Технологическая практика

Работа с Pandas

In [2]:

```
import pandas as pd
%matplotlib inline
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
```

Будем работать с датасетом Pima Indian Diabetes - это набор данных из Национального института диабета, болезней органов пищеварения и почек. Целью набора данных является диагностическое прогнозирование наличия диабета у пациента. Несколько ограничений были наложены на выбор этих экземпляров из большой базы данных. В частности, все пациенты здесь - женщины в возрасте от 21 года, индийского происхождения.

```
In [3]: data = pd.read_csv('pima-indians-diabetes.csv')
    data.tail(10)
```

Out[3]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
	758	1	106.0	76.0	NaN	NaN	37.5	0.19
	759	6	190.0	92.0	NaN	NaN	35.5	0.27
	760	2	88.0	58.0	26.0	16.0	28.4	0.76
	761	9	170.0	74.0	31.0	NaN	44.0	0.40
	762	9	89.0	62.0	NaN	NaN	22.5	0.14
	763	10	101.0	76.0	48.0	180.0	32.9	0.17
	764	2	122.0	70.0	27.0	NaN	36.8	0.34
	765	5	121.0	72.0	23.0	112.0	26.2	0.24
	766	1	126.0	60.0	NaN	NaN	30.1	0.34
	767	1	93.0	70.0	31.0	NaN	30.4	0.31
	4							•

Описание данных:

- **Pregnancies** данная единица отображает количество беременностей, единицы измерения целые числа от 0 до N. Тип переменной количественная, дискретная.
- **Glucose** данная единица отображает уровень глюкозы в крови, единицы измерения целые числа. Тип переменной количественная, дискретная.
- **BloodPressure** данная единица отображает артериальное давление, единицы измерения миллиметры p/c, целые числа. Тип переменной количественная, дискретная.
- **SkinThickness** данная единица отображает обхват трицепса в миллиметрах, целые числа. Тип переменной количественная, дискретная.
- **Insulin** данная единица отображает уровень инсулина в крови, целые числа. Тип переменной количественная, дискретная.

• **BMI** - данная единица отображает индекс массы тела. Тип переменной - количественная, непрерывная.

- **DiabetesPedigreeFunction** данная единица отображает риск наследственного диабета в зависимости наличия диабета у родственников. Выражается десятичной дробью от 0 до 1. Тип переменной количественная, непрерывная.
- **Age** данная единица отражает возраст в целых числах. Тип переменной количественная, дискретная.
- Class данная единица отражает наличие диабета у субъекта, выражена 0(здоров) или 1(болен). Тип переменной категориальная, бинарная.

Задание 1.

Как вы видите, в данных много пропусков (NaN). Посчитайте количество пропусков в каждом из столбцов.

```
In [4]: data[pd.isna(data)].size
Out[4]: 6912
```

C[-1]. ---

Задание 2.

Замените все пропуски дискретных признаков соответствующими медианами, непрерывных признаков - средними значениями.

```
In [38]: disck = ["Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulir
for col in disck:
    for index in data[col][pd.isna(data[col])].index:
        data[col][index] = data[col].mean()

data.head(10)
```

Out[38]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunct
	0	6	148.0	72.000000	35.00000	155.548223	33.6	0.6
	1	1	85.0	66.000000	29.00000	155.548223	26.6	00
	2	8	183.0	64.000000	29.15342	155.548223	23.3	0.6
	3	1	89.0	66.000000	23.00000	94.000000	28.1	0.1
	4	0	137.0	40.000000	35.00000	168.000000	43.1	2.7
	5	5	116.0	74.000000	29.15342	155.548223	25.6	0.2
	6	3	78.0	50.000000	32.00000	88.000000	31.0	0.2
	7	10	115.0	72.405184	29.15342	155.548223	35.3	0.:
	8	2	197.0	70.000000	45.00000	543.000000	30.5	0.:
	9	8	125.0	96.000000	29.15342	155.548223	NaN	0.2
	4)

Задание 3.

