Examen

Durée : 2 heures Documents autorisés

<u>Message</u>: merci aux étudiants volontaires pour participer à l'organisation de la conférence ECAI'2012 (27-31 août, http://www2.lirmm.fr/ecai2012) de nous laisser leurs nom et adresse mail préférée (pas sur la copie SVP), nous les recontacterons en temps utile. Si vous hésitez et attendez d'en savoir plus, indiquez-le nous aussi!

Exercice 1. Raisonnement en logique des propositions

(4pts)

Soit la base de faits $BF = \{A,D,G\}$. Soit la base de règles $BR = \{R1, ..., R5\}$, avec :

> R1: $A \land B \rightarrow C$ R2: $A \land C \rightarrow E$ R3: $D \land F \rightarrow E$ R4: $E \land F \rightarrow H$ R5: $G \rightarrow F$

- 1) Quels faits peuvent être ajoutés à BF par chaînage avant ?
- 2) Y-a-t-il des règles qui ne sont pas déclenchées sur cet exemple?
- 3) Formuler la question "C se déduit-il de BF et BR ?" sous la forme d'une instance du problème SAT. Cette instance est-elle satisfiable ?
- 4) Quelles sont les clauses unitaires (initiales) de l'instance de SAT obtenue ? Si vous exécutez DPLL sur cet exemple, que remarquez-vous de particulier ? [On ne vous demande pas de donner la trace de DPLL sur l'exemple.]

Exercice 2. Chaînage avant avec des règles d'ordre 1

(3pts)

On considère la base de connaissances suivante :

• Règles (les quantificateurs universels sont implicites)

R1:
$$p(x1,y1) \land q(y1,x1) \rightarrow q(y1,y1)$$

R2: $q(x2,y2) \rightarrow r(y2)$

Faits

Saturer la base de faits avec les règles, en procédant en largeur (calcul de tous les nouveaux homomorphismes des hypothèses de règles dans la base de faits à chaque étape, puis application des règles selon ces homomorphismes, avant de passer à l'étape suivante; cf. l'algorithme FC du cours).

Présenter les résultats dans un tableau selon le format suivant :

Etape	Règle applicable	Homomorphisme	Application utile?	Fait ajouté (si application utile)
n° étape	n° règle		oui/non	(si application utile)
• • •	•••	•••	oui/non	•••

(3pts)

On considère les 4 règles suivantes, dans lesquelles les majuscules désignent des constantes :

R1: $q(x,x) \land p(B,x) \rightarrow p(x,A)$ R2: $p(x,B) \land p(y,C) \rightarrow r(x, y, A, x)$ R3: $r(B,x,x,y) \rightarrow q(x,y)$ R4: $p(x,y) \land p(y,z) \rightarrow q(B,C)$

Dessiner le graphe de dépendance des règles, avec la convention suivante : un arc de Ri vers Rj signifie que Rj dépend de Ri ("Ri peut déclencher Rj").

Exercice 4. Algorithme de recherche d'homomorphisme

(4 pts)

Dessiner l'arbre construit par l'algorithme de backtrack du cours recherchant s'il existe un homomorphisme de A1 dans A2 avec :

```
A1 = \{r(x,y,z), p(z,t), p(t,x), p(x,y)\}A2 = \{r(a,b,c), r(b,a,d), p(c,b), p(d,c), p(b,a)\}
```

Les variables de $\mathcal{A}1$ sont considérées dans l'ordre x y z t, et les constantes de $\mathcal{A}2$ dans l'ordre a b c d. Marquer par X une feuille échec (la condition de solution partielle n'est pas satisfaite) et par O une solution, s'il en existe une.

Exercice 5. De "Homomorphisme" à "CSP"

(5pts)

Le problème *Homomorphisme* prend en entrée deux ensembles d'atomes $\mathcal{A}1$ et $\mathcal{A}2$ (représentant des formules existentielles conjonctives) et demande s'il existe un homomorphisme de $\mathcal{A}1$ dans $\mathcal{A}2$.

Le problème *CSP* prend en entrée un réseau de contraintes (X,D,C), où X est l'ensemble des variables, D est l'union des domaines des variables (on note Di le domaine de la variable Xi), et C est l'ensemble des contraintes. On suppose que les contraintes sont définies en extension (c'est-à-dire par énumération des tuples de valeurs compatibles).

On veut construire une transformation de Homomorphisme à CSP, de façon à ce qu'il existe un homomorphisme de $\mathcal{A}1$ dans $\mathcal{A}2$ si et seulement si le réseau obtenu par transformation de $\mathcal{A}1$ et $\mathcal{A}2$ admet une solution. On veut même avoir que tout homomorphisme de $\mathcal{A}1$ dans $\mathcal{A}2$ "correspond" à une solution au réseau de contraintes, et réciproquement.

- 1) Définir une telle transformation, en considérant que $\mathcal{A}1$ ne contient que des variables, et que chaque atome de $\mathcal{A}1$ a des variables distinctes (on n'a pas p(x,x) ou q(x,y,x) par exemple).
- 2) Appliquer cette transformation à l'exemple de l'exercice 3. Le réseau obtenu est-il arc-consistant ? Si non, le rendre arc-consistant (on vous demande juste de donner le résultat, pas de dérouler un algorithme : le domaine de chaque variable et le contenu de chaque contrainte une fois le réseau rendu arc-consistant).
- 3) Etendre la transformation définie à la question 1 sans restriction sur $\mathcal{A}1$: un atome de $\mathcal{A}1$ peut contenir plusieurs fois la même variable et peut contenir des constantes.

Exercice 6. Modélisation en contraintes

(3pts)

Modéliser le jeu suivant sous forme d'un réseau de contraintes (c'est-à-dire définir un réseau de contraintes tel que toute solution au jeu correspond à une solution au réseau de contraintes).

Le jeu du ball-box est composé de n balles numérotées de 1 à n et de 3 boites. Il faut mettre chaque balle dans une des trois boites de sorte que pour tout triplet de balles numérotées i, j et k se trouvant dans la même boite, on n'a pas i + j = k.