Проверка статистических гипотез

Содержание

	Проверка гипотезы об однородности двух выборочных совокупностей	i 1
	<i>F</i> -критерий Фишера	1
	Критерий Вилкоксона	3
	Сравнение двух средних генеральных совокупностей	6
	1. Сравнение двух средних генеральных совокупностей, дисперсии ко известны.	
	2. Сравнение двух средних генеральных совокупностей, дисперсии ко неизвестны	
	Проверка гипотезы о незначимости коэффициента корреляции	13
J	Литература	15

Проверка гипотезы об однородности двух выборочных совокупностей

F-критерий Фишера

Критерий Фишера (Фишера – Снедекора) позволяет сравнивать генеральные дисперсии двух независимых выборок.

Нулевая гипотеза H_0 формулируется следующим образом: генеральные дисперсии двух выборок равны. Альтернативная гипотеза H_1 : генеральные дисперсии двух выборок не равны.

АЛГОРИТМ

- 1. Сформулировать гипотезы. Выбрать уровень значимости α .
- 2. Найти эмпирическое значение критерия по формуле:

$$F_{\scriptscriptstyle \mathcal{DMN}} = \frac{\sigma_{\scriptscriptstyle Hau \deltao \jmath b u u a g}^{2}}{\sigma_{\scriptscriptstyle Hau Me h b u u a g}^{2}}. \tag{1}$$

- 3. Найти число степеней свободы как $k_1 = n_1 1$ для выборки с наибольшей величиной дисперсии и $k_2 = n_2 1$ для выборки с наименьшей величиной дисперсии.
- 4. Определить критическое значение критерия Фишера по одноименной статистической таблице Приложения для степеней свободы k_1 (№ столбца таблицы), k_2 (№ строки таблицы) и уровня значимости $\alpha/2$.
- 5. Сравнить эмпирическое и критическое значения критерия Фишера, учитывая, что F-критерий правосторонний.

Если $F_{\text{эмп}} < F_{\text{крит}}$, то принимается нулевая гипотеза, иначе — альтернативная.

Пример. В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос, есть ли различия в степени однородности показателей умственного развития между классами.

Решение. Нулевая гипотеза H_0 : различия в степени однородности показателей умственного развития между классами статистически незначимы. Гипотеза H_1 :

различия в степени однородности показателей умственного развития между классами статистически значимы. Возьмём уровень значимости $\alpha = 0.05$. Результаты тестирования представлены в табл. 1.

Таблица 1

Дисперсии для переменных X и Y равны:
$\sigma_x^2 = 572,83; \ \sigma_y^2 = 174,04.$

По формуле (1) найдём эмпирическое значение F-критерия Фишера:

$$F_{\text{\tiny 9MB}} = \frac{572,83}{174,04} = 3,29.$$

Критическое значение F-критерия для степеней свободы $k_1=k_2=10-1=9$ равно $F_{\kappa pum}(0,05/2; 9; 9)=4,03.$

Таким образом, $F_{3MN} < F_{\kappa pum}$, так как 3,29 < 4,03, и на уровне значимости 0,05 принимаем нулевую гипотезу, то есть различия в степени однородности показателей умственного развития между классами статистически незначимы.

№ учащихся	Первый	Второй
	класс	класс
1	90	41
2	29	49
3	39	56
4	79	64
5	88	72
6	53	65
7	34	63
8	40	87
9	75	77
10	79	62
Суммы	606	636
Среднее	60,6	63,6

Пример. При изучении индивидуальной изменчивости озимой пшеницы было установлено, что высота растений определённого сорта на разных предшественниках равна: после кукурузы $\bar{x}_1 = 108$ см (выборка из 15 растений) и после гороха $\bar{x}_2 = 111$ см (выборка из 12 растений). Средние оценки дисперсий соответственно равны $D_1 = 25$ см² и $D_2 = 16$ см². Выяснить: выращенные на разных предшественниках растения действительно различаются по изменчивости высоты стебля или различие между средними оценками дисперсий является случайным, несущественным.

Решение. Сформулируем гипотезы. В качестве нулевой гипотезы возьмём гипотезу о равенстве генеральных дисперсий на уровне значимости $\alpha = 0.05$.

Найдём эмпирическое значение критерия Фишера по формуле (1) имеем: $F_{\text{эмп}} = 25/16 = 1,5625$.

Определим для степеней свободы $k_1 = 15 - 1 = 14$, $k_2 = 12 - 1 = 11$ и уровня значимости 0,05 по статистической таблице критических значений критерия Фишера из Приложения $F_{\kappa pum}(0,05/2;14;11) = 3,36$.

Таким образом, $F_{\tiny 3MN}$ < $F_{\tiny Kpum}$, так как 1,5625 < 3,36, и на уровне значимости 0,05 принимается нулевая гипотеза, то есть различие изменчивости высоты стебля озимой пшеницы, выращенной на разных предшественниках, является случайным и несущественным.

