

In the Claims:

1. (Original) A method of indexing a database of documents, comprising:

providing a vocabulary of n terms;

indexing the database in the form of a non-negative $n \times m$ index matrix V ,

wherein:

m is equal to the number of documents in the database;

n is equal to the number of terms used to represent the database; and

the value of each element v_{ij} of index matrix V is a function of the number of occurrences of the i^{th} vocabulary term in the j^{th} document;

factoring out non-negative matrix factors T and D such that

$V \approx TD$; and

wherein T is an $n \times r$ term matrix, D is an $r \times m$ document matrix, and $r < nm/(n+m)$.

2. (Original) The method of claim 1 further comprising deleting said index matrix V .

3. (Original) The method of claim 2 further comprising deleting said term matrix T .

4. (Original) The method of claim 1 wherein r is at least one order of magnitude smaller than n .

5. (Original) The method of claim 1 wherein r is from two to three orders of magnitude smaller than n .

6. (Original) The method of claim 1 wherein entries of said document matrix D falling below a predetermined threshold value t are set to zero.

7. (Original) The method of claim 2 wherein r is at least one order of magnitude smaller than n .

8. (Original) The method of claim 2 wherein r is from two to three orders of magnitude smaller than n .

9. (Original) The method of claim 2 wherein entries of said document matrix D falling below a predetermined threshold value t are set to zero.

10. (Original) The method of claim 3 wherein r is at least one order of magnitude smaller than n .

11. (Original) The method of claim 3 wherein r is from two to three orders of magnitude smaller than n .

12. (Original) The method of claim 3 wherein entries of said document matrix D falling below a predetermined threshold value t are set to zero.

13. (Currently Amended) A method of indexing a database of documents, comprising:

providing a vocabulary of n terms;

indexing the database in the form of a non-negative $n \times m$ index matrix V ,

wherein:

m is equal to the number of documents in the database;

n is equal to the number of terms used to represent the database; and

the value of each element v_{ij} of index matrix V is a function of the number of occurrences of the i^{th} vocabulary term in the j^{th} document;

factoring out non-negative matrix factors T and D such that

$V \approx TD$. The method of claim 1 wherein said factoring out of non-negative matrix factors T and D further comprises:

selecting a cost function and associated update rules from the group:

$$\text{cost function } F = \sum_{i=1}^n \sum_{j=1}^m [V_{ij} \log(TD)_{ij} - (TD)_{ij}] \quad \text{associated with}$$

$$\text{update rules } T_{ik} \leftarrow T_{ik} \sum_j \frac{V_{ij}}{(TD)_{ij}} D_{kj}, \quad T_{ik} \leftarrow \frac{T_{ik}}{\sum_i T_{ik}}, \text{ and } D_{kj} \leftarrow D_{kj} \sum_i T_{ij} \frac{V_{ij}}{(TD)_{ij}},$$

cost function
$$F = \sum_{i=1}^n \sum_{j=1}^m \left[V_{ij} \log \frac{V_{ij}}{(TD)_{ij}} - (V_{ij}) + (TD)_{ij} \right]$$
 associated with

update rules
$$D_{kj} \leftarrow D_{kj} \frac{\sum_i \frac{T_{ik} V_{ij}}{(TD)_{ij}}}{\sum_l T_{lk}}$$
 and
$$T_{ik} \leftarrow T_{ik} \frac{\sum_j \frac{D_{kj} V_{ij}}{(TD)_{ij}}}{\sum_h D_{kh}}$$
, and

cost function
$$\|V - TD\|^2 = \sum_{i=1}^n \sum_{j=1}^m (V_{ij} - (TD)_{ij})^2$$
 associated with update rules

$$D_{kj} \leftarrow D_{kj} \frac{(T^T V)_{kj}}{(T^T TD)_{kj}}$$
 and
$$T_{ik} \leftarrow T_{ik} \frac{(VD^T)_{ik}}{(TDD^T)_{ik}}$$
; and

iteratively calculating said update rules so as to converge said cost function toward a limit until the distance between V and TD is reduced to or beyond a desired value.

