Лекция 31 от 17.05.2016

Самосопряжённые линейные операторы (продолжение)

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n, \, \varphi \in L(\mathbb{E})$. Вспомним, что по определению сопряжённый линейный оператор φ^* это такой линейный оператор, для которого выполняется следующее:

$$(x, \varphi(y)) = (\varphi^*(x), y).$$

Вспомним также, что самосопряженным называется такой оператор φ , для которого $\varphi^* = \varphi$.

Предложение. Пусть φ — самосопряженный линейный оператор в \mathbb{E} . Если $U \subseteq \mathbb{E}$ — φ -инвариантное подпространство в \mathbb{E} , то U^{\perp} тоже φ -инвариантно.

Поясним, что означает этот факт.

Пусть
$$\dim U = m$$
 и $U = \langle e_1, \dots, e_m \rangle$. Так как $\mathbb{E} = U \oplus U^{\perp}$, то $\dim U^{\perp} = n - m$ и $U^{\perp} = \langle e_{m+1}, \dots, e_n \rangle$, где $\mathbb{e} = (e_1, \dots, e_n)$ — базис \mathbb{E} .

Тогда матрица φ в базисе $\mathbb P$ имеет следующий блочный вид:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad A \in M_m, \ D \in M_{n-m}.$$

Когда $U-\varphi$ -инвариантно, то есть $\varphi(U)\subseteq U$, эта матрица принимает вид $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$, так как базисные векторы $e_1,\dots e_m$ переходят в себя, не затрагивая векторы e_{m+1},\dots,e_n . И мы хотим доказать, что U^\perp тоже является φ -инвариантным подпространством, то есть блок B также равен нулю, то есть матрица φ в базисе $\mathbb P$ имеет вид $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$.

Доказательство. Известно, что $\varphi = \varphi^*$ и $\varphi(U) \subseteq U$. Мы хотим, чтобы $\varphi(U^{\perp}) \subseteq U^{\perp}$. Для этого нам достаточно показать, что $(x, \varphi(y)) = 0$ для любых векторов $x \in U$ и $y \in U^{\perp}$.

$$(x,\varphi(y)) = (\varphi^*(x),y) = (\underbrace{\varphi(x)}_{\in U},\underbrace{y}_{\in U^{\perp}}) = 0$$

Предложение. У самосопряжённого оператора φ есть собственный вектор над \mathbb{R} .

Доказательство. Ранее в курсе мы уже доказывали, что у φ существует одномерное или двумерное φ -инвариантное подпространство. Рассмотрим соответствующие случаи.

- 1. Если существует одномерное φ -инвариантное подпространство, то его порождающий вектор является собственным.
- 2. Пусть $U \subseteq \mathbb{E}$ двумерное φ -инвариантное подпространство и $\mathfrak{e} = (e_1, e_2)$ его ортонормированный базис. Пусть $\psi \in L(U)$ ограничение φ на U. В прошлый раз мы уже доказывали, что матрица ψ имеет симметрический вид, то есть $A(\psi, \mathfrak{e}) = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$. Рассмотрим его характеристический многочлен:

$$\chi_{\psi}(t) = (-1)^2 \begin{vmatrix} a - t & b \\ b & c - t \end{vmatrix} = t^2 - (a + c)t + ac - b^2 = 0;$$
$$D = (a - c)^2 + 4b^2 \geqslant 0.$$

Так как дискриминант неотрицательный, то у $\chi_{\psi}(t)$ есть хотя бы один корень. Следовательно, у ψ есть собственный вектор v. Но ψ — ограничение φ , так что вектор v тоже является для него собственным.

Теорема. У всякого самосопряжённого линейного оператора есть ортонормированный базис из собственных векторов. В частности, φ диагонализуем над $\mathbb R$ и его характеристический многочлен разлагается в произведение линейных сомножителей.

Следствие. Всякая симметричная матрица над \mathbb{R} подобна диагональной.

