### A 2. zh témakörei

#### Analízis 2.

# 2016. november

**1. feladat.** Bizonyítsa be, hogy az  $f(x) := x + e^x$   $(x \in \mathbb{R})$  függvény invertálható,  $f^{-1} \in D^2$ , és számítsa ki  $(f^{-1})''(1)$ -et.

**Megoldás.** Az f függvény deriválható  $\mathbb{R}$ -en,  $f'(x) = 1 + e^x > 0$  ( $x \in \mathbb{R}$ ); f tehát szigorúan monoton növekedő  $\mathbb{R}$ -en, következésképpen invertálható. Az inverz függvény deriválási szabálya alapján  $f^{-1}$  minden  $y = f(x) \in \mathcal{D}_{f^{-1}} = \mathcal{R}_f$  pontban deriválható és

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))} = (\frac{1}{f' \circ f^{-1}})(y) \qquad (y \in \mathcal{D}_{f^{-1}}),$$

azaz

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}.$$

Mivel f'(x) > 0  $(x \in \mathbb{R})$ , ezért az összetett függvény deriválási szabálya alapján az  $(f^{-1})'$  függvény deriválható, és

$$((f^{-1})')' = \left(\frac{1}{f' \circ f^{-1}}\right)' = -\frac{1}{(f' \circ f^{-1})^2} \cdot (f' \circ f^{-1})' =$$

$$= -\frac{(f'' \circ f^{-1}) \cdot (f^{-1})'}{(f' \circ f^{-1})^2} = -\frac{f'' \circ f^{-1}}{(f' \circ f^{-1})^3}.$$

 $f^{-1}$  tehát kétszer deriválható minden  $y \in \mathcal{D}_{f^{-1}}$  (y = f(x)) pontban, és

$$(f^{-1})''(y) = \left( (f^{-1})' \right)'(y) = \left( -\frac{f'' \circ f^{-1}}{\left( f' \circ f^{-1} \right)^3} \right) (y) = -\frac{f'' \left( f^{-1}(y) \right)}{\left( f' \left( f^{-1}(y) \right) \right)^3} = -\frac{f''(x)}{\left( f'(x) \right)^3}.$$

Az  $y = f(x) = x + e^x$  egyenletből x nem fejezhető ki explicit módon, ezért  $x = f^{-1}(y)$ -ra explicit képlet nem adható meg. A feladat azonban csak az y = 1 pontban kérdezi  $(f^{-1})''$ -t. Nem nehéz *észrevenni*, hogy az

$$(1 =) y = x + e^x (= f(x))$$

egyenletnek x=0 egy megoldása, és f szigorú monotonitása miatt ez az egyetlen megoldás. Ezért

$$(f^{-1})''(1) = -\frac{f''(0)}{(f'(0))^3} = -\frac{(e^x)_{x=0}}{(1+e^x)_{x=0}^3} = -\frac{1}{2^3} = -\frac{1}{8}.$$

2. feladat. Határozza meg az

$$f(x) := 2x^3 + 3x^2 - 12x + 1 \qquad (x \in \mathbb{R})$$

függvény

- (a) lokális szélsőértékeit,
- (b) abszolút szélsőértékeit a [-1,5] halmazon.

**Megoldás.** Mivel f polinom, ezért  $f \in D^{\infty}(\mathbb{R})$ .

(a) Lokális szélsőértékek.

Elsőrendű szükséges feltétel. Mivel

$$f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2) = 6(x + 2)(x - 1),$$

ezért f stacionárius pontjai, vagyis a lehetséges lokális szélsőértékhelyek:  $x_1 = -2$  és  $x_2 = 1$ .

Elsőrendű elégséges feltétel. f' másodfokú polinom.

Az  $x_1 = -2$  pontban f' előjelet vált, pozitívból negatívba megy át, ezért itt f-nek lokális maximumhelye van, és a lokális maximuma f(-2) = 21.

