Complejidad de Edmonds-Karp

Daniel Penazzi

23 de abril de 2021

Daniel Penazzi Edmonds-Karp C April 23, 2021 1 / 31

Tabla de Contenidos

- 🕦 Enunciado del teorema y primera parte de la prueba
 - Lados Críticos
 - d, b
 - Lema de las distancias
- Acotando número de eventos de criticalidad
 - Caso lado se saturó en el paso k
 - Caso lado se vació en el paso k
- Parte final

Edmonds-Karp

- En la clase pasada vimos que Edmonds y Karp propusieron una modificación al algoritmo de Ford-Fulkerson que consiste en buscar los caminos aumentantes de menor longitud entre todos los caminos aumentantes.
- Como para hacer eso se usa BFS, decimos que EK=FF+BFS.
- Nos quedaba para hoy demostrar que EK es un algoritmo polinomial.
- El teorema y otros como el son una parte muy importante de la materia.
- El algoritmo es obviamente importante, pero uno de los objetivos de la materia es justamente mostrar ejemplos de teoremas de cálculo de complejidad de algoritmos complejos.

Complejidad de Edmonds-Karp

Teorema de Edmonds-Karp

La complejidad del algoritmo de Edmonds-Karp es $O(nm^2)$

- Prueba:
- Para facilitar la prueba, supondremos que si en el network esta el lado \overrightarrow{xy} , entonces no esta el lado \overrightarrow{yx} .
- Esta propiedad no es restrictiva, como se puede ver en un ejercicio del práctico.
- La prueba contiene varias definiciones, propiedades y lemas internos.

Prueba de la complejidad de Edmonds-Karp

- Si f_0 , f_1 , f_2 ,, etc son los flujos parciales producidos al correr Edmonds-Karp, entonces queremos ver que hay una cantidad finita de ellos, y dar una cota para ese número.
- Como la busqueda y construcción de cada camino aumentante se hace con BFS, cada incremento del flujo tiene complejidad O(m).
- Asi que si probamos que sólo puede haber O(nm) flujos aumentantes, tendremos una prueba de la complejidad de Edmonds-Karp: $O(nm).O(m) = O(nm^2)$.
- Para ello necesitamos una definición clave.

Lados críticos

Definición

Diremos que un llado \overrightarrow{xy} se vuelve crítico durante la construcción de uno de los flujos intermedios (digamos, f_{k+1}) si para la construcción de f_{k+1} pasa una de las dos cosas siguientes:

- 1 Se usa el lado en forma forward, saturandolo (es decir $f_k(\overrightarrow{xy}) < c(\overrightarrow{xy})$, pero luego $f_{k+1}(\overrightarrow{xy}) = c(\overrightarrow{xy})$)
- O se usa el lado en forma backward, vaciandolo (es decir $f_k(\overrightarrow{xy}) > 0$ pero $f_{k+1}(\overrightarrow{xy}) = 0$).

continuación prueba de la complejidad de Edmonds-Karp

- En cada construcción de un camino aumentante al menos un lado se vuelve crítico.
- Pues la unica diferencia entre Edmonds-Karp y Ford-Fulkerson es sólo cómo se elige el camino.
- El problema es que un lado puede volverse crítico muchas veces.
- Se satura, se vacia un poco, vuelve a saturarse, se vacia completamente, vuelve a llenarse un poco, vuelve a vaciarse completamente, etc.
- Veamos cuantas veces puede pasar esto.

7/31

Daniel Penazzi Edmonds-Karp C April 23, 2021

distancias

Definición

Dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la longitud del menor f-camino aumentante entre x y z, si es que existe tal camino, o infinito si no existe o 0 si x = z. La denotaremos como $d_f(x, z)$.

Notación

Dado un vértice x denotamos

$$d_k(x) = d_{f_k}(s, x)$$

y

$$b_k(x) = d_{f_k}(x,t).$$

distancias

- **Es decir**, $d_k(x)$ es la longitud del menor f_k -camino aumentante entre s y x y $b_k(x)$ es la longitud del menor f_k -camino aumentante entre x y t.
- Estas distancias d_k , b_k tienen algunas propiedades que demostraremos a continuación.
- Las propiedades no son exactamente iguales para ambas, ni la demostración, pero son similares.
- Haremos las pruebas correspondientes a d_k y dejamos como ejercicio hacer las pruebas correspondientes a b_k .

