University of Warwick Department of Mathematics

MA136

Introduction to Abstract Algebra

Cem Yilmaz July 14, 2022

Contents

		uirements
	1.1	Functions
	1.2	Matrices
2	Elen	nents of Abstract Algebra
	2.1	Binary operation
	2.2	Commutativity
	2.3	Associativity
	24	Groups

1 Requirements

1.1 Functions

Theorem 1.1. A function is invertible iff it is a bijection

Proof. We know that if $f(x_1) = f(x_2)$, then $x_1 = x_2$ in a bijective function, as it is injective. Similarly, from subjectivity, we know that for $y \in Y$ for $f: X \to Y$, there exists f(x) = y. As it is an iff statement, we are required that the proof works in both direction. We first begin with the fact that $f: X \to Y$ is bijective $\implies f$ is invertible.

Suppose that f is invertible, i.e., $\exists g: Y \to X$ such that $f \circ g(y) = y \ \forall y \in Y$ and $g \circ f(x) = x \ \forall x \in X$. Suppose two elements $x_1, x_2 \in X$ and let us consider $f(x_1)$ and $f(x_2)$. Apply g where

$$\implies g(f(x_1)) = g(f(x_2))$$

$$\implies g \circ f(x_1) = g \circ f(x_2)$$

$$\implies x_1 = x_2 \text{ f is injective}$$

that is, injectivity follows from the definition of invertible. Now, we show surjectivity. Let $y \in Y$. We know

$$f \circ g(y) = y$$

$$\implies f(g(y)) = y$$

Since $g(y) \in X$, f is surjective. In other words, since g(y) is $g: Y \to X$, we show that a unique x mapping does exist. Now, we show that bijectivity implies invertibility also.

Suppose f is a bijective. We need to show that we can construct g such that

$$g: Y \to X$$

$$f \circ g(y) = y \ \forall y \in Y$$

$$g \circ f(x) = x \ \forall x \in X$$

Let $y \in Y$. Since f is injective and surjective, there exists a unique $x \in X$ such that f(x) = y. This gives $g: Y \to X$. Let $y \in Y$ and consider $f \circ g(y) = f(g(y))$. By definition of g, it follows that

$$f(g(y)) = y$$

Similarly, we consider $x \in X$ and $g \circ f(x) = g(f(x))$. We obtain g(f(x)) = x.

1.2 Matrices

Let m,n be positive integers. An $m \times n$ matrix (or a matrix of size or order $m \times n$) is a rectangular array consisting of mn numbers arranged in m rows and n columns. The elements are denoted a_{ij} where i is the row and j is the column. The notation for sets of matrices is denoted by $M_{m \times n}(\mathbb{R})$, this is the set of $m \times n$ matrices with entries in \mathbb{R} . The addition, subtraction and scalar multiplication is defined in matrices. Whilst addition and subtraction are trivial, the multiplication is to be defined. Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times p}$, we define the product AB to be the matrix $C = (c_{ij})_{m \times p}$ such that

$$c_{ij} = a_{i1}b_{i1} + a_{i2}b_{2i} + \ldots + a_{in}b_{nj}$$

In other words, multiply the first matrix's row element by corresponding column element. Similarly, we can transform matrices through a function such that

$$T_A \begin{bmatrix} x \\ y \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

for $T_A: \mathbb{R}^2 \to \mathbb{R}^2$. That is, it is something that takes in \mathbb{R}^2 and gives back in \mathbb{R}^2 . Note that these transformations can also be bijective, injective and surjective. For example,

$$T_A \mathbb{R}^2 \to \mathbb{R}^2$$

$$T_A(x,y) = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+2y \\ 3x+6y \end{bmatrix}$$

Note that this is not surjective as for x=0 and y=0 we obtain (0,0) and similarly for (-2,1) we also obtain (0,0). It is also not injective as something such as (1,4) would not have a solution for x,y as the solutions of this transformation lie on y=3x.

