

# Estructura de repetición do while

# LOGRO DE LA UNIDAD DE APRENDIZAJE

Al finalizar la unidad, el alumno, mediante el uso de estructuras de repetición, implementa programas en Java que resuelven problemas concretos.

# **TEMARIO**

1. Estructura de repetición do - while

# **ACTIVIDADES**

Los alumnos desarrollan algoritmos que involucren el uso de estructuras de repetición.

# 1. Estructura de repetición do - while

La estructura **do – while** repite una acción o un conjunto de acciones mientras sea verdadera una determinada condición, para lo cual, <u>primero, ejecuta la acción y, luego, verifica la condición</u>. La acción puede ser una **acción simple** o una **acción compuesta** (varias acciones). En la figura 1, se muestra el diagrama de flujo de la estructura hacermientras.



Figura 1 Diagrama de flujo de la estructura do – while

La sintaxis de la estructura de repetición **do – while** es la siguiente:

```
do{
    accion1;
    accion2;
    .
    .
    .
    accion3;
} while (condición);
```

# 2. Problemas resueltos

## Problema 1

Diseñe un programa que imprima y sume la siguiente serie:

```
1, 2, 3, ..., 100
```

```
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
```

```
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
```



```
public class Serie1 extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager.setLookAndFeel(
                     "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        catch (Throwable e) {
            e.printStackTrace();
        EventQueue.invokeLater(new Runnable() {
            public void run() {
                try {
                     Serie1 frame = new Serie1();
                     frame.setVisible(true);
                 }
                catch (Exception e) {
                     e.printStackTrace();
            }
        });
    }
    // Crea la GUI
    public Serie1() {
        setTitle("Serie1");
        setBounds(100, 100, 450, 214);
        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        getContentPane().setLayout(null);
        btnProcesar = new JButton("Procesar");
        btnProcesar.addActionListener(this);
        btnProcesar.setBounds(173, 9, 89, 23);
        getContentPane().add(btnProcesar);
```

```
scpScroll = new JScrollPane();
        scpScroll.setBounds(10, 44, 414, 120);
        getContentPane().add(scpScroll);
        txtS = new JTextArea();
        txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
        scpScroll.setViewportView(txtS);
    }
    // Direcciona eventos de tipo ActionEvent
    public void actionPerformed(ActionEvent arg0) {
        if (arg0.getSource() == btnProcesar) {
            actionPerformedBtnProcesar(arg0);
        }
    }
    // Procesa la pulsación del botón Procesar
    protected void actionPerformedBtnProcesar(ActionEvent arg0) {
        // Declara e inicializa variables
        int ter = 1, sum = 0;
        // Limpia la pantalla
        txtS.setText("");
        // Genera los términos de la serie
        do {
            // Imprime el término actual
            txtS.append(ter + "\n");
            // Suma el término actual
            sum += ter;
            // Genera el siguiente término
            ter++;
        } while (ter <= 100);</pre>
        // Imprime la suma de la serie
        txtS.append("Suma : " + sum);
    }
}
```

Diseñe un programa que imprima y sume la siguiente serie:

```
3, 10, 17, 24, 31, ..., 94
```

```
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
```

```
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
```



```
public class Serie2 extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager.setLookAndFeel(
                     "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        }
        catch (Throwable e) {
            e.printStackTrace();
        EventQueue.invokeLater(new Runnable() {
            public void run() {
                try {
                     Serie2 frame = new Serie2();
                     frame.setVisible(true);
                 }
                catch (Exception e) {
                     e.printStackTrace();
            }
        });
    }
    // Crea la GUI
    public Serie2() {
        setTitle("Serie2");
        setBounds(100, 100, 450, 214);
        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        getContentPane().setLayout(null);
        btnProcesar = new JButton("Procesar");
        btnProcesar.addActionListener(this);
        btnProcesar.setBounds(173, 9, 89, 23);
        getContentPane().add(btnProcesar);
```

```
scpScroll = new JScrollPane();
        scpScroll.setBounds(10, 44, 414, 120);
        getContentPane().add(scpScroll);
        txtS = new JTextArea();
        txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
        scpScroll.setViewportView(txtS);
    }
    // Direcciona eventos de tipo ActionEvent
    public void actionPerformed(ActionEvent arg0) {
        if (arg0.getSource() == btnProcesar) {
            actionPerformedBtnProcesar(arg0);
        }
    }
    // Procesa la pulsación del botón Procesar
    protected void actionPerformedBtnProcesar(ActionEvent arg0) {
        // Declara e inicializa variables
        int ter = 3, sum = 0;
        // Limpia la pantalla
        txtS.setText("");
        // Genera los términos de la serie
        do {
            // Imprime el término actual
            txtS.append(ter + "\n");
            // Suma el término actual
            sum += ter;
            // Genera el siguiente término
            ter += 7;
        } while (ter <= 94);</pre>
        // Imprime la suma de la serie
        txtS.append("Suma : " + sum);
    }
}
```

