432 Class 12 Slides

thomase love. github. io/432

2022-02-17

Today's Agenda

Some reminders and loose ends

- for linear regression models
- for logistic regression models

We'll return to tidymodels next time.

Setup

```
library(here); library(knitr)
library(magrittr); library(janitor)
library(naniar); library(equatiomatic)
library(GGally); library(broom)
library(rms)

library(tidyverse)

theme_set(theme_bw())
```

Linear Regression

The day12 Data Set

These data are simulated.

```
dat12 <- readRDS(here("data/dat12.Rds"))</pre>
names(dat12)
[1] "subj" "result" "sur s" "typeA" "sbp" "sroh"
miss case table(dat12)
# A tibble: 1 x 3
  n_miss_in_case n_cases pct_cases
           <int> <int> <dbl>
```

100

400

0

The dat12 codebook

Variable	Description	Туре
result	Our outcome (0-500 scale)	quant.
sur_s	Survey sur_s (0-200 scale)	quant.
${ t type A}$	Type A (No or Yes)	binary
sbp	Systolic Blood Pressure	quant.
sroh	Self-Reported Health (E/VG/G/F)	4 cats.

Summary of dat12

summary(dat12 %>% select(-subj))

```
result sur_s
                           typeA
                                        sbp
Min. : 46.0
             Min. : 39.0 No :203
                                    Min. : 85.0
1st Qu.:160.0 1st Qu.: 87.0 Yes:197 1st Qu.:132.0
Median :168.0
             Median :101.0
                                    Median :147.0
Mean :168.8
             Mean :100.2
                                    Mean :148.1
3rd Qu.:177.0
             3rd Qu.:114.0
                                    3rd Qu.:165.0
Max. :483.0
                                    Max. :215.0
             Max. :185.0
sroh
E: 68
VG: 147
G:139
F: 46
```

OLS Model for 'result" without Non-Linear Terms

Variable	Description
result	Our outcome (0-500 scale)
sur_s	Survey sur_s (0-200 scale)
${ t type A}$	Type A (No or Yes)
sbp	Systolic Blood Pressure
sroh	Self-Reported Health (E/VG/G/F)

How many degrees of freedom does the model modA use?

Model modA

modA

```
modA
Linear Regression Model
ols(formula = result ~ sur_s + typeA + sbp + sroh, data = dat12,
    x = TRUE, y = TRUE
               Model Likelihood
                                 Discrimination
                     Ratio Test
                                        Indexes
Obs
        400
                         296.82 R2
                                        0.524
              LR chi2
sigma16.8657
             d.f.
                          6 R2 adj 0.517
d.f.
        393
              Pr(> chi2) 0.0000
                                         19.692
Residuals
     Min
             10 Median
                              30
                                     Max
-69.1043 -7.1600 -0.7081 6.0485 250.0511
                 S.E. t Pr(>|t|)
         Coef
Intercept 134.0500 7.1558 18.73 <0.0001
sur_s 0.7180 0.0411 17.48 <0.0001
typeA=Yes 10.1832 1.6977 6.00 <0.0001
sbp
    -0.2292 0.0365 -6.28 <0.0001
sroh=VG -7.7635 2.4803 -3.13 0.0019
sroh=G -11.1855 2.5028 -4.47 <0.0001
sroh=F -12.9429 3.2348 -4.00 <0.0001
```

ANOVA results for modA

anova(modA)

```
d.f. Partial SS MS
Factor
                86894.325 86894.3250 305.48 < .0001
sur_s
            1 10233.702 10233.7022 35.98 <.0001
typeA
sbp
                11222.442 11222.4417 39.45 <.0001
            3
sroh
                 6825.387 2275.1291 8.00 <.0001
            6 122994.902 20499.1504 72.07 <.0001
REGRESSION
ERROR
          393
               111789.458 284.4515
```

Analysis of Variance

Response: result

Plot Effect Sizes

plot(summary(modA))

Consider Potential Non-Linear Terms

Using the Spearman plot as a guide...

