

Lecture 2: Machine Learning Pipelines and Feature Selection

Sinuo Wu

Course: Al for Business Applications (Al3000R)

Quiz

• Enter room number or Scan QR code

Today

Machine Learning Pipelines

Problem definition

Data preparation

Model training

- Feature Selection
- Feature Engineering

Machine Learning Pipeline

Machine Learning

Why ML

Develop strengths for the job market

If AI can replace some basic coding jobs, then what can not be replaced?

The one who creates complex AI models!

Machine Learning

Deep Learning

ML Pipeline

A machine learning pipeline is a way to codify and automate the workflow it takes to produce a machine learning model.

- Model training is only a small piece of the machine learning process.
- Creating successful machine learning systems involves a lot more than choosing between a random forest model and a support vector machine model.

Figure 1.2 Descriptions go in. Other other values come out. We can adjust the machine to improve the relationship between the inputs and outputs.

Tools that data pipelines commonly leverage

- Hadoop
- Spark
- Spark Streaming
- Kafka
- Azure
- AWS
- Google Cloud Platform
- R
- SAS
- Databricks

Python

Steps in a ML pipeline

Figure 1: The machine learning pipeline

Problem Definition

Figure 1: The machine learning pipeline

Problem definition

- For a given loan, will it be repaid or not?
- When will the loan be repaid?
- How much money will be received from a given loan?
- What will be the profit made on a given loan?
- What will be the profit made on a given loan without using disallowed input features?

Data Ingestion

• What is data ——— A collection of facts

2016→ 50 billion IoT By 2020 → 1.7 megabytes per person per second

https://analyticsweek.com/big-data-facts/

https://twitter.com/ibm_in/status/756097248149184513

90% of the world's data has been created in the past 2 years alone!

Read: ibm.com/blogs/watson/2... #cognitiveView

Data Ingestion

- Get the right data source!
 - What data provider or vendor should we use? Can they be trusted?
 - How will it be ingested? Hadoop, Impala, Spark, just Python, and so on?
 - Should it be stored as a file or in a database?
 - What type of database? Traditional RDBMS, NoSQL, graph.
 - Should it even be stored? If we have a real-time feed into the pipeline, it might not even be necessary or efficient to store the input.
 - What format should the input be? Parquet, JSON, CSV.

Scikit-learn datasets

Toy Dataset

scikit-learn comes with a few small standard datasets that do not require to download any file from some external website.

They can be loaded using the following functions:

```
load_boston(*[, return_X_y])DEPRECATED: load_boston is deprecated in 1.0 and will be removed in 1.2.load_iris(*[, return_X_y, as_frame])Load and return the iris dataset (classification).load_diabetes(*[, return_X_y, as_frame, scaled])Load and return the diabetes dataset (regression).load_digits(*[, n_class, return_X_y, as_frame])Load and return the digits dataset (classification).load_linnerud(*[, return_X_y, as_frame])Load and return the physical exercise Linnerud dataset.load_wine(*[, return_X_y, as_frame])Load and return the wine dataset (classification).load_breast_cancer(*[, return_X_y, as_frame])Load and return the breast cancer wisconsin dataset (classification).
```

```
from sklearn.datasets import load_iris
data = load_iris(return_X_y=True)
print ("data:\n", data)
```


Fisher's Iris Dataset

Iris Data (red=setosa,green=versicolor,blue=virginica) Sepal.Length Sepal.Width Petal.Length Petal.Width

Scikit-learn datasets

Real world datasets

scikit-learn provides tools to load larger datasets, downloading them if necessary.

They can be loaded using the following functions:

```
fetch_olivetti_faces(*[, data home, ...])
                                                 Load the Olivetti faces data-set from AT&T (classification).
fetch_20newsgroups(*[, data home, subset, ...])
                                                 Load the filenames and data from the 20 newsgroups dataset (classification).
fetch_20newsgroups_vectorized(*[, subset, ...])
                                                 Load and vectorize the 20 newsgroups dataset (classification).
fetch_lfw_people(*[, data_home, funneled, ...])
                                                 Load the Labeled Faces in the Wild (LFW) people dataset (classification).
fetch_lfw_pairs(*[, subset, data_home, ...])
                                                 Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).
fetch_covtype(*[, data_home, ...])
                                                 Load the covertype dataset (classification).
fetch_rcv1(*[, data home, subset, ...])
                                                 Load the RCV1 multilabel dataset (classification).
fetch_kddcup99(*[, subset, data home, ...])
                                                 Load the kddcup99 dataset (classification).
fetch_california_housing(*[, data_home, ...])
                                                 Load the California housing dataset (regression).
```

Data Ingestion examples

- Stock prices,
 - the price of the stock the previous day
 - interest rates,
 - company earnings,
 - news headlines.
- Restaurant daily sales
 - the previous day's sales
 - Day of the week,
 - holiday or not holiday,
 - rain or no rain,
 - daily foot traffic

Data Preparation

- Data cleansing
- Filtration
- Aggregation
- Augmentation
- Consolidation Storage

Missing Values!

