

Continuous Performance Improvement

Drain boot 500-V9 & V14 โดยใช้ pump เพียงตัวเดียว

TEAM - A

ชีระพงษ์ นันทะวิชัย

Project sponsor

Member

นักรินทร์ สนธิวงศ์

กฤชชัย แสงนวล

พลวัตร ย่องเส็ง

บุญเทอด พูลเกษม

Project champion

เอกกมล รูปอั้น

วชิระ คำดี

เสมอ มโหธร

เทวราช ปุราสะธัมมัง

หัวข้อที่ร่วมกันเสนอ

- 👸 วิธีเก็บตัวอย่างป้องกัน process ไม่เต็ม Bomb
- 👸 เก็บ 500-SN-12 โดยไม่ใช้ pump 500-P6
- 🁹 Drain boot 500-V9 & V14 โดยไม่ใช้ pump 500-P15-A
- 🍑 เพิ่ม Purity H2 ที่ loop reactor 320/390
- 🍟 ลด suction 432-C4-A เพื่อลด flow air swing
- 🦥 Optimize Ox product เมื่อ Non-aro สูง

หลักการและเหตุผลที่เลือกหัวข้อ

TOPICS

หลักการและเหตุผล

Unit 500 Parex จะมี Inject water demin เพื่อเพิ่มประสิทธิภาพในการดูดซับของ Adsorbent ใช้ในการจับ Para-xylene ซึ่ง ท้ายที่สุด น้ำจะมาที่ Boot 500-V9 & 500-V14 จึงมีงาน Routine ต้องทำการ Drain boot ทุกกะ เพื่อป้องกันไม่ให้น้ำติดไปกับ Process ซึ่งโดยปกติแล้ว 500-V14 จะ Drain ทุกกะ เนื่องจากมีขนาดเล็กทำให้น้ำเต็มเร็ว แต่ 500-V9 มีขนาดใหญ่จึงเฉลี่ยแล้ว Drain ประมาณ 1 ครั้งในช่วง 2 วัน (ทั้งนี้ขึ้นอยู่กับ Load parex เพราะ flow rate inject น้ำจะปรับขึ้น-ลงตาม load)

ระยะเวลาที่ต้อง Drain boot

หลักการและเหตุผล

Vacuum Ejector ใช้ความเร็วลมวิ่งผ่านคอคอด ทำให้เกิดสุญญากาศ แต่ในที่นี้เรานำทฤษฎีมาประยุกต์ใช้กับน้ำ ซึ่งมีความ

เป็นไปได้สูงจึงนำมาใช้ทดลองในกิจกรรมครั้งนี้ nozzle Compressed vac. ์ขั้นตอนการปฏิบัติ 500-V14 500-V9 Start pump 500-P15B Open discharge 500-P15A Close discharge 500-P15A 4 Stop pump 500-P15B 500-P15-A 500-P15-B U-950

A B

รูปภาพอุปกรณ์หน้างานประกอบการทดลอง

วัตถุประสงค์

🧸 เพื่อประหยัดค่าไฟฟ้า ในการ Start pump เพื่อ Drain น้ำใน boot

🔏 ลดการสึกหรอของเครื่องจักร , ค่าบำรุงรักษา

🔬 สร้างจิตสำนึกในการอนุรักษ์พลังงาน

A Cores - กล้าคิดกล้าทำ สร้างสรรค์สิ่งที่ดีกว่า

- พัฒนาตน ทำงานเป็นทีม

แผนผังก้างปลา

เปลี่ยน oil hydraulic หล่อลื่นชุดปรับ stroke PM

Method

Level ของน้ำขึ้นอยู่กับ Load parex

ต้อง Drain น้ำทุกวัน

Process

ใช้เวลา drain นาน

ลดการใช้ไฟฟ้าในการ

Drain boot 500-v14

Environment

เป็นน้ำDrainออกใด้ โดยไม่ใช้ปั๊ม ประหยัดไฟ แต่

มีกลิ่นจึง Drain ออกนอกระบบ

Machine

อายุการใช้งาน

ประสิทธิภาพลคลง

Mis-alignment

ทคลอง Drain boot 500-V9 ตัวเดียวที่ Stroke pump ต่างกันเพื่อเก็บข้อมูล

ทันคว้าข้อมูล ระคับ Level boot 500-V9 และ boot 500-V14

ทคลอง Drain boot 500-V9 และเปิด Discharge boot 500-V14 ที่ Stroke pump ต่างๆกันเพื่อเก็บข้อมูล

Start 500-P15A ตัวเดียว

Stroke (%)	Amp.	PSV pump P15A	Pressure (Bar G.)
25	3.6	Normal	9
50	4.1	Normal	12
75	5.3	Normal	13

จากนั้นทำการบันทึกผลการใช้พลังงานค่าไฟฟ้า เนื่องจากปกติการปฏิบัติงานต้องใช้งานตัว A นี้ด้วย

Start 500-P15B พร้อม เปิด discharge ตัว A

Stroke (%)	Amp.	PSV pump P15B	Pressure (Bar G.)	Level boot V14
25	3.6	Normal	6.2	ରଜରଏ
30	4.1	Normal	7.4	ର୍ମର୍
35	4.3	Pop	8.9	ลดลง ช้า
40	4.4	Pop	11.2	ลดลง ช้า
45	4.8	Pop	11.7	นึ่ง
50	5.0	Pop	12.1	นิ่ง