Замечание. В некоторых случаях в качестве конкурирующей выдвигают гипотезу о превышении одной из генеральных дисперсий значения другой. Например, если оценка дисперсии S_1^2 оказалась большей, чем S_2^2 , то в качестве конкурирующей выдвигают гипотезу $\sigma_1^2 > \sigma_2^2$. Тогда проверку нулевой гипотезы о равенстве генеральных дисперсий при уровне значимости α проводят тем же методом, что и при конкурирующей гипотезе $\sigma_1^2 \neq \sigma_2^2$, однако используют критическое значение

распределения Фишера — Снедекора, соответствующее полной величине уровня значимости: $F_{\text{крит}}(\alpha; n_1 - 1; n_2 - 1)$.

Критерий Вилкоксона

Проверка гипотезы об однородности двух выборочных совокупностей может быть выполнена по критерию Вилкоксона. Критерий применим к случайным величинам, распределения которых неизвестны; требуется лишь, чтобы величины были непрерывными. Если выборки однородны, то считают, что они извлечены из одной и той же генеральной совокупности и, следовательно, имеют одинаковые, причем неизвестные, непрерывные функции распределения.

Пусть имеются две независимые выборки X и Y с объемами n и m соответственно из двух генеральных совокупностей с непрерывными функциями распределения равными соответственно F и G. Сформулируем гипотезы:

$$H_0$$
: $F(x) = G(x)$ для всех $x \in \mathbb{R}$.

$$H_1$$
: 1) $F(x) \neq G(x)$; 2) $F(x) < G(x)$; 3) $F(x) > G(x)$; для всех $x \in \mathbb{R}$.

Без ограничения общности будем считать, что $m \le n$. Составим объединенную выборку Z = (X,Y). Построим вариационный ряд объединенной выборки: $z(1) \le z(2) \le \dots \le z(m+n)$.

Если распределения генеральных совокупностей непрерывны, то совпадения возможны только с нулевой вероятностью.

Найдем, какие места занимают в вариационном ряду, построенном по объединенной выборке, элементы выборки Y, назовем эти номера pанzамu элементов выборки Y в объединенной выборке Z:

$$rank(Y_1) = s_1$$
, $rank(Y_2) = s_2$, ..., $rank(Y_m) = s_m$.

Рассмотрим статистку критерия:

$$W_{_{\mathfrak{IM}n}} = \sum_{i=1}^m s_i .$$

Далее могут предложены разные подходы рассуждений.

1 подход. Очевидно, что минимальным значением статистики Вилкоксона может быть величина: $W_{min} = m \cdot (m+1)/2$, максимальным $W_{max} = mn + m \cdot (m+1)/2$.

Поэтому статистика $W_{\scriptscriptstyle 3MR}$ находится в промежутке

$$[m\cdot(m+1)/2; m\cdot n + m\cdot(m+1)/2].$$

Распределение статистики Вилкоксона $W_{_{2MN}}$ является симметричным относительно середины данного промежутка при условии справедливости нулевой гипотезы H_0 .

Если справедлива альтернативная гипотеза H_1 , то в случае: 2) распределение статистики W будет сдвинуто влево, так как чаще будут выполняться события $x_i > y_j$, 3) чаще будут встречаться события $x_i < y_j$, то есть, распределение статистики W перестанет быть симметричным относительно середины и будет сдвинуто вправо.

Если выбрана альтернативой гипотеза H_1 , то критическая область для нулевой гипотезы H_0 будет иметь вид промежутка:

в случае 1)
$$[m\cdot(m+1)/2; c_2]; [c_1; m\cdot n+m\cdot(m+1)/2],$$

в случае 2) $[m\cdot(m+1)/2; c_2],$ в случае 3) $[c_1; m\cdot n + m\cdot(m+1)/2].$

При этом, константы c_1 , c_2 , c_3 , c_4 следует находить по таблицам распределения статистики Вилкоксона W, рассчитанным при условии справедливости нулевой гипотезы H_0 для разных m и n.

В качестве искомых констант выбираются квантили распределения. При этом, константы c_1 и c_2 симметричны относительно середины промежутка [m(m+1)/2; mn+m(m+1)/2]. Также симметрично относительно середины этого промежутка расположены константы c_3 и c_4 .

Общее требование заключается в том, что вероятность попадания статистики W в критическую область при условии справедливости нулевой гипотезы H_0 должна быть равна заданному значению α : $P_0\{W \in S\} = \alpha$.

2 подход. Находим (см. [3]):

- 1) при условии, что объемы выборок не больше 25, нижнюю границу по таблице значений Вилкоксона $W_{\text{ниж.криm}}(Q=\alpha/2;\ m;\ n);$ верхнюю границу по формуле: $W_{\text{верх.криm}}=(m+n+1)m-W_{\text{ниж.криm}}.$
- 2) при условии, что объемы выборок больше 25, нижнюю границу по таблице значений Вилкоксона

$$W_{{\scriptscriptstyle HU\!2\!K\!.}\kappa pum}(Q=\!lpha/2;\,m;\,n)=((m+n+1)m-1)/2-z_{\kappa pum}\sqrt{\frac{n\cdot m(n+m+1)}{12}}\;,$$

где $z_{\kappa pum}$ с помощью MS Excel статистической функции: для случая 1) **HOPM.CT.OFP**((1- α)/2 + 0,5), для случаев 2), 3) **HOPM.CT.OFP**((1- 2α)/2 + 0,5); верхнюю границу по формуле: $W_{\text{верх.криm}} = (m + n + 1)m - W_{\text{ниж.криm.}}$

Если $W_{_{\!\!\mathit{9MN}}}\in [W_{_{\!\!\mathit{HU\!Ж\!.}\kappa pum}};\ W_{_{\!\!\mathit{Bepx.}\kappa pum}}],$ то принимается нулевая гипотеза, иначе альтернативная.

