Analisi Matematica T-1

Urbinati Cristian

22/10/2018

Il seguente documento apporta solo alcune correzioni e rivede alcune parti di un precedente lavoro di Giorgio Renzi: https://github.com/gioggio/uni-notes/tree/master/Analisi Matematica T-1

e-mail: cristian.urbinati@studio.unibo.it

Altro: https://github.com/urbinaticri/Unibo_computerEngineeringNotes

Materiale distribuito con licenza Creative Commons

Attribuzione - Non commerciale - Condividi allo stesso modo 2.0 Italia (CC BY-NC-SA 2.0 IT)

1 Relazioni

1.1 Prodotto cartesiano

Definizione Siano $A \in B$ due insiemi. L'insieme delle coppie ordinate (a, b), con $a \in A \in B$, si chiama **prodotto cartesiano** tra $A \in B$ e si indica con

$$A \times B := (a, b) \mid a \in A, b \in B$$

1.2 Relazioni

Definizione Una proprietà \mathcal{A} definita in $S \times T$ è detta **relazione** tra S e T; diremo che $s \in S$ è in relazione con $t \in T$ se si ha $\mathcal{A}(s,t)$ vera.

Data una relazione \mathcal{R} :

 $\mathcal{D}om(R) = \{a \in A \mid a \text{ è in relazione tramite } \mathcal{R} \text{ con almeno un elemento di } B\} \subseteq S$

 $Cod(R) = \{b \in B \mid b \text{ è in relazione tramite } \mathcal{R} \text{ con almeno un elemento di } A\} \subseteq T$

$$\mathcal{G}raf(R) = \{(a,b) \in A \times B \mid \mathcal{R}(a,b) \text{ è vera}\} \subseteq A \times B$$

1.2.1 Relazioni binarie

Definizione Una relazione \mathcal{R} tra S e S (cioè una proprietà che mette in relazione tra loro elementi di S), è detta **relazione binaria** in S. Sia \mathcal{R} una relazione binaria; diremo: - $\mathcal{R}(x,y)$ è **riflessiva** se $\forall x \in S$ $\mathcal{R}(x,x)$ è vera - $\mathcal{R}(x,y)$ è **simmetrica** se $\forall x,y \in S$ $\mathcal{R}(x,y)$ vera \Longrightarrow $\mathcal{R}(y,x)$ vera - $\mathcal{R}(x,y)$ è **antisimmetrica** se $\forall x,y \in S$ $\mathcal{R}(x,y)$ vera e $\mathcal{R}(y,x)$ vera \Longrightarrow $x=y-\mathcal{R}(x,y)$ è **transitiva** se $\forall x,y,z \in S$ $\mathcal{R}(x,y)$ vera e $\mathcal{R}(y,z)$ vera \Longrightarrow $\mathcal{R}(x,z)$

1.2.2 Relazioni di equivalenza

La relazione binaria \mathcal{R} su A si dice **relazione di equivalenza** se è riflessiva, simmetrica e transitiva. La relazione di equivalenza si indica con il simbolo \sim .

1.2.3 Relazioni d'ordine

Definizione La relazione binaria \mathcal{R} su A si dice **relazione** d'ordine se è riflessiva, antisimmetrica e transitiva. Alcuni esempi di relazione d'ordine sono $<, \leq, >, \geq$.

Definizione Una relazione d'ordine si dice totale se

$$\forall x, y \in A \text{ si ha } \mathcal{R}(x, y) \text{ oppure } \mathcal{R}(y, x)$$

cioè, comunque si fissino due elementi di A, essi sono confrontabili. Altrimenti la relazione d'ordine è detta parziale.

Indichiamo con (R, \leq) l'insieme R ordinato con la relazione \leq . Legge di tricotomia: $\forall x, y \in R$ vale solo una delle seguenti possibilità :

- x < y
- $\bullet x > y$
- $\bullet \ x = y$

2 Massimo e minimo

Definizione Sia $A \subset R$ non vuoto. m si dice **massimo** (risp. **minimo**) di A se:

- $m \in A$
- $m \ge x$ (risp. $m \le x$) $\forall x \in A$

Se m esiste, usiamo la notazione: $m = \max A$ (risp. $m = \min A$)

Proposizione Il minimo e il massimo se esistono sono unici.

3 Maggiorante e minorante

Definizione Sia $A \subset R$ non vuoto. $m \in R$ si dice **maggiorante** (risp. **minorante**) di A se: $m \ge x$ (risp. $m \le x$) $\forall x \in A$ Se A possiede un maggiorante (risp. minorante), allora **ne possiede infiniti**. Il massimo di A è un maggiorante. Il minimo di A è un maggiorante.

4 Insieme superiormente (inferiormente) limitato

Definizione Un insieme $A \subset R$ non vuoto che ammette maggiorante (risp. minorante) si dice **superiormente limitato** (risp. inferiormente limitato).

Un insieme superiormente e inferiormente limitato si dice insieme limitato.

5 Estremo superiore ed estremo inferiore

Definizione Sia $A \subset R$ un insieme superiormente limitato. Il minimo dei maggioranti si dice **estremo superiore** di A e si indica con sup A:

$$\sup A = \min\{y \in R \mid y \ge x, \forall x \in A\}$$

Definizione Sia $A \subset R$ un insieme inferiormente limitato. Il massimo dei minoranti si dice **estremo inferiore** di A e si indica con inf A:

$$\inf A = \max\{y \in R \mid y \le x, \forall x \in A\}$$

Teorema (R, \leq) è un insieme totalmente ordinato e completo, cioè $\forall A \in R$ inferiormente limitato, l'insieme M dei suoi minoranti ha massimo.

Proposizione Ogni sottoinsieme di R superiormente limitato (risp. inferiormente limitato) ammette estremo superiore (risp. estremo inferiore).

Definizione Sia $A \subseteq R$:

- se A non possiede maggioranti, diremo che A è un insieme non superiormente limitato sup $A = +\infty$
- se A non possiede minoranti, diremo che A è un insieme non inferiormente limitato inf $A = -\infty$
- $\bullet\,$ se A è limitato sia inferiormente che superiormente, diremo che A è limitato.

Proposizione Ogni sottoinsieme di R ammette estremo superiore e inferiore (finiti o non finiti)

6 Insiemi N, Z, Q, R

6.1 Intervalli

Definizione Siano $a, b \in R$

• Intervallo limitato e chiuso

$$[a,b] = \{x \in R \mid a \le x \le b\}$$

 $\bullet\,$ Intervallo superiormente non limitato e chiuso

$$[a,+\infty[=\{x\in R\mid x\geq a\}$$

 $\bullet\,$ Intervallo inferiormente non limitato e chiuso

$$]-\infty,b] = \{x \in R \mid x \le b\}$$

• Intervallo limitato e aperto

$$]a,b[=\{x \in R \mid a < x < b\}$$

• Intervallo non superiormente limitato e aperto

$$]a,+\infty[=\{x\in R\mid x>a\}$$

• Intervallo non inferiormente limitato e aperto

$$] - \infty, b[= \{x \in R \mid x < b\}$$

 $\bullet\,$ Intervallo chiuso a sinistra e aperto a destra

$$[a, b] = \{x \in R \mid a \le x < b\}$$

• Intervallo chiuso a destra e aperto a sinistra

$$]a,b] = \{x \in R \mid a < x \leq b\}$$

6.2 Proprietà degli insiemi

Proprietà di densità Q è denso in R, ovvero $\forall x \in R \ \forall \epsilon > 0 \ \exists q \in Q \ \text{tale che} \ |x - q| < \epsilon$

Definizione Sia $A \subseteq R$. Diremo che A è un **insieme finito** se esiste $k \in N$ e $f: \{1, 2, ..., k\} \xrightarrow{s_H} A$.

Osservazione Il numero degli elementi k dell'insieme è detto cardinalità card(A) = #A = k

Definizione Sia $A \subseteq R$. Diremo che A è infinito numerabile se esiste $f: N \xrightarrow{1-1} A$

Teorema Z e Q sono insiemi infiniti numerabili.

Dimostrazione (Z è infinito numerabile) è possibile costruire la funzione $f: N \xrightarrow{1-1}_{su} Z$

$$f = \begin{cases} -\frac{n}{2} & \text{if } n \text{ è } pari\\ \frac{n+1}{2} & \text{if } n \text{ è } dispari \end{cases}$$

Teorema (di Cantor) L'insieme [0,1] non è numerabile.

Dimostrazione Supponiamo per assurdo che possiamo formare una lista in cui contiamo tutti gli elementi di [0, 1]:

$$x_1 = 0.a_1 1 a_1 2 a_1 3 a_1 4 \dots$$

$$x_2 = 0.a_2 1a_2 2a_2 3a_2 4\dots$$

$$x_2 = 0.a_3 1a_3 2a_3 3a_3 4\dots$$

Adesso possiamo costruire un numero

$$b = 0.b_1b_2b_3b_4...$$

tale che

$$b_k \neq a_k k, \ b_k \in \{1, 2, 3, 4, 5, 6, 7, 8\}, \ k \ge 1$$

Siccome ogni k-esima cifra di b è diversa dalla k-esima cifra di x_k per costruzione, e avendo escluso la possibilità che b sia la rappresentazione equivalente di ciascun x_k , poiché b non può terminare con infiniti 0 o 9, allora b non è nella lista e siamo arrivati ad un assurdo.

Teorema R è non numerabile, come anche l'insieme dei numeri irrazionali $R \setminus Q$.

Definizione Un insieme $A \subset R$ dotato di minimo e tale che $x \in A \implies x+1 \in A$ è detto **induttivo**

Proposizione L'insieme N dei numeri naturali possiede minimo, è superiormente non limitato ed è il più piccolo insieme induttivo.

7 Funzioni

Definizione Una funzione dall'insieme A all'insieme B è una relazione di $A \times B$ tale che: - $\mathcal{D}om(f) = A$ - $\forall x \in A \exists ! y \in B$ tale che "y è in relazione con x tramite f, cioè g = fx

e si indica con $f: A \to B$

$$Graf(f) = \{(x, y), x \in Dom(A), y = f(x)\} = \{(x, f(x)), x \in A\}$$

7.1 Iniettività e suriettività

Definizione Siano A e B insiemi e $f:A\to B$ una funzione

- Diremo che f è **iniettiva** (1-1) se $\forall x_1, x_2 \in A \text{ con } x_1 \neq x_2 \text{ si ha } f(x_1) \neq f(x_2),$
- Diremo che f è **suriettiva** (su) se $\forall y \in B \ \exists x \in A \ \text{tale che } y = f(x)$
- Diremo che f è **biiettiva** (o **biunivoca**) se è sia iniettiva che suriettiva, ovvero $\forall y \in B \; \exists ! x \in A \; \text{tale che} \; y = f(x)$

7.2 Immagine e controlimmagine tramite f

Definizione Siano $A, B, C \subset R, f : A \to B \in C \subset B$.

