Chapitre I.

Suites réelles et séries numériques

I.1. Définitions

<u>Définition 1.1</u>. Une suite réelle est une suite $a_1, a_2, a_3, a_4, \ldots$ de nombres réels, l'indice parcourant tous les nombres entiers. Ce n'est donc rien d'autre qu'une fonction $a:IN^* \to IR$ où l'on note a_n plutôt que a(n). L'élément a_n est appelé le terme général de la suite qui est défini en fonction de n.

La suite, c'est-à-dire l'ensemble de tous les termes, est notée $\{a_n\}$, (a_n) , (a_n) , ...

Exemples.

- 1) La formule $a_n = 5n 3$ est le terme général d'une suite $\{a_n\}$ dont les premiers termes sont $a_1 = 2$; $a_2 = 7$; $a_3 = 12$; $a_4 = 17$; ...
- 2) La formule $a_n = \frac{9n-20}{n^2}$ définit une suite dont les premiers termes sont

$$a_1 = -11$$
; $a_2 = -\frac{1}{2}$; $a_3 = \frac{7}{9}$; $a_4 = 1$; $a_5 = 1$; ...

Définition 1.2.

1) Une suite est constante si le terme général ne dépend pas de n. Par exemple la suite définie par $a_n = \sqrt{3}$ est constante.

2) Suite bornée

- Une suite $\{a_n\}$ est majorée s'il existe une constante $M \in IR$ telle que $a_n \leq M$, $\forall n \in IN^*$
- Une suite $\{b_n\}$ est minorée s'il existe une constante $m \in IR$ telle que $m \le b_n$, $\forall n \in IN^*$
- Une suite $\{u_n\}$ est bornée si elle est majorée et minorée. Autrement dit s'il existe une constante $C \in IR$ telle que $|u_n| \le C$ pour tout $n \in IN^*$.

Exemples.

- ✓ La suite du terme général $a_n = 3 2n$ est majorée par 1 car $a_n \le 1$, $\forall n \in IN^*$
- ✓ La suite du terme général $b_n = 2n-1$ est minorée $par\ 1$ car $1 \le b_n$, $\forall n \in \mathit{IN}^*$
- ✓ La suite définie par $u_n = \frac{1}{n}$ est bornée car $0 \le u_n \le 1 \Rightarrow |u_n| \le 1$.

2) Suite monotone

- Une suite $\{a_n\}$ est croissante si à partir d'un indice $n \ge N$, on a toujours $a_n \le a_{n+1}$
- Une suite $\{a_n\}$ est décroissante si à partir d'un indice $n \ge N$, on a toujours $a_n \ge a_{n+1}$
- Une suite $\{a_n\}$ est monotone si elle est croissante ou décroissante.

Pour déterminer la monotonie d'une suite $\{a_n\}$ il faut étudier le signe de $a_{n+1} - a_n$

Exemple 1. La suite du terme général $a_n = 5n - 2$ est croissante car

$$a_{n+1} - a_n = 5(n+1) - 2 - (5n-2) = 5n+5-2-5n+2 = 5 > 0$$

Exemple 2. La suite du terme général $a_n = \frac{n+1}{n}$ est décroissante car

$$a_{n+1} - a_n = \frac{n+2}{n+1} - \frac{n+1}{n} = \frac{n(n+2) - (n+1)(n+1)}{n(n+1)} = \frac{n^2 + 2n - (n^2 + 2n + 1)}{n(n+1)} = \frac{-1}{n(n+1)} < 0$$

Exemple 3. Reprenons l'exemple ci-dessus $a_n = \frac{9n-20}{n^2}$. Alors

$$a_{n+1} - a_n = \frac{9(n+1) - 20}{(n+1)^2} - \frac{9n - 20}{n^2} = \frac{n^2 (9n - 11) - (9n - 20)(n^2 + 2n + 1)}{n^2 (n+1)^2}$$

$$= \frac{9n^3 - 11n^2 - 9n^3 - 18n^2 - 9n + 20n^2 + 40n + 20}{n^2 (n+1)^2}$$

$$= \frac{-9n^2 + 31n + 20}{n^2 (n+1)^2} = -\frac{(n-4)(9n+5)}{n^2 (n+1)^2} < 0 \text{ pour tout } n \ge 5.$$

La suite est donc strictement décroissante.

