Тема 7. Применение дифференциального исчисления для исследования функций и построения графиков

Вопрос 1. Основные теоремы дифференциального исчисления

Теорема 1 (Ферма). Если функция f(x) определена в окрестности точки $x_0 \in D(f)$, принимает в точке x_0 наибольшее (наименьшее) значение, и в точке $x_0 \in D(f)$ существует конечная производная $f'(x_0)$, то обязательно $f'(x_0) = 0$.

Доказательство. Пусть для $f(x_0)$ – наибольшее значение функции в окрестности точки x_0 . Тогда при всех $x \in D(f)$ из этой окрестности:

$$f(x) \leq f(x_0)$$

следовательно, при $x > x_0$

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0 \Rightarrow f'(x_0) \le 0, \tag{1.1}$$

а при $x < x_0$

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \Rightarrow f'(x_0) \ge 0. \tag{1.2}$$

Из (1.1), (1.2) следует, что $f'(x_0) = 0$. Теорема доказана.

Геометрически теорема Ферма означает, что если в точке $x_0 \in D(f)$ функция f(x) принимает наибольшее (наименьшее) значение и в этой точке существует конечная производная $f'(x_0)$, то касательная, проведенная к графику функции через точку с абсциссой $x_0 \in D(f)$, параллельна оси абсцисс (см. рис.1).

$$f'(x_0) = tg\alpha = 0 \implies \alpha = 0$$

(α есть угол наклона касательной к оси абсцисс).

Рис. 1. Теорема Ферма, $f'(x_0) = tg\alpha = 0 \implies \alpha = 0$. (касательная к графику функции параллельна оси абсцисс).

Теорема 2 (**Ролля**). Если функция f(x) определена и непрерывна в отрезке [a,b], дифференцируема на интервале (a,b) и принимает равные значения f(a) = f(b) на концах промежутка, то существует такая точка $x_0 \in (a,b)$, что $f'(x_0) = 0$.

Доказательство. По свойству непрерывных функций f(x) принимает на отрезке [a,b] наибольшее $M = \max_{[a,b]} f(x)$ и наименьшее $m = \min_{[a,b]} f(x)$ значения. Возникают два случая.

- 1) Если M=m, то f(x)=const (функция постоянна на отрезке [a,b]), следовательно, f'(x)=C'=0 (точка x_0- любая точка из интервала (a,b)).
- 2) Пусть M>m . Так как f(a)=f(b) , то по крайней мере, одно из значений (M или m) достигается в некоторой точке \mathcal{X}_0 интервала (a,b) (см. рис. 2). На основании теоремы 1 Ферма: $f'(x_0)=0$.

Рис. 2. Теорема Роля. f(a) = f(b), $f'(x_0) = 0$.

Пример 1. Выполняется ли теорема Ролля для функции $f(x) = \sqrt[3]{8x - x^2}$ на отрезке [0,8]. При каком значении $x_0 \in (0,8)$?

Решение. Функция $f(x) = \sqrt[3]{8x - x^2}$ непрерывна на [0,8], имеет на интервале производную

$$f'(x) = \left(\sqrt[3]{8x - x^2}\right)' = \left(\left(8x - x^2\right)^{\frac{1}{3}}\right)' = \frac{8 - 2x}{3\left(\sqrt[3]{8x - x^2}\right)^2},$$

причем $f(0) = \sqrt[3]{8 \cdot 0 - 0^2} = 0$, $f(8) = \sqrt[3]{8 \cdot 8 - 8^2} = 0$. Для функции f(x) выполняются условия теоремы Ролля. При этом

$$f'(x) = 0 \Leftrightarrow \frac{8 - 2x}{3\left(\sqrt[3]{8x - x^2}\right)^2} = 0 \Leftrightarrow x = 4 \in (0, 8).$$

Замечание. Если хотя бы одно из условий теоремы не выполняется, то теорема несправедлива. Например, функция f(x) = |x| ($x \in [-1,1]$) удовлетворяет всем условиям теоремы Ролля, кроме дифференцируемости в точке x = 0, и теорема Ролля не справедлива.