L'insieme immagine di A tramite f è l'insieme dei valori della funzione $f(x) \in B$ t.c. $f(A) = \mathcal{I}m(f) = \{y \in B \mid \exists x \in A \ e \ y = f(x)\}$

L'insieme controimmagine di C tramite f è l'insieme dei valori di x tali che $f(x) \in C$ t.c. $f^{-1}(C) = \{x \in A \mid f(x) \in C\}$

7.3 Funzione composta

Definizione Siano $f:A\to B$ e $g:B\to C$ funzioni. La funzione $h:x\in A\to g(f(x))\in C$ si chiama **funzione composta** di g e f e si indica con $g\circ f$.

Osservazione $f(A) \subseteq \mathcal{D}om(B)$

7.4 Funzione inversa

Definizione Sia $f: A \xrightarrow[su]{1-1} B$. Definiamo la **funzione inversa** di $f, f^{-1}: B \xrightarrow[su]{1-1} A$, l'unica funzione che verifica le proprietà :

- $\forall x \in A : f^{-1}(f(x)) = x$
- $\forall y \in B : f(f^{-1}(x)) = y$

7.5 Funzioni monotone

Definizione Sia $A \subseteq R$. $f: A \to R$ è:

- (monotona) crescente se $\forall x_1, x_2 \in A \text{ con } x_1 < x_2 \text{ si ha } f(x_1) \leq f(x_2)$
- strettamente crescente se $\forall x_1, x_2 \in A \text{ con } x_1 < x_2 \text{ si ha } f(x_1) < f(x_2)$
- (monotona) decrescente se $\forall x_1, x_2 \in A \text{ con } x_1 < x_2 \text{ si ha } f(x_1) \geq f(x_2)$
- strettamente decrescente se $\forall x_1, x_2 \in A \text{ con } x_1 < x_2 \text{ si ha } f(x_1) > f(x_2)$

Teorema Sia $A \subseteq R$ e $f: A \to R$ strettamente monotona. Allora

- 1. f è iniettiva da A in R
- 2. $\exists f^{-1}: f(A) \xrightarrow[su]{1-1} A$ strettamente monotona nello stesso verso

Teorema (monotonia delle funzioni composte) Siano $A,B,C \subset R$ e $f:A \to B$ e $g:B \to C$ funzioni monotone. Allora $g \circ f$ è monotona. In particolare:

- se f e g sono entrambe crescenti o decrescenti, allora $g \circ f$ è crescente
- se f è crescente e g decrescente o viceversa, allora $g \circ f$ è decrescente

7.6 Funzioni limitate

Definizione $f: A \to R$ si dice superiormente limitata su A (risp. inferiormente limitata) se $f(A) = \{y \in R \mid \exists x \in A \text{ t.c } f(x) = y\}$ è superiormente limitato (risp. inferiormente limitato)

o equivalentemente $f(x) \leq m$ (risp. $f(x) \geq m$), $\forall x \in A$

Proposizione Una funzione limitata superiormente e inferiormente è detta limitata.

Definizione Sia $f: A \to R$. Diciamo che f ha **massimo** se l'insieme f(A) ha massimo, cioè $\exists x_0 \in A$ tale che $f(x) \leq f(x_0)$, $\forall x \in A$

Diremo che $f(x_0)$ è il massimo per A e si scrive $\max_{x\in A} f(x) = f(x_0)$ e x_0 è un **punto di massimo**

Definizione Sia $f: A \to R$. Diciamo che f ha **minimo** se l'insieme f(A) ha minimo, cioè $\exists x_0 \in A$ tale che $f(x) \ge f(x_0)$, $\forall x \in A$ Diremo che $f(x_0)$ è il minimo per A e si scrive $\min_{x \in A} f(x) = f(x_0)$ e x_0 è un **punto di minimo**

Definizione Sia $f: A \to R$. Chiamiamo **estremo superiore** di f l'estremo superiore di f(A) e si scrive sup_A $f(x) = \sup_A f(x) = \sup_A f(x$

Definizione Sia $f: A \to R$. Chiamiamo **estremo inferiore** di f l'estremo inferiore di f(A) e si scrive $\inf_A f(x) = \inf_A f(A) \in R$ oppure $\inf_A f(x) = -\infty$

8 Limiti

Definizione Un intorno aperto di $x_o \in R$ è un intervallo aperto del tipo $]x_0 - \delta, x_0 + \delta[$ con $\delta > 0$

Definizione Sia $A \subseteq R$ con $x_0 \in R$. Diremo che x_0 è un **punto di accumulazione** per A se $\forall \delta > 0$ ($]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) \cap A \neq \emptyset$.

Ovvero per ogni intorno $]x_0 - \delta, x_0 + \delta[$ esistono punti $x \in A$ distinti da x_0 nell'intersezione di A con l'intorno $]x_0 - \delta, x_0 + \delta[$.

Osservazione Se x_0 è un punto di accumulazione per A, allora $\forall \delta > 0 \ (|x_0 - \delta, x_0 + \delta| \setminus \{x_0\}) \cap A$ contiene infiniti punti.

Teorema (di Bolzano-Weierstrass) Un insieme $A \subset R$ infinito e limitato ha almeno un punto di accumulazione.

8.1 Limiti per $x \to x_0$

Definizione (limite convergente) Sia $A \subset R$, $f: A \to R$, x_0 punto di accumulazione per A e $l \in R$. Diciamo che per $x \to x_0$ f(x) converge a l e scriviamo:

$$\lim_{x\to x_0} f(x) = l \text{ se } \forall \epsilon > 0 \ \exists \delta > 0 : \ \forall x \in A, \ x \neq x_0 \ |x-x_0| < \delta \implies |f(x)-l| < \epsilon$$

Definizione (limite divergente) Sia $A \subset R$, $f: A \to R$ e x_0 punto di accumulazione per A. Diciamo che per $x \to x_0$ f(x) diverge positivamente (risp. diverge negativamente) e scriviamo:

$$\lim_{x\to x_0} f(x) = +\infty$$
 (risp. $\lim_{x\to x_0} f(x) = -\infty$) se $\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall x\in A, \; x\neq x_0 \; f(x) > \epsilon$ (risp. $f(x) < -\epsilon$)

Osservazione Se $\lim_{x\to x_0} f(x) = +\infty$ (risp. $-\infty$) allora significa che f è non superiormente limitata (risp. non inferiormente limitata) nel suo codominio.

8.2 Limiti per $x \to \pm \infty$

Definizione Diciamo che $x_0 = +\infty$ (risp. $-\infty$) è un punto di accumulazione per A, insieme non limitato superiormente (risp. non limitato inferiormente) se $\forall \delta > 0$ $A \cap]\delta, +\infty[\neq \emptyset]$ (risp. $A \cap]-\infty, \delta[\neq \emptyset]$).

Definizione (limite convergente) Sia $A \subset R$ non superiormente limitato (risp. non inferiormente limitato), $f: A \to B$ e $l \in R$. Diciamo che per $x \to +\infty$ (risp. $-\infty$) f(x) converge a l e scriviamo:

$$\lim_{x\to +\infty} f(x) = l \text{ (risp. } \lim_{x\to -\infty} f(x) = l) \text{ se } \forall \epsilon > 0 \text{ } \exists \delta > 0: \text{ } \forall x\in A, \text{ } x>\delta \text{ (risp. } x<-\delta) \text{ } |f(x)-l|<\epsilon$$

Definizione (limite divergente) Sia $A \subset R$ non superiormente limitato (risp. non inferiormente limitato), $f: A \to R$. Diciamo che per $x \to \pm \infty$ f(x) diverge positivamente (risp. diverge negativamente) a l e scriviamo:

$$\lim_{x\to\pm\infty} f(x) = +\infty$$
 (risp. $\lim_{x\to-\infty} f(x) = -\infty$) se $\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall x \in A, \; x > \delta$ (risp. $x < -\delta$) $f(x) > \epsilon$ (risp. $f(x) < -\epsilon$)

8.3 Limite destro e limite sinistro

Definizione Siano $f: A \to R$, $A \subset R$ e $x_0 \in R$ punto di accumulazione per $A \cap]x_0, +\infty[$ (risp. $A \cap]-\infty, x_0[$). Diciamo che f ha limite destro (risp. limite sinistro) $l \in \overline{R}$ per $x \to x_0^+$ (risp. $x \to x_0^-$) se l è il limite per $x \to x_0$ di f ristretta a $A \cap]x_0, +\infty[$ (risp. $A \cap]-\infty, x_0[$) e scriviamo: $\lim_{x \to x_0^+} f(x) = l$ (risp. $\lim_{x \to x_0^-} f(x) = l$)

8.4 Teoremi e proprietà dei limiti

Osservazione Se x_0 è punto di accumulazione per A allora $\forall \overline{\delta} > 0$ x_0 è punto di accumulazione per $A_0 = A \cap]x_0 - \overline{\delta}, x_0 + \overline{\delta}[$.

- 1. **Teorema** (località del limite) Sia $f: A \to R$, $x_0 \in \overline{R}$ punto di accumulazione per A e $l \in \overline{R}$. Sia $\overline{\delta} > 0$ e $A_0 = A \cap]x_0 \overline{\delta}, x_0 + \overline{\delta}[$. Allora x_0 è un punto di accumulazione per A_0 e $\lim_{x \to x_0} f|_{A}(x) = l \iff \lim_{x \to x_0} f|_{A_0}(x) = l$
- 2. **Teorema** (locale limitatezza di f) Sia $f: A \to R$, x_0 punto di accumulazione per $A, l \in R$ e $\lim_{x \to x_0} f(x) = l$. Allora $\exists \delta > 0$ tale che f ristretta all'insieme $A \cap [x_0 \delta, x_0 + \delta]$ è una funzione limitata.

3. **Teorema** (unicità del limite) Sia $f: A \to R$ e x_0 punto di accumulazione per A. Allora il limite $\lim_{x \to x_0} f(x)$ se esiste è unico.

Osservazione In particolare se f(x) è non superiormente o non inferiormente limitata, allora $\lim_{x\to x_0} f(x)$ o non esiste, o se esiste non può essere finito, ovvero $l \notin R$.

Teorema Sia $f: A \to R$, x_0 punto di accumulazione per $A \cap]-\infty, x_0[$ e $A \cap]x_0, +\infty[$, $l \in \overline{R}$. Allora $\lim_{x \to x_0} f(x) = l \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^+} f(x) =$

Osservazione Se $\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x)$ oppure uno dei due limiti (destro/sinistro) non esiste allora $\lim_{x \to x_0} f(x)$.

