

UNIVERSIDADE FEDERAL DO ABC

Materiais e suas Propriedades

Caroline A. Silva	11015615
Christian N. Souza	11094215
Laihane A. Batista	21048115
Lucas G. Silva	11072015
Murilo R. Cardoso	11009415

ANÁLISE DE DIFRAÇÃO DE RAIOS X:

Princípios e aplicações para investigação das estruturas dos materiais de engenharia

SUMÁRIO

1.	INTRODUÇÃO	. 2
2.	METODOLOGIA	. 3
3.	RESULTADOS E DISCUSSÕES	. 5
4.	CONCLUSÃO	10
5.	QUESTIONÁRIO	11
6.	REFERÊNCIAS BIBLIOGRÁFICAS	13

1. INTRODUÇÃO

A caracterização das propriedades de um material é de grande importância para garantir um melhor desempenho quando ele for aplicado: a seleção correta do material pode ser a diferença entre o sucesso ou não de um projeto. Algumas destas propriedades estão profundamente relacionadas com a estrutura cristalina (arranjo espacial) do material em questão.

Podemos determinar a estrutura de sólidos cristalinos (sólidos que possuem um arranjo periódico de átomos) através de diversas técnicas, uma das mais comuns é a Difração de Raios X. Raio X é um tipo de onda eletromagnética descoberta em 1895 por Wilhelm Conrad Roentgen, que possui alta frequência e comprimento de onda comparável à grandeza dos espaços interatômicos dos sólidos (nanômetros).

A técnica consiste em expor uma amostra de material sólido na forma de pó a raios X monocromáticos em diversos ângulos, e analisar as ondas dispersas após o contato dos raios com o material. Este fenômeno de dispersão é chamado de difração.

A difração só é possível quando os obstáculos da onda (os átomos) satisfazem duas condições: estão separados a uma distância fixa da mesma ordem de grandeza do comprimento de onda (espaço interatômico) e quando eles são capazes de dispersar a onda, ou seja, não a absorvem.

Através dos ângulos de pico de difração é possível obter dados para determinar o tamanho e a geometria da célula unitária¹, e a intensidade dos picos auxilia na determinação do arranjo dos átomos na célula unitária. Os picos ocorrem quando um conjunto de planos do cristal satisfaz a Lei de Bragg, que será elucidada no texto.

O objetivo deste estudo é analisar um difratograma e, a partir das características obtidas destes dados (como tipo de estrutura cúbica, parâmetro de rede e raio atômico) determinar o material que está sendo examinado.

¹Célula unitária: é a menor unidade tridimensional de um cristal. Representa suas características de simetria e se repete continuamente na estrutura cristalina.

2. METODOLOGIA

Em posse de uma planilha contendo dados de um difratograma de raios X, plotou-se um gráfico de Intensidade (contagem Geiger) por 20 e foram identificados os picos referentes aos ângulos de difração. Em seguida, normalizou-se a intensidade relativa pelo pico mais alto. O detector móvel acompanha o movimento da amostra rotacionando-se em ângulos de 20, assim, para definir o ângulo basta dividi-los por 2 para obter o ângulo real em que o raio X foi difratado pela amostra. Depois foi calculado o seno referente a cada ângulo encontrado.

Figura 1: Funcionamento do Difratômetro e Lei de Bragg

Conhecendo-se o comprimento de onda da fonte de radiação (no caso o Cobre com $\lambda=1,54184$ Å) utilizou-se a relação $n\lambda=2d_{hkl}sin\theta$ (Lei de Bragg) para determinar a distância interplanar referente à cada ângulo de difração, assumindo n=1, que não altera em nada os resultados. Em um experimento de difração, cada estrutura cristalina tem reflexões relativas a planos particulares. Podemos assim associar cada um dos ângulos identificados em nossa amostra a um plano específico de cada estrutura possível e assim, verificar se a relação dada por (4) é constante para todos os ângulos. Em caso afirmativo, podemos identificar a estrutura cristalina do metal em questão. Temos que:

$$\lambda = 2d_{hkl}\sin\theta \tag{1}$$

$$d_{hkl} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}}$$
 (2)

