$12n_{0108} (K12n_{0108})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -9.27106 \times 10^{41} u^{40} - 5.88994 \times 10^{42} u^{39} + \dots + 9.61206 \times 10^{40} b - 6.11993 \times 10^{41}, \\ &- 6.34476 \times 10^{41} u^{40} - 4.08468 \times 10^{42} u^{39} + \dots + 9.61206 \times 10^{40} a - 1.64646 \times 10^{42}, \\ &u^{41} + 8 u^{40} + \dots + 34 u + 1 \rangle \\ I_2^u &= \langle a^2 + b - a + 2, \ a^3 + 2a + 1, \ u - 1 \rangle \\ I_3^u &= \langle a^3 - a^2 + b + a - 2, \ a^4 - a^3 + 2a^2 - 2a + 1, \ u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -9.27 \times 10^{41} u^{40} - 5.89 \times 10^{42} u^{39} + \dots + 9.61 \times 10^{40} b - 6.12 \times 10^{41}, \ -6.34 \times 10^{41} u^{40} - 4.08 \times 10^{42} u^{39} + \dots + 9.61 \times 10^{40} a - 1.65 \times 10^{42}, \ u^{41} + 8 u^{40} + \dots + 34 u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 6.60083u^{40} + 42.4953u^{39} + \dots + 119.918u + 17.1291 \\ 9.64523u^{40} + 61.2765u^{39} + \dots + 197.232u + 6.36693 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 6.60083u^{40} + 42.4953u^{39} + \dots + 119.918u + 17.1291 \\ -7.48281u^{40} - 47.2910u^{39} + \dots + 146.752u - 3.94440 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.00706u^{40} - 6.01141u^{39} + \dots - 9.30914u + 5.53712 \\ 1.60537u^{40} + 9.92359u^{39} + \dots + 28.7480u + 1.03801 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.598315u^{40} + 3.91218u^{39} + \dots + 19.4389u + 6.57513 \\ 1.60537u^{40} + 9.92359u^{39} + \dots + 28.7480u + 1.03801 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 4.48614u^{40} + 28.6835u^{39} + \dots + 19.4389u + 6.57513 \\ -6.77071u^{40} - 42.6663u^{39} + \dots + 132.736u - 3.61078 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2.18696u^{40} + 13.8857u^{39} + \dots + 34.8186u + 9.92100 \\ -0.720306u^{40} - 4.14288u^{39} + \dots + 11.5196u - 0.0728726 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.598315u^{40} - 3.91218u^{39} + \dots - 11.5196u - 0.0728726 \\ -0.598315u^{40} - 3.91218u^{39} + \dots + 34.8189u - 6.57513 \\ 1.49635u^{40} + 9.28064u^{39} + \dots + 19.4389u - 6.57513 \\ 1.49635u^{40} + 9.28064u^{39} + \dots + 32.3421u + 0.715717 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $8.64366u^{40} + 54.7705u^{39} + \cdots + 150.271u 7.40030$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{41} + 50u^{40} + \dots + 1026u + 1$
c_2, c_4	$u^{41} - 8u^{40} + \dots + 34u - 1$
c_3, c_6	$u^{41} + 7u^{40} + \dots + 448u + 128$
c_5, c_9	$u^{41} + 2u^{40} + \dots - u - 1$
c_7, c_8, c_{11}	$u^{41} - 2u^{40} + \dots - 3u - 1$
c_{10}	$u^{41} + 2u^{40} + \dots - 240u - 36$
c_{12}	$u^{41} - 12u^{40} + \dots - 467u + 163$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{41} - 110y^{40} + \dots + 1177934y - 1$
c_2, c_4	$y^{41} - 50y^{40} + \dots + 1026y - 1$
c_3, c_6	$y^{41} + 45y^{40} + \dots + 520192y - 16384$
c_5, c_9	$y^{41} + 42y^{39} + \dots + 11y - 1$
