

School of Mathematics and Statistics MATH2111 - Higher Several Variable Calculus

4. Limits and Functions

Dr Alan Stoneham

a.stoneham@unsw.edu.au

Limit of a function at a point

Definition

NE N DS

Suppose that $\mathbf{b} \in \mathbb{R}^m$, $\Omega \subseteq \mathbb{R}^n$, $\mathbf{a} \in \overline{\Omega}$ and $f : \Omega \to \mathbb{R}^m$. We say that $f(\mathbf{x})$ **converges to b as** \mathbf{x} **approaches** \mathbf{a} , written $f(\mathbf{x}) \to \mathbf{b}$ **as** $\mathbf{x} \to \mathbf{a}$ if for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $\mathbf{x} \in \Omega$, $0 < d(\mathbf{x}, \mathbf{a}) < \delta$ implies $d(f(\mathbf{x}), \mathbf{b}) < \varepsilon$. In quantifiers and in terms of balls,

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in \Omega \cap B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\} \quad f(\mathbf{x}) \in B(\mathbf{b}, \varepsilon).$$

We often write $\lim_{x\to a} f(x) = b$.

As before, when the limit of a function exists, it is unique:

suppose that $\lim_{n\to\infty} f(x) = b_1$ and $\lim_{n\to\infty} g(x) = b_2$ $f(x) \leq 0$. Then showe is g>0 st. for all $g \in g(g,g)$ we have that $d(f(x), b_1)$, $d(f(x), b_2) \leq \frac{g}{2}$. So $0 \leq d(b_1, b_2) \leq d(f(x), b_1) + d(f(x), b_2) \leq \frac{g}{2} + \frac{g}{2} = g$ since g was arbitrary, it must be that $d(b_1, b_2) = 0$.

Exercise: Limit of a function at a point

Let
$$\Omega = \mathbb{R}^2 \setminus \{0\}$$
 and $f : \Omega \to \mathbb{R}$ be defined by $f(x,y) = \frac{x^4 + x^2 + y^2 + y^4}{x^2 + y^2}$.

Note that Ω is open, f is not defined at $\mathbf{0}$ but $\mathbf{0} \in \overline{\Omega}$.

Claim.
$$f(x,y) \to 1$$
 as $(x,y) \to 0$.
Let $G > 0$, choose $S = JS$ then if $d(x,y), (0,0)$
 $C(x,y) \to 1$ as $(x,y) \to 0$.
 $C(x,y) \to 1$ as $(x,y) \to 0$.

Limits of functions via components

Theorem

Suppose that $\mathbf{b} = (b_1, b_2, \dots, b_m) \in \mathbb{R}^m$, $\Omega \notin \mathbb{R}^n$, $\mathbf{a} \in \overline{\Omega}$ and $f : \Omega \to \mathbb{R}^m$ with components $f_i : \Omega \to \mathbb{R}$, $1 \le i \le m$ satisfying

$$f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x})).$$

Then $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = \mathbf{b}$ if and only if $\lim_{\mathbf{x}\to\mathbf{a}} f_i(\mathbf{x}) = b_i$ for all $1 \le i \le m$.

This theorem is useful for showing limits exist.

Example. Consider $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}^2$, $f(t) = \left(\frac{e^t - 1}{t}, \frac{\sin t}{t}\right)$.

Since $\frac{e^t - 1}{t}$, $\frac{\sin t}{t} \to 1$ as $t \to 0$, we have that $f(t) \to (1, 1)$ as $t \to 0$.

Limits of functions via sequences

Theorem

Suppose that $\mathbf{b} \in \mathbb{R}^m$, $\Omega \subseteq \mathbb{R}^n$, $\mathbf{a} \in \overline{\Omega}$ and $f : \Omega \to \mathbb{R}^m$. Then $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{b}$ if and only if for every sequence $\{\mathbf{x}_k\}_{k=1}^{\infty} \subseteq \Omega$ with $\mathbf{x}_k \to \mathbf{a}$, we have that $\lim_{k \to \infty} f(\mathbf{x}_k) = \mathbf{b}$.

The above theorem is particularly useful for showing that a limit does NOT exist.

The proof is a problem sheet exercise.

