第八讲:事件的独立性

Email: xzhangseu@seu.edu.cn

东南大学 数学学院

两个事件的独立性

- 直观上来说,两个事件的独立性是指:一个事件的发生不影响另一个事件的发生。比如在掷两颗骰子的实验中,第一颗骰子的点数和第二颗骰子的点数是互不影响的.
- ▶ 从概率的角度看, P(A|B) 与 P(A) 的差别在于: 事件 B 的发生改变了事件 A 发生的概率, 也即事件 B 对事件 A 有某种影响。故如果 A 与 B 的发生是相互不影响的,则有

$$P(A|B) = P(A), \quad P(B|A) = P(B).$$

上面两式均等价于

$$P(AB) = P(A)P(B) \tag{1}$$

▶ 注意到 (1) 式对 P(B) = 0 或 P(A) = 0 仍然成立,为此,我们用 (1) 作为两个事件相互独立的定义.

两个事件独立性的定义

定义 0.1 如果对事件 A 与 B 有

$$P(AB) = P(A)P(B)$$

成立,则称 事件 A 与 B 相互独立,简称 A 与 B 独立。否则称 A 与 B 不独立或相依。

注 0.1

- ▶ 零概率事件 E 与任何事件相互独立,特别的,不可能事件与任何 事件相互独立
- ▶ 若 A,B 互不相容且独立,则 A,B 至少有一个零概率事件
- ▶ 非零概率不相容事件, 一定不独立; 非零概率独立事件, 一定相容
- ▶ 若事件 A 与其自身相互独立, 则 P(A) = 0, 或 P(A) = 1

如何确定事件的独立性:

- ▶ 实际问题中,两个事件的独立大多根据经验及相互有无影响的直观性来判断.
- ▶ 但对于较复杂事件,有无相互影响并不是很直观,则需要验证 (1) 式是否成立来说明独立性.

定理 0.1 若 A 与 B 独立,则 A 与 \overline{B} 独立, \overline{A} 与 B 独立,证明: 我们仅证 $P(A\overline{B}) = P(A)P(\overline{B})$,其余类似可证.

$$P(A\overline{B}) = P(A - B) = P(A) - P(AB) = P(A) - P(A)P(B)$$

= $P(A)(1 - P(B)) = P(A)P(\overline{B})$

对于上面的定理直观上来理解也是很容易的:因 A, B 独立,故 A 的发生不影响 B 的发生,从而也不会影响 B 的不发生,...

例 0.1 考虑掷硬币问题, 记正面向上对应的样本点为"H", 反面向上为"T", 那么连续掷三次的结果构成样本空间

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},\$$

令事件 A 为" 最后一次是反面", B 为" 三次结果相同", 则有

$$A = \{HHT, HTT, THT, TTT\}, B = \{HHH, TTT\}$$

试讨论 A,B 的独立性.

解::设每次抛掷反面向上的概率是 p, 那么

$$P(A) = p^{3} + 2p^{2}(1-p) + p(1-p)^{2}, P(B) = p^{3} + (1-p)^{3}, P(AB) = p^{3},$$

不难验证, p = 0、 p = 1 和 $p = \frac{1}{2}$ 时, A 和 B 是独立的, 否则两者不独立.

定义 0.2 设 A,B,C 三个事件,如果有

$$P(AB) = P(A)P(B)$$

$$P(AC) = P(A)P(C)$$

$$P(BC) = P(B)P(C)$$

$$P(ABC) = P(A)P(B)P(C)$$
(2)

$$P(ABC) = P(A)P(B)P(C)$$
(3)

则称 A,B,C 相互独立。如果仅有 (2) 式成立,则称 A,B,C 两两独立.

两两独立与相互独立的关系

- ▶ 由定义可知,三个事件相互独立必能推出两两独立.
- ▶ 但两两独立未必能推出相互独立,即(2)式成立,不一定能推出 (3)成立
 - ▶ 考虑独立投掷两枚均匀硬币的随机试验,设事件 A 代表第一枚硬币 正面朝上,事件 B 代表第二枚硬币正面朝上,事件 C 表示两枚硬币 结果相同。易知: A B 和 C 是两两独立,但

$$P(A \cap B \cap C) = 1/4 \neq 1/8 = P(A)P(B)P(C).$$

▶ 考虑一个均匀的正四面体,第一二三面分别染上红 / 白 / 黑色,第四面同时染上红白黑色。现在以 A,B,C 分别记投一次四面体出现红,白,黑色朝下的事件。则易有

$$P(A) = P(B) = P(C) = 1/2$$

 $P(AB) = P(BC) = P(AC) = 1/4$
 $P(ABC) = 1/4$

两两独立与相互独立的关系

- ▶ 反之,如果(3)成立,是否能推出(2)成立?
 - ▶ 考虑一个均匀的正八面体, 第 1, 2, 3, 4 面染上红色, 第 1, 2, 3, 5 面染上白色, 第 1, 6, 7, 8 面染上黑色。现在以 *A*, *B*, *C* 分别记投一次八面体出现红, 白, 黑色朝下的事件, 则

$$P(A) = P(B) = P(C) = 4/8 = 1/2$$

 $P(ABC) = 1/8$
 $P(AB) = 3/8 \neq 1/4 = P(A)P(B)$

三个以上事件的独立性

定义 0.3设 (Ω, \mathcal{F}, P) 为一概率空间, $A_1, A_2, \cdots, A_n \in \mathcal{F}$, 对任意的 $1 \leq k \leq n$ 及任意的 $1 < j_1 < j_2 < \cdots < j_k \leq n$ 均有:

$$P(A_{j_1}A_{j_2}\cdots A_{j_k}) = P(A_{j_1})P(A_{j_2})\cdots P(A_{j_k})$$
(4)

成立,则称事件 A_1, \cdots, A_n 相互独立.

▶ (4) 式共有多少个等式?

$$\begin{cases}
P(A_{j_1}A_{j_2}) = P(A_{j_1})P(A_{j_2}) \\
P(A_{j_1}A_{j_2}A_{j_3}) = P(A_{j_1})P(A_{j_2})P(A_{j_3}) \\
\vdots \\
P(A_1A_2\cdots A_n) = P(A_1)P(A_2)\cdots P(A_n)
\end{cases}$$

- ▶ 从定义可以看出,n 个相互独立事件中的任取 $m(2 \le m \le n)$ 个事件仍是相互独立的,而且任意一部分与另一部分也是独立的.
- ▶ 类似于前面的证明,将相互独立事件中的任一部分换为对立事件, 所得诸事件仍是相互独立的.

任意多个事件相互独立

定义 0.4设 (Ω, \mathcal{F}, P) 为一概率空间,每个 $t \in T$ 有 $A_t \in \mathcal{F}$. 称 $\{A_t, t \in T\}$ 为独立事件族,如果对 T 的任意有限子集 $\{t_1, t_2, \cdots, t_s\}$, 事件 $A_{t_1}, A_{t_2}, \cdots, A_{t_s}$ 相互独立.

例 $0.2 \mathcal{F}$ 中事件序列 $\{A_n\}$ 为相互独立的充分必要条件是,任意 $n \geq 1$, 事件 A_1,A_2,\cdots,A_n 独立;等价的,任意有限个自然数 k_1,\cdots,k_s 有

$$P(A_{k_1}A_{k_2}\cdots A_{k_s}) = P(A_{k_1})P(A_{k_2})\cdots P(A_{k_s})$$

定义 0.5 称事件 A 和 B 是关于 E 条件独立的,如果

$$P(A \cap B|E) = P(A|E)P(B|E)$$

- ▶ 两个事件可以在给定事件 E 的条件下是条件独立的,但它们不是独立的。
- ▶ 两个事件可以是独立但却不是关于 E 条件独立的.
- ▶ 两个事件可以关于 E 条件独立但关于 E 不存在条件独立.

条件独立不意味着独立

例 0.3 假设有两枚硬币,一枚是均匀的,一枚是不均匀的。从两枚硬币中随机的选一枚硬币并进行抛掷 2 次,若令

 $F := \{$ 选取的硬币是均匀的 $\}$ $A_1 := \{$ 第一次投掷硬币正面朝上 $\}$ $A_2 := \{$ 第二次投掷硬币正面朝上 $\}$

则给定 F 为条件, A_1 和 A_2 ,是相互独立的, A_1 和 A_2 并不是无条件独立的,因为 A_1 会提供关于 A_2 的信息.

独立不意味着条件独立

例 0.4 假设只有我的朋友 Alice 和 Bob 给我打过电话。每天他俩都会相互独立地决定是否给我打电话。若令

- ▶ 显然, $A \rightarrow B$ 是无条件独立的.
- ▶ 但现在我听到一声电话铃响,那 A 和 B 就不再独立了:如果这个电话不是 Alice 打的,那就肯定是 Bob 打的。从而

$$P(B|R) < 1 = P(B|\overline{A}R) = \frac{P(B\overline{A}R)}{P(\overline{A}R)} = \frac{P(B\overline{A}|R)}{P(\overline{A}|R)}.$$

显然: $P(B\overline{A}|R) > P(B|R)P(\overline{A}|R)$

▶ $B 与 \overline{A}$ 关于 R 不条件独立, A,B 亦是如此.

例 0.5 假设有两种课程: 好的课程和坏的课程。在好的课上,如果你努力,就很有可能得到 A. 在坏的课上,教授随机分配给学生分数,而不管他们是否努力。若令

 $G := \{ \text{这个课程是好的} \}$ $W := \{ \text{你学习努力} \}$ $A := \{ \text{你的得分为} A \}$

这时,给定 \overline{G} , A 和 W 是条件独立的,但给定 G, A 和 W 却不是独立的!

定义 0.6 (集类 (族) 的独立性) 考虑样本空间 $\Omega, A_k \subset \Omega, k = 1, \dots, n$. 称集类 (族) $\{A_k\}_{k=1}^n$ 是相互独立的, 如果 $\{A_k\}_{k=1}^n$ 满足

$$P\left(\bigcap_{k\in I}A_{k}\right)=\prod_{k\in I}P\left(A_{k}\right),\forall A_{k}\in\mathcal{A}_{k},\forall I\subset\{1,2,\cdots,n\}.$$

定理 0.2 (σ -代数的独立性) 设 $\mathcal{F}_1, \cdots, \mathcal{F}_n$ 为 Ω 上的 σ -代数, 若

$$P(A_1A_2\cdots A_n) = P(A_1)P(A_2)\cdots P(A_n), \quad \forall A_k \in \mathcal{F}_k, k = 1, 2, \cdots, n$$

则 $\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_n$ 是独立的.

例 0.6 (硬币实验的独立性) 抛掷不均匀硬币的实验,正面 (用 1 表示) 向上的概率是 p, 反面 (用 0 表示) 向上的概率是 q. 假设连抛 n 次,则样本空间 Ω 为 $\Omega = \{a_1a_2\cdots a_n: a_k=0,1\}$. 考虑事件 $A_k=\{a_k=1\}$, $k=1,\cdots,n$, 构造 σ -代数 F_k : $F_k=\{\Omega,\varnothing,A_k,A_k^C\}$.可以验证, 这些 σ -代数是独立的.

