Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002732

International filing date: 21 February 2005 (21.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-053936

Filing date: 27 February 2004 (27.02.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

25.02.2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 2月27日

出 願 番 号

特願2004-053936

Application Number: [ST. 10/C]:

[JP2004-053936]

出 願 人

Applicant(s):

リンテック株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 3月31日

)· 11

【書類名】

【整理番号】

特許願 P03-1079

【提出日】

平成16年 2月27日 特許庁長官殿

【国際特許分類】

C09J 7/02

【発明者】

【住所又は居所】

埼玉県蕨市錦町5丁目14番42号 リンテック株式会社研究所

内

【氏名】

加藤 揮一郎

【発明者】

【住所又は居所】

埼玉県蕨市錦町5丁目14番42号 リンテック株式会社研究所

内

【氏名】

津田 和央

【発明者】

【住所又は居所】

埼玉県蕨市錦町5丁目14番42号 リンテック株式会社研究所

内

【氏名】

金沢 治

【特許出願人】

【識別番号】

000102980

【氏名又は名称】

リンテック株式会社

【代理人】

【識別番号】

100108833

【弁理士】

【氏名又は名称】

早川 裕司

【代理人】

【識別番号】

100112830

【弁理士】

【氏名又は名称】

鈴木 啓靖

【手数料の表示】

【予納台帳番号】

088477

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1 要約書 1

【物件名】 【物件名】

図面 1

【書類名】特許請求の範囲

【請求項1】

基材と粘着剤層とを備え、一方の面から他方の面に貫通する貫通孔が複数形成されてお り、被着体貼付後に最高Tmax(ただし、20℃≤Tmax≤130℃であるものとする。) の温度に曝される粘着シートであって、

前記貫通孔の前記基材および粘着剤層における孔径は0.1~300μmであり、孔密 度は $30\sim50,000$ 個/ $100cm^2$ であり、

前記粘着剤層のTmaxにおける貯蔵弾性率は4.5×10³Pa以上であり、前記粘着 剤層のTmaxにおける損失正接は0.78以下であることを特徴とする粘着シート。

【請求項2】

基材と粘着剤層とを備え、一方の面から他方の面に貫通する貫通孔が複数形成されてい る粘着シートであって、

前記貫通孔の前記基材および粘着剤層における孔径は 0.1~300μmであり、孔密 度は $30\sim50,000$ 個/100cm² であり、

前記粘着剤層の120℃における貯蔵弾性率は4.5×10³Pa以上であり、前記粘 着剤層の120℃における損失正接は0.78以下であることを特徴とする粘着シート。

【請求項3】

前記貫通孔は、レーザ加工により形成されてなることを特徴とする請求項1または2に 記載の粘着シート。

【書類名】明細書

【発明の名称】粘着シート

【技術分野】

[0001]

本発明は、空気溜まりやブリスターを防止または除去することのできる粘着シートに関 するものである。

【背景技術】

[0002]

粘着シートを手作業で被着体に貼付する際に、被着体と粘着面との間に空気溜まりがで き、粘着シートの外観を損ねてしまうことがある。このような空気溜まりは、特に粘着シ ートの面積が大きい場合に発生し易い。

[0003]

空気溜まりによる粘着シート外観の不具合を解消するために、粘着シートを別の粘着シ ートに貼り替えることや、粘着シートを一度剥して貼り直すこと、あるいは粘着シートの 膨れた部分に針で穴を開けて空気を抜いたりすることが行われている。しかしながら、粘 着シートを貼り替える場合には、手間を要するだけでなく、コストアップを招いてしまい 、また、粘着シートを貼り直す場合には、粘着シートが破れたり、表面に皺ができたり、 粘着性が低下する等の問題が生じることが多い。一方、針で穴を開ける方法は粘着シート の外観を損ねるものである。

[0004]

空気溜まりの発生を防止するために、あらかじめ被着体または粘着面に水をつけてから 貼付する方法があるが、窓に貼るガラス飛散防止フィルム、装飾フィルム、マーキングフ ィルム等の寸法の大きい粘着シートを貼付する場合には、多くの時間と手間を要している 。また。手作業ではなく機械を使用して貼付することにより、空気溜まりの発生を防止す る方法があるが、粘着シートの用途または被着体の部位・形状によっては、機械貼りが適 用できないことがある。

[0005]

一方、アクリル樹脂、ABS樹脂、ポリスチレン樹脂、ポリカーボネート樹脂等の樹脂 材料は、加熱により、または加熱によらなくても、ガスを発生することがあるが、このよ うな樹脂材料からなる被着体に粘着シートを貼付した場合には、被着体から発生するガス によって粘着シートにブリスター(ふくれ)が生じることとなる。

[0006]

