ECE 65: Components & Circuits Lab

Lecture 20

Transistor Amplifier Biasing

Reference notes: sections 5.3

Sedra & Smith (7th Ed): sections 7.4

Saharnaz Baghdadchi

Course map

6. Transistor Amplifiers - Bias and small signal

How to establish a Bias point

- O Stable and robust bias point should be predictable and insensitive to variations in temperature and to the manufacturing variability in the transistor parameter values such as V_t , μ_n , C_{ox} , (W/L) and β .
- Bias point details impact the small signal response (e.g., gain of the amplifier).

BJT Fixed Bias

BE KVL:
$$V_{BB} = I_B R_B + V_{BE}$$

$$I_B = rac{V_{BB} - V_{BE}}{R_B}$$
 , $I_C = \beta I_B = \beta rac{V_{BB} - V_{BE}}{R_B}$

CE KVL:
$$V_{CC} = I_C R_C + V_{CE}$$

Why biasing with base voltage (fixed bias) does not work?

Changes in BJT β or V_{BE} values, changes the bias point drastically.

BJT can end up in saturation or in cut-off easily.

To operate a BJT in the active region, $I_{C}\!>0$, $V_{CE}\!>V_{D0}$

Biasing with Emitter Degeneration

Requires a resistor in the emitter circuit!

BE KVL:
$$V_{BB} = I_B R_B + V_{BE} + I_E R_E$$

$$V_{BB} - V_{BE} = I_E \left(\frac{R_B}{\beta + 1} + R_E \right)$$

If
$$R_B \ll (\beta + 1)R_E$$

$$V_{BB} - V_{BE} \approx I_E R_E$$

Emitter resistor provides negative feedback!

$$\begin{cases} V_{BB} - V_{BE} \approx I_E R_E \\ I_C \propto e^{V_{BE}/V_T} \end{cases}$$

Negative Feedback:

$$\circ$$
 If $I_C \approx I_E \uparrow$ (because $\beta \uparrow$), $\xrightarrow{\mathsf{BE-KVL}} V_{BE} \downarrow \xrightarrow{\mathsf{BE}} \mathsf{Junction}$ $I_C \approx I_E \downarrow$

$$\circ$$
 If $I_C \approx I_E \downarrow$ (because $\beta \downarrow$), $\xrightarrow{\mathsf{BE}}$ -KVL $\longrightarrow V_{BE} \uparrow \xrightarrow{\mathsf{BE}}$ junction $I_C \approx I_E \uparrow$

Emitter-degeneration bias circuits

Basic Arrangement

$$V_{BB} = I_B R_B + V_{BE} + I_E R_E$$

Bias with <u>one</u> power supply (voltage divider)

$$V_{BB} = I_B R_B + V_{BE} + I_E R_E$$

Bias with <u>two</u> power supplies

$$V_{EE} = I_B R_B + V_{BE} + I_E R_E$$

MOS Fixed Bias

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_t)^2$$

$$V_{DS} = V_{DD} - I_D R_D$$

This method is NOT desirable as $\mu_n C_{ox}$ (W/L) and V_t vary widely among devises of the same manufacturer's part number.

Bias point (i.e., I_D and V_{DS}) can change drastically due to temperature and/or manufacturing variability.

MOS bias with Source Degeneration (Resistor R_s provides negative feedback!)

$$\begin{cases} V_{GS} = V_G - I_D R_S \\ I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_t)^2 \end{cases}$$

Negative Feedback:

$$\circ \text{ If } I_D \uparrow \text{ (because } \mu_n C_{ox} (W/L) \uparrow \text{ or } V_t \downarrow \text{)} \xrightarrow{\text{GS KVL}} V_{GS} \downarrow \xrightarrow{I_D \text{ Eq.}} I_D \downarrow$$

$$\circ \text{ If } I_D \downarrow \text{ (because } \mu_n C_{ox} (W/L) \downarrow \text{ or } V_t \uparrow \text{)} \xrightarrow{\text{GS KVL}} V_{GS} \uparrow \xrightarrow{I_D \text{ Eq.}} I_D \uparrow$$

Source-degeneration bias circuits

Basic Arrangement

$$V_G = V_{GS} + I_D R_S$$

Bias with <u>one</u> power supply (voltage divider)

$$V_G = V_{GS} + I_D R_S$$

Bias with <u>two</u> power supplies

$$V_{SS} = V_{GS} + I_D R_S$$

Biasing with a current source

Biasing with a current source

Biasing with a current source

Biasing circuit examples

Lecture 21 reading quiz.

