

Riccardo Pengo

+31 617674650

riccardopengo@gmail.com

Languages -

Spanish ~ CEFR level B1

English ~ CEFR level C1

Italian ~ Native speaker

Computer skills —

ĽT_EX

Linux

SAGE

PARI-GP

С

Python

Matlab[®]

Education

2015-	M.Sc. in Mathematics ALGANT Master University of Milan & Leiden University	EQF level 7
2012-2015	B.Sc. summa cum laude in Mathematics University of Milan GPA: 29.47/30	EQF level 6
2007-2012	Upper secondary education diploma Liceo Scientifico "A. Einstein", Milan Final Grade: 100/100	EQF level 4

Teaching

Fall 2016	Teaching assistantship	University
	athematics for Statisticians" Leiden University	
2012-2016	Private tutoring for high school students	High schoo
	Liceo Scientifico "A. Einstein" and others Milan	

Scholarships

2016-2017	ERASMUS Scholarship	10 months, €2400
	University of Milan	
2012-2015	INdAM Scholarship for Undergraduate Students	3 years, €12000
	University of Milan	

Project works

July 2016	Algebraic Surfaces seminar "Surfaces with zero Kodaira dimension" University of Milan	Geometry
July 2016	Homological Algebra seminar "Group cohomology and the Mordell-Weil theorem" Universi	Algebra ty of Milan
June 2016	Number Theory seminar "Ramification and the different ideal" University of Milan	Number theory
Dec. 2015	Commutative Algebra seminar "Axiomatic definition of the Krull dimension" University of M	Algebra Milan
July 2015	Final Bachelor Degree seminar "Algebraic integers: euclidean domains and rings of integers" Milan	Number theory University of
Aug. 2014	INdAM Bachelor Summer School Perugia, Italy	Summer school
Aug. 2013	INdAM Bachelor Summer School Perugia, Italy	Summer school

Additional information

2017-	Experience as an amateur actor "Leiden English Freshers", Leiden	Theatre
2013-2016	Experience as an amateur improvisational theatre actor "Teatro del Vigentino", Milan	Theatre
2014-2016	Student reprensentative University of Milan, Department of Mathematics	Politics

Mathematical interests

My main mathematical interests are in the field of arithmetic. I am interested in the unique relationships that appear in Number Theory between Algebra, Algebraic Geometry and Analysis. Galois representations, modular and automorphic forms, modular curves, elliptic curves, Shimura varieties and p-adic geometry are among the topics that fascinate and interest me.

Master courses attended - University of Milan

Fall 2015 Commutative Algebra, prof. L. Barbieri-Viale & F. Andreatta

Syllabus: substitution principle; spectrum of a ring; Hilbert's Nullstellensatz; primary decomposition; regular rings; integral ring extensions; valuations; Noether's normalization; dimension theory; derivations; Zariski tangent space; primary decomposition of modules; support of a module; associated primes; filtered/graded modules; Artin-Rees lemma; Hilbert-Samuel polynomial; equivalence of different notions of dimensions.

Fall 2015 Category theory, prof. S. Mantovani

Algebra

Syllabus: categories, functors, natural transformations; universal properties, limits and colimits; adjunctions, equivalencences; representable functors and Yoneda's lemma; monads and algebras for a monad, monadic functors; monoidal categories and closed monoidal categories; monoids in a monoidal category; regular and Barr-exact categories; additive categories; abelian categories; toposes.

Fall 2015 Geometry of Schemes, prof. P. Stellari

Algebraic geometry

Syllabus: sheafs of rings; ringed spaces; affine schemes; schemes and morphisms of schemes; rational points; projective, noetherian, reduced, irreducible, integral schemes; dimension theory for schemes; fiber products and base change; morphisms of finite type; separated, proper, projective, smooth and étale morphisms; Zariski's main theorem; quasi-coherent and coherent sheafs.

Fall 2015 Complex manifolds, prof. L. van Geemen

Geometry

Syllabus: complex differentiable manifolds; holomorphic tangent bundle; holomorphic maps and their differential; differential forms of type (p,q); elliptic curves over \mathbb{C} ; the meromorphic Weierstrass \wp function; plane cubic curves, addition law, j-invariant; vector bundles; the tangent bundle, the canonical bundle, the normal bundle; divisors and line bundles; the adjunction formula; sheaves and presheaves of abelian groups; homomorphisms of sheaves; exact sequences of sheaves; cohomology with coefficients in a sheaf of abelian groups; acyclic resolutions; the De Rham theorem.

