M/Z →

 \mathcal{S}_{-}

129 159 1 146,

FIG. 1D

LON #1: MASS 187 $\left[\text{CH}_3 - (\text{CH}_2)_5 - \text{CH} - \text{O-Si-}(\text{CH}_3)_3 \right]^+$

LON #2: MASS 299

$$(CH_3)_3$$
-Si-O-CH-CH₂-CH=CH-(CH₂)₇-C-O-CH₃

LON #3: MASS 270 (CHARACTERISTIC REARRANGEMENT ION)

LON #4: MASS 185 (DESATURATED ANALOG OF LON #1)

$$\left[\text{CH}_{3}\text{-}(\text{CH}_{2})_{2}\text{-}\text{CH}\text{-}\text{CH}\text{-}\text{CH}_{2}\text{-}\text{CH}\text{-}\text{O}\text{-}\text{Si}\text{-}(\text{CH}_{3})_{3}\right]^{+}$$

LON #5: MASS 298 (ELONGATED ANALOG OF LON #3)

LON #6: MASS 327 (ELONGATED ANALOG OF ION)

$$(CH_3)_3$$
-Si-O-CH-CH₂-CH=CH-(CH₂)₉- $(CH_3)_3$

MASS SPECTRUM OF PEAK 11 FROM FIGURE 3B 55000-50000-45000-35000-30000= 25000= 20000= 15000-10000= 299 335 367 M/ZFIG. 4B

10	20	30	40	20	
TATTGGCACC	GGCGGCACCA 80	TTCCAACAAT	GGATCCCTAG 100	AAAAAGATGA 110	AGTCTTTGTC 120
CCACCTAAGA 130	AAGCTGCAGT	CANATGGTAT	GTCAAATACC 160	TCAACAACCC 170	TCTTGGACGC 180
_	TAACAGTTCA 200	GTTTATCCTC 210	GGGTGGCCTT 220	TGTATCTAGC 230	H 4
TCAGGTAGAC 250	CTTATGATGG 260	TTTCGCTTCA	CATTTCTTCC 280	AC 29	\vdash
GACCGTGAAC 310	GTCTCCAGAT	ATACATCTCA 330	9	TG 35	98 36
CTTTACCGTT 370	ACGCTGCTTC 380	ACAAGGATTG 390	90	⊱	ACC 42
CTTTTGATAG	TGAACTTTTT 440	CCTTGTCTTG 450	GTCACTTTCT 460	CA 47	TTC 48
TTACCTCACT	ATGATTCAAC 500		GA 52	TGG 53	GA 54
AGAGACTATG 550	GAATCTTGAA	CAAGGTGTTT	CACAACATAA	CAGACACCCA	CGTAGCACAC
CAC					

FIG. 5

		(C	FIC		
					CACT
					550
CGTCGCACAC		CATAACATCA	CAAGGTGTTC	GAATCTTGAA	AGAGACTATG
54	53	5	51	: 5	1190010011
Ä	\ D	TGGCTTAGAG	450 AGAGTGGGAT	440 ATCATTCATC	430
TCACCCTGCG	TACAACACAC	ATCACTTACT	CCTCGTCTTG	TTAACTTTT	CTTCTGATAG
42	4	400	39	380	370
CGGAGTTCCG	SOU TCTGTCTAAA	340 GCCTCAATGA	Y) [-	320	310
<u>ن</u> ر	TTCTAGCCGT	GATGCTGGTA	TTACATCTCT	GCCTCCAGAT	GACCGTGAAC
\sim	290	2	27	260	250
	CCAATGCTCC	CATTTCTTCC	TITCGCTICC	CCTACAATGG	TCTGGCAGAC
24	23	2	2	000	10011011011
Ē	TGTACTTAGC	GGATGGCCCT	GTTCGTCCTC	TAACTGTCCA	ATCATGATGT
∞	170	160	15	140	•
TCCTGGTCGC	TCAACAACCC	GGCGAATACC	CAAGTGGTAC	AATCCGCAAT	CCAAAGCAGA
, , 	-	· (-) (1)	4774799499 00	IAIAGGCACC
AGTATTTGTC		SULUCIDASS			
09	20	40	30	20	10
	Will there they they thing they the				

