Extra Exercises on Limit of Sequences

Recall on page 48 of the transparencies, we have the <u>definition of limit of sequences</u> as follows:

A sequence x_1, x_2, x_3, \ldots converges to a number x (or has limit x) if and only if for every $\varepsilon > 0$, there exists $K \in \mathbb{N}$ such that $n \geq K$ implies $|x_n - x| < \varepsilon$.

On page 50 of the transparencies, there is example 6, which shows how to do a limit problem by checking the definition of limit. For the exercises below, apply similar reasoning as in example 6 to give a proof of the limit in the exercise by checking the definition of limit.

Exercise A. Prove that $\lim_{n\to\infty} \left(\frac{2n^2-1}{4n^2} + \frac{3n}{2n+1}\right) = 2$ by checking the definition of limit of sequences.

Exercise B. Prove that $\lim_{n\to\infty} \left(\frac{n^4}{3n^4-2} - \frac{1-2n}{3n}\right) = 1$ by checking the definition of limit of sequences.

Next we present variations of these exercises. First we recall on page 50 of the transparencies, there is the <u>boundedness theorem</u>, which said if a sequence x_1, x_2, x_3, \ldots has a limit, then $\{x_1, x_2, x_3, \ldots\}$ is bounded (above and below). This means there exists a positive number M such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

<u>Example 1.</u> Let $a_n > 0$ and $\lim_{n \to \infty} a_n = 2$, then prove $\lim_{n \to \infty} \frac{a_n}{3a_n + 5} = \frac{2}{11}$ by checking the definition of limit of sequences.

<u>Sketch work.</u> Since $a_n > 0$, so $3a_n + 5 > 5$. Then

$$\left|\frac{a_n}{3a_n+5} - \frac{2}{11}\right| = \left|\frac{11a_n - (6a_n+10)}{11(3a_n+5)}\right| = \frac{5|a_n-2|}{11(3a_n+5)} \le \frac{5|a_n-2|}{11 \times 5} = \frac{|a_n-2|}{11} < \varepsilon \quad \text{if} \quad |a_n-2| < 11\varepsilon.$$

<u>Solution.</u> For every $\varepsilon > 0$, since $\lim_{n \to \infty} a_n = 2$, by the definition of limit of sequences, there exists $K \in \mathbb{N}$ such that $n \ge K$ implies $|a_n - 2| < 11\varepsilon$. Then

$$\left| \frac{a_n}{3a_n + 5} - \frac{2}{11} \right| = \left| \frac{11a_n - (6a_n + 10)}{11(3a_n + 5)} \right| = \frac{5|a_n - 2|}{11(3a_n + 5)} \le \frac{5|a_n - 2|}{11 \times 5} = \frac{|a_n - 2|}{11} < \varepsilon.$$

<u>Example 2.</u> Let $\lim_{n\to\infty} x_n = 3$. Prove that $\lim_{n\to\infty} \left(\frac{x_n}{\sqrt{n}} + \frac{9n}{n+1}\right) = 9$.

<u>Sketch work.</u> First $\frac{x_n}{\sqrt{n}} \to 0$ and $\frac{9n}{n+1} \to 9$. By boundedness theorem, $\exists M > 0$ such that $\forall n \in \mathbb{N}, |x_n| \le M$. So $\left|\frac{x_n}{\sqrt{n}} - 0\right| \le \frac{M}{\sqrt{n}} < \frac{\varepsilon}{2}$ if $n > \left(\frac{2M}{\varepsilon}\right)^2$. Next, $\left|\frac{9n}{n+1} - 9\right| = \frac{9}{n+1} < \frac{9}{n} < \frac{\varepsilon}{2}$ if $n > \frac{18}{\varepsilon}$.

<u>Solution.</u> By boundedness theorem, $x_n \to 3$ implies $\exists M > 0$ such that $\forall n \in \mathbb{N}, |x_n| \leq M$. For every $\varepsilon > 0$, by the Archimedean principle, $\exists K \in \mathbb{N}$ such that $K > \max\{\left(\frac{2M}{\varepsilon}\right)^2, \frac{18}{\varepsilon}\}$. Then $n \geq K$ implies

$$\left|\frac{x_n}{\sqrt{n}} + \frac{9n}{n+1} - 9\right| \leq \left|\frac{x_n}{\sqrt{n}} - 0\right| + \left|\frac{9n}{n+1} - 9\right| \leq \frac{M}{\sqrt{n}} + \frac{9}{n+1} \leq \frac{M}{\sqrt{n}} + \frac{9}{n} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Exercise C. Let $b_n > 0$ and $\lim_{n \to \infty} b_n = 1$. Prove that $\lim_{n \to \infty} \left(\frac{b_n}{1 + b_n^2} + \frac{3n}{n+4} \right) = \frac{7}{2}$ by checking the definition of limit of sequences. (Hint: Find the limit of each term. Use triangle inequality as in example 2 above.)

Exercise D. Let $c_n > 0$. Prove that if $\{c_n\}$ converges to 2, then $\lim_{n \to \infty} \left(\frac{1}{n+c_n} + \frac{c_n}{c_n+2}\right) = \frac{1}{2}$ by checking the definition of limit of sequences. (Hint: Find the limit of each term. Use triangle inequality as in example 2 above.)