Teorema (limiti di funzioni monotone) Sia $f: A \to R$ una funzione monotona crescente. Sia $x_0 \in]a, b[$. Allora:

1.
$$\exists \lim_{x \to x_0^+} f(x) = \inf_{x \in]x_0, b]} f(x)$$

2.
$$\exists \lim_{x \to x_0^-} f(x) = \sup_{x \in [a, x_0[} f(x)$$

3.
$$\exists \lim_{x \to a^+} f(x) = \inf_{x \in]a,b]} f(x)$$

4.
$$\exists \lim_{x \to b^{-}} f(x) = \sup_{x \in [a,b[} f(x)$$

Teorema Siano $f, g: A \to R$ e $x_0 \in R$ punto di accumulazione per A (oppure $x_0 = +\infty$ e A non superiormente limitato, oppure $x_0 = -\infty$ e A non inferiormente limitato), $l, m \in \overline{R}$. Supponiamo che $\lim_{x \to x_0} f(x) = l$ e $\lim_{x \to x_0} g(x) = m$. Allora:

1. se
$$f(x) \leq g(x) \ \forall x \in A \text{ si ha } l \leq m$$

2. se
$$l < m \exists \delta > 0$$
 tale che $f(x) < g(x) \forall x \neq x_0 \ x \in]x_0 - \delta, x_0 + \delta[\cap A]$

Teorema (del confronto) Siano $f, g, h : A \to R$ e $x_0 \in R$ punto di accumulazione per A (oppure $x_0 = +\infty$ e A non superiormente limitato, oppure $x_0 = -\infty$ e A non inferiormente limitato). Supponiamo che

1.
$$f(x) \le h(x) \le g(x) \ \forall x \in A$$

2.
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l$$
, con $l \in \overline{R}$

Allora $\exists \lim_{x \to x_0} h(x) = l$

8.5 Proprietà algebriche dei limiti

Teorema Siano $f,g:A\to R$, x_0 punto di accumulazione per A (oppure $x_0=+\infty$ e A non superiormente limitato, oppure $x_0=-\infty$ e A non inferiormente limitato). Siano $l,m\in R$ e $\lim_{x\to x_0} f(x)=l$ e $\lim_{x\to x_0} g(x)=m$. Allora:

- 1. La funzione somma $f \pm g$ ha limite $l \pm m$ per $x \to x_0$, ovvero $\lim_{x \to x_0} [f(x) \pm g(x)] = l \pm m$
- 2. La funzione prodotto $f \cdot g$ ha limite $l \cdot m$ per $x \to x_0$, ovvero $\lim_{x \to x_0} [f(x) \cdot g(x)] = l \cdot m$
- 3. Se $m \neq 0$ allora $\exists \overline{\delta} > 0$ tale che $g(x) \neq 0 \ \forall x \in A \cap]x_0 \delta, x_0 + \delta[, \ x \neq x_0]$
- 4. Se $m \neq 0$ allora la funzione $\frac{f}{g}$ ha limite $\frac{l}{m}$ per $x \to x_0$, cioè $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l}{m}$
- 5. Se $c \in R$ è una costante, allora $\lim_{x \to x_0} [c \cdot f(x)] = c \cdot l$.

Definizione $f: A \to R$ con $A \subset R$ è **infinitesimo** $(x \to x_0)$ se $\lim_{x \to x_0} f(x) = 0$ e f è **infinito** $(x \to x_0)$ se $\lim_{x \to x_0} |f(x)| = +\infty$

Teorema (proprietà algebriche degli infinitesimi) Siano $A \subseteq R$, $f,g:A \to R$, x_0 punto di accumulazione per A (oppure $x_0 = +\infty$ e A non superiormente limitato, oppure $x_0 = -\infty$ e A non inferiormente limitato) e $\lim_{x \to x_0} f(x) = 0$. Allora:

- 1. Se $\exists M > 0$ tale che |g(x)| < M, $\forall x \in A$ allora $\lim_{x \to x_0} [f(x) \cdot g(x)] = 0$
- 2. Se f(x) è positiva (risp. negativa) $\forall x \in A$ allora $\frac{1}{f(x)}$ è definita e $\lim_{x \to x_0} \frac{1}{f(x)} = +\infty$ (risp. $-\infty$).

Teorema (proprietà algebriche degli infiniti) Siano $A \subseteq R$, $f, g: A \to R$, x_0 punto di accumulazione per A (oppure $x_0 = +\infty$ e A non superiormente limitato, oppure $x_0 = -\infty$ e A non inferiormente limitato) e $\lim_{x \to x_0} f(x) = +\infty$. Allora:

- 1. Se $\exists M \in R$ tale che $g(x) \geq M$, $\forall x \in A$, allora $\lim_{x \to x_0} [f(x) + g(x)] = +\infty$
- 2. Se $\exists M \in R, \ M > 0$ tale che $g(x) \geq M, \ \forall x \in A, \ \text{allora} \ \lim_{x \to x_0} \left[f(x) \cdot g(x) \right] = +\infty$
- 3. Se $\exists M \in R, \ M < 0$ tale che $g(x) \leq M, \ \forall x \in A,$ allora $\lim_{x \to x_0} \left[f(x) \cdot g(x) \right] = -\infty$
- 4. $\lim_{x \to x_0} \frac{1}{f(x)} = 0.$

Analogamente per $\lim_{x \to x_0} f(x) = -\infty$:

- 1. Se $\exists M \in R$ tale che $g(x) \leq M, \ \forall x \in A,$ allora $\lim_{x \to x_0} \left[f(x) + g(x) \right] = -\infty$
- 2. Se $\exists M \in R, \ M > 0$ tale che $g(x) \geq M, \ \forall x \in A, \ \text{allora} \lim_{x \to x_0} \left[f(x) \cdot g(x) \right] = -\infty$
- 3. Se $\exists M \in R, \ M < 0$ tale che $g(x) \leq M, \ \forall x \in A,$ allora $\lim_{x \to x_0} \left[f(x) \cdot g(x) \right] = +\infty$
- 4. $\lim_{x \to x_0} \frac{1}{f(x)} = 0$

8.6 Simboli di Landau

Definizione (o-piccolo)

- f si dice **o-piccolo di 1**, $(x \to x_0)$, e si scrive f(x) = o(1), $(x \to x_0)$ se $\lim_{x \to x_0} f(x) = 0$
- f si dice **o-piccolo di g**, $(x \to x_0)$, e si scrive f(x) = o(g(x)), $(x \to x_0)$ se $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$. Se f(x) = o(g(x)), $(x \to x_0)$, f si dice **trascurabile** rispetto a g, $(x \to x_0)$.

Definizione (equivalenza) f si dice **equivalente** a g, $(x \to x_0)$, e si scrive $f(x) \approx g(x)$, $(x \to x_0)$ se $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

Teorema Siano $f, g: A \to R$. $f(x) \approx g(x), (x \to x_0) \iff f(x) = g(x) + o(g(x)), (x \to x_0)$

Teorema Se $f_1 \approx f_2$ e $g_1 \approx g_2$, $(x \to x_0)$, allora $f_1 g_1 \approx f_2 g_2$, $(x \to x_0)$; $\frac{f_1}{g_1} \approx \frac{f_2}{g_2}$, $(x \to x_0)$

Teorema (principio di sostituzione) $\lim_{x\to x_0} \frac{f+o(f)}{g+o(g)} = \lim_{x\to x_0} \frac{f}{g}$

Proposizione Siano $f, g, h : A \to R$. Se $l + m \neq 0$ e

$$\begin{cases} f(x) \approx lh(x), & (x \to x_0) \\ g(x) \approx mh(x), & (x \to x_0) \end{cases} \implies [f(x) + g(x)] \approx (l+m)h(x), & (x \to x_0)$$

8.7 Funzioni continue

Definizione Siano $A \subseteq R$, $f: A \to R$. Diremo che f è continua in $x_0 \in A$ se $\forall \epsilon > 0 \; \exists \delta > 0 : |f(x) - f(x_0)| < \epsilon \; \forall x \in A \cap]x_0 - \delta, x_0 + \delta[$

- 1. Se x_0 è un punto isolato, quindi non di accumulazione, allora f è banalmente continua in x_0
- 2. Se x_0 è un punto di accumulazione, allora la definizione è equivalente a

Proposizione f è continua $\iff \lim_{x\to x_0} f(x) = f(x_0)$

Definizione $f: A \to R$, $A \subset R$ è una funzione continua su A se f è continua in tutti i punti di A.

Teorema (continuità della funzione composta) Siano $A, B \subseteq R, f : A \to B, g : B \to R$. Se f è continua in $x_0 \in A$ e g è continua in $y_0 = f(x_0)$, allora $f \circ g : A \to R$ è continua in x_0 .

Teorema (permanenza del segno) Se $f: A \to R$ è continua in $x_0 \in A$ e $f(x_0) > 0$ (risp. $f(x_0) < 0$) allora $\exists \delta > 0: f(x) > 0$ (risp. f(x) < 0) $\forall x \in A \cap]x_0 - \delta, x_0 + \delta[$

Teorema (di Weierstrass) Sia $f:[a,b] \to R$ continua in [a,b]. Allora $\exists \max_{[a,b]} f \in \exists \min_{[a,b]} f$.

Osservazione Il teorema è valido anche per $A = \bigcup_{i=1}^{k} [a_i, b_i]$ ed è valido in generale se A è un insieme limitato e chiuso.

Teorema (degli zeri) Sia $f : [a, b] \to R$ continua in [a, b] e tale che f(a) < 0 < f(b). Allora $\exists c \in]a, b[$ tale che f(c) = 0.

Teorema (dei valori intermedi) Sia $f:[a,b]\to R$ continua in [a,b]. Allora f assume tutti i valori compresi tra f(a) e f(b). $[f(a),f(b)]=\{y\in R\mid \exists x\in A,\ y=f(x)\}=\mathcal{I}m_{[a,b]}(f)$

Teorema (di Bolzano) Siano $I \subset R$ intervallo e $f: I \to R$ continua in I. Allora $f(I) = \mathcal{I}m(f)$ è un intervallo.

Teorema (funzioni monotone e continuità) Siano $I \subset R$ intervallo e $f: I \to R$ monotona. Allora $f \in continua \iff f(I) \in un intervallo$.

Teorema (continuità funzione inversa) Siano $I \subset R$ intervallo e $f: I \to R$ continua e strettamente monotona in I. Allora $f^{-1}: f(I) \to I$ è strettamente monotona e continua nell'intervallo f(I).

Corollario (di Bolzano-Weierstrass) Se $f:[a,b]\to R$ continua in [a,b] allora $f([a,b])=[\min_{[a,b]}f,\max_{[a,b]}f]$.

9 Derivazione

Definizione Sia $f:[a,b]\to R, x_0\in[a,b]$. Chiamiamo rapporto incrementale di f rispetto a x_0

$$R(x) = \frac{f(x) - f(x_0)}{x - x_0}, \quad R: [a, b] \setminus \{x_0\} \to R$$

Definizione Siano $f: A \to R$ e $x_0 \in A$. Posto $f'(x_0) = \frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$, $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) \in \overline{R}$. Se $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) \in R$ si dice che f è derivabile in x_0 .

Teorema Sia $f:[a,b]\to R$ derivabile in $x_0\in R$. Allora f(x) è continua in x_0 .

Definizione Sia $f: A \to R$ e $x_0 \in A$. Supponiamo che x_0 sia punto di accumulazione per $A \cap]x_0, +\infty[$ e $A \cap]-\infty, x_0[$. Chiameremo **derivata destra** di $f(x_0)$, se esiste, il limite destro del rapporto incrementale:

$$f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

Analogamente chiamaremo derivata sinistra, se esiste, il limite sinistro del rapporto incrementale:

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$

Definizione Sia f una funzione continua in x_0 . Se esistono finite (o una finita e una infinita), ma distinte, le derivata destra e sinistra, allora si dice che f ha un **punto angoloso** in x_0 .