F/G. 6

FIG. 7

47	95	143	191	239	287	335	383	10431	26	42 527
TNT	TTG	ACT	m TTT	CAG	GTC	AAA	TTT	Thr ACC	Cys TGT	Gln CAĞ
AAT	$_{ m LGG}$	AAT	CCA	CAC	ATT	TCT	TAT	Val GTT	Pro CCA	Pro CCA
AGA	GGA	CTA	CAC	ATT	ATC	ATA	TGA	Met ATG	Gly GGA	ILe ATC
CAG	CAA	ATA	၁၅၁	CCT	AGG	CIC	LLL	Ile ATA	Arg CGT	Ala GCA
TGA	CAA	CAA	CIC	CGT	CTG	CCA	TTC	Arg AGA	Lys AAA	Lys AAA
TGG	GAA	CAT	TTC	TCT	GTT	TGA	ICC	Gly GGA	Leu CTA	Lys AAG
CIC	CAG	ATT	\mathtt{TAT}	CIC	AAT	TTT	TGT	Gly GGT	Ala GCC	Leu CTG
TTT	CAA	GTT	ICC	ACC	GAG	LLL	GAC	Ala GCT	Glu GAA	Asp
AGT	AAG	TGT	TTC	TAA	AGA	AGT	AAT	Gly GGT	Thr	Lys AAA
GTT	TTG	TGA	TAC	ATT	GAG	GTA	ATT	Met ATG	Glu GAA	Val GTT
GAA	CAG	TGG	၁၁၅	JOL	AGA	AAC	TAG	AAG	Ser TCA	Thr
TAA	TGA	ATG	GCT	CCT	GAG	ATT	CAA	TTC	Lys AAA	Phe TTC
TTA	TAG	CIG	GTT	GAN	CAA	GTT	ATG	GAA	Lys AAG	Pro
CCT	TGG	ATG	CTT	CAC	AGC	ATC	TAC	CTT	Ser TCC	Pro
GAA	AAT	NTG	TTA	ACC	AGA	TTC	TAG	CTT	Ser TCT	Lys AAA
AT	GCT	GTG	ACA	TGG	AAG	TTC	ATC	CAG	Pro	Glu GAG

FIG. 8A (CONT-1)

575	74	90	106	122	138	154 863	170 911	186 959
Thr ACA	Phe TTC	${f T}{f Y}{f r}$	His CAT	Thr ACT	Trp TGG	Lys AAA	Val GTT	Gln CAG
Leu	Tyr TAC	Leu	Gly GGC	Asp GAC	Ser TCC	Glu GAG	Tyr TAT	Val GTT
Leu	Asn AAT	Pro	Ile ATT	Asp GAT	Phe TTC	Leu	Trp TGG	Thr ACA
Tyr TAC	Thr ACA	Trp TGG	Val GTC	Val	Tyr TAC	Ser TCT	Lys AAA	Leu TTA
Ser	Ala GCC	Ala GCT	Trp TGG	Trp TGG	Pro CCT	G1y GGA	Val GTC	Val GTG
Phe TTC	Val GTT	Leu CTA	Ile	Gln CAA	Val	Asn AAT	Ala GCA	Leu CTG
Ser TCT	Tyr TAC	Tyr TAC	Gly GGT	TYT	Leu	Asn AAC	Ala GCT	Ile ATT
Arg CGT	Tyr TAC	Thr ACT	Thr	Asp GAC	Leu	Ser TCC	Lys	Arg CGC
Pro	Phe TTC	Ser TCT	Leu TTA	Ser AGT	Phe TTC	His CAT	Lys AAG	G1y GGA
Ile ATC	Cys TGC	CIC	Val	Phe TTC	Ser TCC	His	Pro	Leu
Ser TCT	Ser TCT	Pro	Cys TGT	Ala GCA	His CAT	Arg	Pro CCA	Pro
Arg	Val GTT	Gln CAG	Gly GGC	His CAT	Phe TTC	Arg CGT	Val GTC	Asn AAC
Lys AAG	Leu TTA	Pro	Gln CAA	His	Ile	His	Phe TTT	Asn AAC
Phe TTC	Thr	Leu	Cys TGT	Gly GGT	Phe TTT	Ser AGT	Val GTC	Leu
CysTGT	Ile ATC	Leu	Val GTA	Cys TGT	Gly GGT	${ m TYr} \\ { m TAC}$	Glu GAA	TYr TAC
His CAT	Asp GAT	Ser TCT	Trp TGG	Glu GAA	Val GTT	Lys AAA	Asp GAT	Lys AAA

