Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Héctor Pastén Vásquez

Curso: Álgebra abstracta II Fecha: 8 de mayo de 2025

Ayudante: José Cuevas Barrientos

Sigla: MAT2244

El espectro de un anillo

Recordatorios sobre topología

Daremos un breve recuento de las definiciones que se emplearán en la ayudantía. Una topología sobre un conjunto X es una familia τ de subconjuntos tales que:

Top1. $\emptyset, X \in \tau$.

Top2. Si $\{U_i\}_i$ es una familia de elementos de τ , entonces $\bigcup_{i\in I} U_i \in \tau$.

Top3. Si $U_1, \ldots, U_n \in \tau$, entonces $U_1 \cap U_2 \cap \cdots \cap U_n \in \tau$.

Los elementos de τ se llaman *abiertos* de la topología, y el complemento de un abierto se dice un conjunto cerrado. El par (X,τ) se dice un espacio topológico (usualmente obviamos a τ), y a los elementos de X les llamamos puntos del espacio.

Si U es un abierto que contiene a un punto $x \in X$, decimos que es una vecindad de x. Una familia de abiertos \mathcal{B} se dice una base de la topología si para cada punto x y cada vecindad suya U, existe un abierto $V \in \mathcal{B}$ en la base tal que $x \in V \subseteq U$.

Una familia de abiertos $\{U_i\}_{i\in I}$ tales que $\bigcup_{i\in I} U_i = X$ se dice un *cubrimiento* del espacio X. Un espacio topológico X se dice (cuasi) compacto si todo cubrimiento $\{U_i\}_{i\in I}$ admite un subcubrimiento $\{U_{i_i}\}_{i=1}^n$ finito.

Una función entre espacios topológicos $f: X \to Y$ se dice **continua** si la preimagen de todo abierto (de Y) es abierta (en X). Esto puede verificarse en una base de Y. Un homeomorfismo es una biyección entre espacios topológicos que es continua y cuya inversa es también continua. Se dice que $f: X \to Y$ es un encaje cerrado (resp. abierto) si $f: X \to f[X]$ es un homeomorfismo y $f[X] \subseteq Y$ es un subconjunto cerrado (resp. abierto).

Un espacio topológico X se dice **disconexo** si existen dos abiertos $U, V \subseteq X$ disjuntos tales que $U \cup V = X$. Si, por el contrario, X no es disconexo, decimos que es conexo.

Dada una familia de espacios topológicos $(X_i)_{i\in I}$ podemos definir la suma disjunta de sus espacios como la unión disjunta $\coprod_{i\in I} X_i$ con la topología en la que los abiertos son de la forma $\coprod_{i\in I} U_i$, donde cada $U_i \subseteq X_i$ es abierto respectivamente.

Un espacio topológico X se dice de Hausdorff si todo par de puntos distintos $x, y \in X$ admiten vecindades $x \in U$ e $y \in V$ disjuntas.

 \odot

 $\odot \odot$

 \odot

2. Espectro de Zariski

1. Dado un anillo no nulo A, defina Spec A como su conjunto de ideales primos. Dado un subconjunto $S \subseteq A$, definiremos su lugar de anulamiento como

$$\mathbf{V}(S) := \{ \mathfrak{p} \in \operatorname{Spec} A : \mathfrak{p} \supseteq S \}.$$

- a) Pruebe que la familia $\tau := \{ \operatorname{Spec} A \setminus \mathbf{V}(S) : S \subseteq A \}$ determina una topología sobre $\operatorname{Spec} A$. A este espacio le llamamos el **espectro** (**de Zariski**) de A.
- b) Describa Spec A cuando A es DIP (dominio de ideales principales). Es Spec A un espacio de Hausdorff en general?
- c) Para $f \in A$ defina

$$\mathbf{D}(f) := \operatorname{Spec} A \setminus \mathbf{D}(f) = \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Pruebe que la familia $\{\mathbf{D}(f): f \in A\}$ forma una base de la topología.

Para $f, g \in A$ pruebe que:

- d) $\mathbf{D}(f) = \operatorname{Spec} A$ syss f es inversible.
- e) $\mathbf{D}(f) = \emptyset$ syss f es nilpotente.
- f) Pruebe que Spec A es compacto.
- 2. Sea $\varphi \colon A \to B$ un homomorfismo de anillos, pruebe que

$$\varphi^a \colon \operatorname{Spec} B \longrightarrow \operatorname{Spec} A, \quad \mathfrak{q} \longmapsto \varphi^{-1}[\mathfrak{q}]$$

es una función continua entre espacios topológicos. Además, pruebe que:

- a) Si $\psi \colon B \to C$ es otro homomorfismo de anillos, entonces $(\psi \circ \varphi)^a = \varphi^a \circ \psi^a$. Esto sumado al hecho de que $\mathrm{Id}_A^a = \mathrm{Id}_{\mathrm{Spec}\,A}$ diría que el espectro de Zariski constituye un funtor contravariante desde la categoría de anillos a la de espacios topológicos.
- b) Si φ es un epimorfismo, entonces φ^a es un encaje cerrado que identifica a Spec B con el cerrado $\mathbf{V}(\ker \varphi)$.
- c) Si φ es la localización B = A[1/f] para $f \in A$, entonces φ^a es un encaje abierto que identifica Spec B con $\mathbf{D}(f)$.
- 3. Sean A_1, \ldots, A_n una tupla de anillos. Pruebe que los ideales primos del producto $A_1 \times \cdots \times A_n$ son de la forma

$$A_1 \times \cdots \times A_{j-1} \times \mathfrak{p}_j \times A_{j+1} \times \cdots \times A_n,$$

donde $\mathfrak{p}_i \triangleleft A_i$ es primo.

Concluya que $\operatorname{Spec}(A_1 \times \cdots \times A_n) = \operatorname{Spec} A_1 \coprod \cdots \coprod \operatorname{Spec} A_n$.

4. Pruebe que si Spec A es disconexo, entonces A contiene un elemento idempotente e (i.e., tal que $e^2 = e$) distinto del 0 y del 1.

Referencias

- 1. ATIYAH, M. F. y MACDONALD, I. G. Introduction to Commutative Algebra (Addison-Wesley, 1969).
- 2. Matsumura, H. Commutative Ring Theory trad. por Reid, M. Cambridge Studies in Advanced Mathematics 8 (Cambridge University Press, 1986).

Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-1-ayud/