

Algebra

Important Formulae

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a+b)^2 = (a-b)^2 + 4ab$$

4.
$$(a-b)^2 = (a+b)^2 - 4ab$$

5.
$$(a+b)^3 = a^3+b^3+3ab(a+b) = a^3+b^3+3a^2b+3ab^2$$

6.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b) = a^3 - b^3 - 3a^2b + 3ab^2$$

7.
$$a^3+b^3 = (a+b)^3 - 3ab(a+b)$$

8.
$$a^3-b^3 = (a-b)^3 + 3ab(a-b)$$

9.
$$a^2-b^2 = (a-b)(a+b)$$

$$10.a^3 + b^3 = (a+b)(a^2-ab+b^2)$$

11.
$$a^3 - b^3 = (a-b)(a^2+ab+b^2)$$

12.
$$a^m x a^n = a^{m+n}$$

- 13. $a^m / a^n = a^{m-n}$
- 14. $(a/b)^{(m/n)} = (b/a)^{-(m/n)}$
- 15. $a^m / b^{-n} = a^m x b^n$
- 1. If x + y + z = 6 and $x^2 + y^2 + z^2 = 20$, then find the value of $x^3 + y^3 + z^3 3xyz$
- a) 64
- b) 70
- c) 72
- d) 76
- 2. If $a^2 + b^2 + c^2 = 2(a b c) 3$, then the value of 2a 3b + 4c is_

- b) 1
- c) 2
- d) 4
- 3. If $a^2 + b^2 + 4c^2 = 2(a + b 2c) 3$ and a, b, c are real, then the value of $(a^2 + b^2 + c^2)$ is

- b) $3\frac{1}{4}$ c) 2 d) $2\frac{1}{4}$
- 4. If $x^2 = y + z$, $y^2 = z + x$ and $z^2 = x + y$, then the value of $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ is

- b) 1
- c) 2
- d) 0
- 5. If $\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = 1$, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is –

- b) 3
- c) 4
- 6. If $\frac{4x-3}{x} + \frac{4y-3}{y} + \frac{4z-3}{z} = 0$, then the value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is

- b) 3

- 7. If $x^2 3x + 1 = 0$, then the value of $x^2 + x + \frac{1}{x} + \frac{1}{x^2}$ is

- b) 2
- c) 6
- d) 8

- 8. If $5a + \frac{1}{3a} = 5$, then the value of $9a^2 + \frac{1}{25a^2}$ is_
- - a) 34/5
- b) 39/5 c) 42/2
- d) 52/2

- 9. If $x + \frac{1}{x} = 7$, find $x^4 + \frac{1}{x^4}$
- - a) 2207 b) 2209 c) 2723
- d) 2203

10. If $x + \frac{1}{x} = 2$, find $x^8 + \frac{1}{x^8}$

- b) 0
- c) 2
- d) 3
- 11. If $2x \frac{1}{2x} = 6$, then the value of $x^2 + \frac{1}{16x^2}$ is_

- **a**) 19/2
- b) 17/2 c) 18/3
- d) 15/2
- 12. If $a^2 + \frac{1}{a^2} = 98$ (a > 0), then the value of $a^3 + \frac{1}{a^3}$ will be_

- a) 535
- b) 1030
- d) 970
- 13. If $x + \frac{1}{x} = 5$, then the value of $\frac{x^4 + \frac{1}{x^2}}{x^2 3x + 1}$ is_

- 14. If $x=2+\sqrt{3}$, $y=2-\sqrt{3}$, then the value of $\frac{x^2+y^2}{x^3+y^3}$ is_

- a) 7/38
- b) 7/40
- c) 7/19 d) 7/26
- 15. If $x = 1 + \sqrt{2} + \sqrt{3}$ then the value of $(2x^4 8x^3 5x^2 + 26x 28)$ is_

- a) $6\sqrt{6}$
- b) 0
- c) $3\sqrt{6}$ d) $2\sqrt{6}$
- 16. What number must be added to the expression $16a^2 12a$ to make it a perfect square?

