

The Crouzeix-Raviart Finite Element Method for a Nonconforming Formulation of the Rudin-Osher-Fatemi Model Problem

Enrico Bergmann Humboldt-Universität zu Berlin June 16. 2021

Table of Contents

Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator

Convergence of the Iteration

Table of Contents

Recapitulation

Functions of Bounded Variation

Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator

Convergence of the Iteration

Let U be an open subset of \mathbb{R}^d . A function $v \in L^1(U)$ is a function of bounded variation iff

$$|v|_{\mathsf{BV}(U)} \coloneqq \sup_{\substack{\phi \in C_C^1(U;\mathbb{R}^d) \\ \|\phi\|_{L^\infty(U)} \leqslant 1}} \int_U v \, \mathsf{div}(\phi) \, \mathrm{d}x < \infty.$$

The space of all such functions is denoted by BV(U).

Let U be an open subset of \mathbb{R}^d . A function $v \in L^1(U)$ is a function of bounded variation iff

$$|v|_{\mathsf{BV}(U)} \coloneqq \sup_{\substack{\phi \in C^1_{\mathsf{C}}(U;\mathbb{R}^d) \\ \|\phi\|_{L^\infty(U)} \leqslant 1}} \int_U v \, \mathsf{div}(\phi) \, \mathrm{d}x < \infty.$$

The space of all such functions is denoted by BV(U). It is a Banach space equipped with the norm $\| \bullet \|_{BV(U)} := \| \bullet \|_{L^1(U)} + | \bullet |_{BV(U)}$.

Let U be an open subset of \mathbb{R}^d . A function $v \in L^1(U)$ is a function of bounded variation iff

$$|v|_{\mathsf{BV}(U)} := \sup_{\substack{\phi \in C^1_{\mathsf{C}}(U;\mathbb{R}^d) \\ \|\phi\|_{L^\infty(U)} \leqslant 1}} \int_U v \, \mathsf{div}(\phi) \, \mathrm{d}x < \infty.$$

The space of all such functions is denoted by BV(U). It is a Banach space equipped with the norm $\| \bullet \|_{BV(U)} := \| \bullet \|_{L^1(U)} + | \bullet |_{BV(U)}$.

We have $W^{1,1}(\Omega) \subset \mathsf{BV}(\Omega)$ with $\|v\|_{\mathsf{BV}(\Omega)} = \|v\|_{W^{1,1}(\Omega)}$ for all $v \in W^{1,1}(\Omega)$.

Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille. Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization. Second Edition. Vol. 17. MOS-SIAM Series on Optimization. Philadelphia: Society for Industrial and Applied Mathematics, Mathematical Optimization Society, 2014. ISBN: 978-1-611973-47-1

Lawrence C. Evans and Ronald F. Gariepy. **Measure Theory and Fine Properties of Functions**. CRC Press, 1992. ISBN: 0-8493-7157-0

Table of Contents

Recapitulation

Functions of Bounded Variation

Rudin-Osher-Fatemi Model Problem

Continuous Problem
Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator

Convergence of the Iteration

Rudin-Osher-Fatemi (ROF) model problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $g \in L^2(\Omega)$ minimize the functional

$$I(v) \coloneqq |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||_{L^2(\Omega)}^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Rudin-Osher-Fatemi (ROF) model problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $g \in L^2(\Omega)$ minimize the functional

$$I(v) := |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||_{L^2(\Omega)}^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. "Nonlinear total variation based noise removal algorithms". In: **Physica D: Nonlinear Phenomena.** Vol. 60. 1-4. 1992, pp. 259–268. DOI: 10.1016/0167-2789(92)90242-F. URL: https://doi.org/10.1016/0167-2789(92)90242-F

Rudin-Osher-Fatemi (ROF) model problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $g \in L^2(\Omega)$ minimize the functional

$$I(\mathbf{v}) := |\mathbf{v}|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|\mathbf{v} - \mathbf{g}\|_{L^2(\Omega)}^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. "Nonlinear total variation based noise removal algorithms". In: **Physica D: Nonlinear Phenomena.** Vol. 60. 1-4. 1992, pp. 259–268. DOI: 10.1016/0167-2789(92)90242-F. URL: https://doi.org/10.1016/0167-2789(92)90242-F

Rudin-Osher-Fatemi (ROF) model problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $g \in L^2(\Omega)$ minimize the functional

$$I(v) := |\mathbf{v}|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||\mathbf{v} - \mathbf{g}||_{L^2(\Omega)}^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. "Nonlinear total variation based noise removal algorithms". In: **Physica D: Nonlinear Phenomena.** Vol. 60. 1-4. 1992, pp. 259–268. DOI: 10.1016/0167-2789(92)90242-F. URL: https://doi.org/10.1016/0167-2789(92)90242-F

Original picture⁰

Ohttps://homepages.cae.wisc.edu/~ece533/images/cameraman_tif > + = +

Original picture⁰

Input signal

The input signal was created by adding AWGN with a SNR of 20 to the original picture.

$$I(v) \coloneqq |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|v - g\|_{L^2(\Omega)}^2$$

Original picture

Input signal

$$I(\mathbf{v}) := |\mathbf{v}|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|\mathbf{v} - \mathbf{g}\|_{L^2(\Omega)}^2$$

