IEEE POWER ENGINEERING SOCIETY

Power System Analysis, Computing and Economics Committee

Chair

MARTIN L. BAUGHMAN Professor Emeritus The University of Texas at Austin 5703 Painted Valley Drive Austin, TX 78759

Vox: 512-345-8255 Fax: 512-345-9880 baughman@mail.utexas.edu Vice Chair CHEN-CHING LIU

Seattle, WA 98195

Dept. of Electrical Eng. University of Washington Box 352500

Vox: 206-543-2198 Fax: 206-543-3842 liu@ee.washington.edu Secretary

ROGER C. DUGAN Sr. Consultant Electrotek Concepts, Inc. 408 N Cedar Bluff Rd Knoxville, TN 37923 Vox: 865-470-9222

Fax: 865-470-9223 r.dugan@ieee.org

Subcommittee Chairs

Computer & Analytical Methods EDWIN LIU, Chair Nexant, Inc. 101, 2nd street, 11F San Francisco CA 94105 Vox: 415-369-1088

Vox: 415-369-1088 Fax: 415-369-0894 exliu@nexant.com

Distribution Systems Analysis SANDOVAL CARNEIRO, JR, Chair Dept. of Electrical Engineering Federal Univ. of Rio de Janeiro Rio de Janeiro, RJ, Brazil Vox: 55-21-25628025 Fax: 55-21-25628628 sandoval@coep.ufrj.br

Intelligent System Applications DAGMAR NIEBUR, Chair Department of ECE Drexel University 3141 Chestnut Street Philadelphia, PA 19104 Vox: (215) 895 6749 Fax: (215) 895 1695 niebur@cbis.ece.drexel.edu

Reliability, Risk & Probability Applications JAMES D. MCCALLEY, Chair Iowa State University Room 2210 Coover Hall Ames, Iowa 50011 Vox: 515-294-4844 Fax: 515-294-4263 jdm@iastate.edu

Systems Economics ROSS BALDICK, Chair ECE Dept., ENS 502 The University of Texas at Austin Austin, TX 78712 Vox: 512-471-5879

Vox: 512-471-5879 Fax: 512-471-5532 baldick@ece.utexas.edu

Past Chair JOANN V. STARON Nexant Inc/ PCA 1921 S. Alma School Road Suite 207

Mesa, AZ 85210 Vox: 480-345-7600 Fax: 480-345-7601 joann.staron@pca-corp.com

Distribution System Analysis Subcommittee

IEEE 4 Node Test Feeder

IEEE 4 Node Test Feeder

The system to be use in testing transformer models is shown in Figure 1:

Figure 1 – IEEE 4 Node Test Feeder

Both the primary line (Node1-Node 2) and the secondary line (Node 3-node4) will be constructed using the pole configuration shown in Figure 2.

Figure 2 – Pole Configuration

Phase Conductor: 336,400 26/7

GMR = 0.0244 ft., Resistance = 0.306Ω /mile, Diameter = 0.721 inch

Neutral Conductor: 4/0 6/1 ACSR

GMR = 0.00814 ft., Resistance = 0.592Ω /mile, Diameter = 0.563 inch

The source is a 12.47 kV line-to-line infinite bus.

Three-Phase Transformer Data:

Connection	kVA	kVLL-	kVLL-low	R -	Χ -
		high		%	%
Step-Down	6,000	12.47	4.16	1.0	6.0
Step-Up	6,000	12.47	24.9	1.0	6.0

Open Wye – Open Delta: (Two Single Phase Transformers Each Rated)

Connection	kVA	kV-high	kV-low	R -	X -
				%	%
Step-Down	2000	7.2	4.16	1.0	6.0
Step-Up	2000	7.2	24.9	1.0	6.0

Closed Connections Load Data:

	Balanced	Unbalanced
Phase-1		
kW	1800	1275
Power Factor	0.9 lag	0.85 lag
Phase-2		
kW	1800	1800
Power Factor	0.9 lag	0.9 lag
Phase-3		
kW	1800	2375
Power Factor	0.9 lag	0.95 lag

Open Connection Load Data:

	Balanced	Unbalanced
Phase-1		
kW	1200	850
Power Factor	0.9 lag	0.85 lag
Phase-2		
kW	1200	1200
Power Factor	0.9 lag	0.9 lag
Phase-3		
kW	1200	1583.33
Power Factor	0.9 lag	0.95 lag

Loads are connected in grounded wye for four wire line configurations and connected in closed delta for three wire line configurations.

