

计算机组成与系统结构

第二章 运算方法和运算器

吕昕晨

lvxinchen@bupt.edu.cn

网络空间安全学院

原码、反码、补码、移码

- 原码
 - 符号位加上真值的绝对值
- 反码
 - 正数的反码是其本身
 - 负数的反码是在其原码的基础上,符号位不变,其余 各位取反
- 补码
 - 正数的补码就是其本身
 - 负数的补码是在反码的基础上+1
- 移码
 - 补码的符号位取反(无论正负)

补码定义与运算

- 时钟:现在3点钟
 - 前拨4小时→11点
 - 后拨8小时→11点
 - $-4 = +8 \pmod{12}$
 - 如果a = b (mod m), c = d (mod m)
 (1)a ± c = b ± d (mod m)
 (2)a * c = b * d (mod m)
 - n位定点数?数范围→模数
- 定点小数x₀.x₁x₂...x_n,以2为模 [-1,1]
- 定点整数x₀x₁x₂...x_n, 以2ⁿ⁺¹为模 [-2ⁿ,2ⁿ-1]
 - 定点小数x₀.x₁x₂...x_n

$$[x]_{\dot{\uparrow}}= \left\{ egin{array}{lll} x & 1>x\geq 0 & & & \ & & \ddot{\uparrow} = \ 2+x & 0\geq x\geq -1 & & \ \end{array}
ight.$$
 $\left\{ egin{array}{lll} 0, & \ \hline{ } & \ \end{array}
ight.$ $\left\{ egin{array}{lll} 1, & \ \hline{ } & \ \end{array}
ight.
ight.$

[例]将十进制真值(-127,-1,0,+1,+127)列表表示成二进制数及原码、反码、补码、移码值。

真伯x(十进制)	重值x (二进制)	[x]原	[x]反	[x]补	[x]彰
-127	-011111111	111111111	10000000	10000001	00000001
-1	-00000001	10000001	111111110	11111111	01111111
		00000000	00000000		
0	00000000			00000000	10000000
		10000000	111111111		
+1	+00000001	00000001	00000001	00000001	10000001
+127	+011111111	011111111	01111111	011111111	111111111

溢出的概念

双符号位溢出检测法

1、双符号位法

(变形补码—扩大一倍范围)

$$[x]_{
abla b} = 2^{n+2} + x \pmod{2^{n+2}}$$

$$S_{f1} S_{f2}$$

- 0 0 正确 (正数)
- 0 1 正溢
- 1 0 负溢
- 1 1 正确 (负数)

 S_{f1} 表示正确的符号,逻辑表达式为 $V=S_{f1} \oplus S_{f2}$,可以用异或门来实现

溢出概念与检测方法

[例17] x=+01100, y=+01000, 求 x+y.

解: $[x]_{\lambda h} = 001100$, $[y]_{\lambda h} = 001000$

$$[x]_{\dot{\uparrow}\dot{\uparrow}}$$
 001100
+ $[y]_{\dot{\uparrow}\dot{\uparrow}}$ 001000

$$[x+y]_{\lambda h}$$

010100 (表示正溢)

溢出概念与检测方法

[例18] x=-1100, y=-1000, 求 x+y。

解: $[x]_{\lambda} = 110100$, $[y]_{\lambda} = 111000$

$$[x]_{\dot{\uparrow}\dot{\uparrow}}$$
 110100
+ $[y]_{\dot{\uparrow}\dot{\uparrow}}$ 111000

$$[x+y]_{\lambda \mid k}$$

101100 (表示负溢)

- Cf为符号位产生的进位,CO为最高有效位产生
- \bullet C_f C_0
 - 0 0

正确 (正数)

0 1

正溢

1 0

负溢

1 1

正确(负数)

V=Cf ⊕ C0

模型机——CPU运算器

- 运算器用于进行算数 运算和逻辑运算
- 算数运算
 - 加、减、乘、除
- 逻辑运算
 - 非、与、或
- 数表示方式
 - 定点数
 - 浮点数

本周教学安排

- 直播内容
 - 定点数
 - 乘法
 - 除法
- 录播内容
 - 运算器总线结构
 - 浮点数
 - 加、减、乘、除法

第二章 运算方法和运算器

- 串行移位乘法器
- 并行阵列乘法器
- 带符号数乘法
- 定点除法运算

十进制与二进制乘法

- 例, x=13, y=14, 求x × y=?
- 十进制方法

• 二进制方法

- 10110110=21+22+24+25+27=182
- 思考:有何异同?有何规律?