独立的集类 (族) 生成的 σ -代数未必独立

- ▶ 考虑 $\Omega = \{1, 2, 3, 4\}$, 集类 (族) $\mathcal{A} = \{\{1, 2\}, \{2, 3\}\}$, $\mathcal{B} = \{\{2, 4\}\}$
- ▶ $\Rightarrow P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\}) = \frac{1}{4}, \text{ }$

$$P(\{1,2\} \cap \{2,4\}) = P(\{2\}) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(\{1,2\})P(\{2,4\}),$$

$$P({2,3} \cap {2,4}) = P({2}) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P({2,3})P({2,4})$$

- ▶ 集类 (族)A 和 B 独立
- ▶ 但由于

$$\sigma(\mathcal{A}) = 2^{\Omega}, \sigma(\mathcal{B}) = \{\{2, 4\}, \{1, 3\}, \varnothing, \Omega\}$$

且明显有

$$P({2,4} \cap {3}) = 0 \neq \frac{1}{8} = \frac{1}{2} \times \frac{1}{4} = P({2,4})P({3})$$

故, σ(A) 和 σ(B) 不独立.

定理 0.3 如果 A 和 B 是独立的集类 (族), B 是 π -类, 那么 A 和 $\sigma(B)$ 也独立.

证明: 应用单调类定理.

▶ 任意固定 A ∈ A, 令

$$\mathscr{A} = \{ B \in \sigma(\mathcal{B}) : P(AB) = P(A)P(B) \}$$

则 A 是 λ-类 (系统)

- ▶ 由 $\mathcal{B} \subset \mathscr{A}$ 及单调类定理可得: $\sigma(\mathcal{B}) \subset \mathscr{A}$.
- A 和 σ(B) 独立.

Borel-Cantelli 引理

定理 0.4对于事件列 $\{A_i\}$, 有

- **b** 如果 $\sum_{j=1}^{\infty} P(A_j) < \infty$,则 $P(A_n i.o.) = 0$
- ▶ 如果 $\{A_j\}$ 相互独立, $\sum_{j=1}^{\infty} P(A_j) = \infty$,则 $P(A_n i.o.) = 1$

证明: 注意到

$$P(A_n \ i.o.) = P(\lim \bigcup_{j=n}^{\infty} A_j) = \lim P(\bigcup_{j=n}^{\infty} A_j) \le \lim \sum_{j=n}^{\infty} P(A_j) = 0$$

由于

$$\begin{split} P(\cup_{j=n}^{\infty}A_j) &= \lim_{m\to\infty}P(\cup_{j=n}^{m}A_j) = \lim_{m\to\infty}(1-P(\cap_{j=n}^{m}\overline{A}_j)) \\ P(\cap_{j=n}^{m}\overline{A}_j) &= \Pi_{j=n}^{m}P(\overline{A}_j) = \Pi_{j=n}^{m}(1-P(A_j)) \\ &\leq \Pi_{j=n}^{m}\exp(-P(A_j)) = \exp(-\sum_{j=n}^{m}P(A_j)) \stackrel{m\to\infty}{\longrightarrow} 0 \end{split}$$

▶ 先考虑两个随机试验,假定 $(\Omega_i, \mathcal{F}_i, P_i), i = 1, 2$ 为第 i 个随机试验对应的概率空间。按照之前独立性的理解,两个试验的独立性应当叙述为:

对任何的 $A_i \in \mathcal{F}_i, i = 1, 2, A_1 = 1, A_2$ 同时发生的概率等于它们各自概率之乘积

▶ 两个不妥:

- Arr " A_1 与 A_2 同时发生"应当是这两个事件的交,但它们分别是两个样本空间 Ω_1,Ω_2 的子集,无法进行运算;
- ▶ 两个概率空间有各自的概率 P_1, P_2 , 但涉及两个度验,命题中"同时发生的概率"既不能用 P_1 也不能用 P_2 来度量.
- ▶ 解决方法:构造可以同时描述两个试验的新概率空间 (Ω, F, P).

乘积空间的构造

- ▶ 样本乘积空间: $\Omega := \Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) : \omega_1 \in \Omega_1 \square \omega_2 \in \Omega_2\};$
- ▶ 乘积 σ 代数 $F_1 \times F_2$:
 - ▶ 可测矩形集类: $G := \{A_1 \times A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\};$
- ▶ 乘积概率测度:
 - ▶ 对于每个可测矩形 $A_1 \times A_2 \in G$ 定义如下集函数:

$$P(A_1 \times A_2) = P_1(A_1)P_2(A_2), \quad A_i \in \mathcal{F}_i, i = 1, 2.$$
 (6)

- ▶ 理论上可以证明如上定义在 G 上的集函数 P 可唯一地扩张为 $F_1 \times F_2$ 上的概率测度,称之为 P_1 与 P_2 的乘积 (概率) 测度.
- ▶ 在上述乘积测度下

$$P(A_1 \times \Omega_2) = P_1(A_1), \quad P(\Omega_1 \times A_2) = P_2(A_2)$$

$$P((A_1 \times \Omega_2) \cap (\Omega_1 \times A_2)) = P(A_1 \times A_2)$$

$$= P_1(A_1)P_2(A_2) = P(A_1 \times \Omega_1)P(\Omega_1 \times A_2)$$

▶ $(\Omega_i, \mathcal{F}_i, P_i)$ 的独立性取决于乘积样本空间 $\Omega_1 \times \Omega_2$ 上的概率是否取作由 (6) 所确定的乘积测度

n 个试验相互独立的定义

定义 0.7设有 n 个随机试验,第 i 个试验的概率空间为 $(\Omega_i, \mathcal{F}_i, P_i)$, $i=1,\cdots,n$. 代表这 n 个试验的乘积样本空间 $\Omega=\Omega_1\times\cdots\times\Omega_n$, $\mathcal{F}=\mathcal{F}_1\times\cdots\times\mathcal{F}_n=\sigma(\mathcal{G})$,其中 \mathcal{G} 为形如 $B_1\times\cdots\times B_n(B_i\in\mathcal{F}_i)$ 的可测矩形的全体。如果 (Ω,\mathcal{F}) 上的概率测度 P 是 P_1,\cdots,P_n 的乘积测度,即对任何 $B_1\times\cdots\times B_n\in\mathcal{G}$ 满足

$$P(B_1 \times \cdots \times B_n) = P_1(B_1) \cdots P(B_n),$$

则称这n个度验独立.如果现设

$$\Omega_i \equiv \Omega_0, \mathcal{F}_i \equiv \mathcal{F}_0, P_i \equiv P_0, i = 1, \cdots, n,$$

即 n 个试验有相同的概率空间,则称它们为 n 个 (重) 独立重复试验. 如果在 n 个独立重复实验中,每次试验的可能结果为两个:A 或 \overline{A} ,则称这种试验为 n 重伯努利试验.

例 0.7某彩票每周开奖一次,每次提供十万分之一的中奖机会,且各周开奖是独立的。若你每周买一张彩票,坚持十年(每年按 52 周计算),试求未中奖的概率. 解: 依假设,每次中奖的概率为 10^{-5} ,于是每次不中奖的概率是 $1-10^{-5}$. 另外十年一共购买 520 次彩票,而每次开奖都是独立的,相当于进行了 520 次独立重复试验. 若记 A_i 为"第 i 次开奖不中奖",则 A_1, \cdots, A_{520} 相互独立,从而

$$P(A_1 A_2 \cdots A_{520}) = (1 - 10^{-5})^{520} = 0.9948$$

第八讲: 随机变量及其分布

Email: xzhangseu@seu.edu.cn

东南大学 数学学院

随机变量的引入

- ▶ 赌徒输光: 甲和乙初始资金分别为 i,a-i元,每一局甲赢的概率为 p
- ▶ 关注的问题
 - ▶ 甲最终获胜的概率
 - ▶ 甲乙两人在任意时刻的剩余资产:k 轮赌博后恰好剩下 j 元
 - ▶ k 轮赌博后甲乙两人资产的差额 Z
 - ▶ 赌博持续时间 R
- ▶ 表示方法:
 - ► E :={甲最终获胜 }, Q_i := P(E)
 - ▶ $A_{ik} := \{ \text{甲在 } k \text{ 轮赌博后恰好剩下 } j \text{ 元 } \}$
 - ▶ $B_{ik} := \{ \text{乙在 } k \text{ 轮赌博后恰好剩下 } j \text{ 元 } \}$
 - ▶ k 轮赌博后甲乙两人资产的差额如何表示?
 - ▶ 赌博持续时间 R 如何表示?
 - ▶ 很难用事件来表示或者表示很复杂

随机变量的引入

- ▶ $X_k :=$ 甲在 k 轮赌博后的资产
 - ▶ 乙在 k 轮赌博后的资产 $Y_k = a X_k$
 - ▶ 资产差额: $Z = X_k Y_k = 2X_k a$
 - ▶ 持续时间: $R = \min\{n : X_n = 0, \text{ 虱} Y_n = 0\}$
- ► Xk 取值的特点
 - ▶ 依赖于前面 k 次赌博这一"随机试验"的结果
 - \blacktriangleright 在"随机试验"完成之前, X_k 取值不确定,因此具有不确定性
 - \triangleright k 次赌博"随机试验"一旦完成, X_k 的值必然确定
 - ightharpoonup 记 k 次赌博"随机试验"样本空间为 Ω , 则给定 $\omega \in \Omega$, 则 X_k 值确定
- ▶ 以 k=2 为例,看一下 X_2 的取值情况,设 $i \ge 2$
 - $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}, \ \ \, \sharp \ \ \, \psi$ $\omega_1 = (\underline{k}, \ \underline{k}), \omega_2 = (\underline{k}, \ \underline{w}), \omega_1 = (\underline{w}, \ \underline{k}), \omega_1 = (\underline{w}, \ \underline{w})$
 - $X_2(\omega_1) = i + 2, \ X_2(\omega_2) = X_2(\omega_3) = i, \ X_2(\omega_4) = i 2$
- ► X_k 可以看作定义在样本空间 Ω 上的函数,即 $X_k: \Omega \to \{0, 1, \dots, a\}$
- ▶ 一般的,随机变量可以看作从样本空间到实数的映射: $X: \Omega \to R$

随机变量的直观定义

定义 1.1 (直观定义) 称 X 为随机变量,如果 X 是从样本空间 Ω 到实数的映射,即 $X:\Omega \to R$.

一个随机变量的例子

例 1.1 考虑硬币抛掷两次的随机试验, 其样本空间为

$$\Omega = \{HH, HT, TH, TT\}.$$

▶ 令 X 表示正面朝上的次数,则 X 是一个随机变量,相应的映射如下

$$X(TT) = 0, X(HT) = X(TH) = 1, X(HH) = 2.$$

- ▶ 令 Y 表示反面朝上的次数,则 Y = 2 X, 对于任意的 $\omega \in \Omega$, 有 $Y(\omega) = 2 X(\omega)$.
- ▶ 设I是由第一次掷硬币的结果决定的随机变量:若第一次硬币正面朝上则I=1,反之I=0,即

$$I(HH) = I(HT) = 1, \quad I(TH) = I(TT) = 0.$$

► 若正面记 1, 反面记 0, 此时 $\Omega = \{(1,1), (1,0), (0,1), (0,0)\}$. 上述 的 X, Y 和 I 可表示为:

$$X(\omega_1, \omega_2) = \omega_1 + \omega_2, Y(\omega_1, \omega_2) = 2 - \omega_1 - \omega_2, I(\omega_1, \omega_2) = \omega_1.$$

与函数对比分析

- ▶ 数学分析中的函数 f(x)
 - ▶ $f(x): D \to R$, 其中 $D \subset R$
 - ▶ R 上可定义距离 d(x,y) = |x-y|
 - ▶ 可根据距离 d 定义函数的连续性
- ▶ 概率论中的随机变量 X
 - $\blacktriangleright X(\omega): \Omega \to R$
 - ightharpoonup 定义域 Ω 没有距离的定义,但有事件域 F 及定义其上的概率 P, 即 具有结构 (Ω, \mathcal{F}, P)
 - ▶ 值域 R 有距离,但因定义域无距离,故无法考虑随机变量的连续性
 - ightharpoonup 值域 R 还有 σ 代数 $\mathcal{B} := \mathcal{B}(R)$, 有可测空间结构 (R,\mathcal{B})
- ▶ 是否需要对 $X(\omega): \Omega \to R$ 做一些额外的限定,以便更好的研究 X?
- ▶ 从赌徒输光问题可以看出,对随机变量 X,我们会关注
 - ▶ $X(\omega) = x$ 的概率, $X(\omega) \le x, X(\omega) \in [b, c]$ 的概率
 - ▶ 更一般的, $\forall B \in \mathcal{B}(R), X(\omega) \in B$ 的概率
- ▶ 概率的定义域是 F, 要想计算 $X(\omega) \in B$ 的概率,当且仅当

$$\forall B \in \mathcal{B}(R), \ X^{-1}(B) := \{\omega : X(\omega) \in B\} \in \mathcal{F}$$

随机变量的严格数学定义

定义 1.2 (可测映射) 设 (Ω, \mathcal{F}) 和 (E, \mathcal{E}) 为两个可测空间并令 X 为从 样本空间 Ω 到 E 的映射,即 $X(\omega):\Omega\to E$. 若对任意的 $B\in\mathcal{E}$ 均有

$$X^{-1}(B) := \{\omega : X(\omega) \in B\} \in \mathcal{F}$$

则称 X 为 (Ω, \mathcal{F}) 到 (E, \mathcal{E}) 的可测映射.