Missing Values

N/A or 0000

- Do nothing
- Imputation using median values
- Imputation using the most frequent value

What if we want to replace the missing value with a constant value instead of the median value?

Imputation

```
clock speed
                                                                                   dual sim
                                                                                                     int memory
                                                               842
                                                                     0
                                                                                                            NaN
                                                                               0.5
                                                              1021
                                                                                                           53.0
                                                                               0.5
                                                               563
                                                                                                           41.0
Using median values
                                                                               2.5
                                                               615
                                                                                                           10.0
                                                                               1.2
                                                              1821
                                                                                                           44.0
                                                                               0.5
                                                              1859
                                                                                                           22.0
                                                                               1.7
                                                                                                           10.0
                                                              1821
                                                                               0.5
                                                              1954
                                                                     0
                                                                                                           24.0
                                                                               0.5
                                                              1445
                                                                                                           53.0
import pandas as pd
                                                                               0.6
                                                               509
                                                                                                           9.0
df = pd.read csv('Train.csv')
df.fillna(df.median(), inplace=True)
                                                                        clock speed
                                                                                   dual sim
                                                                                           fc
                                                                   blue
                                                                                               four g
                                                               842
                                                                                                           24.0
print(df.head(10))
                                                                               0.5
                                                              1021
                                                                                                           53.0
                                                                               0.5
                                                                                                           41.0
                                                               563
                                                    3
                                                               615
                                                                                                           10.0
                                                                               1.2
                                                              1821
                                                                                                           44.0
                                                                               0.5
                                                              1859
                                                                      0
                                                                                                           22.0
                                                                               1.7
                                                              1821
                                                                                                           10.0
                                                                               0.5
                                                              1954
                                                                                                           24.0
                                                              1445
                                                                               0.5
                                                                                                           53.0
                                                               509
                                                                                                            9.0
```


Imputation

Using the most frequent value

```
index
           color
                                      index
                                              color
           green
0
                                             green
       1 yellow
                                             yellow
             NaN
                                               red
            red
                                               red
       4 purple
                                            purple
            red
                                              red
                                                       import pandas as pd
            red
                                              red
          purple
                                            purple
                                                       data = pd.read_csv("dataset.csv")
             NaN
                                              red
                                                       print (data)
            red
                                              red
      10 yellow
10
                                         10
                                            yellow
             NaN
                                              red
                                                       data["color"].fillna(data["color"].value counts().idxmax(), inplace=True)
12
           black
                                             black
                                                       print (data)
13
           white
                                         13
                                             white
```

- Duplicate records or values
- Example:
 - Same person with multiple email addresses
- Clean the data

- Duplicate records or values
- Feature scaling
- 15 kg \rightarrow 0
- 100 kg → 1

- Duplicate records or values
- Feature scaling
- Inconsistent values

Fifth Avenue
Fifth Ave
Fifth Av
Fifth Av.

- Duplicate records or values
- Feature scaling
- Inconsistent values
- Inconsistent date formatting

11/1/2016 11/01/2016 11/1/16 Nov 1 16 November 1st, 2016

Data Segregation

Training, validation, testing dataset

Model Training

Have a Break!

Lower the amount of input features

"In most datasets, it is common for a few features to be responsible for the majority of the information signal and the rest of the features are just mostly noise."

-- Alberto & Prateek (2020)

Every Group Project - Barmen Declaration (1934) edition.

- Shorten training time
- Simplify models and make them easier to interpret
- Enhances testing set performance by reducing overfitting
- For a model to produce accurate results, you need to make sure it's using the *right* data. Feature selection is how you ensure your model is focused on the data with the most predictive power and is not distracted by data that won't impact decision making. Precise feature selection will result in a faster, more efficient, more interpretable model.

- If you have a lot of domain knowledge, use machine learning and manually select the important features of your data.
- If you have limited domain knowledge, try automatic feature selection techniques such as neighborhood component analysis or use a deep learning algorithm (what we will learn soon) for feature selection.
- If your data has lots of features, use principal component analysis with machine learning to reduce dimensionality.