Пример. Проверить на однородность выборочные совокупности.

X	1	2	5	7	16	20	22
Y	3	4	6	10	13	17	

Решение. Сформулируем гипотезы:

 H_0 : F(x) = G(x) (выборочные совокупности однородны).

 H_1 : $F(x) \neq G(x)$ (выборочные совокупности неоднородны).

Порядковый номер (ранг)	1	2	3	4	5	6	7	8	9	10	11	12	13
Варианта	1	2	3	4	5	6	7	10	13	16	17	20	22

Найдем, какие места занимают в вариационном ряду, построенном по объединенной выборке, элементы выборки Y, назовем эти номера pангами элементов выборки Y (столбцы с курсивом) и будем их складывать.

$$W_{2Mn} = 3+4+6+8+9+11=41.$$

1 подход. $W_{min} = m \cdot (m+1)/2 = 6 \cdot (6+1)/2 = 21$.

 $W_{max} = mn + m \cdot (m+1)/2 = 6 \cdot 7 + 6 \cdot (6+1)/2 = 63.$

 $W_{_{2MN}} = 41, \ 41 \in [21; \ 63]$ и является симметричным относительно середины промежутка, поэтому можем сделать вывод о справедливости нулевой гипотезы H_0 , то есть принимаем гипотезу об однородности выборочных совокупностей.

2 подход. Выберем уровень значимости 0,01, тогда найдем по таблице критических значений критерия Вилкоксона (см. ниже):

 $W_{\text{ниж.крит}}(0,01/2;6;7)=24;$

$$W_{\text{верх.крит}} = (m + n + 1) \cdot m - W_{\text{ниж.крит}} = (6 + 7 + 1) \cdot 6 - 24 = 60.$$

 $W_{\text{эмп}} = 41, 41 \in [24; 60]$, то есть принимаем нулевую гипотезу об однородности выборочных совокупностей.

Критические точки критерия Вилкоксона

	Объемы выборок		Q				Объемы выборок		Q			
<i>n</i> 1	n,	0,005	0,01	0,025	0.05	<i>n</i> ,	43	0.005	0.01	0,025	0,05	
6	6 7 8 9 10 11 12 13 14 15 16 17 18	23 24 25 26 27 28 30 31 32 33 34 36 37 38	24 25 27 28 29 30 32 33 34 36 37 39 40	26 27 29 31 32 34 35 37 38 40 42 43 45 46	28 30 31 33 35 37 38 40 42 44 46 47 49 51	7	7 8 9 10 11 12 13 14 15 16 17 18 19 20	32 34 35 37 38 40 41 43 44 46 47 49 50	34 35 37 39 40 42 44 45 47 49 51 52 54 56	36 38 40 42 44 46 48 50 52 54 56 58 60 62	39 41 43 45 47 49 52 54 56 61 63 65 67	
	20 21 22 23 24 25	39 40 42 43 44 45	43 44 45 47 48 50	48 50 51 53 54 56	53 55 57 58 60 62		21 22 23 24 25	53 55 57 58 60	58 59 61 63 64	64 66 68 70 72	69 72 74 76 78	

Объемы выборок			Q			Объемы выборок		Q			
n,	n,	0.005	0.01	0.025	0.05	7.	n,	0.005	0.01	0.025	0.05
8	8 9 10 11	43 45 47 49 51	45 47 49 51 53	49 51 53 55 58	51 54 56 59 62		18 19 20 21	92 94 97 99 102	96 99 102 105 108	103 107 110 113	110 113 117 120 123
	13 14 15 16	53 54 56 58	56 58 60 62	60 62 65 67	64 67 69 72	11	23 24 25	105 107 110	110 113 116	119 122 126	127 130 134
	17 18 19 20 21 22 23 24 25	60 62 64 66 68 70 71 73 75	64 66 68 70 72 74 76 78 81	70 72 74 77 79 81 84 86	75 77 80 83 85 88 90 93		12 13 14 15 16 17 18	90 93 96 99 102 105 108	94 97 100 103 107 110 113	99 103 106 110 113 117 121	104 108 112 116 120 123 127
9	9 10 11 12 13	56 58 61 63 65 67	59 - 61 - 63 - 66 - 68 - 71	62 65 68 71 73 76	66 69 72 75 78 81		20 21 22 23 24 25	114 117 120 123 126 129	119 123 126 129 132 136	128 131 135 139 142 146	135 139 143 147 151 155
	15 16 17 18 19 20	69 72 74 76 78 81	73 76 78 81 83 85	79 82 84 87 90 93	84 87 90 93 96 99	12	12 13 14 15 16	105 109 112 115 119 122	109 113 116 120 124 127	115 119 123 127 131 135	120 125 129 133 138 142
	21 22 23 24 25	83 85 88 90 92	88 90 93 95 98	95 98 101 104 107	102 105 108 111 114		18 19 20 21 22 23	125 129 132 136 139 142	131 134 138 142 145 149	139 143 147 151 155 159	146 150 155 159 163 168
10	10 11 12 13 14 15 16	71 73 76 79 81 84 86 89	74 77 79 82 85 88 91 93	78 81 84 88 91 94 97 100	82 86 89 92 96 99 103 106	13	24 25 13 14 15 16 17 18	146 149 125 129 133 136 140 144	153 156 130 134 138 142 146 150	163 167 136 141 145 150 154 158	172 176 142 147 152 156 161 166

Сравнение двух средних генеральных совокупностей

1. Сравнение двух средних генеральных совокупностей, дисперсии которых известны.