Variable	Description	Adj. Spearman $ ho^2$
sur_s	Survey sur_s (0-200 scale)	Highest
typeA	Type A (No or Yes)	2nd Highest
sbp	Systolic Blood Pressure	3rd Highest
sroh	Self-Reported Health $(E/VG/G/F)$	Lowest

Using Polynomials or Splines

- Can we build a (polynomial or spline) non-linear term that will add one more degree of freedom to our original main-effects model?
- What if we can afford 2 additional df? Or 3?

Using Interaction terms

- How many df does the best categorical-categorical interaction use?
- How many df does the best categorical-quantitative interaction use?

Adding Polynomial Terms in sur_s

We'll look at a quadratic, then a cubic polynomial...

Quadratic Polynomial adds 1 df to modA's 6

modP2

```
modP2
Linear Regression Model
ols(formula = result ~ pol(sur_s, 2) + typeA + sbp + sroh, data = dat12,
    x = TRUE, y = TRUE
                Model Likelihood
                                   Discrimination
                      Ratio Test
                                          Indexes
Obs
         400
               LR chi2
                          353.07
                                   R2
                                          0.586
sigma15.7405
               d.f.
                                   R2 adj 0.579
d.f.
               Pr(> chi2) 0.0000
                                           19.680
         392
Residuals
                10 Median
      Min
                                   3Q
                                            Max
           -7.3692 0.6981
-100.7397
                               7.5392 188.5970
          Coef
                               Pr(>|t|)
                  S.E.
Intercept 222.3626 13.2799 16.74 < 0.0001
sur_s
         -1.1718 0.2486 -4.71 <0.0001
sur s^2 0.0094 0.0012 7.69 <0.0001
typeA=Yes 11.0031 1.5881 6.93 <0.0001
sbp
           -0.2232 0.0341 -6.55 < 0.0001
sroh=VG -6.4802 2.3209 -2.79 0.0055
sroh=G -9.4029 2.3473 -4.01 <0.0001
          -10.9390 3.0302 -3.61 0.0003
sroh=F
```

Plot Effect Sizes

plot(summary(modP2))

What does model modA look like?

ggplot(Predict(modA))

What does model modP2 look like?

ggplot(Predict(modP2))

Nomogram for model modA

plot(nomogram(modA))

Nomogram for model modP2

plot(nomogram(modP2))

Do the non-linear terms in modP2 do much?

anova(modP2)

```
Factor d.f. Partial SS MS
                                           Ρ
               101560.602 50780.3008 204.95 <.0001
sur s
 Nonlinear
            1 14666,277 14666,2767 59,19 < .0001
            1 11894.005 11894.0047 48.01 <.0001
typeA
sbp
                10636.075 10636.0753 42.93 <.0001
            3
                 4795.273 1598.4244 6.45 3e-04
sroh
              137661.179 19665.8827 79.37 <.0001
REGRESSION
ERROR
          392
                97123.181 247.7632
```

Analysis of Variance

Response: result

Do the non-linear terms in modP2 help much?

```
AIC(modA); BIC(modA)
    d.f.
3404.314
    d.f.
3436,246
AIC(modP2); BIC(modP2)
    d.f.
3350.059
    d.f.
```

3385.982

Cubic (degree 3) polynomial adds 2 df to modA's 6

modP3

```
modP3
Linear Regression Model
ols(formula = result ~ pol(sur_s, 3) + typeA + sbp + sroh, data = dat12,
    x = TRUE, y = TRUE)
                 Model Likelihood
                                     Discrimination
                       Ratio Test
                                            Indexes
obs
        400
               LR chi2
                          1227.39
                                     R2
                                              0.954
sigma5.2836
               d.f.
                                     R2 adi 0.953
d.f.
               Pr(> chi2) 0.0000
                                             17.754
        391
                                     a
Residuals
     Min
                    Median
               10
                                 3Q
                                         Max
 -20.9404 -3.5022
                    0.1353 3.2907 14.6336
                                   Pr(>|t|)
          Coef
                    S.E.
Intercept -304.4469 10.4759 -29.06 <0.0001
sur_s
            15.0487 0.3036 49.57 < 0.0001
sur_s^2
            -0.1508 0.0029 -51.79 <0.0001
sur_s^3
            0.0005
                     0.0000
                            55.57 < 0.0001
typeA=Yes
            10.4406
                     0.5332 19.58 < 0.0001
            -0.1955 0.0114 -17.08 < 0.0001
sbp
sroh=VG
            -2.7809 0.7819 -3.56 0.0004
            -5.4697 0.7911 -6.91 <0.0001
sroh=G
sroh=F
           -10.2759 1.0172 -10.10 <0.0001
```

What does model modP3 look like?

