関数解析学 練習問題 回答付き

hayami-m

1/1

例 0.0.1 (Banach space). C[0,1]: [0,1] から C への連続関数全体のなす Banach space とする.

演習 $\mathbf{0.0.1.}$ $f \in C[0,1]$ に対して次の条件を考える: f は実数値関数で次の等式を満たす

$$\int_{0}^{1/2} f(t)dt - \int_{1/2}^{1} f(t)dt = 1$$

このような f をすべて集めた部分集合を $\mathcal{C} \subset C[0,1]$ とする. 次の問いに答えよ.

- 1. $C \subset C[0,1]$: closed convex subset. である.
- 2. $\forall f \in \mathcal{C}.||f||_{\infty} \geq 1$
- $3. \inf_{f \in \mathcal{C}} ||f||_{\infty} = 1$ を示し、さらにこの \inf の値を実現する $f \in \mathcal{C}$ は存在しないことを示せ.

次の関数を考える (これは線形である):

$$\varphi: C[0,1] \to \mathbb{R}, \ f \mapsto \int_0^{1/2} f(t)dt - \int_{1/2}^1 f(t)dt$$

1. [\mathcal{C} : convex] $f,g\in\mathcal{C},s\in[0,1]$ とする. $sf+(1-s)g\in C[0,1]$ であり, $\varphi(sf+(1-s)g)=s\varphi(f)+(1-s)\varphi(g)=1$ となる. したがって, \mathcal{C} は convex.

 $[\mathcal{C}: \operatorname{closed}] \ \{f_n\}_{n=1}^{\infty}$ を \mathcal{C} の cauchy sequence とすると、C[0,1] の completeness より、 $^{\exists}f \in C[0,1].f_n \overset{n \to \infty}{\longrightarrow} f:$ converge. i.e. $^{\forall}\varepsilon > 0, ^{\exists}N \in \mathbb{N}, N \leq n \Rightarrow ||f - f_n|| < \varepsilon$. ここで、

$$|\varphi(f) - \varphi(f_n)| = |\varphi(f - f_n)|$$

$$\leq \left| \int_0^{1/2} (f(t) - f_n(t)) dt \right| + \left| \int_{1/2}^1 (f(t) - f_n(t)) dt \right|$$

$$\leq \varepsilon$$

 $\varepsilon > 0$ は任意かつ $\varphi(f_n) = 1 \ (\forall n \in \mathbb{N})$ なので, $\varphi(f) = 1$. よって, $f \in \mathcal{C}$ であり, \mathcal{C} は closed.

 $2. f \in C$ に対して、

$$||f||_{\infty} \ge \int_0^1 |f(t)|dt \ge \int_0^{1/2} |f(t)|dt + \int_{1/2}^1 |f(t)|dt \ge \int_0^{1/2} f(t)dt - \int_{1/2}^1 f(t)dt = 1$$

3. 次の条件を満たすようなリフト関数を考える.

$$f'_n(t) = \begin{cases} 1 & (0 \le t \le 1/2 - 1/n) \\ (t - \frac{1}{2})n & (1/2 - 1/n \le t \le 1/2 + 1/n) , f_n(t) = \frac{f'_n(t)}{\varphi(f'_n(t))} \\ -1 & (1/2 + 1/n \le t \le 1) \end{cases}$$

すると $\varphi(f_n(t))=1$ i.e. $f_n\in\mathcal{C}$ であり, $||f_n||_\infty\stackrel{n\to\infty}{\longrightarrow}1$. つまり $\inf_{f\in\mathcal{C}}||f||_\infty=1$ がわかる. 逆に $||f||_\infty=1$ なる元 $f\in\mathcal{C}$ を取れば,

$$1 = \varphi(f) = \int_0^{1/2} f(t)dt - \int_{1/2}^1 f(t)dt \le \int_0^{1/2} ||f||_{\infty} dt - \int_{1/2}^1 - ||f||_{\infty} dt = 1/2 + 1/2$$

となり,等号成立のためには
$$f=egin{cases} 1 & (0\leq t\leq 1/2) \\ -1 & (1/2\leq t\leq 1) \end{cases}$$
 となる必要があり矛盾. \qed

例 0.0.2. (Hilbert space) 数列空間 $l^2=\{x\in\mathbb{C}^\infty; \sum_{n=0}^\infty |x_n|^2<\infty\}$ は Hilbert space である.