Рассмотрим статистический критерий, который используется для сравнения генеральных средних двух больших независимых выборок, случайным образом отобранных из двух нормально распределенных генеральных совокупностей X и Y, чьи дисперсии известны (например, из предшествующего опыта или найдены теоретически), в некоторых источниках его называют критерий Лапласа.

Гипотезы. Нулевая гипотеза H_0 : генеральные средние равны $\overline{X} = \overline{Y}$, тогда H_1 : *первый случай*: генеральные средние различны; *второй случай*: $\overline{X} > \overline{Y}$; *тенеральные случай*: $\overline{X} < \overline{Y}$.

АЛГОРИТМ

1. Сформулировать гипотезы. Выбрать уровень значимости α .

2. Найти эмпирическое значение критерия Лапласа по формуле:
$$z_{\text{\tiny 3MB}} = \frac{\left| \overline{x} - \overline{y} \right|}{\sqrt{\frac{D_x}{n_x} + \frac{D_y}{n_y}}}$$
,

где \bar{x} и \bar{y} — выборочные средние, D_1 и D_2 — известные дисперсии генеральных совокупностей.

- 3. Найти критическое значение критерия по статистической одноимённой таблице Приложения: в первом случае: $\Phi \left(z_{\it криm} \right) = \frac{p}{2} = \frac{1-\alpha}{2}$, во втором и третьем случаях: $\Phi \left(z_{\it криm} \right) = \frac{1-2\alpha}{2}$, где $\Phi (L)$ интегральная функция Лапласа.
 - 4. Сравнить эмпирическое и критическое значения критерия.

Если $z_{\tiny{3MN}}$ < $z_{\tiny{\kappa pum}}$, то на уровне значимости α принимается нулевая гипотеза H_0 , иначе — альтернативная.

Пример. Необходимо исследовать на возможную высокую урожайность два сорта пшеницы. Для этого составляют две выборки: равномерно и случайным образом со всей площади посева каждого изучаемого сорта берут на исследование по 50 или более растений. Пусть для анализа сорта пшеницы выбран хозяйственно важный признак — число колосков в колосе. Пусть собрано по 100 колосьев со 100 разных растений каждого сорта, далее подсчитывается число колосков (X для первого и Y для второго сортов, их объёмы n_x и n_y) в каждом колосе и составляются два вариационных ряда для первого и второго сортов. Выполнить с надежностью 99%.

X	n_x
12	3
13	8
14	16
15	19
16	21
17	17
18	9
19	5
20	2

Y	$n_{\rm y}$
11	1
12	4
13	4
14	7
15	12
16	18
17	22
18	15
19	8
20	6
21	3

Pешение. Сформулируем гипотезы. Нулевая гипотеза H_0 : существенных различий между исследуемыми сортами нет. H_1 : второй сорт существенно превосходит первый по изучаемому признаку (третий случай).

Для более полного представления об изменчивости изучаемых сортов пшеницы по числу колосков вычислим среднее арифметическое (\overline{x} , \overline{y} для первого и второго сортов соответственно) и соответствующие им дисперсии:

$$\bar{x} = \sum_{i=1}^{9} x_i \cdot n_{xi} = 15,71 \text{ И } \bar{y} = \sum_{i=1}^{11} y_i \cdot n_{yi} = 16,56.$$

$$D_x = \frac{\sum_{i=1}^{9} (x_i - 15,71)^2 \cdot n_{xi}}{100} = 3,24 \text{ И } D_y = \frac{\sum_{i=1}^{11} (y_i - 16,56)^2 \cdot n_{yi}}{100} = 4,58.$$

Определим существенность различия сравниваемых величин, то есть существенность различий двух сортов пшеницы по числу колосков в колосе.

$$z_{\text{\tiny 3MB}} = \frac{\left| \overline{x} - \overline{y} \right|}{\sqrt{\frac{D_x}{n_x} + \frac{D_y}{n_y}}} = \frac{\left| 15,71 - 16,56 \right|}{0,1 \cdot \sqrt{3,24 + 4,58}} \approx 3,04.$$

Для уровня значимости $\alpha = 0.01$ определим критическое значение критерия по статистической таблице функции Лапласа (третий случай).

$$\Phi(z_{\kappa pum}) = \frac{1-2\alpha}{2} = \frac{1-2\cdot 0,01}{2} = 0,49 \text{ M } z_{\kappa put} = 2,33.$$

Таким образом, $z_{_{2MN}} > z_{_{KPUM}}$, так как 3,04 > 2,33, и на уровне значимости 0,01 принимаем альтернативную гипотезу, то есть второй сорт существенно превосходит первый по изучаемому признаку, при этом различие количества колосков имеет место не только в данных выборках, но и в генеральных совокупностях в целом (с надёжностью 0,99).