c_7, c_8, c_{11}	$y^{41} + 36y^{40} + \dots + 11y - 1$
c_{10}	$y^{41} - 12y^{40} + \dots + 7992y - 1296$
c_{12}	$y^{41} - 12y^{40} + \dots + 2120951y - 26569$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.023890 + 0.144827I		
a = -0.114598 + 0.492587I	1.10253 + 2.40302I	-1.4441 - 16.6541I
b = -0.25937 - 2.41362I		
u = 1.023890 - 0.144827I		
a = -0.114598 - 0.492587I	1.10253 - 2.40302I	-1.4441 + 16.6541I
b = -0.25937 + 2.41362I		
u = 1.09654		
a = 0.432301	-2.21383	3.32100
b = 1.83917		
u = 0.799614 + 0.163499I		
a = 0.305351 - 0.647956I	-2.56053 - 0.52413I	-15.2569 - 4.2496I
b = 0.24502 + 1.73105I		
u = 0.799614 - 0.163499I		
a = 0.305351 + 0.647956I	-2.56053 + 0.52413I	-15.2569 + 4.2496I
b = 0.24502 - 1.73105I		
u = 0.618990 + 0.472493I		
a = -0.934348 - 0.002226I	-0.79846 - 1.42488I	-6.70258 + 4.89942I
b = -0.492958 + 0.445400I		
u = 0.618990 - 0.472493I		
a = -0.934348 + 0.002226I	-0.79846 + 1.42488I	-6.70258 - 4.89942I
b = -0.492958 - 0.445400I		
u = 0.654305 + 0.324584I		
a = -0.185932 + 0.902814I	1.89593 - 3.76450I	-6.51510 - 0.37648I
b = 0.19586 - 1.59294I		
u = 0.654305 - 0.324584I		
a = -0.185932 - 0.902814I	1.89593 + 3.76450I	-6.51510 + 0.37648I
b = 0.19586 + 1.59294I		
u = 0.024088 + 0.729003I		
a = 0.975104 - 0.793348I	4.22621 - 1.38545I	-1.96542 + 3.48117I
b = 0.015225 - 0.189698I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.024088 - 0.729003I		
a = 0.975104 + 0.793348I	4.22621 + 1.38545I	-1.96542 - 3.48117I
b = 0.015225 + 0.189698I		
u = -0.690147 + 0.145492I		
a = 0.04771 - 1.93802I	8.34723 - 4.89832I	3.94388 + 1.15377I
b = -0.236345 - 0.828778I		
u = -0.690147 - 0.145492I		
a = 0.04771 + 1.93802I	8.34723 + 4.89832I	3.94388 - 1.15377I
b = -0.236345 + 0.828778I		
u = 0.784586 + 1.118630I		
a = 0.619859 - 0.276128I	-3.61696 - 3.86307I	0
b = 0.550920 + 0.122912I		
u = 0.784586 - 1.118630I		
a = 0.619859 + 0.276128I	-3.61696 + 3.86307I	0
b = 0.550920 - 0.122912I		
u = 1.06503 + 0.93172I		
a = -0.595278 + 0.164576I	-0.499621 - 0.427314I	0
b = -0.773274 - 0.052105I		
u = 1.06503 - 0.93172I		
a = -0.595278 - 0.164576I	-0.499621 + 0.427314I	0
b = -0.773274 + 0.052105I		
u = 0.64097 + 1.26233I		
a = -0.593984 + 0.346167I	0.95653 - 7.53305I	0
b = -0.439012 - 0.204480I		
u = 0.64097 - 1.26233I		
a = -0.593984 - 0.346167I	0.95653 + 7.53305I	0
b = -0.439012 + 0.204480I		
u = -0.546543 + 0.110125I		
a = -0.15010 + 2.08713I	2.42231 - 1.86356I	-0.33827 + 3.07051I
b = 0.113534 + 0.680577I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.546543 - 0.110125I		
a = -0.15010 - 2.08713I	2.42231 + 1.86356I	-0.33827 - 3.07051I
b = 0.113534 - 0.680577I		
u = -1.52433 + 0.18776I		
a = -0.857605 + 0.620146I	-1.30698 + 4.28669I	0
b = -1.95651 + 0.55267I		
u = -1.52433 - 0.18776I		
a = -0.857605 - 0.620146I	-1.30698 - 4.28669I	0
b = -1.95651 - 0.55267I		
u = -1.64128 + 0.09999I		
a = 0.638107 + 0.741558I	-6.19266 + 5.42860I	0
b = 1.78817 + 0.37849I		
u = -1.64128 - 0.09999I		
