Solutions to L3 Calculus Differentiation Exam 3

Alexander Elzenaar

16 November 2017

Question One

Part (a)

i. $f'(x) = -\frac{1}{2\sqrt{x}}e^{-\sqrt{x}}$ (or accept in form with indices) (1 mark)

ii.
$$g'(x) = \frac{\frac{2}{3} \ln x(x+1)^{-2/3} - \frac{2}{x}(x+1)^{1/3}}{\ln^2 x}$$
 (or simplified) (1 mark)

Part (b)

i. $v_x(t) = 2\cos 2t$, $v_y(t) = (1 + 2\cos 2t)\cos(t + \sin 2t)$ so

$$v(t) = (2\cos 2t, (1 + 2\cos 2t)\cos(t + \sin 2t))$$

(3 marks)

ii.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(1+2\cos 2t)\cos(t+\sin 2t)}{2\cos 2t}$$

This derivative represents the instantaneous change in the y-ordinate of the particle as its x-ordinate varies. (3 marks)

Question Two

Part (a)

First, we have $\frac{dy}{dx}5y^4 + 8xy + 4x^2\frac{dy}{dx} - 3x^2 + 6x^2y + 2x^3\frac{dy}{dx} = 0$, so it follows that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{8xy + 3x^2 + 6x^2y}{5y^4 + 4x^2 + 2x^3}$$

and at the given point the tangent line has slope $m = \frac{37}{29}$. Hence the tangent line is described by

$$(y-1) = \frac{37}{29}(x+5) \Rightarrow y = \frac{37}{29}x + \frac{214}{19}.$$

(3 marks)

Part (b)

i. We have $\frac{\mathrm{d}V}{\mathrm{d}t}=-0.2$. Then $\frac{R}{r}=\frac{H}{h}$ so $r=\frac{Rh}{H}$ and $V(h)=\frac{\pi}{3}r^2h=\frac{R^2\pi}{3H^2}h^3$. Hence $\frac{\mathrm{d}V}{\mathrm{d}h}=\frac{R^2\pi}{H^2}h^2$, $\frac{\mathrm{d}h}{\mathrm{d}t}=-\frac{0.2H^2}{R^2h^2\pi}$, so at h=3 the depth of water is decreasing at a rate of $0.0442\,\mathrm{m\,s^{-1}}$. (3 marks)

ii. Let the rate of pumping be k. We now have $\frac{\mathrm{d}V}{\mathrm{d}t} = k - 0.2$, so $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{H^2(k - 0.2)}{R^2h^2\pi}$ and at $h = 2, \ 0.1 = 0.4974(k - 0.2)$ and $k = 0.40 \, \mathrm{m}^3 \, \mathrm{s}^{-1}$. (2 marks)

Question Three

Part (a)

Since $\varphi(x)$ is undefined for all x < 0, we cannot take the limit $\lim_{x\to 0} \varphi(x)$ as the function cannot tend to a single value from both sides. (2 marks)

Part (b)

Let the three sides of the triangle be x, $\frac{1}{2}(P-x)$, and $\frac{1}{2}(P-x)$. Then the area of the triangle is $A = \frac{x}{4}\sqrt{\frac{1}{4}(P-x)^2 - x^2} = \frac{x}{8}\sqrt{P^2 - 2Px - 8x^2}$. It follows that $\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{1}{8}\sqrt{P^2 - 2Px - 8x^2} + \frac{-2P - 16x}{2\sqrt{P^2 - 2Px - 8x^2}}$. Looking for stationary points, we have $\frac{1}{8}\sqrt{P^2 - 2Px - 8x^2} = \frac{2P + 16x}{2\sqrt{P^2 - 2Px - 8x^2}}$ and $P^2 - 2Px - 8x^2 = 8P + 64$; hence

$$x = -\frac{2P \pm \sqrt{4P^2 + 32(P^2 - 8P - 64)}}{16} = -\frac{P \pm \sqrt{9P^2 - 64P - 256)}}{8}$$

Part (c)

Profit P is income minus costs. Total income is Dc, total cost is $5 + \frac{5D}{2}$, so:

$$P = D\left(c - \frac{5}{2}\right) - 5 = 30\left(c - \frac{5}{2}\right)e^{-c/2} - 5$$

Taking the derivative, $\frac{dP}{dc} = 30e^{-c/2} - 15\left(c - \frac{5}{2}\right)e^{-c/2}$. Hence $30 = 15\left(c - \frac{5}{2}\right)$ and c = \$4.50. (3 marks)