C! Ent

W is NHC(=X)R₁, or -Y-het; X is O, or S; provided that when X is O, B is not the subsection (b);

Y is NH, O, or S;

Z is $S(=O)(=N-R_5)$;

R₁ is

- (a) H,
- (b) NH_2 ,
- (c) $NHC_{1-4}alkyl$,
- (d) C_{1-4} alkyl,
- (e) C_{2-4} alkenyl,
- (f) $OC_{1-4}alkyl$,
- (g) SC₁₋₄alkyl, or
- (h) $(CH_2)_p C_{3-6}$ cycloalkyl;

at each occurrence, alkyl or cycloalkyl in R₁ is optionally substituted with one or more F, Cl or CN;

R₂ and R₃ are independently H, F, Cl, methyl or ethyl;

R₄ is H, CH₃, or F;

R₅ is

(c) $C(=O)C_{1-4}alkyl$,

	$(d) C(=O)OC_{1-4}alkyl,$
	(e) $C(=O)NHR_6$, or
	(f) $\backslash C(=S)NHR_{6}$:
01	R ₆ is H, C ₁₋₄ alkyl, or phenyl;
<i>C I</i>	at each occurrence, alkyl in R ₅ and R ₆ is optionally substituted with one or more halo, CN, NO ₂ ,
6,1	phenyl, C_{3-6} cycloalkyl, OR_7 , $C(=O)R_7$, $OC(=O)R_7$, $C(=O)OR_7$, $S(=O)_mR_7$, $S(=O)_mNR_7R_7$,
cont	$NR_7SO_2R_7$, $NR_7SO_2NR_7R_7$, $NR_7C(=O)R_7$, $C(=O)NR_7R_7$, NR_7R_7 , oxo, or oxime;
	R_7 is H, C_{1-4} alkyl, or phenyl;
	at each occurrence, phenyl is optionally substituted with one or more halo, CF ₃ , CH ₃ , CN, NO ₂ ,
	phenyl, C_{3-6} cycloalkyl, OR_7 , $C(=O)R_7$, $OC(=O)R_7$, $C(=O)OR_7$, $S(=O)_mR_7$, $S(=O)_mNR_7R_7$,
	$NR_7SO_2R_7$, $NR_7SO_2NR_7R_7$, $NR_7C(=O)R_7$, $C(=O)NR_7R_7$, or NR_7R_7 ;
	het is a C-linked five- (5) membered heteroaryl ring having 1-4 heteroatoms selected from the
	group consisting of oxygen, sulfur, and nitrogen, or het is a C-linked six (6) membered
	heteroaryl ring having 1-3 nitrogen atoms;
	p is 0, 1, or 2;
	j is 1, 2, 3, 4, or 5; provided that j and p taken together are 2, 3, 4 or 5;
	m is 0, 1, or 2; and
	n is 2 or 3.
C2	9. (ONCE AMENDED) A compound of claim 2-7 wherein X is an oxygen atom.
۵ ۶	16. (ONCE AMENDED) A compound of claim 8 wherein structure B is
[(CH ₂)
	$(CH_2)_j$ Z
	wherein Z is $S(=O)(=NR_5)$.
a U	47. (ONCE AMENDED) A compound of formula II
\mathcal{L}'	

 R_2 $A-CH_2-W$

П

or a pharmaceutically acceptable salt thereof wherein:

A is a structure ii

B is

$$R_4$$
 $(CH_2)_p$ Z $(CH_2)_j$

W is $NHC(=X)R_1$, or -Y-het;

X is O, or S;

Y is NH, O, or S;

Z is $S(=O)(=N-R_5)$ and the B ring has the following stereochemistry

 R_1 is

- (a) H,
- (b) NH_2 ,
- (c) NHC₁₋₄alkyl,

FORM PTORSP Rev. 5/1999 CY El cont (d) C₁₋₄alkyl,

- (e) \setminus C₂₋₄alkenyl,
- (f) QC_{1-4} alkyl,
- (g) SC_{4} alkyl, or
- (h) $(CH_2)_R C_{3-6}$ cycloalkyl;

at each occurrence, alkyl or cycloalkyl in R_1 is optionally substituted with one or more F, Cl or CN;

R₂ and R₃ are independently H, F, Cl, methyl or ethyl;

