DIALOG(R)File 352:Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

011442799

WPI Acc No: 1997-420706/199739

XRAM Acc No: C97-134918 XRPX Acc No: N97-350257

Organic electroluminescence element - contains quinoxaline compound(s) of

specified formulae

Patent Assignee: TDK CORP (DENK)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 9188874 A 19970722 JP 95353061 A 19951229 199739 B

Priority Applications (No Type Date): JP 95353061 A 19951229

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 9188874 A 100 C09K-011/06

Abstract (Basic): JP 9188874 A

Organic electroluminescence element (P) contains at least one organic compound layer containing quinoxaline type compound of formula (I): QnL (I) where Q = a pyrazinyl group formed by condensation of 0-2 nitrogen atoms containing 6-member aromatic rings; n = 2 or 3; and L = n valency group; but when n is 2 and two Qs are quinoxalinyl groups, at least one Q is 2-quinoxalinyl group or 3-quinoxalinyl group. Preferably six-member aromatic rings constituting Q in formula (I) are benzene, pyridine, pyrimidine, or pyridazine rings. The L in the formula (I) is an arenediyl or arenenetriyl group, nitrogen atom, or triarylaminetriyl group.

ADVANTAGE - (P) can be manufactured by many possible combinations with various organic electroluminescence materials and has high reliability.

Dwg.0/5

Title Terms: ORGANIC; ELECTROLUMINESCENT; ELEMENT; CONTAIN;

QUINOXALINE; COMPOUND; SPECIFIED; FORMULA

Derwent Class: E13; L03; U11; U14; X26

International Patent Class (Main): C09K-011/06

International Patent Class (Additional): H05B-033/14; H05B-033/22

File Segment: CPI; EPI

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

05574074

Image available

ORGANIC EL ELEMENT USING QUINOXALINE COMPOUND

PUB. NO.:

09-188874 [JP 9188874 A]

PUBLISHED:

July 22, 1997 (19970722)

INVENTOR(s): EBISAWA AKIRA

INOUE TETSUJI

APPLICANT(s): TDK CORP [000306] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

07-353061 [JP 95353061]

FILED:

December 29, 1995 (19951229)

INTL CLASS:

[6] C09K-011/06; H05B-033/14; H05B-033/22

JAPIO CLASS: 13.9 (INORGANIC CHEMISTRY -- Other); 43.4 (ELECTRIC POWER --

Applications)

JAPIO KEYWORD: R007 (ULTRASONIC WAVES); R020 (VACUUM TECHNIQUES)

ABSTRACT

PROBLEM TO BE SOLVED: To obtain an organic EL element which can be used in combination with many organic EL materials and electrode materials, undergoes little physical and chemical change and has high reliability by using a quinoxaline compound.

SOLUTION: This element 1 is prepared by successively laying at least one organic compound layer containing a quinoxaline compound represented by the formula (wherein Qs, which may be the same or different from each other, are each a pyrazinyl group fused with a 0-2N six-membered aromatic ring, (n) is 2 or 3; L is an n-valent group; when (n) is 2, provided that when Qs are quinoxalinyl groups, at least either one is a 2- or two 3-quinoxalinyl group; the six-membered aromatic ring of Q is a benzene ring, a pyridine ring, a pyrimidine ring or pyridazine ring; and L is an arenediyl group, an arenetriyl group, a nitrogen atom, a triarylaminetriyl group or the like), an anode 3, a hole injection and transport layer 4, a luminous layer 5, an electron injection and transport layer 6 and a cathode 7 on a substrate 2.

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-188874

(43)公開日 平成9年(1997)7月22日

(51) Int. C1. 6 C09K 11/06 H05B 33/14 33/22	識別記号	9636-4H	F I C09K 11/06 H05B 33/14 33/22	ļ			
			審査請求	未請求	請求項の数11	FD	(全100頁)
(21)出願番号	特願平7-353061		(71)出願人			会社	
(22)出願日	平成7年(1995)12	月 29日	(72)発明者	東京都中海老沢 東京都中	中央区日本橋 1	丁目13番 丁目13番	
			(72)発明者	井上 剱 東京都中		丁目13番	\$1号 ティ
			(74)代理人	弁理士	石井 陽一		

(54) 【発明の名称】キノキサリン系化合物を用いた有機EL用素子

(57)【要約】

【課題】 種々の有機EL材料との組み合わせが可能であり、かつ高信頼性の有機EL素子を得る。

【解決手段】 下記式(I)で表されるキノキサリン系 化合物を有機化合物層に含有させる。

$$Q_0 - L$$
 (1)

[式(I)中QはNを $0\sim2$ 個含む六員芳香環が縮合したピラジニル基を表し、nは2、3であり、Lはn価の基を表す。ただしn=2でQがキノキサニル基のとき、一方のQは2-または3-キノキサリニル基である。]

【特許請求の範囲】

【請求項1】 下記式 (I) で表されるキノキサリン系 化合物を含有する少なくとも1層の有機化合物層を有す るキノキサリン系化合物を用いた有機EL素子。

$$Q_{n} - L \tag{1}$$

[式(I)において、Qは窒素原子を0~2個含む六員 芳香環が縮合したピラジニル基を表し、nは2または3であり、Qは各々同一でも異なるものであってもよい。 Lはn価の基を表す。ただし、nが2であって、2個のQがキノキサリニル基であるとき、少なくとも一方は2ーキノキサリニル基または3ーキノキサリニル基である。]

【請求項2】 前記六員芳香環が、ベンゼン環、ピリジン環、ピリミジン環またはピリダジン環である請求項1 のキノキサリン系化合物を用いた有機EL素子。

【請求項3】 前記Lがアレーンジイル基、アレーントリイル基、窒素原子またはトリアリールアミントリイル基である請求項1または2のキノキサリン系化合物を用いた有機EL素子。

【請求項4】 前記しがフェニレン基、ピフェニルジイル基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基、ベンゼントリイル基、窒素原子またはトリフェニルアミントリイル基である請求項1~3のいずれかのキノキサリン系化合物を用いた有機EL素子。

【請求項5】 前記キノキサリン系化合物が下記式 (II) で表される請求項1~4のいずれかのキノキサイリ

ン系化合物を用いた有機EL素子。

(化1)

$$\left(\begin{array}{c} (R)_{k} \\ Z \\ N \end{array}\right)_{n} L \qquad (II)$$

[式 (II) において、Zはピラジン環の2個の炭素原子とともにベンゼン環、ピリジン環、ピリミジン環またはピリダジン環を形成するのに必要な原子群を表す。Rはピラジン環に結合する1価の置換基を表し、kは0、1または2である。nは2または3である。nが2のときしはフェニレン基、ピフェニルジイル基またはナフタレンジイル基を表し、nが3のときしはベンゼントリイル基、窒素原子またはトリフェニルアミントリイル基を表す。Zで完成される縮合環は各々同一でも異なるものであってもよく、縮合ピラジン環におけるLとの結合位置はいずれであってもよい。ただし、nが2であって、2個の縮合ピラジン環がキノキサリン環であるとき、少なくとも一方はLと2位または3位で結合し、このようなキノキサリン環でのkは0または1である]

【請求項6】 前記キノキサリン系化合物が下記式(III) ~(XIV) で表されるキノキサリン系化合物を用いた請求項1~5のいずれかのキノキサリン系化合物を用いた有機EL素子。

[化2]

20

$$R_{18}$$
 R_{18} R_{18} R_{19} R_{19} R_{29} R_{29}

$$R_{17}$$
 R_{18}
 R_{19}
 R_{11}
 R_{12}
 R_{21}
 R_{22}
 R_{23}
 R_{25}
 R_{25}
 R_{27}
 R_{28}
 R_{27}
 R_{28}

$$R_{18}$$
 R_{23} N R_{26} N R_{13} N R_{26} N N R_{26}

$$R_{17}$$
 R_{18}
 R_{17}
 R_{18}
 R_{17}
 R_{18}
 R_{17}
 R_{18}
 R_{29}
 R_{29}
 R_{29}
 R_{29}
 R_{29}

$$\begin{array}{c|c}
R_{18} \\
N \\
N \\
N \\
R_{13}
\end{array}$$

$$\begin{array}{c|c}
R_{23} \\
N \\
N \\
R_{28}
\end{array}$$

$$\begin{array}{c|c}
N \\
N \\
R_{28}
\end{array}$$

$$\begin{array}{c|c}
N \\
N \\
N \\
R_{15}
\end{array}$$

【化4】

【化5】

7
$$R_{26}$$
 R_{28} R_{33} R_{36} R_{27} R_{28} R_{38} R_{38}

$$R_{25}$$
 R_{25}
 R_{26}
 R_{37}
 R_{18}
 R_{23}
 R_{33}
 R_{35}
 R_{15}
 R_{36}
 R_{36}
 R_{35}
 R_{35}

〔式(III) ~(VIII)において、L、はフェニレン基、ビ フェニルジイル基またはナフタレンジイル基を表し、R 11. R15. R16. R17. R18. R21. R25. R26. R27 およびR、は各々水素原子、ハロゲン原子、ヒドロキシ 基、カルボキシ基、ニトロ基、シアノ基、アルキル基、 アリール基、アルコキシ基、アリーロキシ基、アミノ 基、アルキルチオ基、アリールチオ基または複素環基を 表し、各式中においてこれらは同一でも異なるものであ ってもよい。式(III) 中R15~R12およびR15~R25の なかの隣接するもの同士、式 (IV) 中R.,~R.,および $R_{11} \sim R_{11}$ のなかの隣接するもの同士、式(V)中 R_{11} とR.,およびR.,とR.,、ならびに式(VII) 中R.,とR ,,およびR,,とR,,は各々互いに結合して環を形成して もよい。式(IX)~(XIV) において、L, はペンゼントリ イル基、窒素原子またはトリフェニルアミントリイル基 を表し、R₁₃、R₁₅、R₁₆、R₁₇、R₁₈、R₂₃、R₂₅、

は各々水素原子、ハロゲン原子、ヒドロキシ基、カルボ キシ基、ニトロ基、シアノ基、アルキル基、アリール 基、アルコキシ基、アリーロキシ基、アミノ基、アルキ ルチオ基、アリールチオ基または複素環基を表し、各式 40 中においてこれらは同一でも異なるものであってもよ い。式(IX)中R₁、~R₁、R₂、~R₂、およびR₃、~R₃。 のなかの隣接するもの同士、式 (X) 中 $R_{L} \sim R_{L}$ 、R ,,~R,,およびR,,~R,,のなかの隣接するもの同士、 式 (XI) 中R,,とR,,、R,,とR,,およびR,,とR,,、 ならびに式 (XIII) 中R.,,とR.,、R.,,とR.,およびR ,, とR,, は各々互いに結合して環を形成してもよい。] 【請求項7】 前記キノキサリン系化合物を含有する有 機化合物層が電子注入層、電子輸送層または電子注入輸 送層であり、さらに発光層を有する請求項1~6のいず 50 れかのキノキサリン系化合物を用いた有機EL索子。

【請求項8】 さらに、正孔注入層、正孔輸送層および 正孔注入輸送層のなかの少なくとも1層を有する請求項 7のキノキサリン系化合物を用いた有機EL素子。

前記キノキサリン系化合物を含有する有 【請求項9】 機化合物層が発光層である請求項1~6のいずれかのキ ノキサリン系化合物を用いた有機EL素子。

【請求項10】 さらに、電子注入層、電子輸送層およ び電子注入輸送層のなかの少なくとも1層と、正孔注入 層、正孔輸送層および正孔注入輸送層のなかの少なくと も1層とを有する請求項9のキノキサリン系化合物を用 10 いた有機EL素子。

【請求項11】 少なくとも1層の発光層を有し、この 発光層が電子注入輸送性化合物と正孔注入輸送性化合物 との混合層であって、この混合層が前記キノキサリン系 化合物を含有する請求項1~6のいずれかのキノキサリ ン系化合物を用いた有機EL素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、有機EL(電界発光) 素子に関し、さらに詳しくは、有機化合物からなる積層 20 構造薄膜に電界を印加して光を放出する素子に関する。 [0002]

【従来の技術】有機EL素子は、陰極と陽極の間に蛍光 性有機化合物を含む薄膜を挟んだ構造を有し、この薄膜 に電界をかけることにより光を放出する素子である。発 光効率を増大させるために発光層の陽極側に正孔注入輸 送層、陰極側に電子注入輸送層等を設けた積層構造を持 つ素子の研究が盛んに行われているが、発光寿命、保存 耐久性、信頼性の問題などが依然解決されていない。こ れまでにキノキサリン化合物を有機EL素子の構成成分 30 とした例として、米国特許第5077142 号明細書、特開平 6-207169号公報、特開平7-53956 号公報等がある。米国 特許第5077142 号明細書で開示された2, 3-ジフェニ ルキノキサリンの場合は、アモルファス性の低さのため 薄膜の結晶化が起こり、寿命の問題を解決できなかっ た。特開平6-207169号公報で開示されたキノキサリンな いしキノキサリン誘導体が直接あるいは連結基を介して 結合した化合物は、アモルファス性は向上しているもの の、キノキサリン環の5~8位(ベンゼン環側)同士で 連結した構造のもののみであり、多種多様な有機EL用 材料に組み合わせて用いることができない。特開平7-53 956 号公報に開示されたキノキサリンポリマーの場合に は、アモルファス性は高いが、重合度のコントロールが 難しく、成膜の膜制御が難しい等の問題があった。

[0003]

【発明が解決しようとする課題】本発明の目的は、数多 くの有機EL用材料、電極材料に組み合わせて用いるこ とのできる有機EL用材料として、キノキサリン系化合 物を用い、物理的変化や光化学的変化、電気化学的変化 ・にある。

[0004]

【課題を解決するための手段】このような目的は、下記 (1)~(11)の本発明により達成される。

10

(1) 下記式(I) で表されるキノキサリン系化合物を 含有する少なくとも1層の有機化合物層を有するキノキ サリン系化合物を用いた有機EL素子。

$$Q_{n} - L \tag{I}$$

[式(I)において、Qは窒素原子を0~2個含む六員 芳香環が縮合したピラジニル基を表し、nは2または3 であり、Qは各々同一でも異なるものであってもよい。 Lはn価の基を表す。ただし、nが2であって、2個の Qがキノキサリニル基であるとき、少なくとも一方は2 - キノキサリニル基または3-キノキサリニル基であ る。]

(2) 前記六員芳香環が、ベンゼン環、ピリジン環、ピ リミジン環またはピリダジン環である上記(1)のキノ キサリン系化合物を用いた有機EL素子。

(3) 前記しがアレーンジイル基、アレーントリイル 基、窒素原子またはトリアリールアミントリイル基であ る上記(1)または(2)のキノキサリン系化合物を用 いた有機EL素子。

(4) 前記しがフェニレン基、ピフェニルジイル基、ナ フタレンジイル基、アントラセンジイル基、ピレンジイ ル基、ベンゼントリイル基、窒素原子またはトリフェニ ルアミントリイル基である上記(1)~(3)のいずれ かのキノキサリン系化合物を用いた有機EL素子。

(5) 前記キノキサリン系化合物が下記式 (11) で表さ れる上記(1)~(4)のいずれかのキノキサイリン系 化合物を用いた有機EL素子。

[0005]

[466]

$$\left(\begin{array}{c} Z \\ Z \\ N \end{array}\right)$$

【0006】〔式(II)において、Zはピラジン環の2 個の炭素原子とともにベンゼン環、ピリジン環、ピリミ ジン環またはピリダジン環を形成するのに必要な原子群 を表す。 Rはピラジン環に結合する1 価の置換基を表 し、kは0、1または2である。nは2または3であ る。nが2のときしはフェニレン基、ピフェニルジイル 基またはナフタレンジイル基を表し、nが3のときLは ベンゼントリイル基、窒素原子またはトリフェニルアミ ントリイル基を表す。 Z で完成される縮合環は各々同一 でも異なるものであってもよく、縮合ピラジン環におけ るしとの結合位置はいずれであってもよい。ただし、n が2であって、2個の縮合ピラジン環がキノキサリン環 が少なく、高信頼性を持つ有機EL索子を実現すること 50 であるとき、少なくとも一方はLと2位または3位で結

合し、このようなキノキサリン環でのkは0または1である]

(6) 前記キノキサリン系化合物が下記式(III) ~(XI

V) で表されるキノキサリン系化合物を用いた上記

(1) ~ (5) のいずれかのキノキサリン系化合物を用いた有機EL素子。

[0007]

【化7】

$$R_{17}$$
 R_{18}
 R_{19}
 R_{19}

$$R_{18}$$
 R_{18} R_{18} R_{19} R_{19} R_{29} R_{29}

$$R_{17}$$
 R_{18}
 R_{19}
 R_{11}
 R_{12}
 R_{13}
 R_{23}
 R_{24}
 R_{25}
 R_{27}
 R_{28}
 R_{27}
 R_{15}

[0008]

$$R_{16}$$
 R_{18}
 R_{18}
 R_{18}
 R_{19}
 R_{19}

$$R_{17}$$
 R_{18}
 R_{17}
 R_{18}
 R_{19}
 R_{11}
 R_{13}
 R_{28}
 R_{27}
 R_{27}
 R_{11}

$$\begin{array}{c|c} R_{23} & N & R_{25} \\ N & N & N \\ N & R_{13} & N \end{array}$$
 (ViII)

[0009]

【化9】

[0010]

【化10】

$$R_{18}$$
 R_{23} R_{33} R_{36} R_{36} R_{36} R_{36}

$$R_{17}$$
 R_{18}
 R_{23}
 R_{39}
 R_{13}
 R_{39}
 R_{39}

$$R_{18}$$
 R_{23} R_{33} R_{35} R_{35} R_{36} R

【0011】 [式(III) ~(VIII)において、L, はフェ ニレン基、ビフェニルジイル基またはナフタレンジイル・ 基を表し、Ris、Ris、Ris、Riz、Riz、Ris、Ris、 R_{15} 、 R_{16} 、 R_{17} および R_{18} は各々水素原子、ハロゲン 原子、ヒドロキシ基、カルポキシ基、ニトロ基、シアノ 基、アルキル基、アリール基、アルコキシ基、アリーロ 40 キシ基、アミノ基、アルキルチオ基、アリールチオ基ま たは複素環基を表し、各式中においてこれらは同一でも 異なるものであってもよい。式(III) 中R15~R13およ びR,,~R,,のなかの隣接するもの同士、式(IV)中R 、、~R、およびR、、~R、。のなかの隣接するもの同士、 式(V)中R」、とR」、およびR、、とR、、ならびに式(V II) 中R.,,とR.,およびR.,,とR.,は各々互いに結合し て環を形成してもよい。式(IX)~(XIV) において、L, はペンゼントリイル基、窒素原子またはトリフェニルア ミントリイル基を表し、Ris、Ris、Ris、Ris、

 R_{11} 、 R_{21} 、 R_{23} 、 R_{24} 、 R_{21} 、 R_{21} 、 R_{21} 、 R_{33} 、 R_{34} 、 R_{24} 、

(7) 前記キノキサリン系化合物を含有する有機化合物 層が電子注入層、電子輸送層または電子注入輸送層であ 50 り、さらに発光層を有する上記(1)~(6)のいずれ

かのキノキサリン系化合物を用いた有機EL素子。

- (8) さらに、正孔注入層、正孔輸送層および正孔注入 輸送層のなかの少なくとも1層を有する上記(7)のキ ノキサリン系化合物を用いた有機EL素子。
- (9) 前記キノキサリン系化合物を含有する有機化合物 層が発光層である上記(1)~(6)のいずれかのキノ キサリン系化合物を用いた有機EL素子。
- (10) さらに、電子注入層、電子輸送層および電子注入輸送層のなかの少なくとも1層と、正孔注入層、正孔輸送層および正孔注入輸送層のなかの少なくとも1層と 10を有する上記(9)のキノキサリン系化合物を用いた有機EL素子。

(11)少なくとも1層の発光層を有し、この発光層が電子注入輸送性化合物と正孔注入輸送性化合物との混合層であって、この混合層が前記キノキサリン系化合物を含有する上記(1)~(6)のいずれかのキノキサリン系化合物を用いた有機EL素子。

[0012]

【作用】本発明に用いるキノキサリン系化合物は、分子量500~2000程度、250~500℃の融点を有20し、90~200℃のガラス転移温度(Tg)を示す。この結果、通常の真空蒸着等により透明で室温以上でも安定なアモルファス状態の平滑で良好な膜を形成し、しかもその良好な膜の状態が長期間に渡って維持される。

【0013】本発明に用いるキノキサリン系化合物は、キノキサリンないしキノキサリン類似の複素環構造内の窒素原子の数と位置の違いにより、それぞれ異なる電子受容性を持っているため、これらの化合物のなかから適宜選択して用いれば、特性設計の幅が広く、電子注入性を任意の値に設計できるので、積層・混合素子の設計に30最適の化合物を得ることができる。特に、電子注入層、電子輸送層、電子注入輸送層や発光層に用いることが好ましい。

【0014】なお、特開平6-207169号公報に は、キノキサリンないしキノキサリン誘導体が直接ある いは連結基を介して結合した化合物が開示されている。 しかし、このものは、キノキサリン環同士あるいはキノ キサリン環と連結基とのキノキサリン環における結合位 置が5~8位のいずれかであり、本発明に用いるキノキ サリン系化合物とは明らかに異なる構造のものである。 【0015】また、本発明に用いるキノキサリン系化合 物は、上記公報のキノキサリン化合物に比べ、構造を選 べば、光吸収によるエネルギー準位のバンドギャップを 広くすることができ、より短波長域(青色~紫色)の発 光も得られる。またスペクトル巾がシャープになる。こ のため、発光層に用いたとき、より短波長の発光が得ら れる。また、発光層も含め発光層以外の有機化合物層に 用いたとき、発光効率が向上し、素子の駆動電圧が低下 する。

[0016]

