Maximum Likelihood Estimation (MLE)

- Consider a sequence of coin flips, for example 🛮 😽 🖂
- HHTTTTHTTHTTHTTHTTHTT (5 times H, 15 times T)
 - Which Pr(H) and Pr(T) are the most likely?
 - Looks like $Pr(H) = \frac{1}{4}$ and $Pr(T) = \frac{3}{4}$... $P(T) = \frac{1}{17} = \frac{1}{20}$ $= \frac{3}{4}$

Conditional probabilities

- Let A and B be events in a probability space Ω
- Denote by $Pr(A \mid B)$ the probability of $A \cap B$ in the space B
- (1) Pr(A | B) := Pr(A ∩ B) / Pr (B)
- (2) $Pr(A \mid B) \cdot Pr(B) = Pr(B \mid A) \cdot Pr(A)$

Pr(A|B)=Pr(B|A).P(A)/P(B)

Naive Bayes

$$P(H) = \frac{|H|}{|F|} = 8$$

- Ω = {1,2,3,4,5,6}
- $A = \{2, 4, 6\} \Rightarrow P(A) = \frac{|A|}{|\Omega|} = \frac{3}{6} = \frac{1}{2}$
- B= 21, 2,3]=) P(B)=131=3/6=1/2 P(A|B)= 1A(B) 1521

$\frac{1}{3} = \frac{1}{3}$

Probabilistic assumptions

- Underlying probability distributions:
 - A distribution p_c over the classes ... where Σ_c $p_c = 1$ For each c, a distr. $p_{\underline{w}c}$ over the words ... where $\Sigma_{\underline{w}}$ $p_{\underline{w}c}$ = 1
- Naïve Bayes assumes the following process for generating a document D with m words W₁...W_m and class label C:
 - Pick C=c with prob. p_c , then pick each word W_i =w with probability p_{wc} , independent of the other words

Learning phase

– For a training set <u>T</u> of objects, let:

 T_c = the set of documents from class c

 n_{wc} = #occurrences of word w in documents from T_c

 n_c = #occurrences of all words in documents from T_c

- We compute the following probabilities or likelihoods:

- $p_c := |T_c| / |T_c|$ global likelihood of a class $p_{wc} := n_{wc} / n_c$ likelihood of a word for a class
- > Thorror = 10 | > Tooc = 25 | > Tomedy = 15 | P Jupyler, Doc = 20 | = 1/4 = 0.25

Learning phase, example

Consider Example 2 (artificial documents)

/		
<u>aba</u>	Α	•
baabaaa	A	
	_	
bbaabbab	В	
abbaa	A	
abbb	В	
bbbaab	В	

$P_{A} = 3$, $P_{B} = \frac{3}{2}$
$P_{A} = P(F_{A}) = \frac{3}{6} = \frac{1}{2}$
$n_{1} = 16$, $n_{bA} = 5$, $n_{A} = 15$
$P_{AA} = \frac{10}{15} = \frac{2}{3}$, $P_{bA} = \frac{5}{15} = \frac{1}{3}$ $N_{BB} = 6$, $N_{bB} = 12$, $N_{B} = 18$ $P_{AB} = \frac{1}{3}$ $P_{AB} = \frac{1}{3}$
ns=6, Nb=12, n=18
PGB = 1/8 = 1/3) \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

 \mathcal{T}

Prediction

 For a given document d we want to compute the probability of each class **c**, given document d:

$$Pr(C=c \mid D=d)$$

- Using Bayes Theorem, we have:

$$Pr(C=c \mid D=d) \neq Pr(D=d \mid C=c) \cdot Pr(C=c) / Pr(D=d \mid C=c) \cdot Pr(D=d \mid C=$$

Using our (naive) probabilistic assumptions, we have:

$$Pr(D=d \mid C=c) = Pr(W_1=w_1 \cap ... \cap W_m=w_m \mid C=c)$$

$$= \prod_{i=1,...,m} Pr(W_i=w_i \mid C=e)$$

Prediction ... continued

We thus obtain that

$$Pr(C=c \mid D=d)$$

$$= \prod_{i=1,...,m} Pr(W_i=w_i \mid C=c) \cdot Pr(C=c) / Pr(D=d)$$

$$= \prod_{i=1,...,m} \mathbf{p}_{w_ic} \cdot \mathbf{p}_c / Pr(D=d)$$

- Note 1: for $\Pi_{i=1,...,m}$ p_{w_ic} just take the p_{wc} for all words w in the document and multiply them (if a word w occurs multiple times, also take the factor p_{wc} multiple times)
- Note 2: the Pr(D=d) is the same for all classes c

Prediction, example

Consider Example 2 (artificial documents)

– Let us predict the class for aab ... A or B?

P(A|B) =
$$\frac{14 \text{ NB}}{18}$$

$$= \frac{14 \text{ NB}}{18} / \frac{121}{20} = \frac{14 \text{ NB}}{18}$$

$$= \frac{14 \text{ NB}}{18} / \frac{121}{20} = \frac{14 \text{ NB}}{18}$$

$$= \frac{14 \text{ NB}}{18} / \frac{121}{20} = \frac{14 \text{ NB}}{18}$$

$$= \frac{14 \text{ NB}}{18} / \frac{121}{20} = \frac{14 \text{ NB}}{18}$$

$$= \frac{14 \text{ NB}}{18} / \frac{121}{20} = \frac{14 \text{ NB}}{18}$$

$$= \frac{14 \text{ NB}}{18} / \frac{121}{20} = \frac{14 \text{ NB}}{121} = \frac{14 \text{ NB}}{121}$$

$$= \frac{14 \text{ NB}}{18} / \frac{121}{20} = \frac{14 \text{ NB}}{121} = \frac{1$$