Nomogram for model modP3

plot(nomogram(modP3))

How about a restricted cubic spline in cigs?

RCS with 3 knots adds 1 df to modA's 6

modC3

```
modC3
Linear Regression Model
ols(formula = result ~ rcs(sur s. 3) + typeA + sbp + sroh. data = dat12.
    X = TRUE, y = TRUE
                 Model Likelihood
                                    Discrimination
                      Ratio Test
                                           Indexes
               LR chi2
                          310.56 R2
 obs
         400
                                           0.540
 sigma16.5997
               d.f.
                                    R2 adj 0.532
d.f.
         392
               Pr(> chi2) 0.0000
                                           19.734
 Residuals
      Min
                      Median
                 1Q
                                    3Q
                                            Max
 -81.57619 -7.35312 -0.04281 6.90506 231.78407
          Coef
                   S.E. t
                               Pr(>|t|)
 Intercept 156.6095 9.3149 16.81 < 0.0001
            0.4221 0.0896 4.71 < 0.0001
 sur_s
 sur s'
           0.3544 0.0958 3.70 0.0002
 typeA=Yes 10.5500 1.6739 6.30 <0.0001
           -0.2251 0.0359 -6.26 <0.0001
 sbp
 sroh=VG -7.1198 2.4474 -2.91 0.0038
sroh=G -10.3836 2.4729 -4.20 <0.0001
 sroh=F
          -11.9694 3.1947 -3.75 0.0002
```

What does model modC3 look like?

ggplot(Predict(modC3))

What does the nomogram for modC3 look like?

plot(nomogram(modC3))

Do the non-linear terms help much in modC3?

```
AIC(modC3); BIC(modC3)
    d.f.
3392.579
    d.f.
3428.502
AIC(modA); BIC(modA)
    d.f.
3404.314
```

d.f. 3436.246

ANOVA table for modC3?

anova(modC3)

```
Factor d.f. Partial SS MS
                                           Ρ
                90667.755 45333.8775 164.52 < .0001
sur s
 Nonlinear
                 3773.430 3773.4300 13.69 2e-04
            1 10945.709 10945.7087 39.72 <.0001
typeA
sbp
                10806.525 10806.5247 39.22 < .0001
            3
                 5820.777 1940.2589 7.04 1e-04
sroh
               126768.332 18109.7617 65.72 <.0001
REGRESSION
ERROR
          392
               108016.028 275.5511
```

Analysis of Variance

Response: result

RCS with 4 knots adds 2 df to modA's 6

modC4

```
modC4
Linear Regression Model
ols(formula = result ~ rcs(sur_s, 4) + typeA + sbp + sroh, data = dat12,
    x = TRUE. y = TRUE)
                 Model Likelihood
                                    Discrimination
                       Ratio Test
                                           Indexes
Obs
         400
                LR chi2
                          617.42
                                    R2
                                             0.786
sigma11.3258
                                    R2 adi 0.782
                d.f.
d.f.
         391
                Pr(> chi2) 0.0000
                                    a
                                            20.628
Residuals
               1Q Median
     Min
                                 3Q
-36.3707 -4.5731
                    0.2394 4.8794 147.0369
                   S.E.
          Coef
                                Pr(>|t|)
Intercept 39.4204 8.7154
                          4.52 < 0.0001
          1.9340 0.0989 19.55 < 0.0001
sur s
sur s'
           -4.9038 0.2683 -18.27 <0.0001
sur s''
           23.5323 1.1447 20.56 < 0.0001
typeA=Yes 9.5443 1.1433 8.35 <0.0001
sbp
           -0.1753 0.0246 -7.12 < 0.0001
sroh=VG
           -2.1722 1.6858 -1.29 0.1983
sroh=G
           -5.1198 1.7053 -3.00 0.0029
sroh=F
          -11.0668 2.1802 -5.08 < 0.0001
```

What does model modC4 look like?