若将上述定义中的可测空间 (E,\mathcal{E}) 更换为 (R,\mathcal{B}) , 则

定义 1.3 (可测函数或随机变量) 设 (Ω, \mathcal{F}) 是可测空间, X 为从样本空间 Ω 到实数集 R 的映射, 即 $X(\omega)$: $\Omega \to R$. 如果对 $\forall B \in \mathcal{B}$ 均有

$$X^{-1}(B) := \{\omega : X(\omega) \in B\} \in \mathcal{F}.$$

则称 X 为可测空间 (Ω, \mathcal{F}) 上的可测函数或随机变量.

定义 1.4 (随机变量的另一定义) 设 (Ω, \mathcal{F}) 是可测空间,X 为从样本空间 Ω 到实数集 R 的映射,即 $X(\omega):\Omega\to R$. 如果对任意的 $x\in R$ 均有

则称 $X(\omega)$ 是可测空间 (Ω, \mathcal{F}) 上的随机变量,简称随机变量.

由定义 1.4 推定义 1.3: 仅需说明若定义 1.4 成立,则对任意 $B \in \mathcal{B}$ 均有

$$X^{-1}(B) := \{\omega : X(\omega) \in B\} \in \mathcal{F}.$$

即只需说明以下集合包含关系成立即可

$$\mathcal{A} := \{ A : X^{-1}(A) \in \mathcal{F} \} \supset \mathcal{B}$$

欲证上面包含关系成立,我们只需说明以下两点即可:

- 1. A 是 σ 代数;
- **2.** $O_1 := \{(-\infty, x] : x \in R\} \subset \mathcal{A}.$

再由 $\mathcal{B} := \sigma(O_1)$ 知 $\mathcal{B} \subset \mathcal{A}$.

- $\blacktriangleright X^{-1}(R) = \{\omega : X(\omega) \in R\} = \Omega \in \mathcal{F}, \ \ \& \ R \in \mathcal{A};$
- ▶ 若 $A \in \mathcal{A}$, 即 $X^{-1}(A) \in \mathcal{F}$, 则

$$X^{-1}(\overline{A}) = \{\omega : X(\omega) \in \overline{A}\} = \{\omega : X(\omega) \notin A\}$$
$$= \{\omega : X(\omega) \in A\} = \overline{X^{-1}(A)}$$
$$\in \mathcal{F}$$

▶ 对于 $A_j \in A, j = 1, 2, \cdots, 有 X^{-1}(A_j) \in \mathcal{F}, j = 1, 2, \cdots.$ 从而

$$X^{-1}(\bigcup_{j=1}^{\infty} A_j) = \{\omega : X(\omega) \in \bigcup_{j=1}^{\infty} A_j\} = \bigcup_{j=1}^{\infty} \{\omega : X(\omega) \in A_j\}$$
$$= \bigcup_{j=1}^{\infty} X^{-1}(A_j)$$
$$\in \mathcal{F}$$

随机变量的分类以及两个注记

- ▶ 随机变量 X 是从样本空间 Ω 到实数 R 的映射,故根据其值域集合可粗略的分为两大类
 - ▶ 离散型随机变量: 其值域集合是有限点集或可数点集即

$$X(\Omega) := \{X(\omega) : \omega \in \Omega\} = \{a_n\}_{n \ge 1}$$

▶ 非离散型随机变量: 其值域集合不是有限点集或可数点集

注 1.1 随机变量的两点注记:

- ▶ 首先, 随机变量是确定性函数, 自身并没有随机性. 给定样本空间上的样本点, 有唯一确定的实数值与之相对应, 这种对应关系并没有不确定性. 所有的不确定性都体现在样本点是否在试验结果中出现, 和随机变量本身没有关系。随机变量的引入, 更多地是为了数学处理上的方便.
- ▶ 其次, 随机变量并不是概率论中独有的概念. 若将前面可测映射中的 $(\Omega, \mathcal{F}), (E, \mathcal{E})$ 均取为 $(R, \mathcal{B}(\mathbb{R}))$, 则可测映射的定义便退化为实分析中的"可测函数". 随机变量是一特殊的可测函数.

例 1.2设 Ω 是某随机试验的样本空间,F 为其事件域 $(\sigma$ 代数),则对于任意的 $A \in F$,示性函数 $I_A(\omega) := \left\{ egin{array}{ll} 0, & \omega \notin A \\ 1, & \omega \in A \end{array} \right.$ 是随机变量.

解: 由示性函数的定义知:

$$\{\omega: I_A(\omega) \le x\} = \begin{cases} \emptyset, & x < 0, \\ \overline{A}, & x \in [0, 1), \\ \Omega, & x \ge 1. \end{cases}$$

显然, 无论 x 取何值, 均有 $\{\omega : I_A(\omega) \leq x\} \in \mathcal{F}$

随机变量的性质

定理 1.1 若 $X, Y, \{X_n, n \ge 1\}$ 都为概率空间 (Ω, \mathcal{F}, P) 上的随机变量,则

- **1.** |X|, aX + bY, $(a, b \in R)$ 均为随机变量;
- **2.** $X^+ := X \lor 0, X^- := (-X) \lor 0$ 均为随机变量;
- 3. XY 为随机变量;
- **4.** 若 X/Y 处处有意义,则 X/Y 为随机变量;
- **5.** $\inf_n X_n, \sup_n X_n, \liminf_{n \to \infty} X_n, \limsup_{n \to \infty} X_n$ 均为随机变量.

证明:

- **1.** $\blacktriangleright \{\omega : |X| < x\} = \{\omega : -x < X < x\} = \{\omega : X < x\} \cap \overline{\{\omega : X \le -x\}} \in \mathcal{F};$

 - ▶ 设 Q 为有理数集,则

$$\begin{aligned} \{\omega : X + Y < x\} &= \{\omega : X < x - Y\} = \cup_{r \in \mathcal{Q}} \{\omega : X < r < x - Y\} \\ &= \cup_{r \in \mathcal{Q}} \{\omega : X < r, Y < x - r\} \\ &= \cup_{r \in \mathcal{Q}} (\{\omega : X < r\} \cap \{\omega : Y < x - r\}) \\ &\in \mathcal{F} \end{aligned}$$

- **2.** 注意到 $X^+ = \frac{|X| + X}{2}, X^- = \frac{|X| X}{2}, \ \$ 易得 X^+, X^- 均为随机变量;
- 3. 首先假定 X, Y 非负,则对任意的 x > 0 有

$$\{XY < x\} = \{X = 0\} \cup \{Y = 0\} \cup \left(\cup_{r \in Q_+} \left[\{X < r\} \cap \{Y < \frac{x}{r}\} \right] \right)$$

$$\in \mathcal{F}.$$

对一般的 X, Y, 由 X^+, X^-, Y^+, Y^- 为随机变量,可得

$$XY = (X^{+} - X^{-})(Y^{+} - Y^{-}) = (X^{+}Y^{+} + X^{-}Y^{-}) - (X^{+}Y^{-} + X^{-}Y^{+})$$

为随机变量.

- 4. 设 |Y| > 0 处处成立,易证 $\frac{1}{Y}$ 是随机变量,故 $\frac{X}{Y} = X \cdot \frac{1}{Y}$ 为随机变量。
- 5. 对任意的 $x \in R$, 我们有

$$\{\inf_{n} X_n < x\} = \bigcup_{n} \{X_n < x\}, \quad \{\sup_{n} X_n \le x\} = \bigcap_{n} \{X_n \le x\}$$

例 1.3 设 (Ω, \mathcal{F}, P) 为一概率空间, $A_i \in \mathcal{F}, i = 1, \dots, n$ 为 Ω 的一个分割, $a_i, i = 1, \dots, n$ 为 n 个不同的实数,则

$$X(\omega) := \sum_{i=1}^{n} a_i I_{A_i}(\omega) \tag{7}$$

作为 n 个示性随机变量的线性组合,仍为随机变量。我们称形如 (7) 的 $X(\omega)$ 为简单随机变量.

定理 1.2设 X 是可测空间 (Ω, \mathcal{F}) 上的随机变量,g(x) 为 $(R, \mathcal{B}) \to (R, \mathcal{B})$ 上的 Borel 可测函数,证 Y := g(X) 为 (Ω, \mathcal{F}) 上的随机变量.

证明: 注意到,对任意的 $B \in \mathcal{B}$, $g^{-1}(B) \in \mathcal{B}$, 故

$$Y^{-1}(B) = \{\omega : Y(\omega) \in B\}$$

$$= \{\omega : g(X(\omega)) \in B\}$$

$$= \{\omega : X(\omega) \in g^{-1}(B)\}$$

$$= X^{-1}(g^{-1}(B))$$

$$\in \mathcal{F}$$

对于 (Ω, \mathcal{F}, P) 上的任意非负随机变量 X 及自然数 n,我们可将 Ω 按 X 的取值进行分割。即令

$$A_k(\omega) := \{\omega : \frac{k}{2^n} \le X(\omega) < \frac{k+1}{2^n}\}, k = 0, 1, \dots, n2^n - 1$$

$$A_{n2^n}(\omega) := \{\omega : X(\omega) \ge n\}$$

则

$$X_n(\omega) := \sum_{k=0}^{n2^n} \frac{k}{2^n} I_{A_k}(\omega)$$

为简单随机变量且随机变量序列 $\{X_n, n \geq 1\}$ 满足

$$0 \le X_1(\omega) \le X_2(\omega) \le \cdots \le X_n(\omega) \to X(\omega)$$

$X_n(\omega)$ 的单调性

注意到对任意的 $k = 0, 1, \dots, n2^n - 1$,

$$A_{k}(\omega) = \{\omega : \frac{k}{2^{n}} \le X(\omega) < \frac{k+1}{2^{n}}\} = \{\omega : \frac{2k}{2^{n+1}} \le X(\omega) < \frac{2(k+1)}{2^{n+1}}\}$$

$$= \{\omega : \frac{2k}{2^{n+1}} \le X(\omega) < \frac{2k+1}{2^{n+1}}\} \cup \{\omega : \frac{2k+1}{2^{n+1}} \le X(\omega) < \frac{2k+2}{2^{n+1}}\}$$

$$= A_{k}^{1}(\omega) \cup A_{k}^{2}(\omega)$$

故在集合 $A_k(\omega), k = 0, 1, \dots, n2^n - 1$ 上,

$$X_{n+1}(\omega) = \begin{cases} \frac{2k}{2^{n+1}}, & \omega \in A_k^1(\omega) \\ \frac{2k+1}{2^{n+1}}, & \omega \in A_k^2(\omega) \end{cases} (\geq \frac{k}{2^n} = X_n(\omega))$$

而在
$$A_{n2^n}(\omega) := \{\omega : X(\omega) \ge n\} = \{\omega : X(\omega) \ge \frac{n2^{n+1}}{2^{n+1}}\}$$
 上,显然有 $X_{n+1}(\omega) \ge n = X_n(\omega)$.