Original picture

Input signal

$$\alpha = 10^5$$

$$I(v) \coloneqq |\mathbf{v}|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|v - g\|_{L^2(\Omega)}^2$$

Original picture

Input signal

$$\alpha = 10^3$$

$$\alpha = 10^5$$

$$I(v) \coloneqq |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|v - g\|_{L^2(\Omega)}^2$$

Original picture

Input signal

 $\alpha = 10^3$

$$\alpha = 10^4$$

$$\alpha = 10^5$$

Pascal Getreuer. "Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman". In: Image Processing On Line 2 (2012), pp. 74–95. URL: https://doi.org/10.5201/ipol.2012.g-tvd

Table of Contents

Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem

Continuous Problem

Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator

Convergence of the Iteration

Continuous problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E(v) := \frac{\alpha}{2} ||v||^2 + |v|_{BV(\Omega)} + ||v||_{L^1(\partial\Omega)} - \int_{\Omega} f v \, dx$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Continuous problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} fv \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Continuous problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E(v) := \frac{\alpha}{2} ||v||^2 + |v|_{BV(\Omega)} + ||v||_{L^1(\partial\Omega)} - \int_{\Omega} f v \, dx$$

amongst all $v \in BV(\Omega) \cap L^2(\Omega)$.

For $f = \alpha g$ the functional E has the same minimizers as

$$I(v) = |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||_{L^{2}(\Omega)}^{2}$$

in
$$\{v \in \mathsf{BV}(\Omega) \cap L^2(\Omega) \mid ||v||_{L^1(\partial\Omega)} = 0\}.$$

Theorem (Existence and uniqueness of a minimizer)

There exists a unique minimizer $u \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ for $E(v) = \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} \mathsf{fv} \, \mathrm{d}x$ amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Theorem (Existence and uniqueness of a minimizer)

There exists a unique minimizer $u \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ for $E(v) = \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} \mathsf{f} v \, \mathrm{d} x$ amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Lemma

Let $v \in \mathsf{BV}(\Omega)$. For all $x \in \mathbb{R}^d$, define

$$\tilde{v}(x) := \begin{cases} v(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^d \setminus \overline{\Omega}. \end{cases}$$

Then $\tilde{v} \in \mathsf{BV}\left(\mathbb{R}^d\right)$ and $|\tilde{v}|_{\mathsf{BV}\left(\mathbb{R}^d\right)} = |v|_{\mathsf{BV}\left(\Omega\right)} + ||v||_{L^1(\partial\Omega)}.$

Let U be an open subset of \mathbb{R}^d .

Definition (Weak convergence in BV(U))

Let $(v_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(U)$ and $v\in \mathsf{BV}(U)$ with $v_n\to v$ in $L^1(U)$ as $n\to\infty$. Then $(v_n)_{n\in\mathbb{N}}$ converges weakly to v in $\mathsf{BV}(U)$ iff, for all $\phi\in C_0(U;\mathbb{R}^d)$, it holds

$$\int_{U} v_n \operatorname{div}(\phi) dx \to \int_{U} v \operatorname{div}(\phi) dx \quad \text{as } n \to \infty.$$

We write $v_n \rightarrow v$ as $n \rightarrow \infty$.

Theorem

Let $v \in L^1(U)$ and $(v_n)_{n \in \mathbb{N}} \subset \mathsf{BV}(U)$ with $\sup_{n \in \mathbb{N}} |v_n|_{\mathsf{BV}(U)} < \infty$ and $v_n \to v$ in $L^1(U)$ as $n \to \infty$. Then $v \in \mathsf{BV}(U)$ and $|v|_{\mathsf{BV}(U)} \leqslant \liminf_{n \to \infty} |v_n|_{\mathsf{BV}(U)}$. Furthermore, $v_n \to v$ in $\mathsf{BV}(U)$.

Theorem

Let $v \in L^1(U)$ and $(v_n)_{n \in \mathbb{N}} \subset \mathsf{BV}(U)$ with $\sup_{n \in \mathbb{N}} |v_n|_{\mathsf{BV}(U)} < \infty$ and $v_n \to v$ in $L^1(U)$ as $n \to \infty$. Then $v \in \mathsf{BV}(U)$ and $|v|_{\mathsf{BV}(U)} \leqslant \liminf_{n \to \infty} |v_n|_{\mathsf{BV}(U)}$. Furthermore, $v_n \to v$ in $\mathsf{BV}(U)$.

Let U be a bounded Lipschitz domain.

Theorem

Let $(v_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(U)$ be bounded. Then there exists some subsequence $(v_{n_k})_{k\in\mathbb{N}}$ of $(v_n)_{n\in\mathbb{N}}$ and $v\in \mathsf{BV}(U)$ such that $v_{n_k}\to v$ in $L^1(U)$ as $k\to\infty$.