Isolando d_{hkl} na equação (1) e igualando com a equação (2), teremos:

$$\frac{\lambda}{2\sin\theta} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}} \tag{3}$$

Reescrevendo-a, elevando ambos os lados ao quadrado:

$$\frac{\lambda^2}{4a_0^2} = \frac{\sin^2 \theta}{h^2 + k^2 + l^2} \tag{4}$$

Define-se $S=h^2+k^2+l^2$, assim, temos que a relação $\sin^2\theta/S$ sempre será constante para os planos da estrutura, portanto, é necessário calcular essa relação para cada tipo de estrutura e verificar para qual ela se mantém constante identificando qual estrutura cúbica (CS, CCC ou CFC) é a do material sendo analisado.

Após identificar qual estrutura o material pertence, podemos determinar o parâmetro de rede a_0 pela equação (2).

Tendo o parâmetro de rede para cada pico, calcula-se a média e com isso, podemos utilizá-la para calcular o raio atômico da amostra conhecendo-se a relação raio-aresta da estrutura. Para cada tipo de estrutura podemos considerar os átomos ao longo da própria aresta, através da diagonal da face e da diagonal do cubo. Temos as seguintes relações, obtidas pela aplicação do teorema de pitágoras:

Figura 2: Representação das estruturas cúbicas

- Cúbica Simples (CS): $a_0 = 2R$ (5)
- Cúbica de Corpo Centrado (CCC): $a_0 = \frac{4R}{\sqrt{3}}$ (6)
- Cúbica de Face Centrada (CFC): $a_0 = 2R\sqrt{2}$ (7)

Sabendo a estrutura do material, basta utilizar a relação correta para calcular o raio atômico. Comparando com a literatura, identificamos qual o material em questão.

3. RESULTADOS E DISCUSSÕES

Foi fornecida uma série de dados correspondentes ao difratograma de raios x para um metal desconhecido, mas de estrutura cúbica. Plotando os dados de intensidade versus o ângulo do difratômetro, onde é possível observar os picos relativos aos planos onde ocorre de fato a difração.

Gráfico 1: Difratograma de raios X de metal desconhecido

Da análise do difratograma, podemos extrair dez ângulos relativos aos planos onde ocorre difração. Na tabela a seguir, apresentamos esses ângulos e a intensidade correspondente e em porcentagem, relativa ao pico mais alto. Como os dados foram obtidos com radiação de comprimento de onda $\lambda = 1,54184$ Å, temos:

Tabela 1: Distância interplanar para cada pico

20	Intensidade	relativa	θ	sin θ	d_{hkl}
38,1	3572	100	19,05	0,32693	0,236194
44,3	1760	49,27211646	22,15	0,377033	0,20447
64,5	1054	29,50727844	32,25	0,533615	0,144471
77,5	1059	29,64725644	38,75	0,625923	0,123165
81,6	299	8,370660694	40,8	0,653421	0,117982
98	134	3,751399776	49	0,75471	0,102148
110,6	383	10,72228443	55,3	0,822144	0,093769
115,1	380	10,63829787	57,55	0,84386	0,091356
135,1	306	8,566629339	67,55	0,924213	0,083414
157,2	343	9,602463606	78,6	0,980271	0,078644

A partir disso podemos realizar alguns cálculos para determinar quais são efetivamente esses planos de difração e então identificar a estrutura da célula. Primeiramente sabemos que para estruturas cúbicas, a distância interplanar é dada pela equação (2).

A tabela a seguir exibe o cômputo da razão $\sin^2\theta/S$ para os valores de S relativos às reflexões de cada estrutura (cúbica simples, cúbica de corpo centrado e cúbica de face centrada). Como é possível observar, o resultado só é constante para o caso de uma estrutura cúbica de face centrada.

