SID #24253445. Jung Lin (Daris) Lee 1) Since radioactive decay & modelled-by a Posson distribution, its proint is IN Error Analysis Excercise $N=1000 \Rightarrow \text{ specific activity} = \lambda = \frac{1000}{5} = 200 \frac{\text{deay}}{\text{min}}$ precision of 1% = 0.01 = IN = IN => N=104. the required = $\frac{N}{\lambda} = \frac{10^4 \text{ deays}}{(200 \frac{\text{deay}}{\text{min}})} = \frac{50 \text{ minutes}}{100 \frac{\text{deays}}{\text{min}}}$ assuming that the measurement doesn't contribute to error. 2) a) 6= 16A2+ OB2 $\delta = \sqrt{\delta_A^2 + \delta_B^2}$ this is basically same as a) "enor both I General function: $f(A,B)=2A+2B \Rightarrow \frac{2f}{\partial A}=2$ $\delta = \delta f = \sqrt{\frac{\partial f}{\partial A}} \delta A)^{2} + \left(\frac{\partial f}{\partial B} \delta B\right)^{2} = \sqrt{(2\delta_{A})^{2} + (2\delta_{B})^{2}} = \sqrt{2\sqrt{\delta_{A}^{2} + \delta_{B}^{2}}}$ d) for miltiplicator: Sf 12 4 5A)2 (B)2 6 = St = A (SA)2 (SB)2 = AB (SA)2 (SB)2 = AB (B)2 = AB (6= B26A2+ A26B2 = (BOA)2+ (A6B)2) After sampling 5 times, (9) See plot attached the expected men = 0 standard deviation = 1 error on the mean = \sqrt{N} = $\sqrt{5}$ = 2.24 2) Using the computer to greate a list of 5 random number we get M=0.0%, $\delta=0.8418$ but this. Can vary alot if a pict another Set of snormally distributed random number 3 The hotogranis contact around a which makes sense because most experiments should yield smething close to M=0, some don't because thee is only 5 number in the list which is relatively small within explains the node spread of the histogram Counts of experient within 1,2,3 sigma is 675, 955, 998 respectively. This agree with expected because absortfull experient (99.8%) lie in 3 syma, less for 1, this agree with expected because absortfull experient (99.8%) lie in 3 syma, less for 1,

4) 10 generate a exportion distribute we a uniform distributate draw a random of and put in into x = -loy(y-1)Normalize $y = l^{x}$ $f(x) = Al^{-x} = \int_{0}^{\infty} A f(x) dx = 1 = A[l^{-x}l^{0}] = A = 1$ $N=\langle x\rangle = \int_{-\infty}^{\infty} e^{-x} dx = 1$ (x2) = 1 x2 e dx = 2 $0 = \sqrt{(x^2)^2 - (x)^2} = \sqrt{2 - 1^2} = \sqrt{1} = 1$ both the near and the staded derivation should be I The ever 15 the studend deviation so it should be one. The histogram thould be contered and one and with a relatively navious peak because the standard deviation is nelatively small The error is = 1 so to the N=100 = from 20.1 @ For N=100, meen = 1.17.17; standard denution = 1.066 3 The distribution is certared amed I and the error is 0.007304 which is close to \$\frac{1}{\sqreeng} = 0.01 agreeng with what I thought. (4) yes, the evan on the mean scales as I was I thought 5) (1) See ortached plots Error = JN (" Poisson process) 2 Meen = 1.20268 ± 10 = # of dataparts = 1000 D= 1000 =10 Standard devication = 0.10379 ± (0.0001) : peak dat given with 5 s.f. 3) we fit y= Ae 202 ad get H=1.20117 and 8=0.10210 The differce ansertion the fact that the gaussian assures a continuous Lunctoral form To the Sit whomas in @ we computed 1180 based on to discrete definition. M= 27 X1 -- Xn in S= (28i-11)2 $\frac{1}{2} = \frac{27 \left(\frac{d_{1}d_{2} - f_{1}t}{2} \right)^{2}}{d_{1}d_{2}} = \frac{39.7}{39.7}$ where docta - 15-the observed draguery of each bin The X2 is large which near that the Baussia distribution may not be a very good fit 6) 1) See attached @ Og = 0.01 MHZ Referring to Numerical recipes 15.2, we many tirally maximize the log-likelihood y=a+bx the uncertainty on the estimated praveters are. 01=5 = 27 6;2 $-\frac{\delta a^2 = \frac{S_{KK}}{\Delta}}{\Delta} = \frac{\sum_{i=1}^{N} \frac{X_i^2}{\delta_i^2}}{\delta_i^2}$ $S_{X} = \sum_{i=1}^{N} \frac{\chi_{i}}{S_{i}^{2}} \qquad S_{XX} = \sum_{i=1}^{N} \frac{\chi_{i}^{2}}{S_{i}^{2}} \qquad S_{XX} = S_{XX} + S_{XX}^{2}$ Compating this for 64=0.01 MHz = 16x=-1.314X10-5 $6f = 1 \text{ Mile } \Rightarrow 6a^2 = -6.49 \times 10^{-7}$ So when the uncertainty on the measured frequency is latter the ever propagates to the paraveter estimation, yielding a greater uncertainty in the stape and intercept extracted from the fix. (3) Uncertainty measured from $\delta = \sum_{i=1}^{N} (y_i - f(x))^2 = 0.1518 = 0.014$.

(4) Using the neighbor least square fit, I obtained a slope of 3.11.287 (rouded up to 3.1) and and an intercept of -0.04518 (rounded up to 0.05) See attached plot of the fit

Question 3:

N=10

mean:-0.00948400059966

standard deviation: 0.323160945998

Number of experiments within 1 sigma: 685 Number of experiments within 2 sigma: 954 Number of experiments within 3 sigma: 998

N=50

mean: 0.00157182550714

standard deviation: 0.141286741226

Number of experiments within 1 sigma: 671 Number of experiments within 2 sigma: 959 Number of experiments within 3 sigma: 997

N=100

mean:-0.0022772056286

standard deviation: 0.100830644397

Number of experiments within 1 sigma: 693 Number of experiments within 2 sigma: 958 Number of experiments within 3 sigma: 997

mean

N=1000

mean:-0.0016694934232

standard deviation: 0.0323115057255

Number of experiments within 1 sigma: 693 Number of experiments within 2 sigma: 948 Number of experiments within 3 sigma: 1000

Question 4:

0.005

mean

0.007

0.008 +9.98e-1

Question 5:

Fitted mean = 1.20117112779 Fitted standard deviation = 0.102097467081 chi squared = 39.204431231256812

Question 6:

