Hochleistungs-Eingabe/Ausgabe

- Motivation
- Abstraktionsebenen
- Traditionelle und moderne E/A
- ► E/A-Klassen bei numerischen Anwendungen
- Benutzungsschnittstellen
- Parallel Virtual File System (PVFS/PVFS2)
- Forschungsthemen (allgemein und hier)

Hochleistungs-Eingabe/Ausgabe Die zehn wichtigsten Fragen

- Warum ist E/A auf einmal ein Thema?
- Wie hantiert man mit Daten in Dateien?
- Welche Abstraktionsschichten unterscheidet man?
- Welche Varianten der E/A finden wir bei numerischen Anwendungen?
- Welche Benutzungsschnittstellen gibt es?
- Wie funktioniert E/A im Cluster?
- Wie funktioniert E/A im Hochleistungsrechner?
- Was ist ein paralleles Dateisystem?
- Wie funktioniert das Parallel Virtual File System?
- Welche offenen Fragestellungen gibt es?

Warum ist das ein Thema?

- Gespeicherte Datenmengen steigen stark an
 - Berkeley-Bericht "How Much Information? 2003"
 - > 2002: 5 Exabyte mehr abgespeichert
 - > 92% davon auf magnetische Medien, meistens Festplatten
 - IDC-Report sieht für 2009 800 Exabyte gespeichert
 - Vermutet für 2010 einen Zuwachs von 400 Exabyte
- Hauptspeichergrößen steigen stark an
 - Heute einzelne Gigabyte pro Rechner
 - Z.B. DKRZ/Blizzard: 20 TByte Hauptspeicher, 6 Pbyte Platten
 - □ DKRZ/Mistral Faktor 10 größer
 - Füllt 5 bzw. 40 aktuelle große Festplatten vgl. PC: 4 GByte Hauptspeicher vs. 4 TByte Platte
 - I TByte lesen bei 50 MByte/s dauert 20.000 s

Speicherung großer Datenmengen

Datenaufkommen

Besonders hoch in den Naturwissenschaften Klimaforschung, Physik, Biologie, Astronomie, ...

Zugriff

Alle Anwender wollen immer alle Daten aufheben und sie jederzeit zugreifbar haben

Verfügbarkeit

 Die Datenspeicherung soll mit Fehlern in der Hardware problemlos umgehen können

Sicherheit

 Daten müssen vor Einblick, Veränderung und Löschen geschützt werden

Komplexere E/A-Systeme

- RAID Redundant Array of Inexpensive Disks
- MAID Massive Array of Idle Disks
- ▶ JBOD Just a Bunch of Disks
- SAN Storage Area Network (blockorientiert)
- NAS Network Attached Storage (dateiorientiert)
- Dateisysteme mit verteiltem Zugriff
 - NFS Network File System
 - AFS Andrew File System
- Dedizierte Spezial-Hardware in Hochleistungsrechnern

Abstraktionsebenen

Begriff der "parallelen Eingabe/Ausgabe"

- Programmsicht:
 Der Zugriff auf die Bytes einer Datei erfolgt aus mehreren parallelen Prozesse heraus
- Systemsicht:
 Die Bytes einer Datei liegen über mehrere Platten verteilt

Wie üblich: Ebenen voneinander unabhängig

Varianten der E/A

- Traditionell
 - ▶ E/A nur über Hostrechner
 - E/A nur durch festgelegten Prozess

Bewertung

- Aus Effizienzgründen nicht mehr möglich
- Modern
 - ► E/A über viele Knoten
 - ► E/A durch alle Prozesse

Bewertung

Verwendung moderner Techniken

Traditionelle E/A

Moderne E/A

Moderne E/A...

Geschichte der parallelen E/A

- Parallele E/A-Systeme und parallele E/A-Bibliotheken entstehen Anfang der 90er Jahre
- Viel Forschung bereits Mitte der 90er
- Nur wenige existierende Systeme im Produktionsbetrieb
- Aber: Sehr viele proprietäre Hochleistungs-E/A-Systeme bei Hochleistungsrechnern; jedoch nicht so oft echt parallele

Kategorien massiver E/A

Anwendungssicht

- Nichtnumerische Anwendungen
 - Unregelmäßig strukturierte Daten
 - z.B. Datenbank-Anwendungen
 - Datenströme
 - z.B. Multimedia-Anwendungen
 - Beides hier nicht weiter betrachtet
- Numerische Anwendungen
 - Regelmäßig strukturierte Daten
 - z.B. Vektoren, Arrays mit großen Dimensionen
 - Auch unregelmäßig strukturierte Daten
 - ☐ Listen, dünnbesetzte Matrizen

