$$18. \int \frac{\cos^3 x \, dx}{\sin^2 x} =$$

3. $\sin x + \csc x + c$ 5. $-\sin x$ - $\csc x + c$ $1. \sin x - \cos x + c$ 4. $\sin x - \csc x + c$ $2. - \sin x - \cos x + c$

2.
$$-\sin x - \cos x + c$$
 4. $\sin x - \csc x + c$ (M. 79)
19. $\ln a = (a \in \mathbb{R}_0^+)$

1. $\int_{0}^{e} \frac{dt}{t}$ 2. $\int_{0}^{1} \frac{dt}{t}$ 3. $\int_{0}^{e} \frac{dt}{t}$ 4. $\int_{0}^{a} \frac{dt}{t}$ 5. $\int_{0}^{a} \frac{dt}{t}$

20.
$$\int_0^{\sqrt[4]{e}} \frac{x^2 dx}{x^3 + e} =$$
1. 1/3 2. $\ln \sqrt[3]{2}$ 3. 1/3($\ln 2 + 1$) 4. $\ln 2$ 5. $-\infty$

21. L'aire de la surface comprise entre la courbe d'équation $y = x^3$ l'axe des y et la droite y = 1 vaut :

y et la droite y = 1 vaut :
1.
$$1/4$$
 2. $2/3$ 3. $\pi/4$ 4. $1/3$ 5. $3/4$ (B. 79)
22. $\int_0^4 e^{\sqrt{4}} dt =$ www.ecoles-rdc.net
1. $4e^3 + 2$ 2. $e^2 + 1$ 3. $2(4e^2 + 1)$ 4. $e + 2$ 5. $2(e^2 + 1)$ (M.-79)

 $\int_{0}^{2\pi} (1 - \cos x)^{2} dx = (1 - 2\cos x + \cos^{2} x) dx$ 4. $3\pi/2$ 2. 2π 3. π

24. Si $\ln y = \frac{x}{v}$, alors dy = 1. $\frac{y}{x+y} dx$ 2. y dx 3. $\frac{x+y}{y} dx$ 4. $e^{x/y} dx$ 5. $\frac{y}{y} dx$ (B. 80)

 1.3π

vaut:

25. L'aire comprise entre la courbe $y = x \ln x$, l'axe 0x et la droite x = e

1. $\frac{e^2}{4} + \frac{1}{4}$ 2. $\frac{e^2}{2}$ 3. $\frac{e^2}{4}$ 4. $\frac{1}{4}$ 5. $\frac{e^2}{4} - \frac{1}{4}$

(B.80)