Artificial Intelligence

Instructor: Kietikul Jearanaitanakij

Department of Computer Engineering

King Mongkut's Institute of Technology Ladkrabang

Lecture 8 Learning from examples

- Forms of Learning
- Supervised Learning
- Learning Decision Trees
- Evaluating the Hypothesis

• An agent is learning if it improves its performance on future tasks.

> dil/3003MK/GMMIN ?

• Why would we want an agent to learn? Why wouldn't the designers just program the agent to do the task?

• There are three main reasons.

• First, the designers cannot anticipate all possible situations that the agent might find itself in. For example, a robot designed to navigate mazes must learn the layout of each new maze it encounters.

) อนุยาลงายใสงการกล้าง อนาบอลมู่ รหลาย Q

- Second, the designers cannot anticipate all changes over time; a program designed to predict tomorrow's stock market prices must learn to adapt when conditions change from boom to bust.
- Third, sometimes human programmers have no idea how to program a solution themselves. For example, most people are good at recognizing the faces of family members, but even the best programmers are unable to program a computer to accomplish that task, except by using learning algorithms.

Forms of learning

1. Unsupervised learning - IX INT U

- The agent learns patterns in the input even though no explicit label is supplied.
- The most common unsupervised learning task is clustering.
- For example, a taxi agent might gradually develop a concept of "Good traffic days" and "Bad traffic days" without ever being given labeled examples of each by a teacher.
 - X1: Rain, BigEvent, WorkDay, MonthEnd
 - X2: NonRain, NonBigEvent, NonWorkDay, NonMonthEnd
 - X3: Rain, NonBigEvent, WorkDay, NonMonthEnd
 - X4: NonRain, BigEvent, NonWorkDay, MonthEnd

A taxi agent may cluster X1, X4 as one cluster and X2, X3 as another cluster.

Reinforcement learning > manufactures > 18m form (on loop whit) for The agent learns from a series of reinforcements - rewards or punishments. For example the loop

- For example, the lack of a tip at the end of the journey gives the taxi agent an indication that it did something wrong.
- It is up to the agent to decide which of the actions prior to the reinforcement were most responsible for it.

Jamin Xi, Xi+1, Xi+2; conaction

I reward navan - 15m/20015-2nourles

panishment navan - 15m/2005 Enio 45/200

panishment navan - 15m/2005 Enio 45/200

panishment navan - 15m/2005 Enio 45/200

3. Supervised learning > จักรัพ รัx ร์บุ

- The agent observes some example input-output pairs and learns a function that maps from input to output.
- For example, from a taxi agent problem. By using given labeled "input-output" examples, a taxi agent will learn a function that maps form input to the outputs "Good traffic days" and "Bad traffic days".
 - X1: Rain, BigEvent, WorkDay, MonthEnd, "Bad traffic days"
 - X2: NonRain, NonBigEvent, NonWorkDay, NonMonthEnd, "Good traffic days"
 - X3: Rain, NonBigEvent, WorkDay, NonMonthEnd, "Good traffic days"
 - X4: NonRain, BigEvent, NonWorkDay, MonthEnd, "Bad traffic days"

Supervised Learning

The task of supervised learning is this:

Given a **training set** of N example input–output pairs

$$(x_1,y_1),(x_2,y_2),\ldots(x_N,y_N),$$

where each y_j was generated by an unknown function y = f(x), discover a function h that approximates the true function f.

- Learning is a search through the space of possible hypotheses for one that will perform well, even on new examples beyond the training set.
- To measure the accuracy of a hypothesis we give it a test set of examples that are distinct from the training set.
- We say a hypothesis **generalizes** well if it correctly predicts the value of y for novel examples.

- When the output **y** is one of a **finite set of values** (such as sunny, cloudy or rainy), the learning problem is called **classification**, and is called Boolean or binary classification if there are only two values.
- When y is a real number (such as tomorrow's temperature), the learning problem is called regression.

Overfitting

- > W 120 21 5 9 3 6
- Overfitting occurs when a statistical learning model describes random errors or noises instead of the underlying relationship.
 - A learning model that has been overfit will generally have poor predictive performance, as it can exaggerate minor fluctuations in the data.

• A good learning model should be **generalize** to both unseen and training

- Fig. a : some data with an exact fit by a straight line (the polynomial 0.4x + 3)
- Fig. b: a high-degree polynomial that is also consistent with the same data.
- Fig. c : A straight line that is not consistent with any of the data points, but might generalize fairly well for unseen values of x.
- Fig. d : data in can be fitted exactly by a function of the form $ax + b + c \sin(x)$. => tend to overfitting.

