USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

IV Semester B. E. Fast Track Examinations Oct-2020

Computer Science and Engineering OPERATING SYSTEM

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	List any four classes of operating system.	02
1	1.2	List any four design principles for design of operating system.	02
	1.3	What is the scheduler called for the following transition diagram	02
		RUNNING READY BLOCKED	02
	1.4	Justify why thread is called light weight process.	02
	1.5	Consider the following fragment	
		int a = 5;	
		if (fork() == 0)	
		\{	
		a = a + 5;	
		$printf("%d %d \n", a, &a);$	
		}	
		else	
		a = a - 5:	
		u = u - 3, print $f("\%d \%d" n", a, &a)$;	
		}	
		Let u, v be the values printed by the parent process, and x, y be the	
		values printed by the child process. Then mention the values of u, v, x	
		and y .	02
	1.6	Illustrate with an example, how a improper use of semaphore leads to	
		deadline	02
	1.7	Consider three processes (process id 0,1,2 respectively) with compute	
		time bursts 2,4 and 8 time units. All processes arrive at time zero.	
		Consider the longest remaining time first (LRTF) scheduling	
		algorithm. In LRTF ties are broken by giving priority to the process	
		with the lowest process id. Calculate the average turnaround time	02

1.8	Consider a paging system with <i>TLB</i> . If it takes 20 ns to search <i>TLB</i> and 100 ns to access the memory what is the effective memory access	
	time with 98% hit ratio?	02
1.9	A System has 12 magnetic tape drives and 3 processes: P0, P1 and P2.	
	Maximum needs(process-wise : P0 through P2 top to bottom)	
	$P0 \mid 10$	
	F0 10	
	P1 2	
	P2	
	Determine the sequence of allocation that does not lead to deadline.	02
1.10	Consider we have the following reference string:	
	5,0,4,4,0,3,0,4,1,0,2,0,5,3,0,1. Find the page fault of virtual memory using	
	LRU algorithm and FIFO, where we used 4 frames?	02

PART-B

2	a	Discuss various approaches to design operating system structure.							
~	b	With a neat diagram illustrate process transition diagram.							
	c	With a neat diagram illustrate process transition diagram. Illustrate differences between user level thread and kernel threads.							
3	а	Consider the following set of processes with a length of the CPU burst time given in milliseconds							
		P2 3 2 2							
		P3 4 3 1							
		P4 4 1 1							
		P5 5 3 3							
	b	 i) Draw Gnatt charts illustrating the execution of these processes using SJF preemptive priority and Round Robin (Time slice = 1ms). ii) Compute the waiting times in each of the three schedules and find which of them provides results in the minimal average waiting time and turnaround time. Find out the time in which there are maximum number of processes in ready queue in the above scenario. Illustrate Critical Section Problems with necessary conditions 							
4	a	Illustrate race condition with an example							
	b	Illustrate race condition with an example O8 Give Peterson solution for two process synchronization O8							
<u> </u>									
5	a b	What is deadlock? Explain. Also explain in brief, deadlock characteristics. Give solution for following critical section problems: i) Dining philosopher problems ii) Reader Writer problem.							
		OR							
6	a	Give semaphore solution for the Producer Consumer bounded buffer problem	04						

	b	Consider the following snap-shot of a system								
		$A \mid B$	С	Α	В	С				
		P0 0 1	0	7	5	3				
		P1 2 0	0	3	2	2				
		P2 3 0	2	9	0	2				
		P3 2 1	1	2	2	2				
		P4 0 0	2	4	3	3				
		The available resources are $A = 3$, $B = 3$ and $C = 2$.								
		i) What is the content of matrix NEED								
		ii) Is the system in SAFE state? If so give the SAFE sequence.								
		iii) If a request from process P1 ar	rriv	es i	for	(10	2), can the request			
		be granted immediately?						12		
7	a	What are logical and physical me					9			
		address space is mapped to physi	ıcal	ac	ldre	ess	space using basic	0.6		
	1	paging scheme?	. 1		100	0.5		06		
	b	How many page faults occur for					TIMAL, LKU for the			
		following reference string, with four page frames? 1,2,3,4,5,3,4,1,6,7,8,7,8,9,5,4,5,4,2								
		1,2,3,4,3,3,4,1,0,7,0,	, / ,0,	,9,3,	4,3,	4,2		10		
8	а	Explain the following allocation schen	nes							
	а	i) Continuous Allocation	1103	•						
		ii) Linked Allocation								
		iii) Indexed Allocation.								
	b	Suppose on a disk with 5000 cylinders, numbers 0 to 4999. The drive								
		is currently serving at cylinder 143. The queue of pending requests in								
		FIFO order is 86,1470,913,1774,948,1509,1022,1750,130.								
		Starting from current position what is the total number of disks								
		moves for the following algorithms.								
		i) SSTF								
		ii) SCAN								
		iii) LOOK.						10		