Definizione Sia f una funzione continua in x_0 . Se esistono infinite e di segno opposto le derivate destra e sinistra, allora si dice che f ha una **cuspide** in x_0 .

Definizione Sia f una funzione continua in x_0 . Se $|f(x)| = +\infty$ allora si dice che f ha un punto di flesso a tangente verticale in x_0 .

9.1 Regole di derivazione

Teorema (linearità della funzione derivata) Siano $f, g : [a, b] \to R$ derivabili in $x_0 \in [a, b]$ e $\lambda, \mu \in R$. Allora $\lambda f + \mu g$ è derivabile in x_0 e la derivata è:

$$\frac{\mathrm{d}}{\mathrm{d}x}[\lambda f + \mu g](x_0) = \lambda f'(x) + \mu g'(x)$$

Teorema (Regola di Leibniz) Siano $f, g : [a, b] \to R$ derivabili in $x_0 \in [a, b]$. Allora la funzione $f \cdot g$ è derivabile in x_0 e:

$$\frac{\mathrm{d}}{\mathrm{d}x}(f \cdot g)(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

Teorema (funzione reciproca) Sia $f:[a,b]\to R$ derivabile in $x_0\in[a,b]$ e $f(x_0)\neq 0$. Allora $\exists \frac{1}{f}:]x_0-\delta, x_0+\delta[\cap[a,b]\to R$ derivabile in x_0 e:

$$\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{f})(x_0) = -\frac{f'(x_0)}{f^2(x_0)}$$

Corollario (rapporto di funzioni) Siano $f, g : [a, b] \to R$ derivabili in $x_0 \in [a, b]$ e $g(x_0) \neq 0$. Allora la funzione $\frac{f}{g} :]x_0 - \delta, x_0 + \delta [\cap [a, b] \to R$ derivabile in x_0 e:

$$\frac{\mathrm{d}}{\mathrm{d}x}(\frac{f}{g})(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Teorema (funzione composta) Supponiamo $I, J \in R$ intervalli, $x_0 \in I$, $f: I \to J$ derivabile in $x_0 \in g: J \to R$ derivabile in $y_0 = f(x_0) \in J$. Allora la funzione composta $g \circ f: I \to R$ è derivabile in x_0 e:

$$\frac{\mathrm{d}}{\mathrm{d}x}(g \circ f)(x_0) = \frac{\mathrm{d}g}{\mathrm{d}y}(f(x_0))\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$$

Teorema (funzione inversa) Sia $I \subseteq R$ intervallo e $f: I \xrightarrow{1-1}_{su} R$ strettamente monotona e continua (quindi $\exists f^{-1}: f(I) \xrightarrow{1-1}_{su} I$ strettamente monotona e continua). Se $\exists f'(x_0) \neq 0$ allora:

$$(f^{-1})'(y_0) = \frac{1}{\frac{\mathrm{d}f}{\mathrm{d}x}(f^{-1}(y_0))}$$

Teorema (di Lagrange) Sia $f:[a,b] \to R$ continua in [a,b] e derivabile in [a,b]. Allora $\exists c \in]a,b[$ tale che

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Teorema (di Rolle) Sia $f : [a, b] \to R$ continua in [a, b] e derivabile in]a, b[. Se f(a) = f(b) allora necessariamente $\exists c \in]a, b[$ tale che:

$$f'(c) = 0$$

Teorema (di Fermat) Sia $f:]a, b[\to R$. Se $c \in]a, b[$ è un punto di massimo o di minimo per $f \in \exists f'(c)$ allora necessariamente f'(c) = 0.

Teorema (di De l'Hôpital) Siano $f, g : [a, b] \to R$ derivabili in [a, b]. Se:

- 1. $\lim_{x \to a^+} f(x) = 0 = \lim_{x \to a^+} g(x)$
- 2. g'(x) ha segno costante $\forall x \in]a,b[$ (è sufficiente che non cambi di segno in un insieme con punti di accumulazione)
- 3. $\exists \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \in \overline{R}$

Allora $\exists \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$

Teorema (di De l'Hôpital) Siano $f, g : [a, b] \to R$ derivabili in]a,b[. Se

- 1. $\lim_{x \to a^+} |f(x)| = +\infty = \lim_{x \to a^+} |g(x)|$
- 2. g'(x) ha segno costante $\forall x \in]a,b[$ (è sufficiente che non cambi di segno in un insieme con punti di accumulazione)
- 3. $\exists \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \in \overline{R}$

Allora $\exists \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$

Corollario Sia $f:[a,b]\to R$ continua in [a,b] e derivabile in]a,b[. Se $\exists \lim_{x\to a^+} f'(x)=l\in \overline{R}$ allora $\exists f'(a)=l$

Definizione Siano $f: I \to R$, I intervallo e f' la derivata di f. Chiamiamo I' l'insieme dei punti di I in cui esiste f'. $I' = \{x \in I \mid \exists f'(x) \in R\}$

Possiamo ora definire la **derivata seconda** di f, ovvero la derivata di $f': I' \to R$, in x_0 , se esiste, $f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0}$

Più in generale, se $f, f', f'', ... f^{(k+1)} : I \to R$ e $x_0 \in I$ possiamo definire la derivata k-esima di f in $x_0, f^k(x_0) = \lim_{x \to x_0} \frac{f^{(k-1)}(x) - f^{(k-1)}(x)}{x - x_0}$

Definizione Definiamo la classe di una funzione da $I \subset R$ intervallo a R di ordine k come l'insieme delle funzioni di variabile reale derivabili con continuità k volte, e scriviamo:

$$\mathcal{C}^{(k)}(I,R) = \{ f : I \to R \mid f \text{ continua in } I \}$$

Osservazione $\mathcal{C}^{(\infty)}(I,R)...\mathcal{C}^{(1)}(I,R)\mathcal{C}^{(0)}(I,R)$

10 Polinomi di Taylor

Definizione Sia $f: I \to R$, I intervallo, derivabile n volte in $x_0 \in I$. Chiamiamo **polinomio** di **Taylor** di f di ordine n e punto iniziale x_0 il polinomio

$$T_n(x) = f(x_0) + f'(x)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!}(x - x_0)^n = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

Teorema (formula di Taylor con resto di Peano) Sia $f: I \to R$, I intervallo, derivabile n volte in $x_0 \in I$. Allora

$$f(x) = \left[\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k\right] + o((x - x_0)^k) \qquad (x \to x_0)$$

Teorema (formula di Taylor con resto di Lagrange) Siano $f \in \mathcal{C}^{(n+1)}(I,R)$, $x,x_0 \in I$. Allora $\exists c \in I$ compreso tra x_0 e x tale che:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + f^{(n+1)}(c) \frac{(x - x_0)^{n+1}}{(n+1)!}$$

10.1 Proprietà del polinomio di Taylor

Proposizione Sia $f \in \mathcal{C}^{(n)}(I,R)$.

- 1. Il polinomio di Taylor di f di punto iniziale x_0 e grado minore o uguale a n è l'unico polinomio di grado $\leq n$ per il quale vale $T_n^k(x_0) = f^{(k)}(x_0)$
- 2. Derivando il polinomio di Taylor di ordine n di f si ottiene il polinomio di Taylor di grado n-1 di f: $\frac{\mathrm{d}}{\mathrm{d}x}T_n[f](x) = T_{n-1}[f'](x)$

Proposizione Se $f(x) = q_n(x) + o((x - x_0)^n)$, $(x \to x_0)$, ove $q_n(x)$ è un polinomio di grado al più n, allora necessariamente $q_n(x) = T_{n,x_0}(x)$ ove $T_{n,x_0}(x)$ è il polinomio di Taylor di f di ordine n e punto iniziale x_0 .

10.2 Formule di Taylor delle funzioni elementari

Esponenziale La funzione esponenziale ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine n, si scrive come

$$\exp(x) = \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n) \qquad (x \to 0)$$

Coseno La funzione coseno è pari e ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine 2n, si scrive come

$$\cos(x) = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + o(x^{2n+1}) \qquad (x \to 0)$$

infatti

$$D^{(k)}\cos(x) = \begin{cases} 0 & se \ k \ dispari \\ (-1)^k & se \ k \ pari \end{cases}$$

Seno La funzione seno è dispari e ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine 2n + 1, si scrive come

$$\sin(x) = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + o(x^{(2n+2)}) \qquad (x \to 0)$$

infatti

$$D^{(k)}\sin(x) = \begin{cases} 0 & \text{se } k \text{ pari} \\ (-1)^k & \text{se } k \text{ dispari} \end{cases}$$

Coseno iperbolico La funzione coseno iperbolico è pari e ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine 2n, si scrive come

$$\cosh(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) \qquad (x \to 0)$$

infatti

$$D^{(k)}\cosh(x) = \begin{cases} 0 & se \ k \ dispari \\ 1 & se \ k \ pari \end{cases}$$

Seno iperbolico La funzione seno iperbolico è dispari e ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine 2n + 1, si scrive come

$$\sinh(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{(2n+2)}) \qquad (x \to 0)$$

infatti

$$D^{(k)}\sinh(x) = \begin{cases} 0 & se \ k \ pari \\ 1 & se \ k \ dispari \end{cases}$$

 $\mathbf{Ln}(1+x)$ La funzione $\ln(1+x)$ ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0=0$, la sua formula di Taylor, di ordine n, si scrive come

$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} + o(x^n) \qquad (x \to 0)$$

 $(1+x)^{\alpha}$ La funzione $(1+x)^{\alpha}$, x > -1, $\alpha \in R$ ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine n, si scrive come

$$(1+x)^{\alpha} = \sum_{k=0}^{n} {\alpha \choose k} x^k + o(x^n) \qquad (x \to 0)$$

posto

$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1)...(\alpha - k + 1)}{k!} \quad \binom{\alpha}{0} = 1$$

 $(1+\mathbf{x})^{-1}$ La funzione $(1+x)^{-1}$, $x \neq -1$, ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine n, si ottiene da quella precedente, con $\alpha = -1$, ed è

$$(1+x)^{-1} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n), \quad (x \to 0)$$

infatti

$$\binom{-1}{k} = \frac{(-1)(-1-1)(-1-2)...(-1-k+1)}{k!} = \frac{(-1)^k (1 \cdot 2 \cdot 3 \cdot ... \cdot k)}{k!} = (-1)^k$$