【具体的構成】以下、本発明の具体的構成について詳細 に説明する。

【0017】本発明に用いるキノキサリン系化合物は、下記式(I)で表される。

 $Q_{n} - L \qquad (I)$

【0018】式(I)について説明すると、Qは窒素原 子を0~2個含む六員芳香環が縮合したピラジニル基を 表す。nは2または3であり、この場合のn個のQは各 々同一でも異なるものであってもよい。Qを形成する六 員芳香環としてはペンゼン環、ピリジン環、ピリミジン 環、ピリダジン環等が好ましい。このような六員芳香環 とピラジン環との縮合位置には特に制限はないが、縮合 位置には炭素原子が存在することが好ましく、窒素原子 は存在しない方が好ましい。したがって、ピラジン環で は位置番号2, 3の辺または位置番号5, 6の辺で縮合 することが好ましく、ピリジン環では位置番号2,3 (もしくは5, 6) の辺または位置番号3, 4 (もしく は4,5)の辺、ピリミジン環では位置番号4,5(も しくは5,6)の辺、ピリダジン環では位置番号3,4 (もしくは5, 6) の辺または位置番号5, 4の辺で縮 合することが好ましい。

【0019】Lはn価の基、すなわち2価または3価の基を表す。2価の基としてはアレーンジイル基が好ましく、具体的にはフェニレン基、ピフェニルジイル基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基等が好ましく挙げられ、3価の基としてはアレーントリイル基(具体的にはベンゼントリイル基等)、窒素原子、トリアリールアミントリイル基等)などが好ましい。

【0020】QおよびLは各々さらに置換基を有していてもよく、このような置換基としてはQを含むものであってもよく、1分子中のQの総数は2~10個が好ましく、さらには2~4個が好ましい。

【0021】このように2個以上存在するQは各々同一でも異なるものであってもよいが、合成上の便宜等からは通常同一であることが好ましい。

【0022】本発明に用いる式(I)で表されるキノキサリン系化合物のなかでも式(II)[前記化6に掲載]で表される化合物が好ましい。

【0023】式(II) について説明すると、式(II) において、Zはピラジン環の2個の炭素原子とともにベンゼン環、ピリジン環、ピリミジン環またはピリダジン環を形成するのに必要な原子群を表す。

【0024】 Zで完成される環は、さらに置換基を有していてもよく、縮合環を有していてもよい。 Zで完成される環のピラジン環に対する好ましい縮合位置は式

(1) の説明で示したものと同様のものが挙げられる。

【0025】 Rはピラジン環に結合する1 価の置換基を表し、kは0、1 または2 である。2 で完成される環の

50 置換基やRで表される置換基の好適例は、後述の式(II

I) ~式(XIV) におけるR., 等と同じであるので、そこ で詳述する。

【0026】nは2または3である。nが2のときLは フェニレン基、ピフェニルジイル基またはナフタレンジ イル基を表し、nが3のときLはベンゼントリイル基、 窒素原子またはトリフェニルアミントリイル基を表し、 これらについても式(III) ~式(XIV) のところで詳述す

【0027】乙で完成される縮合環は各々同一であって も異なるものであってもよいが、式(I)のところでの 10 説明と同様に同一であることが好ましい。

【0028】Zで完成される環を有する縮合ピラジン環 におけるしとの結合位置はいずれであってもよいが、い ずれの場合もピラジン環側で結合することが好ましい。 なお、nが2であって、2個の縮合ピラジン環がキノキ サリン環であるとき、少なくとも一方はLと2位または 3位で結合し、この場合のkは0または1である。

【0029】式(II)で表されるキノキサリン系化合物 のなかでも式(III) ~式(XIV) で表される化合物が好ま しい。

【0030】まず、しが2価基し、である場合の式(II I) ~(VIII)について説明する。式(III) ~式(VIII)に おいて、L、はフェニレン基、ピフェニルジイル基また はナフタレンジイル基を表す。

【0031】 し、で表されるフェニレン基としては、 o -、m-、p-フェニレン基のいずれであってもよい が、特にp-フェニレン基が好ましい。

【0032】L、で表されるピフェニルジイル基として は、4、4'ーピフェニルー1、1'ージイル基等が好 ましい。

【0033】L、で表されるナフタレンジイル基として は、1、5-ナフタレンジイル基等が好ましい。

【0034】これらの2価基は無置換のものが好ましい が、場合によってはアルキル基、アリール基等の置換基 を有していてもよい。

【0035】式(III) 中のR₁,、R₁, ~R₁, R₂, R 25~R24、式(IV)中のR13、R16~R14、R23、R26~ R_{11} 、式(V) 中の R_{11} 、 R_{15} 、 R_{17} 、 R_{14} 、 R_{21} 、 R_{13} 、 R_{27} 、 R_{13} 、式(VI)中の R_{13} 、 R_{14} 、 R_{14} 、 R_{11} 、 R_{11} 、 R_{11} 、式(VII) 中の R_{11} 、 R_{11} 、 R_{11} 、 R_{14} 21、R21、R21、式(VIII)中のR11、R15、R15、 R::、R::、R::は、各々水素原子、ハロゲン原子、ヒ ドロキシ基、カルボキシ基、ニトロ基、シアノ基、アル キル基、アリール基、アルコキシ基、アリーロキシ基、 アミノ基、アルキルチオ基、アリールチオ基または複素 環基を表し、各式中においてこれらは同一でも異なるも のであってもよい。

【0036】R13等で表されるハロゲン原子としては、 フッ素原子、塩素原子等が挙げられる。

~6のものが好ましく、直鎖状であっても分岐を有する ものであってもよい。また無置換のものが好ましいが、 置換基(例えばF、CI等のハロゲン原子)を有してい てもよい。具体的には、メチル基、エチル基、n-プロ ピル基、イソプロピル基、n-プチル基、イソプチル 基、sec‐ブチル基、t‐ブチル基、ペンチル基、ヘ キシル基等が挙げられる。

【0038】R.,等で表されるアリール基は総炭素数6 ~30のものが好ましく、単環であっても多環(縮合多 環や環集合)であってもよく、置換基を有していてもよ い。置換基としては、例えばF、CI等のハロゲン原子 やメチル基等のアルキル基などのほか、複素環基等も挙 げられ、この場合の複素環基は、例えば式(III) におけ るキノキサリニル基のように、L」に結合する縮合ピラ ジニル基と同一のものが好ましい。R.,等のアリール基 の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、2-ピフェニリル基、3-ピフェニリル 基、4-ピフェニリル基等、さらにはこれらにキノキサ リニル基等の縮合ピラジニル基が置換したものなどが挙 20 げられる。

【0039】R1、等で表されるアルコキシ基は、アルキ ル部分の炭素数が1~6のものが好ましく、置換基を有 していてもよいが、無置換のものが好ましい。具体的に はメトキシ基、エトキシ基、プロポキシ基、イソプロポ キシ基、プトキシ基、イソプトキシ基、sec‐プトキ シ基、tープトキシ基等が挙げられる。

【0040】R1,等で表されるアリーロキシ基として は、フェノキシ基等が挙げられる。

【0041】R.,等で表されるアミノ基は置換基を有し 30 ていてもよく、置換基としてはアルキル基、アリール基 等が挙げられる。具体的にはアミノ基、メチルアミノ 基、ジメチルアミノ基、フェニルアミノ基、ジフェニル アミノ基等が挙げられる。

【0042】R1、等で表されるアルキルチオ基としては メチルチオ基、エチルチオ基等が挙げられる。

【0043】 R., 等で表されるアリールチオ基としては フェニルチオ基等が挙げられる。

【0044】R」等で表される複素環基としてはフルリ 基、チェニル基、ピロール基、ピリジル基、キノリル基 等が挙げられる。このほか、式(III) におけるキノキサ リニル基のようなL、に結合するものと同じ縮合ピラジ ニル基であってもよい。

【0045】式(III) において、R₁₅~R₁₄、R₂₅~R ,,のなかの隣接するもの同士、式(IV)において、R,,~ R_{11} 、 $R_{14} \sim R_{14}$ のなかの隣接するもの同士、式(V) に おいて、R., とR., 、R., とR., 、式(VII) において、 R., とR., 、R., とR., は、各々互いに結合して環を形 成してもよい。この場合の環としては、ベンゼン環等が 好ましく、さらには形成されるベンゼン環同士が縮合し 【0037】R₁₃等で表されるアルキル基は総炭素数1 50 ていてもよく、これらによって形成されたベンゼン環は

22

さらに縮合環を有していてもよい。

【0046】式(III)~式(VIII)において、 R_{11} 、 R_{21} はアリール基などが好ましい。また、式(III)の R_{15} ~ R_{11} 、 R_{15} ~ R_{21} は水素原子、アルキル基、アルコキシ基あるいは隣接するもの同士が結合してベンゼン環を形成するものなどが好ましい。また、式(IV)の R_{16} ~ R_{11} 、 R_{26} ~ R_{21} 、式(V) の R_{15} 、 R_{17} 、 R_{11} 、 R_{25} 、 R_{27} 、式(VI) の R_{16} 、 R_{21} 、 R_{21} 、式(VIII) の R_{15} 、 R_{21} 、 R_{22} 、式(VIII) の R_{15} 、 R_{21} 、 R_{22} 、式(VIII) の R_{15} 、 R_{23} 、 R_{23} 、 R_{23} 、 R_{24} 、 R_{25} 、 R_{24} 、 R_{25} 、 R_{24} 、 R_{25} 、 R_{25} 、 R_{24} 、 R_{25} 、 R_{25} 、 R_{24} 、 R_{25} 、 R_{25}

【0047】次に、Lが3価基L,である場合の式(IX) ~式(XIV) について説明する。式(IX) ~式(XIV) において、L,はベンゼントリイル基、窒素原子またはトリフェニルアミントリイル基を表す。

【0048】L, で表されるベンゼントリイル基としては1, 3, 5-ベンゼントリイル基等が好ましい。

【0049】L, で表されるトリフェニルアミントリイル基としては4, 4', 4"-トリフェニル-1, 1', 1"-トリイル基等が好ましい。

【0050】これらの3価基は無置換のものが好ましいが、場合によってはアルキル基、アリール基等の置換基を有していてもよい。

【0051】式(IX)中のR₁₁、R₁₅~R₁₅、R₂₁、R₂₅ ~R₂₅、R₃₁、R₃₅~R₃₁、式(X)中のR₁₁、R₁₆~R₁₁、R₁₅~R₃₁、R₃₁、R₃₁、R₃₂ ~R₃₁、式(XI)中のR₁₁、R₁₅、R₁₅、R₁₇、R₁₆、R₁₇、R₁₇、R₁₈、R₂₅、R₂₇、R₂₇、R₂₆、R₂₇、R₂₇、R₂₇、R₂₇、R₂₇、R₂₇、R₂₇、R₂₈、R₂₉、R₂₉、R₂₉、R₂₉、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₁、R₂₂、R₂₃、R₂₃、R₂₃、R₂₄、R₂₅、R₂₅、R₂₅、R₂₆ R₂₆ R₂₆

または複素環基を表し、各式中においてこれらは同一でも異なるものであってもよい。これらの基の具体例としては式(III) ~式(VIII) のところで挙げたものと同様のものが挙げられる。また、式(IX) において、 R_{13} ~ R_{14} 、 R_{15} ~ R_{15} 、 R_{15} ~ R_{15} 、 R_{15} ~ R_{15} 、 R_{15} ~ R_{15} 、 R_{15} と R_{15} 、 R_{17} と R_{17} 、 R_{17} 、 R_{17} と R_{17} 、 R_{17} 、 R_{17} 、 R_{17} と R_{17} 、 R_{17} 、 R_{17} 、 R_{17} 、 R_{17} と R_{17} 、 R_{17} 、 R_{17} と R_{17} 、 R_{17} 、 R_{17} 、 R_{17} 、 R_{17} と R_{17} 、 R_{17} 、 R_{17} 、 R_{17} 、 R_{17} 、 R_{17} と R_{17} 、 R_{17} 、 R_{17} 、 R_{17} と R_{17} 、 R_{17} 、 R_{17} 、 R_{17} と R_{17} 、 R_{17}

【0052】また、式(IX)の $R_{15} \sim R_{11}$ 、 $R_{15} \sim R_{11}$ 、 $R_{15} \sim R_{11}$ 、 $R_{15} \sim R_{11}$ 、 $R_{15} \sim R_{11}$ は水素原子あるいは隣接するもの同士が結合してペンゼン環を形成するものなどが好ましい。 【0053】また、式(X)の $R_{14} \sim R_{15}$ 、 $R_{15} \sim R_{25}$ 、

R₁₄~R₁₄、式(XI)のR₁₅、R₁₇、R₁₄、R₁₅、R₂₇、
20 R₁₄、R₁₅、R₁₇、R₁₄、式(XII)のR₁₆、R₁₈、
R₁₆、R₁₆、R₁₆、R₁₆、式(XIII)のR₁₇、R₁₈、
R₁₇、R₁₈、R₁₇、R₁₈、式(XIV)のR₁₅、R₁₈、
R₁₅、R₁₆、R₁₅、R₁₆、R₁₆などであることが好ましい。

【0054】以下に、本発明に好ましく用いられる式(1)で表されるキノキサリン系化合物の具体例を示すが、本発明はこれらに限定されるものではない。ここでは、式(III)~式(XIV)中のL,、L,、R,等の組み合わせで表示し、R,,とR,が異なるときは表中で別々に示している。なお、式(III)~式(XIV)での表示は代表例であり、実際得られる化合物は、通常、合成経路上、構造異性体の混合物であるので、これらの表示は対応する構造異性体を含む趣旨である。

[0055]

【化11】:

式(III) 化合物 No.	L ₁	R:=R:=	R15=R25	R: 6=R26	R ₁₇ =R ₂₇	Ris=Rzs
111- 1	-0-0-	-Ph	Н	Н	Н	Н
III- 2	-(>-(>-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-Ph	Н	H	Н	CH ₃
III- 3		-Ph	Н	Н	СН₃	Н
III- 4	-(>-(>-	-Ph	H ·	CH3	CH2	Ħ
III- 5	- ○- - ○-	-Ph	CH3	Н	H	CH ₃
III- 6	-	-Ph	CH3	CH3	Н	H
III- 7	-	-Ph	H	CHs	Н	CH ₃
III- 8	\leftarrow	-Ph	CH ₃	CH3	Н	CH ₃
III- 9	-	-Ph	CH ₃	CH ₃	СНз	H
111-10		-Ph	CH ₃	CH ₃	CH3	CH ₃
III-11	-0-0-	- Ph	H	H	H	C ₂ H ₅
III-12	-0-0-	-Ph	H	H	C2H5	Ħ
III-13	$-\bigcirc-\bigcirc-$	-Ph	H	C2H5	C2H5	H
III-14	-0-0-	-Ph	C2H5	H	H	C ₂ H ₅
111-15	00	-Ph	C2H5	C₂H₅	Н	H
111-16	-	-Ph	Н	C₂H₅	Н	C2H5
111-17	-	-Ph	€2H5	C ₂ H ₅	C ₂ H ₅	Н
III-18	-	-Ph	C2H5	C ₂ H ₅	H	C₂H₅
III-19		-Ph	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	C₂H₅
111-20		-Ph	Н	н	H .	n-C ₃ H ₇
111-21	-	-Ph	H	Н	n-C ₃ H ₇	H
111-22	-	-Ph	Н	n-C ₃ H ₇	n-C ₃ H ₇	Н
[11-23	-	-Ph	n-C ₃ H ₇	H	Н	n-C ₃ H ₇

III-24						_	-
III-25		Lı	R13=R23	R ₁₅ =R ₂₅	R16=R26		R18=R28
III-26	III-24	-	-Ph	n-C ₃ H ₇	n-C ₃ H ₇	H	H
III-27	111-25		-Ph	Н	n-C ₃ H ₇	н	n-C ₃ H ₇
III-28	111-26		-Ph	n-C ₃ H ₇	n-C3H7	n-C ₃ H ₇	H
III-29	111-27	-	-Ph	n-C ₃ H ₇	n-C ₃ H ₇	H	n-C ₃ H ₇
111-30	III-2 <u>8</u>	-	-Ph	n-C ₃ H ₇	n-C ₃ H ₇	n-C _a H ₇	n-C ₃ H ₇
111-31	III-29	-	-Ph	Н	H	H	n-C ₄ H ₉
111-32	111-30		-Ph	H	H	n-C₄H _o	H
111-33	111-31	- O-O-	-Ph	H	n-C₄H ₉	n-C4H9	Н
111-34	III-32		-Ph	n−C₄H _e	H	Н	n-C ₄ H ₉
111-35	111-33	$-\bigcirc-\bigcirc-$	-Ph	n−C₄H₀	n-C ₄ H ₀	н	Ħ
-Ph n-C ₄ H ₉ n-C ₄ H ₉ H n -Ph n-C ₄ H ₉ n-C ₄ H ₉ n -C ₄ H ₉	111-34	-	-Ph	н	n-C4H9	H	n-C4H9
III-37	111-35	$-\bigcirc-\bigcirc-$	-Ph	n-C4H9	n-C₄H₃	n-C ₄ H ₉	H
III-38	111-36		-Ph	n-C ₄ H ₉	n-C ₄ H ₉	H	n-C4H9
III-39	111-37	$-\bigcirc$	-Ph	n-C4H9	n-C ₄ H ₉	n-C ₄ H ₉	n-C4H9
III-40	111-38	-	-Ph	H	н	Н	t-C4H9
III-41	111-39	\leftarrow	-Ph	H	H	t-C ₄ H ₉	H
III-42	III -4 0	-	-Ph	Н	t-C4Hs	t-C₄H ₉	H
III-43	III-41	-(>-(>-	-Ph	t-C ₄ H ₉	H	H	t-C4H9
III-44 —————————————————————————————————	III-42	-	-Ph	t-C4H9	t-C4Ho	Ħ	H
	III-43	-	-Ph	H	t-C4H9	H	t-C₄H ₉
III-45 ————————————————————————————————————	III-44	- (>-(>-(-)-	-Ph	t-C4H9	t-C.H.	t-C ₄ H ₉	H
	[II-45	-	-Ph	t-C.H.	t-C ₄ H ₉	. н	t-C₄H _e
III-46 ————————————————————————————————————	III-46		-Ph	t-C ₄ H ₉	t-C4H.	t-C4H9	t-C₄H ₉

					20	3
式(III) 化合物 No.	Lı	R13=R23	R15=R25	R10=R20	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
III-47	-	-Ph	Н	H	Н	-OCH ₃
III-48	-0-0-	-Ph	H	н	-OCH ₃	H
III-49	-	-Ph	Н	-0CH ₃	-OCH ₃	н
111-50	$-\bigcirc-\bigcirc-$	-Ph	-OCH ₃	B	Н	-OCH ₃
III-51	$-\bigcirc$	-Ph	-OCH3	-0CH ₃	Н	Н
111-52		-Ph	H	-0CH ₃	Н.	-0CH3
III-53	-	-Ph	-0CH ₃	-OCH ₃	-0CH ₃	н
III-54	- ○-	-Ph	-0CH ₃	-0CH ₃	н	-OCH ₃
III-55	$-\bigcirc$	-Ph	-0CH ₃	-0CH ₃	-OCH ₃	-00H3
III-56		-Ph	Н	H	RiotRiste ReotReste	
III-57	$-\bigcirc$	-Ph	Н	R162R172	でかむ環	Н
III-58	-0-0-	-Ph	R152R162	で 心む環で かむ環	R172R102	
III-59	-	-Ph			sとで 各々心ゼン 合して全体で フェ	蒙 形成し、
111-60		-Ph			rとRisとで各々の (R25~R28 で	
III-61	- O-O-	-Ph	H	H	H	-Ph
111-62		-Ph	Н	H	-Ph	Ħ
111-63	-	-Ph	H	-Ph	-Ph	H
III-64	-0-0-	-Ph	-Ph	н	н	-Ph
111-65	-	-Ph	-Ph	-Ph	H	Н
111-66	-	-Ph	н	-Ph	н	-Ph
III-67	- ○- <u></u> ○-	-Ph	-Ph	-Ph	-Ph	H
 						

2	n	

						3U
式(III) 化合物 No.	Lı	R ₁₃ =R ₂₃	R16=R26	R ₁₆ =R ₂₆	R17=R27	R ₁₈ =R ₂₈
III-68	-0-0-	-Ph	-Ph	-Ph	Н	-Ph
III-69	-0-0-	-Ph	-Ph	-Ph	-Ph	-Ph
III-70	- O-O-	-Ph	H	Н	н	1-ታንታル
III-71	-	-Ph	H	Н	H	2ーナフチル
III-72	$-\bigcirc-\bigcirc-$	-Ph	Н	Н	1-ナフチル	Ħ
III-73	-0-0-	-Ph	H .	H	2ーナフチル	H
III-74	◇	-Ph	1ーナフチル	н	н	1ーナフチル
III-75	-	-Ph	H	1-ተንታル	1ーナフチル	Н
III-76	- O-O-	~Ph	H	2ーナフチル	2-ナフチル	Н
III-77	-	-Ph	2-ナフチル	Ħ	Н	2ーナフチル
III-78	-0-0-	-Ph	2- <i>+7+</i> 1	2ーナフチル	Н	Н
III-79		-Ph	1- } 7\$h	1ーナフチル	H	Ħ
III-80	-	-Ph	2- <i>}75N</i>	H	2- <i>†75</i> #	Н
III-81	-()-()-	-Ph	1-775%	Н	1-ナフチル	H
III-82	-()-()-	-Ph	H	Н	4ーピフェニリル	Н
111-83	-0-0-	-Ph	H	Н	3ービフェニリル	н
111-84	-	-Ph	H '	H	2ーピフェニリル	H
111-85	-	-Ph	H .	Н	H	4ーピフェニリル
III-86	-	-Ph	H	Н	H	3-ビフェニリル
III-87	- ◇ - ◇-	-Ph	Н	Н	H	2-ビフェニリル
III-88	$-\bigcirc-\bigcirc-$	-Ph	H	4ービフェニリル	4-E7x=I/N	H
III-89	$-\bigcirc$	-Ph	H	3ービフェニリル	3ービフェニリル	Н
111-90	-	-Ph	H	2-ビフェニリル	2-ビフェニリル	H

