Combined search for the Standard Model Higgs boson using up to 4.9 fb⁻¹ of pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS detector at the LHC

The ATLAS Collaboration

Abstract

A combined search for the Standard Model Higgs boson with the ATLAS experiment at the LHC using datasets corresponding to integrated luminosities from 1.04 fb⁻¹ to 4.9 fb⁻¹ of pp collisions collected at $\sqrt{s}=7$ TeV is presented. The Higgs boson mass ranges 112.9–115.5 GeV, 131–238 GeV and 251–466 GeV are excluded at the 95% confidence level (CL), while the range 124–519 GeV is expected to be excluded in the absence of a signal. An excess of events is observed around $m_H \sim 126$ GeV with a local significance of 3.5 standard deviations (σ). The local significance of $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$ and $H \rightarrow WW^{(*)} \rightarrow \ell^+ \nu \ell'^- \overline{\nu}$, the three most sensitive channels in this mass range, are 2.8σ , 2.1σ and 1.4σ , respectively. The global probability for the background to produce such a fluctuation anywhere in the explored Higgs boson mass range 110–600 GeV is estimated to be $\sim 1.4\%$ or, equivalently, 2.2σ .

1. Introduction

The discovery of the mechanism for electroweak symmetry breaking (EWSB) is a major goal of the physics programme at the Large Hadron Collider (LHC). In the Standard Model (SM), EWSB is achieved by invoking the Higgs mechanism, which requires the existence of the Higgs boson [1–6]. In the SM, the Higgs boson mass, m_H , is a priori unknown. However, for a given m_H hypothesis, the production cross sections and branching fractions of each decay mode are predicted, which enables a combined search with data from several decay channels.

Direct searches at the CERN LEP e^+e^- collider excluded the production of a SM Higgs boson with mass below 114.4 GeV at the 95% CL [7]. The combined searches at the Fermilab Tevatron $p\bar{p}$ collider have excluded the production of a Higgs boson with mass between 156 GeV and 177 GeV at the 95% CL [8].

In 2011, the LHC delivered to ATLAS an integrated

luminosity of 5.6 fb⁻¹ of pp collisions at 7 TeV centreof-mass energy. The ATLAS experiment collected and analysed an integrated luminosity corresponding to up to 4.9 fb⁻¹ of data fulfilling all the data quality requirements to search for the SM Higgs boson. In this Letter a combined search using six distinct channels, covering the mass range 110 GeV to 600 GeV, is presented. The Higgs boson is produced primarily through the gluon fusion process and the following decay modes are considered: $H \to \gamma \gamma$, $H \to ZZ^{(*)} \to \ell^+ \ell^- \ell'^+ \ell'^-$, $H \to ZZ \to$ $\ell^+\ell^-q\overline{q},\, H\to ZZ\to \ell^+\ell^-\nu\overline{\nu},\, H\to WW^{(*)}\to \ell^+\nu\ell'^-\overline{\nu},$ and $H \to WW \to \ell \nu q \overline{q}'$, where ℓ denotes an electron or a muon. New limits on SM Higgs boson production are established and the significance of an excess of events observed in the low mass region around m_H =126 GeV is quantified.

2. Search Channels

All search analyses are described in their respective references [9–14] and therefore only the main features relevant to the statistical combination of the various channels are summarised here. Two channels, the $H \to ZZ \to \ell^+\ell^-q\overline{q}$ and $H \to ZZ \to \ell^+\ell^-\nu\overline{\nu}$, have been updated to a data sample corresponding to an integrated luminosity larger than that used in the previously published results and are described in more detail.

The $H \rightarrow \gamma \gamma$ search is carried out for m_H hypotheses between 110 GeV and 150 GeV and uses an integrated luminosity of 4.9 fb⁻¹ [9]. The analysis in this channel separates events into nine independent categories of varying sensitivity. The categorisation is based on the direction of each photon and whether it was reconstructed as a converted or unconverted photon, together with the momentum component of the diphoton system transverse to the thrust axis. The diphoton invariant mass $m_{\gamma\gamma}$ is used as a discriminating variable to distinguish signal and background, to take advantage of the mass resolution of approximately 1.4% for $m_H \sim 120$ GeV. The distribution of $m_{\gamma\gamma}$ in the data is fit to a smooth function to estimate the background. The inclusive invariant mass distribution of the observed candidates, summing over all categories, is shown in Fig. 1(a).

The search in the $H \to ZZ^{(*)} \to \ell^+\ell^-\ell'^+\ell'^-$ channel is performed for m_H hypotheses in the full 110 GeV to 600 GeV mass range using data corresponding to an integrated luminosity of 4.8 fb⁻¹ [10]. The main irreducible ZZ^(*) background is estimated using Monte Carlo simulation. The reducible Z+jets background, which has an impact mostly for low four-lepton invariant masses, is estimated from control regions in the data. The top-quark background normalisation is validated in a control sample of events with an opposite sign electron-muon pair with an invariant mass consistent with that of the Z boson and two leptons of the same flavour. The events are categorised according to the lepton flavour combinations. The mass resolutions are approximately 1.5% in the four-muon channel and 2% in the four-electron channel for $m_H \sim 120$ GeV. The fourlepton invariant mass is used as a discriminating variable. Its distribution for events selected after all cuts is displayed in Fig. 1(b) for the low mass range and Fig. 1(c) for the full mass range.

The $H \to WW^{(*)} \to \ell^+ \nu \ell'^- \overline{\nu}$ search is performed as an event counting analysis for m_H hypotheses between 110 GeV and 300 GeV, using an integrated luminosity of 2.05 fb⁻¹ [11]. The main background contribution, from non-resonant WW production, is estimated

Figure 1: Distributions of the reconstructed invariant or transverse mass for the selected candidate events and for the total background and signal (m_H =130 GeV) expected in the $H \to \gamma \gamma$ (a), the $H \to ZZ^{(*)} \to \ell^+\ell^-\ell'^+\ell'^-$ in the low mass region (b) and the entire mass range (c), and the $H \to WW^{(*)} \to \ell^+\nu\ell'^-\overline{\nu}$ (d) channels.

from the data using control regions based on the dilepton invariant mass $m_{\ell\ell}$. The analysis is separated into 0-jet and 1-jet categories as well as according to lepton flavour. In the 1-jet category, a b-jet veto is applied to reject events from top-quark production. The relative fractions of the background contributions expected in the signal and control regions are taken from Monte Carlo simulation. The transverse mass distribution of events for both jet categories is displayed in Fig. 1(d).

The $H oup WW oup \ell vq\overline{q}'$ analysis covers m_H hypotheses in the 240 GeV to 600 GeV range and is carried out using data corresponding to an integrated luminosity of 1.04 fb⁻¹ [12]. This channel is also separated according to lepton flavour and into 0-jet and 1-jet categories, where the number of jets refers to those in addition to the jets selected as originating from the W-boson decay. Events with at least one b-tagged jet are rejected to reduce backgrounds from top-quark production. The $\ell vq\overline{q}'$ mass is reconstructed using a constraint to the ℓv system to W-boson mass. It is used as a discriminating variable and its distribution is illustrated in Fig. 2(a).

The search in the $H \to ZZ \to \ell^+\ell^-\nu\overline{\nu}$ channel is performed in the 200 GeV to 600 GeV range of m_H . The analysis described in Ref. [13] is based on data corresponding to an integrated luminosity of 1.04 fb⁻¹. It has been updated using a dataset corresponding to an integrated luminosity of 2.05 fb⁻¹. The main change in the event selection is the use of an improved b-tagging algorithm [15] to veto events with jets likely to have originated from b-quarks. The analysis is tuned for two search regions with m_H hypotheses above and below

Figure 2: Distributions of the reconstructed invariant or transverse mass, in analyses relevant for the search of the Higgs boson at high mass, for selected candidate events, the total background and the signal $(m_H=400 \text{ GeV})$ expected for the given value of m_H in the $H \to WW \to \ell \nu q \overline{q}'$ channel (a), the $H \to ZZ \to \ell^+ \ell^- \nu \overline{\nu}$ channel (b) and the $H \to ZZ \to \ell^+ \ell^- q \overline{q}$ channel for events selected in the b-jet untagged (c) and the tagged (d) categories. The signal distribution is displayed in a lighter red colour in the $H \to WW \to \ell \nu q \overline{q}'$ channel where it has been scaled up by a factor 50.

280 GeV and separated into lepton flavour categories. The $\ell^+\ell^-$ pair invariant mass is required to be within 15 GeV of the Z-boson mass. The reverse requirement is applied to same flavor leptons in the $H \to WW^{(*)} \to \ell^+\nu\ell'^-\overline{\nu}$ channel to avoid overlaps. The transverse mass is used as a discriminating variable. Its distribution is shown in Fig. 2(b) for the high m_H search. In total 175 events are selected in the low m_H search and 192 \pm 23 are expected from the background. Similarly, the highmass search selects 89 events, while 100 ± 11 are expected from the background. The expected number of signal events in the low mass search for m_H =200 GeV is 9.9 \pm 1.8 and 19.6 \pm 3.4 for the high-mass selection for m_H =400 GeV.

The analysis of the $H \to ZZ \to \ell^+\ell^-q\overline{q}$ channel, carried out in the m_H range from 200 GeV to 600 GeV using data corresponding to an integrated luminosity of 1.04 fb⁻¹, is described in Ref. [14]. It has been updated using a dataset corresponding to an integrated luminosity of 2.05 fb⁻¹, taking advantage of the improved b-tagging algorithm and of the larger sample of data to better constrain systematic uncertainties on the background yield. The analysis is separated into search regions above and below m_H =300 GeV, where the event selections are independently optimised. The dominant background arises from Z+jets production, which is normalised from data using the sidebands of the dilepton invariant mass distribution. To profit from the siz-

able branching fraction of the Z decaying into a pair of b-quarks in the signal, the analysis is divided into two categories, the first containing events where the two jets are b-tagged and the second with events with fewer than two b-tags. Using the Z boson mass constraint improves the mass resolution of the $\ell\ell qq$ system by approximately 10%. The number of events selected in the data with the low m_H (high m_H) untagged search is 21000 (851) where $21370 \pm 310 (920 \pm 100)$ are expected from the background, and 67 ± 11 (21.1±0.8) from a signal with m_H =200 GeV (m_H =400 GeV). For the tagged search, the number of observed events in the data with the low m_H (high m_H) selection is 145 (6), in reasonable agreement with the $165 \pm 22 (11.6 \pm 1.9)$ expected from the background, while 4.4 ± 1.2 (2.1 ± 3.4) are expected from a signal with m_H =200 GeV (m_H =400 GeV). The invariant mass is used as the discriminating variable and its distribution is shown in Figs. 2(c) and 2(d) for the two categories.

3. Systematic Uncertainties

The sources of systematic uncertainties, and their effects on the signal and background yields and shapes in each individual channel, are described in detail in Refs. [9–14]. In the combination, systematic uncertainties are considered either as fully correlated or uncorrelated. Partial correlations are treated by separating a given source into correlated and uncorrelated components. The effect of each uncertainty is estimated independently for each channel. The dominant correlated systematic uncertainties are those on the measurement of the integrated luminosity and on the theoretical predictions of the signal production cross sections and decay branching fractions, as well as those related to detector response that impact the analyses through the reconstruction of electrons, photons, muon, jets, magnitude of the missing transverse momentum ($E_{\rm T}^{\rm miss}$) and b-tagging.

The uncertainty on the integrated luminosity is considered as fully correlated among channels and ranges from 3.7% to 3.9% depending on the data-taking period of the samples used in each specific channel [16, 17]. The uncertainty is larger for the last part of the 2011 data due to an increase in the average number of proton-proton interactions occurring in the same bunch crossing (pileup events).

The Higgs boson production cross sections are computed up to Next-to-Next-to-Leading Order (NNLO) [18–23] in QCD for the gluon fusion $(gg \rightarrow H)$ process, including soft-gluon resummations up to Next-to-Next-to-Leading Log (NNLL) [24, 25]

and Next-to-Leading Order (NLO) electroweak (EW) corrections [26, 27]. These results are compiled in Refs. [28–30]. The cross section for the vector-boson fusion $(qq' \rightarrow qq'H)$ process is estimated at NLO [31– 33] and approximate NNLO QCD [34]. The associated WH/ZH production processes $(q\bar{q} \rightarrow WH/ZH)$ are computed at NLO [35, 36] and NNLO [37]. The associated production with a $t\bar{t}$ pair $(q\bar{q}/gg \rightarrow t\bar{t}H)$ is estimated at NLO [38-41]. The Higgs boson production cross sections, decay branching ratios [42-45] and their related uncertainties are compiled in Ref. [46]. The QCD scale uncertainties for m_H =120 GeV amount to $^{+12}_{-8}\%$ for the $gg \rightarrow H$ process, $\pm 1\%$ for the $qq' \rightarrow qq'H$ and associated WH/ZH processes, and $^{+3}_{-9}\%$ for the $q\bar{q}/gg \rightarrow t\bar{t}H$ process. The uncertainties related to the parton distribution functions (PDF) for low m_H hypotheses typically amount to $\pm 8\%$ for the predominantly gluon-initiated processes $gg \rightarrow H$ and $q\bar{q}/gg \rightarrow t\bar{t}H$, and $\pm 4\%$ for the predominantly quarkinitiated $qq' \rightarrow qq'H$ and WH/ZH processes [47–50]. The theoretical uncertainty associated with the exclusive Higgs boson production process with one additional jet in the $H \to WW^{(*)} \to \ell^+ \nu \ell'^- \overline{\nu}$ channel amounts to ±20% and is treated according to the prescription of Refs. [51-53]. Additional theoretical uncertainty on the signal normalisation, to account for effects related to off-shell Higgs boson production and interference with other SM processes, is assigned at high Higgs boson masses ($m_H \gtrsim 300 \text{ GeV}$) as $150\% \times (m_H/\text{TeV})^3 [53-56].$

The detector-related sources of systematic uncertainty are modelled using the following classification: trigger and identification efficiencies, energy scale and energy resolution for electrons, photons and for muons; jet energy scale (JES) and jet energy resolution, which include a specific treatment for b-jets; contributions to the $E_{\rm T}^{\rm miss}$ uncertainties uncorrelated with the JES; btagging and b-veto. The effect of these systematic uncertainties depends on the topology of each final state, but is typically small compared to that from the theoretical prediction of the production cross section. The only exception is the jet energy scale uncertainty which can reach ~20% on the signal yield in channels such as $H \to WW \to \ell \nu q \overline{q}'$ and $H \to ZZ \to \ell^+ \ell^- q \overline{q}$. The electron and muon energy scales are directly constrained by $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ events; the impact of the resulting systematic uncertainty on the four-lepton invariant mass is of the order of $\sim 0.5\%$ for electrons and negligible for muons. The impact of the photon energy scale systematic uncertainty on the diphoton invariant mass is approximately 0.6%.

4. Exclusion Limits

Figure 3: (a) The combined 95% CL upper limits on the signal strength as a function of m_H ; the solid curve indicates the observed limit and the dotted curve illustrates the median expected limit in the absence of a signal together with the $\pm 1\sigma$ (dark) and $\pm 2\sigma$ (light) bands. (b) The local p_0 as a function of the m_H hypothesis. The dashed curve indicates the median expected value for the hypothesis of a SM Higgs boson signal at that mass. The four horizontal dashed lines indicate the p_0 values corresponding to significances of 2σ , 3σ , 4σ and 5σ . (c) The best-fit signal strength as a function of the m_H hypothesis. The band shows the interval around $\hat{\mu}$ corresponding to region where $-2 \ln \lambda(\mu) < 1$.

The signal strength, μ , is defined as $\mu = \sigma/\sigma_{\rm SM}$, where σ is the Higgs boson production cross section being tested and σ_{SM} its SM value; it is a single factor used to scale all signal production processes for a given m_H hypothesis. The combination procedure of Refs. [52, 57, 58] is based on the profile likelihood ratio test statistic $\lambda(\mu)$ [59], which extracts the information on the signal strength from the full likelihood including all the parameters describing the systematic uncertain-

ties and their correlations. Exclusion limits are based on the CL_s method [60] and a value of μ is regarded as excluded at the 95% (99%) CL when CL_s takes on the corresponding value.

The combined 95% CL exclusion limits on μ are shown in Fig. 3(a) as a function of m_H . These results are based on the asymptotic approximation [59]. The observed and expected limits using this procedure have been validated using ensemble tests and a Bayesian calculation of the exclusion limits with a uniform prior on the signal cross section. These approaches agree with the asymptotic median results to within a few percent. The expected 95% CL exclusion region covers the m_H range from 124 GeV to 519 GeV. The observed 95% CL exclusion regions are from 131 GeV to 238 GeV and from 251 GeV to 466 GeV. The regions between 133 GeV and 230 GeV and between 260 GeV and 437 GeV are excluded at the 99% CL. A deficit of events is observed in two m_H regions. At very low masses a local deficit in the diphoton channel allows an additional small mass range between 112.9 GeV and 115.5 GeV to be excluded at the 95% CL. Small deficits in various high-mass channels lead to observed limits for masses between 300 GeV and 400 GeV that are stronger than expected. The local probability of such a downward fluctuation of a background-only experiment corresponds to a significance of approximately 2.5σ . The probability to observe such a downward fluctuation over the full inspected mass range in the absence of a signal, using the method described in Section 5 [61], is estimated to be approximately 30%.

The observed exclusion covers a large part of the expected exclusion range, with the exception of the low and high m_H regions where excesses of events above the expected background are observed in various channels, and in a small mass interval around 245 GeV, which is not excluded due to an excess mostly in the $H \to ZZ^{(*)} \to \ell^+\ell^-\ell'^+\ell'^-$ channel.

5. Significance of the Excess

An excess of events is observed near $m_H \sim 126$ GeV in the $H \to \gamma \gamma$ and $H \to ZZ^{(*)} \to \ell^+ \ell^- \ell'^+ \ell'^-$ channels, both of which provide a high-resolution invariant mass for fully reconstructed candidates. The $H \to WW^{(*)} \to \ell^+ \nu \ell'^- \overline{\nu}$ channel as well has a broad excess of events in the transverse mass distribution as seen in Fig. 1(d).

The significance of an excess is quantified by the probability (p_0) that a background-only experiment is more signal-like than that observed. The profile likelihood ratio test statistic is defined such that p_0 cannot exceed 50% [52, 58, 59].

The local p_0 probability is assessed for a fixed m_H hypothesis and the equivalent formulation in terms of number of standard deviations is referred to as the local significance. The probability for a background-only experiment to produce a local significance of this size or larger anywhere in a given mass region is referred to as the global p_0 . The corresponding reduction in the significance is referred to as the look-elsewhere effect and is estimated using the prescription described in Refs. [52, 61].

The observed local p_0 values, calculated using the asymptotic approximation [59], as a function of m_H and the expected value in the presence of a SM Higgs boson signal at that mass, are shown in Fig. 3(b) in the entire search mass range and in Fig. 4 for the individual channels and their combination in the low mass range. Numerically consistent results are obtained using ensemble tests.

The largest local significance for the combination is achieved for m_H =126 GeV, where it reaches 3.6 σ with an expected value of 2.5 σ for a SM signal. The observed (expected) local significance for m_H =126 GeV is 2.8 σ (1.4 σ) in the $H \to \gamma \gamma$ channel, 2.1 σ (1.4 σ) in the $H \to ZZ^{(*)} \to \ell^+\ell^-\ell'^+\ell'^-$ channel, and 1.4 σ (1.4 σ) in the $H \to WW^{(*)} \to \ell^+\nu\ell'^-\overline{\nu}$ channel.

Figure 4: The local probability p_0 for a background-only experiment to be more signal-like than the observation. The solid curves give the individual and combined observed p_0 , estimated using the asymptotic approximation. The dashed curves show the median expected value for the hypothesis of a SM Higgs boson signal at that mass. The three horizontal dashed lines indicate the p_0 corresponding to significances of 2σ , 3σ , and 4σ . The points indicate the observed local p_0 estimated using ensemble tests and taking into account energy scale systematic uncertainties (ESS).

The significance of the excess is mildly sensitive to systematic uncertainties on the energy scale (herein re-

ferred to as ESS) and resolution for photons and electrons. The muon energy scale systematic uncertainties are smaller and therefore neglected. The presence of these uncertainties, which affect the shape and position of the signal distributions, lead to a small deviation from the asymptotic approximation. The observed p_0 including these effects is therefore computed using ensemble tests. The results are displayed in Fig. 4 as a function of m_H . The observed effect of the ESS uncertainty is small and reduces the maximum local significance from 3.6σ to 3.5σ .

The global p_0 of a local excess depends on the range of m_H and the channels considered. The global p_0 associated with a 2.8σ excess anywhere in the $H \to \gamma\gamma$ search domain 110–150 GeV is approximately 7%. A 2.1σ excess anywhere in the $H \to ZZ^{(*)} \to \ell^+\ell^-\ell'^+\ell'^-$ search range 110–600 GeV corresponds to a global p_0 of approximately 30%. The global p_0 for a combined 3.5σ excess to be found anywhere in the range from 114 GeV to 146 GeV is 0.6% (2.5 σ). This mass interval corresponds to the region not excluded at 99% CL by the combination of Higgs boson searches at LEP [7] and the first LHC combined search [54]. For the full mass range from 110 GeV to 600 GeV, the global p_0 is 1.4% (2.2 σ).