Quindi il polinomio di Taylor è

$$T_{n,0}(x) = \sum_{k=1}^{n} (-1)^k x^k$$

 $(1 + x^2)^{-1}$ La funzione $(1 + x^2)^{-1}$ ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine 2n, si ottiene da quella precedente, sostituendo x con x^2 , ed è

$$(1+x^2)^{-1} = \sum_{k=0}^{n} (-1)^k x^{2k} + o(x^{2n}) \qquad (x \to 0)$$

 $(\mathbf{1} - \mathbf{x})^{-1}$ La funzione $(1 - x)^{-1}$, $x \neq -1$, ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine n, si ottiene da qualle precedente, sostituendo x con -x, ed è

$$(1-x)^{-1} = \sum_{k=0}^{n} x^k + o(x^n) \qquad (x \to 0)$$

 $(\mathbf{1} - \mathbf{x}^2)^{-1}$ La funzione $(1 - x^2)^{-1}$, $x \neq \pm 1$, ha derivate di ordine comunque elevato; scelto come punto iniziale $x_0 = 0$, la sua formula di Taylor, di ordine 2n, si ottiene da qualle precedente, sostituendo x con x^2 , ed è

$$(1 - x^2)^{-1} = \sum_{k=0}^{n} x^{2k} + o(x^{2n}) \qquad (x \to 0)$$

11 Studio qualitativo del grafico di una funzione

11.1 Comportamento asintotico

Definizione Siano $f, g:]a, +\infty[\to R \text{ diremo che } g(x) \text{ è asintotica a } f(x) \text{ (equivalentemente, } f(x) \text{ ha per asintoto } g(x)) \text{ quando } (x \to \pm \infty) \text{ se:}$

$$f(x) = g(x) + o(1) \qquad (x \to \pm \infty)$$

Definizione Diremo che f(x) ha asintoto obliquo $g(x) = ax + b \ (x \to \pm \infty)$ se esistono $a \neq 0$ e $b \in R$ tali che

$$f(x) = ax + b + o(1)$$
 $(x \to \pm \infty) \iff \begin{cases} \lim_{x \to \pm \infty} [f(x) - ax] = b \\ \lim_{x \to \pm \infty} \frac{f(x)}{x} = a \end{cases}$

Definizione Diremo che f(x) ha asintoto verticale da destra (risp. da sinistra) $(x \to a^+)$ se

$$\lim_{x \to a^+} f(x) = \pm \infty \text{ (risp. } \lim_{x \to a^-} f(x) = \pm \infty)$$

Definizione Diremo che f(x) ha asintoto orizzontale $y = c \ (x \to \pm \infty)$ se

$$\lim_{x \to +\infty} f(x) = c$$

11.2 Monotonia

Teorema (funzioni monotone e derivata prima) Supponiamo $I \subseteq R$ intervallo e $f: I \to R$ derivabile in I. Allora:

- 1. f è debolmente crescente in $I \iff f'(x) \ge 0 \ \forall x \in I$
- 2. f è debolmente decrescente in $I \iff f'(x) \leq 0 \ \forall x \in I$
- 3. Se $f'(x) > 0 \ \forall x \in I$ allora f è strettamente crescente in I
- 4. Se $f'(x) < 0 \ \forall x \in I$ allora f è strettamente decrescente in I

Teorema Siano I intervallo e $f: I \to R$ derivabile in I. Allora f è strettamente crescente (risp. strettamente decrescente) se e solo se $f'(x) \ge 0$ (risp. $f'(x) \le 0$) $\forall x \in I$ e l'insieme $E = \{x \in I \mid f'(x) = 0\} \subseteq I$ non contiene intervalli aperti.

Teorema Sia $f: I \to R$ derivabile 2n+1 volte in $x_0 \in I$ e tale che $f'(x_0) = f''(x_0) = \dots = f^{2n}(x_0) = 0$. Se

- $f^{2n+1} > 0$ allora x_0 è un punto di crescenza, ovvero f è strettamente crescente
- $f^{2n+1} < 0$ allora x_0 è un punto di decrescenza, ovvero f è strettamente decrescente

11.3 Punti di massimo e minimo locale

Definizione Sia $A \subseteq R$, $f: A \to R$. Diremo che $x_0 \in A$ è un punto di **minimo locale** (risp. di **massimo locale**) (o relativo) se $\exists \delta > 0$ tale che

$$f(x) \ge f(x_0)$$
 (risp. $f(x) \le f(x_0)$) $\forall x \in A \cap [x_0 - \delta, x_0 + \delta]$

Teorema (di Fermat) Sia $f:]a, b[\to R$. Se $x_0 \in]a, b[$ è un punto di massimo (o minimo) locale e $\exists f'(x_0)$ allora $f'(x_0) = 0$ **Definizione** Sia $f: I \to R$ derivabile in $x_0 \in I$. Diciamo che x_0 è un **punto stazionario o critico** se f'(x) = 0. **Teorema** Sia $f:]a, b[\to R$ derivabile in]a, b[. Se in $x_0 \in]a, b[$ $f'(x_0) = 0$ e $\exists \delta > 0$ tale che:

- 1. $f'(x_0) > 0 \ \forall x \in]x_0, x_0 + \delta[$
- 2. $f'(x_0) < 0 \ \forall x \in]x_0 \delta, x_0[$

Allora x_0 è un punto di minimo locale

- 1. $f'(x_0) < 0 \ \forall x \in]x_0, x_0 + \delta[$
- 2. $f'(x_0) > 0 \ \forall x \in]x_0 \delta, x_0[$

Allora x_0 è un punto di massimo locale

Teorema Sia $f:]a, b[\to R, x_0 \in]a, b[$ e supponiamo che f sia continua in tutto]a, b[e derivabile in $]a, b[\setminus \{x_0\}.$ Se $\exists \delta > 0$

- $1. \ f'(x) > 0 \ \forall x \in]x_0 \delta, x_0[\cap]a, b[\ \text{e} \ f'(x) < 0 \ \forall x \in]x_0, x_0 + \delta[\cap]a, b[\ \text{allora} \ x_0 \ \text{\`e} \ \text{un punto angoloso di massimo locale}$
- 2. $f'(x) < 0 \ \forall x \in]x_0 \delta, x_0[\cap]a, b[$ e $f'(x) > 0 \ \forall x \in]x_0, x_0 + \delta[\cap]a, b[$ allora x_0 è un punto angoloso di minimo locale
- 3. $f'_{+}(x) = +\infty$ e $f'_{-}(x) = -\infty$ allora x_{0} è una cuspide di minimo locale
- 4. $f'_+(x) = -\infty$ e $f'_-(x) = +\infty$ allora x_0 è una cuspide di massimo locale

Teorema Sia $f:]a, b[\rightarrow R$ derivabile 2n volte in x_0 , con $n \ge 1$. Se $f'(x_0) = f''(x_0) = \dots = f^{2n-1}(x_0) = 0$. Allora:

- 1. Se $f^{2n}(x_0) > 0$ allora x_0 è un punto di minimo locale
- 2. Se $f^{2n}(x_0) < 0$ allora x_0 è un punto di massimo locale

Corollario Sia $f:]a, b[\to R \text{ derivabile 2 volte in } x_0. \text{ Supponiamo } f'(x_0) = 0 \text{ allora:}$

- 1. Se $f''(x_0) > 0$ allora x_0 è un punto di minimo locale
- 2. Se $f''(x_0) < 0$ allora x_0 è un punto di massimo locale

Teorema Sia $f:]a, b[\rightarrow R \text{ derivabile 2 volte in } x_0. \text{ Allora:}$

- 1. Se x_0 è un punto di minimo locale allora $f'(x_0) = 0$ e $f''(x_0) > 0$
- 2. Se x_0 è un punto di massimo locale allora $f'(x_0) = 0$ e $f''(x_0) < 0$

11.4 Convessità e concavità

Definizione Sia $I \subset R$ intervallo e $f: I \to R$. Diciamo che f è **convessa** in I se:

$$\forall x_1, x_2 \in I \ e \ \forall \lambda \in]0, 1[\ f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Diremo che f è strettamente convessa se:

$$\forall x_1, x_2 \in I \ e \ \forall \lambda \in]0,1[\ f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

Definizione Sia $I \subset R$ intervallo e $f: I \to R$. Diciamo che f è **concava** in I se:

$$\forall x_1, x_2 \in I \ e \ \forall \lambda \in]0,1[\ f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)f(x_2)$$

Diremo che f è **strettamente concava** se:

$$\forall x_1, x_2 \in I \ e \ \forall \lambda \in]0,1[\ f(\lambda x_1 + (1-\lambda)x_2) > \lambda f(x_1) + (1-\lambda)f(x_2)$$

Teorema Sia $f:[a,b]\to R$ concava (o convessa) in [a,b]. Allora f è continua in [a,b].

Teorema (convessità e rette tangenti) Sia $I \subseteq R$ intervallo, $f: I \to R$ derivabile in I. Allora:

- 1. f è convessa in $I \iff \forall x, x_0 \in I \ f(x) \ge f(x_0) + f'(x_0)(x x_0)$
- 2. f è concava in $I \iff \forall x, x_0 \in I \ f(x) \leq f(x_0) + f'(x_0)(x x_0)$
- 3. Se $\forall x, x_0 \in I$ $f(x) > f(x_0) + f'(x_0)(x x_0)$ allora f è strettamente convessa in I
- 4. Se $\forall x, x_0 \in I$ $f(x) < f(x_0) + f'(x_0)(x x_0)$ allora f è strettamente concava in I

Teorema (convessità e monotonia) Sia $f \in C^1(I, R)$, $I \subseteq R$ intervallo. Allora:

- 1. f è convessa in $I \iff f'$ è monotona crescente in I
- 2. f è concava in $I \iff f'$ è monotona decrescente in I

Teorema (convessità e segno della derivata seconda) Siano $I \subseteq R$ intervallo e $f \in \mathcal{C}^2(I,R)$. Allora:

- 1. f è convessa in $I \iff f'' > 0 \ \forall x \in I$
- 2. f è concava in $I \iff f'' \le 0 \ \forall x \in I$

Teorema Sia $f:[a,b] \to R$ continua e strettamente convessa (risp. strettamente convessa) in [a,b]. Allora $\exists!x_0 \in [a,b]$ tale che $f(x_0) = \min_{[a,b]} f$ (risp. $f(x_0) = \max_{[a,b]} f$)

11.5 Punti di flesso

Definizione Sia $f:]a, b[\to R$, continua in]a, b[e derivabile in $x_0 \in]a, b[$. Allora diremo che x_0 è un **punto di flesso** se presa $F(x) = [f(x) - f(x_0) - f'(x_0)(x - x_0)] \ x \in]a, b[$ allora $\exists \delta > 0$ tale che $F(x) sign(x - x_0)$ ha segno costante in $[a, b[\cap]x_0 - \delta, x_0 + \delta[$

Teorema Sia $f:]a, b[\to R$ continua in]a, b[e derivabile 2 volte in $x_0 \in]a, b[$. Se x_0 è un punto di flesso allora $f''(x_0) = 0$.

Teorema Sia $f:]a, b[\to R$ continua in]a, b[e derivabile 2n+1 volte in $x_0 \in]a, b[$. Se $f''(x_0) = ... = f^{2n}(x_0) = 0$ e $f^{2n+1}(x_0) \neq 0$ allora x_0 è un punto di flesso.

Corollario Se $f:]a, b[\to R$ derivabile 3 volte e $f''(x_0) = 0$ e $f'''(x_0) \neq 0$ allora x_0 è un punto di flesso.

Teorema Sia $f:]a, b[\to R$ derivabile in]a, b[. Se x_0 è un punto di minimo o massimo per $f'(x_0)$ allora è un punto di flesso per f.

