Governing equations in dynamic dialysis (1-d model, based on mass balance)

Lumen side	Shell side
$ ho_1rac{\mathrm{d}u_1}{\mathrm{d}z}+u_1rac{\mathrm{d} ho_1}{\mathrm{d}z}=rac{4}{d_1}(j_\mathrm{M,A}-j_\mathrm{M,B})$	$\rho_2 \frac{\mathrm{d}u_2}{\mathrm{d}z} + u_2 \frac{\mathrm{d}\rho_2}{\mathrm{d}z} = \frac{4d_1}{d_2^2 - d_1^2} (j_{\mathrm{M,B}} - j_{\mathrm{M,A}})$
$ ho_1 = \omega_{ m A1} ho_{ m A} + \omega_{ m B1} ho_{ m B}$	$ ho_2 = \omega_{ m A2} ho_{ m A} + \omega_{ m B2} ho_{ m B}$
$\rho_1 u_1 \frac{\mathrm{d}\omega_{\mathrm{A}1}}{\mathrm{d}z} = \frac{4}{d_1} \left[\omega_{\mathrm{A}1} j_{\mathrm{M,B}} + (1 - \omega_{\mathrm{A}1}) j_{\mathrm{M,A}} \right]$	
$\rho_1 u_1 \frac{\mathrm{d}\omega_{\mathrm{B}1}}{\mathrm{d}z} = \frac{4}{d_1} \left[(\omega_{\mathrm{B}1} - 1) j_{\mathrm{M,B}} - \omega_{\mathrm{B}1} j_{\mathrm{M,A}} \right]$	$\rho_2 u_2 \frac{\mathrm{d}\omega_{\mathrm{B2}}}{\mathrm{d}z} = \frac{4d_1}{d_2^2 - d_1^2} \left[\omega_{\mathrm{B2}} j_{\mathrm{M,A}} + (1 - \omega_{\mathrm{B2}}) j_{\mathrm{M,B}} \right]$
$\omega_{ ext{A1}} _{z=0}=\omega_{ ext{A10}}$	$\omega_{ ext{A2}} _{z=0}=\omega_{ ext{A20}}$
$\omega_{ m B1} _{z=0}=\omega_{ m B10}$	$\omega_{ m B2} _{z=0}=\omega_{ m B20}$
$u_1 _{z=0} = u_{10}$	$u_2 _{z=0} = u_{20}$
$j_{ ext{M,A}} = rac{P_{ ext{A}}}{\delta}(\omega_{ ext{A2}} - \omega_{ ext{A1}}) onumber \ j_{ ext{M,B}} = rac{P_{ ext{B}}}{\delta}(\omega_{ ext{B1}} - \omega_{ ext{B2}})$	
$j_{\mathrm{M,B}} = \frac{1}{\delta} (\omega_{\mathrm{B1}} - \omega_{\mathrm{B2}})$	

