Homework 8

Wenye Xiong 2023533141

May 4, 2024

1 Problem 1

The truth table for $p \to \neg q \vee r \to (\neg r \to s \wedge p)$ is shown below:

q	r	s	p	$p \to \neg q \lor r \to (\neg r \to s \land p)$
F	F	F	F	Т
F	F	F	Т	${ m T}$
F	F	Γ	F	${ m T}$
F	F	Т	Т	${ m T}$
F	Т	F	F	${f T}$
F	Т	F	Т	${f T}$
F	Т	Т	F	${ m T}$
F	Т	Т	Т	${f T}$
Т	F	F	F	${ m F}$
T	F	F	Т	${ m T}$
T	F	T	F	${ m T}$
T	F	T	Т	${ m T}$
Т	Т	F	F	${ m T}$
Т	Т	F	Т	${ m T}$
Т	Т	Т	F	${ m T}$
Т	Т	Т	Т	${f T}$

2 Problem 2

(1): The truth table for the formula $((p \lor q) \land (r \lor s)) \rightarrow (((p \to q) \lor (p \to r)) \land ((q \to p) \lor (q \to p)))$ is:

p	q	r	s	$((p \lor q) \land (r \lor s)) \rightarrow (((p \rightarrow q) \lor (p \rightarrow r)) \land ((q \rightarrow p) \lor (q \rightarrow p)))$
F	F	F	F	T
F	F	F	Т	T
F	F	T	F	T
F	F	T	Т	T
F	Т	F	F	T
F	Т	F	Т	F
F	Т	Т	F	F
F	Т	T	Т	F
T	F	F	F	T
T	F	F	Т	F
T	F	T	F	T
Γ	F	T	Т	T
T	Т	F	F	T
T	Т	F	Т	T
T	Т	Т	F	T
T	T	Τ	Т	T

So the formula is a contingency. (2): The truth table for the formula $(\neg(p \leftrightarrow q) \to ((p \land \neg q) \lor (\neg p \land q))) \lor r$ is:

p	q	r	$\neg (p \leftrightarrow q) \rightarrow ((p \land \neg q) \lor (\neg p \land q)) \lor r$
F	F	F	Т
F	\mathbf{F}	Γ	ho
F	Τ	F	m T
F	Т	T	m T
Τ	F	F	m T
Τ	F	Т	m T
T	Т	F	Γ
T	Т	T	Γ

So the formula is a tautology. (3): The truth table for the formula $((p \to r) \land (q \to s) \land (p \lor q)) \to (r \lor s)$ is:

p	q	r	s	$((p \to r) \land (q \to s) \land (p \lor q)) \to (r \lor s)$
F	F	F	F	T
F	F	F	Γ	${ m T}$
F	F	Т	F	${ m T}$
F	F	Т	Т	${ m T}$
F	Т	F	F	${ m T}$
F	Т	F	Т	${ m T}$
F	T	T	F	${ m T}$
F	Т	T	T	${ m T}$
T	F	F	F	${ m T}$
T	F	F	Т	${ m T}$
T	F	Т	F	${ m T}$
T	F	Т	Т	${ m T}$
T	Т	F	F	${ m T}$
T	Т	F	Т	T
T	Т	Т	F	${ m T}$
Т	Т	Т	Т	Т

So the formula is a tautology.

3 Problem 3

- (1): $(B \lor A) \to C$
- (2): $((A \to C) \land (\neg A)) \to ((\neg B) \lor (\neg C))$

4 Problem 4

- (1): A: "x**y is valid Python", B: "x is a numeric number", C: "y is a numeric number". The logical notation is: $A \leftrightarrow (B \land C)$.
- (2): A: "x + y is valid Python", B: "x is a numeric number", C: "y is a numeric number", D: "x is a list", E: "y is a list". The logical notation is: $A \leftrightarrow ((B \land C) \lor (D \land E))$.
- (3): A: "x * y is valid Python", B: "x is a numeric number", C: "y is a numeric number", D: "x is a list", E: "y is a list". The logical notation is: $A \leftrightarrow ((B \land C) \lor (D \land C) \lor (E \land B))$.
- (4): A: "x * y is a list", B: "x * y is valid Python", C: "x is a numeric num-

ber", D: "y is a numeric number". The logical notation is: $(B \land (\neg(C \land D))) \rightarrow A$.

(5): A: "x + y is valid Python", B: "x ** y is valid Python", C: "x is a list". The logical notation is: $(A \land B) \rightarrow (\neg C)$.

5 Problem 5

(1):
$$(p \to \neg p) \to (p \to q)$$

(2):
$$(p \to (\neg p \to p)) \to q$$

6 Problem 6

(1): To prove that $A \oplus B \leftrightarrow \neg (A \leftrightarrow B)$ is a tautology, let's consider the truth table for $A \oplus B$ and $\neg (A \leftrightarrow B)$:

\overline{A}	B	$A \oplus B$	$\neg(A \leftrightarrow B)$
F	F	F	F
\mathbf{F}	Т	${ m T}$	${ m T}$
\mathbf{T}	F	${ m T}$	${ m T}$
Τ	Γ	\mathbf{F}	F

So $A \oplus B \leftrightarrow \neg (A \leftrightarrow B)$ is a tautology.