上記のような問題を解決するために、特許文献1および特許文献2には、粘着層の粘着 面に、独立した多数の小凸部を散点状に配置した粘着シートが提案されている。この粘着 シートにおいては、粘着層の小凸部の先端部が被着体に密着し、粘着層の基本平坦面が被 着体から離間した状態に保持されることにより、粘着層の基本平坦面と被着体との間に外 部に連通する隙間が生じるため、その隙間から空気やガスを外部に抜くことにより、粘着 シートの空気溜まりまたはブリスターを防止する。

【特許文献1】 実登2503717号公報

【特許文献2】実登2587198号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

しかしながら、特許文献1および特許文献2に開示されている粘着シートにおいては、 粘着層の小凸部の先端部のみが被着体に接着するため接着力が弱く、また、粘着層と被着 体との間には水、薬品等が浸入し易く、それによってさらに接着力が低下するという問題 があった。このような粘着シートを被着体に強く押圧した場合であっても、粘着層の小凸 部の影響により接着力は十分でない。またその場合には、外部に連通する隙間が埋まるた め、被着体からガスが発生したときに生じるブリスターを防止することはできない。

[0008]

また、上記粘着シートにおいては、被着体に貼付した後に高温に曝されると、粘着層が 流動して小凸部が消失してしまうため、高温暴露後に、残存空気溜まりまたは被着体凹部 への追従不足が発見された場合や、ブリスターが発生した場合には、空気やガスを外部に 抜くことができず、空気溜まりやブリスターを除去・防止することができなかった。

[0009]

本発明は、このような実情に鑑みてなされたものであり、粘着シートの外観を損なうこ となく、かつ十分な接着力を確保しつつ、空気溜まりやブリスターを防止または除去する ことができ、さらには被着体貼付後に高温に曝されてもエア抜け性に優れた粘着シートを 提供することを目的とする。

【課題を解決するための手段】

[0010]

上記目的を達成するために、第1に本発明は、基材と粘着剤層とを備え、一方の面から 他方の面に貫通する貫通孔が複数形成されており、被着体貼付後に最高Tmax(ただし、 20℃≤Tmax≤130℃であるものとする。)の温度に曝される粘着シートであって、 前記貫通孔の前記基材および粘着剤層における孔径は0.1~300μmであり、孔密度 は30~50,000個/100cm²であり、前記粘着剤層のTmaxにおける貯蔵弾性率 は4. 5×10^3 Pa以上であり、前記粘着剤層のTmaxにおける損失正接は0. 78以 下であることを特徴とする粘着シートを提供する(請求項1)。

$[0\ 0\ 1\ 1]$

また、第2に本発明は、基材と粘着剤層とを備え、一方の面から他方の面に貫通する貫 通孔が複数形成されている粘着シートであって、前記貫通孔の前記基材および粘着剤層に おける孔径は $0.1 \sim 300 \mu$ mであり、孔密度は $30 \sim 50,000$ 個 $\angle 100$ c m 2 で あり、前記粘着剤層の120℃における貯蔵弾性率は4.5×10³Pa以上であり、前 記粘着剤層の120℃における損失正接は0.78以下であることを特徴とする粘着シー トを提供する(請求項2)。

$[0\ 0\ 1\ 2\]$

なお、本明細書において、「シート」にはフィルムの概念、「フィルム」にはシートの 概念が含まれるものとする。

[0013]

上記発明に係る粘着シート(請求項1,2)においては、被着体と粘着面との間の空気 は貫通孔から粘着シート表面の外側に抜けるため、被着体に貼付する際に空気を巻き込み 難く、空気溜まりができることを防止することができる。仮に空気を巻き込んで空気溜ま りができたとしても、その空気溜まり部または空気溜まり部を含んだ空気溜まり部周辺部 を再圧着することにより、空気が貫通孔から粘着シート表面の外側に抜けて、空気溜まり が消失する。また、被着体に貼付した後に被着体からガスが発生したとしても、ガスは貫 通孔から粘着シート表面の外側に抜けるため、ブリスターが生じることを防止することが できる。

[0014]

なお、貫通孔の孔径は 3 0 0 μ m以下であるため、粘着シート表面で目立たず、粘着シ ートの外観を損なわない。また、貫通孔の孔密度は、50,000個/100cm²以下 であるため、粘着シートの機械的強度は維持される。

[0015]

ここで、粘着剤層は通常比較的軟らかい材料から構成されるため、かかる粘着剤層に形 成された貫通孔は、被着体に貼付された粘着シートが高温に曝されたときに、粘着剤の流 動によって少なくともその深さ方向の一部が消失し易く、そのように粘着剤層の貫通孔が 潰れてしまうと、その後に空気溜まりを除去すること、あるいはブリスターを防止または 除去することができなくなる。しかしながら、上記発明に係る粘着シートにおいては、粘 着剤層の貯蔵弾性率および損失正接を上記のように規定することにより、粘着シートが被 着体貼付後に高温(例えば120℃)に曝されたときであっても、粘着剤層の貫通孔は潰 れず、所定の孔径を維持することができる。

