

Psychotherapieforschung

MSc Klinische Psychologie und Psychotherapie SoSe 2025

Prof. Dr. Dirk Ostwald

(5) Pretest-Posttest-Designs

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Repeated-Measures-Varianzanalyse

Linear-Mixed-Model-Analyse

Selbstkontrollfragen

Parallelgruppen-Pretest-Posttest Design

Parallelgruppen-Pretest-Posttest Design

- Einfachste Form eines Longitudinaldesigns mit zwei Gruppen
- Pretest oft als T0 Messung, Posttest oft als T1 Messung bezeichnet
- (Einfaktorielle) "Varianzanalysen" im Folgenden als generalisierte Bezeichnung

Anwendungsbeispiel

- ullet y_{i0} und y_{i1} als Bezeichner für Pre- und Posttestdaten von Proband:in i
- ullet n_1 und n_2 als Bezeichner für Anzahl der Proband:innen in Kontroll- bzw Treatmentgruppe
- $n = n_1 + n_2$ Proband:innen insgesamt

ID	Gruppe	Pre	Post
1	Kontrolle	39	24
2	Kontrolle	30	29
3	Kontrolle	33	31
4	Kontrolle	34	33
5	Kontrolle	32	29
6	Kontrolle	32	27
7	Kontrolle	38	28
8	Kontrolle	39	28
9	Kontrolle	34	26
10	Kontrolle	38	31
11	Treatment	32	24
12	Treatment	37	26
13	Treatment	33	26
14	Treatment	32	29
15	Treatment	38	29
16	Treatment	31	25
17	Treatment	39	23
18	Treatment	34	27
19	Treatment	36	25
20	Treatment	38	24

Anwendungsbeispiel

- ullet y_{i0} und y_{i1} als Bezeichner für Pre- und Posttestdaten von Proband:in i
- ullet n_1 und n_2 als Bezeichner für Anzahl der Proband:innen in Kontroll- bzw Treatmentgruppe
- $n = n_1 + n_2$ Proband:innen insgesamt

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Repeated-Measures Varianzanalyse

Linear-Mixed-Model Analyse

Selbstkontrollfragen

Posttest-Varianzanalyse

Posttest-Varianzanalyse

- Nichtberücksichtigung der Pretestdaten
- Einfaktorielle Varianzanalyse/Zweistichproben-T-Test-Analyse im Rahmen des ALMs
- Posttestdaten können Mittelwerte über mehrere Posttestmessungen sein
- Vgl. Frison and Pocock (1992) (POST), Tango (2017), Kapitel 2.1
- Generell nicht empfohlen, Betrachtung hier nur zur Vergleichszwecken

Posttest-Varianzanalyse

Strukturelle Modellform

Für $i=1,\dots,n$ Proband:innen seien y_{i1} die Posttest-Daten. Dann hat das Posttest-Varianzanalysemodell die Strukturelle Modellform

$$y_{i1} = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{1}$$

mit

- $x_i := 0$ für Proband:in i in Kontrollgruppe
- $x_i := 1$ für Proband:in i in Treatmentgruppe
- $^{\bullet}~\varepsilon_{i}\sim N(0,\sigma^{2})$

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppen-Posttestdaten
- β_1 Ewartungswertunterschied zwischen Kontrollgruppen und Treatmentgruppen-Posttestdaten
- σ^2 Posttestdatenvariabilität

