

SEPM Vorlesung – Block 5 Software Engineering & Projektmanagement

Ausgewählte Software Prozesse

Dietmar Winkler

Vienna University of Technology Institute of Software Technology and Interactive Systems

dietmar.winkler@tuwien.ac.at http://qse.ifs.tuwien.ac.at

Motivation und Zielsetzung

- § Die Herstellung von qualitativ hochwertigen Softwareprodukten innerhalb von zeitlichen und budgetären Rahmenbedingungen erfordert ein systematisches Vorgehen.
- § Grundlegende Vorgehensweise
 - Systematische und strukturierte Vorgehensweise durch Softwareprozesse.
 (wann soll welches Produkt in welchem Fertigstellungsgrad verfügbar sein)
 - Konstruktive Methoden zur Herstellung von Software Produkten,
 z.B. für Spezifikationen, Testfälle, Source Code.
 - Analytische Methoden zur Überprüfung der Produktqualität,
 z.B. Reviews, Inspektionen und Tests.
- § Vorgehensmodelle (Softwareprozesse) unterstützen den Projektleiter und das Entwicklungsteam durch die Bereitstellung eines Rahmenprozesses für den Projektablauf.
- § Vorgehensmodelle orientieren sich grundsätzlich am Software Life-Cycle Prozess, betrachten also alle wesentlichen Schritte eines Entwicklungsprozesses.
- § Unterschiedliche Projekte (Projektgröße, Anwendungsdomäne, Projekttyp) erfordern aber passende Vorgehensweisen!

Auswahl eines passenden Software Prozesses.

Table of Contents

- § Software Life-Cycle (Wiederholung)
 - Phasen im Software Life-Cycle
 - Vom Software Life-Cycle zum Software Prozess
- § Traditionelle Ansätze
 - Wasserfall Modell
 - V-Modell Grundkonzept
 - V-Modell XT
 - Rational Unified Prozess
- § Agile Ansätze
 - Agiles Manifest
 - Scrum
- § Anpassung von Software Prozessen (Prozess Tailoring)

Software Life-Cycle

- § Ein Software-Prozess ist eine Abfolge von Schritten (Phasen) mit all seinen Aktivitäten, Beziehungen und Ressourcen.
- § Einsatz von qualitätsverbessernden Maßnahmen in allen Phasen des Life-Cycles, d.h. von der ersten Idee über die Entwicklung bis zum kontrollierten Auslauf des Produktes.
- § Der Software Life-Cycle beschreibt ein Basiskonzept für Software Engineering Prozesse und Vorgehensmodelle.

Software Life-Cycle

- § Requirements (Anforderungen) zeigen die Wünsche des Kunden in Bezug auf das Softwareprodukt (user/customer view).
 - Anforderungen müssen testbar sein und getestet werden!
- § Eine Specification beschreibt das System aus technischer Sicht (engineering view).
- § Planning: Erstellung des Projektplans bezüglich Zeit, Dauer, und Kosten (project management).
- § Entwurf / Design: technische Lösung der Systemanforderungen (Komponenten, Packages, Datenbankdesign).
- § Implementierung und Testen: Erzeugung des Softwareprodukts.
- § Integration und Testen: Zusammenfügen und Test der einzelnen Komponenten auf Architektur- und Systemebene.
- § Operation and Maintenance: Fehlerbehebung, Unterstützung, Erweiterungen des Softwareproduktes während des laufenden Betriebes.
- § Retirement: Nach der Einsatzphase, d.h. am Ende des Produktlebenszyklus, muss das Softwareprodukt kontrolliert aus dem Betrieb genommen werden.

Vom Software Life-Cycle zum Vorgehensmodell

- § Die grundlegenden Phasen des Software Life-Cycles finden sich in allen Projekten.
- § Der Schwerpunkt der meisten Vorgehensmodelle liegt eher auf der technischen Seite, sie beginnen bei der Definition der Anforderungen und enden bei der Inbetriebnahme beim Kunden.
- § In der Praxis finden wir eine Vielzahl von unterschiedlichen Prozessmodellen
 - Standardisierte "common" Prozessmodelle (V-Modell, RUP, Agile Ansätze)
 - Unternehmensspezifische Vorgehensmodelle, die an die Bedürfnisse der jeweiligen Unternehmen bzw. Projekte angepasst werden.
- § Software Prozesse oder Vorgehensmodelle sind auf bestimmte Kriterien zugeschnitten und können je nach Projektkontext sinnvoll eingesetzt werden.

