射电干涉测量原理与基线转换公式

2025年4月11日

1 干涉测量核心方程

复可见度表示为:

$$V(u, v, w) = \iint I(l, m) e^{-2\pi i (ul + vm + w(n-1))} \frac{dl \, dm}{n}$$
 (1)

其中:

• (u,v,w): 基线坐标 (波长单位)

• (l, m, n): 天空方向余弦 $(n = \sqrt{1 - l^2 - m^2})$

・ I(l,m): 天空亮度分布

1.1 相位延迟模型

对于点源 (R.A.=0°, Dec=80°):

$$\phi = 2\pi \mathbf{B} \cdot \mathbf{s}/\lambda \tag{2}$$

其中基线矢量 B 和方向矢量 s 的几何关系决定相位变化。

2 基线转换公式

2.1 地固坐标系 → 惯性坐标系

基线矢量从地固系到惯性系的转换:

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} \sin H & \cos H & 0 \\ -\sin \delta \cos H & \sin \delta \sin H & \cos \delta \\ \cos \delta \cos H & -\cos \delta \sin H & \sin \delta \end{bmatrix} \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix}$$
(3)

2.2 东西向基线简化

对于纯东西向基线 ($B_y = B_z = 0$):

$$\begin{cases} u = \frac{B_x}{\lambda} \sin H \\ v = -\frac{B_x}{\lambda} \sin \delta \cos H \\ w = \frac{B_x}{\lambda} \cos \delta \cos H \end{cases}$$
 (4)

2.3 北天极相位中心特例

当相位中心为北天极时:

$$w \equiv 0 \quad (自动满足) \tag{5}$$

3 将 visibility real/imag 画到 uv 平面

3.1 UV 坐标与 Visibility 的关系

每个 UV 点对应一个 visibility 测量值 $V(u,v)=Re(V)+i\cdot Im(V)$ 在 UV 平面上,visibility 的相位信息表现为颜色编码

3.2 可视化方法

将 UV 坐标作为散点图的 x-y 坐标 用颜色表示实部/虚部值(色图映射)

4 结果

4.1 实部 uv 图

4.2 虚部 uv 图