What does the nomogram for modC4 look like?

plot(nomogram(modC4))

RCS with 5 knots adds 3 df to modA's 6

modC5

```
modC5
Linear Regression Model
ols(formula = result ~ rcs(sur_s, 5) + typeA + sbp + sroh, data = dat12,
    x = TRUE, y = TRUE)
                 Model Likelihood
                                     Discrimination
                       Ratio Test
                                            Indexes
         400
                LR chi2
                           665.58
                                             0.811
 Obs
                                     R2
 sigma10.6778
                d.f.
                                     R2 adi
                                            0.806
d.f.
         390
                Pr(> chi2) 0.0000
                                             20.398
 Residuals
     Min
                    Median
                                         Max
               10
                                 30
 -43 8254 -4 1905
                    0.2477
                             4.9296 126.8751
                                Pr(>|t|)
          Coef
                   S.E.
 Intercept 57.3276 9.6251 5.96 <0.0001
 sur s
            1.6682 0.1186 14.06 < 0.0001
 sur_s'
           -3.2491 0.5682 -5.72 <0.0001
sur_s''
           1.6160 3.0831 0.52 0.6005
sur_s'''
           27.0995 5.2221 5.19 < 0.0001
 typeA=Yes 9.7539 1.0783 9.05 <0.0001
 sbp
           -0.1791 0.0233 -7.70 <0.0001
 sroh=VG
          -2.2273 1.5891 -1.40 0.1618
 sroh=G
          -4.6241 1.6095 -2.87 0.0043
 sroh=F
          -11.0161 2.0555 -5.36 <0.0001
```

What does model modC5 look like?

What does the nomogram for modC5 look like?

plot(nomogram(modC5))

Splines and Polynomials with ols (or 1rm)

Model	Coeffs.	"Bends"	DF added
Main Effects (modA)	None	None	_
Polynomial, degree 2 (P2)	^2	1	1
Polynomial, degree 3 (P3)	^2, ^3	2	2
RCS, 3 knots (C3)	1	2	1
RCS, 4 knots (C4)	', ''	3	2
RCS, 5 knots (C5)	', '', '''	4	3

• RCS = Restricted Cubic Spline

What about an interaction term instead?

- How many df does the best categorical-categorical interaction use?
- 2 How many df does the best categorical-quantitative interaction use?

Models with Interaction Terms

Model modI1 adds how many df to modA?

modI1

```
> modI1
Linear Regression Model
 ols(formula = result ~ sur_s * typeA + sbp + sroh, data = dat12)
                 Model Likelihood
                                    Discrimination
                       Ratio Test
                                          Indexes
         400
                LR chi2
                          312.57
                                   R2
                                           0.542
 Obs
               d.f.
 sigma16.5580
                                   R2 adi 0.534
                Pr(> chi2) 0.0000
 d.f.
         392
                                    a
                                           19.753
 Residuals
               10 Median
     Min
                                30
                                        Max
 -61.0473 -6.8744 -0.7916 6.0512 238.3297
                  Coef
                          S.E. t
                                      Pr(>|t|)
 Intercept
                 118.8604 8.0008 14.86 < 0.0001
                  0.8596 0.0539 15.96 < 0.0001
 sur_s
 typeA=Yes 42.5882 8.3362 5.11 <0.0001
 sbp
                 -0.2245 0.0359 -6.26 <0.0001
 sroh=VG
                 -7.1991 2.4392 -2.95 0.0034
 sroh=G
                  -10.3201 2.4668 -4.18 <0.0001
 sroh=F
                  -12.7668 3.1761 -4.02 <0.0001
 sur s * typeA=Yes -0.3233 0.0815 -3.97 <0.0001
```

ANOVA for modI1

anova(modI1)

```
anova(modI1)
              Analysis of Variance
                                            Response: result
                                            d.f. Partial SS MS
Factor
sur_s (Factor+Higher Order Factors)
                                                  91209.748 45604.8740 166.34 <.0001
All Interactions
                                                4315.423 4315.4231 15.74 1e-04
typeA (Factor+Higher Order Factors)
                                                             7274.5626
                                                  14549.125
                                                                        26.53 < .0001
All Interactions
                                                 4315.423
                                                             4315.4231
                                                                        15.74 1e-04
sbp
                                                  10749.174 10749.1735
                                                                      39.21 <.0001
sroh
                                                  6136.426
                                                            2045.4754 7.46 1e-04
              (Factor+Higher Order Factors)
                                                  4315.423 4315.4231 15.74 1e-04
sur_s * typeA
REGRESSION
                                                 127310.325 18187.1893
                                                                       66.34 < .0001
ERROR
                                            392
                                                 107474.035
                                                              274.1685
```

What does modI1 look like?