[0016]

上記発明(請求項1,2)において、前記貫通孔は、レーザ加工により形成されてなる のが好ましい(請求項3)。レーザ加工によれば、エア抜け性の良い微細な貫通孔を所望 の孔密度で容易に形成することができる。ただし、貫通孔の形成方法はこれに限定される ものではなく、例えば、ウォータージェット、マイクロドリル、精密プレス、熱針、溶孔 等によって形成してもよい。

【発明の効果】

[0017]

本発明の粘着シートによれば、外観を損なうことなく、かつ十分な接着力を確保しつつ 、空気溜まりやブリスターを防止または除去することができる。また、本発明の粘着シー トにおいては、被着体貼付後に高温に曝されてもエア抜け性に優れるため、高温暴露後に 残存空気溜まりや被着体凹部への追従不足が発見された場合や、ブリスターが発生した場 合であっても、かかる空気溜まりやブリスターを除去・防止することができる。

【発明を実施するための最良の形態】

[0018]

以下、本発明の実施形態について説明する。

[粘着シート]

図1は、本発明の一実施形態に係る粘着シートの断面図である。

[0019]

図1に示すように、本実施形態に係る粘着シート1は、基材11と、粘着剤層12と、 剥離材13とを積層してなるものである。ただし、剥離材13は、粘着シート1の使用時 に剥離されるものである。

[0020]

この粘着シート1においては、基材11および粘着剤層12を貫通し、粘着シート表面 1 Aから粘着面1Bに至る貫通孔2が複数形成されている。粘着シート1の使用時、被着 体と粘着剤層12の粘着面1Bとの間の空気や被着体から発生するガスは、この貫通孔2 から粘着シート表面1Aの外側に抜けるため、後述するように、空気溜まりやブリスター を防止または除去することができる。

[0021]

貫通孔2の横断面形状は特に限定されるものではないが、貫通孔2の基材11および粘 着剤層 1 2 における孔径は 0 . 1 ~ 3 0 0 μ mであり、好ましくは 0 . 5 ~ 1 5 0 μ mであ る。貫通孔 2 の孔径が $0.1~\mu$ m未満であると、空気またはガスが抜け難く、貫通孔 2 の 孔径が300μmを超えると、貫通孔2が目立つようになり、粘着シート1の外観を損な う。

[0022]

ここで、貫通孔 2 の粘着シート表面 1 Α における孔径が 4 0 μ m以下であると、貫通孔 2の孔自体(貫通孔2の内部空間)が肉眼では見えなくなり得るため、特に粘着シート1 の外観において貫通孔2の孔自体が見えないことが要求されるような場合には、貫通孔2 の粘着シート表面 1 A における孔径の上限を 4 0 μ m とするのが好ましい。この場合にお いて、特に基材11が透明である場合には、粘着シート表面1Aだけでなく、基材11内 部および粘着剤層12における孔径も孔可視性に影響を及ぼし得るため、貫通孔2の基材 11内部および粘着剤層12における孔径の上限を60μmとするのが特に好ましい。

[0023]

貫通孔2の孔径は、粘着シート1の厚さ方向に一定であってもよいし、粘着シート1の 厚さ方向に変化していてもよいが、貫通孔2の孔径が粘着シート1の厚さ方向に変化する 場合は、貫通孔2の孔径は粘着面1Bから粘着シート表面1Aにかけて漸次小さくなるの が好ましい。このように貫通孔2の孔径が変化することにより、粘着シート表面1Aにて 貫通孔2がより目立ち難くなり、粘着シート1の外観を良好に保つことができる。ただし 、この場合であっても、貫通孔2の基材11および粘着剤層12における孔径は上記範囲 内 $(0.1 \sim 300 \mu m)$ にあることが必要である。

[0024]

貫通孔2の孔密度は、30~50,000個/100cm²であり、好ましくは100 ~10,000個/100cm²である。貫通孔2の孔密度が30個/100cm²未満 であると、空気またはガスが抜け難く、貫通孔2の孔密度が50,000個/100cm 2 を超えると、粘着シート1の機械的強度が低下する。

[0025]

貫通孔2は、後述するレーザ加工により形成するのが好ましい。レーザ加工によれば、 エア抜け性の良い微細な貫通孔を所望の孔密度で容易に形成することができる。ただし、 貫通孔2の形成方法はこれに限定されるものではなく、例えば、ウォータージェット、マ イクロドリル、精密プレス、熱針、溶孔等によって形成してもよい。

[0026]

基材11の材料としては、上記のような貫通孔2が形成され得る材料であれば特に限定 されるものではなく、例えば、樹脂フィルム、金属フィルム、金属を蒸着させた樹脂フィ ルム、紙、それらの積層体等が挙げられる。それらの材料は、無機フィラー、有機フィラ ー、紫外線吸収剤等の各種添加剤を含んだものであってもよい。基材11が樹脂フィルム からなる場合、基材11は不透明であってもよいし、透明であってもよいが、一般的に基 材11が不透明の方が、貫通孔2が目立ち難い。