(2): A = "You may contact me by phone", B = "You may contact me by email", C = "I am available for an on-site interview on October 8th in Minneapolis", D = "I am available for an on-site interview on October 8th in Hong Kong". The logical notation is: $(A \vee B) \wedge (C \oplus D)$.

7 Problem 7

$$A_1 = p \wedge q \wedge r$$

$$A_2 = p \wedge q \wedge \neg r$$

$$A_3 = p \land \neg q \land r$$

$$A_4 = p \land \neg q \land \neg r$$

$$A_5 = \neg p \land q \land r$$

$$A_6 = \neg p \land q \land \neg r$$

```
\begin{split} A_7 &= \neg p \wedge \neg q \wedge r \\ A_8 &= \neg p \wedge \neg q \wedge \neg r \\ A &= A_2 \vee A_4 \vee A_6 \vee A_7 \vee A_8 \end{split}
```

8 Problem 8

$$A = (p \land q) \lor (\neg p \land q \land r), \ B = (p \lor (q \land r)) \land (q \lor (\neg p \land r))$$

```
\begin{split} A &\equiv (p \wedge q) \vee (\neg p \wedge q \wedge r) \\ &\equiv (p \vee (\neg p \wedge q \wedge r)) \wedge (q \vee (\neg p \wedge q \wedge r)) \\ &\equiv (p \vee \neg p) \wedge (p \vee (q \wedge r)) \wedge (q \vee (\neg p \wedge r)) \\ &\equiv (p \vee (q \wedge r)) \wedge (q \vee (\neg p \wedge r)) \equiv B \end{split}
```

9 Problem 9

```
(1): To show that (p \to q) \land (r \to s) \to ((p \land r) \to (q \land s)) is a tautology, we are going to rewrite this to T:
```

$$(p \to q) \land (r \to s) \to ((p \land r) \to (q \land s)) \leftrightarrow (\neg p \lor q) \land (\neg r \lor s) \to \neg (p \land r) \lor (q \land s)$$

$$\leftrightarrow (\neg p \lor q) \land (\neg r \lor s) \rightarrow (\neg p \lor \neg r) \lor (q \land s)$$

$$\leftrightarrow (\neg p \lor q) \land (\neg r \lor s) \rightarrow (\neg p \lor \neg r \lor q) \land (\neg p \lor \neg r \lor s)$$

$$\leftrightarrow (\neg p \lor q) \land (\neg r \lor s) \rightarrow ((\neg p \lor q) \land (\neg r \lor s)) \lor (\neg p \lor \neg r)$$

$$\leftrightarrow \neg((\neg p \lor q) \land (\neg r \lor s)) \lor ((\neg p \lor q) \land (\neg r \lor s)) \lor (\neg p \lor \neg r)$$

$$\leftrightarrow T \vee (\neg p \vee \neg r) \equiv T$$

(2): $To show that(p \to q) \land (r \to s) \to ((p \land r) \to (q \land s))$ is a tautology, we are going to rewrite this to T:

$$((p \lor q) \land (p \to r) \land (q \to r)) \to r$$

$$\leftrightarrow ((p \lor q) \land (\neg p \lor r) \land (\neg q \lor r)) \rightarrow r$$

$$\leftrightarrow \neg((p \lor q) \land (\neg p \lor r) \land (\neg q \lor r)) \lor r$$

$$\leftrightarrow \neg (p \lor q) \lor \neg (\neg p \lor r) \lor \neg (\neg q \lor r) \lor r$$

$$\leftrightarrow (\neg p \land \neg q) \lor (\neg \neg p \land \neg r) \lor (\neg \neg q \land \neg r) \lor r$$

$$\leftrightarrow (\neg p \land \neg q) \lor (p \land \neg r) \lor (q \land \neg r) \lor r$$

$$\leftrightarrow (\neg p \land \neg q) \lor (p \land \neg r) \lor ((q \lor r) \land (\neg r \lor r))$$

$$\leftrightarrow (\neg p \land \neg q) \lor (p \land \neg r) \lor ((q \lor r) \land T)$$

$$\leftrightarrow (\neg p \land \neg q) \lor (p \land \neg r) \lor q \lor r$$

$$\leftrightarrow (\neg p \land \neg q) \lor (p \land \neg r) \lor r \lor q$$

$$\leftrightarrow (\neg p \land \neg q) \lor ((p \lor r) \land (\neg r \lor r)) \lor q$$

$$\leftrightarrow (\neg p \land \neg q) \lor ((p \lor r) \land T) \lor q$$

- $\leftrightarrow (\neg p \land \neg q) \lor p \lor r \lor q$
- $\leftrightarrow ((\neg p \lor p) \land (\neg q \lor p)) \lor r \lor q$
- $\leftrightarrow (T \land (\neg q \lor p)) \lor r \lor q$

```
\begin{split} & \longleftrightarrow \neg q \lor p \lor r \lor q \\ & \longleftrightarrow \neg q \lor q \lor p \lor r \\ & \longleftrightarrow T \lor p \lor r \\ & \longleftrightarrow T \end{split}
```

10 Problem 10

You should ask: "What path would the other type of person tell me is the correct one?" And then always choose the opposite one to go.

P: The man is a knight, R: The way he told me is to turn left. Q: The correct way is to turn left. And here's the truth table for the problem:

Р	Q	R
Τ	Τ	F
Τ	F	Γ
F	Τ	F
F	F	Γ