Nomogram for modI1

plot(nomogram(modI1))

Model modI2 adds how many df to modC4?

modI2

```
modI2
Linear Regression Model
 ols(formula = result ~ rcs(sur_s, 4) + typeA + sur_s %ia% typeA +
     sbp + sroh, data = dat12)
                 Model Likelihood
                                     Discrimination
                       Ratio Test
                                            Indexes
 Obs
         400
                           634.39
                                    R2
                                             0.795
                LR chi2
 sigma11.1022
                d.f.
                                    R2 adi 0.791
                Pr(> chi2) 0.0000
 d.f.
         390
                                             20.660
 Residuals
     Min
             10 Median
                             3Q
                                    Max
 -32.937 -4.914 -0.253 5.024 138.939
                  Coef
                           S.E.
                                         Pr(>|t|)
 Intercept
                  33.6458 8.6580
                                    3.89 0.0001
                  1.9693 0.0973 20.23 < 0.0001
 sur_s
 sur s'
                  -4.7400 0.2660 -17.82 <0.0001
 sur_s''
                   22.9316 1.1316 20.26 < 0.0001
                  32.4408 5.6801 5.71 < 0.0001
 typeA=Yes
 sur_s * typeA=Yes -0.2278 0.0554 -4.11 <0.0001
                  -0.1728 0.0242 -7.15 <0.0001
 ada
 sroh=VG
                  -1.8306 1.6546 -1.11 0.2693
 sroh=G
                  -4.5556 1.6773 -2.72 0.0069
 sroh=F
                  -10.8748 2.1376 -5.09 <0.0001
```

ANOVA for modI2

anova(modI2)

```
anova(modI2)
               Analysis of Variance
                                            Response: result
                                            d.f. Partial SS MS
Factor
sur_s (Factor+Higher Order Factors)
                                                150612.707 37653.1768 305.48 <.0001
All Interactions
                                                             2083.9220 16.91 < .0001
                                                   2083.922
Nonlinear
                                                  59402.959 29701.4795 240.97 <.0001
typeA (Factor+Higher Order Factors)
                                                11023.724 5511.8620 44.72 <.0001
All Interactions
                                                   2083.922 2083.9220 16.91 <.0001
sur_s * typeA (Factor+Higher Order Factors)
                                                   2083.922 2083.9220 16.91 <.0001
                                                   6308.212 6308.2124 51.18 <.0001
sbp
sroh
                                                   3849.970 1283.3234 10.41 <.0001
                                                  63718.382 21239.4607 172.32 <.0001
TOTAL NONLINEAR + INTERACTION
REGRESSION
                                                 186713.284 20745.9205 168.31 <.0001
                                                  48071.076
                                                              123.2592
ERROR
                                             390
```

What does modI2 look like?

Nomogram for modI2

plot(nomogram(modI2))

Comparing Models?

```
set.seed(4321); validate(modA)
         index.orig training test optimism
R-square
             0.5239
                      0.5485 0.5035
                                       0.0450
MSE
           279.4736 309.0788 291.4385 17.6403
            19.6922 20.4852 19.5334 0.9518
g
             0.0000 0.0000 5.5331 -5.5331
Intercept
             1.0000 1.0000 0.9670 0.0330
Slope
         index.corrected n
R-square
                  0.4788 40
                261.8333 40
MSF.
                 18.7404 40
g
                  5.5331 40
Intercept
Slope
                  0.9670 40
```

Ran validate for other models (see next slide)

