
Methods of Constructing a Blended Performance Function Suitable for Formation Flight

Jack Ryan

SciTech
January 2017

Formation Flight for Drag Reduction

- Promises fuel savings. 14% demonstrated in two-ship formation
- Trailing aircraft positioned in wingtip vortex of leading aircraft
- Optimal position is unknown a priori
- Substantial effect miles behind leading aircraft

Formation Flight for Drag Reduction Flight Experiments

German Institute for Fluid Mechanics

1995

- Proof of concept
- No data link
- 10% power reduction
- Rudimentary peak-seeking control

NASA Dryden Flight Research Center

2001

- Research data link and autopilot
- 14% fuel savings (manual)
- Validated system requirements
- Detailed wake effect mapping

US Air Force Test Pilot School

2001

- Manually flown
- No data link or autopilot
- 9% fuel savings (2-ship)
- Inconclusive 3-ship evaluation

NASA DFRC / USAF FTC

2010

- Proof of extended formation concept
- Production military data link and autopilot
- 7-8% fuel savings (manual)

DARPA / AFRL / Boeing

2012 - 2013

- Modified C-17 autopilot
- Production military data link
- 10% fuel savings (autopilot)
- Wake avoidance algorithms

NASA Armstrong Flight Research Center

2013 - 2017

- Suitability of ADS-B for Wake Surfing
- Flight Data: Performance and Ride Quality
- Wake Estimation and Avoidance
- Airspace simulation study
- Hardware-in-the-loop multi-vehicle simulation
- Flight research

Extremum Seeking Control Method

Plant
 Position
 Performance function
 Delay Operator
 Kalman Filter

P
 x_k
 $f(x(t))$
 z^{-1}
 KF

Gradient estimate
 Hessian estimate
 Position command
 Filter
 Persistent Excitation

b_k
 M_k
 x_c
 Filt
 PE

Performance Function Candidates

Approaches:

- Lavretsky¹⁰ minimizes throttle activity,
- Chichka⁸ maximizes the induced rolling moment, and
- Binetti⁹ maximizes the induced pitch angle.
- Others assume fuel flow is measureable

Draw backs

- The true fuel-flow extremum coordinates do not necessarily coincide with that of the analogous measurement,
- The measurement may possess undesirable characteristics such as significant lag.

Combine measurements into a Blended Performance Function

Blended Performance Function

Using a priori data:

Analogous measurements

$$\mathbf{P} = [\mathcal{P}_1(\mathbf{X})^T, \mathcal{P}_2(\mathbf{X})^T, \dots, \mathcal{P}_m(\mathbf{X})^T]^T$$

Optimal weighting vector calculated

$$\hat{\mathbf{w}} = \arg_{\mathbf{w}} \min \left(\mathcal{D}(\mathbf{X}) - \mathbf{w}\mathbf{P} \right)^T V^{-1} \left(\mathcal{D}(\mathbf{X}) - \mathbf{w}\mathbf{P} \right)$$

Blended performance function formed

$$\mathbf{B} = \hat{\mathbf{w}}\mathbf{P}$$

If near real-time measurements are available:

Measured data fit to unimodal function.

$$\mathcal{D} = \frac{1}{2} X^T \mathbf{A}_D X + X^T \mathbf{b}_D$$

$$\mathcal{P}_i = \frac{1}{2} X^T \mathbf{A}_i X + X^T \mathbf{b}_i$$

Optimal weighting vector formed as previously shown.
Blended performance function formed.

$$\mathbf{B} = \sum_{i=1}^m \mathbf{w}_i \left(\frac{1}{2} X^T \mathbf{A}_i X + X^T \mathbf{b}_i \right)$$

Example

- Data taken from

¹¹Vachon, M. J., Ray, R. J., Walsh, K. R., and Ennix, K., "F/A-18 Aircraft Performance Benefits Measured During the Autonomous Formation Flight Project," AIAA-2003-4491, 2002.

¹²Hansen, J. L. and Cobleigh, B. R., "Induced Moment Effects of Formation Flight Using Two F/A-18 Aircraft," AIAA-2002-4489, 2002.

- Method applied
 - Combining Rolling moment, Pitching moment, Yawing moment

Results of fit to unimodal function

(a) Fuel flow performance function

(b) Rolling moment performance function

(c) Pitching moment performance function

(d) Yawing moment performance function

Result of forming blended performance function

(a) Fuel flow optimization

(b) Fuel flow performance function

Extremum Seeking Algorithm on a Performance Function

Questions?