

FIGURE D.2.3 The ALU control block generates the four ALU control bits, based on the function code and ALUOp bits. This logic is generated directly from the truth table in Figure D.2.2. Only four of the six bits in the function code are actually needed as inputs, since the upper two bits are always don't cares. Let's examine how this logic relates to the truth table of Figure D.2.2. Consider the Operation2 output, which is generated by two lines in the truth table for Operation2. The second line is the AND of two terms (F1 = 1 and ALUOp1 = 1); the top two-input AND gate corresponds to this term. The other term that causes Operation2 to be asserted is simply ALUOp0. The set wo terms are combined with an OR gate whose output is Operation2. The outputs Operation0 and Operation1 are derived in similar fashion from the truth table. Since Operation3 is always 0, we connect a signal and its complement as inputs to an AND gate to generate 0.

Copyright © 2021 Elsevier Inc. All rights reserved