Prueba de la complejidad de Edmonds-Karp

Definición

Dado un flujo f y un vértice x, diremos que un vértice z es un vécino fFF de x si pasa alguna de las siguientes condiciones:

- $\overrightarrow{xz} \in E \ y \ f(\overrightarrow{xz}) < c(\overrightarrow{xz}) \ o:$
- $\overrightarrow{zx} \in E \text{ y } f(\overrightarrow{zx}) > 0.$

Observación trivial:

Si z es un f_k FF vécino de x, entonces $d_k(z) \le d_k(x) + 1$

Prueba de la observación trivial

- Si no existe f_k -camino aumentante entre s y x, entonces $d_k(x) = \infty$ y el lema es obvio.
- Supongamos entonces que existen f_k-caminos aumentantes entre s y x, y tomemos de entre todos ellos, alguno con longitud mínima.
- Llamemosle P a ese camino. Por lo tanto, la longitud de P es $d_k(x)$
- Como z es f_kFF vécino de x, si tomamos Q el camino que consiste en agregar z al final de P, tenemos que Q es un f_k-camino aumentante entre s y z.
- La longitud de Q es igual a la longitud de P mas uno, es decir, $d_k(x) + 1$.

Prueba de la observación trivial

- lacksquare Q es UN f_k -camino aumentante entre s y z.
- Por lo tanto la MENOR longitud posible entre TODOS los f_k-caminos aumentantes entre s y z será menor o igual que la longitud de Q.
- Dado que la menor longitud posible entre todos los f_k -caminos aumentantes entre s y z es $d_k(z)$ y la longitud de Q es $d_k(x) + 1$, hemos probado que $d_k(z) \le d_k(x) + 1$.
- Nota: obviamente tambien existe una propiedad trivial para los b_k , que dejamos como ejercicio.

Daniel Penazzi Edmonds-Karp C April 23, 2021 12 / 31

Las distancias d, b no disminuyen

Lema de las distancias

Las distancias definidas anteriormente no disminuyen a medida que k crece.

Es decir,
$$d_k(x) \leq d_{k+1}(x)$$
 y $b_k(x) \leq b_{k+1}(x) \forall x$

- Prueba: Lo demostraremos para d, dejamos como ejercicio la prueba para b.
- La prueba es por contradicción, suponiendo que no es cierto.
- Sea $A = \{y : d_{k+1}(y) < d_k(y)\}.$
- Si el lema es cierto, A es vacio, asi que asumamos que $A \neq \emptyset$ y lleguemos a una contradicción.
- Como $A \neq \emptyset$, tiene algún elemento.

- Pero en vez de tomar cualquier elemento de *A*, tomaremos el "mas chico".
- ¿"mas chico" respecto de qué metrica?
- Respecto de d_{k+1} , es decir, tomaremos $x \in A$ tal que:

$$d_{k+1}(x) = Min\{d_{k+1}(y) : y \in A\}$$

- Como $x \in A$ entonces $d_{k+1}(x) < d_k(x)$ (†).
- En particular, $d_{k+1}(x) < \infty$, asi que existe un f_{k+1} camino aumentante entre s e x, y de entre todos ellos tomamos uno de la menor longitud.

- Observemos que $x \neq s$ pues $x \in A$ y $s \notin A$ (pues $d_k(s) = d_{k+1}(s) = 0$)
- Asi que ese camino no es el camino formado sólo por el vértice s.
- Concluimos que debe existir un vértice $z \neq x$ inmediatamente anterior a x en ese camino.
- Veamos que propiedades tienen z, x y lleguemos a la contradicción.
- Primero, observemos que como z es el vécino inmediatamente anterior a x en un f_{k+1} camino aumentante, entonces x es un f_{k+1} FF vécino de z.
- Recordemos esto para mas adelante.

4 D > 4 A > 4 B > 4 B > B 9 9 9

- Como $d_{k+1}(x)$ es la menor de las distancias d_{k+1} de elementos de A, deducimos que cualquier elemento que tenga d_{k+1} menor que $d_{k+1}(x)$, no puede estar en A.
- **z** forma parte de un f_{k+1} camino aumentante de menor longitud entre s y x, el fragmento de ese camino que va de s a z es un f_{k+1} camino aumentante de longitud mínima entre s y z.
- Como z esta justo antes de x, concluimos que $d_{k+1}(z) = d_{k+1}(x) 1$. (*)
- Entonces $d_{k+1}(z) = d_{k+1}(x) 1 < d_{k+1}(x)$, asi que por lo que dijimos al principio de esta página, $z \notin A$.
- Concluimos que $d_k(z) \le d_{k+1}(z)$ (‡)

4 D > 4 A > 4 B > 4 B > B 9 9 9

Poniendo todo junto:

$$d_{k}(x) \stackrel{(\dagger)}{>} d_{k+1}(x)$$

$$\stackrel{(\star)}{=} d_{k+1}(z) + 1$$

$$\stackrel{(\dagger)}{\geq} d_{k}(z) + 1$$

- Es decir, $d_k(x) > d_k(z) + 1$ (□).
- Por la observación trivial, esto implica que x no es f_k FF vécino de z.