Inspirations

https://www.youtube.com/watch?v=P8ERBy91Y90

Domain Knowledge

Case Description

You are HR working for a company that wants to predict employee performance ratings based on various factors. You need to collect data on employees' basic information and performance metrics. The goal is to build a machine learning model that can predict *employees' performance ratings* at the end of the year.

Objectives

- **1.Identify the Problem:** Define the specific problem to be addressed by the machine learning model.
- **2.Data Preparation:** Determine the type of features needed, consider feature selection, missing values, and scaling.

Data Preparation

Data Selection

Employee Information:

- Gender: Male or Female
- Age: Age of the employee

Work Metrics (Domain knowledge):

- working time: Average number of working hours.
- Project Completion Rate: Percentage of projects completed on time.
- Other aspects regarding your expertise.

Final Outcome:

• *Performance rating:* Performance rating at the end of the year (1-10 scale)

Data Preparation

Missing Value: Use the median value

Categorical Data: One-Hot Encoding

Numerical Data: Scaling

Example: StandardScaler or MinMaxScaler for numerical features to ensure they are on a similar scale, especially for features like *working time*, *Completion Rate*, and *age*.

https://www.kaggle.com/code/faressayah/ibm-hr-analytics-employee-attrition-performance

ML Techniques

Feature Importance *Use ExtraTreesClassifier & matplotlib

Provide a score for each feature in a dataset, can be used for selecting important features.

Univariate Selection *Use SelectKBest & chi2

Provide a score for each feature in a dataset, can be used to determine which features have the strongest correlation to the output variable.

Correlation Heatmaps *Import seaborn & matplotlib

Provide a matrix to show the relationship between the different values of the features. A heatmap makes it easy to identify which features are more correlated to the target variable.

Approach – Feature Importance

Task: Select the top 5 important features from the given data

```
import pandas as pd
from sklearn.ensemble import ExtraTreesClassifier
import numpy as np
import matplotlib.pyplot as plt
data = pd.read csv("train.csv")
X = data.iloc[:, 0:20]
X = X.fillna(X.median())
Y = data.iloc[:, -1]
Y = Y.fillna(Y.median())
model = ExtraTreesClassifier()
model.fit(X,Y)
print (model.feature importances )
feat importances = pd.Series(model.feature importances , index=X.columns)
feat importances.nlargest(5).plot(kind="barh")
plt.show()
```

Approach – Correlation Heatmaps

Task: Select features that are most correlated to the target variable

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_csv("train.csv")
X = data.iloc[:,0:20]
Y = data.iloc[:,-1]

correlation_matrix = data.corr()
top_corr_features = correlation_matrix.index
plt.figure(figsize=(20,20))
g = sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn")
plt.show()
```


Approache – Univariate Selection

Task: Select features that have strong correlation to the output variable

```
import pandas as pd
import numpy as np
from sklearn.feature_selection import SelectKBest
from sklearn.feature selection import chi2
data = pd.read csv("train.csv")
X = data.iloc[:,0:20]
X = X.fillna(X.median())
Y = data.iloc[:,-1]
Y = Y.fillna(Y.median())
bestfeatures = SelectKBest(score func=chi2, k=5)
fit = bestfeatures.fit(X,Y)
dfscores = pd.DataFrame(fit.scores)
dfcolumns = pd.DataFrame(X.columns)
scores = pd.concat([dfcolumns,dfscores], axis=1)
scores.columns = ["specs", "score"]
print(scores.nlargest(5, "score"))
```

Have a Break!

Feature Engineering

Feature selection vs engineering

- With feature selection \rightarrow you remove variables.
- In feature engineering \rightarrow you create new variables to enhance the model.

Example

1.Patient Demographics:

Age: Age can be a critical factor in many healthcare predictions. Gender: Gender-based differences might impact various health conditions.

Ethnicity: Some health conditions are more prevalent in certain ethnic groups.

2. Medical History and Diagnoses:

Previous Diagnoses: Previous health conditions can indicate risk factors or potential complications.

Family Medical History: Genetic predispositions to certain diseases.

3. Vital Signs:

Blood Pressure: An important indicator of cardiovascular health.

Heart Rate: Can be related to various cardiac conditions.

Temperature: Can indicate fever or other anomalies.

4.Laboratory Results:

Blood Tests: Levels of glucose, cholesterol, hemoglobin, etc.

Biomarkers: Specific proteins or substances that indicate certain diseases.

5. Medications and Treatments:

Medication History: The types of medications a patient is on can provide insights into their conditions.

Treatment Plans: Previous and ongoing treatments can impact a patient's health.

6.Symptoms and Observations:

Symptoms: Self-reported symptoms can be valuable indicators.

Physical Examinations: Physician observations about the patient's physical condition.

7.Lifestyle Factors:

Diet: Dietary habits can impact various health conditions.

Exercise: Physical activity levels can influence overall health.

Smoking and Alcohol: Lifestyle choices can have significant health implications.

Healthcare Application

Feature Engineering

Steps

Brainstorm about which features are relevant;

Decide what features might improve the model performance;

Create new features and determine if you should add them to the model performance (if not, drop them);

Go back to step 1 until the performance of the model meets expectations.

Data Preparation Techniques

Data science techniques (We will discuss three of them)

Imputation

Outlier management

One-hot encoding

Log transform

Scaling

Data manipulation

Others from the book

Imputation

Using median values

