$HO\pi$ in Coq

Guillaume Ambal, Sergueï Lenglet and Alan Schmitt

- Model of concurrent and communicating systems
 - First-order: inert data (channel names, ...)
 - ► Higher-order: executable processes
- ► Behavioral equivalence proofs (bisimulation): complex, prone to error
- Very few formalization of higher-order process calculi
- Difficulty: binders

Communication channel names a, b, c, ...Process variables X, Y, Z, ...

P, Q ::=

Communication channel names a, b, c, ...Process variables X, Y, Z, ...

$$P, Q ::= \emptyset$$

nil process

$$P,\,Q ::= \oslash \qquad \qquad \text{nil process} \\ \mid P \parallel \, Q \qquad \qquad \text{parallel composition}$$

$$P,\,Q := \oslash$$
 nil process
$$\mid P \parallel \, Q$$
 parallel composition
$$\mid X$$
 variable
$$\mid a(X).P$$
 process input

$$a(X).(X \parallel b(Y).Y)$$

$$a(X).(X \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash)$$

$$P,\,Q::=\,\oslash$$
 nil process $\mid P \mid \mid Q$ parallel composition $\mid X$ variable $\mid a(X).P$ process input $\mid \overline{a}\langle P \rangle.Q$ process output

$$a(X).(X \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash) \parallel \overline{a}\langle \overline{b}\langle c(Z).Z \rangle. \oslash \rangle \oslash$$

$$P,\,Q::=\,\oslash$$
 nil process $\mid P \mid \mid Q$ parallel composition $\mid X$ variable $\mid a(X).P$ process input $\mid \overline{a}\langle P \rangle.Q$ process output

$$a(X).(X \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash) \parallel \overline{a}\langle \overline{b}\langle c(Z).Z \rangle. \oslash) \oslash$$

$$P,\,Q::=\,\oslash$$
 nil process
$$\mid P \parallel \, Q$$
 parallel composition
$$\mid \, X$$
 variable
$$\mid \, a(X).P$$
 process input
$$\mid \, \overline{a}\langle P \rangle.Q$$
 process output

Communication:
$$a(X).P \parallel \overline{a}\langle R \rangle.Q \rightarrow P\{R/X\} \parallel Q$$

$$a(X).(X \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash) \parallel \overline{a}\langle \overline{b}\langle c(Z).Z \rangle. \oslash) \oslash$$

$$P,\,Q::=\,\oslash$$
 nil process $\mid P \mid \mid Q$ parallel composition $\mid X$ variable $\mid a(X).P$ process input $\mid \overline{a}\langle P \rangle.Q$ process output

Communication:
$$a(X).P \parallel \overline{a}\langle R \rangle.Q \rightarrow P\{R/X\} \parallel Q$$

$$a(X). \left(\begin{array}{c|c} X \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash \right) \parallel \overline{a} \left\langle \overline{b}\langle c(Z).Z \rangle. \oslash \right\rangle \oslash$$

$$\rightarrow \overline{b}\langle c(Z).Z \rangle. \oslash \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash \parallel \oslash$$

$$P,\,Q::=\oslash$$
 nil process
$$\mid P \parallel Q \qquad \qquad \text{parallel composition}$$

$$\mid X \qquad \qquad \text{variable}$$

$$\mid a(X).P \qquad \qquad \text{process input}$$

$$\mid \overline{a}\langle P \rangle.Q \qquad \qquad \text{process output}$$

Communication:
$$a(X).P \parallel \overline{a}\langle R \rangle.Q \rightarrow P\{R/X\} \parallel Q$$

$$a(X).(X \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash) \parallel \overline{a}\langle \overline{b}\langle c(Z).Z \rangle. \oslash) \oslash$$

$$\rightarrow \overline{b}\langle c(Z).Z \rangle. \oslash \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash \parallel \oslash$$

Communication channel names a, b, c, ...Process variables X, Y, Z, ...

$$P,\,Q::=\,\oslash$$
 nil process
$$\mid P \parallel \, Q$$
 parallel composition
$$\mid X$$
 variable
$$\mid a(X).P$$
 process input
$$\mid \overline{a}\langle P \rangle.Q$$
 process output