Let $f_1, f_2 \in L^2(\Omega)$. For $\ell \in \{1, 2\}$, let $u_\ell \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ minimize

$$E_\ell(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_\Omega f_\ell v \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$. Then

$$||u_1-u_2|| \leq \frac{1}{\alpha}||f_1-f_2||.$$

Let $f_1, f_2 \in L^2(\Omega)$. For $\ell \in \{1, 2\}$, let $u_\ell \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ minimize

$$E_{\ell}(v) := \frac{\alpha}{2} ||v||^2 + |v|_{\mathsf{BV}(\Omega)} + ||v||_{L^1(\partial\Omega)} - \int_{\Omega} f_{\ell} v \, \mathrm{d}x$$

amongst all $v \in BV(\Omega) \cap L^2(\Omega)$. Then

$$||u_1-u_2|| \leqslant \frac{1}{\alpha}||f_1-f_2||.$$

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319.

Let $f_1, f_2 \in L^2(\Omega)$. For $\ell \in \{1, 2\}$, let $u_\ell \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ minimize

$$E_{\ell}(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} f_{\ell} v \, \mathrm{d}x$$

amongst all $v \in BV(\Omega) \cap L^2(\Omega)$. Then

$$||u_1-u_2|| \leqslant \frac{1}{\alpha}||f_1-f_2||.$$

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319.

Let $f_1, f_2 \in L^2(\Omega)$. For $\ell \in \{1, 2\}$, let $u_\ell \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ minimize

$$E_{\ell}(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} f_{\ell} v \, \mathrm{d}x$$

amongst all $v \in BV(\Omega) \cap L^2(\Omega)$. Then

$$||u_1-u_2|| \leqslant \frac{1}{\alpha}||f_1-f_2||.$$

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319.

Table of Contents

Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem

Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator

Convergence of the Iteration

Let \mathcal{T} be a regular triangulation of Ω .

For all
$$v_{CR} \in CR^1(\mathcal{T})$$
,

$$|v_{\text{CR}}|_{\text{BV}(\Omega)} = \|\nabla_{\text{NC}}v_{\text{CR}}\|_{L^{1}(\Omega)} + \sum_{F \in \mathcal{E}(\Omega)} \|[v_{\text{CR}}]_{F}\|_{L^{1}(F)}.$$

In particular, $CR^1(\mathcal{T}) \subset BV(\Omega)$.

$$E(v_{\mathsf{CR}}) = \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 + |v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + \|v_{\mathsf{CR}}\|_{L^1(\partial\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + \|v_{\mathsf{CR}}\|_{L^1(\partial\Omega)} = \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} + \sum_{F \in \mathcal{E}} \|[v_{\mathsf{CR}}]_F\|_{L^1(F)}$$

$$E(v_{\text{CR}}) = \frac{\alpha}{2} \|v_{\text{CR}}\|^2 + |v_{\text{CR}}|_{\text{BV}(\Omega)} + \|v_{\text{CR}}\|_{L^1(\partial\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x$$

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + \|v_{\mathsf{CR}}\|_{L^1(\partial\Omega)} = \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} + \sum_{F \in \mathcal{E}} \|[v_{\mathsf{CR}}]_F\|_{L^1(F)}$$

$$E(v_{\text{CR}}) = \frac{\alpha}{2} \|v_{\text{CR}}\|^2 + |v_{\text{CR}}|_{\text{BV}(\Omega)} + \|v_{\text{CR}}\|_{L^1(\partial\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x$$

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + ||v_{\mathsf{CR}}||_{L^{1}(\partial\Omega)} = ||\nabla_{\mathsf{NC}}v_{\mathsf{CR}}||_{L^{1}(\Omega)} + \sum_{F \in \mathcal{E}} ||[v_{\mathsf{CR}}]_{F}||_{L^{1}(F)}$$

Discrete problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 + \|\nabla_{\mathsf{NC}} v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

$$E(v_{\text{CR}}) = \frac{\alpha}{2} \|v_{\text{CR}}\|^2 + |v_{\text{CR}}|_{\text{BV}(\Omega)} + \|v_{\text{CR}}\|_{L^1(\partial\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x$$

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + ||v_{\mathsf{CR}}||_{L^{1}(\partial\Omega)} = ||\nabla_{\mathsf{NC}}v_{\mathsf{CR}}||_{L^{1}(\Omega)} + \sum_{F \in \mathcal{E}} ||[v_{\mathsf{CR}}]_{F}||_{L^{1}(F)}$$

Discrete problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 + \|\nabla_{\mathsf{NC}} v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

Let $K := \left\{ \Lambda \in L^{\infty} \left(\Omega; \mathbb{R}^2 \right) \, \middle| \, |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \right\}$ and, for all $(\nu_{\mathsf{CR}}, \Lambda_0) \in \mathsf{CR}^1_0(\mathcal{T}) \times P_0 \left(\mathcal{T}; \mathbb{R}^2 \right)$,

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} \mathit{f}v_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}}(\Lambda_0).$$

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

Let $K := \left\{ \Lambda \in L^{\infty} \left(\Omega; \mathbb{R}^2 \right) \, \middle| \, |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \right\}$ and, for all $(\nu_{\mathsf{CR}}, \Lambda_0) \in \mathsf{CR}^1_0(\mathcal{T}) \times P_0 \left(\mathcal{T}; \mathbb{R}^2 \right)$,