- b) $\frac{11}{2}$
- c) $\frac{13}{2}$
- d) 16

17. If $(n^r - tn + \frac{1}{4})$ be a perfect square, then the values of t are

- $a) \pm 2$
- b) 1, 2 c) 2, 3
- 18. Find the minimum value of (x 2)(x 9)

- b) $\frac{49}{4}$
- c) 0 d) $\frac{-49}{4}$
- 19. If 4x = 18y, then the value of $\left(\frac{x}{y} 1\right)$ is _
 - a) 1/3
- b) 7/2
- c) 2/3
- d) 3/2
- 20. If $(x-c)^2 + (y-5)^2 + (z-d)^2 = 0$ then the value of $\frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{16}$ is
 - a) 12
- b) 9
- c) 3
- d) 1
- 21. If $\frac{4x}{3} + 2P = 12$ for what value of P, x = 6?
 - a) 6
- b) 4
- d) 1

- 22. The value of $\frac{4+3\sqrt{3}}{7+4\sqrt{3}}$ is

- a) $5\sqrt{3} 8$ b) $5\sqrt{3} + 8$ c) $8\sqrt{3} + 5$ d) $8\sqrt{3} 5$
- 23. If $x(3 \frac{2}{x}) = \frac{3}{x'}$ then the value of $x^2 + \frac{1}{x^2}$ is
 - a) $2\frac{1}{9}$ b) $2\frac{4}{9}$ c) $3\frac{1}{9}$ d) $3\frac{4}{9}$

- 24. If $(\frac{3}{4})^3 \times (\frac{4}{3})^{-7} = (\frac{3}{4})^{2x}$ then x is
 - a) -2

- b) 2 c) 5 d) $2\frac{1}{2}$
- 25. If p 2q = 4, then the value of $p^3 8q^3 24pq 64$ is
 - a) 2
- b) 0
- c) 3
- d) -1

- 26. If $\frac{x}{a} = \frac{1}{a} \frac{1}{x'}$, then the value of $x x^2$ is
- a) -a b) $\frac{1}{a}$ c) - $\frac{1}{a}$
- d) a
- 27. If $(x + \frac{1}{x}) = 4$, then the value of $x^4 + \frac{1}{x^4}$ is
 - a) 64
- b) 194
- c) 81
- d) 124
- 28. If $\frac{x}{x^2 2x + 1} = \frac{1}{3}$, then the value of $x^3 + \frac{1}{x^3}$ is
 - a) 81
- b) 110
- c) 125
- d) 27

- 29. If $\frac{4+3\sqrt{3}}{2+\sqrt{3}} = A + \sqrt{B}$, then B A is
 - a) -13

- b) $2\sqrt{13}$ c) 13 d) $3\sqrt{3} \sqrt{7}$
- 30. If the expression $x^2 + x + 1$ is written in the form $(x + \frac{1}{2})^2 + q^2$, then the possible values of q are

 - a) $\pm \frac{1}{3}$ b) $\pm \frac{\sqrt{3}}{2}$ c) $\pm \frac{2}{\sqrt{3}}$ d) $\pm \frac{1}{2}$
- 31. If $a^2 4a 1 = 0$, then value of $a^2 + \frac{1}{a^2} + 3a \frac{3}{a}$ is
 - a) 25
- b) 30
- c) 35
- d) 40
- 32. If $x = \sqrt[3]{a + \sqrt{a^2 + b^3}} + \sqrt[3]{a \sqrt{a^2 + b^3}}$, then $x^3 + 3$ bx is equal to
 - a) 0
- b) a
- c) 2a
- d) 1
- 33. If $\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1} = a\sqrt[3]{4}+b\sqrt[3]{2} + c$ and a, b, c are rational numbers, then a+b+c is equal to
 - a) 0
- b) 1
- c) 2
- d) 3

