Komputerowe systemy rozpoznawania

2020/2021

Prowadzący: prof. dr hab. inż. Adam Niewiadomski

poniedziałek, 12:00

Data odda	ia:	Ocena:

Hubert Gawłowski 224298 Kamil Kiszko-Zgierski 224328

Projekt 1. Klasyfikacja dokumentów tekstowych

1. Cel projektu

Celem zadania jest zaimplementowanie algorytmu k-NN w technologii Java na potrzeby klasyfikacji tekstów oraz zbadanie wpływu wybranych cech liczbowych i tekstowych na skuteczność powyższej metody. Badanie zostanie przeprowadzone na podstawie artykułów prasowych z agencji prasowej Reuters.

2. Klasyfikacja nadzorowana metodą k-NN

Algorytm k-NN (od angielskich słów nearest neighbour - najbliższy sąsiad) to algorytm, którego działanie polega na przyporządkowaniu obiektu poddanego rozpoznawaniu do jednej z klas. Do wykorzystania tego algorytmu niezbędny jest zestaw klas, do których może należeć obiekt, zbiór danych uczących oraz rozpoznawany obiekt. Metoda k-NN należy do grupy metod minimalnoodległościowych, ponieważ o zaklasyfikowaniu obiektu do danej klasy decyduje najmniejsza odległość (zgodna z przyjętą metryką), pomiędzy rozpoznawanym obiektem oraz k-obiektami z ciągu uczącego. Wyszukiwanie najmniejszej odległości pomiędzy obiektami można przedstawić za pomocą wzoru ogólnego:

$$\rho(x, x^{i,k}) = \min_{x^{\mu} \in U^i} (x, x^{\mu}) \tag{1}$$

gdzie ρ to wybrana metryka, U^i oznacza ciąg uczący, $x^{i,k}$ jest elementem zbioru U^i , a rozpoznawany obiekt to x [1].

Skuteczność algorytmu k-NN mierzona jest na podstawie odsetka poprawnych przyporządkowań obiektów do odpowiadających im klas.

2.1. Ekstrakcja cech, wektory cech

Pierwszym etapem, który należy wykonać w procesie rozpoznawania tekstów jest wyodrębnienie takich cech, aby jak najlepiej określały ich charakterystykę. Wszystkie artykuły są napisane w tym samym języku oraz w tej samej formie stylistycznej, dlatego w trakcie analizy skupiliśmy się na cechach liczbowych oraz tekstowych. Mając to na uwadzę, dokonaliśmy ekstrakcji poniższych cech:

- 1. Zapis cyfr za pomocą ciągu cyfr otrzymamy informacje o np. numerach telefonu, które to są charakterystyczne w zależności od kraju.
- 2. Waluty wyciągnięcie z tekstów nazw najczęsciej używanych walut. Kraje, z których pochodzą porównywane teksty używają różnych walut.
- 3. Częstość występowania dat zliczenie, jak często w podanych tekstach występują daty. Zakładamy, że w zależności od tego, z którego kraju pochodzi tekst, częstość wystąpień zapisów datowych będzie się różnić.
- 4. Format zapisu dat w zależności od kraju format zapisu dat różni się.
- 5. Ogólna liczba słów zliczenie wszystkich słów występujących w tekście. Uważamy, że w zależności od tego, jakiego kraju tekst dotyczy, ich długość może być różna.
- 6. Częstość słów rozpoczynających się wielką literą słowa takie będą oznaczały najczęściej nazwy własne np. imiona, nazwiska, nazwy budynków. Pisząc o jednym kraju może być używane więcej takich słów, a o innych mniej. Z tej grupy wykluczymy jednak wyrazy składające się wyłącznie z wielkich liter, o których mowa będzie w punkcie następnym.
- 7. Częstość słów pisanych wielką literą najczęściej będą to skróty. Uważamy, że w zależności od opisywanego kraju, ilość wykorzystywanych skrótów może się różnić.
- 8. Układ SI/imperialny zdecydowanie w krajach anglojęzycznych częściej w tekstach stosowany będzie układ imperialny, natomiast w pozostałych układ SI.
- 9. Częstość występowania cytatów uważamy, że występuje wyraźna różnica w liczbie wykorzystanych cytatów, w zależności od opisywanego kraju.
- 10. Słowa kluczowe sporządzona zostanie lista słów kluczowych (np. elementy lokalizacyjne) dla krajów, które bierzemy pod uwagę w procesie klasyfikacji.
- 11. Najczęściej występujące słowa znalezienie słów, które najczęściej występują w tekstach o danym kraju.