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathsf{K}}(\Lambda_0).$$

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

Let $K := \left\{ \Lambda \in L^{\infty}\left(\Omega; \mathbb{R}^2\right) \big| \, |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \right\}$ and, for all $(\nu_{\mathsf{CR}}, \Lambda_0) \in \mathsf{CR}^1_0(\mathcal{T}) \times P_0\left(\mathcal{T}; \mathbb{R}^2\right)$,

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathsf{K}}(\Lambda_0).$$

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

Let $K:=\left\{\Lambda\in L^\infty\left(\Omega;\mathbb{R}^2\right)\big|\,|\Lambda(ullet)|\leqslant 1$ a.e. in $\Omega\right\}$ and, for all $(\nu_{\mathsf{CR}},\Lambda_0)\in\mathsf{CR}^1_0(\mathcal{T})\times P_0\left(\mathcal{T};\mathbb{R}^2\right)$,

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d} x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d} x - I_{\mathsf{K}}(\Lambda_0).$$

Minimax problem

Find
$$\left(\tilde{\textit{u}}_{CR}, \bar{\Lambda}_0 \right) \in \mathsf{CR}^1_0(\mathcal{T}) \times \textit{P}_0 \left(\mathcal{T}; \mathbb{R}^2 \right)$$
 such that

$$L(\tilde{\textit{u}}_{CR},\bar{\Lambda}_0) = \inf_{\textit{v}_{CR} \in CR_0^1(\mathcal{T})} \sup_{\Lambda_0 \in \textit{P}_0(\mathcal{T};\mathbb{R}^2)} L(\textit{v}_{CR},\Lambda_0).$$

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}}(\Lambda_0)$$

Minimax problem

Find
$$(\tilde{u}_{CR}, \bar{\Lambda}_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \mathbb{R}^2)$$
 such that

$$L(\tilde{\textit{u}}_{CR},\bar{\Lambda}_0) = \inf_{\textit{v}_{CR} \in CR^1_0(\mathcal{T})} \sup_{\Lambda_0 \in \textit{P}_0(\mathcal{T};\mathbb{R}^2)} L(\textit{v}_{CR},\Lambda_0).$$

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} \mathit{f}v_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}}(\Lambda_0)$$

Minimax problem

Find
$$(\tilde{u}_{CR}, \bar{\Lambda}_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \mathbb{R}^2)$$
 such that

$$L(\tilde{\textit{u}}_{CR},\bar{\Lambda}_0) = \inf_{\textit{v}_{CR} \in CR^1_0(\mathcal{T})} \sup_{\Lambda_0 \in \textit{P}_0(\mathcal{T};\mathbb{R}^2)} L(\textit{v}_{CR},\Lambda_0).$$

This problem has a solution $(\tilde{u}_{CR}, \bar{\Lambda}_0) \in CR_0^1(\mathcal{T}) \times (P_0(\mathcal{T}; \mathbb{R}^2) \cap K).$

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}}(\Lambda_0)$$

Minimax problem

Find $\left(\tilde{\textit{u}}_{CR},\bar{\Lambda}_{0}\right)\in CR_{0}^{1}(\mathcal{T})\times\textit{P}_{0}\left(\mathcal{T};\mathbb{R}^{2}\right)$ such that

$$L(\tilde{\textit{u}}_{CR},\bar{\Lambda}_0) = \inf_{\textit{v}_{CR} \in CR^1_0(\mathcal{T})} \sup_{\Lambda_0 \in \textit{P}_0(\mathcal{T};\mathbb{R}^2)} L(\textit{v}_{CR},\Lambda_0).$$

This problem has a solution $(\tilde{u}_{CR}, \bar{\Lambda}_0) \in CR_0^1(\mathcal{T}) \times (P_0(\mathcal{T}; \mathbb{R}^2) \cap K).$

R. Tyrrell Rockafellar. Convex Analysis. New Jersey: Princeton University Press, 1970. ISBN: 0-691-08069-0

Theorem (Equivalent characterizations)

For a function $\tilde{u}_{CR} \in CR_0^1(\mathcal{T})$ the following statements are equivalent.

- (i) \tilde{u}_{CR} solves the discrete problem.
- (ii) There exists $\bar{\Lambda}_0 \in P_0(\mathcal{T}; \mathbb{R}^2)$ with $|\bar{\Lambda}_0(\bullet)| \leqslant 1$ a.e. in Ω s.t.

$$\bar{\Lambda}_0(\bullet)\cdot\nabla_{NC}\tilde{\textit{u}}_{CR}(\bullet) = |\nabla_{NC}\tilde{\textit{u}}_{CR}(\bullet)| \quad \text{ a.e. in } \Omega$$

and

$$\left(\bar{\Lambda}_0, \nabla_{\mathsf{NC}} \textit{v}_{\mathsf{CR}}\right) = \left(\textit{f} - \alpha \tilde{\textit{u}}_{\mathsf{CR}}, \textit{v}_{\mathsf{CR}}\right) \quad \textit{for all } \textit{v}_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T}).$$

(iii) For all $v_{CR} \in CR_0^1(\mathcal{T})$,

$$(f - \alpha \tilde{u}_{CR}, v_{CR} - \tilde{u}_{CR}) \leq \|\nabla_{NC} v_{CR}\|_{L^1(\Omega)} - \|\nabla_{NC} \tilde{u}_{CR}\|_{L^1(\Omega)}.$$

Table of Contents

1 Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator

Convergence of the Iteration

Input: $(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}),$

Input: $(u_0, \Lambda_0) \in \mathsf{CR}^1_0(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}})$, $\tau > 0$

Input: $(u_0, \Lambda_0) \in \mathsf{CR}^1_0(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0$ Initialize $v_0 := 0$ in $\mathsf{CR}^1_0(\mathcal{T})$.