[0027]

なお、上記材料の表面には、例えば、印刷、印字、塗料の塗布、転写シートからの転写 、蒸着、スパッタリング等の方法による装飾層が形成されていてもよいし、かかる装飾層 を形成するための易接着コート、あるいはグロス調整用コート等のアンダーコート層が形 成されていてもよいし、ハードコート、汚染防止コート等のトップコート層が形成されて いてもよい。また、それら装飾層、アンダーコート層またはトップコート層は、上記材料 の全面に形成されていてもよいし、部分的に形成されていてもよい。

[0028]

樹脂フィルムとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、 ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリ塩化 ビニル、ポリスチレン、ポリウレタン、ポリカーボネート、ポリアミド、ポリイミド、ポ リメタクリル酸メチル、ポリブテン、ポリブタジエン、ポリメチルペンテン、エチレン酢 酸ビニル共重合体、エチレン(メタ)アクリル酸共重合体、エチレン(メタ)アクリル酸 エステル共重合体、ABS樹脂、アイオノマー樹脂;ポリオレフィン、ポリウレタン、ポ リスチレン、ポリ塩化ビニル、ポリエステル等の成分を含む熱可塑性エラストマーなどの 樹脂からなるフィルム、発泡フィルム、またはそれらの積層フィルム等を使用することが できる。樹脂フィルムは、市販のものを使用してもよいし、工程材料を用いてキャスティ ング法等で形成したものを使用してもよい。また、紙としては、例えば、上質紙、グラシ ン紙、コート紙、ラミネート紙等を使用することができる。

[0029]

上記工程材料としては、所望の穴開け加工法により貫通孔2が形成され得る材料からな るものであれば特に限定されるものではなく、例えば、各種紙、またはポリエチレンテレ フタレート、ポリプロピレン、ポリエチレン等の樹脂フィルムを、シリコーン系、ポリエ ステル系、アクリル系、アルキド系、ウレタン系等の剥離剤または合成樹脂で剥離処理し たものを使用することができる。工程材料の厚さは、通常 $10~200~\mu$ m程度であり、 好ましくは $25\sim150\mu$ m程度である。

[0030]

基材11の厚さは、通常は $1\sim500\mu$ m、好ましくは $3\sim300\mu$ m程度であるが、 粘着シート1の用途に応じて適宜変更することができる。

[0031]

粘着シート1が被着体貼付後に最高Tmax(ただし、20℃≤Tmax≤130℃であるも のとする。)の温度に曝される場合、粘着剤層12は、Tmaxにおける貯蔵弾性率が4. 5×10^3 Pa以上、好ましくは5. $0 \times 10^3 \sim 5$. 0×10^6 Paであり、かつ、T

 \max における損失正接が 0. 78以下、好ましくは <math>0. $01\sim0$. 75であることが必要 である。粘着剤層12がこれらの条件を満たすことによって、被着体に貼付された粘着シ ート1がTmaxの温度に曝されたときであっても、貫通孔2は粘着剤の流動によって潰れ ることなく、上記孔径を維持することができる。すなわち、粘着シート1が被着体貼付後 に高温下に置かれた場合であっても、貫通孔2の形状は安定しており、空気溜まりやブリ スターの除去・防止が可能である。

[0032]

なお、粘着シート1が被着体貼付後に曝され得る温度は、通常120℃程度が上限とな ることが多いため、上記貯蔵弾性率および損失正接は、固定的に120℃における値とし て規定することもできる。

[0033]

粘着剤層12を構成する粘着剤の種類としては、上記のような貯蔵弾性率および損失正 接を有するものであれば特に限定されるものではなく、アクリル系、ポリエステル系、ポ リウレタン系、ゴム系、シリコーン系等のいずれであってもよい。また、粘着剤はエマル ション型、溶剤型または無溶剤型のいずれでもよく、架橋タイプまたは非架橋タイプのい ずれであってもよい。

[0034]

粘着剤層 1 2 の厚さは、通常は $1\sim3$ 0 0 μ m、好ましくは $5\sim1$ 0 0 μ m程度である が、粘着シート1の用途に応じて適宜変更することができる。

[0035]

剥離材13の材料としては、上記のような貫通孔2が形成され得る材料であれば特に限 定されるものではなく、例えば、ポリエチレンテレフタレート、ポリプロピレン、ポリエ チレン等の樹脂からなるフィルムまたはそれらの発泡フィルムや、グラシン紙、コート紙 、ラミネート紙等の紙に、シリコーン系、フッ素系、長鎖アルキル基含有カルバメート等 の剥離剤で剥離処理したものを使用することができる。

[0036]