E/A-Klassen bei numerischen Anwendungen

- Lesen der Programmeingabe und Schreiben der Programmausgabe
- Sicherungspunkte
- Temporäre Daten
- "Out-of-core Execution"

Programmeingabe/-ausgabe

- Zeitpunkte
 - Programmstart, Programmende, Zwischenergebnisse
- Datenmengen
 - Maximal Größe des gesamten Hauptspeichers
- Wichtiges Szenarium: Pipelining
 - Daten von einem anderen Gerät
 z.B. von physikalischem Experiment
 - Daten zu einem anderen Gerät
 - z.B. Ergebnisvisualisierung, Datenarchivierung

Sicherungspunkte

- Verwendet zur Programmfortsetzung
 - Nach Absturz oder Unterbrechung
- Sichern aller wichtigen Daten
 - Kompletter Speicherabzug
 - Vom Benutzer ausgewählte Daten
- Anzahl benötigter Sicherungspunkte
 - Mindestens zwei
- Redundanz der Daten notwendig zur Ausfallsicherung

Temporäre Dateien

- Abspeicherung während des Programmlaufs
- Evtl. nicht-parallele E/A auf lokaler Platte ausreichend
- Zur Kommunikation zwischen Prozessen aber parallele E/A erforderlich
 - Verwendung einer temporären Datei über alle Platten hinweg

Out-of-Core-Execution

- Out-of-core-Execution:
 Bearbeitung einer größeren Datenmenge, als in den Hauptspeicher paßt
 - Eigenprogrammiertes Aus- und Einlagern der überschüssigen Datenmengen
 - ▶ Effizienter als Swapping durch Betriebssystems
- Spezialfall für Spezialanwendungen
 - Bei numerischen Anwendungen wird typischerweise der Hauptspeicher exakt gefüllt

Zugriffsmuster bei E/A

- Wichtig für Fall 1: E/A bei Programmen
- Fragestellung
 - Wann wird E/A durchgeführt?
 - Welche Mengen werden transferiert?
 - Welche Byte einer Datei werden angesprochen?
- Ausführliche Studien aus den 90ern
- Wir müssen hier lernen, was die Klimaforscher tun
- Wichtig um die Abbildung der logischen Datei auf die physikalische zu optimieren

Benutzungsschnittstellen

Hierarchie von Schnittstellen

Im Moment nur paralleles Dateisystem betrachtet

(P)netCDF, HDF5

MPI-IO

API paralleles Dateisystem

POSIX open(), read(), write(), close(), usw.

strukturierte Daten mit Annotationen

Listen typisierter Daten

Listen typisierter Daten

Byte-Sequenz

E/A im Rechnercluster

- Gelegentlich: An jedem Knoten auch eine Platte
 - ▶ Entweder nur für temporäre Dateien
 - Oder als richtiges paralleles Dateisystem über alle Platten hinweg
- Alternativen
 - ▶ Jeder Rechenknoten ist auch E/A-Knoten
 - Dedizierte E/A-Knoten
 Balancierung der Rechen- und E/A-Leistung
- Betriebsproblematik
 - Wer darf wann welche Platten benutzen?
 (Bisher nur Konzepte für Knotenzuteilung)

E/A im Hochleistungsrechner

- Knoten haben nie Platten
- Ausgewählte Knoten dienen als E/A-Knoten
 - Dicker Netzanschluss
 - Fetter Hauptspeicherausbau
 - Keine Programme auf diesen Knoten
 - Keine eigenen Festplatten
- Wie geht es?
 - ► E/A-Knoten leitet die gesamte E/A zum E/A-System bestehend aus eigenen Rechnern und sehr vielen Platten

Paralleles Dateisystem

Merkmale

- Mehrere Prozesse können gleichzeitig auf dieselben Dateien zugreifen.
- Die Daten einer Datei liegen physikalisch verteilt

Schicht

- Zwischen dem Anwenderprogramm und dem physikalischen E/A-System der E/A-Knoten
- Somit typische Middleware-Software

