Mitigation & Countermeasures

Dr Rob Hegarty

Aims & Objectives

- Upon completion of this lecture you will be able to:
 - Describe the various hacking mitigation techniques
 - Distinguish between various access control methodologies that are employed in computer security
 - Summarise how a variety of countermeasures may be employed to increase the security of a computer system
 - Identify defence in depth strategies to improve the security of computer systems

Overview

- Recap on the ethical hacking procurement and implementation processes
- Business Impact
- Mitigation
- Access Control
- Configuration Management
- Contingency Planning
- Preventative Controls
- Technical Countermeasures
- Defence in depth
- Summary

Recap – Ethical Hacking

• There are well established procurement and implementation

processes for ethical hacking

Reconnaissance

- Gaining access
- Maintaining access / Foot holding
- Privilege escalation
- Compromising the domain (optional)
- Data exfiltration
- Covering your tracks

What is Mitigation?

• Mitigation – mitigate or moderate the effects of an action

Reduce severity of the impact of an attack/incident

Mitigation Approaches

Preventative

 "Prevention is better than a cure" preventing an incident from occurring should be the first goal

Detective

 Identifying when a system has become vulnerable, and/or when it has been exploited

Corrective

Counteracting the impact of an incident after the fact

Mitigation

 The mitigation strategy should take into account the process employed formally/informally by hackers, and form part of the improvement plan

- Reconnaissance
- Gaining access
- Maintaining access / Foot holding
- Privilege escalation
- Compromising the domain (optional)
- Data exfiltration
- Covering your tracks

Business Impact Analysis

- Which systems are considered critical?
- How does each and every system relate to the other systems
 - Hidden critical systems?
- What are the consequences of disruption to critical and non-critical systems?

Why Access Control?

- In order to achieve the three properties of security, access control is required
- Access control is the selective restriction of access to a resource of information, access control is concerned with authorisation and authentication
- Authorisation = What you are authorised to do
- Authentication = Proving your identity

Approaches to Access Control

- DAC (Discretionary Access Control)
 - Access is provided at the owner's discretion, the owner of an object defines who and what level of access if granted
 - Most operating systems provide DAC
 - e.g. a user can specify who is allowed to view/read/write to a file
- MAC (Mandatory Access Control)
 - Access is enforced by the system according to security labels (classification levels) Unclassified, Official, Restricted, Confidential, Secret, Top Secret
 - Subject clearance is matched to object clearance according to a model
 - MAC is used were security is vital
 - SE-Linux provides MAC

Access Control Lists

- Object has permission attributes that specify which subjects or processes are granted access.
- e.g. Document.txt (Alice: read; Bob: read, write)

Security is largely dependant on how ACLs are generated/modified

Access Control Models - Biba

- Goal Integrity preservation
 - Prevent unauthorised modification by unauthorised subjects
 - Prevent unauthorised modification by authorised subjects
- Rules "no read down, no write up"
 - No read down A subject with a given integrity level must not read an object with a lower integrity level
 - No write up A subject with a given integrity level must not write to an object with a higher integrity level
- Allows orders to flow down the chain of command, without their integrity being damaged

Access Control Models - Bell-LaPadula

- Goal Confidentiality preservation
 - Prevent objects with a high clearance level being viewed by subjects with a lower clearance level
 - Prevent subjects with a high clearance level writing to objects with a lower clearance level
- Rules
 "no read up, no write down"
 - No read up Subjects can not read higher than their clearance level
 - No write down Subjects can not write to an object at a lower clearance level
- Restricts access to information to subjects with suitable clearance levels

Operational Controls

- Awareness and Training
 - Security awareness training
 - e.g. Don't open email file attachments from unknown senders
- Configuration Management
- Contingency Planning

Configuration Management

- Hardware
 - Devices don't ship secure
 - e.g. Default login credentials
 - Inventory, including serial numbers, configuration settings
- Software
 - Licence inventory
 - Patch & service pack management

Contingency Planning

- Contingency Plan (CP) Development
 - Business Impact Analysis
 - What are the risks, impacts and interdependencies?
 - Identify Preventative Controls
 - Develop recovery strategies
 - Deploy CP
 - Test CP
 - Maintain / Update CP

Preventative Controls

- UPS (Uninterrupted Power Supply)
- Generators
- Fire suppression system (Not Halon)
- Scheduled offsite backups
- Access Control
- Cooling Systems

Data Backups

- In the event of an incident do you have:
 - Data backups
 - System images
- Are your backups:
 - Up to date
 - Accessible / Available (Think Cryptolocker)
- How would you achieve the above?

Backups vs Redundant Storage

- Resilient systems require both data backups and redundancy
- Backups
 - Allow recovery of data
 - Full The entire repository is backed up
 - Incremental Data changed since the last full backup is backed up
 - Differential Data changed since the last differential or incremental
- Redundant Storage RAID (Redundant Array of Inexpensive Disks)
 - Prevents system down time
 - Mirrored (RAID 1) Two disks contain identical data
 - Striped (RAID 5) Data is split up and striped across multiple disks

In Class Task

- Contingency planning Describe you contingency plans for each of the follow:
- Your laptop hard drive fails the day before a coursework deadline
- You suspect your primary email account has been compromised
- You discover a virus on your laptop or PC
- Consider:
 - Data
 - Software
 - Time required to recover from the incident

Countermeasures

• Countermeasures typically fall into three broad categories

Approach	Perimeter	Internal	Extending
Firewall	X		
IDS	X	X	
VPN			X

Why Firewalls?

