Limit of Junctions

~ Def. of limit

~ Limit of fct. & seq.

~ Algebra of limits.

~ Limit of monotine fd.

3- Limits of functions. Def. A set PER is a neighborhood of a pt. xer if 38>0 pt. (6-5, x+8) = P. (2-Six48) In 8>0 is a neighborhood of z. Thm. Let SSR: Then xo E acc(E) iff. B(xn), xn &S, xn + xo p.t. xn -> xo. Proof. Let xo & are (E). Choose 8:= 1. Then, Ymz1, 3xnES o.t. |xn-xo| & fr. xn + xo Ynz1. [Gro-in, North) US contains in I many element]. Let Ero. Then INEIN o.t. IN < E (by AP). nen = |xn-xol < 1 < 1 < E. So $x_n \rightarrow x_0$. From the other implication, (20.8, 20+8) US will contain infinitely many on (NEN). 12 2.1 Def. of limits. we want to Invalize the notion of

" x close to xo, the ft) close to L". we will use a servitor det. of the sequence.

Def. Let J: DER - OR and x0 & acco). I has a limit at to iff BLER at. YE>O 38>0 o.f. 0< |x-x0|<8 ⇒ |fm-L|<€. Other words. BLER, YESO .ta os&E xe (x-8, x + 8) / fx), x = D fho ∈ (L-ε, L+ε). Notation · lim flo = L · lim fre) = L (xo is clear) 1/2) -> L

Examples (1) $f(x) = \frac{x^2-1}{2c-1}$, compute $\lim_{x \to 1} f(x)$

(2)
$$f(x) = \frac{|x|}{x}$$
, $x \neq 0$. $\lim_{x \to 0} f(x)$?
(3) $f(x) = \frac{1}{x}$, $x \in (0,1)$. $\lim_{x \to 0} f(x)$?
(3) $f(x) = \frac{1}{x}$, $x \in (0,1)$. $\lim_{x \to 0} f(x)$.
(4) $f(x) = \frac{1}{x}$, $f(x) = \int_{0}^{\infty} 0$, $x \in \mathbb{R}^{n}$, $G(x) = \int_{0}^{\infty} \frac{P}{q}$, $x = \frac{P}{q}$ $g(x) = \frac{P}{q}$.
[$\varepsilon > 0$, $\exists g \in \mathbb{N}$ of $\frac{1}{g_{0}} < \varepsilon$.

It S:= min { |xo-ril: i=1,2,...,n}.

Now, if
$$[x-x_0] < \delta$$
, then $x \neq r_i, i=1,...,n$.
• $x \in \Omega \cap I_0 \cap I$, $x = \frac{p}{q}$. But $q \ge q_0$ so

• $x \in [0, D] \Omega$, then $|fho-o| = 0 < \varepsilon$. Thus, $f(x) \longrightarrow 0$, $x \longrightarrow x_0$.

2.2. Limits of Junctions of pag.
Thm. J: DGR >R and xo & accou.
I has a limit at xo iff. YEAD, INED
xn -> xo, xn = xo Yn21, (ftrn) converges.
Proof.
(=>) Suppose $\lim_{n \to \infty} \int_{\mathbb{R}^n} dx = 1$ and $\lim_{n \to \infty} (x_n) = 1$ and $\lim_{n \to \infty} (x_n) = 1$.
Let E>O. Then 38>O pt.
0 2-20/<8 = [ft)-L1 <e.< th=""></e.<>
Now, In->xo. So BNEIN at.
xr-x0 < 8.
So, by M, HAN-LIKE MAN.
So JAN - DL.
(=) Suppose (H) is true , but I has no
limit. Then, YLER, JE>O p.t. 48>0
∃ x1€ (x0-8, x+8), x≠ x6 o.t.
JH)-11 > E

Take $S = \frac{1}{m}$. Then $\exists x \in (x_0 - \frac{1}{m}, x_0 + \frac{1}{m}) \cap D$ o.t. xn = zo Vnz1 but $|J(x_n)-L|\geq \varepsilon$. So, by construction, In -> 20 but HIXN)-LIZE YLER. So, (flan)) down't converge, #. 7 Corollary. f: DER -> R d x0 E accord.

If Y(xn), xn &D, xn + x0, xn -> x0;

If $V(x_n)$, $x_n \in D$, $x_n \neq x_0$, $x_n \rightarrow x_0$, $(J(x_n))_{n=1}^{\infty}$ is a Cauchy seq., then J has a limit at x_0 .