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \tau > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max \{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \tau > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max \{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\begin{split} &\frac{1}{\tau} a_{\mathsf{NC}}(u_j, \bullet) + \alpha(u_j, \bullet) = \frac{1}{\tau} a_{\mathsf{NC}}(u_{j-1}, \bullet) + (f, \bullet) - (\Lambda_j, \nabla_{\mathsf{NC}} \bullet) \\ & \text{in } \mathsf{CR}^1_0(\mathcal{T}) \text{ for } u_j, \end{split}$$

1000 TEV (E)

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \tau > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max \{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} a_{\mathsf{NC}}(u_j, \bullet) + \alpha(u_j, \bullet) = \frac{1}{\tau} a_{\mathsf{NC}}(u_{j-1}, \bullet) + (f, \bullet) - (\Lambda_j, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \tau > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max \{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_i|\}},$$

solve

$$\frac{1}{\tau} a_{\mathsf{NC}}(u_j, \bullet) + \alpha(u_j, \bullet) = \frac{1}{\tau} a_{\mathsf{NC}}(u_{j-1}, \bullet) + (f, \bullet) - (\Lambda_j, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j}, \bullet) + \alpha(\mathit{u}_{j}, \bullet) = \frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j-1}, \bullet) + (f, \bullet) - (\Lambda_{j}, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau}a_{\mathsf{NC}}(u_j,\bullet) + \alpha(u_j,\bullet) = \frac{1}{\tau}a_{\mathsf{NC}}(u_{j-1},\bullet) + (f,\bullet) - (\Lambda_j, \nabla_{\mathsf{NC}}\bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \tau > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j}, \bullet) + \alpha(\mathit{u}_{j}, \bullet) = \frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j-1}, \bullet) + (f, \bullet) - (\Lambda_{j}, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j}, \bullet) + \alpha(\mathit{u}_{j}, \bullet) = \frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j-1}, \bullet) + (f, \bullet) - (\Lambda_{j}, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0, \ \varepsilon_{\text{stop}} > 0$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} a_{\mathsf{NC}}(u_j, \bullet) + \alpha(u_j, \bullet) = \frac{1}{\tau} a_{\mathsf{NC}}(u_{j-1}, \bullet) + (f, \bullet) - (\Lambda_j, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_j , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}$$
. Terminate iteration if $|||v_j||| < \varepsilon_{\mathsf{stop}}$.

Let $u_{CR} \in CR_0^1(\mathcal{T})$ solve the discrete problem, $\bar{\Lambda}_0 \in P_0(\mathcal{T}; \mathbb{R}^2)$ satisfy $|\bar{\Lambda}_0(\bullet)| \leqslant 1$ a.e. in Ω as well as

$$\bar{\Lambda}_0(ullet)\cdot
abla_{\sf NC} u_{\sf CR}(ullet) = |
abla_{\sf NC} u_{\sf CR}(ullet)|$$
 a.e. in Ω

and

$$\left(\bar{\Lambda}_0, \nabla_{\mathsf{NC}} v_{\mathsf{CR}}\right) = \left(f - \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}}\right) \quad \textit{for all } v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T}),$$

and $\tau \in (0,1]$. Then the iterates $(u_j)_{j\in\mathbb{N}}$ of the primal-dual iteration converge to u_{CR} in $L^2(\Omega)$.

Let $u_{CR} \in CR_0^1(\mathcal{T})$ solve the discrete problem, $\bar{\Lambda}_0 \in P_0(\mathcal{T}; \mathbb{R}^2)$ satisfy $|\bar{\Lambda}_0(\bullet)| \leqslant 1$ a.e. in Ω as well as

$$\bar{\Lambda}_0(ullet)\cdot
abla_{\mathsf{NC}} \mathit{u}_{\mathsf{CR}}(ullet) = |
abla_{\mathsf{NC}} \mathit{u}_{\mathsf{CR}}(ullet)|$$
 a.e. in Ω

and

$$\left(\bar{\Lambda}_{0}, \nabla_{\mathsf{NC}} v_{\mathsf{CR}}\right) = \left(f - \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}}\right) \quad \textit{for all } v_{\mathsf{CR}} \in \mathsf{CR}^{1}_{0}(\mathcal{T}),$$

and $\tau \in (0,1]$. Then the iterates $(u_j)_{j\in\mathbb{N}}$ of the primal-dual iteration converge to u_{CR} in $L^2(\Omega)$.

