XỬ LÝ THÔNG TIN MỜ TOK

CHƯƠNG 2 - TẬP MỜ

- Slides trước: Tập mờ, Các phép toán,
 Nguyên lý mở rộng
- Tiếp ...

ĐỘ ĐO MÒ'

- Cho F(X) là tập các tập mờ trên X, độ đo mờ g: F(X) → [0,1], thỏa mãn:
 - g(ø)=0, g(X)=1, nếu A⊂B thì g(A)≤g(B), nếu $A_1 \subset A_2 \subset ... \subset A_n$ thì $\lim_{n\to\infty} g(A_n)=g(\lim_{n\to\infty} A_n)$
- Độ đo khả năng: Cho P(X) là tập các tập con của X, Π: P(X) → [0,1], thỏa mãn Π(∅)=0, Π(X)=1, nếu A⊂B thì Π(A)≤ Π(B), Π(∪A_i) = sup_i Π(A_i) với i∈I là một tập chỉ số

VÍ DU – ĐỘ ĐO KHẢ NĂNG

- Cho X = $\{1,2,3,4,5,6,7,8,9,10\}$, có $\Pi(\{8\})=1, \Pi(\{7\})=\Pi(\{9\})=0.8, \Pi(\{5\})=0.1, \Pi(\{6\})=\Pi(\{10\})=0.5, \Pi(\{1\})=...=\Pi(\{4\})=0,$
- Với A = $\{2,5,9\}$ thì $\Pi(A) = \sup\{0,0.1,0.8\}$ = 0.8

ĐỘ ĐO TÍNH MÒ'

- Cho các tập mờ A, B trên không gian X, độ đo tính mờ thường thỏa mãn:
 - (i) d(A)=0, nếu A là tập rõ
 - (ii) d(A) đạt cực đại, nếu $\mu_A(x)=0.5$, $\forall x \in X$
 - (iii) d(B) ≤ d(A) nếu B "rõ" hơn A, nghĩa là
 - $\mu_{B}(x) \le \mu_{A}(x) \le 0.5 \text{ hoặc } \mu_{B}(x) \ge \mu_{A}(x) \ge 0.5$
 - (iv) d(A) = d(A) với A là phần bù của A

ĐỊNH NGHĨA CỦA deLuca, Termini

- Cho tập mờ A trên không gian X, thì $d(A) = H(A) + H(\overline{A})$ với $H(A) = -k \sum_i \mu_A(x_i).ln(\mu_A(x_i)), k>0$
- Ngắn gọn, gọi S(x) = -x.ln(x) (1-x).ln(1-x) thì $d(A) = k \sum_i S(\mu_A(x_i))$

VÍ DŲ

Cho

```
A = \{(2,0.1), (3,0.5), (4,0.8), (5,1), (6,0.8), (7,0.5), (8,0.1)\} số nguyên gần 5
B = \{(1,0.1), (2,0.3), (3,0.4), (4,0.7), (5,1), (6,0.8), (7,0.5), (8,0.3), (9,0.1)\}
```

Với k=1, có d(A)=0.325+0.693+0.501+0+0.501+0.693+0.325 = 3.308
d(B)=0.325+0.611+0.673+0.611+0+0.501+0.693+0.611+0.325 = 4.35

ĐỊNH NGHĨA CỦA Yager

- Khoảng cách giữa A và Phần bù của A càng lớn thì càng rõ, càng nhỏ thì càng mờ
- Cho $D_p(A, \overline{A}) = [\sum_i |2\mu_A(x_i)-1|^p]^{1/p}, p=1,2,3,...$ $\|\sup (A)\|$ là lực lượng của giá đỡ của A mũ 1/p, thì

$$f_p(A) = 1 - D_p(A, \overline{A}) / \| supp(A) \|$$

Ví dụ: Với A, B như ở ví dụ trước, có

$$f_1(A)=1-3.8/7 = 0.457$$
, $f_1(B)=1-4.6/9 = 0.489$, $f_2(A)=1-1.73/2.65 = 0.347$, $f_2(B)=0.407$

SỐ MÒ'

- Số mờ M là một tập mờ lồi, chuẩn trên R, thoả mãn: Tồn tại duy nhất một x₀, với μ_M(x₀)=1 và μ_M(x) liên tục
- Bằng nguyên lý mở rộng, có thể định nghĩa các phép toán đại số trên số mờ $\mu_{M\otimes N}(z) = \sup_{z=x\times y} \min \{\mu_M(x), \mu_N(y)\}$
- M dương, âm, $\mu_{-M}(x) = \mu_{M}(-x)$, $\mu_{\lambda M}(x) = \mu_{M}(\lambda x)$, $\mu_{M-1}(x) = \mu_{M}(1/x)$, ...