Diseñe un programa que imprima y sume 50 términos de la siguiente serie:

```
5, 11, 17, 23, 29, 35, ...
```

```
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
```

```
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
```



```
public class Serie3 extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager.setLookAndFeel(
                     "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        catch (Throwable e) {
            e.printStackTrace();
        EventQueue.invokeLater(new Runnable() {
            public void run() {
                try {
                     Serie3 frame = new Serie3();
                     frame.setVisible(true);
                catch (Exception e) {
                     e.printStackTrace();
            }
        });
    }
    // Crea la GUI
    public Serie3() {
        setTitle("Serie3");
        setBounds(100, 100, 450, 214);
        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        getContentPane().setLayout(null);
        btnProcesar = new JButton("Procesar");
        btnProcesar.addActionListener(this);
        btnProcesar.setBounds(173, 9, 89, 23);
        getContentPane().add(btnProcesar);
```

```
scpScroll = new JScrollPane();
        scpScroll.setBounds(10, 44, 414, 120);
        getContentPane().add(scpScroll);
        txtS = new JTextArea();
        txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
        scpScroll.setViewportView(txtS);
    }
    // Direcciona eventos de tipo ActionEvent
    public void actionPerformed(ActionEvent arg0) {
        if (arg0.getSource() == btnProcesar) {
            actionPerformedBtnProcesar(arg0);
    }
    // Procesa la pulsación del botón Procesar
    protected void actionPerformedBtnProcesar(ActionEvent arg0) {
        // Declara e inicializa variables
        int ter = 5, sum = 0, c = 0;
        // Limpia la pantalla
        txtS.setText("");
        // Genera los términos de la serie
        do {
            // Imprime el término actual
            txtS.append(ter + "\n");
            // Suma el término actual
            sum += ter;
            // Genera el siguiente término
            ter += 6;
            // Cuenta la cantidad de términos
            C++;
        } while (c < 50);</pre>
        // Imprime la suma de la serie
        txtS.append("Suma : " + sum);
    }
}
```

Diseñe un programa que imprima y sume 75 términos de la siguiente serie:

$$\frac{2}{5}, \frac{5}{9}, \frac{8}{13}, \frac{11}{17}, \dots$$

#### Solución

package cibertec;

```
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
```



```
public class Serie4 extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager
    .setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        catch (Throwable e) {
            e.printStackTrace();
        EventQueue.invokeLater(new Runnable() {
            public void run() {
                try {
                     Serie4 frame = new Serie4();
                     frame.setVisible(true);
                catch (Exception e) {
                     e.printStackTrace();
                 }
            }
        });
    }
    // Crea la GUI
    public Serie4() {
        setTitle("Serie4");
        setBounds(100, 100, 450, 214);
        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        getContentPane().setLayout(null);
```

```
btnProcesar = new JButton("Procesar");
        btnProcesar.addActionListener(this);
        btnProcesar.setBounds(173, 9, 89, 23);
        getContentPane().add(btnProcesar);
        scpScroll = new JScrollPane();
        scpScroll.setBounds(10, 44, 414, 120);
        getContentPane().add(scpScroll);
        txtS = new JTextArea();
        txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
        scpScroll.setViewportView(txtS);
    }
    // Direcciona eventos de tipo ActionEvent
    public void actionPerformed(ActionEvent arg0) {
        if (arg0.getSource() == btnProcesar) {
            actionPerformedBtnProcesar(arg0);
        }
    }
    // Procesa la pulsación del botón Procesar
    protected void actionPerformedBtnProcesar(ActionEvent arg0) {
        // Declara e inicializa variables
        int num = 2, den = 5, c = 0;
        double sum = 0;
        // Limpia la pantalla
        txtS.setText("");
        // Genera los términos de la serie
        do {
            // Imprime el término actual
            txtS.append(num + "/" + den + "\n");
            // Suma el término actual
            sum += num * 1.0 / den;
            // Genera el siguiente término
            num += 3;
            den += 4;
            // Cuenta la cantidad de términos
            C++;
        } while (c < 75);</pre>
        // Imprime la suma de la serie
        txtS.append("Suma : " + sum);
    }
}
```