For all $J \in \mathbb{N}$,

$$\sum_{i=1}^{J} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|u_{\mathsf{CR}} - u_0\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

Let $u_{CR} \in CR_0^1(\mathcal{T})$ solve the discrete problem, $\bar{\Lambda}_0 \in P_0(\mathcal{T}; \mathbb{R}^2)$ satisfy $|\bar{\Lambda}_0(\bullet)| \leqslant 1$ a.e. in Ω as well as

$$\bar{\Lambda}_0(ullet)\cdot
abla_{\sf NC} u_{\sf CR}(ullet) = |
abla_{\sf NC} u_{\sf CR}(ullet)|$$
 a.e. in Ω

and

$$(\bar{\Lambda}_0, \nabla_{\mathsf{NC}} v_{\mathsf{CR}}) = (f - \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}}) \quad \textit{for all } v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T}),$$

and $\tau \in (0,1]$. Then the iterates $(u_j)_{j \in \mathbb{N}}$ of the primal-dual iteration converge to u_{CR} in $L^2(\Omega)$.

For all $J \in \mathbb{N}$,

$$\sum_{i=1}^{J} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|u_{\mathsf{CR}} - u_0\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

Let $u_{CR} \in CR_0^1(\mathcal{T})$ solve the discrete problem, $\bar{\Lambda}_0 \in P_0(\mathcal{T}; \mathbb{R}^2)$ satisfy $|\bar{\Lambda}_0(\bullet)| \leqslant 1$ a.e. in Ω as well as

$$\bar{\Lambda}_0(ullet)\cdot
abla_{\sf NC} u_{\sf CR}(ullet) = |
abla_{\sf NC} u_{\sf CR}(ullet)|$$
 a.e. in Ω

and

$$(\bar{\Lambda}_0, \nabla_{\mathsf{NC}} v_{\mathsf{CR}}) = (f - \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}})$$
 for all $v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$,

and $\tau \in (0,1]$. Then the iterates $(u_j)_{j\in\mathbb{N}}$ of the primal-dual iteration converge to u_{CR} in $L^2(\Omega)$.

$$\sum_{i=1}^{\infty} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|u_{\mathsf{CR}} - u_0\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

Table of Contents

Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples
 - Settings

Choice of Parameters
Guaranteed lower Energy Bound and Refinement Indicator
Convergence of the Iteration

Let $\Omega=(-1,1)^2$. Define $f\in H^1_0(\Omega)$ by $f(x)=\tilde{f}(|x|)$ for all $x\in\Omega$ with

$$\tilde{f}(r) := \begin{cases} \alpha - 12(2 - 9r) & \text{if } 0 \leqslant r \leqslant \frac{1}{6}, \\ 6r\alpha - \frac{1}{r} & \text{if } \frac{1}{6} \leqslant r \leqslant \frac{1}{3} \\ 2\alpha + 6\pi\sin(\pi(6r - 2)) - \frac{1}{r}\cos(\pi(6r - 2)) & \text{if } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ \alpha(5 - 6r) + \frac{1}{r} & \text{if } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ -3\pi\sin(\pi(6r - 5)) + \frac{1 + \cos(\pi(6r - 5))}{2r} & \text{if } \frac{5}{6} \leqslant r \leqslant 1. \end{cases}$$

f for $\alpha = 1$

f for $\alpha = 1$ along the axes

Then the solution to the continuous problem with input signal f is given by $u \in H^1_0(\Omega)$ defined by $u(x) = \tilde{u}(|x|)$ for all $x \in \Omega$ with

$$\tilde{u}(r) := \begin{cases} 1 & \text{if } 0 \leqslant r \leqslant \frac{1}{6}, \\ 6r & \text{if } \frac{1}{6} \leqslant r \leqslant \frac{1}{3}, \\ 2 & \text{if } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ 5 - 6r & \text{if } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ 0 & \text{if } \frac{5}{6} \leqslant r. \end{cases}$$

И

u along the axes

Then the solution to the continuous problem with input signal f is given by $u \in H^1_0(\Omega)$ defined by $u(x) = \tilde{u}(|x|)$ for all $x \in \Omega$ with

$$\tilde{u}(r) := \begin{cases} 1 & \text{if } 0 \leqslant r \leqslant \frac{1}{6}, \\ 6r & \text{if } \frac{1}{6} \leqslant r \leqslant \frac{1}{3}, \\ 2 & \text{if } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ 5 - 6r & \text{if } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ 0 & \text{if } \frac{5}{6} \leqslant r. \end{cases}$$

u along the axes

It holds $E(u) \approx -2.058034062391$.

Ш

For $\alpha=10000$ let the input signal represent the grayscale of an image in $[0,1]^{256\times256}$ multiplied with α scaled to the domain $\Omega=(0,1)^2$.

Image cameraman

Initial Triangulations for the Input Signals

Input signal f

$$\Omega = (-1,1)^2$$

Input signal cameraman

$$\Omega = (0, 1)^2$$

Table of Contents

1 Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator Convergence of the Iteration

Choice of τ

For the rest of the presentation (unless otherwise specified) let the bulk parameter be $\theta=0.5$, and $\varepsilon_{\rm stop}=10^{-4}$.

Choice of τ

For the rest of the presentation (unless otherwise specified) let the bulk parameter be $\theta=0.5$, and $\varepsilon_{\rm stop}=10^{-4}$.

