Name: Varun Agarwal

Registration Number: 16BEC0450

ECE3003- Microcontroller and its Applications

Lab Slot: L37+L38

Prof. Chitra P

TASK II

Program 1

Write an 8051 ALP for the following

55H AND AAH

Code:

ORG 0000H

XX:MOV A,#55H

ANL A,#0AAH

MOV 07H,A

SJMP XX

END

55H OR AAH

Code:

ORG 0000H

YY: MOV A,#55H

ORL A,#0AAH

MOV 07H,A

SJMP YY

END

OUTPUT:

55H XOR AAH

Code:

ORG 0000H

MOV A,#55H

CPL A

ANL A,#0AAH

MOV 07H,A

CLR A

MOV A,#0AAH

CPL A

ANL A,#55H

ORL A,07H

MOV 09H,A

END

OUTPUT:

Program 2

Write an 8051 ALP for the following TRUTH TABLE

AND LOGIC			
INPUT		OUTPUT	
A	В	Y = A.B	
0	0		
0	1		
1	0		
1	1		

OR LOGIC			
INPUT		OUTPUT	
A	В	Y = A + B	
0	0		
0	1		
1	0		
1	1		

XOR LOGIC			
INPUT		OUTPUT	
A	В	$Y = A \oplus B$	
0	0		
0	1		
1	0		
1	1		

AND Logic

Code & Output:

ORG 0000H

SETB P1.0

SETB P1.1

CLR P2.0

XX: MOV C,P1.0

ANL C,P1.1

MOV 07H,C

MOV P2.0,C

SJMP XX

END

OR Logic

Code:

ORG 0000H

SETB P1.0

SETB P1.1

CLR P2.0

XX: MOV C,P1.0

ORL C,P1.1

MOV 07H,C

MOV P2.0,C

SJMP XX

XOR Logic

Code:

ORG 0000H

SETB PO.0

SETB PO.1

CLR P1.0

XX: MOV C,P0.0

CPL C

ANL C,P0.1

MOV 09H,C

MOV C,P0.1

CPL C

ANL C,PO.0

ORL C,09H

MOV P1.0,C

SJMP XX

END

Draw the truth table for the following circuits and verify the same by writing the 8051 ALP using Keil IDE.

Program 2A

Write an 8051 ALP for the following circuit

The reduced expression of this logic circuit diagram is:

$$x.y + \overline{y}.z$$

$$u = x.y$$

 $t = \overline{y}$ v = y.z

Assume 'x', 'y' and 'z' to be stored in port 0 bits P0.0, P0.1 and P0.2 respectively. And the outputs 'u', 't', 'v' and 'w' in port 1 bits P1.0, P1.1, P1.2 and P1.3 respectively. So the output screenshot and code for the expression will be:

Code:

Also

```
ORG 0000H

SETB P0.0

SETB P0.1

SETB P0.2

CLR P1.0

CLR P1.1

CLR P1.2

CLR P1.3
```

XX: MOV C,P0.0 ANL C,P0.1 MOV P1.0,C CLR C MOV C,P0.1 CPL C MOV P1.1,C ANL C,P0.2 MOV P1.2,C ORL C,P1.0 MOV P1.3,C SJMP XX

END

Program 2b

The reduced expression of this logic circuit diagram is: (Full adder)

$$s = x \oplus y \oplus z$$
$$c = x \cdot y + (x \oplus y) \cdot z$$

Let us assume 'x', 'y' and 'z' to be stored in port 0 bits P0.0, P0.1 and P0.2 respectively. And the outputs 's' and 'c' in port 1 bits P1.0, P1.1 respectively. So the output screenshot and code for the expression will be:

Code & Output:

```
ORG 0000H
       SETB PO.0
       SETB P0.1
       SETB PO.2
       CLR P1.0
       CLR P1.1
      XX: MOV C,P0.0
       CPL C
       ANL C,P0.1
       MOV 07H,C
       CLR C
       MOV C,P0.1
       CPL C
       ANL C,PO.0
       ORL C,07H
       MOV 08H,C
       CLR C
       MOV C,P0.2
       CPL C
       ANL C,08H
       MOV 09H,C
       CLR C
       MOV C,08H
       CPL C
       ANL C,PO.2
       ORL C,09H
       MOV P1.0,C
       CLR C
       MOV C,P0.0
       ANL C,P0.1
       MOV 0AH,C
       CLR C
       MOV C,P0.0
       CPL C
       ANL C,P0.1
       MOV 0BH,C
       CLR C
       MOV C,P0.1
       CPL C
```

ANL C,P0.0 ORL C,0BH ANL C,P0.2 ORL C,OAH MOV P1.1,C SJMP XX END

1. x=0;y=0;z=0 so s=0 and c=0

2. x=0;y=0;z=1 so s=1 and c=0

3. x=0;y=1;z=0 so s=1 and c=0

4. x=0;y=1;z=1 so s=0 and c=1

5. x=1;y=0;z=0 so s=1 and c=0

6. x=1;y=0;z=1 so s=0 and c=1

7. x=1;y=1;z=0 so s=0 and c=1

8. x=1;y=1;z=1 so s=1 and c=1

Program 2c

Write an 8051 ALP for the following circuit.

Code:

END

ORG 0000H
SETB P1.0
SETB P1.1
CLR P2.0
CLR P2.1
BACK: MOV C,P2.1
ANL C,P1.0
CPL C
MOV P2.0,C
MOV C,P2.0
ANL C,P1.1
CPL C
MOV P2.1,C
SJMP BACK

