Ход работы

Статистические характеристики исходной коллекции:

- 1) число кластеров: 1 кластер, состоящий из 2-ух вычислительных узлов и одного главного узла;
- 2) число элементов данных: 16597;
- 3) объем данных: 996 Кбайт, 16597 записей;
- 4) время заполнения коллекции данными: 6,5 с.

Инвертированный индекс:

1) Среднее время построения индекса: 405 с.

Таблица 3 – Время построения инвертированного индекса

Попытка	1	2	3	4	5	6	7	8	9	10
Время, с	393	415	399	415	436	391	404	399	403	398

2) Размер индекса:

• в байтах: 800 Кбайт;

• количество записей: 20274.

К-граммный индекс:

1) Среднее время построения индекса: 162 с.

Таблица 4 – Время построения k-граммного индекса

Попытка	1	2	3	4	5	6	7	8	9	10
Время, с	160	168	159	162	164	162	161	169	160	155

2) Размер индекса:

в байтах: 1,60 Мбайт;

количество записей: 11020.

Статистические характеристики выполнения операции поиска

Таблица 5 – Временные характеристики выполнения запросов

№	Запрос			Вр	емя вып	олнения	н, с			Среднее время	Наиболее
										выполнения, с	медленные
											операции и время
											их выполнения
1	*bor	4,3	3,35	2,9	2,89	2,97	2,98	3,54	3,35	3,28	Поиск в
											инвертированном
											индексе (~2,57 с)

2	*ntilyclad	2,76	3,33	3,17	2,67	2,52	2,66	2,74	2,58	2,8	Поиск в k-
											граммном
											индексе (~2,37 с)
3	*ari	31,74	31,56	32,08	30,82	29,82	31,64	29,29	29,98	30,86	Поиск в
											инвертированном
											индексе (~30,3 с)
4	*ting	1,7	1,52	1,61	1,62	1,65	1,55	1,59	1,61	1,6	Поиск в
											инвертированном
											индексе (~0,97 с)
5	*love	3,5	5,1	5,9	4,1	4,9	3,4	4,3	4,9	4,5	Поиск в
											инвертированном
											индексе (~3,5 c)
6	*order	2,7	2,4	2,7	2,5	3,4	3,6	3,5	2,8	2,9	Поиск в
											инвертированном
											индексе (~1,4 c)
7	*mint	2,2	1,9	2,1	1,8	2,6	2,3	2,3	2,7	2,2	Поиск в
											инвертированном
											индексе (~1,6 c)
8	*ove	3,4	3,6	4,6	4,1	3,6	4,5	3,6	4	3,4	Поиск в
											инвертированном
											индексе (~2,9 с)
9	*ful	1,4	1,2	2	1,5	1,4	1,3	1,9	1,3	1,5	Поиск в
											инвертированном
											индексе (~0,7 с)
10	*use	2	2,3	3,2	2,5	2,5	3,3	2,3	2,9	2,6	Поиск в
											инвертированном
											индексе (~1,9 с)

Алгоритм построения индекса типа (1)

При изменении коллекции (добавлении, удалении или изменении документа) происходит перестройка индексов, сначала инвертированного, затем k-граммного:

- 1) При добавлении документа: считывается содержимое указанного файла и происходит добавление документа в конец коллекции, после чего происходит вызов функции построения сначала инвертированного индекса, а на его основе k-граммного.
- 2) При удалении документа: пользователем указывается номер документа и происходит его удаление из коллекции, после чего происходит вызов функции построения сначала инвертированного индекса, а на его основе k-граммного.

3) При изменении документа: происходит изменение содержимого того документа коллекции, номер которого указан пользователем, после чего происходит вызов функции построения сначала инвертированного индекса, а на его основе k-граммного.