Diseñe un programa que imprima una tabla de valores de x e y, para valores de x en el intervalo de 0 a 2.75 cada 0.25, siendo:

$$y = \frac{x^3 + 3x + 1}{x^2 + 2}$$



```
package cibertec;
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.util.Locale;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
public class Funcion extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager.setLookAndFeel(
                     "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        catch (Throwable e) {
            e.printStackTrace();
        EventQueue.invokeLater(new Runnable() {
            public void run() {
                try {
```

```
Funcion frame = new Funcion();
                frame.setVisible(true);
            catch (Exception e) {
                e.printStackTrace();
            }
        }
    });
}
// Crea la GUI
public Funcion() {
    setTitle("Función");
    setBounds(100, 100, 450, 321);
    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    getContentPane().setLayout(null);
    btnProcesar = new JButton("Procesar");
    btnProcesar.addActionListener(this);
    btnProcesar.setBounds(173, 9, 89, 23);
    getContentPane().add(btnProcesar);
    scpScroll = new JScrollPane();
    scpScroll.setBounds(10, 44, 414, 226);
    getContentPane().add(scpScroll);
    txtS = new JTextArea();
    txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
    scpScroll.setViewportView(txtS);
// Direcciona eventos de tipo ActionEvent
public void actionPerformed(ActionEvent arg0) {
    if (arg0.getSource() == btnProcesar) {
        actionPerformedBtnProcesar(arg0);
    }
}
// Procesa la pulsación del botón Procesar
protected void actionPerformedBtnProcesar(ActionEvent arg0) {
    // Declara e inicializa variables
    double x = 0, y;
    // Imprime la cabecera
    txtS.setText(String.format(Locale.US, "%-15.2s%-15.2s\n", "x", "y"));
    // Imprime la tabla
    do {
        // Calcula el valor de y para el valor actual de x
        y = (x * x * x + 3 * x + 1) / (x * x + 2);
        // Imprime la pareja de valores x e y
        txtS.append(String.format(Locale.US, "%-15.2f%-15.2f\n", x, y));
        // Genera el siguiente valor de x
        x += 0.25;
    } while (x <= 2.75);</pre>
```

```
}
```

Diseñe un programa que imprima la siguiente tabla de números:

```
7
          12
                    18
6
          10
                    15
5
          8
                    12
4
          6
                    9
3
          4
                    6
2
          2
                    3
1
          0
                    0
```



```
package cibertec;
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
public class Tabla extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager.setLookAndFeel(
                     "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        }
```

```
catch (Throwable e) {
        e.printStackTrace();
    EventQueue.invokeLater(new Runnable() {
        public void run() {
            try {
                Tabla frame = new Tabla();
                frame.setVisible(true);
            catch (Exception e) {
                e.printStackTrace();
            }
        }
    });
}
// Crea la GUI
public Tabla() {
    setTitle("Tabla");
    setBounds(100, 100, 450, 237);
    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    getContentPane().setLayout(null);
    btnProcesar = new JButton("Procesar");
    btnProcesar.addActionListener(this);
    btnProcesar.setBounds(173, 9, 89, 23);
    getContentPane().add(btnProcesar);
    scpScroll = new JScrollPane();
    scpScroll.setBounds(10, 44, 414, 141);
    getContentPane().add(scpScroll);
    txtS = new JTextArea();
    txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
    scpScroll.setViewportView(txtS);
}
// Direcciona eventos de tipo ActionEvent
public void actionPerformed(ActionEvent arg0) {
    if (arg0.getSource() == btnProcesar) {
        actionPerformedBtnProcesar(arg0);
    }
}
// Procesa la pulsación del botón Procesar
protected void actionPerformedBtnProcesar(ActionEvent arg0) {
    // Declara e inicializa variables
    int a = 7, b = 12, c = 18;
    // Limpia la pantalla
    txtS.setText("");
    // Imprime la tabla
    do {
        // Imprime un elemento de cada columna
        txtS.append(a + "\t" + b + "\t" + c + "\n");
        // Genera el siguiente elemento de cada columna
```

```
a--;
b -= 2;
c -= 3;
} while (a >= 1);
}
```