Теорема 3 (**Лагранжа**). Пусть функция f(x) определена и непрерывна на отрезке [a;b] и имеет конечную производную на интервале (a;b). Тогда существует точка $x_0 \in (a;b)$ такая, что

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$
 (1.3)

Доказательство. Введем вспомогательную функцию

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} (x - a) \quad (x \in [a; b]). \tag{1.4}$$

Эта функция непрерывна на отрезке [a,b], дифференцируема на интервале (a,b), причем F(a) = F(b) = 0, так как

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} (a - a) = 0,$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} (b - a) = 0.$$

$$= f(b) - f(a) - (f(b) - f(a)) = 0.$$

Значит, функция (1.4) удовлетворяет всем условиям теоремы 2 Ролля. Следовательно, существует точка $x_0 \in (a;b)$ такая, что

$$F'(x_0) = f'(x_0) - \frac{f(b) - f(a)}{b - a} = 0$$

откуда
$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$
.

Геометрический смысл теоремы (рис. 3). Касательная к кривой y=f(x) в точке $(x_0,f(x_0))$ имеет угловой коэффициент, равный

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}.$$

Рис. 3. Теорема Лагранжа.

Касательная к графику функции параллельна прямой AB.

Теорема 4 (Коши). Пусть функции f(x), g(x) определены и непрерывны на отрезке [a;b] и имеют конечные производные на интервале (a;b), причем $g'(x) \neq 0$. Тогда существует $x_0 \in (a;b)$ такая, что $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}. \tag{1.5}$

Тема 7. Применение дифференциального исчисления для исследования функций и построения графиков

Вопрос 2. Правило Лопиталя

В дополнении к известным методам нахождения пределов и раскрытия неопределенностей (разложение на множители, метод сопряженных выражений, метод замены, замечательные пределы) приведем простое и удобное *правило Лопиталя*.

Теорема 1 (Правило Лопиталя).

Пусть дифференцируемые в окрестности точки $x = x_0$ функции $f(x), \varphi(x)$ при $x \to x_0$ совместно стремятся к нулю или к бесконечности. Если отношение $\frac{f'(x)}{\varphi'(x)}$ их производных имеет предел L

(конечный или бесконечный) при $x \to x_0$, то отношение $\frac{f(x)}{\varphi(x)}$

функций f(x), $\varphi(x)$ также имеет предел при $x \to x_0$, равный L.

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \left(\frac{0}{0}\right), \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = L \implies \lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = L.$$

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \left(\frac{\infty}{\infty}\right), \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = L \implies \lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = L.$$

Доказательство. Рассмотрим два случая.

1) Пусть
$$\lim_{x\to x_0} f(x) = 0$$
, $\lim_{x\to x_0} \varphi(x) = 0$, $x_0 \in \mathbb{R}$, $\lim_{x\to x_0} \frac{f'(x)}{\varphi'(x)} = L$. Докажем, что $\lim_{x\to x_0} \frac{f(x)}{\varphi(x)} = L$. Предположим, что $\varphi'(x_0) \neq 0$. Так как функции $f(x)$, $\varphi(x)$ дифференцируемы в точке $x = x_0$, то они непрерывны в точке $x = x_0$: $\lim_{x\to x_0} f(x) = f(x_0) = 0$, $\lim_{x\to x_0} \varphi(x) = \varphi(x_0) = 0$. Тогда

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \left(\frac{0}{0}\right) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{\varphi(x) - \varphi(x_0)} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{\frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \frac{\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}}{\lim_{x \to x_0} \frac{\varphi(x) - \varphi(x_0)}{x - x_0}} = \frac{f'(x_0)}{\varphi'(x_0)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = L.$$

2) Пусть $\lim_{x\to\infty} f(x) = 0$, $\lim_{x\to\infty} \varphi(x) = 0$ ($x_0 = \infty$), $\lim_{x\to\infty} \frac{f'(x)}{\varphi'(x)} = L$. Сделаем замену переменной x = 1/z. Тогда при $x\to\infty$ получим $z = 1/x \to 0$. Воспользовавшись результатами пункта 1) ($z_0 = 0$), получим

$$\lim_{x \to \infty} \frac{f(x)}{\varphi(x)} = \left(\frac{0}{0}\right) = \lim_{z \to 0} \frac{f(1/z)}{\varphi(1/z)} = \lim_{z \to 0} \frac{f'_z(1/z) \cdot (1/z)'}{\varphi'_z(1/z) \cdot (1/z)'} = \lim_{z \to 0} \frac{f'_z(1/z) \cdot (1/z)'}{\varphi'_z(1/z) \cdot (1/z)'} = \lim_{z \to 0} \frac{f'_z(1/z) \cdot (-1/z)'}{\varphi'_z(1/z) \cdot (-1/z)^2} = \lim_{x \to \infty} \frac{f'_z(x)}{\varphi'_z(x)} = L.$$