$X_n(\omega)$ 的收敛性

注意到,对任意的 ω ,必定存在k使得

$$\frac{k}{2^n} \le X(\omega) < \frac{k+1}{2^n},$$

从而

$$0 \le X(\omega) - X_n(\omega) \le \frac{1}{2^n}$$

显然有

$$\lim_{n\to\infty} X_n(\omega) = X(\omega).$$

定理 1.3对 (Ω, \mathcal{F}, P) 上的实值变量 $X(\omega)$ 为随机变量的充要条件是:存在简单随机变量序列 $\{X_n(\omega), n \geq 1\}$ 使得

$$\lim_{n\to\infty} X_n(\omega) = X(\omega), \quad \forall \omega \in \Omega$$

而且当 X 非负时,还可选取 $\{X_n(\omega), n \geq 1\}$ 为非负单调不减的简单随机变量序列.

定义 1.5 (单个随机变量的生成 σ -代数) 设 X 为定义在 (Ω, \mathcal{F}) 上的随机变量并令 $\mathcal{F}_X:=\{X^{-1}(A):A\in\mathcal{B}(\mathbb{R})\}$. 我们称 $\sigma(X):=\sigma(\mathcal{F}_X)$ 为随机变量 X 的生成 σ -代数.

定义 1.6 (有限个随机变量的生成 σ -代数) 设 $X_k, k=1,2,\cdots,n$ 为定义在 (Ω,\mathcal{F}) 上的随机变量并令 $\mathcal{F}_{X_k}:=\{X_k^{-1}(A):A\in\mathcal{B}(\mathbb{R})\}$. 我们称

$$\sigma(X_1, X_2, \cdots, X_n) := \sigma\left(\cup_{k=1}^n \mathcal{F}_{X_k}\right)$$

为随机变量 X_1, X_2, \cdots, X_n 的生成 σ -代数.

 $ightharpoonup F_X, F_{X_k}$ 均为 σ -代数, 但 $\cup_{k=1}^n F_{X_k}$ 不一定是 σ -代数, 因此

$$\sigma(X) = \mathcal{F}_X, \quad \text{\'e} \quad \sigma(X_1, X_2, \cdots, X_n) \neq \bigcup_{k=1}^n \mathcal{F}_{X_k}.$$

- ▶ 若 $X \in (\Omega, \mathcal{F})$ 上的随机变量, 则必有 $\sigma(X) := \mathcal{F}_X \subset \mathcal{F}$, 即 $\sigma(X)$ 是 Ω 上使得 X 成为随变量所需要的最小 σ -代数.
- ▶ 类似的, $\sigma(X_1, X_2, \dots, X_n)$ 是 Ω 上使得 X_1, X_2, \dots, X_n 为随机变量 所需要的最小 σ -代数.
- D 随机变量 X 生成的 σ 代数 $\sigma(X)$ 集中体现了 X 的取值信息.

两个随机变量之间的关系

定义 1.7考虑两个随机变量 X, Y, 如果对任意的 $B \in \mathcal{B}(\mathbb{R})$ 均有

$$Y^{-1}(B) \in \sigma(X)$$
, 等价的 $\sigma(Y) \subset \sigma(X)$.

则称 Y适应 (adaptive to) X.

定理 1.4考虑可测空间 (Ω, \mathcal{F}) , X 和 Y 为定义其上的随机变量. 若 Y 适应 X, 则存在可测函数 $g: \mathbb{R} \to \mathbb{R}$, 使得

$$Y(\omega) = g(X(\omega)), \ \forall \omega \in \Omega.$$

注 1.2

- 随机变量的生成 σ-代数研究随机变量间关系起着重要作用.
- ▶ 直观地看, Y 适应 X, 意味着 Y 包含的信息被 X 包含的信息所涵盖. 换句话说, Y 和 X 间存在导出关系.

随机向量: 如何定义 $\mathcal{B}(\mathbb{R}^n)$

- ightharpoonup 直观上来讲, 随机向量就是取值于 \mathbb{R}^n 的随机变量.
- ▶ 如何定义 $\mathcal{B}(\mathbb{R}^n)$
 - ▶ 注意到

$$\mathbb{R}^n := \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \prod_{k=1}^n \mathbb{R}$$

▶ 我们希望

$$\mathcal{B}(\mathbb{R}^n) = \mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots \times \mathcal{B}(\mathbb{R}) = \prod_{k=1}^n \mathcal{B}(\mathbb{R})$$

- ▶ 但 $\Pi_{k=1}^n \mathcal{B}(\mathbb{R})$ 不是 σ -代数.
- ▶ 因此, 定义

$$\mathcal{B}(\mathbb{R}^n) := \sigma(\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots \times \mathcal{B}(\mathbb{R})) = \sigma(\Pi_{k=1}^n \mathcal{B}(\mathbb{R}))$$

▶ 我们也可以类比 $\mathcal{B}(\mathbb{R})$ 的定义方法, 先定义 \mathbb{R}^n 上的立方体

$$I = I_1 \times I_2 \times \cdots \times I_n = \prod_{k=1}^n I_k, \ I_k = (a_k, b_k].$$

然后定义 $\mathcal{B}(\mathbb{R}^n)$ 为:

$$\mathcal{B}(\mathbb{R}^n) := \sigma(\{I : I \to \mathbb{R}^n \bot$$
的立方体 $\}).$

定义 1.8 (n 维随机向量) 考虑可测空间 (Ω, \mathcal{F}) , 若映射 $X: \Omega \to \mathbb{R}^n$ 使得对任意的 $B \in \mathcal{B}(\mathbb{R}^n)$ 均有

$$X^{-1}(B) \in \mathcal{F}$$

则称X为n维随机向量.

注 1.3 若记 $X = (X_1, X_2, \dots, X_n)$, 则 $X \to n$ 维随机向量当且仅当 $X_k, k = 1, \dots, n$ 为随机变量.

定义 1.9 (复随机变量) 考虑可测空间 (Ω, \mathcal{F}) 以及映射 Z

$$Z(\omega) = X(\omega) + iY(\omega) \in \mathbb{C}$$

其中 $i = \sqrt{-1}$ 是虚数单位. 如果 $(X(\omega), Y(\omega))$ 构成二维随机向量,则 称 Z 为复随机变量.

分布与分布函数

定理 1.5设 X 为 (Ω, \mathcal{F}, P) 上的随机变量,对于 Borel 集 B, 定义集函数 $\mathbf{F}(B)$ 如下:

$$\mathbf{F}(B) := P(X^{-1}(B)) = P \circ X^{-1}(B) = P(X \in B)$$
 (8)

则 $\mathbf{F}(\cdot)$ 为 (R,\mathcal{B}) 上的概率,称之为随机变量 X 的诱导概率测度.

定义 1.10 称由 (8) 式定义在 (R,\mathcal{B}) 上的概率测度 $\mathbf{F}(\cdot)$ 为随机变量 X 的概率分布,简称分布.

- ▶ 给定概率空间 (Ω, \mathcal{F}, P) ,任给随机变量均可在 (R, \mathcal{B}) 上诱导出一个概率测度。由此可见,在同一个可测空间上可以定义不同的概率测度.
- ▶ 对于任意的 $B \in \mathcal{B}$,随机变量 X 落入 B 中的概率可通过 B 的概率 测度 $\mathbf{F}(B)$ 得出。这也就是说,概率分布 $\mathbf{F}(\cdot)$ 完全刻画了随机变量 X 取值的概率规律.

如果我们将 (R,\mathcal{B}) 上的测度仅局限于集类 $\mathcal{P}:=\{(-\infty,x],x\in R\}$ 上,由于 \mathcal{P} 中的每条半直线被它的右端点 x 所决定,于是集函数 F 就化为 R 上的点函数.

定义 1.11 对于随机变量 X 而言,称 x 的函数

$$F(x) := \mathbf{F}((-\infty, x]) = P(X \le x)$$

为 X 的概率分布函数或累积分布函数,简称分布函数并记作 $X \sim F(x)$, 有时也以 $F_X(x)$ 表明是 X 的分布函数.

注 1.4 也有一些教材按如下方式定义分布函数:

$$F(x) := \mathbf{F}((-\infty, x)) = P(X < x)$$

分布函数的性质

定理 1.6任一分布函数 F(x) 都具有以下三条基本性质

- **1.** 单调性非降性: F(x) 是单调非减函数即对任意的 $x_1 < x_2$, 有 $F(x_1) \le F(x_2)$;
- 2. 右连续性: F(x) 是 x 的右连续函数,即

$$F(x_0) = F(x_0+) := \lim_{x \to x_0+} F(x)$$

3. 规范性: 对任意的 x 有, $0 \le F(x) \le 1$ 且

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$
$$F(+\infty) = \lim_{x \to -\infty} F(x) = 1$$

分布函数性质的证明

- **1.** 对任意的 x < y, $F(y) F(x) = P(x < X \le y) \ge 0$;
- 2. 因 F(x) 是单调有界非降函数,所以其任一点 x_0 的右极限 $F(x_0+)$ 必存在,为证其连续性,只需证对单调上下降且收敛至 x_0 的数列 $\{x_n\}$ 有 $\lim_{n\to\infty} F(x_n) = F(x_0)$ 即可。注意到

$$\lim_{n\to\infty} F(x_n) = \lim_{n\to\infty} P(X \le x_n) = P(\cap_{n=1}^{\infty} \{X \le x_n\}) = P(X \le x_0)$$
$$= F(x_0)$$

3. 由 F 的单调性及概率的连续性可知

$$\begin{array}{lcl} F(+\infty) & = & \lim_{n \to +\infty} F(n) = \lim_{n \to +\infty} P(X \le n) \\ & = & P(\cup_{n=1}^{\infty} \{X \le n\}) = P(X < \infty) = 1 \end{array}$$

同理可证 $F(-\infty) = 0$.

事件概率的分布函数表示

- ► $P(X > b) = 1 F(b) := \mathbf{F}((b, \infty));$
- ► $P(a < X \le b) = F(b) F(a) := \mathbf{F}((a, b]);$
- ► $P(X < a) = F(a-) := \mathbf{F}((-\infty, a));$
- $P(X = a) = F(a) F(a-) := F(\{a\});$
- ► $P(X \ge b) = 1 F(b-) := \mathbf{F}([b, \infty));$
- ► $P(a \le X < b) = F(b-) F(a-) := \mathbf{F}([a,b));$
- ► $P(a \le X \le b) = F(b) F(a-) := \mathbf{F}([a,b]);$
- ► $P(a < X < b) = F(b-) F(a) := \mathbf{F}((a,b));$

- ▶ 对于不交区间并 $\bigcup_{i=1}^{n} [a_i, b_i)$, $P(X \in \bigcup_{i=1}^{n} (a_i, b_i]) = \sum_{i=1}^{n} [F(b_i) F(a_i)] := \mathbf{F}(\bigcup_{i=1}^{n} (a_i, b_i])$
- ▶ 一般的, $P(X \in B) = \mathbf{F}(B) = \int_{B} dF(x)$;
- ▶ 事实上根据测度扩张定理,由分布函数所确定的定义在P上的集函数 $\mathbf{F}((-\infty,x]) := F(x)$ 可以唯一的扩张到 $\mathcal{B} := \sigma(P)$ 上,成为 \mathcal{B} 上的概率测度,扩张后的概率测度称之为分布函数F(x) 所引出的勒贝格 斯蒂尔吉斯测度。实际上这个 \mathbf{F} 正好是我们前面引进的概率分布.