I.2. Convergence d'une suite

<u>Définition 1.3</u>. On dit qu'une suite $\{a_n\}$ converge vers \boldsymbol{a} si pour tout $\epsilon > 0$, il existe $N = N_{\epsilon}$ dépendant de ϵ , tel que $|a_n - a| < \epsilon \ \forall n \ge N_{\epsilon}$. On note alors $\lim a_n = a$.

Exemples

1) La suite définie par $u_n = \frac{1}{n}$ converge vers 0. En effet

$$|u_n - 0| = \left| \frac{1}{n} - 0 \right| < \varepsilon \iff \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$$

On choisit donc $N_{\varepsilon} = \left[\frac{1}{\varepsilon}\right]$ et on est assuré que dès que $n > N_{\varepsilon}$, alors $|u_n| < \varepsilon$. Donc

$$\lim_{n\to+\infty}u_n=0.$$

2) Montrer que la suite définie par $u_n = \frac{n}{2n+3}$ converge vers $\frac{1}{2}$?

Pour vérifier que $\lim_{n\to+\infty} u_n = \frac{1}{2}$, on écrit que

$$\left| u_n - \frac{1}{2} \right| = \left| \frac{n}{2n+3} - \frac{1}{2} \right| = \left| \frac{2n-2n-3}{4n+6} \right| = \left| \frac{-3}{4n+6} \right| = \frac{3}{4n+6} < \frac{3}{4n}$$

On aura donc $\left| u_n - \frac{1}{2} \right| < \varepsilon$ dès que $\frac{3}{4n} < \varepsilon \Rightarrow n > \frac{3}{4\varepsilon}$.

Ici, on pourrait donc prendre $N_{\varepsilon} = \left\lceil \frac{3}{4\varepsilon} \right\rceil$ et on a

$$\left|u_n - \frac{1}{2}\right| < \varepsilon \quad \forall n > N_{\varepsilon} \quad \text{d'où } \lim_{n \to +\infty} u_n = \frac{1}{2}$$

3) Montrer que la suite définie par $u_n = \frac{9n-20}{n^2}$ converge vers 0 ?

Soit $\varepsilon > 0$, alors

$$\left|u_{n}-0\right|=\left|\frac{9n-20}{n^{2}}\right|<\frac{9n}{n^{2}}<\frac{9}{n}<\varepsilon$$

dès que $n > \frac{9}{\varepsilon}$. Il suffit donc de prendre $N_{\varepsilon} = \left\lceil \frac{9}{\varepsilon} \right\rceil$ et on a

$$|u_n| < \varepsilon \quad \forall n > N_{\varepsilon} \quad \text{d'où } \lim_{n \to +\infty} u_n = 0$$

<u>Définition 1.4.</u> Une suite qui ne converge pas est dite divergente.

Exemples

1) La suite définie par $u_n = (-1)^n$ est divergente.

Si n est pair, on est dans le voisinage de 1. Sinon, la suite est dans le voisinage de -1. Pas de limite. Les points 1 et -1 sont des points d'accumulation.

2) La suite définie par $v_n = \cos \frac{n\pi}{2}$ est divergente.

$$v_1 = 0$$
; $v_2 = -1$; $v_3 = 0$; $v_4 = 1$; $v_5 = 0$; $v_6 = -1$; $v_7 = 0$; ...

Il y a une infinité de points en -1 mais aussi en 0 et en 1. Il n'y a donc pas "presque tous les points en -1".

3) Les suites $a_n = \sin n$ et $b_n = \cos n$ sont divergentes.

<u>Définition 1.5.</u> La suite $\{a_n\}$ tend vers l'infini si pour tout $r \in IR$, il existe $N_r \in IN^*$ tel que l'on ait $a_n > r$ dès que $n > N_r$. On note alors $\lim_{n \to \infty} a_n = +\infty$.