The best-fit value of μ , denoted $\hat{\mu}$, is displayed in Fig. 3(c) as a function of the m_H hypothesis. The bands around $\hat{\mu}$ illustrate the μ interval corresponding to $-2 \ln \lambda(\mu) < 1$ and represent an approximate $\pm 1\sigma$ variation. When evaluating exclusion limits and significance, μ is not allowed to be negative; however, this restriction is not applied in Fig. 3(c), in order to illustrate the presence and extent of downward fluctuations. Nevertheless, the μ parameter is still bounded to prevent negative values of the probability density functions in the individual channels, and for negative $\hat{\mu}$ values close to the boundary, the $-2 \ln \lambda(\mu) < 1$ region does not always reflect a 68% confidence interval. The excess observed for $m_H = 126 \text{ GeV}$ corresponds to $\hat{\mu}$ of approximately $1.5^{+0.6}_{-0.5}$, which is compatible with the signal expected from a SM Higgs boson at that mass ($\mu = 1$).

6. Conclusions

A dataset of up to 4.9 fb⁻¹ recorded in 2011 has been used to search for the SM Higgs boson with the ATLAS experiment at the LHC. Higgs boson masses between 124 GeV and 519 GeV are expected to be excluded at the 95% CL. The observed exclusion at the 95% CL ranges from 112.9 GeV to 115.5 GeV, 131 GeV to 238 GeV and 251 GeV to 466 GeV. An exclusion of the SM Higgs boson production at the 99% CL is

achieved in the regions between 133 GeV and 230 GeV and between 260 GeV and 437 GeV.

An excess of events is observed in the $H \rightarrow \gamma \gamma$ and $H \to ZZ^{(*)} \to \ell^+\ell^-\ell'^+\ell'^-$ channels, for m_H close to 126 GeV, which is also supported by a broad excess in the $H \to WW^{(*)} \to \ell^+ \nu \ell'^- \overline{\nu}$ channel. The observed local significances of the individual excesses are 2.8σ , 2.0σ and 1.4σ , respectively. The expected local significances of these channels, for a 126 GeV SM Higgs boson are, coincidentally, all $\sim 1.4\sigma$. The combined local significance of these excesses is 3.6σ . When the energy scale uncertainties are taken into account, the combined local significance is reduced to 3.5σ . The expected combined local significance in the presence of a SM Higgs boson signal at that mass is 2.5σ . The global probability for such an excess to be found in the full search range, in the absence of a signal, is approximately 1.4%, corresponding to 2.2σ .

7. Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF

(Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

- F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321–323.
- [2] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132–133.
- [3] P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508–509.
- [4] G. S. Guralnik, C. R. Hagen, T. W. B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585–587.
- [5] P. W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156–1163.
- [6] T. W. B. Kibble, Symmetry breaking in non-Abelian gauge theories, Phys. Rev. 155 (1967) 1554–1561.
- [7] ALEPH collaboration, DELPHI collaboration, L3 collaboration, OPAL collaboration and the LEP Working Group for Higgs boson searches, Search for the standard model Higgs boson at LEP, Phys. Lett. B565 (2003) 61–75.
- [8] TEVNPH (Tevatron New Phenomena and Higgs Working Group), Combined CDF and D0 Upper Limits on Standard Model Higgs Boson Production with up to 8.6 fb⁻¹ of Data, (2011) arXiv:1107.5518.
- [9] ATLAS Collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb⁻¹ of ATLAS data at $\sqrt{s} = 7$ TeV, CERN-PH-EP-2012-013 (2012).
- [10] ATLAS Collaboration, Search for the Standard Model Higgs boson in the decay channel $H \to ZZ^{(*)} \to 4\ell$ with 4.8 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV, CERN-PH-EP-2012-014 (2012).
- [11] ATLAS Collaboration, Search for the Higgs boson in the $H \rightarrow WW^{(*)} \rightarrow \ell\nu\ell\nu$ decay channel in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, *submitted to* Phys. Rev. Lett., CERN-PH-EP-2011-190 (2011).
- [12] ATLAS Collaboration, Search for Higgs Boson Production in pp Collisions at $\sqrt{s}=7$ TeV using the $H\to WW\to \ell\nu qq$ Decay Channel and the ATLAS Detector, Phys. Rev. Lett. 107 (2011) 231801.
- [13] ATLAS Collaboration, Search for a Standard Model Higgs boson in the $H \to ZZ \to \ell^+\ell^-\nu\bar{\nu}$ decay channel with the ATLAS detector, Phys. Rev. Lett. 107 (2011) 221802.
- [14] ATLAS Collaboration, Search for a heavy Standard Model Higgs boson in the channel H → ZZ → ℓℓqq using the ATLAS detector. Phys. Lett. B707 (2012) 27–45.
- [15] ATLAS Collaboration, Commissioning of the ATLAS highperformance b-tagging algorithms in the 7 TeV collision data, ATLAS-CONF-2011-102 (2011).
- [16] ATLAS Collaboration, Luminosity Determination in pp Collisions at $\sqrt{s} = 7$ TeV using the ATLAS Detector in 2011, Eur. Phys. J. C71 (2011) 1630.
- [17] ATLAS Collaboration, Luminosity Determination in pp Collisions at \sqrt{s} = 7 TeV using the ATLAS Detector in 2011 (ATLAS-CONF-2011-116).
- [18] A. Djouadi, M. Spira, P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B264 (1991) 440, 446.
- [19] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B359 (1991) 283–300.

- [20] M. Spira, A. Djouadi, D. Graudenz, P. M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B453 (1995) 17–82.
- [21] R. V. Harlander, W. B. Kilgore, Next-to-Next-to-Leading Order Higgs Production at Hadron Colliders, Phys. Rev. Lett. 88 (2002) 201801.
- [22] C. Anastasiou, K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B646 (2002) 220–256.
- [23] V. Ravindran, J. Smith, W. L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B665 (2003) 325–366.
- [24] S. Catani, D. de Florian, M. Grazzini, P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028.
- [25] D. de Florian, G. Ferrera, M. Grazzini, D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064.
- [26] U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Two-loop light fermion contribution to Higgs production and decays, Phys. Lett. B595 (2004) 432–441.
- [27] S. Actis, G. Passarino, C. Sturm, S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B670 (2008) 12–17.
- [28] C. Anastasiou, R. Boughezal, F. Petriello, Mixed QCDelectroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003.
- [29] D. de Florian, M. Grazzini, Higgs production through gluon fusion: Updated cross sections at the Tevatron and the LHC, Phys. Lett. B674 (2009) 291–294.
- [30] J. Baglio, A. Djouadi, Higgs production at the IHC, JHEP 03 (2011) 055.
- [31] M. Ciccolini, A. Denner, S. Dittmaier, Strong and Electroweak Corrections to the Production of a Higgs Boson+2Jets via Weak Interactions at the Large Hadron Collider, Phys. Rev. Lett. 99 (2007) 161803.
- [32] M. Ciccolini, A. Denner, S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D77 (2008) 013002.
- [33] K. Arnold, et al., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661–1670.
- [34] P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, Higgs Boson Production via Vector-Boson Fusion at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 105 (2010) 011801.
- [35] T. Han, S. Willenbrock, QCD correction to the pp → WH and ZH total cross- sections, Phys. Lett. B273 (1991) 167–172.
- [36] M. L. Ciccolini, S. Dittmaier, M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D68 (2003) 073003.
- [37] O. Brein, A. Djouadi, R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B579 (2004) 149–156.
- [38] W. Beenakker, et al., Higgs Radiation Off Top Quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805.
- [39] W. Beenakker, et al., NLO QCD corrections to t\(\tilde{t}H\) production in hadron collisions, Nucl. Phys. B653 (2003) 151–203.
- [40] S. Dawson, L. H. Orr, L. Reina, D. Wackeroth, Next-to-leading order QCD corrections to pp → tt̄h at the CERN Large Hadron Collider, Phys. Rev. D67 (2003) 071503.
- [41] S. Dawson, C. Jackson, L. Orr, L. Reina, D. Wackeroth, Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections, Phys. Rev. D68 (2003) 034022.
- [42] A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56–74.
- [43] A. Bredenstein, A. Denner, S. Dittmaier, M. M. Weber, Precise

- predictions for the Higgs-boson decay H \rightarrow WW/ZZ \rightarrow 4 leptons, Phys. Rev. D74 (2006) 013004.
- [44] A. Bredenstein, A. Denner, S. Dittmaier, M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays H → WW/ZZ → 4 fermions, JHEP 0702 (2007) 080.
- [45] S. Actis, G. Passarino, C. Sturm, S. Uccirati, NNLO computational techniques: the cases H → γγ and H → gg, Nucl. Phys. B811 (2009) 182–273.
- [46] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds.), Handbook of LHC Higgs cross sections: 1. Inclusive observables, CERN-2011-002 (2011). arXiv:1101.0593.
- [47] M. Botje et al., The PDF4LHC Working Group Interim Recommendations, (2011). arXiv:1101.0538.
- [48] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, et al., New parton distributions for collider physics, Phys. Rev. D82 (2010) 074024.
- [49] A. D. Martin, W. J. Stirling, R. S. Thorne, G. Watt, Parton distributions for the LHC, Eur. Phys. J. C63 (2009) 189–285.
- [50] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, (2011) arXiv: 1101.1300.
- [51] I. W. Stewart, F. J. Tackmann, Theory uncertainties for Higgs mass and other searches using jet bins, Phys. Rev. D 85 (2012) 034011.
- [52] ATLAS and CMS Collaborations, LHC Higgs Combination Working Group Report, ATL-PHYS-PUB-2011-011, CERN-CMS-NOTE-2011-005 (2011).
- [53] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds.), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (2012). arXiv:1201.3084.
- [54] ATLAS and CMS Collaborations, Combined Standard Model Higgs boson searches with up to 2.3 fb⁻¹ of pp collisions at \sqrt{s} =7 TeV at the LHC, ATLAS-CONF-2011-157, CMS-PAS-HIG-11-023, (2011).
- [55] G. Passarino, C. Sturm, S. Uccirati, Higgs Pseudo-Observables, Second Riemann Sheet and All That, Nucl. Phys. B834 (2010) 77–115.
- [56] C. Anastasiou, S. Buehler, F. Herzog, A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 1112 (2011) 058.
- [57] ATLAS Collaboration, Limits on the production of the Standard Model Higgs Boson in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Eur. Phys. J. C71 (2010) 1728.
- [58] L. Moneta, K. Belasco, K. S. Cranmer, S. Kreiss, A. Lazzaro, et al., The RooStats Project, PoS ACAT2010 (2010) 057.
- [59] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554.
- [60] A. L. Read, Presentation of search results: The CL(s) technique, J. Phys. G28 (2002) 2693–2704.
- [61] E. Gross, O. Vitells, Trial factors for the look elsewhere effect in high energy physics, Eur. Phys. J. C70 (2010) 525–530.