Если учесть, что увеличение числа колосков в колосе, как правило, сопровождается увеличением числа зёрен, то при прочих равных характеристиках от этого сорта мы вправе ожидать более высокой урожайности по сравнению с другим сортом.

2. Сравнение двух средних генеральных совокупностей, дисперсии которых неизвестны.

Рассмотрим статистический критерий, который используется для сравнения генеральных средних двух нормально распределённых случайных величин при неизвестных дисперсиях генеральных совокупностей.

При использовании критерия (t-критерий Стьюедента) можно выделить два случая. В первом случае критерий применяется для двух **независимых**, **несвязанных** выборок (двухвыборочный t-критерий), во втором случае — для зависимых, связанных выборок (парный t-критерий).

Отметим, что в обоих случаях гипотезы будут формулироваться следующим образом.

Гипотезы. Нулевая гипотеза H_0 : генеральные средние значения равны, альтернативная гипотеза H_1 : генеральные средние значения различны.

АЛГОРИТМ

- 1. Сформулировать гипотезы. Выбрать уровень значимости α .
- 2. Найти эмпирическое значение критерия Стьюдента для случая несвязанных, независимых выборок по формуле:

$$t_{\text{\tiny 3MN}} = \frac{\overline{x} - \overline{y}}{\sigma_{x-y}} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sum \left(x_i - \overline{x}\right)^2 + \sum \left(y_i - \overline{y}\right)^2}{n_x + n_y - 2} \cdot \left(\frac{1}{n_x} + \frac{1}{n_y}\right)}},$$

где \bar{x} , \bar{y} , σ_{x-y} — это средние арифметические в экспериментальной и контрольной группах, стандартная ошибка разности средних арифметических соответственно.

Замечание. В некоторых источниках вышеприведённая формула имеет вид:

$$t_{_{3MN}} = \frac{|\bar{x} - \bar{y}|}{\sqrt{(n_x - 1) \cdot S_x^2 + (n_y - 1) \cdot S_y^2}} \sqrt{\frac{n_x n_y (n_x + n_y - 2)}{n_x + n_y}},$$
(33)

где \bar{x} , \bar{y} ; S_x^2 , S_y^2 ; n_x и n_y – средние арифметические, «исправленные» дисперсии, объёмы первой и второй выборок соответственно. В ряде источников этот критерий носит название Стьюдента – Фишера.

- 4. Найти число степеней свободы по формуле: $k = n_x + n_y 2$.
- 5. Определить критическое значение *t*-критерия Стьюдента по статистической одноименной таблице из Приложения.
- 6. Сравнить эмпирическое и критическое значения критерия Стьюдента, учитывая, что t-критерий двусторонний.

Если $|t_{_{\mathfrak{I}Mn}}| < |t_{_{\mathcal{K}pum}}|$, принимается нулевая гипотеза, иначе принимается альтернативная.

Замечание. В ряде научных исследований применяется «приближение» *t*-критерия:

$$t_{\scriptscriptstyle 2MN} = \frac{|\bar{x} - \bar{y}|}{\sqrt{n_{\scriptscriptstyle x} \cdot D_{\scriptscriptstyle x} + n_{\scriptscriptstyle y} \cdot D_{\scriptscriptstyle y}}} \sqrt{n_{\scriptscriptstyle x} n_{\scriptscriptstyle y}} \,. \tag{34}$$

В ряде источников это «приближение» называют критерием Крамера — Уэлча. Заметим, что критические значения для критерия Крамера — Уэлча зависят только от уровня значимости α и выражаются через критические значения t-критерия Стьюдента следующим образом: $t_{\kappa pum}(0,01;\infty) = 2,58$, $t_{\kappa pum}(0,1;\infty) = 1,65$, $t_{\kappa pum}(0,05;\infty) = 1,96$.

Алгоритм и схема использования критерия Крамера — Уэлча аналогичные, как и для критерия Стьюдента. При этом очевидно, что чем больше объёмы выборок, тем меньше отличия числовых значений данных критериев.

Пример. Измерено 10 колосьев суперэлиты и 12 колосьев элиты озимой ржи определённого сорта. Для каждой репродукции была вычислена средняя длина колосьев и средние оценки дисперсий. Для суперэлиты они соответственно равны $\bar{x} = 10,24$ см и $S_x^2 = 0,0169$ см², для элиты — $\bar{y} = 9,69$ см и $S_y^2 = 0,0256$ см². Выяснить, действительно ли различия в длинах колосьев обусловлены принадлежностью к элите (суперэлите) или же это различие является случайным, не существенным.

Решение. Сформулируем гипотезы. В качестве нулевой принимаем гипотезу: различия в средних длинах колосьев суперэлиты и элиты обусловлены случайностями выборки.

Определим эмпирическое значение критерия t_{3MR} по формуле (33):

$$t_{_{3MN}} = \frac{|\vec{x} - \vec{y}|}{\sqrt{(n_x - 1) \cdot S_x^2 + (n_y - 1) \cdot S_y^2}} \sqrt{\frac{n_x n_y (n_x + n_y - 2)}{n_x + n_y}} =$$

$$=\frac{\left|10,24-9,69\right|}{\sqrt{(10-1)\cdot0,0169+(12-1)\cdot0,0256}}\cdot\sqrt{\frac{10\cdot12\cdot(10+12-2)}{10+12}}=\frac{0,55}{\sqrt{0,4337}}\cdot\sqrt{\frac{2400}{22}}\approx 8,72.$$

Найдём для уровня значимости 0.05 и степени свободы k=10+12-2=20критическое значение критерия $t_{\kappa pum}(0,05;20) = 2,09$.