On a une définition analogue pour la limite vers $-\infty$.

Exemple 1. $\{a_n\}$ la suite du terme général $a_n = 5n - 2$ alors $\lim_{n \to +\infty} a_n = +\infty$

Exemple 2. $\{b_n\}$ la suite du terme général $b_n = 3 - n$ alors $\lim_{n \to +\infty} b_n = -\infty$

I.3. Propriétés de convergence des suites

P1) Si une suite $\{u_n\}$ de réels admet une limite $l \in IR$ alors cette limite est unique.

<u>Démonstration.</u> Par l'absurde. Supposons qu'il y a deux limites l et l' avec l < l'. Prenons $\varepsilon = \frac{l'-l}{2} > 0$. Comme l est limite de la suite $\{u_n\}$ on a $\exists N_1 \in IN / |u_n - l| < \varepsilon, \forall n > N_1$, de

1^{ere} Année S1 Analyse

même comme l' est limite de la suite $\{u_n\}$ on a $\exists N_2 \in IN / |u_n - l'| < \varepsilon, \forall n > N_2$. Alors si $n \ge \max(N_1, N_2)$ on peut écrire en utilisant l'inégalité triangulaire pour la valeur absolue :

$$|l'-l| = |l'-l| = |l'-u_n + u_n - l| \le |l'-u_n| + |u_n - l| < \varepsilon + \varepsilon = l'-l,$$

ce qui est absurde.

P2) Toute suite convergente est bornée. En d'autres termes, si $\lim_{n\to +\infty} a_n = a$, alors $|a_n| \le M$ pour un certain $M \in IR$.

Démonstration. Exercice

Remarque. La réciproque est fausse. La suite définie par $u_n = (-1)^n$ est bornée et divergente.

P3) Soient $\{u_n\}$ et $\{v_n\}$ deux suites admettant comme limites respectives les réels l et l'. Alors la suite "somme" $\{w_n\}$, définie par $w_n = u_n + v_n$ tend vers l + l'.

Démonstration. Comme la suite $\{u_n\}$ converge vers l on a $\exists N_1 \in IN / |u_n - l| < \varepsilon/2$, $\forall n > N_1$, de même comme l' est limite de la suite $\{v_n\}$ on a $\exists N_2 \in IN / |v_n - l'| < \varepsilon/2$, $\forall n > N_2$. On déduit que pour $n \ge K = max(N_1, N_2)$ on a : $|u_n - l| < \varepsilon/2$ et $|v_n - l'| < \varepsilon/2$.

En utilisant l'inégalité triangulaire, on obtient :

$$|w_n - (l+l')| = |u_n + v_n - l - l'| \le |u_n - l| + |v_n - l'| < \varepsilon / 2 + \varepsilon / 2 = \varepsilon,$$

ce qui prouve que $\{w_n\}$ tend vers l + l'.

P4) Soient $\{a_n\}$ et $\{b_n\}$ deux suites admettant comme limites respectives les réels l et l'. Alors la suite "produit" $\{w_n\}$, définie par $w_n = a_n b_n$, tend vers l.l'.

Démonstration. La propriété (2), il existe M tel que $|a_n| < M$ et $|b_n| < M$. Soit $\varepsilon > 0$ et posons $\varepsilon' = \frac{\varepsilon}{2M} > 0$. Par hypothèse $|a_n - a| < \varepsilon'$ pour $n > N_1$ et $|b_n - b| < \varepsilon'$ pour $n > N_2$

Posons $N=max(N_1, N_2)$. Alors pour tout n > N on a

$$|w_n - ab| = |a_n b_n - ab| \le |a_n (b_n - b) + b(a_n - a)| \le |a_n (b_n - b)| + |b(a_n - a)|$$

$$\le |M||b_n - b| + |b||a_n - a| < M\varepsilon' + M\varepsilon' = \varepsilon.$$

Ceci montre que la suite $\{a_nb_n\}$ converge vers ab.