Table of validate Results

Model	Raw R ²	Corrected R^2	Corrected MSE
modA (Main Effects)	0.5239	0.4788	261.8
modP2 (Quadr. Pol.)	0.5863	0.4756	293.8
modP3 (Cubic Pol.)	0.9535	0.9684	28.5
modC3 (RCS, 3 knots)	0.5399	0.4510	313.0
modC4 (RCS, 4 knots)	0.7864	0.7294	162.8
modC5 (RCS, 5 knots)	0.8106	0.7580	137.6
modI1 (interaction)	0.5422	0.4413	339.2
modI2 (int + RCS4)	0.7953	0.7337	161.4

Making Predictions

Suppose we want to predict the result for these new subjects:

```
new_people <- tibble(
    name = c("Dave", "Edna"),
    sur_s = c(100, 115), typeA = c("Yes", "No"),
    sbp = c(140, 125), sroh = c("G", "E"))

new_people %>% kable()
```

name	sur_s	typeA	sbp	sroh
Dave	100	Yes	140	G
Edna	115	No	125	Е

Predicting Dave and Edna with modA

Individual Prediction Intervals

```
predict(modA, newdata = data.frame(new_people),
        conf.int = 0.95, conf.type = "individual")
$linear.predictors
172.7522 187.9628
$lower
139,4297 154,4792
$upper
206.0747 221.4463
```

Predicting mean of people just like Dave and Edna with modA

Mean Prediction Intervals

```
predict(modA, newdata = data.frame(new_people),
        conf.int = 0.95, conf.type = "mean")
$linear.predictors
172.7522 187.9628
$lower
169.4477 183.3068
$upper
176.0567 192.6188
```

Predicting Dave and Edna with other models

```
predict(modP3, newdata = data.frame(new_people))
173.8945 173.7410
predict(modC4, newdata = data.frame(new_people))
171.7091 167.9763
predict(modI2, newdata = data.frame(new_people))
171.8875 169.4290
```

Predicting Dave via the Nomogram for model modC3

• Dave has sur_s = 100, is typeA, Good sroh, sbp = 140.

plot(nomogram(modC3))

Dave's Actual Predicted Value (from modC3)

```
predict(modC3, newdata = data.frame(new_people))[1]
```

170.2422

Running the 1m version of modC5

Analysis of Variance Table

```
Response: result
```

```
Df Sum Sq Mean Sq F value Pr(>F)
rcs(sur_s, 5) 4 171275 42819 375.551 < 2.2e-16 ***
typeA 1 8141 8141 71.402 5.856e-16 ***
sbp 1 7124 7124 62.479 2.789e-14 ***
sroh 3 3779 1260 11.048 5.627e-07 ***
Residuals 390 44466 114
```

Signif. codes:

```
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The modC5_lm model equation

$$\begin{split} \widehat{\mathsf{result}} &= 57.33 + 1.67(\mathsf{rcs}(\mathsf{sur_s},\ 5)_{\mathsf{sur_s}}) - \\ &\quad 3.25(\mathsf{rcs}(\mathsf{sur_s},\ 5)_{\mathsf{sur_s'}}) + 1.62(\mathsf{rcs}(\mathsf{sur_s},\ 5)_{\mathsf{sur_s''}}) + \\ &\quad 27.1(\mathsf{rcs}(\mathsf{sur_s},\ 5)_{\mathsf{sur_s''}}) + 9.75(\mathsf{typeA_{Yes}}) - \\ &\quad 0.18(\mathsf{sbp}) - 2.23(\mathsf{sroh_{VG}}) - \\ &\quad 4.62(\mathsf{sroh_G}) - 11.02(\mathsf{sroh_F}) \end{split}$$

Residual Plots for modC5

```
par(mfrow = c(2,2)); plot(modC5_lm); par(mfrow = c(1,1))
```

• Results shown on next slide (not for the faint of heart)

Residual Plots for modC5

Oh dear...

dat12 %>% slice(84) %>% kable()

subj	result	sur_s	typeA	sbp	sroh
84	483	185	No	148	Е

summary(dat12 %>% select(result, sur_s, sbp, sroh, typeA))

```
result sur_s
                              sbp
                                        sroh
             Min. : 39.0
Min. : 46.0
                          Min. : 85.0 E : 68
1st Qu.:160.0
             1st Qu.: 87.0
                          1st Qu.:132.0 VG:147
Median :168.0
             Median :101.0
                          Median :147.0
                                        G:139
Mean :168.8
             Mean :100.2 Mean :148.1 F : 46
3rd Qu.:177.0
             3rd Qu.:114.0
                          3rd Qu.:165.0
Max. :483.0
             Max. :185.0
                          Max. :215.0
typeA
No :203
```

Was this foreseeable?