FIG. 8A (CONT-2)

202	218	234	250	266	282	298	314	330
Arg AGA	Phe TTT	Leu CTA	Thr	Phe TTC	His CAT	Val GTA	Asp GAC	Ala GCA
G1y GGT	Ile	Ile ATT	Leu TTG	Phe TTT	Pro	Thr ACG	Thr ACA	Asn AAC
Ser TCA	Pro	Gly GGT	Gly GGA	Asn AAC	Leu TTA	Val GTT	Ile ATA	Tyr TAT
Val GTA	Ala GCA	Ala GCT	Gln	Val	Ser TCG	Leu TTG	Asn AAC	His
Asn AAT	His CAT	Asp GAT	Ser TCA	Ile ATA	Pro	Ala GCT	His CAT	Pro CCG
Phe TTT	Pro	Ser TCA	Ala GCT	Leu TTG	His	Gly GGA	Phe TTC	Ile ATA
Ala GCC	Phe TTC	Ile	Ala GCT	Leu	Thr	Arg AGA	Val	Thr
Leu	Phe TTC	Tyr TAC	Tyr TAC	Pro	His	Ile ATT	Lys	Ala GCA
Tyr TAT	His	Ile ATA	Arg CGT	Val GTA	Gln CAG	Trp TGG	Asn AAC	Phe TTT
Leu TTG	Ser TCA	Gln CAG	TYr TAC	Gly GGA	Leu TTG	Glu GAA	Leu TTG	Leu
Pro	Ala	Leu	Leu CTT	Tyr TAT	Phe TTC	Trp TGG	Ile ATA	His CAT
Trp TGG	Phe TTC	Arg CGC	Gly GGT	Val GTC	Thr	Glu GAG	Gly	His CAT
G1y GGG	Gly GGT	Glu GAA	Tyr TAT	Cys TGC	Val GTA	Thr	${ m TYr} \\ { m TAT}$	Ala GCT
Leu	Asp GAT	Arg CGA	Cys TGT	Ile ATC	Leu TTG	Ser TCA	Asp	Val GTG
Ile ATC	TYT	Asp GAC	Val GTC	Met ATG	Val	Asp GAT	Arg AGA	His CAT
Phe TTT	Pro	Lys AAA	Ala GCT	Ala GCT	Leu	Tyr TAT	Asp GAC	Thr

FIG. 8B (CONT-1)

346 1439	362	378 1535	384	1631	1679	1727	1775	1823	1855
His	Glu GAG	Tyr TAC	ATT	TGC	TTT	GCT	ACG	CGA	
Tyr TAC	Lys AAG	Val GTC	GCA	CTA	GCA	CCT	GGA	ATC	
Tyr TAC	Ala GCA	Gly GGT	AGT	AAG	GGT	CTT	CIC	CAT	
Asp GAT	Glu GAA	Lys AAA	AGA	AAG	TCT	CTG	ATA	TTC	
Gly GGT	Arg AGG	Lys AAG	GAG	TTT	TGT	AAA	AAA	GAA	
Leu	Tyr TAT	G1y GGG	299	TTG	TTG	TTC	TTT	ICC	ÀG
Ile ATA	Met ATG	Arg CGT	TAG	GTC	TAG	GTG	GTG	CTA	CLL
Pro	Ala GCC	Glu GAA	TGA	GGT	ATN	TTA	TAC	990	GTA
Lys AAG	Val GTG	Thr ACG	299	TTA	ICC	AAG	GTT	AAC	AGA
Ile ATA	Tyr TAT	Asp GAT	TGA	GTT	GAG	990	CAA	CAA	CC
Ala GCG	Trp TGG	Pro	Leu TTA	CAT	TCA	TGT	GAA	ATC	ATT
Glu GAG	Pro	Glu GAA	Lys AAG	TIC	ATC	TGG	GAA	NAT	CAA
Thr ACA	Thr ACA	Val GTA	Asn AAT	CAT	ATA	ATG	AGT	CAA	ATC
Ala GCT	Gly GGA	Tyr TAT	Asn AAC	CTT	TCA	GTT	ງງງ	CCA	GAT
Glu GAA	Asp GAT	Leu	Tyr TAC	AAT	GTT	CTA	CTG	TGA	922
Met ATG	Phe TTC	Cys TGT	Tyr TAT	ATC	LLL	TGC	GTG	AAT	AAA