Remarque. Si $\lim_{n\to +\infty} u_n = +\infty$ et $\lim_{n\to +\infty} v_n = l \in IR$ alors $\lim_{n\to +\infty} (u_n + v_n) = +\infty$.

Par contre si $\lim_{n\to+\infty} u_n = +\infty$ et $\lim_{n\to+\infty} v_n = -\infty$ on a une forme indéterminée qui n'nécessite une étude plus approfondie pour conclure.

Exemple. Soit la suite $a_n = \sqrt{n+1} - \sqrt{n}$. Alors

Institut Supérieur du Numérique

<u>1^{ere} Année</u> <u>S1</u> <u>Analyse</u>

$$a_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n}} \frac{1}{1 + \sqrt{1 + \frac{1}{n}}} \xrightarrow{n \to +\infty} 0.\frac{1}{2} = 0$$

P5) Soient $\{a_n\}$ et $\{b_n\}$ deux suites admettant comme limites respectives les réels a et b avec

$$b_n \neq 0 \neq b$$
. Alors la suite $\{w_n\}$ définie par $\frac{a_n}{b_n}$, tend vers $\frac{a}{b}$.

Exemple. Soit la suite $a_n = \frac{3n^2 + 11n + 6}{n^2 + n + 1}$. Alors

$$a_n = \frac{3n^2 + 11n + 6}{n^2 + n + 1} = \frac{n^2 \left(3 + \frac{11}{n} + \frac{6}{n^2}\right)}{n^2 \left(1 + \frac{1}{n} + \frac{1}{n^2}\right)} = \frac{3 + \frac{11}{n} + \frac{6}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^2}} \xrightarrow{n \to +\infty} \frac{3}{1} = 3$$

P6) Soit $\{a_n\}$ une suite bornée et $\{b_n\}$ une suite convergeant vers 0. Alors la suite $\{a_nb_n\}$ converge vers 0.

Exemple. Soit la suite $a_n = \frac{\sin 3n}{n}$. Alors $\lim_{n \to +\infty} a_n = 0$ car $\{a_n\}$ est le produit d'une suite

bornée $u_n = \sin 3n$ et une suite $v_n = \frac{1}{n}$ convergeant vers 0.

P7) Toute suite $\{a_n\}$ monotone et bornée est convergente.

- Si elle est croissante et majorée, elle converge vers $a = \sup a_n$.
- Si elle est décroissante et minorée, elle converge vers $a=\inf a_n$.

P8) La suite du terme général $u_n = q^n$. Alors

- Si |q| < 1, $\{u_n\}$ est convergente et $\lim_{n \to +\infty} u_n = 0$
- Si |q| > 1, $\{u_n\}$ est divergente et $\lim_{n \to +\infty} u_n = \infty$

Exemples.

- 1) Considérons la suite $a_n = \frac{5^n}{3^{n+1}}$. On a $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{1}{3} \left(\frac{5}{3}\right)^n = +\infty$ car $|q| = \frac{5}{3} > 1$
- 2) Soit la suite $b_n = \frac{4^n + 1}{5^n}$. On a $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \left(\frac{4}{5}\right)^n + \lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$ car $\frac{4}{5} < 1$ et $\frac{1}{5} < 1$

<u>Théorème</u>. (Théorème des gendarmes pour les suites). Soient $\{a_n\}$, $\{u_n\}$ et $\{v_n\}$ trois suites satisfaisant les deux propriétés suivantes :

(i) il existe $N_0 \in IN$ avec $u_n \le a_n \le v_n$ pour tout $n > N_0$; (ii) $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = L$.

Alors $\lim_{n\to+\infty} a_n = L$.