Learning Decision Trees (ID3 algorithm)

- A decision tree represents a function that takes as input a vector of attribute values and returns a "decision"—a single output value.
- As an example, we will build a decision tree to decide whether to wait for a table at a restaurant. The aim here is to learn a definition for the goal predicate WillWait.
- First we list the attributes that we will consider as part of the input
- 1. Alternate: whether there is a suitable alternative restaurant nearby.
- 2. Bar: whether the restaurant has a comfortable bar area to wait in.
- 3. Fri/Sat: true on Fridays and Saturdays.
- 4. **Hungry**: whether we are hungry.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- 7. Raining: whether it is raining outside.
- 8. Reservation: whether there is a reservation.
- 9. **Type**: the kind of restaurant (French, Italian, Thai, or burger).
- 10. WaitEstimate: the wait estimated by the host (0–10 minutes, 10–30, 30–60, or >60).

Examples for the restaurant domain.

Example	Input Attributes										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	<i>\$\$\$</i>	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
X 8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

A decision tree for deciding whether to wait for a table.

However, this decision tree is not optimal (we will see later).

Creating the optimal decision tree

 We hope to get to the correct classification with a small number of tests, meaning that all paths in the tree will be short and the tree as a whole will be shallow. Hence, the optimal decision tree.

• The decision-tree-learning algorithm adopts a greedy divide-and-conquer strategy: always test the most important attribute first.

" nogo (171) a zzaroszágozásznegy

• By "most important attribute," we mean the one that makes the most difference to the classification of an example.

Figure 18.4 Splitting the examples by testing on attributes. At each node we show the positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on *Type* brings us no nearer to distinguishing between positive and negative examples. (b) Splitting on *Patrons* does a good job of separating positive and negative examples. After splitting on *Patrons*, *Hungry* is a fairly good second test.

The optimal decision tree induced from the 12-example training set.

• We can evaluate the accuracy of a learning algorithm with a **learning curve**. We have 100 examples at our disposal, which we split into a training set and a test set.

- We learn a hypothesis h with the training set and measure its accuracy with the test set.
- We do this starting with a training set of size 1 and increasing one at a time up to size 99. For each size we actually repeat the process of randomly splitting 20 times, and average the results of the 20 trials.
- The curve shows that as the training set size grows, the accuracy increases.

In this graph, we reach 95% accuracy, and it looks like the curve might continue to increase with more data.

Information gain and Entropy

- A perfect attribute divides the examples into sets, each of which are all positive or all negative and thus will be leaves of the tree.
- The Patrons attribute is not perfect, but it is fairly good. จนานา ก็ดั
- A really useless attribute, such as **Type**, leaves the example sets with roughly the same proportion of positive and negative examples as the original set.
- We will use the notion of information gain, which is defined in terms of entropy (Shannon and Weaver, 1949), to define a formal measure of "fairly good" and "really useless"
- Entropy is a measure of the uncertainty of a random variable; acquisition of information corresponds to a reduction in entropy.

 A random variable with only one value—a coin that always comes up heads—has no uncertainty and thus its entropy is defined as zero; thus, we gain no information by observing its value.

Contract somewhat a suppose some

• If a training set contains p positive examples and n negative examples, then the entropy of the whole set is

Entropy:
$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n}\log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n}\log_2\left(\frac{n}{p+n}\right)$$

We can check that the entropy of a fair coin flip is indeed 1:

$$I\left(\frac{1}{1+1}, \frac{1}{1+1}\right) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1.$$

- A flip of a fair coin is equally likely to come up heads or tails, 0 or 1, and this counts as "1 bit" of entropy.
- If the coin is loaded to give 99% heads, we get

paded to give 99% heads, we get
$$I\left(\frac{99}{99+1}, \frac{1}{99+1}\right) = -\frac{99}{100}\log_2\frac{99}{100} - \frac{1}{100}\log_2\frac{1}{100} = 0.08.$$

Rong

Tell us how much information we still need to classify the remaining examples.

 We can measure how much the entropy remaining after testing the attribute. A by

$$Remainder(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} \cdot I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

The information gain from the attribute A is defined as

$$\frac{Gain(A)}{(MOX)} = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - \frac{Remainder(A)}{(MM)}$$

The more value of the information gain of the attribute A, the more important it is.

Now, let us calculate the information of both Patrons and Type

$$Gain(Type) = I\left(\frac{6}{6+6}, \frac{6}{6+6}\right) - \left[\frac{2}{12}.I\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{2}{12}.I\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{4}{12}.I\left(\frac{2}{4}, \frac{2}{4}\right) + \frac{4}{12}.I\left(\frac{2}{4}, \frac{2}{4}\right)\right]$$

$$= 0 \quad \text{fundant wells}$$

$$Gain(Patrons) = I\left(\frac{6}{6+6}, \frac{6}{6+6}\right) - \left[\frac{2}{12}.I(0,1) + \frac{4}{12}.I(1,0) + \frac{6}{12}.I\left(\frac{2}{6}, \frac{4}{6}\right)\right]$$

$$= 1 - [0+0+0.4594]$$

$$= 0.5406$$

Therefore, Patrons is more important than Type.

