final 11

March 26, 2023

```
[1]: #!pip install torch torchvision
    %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import torch
    import torchvision
    import torchvision.transforms as transforms
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
```

Prepare for Dataset

```
[2]: transform = transforms.Compose(
         [transforms.ToTensor(),
          transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
     trainset = torchvision.datasets.CIFAR100(root='./data', train=True,
                                             download=True, transform=transform)
     trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                               shuffle=True, num_workers=2)
     testset = torchvision.datasets.CIFAR100(root='./data', train=False,
                                            download=True, transform=transform)
     testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                              shuffle=False, num workers=2)
     classes = ('apple', 'aquarium_fish', 'baby', 'bear', 'beaver',
                'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl',
                'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can',
                'castle', 'caterpillar', 'cattle', 'chair',
                'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch',
                'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin',
                'elephant', 'flatfish', 'forest', 'fox', 'girl',
                'hamster', 'house', 'kangaroo', 'keyboard', 'lamp',
                'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster',
                'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse',
                'mushroom', 'oak_tree', 'orange', 'orchid', 'otter',
```

Files already downloaded and verified Files already downloaded and verified

```
[3]: # The function to show an image.
    def imshow(img):
        img = img / 2 + 0.5  # Unnormalize.
        npimg = img.numpy()
        plt.imshow(np.transpose(npimg, (1, 2, 0)))
        plt.show()

# Get some random training images.
    dataiter = iter(trainloader)
    images, labels = next(dataiter)
# Show images.
    imshow(torchvision.utils.make_grid(images))
# Print labels.
    print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
```


chimpanzee crab bus fox

Choose a Device

```
[4]: # If there are GPUs, choose the first one for computing. Otherwise use CPU.

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
```

```
print(device)
# If 'cuda:0' is printed, it means GPU is available.
```

cuda:0

Network Definition

```
[5]: class Net(nn.Module):
         def __init__(self):
             super(Net, self).__init__()
             self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, __
      →padding=1)
             self.bn1 = nn.BatchNorm2d(64)
             self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
             self.relu1 = nn.ReLU()
             self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
             self.bn2 = nn.BatchNorm2d(128)
             self.pool2 = nn.MaxPool2d(2, 2)
             self.relu2 = nn.ReLU()
             self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
             self.bn3 = nn.BatchNorm2d(256)
             self.pool3 = nn.MaxPool2d(2, 2)
             self.relu3 = nn.SELU()
             self.fc1 = nn.Linear(256 * 4 * 4, 1024)
             self.bn4 = nn.BatchNorm1d(1024)
             self.relu4 = nn.SELU()
             self.fc2 = nn.Linear(1024, 100)
         def forward(self, x):
             x = self.pool1(self.relu1(self.conv1(x)))
             x = self.pool2(self.relu2(self.conv2(x)))
             x = self.pool3(self.relu3(self.conv3(x)))
             x = x.view(-1, 256 * 4 * 4)
             x = self.relu4(self.fc1(x))
             x = self.fc2(x)
             return x
                 # Create the network instance.
    net = Net()
     net.to(device) # Move the network parameters to the specified device.
```

```
[5]: Net(
        (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
        track_running_stats=True)
        (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
        ceil_mode=False)
```

```
(relu1): ReLU()
  (conv2): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
ceil_mode=False)
  (relu2): ReLU()
  (conv3): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
  (pool3): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1,
ceil mode=False)
  (relu3): SELU()
  (fc1): Linear(in_features=4096, out_features=1024, bias=True)
  (bn4): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
  (relu4): SELU()
  (fc2): Linear(in_features=1024, out_features=100, bias=True)
)
```

Optimizer and Loss Function

```
[6]: # We use cross-entropy as loss function.
loss_func = nn.CrossEntropyLoss()

# We use stochastic gradient descent (SGD) as optimizer.

#opt = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9)

opt = optim.Adam(net.parameters(), lr=0.0001)
```

