

Generation intervals in space

Jonathan Dushoff¹, Sang Woo Park¹, and David Champredon²

¹McMaster University, Hamilton, Ontario, Canada; ²York University, Toronto, Ontario

Introduction

- ► Generation interval (GI) measures time between when a person is infected and when that person infects another person
- ▶ GI distributions, $g(\tau)$, link speed, r, and strength, \mathcal{R} , of an epidemic [1]

$$1/\mathcal{R} = \int g(au) \exp(-r au) d au$$

- ► Previous work showed that measuring GI through contact tracing data can introduce bias [2]
- Trapman et al. [3] demonstrated that network structure can affect \mathcal{R} but it also has effect on GI distributions

- During an exponential growth perid, an observed GI distribution is proportional to $g(\tau) \exp(-r\tau)$.
- ▶ By weighting an observed distribution by $exp(r\tau)$, the intrinsic GI distribution can be recovered

Longer generation interval requires higher \mathcal{R} given fixed exponential growth rate r.

Temporal correction on an empirical network

- Something about network/spatial effect
- $ightharpoonup \mathcal{R}$ estimate based on corrected GI distributions matches empirical \mathcal{R} . Meanwhile, using intrinsic GI distributions and observed GI distributions can over/underestimate \mathcal{R} .

[2] David Champredon and Jonathan Dushoff. Intrinsic and realized generation intervals in infectious-disease transmission. In Proc. R. Soc. B, volume 282, page

[3] Pieter Trapman, Frank Ball, Jean-Stéphane Dhersin, Viet Chi Tran, Jacco Wallinga, and Tom Britton. Inferring r0 in emerging epidemicsthe effect of

common population structure is small. Journal of the Royal Society Interface, 13(121):20160288, 2016.

20152026. The Royal Society, 2015.