Digital Design

CS/EEE /ECE/INSTR F215

Lecture 2: Number systems

General use Decimal numbers: 8956

Digits used are 0 - 9

$$8956 = 8 \times 10^3 + 9 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$$

Can be generalized to any decimal number

$$a_3 a_2 a_1 a_0 \cdot a_{-1} a_{-2}$$

$$= a_3 \times 10^3 + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 10^0 + a_{-1} \times 10^{-1} + a_{-2} \times 10^{-2}$$

Decimal number system: Base is 10 Numbers used: 0-9

Base also called radix

Binary number system: Base is 2 Numbers used: 0-1

For example: 101.11

$$= 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 4 + 0 + 1 + 0.5 + 0.25$$

For Base - r system
$$(a_n a_{n-1} ... a_1 a_0. a_{-1} a_{-2}... a_{-m})_r$$

$$a_n \times r^n + a_{n-1} \times r^{n-1} \dots a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + \dots a_{-m} \times r^{-m}$$

Find the decimal equivalent of

$$(123.4)_8$$
 [Octal] =1 x 8² + 2 x 8¹ + 3 x 8⁰ + 4 x 8⁻¹ = 83.5

$$(B2.4)_{16}$$
 [Hexa decimal] = 11 x 16¹ + 2 x 16⁰ + 4 x 16⁻¹ =??

$$(110101)_2 [Binary]$$
=1 x 2⁵ + 1x 2⁴ + 0 x 2³ + 1 x 2² + 0 x 2¹ + 1 x 2⁰ = ??

Typical conversions

Base-10 to Base-r

Convert $(49)_{10}$ to $()_{2}$ Remainder 49 LSB 24 $(110001)_2$ **MSB**

Typical conversions

Base-10 to Base-r

Convert (50)₁₀ to ()₂

 $(110010)_2$

Typical conversions

Base-10 to Base-r (fraction)

Convert
$$(0.125)_{10}$$
 to Integer $()_2$ 0.125x 2 = 0.25 0 0.25 x 2 = 0.5 0 0.5 x 2 = 1.0 1

$$(0.125)_{10} = (0.001)_2$$

Limited to required number of digits

Typical conversions

Base-10 to Base-r (fraction)

Convert
$$(0.49)_{10}$$
 to $()_2$

$$0.49 \times 2 = 0.98$$

$$0.98 \times 2 = 1.96$$

$$0.96 \times 2 = 1.92$$

$$0.92 \times 2 = 1.84$$
1

 $(0.49)_{10} = (0.011111....)_2$ Limited to required number of digits

Typical conversions

Base-r to Base-10

Convert $(110110)_2$ to $()_{10}$

$$=1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

$$=1 \times 32 + 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 2^{0}$$

$$=1 \times 32 + 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 2^{0}$$

 $(B65F)_{16}$

Express the following numbers in decimal

 $(10110.0101)_2$

 $(1010.1010)_2$

 $(26.24)_8$

 $(16.5)_{16}$

 $(FAFA)_{16}$

Problems

(1) Use binary expansion to convert binary fractions into decimals

```
(i) (101.1101)_2 (ii) (1101.0111)_2 (iii) (111.111)_2 (iv) (101.01011)_2
```

(2) Convert (i) $(13.6875)_{10}$ (ii) $(32.45)_{10}$ (iii) $(28.555)_{10}$ (iv) $(7.0202)_{10}$ into binary fraction (3) Convert the following numbers with the indicated base to decimal:

```
(i) (4310)_5
```