Communication: $a(X).P \parallel \overline{a}\langle R \rangle.Q \rightarrow P\{R/X\} \parallel Q$

$$a(X).(X \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash) \parallel \overline{a}\langle \overline{b}\langle c(Z).Z \rangle. \oslash) \oslash$$

$$\rightarrow \overline{b}\langle c(Z).Z \rangle. \oslash \parallel b(Y).Y \parallel \overline{b}\langle \oslash \rangle. \oslash \parallel \oslash$$

$$\rightarrow \oslash \parallel c(Z).Z \parallel \overline{b}\langle \oslash \rangle. \oslash \parallel \oslash$$

Communication channel names a, b, c, ...Process variables X, Y, Z, ...

Communication: $a(X).P \parallel \overline{a}\langle R \rangle.Q \rightarrow P\{R/X\} \parallel Q$

$$\nu$$
ab. $\left(\overline{a}\langle\overline{b}\langle\oslash\rangle.\oslash\rangle.P\parallel a(X).\overline{d}\langle X\rangle.Q\right)$

$$\nu$$
ab. $\left(\overline{a}\langle \overline{b}\langle \oslash \rangle. \oslash \rangle.P \parallel a(X).\overline{d}\langle X \rangle.Q\right) \parallel a(X).X$

$$\nu$$
ab. $\left(\overline{a}\langle\overline{b}\langle\oslash\rangle.\oslash\rangle.P\parallel a(X).\overline{d}\langle X\rangle.Q\right)$

$$\nu ab. \Big(\overline{a} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. P \parallel a(X). \overline{d} \langle X \rangle. Q \Big)$$

$$\rightarrow \nu ab. \Big(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \Big)$$

$$\nu ab. \Big(\overline{a} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. P \parallel a(X). \overline{d} \langle X \rangle. Q \Big)$$

$$\rightarrow \nu ab. \Big(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \Big) \parallel d(Y). (Y \parallel R)$$

$$\nu ab. \left(\overline{a} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. P \parallel a(X). \overline{d} \langle X \rangle. Q \right)$$

$$\rightarrow \nu ab. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R)$$

$$\rightarrow \nu ab. \left(P \parallel Q \right) \parallel \overline{b} \langle \oslash \rangle. \oslash \parallel R$$

$$\nu ab. \Big(\overline{a} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. P \parallel a(X). \overline{d} \langle X \rangle. Q \Big)$$

$$\rightarrow \nu ab. \Big(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \Big) \parallel d(Y). (Y \parallel R)$$

$$\simeq \nu ba. \Big(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \Big) \parallel d(Y). (Y \parallel R)$$

Syntax: $P, Q ::= \oslash \mid P \parallel Q \mid X \mid a(X).P \mid \overline{a}\langle P \rangle.Q \mid \nu a.P$

$$\nu ab. \left(\overline{a} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. P \parallel a(X). \overline{d} \langle X \rangle. Q \right) \\
\rightarrow \nu ab. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R) \\
\simeq \nu ba. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R) \\
\simeq \nu b. \left(\nu a. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R) \right)$$

$$\nu ab. \left(\overline{a} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. P \parallel a(X). \overline{d} \langle X \rangle. Q \right) \\
\rightarrow \nu ab. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R) \\
\simeq \nu ba. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R) \\
\simeq \nu b. \left(\nu a. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R) \right) \\
\rightarrow \nu b. \left(\nu a. (P \parallel Q) \parallel \overline{b} \langle \oslash \rangle. \oslash \parallel R \right)$$

Syntax: $P, Q ::= \bigcirc \mid P \parallel Q \mid X \mid a(X).P \mid \overline{a}\langle P \rangle.Q \mid \nu a.P$

$$\nu ab. \Big(\overline{a} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. P \parallel a(X). \overline{d} \langle X \rangle. Q \Big)$$

$$\rightarrow \nu ab. \Big(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \Big) \parallel d(Y). (Y \parallel R)$$

$$\simeq \nu ba. \Big(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \Big) \parallel d(Y). (Y \parallel R)$$

$$\simeq \nu b. \Big(\nu a. \Big(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \Big) \parallel d(Y). (Y \parallel R) \Big)$$

$$\rightarrow \nu b. \Big(\nu a. (P \parallel Q) \parallel \overline{b} \langle \oslash \rangle. \oslash \parallel R \Big)$$
Input: $P \xrightarrow{a} (X)R$ Output: $Q \xrightarrow{\overline{a}} \nu \overline{b}. \langle S \rangle T$

