

JET 101

石油工程数值分析及数据可视化方法 **王斌**

石油工程学院 水射流实验室

□ 学习目标

学习目标	学习成果	效果考察	课程活动
应该掌握哪些知识?	应该能够做哪些事情?	怎么考察学生?	应该怎么学习?
1. 实战非线性方程解法	1. 能够针对数学算法自行 编程求解 2. 可以找到对应的库进行 求解计算	1. 测试学生是否能编程二分 法解非线性方程 2. 测试学生能否寻找并使用 scipy 3. 课堂测验简单问题 • 期末Proposal	1. 完成期中Project

□ 非线性方程(Root finding)解法

$$f(x) = 0$$

PR气体状态方程
$$f(x) = Z^3 + (B-1)Z^2 + (A-2B-3B^2)Z - AB + B^2 + B^3$$

Colebrook管流压耗摩阻系数
$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon}{3.7D_h} + \frac{2.51}{\mathrm{Re}\sqrt{f}}\right)$$

- Bisection method (二分法)
- Fixed-Point Iteration (不动点迭代法)
- Newton-Rapson Method (牛顿迭代法)

□ 非线性方程(Root finding)解法

$$f(x) = 0$$

- Bisection method (二分法)
- Fixed-Point Iteration (不动点迭代法)
- Newton-Rapson Method (牛顿迭代法)

□ 非线性方程(Root finding)解法 – 二分法

$$f(x) = \cos(x) - x^3$$

$$a_0 = 0.2, b_0 = 1.3$$

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
;
 $FA = f(a)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = a + (b - a)/2$$
; (Compute p_i .)
 $FP = f(p)$.

Step 4 If
$$FP = 0$$
 or $(b - a)/2 < TOL$ then OUTPUT (p) ; (Procedure completed successfully.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .) $FA = FP$ else set $b = p$.

tep 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

□ 非线性方程(Root finding)解法 – 二分法

$$f(x) = \cos(x) - x^3$$

$$a_0 = 0.2, b_0 = 1.3$$

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
;
 $FA = f(a)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = a + (b - a)/2$$
; (Compute p_i .)
 $FP = f(p)$.

Step 4 If
$$FP = 0$$
 or $(b - a)/2 < TOL$ then OUTPUT (p) ; (Procedure completed successfully.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .)
 $FA = FP$
else set $b = p$.

Tep 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

□ 非线性方程(Root finding)解法 – 二分法

$$f(x) = \cos(x) - x^3$$

$$a_0 = 0.2, b_0 = 1.3$$

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
;
 $FA = f(a)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = a + (b - a)/2$$
; (Compute p_i .)
 $FP = f(p)$.

Step 4 If
$$FP = 0$$
 or $(b - a)/2 < TOL$ then OUTPUT (p) ; (Procedure completed successfully.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .) $FA = FP$ else set $b = p$.

Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

□ 非线性方程(Root finding)解法 – 二分法

$$f(x) = \cos(x) - x^3$$

$$a_0 = 0.2, b_0 = 1.3$$

i	a	b	р
1	0.2	1.3	0.75
2	0.75	1.3	1.025
3	0.75	1.025	0.8875
••	••	••	
10	0.8649	0.8660	0.8654

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
;
 $FA = f(a)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = a + (b - a)/2$$
; (Compute p_i .)

FP = $f(p)$.

Step 4 If $FP = 0$ or $(b - a)/2 < TOL$ then

OUTPUT (p) ; (Procedure completed successfully.)

STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .) $FA = FP$ else set $b = p$.

Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

□ 非线性方程(Root finding)解法 – 作业

The Peng-Robinson Equation of State

$$\begin{split} P &= \frac{RT}{V_m - b} - \frac{a\alpha}{V_m^2 + 2bV_m - b^2} \\ a &= \frac{0.45724R^2T_c^2}{P_c} \\ b &= \frac{0.07780RT_c}{P_c} \\ \alpha &= \left(1 + \left(0.37464 + 1.54226\omega - 0.26992\omega^2\right)\left(1 - T_r^{0.5}\right)\right)^2 \\ T_r &= \frac{T}{T_c} \end{split}$$

Where ω is the acentric factor for the species,

Pc is critical pressure,

T_C is critical temperature.

Values applied for 100% methane (CH₄):

 $\omega = 0.0115$

 $T_c = 191.15 \,\mathrm{K}$

 $P_c = 4.641 \text{ MPa}.$

The ideal gas constant R = 8.314413 J/mol-K

Wang, B. and Fidelibus, C., 2021. An Open-Source Code for Fluid Flow Simulations in Unconventional Fractured Reservoirs. Geosciences, 11(2), p.106.

课程大作业

□ 期中大作业

- ▶ 组队或者单人(不超过3人)
- ➤ OnePetro阅读文献,从一个角度
- xlwings读单井数据Excel
- ➤ Matplotlib画2D井眼轨迹
- ➤ Matplotlib微地震散点图
- ➤ PyVista三维画图(奖励任务)

课程大作业

□ 期末大作业选题

- > QEMSCAN数字岩心矿物分割与分析
- ➤ 3D裂缝地层COMSOL网格转换
- > 3D井眼轨迹与微地震数据可视化
- ▶ 3D微地震点云裂缝网重构*
- ➤ 超临界CO2状态SW方程求解
-

□ 学习目标

学习目标	学习成果	效果考察	课程活动
应该掌握哪些知识?	应该能够做哪些事情?	怎么考察学生?	应该怎么学习?
1. 实战非线性方程解法	1. 能够针对数学算法自行 编程求解 2. 可以找到对应的库进行 求解计算	1. 测试学生是否能编程二分 法解非线性方程 2. 测试学生能否寻找并使用 scipy 3. 课堂测验简单问题 • 期末Proposal	1. 完成期中Project