Minimum Spanning Tree (MST)

Hengfeng Wei

hfwei@nju.edu.cn

June 12, 2019

Cut Property

$$G = (V, E, w)$$

Cut Property (I)

X: A part of some MST T of G

 $(S,V\setminus S):$ A $\mbox{\it cut}$ such that X does $\mbox{\it not}$ cross $(S,V\setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Cut Property (I)

X: A part of some MST T of G

 $(S, V \setminus S)$: A *cut* such that X does *not* cross $(S, V \setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is a part of some MST T' of G.

Cut Property (I)

X: A part of some MST T of G

 $(S, V \setminus S)$: A $\operatorname{\it cut}$ such that X does $\operatorname{\it not}$ cross $(S, V \setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is a part of some MST T' of G.

Correctness of Prim's and Kruskal's algorithms.

$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$

$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$
 "a" \rightarrow "the" \Longrightarrow "some" \rightarrow "all"

- 4 □ ▶ 4 圖 ▶ 4 圖 ▶ 3 ■ 9 9 (ペ

Cut Property (II)

A cut
$$(S, V \setminus S)$$

Let e = (u, v) be **a** lightest edge across $(S, V \setminus S)$

 \exists MST T of $G: e \in T$

Cut Property (II)

A cut
$$(S, V \setminus S)$$

Let e = (u, v) be **a** lightest edge across $(S, V \setminus S)$

\exists MST T of $G: e \in T$

$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$

Cut Property (II)

A cut
$$(S, V \setminus S)$$

Let e = (u, v) be a lightest edge across $(S, V \setminus S)$

\exists MST T of $G: e \in T$

$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$

"a" \rightarrow "the" \Longrightarrow " \exists " \rightarrow " \forall "

Application of Cut Property [Problem: 10.15 (3)]

$$e = (u, v) \in G$$
 is a lightest edge $\implies e \in \exists$ MST of G

Application of Cut Property [Problem: 10.15 (4)]

$$e = (u, v) \in G$$
 is the unique lightest edge $\implies e \in \forall$ MST

Application of Cut Property [Problem: 10.15 (3)]

$$e = (u, v) \in G$$
 is a lightest edge $\implies e \in \exists$ MST of G

$$\left(S = \{u\}, V \setminus S\right)$$

Application of Cut Property [Problem: 10.15 (4)]

$$e = (u, v) \in G$$
 is the unique lightest edge $\implies e \in \forall$ MST

Cycle Property

Cycle Property [Problem: 10.19(b)]

- \blacktriangleright Let C be any cycle in G
- ▶ Let e = (u, v) be **a** maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

Cycle Property [Problem: 10.19(b)]

- \blacktriangleright Let C be any cycle in G
- ▶ Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

$$T' = \underbrace{T - \{e\}}_{\text{if } e \in T} + \{e'\}$$

Cycle Property [Problem: 10.19(b)]

- \blacktriangleright Let C be any cycle in G
- ▶ Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

$$T' = \underbrace{T - \{e\}}_{\text{if } e \in T} + \{e'\}$$

"a" \rightarrow "the" \Longrightarrow " \exists " \rightarrow " \forall "

Reverse-delete algorithm (wiki; clickable)

Delete an edge if this does not disconnect the graph.

Reverse-delete algorithm (wiki; clickable)

Delete an edge if this does not disconnect the graph.

$$O(m \log n ((\log \log n)^3))$$

Reverse-delete algorithm (wiki; clickable)

Delete an edge if this does not disconnect the graph.

$$O(m \log n ((\log \log n)^3))$$

Proof.

Cycle Property

Reverse-delete algorithm (wiki; clickable)

Delete an edge if this does not disconnect the graph.

$$O(m \log n (\log \log n)^3)$$

Proof.

Cycle Property

$$T \subseteq F \implies \exists T' : T' \subseteq F - \{e\}$$

 $Reverse-delete\ algorithm\ (wiki;\ clickable)$

Delete an edge if this does not disconnect the graph.

$$O(m \log n ((\log \log n)^3))$$

Proof.

Cycle Property

$$T \subseteq F \implies \exists T' : T' \subseteq F - \{e\}$$

"On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem"

— Kruskal, 1956.

Application of Cycle Property [Problem: 10.15 (1)]

$$G = (V, E), \quad |E| > |V| - 1$$

 \boldsymbol{e} : the unique maximum-weighted edge of G

$$\implies$$

$$e \notin \text{ any MST}$$

Application of Cycle Property [Problem: 10.15 (1)]

$$G = (V, E), \quad |E| > |V| - 1$$

e : the unique maximum-weighted edge of G

$$\implies$$
 ?

$$e \notin \text{any MST}$$

Bridge

Application of Cycle Property [Problem: 10.15 (2)]

$$C \subseteq G$$
, $e \in C$

e: the unique maximum-weighted edge of G

 $e \notin \text{any MST}$

Application of Cycle Property [Problem: 10.15 (2)]

$$C \subseteq G$$
, $e \in C$

e: the unique maximum-weighted edge of G

$$\Longrightarrow$$

 $e \notin \text{any MST}$

Cycle Property

Application of Cycle Property [Problem: 10.15 (5)]

$$C \subseteq G, e \in C$$

e: the unique lightest edge of C

$$\implies$$

$$e \in \forall \ \mathrm{MST}$$

Application of Cycle Property [Problem: 10.15 (5)]

$$C \subseteq G, e \in C$$

e: the unique lightest edge of C

 $e \in \forall MST$

Uniqueness of MST

Uniqueness of MST [Problem: 10.18(1)]

Distinct weights \implies Unique MST.