Syntax: $P, Q ::= \oslash \mid P \parallel Q \mid X \mid a(X).P \mid \overline{a}\langle P \rangle.Q \mid \nu a.P$

$$\nu ab. \left(\overline{a} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. P \parallel a(X). \overline{d} \langle X \rangle. Q \right)$$

$$\rightarrow \nu ab. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R)$$

$$\simeq \nu ba. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R)$$

$$\simeq \nu b. \left(\nu a. \left(P \parallel \overline{d} \langle \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R) \right)$$

$$\rightarrow \nu b. \left(\nu a. (P \parallel Q) \parallel \overline{b} \langle \oslash \rangle. \oslash \rangle. Q \right) \parallel d(Y). (Y \parallel R) \right)$$

$$\ln put: P \xrightarrow{a} (X)R \qquad \text{Output: } Q \xrightarrow{\overline{a}} \nu \overline{b}. \langle S \rangle T$$

$$\frac{P \xrightarrow{a} (X)R}{P \parallel Q \rightarrow \nu \overline{b}. (R \{S/X\} \parallel T)} \quad \widetilde{b} \cap \text{fn}(R) = \emptyset$$

What we formalize

- ▶ Congruence: if $P \sim Q$ then $P \parallel R \sim Q \parallel R$, $\nu a.P \sim \nu a.Q$, . . .
- ► Howe's method [CONCUR 15]

Binder

Binders

Process input a(X).P: binds process variables X

- Static scope
- Process variables are substituted (by processes)
- Forbids computation

Name restriction $\nu a.P$, $\nu \tilde{a}.\langle P \rangle Q$: binds names a

- Dynamic scope
- ▶ No substitution
- Allows computation

Binders

Process input a(X).P: binds process variables X

- Static scope
- Process variables are substituted (by processes)
- Forbids computation

Similar to λ -abstraction: any representation

Name restriction $\nu a.P$, $\nu \tilde{a}.\langle P \rangle Q$: binds names a

- Dynamic scope
- No substitution
- Allows computation

Binders

Process input a(X).P: binds process variables X

- Static scope
- Process variables are substituted (by processes)
- Forbids computation

Similar to λ -abstraction: any representation

Name restriction $\nu a.P$, $\nu \tilde{a}.\langle P \rangle Q$: binds names a

- Dynamic scope
- No substitution
- Allows computation

Locally nameless (CPP 18) and Nominal

Locally Nameless

Locally nameless

Bound names are de Bruijn indices

$$\nu ba.(\overline{a}\langle \overline{b}\langle \oslash \rangle. \oslash \rangle. \oslash \parallel a(X).\overline{d}\langle X\rangle. \oslash) \parallel d(Y).Y$$

$$\rightsquigarrow \nu.\nu.(\overline{\mathbb{Q}}\langle \overline{\mathbb{I}}\langle \oslash \rangle. \oslash \rangle. \oslash \parallel \mathbb{Q}(X).\overline{d}\langle X\rangle. \oslash) \parallel d(Y).Y$$

Locally nameless

Bound names are de Bruijn indices

$$\nu ba.(\overline{a}\langle \overline{b}\langle \oslash \rangle. \oslash \rangle. \oslash \parallel a(X).\overline{d}\langle X\rangle. \oslash) \parallel d(Y).Y$$

$$\rightsquigarrow \nu.\nu.(\overline{\mathbb{Q}}\langle \overline{\mathbb{Q}}\langle \oslash \rangle. \oslash \rangle. \oslash \parallel \mathbb{Q}(X).\overline{d}\langle X\rangle. \oslash) \parallel d(Y).Y$$