Вычислите основные статистики (минимум, максимум, среднее, дисперсию, квантили) для всех столбцов.

```
In [26]: rows = ["min", "max", "Mean", "dispersion", "quantiles"]
    statistics = pd.DataFrame(columns=data.columns)
```

```
for col in data:
    statistics[col] = [data[col].min(), data[col].max(), data[col].mean(), nr
statistics.index = rows
statistics.head(5)
```

Out[26]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedig
	min	0	44	24	7	14	18.2	
	max	17	199	122	99	846	67.1	
	Mean	3.84505	121.687	72.4052	29.1534	155.548	32.4575	
	dispersion	11.3393	925.141	146.131	77.18	7219.18	47.8921	
	quantiles	[0, 17]	[44.0, 199.0]	[24.0, 122.0]	[7.0, 99.0]	[14.0, 846.0]	[nan, nan]	
	4							•

Задание 4.

У скольких женщин старше 50 лет обнаружен диабет?

```
In [27]: len(data["Class"][data["Age"] > 50])
```

Out[27]: 81

Задание 5.

Найдите трех женщин с наибольшим числом беременностей.

```
In [28]: max_1 = data["Pregnancies"].max()
    max_2 = data["Pregnancies"][data["Pregnancies"] != max_1].max()
    max_3 = data["Pregnancies"][(data["Pregnancies"] != max_1) & (data["Pregnancies"]
    print(max_1, max_2, max_3)
```

17 15 14

Задание 6.

Сколько женщин возраста между 30 и 40 успело родить 3 или более детей?

```
In [29]: data["Pregnancies"][(data["Age"] >= 30) & (data["Age"] <= 30)].size
Out[29]: 21</pre>
```

Задание 7.

Нормальным кровяным давлением будем считать давление в диапазоне [80-89]. У какого процента женщин давление нормальное?

```
In [30]: data["BloodPressure"][(data["BloodPressure"] >= 80) & (data["BloodPressure"]
Out[30]: 18.880208333333336
```

Задание 8.

Считается, что BMI >= 30 - это признак ожирения. У скольких женщин с признаками ожирения кровяное давление выше среднего?

```
In [31]: mean = data["BloodPressure"].mean()
  obesity = data[data["BMI"] >= 30]
  len(obesity[obesity > mean])
```

```
Out[31]: 472
```

Задание 9.

Сравните средние значения для признаков **Glucose**, **BloodPressure**, **Insulin** среди тех, у кого обнаружен диабет, и тех, у кого его нет.

Задание 10.

Постройте гистограммы для любых двух количественных признаков.

```
In [48]: # ( ° ) ° ) ° — * · *。

x = [1, 2]
y = [data["Pregnancies"].max(), data["Glucose"].max()]

fig, ax = plt.subplots()

ax.bar(x, y)

ax.set_facecolor('seashell')
fig.set_facecolor('floralwhite')
fig.set_figwidth(2) # ширина Figure
fig.set_figheight(6) # высота Figure

plt.show()
```


Задание 11.

Постройте круговую диаграмму для признака Class.

Out[51]: (-1.1103917189999, 1.1004948773786571, -1.106452141145052, 1.111637571647217)

Задание 12.

Постройте распределения для признаков **Age** и **BloodPressure** и сравните оба распределения с нормальным.

```
fig, axs = plt.subplots(1, 2,figsize=(20, 5))
plt.subplots_adjust(top = 0.99, bottom=0.01, hspace=1.5, wspace=0.4)
sns.distplot(data['Age'], hist=False, ax=axs[0],label='pacnpeделение для приз
sns.distplot(x, hist=False, ax=axs[0],label='Hopмальное распределение')
sns.distplot(data['BloodPressure'], hist=False, ax=axs[1],label='pacnpeделени
sns.distplot(y, hist=False, ax=axs[1],label='Hopмальное распределение')
```

/home/dima/botva/lsemestr/technological_prackt/MLS/mls/lib/python3.8/site-pac kages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `k deplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

/home/dima/botva/1semestr/technological_prackt/MLS/mls/lib/python3.8/site-pac kages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `k deplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

/home/dima/botva/lsemestr/technological_prackt/MLS/mls/lib/python3.8/site-pac kages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `k deplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

/home/dima/botva/lsemestr/technological_prackt/MLS/mls/lib/python3.8/site-pac kages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `k deplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

Out[58]: <AxesSubplot:xlabel='BloodPressure', ylabel='Density'>

Задание 13.