Таблица 1 – Замеры времени для (1) типа динамического индекса

№		Время, с			
	Удаление документа	Вставка документа	Изменение документа		
1	68	145	74		
2	81	109	74		
3	72	201	88		
4	76	73	79		
5	75	86	71		
6	79	74	81		
7	68	95	89		
8	91	77	75		
9	77	91	77		
10	74	114	75		
11	75	79	82		
12	80	84	92		
13	69	81	85		
14	71	88	93		
15	82	76	76		
16	68	93	91		
17	66	79	89		
18	75	76	79		
19	74	90	82		
20	81	81	89		
Среднее время, с	75,1	93,95	82,05		

Таблица 2 – Замеры времени при удалении документа

№ \ Размер	Время, с								
коллекции	500	1000	2000	4000	8000	16000			
1	2,8	4,31	6,13	27,72	37,88	79,18			
2	1,54	5,62	5,71	21,53	31,08	88,62			
3	1,32	4,52	8,92	20,59	34,78	71,62			

4	1,29	5,96	7,36	22,63	32,33	89,99
5	1,57	4,47	7,33	20,19	36,45	92,08
6	1,21	4,77	7,12	21,43	36,11	91,6
7	1,29	5,02	6,88	22,4	35,68	73,7
8	1,98	5,41	6,9	21,56	31,8	75,22
9	1,09	5,1	7,35	20,99	33,54	81,42
10	1,76	4,91	7,7	20,6	35,2	74,6
Среднее	1,585	5,009	7,14	21,964	34,485	81,8
время, с						

Рисунок 1 — Зависимость среднего времени удаления от размера коллекции

Таблица 3 – Замеры времени при вставке документа

№ \ Размер			Врем	я, с		
коллекции	500	1000	2000	4000	8000	16000
1	2,1	4,38	7,8	21,07	32,02	80,74
2	1,51	4,41	6,3	18,2	37,15	86,17
3	1,11	4,65	8,8	24,34	31,69	92,49
4	1,65	5,27	8,4	18,99	32,14	89,39
5	1,25	4,38	9,8	29,34	39,25	88,4
6	1,21	5,15	8,3	22,52	39,7	91,71
7	1,94	4,7	7,9	21,73	35,67	81,2
8	1,15	4,55	8,12	20,87	35,02	85,9
9	1,76	4,98	8,76	21,44	32,6	74,69
10	1,5	4,45	9,01	22,08	34,78	79,26
Среднее	1,518	4,692	8,319	22,058	35,002	84,995
время, с						

Рисунок 2 – Зависимость среднего времени вставки от размера коллекции

Таблица 4 – Замеры времени при изменении документа

№ \ Размер			Время	н, с		
коллекции	500	1000	2000	4000	8000	16000
1	0,2158	1,11	6,14	17,01	39,84	131,08
2	0,4224	1,1	5,3	19,84	36,34	89,69
3	0,2227	1,68	7,97	18,98	36,31	120,07
4	0,3468	1,97	6,49	18,5	35,34	82,95
5	0,3276	1,56	10,86	19,1	33,86	91,2
6	0,2856	1,66	8,8	19,55	35,7	89,31
7	0,3177	1,9	6,92	19,2	35,91	96,7
8	0,3045	1,45	8,71	18,42	36,5	91,52
9	0,298	1,12	8,09	18,94	36,06	84,58
10	0,2556	1,82	7,28	18,05	37,2	99,54
Среднее	0,2996	1,537	7,656	18,756	36,306	97,664
время, с						

Рисунок 3 – Зависимость среднего времени изменения от размера коллекции

Алгоритм построения индекса типа (2):

- 1) При добавлении документа: на вход подается файл с содержанием нового документа. Добавляем новый документ в файл с новыми данными и присваиваем ему порядковый номер, перестраиваем вспомогательные индексы: инвертированный и к-граммный, на основе новых данных. Добавляем в вектор документов еще одну позицию со значением 1.
- 2) При удалении документа: на вход подается номер документа, который нужно удалить. Для этого помечаем в векторе, длина которого равна размеру коллекции, данный документ, как недействительный: в позицию, равной номеру документа, ставим 0 (значит недействительный).
- 3) При изменении документа: на вход подается файл с содержанием измененного документа и номер документа, который будет изменен. Сначала происходит его удаление согласно шагу 2. Затем измененный документ записывается в файл с новыми данными, ему присваивается порядковый номер, происходит перестройка вспомогательных индексов: инвертированного и k-граммного на основе новых данных. Добавляем в вектор документов еще одну позицию со значением 1.

