Aspectos computacionales de la resolución numérica de ecuaciones diferenciales ordinarias: Parte II

Computación en ciencia e ingeniería: simulación numérica MÁSTER UNIVERSITARIO EN INGENIERÍA COMPUTACIONAL Y SISTEMAS INTELIGENTES,

Euskal Herriko Unibertsitatea / Universidad del Pais Vasco (UPV/EHU)

Introducción a la localización de eventos

Supongamos que queremos calcular la solución u(t) del problema

$$\frac{d}{dt}u = f(t, u), \quad u(t_0) = u_0, \tag{1}$$

y aplicamos un método de Runge-Kutta concreto, obteniendo

t	t_0	$t_1=t_0+h$	$t_2=t_0+2h$	$t_3=t_0+3h$	
u(t)	<i>u</i> ₀	u_1	<i>u</i> ₂	и3	• • •

donde para cada j, representamos como

$$u_{j+1} = RK(t_j, u_j, h; f)$$

la aplicación de un paso de longitud h de dicho método de Runge-Kutta para calcular la aproximación u_{j+1} de $u(t_{j+1})$ a partir de t_j y $u_j \approx u(t_j)$.

Supongamos para simplificar que (1) es de dimensión d=1. Por ejemplo, u puede ser la velocidad de una pelota que lanzamos verticalmente hacia arriba, y (1) la ecuación diferencial que modela la evolución de dicha velocidad. Supongamos que queremos determinar para qué valor de t deja la pelota de subir, para empezar a caer hacia abajo. Es decir, y queremos determinar para qué valor de t se satisface u(t)=0.

Supongamos por ejemplo que $u_0, u_1, u_2, u_3 > 0$ y que $u_4 < 0$.

Esperamos que, por continuidad de la solución, $u(t^*)=0$ para un valor de $t^*\in [t_3,t_4]$.

¿Cómo podemos localizar el valor concreto de $t^* \in [t_3, t_4]$ para el cual $u(t^*) = 0$?

Para ello, necesitamos disponer de una función $ilde{u}(t)$ tal que

$$ilde{u}(t) pprox u(t)$$
 para $t \in [t_3, t_4].$

Así, lo que haremos será localizar el valor concreto de $t^* \in [t_3,t_4]$ para el cual $\tilde{u}(t^*)=0$

Interpolación para valores de t arbitrarios

Supongamos, más generalmente, que para algún $j \in \{0,1,2,\ldots\}$, queremos obtener una función $\tilde{u}(t)$ tal que

$$ilde{u}(t) pprox u(t)$$
 para $t \in [t_j, t_{j+1}]$

Existen muchas opciones, entre ellas, aquí veremos las dos más sencillas:

• Interpolación lineal: Definir $\tilde{u}(t)$ como un polinomio lineal de t que cumpla las condiciones de interpolación

$$\tilde{u}(t_j)=u_j,\ \tilde{u}(t_{j+1})=u_{j+1}.$$

Dicho polinomio lineal es

$$\tilde{u}(t) = u_j + (u_{j+1} - u_j) \frac{t - t_j}{t_{j+1} - t_j}.$$

Esto da en general aproximaciones poco precisas.

• Interpolación cúbica de Hermite: Elegir $\tilde{u}(t) \approx u(t)$ como el polinomio cúbico

$$\tilde{u}(t) = a(t - t_j)^3 + b(t - t_j)^2 + c(t - t_j) + d$$

donde a, b, c, d se determinan imponiendo las condiciones

$$\tilde{u}(t_j) = u_j, \quad \tilde{u}'(t_j) = p_j,
\tilde{u}(t_{j+1}) = u_{j+1}, \quad \tilde{u}'(t_{j+1}) = p_{j+1}.$$

con $p_j = f(t_j, u_j)$ y $p_{j+1} = f(t_{j+1}, u_{j+1})$. Se puede ver que

$$d = u_j, \quad c = f(t_j, u_j),$$

$$b = \frac{-(2p_j + p_{j+1})h + 3(u_{j+1} - u_j)}{h^2},$$

$$a = \frac{(p_j + p_{j+1})h - 2(u_{j+1} - u_j)}{h^3},$$

donde $h = t_{j+1} - t_j$.