FIG. 8B (CONT-2)

				•																							
		20 20	_							0	Ō	0	0	Ō	0	100	\circ		\mathcal{L}	ر ر	2	2	2	150	7	5	
-	5	DLKKAIPQHC DIKRAIPPHC	LKKAIPPH	LKKAIPPH	LKKAIPPH	IKKAIPPH	IKKAIPPH	! ! ! ! ! ! ! ! !	0	AWPLYWVC	AWLVYWLF	AWPLYWAC	FAWPLYWACQ	AWPIYWVL	GMAIYWAV	AWPLYWIA		S	FSWKYSHR	FSWKYSHR	FSWKYSHR	FSWKYSHR	FSWKISHR	YFSWKYSHRR	FSWKYSHR	FSWKHSHR	
	4	PCEKPPFTVK PHTKPPFTIG	CEKPPFSV	CETPPFTV	NTKPPFTV	FEKPQFSL	VEKPPFTL			LLPQPLST	YISSPLS-	LLPQPLS-	PLLPNPLS-Y	LLPQPFS-	LLPGPLS-	ALPSPLR-		4	IFHSFLLV	IVHSALLV	IFHSFLLV	IFHSFLLV	TLHSTLLV	LILHSALLVP	VLHSSLMV	ITHSCLLV	~
	30	ETEALKRG	ETDTTKR	ETDNIKR	GKKPLSR	EVDPLKR	GGAAMQR	 		FYYVATNY	FYSIATNF	FYYVATNY	CFYYVATTYF	FY-IATTY	LYYVATHY	LLYFALAI	1 1 1 1 1	130	YQWVDDTV	YQLADDIV	YOMLDDTV	YOMLDDTV	YOMVDDVV	DYQLLDDIVG	YSLLDDVV	YQLLDDVV	
		VTPSSKKS	-VPTSSKK	-VSPPSKK	GRGRVAKV	DVPPANRK	REKQEQLA	 		LLTDITLV	VAYDVCLS	LISDIIIA	HLIWDIIIAS	VVYDLSFA	VVYDLTIA	VVHDLVIA	 	\sim	HECGHHAF	HECGHHAF	HECGHHAF	HECGHAAF	HECGHHAF	AHECGHHAFS	AF	[
	10	MGAGGRIM	GAGGRAP-	GAGGRMQ-	GLA-KETT	GAGGR	GAGGRMT			KRSIPRSF	ERSFVRSF	KRSIPRSF	KRSIPRSF	ORSLLTSF	ORSVLRSF	FERSVLKSFS			CVI,TGTWV	CILTGLWV	CVI,TGTWV	VWVPT, TV	CILLTGVWV	GCILTGVWVI		M/W	
		~ / -	⊣ ←	ı —		, 	~ −1	 -	l							51										101	
		LFFAH12	ARIZ TFAD2	NEAD2	MFAD2	MFAD2	MFAD2	CFAD2	 	FFAH1	AH12	TFAD2	NFAD2	MFAD2	MFAD2	ZMFAD2		CF AD2	FFDH1	AH12	TEAD?	NFAD2	NEAD2 MFAD2-	MFAD	MFAD2	RCFAD2	

=16 9A (CONT-1)