Systeme

- IBM Spectrum Scale
 - Bis Feb. 2015 genannt GPFS (Cluster-Dateisystem)
 - Langjähriges Produkt; ausgreiftes System
- Lustre (Cluster-Dateisystem)
 - Neuerer Ansatz, in dem alles besser gemacht wird
 - Sehr hohe Komplexität!
 - Open-Source und frei erhältlich; viele Varianten
- OrangeFS (Paralleles Dateisystem)
 - Bis 2007 entwickelt als PVFS/PVFS2
 - Verbreitetes System bei Selbstbau-Clustern
- BeeGFS
 - Entwickelt bei Fraunhofer Institut

Beispiel: Parallel Virtual File System

- Ziel: E/A massiver Datenmengen in Clustern
- Entwicklergruppen
 - Parallel Architecture Research Laboratory
 Clemson University
 - Mathematics and Computer Science Division Argonne National Laboratories
- Historie
 - ▶ Beginn ~1996
 - PVFS2 (Herbst 2003) umbenannt in PVFS 2.0

PVFS2-Eigenschaften

- Komplette Neuentwicklung (ggü. PVFS)
- Setzt auf realem Dateisystem auf (ext[23] o.ä.)
- Modular und hierarchisch aufgebaut
 - Module zum Auswechseln vorgesehen
- Enge MPI-IO-Integration
- Effiziente Durchführung strukturierter nicht-kontinuierlicher Zugriffe
- Zustandsloser Objektzugriff
- Erweiterbare Datenverteilungsfunktion (striping usw.)
- Semantik des Dateisystems variabel
- Explizite Unterstützung paralleler Abläufe
- Redundantes Speichern von Daten und Metadaten

PVFS2-Schichtenmodell

MPI_File_write löst PVFS trove aus

4 Clients, 4 Server, 1 Metadatenserver

Arbeitsbereich Wissenschaftliches Rechnen und parallele E/A-Systeme

Der Arbeitsbereich Wissenschaftliches Rechnen (ehemals Arbeitsgruppe "Parallele und verteilte Systeme" an der Universität Heidelberg) verwendet Lustre als Basis für eigene Forschungs- und Entwicklungsarbeiten auf dem Gebiet der parallelen E/A

Themen für Abschlußarbeiten und zur Mitarbeit sind vorhanden!

Forschungsthemen

- Wie soll parallele E/A genutzt werden?
- Wie steigern wir Leistung und Skalierbarkeit?
- Wie ermittelt man die Leistung des E/A-Systems?

Jetzt neu:

- Kombination mit Bandarchiv und Hierarchical Storage Management (HSM)
- Aspekte der Energie- und Kosteneffizienz

Forschungsthema Nutzung

- Die Frage der Schnittstelle zum Programm ist noch offen
 - Welche Zugriffsvarianten (Semantiken)?
 - Schnittstellen auf welchem Abstraktionsniveau?
- Details im Vortrag zu MPI-IO

Forschungsthema Leistung

- Zugriffsmuster erkennen
- Abbildung logische Daten auf physikalische Daten optimieren oder dynamisch gestalten
- Nichtzusammenhängende Zugriffe optimieren
- Kollektive Operationen unterstützen
- Metadatenzugriff verbessern
- Kompression einbauen

Allgemein: Skalierbarkeit steigern

Forschungsthema Leistungsbestimmung

- Keine standardisierten Benchmarks
- Was wollen wir messen?
 - E/A-Bandbreiten beim Datenzugriff
 - Verschiedene Zugriffsmuster
 - Verschiedene Datenmengen
 - Unabhängige/identische Orte in Dateien
 - Zugriffsraten beim Metadatenzugriff
- Zur Zeit keine vernünftigen quantitativen Vergleiche zwischen Systemen möglich

Eigene Forschungen

- Leistungsvisualisierung
- Leistungsbewertung
- Modellierung und Simulation
- Metadatenverwaltung
- Anwendung im Produktionsbetrieb
- Zugriffsmuster
- Datenkomprimierung

Mitarbeit ist willkommen!

Hochleistungs-Eingabe/Ausgabe Zusammenfassung

- Traditionelle Varianten der E/A jetzt ungenügend
- Parallelisierung der E/A notwendig und möglich
- ▶ Parallele E/A etwa ab Mitte der 90er entwickelt
- Uns interessieren hier nur numerische Anwendungen
- ▶ E/A gliedert sich in verschiedene Klassen auf
- Benutzerschnittstellen auf verschiedenen Ebenen
- Im Parallelen Dateisystem liegen die Dateien über Platten verteilt und werden von parallelen Prozessen aus gelesen und geschrieben
- ▶ Im Einsatz in der TOP500: Lustre und IBM
- Im Bereich E/A viele offene Forschungsfragen