

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/511,497	06/06/2005	Theodorus Maria Janssen	067670-5003-US	4583
67374	7590	09/29/2010	EXAMINER	
MORGAN, LEWIS & BOCKIUS, LLP (SF)			ROBERTS, JESSICA M	
ONE MARKET SPEAR STREET TOWER				
SAN FRANCISCO, CA 94105			ART UNIT	PAPER NUMBER
			2621	
			MAIL DATE	DELIVERY MODE
			09/29/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/511,497	JANSSEN, THEODORUS MARIA	
	Examiner	Art Unit	
	JESSICA ROBERTS	2621	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 18 June 2010.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-15 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-15 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date <u>06/18/2010</u> . | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| | 6) <input type="checkbox"/> Other: _____ . |

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 06/18/2010 has been entered.

Status of the Claims

Claims 1-15 are currently pending. Claims 14-15 have been added by the amendment filed 09/08/2010.

Response to Arguments

2. Applicant's arguments with respect to claims 1-13 have been considered but are moot in view of the new ground(s) of rejection.
3. Regarding Applicants argument regarding that Applicants disclosure, alone or in combination with Lock and Mee, fails to disclose or suggest detecting during which part of the activation period a flashing red light is actually on as called for by claim 1.
4. The Examiner respectfully disagrees. It is the combination the AAPA (modified by Lock and Mee) as a whole that teaches this limitation. In this case, AAPA discloses to record a red light violation when the flashing red light has been activated ([0002]-[0003]). AAPA is silent in regards to detecting during which part of the activation period the red light is actually on. However, Lock teaches that each image recorded may

include an inset within the image showing time, date and location of an infringement and may show red light time, i.e., the time in seconds and tenths of seconds that the signal had been showing red (see page 7 line 9-11). Since AAPA discloses that during activation of the flashing red light to record a red light violation and Lock teaches that within each image recorded may include an insert within the image showing time, date and location of infringement and may show red light time, i.e., the time in seconds and tenths of second that the signal had been showing red, it is clear to the examiner that AAPA modified by Lock teaches to record the red light time on the image, thus teaching the claimed limitation.

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

6. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

7. Claim 1-3 are rejected under 35 U.S.C. 103(a) as being unpatentable over Applicants Admitted Prior Art in view of Lock et al, WO- 2001/20581.

Regarding **claim 1**, AAPA teaches A method for controlling a red-light camera at a traffic light ([0002]) of which at least a red light burns in flashing manner at a frequency that is not visible to the human eye when said red light is activated ([0003]), AAPA discloses where the red light is not always visible during the red light period. This occurs particularly in modern traffic lights where instead of light bulb use is made of an array of light-emitting diodes (LEDs) with which better visibility is achieved at a lower energy consumption. These LEDs are powered with alternating current, [0003] These LED's are powered with alternating current and so are periodically switched on and off at such a high frequency that this is not perceptible to the human eye, line 1-9), comprising the steps of: detecting vehicles which pass through the traffic light (In the known method the passage of a vehicle is detected using induction loops in the road surface, while activation of the red light is detected by means of current or voltage measurement in the traffic light. If a passage is detected during the period the red light is activated, this is a violation, [0002] lines 1-6); making at least one recording when a vehicle passes during a period in which the flashing red light of the traffic light is activated (A camera is then activated which makes one or more records of the vehicle committing the violation, [0002] lines 6-7 and [0003]) by an electric current (AAPA discloses where in the known methods the passage of vehicle is detected using induction loops in the road surface, while activation of the red light is detected by means of a current or voltage measurement in the traffic light, [0003]), transmitting information

Art Unit: 2621

regarding the part of the activation period during which the red light is on to the red-light camera (AAPA discloses where if a passage is detected during the period the red light is activated, this is a violation. A camera is then activated which makes one or more records, [0003]. Since AAPA discloses if a passage is detected during the period the red light is activated, this is a violation. A camera is then activated which makes one or more records, [0003], it is clear to the Examiner that information is sent to the camera so that a record can be made of the vehicle creating the violation). AAPA does not explicitly disclose detecting during which part of the activation period the red light is actually on; and the generating at least one record that is made in precisely that part of the activation period.