Démonstration. On a

$$\lim_{n \to +\infty} u_n = L : \forall \varepsilon > 0, \exists N_1 \in IN / \left| u_n - L \right| < \varepsilon, \ \forall n > N_1 \Longrightarrow -\varepsilon < u_n - L < \varepsilon, \ \forall n > N_1$$

$$\lim_{n \to +\infty} v_n = L : \forall \varepsilon > 0, \exists N_2 \in IN / |v_n - L| < \varepsilon, \forall n > N_2 \Longrightarrow -\varepsilon < v_n - L < \varepsilon, \forall n > N_2$$

Alors si $N_{\varepsilon} = \max(N_1, N_2)$, on a pour tout $n > N_{\varepsilon}$

$$u_n < a_n < v_n \Longrightarrow u_n - L < a_n - L < v_n - L \Longrightarrow -\varepsilon < u_n - L < a_n - L < v_n - L < \varepsilon \Longrightarrow -\varepsilon < a_n - L < \varepsilon \Longrightarrow -\varepsilon < \omega_n - \omega < \omega_n$$

Ce qui donne $|a_n - L| < \varepsilon$ pour tout $n > N_{\varepsilon}$ et donc $\lim a_n = L$.

Exemple. Soit la suite $a_n = \frac{2n + \sin 3n}{n}$. Alors $\lim_{n \to +\infty} a_n = 0$? On a

$$-1 \le \sin 3n \le 1 \Rightarrow 2n - 1 \le 2n + \sin 3n \le 2n + 1 \Rightarrow \frac{2n - 1}{n} \le \frac{2n + \sin 3n}{n} \le \frac{2n + 1}{n}$$

Passons à la limite : $2 \le \lim a_n \le 2$

D'après le théorème des gendarmes on a : $\lim_{n \to \infty} a_n = 2$.

Théorème. (Critère de d'Alembert). Soit $\{a_n\}$ une suite réelle telle que $L = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|$

existe. Alors

- Si L < 1, la suite $\{a_n\}$ converge vers 0;
- Si L > 1, la suite $\{a_n\}$ diverge.

Exemples.

1) Considérons la suite $a_n = \frac{1000^n}{n!}$. On a

$$\left| \frac{a_{n+1}}{a} \right| = \frac{1000^{n+1}}{(n+1)!} \cdot \frac{n!}{1000^n} = \frac{1000}{n+1} \xrightarrow[n \to +\infty]{} 0$$

Donc L = 0. Le critère de d'Alembert implique que $\lim_{n \to \infty} a_n = 0$

2) Considérons la suite $a_n = \frac{5^n}{3n+1}$. On a

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{5^{n+1}}{3(n+1)+1} \cdot \frac{3n+1}{5^n} = 5 \cdot \frac{3n+1}{3n+4} \xrightarrow{n \to +\infty} 5$$

Donc L=5. Le critère de d'Alembert implique que la suite $\{a_n\}$ diverge.

I.4. Suites récurrentes

<u>Définition 1.6.</u> Une suite $\{a_n\}$ est dite récurrente si a_{n+1} est définie à partir de a_n , c'est-`adire si : $a_{n+1} = f(a_n)$

1^{ere} Année S1 Analyse

Exemple. La suite définie par $\begin{cases} a_1 = 2 \\ a_{n+1} = \frac{2a_n}{1+a_n} \end{cases}$. Alors

$$a_2 = \frac{2a_1}{1+a_1} = \frac{4}{3}$$
; $a_3 = \frac{2a_2}{1+a_2} = \frac{8}{7}$; $a_4 = \frac{2a_3}{1+a_3} = \frac{16}{15}$; ...

Méthode pour trouver la limite d'une suite récurrente :

On démontre d'abord que la suite converge et le cas échéant on passe à la limite dans l'équation $a_{n+1} = f(a_n)$ ce qui donne à résoudre l'équation a = f(a).

Pour démontrer que la suite converge, on peut en général essayer de démontrer que

- La suite est monotone
- La suite est bornée

Remarque. Pour montrer qu'une suite croissante (resp. décroissante) est convergente, il suffit de montrer qu'elle est majorée (resp. minorée).

Exemple 1. Considérons la suite récurrente définie par $\begin{cases} a_1 = 2 \\ a_{n+1} = \frac{2a_n}{1+a_n} \end{cases}$

On constate d'abord que $a_n > 0$ pour tout n.