Thm. $J:D\subseteq\mathbb{R} \longrightarrow \mathbb{R}$ & $x_0 \in acc(D)$. If f has a limit at x_0 , then $J \in \mathcal{S} \times d$ $J \mapsto \mathcal{S} \wedge d$ $J \mapsto \mathcal{S} \times d$ $J \mapsto$

Proof. Let $\lim_{x\to\infty} J(x) = L$. For $\varepsilon = 1$, $J(s) \circ \rho \cdot d$. $\forall x \in D$, $0 < |x-z_0| < s \Rightarrow |f(x)-L| < 1$.

So, In these x, |f(x)| < 1+ |L|. \Box

This is why the function $f(x) = \frac{1}{x}$ can't have a limit at $x_0 = 0$. 2.3. Algebra of limits Det. J.g: DER->R be two function. a) (f+g)(x) := f(x) + g(x) $\forall x \in D$. b) (fg) (x):= f(g(x)) Yx eD. c) $\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)} \forall x \in D \left(\frac{g(x)}{g(x)}\right)$ Thm Let J: DSR->Rdg: DSR->Rd xo e acc (D). Suppose of d g have a limit at xo. (a) f+g has a limit at to f $\lim_{x \to 0} (f+g)(x) = \lim_{x \to 0} f(x) + \lim_{x \to 0} g(x)$. (b) fg has a limit at to &

(a) f+g has a limit at x_0 of $\lim_{x \to \infty} (f+g)(x) = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$.

(b) $f = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$.

(c) if $g(x) \neq 0$ $f(x) = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$.

(d) $f = \lim_{x \to \infty} f(x) \neq 0$ $f(x) = \lim_{x \to \infty} f(x)$.

(e) if $g(x) \neq 0$ $f(x) = \lim_{x \to \infty} g(x) \neq 0$ $f(x) = \lim_{x \to \infty} f(x)$. $f = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$.

(a) Use the sequence characterization (b) Use the S-E definition. Examples of Jemetais 1) fx=x,xer. limx = xo. 2) JW=k, XER, KER. Limk = k. (3) $f(x)=x^n$, $x \in \mathbb{R}$, $n \ge 1$. $\lim_{x \to x_0} x^n = x_0^n$. 4) flat = arx + ... + aix + ao, x ER, ai ER. lim (arxht ... + a, x+00) = anxo+...+ao. (5) $f(x) = \frac{p(x)}{g(x)}$, pig are polynomials and D:= { x & R: 9 (x) = 0 }. For $x \in D$, $\lim_{x \to x_0} \frac{p(x)}{g(x)} = \frac{p(x_0)}{g(x_0)}$. (6) 1: DSR→[0, D), xo ∈ acc (D). If limft = 1,

Hen lim \f(x) = \[\] \.

Example Consider Jbx) = 54+x -2, x & 10,0. Find lim flx). 2.4 Limits of manotene Junations Example Let Jho = [2] where [x]: larged integer less then x. Hove, [3]=1, [m]=3, [-2]=-1. Fr x & Eninti), Jho=m, and no is constant on each introd (nin+1). So, I will have a limit, lim jho) = n. Now, if zo=m∈Z, Hen xomidu $x_n = x_0 + \left(\frac{1}{m}\right)(0)^n$, n21. Then, xn -> xo, but · n=2k, 1/x0+ 1) = m -> m · m = 2k+1, f(x0- 1) = m-1 - m-1 So, (1/2n)) and doesn't converge => of doesn't have a limit at all rese II.

. fet increases. . countable nb of jumps. Def. f. DSR ->R. fis said to be (a) increasing of x < y , then fix < f(y) YnceD. (b) decreasing if x≤y, then f(x) ≥ f(y) Ax ep. (c) monotone if f is increasing or deare. Considu f: [a,B] -> R d f increasing. fla) = flo) = flb) YZE CAB).