Таблица 5 – Замеры времени для (2) типа динамического индекса

$N_{\underline{0}}$		Время, с	
	Удаление документа	Вставка документа	Изменение документа
1	0,062	0,084	0,093
2	0,092	0,125	0,078
3	0,062	0,112	0,132
4	0,062	0,08	0,093
5	0,078	0,092	0,093
6	0,081	0,109	0,078
7	0,062	0,078	0,132
8	0,093	0,078	0,078
9	0,062	0,093	0,132
10	0,091	0,078	0,107
11	0,062	0,093	0,078
12	0,084	0,083	0,091
13	0,062	0,092	0,08
14	0,094	0,078	0,12
15	0,063	0,083	0,156
16	0,101	0,092	0,093

17	0,071	0,104	0,082
18	0,062	0,078	0,089
19	0,091	0,094	0,093
20	0,064	0,082	0,092
Среднее	0,074	0,09	0,099
время, с			

Таблица 6 – Замеры времени при удалении документа

№ \ Размер			Время	н, с		
коллекции	500	1000	2000	4000	8000	16000
1	0,02	0,044	0,027	0,031	0,046	0,078
2	0,047	0,04	0,029	0,04	0,031	0,078
3	0,015	0,015	0,055	0,031	0,062	0,031
4	0,015	0,031	0,032	0,062	0,046	0,078
5	0,024	0,044	0,036	0,049	0,046	0,046
6	0,034	0,021	0,049	0,048	0,125	0,125
7	0,049	0,062	0,028	0,046	0,062	0,078
8	0,03	0,031	0,046	0,031	0,072	0,046
9	0,062	0,044	0,031	0,05	0,015	0,125
10	0,044	0,031	0,08	0,032	0,046	0,078
Среднее время, с	0,034	0,036	0,041	0,042	0,055	0,076

Рисунок 4 – Зависимость среднего времени удаления от размера коллекции

Таблица 7 – Замеры времени при вставке документа

№ \ Размер	Время, с					
коллекции	500	1000	2000	4000	8000	16000
1	0,043	0,015	0,05	0,078	0,078	0,078
2	0,046	0,062	0,022	0,093	0,062	0,046
3	0,062	0,046	0,046	0,062	0,062	0,078
4	0,027	0,031	0,015	0,062	0,062	0,052
5	0,062	0,041	0,062	0,031	0,046	0,078
6	0,031	0,062	0,046	0,109	0,062	0,078
7	0,046	0,031	0,062	0,062	0,062	0,078
8	0,062	0,062	0,062	0,062	0,062	0,05
9	0,015	0,031	0,062	0,062	0,062	0,062
10	0,062	0,031	0,109	0,062	0,059	0,078
Среднее	0,045	0,041	0,053	0,068	0,061	0,067
время, с						

Рисунок 5 – Зависимость среднего времени вставки от размера коллекции

Таблица 8 – Замеры времени при изменении документа

№ \ Размер	Время, с					
коллекции	500	1000	2000	4000	8000	16000
1	0,046	0,031	0,046	0,046	0,039	0,046
2	0,031	0,031	0,031	0,046	0,046	0,062
3	0,031	0,015	0,046	0,046	0,046	0,046
4	0,046	0,046	0,046	0,047	0,031	0,05
5	0,022	0,046	0,046	0,046	0,03	0,046
6	0,046	0,046	0,017	0,042	0,046	0,056
7	0,046	0,046	0,046	0,031	0,031	0,046
8	0,046	0,046	0,03	0,031	0,047	0,046
9	0,046	0,046	0,015	0,046	0,062	0,046
10	0,031	0,031	0,031	0,046	0,031	0,05
Среднее	0,039	0,038	0,035	0,042	0,040	0,049
время, с						

Рисунок 6 – Зависимость среднего времени изменения от размера коллекции

Оценка качества полученной системы

Были размечены 350 документов коллекции, указано для каких тем они подходят. Для оценки качества полученной поисковой системы было решено использовать следующие информационные потребности и соответствующие запросы к ним:

• найти все твиты, в которых есть упоминания о ночном времени суток и все, что с ним связано: *night; подходящих документов – 215;

```
Query: *night
3_gram of query: ['nig', 'igh', 'ght', 'ht$']
Count: 12
Result terms for query: [u'midknight', u'datenight', u'knight', u'midnight', u'overnight', u'tonight', u'
goodnight', u'bringonthenight', u'night', u'deathknight', u'gnight', u'2night']
```

