Grafikus egyszerűsítés (Karnaugh tábla használata)

Korábban már láttuk, hogy a függvények diszjunktív, konjunktív normál alakja (minden függvényhez csak egy-egy ilyen alak tartozik) nem éppen a legegyszerűbb megvalósításait adják az adott függvénynek. Kellene valamilyen módszer, aminek segítségével egyszerűsíteni tudjuk a diszjunktív, konjunktív normál alakokat. Jelen kurzusban két ilyen módszerrel ismertetjük meg a hallgatókat:

- 1. Grafikus egyszerűsítés (Karnaugh tábla)
- 2. Számjegyes minimalizálás (Quine-McCluskey)

Ebben a modulban a grafikus egyszerűsítést fogjuk áttekinteni. 5 változóig jól kezelhető ez a fajta egyszerűsítési eljárás, nagyobb változószámnál használata nehézkes. A módszer lényege, hogy a függvény értékeit egy táblába írjuk be, amit Karnaugh táblának nevezünk. Nézzük a 3, a 4, illetve az 5 változós Karnaugh táblákat.

3 változós Karnaugh táblának 8 cellája (termje) van, hiszen 3 változóval a 0 és 1 értékeket figyelembe véve 8 féle variáció állítható elő. Ha a 3 változós függvények igazságtábláját nézzük, annak is 8 sora van. Meg kell feleltetnünk az igazságtábla egy sorának a Karnaugh tábla egy celláját. Vegyük először az igazságtáblát, majd ez alapján a Karnaugh táblát.

3 változós függvény igazságtáblája és a neki megfelelő Karnaugh tábla:

A Karnaugh tábla peremezése mutatja, hogy melyik változó melyik cellában 1-es értékű. Például az A változó az 1-es, 3-as, 5-ös, 7-es sorban 1-es értékű, tehát ezen indexű cellákban is 1-es értékű. Az igazságtábla sorai mellé írt indexek a Karnaugh tábla celláinak jobb alsó sarkában is feltüntetésre kerültek. A cellákba írt 3 bites értékek a 3 változó lehetséges variációit tartalmazzák (most csak a megértés miatt kerültek be ezek a 3 bites értékek a táblába). Minden esetben igaz lesz, hogy az A változó a legkisebb helyi értékű, és most a C változó lesz a legnagyobb helyi értékű változó. A 3 változós Karnaugh táblának ez egy lehetséges peremezése, és a továbbiakban ezt fogjuk használni. Az igazságtábla egy sorának megfeleltetjük a

Karnaugh tábla egy celláját, a megadott peremezés alapján. Ezután már csak a függvény értékét kell beírnunk a táblába és kezdődhet az egyszerűsítés.

Nézzük meg a 4 változós Karnaugh táblát:

	2^3	2^2	2^1	2^0	
hexa	D	C	В	A	Y
0h	0	0	0	0	
1h	0	0	0	1	
2h	0	0	1	0	
3h	0	0	1	1	
4h	0	1	0	0	
5h	0	1	0	1	
6h	0	1	1	0	
7h	0	1	1	1	
8h	1	0	0	0	
9h	1	0	0	1	
Ah	1	0	1	0	
Bh	1	0	1	1	
Ch	1	1	0	0	
Dh	1	1	0	1	
Eh	1	1	1	0	
Fh	1	1	1	1	

A cellák sarkába írt értékek itt is a 4 változón előállítható értékeket jelölik, oly módon, hogy az A alegkisebb helyi értékű változó. A cellákba írt indexek megfelelnek a 4 változós igazságtábla sorai elé írt számokkal. Ez is a 4 változós K. tábla egy lehetséges peremezése, a továbbiakban ezt fogjuk használni. Célszerű egyfajta peremezést megjegyezni és utána az összes feladatnál azt használni.

