- 1 \bigstar Expand the following functions about the given center x_0 You can type this up using LaTeX or other word processor.
 - 1. $f(x) = \sin 2x$ and $x_0 = 0$ $= 2x - \frac{4}{3}x^3 + \frac{4}{15}x^5 + O(x^7)$ We can rewrite this as $\sum_{n=0}^{\infty} \frac{2^{2n+1}}{(2n+1)!} x^{2n+1}$ whose radius of convergence is does not exist (goes to ∞)
 - 2. $f(x) = \ln 2x$ and $x_0 = 1$ = $\ln 2 + x - 1 - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \frac{1}{4}(x - 1)^4 + O((x - 1)^5)$
 - 3. $f(x) = e^{2x}$ and $x_0 = 1$ = $e^2 + e^2(x - 1)$
 - 4. $f(x) = 3x^2 2x + 5$ and $x_0 = 0$ = $3x^2 - 2x + 5$
 - 5. $f(x) = 3x^2 2x + 5$ and $x_0 = 1$ = $6 + 4(x - 1) + 3(x - 1)^2$
 - 6. $f(x) = (3x^2 2x + 5)^{-1}$ and $x_0 = 1$ = $\frac{1}{6} - \frac{1}{9}x - 1 - \frac{1}{108}(x - 1)^2 + \frac{5}{81}(x - 1)^3 + O((x - 1)^4)$
 - 7. $f(x) = \cosh x 3$ and $x_0 = 1$ = $\frac{e^2 + 1}{2e} - 3 + \frac{e^2 - 1}{2e}(x - 1) + \frac{e^2 - 1}{4e}(x - 1)^2 + \frac{e^2 - 1}{12e}(x - 1)^3 + O((x - 1)^4)$

8.
$$f(x)$$
 and $x_0 = a$
 $f(a) + f'(a)(x - a) + f''(a)\frac{(x-a)^2}{2} + f'''(a)\frac{(x-a)^3}{6} + O(x^5)$

9.
$$f(a)$$
 and $x_0 = x$

$$f(x) + f'(x)(a-x) + f''(x)\frac{(a-x)^2}{2} + f'''(x)\frac{(a-x)^3}{6} + O(x^5)$$

10.
$$f(a+h)$$
 and $x_0 = a$
 $f(a+h) + f'(a+h)(x-a-h) + f''(a+h)\frac{(x-a-h)^2}{2} + f'''(a+h)\frac{(x-a-h)^3}{6}$

Find the radius of convergence of each of the series

2 M Differentiate

1.
$$\int x \sin 2x \, dx \text{ (by parts)}$$
$$\sin 2x + 2x \cos 2x + C$$

2.
$$\int xe^{x^2} dx \text{ (by substitution)}$$
$$= e^{x^2} + 2x^2e^{x^2} + C$$

3.
$$\int xe^x dx \text{ (by parts)}$$
$$= e^x + xe^x + C$$

4.
$$\int e^{x^2} dx$$
 (by integrand in a Taylor series) $2xe^{x^2} + C$

5.
$$\int x\sqrt{1+x} \, dx$$
$$= \sqrt{1+x} + \frac{x}{2\sqrt{1+x}} + C$$

6.
$$\int \sec \theta \, d\theta = \sec(x) \tan(x) + C$$

7.
$$\int \sec^2 \theta \, d\theta$$
$$= 2 \sec^2(x) \tan(x) + C$$

8.
$$\int sech^{2}(\theta) = \int \frac{1}{\cosh^{2}(\theta)} d\theta$$
$$= -\frac{1}{\cosh^{2}(\theta)} \tanh \theta + C$$

9.
$$\int \frac{x^2+2}{7-x^2} dx$$
$$= \frac{2x}{7-x^2} + \frac{2(x^2+2)}{(7-x^2)^2} + c$$

10.
$$\int \frac{1}{ap - bp^2} dp$$
$$= \frac{-1}{ap^2} + \frac{b^2}{-a(a - bp)^2}$$

 \maltese Compute the solutions for the following simple initial value problems:

1.
$$\frac{dx}{dt} = 3x$$
 and $x(0) = 1$
 $x = 3xt + 1$

2.
$$\frac{dx}{dt} = 3tx$$
 and $x(0) = 4$
 $x = 4e^{\frac{3}{2}t^2}$

3.
$$\frac{dx}{dt} = 1x - .003x^2$$
 and $x(0) = 4$
 $x = \frac{1}{.003 - .247e^{-t}} = \frac{e^t}{.003e^t - .247}$

4.
$$\frac{dx}{dt} = 1x - .003x^2$$
 and $x(0) = 400$
 $x = \frac{e^t}{.003e^t - .0005}$

4 ★ Graph the solution of the last two differential equations in the Problem above. Just graph them.

1.
$$\frac{dx}{dt} = 1x - .003x^2$$
 and $x(0) = 4$

2.
$$\frac{dx}{dt} = 1x - .003x^2$$
 and $x(0) = 400$