Diseñe un programa que lea los extremos de un intervalo de números enteros e imprima todos los números pares del intervalo.



```
package cibertec;
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import javax.swing.JLabel;
import javax.swing.JTextField;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
public class Pares extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    // Declaración de variables
    private JLabel lblInicio;
    private JLabel lblFin;
    private JTextField txtInicio;
    private JTextField txtFin;
    private JButton btnProcesar;
    private JButton btnBorrar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
```

```
// Lanza la aplicación
public static void main(String[] args) {
    try {
        UIManager.setLookAndFeel(
                "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
    catch (Throwable e) {
        e.printStackTrace();
    EventQueue.invokeLater(new Runnable() {
        public void run() {
            try {
                Pares frame = new Pares();
                frame.setVisible(true);
            catch (Exception e) {
                e.printStackTrace();
        }
    });
}
// Crea la GUI
public Pares() {
    setTitle("Pares");
    setBounds(100, 100, 450, 239);
    setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
    getContentPane().setLayout(null);
    lblInicio = new JLabel("Inicio");
    lblInicio.setBounds(10, 13, 80, 14);
    getContentPane().add(lblInicio);
    lblFin = new JLabel("Fin");
    lblFin.setBounds(10, 38, 80, 14);
    getContentPane().add(lblFin);
    txtInicio = new JTextField();
    txtInicio.setBounds(90, 10, 90, 20);
    getContentPane().add(txtInicio);
    txtInicio.setColumns(10);
    txtFin = new JTextField();
    txtFin.setBounds(90, 35, 90, 20);
    getContentPane().add(txtFin);
    txtFin.setColumns(10);
    btnProcesar = new JButton("Procesar");
    btnProcesar.addActionListener(this);
    btnProcesar.setBounds(335, 9, 89, 23);
    getContentPane().add(btnProcesar);
    btnBorrar = new JButton("Borrar");
    btnBorrar.addActionListener(this);
    btnBorrar.setBounds(335, 34, 89, 23);
    getContentPane().add(btnBorrar);
    scpScroll = new JScrollPane();
    scpScroll.setBounds(10, 69, 414, 120);
```

```
getContentPane().add(scpScroll);
        txtS = new JTextArea();
        txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
        scpScroll.setViewportView(txtS);
    }
    // Direcciona eventos de tipo ActionEvent
    public void actionPerformed(ActionEvent arg0) {
        if (arg0.getSource() == btnProcesar) {
            actionPerformedBtnProcesar(arg0);
        if (arg0.getSource() == btnBorrar) {
            actionPerformedBtnBorrar(arg0);
    }
    // Procesa la pulsación del botón Procesar
    protected void actionPerformedBtnProcesar(ActionEvent arg0) {
        // Declara variables
        int inicio, fin, numero;
        // Ingresa los extremos del intervalo
        inicio = Integer.parseInt(txtInicio.getText());
        fin = Integer.parseInt(txtFin.getText());
        // Inicializa el número
        numero = inicio;
        // Imprime la lista de números pares
        do {
            if (numero % 2 == 0)
                txtS.append(numero + "\n");
            numero++;
        } while (numero <= fin);</pre>
    }
    // Procesa la pulsación del botón Borrar
    protected void actionPerformedBtnBorrar(ActionEvent arg0) {
        txtInicio.setText("");
        txtFin.setText("");
        txtS.setText("");
        txtInicio.requestFocus();
    }
}
```