```
import pandas as pd

data = pd.read_csv("train.csv", nrows=10)
X = data.iloc[:, 0:20]
Y = data.iloc[:, -1]

data_new = data.fillna(0)
data_new = data.fillna(data.median())
print(data)
print(data_new)
```

			-				-
	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory
0	842	0	2.2	0	1	o	NaN
1	1021	1	0.5	1	0	1	53.0
2	563	1	0.5	1	2	1	41.0
3	615	1	2.5	0	0	0	10.0
4	1821	1	1.2	0	13	1	44.0
5	1859	0	0.5	1	3	0	22.0
6	1821	0	1.7	0	4	1	10.0
7	1954	0	0.5	1	0	0	24.0
8	1445	1	0.5	0	0	0	53.0
9	509	1	0.6	1	2	1	9.0

	battery power	blue	clock_speed	dual sim	fc	four g	int memory
0	842	0	2.2	_ 0	1	_0	24.0
1	1021	1	0.5	1	0	1	53.0
2	563	1	0.5	1	2	1	41.0
3	615	1	2.5	0	0	0	10.0
4	1821	1	1.2	0	13	1	44.0
5	1859	0	0.5	1	3	0	22.0
6	1821	0	1.7	0	4	1	10.0
7	1954	0	0.5	1	0	0	24.0
8	1445	1	0.5	0	0	0	53.0
9	509	1	0.6	1	2	1	9.0

Imputation

Using common values

	index	color			index	color
0	0	green	(0	0	green
1	1	yellow		1	1	yellow
2	2	NaN		2	2	red
3	3	red		3	3	red
4	4	purple		4	4	purple
5	5	red		5	5	red
6	6	red		6	6	red
7	7	purple		7	7	purple
8	8	NaN		В	8	red
9	9	red	9	9	9	red
10	10	yellow		10	10	yellow
11	11	NaN		11	11	red
12	12	black		12	12	black
13	13	white		13	13	white

```
import pandas as pd

data = pd.read_csv("dataset.csv")
print(data)

data["color"].fillna(data["color"].value_counts().idxmax(), inplace=True)
print(data)
```

One-hot Encoding

```
from sklearn.preprocessing import OneHotEncoder
import numpy as np

# Define the categories
categories = ['Human', 'Penguin', 'Octopus', 'Alien']

# Create the OneHotEncoder instance
encoder = OneHotEncoder(categories=[categories])

# Fit and transform the data
data = [['Human'], ['Penguin'], ['Octopus'], ['Alien']]
encoded_data = encoder.fit_transform(data).toarray()

# Print the encoded data
print(encoded_data)

[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]
```

Sample	Human	Penguin	Octopus	Alien
1	1	0	0	0
2	1	0	0	0
3	0	1	0	0
4	0	0	1	0
5	0	0	0	1
6	0	0	1	0
7	0	0	0	1

One-hot encoding example

Transfer text to statistical data

["Life is short, I like python", Life is too long, I hate python"]

Feature names: ['hate', 'is', 'life', 'like', 'long', 'python', 'short', 'too']

from sklearn.feature_extraction.text import CountVectorizer

- # Input
- # Create an instance
- # Fit and transform the text data
- # Get the feature names
- # Convert the sparse matrix to an array for better visualization
- # Print the feature names and the one-hot encoded representation

```
[[0 1 1 1 0 1 1 0]
[1 1 1 0 1 1 0 1]]
```

What is Scaling?

A technique for standardizing the range of features in a dataset

Why scaling?

milage	liters	consimtime	target
14488	7.153469	1.673904	2
26050	1.441871	0.805124	1
75136	13.14739	0.428964	1
38344	1.669788	0.134296	1
72993	10.14174	1.032955	1
35948	6.830792	1.213192	3
42666	13.27637	0.54388	3
67497	8.631577	0.749278	1
35483	12.27317	1.503053	3
50242	3.723498	0.831917	1

$$d(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2}$$

This sample presents three features related to dating, namely: annual flight mileage, weekly consumption of liters of ice cream, and the proportion of time spent playing games, collected from men.

The last column represents the three types evaluated by women, with 1 denoting dislike, 2 indicating general liking, and 3 representing high liking.

Since researchers consider these three characteristics to be equally significant, we need to use data preprocessing techniques to standardize the different range of the data and convert them to a common range.

Normalization

$$X' = \frac{x - min}{max - min} \qquad X'' = X' * (mx - mi) + mi$$