演習 $\mathbf{0.0.2.}$ l^2 の自然な正規直行基底を $\{\delta_n\}_{n=1}^\infty$ とする. l^2 の有界点列を $\{x^{(n)}\}$ とする.

- 1. $x^{(n)} = \delta_{m,n} {\underset{m=1}{\overset{\infty}{\longrightarrow}}}$ とすると, $\{x^{(n)}\}$ は 0 に弱収束する.
- 2. $K < \mathbb{N}$ として, $a = (a_k)_k \in l^{\infty}$ を次で定める.

$$a_k = \begin{cases} 1 & (k \le K) \\ 0 & (k > K) \end{cases}$$

もし $\{x^{(n)}\}_{n=1}^\infty$ が 0 に弱収束すれば、 $\lim_{n\to\infty}||M_ax^{(n)}||_2=0$ となることを示せ.ただし M_a は a による掛け算作用素である.

3. 任意の $a = (a_k)_k \in c_0$ に対して、上と同じ結論が成り立つことを示せ.

1. $x^{(n)}=\delta_n$ とすると, $y=\{y_n\}\in l^2$ に対して, $\langle x^{(n)},y\rangle=\overline{y_n}$ ここで, $y\in l^2$ より, $\lim_{n\to\infty}|y_n|=0$ なので, 主張は示された.

2.

$$M_a x^{(n)} = (a_k x_k^{(n)})_k = \begin{cases} x_k^{(n)} & 1 \le k \le K \\ 0 & K < k \end{cases}$$

主張を示すには、十分大きな n を取れば任意の $1 \leq k \leq K$ について、 $x_k^{(n)} = 0$ となることを示せばいい。そうでないとすると、 $\langle x^{(n)}, \delta_k \rangle = x_k^{(n)} \neq 0$ となり、 $\{x^{(n)}\}_{n=1}^\infty$ が 0 に弱収束することに反する.

 $3.\ b\in c_0$ について、ある $K\in\mathbb{N}$ があり、 $b_k=0(k\le K)$ といえる。この K について、上の a をとると、 $x\in l^2$ について、

$$M_b x = M_b M_a x, \quad ||M_b x|| \le ||M_b||||M_a x||$$

であるので、上と同様のことが成り立つ.

定義 0.0.3 (unitary representation). 可換群 G と Hilbert space \mathcal{H} と写像 $\pi:G\to \mathbf{B}(\mathcal{H})$ が次の条件をみたすとき、 (π,\mathcal{H}) が G の unitary representation と言われる:

$$(\pi_g)^* = \pi_{g^{-1}}, \quad \pi_g \circ \pi_h = \pi_{gh} \quad (\forall g, h \in G)$$

$$\pi_e = \mathrm{id}_{\mathcal{H}} \quad (e \in G, \mathrm{unit})$$

演習 ${f 0.0.3.}$ 可算群 G に数え上げ測度を入れて測度空間とみなして, $l^2(G)$ を考える. 写像 $\pi:G o {f B}(l^2(G)), \quad g\mapsto \pi_g$ を次のように与える.

$$(\pi_q f)(h) = f(g^{-1}h), \quad f \in l^2(G), \quad g, h \in G$$

このとき, $(\pi, \mathbf{B}(l^2(G)))$ が G の unitary representation であることを示せ.