Diseñe un programa que imprima los divisores de un número natural y la cantidad de divisores encontrados.

```
package cibertec;
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
```

```
import javax.swing.JButton;
import javax.swing.UIManager;
import javax.swing.JLabel;
import javax.swing.JTextField;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
```



```
public class Divisores extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    // Declaración de variables
    private JLabel lblNumero;
    private JTextField txtNumero;
    private JButton btnProcesar;
    private JButton btnBorrar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager.setLookAndFeel(
                     "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        catch (Throwable e) {
            e.printStackTrace();
        EventQueue.invokeLater(new Runnable() {
            public void run() {
                try {
                     Divisores frame = new Divisores();
                     frame.setVisible(true);
                catch (Exception e) {
                     e.printStackTrace();
                }
            }
        });
    }
    // Crea la GUI
    public Divisores() {
        setTitle("Divisores");
```

```
setBounds(100, 100, 450, 214);
    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    getContentPane().setLayout(null);
    lblNumero = new JLabel("Número");
    lblNumero.setBounds(10, 13, 80, 14);
    getContentPane().add(lblNumero);
    txtNumero = new JTextField();
    txtNumero.setBounds(90, 10, 90, 20);
    getContentPane().add(txtNumero);
    txtNumero.setColumns(10);
    btnProcesar = new JButton("Procesar");
    btnProcesar.addActionListener(this);
    btnProcesar.setBounds(335, 9, 89, 23);
    getContentPane().add(btnProcesar);
    btnBorrar = new JButton("Borrar");
    btnBorrar.addActionListener(this);
    btnBorrar.setBounds(246, 9, 89, 23);
    getContentPane().add(btnBorrar);
    scpScroll = new JScrollPane();
    scpScroll.setBounds(10, 44, 414, 120);
    getContentPane().add(scpScroll);
    txtS = new JTextArea();
    txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
    scpScroll.setViewportView(txtS);
}
// Direcciona eventos de tipo ActionEvent
public void actionPerformed(ActionEvent arg0) {
    if (arg0.getSource() == btnProcesar) {
        actionPerformedBtnProcesar(arg0);
    if (arg0.getSource() == btnBorrar) {
        actionPerformedBtnBorrar(arg0);
    }
}
// Procesa la pulsación del botón Procesar
protected void actionPerformedBtnProcesar(ActionEvent arg0) {
    // Declara e inicializa variables
    int contadiv = 0, div = 1, num;
    // Ingresa el número
    num = Integer.parseInt(txtNumero.getText());
    // Busca los divisores del número
    do {
        // Verifica si div es un divisor
        if (num % div == 0) {
            // Imprime el divisor encontrado
            txtS.append(div + "\n");
```

```
// Cuenta el divisor encontrado
                 contadiv++;
            }
            // Genera el siguiente posible divisor
            div++;
        } while (div <= num);</pre>
        // Imprime la cantidad de divisores encontrados
        txtS.append("Cantidad de divisores : " + contadiv);
    }
    // Procesa la pulsación del botón Borrar
    protected void actionPerformedBtnBorrar(ActionEvent arg0) {
        txtNumero.setText("");
        txtS.setText("");
        txtNumero.requestFocus();
    }
}
```

Diseñe un programa que genere números aleatorios enteros del intervalo 100 a 999 hasta obtener un número par mayor o igual a 500. Imprima lo números generados y determine:

- La suma de los números generados
- La cantidad de números pares generados
- La cantidad de números impares generados
- La suma de los números pares generados
- La suma de los números impares generados