a = 0.638107 - 0.741558I	-6.19266 - 5.42860I	0
b = 1.78817 - 0.37849I		
u = -1.68045 + 0.02735I		
a = -0.661327 - 0.687909I	-11.48150 + 1.16744I	0
b = -1.85642 - 0.38244I		
u = -1.68045 - 0.02735I		
a = -0.661327 + 0.687909I	-11.48150 - 1.16744I	0
b = -1.85642 + 0.38244I		
u = -1.68637 + 0.08037I		
a = 0.707793 - 0.630890I	-9.39900 + 3.48257I	0
b = 1.93021 - 0.41903I		
u = -1.68637 - 0.08037I		
a = 0.707793 + 0.630890I	-9.39900 - 3.48257I	0
b = 1.93021 + 0.41903I		
u = -1.69925 + 0.27352I		
a = 0.758442 - 0.516353I	-9.49392 + 4.85059I	0
b = 2.04847 - 0.47151I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.69925 - 0.27352I		
a = 0.758442 + 0.516353I	-9.49392 - 4.85059I	0
b = 2.04847 + 0.47151I		
u = -1.67351 + 0.43283I		
a = 0.792521 - 0.425685I	-6.4546 + 13.6928I	0
b = 2.12131 - 0.52943I		
u = -1.67351 - 0.43283I		
a = 0.792521 + 0.425685I	-6.4546 - 13.6928I	0
b = 2.12131 + 0.52943I		
u = -1.70062 + 0.36989I		
a = -0.772140 + 0.460082I	-11.6676 + 9.4552I	0
b = -2.09871 + 0.49854I		
u = -1.70062 - 0.36989I		
a = -0.772140 - 0.460082I	-11.6676 - 9.4552I	0
b = -2.09871 - 0.49854I		
u = 1.79083		
a = -0.471299	-5.96639	0
b = -1.27778		
u = 1.80924 + 0.21929I		
a = 0.470409 - 0.020609I	-2.04881 - 3.64658I	0
b = 1.266140 + 0.027083I		
u = 1.80924 - 0.21929I		
a = 0.470409 + 0.020609I	-2.04881 + 3.64658I	0
b = 1.266140 - 0.027083I		
u = -0.006712 + 0.160531I		
a = -1.90793 - 3.46251I	3.36845 + 2.26324I	-4.13576 - 3.78467I
b = -0.690720 + 0.504582I		
u = -0.006712 - 0.160531I		
a = -1.90793 + 3.46251I	3.36845 - 2.26324I	-4.13576 + 3.78467I
b = -0.690720 - 0.504582I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.0303735		
a = 13.9549	-0.822843	-12.1130
b = 0.495519		

II.
$$I_2^u = \langle a^2 + b - a + 2, \ a^3 + 2a + 1, \ u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ -a^{2} + a - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ -a^{2} - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -a^{2} \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -a^{2} \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{2} - a - 1 \\ -a^{2} + a - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -a^{2} - 2a - 1 \\ -1 \end{pmatrix}$$

(ii) Obstruction class = 1

 $a_{12} = \begin{pmatrix} -a^2 \\ -a^2 - 2 \end{pmatrix}$

(iii) Cusp Shapes = $-11a^2 + 9a - 34$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_6	u^3
<i>C</i> ₄	$(u+1)^3$
c_5, c_7, c_8	$u^3 + 2u - 1$
c_9, c_{11}, c_{12}	$u^3 + 2u + 1$
c_{10}	$u^3 + 3u^2 + 5u + 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_6	y^3
$c_5, c_7, c_8 \\ c_9, c_{11}, c_{12}$	$y^3 + 4y^2 + 4y - 1$
c_{10}	$y^3 + y^2 + 13y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.22670 + 1.46771I	7.79580 - 5.13794I	-8.82908 + 5.88938I
b = 0.329484 + 0.802255I		
u = 1.00000		
a = 0.22670 - 1.46771I	7.79580 + 5.13794I	-8.82908 - 5.88938I
b = 0.329484 - 0.802255I		
u = 1.00000		
a = -0.453398	-2.43213	-40.3420
b = -2.65897		

III.