Proof. まずは任意の $g \in G$ に対して $\pi_g \in \mathbf{B}(l^2(G))$ であることを示そう. 線形性は明らかである.

$$||f||_2^2 = \sum_{h \in G} |f(h)|^2 = \sum_{g^{-1}h \in G} |f(g^{-1}h)|^2 = ||\pi_g(f)||_2^2$$

であるから, π_q は等長であり, 特に有界である. 他の条件も見よう. $f_1, f_2 \in \mathbf{B}(l^2(G))$ について,

$$\langle \pi_g(f_1), f_2 \rangle = \sum_{h \in G} \pi_g(f_1)(h) \overline{f_2(h)} = \sum_{gh \in G} f_1(h) \overline{f_2(gh)} = \langle f_1, \pi_{g^{-1}}(f_2) \rangle$$

が成り立つ. また $f \in \mathbf{B}(l^2(G)), g, h, i \in G$ に対して,

$$(\pi_q \circ \pi_h)(f)(i) = \pi_q(\pi_h f(i)) = \pi_h f(g^{-1}i) = f(h^{-1}g^{-1}i) = \pi_{qh} f(i)$$

がなりたつ. $\pi_e = \mathrm{id}_{l^2(G)}$ は明らかである.

演習 ${\bf 0.0.4.}$ 有限群 G に対して,任意のユニタリ表現 $\pi:G\to {\bf B}(\mathcal{H})$ を考える.このとき, $P:=\frac{1}{|G|}\sum_{g\in G}\pi_g$ は射影作用素であり,その像は次の集合と一致することを示せ:

$$\mathcal{H}^G := \{ x \in \mathcal{H} | \forall g \in G, \quad \pi_g(x) = x \}$$

Proof. まずは射影作用素であることを確認しよう:

$$P^{2} = \frac{1}{|G|^{2}} \sum_{a,h \in G} \pi_{gh} = \frac{1}{|G|^{2}} \sum_{g \in G} |G| \pi_{g} = P$$

 $P(\mathcal{H})\supseteq\mathcal{H}^G$ は明らかなので、逆を示す。 $x\in P(\mathcal{H})$ とすると、 $x=P(x)=rac{1}{|G|}\sum_{g\in G}\pi_g(x)$ である。任意の $h\in G$ に対して、

$$\pi_h(x) = \pi_h(P(x)) = \frac{1}{|G|} \sum_{g \in G} \pi_h \pi_g(x) = \frac{1}{|G|} \sum_{hg \in G} \pi_{hg}(x) = P(x) = x$$

となるので, $x \in \mathcal{H}^G$ である.

定義 **0.0.4** (unitary equivalent). \mathcal{H}, \mathcal{K} : Hilbert space, $A \in \mathbf{B}(\mathcal{H}), B \in \mathbf{B}(\mathcal{K})$ A, B: unitary equivalent: $\stackrel{def}{\Longrightarrow} \exists! u : \mathcal{H} \to \mathcal{K}$ unitary operator. (UA = BU) 演習 $\mathbf{0.0.5.}$ $\mathbb{T}=\mathbf{R}/2\pi\mathbf{Z}$ 上のルベーグ可測関数空間 $L^p(\mathbb{T})$ $(1\leq p\leq\infty)$ を考える. 各 $n\in\mathbf{Z}$ について $e_n(t):=e^{int},\quad t\in[0,2\pi)$ と定める. 閉部分空間

$$H^2(\mathbb{T}) := \overline{\operatorname{span}\{e_k \; ; \; \}_{k=0}^{\infty}} \subset L^2(\mathbb{T})$$

に対応する直交射影写像を P_+ とする. 以下が成り立つ.

- 1. $\{e_n\}_{n\in\mathbb{Z}}$ は $L^2(\mathbb{T})$ の正規直交基底である.
- $2. \ e_1(t)=e^{int}$ による $L^2(\mathbb{T})$ の掛け算作用素 M_{e_1} は $l^2(\mathbf{Z})$ の両側ずらし作用素 U と unitary equivalent である.
- $3. f \in L^{\infty}(\mathbb{T})$ に対して, $T_f \in \mathbf{B}(H^2(\mathbb{T}))$ を

$$T_f h = P_+ f h, \quad h \in H^2(\mathbb{T})$$

と定める. このとき, T_{e_1} と l^2 の片側ずらし作用素 V は unitary equivalent である.

