SESSION 2006

Filière MP (groupes MP/MPI et groupe I)

Épreuve commune aux ENS de Paris, Lyon et Cachan

Filières MP PC (groupe I)

Épreuve optionnelle commune aux ENS de Paris et Lyon

MATHÉMATIQUES MPI 2

Durée : 4 heures

L'usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d'accompagnement, est autorisé. Cependant, une seule calculatrice à la fois est admise sur la table ou le poste de travail, et aucun échange n'est autorisé entre les candidats.

Sujet

Notations

Toutes les fonctions considérées dans ce sujet vont de R vers C.

Une fonction continue u de \mathbb{R} vers \mathbb{C} est dite "à support compact" si uest nulle en dehors d'un intervalle borné. En particulier si u est une fonction continue à support compact, $\int_{-\infty}^{+\infty} |u(x)| dx$ et $\int_{-\infty}^{+\infty} |u(x)|^2 dx$ convergent. Si u est une fonction continue telle que $\int_{-\infty}^{+\infty} |u(x)| dx$ converge, on définit

sa transformée de Fourier $\mathcal{F}u$ par

$$\mathcal{F}u(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x)e^{-i\xi x} dx.$$

La transformée de Fourier $\mathcal{F}u$ est alors une fonction de \mathbb{R} vers \mathbb{C} . On définit de même

$$Su(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x)e^{ixy} dx$$

qui est une fonction de \mathbb{R} vers \mathbb{C} .

Si u est une fonction de \mathbb{R} vers \mathbb{C} on note

$$||u||_{\infty} = \sup_{x \in \mathbb{R}} |u(x)|$$

et

$$||u||_2 = \left(\int_{-\infty}^{+\infty} |u(x)|^2 dx\right)^{1/2},$$

ces quantités étant infinies respectivement si u n'est pas bornée ou si $|u|^2$ n'est pas intégrable sur \mathbb{R} .

On admettra les deux résultats suivants que l'on pourra utiliser en particulier aux questions 1.6 et 2.6: pour toute fonction continue u telle que $\int_{\mathbb{R}} |u(x)| dx$ et $\int_{\mathbb{R}} |u(x)|^2 dx$ convergent on a

$$\|\mathcal{F}u\|_2 = \|u\|_2 \tag{1}$$

et

$$\mathcal{F}(\mathcal{S}u)(\xi) = u(\xi) \tag{2}$$

pour tout $\xi \in \mathbb{R}$.

Partie I

- 1.1) Soit ϕ_0 la fonction définie par $\phi_0(x) = e^{-1/x^2}$ si x > 0 et $\phi_0(x) = 0$ si $x \le 0$. Montrer que pour x > 0 et $k \in \mathbb{N}$, $d^k \phi_0/dx^k$ est de la forme $P_k(x)e^{-1/x^2}/Q_k(x)$ où P_k et Q_k sont deux polynômes. En déduire que ϕ_0 est une fonction \mathcal{C}^{∞} sur \mathbb{R} .
- 1.2) Vérifier que $\phi_0(x) \phi_0(1-x)$ est une fonction \mathcal{C}^{∞} sur \mathbb{R} , nulle en dehors de [0,1]. Montrer que pour tout intervalle [a,b] (a < b) il existe une fonction de classe \mathcal{C}^{∞} , strictement positive sur]a,b[et nulle en dehors de [a,b].
- 1.3.a) Soit ψ une fonction strictement positive sur]3/4,8/3[, nulle en dehors de cet intervalle. Montrer que pour tout $x \in \mathbb{R}$,

$$\sum_{q\geq 0} \psi(2^{-q}|x|)$$

ne comporte qu'au plus deux termes non nuls. Soit $\phi(x)$ défini par

$$\phi(x) = \frac{\psi(|x|)}{\psi(2|x|) + \psi(|x|) + \psi(2^{-1}|x|)}$$

si $\psi(|x|) \neq 0$ et par $\phi(x) = 0$ sinon. Montrer

$$\sum_{q=0}^{+\infty} \phi(2^{-q}|x|) = 1$$

pour $|x| \geq 3/2$.