- (A) On montre, par récurrence, que $a_n > 1$ pour tout n.
 - C'est vrai pour n = 1.
 - Supposons $a_n > 1$.
 - On doit montrer que $a_{n+1} = \frac{2a_n}{1+a_n} > 1$? On a

$$a_n > 1 \Rightarrow 2a_n > 1 + a_n \Rightarrow \frac{2a_n}{1 + a_n} > 1 \Rightarrow a_{n+1} > 1$$

(B) On montre, que $\{a_n\}$ est décroissante. On a

$$a_{n+1} - a_n = \frac{2a_n}{1 + a_n} - a_n = \frac{2a_n - a_n(1 + a_n)}{1 + a_n} = \frac{a_n - a_n^2}{1 + a_n} = \frac{a_n(1 - a_n)}{1 + a_n} < 0 \text{ car } a_n > 1$$

La suite est donc décroissante. Comme elle est minorée, elle converge donc. Par passage à la limite

$$a_{n+1} = \frac{2a_n}{1+a_n} \xrightarrow{\lim ite} l = \frac{2l}{1+l} \Rightarrow l^2 + l = 2l \Rightarrow l(l-1) = 0 \Rightarrow l = 0 \text{ ou } l = 1$$

Comme $a_n > 1$ pour tout n, la limite ne peut être que l=1.

Exemple 2. Soit la suite définie par $\begin{cases} a_1 = 1 \\ a_{n+1} = \frac{a_n + 4}{4} \end{cases}$

Montrer la suite est convergente et calculer sa limite? croissante.

(A) Montrons par récurrence que la suite est majorée par 2.

Pour n = 1, $a_1 < 2$, supposons que $a_n < 2$ et montrons que $a_{n+1} < 2$. On a

$$a_n < 2 \Rightarrow a_n + 4 < 6 \Rightarrow \frac{a_n + 4}{4} < \frac{3}{2} < 2 \Rightarrow a_{n+1} < 2$$

<u>S1</u>

Donc la suite est majorée par 2.

(B) Montrons, par récurrence, qu'elle est croissante :

Pour n = 1, On a : $a_2 - a_1 = \frac{5}{4} - 1 > 0$. Supposons que $a_{n+1} - a_n > 0$ et montrons que

$$a_{n+2} - a_{n+1} > 0$$
. Alors $a_{n+2} - a_{n+1} = \frac{a_{n+1} + 4}{4} - \frac{a_n + 4}{4} = \frac{1}{4}(a_{n+1} - a_n) > 0$

La suite est croissante et majorée donc elle est convergente. Notons *a* cette limite. Alors par passage à la limite :

$$a = \frac{a+4}{4} \Rightarrow 4a = a+4 \Rightarrow a = \frac{4}{3}$$

Remarque. Cette méthode de calcul fonctionne parce que l'on a démontré que la limite existe c'est- à-dire qu'on ne peut pas passer à la limite avant de montrer que la suite converge.

Contre - exemple. Soit la suite définie par $\begin{cases} a_1 = 2 \\ a_{n+1} = \frac{1}{a_n} \end{cases}$

On a:
$$a_1 = 2$$
; $a_2 = \frac{1}{2}$; $a_3 = 2$; $a_4 = \frac{1}{2}$; $a_5 = 2$; $a_6 = \frac{1}{2}$; ...

Cette suite ne converge pas (2 points d'accumulations) mais si l'on passe à la limite dans la formule de définition, on obtient

$$a_{n+1} = \frac{1}{a_n} \xrightarrow{n \to +\infty} a = \frac{1}{a} \Rightarrow a^2 = 1 \Rightarrow a = 1 \text{ ou } a = -1$$
 Impossible.

I.5. Suites adjacentes

Proposition 1.1. Soient $\{u_n\}$ et $\{v_n\}$ deux suites telles que

- 1. $\{u_n\}$ est croissante,
- 2. $\{v_n\}$ est décroissante,
- 3. la suite $\{v_n u_n\}$ tend vers 0. Alors les deux suites $\{u_n\}$ et $\{v_n\}$ ont la même limite.