 $2. \ \rho: l^2(\mathbb{T}) \to L^2(\mathbb{T})$ を, $\{a_n\}_{n \in \mathbf{Z}} \mapsto \sum_{n=-\infty}^{\infty} a_n e_n$ と定める. これは明らかに unitary であり,

$$\rho U(\{a_n\}) = \rho(\{a_{n-1}\}) = \sum_{n=-\infty}^{\infty} a_{n-1}e_n = \sum_{n=-\infty}^{\infty} a_n e_{n+1} = M_{e_1}\rho(\{a_n\})$$

より $\rho U = M_{e_1} \rho$ であって, unitary equivalent であることがわかった.

$$3. \ f = \sum_{n=0}^{\infty} a_n e_n \in H^2(\mathbf{T})$$
 とする. $T_{e_1} f = \sum_{n=0}^{\infty} a_n e_{n+1}$ なので, $T_{e_1} \rho(\{a_n\}) = \sum_{n=0}^{\infty} a_n e_{n+1} = \rho V(\{a_n\})$

定義 0.0.5 (uniformly convex). Banach space X が一様凸 (uniformly convex) とは、次が成り立つことである:

$$\forall \varepsilon > 0, \exists \delta > 0. (\forall x, y \in B_X, ||x - y|| \ge \varepsilon \Rightarrow \left| \left| \frac{x + y}{2} \right| \right| \le 1 - \delta)$$

特に Hilbert space は uniformaly convex である.

演習 0.0.6. X: Banach space, $\{x_n\}_{n=1}^{\infty}$: sequence of X, weakly converges to $x \in X$ する. 次が成り立つことを示せ.

- 1. $||x|| \leq \liminf_{n \to \infty} ||x_n||$
- 2. X: uniformly convex and $\lim_{n\to\infty} ||x_n|| = ||x|| \Longrightarrow \lim_{n\to\infty} ||x_n x|| = 0$
- 1. 次の Hahn-Banach の拡張定理からの補題を利用する.

Cor

Banach space X , $x \in X$ について, $\varphi \in X^*$ で, $||\varphi|| = 1$ かつ $\varphi(x) = ||x||$ なるものが存在する.

弱収束の仮定から、この φ に対して、次のことがいえる:

$$\forall \varepsilon > 0.^{\exists} N \in \mathbb{N}, N < n \Rightarrow |\varphi(x) - \varphi(x_n)| < \varepsilon$$

またここで $||\varphi||=1$ より $|\varphi(x_n)|\leq ||x_n||$ ($\forall n\in\mathbb{N}$) が成り立つ.

したがって、十分小さな ε とそれに対応する十分大きな N を取れば、 $N \le n$ で、 $-\varepsilon + ||x|| < |\varphi(x_n)| \le ||x_n||$ が成り立つ.

したがって $,-\varepsilon+||x||<\inf_{N\leq n}||x_n||$ である. ε は任意であるから、次が言える.

$$||x|| \le \liminf_{n \to \infty} ||x_n||$$

2. 背理法で示す. $y_n:=x_n/||x_n||, x:=x/||x||$ とし, $\lim_{n\to\infty}||y-y_n||\neq 0$ と仮定する. 任意の $\varepsilon>0$ に対して, $\{y_n\}_{n=1}^\infty$ の部分列 $\{y_{n_j}\}_{j=1}^\infty$ を取れば,

$$||y - y_{n_j}|| \ge \varepsilon \quad (j \in \mathbb{N})$$

とできる. X は uniformaly convex space であるから, ある $\delta > 0$ があり,

$$||y + y_{n_i}|| \le 2(1 - \delta)$$

が成り立つ。 先程用いた補題を再び使って, $||\varphi||=1, \varphi(y)=||y||=1$ なる $\varphi\in X^*$ を取れば,仮定より $\{y_{n_j}\}$ は $\{y\}$ に弱収束するので, $\lim_{n\to\infty}\varphi(y+y_{n_j})=2$ である.ここで,次の式が成り立つ:

$$|\varphi(y+y_{n_i})| \le ||\varphi|| ||y+y_{n_i}|| \le 2(1-\delta) < 2 \quad (\forall j \in \mathbb{N})$$

これは矛盾であり、仮定は誤り、したがって、 $\lim_{n\to\infty}||y_n-y||=0$

定義 0.0.6. • $C_c(\mathbf{R}): \mathbf{R}$ 上のコンパクト台を持つ連続関数全体の集合とする.