However, Lock teaches detecting during which part of the activation period the red light is actually on (Lock discloses where each image recorded may include an inset within the image showing time, date and location of an infringement and may show red light time, i.e., the time in seconds and tenths of seconds that the signal had been showing red, see pg. 7) the at least one recording is made precisely that part of the activation period (Lock teaches where the image recording apparatus according to the present invention may be adapted to record an image substantially at the moment that a traffic light changes to red, pg. 2 line 32 to pg. 3 line 1. The moment is which the image recording apparatus is considerably within the exact moment the light changes to red, thus Lock reads upon the claimed limitation.

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Lock with AAPA for providing improved detection of vehicles that violate red traffic light infringements.

Regarding **claim 2**, AAPA (modified by Lock as a whole teaches everything as claimed above, see claim 1. AAPA silent in regards to the method claim 1, wherein the moment that the red light comes on is detected in the case of at least some of the flashes and therefrom is determined the moment at which the at least one recording is made. AAPA teaches where the LED's are powered with alternating current and so are periodically switched on and off at such high frequency that this is not perceptible to the human eye, [0002].

However, Lock teaches where that the image recording apparatus according to the present invention may be adapted to record an image substantially at the moment that a traffic light changes to red, pg. 2 line 32 to pg. 3 line 1. Taking the teachings of AAPA where it is disclosed to use LED's switched on and off (flashing) with Locks teaching of the present invention may be adapted to record an image substantially at the moment that a traffic light changes to red, it is clear to the Examiner that AAPA (modified by Lock) disclose to record an image substantially at the moment that the traffic light changes to a flashing red light, which reads upon the claimed limitation).

Therefore, for it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Lock with AAPA for providing improved detection of vehicles that violate red traffic light infringements.

As to **claim 3**, AAPA (modified by Lock) as a whole teaches everything as claimed above, see claim 2. In addition, AAPA teaches the method claim 2, characterized in that the red light is powered by an alternating current (AAPA discloses where the red light is not always visible during the red light period. This occurs particularly in modern traffic lights where instead of light bulb use is made of an array of light-emitting diodes (LEDs) with which better visibility is achieved at a lower energy consumption. These LEDs are powered with alternating current, [0003]). AAPA is silent in regards to at least one zero passage of the alternating current is detected, and on the basis of the at least one detected zero passage a recording signal generated when the vehicle passes and is transmitted to the red- light camera.

However AAPA (modified by Lock) teaches at least one zero passage of the alternating current is detected, and on the basis of the at least one detected zero passage a recording signal generated when the vehicle passes and is transmitted to the red- light camera (Lock discloses the image recording apparatus according to the present invention may be adapted to record an image substantially at the moment that a traffic light changes to red, pg. 2 line 32 to pg. 3 line 1. AAPA discloses where the red light is not always visible during the red light period. This occurs particularly in modern traffic lights where instead of light bulb use is made of an array of light-emitting diodes (LEDs) with which better visibility is achieved at a lower energy consumption. These LEDs are powered with alternating current, [0003]). Since Lock discloses where an image is recorded at the moment that the light changes red, and AAPA discloses the

LEDs in the traffic light are powered with alternating current, it would have been obvious to one of ordinary skill in the art that when the light changes from one light (green, amber, to red) to a red light, the power would change for the traffic light, thus it is clear to the Examiner that Lock now modified by AAPA more than fairly discloses that as the traffic light changes color (red, green, amber), so does the power consumed, which reads upon the claimed limitation. Further, Lock discloses that the image is recorded the moment the light changes to red, it would have been obvious that the change in the power consumption would be observed by the image recorder for the red light, which reads upon the claimed limitation).

Thus it would have been obvious to one of ordinary skill in the art at the time of the invention for effective and efficient for accurate image acquisition.

8. Claims 4-5 are rejected under 35 U.S.C. 103(a) as being unpatentable over Applicants Admitted Prior Art (AAPA) in view of Lock et al., WO—001/20581 A1 and further in view of Mee et al., US-6,111,523.

As to **claim 4**, AAPA (modified by Lock) as a whole teaches everything as claimed above, see claim 3. AAPA is silent in regards to the method of claim 3, wherein said recording signal is corrected for a response time of the red-light camera.