						6
式(III) 化合物 No.	Lı	R13*R23	R ₁₆ =R ₂₅	R16=R25	R ₁₇ =R ₂₇	R:3=R23
111-91	-0-0-	-Ph	4-ビフェニリル	Н	Н	4-ビフェニリル
III-92		-Ph	3ービフェニリル	H	H	3ービフェニリル
III-93	-()-()-	-Ph	2-ビフェニリル	H	H	2-ビフェニリル
III-94	-	-Ph	4-ピフェニリル	H	4ービフェニリル	Н
III -9 5	- ○○-	-Ph	3ービフェニリル	н	3ービフェニリル	H
111-96	-0-0-	-Ph	2~ビフェニリル	H	2ーピフェニリル	Н
III-97	$-\bigcirc-\bigcirc-$	-Ph	H	Ħ	C1	H
III-98	-	-Ph	H	н	-OH	H
III-99	-	-Ph	Ħ	H	-NO ₂	H
111-100	$-\bigcirc-\bigcirc-$	-Ph	H	H	-CN	H
III-101	-	-Ph	H	н	-OPh	H
[II-102	-0-0-	-Ph	H	Н	-SCH ₂	H
III-103	- ()-()-	-Ph	Н	H	-SPh	H
III-104		-Ph	Н	Н	H	Н
111-105	-	-Ph	H	Н	H	CH ₃
III-106		-Ph	H	H	CH ₃	H
111-107	-	-Ph	H	CH ₃	CH3	H
III-108	-	-Ph	CH ₃	Н	Н	CH ₃
III-109	-	-Ph	CH ₃	CH ₃	H	H
III-110	-	-Ph	н	CH ₃	Н	CH ₃
III-111		-Ph	CHs	CH ₃	B	CH ₃
III-112	-	-Ph	CH ₃	CH ₃	CH ₃	H
III-113		-Ph	CH ₃	CH ₃	CH ³	CH3

式(III) 化合物 No.	Lı	R13=R23	R ₁₆ =R ₂₅	R16=R25	R ₁₇ =R ₂₇	R18=R28
III-114	- >	-Ph	Н	Н	Н	C ₂ H ₅
III-115	~ >	-Ph	H	H	C ₂ H ₅	Н
III-116	-	-Ph	H	C ₂ H ₅	C ₂ H ₅	Ħ
III-117	-	-Ph	C ₂ H ₅	Н	H	C ₂ H ₅
111-118		-Ph	C_zH_s	C ₂ H ₅	H	H
111-119	-	-Ph	H	C ₂ H ₅	Н	C ₂ H ₅
III-120	-<>	-Ph	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	H
111-121		-Ph	C ₂ H ₅	C ₂ H ₅	Н	C ₂ H ₆
III-122	—	-Ph	C ₂ H ₅	C ₂ H ₆	C ₂ H ₆	C ₂ H ₅
111-123	-	-Ph	н	H	H	n-C ₃ H ₇
III-124		-Ph	Н	Н	n-C ₃ H ₇	H
111-125	-	-Ph	Н	n-C ₃ H ₇	n-CaH7	Н
111-126	-	-Ph	n-CsH7	H	н	n-C ₃ H ₇
III-127	—	-Ph	n-Cally	n-CaH7	Н	Ħ
III-128	-	-Ph	Н	n-C ₃ H ₇	Н	n-C ₃ H ₇
111-129	-	-Ph	n-C ₃ H ₇	n-C ₃ H ₇	n-C ₃ H ₇	H
111-130	-	-Ph	n-C ₃ H ₇	n-C ₃ H ₇	Н	n-C ₃ H ₇
111-131		-Ph	n-C ₃ H ₇	n-C ₃ H ₇	n-C ₃ H ₇	n-C ₃ H ₇
111-132	-<>-	-Ph	H .	H	Н	n-C4H ₉
111-133	~~~	-Ph	H	H	n-C ₄ H ₉	H
III-134	-()-	-Ph	н	n-C ₄ H ₉	n-C ₄ H ₉	н
111-135	-	-Ph	n-C4H9	Н	Н	n-C ₄ H ₉
111-136		-Ph	n-C4H9	n-C ₄ H ₉	H	H

	00				30		
式(III) 化合物 No.	L,	R13=R23	R ₁₅ =R ₂₅	R15=R25	R ₁₇ =R ₂₇	Ria=Rza	
III-137		-Ph	Н	n-C4H9	H	n-C4H9	
III-138	-	-Ph	n-C ₄ H ₉	n-C ₄ H ₉	n-C ₄ H ₉	Н	
III-139	-	-Ph	n-C ₄ H ₉	n-C ₄ H ₉	н	n-C ₄ H ₉	
III-140	_	-Ph	n-C₄H₃	n-C ₄ H ₉	n−C₄H₃	n-C4H9	
III-141	-	-Ph	H	H	H	t-C4H9	
[[I-142	-	-Ph	H	н	t-C₄H ₉	Н	
III-143	-	-Ph	H	t-C₄H ₉	t-C₄H₀	H	
III-144		-Ph	t-C4H9	H	н	t-C4H9	
III-145	-(>-	-Ph	t-C4Ho	t-C4Ho	H	H	
III-146	- >	-Ph	н .	t-C4H9	н	t-C4H9	
111-147		-Ph	t-C4H9	t-C ₄ H ₉	t-C4H9	Н	
111-148		-Ph	t-C ₄ H ₉	t-C ₄ H ₉	H	t-C4H9	
III-149	-	-Ph	t-C₄H ₉	t-C ₄ H ₉	t-C₄H ₉	t-C4H9	
111-150		-Ph	н	н	н	-0CH ₃	
III-151		-Ph	• Н	Н	-0CH ₃	H	
III-152	-(>	-Ph	H	-0CH ₃	-0CH ₃	H	
III-153		-Ph	-ОСН3	H	H	-0CH ₃	
III-154	-(_)-	-Ph	-ОСН3	-OCH ₃	H	H	
II-155	-	-Ph	H	-OCH ₃	Н	-0CH ₃	
II-156	-	-Ph	-0CH₃	-OCH ₃	-OCH ₃	н	
II-157	-	-Ph	-ОСН з	-0CH ₃	н	-осн _з	
II-158	—	-Ph	-осна	-0CH ₃	-0CH ₃	-OCH ₃	

	0.				'	,,,
式(III) 化合物 No.	L,	R13=R23	R ₁₅ =R ₂₅	R ₁₆ =R ₂₆	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
111-159		-Ph	Н	Н	R172R182	
III-160		-Ph	н	I I	とで 心む環 とて 心む環	Н
III-161	-	-Ph	7	とて 心む環 とて 心む環	4	とて くどり環また くんとう
III-162	- -	-Ph		lioとRio、RioとR 今にペンゼン 現が 新 (R2s~R2s て	宿合して全体で	
III-163	-	-Ph		K 7182R17、R		々心も環境 形成 でも同じ)
III-164	-	-Ph	H	H	H	-Ph
III-165	-	-Ph	H	H	-Ph	Н
III-166	-	-Ph	н .	-Ph	-Ph	Н
III-167		-Ph	-Ph	H	Н	-Ph
III-168	-	-Ph	-Ph	-Ph	H	н
III-169	-	-Ph	Н	-Ph	н	-Ph
III-170	—	-Ph	-Ph	-Ph	-Ph	H
III-171	-	-Ph	-Ph	-Ph	H	-Ph
III-172	-()-	-Ph	-Ph	-Ph	-Ph	-Ph
111-173	—	-Ph	H	Н	H	1ーナフチル
111-174	-	-Ph	H	. Н	Ħ	2-777,1
III-175	<u> </u>	Ph	H	Н	1ーナフチル	H
III-176	-(_)-	-Ph	Н	. Н	2- <i>}75</i> A	H
III-177		-Ph	1-ナフチル	H	H	1ーナフチル
III-178 ·		-Ph	H	1-+7+1	1ーナフチル	H
III-179	-	-Ph	H	2- + 7 1 %	2-ナフチル	H
						

ın

	39					1 0
式(III) 化合物 No.	L	R: 3=R23	R ₁₅ =R ₂₅	R16=R26	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
III-180	-(>-	-Ph	2-ナ7チル	Н	Н	2ーナフチル
III-181	- >	-Ph	2-ナフチル	2- <i>+7+N</i>	Н	H
III-182	-	-Ph	レーナフチル	1-ナフチル	н	Н
III-183		-Ph	2-ナフチル	н	2ーナフチル	H
III-184	-	-Ph	1ーナフチル	н	1-ナフチル	H
III-185	-	-Ph	Н	H	4ーピフェニリル	Н
III-186	-	-Pb	Н	н	3ーピフェニリル	н
III-187	-	-Ph	Н	H	2ーピフェニリル	H
881-111		-Ph	Н	H	Н	4ーピフェニリル
III-189	-(>	-Ph	Н	Н	н	3ーピフェニリル
III-190		-Ph	Н	н	H	2ービフェニリル
III-191		-Ph	H	4ービフェニリル	4ーピフェニリル	Н
III-192		-Ph	H	3ービフェニリル	3ービフェニリル	Н
III-193	-	-Ph	н	2ービフェニリル	2-ビフェニリル	н
III-194	- >-	-Ph	4ーピフェニリル	H	H	4ービフェニリル
111-195	->	-Ph	3ーピフェニリル	Н	Н	3ービフェニリル
111-196	-	-Ph	2ービフェニリル	Н	Н	2ービフェニリル
III-197	-	-Ph	4ービフェニリル	Н	4-ビフェニリル	H
III-198	_	-Ph	3ービフェニリル	н	3ービフェニリル	Н
III-199		-Ph	2ービフェニリル	H	2-ビフェニリル	Я
111-200	-	-Ph	H	н	Cl	н
111-201	-(>	-Ph	H	Н	-ОН	Н
III-202	-	-Ph	Ħ	. Н	-NO ₂	Н

49		

					1.	•
式(III) 化合物 No.	L,	R ₁₃ =R ₂₃	R ₁₅ =R ₂₅	R ₁₆ =R ₂₆	R:7=R27	R: ==R28
111-203	-(-)	-Ph	H	Н	-CN	Н
111-204	-(>	-Ph	H	Н	-OPh	H
III-205		-P h	н	Ħ	-SCH ₃	H
111-206	—	P h	H	H	-SPh	Ħ
III-207	M	-Ph	H	H	Н	H
III-208	M	-Ph	H	H	н	CH3
111-209	M	-Ph	н	H	CH _s	H
III-210	VQ.	-Ph	H	CH.	CHa	H
III-211	VQ	-Ph	CH ₃	H	H	CH ₂
III-212	M	-Ph	CH3	CH3	H.	H
III-213	TOO	-Ph	Ħ	CH ₃	Н	CH3
III-214	M	-Ph	CH ₃	CH3	H	CH ₃
III-215	M	-Ph	CH ₃	CH ₃	СНа	H
III-216	00	-Ph	CH ₃	CH ₃	CH ₃	CH ₃
III-217	TOO	-Ph	H	H .	H	C2H5
111-218	00	-Ph	H	Н	C2H5	H
III-219	TOQ.	-Ph	Ħ	C ₂ H ₅	C2H6	H
111-220	TO	-Ph	C ₂ H ₅	Н	H	C ₂ H ₅
III-221	TOO.	-Ph	C2H5	C ₂ H ₅	H	H
III-222	CO	-Ph	H	C ₂ H ₅	H	C2H5
III-223	M	-Ph	C2H5	C ₂ H ₅	C2H5	H
111-224	M	-Ph	C _z H _s	C_2H_5	н	C ₂ H ₅
111-225	M	-Ph	CaHe	CaH _s	C ₂ H ₅	C2H5

						T
式(III) 化合物 No.	L ₁	R ₁₃ =R ₂₃	R ₁₅ =R ₂₅	R16=R20	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
111-226	CQ	-Ph	Н	Н	Н	n-C ₃ H ₇
III-227	M	-Ph	H	Н	n-C ₃ H ₇	H
III-228	VQ.	-Ph	H	n-C ₃ H ₇	n-C ₃ H ₇	H
III-229	TOO.	-Ph	n-C3H7	H	H	n-C ₃ H ₇
III-230	TO	-Ph	n-C3H7	n-C ₃ H ₇	Н	Н
III-231	M	-Ph	н	n-C ₃ H ₇	H	n-C _a H ₇
III-232	M	-Ph	n-C ₃ H ₇	n-C ₃ H ₇	n-CaH ₇	H
III-233	TO .	-Ph	n-C ₃ H ₇	n-C ₃ H ₇	H	n-C ₃ H ₇
III-234	VO .	-Ph	n-C ₃ H ₇	n-CaH ₇	n-C _a H ₇	n-C ₂ H ₇
III -23 5	VO .	-Ph	H	H	H	n-C ₄ H ₉
III-236	XX	-Ph	H	H	n-C4H9	H
111-237	VQ.	-Ph	H	n-C4H9	n-C4H9	H
111-238	TOO.	-Ph	n-C4H9	H	H	n-C ₄ H ₉
111-239	TOO	-Ph	n-C ₄ H ₉	n-C ₄ H ₉	H	Н
111-240	TO .	-Ph	H	n-C ₄ H ₉	Н	n-C ₄ H ₉
III-241	TOO.	-Ph	n-C ₄ H ₉	n-C ₄ H ₉	n-C₄H ₉	H
III-242	TO	-Ph	n-C ₄ H ₉	n−C₄H₃	H	n-C ₄ H ₉
III-243	M	-Ph	n-C ₄ H ₉	n-C ₄ H ₉	n-C₄H ₉	n-C ₄ H ₉
III-244	M	-Ph	H	H	H	t-C ₄ H ₉
111-245	M	-Ph	Н	H	t-C ₄ H ₉	H
III-246	CO	-Ph	Н	t-C4H9	t-C4He	H
III-247	TOO.	-Ph	t-C₄H ₉	H	Н	t-C4He
111-248	00	-Ph	t-C ₄ H ₉	t-C ₄ H ₈	Н	Н
						

-	

	10				7	U
式(III) 化合物 No.	L,	R13=R23	R16=R25	R16=R26	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
III-249	COL	-Ph	Н	t-C4H9	H	t-C₄H ₉
III-250	TOO	-Ph	t-C ₄ H ₉	t-C4H9	t-C ₄ H ₉	Н
111-251	TOO	-Ph	t-C₄H _e	t-C ₄ H ₉	Н	t-C₄H _s
III-252	TO	-Ph	t-C₄H ₉	t-C₄H•	t-C ₄ H ₉	t-C₄H ₉
III-253	TOO.	-Ph	H	Н	H	-0CH ₃
III-254	TOO	-Ph	H	H	-OCH _a	Н
III-255	VOI	-Ph	H	-0CH ₃	-OCH3	Н
III-256	TOO	-Ph	-0CH ₂	H	н	-OCH ₃
III-257	VQ.	-Ph	-0CH3	-OCH ₃	Н	Н
III-258	TO .	-Ph	Н	-OCH3	н	-OCH ₃
III-259	TO	-Ph	~0CH ₃	-ОСН з	-0CH ₂	Н
III-260	00	-Ph	-OCH ₃	-0CH ₃	H	-OCH ₃
III-261	M	-Ph	-OCH ₃	-0CH ₃	-OCH ₃	-OCH ₃
III-262	TO .	-Ph	H	н	RizeRiser RzzeRzser	
111-263	TO	-Ph	Н	R102R172 R202R272		H
111-264	00	-Ph	1 .	で 心的環 で 心的環	R172R182	
111-265	TO .	-Ph	1	eとRis、RivとRi COVV 現が結 (Rzo~Rzs で	合い全体でフェ	
III-266	M	-Pħ		RisとRis、Ri でフェナンスレン 環		
111-267	TO	-Ph	H	H	H	-Ph
III-268	M	-Ph	Н	H	-Ph	H
III-269	M	-Ph	H .	-Ph	-Ph	Н
III-270	O	-Ph	-Ph	H	Н	-Ph
						

0	

式(III) 化合物 No.	Lı	R13=R23	R ₁₅ =R ₂₅	R16=R26	R17=R27	R ₁₆ =R ₂₈
III-271	CO	-Ph	-Ph	-Ph	Н	Н
III-272	M	-Ph	H	-Ph	н	-Ph
III-273	M	-Ph	-Ph	-Ph	-Ph	H
III-274	CO	-Ph	-Ph	-Ph	H	-Ph
111-275	TOO.	-Ph	-Ph	-Ph	-Ph	-Ph
III-276	TOO	-Ph	R	Н	н	1ーナフチル
III-277	TO	-Ph	H	н	H	2ーナフチル
III-278	VQ.	-Ph	H	H	1ーナフチル	H.
III-279	TO	-Ph	H	H	2ーナフチル	H
III-280	TOO.	-Ph	1ーナフチル	H	Н	1ーナフチル
III-281	CO	-Ph	. Н.	1ーナフチル	1ーナフチル	Н
111-282	TO	-Ph	н	2ーナフチル	2ーナフチル	Н
III-283	M	-Ph	2ーナフチル	H	H	2ーナフチル
III-284	M	-Ph	2ーナフチル	2ーナフチル	H	H
111-285	M	-Ph	1ーナフチル	1ーナフチル	H	H
III-286	TO	-Ph	2 -} 7fk	H	2-) 775%	Н
111-287	100	-Ph	1- <i>†7f</i> h	Н	1ーナフチル	Н
111-288	M	-Ph	H	Н	4-ビフェニリル	H
III-289	VQ.	-Ph	H	H	3-ビフェニリル	H
III-290	TOO	-Ph	н	H	2ービフェニリル	H
III-291	M	-Ph	H	H	H	4ーピフェニリル
111-292	TOO	-Ph	H	H	H	3-ビフェニリル
III-293	700	-Ph	Н	н	Н .	2-ピフェニリル

	49				50	,
式(III) 化合物 No.	L ₁	R13=R23	R ₁₅ =R ₂₅	R16=R26	R ₁₇ =R ₂₇	R18=R28
III-294	TOO.	-Ph	н	4ーピフェニリル	4-ピフェニリル	Н
III-295	TOO	-Ph	Ħ	3ーピフェニリル	3ービフェニリル	Н
111-296	O	-Ph	H	2ービフェニリル	2-ビフェニリル	H
III-297	OQ	Ph	4ービフェニリル	H	. Н	4-ピフェニリル
III-298	M	-Ph	3ーピフェニリル	H	Н	3ーピフェニリル
III-299	M	~Ph	2ーピフェニリル	H	H	2ービフェニリル
III-300	TO .	-Ph	4ーピフェニリル	H	4ーピフェニリル	н
III-301	CQ	-Ph	3ーピフェニリル	H	3ーピフェニリル	H
III-302	M	-Ph	2-ビフェニリル	H	2-ピフェニリル	н
111-303	VQ.	-Ph	H .	H	C1	Н
III-304	M	-Ph	. Н	H	-он	H
II I-30 5	TO .	-Ph	H	H	-NO ₂	Н
111-306	M	-Ph	н .	H	-CN	H
111-307	TO .	-Ph	H	H	-OPh	Н
111-308	VQ.	-Ph	Н	н	-SCH ₃	· H
111-309	TOO.	-Ph	H	H	-SPh	H
III-310 —	- R ₁₃ =		H	Н	A	H
		Ph)			
	R ₂₃ =	-Ph				
III-311 <i>-</i>	R ₁₃ =	N	RistRist		H	H
	_	Ph		でやり環		
	R ₂₃ =	~Ph				

式(III) 化合物 N	o. L ₁	R13=R23	R: = R2 =	R16=R26	R17=R27	R:==R==
III-312 .	-0-0-	$R_{13} = \bigcap_{Ph} \bigcap_{N} \bigcap_{N} R_{23} = -Ph$	⟨~ "	16とでいむ 環26とでいむ 環		とべつど 環
III-313	- ◇-	$R_{13} = \frac{1}{P_h} \sum_{N=1}^{N} \frac{1}{N}$ $R_{23} = -P_h$	Н	H	Н .	H
III-314	- 	$R_{13} = \frac{1}{Ph} N$ $R_{23} = -Ph$	P !	。とでいり 環	Н	Н
III-315	- ♦>-	R ₁₃ = Ph	~	。とでいど 環。	i i	でぐむ 環 で い む 環
III-316	α	-Ph	Ħ	tt.	107	**
III-317		Ph		H	-NH ₂	H
			H	Н	-NH-Ph	H
III-318		⊢ -Ph	H	H	-NPh ₂	H
III-319		Ph	Н	H	-COOH	H
III-320		Ph	H	H	2-ビリジル	H
III-321	-	-Ph	H	H	-NH ₂	H
[11-322	→	-Ph	Н	Н	-NH-Ph	H
111-323	-	-Ph	H	Н	-NPh ₂	H
11-324	—	-Ph	H	H	-COOH	H
II-325	—	-Ph	H	Н	2-LIJIA	H
11-326	M	-Ph	н	н	-NH _z	H
II-327		-Ph	н	Н	-NH-Ph	H

			01			
式(III) 化合物 No.	Lı	R ₁₃ =R ₂₃	R ₁₅ =R ₂₅	R ₁₆ =R ₂₈	R17=R27	R18=R28
III-328	00	-Ph	Н	Н	-NPh ₂	H
111-329	TOO	-Ph	н	H	-COOH	Н
111-330	100	-Ph	н	Н	2ーピリジル	н

[0071]

【化27】

式(IV)					
化合物 N	o. L ₁	R13=R23	R ₁₆ =R ₂₆	R ₁₇ =R ₂₇	R18=R28
IV- 1		-Ph	H	H	H
[V- 2	√ >	-Ph	Н	н	Н
IV- 3	TO	-Ph	· H	H	Н
IV- 4	- ○ - ○-	R ₁₃ =.	H	H	H
		$R_{23} = -Ph$			
IV- 5	→ □	R ₁₃ =	H	H	H
		$R_{23} = -Ph$			
IV- 6	-()-()-	-Ph	H	H	CH ₃
IV- 7	$-\bigcirc-\bigcirc-$	-Ph	H	CH ₃	H
IA- 8	$-\bigcirc$	-Ph	CH ₃	н	H
IA- 8	-()-()-	-Ph	Н	Ħ	C2H5
IV-10	-()-()-	-Ph	Ĥ	C2H5	H
IV-11	-()-()-	-Ph	CzHs	H	Н
IV-12	-	-Ph	H	Н	n-C ₃ H ₇
IV-13		-Ph	. Н	n-CaH ₇	Н
IV-14	- ○ - ○-	-Ph	n-C ₃ H ₇	H	H
IV-15	-()-()-	-Ph	H	. Н	n-C₄H ₉
IV-16	-()-()-	· -Ph	Н	n-C₄H₀	H
IV-17	-()-()-	-Ph	n-C₄H₀	H	Н .
IV-18	-()-()-	-Ph	H	H .	t-C₄H ₉
IV-19	-()-()-	-Ph	H	t-C ₄ H ₉	Н

