Action space: { forage patch 1, foreige patch: (call them as a1, a2, 193 respectively) for age patch 33 State space: ¿ Aminal 2 units of 3 units of is dead 1 enrypy inverse, energy in resur 4 wits of energy in resure?

We want to munimise probability of survival. at the end of 3 time peruds.

+ x3 € { 213,4} \$ 93 (73) = } if N3 = dead.

terminal ast

So we give a terminal cost of I of the animal has survived & all other transition costs to be o. (Ever mont to marinise A)

i.e. g(11a1j) = 0 + \$ \$1.11anj

So by manimis my J1 Pr 2 gk (The 1 Up (We) J= man E (98 (Ng)-1

= man \(\phi\) (93(x3)) we is fact maninise the probability of murial

(= £ (93(x0))

Lot us note the transition probabilities for each action al: Forage patch 1 Pi) = 0 for all P43=1 unit is used to Forage patch 2 Assure: resk of pridation indep of finding fod. Risk of predation = 0-004, there is a 0-004 probability that the animal dies In the 0.996 chance the animal survives, there P(tood | surviv) = 0.3 => P(food 1 surviv) = 0.3 x Pm/l (gaining I energy unit as a vernit - 1 unit unit be used to forage) & 0.7 Chance it doesn't get food (3) loses, unit as a result of foregry) Nobry blat, 0-996×0-3=02988 4 0-996×0.7 0.6972 0.6972 0.2988 0.298 0.004 P32 = 0.6972 P3d=0.009 P2d=0-7012 B3=0.2988 Pud=0-004 P43=0.6972 Pij=0 for ell P23 = 0-2988

as: Forage patch 2. Herethe lugy gair 3 unts (3 but gair of 2 unts) Proceeding similar to the cast of az 049. 0:49 0-49 Pdd . 1 0.49. P2d > 0.51 P3d: 0.02 0.02 P34=0.49 P43 = 0.49 P44= 0.49 Pud = 0.02 Pij : O tobber i & j J* (x3) = 93 (x3) = { 1 + x3 e {21314} DP Algorithm: $J_{2}^{+}(\chi_{2}) = \max_{q} E_{\chi_{3}} \left(g_{2}(\chi_{2}, \frac{\alpha}{4}, \chi_{3}) \right)$ + J3 (x3) = mon $S_1^2 P_{1j}(4) \left(g_2 (n_2, 1, 2, 1, 2) \right)$ 9 (1', 4, 1) $G_2^2 (n_2, 1, 2, 2, 2)$ 9 (1'141) = 0 aluans 3 Jzt (xx) - num [P15 (9) J3(j)

(2

```
But 72 = d & action doesn't matter the arrival
               is already dead
action 1: forage pabel 1
       S J Pij
1 × 12
   d
           1+0 = 0
                             ( : B) 20+ Paj +2)
   2
           P32 $ (2) = 1 1
   3
           P43 J3(3) = 1
         forage patch 2
          SIJA Pij
   2/2
           0
           0-2986 73+(3) = 0.29 8
   d
           0.2988 J3(4) = 02988 0.996
    3
            + 0.6972 + (2)
                               0.996
           0-48 53($) =
    4
              +0.6972 53(2)
          former patch 3
aution 3:
            E J* Prij
            0
   d
```

EPOJ3(j) P24 J (4) = 0.49. 0.49 # J*(2) +0.49 T(4) = 0.98 0.49 J* (3) + 0.49 J*(4) = 0.98 choosing the actions that manimise the cost J2 (A2) we had P2 P J2 (X2) - (doern & notly) 40 93 (foury publ 3) 0.49. al (fory patch) @ 1 a, (forage part of) Now, J, (m) = Non E (g(maig) + J2 (j)) = mor E (J2 (ju)) If we worst outin 9, E (J2*(j)) = 2 199 (a) J2 (j) We make a bable re conjud then head the optimal value

XI	al	Q2	93.			
d	0	0	0			
		\$ 0.29852(3)	0.49] 2 (4)			
2	0	= 0.2988	= 0.49.			
3	1× 5 2 (1/2)	0.2998/2 (4)	0.495 (4)			
	=0,49.	+ 0.6972] [(2)	$+0.49 \int_{2}^{1} (2)$			
		= 0.6404	6.49 Jz+(4)			
4	$1 \times J_2^{L}(3)$ $= 1$	0.996	+ 0.49 t (3)			
		The same	20.40			
choosing the action that maximiles probability of						
	the reward	(turn			
	4100 100					

XI	J, (X1)	Action
d	0	- (de can't take any action) - deavel)
2	0.49	Korage pulch 3 (a3)
3	0.7361	Forage patch 3 (a3)
4	1	Morage parter & (a1)

Similary, Jo (xo) - mon E (Ji+(xi))

= men Z Prj (4) (fi(xi))

Hi

We once again make a table of action & round

deb	Call .	0.2	93.			
d	0	0	0			
		0-298 (0.73)	०. ५१ क्ष्यंत्रव			
2	0	=0.518	0.49+(0.49)			
3	0-49	+ 0.6972 (0-49) = 0.640	= 0.7301			
4	0-7301	(0 -2 9 9 8) + (0 -6 972)	(0-73) 0.49+			
		~ o.8078	0.49007301			
Choonly the action that extrinses the newed,						
No	J. (40)	Adrio				
d	0	For - (dead	()			
2	0.49	Frage patch	$3(\alpha 3)$			
3	0.7301	Forage part	A Z (a3)			
4	0 8 477	Forage pat	- 1 from the			
Optimal policy for foregry obtained show analys!						
Cash pages						
Ho (x) = 2 x (for exp patch 3) Ho (x) = x = 2 (for exp patch 3)						
		v = 3	(forag putch 3)			
	9.3	,	(forage pabels3)			
	93	2>4				

 $M_{1}(\pi) = \begin{cases} \text{cont perfor activ} & \pi = d \\ \alpha_{3} & \pi = 2 \text{ (Forage patch 3)} \\ \alpha_{3} & \pi = 3 \text{ (Forage patch 1)} \end{cases}$ $M_{2}(\pi) = \begin{cases} \text{cont perfor action} & \pi = d \\ \pi = 4 \text{ (Forage patch 1)} \end{cases}$ $M_{3}(\pi) = \begin{cases} \text{cont perfor action} & \pi = d \\ \pi = 4 \text{ (Forage patch 1)} \end{cases}$ $M_{3}(\pi) = \begin{cases} \text{cont perfor action} & \pi = d \\ \pi = 4 \text{ (Forage patch 1)} \end{cases}$ $M_{3}(\pi) = \begin{cases} \text{cont perfor action} & \pi = d \\ \pi = 4 \text{ (Forage patch 1)} \end{cases}$ $M_{3}(\pi) = \begin{cases} \text{cont perfor action} & \pi = d \\ \pi = 4 \text{ (Forage patch 1)} \end{cases}$

. 1