Рисунок 7 – Результаты запроса *night

• найти все твиты, где есть упоминания о магазинах: *shop; подходящих документов – 36;

```
Query: *shop
3_gram of query: ['sho', 'hop', 'op$']
iCount: 6
Result terms for query: [u'shop', u'photoshop', u'workshop', u'barbershop', u'matcheshop', u'bishop']
```

Рисунок 8 – Результаты запроса * shop

• найти все твиты, в которых упоминаются какие-либо планы: *plan; подходящих документов – 55;

```
Query: *plan
3_gram of query: ['pla', 'lan', 'an$']
Count: 6
Result terms for query: [u'explan', u'floorplan', u'financialplan', u'retirementplan', u'plan',
u'airplan']
```

Рисунок 9 – Результаты запроса * plan

а. Точность и полнота

Чаще всего для оценки информационного поиска используются два показателя: точность (precision) и полнота (recall). Они определены для простого случая, когда информационно-поисковая система возвращает набор документов, соответствующих запросу.

Точность (P) - определяется как отношение числа релевантных документов, найденных системой, к общему числу найденных документов. Полнота (R) - отношение числа найденных релевантных документов, к общему числу релевантных документов в базе. Эти метрики можно рассчитать следующим образом:

$$P = rac{tp}{tp + fp}; R = rac{tp}{tp + fn}$$
, где

	Релевантные	Нерелевантные
Найденные	Истинно положительные (tp)	Ложно положительные (fp)
Не найденные	Ложно отрицательные (fn)	Истинно отрицательные (tn)

Запрос *night:

$$P = \frac{208}{208 + 10} = 0,954;$$

•
$$R = \frac{208}{208+7} = 0.967.$$

Значения полноты и точности получились очень близкими к единице, полнота чуть лучше, но все равно обе метрики свидетельствуют о хороших характеристиках системы.

b. F-мера

Хорошей мерой для совместной оценки точности и полноты является F-мера, которая определяется как взвешенное гармоническое среднее точности P и полноты R:

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}, \alpha \in [0, 1].$$

При α =1/2 F-мера придает одинаковый вес точности и полноте и называется сбалансированной (F1-мера).

Запрос *night:
$$F1 = \frac{2*0,954*0,967}{0,954+0,967} = \frac{1,845}{1,921} = 0,96.$$

Значение F-меры получилось близким к единице, а значит, что и точность, и полнота в данной системе очень хороши.

с. Кривая точность – полнота (с построением графика кривой)

Она определяется аналогично ROC-кривой, описанной ниже, только по осям откладываются не FPR (False Positive Rate – доля неверно принятых объектов) и TPR (True Positive Rate – доля верно принятых объектов), а полнота (по оси абсцисс) и точность (по оси ординат).

Построим кривую точность-полнота для запроса вида *shop.

Таблица 9 – Данные для построения кривой

k	Точность	Полнота
1	1/1=1	1/36=0,027778
2	2/2=1	2/36=0,055556
3	3/3=1	3/36=0,083333
4	4/4=1	4/36=0,111111
5	5/5=1	5/38=0,138889
6	6/6=1	6/36=0,166667
7	7/7=1	7/36=0,194444
8	8/8=1	8/36=0,222222

9	9/9=1	9/36=0,25
10	10/10=1	10/36=0, 277778
11	11/11=1	11/36=0, 305556
12	12/12=1	12/36=0, 333333
13	13/13=1	13/36=0, 361111
14	14/14=1	14/36=0, 388889
15	15/15=1	15/36=0, 416667
16	16/16=1	16/36=0, 444444
17	17/17=1	17/36=0, 472222
18	18/18=1	18/36=0,5
19	19/19=1	19/36=0, 527778
20	20/20=1	20/36=0, 555556
21	21/21=1	21/36=0, 583333
22	22/22=1	22/36=0, 611111
23	23/23=1	23/36=0, 638889
24	24/24=1	24/36=0, 666667
25	25/25=1	25/36=0, 694444
26	26/26=1	26/36=0,722222
27	26/27=0,962963	26/36=0,722222
28	26/28=0,928571	26/36=0,722222
29	26/29=0,896552	26/36=0,722222
30	26/30=0,866667	26/36=0,722222
31	27/31=0,870968	27/36=0, 75
32	28/32=0,875	28/36=0, 777778
33	29/33=0,878788	29/36=0, 805556
34	30/34=0,882353	30/36=0,833333
35	30/35=0,857143	30/36=0,833333
36	30/36=0,833333	30/36=0,833333
37	30/37=0,810811	30/36=0,833333
38	30/38=0,789474	30/36=0,833333