Пример 1. Вычислить предел
$$\lim_{x\to 0} \frac{\ln(1+x)}{\sin(5x)}$$

Решение. Оценим неопределенность $\lim_{x\to 0} \frac{\ln(1+x)}{\sin(5x)} = \left|\frac{\ln(1+0)}{\sin 0}\right| = \left(\frac{0}{0}\right)$,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \ln(1+x) = 0, \ \lim_{x \to 0} g(x) = \lim_{x \to 0} \sin(5x) = 0,$$

$$f'(x) = \frac{1}{1+x}, g'(x) = 5\cos(5x).$$

Применяя правило Лопиталя, получим

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\frac{1}{1+x}}{5\cos(5x)} = \frac{1}{5} = L \implies \lim_{x \to 0} \frac{\ln(1+x)}{\sin(5x)} = \frac{1}{5}.$$

Пример 2. Вычислить предел
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^3 - 3x^2 + 2x}$$
.

Решение. Оценим неопределенность

$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^3 - 3x^2 + 2x} = \frac{2^2 - 5 \cdot 2 + 6}{2^3 - 3 \cdot 2^2 + 2 \cdot 2} = \left(\frac{0}{0}\right),$$

$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^3 - 3x^2 + 2x} = \left(\frac{0}{0}\right) = \lim_{x \to 2} \frac{\left(x^2 - 5x + 6\right)'}{\left(x^3 - 3x^2 + 2x\right)'} = \lim_{x \to 2} \frac{2x - 5}{3x^2 - 6x + 2} = \lim_{x \to$$

$$= \left[\frac{2 \cdot 2 - 5}{3 \cdot 2^2 - 6 \cdot 2 + 2} \right] = -\frac{1}{2}.$$

Пример 3. Вычислить предел
$$\lim_{x \to -2} \frac{x^4 + 4x^3 + x^2 - 12x - 12}{x^3 + 5x^2 + 8x + 4} = \left(\frac{0}{0}\right)$$
.

Решение. Применяя правило Лопиталя несколько раз (до тех пор, пока не исчезнет неопределенность (0/0)):

$$\lim_{x \to -2} \frac{x^4 + 4x^3 + x^2 - 12x - 12}{x^3 + 5x^2 + 8x + 4} = \left(\frac{0}{0}\right) = \lim_{x \to -2} \frac{\left(x^4 + 4x^3 + x^2 - 12x - 12\right)'}{\left(x^3 + 5x^2 + 8x + 4\right)'} = \frac{1}{2} \left(\frac{x^4 + 4x^3 + x^2 - 12x - 12}{x^3 + 5x^2 + 8x + 4}\right)'$$

$$= \lim_{x \to -2} \frac{4x^3 + 12x^2 + 2x - 12}{3x^2 + 10x + 8} = \left(\frac{0}{0}\right) =$$

$$= \lim_{x \to -2} \frac{\left(4x^3 + 12x^2 + 2x - 12\right)'}{\left(3x^2 + 10x + 8\right)'} = \lim_{x \to -2} \frac{8x^2 + 24x + 2}{6x + 10} = \frac{-14}{-2} = 7.$$

Пример 4. Вычислить предел
$$\lim_{x\to\infty} \frac{2x^3 - 5x^2 + 6x}{x^3 - x^2 + 2}$$
.

Решение. Вычисляем предел, применяя правило Лопиталя до тех пор, пока не исчезнет неопределенность вида (∞/∞) :

$$\lim_{x \to \infty} \frac{2x^3 - 5x^2 + 6x}{x^3 - x^2 + 2} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{\left(x^3 - x^2 + 2\right)'} = \lim_{x \to \infty} \frac{6x^2 - 10x + 6}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{\left(x^3 - x^2 + 2\right)'} = \lim_{x \to \infty} \frac{6x^2 - 10x + 6}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{\left(x^3 - x^2 + 2\right)'} = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{\left(x^3 - x^2 + 2\right)'} = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{\left(x^3 - x^2 + 2\right)'} = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{\left(x^3 - x^2 + 2\right)'} = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{\left(x^3 - x^2 + 2\right)'} = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{\left(2x^3 - x^2 + 2\right)'} = \lim_{x \to \infty} \frac{\left(2x^3 - 5x^2 + 6x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(2x^3 - 5x\right)'}{3x^2 - 2x} = \left(\frac{\infty}{\infty}\right) =$$

$$= \lim_{x \to \infty} \frac{\left(6x^2 - 10x + 6\right)'}{\left(3x^2 - 2x\right)'} = \lim_{x \to \infty} \frac{12x - 10}{6x - 2} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(12x - 10\right)'}{\left(6x - 2\right)'} = \lim_{x \to \infty} \frac{12}{6} = 2.$$

Пример 5. Вычислить предел
$$\lim_{x\to +\infty} \frac{e^{3x}}{x^3} = \left(\frac{\infty}{\infty}\right)$$
.

