Примерни решения на задачите от първото контролно по Дискретни структури, специалност Информационни системи, първи курс, зимен семестър на 2019/2020 г.

Задача 1

Нека $A,B,C\subseteq X$. Докажете или опровергайте, че ако $\forall x\in X(x\in A\to x\in C\land x\in B),$ то

$$(B \cup C) \backslash B = \overline{\overline{C} \cap \overline{A}} \cap \overline{B}$$

Решение 1:

 $\forall x \in X (x \in A \to x \in C \land x \in B)$ е еквивалентно на $A \subseteq C \cap B$.

За лявата част имаме, че $(B \cup C) \backslash B = C \backslash B$

От дясно: $\overline{C} \cap \overline{A} \cap \overline{B} = (C \cup A) \cap \overline{B}$ (от законите на Де Морган) $= C \cap \overline{B}$, (понеже знаем, че $A \subseteq C$). $= C \setminus B$.

От двете страни получихме еднакви неща, следователно множествата съвпадат.

Решение 2:

 $\forall x \in X (x \in A \to x \in C \land x \in B)$ е еквивалентно на $A \subseteq C \cap B$.

B	C	$B \cup C$	$(B \cup C) \setminus B$	\overline{C}	\overline{A}	$\overline{\overline{C}} \cap \overline{A}$	\overline{B}	$\overline{\overline{C}} \cap \overline{\overline{A}} \cap \overline{B}$
0	0	0	0	1	1	0	1	0
0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	0	0	0
1	1	1	0	0	1	1	0	0
0	0	0	0	1	0	1	1	1
0	1	1	1	0	0	1	1	1
1	0	1	0	1	0	1	0	0
1	1	1	0	0	0	1	0	0
	B 0 0 1 1 0 0 1 1 1 1 1	0 0 0 1 1 0 1 1	$\begin{array}{c cccc} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

При условието, че $A\subseteq C\cap B$ не трябва да гледаме редовете оцветени в сиво. Без тях втората и последната колона съвпадат.

Задача 2

В множеството $(\mathbb{N}\times\mathbb{N})\times(\mathbb{N}\times\mathbb{N})$ дефинираме релация R по следния начин: $(x,y)R(a,b)\iff$ сред координатите на наредената четворка (x,y,a,b) има четен брой нечетни числа.

- а) Докажете, че R е релация на еквивалентност.
- б) Опишете класовете на еквивалентност на R. Какъв е броят им?

Решение:

a)

Рефлексивност: За всяка двойка $(x,y) \in (\mathbb{N} \times \mathbb{N})^2$ е изпълнено, че (x,y)R(x,y), защото в координатите на наредената четворка (x,y,x,y) всяко число се срещя 2 пъти и при к броя четни числа в (x,y) (к е между 0 и 2, разбира се), броят на четните числа в (x,y,x,y) ще бъде 2k, което е четно.

Симетричност: След като (x,y)R(a,b), то в (x,y,a,b) има четен брой нечетни числа. Тогава и в (a,b,x,y) има четен брой нечетни числа (числата са същите).

Транзитивност: Нека $(x,y), (a,b), (c,d) \in (\mathbb{N} \times \mathbb{N})^2$ и (x,y)R(a,b) и (a,b)R(c,d). Следователно в двете наредени четворки - (x,y,a,b) и (a,b,c,d) има четен брой нечетни числа. Нека броят им е съответно 2*k и 2*r. От тук следва, че броят на четните числа в (x,y,a,b,a,b,c,d) е 2*(k+r). Нека в (a,b) броят на нечетни числа е t (t е между 0 и 2). Тогава в (x,y,c,d) броят на нечетните числа е 2*(k+r)-2*t=2*(k+r-t), което е четно число. Следователно (x,y)R(c,d).

С което доказахме, че R е релация на еквивалентност. б)

R има два класа на еквиваленстност:

$$[(0,0)] = \{(x,y) \in (\mathbb{N} \times \mathbb{N})^2 \mid x \text{ и у са от еднаква четност }\}$$

 $[(0,1)] = \{(x,y) \in (\mathbb{N} \times \mathbb{N})^2 \mid x \text{ и у са от различна четност}\}$

Задача 3

Нека $I=\{0,1,2,\ldots,97,98\}$ и нека $R\subseteq I\times I$ е дефинирана по следния начин:

$$xRy \iff (x-y \ge 0) \land (\exists k \in \mathbb{Z} : y-x = 5k)$$

- а) Докажете, че R е релация на частична наредба. Вярно ли е, че R е линейна?
- б) Намерете максималните и минималните елементи на R.

