$./\mathrm{res}/$

Progetto reti logiche

Prof. Gianluca Palermo - Anno 2019/2020

Rigutti Luca [codice persona: 10558383] Tortorelli Giuseppe [codice persona: 10582962]

Contents

1	Introduzione
	1.1 Scopo del progetto
	1.2 Specifiche generali
	1.3 Interfaccia del componente
	1.4 Dati e descrizione memoria
2	Design
	Design 2.1 Stati della macchina
	2.1.1 stato x
3	Risultati dei test
4	Conclusione
	4.1 Risultati della sintesi
	4.2 Ottimizzazioni

1 Introduzione

1.1 Scopo del progetto

Il progetto di reti logiche dell'anno accademico 2019-2020 si basa sul metodo di codifica a bassa dissipazione di potenza detto "Working Zone". Il metodo Working Zone lavora sul Bus Indirizzi e si usa per codificare il valore di un indirizzo nel caso questo appartenga a certi intervalli noti, le working-zone. Ci possono essere multiple working-zone, ognuna delle quali parte da un indirizzo base e si estende per una dimensione fissa.

1.2 Specifiche generali

Vengono fornite 8 Working Zone e l'indirizzo da codificare. Ogni Working Zone parte dall'indirizzo base e si estende per una dimensione complessiva di 4 indirizzi (incluso quello base). Si possono presentare due casi:

1. Indirizzo non presente in nessuna Working Zone

In questo caso l'indirizzo codificato da restituire in output è così formato:

$WZ_BIT \& ADDR$

- WZ_BIT: è il bit che indica se l'indirizzo appartiene o meno a qualche Working Zone e in questo caso vale 0.
- ADDR: è l'indirizzo originale fornito in input.

2. Indirizzo presente in una Working Zone

In questo caso l'indirizzo codificato da restituire in output è così formato:

WZ_BIT & WZ_NUM & WZ_OFFSET

- WZ_BIT: è il bit che indica se l'indirizzo appartiene o meno a qualche Working Zone e in questo caso vale 1.
- WZ_NUM: è il numero della Working Zone a cui l'indirizzo appartiene.
- WZ_OFFSET: è l'offset tra l'indirizzo base della Working Zone e l'indirizzo da codificare.

L'indirizzo da codificare è espresso su 7 bit, in modo tale da rappresentare tutti i valori che vanno da 0 a 127. Le Working Zone e l'indirizzo codificato sono espressi su 8 bit.

Poichè le Working Zone sono 8, WZ_NUM è espresso su 3 bit. Ne consegue che WZ_OFFSET è espresso su 4 bit.

In particolare WZ_OFFSET è codificato 1 hot così come segue:

- WZ_OFFSET = 0 è codificato come 0001;
- WZ_OFFSET = 1 è codificato come 0010;
- WZ_OFFSET = 2 è codificato come 0100;
- WZ_OFFSET = 3 è codificato come 1000;

1.3 Interfaccia del componente

```
entity poject_reti_logiche is
    port (
                      : in std_logic;
         i_clk
         i_start
                     : in std_logic;
         i_rst
                     : in std_logic;
                     : in std_logic_vector(7 downto 0);
         i_data
         o_address : out std_logic_vector(15 downto 0);
o_done : out std_logic;
                    : out std_logic;
         o_en
                    : out std_logic;
         o_we
         o_data : out std_logic_vector(7 downto 0)
    );
end project_reti_logiche;
```

- i_clk è il segnale di CLOCK;
- i_start è il segnale di START;
- i_rst è il segnale di RESET;
- i_data è il segnale che arriva dalla memoria in seguto ad una richiesta di lettura;
- o_address è il segnale di uscita che manda l'indirizzo alla memoria;
- o_done è il segnale di uscita che comunica la fine dell'elaborazione
- o_en è il segnale di ENABLE da mandare alla memoria per abilitare la lettura
- o_we è il segnale di WRITE ENABLE da mandare alla memoria per abilitare la scritture
- o_data è il segnale di uscita che invia alla memoria l'indirizzo codificato

1.4 Dati e descrizione memoria

I dati, ciascuno di dimensione 8 bit (ADDR è esteso con uno 0 in posizione più significativa), sono memorizzati in una memoria RAM di 16 celle con indirizzamento al byte:

- Le cella di indirizzi dallo 0 al 7 contengono gli indirizzi base delle 8 Working Zone;
- La cella di indirizzo 8 contiene l'indirizzo da codificare;
- La cella di indirizzo 9 contiene l'indirizzo codificato che viene fornito in output;
- Le restanti celle sono inutilizzate;

memoria.png

2 Design

2.1 Stati della macchina

2.1.1 stato x

Nella progettazione del sistema, visto che per accedere alla ram si può farlo solo un ciclo di clock alla volta, si è deciso di memorizzare le working zone all'interno del circuito per poter eseguire la codifica su un ciclo di clock per ogni indirizzo da codificare.

3 Risultati dei test

Qui mettiamo uno screenshot del simulatore

4 Conclusione

4.1 Risultati della sintesi

4.2 Ottimizzazioni