Az  $x_2 = 1$  pontban f' előjelet vált, negatívból pozitívba megy át, ezért itt f-nek lokális minimumhelye van, és a lokális minimuma f(1) = -6.

(b) Abszolút szélsőértékek. Az f függvény polinom ezért folytonos a korlátos és zárt [-1,5] intervallumon. Weierstrass tétele miatt van abszolút maximuma és abszolút minimuma. Az abszolút szélsőértékhelyek az intervallum belsejében – vagyis a (-1,5) intervallumban – vannak (az ilyen helyek nyilván egyúttal lokális szélsőértékhelyek is) vagy pedig az intervallum végpontjaiban.

A lokális szélsőértékhelyek közül csak  $x_2 = 1 \in (-1, 5)$ , ezért ebben az intervallumban ez az egyetlen lokális szélsőértékhely, mégpedig lokális minimumhely és f(1) = -6.

A végpontokban f(-1) = 14 és f(5) = 266, ezért a függvény abszolút minimumhelye az 1 pont, az abszolút minimuma pedig f(1) = -6. Az abszolút maximumhelye az 5 pont, az abszolút maximuma pedig f(5) = 266.

3. feladat. Teljes függvényvizsgálat végzése után vázolja az

$$f(x) := x + 2 - \frac{4x}{1 + x^2}$$
  $(x \in \mathbb{R})$ 

függvény grafikonját.

**Megoldás.** Az f függvény minden  $x \in \mathbb{R}$  pontban (akárhányszor is!) deriválható és

$$f'(x) = 1 - \frac{4}{1+x^2} + \frac{8x^2}{(1+x^2)^2} = \frac{x^4 + 6x^2 - 3}{(1+x^2)^2}.$$

A további vizsgálatokhoz a számlálót (ami egy másodfokúra visszavezethető kifejezés) szorzatra bontjuk. Legyen  $a:=x^2$ . Ekkor

$$x^4 + 6x^2 - 3 = a^2 + 6a - 3 = 0.$$

Ennek az egyenletnek a két gyöke:

$$a_1 = 2\sqrt{3} - 3$$
 és  $a_2 = -(2\sqrt{3} + 3),$ 

ezért

$$a^{2} + 6a - 3 = (a - a_{1})(a - a_{2}),$$

tehát

$$x^4 + 6x^2 - 3 = (x^2 - (2\sqrt{3} - 3))(x^2 + (2\sqrt{3} + 3)).$$

Így

$$f'(x) = \frac{x^4 + 6x^2 - 3}{(1+x^2)^2} = \frac{\left(x^2 - (2\sqrt{3} - 3)\right)\left(x^2 + (2\sqrt{3} + 3)\right)}{(1+x^2)^2}.$$

Monotonitási intervallumok: f' fenti alakjából a derivált előjelviszonyai már könnyen leolvasható. Legyen

$$x_1 := \sqrt{2\sqrt{3} - 3}.$$

Ekkor

f'(x) > 0, ha  $x \in (-\infty, -x_1)$ , ezért  $f \uparrow a (-\infty, -x_1)$  intervallumon;

$$f'(x) < 0$$
, ha  $x \in (-x_1, x_1)$ , ezért  $f \downarrow$  a  $(-x_1, x_1)$  intervallumon;

$$f'(x) > 0$$
, ha  $x \in (x_1, +\infty)$ , ezért  $f \uparrow$  az  $(x_1, +\infty)$  intervallumon.

Lokális szélsőértékek: A fentiekből következik, hogy

$$f'(x) = 0$$
  $\iff$  ha  $x = -x_1$  vagy  $x = x_1$ .

Csak ezekben a pontokban lehetnek lokális szélsőértékek. Az elsőrendű elégséges feltételt alkalmazva azt kapjuk, hogy

az f függvénynek  $(-x_1)$ -ben lokális maximuma,  $x_1$ -ben pedig lokális minimuma van.