EDVAC报告草案

- 电子管是一种"全或无"设备 (all-or-none)
 - 适合表示只有两个数值的系统, 即二进制
- 二进制可以大幅度地简化乘法和除 法的运算过程
 - 尤其是对于乘法,不再需要十进制乘法表
- 十进制才是适合人使用的
 - 輸入輸出设备需要承担二进制与 十进制转

埃尼阿克与EDVAC

- 十进制与二进制计算机系统
 - 埃尼阿克 → 十进制
 - EDVAC → 二进制

二进制乘法规律总结

(乘积)

- 二进制乘法规律
 - 如果当前乘数位为"1"
 - 将被乘数抄写对应位置
 - 被乘数左移、乘数右移
 - 如果当前乘数位为 "0"
 - 将全"0"放置于对应位
 - 对应位求和
- 区别:

- 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1
- 十进制复杂 (九九乘法表、加减法进位)
- 二进制便捷 (判断是否为0、抄写)
- 冯诺依曼体系采用二进制重要原因

请复述二进制乘法手算规则:

正常使用主观题需2.0以上版本雨课堂

二进制乘法——串行移位

- 实现目标
 - 节约硬件资源
 - 复用加法器
- 移位运算
 - 被乘数:左移
 - 乘数:右移
- 操作规则
 - 若乘数最低位为"1"
 - 乘积+=被乘数
 - 否则,空操作


```
      0 0 0 0

      1 1 0 1 0

      1 0 1 1 1 0

      1 0 1 1 0 1 1 0 (乘积)
```

串行乘法器程序——位运算


```
int multiply(int a, int b) {
   //将乘数和被乘数都取绝对值
   int multiplicand = a < 0 ? add(\sim a, 1) : a;
   int multiplier = b < 0 ? add(\sim b , 1) : b;
   //计算绝对值的乘积
   int product = 0;
   while(multiplier > 0) {
      if((multiplier & 0x1) > 0) {// 每次考察乘数的最后一位
                                                                     第1步
          product = add(product, multiplicand); ----
                                                                     第2步
      multiplicand = multiplicand << 1;// 每运算一次,被乘数要左移一位 -
      multiplier = multiplier >> 1;//每运算一次,乘数要右移一位(可对照上图理解)
                                                                     第3步
   //计算乘积的符号
   if((a \land b) < 0) {
                                   对于n位乘法器
      product = add(~product, 1);
                                        需要3n个时钟周期
   return product;
```

串行移位乘法器及优化(1)

- 4位乘法器组成
 - 4位乘数寄存器(右移)
 - 8位被乘数寄存器(左移)
 - 8位乘积寄存器
 - 加法器

- 优化执行流程
 - 单一时钟周期
 - 移位、相加操作(同时)
 - 对于n位乘法器 (乘数)
 - 需要n个时钟周期

串行移位乘法器及优化(2)

- 组成
 - 4位乘数寄存器(右移)
 - 8位被乘数寄存器(左移)
 - 8位乘积寄存器
 - 加法器

面积优化1

4位被乘数寄存器 8位乘积寄存器(右移)

串行移位乘法器及优化(3)

- 组成
 - 4位乘数寄存器(右移)
 - 4位被乘数寄存器
 - 8位乘积寄存器(右移)
 - 加法器

面积优化2

8位乘积寄存器(右移)

串行移位乘法器分析

- N位乘法器结构特点
 - N位被乘数寄存器
 - 2N位乘积寄存器 (右移)
 - 高N位→加法器輸出
 - 低N位→乘数
 - N位加法器
- 优点
 - 结构简单、易于实现
 - 复用加法器功能
- 缺点
 - 效率较低,N个时钟周期

经过优化后的N位乘法器中寄存器包括

- A
- N位被乘数寄存器、2N位乘积寄存器
- B 2N位被乘数寄存器、N位乘数寄存器、 2N位乘积寄存器
- O 2N位被乘数寄存器、2N位乘积寄存器
- N位被乘数寄存器、N位乘数寄存器、 2N位乘积寄存器