So, In $\alpha < \alpha < \beta$, define $U(\alpha) = \inf \{f(y) : \alpha < y\}$, $L(\alpha) := \sup \{f(y) : y < \alpha \le y\}$

Lemma. Let J: [d, B] -> IR he increasing. then I has a limit at xo e (x, B) eff. U(x)= L(x) and on this come lim flx) = flxo) = U(xo) = L(xo). Proof. Suppose f has a limit at 20, say L. Let E>O. Then there is a 8>O o.t. 1x-xol28, xe [diB] => If 60-11 LE. Now, Jxiye [x, B) pol. 20-8<26<20<9<20+8. By the def. of U(26) of L(20) Ulxo) & fly) < L+E and L-E < f(x) & L(x0). So, L(x0) - U(x0) > -28. Since T(x0) - n(x0) 50

By the AC, U(x) of L(x) one well-define $\forall x$. Here U(x) - L(x) measures the jump of \int of x. I talk about [x] [Thun, $U(x_0) - L(x_0) < 2E$ $\forall E > 0$.

Thun, $U(x_0) = L(x_0)$. Also, $L(x_0) \leq f(x_0) \leq U(x_0) \Rightarrow f(x_0) = U(x_0)$ $= L(x_0)$.

Finally, from our least calculations with $\in \mathcal{S}$ $\Rightarrow 2 - E \leq f(x) \leq L(x_0) \leq U(x_0) \leq f(y) \leq L + E$ $\Rightarrow |U(x_0) - L| \leq E \quad \forall E > 0$

 $|U(xo)-L| \le \forall E > 0$ $|U(xo)-L| \le |U(xo)-L| < E$ Suppose |U(xo)-L| < ESuppose |U(xo)-L| < E |U(xo

Let $\varepsilon>0$.

• $U(x_0)+\varepsilon$, $\exists y_1 \in [\kappa,R] \text{ o.t. } y_1 > x_0$ • $U(x_0) \neq f(y_1) \neq U(x_0) + \varepsilon$

- $L(x_0) - \varepsilon$, then $\exists y_z \in E_{d_1}B$), $y_{z<x_0}$ $L(x_0) - \varepsilon < f(y_z) < L(x_0)$. Take $S:=\min \{ |x_0 - y_1|, |x_0 - y_2|\}$. Let

XE [a, B], 12-70/28

So, 20-8< x< x0 ⇒ y1<x $\Rightarrow L(x_0) - \varepsilon < f(y_2) < f(x) \leq f(y_1) < U(x_0) + \varepsilon.$ Smitaly, 702x2x018 => x< y1 => L(x0)-E< f(y) f(x) = f(y1) < U(x0)+E. Thus, in the two cases, we get 2+(0x)) × (x) + > 3-(0x)+E But L(x0) = U(x0) = f(100) => - E < f(x) - f(x0) < E So, If(x)-f(xo) (ce and lim fx) = fxo) , We assumed that I was increasing. We can do it when I is decreasing (why? Take -J). Remark. We have reglected the points of of B. U can't be define at B and L can't be define at d. See exercise 24 of the book.

Then Let f: [a, B) -> IR be monotonic. Let D:= { x \in R: x \in x \in \begin{picture} \frac{1}{2} \\ \text{x-xo} \\ \frac{1}{2} \\ \text{x-xo} \\ \frac{1}{2} \\ \text{x-xo} \\ \text{x-Then D is countable. Proof. Suppose f is increasing. By the previous lemma, X ED (x0) & L(x0) (x0)-L(x0)>0. Define $D_n := \left\{ x \in [k, R] : U(x) - L(x) \right\} \frac{1}{n} \left\{ \right\}.$ It is obvious that D= WDn (Use AP). Let x1, x2,..., xr ED In some rEN o.l. d< 21 < x2 < ... < x < &... deziexi, xiezenexin i=1,7,..., r-1 xr < Zri B. For each i, Zi = xi => f(Zi) = L(xi) Also, for each i, xi' = Ziti => U(xi) = f(Ziti).

This implies that $\frac{1}{2i} - \frac{1}{2i} - \frac{1}{2i} = \frac$

 $\Rightarrow r \leq n \left[\int (\beta) - \int (\partial) \right].$ So, r is bounded! Thus, Dn must be finite. Since $D = \bigcup D_n$ in D must be countable $\sum_{n \geq 1}^{\infty} \int D_n dn$

3.5 Other concepts.

Test limit at a and -a.

Def Proght-hand and left-hand limits.

<u> Grood</u>

Suggested problems from the book.

- · Section 2.1: 1-5, 8, 10-12, 14
- · Section 2.2: 16, 18-20, 22
- . Sectron 2.3: 23,24
- · Hrscellenous: 26.
 - · Projects: 2.2,2.3,2.4.