离散型随机变量

定义 1.12 (离散型随机变量) 如果随机变量 X 只取有限个值 x_1, x_2, \cdots, x_n 或可列个值 x_1, x_2, \cdots ,就称 X 为离散型随机变量,简称 离散随机变量,其分布函数称之为离散型的.

定义 1.13 (离散型随机变量的分布列或概率质量函数) 对于离散型随机变量 X, 称 X 取值 x_k 的概率

$$p_k := p(x_k) = P(X = x_k), k = 1, 2, \cdots,$$

为X的概率分布列或简称为分布列,记 $X \sim \{p_k\}$.分布列也常用下面的矩阵来表示

$$\begin{pmatrix} x_1, & x_2, & \cdots, & x_k, & \cdots \\ p_1, & p_2, & \cdots, & p_k, & \cdots \end{pmatrix}$$

容易验证,分布列有以下性质

- **1.** 非负性: $p_k \ge 0, k = 1, 2, \cdots$;
- 2. 正则性: $\sum_{k} p_{k} = 1$

离散型随机变量的概率分布及其分布函数

▶ 由概率分布的定义,对任意的 $B \in \mathcal{B}$, 我们有

$$\mathbf{F}(B) = P(X \in B) = P(\cup_{k:x_k \in B} \{X = x_k\})$$

$$= \sum_{k:x_k \in B} P(X = x_k) = \sum_{k:x_k \in B} p_k$$

▶ 由分布函数的定义知,

$$F(x) = P(X \le x) = P(\bigcup_{k:x_k \le x} \{X = x_k\})$$

= $\sum_{k:x_k \le x} P(X = x_k) = \sum_{k:x_k \le x} p_k$

▶ 易见离散型随机变量 X 的分布函数是一个纯跳跃函数: 在 X 的每个可能取值 x_k 上有跃度 p_k , 在每个不含 x_k 的区间上恒取常值.

例 1.4 常数 c 可看作仅取一个值的随机变量 X, 即

$$P(X=c)=1$$

这个分布常称为 单点分布 或 退化分布, 其分布函数为

$$F(x) = \begin{cases} 0, & x < c \\ 1, & x \ge c \end{cases}$$

- 例 1.5 计算例 1.1 中的所有随机变量的分布列或概率质量函数.
- ► X表示正面朝上的次数,其概率质量函数 px 为:

$$p_X(0) = P(X = 0) = 1/4, \quad p_X(1) = P(X = 1) = 1/2,$$

 $p_X(2) = P(X = 2) = 1/4, \quad p_X(x) = P(X = x) = 0, x \neq 0, 1, 2.$

► Y=2-X,表示反面朝上的次数。注意到

$$P(Y = y) = P(2 - X = y) = P(X = 2 - y) = p_X(2 - y),$$

因此, 随机变量 Y 的概率质量函数为

$$p_Y(0) = P(Y = 0) = 1/4, \quad p_Y(1) = P(Y = 1) = 1/2,$$

 $p_Y(2) = P(Y = 2) = 1/4, \quad p_Y(y) = P(Y = y) = 0, y \neq 0, 1, 2.$

► *I*表示第一次是否正面朝上的示性随机变量.

$$p_I(0) = P(I = 0) = 1/2, \quad p_I(1) = P(I = 1) = 1/2,$$

 $p_I(i) = P(I = i) = 0, i \neq 0, 1.$

X,Y和I的概率质量函数图

例 1.6 掷两颗骰子,其样本空间 Ω 含有 36 个等可能的样本点

$$\Omega = \{(x, y) : x, y = 1, 2, \cdots, 6\}$$

令X和Y表示每个骰子分别出现的点数。试求下面随机变量的分布列:

- **1.** $T_1 := X + Y =$ 骰子点数之和;
- **2.** $T_2 := 14 (X + Y);$
- **3.** $T_3 := 点数为 6 点的骰子的个数;$
- **4.** $T_4 := \max\{X, Y\} =$ 骰子的最大点数

▶ T_1, T_2 的概率分布列为

图 3.4 两个骰子的点数之和的概率质量函数。

► T₃ 的概率分布列为

$$\left(\begin{array}{ccc} 0 & 1 & 2 \\ \frac{25}{36} & \frac{10}{36} & \frac{1}{36} \end{array}\right)$$

► T₄ 的概率分布列为

$$\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\frac{1}{36} & \frac{3}{36} & \frac{5}{36} & \frac{7}{36} & \frac{9}{36} & \frac{11}{36}
\end{array}\right)$$

定义 1.14 (连续型随机变量) 设 X 为一随机变量,F(x) 为随机变量 X 的分布函数,如果存在非负可积函数 p(x) 使得

$$F(x) = \int_{-\infty}^{x} p(y)dy \tag{9}$$

则称 X 为连续型随机变量,其分布函数称之为连续型分布函数,函数 p(x) 称为 X 的概率密度函数,简称密度函数或密度.

注 1.5

- ▶ 能够表为 (9) 式变上限积分的函数 *F*(*x*) 在分析中称为绝对连续函数。绝对连续函数必为连续函数.
- ▶ 在若干个点上或零测集上改变密度函数 p(x) 的值并不影响其积分的值,从而不影响分布函数 F(x) 的值,这意味着连续分布的密度函数不唯一.

密度函数的性质

容易验证, 随机变量 X 的密度函数有以下性质

- **1.** 非负性: $p(x) \ge 0$;
- **2.** 正则性: $\int_{-\infty}^{\infty} p(x) dx = 1$.

- ▶ p(x) = F'(x);
- ► $P(a < X \le b) = F(b) F(a) = \int_a^b p(x) dx$;
- ▶ $0 \le P(X = a) \le P(X \in (a \epsilon, a)) = \int_{a \epsilon}^{a} p(x) dx \xrightarrow{\epsilon \to 0} 0$, 故 P(X = a) = 0,即连续型随机变量取值单点的概率为 0;
- $P(a < X \le b) = P(a \le X < b) = P(a \le X \le b) = P(a < X < b);$
- ▶ 对任意的 Borel 集 *B*,

$$P(X \in B) = \int_{B} p(x)dx$$

 $P(X \in [x, x + \Delta x]) = \int_{x}^{x + \Delta x} p(y) dy = p(\xi) \Delta x \approx p(x) \Delta x$

例 1.7 定义函数 F(x) 如下

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1+x}{2}, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

试说明

- 1. F(x) 为分布函数;
- 2. F(x) 既非离散型也非连续型分布;
- 3. F(x) 可分解为

$$F(x) = \frac{1}{2}F_1(x) + \frac{1}{2}F_2(x)$$

其中

$$F_1(x) = \begin{cases} 0, & x < 0, \\ 1, & x \ge 0. \end{cases} \qquad F_2(x) = \begin{cases} 0, & x < 0, \\ x, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

定理 1.7 (勒贝格分解) 对任一分布函数 F(x) 有如下分解

$$F(x) = c_1 F_1(x) + c_2 F_2(x) + c_3 F_3(x),$$

其中常数 $c_1, c_2, c_3 \ge 0, c_1 + c_2 + c_3 = 1$, 而 $F_1(x), F_2(x), F_3(x)$ 都是分布函数, $F_1(x)$ 为纯跳跃函数, $F_2(x)$ 为绝对连续函数, $F_3(x)$ 为奇异函数.

- 上述定理中奇异函数的含义及定理的证明可参见一般的实变函数 论教科书,这里我们不再详述,仅指出几种特殊情况:
 - ▶ 在分解式中取 $c_1 = 1, c_2 = c_3 = 0$ 便得到我们所讨论的离散型分布 函数;
 - ▶ 在分解式中取 $c_2 = 1, c_1 = c_3 = 0$ 便得到连续型分布函数;
 - ▶ 若取 $c_3 = 0, c_1 \neq 0, c_2 \neq 0, c_1 + c_2 = 1$ 便得到离散与连续混合分布
- ▶ 从上面分析可看出,随机变量除了离散型与连续型外还有很多其他类型.

第九讲: 常见的离散型随机变量

张鑫

Email: xzhangseu@seu.edu.cn

东南大学 数学学院

伯努利实验

- ▶ 只有两种可能结果的试验称为伯努利试验;例如抽检产品,可能是 合格品,也可能是次品;掷两颗骰子,可能得到同点,也可能得到 不同点,等等都是伯努利试验.
- 伯努利试验的样本空间 Ω 并不一定只含有两个样本点,有时只是 把我们所关心的一部分样本点归结为一种结果 A,同时把其余的样本点的集合看作另一种结果 Ā;
- ▶ 在上述掷骰子的试验中,样本空间 Ω 共含有 36 个样本点,如果我们只关心同点是否发生,就可以把其中的 6 个样本点组成的事件 $A:=\{(i,i):i=1,\cdots,6\}$ 视为一种结果,而其余的 30 个样本点组成另一结果 $\bar{A}:=\{$ 不同点 $\}$;
- ightarrow 此外我们不再关心由 Ω 的其他非空子集组成的事件,于是对于伯 努利试验而言,事件 σ 代数应取为 $F=\{\emptyset,A,ar{A},\Omega\};$
- \blacktriangleright 通常把结果 A 称作"成功", 而把 \bar{A} 称作"失败";
- ▶ 再取定成功失败的概率 $p = P(A), q = P(\bar{A})$ (p > 0, q > 0 且 p + q = 1), 则建立了一次伯努利试验的概率空间 (Ω, \mathcal{F}, P).

- ▶ 在概率论的理论与应用中,经常以一系列独立重复的伯努利试验 作为概率模型;
- ightharpoonup 所谓重复,粗略的说即各次试验的概率空间都是上述的 (Ω, \mathcal{F}, P) ;
- ▶ 而 n 个试验的独立性则是指各次试验的结果互不影响,即对于第 i 次试验的任何结果 $E_i(i=1,\dots,n)$ 均有

$$P(E_1E_2\cdots E_n)=P(E_1)P(E_2)\cdots P(E_n)$$

- ▶ 将一次伯努利试验独立重复 n 次, 称作 n 重伯努利试验;
- ▶ 将一次伯努利试验独立地重复下去所得到的一系列试验, 称为可 列重伯努利试验.

二项分布:n 重伯努利试验中成功的次数 X

- ▶ X:n 重伯努利试验中成功 (事件 A 发生) 的次数;
- ▶ *X* 的所有可能取值为: 0,1,···,*n*;
- ▶ 下面我们考虑 X 的分布列
 - ▶ n 重伯努利试验的样本空间: $\Omega := \{\omega = (\omega_1, \dots, \omega_n) : \omega_i$ 或者为A或者为 $\bar{A}\}$
 - ▶ 样本空间样本点的个数为 2ⁿ 个;
 - ▶ ${X = k} = {\omega = (\omega_1, \dots, \omega_n) : \omega_1, \dots, \omega_n}$ 中有 $k \land A}$, 共包含 $C_n^k \land A$ 样本点;
 - ► 若任给样本点 $ω = (ω_1, \dots, ω_n) \in \{X = k\}$, 则意味着 $ω_1, \dots, ω_n$ 中 有 $k \land A$, $n k \land \bar{A}$, 故由独立性可知

$$P(\omega) = p^k (1 - p)^{n - k}$$

▶ 而事件 $\{X = k\}$ 中共有 C_n^k 个类似的 ω , 故

$$P(X = k) = C_n^k p^k (1 - p)^{n - k} := b(k; n, p), k = 0, 1, \dots, n$$

这个分布常称为二项分布,记为 $X \sim B(n,p)$.

