EE 4503 Tut 4.2

	EE 4503 Jut 4.2					
	when immediate on	I-Phase: S=	VI P=SxPf	3-Phase: S=13 VI	P=Sxpf	
1)	Transient KVA	Steady State KVA				
a)	S=7.58 KVA	S = (72 × 100) 6.95				
	Same as steady state as Starting current = Steady state	= 7.58 kVA				
	current				1-Phase,	
b)	S=27.6 KVA	S = 6 x 230 x 20		}	V=230V	
	Same as steody state as Starting current = Steody state current	=27.6	kVA			
Pr.	currient					
c)	Istransient = 6 × I = 489 A	S = (3×5000) 6.8		I = 18.75 x10 /230		
	Stransient = 112.5 kVA	= 18.75 KVA		= 81.52A	/	
d)	Itiansient = 6 xI = 112A	S=(11000 x1)/0.85		I=12.94 x10/(53	x 400)	
	Stransient = 77.6 KVA	= 12.94 KVA		= 18.68 A	3-Phase	
					V= 400 V	
e)	Itemsient = 2,5 x I = 212 A	S=(50000 x1)/0.85		I=58.8 x10/(13 x400)		
	Stransjent = 147 KVA	= 58.8 KVA		= 84.9 A	J	
Combo	Case 1	,		Case 2		
0	$S= (a)_{tran} = 7.58 \text{ KVA}$		St = e)tran = 147 KVA			
9,						
2	ST = a) ss + b) tran = 35.18 K	s + b) tran = 35.18 KVA		$S_{\tau} = e)_{ss} + d)_{tran} = 136.4 kVA$		
3	S1 = a)ss + b)ss + C)tran = 147.68 KVA		St = e)ss +d)ss + c)+ran = 184.24 KVA			
4	ST = 0/ss + b/ss + c/ss + d/tran =	131.53 KVA	$S_T = e/s_S + d/s_S$	+9ss +b)tran = 118.	09 KVA	
(5)	ST = a)ss + b)ss + c)ss + d)ss + e)tran	ST = e)ss + d)ss + c)ss + b)ss + a)tran = 125.67 KVA				
(a)						
6	St = a)ss + b)ss + c)ss + d)ss + e)ss	= 125.67 KVA				
		Standard routing of generater will be given Generator				
	For Case 1, highest St = 213.87 KVA : Iransformer capacity = 250 KVA For Case 2, highest St = 184.24 KVA : Generator capacity = 200 KVA					
	For case 2, highest ST = 1	84.24 KVA	- Generator (capacity = 2 00 kV/	1 JA	