剥離材 1 3 の厚さは、通常 1 0 \sim 2 5 0 μ m程度であり、好ましくは 2 0 \sim 2 0 0 μ m 程度である。また、剥離材 1 3 における剥離剤の厚さは、通常 $0.05 \sim 5$ μ mであり、 好ましくは 0.1~3μmである。

[0037]

なお、本実施形態に係る粘着シート1における貫通孔2は、基材11および粘着剤層1 2のみを貫通するものであるが、剥離材13をも貫通していてもよい。

[0038]

また、本実施形態に係る粘着シート1は剥離材13を備えたものであるが、本発明はこ れに限定されるものではなく、剥離材13はなくてもよい。さらに、本実施形態に係る粘 着シート1の大きさ、形状等は特に限定されるものではない。例えば、粘着シート1は、 基材11および粘着剤層12のみからなるテープ状のもの(粘着テープ)であって、ロール 状に巻き取られて巻取体となり得るものであってもよい。

[0039]

[粘着シートの製造]

上記実施形態に係る粘着シート1の製造方法の一例を図2 (a) ~ (f) を参照して説 明する。

[0040]

本製造方法においては、最初に図2 (a) ~ (b) に示すように、剥離材13の剥離処 理面に、粘着剤層12を形成する。粘着剤層12を形成するには、粘着剤層12を構成す る粘着剤と、所望によりさらに溶媒とを含有する塗布剤を調製し、ロールコーター、ナイ フコーター、ロールナイフコーター、エアナイフコーター、ダイコーター、バーコーター 、グラビアコーター、カーテンコーター等の塗工機によって剥離材13の剥離処理面に塗 布して乾燥させればよい。

$[0\ 0\ 4\ 1]$

次に、図2(c)に示すように、粘着剤層12の表面に基材11を圧着し、基材11と 粘着剤層12と剥離材13とからなる積層体とする。そして、図2(d)に示すように、 粘着剤層12から剥離材13を剥離した後、図2(e)に示すように、基材11と粘着剤 層12とからなる積層体に貫通孔2を形成し、図2 (f) に示すように、再度粘着剤層1 2に剥離材13を貼り付ける。

[0042]

本製造方法では、貫通孔2の形成はレーザ加工によって行い、粘着剤層12側から粘着 剤層12に対して直接レーザを照射する。このように粘着剤層12側からレーザ加工を施 すことにより、貫通孔2にテーパがついたとしても、貫通孔2の孔径は剥離材13側より も基材11側の方が小さくなり、したがって、粘着シート1の表面にて貫通孔2が目立ち 難くなり、粘着シート1の外観を良好に保つことができる。

[0043]

また、剥離材13を一旦剥離して、粘着剤層12に対して直接レーザを照射することに より、粘着剤層12の貫通孔2開口部が剥離材13の溶融物、いわゆるドロスによって拡 がることがなく、したがって、孔径や孔密度の精度が高く、粘着シート1に悪影響を及ぼ すおそれのある水等が入り難い貫通孔2を形成することができる。さらに、粘着剤層12 に対するレーザ照射において、剥離材13を介在させないことにより、レーザの照射時間 を短縮すること、またはレーザの出力エネルギーを小さくすることができる。レーザの出 力エネルギーが小さければ、粘着剤層12および基材11に対する熱影響が小さくなり、 ドロス等の少ない、形の整った貫通孔2を形成することが可能となる。

[0044]

レーザ加工に利用するレーザの種類は特に限定されるものではなく、例えば、炭酸ガス (CO_2) ν - \forall 、 $TEA-CO_2$ ν - \forall 、 $YAG\nu$ - \forall 、 $UV-YAG\nu$ - \forall 、x+yマレーザ、半導体レーザ、YVO₄レーザ、YLFレーザ等を利用することができる。

[0045]

本製造方法においては、レーザ加工を行う前、任意の段階で、基材11の表面に剥離可 能な保護シートを積層してもよい。このような保護シートとしては、例えば、基材と再剥 離性粘着剤層とからなる公知の粘着保護シート等を使用することができる。

[0046]

レーザ加工によって貫通孔2を形成する場合、貫通孔2の開口部周縁にはドロスが付着 することがあるが、基材11の表面に保護シートを積層することにより、ドロスが付着す るのは基材11ではなく保護シートとなり、したがって、粘着シート1の外観をより良好 に保つことができる。

[0047]

なお、上記製造方法では、粘着剤層12を剥離材13上に形成し、形成された粘着剤層 12と基材11とを貼り合わせたが、本発明はこれに限定されるものではなく、粘着剤層 12を基材11上に直接形成してもよい。また、剥離材13を積層した状態でレーザ加工 を施してもよいし、基材11または上記保護シート側からレーザを照射してもよい。

[0048]

[粘着シートの使用]