- 34. $1/1 + 2^{a-b} + 1/1 + 2^{b-a}$ is
 - a) a-b
- b) b-a
- c) 1
- d) 0

35. If $\frac{a}{b} = \frac{4}{5}$ and $\frac{b}{c} = \frac{15}{16}$, then $\frac{18c^2 - 7a^2}{45c^2 + 20a^2}$ is equal to

a)
$$\frac{1}{3}$$

b)
$$\frac{2}{5}$$

c)
$$\frac{3}{4}$$

a)
$$\frac{1}{3}$$
 b) $\frac{2}{5}$ c) $\frac{3}{4}$ d) $\frac{1}{4}$

Answers:

1 – c	2 - b	3 - d	4 - b	5 - c	6 - c	7 - a	8 - b	9 - a	10 - с
11 - a	12 - d	13 - d	14 - d	15 - a	16 - a	17 - d	18 - d	19 - b	20 - c
21 - c	22 - a	23 - b	24 - c	25 - b	26 - d	27 - b	28 - b	29 - c	30 - b
31 - b	32 - c	33 - a	34 - с	35 - d			•		

Additional Examples

1. If $x = 2 - 2^{1/3} + 2^{2/3}$, then the value of $x^3 - 6x^2 + 18x + 18$ is

- a) 22
- b) 33
- c) 40
- d) 45

2. If $x = \frac{4ab}{a+b}$ ($a \neq b$) the value of $\frac{x+2a}{x-2a} + \frac{x+2b}{x-2b}$ is

- c) 2*ab*
- d) 2

3. If x = b + c - 2a, y = c + a - 2b, z = a + b - 2c, then the value of $x^2 + y^2 - z^2 + 2xy$ is

- a) 0
- b) a+b+c c) a-b+c
- d) a+b -c

4. If $a^2 + b^2 = 2$ and $c^2 + d^2 = 1$, then the value of $(ad - bc)^2 + (ac + bd)^2$ is

- b) $\frac{1}{2}$ c) 1 d) 2

- 5. If $x + \frac{1}{x} = 5$, then $\frac{2x}{3x^2 5x + 3}$ is equal to
 - a) 5
- b) $\frac{1}{5}$ c) 3 d) $\frac{1}{3}$
- 6. If $x y = \frac{x+y}{7} = \frac{xy}{4}$, the numerical value of xy is

- b) $\frac{3}{4}$

- 7. If $3x + \frac{1}{2x} = 5$, then the value of $8x^3 + \frac{1}{27x^3}$ is:

- a) $118\frac{1}{2}$ b) $30\frac{10}{27}$ c) 0
- d) 1
- 8. Two numbers x and y (x > y) are such that their sum is equal to three times their difference.
 - The value of $(\frac{3xy}{2(x^2-y^2)})$ will be:
- b) 1 c) $1\frac{1}{2}$ d) $1\frac{2}{3}$
- 9. If p = 99, then value of $p(p^2 + 3p + 3)$ is

- a) 999
- b) 9999 c) 99999
- d) 999999
- 10. If *p* =101, then the value of $\sqrt[3]{p(p^2 3p + 3) 1}$ is

- a) 100
- b) 101
- c) 102
- d) 1000
- 11. If $a = \sqrt{7 + 2\sqrt{12}}$ and $b = \sqrt{7 2\sqrt{12}}$, then $(a^3 + b^3)$ is equal to
 - a) 40
- b) 44
- c) 48
- d) 52
- 12. If $\frac{\sqrt{x+4} + \sqrt{x-4}}{\sqrt{x+4} \sqrt{x-4}} = 2$ then *x* is equal to