The ATLAS Collaboration

```
G. Aad<sup>48</sup>, B. Abbott<sup>110</sup>, J. Abdallah<sup>11</sup>, S. Abdel Khalek<sup>114</sup>, A.A. Abdelalim<sup>49</sup>, A. Abdesselam<sup>117</sup>, O. Abdinov<sup>10</sup>,
B. Abi<sup>111</sup>, M. Abolins<sup>87</sup>, O.S. AbouZeid<sup>157</sup>, H. Abramowicz<sup>152</sup>, H. Abreu<sup>114</sup>, E. Acerbi<sup>88a,88b</sup>, B.S. Acharya<sup>163a,163b</sup>,
L. Adamczyk<sup>37</sup>, D.L. Adams<sup>24</sup>, T.N. Addy<sup>56</sup>, J. Adelman<sup>174</sup>, M. Aderholz<sup>98</sup>, S. Adomeit<sup>97</sup>, P. Adragna<sup>74</sup>, T. Adye<sup>128</sup>,
S. Aefsky<sup>22</sup>, J.A. Aguilar-Saavedra<sup>123b,a</sup>, M. Aharrouche<sup>80</sup>, S.P. Ahlen<sup>21</sup>, F. Ahles<sup>48</sup>, A. Ahmad<sup>147</sup>, M. Ahsan<sup>40</sup>,
G. Aielli <sup>132</sup>a, <sup>132</sup>b, T. Akdogan <sup>18</sup>a, T.P.A. Åkesson <sup>78</sup>, G. Akimoto <sup>154</sup>, A.V. Akimov <sup>93</sup>, A. Akiyama <sup>66</sup>, M.S. Alam <sup>1</sup>, M.A. Alam <sup>75</sup>, J. Albert <sup>168</sup>, S. Albrand <sup>55</sup>, M. Aleksa <sup>29</sup>, I.N. Aleksandrov <sup>64</sup>, F. Alessandria <sup>88</sup>a, C. Alexa <sup>25</sup>a,
G. Alexander<sup>152</sup>, G. Alexandre<sup>49</sup>, T. Alexopoulos<sup>9</sup>, M. Alhroob<sup>20</sup>, M. Aliev<sup>15</sup>, G. Alimonti<sup>88a</sup>, J. Alison<sup>119</sup>,
M. Aliyev<sup>10</sup>, B.M.M. Allbrooke<sup>17</sup>, P.P. Allport<sup>72</sup>, S.E. Allwood-Spiers<sup>53</sup>, J. Almond<sup>81</sup>, A. Aloisio<sup>101a,101b</sup>, R. Alonso<sup>78</sup>, B. Alvarez Gonzalez<sup>87</sup>, M.G. Alviggi<sup>101a,101b</sup>, K. Amako<sup>65</sup>, P. Amaral<sup>29</sup>, C. Amelung<sup>22</sup>,
V.V. Ammosov<sup>127</sup>, A. Amorim<sup>123a,b</sup>, G. Amorós<sup>166</sup>, N. Amram<sup>152</sup>, C. Anastopoulos<sup>29</sup>, L.S. Ancu<sup>16</sup>, N. Andari<sup>114</sup>,
T. Andeen<sup>34</sup>, C.F. Anders<sup>20</sup>, G. Anders<sup>58a</sup>, K.J. Anderson<sup>30</sup>, A. Andreazza<sup>88a,88b</sup>, V. Andrei<sup>58a</sup>, M-L. Andrieux<sup>55</sup>,
X.S. Anduaga<sup>69</sup>, A. Angerami<sup>34</sup>, F. Anghinolfi<sup>29</sup>, A. Anisenkov<sup>106</sup>, N. Anjos<sup>123a</sup>, A. Annovi<sup>47</sup>, A. Antonaki<sup>8</sup>,
M. Antonelli<sup>47</sup>, A. Antonov<sup>95</sup>, J. Antos<sup>143b</sup>, F. Anulli<sup>131a</sup>, S. Aoun<sup>82</sup>, L. Aperio Bella<sup>4</sup>, R. Apolle<sup>117,c</sup>, G. Arabidze<sup>87</sup>,
I. Aracena<sup>142</sup>, Y. Arai<sup>65</sup>, A.T.H. Arce<sup>44</sup>, S. Arfaoui<sup>147</sup>, J-F. Arguin<sup>14</sup>, E. Arik<sup>18a,*</sup>, M. Arik<sup>18a</sup>, A.J. Armbruster<sup>86</sup>, O. Arnaez<sup>80</sup>, V. Arnal<sup>79</sup>, C. Arnault<sup>114</sup>, A. Artamonov<sup>94</sup>, G. Artoni<sup>131a,131b</sup>, D. Arutinov<sup>20</sup>, S. Asai<sup>154</sup>,
R. Asfandiyarov<sup>171</sup>, S. Ask<sup>27</sup>, B. Åsman<sup>145a,145b</sup>, L. Asquith<sup>5</sup>, K. Assamagan<sup>24</sup>, A. Astbury<sup>168</sup>, A. Astvatsatourov<sup>52</sup>,
B. Aubert<sup>4</sup>, E. Auge<sup>114</sup>, K. Augsten<sup>126</sup>, M. Aurousseau<sup>144a</sup>, G. Avolio<sup>162</sup>, R. Avramidou<sup>9</sup>, D. Axen<sup>167</sup>, C. Ay<sup>54</sup>,
G. Azuelos<sup>92,d</sup>, Y. Azuma<sup>154</sup>, M.A. Baak<sup>29</sup>, G. Baccaglioni<sup>88a</sup>, C. Bacci<sup>133a,133b</sup>, A.M. Bach<sup>14</sup>, H. Bachacou<sup>135</sup>,
K. Bachas<sup>29</sup>, M. Backes<sup>49</sup>, M. Backhaus<sup>20</sup>, E. Badescu<sup>25a</sup>, P. Bagnaia<sup>131a,131b</sup>, S. Bahinipati<sup>2</sup>, Y. Bai<sup>32a</sup>, D.C. Bailey<sup>157</sup>, T. Bain<sup>157</sup>, J.T. Baines<sup>128</sup>, O.K. Baker<sup>174</sup>, M.D. Baker<sup>24</sup>, S. Baker<sup>76</sup>, E. Banas<sup>38</sup>, P. Banerjee<sup>92</sup>, Sw. Banerjee<sup>171</sup>, D. Banfi<sup>29</sup>, A. Bangert<sup>149</sup>, V. Bansal<sup>168</sup>, H.S. Bansil<sup>17</sup>, L. Barak<sup>170</sup>, S.P. Baranov<sup>93</sup>, A. Barashkou<sup>64</sup>, A. Barbaro Galtieri<sup>14</sup>, T. Barber<sup>48</sup>, E.L. Barberio<sup>85</sup>, D. Barberis<sup>50a,50b</sup>, M. Barbero<sup>20</sup>, D.Y. Bardin<sup>64</sup>, T. Barillari<sup>98</sup>,
M. Barisonzi<sup>173</sup>, T. Barklow<sup>142</sup>, N. Barlow<sup>27</sup>, B.M. Barnett<sup>128</sup>, R.M. Barnett<sup>14</sup>, A. Baroncelli<sup>133a</sup>, G. Barone<sup>49</sup>,
A.J. Barr<sup>117</sup>, F. Barreiro<sup>79</sup>, J. Barreiro Guimarães da Costa<sup>57</sup>, P. Barrillon<sup>114</sup>, R. Bartoldus<sup>142</sup>, A.E. Barton<sup>70</sup>,
V. Bartsch<sup>148</sup>, R.L. Bates<sup>53</sup>, L. Batkova<sup>143a</sup>, J.R. Batley<sup>27</sup>, A. Battaglia<sup>16</sup>, M. Battistin<sup>29</sup>, F. Bauer<sup>135</sup>, H.S. Bawa<sup>142,e</sup>,
S. Beale<sup>97</sup>, T. Beau<sup>77</sup>, P.H. Beauchemin<sup>160</sup>, R. Beccherle<sup>50a</sup>, P. Bechtle<sup>20</sup>, H.P. Beck<sup>16</sup>, S. Becker<sup>97</sup>,
M. Beckingham<sup>137</sup>, K.H. Becks<sup>173</sup>, A.J. Beddall<sup>18c</sup>, A. Beddall<sup>18c</sup>, S. Bedikian<sup>174</sup>, V.A. Bednyakov<sup>64</sup>, C.P. Bee<sup>82</sup>,
M. Begel<sup>24</sup>, S. Behar Harpaz<sup>151</sup>, P.K. Behera<sup>62</sup>, M. Beimforde<sup>98</sup>, C. Belanger-Champagne<sup>84</sup>, P.J. Bell<sup>49</sup>, W.H. Bell<sup>49</sup>,
G. Bella<sup>152</sup>, L. Bellagamba<sup>19a</sup>, F. Bellina<sup>29</sup>, M. Bellomo<sup>29</sup>, A. Belloni<sup>57</sup>, O. Beloborodova<sup>106, f</sup>, K. Belotskiy<sup>95</sup>, O. Beltramello<sup>29</sup>, O. Benary<sup>152</sup>, D. Benchekroun<sup>134a</sup>, M. Bendel<sup>80</sup>, N. Benekos<sup>164</sup>, Y. Benhammou<sup>152</sup>,
E. Benhar Noccioli<sup>49</sup>, J.A. Benitez Garcia<sup>158b</sup>, D.P. Benjamin<sup>44</sup>, M. Benoit<sup>114</sup>, J.R. Bensinger<sup>22</sup>, K. Benslama<sup>129</sup>,
S. Bentvelsen<sup>104</sup>, D. Berge<sup>29</sup>, E. Bergeaas Kuutmann<sup>41</sup>, N. Berger<sup>4</sup>, F. Berghaus<sup>168</sup>, E. Berglund<sup>104</sup>, J. Beringer<sup>14</sup>, P. Bernat<sup>76</sup>, R. Bernhard<sup>48</sup>, C. Bernius<sup>24</sup>, T. Berry<sup>75</sup>, C. Bertella<sup>82</sup>, A. Bertin<sup>19a,19b</sup>, F. Bertinelli<sup>29</sup>,
F. Bertolucci<sup>121a,121b</sup>, M.I. Besana<sup>88a,88b</sup>, N. Besson<sup>135</sup>, S. Bethke<sup>98</sup>, W. Bhimji<sup>45</sup>, R.M. Bianchi<sup>29</sup>, M. Bianco<sup>71a,71b</sup>,
O. Biebel<sup>97</sup>, S.P. Bieniek<sup>76</sup>, K. Bierwagen<sup>54</sup>, J. Biesiada<sup>14</sup>, M. Biglietti<sup>133a</sup>, H. Bilokon<sup>47</sup>, M. Bindi<sup>19a,19b</sup>, S. Binet<sup>114</sup>,
A. Bingul<sup>18c</sup>, C. Bini<sup>131a,131b</sup>, C. Biscarat<sup>176</sup>, U. Bitenc<sup>48</sup>, K.M. Black<sup>21</sup>, R.E. Blair<sup>5</sup>, J.-B. Blanchard<sup>135</sup>, G. Blanchot<sup>29</sup>, T. Blazek<sup>143a</sup>, C. Blocker<sup>22</sup>, J. Blocki<sup>38</sup>, A. Blondel<sup>49</sup>, W. Blum<sup>80</sup>, U. Blumenschein<sup>54</sup>, G.J. Bobbink<sup>104</sup>, V.B. Bobrovnikov<sup>106</sup>, S.S. Bocchetta<sup>78</sup>, A. Bocci<sup>44</sup>, C.R. Boddy<sup>117</sup>, M. Boehler<sup>41</sup>, J. Boek<sup>173</sup>, N. Boelaert<sup>35</sup>, J.A. Bogaerts<sup>29</sup>, A. Bogdanchikov<sup>106</sup>, A. Bogouch<sup>89,*</sup>, C. Bohm<sup>145a</sup>, J. Bohm<sup>124</sup>, V. Boisvert<sup>75</sup>,
T. Bold<sup>37</sup>, V. Boldea<sup>25a</sup>, N.M. Bolnet<sup>135</sup>, M. Bomben<sup>77</sup>, M. Bona<sup>74</sup>, V.G. Bondarenko<sup>95</sup>, M. Bondioli<sup>162</sup>,
M. Boonekamp<sup>135</sup>, C.N. Booth<sup>138</sup>, S. Bordoni<sup>77</sup>, C. Borer<sup>16</sup>, A. Borisov<sup>127</sup>, G. Borissov<sup>70</sup>, I. Borjanovic<sup>12a</sup>,
M. Borri<sup>81</sup>, S. Borroni<sup>86</sup>, V. Bortolotto<sup>133a,133b</sup>, K. Bos<sup>104</sup>, D. Boscherini<sup>19a</sup>, M. Bosman<sup>11</sup>, H. Boterenbrood<sup>104</sup>,
D. Botterill<sup>128</sup>, J. Bouchami<sup>92</sup>, J. Boudreau<sup>122</sup>, E.V. Bouhova-Thacker<sup>70</sup>, D. Boumediene<sup>33</sup>, C. Bourdarios<sup>114</sup>,
N. Bousson<sup>82</sup>, A. Boveia<sup>30</sup>, J. Boyd<sup>29</sup>, I.R. Boyko<sup>64</sup>, N.I. Bozhko<sup>127</sup>, I. Bozovic-Jelisavcic<sup>12b</sup>, J. Bracinik<sup>17</sup>,
A. Braem<sup>29</sup>, P. Branchini<sup>133a</sup>, G.W. Brandenburg<sup>57</sup>, A. Brandt<sup>7</sup>, G. Brandt<sup>117</sup>, O. Brandt<sup>54</sup>, U. Bratzler<sup>155</sup>, B. Brau<sup>83</sup>,
J.E. Brau<sup>113</sup>, H.M. Braun<sup>173</sup>, B. Brelier<sup>157</sup>, J. Bremer<sup>29</sup>, K. Brendlinger<sup>119</sup>, R. Brenner<sup>165</sup>, S. Bressler<sup>170</sup>, D. Britton<sup>53</sup>, F.M. Brochu<sup>27</sup>, I. Brock<sup>20</sup>, R. Brock<sup>87</sup>, T.J. Brodbeck<sup>70</sup>, E. Brodet<sup>152</sup>, F. Broggi<sup>88a</sup>, C. Bromberg<sup>87</sup>,
J. Bronner<sup>98</sup>, G. Brooijmans<sup>34</sup>, W.K. Brooks<sup>31b</sup>, G. Brown<sup>81</sup>, H. Brown<sup>7</sup>, P.A. Bruckman de Renstrom<sup>38</sup>, D. Bruncko<sup>143b</sup>, R. Bruneliere<sup>48</sup>, S. Brunet<sup>60</sup>, A. Bruni<sup>19a</sup>, G. Bruni<sup>19a</sup>, M. Bruschi<sup>19a</sup>, T. Buanes<sup>13</sup>, Q. Buat<sup>55</sup>,
F. Bucci<sup>49</sup>, J. Buchanan<sup>117</sup>, N.J. Buchanan<sup>2</sup>, P. Buchholz<sup>140</sup>, R.M. Buckingham<sup>117</sup>, A.G. Buckley<sup>45</sup>, S.I. Buda<sup>25a</sup>,
```

```
I.A. Budagov<sup>64</sup>, B. Budick<sup>107</sup>, V. Büscher<sup>80</sup>, L. Bugge<sup>116</sup>, O. Bulekov<sup>95</sup>, M. Bunse<sup>42</sup>, T. Buran<sup>116</sup>, H. Burckhart<sup>29</sup>,
S. Burdin<sup>72</sup>, T. Burgess<sup>13</sup>, S. Burke<sup>128</sup>, E. Busato<sup>33</sup>, P. Bussey<sup>53</sup>, C.P. Buszello<sup>165</sup>, F. Butin<sup>29</sup>, B. Butler<sup>142</sup>, J.M. Butler<sup>21</sup>, C.M. Buttar<sup>53</sup>, J.M. Butterworth<sup>76</sup>, W. Buttinger<sup>27</sup>, S. Cabrera Urbán<sup>166</sup>, D. Caforio<sup>19a,19b</sup>, O. Cakir<sup>3a</sup>,
P. Calafiura<sup>14</sup>, G. Calderini<sup>77</sup>, P. Calfayan<sup>97</sup>, R. Calkins<sup>105</sup>, L.P. Caloba<sup>23a</sup>, R. Caloi<sup>131a,131b</sup>, D. Calvet<sup>33</sup>, S. Calvet<sup>33</sup>,
R. Camacho Toro<sup>33</sup>, P. Camarri<sup>132a,132b</sup>, M. Cambiaghi<sup>118a,118b</sup>, D. Cameron<sup>116</sup>, L.M. Caminada<sup>14</sup>, S. Campana<sup>29</sup>,
M. Campanelli<sup>76</sup>, V. Canale<sup>101a,101b</sup>, F. Canelli<sup>30,g</sup>, A. Canepa<sup>158a</sup>, J. Cantero<sup>79</sup>, L. Capasso<sup>101a,101b</sup>,
M.D.M. Capeans Garrido<sup>29</sup>, I. Caprini<sup>25a</sup>, M. Caprini<sup>25a</sup>, D. Capriotti<sup>98</sup>, M. Capua<sup>36a,36b</sup>, R. Caputo<sup>80</sup>, R. Cardarelli<sup>132a</sup>, T. Carli<sup>29</sup>, G. Carlino<sup>101a</sup>, L. Carminati<sup>88a,88b</sup>, B. Caron<sup>84</sup>, S. Caron<sup>103</sup>, E. Carquin<sup>31b</sup>, G.D. Carrillo Montoya<sup>171</sup>, A.A. Carter<sup>74</sup>, J.R. Carter<sup>27</sup>, J. Carvalho<sup>123a,h</sup>, D. Casadei<sup>107</sup>, M.P. Casado<sup>11</sup>,
M. Cascella<sup>121a,121b</sup>, C. Caso<sup>50a,50b,*</sup>, A.M. Castaneda Hernandez<sup>171</sup>, E. Castaneda-Miranda<sup>171</sup>, V. Castillo Gimenez<sup>166</sup>, N.F. Castro<sup>123a</sup>, G. Cataldi<sup>71a</sup>, A. Catinaccio<sup>29</sup>, J.R. Catmore<sup>29</sup>, A. Cattai<sup>29</sup>,
G. Cattani<sup>132a,132b</sup>, S. Caughron<sup>87</sup>, D. Cauz<sup>163a,163c</sup>, P. Cavalleri<sup>77</sup>, D. Cavalli<sup>88a</sup>, M. Cavalli-Sforza<sup>11</sup>,
V. Cavasinni<sup>121a,121b</sup>, F. Ceradini<sup>133a,133b</sup>, A.S. Cerqueira<sup>23b</sup>, A. Cerri<sup>29</sup>, L. Cerrito<sup>74</sup>, F. Cerutti<sup>47</sup>, S.A. Cetin<sup>18b</sup>,
F. Cevenini 101a, 101b, A. Chafaq 134a, D. Chakraborty 105, K. Chan<sup>2</sup>, B. Chapleau 84, J.D. Chapman 27, J.W. Chapman 86,
E. Chareyre<sup>77</sup>, D.G. Charlton<sup>17</sup>, V. Chavda<sup>81</sup>, C.A. Chavez Barajas<sup>29</sup>, S. Cheatham<sup>84</sup>, S. Chekanov<sup>5</sup>, S.V. Chekulaev<sup>158a</sup>, G.A. Chelkov<sup>64</sup>, M.A. Chelstowska<sup>103</sup>, C. Chen<sup>63</sup>, H. Chen<sup>24</sup>, S. Chen<sup>32c</sup>, T. Chen<sup>32c</sup>,
X. Chen<sup>171</sup>, S. Cheng<sup>32a</sup>, A. Cheplakov<sup>64</sup>, V.F. Chepurnov<sup>64</sup>, R. Cherkaoui El Moursli<sup>134e</sup>, V. Chernyatin<sup>24</sup>, E. Cheu<sup>6</sup>, S.L. Cheung<sup>157</sup>, L. Chevalier<sup>135</sup>, G. Chiefari<sup>101a,101b</sup>, L. Chikovani<sup>51a</sup>, J.T. Childers<sup>29</sup>, A. Chilingarov<sup>70</sup>,
G. Chiodini<sup>71a</sup>, A.S. Chisholm<sup>17</sup>, R.T. Chislett<sup>76</sup>, M.V. Chizhov<sup>64</sup>, G. Choudalakis<sup>30</sup>, S. Chouridou<sup>136</sup>,
I.A. Christidi<sup>76</sup>, A. Christov<sup>48</sup>, D. Chromek-Burckhart<sup>29</sup>, M.L. Chu<sup>150</sup>, J. Chudoba<sup>124</sup>, G. Ciapetti<sup>131a,131b</sup>,
A.K. Ciftci<sup>3a</sup>, R. Ciftci<sup>3a</sup>, D. Cinca<sup>33</sup>, V. Cindro<sup>73</sup>, M.D. Ciobotaru<sup>162</sup>, C. Ciocca<sup>19a</sup>, A. Ciocio<sup>14</sup>, M. Cirilli<sup>86</sup>,
M. Citterio<sup>88a</sup>, M. Ciubancan<sup>25a</sup>, A. Clark<sup>49</sup>, P.J. Clark<sup>45</sup>, W. Cleland<sup>122</sup>, J.C. Clemens<sup>82</sup>, B. Clement<sup>55</sup>, C. Clement<sup>145a,145b</sup>, R.W. Clifft<sup>128</sup>, Y. Coadou<sup>82</sup>, M. Cobal<sup>163a,163c</sup>, A. Coccaro<sup>171</sup>, J. Cochran<sup>63</sup>, P. Coe<sup>117</sup>,
J.G. Cogan<sup>142</sup>, J. Coggeshall<sup>164</sup>, E. Cogneras<sup>176</sup>, J. Colas<sup>4</sup>, A.P. Colijn<sup>104</sup>, N.J. Collins<sup>17</sup>, C. Collins-Tooth<sup>53</sup>, J. Collot<sup>55</sup>, G. Colon<sup>83</sup>, P. Conde Muiño<sup>123a</sup>, E. Coniavitis<sup>117</sup>, M.C. Conidi<sup>11</sup>, M. Consonni<sup>103</sup>, S.M. Consonni<sup>88a,88b</sup>,
V. Consorti<sup>48</sup>, S. Constantinescu<sup>25a</sup>, C. Conta<sup>118a,118b</sup>, G. Conti<sup>57</sup>, F. Conventi<sup>101a,i</sup>, J. Cook<sup>29</sup>, M. Cooke<sup>14</sup>,
B.D. Cooper<sup>76</sup>, A.M. Cooper-Sarkar<sup>117</sup>, K. Copic<sup>14</sup>, T. Cornelissen<sup>173</sup>, M. Corradi<sup>19a</sup>, F. Corriveau<sup>84</sup>, j,
A. Cortes-Gonzalez<sup>164</sup>, G. Cortiana<sup>98</sup>, G. Costa<sup>88a</sup>, M.J. Costa<sup>166</sup>, D. Costanzo<sup>138</sup>, T. Costin<sup>30</sup>, D. Côté<sup>29</sup>,
R. Coura Torres<sup>23a</sup>, L. Courneyea<sup>168</sup>, G. Cowan<sup>75</sup>, C. Cowden<sup>27</sup>, B.E. Cox<sup>81</sup>, K. Cranmer<sup>107</sup>, F. Crescioli<sup>121a,121b</sup>,
M. Cristinziani<sup>20</sup>, G. Crosetti<sup>36a,36b</sup>, R. Crupi<sup>71a,71b</sup>, S. Crépé-Renaudin<sup>55</sup>, C.-M. Cuciuc<sup>25a</sup>, C. Cuenca Almenar<sup>174</sup>,
T. Cuhadar Donszelmann<sup>138</sup>, M. Curatolo<sup>47</sup>, C.J. Curtis<sup>17</sup>, C. Cuthbert<sup>149</sup>, P. Cwetanski<sup>60</sup>, H. Czirr<sup>140</sup>,
P. Czodrowski<sup>43</sup>, Z. Czyczula<sup>174</sup>, S. D'Auria<sup>53</sup>, M. D'Onofrio<sup>72</sup>, A. D'Orazio<sup>131a,131b</sup>, P.V.M. Da Silva<sup>23a</sup>, C. Da Via<sup>81</sup>, W. Dabrowski<sup>37</sup>, A. Dafinca<sup>117</sup>, T. Dai<sup>86</sup>, C. Dallapiccola<sup>83</sup>, M. Dam<sup>35</sup>, M. Dameri<sup>50a,50b</sup>, D.S. Damiani<sup>136</sup>, H.O. Danielsson<sup>29</sup>, D. Dannheim<sup>98</sup>, V. Dao<sup>49</sup>, G. Darbo<sup>50a</sup>, G.L. Darlea<sup>25b</sup>, W. Davey<sup>20</sup>,
T. Davidek<sup>125</sup>, N. Davidson<sup>85</sup>, R. Davidson<sup>70</sup>, E. Davies<sup>117</sup>, M. Davies<sup>92</sup>, A.R. Davison<sup>76</sup>, Y. Davygora<sup>58a</sup>,
E. Dawe<sup>141</sup>, I. Dawson<sup>138</sup>, J.W. Dawson<sup>5,*</sup>, R.K. Daya-Ishmukhametova<sup>22</sup>, K. De<sup>7</sup>, R. de Asmundis<sup>101a</sup>,
S. De Castro<sup>19a,19b</sup>, P.E. De Castro Faria Salgado<sup>24</sup>, S. De Cecco<sup>77</sup>, J. de Graat<sup>97</sup>, N. De Groot<sup>103</sup>, P. de Jong<sup>104</sup>,
C. De La Taille<sup>114</sup>, H. De la Torre<sup>79</sup>, B. De Lotto<sup>163a,163c</sup>, L. de Mora<sup>70</sup>, L. De Nooij<sup>104</sup>, D. De Pedis<sup>131a</sup>,
A. De Salvo<sup>131a</sup>, U. De Sanctis<sup>163a,163c</sup>, A. De Santo<sup>148</sup>, J.B. De Vivie De Regie<sup>114</sup>, G. De Zorzi<sup>131a,131b</sup>, S. Dean<sup>76</sup>,
W.J. Dearnaley<sup>70</sup>, R. Debbe<sup>24</sup>, C. Debenedetti<sup>45</sup>, B. Dechenaux<sup>55</sup>, D.V. Dedovich<sup>64</sup>, J. Degenhardt<sup>119</sup>, M. Dehchar<sup>117</sup>, C. Del Papa<sup>163a,163c</sup>, J. Del Peso<sup>79</sup>, T. Del Prete<sup>121a,121b</sup>, T. Delemontex<sup>55</sup>, M. Deliyergiyev<sup>73</sup>,
A. Dell'Acqua<sup>29</sup>, L. Dell'Asta<sup>21</sup>, M. Della Pietra<sup>101a,i</sup>, D. della Volpe<sup>101a,101b</sup>, M. Delmastro<sup>4</sup>, N. Delruelle<sup>29</sup>,
P.A. Delsart<sup>55</sup>, C. Deluca<sup>147</sup>, S. Demers<sup>174</sup>, M. Demichev<sup>64</sup>, B. Demirkoz<sup>11,k</sup>, J. Deng<sup>162</sup>, S.P. Denisov<sup>127</sup>,
D. Derendarz<sup>38</sup>, J.E. Derkaoui<sup>134d</sup>, F. Derue<sup>77</sup>, P. Dervan<sup>72</sup>, K. Desch<sup>20</sup>, E. Devetak<sup>147</sup>, P.O. Deviveiros<sup>104</sup>,
A. Dewhurst<sup>128</sup>, B. DeWilde<sup>147</sup>, S. Dhaliwal<sup>157</sup>, R. Dhullipudi<sup>24,l</sup>, A. Di Ciaccio<sup>132a,132b</sup>, L. Di Ciaccio<sup>4</sup>,
A. Di Girolamo<sup>29</sup>, B. Di Girolamo<sup>29</sup>, S. Di Luise<sup>133a,133b</sup>, A. Di Mattia<sup>171</sup>, B. Di Micco<sup>29</sup>, R. Di Nardo<sup>47</sup>,
A. Di Simone 132a, 132b, R. Di Sipio 19a, 19b, M.A. Diaz 31a, F. Diblen 18c, E.B. Diehl 86, J. Dietrich 41, T.A. Dietzsch 58a, S. Diglio 85, K. Dindar Yagci 39, J. Dingfelder 20, C. Dionisi 131a, 131b, P. Dita 25a, S. Dita 25a, F. Dittus 29, F. Djama 82, T. Djobava 51b, M.A.B. do Vale 23c, A. Do Valle Wemans 123a, T.K.O. Doan 4, M. Dobbs 84, R. Dobinson 29,*
D. Dobos<sup>29</sup>, E. Dobson<sup>29,m</sup>, J. Dodd<sup>34</sup>, C. Doglioni<sup>49</sup>, T. Doherty<sup>53</sup>, Y. Doi<sup>65,*</sup>, J. Dolejsi<sup>125</sup>, I. Dolenc<sup>73</sup>,
Z. Dolezal<sup>125</sup>, B.A. Dolgoshein<sup>95,*</sup>, T. Dohmae<sup>154</sup>, M. Donadelli<sup>23d</sup>, M. Donega<sup>119</sup>, J. Donini<sup>33</sup>, J. Dopke<sup>29</sup>,
A. Doria<sup>101a</sup>, A. Dos Anjos<sup>171</sup>, M. Dosil<sup>11</sup>, A. Dotti<sup>121a,121b</sup>, M.T. Dova<sup>69</sup>, A.D. Doxiadis<sup>104</sup>, A.T. Dovle<sup>53</sup>,
```

```
Z. Drasal<sup>125</sup>, J. Drees<sup>173</sup>, N. Dressnandt<sup>119</sup>, H. Drevermann<sup>29</sup>, C. Driouichi<sup>35</sup>, M. Dris<sup>9</sup>, J. Dubbert<sup>98</sup>, S. Dube<sup>14</sup>,
E. Duchovni<sup>170</sup>, G. Duckeck<sup>97</sup>, A. Dudarev<sup>29</sup>, F. Dudziak<sup>63</sup>, M. Dührssen<sup>29</sup>, I.P. Duerdoth<sup>81</sup>, L. Duflot<sup>114</sup>,
M-A. Dufour<sup>84</sup>, M. Dunford<sup>29</sup>, H. Duran Yildiz<sup>3a</sup>, R. Duxfield<sup>138</sup>, M. Dwuznik<sup>37</sup>, F. Dydak <sup>29</sup>, M. Düren<sup>52</sup>,
W.L. Ebenstein<sup>44</sup>, J. Ebke<sup>97</sup>, S. Eckweiler<sup>80</sup>, K. Edmonds<sup>80</sup>, C.A. Edwards<sup>75</sup>, N.C. Edwards<sup>53</sup>, W. Ehrenfeld<sup>41</sup>,
T. Ehrich<sup>98</sup>, T. Eifert<sup>142</sup>, G. Eigen<sup>13</sup>, K. Einsweiler<sup>14</sup>, E. Eisenhandler<sup>74</sup>, T. Ekelof<sup>165</sup>, M. El Kacimi<sup>134c</sup>, M. Ellert<sup>165</sup>,
S. Elles<sup>4</sup>, F. Ellinghaus<sup>80</sup>, K. Ellis<sup>74</sup>, N. Ellis<sup>29</sup>, J. Elmsheuser<sup>97</sup>, M. Elsing<sup>29</sup>, D. Emeliyanov<sup>128</sup>, R. Engelmann<sup>147</sup>, A. Engl<sup>97</sup>, B. Epp<sup>61</sup>, A. Eppig<sup>86</sup>, J. Erdmann<sup>54</sup>, A. Ereditato<sup>16</sup>, D. Eriksson<sup>145a</sup>, J. Ernst<sup>1</sup>, M. Ernst<sup>24</sup>, J. Ernwein<sup>135</sup>, D. Errede<sup>164</sup>, S. Errede<sup>164</sup>, E. Ertel<sup>80</sup>, M. Escalier<sup>114</sup>, C. Escobar<sup>122</sup>, X. Espinal Curull<sup>11</sup>, B. Esposito<sup>47</sup>, F. Etienne<sup>82</sup>, A.I. Etienvre<sup>135</sup>, E. Etzion<sup>152</sup>, D. Evangelakou<sup>54</sup>, H. Evans<sup>60</sup>, L. Fabbri<sup>19a,19b</sup>, C. Fabre<sup>29</sup>, R.M. Fakhrutdinov<sup>127</sup>, S. Falciano<sup>131a</sup>, Y. Fang<sup>171</sup>, M. Fanti<sup>88a,88b</sup>, A. Farbin<sup>7</sup>, A. Farilla<sup>133a</sup>, J. Farley<sup>147</sup>, T. Farooque<sup>157</sup>, S. Farrell<sup>162</sup>,
S.M. Farrington<sup>117</sup>, P. Farthouat<sup>29</sup>, P. Fassnacht<sup>29</sup>, D. Fassouliotis<sup>8</sup>, B. Fatholahzadeh<sup>157</sup>, A. Favareto<sup>88a,88b</sup>,
L. Fayard<sup>114</sup>, S. Fazio<sup>36a,36b</sup>, R. Febbraro<sup>33</sup>, P. Federic<sup>143a</sup>, O.L. Fedin<sup>120</sup>, W. Fedorko<sup>87</sup>, M. Fehling-Kaschek<sup>48</sup>,
L. Feligioni<sup>82</sup>, D. Fellmann<sup>5</sup>, C. Feng<sup>32d</sup>, E.J. Feng<sup>30</sup>, A.B. Fenyuk<sup>127</sup>, J. Ferencei<sup>143b</sup>, J. Ferland<sup>92</sup>, W. Fernando<sup>108</sup>, S. Ferrag<sup>53</sup>, J. Ferrando<sup>53</sup>, V. Ferrara<sup>41</sup>, A. Ferrari<sup>165</sup>, P. Ferrari<sup>104</sup>, R. Ferrari<sup>118a</sup>, D.E. Ferreira de Lima<sup>53</sup>,
A. Ferrer<sup>166</sup>, M.L. Ferrer<sup>47</sup>, D. Ferrere<sup>49</sup>, C. Ferretti<sup>86</sup>, A. Ferretto Parodi<sup>50a,50b</sup>, M. Fiascaris<sup>30</sup>, F. Fiedler<sup>80</sup>,
A. Filipčič<sup>73</sup>, A. Filippas<sup>9</sup>, F. Filthaut<sup>103</sup>, M. Fincke-Keeler<sup>168</sup>, M.C.N. Fiolhais<sup>123a,h</sup>, L. Fiorini<sup>166</sup>, A. Firan<sup>39</sup>,
G. Fischer<sup>41</sup>, P. Fischer<sup>20</sup>, M.J. Fisher<sup>108</sup>, M. Flechl<sup>48</sup>, I. Fleckl<sup>40</sup>, J. Fleckner<sup>80</sup>, P. Fleischmann<sup>172</sup>,
S. Fleischmann<sup>173</sup>, T. Flick<sup>173</sup>, A. Floderus<sup>78</sup>, L.R. Flores Castillo<sup>171</sup>, M.J. Flowerdew<sup>98</sup>, M. Fokitis<sup>9</sup>,
T. Fonseca Martin<sup>16</sup>, D.A. Forbush<sup>137</sup>, A. Formica<sup>135</sup>, A. Forti<sup>81</sup>, D. Fortin<sup>158a</sup>, J.M. Foster<sup>81</sup>, D. Fournier<sup>114</sup>,
A. Foussat<sup>29</sup>, A.J. Fowler<sup>44</sup>, K. Fowler<sup>136</sup>, H. Fox<sup>70</sup>, P. Francavilla<sup>11</sup>, S. Franchino<sup>118a,118b</sup>, D. Francis<sup>29</sup>, T. Frank<sup>170</sup>,
M. Franklin<sup>57</sup>, S. Franz<sup>29</sup>, M. Fraternali<sup>118a,118b</sup>, S. Fratina<sup>119</sup>, S.T. French<sup>27</sup>, F. Friedrich <sup>43</sup>, R. Froeschl<sup>29</sup>,
D. Froidevaux<sup>29</sup>, J.A. Frost<sup>27</sup>, C. Fukunaga<sup>155</sup>, E. Fullana Torregrosa<sup>29</sup>, J. Fuster<sup>166</sup>, C. Gabaldon<sup>29</sup>, O. Gabizon<sup>170</sup>,
T. Gadfort<sup>24</sup>, S. Gadomski<sup>49</sup>, G. Gagliardi<sup>50a,50b</sup>, P. Gagnon<sup>60</sup>, C. Galea<sup>97</sup>, E.J. Gallas<sup>117</sup>, V. Gallo<sup>16</sup>, B.J. Gallop<sup>128</sup>, P. Gallus<sup>124</sup>, K.K. Gan<sup>108</sup>, Y.S. Gao<sup>142</sup>, V.A. Gapienko<sup>127</sup>, A. Gaponenko<sup>14</sup>, F. Garberson<sup>174</sup>, M. Garcia-Sciveres<sup>14</sup>, C. García<sup>166</sup>, J.E. García Navarro<sup>166</sup>, R.W. Gardner<sup>30</sup>, N. Garelli<sup>29</sup>, H. Garitaonandia<sup>104</sup>, V. Garonne<sup>29</sup>, J. Garvey<sup>17</sup>, C. Gatti<sup>47</sup>, G. Gaudio<sup>118a</sup>, B. Gaur<sup>140</sup>, L. Gauthier<sup>135</sup>, P. Gauzzi<sup>131a,131b</sup>, I.L. Gavrilenko<sup>93</sup>, C. Gay<sup>167</sup>, G. Gaycken<sup>20</sup>,
J-C. Gayde<sup>29</sup>, E.N. Gazis<sup>9</sup>, P. Ge<sup>32d</sup>, C.N.P. Gee<sup>128</sup>, D.A.A. Geerts<sup>104</sup>, Ch. Geich-Gimbel<sup>20</sup>, K. Gellerstedt<sup>145a,145b</sup>,
C. Gemme<sup>50a</sup>, A. Gemmell<sup>53</sup>, M.H. Genest<sup>55</sup>, S. Gentile<sup>131a,131b</sup>, M. George<sup>54</sup>, S. George<sup>75</sup>, P. Gerlach<sup>173</sup>,
A. Gershon<sup>152</sup>, C. Geweniger<sup>58a</sup>, H. Ghazlane<sup>134b</sup>, N. Ghodbane<sup>33</sup>, B. Giacobbe<sup>19a</sup>, S. Giagu<sup>131a,131b</sup>,
V. Giakoumopoulou<sup>8</sup>, V. Giangiobbe<sup>11</sup>, F. Gianotti<sup>29</sup>, B. Gibbard<sup>24</sup>, A. Gibson<sup>157</sup>, S.M. Gibson<sup>29</sup>, L.M. Gilbert<sup>117</sup>,
V. Gilewsky<sup>90</sup>, D. Gillberg<sup>28</sup>, A.R. Gillman<sup>128</sup>, D.M. Gingrich<sup>2,d</sup>, J. Ginzburg<sup>152</sup>, N. Giokaris<sup>8</sup>, M.P. Giordani<sup>163c</sup>, R. Giordano<sup>101a,101b</sup>, F.M. Giorgi<sup>15</sup>, P. Giovannini<sup>98</sup>, P.F. Giraud<sup>135</sup>, D. Giugni<sup>88a</sup>, M. Giunta<sup>92</sup>, P. Giusti<sup>19a</sup>, B.K. Gjelsten<sup>116</sup>, L.K. Gladilin<sup>96</sup>, C. Glasman<sup>79</sup>, J. Glatzer<sup>48</sup>, A. Glazov<sup>41</sup>, K.W. Glitza<sup>173</sup>, G.L. Glonti<sup>64</sup>,
J.R. Goddard<sup>74</sup>, J. Godfrey<sup>141</sup>, J. Godlewski<sup>29</sup>, M. Goebel<sup>41</sup>, T. Göpfert<sup>43</sup>, C. Goeringer<sup>80</sup>, C. Gössling<sup>42</sup>,
T. Göttfert<sup>98</sup>, S. Goldfarb<sup>86</sup>, T. Golling<sup>174</sup>, A. Gomes<sup>123a,b</sup>, L.S. Gomez Fajardo<sup>41</sup>, R. Gonçalo<sup>75</sup>,
J. Goncalves Pinto Firmino Da Costa<sup>41</sup>, L. Gonella<sup>20</sup>, A. Gonidec<sup>29</sup>, S. Gonzalez<sup>171</sup>, S. González de la Hoz<sup>166</sup>,
G. Gonzalez Parra<sup>11</sup>, M.L. Gonzalez Silva<sup>26</sup>, S. Gonzalez-Sevilla<sup>49</sup>, J.J. Goodson<sup>147</sup>, L. Goossens<sup>29</sup>,
P.A. Gorbounov<sup>94</sup>, H.A. Gordon<sup>24</sup>, I. Gorelov<sup>102</sup>, G. Gorfine<sup>173</sup>, B. Gorini<sup>29</sup>, E. Gorini<sup>71a,71b</sup>, A. Gorišek<sup>73</sup>, E. Gornicki<sup>38</sup>, V.N. Goryachev<sup>127</sup>, B. Gosdzik<sup>41</sup>, M. Gosselink<sup>104</sup>, M.I. Gostkin<sup>64</sup>, I. Gough Eschrich<sup>162</sup>, M. Gouighri<sup>134a</sup>, D. Goujdami<sup>134c</sup>, M.P. Goulette<sup>49</sup>, A.G. Goussiou<sup>137</sup>, C. Goy<sup>4</sup>, S. Gozpinar<sup>22</sup>, I. Grabowska-Bold<sup>37</sup>, P. Grafström<sup>29</sup>, K-J. Grahn<sup>41</sup>, F. Grancagnolo<sup>71a</sup>, S. Grancagnolo<sup>15</sup>, V. Grassi<sup>147</sup>, V. Gratchev<sup>120</sup>, N. Grau<sup>34</sup>,
H.M. Gray<sup>29</sup>, J.A. Gray<sup>147</sup>, E. Graziani<sup>133a</sup>, O.G. Grebenyuk<sup>120</sup>, T. Greenshaw<sup>72</sup>, Z.D. Greenwood<sup>24,l</sup>,
K. Gregersen<sup>35</sup>, I.M. Gregor<sup>41</sup>, P. Grenier<sup>142</sup>, J. Griffiths<sup>137</sup>, N. Grigalashvili<sup>64</sup>, A.A. Grillo<sup>136</sup>, S. Grinstein<sup>11</sup>,
Y.V. Grishkevich<sup>96</sup>, J.-F. Grivaz<sup>114</sup>, M. Groh<sup>98</sup>, E. Gross<sup>170</sup>, J. Grosse-Knetter<sup>54</sup>, J. Groth-Jensen<sup>170</sup>, K. Grybel<sup>140</sup>,
V.J. Guarino<sup>5</sup>, D. Guest<sup>174</sup>, C. Guicheney<sup>33</sup>, A. Guida<sup>71a,71b</sup>, S. Guindon<sup>54</sup>, H. Guler<sup>84,n</sup>, J. Gunther<sup>124</sup>, B. Guo<sup>157</sup>,
J. Guo<sup>34</sup>, A. Gupta<sup>30</sup>, Y. Gusakov<sup>64</sup>, V.N. Gushchin<sup>127</sup>, P. Gutierrez<sup>110</sup>, N. Guttman<sup>152</sup>, O. Gutzwiller<sup>171</sup>, C. Guyot<sup>135</sup>,
C. Gwenlan<sup>117</sup>, C.B. Gwilliam<sup>72</sup>, A. Haas<sup>142</sup>, S. Haas<sup>29</sup>, C. Haber<sup>14</sup>, H.K. Hadavand<sup>39</sup>, D.R. Hadley<sup>17</sup>, P. Haefner<sup>98</sup>, F. Hahn<sup>29</sup>, S. Haider<sup>29</sup>, Z. Hajduk<sup>38</sup>, H. Hakobyan<sup>175</sup>, D. Halll<sup>117</sup>, J. Haller<sup>54</sup>, K. Hamacher<sup>173</sup>, P. Hamal<sup>112</sup>, M. Hamer<sup>54</sup>, A. Hamilton<sup>144b,o</sup>, S. Hamilton<sup>160</sup>, H. Han<sup>32a</sup>, L. Han<sup>32b</sup>, K. Hanagaki<sup>115</sup>, K. Hanawa<sup>159</sup>, M. Hance<sup>14</sup>, C. Handel<sup>80</sup>, P. Hanke<sup>58a</sup>, J.R. Hansen<sup>35</sup>, J.B. Hansen<sup>35</sup>, J.D. Hansen<sup>35</sup>, P.H. Hansen<sup>35</sup>, P. Hansson<sup>142</sup>, K. Hara<sup>159</sup>,
G.A. Hare<sup>136</sup>, T. Harenberg<sup>173</sup>, S. Harkusha<sup>89</sup>, D. Harper<sup>86</sup>, R.D. Harrington<sup>45</sup>, O.M. Harris<sup>137</sup>, K. Harrison<sup>17</sup>,
J. Hartert<sup>48</sup>, F. Hartjes<sup>104</sup>, T. Haruyama<sup>65</sup>, A. Harvey<sup>56</sup>, S. Hasegawa<sup>100</sup>, Y. Hasegawa<sup>139</sup>, S. Hassani<sup>135</sup>, M. Hatch<sup>29</sup>,
```

