Institute for System Programming of the Russian Academy of Sciences

nML Reference Manual (UNDER DEVELOPMENT)

Contents

1	Chapter																					
	1.1	Introduction																				
	1.2	Constants .																				
	1.3	Data Types																				
		Introduction																				

Chapter 1

Chapter

1.1 Introduction

1.2 Constants

1.3 Data Types

A data type specifies the format of values stored in registers or memory. nML supports the following data types:

- int(N): N-bit signed integer data type. Negative numbers are stored in two's complement form. The range of possible values is [-2n-1 ... 2n-1 1].
- card(N): N-bit unsigned integer data type. The range of possible values is [0 ... 2n 1].
- float(N, M): IEEE 754 floating point number, where fraction size is N and exponent size is M. The resulting type size is N + M + 1 bits, where 1 is an implicitly added bit for store the sign. Supported floating-point formats include:
 - 32-bit single-precision. Defined as float (23, 8).
 - 64-bit double-precision. Defined as float (52, 11).
 - 80-bit double-extended-precision. Defined as float(64, 15).
 - 128-bit quadruple-precision. Defined as float(112, 15).

nML allows declaring aliases for data types. Here is a simple type declaration:

```
type DWORD = card(32)
```

In this example, type is a reserved word, DWORD is the declared alias type name, the card(32) is the actual data type.

```
type HWORD = card(16)
type DWORD = card(64)

type INT = int(32)
type LONG = int(64)

reg GPR [32, DWORD]

mode R (i : card(5)) = GPR[i]
   syntax = format("r%d", i)

op lui (rt: R, immediate: HWORD)
   syntax = format("lui_%s,_0x%x", rt.syntax, immediate)
   action = {
    rt = coerce(LONG, (coerse(INT, immediate) << 16));
}</pre>
```