- a) 2.4
- b) 3.2 c) 4
- d) 5

13. If 1.5x = 0.04y, then the value of $\frac{y^2 - x^2}{y^2 + 2xy + x^2}$ is

- b) $\frac{73}{77}$ c) $\frac{73}{770}$ d) $\frac{74}{77}$
- 14. The value of the expression $x^4 17x^3 + 17x^2 17x + 17$ at x = 16 is

- b) 1

- 15. If $x = \frac{\sqrt[3]{m+1} + \sqrt[3]{m-1}}{\sqrt[3]{m+1} \sqrt[3]{m-1}}$ value of $x^3 3mx^2 + 3x m$ is
- b) $m \frac{1}{m}$ c) $m + \frac{1}{m}$ d) 1
- 16. The simplest form of the expression $\frac{p^2-p}{2p^3+6p^2} \div \frac{p^2-1}{p^2+3p} \div \frac{p^2}{p+1}$ is

- b) $\frac{1}{2p^2}$ c) p + 3 d) $\frac{1}{p+3}$
- 17. If $a + b + c = 4\sqrt{3}$ and $a^2 + b^2 + c^2 = 16$, then the ratio a:b:c is
 - a) 1:1:1
- b) $1:\sqrt{2}:\sqrt{3}$ c) 1:2:3
- d) None
- 18. If $2^x = 4^y = 8^z$ and xyz = 288, the value of $\frac{1}{2x} + \frac{1}{4y} + \frac{1}{8z}$ is

- b) $\frac{11}{96}$ c) $\frac{29}{96}$ d) $\frac{27}{96}$
- 19. If $x = \sqrt{a\sqrt[3]{b\sqrt{a\sqrt[3]{b}}}}$ ∞ , then the value of x is

 a) $\sqrt[3]{a^3b}$ b) $\sqrt[5]{a^3b}$ c) $\sqrt[3]{a^5b}$ d) $\sqrt[5]{ab^2}$

- 20. If $\sqrt{\frac{x-a}{x-b}} + \frac{a}{x} = \sqrt{\frac{x-b}{x-a}} + \frac{b}{x}$, $b \neq a$, then the value of x is
 - a) $\frac{ab}{a+b}$ b) 1
- c) $\frac{a}{a+b}$ d) $\frac{b}{a+b}$

- 21. If $x = \frac{2\sqrt{24}}{\sqrt{3} + \sqrt{2}}$, then the value of $\frac{x + \sqrt{8}}{x \sqrt{8}} + \frac{x + \sqrt{12}}{x \sqrt{12}}$ is

- b) 0
- c) -2
- d) 1
- 22. If $x = 1 + \sqrt{2} + \sqrt{3}$, then the value of $(2x^4 8x^3 5x^2 + 26x 28)$ is
 - a) $6\sqrt{6}$
- b) 0
- c) $3\sqrt{6}$ d) $2\sqrt{6}$
- 23. If $\frac{m-a^2}{b^2+c^2} + \frac{m-b^2}{c^2+a^2} + \frac{m-c^2}{a^2+b^2} = 3$, then the value of m is
 - a) $a^2 + b^2 + c^2$

b) $a^2 - b^2 - c^2$

c) $a^2 + b^2 - c^2$

- d) $a^2 + b^2$
- 24. If m 5n = 2, then the value of $(m^3 125n^3 30mn)$ is
 - a) 9
- b) 7
- c) 6
- 25. If $x = \frac{\sqrt{5} \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ and $y = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} \sqrt{3}}$, then the value of $\frac{x^2 + xy + y^2}{x^2 xy + y^2} = ?$

- a) $\frac{67}{65}$ b) $\frac{69}{67}$ c) $\frac{65}{63}$ d) $\frac{63}{61}$

Answers:

1 – c	2 - d	3 - a	4 - d	5 - b	6 - a	7 - b	8 - b	9 - d	10 - a
11 - d	12 - d	13 - b	14 - b	15 - a	16 - b	17 - a	18 - b	19 - b	20 - a
21 - a	22 - a	23 - a	24 - d	25 - d			•		