilles
- Recherche en profondeur d'abord avec l'affectation d'une variable à la fois est appelée recherche par retour arrière (backtracking search)
- Algorithme de recherche basique pour les CSPs
- Permet de résoudre le problème des n reines pour $n\sim 25$

Algorithme de recherche par retour arrière

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function RECURSIVE-BACKTRACKING (assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var \leftarrow \text{Select-Unassigned-Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values(var, assignment, csp) do
       if value is consistent with assignment given Constraints[csp] then
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```


Améliorer l'efficacité de la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

Améliorer l'efficacité du la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

Valeurs minimum restantes (MRV)

- Heuristique des valeurs minimum restantes (MRV)
 - ⇒ choisir une des variables ayant le moins de valeur "légale" possible

Heuristique du degré

- Si plusieurs variables ne peuvent pas être départagées par l'heuristique MRV
- Heuristique du degré
 - ⇒ choisir la variable qui a le plus de contraintes à respecter parmi les variables restantes

Améliorer l'efficacité du la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

Valeur la moins contraignante

- Etant donné une variable, choisir celle qui a la valeur la moins contraignante
 - ⇒ la variable qui empêche le moins d'affectations possibles sur les variables restantes

Valeur la moins contraignante

- Etant donné une variable, choisir celle qui a la valeur la moins contraignante
 - ⇒ la variable qui empêche le moins d'affectations possibles sur les variables restantes

 Combiner ces heuristiques permet de résoudre le problème des n reines, avec n = 1000

Améliorer l'efficacité du la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

- Idée : garder en mémoire les valeurs autorisée pour les variables qu'il reste à affecter
- Arrête la recherche lorsqu'une variable n'a plus de valeur "légale" possible

- Idée : garder en mémoire les valeurs autorisée pour les variables qu'il reste à affecter
- Arrête la recherche lorsqu'une variable n'a plus de valeur "légale" possible

- Idée : garder en mémoire les valeurs autorisée pour les variables qu'il reste à affecter
- Arrête la recherche lorsqu'une variable n'a plus de valeur "légale" possible

- Idée : garder en mémoire les valeurs autorisée pour les variables qu'il reste à affecter
- Arrête la recherche lorsqu'une variable n'a plus de valeur "légale" possible

Propagation de contraintes

 La vérification en avant permet de propager l'information des variables affectées aux variables non affectées, mais ne permet pas de détecter tous les échecs

Propagation de contraintes

 La vérification en avant permet de propager l'information des variables affectées aux variables non affectées, mais ne permet pas de détecter tous les échecs

Propagation de contraintes

 La vérification en avant permet de propager l'information des variables affectées aux variables non affectées, mais ne permet pas de détecter tous les échecs

- NT et SA ne peuvent pas être tous les deux bleus!
- La propagation de contraintes permet de vérifier les contraintes localement

- La forme la plus simple de propagation est de rendre les arcs consistants
- X → Y est consistant ssi pour toute valeur x de X, il y a au moins un y autorisé

- La forme la plus simple de propagation est de rendre les arcs consistants
- X → Y est consistant ssi pour toute valeur x de X, il y a au moins un y autorisé

- La forme la plus simple de propagation est de rendre les arcs consistants
- X → Y est consistant ssi pour toute valeur x de X, il y a au moins un y autorisé

- La forme la plus simple de propagation est de rendre les arcs consistants
- $X \to Y$ est consistant ssi pour **toute** valeur x de X, il y a **au moins**

• Si X perd une valeur, les voisins de X doivent être revérifiés

- La forme la plus simple de propagation est de rendre les arcs consistants
- $X \to Y$ est consistant ssi pour **toute** valeur x de X, il y a **au moins**

- Si X perd une valeur, les voisins de X doivent être revérifiés
- Repère un échec avant la vérification en avant
- Peut être lancé comme un pré-processeur ou après chaque affectation

Algorithme de vérification de consistance d'arcs

function AC-3(csp) returns the CSP, possibly with reduced domains

```
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_j) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in \mathrm{DOMAIN}[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from DOMAIN[X_i]; removed \leftarrow true
   return removed
```

Améliorer l'efficacité du la recherche par backtrack

- Comment choisir la variable à affecter ensuite? (Select-Unassigned-Variable)
- Comment ordonner les valeurs des variables? (Order-Domain-Values)
- 3. Est-il possible de détecter un échec inévitable plus tôt?
- 4. Comment tirer avantage de la structure du problème?

Structure des problèmes

Structure des problèmes

- La Tasmanie est un sous-problème indépendant
- Identifiables comme étant des composants connexes du graphe de contraintes

CSPs structurés sous forme d'arbre

Théorème

Si le graphe de contraintes ne contient pas de cycles, le CSP a une complexité en temps de $O(nd^2)$

Cas général : complexité en temps de $O(d^n)$

Algorithme pour les CSPs structurés sous forme d'arbre

 Choisir une variable comme étant la racine, et ordonner les variables de la racine aux feuilles, de façon à ce que le parent de chaque nœud le précède

- 2. Pour j de n à 2, appliquer RemoveInconsistent($Parent(X_j), X_j$)
- 3. Pour j de 1 à n, affecter X_j de façon à ce qu'il soit consistent avec $Parent(X_j)$

CSPs quasiment structurés sous forme d'arbre

 Conditionnement : instancier une variable, restreindre les domaines de ses voisins

- Conditionnement du coupe-cycle : instancier (de toutes les façons possibles) un ensemble de variables de façon à ce que le graphe de contraintes restant soit un arbre
- Cycle coupé de taille $c \Rightarrow$ complexité en $O(d^c \times (n-c)d^2)$
- Très rapide pour c petit

Conclusion

Conclusion

- Formulation particulière d'un état avec un ensemble de couples valeurs/attributs
- Les conditions d'une solution sont représentées par un ensemble de contraintes sur les variables
- La recherche avec backtrack est une technique efficace
- Des heuristiques générales (indépendantes du domaine) permettent de résoudre plus rapidement un CSP
- D'autres techniques utilisant la décomposition peuvent aussi être efficaces.