Ein Vorgehensmodell entspricht einer konkreten Strategie zur kontrollierten Durchführung eines spezifischen Projektes.

Table of Contents

- § Software Life-Cycle (Wiederholung)
 - Phasen im Software Life-Cycle
 - Vom Software Life-Cycle zum Software Prozess
- § Traditionelle Ansätze
 - Wasserfall Modell
 - V-Modell Grundkonzept
 - V-Modell XT
 - Rational Unified Prozess
- § Agile Ansätze
 - Agiles Manifest
 - Scrum
- § Anpassung von Software Prozessen (Prozess Tailoring)

Wasserfall Modell (1)

- § Erste Veröffentlichung in den 80er Jahren (Royce).
- § Umsetzung des Life-Cycles.
- § (immer noch) stark verbreitet.
- § Einfache Anwendung.
- § Schwerpunkt auf Dokumentation.

Wasserfall Modell (2)

Vorteile

- § Backtracking zu früherem Entwicklungsphasen.
- § Risikominimierung durch "Abschluss" einer Phase.
- § Weite Verbreitung und hoher Bekanntheitsgrad.
- § Strikte Trennung der einzelnen Phasen.
- § Unterstützung von kleinen Entwicklungsteams.

Nachteile

- § Alle Tasks einer Phase müssen abgeschlossen werden (keine parallele Entwicklung möglich).
- Starke Auswirkung von Fehlern in frühen Phasen auf das Entwicklungsprojekt.

Anwendungsbereich

- § Gute Kenntnis der Anforderungsdomäne erforderlich (*No-Surprise Software*)
- § Klar definierte (und vollständige) Anforderungen erforderlich.

V-Modell Konzept mit QS-Methoden

V-Modell Konzept: Vor-/Nachteile

Vorteile

- § Spezifikationsphase vs. Realisierung und Testen.
- Kontext von Produkten und Tests.
- § Verschiedene Abstraktionslevels (User, Architekten und Implementierungssicht).
- § Fehlerbehandlung in frühen Phasen des Softwareentwicklung (durch Einsatz von Reviews).
- § Basiskonzept für VM 97 und VM XT.

Nachteile

- § Klare Beschreibung der Systemanforderungen ist wichtig.
- § Hoher Dokumentationsaufwand.
- § Kritisch bei unklaren Anforderungen / sich ändernden Anforderungen.

Anwendungsbereich

- § Große Projekte im öffentlichen Bereich.
- § Klar definierten Anforderungen.

V-Modell XT

- § Das V-Modell XT ist eine Weiterentwicklung des V-Modell 97.
- § Veröffentlichung im Februar 2005.
- § Laufende Weiterentwicklung (derzeit Version 1.3)
- Verpflichtendes Vorgehensmodell für IT Projekte im öffentlichen Bereich in Deutschland.

Zielsetzung der Entwicklung des V-Modell XT

- Verbesserung der Unterstützung von Anpassbarkeit, Anwendbarkeit, Skalierbarkeit und Änder- und Erweiterbarkeit des V-Modells.
- § Berücksichtigung des neuesten Stand der Technik (Best-Practice).
- § Kompatibilität zu formalen Richtlinien und Standards (z.B. ISO 9000 Standard, CMMI).
- § Erweiterung des Anwendungsbereiches auf die Betrachtung des Systemlebenszyklus; Integration des Auftraggebers in das Projekt.
- § Integration eines Prozessmodells zur "Einführung und Pflege eines organisationsspezifischen Vorgehensmodells).

Philosophie und Grundkonzept

- § Produkte stehen im Mittelpunkt (=Projektergebnisse), für jedes Produkt gibt es definierte Rollen mit definierten Verantwortlichkeiten.
- § Projektdurchführungsstrategien und Entscheidungspunkte geben die Reihenfolge der Produktfertigstellung und somit den Projektverlauf vor.
- § Vorgehensbausteine sind die modularen Elemente des V-Modell XT.
 - kapselt Rollen, Produkte und Aktivitäten.
 - Kann als unabhängige Einheit eingesetzt werden.
 - Ist eine Einheit, die unabhängig veränder- und aktualisierbar ist.

