Objetivos de aprendizaje Tema 14

Análisis Matemático II

Javier Gómez López

17 de junio de 2022

1. Conocer el enunciado del teorema del cambio de variable y comprender la forma en que se usa en la práctica para calcular integrales múltiples.

Recordemos que, si Ω y G son abierto de \mathbb{R}^N , se dice que una aplicación $\Phi: \Omega \to G$ es un **difeomorfismo** de clase C^1 , cuando Φ es biyectiva y de clase C^1 en Ω , mientras que Phi^{-1} es de clase C^1 en G. Ahora enunciamos el teorema buscado:

Teorema (Cambio de variable). Sea $\Phi: \Omega \to G$ un difeomorfismo de clase C^1 entre dos abiertos de \mathbb{R}^N . Dado un conjunto medible $E \subset \Omega$ y una función medible $f: \Phi(E) \to \mathbb{R}$, se considera la función $g: E \to \mathbb{R}$ definida por $g(t) = f(\Phi(t))|\det J\Phi(t)|$ para todo $t \in E$, donde $J\Phi(t)$ es la matriz jacobiana de $\Phi(t)$. Entonces f es integrable en $\Phi(E)$ si, y sólo si, g es integrable en E, en cuyo caso se tiene:

$$\int_{\Phi(E)} f(x)dx = \int_{E} f(\Phi(t))|\det J\Phi(t)|dt$$