Végezetül az 5 változós igazságtábla és a neki megfelelő Karnaugh tábla:

	Е	D	C	В	A	Y
0h	0	0	0	0	0	
1h	0	0	0	0	1	
2h	0	0	0	1	0	
3h	0	0	0	1	1	
4h	0	0	1	0	0	
5h	0	0	1	0	1	
6h	0	0	1	1	0	
7h	0	0	1	1	1	
8h	0	1	0	0	0	
9h	0	1	0	0	1	
Ah	0	1	0	1	0	
Bh	0	1	0	1	1	
Ch	0	1	1	0	0	
Dh	0	1	1	0	1	
Eh	0	1	1	1	0	
Fh	0	1	1	1	1	
10h	1	0	0	0	0	
11h	1	0	0	0	1	
12h	1	0	0	1	0	
13h	1	0	0	1	1	
14h	1	0	1	0	0	
15h	1	0	1	0	1	
16h	1	0	1	1	0	
17h	1	0	1	1	1	
18h	1	1	0	0	0	
19h	1	1	0	0	1	
1Ah	1	1	0	1	0	
1Bh	1	1	0	1	1	
1Ch	1	1	1	0	0	
1Dh	1	1	1	0	1	
1Eh	1	1	1	1	0	
1Fh	1	1	1	1	1	

Y	A A								
•	ı		F	3		ı			
Oh	1h	3h	2h	6h	7h	5h	4h	_	
8h	9h	Bh	Ah	Eh	Fh	Dh	Ch	D	
18h	19h	1Bh	1Ah	1Eh	1Fh	1Dh	1Ch		E
10h	11h	13h	12h	16h	17h	15h	14h		
			j		(Z			

Miután a feladatnak megfelelően kitöltöttük az igazságtáblát, a függvényt beírjuk a K. táblába és megkezdjük az egyszerűsítést. Azt, hogy 1-esekre vagy 0-kra írjuk fel a függvényt, az dönti el, hogy melyikből van a kevesebb. Kiindulhatnánk a diszjunktív (mintermes), illetve a konjunktív (maxtermes) alakból is, de a könnyebb megértés miatt, mi itt most csak a mintermes alakkal foglalkozunk. Ezt is felírhatjuk 1-esekre és 0-kra is. Vegyük most azt az esetet, hogy 1-esekre írjuk fel a függvényt. Az eljárás lényege, hogy keresünk szomszédos cellákat (mintermeket), ahol a függvény 1-es értékű és ezeket összevonjuk. Először kéttagú lefedést csinálunk, majd ennek keresünk kéttagú szomszédját. Ha találunk, akkor a négyes tagnak keresünk egy négyes szomszédját. Ezt addig folytatjuk, amíg tudunk összevonni. Ha már nincs több lehetőségünk összevonásra, akkor megkaptuk azt a tagot, amit már tovább nem lehet egyszerűsíteni. Ez a tag a prímimplikáns. Az összevont cellák esetén kapunk egy lefedést. A lefedésben azokat a változókat szerepeltetjük, amelyek az adott lefedést alkotó valamennyi cellában ugyanolyan értékűek. Ha 1-es értékű a változó a lefedésben szerepelő valamennyi cellában, akkor ponáltan, ha 0, akkor negáltan szerepeltetjük. A lefedésen belül a változók ÉS kapcsolatát írjuk fel. A lefedéseket VAGY kapcsolatba hozzuk.

Nézzük meg egy konkrét példán keresztül a módszer használatát. Adott egy Y, 3 változós függvény, amely akkor 1-es értékű, ha a 3 változóból legalább 2 1-es értékű. A feladatnak megfelelően felírjuk a függvény igazságtábláját:

sorsz.	С	В	A	Y
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Ezek után a függvényt beírjuk egy 3 változós K. táblába. Mivel a függvény ugyanannyi esetben 1-es értékű, mint 0, ezért mindegy, hogy melyikre valósítjuk meg. Válasszuk az 1-re történő megvalósítást. A Karnaugh táblába célszerűen mindig vagy csak az 1-es, vagy csak a 0 értékeket írjuk be.

Ha az egyszerűsítéssel nem foglalkoznánk, akkor a függvényünk diszjunktív normál alakja a következő lenne: $Y = (\bar{C} * B * A) + (C * \bar{B} * A) + (C * B * \bar{A}) + (C * B * A)$. Nézzük meg, hogy egyszerűsítéssel mit kapunk.