Line Impedances

4-wire configuration:

Phase impedance matrix:

$$zy = \begin{pmatrix} 0.4576 + 1.078j & 0.1559 + 0.5017j & 0.1535 + 0.3849j \\ 0.1559 + 0.5017j & 0.4666 + 1.0482j & 0.158 + 0.4236j \\ 0.1535 + 0.3849j & 0.158 + 0.4236j & 0.4615 + 1.0651j \end{pmatrix} \qquad \Omega/\text{mile}$$

Sequence impedances:

$$zy_{pos} = 0.3061 + 0.627j \hspace{1cm} \Omega / \text{mile} \hspace{1cm}$$

$$zy_{zero} = 0.7735 + 1.9373j$$
 $\Omega/mile$

Three wire configuration:

Phase impedance matrix:

$$zd = \begin{pmatrix} 0.4013 + 1.4133j & 0.0953 + 0.8515j & 0.0953 + 0.7266j \\ 0.0953 + 0.8515j & 0.4013 + 1.4133j & 0.0953 + 0.7802j \\ 0.0953 + 0.7266j & 0.0953 + 0.7802j & 0.4013 + 1.4133j \end{pmatrix} \qquad \Omega/\text{mile}$$

Sequence impedances:

$$zd_{pos} = 0.306 + 0.6272j \qquad \quad \Omega \text{/mile}$$

$$zd_{zero} = 0.5919 + 2.9855j$$
 $\Omega/mile$

Standard Wye-Delta and Delta – Wye Connections

Wye-Delta Step Down

Wye – Delta Step Up

Delta – Wye Step Down

Delta - Wye Step Up

Open Wye-Delta Step Down

Open Wye-Delta Step Up

Solutions

Step-Down with Balanced Loading

Standard 30 degree connections are assumed for wye-delta and delta-wye banks

V1 = Vag for wye connections and Vab for delta connections

V2 = Vbg for wye connections and Vbc for delta connections

Connection	Gr Y - Gr Y	Gr Y -D	Y - D	D - Gr Y	D - D	Open Gr.Y-D
Node-2	7407/00	7440400	7440/ 00	10010/00 7	10000/00 7	0004/04
V1	7107/-0.3	7113/-0.3	7112/03	12340/29.7	12339/29.7	6984/0.4
V2	7140/-120.3	7132/-120.3	7133/-120.4		12349/-90.4	
V3	7121/119.6	7123/119.6	7124/119.6	12318/149.6	12321/149.6	7293/120.5
Node-3						
V1	2247.6/-3.7	3906/-3.5	3906/-3.4	2249/-33.7	3911/26.5	3701/-0.9
V2	2269/-123.5	3915/-123.6	3915/-123.6	2263/-153.4	3914/-93.6	4076/-126.5
V3	2256/116.4	3909/116.3	3909/116.3	2259/86.4	3905/146.4	3572/110.9
Node-4						
V1	1918/-9.1	3437/-7.8	3437/-7.8	1920/-39.1	3442/22.3	3384/-3.5
V2	2061/-128.3	3497/-129.3	3497/-129.3	2054/-158.3	3497/-99.4	3804.9/-130.2
V3	1981/110.9	3388/110.6	3388/110.6	1986/80.9	3384/140.7	3246/106.5
Current 1-2						
la	347.9/-34.9	334.8/-34.5	335.8/-34.7	335.0/-35.7	335.8/-34.7	380.9/-65.2
lb	323.7/-154.2	335.4/-154.9	335.9/-154.6	331.8/-154.0	335.8/-154.6	387.4/-125.2
lc	336.8/85.0	337.4/85.4	335.9/85.3		336.0/85.4	0
Current 3-4						
la	1042.8/-34.9	1006.6/-64.7	1006.6/-64.7	1041.9/-64.9	1006.7/-34.7	659.3/-65.2
lb	970.2/-154.2			973.7/175.9	1006.7/-154.	
lc	1009.6/85.0			1007.0/55.0	1007.2/85.4	
Node 2						0.0.0,00
Van			7116/03			
Vbn			7131/-120.3			
Vcn			7121/119.6			
VCII			7 12 1/119.0			
Vng			3.6/169.5			