Q			
·v			

式(IV) 化合物 No.	. Lı	R13=R23	R ₁₆ =R ₂₆	R17=R27	R18=R28
IV-20	-()-()-	-Ph	t-C ₄ H ₉	Н	H
IV-21		-Ph	H	H	-OCH ₃
IV-22	- ()-()-	-Ph	Н	-0CH ₃	H
[V-23	-()-()-	-Ph	-OCH ₃	H	H
IV-24	-()-()-	-Ph	FR. 62R. 7	とで ベンゼン環	H
			LRzotRzot	とでくりむ現	
IV-25	- ○	-Ph	Н	RiztRis	とて ペンゼン環
				L _{R27} ŁR28	とでくかが環
1V-26	-()-()-	-Ph	Н	H	Ph
IV-27	-()-()-	-Ph	. Н	Ph	H
IV-28	-()-()-	-Ph	Ph	Н	H
IV-29	-	-Ph	Ph	Ph	H
IV-30	-(-)-(-)-	-Ph	н	н	1-ナフチル
IV-31	─	-Ph	Н	1ーナフチル	H
IV-32	- ()-()-	-Ph	1-ナフチル	H	H
IV-33	-	-Pħ	1-ナフチル	1-ナフチル	H
IV-34	-()-()-	-Ph	Н	H	2-ナフチル
IV-35		-Ph	H	2-ナフチル	Н
IV-36	-()-()-	-Ph	2-777%	Н	Н
[V-37	-0-0-	-Ph	2- <i>†71</i> N	2ーナフチル	H
[V-38	-()-()-	-Ph	H	H	4-ピフェニリル
[V-39	-()-()-	-Ph	. Н	4ービフェニリル	. Н
[V-40	- O-O-	-Ph	4-ピフェニリル	H	Н

	J J			60	
式(IV) 化合物 No.	Lı	R13=R23	R18=R28	R17=R27	R ₁₈ =R ₂₈
IV-41	-()-()-	-Ph	4ーピフェニリル	4ービフェニリル	Н
IV-42	-()-()-	-Ph	H	H	3ービフェニリル
IV-43	-()-()-	-Ph	H	3ービフェニリル	Н
IV-44	-()-()-	-Ph	3-ビフェニリル	Ħ	Н
IV-45	-()-()-	-Ph	3-ピフェニリル	3ービフェニリル	н
IV-46	-()-()-	-Ph	H	H	2ーピフェニリル
IV-47	- ()-()-	-Ph	H	2-ビフェニリル	Н
IV-48	-()-()-	-Ph	2-ピフェニリル	H	н
IV-49	-()-()-	-Ph	2-ピフェニリル	2-ピフェニリル	H
IV-50	- O-O-	-Ph	Н	C 1	H
IV-51	-()-()-	-Ph	H	-OH	Н
IV-52	-0-0-	-Ph	H	-NO ₂	Н
IV-53	-()-()-	-Ph	Н	-CN	H
IV-54		-Ph	Н	-OPh	H
IV-55	-()-()-	-Ph	В	-SCH ₃	H
IV-56	-()-()-	-Ph	H	-SPh	H
IV-57	- ()-()-	-Ph	Н	-NH ₂	H
IV-58	-()-()-	-Ph	Н	-NH-Ph	H
IV-59	- ()-()-	-Ph	Н	-NPh ₂	H
IV-60	-()-()-	-Ph	Н	-COOH	н
IV-61	-()-()-	-Ph	H	2ービリジル	Н
IV-62	- -	-Ph	Н	H	CHa
IV-63	-() -	-Ph	H	CH ₃	H

	61			6	2
式(IV) 化合物 No.	· L ₁	R ₁₃ =R ₂₃	R ₁₈ =R ₂₆	R17=R27	R18=R28
IV-64	-√} -	-Ph	CH₃	Я	н
IV-65	-()-	-Ph	Н	H	C ₂ H ₅
IV-66	-{}-	-Ph	H	C ₂ H ₅	н
IV-67	-()	-Ph	C2H6	н	Н
IV-68	-(]-	-Ph	Н	H	n-CsH7
IV-69	-() -	-Ph	Н	n-C ₃ H ₇	н
ĮV-70	-()-	-Ph	n-CaH7	Н	Н
IV-71		-Ph	H	H	n-C ₄ H ₉
IV-72	-()	-Ph	Ħ	n-C ₄ H ₉	H
IV-73	-()-	-Ph	n-C₄H _s	H	Н
[V-74	-{>-	-Ph	H	H.	t-C ₄ H ₉
IV-75	-(7)-	-Ph	H	t-C4H9	H
[V-76	-()-	-Ph	t-C ₄ H ₉	H	Н
[V-77	-{>-	-Ph	H	Ħ	-0CH ₃
IV-78	-{>	-Ph	H	-0CH ₃	H
IV-79	- (<u>-</u>)-	-Ph	-0CH ₃	Н	H
IV-80	√>	-Ph	R106R178		H
V-81	-⟨> -	-Ph	H	R172R182	
V-82	-(}-	-Ph	Н	Н	Ph ·
V-83	_	-Ph	Н	Ph	H
V-84	-(T)-	-Ph	Ph	н	H

式(IV)					
化合物 No.	L,	R: 3=R23	R16=R26	R ₁₇ =R ₂₇	Rio=Ra
IV-85	-() -	-Ph	. Ph	Ph	Н
IV-86	- ()-	-Ph	Н	H	1-ナフチル
IV-87	-	-Ph	Н	1-ナフチル	H
IV-88	-(_) -	-Ph	1-ナフチル	H	H
IV-89	-()-	-Ph	1-ナフチル	1-ナプチル	H
IV-90	-()-	-Ph	H	Н	2ーナフチル
IV-91	- ()-	-Ph	H	2 -} 7 } 1	H
[V-92	-()-	-Ph	2-t7fh	Ħ	Н.
[V-93	- -	-Ph	2-ナフチル	2-+7 5 N	Н
V-94	- ()-	-Ph	Н	H	4-ビフェニリ
Y -95	-()-	-Ph	Н	4ービフェニリル	H
V-96	-(_)-	-Ph	4-ビフェニリル	н	H
V-97	-(_) -	-Ph	4-ビフェニリル	4ーピフェニリル	H
V-98	-	-Ph	н	H	3-ビフェニリル
7-9 9	-() -	-Ph	Н	3ービフェニリル	H
7-100	-	-Ph	3-ビフェニリル	Н	H
7-101	- (-)-	-Ph	3-ピフェニリル	3ービフェニリル	Н
7-102	-	-Ph	н .	H	2ービフェニリル
-103		-Ph	н	2-ピフュニリル	Н
-104	-(_) -	-Ph	2ーピフェニリル	H	H
-105	-{-}-	-Ph	2ーピフェニリル	2-ピフェニリル	H
-106	- (<u>-</u>)-	-Ph	H	Cl	Н
-107	-()-	-Ph	н	-OH	

				0	<u> </u>
式(IV) 化合物 No.	Lı	R: 3=R23	R ₁₆ =R ₂₆	R17=R27	R18=R28
IV-108	- (<u>)</u> -	-Ph	н	-NO ₂	Н
IV-109	-	-Ph	H	-CN	H
IV-110	- ()-	-Ph	н	-0Ph	H
IV-111	-(-)	-Ph	H	-SCH.	H
IV-112	-()-	-Ph	H	-SPh	Н
IV-113	- (_)-	-Ph	H	-NH ₂	H
IV-114	-(5)-	-Ph	Ĥ	-NH-Ph	H
IV-115	-	-Ph	. н	-NPh ₂	н
IV-116	-()-	-Ph	н	-cooh	H
IV-117	-{>-	-Ph	н	2ーピリジル	Н
IV-118	M	-Ph	Н	H	CH ₃
IV-119	TO	-Ph	н	CH ₃	. Н
IV-120	TOO	-Ph	. CH₃	H	н
IV-121	TOO	-Ph	H	H	C ₂ H ₅
IV-122	TOO.	-Ph	·Ħ	C ₂ H ₆	H
IV-123	VQ.	-Ph	C ₂ H ₅	H	H
IV-124		-Ph	Н	H	n-C ₃ H ₇
IV-125	TO .	-Ph	Н	n-C ₃ H ₇	H
IV-126	TO .	-Ph	n-C3H7	H	н
IV-127	TO .	-Ph	H	H	n-C ₄ H ₉
IV-128	TO .	-Ph	Н	n-C ₄ H ₉	Н
IV-129	TO	-Ph	n-C4H9	Н	H
IV-130	DD.	-Ph	H	H	t-C ₄ H ₉

式(IV) 化合物 No.	Lı	R13=R23	R16=R26	R17=R27	R ₁₈ =R ₂₈
IV-131	VQ.	-Ph	Н	t-C4H9	Н
IV-132	TOO	-Ph	t-C4Hp	H	H
IV-133	TOO	-Ph	H	Н	-0CH _a
IV-134	VQ.	-Ph	Н	-OCH ₃	H
IV-135	TOO.	-Ph	-OCH _a	. H	H
IV-136	TOO	-Ph	FR: 02R, 7	とで心的環	H
			L _{R20} 2R27	とて心的環	
[V-137	TO	-Ph	H	R. + & R	とて インゼン環
				LR272R28	とで心的環
V-138	CO	-Ph	H	H .	Ph
V-139	00	-Ph	H	Ph	H
V-140	00	-Ph	Ph	н	H
V-141	00	-Ph	Ph	Ph	H
V-142	100	-Ph	H	H	1-+7+1
V-143	00	-Ph	H	1ーナフチル	H
V-144	100	-Ph	1-ナフチル	H	H
V-145	TOO.	-Ph	1-ナフチル	1-ナフチル	H
V-146	100	-Ph	H	H	2- <i>†75N</i>
V-147	TO	-Ph	Ħ	2ーナフチル	H
<i>I</i> -148	00	-Ph	2- + 7+1	H	H
<i>I</i> -149	YOQ	-Ph	2-7771	2-ナフチル	H
/-150	100	-Ph	н	H	4ーピフェニリル
/-151	100	-Ph	H	4ーピフェニリル	H

	0.5			10	
式(IV) 化合物 No.	Lı	R: 3=R23	R16=R26	R17=R27	R ₁₈ =R ₂₈
IV-152	100	-Ph	4ーピフェニリル	Н	H
IV-153	00	-Ph	4ーピフェニリル	4-ビフェニリル	H
IV-154	100	-Ph	H	н .	3ービフェニリル
IV-155	CO	-Ph	H	3ービフュニリル	Н
IV-156	00	-Ph	3-ビフェニリル	H	Н
IV-157	00	-Ph	3-ビフェニリル	3-ピフェニリル	н
IV-158	00	-Ph	R	H	2ーピフェニリル
IV-159	00	-Ph	H	2-ピフェニリル	H
IV-160	00	-Ph	2-ビフェニリル	H	H
14-161	00	-Ph	2ービフェニリル	2-ピフェニリル	H
IV-162	XX	-Ph	H	C1	H
IV-163	00	-Ph	H	-OH	H
IV-164	100	-Ph	H	-NO ₂	H
IV-165	100	-Ph	H	-CN	H
IV-166	00	-Ph	Н	-OPh	H
IV-167	CO	-Ph	H	-SCH ₃	H
IV-168	TO	-Ph	H	-SPh	H
IV-169	CO	-Ph	H	-NH ₂	H
IV-170	CO	-Ph	H	-NH-Ph	Н
IV-171	100	-Ph	H	-NPh ₂	H
IV-172	TO	-Ph	H	-COOH	H
IV-173	00	-Ph	H	2-ビリジル	H

式(V) 七合物 No.	L	R13=R23	R ₁₆ =R ₂₅	R ₁₇ =R ₂₇	R18=R28
'-1 _	<u> </u>	-Ph	Н	Н	Н
'-2	-()-	-Ph	H	Н	Н
-3	TI	-Ph	н	Н	H
-4 -		R ₁₃ =	Н	н	H
		$R_{23} = -Ph$	In In		
-5	√ ~	R ₁₃ = -FII	Н	н .	H
		Ph	C _N		
·c		R ₂₃ = -Ph	***	**	en i
· 6		-Ph	H	H.	CH ₃
. 7		-Ph	H	CH₃	H
8	-	-Ph	CH ₃	Ħ	H
9		-Ph	H	н	C ₂ H ₅
10	~~~~	-Ph	H	C ₂ H ₅	н
11 _		-Ph	C2H5	H	H .
12 _		-Ph	Н	н	n-C ₃ H ₇
13		-Ph	Н	n-C ₃ H ₇	Ħ
14 _		-Ph	n-Calle	Н	H
15 _		-Ph	Н	В	n-C ₄ H ₉
16		-Ph	K	n-C₄H ₉	H
		-Ph	n-C ₄ H ₉	Н	Н
.8		-Ph	н	н	t-C₄Ho
.9		-Ph	н	t-C₄H ₉	Н
20 _		-Ph	t-C₄H _e	H	н .

	13			14	
式(V) 化合物 No.	Lı	R:3=R23	R15=R25	R17=R27	R ₁₈ =R ₂₈
V-21	-()-()-	-Ph	H	H	-OCH ₃
V-22	-()-()-	-Ph	H	-OCH3	H
V-23	-()-()-	-Ph	-0CH ³	н	H
V-24	-(-)-(-)-	Ph	H	_R172R102T _R272R202T	心む環 のむ環
V-25	-()-()-	-Ph	H	H	-Ph
V-26		-Ph	н	-Ph	Н
V-27	-()-()-	-Ph	-Ph	Н	H
V-28	-()-()-	-Ph	H	н	1ーナフチル
V-29	-(-)-(-)-	-Ph	Н	1- <i>†7</i> 5%	Н
V-30	-()-()-	-Ph	1ーナフチル	н	Н
V-31	-	-Ph	Н	Н .	2- + 7+N
V-32	-	-Ph	н	2-ナプチル	Н
V-33	-(7)-(7)-	-Ph	2-ナフチル	Н .	H [*]
V-34	-()-()-	-Ph	Н	H	4ービフェニサル
V-35	-()-()-	-Ph	H	4ービフェニリル	Н
V-36	-()-()-	-Ph	4-ピフェニリル	Н	H
V-37	-()-()-	-Ph	H	. н	3ービフュニリル
V-38	-()-()-	-Ph	Н	3-ビフェニリル	H
V-39	- ()-()-	-Ph	3ービフェニリル	Н	H
V-40	-()-()-	-Ph	H	H	2ービフェニリル
V-41	-()-()-	-Ph	H	2-ビフェニリル	н
V-42	-()-()-	-Ph	2-ビフェニリル	Н	Н
V-43	-()-()-	-Ph	н	Cl	Н

		·		
式(V) 化合物 No.	L,	R13=R23	R15=R25	R17=R27 R18=R28
V-44	-()-()-	-Ph	H	-ОН Н
V-45	-(-)-(-)-	-Ph	H	-NO ₂ H
V-46	-(-)-(-)-	-Ph	Н	-CN H
V-47	-(-)-(-)-	-Ph	H	-OPh H
V-48	- ()-()-	-Ph	H	-SCH ₃ H
V-49	-()-()-	-Ph	Н	-SPh H
V-50	-()-()-	-Ph	Н	-NH₂ H
V-51	-()-()-	-Ph	H	-NH-Ph H
V-52	-()-()-	-Ph	Н	-NPh₂ H
V-53	-()-()-	-Ph	H	-соон н
V-54	-()-()-	-Ph	H	2-E11511 H
V-55	- (-)-	-Ph	H	н сн.
V-56	-()-	-Ph	H	CH ₃ H
V-57	-()-	-Ph	СНз	н п
V-58	→ □ .	-Ph	H	H C ₂ H ₅
<i>l</i> -59	-() -	-Ph	H	C ₂ H ₅ H
7-60	-() -	-Ph	C2H5	н н
7-61	-{>-	-Ph	Н	H n-C ₃ H ₇
7-62	- (-)-	-Ph	H	n-C ₃ H ₇ H
/-63	-(3)-	-Ph	n-C ₃ H ₇	н н
7-64	-(3)-	-Ph	H	H n-C ₄ H ₉
-65	- (¬)-	-Ph	Я	n−C₄H₃ H
7-66	-	-Ph	n-C4H9	н и

式(V) 化合物 No.	Lı	R13=R23	R16=R25	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
V-67	-{>-	-Ph	H	н	t-C4H9
V-68	-()-	-Ph	Н	t-C₄H₀	н
V-69		-Ph	t-C₄H ₉	Н	H
V-70	-	-Ph	H	H	-OCH ₃
V-71	-	-Ph	Н .	-OCH _s	H
V-72	-	-Ph	-OCH ₃	H.	Н
V-73	√ >	-Ph	Н	RiztRiott RzztRzott	心ゼン環 ベルギン環
V-74	√ >	-Ph	Н	Н	·-Ph
V-75	-()-	-Ph	Н	-Ph	Н
V-76	-()-	-Ph	-Ph	Н	.Н.
V-77	-(5)-	-Ph	H	Н	1-ナフチル
V-78	-()-	-Ph	H	1ーナフチル	H
V-79	-	-Ph	1-ナフチル	Н	H
V-80	-()-	-Ph	Н	Н	2ーナフチル
V-81	- (<u>-</u>)-	-Ph	H	2- <i>ナフ</i> チル	H
V-82	-	-Ph	2-+7+1/	н	Ħ
V-83	-	-Ph	H	Н	4-ビフェニリル
V-84	-	-Ph	Ħ	4ービフェニリル	н .
<i>I</i> −85	√>	-Ph	4-ビフェニリル	Н	н
/-86	-	-Ph	н	H	3-ビフェニリル
<i>I-</i> 87	-	-Ph	H	3-ビフェニリル	Н
<i>I</i> -88	- (<u>)</u> -	-Ph	3-ビフェニリル	H	Н
7-89	-	-Ph	Н	Н	2-ビフェニリル

ŔΝ

17		0(80 .		
式(V) 化合物 No.	L,	R13=R23	R ₁₅ =R ₂₅	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
V-90	(-)-	-Ph	H	2-ピフェニリル	H
V-91	- ()-	-Ph	2ーゼフェニリル	. Н	H
V-92	-(-)-	-Ph	H	C1	H
V-93	(-)-	- Ph	Н	-ОН	H
V-94	-(-)-	-Ph	H	-NO ₂	Н
V-95		-Ph	Н	-CN	H
V-96	(-)-	-Ph	Н .	-OPh	H
V-97		-Ph	Н	-SCH₂	Н
V-98		-Ph	Н	-SPh	H
V-99	-(-)-	-Ph	Н	-NH ₂	. H
V-100	(-)-	-Ph	H	-NH-Ph	Н
V-101	- (<u>_</u>)-	-Ph	H	-NPh ₂	H
V-102	-(5)-	-Ph	H .	-COOH	H
V-103	-()-	-Ph	H	2ービリジル	H
V-104	CO	-Ph	Ħ	н	CHa
V-105	100	-Ph	H	CH3	H
V-106	00	-Ph	CII.	н	H
V-107	00	-Ph	H	н	C2H5
V-108	00	-Ph	H	C ₂ H ₅	H
V-109	TO .	-Ph	C2H5	H	Н
/ −110	CO	-Ph	H	н	n-C ₃ H ₇
7-111	TOO.	-Ph	H	n-C ₃ H ₇	Н
<i>I</i> -112	00	-Ph	n-C ₃ H ₇	Н	Н

	01			82	
式(V) 化合物 No.	Lı	R _{1 5} =R _{2 3}	R ₁₅ =R ₂₅	R ₁₇ =R ₂₇	Rt 8 = R28
V-113	YOQ.	-Ph	Н	Н	n-C ₄ H ₉
V-114	m	-Ph	H	n−C₄H _●	Н
V-115	00	-Ph	n-C ₄ H ₉	н	H
V-116	100	-Ph	H	Н	t-C ₄ H ₉
V-117	XX	-Ph	Ħ	t-C ₄ H ₉	Н
V-118	00	-Ph	t-C₄H ₉	. Н	H
V-119	100	-Ph	H	H	-OCH3
V-120	00	-Ph	H	-ОСН _а	H
V-12I	100	-Ph	-0CH ₃	Н	H
V-122	100	-Ph	Н	(R172R1827 / (R272R2827 /	いが環
V-123	CO	-Ph	H	Н	-Ph
V-124	100	-Ph	Н	-Ph	H
V-125	00	-Ph	-Ph	н	H
V-126	00	-Ph	Ħ	н	1- ナ 7fa
V-127	00	-Ph	H	1-ナフチル	H
I-128	00	-Ph	1-+75%	H	H
V-129	00	-Ph	H	H	2-t7\$h
J-130	100	-Ph	H	2-ナフチル	H
J-131	CO	-Ph	2-ታንታጴ	Н	H
<i>I</i> -132	00	-Ph	H	Н	4-ピフェニリル
<i>I</i> -133	00	-Ph	H	4ービフェニリル	H
<i>i</i> –134	00	-Ph	4ーゼフェニリル	Н	H
7-135	00	-Ph	H	н	3-ビフェニリル

	00		04		
式(V) 化合物 No.	Lı	Rt 3=R23	R16=R26	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
V-136	YOQ.	-Ph	Н	3-ゼフェニリル	Н
V-137	00	-Ph	3-ビフェニリル	H	H
V-138	00	-Ph	H	н	2ービフェニリル
V-139	00	-Ph	H	2-ビフェニリル	H
V-140	Ca	-Ph	2-ピフェニリル	н	H
V-141	Ca	-Ph	H	CI	H
V-142	CO	-Ph	H	-ОН	H
V-143	00	-Ph	H	-NO ₂	H
V-144	100	-Ph	Н	-CN	H
V-145	00	-Ph	H	-OPh	Н
V-14 6	100	-Ph	H	-SCH ₃	Н
V-147	100	-Ph	H	-SPh	H
V-148	00	-Ph	Н	-NH ₂	H
V-149	00	-Ph	H	-NH-Ph	H
V-150	00	-Ph	H	-NPh ₂	H
V-151	00	-Ph	Н	-COOH	H
<i>I</i> −152	00	-Ph	н	2ービリジル	Н
					

[0086]