Таким образом, $t_{2MN} > t_{KDUM}$, так как 8,72 > 2,09, и на уровне значимости 0,05 принимаем альтернативную гипотезу, то есть различия в средних длинах колосьев суперэлиты и элиты значимы и не обусловлены случайными причинами.

Пример. В двух группах учащихся – экспериментальной и контрольной – получены следующие результаты по учебному предмету (тестовые баллы).

Группа 1	Группа 2		
(экспериментальная)	(контрольная)		
12 14 13 16 11 9 13 15 15 18 14	13 9 11 10 7 6 8 10 11		

Решение. Нулевая гипотеза: знания учащихся в обеих группах в среднем одинаковые, альтернативная гипотеза: знания учащихся экспериментальной группы отличаются от знаний учащихся контрольной группы.

Здесь из таблицы данных получим: $n_x = 11$, $n_y = 9$, $\bar{x} = 13,636$, $\bar{y} = 9,444$, $\sigma_x = 2,460$ и $\sigma_{v} = 2,186.$

Применим к данным задачи критерий Стьюдента.

Рассчитаем стандартную ошибку разности арифметических средних:

$$\sigma_{x-y} = \sqrt{\frac{60,545 + 38,222}{11 + 9 - 2} \cdot \left(\frac{1}{11} + \frac{1}{9}\right)} = 1,053.$$

Эмпирическое значение критерия
$$t_{\scriptscriptstyle 3MR}$$
 равно:
$$t_{\scriptscriptstyle 3MR} = \frac{13,636-9,444}{1,053} = 3,981.$$

Найдём для уровня значимости 0.05 и степени свободы k = 11 + 9 - 2 = 18критическое значение критерия $t_{\kappa pum}(0.05; 18) = 2.1$.

Таким образом, $t_{\scriptscriptstyle 3MR} > t_{\kappa pum}$, так как 3,981 > 2,1, и на уровне значимости 0,05 принимается альтернативная гипотеза H_1 , то есть можем утверждать о преимуществе экспериментального обучения.

Теперь к условию этой же задачи применим критерий Крамера – Уэлча.

Найдём эмпирическое значение критерия $t_{\scriptscriptstyle 3MR}$ по формуле (34):

$$t_{_{3MN}} = \frac{|\bar{x} - \bar{y}|}{\sqrt{n_x \cdot D_x + n_y \cdot D_y}} \sqrt{n_x n_y} = \frac{|13,636 - 9,444|}{\sqrt{11 \cdot 2,46^2 + 9 \cdot 2,186^2}} \sqrt{11 \cdot 9} = 3,985.$$

Критическое значение критерия для уровня значимости 0.05 равно $t_{\kappa pum} = 1.96$.

Таким образом, $t_{\text{эмп}} > t_{\text{крит}}$, так как 3,985 > 1,96, и на уровне значимости 0,05 принимается альтернативная гипотеза H_1 , то есть преимущество экспериментального обучения статистически значимо.

Замечание. Обратим внимание, что эмпирические значения, найденные по формулам критериев Стьюдента и его аналога — критерия Крамера — Уэлча, мало отличимы (третьей значащей цифрой после запятой).

Второй случай (случай зависимых, связанных выборок).

АЛГОРИТМ

- 1. Сформулировать гипотезы. Выбрать уровень значимости α .
- 2. Найти эмпирическое значение критерия Стьюдента для случая связанных выборок с равным числом измерений по формуле:

$$t_{\text{\tiny DMN}} = \frac{\overline{d}}{S_d} \tag{35}$$

где $d_i = x_i - y_i$ – разности между соответствующими значениями переменной X и переменной Y, а d – среднее этих разностей.

3. Найти S_d по формуле:

$$S_d = \sqrt{\frac{\sum d_i^2 - \frac{\left(\sum d_i\right)^2}{n}}{n \cdot (n-1)}}.$$

- 4. Найти число степеней свободы k по формуле k = n 1.
- 5. Определить критическое значение критерия Стьюдента по статистической одноимённой таблице Приложения.
- 6. Сравнить эмпирическое и критическое значения критерия Стьюдента, учитывая, что t-критерий двусторонний.

Если $|t_{\scriptscriptstyle \mathcal{DMN}}| < |t_{\scriptscriptstyle \mathcal{K}pum}|$, то принимается нулевая гипотеза, иначе принимается альтернативная.

Рассмотрим пример использования t-критерия Стьюдента для связных и, очевидно, равных по численности выборок.

Пример. Изучалось влияние курения на агрегацию эритроцитов, у 10 мужчиндобровольцев агрегация (мм/ч) измерялась до и после выкуривания одной сигареты.

