ECED3901 Design Methods II

LECTURE #4: DC MOTOR DRIVING

What are we covering?

- DC Motors
 - Brushed
 - Brushless
- Driving Motors
 - Simple (On-Off)
 - Faraday's Law in real life
 - Snubbing / Diode Circuits
 - EMC Capacitor
 - Half-Bridge
 - Full-Bridge
- Transistors as Switches
 - Bipolar
 - MOSFET
- Driving transistors as switches

DC Motor Types

Motor Types: Brushed

Source: http://commons.wikimedia.org/wiki/File:Electric_motor_cycle_1.png

How DC Motors Work

Note: to avoid trying to draw complex diagrams, I'm instead going to refer you to this YouTube video for basics of the DC motor: https://www.youtube.com/watch?v=LAtPHANEfQo

If you view the video version of this lecture the video will be missing, but instead see the youtube video. Note we are <u>only dealing with</u> permanent motor stators (i.e. up to 2:50 in the video).

Steady-State Operation

$$V_M = K_\omega \omega + I_a R. \tag{4.1}$$

In this equation,

 V_M = the applied motor voltage

 $K_{\omega} = \text{motor speed constant (volts per radians/sec)}$

 $\omega = \text{angular speed of the motor (radians/sec)}$

 I_a = armature current (this is the motor current)

R = motor resistance (armature resistance + commutator resistance.

(4.2)

Source: Dr. Gregson's Design Methods II ECED 3901 Manual, 2005.

Back-EMF Measurement

Source: http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-021-measuring-rpm-from-back-emf

Back-EMF Measurement

Source: http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-021-measuring-rpm-from-back-emf

Back-EMF

Source: http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-021-measuring-rpm-from-back-emf

Colin O'Flynn

Back-EMF

Source: http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-021-measuring-rpm-from-back-emf

Colin O'Flynn

Motor Inductance

$$V = L \frac{di}{dt}$$

Motor Inductance

Additional Motor Dynamics

See Dr. Gregson's ECED3901 Manual for information on additional motor dynamics. Due to lecture timing this material is omitted from these lectures.

Motor Types: Brushless

Source: http://en.wikipedia.org/wiki/Brushless_DC_electric_motor#/media/File:Floppy_drive_spindle_motor_open.jpg

Driving DC Motors

Driving a motor... easy!

Source: Dr. Gregson's Design Methods II ECED 3901 Manual, 2005.

Example Circuit

Adding a Diode

Capacitor for Noise Suppression

Half-Bridge

Full-Bridge

Motor Brake

A long use of braking...

Dynamic Braking resistor from train

Source: http://www.resistorguide.com/braking-resistor/

Regenerative Braking on Tesla

Source:

http://upload.wikimedia.org/wikipedia/commons/5/5c/Tesla_Model_ S_P85%2B_60_kW_Regenerative_Braking_%28cropped%29.jpg

Transistors as Switches

NPN Transistor Operation

Current Amplifier

NPN Transistor Switch

PNP Transistor Switch

Example: On/Off Control

...need more power

Absolute Maximum Ratings* T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

MOSFETs

Quick Comparison

Characteristic	MOSFET	Bipolar
Drive Voltage	Medium (1.8V-10V)	Low (< 1V)
Gate current	Low	Medium
Gate charge	Medium	Low
Static Sensitive	Yes	No
Gain vs Temp	Negative	Positive

MOSFET Types

P-Channel

N-Channel

P-Channel as Switch

N-Channel as Switch

Note on Gate Capacitance

MOSFET Characteristics

FIGURE 7. SATURATION CHARACTERISTICS

FIGURE 8. TRANSFER CHARACTERISTICS

Example Half-Bridge Driver

Slew Rate Tests

MOSFET Switching Speed

Fast Slew Rate

MOSFET Switching Speed

Slow Slew Rate

H-Bridge — Basics (for Lab)

Avoid smoke...

Your Robot

5-A H-Bridge for DC-Motor Applications

1 Overview

1.1 Features

- Delivers up to 5 A continuous 6 A peak current
- · Optimized for DC motor management applications
- · Operates at supply voltages up to 40 V
- Very low $R_{\rm DS~ON}$; typ. 200 m Ω @ 25 °C per switch
- · Output full short circuit protected
- Overtemperature protection with hysteresis and diagnosis
- Short circuit and open load diagnosis with open drain error flag
- · Undervoltage lockout
- · CMOS/TTL compatible inputs with hysteresis
- · No crossover current
- · Internal freewheeling diodes
- Wide temperature range; 40 °C < T_i < 150 °C
- Green Product (RoHS compliant)
- AEC Qualified

Туре	Package
TLE 5205-2	PG-TO220-7-11

TLE 5205-2

Your Robot

Summary

- Brushed and Brushless DC Motors
- Motors characteristics give us some grief (turn-off spike, noise)
- Use transistors as switch for driving
- Careful design of both MOSFET and Bipolar circuits required