Training Procedure

```
[7]: import sys
    from tqdm.notebook import tqdm
                     # Avg. losses.
    avg_losses = []
    epochs = 10
                     # Total epochs.
    print_freq = 500 # Print frequency.
    for epoch in range(epochs): # Loop over the dataset multiple times.
        running_loss = 0.0
                                 # Initialize running loss.
        for i, data in enumerate(tqdm(trainloader), 0):
             # Get the inputs.
             inputs, labels = data
             # Move the inputs to the specified device.
             inputs, labels = inputs.to(device), labels.to(device)
             # Zero the parameter gradients.
```

```
opt.zero_grad()
        # Forward step.
        outputs = net(inputs)
        loss = loss_func(outputs, labels)
        # Backward step.
        loss.backward()
        # Optimization step (update the parameters).
        opt.step()
        # Print statistics.
        running_loss += loss.item()
        if i % print_freq == print_freq - 1: # Print every several mini-batches.
            avg_loss = running_loss / print_freq
            print('[epoch: {}, i: {:5d}] avg mini-batch loss: {:.3f}'.

¬format(epoch, i, avg_loss),flush=True)
            sys.stdout.flush()
            avg_losses.append(avg_loss)
            running loss = 0.0
print('Finished Training.')
 0%|
              | 0/12500 [00:00<?, ?it/s]
```

```
[epoch: 0, i:
               499] avg mini-batch loss: 4.387
[epoch: 0, i:
               999] avg mini-batch loss: 4.033
[epoch: 0, i:
              1499] avg mini-batch loss: 3.796
[epoch: 0, i:
              1999] avg mini-batch loss: 3.606
[epoch: 0, i: 2499] avg mini-batch loss: 3.541
[epoch: 0, i: 2999] avg mini-batch loss: 3.467
[epoch: 0, i: 3499] avg mini-batch loss: 3.386
[epoch: 0, i: 3999] avg mini-batch loss: 3.335
[epoch: 0, i: 4499] avg mini-batch loss: 3.167
[epoch: 0, i: 4999] avg mini-batch loss: 3.101
[epoch: 0, i: 5499] avg mini-batch loss: 3.030
[epoch: 0, i: 5999] avg mini-batch loss: 2.934
[epoch: 0, i: 6499] avg mini-batch loss: 2.886
[epoch: 0, i: 6999] avg mini-batch loss: 2.986
[epoch: 0, i: 7499] avg mini-batch loss: 2.942
[epoch: 0, i: 7999] avg mini-batch loss: 2.872
[epoch: 0, i: 8499] avg mini-batch loss: 2.874
[epoch: 0, i: 8999] avg mini-batch loss: 2.869
[epoch: 0, i: 9499] avg mini-batch loss: 2.760
[epoch: 0, i: 9999] avg mini-batch loss: 2.794
[epoch: 0, i: 10499] avg mini-batch loss: 2.748
[epoch: 0, i: 10999] avg mini-batch loss: 2.638
```

```
[epoch: 0, i: 11499] avg mini-batch loss: 2.629
[epoch: 0, i: 11999] avg mini-batch loss: 2.695
[epoch: 0, i: 12499] avg mini-batch loss: 2.671
 0%1
               | 0/12500 [00:00<?, ?it/s]
[epoch: 1, i:
                499] avg mini-batch loss: 2.510
[epoch: 1, i:
                999] avg mini-batch loss: 2.459
[epoch: 1, i:
               1499] avg mini-batch loss: 2.427
[epoch: 1, i:
               1999] avg mini-batch loss: 2.480
[epoch: 1, i:
               2499] avg mini-batch loss: 2.447
[epoch: 1, i:
               2999] avg mini-batch loss: 2.401
[epoch: 1, i:
               3499] avg mini-batch loss: 2.450
[epoch: 1, i:
               3999] avg mini-batch loss: 2.431
[epoch: 1, i:
               4499] avg mini-batch loss: 2.331