Wektor wyekstrahowanych cech będzie się prezentował następująco:

$$v = [c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}, c_{11}]$$
(2)

2.2. Miary jakości klasyfikacji

Miary jakości klasyfikacji (Accuracy, Precision, Recall, F1). We wprowadzeniu zaprezentować minimum teorii potrzebnej do realizacji zadania, tak by inżynier innej specjalności zrozumiał dalszy opis.

Stosowane wzory, oznaczenia z objaśnieniami znaczenia symboli użytych w doświadczeniu. Oznaczenia jednolite w obrębie całego sprawozdania. Opis zawiera przypisy do bibliografii zgodnie z Polską Normą, (zob. materiały BG PŁ).

Sekcja uzupełniona jako efekt zadania Tydzień 03 wg Harmonogramu Zajęć na WIKAMP KSR.

3. Klasyfikacja z użyciem metryk i miar podobieństwa tekstów

Wzory, znaczenia i opisy symboli zastosowanych metryk z przykładami. Wzory, opisy i znaczenia miar podobieństwa tekstów zastosowanych w obliczaniu metryk dla wektorów cech z przykładami dla każdej miary [2]. Oznaczenia jednolite w obrębie całego sprawozdania. Wstępne wyniki miary Accuracy dla próbnych klasyfikacji na ograniczonym zbiorze tekstów (podać parametry i kryteria wyboru wg punktów 3.-8. z opisu Projektu 1.).

Sekcja uzupełniona jako efekt zadania Tydzień 04 wg Harmonogramu Zajęć na WIKAMP KSR.

4. Budowa aplikacji

4.1. Diagramy UML

Diagramy UML i zwięzłe opisy: idei aplikacji, modułu ekstrakcji i modułu klasyfikatora.

Sekcja uzupełniona jako efekt zadania Tydzień 03 wg Harmonogramu Zajęć na WIKAMP KSR.

4.2. Prezentacja wyników, interfejs użytkownika

Krótki ilustrowany opis jak użytkownik może korzystać z aplikacji, w szczególności wprowadzać parametry klasyfikacji i odczytywać wyniki. Wersja JRE i inne wymogi niezbędne do uruchomienia aplikacji przez użytkownika na własnym komputerze.

Sekcja uzupełniona jako efekt zadania Tydzień 04 wg Harmonogramu Zajęć na WIKAMP KSR.

5. Wyniki klasyfikacji dla różnych parametrów wejściowych

Wyniki kolejnych eksperymentów wg punktów 2.-8. opisu projektu 1. Wykresy i tabele obowiązkowe, dokładnie opisane w "captions" (tytułach), konieczny opis osi i jednostek wykresów oraz kolumn i wierszy tabel.

Ewentualne wyniki realizacji punktu 9. opisu Projektu 1., czyli "na ocenę 5.0" i ich porównanie do wyników z części obowiązkowej.

Sekcja uzupełniona jako efekt zadania Tydzień 05 wg Harmonogramu Zajęć na WIKAMP KSR.

6. Dyskusja, wnioski

Dokładne interpretacje uzyskanych wyników w zależności od parametrów klasyfikacji opisanych w punktach 3.-8 opisu Projektu 1. Szczególnie istotne są wnioski o charakterze uniwersalnym, istotne dla podobnych zadań. Omówić i wyjaśnić napotkane problemy (jeśli były). Każdy wniosek/problem powinien mieć poparcie w przeprowadzonych eksperymentach (odwołania do konkretnych wyników: wykresów, tabel).

Dla końcowej oceny jest to najważniejsza sekcja sprawozdania, gdyż prezentuje poziom zrozumienia rozwiązywanego problemu.

** Możliwości kontynuacji prac w obszarze systemów rozpoznawania, zwłaszcza w kontekście pracy inżynierskiej, magisterskiej, naukowej, itp. **

Sekcja uzupełniona jako efekt zadania Tydzień 06 wg Harmonogramu Zajęć na WIKAMP KSR.

7. Braki w realizacji projektu 1.

Wymienić wg opisu Projektu 1. wszystkie niezrealizowane obowiązkowe elementy projektu, ewentualnie podać merytoryczne (ale nie czasowe) przyczyny tych braków.

Literatura

- [1] R. Tadeusiewicz: Rozpoznawanie obrazów, PWN, Warszawa, 1991.
- [2] A. Niewiadomski, Methods for the Linguistic Summarization of Data: Applications of Fuzzy Sets and Their Extensions, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2008.

Literatura zawiera wyłącznie źródła recenzowane i/lub o potwierdzonej wiarygodności, możliwe do weryfikacji i cytowane w sprawozdaniu.