Input signal camerman

Choice of τ

For the rest of the presentation (unless otherwise specified) let the bulk parameter be $\theta=0.5$, and $\varepsilon_{\rm stop}=10^{-4}$.

Input signal f

For the rest of the presentation $\tau = 1$.

For the rest of the presentation $\tau = 1$.

Convergence of the iterates of the primal-dual iteration to the discrete solution u_{CR} followed from

$$\sum_{j=1}^{\infty} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|u_{\mathsf{CR}} - u_0\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

For the rest of the presentation $\tau = 1$.

Convergence of the iterates of the primal-dual iteration to the discrete solution u_{CR} followed from

$$\sum_{j=1}^{\infty} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|u_{\mathsf{CR}} - u_0\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

For the rest of the presentation $\tau = 1$.

Convergence of the iterates of the primal-dual iteration to the discrete solution u_{CR} followed from

$$\sum_{j=1}^{\infty} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|u_{\mathsf{CR}} - u_0\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

Settings with au=1.2 and no convergence were observed.

For the rest of the presentation $\tau = 1$.

Convergence of the iterates of the primal-dual iteration to the discrete solution u_{CR} followed from

$$\sum_{j=1}^{\infty} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|\|u_{\mathsf{CR}} - u_0\|\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

Settings with $\tau=1.2$ and no convergence were observed.

For the rest of the presentation $\tau = 1$.

Convergence of the iterates of the primal-dual iteration to the discrete solution u_{CR} followed from

$$\sum_{j=1}^{\infty} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|\|u_{\mathsf{CR}} - u_0\|\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

Settings with $\tau=1.2$ and no convergence were observed.

For
$$v_{CR} \in CR_0^1(\mathcal{T})$$
, define $J_1 : CR_0^1(\mathcal{T}) \to P_1(\mathcal{T}) \cap C_0(\Omega)$ by

$$J_1 v_{\mathsf{CR}}(z) := |\mathcal{T}(z)|^{-1} \sum_{T \in \mathcal{T}(z)} v_{\mathsf{CR}}|_T(z) \quad \text{for all } z \in \mathcal{N}(\Omega).$$

For the rest of the presentation $\tau = 1$.

Convergence of the iterates of the primal-dual iteration to the discrete solution u_{CR} followed from

$$\sum_{j=1}^{\infty} \|u_{\mathsf{CR}} - u_j\|^2 \leqslant \frac{1}{2\alpha\tau} \left(\|\|u_{\mathsf{CR}} - u_0\|\|_{\mathsf{NC}}^2 + \|\bar{\Lambda}_0 - \Lambda_0\|^2 \right).$$

Settings with $\tau=1.2$ and no convergence were observed.

For
$$v_{CR} \in CR_0^1(\mathcal{T})$$
, define $J_1 : CR_0^1(\mathcal{T}) \to P_1(\mathcal{T}) \cap C_0(\Omega)$ by

$$J_1 v_{\mathsf{CR}}(z) := |\mathcal{T}(z)|^{-1} \sum_{T \in \mathcal{T}(z)} v_{\mathsf{CR}}|_T(z) \quad \text{for all } z \in \mathcal{N}(\Omega).$$

Use $\hat{u}_0 := J_1 u_{CR,\mathcal{T}} \in P_1(\mathcal{T}) \cap C_0(\Omega) \subseteq P_1(\hat{\mathcal{T}}) \cap C_0(\Omega) \subseteq CR_0^1(\hat{\mathcal{T}})$ as input for the iteration on the refined triangulation $\hat{\mathcal{T}}$.

Choice of $\varepsilon_{\mathsf{stop}}$

With $\tau=1$ the stopping criterion reads $|||u_j-u_{j-1}|||_{\mathsf{NC}}<arepsilon_{\mathsf{stop}}.$

Choice of $\varepsilon_{\text{stop}}$

With $\tau = 1$ the stopping criterion reads $|||u_j - u_{j-1}||_{NC} < \varepsilon_{\text{stop}}$.

For the rest of the presentation $\varepsilon_{\text{stop}} = 10^{-4}$.

Table of Contents

1 Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator Convergence of the Iteration

Theorem (Guaranteed lower energy bound)

Let Ω be convex. Let $f \in H^1_0(\Omega)$ be the input signal of the continuous (discrete) problem with solution $u \in H^1_0(\Omega)$ ($u_{CR} \in CR^1_0(\Omega)$). Then

$$E_{\mathsf{NC}}(u_{\mathsf{CR}}) + \frac{\alpha}{2} \|u - u_{\mathsf{CR}}\|^2 - \frac{\kappa_{\mathsf{CR}}}{\alpha} \|h_{\mathcal{T}}(f - \alpha u_{\mathsf{CR}})\| \|\nabla f\| \leqslant E(u)$$

with
$$\kappa_{CR} := \sqrt{1/48 + 1/j_{1,1}^2} \approx 0.298217419$$
.