Supponiamo x_0 punto di minimo per f'. Allora $F'(x) \ge 0 \ \forall x \in]a, b[\cap]x_0 - \delta, x_0 + \delta[$. Da qui segue che F(x) è monotona crescente in $[a, b[\cap]x_0 - \delta, x_0 + \delta[$. Essendo $F(x_0) = 0$, allora x_0 è un punto di flesso.

Teorema Sia $f:]a, b[\to R$ derivabile 2 volte in]a, b[. Se in $x_0 \in]a, b[$ $f''(x_0) = 0$ ed $\exists \delta > 0$ tale che f è concava in $]x_0, x_0 + \delta[$ e convessa in $]x_0 - \delta, x_0[$, o viceversa, allora x_0 è un punto di flesso.

12 Integrazione

12.1 Primitive

Definizione Sia $f: I \to R$, I intervallo. Chiamiamo $F: I \to R$ primitiva di f se $\frac{dF}{dx}(x) = f(x) \ \forall x \in I$

Teorema (funzioni a derivata nulla) Sia I intervallo, $f:I\to R$ derivabile in I. Allora $f'(x)=0 \ \forall x\in I\iff \exists c\in R$ tale che $f(x)=c \ \forall x\in I$

Teorema (caratterizzazione delle primitive di f su un intervallo) Sia $I \subseteq R$ intervallo, $f: I \to R$. Allora:

- 1. se $F: I \to R$ è una primitiva di f allora F(x) + c, $c \in R$ costante, è un'altra primitiva di f
- 2. se $F, G: I \to R$ sono primitive di f, allora $\exists c \in R$ costante tale che G(x) = F(x) + c

12.2 Integrazione secondo Riemann

Definizione Sia $f:[a,b] \to R$ limitata in [a,b]. Definiamo **scomposizione** σ dell'intervallo [a,b] un sottoinsieme finito e ordinato di punti in [a,b]

$$\sigma = \{ a = x_0 < x_1 < x_2 < \dots < x_n = b \}$$

Definizione Siano σ, τ scomposizioni di [a, b]. $\sigma \cup \tau$ è l'**insieme unione** dei punti che stanno in σ, τ . Tale scomposizione è più fine di σ e τ .

Definizione Fissata la scomposizione σ di [a, b]:

1. definiamo la **somma inferiore** di f rispetto a σ come

$$s(f,\sigma) = (x_1 - x_0) \inf_{[x_0, x_1]} f + \dots + (x_n - x_{n-1}) \inf_{[x_{n-1}, x_n]} f = \sum_{i=1}^n (x_i - x_{i-1}) \inf_{[x_{i-1}, x_i]} f$$

1. definiamo la **somma superiore** di f rispetto a σ come

$$S(f,\sigma) = (x_1 - x_0) \sup_{[x_0, x_1]} f + \dots + (x_n - x_{n-1}) \sup_{[x_{n-1}, x_n]} f = \sum_{i=1}^n (x_i - x_{i-1}) \sup_{[x_{i-1}, x_i]} f$$

Proposizione Sia $f:[a,b]\to R$ limitata. Sinao σ,τ scomposizioni di [a,b].

$$(b-a)\inf_{[a,b]}f\leq s(f,\sigma)\leq s(f,\sigma\cup\tau)\leq S(f,\sigma\cup\tau)\leq S(f,\sigma)\leq (b-a)\sup_{[a,b]}f$$

Definizione Si definisce integrale inferiore di f in [a, b]

$$\underline{\int_{a}^{b}} f(x) dx = \sup_{\sigma} s(f, \sigma)$$

Si definisce **integrale superiore** di f in [a, b]

$$\overline{\int_{a}^{b}} f(x) dx = \inf_{\sigma} S(f, \sigma)$$

Corollario Sia $f:[a,b] \to R$ limitata. Allora

$$\underline{\int_a^b} f(x) \mathrm{d}x < +\infty$$
perché ha come maggiorante $(b-a) \sup_{[a,b]} f$

$$\overline{\int_a^b} f(x) \mathrm{d}x > -\infty$$
 perché ha come minorante $(b-a) \inf_{[a,b]} f$

$$\int_{a}^{b} f(x) dx \le \overline{\int_{a}^{b}} f(x) dx$$

Definizione (funzione integrabile secondo Riemann) Sia $f:[a,b] \to R$ limitata. Diremo che f è integrabile secondo Riemann se

$$\int_{a}^{b} f(x) dx = \overline{\int_{a}^{b}} f(x) dx$$

e in tal caso chiamiamo **integrale** di f in [a, b]

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx = \overline{\int_{a}^{b}} f(x) dx$$

Funzione di Dirichlet La funzione di Dirichlet è così definita

$$f: [0,1] \to R, \quad f(x) = \begin{cases} 1, & x \in [0,1] \cap Q \\ 0, & x \in [0,1] \setminus Q \end{cases}$$

Presa una qualunque partizione $\sigma = \{0 = x_0 < x_1 < x_2 < \ldots < x_n = 1\}$ scomposizione, allora

- $s(f,\sigma) = \sum_{i=1}^{n} (x_i x_{i-1}) \inf_{[x_{i-1},x_i]} f = 0$
- $S(f,\sigma) = \sum_{i=1}^{n} (x_i x_{i-1}) \sup_{[x_{i-1},x_i]} f = (x_1 0)(x_2 x_1)(x_3 x_2)...(1 x_{n-1}) = 1$

Quindi

$$\int_{a}^{b} f(x) \mathrm{d}x < \overline{\int_{a}^{b}} f(x) \mathrm{d}x$$

Quindi la funzione di Dirichlet è limitata ma non integrabile secondo Riemann.

Teorema (classificazione delle funzioni integrabili secondo Riemann)

- 1. Se $f:[a,b] \to R$ è continua in [a,b] allora f è integrabile secondo Riemann
- 2. Se $f:[a,b]\to R$ è continua e limitata in $[a,b]\setminus\{c\}$ $(c\in]a,b[)$ allora f è integrabile secondo Riemann e $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x)\mathrm{d}x + \int_c^b f(x)\mathrm{d}x$
- 3. Sia $f:[a,b] \to R$ limitata in [a,b] e continua in [a,b] eccetto in un numero finito di punti. Allora f è integrabile secondo Riemann
- 4. Sia $f:[a,b]\to R$ monotona. Allora f è integrabile secondo Riemann

Osservazione Una funzione monotona può avere un numero infinito numerabile di discontinuità di I specie nell'intervallo [a,b].

Proprietà

- 1. (linearità) Siano $f,g:[a,b]\to R$ limitate e integrabili secondo Riemann. Allora $\lambda f(x)+\mu g(x)$ è integrabile secondo Riemann e $\int_a^b [\lambda f(x)+\mu g(x)]\mathrm{d}x=\lambda \int_a^b f(x)\mathrm{d}x+\mu \int_a^b g(x)\mathrm{d}x$
- 2. (monotonia) Siano $f, g : [a, b] \to R$ limitate e integrabili secondo Riemann e $f(x) \le g(x) \ \forall x \in [a, b]$. Allora $\int_a^b f(x) dx \le \int_a^b g(x) dx$
- 3. (additività) Siano $f:[a,b]\to R$ limitata e integrabile secondo Riemann e $c\in[a,b]$. Allora $\int_a^b f(x)\mathrm{d}x=\int_a^c f(x)\mathrm{d}x+\int_c^b f(x)\mathrm{d}x$

Definizione Sia $f:[a,b]\to R$ limitata e integrabile secondo Riemann. Chiamiamo funzione integrale di f

$$F: [a,b] \to R$$
 $F(x) = \int_a^x f(t) dt$ $x \in [a,b]$

I Teorema Fondamentale del Calcolo Integrale Sia $f:[a,b]\to R$ continua e sia $F:[a,b]\to R$ la funzione integrale di f, $F(x)=\int_a^x f(t)\mathrm{d}t\ x\in[a,b].$ Allora $F\in\mathcal{C}^{(1)}([a,b],R)$ e $\frac{\mathrm{d}F}{\mathrm{d}x}(x)=f(x)\ \forall x\in[a,b].$

II Teorema Fondamentale del Calcolo Integrale Sia $f:[a,b]\to R$ continua e sia $G\in\mathcal{C}^{(1)}([a,b],R)$ una primitiva di f. Allora $\int_a^b f(t) dt = G(b) - G(a)$

Teorema (della media integrale) Sia $f:[a,b]\to R$ integrabile secondo Riemann. Allora:

1.
$$\inf_{[a,b]} f \cdot (b-a) \le \int_a^b f(x) dx \le \sup_{[a,b]} f \cdot (b-a)$$

2. Sia $f \in \mathcal{C}([a,b],R)$. Allora $\exists c \in [a,b]$ tale che:

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

Teorema (integrazione per parti) Siano $f, g \in \mathcal{C}^{(1)}([a, b], R)$. Allora

$$\int_a^b f(t)g'(t)dt = f(t)g(t)\Big|_a^b - \int_a^b f'(t)g(t)dt$$

Dimostrazione

$$\frac{\mathrm{d}}{\mathrm{dt}}[f(t)g(t)] = f'(t)g(t) + f(t)g'(t)$$

$$\int_{a}^{b} \frac{\mathrm{d}}{\mathrm{dt}}f(t)g(t)\mathrm{dt} = \int_{a}^{b} f'(t)g(t)\mathrm{dt} + \int_{a}^{b} f(t)g'(t)\mathrm{dt}$$

$$f(t)g(t)\Big|_{a}^{b} = \int_{a}^{b} f'(t)g(t)\mathrm{dt} + \int_{a}^{b} f(t)g'(t)\mathrm{dt}$$

$$\int_{a}^{b} f(t)g'(t)\mathrm{dt} = f(t)g(t)\Big|_{a}^{b} - \int_{a}^{b} f'(t)g(t)\mathrm{dt}$$

Teorema (integrazione per sostituzione) Sia $f:[a,b]\to R$ continua e $\varphi\in\mathcal{C}^{(1)}([\alpha,\beta],[a,b])$.

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(s)) \frac{d\varphi}{ds}(s) ds$$

Dimostrazione Sia $F \in \mathcal{C}^{(1)}([a,b],R)$ tale che $\frac{\mathrm{d}F}{\mathrm{d}t}(t) = f(t) \ \forall t \in [a,b]$

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t)dt = F(\varphi(\beta)) - F(\varphi(\alpha))$$

$$F \circ \varphi \in \mathcal{C}^{(1)}([\alpha, \beta], R) \quad F(\varphi(s)) = (F \circ \varphi)(s)$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(F \circ \varphi)(s) = \frac{\mathrm{d}F}{\mathrm{d}t}(\varphi(s))\frac{\mathrm{d}\varphi}{\mathrm{d}s}(s) = f(\varphi(s))\frac{\mathrm{d}\varphi}{\mathrm{d}s}(s)$$

Quindi $(F\circ\varphi)(s)$ è la primitiva di $f(\varphi(s))\frac{\mathrm{d}\varphi}{\mathrm{d}s}(s)$

$$\int_{\alpha}^{\beta} f(\varphi(s)) \frac{\mathrm{d}\varphi}{\mathrm{d}s}(s) = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha))$$

Osservazione Se inoltre $\varphi : [\alpha, \beta] \xrightarrow[su]{1-1} [a, b] \in \mathcal{C}^{(1)}$ (con $\varphi'(\beta) \neq 0 \ \forall s \in [\alpha, \beta]$).

$$\varphi^{-1}: [a,b] \xrightarrow{1-1} [\alpha,\beta]$$

$$\int_{a}^{b} f(t)dt = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(s)) \frac{d\varphi}{ds}(s) ds$$

12.3 Integrali di funzioni razionali

Gli integrali di funzioni razionali sono gli integrali del tipo: $\int_a^b \frac{P(x)}{Q(x)} dx$

Dove $P(x) = \sum_{i=1}^{n} a_i x^i$ e $Q(x) = \sum_{j=1}^{m} a_j x^j$, con $a_1, ..., a_n, b_1, ..., b_m \in R$ e $a_n, b_m \neq 0$.

