

Spark NLP+ML for Sentiment Analysis

Galvanize, Seattle

Spark NLP+ML for Sentiment Analysis

Galvanize, Seattle

OBJECTIVES

- Describe the process for sentiment analysis
- Define bag-of-words representation
- Use natural language processing to extract BoW representation from raw documents
- Implement Machine Learning to analyse sentiments in product reviews

Sentiment Analysis

Finding the **opinions of authors** / users about specifics entities (company, brand, product, content...)

Based on the analysis of their comments / reviews

Example use cases:

- Finding the features people like/dislike in a product
- Monitor the reputation of abrand
- Measure the emotional pulse of a nation

Machine Learning: different types of learning

[Samuel, 1959]: Machine learning is the "field of study that gives computers the ability to learn without being explicitly programmed"

Supervised learning:

- The model is derived from observations of input/output pairs
- You have data samples with labelled output (quantitative / qualitative)

Unsupervised learning:

- The model is derived from the confrontation of a meta-model with observations
- You have data samples without no output class, and you want to explain or describe them (but you have an idea of what you're looking for)

Reinforcement learning:

- The model is derived from interactions with an external agent or environment

Supervised Learning

Example: based on what we see on the market, how to compute the price of an apartment depending on the number of rooms, surface, location, amenities?

Unsupervised Learning

Machine Learning for sentiment analysis

Supervised learning:

- Model what makes the <u>difference between</u> positively and negatively labelled reviews.

Unsupervised learning:

- Reveal <u>relations between</u> reviews, or between words appearing in these reviews

bags of words +labels

vectors +labels

model

report

Naive Bayes (classification)

With

- w: word
- y: the **class** of a document (0 for neg, 1 for pos)

Given a dataset of labelled documents.

Probability
$$P(y \mid w_1, w_2, \dots, w_p) = P(y) \frac{\prod_i P(w_i \mid y)}{\prod_i P(w_i)}$$

Hint: use bayes rule ^^;

LDA: Latent Dirichlet Allocation (clustering)

With

- w: word
- d: document
- D: the corpus of docs
- k: a given number of topics

A **topic** is a distribution over words.

Each **document** is a mixture of corpus-wide topics.

Each **word** is drawn from these topics.

Find the k distributions that would likely "generate" every document d in D.

Word2Vec (dimensionality reduction)

With

- w: word
- c:context (as a window surrounding w)
- D the corpus of docs

Model the **probability** P(D=1|w,c) that w in context c has been observed in D

Train on **positive examples** (from the observed corpus) and **negative examples** (made up)

Somehow analogous to the **matrix factorization** for finding latent features for words.