粘着シート1を被着体に貼付する際には、剥離材13を粘着剤層12から剥離し、露出 した粘着剤層12の粘着面1Bを被着体に密着させるようにして、粘着シート1を被着体 に押圧する。このとき、被着体と粘着剤層12の粘着面1Bとの間の空気は、粘着シート 1に形成された貫通孔2から粘着シート表面1Aの外側に抜けるため、被着体と粘着面1 Bとの間に空気が巻き込まれ難く、空気溜まりができることが防止される。仮に空気が巻 き込まれて空気溜まりができたとしても、その空気溜まり部または空気溜まり部を含んだ 空気溜まり部周辺部を再圧着することにより、空気が貫通孔2から粘着シート表面1Aの 外側に抜けて、空気溜まりが消失する。このような空気溜まりの除去は、粘着シート1の 貼付から長時間経過した後でも可能である。

[0049]

また、粘着シート1を被着体に貼付した後に、被着体からガスが発生したとしても、そ のガスは粘着シート1に形成された貫通孔2から粘着シート表面1Aの外側に抜けるため 、粘着シート1にブリスターが生じることが防止される。

[0050]

粘着シート1においては、以上のようにして空気溜まりやブリスターを防止または除去 することができるが、粘着シート1に形成されている貫通孔2は非常に微細であるため、 粘着シートの外観が損なわれることはなく、また、貫通孔2が存在しても接着力が低下す るおそれがない。

$[0\ 0\ 5\ 1]$

さらに、粘着シート1においては、被着体貼付後に高温に曝されてもエア抜け性に優れ るため、高温暴露後に残存空気溜まりや被着体凹部への追従不足が発見された場合や、ブ リスターが発生した場合であっても、かかる空気溜まりやブリスターを除去・防止するこ とができる。

【実施例】

[0052]

以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実 施例等に限定されるものではない。

[0053]

〔実施例1〕

上質紙の両面をポリエチレン樹脂でラミネートし、片面にシリコーン系剥離剤を塗布し た剥離材(リンテック社製、FPM-11、厚さ: $175\mu m$)の剥離処理面に、アクリ ル系溶剤型粘着剤(リンテック社製,MF)の塗布剤を乾燥後の厚さが30μmになるよ うにナイフコーターによって塗布し、90℃で1分間乾燥させた。このようにして形成し た粘着剤層に、ポリ塩化ビニル樹脂からなる黒色不透明の基材 (厚さ:100μm) を圧 着し、3層構造の積層体を得た。

[0054]

上記積層体から剥離材を剥し、粘着剤層側から積層体に対してCO2レーザを照射して 、基材表面における孔径が約50μm、粘着面における孔径が約90μmの貫通孔を2. 500個/100cm²の孔密度で形成した。そして、再度粘着剤層に剥離材を圧着し、 これを粘着シートとした。

(0055)

得られた粘着シートにおける粘着剤層の貯蔵弾性率および損失正接を、粘弾性測定装置 (Rheometrics社製,装置名:DYNAMIC ANALYZER RDA II) を用いて1Hzで23℃、80℃、100℃および120℃の値を測定した。結果を表 1 に示す。

[0056]

[実施例2]

CO2 レーザの替わりにUV-YAGレーザを照射し、貫通孔の基材表面における孔径 を約30μm、粘着面における孔径を約45μmとする以外、実施例1と同様にして粘着 シートを作製した。そして、得られた粘着シートにおける粘着剤層の貯蔵弾性率および損 失正接を、実施例1と同様にして測定した。結果を表1に示す。

[0057]

〔実施例3〕

粘着剤としてアクリル系溶剤型粘着剤(リンテック社製,PK)を使用し、貫通孔の基 材表面における孔径を約30μm、粘着面における孔径を約80μmとする以外、実施例 1と同様にして粘着シートを作製した。そして、得られた粘着シートにおける粘着剤層の 貯蔵弾性率および損失正接を、実施例1と同様にして測定した。結果を表1に示す。

[0058]

[実施例4]

粘着剤としてアクリル系溶剤型粘着剤(リンテック社製、PL-2)を使用し、貫通孔 出証特2005-3028507

の基材表面における孔径を約40μm、粘着面における孔径を約85μmとする以外、実 施例1と同様にして粘着シートを作製した。そして、得られた粘着シートにおける粘着剤 層の貯蔵弾性率および損失正接を、実施例1と同様にして測定した。結果を表1に示す。

[0059]

「実施例5〕

粘着剤としてゴム系溶剤型粘着剤(リンテック社製、PV-2)を使用し、貫通孔の基 材表面における孔径を約30μm、粘着面における孔径を約80μmとする以外、実施例 1と同様にして粘着シートを作製した。そして、得られた粘着シートにおける粘着剤層の 貯蔵弾性率および損失正接を、実施例1と同様にして測定した。結果を表1に示す。

[0060]

[実施例6]

