

Aufgabenserie 2

Abgabe: 19. Juni

Die Aufgaben sollten bis zum 19. Juni bearbeitet werden. Die Lösungen schickt ihr entweder an physikrolf@gmail.com. Jede Aufgabe hat eine bestimmte Anzahl an erreichbaren Punkten. Wie viele das sind, müsst ihr raten. Versucht, die Lösungen so genau wie möglich aufzuschreiben. Für besonders schnelle/gute/witzige Lösungen kann es Bonuspunkte geben. Die aktuellen Aufgaben sowie alle alten Aufgabenserien mit Lösungen findet ihr auch auf pankratius.github.io/rolf

Aufgabe 1 (Widerstandswürfel)

Ein n-dimensionaler Hyperwürfel ist die Verallgemeinerung eines Würfels auf n Dimensionen. Seine Konstruktion kann man sich so vorstellen, das ein n-1-dimensionaler Hyperwürfel im n-dimensionalen Raum parallelverschoben wird, und man das daraus entstandene Volumen betrachtet.

Ein solcher n-dimensionaler Hyperwürfel hat 2^n Eckpunkte und $n2^{n-1}$ Seitenkanten.

Wir betrachten nun einen n-dimensionalen Hyperwürfel ($n \ge 1$), bei dem alle Seitenkanten einen Widerstand von r haben. Zeige, dass der Widerstand zwischen zwei benachbarten Eckpunkten

$$R = \frac{2 - 2^{1-n}}{n}r = \frac{2^n - 1}{n2^{n-1}}r\tag{1.1}$$

beträgt. Überlege dir an einem n deiner Wahl, dass das Ergebnis dort sinnvoll ist.

Aufgabe 2 (Wärmetauscher)

Die durch Wärmeleitung übertragene Wärmeleistung zwischen zwei parallelen Wänden kann näherungsweise durch die Gleichung

$$P = \lambda A \frac{T_a - T_b}{d} \tag{2.1}$$

beschrieben werden. Dabei ist A die Fläche, durch die Wärme strömt, d der Abstand zwischen den beiden Wänden und λ eine Konstante, die vom Material zwischen den beiden Wänden abhängt (die sog. Wärmeleitfähigkeit). T_a ist die Temperatur der wärmeren Wandoberfläche und T_b die der kälteren Wandoberfläche

Ein Wärmetauscher ist ein Gerät, dass Wärme von einer warmen Flüssigkeit zu einer kälteren Flüssigkeit überträgt (Abb. 2.1). Dabei fließt warme Flüssigkeit (rot) mit einer Geschwindigkeit v von rechts nach links, und kalte Flüssigkeit (blau) mit einer Geschwindigkeit von v von links nach rechts. Die Dichte der Flüssigkeiten ist ρ und die Wärmekapazität c. Beide befinden sich in Röhren der Höhe h (h ist sehr klein). Die beiden Flüßigkeiten sind durch eine Metallwand (grau) der Dicke d mit der Wärmeleitfähigkeit λ getrennt. Die Temperaturdifferenz zwischen der einfließenden warmen Flüssigkeit und der einfließenden kalten Flüssigkeit beträgt ΔT_c .

Bestimme die Temperaturdifferenz zwischen der abgekühlten, ausfließenden warmen Flüssigkeit und der aufgewärmten, ausfließenden kalten Flüßigkeit, ΔT_a . Nimm dafür an, dass die Temperaturdifferenz ΔT zwischen warmer und kalter Flüssigkeit entlang der Wand konstant bleibt.

Abbildung 2.1: Ein Wärmetauscher

Aufgabe 3 (Büchse)

Bestimme die Position des Schwerpunkts h_s einer gefüllten zylinderförmigen Büchse in Abhängigkeit der Füllhöhe h_f und der relevanten Parameter. Nimm dafür an, dass die Büchse eine gleichmäßige Massenverteilung hat.

