Name: _____

Student No.:

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. Which of the following ODE's has distinct solutions $y_1, y_2 : I \to \mathbb{R}$ satisfying $y_1(t_0) = y_2(t_0)$ for some $t_0 \in I$?

$$y' = \sin(t y^2) \qquad yy' = 0 \qquad y' = |ty| \qquad y' = y\sqrt{t} \qquad y' = \sqrt{|ty|}$$

$$yy'=0$$

$$y' = |ty|$$

$$y' = y\sqrt{t}$$

$$y' = \sqrt{|ty|}$$

$$\Box$$
1

$$1/(xy)^2$$

$$1/(xy^2)$$

3. The family of curves $y = c/x^2, c \in \mathbb{R}$ satisfies the ODE

$$dy = x^{-2} dx$$

$$dy = 2x^{-3} dx$$

$$dx = dy$$

 $\int 2vx^{-3} dx - x^{-2} dv = 0$

4. For the solution y(t) of the IVP $y' = y^3 - 7y + 6$, y(0) = 0 the limit $\lim_{t \to +\infty} y(t)$ equals

$$-3$$

$$-2$$

$$-1$$

2

5. For the solution y(t) of the IVP y' = (y/t) - 1, $y(1) = \ln 2$ the value y(2) is equal to 0 1 2 $2 \ln 2$

2ln2

6. For the solution y(t) of the IVP $y' = y^2 e^{-t}$, y(0) = -1 the value y(-1) is equal to $1/(e-2) \qquad \qquad \boxed{e+2} \qquad \boxed{1/(e+2)} \qquad \boxed{e-2}$

$$\Box$$

$$1/(e-2)$$

$$e+2$$

$$1/(e+2)$$

7. For the solution y: $(0, +\infty) \to \mathbb{R}$ of the IVP $t^2y'' + 2ty' - 2y = 1$, y(1) = 0, y'(1) = 1the value y(2) is equal to

$$\frac{13}{8}$$

$$\frac{13}{24}$$

$$\frac{19}{8}$$

8. The power series $\sum_{k=1}^{\infty} 2^k z^{k^2}$ has radius of convergence

9. The smallest integer s such that $f_s(x) = \sum_{k=1}^{\infty} \frac{\cos(k^2 x)}{k^s}$ is differentiable on \mathbb{R} is equal to

10. If y(t) solves $y' = t^2y + ty^2$ then z = 1/y(t) solves $z' = -t^2z$ $z' = -t^2z$ $z' = -t^2z - t$ $z' = -t^2z - t$

$$z' = -z^2 + t$$

$$z' = -z^2$$

11. The sequence $\phi_0, \phi_1, \phi_2, \dots$ of Pica has $\phi_2(t)$ equal to	ard-Lindelöf iterates for	r the IVP $y' =$	$y + 2t, \ y(0) = -2$
	$t^2 + \frac{1}{3}t^3$	$2-2t+\frac{1}{3}t^3$	
12. $y'' - 4y' + 4y = 2t + e^{2t}$ has a pa	articular solution $y_p(t)$	of the form	
	$-c_1t+c_2t^2e^{2t}$	$\int c_0 t + c_1 t^2 e^{2t}$	
13. Maximal solutions of $y' = y^2 + y^2$	y satisfying $y(0) >$	0 are defined	on an interval of
the form	$(a, +\infty)$	$(-\infty,b)$	
14. For $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$, the matri	$x e^{At}$ is equal to		
	$\begin{pmatrix} 1+t & -t \\ t & 1-t \end{pmatrix}$		
15. The matrix norm of $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$	(subordinate to the E	uclidean length	on \mathbb{R}^2) is equal to
0	$\sqrt{2}$	2	4
Time allowed: 60 min	CLOSED BOOK		Good luck!