▶ 容易验证, $\sum_{k=0}^{n} C_{n}^{k} p^{k} (1-p)^{n-k} = (p+1-p)^{n} = 1$

▶ n=1 时的二项分布 B(1,p) 称为二点分布,或 0-1 分布,或称伯 努利分布,其分布列为

$$P(X = k) = p^{k}(1 - p)^{1 - k}, k = 0, 1$$

或记为

$$\left(\begin{array}{cc} 0, & 1\\ 1-p, & p \end{array}\right)$$

- ▶ B(1,p) 主要用于描述一次伯努利试验中成功的次数 (0 或 1);
- ightharpoonup 若记 X_i 表示第i次伯努利试验中成功的次数,则 X_i 相互独立且有

$$X = X_1 + X_2 + \cdots + X_n$$

即二项分布随机变量可写为 n 个独立同为两点分布随机变量的和.

二项分布的性质

▶ 对 k>1, 考虑比值

$$\frac{b(k;n,p)}{b(k-1;n,p)} = \frac{C_n^k p^k (1-p)^{n-k}}{C_n^{k-1} p^{k-1} (1-p)^{n-k+1}} = \frac{(n-k+1)p}{k(1-p)}$$
$$= \frac{k(1-p) + (n+1)p - k}{k(1-p)} = 1 + \frac{(n+1)p - k}{k(1-p)}$$

- ▶ 当 (n+1)p > k 时, b(k; n, p) > b(k-1; n, p);
- ▶ 从而,对于固定的 $n, p, \{X = k\}$ 的概率 b(k; n, p) 先随 k 增大而增大,再随 k 增大而减小,故必有最大值:
 - ▶ 如果 m := (n+1)p 为整数,则 b(m; n, p) = b(m-1; n, p) 同为 b(k; n, p) 的最大值
 - ▶ 如果 (n+1)p 不为整数,则 b(k;n,p) 在 m = [(n+1)p] 处取到最大值 (此处 [a] 表示不超过 a 的最大整数)
- ▶ 我们称使得 b(k; n, p) 取得最大值的 m 为二项分布随机变量的最可能值,或称为 n 重伯努利试验中最可能的成功次数.

二项分布的性质

定理 1.8 设 $X \sim B(n,p)$, 且 q = 1 - p(通常用 q 表示伯努利试验失败的概率), 则有 $n - X \sim B(n,q)$.

- ▶ 借用二项分布的直观定义:将X为n次独立伯努利试验成功的次数,则n-X为这些试验中失败的次数.
- ▶ 互相交换成功与失败的角色, 可知 $n-X \sim B(n,q)$.
- ightharpoonup 也可从分布列 (概率质量函数) 的角度出发得到 $n-X\sim B(n,q)$.
- ▶ 令 Y = n X, 则 Y 的分布列 (概率质量函数) 为

$$P(Y = k) = P(n - X = k) = P(X = n - k)$$
$$= \binom{n}{n - k} p^{n - k} q^k = \binom{n}{k} q^k p^{n - k},$$

二项分布的性质

定理 1.9 设 $X \sim B(n,p)$, 其中 n 为偶数, p = 1/2, 则 X 的分布关于 n/2 对称,即对任意的非负整数 j, 均有

$$P(X = \frac{n}{2} + j) = P(X = \frac{n}{2} - j).$$

解: 由定理 1.8 可知, n-X 同样服从 B(n,1/2). 因此对任意非负整数 k 均有

$$P(X = k) = P(n - X = k) = P(X = n - k).$$

令 k = n/2 + j, 即可得证.

- 例 1.8设每台自动机床在运行过程中需要维修的概率均为 p = 0.01, 并且各机床是否需要维修相互独立。如果:
- 1. 每名维修工人负责看管 20 台机床;
- 2. 3 名维修工人负责看管 80 台机床;

求机床不能及维修的概率.

解: 1. 这是 n=20 重伯努利试验,参数 p=0.01, 故需要维修的机床数 X 服从 B(20,0.01) 分布。故不能及时维修的概率为

$$P(X > 1) = 1 - P(X \le 1) = 1 - P(X = 0) - P(X = 1)$$

= 1 - C₂₀⁰0.01⁰(1 - 0.01)²⁰ - C₂₀¹0.01(1 - 0.01)²⁰⁻¹ \approx 0.0169

2. 此时需要维修的机床数 X 服从 B(80,0.01) 分布,类似可得不能及时维修的概率为

$$P(X > 3) = 1 - \sum_{k=0}^{3} b(k; 80, 0.01) \approx 0.0087$$

小概率事件终将发生

例 1.9 在可列重伯努利试验中,求事件 $E := \{ 试验终将成功 \}$ 的概率. 解: 考虑所求概率事件的反面即 $\overline{E} := \{ 试验永不成功 \}$.若我们记

$$F_n := \{ 前n次试验均失败 \},$$

则易知, $\{F_n\}$ 为单调下降事件序列,且

$$\lim_{n\to\infty} F_n = \bigcap_{n=1}^{\infty} F_n = \overline{E}$$

从而

$$P(\overline{E}) = P(\lim_{n \to \infty} F_n) = \lim_{n \to \infty} P(F_n) = \lim_{n \to \infty} C_n^0 p^0 (1 - p)^n = 0$$

故

$$P(E) = 1 - P(\overline{E}) = 1 - 0 = 1$$

无论成功的概率有多小,但是试验最终成功的概率为 1, 也就是说小概率事件终将发生的概率为 1.

几何分布:可列重伯努利试验中首次成功的等待时间

- ▶ 记 X 为可列重伯努利试验中首次成功的等待时间即首次成功所需 要试验的次数:
- $\{X=k\}=\{\overline{\underline{A}}\cdot\cdot\cdot\overline{\underline{A}}A\},$ 故 k-1个

$$P(X = k) = (1 - p)^{k-1}p := g(k; p), k = 1, \dots,$$

这个分布常称为几何分布,记为 $X \sim G(p)$.

几何分布的性质

定理 1.10 取值自然数的随机变量 X 为几何分布当且仅当 X 有无记忆性:

$$P(X > m + n | X > m) = P(X > n)$$
, 对任意的 $m, n \ge 1$. (10)

证明: 若 X 为几何分布,则

$$P(X > m + n | X > m) = \frac{P(X > m + n, X > m)}{P(X > m)} = \frac{P(X > m + n)}{P(X > m)}$$

而

$$P(X > n) = \sum_{k=n+1}^{\infty} (1-p)^{k-1} p = \frac{(1-p)^n p}{1 - (1-p)} = (1-p)^n$$

故

$$P(X > m + n | X > m) = \frac{(1 - p)^{m+n}}{(1 - p)^m} = (1 - p)^n = P(X > n)$$

若 X 具有无记忆性,则由~(10)知

$$Q_n := P(X > n) > 0$$
, 对任意的 $n \ge 1$

并且有

$$Q_{m+n} = P(X > m+n) = P(X > m)P(X > m+n|X > m) = Q_mQ_n$$

从而

$$Q_m = Q_1^m$$

注意到 $Q_1 \in (0,1)$, 事实上,

- ▶ $Q_1 = P(X > 1) > 0$ 显然;
- ▶ 若 $Q_1 = 1$, 则对一切的 m 均有 $Q_m = P(X > m) = 1$, 这与 X 取自 然数矛盾,故 $Q_1 \in (0,1)$.

故取 $p = 1 - Q_1 \in (0,1)$, 且对任意的 $k \ge 1$ 有

$$P(X = k) = P(X > k - 1) - P(X > k) = Q_{k-1} - Q_k$$

= $(1 - p)^{k-1} - (1 - p)^k = (1 - p)^{k-1}p$

$$P(X > m + n | X > m) = P(X > n)$$

- ▶上述的无记忆性表明:已知试验了 m 次未获得成功,再加做 n 次试验仍不成功的概率,等于从开始算起做 n 次试验都不成成功的概率.
- ▶ 换句话放,已做过的 m 次失败的试验被忘记了;
- 产生几何分布的这种无记忆性的根本原因在于,我们进行的是独立重复试验,这是不学习,不总结经验的试验,已经做过的试验当然不会留下记忆.

例 1.1010 把外形相同的钥匙中只有一把能打开门。现一一试开,试对每次试毕放回与不放回两种情形,分别求事件 $E := \{ 至多试3次能打开门 \}$ 的概率.

解: 1. 放回情形是独立重复试验,属伯努利概型。以X表示首次打开门的等待时间,则X服从几何分布G(0.1). 故所求概率为

$$P(E) = P(X \le 3) = \sum_{k=1}^{3} (1 - 0.1)^{k-1} \cdot 0.1 = 0.271$$

2. 不放回情形不再是独立重复试验,适用于古典概型。样本点总数 $n(\Omega)=C_{10}^3$,而 $n(\overline{E})=C_9^3$. 故

$$P(E) = 1 - P(\overline{E}) = 1 - \frac{C_9^3}{C_{10}^3} = 0.3$$

或令 $A_i := \{\hat{\mathbf{x}}_i \rangle \mathbf{x}$ 取到能开门的钥匙 $\}$,则 A_1, A_2, A_3 互不相容,由可加性及抽签的公平性可得

$$P(E) = P(\bigcup_{i=1}^{3} A_i) = \sum_{i=1}^{3} P(A_i) = 0.3$$

帕斯卡 (Pascal) 分布: 第r 次成功的等待时间

- ▶ 记 *X*_r 为可列重伯努利试验中第 r 次成功的等待时间即第 r 次成功 所需要试验的次数:
- ▶ 易见 X 的所有可能取值为 $k = r, r + 1, \dots$,并且有

$$\{X_r = k\} = \{ \hat{\mathbf{n}}k - 1 \chi 试验恰有r - 1 \chi 成功且第k次成功 \}$$

$$P(X_r = k) = P(\hat{\mathbf{n}}k - 1 \chi 试验恰有r - 1 \chi 成功)P(第k \chi 成功)$$

$$= C_{k-1}^{r-1}p^{r-1}(1-p)^{k-1-(r-1)}p$$

$$= C_{k-1}^{r-1}p^r(1-p)^{k-r} := f(k;r,p), \quad k = r,r+1,\cdots$$

这个分布常称为帕斯卡 (Pascal) 分布或负二项分布.

▶ $f(k;r,p), k = r,r+1, \dots$, 可以成为离散型分布的密度,事实上: f(k;r,p) > 0 显然,其和

$$\sum_{k=r}^{\infty} f(k; r, p) = \sum_{k=r}^{\infty} C_{k-1}^{r-1} p^r (1-p)^{k-r} \frac{\frac{k-r=i}{q-1-p}}{q-1-p} \sum_{i=0}^{\infty} C_{r+i-1}^{r-1} p^r q^{r+i-r}$$

$$= \sum_{i=0}^{\infty} C_{r+i-1}^i p^r q^i = \sum_{i=0}^{\infty} C_{-r}^i p^r (-q)^i = p^r (1-q)^{-r} = 1$$

帕斯卡分布的性质

- ▶ 若帕斯卡分布中的 r=1, 则此时的帕斯卡分布即为几何分布;
- ▶ 如果记

$$\tau_1 = X_1, \quad \tau_n = X_n - X_{n-1}, \quad n > 1,$$

则随机变量 τ_n 是第 n-1 次成功到第 n 次成功的间隔时间。显然有

$$X_r = \tau_1 + \tau_2 + \dots + \tau_r$$

▶ 以后我们会看到: τ_1, \dots, τ_r 是 r 个相互独立的随机变量且每个 τ_k 均服从几何分布.