Решение. Вычисляем предел по правилу Лопиталя до исчезновения неопределенности:

$$\lim_{x \to +\infty} \frac{e^{3x}}{x^3} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to +\infty} \frac{\left(e^{3x}\right)'}{\left(x^3\right)'} = \lim_{x \to +\infty} \frac{3e^{3x}}{3x^2} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to +\infty} \frac{\left(e^{3x}\right)'}{\left(x^2\right)'} = \lim_{x \to +\infty} \frac{\left(e^{3x$$

$$= \lim_{x \to +\infty} \frac{3e^{3x}}{2x} = \left(\frac{\infty}{\infty}\right) = \frac{3}{2} \lim_{x \to +\infty} \frac{\left(e^{3x}\right)'}{\left(x\right)'} = \frac{3}{2} \lim_{x \to +\infty} 3e^{3x} = +\infty.$$

Вопрос 3. Использование правила Лопиталя для раскрытия неопределенностей $(0 \cdot \infty)$, $(\infty - \infty)$ и показательно-степенных

неопределенностей $(1)^{\infty}$, $(0)^{0}$

1. Неопределенность $(0 \cdot \infty)$ встречается в пределах вида $\lim_{x \to x_0} (f(x) \cdot \varphi(x)) = (0 \cdot \infty)$,

когда $\lim_{x\to x_0} f(x) = 0$, $\lim_{x\to x_0} \varphi(x) = \infty$. Для раскрытия неопределенности достаточно применить схему (создать искусственно дробь)

$$\lim_{x \to x_0} \left(f(x) \cdot \varphi(x) \right) = \left(0 \cdot \infty \right) = \lim_{x \to x_0} \frac{f(x)}{1/\varphi(x)} = \left(\frac{0}{0} \right).$$

В результате получим неопределенность (0/0), которая раскрывается по правилу Лопиталя (вопрос 2).

Пример 1. Вычислить предел $\lim_{x\to +\infty} e^{-2x} \cdot x^2$.

Решение.

$$\lim_{x \to +\infty} e^{-2x} \cdot x^2 = \left(0 \cdot (+\infty)\right) = \lim_{x \to +\infty} \frac{x^2}{e^{2x}} = \left(\frac{+\infty}{+\infty}\right) = \lim_{x \to +\infty} \frac{\left(x^2\right)'}{\left(e^{2x}\right)'} = \lim_{x \to +\infty} \frac{2x}{2e^{2x}} = \left(\frac{+\infty}{+\infty}\right) = \lim_{x \to +\infty} \frac{\left(x^2\right)'}{\left(e^{2x}\right)'} = \lim_{x \to +\infty} \frac{2x}{2e^{2x}} = \left(\frac{+\infty}{+\infty}\right) = \lim_{x \to +\infty} \frac{\left(x^2\right)'}{\left(e^{2x}\right)'} = \lim_{x \to +\infty} \frac{2x}{2e^{2x}} = \left(\frac{+\infty}{+\infty}\right) = \lim_{x \to +\infty} \frac{\left(x^2\right)'}{\left(e^{2x}\right)'} = \lim_{x \to +\infty} \frac{2x}{2e^{2x}} = \lim_{x \to +\infty} \frac{2x}{2e^{2$$

$$= \left(\frac{+\infty}{+\infty}\right) = \lim_{x \to +\infty} \frac{\left(x\right)'}{\left(e^{2x}\right)'} = \lim_{x \to +\infty} \frac{1}{2e^{2x}} = \left(\frac{1}{+\infty}\right) = 0.$$

2. Неопределенность $(\infty - \infty)$ встречается в пределах вида $\lim_{x \to x_0} (f(x) - \varphi(x)) = (\infty - \infty),$

когда $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} \varphi(x) = \infty$. Для раскрытия неопределенности достаточно применить схему (создать искусственно дробь)

$$\lim_{x \to x_0} (f(x) - \varphi(x)) = (\infty - \infty) = \lim_{x \to x_0} \left(\frac{1}{\frac{1}{f(x)}} - \frac{1}{\frac{1}{\varphi(x)}} \right) = \lim_{x \to x_0} \frac{\frac{1}{\varphi(x)} - \frac{1}{f(x)}}{\frac{1}{\varphi(x)} \cdot f(x)} = \left(\frac{0}{0} \right).$$

В результате получим неопределенность (0/0), которая раскрывается по правилу Лопиталя.