Designmatrixmodellform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{cases} y_{11} \\ y_{21} \\ y_{31} \\ y_{41} \\ y_{51} \\ y_{61} \\ y_{71} \\ y_{81} \\ y_{91} \\ y_{112} \\ y_{112} \\ y_{142} \\ y_{142} \\ y_{152} \\ y_{162} \\ y_{172} \\ y_{172} \\ y_{182} \\ y_{192} \\ y_{192} \\ y_{192} \\ y_{11} \end{cases} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \\ \varepsilon_7 \\ \varepsilon_7 \\ \varepsilon_8 \\ \varepsilon_9 \\ \varepsilon_{10} \\ \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{14} \\ \varepsilon_{15} \\ \varepsilon_{16} \\ \varepsilon_{15} \\ \varepsilon_{16} \\ \varepsilon_{17} \\ \varepsilon_{18} \\ \varepsilon_{19} \\ \varepsilon_{19} \end{cases}$$

$$(2)$$

mit

$$\varepsilon_i \sim N(0, \sigma^2)$$
 u.i.v. für $i = 1, ..., n \Leftrightarrow \varepsilon \sim N(0_{20}, \sigma^2 I_{20})$ (3)

Posttest-Varianzanalyse

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/ld-pre-post.csv", row.names = 1)  # Dateneinlesen

M = lm(Post - Gruppe, data = D)  # Modellformulierung und -schätzung

round(summary(M)$coefficients,2)  # Parameterschätzer
```

```
| Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.6 0.75 38.37 0.00
| GruppeTreatment -2.8 1.05 -2.66 0.02
```

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -3.4 (\pm 2.23)

Posttest-Varianzanalyse

Visualisierung für das Andwendungsbeispiel

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Repeated-Measures Varianzanalyse

Linear-Mixed-Model Analyse

Selbstkontrollfragen

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

- Kovarianzanalyse der Posttestdaten mit Pretestdaten als Kovariate im Rahmen des ALM
- Vgl. Crager (1987), Frison and Pocock (1992), Chen (2006), Senn (2006)

Strukturelle Modellform

Für i=1,...,n Proband:innen seien y_{i0} und y_{i1} die Pretest- bzw. Posttest Daten. Dann hat das Kovarianzanaly-semodell mit Pretest-Kovariaten die Strukturelle Modellform

$$y_{i1} = \beta_0 + \beta_1 x_i + \beta_2 y_{i0} + \varepsilon_i \tag{4}$$

mit

- $x_i := 0$ für Proband:in i in Kontrollgruppe
- ullet $x_i := 1$ für Proband:in i in Treatmentgruppe
- $\varepsilon_i \sim N(0, \sigma^2)$

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppe
- β_1 Ewartungswertunterschied zwischen Kontrollgruppe und Treatmentgruppe
- β_2 Steigungsparameter der Pretest-Kovariaten
- σ^2 Variabilität der Differenzen von Posttest- und Pretest-Daten

Designmatrixmodellform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{cases} y_{11} \\ y_{21} \\ y_{31} \\ y_{41} \\ y_{51} \\ y_{61} \\ y_{71} \\ y_{81} \\ y_{91} \\ y_{11} \\ y_{121} \\ y_{131} \\ y_{141} \\ y_{151} \\$$

mit

$$\varepsilon_i \sim N(0,\sigma^2)$$
 u.i.v. für $i=1,...,n \Leftrightarrow \varepsilon \sim N(0_{20},\sigma^2I_{20})$ (6)

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/ld-pre-post.csv", row.names = 1)  # Dateneinlesen

M = lm(Post - Gruppe + Pre, data = D)  # Modellformulierung und -schätzung
round(summary(M)$coefficients,2)  # Parameterschätzer
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.60 6.24 5.54 0.00
GruppeTreatment -2.78 1.06 -2.64 0.02
Pre -0.17 0.18 -0.97 0.35
```

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -3.95 (\pm 1.54)

 $\bullet \ \, \text{Kontrollgruppe,} \quad \bullet \ \, \text{Treatmentgruppe,} \quad -\text{,} \quad -\hat{y}=X\hat{\beta}\text{,} \\$

Adjustierte Gruppenmittelwerte

Maxwell, Delaney, and Kelley (2018), Kapitel 9, Goodnight and Harvey (1978), Searle, Speed, and Milliken (1980), Lenth (2016)

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Repeated-Measures Varianzanalyse

