Total No. of	Questions	:	6]	
--------------	-----------	---	------------	--

SEAT No.	:	

P5889 [Total No. of Pages : 2

BE/Insem./Oct.-521 B.E. (Mechanical) OPERATION RESEARCH (2015 Pattern) (Semester - I)

Time: 1 Hour]

[Max. Marks: 30

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Draw neat diagrams wherever necessary.
- 3) Use of scientific calculator is allowed.
- 4) Assume suitable data wherever necessary.
- 5) Figures to the right indicate full marks.
- Q1) Solve by simplex method

[10]

Maximize
$$z = 3x_1 + 2x_2$$

 $x_1 + x_2 < = 4$
 $x_1 - x_2 < = 2$
 $x_1 > = 0, x_2 > = 0$

OR

- *Q2)* A company manufactures three products namely X, Y, Z. Each of products require processing on three machines, Turning, Milling, Grinding. Product X requires 10 hours of turning, 5 hours of milling, 1 hour of grinding. Product Y requires 5 hours of turning, 10 hours of milling, 1 hour of grinding. Product Z requires 2 hours of turning, 4 hours of milling, 2 hours of grinding. In the coming planning period, 2700 hours of turning, 2200 hours of milling, 500 hours of grinding are available. The profit contribution of X, Y, Z are Rs. 20, Rs. 15, Rs. 20 per unit respectively. Find the optimal product mix to maximize the profit.
- Q3) a) Find the initial basic feasible solution to the following transportation problem by Vogel's approximation method [6]

		Warel	nouses	supply
	$\mathbf{W}_{_{1}}$	W_2	W_3	W
1	19	30	50	10 7
2	70	30	40	60 9
3	40	8	70	20 18
	5	8	7	14

Factories

b) Explain Branch and Bound Method.

[4]

Q4) Five different machines can do any five required components with different profit resulting from each assignment as shown in table below. Find out maximum profit possible through optimum assignment. [10]

	Machine					
		1	2	3	4	5
	A	30	37	40	28	40
	В	40	24	27	21	36
Component	C 3	40	32	33	30	35
	Do	25	38	40	36	36
	É	29	62	41	34	39

Q5) Reduce the following Game by Dominance and determine the value of game in table below. [10]

Person B

2 3 2 4 1 3 Person 3 4 3 4 2 4 4 0 4 0

- **Q6)** Define the following:
 - Saddle point a)
 - Pay-off matrix b)
 - Dominance c)
 - Game theory d)