```
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
```

```
def minmax_demo():
    data = pd.read_csv("dating.txt",delimiter="\t" )
    data = data.iloc[:,:3]
    transfer = MinMaxScaler(feature_range=(1,2))
    data_new = transfer.fit_transform(data)
    print ("data:\n", data_new)
```

minmax demo()

data						
	milage	liters	consimtime			
0	14488	7.153469	1.673904			
1	26050	1.441871	0.805124			
2	75136	13.147394	0.428964			
3	38344	1.669788	0.134296			
4	72993	10.141740	1.032955			
5	35948	6.830792	1.213192			
6	42666	13.276369	0.543880			
7	67497	8.631577	0.749278			
8	35483	12.273169	1.503053			
9	50242	3.723498	0.831917			

data:		
[[1.	1.4826227	5 2.]
[1.19064108	1.	1.43571351]
[2.	1.98910178	1.19139157]
[1.3933518	1.0192587	1.]
[1.96466495	1.73512784	1.58369338]
[1.35384514	1.45535696	1.70076019]
[1.46461549	2.	1.26603135]
[1.87404366	1.60752099	1.39944064]
[1.34617794	1.91523088	1.88902955]
[1.58953304	1.19279457	1.45311599]]

Standardization

$$X' = \frac{x - \text{mean}}{\sigma}_{\text{*standard deviation}}$$

data						
	milage	liters	consimtime			
0	14488	7.153469	1.673904			
1	26050	1.441871	0.805124			
2	75136	13.147394	0.428964			
3	38344	1.669788	0.134296			
4	72993	10.141740	1.032955			
5	35948	6.830792	1.213192			
6	42666	13.276369	0.543880			
7	67497	8.631577	0.749278			
8	35483	12.273169	1.503053			
9	50242	3.723498	0.831917			

```
from sklearn.preprocessing import StandardScaler
import pandas as pd

def stand_demo():
    data = pd.read_csv("dating.txt", delimiter="\t")
    data = data.iloc[:,:3]
    transfer = StandardScaler()
    data_new = transfer.fit_transform(data)
    print ("data:\n", data_new)

stand_demo()
```

```
data:

[[-1.62568136 -0.15888923 1.72810788]

[-1.02701564 -1.50235998 -0.19116342]

[ 1.51459527 1.25098992 -1.02215987]

[-0.3904479 -1.4487498 -1.67312771]

[ 1.40363344 0.54400595 0.31215099]

[-0.51450974 -0.23478867 0.7103228 ]

[-0.16666021 1.28132717 -0.7682924 ]

[ 1.11905752 0.1887884 -0.314536 ]

[-0.53858685 1.04535645 1.35067122]

[ 0.22561548 -0.96568021 -0.13197348]]
```


Workshop

Try What You Learned

Workshop

Case Description

You are working as a data scientist for a school that wants to improve student outcomes by predicting final grades based on various factors. The school has collected data on students' basic information and academic records. The goal is to build a machine learning model that can predict students' final grades at the end of the school year.

Objectives

1.Identify the Problem: Define the specific problem to be addressed by the machine learning model.

2.Data Preparation: Determine the type of data needed, consider missing values, feature selection, and scaling.

Have a Break!

Report

One representative from each group report for:

- 1. What is the identified problem
- 2. What type of data you selected
- 3. Explain your data preparation

Example

Data Selection

Student Information:

- Gender: Male or Female
- Age: Age of the student

Academic Records:

- Study time: Weekly study time in hours
- Attendance: Attendance percentage for the current year

Final Outcome:

• *Final grade:* Final grade at the end of the year (0-100 scale)

Data Preparation

Missing Value: Use the most frequent value

Categorical Data: One-Hot Encoding for gender.

Numerical Data: Discuss standardization or normalization techniques for numerical features.

Example: StandardScaler or MinMaxScaler for numerical features to ensure they are on a similar scale, especially for features like *study time*, *attendance*, and *age*.

Group Up!

Work on your assignment!

Guidance

Phase 1

Select Topic: Read papers from Scopus

Define Problem

Find data source

THANKS