Доказательство. Докажем индукцией по n.

Для n=1 всё очевидно. Если n>1, то у φ есть собственный вектор v. Положим $e_1=\frac{v}{|v|}$ и $U=\langle e_1\rangle^\perp$. Тогда $\dim U=n-1$, причем $U-\varphi$ -инвариантное подпространство (см. предыдущее предложение). По предположеню индукции в U есть ортонормированный базис из собственных векторов (e_2,\ldots,e_n) . Тогда (e_1,\ldots,e_n) — искомый базис.

Следствие. Пусть φ — самосопряженный линейный оператор, u λ, μ — его собственные значения. Тогда $V_{\lambda}(\varphi) \perp V_{\mu}(\varphi)$ при $\lambda \neq \mu$.

Доказательство.

- 1. Координатный способ. Пусть $e = (e_1, \dots, e_n)$ ортонормированный базис из собственных векторов, где $\varphi(e_i) = \lambda_i e_i$. Тогда для произвольного вектора $x = x_1 e_1 + \dots + x_n e_n$ из V верно, что $\varphi(x) = x_1 \lambda_1 e_1 + \dots + x_n \lambda_n e_n$.
 - Несложно понять, что если $x \in V_{\lambda}(\varphi)$, то есть $\varphi(x) = \lambda x$, то тогда x принадлежит линейной оболочке тех базисных векторов, чье собственное значение равно λ : $x \in \langle e_i \mid \lambda_i = \lambda \rangle$. А так как базисные векторы попарно ортогональны в силу свойств выбранного базиса, то как раз получаем, что $V_{\lambda}(\varphi) \perp V_{\mu}(\varphi)$, если $\lambda \neq \mu$.
- 2. Бескоординатный способ. Возьмем произвольные векторы $x \in V_{\lambda}(\varphi)$ и $y \in V_{\mu}(\varphi)$. Тогда:

$$\lambda(x,y)=(\lambda x,y)=(\varphi(x),y)=(x,\varphi(y))=(x,\mu y)=\mu(x,y).$$

A поскольку $\lambda \neq \mu$, то (x,y) = 0.

Следствие (Приведение квадратичной формы к главным осям). Для любой квадратичной формы Q над \mathbb{E} существует ортонормированный базис, в котором Q имеет канонический вид.

$$Q(x_1, \dots, x_n) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2.$$

Причем числа $\lambda_1, \ldots, \lambda_n$ определены однозначно с точностью до перестановки.

Это более сильное утверждение, чем мы доказывали ранее, так как теперь мы говорим именно про ортонормированный базис.

Доказательство. Существует единственный самосопряжённый линейный оператор φ в $\mathbb E$ такой, что $Q(v) = (v, \varphi(v))$. Если е — ортонормированный базис, то матрица Q в базисе е будет равна матрице φ в базисе е. Числа $\lambda_1, \ldots, \lambda_n$ являются собственными значениями φ .

Следствие. Пусть $A \in M_n(\mathbb{R}), A = A^T$. Тогда существует ортогональная матрица C такая, что

$$C^T A C = C^{-1} A C = D = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Ортогональные линейные операторы

Определение. Линейный оператор $\varphi \in L(\mathbb{E})$ называется ортогональным, если

$$(\varphi(x), \varphi(y)) = (x,y), \quad \forall x, y \in \mathbb{E}.$$

Другими словами, φ сохраняет скалярное произведение, осуществляет изоморфизм $\mathbb E$ на себя.

Предложение. Пусть φ — линейный оператор в \mathbb{E} . Тогда следующие условия эквивалентны:

- 1. φ ортогональный линейный оператор;
- 2. $|\varphi(x)| = |x|$ для всех $x \in \mathbb{E}$, то есть φ сохраняет длины;
- 3. существует φ^{-1} , причем $\varphi^{-1} = \varphi^*$, то есть $\varphi \cdot \varphi^* = \varphi^* \cdot \varphi = \mathrm{id}$;
- 4. если e ортонормированный базис, то $A(\varphi,e)$ ортогональная матрица;
- 5. если (e_1, \ldots, e_n) ортонормированный базис, то $(\varphi(e_1), \ldots, \varphi(e_n))$ тоже ортонормированный базис.

