

Jungdam Won, Yunku Kang, Jonghwa Woo Seoul National University

DEEP OPACITY MAPS

- Introduction
 - Shadow Maps
 - Deep Shadow Maps
 - Opacity Shadow Maps
 - Density Clustering
- Deep opacity Maps
 - Motivations
 - Algorithm detail
- Implementation & Results
 - Implementation issues
 - results

Shadow

- Definition
 - [NOUN] A shadow is a dark shape on a surface that is made when something stands between a light and the surface

Shadow

- Importance
 - Criterion of realistic three-dimensional graphics
 - Much information about the settings in a picture
 - Shape, material, location, light source

Self-Shadow

Shadow on themselves and each other

Shadow Maps (1978)

 WILLIAMS L.: Casting curved shadows on curved surfaces. In SIGGRAPH '78 (1978), pp. 270–274.

Deep Shadow Maps (2000)

 LOKOVICT., VEACH E.: Deep shadow maps. In Proceedings of SIGGRAPH 2000 (2000), pp. 385–392.

Deep Shadow Maps (cont.)

Compute visibility function

$$\tau(p) = \exp(-\Omega)$$
, where $\Omega = \int_0^l \rho(l') dl'$

$$V_{i,j}(z) = \int_{-r}^{r} \int_{-r}^{r} f(s,t) \tau(i + \frac{1}{2} - s, j + \frac{1}{2} - t, z) ds dt,$$

 $\sqrt{-1}$

Deep Shadow Maps (cont.)

Deep Shadow Maps (cont.)

Opacity Shadow Maps (2001)

- Computing visibility function is heavy!
 - -> compute only few visibility value and interpolate

KIM T.-Y., NEUMANN U.: Opacity shadow maps. In 12th
 Eurographics Workshop on Rendering Techniques (2001), pp. 177–182.

Density Clustering (2004)

 Compute visibility function simply using clustering

MERTENS T., KAUTZ J., BEKAERT P., VAN REETH F.: A self-shadow algorithm for dynamic hair using clustered densities. In Proceedings of Eurographics Symposium on Rendering 2004 (2004), pp. 173-178.

Motivation

Opacity Shadow Maps

- Layering Artifacts!

Motivation (cont.)

Density Clustering

- Inaccuracy Artifacts!

Motivation (cont.)

Deep Opacity Maps

- Artifact Free!

Opacity Shadow Maps

Opacity Shadow Maps

Opacity Shadow Maps

- Pass 1~n: Opacity Map
- Final frame rendering

Opacity Shadow Maps

Opacity Shadow Maps

Deep Opacity Maps

- Overview
 - Pass 1: Depth Map
 - Pass 2: Opacity Map
 - Final frame rendering

Deep Opacity Maps

- Pass 1: Depth Map
 - Calculate z_o per pixel

Pass 2: Opacity Map

Layers:

```
0: z0 ~ z0 + d1
1: z0 + d1 ~ z0 + d2
2: z0 + d2 ~ z0 + d3
```

d1, d2, d3... are user defined

Pass 2: Opacity Map

s = d1

Alternatives:

- s, s, s, s, ...(constant)
- s, 2s, 4s, 8s, ...(powers of 2)
- s, s, 2s, 3s, 5s, .. (Fibonacci)
- s, 2s, 3s, 4s, ...(linear)

Beyond the last layer

Ignore?

- Won't cast shadows

Add to the last layer?

- Casts shadows on themselves

Increase the last layer size?

- Reduces accuracy

Implementation

- Depth Map
 - can be 8-bit, 16-bit, or 32-bit
- 3 opacity layers
 - Single Texture

R: depth (zo)

G: layer 1 opacity

B: layer 2 opacity

A: layer 3 opacity

Implementation (cont.)

7, 11, 15...opacity layers

Multiple Draw Buffers

R₁: depth (zo)

G₁: layer 1 opacity

B₁: layer 2 opacity

A₁: layer 3 opacity

R₂: layer 4 opacity

G₂: layer 5 opacity

B₂: layer 6 opacity

A₂: layer 7 opacity

Texture 1

OSM 16 layers 81 fps OSM 128 layers 2.3 fps DC 4 layers 79 fps DOM 3 layers 114 fps

OSM vs DOM

OSM vs DOM

Opacity Shadow Maps 128 layers Deep Opacity Maps 3 layers

DC vs DOM

Density Clustering 4 layers Deep Opacity Maps 3 layers

Clustered Strands

A hairy teapot