However, Mee teaches wherein said recording signal is corrected for a response time of the red-light camera (In a specific embodiment, the presence signals are responsive to the presence of the vehicle over an induction loop 22 buried in the road

and located outside the intersection zone. When the rear edge 30 of the vehicle 26 passes over the trailing edge 25 of the induction loop (the part of the loop closest to the intersection) a signal is transmitted indicating a shift from "presence" to "absence" of the vehicle, i.e., a "drop-out." A photograph is then taken after a calculated trigger time has elapsed, column 5 line 9-17).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

As to **claim 5**, AAPA (modified by Lock and Mee) as a whole teaches everything as claimed above, see claim 4. AAPA is silent in regards to the method of claim 4, wherein said response time is determined each time a recording is made, and the subsequent recording signal is corrected for the thus determined response time.

However, Mee teaches wherein said response time is determined each time a recording is made, and the subsequent recording signal is corrected for the thus determined response time (In general, the camera system may be triggered to photograph a vehicle at different locations with respect to the intersection. For example, the camera may be triggered to photograph the vehicle prior to its entrance to the intersection while the traffic light is red (pre-violation). It may also be subsequently triggered to photograph the vehicle while it is inside the intersection, e.g., at the intersection zone. It may also be triggered to photograph the vehicle at some other

point, e.g., a default photograph. In any of those cases, the control system transmits signals to the camera system resulting in the triggering of those photographs, column and fig. 7). Therefore, it is clear to the Examiner that Mee discloses providing a trigger to determine when photographs of the vehicle at the red should be taken, which reads upon the claimed limitation).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock) for providing for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

Regarding **claim 15**, AAPA (modified by Lock) as a whole teaches everything as claimed above, see claim 1. In addition, AAPA teaches wherein the red light comprises an array of light-emitting diodes (LED), (LED, [0003]).

9. Claim 6 is rejected under 35 U.S.C. 103(a) as being unpatentable over Applicants Admitted Prior Art (AAPA) in view of Lock et al., WO—001/20581 A1 and in further view of Mee et al., US-6,111,523

As to **claim 6**, which is substantially the same as claim 1, in addition to a timing controller to generate a signal at the moment in time at which the generated recording signal is transmitted to the red-light camera, thus the rejection for claim 1 also applies here for common subject matter. AAPA is silent in regards to a timing controller for controlling the moment in time at which the recording signal is transmitted to the red-

light camera based on the part of the activation period of the red light, as claimed.

However the examiner notes that AAPA does disclose that if a passage is detected during the period that the right light is activated, this is a violation. A camera is then activated which makes one or more records of the vehicle committing the violation, [0002].

However, Mee teaches an apparatus of the invention includes a device for triggering a camera to photograph a vehicle within the intersection, where the triggering of the camera is preferably dependent both upon presence information and on the speed of the vehicle before entering the intersection. The device includes a sensor system to transmit signals corresponding to a moving vehicle and a control system for processing the signals and triggering the camera, column 2 line 46-53. Since Mee teaches to include a device for trigger a camera to photograph a vehicle within the intersection, it is clear to the examiner that the use of the trigger controls the timing of the photographs which reads upon the claimed limitation. Therefore taking the teachings of AAPA where it is disclosed that if a passage is detected with during the period that the red light is activated, a camera is then activated which makes one or more recording of the vehicle committing the violation with the control system for processing signals and triggering the camera, now discloses the claimed limitation.

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

Regarding **claim 14**, AAPA (modified by Lock and Mee) as whole teaches everything as claimed above, see claim 6. In addition, AAPA teaches wherein the red light comprises an array of light-emitting diodes (LED) (LED, [0003]).

10. Claims 7-13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Applicants Admitted Prior Art (AAPA) in view of Lock et al., WO—001/20581 A1 in view of Mee et al., US-6,111,523 and in view of Moore et al., US-6,707,393

As to **claim 7**, AAPA (modified by Lock and Mee) as a whole teaches everything as claimed above, see claim 6. AAPA is silent in regards to the device of claim 6, said red light detector is adapted to detect in the case of at least some of the flashes that moment that the red light comes on and to transmit this moment the timing controller.