Доказательство. Везде здесь $x, y \in \mathbb{E}$.

$$(1) \Rightarrow (2)$$

$$|\varphi(x)| = \sqrt{(\varphi(x), \varphi(x))} = \sqrt{(x, x)} = |x|$$

 $(2) \Rightarrow (1)$ Используем поляризацию (см. лекция 26).

$$(\varphi(x), \varphi(y) = \frac{1}{2}(|\varphi(x+y)|^2 - |\varphi(x)|^2 - |\varphi(y)|^2) = \frac{1}{2}(|x+y|^2 - |x|^2 - |y|^2) = (x,y)$$

 $(1)\&(2) \Rightarrow (3)$ Найдем ядро φ :

$$\varphi(x) = 0 \quad \Rightarrow \quad |\varphi(x)| = 0 \quad \Rightarrow \quad |x| = 0 \quad \Rightarrow \quad x = 0$$

Итого, $\operatorname{Ker} \varphi = \{0\}$. Значит, существует φ^{-1} . Теперь докажем, что $\varphi^{-1} = \varphi^*$:

$$(\varphi^{-1}(x), y) = (\varphi(\varphi^{-1}(x)), \varphi(y)) = (x, \varphi(y))$$

Получили, что φ^{-1} является сопряженным к φ по определению.

$$(3) \Rightarrow (1)$$

$$(\varphi(x), \varphi(y)) = (\varphi^*(\varphi(x)), y) = (x, y)$$

 $(4) \Leftrightarrow (5)$ Пусть $e = (e_1, \dots, e_n)$ — ортонормированный базис. Тогда верно, что

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)\cdot C,\quad C=A(\varphi,e)$$

Матрица C является ортогональной тогда и только тогда, когда $(\varphi(e_1), \ldots, \varphi(e_n))$ — ортонормированный базис.

(3) \Leftrightarrow (4) Пусть е — ортонормированный базис, $C = A(\varphi, e)$. Тогда $A(\varphi^*, e) = C^T$ и условие, что $\varphi \cdot \varphi^* = id$ равносильно тому, что $C \cdot C^T = E$, то есть C — ортогональная матрица.

Пример. Тут надо придумать, как записывать.

Предложение. Пусть φ — ортогональный линейный оператор в \mathbb{E} . Если $U \subseteq \mathbb{E}$ — φ -инвариантное подпространство в \mathbb{E} , то U^{\perp} тоже φ -инвариантно.

Доказательство. Рассмотрим ψ — ограничение φ на U. Оно, очевидно, тоже сохраняет длины, то есть также является ортогональным оператором. Следовательно, существует ψ^{-1} .

Достаточно показать, что $(x, \varphi(y)) = 0$ для любых векторов $x \in U$ и $y \in U^{\perp}$.

$$(x,\varphi(y))=(\psi(\psi^{-1}(x)),\varphi(y))=(\varphi(\psi^{-1}(x)),\varphi(y))=(\underbrace{\psi^{-1}(x)}_{\in U},\underbrace{y}_{\in U^{\perp}})=0$$

Пусть $\Pi(\alpha) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.

Теорема. Пусть φ — ортогональный линейный оператор в \mathbb{E} . Тогда существует ортонормированный базис \mathfrak{e} такой, что матрица $A(\varphi,\mathfrak{e})$ имеет следующий блочно-диагональный вид:

 $A(\varphi, e) := \begin{pmatrix} \Pi(\alpha) & & & & & & & \\ & \ddots & & & & & & \\ & & \Pi(\alpha) & & & & & \\ & & & -1 & & & & \\ & & & & \ddots & & & \\ & & & & & 1 \end{pmatrix}.$