Komponenten des V-Modell XT

- § Projekttypen vs. Projektgegenstand
- § Vorgehensbausteine kapseln Produkte, Aktivitäten und Rollen
 - § Verpflichtende Elemente (core elements)
 - § Optionale Elemente (um individuelle Projektanforderungen erfüllen zu können)
- § Unterstützung der Anpassbarkeit durch integrierte Tailoringmechanismen.
- § Integrierte Methoden- und Toolunterstützung zur
 - § Erstellung von Produkten durch
 - § Aktivitäten und
 - § Rollen (verantwortlich für ein Produkt).
- § Entscheidungspunkte (etwa Meilensteine) definieren einen Zeitpunkt, an dem eine Fortschrittsentscheidung getroffen wird.
- § Projektdurchführungsstrategien definieren die Reihenfolge der im Projekt zu erreichenden Projektfortschrittsstufen (Sequenz von Entscheidungspunkten)
- § Durch die Struktur des V-Modell XT ist eine Vergleichbarkeit zu herkömmlichen Prozessmodellen möglich (z.B. Konventionsabbildungen zu Prozessmodellen und Standards)

Projekttypen

Projekttypen werden eingeteilt:

- § Nach Projektgegenstand (z.B. Hardwaresystem, Softwaresystem, Komplexes System)
- § Projektrollen (z.B. Auftraggeber / Auftragnehmerprojekte)

daraus resultieren (derzeit) 4 Projekttypen

- § Systementwicklungsprojekt des Auftraggebers.
- § Systementwicklungsprojekt des Auftragnehmers.
- § Einführung und Pflege eines organisationsspezifischen Vorgehensmodells
- § Systementwicklungsprojekt (Auftraggeber/Auftragnehmer); z.B. in-house System Entwicklung (seit der Version 1.2 integriert).

Vorgehensbausteine im V-Modell XT

- § V-Modell Kern (verpflichtende Elemente für alle Projekttypen).
- § Einführung und Pflege eines organisationsspezifischen Vorgehensmodells.
- § Elemente für die Systementwicklung
- § Auftraggeber / Auftragnehmer Schnittstelle.
- § Tool-Unterstützung durch den V-Modell Assistenten.

Systementwicklungsprojekt

eines Auftraggebers

Projektdurchführung

- § Entscheidungspunkte und Projektdurchführungsstrategie.
 - Definitionen von Entscheidungspunkten (vergleichbar mit Meilensteinen)
 - An Entscheidungspunkten müssen definierte Produkte vorliegen.
 - Eine Projektdurchführungsstrategie ist eine definierte Abfolge von Entscheidungspunkten (z.B. inkrementelle oder agile Entwicklungsstrategie).
- § Beispiel

V-Modell XT in der Anwendung

- § Flexible Anwendung des V-Modell XT durch Anpassung des Modells an unterschiedliche Projektgegebenheiten (Projekttyp, Projektmerkmale).
 - Auswahl von benötigten Vorgehensbausteinen.
 - Definition der passenden Projektdurchführungsstrategie.
- § Werkzeugunterstützung (Open Source)
 - V-Modell XT Projektassistent zur Anpassung des Modells an ein konkretes Projekt.
 - Ergebnis ist eine angepasste Vorgehensweise und angepasste Templates für die Projektdokumentation.
 - V-Modell XT Editor ermöglicht freie Konfigurationen des Vorgehensmodells, z.B.
 Anpassung auf ein Unternehmensmodell (Standard).
- § Verpflichtendes Vorgehensmodell für öffentliche IT Projekte in Deutschland.
- § Konventionsabbildungen ermöglichen die Kompatibilität zu Qualitätsmanagementstandards, wie CMMI und ISO 9000 sowie zu anderen Vorgehensmodellen, wie dem Rational Unified Process.

Rational Unified Process, RUP (1)

§ Inkrementelle und iterative Vorgehensweise.

4 grundlegende Phasen:

- Inception (Beginn)
- § Elaboration (Concept & Design)
- Construction
- § Transition (Auslieferung)

Definierte Workflows und Disziplinen:

- § 6 Engineering Workflows
- § 3 Supporting Workflows
- § Mehrere Iterationen innerhalb einer Phase.

Rational Unified Process, RUP (2)

- § Iterative und inkrementeller Workflow.
- § Integriertes Anforderungsmanagement.
- § Komponenten-orientierte Architektur.
- § Modellierung durch das UML Methodenframework.
- § Produkt-Verifikation an Meilensteinen.
- § Änderungsmanagement (supporting discipline).