However, Moore discloses wherein said red light burns in a flashing manner during the activation period (The retrofitted traffic control signal will produce a flashing red light having a very distinctive blue hue, column 3 line 11-13) and said red light detector is adapted to detect in the case of at least some of the flashes that moment that the red light comes on (Since Moore discloses that the retrofitted traffic control signal will produce a flashing red light, it is clear to the examiner that by producing the flashing red signal would be indicative that the light is red is on, which reads upon the claimed limitation, column 3 line 11-13).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Moore with AAPA (modified by Mee) for providing

AAPA (modified by Lock and Moore) is silent in regards to transmit this moment to the timing controller.

However, Mee discloses to transmit this moment to the timing controller (column 8 line 4-17).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock and Moore) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

As to **claim 8**, AAPA (modified by Lock, Mee, and Moore) as a whole teaches everything as claimed, see claim 7. AAPA Lock (modified by Mee and Moore) as a whole teaches everything as claimed above, see claim 7. AAPA is silent in regards to wherein said activation detector is adapted to detect at least one zero passage of an alternating current powering the red light and to transmit the crossing of said current to the timing controller, as claimed. AAPA discloses where the red light is not always visible during the red light period. This occurs particularly in modern traffic lights where instead of light bulb use is made of an array of light-emitting diodes (LEDs) with which better visibility is achieved at a lower energy consumption. These LEDs are powered with alternating current, [0003]).

Lock discloses the image recording apparatus according to the present invention may be adapted to record an image substantially at the moment that a traffic light changes to red, pg. 2 line 32 to pg. 3 line 1. AAPA discloses where the red light is not always visible during the red light period. This occurs particularly in modern traffic lights where instead of light bulb use is made of an array of light-emitting diodes (LEDs) with which better visibility is achieved at a lower energy consumption. These LEDs are powered with alternating current, [0003]). Since Lock discloses where an image is recorded at the moment that the light changes red, and AAPA discloses the LEDs in the traffic light are powered with alternating current, it would have been obvious to one of ordinary skill in the art that when the light changes from one light (green, amber, to red) to a red light, the power would change for the traffic light, thus it is clear to the Examiner that Lock now modified by AAPA more than fairly discloses that as the traffic light changes color (red, green, amber), so does the power consumed, which reads upon the claimed limitation. Further, Lock discloses that the image is recorded the moment the light changes to red, it would have been obvious that the change in the power consumption would be observed by the image recorder for the red light, which reads upon the claimed limitation).

Thus it would have been obvious to one of ordinary skill in the art at the time of the invention for effective and efficient for accurate image acquisition.

As to **claim 9**, AAPA (modified by Lock, Mee and Moore) as a whole teaches everything as claimed above, see claim 7. AAPA is silent in regards to the device of claim 7 or 8, wherein said timing controller comprises a delaying element.

However, Mee teaches where in said timing controller comprises a delaying element (see fig. 7 element 320).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporated the teachings of Mee with AAPA (modified by Lock and Moore) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

As to **claim 9**, AAPA (modified by Lock, Mee and Moore) as a whole teaches everything as claimed above, see claim 8. AAPA is silent in regards to the device of claim 7 or 8, wherein said timing controller comprises a delaying element.

However, Mee teaches where in said timing controller comprises a delaying element (see fig. 7 element 320).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporated the teachings of Mee with AAPA (modified by Lock and Moore) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

As to **claim 10**, AAPA (modified by Lock, Mee and Moore) as a whole teaches everything as claimed above, see claim 9. AAPA is silent in regards to the device of claim 9, wherein said delaying element is adjustable.

However, Mee teaches wherein said delaying element is adjustable (The actual delay period depends on how the timer is set which may be based on either the calculated initial delay period . ΔT_3 or the calculated trigger time . ΔT_2 . The camera preferably takes the second photograph based on either the calculated trigger time . ΔT_2 (when the vehicle is at location 506) or a default photograph using the initial delay period . ΔT_3 (when the vehicle is at location 508). Both the calculated trigger time . ΔT_2 and the initial delay period . ΔT_3 should be based on some multiple of the transit time . ΔT_1 , which is preferably stored in computer memory (see FIG. 6) and which is preferably the measurement of the actual time elapsing for the vehicle to travel from one position sensor to the other and thus is dependent on the vehicle's speed, column 12 line 54-67 and fig. 6 & 7. Since Mee discloses the delay is based on the transit time, which is dependent upon the vehicles speed, it is clear to the Examiner that the transit time would vary as it is determined on a car by car basis, therefore, since the delay is based upon the transit time, the delay would vary (adjust) based on the transit time, which reads upon the claimed limitation).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock and More) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