Кривая точность-полнота

Рисунок 10 – Кривая точность-полнота

Из табл. 1 видно, что в случае, если (k+1)-й найденный документ оказывается нерелевантным, то полнота остается такой же, а точность начинает снижаться (при k=26 и k=34). Если же найден релевантный документ, то и точность, и полнота увеличиваются (например, при k=31) и кривая делает скачок вверх и вправо, что можно увидеть на рис. 7 (отрезок в конце кривой).

d. Средняя (интерполированная) точность (с построением графика)

Изучение кривой "точность-полнота" является весьма информативным, однако довольно часто желательно представить всю эту информацию с помощью нескольких и даже одного значения. Традиционно для этого используется средняя точность, интерполированная по одиннадцати точкам (eleven-point interpolated average precision).

Обычно 11 точек берут следующими:
$$r_j = \frac{j}{10}$$
, где j от 0 до 10.

То есть вычисляется значение интерполированной точности на 11 уровнях полноты. Так как в нашей системе максимальное значение полноты 0.8, то берется до этого уровня.

0,3 0,7 0 0,1 0,2 0,4 0,5 0,6 0,8 Полнота 1 Интерполированная 1 1 1 1 1 1 0,96 0,88 точность

Таблица 10 – Значения интерполированной точности

Рисунок 11 - График зависимости интерполированной точности от полноты

е. Макроусреднение

Сначала вычисляется итоговая метрика по каждому запросу, а затем результаты усредняются по всем запросам.

Характерен для оценки задач поиска, в которых важен результат в среднем по запросу, независимо от мощности ответа на этот запрос.

Итоговые метрики (полнота и точность) по каждому запросу:

$$P_1 = \frac{208}{208+10} = 0,954, R_1 = \frac{208}{208+7} = 0,967;$$

$$P_2 = \frac{30}{30+8} = 0,789, R_2 = \frac{30}{30+6} = 0,83;$$

$$P_3 = \frac{53}{53+7} = 0,883, R_3 = \frac{53}{53+2} = 0,963.$$

Макроусреднее по точности:

$$Macr_P = \frac{P_1 + P_2 + P_3}{3} = \frac{2,626}{3} = 0,875;$$

Макроусреднее по полноте:

$$Macr_R = \frac{0.967 + 0.83 + 0.963}{3} = 0.92.$$

f. Микроусреднение

Найти общий размер всех ответов, правильных ответов, искомых ответов и на их основе вычислить искомую метрику. Полезно в задачах классификации и фильтрации. В данной работе решено вычислять микроусреднее по точности и полноте.

Микроусреднее по точности:

$$Micr_P = \frac{(208+30+53)}{(208+30+53)+(10+8+7)} = \frac{291}{316} = 0,92;$$

Микроусреднее по полноте:

$$Micr_R = \frac{(208+30+53)}{(208+30+53)+(7+6+2)} = \frac{291}{306} = 0.95.$$

Микроусреднее по полноте и по точности показывает результат близкий к единице, это значит, что говорит значения точности и полноты близки к идеальным для нескольких запросов.

g. MAP (Mean average precision)

Одна из наиболее часто используемых метрик качества ранжирования. При точности на уровне k и при средней точности качество ранжирования оценивается для отдельно взятого объекта (поискового запроса). На практике объектов множество: мы имеем дело с миллионами поисковых запросов.

