DSCI 310: Historical Horse Population in Canada

Tiffany Timbers & Jordan Bourak

Contents

1	Aim	1
2	Data	1
3	Methods	1
4	Results	1

1 Aim

This project explores the historical population of horses in Canada between 1906 and 1972 for each province.

2 Data

Horse population data were sourced from Government of Canada [a] and Government of Canada [b].

3 Methods

The R programming language [R Core Team, 2019] and the following R packages were used to perform the analysis: knitr [Xie, 2014], tidyverse [Wickham, 2017], and bookdown [Xie, 2016]. *Note: this report is adapted from (Timbers 2020)*.

4 Results

Figure 1: Horse populations for all provinces in Canada from 1906-1972

We can see from Figure 1 that Ontario, Saskatchewan and Alberta have had the highest horse populations in Canada. All provinces have had a decline in horse populations since 1940. This is likely due to the rebound

Table 1: Sample standard deviations of horse populations for each province in Canada between 1906 and 1972.

Province	Std
Saskatchewan	377265.58
Ontario	266435.32
Alberta	266063.19
Manitoba	122403.87
Quebec	111411.10
New Brunswick	22019.49
Nova Scotia	19879.25
British Columbia	14945.66
P.E.I.	11355.75

of the Canadian automotive industry after the Great Depression and the Second World War. An interesting follow-up visualisation would be car sales per year for each Province over the time period visualised above to further support this hypothesis.

Suppose we were interested in looking in more closely at the province with the highest spread (in terms of standard deviation) of horse populations. We present the standard deviations here:

Note that we define standard deviation (of a sample) as

$$s = sqrt(sum_{i=1}^{n}(x_i - \bar{x})/(n-1))$$

Additionally, note that in Table 1 we consider the sample standard deviation of the number of horses during the same time span as Figure 1.

Figure 2: Horse populations for the province with the largest standard deviation.

In Figure 2 we zoom in and look at the province of Saskatchewan, which had the largest spread of values in terms of standard deviation.

References

- Government of Canada. Horses, number on farms at june 1 and at december 1. Open Government Open Data, a. URL https://open.canada.ca/data/en/dataset/a3ecf553-8ec4-4551-a0fe-8df1472c6cf7.
- Government of Canada. Horses, number on farms at june 1, farm value per head and total farm value. Open Government Open Data, b. URL https://open.canada.ca/data/en/dataset/e175ef9c-98f0-49b3-8131-ca0e3895a0cb.
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. URL https://www.R-project.org/.
- Hadley Wickham. tidyverse: Easily Install and Load the 'Tidyverse', 2017. URL https://CRAN.R-project.org/package=tidyverse. R package version 1.2.1.
- Yihui Xie. knitr: A comprehensive tool for reproducible research in R. In Victoria Stodden, Friedrich Leisch, and Roger D. Peng, editors, *Implementing Reproducible Computational Research*. Chapman and Hall/CRC, 2014. URL http://www.crcpress.com/product/isbn/9781466561595. ISBN 978-1466561595.
- Yihui Xie. bookdown: Authoring Books and Technical Documents with R Markdown. Boca Raton, Florida, 2016. URL https://bookdown.org/yihui/bookdown. ISBN 978-1138700109.