General mass balance in lumen side

$$\begin{split} u_1 \frac{\mathrm{d} \rho_1}{\mathrm{d}z} &= u_1 \frac{\mathrm{d} \omega_{\mathrm{A1}}}{\mathrm{d}z} \rho_{\mathrm{A}} + u_1 \frac{\mathrm{d} \omega_{\mathrm{B1}}}{\mathrm{d}z} \rho_{\mathrm{B}} \\ u_1 \frac{\mathrm{d} \omega_{\mathrm{A1}}}{\mathrm{d}z} \rho_{\mathrm{A}} &= \frac{4}{d_1} \frac{\rho_{\mathrm{A}}}{\rho_{\mathrm{I}}} (\omega_{\mathrm{A1}} j_{\mathrm{M,B}} + \omega_{\mathrm{B1}} j_{\mathrm{M,A}}) \\ u_1 \frac{\mathrm{d} \omega_{\mathrm{B1}}}{\mathrm{d}z} \rho_{\mathrm{B}} &= -\frac{4}{d_1} \frac{\rho_{\mathrm{B}}}{\rho_{\mathrm{I}}} (\omega_{\mathrm{A1}} j_{\mathrm{M,B}} + \omega_{\mathrm{B1}} j_{\mathrm{M,A}}) \\ u_1 \frac{\mathrm{d} \rho_{\mathrm{B}}}{\mathrm{d}z} &= \frac{4}{d_1} \frac{\rho_{\mathrm{A}}}{\rho_{\mathrm{I}}} (\omega_{\mathrm{A1}} j_{\mathrm{M,B}} + \omega_{\mathrm{B1}} j_{\mathrm{M,A}}) - \frac{4}{d_1} \frac{\rho_{\mathrm{B}}}{\rho_{\mathrm{I}}} (\omega_{\mathrm{A1}} j_{\mathrm{M,B}} + \omega_{\mathrm{B1}} j_{\mathrm{M,A}}) \\ u_1 \frac{\mathrm{d} \rho_{\mathrm{B}}}{\mathrm{d}z} &= \frac{4}{d_1} \frac{\rho_{\mathrm{A}} - \rho_{\mathrm{B}}}{\rho_{\mathrm{I}}} (\omega_{\mathrm{A1}} j_{\mathrm{M,B}} + \omega_{\mathrm{B1}} j_{\mathrm{M,A}}) - \frac{4}{d_1} (j_{\mathrm{M,A}} - j_{\mathrm{M,B}}) \\ u_1 \frac{\mathrm{d} u_1}{\mathrm{d}z} &= \frac{4}{d_1} \frac{\rho_{\mathrm{A}} - \rho_{\mathrm{B}}}{\rho_{\mathrm{I}}} (\omega_{\mathrm{A1}} j_{\mathrm{M,B}} + \omega_{\mathrm{B1}} j_{\mathrm{M,A}}) = \frac{4}{d_1} (j_{\mathrm{M,A}} - j_{\mathrm{M,B}}) \\ \rho_1 \frac{\mathrm{d} u_1}{\mathrm{d}z} &= \frac{4}{d_1} \frac{\rho_{\mathrm{A}} \omega_{\mathrm{A1}} j_{\mathrm{M,B}} - \rho_{\mathrm{B}} \omega_{\mathrm{A1}} j_{\mathrm{M,B}} + \rho_{\mathrm{A}} \omega_{\mathrm{B1}} j_{\mathrm{M,A}} - \rho_{\mathrm{B}} \omega_{\mathrm{B1}} j_{\mathrm{M,A}}}{\rho_{\mathrm{I}}} \\ \rho_1 \frac{\mathrm{d} u_1}{\mathrm{d}z} &= \frac{4}{d_1} \frac{(\rho_{\mathrm{A}} \omega_{\mathrm{B1}} - \rho_{\mathrm{B}} \omega_{\mathrm{B1}}) j_{\mathrm{M,A}} - (\rho_{\mathrm{A}} \omega_{\mathrm{A1}} - \rho_{\mathrm{B}} \omega_{\mathrm{B1}}) j_{\mathrm{M,B}}}{\rho_{\mathrm{I}}} \\ \rho_1 \frac{\mathrm{d} u_1}{\mathrm{d}z} &= \frac{4}{d_1} \frac{(\rho_{\mathrm{A}} \omega_{\mathrm{A1}} + \rho_{\mathrm{B}} \omega_{\mathrm{B1}}) j_{\mathrm{M,A}} - (\rho_{\mathrm{A}} \omega_{\mathrm{A1}} + \rho_{\mathrm{B}} \omega_{\mathrm{B1}}) j_{\mathrm{M,B}}}{\rho_{\mathrm{I}}} \\ \rho_1 \frac{\mathrm{d} u_1}{\mathrm{d}z} &= \frac{4}{d_1} \frac{(\rho_{\mathrm{A}} (\omega_{\mathrm{A1}} - \omega_{\mathrm{B1}}) + 2 \rho_{\mathrm{B}} \omega_{\mathrm{B1}}) j_{\mathrm{M,A}} - [\rho_{\mathrm{B}} (\omega_{\mathrm{B1}} - \omega_{\mathrm{A1}}) + 2 \rho_{\mathrm{A}} \omega_{\mathrm{A1}}] j_{\mathrm{M,B}}}{\rho_{\mathrm{I}}} \\ \frac{\mathrm{d} u_1}{\mathrm{d}z} &= \frac{4}{d_1} \frac{[\rho_{\mathrm{A}} (\omega_{\mathrm{A1}} - \omega_{\mathrm{B1}}) + 2 \rho_{\mathrm{B}} \omega_{\mathrm{B1}}] j_{\mathrm{M,A}} - [2 \rho_{\mathrm{A}} \omega_{\mathrm{A1}} - \rho_{\mathrm{B}} (\omega_{\mathrm{A1}} - \omega_{\mathrm{B1}})] j_{\mathrm{M,B}}}{\rho_{\mathrm{I}}^2} \end{split}{2} \end{split}{2}$$

