A Framework for Sensor Based Sign Language Detection using Machine Learning

Exam Roll: 16

Reg no.: 2015-516-695

Session: 2015-16

Exam Roll: 37

Reg no.: 2015-216-698

Session: 2015-16

Department of Electrical and Electronic Engineering University of Dhaka

Background

Human Computer Interaction (HCI)

To be able to interact with computers the same way we interact with other Humans

Vision Based

- No extra hardware needed other than the Camera
- Sensitive to the background and hand orientation
- Can not be designed as a standalone device

Sensor Based

- Extra hardware is requirede.g. **Data Glove**
- Not sensitive to the Background and orientation
- Can be designed as a standalone device

Related Works

Mäntyjärvi

8 dynamic gestures Classification based on HMM Used accelerometer sensor **Single** Participant Average accuracy 98%

Zhang

72 dynamic gestures Classification based on **HMM** Used accelerometer and **EMG** sensors **Two** Participants Average accuracy 95.8%

P. Weber

Low Cost **Data Glove** design Used Flex and IMU sensors Vibrotactile Feedback Wireless Capability

Roy

5 dynamic gestures Classification based on **HMM** and **Bayes** Classifier Used **accelerometer** sensor Six participants Average accuracy **89.7**%

C. Pittman

8 static gestures Based on **Doppler Effect** Used two microphones and more than two speakers to capture the reflected sound **Single** participant

2016

Average accuracy 93.8%

Hardware Setup

Cost Breakdown

Esp-32 MCU	600/-
MPU6050	160/-
Flex sensors (x5)	3500/-
Others	200/-

Total 4460/-

ESP-32 Microcontroller

Xtensa dual core 32-bit CPU

240MHz clock frequency

4MB Flash and **520KB** RAM memory

Wi-Fi and Bluetooth Connectivity

MPU6050 IMU Sensor

3-Axis **Accelerometer** sensor

3-Axis **Gyroscope** sensor

Digital Motion Processing (DMP)

Flex Sensor

2.2" Flex sensors

2x Resistance at 180° bend

Software Framework

Data Collection

Static Gestures		Dynamic Gestures
14	Number of Gestures	3
30	Number of Participants	5
21:9	Gender	4:1
21 – 32 years	Age Range	21 – 23 years
N/A	Sampling Frequency	7Hz
N/A	Window	Size: 10 samples Length: 1.67s Overlapping: 50%

Data Filtering

Statistical Median

Removes outliers
Used for Flex Sensor

Complementary Filter

Stops the yaw angle drift
Used for IMU Sensor

Digital Motion Processor

On-chip filtering
Used for IMU Sensor

Feature Extraction & Training

Static Gestures

Mean

Median

Standard Deviation (σ)

Dynamic Gestures

Mean

Median

Variance

Standard Deviation (σ)

Root Mean Square

Chosen Feature

$$\sigma_x - \sigma_z$$

Result Analysis

Evaluation Process

Accuracy using Cross Validation

Precision and Sensitivity

$$Precision = \frac{TP}{TP + FP}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

Confusion Matrix

Future Works

First ever complete sensor-based Bangla sign language framework

Extending the **Dataset**

Increase the number of gestures
Data from actual impaired

On-device Classification

Portability
Cost reduction

Appendix A

Euler Angle Equations:

$$\phi = \tan^{-1} \frac{2(wx+yz)}{1-2(x^2+y^2)}$$

$$\theta = \sin^{-1} 2(wy - xz)$$

$$\psi = \tan^{-1} \frac{2(wz + xy)}{1 - 2(y^2 + z^2)}$$

Here, w, x, y, and z are real numbers, and i, j, and k are the fundamental quaternion units.

Appendix B

Orientation Angle Equations:

$$yaw = \tan^{-1} \frac{2(xy - wz)}{2(w^2 + x^2) - 1}$$

$$pitch = \tan^{-1} \frac{gravity_x}{\sqrt{gravity_y^2 + gravity_z^2}}$$

$$roll = \tan^{-1} \frac{gravity_y}{\sqrt{gravity_x^2 + gravity_z^2}}$$

Here, w, x, y, and z are real numbers, and i, j, and k are the fundamental quaternion units.

Appendix C

Confusion Matrix of KNN Classifier

Static Gestures

KNN Confusion Matrix Cash Come Here -Excellent -0 Finger Crossed Four Stop Three Thumbs Down Thumbs Up Two Thurbs Down Predicted label

Dynamic Gestures

Appendix D

Precision vs Sensitivity of KNN Classifier

Dynamic Gestures

Appendix E

Static Hand Gestures

Appendix F

Dynamic Hand Gestures

Painting Thank You Sorry