Рассмотрим множество документов, выданных системой вплоть до позиции очередного релевантного документа, и вычислим для этого множества значение точности. Усреднив значения точности всех таких множеств, мы получим среднюю точность (average precision – AP) одного запроса. Далее, для вычисления МАР, среднюю точность усредняют по всем запросам:

$$MAP = \frac{1}{|Q|} \sum_{i=1}^{|Q|} AP_{Kj}$$

Посчитаем среднюю точность для каждого запроса (k=10):

1) *night

$$AP_{k1} = \frac{\left(\frac{0}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10}\right)}{10} =$$

$$= \frac{0.5 + 0.33 + 0.25 + 0.2 + 0.16 + 0.14 + 0.125 + 0.11 + 0.1}{10} =$$

$$= \frac{1.915}{10} = 0.1915$$

2) *shop

$$AP_{k1} = \frac{(\frac{1}{1} + \frac{2}{2} + \frac{3}{3} + \frac{4}{4} + \frac{5}{5} + \frac{6}{6} + \frac{7}{7} + \frac{8}{8} + \frac{9}{9} + \frac{10}{10})}{10} = \frac{10}{10} = 1$$

3) *plan

$$AP_{k3} = \frac{\left(\frac{0}{1} + \frac{0}{2} + \frac{0}{3} + \frac{0}{4} + \frac{0}{5} + \frac{0}{6} + \frac{1}{7} + \frac{2}{8} + \frac{3}{9} + \frac{4}{10}\right)}{10} = \frac{0,142 + 0,25 + 0,33 + 0,4}{10} = \frac{1,122}{10} = 0,1122$$

Посчитаем макроусредненную среднюю точность:

$$MAP = \frac{AP_{k1} + AP_{k2} + AP_{k3}}{3} = \frac{0.1915 + 1 + 0.1122}{3} = \frac{1.3037}{3} = 0.4345$$

Значения МАР, вычисленные для разных информационных потребностей (разных запросов) в рамках одной системы, обычно варьируются в широких пределах (от 0,1 до 0,7). В нашем случае показатель МАР оказался равным 0,43.

h. Точность на уровне k = 10

Точность на уровне п документов определяется как количество релевантных документов среди первых п выданных документов, делённое на п. Если система выдала более п документов, то эта величина равна точности системы на первых п документах результатов запроса. Если система выдала менее п документов, то точность на уровне п документов будет заведомо не выше точности системы.

Точность на уровне п документов характеризует способность системы выдавать релевантные документы в начале списка результатов. Например, если система выдает не более 10 документов на первой странице, то precision(10) отражает качество результатов системы, получаемых на первой странице.

Точность на уровне k = 10 для запроса *plan:

$$P_{(k=10)} = \frac{4}{10} = 0.4.$$

Точность на уровне k=10 получилась не очень хорошей, что говорит о том, что система выдает мало релевантных документов в начале списка.

i. R-точность (R-precision)

По-другому точка баланса (breakeven point).

R-точность равна точности на уровне п документов для п равного количеству релевантных документов для данного запроса. Данная метрика призвана заменить точность на уровне в тех случаях, когда необходимо учесть большую разницу в количестве релевантных документов разных запросов.

Она вычисляется как точность при таком t, при котором полнота равна точности:

$$R$$
 - $precision = P([b(x) > t^*]),$

где
$$t^* = \underset{t}{argmin} |P([b(x) > t]) - R([b(x) > t])|.$$

Т.е. в нашей коллекции существует |Rel|=36 документов, релевантных запросу (*shop), тогда мы смотрим на первые 36 результатов системы и обнаруживаем, что 26 из них являются релевантными. Тогда R-точность равна:

$$R - precision = \frac{26}{36} = 0.72,$$

что эквивалентно полноте в данном случае.

ј. Порог отсечения

Идеальная модель обладает 100% чувствительностью и специфичностью. Однако на практике добиться этого невозможно, более того, невозможно одновременно повысить и чувствительность, и специфичность модели. Компромисс находится с помощью порога отсечения, т.к. пороговое значение влияет на соотношение S_e и S_p .

Выбирая точку отсечения (cut-off value), можно управлять вероятностью правильного распознавания положительных и отрицательных примеров. При уменьшении порога отсечения увеличивается вероятность ошибочного распознавания положительных наблюдений (ложноположительных исходов), а при увеличении возрастает вероятность неправильного распознавания отрицательных наблюдений (ложноотрицательных исходов).