Пример 2. Вычислить предел
$$\lim_{x\to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$
.

Решение. В данном случае

$$f(x) = \frac{x}{x-1}$$
, $\lim_{x \to 1} f(x) = \infty$, $\varphi(x) = \frac{1}{\ln x}$, $\lim_{x \to 1} \varphi(x) = \infty$.

Создадим дробь в пределе, для чего приведем функции к общему знаменателю:

$$\lim_{x \to 1} \left(\frac{x}{x - 1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{x \cdot \ln x - x + 1}{(x - 1) \cdot \ln x}$$

Оценивая полученный предел, имеем неопределенность (0/0). Тогда можно применить правило Лопиталя (несколько раз):

$$\lim_{x \to 1} \frac{x \cdot \ln x - x + 1}{(x - 1) \cdot \ln x} = \left(\frac{0}{0}\right) = \lim_{x \to 1} \frac{\left(x \cdot \ln x - x + 1\right)'}{\left(\left(x - 1\right) \cdot \ln x\right)'} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + (x - 1) \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\ln x + x \cdot \frac{1}{x} - 1} = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}$$

$$= \lim_{x \to 1} \frac{\ln x}{\ln x + 1 - \frac{1}{x}} = \left[\frac{\ln 1}{\ln 1 + 1 - 1} \right] = \left(\frac{0}{0} \right) = \lim_{x \to 1} \frac{\left(\ln x \right)'}{\left(\ln x + 1 - \frac{1}{x} \right)'} = \lim_{x \to 1} \frac{1/x}{1/x + 1/x^2} = \frac{1}{2}.$$

3. Степенно-показательные неопределенности $(1^{\infty}), (0^{0}), (\infty^{0})$ встречается в пределах вида $\lim_{x \to x_{0}} f(x)^{\varphi(x)}$.

Рассмотрим неопределенность (1^{∞}) , когда $\lim_{x\to x_0} f(x) = 1$, $\lim_{x\to x_0} \varphi(x) = \infty$. Чтобы раскрыть данную неопределенность требуется применить правило логарифмирования

$$\lim_{x \to x_0} f(x)^{\varphi(x)} = \lim_{x \to x_0} e^{\ln f(x)^{\varphi(x)}} = \lim_{x \to x_0} e^{\varphi(x) \cdot \ln f(x)} = e^{\lim_{x \to x_0} \varphi(x) \cdot \ln f(x)}$$

Если обозначить число

$$L = \lim_{x \to x_0} (\varphi(x) \cdot \ln f(x)),$$

то получим неопределенность $(\infty \cdot 0)$, которую можно раскрыть по правилу Лопиталя.

Пример 3. Вычислить предел
$$\lim_{x\to\infty} \left(\frac{2x-1}{2x+3}\right)^{4x-1}$$
.

Решение. В данном случае $f(x) = \frac{2x-1}{2x+3}$, $\lim_{x \to \infty} f(x) = 1$, $\varphi(x) = 4x-1$, $\lim_{x \to \infty} \varphi(x) = \infty$. Для раскрытия неопределенности (1^{∞}) вычислим $L = \lim_{x \to x_0} (\varphi(x) \cdot \ln f(x))$:

$$L = \lim_{x \to \infty} (4x - 1) \cdot \ln\left(\frac{2x - 1}{2x + 3}\right) = (\infty \cdot 0) = \lim_{x \to \infty} \frac{\ln\left(\frac{2x - 1}{2x + 3}\right)}{\frac{1}{4x - 1}} = \left(\frac{0}{0}\right) = \lim_{x \to \infty} \frac{\left(\ln(2x - 1) - \ln(2x + 3)\right)'}{\left(\frac{1}{4x - 1}\right)'} = \lim_{x \to \infty} \frac{\frac{2}{2x - 1} - \frac{2}{2x + 3}}{-\frac{4}{(4x - 1)^2}}.$$

Последний полученный предел упрощаем и вычисляем по правилу Лопиталя (раскрываем неопределенность вида (∞/∞)):

$$L = -2 \cdot \lim_{x \to \infty} \frac{(4x-1)^2}{(2x-1)(2x+3)} = -2 \cdot \lim_{x \to \infty} \frac{16x^2 - 8x + 1}{4x^2 + 4x - 3} = -8.$$

Ответ записываем в виде e^{-8} .