TẬP MÒ KIỀU LR

- Số mờ M có kiểu LR nếu tồn tại hàm L (trái), R (phải), α>0 và β>0, với
 μ_M(x) = L((m-x)/α) với x≤m
 R((x-m)/β) với x≥m
- Ví dụ: $L(x)=1/(1+x^2)$, R(x)=1/(1+2|x|), $\alpha=2$, $\beta=3$, m=5

KHOẢNG MÒ'

- Với khoảng [m₁, m₂] ta có khoảng mờ
 μ_M(x) = L((m₁-x)/α) với x≤m
 R((x-m₂)/β) với x≥m
- Có thể dùng nguyên lý mở rộng để định nghĩa các phép toán trên khoảng mờ
- Các dạng tập mờ thường gặp: tập mờ tam giác, tập mờ hình thang, tập mờ Gauss,

. . .

CHƯƠNG 3 – QUAN HỆ MỜ

- Quan hệ mờ
- Phép hợp thành

QUAN HỆ MÒ'

- Cho các không gian X, Y, quan hệ mờ trên
 X×Y là R = {((x,y), μ_R(x,y)) | (x,y)∈X×Y}
- Ví dụ:

$$\mu_{R}(x,y) = 0$$
, với $x \le y$;
1, với $x > 11y$
 $(x-y)/10y$, với $y < x \le 11y$

Ví dụ:

$$\mu_{R}(x,y) = 0$$
, với $x \le y$
1 / (1+(x-y)-2), với x>y

VÍ DỤ

R	y1	y2	у3	y4
x1	8.0	1	0.1	0.7
x2	0.8	8.0	0	0
x 3	0.9	1	0.7	8.0

Z	y1	y2	y3	y4
x1	0.4	0	0.9	0.6
x2	0.9	0.4	0.5	0.7
x 3	0.4 0.9 0.3	0	8.0	0.5

CÁC PHÉP TOÁN

- Phép ∪, ∩, ... giống như với tập mờ
- Phép chiếu

$$R^{(1)} = \{(x, \max_y \mu_R(x,y)) \mid (x,y) \in X \times Y \} \subseteq X$$

$$R^{(2)} = \{(y, \max_x \mu_R(x,y)) \mid (x,y) \in X \times Y \} \subseteq Y$$

- Lưu ý:
 - Có thể có nhiều quan hệ khác nhau nhưng có kết quả phép chiếu giống nhau
 - Có thể mở rộng quan hệ n-ngôi

PHÉP HỢP THÀNH

- Cho R⊆X×Y, S⊆Y×Z, có thể kết hợp R và S tạo thành quan hệ T=R∘S ⊆X×Z
 μ_T(x,z) = max_{y∈Y} min {μ_R(x,y), μ_S(y,z)}
- Lưu ý:
 - Có thể thay min bằng các t-chuẩn khác
 - Có thể giải thích bằng nguyên lý mở rộng

VÍ DỤ

R	y1	y2	у3	y4	y5	
x 1	0.1	0.2	0	1	0.7	
x2	0.3	0.5	0	0.2	1	
x 3	y1 0.1 0.3 0.8	0	1	0.4	0.3	
	R∘S	y1	y2	у3	y4	
_	R∘S x1	y1 0.4	y2 0.7	y3 0.3	y4 0.7	
_	RoS x1 x2	y1 0.4 0.3 0.8	y2 0.7 1	y3 0.3 0.5	y4 0.7 0.8	

S	z1	z2	z3	z4
y1	0.9 0.2 0.8 0.4	0	0.3	0.4
y2	0.2	1	8.0	0
у3	8.0	0	0.7	1
y4	0.4	0.2	0.3	0
у5	0	1	0	8.0

TÍNH CHẤT PHÉP HỢP THÀNH

- Phép hợp thành max-min thoả tính chất kết hợp (R1∘R2)∘R3 = R1∘(R2∘R3)
- Quan hệ mờ trên X×X
 - Phản xạ: μ_R(x,x)=1 ∀x∈X Nếu R, S phản xạ thì R_°S cũng phản xạ
 - Đối xứng: μ_R(x,y)=μ_R(y,x) ∀x,y∈X Nếu R, S đối xứng và R∘S=S∘R thì R∘S cũng đối xứng
 - Phản đối xứng: nếu μ_R(x,y)>0 và x≠y thì μ_R(y,x)=0 (Zadeh, *còn có các định nghĩa khác*)

TÍNH CHẤT PHÉP HỢP THÀNH

- Quan hệ mờ trên X×X (tiếp)
 - Bắc cầu: R bắc cầu, nếu R∘R ⊂ R Nếu R phản xạ và bắc cầu thì R∘R=R Nếu R và S bắc cầu, R∘S=S∘R thì R∘S cũng bắc cầu
- Các quan hệ đặc biệt trên X×X: quan hệ xấp xỉ, quan hệ tương tự, quan hệ ưu tiên, ...