## Konvexitási intervallumok, inflexió:

$$f''(x) = (-4) \cdot (-1) \cdot \frac{2x}{(1+x^2)^2} + \frac{16x}{(1+x^2)^2} + \frac{8x^2 \cdot (-2) \cdot 2x}{(1+x^2)^3} = \frac{24x}{(1+x^2)^2} - \frac{32x^3}{(1+x^2)^3} = \frac{8x(3-x^2)}{(1+x^2)^3},$$

$$f''(x) = 0 \iff x = 0, \ x = \sqrt{3} =: x_2, \ x = -\sqrt{3} = -x_2.$$

Világos, hogy  $x_1 = \sqrt{2\sqrt{3} - 3} < \sqrt{3} = x_2$ .

f'' előjelviszonyai:

f''(x) > 0, ha  $x \in (-\infty, -x_2)$ , ezért f konvex a  $(-\infty, -x_2)$  intervallumon;

f''(x) < 0, ha  $x \in (-x_2, 0)$ , ezért f konkáv a  $(-x_2, 0)$  intervallumon;

f''(x) > 0, ha  $x \in (0, x_2)$ , ezért f konvex a  $(0, x_2)$  intervallumon;

f''(x) < 0, ha  $x \in (x_2, +\infty)$ , ezért f konkáv az  $(x_2, \infty)$  intervallumon.

A  $-x_2 = -\sqrt{3}$ , az  $x_0 = 0$  és az  $x_2 = \sqrt{3}$  pont tehát inflexiós pont.

A határértékeket  $(\pm \infty)$ -ben kell megvizsgálni:

$$\lim_{x \to +\infty} \left( 2 + x - \frac{4x}{1 + x^2} \right) = +\infty \qquad \text{és} \qquad \lim_{x \to -\infty} \left( 2 + x - \frac{4x}{1 + x^2} \right) = -\infty.$$

## Aszimptoták:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left( \frac{2}{x} + 1 - \frac{4}{1 + x^2} \right) = 1 = A = \lim_{x \to -\infty} \frac{f(x)}{x}$$

és

$$\lim_{x \to +\infty} (f(x) - 1 \cdot x) = \lim_{x \to +\infty} \left( 2 - \frac{4x}{1 + x^2} \right) = 2 = B = \lim_{x \to -\infty} (f(x) - 1 \cdot x)$$

és ez azt jelenti, hogy az  $y=1\cdot x+2=x+2$  egyenletű egyenes az f függvény aszimptotája a  $(+\infty)$ -ben és a  $(-\infty)$ -ben is.

Az eddigieket összefoglalva az f függvény képe:



4. feladat. Teljes függvényvizsgálat elvégzése után vázolja az

$$f(x) := e^{\frac{1}{1-x}} \qquad (x \in \mathbb{R} \setminus \{1\})$$

függvény grafikonját.

**Megoldás.** Mivel f(x) > 0 minden  $x \in \mathcal{D}_f$  esetén, ezért f grafikonja az első- és a második síknegyedben van.

Az f függvény akárhányszor (is) deriválható, és minden  $x \in \mathcal{D}_f$  pontban

$$f'(x) = \frac{1}{(1-x)^2} e^{\frac{1}{1-x}}, \qquad f''(x) = \frac{3-2x}{(1-x)^4} e^{\frac{1}{1-x}}.$$

f'(x) > 0 a  $(-\infty, 1)$  intervallumon, ezért itt f szigorúan monoton növekedő; f'(x) > 0 az  $(1, +\infty)$  intervallumon is, ezért f ezen is szigorúan monoton növekedő. Az f függvénynek nincs lokális szélsőértéke, mert  $f'(x) \neq 0 \ \forall x \in \mathcal{D}_f$  pontban.

f''(x) > 0 a  $(-\infty, 1)$  intervallumon, ezért itt a függvény szigorúan konvex; f''(x) > 0 az  $(1, \frac{3}{2})$  intervallumon is, ezért a függvény ezen is szigorúan konvex; f''(x) < 0 a  $(\frac{3}{2}, +\infty)$  intervallumon, ezért itt a függvény szigorúan konkáv, és az  $x = \frac{3}{2}$  inflexiós pont.