$$I_3^u = \langle a^3 - a^2 + b + a - 2, \ a^4 - a^3 + 2a^2 - 2a + 1, \ u - 1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ -a^{3} + a^{2} - a + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ -a^{3} + a^{2} - 2a + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -a^{3} + a^{2} - a + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -a^{3} - a + 1 \\ -3a^{3} + a^{2} - 5a + 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4a^3 + 3a^2 + 4a 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_6	u^4
<i>C</i> ₄	$(u+1)^4$
c_5, c_7, c_8	$u^4 + u^3 + 2u^2 + 2u + 1$
c_9, c_{11}, c_{12}	$u^4 - u^3 + 2u^2 - 2u + 1$
c_{10}	$(u^2 - u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_6	y^4
$c_5, c_7, c_8 \\ c_9, c_{11}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$
c_{10}	$(y^2+y+1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.621744 + 0.440597I	1.64493 - 2.02988I	-5.42268 + 5.10773I
b = 1.69244 - 0.31815I		
u = 1.00000		
a = 0.621744 - 0.440597I	1.64493 + 2.02988I	-5.42268 - 5.10773I
b = 1.69244 + 0.31815I		
u = 1.00000		
a = -0.121744 + 1.306620I	1.64493 + 2.02988I	-11.07732 - 4.41855I
b = -0.192440 + 0.547877I		
u = 1.00000		
a = -0.121744 - 1.306620I	1.64493 - 2.02988I	-11.07732 + 4.41855I
b = -0.192440 - 0.547877I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^7)(u^{41} + 50u^{40} + \dots + 1026u + 1)$
c_2	$((u-1)^7)(u^{41} - 8u^{40} + \dots + 34u - 1)$
c_3, c_6	$u^7(u^{41} + 7u^{40} + \dots + 448u + 128)$
c_4	$((u+1)^7)(u^{41} - 8u^{40} + \dots + 34u - 1)$
c_5	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{41} + 2u^{40} + \dots - u - 1)$
c_7, c_8	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{41} - 2u^{40} + \dots - 3u - 1)$
<i>c</i> 9	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{41} + 2u^{40} + \dots - u - 1)$
c_{10}	$((u^2 - u + 1)^2)(u^3 + 3u^2 + 5u + 2)(u^{41} + 2u^{40} + \dots - 240u - 36)$
c_{11}	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{41} - 2u^{40} + \dots - 3u - 1)$
c_{12}	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{41} - 12u^{40} + \dots - 467u + 163)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1	$((y-1)^7)(y^{41} - 110y^{40} + \dots + 1177934y - 1)$	
c_2, c_4	$((y-1)^7)(y^{41} - 50y^{40} + \dots + 1026y - 1)$	
c_3, c_6	$y^7(y^{41} + 45y^{40} + \dots + 520192y - 16384)$	
c_5, c_9	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{41} + 42y^{39} + \dots + 11y - 1)$	
c_7, c_8, c_{11}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{41} + 36y^{40} + \dots + 11y - 1)$	
c_{10}	$((y^2 + y + 1)^2)(y^3 + y^2 + 13y - 4)(y^{41} - 12y^{40} + \dots + 7992y - 1296)$	
c_{12}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)$ $\cdot (y^{41} - 12y^{40} + \dots + 2120951y - 26569)$	