第二章 运算方法和运算器

- 串行移位乘法器
- 并行阵列乘法器
- 带符号数乘法
- 定点除法运算

并行阵列乘法器

- 优化思路
 - 去掉移位过程 (N个时钟周期)
 - 通过乘数与被乘数直接产生所有中间数据
 - 重新组织全加器,实现乘积求和

并行阵列乘法器结构

- 被加数产生部件
 - 与操作: 交叉输入
 - a_i b_j 对应 第j行/第 (i+j) 列

- 电路组成: m*n个与门
- 乘法阵列
 - 阵列全加器组合,实现乘积 求和功能

乘法阵列实现

- 结构特点
 - 排列方式与手写相同
- 全加器输出
 - 斜线: 进位输出
 - 竖线:和输出
 - N(N-1)个全加器

1 1 0 1 (被乘数)

× 1 1 1 0 (<u>乘数</u>)

并行阵列乘法器延迟分析(1)

- 全加器延迟
 - 和輸出: 6T (两级异或门)
 - 进位输出: 2T(两级与/或门)
- 斜线阶段求和
 - 单级延迟: 6T
 - 总延迟: (N-1)*6T
- 行波进位加法器
 - 延迟:(N-1)*2T+3T

并行阵列乘法器延迟分析(2)

- 倍加数生成
 - 延迟: T (与门)

- 乘法阵列
 - 阶段求和: (N-1)*6T
 - 行波进位: (N-1)*2T+3T

此题未设置答案,请点击右侧设置按钮

已知不带符号的二进制整数A=11011, B=10101, 求A × B?

- A 1001110111
- 10001111
 - 1000100111
 - 11001111

[例19] 已知不带符号的二进制整数A=11011,B=10101,求每一部分乘积项 a_ib_j 的值与 $p_9p_8...p_0$ 的值。解:

$$\times$$
 1 1 0 1 1 = A (27₁₀)
 \times 1 0 1 0 1 = B (21₁₀)

1000110111 = P

 $P = p_9 p_8 p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 = 1000110111 (567_{10})$

第二章 运算方法和运算器

- 串行移位乘法器
- 并行阵列乘法器
- 带符号数乘法
- 定点除法运算

有符号数存储方式——补码

- 补码性质
 - [A]_补]_补=[A]_原
- 带符号乘法器构思路
 - 算前求补
 - 乘法器
 - 算后求补

求补电路(对2求补)

- 例 x=-1011110, 写出其原码与补码
 - 原码为1 10111 10
 - 补码为1 01000 10
- 补码转换性质
 - 按位取反, 末位加一(加法器)
 - 最右端往左边扫描,直到第一个1的时候,该位和右边 各位保持不变,左边各数值位按位取反(扫描)
- [x]_原= 1 11110 补:1 000<u>10</u>

不变, 左边数值位取反

求补电路

- 功能组成
 - 按位扫描
 - 或门级联
 - 逐位取反 (异或门)

• 逻辑表达式

$$C_{-1} = 0$$
, $C_i = a_i + C_{i-1}$
 $a_i^* = a_i \oplus EC_{i-1}$, $0 \le i \le n$

求补电路延迟

- 关键路径—— (n+1) 位求补电路
 - 按位扫描
 - nT
 - 使能求反
 - T(与)+3T(异或)
- 总延迟
 - nT+4T=(n+4)T

- 教材 (2.24) 式说明
 - 与/或门: 2T

$$t_{TC} = n \cdot 2T + 5T = (2n + 5)T$$

[例20] 设x=+15, y=-13, 用带求补器的原码阵列乘法器求出乘积 x-y=?


```
解: [x]<sub>原</sub>=01111, [y]<sub>原</sub>=11101, |x|=1111, |y|=1101
符号位运算: 0⊕1=1
1111
× 1101
1111
0000
1111
```