#### Solución



package cibertec;

```
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
public class Aleatorio1 extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager.setLookAndFeel(
                     "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        }
        catch (Throwable e) {
            e.printStackTrace();
        EventQueue.invokeLater(new Runnable() {
            public void run() {
                try {
                     Aleatorio1 frame = new Aleatorio1();
                     frame.setVisible(true);
                catch (Exception e) {
                     e.printStackTrace();
                }
            }
        });
    }
    // Crea la GUI
    public Aleatorio1() {
        setTitle("Aleatorio1");
        setBounds(100, 100, 450, 310);
        setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
        getContentPane().setLayout(null);
        btnProcesar = new JButton("Procesar");
        btnProcesar.addActionListener(this);
        btnProcesar.setBounds(173, 9, 89, 23);
        getContentPane().add(btnProcesar);
        scpScroll = new JScrollPane();
        scpScroll.setBounds(10, 44, 414, 216);
        getContentPane().add(scpScroll);
        txtS = new JTextArea();
        txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
        scpScroll.setViewportView(txtS);
    }
```

```
// Direcciona eventos de tipo ActionEvent
    public void actionPerformed(ActionEvent arg0) {
        if (arg0.getSource() == btnProcesar) {
            actionPerformedBtnProcesar(arg0);
        }
    }
    // Procesa la pulsación del botón Procesar
    protected void actionPerformedBtnProcesar(ActionEvent arg0) {
        // Declara e inicializa variables
        int sumtot = 0, canpar = 0, sumpar = 0, canimp = 0, sumimp = 0, n;
        // Limpia la pantalla
        txtS.setText("");
        // Genera los números aleatorios
        do {
            // Genera un número aleatorio de 100 a 999
            n = (int) ((999 - 100 + 1) * Math.random() + 100);
            // Imprime el número generado
            txtS.append(n + "\n");
            // Suma el número generado
            sumtot += n;
            // Cuenta y suma el número según sea par o impar
            if (n % 2 == 0) {
                canpar++;
                sumpar += n;
            }
            else {
                canimp++;
                sumimp += n;
            }
        } while (!(n \% 2 == 0 \&\& n >= 500));
        // Imprime el reporte solicitado
        txtS.append("Cantidad de números pares : " + canpar + "\n");
        txtS.append("Suma de números pares : " + sumpar + "\n");
        txtS.append("Cantidad de números impares : " + canimp + "\n");
        txtS.append("Suma de números impares : " + sumimp + "\n");
                                                : " + sumtot);
        txtS.append("Suma total de números
    }
}
```

Diseñe un programa que genere números aleatorios enteros del intervalo 200 a 600 hasta obtener un número impar mayor de 400 pero menor de 500. Imprima los números generados y determine:

- La cantidad de números generados ≤ 300
- La cantidad de números generados > 300 pero ≤ 400
- La cantidad de números generados > 400 pero ≤ 500
- La cantidad de números generados > 500

```
Procesar

250
361
392
232
377
570
485
Cantidad de números <= 300 : 2
Cantidad de números > 300 pero <= 400 : 3
Cantidad de números > 400 pero <= 500 : 1
Cantidad de números > 500 : 1
```

```
package cibertec;
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
public class Aleatorio2 extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
        try {
            UIManager.setLookAndFeel(
                     "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
        }
        catch (Throwable e) {
            e.printStackTrace();
        EventQueue.invokeLater(new Runnable() {
            public void run() {
                try {
                     Aleatorio2 frame = new Aleatorio2();
                     frame.setVisible(true);
                catch (Exception e) {
                     e.printStackTrace();
                }
```

```
}
    });
}
// Crea la GUI
public Aleatorio2() {
    setTitle("Aleatorio2");
    setBounds(100, 100, 450, 310);
    setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
    getContentPane().setLayout(null);
    btnProcesar = new JButton("Procesar");
    btnProcesar.addActionListener(this);
    btnProcesar.setBounds(173, 9, 89, 23);
    getContentPane().add(btnProcesar);
    scpScroll = new JScrollPane();
    scpScroll.setBounds(10, 44, 414, 216);
    getContentPane().add(scpScroll);
    txtS = new JTextArea();
    txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
    scpScroll.setViewportView(txtS);
}
// Direcciona eventos de tipo ActionEvent
public void actionPerformed(ActionEvent arg0) {
    if (arg0.getSource() == btnProcesar) {
        actionPerformedBtnProcesar(arg0);
    }
}
// Procesa la pulsación del botón Procesar
protected void actionPerformedBtnProcesar(ActionEvent arg0) {
    // Declara e inicializa variables
    int c1 = 0, c2 = 0, c3 = 0, c4 = 0, n;
    // Limpia la pantalla
    txtS.setText("");
    // Genera los números aleatorios
    do {
        // Genera un número aleatorio de 200 a 600
        n = (int) ((600 - 200 + 1) * Math.random() + 200);
        // Imprime el número generado
        txtS.append(n + "\n");
        // Cuenta el número generado
        if (n <= 300)
            c1++;
        else if (n <= 400)
            c2++;
        else if (n <= 500)
            c3++;
        else
            c4++;
    } while (!(n % 2 != 0 && n > 400 && n < 500));</pre>
```