Dans ce cas on dit que les deux suites sont adjacentes.

Preuve. Pour tout n on a

$$u_n \le u_{n+1}$$
 et $v_n \ge v_{n+1}$ d'où $-u_n \ge -u_{n+1}$ et $v_n \ge v_{n+1}$

ce qui donne par addition $v_n - u_n \ge v_{n+1} - u_{n+1}$. La suite $\{v_n - u_n\}$ est donc décroissante.

Comme elle tend vers 0, on en déduit que $v_n - u_n \ge 0$ pour tout n, c'est-à-dire $v_n \ge u_n$.

On a alors $u_n \le v_n \le v_1$ puisque $\{v_n\}$ est décroissante. La suite $\{u_n\}$ est donc majorée et est croissante donc elle converge vers une limite ℓ .

De même la suite $\{v_n\}$ est minorée par u_1 et est décroissante, donc elle converge vers une limite ℓ' .

La suite $\{v_n - u_n\}$ tend vers $\ell' - \ell$ qui est nul à cause de l'hypothèse (3). Donc on a bien $\ell' = \ell$.

I.6. Séries

<u>Définition 1.7.</u> Soit $\{b_n\}$ une suite réelle. On note

$$\sum_{k=1}^{n} b_k := b_1 + b_2 + \dots + b_n$$

Si l'indice k parcourt tout IN^* (ou IN) alors la somme est infinie et on parle de **série**: $\sum_{k=1}^{\infty} b_k$. b_k est le terme général de la série.

Définition 1.8. Posons
$$S_n = \sum_{k=1}^n b_k := b_1 + b_2 + ... + b_n$$
. On a $S_{n+1} = S_n + b_{n+1}$

La suite $\{S_n\}$ est une suite récurrente, appelée la suite des sommes partielles.

On dit que la série $\sum_{k=1}^{\infty} b_k$ converge vers S si la suite $\{S_n\}$ converge vers S. On note alors

$$\sum_{k=1}^{n} b_k = S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{k=1}^{n} b_k$$

Sinon on dit que la série diverge.

Condition nécessaire de convergence

Pour que la série $\sum_{k=1}^{\infty} b_k$ converge, il faut que $\lim_{n\to\infty} b_k = 0$. En effet si la suite $\{S_n\}$ converge

vers *S*, alors :
$$S = \lim_{n \to \infty} S_{n+1} = \lim_{n \to \infty} (S_n + b_{n+1}) = \lim_{n \to \infty} S_n + \lim_{n \to \infty} b_{n+1} = S + \lim_{n \to \infty} b_{n+1}$$

On doit donc avoir $\lim_{n\to\infty} b_n = 0$

Exemple. Considérons la série $\sum_{k=1}^{\infty} \frac{2k+5}{3+4k}$. Le terme général est $b_n = \frac{2n+5}{3+4n}$, on a $\lim_{n\to\infty} b_n = \frac{1}{2}$

Donc la série $\sum \frac{2k+5}{3+4k}$ est divergente.

Mais cette condition n'est pas suffisante comme le montre l'exemple suivant

Exemple. La série $\sum_{k=1}^{\infty} \frac{1}{k}$ du terme général est $b_n = \frac{1}{n}$, est appelée la série harmonique. La

suite des sommes partielles est :
$$S_n = \sum_{k=1}^n b_k = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$$

On a bien $b_k \xrightarrow{n \to \infty} 0$. Mais la suite $\{S_n\}$ diverge.

Démonstration

- 1) La suite $\{S_n\}$ est croissante.
- 2) Considérons les termes $S_1, S_2, S_4, S_8, \ldots, S_{2^k}$

$$S_1 = 1 \ ; \quad S_2 = 1 + \frac{1}{2} \ ; \quad S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \ ; \quad S_8 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

Alors:
$$S_{2^0} = S_1 = 1 + 0.\frac{1}{2} \Rightarrow S_{2^0} \ge 1 + 0.\frac{1}{2}$$

$$S_{2^1} = S_2 = 1 + \frac{1}{2} = 1 + 1 \cdot \frac{1}{2} \Rightarrow S_{2^1} \ge 1 + 1 \cdot \frac{1}{2}$$
;

$$S_{2^2} = S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{2} \Longrightarrow S_{2^2} \ge 1 + 2.\frac{1}{2} \ ;$$