1.3.b) Montrer qu'il existe deux fonctions C^{∞} sur \mathbb{R} , $\chi(x)$ (paire et nulle en dehors de l'intervalle [-2,2]) et $\phi(x)$ (nulle en dehors de l'intervalle [3/4,8/3]) telles que

$$\chi(x) + \sum_{q=0}^{+\infty} \phi(2^{-q}|x|) = 1.$$

1.3.c) Montrer que $\chi^2(x)+\sum_{q=0}^{+\infty}\phi^2(2^{-q}|x|)$ est minoré par une constante strictement positive sur $\mathbb R$.

1.4) Soit u une fonction continue à support compact. On définit pour $q \in \mathbb{N}$

$$\Delta_q u = \mathcal{S}(\phi(2^{-q}|\xi|) \mathcal{F}u(\xi))$$

et

$$\Delta_{-1}u = \mathcal{S}(\chi(\xi)\mathcal{F}u(\xi)).$$

Vérifier que $\Delta_q u$ et $\Delta_{-1} u$ définissent des fonctions \mathcal{C}^{∞} sur \mathbb{R} .

1.5) Soit $q \in \mathbb{N}$. Montrer que $\Delta_q u$ peut se mettre sous la forme

$$\Delta_q u(x) = \int_{-\infty}^{+\infty} h_q(x - y) \, u(y) \, dy \tag{3}$$

où

$$h_q(z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \phi(2^{-q}|\xi|) e^{iz\xi} d\xi.$$

1.6) Vérifier que h_q est une fonction C^{∞} sur \mathbb{R} . Montrer que $|h_q(x)|, |h_q(x) \cdot x|$ et $|h_q(x) \cdot x^2|$ sont bornées sur \mathbb{R} . Montrer que

$$\int_{-\infty}^{+\infty} h_q(y) dy = 0$$

(on pourra utiliser (2)), et montrer que $\int_{-\infty}^{+\infty} |h_q(y)| dy$ est indépendant de q.

1.7) Montrer que $\Delta_{-1}u$ peut se mettre sous la forme

$$\Delta_{-1}u(x) = \int_{-\infty}^{+\infty} g(x - y)u(y)dy \tag{4}$$

où g est une fonction \mathbb{C}^{∞} sur \mathbb{R} . Vérifier que |g(x)|, |g(x).x| et $|g(x).x^2|$ sont bornées sur \mathbb{R} .

1.8) Montrer qu'il existe une constante C (ne dépendant pas de u) telle que pour tout $q \in \mathbb{N}$ on ait

$$\|\Delta_q u\|_{\infty} \le C \|u\|_{\infty}$$

et

$$\|(\Delta_q u)'\|_{\infty} \le C \, 2^q \, \|u\|_{\infty}$$

(le ' désignant la dérivée en x).

Partie II

Pour $0 < \alpha < 1$ on définit l'espace de Hölder $\mathcal{C}^{0,\alpha}$ comme étant l'ensemble des fonctions continues u(x) telles que

$$||u||_{\mathcal{C}^{0,\alpha}} = \sup_{x \in \mathbb{R}} |u(x)| + \sup_{x < y} \frac{|u(y) - u(x)|}{|y - x|^{\alpha}} < +\infty.$$

- 2.1) Montrer que $\|\cdot\|_{\mathcal{C}^{0,\alpha}}$ est une norme sur $\mathcal{C}^{0,\alpha}$. Montrer que $\mathcal{C}^{0,\alpha}$ muni de la norme $\|\cdot\|_{\mathcal{C}^{0,\alpha}}$ est complet.
- 2.2) Montrer que si $u \in \mathcal{C}^{0,\alpha}$ et $v \in \mathcal{C}^{0,\alpha}$ alors $uv \in \mathcal{C}^{0,\alpha}$ et

$$||uv||_{\mathcal{C}^{0,\alpha}} \le C(||u||_{\infty}||v||_{\mathcal{C}^{0,\alpha}} + ||v||_{\infty}||u||_{\mathcal{C}^{0,\alpha}})$$

pour une certaine constante C indépendante de u et de v.

