1. C

Instancia 1: iris-versicolor Instancia 2 iris-setosa Instancia 3: íris-versicolor

Instancia 4: íris-verginica

2. Apenas I e II – C

3.

	Precisão	Recall	F1Score	TVP	TFN	TFP	TVN
Α	0,59	0,59	0,59	0,59	0,41	0,41	0,93
В	0,65	0,83	0,74	0,83	0,17	0,35	0,92
С	0,77	0,67	0,72	0,67	0,33	0,23	0,93
D	0,89	0,88	0,89	0,88	0,12	0,11	0,91

Scanned with CamScanner

5.

Link google colab:

https://colab.research.google.com/drive/1eDpbJpaDNKsULKDFLTQEVAzKWWd21eZ8?usp=sharing

6.

O algoritmo de Classificação e Regressão de Árvores (CART) é um método supervisionado que cria árvores de decisão usando uma abordagem gananciosa e recursiva, semelhante aos algoritmos ID3 e C4.5. No entanto, o CART utiliza uma métrica chamada índice de impureza Gini, que permite a previsão de valores tanto categóricos quanto numéricos. Ao contrário da entropia padrão, o índice Gini leva a árvore resultante a ser uma árvore binária e lida melhor com conjuntos de dados desbalanceados.

A métrica de impureza Gini é calculada da seguinte maneira:

Para um conjunto de dados D com m classes, Gini(D) é calculado como 1 menos a soma dos quadrados das probabilidades de cada classe (pi).

Cada pi é estimado como a proporção de instâncias em D pertencentes à classe Ci dividida pelo tamanho de D.

A impureza de Gini é usada para avaliar todas as possíveis divisões binárias de um atributo A. Se A possui v valores distintos, existem 2^v - 2 maneiras de criar partições em A. Para cada divisão, é calculado o índice Gini ponderado dos subconjuntos resultantes, e a divisão que reduz a impureza Gini da maneira mais significativa é escolhida. Isso é feito calculando a diferença entre o Gini antes e depois da divisão para determinar a redução de impureza.

Em resumo, o CART utiliza o índice de impureza Gini para criar árvores de decisão binárias, avaliando todas as possíveis divisões de atributos e escolhendo a divisão que maximiza a redução de impureza. Isso o torna um algoritmo eficaz para lidar com diferentes tipos de dados e conjuntos de dados desbalanceados.

7. Link google colab:

https://colab.research.google.com/drive/1eDpbJpaDNKsULKDFLTQEVAzKWWd21eZ8?usp=sharing