【化42】

	00			
式(VI) 化合物 No.	L:	R ₁₃ =R ₂₃	R ₁₈ =R ₂₈	R ₁₈ =R ₂₈
VI- 1	- \$-\$-	-Ph	Н	H
VI- 2	→	-Ph	н	Н
VI- 3	M	-Ph	Н	H
VI- 4	-	R ₁₃ =	H	Н
		$P_{23} = -Ph$		
VI- 5	- ♦>-	$R_{13} = $	Н	
		Ph N N R ₂₃ = -Ph		
VI- 6	-()-()-	-Ph	н	CH ₃
VI- 7	-()-()-	-Ph	CH₃	Н
VI- 8	-()-()-	-Ph	СНз	CH₃
VI- 9	-()-()-	-Ph	Н	C2H5
VI-10	- ()-()-	-Ph	C2H5	H
VI-11	-()-()-	-Ph	C ₂ H ₅	C ₂ H ₅
VI-12	- ()-()-	-Ph	H	n-C3H7
VI-13	- ()-()-	-Ph	n-C ₃ H ₇	H
VI-14	-()-()-	-Ph	n-Call7	n-C ₃ H ₇
VI-15	- (-)-(-)-	-Ph	H	n-C₄H ₉
VI-16	- ()-()-	-Ph	n-C₄H ₉	Н
VI-17	- ()-()-	-Ph	n-C ₄ H ₉	n-C₄H _e
VI-18	- (-)-(- -	-Ph	н	t-C₄H ₉
VI-19	- ()-()-	-Ph	t-C4H4	Н
VI-20	-O-O-	-Ph	t-C₄H₀	t-C ₄ H _o

式(VI) R16=R26 R18=R28 化合物 No. Lı R13=R23 -0CH₃ H VI-21 -Ph H -0CH₃ VI-22 -Ph -0CH₃ -0CH₃ VI-23 -Ph H -Ph VI-24 -Ph H -Ph -Ph VI-25 1-ナフチル H VI-26 -Ph H VI-27 レーナフチル -Ph 1ーナフチル VI-28 レーナフチル -Ph H 2-ナフチル VI-29 -Ph Н VI-30 -Ph 2ーナフチル VI-31 -Ph 2ーナフチル 2ーナフチル VI-32 -Ph H 4ービフェニリル VI-33 -Ph 4-ビフェニリル H VI-34 -Ph 4ーピフェニリル 4-ビフェニリル H 3ービフェニリル VI-35 -Ph VI-36 -Ph 3-ビフェニリル H VI-37 -Ph 3ーピフェニリル 3-ビフェニリル VI-38 H 2-ビフェニリル -Ph 2-ビフェニリル H VI-39 -Ph VI-40 2-ビフェニリル -Ph 2-ビフェニリル H VI-41 C1 -Ph

VI-42

VI-43

-OH

-NO₂

Н

H

-Ph

-Ph

nρ

	03			30
式(VI) 化合物 No.	Lı	R ₁₃ =R ₂₃	R16=R26	R ₁₆ =R ₂₈
VI-44	- ()-()-	-Ph	-CN	. Н
VI-45	-	-Ph	-OPh	H
VI-46	-(-)-(-)-	-Ph	-SCH ₃	Н
VI-47	-()-()-	-Ph	-SPh	H
VI-48	-()-()-	-Ph	-NH _z	Н
VI-49	-	-Ph	-NH-Ph	. Н
VI-50	- ()-()-	-Ph	-NPh ₂	H
VI-51	- ()-()-	-Ph	-соон	Н
VI-52	-()-()-	-Ph	2ーピリジル	H
VI-53	-(_)-	-Ph	Н	CH ₃
VI-54	—	-Ph	CH ₃	Ħ
VI-55	-{>-	-Ph	CH ₃	CH3
VI-56	-() -	-Ph	H	C2H5
VI-57	-()-	-Ph	C ₂ H ₅	Н
VI-58		-Ph	C ₂ H ₅	C2H5
VI-59		-Ph	Н	n-CaH7
VI-60	-	-Ph	n-C ₃ H ₇	Н
VI-61		-Ph	n-C ₃ H ₇	n-C ₃ H ₇
VI-62		-Ph	н	n-C4H9
VI-63	-(>-	-Ph	n-C4He	H
VI-64	-	-Ph	n-C ₄ H ₉	n-C ₄ H ₉
VI-65	-(_> -	-Ph	Н	t-C ₄ H ₉
VI-66		-Ph	t-C ₄ H ₉	Н

a	9	

	J1			
式(VI) 化合物 No.	Lı	R ₁₃ =R ₂₃	R16=R26	R18=R28
VI-67	(-)-	-Ph	t-C₄H9	t-C₄H₃
VI-68	-(-)-	-Ph	н	-0CH3
VI-69	-	-Ph	-0CH ₃	H
VI-70	 _	-Ph	-ОСН3	-0CH2
VI-71		-Ph	Н	-Ph
VI-72	-	-Ph	-Ph	н
VI-73	-	-Ph	Н	1-+7+11
VI-74	-	-Ph	1- } 7f1	H
VI-75	<u>-</u>	-Ph	1ーナフチル	1- ナ フチル
VI-76	-	-Ph	Н	2-ナフチル
VI-77	-	-Ph	2-ナフチル	Н
VI-78	-	-Ph	2-ナフチル	2-ナプチル
VI-79	-	-Ph	. Н	4-ピフェニリル
08-1V	-	-Ph	4-ビフェニリル	H ·
VI-81		-Ph	4-E7x=In	4ービフェニリル
VI-82	-	-Ph	Н	3ービフェニリル
VI-83	-(_>	-Ph	3-ビフェニリル	н
VI-84	-	-Ph	3ーピフェニリル	3ーピフェニリル
VI-85		-Ph	н	2-ビフェニリル
VI-86		-Ph	2ービフェニリル	A
VI-87	-	-Ph	2ーピフェニリル	2-ピフェニリル
VI-88		-Ph	Cl	H
VI-89		-Ph	-ОН	Н

式(VI) 化合物 No.	L.	R13=R23	R18=R28	R ₁₈ =R ₂₈
VI-90	√>	-Ph	-NO 2	H
VI-91	─	-Ph	-CN	Н
VI-92	→ □>	-Ph	-OPh	H
VI-93		-Ph	-SCH ₃	н
VI-94	-	-Ph	-SPh	H
VI-95	-	-Ph	-NH ₂	Ħ
VI-96	→ >	-Ph	-NH-Ph	H
VI-97	- ◆>	-Ph	-NPh ₂	H
VI-98	→	-Ph	-COOH	H
VI-99	- <>>	-Ph	2-ピリブル	н
VI-100	00	-Ph	н	CH3
VI-101	CO	-Ph	CH ₃	H
VI-102	00	-Ph	CH₃	CH ₃
VI-103	00	-Ph	Н	C2H5
VI-104	00	-Ph	C ₂ H ₅	H
VI-105	00	-Ph	C2H5	C2H5
VI-106	100	-Ph	H	n-C ₃ II ₇
VI-107	00	-Ph	n−C₃H₂	H
VI-108	00	-Ph	n-C ₃ H ₇	n-C ₂ H ₇
VI-109	00	-Ph	H	n-C4He
VI-110	00	-Ph	n-C4He	H
VI-111	00	-Ph	n-C ₄ H ₉	n-C4H9
VI-112	100	-Ph	н	t-C4H9

		90		
式(VI) 化合物 No.	Lı	R12=R23	R16=R26	R18=R28
VI-113	TO .	-Ph	t-C4H9	Н
VI-114	100	-Ph	t-C4H9	t-C ₄ H ₉
VI-115	CO	-Ph	H	-OCH ₃
VI-116	TOO	-Ph	-OCH _s	H
VI-117	XX	-Ph	-OCH ₃	-OCH ₃
VI-118	100	-Ph	H	-Ph
VI-119	TO	-Ph	-Ph	H
VI-120	TOO	-Ph	H	1-ナフチル
VI-121	00	-Ph	1-ナフチル	H
VI-122	100	-Ph	1-ナフチル	1-ナフチル
VI-123	TOO	-Ph	. Н	2-ナフチル
VI-124	CO	-Ph	2ーナフチル	Н
VI-125	100	-Ph	2- 1 7fh	2-}7+1
VI-126	TO	-Ph	H.	4ービフェニリル
VI-127	00	-Ph	4-E7x=1/h	H
VI-128	00	-Ph	4ーピフェニリル	4ーピフェニリル
VI-129	100	-Ph	H	3ービフェニリル
VI-130	CO	-Ph	3-E7x=1/N	H
VI-131	CO	-Ph	3ーピフェニリル	3ービフュニリル
VI-132	CO	-Ph	Н	2-ビフェニリル
VI-133	CO	-Ph	2-ピフェニリル	H
VI-134	W)	-Ph	2ービフェニリル	2-ビフェニリル
VI-135	TOO	-Ph	CI	Н

^	0
ч	x

式(VI) 化合物 No.	L	R13=R23	R16=Ř26	R18=R28
VI-136	COL	-Ph	-OH	H
VI-137	CO	-Ph	-NO ₂	H
VI-138	M	-Ph	-CN	H
VI-139	Ca	-Ph	-OPh	H
VI-140	100	-Ph	-SCH ₃	H
VI-141	00	-Ph	-SPh	H
VI-142	TO .	-Ph	-NH₂	H
VI-143	100	-Ph	-NH-Ph	H
VI-144	100	-Ph	-NPh ₂	H
VI-145	00	-Ph	-COOH	H
VI-146	00	-Ph	2-ピリジル	Н

[0093]

【化49】

式(VII) 化合物 No.	Lı	R ₁₃ =R ₂₃	R19=R27	R ₁₈ =R ₂₈
VII- 1	-()-()-	-Ph	н	Н
S -IIA	- () -	-Ph	Н	H
VII- 3	YOO	-Ph	H	H
VII- 4	-()-()-	-Ph	H ·	CH ₃
VII- 5	-()-()-	-Ph	CH ₃	H
VII- 6	-()-()-	-Ph	CH ₃	CHa
VII- 7	-()-()-	-Ph	Ħ	C ₂ H ₅
VII- 8	-(3-(3-	-Ph	C ₂ H ₅	H
VII- 9	-()-()-	-Ph	C ₂ H ₅	C ₂ H ₅
VII-10	-()-()-	-Ph	n-C ₃ H ₇	H
VII-11	-()-()-	-Ph	н	n-C ₃ H ₇
VII-12	-	-Ph	n-C ₃ H ₇	n-C ₃ H ₂
VII-13	-()-()-	-Ph	Н	n-C ₄ H ₉
VII-14	-()-()-	-Ph	n-C ₄ H ₉	H
VII-15	-()-()-	-Ph	n-C ₄ H ₉	n-C ₄ H ₉
V11-16	- ()-()-	-Ph	Н	t-C4H9
VII-17		·-Ph	t-C ₄ H ₉	H
VII-18	-()-()-	-Ph	t-Call9	t-C4H9
VII-19	-()-()-	-Ph	Ħ	-OCH ₃
VII-20	-()-()-	-Ph	-0CH ₃	Н
VII-21	-()-()-	-Ph	-OCH ₃	-OCH _a
VII-22		-Ph	R172R1827 R272R2827	心的環 心的環
VII-23	-0-0-	-Ph	H	-Ph

式(VII) 化合物 No. L1 R12=R21 R17=R27 VII-24	
VII-25 ————————————————————————————————————	R ₁₈ =R ₂₈
VII-26 ————————————————————————————————————	H
VII-27 ————————————————————————————————————	-Ph
	1-+7+1
VII-28 ————————————————————————————————————	H
	1- <i>†7</i>
VIII-29 -Ph H	2ーナフチル
VII-30 ————————————————————————————————————	H
VII-31 ————————————————————————————————————	2ーナフチル
VII-32 -Ph H	4ーピフェニリル
VII-33 ——————————————————————————————————	. н
VII-34 ————————————————————————————————————	4ーピフェニリル
VII-35 ————————————————————————————————————	3-ビフェニリル
VII-36 ————————————————————————————————————	H
VII-37 ————————————————————————————————————	3ービフェニリル
VII-38 ————————————————————————————————————	2-ビフェニリル
VII-39 ————————————————————————————————————	A
VII-40 ————————————————————————————————————	2-ビフェニリル
VII-41 — Ph C1	H
VII-42 - Ph -OH	H
VII-43 -NO ₂	H
VII-44 ——————————————————————————————————	H
VII-45 Ph OPh	H _.
VIII-46 ————————————————————————————————————	H

100		104		
式(VII) 化合物 No.	Lı	R13=R23	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
VII-47	-0-0-	-Ph	-SPh	H
VII-48	-()-()-	-Ph	-NH ₂	H
VII-49	-()-()-	-Ph	-NH-Ph	н
VII-50	-()-()-	-Ph	-NPhz	. #
VII-51	-()-()-	-Ph	-соон	H
VII-52	-()-()-	-Ph	2-ビリジル	н
VII-53		-Ph	H	CH ₃
VII-54	- ()-	-Ph	CH ₃	Н
VII-55	-	-Ph	CH ₃	СНа
VII-56		-Ph	Н	C ₂ H ₅
VII-57	-(-)-	-Ph	C ₂ H ₆	H
VII-58	-()-	-Ph	C ₂ H ₅	C ₂ H ₅
VII-59	-()-	-Ph	n-C ₃ H ₇	H
VII-60	- ()-	-Ph	н	n-C ₃ H ₂
VII-61	→	-Ph	n-C ₃ H ₇	n-C ₃ H ₇
VII-62	-	-Ph	н	n-C4H9
VII-63	-	-Ph	n-C ₄ H ₉	Ħ
VII-64	-()-	-Ph	n-C ₄ H ₉	n-C4H9
VII-65	-(-)-	-Ph	Ħ	t-C4H9
VII-66	-(-)-	-Ph	t-C4H9	H .
VII-67		-Ph	t-C ₄ H ₉	t-C ₄ H ₉
VII-68	- ⊘	-Ph	Н	-OCH ₃
VII-69	-()-	-Ph	-ОСН 3	Н

105 106 式(VII) 化合物 No. Lı R13=R23 R17=R27 R18=R28 -0CH₃ -OCH₃ VII-70 -Ph CR17とR18とて へいもン環 CR27とR28とで へいもン環 VII-71 -Ph H VII-72 -Ph -Ph -Ph H VII-73 -Ph -Ph -Ph -Ph **VII-74** H VII-75 1ーナフチル -Ph Н 1ーナフチル VII-76 -Ph VII-77 -Ph 1ーナフチル 1ーナフチル **-(_)**-VII-78 H 2-ナフチル -Ph H VII-79 -Ph 2-ナフチル **-VII-80** 2ーナフチル 2-ナフチル -Ph VII-81 -Ph H 4ービフュニジル -\$-VII-82 -Ph 4ービフェニリル H -(-)-VII-83 -Ph 4ービフェニリル 4ービフュニリル -()-VII-84 -Ph H 3-ビフェニリル -Ph 3ービフェニリル H VII-85 VII-86 -Ph 3ービフェニリル 3-ビフェニリル VII-87 -Ph H 2-ピフェニリル **VII-88** 2-ビフェニリル H -Ph 2-ビフェニリル VII-89 -Ph 2-ビフェニリル

-Ph

-Ph

-Ph

VII-90

VII-91

VII-92

CL

-OH

-NO₂

H

H

H

107		108		
式(VII) 化合物 No.	Lı	R ₁₃ =R ₂₃	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
VII-93	-()-	-Ph	-CN	Н
VII-94	- ()-	-Ph	-OPh	Н
VII-95	- -	-Ph	-SCH ₃	H
VII-96	-() -	-Ph	-SPh	Н
VII-97	-()-	-Ph	-NH ₂	Н
VII-98	-	-Ph	-NH-Ph	Н
VII-99	-() -	-Ph	-NPh₂	Н
VII-100	-() -	-Ph	-соон	Н
VII-101	-{>	-Ph	2-ピリジル	H
VII-102		-Ph	н	CH3
VII-103	CO	-Ph	CH₃	Н
VII-104		-Ph	CH3	СН₃
VII-105	100	-Ph	Н	C2H5
VII-106	CO	-Ph	C2H5	H
VII-107	M	-Ph	C2H5	C ₂ H ₅
VII-108	CO	-Ph	n-C ₃ H ₇	Н
/11-109	CO	-Ph	Н	n-CaH7
/11-110	TO .	-Ph	n-C ₃ H ₇	n-C ₃ H ₇
/II-111	CO	-Ph	н	n-C ₄ H ₉
/II-112	COL	-Ph	n-C ₄ H ₉	H
/II-113	CCL	-Ph	n-C ₄ H ₉	n-C4H9
/II-114	CO	-Ph	H	t-C ₄ H ₉
/II-115	COL	-Ph	t-C₄H ₉	H

式(VII) 化合物 No.	L.	R ₁₃ =R ₂₃	R ₁₇ =R ₂₇	R:8=R28
VII-116	M	-Pħ	t-C₄H ₉	t-C ₄ H ₉
VII-117	M	-Ph	H.	-0CH ₃
VII-118	M	-Ph	-OCH ₃	H
VII-119	00	-Ph	-OCH ₃	-OCHs
VII-120	00	-Ph	_R1+2R1+2T _R2+2R2+2T	く く く く り り り り り り り り り り り り り り り り
VII-121	00	-Ph	Н	-Ph
VII-122	00	-Ph	-Ph	Н
VII-123	Ca	-Ph	-Ph	-Ph
VII-124	00	-Ph	Н	1ーナフチル
VII-125	VQ	-Ph	1ーナフチル	H ·
VII-126	CO	-Ph	1ーナフチル	1-ナフチル
VII-127	00	-Ph	Н	2-+7 1 N
VII-128	CO	-Ph	2- ナ フチル	H
VII-129	CO	-Ph	2-ナフチル	2- ナ フチル
VII-130	00	-Ph	Н	4ービフェニリル
VII-131	00	-Ph	4-ビフェニリル	H
VII-132	100	-Ph	4ービフェニリル	4-ビフェニリル
VII-133	TO	-Ph	H	3ービフェニリル
VII-134	00	-Ph	3ーピフェニリル	H
VII-135	00	-Ph	3-£7x=1)A	3-ビフェニリル
VII-136	CO	-Ph	Н	2-ビフェニリル
VII-137	00	-Ph	2ーピフェニリル	н
VII-138	00	-Ph	2ーピフェニリル	2ービフェニリル

式(VII) 化合物 No.	Lı	R ₁₃ =R ₂₃	R ₁₇ =R ₂₇	R ₁₈ =R ₂₈
VII-139	YOL .	-Ph	C1	Н
VII-140	CO	-Ph	-ОН	H
VII-141	CO	-Ph	-NO _z	Н
VII-142	100	-Ph	-CN	H
VII-143	CO	-Ph	-OPh	H
/II-144	CO	-Ph	-SCH ₃	H
/II-145	CO	-Ph	-SPh	H
711-146	TOO	-Ph	-NH ₂	H
II- <u>147</u>	00	-Ph	-NH-Ph	H
TII-148	CO	-Ph	-NPh ₂	H
/II-149	00	-Ph	-соон	Ħ
TI-150	YOU	-Ph	2ービリジル	Н

[0100]

【化56】

式(VIII) 化合物 No.	Li	R13=R23	R15=R25	R ₁₈ =R ₂₈
VIII- 1	-()-()-	-Ph	Н	Н
VIII- 2	- (>	-Ph	H	H
VIII- 3	100	-Ph	H	Н
VIII- 4	-0-0-	-Ph	н	CH3
VIII- 5	-(-)-(-)-	-Ph	СНз	H
VIII- 6		-Ph	СНз	CH ₃
VIII- 7	-	-Ph	н	CaHs
8 -IIIV	-	-Ph	C ₂ H ₅	H
AIII- a		-Ph	C2H5	C ₂ H ₆
VIII-10	-()-()-	-Ph	Н	n-CaH7
VIII-II		-Ph	n-C ₂ H ₇	H
VIII-12		-Ph	n-C _a H ₇	n-C ₃ H ₇
VIII-13	-0-0-	-Ph	. Н	n-C ₄ H ₉
VIII-14	-()-()-	-Ph	n-C4H9	H
VIII-15	-	-Ph	n-C ₄ H ₉	n-C4H9
VIII-16		-Ph	н	t-C₄H ₈
VIII-17	-	-Ph	t-C₄H ₉	H
VIII-18		-Ph	Н	t-C ₄ H ₉
VIII-19		-Ph	t-C ₄ H ₉	t-C₄H ₉
VIII-20	-	-Ph	-OCH₃	Н
VIII-21		-Ph	н	-Ph
VIII-22	-	-Ph	-Ph	Н
VIII-23	- 	-Ph	-Ph	-Ph

	110			110
式(VIII) 化合物 No.	Lı	R ₁₃ =R ₂₃	R15=R25	R18=R28
VIII-24	-()-()-	-Ph	н	1-ナフチル
VIII-25	-()-()-	-Ph	1-ナフチル	H
VIII-26	-{}-{}-	-Ph	1-ナフチル	1-ナフチル
VIII-27	-()-()-	-Ph	н	2ーナフチル
VIII-28	- ()-()-	-Ph	2-ナ7チル	H
VIII-29	- O-O-	-Ph	2-ナ7チル	2ーナフチル
VIII-30	-()-()-	-Ph	Н	4ーピフェニリル
A111-31	-()-()-	-Ph	4ーピフェニリル	Н
VIII-32	-()-()-	-Ph	4-475=1711	4-ビフェニリル
A111-33	-()-()-	-Ph	н	3ーピフェニリル
VIII-34	-()-()-	-Ph	3ーピフェニリル	H
VIII-35	-()-()-	-Ph	3-ビフェニリル	3ーピフェニリル
VIII-36	-()-()-	-Ph	H	2ーピフェニリル
VIII-37	-(T)-(T)-	-Ph	2-ピフェニリル	Н
VIII-38	- (7)(7)	-Ph	2ーピフェニリル	2-ビフェニリル
VIII-39	- (-)-(-)-	-Ph	C1	Н
VIII-40	-()-()-	-Ph .	-OH	Н
VIII-41	-()-()-	-Ph	-NO ₂	Н
VIII-42	-()-()-	-Ph	-CN	н .
VIII-43	-()-()-	-Ph	-OPh	H
VIII-44	-()-()-	-Ph	-SCH ₃	H ·
VIII-45	-()-()-	-Ph	-SPh	H
VIII-46	~ \	-Ph	-NH _z	