Find R_C and R_B such that BJT would be in active with $V_{CE} \! = \!$ 5V and

$$I_C$$
 = 25 mA. (V_{CC} = 15 V, Si BJT with $\beta=100$ and V_A = ∞). $V_{\rm D_o}$ = 0.7 $^{\rm V}$

CE KVL:

$$V_{cc} = R_c J_c + V_{cE}$$

$$15 = R_c \times 25\text{mA} + 5V \longrightarrow R_c = 400 \text{ s}$$

$$I_{c} = / J_{B} \longrightarrow I_{B} = \frac{25\text{mA}}{100} = 0.25 \text{ m A}$$

$$\begin{array}{c|c}
R_B & R_C \\
\downarrow I_B & \downarrow I_C \\
+ & V_{CE}
\end{array}$$

Consider the circuit designed in the reading quiz (R_C =400 , R_B = 57.2 k, V_{CC} = 15 V). Find the operating point of BJT if β = 200. (V_A = ∞).

$$0E - kVL :$$

$$15 = I_{B}R_{B} + V_{0}E \longrightarrow 15 = I_{B} \times 57.2k + 0.7$$

$$I_{C} = I_{D}I_{B} = 200 \times 0.25 \text{ mA} = 50 \text{ mA}$$

$$I_{C} = I_{D}I_{B} = 200 \times 0.25 \text{ mA} = 50 \text{ mA}$$

$$I_{C} = I_{D}I_{C} = 200 \times 0.25 \text{ mA} = 50 \text{ mA}$$

$$I_{C} = I_{D}I_{C} = 200 \times 0.25 \text{ mA} = 50 \text{ mA}$$

$$I_{C} = I_{D}I_{C} = 200 \times 0.25 \text{ mA} = 50 \text{ mA}$$

$$I_{C} = I_{D}I_{C} = I$$

100 Find the bias point of the BJT (Si BJT with $\beta=200$ and $V_{\rm A}=\infty$).

Compare your results for both beta values,

$$g_{h} = 34k_{n} || 5.9k_{n} = 5.03k_{n}$$
 $f_{h} = \frac{5.9k_{n}}{5.9k_{n}} \times 15V = 2.22V$
 $\frac{5.9k_{n}}{5.9k_{n}} \times 34k_{n}$

o 15

 $\ge 1k$

 ≥ 510

₹ 34k

12.
$$I_{c=}/J_{B}$$
 in active region

Always valid: $I_{e=}I_{c+}I_{B}$ $\rightarrow I_{e=}I_{B+}/J_{B}=(1+/5)I_{B}$

Find the bias point of the BJT (Si BJT with $\beta=200$ and $V_A=\infty$). $V_{D_A=0.7}$

$$R_{8} = 34kn || 5.9kn = 5.03k$$

$$V_{BB} = \frac{5.9 \, \text{k}}{34 \, \text{k} + 5.9 \, \text{k}} \times 15 = 2.22 \, \text{V}$$

$$2.22 = 5.03 \text{ K} \times \frac{\text{IE}}{1+\text{B}} + 0.7 + \text{JE} \times 0.50$$

$$I_{E} = 2.84 \text{mA}$$
, $I_{C} = /3I_{B} = \frac{/3}{/3+1} \times I_{E} = 2.82 \text{mA}$, $I_{B} = 14.1 / A$

Find the bias point of the BJT (Si BJT with $\beta=200$ and $V_A=\infty$).

LE KVL:

$$15 = I_{C}R_{C} + V_{CE} + R_{E}I_{E}$$

 $\rightarrow V_{CE} = 10.7V > 0.7V \longrightarrow BJT$ is in active mode

Find the bias point of the BJT (Si BJT with $\beta=200$ and $V_A=\infty$).

If β changes to 100,

$$2.22 = 5.03 k \times \frac{I_E}{101} + 0.7 + 0.510 k \times I_E$$

$$I_E = 2.71 \, mA$$

$$V_{CE} = 15 - (1.510 k) \times 2.71 mA = 10.91 V > V_{D0}$$

BJT is still in active mode and I_E changed by about -4%.

Example of finding the Bias point/Thevenin equivalent circuit

$$\beta = 100$$
 $V_T = 25 \, mV$ $V_A = \infty$

Bias circuit:

Example cont.

Example cont. 10 V $\ge 5 k$ 82 k**-**100 *k* ≸ ightharpoonup 9.5 k10 V -10 V -10 V R_{Th} 82 k**-**100 kSecond Second 10 V V_{Th} circuit circuit -10 V(

Example cont.

$$\longrightarrow i_1 = \frac{20 \, \text{V}}{182 \, \text{k}} \qquad \longrightarrow V_{\text{Th}} = 100 \, \text{k} \, \text{k} \, i_1 - 10 \, \text{V} \qquad \longrightarrow V_{\text{Th}} = 0.989 \, \text{V}$$

RTh: Zero the independent Voltage Sources.

$$R_{Th} = 100 \, \text{k} \, \text{ll} \, 82 \, \text{k} \simeq 45.05 \, \text{k} \, \text{m}$$

Clicker question 1.