Step-Down with Unbalanced Loading

Standard 30 degree connections are assumed for wye-delta and delta-wye banks

V1 = Vag for wye connections and Vab for delta connections

V2 = Vbg for wye connections and Vbc for delta connections

Connection	Gr Y - Gr Y	Gr Y -D	Y - D	D - Gr Y	D - D	Open Gr.Y-D
Node-2						
V1	7164/-0.1	7113/-0.2	7112/-0.2	12350/29.6	12341/29.8	6952/0.7
V2	7110/-120.2	7144/-120.4	7144/-120.4	12314/-90.4	12370/-90.5	7172/-122.0
V3	7082/119.3	7111/119.5	7112/119.5	12333/149.8	12302/149.5	7313/120.5
Node-3						
V1	2305/-2.3	3896/-2.8	3896/-2.8	2290/-32.4	3902/27.2	3632/0.1
V2	2255/-123.6	3972/-123.8	3972/-123.8	2261/-153.8	3972/-93.9	4121/-127.6
V3	2203/114.8	3875/115.7	3874/115.7	2214/85.2	3871/145.7	3450/108.9
Node-4						
V1	2175/-4.1	3425/-5.8	3425/-5.8	2157/-34.2	3431/24.3	3307/-1.5
V2	1930/-126.8	3646/-130.3	3646/-130.3	1936/-157.0	3647/-100.4	3907/-131.9
V3	1833/102.8	3298/108.6	3298/108.6	1849/73.4	3294/138.6	3073/103.1
Current 1-2						
la	230.1/-35.9	308.5/-41.5	309.8/-41.7	285.7/-27.6	361.7/-41.0	424.8/-73.8
lb	345.7/-152.6	314.6/-145.5	315.5/-145.2	402.7/-149.6	283.5/-153.0	440.3/-118.5
lc	455.1/84.7	389.0/85.9	387.2/85.9	349.1/74.4	366.5/93.2	0
Current 3-4						
la	689.7/-35.9	10083.8/-71.0	1083.8/-71.0	695.5/-66.0	1084/-41.0	735.2/-73.8
lb	1036/-152.6	849.9/177.0	849.9/177.0	1033/177.1	849.7/-153.0	569.9/176.3
lc	1364/84.7	1098.7/63.1	1098.7/63.1	1352/55.2	1099/93.2	762.0/61.5
Node 2						
Van			7116/-0.3			
Vbn			7142/-120.4			
Vcn			7109/119.6			
Vng			4.27/171.6			