4 D > 4 D > 4 E > 4 E > E 900

- Entonces, la situación es:
 - \blacksquare x no es f_k FF vécino de z, pero
 - x es f_{k+1} FF vécino de z (por lo que dijimos en el "Recordemos" de unas páginas atras)
- ¿Cómo puede pasar esto?
- La única forma en la que esto puede pasar es que el f_k camino aumentante que usamos para construir f_{k+1} sea un camino aumentante que pase primero por x y luego por z.
- Expliquemos un poco mas esto, considerando los dos casos posibles, según sea que $\overrightarrow{xz} \in E$ o que $\overrightarrow{zx} \in E$:

Caso \overrightarrow{xz} es lado.

- Si $\overrightarrow{xz} \in E$, entonces:
 - 1 x no es f_k FF vécino de z implica que $f_k(\overrightarrow{xz}) = 0$.
 - 2 x es f_{k+1} FF vécino de z implica que $f_{k+1}(\overrightarrow{xz}) > 0$
- 1) y 2) implican que $f_{k+1}(\overrightarrow{xz}) > f_k(\overrightarrow{xz})$
- Esto sólo puede pasar si al construir f_{k+1} ENVIAMOS flujo por el lado \overrightarrow{xz} .
- Por lo tanto el camino pasó primero por x y luego por z.

19/31

Daniel Penazzi Edmonds-Karp C

Caso \overrightarrow{zx} es lado.

- Si $\overrightarrow{zx} \in E$, entonces:
 - 1 x no es f_k FF vécino de z implica que $f_k(\overrightarrow{zx}) = c(\overrightarrow{zx})$.
 - 2 x es f_{k+1} FF vécino de z implica que $f_{k+1}(\overrightarrow{zx}) < c(\overrightarrow{zx})$
- 1) y 2) implican que $f_{k+1}(\overrightarrow{zx}) < f_k(\overrightarrow{zx})$.
- Eso sólo puede pasar si al construir f_{k+1} hubo una DISMINUCIÓN de flujo en el lado \overrightarrow{zx} .
- Esto último sólo puede pasar si se usó BACKWARDs.
- Para usarse backward, el camino debe haber pasado primero por x y luego por z.

- En cualquiera de los casos, significa que para pasar de f_k a f_{k+1} usamos un camino aumentante P de la forma s...xz...t (o s...xz...t en el caso backward).
- Como estamos usando Edmonds-Karp, ese camino es de longitud mínima.
- Por lo tanto, $d_k(z) = d_k(x) + 1$.
- Pero, por \square , teniamos $d_k(x) > d_k(z) + 1$.
- Entonces $d_k(x) > d_k(z) + 1 = d_k(x) + 1 + 1$ implica 0 > 2, absurdo.

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

continuación prueba de la complejidad de Edmonds-Karp

- Ahora estamos en condiciones para acotar cuantas veces puede un lado volverse crítico.
- Supongamos que un \overrightarrow{xy} se vuelve crítico en el paso k y luego en el paso r con r > k.
- Tenemos que analizar dos casos: se vuelve crítico en el paso k porque se saturó, o se vuelve crítico en el paso k porque se vació.
- Analicemos primero el caso en que se saturó en el paso k, es decir se usa forward.

- Como se saturó en el paso k, entonces:
 - Para construir f_{k+1} se debe usar un f_k camino aumentante de la forma *s...xy....t*.
 - Como estamos usando Edmonds-Karp, ese camino es de longitud mínima.
 - Por lo tanto $d_k(y) = d_k(x) + 1$. (i)
- Para que se vuelva a volver crítico en el paso r, deben pasar una de dos cosas:
 - Se vuelve crítico en el paso r porque se vacia.
 - Se vuelve crítico en el paso r porque vuelve a saturarse.
- Para que ocurra el segundo caso, debe haberse vaciado ANTES aunque sea un poco, si no es imposible que vuelva a saturarse.

