Dive into Digital Image Processing

Assignment 2

June 2023

1. PCA and Hyperplane Fitting

Use the given template code *Q1.py*. Read comments from code *Q1.py*. Datasets has been kept in the folder *data* and stored as *points2D_Set1.mat* and *points2D_Set2.mat*.

- a) Consider the observed set of points of the form $(x,y) \in \mathbb{R}^2$ in the file $points2D_Set1.mat$. Show a scatter plot of the points. Overlay on the scatter plot, the graph of a line showing the linear relationship between Y and X.
- b) Repeat the same analysis for the set of points in *points2D_Set2.mat*. Show a scatter plot of the points. Overlay on the scatter plot, the graph of a line showing the linear relationship between Y and X.
- c) Compared to the result on the first set of points, justify the quality of the approximation resulting in second question using logical arguments. (Just express your thoughts, part c in ungraded but compulsory)

Submission format: For part a and b include plots in report. For part c just description of your thoughts is enough in 2-3 lines.

2. PCA on MNIST dataset

Use the given template code *Q2.py*. Read comments from code *Q2.py*. Read all instructions before you start.

Dataset comprising images of handwritten digits has been kept in the folder *data* and stored as *mnist.mat*. Use the entire training set of 60000 examples. Each image is stored as a matrix (28×28) of numbers. For the following computations, make sure to convert (cast) the integer data type to a floating-point type. For every digit, from 0 to 9, compute:

- a) the mean μ .
- b) the covariance matrix C.

c) the principal mode of variation determined by the eigenvector v_1 and the corresponding eigenvalue λ_1 (where λ_1 is the largest of all eigenvalues) of the covariance matrix C.

The covariance matrix will be of size $28^2 \times 28^2$.

- For each digit, sort the 28² eigenvalues of the covariance matrix and plot them as a graph. Comment and justify what you observe. How many "principal" / significant modes of variation (i.e., number of "large" eigenvalues) do you find, for each digit? Are the significant modes of variation equal to 28² or far less? Why?
- For each digit, show the 3 images side by side:
 - a) $\mu \sqrt{\lambda_1 v_1}$
 - b) μ
 - c) $\mu + \sqrt{\lambda_1 v_1}$

to show the principal mode of variation of the digits around their mean. Comment and justify what you observe. For a certain digit, say 1, what does the principal mode of variation tell you about how people write that digit?

Submission format: For each part write appropriate answer/ images in the report.