例 1.11某人口袋中有两盒火柴,开始时每盒各装 n 根。每次他从口袋中任取一盒使用其中的一根火柴。求此人掏出一盒发现已空,而另一盒尚余 r 根的概率.

解: 记

$$E = \{$$
掏出甲盒已空而乙盒尚余 r 根 $\}$

则由对称性可知所求概率为 2P(E). 若我们以取出甲盒为"成功", 这便是一个成功率 p=1/2 的独立重复伯努利试验. 而

$$E = \{ \hat{\mathbf{x}}_n + 1$$
次成功发生在第 $2n - r + 1$ 次试验 $\}$

故所求概率为

$$2P(E) = 2f(2n - r + 1; n + 1, 1/2) = 2C_{2n-r}^{n}(\frac{1}{2})^{n+1}(\frac{1}{2})^{2n-r-n}$$
$$= C_{2n-r}^{n}2^{r-2n}$$

例 1.12 1654 年, 当时的职业赌徒 DeMere 爵士向法国的大数学家 Pascal 提出如下问题: 甲乙两人各下赌注 m 元, 商定先胜三局者取得全部赌金。假定在每一局中二人获胜的机会相等, 且各局胜负相互独立。如果当甲胜一局而乙胜零局时赌博被迫中止, 问赌注如何分?

- ▶ 为解决这个问题,Pascal 与当时声望很高的数学家 Fermat 建立了通信联系。他们进行了卓有成效的讨论,不仅完满的回答了分赌注问题,而且为解决其他概率问题建立起了框架,极大的促进了概率论的建立与发展;
- Pascal 令人信服的指出, 赌金的分法应当取决于若赌博能继续进行下去甲乙各自获胜的概率,这个概率即为在 p = 0.5 的可列重伯努利试验中 2 次成功发生在 3 次失败之前的概率;
- ▶ 更一般的,下面我们求一下 n 次成功发生在 m 次失败之前的概率.

例 1.13 在可列重伯努利试验中, 求下面事件的概率:

$$E = \{n \times \text{ d} \text{ d} \text{ d} \text{ d} \text{ d} \text{ d} \text{ e} \text{ d} \text{ d} \text{ d} \}$$

解: 记 $F_k = \{\$n次成功发生在\$k次试\$k\},则$

$$E = \bigcup_{k=n}^{n+m-1} F_k$$

从而由 F_{l} 的互不相容性可得

$$P(E) = \sum_{k=n}^{n+m-1} P(F_k) = \sum_{k=n}^{n+m-1} C_{k-1}^{n-1} p^n (1-p)^{k-n}$$

利用上面的公式可计算 n=2, m=3, p=1/2 时,其相应的概率为

$$P($$
 甲胜 $) = P(E) = \frac{n=2, m=3, p=1/2}{16} = \frac{11}{16}$

故赌注应以 11:5 的比例分配给甲乙两人.

图 1: 泊松

- ▶ 西莫恩 德尼 泊松:法国数学家、几何学家和物理学家;
- 泊松的科学生涯开始于研究微 分方程及其在摆的运动和声学 理论中的应用;
- 对积分理论、行星运动理论、热物理、电磁理论、位势理论和概率论都有重要贡献;
- ▶ 19 世纪概率统计领域里的卓越 人物,改进了概率论的运用方 法,特别是用于统计方面的方 法,建立了描述随机现象的一种 概率分布 泊松分布;
- 推广了"大数定律",并导出了 在概率论与数理方程中有重要 应用的泊松积分。

泊松 (Poisson) 分布

- ▶ Poisson 分布是概率论中一种重要的离散型分布,它在理论与实践中都有广泛的应用,常与单位时间 (面积) 内上的计数过程相联系;
 - ▶ 一天内到达某商场的顾客数;
 - ▶ 单位时间内, 电路受外界电磁波的冲击次数;
 - ▶ 一定时期内,某放射性物质放射出来的粒子数等
- ▶ 在二项分布中,当参数 n 较大时,计算二项概率 b(k; n, p) 会非常麻烦.

定理 1.11 设有一列二项分布 $\{b(k; n, p_n)\}$, 若其参数列 p_n 满足

$$\lim_{n\to\infty} np_n = \lambda > 0,$$

则对任何非负整数 k 有

$$\lim_{n\to\infty}b(k;n,p_n)=\frac{\lambda^k}{k!}e^{-\lambda}.$$

证明: 记
$$\lambda_n := np_n$$
, 则

$$b(k; n, p_n) = C_n^k p_n^k (1 - p_n)^{n-k} = \frac{n!}{k!(n-k)!} (\frac{\lambda_n}{n})^k (1 - \frac{\lambda_n}{n})^{n-k}$$
$$= \frac{\lambda_n^k}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n}) (1 - \frac{\lambda_n}{n})^{n-k}$$

注意到

$$\begin{split} &\lim_{n\to\infty}\lambda_n^k=\lambda^k,\\ &\lim_{n\to\infty}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})=1\\ &\lim_{n\to\infty}(1-\frac{\lambda_n}{n})^{n-k}=\lim_{n\to\infty}e^{(n-k)\ln(1-\frac{\lambda_n}{n})}\\ &=e^{\lim_{n\to\infty}(n-k)\ln(1-\frac{\lambda_n}{n})}=e^{\lim_{n\to\infty}(n-k)(-\frac{\lambda_n}{n}+o(\frac{1}{n}))}\\ &=e^{\lim_{n\to\infty}(-\lambda_n+\frac{k\lambda_n}{n}+(n-k)o(\frac{1}{n}))}=e^{-\lambda}\\ &\lim_{n\to\infty}b(k;n,p_n)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,\cdots \end{split}$$

从而

有了上述定理,当n很大而p很小时,可以用近似公式计算二项概率

$$b(k; n, p) \approx \frac{(np)^k}{k!} e^{-np}$$

这里我们要求 p 很小,为保证 n 很大时,乘积 np 有适度的大小. 定义 1.15 (泊松分布) 对参数 $\lambda > 0$, 记

$$p(k;\lambda) = \frac{\lambda^k}{k!}e^{-\lambda}, \quad k = 0, 1, \cdots.$$

易见 $p(k; \lambda) > 0$ 且

$$\sum_{k=0}^{\infty} p(k; \lambda) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{\lambda} e^{-\lambda} = 1$$

即 $\{p(k;\lambda)\}$ 可以看成离散型分布的密度,我们就把它称为以 λ 为参数的泊松分布,记作 $P(\lambda)$.

ightharpoonup 泊松分布列 $p(k;\lambda)$ 随 k 变化情况与二项分布相似,事实上,考虑比值

$$\frac{p(k;\lambda)}{p(k-1;\lambda)} = \frac{\lambda^k(k-1)!e^{-\lambda}}{\lambda^{k-1}k!e^{-\lambda}} = \frac{\lambda}{k}, k \ge 1$$

- ▶ 当 $k < \lambda$ 时有, $p(k; \lambda) > p(k-1; \lambda)$;
- ▶ 当 $k > \lambda$ 时有, $p(k; \lambda) < p(k-1; \lambda)$;
- ▶ 因此 $p(k;\lambda)$ 随 k 先升后降,在 $m=[\lambda]$ 处达到最大值,而 λ 为整数时, $p(k;\lambda)$ 在 $m=\lambda,\lambda-1$ 处同时取到最大值.
- ▶ 泊松分布在随机选择下的不变性:假设某块放射性物质在单位时间内发射出的粒子数 X 服从 $P(\lambda)$ 分布。而每个粒子被记录下来的概率为 p 即粒子有 1-p 的概率被计数器遗漏,如果各粒子是否被记录相互独立,试求记录下的粒子数 Y 的分布.

$$\begin{split} P(Y=k) &= \sum_{n=0}^{\infty} P(X=n,Y=k) = \sum_{n=0}^{\infty} P(X=n)P(Y=k|X=n) \\ &= \sum_{n=k}^{\infty} P(X=n)P(Y=k|X=n) = \sum_{n=k}^{\infty} p(n;\lambda)B(k;n,p) \\ &= \sum_{n=k}^{\infty} \frac{\lambda^n}{n!} e^{-\lambda} C_n^k p^k (1-p)^{n-k} = \sum_{n=k}^{\infty} \frac{[\lambda(1-p)]^{n-k}}{(n-k)!} \frac{1}{k!} e^{-\lambda} (\lambda p)^k \\ &= \frac{1}{k!} e^{-\lambda p} (\lambda p)^k \end{split}$$

超几何分布

假设某个罐子中有 w 个白球和 b 个黑球, 考虑如下两种取球方式

- ▶ 有放回的抓取 n 个球
 - ▶ X:= n 个球中白球的数量;
 - $X \sim B(n, \frac{w}{w+b})$
- ▶ 不放回的抓取 n 个球
 - ► *X* := *n* 个球中白球的数量;
 - ▶ X 服从超几何分布, 记为 $X \sim H(w, b, n)$;
 - ▶ 易知

$$P(X=k) = \frac{C_w^k C_b^{n-k}}{C_{w+b}^n} := h(k, w, b, n), k = 0, 1, \dots, r,$$

其中 $r := \min\{w, n\}$.

► 若要验证以上给出的确实为一个概率分布列,只需注意到下面的组合等式成立

$$\sum_{k=0}^{r} C_{w}^{k} C_{b}^{n-k} = C_{w+b}^{n}$$

超几何分布: 两个例子

- ▶ 不合格品抽检问题
 - ▶ 设有 N 件产品, 其中有 M 件不合格品, 从中不放回的抽取 n 件;
 - ▶ 令 X := n 件抽取的产品中不合格品的件数;
 - $ightharpoonup X \sim H(M, N-M, n)$
- ▶ 麋鹿的捕获 再捕获问题
 - ▶ 森林中共有 N 头麋鹿。某天,捕获了 M 头麋鹿,标记后将这 M 头麋鹿再放回野外.
 - ▶ 几天后,又重新随机地捕获 n 头麋鹿。假设重新捕获的麋鹿也同样可能是之前捕获的麋鹿.
 - ▶ $\Diamond X :=$ 再次被捕获的麋鹿的数量;
 - $ightharpoonup X \sim H(M, N-M, n);$
 - ▶ 第一次捕获的 M 头麋鹿相当于前面例子中白球的总数,第一次未捕获的 N-M 头麋鹿相当于前面例子中黑球的总数,再次被捕获的 n 头麋鹿相当于前面例子中抽样的数量.

超几何分布的适用基础

- ▶ 除上面例子外,超几何分布还可出现在许多情况下;
- ▶ 超几何分布的适用基础是总体根据两套标签进行分类:
 - ▶ 在罐子的示例中,每个球不是白色就是黑色 (第一套标签);
 - ▶ 每个球要么是样本要么不是样本 (第二套标签);
- ▶ 两套标签中至少有一个是被完全随机分配的 (在罐子的例子中, 球 是随机抽样的);
- ▶ X代表被两套标签都标记的数量:在罐子的例子中,关注的是既被抽样又是白色的球。
- ► X 服从超几何分布.