Step-Up with Balanced Loading

Standard 30 degree connections are assumed for wye-delta and delta-wye banks

V1 = Vag for wye connections and Vab for delta connections

V2 = Vbg for wye connections and Vbc for delta connections

Connection	Gr Y - Gr Y	Gr Y -D	Y - D	D - Gr Y	D - D	Open Gr.Y-D
Node-2						
V1	7126/-0.3	7128/-0.3	7127/-0.3	12361/29.7	12361/29.7	7001/-0.3
V2	7145/-120.4	7145/-120.3	7145/-120.4	12372/-90.4	12372/-90.4	7183/-121.5
V3	7137/119.6	7137/119.6	7138/119.6	12348/149.6	12348/149.6	7281/120.5
Node-3						
V1	13675/-3.3	23746/56.7	23746/56.7	13697/26.7	23723/26.7	24603/54.1
V2	13715/-123.4	23722/-63.4	23722/-63.4	13710/-93.4	23746/-93.4	21938/-68.6
V3	13698/116.6	23698/176.7	23698/176.7	13681/146.6	23698/146.6	22433/178.7
Node-4						
V1	13631/-3.5	23680/56.6	23681/56.6	13653/26.6	23657/26.6	24558/54.0
V2	13682/-123.5	23663/-63.6	23664/-63.6	13678/-93.5	23688/-93.5	21900/-68.7
V3	13661/116.5	23625/176.5	23625/176.5	13644/146.5	23625/146.5	22380/178.6
Current 1-2						
la	293.0/-29.3	291.6/-29.1	292.4/-29.34	292.4/-29.3	292.4/-29.3	346.7/-61.3
lb	291.9/-149.3	291.9/-149.6	292.4/-149.3	292.4/-149.3	292.4/-149.3	349.8/-121.4
Ic	292.3/90.6	293.7/90.7	292.4/90.7	292.4/90.7	292.4/90.7	0
Current 3-4						
la	146.7/-29.3	146.4/0.7	146.7/07	146.5/0.7	146.4/-29.3	100.9/-0.9
lb	146.2/-149.3	146.4/-119.3	146.4/-119.3	146.2/-119.4	146.4/-149.3	101.2/-121.4
Ic	146.4/90.6	146.4/120.7	146.4/120.7	146.6/120.6	146.4/90.7	100.2/118.7
Node 2						
Van			7130/-0.3			
Vbn			7144/-120.3			
Vcn			7136/119.6			
Vng			3.10/174.9			

Step-Up with Unbalanced Loading

Standard 30 degree connections are assumed for wye-delta and delta-wye banks

V1 = Vag for wye connections and Vab for delta connections

V2 = Vbg for wye connections and Vbc for delta connections

Connection	Gr Y - Gr Y	Gr Y -D	Y - D	D - Gr Y	D - D	Open Gr.Y-D
Node-2						
V1	7161/-0.1	7121/-0.4	7120/-0.4	12364/29.8	12362/29.8	7001/0.01
V2	7120/-120.3	7147/-120.3	7147/-120.3	12391/-90.5	12392/-90.4	7207/-121.3
V3	7128/119.3	7150/119.5	7150/119.6	12333/149.6	12334/149.5	7264/120.5
Node-3						
V1	13839/-2.1	23703/57.2	23703/57.2	13792/27.7	23675/27.2	24762/55.0
V2	13663/-123.3	24040/-63.6	24040/-63.6	13733/-93.5	24060\-93.6	22756/-68.8
V3	13655/115.1	23576/176.1	23576/176.1	13641/145.4	23573/146.0	22455/177.6
Node-4						
V1	13815/-2.2	23637/57.1	23637/57.1	13768/27.7	23610/27.2	24716/54.9
V2	13614/-123.4	23995/-63.8	23995/-63.8	13684/-93.6	24015/-93.7	22728/-68.9
V3	13615/114.9	23496/175.9	23495/175.9	13600/145.2	23492/145.9	22398/177.5
Current 1-2						
la	216.8/-34.0	332.6/-28.1	333.5/-28.2	309.3/-35.2	312.3/-34.8	368.9/-52.6
lb	293.3/-149.2	269.5/-155.6	269.6/-155.4	249.5/-146.5	248.1/-147.2	295.5/-119.5
lc	366.7/96.7	275.5/100.3	274.3/100.2	319.3/98.1	316.5/98.7	0
Current 3-4						
la	108.6/-34.0	156.4/-4.8	156.4/-4.8	109.0/-4.1	156.4/-34.8	107.3/-5.6
lb	147.0/-149.2	124.2/-117.2	124.2/117.2	146.2/-119.4	124.2/-147.2	85.4/-119.5
lc	183.6/96.7	158.4/128.7	158.4/128.7	183.8/127.0	158.5/98.7	106.7/127.4
Node 2						
Van			7123/-0.3			
Vbn			7146/-120.2			
Vcn			7149/119.5			
Vng			2.79/-173.9			