До	После	D	d^2
2	2	0	0
2	9	7	49
5	11	6	36
7	11	4	16
8	14	6	36
9	9	0	0
10	9	-1	1
10	10	0	0
10	13	3	9
10	15	5	25
Сумма		30	172

Решение. Сформулируем гипотезы. Нулевая гипотеза H_0 : выкуривание одной сигареты на агрегацию эритроцитов влияет несущественно, H_1 : выкуривание одной сигареты на агрегацию эритроцитов влияет существенно.

$$\overline{d} = \frac{\sum_{i=1}^{n} d_i}{n} = \frac{30}{10} = 3. \quad S_d = \sqrt{\frac{\sum_{i=1}^{n} d_i^2 - \frac{\left(\sum_{i=1}^{n} d_i^2\right)^2}{n}}{n \cdot (n-1)}} = \sqrt{\frac{172 - (30)^2 / 10}{10 \cdot (10-1)}} = \sqrt{0.91} \approx 0.955.$$

По формуле (35) найдём $t_{\scriptscriptstyle 3MR}=\frac{d}{S_d}=\frac{3}{0{,}955}=3{,}14$. По статистической таблице определим критическое значение критерия для числа степеней свободы k=10 - 1=9 на

уровне значимости 0,01. $t_{\kappa pum} = 3,25$.

Таким образом, $t_{9MN} < t_{\kappa pum}$, так как 3,14 < 3,25, и на уровне значимости 0,01 принимается гипотеза H_0 , то есть изменения агрегации эритроцитов при выкуривании одной сигареты несущественны.

Замечание. Критерий Стьюдента можно применять для исключения грубых ошибок наблюдений, возникающих из-за показаний измерительных приборов, ошибок регистрации, случайного сдвига запятой в десятичной записи числа и т. п..

Пусть, например, x^* , x_1 , x_2 ,..., x_n — совокупность статистических данных, из которых первое значение резко выделяется из других.

Необходимо выяснить, принадлежит ли резко выделяющееся значение к остальным наблюдениям.

Для ряда $x_1, x_2, ..., x_n$ рассчитывают среднее арифметическое \bar{x} и «исправленное» среднее квадратическое отклонение s.

Нулевая гипотеза H_0 : о принадлежности x^* к остальным наблюдениям. H_1 : о не принадлежности x^* к остальным наблюдениям.

Эмпирическое значение критерия Стьюдента равно: $t_{-3,mn} = \left| \frac{\overline{x} - x^*}{s} \right|$.

Критическое значение критерия Стьюдента для уровня значимости α и степени свободы k=n-2 находят по статистической таблице Стьюдента из Приложения.

Если $t_{\text{\tiny 3MN}} < t_{\kappa pum}$, то принимают нулевую гипотезу, иначе — альтернативную.

Пример. Имеются следующие данные об урожайности ржи (ц/га) на 8 опытных участках одинаковой площади: 25; 26,1; 26,2; 26,5; 29,3; 30,1; 32,3; 35,9. Выяснить, является ли значение урожайности $x^* = 35,9$ аномальным (неверно зарегистрировано) при уровне значимости 0,05 [48].

Решение. Сформулируем гипотезы. Нулевая гипотеза H_0 : о принадлежности x^* к остальным наблюдениям. H_1 : о непринадлежности x^* к остальным наблюдениям.

Исключим значение $x^* = 35,9$ из выборки. Для новой выборки:

найдём среднее значение $\bar{x}=27.93$ (ц/га), «исправленное» среднее квадратическое отклонение s=2.67 (ц/га).

Эмпирическое значение критерия Стьюдента равно $t_{\text{зым}} = \left| \frac{\overline{x} - x^*}{s} \right| = \left| \frac{35,9 - 27,93}{2,67} \right| = 2,98$. Критическое значение критерия Стьюдента равно $t_{\text{крим}} = t(0,05;6) = 2,45$.

Таким образом, $t_{\scriptscriptstyle 3MN} > t_{\scriptscriptstyle KPUM}$, так как 2,98 > 2,45, и на уровне значимости 0,05 принимается альтернативная гипотеза, то есть значение $x^*=35,9$ является аномальным и его следует отбросить.

Замечание. Критерий Стьюдента предназначен для сравнения двух выборок. Между тем на практике его порой неправильно используют для оценки различий большего числа групп посредством попарного их сравнения. При этом вступает в силу эффект множественных сравнений. Вероятность ошибиться хотя бы в одном из нескольких сравнений составит: $\alpha' = 1 - (1 - 0.01)^k$, где k — число сравнений (если надёжность берём 0.99). При небольшом числе сравнений можно использовать приближённую формулу: $\alpha' = 0.01 \cdot k$.

Точные значения вероятности ошибки при различном числе групп приведены в следующей таблице:

Количество групп	Количество попарных сравнений	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\alpha' \\ (\alpha = 0,05)$
3	3	0,029	0,143
4	6	0,059	0,265
5	10	0,096	0,401

Таким образом, если мы проводим попарные сравнения нескольких групп и хотим с вероятностью ошибки 0,01 найти различия, необходимо полученную после применения критерия Стьюдента точную вероятность α умножить приближённо на количество попарных сравнений. Например, мы проводим попарные сравнения трёх групп, таких сравнений будет три: 1-2, 1-3, 2-3. Тогда, чтобы отклонить нулевую гипотезу об отсутствии различий между сравниваемыми группами на уровне значимости 0,01, вероятность ошибки должна составить не более 0,01/3=0,0033. Можно также сравнивать эмпирическое значение с критическим значением, соответствующим этому значению вероятности, которое можно приближённо рассчитать по формуле: $t_n = t_1 + (t_2 - t_1) \frac{\alpha_n - \alpha_1}{\alpha_2 - \alpha_1}$, где α_1 , α_2 – значения уровня значимости; t_1 ,

 t_2 – критические значения, соответствующие им; $\alpha_{\scriptscriptstyle \rm H}$ – нужный уровень значимости.