Решение:

a)

Рефлексивност: За всяко число $x \in I$ е изпълнено, че xRx, защото: $x-x>=0 \land x-x=5*0$

Антисиметричност: След като $x \neq y$ и xRy, то x-y>0. Но тогава y-x<0. Следователно $y\not Rx$.

Транзитивност: След като xRy и yRz от тук следва, че $x-y\geq 0$ и $y-z\geq 0$. Събирайки двете, получаваме, че $x-z\geq 0$. Знаем още, че y-x=5t и z-y=5r. Събираме двете равенства и получаваме y-x+z-y=5t+5r. Но това е еквивалентно на z-x=5*(t+r), а 5*(t+r) се дели на 5.

Следователно xRz. От тук следва, че R е релация на частична наредба. R не е линейна, понеже R не е силно антисиметрична (3R4 и 4R3)

6) Елементът a е минимален елемент по отношение на R, ако не съществува друг елемент b, за който bRa. Това са елементите 98,97,96,95 и 94. Аналогично a е максимален по отношение на R, ако не съществува друг елемент b, за който aRb. Това са елементите 0,1,2,3,4.

Задача 4

Нека $R, P \subseteq S \times S$. Докажете или опровергайте, че:

- а) Ако R и P са релации на еквивалентност, то $R\cap P$ е релация на еквивалентност.
- б) Ако R и P са релации на еквивалентност, то $R \setminus P$ е релация на еквивалентност.
- в) Ако R и P са релации на частична наредба, то $R \cup P$ е релация на частична наредба.
- г) Ако R е релация на частична наредба, то $R \cup R^{-1}$ е релация на еквивалентност.
- е) Ако R е релация на частична наредба, то $R \cap R^{-1}$ е релация на еквивалентност. Ако е вярно, намерете броя класове на еквивалентност.

$$R^{-1} = \{(x, y) | (y, x) \in R\}.$$

Решение:

а) $R \cap P$ е релация на еквивалентност.

Рефлексивност: Щом R и S са релации на еквивалентност, то $(\forall x \in S)(xRx \land xPx)$. От тук следва и че $(\forall x \in S)(x(R \cap P)x)$.

Симетричност: Нека $x(R \cap P)y$. Но тогава xRy и xPy. Но R и S са релации на еквивалентност, от което следва, че yRx и yPx. Но от тук веднага следва и че $y(R \cap P)x$.

Транзитивност: Нека $x(R \cap P)y$ и $y(R \cap P)z$. Но от тук следва, че xRy, yRz, xPy и yPz. Но R и P са релации на еквивалентност, от което следва и че xRz и xPz. Но тогава и $x(R \cap P)z$.

- б) $R \setminus P$ не винаги е релация на еквивалентност. Нека $|S| \ge 1$. Щом R и S са релации на еквивалентност, то $(\forall x \in S)(xRx \wedge xPx)$. Но тогава $(\forall x \in S) \neg (x(R \setminus P)x)$. Т.е $R \setminus P$ не е рефлексивна. От където следва, че не е релация на еквивалентност.
- в) $R \cup P$ не винаги е релация на частична наредба. Ако за два произволни елемента x, y от S, е изпълнено, че xRy и yPx, то $x(R \cup P)y$ и $y(R \cup P)x$. Но тогава $R \cup P$ не е антисиметрична. Следователно е възможно $R \cup P$ да не е релация на частична наредба

- г) Ще докажем, че твърдението не е вярно с контрапример. Нека $S=\{1,2,3\}$ и нека $R=\{(1,1),(2,2),(3,3),(1,2),(3,2)\}$. R е релация на частична наредба, понеже е рефлексивна, антисиметрична и транзитивна. Тогава $R^{-1}=\{(1,1),(2,2),(3,3),(2,1),(2,3)\}$. Да разгледаме $R\cup R^{-1}=\{(1,1),(2,2),(3,3),(1,2),(2,1),(3,2),(2,3)\}$. $R\cup R^{-1}$ не е релация на еквивалентност, защото не е транзитивина 1R2 и 2R3, но 1R3
- г) Твърдението е вярно, защото $R \cap R^{-1} = \{(x,x)|x \in S\}$. Релацията е рефлексивна, симетрична и транзитивна. От тук следва, че подмножествата на S с точно 1 елемент са класовете на еквивалентност на $R \cap R^{-1}$. Броят им е |S|.