CL202: Fluid Mechanics

Introductory Concepts

Raghvendra Gupta
Department of Chemical Engineering
Indian Institute of Technology Guwahati

What has been covered till now?

Let us list down

- > Definition of a fluid
- > Applications
- > Three approaches to analyse fluid flow problems
- > Continuum hypothesis
- ➤ No-slip condition
- > Eulerian and Lagrangian descriptions
- > System and control volume

Velocity field

- Field: A quantity that has a value at each point in time and space (continuum)
- \triangleright Velocity $\vec{v}(x, y, z, t)$ or v(x, y, z, t) is a vector quantity

$$\boldsymbol{v}(x,y,z,t) = u(x,y,z,t)\hat{\boldsymbol{i}} + v(x,y,z,t)\hat{\boldsymbol{j}} + w(x,y,z,t)\hat{\boldsymbol{k}}$$

- \succ Indicates the velocity of a fluid particle that is at point P(x, y, z) at time t in Eulerian description
 - ightharpoonup P(x,y,z) are coordinate of a point fixed in space not the position of the fluid particle
 - > Steady flow:

$$\frac{\partial v}{\partial t} = 0$$

The force acting on a fluid particle can be:

- ➤ Body forces e.g. gravitational force, electromagnetic force
 - > Force acts on an element of fluid volume

Gravitational force $= \rho g dV$

Gravitational force per unit volume = ρg

Gravitational force per unit mass = g

- > Surface forces e.g. pressure, friction
 - Force acts on the boundary of the fluid medium
 - The force is transmitted throughout the medium
 - > Stress is developed in the fluid medium

- > Stress: defined as force per unit area
- \triangleright Consider a small area δA on the surface of a fluid particle which is in contact with other fluid particles
 - Note that area is a vector and its direction is along the outward normal with respect to the particle
- ➤ We can resolve the force in components tangential and normal to the surface

Normal stress
$$\sigma_n = \lim_{\delta A_n \to 0} \frac{\delta F_n}{\delta A_n}$$

Shear (tangential) stress
$$\tau_n = \lim_{\delta A_n \to 0} \frac{\delta F_t}{\delta A_n}$$

- The state of stress at a point can be described by the stresses acting on any three mutually perpendicular planes.
- The stress at a point has nine components

$$egin{bmatrix} \sigma_{\chi\chi} & au_{\chi y} & au_{\chi z} \ au_{\chi\chi} & \sigma_{yy} & au_{yz} \ au_{z\chi} & au_{zy} & \sigma_{zz} \ \end{bmatrix}$$

- ➤ Sign convention for stress:
 - ➤ Positive when the direction of stress component and that of the normal on the plane both are positive or both are negative.

Rheology

- Fluids are characterized by the relationship between shear stress (τ) and rate of deformation/ rate of strain ($\dot{\gamma}$) in a fluid
- A constitute equation gives the relationship between stress and rate of strain.
- > Rheology
- > Rheometers

Rate of strain

- \triangleright What is $\dot{\gamma}$?
 - > Rate of deformation or shear rate or rate of strain
 - ➤ Shear strain: Relative displacement of particles in the body
- > Consider flow between two parallel plates with the upper plate moving

- ightharpoonup Rate of deformation $\dot{\gamma} = \lim_{\delta t \to 0} \frac{\delta \alpha}{\delta t}$
- $\gt \delta l = \delta u \ \delta t = \delta \alpha \ \delta y$

$$\frac{\delta \alpha}{\delta t} = \frac{\delta u}{\delta y}$$

$$\dot{\gamma} = \frac{d\alpha}{dt} = \frac{du}{dy}$$

Viscosity

For most of the common fluids, shear stress is directly proportional to the rate of strain

- This is known as Newton's law of viscosity.
- \triangleright The proportionality constant is known as <u>dynamic or absolute viscosity</u> (μ).
- The fluids following Newton's law of viscosity are known as Newtonian fluids.
- ➤ Unit of viscosity- kg m⁻¹s⁻¹, Pa.s, Poise in CGS.
- \triangleright Kinematic viscosity (ν): ratio of dynamic viscosity and density (μ/ρ)
 - ➤ Unit: m²/s or Stokes
- ➤ Viscosity of gases increases with increase in temperature whereas those of liquid decreases.

Non-Newtonian Fluids

- Fluids that do not follow Newton's law of viscosity.
- ➤ Bingham plastic fluids:
 - > Yield stress
 - Toothpaste, drilling mud, clay suspensions
- ➤ Psuedoplastic (shear thinning)
 - ➤ Apparent viscosity decreases with increasing shear rate
 - ➤ Polymer solutions, colloidal suspension
- ➤ Dilatant (shear thickening)
 - > Apparent viscosity increases with increasing shear rate
 - > Suspension of starch, sand

Non-Newtonian Fluids

➤ Herschel-Bulkley model:

$$\tau_{yx} = \tau_y + k\dot{\gamma}^n$$

- $\succ \tau_y$: Yield stress
- > k: Consistency index
- > n: Flow behaviour index
- > For Bingham plastic fluid
 - \triangleright Yield stress (τ_{γ}) non-zero, n =1
- > Psuedoplastic fluids:
 - \triangleright Yield stress zero, n < 1
- > Dilatant fluid
 - \triangleright Yield stress zero, n > 1

Non-Newtonian Fluids

- The apparent viscosity may be time-dependent
- ➤ Thixotropic fluids:
 - ➤ Decrease in apparent viscosity with time
- > Rheopectic fluids:
 - ➤ Increase in apparent viscosity with time
- ➤ Viscoelastic fluids:
 - > Partially regain the original shape when the applied stress is released