```
ggplot(data = dat12, aes(x = result)) +
   geom_histogram(bins = 15, col = "blue", fill = "tan")
```


Logistic Regression

Framingham Data (from Class 10)

```
fram_raw <- read_csv(here("data/framingham.csv")) %>%
    type.convert(as.is = FALSE) %>%
    clean_names()
```

The variables describe n=4238 adults examined at baseline, then followed for 10 years to see if they developed incident coronary heart disease. The binary outcome (below) has no missing values.

```
fram_raw %>% tabyl(ten_year_chd)
```

```
ten_year_chd n percent
0 3594 0.8480415
1 644 0.1519585
```

Data Cleanup

```
fram new <- fram raw %>%
    rename(cigs = "cigs_per_day",
           stroke = "prevalent_stroke",
           hrate = "heart rate",
           sbp = "sys bp",
           chd10_n = "ten_year_chd") %>%
    mutate(educ = fct recode(factor(education),
                     "Some HS" = "1".
                     "HS grad" = "2",
                     "Some Coll" = "3",
                     "Coll grad" = "4")) %>%
    mutate(chd10 f = fct recode(factor(chd10 n),
                     "chd" = "1", "chd no" = "0")) \%
    select(subj_id, chd10_n, chd10_f, age,
           cigs, educ, hrate, sbp, stroke)
```

Data Descriptions

Today, we'll only use the chd variables, plus age.

Variable	Description
subj_id	identifying code added by Dr. Love
chd10_n	(numeric) $1 = $ coronary heart disease in next 10 years
chd10_f	(factor) "chd" or "chd_no" in next ten years
age	in years (range is 32 to 70)
cigs	number of cigarettes smoked per day
educ	4-level factor: educational attainment
hrate	heart rate in beats per minute
sbp	systolic blood pressure in mm Hg
stroke	$1 = history \; of \; stroke, \; else \; 0$

Missing Data?

```
miss_var_summary(fram_new)
```

```
# A tibble: 9 x 3
 variable n_miss pct_miss
 <chr>
           <int> <dbl>
1 educ
             105 2.48
             29 0.684
2 cigs
3 hrate
                   0.0236
4 subj_id
                   0
5 chd10 n
                   0
 chd10 f
                   0
7 age
                   0
8 sbp
                   0
9 stroke
                   0
```

Prepare our outcome.

We have our binary outcome as both a factor variable and a numeric (0/1) variable

```
fram_new %$% str(chd10_f)

Factor w/ 2 levels "chd_no","chd": 1 1 1 2 1 1 2 1 1 1 ...
fram_new %$% str(chd10_n)

int [1:4238] 0 0 0 1 0 0 1 0 0 0 ...
fram_new %>% tabyl(chd10_f, chd10_n)
```

```
chd10_f 0 1
chd_no 3594 0
chd 0 644
```

Working with Binary Outcome Models

Does Pr(CHD in next ten years) look higher for older or younger people?

chd10_f	n	mean(age)	sd(age)	median(age)
chd_no	3594	48.77	8.41	48
chd	644	54.15	8.01	55

So what do we expect in this model?

Pr(CHD in next ten years) looks higher for *older* people?

If we predict log(odds(CHD in next ten years)), we want to ensure that value will be **rising** with increased age.

So, for the mage_1 model below, what sign do we expect for the slope of age?

Results for mage_1

```
tidy(mage_1) %>% kable(digits = 3)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-5.558	0.284	-19.585	0
age	0.075	0.005	14.166	0

```
tidy(mage_1, exponentiate = TRUE) %>% kable(digits = 3)
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.004	0.284	-19.585	0
age	1.077	0.005	14.166	0

Six ways to specify the outcome for this model