2.3) Est ce que C^1 (ensemble des fonctions continûment dérivables sur \mathbb{R}) est l'ensemble des fonctions continues sur \mathbb{R} telles que

$$\sup_{x \in \mathbb{R}} |u(x)| + \sup_{x < y} \frac{|u(y) - u(x)|}{|y - x|} < +\infty?$$

2.4) Soit $\alpha > 1$. Montrer que

$$\left\{ u \in \mathcal{C}^0 \quad | \quad \sup_{x \in \mathbb{R}} |u(x)| + \sup_{x < y} \frac{|u(y) - u(x)|}{|y - x|^{\alpha}} < + \infty \right\}$$

est l'ensemble des fonctions constantes.

2.5) Soit $0 < \alpha < 1$. Soit $u \in C^{0,\alpha}$. Montrer que les formules (3) et (4) définissent bien des fonctions bornées $\Delta_q u$, et que

$$\sup_{-1 \le q < +\infty} 2^{q\alpha} \|\Delta_q u\|_{\infty} < \infty.$$

Indication: montrer que pour $q \ge 0$, $\Delta_q u$ peut s'écrire sous la forme

$$\Delta_q u(x) = \int_{-\infty}^{+\infty} \left(u(y) - u(x) \right) h_q(x - y) dy.$$

2.6) Soit $0 < \alpha < 1$. Soit u une fonction continue à support compact. On suppose que

$$\sup_{q \ge -1} 2^{q\alpha} \|\Delta_q u\|_{\infty} < +\infty$$

Soit $p \geq 0$. Posons $S_p u = \sum_{q=-1}^{p-1} \Delta_q u$ et $R_p u = \sum_{q=p}^{+\infty} \Delta_q u$.

- 2.6.1) Montrer que $R_p u$ est bien définie et est une fonction continue et bornée.
- 2.6.2) Montrer que $||u S_p u||_2$ tend vers 0 quand p tend vers l'infini (on pourra utiliser (1) et (2)). En déduire que

$$u = \sum_{q=-1}^{\infty} \Delta_q u,$$

c'est-à-dire $u = S_p u + R_p u$.

2.6.3) Montrer qu'il existe une constante C_0 telle que pour tout $q \geq 0$,

$$\|(\Delta_q u)'\|_{\infty} \le C_0 2^q \|\Delta_q u\|_{\infty}.$$

2.6.4) Montrer qu'il existe une constante C_1 telle que pour tout $p \geq 0$,

$$||(S_p u)'||_{\infty} \le C_1 2^{p(1-\alpha)}.$$

2.6.5) Vérifier

$$|u(x) - u(y)| \le |x - y| \cdot ||(S_p u)'||_{\infty} + 2||R_p||_{\infty}.$$

2.6.6) Montrer que $u \in C^{0,\alpha}$ en choisissant astucieusement p.

Partie III

On note \mathcal{C}^1_{\star} l'ensemble des fonctions u continues et à support compact sur \mathbb{R} telles que $\sup_{-1 \leq q < +\infty} 2^q \|\Delta_q u\|_{\infty} < +\infty$.

3.1) Soit $u \in \mathcal{C}^1_{\star}$. Montrer que

$$|u(x+y) + u(x-y) - 2u(x)| \le |y|^2 \sum_{q < p} ||(\Delta_q u)''||_{\infty} + 4 \sum_{q \ge p} ||\Delta_q u||_{\infty}.$$

En déduire qu'il existe une constante C telle que

$$|u(x+y) + u(x-y) - 2u(x)| \le C|y|$$

pour tous x et y.

- 3.2) Enoncer et démontrer une réciproque de la question précédente.
- 3.3) Montrer que si $u\in\mathcal{C}^1_\star$ alors il existe une constante C telle que pour tous x et y tels que |x-y|<1 on ait

$$|u(x) - u(y)| \le C|x - y| (1 - \log|x - y|).$$

3.4) Comparer \mathcal{C}^1_\star et \mathcal{C}^1 (pour les fonctions à support compact).