[epoch: 1, i:
               4999] avg mini-batch loss: 2.422
[epoch: 1, i:
               5499] avg mini-batch loss: 2.383
[epoch: 1, i:
               5999] avg mini-batch loss: 2.389
[epoch: 1, i:
               6499] avg mini-batch loss: 2.387
[epoch: 1, i:
               6999] avg mini-batch loss: 2.279
[epoch: 1, i:
               7499] avg mini-batch loss: 2.322
[epoch: 1, i:
               7999] avg mini-batch loss: 2.363
[epoch: 1, i:
               8499] avg mini-batch loss: 2.278
[epoch: 1, i:
               8999] avg mini-batch loss: 2.303
[epoch: 1, i:
               9499] avg mini-batch loss: 2.274
[epoch: 1, i:
               9999] avg mini-batch loss: 2.288
[epoch: 1, i: 10499] avg mini-batch loss: 2.266
[epoch: 1, i: 10999] avg mini-batch loss: 2.279
[epoch: 1, i: 11499] avg mini-batch loss: 2.300
[epoch: 1, i: 11999] avg mini-batch loss: 2.282
[epoch: 1, i: 12499] avg mini-batch loss: 2.312
               | 0/12500 [00:00<?, ?it/s]
 0%1
[epoch: 2, i:
                499] avg mini-batch loss: 1.868
[epoch: 2, i:
                999] avg mini-batch loss: 1.952
[epoch: 2, i:
               1499] avg mini-batch loss: 1.981
[epoch: 2, i:
               1999] avg mini-batch loss: 2.006
[epoch: 2, i:
               2499] avg mini-batch loss: 1.958
[epoch: 2, i:
               2999] avg mini-batch loss: 2.004
[epoch: 2, i:
               3499] avg mini-batch loss: 2.093
[epoch: 2, i:
               3999] avg mini-batch loss: 2.069
[epoch: 2, i:
               4499] avg mini-batch loss: 1.873
[epoch: 2, i:
               4999] avg mini-batch loss: 1.944
[epoch: 2, i:
               5499] avg mini-batch loss: 1.958
[epoch: 2, i:
               5999] avg mini-batch loss: 2.058
[epoch: 2, i:
               6499] avg mini-batch loss: 2.034
[epoch: 2, i:
               6999] avg mini-batch loss: 2.035
[epoch: 2, i:
               7499] avg mini-batch loss: 1.979
[epoch: 2, i:
               7999] avg mini-batch loss: 1.894
```

```
[epoch: 2, i: 8499] avg mini-batch loss: 1.953
[epoch: 2, i:
              8999] avg mini-batch loss: 2.015
[epoch: 2, i:
              9499] avg mini-batch loss: 1.983
[epoch: 2, i: 9999] avg mini-batch loss: 1.974
[epoch: 2, i: 10499] avg mini-batch loss: 1.964
[epoch: 2, i: 10999] avg mini-batch loss: 2.052
[epoch: 2, i: 11499] avg mini-batch loss: 1.931
[epoch: 2, i: 11999] avg mini-batch loss: 2.006
[epoch: 2, i: 12499] avg mini-batch loss: 2.021
 0%1
               | 0/12500 [00:00<?, ?it/s]
[epoch: 3, i:
                499] avg mini-batch loss: 1.603
[epoch: 3, i:
                999] avg mini-batch loss: 1.621
[epoch: 3, i:
               1499] avg mini-batch loss: 1.577
[epoch: 3, i:
              1999] avg mini-batch loss: 1.636
[epoch: 3, i:
              2499] avg mini-batch loss: 1.622
[epoch: 3, i:
              2999] avg mini-batch loss: 1.646
[epoch: 3, i:
              3499] avg mini-batch loss: 1.619
[epoch: 3, i:
              3999] avg mini-batch loss: 1.660
[epoch: 3, i:
              4499] avg mini-batch loss: 1.730
[epoch: 3, i:
              4999] avg mini-batch loss: 1.674
[epoch: 3, i:
              5499] avg mini-batch loss: 1.679
[epoch: 3, i:
              5999] avg mini-batch loss: 1.692
[epoch: 3, i:
              6499] avg mini-batch loss: 1.672