D. Hauff⁹⁸, S. Haug¹⁶, M. Hauschild²⁹, R. Hauser⁸⁷, M. Havranek²⁰, B.M. Hawes¹¹⁷, C.M. Hawkes¹⁷, R.J. Hawkings²⁹, A.D. Hawkins⁷⁸, D. Hawkins¹⁶², T. Hayakawa⁶⁶, T. Hayashi¹⁵⁹, D. Hayden⁷⁵, H.S. Hayward⁷², S.J. Haywood¹²⁸, E. Hazen²¹, M. He^{32d}, S.J. Head¹⁷, V. Hedberg⁷⁸, L. Heelan⁷, S. Heimemann¹⁴, S. Heisterkamp³⁵, L. Helary⁴, C. Heller⁹⁷, M. Heller²⁹, S. Hellman^{145a,145b}, D. Hellmich²⁰, C. Helsens¹¹, R.C.W. Henderson⁷⁰, M. Henke^{58a}, A. Henrichs⁵⁴, A.M. Henriques Correia²⁹, S. Henrot-Versille¹¹⁴, F. Henry-Couannier⁸², C. Hensel⁵⁴, T. Henß¹⁷³, C.M. Hernandez⁷, Y. Hernández Jiménez¹⁶⁶, R. Herrberg¹⁵, A.D. Hershenhorn¹⁵¹, G. Herten⁴⁸, R. Hertenberger⁹⁷, L. Hervas²⁹, G.G. Hesketh⁷⁶, N.P. Hessey¹⁰⁴, E. Higón-Rodriguez¹⁶⁶, D. Hill^{5,*}, J.C. Hill²⁷, N. Hill⁵, K.H. Hiller⁴¹, S. Hillert²⁰, S.J. Hillier¹⁷, I. Hinchliffe¹⁴, E. Hines¹¹⁹, M. Hirose¹¹⁵, F. Hirsch⁴², D. Hirschbuehl¹⁷³, J. Hobbs¹⁴⁷, N. Hod¹⁵², M.C. Hodgkinson¹³⁸, P. Hodgson¹³⁸, A. Hoecker²⁹, M.R. Hoeferkamp¹⁰², J. Hoffman³⁹, D. Hoffmann⁸², M. Hohlfeld⁸⁰, M. Holder¹⁴⁰, S.O. Holmgren^{145a}, T. Holy¹²⁶, J.L. Holzbauer⁸⁷, Y. Homma⁶⁶, T.M. Hong¹¹⁹, L. Hooft van Huysduynen¹⁰⁷, T. Horazdovsky¹²⁶, C. Horn¹⁴², S. Horner⁴⁸, J-Y. Hostachy⁵⁵, S. Hou¹⁵⁰, M.A. Houlden⁷², A. Hoummada^{134a}, J. Howarth⁸¹, D.F. Howell¹¹⁷, I. Hristova¹⁵, J. Hrivnac¹¹⁴, I. Hruska¹²⁴, T. Hryn'ova⁴, P.J. Hsu⁸⁰, S.-C. Hsu¹⁴, G.S. Huang¹¹⁰, Z. Hubacek¹²⁶, F. Hubaut⁸², F. Huegging²⁰, A. Huettmann⁴¹, T.B. Huffman¹¹⁷, E.W. Hughes³⁴, G. Hughes⁷⁰, R.E. Hughes-Jones⁸¹, M. Huhtinen²⁹, P. Hurst⁵⁷, M. Hurwitz¹⁴, U. Husemann⁴¹, N. Huseynov^{64,p}, J. Huston⁸⁷, J. Huth⁵⁷, G. Iacobucci⁴⁹, G. Iakovidis⁹, M. Ibbotson⁸¹, I. Ibragimov¹⁴⁰, R. Ichimiya⁶⁶, L. Iconomidou-Fayard¹¹⁴, J. Idarraga¹¹⁴, P. Iengo^{101a}, O. Igonkina¹⁰⁴, Y. Ikegami⁶⁵, M. Ikeno⁶⁵, Y. Ilchenko³⁹, D. Histon¹⁵³, N. Histon¹⁵⁴, M. Ikeno⁶⁵, Y. Ilchenko³⁹, D. Histon¹⁵⁵, M. Ilchenko³⁹, D. Histon¹⁵⁷, M. Ilchenko³⁹, D. Histon¹⁵⁸, M. Ilchenko³⁹, D. Histon¹⁵⁹, M. Ilchenko³⁹, D. Histon³⁰, D. D. Iliadis¹⁵³, N. Ilic¹⁵⁷, M. Imori¹⁵⁴, T. Ince²⁰, J. Inigo-Golfin²⁹, P. Ioannou⁸, M. Iodice^{133a}, V. Ippolito^{131a,131b}, A. Irles Quiles 166, C. Isaksson 165, A. Ishikawa 66, M. Ishino 67, R. Ishmukhametov 39, C. Issever 117, S. Istin 18a, A.V. Ivashin¹²⁷, W. Iwanski³⁸, H. Iwasaki⁶⁵, J.M. Izen⁴⁰, V. Izzo^{101a}, B. Jackson¹¹⁹, J.N. Jackson⁷², P. Jackson¹⁴², M.R. Jaekel²⁹, V. Jain⁶⁰, K. Jakobs⁴⁸, S. Jakobsen³⁵, J. Jakubek¹²⁶, D.K. Jana¹¹⁰, E. Jansen⁷⁶, H. Jansen²⁹, M.R. Jackel¹⁵, V. Jain¹⁶, K. Jakobs¹⁶, J. Jakobsen¹⁵, J. Jakubek¹⁶, D.K. Jana¹⁷, E. Jansen¹⁷, H. Jansen¹⁸, A. Jantsch⁹⁸, M. Janus⁴⁸, G. Jarlskog⁷⁸, L. Jeanty⁵⁷, K. Jelen³⁷, I. Jen-La Plante³⁰, P. Jenni²⁹, A. Jeremie⁴, P. Jež³⁵, S. Jézéquel⁴, M.K. Jha^{19a}, H. Ji¹⁷¹, W. Ji⁸⁰, J. Jia¹⁴⁷, Y. Jiang^{32b}, M. Jimenez Belenguer⁴¹, G. Jin^{32b}, S. Jin^{32a}, O. Jinnouchi¹⁵⁶, M.D. Joergensen³⁵, D. Joffe³⁹, L.G. Johansen¹³, M. Johansen^{145a,145b}, K.E. Johansson^{145a}, P. Johansson¹³⁸, S. Johnert⁴¹, K.A. Johns⁶, K. Jon-And^{145a,145b}, G. Jones¹¹⁷, R.W.L. Jones⁷⁰, T.W. Jones⁷⁶, T.J. Jones⁷², O. Jonsson²⁹, C. Joram²⁹, P.M. Jorge^{123a}, J. Joseph¹⁴, K.D. Joshi⁸¹, J. Jovicevic¹⁴⁶, T. Jovin^{12b}, X. Ju¹⁷¹, C.A. Jung⁴², R.M. Jungst²⁹, V. Juranek¹²⁴, P. Jussel⁶¹, A. Juste Rozas¹¹, V.V. Kabachenko¹²⁷, S. Kabana¹⁶, M. Kaci¹⁶⁶, A. Kaczmarska³⁸, P. Kadlecik³⁵, M. Kado¹¹⁴, H. Kagan¹⁰⁸, M. Kagan⁵⁷, S. Kaiser⁹⁸, E. Kajomovitz¹⁵¹, S. Kalinin¹⁷³, L.V. Kalinovskaya⁶⁴, S. Kama³⁹, N. Kanaya¹⁵⁴, M. Kaneda²⁹, S. Kaneti²⁷, T. Kanno¹⁵⁶, V.A. Kantserov⁹⁵, J. Kanzaki⁶⁵, B. Kaplan¹⁷⁴, A. Kapliy³⁰, J. Kaplon²⁹, D. Kar⁴³, M. Karagounis²⁰, M. Karagoz¹¹⁷, M. Karnevskiy⁴¹, V. Kartvelishvili⁷⁰, A.N. Karyukhin¹²⁷, L. Kashif¹⁷¹, G. Kasieczka^{58b}, R.D. Kass¹⁰⁸, A. Kastanas¹³, M. Kataoka⁴, Y. Kataoka¹⁵⁴, E. Katsoufis⁹, J. Katzy⁴¹, V. Kaushik⁶, K. Kawagoe⁶⁶, T. Kawamoto¹⁵⁴, G. Kawamura⁸⁰, M.S. Kayl¹⁰⁴, V.A. Kazanin¹⁰⁶, M.Y. Kazarinov⁶⁴, R. Keeler¹⁶⁸, R. Kehoe³⁹, M. Keil⁵⁴, G.D. Kekelidze⁶⁴, J.S. Keller¹³⁷, J. Kennedy⁹⁷, M. Kenyon⁵³, O. Kepka¹²⁴, N. Kerschen²⁹, B.P. Kerševan⁷³, S. Kersten¹⁷³, K. Kessoku¹⁵⁴, J. Keung¹⁵⁷, F. Khalil-zada¹⁰, H. Khandanyan¹⁶⁴, A. Khanov¹¹¹, D. Kharchenko⁶⁴, A. Khodinov⁹⁵, A.G. Kholodenko¹²⁷, A. Khomich^{58a}, T.J. Khoo²⁷, G. Khoriauli²⁰, A. Khoroshilov¹⁷³, N. Khovanskiy⁶⁴, V. Khovanskiy⁹⁴, E. Khramov⁶⁴, J. Khubua^{51b}, H. Kim^{145a,145b}, M.S. Kim², S.H. Kim¹⁵⁹, N. Kimura¹⁶⁹, O. Kind¹⁵, B.T. King⁷², M. King⁶⁶, R.S.B. King¹¹⁷, J. Kirk¹²⁸, L.E. Kirsch²², A.E. Kiryunin⁹⁸, T. Kishimoto⁶⁶, D. Kisielewska³⁷, T. Kittelmann¹²², A.M. Kiver¹²⁷, E. Kladiva^{143b}, M. Klein⁷², U. Klein⁷², K. Kleinknecht⁸⁰, M. Klemetti⁸⁴, A. Klier¹⁷⁰, P. Klimek^{145a,145b}, A. Klimentov²⁴, R. Klingenberg⁴², J.A. Klinger⁸¹, E.B. Klinkby³⁵, T. Klioutchnikova²⁹, P.F. Klok¹⁰³, S. Klous¹⁰⁴, E.-E. Kluge^{58a}, T. Kluge⁷², P. Kluit¹⁰⁴, S. Kluth⁹⁸, N.S. Knecht¹⁵⁷, E. Kneringer⁶¹, J. Knobloch²⁹, E.B.F.G. Knoops⁸², A. Knue⁵⁴, B.R. Ko⁴⁴, T. Kobayashi¹⁵⁴, M. Kobel⁴³, M. Kocian¹⁴², P. Kodys¹²⁵, K. Köneke²⁹, A.C. König¹⁰³, S. Koenig⁸⁰, L. Köpke⁸⁰, F. Koetsveld¹⁰³, P. Koevesarki²⁰, T. Koffas²⁸, E. Koffeman¹⁰⁴, L.A. Kogan¹¹⁷, F. Kohn⁵⁴, Z. Kohout¹²⁶, T. Kohriki⁶⁵, T. Koi¹⁴², T. Kokott²⁰, G.M. Kolachev¹⁰⁶, H. Kolanoski¹⁵, V. Kolesnikov⁶⁴, I. Koletsou^{88a}, J. Koll⁸⁷, M. Kollefrath⁴⁸, S.D. Kolya⁸¹, A.A. Komar⁹³, Y. Komori¹⁵⁴, T. Kondo⁶⁵, T. Kono^{41,q}, A.I. Kononov⁴⁸, R. Konoplich^{107,r}, N. Konstantinidis⁷⁶, A. Kootz¹⁷³, S. Koperny³⁷, K. Korcyl³⁸, K. Kordas¹⁵³, V. Koreshev¹²⁷, A. Korn¹¹⁷, A. Korol¹⁰⁶, I. Korolkov¹¹, E.V. Korolkova¹³⁸, V.A. Korotkov¹²⁷, O. Kortner⁹⁸, S. Kortner⁹⁸, V.V. Kostyukhin²⁰, M.J. Kotamäki²⁹, S. Kotov⁹⁸, V.M. Kotov⁶⁴, A. Kotwal⁴⁴, C. Kourkoumelis⁸, V. Kouskoura¹⁵³, A. Koutsman^{158a}, R. Kowalewski¹⁶⁸, T.Z. Kowalski³⁷, W. Kozanecki¹³⁵, A.S. Kozhin¹²⁷, V. Kral¹²⁶, V.A. Kramarenko⁹⁶, G. Kramberger⁷³, M.W. Krasny⁷⁷, A. Krasznahorkay¹⁰⁷, J. Kraus⁸⁷, J.K. Kraus²⁰, A. Kreisel¹⁵², S. Kreiss¹⁰⁷, F. Krejci¹²⁶, J. Kretzschmar⁷², N. Krieger⁵⁴, P. Krieger¹⁵⁷, K. Kroeninger⁵⁴, H. Kroha⁹⁸, J. Kroll¹¹⁹, J. Kroseberg²⁰, J. Krstic^{12a},

```
U. Kruchonak<sup>64</sup>, H. Krüger<sup>20</sup>, T. Kruker<sup>16</sup>, N. Krumnack<sup>63</sup>, Z.V. Krumshteyn<sup>64</sup>, A. Kruth<sup>20</sup>, T. Kubota<sup>85</sup>, S. Kuday<sup>3a</sup>,
S. Kuehn<sup>48</sup>, A. Kugel<sup>58c</sup>, T. Kuhl<sup>41</sup>, D. Kuhn<sup>61</sup>, V. Kukhtin<sup>64</sup>, Y. Kulchitsky<sup>89</sup>, S. Kuleshov<sup>31b</sup>, C. Kummer<sup>97</sup>, M. Kuna<sup>77</sup>, N. Kundu<sup>117</sup>, J. Kunkle<sup>119</sup>, A. Kupco<sup>124</sup>, H. Kurashige<sup>66</sup>, M. Kurata<sup>159</sup>, Y.A. Kurochkin<sup>89</sup>, V. Kus<sup>124</sup>,
E.S. Kuwertz<sup>146</sup>, M. Kuze<sup>156</sup>, J. Kvita<sup>141</sup>, R. Kwee<sup>15</sup>, A. La Rosa<sup>49</sup>, L. La Rotonda<sup>36a,36b</sup>, L. Labarga<sup>79</sup>, J. Labbe<sup>4</sup>, S. Lablak<sup>134a</sup>, C. Lacasta<sup>166</sup>, F. Lacava<sup>131a,131b</sup>, H. Lacker<sup>15</sup>, D. Lacour<sup>77</sup>, V.R. Lacuesta<sup>166</sup>, E. Ladygin<sup>64</sup>, R. Lafaye<sup>4</sup>,
 B. Laforge<sup>77</sup>, T. Lagouri<sup>79</sup>, S. Lai<sup>48</sup>, E. Laisne<sup>55</sup>, M. Lamanna<sup>29</sup>, L. Lambourne<sup>76</sup>, C.L. Lampen<sup>6</sup>, W. Lampl<sup>6</sup>,
E. Lancon<sup>135</sup>, U. Landgraf<sup>48</sup>, M.P.J. Landon<sup>74</sup>, J.L. Lane<sup>81</sup>, C. Lange<sup>41</sup>, A.J. Lankford<sup>162</sup>, F. Lanni<sup>24</sup>, K. Lantzsch<sup>173</sup>, S. Laplace<sup>77</sup>, C. Lapoire<sup>20</sup>, J.F. Laporte<sup>135</sup>, T. Lari<sup>88a</sup>, A.V. Larionov <sup>127</sup>, A. Larner<sup>117</sup>, C. Lasseur<sup>29</sup>, M. Lassnig<sup>29</sup>, P. Laurelli<sup>47</sup>, V. Lavorini<sup>36a,36b</sup>, W. Lavrijsen<sup>14</sup>, P. Laycock<sup>72</sup>, A.B. Lazarev<sup>64</sup>, O. Le Dortz<sup>77</sup>, E. Le Guirriec<sup>82</sup>, C. Le Maner<sup>157</sup>, E. Le Menedeu<sup>9</sup>, C. Lebel<sup>92</sup>, T. LeCompte<sup>5</sup>, F. Ledroit-Guillon<sup>55</sup>, H. Lee<sup>104</sup>, J.S.H. Lee<sup>115</sup>,
 S.C. Lee<sup>150</sup>, L. Lee<sup>174</sup>, M. Lefebvre<sup>168</sup>, M. Legendre<sup>135</sup>, A. Leger<sup>49</sup>, B.C. LeGeyt<sup>119</sup>, F. Legger<sup>97</sup>, C. Leggett<sup>14</sup>,
 M. Lehmacher<sup>20</sup>, G. Lehmann Miotto<sup>29</sup>, X. Lei<sup>6</sup>, M.A.L. Leite<sup>23d</sup>, R. Leitner<sup>125</sup>, D. Lellouch<sup>170</sup>, M. Leltchouk<sup>34</sup>,
B. Lemmer<sup>54</sup>, V. Lendermann<sup>58a</sup>, K.J.C. Leney<sup>144b</sup>, T. Lenz<sup>104</sup>, G. Lenzen<sup>173</sup>, B. Lenzi<sup>29</sup>, K. Leonhardt<sup>43</sup>, S. Leontsinis<sup>9</sup>, C. Leroy<sup>92</sup>, J-R. Lessard<sup>168</sup>, J. Lesser<sup>145a</sup>, C.G. Lester<sup>27</sup>, A. Leung Fook Cheong<sup>171</sup>, J. Levêque<sup>4</sup>,
D. Levin<sup>86</sup>, L.J. Levinson<sup>170</sup>, M.S. Levitski<sup>127</sup>, A. Lewis<sup>117</sup>, G.H. Lewis<sup>107</sup>, A.M. Leyko<sup>20</sup>, M. Leyton<sup>15</sup>, B. Li<sup>82</sup>, H. Li<sup>171</sup>, s, S. Li<sup>32b</sup>, t, X. Li<sup>86</sup>, Z. Liang<sup>117</sup>, t, H. Liao<sup>33</sup>, B. Liberti<sup>132a</sup>, P. Lichard<sup>29</sup>, M. Lichtnecker<sup>97</sup>, K. Lie<sup>164</sup>, W. Liebig<sup>13</sup>, C. Limbach<sup>20</sup>, A. Limosani<sup>85</sup>, M. Limper<sup>62</sup>, S.C. Lin<sup>150</sup>, F. Linde<sup>104</sup>, J.T. Linnemann<sup>87</sup>, E. Lipeles<sup>119</sup>,
 L. Lipinsky<sup>124</sup>, A. Lipniacka<sup>13</sup>, T.M. Liss<sup>164</sup>, D. Lissauer<sup>24</sup>, A. Lister<sup>49</sup>, A.M. Litke<sup>136</sup>, C. Liu<sup>28</sup>, D. Liu<sup>150</sup>, H. Liu<sup>86</sup>,
 J.B. Liu<sup>86</sup>, M. Liu<sup>32b</sup>, Y. Liu<sup>32b</sup>, M. Livan<sup>118a,118b</sup>, S.S.A. Livermore<sup>117</sup>, A. Lleres<sup>55</sup>, J. Llorente Merino<sup>79</sup>,
 S.L. Lloyd<sup>74</sup>, E. Lobodzinska<sup>41</sup>, P. Loch<sup>6</sup>, W.S. Lockman<sup>136</sup>, T. Loddenkoetter<sup>20</sup>, F.K. Loebinger<sup>81</sup>, A. Loginov<sup>174</sup>,
 C.W. Loh<sup>167</sup>, T. Lohse<sup>15</sup>, K. Lohwasser<sup>48</sup>, M. Lokajicek<sup>124</sup>, J. Loken <sup>117</sup>, V.P. Lombardo<sup>4</sup>, R.E. Long<sup>70</sup>, L. Lopes<sup>123a</sup>,
 D. Lopez Mateos<sup>57</sup>, J. Lorenz<sup>97</sup>, N. Lorenzo Martinez<sup>114</sup>, M. Losada<sup>161</sup>, P. Loscutoff<sup>14</sup>, F. Lo Sterzo<sup>131a,131b</sup>,
M.J. Losty<sup>158a</sup>, X. Lou<sup>40</sup>, A. Lounis<sup>114</sup>, K.F. Loureiro<sup>161</sup>, J. Love<sup>21</sup>, P.A. Love<sup>70</sup>, A.J. Lowe<sup>142,e</sup>, F. Lu<sup>32a</sup>, H.J. Lubatti<sup>137</sup>, C. Luci<sup>131a,131b</sup>, A. Lucotte<sup>55</sup>, A. Ludwig<sup>43</sup>, D. Ludwig<sup>41</sup>, I. Ludwig<sup>48</sup>, J. Ludwig<sup>48</sup>, F. Luehring<sup>60</sup>, G. Luijckx<sup>104</sup>, W. Lukas<sup>61</sup>, D. Lumb<sup>48</sup>, L. Luminari<sup>131a</sup>, E. Lund<sup>116</sup>, B. Lund-Jensen<sup>146</sup>, B. Lundberg<sup>78</sup>,
 J. Lundberg<sup>145a,145b</sup>, J. Lundquist<sup>35</sup>, M. Lungwitz<sup>80</sup>, G. Lutz<sup>98</sup>, D. Lynn<sup>24</sup>, J. Lys<sup>14</sup>, E. Lytken<sup>78</sup>, H. Ma<sup>24</sup>, L.L. Ma<sup>171</sup>,
 J.A. Macana Goia<sup>92</sup>, G. Maccarrone<sup>47</sup>, A. Macchiolo<sup>98</sup>, B. Maček<sup>73</sup>, J. Machado Miguens<sup>123a</sup>, R. Mackeprang<sup>35</sup>,
 R.J. Madaras<sup>14</sup>, W.F. Mader<sup>43</sup>, R. Maenner<sup>58c</sup>, T. Maeno<sup>24</sup>, P. Mättig<sup>173</sup>, S. Mättig<sup>41</sup>, L. Magnoni<sup>29</sup>, E. Magradze<sup>54</sup>,
 Y. Mahalalel<sup>152</sup>, K. Mahboubi<sup>48</sup>, S. Mahmoud<sup>72</sup>, G. Mahout<sup>17</sup>, C. Maiani<sup>131a,131b</sup>, C. Maidantchik<sup>23a</sup>, A. Maio<sup>123a,b</sup>,
 S. Majewski<sup>24</sup>, Y. Makida<sup>65</sup>, N. Makovec<sup>114</sup>, P. Mal<sup>135</sup>, B. Malaescu<sup>29</sup>, Pa. Malecki<sup>38</sup>, P. Malecki<sup>38</sup>, V.P. Maleev<sup>120</sup>,
 F. Malek<sup>55</sup>, U. Mallik<sup>62</sup>, D. Malon<sup>5</sup>, C. Malone<sup>142</sup>, S. Maltezos<sup>9</sup>, V. Malyshev<sup>106</sup>, S. Malyukov<sup>29</sup>, R. Mameghani<sup>97</sup>,
J. Mamuzic<sup>12b</sup>, A. Manabe<sup>65</sup>, L. Mandelli<sup>88a</sup>, I. Mandić<sup>73</sup>, R. Mandrysch<sup>15</sup>, J. Maneira<sup>123a</sup>, P.S. Mangeard<sup>87</sup>, L. Manhaes de Andrade Filho<sup>23a</sup>, I.D. Manjavidze<sup>64</sup>, A. Mann<sup>54</sup>, P.M. Manning<sup>136</sup>, A. Manousakis-Katsikakis<sup>8</sup>,
 B. Mansoulie<sup>135</sup>, A. Manz<sup>98</sup>, A. Mapelli<sup>29</sup>, L. Mapelli<sup>29</sup>, L. March <sup>79</sup>, J.F. Marchand<sup>28</sup>, F. Marchese<sup>132a,132b</sup>,
 G. Marchiori<sup>77</sup>, M. Marcisovsky<sup>124</sup>, C.P. Marino<sup>168</sup>, F. Marroquim<sup>23a</sup>, R. Marshall<sup>81</sup>, Z. Marshall<sup>29</sup>, F.K. Martens<sup>157</sup>,
 S. Marti-Garcia<sup>166</sup>, A.J. Martin<sup>174</sup>, B. Martin<sup>29</sup>, B. Martin<sup>87</sup>, F.F. Martin<sup>119</sup>, J.P. Martin<sup>92</sup>, Ph. Martin<sup>55</sup>,
 T.A. Martin<sup>17</sup>, V.J. Martin<sup>45</sup>, B. Martin dit Latour<sup>49</sup>, S. Martin-Haugh<sup>148</sup>, M. Martinez<sup>11</sup>, V. Martinez Outschoorn<sup>57</sup>,
A.C. Martyniuk<sup>168</sup>, M. Marx<sup>81</sup>, F. Marzano<sup>131a</sup>, A. Marzin<sup>110</sup>, L. Masetti<sup>80</sup>, T. Mashimo<sup>154</sup>, R. Mashinistov<sup>93</sup>, J. Masik<sup>81</sup>, A.L. Maslennikov<sup>106</sup>, I. Massa<sup>19a,19b</sup>, G. Massaro<sup>104</sup>, N. Massol<sup>4</sup>, P. Mastrandrea<sup>131a,131b</sup>, A. Mastroberardino<sup>36a,36b</sup>, T. Masubuchi<sup>154</sup>, P. Matricon<sup>114</sup>, H. Matsumoto<sup>154</sup>, H. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, A. Mastroberardino<sup>36a,36b</sup>, T. Masubuchi<sup>264</sup>, P. Matricon<sup>114</sup>, H. Matsumoto<sup>154</sup>, H. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, A. Mastroberardino<sup>36a,36b</sup>, T. Masubuchi<sup>264</sup>, P. Matricon<sup>114</sup>, H. Matsumoto<sup>154</sup>, H. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, A. Mastroberardino<sup>36a,36b</sup>, T. Masubuchi<sup>264</sup>, P. Matricon<sup>114</sup>, H. Matsumoto<sup>154</sup>, H. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, A. Mastroberardino<sup>36a,36b</sup>, T. Masubuchi<sup>264</sup>, P. Matricon<sup>114</sup>, H. Matsumoto<sup>154</sup>, H. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, A. Mastroberardino<sup>36a,36b</sup>, T. Masubuchi<sup>264</sup>, P. Matricon<sup>114</sup>, H. Matsumoto<sup>154</sup>, H. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, M. Mastroberardino<sup>36a,36b</sup>, T. Matsushita<sup>66</sup>, P. Matricon<sup>114</sup>, H. Matsumoto<sup>154</sup>, H. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, M. Mastroberardino<sup>36a,36b</sup>, T. Matsushita<sup>66</sup>, P. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, P. Matricon<sup>114</sup>, H. Matsumoto<sup>154</sup>, H. Matsunaga<sup>154</sup>, T. Matsushita<sup>66</sup>, P. Matsush
 C. Mattravers<sup>117,c</sup>, J.M. Maugain<sup>29</sup>, J. Maurer<sup>82</sup>, S.J. Maxfield<sup>72</sup>, D.A. Maximov<sup>106,f</sup>, E.N. May<sup>5</sup>, A. Mayne<sup>138</sup>,
 R. Mazini<sup>150</sup>, M. Mazur<sup>20</sup>, M. Mazzanti<sup>88a</sup>, S.P. Mc Kee<sup>86</sup>, A. McCarn<sup>164</sup>, R.L. McCarthy<sup>147</sup>, T.G. McCarthy<sup>28</sup>,
 N.A. McCubbin<sup>128</sup>, K.W. McFarlane<sup>56</sup>, J.A. Mcfayden<sup>138</sup>, H. McGlone<sup>53</sup>, G. Mchedlidze<sup>51b</sup>, R.A. McLaren<sup>29</sup>,
 T. Mclaughlan<sup>17</sup>, S.J. McMahon<sup>128</sup>, R.A. McPherson<sup>168, j</sup>, A. Meade<sup>83</sup>, J. Mechnich<sup>104</sup>, M. Mechtel<sup>173</sup>,
 M. Medinnis<sup>41</sup>, R. Meera-Lebbai<sup>110</sup>, T. Meguro<sup>115</sup>, R. Mehdiyev<sup>92</sup>, S. Mehlhase<sup>35</sup>, A. Mehta<sup>72</sup>, K. Meier<sup>58a</sup>,
 B. Meirose<sup>78</sup>, C. Melachrinos<sup>30</sup>, B.R. Mellado Garcia<sup>171</sup>, L. Mendoza Navas<sup>161</sup>, Z. Meng<sup>150,s</sup>, A. Mengarelli<sup>19a,19b</sup>,
B. Meirose<sup>78</sup>, C. Meiachrinos<sup>58</sup>, B.R. Meliado Garcia<sup>77</sup>, L. Mendoza Navas<sup>78</sup>, Z. Mengiso<sup>78</sup>, A. Mengarelli <sup>78</sup>, S. Menke<sup>98</sup>, C. Menot<sup>29</sup>, E. Meoni<sup>11</sup>, K.M. Mercurio<sup>57</sup>, P. Mermod<sup>49</sup>, L. Merola <sup>101a,101b</sup>, C. Meroni<sup>88a</sup>, F.S. Merritt<sup>30</sup>, H. Merritt<sup>108</sup>, A. Messina<sup>29</sup>, J. Metcalfe<sup>102</sup>, A.S. Mete<sup>63</sup>, C. Meyer<sup>80</sup>, C. Meyer<sup>30</sup>, J-P. Meyer<sup>135</sup>, J. Meyer<sup>172</sup>, J. Meyer<sup>54</sup>, T.C. Meyer<sup>29</sup>, W.T. Meyer<sup>63</sup>, J. Miao<sup>32d</sup>, S. Michal<sup>29</sup>, L. Micu<sup>25a</sup>, R.P. Middleton<sup>128</sup>, S. Migas<sup>72</sup>, L. Mijović<sup>41</sup>, G. Mikenberg<sup>170</sup>, M. Mikestikova<sup>124</sup>, M. Mikuž<sup>73</sup>, D.W. Miller<sup>30</sup>, R.J. Miller<sup>87</sup>, W.J. Mills<sup>167</sup>, C. Mills<sup>57</sup>, A. Milov<sup>170</sup>, D.A. Milstead<sup>145a,145b</sup>, D. Milstein<sup>170</sup>, A.A. A. Minaenko<sup>127</sup>, M. Miñano Moya<sup>166</sup>,
 I.A. Minashvili<sup>64</sup>, A.I. Mincer<sup>107</sup>, B. Mindur<sup>37</sup>, M. Mineev<sup>64</sup>, Y. Ming<sup>171</sup>, L.M. Mir<sup>11</sup>, G. Mirabelli<sup>131a</sup>,
```

```
L. Miralles Verge<sup>11</sup>, A. Misiejuk<sup>75</sup>, J. Mitrevski<sup>136</sup>, G.Y. Mitrofanov<sup>127</sup>, V.A. Mitsou<sup>166</sup>, S. Mitsui<sup>65</sup>,
P.S. Miyagawa<sup>138</sup>, K. Miyazaki<sup>66</sup>, J.U. Mjörnmark<sup>78</sup>, T. Moa<sup>145</sup>a, 145b, P. Mockett<sup>137</sup>, S. Moed<sup>57</sup>, V. Moeller<sup>27</sup>, K. Mönig<sup>41</sup>, N. Möser<sup>20</sup>, S. Mohapatra<sup>147</sup>, W. Mohr<sup>48</sup>, S. Mohrdieck-Möck<sup>98</sup>, R. Moles-Valls<sup>166</sup>, J. Molina-Perez<sup>29</sup>, J. Monk<sup>76</sup>, E. Monnier<sup>82</sup>, S. Montesano<sup>88a,88b</sup>, F. Monticelli<sup>69</sup>, S. Monzani<sup>19a,19b</sup>, R.W. Moore<sup>2</sup>, G.F. Moorhead<sup>85</sup>,
  C. Mora Herrera<sup>49</sup>, A. Moraes<sup>53</sup>, N. Morange<sup>135</sup>, J. Morel<sup>54</sup>, G. Morello<sup>36a,36b</sup>, D. Moreno<sup>80</sup>, M. Moreno Llácer<sup>166</sup>,
  P. Morettini<sup>50a</sup>, M. Morgenstern<sup>43</sup>, M. Morii<sup>57</sup>, J. Morin<sup>74</sup>, A.K. Morley<sup>29</sup>, G. Mornacchi<sup>29</sup>, S.V. Morozov<sup>95</sup>,
 J.D. Morris<sup>74</sup>, L. Morvaj<sup>100</sup>, H.G. Moser<sup>98</sup>, M. Mosidze<sup>51b</sup>, J. Moss<sup>108</sup>, R. Mount<sup>142</sup>, E. Mountricha<sup>9,w</sup>,
S.V. Mouraviev<sup>93</sup>, E.J.W. Moyse<sup>83</sup>, M. Mudrinic<sup>12b</sup>, F. Mueller<sup>58a</sup>, J. Mueller<sup>122</sup>, K. Mueller<sup>20</sup>, T.A. Müller<sup>97</sup>, T. Mueller<sup>80</sup>, D. Muenstermann<sup>29</sup>, A. Muir<sup>167</sup>, Y. Munwes<sup>152</sup>, W.J. Murray<sup>128</sup>, I. Mussche<sup>104</sup>, E. Musto<sup>101a,101b</sup>, A.G. Myagkov<sup>127</sup>, M. Myska<sup>124</sup>, J. Nadal<sup>11</sup>, K. Nagai<sup>159</sup>, K. Nagano<sup>65</sup>, A. Nagarkar<sup>108</sup>, Y. Nagasaka<sup>59</sup>, M. Nagel<sup>98</sup>,
 A.M. Nairz<sup>29</sup>, Y. Nakahama<sup>29</sup>, K. Nakamura<sup>154</sup>, T. Nakamura<sup>154</sup>, I. Nakano<sup>109</sup>, G. Nanava<sup>20</sup>, A. Napier<sup>160</sup>, R. Narayan<sup>58b</sup>, M. Nash<sup>76,c</sup>, N.R. Nation<sup>21</sup>, T. Nattermann<sup>20</sup>, T. Naumann<sup>41</sup>, G. Navarro<sup>161</sup>, H.A. Neal<sup>86</sup>, E. Nebot<sup>79</sup>,
 P.Yu. Nechaeva<sup>93</sup>, T.J. Neep<sup>81</sup>, A. Negri<sup>118a,118b</sup>, G. Negri<sup>29</sup>, S. Nektarijevic<sup>49</sup>, A. Nelson<sup>162</sup>, T.K. Nelson<sup>142</sup>,
 S. Nemecek<sup>124</sup>, P. Nemethy<sup>107</sup>, A.A. Nepomuceno<sup>23a</sup>, M. Nessi<sup>29,x</sup>, M.S. Neubauer<sup>164</sup>, A. Neusiedl<sup>80</sup>,
  R.M. Neves<sup>107</sup>, P. Nevski<sup>24</sup>, P.R. Newman<sup>17</sup>, V. Nguyen Thi Hong<sup>135</sup>, R.B. Nickerson<sup>117</sup>, R. Nicolaidou<sup>135</sup>,
 L. Nicolas<sup>138</sup>, B. Nicquevert<sup>29</sup>, F. Niedercorn<sup>114</sup>, J. Nielsen<sup>136</sup>, T. Niinikoski<sup>29</sup>, N. Nikiforou<sup>34</sup>, A. Nikiforov<sup>15</sup>,
  V. Nikolaenko<sup>127</sup>, K. Nikolaev<sup>64</sup>, I. Nikolic-Audit<sup>77</sup>, K. Nikolics<sup>49</sup>, K. Nikolopoulos<sup>24</sup>, H. Nilsen<sup>48</sup>, P. Nilsson<sup>7</sup>, Y. Ninomiya <sup>154</sup>, A. Nisati<sup>131a</sup>, T. Nishiyama<sup>66</sup>, R. Nisius<sup>98</sup>, L. Nodulman<sup>5</sup>, M. Nomachi<sup>115</sup>, I. Nomidis<sup>153</sup>,
  M. Nordberg<sup>29</sup>, B. Nordkvist<sup>145a,145b</sup>, P.R. Norton<sup>128</sup>, J. Novakova<sup>125</sup>, M. Nozaki<sup>65</sup>, L. Nozka<sup>112</sup>, I.M. Nugent<sup>158a</sup>,
  A.-E. Nuncio-Quiroz<sup>20</sup>, G. Nunes Hanninger<sup>85</sup>, T. Nunnemann<sup>97</sup>, E. Nurse<sup>76</sup>, B.J. O'Brien<sup>45</sup>, S.W. O'Neale<sup>17,*</sup>,
  D.C. O'Neil<sup>141</sup>, V. O'Shea<sup>53</sup>, L.B. Oakes<sup>97</sup>, F.G. Oakham<sup>28,d</sup>, H. Oberlack<sup>98</sup>, J. Ocariz<sup>77</sup>, A. Ochi<sup>66</sup>, S. Oda<sup>154</sup>,
D.C. O'Neil<sup>11</sup>, V. O'Shea<sup>35</sup>, E.B. Oakes<sup>37</sup>, F.G. Oakham<sup>25a</sup>, H. Oberlack<sup>36</sup>, J. Ocariz<sup>37</sup>, A. Ochi<sup>36</sup>, S. Odal<sup>37</sup>, S. Odaka<sup>65</sup>, J. Odier<sup>82</sup>, H. Ogren<sup>60</sup>, A. Oh<sup>81</sup>, S.H. Oh<sup>44</sup>, C.C. Ohm<sup>145a,145b</sup>, T. Ohshima<sup>100</sup>, H. Ohshita<sup>139</sup>, S. Okada<sup>66</sup>, H. Okawa<sup>162</sup>, Y. Okumura<sup>100</sup>, T. Okuyama<sup>154</sup>, A. Olariu<sup>25a</sup>, M. Olcese<sup>50a</sup>, A.G. Olchevski<sup>64</sup>, S.A. Olivares Pino<sup>31a</sup>, M. Oliveira<sup>123a,h</sup>, D. Oliveira Damazio<sup>24</sup>, E. Oliver Garcia<sup>166</sup>, D. Olivito<sup>119</sup>, A. Olszewski<sup>38</sup>, J. Olszowska<sup>38</sup>, C. Omachi<sup>66</sup>, A. Onofre<sup>123a,y</sup>, P.U.E. Onyisi<sup>30</sup>, C.J. Oram<sup>158a</sup>, M.J. Oreglia<sup>30</sup>, Y. Oren<sup>152</sup>, D. Orestano<sup>133a,133b</sup>, N. Orlando<sup>71a,71b</sup>, I. Orlov<sup>106</sup>, C. Oropeza Barrera<sup>53</sup>, R.S. Orr<sup>157</sup>, B. Osculati<sup>50a,50b</sup>, R. Ospanov<sup>119</sup>, C. Osuna<sup>11</sup>,
  G. Otero y Garzon<sup>26</sup>, J.P. Ottersbach<sup>104</sup>, M. Ouchrif<sup>134d</sup>, E.A. Ouellette<sup>168</sup>, F. Ould-Saada<sup>116</sup>, A. Ouraou<sup>135</sup>,
  Q. Ouyang<sup>32a</sup>, A. Ovcharova<sup>14</sup>, M. Owen<sup>81</sup>, S. Owen<sup>138</sup>, V.E. Ozcan<sup>18a</sup>, N. Ozturk<sup>7</sup>, A. Pacheco Pages<sup>11</sup>,
 C. Padilla Aranda<sup>11</sup>, S. Pagan Griso<sup>14</sup>, E. Paganis<sup>138</sup>, F. Paige<sup>24</sup>, P. Pais<sup>83</sup>, K. Pajchel<sup>116</sup>, G. Palacino<sup>158b</sup>,
  C.P. Paleari<sup>6</sup>, S. Palestini<sup>29</sup>, D. Pallin<sup>33</sup>, A. Palma<sup>123a</sup>, J.D. Palmer<sup>17</sup>, Y.B. Pan<sup>171</sup>, E. Panagiotopoulou<sup>9</sup>, B. Panes<sup>31a</sup>,
  N. Panikashvili<sup>86</sup>, S. Panitkin<sup>24</sup>, D. Pantea<sup>25a</sup>, M. Panuskova<sup>124</sup>, V. Paolone<sup>122</sup>, A. Papadelis<sup>145a</sup>,
