On my honor, I have not given, nor received, nor witnessed any unauthorized assistance on this work.

Print name and sign:

Question:	1	2	3	4	Total
Points:	5	5	12	8	30
Score:					

1. (5 points) Convert the following circuit to universal NAND gates. You do not need to reduce the circuit.

1

 $^{\rm C}$

2. (5 points) Give the output timing diagram for the following circuit given the timing diagrams for the inputs

- 3. Draw the circuit for the following. You do not need to reduce the circuit.
 - (a) (6 points) for the truth table

(o points) for					
a	b	c	z		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	0		
1	1	1	0		

2

(b) (6 points) the propositional logic statement $\neg(a \lor b \lor c) \land ((\neg c \land b) \lor \neg(a \land b)$

4. (8 points) Reduce the following circuit. Hint: my answer has gates in it.

 $^{\rm C}$

Reference Page:

Identity Laws:	$p \wedge T \equiv p$
	$p \vee F \equiv p$
Domination Laws:	$p \lor T \equiv T$
	$p \wedge F \equiv F$
Idempotent Laws:	$p \vee p \equiv p$
	$p \wedge p \equiv p$
Double negation Law:	$\neg(\neg p) \equiv p$
Commutative Laws:	$p \vee q \equiv q \vee p$
	$p \wedge q \equiv q \wedge p$
Associative Laws:	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
	$(p \land q) \land r \equiv p \land (q \land r)$
Distributive Laws:	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
DeMorgan's Laws:	
	$ \mid \neg(p \lor q) \equiv \neg p \land \neg q $
Absorption Laws:	$p \lor (p \land q) \equiv p$
	$p \land (p \lor q) \equiv p$
Negation Laws:	$p \vee \neg p \equiv T$
	$p \land \neg p \equiv F$