Computer Organization and Architecture

Lecture – 29

Nov 28th, 2022

Final Exam Review

Final Exam Review

- Chapter 1:
 - Performance
 - CPU Execution time
 - CPI
 - Amdahl's Law

Chapter – 1: Performance

Variables

Cycle

cycle count

Cycle time

Period

Rate

Cycles per instruction

Instruction count

Execution Time

UNIVERSITY of **HOUSTON**

Performance

- To define performance of a computer A
- Run a program and compute the time to complete (execution time)
- Less the time better is the performance

```
performance_{A} \propto \frac{1}{(execution time)}
```


- 1 execution performed by the computer
- Cycles needed to run a program
- Time for one cycle

If a program needs $5X10^9$ cycles, and the cycle time $100 \ picoseconds$ on computer A.

Then the execution time?

Variables

Cycle

Cycle count

Cycle time

Period

Rate

Cycles per instruction

Instruction count

Execution Time

- 1 execution performed by the computer
- Cycles needed to run a program
- Time for one cycle

If a program needs $5X10^9$ cycles, and the cycle time $100 \ picoseconds$ on computer A.

Then the execution time?

Execution time =
$$cycle_count \ X \ cycle_time$$

= $(5X10^9)X (100 \ X \ 10^{-12}s)$
= $0.5s$

Variables	Units (usual)
Cycle	
Cycle count	cycles
Cycle time	Pico/nano seconds
Period	Pico/nano seconds
Rate	
Cycles per instruction	
Instruction count	
Execution Time	Seconds/minutes

If a program needs $5X10^9$ cycles, and the cycle time $100 \ picoseconds$ on computer A.

Then the execution time?

Execution time

=
$$cycle_count X cycle_time$$

= $(5X10^9)X (100 X 10^{-12}s)$
= $.5s$

Execution time

Variables	Units (usual)
Cycle	
Cycle count	cycles
Cycle time	Pico/nano seconds
Period	Pico/nano seconds
Rate	Hz/MHz/GHz
Cycles per instruction	
Instruction count	
Execution Time	Seconds/minutes

Execution time = cycle_count X cycle_time

Instead of cycle time, you can be given rate.

Rate = number of cycles in a second

$$Rate = \frac{1}{(cycle_time)}$$

If rate (clock rate) is 4 GHz, what is the cycle time?

UNIVERSITY of HOUSTON

Execution time

Variables	Units (usual)
Cycle	
Cycle count	cycles
Cycle time	Pico/nano seconds
Period	Pico/nano seconds
Rate	Hz/MHz/GHz
Cycles per instruction	
Instruction count	
Execution Time	Seconds/minutes

 $Execution\ time = cycle_count\ X\ cycle_time$ Instead of cycle time, you can be given rate.

$$Rate = \frac{1}{(cycle_time)}$$

If rate (clock rate) is 4 GHz, what is the cycle time?

$$cycle_time = \frac{1}{(rate)} = \frac{1}{4 * 10^9 Hz}$$
$$= \frac{1}{4 * 10^9} s = \frac{1000}{4X10^{12}} s = \frac{1000}{4} X10^{-12} s$$
$$= 250 \ picoseconds$$

Now we have cycle time, we can compute execution time

UNIVERSITY of HOUSTON

Performance Review

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock.

How many cycles are needed to run the program (or) what is the cycle count?

Performance Review

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock.

Execution time

How many cycles are needed to run the program?

$$Execution \ time = cycle_count \ X \ cycle_time$$

$$\frac{Execution \ time}{cycle_time} = cycle_count$$

$$cycle_time = \frac{1}{Rate} = \frac{1}{2X10^9} s = 500X10^{-12} s = 500ps$$

$$cycle_count = \frac{10}{500X10^{-12}} = \frac{10000}{500X10^{-9}} = 20X10^9 = 20 \ billion \ cycles$$

