Name:			
Roll Nu	mber:		

${\bf Midsemester~Exam~Solutions}$ ${\bf MTH302A~-~Set~Theory~and~Mathematical~Logic}$

(Odd Semester 2021/22, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{4}\,+\,\mathbf{1}$ questions and is worth $\mathbf{40\%}$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is **true or false**. No justification required.

- (i) There exists a sequence $\langle X_n : n < \omega \rangle$ such that for each $n < \omega$, $|X_{n+1}| < |X_n|$.
- (ii) The set of all injective functions from ω to ω is countable.
- (iii) For every uncountable $X \subseteq \mathbb{R}$, there exists an uncountable $Y \subseteq X$ such that for every distinct a, b, c in Y, we have $a + c \neq 2b$.
- (iv) Let \mathcal{L} be a first order language, T be an \mathcal{L} -theory and ϕ, ψ be \mathcal{L} -sentences. Assume $T \vdash (\phi \land \psi)$. Then $T \vdash \phi$ and $T \vdash \psi$.
- (v) Let T be a first order theory which has no uncountable model. Then T is inconsistent.

Solution 1.

- (i) False. Otherwise, $\{|X_n|: n < \omega\}$ would be a set of ordinals with no least member.
- (ii) False. See Question 2 in practice midsem.
- (iii) True. This follows from the Rado's theorem on lecture slide 85.
- (iv) True. Since $(\phi \land \psi) \implies \phi$ is a propositional tautology, $T \vdash (\phi \land \psi) \implies \phi$. By Modus Ponens, $T \vdash \phi$. Similarly, $T \vdash \psi$.
- (v) False. Take $T = \{(\forall x)(\forall y)(x = y)\}.$

Page 3 MTH302A

Question 2. [10 Points]

- (a) [2 Points] State the continuum hypothesis.
- (b) [3 Points] Assume the continuum hypothesis. Show that there exists a well-order \prec on \mathbb{R} such that for every $x \in \mathbb{R}$, pred (\mathbb{R}, \prec, x) is countable.
- (c) [5 Points] Now assume that there exists a linear order \prec on \mathbb{R} such that for every $x \in \mathbb{R}$, pred(\mathbb{R}, \prec, x) is countable. Show that the continuum hypothesis holds.

Solution 2.

- (a) $|\mathbb{R}| = \omega_1$.
- (b) Assume $|\mathbb{R}| = \omega_1$. Then there is a bijection $f : \mathbb{R} \to \omega_1$. For $x, y \in \mathbb{R}$, define $x \prec y$ iff f(x) < f(y). Then f is an isomorphism from (\mathbb{R}, \prec) to $(\omega_1, <)$. So \prec is a well-order on \mathbb{R} . Since ω_1 is the least uncountable ordinal, for every $\alpha \in \omega_1$, $\mathsf{pred}(\omega_1, <, \alpha) = \alpha$ is countable. So $\mathsf{pred}(\mathbb{R}, \prec, x)$ is also countable for every $x \in \mathbb{R}$.
- (c) **Proof 1**: Fix a linear order \prec on \mathbb{R} such that for every $x \in \mathbb{R}$, $\mathsf{pred}(\mathbb{R}, \prec, x)$ is countable. Towards a contradiction, suppose $|\mathbb{R}| \neq \omega_1$. Then $|\mathbb{R}| \geq \omega_2$.

Using transfinite recursion, define $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ as follows. $x_0 \in \mathbb{R}$ is arbitrary. Having defined $\langle x_{\beta} : \beta < \alpha \rangle$, put $P = \bigcup \{ \operatorname{pred}(\mathbb{R}, \prec, x_{\beta}) : \beta < \alpha \}$. Note that P is a countable union of countable sets and so P is countable. Choose $x_{\alpha} \in \mathbb{R} \setminus W$. This completes the definition of $\langle x_{\alpha} : \alpha < \omega_1 \rangle$.

Note that for every $\alpha < \beta < \omega_1$, we have $x_\alpha \prec x_\beta$. Put $L = \bigcup \{\mathsf{pred}(\mathbb{R}, \prec, x_\beta) : \beta < \omega_1\}$. Then $|L| \leq \omega_1$ since L is a union of ω_1 sets each of which is countable. Since $|\mathbb{R}| \geq \omega_2$, we can choose $x \in \mathbb{R} \setminus L$. Now observe that every member of the uncountable set $\{x_\alpha : \alpha < \omega_1\}$ is \prec -below x. So $\mathsf{pred}(\mathbb{R}, \prec, x)$ is uncountable. A contradiction.

