What is claimed is:

1. Chromogenic glazing exhibiting safety impact characteristics, comprising: first and second spaced transparent panels, at least one of which is of glass, 5 said first and second transparent panels each having a front surface and an opposing rear surface, said rear surface of the first panel facing and spaced from front surface of the said second panel defining a space between the said first and second panels, said rear surface of said first panel and said front surface of said second panel coated with a transparent conductor; and 10 - a solid electrolyte medium disposed in said space which adheres to any of said coated panels with an adherence which exceeds 1.8kg/linear cm-width. Chromogenic glazing according to claim 1 wherein said has a tensile strength of at least 5kg/cm2. 15 Chromogenic glazing according to claim 1 wherein said transparent conductors is selected from the group consisting of Indium-tin oxide and fluorinedoped tin oxide. 20 4. Chromogenic glazing according to claim 1 wherein said transparent conductors is selected from the group consisting of indium-tin-oxide and fluorinedoped tin oxide. Chromogenic glazing according to claim 1 wherein said panels include an 25 electrochromic layer selected from the group consisting of tungsten oxide, molybdenum oxide, and mixed oxides containing tungsten and molybdenum. 6. Chromogenic glazing according to claim 1 wherein said panels include an electrochromic layer selected from the group consisting of polyaniline and 30 polythiophene.

- 7. Chromogenic glazing according to claim 1 wherein said panels include an ion storage layer selected from the group consisting of iridium oxide, nickel oxide, manganese oxide and vanadium oxide, titanium-vanadium oxide, titanium-vanadium oxide, titanium-vanadium oxide, and mixtures of said oxides.
- 8. Chromogenic glazing according to claim 1 wherein said panels are soda-lime glass and include at least one of an anti-iridescent coating and a coating to reduce sodium diffusion.

5

15

- 9. Chromogenic glazing according to claim 1 where the contrast ratio of the electrochromic device is greater than 2:1
 - 10. Chromogenic glazing according to claim 1 where the electrolyte conductivity at 25C is greater than 10-6 S/cm.
 - 11. Chromogenic glazing according to claim 1 where the electrolyte exhibits a Tg lower than 0°C.
- 12. Chromogenic glazing according to claim 1 where the haze of the said glazing is less than 5%.
 - 13. Chromogenic glazing according to claim 1 claim 1 where the said glazing is UV stable.
- 25 14. Chromogenic glazing as in claim 1 having an electrolytic film extruded film selected from the group consisting of poly-acrylates, polystyrenes, polyvinyl butyrals, polyurethanes, poly vinyl acetates, poly vinyl chlorides and polycarbonates; a filler selected from the group consisting of polymer particles, pyrolitic silicas, aluminas, cerium exides and zinc exides; at least one dissociable salt selected from the group consisting of LiClO4, LiCF3SO3, LiN(CF3SO2)2, and NaCF3SO3; at least one

solvent for dissociating said salt selected from the group consisting of propylene carbonate, ethylene carbonate, gamma-butyro lactone, and tetraglyme, sulfolane.

- 15. Chromogenic glazing according to claim 14, said film being bonded in situ to
 the substrates of said glazing under heat and pressure.
 - 16. Chromogenic impact resistant safety glazing, comprising

10

15

20

- panels each having a front surface and an opposing rear surface, said rear surface of the first panel facing and spaced from front surface of the said second panel defining a space between the said first and second panels, said rear surface of said panel and said front surface of said second panel coated with a transparent conductor wherein the said conductive side of at least one of the electrodes is further coated with additional layer where at least one of the said additional layer is reduced; and
- a solid electrolyte medium disposed in said space, where the adhesion of the said electrolyte to any of the said coated panels exceeds 1.8 kg/linear cm width.
- 17. Chromogenic glazing according to claim 16 where the tensile elongation of the electrolyte to break is greater than 100%.
- 18. An electrolyte for glazing assembly as in claim 16 which has a tensile strength of at least 5kg/cm2.
- 19. Chromogenic glazing according to claim 16 where the electrolyte conductivity
 25 at 25°C is greater than 10-6S/cm.
 - 20. Chromogenic glazing according to claim 16 where the electrolyte Tg is lower than 0°C.
- 30 21. Chromogenic glazing according to claim 16 where the haze of the electrolyte is less than 5%.

22.—An electrochromic laminate formed by sandwiching an electrolytic layer between two transparent substrates, said laminate reducing sound transmission by at least 3dB.

5

- 23. An electrochromic laminate as in claim 22 which is impact resistant.
- 24. An electrochromic laminate in claim 23 in which the substrates different in thickness.

10

15

- 25. An electrochromic laminate made by placing sealing material around perimeter of an electrolyte sheet positioned on a first substrate, covering the sheet with a second substrate that extends over the sealing material, and subjecting both the electrolyte sheet and the sealing material to simultaneously applied heat and pressure.
- 26. An electrochromic laminate as in claim 25 which is impact resistant.
- 27. An electrochromic laminate as in 26 which reduces sound transmission at 20 least 3dB.