• $L^p(\mathbf{R}): \mathbf{R}$ 上のルベーグ測度に関する L^p 空間とする.

ここで, $C_c(\mathbf{R}) \subset L^p(\mathbf{R})$ は L^p -dence である.

演習 0.0.7. 可測関数 $f: \mathbf{R} \to \mathbf{R}$ と $t \in \mathbf{R}$ に対して、平行移動した関数 f^t を次で定める:

$$f^t(s) = f(s-t), \quad s \in \mathbf{R}$$

 $1 \leq p \leq \infty, t \in \mathbf{R}$ について, L^p 空間上の作用素 $U_t \in B(L^p(\mathbf{R}))$ を

$$U_t f = f^t, \quad f \in L^p(\mathbf{R})$$

と定める. 次を示せ.

- 1. U_t : isometry
- 2. ${f R}$ の 0 に収束する点列 $\{t_n\}_{n=1}^\infty$ と任意の $f\in L^p({f R})$ に対して次が成り立つ:

$$\lim_{n\to\infty} ||U_{t_n}f - f||_p = 0$$

つまり強作用素位相に対して連続である.

3. ${f R}$ の無限大に発散する点列 $\{t_n\}_{n=1}^\infty$ と任意の $f,g\in L^2({f R})$ に対して次が成り立つ:

$$\lim_{n \to \infty} \langle U_{t_n} f, g \rangle_{L^2} = 0$$

つまり弱作用素位相に対して連続である.

1.
$$||U_t f||_p^p = \int_{\mathbb{R}} |f(s-t)|^p ds = \int_{\mathbb{R}} |f(s)|^p ds = ||f||_p^p$$

2. $C_c(\mathbf{R})\subset L^p(\mathbf{R})$ は L^p -dence であるから, $f\in C_c(\mathbf{R})$ に対して示せば十分. コンパクト集合上の連続関数は一様連続であることに注意する. $\lim_{n\to\infty}t_n=0$ であるから,

$$\forall \varepsilon > 0, \exists N \in \mathbf{N}. N \leq n \Longrightarrow^{\forall} s \in \operatorname{Supp} f. |f(s - t_n) - f(s)| < \varepsilon$$

とかける。したがって、この記号をこのまま用いれば、

$$||U_{t_n}f - f||_p^p = \int_{\mathbf{R}} |f(s - t_n) - f(s)|^p ds \le \int_{\operatorname{Supp} f} \varepsilon^p ds + 2|t_n|||f||_{\infty}^p$$

 \Box

とかける. $\varepsilon > 0$ は任意より, $\lim_{n \to \infty} ||U_{t_n} f - f||_p = 0$ がわかった.

 $3.~C_c(\mathbf{R}) \subset L^2(\mathbf{R})$ は L^2 -dense より、 $g \in C_c(\mathbf{R})$ に対して示せば十分である。 このとき、Supp g は bounded なので、十分大きな $M \in \mathbf{R}_{\geq 0}$ を取れば、Supp $g \subset [-M,M]$ とできる。 また、 $f \in L^2(\mathbf{R})$ なので、 $||U_{t_n}f||_2^2 < \infty$ であって、特に、 $^\forall \varepsilon > 0$ 、 $^\exists M \in \mathbf{R}_{\geq 0}$ ・ $|(\int_{\mathbf{R}} - \int_{-M}^M)(|f(x)|^2)dx| < \varepsilon$ が成り立つ。特に、 $^\forall x \in \mathbf{R} \setminus [-M,M]$ ・ $|f(x)| < \varepsilon^{\frac{1}{2}}$ である。上の 2 つのうち大きな方の M に揃えて、 $N \in \mathbf{N}$ ・ $N \in \mathbf{N}$ なる N を取ると、 $N \leq n$ において、