As to **claim 11**, AAPA (modified by Lock, Mee and Moore) as a whole teaches everything as claimed above, see claim 10. AAPA is silent in regards to the device of claim 10, wherein said timing controller is adapted to determine the flashing frequency of the red light and to adjust the delaying element on the basis thereof.

However, Mee teaches wherein said timing controller is adapted to determine the flashing frequency of the red light and to adjust the delaying element on the basis thereof (This feature 308 may include measuring the time of the right light cycle of traffic signal 40, then subtracting a predetermined time period (e.g., 1.0 second) to arrive at a modified red light cycle, column 11 line 53-56).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock and Moore) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

As to **claim 12**, AAPA (modified by Lock, Mee, and Moore) as a whole teaches everything as claimed above, see claim 10. AAPA is silent in regards to the device of claim 10, wherein said timing controller is adapted to determine a response time of the red-light camera and to adjust the delaying element on the basis thereof.

However, Mee teaches wherein said timing controller is adapted to determine a response time of the red-light camera (In a specific embodiment, the presence signals are responsive to the presence of the vehicle over an induction loop 22 buried in the road and located outside the intersection zone. When the rear edge 30 of the vehicle 26 passes over the trailing edge 25 of the induction loop (the part of the loop closest to the

intersection) a signal is transmitted indicating a shift from "presence" to "absence" of the vehicle, i.e., a "drop-out." A photograph is then taken after a calculated trigger time has elapsed, column 5 line 9-17), and to adjust the delaying element on the basis thereof (col. 12 line 54-67).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock and Moore) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

As to **claim 12**, AAPA (modified by Lock, Mee, and Moore) as a whole teaches everything as claimed above, see claim 11. AAPA is silent in regards to wherein said timing controller is adapted to determine a response time of the red-light camera and to adjust the delaying element on the basis thereof.

However, Mee teaches wherein said timing controller is adapted to determine a response time of the red-light camera (In a specific embodiment, the presence signals are responsive to the presence of the vehicle over an induction loop 22 buried in the road and located outside the intersection zone. When the rear edge 30 of the vehicle 26 passes over the trailing edge 25 of the induction loop (the part of the loop closest to the intersection) a signal is transmitted indicating a shift from "presence" to "absence" of the vehicle, i.e., a "drop-out." A photograph is then taken after a calculated trigger time has elapsed, column 5 line 9-17), and to adjust the delaying element on the basis thereof (col. 12 line 54-67).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock, Mee, and Moore) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

Regarding **claim 13**, AAPA (modified by Lock, Mee, and Moore) as a whole teaches everything as claimed above, see claim 12. AAPA is silent in regards to the device of claim 12, wherein a red light camera detector is connected to the timing controller and is capable measuring the response time of the red-light camera at each recording.

However, Mee teaches wherein a red light camera detector (fig. 2 element 36) is connected to the timing controller (column 9 line 39-46, fig. 2 element 34, and fig. 7 and is capable measuring the response time of the red-light camera at each recording (column 11 line 53-56 and fig. 7).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teachings of Mee with AAPA (modified by Lock and Moore) for providing an improved system for monitoring and photographing moving vehicles, (Mee, column 1 line 31-34).

Conclusion

11. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

12. Ciolli et al., US-6,546,119 B2. Automated Traffic Violation Monitoring and Reporting System.

Contact

13. Any inquiry concerning this communication or earlier communications from the examiner should be directed to JESSICA ROBERTS whose telephone number is (571)270-1821. The examiner can normally be reached on 7:30-5:00 EST Monday-Friday, Alt Friday off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Marsha D. Banks-Harold can be reached on (571) 272-7905. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Art Unit: 2621

/Marsha D. Banks-Harold/
Supervisory Patent Examiner, Art Unit 2621

/Jessica Roberts/
Examiner, Art Unit 2621