Так как в нашей системе пользователю важно получить, как можно больше правильных документов, то было решено в качестве порога отсечения использовать минимально допустимую чувствительность. Необходимо обеспечить чувствительность теста не менее 83%, тогда оптимальным порогом будет максимальная специфичность, которая достигается при 83% чувствительности.

k. ROC – кривая (с построением графика), чувствительность и специфичность Иногда для оценки системы поиска используется кривая соотношений правильного и ложного обнаружения, или кривая ROC (receiver operating characteristics). Кривая ROC

представляет собой зависимость доли истинно положительных или чувствительности от доли ложно положительных результатов равной (1-специфичность). Чувствительность (sensitivity) — это просто синоним полноты. Специфичность вычисляется по формуле:

$$S_p = \frac{tn}{t_n + f_p}.$$

Строится график зависимости: по оси Y откладывается чувствительность S_e , по оси X откладывается $(1-S_p)$, или, что тоже самое, FPR — доля ложно положительных случаев.

Кривая ROC всегда следует из левого нижнего угла в правый верхний угол. Для хорошей системы график в левом нижнем углу резко поднимается вверх. Поскольку множество истинно отрицательных всегда велико, уровень специфичности для всех информационных потребностей всегда будет близким к единице (и соответственно, доля ложно положительных всегда почти равна нулю).

Так как для последующего анализа необходима оценка ROC-кривой на промежутке от 0 до 1, то было решено нормировать значения чувствительности и специфичности от 0 до 1, приняв за единицу порог отсечения -83%.

Построим ROC-кривую для запроса вида *shop.

Таблица 11 – Данные для ROC-кривой

k	Специфичность	1 - Специфичность	Полнота	Нормированная	Нормированная 1-
				полнота	Специфичность
1	1	0	0,027778	0,033333333	0
2	1	0	0,055556	0,066666667	0
3	1	0	0,083333	0,1	0
4	1	0	0,111111	0,133333333	0
5	1	0	0,138889	0,166666667	0
6	1	0	0,166667	0,2	0
7	1	0	0,194444	0,233333333	0
8	1	0	0,222222	0,266666667	0
9	1	0	0,25	0,3	0
10	1	0	0,277778	0,33333333	0
11	1	0	0,305556	0,36666667	0
12	1	0	0,333333	0,4	0
13	1	0	0,361111	0,433333333	0
14	1	0	0,388889	0,46666667	0
15	1	0	0,416667	0,5	0
16	1	0	0,444444	0,533333333	0
17	1	0	0,472222	0,566666667	0
18	1	0	0,5	0,6	0
19	1	0	0,527778	0,633333333	0
20	1	0	0,55556	0,66666667	0
21	1	0	0,583333	0,7	0
22	1	0	0,611111	0,733333333	0
23	1	0	0,638889	0,766666667	0

24	1	0	0,666667	0,8	0
25	1	0	0,694444	0,833333333	0
26	1	0	0,722222	0,86666667	0
27	0,996815287	0,003184713	0,722222	0,86666667	0,125
28	0,993630573	0,006369427	0,722222	0,86666667	0,25
29	0,99044586	0,00955414	0,722222	0,86666667	0,375
30	0,987261146	0,012738854	0,722222	0,86666667	0,5
31	0,987261146	0,012738854	0,75	0,9	0,5
32	0,987261146	0,012738854	0,777778	0,933333333	0,5
33	0,987261146	0,012738854	0,805556	0,966666667	0,5
34	0,987261146	0,012738854	0,833333	1	0,5
35	0,984076433	0,015923567	0,833333	1	0,625
36	0,98089172	0,01910828	0,833333	1	0,75
37	0,977707006	0,022292994	0,833333	1	0,875
38	0,974522293	0,025477707	0,833333	1	1

Рисунок 12 - ROC-кривая

Как видно из Рисунка 11 график в нижем левом углу достаточно резко поднимается вверх, что говорит о хорошей системе. Доля истинно положительных результатов гораздо больше доли ложно положительных.

l. Показатель AUC

Количественную интерпретацию ROC даёт показатель AUC (area under ROC curve, площадь под ROC-кривой) — площадь, ограниченная ROC-кривой и осью доли ложных положительных классификаций. Площадь принимает значение от 0 до 1. Чем выше показатель AUC, тем качественнее классификатор, при этом значение 0,5 демонстрирует непригодность выбранного метода классификации. Значение менее 0,5 говорит, что классификатор действует с точностью до наоборот.