จากนั้นทำการบันทึกผลการประหยัดพลังงานค่าไฟฟ้า เนื่องจากไม่ต้อง Start 500-P15-A จึงทำให้ save energy ลงไป

Run 500-P15B (ตัวเดียว)

การดำเนินงาน

ภาพประกอบการทดลอง 500-P15-B start drain boot 500-V9 และค่า setting PSV

การดำเนินงาน

VDO 500-P15-A start drain boot 500-V14 ตัวเดียว (Stroke 50%) Amp. Meter : 4.1 amp

การดำเนินงาน

Name plate motor 500-P15-A/B (เหมือนกัน)

SIEMENS (500-PIS //B) SIEMENS MOTOR DATA SHEET TYPE SQUIRREL-CAGE MOTORS TYPE NUMBER 1MA5113-4BA81 กำลังไฟฟ้าสูงสุด PERFORMANCE DATA 3.6 RATED OUTPUT VOLTS 50HZ WYE RATED VOLTAGE POLE & RPM 4/1500 MOMENT OF INERTIA J 0.011 KGM2 INSULATION CLASS F STARTING METHOD DIRECT TYPE OF PROTECTION Exell TEMPERATURE CLASS T-1-T-3 EFFICIENCY AT F.L 84 กระแสไฟฟ้าสูงสุด POWER FACTOR 86 RATED SPEED RATED CURRENT AMPERES AT 400 VOLTS RATED TORQUE LOCKED ROTOR TORQUE PERCENT OF FULL LOAD LOCKED ROTOR CURRENT 660% PERCENT OF FULL LOAD CURRENT BREAKDOWN TORQUE 290% PERCENT OF FULL LOAD NO. OF STARTS - - 2 COLD HOT PER. LOCKED ROTOR TIME 9 TO T-3 2. CONSTRUCTION DATA FRAME SIZE 112M IP55 DEGREE OF PROTECTION MOUNTING B-5 BEARINGS 62062ZC3 62062ZC3 N.D.E LUBRICATION GREASE RECCOMENDED TYPES : SHELL ALVANIA R-3 ESSO UNIREX N3 TYPE OF GREASING SEALED FOR 40,000 HRS METHOD OF COOLING ICI0141 DIRECTION OF ROTATION: BIDIRECTIONAL NOISE LPA 53 SOUND PRESSURE NOISE LWA 65 SOUND POWER 29 WEIGHT KG 3. ACCESSORIES

ผลการคำเนินงาน

- (i) สามารถ Drain boot 500-V9 และ 500-V14 พร้อมกันได้ที่ Stroke 500-P15-B : 25 %
- (i) ลดระยะเวลา และเพิ่มความสะดวกในการ Drain boot
- (i) คำนวนค่าพลังงานไฟฟ้า โดยสูตร

ผลการดำเนินงาน

คิดค่าไฟฟ้า (บาท) = กำลังไฟฟ้า (KW.)x ชั่วโมงทำงาน x จำนวนวัน x (ค่าไฟต่อหน่วย + ค่าFT.)

ผลการคำเนินงาน

(i) ในส่วนของการลด Stroke pump ยังสามารถลดค่ากะแสไฟฟ้าได้อีก คือ ปกติ drain boot ที่ Stroke 50 % ซึ่งมอเตอร์กินกระแสไฟฟ้าที่ 5.3 amp.หากใช้ Stroke pump 25 % มอเตอร์จะกินกระแสไฟฟ้าที่ 3.6 amp.

(Drain ประมาณ 16 ครั้ง / เดือน)

ประหยัดค่าไฟฟ้า 158 บาท / เดือน

Stroke 25 % ใช้เวลา drain ประมาณ 30 นาที

นาที. (Drain ประมาณ 60 ครั้ง / เดือน)

ประหยัดค่าไฟฟ้า 198 บาท / เดือน

Stroke 25 % ใช้เวลา drain ประมาณ 15 นาที

สรุปผล การประหยัดค่าพลังงานไฟฟ้า

1. กรณี Drain boot พร้อมกัน โดยใช้ pump ตัวเคียว (500-P15B)

$$76.5 * 12 = 918$$
 บาท/ปี

2. กรณี ลด Stroke pump จาก 50% เป็น 25%

$$158*12 = 1,896 บาท/ปี$$

500-P15A (*Boot V14*)

$$198*12 = 2,376 บาท/ปี$$

รวมทั้งหมด <mark>5,190</mark> บาท/ปี

สรุปผลการดำเนินงาน

ทั้งนี้อัตราการประหยัดค่าไฟฟ้า คงไม่ใช่ประเด็นหลักที่ทางกลุ่มเราต้องการ แต่ผลทางอ้อมที่ได้คือ **ลดค่าใช้จ่าย ใน** การซ่อมบำรุง Pump และยังเป็นการส่งเสริมให้พนักงาน มีความคิดริเริ่มสร้างสรรค์ จากการใช้หลัก วิชาการ ที่สามารถนำมาประยุกต์ใช้งานได้ในโครงการงานอื่นๆได้ต่อไป

ทางกลุ่มได้นำข้อมูลผลการทดลอง ส่งให้เพื่อนพนักงานทุกกะได้นำไปปฏิบัติ และพิสูจนได้ว่าสามารถใช้งานได้จริง

Boot	Start Pump	Stroke
500-V14 only	500-P15-A	25%
500-V9 & V14	500-P15-B only	25%