Th.D. Papadopoulou<sup>9</sup>, A. Paramonov<sup>5</sup>, D. Paredes Hernandez<sup>33</sup>, W. Park<sup>24,z</sup>, M.A. Parker<sup>27</sup>, F. Parodi<sup>50a,50b</sup>, J.A. Parsons<sup>34</sup>, U. Parzefall<sup>48</sup>, S. Pashapour<sup>54</sup>, E. Pasqualucci<sup>131a</sup>, S. Passaggio<sup>50a</sup>, A. Passeri<sup>133a</sup>, F. Pastore<sup>133a,133b</sup>, Fr. Pastore<sup>75</sup>, G. Pásztor <sup>49,aa</sup>, S. Pataraia<sup>173</sup>, N. Patel<sup>149</sup>, J.R. Pater<sup>81</sup>, S. Patricelli<sup>101a,101b</sup>, T. Pauly<sup>29</sup>, M. Pecsy<sup>143a</sup>, M.I. Pedraza Morales<sup>171</sup>, S.V. Peleganchuk<sup>106</sup>, H. Peng<sup>32b</sup>, B. Penning<sup>30</sup>, A. Penson<sup>34</sup>, J. Penwell<sup>60</sup>, M. Perantoni<sup>23a</sup>, M. Penson<sup>34</sup>, J. Penwell<sup>60</sup>, M. Penson<sup>44</sup>, M. Penson<sup>44</sup>, M. Penson<sup>44</sup>, M. Penson<sup>44</sup>, M. Penson<sup>44</sup>, M. Pen
  K. Perez <sup>34,ab</sup>, T. Perez Cavalcanti <sup>41</sup>, E. Perez Codina <sup>11</sup>, M.T. Pérez García-Estañ <sup>166</sup>, V. Perez Reale <sup>34</sup>, L. Perini <sup>88a,88b</sup>,
  H. Pernegger<sup>29</sup>, R. Perrino<sup>71a</sup>, P. Perrodo<sup>4</sup>, S. Persembe<sup>3a</sup>, V.D. Peshekhonov<sup>64</sup>, K. Peters<sup>29</sup>, B.A. Petersen<sup>29</sup>,
J. Petersen<sup>29</sup>, T.C. Petersen<sup>35</sup>, E. Petit<sup>4</sup>, A. Petridis<sup>153</sup>, C. Petridou<sup>153</sup>, E. Petrolo<sup>131a</sup>, F. Petrucci<sup>133a,133b</sup>, D. Petschull<sup>41</sup>, M. Petteni<sup>141</sup>, R. Pezoa<sup>31b</sup>, A. Phan<sup>85</sup>, P.W. Phillips<sup>128</sup>, G. Piacquadio<sup>29</sup>, A. Picazio<sup>49</sup>, E. Piccaro<sup>74</sup>, M. Piccinini<sup>19a,19b</sup>, S.M. Piec<sup>41</sup>, R. Piegaia<sup>26</sup>, D.T. Pignotti<sup>108</sup>, J.E. Pilcher<sup>30</sup>, A.D. Pilkington<sup>81</sup>, J. Pina<sup>123a,b</sup>, M. Pinamonti<sup>163a,163c</sup>, A. Pinder<sup>117</sup>, J.L. Pinfold<sup>2</sup>, J. Ping<sup>32c</sup>, B. Pinto<sup>123a</sup>, O. Pirotte<sup>29</sup>, C. Pizio<sup>88a,88b</sup>,
  M. Plamondon<sup>168</sup>, M.-A. Pleier<sup>24</sup>, A.V. Pleskach<sup>127</sup>, E. Plotnikova<sup>64</sup>, A. Poblaguev<sup>24</sup>, S. Poddar<sup>58a</sup>, F. Podlyski<sup>33</sup>,
  L. Poggioli<sup>114</sup>, T. Poghosyan<sup>20</sup>, M. Pohl<sup>49</sup>, F. Polci<sup>55</sup>, G. Polesello<sup>118a</sup>, A. Policicchio<sup>36a,36b</sup>, A. Polini<sup>19a</sup>, J. Poll<sup>74</sup>,
 V. Polychronakos<sup>24</sup>, D.M. Pomarede<sup>135</sup>, D. Pomeroy<sup>22</sup>, K. Pommès<sup>29</sup>, L. Pontecorvo<sup>131a</sup>, B.G. Pope<sup>87</sup>,
  G.A. Popeneciu<sup>25a</sup>, D.S. Popovic<sup>12a</sup>, A. Poppleton<sup>29</sup>, X. Portell Bueso<sup>29</sup>, C. Posch<sup>21</sup>, G.E. Pospelov<sup>98</sup>, S. Pospisil<sup>126</sup>,
  I.N. Potrap<sup>98</sup>, C.J. Potter<sup>148</sup>, C.T. Potter<sup>113</sup>, G. Poulard<sup>29</sup>, J. Poveda<sup>171</sup>, V. Pozdnyakov<sup>64</sup>, R. Prabhu<sup>76</sup>,
  P. Pralavorio<sup>82</sup>, A. Pranko<sup>14</sup>, S. Prasad<sup>29</sup>, R. Pravahan<sup>7</sup>, S. Prell<sup>63</sup>, K. Pretzl<sup>16</sup>, L. Pribyl<sup>29</sup>, D. Price<sup>60</sup>, J. Price<sup>72</sup>,
 L.E. Price<sup>5</sup>, M.J. Price<sup>29</sup>, D. Prieur<sup>122</sup>, M. Primavera<sup>71a</sup>, K. Prokofiev<sup>107</sup>, F. Prokoshin<sup>31b</sup>, S. Protopopescu<sup>24</sup>,
J. Proudfoot<sup>5</sup>, X. Prudent<sup>43</sup>, M. Przybycien<sup>37</sup>, H. Przysiezniak<sup>4</sup>, S. Psoroulas<sup>20</sup>, E. Ptacek<sup>113</sup>, E. Pueschel<sup>83</sup>, J. Purdham<sup>86</sup>, M. Purohit<sup>24,z</sup>, P. Puzo<sup>114</sup>, Y. Pylypchenko<sup>62</sup>, J. Qian<sup>86</sup>, Z. Qian<sup>82</sup>, Z. Qin<sup>41</sup>, A. Quadt<sup>54</sup>, D.R. Quarrie<sup>14</sup>, W.B. Quayle<sup>171</sup>, F. Quinonez<sup>31a</sup>, M. Raas<sup>103</sup>, V. Radescu<sup>41</sup>, B. Radics<sup>20</sup>, P. Radloff<sup>113</sup>, T. Rador<sup>18a</sup>, F. Ragusa<sup>88a,88b</sup>, G. Rahal<sup>176</sup>, A.M. Rahimi<sup>108</sup>, D. Rahm<sup>24</sup>, S. Rajagopalan<sup>24</sup>, M. Rammensee<sup>48</sup>, M.
```

```
A.S. Randle-Conde<sup>39</sup>, K. Randrianarivony<sup>28</sup>, P.N. Ratoff<sup>70</sup>, F. Rauscher<sup>97</sup>, T.C. Rave<sup>48</sup>, M. Raymond<sup>29</sup>,
A.L. Read<sup>116</sup>, D.M. Rebuzzi<sup>118a,118b</sup>, A. Redelbach<sup>172</sup>, G. Redlinger<sup>24</sup>, R. Reece<sup>119</sup>, K. Reeves<sup>40</sup>, A. Reichold<sup>104</sup>, E. Reinherz-Aronis<sup>152</sup>, A. Reinsch<sup>113</sup>, I. Reisinger<sup>42</sup>, C. Rembser<sup>29</sup>, Z.L. Ren<sup>150</sup>, A. Renaud<sup>114</sup>, M. Rescigno<sup>131a</sup>,
S. Resconi<sup>88a</sup>, B. Resende<sup>135</sup>, P. Reznicek<sup>97</sup>, R. Rezvani<sup>157</sup>, A. Richards<sup>76</sup>, R. Richter<sup>98</sup>, E. Richter-Was<sup>4,ac</sup>, M. Ridel<sup>77</sup>, M. Rijpstra<sup>104</sup>, M. Rijssenbeek<sup>147</sup>, A. Rimoldi<sup>118a,118b</sup>, L. Rinaldi<sup>19a</sup>, R.R. Rios<sup>39</sup>, I. Riu<sup>11</sup>,
G. Rivoltella<sup>88a,88b</sup>, F. Rizatdinova<sup>111</sup>, E. Rizvi<sup>74</sup>, S.H. Robertson<sup>84,j</sup>, A. Robichaud-Veronneau<sup>117</sup>, D. Robinson<sup>27</sup>, J.E.M. Robinson<sup>76</sup>, A. Robson<sup>53</sup>, J.G. Rocha de Lima<sup>105</sup>, C. Roda<sup>121a,121b</sup>, D. Roda Dos Santos<sup>29</sup>, D. Rodriguez<sup>161</sup>, A. Roe<sup>54</sup>, S. Roe<sup>29</sup>, O. Røhne<sup>116</sup>, V. Rojo<sup>1</sup>, S. Rolli<sup>160</sup>, A. Romaniouk<sup>95</sup>, M. Romano<sup>19a,19b</sup>, V.M. Romanov<sup>64</sup>,
G. Romeo<sup>26</sup>, E. Romero Adam<sup>166</sup>, L. Roos<sup>77</sup>, E. Ros<sup>166</sup>, S. Rosati<sup>131a</sup>, K. Rosbach<sup>49</sup>, A. Rose<sup>148</sup>, M. Rose<sup>75</sup>, G.A. Rosenbaum<sup>157</sup>, E.I. Rosenberg<sup>63</sup>, P.L. Rosendahl<sup>13</sup>, O. Rosenthal<sup>140</sup>, L. Rosselet<sup>49</sup>, V. Rossetti<sup>11</sup>, E. Rossi<sup>131a,131b</sup>, L.P. Rossi<sup>50a</sup>, M. Rotaru<sup>25a</sup>, I. Roth<sup>170</sup>, J. Rothberg<sup>137</sup>, D. Rousseau<sup>114</sup>, C.R. Royon<sup>135</sup>,
A. Rozanov<sup>82</sup>, Y. Rozen<sup>151</sup>, X. Ruan<sup>32a,ad</sup>, I. Rubinskiy<sup>41</sup>, B. Ruckert<sup>97</sup>, N. Ruckstuhl<sup>104</sup>, V.I. Rud<sup>96</sup>, C. Rudolph<sup>43</sup>,
G. Rudolph<sup>61</sup>, F. Rühr<sup>6</sup>, F. Ruggieri<sup>133a,133b</sup>, A. Ruiz-Martinez<sup>63</sup>, V. Rumiantsev<sup>90,*</sup>, L. Rumyantsev<sup>64</sup>, K. Runge<sup>48</sup>,
Z. Rurikova<sup>48</sup>, N.A. Rusakovich<sup>64</sup>, J.P. Rutherfoord<sup>6</sup>, C. Ruwiedel<sup>14</sup>, P. Ruzicka<sup>124</sup>, Y.F. Ryabov<sup>120</sup>,
V. Ryadovikov<sup>127</sup>, P. Ryan<sup>87</sup>, M. Rybar<sup>125</sup>, G. Rybkin<sup>114</sup>, N.C. Ryder<sup>117</sup>, S. Rzaeva<sup>10</sup>, A.F. Saavedra<sup>149</sup>, I. Sadeh<sup>152</sup>, H.F-W. Sadrozinski<sup>136</sup>, R. Sadykov<sup>64</sup>, F. Safai Tehrani<sup>131a</sup>, H. Sakamoto<sup>154</sup>, G. Salamanna<sup>74</sup>, A. Salamon<sup>132a</sup>,
M. Saleem<sup>110</sup>, D. Salek<sup>29</sup>, D. Salihagic<sup>98</sup>, A. Salnikov<sup>142</sup>, J. Salt<sup>166</sup>, B.M. Salvachua Ferrando<sup>5</sup>, D. Salvatore<sup>36a,36b</sup>,
F. Salvatore<sup>148</sup>, A. Salvucci<sup>103</sup>, A. Salzburger<sup>29</sup>, D. Sampsonidis<sup>153</sup>, B.H. Samset<sup>116</sup>, A. Sanchez<sup>101a,101b</sup>,
V. Sanchez Martinez<sup>166</sup>, H. Sandaker<sup>13</sup>, H.G. Sander<sup>80</sup>, M.P. Sanders<sup>97</sup>, M. Sandhoff<sup>173</sup>, T. Sandoval<sup>27</sup>,
C. Sandoval <sup>161</sup>, R. Sandstroem<sup>98</sup>, S. Sandvoss<sup>173</sup>, D.P.C. Sankey<sup>128</sup>, A. Sansoni<sup>47</sup>, C. Santamarina Rios<sup>84</sup>,
C. Santoni<sup>33</sup>, R. Santonico<sup>132a,132b</sup>, H. Santos<sup>123a</sup>, J.G. Saraiva<sup>123a</sup>, T. Sarangi<sup>171</sup>, E. Sarkisyan-Grinbaum<sup>7</sup>,
F. Sarri<sup>121a,121b</sup>, G. Sartisohn<sup>173</sup>, O. Sasaki<sup>65</sup>, N. Sasao<sup>67</sup>, I. Satsounkevitch<sup>89</sup>, G. Sauvage<sup>4</sup>, E. Sauvan<sup>4</sup>, J.B. Sauvan<sup>114</sup>, P. Savard<sup>157,d</sup>, V. Savinov<sup>122</sup>, D.O. Savu<sup>29</sup>, L. Sawyer<sup>24,l</sup>, D.H. Saxon<sup>53</sup>, J. Saxon<sup>119</sup>, L.P. Says<sup>33</sup>, C. Sbarra<sup>19a</sup>, A. Sbrizzi<sup>19a,19b</sup>, O. Scallon<sup>92</sup>, D.A. Scannicchio<sup>162</sup>, M. Scarcella<sup>149</sup>, J. Schaarschmidt<sup>114</sup>, P. Schacht<sup>98</sup>, D. Schaefer<sup>119</sup>, U. Schäfer<sup>80</sup>, S. Schaepe<sup>20</sup>, S. Schaetzel<sup>58b</sup>, A.C. Schaffer<sup>114</sup>, D. Schaile<sup>97</sup>, R.D. Schamberger<sup>147</sup>,
A.G. Schamov<sup>106</sup>, V. Scharf<sup>58a</sup>, V.A. Schegelsky<sup>120</sup>, D. Scheirich<sup>86</sup>, M. Schernau<sup>162</sup>, M.I. Scherzer<sup>34</sup>,
C. Schiavi<sup>50a,50b</sup>, J. Schieck<sup>97</sup>, M. Schioppa<sup>36a,36b</sup>, S. Schlenker<sup>29</sup>, J.L. Schlereth<sup>5</sup>, E. Schmidt<sup>48</sup>, K. Schmieden<sup>20</sup>,
C. Schmitt<sup>80</sup>, S. Schmitt<sup>58b</sup>, M. Schmitz<sup>20</sup>, A. Schöning<sup>58b</sup>, M. Schott<sup>29</sup>, D. Schouten<sup>158a</sup>, J. Schovancova<sup>124</sup>,
M. Schram<sup>84</sup>, C. Schroeder<sup>80</sup>, N. Schroer<sup>58c</sup>, G. Schuler<sup>29</sup>, M.J. Schultens<sup>20</sup>, J. Schultes<sup>173</sup>, H.-C. Schultz-Coulon<sup>58a</sup>,
H. Schulz<sup>15</sup>, J.W. Schumacher<sup>20</sup>, M. Schumacher<sup>48</sup>, B.A. Schumm<sup>136</sup>, Ph. Schune<sup>135</sup>, C. Schwanenberger<sup>81</sup>,
A. Schwartzman<sup>142</sup>, Ph. Schwemling<sup>77</sup>, R. Schwienhorst<sup>87</sup>, R. Schwierz<sup>43</sup>, J. Schwindling<sup>135</sup>, T. Schwindt<sup>20</sup>, M. Schwoerer<sup>4</sup>, G. Sciolla<sup>22</sup>, W.G. Scott<sup>128</sup>, J. Searcy<sup>113</sup>, G. Sedov<sup>41</sup>, E. Sedykh<sup>120</sup>, E. Segura<sup>11</sup>, S.C. Seidel<sup>102</sup>, A. Seiden<sup>136</sup>, F. Seifert<sup>43</sup>, J.M. Seixas<sup>23a</sup>, G. Sekhniaidze<sup>101a</sup>, S.J. Sekula<sup>39</sup>, K.E. Selbach<sup>45</sup>, D.M. Seliverstov<sup>120</sup>, B. Sellden<sup>145a</sup>, G. Sellers<sup>72</sup>, M. Seman<sup>143b</sup>, N. Semprini-Cesari<sup>19a,19b</sup>, C. Serfon<sup>97</sup>, L. Serin<sup>114</sup>, L. Serkin<sup>54</sup>,
R. Seuster<sup>98</sup>, H. Severini<sup>110</sup>, M.E. Sevior<sup>85</sup>, A. Sfyrla<sup>29</sup>, E. Shabalina<sup>54</sup>, M. Shamim<sup>113</sup>, L.Y. Shan<sup>32a</sup>, J.T. Shank<sup>21</sup>,
Q.T. Shao<sup>85</sup>, M. Shapiro<sup>14</sup>, P.B. Shatalov<sup>94</sup>, L. Shaver<sup>6</sup>, K. Shaw<sup>163a,163c</sup>, D. Sherman<sup>174</sup>, P. Sherwood<sup>76</sup>,
A. Shibata<sup>107</sup>, H. Shichi<sup>100</sup>, S. Shimizu<sup>29</sup>, M. Shimojima<sup>99</sup>, T. Shin<sup>56</sup>, M. Shiyakova<sup>64</sup>, A. Shmeleva<sup>93</sup>,
M.J. Shochet<sup>30</sup>, D. Short<sup>117</sup>, S. Shrestha<sup>63</sup>, E. Shulga<sup>95</sup>, M.A. Shupe<sup>6</sup>, P. Sicho<sup>124</sup>, A. Sidoti<sup>131a</sup>, F. Siegert<sup>48</sup>,
Dj. Sijacki<sup>12a</sup>, O. Silbert<sup>170</sup>, J. Silva<sup>123a</sup>, Y. Silver<sup>152</sup>, D. Silverstein<sup>142</sup>, S.B. Silverstein<sup>145a</sup>, V. Simak<sup>126</sup>, O. Simard<sup>135</sup>, Lj. Simic<sup>12a</sup>, S. Simion<sup>114</sup>, B. Simmons<sup>76</sup>, R. Simoniello<sup>88a,88b</sup>, M. Simonyan<sup>35</sup>, P. Sinervo<sup>157</sup>, N.B. Sinev<sup>113</sup>, V. Sipica<sup>140</sup>, G. Siragusa<sup>172</sup>, A. Sircar<sup>24</sup>, A.N. Sisakyan<sup>64</sup>, S.Yu. Sivoklokov<sup>96</sup>, J. Sjölin<sup>145a,145b</sup>,
T.B. Sjursen<sup>13</sup>, L.A. Skinnari<sup>14</sup>, H.P. Skottowe<sup>57</sup>, K. Skovpen<sup>106</sup>, P. Skubic<sup>110</sup>, N. Skvorodnev<sup>22</sup>, M. Slater<sup>17</sup>,
T. Slavicek<sup>126</sup>, K. Sliwa<sup>160</sup>, J. Sloper<sup>29</sup>, V. Smakhtin<sup>170</sup>, B.H. Smart<sup>45</sup>, S.Yu. Smirnov<sup>95</sup>, Y. Smirnov<sup>95</sup>,
L.N. Smirnova<sup>96</sup>, O. Smirnova<sup>78</sup>, B.C. Smith<sup>57</sup>, D. Smith<sup>142</sup>, K.M. Smith<sup>53</sup>, M. Smizanska<sup>70</sup>, K. Smolek<sup>126</sup>,
A.A. Snesarev<sup>93</sup>, S.W. Snow<sup>81</sup>, J. Snow<sup>110</sup>, J. Snuverink<sup>104</sup>, S. Snyder<sup>24</sup>, M. Soares<sup>123a</sup>, R. Sobie<sup>168,j</sup>, J. Sodomka<sup>126</sup>,
A. Soffer<sup>152</sup>, C.A. Solans<sup>166</sup>, M. Solar<sup>126</sup>, J. Solc<sup>126</sup>, E. Soldatov<sup>95</sup>, U. Soldevila<sup>166</sup>, E. Solfaroli Camillocci<sup>131a,131b</sup>,
A.A. Solodkov<sup>127</sup>, O.V. Solovyanov<sup>127</sup>, N. Soni<sup>2</sup>, V. Sopko<sup>126</sup>, B. Sopko<sup>126</sup>, M. Sosebee<sup>7</sup>, R. Soualah<sup>163a,163c</sup>,
A. Soukharev<sup>106</sup>, S. Spagnolo<sup>71a,71b</sup>, F. Spanò<sup>75</sup>, R. Spighi<sup>19a</sup>, G. Spigo<sup>29</sup>, F. Spila<sup>131a,131b</sup>, R. Spiwoks<sup>29</sup>, M. Spousta<sup>125</sup>, T. Spreitzer<sup>157</sup>, B. Spurlock<sup>7</sup>, R.D. St. Denis<sup>53</sup>, J. Stahlman<sup>119</sup>, R. Stamen<sup>58a</sup>, E. Stanecka<sup>38</sup>,
R.W. Stanek<sup>5</sup>, C. Stanescu<sup>133a</sup>, M. Stanescu-Bellu<sup>41</sup>, S. Stapnes<sup>116</sup>, E.A. Starchenko<sup>127</sup>, J. Stark<sup>55</sup>, P. Staroba<sup>124</sup>,
P. Starovoitov<sup>90</sup>, A. Staude<sup>97</sup>, P. Stavina<sup>143a</sup>, G. Steele<sup>53</sup>, P. Steinbach<sup>43</sup>, P. Steinberg<sup>24</sup>, I. Stekl<sup>126</sup>, B. Stelzer<sup>141</sup>,
H.J. Stelzer<sup>87</sup>, O. Stelzer-Chilton<sup>158a</sup>, H. Stenzel<sup>52</sup>, S. Stern<sup>98</sup>, K. Stevenson<sup>74</sup>, G.A. Stewart<sup>29</sup>, J.A. Stillings<sup>20</sup>,
```

```
M.C. Stockton<sup>84</sup>, K. Stoerig<sup>48</sup>, G. Stoicea<sup>25a</sup>, S. Stonjek<sup>98</sup>, P. Strachota<sup>125</sup>, A.R. Stradling<sup>7</sup>, A. Straessner<sup>43</sup>,
J. Strandberg<sup>146</sup>, S. Strandberg<sup>145</sup>, A. Strandlie<sup>116</sup>, M. Strang<sup>108</sup>, E. Strauss<sup>142</sup>, M. Strauss<sup>110</sup>, P. Strizenec<sup>143b</sup>, R. Ströhmer<sup>172</sup>, D.M. Strom<sup>113</sup>, J.A. Strong<sup>75</sup>,*, R. Stroynowski<sup>39</sup>, J. Strube<sup>128</sup>, B. Stugu<sup>13</sup>, I. Stumer<sup>24</sup>,*, J. Stupak<sup>147</sup>, P. Sturm<sup>173</sup>, N.A. Styles<sup>41</sup>, D.A. Soh<sup>150</sup>,<sup>u</sup>, D. Su<sup>142</sup>, HS. Subramania<sup>2</sup>, A. Succurro<sup>11</sup>, Y. Sugaya<sup>115</sup>,
T. Sugimoto<sup>100</sup>, C. Suhr<sup>105</sup>, K. Suita<sup>66</sup>, M. Suk<sup>125</sup>, V.V. Sulin<sup>93</sup>, S. Sultansoy<sup>3d</sup>, T. Sumida<sup>67</sup>, X. Sun<sup>55</sup>,
J.E. Sundermann<sup>48</sup>, K. Suruliz<sup>138</sup>, S. Sushkov<sup>11</sup>, G. Susinno<sup>36a,36b</sup>, M.R. Sutton<sup>148</sup>, Y. Suzuki<sup>65</sup>, Y. Suzuki<sup>66</sup>, M. Svatos<sup>124</sup>, Yu.M. Sviridov<sup>127</sup>, S. Swedish<sup>167</sup>, I. Sykora<sup>143a</sup>, T. Sykora<sup>125</sup>, B. Szeless<sup>29</sup>, J. Sánchez<sup>166</sup>, D. Ta<sup>104</sup>, K. Tackmann<sup>41</sup>, A. Taffard<sup>162</sup>, R. Tafirout<sup>158a</sup>, N. Taiblum<sup>152</sup>, Y. Takahashi<sup>100</sup>, H. Takai<sup>24</sup>, R. Takashima<sup>68</sup>,
H. Takeda<sup>66</sup>, T. Takeshita<sup>139</sup>, Y. Takubo<sup>65</sup>, M. Talby<sup>82</sup>, A. Talyshev<sup>106</sup>, f, M.C. Tamsett<sup>24</sup>, J. Tanaka<sup>154</sup>, R. Tanaka<sup>114</sup>, S. Tanaka<sup>130</sup>, S. Tanaka<sup>65</sup>, Y. Tanaka<sup>99</sup>, A.J. Tanasijczuk<sup>141</sup>, K. Tani<sup>66</sup>, N. Tannoury<sup>82</sup>, G.P. Tappern<sup>29</sup>, S. Tapprogge<sup>80</sup>, D. Tardif<sup>157</sup>, S. Tarem<sup>151</sup>, F. Tarrade<sup>28</sup>, G.F. Tartarelli<sup>88a</sup>, P. Tas<sup>125</sup>, M. Tasevsky<sup>124</sup>, E. Tassi<sup>36a,36b</sup>,
 M. Tatarkhanov<sup>14</sup>, Y. Tayalati<sup>134d</sup>, C. Taylor<sup>76</sup>, F.E. Taylor<sup>91</sup>, G.N. Taylor<sup>85</sup>, W. Taylor<sup>158b</sup>, M. Teinturier<sup>114</sup>,
 M. Teixeira Dias Castanheira<sup>74</sup>, P. Teixeira-Dias<sup>75</sup>, K.K. Temming<sup>48</sup>, H. Ten Kate<sup>29</sup>, P.K. Teng<sup>150</sup>, S. Terada<sup>65</sup>,
 K. Terashi<sup>154</sup>, J. Terron<sup>79</sup>, M. Testa<sup>47</sup>, R.J. Teuscher<sup>157</sup>, J. Thadome<sup>173</sup>, J. Therhaag<sup>20</sup>, T. Theveneaux-Pelzer<sup>77</sup>,
 M. Thioye<sup>174</sup>, S. Thoma<sup>48</sup>, J.P. Thomas<sup>17</sup>, E.N. Thompson<sup>34</sup>, P.D. Thompson<sup>17</sup>, P.D. Thompson<sup>157</sup>,
A.S. Thompson<sup>53</sup>, L.A. Thompson<sup>55</sup>, E. Thomson<sup>119</sup>, M. Thompson<sup>77</sup>, R.P. Thun<sup>86</sup>, F. Tian<sup>34</sup>, M.J. Tibbetts<sup>14</sup>, T. Tic<sup>124</sup>, V.O. Tikhomirov<sup>93</sup>, Y.A. Tikhonov<sup>106,f</sup>, S Timoshenko<sup>95</sup>, P. Tipton<sup>174</sup>, F.J. Tique Aires Viegas<sup>29</sup>, S. Tisserant<sup>82</sup>, B. Toczek<sup>37</sup>, T. Todorov<sup>4</sup>, S. Todorova-Nova<sup>160</sup>, B. Toggerson<sup>162</sup>, J. Tojo<sup>65</sup>, S. Tokár<sup>143a</sup>,
 K. Tokunaga<sup>66</sup>, K. Tokushuku<sup>65</sup>, K. Tollefson<sup>87</sup>, M. Tomoto<sup>100</sup>, L. Tompkins<sup>30</sup>, K. Toms<sup>102</sup>, G. Tong<sup>32a</sup>,
 A. Tonoyan<sup>13</sup>, C. Topfel<sup>16</sup>, N.D. Topilin<sup>64</sup>, I. Torchiani<sup>29</sup>, E. Torrence<sup>113</sup>, H. Torres<sup>77</sup>, E. Torró Pastor<sup>166</sup>, J. Toth<sup>82,aa</sup>,
 F. Touchard<sup>82</sup>, D.R. Tovey<sup>138</sup>, T. Trefzger<sup>172</sup>, L. Tremblet<sup>29</sup>, A. Tricoli<sup>29</sup>, I.M. Trigger<sup>158a</sup>, S. Trincaz-Duvoid<sup>77</sup>,
F. Touchard<sup>92</sup>, D.R. Tovey<sup>158</sup>, T. Trefzger<sup>172</sup>, L. Tremblet<sup>29</sup>, A. Tricoli<sup>29</sup>, I.M. Trigger<sup>150a</sup>, S. Trincaz-Duvoid<sup>77</sup>, T.N. Trinh<sup>77</sup>, M.F. Tripiana<sup>69</sup>, W. Trischuk<sup>157</sup>, A. Trivedi<sup>24,z</sup>, B. Trocmé<sup>55</sup>, C. Troncon<sup>88a</sup>, M. Trottier-McDonald<sup>141</sup>, M. Trzebinski<sup>38</sup>, A. Trzupek<sup>38</sup>, C. Tsarouchas<sup>29</sup>, J.C-L. Tseng<sup>117</sup>, M. Tsiakiris<sup>104</sup>, P.V. Tsiareshka<sup>89</sup>, D. Tsionou<sup>4,ae</sup>, G. Tsipolitis<sup>9</sup>, V. Tsiskaridze<sup>48</sup>, E.G. Tskhadadze<sup>51a</sup>, I.I. Tsukerman<sup>94</sup>, V. Tsulaia<sup>14</sup>, J.-W. Tsung<sup>20</sup>, S. Tsuno<sup>65</sup>, D. Tsybychev<sup>147</sup>, A. Tual<sup>138</sup>, A. Tudorache<sup>25a</sup>, V. Tudorache<sup>25a</sup>, J.M. Tuggle<sup>30</sup>, M. Turala<sup>38</sup>, D. Turecek<sup>126</sup>, I. Turk Cakir<sup>3e</sup>, E. Turlay<sup>104</sup>, R. Turra<sup>88a,88b</sup>, P.M. Tuts<sup>34</sup>, A. Tykhonov<sup>73</sup>, M. Tylmad<sup>145a,145b</sup>, M. Tyndel<sup>128</sup>, C. Taraba<sup>8</sup>, M. H. Hall<sup>30</sup>, M. Hall<sup></sup>
 G. Tzanakos<sup>8</sup>, K. Uchida<sup>20</sup>, I. Ueda<sup>154</sup>, R. Ueno<sup>28</sup>, M. Ugland<sup>13</sup>, M. Uhlenbrock<sup>20</sup>, M. Uhrmacher<sup>54</sup>, F. Ukegawa<sup>159</sup>,
 G. Unal<sup>29</sup>, D.G. Underwood<sup>5</sup>, A. Undrus<sup>24</sup>, G. Unel<sup>162</sup>, Y. Unno<sup>65</sup>, D. Urbaniec<sup>34</sup>, G. Usai<sup>7</sup>, M. Uslenghi<sup>118a,118b</sup>,
L. Vacavant<sup>82</sup>, V. Vacek<sup>126</sup>, B. Vachon<sup>84</sup>, S. Vahsen<sup>14</sup>, J. Valenta<sup>124</sup>, P. Valente<sup>131a</sup>, S. Valentinetti<sup>19a,19b</sup>, S. Valkar<sup>125</sup>,
 E. Valladolid Gallego<sup>166</sup>, S. Vallecorsa<sup>151</sup>, J.A. Valls Ferrer<sup>166</sup>, H. van der Graaf<sup>104</sup>, E. van der Kraaij<sup>104</sup>,
R. Van Der Leeuw<sup>104</sup>, E. van der Poel<sup>104</sup>, D. van der Ster<sup>29</sup>, N. van Eldik<sup>83</sup>, P. van Gemmeren<sup>5</sup>, Z. van Kesteren<sup>104</sup>, I. van Vulpen<sup>104</sup>, M. Vanadia<sup>98</sup>, W. Vandelli<sup>29</sup>, G. Vandoni<sup>29</sup>, A. Vaniachine<sup>5</sup>, P. Vankov<sup>41</sup>, F. Vannucci<sup>77</sup>, F. Varela Rodriguez<sup>29</sup>, R. Vari<sup>131a</sup>, E.W. Varnes<sup>6</sup>, T. Varol<sup>83</sup>, D. Varouchas<sup>14</sup>, A. Vartapetian<sup>7</sup>, K.E. Varvell<sup>149</sup>,
 V.I. Vassilakopoulos<sup>56</sup>, F. Vazeille<sup>33</sup>, T. Vazquez Schroeder<sup>54</sup>, G. Vegni<sup>88a,88b</sup>, J.J. Veillet<sup>114</sup>, C. Vellidis<sup>8</sup>,
 F. Veloso<sup>123a</sup>, R. Veness<sup>29</sup>, S. Veneziano<sup>131a</sup>, A. Ventura<sup>71a,71b</sup>, D. Ventura<sup>137</sup>, M. Venturi<sup>48</sup>, N. Venturi<sup>157</sup>,
 V. Vercesi<sup>118a</sup>, M. Verducci<sup>137</sup>, W. Verkerke<sup>104</sup>, J.C. Vermeulen<sup>104</sup>, A. Vest<sup>43</sup>, M.C. Vetterli<sup>141,d</sup>, I. Vichou<sup>164</sup>,
 T. Vickey 144b, af, O.E. Vickey Boeriu 144b, G.H.A. Viehhauser 117, S. Viel 167, M. Villa 19a, 19b, M. Villaplana Perez 166,
 E. Vilucchi<sup>47</sup>, M.G. Vincter<sup>28</sup>, E. Vinek<sup>29</sup>, V.B. Vinogradov<sup>64</sup>, M. Virchaux<sup>135,*</sup>, J. Virzi<sup>14</sup>, O. Vitells<sup>170</sup>, M. Viti<sup>41</sup>,
I. Vivarelli<sup>48</sup>, F. Vives Vaque<sup>2</sup>, S. Vlachos<sup>9</sup>, D. Vladoiu<sup>97</sup>, M. Vlasak<sup>126</sup>, N. Vlasov<sup>20</sup>, A. Vogel<sup>20</sup>, P. Vokac<sup>126</sup>, G. Volpii<sup>47</sup>, M. Volpii<sup>85</sup>, G. Volpini<sup>88a</sup>, H. von der Schmitt<sup>98</sup>, J. von Loeben<sup>98</sup>, H. von Radziewski<sup>48</sup>, E. von Toerne<sup>20</sup>, V. Vorobel<sup>125</sup>, A.P. Vorobiev<sup>127</sup>, V. Vorwerk<sup>11</sup>, M. Vos<sup>166</sup>, R. Voss<sup>29</sup>, T.T. Voss<sup>173</sup>, J.H. Vossebeld<sup>72</sup>, N. Vranjes<sup>135</sup>,
 M. Vranjes Milosavljevic<sup>104</sup>, V. Vrba<sup>124</sup>, M. Vreeswijk<sup>104</sup>, T. Vu Anh<sup>48</sup>, R. Vuillermet<sup>29</sup>, I. Vukotic<sup>114</sup>,
 W. Wagner<sup>173</sup>, P. Wagner<sup>119</sup>, H. Wahlen<sup>173</sup>, J. Wakabayashi<sup>100</sup>, S. Walch<sup>86</sup>, J. Walder<sup>70</sup>, R. Walker<sup>97</sup>,
 W. Walkowiak<sup>140</sup>, R. Wall<sup>174</sup>, P. Waller<sup>72</sup>, C. Wang<sup>44</sup>, H. Wang<sup>171</sup>, H. Wang<sup>32b,ag</sup>, J. Wang<sup>150</sup>, J. Wang<sup>55</sup>,
J.C. Wang<sup>137</sup>, R. Wang<sup>102</sup>, S.M. Wang<sup>150</sup>, T. Wang<sup>20</sup>, A. Warburton<sup>84</sup>, C.P. Ward<sup>27</sup>, M. Warsinsky<sup>48</sup>, C. Wasicki<sup>41</sup>,
 P.M. Watkins<sup>17</sup>, A.T. Watson<sup>17</sup>, I.J. Watson<sup>149</sup>, M.F. Watson<sup>17</sup>, G. Watts<sup>137</sup>, S. Watts<sup>81</sup>, A.T. Waugh<sup>149</sup>,
B.M. Waugh<sup>76</sup>, M. Weber<sup>128</sup>, M.S. Weber<sup>16</sup>, P. Weber<sup>54</sup>, A.R. Weidberg<sup>117</sup>, P. Weigell<sup>98</sup>, J. Weingarten<sup>54</sup>, C. Weiser<sup>48</sup>, H. Wellenstein<sup>22</sup>, P.S. Wells<sup>29</sup>, T. Wenaus<sup>24</sup>, D. Wendland<sup>15</sup>, S. Wendler<sup>122</sup>, Z. Weng<sup>150,u</sup>, T. Wengler<sup>29</sup>,
S. Wenig<sup>29</sup>, N. Wermes<sup>20</sup>, M. Werner<sup>48</sup>, P. Werner<sup>29</sup>, M. Werth<sup>162</sup>, M. Wessels<sup>58a</sup>, J. Wetter<sup>160</sup>, C. Weydert<sup>55</sup>,
 K. Whalen<sup>28</sup>, S.J. Wheeler-Ellis<sup>162</sup>, S.P. Whitaker<sup>21</sup>, A. White<sup>7</sup>, M.J. White<sup>85</sup>, S.R. Whitehead<sup>117</sup>, D. Whiteson<sup>162</sup>,
 D. Whittington<sup>60</sup>, F. Wicek<sup>114</sup>, D. Wicke<sup>173</sup>, F.J. Wickens<sup>128</sup>, W. Wiedenmann<sup>171</sup>, M. Wielers<sup>128</sup>, P. Wienemann<sup>20</sup>,
 C. Wiglesworth<sup>74</sup>, L.A.M. Wiik-Fuchs<sup>48</sup>, P.A. Wijeratne<sup>76</sup>, A. Wildauer<sup>166</sup>, M.A. Wildt<sup>41,q</sup>, I. Wilhelm<sup>125</sup>,
```