粘着剤としてアクリル系エマルション型粘着剤(リンテック社製、MHL)を使用し、 基材として無機フィラーを含有したポリプロピレン樹脂からなる白色不透明の基材(王子 油化社製, ユポSGS80, 厚さ:80 μ m) を使用し、貫通孔の基材表面における孔径 を約30 μ m、粘着面における孔径を約80 μ mとする以外、実施例1と同様にして粘着 シートを作製した。そして、得られた粘着シートにおける粘着剤層の貯蔵弾性率および損 失正接を、実施例1と同様にして測定した。結果を表1に示す。

[0061]

[実施例7]

粘着剤としてアクリル系エマルション型粘着剤(リンテック社製、KV-12)を使用 し、貫通孔の基材表面における孔径を約40μm、粘着面における孔径を約90μmとす る以外、実施例6と同様にして粘着シートを作製した。そして、得られた粘着シートにお ける粘着剤層の貯蔵弾性率および損失正接を、実施例1と同様にして測定した。結果を表 1 に示す。

[0062]

「実施例8〕

粘着剤としてアクリル系エマルション型粘着剤(リンテック社製、PC)を使用し、貫 通孔の基材表面における孔径を約70μm、粘着面における孔径を約100μmとする以 外、実施例6と同様にして粘着シートを作製した。そして、得られた粘着シートにおける 粘着剤層の貯蔵弾性率および損失正接を、実施例1と同様にして測定した。結果を表1に 示す。

[0063]

〔参考例1〕

粘着剤としてゴム系溶剤型粘着剤 (リンテック社製, PT-3) を使用し、貫通孔の基 材表面における孔径を約40μm、粘着面における孔径を約80μmとする以外、実施例 1と同様にして粘着シートを作製した。そして、得られた粘着シートにおける粘着剤層の 貯蔵弾性率および損失正接を、実施例1と同様にして測定した。結果を表1に示す。

[0064]

[比較例1]

上質紙(秤量110 g/m^2)の両面を、ラミネート層の厚さが25 μ mとなるように 低密度ポリエチレン樹脂でラミネートし、その片面にシリコーン系剥離剤を塗布した。次 に、剥離処理面に対し金属製のエンボスロールを80℃で圧着して当該剥離処理面に凹部 を形成し、これを剥離材とした。

[0065]

得られた剥離材および実施例3で使用した粘着剤を用いた以外、実施例1と同様にして 3層構造の積層体(基材+粘着剤層+剥離材)を作製し、これを粘着シートとした。この 粘着シートから剥離材を剥したときの粘着面には、一辺の長さが150μm、高さが10 μmの平面視略正方形の凸部が縦横50μm間隔で形成された。

[0066]

得られた粘着シートにおける粘着剤層の貯蔵弾性率および損失正接を、実施例1と同様

にして測定した。結果を表1に示す。

[0067]

〔比較例2〕

貫通孔を形成しない以外、実施例3と同様にして粘着シートを作製した。そして、得ら れた粘着シートにおける粘着剤層の貯蔵弾性率および損失正接を、実施例1と同様にして 測定した。結果を表1に示す。

[0068]

〔試験例〕

実施例、参考例および比較例で得られた粘着シートについて、以下のようにして空気溜 まり消失性試験を行った。その結果を表1に示す。

[0069]

空気溜まり消失性試験:50mm×50mmに裁断し剥離材を剥離した粘着シートを、 直径15mm、最大深さ1mmの部分球面形の窪みを有するメラミン塗装板に貼付し(窪 みと粘着シートとの間には空気溜りが存在する)、貼付から30分経過後に、23℃、8 0 \mathbb{C} 、1 0 0 \mathbb{C} および 1 2 0 \mathbb{C} の各温度下で 2 4 時間放置した。次いで、室温(2 3 \mathbb{C} , 湿度50%)で1時間保持した後、粘着シートをスキージにより圧着し、空気溜まりが除 去できるか否かを確認した。その結果、粘着シートがメラミン塗装板の凹部に追従して空 気溜まりが除去されたものを○、粘着シートがメラミン塗装板の凹部に追従せずに空気溜 まりが除去されなかったもの(空気溜まりが小さくても残存したものを含む)を×で表す

[0070]

