EEE 3101: Digital Logic and Circuits

Programmable Logic Devices

Course Teacher: Nafiz Ahmed Chisty

Head, Department of EEE

Associate Professor, Department of EEE & CoE

Faculty of Engineering

Room# D0105, D Building

Email: chisty@aiub.edu

Website: http://engg.aiub.edu/faculties/nafiz

Website: www.nachisty.com

- Programmable Logic Devices (PLD)
 - It is used to implement Boolean functions of digital systems.
 - General purpose chip for implementing circuits
 - Can be customized using programmable switches
- Advantages PLDs:
 - Less board space needed
 - Fewer printed circuit board
 - Smaller Enclosure
 - Programmability
 - Re-programmability

Custom chips: standard cells, sea of gates

Fig: PLD as a Black Box

Classification of PLD

Simple Programmable Logic Device (SPLD)

- SPLD stands for Simple Programmable Logic Device. PLA stands for Programmable Logic Array . PAL stands for Programmable Array Logic. GAL stands for Generic Array Logic.
- PAL is one time programmable (OTP). GAL is reprogrammable.
- Any SOP within a defined number of variables can be implemented using PLA, PAL and GAL.
- SPLDs must be programmed so that the switches are in the correct places
 - CAD tools are usually used to do this
 - A fuse map is created by the CAD tool and then that map is downloaded to the device via a special programming unit
 - There are two basic types of programming techniques
 - Removable sockets on a PCB
 - In system programming (ISP) on a PCB
 - This approach is not very common for PLAs and PALs but it is quite common for more complex PLDs

An SPLD Programming Unit

 The SPLD is removed from the PCB, placed into the unit and programmed there

Removable SPLD Socket Package

PLCC (plastic-leaded chip carrier)

In System Programming (ISP)

- Used when the SPLD cannot be removed from the PCB
- A special cable and PCB connection are required to program the SPLD from an attached computer
- Very common approach to programming more complex PLDs like CPLDs, FPGAs, etc.

SPLD

Programmable Logic Array (PLA)

$$f_1 = x_1x_2 + x_1x_3' + x_1'x_2'x_3$$

$$f_2 = x_1x_2 + x_1'x_2'x_3 + x_1x_3$$

Gate Level Version of PLA

Customary Schematic of a PLA

Limitations of PLAs

- PLAs come in various sizes
 - Typical size is 16 inputs, 32 product terms, 8 outputs
 - Each AND gate has large fan-in → this limits the number of inputs that can be provided in a PLA
 - o 16 inputs \rightarrow 3¹⁶ = possible input combinations; only 32 permitted (since 32 AND gates) in a typical PLA
 - 32 AND terms permitted → large fan-in for OR gates as well
 - This makes PLAs slower and slightly more expensive than some alternatives to be discussed shortly
 - 8 outputs → could have shared minterms, but not required

Programmable Array Logic (PAL)

- PAL stands for Programmable Array Logic.
- It is an one time programmable device.
- PALs have many inputs and outputs.
- Each programmable link, which is a fuse incase of a PAL, is called a cell.
- Each row is connected to the input of an AND gate.
- Each column is connected to the input variable or its complement.
- By programming the presence and absence of a fuse connection, any combination of input variables or complements can be applied to AND gates.
- Only SOPs can be implemented.

Comparing PALs and PLAs

- PALs have the same limitations as PLAs (small number of allowed AND terms) plus they have a fixed OR plane → less flexibility than PLAs
- PALs are simpler to manufacture, cheaper, and faster (better performance)
- PALs also often have extra circuitry connected to the output of each OR gate
 - The OR gate plus this circuitry is called a macrocell

- GAL works almost the same way as PAL.
- It is reprogrammable.
- Instead of fuses it uses a programmable technology such as EEPROM.

Simplified Notation for PAL/GAL

Generic Block Diagram for PAL/GAL

- The AND array is programmable.
- For PAL the AND array is one time programmable.
- For GAL the AND array is reprogrammable.
- The programmable AND array outputs go to fixed OR gates.
- OR gates are connected to additional output logic.
- An OR gate combined with Output logic is called Macro-cell.
- In GAL Macro-cell is often reprogrammable.

- Complex Programmable Logic Devices (CPLD)
- SPLDs (PLA, PAL) are limited in size due to the small number of input and output pins and the limited number of product terms
 - Combined number of inputs + outputs < 32 or so
- CPLDs contain multiple circuit blocks on a single chip
 - Each block is like a PAL: PAL-like block
 - Connections are provided between PAL-like blocks via an interconnection network that is programmable
 - Each block is connected to an I/O block as well

Structure of a CPLD

Internal Structure of a PAL-like Block

- Includes macrocells
 - Usually about 16 each
- Fixed OR planes
 - OR gates have fan-in between 5-20
- XOR gates provide negation ability
 - XOR has a control input

More on PAL-like Blocks

- CPLD pins are provided to control XOR, MUX, and tri-state gates
- When tri-state gate is disabled, the corresponding output pin can be used as an input pin
 - The associated PAL-like block is then useless
- The AND plane and interconnection network are programmable
- Commercial CPLDs have between 2-100 PAL-like blocks

- [1] Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall.
- [2] M. Morris Mano, "Digital Logic & Computer Design" Prentice Hall.
- [3] Mixed contents from Vahid And Howard.