Вопрос 4. Признаки монотонности функции одной переменной

Определение 1. Функция f(x) является строго возрастающей (строго убывающей) на интервале (a,b), если при всех $x_1, x_2 \in (a,b)$ таких, что $x_1 < x_2$ выполняется неравенство $f(x_1) < f(x_2)$ (соответственно $f(x_1) > f(x_2)$).

Теорема 1 (*необходимый признак монотонности*, *постоянства функции*). Пусть функция f(x) дифференцируема на интервале (a, b). Если функция f(x) строго возрастает (строго убывает) на интервале (a, b), то при всех $x \in (a, b)$: f'(x) > 0 (соответственно f'(x) < 0).

Доказательство. Рассмотрим строго возрастающую на (a, b) функцию f(x). Покажем, что при всех $x \in (a, b)$: f(x) = f(x)

f(x) Составим для f(x) при- $f(x+\Delta x)$ ращение

$$\Delta f(x) = f(x + \Delta x) - f(x)$$

так, чтобы $(x + \Delta x) \in (a, b)$.

а) Если $\Delta x>0$, то $x+\Delta x>x$. Так как f(x) строго возрастает на (a,b) , то $f(x+\Delta x)>f(x)$ и производная

$$f'(x) = \lim_{\Delta x \to 0} \frac{\overbrace{f(x + \Delta x) - f(x)}^{>0}}{\underbrace{\Delta x}_{>0}} > 0$$

б) Если $\Delta x < 0$, то $x + \Delta x < x$. Функция f(x) строго возрастает на интервале (a, b) и $f(x + \Delta x) < f(x)$. Тогда производная

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\underbrace{\Delta x}_{<0}} > 0$$

Теорема 2 (достаточный признак монотонности функции). Пусть функция f(x) дифференцируема на интервале (a, b). Тогда если при всех $x \in (a, b)$: f'(x) > 0 (соответственно f'(x) < 0), то функция f(x) строго возрастает (строго убывает) на интервале (a, b).

Доказательство теоремы проводится таким же способом, как доказательство теоремы 1.

Пример. Найти для функции $f(x) = (2-x) \cdot (1+x)^2$ интервалы монотонности (интервалы возрастания и убывания).

Решение. Для функции f(x) находим производную $f'(x) = 3(1+x) \cdot (1-x)$.

Воспользуемся теоремой 2. Определим интервалы монотонности, на каждом из которых производная больше нуля (f'(x)>0) или меньше нуля (f'(x)<0). Находим так называемые *нули производной*, решая уравнение f'(x)=0:

$$x = -1, x = 1$$

Вся числовая ось разобьется на некоторое количество интервалов, на каждом из которых производная обязательно не меняет свой знак (f'(x) > 0) или f'(x) < 0. В нашем случае это:

$$(-\infty, -1), (-1, 1), (1, +\infty)$$

Это будут интервалы монотонности. Чтобы узнать, возрастает или убывает функция на данном интервале, достаточно выяснить,

какой знак имеет производная f'(x) в какой-либо точке (любой)

этого интервала.

Знаки функции f'(x) исследуем методом интервалов:

$$f'(-2) = 3(1+(-2))(1-(-2)) = -9 < 0$$

при $x \in (-\infty, -1)$: f'(x) > 0 и функция монотонно убывает, f'(0) = 3(1+0)(1-0) = 3 > 0,

при $x \in (-1, 1)$: f'(x) > 0 и функция монотонно возрастает, f'(2) = 3(1+2)(1-2) = -9 < 0,

при $x \in (1, +\infty)$: f'(x) > 0 и функция монотонно убывает.

Вопрос 5. Экстремум функции одной переменной (определение, необходимый признак)

Определение 1. Точка $x_0 \in D(f)$ называется *точкой максимума* (*точкой минимума*) функции f(x), если найдется такой достаточно малый интервал $(x_0 - a, x_0 + a)$ (a > 0), что при всех $x \in (x_0 - a, x_0 + a)$ выполняется неравенство $f(x) \le f(x_0)$ (соответственно $f(x) \ge f(x_0)$).

Точки максимума (**рис. 1.а**) и минимума (**рис. 1.б**) называются **точками экстремума**, значения функции в этих точках — **экстремумами** функции.

Рис.1.а

Рис.1.б.

Теорема (необходимое условие точки экстремума).

Если точка $x_0 \in D(f)$ является точкой экстремума функции f(x), то в этой точке либо производная f'(x) равна нулю, либо в этой точке не существует конечной производной.

Обратное утверждение к теореме не выполняется. Например, для функции $f(x) = x^3$ производная $f'(x) = 3x^2$ равна нулю в точке $x_0 = 0$. Однако точка $x_0 = 0$ не является точкой экстремума функции (см. график функции).