Theorem (Guaranteed lower energy bound)

Let Ω be convex. Let $f \in H^1_0(\Omega)$ be the input signal of the continuous (discrete) problem with solution $u \in H^1_0(\Omega)$ ($u_{CR} \in CR^1_0(\Omega)$). Then

$$E_{\mathsf{NC}}(u_{\mathsf{CR}}) + \frac{\alpha}{2} \|u - u_{\mathsf{CR}}\|^2 - \frac{\kappa_{\mathsf{CR}}}{\alpha} \|h_{\mathcal{T}}(f - \alpha u_{\mathsf{CR}})\| \|\nabla f\| \leqslant E(u)$$

with $\kappa_{\text{CR}} \coloneqq \sqrt{1/48 + 1/j_{1,1}^2} \approx 0.298217419.$ In particular

$$E_{\mathsf{GLEB}} := E_{\mathsf{NC}}(u_{\mathsf{CR}}) - \frac{\kappa_{\mathsf{CR}}}{\alpha} \|h_{\mathcal{T}}(f - \alpha u_{\mathsf{CR}})\| \|\nabla f\|$$

satisfies $E_{NC}(u_{CR}) \geqslant E_{GLEB}$ and $E(u) \geqslant E_{GLEB}$.

Definition (Refinement indicator)

Let $0 < \gamma \le 1$ (in this presentation $\gamma = 1$). For all $T \in \mathcal{T}$ and $u_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$, define

$$\begin{split} &\eta_{\mathsf{V}}(T) \coloneqq \|T\| \|f - \alpha u_{\mathsf{CR}}\|_{L^2(T)}^2, \\ &\eta_{\mathsf{J}}(T) \coloneqq \|T|^{\gamma/2} \sum_{F \in \mathcal{E}(T)} \|[u_{\mathsf{CR}}]_F\|_{L^1(F)}\,, \quad \text{and} \\ &\eta(T) \coloneqq \eta_{\mathsf{V}}(T) + \eta_{\mathsf{J}}(T). \end{split}$$

With that define the refinement indicator $\eta := \sum_{T \in \mathcal{T}} \eta(T)$.

The mesh with 39232 degrees of freedom for level 16 of the adaptive algorithm with $\theta=0.5$ and input signal cameraman and the solution of the iteration on this mesh.

The mesh with 95865 degrees of freedom for level 11 of the adaptive algorithm with $\theta=0.5$ and input signal f and the solution of the iteration on this mesh along the axes.

Input signal cameraman

[Bar15, p. 309, Thm. 10.7]

For the conforming discretization of the ROF model problem with the Courant FEM it holds

$$\frac{\alpha}{2}\|u-u_{\mathsf{C}}\|^2 \lesssim h^{1/2}.$$

Input signal f

Let $u \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ ($u_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$) solve the continuous (discrete) problem with input signal f. Then

$$\begin{split} \frac{\alpha}{2} \|u - u_{\mathsf{CR}}\|^2 & \leq E(u_{\mathsf{CR}}) - E(u) \\ & = E_{\mathsf{NC}}(u_{\mathsf{CR}}) + \sum_{F \in \mathcal{E}} \|[u_{\mathsf{CR}}]_F\|_{L^1(F)} - E(u). \end{split}$$

Let $u \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ ($u_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$) solve the continuous (discrete) problem with input signal f. Then

$$\begin{split} \frac{\alpha}{2} \|u - u_{\mathsf{CR}}\|^2 & \leq E(u_{\mathsf{CR}}) - E(u) \\ & = E_{\mathsf{NC}}(u_{\mathsf{CR}}) + \sum_{F \in \mathcal{E}} \|[u_{\mathsf{CR}}]_F\|_{L^1(F)} - E(u). \end{split}$$

Input signal f

Table of Contents

1 Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- Primal-Dual Iteration
- 3 Numerical Examples

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator

Convergence of the Iteration

Input Signal f, $\theta = 0.5$

Input Signal f, $\theta = 0.5$

Table of Contents

1 Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- 2 Primal-Dual Iteration
- 3 Numerical Examples

Settings

Choice of Parameters

Guaranteed lower Energy Bound and Refinement Indicator Convergence of the Iteration

Thank you for your attention.

Input Signal f

Input Signal f, $\theta = 1$

Let $u_P:[0,\infty)\to\mathbb{R}$ with $u_P(r)=0$ for $r\geqslant 1$, and, for all $x\in\Omega$, $u(x)=u_P(|x|)$. Furthermore, assume the existence of $\partial_r u_P$ a.e. in $[0,\infty)$, the existence of the derivative of

$$\mathrm{sgn}\left(\partial_r u_P(r)\right) := \begin{cases} -1 & \text{ für } \partial_r u_P(r) < 0, \\ x \in [0,1] & \text{ für } \partial_r u_P(r) = 0, \\ 1 & \text{ für } \partial_r u_P(r) > 0. \end{cases}$$

a.e. in $[0,\infty)$, and that $\mathrm{sgn}\left(\partial_r u_P(r)\right)/r\to 0$ as $r\to 0$. For all $r\in [0,\infty)$, define

$$f_P(r) := \alpha u_P(r) - \partial_r \left(\operatorname{sgn} \left(\partial_r u_P(r) \right) \right) - \frac{\operatorname{sgn} \left(\partial_r u_P(r) \right)}{r}$$

Then u solves the continuous problem on $\Omega \supseteq \{w \in \mathbb{R}^2 \mid |w| \leqslant 1\}$ if the input signal is $f(x) := f_P(|x|)$.