Fall 2015 Projective algebraic geometry, prof. M. Bertolini

Algebraic geometry

Syllabus: affine and projective varieties; the Zariski topology; morphisms between varieties; regular, rational and birational maps; tangent space; dimension; Hilbert polynomial; Grassmann varieties; vector bundles; enumerative geometry and Schubert calculus.

Spring 2016

Algebraic number theory, prof. F. Andreatta & M. A. Seveso Number theory Syllabus: number fields; number rings and rings of integers; finiteness of the ideal class group and Dirichlet unit theorem; p-adic numbers and fields; valuations, local and complete fields; quadratic and cubic reciprocity; adéle ring and idéle group; Fourier analysis on groups; Tate's thesis, L-functions and the functional equation.

Spring 2016 Analytic number theory, prof. G. Molteni

Number theory

Syllabus: Prime Number Theorem; primes in arithmetic progressions; sieves and Selberg Λ^2 method; Brun-Titchmarsh theorem; Van der Waerden's Theorem, Erdős-Turàn conjecture; introduction to the Green-Tao theorem; Waring's problem.

Spring 2016 Algebraic surfaces, prof. A. Lanteri

Geometry

Syllabus: compact complex surfaces; numerical characters; curves on a surface; intersection theory; the Néron-Severi group and numerical equivalence; Riemann-Roch theorem; Noether's and genus formula; the Hodge index theorem; the Nakai-Moishezon criterion; the ample cone; nef divisors; the nef and Mori cone; Kleiman's criterion; Kawamata rationality theorem; rational and birational maps; linear systems; blowing-ups; Castelnuovo's contraction theorem; minimal models; the Noether-Enriques theorem; Enriques' theorem on minimal models; ruled and rational surfaces; Castelnuovo's rationality criterion; Enriques' ruledness criterion; Kodaira dimension.

Spring 2016 Homological algebra, prof. L. Barbieri-Viale

Algebra

Syllabus: homotopy and homology; abelian categories, chain complexes and chain homotopies; projective and injective resolutions; derived functors; Tor and Ext; sheaf and group cohomology; spectral sequences and applications.

Master courses attended - Leiden University

Fall 2016 Galois Representations and Automorphic Forms, prof. P. Bruin & A. Kret

Syllabus: profinite groups; infinite Galois theory; local fields; Hensel's lemma; Eisenstein polynomials; ramification groups; Frobenius elements; Chebotarev's density theorem; adéle and idéle; main theorems of class field theory; weak and strong approximation; representation theory; Artin representations; Artin conductor; l-adic Galois representations; elliptic curves; the Tate module; complex multiplication; étale cohomology; Weil-Deligne representations; Haar measure; Hecke algebras; smooth and admissible representations; unramified representations; the Cartan decomposition and the Satake isomorphism; Steinberg and cuspidal representations; (\mathfrak{g},K) -modules; the local Langlands correspondence; automorphic forms and automorphic representations; adélic modular forms; strong multiplicity one theorem; the global Langlands conjecture.

Fall 2016 Characteristic classes, prof. S. Shadrin

Geometry

Number theory

Syllabus: Stiefel-Whitney classes: axiomatic definitions, properties and geometric interpretation; Euclidean vector bundles; Stiefel-Whitney classes for the projective space; applications: immersions in the Euclidean space, Stiefel-Whitney numbers and cobordisms; characteristic classes for principal G-bundles; classifying G-bundle; the Grassmannian as a universal space; Stiefel-Whitney classes of the tautological bundle $\gamma_n \to G_n(\mathbb{R}^\infty)$; the cohomology ring of the real Grassmannian; Thom isomorphism theorem; the Euler class; explicit description of the cup product; Mayer-Vietoris and relative Mayer-Vietoris; Leray-Hirsch theorem; splitting principle for vector bundles; Chern classes: definitions and Whitney formula; Todd class and Chern character; cohomology of $G_n(\mathbb{C}^m)$; enumerative problems; Pontrjagin classes; the ring of oriented cobordisms.

Fall 2016 Differential geometry, prof. M. Crainic

Geometry

Syllabus: operations on vector bundles; differential forms with coefficients in a vector bundle; connections on vector bundles; parallel transport; the curvature of a connection; the first Chern class; connections compatible with a metric; the torsion of a connection; Riemannian manifolds and the Levi-Civita connection; geodesics; the tubular neighborhood theorem; Lie groups and Lie algebras; free and proper actions; principal bundles; connections on principal bundles; G-structures.

Spring 2017 Topics in Number Theory, prof. P. Stevenhagen

Number Theory

Syllabus: local fields and valuations; Kronecker-Weber theorem; local and global class field theory.