Proof 2: Fix a linear order \prec on \mathbb{R} such that for every $x \in \mathbb{R}$, $\mathsf{pred}(\mathbb{R}, \prec, x)$ is countable. Define $A = \{(x, y) \in \mathbb{R}^2 : y \prec x\}$. Then for any $x \in \mathbb{R}$, the vertical section of A at x is countable because

$$A_x = \{y : (x, y) \in A\} = \{y \in \mathbb{R} : y \prec x\} = \operatorname{pred}(\mathbb{R}, \prec, x)$$

For any $y \in \mathbb{R}$, the vertical section of $\mathbb{R}^2 \setminus A$ at y is also countable since

$$(\mathbb{R}^2 \setminus A)^y = \{x : (x,y) \in \mathbb{R}^2 \setminus A\} = \{x \in \mathbb{R} : x \le y\} = \mathsf{pred}(\mathbb{R}, \prec, y) \cup \{y\}$$

By Sierpinski's theorem on lecture slide 90, it the continuum hypothesis follows.

Page 4 MTH302A

Question 3. [10 Points]

- (a) [3 Points] Show that there is no subset of plane that meets every circle at exactly 2 points.
- (b) [7 Points] Using transfinite recursion, show that there is a subset of plane that meets every circle at exactly 3 points.

Solution 3.

- (a) Suppose not and let $S \subseteq \mathbb{R}^2$ be such a set. Let C_1 be any circle in plane. Put $S \cap C_1 = \{a, b\}$. Choose a circle C_2 such that line passing though a, b does not intersect C_2 . Let $S \cap C_2 = \{c, d\}$. Since a, b, c are not collinear, there exists a unique circle C_3 passing thorough a, b, c. But now $\{a, b, c\} \subseteq S \cap C_3$. A contradiction.
- (b) We try to modify the 2-point set construction. Let \mathcal{E} be the set of all circles in \mathbb{R}^2 . Since each circle is uniquely determined by its center and radius, $|\mathcal{E}| \leq |\mathbb{R}^2 \times \mathbb{R}^+| = |\mathfrak{c} \times \mathfrak{c}| = \mathfrak{c}$. Also there are at least \mathfrak{c} distinct circles so $|\mathcal{E}| = \mathfrak{c}$. Let $\langle C_\alpha : \alpha < \mathfrak{c} \rangle$ be an injective sequence with range \mathcal{E} . Using transfinite recursion, construct an increasing sequence $\langle S_\alpha : \alpha < \mathfrak{c} \rangle$ of subsets of \mathbb{R}^2 such that the following hold.
 - 1. $S_0 = 0$ and if γ is limit, then $S_{\gamma} = \bigcup_{\alpha < \gamma} S_{\alpha}$.
 - 2. $|S_{\alpha}| \leq |\alpha + \omega| < \mathfrak{c}$.
 - 3. No 4 points in S_{α} are concyclic.
 - 4. $|S_{\alpha+1} \cap C_{\alpha}| = 3$.

First observe that at any limit stage $\alpha < \mathfrak{c}$, defining $S_{\alpha} = \bigcup \{S_{\beta} : \beta < \alpha\}$ does not violate Clause 3. For suppose S_{α} does contain 4 concylic points. Then all of these 4 points must appear at some stage $\alpha' < \alpha$ which is impossible.

Having constructed S_{α} , $S_{\alpha+1}$ is obtained as follows. Let \mathcal{T} be the set of circles that pass through 3 points in S_{α} . Then $|\mathcal{T}| \leq |S_{\alpha} \times S_{\alpha} \times S_{\alpha}| \leq |\alpha + \omega| < \mathfrak{c}$. Let B be the set of points of intersection of C_{α} with the circles in \mathcal{T} . Note that $|B| \leq |\alpha + \omega| < \mathfrak{c}$. By Clause 3, $|S_{\alpha} \cap C_{\alpha}| = n \leq 3$ so we can add 3 - n points from $C_{\alpha} \setminus B$ to S_{α} to get $S_{\alpha+1}$.

Having completed the construction, put $S = \bigcup_{\alpha < \mathfrak{c}} S_{\alpha}$. It is clear that S meets every circle at exactly 3 points.