Vorteile

- § Real-world Szenarien.
- Werkzeugunterstützung
 (Rational XDE, IBM).
- § Vordefinierte Liste mit erforderlichen Artefakten.

Nachteile

- § Hohe Komplexität.
- § Hoher Dokumentationsaufwand.
- § Anbieterabhängigkeit?

Anwendungsbereich:

§ Grosse Projekte durch eine ganzheitliche Prozess-Sicht auf das gesamte Projekt (inkl. Deployment).

Table of Contents

- § Software Life-Cycle (Wiederholung)
 - Phasen im Software Life-Cycle
 - Vom Software Life-Cycle zum Software Prozess
- § Traditionelle Ansätze
 - Wasserfall Modell
 - V-Modell Grundkonzept
 - V-Modell XT
 - Rational Unified Prozess
- § Agile Ansätze
 - Agiles Manifest
 - Scrum
- § Anpassung von Software Prozessen (Prozess Tailoring)

Agiles Manifest

- S Aus den Kritikpunkten der systematischen und "schwergewichtigen" Ansätzen entwickelte sich das Agile Manifest.
- § Festgeschrieben durch 17 Softwareentwickler 2001.

"Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan"

- § Das Manifest beinhaltet 12 Prinzipien, die die Basis für agile Software Entwicklung darstellen.
- § Agile bedeutet aber nicht "unkontrolliert" auch hier existieren Prozesse und Regeln, die eingehalten werden müssen.
- § Bekannte Vertreter: eXtreme Programming oder Scrum.

12 Agile Principles

- Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
- Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.
- 3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
- 4. Business people and developers must work together daily throughout the project.
- 5. Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
- 6. The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
- 7. Working software is the primary measure of progress.
- 8. Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
- 9. Continuous attention to technical excellence and good design enhances agility.
- 10. Simplicity--the art of maximizing the amount of work not done--is essential.
- 11. The best architectures, requirements, and designs emerge from self-organizing teams.
- 12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

SCRUM

- § SCRUM ist keine Abkürzung; der Begriff stammt aus der Rugby Start-Formation.
- § Analogie zu Software Engineering ????

- Agiler Software Prozess aus Sicht des Projektmanagements (PM).
- Kleine aber hoch-effiziente Teams (auch mehrere Teams möglich).
- Flexibles Prozessmodell, um auf ändernde Anforderungen im Projektablauf reagieren zu können.
- (Teil-)Produkte stehen dem Kunden frühzeitig zur Verfügung.
- Das Projekt wird bestimmt durch Zeit, Wettbewerb, Kosten, und Funktionalität.
- Deliverables werden beeinflusst von Marktinformationen, Kundenkontakt und Skills der Entwickler.
- Hoher Bekanntheitsgrad in den letzten Jahren.
- § Hoher Erfüllungsgrad der agilen Prinzipien.

Der SCRUM Prozess

- Scrum besteht aus einer Sammlung von Prozeduren, Rollen und Methoden für Projektmanagement.
- § Selbst-Organisierende Teams.
- § Aufbau:

PRE-GAME

SPRINT

POST-GAME

Develop

Wrap

Review

Planning & System Architecture

Sprints

Sprints

Closure

Sprints

(Planning & System Architecture)

Product Backlog:Prioritized list of features required by the customer

SCRUM Charakteristika und Begriffe

Charakteristika

- § Ein Team erstellt eine Einheit, ein Produkt oder Teilprodukt.
- § Klare Arbeitsaufteilung innerhalb des Teams.
- § Klar priorisierte Projektergebnisse (Backlog Items).
- § Ein gemeinsames Ziel (Erstellung des Produktes).
- § Der "Sprint" ist das zentrale Element.
- § Das Sprint-Team kann ungestört arbeiten; es sind keine Eingriffe "von aussen" (z.B. durch den Kunden) zulässig.
- § Temporal structure = daily Scrum Meeting + Review + Retrospective.

Begriffe:

- § Backlog beinhaltet alle Arbeitspakete, die in "nächster" Zeit umgesetzt werden müssen (sowohl klar definierte als auch vage Anforderungen): Produkt vs. Sprint Backlog.
- § Ein Daily-Scrum ist eine t\u00e4gliche Projektbesprechung um etwaige Fragen / Missverst\u00e4ndnisse zu kl\u00e4ren; Definition des t\u00e4glichen Arbeitsauftrags.
- Scrum Team: Funktionsübergreifendes Team, zuständig für den Sprint Backlog.
- § Burndown Chart: Visuelle Darstellung des Projektfortschritts.