Execution time

Variables	Units (usual)
Cycle	
Cycle count	cycles
Cycle time	Pico/nano seconds
Period	Pico/nano seconds
Rate	Hz/MHz/GHz
Cycles per instruction	cycles
Instruction count	instruction
Execution Time	Seconds/minutes

Execution time = cycle_count X cycle_time
Instead of cycle count, you can be given,
instruction count and cycles per instruction(CPI)
CPI = cycle count for one instruction
Cycle count for 100 instructions= 100 CPI

cycle_count = instruction_count X CPI

UNIVERSITY of HOUSTON

Execution time = cycle_count X cycle_time

Execution time = cycle_count X cycle_time
cycle_count = instruction_count X CPI
cycle_count = 1.28 * 10⁹ X 2

Execution time = cycle_count X cycle_time

cycle_count = instruction_count X CPI

 $cycle_count = 1.28 * 10^9 X 2$

$$cycle_{time} = \frac{1}{rate} = \frac{1}{4*10^9} s$$

Execution time =
$$1.28 * 10^9 X 2 X \frac{1}{4*10^9} = 0.64 s$$

UNIVERSITY of HOUSTON

• A processor has a 3 GHz clock frequency. A program requires the execution of 6.0E9 instructions, the total execution time for this program is 10s. Find the CPI.

• A processor has a 3 GHz clock frequency. A program requires the execution of 6.0E9 instructions, the total execution time for this program is 10s. Find the CPI.

Execution time =
$$ins_countX CPI X \frac{1}{rate}$$

• A processor has a 3 GHz clock frequency. A program requires the execution of 6.0E9 instructions, the total execution time for this program is 10s. Find the CPI.

Execution time =
$$ins_countX CPI X \frac{1}{rate}$$

$$10 = 6 * 10^9 X CPI X \frac{1}{3*10^9}$$

$$CPI = 5$$

Amdahl's Law

 Improved time when an aspect of the computer is improved by a certain factor

$$T_{\text{improved}} = \frac{T_{\text{affected}}}{\text{improvement factor}} + T_{\text{unaffected}}$$

$$T_{\text{improved}} = \frac{T_{\text{affected}}}{\text{improvement factor}} + T_{\text{unaffected}}$$

- Example:
- Takes a total of 100s
- multiply accounts for 75s (of the 100s)
 - How much improvement in multiply performance to get 2x overall?

$$T_{\text{improved}} = \frac{T_{\text{affected}}}{\text{improvement factor}} + T_{\text{unaffected}}$$

- Example:
- Takes a total of 100s
- multiply accounts for 75s (of the 100s)
 - How much improvement in multiply performance to get 2x overall?
 - $T_{affected} = 75s$, $T_{unafected} = 100 75 = 25s$

$$T_{\text{improved}} = \frac{T_{\text{affected}}}{\text{improvement factor}} + T_{\text{unaffected}}$$

- Example:
- Takes a total of 100s
- multiply accounts for 75s (of the 100s)
 - How much improvement in multiply performance to get 2x overall?
 - $T_{affected} = 75s$, $T_{unafected} = 100 75 = 25s$
 - $T_{improved} = \frac{100}{2} = 50s$

$$T_{\text{improved}} = \frac{T_{\text{affected}}}{\text{improvement factor}} + T_{\text{unaffected}}$$

- Example:
- Takes a total of 100s
- multiply accounts for 75s (of the 100s)
 - How much improvement in multiply performance to get 2x overall?

$$50 = \frac{75}{n} + 25$$

$$n = 3$$

Final Exam Review

- Chapter 1:
 - Performance
 - CPU Execution time
 - CPI
 - Amdahl's Law
- Chapter 2:
 - Number System
 - Load/Store data from/in memory
 - Assembly language

Number System Conversions

- Decimal ←→ Binary (integers/fractions)
- 2. Decimal ←→ Hexadecimal (integers/fractions)
- 3. Decimal ←→ Base n (integers/fractions)
- 4. Base n ←→ Base m (integers/fractions)
- 5. Decimal $\leftarrow \rightarrow 2$'s complement binary
- 6. 2's complement
 - 1. Shortcut to negate
 - 2. Range extension

Unisgned binary 10011_{two} to decimal?