- Scope extrusion

Scope extrusion in locally nameless

Bind c then d in

$$\nu ba.\langle P_{abd}\rangle Q_{abcd}$$

Scope extrusion in locally nameless

Bind c then d in

$$\nu ba. \langle P_{abd} \rangle \mathcal{V} C. Q_{abcd}$$

Scope extrusion in locally nameless

Bind c then d in

$$\nu$$
ba. $\langle P_{abd} \rangle \mathcal{VC}.Q_{abcd}$

Scope extrusion in locally nameless

Bind c then d in

$$\nu$$
ba. $\langle P_{abd} \rangle \mathcal{VC}.Q_{abcd}$

Scope extrusion in locally nameless

Bind c then d in

$$\nu dba.\langle P_{abd}\rangle \nu C.Q_{abcd}$$

Computing under binders

$$\frac{P \to P'}{\nu a.P \to \nu a.P'}$$

 $\{\mathbb{K} \to a\}P$ replaces \mathbb{K} with a in P

$$\frac{\forall a \notin \mathsf{fn}(P) \cup \mathsf{fn}(P') \qquad \{\mathbb{O} \to a\}P \to \{\mathbb{O} \to a\}P'}{\nu.P \to \nu.P'}$$

Lemma (Renaming)

B If \mathscr{P} holds for $\{\mathbb{K} \to a\}P$, it holds for $\{\mathbb{K} \to b\}P$ if . . .

Nominal

Nominal

As on paper: names and α -equivalence

$$\nu a.P =_{\alpha} \nu b.(P\{b/a\}) \text{ if } b \notin fn(P)$$

Swapping instead of renaming

$$[a \leftrightarrow b](\nu c. Q) \stackrel{\Delta}{=} \nu([a \leftrightarrow b]c).[a \leftrightarrow b]Q$$

Nominal

As on paper: names and α -equivalence

$$\nu a.P =_{\alpha} \nu b.(P\{b/a\}) \text{ if } b \notin fn(P)$$

Swapping instead of renaming

$$[a \leftrightarrow b](\nu c. Q) \stackrel{\Delta}{=} \nu([a \leftrightarrow b]c).[a \leftrightarrow b]Q$$

Lemma

- if $P =_{\alpha} P'$ and $Q =_{\alpha} Q'$ then $P\{Q/X\} =_{\alpha} P'\{Q'/X\}$

Nominal

As on paper: names and α -equivalence

$$\nu a.P =_{\alpha} \nu b.(P\{b/a\}) \text{ if } b \notin fn(P)$$

Swapping instead of renaming

$$[a \leftrightarrow b](\nu c. Q) \stackrel{\Delta}{=} \nu([a \leftrightarrow b]c).[a \leftrightarrow b]Q$$

Lemma

- if $P =_{\alpha} P'$ and $Q =_{\alpha} Q'$ then $P\{Q/X\} =_{\alpha} P'\{Q'/X\}$
- \bigcirc Working modulo α -equivalence
- Swapping lemmas: much simpler than renaming lemmas

Representing outputs

$$R \xrightarrow{\overline{a}} \nu \widetilde{b}. \langle P \rangle Q$$
: list b_1, \ldots, b_n , P , and Q

- New binding structure
- © Redo what we did for processes
- Manipulation of lists

intrinsic

outputs

	Nominal		Locally nameless
intrinsic	lpha-equivalence	<	wf predicate
	name	>	de Bruijn indices
outputs	list of names	<	1 number
	specific $lpha$ -equivalence	\ll	Ø
renaming	swapping	>>>	renaming

	Nominal		Locally nameless
intrinsic	lpha-equivalence	<	wf predicate
	name	>	de Bruijn indices
outputs	list of names	<	1 number
	specific $lpha$ -equivalence	\ll	Ø
renaming	swapping	>>>	renaming
total	4k lines	>>	5k lines

New challenger incoming

pure deBruijn indices

Conclusion and Future Work

- de Bruijn wins! (in a cripples fight)
- More automation, tactics
- Add support for name restriction to existing libraries (Autosubst?)
- More expressive calculi
- Tools for bisimulation (Howe's method)