Institut Supérieur du Numérique

<u>1^{ere} Année</u> <u>S1</u> <u>Analyse</u>

$$S_{2^3} = S_8 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \Rightarrow S_{2^3} \ge 1 + 3.\frac{1}{2}$$

De manière générale, on a $S_{2^k} \ge 1 + k \cdot \frac{1}{2} \xrightarrow{k \to +\infty} +\infty$

La suite $\{S_{2^k}\}$ n'est pas majorée ce qui implique que

$$\lim_{n\to+\infty} S_n = \lim_{n\to+\infty} \sum_{k=1}^n b_k = \lim_{n\to+\infty} (1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}) = +\infty \text{ . La s\'erie } \sum_{k=1}^\infty \frac{1}{k} \text{ est donc divergente.}$$

Exemple. Considérons la série
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$
 du terme général $b_k = \frac{1}{k(k+1)}$

On a $b_k = \frac{1}{k} - \frac{1}{k+1}$ pour tout $k \ge 1$ et donc

$$S_n = \sum_{k=1}^n b_k = b_1 + b_2 + b_3 + \dots + b_n = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{(n-1)n} + \frac{1}{n(n+1)}$$
$$= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + (\frac{1}{4} - \frac{1}{5}) + \dots + (\frac{1}{n-1} - \frac{1}{n}) + (\frac{1}{n} - \frac{1}{n+1}) = 1 - \frac{1}{n+1}$$

Alors $\lim_{n \to +\infty} S_n = 1$ ce qui démontre que cette série converge vers 1.

La série géométrique

Soient $a, r \in IR$ et considérons la série géométrique

$$\sum_{k=0}^{\infty} ar^k = a + ar + ar^2 + ar^3 + \dots + ar^n + \dots$$
 du terme général est $b_k = ar^k$ tel que $b_{k+1} = rb_k$.

Alors
$$S_0 = a$$
; $S_1 = a + ar$; $S_2 = a + ar + ar^2$ et $S_n = a + ar + ar^2 + ... + ar^n$.

On sait que
$$S_n = a \frac{1 - r^{n+1}}{1 - r}$$
 car $(1 - r)(a + ar + ar^2 + ... + ar^n) = a(1 - r^{n+1})$

Si |r| > 1 alors la suite $\{S_n\}$ diverge car $r^{n+1} \xrightarrow{n \to +\infty} \infty$. Donc la série géométrique est divergente.

Si $|\mathbf{r}| < 1$, on a $r^{n+1} \xrightarrow{n \to +\infty} 0$ et donc la série géométrique converge et sa limite S est

$$S = \lim_{n \to +\infty} \sum_{k=0}^{n} ar^{k} = \lim_{n \to +\infty} S_{n} = \lim_{n \to +\infty} a \frac{1 - r^{n+1}}{1 - r} = \frac{a}{1 - r}$$

Le nombre r est appelé la raison de la série géométrique.

Exemple 1. Considérons la série
$$\sum_{k=0}^{\infty} \frac{2}{3^k}$$
. On a $\sum_{k=0}^{\infty} \frac{2}{3^k} = 2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + ...$

La série $\sum_{k=0}^{\infty} \frac{2}{3^k}$ est une série géométrique de raison $r = \frac{1}{3} < 1$ et a = 2. Donc elle converge

vers
$$S = \frac{2}{1 - (1/3)} = 3$$
.

Exemple 2. Considérons la série
$$\sum_{k=0}^{\infty} \frac{4^k}{3^k}$$
. On a $\sum_{k=0}^{\infty} \frac{4^k}{3^k} = 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \dots$

La série $\sum_{k=0}^{\infty} \frac{4^k}{3^k}$ est une série géométrique de raison $r = \frac{4}{3} > 1$. Donc elle est divergente.