Előtte azonban megadjuk a szabályokat, amiket az egyszerűsítés alkalmával be kell tartanunk:

- 1. Egy lefedésben 2 pozitív egész kitevős hatványainak megfelelő számú elem szerepelhet, vagyis 1, 2, 4, 8, 16,
- 2. Egy term (cella) akárhány lefedésben szerepelhet.
- 3. A lefedésben csak szomszédos cellák vehetnek részt. Szomszédosság feltétele, hogy ha átlépünk egyik celláról a másikra, csak egy változó változik.
- 4. Ha 1-esekre/0-kra történik a megvalósítás, akkor minden 1-esnek/0-nak legalább egy lefedésben szerepelnie kell, ha többen szerepel az nem baj, de egyben feltétlenül szerepelnie kell.
- 5. Vagy csak 1-esek, vagy csak 0-k lehetnek az összes lefedésben.
- 6. A lefedésben szereplő termeknek szabályos négyszöget kell alkotniuk.
- 7. A lefedésnek szimmetrikusan kell elhelyezkednie a Karnaugh táblán.
- 8. Mindig a lehető legnagyobb lefedést kell megvalósítani, az előző szabályok figyelembevételével.
- 9. A lefedésben csak azok a változók szerepelnek, amelyek a lefedésben található valamennyi termben 1-es, vagy 0 értékűek. Ha 1-es értékűek, akkor ponáltan, ha 0 értékűek, akkor negáltan szerepelnek.
- 10. A lefedésen belül a változók ÉS kapcsolata valósul meg, míg a lefedések között VAGY (ha 1-esekre valósítottunk meg), illetve VAGY-NEM (ha 0-ákra írtuk fel) kapcsolatot írunk fel.
- 11. Előfordulnak olyan feladatok, amelyeknél a kimenet értéke bizonyos bemeneti variációk esetén teljesen mindegy, hogy 0 vagy 1-es, vagyis **közömbös** a kimenet értéke. A közömbös értéket csak akkor szerepeltetjük egy lefedésben, ha segítségével nagyobb lefedést tudunk megvalósítani.

Sorra vesszük az 1-eseket és megnézzük hány 1-es szomszédjával vonható össze.

A 3-as cellában lévő 1-est a 7-es cellában található 1-essel vonhatjuk össze. Ennél nagyobb, vagyis 4-es lefedés a szabályok figyelembevételével nem valósítható meg, tehát marad a 2-es lefedés. A lefedésben csak az A és a B változó szerepel ponáltan, mivel

mindkettő 1-es értékű az adott lefedésben (3-nál és 7-nél is A és B 1-es értékű). C nem szerepel, mert a 3-nál 0, míg 7-nél 1-es értékű, tehát a lefedés B*A.

A második lefedés:

Ebben a lefedésben, ahol az 5-ös, és a 7-es cellában lévő 1-est vonjuk össze, A és C szerepel, mindkettő 1-es értékű (5-nél, 7-nél A és C 1-es), ezért a lefedés C*A. B azért nem szerepel, mert 5-nél 0, míg 7-nél 1-es értékű.

Harmadik és egyben utolsó lefedés:

Ebben a lefedésben, ahol a 6-os és a 7-es cellában található 1-est vonjuk össze, C és B változó szerepel, és mivel a lefedésben lévő mindkettő cellában 1-es értékűek (6-nál és 7-nél is C és B 1-es), ezért a lefedés C*B. Az A változó, azért nem szerepel a lefedésben, mert 6-nál 0, míg 7-nél 1-es értékű. Valamennyi 1-est lefedtünk, így most már csak az a feladatunk, hogy felírjuk az Y kimeneti függvényt. Az egyes lefedéseket VAGY kapcsolatba hozzuk.

$$Y = (B * A) + (C * A) + (C * B)$$

Most már csak fel kell rajzolnunk az Y függvényt megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás: $Y = \overline{\overline{B*A}*\overline{C*A}*\overline{C*B}}$

VAGY-NEM kapus megvalósítás: $Y = \overline{\overline{\overline{B} + \overline{A}} + \overline{\overline{C} + \overline{A}} + \overline{\overline{C} + \overline{B}}}$