Exercise. Show that
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 does not exist, where $f(x,y) = \frac{xy}{x^2 + y^2}$.

 $k \in \mathbb{Z}^{\dagger}$, $nk = (\frac{1}{k}, 0)$, $f(nk) = \frac{0}{\frac{1}{k^2} + 0} = 0 \longrightarrow 0$

But if $x_k = (\frac{1}{k}, \frac{1}{k})$, then $f(nk) = \frac{1}{\frac{k^2}{k^2}} = \frac{1}{2}$

Since thirts are unique $\lim_{(x,y)\to(0,0)} f(x,y)$ one $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)$

Limits of functions via sequences

Often to show that a limit does not exist, we will use one of the axes and a diagonal, as in the previous example.

But sometimes, we need to be a bit more creative!

Exercise. Show that $\lim_{(x,y)\to(0,0)} g(x,y)$ does not exist, where $g(x,y) = \frac{x^2y}{x^4 + y^2}$.

if
$$z_{k} = (\frac{1}{k}, 0)$$
, $k \in \mathbb{Z}^{+}$, then $g(k, 0) = 0 - 0$
if $z_{k} = (\frac{1}{k}, \frac{1}{k})$, then $g(k, \frac{1}{k}) = \frac{1}{k!}$
if $z_{k} = (\frac{1}{k}, \frac{1}{k!})$, $z_{k} = \frac{1}{k!}$
if $z_{k} = (\frac{1}{k}, \frac{1}{k!})$, $z_{k} = \frac{1}{k!}$
if $z_{k} = (\frac{1}{k}, \frac{1}{k!})$, $z_{k} = \frac{1}{k!}$
if $z_{k} = (\frac{1}{k}, \frac{1}{k!})$, $z_{k} = \frac{1}{k!}$
if $z_{k} = (\frac{1}{k}, \frac{1}{k!})$, $z_{k} = \frac{1}{k!}$
if $z_{k} = (\frac{1}{k}, \frac{1}{k!})$, $z_{k} = \frac{1}{k!}$
if $z_{k} = (\frac{1}{k}, \frac{1}{k!})$, $z_{k} = \frac{1}{k!}$ $z_{k} = \frac{1}{k!}$ $z_{k} = \frac{1}{k!}$ $z_{k} = \frac{1}{k!}$

Algebra of Limits

Theorem

Suppose that $\Omega \subseteq \mathbb{R}^n$, $\mathbf{x}_0 \in \overline{\Omega}$, $a, b \in \mathbb{R}$, and $f, g : \Omega \to \mathbb{R}$ are such that $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = a$ and $\lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x}) = b$. Then

- $\bullet \quad \lim_{\mathbf{x} \to \mathbf{x}_0} (f + g)(\mathbf{x}) = a + b;$
- $\lim_{\mathbf{x} \to \mathbf{x}_0} (fg)(\mathbf{x}) = ab;$
- $\lim_{\mathbf{x} \to \mathbf{x}_0} (f/g)(\mathbf{x}) = \frac{a}{b}$, provided $b \neq 0$.

Corollary

Suppose that $\Omega \subseteq \mathbb{R}^n$, $\mathbf{x}_0 \in \overline{\Omega}$, and $f, g : \Omega \to \mathbb{R}^m$ are such that $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \mathbf{a}$ and $\lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x}) = \mathbf{b}$. Then

$$\lim_{\mathbf{x}\to\mathbf{x}_0}(f+g)(\mathbf{x})=\mathbf{a}+\mathbf{b}.$$

Pinching Theorem

Theorem

Suppose that $\Omega \subseteq \mathbb{R}^n$, $\mathbf{a} \in \overline{\Omega}$, $\varepsilon > 0$, and $f, g, h : \Omega \to \mathbb{R}$ satisfy $g(\mathbf{x}) \le f(\mathbf{x}) \le h(\mathbf{x})$ for all $\mathbf{x} \in \Omega \cap B(\mathbf{a}, \varepsilon) \setminus \{\mathbf{a}\}$. If

$$\lim_{\mathbf{x}\to\mathbf{a}}g(\mathbf{x})=b=\lim_{\mathbf{x}\to\mathbf{a}}h(\mathbf{x}),$$

then $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = b$.