A határértékeket ( $\pm \infty$ )-ben és az 1 pontban kell megvizsgálni:

$$\lim_{x \to +\infty} e^{\frac{1}{1-x}} = \lim_{y \to 0-0} e^y = 1 \qquad \text{és} \qquad \lim_{x \to -\infty} e^{\frac{1}{1-x}} = \lim_{y \to 0+0} e^y = 1;$$

$$\lim_{x \to 1+0} e^{\frac{1}{1-x}} = \lim_{y \to -\infty} e^y = 0 \qquad \text{és} \qquad \lim_{x \to 1-0} e^{\frac{1}{1-x}} = \lim_{y \to +\infty} e^y = +\infty.$$

Aszimptoták:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^{\frac{1}{1-x}}}{x} = 0, \qquad \qquad \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{e^{\frac{1}{1-x}}}{x} = 0;$$

és

$$\lim_{x \to +\infty} (f(x) - 0 \cdot x) = 1, \qquad \lim_{x \to -\infty} (f(x) - 0 \cdot x) = 1,$$

és ez azt jelenti, hogy az  $y = 0 \cdot x + 1 = 1$  egyenletű egyenes az f függvény aszimptotája a  $(+\infty)$ -ben és a  $(-\infty)$ -ben is.

Az x=1 helyen jobbról a görbe érintője az x tengely, mert  $x\to 1+0$  esetén  $f'(x)\to 0$ :

$$\lim_{x \to 1+0} \frac{e^{\frac{1}{1-x}}}{(1-x)^2} = \lim_{y \to +\infty} \frac{y^2}{e^y} = \text{ (L'Hospital)} = \lim_{y \to +\infty} \frac{2y}{e^y} = \lim_{y \to +\infty} \frac{2}{e^y} = 0.$$

Az eddigieket összefoglalva az f függvény képe:



**5. feladat.** Döntse el, hogy léteznek-e az alábbi határértékek. Ha igen, akkor számítsa is ki azokat.

(a) 
$$\lim_{x \to 0+0} \left(\frac{1}{x}\right)^{\sin x}$$
, (b)  $\lim_{x \to -3} \frac{x^2 + 6x - 7}{x^2 + 2x - 3}$ .

**Megoldás.** (a) Mivel  $\frac{1}{x} > 0$ , ha x > 0, ezért

$$\left(\frac{1}{x}\right)^{\sin x} = \left(e^{\ln\frac{1}{x}}\right)^{\sin x} = e^{(-\ln x)\cdot\sin x} \qquad (x > 0).$$

Először a kitevő határértékét vizsgáljuk:

$$\lim_{x \to 0+0} (-\ln x) = +\infty \qquad \text{és} \qquad \lim_{x \to 0+0} \sin x = \sin 0 = 0,$$

ezért  $0 \cdot (+\infty)$  típusú kritikus határértékről van szó; a L'Hospital szabály most alkalmazható:

$$\lim_{x \to 0+0} (-\ln x) \cdot \sin x = \lim_{x \to 0+0} \frac{-\ln x}{\frac{1}{\sin x}} =$$

 $\left(\frac{+\infty}{+\infty}\right)$  típusú kritikus határérték, a L'Hospital szabály most is alkalmazható

$$= \lim_{x \to 0+0} \frac{-\frac{1}{x}}{-\frac{1}{\sin^2 x} \cdot \cos x} = \lim_{x \to 0+0} \left(\frac{\sin x}{x}\right)^2 \cdot \frac{x}{\cos x}.$$

Mivel  $\lim_{x\to 0+0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\sin x}{x} = 1$  és  $\lim_{x\to 0+0} \frac{x}{\cos x} = 0$ , ezért

$$\lim_{x \to 0+0} \left( \frac{\sin x}{x} \right)^2 \cdot \frac{x}{\cos x} = 0.$$