定理 $1.12X \sim H(w,b,n), Y \sim H(n,w+b-n,w), 则 X 和 Y 是同分布的.$

证明:

- ▶ 考虑一个由 w 个白球和 b 个黑球充满的罐子,现在随机不放回地从罐子里抓取 n 个球;
- ▶ 白球或者黑球看作第一套标签,有没有被抽取看作第二套标签;
- ▶ X表示抽取的样本球中白球的数量 $\sim H(w,b,n)$;
- ▶ 若将是否被抽取看作第一套标签,白球或者黑球看作第二套标签;
- ▶ Y表示所有白球中被抽中的数量 $\sim H(n, w + b n, w)$;
- ▶ 显然 X 和 Y 都是表示被抽取的白球数量,所以它们有相同的分布;
- ▶ 也可以用代数的方法来检查 X 和 Y 是否具有相同的概率质量函数,即验证 P(X=k) = P(Y=k).

二项分布与超几何分布

定理 1.13 如果 $X \sim B(n,p)$, $Y \sim B(m,p)$, 且 X 和 Y 相互独立,则当给定条件 X+Y=r 时,X 的条件分布为超几何分布 H(n,m,r).

定理 1.14 如果 $X \sim H(M,b,n)$, 且当 $N = M + b \rightarrow \infty$ 时 $p = \frac{M}{N}$ 保持不变,则 X 的分布列 (概率质量函数) 收敛到 B(n,p) 的分布列.

注意到

$$h(k; M, b, n) = \frac{C_M^k C_b^{n-k}}{C_{M+b}^n} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$$

$$= \frac{\frac{M!}{k!(M-k)!} \frac{(N-M)!}{(n-k)!(N-M-(n-k))!}}{\frac{N!}{n!(N-n)!}}$$

$$= \frac{n!}{k!(n-k)!} \frac{\frac{M!}{(M-k)!} \frac{(N-M)!}{(N-M-(n-k))!} \frac{(N-n)!}{N!}}{\frac{N!}{(N-M)!} \frac{(N-m)!}{(N-M)!} \frac{(N-m)!}{(N-M)!}}$$

$$= \frac{n!}{k!(n-k)!} \frac{\frac{M(M-1)\cdots(M-(k-1))}{N(N-1)\cdots(N-(k-1))} \frac{(N-M)\cdots(N-M-(n-k)+1)}{(N-k)\cdots(N-n+1)}}$$

$$= \frac{n!}{k!(n-k)!} \frac{\frac{M}{N} (\frac{M}{N} - \frac{1}{N})\cdots(\frac{M}{N} - \frac{(k-1)}{N})}{1(1-\frac{1}{N})\cdots(1-\frac{(k-1)}{N})} \frac{(1-\frac{M}{N})\cdots(1-\frac{M}{N} - \frac{(n-k)-1}{N})}{(1-\frac{k}{N})\cdots(1-\frac{n-1}{N})}$$

$$\to C_n^k (\frac{M}{N})^k (1-\frac{M}{N})^{n-k} = b(k; n, p)$$

第十讲: 常见的连续型分布

张鑫

Email: xzhangseu@seu.edu.cn

东南大学 数学学院

均匀分布

定义 1.16 任给参数 a < b, 函数

$$p(x) = \frac{1}{b - a}, \quad a < x < b$$

满足密度函数的两个性质即: $p(x) \geq 0$ 且 $\int_{-\infty}^{\infty} p(x) dx = 1$. 我们称以上式中的 p(x) 为密度的连续型分布为区间 (a,b) 上的均匀分布,记作 U(a,b).

▶ 易见,均匀分布的分布函数为

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

▶ 如果 X 服从 U(a,b) 分布,则对任何 $a \le x < y \le b$ 有

$$P(x < X \le y) = \int_{x}^{y} \frac{1}{b-a} dt = \frac{y-x}{b-a}$$

图 2: 高斯

- ▶ 卡尔。弗里德里希。高斯 1777 年出生于布伦瑞克;
- ▶ 11 岁时就发现了二项式定理;
- 19 岁发现正十七边形的尺规作图法,解决了困扰数学家们两千多年的难题;
- ▶ 1809 年提出"最小二乘法"并 在此基础上建立的正态分布方 程,是概率统计中一个非常重要 的工具,广泛应用于数学、物理 学等领域;
- 一生发表了 155 篇论文,对数 论、代数学、非欧几何、复变函 数和微分几何等领域都做出了 开创性的贡献,被誉为数学王 子.

正态分布 (高斯分布)

考虑下述函数

$$p_{\mu,\sigma}(x) := \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

下面我们验证 $p_{\mu,\sigma}(x)$ 满足密度函数的两个性质即非负性与正则性:非负性显然;正则性则需要计算积分 $I:=\int_{-\infty}^{\infty}p_{\mu,\sigma}(x)dx$.

由于 $p_{\mu,\sigma}(x)$ 的原函数不是初等函数,我们无法通过微积分基本公式计算 I. 我们考虑计算 I^2 :

$$I^{2} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^{2}}{2\sigma^{2}}} dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2}} dy$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dx dy$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r dr d\theta$$

$$= 1$$

定义 1.17 若随机变量 X 的密度函数为

$$p_{\mu,\sigma}(x) := \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

则称 X 服从参数为 (μ, σ^2) 的正态分布,记作 $X \sim N(\mu, \sigma^2)$. 特别的称 N(0,1) 分布为标准正态分布,并简写 $p_{0,1}(x)$ 为 $\varphi(x)$. 正态分布又称高斯分布.

正态分布的性质

▶ 分布密度关于参数 μ 对称,即有

$$p_{\mu,\sigma}(\mu - x) = p_{\mu,\sigma}(\mu + x), \quad \forall x \in R$$

特别的,N(0,1) 分布的密度函数为偶函数.

- $p_{\mu,\sigma}(x)$ 在 $x = \mu$ 处取得最大值 $\frac{1}{\sqrt{2\pi}\sigma}$. 注意到密度曲线下的面积 应保持等于 1, 并且密度函数在 x 处的值反映了此分布取值 x 附近的概率大小。故 σ^2 越小,密度的曲线越尖陡,分布取值越集中; σ^2 越大,密度曲线越平缓,分布取值越分散.
- ▶ 正态分布的分布函数为

$$\Phi_{\mu,\sigma}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

特别的记标准正态分布函数为 $\Phi(x)$. 其与 $\Phi_{\mu,\sigma}(x)$ 有以下关系:

$$\Phi_{\mu,\sigma}(x) = \Phi(\frac{x-\mu}{\sigma})$$

例 1.14 (3 σ 原则) 设随机变量 X 服从 $N(\mu, \sigma^2)$ 分布, 求 $P(|X - \mu| < 3\sigma)$.

解: 注意到

$$P(|X - \mu| < 3\sigma) = P(\mu - 3\sigma < X < \mu + 3\sigma)$$

$$= \Phi_{\mu,\sigma}(\mu + 3\sigma) - \Phi_{\mu,\sigma}(\mu - 3\sigma)$$

$$= \Phi(3) - \Phi(-3) = \Phi(3) - (1 - \Phi(3))$$

$$= 2\Phi(3) - 1 = 0.9973$$

这表明,尽管正态分布的取值范围是 $(-\infty, +\infty)$, 但是其取值落在区间 $(\mu-3\sigma, \mu+3\sigma)$ 的概率高达 99.73%

标准正态分布与一般正态分布之间的关系

例 1.15 若 $X \sim N(\mu, \sigma^2)$, 则 $Y := \frac{X - \mu}{\sigma} \sim N(0, 1)$; 反之,若 $X \sim N(0, 1)$, 则 $Y := \sigma X + \mu \sim N(\mu, \sigma^2)$.

解:我们仅给出第一种情况的证明。事实上,我们只需要说明 Y 的分布密度为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

P可. 事实上, 考虑 Y 的分布函数

$$F_{Y}(x) = P(Y \le x) = P(\frac{X - \mu}{\sigma} \le x) = P(X \le \sigma x + \mu)$$

$$= \int_{-\infty}^{\sigma x + \mu} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t - \mu)^{2}}{2\sigma^{2}}} dt = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2}} dy$$

从而Y的分布密度为

$$p_Y(x) = F'_Y(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} = \varphi(x)$$

正态分布函数的简单性质

记 $\Phi(x)$ 为标准正态分布的分布函数, $U \sim N(0,1)$, $\Phi_{\mu,\sigma}(x)$ 为 $N(\mu,\sigma^2)$ 分布的分布函数, $X \sim N(\mu,\sigma^2)$, 则

- $\Phi(0) = \frac{1}{2};$
- $\Phi(-x) = 1 \Phi(x);$
- $P(|U| < x) = P(-x < U < x) = P(U < x) P(U \le -x)$ = $\Phi(x) - (1 - \Phi(x)) = 2\Phi(x) - 1;$
- $\Phi_{\mu,\sigma}(x) = P(X \le x) = P(\frac{X \mu}{\sigma} \le \frac{x \mu}{\sigma}) = \Phi(\frac{x \mu}{\sigma})$
- $P(a < X \le b) = \Phi(\frac{b-\mu}{\sigma}) \Phi(\frac{a-\mu}{\sigma}).$

伽玛函数 (Gamma 函数)

定义 1.18 称以下函数

$$\Gamma(\alpha) := \int_0^\infty x^{\alpha - 1} e^{-x} dx, \quad \alpha > 0,$$

为 Gamma 函数. Gamma 函数有以下性质:

- $\Gamma(1) = \int_0^\infty x^{1-1} e^{-x} dx = 1;$
- $\Gamma(\frac{1}{2}) = \int_0^\infty x^{\frac{1}{2} 1} e^{-x} dx = 2\sqrt{\pi} \int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-x} d\sqrt{2} x^{\frac{1}{2}}$ $= 2\sqrt{\pi} \int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \sqrt{\pi};$
- ▶ $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$, 故 $\Gamma(n+1) = n\Gamma(n) = \cdots = n!$; 事实上,

$$\Gamma(\alpha+1) = \int_0^\infty x^{\alpha} e^{-x} dx = \int_0^\infty -x^{\alpha} de^{-x}$$
$$= -x^{\alpha} e^{-x}|_0^\infty + \int_0^\infty \alpha x^{\alpha-1} e^{-x} dx = \alpha \Gamma(\alpha)$$

定义 1.19 (Gamma 分布) 若随机变量 X 的密度函数为

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

则称 X 服从参数为 (α, λ) 的 Gamma 分布,记作 $X \sim \Gamma(\alpha, \lambda)$.

定义 1.20 称 $\Gamma(1,\lambda)$ 分布为指数分布,其密度函数与分布函数分别为

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases} \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

定义 1.21 称 $\Gamma(\frac{n}{2},\frac{1}{2})$ 分布为 χ^2 分布,记作 $\chi^2(n)$,其密度函数为

$$p(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

泊松分布与伽玛分布

例 1.16 假定有一个于随机时刻陆续到来的质点流,我们若以 N(t) 表示在 [0,t] 时间内到来的质点的个数,并假设其服从参数为 λt 的泊松分布。试证明第 n 个质点到达的时间 S_n 服从 $\Gamma(n,\lambda)$ 分布.

证明: 首先我们考虑一下 Sn 的分布函数

$$P(S_n \le t) = P(N(t) \ge n) = \sum_{k=n}^{\infty} P(N(t) = k)$$
$$= \sum_{k=n}^{\infty} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

故其密度 p(t) 为

$$p(t) = F'(t) = \sum_{k=n}^{\infty} \left[\frac{\lambda(\lambda t)^{k-1}}{(k-1)!} e^{-\lambda t} - \frac{\lambda(\lambda t)^k}{k!} e^{-\lambda t} \right]$$
$$= \frac{\lambda(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t} = \frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t}$$