Vi sono due casi:

- 1. $n \ge m$: si effettua la divisione tra P(x) e Q(x)
- 2. n < m: si effettua la scomposizione di $\frac{P(x)}{Q(x)}$

Analizzeremo ora i casi distintamente

12.3.1 $n \ge m$

Sappiamo che esistono e sono unici i polinomi S(x) e R(x) tali che:

$$P(x) = Q(x)S(x) + R(x)$$

dove il grado di S(x) è n-m e il grado di R(x) è < m. Possiamo quindi riscrivere

$$\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$$

E' necessario studiare la scomposizione di $\frac{P(x)}{Q(x)}$. Sappiamo per il teorema fondamentale dell'algebra che il polinomio Q(x) ammette al più m radici reali ed esattamente m radici complesse, contate con la loro molteplicità .

Supponiamo che $\lambda_1, ..., \lambda_s, \alpha_1 \pm i\beta_1, ..., \alpha_r \pm i\beta_r$ siano le radici di Q(x), e siano $n_1, ..., n_s, m_1, ..., m_r$ le loro molteplicità, che devono soddisfare la seguente condizione:

$$n_1 + \dots + n_s + 2m_1 + \dots + 2m_r = m$$

Allora è possibile scomporre $\frac{P(x)}{Q(x)}$ nel seguente modo

$$\frac{P_1(x)}{(x-\lambda_1)^{n_1}} + \ldots + \frac{P_s(x)}{(x-\lambda_s)^{n_s}} + \frac{R_1}{[(x-\alpha_1)^2 + \beta_1^2]} + \ldots + \frac{R_r(x)}{[(x-\alpha_r)^2 + \beta_r^2]}$$

dove, come conseguenza del teorema fondamentale dell'algebra, i polinomi $P_1(x), ..., P_s(x)$ sono costanti, mentre $R_1(x), ..., R_r(x)$ sono di primo grado.

12.4 Integrali generalizzati

Abbiamo definito l'integrale secondo Riemann usando sempre somme inferiori o superiori, cioè approssimando, nel caso di funzioni non regolari, l'area del sottografico con l'area dell'unione finita di rettangoli.

Questo comporta delle limitazioni sulla classe di funzioni su cui questa costruzione ha senso:

- $\mathcal{D}om(f)$ limitato
- f limitata su tutto il dominio, estremi compresi

Come possiamo estendere l'integrale nel caso in cui f sia definita su insiemi o non limitati o non chiusi o in cui f non sia limitata? Questa estensione non può avvenire direttamente usando somme inferiori/superiori perché vi sarebbero rettangoli di area infinita.

Estendiamo l'integrale a questa classe di funzioni richiedendo che la restrizione di f a qualunque intervallo limitato e chiuso del dominio sia integrabile secondo Riemann e vediamo il valore dell'integrale come limite della funzione integrale.

Definizione (Integrale generalizzato) Sia $f:]a,b[\to R$ tale che $\forall \alpha,\beta\in]a,b[,\ \alpha<\beta,\ f:[\alpha,\beta]\to R$ è Riemann integrabile (cioè f è Riemann integrabile su tutti gli intervalli limitati e chiusi contenuti in]a,b[). Sia $c\in]a,b[$. Se i limiti: $I_1=\lim_{x\to b^-}\int_c^x f(t)\mathrm{d}t$ e $I_2=\lim_{x\to a^+}\int_x^c f(t)\mathrm{d}t$ esistono finiti, diremo che f è **integrabile in senso generalizzato** in]a,b[e il valore dell'integrale è $\int_a^b f(t)\mathrm{d}t=I_1+I_2$

Osservazione Il valore di $\int_a^b f(t) dt$ non dipende da c.

Osservazione Se $I_1 \in R$ e $I_2 = +\infty$ o viceversa o $I_1 = I_2 = +\infty$ diciamo che $\int_a^b f(t) dt = +\infty$. Analogamente per $-\infty$.

Osservazione Non è possibile estendere l'integrale a tutto]a,b[se $I_1=+\infty$ e $I_2=-\infty$ (o viceversa) o se uno dei due non esiste.

Osservazione Se $f:]a, b[\to R$ è non negativa in]a, b[(cioè $f(x) \ge 0 \ \forall x \in]a, b[$) vi sono solo le seguenti possibilità : $\int_a^b f(t) dt \in R$ o $\int_a^b f(t) dt = +\infty$

Teorema Siano $f,g:]a,b[\to R$ limitata e localmente Riemann integrabile (su tutti gli intervalli limitati e chiusi in]a,b[). Se $0 \le f(x) \le g(x) \ \forall x \in]a,b[$, allora:

- se $\int_a^b f(x) dx = +\infty \implies \int_a^b g(x) dx = +\infty$
- se $\int_a^b f(x) dx \in R \implies \int_a^b f(x) dx \le \int_a^b g(x) dx$

Teorema (convergenza assoluta \implies convergenza semplice) Sia $f:]a,b[\in R$ localmente Riemann integrabile e $\int_a^b |f(x)| \, \mathrm{d} \mathbf{x} < +\infty$. Allora f è integrabile in senso generalizzato in]a,b[e

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Osservazione

$$\int_a^b f(x) d\mathbf{x} \in R \iff \int_a^b |f(x)| d\mathbf{x} \in R$$

Osservazione

Se f è integrabile secondo Riemann in [a, b] allora è integrabile in senso generalizzato in [a, b] e i valori dei due integrali coincidono.

13 Numeri complessi

L'insieme dei numeri complessi C è l'insieme composto da coppie ordinate di numeri reali (a,b).

Operazioni

- 1. Somma: (a, b) + (c, d) = (a + c, b + d)
- 2. Moltiplicazione: $(a, b) \cdot (c, d) = (ac bd, ad + bc)$

Proposizione $(C, +, \cdot)$ è un campo. Sia z = (a, b)

- 1. Elemento neutro della somma: (0,0),
- 2. Elemento neutro della moltiplicazione: (1,0)
- 3. Opposto di un numero complesso: -z = (-a, -b)
- 4. Reciproco di un numero complesso: $\frac{1}{z}=(\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2})$

Osservazione $R = \{(a, 0) : a \in R\}$

13.1 Rappresentazione algebrica

Definizione Il numero complesso (0,1) si chiama **unità immaginaria** ed è denotata con i. Si ha che

1.
$$(0,1)^2 = (-1,0)$$

2.
$$(a,b) = (a,0) + (0,1)(b,0) = a + ib$$

Definizione Se $z = (a, b) \in C$, la scrittura z = a + ib $a, b \in R$ è detta rappresentazione algebrica dei numeri complessi. Definiamo inoltre la parte reale di z la quantità

$$Re(z) = a$$

e coefficiente della parte immaginaria di z la quantità

$$Im(z) = b$$

Definizione Sia z = a + ib. E' detto **complesso coniugato** di z il numero complesso

$$\overline{z} = a - ib$$

Proprietà Sia z = a + ib.

$$1. \ \overline{(\overline{z})} = z$$

$$2. \ \overline{(z+w)} = \overline{z} + \overline{w}$$

3.
$$\overline{(zw)} = \overline{z} \cdot \overline{w}$$

4.
$$\frac{z+\overline{z}}{2} = Re(z) = a e \frac{z-\overline{z}}{2i} = Im(z) = b$$

13.2 Rappresentazione in forma trigonometrica

Definizione Sia z=(a,b). La quantità $|z|=\sqrt{a^2+b^2}$ è detta **modulo** di z e rappresenta la distanza di z dall'origine O=(0,0).

Proprietà

1.
$$|z| \ge 0$$
 e $|z| = 0 \iff z = (0,0)$

2.
$$|zw| = |z| \cdot |w|$$

3.
$$|\overline{z}| = |z|$$

4.
$$|z|^2 = z \cdot \overline{z} = a^2 + b^2$$

5.
$$|z+w| \le |z| + |w|$$
 (disuguaglianza triangolare)

6.
$$\max\{|Re(z)|, |Im(z)|\} \le |z| \le |Re(z)| + |Im(z)|$$

7.
$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

8.
$$\left| \frac{1}{z} \right| = \frac{1}{|z|}$$

Definizione Sia $z \in C$. L'angolo orientato misurato dal semiasse positivo delle ascisse al semiasse OZ è detto **argomento** di z.

Osservazione Ogni numero complesso $z \in C \setminus \{0,0\}$ ha un unico modulo e infiniti argomenti.

Proposizione θ e $\hat{\theta}$ sono argomenti di $z \in C$ se e solo se $\exists n \in Z$ tale che

$$\theta - \hat{\theta} = 2\pi n$$

Definizione Chiamiamo **argomento principale** di $z \in C*$ l'unico argomento appartenente all'intervallo $]-\pi,\pi]$.

Definizione Chiamiamo **rappresentazione trigonometrica** di $z \in C*$ la coppia $[r, \theta]$ formata dal modulo $r = |z| \ge 0$ e da un argomento θ di z. Questa rappresentazione si ottiene dal seguente sistema

$$\begin{cases} r = \sqrt{a^2 + b^2} \\ \cos \theta = \frac{a}{\sqrt{a^2 + b^2}} \\ \sin \theta = \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$$

13.2.1 Determinazione dell'argomento principale

Sia $z \in \mathcal{C} \setminus \{0,0\}$ e $\hat{\theta}$ l'argomento principale di z.

Coseno

La funzione cos ristretta all'intervallo $[0,\pi]$ è biiettiva e invertibile.

• se z appartiene al I o II quadrante

$$\hat{\theta} = \arccos\left(\frac{a}{\sqrt{a^2 + b^2}}\right)$$

 \bullet se z appartiene al III o IV quadrante

$$\hat{\theta} = -\arccos\left(\frac{a}{\sqrt{a^2 + b^2}}\right)$$

Seno

La funzione sin ristretta all'intervallo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ è bi
iettiva e invertibile.

ullet se z appartiene al I o IV quadrante

$$\hat{\theta} = \arcsin\left(\frac{b}{\sqrt{a^2 + b^2}}\right)$$

ullet se z appartiene al II quadrante

$$\hat{\theta} = \pi - \arcsin\left(\frac{b}{\sqrt{a^2 + b^2}}\right)$$

 $\bullet\,$ se z appartiene al III quadrante

$$\hat{\theta} = -\pi - \arcsin\left(\frac{b}{\sqrt{a^2 + b^2}}\right)$$

Tangente

La funzione tan ristretta all'intervallo] $-\frac{\pi}{2},\frac{\pi}{2}[$ è bi
iettiva e invertibile.