Linear-Mixed-Model Analyse

Selbstkontrollfragen

Change-Score-Varianzanalyse

Change-Score-Varianzanalyse

• Einfaktorielle Varianzanalyse/Zweistichproben-T-Test-Analyse der Post-Pre-Differenzen

Change-Score-Varianzanalyse

Strukturelle Modellform

Für i=1,...,n Proband:innen seien y_{i0} und y_{i1} die Pretest- bzw. Posttest Daten. Weiterhin seien

$$y_{i1} - y_{i0}$$
 (7)

die Differenzem von Posttest- und Pretest-Daten. Dann hat das Change-Score-Analyse-Modell die Strukturelle Modellform

$$y_{i1} - y_{i0} = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{8}$$

mit

- $x_i := 0$ für Proband:in i in Kontrollgruppe
- ullet $x_i := 1$ für Proband:in i in Treatmentgruppe
- $\varepsilon_i \sim N(0, \sigma^2)$

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppe
- β_1 Ewartungswertunterschied zwischen Kontrollgruppe und Treatmentgruppe
- σ^2 Variabilität der Differenzen von Posttest- und Pretest-Daten

Designmatrixmodellform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{pmatrix} y_{11} - y_{10} \\ y_{21} - y_{20} \\ y_{31} - y_{30} \\ y_{41} - y_{40} \\ y_{51} - y_{50} \\ y_{61} - y_{60} \\ y_{71} - y_{70} \\ y_{81} - y_{80} \\ y_{91} - y_{90} \\ y_{111} - y_{110} \\ y_{121} - y_{120} \\ y_{131} - y_{130} \\ y_{141} - y_{160} \\ y_{111} - y_{170} \\ y_{111}$$

Change-Score-Varianzanalyse

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/ld-pre-post.csv", row.names = 1)  # Dateneinlesen

D$D = D$Post - D$Pre  # Change-Score Berechnung

M = lm(D ~ Gruppe, data = D)  # Modellformulierung und -schätzung

round(summary(M)$coefficients,2)  # Parameterschätzer
```

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -4.00 (\pm 1.64)

Lord Paradox

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Repeated-Measures Varianzanalyse

Linear-Mixed-Model Analyse

Selbstkontrollfragen

Referenzen |

- Chen, Xun. 2006. "The Adjustment of Random Baseline Measurements in Treatment Effect Estimation." Journal of Statistical Planning and Inference 136 (12): 4161–75. https://doi.org/10.1016/j.jspi.2005.08.046.
- Crager, Michael R. 1987. "Analysis of Covariance in Parallel-Group Clinical Trials with Pretreatment Baselines." Biometrics 43 (4): 895. https://doi.org/10.2307/2531543.
- Frison, Lars, and Stuart J. Pocock. 1992. "Repeated Measures in Clinical Trials: Analysis Using Mean Summary Statistics and Its Implications for Design." Statistics in Medicine 11 (13): 1685–1704. https://doi.org/10.1002/ sim.4780111304.
- Goodnight, James, and Walter R Harvey. 1978. "Least Squares Means in the Fixed Effects General Linear Model SAS Technical Report." SAS Institute.
- Lenth, Russell V. 2016. "Least-Squares Means: The R Package Lsmeans." Journal of Statistical Software 69 (1). https://doi.org/10.18637/jss.v069.i01.
- Maxwell, Scott E., Harold D. Delaney, and Ken Kelley. 2018. Designing Experiments and Analyzing Data: A Model Comparison Perspective. Third edition. New York London: Routledge, Taylor & Francis Group.
- Searle, S R, F M Speed, and G A Milliken. 1980. "Population Marginal Means in the Linear Model: An Alternative to Least Squares Means." The American Statistician 34 (4): 216–22.
- Senn, Stephen. 2006. "Change from Baseline and Analysis of Covariance Revisited." Statistics in Medicine 25 (24): 4334–44. https://doi.org/10.1002/sim.2682.
- Tango, Toshiro. 2017. Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials. 0th ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781315152097.