Table of Contents

- § Software Life-Cycle (Wiederholung)
 - Phasen im Software Life-Cycle
 - Vom Software Life-Cycle zum Software Prozess
- § Traditionelle Ansätze
 - Wasserfall Modell
 - V-Modell Grundkonzept
 - V-Modell XT
 - Rational Unified Prozess
- § Agile Ansätze
 - Agiles Manifest
 - Scrum
- § Anpassung von Software Prozessen (Prozess Tailoring)

Process Tailoring / Customization

- § Anwendbarkeit von standardisierten Softwareprozessen im konkreten Projekt?
- Standardisierte Software Prozesse sind in der Praxis direkt eher schwer einsetzbar, da eine Vielzahl an Projektattributen berücksichtigt werden müssen; Beispiele: Projektgröße, Projekttyp und Anwendungsdomäne.
- § Anpassungen an aktuelle Projektgegebenheiten sind notwendig.
- § Diese Anpassungen von Vorgehensmodellen erfordern erfahrene Projektleiter und/oder effiziente Toolunterstützung (z.B. V-Modell XT Projektassistent).
- § Prozess Tailoring (bezogen auf der jeweilige Projekt)
 - Anpassung an individuelle Projektgegebenheiten.
- § Prozess Customization (Standardisierung)
 - Anpassungen an Unternehmensstandards (z.B. Siemens stdSEM)
 - Domänenabhängige Anpassungen, z.B. für Produktionsautomatisierung

Anpassung von Vorgehensmodellen an Projekte: Prozesstailoring

- § Anpassbarkeit eines generischen Entwicklungsprozesses an spezifische Projektgegebenheiten durch Prozesstailoring.
- § Ersetzen einzelner Prozess-Schritte (oder Vorgehensbausteine) durch passende alternative Lösungen.
- § Wiederverwendung von Best-Practices (Methoden / Tools).
- § Individuelle Anpassung des Projektplans.

§ Achtung:

- Tailoring erfordert erfahrene Projektleiter, da ein fundiertes Verständnis des Modellaufbaus erforderlich ist.
- Berücksichtigung von definierten Tailoring-Kriterien und Produktabhängigkeiten.

Prozess "Customization"

- § Verallgemeinerte Form des "Tailorings".
- § Anpassung des Vorgehensmodells an unternehmensspezifische Gegebenheiten.
- § Effizienzsteigerung von Tailoring für ähnliche Aufgaben durch Customization:
 - Unternehmensstandards: Anpassung an das Unternehmen.
 - Projektstandards: Anpassung an ähnliche Projekte (z.B. Webapplikationen).
- § Diese "angepassten Prozesse" dienen als Grundlage f\u00fcr projektspezifisches Tailoring.
- § Achtung: Die Kompatibilität zum zugrunde liegenden Prozess muss sichergestellt werden!

Zusammenfassung

- § Software Prozesse und Vorgehensmodelle ermöglichen vorhersagbare und nachvollziehbare Softwarelösungen.
- Sie definieren, wie ein Softwareprojekt durchgeführt wird bzw. in welcher Reihenfolge die einzelnen Phasen ablaufen.
- § In der Praxis existiert eine Vielzahl an Prozessen für unterschiedliche Anwendungsbereiche (z.B. für spezifische Domänen, Projekttypen).
- § Systematische Prozesse sind durch ihre Struktur *plan-driven* und orientieren sich eher an Abläufen mit Schwerpunkt auf Produkten und Dokumentation. Beispiele: Wasserfallmodell, V-Modell (XT), RUP, Inkrementelle Modelle.
- § Agile Ansätze rücken den Kunden und seine konkreten (sich ändernden) Anforderungen in den Vordergrund. Beispiele: eXtreme Programming, SCRUM.
- § Durch Tailoring wird ein allgemeines Modell auf ein individuelles Projekt angepasst.
- § Customization ermöglicht die Erstellung unternehmensspezifischer Vorgehensmodelle für gleichartige Projekte / Produktgruppen.