[epoch: 3, i:
              6999] avg mini-batch loss: 1.649
[epoch: 3, i:
              7499] avg mini-batch loss: 1.673
[epoch: 3, i:
              7999] avg mini-batch loss: 1.642
[epoch: 3, i:
              8499] avg mini-batch loss: 1.635
[epoch: 3, i:
              8999] avg mini-batch loss: 1.657
[epoch: 3, i:
              9499] avg mini-batch loss: 1.691
[epoch: 3, i:
              9999] avg mini-batch loss: 1.716
[epoch: 3, i: 10499] avg mini-batch loss: 1.637
[epoch: 3, i: 10999] avg mini-batch loss: 1.672
[epoch: 3, i: 11499] avg mini-batch loss: 1.662
[epoch: 3, i: 11999] avg mini-batch loss: 1.720
[epoch: 3, i: 12499] avg mini-batch loss: 1.633
 0%1
               | 0/12500 [00:00<?, ?it/s]
[epoch: 4, i:
                499] avg mini-batch loss: 1.204
[epoch: 4, i:
                999] avg mini-batch loss: 1.231
[epoch: 4, i:
               1499] avg mini-batch loss: 1.271
[epoch: 4, i:
              1999] avg mini-batch loss: 1.291
[epoch: 4, i:
              2499] avg mini-batch loss: 1.276
[epoch: 4, i:
              2999] avg mini-batch loss: 1.257
[epoch: 4, i:
              3499] avg mini-batch loss: 1.281
[epoch: 4, i:
              3999] avg mini-batch loss: 1.302
[epoch: 4, i:
              4499] avg mini-batch loss: 1.302
[epoch: 4, i:
              4999] avg mini-batch loss: 1.310
```

```
[epoch: 4, i:
              5499] avg mini-batch loss: 1.352
[epoch: 4, i:
              5999] avg mini-batch loss: 1.271
[epoch: 4, i:
              6499] avg mini-batch loss: 1.325
[epoch: 4, i:
              6999] avg mini-batch loss: 1.253
[epoch: 4, i:
              7499] avg mini-batch loss: 1.369
[epoch: 4, i:
              7999] avg mini-batch loss: 1.413
[epoch: 4, i:
              8499] avg mini-batch loss: 1.346
              8999] avg mini-batch loss: 1.310
[epoch: 4, i:
[epoch: 4, i:
              9499] avg mini-batch loss: 1.438
              9999] avg mini-batch loss: 1.411
[epoch: 4, i:
[epoch: 4, i: 10499] avg mini-batch loss: 1.353
[epoch: 4, i: 10999] avg mini-batch loss: 1.371
[epoch: 4, i: 11499] avg mini-batch loss: 1.427
[epoch: 4, i: 11999] avg mini-batch loss: 1.375
[epoch: 4, i: 12499] avg mini-batch loss: 1.339
               | 0/12500 [00:00<?, ?it/s]
 0%1
[epoch: 5, i:
                499] avg mini-batch loss: 0.884
                999] avg mini-batch loss: 0.895
[epoch: 5, i:
[epoch: 5, i:
               1499] avg mini-batch loss: 0.897
[epoch: 5, i:
               1999] avg mini-batch loss: 0.903
[epoch: 5, i:
              2499] avg mini-batch loss: 0.918
[epoch: 5, i:
              2999] avg mini-batch loss: 0.927
[epoch: 5, i:
              3499] avg mini-batch loss: 0.968
[epoch: 5, i:
              3999] avg mini-batch loss: 1.007
[epoch: 5, i:
              4499] avg mini-batch loss: 1.048
[epoch: 5, i:
              4999] avg mini-batch loss: 1.049
[epoch: 5, i:
              5499] avg mini-batch loss: 1.029
[epoch: 5, i:
              5999] avg mini-batch loss: 0.993
[epoch: 5, i:
              6499] avg mini-batch loss: 0.984
[epoch: 5, i:
              6999] avg mini-batch loss: 0.976
              7499] avg mini-batch loss: 0.967
[epoch: 5, i:
[epoch: 5, i:
              7999] avg mini-batch loss: 1.007
[epoch: 5, i:
              8499] avg mini-batch loss: 1.020
[epoch: 5, i:
              8999] avg mini-batch loss: 1.030
[epoch: 5, i:
              9499] avg mini-batch loss: 1.015
[epoch: 5, i:
              9999] avg mini-batch loss: 1.000
[epoch: 5, i: 10499] avg mini-batch loss: 1.091
[epoch: 5, i: 10999] avg mini-batch loss: 0.979
[epoch: 5, i: 11499] avg mini-batch loss: 0.995
[epoch: 5, i: 11999] avg mini-batch loss: 1.046
[epoch: 5, i: 12499] avg mini-batch loss: 1.059
 0%1
               | 0/12500 [00:00<?, ?it/s]
[epoch: 6, i:
                499] avg mini-batch loss: 0.498
[epoch: 6, i:
                999] avg mini-batch loss: 0.552
[epoch: 6, i:
              1499] avg mini-batch loss: 0.603
[epoch: 6, i: 1999] avg mini-batch loss: 0.576
```

```
[epoch: 6, i:
              2499] avg mini-batch loss: 0.611
[epoch: 6, i:
              2999] avg mini-batch loss: 0.613
[epoch: 6, i:
              3499] avg mini-batch loss: 0.639
[epoch: 6, i:
              3999] avg mini-batch loss: 0.685
[epoch: 6, i:
              4499] avg mini-batch loss: 0.644
[epoch: 6, i:
              4999] avg mini-batch loss: 0.676
[epoch: 6, i:
              5499] avg mini-batch loss: 0.686
[epoch: 6, i:
              5999] avg mini-batch loss: 0.675
[epoch: 6, i:
              6499] avg mini-batch loss: 0.705
[epoch: 6, i:
              6999] avg mini-batch loss: 0.667
[epoch: 6, i:
              7499] avg mini-batch loss: 0.696
[epoch: 6, i:
              7999] avg mini-batch loss: 0.754
[epoch: 6, i:
              8499] avg mini-batch loss: 0.712
[epoch: 6, i:
              8999] avg mini-batch loss: 0.768
[epoch: 6, i:
              9499] avg mini-batch loss: 0.697
[epoch: 6, i: 9999] avg mini-batch loss: 0.694
[epoch: 6, i: 10499] avg mini-batch loss: 0.745
[epoch: 6, i: 10999] avg mini-batch loss: 0.789
[epoch: 6, i: 11499] avg mini-batch loss: 0.757
[epoch: 6, i: 11999] avg mini-batch loss: 0.810
[epoch: 6, i: 12499] avg mini-batch loss: 0.771
               | 0/12500 [00:00<?, ?it/s]
 0%1
[epoch: 7, i:
                499] avg mini-batch loss: 0.354
[epoch: 7, i:
                999] avg mini-batch loss: 0.296
[epoch: 7, i:
               1499] avg mini-batch loss: 0.331
[epoch: 7, i:
               1999] avg mini-batch loss: 0.372
[epoch: 7, i:
              2499] avg mini-batch loss: 0.369
[epoch: 7, i:
              2999] avg mini-batch loss: 0.388
[epoch: 7, i:
              3499] avg mini-batch loss: 0.440
[epoch: 7, i:
              3999] avg mini-batch loss: 0.369
              4499] avg mini-batch loss: 0.445
[epoch: 7, i:
[epoch: 7, i:
              4999] avg mini-batch loss: 0.461
[epoch: 7, i:
              5499] avg mini-batch loss: 0.433
[epoch: 7, i:
              5999] avg mini-batch loss: 0.464
[epoch: 7, i:
              6499] avg mini-batch loss: 0.476
[epoch: 7, i:
              6999] avg mini-batch loss: 0.473
[epoch: 7, i:
              7499] avg mini-batch loss: 0.463
[epoch: 7, i:
              7999] avg mini-batch loss: 0.460
[epoch: 7, i:
              8499] avg mini-batch loss: 0.485
[epoch: 7, i:
              8999] avg mini-batch loss: 0.454
[epoch: 7, i:
              9499] avg mini-batch loss: 0.475
[epoch: 7, i:
              9999] avg mini-batch loss: 0.485
[epoch: 7, i: 10499] avg mini-batch loss: 0.507
