Lecture 10

Model Selection

STAT 8020 Statistical Methods II September 11, 2019

> Whitney Huang Clemson University

Notes			

Agenda

Variable Selection Criteria

Notes			

Variable Selection

- What is the appropriate subset size?
- What is the best model for a fixed size?

Model Selection
CLEMS#N

Notes		

Mallows' C_p Criterion

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathrm{E}(\hat{Y}_i) + \mathrm{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathrm{E}(\hat{Y}_i))^2}_{\text{Variance}} + \underbrace{(\mathrm{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where $\mu_i = E(Y_i|X_i = x_i)$

- Mean squared prediction error (MSPE): $\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) \mu_i)^2$
- ullet C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathbf{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \mathsf{Var}_{\mathsf{pred}} + \sum \mathsf{Bias}^2}{\mathsf{Var}_{\mathsf{error}}} \end{split}$$

Notes

C_p Criterion

- ullet Do not know σ^2 nor numerator
- \bullet Use $\mathsf{MSE}_{X_1,\cdots,X_{p-1}} = \mathsf{MSE_F}$ as the estimate for σ
- For numerator:
 - Can show $\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 = p\sigma^2$
 - Can also show $\textstyle\sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) \mu_i)^2 = \mathrm{E}(\mathsf{SSE_F}) (n-p)\sigma^2$
 - $\Rightarrow C_p = \frac{\text{SSE}-(n-p)\text{MSE}_{\text{F}} + p\text{MSE}_{\text{F}}}{\text{MSE}_{\text{F}}}$

Model Selection								
	C	E	N	4	S	á	1	V
N		٧	Ε	R	S		T	Y

Variable Selection

Notes

ariable Selection

C_p Criterion Cont'd

Recall

$$\Gamma_{p} = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2} + \sum_{i=1}^{n} (E(\hat{Y}_{i}) - \mu_{i})^{2}}{\sigma^{2}}$$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - $\bullet \ \ {\sf Biased \ models \ will \ fall \ above \ } C_p = p$
 - Unbiased models will fall around line $C_p = p$
 - By definition: C_p for full model equals p

Notes			