A kitevő határérték tehát

$$\lim_{x \to 0+0} (-\ln x) \cdot \sin x = 0.$$

Mivel az exponenciális függvény folytonos a 0 pontban és  $e^0 = 1$ , ezért

$$\lim_{x \to 0+0} e^{(-\ln x) \cdot \sin x} = e^{\lim_{x \to 0+0} (-\ln x) \cdot \sin x} = e^0 = 1 = \lim_{x \to 0+0} \left(\frac{1}{x}\right)^{\sin x}.$$

(b)  $\frac{-16}{0}$  típusú határértékről van szó. A nevező pozitív és negatív is lehet (v.ö.  $\frac{1}{x}$ -szel a 0-ban!); ezért a L'Hospital szabály most nem alkalmazható. Először átalakítjuk a kifejezést:

$$\frac{x^2 + 6x - 7}{x^2 + 2x - 3} = \frac{(x+7)(x-1)}{(x+3)(x-1)} = \frac{x+7}{x+3}.$$

Mivel

$$\lim_{x \to -3+0} \frac{x^2 + 6x - 7}{x^2 + 2x - 3} = \lim_{x \to -3+0} \frac{x + 7}{x + 3} = +\infty,$$

$$\lim_{x \to -3-0} \frac{x^2 + 6x - 7}{x^2 + 2x - 3} = \lim_{x \to -3-0} \frac{x + 7}{x + 3} = -\infty,$$

ezért a szóban forgó határérték nem létezik.

**6. feladat.** Írja fel az  $f(x) := (x+1)^2 \ln(x+1)$  (x > -1) függvények a 0 pont körüli harmadfokú Taylor-polinomját, és határozza meg, hogy a  $[-\frac{1}{10}, \frac{1}{10}]$  intervallumon mekkora hibával közelíti meg a Taylor-polinom a függvényt.

**Megoldás.** Az f függvény akárhányszor deriválható, és minden  $x \in \mathcal{D}_f = (-1, +\infty)$  pontban

$$f'(x) = 2(x+1)\ln(x+1) + (x+1)^2 \cdot \frac{1}{x+1} = (x+1)\left(2\ln(x+1) + 1\right),$$

$$f''(x) = \left(2\ln(x+1) + 1\right) + (x+1) \cdot \frac{2}{x+1} = 2\ln(x+1) + 3,$$

$$f'''(x) = \frac{2}{x+1},$$

$$f^4(x) = -\frac{2}{(x+1)^2};$$

ezért

$$f(0) = 0,$$
  $f'(0) = 1,$   $f''(0) = 3,$   $f'''(0) = 2.$ 

Az f függvény 0 ponthoz tartozó harmadfokú Taylor-polinomja:

$$(T_{3,0}f)(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 = x + \frac{3}{2}x^2 + \frac{1}{3}x^3.$$

A hibabecsléshez a Taylor-formulát alkalmazzuk a Lagrange-féle maradéktaggal: minden  $x \in \left[-\frac{1}{10}, \frac{1}{10}\right]$  ponthoz létezik olyan 0 és x közötti  $\xi$  (tehát  $|\xi| \leq |x| \leq \frac{1}{10}$ ), hogy

$$\left| f(x) - \left( T_{3,0} f \right)(x) \right| = \left| \frac{f^4(\xi)}{4!} x^4 \right| = \frac{\frac{2}{(1+\xi)^2}}{4!} |x|^4 \le \frac{10^{-4}}{12} \cdot \frac{1}{(\xi+1)^2} \le \frac{10^{-4}}{12} \cdot \frac{1}{\left(\frac{9}{10}\right)^2} = \frac{10^{-2}}{12 \cdot 81}.$$

Ezért

$$\left| (x+1)^2 \ln(x+1) - \left( x + \frac{3}{2}x^2 + \frac{1}{3}x^3 \right) \right| \le \frac{10^{-2}}{12 \cdot 81},$$

ha 
$$-\frac{1}{10} \le x \le \frac{1}{10}$$
. ■