UGANDA MARTYRS UNIVERSITY

FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS/ STATISTICS

UNIVERSITY EXAMINATIONS SEMESTER I, 2013/14

SECOND YEAR EXAMINATIONS FOR BACHELOR OF SCIENCE (B.ECON & GEN)

STA 2102: STATISTICAL QUALITY CONTROL

DATE: 19TH DECEMBER 2013

TIME: 2:00 - **5**00 PM

Instructions:

i) Attempt only 4 (four) questions in All.

On.1 (a) Define statistical quality control (SQC)

- (b) State the causes of variations in any process
- © Consider the data below as collected from the industries

		READINGS					
		1	2	3	4		
	9:00 am	40	50	55	39		
TIME	9:30 am	44	42	38	38		
	10:00 am	41	45	47	43		
	10:30 am	39	39	41	41		
	11:00 am	37	42	46	41		
	11:30 am	39	40	39	40		

- (i) Design a mean chart and interpret it.
- (ii) On the same diagram, design the range chart and interpret it.

Qn.2. (a) List and explain different control charts that are commonly used in different processes.

(b) A random sample of 100 ball pens was taken from a firm which produces pens and a number of defective pens were noted. This was repeated for 10 times as shown below. Using the information given prepare a 'P' control chart and comment on the results

Sample	1	2	3	4	5	6	7	8	9	10
No. of	8	11	13	8	17	7	7	14	6	9
defectives						!				

Q3. An automatic machine produces 5.0 millimeter bolts at a high rate of speed. A quality-control program has been started to control the number of defectives. The quality-control inspector selects 50 bolts at random and determines how many defectives are. The numbers defectives for the first 10 samples follow.

Sample number	1	2	3	4	5	6	7	8	9	10
Size of the sample	50	50	50	50	50	50	50	50	50	50
Number of defectives	3	5	0	4	1	2	6	5	7	7

- (a) Design a percent defective chart, insert bar p, LCL and the percents defectives on the chart.
- (b) Plot the number of defects for the first 10 samples on the chart.
- (c) Interpret the chart.
- Q4. (a) Define the following terms as applied to SQC
 - (i) process capability
 - (ii) process capability ratio
- (b) In a sample of 10 units, the lower and upper specification limits were given as 1 and 2 respectively. If the average range in the experiment is 0.325. Estimate the process capability of the machine ($\mathbf{d_2} = 3.078$).
- © consider the table of sample observations

		,	
Sample number	X_1	X_2	X_3
1	6.0	5.8	6.1
2	5.2	6.4	6.9
3	5.5	5.8	5.2
4	5.0	5.7	6.5
5 .	6.7	6.5	5.5
6	5.8	5.2	5.0
7	5.6	5.1	5.2
8	6.0	5.8	6.0
9	5.5	4.9	5.7
10	4.3	6.4	6.3
11	6.2	6.9	5.0
12	6.7	7.1	6.2

(i) Plot the sample standard deviations against the sample numbers

(ii) Draw the s-chart and comment on the results.

Qn.5 (a) Define the following terms as applied to SQC

- (i) OC curve
- (ii) Producers risk
- (iii) Consumers risk
- (iv) Acceptance sampling

(b)A firm purchases diskettes from diskettes international. The diskettes are packed in lots of 1000 each. The manager has agreed to accept lots with 10% or fewer defective diskettes. He has directed his inspection department to select a sample of 20 diskettes and examine them carefully. He will accept the lot if it has 2 or fewer defectives in the sample. Develop an OC curve for this inspection plan. What is the probability of accepting a lot that is 10% defective?

END