Math 4580: Abstract Algebra I

Lecturer: Professor Michael Lipnowski

Notes by: Farhan Sadeek

Spring 2025

1 January 6, 2025

We didn't have any, but Dr. Lipnowski did post a module on carmen about the syllabus and the course. This semester we will be covering the first few chapters of the book *Abstract Algebra: Theory and Applications* by Thomas Judson.

Definition 1

Set: A collection of distinct objects, considered as an object in its own right.

Axioms: A collection of objects S with assumed structural rules is defined by axioms.

Statement: In logic or mathematics, an assertion that is either true or false.

Hypothesis and Conclusion: In the statement "If P, then Q", P is the hypothesis and Q is the conclusion.

Mathematical Proof: A logical argument that verifies the truth of a statement.

Proposition: A statement that can be proven true.

Theorem: A proposition of significant importance.

Lemma: A supporting proposition used to prove a theorem or another proposition.

Corollary: A proposition that follows directly from a theorem or proposition with minimal additional proof.

2 January 8, 2025

Professor Lipnowski discussed Sam Lloyd's 15 puzzle. Each lecture will include a mystery digit, contributing up to 5% bonus to the final grade based on correct guesses.

Certain course expectations:

- · All assignments (one every two weeks) and exams (one midterm and one final exam) will be take-home.
- All the problems from the course textbook.
- Collaboration is encouraged, but the work should be your own.
- For the exams, we are not supposed to talk to other friends.

2.1 Review of Set Theory

In this course, we will study functions and equivalence relations.

Definition 2

A function from a set A to a set B is a relation that assigns to each element x in A exactly one element y in B. We write $f:A\to B$ to denote a function f from A to B. Here, A is the **domain** and B is the **codomain**.

Domain: The set of all possible input values for the function.

Codomain: The set of all possible output values for the function.

Example 3

Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2$. Here, the domain is the set of all integers \mathbb{Z} , and the codomain is also the set of all integers \mathbb{Z} . For example, f(2) = 4 and f(-3) = 9.

Example 4

Another example is the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = \sqrt{x}$. Here, the domain is the set of all non-negative real numbers $\mathbb{R}_{\geq 0}$, and the codomain is the set of all real numbers \mathbb{R} . For example, g(4) = 2 and g(9) = 3.

Fact 5

A function must have a unique output for each input in its domain. This means that for every $x \in A$, there is exactly one $y \in B$ such that f(x) = y.

Fact 6

A function f can be represented as a special kind of subset of the Cartesian product $A \times B$. Specifically, the **graph** of f is the set of ordered pairs $\{(a, b) \mid a \in A, b = f(a)\}$.

Proposition 7

A set $G \subseteq A \times B$ is the graph of a function $f: A \to B$ if and only if G intersects every vertical line x = a at exactly one point.

Example 8

Consider the function $h: \mathbb{R} \to \mathbb{R}$ defined by $h(x) = e^x$. The graph of this function is the set of ordered pairs $\{(x, e^x) \mid x \in \mathbb{R}\}$.

Definition 9

The **vertical line test** is a visual way to determine if a curve in the coordinate plane represents a function. A curve represents a function if and only if no vertical line intersects the curve more than once. This is because a function can only have one output for each input.

-10

Example 10

Consider the relation defined by the equation $x^2 + y^2 = 1$, which represents a circle with radius 1 centered at the origin. This relation does not pass the vertical line test because there are vertical lines that intersect the circle at two points. For example, the vertical line x = 0 intersects the circle at the points (0, 1) and (0, -1). Therefore, the circle is not the graph of a function.

In this case the circle is not the graph of a function because it fails the vertical line test.