Page 5 MTH302A

Question 4. [10 Points]

Let $\mathcal{L} = \{<\}$ where < is a binary relation symbol. Let $(\mathbb{R}, <)$ and $(\mathbb{Q}, <)$ be the \mathcal{L} -structures where $(\mathbb{R}, <)$ is the usual ordering on the set of all real numbers and $(\mathbb{Q}, <)$ is the usual ordering on the set of all rational numbers.

(a) [3 Points] Show that for every \mathcal{L} -sentence ϕ ,

$$(\mathbb{Q},<)\models\phi$$
 iff $(\mathbb{R},<)\models\phi$

- (b) [5 Points] Show that $(\mathbb{R}, <)$ is not isomorphic to $(\mathbb{R} \setminus \{0\}, <)$.
- (c) [2 Points] Recall that DLO is the theory of dense linear orderings without end-points. Show that DLO is not \mathfrak{c} -categorical. Here $\mathfrak{c} = |\mathbb{R}|$ is the continuum.

Solution 4.

- (a) Let ϕ be any \mathcal{L} -sentence. By lecture slide 166, DLO is a complete \mathcal{L} -theory. So either $DLO \vdash \phi$ or $DLO \vdash \neg \phi$. Suppose $DLO \vdash \phi$. Since both $(\mathbb{R}, <)$ and $(\mathbb{Q}, <)$ are models of DLO, it follows that $(\mathbb{R}, <) \models \phi$ and $(\mathbb{Q}, <) \models \phi$. Similarly if $DLO \vdash \neg \phi$, then $(\mathbb{R}, <) \models \neg \phi$ and $(\mathbb{Q}, <) \models \neg \phi$. In follows that $(\mathbb{R}, <) \models \phi$ iff $(\mathbb{Q}, <) \models \phi$.
- (b) Suppose not and let $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be an order preserving bijection. Put $L = \{f(x) : x < 0\}$ and $R = \{f(x) : x > 0\}$. Since $L \subseteq \mathbb{R}$ is bounded from above, we can define $a = \sup(L)$ (supremum of L). Clearly $a \notin L$ since L does not have a largest member. Similarly $a \notin R$ since R does not have a least member. Since range $(f) = L \cup R$ and $a \notin L \cup R$, it follows that $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is not surjective. A contradiction.
- (c) First note that both $(\mathbb{R}, <)$ and $(\mathbb{R} \setminus \{0\}, <)$ are models of DLO. By part (b), they are not isomorphic. Also $|\mathbb{R}| = |\mathbb{R} \setminus \{0\}| = \mathfrak{c}$. So DLO has two non-isomorphic models of cardinality \mathfrak{c} . It follows that DLO is not \mathfrak{c} -categorical.

Page 6 MTH302A

Bonus Question [5 Points]

Let $2^{\mathbb{R}}$ denote the set of all functions from \mathbb{R} to $\{0,1\}$. Show that there exists a **countable** $\mathcal{F} \subseteq 2^{\mathbb{R}}$ such that for every $f \in 2^{\mathbb{R}}$ and for every finite $W \subseteq \mathbb{R}$, there exists $g \in \mathcal{F}$ such that $g \upharpoonright W = f \upharpoonright W$.

Solution. Let \mathcal{I} be the set of all intervals (a,b) where a < b are both rationals. Let \mathcal{B} consist of all sets S such that S is the union of finitely many intervals in \mathcal{I} . Note that \mathcal{B} is countable. For each $S \in \mathcal{B}$, define $f_S : \mathbb{R} \to \{0,1\}$ by " $f_S(x) = 1$ iff $x \in S$ ". Define $\mathcal{F} = \{f_S : S \in \mathcal{B}\}$. Clearly, \mathcal{F} is countable. We claim that \mathcal{F} is as required.

Suppose $f \in 2^{\mathbb{R}}$ and $W \subseteq \mathbb{R}$ is finite. Let $W_0 = \{x \in W : f(x) = 0\}$ and $W_1 = \{x \in W : f(x) = 1\}$. Choose $S \in \mathcal{B}$ such that $W_1 \subseteq S$ and $W_0 \cap S = \emptyset$. Such a set $S \in \mathcal{B}$ exists because rationals are dense in \mathbb{R} . Put $g = f_S$. Then $g \in \mathcal{F}$ and $g \upharpoonright W = f \upharpoonright W$.