11000011

1111

乘积符号为1,算后求补器输出11000011, $[x \times y]_g$ =111000011

换算成二进制数真值是 $x-y = (-11000011)_2 = (-195)_{10}$

[例21] 设x=-15, y=-13, 用带求补器的补码阵列乘法器求出乘积x-y=? 并用十进制数乘法进行验证。

解: [x]_补=10001, [y]_补=10011, 乘积符号位运算: 1⊕1=0 尾数部分算前求补器输出 |x|=1111, |y|=1101

1111 × 1101

1111 0000 1111 + 1111

11 00 0 011

乘积符号为0,算后求补器输出11000011, $[x \times y]_{\stackrel{}{N}}=011000011$ 补码二进制数真值 $x \cdot y = 0 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^1 + 1 \times 2^0$ = $(+195)_{10}$ 十进制数乘法验证 $x \cdot y = (-15) \times (-13) = +195$

第二章 运算方法和运算器

- 串行移位乘法器
- 并行阵列乘法器
- 带符号数乘法
- 定点除法运算

二进制除法

- 设有n位定点小数 (定点整数也适用)
 - 被除数x, [x]_原=x_f.x_{n-1}...x₁x₀
 - 除数y, [y]_原=y_f.y_{n-1}...y₁y₀
- 商 q = x / y
 - $[q]_{\bar{\mathbb{R}}} = (x_f \oplus y_f) + (0.x_{n-1}...x_1x_0/0.y_{n-1}...y_1y_0)$
 - 商的符号运算q_f=x_f⊕y_f与原码乘法一样,用模2求和 得到。

二进制除法——手算过程


```
0.1 1 0 1
0.1 1 0
0.1 1
0.1
```

商q

0.1 0 1 1 除数

除法规则

- 比较被除数与余数大小
 - 若够减,对应位商1
 - 若不够减,对应位商0
- 除数右移
- 直到余数<除数

被除数

除数右移1位,减除数 得余数r1 除数右移1位,减除数 得余数r2 除数右移1位,不减除数 得余数r3 除数右移1位,减除数

- 0.0 0 0 0 0 0 0 1

*r*₄

得余数r4

计算机除法流程

- 人工除法时,人可以比较被除数(余数)和除数的大小来确定商1(够减)或商0(不够减)
- 机器除法时,余数为正表示够减,余数为负表示不够减。不够减时必须恢复原来余数,才能继续向下运算。 这种方法叫恢复余数法,控制比较复杂。
- 不恢复余数法 (加减交替法)
 - 余数为正,商1,下次除数右移做减法;
 - 余数为负,商0,下次除数右移做加法。
 - 控制简单,有规律。

补码除法流程——加减交替法

[例23]
$$X = 0.101001$$
, $y = 0.111$, 求 $X \div y$ 。

[解:] [x]_{$$\uparrow$$}=0.101001,[y] _{\uparrow} =0.111,[-y] _{\uparrow} =1.001

0.101001

; 被除数

$$+[-y]_{i}$$
 1.0 0 1

;第一步减除数y

$$+[y]_{\nmid k} \rightarrow 0.0111$$

<0 q₄=0; 余数为负,商0

:除数右移1位加

$$0.0 \ 0 \ 1 \ 1 \ 0 \ 1$$
+[-y] _{$\frac{1}{2}$} \rightarrow 1.1 1 0 0 1

>0 q₃=1;余数为正,商1

$$+[y]_{\nmid k} \rightarrow 0.000111$$

<0 q₂=0 ; 余数为负,商0

可控加减法单元 (CAS)

- 1位二进制可控加减法单元
 - 輸入数据Ai、Bi, 进位输入Ci+1
 - 控制端口: P
 - P=0, 作加法运算
 - P=1, 作减法运算
 - 输出端口:和Si、进位输出Ci+1
 - 级联端口: Bi、P
 - 进位输出延迟: 3T
- 逻辑函数

$$S_i = A_i \oplus (B_i \oplus P) \oplus C_i$$

$$C_{i+1} = (A_i + C_i) \cdot (B_i \oplus P) + A_i C_i$$

并行除法器——加减交替

- 4位除4位——不恢复余数阵列除法器
 - 被除数 x=0.x₆x₅x₄x₃x₂x₁ (双倍长)

商数
$$q=0.q_3q_2q_1$$

- 组成
 - 对应于除法人工过程
 - CAS数目: (n+1)²
 - 延迟: 3T (n+1)²

总结

- 定点乘法器
 - 串行移位乘法器
 - 实现与优化
 - 并行阵列乘法器
 - 延迟分析
 - 带符号乘法设计
 - 原码乘法、补码乘法
- 定点除法器
 - 加减交替法
 - 可控加减法单元

