2 Kennels KB (x, z) = (1+ Bx. Z)3 KB = 1 + 3B x121 + 3B x222 + 3B2x12212 + 6B2 x1x22122 + 382 X22 22 + 83 X13 23 + 383 X12 X2 22 22 + 383 X1 X2 2122 + 83 X23 23 Since we know that dot products in high dimensional spaces of K(x, 2) = Ø (x) T Ø(2) We know that it's going to \$ (x) = V3XIVB J3 Xi2B VE XIX; B xi3 \ 103 V3 X12 VB3 V3 xixj2 VB3 The differences between $K_{\beta}(x, z)$ and K(x, z) is $K_{\beta}(x, z)$ has a parameter β while K(x, z) doesn't have it. The roles of parameter 13 in KB(x, z) is to scaling the vector. It will scale every single element by a constant B, raise to a centain power.

3	3 SVM			
	a. XI (1,1) X2 = (1,0) T			
	$y_{1=1} y_{2=-1}$			
	$\omega_1 + \omega_2 \gg 1$ - $(\omega_1) \gg 1$			
	1-W1-W2 60 1+W,60			
	$L(w, x) = \frac{1}{2}(w_1^2 + w_2^2) + d_1(1 - w_1 - w_2) + d_2(1 + w_1) = 2(x)$			
	id = max a min w L (w, x)			
	minimize in respect to W,			
	DL = W1 - d1 + d2 = 0 -> W1 = d1 - d2] (1)			
	2 W1			
	$2L = W_2 - \alpha_1 = 0$ -> $W_2 = \alpha_1$			
	aw2			
	Sub into 2(x).			
	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	$\frac{2(x) = \frac{1}{2} \left((d_1 - d_2)^2 + d_1 \right) + d_1 \left(1 - d_1 + d_2 - d_1 \right) + d_2 \left(1 + d_1 - d_2 \right)}{2 \left(2d_1^2 - 2d_1 d_2 + d_2^2 \right) + \left(d_1 - d_1^2 + d_1 d_2 - d_1^2 \right) + \left(d_2 + d_1 d_2 - d_2^2 \right)}$ $\frac{22}{2d_1} = -2d_1 + d_2 + 1 = 0 \implies d_1 = d_2 + 1$ $\frac{2}{2d_1} = -d_2 + 1 + d_1 = 0 \implies d_2 = d_1 + 1$ $\frac{2}{2d_2} = -d_2 + 1 + d_1 = 0 \implies d_2 = d_1 + 1$ $\frac{2}{2d_2} = -d_2 + 1 + d_1 = 0 \implies d_2 = d_1 + 1$ $\frac{2}{2d_2} = -d_2 + 1 + d_1 = 0 \implies d_2 = d_1 + 1$			
	$= \frac{1}{2} \left(\frac{2\alpha 1 - 2\alpha 1 m^2 + w^2}{1 + (\alpha 1 - \alpha 1 + \alpha 1 \alpha 2 - \alpha 1)} + (\alpha 2 + \alpha 1 \alpha 2 - \alpha 2) \right)$			
	$\frac{dt}{2!} = -2d_1 + d_2 + 1 = 0 - \frac{1}{2} d_1 = d_1 + 1 + 1$			
	22 1 1 1 1 1 2 do = 1 1 1 2 1 2 1 2 1			
	$\frac{d}{dt} = -d2 + 1 + d1 = 0^{-1} + d1 = 1$			
	Sub di = 2 & dz = 3 to. 1			
	Sub 21 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	$W_1 = 2-3 = -1$ $W_2 = 2$			
	&, 2 2 3 1 . SZ2 2.			
	· · · · · · · · · · · · · · · · · · ·			

- 4.1 Feature Extraction
- A. Implemented in the code
- B. Implemented in the code
- C. Implemented in the code
- D. Dimensionality of the all the tweet is (630, 1140930). Thus, splitting into training and test data will result in dimensionality of training data (560, 1014160) and dimensionality of test data (70, 126770)

4.2 Hyper-parameter Selection for a Linear-Kernel SVM

A. Implemented in the code

B. It is beneficial to maintain class proportions roughly the same across folds because if the proportions are not balance or not roughly the same across folds there will be an inaccuracy of measurement due to one class is more represented than the other. For example, if one class is not represented well enough, it is going to be hard to determine the decision boundary for that particular class because it does not have enough data to learn.

C. Implemented in the code

С	accuracy	F1-score	AUROC
10 ⁻³	0.7089	0.8297	0.8105
10-2	0.7107	0.8306	0.8111
10 ⁻¹	0.8060	0.8755	0.8576
10°	0.8146	0.8749	0.8712
10 ¹	0.8182	0.8766	0.8696
10 ²	0.8182	0.8766	0.8696
Best C	100	100	100

In svm, parameter C uses to determine the hyperplane or boundary between data that we want to classify. It is clear that, larger the value of C, it will choose a small value of margin to avoid any misclassified points. Same instance happen with the small value of C, it will choose a larger value of margin, which tend to have more misclassified points. According to those ideas, for any method of performance measurer (accuracy, F1-score, and AUROC) we will see that larger the value of C, the performance will also get better. I also did an experiment to try to have larger values of C, and it seems that the performance could not get any better for all of the performance measurer method. We may need to try another method to get a closer value to 1.

4.3 Test Set performance A. Best C is 100

B. implemented in the code

C.

Metric	Linear SVM score	
Accuracy	0.7429	
F1_score	0.4375	
AUROC	0.7464	