Localización de eventos

Más generalmente, nos puede interesar localizar cuando ocurre un evento en la evolución del sistema, por ejemplo, cuando un vehículo espacial llega a estar alineado con la tierra y la luna. En dicho ejemplo (considerado en uno de los ejercicios prácticos del Tema 2), las variables de estado son u=(x,y,v,w), donde (x,y) son las coordenadas del vehículo espacial. En tal caso, nos interesaría determinar para que valor de t ocurre que

$$x(t)\sin(t)-y(t)\cos(t)=0.$$

En el caso general en que u es un vector de estado con d componentes, un evento (como el considerado para el vehículo espacial) se puede traducir matemáticamente en determinar el valor de t tal que g(t,u(t))=0, para una cierta función g(t,u) de d+1 variables.

En el ejemplo del vehículo espacial, g(t, u) estaría definido como

$$g(t,(x,y,v,w)) = x\sin(t) - y\cos(t).$$

Para determinar el valor de t para el cual g(t, u(t)) = 0, determinaremos el menor j = 0, 1, 2, 3, ... tal que

$$\operatorname{signo}(g(t_j,u_j)) \neq \operatorname{signo}(g(t_{j+1},u_{j+1})).$$

Para determinar $t^* \in [t_j, t_{j+1}]$ tal que $g(t^*, u(t^*)) = 0$, nos conviene disponer de una función $\tilde{u}(t)$ tal que

$$\tilde{u}(t) \approx u(t)$$
 para $t \in [t_i, t_{i+1}]$.

Dicha función $\tilde{u}(t)$ se puede obtener por medio de la interpolación lineal, o mejor, por medio de la interpolación de Hermite.

Una vez se tiene $\tilde{u}(t)$, sólo faltaría determinar el valor de $t \in [t_j, t_{j+1}]$ que sea solución de la ecuación algebraica

$$g(t, \tilde{u}(t)) = 0.$$

Dicha ecuación se puede resolver, por ejemplo, por medio del método de la bisección, o por el método de Newton-Rapson, o por otro método de resolución de ecuaciones de una variable que tengamos disponible.

Precisión de la localización del evento asociado a g(t, u(t)) = 0

Una vez calculado t^* tal que $g(t^*, \tilde{u}(t^*)) = 0$, donde $\tilde{u}(t)$ es una aproximación de la solución u(t) obtenida por interpolación cúbica de Hermite para el intervalo $t \in [t_j, t_{j+1}]$, en general, se tendrá que $g(t^*, u(t^*)) \neq 0$, es decir, no se espera que el evento sea localizado en el tiempo de forma exacta.

La precisión de la localización del evento asociado a la ecuación g(t,u(t))=0 podrá ser estimada comprobando el tamaño de

$$|g(t^*, u(t^*))|.$$

Cuanto más pequeño sea (cuanto más cercano a 0 sea), mayor precisión.

Como en general $u(t^*)$ no se puede calcular de forma exacta, calcularemos $u^* \approx u(t^*)$ aplicando un paso de longitud $t^* - t_j$ del método de Runge-Kutta utilizado a partir de t_j y $u_j \approx u(t_j)$, es decir (utilizando la notación adoptada al principio de las transparencias de la segunda parte del Tema 3),

$$u^* = RK(t_j, u_j, t^* - t_j; f) \approx u(t^*).$$

Cuanto más cercano a 0 esté

$$|g(t^*,y^*)|,$$

mayor será la precisión de la localización temporal del evento.

Alternativa sencilla basada en interpolación lineal

En el caso que se haga uso de la interpolación lineal, un método alternativo sencillo es el siguiente: Consiste en aproximar

$$G(t) := g(t, u(t)),$$

por medio del polinomio interpolador lineal

$$G(t_j) + (G(t_{j+1}) - G(t_j)) \frac{t - t_j}{t_{j+1} - t_j}.$$

Puesto que $u(t_j) \approx u_j$ y $u(t_{j+1}) \approx u_{j+1}$, tenemos que

$$G(t_j) \approx g(t_j, u_j), \quad G(t_{j+1}) \approx g(t_{j+1}, u_{j+1}),$$

Así, consideraremos la aproximación $\tilde{G}(t)$ de G(t):=g(t,u(t)) definida como

$$\tilde{G}(t) := g(t_j, u_j) + (g(t_{j+1}, u_{j+1}) - g(t_j, u_j)) \frac{t - t_j}{t_{j+1} - t_j},$$

y resolvemos $\tilde{G}(t)=0$ para calcular la aproximación t^* del tiempo t tal que g(t,u(t))=0, es decir

$$t^* = t_j - \frac{g(t_j, u_j)(t_{j+1} - t_j)}{g(t_{j+1}, u_{j+1}) - g(t_j, u_j)}.$$