General mass balance in shell side

$$\begin{split} \frac{\mathrm{d}\rho_2}{\mathrm{d}z} &= \frac{\mathrm{d}\omega_{\mathrm{A2}}}{\mathrm{d}z}\rho_{\mathrm{A}} + \frac{\mathrm{d}\omega_{\mathrm{B2}}}{\mathrm{d}z}\rho_{\mathrm{B}} \\ \frac{\mathrm{d}\rho_2}{\mathrm{d}z} &= \frac{4d_1}{d_2^2 - d_1^2} \frac{\left[-\omega_{\mathrm{B2}}j_{\mathrm{M,A}} - \omega_{\mathrm{A2}}j_{\mathrm{M,B}}\right]\rho_{\mathrm{A}} + \left[\omega_{\mathrm{B2}}j_{\mathrm{M,A}} + \omega_{\mathrm{A2}}j_{\mathrm{M,B}}\right]\rho_{\mathrm{B}}}{\rho_2 u_2} \\ \rho_2 \frac{\mathrm{d}u_2}{\mathrm{d}z} &+ \frac{4d_1}{d_2^2 - d_1^2} \frac{\left[-\omega_{\mathrm{B2}}(\rho_{\mathrm{A}} - \rho_{\mathrm{B}})j_{\mathrm{M,A}} - \omega_{\mathrm{A2}}(\rho_{\mathrm{A}} - \rho_{\mathrm{B}})j_{\mathrm{M,B}}}{\rho_2} = \frac{4d_1}{d_2^2 - d_1^2} (j_{\mathrm{M,B}} - j_{\mathrm{M,A}}) \\ \frac{\mathrm{d}u_2}{\mathrm{d}z} &= -\frac{4d_1}{d_2^2 - d_1^2} \frac{\left[(\omega_{\mathrm{A2}} - \omega_{\mathrm{B2}})\rho_{\mathrm{A}} + 2\omega_{\mathrm{B2}}\rho_{\mathrm{B}}\right]j_{\mathrm{M,A}} - \left[2\omega_{\mathrm{A2}}\rho_{\mathrm{A}} - (\omega_{\mathrm{A2}} - \omega_{\mathrm{B2}})\rho_{\mathrm{B}}\right]j_{\mathrm{M,B}}}{\rho_2} \end{split}$$

Rearranged governing equations in explicit ODEs

$$\begin{split} \frac{\mathrm{d}\omega_{\mathrm{A}1}}{\mathrm{d}z} &= \frac{4}{d_1} \frac{\omega_{\mathrm{A}1} j_{\mathrm{M,B}} + (1-\omega_{\mathrm{A}1}) j_{\mathrm{M,A}}}{\rho_1 u_1} \\ \frac{\mathrm{d}\omega_{\mathrm{A}2}}{\mathrm{d}z} &= \frac{4}{d_2^2 - d_1^2} \frac{(\omega_{\mathrm{A}2} - 1) j_{\mathrm{M,A}} - \omega_{\mathrm{A}2} j_{\mathrm{M,B}}}{\rho_2 u_2} \\ \frac{\mathrm{d}\omega_{\mathrm{B}1}}{\mathrm{d}z} &= \frac{4}{d_1} \frac{(\omega_{\mathrm{B}1} - 1) j_{\mathrm{M,B}} - \omega_{\mathrm{B}1} j_{\mathrm{M,A}}}{\rho_1 u_1} \\ \frac{\mathrm{d}\omega_{\mathrm{B}2}}{\mathrm{d}z} &= \frac{4}{d_2^2 - d_1^2} \frac{\omega_{\mathrm{B}2} j_{\mathrm{M,A}} + (1-\omega_{\mathrm{B}2}) j_{\mathrm{M,B}}}{\rho_2 u_2} \\ \frac{\mathrm{d}u_1}{\mathrm{d}z} &= \frac{4}{d_1} \frac{[\rho_{\mathrm{A}}(\omega_{\mathrm{A}1} - \omega_{\mathrm{B}1}) + 2\rho_{\mathrm{B}}\omega_{\mathrm{B}1}] j_{\mathrm{M,A}} - [2\rho_{\mathrm{A}}\omega_{\mathrm{A}1} - \rho_{\mathrm{B}}(\omega_{\mathrm{A}1} - \omega_{\mathrm{B}1})] j_{\mathrm{M,B}}}{\rho_1^2} \\ \frac{\mathrm{d}u_2}{\mathrm{d}z} &= -\frac{4d_1}{d_2^2 - d_1^2} \frac{[(\omega_{\mathrm{A}2} - \omega_{\mathrm{B}2})\rho_{\mathrm{A}} + 2\omega_{\mathrm{B}2}\rho_{\mathrm{B}}] j_{\mathrm{M,A}} - [2\omega_{\mathrm{A}2}\rho_{\mathrm{A}} - (\omega_{\mathrm{A}2} - \omega_{\mathrm{B}2})\rho_{\mathrm{B}}] j_{\mathrm{M,B}}}{\rho_2^2} \end{split}$$

ICs

$$\omega_{\mathrm{A}1}|_{z=0} = \omega_{\mathrm{A}10}$$

$$\omega_{\rm A2}|_{z=0} = \omega_{\rm A20}$$

$$\omega_{\mathrm{B1}}|_{z=0} = \omega_{\mathrm{B10}}$$

$$\omega_{\mathrm{B2}}|_{z=0} = \omega_{\mathrm{B20}}$$

$$u_1|_{z=0} = u_{10}$$

$$u_2|_{z=0} = u_{20}$$