

Raspberry Pi

O que é uma GPIO?

O **GPIO** (General Purpose Input/Output), é um conjunto de pinos metálicos que são responsavéis por fazer a comunicação de entrada e saída de sinais digitais. Ele é composto por 26 pinos no Raspberry Pi B, e 40 pinos no Raspberry Pi B+ nos modelos 2 e 3. Com estes pinos é possível acionar LEDs, Motores, Relês, fazer leitura de sensores e botões, entre vários outros.

O que é uma GPIO?

A porta da GPIO possui 40 pinos no modelo 2 e 3, e nele cada pino possui sua própria função e diversos pinos trabalham para formar um circuito específico.

Os números dos pinos para a porta GPIO são divididos em duas fileiras, a fileira anterior contém os números ímpares, a superior as pares. É fundamental lembrar que quando trabalhamos com a porta GPIO do Pi, na maioria dos outros dispositivos adotam um sistema diferente para a numeração dos pinos.

 Aviso: Jamais conecte qualquer coisa nos pinos que estão reservados, pois eles possuem outras funções do hardware BCM.

Maiores detalhes no site http://pinout.xyz/

3.3v	1	2	5V	
GPIO 2	3	4	5V	
GPIO 3	5	6	GND	
GP104	7	8	GPI0 14	
GND	9	10	GPIO 15	
GPI0 17	11	12	GPIO 18	
	13	14	GND	
	15	16	GPIO 23	
3.3V	17	18	GP10 24	
	19	20	GND	
	21	22	GP10-25	
	23	24	OHO 8	
GND	25	26	9PIO 7	
ID_SD	27	28	ID_SC	
	29	30	GND	
	31	32	GPIO 12	
	33	34	GND	
	35	36	GPIO 16	
	37	38	GP10 20	
GND	39	40	GPI0 21	

Vermelho: Esta é uma saída para alimentação, e possui uma tensão de 5 Volts. Deve tomar cuidado com ela, por que ela não pode entrar em contato de maneira alguma com as outras portas para não queimar.

Laranja: Esta também é uma saída para alimentação, mas com uma tensão de 3.3 Volts. Essa porta é possível comunicar com outras portas, mas é preciso usar um resistor como limitador de corrente para não causar nenhum problema.

Preto: Estas são simplesmente as portas Terra (GROUND), e não existe nenhuma tensão nelas.

Azul: Essas duas portas podem ser programadas para interface I2C (Circuito Inter-integrado). O I2C é um protocolo criado pela fabricante Philips no ano de 2006, para fazer conexões entre periféricos de baixa velocidade. No caso da Raspberry Pi, é usado um barramento entre dois fio, sendo um de dados e outro de *clock*, para comunicação serial entre circuitos integrados montados em uma mesma protboard.

Verde: São as portas que servem para fazer envio e recebimento de dados digitais.

Amarelo: Estas são as portas seriais, que usam o protocolo RS-232 para o envio e recebimento de sinal digital.

Rosa: Estes pinos da GPIO servem também para entrada e saída de dados digitais. Contudo, eles possuem uma comunicação serial Full Duplex síncrono, que permite o processador do Pi comunicar-se com algum periférico externo de forma bidirecional. Mas essa comunicação só acontece, se e somente se o protocolo for usado.

Cinza: Essas são as portas do ID EEPROM (Electrically-

Erasable Programmable Read-Only Memory). Este é um tipo de memória que pode ser programado e apagado várias vezes,

através de uma tensão elétrica externa ou interna.

Você pode programar os pinos para interagir com o mundo real. As entradas podem ser introduzido a partir de um sensor ou de uma ligação a partir de um outro computador ou dispositivo, por exemplo. A saída também pode fazer muitas coisas, podemos ascender uma luz em LED para enviar um sinal ou dados para outro dispositivo. Se o Raspberry Pi está em uma rede, você pode controlar os dispositivos que estão ligados a ele de qualquer lugar e esses dispositivos podem enviar dados de volta. Conectividade e controle de dispositivos físicos sobre a internet é uma coisa poderosa e moderna, e o Raspberry Pi é ideal para isso.

Cuidado!

- Todo cuidado ao manusear os pinos do RPI! Primeiro por serem pinos machos são fáceis de quebrar ou amassar sendo muito difícil substituir eles. (Muito cuidado caso venha a amassar por acidente, ao voltar a posição original, a base pode ficar muito frágil.)
- Outro problema muito sério com as saídas IO é o casamento de impedância e o nível de tensão. Lembre-se que possui saída padrão de 3,3v com saída de no máximo 50mA. Com isso você pode acender um led ou uma porta lógica. Não é aconselhável ligar em um motor, rele ou servo diretamente pois pode fritar o processador.

Bibliotecas necessárias

Há várias bibliotecas em Python para a porta GPIO, então vamos instalar o biblioteca raspberry-gpio-python no site abaixo

https://sourceforge.net/projects/raspberry-gpio-python/

Abra o console do terminal em seu Pi, e digite

\$ sudo wget http://ufpr.dl.sourceforge.net/project/raspberry-gpio-python/RPi.GPIO-0.6.2.tar.gz

Depois descompacte ele com o comando tar:

\$ tar xvzf Rpi.GPIO*

E entre dentro do diretório da biblioteca com o comando cd

\$ cd RPi.GPIO*

Bibliotecas necessárias

E instale a biblioteca python para o GPIO

\$ sudo python setup.py install

Agora para você usar essa biblioteca instalada, é necessário que você sempre importe esse programa ao usar o GPIO, escreva no topo do arquivo esse conteúdo:

import RPi.GPIO as GPIO