- H.G. Wilkens²⁹, J.Z. Will⁹⁷, E. Williams³⁴, H.H. Williams¹¹⁹, W. Willis³⁴, S. Willocq⁸³, J.A. Wilson¹⁷, M.G. Wilson¹⁴², A. Wilson⁸⁶, I. Wingerter-Seez⁴, S. Winkelmann⁴⁸, F. Winklmeier²⁹, M. Wittgen¹⁴², M.W. Wolter³⁸, H. Wolters^{123a,h}, W.C. Wong⁴⁰, G. Wooden⁸⁶, B.K. Wosiek³⁸, J. Wotschack²⁹, M.J. Woudstra⁸³, K.W. Wozniak³⁸,
- K. Wraight⁵³, C. Wright⁵³, M. Wright⁵³, B. Wrona⁷², S.L. Wu¹⁷¹, X. Wu⁴⁹, Y. Wu^{32b,ah}, E. Wulf³⁴, R. Wunstorf⁴², B.M. Wynne⁴⁵, S. Xella³⁵, M. Xiao¹³⁵, S. Xie⁴⁸, Y. Xie^{32a}, C. Xu^{32b,w}, D. Xu¹³⁸, G. Xu^{32a}, B. Yabsley¹⁴⁹,
- S. Yacoob^{144b}, M. Yamada⁶⁵, H. Yamaguchi¹⁵⁴, A. Yamamoto⁶⁵, K. Yamamoto⁶³, S. Yamamoto¹⁵⁴, T. Yamamura¹⁵⁴,

