Name:

Tutorial time:

Problem you want feedback on:

Please complete all problems below, and indicate above which $\bf one$ problem you want feedback on.

1. Given $\vec{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$, find the orthogonal decomposition $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{v} , and \vec{u}_2 is orthogonal to \vec{v} . Include a rough diagram.

2. Find the point of intersection (if any) of the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$ with the plane x - 2y + 3z = -6

3. Find the shortest distance from the point P = (1, 3, -2) to the line through the point $P_0 = (2, 0, -1)$ in the direction of $\vec{v} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T$. Also find the point P_1 on the line that is closest to P. **Include a diagram.**

4. Find the shortest distance from the point P = (2, 8, 5) to the plane given by the equation x - 2y - 2z = 1. Also find the point P_1 on the plane that is closest to P. Hint: Begin by finding any point P_0 that lies on the plane. Include a diagram.