26/08/2025 - Sistemas Operativos (Vde@)

1. Sobre los avisos

	Debate		Comenzado por	Último mensaje ↑	Réplicas	3	
*	Bienvenida		HENRY ALBERTO 11 ago 2025	HENRY ALBERTO 11 ago 2025	0	•	
*	Pendientes		HENRY ALBERTO 13 ago 2025	HENRY ALBERTO 13 ago 2025	0	•	
*	Apuntes clase 2		HENRY ALBERTO 14 ago 2025	HENRY ALBERTO 14 ago 2025	0	•	
*	Red Hat Academy		HENRY ALBERTO 18 ago 2025	HENRY ALBERTO 18 ago 2025	0	•	
*	Apuntes clase 3		HENRY ALBERTO 19 ago 2025	HENRY ALBERTO 19 ago 2025	0	•	
*	Problemas con el equipo		HENRY ALBERTO 21 ago 2025	HENRY ALBERTO 21 ago 2025	0	•	
*	Quiz 2 disponible		HENRY ALBERTO 23 ago 2025	HENRY ALBERTO 23 ago 2025	0	•	
)** Te	ener esto aboratori	listo para	el dia	del		
١	Jsuarios github (virtual) 2025-2 🗀 🏠	A	Preguntas Respuestas Co	nfiguración	ಏ	0	0
		0 respuestas		Tincular con Hojas de cálo	culo :		
Aún no hay respuestas. Vuelve a comprobario más adelante.							

2. Repaso con imagenes

. Definicion de Sistema Operativo

6. Interacción software - Hardware

· Capas

6. Proceso

* Distinción importante: Programa Z Proceso

Abstracción: El Proceso

* Estadas de un proceso: De alguna manera un proceso es como lun ser vivo. Modeb de cinco estados (Silverchartz, Stallings)

Diagram of process state.

Modela de tres estados

Process: State Transitions

- 1. Process blocks for input
- 2. Scheduler picks another process
- 3. Scheduler picks this process
- 4. Input becomes available

A process can be in running, blocked, or ready state. Transitions between these states are as shown.

The lowest layer of a process-structured operating system handles interrupts and scheduling. Above that layer are sequential processes.

Queuing Diagram Representation of Processor Scheduling

* Estructuras de datos asociadas

· Process control Block (PCB)

Process control block (PCB).

Process management
Registers
Program counter
Program status word
Stack pointer
Process state
Priority
Scheduling parameters
Process ID
Parent process
Process group
Signals
Time when process started
CPU time used
Children's CPU time

Time of next alarm

Memory management
Pointer to text segment info
Pointer to data segment info
Pointer to stack segment info

File management
Root directory
Working directory
File descriptors
User ID
Group ID

Some of the fields of a typical process-table entry.

Protocolo

SO @ Boot

SO @ Boot (Modo kernel)	Hardware
Inicializa la trap table	
	Almacena la dirección del Syscal handler Ejecuta return de main()

• SO @ Run

SO @ Run (Modo kernel)	Hardware (CPU)	Programa (Modo usuario)
Crea entrada en la lista de procesgo Asigna memoria al proceso Carga el programa a memoria Inicializa pila (stack) con arge/argv Almacena valores de registros en el kernel stack Return-from-trap		
	Inicializa registros desde el kernel stack Pasa a modo usuario Salta a main()	
		Ejecuta main() Llamado al sistema (trap)

	Charles of the					
	50	•	\ <u>A</u> '	50	A	50
•	Boot	'	Run	XINS	- I well	
	K		10	K	7	¥

SO @ Run (Modo kernel)	Hardware	Programa (Modo usuario)
	Almacena valores de registros en el kernel stack Passa a modo kernel Salta al trap handler	
Atiende el evento trap Realiza el trabajo solicitado por la llamada al sistema Return-from-trap		
	Restaura valores de registros desde el kernel stack Pasa a modo usuario Salta a PC después de trap	
		return de main () Llamado al sistema exit (trap)
Libera la memoria del proceso Elimina la entrada de la lista de procesos.		

Sobre las interrupciones

- Las interrupciones son generadas por hardware.
- Son asíncronas.

- Cuando hay una interrupción el scheduler tiene que tomar una decisión sobre el paso a seguir:

 - Continuar con el proceso actual.
 Cambiar a un proceso diferente.
- Si la decisión es cambiar, el SO ejecuta un cambio de contexto (context switch).

Protocolo

Limited Direct Execution Protocol (Timer Interrupt)

OS @ boot (kernel mode)	Hardware	
initialize trap table	remember addresses of syscall handler timer handler	
start interrupt times	start timer interrupt CPU in X ms	
OS @ run (kernel mode)	Hardware	Program (user mode)
Handle the trap Call switch () routine save regs(A) → proc.t(A) restore regs(B) ← proc.t(B) switch to k-stack(B) return-from-trap (into B)	timer interrupt save regs(A) \rightarrow k-stack(A) move to kernel mode jump to trap handler	Process A
	$\begin{array}{l} restore \ regs(B) \leftarrow k\text{-stack}(B) \\ move \ to \ user \ mode \\ jump \ to \ B's \ PC \end{array}$	Process B