数字电路与数字逻辑实验-实验4:译码器电路原理及应用

陈刚 副教授,无人系统研究所 数据科学与计算机学院 中山大学

https://www.usilab.cn/team/chengang/

实验目的

- 熟悉译码器的功能与使用方法
- 3-8译码器使用:最小项法
- 使用3-8译码器设计加法器
- 对应教材实验3.3

组合逻辑:译码器

- 译码器:它能将输入的二进制代码译成对应的高低电平信号或者另一种代码。
- •用于驱动七段数码管的 8421码七段译码驱动器就是一种译码器。 例如:显示0,需要点亮 a,b,c,d,e,f,熄灭g。
- 3-8译码器:输入3位二进制代码译成对应8线制电平 状态。例如:输入001,就可以点亮8个灯中的第一个 灯

8/26/2018

组合逻辑:3-8译码器

• 3-8译码器

'LS138, SN54138, SN74S138A FUNCTION TABLE

INPUTS					CHITRUITS							
ENABLE		SELECT			OUTPUTS							
G1	Ğ2*	С	В	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	٧7
×	н	×	×	×	Н	Н	н	Н	н	н	H	н
L	X	×	×	×	н	н	н	н	н	н	н	н
н	L	L	L	L	L	н	н	н	н	н	н	Н
н	L	L	L	н	н	L	н	Н	н	н	н	н
н	L	L	н	L	н	н	L	н	н	н	н	н
н	L	L.	н	н	н	н	н	L	н	Н	Н	н
н	L	н	L	L	н	н	н	н	L	н	н	н
н	L	н	L	н	н	н	н	н	н	L,	Н	н
н	L	н	н	L	н	н	н	Н	Н	н	L	н
Н	L	н	н	н	н	Н	н	н	н	H	H	L

• G2 = G2A + G2B

 $H \Rightarrow high level$, $L \Rightarrow low level$, $X \Rightarrow irrelevant$

组合逻辑:3-8译码器

• 3-8译码器对应最小项

 $a+b+c+d=\bar{a}\bar{b}\bar{c}\bar{d}$

• 可以大大简化电路设计: 真值表->最小项(非)+或电路->最小项+与非门电路

'LS138, SN54138, SN74S138A FUNCTION TABLE

	OUTPUTS											
ENABLE SE			ELEC	T I	OUTPOIS							
G1	Ğ2*	С	В	A	YO	<u>Y1</u>	Y2	Y3	Y4	Y5	Y6	Y7
×	Н	×	×	×	Н	Н	н	Н	Н	Н	H	н
L	X	×	×	×	н	н	н	н	н	н	н	н
н	L	L	L	L	L	н	н	н	н	н	Н	н
н	L	L	L	н	н	L	н	Н	н	н	н	н
н	L	L	н	L	н	н	L	н	н	н	н	н
н	L	L.	н	н	н	н	н	L	н	Н	н	н
н	L	н	Ļ	L	н	н	н	н	L	н	Н	н
н	L	н	L	н	н	н	н	н	н	L,	н	н
н	L	н	н	L	н	н	н	Н	Н	н	L	н
Н.	L	н	Н	Н	н	Н	н	Н	н	н	н	L

 \overline{G} 2 = \overline{G} 2A + \overline{G} 2B H ⇒ high level, L ≃ low level, X = irrelevant

$$Y0 = \overline{C} \, \overline{B} \, \overline{A} = \overline{m0}$$

$$Y1 = \overline{C} \, \overline{B} \, \overline{A} = \overline{m1}$$

$$Y2 = \overline{C} \, \overline{B} \, \overline{A} = \overline{m2}$$

$$Y3 = \overline{C} \, \overline{B} \, \overline{A} = \overline{m3}$$

$$Y4 = \overline{C} \, \overline{B} \, \overline{A} = \overline{m4}$$

$$Y5 = \overline{C} \, \overline{B} \, \overline{A} = \overline{m5}$$

$$Y6 = \overline{C} \, \overline{B} \, \overline{A} = \overline{m6}$$

$$Y7 = \overline{C} \, \overline{B} \, \overline{A} = \overline{m7}$$

3-8译码器实现全加器

• A, B是加数, S是本位和, C_n是本位进位

	输入	输出			
A	В	C_n	S	C_{n+1}	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

$$S = \overline{A} \, \overline{B}C_n + \overline{A} \, B\overline{C_n} + A \, \overline{B} \, \overline{C_n} + ABC_n$$

$$C_{n+1} = \overline{A} \, BC_n + A\overline{B}C_n + AB\overline{C_n} + ABC_n$$

$$S = \overline{A} \, \overline{B}C_n + \overline{A} \, \overline{B}\overline{C_n} + A \, \overline{B} \, \overline{C_n} + ABC_n = \overline{m1} \, \overline{m2} \, \overline{m4} \, \overline{m7}$$

$$C_{n+1} = \overline{A} \, BC_n + A\overline{B}C_n + AB\overline{C_n} + ABC_n = \overline{m3} \, \overline{m5} \, \overline{m6} \, \overline{m7}$$

3-8译码器实现全加器

• A, B是加数, S是本位和, C_n是本位进位

		输入		输	i出	$S = \overline{A} \overline{B} C_n + \overline{A} B \overline{C_n} + A \overline{B} \overline{C_n} + ABC_n = \overline{m1} \overline{m2} \overline{m4} \overline{m7}$
	A	В	C_n	S	C_{n+1}	$C_{n+1} = \overline{A} BC_n + A\overline{B}C_n + AB\overline{C_n} + ABC_n = \overline{m3} \overline{m5} \overline{m6} \overline{m}$
	0	0	0	0	0	
	0	0	1	1	0	
	0	1	0	1	0	
	0	1	1	0	1	
	1	0	0	1	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1	0	1	0	1	Cn A 3-8线译码器 Y2 Y3
	1	1	0	0	1	1 G1 3-85以降和马高岛 Y4 Y5 Y5
	1	1	1	1	1	G2A G2B Y6 ∀7 W → Cn+
i I				1		· • • • • • • • • • • • • • • • • • • •

实验内容

- 将实验1中74LS197电路的 CPO 接 10KHz 连续脉冲,
 74LS197 的输出端 Q3、 Q2、 Q1、 Q0 依次与 74LS138
 的输入端 G1、 C、 B、 A 相连, 74LS138使能端G2A和
 G2B置低。使用示波器数字通道观测并记录 G1、 C、 B、
 A 和 Y0 、 Y1 、 Y2 、 Y3 、 Y4 、 Y5 、 Y6 、Y7 波形,分析波形之间的相位关系。
- •设计一个设计一个带控制端的半加半减器,输入为 S、 A、B,其中 S 为功能选择口。当 S=0 时,输出 Y 为 A+B 及进位 Cn;当 S=1 时,输出 Y 为 A-B 及借位 Cn。

8/26/2018

实验内容

- (1) 利用卡诺图化简后只使用门电路实现
- (2) 使用 74LS138 实现,可参照实验原理中全加器的设计方法。

表 3-6 带控制端的半加半减器功能表

S	输入1	输入2	输出 Y	进/借位 C _n
0	A	В	A+B	进位
1	A	В	A-B	借位

实验报告

- 写出详细的设计过程;用 Proteus 软件画出电路图 并进行仿真测试。
- 按实验内容分别描述每个实验过程,分析实验中出现的问题,记录实验波形,打印波形并分析波形与电路功能之间的联系。
- 总结组合逻辑电路的本质与设计实现方法,陈述实验过程所得。

8/26/2018

Questions?

Comments?

Discussion?