[epoch: 7, i: 10999] avg mini-batch loss: 0.477
[epoch: 7, i: 11499] avg mini-batch loss: 0.482
[epoch: 7, i: 11999] avg mini-batch loss: 0.510
[epoch: 7, i: 12499] avg mini-batch loss: 0.501
```

```
| 0/12500 [00:00<?, ?it/s]
 0%|
[epoch: 8, i:
                499] avg mini-batch loss: 0.206
[epoch: 8, i:
                999] avg mini-batch loss: 0.197
[epoch: 8, i:
               1499] avg mini-batch loss: 0.178
[epoch: 8, i:
               1999] avg mini-batch loss: 0.212
[epoch: 8, i:
               2499] avg mini-batch loss: 0.245
[epoch: 8, i:
               2999] avg mini-batch loss: 0.247
[epoch: 8, i:
               3499] avg mini-batch loss: 0.274
[epoch: 8, i:
               3999] avg mini-batch loss: 0.276
[epoch: 8, i:
               4499] avg mini-batch loss: 0.242
[epoch: 8, i:
               4999] avg mini-batch loss: 0.280
[epoch: 8, i:
               5499] avg mini-batch loss: 0.282
[epoch: 8, i:
               5999] avg mini-batch loss: 0.275
[epoch: 8, i:
               6499] avg mini-batch loss: 0.297
               6999] avg mini-batch loss: 0.329
[epoch: 8, i:
[epoch: 8, i:
               7499] avg mini-batch loss: 0.292
[epoch: 8, i:
               7999] avg mini-batch loss: 0.310
[epoch: 8, i:
               8499] avg mini-batch loss: 0.329
[epoch: 8, i:
               8999] avg mini-batch loss: 0.332
[epoch: 8, i:
               9499] avg mini-batch loss: 0.354
[epoch: 8, i:
              9999] avg mini-batch loss: 0.331
[epoch: 8, i: 10499] avg mini-batch loss: 0.352
[epoch: 8, i: 10999] avg mini-batch loss: 0.311
[epoch: 8, i: 11499] avg mini-batch loss: 0.346
[epoch: 8, i: 11999] avg mini-batch loss: 0.334
[epoch: 8, i: 12499] avg mini-batch loss: 0.317
 0%1
               | 0/12500 [00:00<?, ?it/s]
[epoch: 9, i:
                499] avg mini-batch loss: 0.128
[epoch: 9, i:
                999] avg mini-batch loss: 0.132
[epoch: 9, i:
               1499] avg mini-batch loss: 0.151
[epoch: 9, i:
               1999] avg mini-batch loss: 0.180
[epoch: 9, i:
               2499] avg mini-batch loss: 0.178
[epoch: 9, i:
               2999] avg mini-batch loss: 0.205
[epoch: 9, i:
               3499] avg mini-batch loss: 0.194
               3999] avg mini-batch loss: 0.193
[epoch: 9, i:
[epoch: 9, i:
               4499] avg mini-batch loss: 0.187
[epoch: 9, i:
               4999] avg mini-batch loss: 0.214
[epoch: 9, i:
               5499] avg mini-batch loss: 0.236
[epoch: 9, i:
               5999] avg mini-batch loss: 0.212
[epoch: 9, i:
               6499] avg mini-batch loss: 0.259
[epoch: 9, i:
               6999] avg mini-batch loss: 0.217
[epoch: 9, i:
               7499] avg mini-batch loss: 0.228
[epoch: 9, i:
               7999] avg mini-batch loss: 0.219
[epoch: 9, i:
               8499] avg mini-batch loss: 0.250
[epoch: 9, i:
               8999] avg mini-batch loss: 0.239
[epoch: 9, i:
               9499] avg mini-batch loss: 0.237
```

```
[epoch: 9, i: 9999] avg mini-batch loss: 0.235 [epoch: 9, i: 10499] avg mini-batch loss: 0.288 [epoch: 9, i: 10999] avg mini-batch loss: 0.285 [epoch: 9, i: 11499] avg mini-batch loss: 0.262 [epoch: 9, i: 11999] avg mini-batch loss: 0.278 [epoch: 9, i: 12499] avg mini-batch loss: 0.231 Finished Training.
```