Определение 2. Точки, в которых производная f'(x) функции f(x) равна нулю, называются *стационарными точками*.

Стационарные точки и точки из области определения функции f(x), в которых не существует производной f'(x), называются **точками**, подозрительными на экстремум (критическими точками).

Согласно определению 2, все точки, подозрительные на экстремум, определяются из необходимого признака экстремума функции. Но не все они обязаны являться точками экстремума функции.

Пример 1. Найти точки возможного экстремума функции

$$f(x) = \frac{x^2 - x + 1}{x - 1}.$$

Решение. Область определения функции $D(f) = (-\infty, 1) \cup (1, +\infty)$. Согласно необходимому условию точки экстремума находим производную

$$f'(x) = \left(\frac{x^2 - x + 1}{x - 1}\right)' = \frac{(2x - 1)(x - 1) - (x^2 - x + 1)}{(x - 1)^2} = \frac{x^2 - 2x}{(x - 1)^2} = \frac{x(x - 2)}{(x - 1)^2}.$$

Приравнивая найденную производную к нулю, получаем

$$f'(x) = \frac{x(x-2)}{(x-1)^2} = 0 \iff \begin{cases} x(x-2) = 0, \\ x \neq 1 \end{cases} \Leftrightarrow \begin{cases} x = 0, \\ x = 2, \\ x \neq 1. \end{cases}$$

Точки x = 0, $x = 2 \in D(f)$ — стационарные точки (в них производная обращается в нуль). Точка x = 1 не является точкой, подозрительной на экстремум, так как в ней функция не определена.

Пример 2. Найти точки возможного экстремума функции

$$f(x) = \sqrt[3]{x^2 - 2x} .$$

Решение. Область определения функции $D(f) = (-\infty, +\infty)$ (функция определена на всей числовой оси). Согласно необходимому условию точки экстремума находим производную

$$f'(x) = \left(\sqrt[3]{x^2 - 2x}\right)' = \left(\left(x^2 - 2x\right)^{1/3}\right)' = \frac{1}{3}\left(x^2 - 2x\right)^{-2/3} \cdot (2x - 2) = \frac{1}{3}\frac{2x - 2}{\left(x^2 - 2x\right)^{2/3}} = \frac{1}{3}\frac{2x - 2}{\sqrt[3]{\left(x^2 - 2x\right)^2}}.$$

Приравнивая найденную производную к нулю, найдем стационарные точки, а также точки, в которых производная не существует:

$$f'(x) = \frac{1}{3} \frac{2x - 2}{\sqrt[3]{(x^2 - 2x)^2}} = 0 \iff \begin{cases} 2x - 2 = 0, \\ x^2 - 2x \neq 0, \end{cases} \Leftrightarrow \begin{cases} x = 1, \\ x(x - 2) \neq 0, \end{cases} \Leftrightarrow \begin{cases} x = 1, \\ x \neq 0, \\ x \neq 2. \end{cases}$$

Точка x=1 есть стационарная точка (в ней производная обращается в нуль). Она же является точкой возможного экстремума. В точках x=0, x=2 производная f'(x) не существует. Так как в этих двух точках функция определена $(D(f)=(-\infty, +\infty))$, то они также являются точками возможного экстремума для исходной функции.

Вопрос 6. Экстремум функции одной переменной (достаточные признаки)

Теорема 1 (*первый достаточный признак точки экстремума*). Пусть $x_0 \in D(f)$ — точка, подозрительная на экстремум функции f(x). Тогда:

- 1) если при $x \in (x_0 a, x_0)$: f'(x) > 0, при $x \in (x_0, x_0 + a)$: f'(x) < 0, то точка x_0 точка максимума функции;
- **2)** если при $x \in (x_0 a, x_0)$: f'(x) < 0, при $x \in (x_0, x_0 + a)$: f'(x) > 0, то точка x_0 точка минимума функции.

Справедливость теоремы следует из предыдущих теорем. Если при $x \in (x_0 - a, x_0)$: f'(x) > 0, то на интервале $(x_0 - a, x_0)$ функция строго возрастает, если при $x \in (x_0, x_0 + a)$: f'(x) < 0, то на интервале $(x_0, x_0 + a)$ функция строго убывает, а это значит, что точка x_0 точка максимума функции.

Другими словами, если в точке x_0 производная f'(x)=0 (или не существует) и при переходе через эту точку слева направо производная f'(x) меняет знак с « + » на « – » (соответственно с « – » на « + »), то x_0 – точка максимума функции (соответственно точка минимума функции).