- Hosts are vulnerable due to their complexity, vulnerabilities in operating systems, application software, and poor user practice (systems not kept up to date)
- Firewalls restrict access to the network
- Firewalls at the perimeter of a network help mitigate the vulnerable hosts

Firewalls

- Based on the concept of physical walls that prevent the spread of fire, hence the name "firewall"
- First line of defence, based on the perimeter model
- Hardware and software based solutions
 - Software Protects a single host, installed and configured by the end user
 - Hardware Protects a network, installed and configured by service provider, administrator
- Firewalls are considered a high value target, for modification or DoS type attacks

Typical Firewall Configuration

- Internal hosts can access DMZ and Internet
- External hosts can access DMZ only, not Intranet
- DMZ hosts can access Internet only
- Advantages?
 - If a service gets compromised in DMZ it cannot affect internal hosts

IDS (Intrusion Detection Systems)

- Detect malicious behaviour inside a network
- Two approaches:
 - Misuse Detection
 - Create signature for know attacks (Capture attack, extract unique characteristics)
 - Compare network traffic with signatures to detect attack
 - Anomaly detection
 - Model normal network behaviour (Statistics on use of Ports, Bandwidth, etc against time)
 - Report any non-normal behaviour

HIDS - Host Based Intrusion Detection System

- Monitoring carried out on a host to detect attacks
- Examines
 - Log files
 - Changes to system files
 - Suspicious activity (e.g. failed logon attempts)
- Examples
 - Tripwire
 - Symantec ESM

NIDS - Network Based Intrusion Detection Systems

- Network based detection of attacks
- Examines
 - Internal and external network attacks (Inside firewall, or in the DMZ)
 - Traffic from multiple hosts (strategic placement required)
 - Alert the administrator if an attack is suspected
- Examples
 - Snort
 - Netprowler

IDS Challenges

- Misuse detection
 - Failure to identify novel attacks
- Anomaly detection
 - Modelling "Normal behaviour is difficult"
 - Data drift, updating the normal model can mask a slow incremental attack
 - Many attacks may look like normal traffic
 - False positive rate can be high
- Securing the IDS
 - IDS are considered high value targets, strong passwords and encryption of traffic on configuration ports are manditory

VPN – Virtual Private Networks

- Ensure confidentiality, preserve integrity
- Two main modes of use
- Tunnel mode
 - Used for site-to-site communication
 - Encapsulates the entire original IP packet
- Transport mode
 - Typically used for client-to-site communication
 - Original IP header is not encapsulated, payload is encrypted

Malware Detection

- Pattern scanners look for strings in code that may be indicative of malware
 - Fast
 - Easily fooled with obfuscation
- Integrity checkers Produce a database of signatures from files using hash functions. If the files are altered their signature changes
 - No need to know what a virus looks like
 - Problematic to keep up to date (software updates etc)
- Behaviour blocking Prevent applications that exhibit malicious behaviour from executing

Policy - Passwords

- Specify minimum length
- Character inclusion rules
 - e.g. Alpha + Numeric + Symbol (Non-alpha-numeric)
- Specify an expiry date/time or validity period
- Disallow re-use
 - Force users to select different passwords without commonality
- Encourage the use of passphrases
 - "So long & thanks for all the fish!" is a strong password that is easy to remember
 - "716&*\$KKcl3T" is a strong password that is difficult to remember
 - So the user will write it down somewhere!

Passwords - Slow hashing

- Passwords should never be stored in plain text
- Hashed passwords may be stolen in a breach, the attacker will then go about calculating hash values from their dictionary for comparison (assuming they know the salt or the passwords are unsalted)
- Select a hash function that increases the computational work required for password cracking such as PBKDF2 or bcrypt
 - PBKDF2 performs many iterations, increasing the computational workload
- For more information on password cracking and mitigation
 - https://crackstation.net/hashing-security.htm

Defence in depth

- A layered approach to defence
- Providing multiple barriers to the adversary
- Strategy should involve
 - People
 - e.g. Management, Training
 - Technology
 - e.g. Countermeasures
 - Operations
 - e.g. Policy

• https://www.nsa.gov/ia/ files/support/defenseindepth.pdf

Defence is Depth

- In order to reduce the vulnerability of a system and prevent exploitation a number of steps can be taken:
 - Regular updating and patching of OS and application software
 - Deployment and correct configuration countermeasures
 - Firewalls
 - IDS
 - Closure of unused open ports
 - Policy and training on information assurance / disclosure

Summary

- In order to preserve the confidentiality, integrity, and availability of resources, access control mechanisms are required.
- Various models and approaches to access control may be applied to achieve some or all of the above goals.
- Defence in depth is a multi-layered approach to securing computer systems
- There are a variety of technical and policy based countermeasures available to help protect computers systems

Next Week

• OpSec and Research