Этот же подход можно использовать при применении других критериев, предназначенных для сравнения двух групп, для множественных сравнений.

Проверка гипотезы о незначимости коэффициента корреляции

Оценим достоверность коэффициента корреляции по формуле:

$$t_r = \frac{\left|r_{xy}\right|}{S_r} = \left|r_{xy}\right| \cdot \sqrt{\frac{n-2}{1-r_{xy}^2}},$$

Найдем критическое значение критерия для уровня значимости α и для числа степеней свободы k=n-2 с помощью статистической функции **СТЬЮДЕНТ.ОБР.2Х**(α ; k).

Вывод:

- 1) если $t_r \ge t_{\kappa pum}$, то отвергают нулевую гипотезу H_0 , то есть при выбранном уровне значимости делают вывод о статистической значимости коэффициента корреляции;
- 2) если $t_r < t_{\kappa pum}$, принимают нулевую гипотезу H_0 , то есть при выбранном уровне значимости делают вывод о статистической значимости коэффициента корреляции.
- В MS Excel для вычисления парных коэффициентов линейной корреляции используется специальная функция **КОРРЕЛ** (массив1; массив2), где

maccus 1 — ссылка на диапазон ячеек первой выборки (X);

массив2 – ссылка на диапазон ячеек второй выборки (У).

Пример. Десяти школьникам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли взаимосвязь между временем решения этих задач? Переменная X обозначает среднее время решения наглядно-образных, а переменная Y—среднее время решения вербальных заданий тестов (табл. 2).

Таблица 2

№	1	2	3	4	5	6	7	8	9	10
X	19	32	33	44	28	35	39	39	44	44
Y	17	7	17	28	27	31	20	17	35	43

Решение. Введем данные в таблицу MS Excel. Затем вычислим значение коэффициента корреляции. Для этого курсор установим в ячейку C1 и активизируем кнопку f_x , находящуюся слева от строки формул.

Фа	айл Гла	вная	Вставка Разметка страницы Фо						
Вставить Формат по образцу					bri <i>К</i> <u>Ч</u>	- [+ 11 ⊞ +	* A'	
	Буфер обмена 🕞				Шрифт				
	C1 ▼ (*)				f _x				
	Α	В	С		D		E		
1	X	Y			Вст	авить	функци	110	
2	19	17							
2	32.	7							

В появившемся диалоговом окне выберем функцию **КОРРЕ**Л категории **Статистические**. Указателем мыши введем диапазон данных выборки X в поле *массив1* (A1:A10). В поле *массив2* введем диапазон данных выборки Y (B1:B10), нажмем кнопку **ОК**. В ячейке C1 появится значение коэффициента корреляции 0,54119.

	C1	-	(-	f _{sc} =KO	=KOPPEЛ(A1:A10;B1:B10			
	Α	В	С	D	Е	F		
1	19	17	0,54119					
2	32	7						
3	33	17						
4	44	28						
5	28	27						
6	35	31						
7	39	20						
8	39	17						
9	44	35						
10	44	43						

Рис. 1. Результаты вычисления коэффициента корреляции

Далее оценим достоверность коэффициента корреляции по формуле:

$$t_r = |r_{xy}| \cdot \sqrt{\frac{n-2}{1-r_{xy}^2}} = 0.54 \cdot \sqrt{\frac{10-2}{1-0.54^2}} = 1.815.$$

Найдем критическое значение критерия с помощью статистической функции **СТЬЮДЕНТ.ОБР.2X(0,05; 8)**: $t_{\kappa pum} = 2,306$.

Таким образом, $t_r < t_{\kappa pum}$, так как 1,815 < 2,306, и на уровне значимости 0,05 принимается гипотеза H_0 , иными словами, связь между временем решения нагляднообразных и вербальных заданий теста не доказана.

Литература

- 1. Гласс Дж. Статистические методы в педагогике и психологии / Дж. Гласс, Дж. Стенли. М.: Прогресс, 1976. 496 с.
- 2. Гланц С. Медико-биологическая статистика / С. Гланц. М.: Практика, 1998. 459 с.
- 3. Гмурман В. Е. Теория вероятностей и математическая статистика: учебное пособие для вузов / В. Е. Гмурман. М.: Высш. шк., 2003. 479 с.
- 4. Новиков Д. А. Статистические методы в педагогических исследованиях (типовые случаи) / Д. А. Новиков. М.: М3-Пресс, 2004. 67 с.
- 5. Новиков Д. А. Статистические методы в медико-биологическом эксперименте (типовые случаи) / Д. А. Новиков, В. В. Новочадов. Волгоград: Изд-во ВГМУ, 2005. 84 c
- 6. Шилова 3. В. Теория вероятностей и математическая статистика: учебное пособие / 3. В. Шилова, О. И. Шилов. Киров: Изд-во ВГГУ, 2015. 158 с.