- S. Yacoob^{144b}, M. Yamada⁶⁵, H. Yamaguchi¹⁵⁴, A. Yamamoto⁶⁵, K. Yamamoto⁶³, S. Yamamoto¹⁵⁴, T. Yamamura¹⁵⁴, T. Yamanaka¹⁵⁴, J. Yamaoka⁴⁴, T. Yamazaki¹⁵⁴, Y. Yamazaki⁶⁶, Z. Yan²¹, H. Yang⁸⁶, U.K. Yang⁸¹, Y. Yang⁶⁰, Y. Yang^{32a}, Z. Yang^{145a,145b}, S. Yanush⁹⁰, Y. Yao¹⁴, Y. Yasu⁶⁵, G.V. Ybeles Smit¹²⁹, J. Ye³⁹, S. Ye²⁴, M. Yilmaz^{3c}, R. Yoosoofmiya¹²², K. Yorita¹⁶⁹, R. Yoshida⁵, C. Young¹⁴², S. Youssef²¹, D. Yu²⁴, J. Yu⁷, J. Yu¹¹¹, L. Yuan^{32a,ai}, A. Yurkewicz¹⁰⁵, B. Zabinski³⁸, V.G. Zaets ¹²⁷, R. Zaidan⁶², A.M. Zaitsev¹²⁷, Z. Zajacova²⁹, L. Zanello^{131a,131b}, A. Zaytsev¹⁰⁶, C. Zeitnitz¹⁷³, M. Zeller¹⁷⁴, M. Zeman¹²⁴, A. Zemla³⁸, C. Zendler²⁰, O. Zenin¹²⁷, T. Ženiš^{143a}, Z. Zinonos^{121a,121b}, S. Zenz¹⁴, D. Zerwas¹¹⁴, G. Zevi della Porta⁵⁷, Z. Zhan^{32d}, D. Zhang^{32b,ag}, H. Zhang⁸⁷, J. Zhang⁵, X. Zhang^{32d}, Z. Zhang¹¹⁴, L. Zhao¹⁰⁷, T. Zhao¹³⁷, Z. Zhao^{32b}, A. Zhemchugov⁶⁴, S. Zheng^{32a}, J. Zhong¹¹⁷, B. Zhou⁸⁶, N. Zhou¹⁵⁰, C.G. Zhu^{32d}, H. Zhu⁴¹, J. Zhu⁸⁶, Y. Zhu^{32b}, X. Zhuang⁹⁷, V. Zhuravlov⁹⁸, D. Zieminska⁶⁰, R. Zimmermann²⁰, S. Zimmermann⁴⁸, M. Ziolkowski¹⁴⁰, R. Zitoun⁴