Постройте следующий график: среднее число больных диабетом в зависимости от числа беременностей.

```
# Устанавливаем интервал основных делений:
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

fig.set_figwidth(12)
fig.set_figheight(8)

plt.show()
```


Задание 14.

Добавьте новый бинарный признак:

wasPregnant \in {0,1} - была женщина беременна (1) или нет (0)

```
In [74]: # ( ^° & ^°) \infty -- * \cdot** o data["wasPregnant"] = [1 if i != 0 else 0 for i in data["Pregnancies"]] data.head(10)
```

Out[74]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunct
	0	6	148.0	72.000000	35.00000	155.548223	33.6	0.6
	1	1	85.0	66.000000	29.00000	155.548223	26.6	0.:
	2	8	183.0	64.000000	29.15342	155.548223	23.3	0.6
	3	1	89.0	66.000000	23.00000	94.000000	28.1	0.1
	4	0	137.0	40.000000	35.00000	168.000000	43.1	2.2
	5	5	116.0	74.000000	29.15342	155.548223	25.6	0.2
	6	3	78.0	50.000000	32.00000	88.000000	31.0	0.2
	7	10	115.0	72.405184	29.15342	155.548223	35.3	0.1
	8	2	197.0	70.000000	45.00000	543.000000	30.5	0.1
	9	8	125.0	96.000000	29.15342	155.548223	NaN	0.2

Задание 15.

Сравните процент больных диабетом среди женщин, которые были беременны и не были.

```
In [76]: # ( ^ うう) つー *・*。
print(data["wasPregnant"][data["wasPregnant"] == 1].size / data["wasPregnant"]
data["wasPregnant"][data["wasPregnant"] == 0].size / data["wasPregnant"]
```

85.546875 14.453125

Задание 16.

Добавьте новый категориальный признак **bodyType** на основе столбца ВМІ:

BMI Categories:

Underweight = <18.5

Normal weight = 18.5-24.9

Overweight = 25-29.9

Obesity = BMI of 30 or greater

Признак должен принимать значения Underweight, Normal weight, Overweight и Obesity.

```
In [79]: # ( ^o 5 ^o) > - * **.

data["bodyType"] = ["Underweight" if i <= 18.5 else "Normal weight" if i > 18

else "Normal weight" if i > 25 and i < 29.9 else "Obesity data.head(15)
```

	uu	ca incaa (15)	<u>'</u>					
Out[79]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
,	0	6	148.0	72.000000	35.00000	155.548223	33.6	0
	1	1	85.0	66.000000	29.00000	155.548223	26.6	O
	2	8	183.0	64.000000	29.15342	155.548223	23.3	C
	3	1	89.0	66.000000	23.00000	94.000000	28.1	O
	4	0	137.0	40.000000	35.00000	168.000000	43.1	2
	5	5	116.0	74.000000	29.15342	155.548223	25.6	0
	6	3	78.0	50.000000	32.00000	88.000000	31.0	0
	7	10	115.0	72.405184	29.15342	155.548223	35.3	0
	8	2	197.0	70.000000	45.00000	543.000000	30.5	0
	9	8	125.0	96.000000	29.15342	155.548223	NaN	O
	10	4	110.0	92.000000	29.15342	155.548223	37.6	C
	11	10	168.0	74.000000	29.15342	155.548223	38.0	O
	12	10	139.0	80.000000	29.15342	155.548223	27.1	1
	13	1	189.0	60.000000	23.00000	846.000000	30.1	C
	14	5	166.0	72.000000	19.00000	175.000000	25.8	C

Задание 17.

Будем считать "здоровыми" тех, у кого нормальный вес и кровяное давление. Какой процент "здоровых" женщин больны диабетом?

Out[88]: 0.651041666666667