Diseñe un programa que lance tres dados aleatoriamente hasta obtener 6 en los tres dados. Imprima los puntajes obtenidos en cada dado y la cantidad de lanzamientos efectuados.

#### Solución



# package cibertec;

```
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;

public class Dados extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
```

```
// Lanza la aplicación
public static void main(String[] args) {
    try {
        UIManager.setLookAndFeel(
                "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
    catch (Throwable e) {
        e.printStackTrace();
    EventQueue.invokeLater(new Runnable() {
        public void run() {
            try {
                Dados frame = new Dados();
                frame.setVisible(true);
            catch (Exception e) {
                e.printStackTrace();
        }
    });
}
// Crea la GUI
public Dados() {
    setTitle("Dados");
    setBounds(100, 100, 450, 310);
    setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
    getContentPane().setLayout(null);
    btnProcesar = new JButton("Procesar");
    btnProcesar.addActionListener(this);
    btnProcesar.setBounds(173, 9, 89, 23);
    getContentPane().add(btnProcesar);
    scpScroll = new JScrollPane();
    scpScroll.setBounds(10, 44, 414, 216);
    getContentPane().add(scpScroll);
    txtS = new JTextArea();
    txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
    scpScroll.setViewportView(txtS);
}
// Direcciona eventos de tipo ActionEvent
public void actionPerformed(ActionEvent arg0) {
    if (arg0.getSource() == btnProcesar) {
        actionPerformedBtnProcesar(arg0);
    }
}
// Procesa la pulsación del botón Procesar
protected void actionPerformedBtnProcesar(ActionEvent arg0) {
    // Declara e inicializa variables
    int c = 0, dado1, dado2, dado3;
    // Limpia la pantalla
    txtS.setText("");
    // Simula el lanzamiento de los tres dados
```

```
do {
    // Genera los puntajes de los tres dados
    dado1 = (int) (6 * Math.random() + 1);
    dado2 = (int) (6 * Math.random() + 1);
    dado3 = (int) (6 * Math.random() + 1);

    // Imprime los puntajes de los dados
    txtS.append(dado1 + "\t" + dado2 + "\t" + dado3 + "\n");

    // Cuenta el lanzamiento efectuado
    c++;
} while (!(dado1 == 6 && dado2 == 6 && dado3 == 6));

// Imprime la cantidad de lanzamientos
    txtS.append("\nCantidad de lanzamientos : " + c);
}
```

Diseñe un programa que genere tres números aleatorios enteros diferentes de dos cifras.



```
package cibertec;
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
public class Diferentes extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private JButton btnProcesar;
    private JScrollPane scpScroll;
    private JTextArea txtS;
    // Lanza la aplicación
    public static void main(String[] args) {
```

```
try {
        UIManager.setLookAndFeel(
                 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
    catch (Throwable e) {
        e.printStackTrace();
    EventQueue.invokeLater(new Runnable() {
        public void run() {
            try {
                Diferentes frame = new Diferentes();
                frame.setVisible(true);
            catch (Exception e) {
                e.printStackTrace();
        }
    });
}
// Crea la GUI
public Diferentes() {
    setTitle("Diferentes");
    setBounds(100, 100, 450, 198);
    setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
    getContentPane().setLayout(null);
    btnProcesar = new JButton("Procesar");
    btnProcesar.addActionListener(this);
    btnProcesar.setBounds(173, 9, 89, 23);
    getContentPane().add(btnProcesar);
    scpScroll = new JScrollPane();
    scpScroll.setBounds(10, 44, 414, 106);
    getContentPane().add(scpScroll);
    txtS = new JTextArea();
    txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
    scpScroll.setViewportView(txtS);
}
// Direcciona eventos de tipo ActionEvent
public void actionPerformed(ActionEvent arg0) {
    if (arg0.getSource() == btnProcesar) {
        actionPerformedBtnProcesar(arg0);
    }
}
// Procesa la pulsación del botón Procesar
protected void actionPerformedBtnProcesar(ActionEvent arg0) {
    // Declara e inicializa variables
    int n1, n2, n3;
    // Limpia la pantalla
    txtS.setText("");
    // Genera los números aleatorios
    do {
        n1 = aleatorio();
```

```
n2 = aleatorio();
n3 = aleatorio();
} while (n1 == n2 || n2 == n3 || n1 == n3);

// Imprime el reporte solicitado
   txtS.setText("Los números generados son : ");
   txtS.append (n1 + " , " + n2 + " y " + n3);
}

// Genera y retorna un número aleatorio de dos cifras
int aleatorio(){
   return (int) ((99 - 10 + 1) * Math.random() + 10);
}
```