Theorem 1.2. A matrix $A_{2\times 2}$ is invertible if and only if $ad - bc \neq 0$. Then, the inverse is

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Proof. Let us begin from left to right. We assume A is invertible. This implies the existence of a matrix

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix}$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Therefore the matrix

$$\begin{bmatrix} ax + cy & bx + dy \\ az + cw & bz + dw \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Hence ax + cy = 1, bx + dy = 0, az + cw = 0 and bz + dw = 1. Solving these equations we obtain

$$\begin{array}{l} adx+cdy=d\\ bcx+dcy=0 \text{ from multiplying second equation by }c\\ x(ad-bc)=d \text{ by substitution} \end{array}$$

Then, we obtain the second equation

$$bax+bcy=b$$
 by multiplying first equation by b $abx+ady=0$ by multiplying second equation by a $-(ad-bc)y=b$ by substituting both

Then we can further obtain the equations

$$(ad - bc)w = a$$
$$-(ad - bc)z = c$$

using further algebra. If ad-bc=0, then a=b=c=d=0. This means that A is the zero matrix and $A=\underline{0}$, which is not invertible. Therefore, $ad-bc\neq 0$. Hence

$$x = \frac{d}{ad - bc}$$

$$y = \frac{-b}{ad - bc}$$

$$w = \frac{a}{ad - bc}$$

$$z = \frac{-c}{ad - bc}$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Now, RHS to LHS, suppose $ad - bc \neq 0$. Then, let

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Then,

$$A^{-1}A = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$= \frac{1}{ad - bc} \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Similar steps follow for AA^{-1} . Therefore, we have the result in both directions.

As an exercise, let A be a 2×2 matrix where

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Let

$$u = \begin{bmatrix} a \\ c \end{bmatrix} \qquad \qquad v = \begin{bmatrix} b \\ d \end{bmatrix}$$

Show that |det(A)| is the area of the parallelogram with adjacent sides u and v.

Lastly, we can create a composition of transformations. Suppose two matrices $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$. This gives rise to two functions $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ and $T_B : \mathbb{R}^2 \to \mathbb{R}^2$. Now,

$$T_{B}\left(T_{A}\begin{bmatrix}x\\y\end{bmatrix}\right) = B\left(A\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}b_{11} & b_{12}\\b_{21} & b_{22}\end{bmatrix}\left(\begin{bmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}\right)$$

Would be the same as if we start to multiply wherever. In other words, for (AB)C = A(BC) holds true for $A = m \times n$, $B = n \times p$ and $C = p \times q$ matrix. Matrix multiplication is associative.

2 Elements of Abstract Algebra

2.1 Binary operation

Definition 2.1. Binary operation - let S be a set. A binary operation on S is a rule by which any two elements of S can be combined to give another element of S. We are giving to use the symbol \star for binary operation. Given $s_1, s_2 \in S$ we have a further element $s_1 \star s_2 \in S$.

Example 2.1. Example binary operations

Let $S = \mathbb{R}$ and $\star = +$. Then, $x + y \in \mathbb{R}$ indeed, which is an example of a binary operation. However, note that \mathbb{N} , - is not a binary operation as 5 - 7 = -2 and $-2 \notin \mathbb{N}$.

We can also denote the set of all polynomials using the notation

$$\mathbb{R}[x]$$

$$\mathbb{C}[x]$$

 $\mathbb{Q}[x]$

 $\mathbb{Z}[x]$

These would denote the set of all polynomials whose coefficients follow the set in the notation. Note that addition and subtraction on polynomials is a binary operation.

Note that composition of functions is not a binary operation. For example, $f:A\to B$ and $g:B\to C$ then $g\circ f:A\to C$ is not a binary operation due to difference in set mappings.

2.2 Commutativity

Definition 2.2. Let S be a set and \star a binary operation. We say that the binary operation \star is commutative on S if

$$a \star b = b \star a$$

for all $a, b \in S$

Example 2.2. Examples of commutativity

For example, \mathbb{R} , + is commutative

2.3 Associativity

Definition 2.3. We say that a binary operation \star is associative on S if

$$(a \star b) \star c = a \star (b \star c)$$

for all $a, b, c \in S$. I.e., bracketing doesn't matter as long as we keep the same order and this is called the general associativity theorem.