Training Loss Curve

```
[8]: plt.plot(avg_losses)
   plt.xlabel('mini-batch index / {}'.format(print_freq))
   plt.ylabel('avg. mini-batch loss')
   plt.show()
```


Evaluate on Test Dataset

```
[9]: # Check several images.
dataiter = iter(testloader)
images, labels = next(dataiter)
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join('%5s' % classes[predicted[j]])
```

for j in range(4)))

GroundTruth: mountain forest seal mushroom Predicted: road elephant dolphin apple

```
[10]: # Get test accuracy.
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))
```

Accuracy of the network on the 10000 test images: 43 %

```
class_total[label] += 1
for i in range(len(classes)):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))
Accuracy of apple : 68 %
Accuracy of aquarium_fish : 57 %
Accuracy of baby: 24 %
Accuracy of bear: 25 %
Accuracy of beaver : 26 %
             bed: 45 %
Accuracy of
Accuracy of
             bee : 55 %
Accuracy of beetle : 57 %
Accuracy of bicycle: 60 %
Accuracy of bottle : 61 %
Accuracy of bowl : 26 %
Accuracy of
             boy : 24 %
Accuracy of bridge: 46 %
Accuracy of
             bus : 47 %
Accuracy of butterfly: 41 %
Accuracy of camel: 34 %
Accuracy of
             can : 39 %
Accuracy of castle : 54 %
Accuracy of caterpillar : 51 %
Accuracy of cattle : 36 %
Accuracy of chair: 73 %
Accuracy of chimpanzee: 52 %
Accuracy of clock: 38 %
Accuracy of cloud: 65 %
Accuracy of cockroach: 76 %
Accuracy of couch: 33 %
Accuracy of crab: 33 %
Accuracy of crocodile : 15 %
Accuracy of
             cup : 70 %
Accuracy of dinosaur: 36 %
Accuracy of dolphin : 50 %
Accuracy of elephant: 41 %
Accuracy of flatfish: 32 %
Accuracy of forest : 50 %
Accuracy of
             fox : 32 %
Accuracy of girl: 30 %
Accuracy of hamster: 50 %
Accuracy of house: 43 %
Accuracy of kangaroo: 34 %
Accuracy of keyboard: 47 %
Accuracy of lamp: 29 %
```

```
Accuracy of lawn_mower : 57 %
Accuracy of leopard : 44 %
Accuracy of lion: 41 %
Accuracy of lizard : 25 %
Accuracy of lobster: 32 %
Accuracy of
             man : 27 %
Accuracy of maple tree : 46 %
Accuracy of motorcycle: 73 %
Accuracy of mountain : 44 %
Accuracy of mouse: 17 %
Accuracy of mushroom: 43 %
Accuracy of oak_tree : 55 %
Accuracy of orange: 65 %
Accuracy of orchid: 60 %
Accuracy of otter : 13 %
Accuracy of palm_tree : 53 %
Accuracy of pear : 48 %
Accuracy of pickup_truck : 57 %
Accuracy of pine_tree : 45 %
Accuracy of plain: 81 %
Accuracy of plate: 55 %
Accuracy of poppy: 42 %
Accuracy of porcupine : 45 %
Accuracy of possum : 16 %
Accuracy of rabbit : 22 %
Accuracy of raccoon: 40 %
             ray : 44 %
Accuracy of
Accuracy of road: 62 %
Accuracy of rocket: 63 %
Accuracy of rose: 13 %
             sea: 46 %
Accuracy of
Accuracy of seal: 17 %
Accuracy of shark: 33 %
Accuracy of shrew: 19 %
Accuracy of skunk: 68 %
Accuracy of skyscraper: 72 %
Accuracy of snail: 32 %
Accuracy of snake: 12 %
Accuracy of spider: 47 %
Accuracy of squirrel: 27 %
Accuracy of streetcar : 44 %
Accuracy of sunflower: 69 %
Accuracy of sweet_pepper : 40 %
Accuracy of table : 45 %
Accuracy of tank: 62 %
Accuracy of telephone: 46 %
Accuracy of television : 46 %
Accuracy of tiger: 36 %
```

```
Accuracy of tractor: 45 %
Accuracy of train: 32 %
Accuracy of trout: 51 %
Accuracy of tulip: 59 %
Accuracy of turtle: 25 %
Accuracy of wardrobe: 80 %
Accuracy of whale: 36 %
Accuracy of willow_tree: 40 %
Accuracy of wolf: 54 %
Accuracy of woman: 20 %
Accuracy of worm: 42 %
```

[12]: # One of the changes I made was that I added another layer in the network
that takes the output from the second convolutional layer, applies ReLU_
activation,
and passes it through a 2x2 AvgPool layer to capture more relationships.
I also reduced the learning rate of the optimizer to half (0.0005) which
which allowed the optimizer to take smaller steps towards the minimum of
the loss function which might allow for a better chance of finding the global_
amin of loss.