K Nearest Neighbor Algorithm (KNN) กลังประชา กลังประชา กลังประชา กลังประชา กลังประชา

- Besides ID3 algorithm, there is another simple classification which does not require any training parameter.
- K nearest neighbors is a simple algorithm that stores all available examples and classifies new examples based on a similarity measure (e.g., distance functions).
- KNN has been used in statistical estimation and pattern recognition already in the beginning of 1970's as a non-parametric technique.

KNN Algorithm

- An example is classified by a majority vote of its neighbors.
- An unseen example is assigned to the class most common among its K nearest neighbors measured by a distance function.
- If K = 1, then an unseen example is simply assigned to the class of the nearest neighbor, only one neighbor which is nearest to an unseen example.

- It should also be noted that all three distance measures are only valid for continuous variables. In the instance of categorical variables the Hamming distance must be used.
- Historically, the optimal K for most datasets has been between 3-10. That produces much better results than 1NN.

Hamming Distance

$$x = y \Rightarrow D = 0$$

$$x \neq y \Rightarrow D = 1$$

X	Υ	Distance
Male	Male	0
Male	Female	1

- Sizannaris: Mic
- Example: Consider the following data concerning credit default. Age and Loan are two numerical attributes and Default is the target.
- We can now use the training set to classify an unknown case (Age=48 and Loan=\$142,000) using Euclidean distance. If K=1 then the nearest neighbor is the last case in the training set with Default=Y.

 $D = Sqrt[(48-33)^2 + (142,000-150,000)^2] = 8,000.01 >> Default=Y$

			\nearrow	ral led							200	`			
	Age	Loan	Default	Distance			\$250,000 -				60010	•			
	25	\$40,000	N	102000											
	35	\$60,000	N	82000			\$200,000 -					<u> </u>			
	45	\$80,000	N	62000			4 ,					1			
	20	\$20,000	N	122000			****					1			
	35	\$120,000	N	22000	2		\$150,000 -					<u> </u>			
	52	\$18,000	N	124000		Loan\$		_		•	4				 Non-Default
	23	\$95,000	Υ	47000			\$100,000 -								■ Default
	40	\$62,000	Υ	80000				1	_		•	<i>*</i>			
	60	\$100,000	Υ	42000	3		\$50,000 -				•				
	48	\$220,000	Υ	78000			230,000		•						
	33	\$150,000	Υ —	8000	1			•							
			1				\$0 -		1	1	1	1	ı		
	48	\$142,000	?				(0 10	20	30	40	50	60	70	
(Euclidean Distance	$=\sqrt{(x_1-y_1)}$	$(x_1)^2 + (x_1)^2$	$(y_2 - y_2)^2$				श्याह	riscol	SU A	ge				

• With K=3, there are two Default=Y and one Default=N out of three closest neighbors.

The prediction for the unknown case is again Default=Y.

24

Standardized Distance

- One major drawback in calculating distance measures directly from the training set is in the case where variables have different measurement scales or there is a mixture of numerical and categorical variables.
- For example, if one variable is based on annual income in dollars, and the other is based on age in years then income will have a much higher influence on the distance calculated.
- One solution is to standardize the training set.
- Using the standardized distance on the same training set, the unknown example returned a different neighbor.

Age	Loan	Default	Distance							
0.125	0.11	N	0.7652							
0.375	0.21	N	0.5200							
0.625	0.31	N ←	0.3160							
0	0.01	N	0.9245							
0.375	0.50	N	0.3428							
0.8	0.00	N	0.6220							
0.075	0.38	Y	0.6669							
0.5	0.22	Y	0.4437							
1	0.41	Y	0.3650							
0.7	1.00	Y	0.3861							
0.325	0.65	Y	0.3771							
0.7	oble 0.61	i i								
$X_{s} = \frac{X - Min}{Max - Min}$										
$\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{s}$										
resca e										
	V									

Other machine learning algorithms

Evaluating the hypothesis

- We can simply use the error rate to check the quality of the hypothesis.
- Error rate = $\frac{\text{Number of examples which are wrong predicted}}{\text{Total number of examples}}$
- However, a hypothesis h has a low error rate on the training set does not mean that it will generalize well.
- To get the more accurate evaluation, we need to test the hypothesis on an unseen set (test set) of examples.

Holdout cross-validation :

Randomly split the available data into a training set (e.g. 75%) and a test set (e.g. 25%).

K-fold cross-validation:

- Split the training data into k equal subsets.
- Then perform k rounds of learning. On each round, 1/k of the data is held out as a validation set and the remaining examples are used as training data.
- The average error rate of the k rounds is finally calculated. Popular values for k are 5 and 10. The extreme is k=n (the total number of examples), also known as leave-one-out cross-validation or LOOCV.

K-Fold Cross Validation

Validation1 Accuracy/Error

Validation2 Accuracy/Error

Validation K Accuracy/Error

Training + K
Validation Sets
4
75% ...

early stop) the

L mosovaratites

Note: Percentage of test set can be varied, depends on how many total of instances we have.

Test Accuracy/Error