 14. (Original) A program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for indexing a database of documents, said method steps comprising:

providing a vocabulary of n terms;

indexing the database in the form of a non-negative $n \times m$ index matrix V ,

wherein:

m is equal to the number of documents in the database;

n is equal to the number of terms used to represent the database; and

the value of each element v_{ij} of index matrix V is a function of the number of occurrences of the i^{th} vocabulary term in the j^{th} document;

factoring out non-negative matrix factors T and D such that

$$V \approx TD; \text{ and}$$

wherein T is an $n \times r$ term matrix, D is an $r \times m$ document matrix, and $r < nm/(n+m)$.

15. (Original) A database index, comprising:

an $r \times m$ document matrix D , such that

$$V \approx TD$$

wherein T is an $n \times r$ term matrix;

V is a non-negative $n \times m$ index matrix, wherein each of its m columns represents an j^{th} document having n entries containing the value of a function of the number of occurrences of a i^{th} term appearing in said j^{th} document; and

wherein T and D are non-negative matrix factors of V and $r < nm/(n+m)$;

and

wherein each of the m columns of said document matrix D corresponds to said j^{th} document.

16. (Original) A method of information retrieval, comprising:

providing a query comprising a plurality of search terms;

providing a vocabulary of n terms;

performing a first pass retrieval through a first database representation and scoring m retrieved documents according to relevance to said query;

executing a second pass retrieval through a second database representation and scoring documents retrieved from said first pass retrieval so as to generate a final relevancy score for each document; and

wherein said second database representation comprises an $r \times m$ document matrix D , such that

$$V \approx TD$$

wherein T is an $n \times r$ term matrix;

V is a non-negative $n \times m$ index matrix , wherein each of its m columns represents an j^{th} document having n entries containing the value of a function of the number of occurrences of a i^{th} term of said vocabulary appearing in said j^{th} document; and

wherein T and D are non-negative matrix factors of V and $r < nm/(n+m)$;

and

wherein each of the m columns of said document matrix D corresponds to said j^{th} document.

17. (Original) The method of claim 16 wherein said final relevancy score for any j^{th} document is a function of said j^{th} document s corresponding entry in said document matrix D and the corresponding entries in said document matrix D of the Γ top-scoring documents from said first pass retrieval.

18. (Original) The method of claim 17 wherein said relevancy score function for said j^{th} document is proportional to a sum of cosine distances between said j^{th} document s corresponding entry in said document matrix D and each of said

corresponding entries in said document matrix D of the Γ top- scoring documents from said first pass retrieval.

19. (Original) The method of claim 16 wherein r is at least one order of magnitude smaller than n .

20. (Original) The method of claim 16 wherein r is from two to three orders of magnitude smaller than n .

21. (Original) The method of claim 16 wherein entries of said document matrix D falling below a predetermined threshold value t are set to zero.

22. (Original) A program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for information retrieval, said method steps comprising:

 providing a query comprising a plurality of search terms;

 providing a vocabulary of n terms;

 performing a first pass retrieval through a first database representation and scoring m retrieved documents according to relevance to said query;

 executing a second pass retrieval through a second database representation and scoring documents retrieved from said first pass retrieval so as to generate a final relevancy score for each document; and

wherein said second database representation comprises an $r \times m$ document matrix D , such that

$$V \approx TD$$

wherein T is an $n \times r$ term matrix;

V is a non-negative $n \times m$ index matrix, wherein each of its m columns represents an j^{th} document having n entries containing the value of a function of the number of occurrences of a i^{th} term of said vocabulary appearing in said j^{th} document; and

wherein T and D are non-negative matrix factors of V and $r < nm/(n+m)$;

and

wherein each of the m columns of said document matrix D corresponds to said j^{th} document.