- D. Zieminska⁶⁰, R. Zimmermann²⁰, S. Zimmermann²⁰, S. Zimmermann⁴⁸, M. Ziolkowski¹⁴⁰, R. Zitoun⁴, L. Živković³⁴, V.V. Zmouchko^{127,*}, G. Zobernig¹⁷¹, A. Zoccoli^{19a,19b}, A. Zsenei²⁹, M. zur Nedden¹⁵, V. Zutshi¹⁰⁵, L. Zwalinski²⁹.
- ¹ University at Albany, Albany NY, United States of America
- ² Department of Physics, University of Alberta, Edmonton AB, Canada
- ³ (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya;
- (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
- ⁴ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
- ⁵ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
- ⁶ Department of Physics, University of Arizona, Tucson AZ, United States of America
- ⁷ Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
- ⁸ Physics Department, University of Athens, Athens, Greece
- ⁹ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
- ¹² (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
- ¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
- ¹⁵ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ¹⁸ (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul;
- (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ¹⁹ (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
- ²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²¹ Department of Physics, Boston University, Boston MA, United States of America
- ²² Department of Physics, Brandeis University, Waltham MA, United States of America
- ²³ (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁴ Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

- ²⁵ (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
- ²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁸ Department of Physics, Carleton University, Ottawa ON, Canada
- ²⁹ CERN, Geneva, Switzerland
- ³⁰ Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
- ³¹ (a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
- ³² (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
- ³³ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3. Aubiere Cedex, France
- ³⁴ Nevis Laboratory, Columbia University, Irvington NY, United States of America
- ³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
- ³⁶ (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
- ³⁷ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
- ³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- ³⁹ Physics Department, Southern Methodist University, Dallas TX, United States of America
- ⁴⁰ Physics Department, University of Texas at Dallas, Richardson TX, United States of America
- ⁴¹ DESY, Hamburg and Zeuthen, Germany
- ⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
- ⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
- ⁴⁴ Department of Physics, Duke University, Durham NC, United States of America
- ⁴⁵ SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
- ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
- ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland
- ⁵⁰ (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
- ⁵¹ (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
- ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
- ⁵³ SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
- ⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
- ⁵⁶ Department of Physics, Hampton University, Hampton VA, United States of America
- ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
- ⁵⁸ (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c)ZITI Institut für technische Informatik,

Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

- ⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
- ⁶⁰ Department of Physics, Indiana University, Bloomington IN, United States of America
- ⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
- ⁶² University of Iowa, Iowa City IA, United States of America
- ⁶³ Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
- ⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan

- ⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan
- ⁶⁸ Kyoto University of Education, Kyoto, Japan
- ⁶⁹ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
- ⁷⁰ Physics Department, Lancaster University, Lancaster, United Kingdom
- ⁷¹ (a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
- ⁷² Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁷³ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
- ⁷⁴ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
- ⁷⁵ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
- ⁷⁶ Department of Physics and Astronomy, University College London, London, United Kingdom
- ⁷⁷ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris. France
- ⁷⁸ Fysiska institutionen, Lunds universitet, Lund, Sweden
- ⁷⁹ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
- 80 Institut für Physik, Universität Mainz, Mainz, Germany
- ⁸¹ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- 82 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- 83 Department of Physics, University of Massachusetts, Amherst MA, United States of America
- ⁸⁴ Department of Physics, McGill University, Montreal QC, Canada
- 85 School of Physics, University of Melbourne, Victoria, Australia
- ⁸⁶ Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
- ⁸⁷ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
- ⁸⁸ (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- ⁸⁹ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
- ⁹⁰ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
- ⁹¹ Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
- ⁹² Group of Particle Physics, University of Montreal, Montreal QC, Canada
- 93 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁴ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- 95 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- ⁹⁶ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- ⁹⁷ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- 98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- 99 Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰⁰ Graduate School of Science, Nagoya University, Nagoya, Japan
- ¹⁰¹ (a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- ¹⁰² Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
- ¹⁰³ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
- ¹⁰⁴ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁵ Department of Physics, Northern Illinois University, DeKalb IL, United States of America
- ¹⁰⁶ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
- ¹⁰⁷ Department of Physics, New York University, New York NY, United States of America
- ¹⁰⁸ Ohio State University, Columbus OH, United States of America
- ¹⁰⁹ Faculty of Science, Okayama University, Okayama, Japan
- ¹¹⁰ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
- ¹¹¹ Department of Physics, Oklahoma State University, Stillwater OK, United States of America
- ¹¹² Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹³ Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
- ¹¹⁴ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
- 115 Graduate School of Science, Osaka University, Osaka, Japan

- ¹¹⁶ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁷ Department of Physics, Oxford University, Oxford, United Kingdom
- 118 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
- ¹¹⁹ Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
- ¹²⁰ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²¹ (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²² Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
- ¹²³ (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
- 124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁵ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- 126 Czech Technical University in Prague, Praha, Czech Republic
- 127 State Research Center Institute for High Energy Physics, Protvino, Russia
- ¹²⁸ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹²⁹ Physics Department, University of Regina, Regina SK, Canada
- 130 Ritsumeikan University, Kusatsu, Shiga, Japan
- 131 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- 132 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- 133 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- ¹³⁴ (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco
- ¹³⁵ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
- ¹³⁶ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
- ¹³⁷ Department of Physics, University of Washington, Seattle WA, United States of America
- ¹³⁸ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ¹³⁹ Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴⁰ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴¹ Department of Physics, Simon Fraser University, Burnaby BC, Canada
- ¹⁴² SLAC National Accelerator Laboratory, Stanford CA, United States of America
- ¹⁴³ (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- 144 $^{(a)}$ Department of Physics, University of Johannesburg, Johannesburg; $^{(b)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁵ (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁶ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁷ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
- ¹⁴⁸ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁴⁹ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵⁰ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵¹ Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
- ¹⁵² Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵³ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁴ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- 155 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁶ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- 157 Department of Physics, University of Toronto, Toronto ON, Canada

- ¹⁵⁸ (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
- ¹⁵⁹ Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- ¹⁶⁰ Science and Technology Center, Tufts University, Medford MA, United States of America
- ¹⁶¹ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶² Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
- ¹⁶³ (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
- ¹⁶⁴ Department of Physics, University of Illinois, Urbana IL, United States of America
- ¹⁶⁵ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and

Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

- ¹⁶⁷ Department of Physics, University of British Columbia, Vancouver BC, Canada
- ¹⁶⁸ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
- ¹⁶⁹ Waseda University, Tokyo, Japan
- ¹⁷⁰ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷¹ Department of Physics, University of Wisconsin, Madison WI, United States of America
- ¹⁷² Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷³ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁴ Department of Physics, Yale University, New Haven CT, United States of America
- ¹⁷⁵ Yerevan Physics Institute, Yerevan, Armenia
- 176 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
- ^c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ^d Also at TRIUMF, Vancouver BC, Canada
- ^e Also at Department of Physics, California State University, Fresno CA, United States of America
- f Also at Novosibirsk State University, Novosibirsk, Russia
- g Also at Fermilab, Batavia IL, United States of America
- ^h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
- ⁱ Also at Università di Napoli Parthenope, Napoli, Italy
- ^j Also at Institute of Particle Physics (IPP), Canada
- ^k Also at Department of Physics, Middle East Technical University, Ankara, Turkey
- ¹ Also at Louisiana Tech University, Ruston LA, United States of America
- ^m Also at Department of Physics and Astronomy, University College London, London, United Kingdom
- ⁿ Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
- ^o Also at Department of Physics, University of Cape Town, Cape Town, South Africa
- ^p Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ^q Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
- ^r Also at Manhattan College, New York NY, United States of America
- ^s Also at School of Physics, Shandong University, Shandong, China
- ^t Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- ^u Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
- V Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
- W Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat
- a l'Energie Atomique), Gif-sur-Yvette, France
- ^x Also at Section de Physique, Université de Genève, Geneva, Switzerland
- ^y Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
- ^z Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
- ^{aa} Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
- ab Also at California Institute of Technology, Pasadena CA, United States of America

- ac Also at Institute of Physics, Jagiellonian University, Krakow, Poland
- ad Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
- ae Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- af Also at Department of Physics, Oxford University, Oxford, United Kingdom
- ag Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
- ah Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
- ^{ai} Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
- * Deceased