Посчитаем площадь под кривой на основе построенной выше ROC-кривой.

$$AUC = 0.8333333334 \cdot 0.5 + 0.9666666667 \cdot 0.5 = 0.90000000005$$

Чем больше значение AUC, тем «лучше» система. Для хорошей системы в данном случае площадь должна быть как можно ближе к 1. Сравнивая полученный показатель AUC

с максимальным значением площади можно сказать, что система является довольно хорошей.

т. Совокупная выгода в обычном и нормированном виде

Cumulative Gain at k:

$$CG@k = \sum_{j=1}^{k} rel(j).$$

CG@k может использоваться и в случае небинарных значений функции релевантности rel(j).

Discounted cumulative gain at k – модификация cumulative gain at k, учитывающая порядок элементов в списке путем домножения релевантности элемента на вес равный обратному логарифму номера позиции:

$$DCG@k = \sum_{i=1}^{k} \frac{2^{rel(j)} - 1}{\log(j+1)}.$$

Если rel(j) принимает только значения 0 и 1, то формула принимает вид:

$$DCG@k = \sum_{i=1}^{k} \frac{rel(j)}{\log(j+1)}.$$

Normalized discounted cumulative gain at k – нормализованная версия DCG@k:

$$NDCG@k = \frac{1}{|Q|} \sum_{q \in Q} n_q DCG@k,$$

где n_q – показатель идеально ранжированной выдачи.

Рассчитаем совокупную выгоду в обычном и нормированном виде для k=10 для запроса *plan.

Определим функцию релевантности:

$$rel = \begin{cases} 0, & \text{документ нерелевантен запросу;} \\ 1, & \text{документ релевантен запросу.} \end{cases}$$

Посчитаем совокупную выгоду и дисконтированную совокупную выгоду:

$$CG@k = 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 = 4$$

$$DCG@k = 0 + \frac{0}{\log 3} + \frac{0}{\log 4} + \frac{0}{\log 5} + \frac{0}{\log 6} + \frac{0}{\log 7} + \frac{1}{\log 8} + \frac{1}{\log 9} + \frac{1}{\log 10} + \frac{1}{\log 11} = 0,33 + 0,315 + 0,301 + 0,289 = 1,235.$$

Определим показатель идеально нормированной выдачи, для этого рассмотрим идеальный исход для нашего запроса. Лучшим исходом бы была следующая выдача на запрос: $\{1,1,1,1,0,0,0,0,0,0,0,0\}$.

$$IDCG = DCG@k = 1 + \frac{1}{\log 3} + \frac{1}{\log 4} + \frac{1}{\log 5} + \frac{0}{\log 6} + \frac{0}{\log 7} + \frac{0}{\log 8} + \frac{0}{\log 9} + \frac{0}{\log 10} + \frac{0}{\log 11} = 1 + 0.63 + 0.5 + 0.43 = 2.56.$$

Посчитаем совокупную выгоду в нормированном виде:

$$NDCG@k = \frac{DCG}{IDCG} = \frac{1,235}{2,56} = 0,48.$$

Вывол

В ходе проделанной работы были реализованы два типа динамических индексов для поисковой системы: перестройка заново (1) и вспомогательный индекс - весь индекс в одном файле (2). Операции вставки, удаления или изменения документа при 2 типе индекса происходит гораздо быстрее, но иногда необходим момент слияния, который значительно увеличивает время. Тип 1 индекса достаточно прост и его удобно использовать, когда изменения в коллекции документов происходят очень редко, так как при выполнении поиска происходит проход лишь по одному файлу с индексом, а не по двум, как в случае со 2-ым индексом. Также при выполнении поиска с использованием 2-го индекса необходимо хранить в памяти вектор недействительных документов и проходиться по нему, что также увеличивает время. Но если изменения происходят часто, то его использование предпочтительнее.

Также были успешно вычислены метрики качества информационного поиска и построены графики по некоторым из них. Согласно данным метрикам можно оценить качество информационного поиска построенной системы как хорошее. Система успешно удовлетворяет информационные потребности, которые требуются от нее.