Exercise. Consider $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ defined by $f(x,y) = \frac{x^2y}{x^2 + y^2}$. Show that

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Pinching Theorem

Ex. cont. Consider
$$f : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$$
 defined by $f(x,y) = \frac{x^2y}{x^2 + y^2}$. Show that

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$
for if $g(x,y) = -\frac{|x|}{2}$ and $h(x,y) = \frac{|x|}{2}$
then $g(x,y) \subseteq f(x,y) \subseteq h(x,y)$ and $\lim_{(x,y)\to(0,0)} g(x,y) = 0 = \lim_{(x,y)\to(0,0)} h(x,y)$

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

By the phology theorem
$$(x,y) \rightarrow (0,0)$$
 for, $(x,y) = 0$

Definition of Continuity

Definition

Suppose that $\Omega \subseteq \mathbb{R}^n$, $\mathbf{a} \in \mathbb{R}^n$, and $f : \Omega \to \mathbb{R}^n$. Then f is continuous at \mathbf{a} if $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$. That is,

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \mathbf{x} \in \Omega \cap B(\mathbf{a}, \delta) \quad f(\mathbf{x}) \in B(f(\mathbf{a}), \varepsilon).$$

If f is continuous at a for all $a \in \Omega$, we say that f is continuous on Ω .

Example. The function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is continuous on \mathbb{R}^2 , whereas the function $g:\mathbb{R}^2 \to \mathbb{R}$ defined by

$$g(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is not continuous at (0,0) since $\lim_{(x,y)\to(0,0)} g(x,y)$ was shown earlier not to exist.

Continuity on Maple

Continuity Theorems

Theorem (Continuity by components)

Let $\mathbf{a} \in \Omega \subseteq \mathbb{R}^n$ and $f : \Omega \to \mathbb{R}^m$. Then f is continuous at \mathbf{a} if and only if every component of f is continuous at \mathbf{a} .

Theorem (Continuity via sequences)

Let $\mathbf{a} \in \Omega \subseteq \mathbb{R}^n$ and $f : \Omega \to \mathbb{R}^m$. Then f is continuous at \mathbf{a} if and only if for every sequence $\{\mathbf{x}_k\}_{k=1}^{\infty} \subseteq \Omega$ converging to \mathbf{a} , we have that $\{f(\mathbf{x}_k)\}_{k=1}^{\infty}$ converges to $f(\mathbf{a})$.

As with sequences, the first theorem is useful for claiming that a function is continuous, and the second theorem is useful for claiming that a function is not continuous.

Algebra of Continuous Functions

$\mathsf{Theorem}$

Let $\Omega \subseteq \mathbb{R}^n$, $c \in \mathbb{R}$, and $f, g : \Omega \to \mathbb{R}$ be continuous on Ω . Then cf, f + g and fg are continuous on Ω , and f/g is continuous on $\Omega \setminus \{\mathbf{x} \in \Omega : g(\mathbf{x}) = 0\}$.

Via continuity of components, we get the following.

Corollary

Let $\Omega \subseteq \mathbb{R}^n$, $c \in \mathbb{R}$, and $f, g : \Omega \to \mathbb{R}^m$ be continuous on Ω . Then cf and f + g are continuous on Ω .

Theorem

Suppose that $f: \Omega \to \mathbb{R}^n$ and $g: f(\Omega) \to \mathbb{R}^m$ are continuous on their respective domains. Then $g \circ f: \Omega \to \mathbb{R}^m$ defined by $g \circ f(\mathbf{x}) = g(f(\mathbf{x}))$ is continuous on Ω .

Algebra of Continuous Functions

Exercise. Show that if $f, g: \Omega \to \mathbb{R}$ are continuous, then the pointwise maximum and

minimum $\max(f,g)$ and $\min(f,g)$ are continuous.

$$\max(a,b) = \frac{a+b+1a-b}{2}$$

$$= \frac{f(x) + g(x) + |f(x) - g(x)|}{2}$$

which is a combinations of continuous functions and hence is continueous.

similarly nh (a, b) =
$$f(x) + g(x) - (f(x) - \frac{1}{2})$$

bence is contineous.

$$\frac{f(n) + g(n) - (f(n) - g(n))}{2}$$