CBOR

From Wikipedia, the free encyclopedia

CBOR (Concise Binary Object Representation) is a binary data serialization format loosely based on JSON. It is defined in IETF RFC 7049 (https://tools.ietf.org/html/rfc7049).^[1]

Amongst other uses, it is the recommended data serialization layer for the CoAP Internet of Things protocol suite.^[2]

Contents

- 1 Specification of the CBOR encoding
- 2 How Major Type and Additional Type is handled in each data item?
 - 2.1 CBOR Data Item Header
 - 2.2 Primitives (Major Type = 7)
 - 2.2.1 Break control code (Additional Type Value = 31)
 - 2.2.2 IEEE 754 Floats (Additional Type Value = 25 or 26 or 27)
 - 2.2.3 Simple Value
- 3 Semantic Tag Registration
- 4 Implementations
- 5 References
- 6 External links

Specification of the CBOR encoding

A CBOR encoded data is seen as a stream of data items. E.g.

CBOR Data	Data Item 1					Data Item X			
Byte Count		(CBOR Data m Header)	Variable	Variable		1 Byte (CBOR Data Item Header) Variable Varia		Variable	etc
Structure	Major Type	Additional Information	Payload Length (optional)	Data Payload (optional)	Major Type	Additional Information	Payload Length (optional)	Data Payload (optional)	etc
Bit Count	3 Bits	5 Bits	8 Bits × Variable	8 Bits × Variable	3 Bits	5 Bits	8 Bits × Variable	8 Bits × Variable	etc

How Major Type and Additional Type is handled in each data item?

Each data item behaviour is defined by the Major Type and Additional Type. The major type is used for selecting the main behaviour or type of each data item.

The additional type is additional information whose exact behaviour is dependent on the Major Type value.

CBOR Data Item Header

Below table illustrate how the CBOR data item header works

Major Type Value			Additional Type Value (unsigned) Additional Type Meaning		Payload Length Exist	Data Payload Exist				
			The 5-bit additional information is either the integer itself (for additional information values 0 through 23) or the length of additional data.							
			0 to 23 (0x0 to 0x17) (0b00000 to 0b10111)	Used directly as the data payload. Thus keeping a compact size.	No	No				
Unsigned Integer	0	0ь000	24	Next Byte is uint8_t in Data Payload Section	No	Yes				
			25	Next 2 Bytes uint16_t in Data Payload Section	No	Yes				
			26	Next 4 Bytes is uint32_t in Data Payload Section	No	Yes				
			27	Next 8 Bytes is uint64_t in Data Payload Section	No	Yes				
			The encoding follows the rules minus the encoded unsigned in	for unsigned integers (major type 0), except that the teger.	value is the	n -1				
	1		0 to 23 (0x0 to 0x17) (0b000000 to 0b10111)	Used directly as the data payload. Thus keeping a compact size.	No	No				
Negative Integer		0b001	24	Next 1 Byte in Data Payload	No	Yes				
			25	Next 2 Bytes uint16_t in Data Payload	No	Yes				
			26	Next 4 Bytes is uint32_t in Data Payload	No	Yes				
			27	Next 8 Bytes is uint64_t in Data Payload	No	Yes				
			The string's length in bytes is represented following the rules for positive integers (major type 0).							
			0 to 23 (0x0 to 0x17) (0b000000 to 0b10111)	Used directly as the data length specifier. Thus keeping a compact size.	No	Yes				
Byte String	2	0b010	24	Next Byte is uint8_t for Payload Length	Yes	Yes				
, ,			25	Next 2 Bytes uint16_t for Payload Length	Yes	Yes				
			26	Next 4 Bytes is uint32_t for Payload Length	Yes	Yes				
			27	Next 8 Bytes is uint64_t for Payload Length	Yes	Yes				
			A text string, specifically a strin	ng of Unicode characters that is encoded as UTF-8 []	RFC3629].					
			0 to 23 (0x0 to 0x17) (0b00000 to 0b10111)	Used directly as the data length specifier. Thus keeping a compact size.	No	Yes				
Text String	3	0b011	24	Next Byte is uint8_t for Payload Length	Yes	Yes				
6			25	Next 2 Bytes uint16_t for Payload Length	Yes	Yes				
			26	Next 4 Bytes is uint32_t for Payload Length	Yes	Yes				
			27	Next 8 Bytes is uint64_t for Payload Length	Yes	Yes				
			Arrays are also called lists, sequ	uences, or tuples. The length denotes the number of	data items i	n array				