Tabela 2: Valores de reflexões e sua análise para cada estrutura

θ	$\sin^2(\theta)$	S_{CS}	$\sin^2(\theta)/S_{CS}$	S_{CCC}	$\sin^2(\theta)/S_{CCC}$	S_{CFC}	$\sin^2(\theta)/S_{CFC}$
19,05	0,1065	1	0,1065	2	0,0533	3	0,0355
22,15	0,1422	2	0,0711	4	0,0355	4	0,0355
32,25	0,2847	3	0,0949	6	0,0475	8	0,0356
38,75	0,3918	4	0,0979	8	0,049	11	0,0356
40,8	0,427	5	0,0854	10	0,0427	12	0,0356
49	0,5696	6	0,0949	12	0,0475	16	0,0356
55,3	0,6759	7	0,0966	14	0,0483	19	0,0356
57,55	0,7121	8	0,089	16	0,0445	20	0,0356
67,55	0,8542	9	0,0949	18	0,0475		
78,6	0,9609	10	0,0961	20	0,048		

Identificamos também os planos relativos a cada pico e através da relação (2) podemos prosseguir e calcular o parâmetro de rede da célula unitária.

Tabela 3: Valores do parâmetro de rede

θ	(hkl)	$\sqrt{h^2 + k^2 + l^2}$	d_{hkl}	a (nm)
19,05	(111)	1,73	0,2362	0,4091
22,15	(200)	2	0,2045	0,4089
32,25	(220)	2,83	0,1445	0,4086
38,75	(311)	3,32	0,1232	0,4085
40,8	(222)	3,46	0,1180	0,4087
49	(400)	4	0,1021	0,4086
55,3	(331)	4,36	0,0938	0,4087
57,55	(420)	4,47	0,0914	0,4086
			Média:	0,4087
			Desvio:	0,0002

Por fim, em uma célula unitária CFC, podemos utilizar a relação entre o parâmetro de rede e o raio dada pela equação (7) para obter o valor do raio atômico do material. Fazendo isso para todos os dados, temos:

Tabela 4: Valores do Raio atômico

θ	(hkl)	$\sqrt{h^2 + k^2 + l^2}$	a (nm)	R (nm)
19,05	(111)	1,73	0,40910	0,14464
22,15	(200)	2,00	0,40894	0,14458
32,25	(220)	2,83	0,40863	0,14447
38,75	(311)	3,32	0,40849	0,14442
40,8	(222)	3,46	0,40870	0,14450
49	(400)	4,00	0,40859	0,14446
55,3	(331)	4,36	0,40873	0,14451
57,55	(420)	4,47	0,40856	0,14445
			Media:	0,14450
			Desvio:	7,00E-05

Utilizando o valor médio obtido para o raio atômico (0,14450 nm) e o valor médio para o parâmetro de rede (0,4087 nm), podemos procurar na literatura algum material que possua este valor, chegando à conclusão que é a Prata ².

Após a identificação do material e de sua estrutura, foi possível associar cada pico do difratograma com os planos que determinam os ângulos de reflexão dos raios X como mostra a figura a seguir:

8

² CALLISTER, Jr. William D. Ciência e Engenharia de Materiais: Uma Introdução. 5a ed. LTC, 2002.

Gráfico 2: Difratograma de raios X da prata com a identificação dos planos de reflexão.

Figura 3: Representação do plano (111) na estrutura cristalina relativa ao pico de maior difração.

Figura 4: Representação da estrutura cristalina CFC e dos dois planos referentes aos dois picos de difração de maior intensidade.

4. CONCLUSÃO

Através da descoberta de Wilhelm Conrad, foi determinado como a estrutura cristalina de um metal, a princípio desconhecido, está organizada. Foi previsto em teoria que, se os átomos de um material estão organizados, a radiação resultante das interferências construtivas dos Raios X gerariam um padrão. Isto implicaria que, em posse do padrão gerado, teríamos a organização da estrutura.

Foi feito uma busca na literatura, a fim de se descobrir qual o material analisado, chegando à conclusão que é a Prata, pois seu raio atômico é o mesmo da amostra empregue. Utilizando dados obtidos através da técnica de difração de Raios X, foi possível atestar que a Prata detém estrutura cristalina CFC (Cúbica de Face Centrada), pois esta estrutura foi a única que possui o fator $\sin^2(\theta)/S$ constante. Deu-se também, os planos referentes a tais difrações.

A determinação das estruturas atômicas é importante pois, de acordo com o arranjo da célula unitária, o material pode apresentar diferentes propriedades e usos. Podemos utilizar como exemplo: materiais que possuem a estrutura Cúbica Simples não cristalizam, devido ao seu baixo fator de empacotamento.