 $\bullet\,$ se z appartiene al I o IV quadrante

$$\hat{\theta} = \arctan \frac{b}{a}$$

ullet se z appartiene al II quadrante

$$\hat{\theta} = \pi + \arctan \frac{b}{a}$$

 $\bullet\,$ se z appartiene al III quadrante

$$\hat{\theta} = -\pi + \arctan \frac{b}{a}$$

13.3 La formula di De Moivre

Proposizione Siano $z = [r, \theta]$ e $w = [\rho, \phi]$ numeri complessi in forma trigonometrica. Si possono scrivere in maniera equivalente come

$$z = |z|[\cos(\theta) + i\sin(\theta)]$$

$$w = |w|[\cos(\phi) + i\sin(\phi)]$$

e valgono le seguenti affermazioni

1.
$$z \cdot w = |z||w|[\cos(\theta + \phi) + i\sin(\theta + \phi)]$$

2.
$$\overline{z} = |z|[\cos(\theta) - i\sin(\theta)]$$

3.
$$\frac{1}{z} = |z|^{-1} [\cos(\theta) - i\sin(\theta)]$$

4.
$$\frac{z}{w} = |z||w|^{-1}[\cos(\theta - \rho) - i\sin(\theta - \rho)]$$

Teorema (regola di De Moivre) Siano $z = |z|(\cos(\theta) + i\sin(\theta)), \ w = |w|(\cos(\varphi) + i\sin(\varphi)).$ Allora

1.
$$z \cdot w = |z||w|[\cos(\theta + \varphi) + i\sin(\theta + \varphi)]$$

$$2. \ \frac{1}{z} = \frac{1}{|z|}(\cos(\theta) - i\sin(\theta))$$

3.
$$z^n = |z|^n [\cos(n\theta) + i\sin(n\theta)]$$

4.
$$\frac{z}{w} = \frac{|z|}{|w|} [\cos(\theta - \varphi) + i\sin(\theta - \varphi)]$$

13.4 Notazione esponenziale

Definizione La notazione esponenziale discende da quella trigonometrica. Infatti si ha, con z = a + ib

$$z = |z|[\cos(b) + i\sin(b)] = |z|\exp(ib)$$

Proprietà

1.
$$\exp(i\theta) \cdot \exp(i\phi) = \exp[i(\theta + \phi)]$$

2.
$$\frac{1}{\exp(i\theta)} = \frac{1}{\cos(\theta) + i\sin(\theta)} \cdot \frac{\cos(\theta) - i\sin(\theta)}{\cos(\theta) - i\sin(\theta)} = \cos(\theta) - i\sin(\theta) = \cos(-\theta) + i\sin(-\theta) = \exp(-i\theta)$$

3.
$$\exp(in\theta) = \cos(n\theta) + i\sin(n\theta) = [\cos(\theta) + i\sin(\theta)]^n = (\exp(i\theta))^n \ \forall n \in \mathbb{Z}$$

13.5 Radici n-esime

Teorema (radici n-esime di un numero complesso) Sia $w = \alpha \exp(i\beta)$, $\alpha > 1$, $\beta \in R$. Allora le soluzioni dell'equazione $z^n = w$ sono

$$\sqrt[n]{\alpha} \left[\cos \left(\frac{\beta + 2\pi(k-1)}{n} \right) + i \sin \left(\frac{\beta + 2\pi(k-1)}{n} \right) \right] \qquad k = 1, ..., n$$

Osservazione Queste radici sono i vertici di un poligono regolare di n lati inscritto nella circonferenza di raggio $\sqrt[n]{\alpha}$.

14 Equazioni differenziali

14.1 Eq. differenziale del primo ordine

$$(p) \begin{cases} \frac{dy}{dt} = & y(t) \\ y(t_0) = & y_0 \end{cases}$$

Soluzione:

$$\varphi(t) = \int_{t_0}^t y(s)ds + y_0$$

14.2 Eq. differenziale del primo ordine, lineare

$$(p) \begin{cases} \frac{dy}{dt} = & a(t)y + b(t) \\ y(t_0) = & y_0 \end{cases}$$

Soluzione:

$$A(t) = \int_{t_0}^t a(s)ds$$

$$\varphi(t) = e^{A(t)} \left[\int_{t_0}^t e^{-A(t)} b(s) ds + y_0 \right]$$

14.3 Eq. differenziale del primo ordine, non lineare, a variabili separabili

$$(p) \begin{cases} \frac{dy}{dt} = & \frac{f(t)}{g(t)} \\ y(t_0) = & y_0 \end{cases}$$

Soluzione:

$$\varphi(t)$$
è data implicitamente dall'eq. $G(\varphi(t)) = F(t) \forall t \in \]t_0 - \delta$, $t_0 + \delta[$

$$\longrightarrow \int_{y_0}^{\varphi(t)} g(r)dr = \int_{t_0}^t f(s)ds$$

14.4 Eq. differenziale di ordine n, lineare, omogenea (EDLO)

$$\frac{d^{(n)}y}{dt^{(n)}} + a_1 \frac{d^{(n-1)}y}{dt^{(n-1)}} + \dots + a_n y = 0 \text{ con } a_1, \dots, a_n \in C^{(0)}(I, R)$$

A coefficienti costanti $\in R$

Possiamo definire il polinomio caratteristico $P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \cdots + a_n$

I caso) $P(\lambda)$ ha n radici reali λ distinte

Soluzione:

$$\varphi(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t}$$

II caso) $P(\lambda)$ ha n radici reali λ , di cui n-q coincidenti

(di molteplicità
$$m_1, \ldots, m_q \in N$$
 con $m_1 + \cdots + m_q = n$ e $q \leq n$)

NB: q è il numero di radici reali senza ripetizioni, λ_i per $i=1,\ldots,q$ sono proprio tali radici e m_1,\ldots,m_q sono le loro rispettive molteplicità

Soluzione:

$$\varphi(t) = \sum_{i=1}^{q} \sum_{i=1}^{m_q} c_i t^{(j-i)} e^{\lambda_i t}$$

III caso) $P(\lambda)$ ha n radici complesse λ

 $(k \text{ radici reali e } h \text{ radici complesse} : k+h=n) \text{ di molteplicità } m_1,\ldots,m_n \in N \text{ } (m_1+\cdots+m_n=n)$

Soluzione:

$$\varphi_k(t) = \sum_{i=1}^k \sum_{j=1}^{m_k} c_i t^{(j-i)} e^{\lambda_i t}$$
 per le radici reali

$$\varphi_h(t) = \sum_{i=1}^{h} \sum_{j=1}^{m_h} c_i t^{(j-i)} e^{\alpha_i t} \cos(\beta_i t) \qquad \alpha + i\beta$$

$$\varphi_h(t) = \sum_{i=1}^{h} \sum_{j=1}^{m_h} c_i t^{(j-i)} e^{\alpha_i t} \sin(\beta_i t) \qquad \alpha - i\beta$$

14.5 Eq. differenziale di ordine n, lineare, non omogenea (EDLNO)

$$\frac{d^{(n)}y}{dt^{(n)}} + a_1 \frac{d^{(n-1)}y}{dt^{(n-1)}} + \dots + a_n y = b(t) \text{ con } a_1, \dots, a_n \in C^{(0)}(I, R)$$

Equazione caratteristica dell' EDLO associata: $\lambda^n + a_1\lambda^{n-1} + \cdots + a_n = 0$

A coefficienti costanti $\in R$

I caso)

$$\frac{d^{(n)}y}{dt^{(n)}} + a_1 \frac{d^{(n-1)}y}{dt^{(n-1)}} + \dots + a_n y = ct^s$$

con
$$a_1, \ldots, a_n \in R$$
, $c \in R$, $s \in N$

Soluzione: $\psi(t) = \psi_p(t) + \varphi(t)$ dove:

 $\varphi(t)$ é la soluzione generale dell'EDLO associata e

Se $\lambda = 0$ è radice dell'equazione caratteristica dell'EDLO associata:

$$\psi_p(t) = t^k (A_0 t^s + A_1 t^{s-1} + \dots + A_s)$$

altrimenti:

$$\psi_p(t) = A_0 t^s + A_1 t^{s-1} + \dots + A_s$$

II caso)

$$\frac{d^{(n)}y}{dt^{(n)}} + a_1 \frac{d^{(n-1)}y}{dt^{(n-1)}} + \dots + a_n y = ce^{\alpha t}$$

$$con a_1, \ldots, a_n \in R , c, \alpha \in R$$

Soluzione: $\psi(t) = \psi_p(t) + \varphi(t)$ dove:

 $\varphi(t)$ é la soluzione generale dell'EDLO associata e

Se $\lambda=\alpha$ è radice dell'equazione caratteristica dell'EDLO associata:

$$\psi_n(t) = t^k (Ae^{\alpha t})$$

altrimenti:

$$\psi_p(t) = Ae^{\alpha t}$$

III caso)

$$\frac{d^{(n)}y}{dt^{(n)}} + a_1 \frac{d^{(n-1)}y}{dt^{(n-1)}} + \dots + a_n y = ct^s e^{\alpha t} cos(\beta t)$$

con
$$a_1, \ldots, a_n \in R$$
, $c, \alpha \in R$

Soluzione: $\psi(t) = \psi_p(t) + \varphi(t)$ dove:

 $\varphi(t)$ é la soluzione generale dell'EDLO associata e

Se $\lambda = \alpha + i\beta$ è radice dell'equazione caratteristica dell'EDLO associata:

$$\psi_p(t) = t^k e^{\alpha t} \left[\left(A_0 t^s + A_1 t^{s-1} + \dots + A_s \right) \cos(\beta t) + \left(B_0 t^s + B_1 t^{s-1} + \dots + B_s \right) \sin(\beta t) \right]$$

altrimenti:

$$\psi_p(t) = e^{\alpha t} \left[\left(A_0 t^s + A_1 t^{s-1} + \dots + A_s \right) \cos(\beta t) + \left(B_0 t^s + B_1 t^{s-1} + \dots + B_s \right) \sin(\beta t) \right]$$

14.6 Periodicità delle soluzioni

Definizione Una funzione f(t) si dice **periodica** di periodo T > 0 se $\forall t \in R$ si ha f(t) = f(T + t)

Proprietà Se T, S > 0 sono periodi, allora 1. T + S è periodo 2. nT è periodo (con $n \in \mathbb{Z}$)

Definizione Se f(t) non è costante, esiste il periodo minimo T_f positivo tale che $f(t+T_f) = f(t) \ \forall t \in R$ e se S è periodo allora $S = nT_f, \ n \in Z$. Tale periodo è chiamato **periodo fondamentale**.

Teorema Siano f(t) e g(t) funzioni periodiche di periodo fondamentale rispettivamente T_f e S_f . La funzione h(t) = f(t) + g(t) è periodica di periodo fondamentale $P_f = mcm(T_f, S_f)$ se e solo se $\frac{T_f}{S_f} \in Q$