Example 2.3. Examples of associativity

For example, \mathbb{R} , + is also associative

2.4 Groups

Definition 2.4. A group is a pair (G, \star) where G is a set and \star is a binary operation on G, such that the following four properties hold:

- 1. closure $\forall a, b \in G, a \star b \in G$.
- 2. associativity $\forall a,b,c \in G, a \star (b \star c) = (a \star b) \star c$
- 3. existence of identity element $\exists e. \forall a \in G, a \star e = e \star a = a$
- 4. existence of inverse $\forall a \in G, \exists b \in G.a \star b = b \star a = e$

Definition 2.5. A group is called Abelian if it is a group and follows

1. commutative - $\forall a, b \in G, a \star b = b \star a$

Example 2.4. Example of Groups

Some example groups are:

1.
$$(\mathbb{R},+)$$

We can also form groups of the same binary operation by picking only specific elements. I.e.,

Definition 2.6. A subgroup is a group with the same binary operation \star but it uses the specific set X where $X \subseteq G$.

We get something of the kind

Figure 1: Subgroup

Furthermore,

Theorem 2.1. Uniqueness of the identity element. Let (G, \star) be a group. Then (G, \star) has a unique identity element. Proof. Let $a \in G$. Suppose $b, b' \in G$ which are both inverses to a. Then,

$$b \star a = a \star b = e$$

$$b' \star a = a \star b' = e$$

$$b = b \star e = b \star (a \star b')$$

$$b = (b \star a) \star b' = b = e \star b'$$

$$b = b'$$

Theorem 2.2. Inverse of an inverse. Let G be a group and $a \in G$. Then

$$(a^{-1})^{-1} = a$$

Proof. Let $a \in G$. Need to show a is the inverse of a^{-1} . This means that $a^{-1}a = aa^{-1} = e$. Hence

$$(a^{-1})^{-1}$$

Theorem 2.3. Inverse of a product. Let G be a group and $a, b \in G$. Then,

$$(ab)^{-1} = b^{-1}a^{-1}$$

Proof. $b^{-1}a^{-1}$ is the inverse of ab.

$$(ab)(b^{-1}a^{-1})abb^{-1}a^{-1}$$

$$= a1a^{-1}$$

$$= aa^{-1}$$

$$= 1$$

Theorem 2.4. Properties of power notation. Let G be a group and let $a \in G$. Then

1. $a^n \in G$ for all $n \in \mathbb{Z}$.

- 2. If $n \in \mathbb{Z}$ then $(a^{-1})^n = (a^n)^{-1} = a^{-n}$
- 3. Moreover, if m, n are integers then $(a^m)^n = a^{mn}$ and $a^m a^n = a^{m+n}$
- 4. Further, if the group G is abelian, $a, b \in G$ and n is an integer then $(ab)^n = a^n b^n$

Proof for 1

Proof. $a^0=1$, true for n=0. Suppose n>0, $n\in\mathbb{Z}$. For n=1, $a^n=a$ and indeed $a\in G$. Assume true if $n=k,\,k>0,\,k\in\mathbb{Z}$. Consider

$$a^{k+1} = a^k a$$

Certainly $a^k a \in G$ as $a \in G$ and $a^k \in G$ by assumption. Suppose $n < 0, n \in \mathbb{Z}$. We know

$$a^n = (a^{-n})^{-1}$$

As -n > 0 by earlier, we know $a^{-n} \in G \implies (a^{-n})^{-1} \in G$.

Proof for 2

Proof. If n=0, $(a^{-1})^0=(a^0)^{-1}=a^{-0}$ Indeed, all of these are equal to the identity e. If n>0, $n\in\mathbb{Z}$, we consider $a^n(a^{-1})^n$:

$$a^{n}(a^{-1})^{n} = \underbrace{aa \dots a}_{n} \underbrace{a^{-1}a^{-1} \dots a^{-1}}_{n}$$
$$a^{n}(a^{-1})^{n} = \underbrace{11 \dots 1}_{n}$$
$$a^{-n} = (a^{n})^{-1}$$

Suppose n < 0 and $n \in \mathbb{Z}$. Suppose $a^n(a^{-1})^n$:

$$a^{n}(a^{-1})^{n} = (a^{-n})^{-1} ((a^{-1})^{-n})^{-1}$$

$$= (a^{-1})^{-n} ((a^{-1})^{-1})^{-n}$$

$$= (a^{-1})^{-n} a^{-n}$$

$$= \underbrace{aa \dots a}_{n} \underbrace{a^{-1}a^{-1} \dots a^{-1}}_{n}$$

Proof for 3

7