ITS202: Algorithms and Data Structures Advanced Data Structures

Ms. Sonam Wangmo

Gyalpozhing College of Information Technology Royal University of Bhutan

November 24, 2020

Height-Balance Property or Balance Factor

For every internal position p of T , the heights of the children of p differ by at most $1. \,$

Balance

Balance factor= height(left subtree) - height(right subtree).

AVL

Any binary search tree T that satisfies the height-balance property is said to be an AVL tree, named after the initials of its inventors: Adel'son-Vel'skii and Landis.

$$|B(n)| <= 1$$

Figure 1: An example of an AVL tree

Height of a node

Height of longest path from it down to a leaf.

$$H(\emptyset) = -1$$

H(Single Node) = 0

 $\label{eq:height} \begin{aligned} \text{Height of a node} &= \text{Maximum[height(leftchild), height(rightchild)]} + 1 \end{aligned}$

Worsecase is when the right subtree has height 1 more than left subtree for every node.

Figure 2: Balanced BST:AVL

Note: Positive Balance: Left-Heavy Negative Balance: Right-Heavy $B(n)=H(T_L) - H(T_R)$

Insertion in AVL Tree

- Simple BST indert
- Fix the AVL property from changed node up.
- 3

Note: Inserting a new node can cause the balance factor of some node to become 2 or -2. In that case, we fix the balance factors by use of rotations.

AVL Tree: Rotations

Rotation means maintaining the BST invariant at the same time as maintaing the balance threshold.

Rotations fix imbalance.

Left and Right Rotations

Left-Heavy

- Right rotation
- 2 Left-Right rotation

Right-Heavy

- Left rotation
- Right-Left rotation

Rotations: Right

When we do rotations, focus on 2 nodes, x and y Insert 3,2,1

Figure 3: BST

Rotations: Right

Figure 4: AVL Tree

Rotations: Left-Right

When we do rotations, focus on 2 nodes, \times and y Insert 3,1,2

Figure 5: Right rotation

Rotations: Left-Right

Figure 6: AVL Tree: Left-right rotation

Rotations: Left

When we do rotations, focus on 2 nodes, x and y Insert 1,2,3

Figure 7: AVL: Left rotation

Rotations: Right-Left

When we do rotations, focus on 2 nodes, \times and y Insert 1,3,2

Figure 8: Left rotation:AVL

Rotations: Right-Left

Figure 9: AVL Tree: Right-left Rotation

Balanced Search Trees: 2-3 search trees

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Figure 10: 2-3 search representation

Balanced Search Trees: red-black BSTs

Figure 11: Red-Black Tree

Balanced Search Trees: B-trees(Bayer-McCreight, 1972)

Figure 12: B tree

Balanced Search Trees: Performance

Bottom line. Guaranteed logarithmic performance for search and insert. O(Log n)