R₄ is H, CH₃, or F;

R₅ is

- (a) H,
- (b) $C_{1-4}alkyl$,
- (c) $C(=O)C_{1-4}alkyl$,
- (d) $C(=O)OC_{1-4}alkyl$,
- (e) $C(=O)NHR_6$, or
- (f) $C(=S)NHR_{6}$:

R₆ is H, C₁₋₄alkyl, or phenyl;

at each occurrence, alkyl in R_5 and R_6 is optionally substituted with one or more halo, CN, NO₂, phenyl, C_{3-6} cycloalkyl, OR_7 , $C(=O)R_7$, $OC(=O)R_7$, $C(=O)OR_7$, $S(=O)_mR_7$, S

 R_7 is H, C_{1-4} alkyl, or phenyl;

at each occurrence, phenyl is optionally substituted with one or more halo, CF_3 CH_3 , CN, NO_2 , phenyl, C_{3-6} cycloalkyl, OR_7 , $C(=O)R_7$, $OC(=O)R_7$, $C(=O)OR_7$, $S(=O)_mR_7$, S

het is a C-linked five- (5) membered heteroaryl ring having 1-4 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, or het is a C-linked six (6) membered heteroaryl ring having 1-3 nitrogen atoms;

p is 0, 1, or 2;

j is 1, 2, 3, 4, or 5; provided that j and p taken together are 2, 3, 4 or 5; m is 0, 1, or 2.

21

C⁵

54. (ONCE AMENDED) The compound of claim 47 wherein X is an oxygen atom.

65. (TWICE AMENDED) A compound of claim 47 which is

N-($\{(5S)-3\cdot[3-\text{fluoro-}4-(1-\text{imino-}1-\text{oxidohexahydro-}1\lambda^4-\text{thiopyran-}4-\text{yl}\}$)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)acetamide (Z)-isomer;

N-($\{(5S)-3-[3-fluoro-4-(1-imino-1-oxidohexahydro-1\lambda^4-thiopyran-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}$ methyl)ethanethioamide (Z)-isomer;

N- $({(5S)-3-[3-fluoro-4-(1-imino-1-oxidohexahydro-1<math>\lambda^4$ -thiopyran-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)propanethioamide (Z)-isomer;

N-($\{(5S)$ -3-[3-fluoro-4-(1-inino-1-oxidohexahydro- $1\lambda^4$ -thiopyran-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)cyclopropanethioamide (Z)-isomer;

N-($\{(5S)$ -3-[3-fluoro-4-[1-(acetylmino)-1-oxidohexahydro- $1\lambda^4$ -thiopyran-4-yl]phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)acetamide, Z-isomer;

N-($\{(5S)$ -3-[3-fluoro-4-[1-(methylimino)-1-oxidohexahydro- $1\lambda^4$ -thiopyran-4-yl]phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)propanethioamide, Z-isomer;

N- $({(5S)-3-[3-fluoro-4-[1-(acetylimino)-1-oxidohexahydro-1\lambda^4-thiopyran-4-yl]phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)propanethioamide, Z-isomer;$

 $N-(\{(5S)-3-[3-fluoro-4-[1-(ethylimino)-1-oxidohexahydro-1\lambda^4-thiopyran-4-yl]phenyl]-2-oxo-1,3-oxazolidin-5-yl\}methyl)propanethioamide, Z-isomer;$

N-($\{(5S)$ -3-[3-fluoro-4-[1-[(phenylmethyl)imino]-1-oxidohexahydro- $1\lambda^4$ -thiopyran-4-yl]phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)propanethioamide, Z-isomer;

N-($\{(5S)$ -3-[3-fluoro-4-[1-[(3-phenylpropyl)imino]-1-oxidohexahydro- $1\lambda^4$ -thiopyran-4-yl]phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)propanethioamide, Z-isomer;

 $N-(\{(5S)-3-[3-fluoro-4-(1-\{[(methylamino)carbonyl]imino\}-1-axidohexahydro-1<math>\lambda^4$ -thiopyran-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)propanethioamide, Z-isomer;

N- $({(5S)-3-[3-fluoro-4-(1-[(methoxycarbonyl)imino]-1-oxidohexah)dro-1\lambda^4-thiopyran-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)propanethioamide, Z-isomer;$