式(VIII) 化合物 No.	•			
	Lı	R ₁₃ =R ₂₃	R ₁₅ =R ₂₅	R18=R28
VIII-47	-0-0-	-Ph	-NH-Ph	H
VIII-48	-()-()-	-Ph	-NPh ₂	H
VIII-49	-	-Ph	-COOH	H
VIII-50	-	-Ph	2-EIJTN	H
VIII-51	-(~)	-Ph	. Н	CHs
VIII-52	- (-)-	-Ph	CH ₃	Н
VIII-53	-(>-	-Ph	CH ₃	СНэ
VIII-54	-	-Ph	н	C ₂ H ₆
VIII-55	-()-	-Ph	C ₂ H ₆	Н
VIII-56	-()-	-Ph	C ₂ H ₆	C ₂ H ₅
VIII-57	-(-)-	-Ph	H	n-C ₃ H ₇
VIII-58	- (<u>-</u>)-	-Ph	n-C ₃ H ₇	H .
VIII-59	-	-Ph	n-C ₃ H ₇	n-C3H7
VIII-60	-()-	-Ph	H	n-C₄H ₉
VIII-61	-()-	-Ph	n-C₄H ₉	H
VIII-62	-()-	-Ph	· n-C₄H ₉	n-C4H9
VIII-63	- ()-	-Ph	H	t-C4H9
VIII-64	-()-	-Ph	t-C ₄ H ₉	н
VIII-65	-() -	-Ph	H	t-C ₄ H ₉
VIII-66	-()-	-Ph	t-C ₄ H ₉	t-C₄H _a
VIII-67	- (<u>-</u>)-	-Ph	-0CH₃	H
VIII-68	-(-)	-Ph	н	-Ph
VIII-69	-{5}-	-Ph	-Ph	H

	113			120
式(VIII) 化合物 No.	L:	R13=R23	R15=R25	R18=R28
VIII-70	-{}	~Ph	-Ph	-Ph
VIII-71	<u> </u>	-Ph	H	1-+7+1
VIII-72	- ()-	-Ph	1-ナフチル	H
VIII-73	_	-Ph	1-ナフチル	1ーナフチル
VIII-74	-()-	-Ph	Н	2ーナフチル
VIII-75	_	-Ph	2-ナフチル	Н
VIII-76	-	-Ph	2ーナフチル	2-ナフチル
VIII-77	-	-Ph	H	4-ピフェニリル
87-111V	_	-Ph	4ーピフェニリル	H
VIII-79	-	-Ph	4ーピフェニリル	4-ピフェニリル
08-111V	-	-Ph	H	3-ピフェニリル
VIII-81	-(-)-	-Ph	3-ピフェニリル	H
VIII-82	-	-Ph	3-ビフェニリル	3-ビフェニリル
VIII-83	-	-Ph	Н	2-E7x=UN
VIII-84	{>	-Ph	2ービフェニリル	Н
VIII-85	-	-Ph	2ーピフェニリル	2ービフェニリル
VIII-86	-() -	-Ph	CI	H
VIII-87	-() -	-Ph	-ОН	H
VIII-88	-()-	-Ph	-NO ₂	H
VIII-89	—	-Ph	-CN	H
VIII-90	-(>-	-Ph	-OPh	H
VIII-91		-Ph	-SCH ₃	Я
VIII-92	-	-Ph	-SPh _.	H

				125
式(VIII) 化合物 No.	Lı	R13=R23	R15=R25	R18=R28
VIII-93	— (_)—	-Ph	-NH ₂	H
VIII-94	_	-Ph	-NH∸Ph	H
VIII-95	-()-	-Ph	-NPh ₂	H
VIII-96	_	-Ph	-соон	Н
VIII-97	_	-Ph	2ービリジル	Н
VIII-98		-Ph	н	CH ₃
VIII-99		-Ph	CH _s	Н
VIII-100		-Ph .	CH ₃	CH ₂
VIII-101		-Ph	Н	C₂H₅
VIII-102		-Ph	C₂H₅	H
VIII-103		-Ph	C ₂ H ₅	C2H5
VIII-104		-Ph	Ħ	n-C ₃ H ₇
VIII-105		-Ph	$n-C_3H_7$	H
VIII-106		-Ph	n-C ₃ H ₇	n-C ₃ H ₇
VIII-107		-Ph	н	n-C4H9
VIII-108		-Ph	n-C ₄ H ₉	. H
VIII-109		-Ph	n-C ₄ H ₉	n-C4H9
VIII-110		-Ph	Н	t-C₄H _s
VIII-111		-Ph	t-C ₄ H ₉	H
VIII-112		-Ph	Ħ	t-C₄H ₉
VIII-113		-Ph	t-C4H9	t-C₄H ₉
VIII-114		-Ph	-0CH ₃	H
VIII-115	W)	-Ph	H	-Ph

	120			124
式(VIII) 化合物 No.	Lı	R12=R23	R15=R25	R18=R28
VIII-116	700	-Ph	-Ph	Н
VIII-117	VQ.	-Ph	-Ph	-Ph
811-111V	CO	-Ph	н	1-ナフチル
VIII-119	CO	-Ph	1- 7 7fm	Н
VIII-120	TOO.	-Ph	1-ታ7ታክ	1-ナフチル
VIII-121	TO	-Ph	H	2-ナフチル
VIII-122	TO	-Ph	2-ታንታኤ	Н
VIII-123	TOO	-Ph	2- + 7 5 A	2ーナフチル
VIII-124	TO .	-Ph	Н	4ービフェニリル
VIII-125	TO	-Ph	4ーピフェニリル	. Н
VIII-126	TO	-Ph	4-E7x=4N	4ーピフェニリル
VIII-127	TO .	-Ph	H	3ービフェニリル
VIII-128	TO	-Ph	3-ピフェニリル	Н
VIII-129	CO	-Ph	3-ピフェニリル	3ーピフェニリル
VIII-130	TOO	-Ph	Н	2-ビフェニリル
VIII-131	VQ	-Ph	2-ビフェニリル	H
VIII-132	TOO	-Ph	2ーピフェニリネ	2-ビフェニリル
VIII-133	CO	-Ph	C1	H
VIII-134	TOO	-Ph	- OH	H
VIII-135	CO	-Ph	-NO ₂	H
VIII-136	OQ	-Ýh	-CN	H
VIII-137	TO .	-Ph	-OPh	Н
VIII-138	VQ.	-Ph	-SCH ₃	H

Lı	R13=R23	R16=R25	R: 8=R28
TOO.	-Ph	-SPh	Н
TO .	-Ph	-NH ₂	н
VQ.	-Pb	-NH-Ph	H
TOO.	-Ph	-NPh _z	H
M	-Ph	-соон	H
VQ.	-Ph	2ービリジル	R
		-Ph -Ph -Ph -Ph -Ph -Ph -Ph	-Ph -SPh -SPh -NH ₂ -Ph -NH-Ph -NH-Ph -Ph -NPh ₂ -Ph -COOH

[0107]

[化63]

	144				1 2	U
式(IX) 化合物 No.	Lz	R ₁₃ =R ₂₃ =R ₃₃	R ₁₅ =R ₂₅ =R ₃₅	R18=R28 =R38	R ₁₇ =R ₂₇ =R ₃₇	R ₁₈ =R ₂₈ =R ₃₈
IX- 1		Н	Н	R	н	Н
IX- 2	\$	H	RistRistM RzstRzstM RsstRsstM	郊堰	R172R102TV R272R202TV R372R302TV	(水) 環
IX- 3	4	Н	R152R102TA R252R262TA R352R202TA	ンゼン 環 ンゼン 環	Н	H
[X- 4		-Ph	Ħ	H	Н	н
X- 5	4	-Ph	R152R16271 R252R26271 R352R26271	池環	R172R182TX R272R282TX R372R382TX	が環
X- 6	\Diamond	-Ph	RistRistM RestRestM RistRistM	地東	Н	н
X- 7	-N-	H	H	H	H	H
K- 8	-N-	Н .	R16とR10とでへ R25とR20とでへ R35とR36とでへ	炒環	R172R182TX	的環
(- 9	-N-	Н	R15とR16とでベン R26とR26とでベン R35とR36とでベン	打環	Ħ	H
L-10	-N-	-Ph	H	H	Н	H
-11	- n	-Ph	R152R16270 R252R26270 R352R36270	砂環	R17とR18とでや R27とR28とでか R37とR38とでや	り環
Z-12	-N-	-Ph	R152R162TVV R252R262TVV R352R362TVV	砂環	Н	H

-b (***)	123		 			
式(IX) 化合物 No. 	L ₂	R13=R23 =R33	R ₁₅ =R ₂₆ =R ₃₅	R16=R26 =R36	R ₁₇ =R ₂₇ =R ₃₇	R1 = R2 = R3 =
IX-13	\$ }-n-<->-	. Н	н	Н	н	H
IX-14 —	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. Н	R16とR18とで R25とR26とで R35とR36とで	砂圾	Н	H
IX-15 — ←	♦	н	R156R1667	饮 環	R172R182TM R272R282TM R372R382TM	びび 環
-X-16	\$ }-v-{\$\rightarrow}-	-Ph	н	Ħ	Н	Н
X-17 —()-n-()-	-Ph	RistRistM RzstRzstM RzstRzstM	が現	R172R182TA R272R282TA R372R382TA	北環
X-18 —	♦	-Ph	R162R1627 R262R2627 R362R3627	戏项	H	н
(-19		-Ph	H.	н	-Ph	Н
I-20		-Ph	-Ph	Н	H	H
(-21	4	-Ph	H	-Ph	Н	H
-22		-Ph	H	Н	H	-Ph
-23		-Ph	H	H	C1	H
-24		-Ph	Ħ	Н	-OH	Н

	101	31				132		
式(IX) 化合物 No.	L ₂	R13=R23 =R33	R ₁₅ =R ₂₅ =R ₃₅	R ₁₆ =R ₂₆ =R ₂₆	R ₁₇ =R ₂₇ =R ₃₇	R ₁₈ =R ₂₈ =R ₃₈		
IX-25		-Ph	Н	H	-NO ₂	H		
IX-26		-Ph	Н	. Н	-CN	н		
IX-27		-Ph	H	Н	-OPh	H		
IX-28		-Ph	Н	Н .	-SCH _a	Н		
IX-29		-Ph	H	H	-SPh	H		
IX-30		-Ph	H	H	-NH ₂	H		
[X-31		-Ph	н	Н	-NH-Ph	н		
[X-32		-Ph	H	H	-NPh	H		
X-33		-Ph	H	H	CHa	Н		
X-34		-Ph	H	Н	-OCH ₃	H		
X-35		-Ph	Н	Н	-COOH	H		
X-36		-Ph	H	Н	2-ピリジル	H		
X-37	-N-	-Ph	H	H	-Ph	H		
X-38	-N-	-Ph	-Ph	H	H	H		
K-39	- N-	-Ph	H	-Ph	Н	H		
(-40	_N_	-Ph	H	Н	н	-Ph		
X-41	-N-	-Ph	H	Н	CI	H		

			134	
R13=R23 =R32	R ₁₅ =R ₂₅ =R ₂₅	R16=R26 =R26	R ₁₇ =R ₂₇ =R ₁₇	R ₁₈ =R ₂₈ =R ₃₈
-Ph	н	Н	-0Н	Н
-Ph	H	H .	-NOz	H
-Ph	H	H	-CN	, H
-Ph	H	H	-0Ph	H
-Ph	H	H	-SCH ₃	Н
-Ph	Н	H	-SPh	Н
-Ph	н	H	-NH ₂	H
-Ph	H	н	-NH-Ph	Н
-Ph	Н	H	-NPh	н
-Ph	н .	н	CH ₃	Н
-Ph	н	н .	-0CH ₃	Н
-Ph	Н	H	~COOH	H
-Ph	H	Н	2-ビリジル	H
-Ph	Н	H	-Ph	H
-Ph	-Ph	H	H	H
-P h	Н	-Ph	Н	H
-Ph	н	H	Н	-Ph
			•	

[0111]

【化67】

-45 45 -				100		
式(IX) 化合物 No.	L ₂	R ₁₃ =R ₂₃ =R ₃₃	R ₁₅ =R ₂₅ =R ₃₅	R ₁₆ =R ₂₆ =R ₃₆	R17=R27 =R37	R ₁₈ =R ₂₈ =R ₃₈
IX-59	\$	-Ph	H	Я	C1	H
		-Ph	н	Н	-ОН	н
[X-61	\$\n\cdot\	-Ph	Н	Ħ	-NO ₂	. н
-{ IX-62		-Ph	н	н	-CN	Н
-\(\(\frac{1}{2} \)	\$\hat{\dagger}{\dagger}	-Ph	Н	Н	OPh	Н
X-64	\$ N	-Ph	Н	н	-SCH ₃	н
⟨_ X-65)- N-()- ()	-Ph	H	н	-SPh	н
X-66)-й-(\$\rightarrow\)	-Ph	Н	. н	-NH ₂	H.
- ⟨_` K-67)-N-()- ()	-Ph	H	Н	-NH-Ph	Н
-{ <u>_`</u> ` <-68 ·)-N-()-	-Ph	H	H	-NPh	H
{	\$ N-C)-	- Ph	H	H	CH3	Н
(-70	γ-N-()- φ	-Ph	н	H	-OCH ₃	Н
	⊢ й- ()					

•	•	~
ŀ	- 4	

137					138	
式(IX) 化合物 No.	L ₂	R ₁₃ =R ₂₃ =R ₃₃	R ₁₅ =R ₂₅ =R ₃₅	R ₁₆ =R ₂₈ =R ₈₈	R ₁₇ =R ₂₇ =R ₃₇	R ₁₈ =R ₂₈ =R ₃₈
IX-71	↓	-Ph	H .	Н	-COOH	Н
IX-72	-O-N-O-	-Ph	Ħ	Н	2-ビリジル	н

[0113]

【化69]

式(X) 化合物 No.	L ₂	R ₁₃ =R ₂₃ =R ₃₃	R16=R26=R26	R17=R27=R37	R16=R26=R56
X-1	V	Н	Н	Н	Н
X-2	Ċ	-Ph	H	Н	Н
X-3	-N-	H	Н	H	H
X-4	-N-	-Ph	H	H _.	H
X-5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н .	H	Н	н
K−6 -	-O-n-O-	-Ph	н	н .	Ħ
K-7	T	H	RiotRiote	◇₺难	н
:-8	T	- Ph	-R362R372T / -R162R172T / -R262R272T / -R362R372T	0 0項 00項	H
-9	T	H	H	R252R2727	ロゼン環
-10	Ÿ.	-Ph	H	R352R3727 A	DD環 DD環
-11	Q	-Ph	-Ph	LR302R372T A	Jey現 H
·12	Ÿ	-Ph	н	-Ph	H
-13	Ÿ	-Ph	H	H	-Ph
14	Ÿ	-Ph	Н	CI	Н

R ₁₃ =R ₂₃ =R ₃₃	R ₁₆ =R ₂₆ =R ₃₆	R ₁₇ =R ₂₇ =R ₃₇	R ₁₈ =R ₂₈ =R ₃₈
-Ph	н	O.	
		-OH	H
-Ph _.	H	~NO ₂	H
-Ph	H	-CN	Ħ
-Ph	Н	-OPh	H
-Ph	H	-SCH₃	H
-Ph	H	-SPh	H
-Ph	Н	-NH ₂	H
-Ph	H	-NH-Ph	Н
-Ph	H	-NPh ₂	н
-Ph	н	CH ₃	. Н
-Ph	Н	-OCH ₃	H
-Ph	Н	-соон	H
-Ph	H	2ーピリジル	H
Ħ	R106R1767	∜ンモン環	H
-Ph	RiotRiote	♥♥ ♥ ♥♥ ♥	H
H	Н	-RietRiste	のもり環
	·	-Ph	LRsaとRsっとで 心ゼン環 -Ph RsaとRsっとで 心ゼン環 RzaとRzっとで 心ゼン環 -RsaとRsっとで 心ゼン環

式(X) 化合物 No.	L ₂	R13=R23=R33	R16=R26=R36	R17=R27=R37 ·	R ₁₈ =R ₂₈ =R ₃₈
X-31		-Ph	Н	-RiotRiot?	心心環
	-N-			R206R276T	心心環
				L-RootRootT	Ѻ€ン環
X-32	-N-	-Ph	-Ph	H	H
X- 3 3	-N-	· -Ph	H	-Ph	H
X-34	-N-	-Ph	H	Н	-Ph
X-35	-N-	-Ph	Н	Cl	H
X-36	-N-	-Ph	Н	-OH	H
X-37	-N-	-Ph	H	-NO ₂	H
K-3 8	-N-	-Ph	H	-CN	H
(-3 9	-N-	-Ph	H	-0РЬ	H
(-40	-N-	-Ph	H	-SCH ₂	H,
X-41	-N-	-Ph	Н	-SPh	Н .
(-42	-N-	-Ph	H	-NH ₂	Н
(-43	-N-	-Ph	H	-NH-Ph	H _.
-44	-N-	∸Ph	H	-NPh ₂	H
1−45	_N_	-Ph	H	CH ₃	H
-46	N	-Ph	н	-OCH3	Н
-47	-N-	-Ph	H	-COOH	H
-48	N	- Ph	H	2-ピリジル	Н
-49	Ţ	H	「RiotRiote やむ環 H		н
			R262R2727		
_	()-N-()-		LR362R372T		
-50	$\stackrel{\bullet}{\hookrightarrow}$	-Ph	RiotRiote 1		H
			R206R2767		
			LRaekRarkt 1	(V Y)環	

式(X)					
化合物 No). L ₂	R ₁₃ =R ₂₃ =R ₃₃	R16=R26=R38	R17=R27=R37	R ₁₈ =R ₂₈ =R ₃₈
X-51		Н	Н	RiotRiste	
		_		R202R272T	
v ra				LR302R372T	
X-52		-Pb	H	R162R172T R262R272T	
	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-		R362R372T	
X-53		-Ph	-Ph	Н	Н
X-54	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-Ph	Н	-Ph	Н
A 34	\Diamond	111	11	****	11
	-⟨>n-⟨>				
X-55		-Ph	н	Н	Ph
	-{}-N-{}-		•		
X-56		-Ph	· H	Cl	H
X-57		-Ph	Н	-ОН	Н
	_ 🗘 _	• • •	••	V.1	••
			-		
X-58		-Ph	H	-NO ₂	H
	-()-N-()-				
X-59		-Ph	H	-CM	H
X-60		-Ph	H	-OPh	H
			_		
			_		
X-61		-Ph	H	-SCH ₃	H
	-O-N				•
(-6 2		-Ph	H	-SPh	H
(-63	T	-Ph	H	-NH ₂	H
. 00	_ 🗘 _	4 44	**	-11412	11
•	-⟨¬\-\n'-⟨¬}-				

式(X) 化合物 No.	L ₂	R13=R23=R33	R ₁₆ =R ₂₆ =R ₃₆	R17=R27=R37	R ₁₈ =R ₂₈ =R ₃₈
X-64	, \$	-Ph	Н	-NH-Ph	Н
X-65		-Ph	Н	-NPh ₂	H
X-66	♪'n-(> ()	− ~Ph	H	CH ₃	H
X−67	♪ᢥ᠊ᠿ ᠔	- -Ph	Ħ	-0CH ₃	H
X-68		 -Ph	H	-C00H	н
X-69	♪ 'n-⊘-	- -Ph	. Н	2-ビリジル	Н
-(_	<u>}-ν</u> -Φ-	-			

[0118]

【化74】

式(XI) 化合物 No.	· L ₂	R ₁₃ =R ₂₃ =R ₃₃	R15=R25=R35	R17=R27=R37	R ₁₈ =R ₂₈ =R ₃₈
	· · · · · · · · · · · · · · · · · · ·				
XI-1	Q	н	н .	H	Н
XI-2	Y	-Ph	Н	Н	H
XI-3	- <u>N</u> -	H	H	Н	н
XI-4	o o	H	Н	H	Н
XI-5		-Ph	н	H	н
XI-6	Q-N-C	H	Н	R272R28	とでくりとり環 とでくりとり環 とでくりとり環
XI-7	T	-Ph	H	R172R10	とで心む環 とで心む環 とで心む環 とで心む環
XI-8	-N	Н	H , .	R172R18	とでくうとう とでくうとう でくうとうなほ
XI-9 -	\ \ \ \ \ \ \	Н	н .	R172R180	たでベンゼン環 たでぐもシ環 たでぐもシ環
XI-10	ф -0**-0-	-Ph	H	R172R101 R272R201 R372R302	で心む環

[0119]

【化75】

	191			152	
式(XI) 化合物 No.	La	R ₁₃ =R ₂₃ =R ₃₃	R ₁₅ =R ₂₅ =R ₃₅	R ₁₇ =R ₂₇ =R ₃₇	R ₁₈ =R ₂₈ =R ₃₈
XI-11	V	-Ph	-Ph	Н	H
XI-12	Ŷ	-Ph	Н	-Ph	H
XI-13	\(\frac{1}{2}\)	-Ph	H	H	-Ph
XI-14	Ÿ	-Ph	Н	C1	н
XI-15	\(\frac{1}{2}\)	-Ph	н	-OH	Н
XI-16	Q	-Ph	Н	-NO ₂	Н
XI-17	Ŷ	-Ph	Н	-CN	H
XI-18	Ŷ	-Ph	H	-OPh	н
XI-19	Q	-Ph	Н	-SCH ₃	H
XI-20	V	-Ph	н	-SPħ	H
XI-21	Ÿ	-Ph	Н	-NH ₂	H
XI-22	V	-Ph	Н	-NH-Ph	Н
XI-23	P	-Ph	н .	-N-Ph ₂	H
XI-24	Ŷ	-Ph	Н	СН₃	н
XI-25	T	-Ph	Н	-0CH _а	H
XI-26	Ŷ	-Ph	Н	-cooH	H
XI-27	Y	-Ph	H	2-ビリジル	н