 $(ii) (198)_{12}$

(iii)
$$(735)_8$$

 $(iv) (525)_6$

Number conversions

Other conversions

Binary to octal Octal: base 8 digits used 0 - 7

1110001010101 For Octal- 2³, 8bit: 2³

 $(1110001010101)_2 \longrightarrow (16125)_8$

Number conversions

Other conversions

octal to binary Octal: base 8 digits used 0-7

$$(6373)_8 \longrightarrow (110011111011)_2$$

Number conversions

Other conversions

Binary to Hexadecimal Hexa: base 16 digits used 0-F

11100010101 4 bit, then Hexa decimal-2⁴

Representation of Negative Numbers

- Signed Magnitude
- Diminished radix complement
- Radix complement

Representation of Negative Numbers

Signed Magnitude	3-bit numbers	Signed magnitude
	000	+0
Limitations	001	+1
1. Two Zeros	010	+2
	011	+3
2. Add +2 & -1	100	-O
010	101	-1
<u>101</u>	110	-2
<u>111</u>	111	-3
MSB indicates Sign : 0 in	ndicates positive, 1 ind	icates negative

Diminished radix complement

Given a number N in base r having n digits (r-1)'s complement is defined as (r^n-1-N)

In case of decimal it is called 9's complement

9's complement of 865 is $10^3 - 1 - 865 = 999 - 865 = 134$

In case of binary it is called 1's complement for 1011

1's complement of 1011 is $\begin{array}{l}
2^4 - 1 - 1011 = 1111 - 1011 = 0100 \\
\text{(or you can simply use the complement } & 1 \text{ for 0 and 0 for 1)}
\end{array}$

Decimal	S.M.	1's comp.	A COLUMN
7	0111	0111	
6	0110	0110	
5	0101	0101	
4	0100	0100	
3	0011	0011	
2	0010	0010	
1	0001	0001	
0	0000	0000	
-0	1000	1111	
-1	1001	1110	
-2	1010	1101	
-3	1011	1100	
-4	1100	1011	
-5	1101	1010	
-6	1110	1001	
-7	1111	1000	
-8	_	_	

- > Two Zeros
- > End-around-carry-bit addition

Add 4 & -7	Add 4 & -3
0100	0100
1000	<u>1100</u>
1100	1 0000
	1
	0001

Add 4 & -3

- Two Zeros
- > End-around-carry-bit addition

Radix complement

Given a number N in base r having n digits r's complement is defined as (r^n-N)

In case of decimal it is called 10's complement

10's complement of 865 is $10^3 - 865 = 1000 - 865 = 135$

10's complement = 9's complement + 1

In case of binary it is called 2's complement

2's complement of 1011 is $2^4-1011 = 10000-1011 = 0101$

2's complement = 1's complement + 1

Decimal	S.M.	1's comp.	2's comp.
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	_
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	-	-	1000

- Two Zeros
- No End-around-carry-bit addition

EX-OR Gate As Buffer and Inverter

8/25/2020

► Easy Implementation: Adder Subtractor M=0 adder, M=1 Subtractor

Add 4 & -3 Add -4 & -5

Add -8 & 4

Add 4 & 4

1000 0100 1100 0100 0100 1000

BCD code

BCD and Binary comparison

(185)₁₀ BCD =
$$(0001\ 1000\ 0101)$$

Binary = $(101111001)_2$
BCD = 12 bits, Binary = 8 bits

Some systems work directly on BCD (IBM Power6)

User enters decimal \rightarrow BCD i/p \rightarrow compute in BCD \rightarrow BCD o/p \rightarrow Decimal output shown to user

General digital systems

User enters decimal \rightarrow BCD i/p \rightarrow Binary i/p \rightarrow compute in binary \rightarrow Binary o/p \rightarrow BCD o/p \rightarrow Decimal output shown to user

BCD addition

$$4 + 5$$

9 1001 Expected Result

Is this expected Result?

Expected answer is BCD of 12

0001 0010

BCD addition

$$4 + 8$$

4 0 1 0 0

8 1000

Greater than 9

00010

Add correction of +6

= To skip 6 invalid states (10 - 15) BCDs

BCD addition

9 + 9 9 1001

9 1001

Carry out generated 10010

$$0110$$

$$0001 1000$$
Add correction of +6

After addition if carry out is generated or if sum is greater than 9 there is need for correction

BCD addition

Binary Codes – Gray Code

THE GRAY CODE

Decimal	Binary	Gray Code
0	0000	0000
/ 1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100

Decimal	Binary	Gray Code
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Binary Codes – Gray Code

Binary Codes – Gray Code

Thankyou