COMP2270 Lab 3

Due September 30 at beginning of lab

Write out solutions in a text file called 'lab3.txt' and a Logisim file called 'lab3.circ'. Submit the homework by adding the files to your git repository.

In Git Bash, create the text file with:

cd ~/COMP2270-2015

touch lab3.txt

Rule	Form	Dual form
Identity	a * 1 = a	a + 0 = a
Commutative	a * b = b * a	a + b = b + a
Associative	(a * b) * c = a * (b * c)	(a + b) + c = a + (b + c)
Identity	a * 0 = 0	a + 1 = 1
Distributive	a * (b + c) = a * b + a * c	a + (b * c) = (a + b) * (a + c)
Idempotence	a * a = a	a + a = a
Absorption	a + a * b = a	a * (a + b) = a
Complement	a * a' = 0	a + a' = 1
DeMorgan's	(a + b)' = a' * b'	(a * b)' = a' + b'

Use the rules above to simplify expressions. Label the rules that you apply as you apply them (no more than one rule per line).

1. Show
$$(a * b)' * (a' + b) * (b' + b) = a'$$

2. Show
$$c + (b * c)' = 1$$

3. Show
$$(a + c) * (a * d + a * d') + a * c + c = a + c$$

4. Simplify
$$a' * (a + b) + (b + a * a) * (a + b')$$

5. Show
$$(a' * b') + (a' * b) + (a * b') = (a * b)'$$

Complete the following exercises using Logisim. Save lab4.circ in your local git repository folder.

6. Implement the majority (of 3 input bits) circuit using a 4-1 multiplexer.

X	Y	Z	Majority of X Y Z true
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

7. Implement a full adder (a + b + cin) using two 4-1 multiplexers (one multiplexer for carry out, one multiplexer for sum, using the same input variables).

Carry-in	Α	В	Sum (A+B)	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Answer the last three questions about the above finite state machine.

8.

- a. How many bits do you need to represent the states?
- b. How many bits do you need to represent the input?
- 9. Write a mapping from states to bits and inputs to bits.
- 10. Write out a state transition table that represents the machine. What happens if we dispense more than 25¢? Add a state and transitions that represent this.

In Git Bash, submit your files with:

```
cd ~/COMP2270-2015
git add lab3.txt lab3.circ
git commit -m "added lab3 files"
git push
```