Feynman Rules - Self-Interacting Complex Scalar theory

The Lagrangian density for a self-interacting complex-scalar field theory is given by

$$\mathcal{L} = (D_{\mu}\varphi)^{\dagger} (D^{\mu}\varphi) - m^{2}\varphi^{\dagger}\varphi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2\xi}(\partial_{\mu}A^{\mu})^{2}$$

where m is the mass of the boson, D_{μ} is the gauge covariant derivative is $D_{\mu} = \partial_{\mu} + iqA_{\mu}$, and the field strength tensor is $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. The charge of the boson is q, e.g., for the π^{+} q = +e while the K^{-} has q = -e, where $e = \sqrt{4\pi\alpha}$ is the magnitude of the electron charge in natural units, and α is the fine-structure constant. The CODATA value for the fine-structure constant is $\alpha = 7.297\,352\,5693(11)\times10^{-3}$. The gauge fixing parameter ξ is arbitrary, and physical observables must be independent of ξ . The Fermi-Feynman gauge, $\xi = 1$, is a common choice especially for tree-level calculations.

Feynman Rules

Here we give the Feynman rules for the scattering amplitude \mathcal{M} ,

 $i\mathcal{M} = \text{sum of all connected, amputated diagrams,}$

where the diagrams are evaluated according to the following rules:

- Draw all topologically distinct diagrams at a given order;
- For each internal scalar line, attach a propagator

$$=\frac{i}{p^2-m^2+i\epsilon};$$

• For each internal photon line, attach a propagator

$$\stackrel{\mu}{\longrightarrow} \nu = \frac{-i}{p^2 + i\epsilon} \left(g_{\mu\nu} - (1 - \xi) \frac{p_{\mu}p_{\nu}}{p^2} \right);$$

• For each 3-point vertex, assign

$$\mu \sim -iq(p+p')^{\mu};$$

• For each 4-point vertex, assign

$$\mu \qquad \nu \qquad = 2iq^2 g^{\mu\nu}; \qquad (1)$$

• For each external line, place the particle on the mass-shell, $p^2=m^2$ for the boson and $p^2=0$ for the photon, and attach a wavefunction factor

- Impose momentum conservation at each vertex;
- For each internal loop momentum k not fixed by momentum conservation, integrate $\int \frac{\mathrm{d}^4 k}{(2\pi)^4}$;
- Multiply the contribution for each diagram by an appropriate symmetry factor S^{-1} .