Uniqueness of MST [Problem: 10.18(1)]

Distinct weights \implies Unique MST.

Uniqueness of MST [Problem: 10.18(1)]

Distinct weights \implies Unique MST.

$$\exists$$
 MSTs $T_1 \neq T_2$

Uniqueness of MST [Problem: 10.18 (1)]

Distinct weights \implies Unique MST.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \left\{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \right\}$$

Uniqueness of MST [Problem: 10.18 (1)]

Distinct weights \implies Unique MST.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \left\{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \right\}$$

$$e = \min \Delta E$$

Uniqueness of MST [Problem: 10.18 (1)]

Distinct weights \implies Unique MST.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \left\{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \right\}$$

$$e = \min \Delta E$$

$$e \in T_1 \setminus T_2 \ (w.l.o.g)$$

$$e \in T_1 \setminus T_2$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$T' = T_2 + \{e\} - \{e'\} \implies w(T') < w(T_2)$$

Condition for Uniqueness of MST [Problem: 10.18 (2)] Unique MST \implies Distinct weights.

Condition for Uniqueness of MST [Problem: 10.18 (2)] Unique MST \implies Distinct weights.

Unique MST \implies Minimum-weight edge across any cut is unique.

Unique MST \implies Minimum-weight edge across any cut is unique.

Unique MST \implies Minimum-weight edge across any cut is unique.

Theorem

 ${\it Minimum-weight\ edge\ across\ any\ cut\ is\ unique\ \Longrightarrow\ Unique\ MST}.$

Unique MST \implies Minimum-weight edge across any cut is unique.

Theorem

Minimum-weight edge across any cut is unique \implies $Unique\ MST$.

Construct T by adding all such edges.

Unique MST \implies Maximum-weight edge in any cycle is unique.

Unique MST \implies Maximum-weight edge in any cycle is unique.

Unique MST \implies Maximum-weight edge in any cycle is unique.

Theorem

 $\textit{Maximum-weight edge in any cycle is unique} \implies \textit{Unique MST}.$

Unique MST \implies Maximum-weight edge in any cycle is unique.

Theorem

Maximum-weight edge in any cycle is unique \implies Unique MST.

Construct T by deleting all such edges.

To decide whether a graph has a unique MST.

To decide whether a graph has a unique MST.

Ties in Prim's and Kruskal's algorithms

To decide whether a graph has a unique MST.

Ties in Prim's and Kruskal's algorithms

To decide whether a graph has a unique MST.

Ties in Prim's and Kruskal's algorithms

$$\underbrace{\frac{T}{\text{Any MST}}}_{\text{Cycle}} + \underbrace{\underbrace{\{e\}}_{,} \forall e \notin T}_{\text{Cycle}}$$

To decide whether a graph has a unique MST.

Ties in Prim's and Kruskal's algorithms

$$\underbrace{\frac{T}{\text{Any MST}}}_{\text{Cycle}} + \underbrace{\{e\}, \forall e \notin T}_{\text{Cycle}}$$

By Kruskal Algorithm.

Variants of MST

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$

To find an MST T' of G'.

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$

To find an MST T' of G' .

$$O((m+n)\log n)$$
 (recompute on G')

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$

To find an MST T' of G' .

$$O((m+n)\log n)$$
 (recompute on G')

Theorem

There exists an MST of G' that includes no edges in $G \setminus T$.

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$

To find an MST T' of G' .

$$O((m+n)\log n)$$
 (recompute on G')

Theorem

There exists an MST of G' that includes no edges in $G \setminus T$.

$$O(n \log n)$$
 (recompute on $G'' = (V + \{v\}, T + E_v)$)

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$

To find an MST T' of G' .

$$O((m+n)\log n)$$
 (recompute on G')

Theorem

There exists an MST of G' that includes no edges in $G \setminus T$.

$$O(n\log n)$$
 (recompute on $G'' = (V + \{v\}, T + E_v))$
$$O(n)$$

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$

To find an MST T' of G' .

$$O((m+n)\log n)$$
 (recompute on G')

Theorem

There exists an MST of G' that includes no edges in $G \setminus T$.

$$O(n \log n)$$
 (recompute on $G'' = (V + \{v\}, T + E_v)$)

"On Finding and Updating Spanning Tress and Shortest Paths", 1975 "Algorithms for Updating Minimum Spanning Trees", 1978

$$G = (V, E), \quad U \subset V$$

To find an MST with U as leaves.

$$G = (V, E), \quad U \subset V$$

To find an MST with U as leaves.

$$G = (V, E), \quad U \subset V$$

To find an MST with U as leaves.

MST T' of $G' = G \setminus U$

$$G = (V, E), \quad U \subset V$$

To find an MST with U as leaves.

MST
$$T'$$
 of $G' = G \setminus U$

Attach $\forall u \in U$ to T' (with lightest edge)

- ◆□▶ ◆圖▶ ◆差▶ ◆差▶ = ** 夕久♡

Office 302

Mailbox: H016

hfwei@nju.edu.cn