式(XI)					107
化合物 No.	L ₂	R ₁₃ =R ₂₃ =R ₃₃	R ₁₆ =R ₂₆ =R ₃₆	R ₁₇ =R ₂₇ =R ₃₇	R ₁₈ =R ₂₈ =R ₃₈
XI-28	-N-	-Ph	-Ph	H	Н
XI-29	-N-	-Ph	Я	-Ph	H
XI-30	1	-Ph	Н	H	-Ph
XI-31	-N- 1.	-Ph	Н	CI	H
XI-32	-'n I	-Ph	н	-ОН	Н
XI-33	-N-	-Ph	Н	-NO ₂	Н
XI-34	-N- -N-	-Ph	Н	-CN	H
XI-35	-N-	-Ph	Н	~OPh	H
XI-36	-N-	-Ph	н	-SCH ₃	Н
XI-37	-N- -N-	-Ph	Н	-SPh	Н
XI-38	-N- -N-	Ph	Н	-NH ₂	Н
XI-39	1	-Ph	H	-NH-Ph	Н .
XI-40	-N-	-Ph	н	-N-Ph ₂	H
XI-41	-N- -N-	-Ph	H	СНз	H
XI-42	-N- -N-	-Ph	H	-OCH ₃	Н
XI-43	-N-	-Ph	Н	-COOH	Н
(I-44	-N-	-Ph	H	2-EIN	. Н

式(XI) 化合物 No.	L ₂	R ₁₃ =R ₂₃ =R ₃₃	R ₁₆ =R ₂₆ =R ₃₅	R ₁₇ =R ₂₇ =R ₃₇	R _{te} =R _{2e} =R _{3e}
(I-45 	\rightarrow	-Ph	-Ph	Н	н
-√_ (I-46	h-ù-C)-	-Ph	Н	-Ph	Н
-√_ (1-47	≻'n-(>− d	-Ph	Н	Н	-Ph
- €	}- \\-_\-_\-	-Ph	H	CI	н
_ €_ (I-49)-i-()-	-Ph	Н	-он	н
-(<u>-</u> II-50	}-i(>-	-Ph	Н	-NO _z	Н
-√_ I-51	}-Ñ-⟨}-	-Ph	н	-CN	
I-52	}-N()	-Ph	H	-0Ph	H
I-53	} -Ñ-⟨◯}-	-Ph	н	-SCH₃	Н
- ₹_I-54	> N-√>-	-Ph	Н	-SPh	н
-√_ I-55	> ~~~	-Ph	Ħ	-NH ₂	Н
€ [-56	>	-Ph	H	-NH-Ph	H
-(_	}- N- ⟨ >-				

158

式(XI) 化合物 No.	Lz	R _{1.1} =R _{2.3} =R _{3.3}	R15#R25*R35	R ₁₇ =R ₂₇ =R ₃₇	R ₁₈ =R ₂₈ =R ₃₈
10.27%				1127 1127 1137	***************************************
XI-57	\Diamond	-Ph	Н	-N-Ph ₂	Н
XI-58	-⊘-Ň-⊘-	-Ph	Н	CH ₃	н
KI-59	-⊘-i-(>- ⟨}.	- -Ph	Н	-0CH ₃	н
XI-60	-◇-'n-◇- - ф_	 -Ph	H	-соон	н
(I-61	-()-i-()-	- -Ph	H	2ーピリジル	н
		-			·

[0123]

【化79】

式(XII) 化合物 No.	L2	R13=R23=R33	R ₁₆ =R ₂₆ =R ₃₆	R ₁₈ =R ₂₈ =R ₃₈
XII-1	V	Н	. Н	Н
XII-2	Ÿ	-Ph	H	H
XII-3	-N-	Н	H	Н
XII-4		H	Н	H
XII-5	-O-N-O-	-Ph	Н	Н
XII-6		-Ph	-Ph	Н
XII-7		-Ph	Ħ	−Ph
XII-8		-Ph	C1	Н
XII-9	\triangle	-Ph	-OH	Я
XII-10		-Ph	-NO ₂	H
XII-II	\Diamond	-Ph	-CN	Н
XII-12		-Ph	-OPh	Н
XII-13		-Ph	-SCH ₃	Н
XII-14		-Ph	-SPh	H
XII-15		-Ph	-NH ₂	Н
XII-16		-Ph	-NH-Ph	H

式(XII) 化合物 No.	L ₂ .	R13=R23=R33	R ₁₆ =R ₂₆ =R ₃₆	R ₁₈ =R ₂₈ =R ₃₈
XII-17	<u></u>	-Ph	-N-Ph ₂	H
XII-18		-Ph	CH ₂	Н
XII-19		-Ph	-OCH₃	Н
XII-20		-Ph	-COOH	Н
XII-21		-Ph	2-ビリジル	Н
XII-22	-N-	-Ph	-Ph	Н
XII-23	-N-	~Ph	H	-Ph
XII-24	_ i _ n_	~Ph	C1	Н
XII-25	-N-	-Ph	-ОН	Н
XII-26	-N-	-Ph	-NO2	Н
XII-27	_ I _ N	-Ph	-CN	H
KII-28	-N-	-Ph	-OPh	Н
(11-29	-N-	-Ph	-SCH _s	н
KII-30		-Ph	-SPh	H
(II-31	-N-	-Ph	-NHz	H
(11-32	-N-	-Ph	-NH-Ph	Н
XII-33		-Ph	-N-Ph ₂	н
XII-34	-N- -N-	-Ph	CH ₂	Н
II-35	_N	-Ph	-ОСН 3	H
II-36	ĺ	-Ph	-соон	H
11-37	-N- -N-	-Ph	2-ピリジル	Н

式(XII) 化合物 No.	L ₂	R13=R23=R33	R16=R26=R36	R: 8=R28=R38
XII-38	<u>.</u>	-Ph	-Ph	н
XII-39	-O-N-O-	-Ph	H	-Ph
XII-40		-Ph	C 1	H
XII-41		-Ph	-ОН	н
XII-42		-Ph	-NO ₂	н
XII-43	-O-N-O-	-Ph	-cn	н
K II-44	-O-N-O-	-Ph	-OPh	H
(11-45	-O-N-O-	-Ph	-SCH ₃	Н
XII-46	-O-N-O-	-Ph	-SPh	н
11-47	-O-N-O-	-Ph	-NH2	Н
II-48	-O-N-O-	-Ph	-NH-Ph	H
II-49		-Ph	-N-Ph ₂	H
II-50		-Ph	СНа	н
	-Q-N-Q-			

式(XII)	•			
化合物 No.	Lz	R ₁₃ =R ₂₃ =R ₃₃	R16=R26=R36	R ₁₈ =R ₂₈ =R ₃₈
	•			
XII-51		-Ph	-OCH ₃	H
XII-52		-Ph	-COOH	H
XII-53		-Ph	2ービリジル	К
			,	
	-()-N-()-			

[0127]

【化83】

式(XIII) 化合物 No.	L ₂	R13=R23=R33	R ₁₇ =R ₂₇ =R ₃₇	R18=R28=R38
XIII-1	Y	н	Н	н
XIII-2		-Ph	Н	H
XIII-3	N	H	H	Н
XIII-4	-N-	-Ph	H	H
XIII-5	\Diamond	H	H	Н
XIII-6		-Ph	н	н
XIII-7	Q.	Н	R172R122T R272R22T R372R382T	べだ)環 べだ)環 べが現
XIII-8	q	-Ph	RizzRiazt RzzzRzazt RazzRsazt	ベンゼン環 ベンゼン環
XIII-9	n	Н	R172R102C R272R202C R372R302C	なが現
XIII-10	_ N	-Ph	R172R182C R272R282C R372R382C	ベンゼン環
XIII-11		Н	R172R102T R272R202T R372R302T	心心環
XIII-12	-O-N-O-	-Ph	R172R182T R272R282T R372R382T	◇ゼン環

	103		170	
式(XIII) 化合物 No.	Lz	R13=R23=R33	R:7=R27=R37	R ₁₈ =R ₂₈ =R ₁₈
XIII-13		-Ph	-Ph	H
XIII-14	6	-Ph	H	-Ph
XIII-15		-Ph	C1	Н
XIII-16		-Ph	-OH	Н
XIII-17		-Ph	-NO ₂	н
XIII-18		-Ph	-CN	H
XIII-19		-Ph	-OPh	H
XIII-20		-Ph	-SCH ₂	Н
XIII-21		-Ph	-SPh	H
XIII-22		-Ph	-NH 2	. Н
XIII-23		-Ph	-NH-Ph	Н
XIII-24		-Ph	-N-Ph ₂	H
XIII-25		-Ph	СН₃	H
XIII-26	点	-Ph	-0CH ₃	H
XIII-27		−Ph	-cooh	H
XIII-28	\$	-Ph	2-t') <i>51</i> k	H

式(XIII)				
化合物 No.	Lz	R ₁₃ =R ₂₃ =R ₃₃	R17=R27=R37	R ₁₈ =R ₂₈ =R ₃₈
XIII-29	-N-	-Ph	-Ph	н
XIII-30	-N-	-Ph	H	-Ph
XIII-31	-N-	-Ph	C1	н
XIII-32	-N-	-Ph	-OH	Н
XIII-33	-N-	-Ph	-NO ₂	H
XIII-34	-N-	-Ph	-CN	H
XIII-35	N	-Ph	-OPh	H
XIII-36	N	-Ph	-SCH ₃	H
XIII-37	- N-	-Ph	-SPh	Н
XIII-38	N	-Ph	-NH ₂	H
XIII-39	_N-	-Ph	-NH-Pb	H
XIII-40	-N-	-Ph	-N-Ph ₂	Н
XIII-41	-N-	-Ph	СНз	Н
XIII-42	-N-	-Ph	-OCH ₃	н
XIII-43	_N_	-Ph	-COOH	Н
XIII-44	_N_	-Ph	2-ビリデル	H

式(XIII) 化合物 No.	L ₂	R13=R23=R33	R17=R27=R37	R ₁₈ =R ₂₈ =R ₃₈
XIII-45	- ¢_	-Ph	-Ph	н
XIII-46		 -Ph	H .	-Ph
XIII-47		-Ph	Cl	Н
XIII-48		Ph	он	H
XIII-49		-Ph	-NO s	Н
XIII-50		-Ph	-CN	Н
KI_II-51		-Ph	-OPh	Н
(111-52		-Ph	-SCH ₃	н
XIII-53		-Ph	-SPh	Н
1111-54		-Ph	−NH₂	н
III-55		-Ph	-NH-Ph	Н
III-56		-Ph	-N-Ph _z	н .
III-57		-Ph	CH ₃	H

				110	
式(XIII) 化合物 No.	L ₂	R13=R23=R33	R17=R27=R37	R _{t 8} =R ₂₈ =R ₃₈	
XIII-58		- Ph .	-осн.	н	
XIII-59		-Ph	-соон	н	
XIII-60		-Ph	2ーピリジル	H	
		·			

[0132]

[化88]

式(XIV) 化合物 No.	L ₂	R ₁₃ =R ₂₃ =R ₃₃	R15=R25=R35	R ₁₈ =R ₂₈ =R ₃
10 H 10 H 10 H	Lz	N13-N23-N33	((12-1/22-1/35	1(18-1(28-1(3)
KIV-1	Y	Н	H	. Н
KIV-2	Q.	-Ph	H	H
CIV-3	-N-	H	H	H
(IV-4	_N-	-Ph	Н	н
(IA <u>-</u> 2		Н	H	н
(IA-e		-Ph	-Ph	Н
IV-7		-Ph	H	-Ph
IV-8		-Ph	Cl	Н
IA-3		-Ph	-ОН	Ħ
IV-10		-Ph	-NO ₂	Ĥ
IV-11		-Ph	-CN	н
IV-12		-Ph	-OPh	Н
IV-13		-Ph	-SCH₃	Н
IV-14 .		-Ph	-SPh	Н
IV-15		-Ph	-NH ₂	Н
[V-16		-Ph	-NH-Ph	Н
(V-17		. -Ph	-N-Ph ₂	H

式(XIV) 化合物 No.	L ₂	R ₁₃ =R ₂₃ =R ₃₃	R15=R25=R36	R ₁₈ =R ₂₈ =R ₃₈
100120 1101	22	110 1120 1143	1115 1125 1136	110 1120 1130
XIV-18		-Ph	CH ₃	н
XIV-19		-Ph	-OCH ₃	Н
XIV-20	4	· -Ph	-COOH	н
XIV-21		-Ph	2-ビリジル	н
XIV-22	-N-	-Ph	-Ph	H
XIV-23	-N-	-Ph	H	-Ph
XIV-24	- N	-Ph	Cl	H
XIV-25	-N-	-Ph	-ОН	н
XIV-26	-N	-Ph	-NO ₂	Н
XIV-27	-N-	-Ph	-CN	Н
XIV-28	_N_	-Ph	-OPh	H
XIV-29	-N-	-Ph	-SCH ₃	H
X1V-30	-N-	-Ph	-SPh	Н
XIV-31	-n-	-Ph	-NH ₂	H
X IV-32	-N-	-Ph	-NH-Ръ	H
XIV-33	-N-	-Ph	-N-Ph ₂	Н
KIV-34	-N-	-Ph	CH ₃	H
(IV-35	-N-	-Ph	-OCH ₃	. н
(IV-36	-N	-Ph	-C00H	H
(IV-37	N	-Ph	2-EIJTA	Н

式(XIV) 化合物 No.	L ₂	R13=R23=R33	R15=R25=R35	R ₁₀ =R ₂₈ =R ₃₈
XIV-38	φ_	-Ph	-Ph	H
XIA-38	-O-N-O-	-Ph	H	-Ph
XIV-40		-Ph	C1	Н
XIV-41		-Ph	-ОН	Н
XIV-42		-Ph	-NO ₂	H
XIV-43		-Ph	-CN	Н
XIV-44		-Ph	-OPh	H
XIV-45		-Ph	-SCH ₃	Н
XIV-46		-Ph	-SPh	н
XIV-47 ·		-Ph	-NH 2	H
XIV-48		-Ph	-NН-РЬ	H
XIV-49		Ph	-N-Ph ₂	H
XIV-50	\$\begin{align*} \(\frac{1}{2} \rightarrow	-Ph	CH ₃	н
	-⟨ > -\-(> -			

式(XIV) 化合物 No.	L2	R, 3=R23=R33	R15=R25=R35	R ₁₈ =R ₂₈ =R ₃₈
XIV-51	_ 💠 _	-Ph	-0CH ₃	Н
XIV-52	-()-i\-()-	- Ph	-соон	Н.
AIV OL			0001	11.
XIV-53	_ \phi _	-Ph	2-ビリジル	H
	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	•			

【0136】このようなキノキサリン系化合物は、

183

(1) ジアミノベンゼンやその誘導体、ジアミノピリジ 20 ンやその誘導体、ジアミノピリミジンやその誘導体、ジアミノピリダジンやその誘導体等をハロゲン化ジケトン 化合物と縮合した後、1,5ーシクロオクタジエン等の Ni錯体などを用いてカップリングする方法、(2)ジアミノベンゼンやその誘導体、ジアミノピリジンやその誘導体、ジアミノピリジンやその誘導体、ジアミノピリメジンやその誘導体、ジアミノピリダジンやその誘導体等をビスージケトン化合物と縮合する方法、(3) ビスジアミン化合物とジケトン化合物を縮合する方法、(4) スズなどの有機金属試薬に変換したのち、クロスカップリングする方法等によって得ら 30 れる。

【0137】このようにして得られた化合物は、元素分析、質量分析、赤外線吸収スペクトル(IR)、'Hまたは'C核磁気共鳴スペクトル(NMR)などによって同定することができる。

【0138】本発明におけるキノキサリン系化合物は、前述のように、分子量500~2000程度、250~500℃の融点を有し、90~200℃のガラス転移温度(Tg)を示す。この結果、通常の真空蒸着等により透明で室温以上でも安定なアモルファス状態の平滑で良40好な膜を形成し、しかもその良好な膜の状態が長期間に渡って維持される。

【0139】本発明の有機EL素子は、少なくとも1層の有機化合物層を有し、少なくとも1層の有機化合物層が上記のようなキノキサリン系化合物を含有する。本発明の有機EL素子の構成例を図1に示す。同図に示される有機EL素子1は基板2上に陽極3、正孔(ホール)注入輸送層4、発光層5、電子注入輸送層6、陰極7を順次積層した構造を持つ。また作製順序を逆にして基板、陰極、電子注入輸送層、発光層正孔注入輸送層、陽 50

極の順の構造とすることもできる。

【0140】発光層は電子と正孔の注入および輸送、そ して電子と正孔との再結合により発光の場を提供する役 割を持っている。正孔注入輸送層は陽極からの正孔の注 入と輸送を容易にする機能を有する他に、発光層からの 電子の注入を防ぎ、発光層内での再結合効率を増大させ ることにより発光効率を増大させる機能を有する。電子 注入輸送層は陰極からの電子の注入と輸送を容易にし、 発光層からの正孔の注入を防ぎ、発光効率を増大させる 機能を有する。電子注入輸送層、正孔注入輸送層はそれ ぞれ注入機能を持つ層と輸送機能を持つ層とに分けて用 いることもできる。また発光層が正孔注入輸送機能、電 子注入輸送機能のいずれかの機能を有する場合には、正 孔注入輸送層あるいは電子注入輸送層を設ける必要がな い場合もある。場合によっては、いずれの注入輸送層も 設けなくてよい。また、正孔注入輸送層および電子注入 輸送層は、それぞれ注入機能を有する層と輸送機能を有 する層とに分けて用いることも可能である。

【0141】また、発光層や正孔輸送層、電子注入層のキャリア密度(イオン化ポテンシャル、電子親和力により決まる)や移動度を考慮した上で、それぞれの膜厚を変化させることにより、再結合領域・発光領域を自由にコントロールできる。これにより両電極の光干渉による発光輝度ならびにスペクトル(発光色)および放出光の空間分布の制御が可能になる。

【0142】有機EL素子に用いられる有機化合物や電極は、条件(例えば、発光色の違い)の違いにより種々多様である。本発明におけるキノキサリン系化合物は、前述のように、縮合ピラジン構造内の窒素原子の数と位置の違いにより、それぞれ異なる電子受容性を持っているため、特性設計の幅が広く、電子注入性を任意の値に設計できるため、積層・混合素子の設計に最適の化合物

を得ることができる。

可能である。

【0143】本発明におけるキノキサリン系化合物は電子受容性の化合物であるため、電子注入輸送層、あるいは電子注入層、電子輸送層、電子輸送性発光層に用いるのが好ましいが、発光層に用いることもでき、あるいは置換基を導入することで正孔注入輸送層に用いることも

【0144】本発明におけるキノキサリン系化合物を電子注入輸送層に用いる場合には、これと組み合わせる他の層には、通常の有機EL素子に用いられている各種化 10合物を用いることができる。この場合、必要に応じて設けられる正孔注入輸送層には、芳香族三級アミン誘導体、ヒドラゾン誘導体、イミダゾール誘導体、カルバゾール誘導体、トリアゾール誘導体などを用いることができる他、アモルファスシリコンやポリシリコン等の無機化合物を用いることもできる。正孔注入輸送層を正孔注入層と正孔輸送層とに分けて設ける場合には、イオン化ポテンシャルの小さい化合物を陽極側に用いることが好ましい。この結果、駆動電圧が低下し、有機化合物の結晶化や分解を低下させることができ、電流のリークやダ 20一クスポットの発生を低下させるなど、素子の信頼性向上につながる。

【0145】また、この場合の発光層には、アルミキノリノール等の金属錯体やナフタレン、アントラセン、ピレン等の多環芳香族化合物誘導体、スチリル系化合物誘導体等の蛍光物質(発光材料)を用いることができる。また発光層には、クマリンやローダミン、ルブレンなどの蛍光物質を少量(10モル%以下が好ましい)添加してもよく、この場合には、発光波長の長波長側へのシフトや発光の高効率化が可能になる。さらに発光層に用いる材料の安定性を増すために一重項酸素クエンチャーを加えても良い。このようなクエンチャーとしては、ニッケル錯体やルブレン、ジフェニルイソベンゾフラン、三級アミン等が用いられ、発光層材料に対し10モル%以下とすることが好ましい。

【0146】本発明におけるキノキサリン系化合物を電子注入層あるいは電子輸送層として用いる場合には、上記の正孔注入輸送層、発光層を用いることができる。本発明のキノキサリン系化合物を電子注入層に用いる場合は、電子輸送層用の化合物を、また電子輸送層として用いる場合には電子注入層用の化合物を各種EL用化合物の中から選択して用いることができる。このような化合物としては、アルミキノリノール、オキサジアゾール誘導体、ピリジン誘導体、ピリミジン誘導体、キノリン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、フルオレン誘導体等がある。この場合には、イオン化ポテンシャルが小さいほうの化合物を陰極側に用いる方が好ましい。また本発明の化合物を、上記の電子注入層用の化合物あるいは電子輸送層用の化合物と混合し、電子注入輸送層とすることも可能である。このような層における50

本発明のキノキサリン系化合物の含有量は、素子の設計 にもよるが、通常10~90wt%とすればよい。

186

【0147】さらに本発明では、上記の発光層に用いられる化合物と本発明の化合物とを混合し電子注入輸送性を持つ発光層とすることも可能である。このような層における本発明のキノキサリン系化合物の含有量は、素子の設計にもよるが、通常0.1~99.9wt%とすることが好ましく、さらに好ましくは10~99.9wt%とすればよい。

【0148】本発明では、本発明の化合物を蛍光物質 (発光材料)として発光層に用いることも可能である。この場合には、単独で用いることができるし、あるいは上記の正孔注入輸送性化合物と併用することができる。正孔注入輸性化合物と併用する場合はこれと混合したり、これをドーピングしたりするが、このような発光層における本発明の化合物量は10wt%以上である。また必要があれば、電子注入輸送層を陰極側に設けることも可能である。さらに発光層において電子注入輸送性化合物と混合、またはドーピングして用いることも可能である。この場合の本発明の化合物量は0.1wt%以上である。

【0149】本発明では、正孔注入輸送性化合物と電子注入輸送性化合物とを混合して発光層として用いることができ、本発明におけるキノキサリン系化合物をこのような混合層に用いることができる。本発明におけるキノキサリン系化合物は一般に電子注入輸送性が高いので、電子注入輸送性化合物として用いるのが好ましいが、化合物によっては正孔注入輸送性化合物としても用いることができる。この場合の混合比は、混合する化合物のキャリア密度やキャリア移動度を考慮して決定する。素子の設計にもよるが、通常は、電子注入輸送性化合物/正孔注入輸送性化合物の重量比が1/99~99/1程度、さらには10/90~90/10程度、特には40/60~60/40程度となるようにする。

【0150】また正孔注入輸送性化合物、電子注入輸送性化合物は、それぞれ1種類でも2種類以上用いてもよく、発光強度や発光効率を高めるために他の蛍光物質をドープしてもかまわない。逆に、上記の方法で作製した発光層に本発明のキノキサリン系化合物をドープしてもよい。本発明のキノキサリン系化合物をドープする場合のドープ量は発光層の0.1~99.9wt%程度とする。