			rather than the byte length.							
			0 to 23 (0x0 to 0x17) (0b000000 to 0b10111)	Used directly as the data length specifier. Thus keeping a compact size.	No	No				
Array of Data			24	Next Byte is uint8_t for Payload Length	Yes	No				
Items	4	0b100	25	Next 2 Bytes uint16_t for Payload Length	Yes	No				
			26	Next 4 Bytes is uint32_t for Payload Length	Yes	No				
			27	Next 8 Bytes is uint64_t for Payload Length	Yes	No				
			31	Start of Indefinite Array till next corresponding "Break" Code.	No	No				
			A map of pairs of data items. M	laps are also called tables, dictionaries, hashes, or ob	jects (in JS	SON).				
			The length denotes the number	of data items in array rather than the byte length.						
			Every map entry takes two data	Every map entry takes two data items in sequential order, a key data item and a value data item.						
	5		0 to 23 (0x0 to 0x17) (0b00000 Used directly as the data length specifier. Thus to 0b10111) keeping a compact size.		No	No				
Map of pairs of		0b101	24	Next Byte is uint8_t for Payload Length	Yes	No				
data items			25	Next 2 Bytes uint16_t for Payload Length	Yes	No				
			26	Next 4 Bytes is uint32_t for Payload Length	Yes	No				
			27	Next 8 Bytes is uint64_t for Payload Length	Yes	No				
			31	Start of Indefinite Map till next corresponding "Break" Code.	No	No				
			Used for optional semantic tagg	ging of other major types						
				gs/cbor-tag	gs.xhtml					
			Tag ID	for the semantic meaning of each tag.						
Semantic Tag	6	0b110		Standard Actions						
			0-23	https://tools.ietf.org/html/rfc7049#section-2.4	No	No				
			24-255	Specification Required	No	No				
			256-18446744073709551615	First Come First Served	No	No				
			floating-point numbers and simple data types that need no content, as well as the "break" stop code							
			023	Simple value (value 023 in Additional Type Value)	No	No				
Primitives			24	Simple value (value 32255 in following byte)	No	Yes				
e.g. Break,			25	IEEE 754 Half-Precision Float (16 bits follow)	No	Yes				
Float,	7	0b111	26	IEEE 754 Single-Precision Float (32 bits follow)	No	Yes				
11000,			27	IEEE 754 Double-Precision Float (64 bits follow)	No	Yes				

Simple Values		28					
		29	Unassigned				
		30	1				
		31	"break" stop code for indefinite-length items	No	No		

■ Byte = 8bits

Primitives (Major Type = 7)

The primitives major type has a major type value of 7. It is used for Simple Data types, common complex float types, as well as control code.

	Major Type	Additional Value	Extra Bytes (If Required)							
Bytes	0		1	2	3	4	5	6	7	8
Bit Size	3 bits 5 bits		8	8	8	8	8	8	8	8
Simple Value 0 to 23 (Value X)	7	X=023	Not Used							
Simple Value 24 to 255 (Value X)	7	24	X=24255 Not Used							
IEEE 754 Half-Precision Float (16 bits follow)	7	25	16 bits IEEE 754 Not Used							
IEEE 754 Single-Precision Float (32 bits follow)	7	26	32 bits IEEE 754 Not Use		ed					
IEEE 754 Double-Precision Float (64 bits follow)	7	27	64 bits IEEE 754							
Break From Indefinite Array Or Map	Array Or Map 7 31 Not Used									

Break control code (Additional Type Value = 31)

This is a meta value, that is used in conjunction with arrays and maps set to indefinite length mode. This indicates to the CBOR parser to close the corresponding map or array level.

IEEE 754 Floats (Additional Type Value = 25 or 26 or 27)

This allows for storing floats, encoded as IEEE 754 float values.

Simple Value

Most simple values are either unassigned or reserved for future improvements.

However these are defined.

Simple Value	Semantic
20	Boolean False
21	Boolean True
22	Null
23	Undefined

Semantic Tag Registration

 $IANA\ has\ created\ the\ CBOR\ Tags\ registry, located\ in\ https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml\ .$ Registration must contain these template.

		Template							
Semantic Tag Type	Range	Data Item	Semantic Description (Short Form)	Point Of Contact	Description Of Semantics (URL)				
Standard Actions	0-23	Required	Required	N/A	N/A				
Specification Required	24-255	Required	Required	N/A	N/A				
First Come First Served	256- 18446744073709551615	Required	Required	Required	Description is optional. The URL can point to an Internet-Draft or a web page.				