Which one of the options is correct for the following bias circuit?

$$V_{t} = 1 \text{ V and } k_{n} = 1.0 \text{ mA/V}^{2}, \lambda = 0.$$

$$V_{1} = \frac{7 \text{ Ma}}{7 \text{ Ma} + 8 \text{ Ma}} \times 15 \text{ V}$$

$$V_{1} = \frac{7 \text{ Ma}}{7 \text{ Ma} + 8 \text{ Ma}} \times 15 \text{ V}$$

$$V_{1} = 7 \text{ V}$$

$$V_{1} = 7 \text{ V}$$

$$V_{2} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{3} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{4} = 7 \text{ V}$$

$$V_{5} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{6} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{7} = 7 \text{ V}$$

$$V_{8} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{8} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{7} = 7 \text{ V}$$

$$V_{8} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{8} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{8} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{8} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{8} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{8} = 7 \text{ Ma} = 7 \text{ V}$$

$$V_{9} = 7 \text{ V}$$

$$V_{9} = 7 \text{ V}$$

$$V_{1} = 7 \text{ V}$$

$$V_{1} = 7 \text{ V}$$

$$V_{2} = 7 \text{ V}$$

$$V_{3} = 7 \text{ V}$$

$$V_{4} = 7 \text{ V}$$

$$V_{5} = 7 \text{ V}$$

$$V_{7} = 7 \text{ V}$$

$$V_{8} = 7 \text{ V}$$

$$V_{9} = 7 \text{ V}$$

$$V_$$

This is an amplifier circuit, so MOS will be in saturation.

Clicker question 1.

Which one of the options is correct for the following bias circuit?

$$V_t$$
 = 1 V and k_n = 1.0 mA/V 2 , λ = 0.

$$V_{GS} = 7V - 10kn \times ID$$

$$V_{GS} - V_{\pm} = 7V - 10kn \times ID - 1$$

$$V_{OV}$$

$$V_{OV} = 6V - 10kn \times ID$$

$$I_{O} = \frac{1}{2}k_{n}V_{OV}$$

$$V_{0V} = 6V - \frac{10k}{2} \times 1(mA_{V^2}) V_{0V}$$

$$5 V_{0V} + V_{0V} - 6 = 0$$

$$\longrightarrow V_{0V} = \begin{cases} 1 V > 0 \\ -6 V \times \end{cases}$$

$$\longrightarrow V_{0V} = 7 V_{0V} = 7$$

$$\rightarrow V_{0V} = \begin{cases} 1 & V > 0 \\ -6 & V \times \end{cases}$$

Clicker question 1.

Which one of the options is correct for the following bias circuit?

$$V_t$$
 = 1 V and k_n = 1.0 mA/V 2 , λ = 0.

$$V_{OV} = 1V \longrightarrow V_{GS} - V_{t} = 1 \longrightarrow V_{GS} = V_{t} + 1 = 2V$$

$$V_{GS} = V_{G} - V_{S} = 2V \longrightarrow 7V - V_{S} = 2V$$

$$\longrightarrow V_{S} = 5V$$

$$I_{D} = \frac{1}{2} \times 1(mA_{V2}) \times 1^{2}(V) = 0.5 \text{ mA}$$

$$I_{D} = 0.5 \text{ mA}$$

Design the below circuit so that the transistor operates in saturation with V_{SD} biased 1-V from the edge of the saturation, with $I_D=1\ mA$ and $V_D=3\,V$. Use a $10\,\mu A$ current in the voltage divider. $|V_t|=1\,V$,

$$k_p = 0.5 \, mA/V^2$$

In the saturation region: $V_{SD} > V_{OV}$ V_{SD} biased 1 volt from the edge of saturation & MOS operates in saturation means:

$$V_{SD} = V_{OV} + 1$$

$$I_{D} = \frac{1}{2} k_{n} V_{ov}^{2} \longrightarrow 1_{m} A = \frac{1}{2} \times 0.5 \frac{m A}{V^{2}} \times V_{ov}^{2}$$

$$\longrightarrow$$
 $V_{ov} = 2 \lor \longrightarrow V_{SG} = V_{ov} + |V_t| = 3 \lor$

Design the below circuit so that the transistor operates in saturation with V_{SD} biased 1-V from the edge of the saturation, with $I_D=1~mA$ and $V_D=3~V$. Use a $10~\mu A$ current in the voltage divider. $|V_t|=1~V$, $k_p=0.5~mA/V^2$

$$V_{SD} = V_{oV} + I = 2 + I = 3V$$

$$V_{D} = R_{D} T_{D} \longrightarrow 3V = R_{D} \times 1 \text{mA} \longrightarrow R_{D} = 3 \text{kn}$$

$$V_{SD} = V_{S} - V_{D} = V_{S} - 3V = 3V \longrightarrow V_{S} = 6V$$

$$V_{S} = 10V - R_{S}T_{D} \longrightarrow 6V = 10V - R_{S} \times 1 \text{mA}$$

Design the below circuit so that the transistor operates in saturation with V_{SD} biased 1-V from the edge of the saturation, with $I_D=1~mA$ and $V_D=3~V$. Use a $10~\mu A$ current in the voltage divider. $|V_t|=1~V$, $k_p=0.5~mA/V^2$

$$V_{SG} = V_S - V_G = 3V$$
 \longrightarrow $V_G = V_S - 3V = 6 - 3 = 3V$

$$V_G = 10 V - R_1 I_1 \rightarrow 3V = 10 V - R_1 \times 10 \text{ MA}$$

$$R_1 = \frac{7 \text{ V}}{10 \text{ pA}} = 0.7 \text{ Ms.}$$

$$V_G = R_2 I_2 \longrightarrow R_2 = \frac{3V}{10MA} = 0.3 M \Lambda$$