【表1】

-	· 在 1 】	Т	- 1				1						\neg	\neg
1 2 0 °C	空気 溜まり 消失性	0	0	0	0	0	0		0	0	×	×		×
	損失正接	0.05	0.05	0.56	0.71	0.50	0.18		0.41	0.49	0.80	0.56		0.56
	貯蔵弾性 率 (Pa)	8.0×10 ⁴	8.0×10 ⁴	3.0×10 ⁴	9.5×10 ³	2.2×10 ⁴	1 1×104	21.77.1	8.0×10^{3}	6.0×10^{3}	4.1×10 ³	3.0×10 ⁴		3.0×10 ⁴
100%	空気 溜まり 消失性	0	0	0	0	0)	0	0	0	×		×
	損失正接	0.07	0.07	0.52	0.69	0.50	c	U. 6 I	0.44	0.49	0.74	വ		0.52
	貯蔵弾性 率 (Pa)	8.0×10 ⁴	8.0×10 ⁴	5.0×10 ⁴	1.4×10 ⁴	3 0×10 ⁴	40,000	1.2×10°	9.0×10^{3}	7.2×10³	7.0×10³	40100	5.0710	5.0×10 ⁴
3,08	路まる本で本		0	0	0	C) (0	0	0	0		×	×
	損失田様	損失 正接 0.10		0.46	9 9	1 7	r	0.25	0.49	0.50	0.64)]	0.46	0.46
	貯蔵弾性 率 (Pa)	8.0×10 ⁴	8 0×10 ⁴	6 0×10 ⁴	9 4×104	27.7.7	4. U × 1U	1.4×10 ⁴	1.1×10 ⁴	1.0×10 ⁴	1 0×10 ⁴	7.01	6.0×10 ⁴	6.0×10 ⁴
	協議がある。	洪 八 江) C))	0	С				0	×
2 3 °C	1	0 7 0		ዞ ሆ	0.0	0.00	0.46	0.40	0.50	0 C	0 0	0.44		0.58
	貯蔵弾性 率 (Pa)	1 1 1 1 0 5	1.1010	1.1010	3.0×10°	1.9×10°	1.0×10 ⁵	2,4×10 ⁴	9 4>104	0.4~10	3.4010	3.4×10°	3.0×10 ⁵	3.0×10 ⁵
		\dashv	米	米層泡2	美脆刨3	実施例4	実施例5	実施例6	1 五十二	米 看 多 4	米階包8	参考例]	比較例1	比較例2

[0071]

表1から分かるように、暴露最高温度(Tmax)を120℃に設定した場合には、粘着 剤層の120℃における貯蔵弾性率が4.5×10³Pa以上であり、損失正接が0.7 8以下である実施例1~8の粘着シートにおいて、空気溜まりが容易に除去された。ただ し、暴露最高温度 (Tmax) を100℃以下に設定した場合には、粘着剤層の100℃以 下における貯蔵弾性率4.5×10³Pa以上であり、損失正接が0.78以下である参 考例1の粘着シートにおいても、上記と同様の結果となる。

[0072]

なお、貫通孔の基材表面における孔径が40μm以下の粘着シートについては、貫通孔 の孔自体の存在が肉眼では確認できなかった。

【産業上の利用可能性】

[0073]

本発明の粘着シートは、一般的に粘着シートに空気溜まりやブリスターが生じやすい場 合、例えば粘着シートの面積が大きい場合や、被着体からガスが発生する場合等であって 、特に被着体貼付後に高温に曝される場合に好ましく用いることができる。

【図面の簡単な説明】

[0074]

【図1】本発明の一実施形態に係る粘着シートの断面図である。

【図2】本発明の一実施形態に係る粘着シートの製造方法の一例を示す断面図である

【符号の説明】

[0075]

- 1…粘着シート
 - 11…基材
 - 1 2 … 粘着剤層
 - 1 3 …剥離材
- 1 A…粘着シート表面
- 1 B · · · 粘着面
- 2 … 貫通孔

【書類名】図面 【図1】

【図2】

【書類名】要約書

【要約】

粘着シートの外観を損なうことなく、かつ十分な接着力を確保しつつ、空気溜 【課題】 まりやブリスターを防止または除去することができ、さらには被着体貼付後に高温に曝さ れてもエア抜け性に優れた粘着シートを提供する。

基材11と粘着剤層12とを備えた粘着シート1に、一方の面から他方の 面に貫通する貫通孔2を複数形成する。貫通孔2の孔径は0.1~300μmとし、孔密 度は30~50,000個/100cm²とする。また、粘着剤層12のTmax(被着体貼 付後に曝され得る最高温度)における貯蔵弾性率は 4.5×10^3 Pa以上とし、かつ、 粘着剤層12のTmaxにおける損失正接は0.78以下とする。

【選択図】 図1

認定 · 付加情報

特許出願の番号

特願2004-053936

受付番号

5 0 4 0 0 3 2 3 5 8 9

書類名

特許願

担当官

第六担当上席

0 0 9 5

作成日

平成16年 3月 5日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000102980

【住所又は居所】

東京都板橋区本町23番23号

【氏名又は名称】

リンテック株式会社

【代理人】

申請人

【識別番号】

100108833

【住所又は居所】

東京都港区赤坂六丁目9番5号 氷川アネックス

2号館501

【氏名又は名称】

早川 裕司

【代理人】

【識別番号】

100112830

【住所又は居所】

東京都港区赤坂六丁目9番5号 氷川アネックス

2号館501

【氏名又は名称】

鈴木 啓靖

出願人履歴情報

識別番号

[000102980]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月13日 新規登録 東京都板橋区本町23番23号 リンテック株式会社