```
x1 \leftarrow glm(chd10_f \sim age,
           family = binomial, data = fram new)
x2 \leftarrow glm(chd10 n \sim age,
           family = binomial, data = fram new)
x3 \leftarrow glm((chd10 n == "1") \sim age,
           family = binomial, data = fram new)
x4 \leftarrow glm((chd10 n == "0") \sim age,
           family = binomial, data = fram_new)
x5 \leftarrow glm((chd10_f == "chd") \sim age,
           family = binomial, data = fram_new)
x6 \leftarrow glm((chd10_f == "chd_no") \sim age,
           family = binomial, data = fram_new)
```

What will happen to the age coefficient in these models?

Age Models x1 and x2

$$\log \left[\frac{P(\mathsf{chd}\widehat{10}_{\mathbf{f}} = \mathsf{chd})}{1 - P(\mathsf{chd}\widehat{10}_{\mathbf{f}} = \mathsf{chd})} \right] = -5.56 + 0.07(\mathsf{age}) \tag{2}$$

$$\log \left[\frac{P(\hat{chd10_n} = 1)}{1 - P(\hat{chd10_n} = 1)} \right] = -5.56 + 0.07(age)$$
 (3)

Age Models x3 and x4

$$\log \left[\frac{P(\cosh \widehat{10}_{n} = 1)}{1 - P(\cosh \widehat{10}_{n} = 1)} \right] = -5.56 + 0.07(\text{age})$$
 (4)

$$\log \left[\frac{P(\hat{c}hd10_n = 0)}{1 - P(\hat{c}hd10_n = 0)} \right] = 5.56 - 0.07(\text{age})$$
 (5)

Age Models x5 and x6

$$\log \left[\frac{P(\operatorname{chd}\widehat{10}_{\underline{\mathsf{f}}} = \operatorname{\mathsf{chd}})}{1 - P(\operatorname{\mathsf{chd}}\widehat{10}_{\underline{\mathsf{f}}} = \operatorname{\mathsf{chd}})} \right] = -5.56 + 0.07(\operatorname{\mathsf{age}}) \tag{6}$$

$$\log \left[\frac{P(\mathsf{chd10_f} = \mathsf{chd_no})}{1 - P(\mathsf{chd10_f} = \mathsf{chd_no})} \right] = 5.56 - 0.07(\mathsf{age}) \tag{7}$$

Making Predictions with a glm model

name	age
Frank	42
Grace	56

Predictions from a glm model (modelL1)

or on the probability scale (reminder: glm fit)

Building a different model with 1rm

Plot Effect Sizes from modelL2

plot(summary(modelL2))

age - 56:42

Making Predictions with 1rm (modelL2)

name	age
Frank	42
Grace	56

Predictions on the logit scale

Useful Predictions with 1rm (modelL2)

new_folks %>% kable()

name	age
Frank	42
Grace	56

Predicted probabilities after an 1rm fit...

1 2 0.07833722 0.20682714

Using the Nomogram to predict for Age 50

Compare our results from the nomogram...

• Predicted probabilities after an 1rm fit...

1

0.1542483

Validate C statistic, Nagelkerke R^2 , Brier score

```
set.seed(2022)
validate(modelL2, B = 50)
```

```
> set.seed(2022)
> validate(modelL2. B = 50)
         index.orig training test optimism index.corrected
Dxv
             0.3581
                     0.3548 0.3581
                                   -0.0033
                                                  0.3615 50
R2
            0.0891
                     0.0887 0.0883
                                   0.0004
                                                  0.0887 50
         0.0000 0.0000 0.0077
                                                  0.0077 50
Intercept
                                   -0.0077
Slope
            1.0000 1.0000 1.0057
                                   -0.0057
                                                  1.0057 50
          0.0000 0.0000 0.0026
                                                  0.0026 50
Emax
                                   0.0026
D
            0.0522 0.0520 0.0517
                                   0.0003
                                                  0.0519 50
            -0.0005 -0.0005 0.0000
                                   -0.0005
                                                  0.0000 50
Q
B
            0.0527 0.0525 0.0517 0.0008
                                                  0.0519 50
            0.1223
                     0.1225 0.1224
                                   0.0001
                                                  0.1222 50
            0.8169
                     0.8116 0.8124
                                   -0.0008
                                                  0.8176 50
g
             0.0925
                     0.0918 0.0917
                                    0.0001
                                                  0.0924 50
gp
```

Next Time

- Logistic Regression using tidymodels
- Quiz 1 will be made available today at 5 PM. Good luck!