Пример 1. Исследовать функцию на экстремум:

$$f(x) = \frac{x^2 - x + 1}{x - 1}.$$

Решение. Производная этой функции имеет вид (см. предыдущий вопрос, $D(f) = (-\infty, 1) \cup (1, +\infty)$)

$$f'(x) = \frac{x(x-2)}{(x-1)^2}.$$

Точками возможного экстремума (стационарные точки) являются точки $x_0^{(1)}=0,\ x_0^{(2)}=2$.

Исследуем знаки производной по методу интервалов.

$$f'(-1) = \frac{(-1)(-1-2)}{(-1-1)^2} = \frac{3}{4} > 0$$
, $f'(1/2) = \frac{\frac{1}{2}(\frac{1}{2}-2)}{(\frac{1}{2}-1)^2} = -3 < 0$,

$$f'\left(\frac{3}{2}\right) = \frac{\frac{3}{2}\left(\frac{3}{2}-2\right)}{\left(\frac{3}{2}-1\right)^{2}} = -3 < 0, \qquad f'\left(3\right) = \frac{3\left(3-2\right)}{\left(3-1\right)^{2}} = \frac{3}{4} > 0.$$

Из метода интервалов следует, что функция f(x) строго возрастает при $x \in (-\infty, 0) \cup (2, +\infty)$, строго убывает при $x \in (0, 1) \cup (1, 2)$.

Согласно первому достаточному признаку точки экстремума $x_0^{(1)} = 0 - \text{точка максимума} \quad (x_{\text{max}} = 0, \ f\left(x_{\text{max}}\right) = f\left(0\right) = -1),$ $x_0^{(2)} = 2 - \text{точка минимума} \quad (x_{\text{min}} = 2, f\left(x_{\text{min}}\right) = f\left(2\right) = 3).$

Пример 2. Исследовать функцию на экстремум:

$$f(x) = \sqrt[3]{x^2 - 2x} .$$

Решение. Область определения функции $D(f) = (-\infty, +\infty)$. Производная функции имеет вид (см. предыдущий вопрос)

$$f'(x) = \frac{1}{3} \frac{2x-2}{\sqrt[3]{(x^2-2x)^2}} = \frac{1}{3} \frac{2x-2}{\sqrt[3]{x^2 \cdot (x-2)^2}}$$

Точками возможного экстремума являются:

x = 1 (стационарная точка, f'(1) = 0),

x = 0, x = 2 (в этих точках не существует конечной производной).

Для ответа на вопрос о точках экстремума воспользуемся первым достаточным признаком. Знаменатель

$$\sqrt[3]{x^2 \cdot (x-2)^2}$$

дроби производной f'(x) при всех значениях $x \neq 0$, $x \neq 2$ положителен. Значит знак производной определяется знаком числителя.

Применяя метод интервалов, получим

Точка x = 1 является точкой минимума функции ($x_{\min} = 1$,

$$f(x_{\min}) = f(1) = \sqrt[3]{1^2 - 2 \cdot 1} = \sqrt[3]{-1} = -1$$
.

Точки x = 0, x = 2 не являются точками экстремума, так как при переходе через каждую из этих точек производная f'(x) не меняет своего знака.

Теорема 2 (второй достаточный признак точки экстремума).

Пусть $x_0 \in D(f)$ – стационарная точка функции f(x) (то есть $f'(x_0) = 0$). Тогда:

- 1) если $f''(x_0) > 0$, то x_0 точка минимума функции f(x);
- 2) если $f''(x_0) < 0$, то x_0 точка максимума функции f(x).

Пример 3. Найти для функции $f(x) = (x-1) \cdot e^x$ точки экстремума, используя второй достаточный признак точки экстремума.

Решение. Вычисляем производную первого порядка функции

$$f'(x) = ((x-1) \cdot e^x)' = e^x + (x-1) \cdot e^x = e^x \cdot (1+x-1) = x \cdot e^x$$

Применяя необходимое условие точки экстремума, получим стационарную точку функции:

$$f'(x) = 0 \iff x \cdot e^x = 0 \iff x = 0$$
.

Вычисляем производную второго порядка

$$f''(x) = (x \cdot e^x)' = e^x + x \cdot e^x = e^x \cdot (x+1)$$

Находим значение производной второго порядка в x = 0:

$$f''(0) = e^0 \cdot (0+1) = 1 > 0$$

Так как f''(0) > 0, то точка x = 0 есть точка минимума функции.