Diseñe un programa que genere aleatoriamente la edad y el estado civil de un conjunto de personas hasta obtener una edad igual a 80. La edad será obtenida del intervalo 25 a 80. El estado civil será soltero, casado, viudo o divorciado.



```
package cibertec;
```

```
import java.awt.EventQueue;
import java.awt.Font;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.UIManager;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;

public class Personas extends JFrame implements ActionListener {
    private static final long serialVersionUID = 1L;
```

```
private JButton btnProcesar;
private JScrollPane scpScroll;
private JTextArea txtS;
// Lanza la aplicación
public static void main(String[] args) {
    try {
        UIManager.setLookAndFeel(
                 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
    catch (Throwable e) {
        e.printStackTrace();
    EventQueue.invokeLater(new Runnable() {
        public void run() {
            try {
                Personas frame = new Personas();
                frame.setVisible(true);
            }
            catch (Exception e) {
                e.printStackTrace();
        }
    });
}
// Crea la GUI
public Personas() {
    setTitle("Personas");
    setBounds(100, 100, 450, 310);
    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    getContentPane().setLayout(null);
    btnProcesar = new JButton("Procesar");
    btnProcesar.addActionListener(this);
    btnProcesar.setBounds(173, 9, 89, 23);
    getContentPane().add(btnProcesar);
    scpScroll = new JScrollPane();
    scpScroll.setBounds(10, 44, 414, 216);
    getContentPane().add(scpScroll);
    txtS = new JTextArea();
    txtS.setFont(new Font("Monospaced", Font.PLAIN, 12));
    scpScroll.setViewportView(txtS);
}
// Direcciona eventos de tipo ActionEvent
public void actionPerformed(ActionEvent arg0) {
    if (arg0.getSource() == btnProcesar) {
        actionPerformedBtnProcesar(arg0);
    }
}
// Procesa la pulsación del botón Procesar
protected void actionPerformedBtnProcesar(ActionEvent arg0) {
    // Declara e inicializa variables
    int numper = 1; // Número de persona
    int edad;
                   // Edad de la persona
```

```
String estado; // Estado civil de la persona
        // Limpia la pantalla
        txtS.setText("");
        // Repite hasta que la edad sea 80
        do {
            // Genera los datos de la persona
            edad = generaEdad();
            estado = generaEstadoCivil();
            // Imprime los datos de la persona
            txtS.append("Persona No. " + numper + "\n");
                                     : " + edad + "\n");
            txtS.append("Edad
            txtS.append("Estado Civil : " + estado + "\n\n");
            // Incrementa el número de persona
            numper++;
        } while (edad != 80);
    }
    // Genera y retorna la edad de una persona del intervalo 25 a 80
    int generaEdad() {
        return (int) ((80 - 25 + 1) * Math.random() + 25);
    }
    // Genera y retorna el estado civil de una persona
    String generaEstadoCivil() {
        // Genera un número aleatorio del intervalo 1 a 4
        int e = (int) ((4 - 1 + 1) * Math.random() + 1);
        // Obtiene y retorna el estado civil
        switch (e) {
            case 1:
                return "Soltero";
            case 2:
                return "Casado";
            case 3:
                return "Viudo";
            default:
                return "Divorciado";
        }
    }
}
```