Literaturreferenzen

- § Beck K.: "Extreme Programming. Das Manifest", Addison Wesley, 2004.
- § Biffl Stefan, Winkler Dietmar, Frast Denis: "Qualitätssicherung, Qualitätsmanagement und Testen in der Softwareentwicklung", Skriptum zur Lehrveranstaltung, 2004. http://qse.ifs.tuwien.ac.at/courses/skriptum/script.htm
- § Höhn R., Höppner S.: "Das V-Modell XT. Grundlagen, Methodik und Anwendungen", Springer, eXamen Press, 2008.
- § Kruchten P.: "The Rational Unified Process: An Introduction", Addison-Wesley Longman, 2004.
- Schatten A., Biffl S., Demolsky M., Gostischa-Franta E., Östreicher T., Winkler W.: "Best Practice Software Engineering. Eine praxiserprobte Zusammenstellung von komponentenorientierten Konzepten, Methoden und Werkzeugen", Spektrum Akademischer Verlag, 2010, 978-3827424860.
- Schwaber K., Irlbeck T.: "Agiles Projektmanagement mit Scrum", Microsoft Press, 2007.
- § SCRUM, www.controlchaos.com, February 2006.
- § Software Engineering Best practices: http://best-practice-software-engineering.blogspot.com/
- § V-Modell XT: http://www.v-model-xt.de.

Welche Vorteile bringt ihrer Ansicht nach ein (standardisiertes) Vorgehensmodell?

Peter Kittenberger

Mögliche Fehler durch Erfahrungswerte früher erkennen

Michael List

Vorhandene Erfahrungswerte von Projekten mit dem gleichen Vorgehensmodell

Simon Reisinger

Schnelle Einarbeitung in das Projekt für neue Mitglieder.

Martin Robl

Kurze einarbeitung, einheitlicher überblick für management

Michael Krejci

Mitarbeiter mit Erfahrung im Vorgehensmodell schneller eingearbeitet

Markus Lehr

Standardisierte Schritte in der Entwicklung bieten eine bessere Einschätzung des weiteren Projektverlaufs.

Ievgenii Gruzdev

Leichte Fehlererkennung

Bruno Tiefengraber

Bessere Zeitabschätzungen

Alexander Thomas Drunecky

Messbarkeit und Projektvergleiche

Alexander Heinz

Zusammenarbeit zwischen Unternehmen mit gleichem Vorgehensmodell vereinfacht

Niklas Roth

Es gibt unter umständen schon Software die diese Standardvorgehensweisen unterstützt und man kann auf diese zurückgreifen um das Projekt besser durchzuführen.

Daniel Szukitsch

Nützen von Erfahrungswerten und vergleichbarkeit

Michael Pointner

Gewohnheitsbildung. Nach ner Zeit schafft man das selbst im Schlaf.

Paul Stelzhammer

Koordination der Teammitglieder findet einheitlich statt

Johannes Vass

Sie sind bereits etabliert und vermeiden dadurch Fehler, die in einem selbstentwickelten Vorgehensmodell erst aufgedeckt werden müssten

Ganesh Shakti Kozak

Das Projekt befindet sich nicht in mehreren Zuständen gleichzeitig. Es ist immer klar, an was gerade gearbeitet wird.

Sascha Pleßberger

Planungstools bleiben die gleichen, keine neue Elnarbeitung möglich

Würden Sie das Wasserfallmodell in einem SEPM Projekt einsetzen, falls Sie die Wahl hätten?

Ja	6.3% (2/32)
Nein	90.6% (29/32)
Weiss nicht	3.1% (1/32)

Würden Sie das V-Modell in einem SEPM Projekt einsetzen, falls Sie die Wahl hätten?

Ja	22.5% (9/40)
Nein	57.5% (23/40)
weiss nicht	20% (8/40)

Würden Sie das V-Modell XT in einem SEPM Projekt einsetzen, falls Sie die Wahl hätten?

Ja	21.7% (5/23)
Nein	56.5% (13/23)
weiss nicht	21.7% (5/23)

Würden Sie den Rational Unified Process in einem SEPM Projekt einsetzen, falls Sie die Wahl hätten?

Ja	42.1% (8/19)
Nein	31.6% (6/19)
Weiss nicht	26.3% (5/19)

Würden Sie SCRUM in einem SEPM Projekt einsetzen, falls Sie die Wahl hätten?

Ja	88.9% (16/18)
Nein	11.1% (2/18)
Weiss nicht	0% (0/18)