continuación caso \overrightarrow{xy} se saturó en el paso k

- Entonces, en cualquiera de estos casos, deducimos que existe ℓ con $r \ge \ell > k$ tal que el flujo en \overrightarrow{xy} disminuye al pasar de f_ℓ a $f_{\ell+1}$, ya sea vaciandose completamente o un poco.
- Esto implica que para construir $f_{\ell+1}$ se usa un f_{ℓ} camino aumentante de la forma s...yx...t.
- Como estamos usando Edmonds-Karp, ese camino es de longitud mínima.
- Por lo tanto $d_{\ell}(x) = d_{\ell}(y) + 1$. (ii)

Daniel Penazzi Edmonds-Karp C

continuación caso \overrightarrow{xy} se saturó en el paso k

Entonces:

$$d_{\ell}(t) = d_{\ell}(x) + b_{\ell}(x)$$

 $= d_{\ell}(y) + 1 + b_{\ell}(x)$ por (ii)
 $\geq d_{k}(y) + 1 + b_{k}(x)$ porque las distancias no disminuyen
 $= d_{k}(x) + 1 + 1 + b_{k}(x)$ por (i)
 $= d_{k}(t) + 2$

Daniel Penazzi Edmonds-Karp C April 23, 2021 25 / 31

Caso \overrightarrow{xy} se vacia en el paso k

- Este analisis era si el lado \overrightarrow{xy} se volvia crítico en el paso k porque se saturaba.
- Supongamos ahora que se vuelve crítico en ese paso porque se vacia.
- El análisis es similar:
 - Como se vacia, existe un camino (de longitud mínima) de la forma s....yx...t que se usa para pasar de f_k a f_{k+1} .
 - Por lo tanto $d_k(x) = d_k(y) + 1$. (iii)
- Para poder volver a ser crítico en el paso *r*, debe o bien volverse a vaciar, o bien saturarse.

- **◆ □ ▶ ◆ □ ▶ ◆ 恵 ▶ ◆ 恵 ・ 夕** � �

Caso \overrightarrow{xy} se vacia en el paso k

- (iii) y (iv) son iguales a (i) y (ii), sólo que con x e y intercambiados.
 - Por lo tanto podemos deducir $d_{\ell}(t) \geq d_{k}(t) + 2$ de la misma forma que lo que hicimos con el caso en que se saturaba en el paso k, simplemente intercambiando x e y en la prueba.
 - Asi que tambien en este caso concluimos que $d_r(t) \ge d_\ell(t) \ge d_k(t) + 2$
- Concluimos que en cualquiera de los casos, luego de que un lado se vuelve crítico, para que pueda volverse crítico otra vez, la distancia entre s y t debe aumentar en al menos 2.

<ロ > < 回 > < 回 > < 巨 > く 巨 > 豆 釣 < @

finalización prueba de la complejidad de Edmonds-Karp

- Como la distancia entre s y t puede ir desde un mínimo de 1 a un máximo de n − 1
- concluimos que un lado puede volverse crítico un máximo de $O(\frac{n}{2}) = O(n)$ veces.
- Como cada camino aumentante que se usa en Edmonds-Karp tiene al menos un lado que se vuelve crítico,
- entonces el total de flujos intermedios está acotado por O(mn), pues hay m lados y cada uno se puede volver crítico a lo sumo O(n) veces.
- Como cada construcción de un flujo tiene complejidad O(m), concluimos que la complejidad de Edmonds-Karp es $O(m) * O(mn) = O(nm^2)$. Fin

Daniel Penazzi Edmonds-Karp C April 23, 2021 29 / 31

Observación prueba de la complejidad de Edmonds-Karp

- Si en el final se pide esta prueba y uds NUNCA usan la propiedad que define Edmonds-Karp, se les descontarán muchos puntos.
- Es decir, vayan a la prueba y vean que en varios lados decimos "como estamos usando Edmonds-Karp"
- La prueba depende mucho del calculo exacto de ciertas distancias.
- Eso se puede hacer porque Edmonds-Karp usa BFS.
- y es en esos lados de la prueba que una prueba similar con DFS fallaría.
- Y por eso tenemos los ejemplos que dimos la clase pasada con FF+DFS no terminando nunca o demorando mucho

Existencia de flujos maximales

- Dado que hemos probado que Edmonds-Karp siempre termina, y dado que produce un flujo maximal,
- entonces tambien hemos probado que en todo network siempre existe al menos un flujo maximal.
- Este hecho, como habia dicho antes, se puede probar con subsucesiones y el teorema de Bolzano-Weierstrass
- Pero ahora tienen una prueba "algorítmica" del mismo

