VE320 Homework Eight

Due: 2021/7/28 23:59

- 1. The dc charge distributions of four ideal MOS capacitors are shown in the figure below. For each case:
 - (a) Is the semiconductor n or p type?
 - (b) Is the device biased in the accumulation, depletion, or inversion mode?
 - (c) Draw the energy band diagram in the semiconductor region.

- 2. (a) Consider an n⁺ polysilicon-silicon dioxide-n-type silicon MOS structure. Let $N_d = 4 \times 10^{15} \text{ cm}^{-3}$. Calculate the ideal flat-band voltage for $t_{ox} = 20 \text{ nm} = 200 \text{ Å}$
 - (b) Considering the results of part (a), determine the shift in flat-band voltage for
 - (i) $Q'_{ss} = 4 \times 10^{10} \text{ cm}^{-2}$ and (ii) $Q'_{ss} = 10^{11} \text{ cm}^{-2}$.
 - (c) Repeat parts (a) and (b) for an oxide thickness of $t_{ox} = 12 \text{ nm} = 120 \text{Å}$
- 3. A MOS device with an aluminum gate is fabricated on a p-type silicon substrate. The oxide thickness is $t_{ox} = 22 \text{ nm} = 220 \text{Å}$ and the trapped oxide charge is $Q'_{ss} = 4 \times 10^{10} \text{ cm}^{-2}$. The measured threshold voltage is $V_T = +0.45 \text{ V}$. Determine the p-type doping concentration.
- 4. An n⁺ polysilicon gate-silicon dioxide-silicon MOS capacitor has an oxide thickness of $t_{ox} = 18$ nm = 180Å and a doping of $N_a = 10^{15}$ cm⁻³. The oxide charge density is $Q'_{ss} = 6 \times 10^{10}$ cm⁻². Calculate the (a) flat-band voltage and (b) threshold voltage.
- 5. The high-frequency C-V characteristic curve of a MOS capacitor is shown in the figure below. The area of the device is 2×10^{-3} cm². The metalsemiconductor work function difference is $\phi_{ms} = -0.50$ V, the oxide is SiO₂, the semiconductor is silicon, and the semiconductor doping concentration is 2×10^{16} cm⁻³.
 - (a) Is the semiconductor n or p type?
 - (b) What is the oxide thickness?
 - (c) What is the equivalent trapped oxide charge density?

(d) Determine the flat-band capacitance.

- 6. Consider a p-channel MOSFET with the following parameters: $k_p' = 0.12 \text{ mA/V}^2$ and W/L = 20. The drain current is $100\mu\text{A}$ with applied voltages of $V_{SG} = 0$, $V_{BS} = 0$, and $V_{SD} = 1.0 \text{ V}$.
 - (a) Determine the V_T value.
 - (b) Determine the drain current I_D for $V_{SG} = 0.4 \text{ V}$, $V_{SB} = 0$, and $V_{SD} = 1.5 \text{ V}$.
 - (c) What is the value of I_D for $V_{SG} = 0.6 \text{ V}$, $V_{SB} = 0$, and $V_{SD} = 0.15 \text{ V}$?
- 7. An NMOS device has the following parameters: $\rm n^+$ poly gate, $t_{\rm ox} = 400 \rm \AA$, $N_a = 10^{15} \rm \ cm^{-3}$, and $Q_{ss}' = 5 \times 10^{10} \rm \ cm^{-2}$
 - (a) Determine V_T .
 - (b) Is it possible to apply a V_{SB} voltage such that $V_T = 0$? If so, what is the value of V_{SB} ?