Unisgned binary 10011_{two} to decimal? **19** $1*2^4+1*2^1+1*2^0=16+2+1$

Unisgned binary 10011_{two} to decimal? **19**

Octal 30_{eight} to decimal?

Unisgned binary 10011_{two} to decimal? **19**

Octal 30_{eight} to decimal? **24**

$$3*8^1=24$$

Unisgned binary 10011_{two} to decimal? **19**

Octal 30_{eight} to decimal? **24**

2's complement 10011_{two} to decimal?

Unisgned binary 10011_{two} to decimal? **19**

Octal 30_{eight} to decimal? **24**

2's complement 10011_{two} to decimal? -13

$$1 * (-2^4) + 1 * 2^1 + 1 * 2^0 = -16 + 2 + 1 = -13$$

Convert to Binary

• Convert decimal 19_{ten} to binary?

Convert to Binary

• Convert decimal 19_{ten} to binary?

$$\frac{19}{2} = 9 \text{ remainder } 1$$

$$\frac{9}{2} = 4 \text{ remainder } 1$$

$$\frac{4}{2} = 2 \text{ remainder } 0$$

$$\frac{2}{2} = 1 \text{ remainder } 0$$

$$\frac{1}{2} = 0 \text{ remainder } 1$$

Convert to 2's Complement binary

 Assuming a 5-bit representation convert -13 to 2's complement binary representation

Convert to 2's Complement binary

 Assuming a 5-bit representation convert -13 to 2's complement binary representation

$$\frac{13}{2} = 6 \ remainder \ 1$$

$$\frac{6}{2} = 3 \ remainder \ 0$$

$$\frac{3}{2} = 1 \ remainder \ 1$$

$$\frac{1}{2} = 0 \ remainder \ 1$$

$$01101 \ in 5-bit$$

Convert to 2's Complement binary

 Assuming a 5-bit representation convert -13 to 2's complement binary representation

13 in 5-bit binary is 01101

Short cut to negate \rightarrow flip bits and add 1

Flip bits 01101 **→** 10010

Add 1 1

10011

Assembly Language

Instructions

Туре	Name
Arithmetic	ADD, SUB, MUL
Data transfer	LDUR, STUR
Arithmetic Immediate	ADDI, SUBI, ORRI, ANDI, EORI
Logical Operations	LSL, LSR, AND, ORR, EOR
Branches	B, CBZ, CBNZ, B.Cond
Set Condition Flag	ADDS, ADDIS, SUBS, SUBIS, ANDS, ANDIS

Arithmetic & Immediate Instructions

Arithmetic

If f, g, and h are in registers X9, X10, and X11. What is the LEGv8 code for the c statement

1.
$$f = g + h$$

 $ADD X9, X10, X11$

2.
$$f = g - h$$

SUB X9, X10, X11

Order to compute X10 – X11

Arithmetic & Immediate Instructions

Arithmetic

If f, g, and h correspond to registers X9, X10, and X11. What is the LEGv8 code for the c statement

1.
$$f = g + h$$

 $ADD X9, X10, X11$

2.
$$f = g - h$$

SUB X9, X10, X11

Immediate

If f and g correspond to registers X9 and X10. What is the LEGv8 code for the c statement

1.
$$f = g + 4$$

 $ADDI X9, X10, #4$

2.
$$f = g = 10$$

SUBI X9, X10, #10

Use SUBI for subtractions, Do not give a –ve operand to ADDI

Example

If f, g, h, and i correspond to registers X9, X10, X11, and X12. What is the LEGv8 code for the c statement

$$f = g + 4$$

$$h = f + i$$

$$h = h - 8$$

Example

• If f, g, h, and i correspond to registers X9, X10, X11, and X12. What is the LEGv8 code for the c statement

$$f = g + 4$$

$$h = f + i$$

$$h = h - 8$$

Solution