$$\langle U_{t_n} f, g \rangle = \int_{\mathbf{R}} f(s - t_n) \overline{g(s)} ds = \int_{\text{Supp } g} f(s - t_n) \overline{g(s)} ds$$
$$\leq \varepsilon^{\frac{1}{2}} \int_{\text{Supp } g} \overline{g(s)} ds \quad (\because s - t_n \notin [-M, M])$$

ここで, $\varepsilon > 0$ の任意性から, $\lim_{n \to \infty} ||U_{t_n} f - f||_p = 0$ が言えた.

定義 0.0.7 (Dirichlet Kernel). $n \in \mathbb{N}, t \in [-\pi, \pi)$ に対して、Dirichlet Kernel $D_n(t)$ を次のように定める.

$$D_n := \frac{\sin((n + \frac{1}{2})t)}{\sin\frac{t}{2}}$$

加法定理を用いると次のように変形できる.

$$D_n(t) = \frac{\sin((n + \frac{1}{2})t)}{\sin\frac{t}{2}} = 1 + w \sum_{k=1}^n \cos kt = \sum_{k=-n}^n e^{ikt}$$

演習 0.0.8. $\varphi_n(f): C(\mathbb{T}) \to \mathbf{C}: \text{ linear map }$ を次のように定める.

$$\varphi_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(t) dt, \quad (f \in C(\mathbb{T}))$$

このとき, 次のことを示せ.

- 1. $\forall n \in \mathbf{N}. ||\varphi_n|| = ||D_n||_1$
- 2. $\{||D_n||_1\}_{n=1}^{\infty}$ は非有界.
- 3. $\{\varphi_n(f)\}_{n=1}^{\infty}$ が有界でないような $f \in C(\mathbb{T})$ が存在する.

1. 任意の $\varepsilon>0$ に対して、連続関数 $f_{\varepsilon}:\mathbf{R}\to\mathbf{R}$ を

$$f_{\varepsilon}(t) = \begin{cases} -1 & t < -\varepsilon \\ \frac{t}{\varepsilon} & -\varepsilon \le t \le \varepsilon \\ 1 & t > \varepsilon \end{cases}$$

と定める. このとき,

$$\begin{split} ||D_n||_1 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt = \frac{1}{2\pi} \int_{|D_n(t)| > \varepsilon} |D_n(t)| dt + \frac{1}{2\pi} \int_{|D_n(t)| \le \varepsilon} |D_n(t)| dt \\ &= \frac{1}{2\pi} \int_{|D_n(t)| > \varepsilon} f_{\varepsilon}(D_n(t)) D_n(t) dt \\ &\quad + \frac{1}{2\pi} \int_{|D_n(t)| \le \varepsilon} f_{\varepsilon}(D_n(t)) D_n(t) dt + \frac{1}{2\pi} \int_{|D_n(t)| \le \varepsilon} |D_n(t)| (1 - \frac{|D_n(t)|}{\varepsilon}) dt \\ &\le \frac{1}{2\pi} \int_{-\pi}^{\pi} f_{\varepsilon}(D_n(t)) D_n(t) dt + \varepsilon \le ||\varphi_n|| + \varepsilon \end{split}$$

がわかる. 任意の $\varepsilon>0$ について上式は成り立つので, $||D_n||_1\leq ||\varphi_n||$ がわかった.

$$||arphi_n|| \leq rac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt = ||D_n||_1$$
 は明らか.