CPLDs have many pins – large ones have > 200

Removal of CPLD from a PCB is difficult without breaking the pins

- Use ISP (in system programming) to program the CPLD
- JTAG (Joint Test Action Group) port used to connect the CPLD to a computer

Example CPLD

- Use a CPLD to implement the function
 - $f = x_1 x_3 x_6' + x_1 x_4 x_5 x_6' + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$

(from interconnection wires)

FPGA

- SPLDs and CPLDs are relatively small and useful for simple logic devices
 - Up to about 20000 gates
- Field Programmable Gate Arrays (FPGA) can handle larger circuits
 - No AND/OR planes
 - Provide logic blocks, I/O blocks, and interconnection wires and switches
 - Logic blocks provide functionality
 - Interconnection switches allow logic blocks to be connected to each other and to the I/O pins

Structure of an FPGA

LUTs

- Logic blocks are implemented using a lookup table (LUT)
 - Small number of inputs, one output
 - Contains storage cells that can be loaded with the desired values
 - A 2 input LUT uses 3 MUXes to implement any desired function x₁ of 2 variables
 - Shannon's expansion at work!

Example 2 Input LUT

X_1	X_2	f
0	0	1
0	1	0 -
1	0	0
1	1	1 .

 $f = x_1'x_2' + x_1x_2$, or using Shannon's expansion:

$$f = x_1'(x_2') + x_1(x_2)$$

= $x_1'(x_2'(1) + x_2(0)) + x_1(x_2'(0) + x_2(1))$

3 Input LUT

o 7 2x1 MUXes and x_1 8 storage cells are x_2 required

 Commercial LUTs have 4-5 inputs, and 16-32 storage cells

 x_3

Programming an FPGA

- ISP method is used.
- LUTs contain <u>volatile</u> storage cells
 - None of the other PLD technologies are volatile
 - FPGA storage cells are loaded via a PROM when power is first applied
- The UP2 Education Board by Altera contains a JTAG port, a MAX 7000 CPLD, and a FLEX 10K FPGA
 - The MAX 7000 CPLD chip is EPM7128SLC84-7
 - EPM7 → MAX 7000 family; 128 macrocells; LC84 → 84 pin PLCC package; 7 → speed grade

Example FPGA

- Use an FPGA with 2 input LUTS to implement the function $f = x_1x_2 + x_2'x_3$
 - $f_1 = x_1 x_2$
 - $f_2 = x_2'x_3$
 - $f = f_1 + f_2$

Another Example FPGA

- Use an FPGA with 2 input LUTS to implement the function $f = x_1x_3x_6' + x_1x_4x_5x_6' + x_2x_3x_7 + x_2x_4x_5x_7$
 - Fan-in of expression is too large for FPGA (this was simple to do in a CPLD)
 - Factor f to get sub-expressions with max fan-in = 2

$$f = x_1x_6'(x_3 + x_4x_5) + x_2x_7(x_3 + x_4x_5)$$
$$= (x_1x_6' + x_2x_7)(x_3 + x_4x_5)$$

- Could use Shannon's expansion instead
 - Goal is to build expressions out of 2-input LUTs

FPGA Implementation

Custom Chips

- PLDs are limited by number of programmable switches
 - Consume space
 - Reduce speed
- Custom chips are created from scratch
 - Expensive → used when high speed is required, volume sales are expected, and chip size is small but with high density of gates
 - ASICs (Application Specific Integrated Circuits) are custom chips that use a <u>standard cell</u> layout to reduce design costs

Standard Cells

- Rows of logic gates can be connected by wires in the routing channels
 - Designers (via CAD tools) select prefab gates from a library and place them in rows
 - Interconnections are made by wires in routing channels
 - Multiple layers may be used to avoid short circuiting
 - A hard-wired connection between layers is called a via

Example: Standard Cells

- $f_1 = x_1 x_2 + x_1' x_2' x_3 + x_1 x_3'$
- $f_2 = x_1x_2 + x_1'x_2'x_3 + x_1x_3$

Sea of Gates Gate Array

- A Sea of Gates gate array is just like a standard cell except all gates are of the <u>same</u> type
 - Interconnections are run in channels and use multiple layers
 - Cheaper to manufacture due to regularity

Example: Sea of Gates

$$f_1 = x_2 x_3' + x_1 x_3$$

black → bottom layer channels

Speed / Density / Complexity / Likely Market Volume

Engineering cost / Time to develop