【0151】本発明におけるキノキサリン系化合物はその種類によって正孔注入輸送層に用いることも可能である。この場合本発明のキノキサリン系化合物より長波長あるいは同程度の波長を持つ蛍光物質を発光層に用いればよい。本発明では正孔注入輸送層、電子注入輸送層共に本発明のキノキサリン系化合物を用いることもできる。さらにはこのような構成において本発明のキノキサリン系化合物を発光層に用いることもできる。

【0152】なお、上記において、本発明におけるキノキサリン系化合物以外の化合物を発光層に用いる場合に、本発明におけるキノキサリン系化合物をドープ材として添加してもよい。

【0153】発光層、正孔注入輸送層、電子注入輸送層は、スピンコート法、ディッピング法、キャスト法、真空蒸着法等により作製することができる。通常は膜の均質性等を考慮し真空蒸着法を用いるのが好ましい。膜中に0.1 μmをこえる結晶粒ができると、駆動電圧が高くなり、ダークスポットの成長など素子特性の劣化につ10ながるが、真空蒸着法ではこれを防止できる。

【0154】各層の厚さに関しては特に限定されず、用いる有機化合物の特性や形成法により異なるが、通常、 $5\sim1000\,\mathrm{nm}$ 程度、特に $8\sim200\,\mathrm{nm}$ とすることが好ましい。

【0155】正孔注入輸送層、電子注入輸送層の膜厚は、材料の特性や素子の設計条件によって異なるが、発光層の厚さと同程度もしくは1/10~10倍程度とすればよい。正孔注入輸送層、電子注入輸送層を、それぞれ注入層と輸送層とに分ける場合には、注入層は1nm以 20上、輸送層は20nm以上とするのが好ましい。このときの注入層、輸送層の厚さの上限は、通常、注入層で100nm程度、輸送層で1000nm程度である。

【0156】陰極材料としては、仕事関数の小さい、Li、Na、Mg、Al、Ag、In、Ca等、あるいはこれらの金属を含む合金を用いることができる。これらの陰極は蒸着やスパッタ法等により作成することができ、膜厚は通常 $10\sim1000$ mとすることが好ましい。

【0157】陽極としては、仕事関数の大きい金属、合 30 金、導伝性化合物等、またはその混合物を用いることができる。なお発光を透過するために、片側の電極が透明である必要があるため、膜厚の制御等により、電極の透過率(80%以上が好ましい)を増大させる必要がある。具体的な材料としては、ITO、 SnO_1 、Ni、Au、Pt、Pd、導伝性高分子等を用いることができる。作製法としては、真空蒸着、スパッタリング法等が用いられる。また、抵抗はなるべく低く、ITOなどで $10~30~\Omega/$ \square 程度(通常 $5~10~\Omega/$ \square)のものが好ましく、膜厚は10~50~0nmのものが好ましい。 40

【0158】真空蒸着の条件は用いる化合物や金属の特性により変化するが、10 forr以下で、0.1~1nm/秒の蒸着速度で行うのが好ましい。また積層する場合には、真空を破らずに連続で成膜することが好ましい。連続成膜を行えば、各層の界面へのH、O、O。などの不純物の混入がなくなり、寿命や駆動電圧等の素子特性を向上させることができる。また、ドーピング等により1層に複数の化合物を含有させる場合には、化合物を入れた各ポートを個別に温度制御し、水晶振動子膜厚系でモニター制御しながら共蒸着するのが好ましい。

【0159】基板材料に制限はないが、図1においては 基板側から光を取り出すためにガラスや樹脂等の半透明 材料を用いる。基板に不透明な材料を用いる場合には図 1の積層順序を逆にしても良い。また、基板に、反射膜 や蛍光材料、カラーフィルター等を用いて発光色をコン トロールすることもできる。

【0160】作製された有機EL素子は2~20V程度の電圧で発光が観測される。通常は直流駆動を用いるが、用途によりパルス駆動、交流駆動等を用いることもできる。

[0161]

【実施例】以下、本発明の実施例を合成例および比較例 とともに示し、本発明を具体的に説明する。まず、合成 例を示す。

【0162】<合成例1>

例示化合物III - 1の合成

オルトフェニレンジアミン1.20g (11.1mmol)と4-クロロ ジベンゾイル2.45g (10.0mmol)をエタノール中、環流温 度で2時間攪拌した。室温に放置した後、析出物を濾別 し、クロロホルム、ヘキサン混合溶媒を抽出溶媒として シリカゲルカラムクロマトグラフィーにより精製し、白 色結晶の2-(4- クロロフェニル)-3-フェニルキノキサリ ンを1.40g を得た。次にピス(1,5- シクロオクタジエ ン) ニッケル(Ni(Cod),)0.79g (2.88mmol)、2,2'- ピピ リジン0.45g (2.88mmol)、1,5-シクロオクタジエン1ml を含むN, N-ジメチルホルムアミド溶液(50ml)をAr雰囲気 下で調製し、2-(4- クロロフェニル)-3-フェニルキノキ サリン1.40g を加え60℃で24時間攪拌した。この反応溶 液にアンモニア水溶液を加え、析出物を濾別した後メタ ノールで洗浄した。再度濾別した後、クロロホルム、へ キサン混合溶媒を用いてシリカゲルカラムクロマトグラ フィーを行い4,4'- ピス(3- フェニルキノキサリン-2-イル) ピフェニル1.00gの白色結晶を得た。得られた化 合物は、マススペクトル、赤外線吸収スペクトル、NM Rを用いて同定した。

マススペクトル m/e=562 (M')

赤外線吸収スペクトル 図2

NMRスペクトル 図3

【0163】<合成例2>

0 例示化合物!!! -56の合成

1,2-ジアミノナフタレン2.00g (12,7mmol)、4-クロロジベンゾイル2.50g (10.2mmol)を原料に、合成例1の方法を用いて合成した。得られた化合物は、マススペクトル、赤外線吸収スペクトル、NMRを用いて同定した。

マススペクトル

m/e = 662 (M')

赤外線吸収スペクトル

図 4

図 5

NMRスペクトル

【0164】 <合成例3>

例示化合物 V-1の合成

50 3,4-ジアミノピリジン1.17g (10.8mmol)、4,4'- ピス(

フェニルグリオキサロイル) ビフェニル1.50g (3.6mmo 1)をクロロホルム、エタノール混合溶媒中で12時間環 流した。クロロホルムで溶媒置換した後、クロロホル ム、酢酸エチル混合溶媒を用いてシリカゲルカラムクロ マトグラフィーにより精製し1.20g の黄色結晶を得た。 マススペクトル、IR、NMRによって同定した。

【0165】<合成例4>

例示化合物IV-1の合成

2,3'- ジアミノピリジン0.60g (2.39mmol),4,4'-ピス(フェニルグリオキサロイル) ピフェニル0.78g (1.87mmo 1)を原料に合成例3の方法を用いて合成し、同様に同定 した。

【0166】<合成例5>

例示化合物VI-1の合成

4,5-ジアミノピリミジン1.19g (10.8mmol),4,4'-ビス(フェニルグリオキサロイル) ピフェニル1.50g (3.6mmo 1) を原料に、合成例3の方法を用いて合成し、同様に 同定した。

【0167】<合成例6>

例示化合物!!! - 48の合成

4-メトキシオルトフェニレンジアミン1.25g (9.06mmol) と4-クロロジベンゾイル2.00g (8.17mmol)を原料に、合 成例1の方法を用いて合成し、同様に同定した。

【0168】<合成例7>

例示化合物III - 58の合成

9,10- ジアミノフェナントレン2.00g (9.62mmol),4- ク ロロジベンゾイル(9.59mmol)を用いて合成例1の方法を 用いて合成した。なお最終生成物は難溶性であるため、 シリカゲルカラムクロマトグラフィーの代わりに昇華精 製法を用いた。同定はマススペクトル、IR、NMRに 30 より行った。

【0169】<合成例8>

例示化合物!!! -57の合成

2,3-ジアミノナフタレン2.00g(12.7mmol)、4-クロロジ ベンゾイル2.50g (10.2mmol)を原料に、合成例1の方法 を用いて合成し、同様に同定した。

【0170】 <合成例9>

例示化合物III - 3の合成

3,4-ジアミノトルエン1.20g (9.80mmol)と4-クロロジベ ンソイル2.00g (8.16mmol)を原料に、合成例1の方法を 40 用いて合成し、同様に同定した。

【0171】 <合成例10>

例示化合物III - 62の合成

1,2-ジアミノピフェニル1.35g (7.34mmol)と4-クロロジ ベンゾイル1.50g (6.12mmol)を原料に、合成例1の方法 を用いて合成し、同様に同定した。

【0172】《合成例11》

例示化合物 III - 104の合成

オルトフェニレンジアミン1.14g (10.5mmol)と4,4'- ビ

ol) を原料に合成例3の方法を用いて合成し、同様に同 定した。

【0173】 <合成例12>

例示化合物III - 159の合成

1,2-ジアミノナフタレン1.66g (10.5mmol)と、4'- ピス (フェニルグリオキサロイル)ベンゼン1.5 g(4.39mmo 1)を原料に合成例3の方法を用いて合成し、同様に同定 した。

【0174】<合成例13>

例示化合物IV-2の合成

2,3-ジアミノピリジン1.14g (10.5mmol)と4'- ピス(フ エニルグリオキサロイル) ベンゼン1.5 g (4.39mmol)を 原料に合成例3の方法を用いて合成し、同様に同定し た。

【0175】<合成例14>

例示化合物 V-2の合成

2,3-ジアミノピリジン1.14g (10.5mmol)と4'- ピス(フ エニルグリオキサロイル) ベンゼン1.5 g (4.39mmol)を 原料に合成例3の方法を用いて合成し、同様に同定し 20 た。

【0176】<合成例15>

例示化合物VI-2の合成

4,5-ジアミノピリミジン1.12g(10.5mmol) と4'- ピス(フェニルグリオキサロイル) ベンゼン1.5 g (4.39mmol) を原料に合成例3の方法を用いて合成し、同様に同定し た。他の例示化合物も同様に合成し、同様に同定した。 【0177】次に実施例および比較例を示す。

【0178】<実施例1>厚さ100nm のITO透明電極 (陽極)を有するガラス基板を、中性洗剤、アセトン、 エタノールを用いて超音波洗浄し、煮沸エタノール中か ら引き上げて乾燥し、蒸着装置の基板ホルダーに固定し て、1 ×10⁻¹Torrまで減圧した。次に、N,N'- ジフェニ ル-N, N'-m-トリル-4, 4'-ジアミノ-1, 1'-ピフェニル (T PD1) を蒸着速度0.2nm/sec で50nmの厚さに蒸着し、 正孔注入輸送層とした。次に、9,9',10,10'-テトラ (p-トリル) -2, 2'-ジアントラセンを蒸着速度0. 2nm/sec で 50nmの厚さに蒸着し、発光層とした。次に、電子注入輸 送層として、合成例1の化合物(III-1) を蒸着速度0.2n m/sec で10nmの厚さに蒸着した。さらに、Mg/Ag

(重量比10/1) を蒸着速度0.2nm/sec で200nm の厚さに 蒸着して陰極とし有機EL素子を得た。この有機EL素 子に電圧を印加して電流を流すと、16V 、650mA/cm'で 16250cd/m²の青色の発光が確認された。部分的非発光部 分の出現および成長は見られず、輝度の半減期は10mA/c m'の定電流駆動で50時間であった。以上の操作は、真空 状態を破らずに、すべて連続的に行った。

【0179】<実施例2>厚さ100nm のITO透明電極 (陽極)を有するガラス基板を、中性洗剤、アセトン、 エタノールを用いて超音波洗浄し、煮沸エタノール中か ス(フェニルグリオキサロイル) ベンゼン1.5g(4.39mm 50 ら引き上げて乾燥し、蒸着装置の基板ホルダーに固定し

て、1 ×10 'Torrまで減圧した。次に、ポリ(チオフェン-2,5-ジイル)を10nmの厚さに蒸着し、正孔注入層とした。次に、N,N'-ジフェニル-N,N'-m-トリル-4,4'-ジアミノ-1,1'-ビフェニル(TPD1)を蒸着速度0.2nm/secで50nmの厚さに蒸着し、正孔輸送層とした。次に、9,9',10,10'-テトラ(p-トリル)-2,2'-ジアントラセンを蒸着速度0.2nm/secで50nmの厚さに蒸着し、発光層とした。次に、電子注入輸送層として、合成例1の化合物を蒸着速度0.2nm/secで10nmの厚さに蒸着した。さらに、Mg/Ag(重量比10/1)を蒸着速度0.2nm/secで10nmの厚さに蒸着した。さらに、Mg/Ag(重量比10/1)を蒸着速度0.2nm/secで10nmの厚さに蒸着した。さらに、Mg/Ag(重量比10/1)を蒸着速度0.2nm/secで100nmの厚さに蒸着して陰極とし有機EL素子を得た。この有機EL素子に電圧を印加して電流を流すと、12V、850mA/cm'で21200cd/m'の青色の発光が確認された。輝度の半減期は10mA/cm'の定電流駆動で80時間であった。部分的非発光部分の出現および成長は見られなか

【0180】〈実施例3〉発光層までを実施例2と同様に積層した後、合成例1の化合物を蒸着速度0.2nm/secで20nmの厚さに蒸着し、電子輸送層とした。次に、トリ20ス(8ーキノリナート)アルミニウムを10nmの厚さに蒸着し、電子注入層とした。さらに、Mg/Ag(重量比10/1)を蒸着速度0.2nm/secで200nmの厚さに蒸着して陰極とし有機EL素子を得た。この有機EL素子に電圧を印加して電流を流すと、11V、750mA/cm²で18000cd/m²の青色の発光が確認された。部分的非発光部分の出現および成長は見られず、輝度の半減期は10mA/cm²の定電流駆動で80時間であった。以上の操作は、真空状態を破らずに、すべて連続的に行った。

った。以上の操作は、真空状態を破らずに、すべて連続

的に行った。

【0181】<実施例4>正孔輸送層であるN,N'-ジフ 30 エニル-N,N'-m-トリル-4,4'-ジアミノ-1,1'-ピフェニル (TPD1)を実施例2と同様に積層した後、9,9',10,10'-テトラ (p-トリル)-2,2'-ジアントラセンと合成例1の化合物とを1:1の割合(重量比)で蒸着速度0.2nm/secで20nmの厚さに、共蒸着した。次に、電子注入輸送層として、合成例1の化合物を10nmの厚さに蒸着した。さらに、Mg/Ag(重量比10/1)を蒸着速度0.2nm/secで200nmの厚さに蒸着した。さらに、Mg/Ag(重量比10/1)を蒸着速度0.2nm/secで200nmの厚さに蒸着して陰極とし有機EL素子を得た。この有機EL素子に電圧を印加して電流を流すと、11V、750mA/cm²で21750cd/m²の青色の発光が確認40された。輝度の半減期は10mA/cm²の定電流駆動で250時間であった。部分的非発光部分の出現および成長は見られなかった。以上の操作は、真空状態を破らずに、すべて連続的に行った。

【0182】<実施例5>実施例2と同様に正孔輸送層であるN,N'-ジフェニル-N,N'-m-トリル-4,4'-ジアミノ-1,1'-ピフェニル(TPD1)を積層した後、合成例1の化合物を、電子注入輸送層を兼ねた発光層として0.2nm/secで50nm蒸着した。さらに、Mg/Ag(重量比10/1)を蒸着速度0.2nm/secで200nmの厚さに蒸着して陰50

極とし有機EL素子を得た。この有機EL素子に電圧を印加して電流を流すと、15V、500mA/cm'で15000cd/m'の黄色の発光が確認された。輝度の半減期は10mA/cm'の定電流駆動で100時間であった。以上の操作は、真空状態を破らずに、すべて連続的に行った。

192

【0183】〈実施例6〉電子注入輸送層の材料に合成例3の化合物(V-1)を用いた他は、実施例2と同様にして有機EL素子を作製した。この有機EL素子に電圧を印加して電流を流すと、11V、800mA/cm²で20000cd/m²の青色の発光が確認された。輝度の半減期は10mA/cm²の定電流駆動で150時間であった。以上の操作は、真空状態を破らずに、すべて連続的に行った。

【0184】〈実施例7〉発光層および電子注入輸送層の材料に合成例3の化合物を用いた他は、実施例4と同様にして有機EL素子を作製した。この有機EL素子に電圧を印加して電流を流すと、9V、600mA/cm²で18200cd/m²の青色の発光が確認された。輝度の半減期は10mA/cm²の定電流駆動で400時間であった。以上の操作は、真空状態を破らずに、すべて連続的に行った。

【0185】〈実施例8〉発光層の材料に合成例3の化合物を用いた他は、実施例5と同様にして有機EL素子を作製した。この有機EL素子に電圧を印加して電流を流すと、12V、625mA/cm²で16000cd/m²のオレンジ色の発光が確認された。輝度の半減期は10mA/cm²の定電流駆動で90時間であった。以上の操作は、真空状態を破らずに、すべて連続的に行った。

【0186】<実施例9>電子注入輸送層の材料に合成例5の化合物(VI-1)を用いた他は、実施例2と同様にして有機EL素子を作製した。この有機EL素子に電圧を印加して電流を流すと、13V、700mA/cm'で20000cd/m'の青色の発光が確認された。輝度の半減期は10mA/cm'の定電流駆動で150時間であった。

【0187】<実施例10>電子輸送層の材料に合成例5の化合物を用いた他は、実施例3と同様にして有機EL素子を作製した。この有機EL素子に電圧を印加して電流を流すと、10V、500mA/cm'で15000cd/m'の青色の発光が確認された。輝度の半減期は10mA/cm'の定電流駆動で250時間であった。

【0188】〈実施例11〉発光層および電子注入輸送層の材料に合成例5の化合物を用いた他は、実施例4と同様にして有機EL素子を作製した。この有機EL素子に電圧を印加して電流を流すと、9V、625mA/cm²で17500cd/m²の青色の発光が確認された。部分的非発光部分の出現および成長は見られず、輝度の半減期は10mA/cm²の定電流駆動で600時間であった。以上の操作は、真空状態を破らずに、すべて連続的に行った。

【0189】<実施例12>発光層の材料に合成例5の化合物を用いた他は、実施例5と同様にして有機EL素子を作製した。この有機EL素子に電圧を印加して電流を流すと、13V、625mA/cm'で15000cd/m'の青色の発光

が確認された。部分的非発光部分の出現および成長は見られず、輝度の半減期は10mA/cm²の定電流駆動で120 時間であった。以上の操作は、真空状態を破らずに、すべて連続的に行った。

【0190】 <比較例1>厚さ100nm のITO透明電極 (陽極)を有するガラス基板を、中性洗剤、アセトン、 エタノールを用いて超音波洗浄し、煮沸エタノール中か ら引き上げて乾燥し、蒸着装置の基板ホルダーに固定し て、1×10 forrまで減圧した。次に、ポリ(チオフェ ン-2, 5-ジイル) を10nmの厚さに蒸着し、正孔注入 10 層とした。次に、N, N'- ジフェニル-N, N'-m-トリル-4, 4'-ジアミノ-1,1'-ピフェニル (TPD1) を蒸着速度 0.2nm/sec で50nmの厚さに蒸着し、正孔輸送層とした。 次に、9,9',10,10'-テトラ (p-トリル) -2,2'-ジアント ラセンを蒸着速度0.2nm/sec で50nmの厚さに蒸着し、発 光層とした。次に、電子注入輸送層として、トリス (8 ーキノリナート) アルミニウムを蒸着速度0.2nm/sec で 10nmの厚さに蒸着した。さらに、Mg/Ag (重量比10 /1) を蒸着速度0.2nm/sec で200nm の厚さに蒸着して陰 極とし有機EL素子を得た。この有機EL素子に電圧を 20 印加して電流を流すと、14V 、800mA/cm² で9600cd/m² の青色の発光が確認された。輝度の半減期は10mA/cm¹の 定電流駆動で10時間であった。

【0191】 〈比較例2〉9,9',10,10'ーテトラ(pートリル)ー2-2'ージアントラセンの発光 層までを比較例1と同様に作製した後、2,2'ー3,3'ーテトラフェニルー6,6'ージキノキサリンを蒸着速度0.2nm/secで10nmの厚さに蒸着した。さらに、Mg/Ag(重量比10/1)を蒸着速度0.2nm/secで200nmの厚さに蒸着して陰極とし、有機EL素30子を得た。この有機EL素子に電圧を印加して電流を流すと、13V、600mA/cm'で18000cd/m'の青色の発光が確認された。10mA/cm'の定電流で駆動したところ10時間でリークがおこった。

【0192】以上の実施例に示したように、発光材料

(ここでは、9,9',10,10'-テトラ (p-トリル) -2,2'-ジアントラセン) に対して電子受容性の異なるキノキサリン系化合物を電子注入輸送性材料として用いたところ、有機ELの素子特性、特に低電流駆動における発光寿命に関して大きな変化が見られた。この結果は、本発明で用いたキノキサリン系化合物の電子受容特性が広範囲であることを示している。有機EL用材料(特に発光層)には、様々な特性を持った非常に多くの化合物が提案されているが、いずれの化合物に対しても本発明のキノキサリン系化合物のいずれかを用いることにより、優れた素子特性を出すことが可能である。

[0193]

【発明の効果】本発明によれば、駆動電圧が低く発光効率の高い信頼性に優れた有機EL素子が得られる。また、種々の有機EL材料等と組み合わせて用いることができる。

【図面の簡単な説明】

【図1】本発明の有機EL素子の1例を示す構成図であ ス

【図2】本発明で合成した化合物の赤外線吸収スペクトルを示すグラフである。

【図3】本発明で合成した化合物のNMRスペクトルを示すグラフである。

【図4】本発明で合成した化合物の赤外線吸収スペクトルを示すグラフである。

【図5】本発明で合成した化合物のNMRスペクトルを示すグラフである。

【符号の説明】

- 1 有機EL素子
- 0 2 基板
 - 3 陽極
 - 4 正孔 (ホール) 注入輸送層
 - 5 発光層
 - 6 電子注入輸送層
 - 7 陰極

【図1】

[図3]

[図4]