2. 有名不等式を用いて、つぎのように変形できる.

$$||D_n||_1 = \frac{1}{\pi} \int_0^{\pi} \left| \frac{\sin\left((n + \frac{1}{2})t\right)}{\sin\left(\frac{t}{2}\right)} \right| dt \ge \frac{2}{\pi} \int_{\pi}^{n\pi} \frac{|\sin s|}{s} ds$$

簡単な計算により、右辺は無限大に発散することがわかる. (具体的には $\frac{2}{\pi}\sum_{k=1}^{n-1}\frac{2}{(k-1)\pi}$ でなどで下から抑え られる.)

3.1 と 2 の結果と、次の定理の対偶より直ちに従う.

-樣有界性原理

 $\{T_{\lambda}\}_{\lambda\in\Lambda}$: family of bounded operators between Banach space X,Y

$$\forall x \in X. \sup_{\lambda \in \Lambda} ||T_{\lambda}x|| < \infty \Longrightarrow \{||T_{\lambda}||\}_{\lambda \in \Lambda} : \text{ bounded}$$

演習 0.0.9. \mathcal{H} : Hilbert space, $T \in B(\mathcal{H}), n \in \mathbb{N}$ に対して,

$$A_n(T) = \frac{1}{n} \sum_{k=0}^{n-1} T^k$$

と定めたとき、次が成り立つ.

- 1. $\{||T^n||\}_{n=1}^\infty$ が有界とする.このとき任意の $x\in\overline{R(I-T)}\subset\mathcal{H}$ に対して, $\lim_{n\to\infty}||A_n(T)x||=0$ 2. $U\in B(\mathcal{H})$ がユニタリ作用素とする. $P\in B(H)$ を $\ker(I-U)$ への射影作用素とする.このとき任意 の $x \in \mathcal{H}$ に対して, $\lim_{n \to \infty} ||A_n(U)x - Px|| = 0$

 $1. \ \{||T^n||\}_{n=1}^\infty$ が有界とする. $||A_n(T)|| \leq \frac{1}{n} \sum_{k=0}^{n-1} ||T^k|| \leq \sup_{0 \leq k \leq n-1} ||T^k||$ であるから,任意の $n \in \mathbf{N}$ に対して, $A_n(T)$ は有界である. $x \in R(I-T)$ とすると, $\exists y \in \mathcal{H}.x = (I-T)(y)$ である.したがって,

$$||A_n(T)x|| = ||\frac{1}{n}(I - T^n)(y)|| \le \frac{1}{n}(1 + ||T^n||)||y||$$

であり、 $\lim_{n\to\infty}||A_n(T)x||=0$. 次に $x\in\overline{R(I-T)}$ とすると、 $\mathcal H$ の有界列 $\{y_n\}$ があり、 $x=\lim_{n\to\infty}(I-T)(y_n)$ である.つまり $^\forall n,^\exists\ K\in\mathbf N.K\le k\Rightarrow||x-(I-T)y_k||<1/n$ である.このような $K\le k$ を取れば、

$$||A_n(T)x|| = ||A_n(T)(x - (I - T)y_k)|| + ||A_n(T)(I - T)y_k||$$

$$\leq ||A_n(T)||||x - (I - T)y_k|| + \frac{1}{n}(1 + ||T^n||)||y_k||$$

$$\leq \frac{1}{n} \sup_{0 < l < n-1} ||T^l|| + \frac{1}{n}(1 + ||T^n||)||y_k||$$

したがって, $n \to \infty$ とすると右辺は 0 に収束する.

2.~U はユニタリ作用素であるから, $\overline{R(I-U)}^\perp=\ker(I-U^*)=\ker(I-U)$ に注意する.したがって特に $\mathcal{H}=\overline{R(I-U)}\oplus\ker(I-U)$ となる. $z\in\ker(I-U)$ とすれば,z=Uz なので, $A_n(U)z=z$ である.ここで, $x\in\mathcal{H}$ に対して,z=P(x),y=x-P(x) とすれば,

$$A_n(U)x - Px = A_n(U)(y+z) - z = A_n(U)y$$

であり、また U はユニタリより $\{U^n\}_{n=0}^\infty$ は有界なので、先に示したことを用いれば題意が示せる.