	0	0	200	0	0	0		0		2	250	\mathcal{C}	2	2	\mathcal{C}	2	\mathcal{S}
200	TVQFILGWPL	AATLLLGWPL	TVQFVLGWPL	TVQFTLGWPL	LVTLTIGWPM	AVTLTLGWPL	VVQLTLGWPL	AVTLSLGWPL	250	\geq	IFATTFVLYQ	\geq	H	. 7	건	VVAVAFGLYK	VLAVTFGLYQ
190	NNPLGRILVL	NNPPGRVLTL	NNPLGRIMML	STTFGRTVML	NNPLGRAVSL	NNPPGRVLTL	NNPVGRVVHI	NNPPGRIMTI	240	X	RLQIYIADLG	H	RLQIYISDAG	RLLIYVSDVA	YISDA	FVSDA	RIEIFISDAG
180	AVKWYVKYL-	KISWYSKYS-	AIKWYGKYL-	QTSSGTAST-	KVAWFSKYL-	CIKWYSKYL-	ALPWYTPYVY	SIRWYSKYL-	230	PHAPIFKDRE	PYGPIFSERE	PNAPIYNDRE	PNAPIYNDRE	PYAPIYSNRE	PYGPIYSDRE	PYGPIYNDRE	PYGPIYNDRE
170	DEVFVPPKKA	DEVFVPKSKS	DEVFVPKQKS	DEVFVPR-RS	DEVFVPKPKS	DEVFVPKQKS	DEVFVPKKKE	DEVFVPKKKS	220	YDG-FASHFF	YDR-FACHYD	YDG-FACHFF	YDGGFACHFH	YDS-FASHYH	YDR-FACHYD	YPR-FACHFD	YPR-FACHYD
160	HSNNG	HSNIGS	HHSNTGSLER	HSNTGS	HSNTGS	HSNTGS	HSNTGS	HSNTGS	210	YLAFNVSGRP	YLAFNVSGRP	YLAFNVSGRP	YLAFNVSGRP	YLAFNVSGRP	YLALNVSGRP	YLATNASGRP	YLAFNVSGRP
	\mathcal{S}	S	151	\mathbf{S}	5	5	S	5		0	201	0	0	0	0	0	0
	LFFAH12	12	ATFAD2	AD	AD2-	ΔD	AD2	AD			FAH12	ATFAD2	BNFAD2	AD2-	GMFAD2-2	AD2	RCFAD2

=1G. 9A (CONT-2)

300 300 300 300 300 300 300	350 350 350 350 400 400 400 400
YDSTEWEWIR YGSSEWDWLR YDSSEWDWLR YDSSEWDWLR YDSSEWDWLR YDSSEWDWLR YDSSEWDWLR YDSSEWDWLR	350 ATEAIKPILG ATKAIKPILG K-L
290 LQHTHPSLPH LQHTHPSLPH LQHTHPSLPH LQHTHPALPH LQHTHPSLPH LQHTHPSLPH LQHTHPSLPH LQHTHPSLPH LQHTHPALPH	340 ATIPHYNAME ATVPHYHAME STMPHYHAME STMPHYH
280 VNEFLVLVTF VNCFLVMITY VNGFLVLITY VNGFLVLITY VNGFLVLITY VNGFLVLITY VNGFLVLITY VNAWLVLITY	TDTHVAHHLE ADTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTYVEPDEGA CLYVEPDREG CLYVEPDREG CLYVEPDREG CLYVEPDRG
1CVYGVPLLI MRIYGVPLLI ICLYGVPLLI VCFLRVPLLI LCVYGVPLLI VCVYGVPLLI VCVYGVPLLI VCVYGVPLLI	GILNKVEHNI GVLNKVEHNI GILNKVEHNI GILNKVEHNI GILNKVEHNI GILNKVEHNI GILNKVEHNI GILNKVEHNI GILNKVEHNI YVAMYREAKE YVAMYREAKE YVAMYREAKE YKALWREAKE YKALWREAKE YKALWREAKE
260 YAASQGLTAM ATMAKGLAWV YAAVQGVASM VATLKGLVWL LAMAKGLAWV LAAAFGVWWV LAAAFGVWWV	310 GALVTVDRDY GAMVTVDRDY GALATVDRDY GALATVD
251 251 251 251 251 251 251	351 351 351 351 351 351 351 351 351 351
LFFAH12 FAH12 ATFAD2 BNFAD2 GMFAD2-1 GMFAD2-2 ZMFAD2-2 RCFAD2	LEFAH12 FAH12 ATFAD2 GMFAD2-1 GMFAD2-2 GMFAD2-2 RCFAD2 FAH12 FAH12 GMFAD2-1 GMFAD2-2 GMFAD2-2 GMFAD2-2 GMFAD2-2

FIG. 90

FIG. 10

FIG. 11