https://tools.ietf.org/html/rfc7049#section-7.2

Implementations

Name	Primary author	Language	License	Source	Remarks
cbor-js	Patrick Gansterer	JavaScript	MIT	https://github.com/paroga/cbor-js	
node-cbor	Joe Hildebrand	JavaScript	MIT	https://github.com/hildjj/node-cbor	
CBOREncode	Pavel Gulbin	PHP	PHP	https://github.com/2tvenom/CBOREncode	
cbor	Pavel Gulbin	Go	WTFPL	https://github.com/2tvenom/cbor	
cbor_go	Brian Olson	Go	APL 2.0	https://github.com/brianolson/cbor_go	
go-codec	Ugorji Nwoke	Go	MIT	https://godoc.org/github.com/ugorji/go/codec	Also handles JSON, MsgPack and BinC.
rust-cbor	Andrew Gallant	Rust	MIT or Unlicense	https://github.com/BurntSushi/rust-cbor	
cbor-codec	Toralf Wittner	Rust	MPL 2.0	https://twittner.gitlab.io/cbor-codec/cbor/	
SwiftCBOR	greg@unrelenting.technology	Swift	Unlicense	https://github.com/myfreeweb/SwiftCBOR	
CBOR.jl	Saurav Sachidanand	Julia	MIT	https://github.com/saurvs/CBOR.jl	
Lua-CBOR	Kim Alvefur	Lua	MIT	https://www.zash.se/lua-cbor.html	
org.conman.cbor	Sean Conner	Lua	LGPL-3	https://github.com/spc476/CBOR	
cbor_py	Brian Olson	Python	APL 2.0	https://github.com/brianolson/cbor_py	
flynn	Fritz Conrad Grimpen	Python	MIT	https://github.com/fritz0705/flynn	

cbor2	Alex Grönholm	Python	MIT	https://github.com/agronholm/cbor2	
CBOR::XS	Marc Lehmann	Perl	GPL-3	http://software.schmorp.de/pkg/CBOR-XS.html	
cbor-ruby	Sadayuki Furuhashi Carsten Bormann	Ruby	APL 2.0	https://github.com/cabo/cbor-ruby	
libcbor-ruby	Pavel Kalvoda	Ruby	MIT	https://github.com/PJK/libcbor-ruby	Binding to libebor.
cbor-erlang	Jihyun Yu	Erlang	BSD-3- clause	https://github.com/yjh0502/cbor-erlang	
excbor	Carsten Bormann	Elixir	not specified, ask the author	https://github.com/cabo/excbor	
CBOR	R. Kyle Murphy	Haskell	LGPL-3	https://github.com/orclev/CBOR	
bore	Joe Hildebrand Friedel Ziegelmayer	JavaScript	MIT	https://github.com/dignifiedquire/borc	Fork of node-cbor.
borc-refs	Joe Hildebrand Friedel Ziegelmayer Sandro Hawke	JavaScript	MIT	https://github.com/sandhawke/borc-refs	Fork of bore.
CBOR	Peter Occil	C#	Public domain software	https://github.com/peteroupc/CBOR	Also handles JSON.
Jackson	Tatu Saloranta	Java	APL-2.0	https://github.com/FasterXML/jackson-dataformats-binary/tree/master/cbor	Also handles other formats.
cbor-java	Constantin Rack	Java	APL-2.0	https://github.com/c-rack/cbor-java	
jacob	J.W. Janssen	Java	APL-2.0	https://github.com/jawi/jacob	
RIOT	Kevin Funk Jana Cavojska	С	LGPL-2.1	https://github.com/RIOT- OS/RIOT/blob/master/sys/cbor/cbor.c	Part of RIOT operating system.
cn-cbor	Joe Hildebrand Carsten Bormann	С	MIT	https://github.com/cabo/cn-cbor	
cbor-cpp	Stanislav Ovsyannikov	C++	APL-2.0	https://github.com/naphaso/cbor-cpp	
libcbor	Pavel Kalvoda	С	MIT	https://github.com/PJK/libcbor	
tinycbor	Intel	С	MIT	https://github.com/01org/tinycbor	
cbor-d	Andrey Penechko	D	Boost 1.0	https://github.com/MrSmith33/cbor-d	

clj-cbor	Greg Look	Clojure	Unlicense	https://github.com/greglook/clj-cbor	
JSON for Modern C++	Niels Lohmann	C++	MIT	https://github.com/nlohmann/json	Also handles JSON and MsgPack.
borabora	Christoph Engelbert	Java	APL-2.0	https://github.com/noctarius/borabora	
lua- ConciseSerialization	François Perrad	Lua	MIT	https://fperrad.github.io/lua- ConciseSerialization/	
flunn	Fritz Conrad Grimpen Sokolov Yura	Python	MIT	https://pypi.python.org/pypi/flunn	
cbor-qt	Anton Dutov	C++	Public domain	https://github.com/anton-dutov/cbor-qt	
cbor11	Jakob Varmose Bentzen	C++	Public domain	https://github.com/jakobvarmose/cbor11	
cborcpp	Alex Nekipelov	C++	MIT	https://github.com/nekipelov/cborcpp	
GoldFish	Vincent Lascaux	C++	MIT	https://github.com/OneNoteDev/GoldFish	
Library-Arduino- Cbor	Juanjo Tara	C++	APL-2.0	https://github.com/jjtara/Library-Arduino-Cbor	
serde_cbor	Pyfisch	Rust	Apache- 2.0/MIT	https://github.com/pyfisch/cbor	

References

- 1. http://cbor.io/
- 2. http://coap.technology/

External links

• Online tool to convert from CBOR binary to Textual Representation and back. (http://cbor.me/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=CBOR&oldid=798897460"

This page was last edited on 4 September 2017, at 12:56.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

- Contact Wikipedia
- Developers
- Cookie statement