Ein Beispiel

Gegeben ist diese Stichprobe:

Sie stammt aus einer Normalverteilung. Wie groß ist μ ?

$$\hat{\mu}_{ML} = \hat{\mu}_{MM} = \bar{x} = 2.4?$$

Oder lieber: μ wird in [2.0, 2.8] liegen?

Warum Konfidenzintervalle?

- \bullet Punktschätzung (ML- oder Momenten-Methode) liefert uns einen Schätzwert $\hat{\theta}$
- \bullet der ist in der Regel nicht identisch mit dem wahren Parameter θ
- ullet auch ist unklar, wie nahe $\hat{ heta}$ an heta dran liegt
- besser: Intervall [a, b], das θ einfängt
- gesucht ist ein Verfahren, das mit hoher Wahrscheinlichkeit ein Intervall liefert, das θ enthält
- die sogenannte Vertrauenswahrscheinlichkeit wollen wir festlegen können

Achtung: Die richtige Formulierung

Falsch ist:

 μ liegt mit 95% Wahrscheinlichkeit in [2.0, 2.8]

Richtig ist:

Mit 95% Wahrscheinlichkeit hat die beobachtete Stichprobe ein Intervall erzeugt, dass μ enthält.

Definition: $(1 - \alpha)$ -Konfidenzintervall

Gegeben sei eine Irrtumswahrscheinlichkeit α und eine *iid* Stichprobe X_1, \ldots, X_n . Dann bilden die Stichprobenfunktionen

- $G_u = G_u(X_1, \ldots, X_n)$
- und $G_o = G_o(X_1, \dots, X_n)$

durch $[G_u, G_o]$ ein $(1 - \alpha)$ -Konfidenzintervall für θ , falls

$$P(G_u \leq \theta \leq G_o) = 1 - \alpha.$$