

EEL 6935

Special Topics in Multimedia Communications and Networking

Streaming Video over the Internet

Dr. Dapeng Wu
University of Florida
Department of Electrical and Computer Engineering

What is Streaming Video?

Outline

- Challenges for quality video transport
- An architecture for video streaming
 - Video compression
 - Application-layer QoS control
 - Continuous media distribution services
 - Streaming server
 - Media synchronization mechanisms
 - Protocols for streaming media
- Summary

Time-varying Available Bandwidth

Time-varying Delay

cnn.com

Effect of Packet Loss

Unicast vs. Multicast

Pros and cons?

Heterogeneity For Multicast

Network heterogeneity Receiver 2 256 kb/s Receiver heterogeneity What Quality? Domain B **Domain A Domain C** Acces Internet Gateway Ethernet Telephone networks 1 Mb/sSource Receiver 1 64 kb/s Receiver 3 What 8 Quality?

Outline

- Challenges for quality video transport
- An architecture for video streaming
 - Video compression
 - Application-layer QoS control
 - Continuous media distribution services
 - Streaming server
 - Media synchronization mechanisms
 - Protocols for streaming media
- Summary

Architecture for Video Streaming

Video Compression

Layered video encoding/decoding.

D denotes the decoder.

Application of Layered Video

Application-layer QoS Control

- Congestion control (using rate control):
 - Source-based, requires
 - rate-adaptive compression or
 - rate shaping
 - Receiver-based
 - Hybrid
- Error control:
 - Forward error correction (FEC)
 - Retransmission
 - Error resilient compression
 - Error concealment

Congestion Control

• Window-based vs. rate control (pros and cons?)

Window-based control

Rate control

Source-based Rate Control

Video Multicast

- How to extend source-based rate control to multicast?
- Limitation of source-based rate control in multicast
- Trade-off between bandwidth efficiency and service flexibility

Receiver-based/Hybrid Rate Control

Receiver-based Rate Control

Error Control

- FEC
 - Channel coding
 - Source coding-based FEC
 - Joint source/channel coding
- Delay-constrained retransmission
- Error resilient compression
- Error concealment

Channel Coding

Delay-constrained Retransmission

Outline

- Challenges for quality video transport
- An architecture for video streaming
 - Video compression
 - Application-layer QoS control
 - Continuous media distribution services
 - Streaming server
 - Media synchronization mechanisms
 - Protocols for streaming media
- Summary

Continuous Media Distribution Services

- Content replication (caching & mirroring)
- Network filtering/shaping/thinning
- Application-level multicast (overlay networks)

Caching

- What is caching?
- Why using caching? WWW means World Wide Wait?
- Pros and cons?

VOD: video-on-demand

ISP: Internet service provider

Outline

- Challenges for quality video transport
- An architecture for video streaming
 - Video compression
 - Application-layer QoS control
 - Continuous media distribution services
 - Streaming server
 - Media synchronization mechanisms
 - Protocols for streaming media
- Summary

Streaming Server

- Different from a web server
 - Timing constraints
 - Video-cassette-recorder (VCR) functions (e.g., fast forward/backward, random access, and pause/resume).
- Design of streaming servers
 - Real-time operating system
 - Special disk scheduling schemes

Media Synchronization

- Why media synchronization?
- Example: lip-synchronization (video/audio)

Protocols for Streaming Video

- Network-layer protocol: Internet Protocol (IP)
- Transport protocol:
 - Lower layer: UDP & TCP
 - Upper layer: Real-time Transport Protocol (RTP) & Real-Time Control Protocol (RTCP)
- Session control protocol:
 - Real-Time Streaming Protocol (RTSP): RealPlayer
 - Session Initiation Protocol (SIP): Microsoft Windows MediaPlayer; Internet telephony

Protocol Stacks

Summary

- Challenges for quality video transport
 - Time-varying available bandwidth
 - Time-varying delay
 - Packet loss
- An architecture for video streaming
 - Video compression
 - Application-layer QoS control
 - Continuous media distribution services
 - Streaming server
 - Media synchronization mechanisms
 - Protocols for streaming media

Homework

• Reading assignment: Chap. 15