5. QUESTIONÁRIO

a) Como são gerados os raios X?

R: Essencialmente, um filamento é aquecido através da passagem de uma corrente provocando uma emissão de elétrons num tubo a vácuo. Entre esse filamento (cátodo) e o ânodo existe uma diferença de potencial que aceleram os elétrons em direção ao ânodo, esses elétrons são atraídos pelos prótons do ânodo, sofrem freamento e desvio de sua trajetória, ao se desviarem ocorre perda de energia, a emissão de radiação X e ionização dos átomos do ânodo.

b) Qual é o nível de tensão usualmente utilizado nas medidas?
 R: De 20 a 35 kV.

c) Quais são os principais tipos de fonte utilizados em análise por difração de raios X?

R: Tungstênio, Cobre, Ferro, Molibdênio, Cromo.

d) Quais são os comprimentos de onda típicos citadas no item c)?
 R: Tungstênio = 0,22 Å; Cobre = 1,54184 Å; Ferro = 1,94 Å; Molibdênio = 0,72 Å;
 Cromo = 2,29 Å.

e) Como é feita a preparação de amostras para as medidas de difração de raios X?

R: A preparação da amostra difere de um equipamento para outro. Em alguns casos um capilar de vidro é preenchido pela amostra na forma de pó, ou o pó pode ser misturado com uma cola e ser moldado na forma de um cilindro, onde o pó é prensado manualmente e sua superfície alisada com uma placa de metal. As amostras preparadas são colocadas no porta-amostra.

A forma de pó visa garantir que pelo menos algum cristal (cada partícula de pó é um pequeno cristal) esteja orientado de maneira que ocorra a difração.

- f) Quais são os principais componentes de um difratômetro de raios X?
 R: Fonte de raio X, detector móvel, eixo ao redor do qual giram a amostra e o detector.
 - g) Descreva o funcionamento de um difratômetro de raios X.

R: O difratômetro é constituído por um tubo, a fonte de raio X, os feixes gerados incidem na amostra que sofre rotação de um ângulo θ , por um eixo. O detector móvel acompanha o movimento da amostra rotacionando num ângulo 2θ , o feixe de raio X é difratado pela amostra e incide no detector que coleta os dados.

Figura 5: Esquema de um difratômetro (OLIVEIRA, 2005, Adaptado).

6. REFERÊNCIAS BIBLIOGRÁFICAS

CALLISTER, Jr. William D. **Ciência e Engenharia de Materiais:** Uma Introdução. 5a ed. Rio de Janeiro: LTC, 2002.

Difracção de raios-X. Disponível em: http://www.fis.uc.pt/data/20092010/apontamentos/apnt_343_4.pdf. Acesso em 15 jun. 2017.

DUTROW, Barbara L.; CLARK, Christine M. **X-ray Powder Diffraction (XRD).**Disponível

http://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html

Acesso em 15 jun. 2017.

MORA, Nora Dias. **Apostila de Materiais Elétricos.** Disponível em: http://www.foz.unioeste.br/~lamat/downmateriais/materiaiscap5.pdf>. Acesso em 15 jun. 2017.

OLIVEIRA, José Roberto Brandão de; RIBAS, Roberto V. **Raios X - II:** Lei de Moseley, Análise de cristais por raios X, Difração de elétrons. Disponível em: https://portal.if.usp.br/labdid/sites/portal.if.usp.br.labdid/files/Raios-X2%20%281%29. pdf>. Acesso em 15 jun. 2017.

OLIVEIRA, Luciano Santa Rita. **Física dos Raios X.** Disponível em: http://www.tecnologiaradiologica.com/materia_fisica_rx.htm. Acesso em 16 jun. 2017.

OLIVEIRA, Terezinha Ferreira. **Análise das incertezas da quantificação de fase pelo método de Rietveld em análise de pó por difração de raios X.** 2005. Disponível em: https://www.maxwell.vrac.puc-rio.br/6377/6377_3.PDF>. Acesso em 15 jun. 2017.

Produção de raios X. Disponível em: https://www.portaleducacao.com.br/conteudo/artigos/medicina/producao-de-raios-x/35828>. Acesso em 15 jun. 2017.