Intro to Electricity

James Woods

October 13, 2016

What Makes Electricity Interesting

- ▶ We somehow start with a fuel (Counting wind, geothermal and sunlight in this).
- Transport it from where we found it to a generating facility.
- ► Turn it into electricity losing some energy as heat.
- Run it along long wires to where people want to use it, losing yet more energy.
- From there send it out to every small location (losing more), and
- Because electricity is not easily stored, adjust the rate at which we generate electricity moment-by-moment to make sure there is just enough.

This is a logistical miracle.

Basic Units

- Watts = AmpsVolts first thing everyone learns.
 - ▶ Pro tip on units, if it is someones name, capitalize it.
 - ▶ Volt is analogous to height.
 - Amp is analogous to a weight.
 - Watt is what it happens when that weight is dropped from that height.
 - DC is easy; AC is "complex"
- ▶ AC because it is a wave, has a few more components.
 - ▶ Real Power, measured in W, it is what does the work.
 - ► Reactive power, measured in volt-amps (var), "r" tells you it is reactive, is what pushes the electricity around.
 - ▶ Apparent Power, is in volt-amps too (VA) is when you add the two together in a vector sense.
 - Power Factor is the Real(W)/Apparant(VA), the sign is interesting because assumes induction.

What?

Caveat IANAE and I will do thing like call current amps and the like. Also, this is the simple, single phase, view with lots of simplifications. Reality is for engineers.

- ▶ The alternating part of AC is what causes the complication.
 - You can talk about instantaneous power but
 - Tend to talk about average power.
- With a resistive load, think light bulb, amps and volts are in sync
- Inductors and Capacitors throw amps and volts out of sync
 - Capacitors store energy in electric fields. Think a very bursty battery.
 - Amps peak before volts
 - ▶ Inductors store energy in magnetic fields. Think about an electromagnet in a motor.
 - ► Amps peak *after* volts

Picture for this

AC Power to a Resistive Load

AC Power to a Inductive Load

AC Power to a Capacitive Load

Figure 1:

Power Factor

Measure it

- ► Henrys are the unit for inductance/capacitance and engineers use that in calculations
- There are also power factor meters
- You can also check out the difference between amps and volt on ocilliscope.
- ► Low numbers mean the utility needs to generate more power than customer uses.
 - Can happen with low load, like a motor barely moving, but you still need the electromagnet
 - Common solution is to install capacitors somewhere to cancel out the inductor

Why do we care about reactive power and power factors?

- ▶ Engineers have to design systems to accommodate not just the real, but real plus reactive, i.e., apparant power.
- Reactive power has to be generated.
- Not residential tariffs, but commercial and industrial tariffs charge for reactive power or have penalties for low power factors.

kW vs kWh

- kW is instantanious and called power
- kWh is the integral over time and called energy.
- ▶ 100 W light bulb uses 100 Wh = 1/10 kWh per hour
- ▶ Get used to flipping between 1,000,000,000 W = 1,000,000 kW = 1,000 MW = 1 GW

Lets Generate Some Electricity

- Turbine spin something in a magnetic field to induce a current.
- Lots of ways to spin a turbine
 - Coal, grind it up, burn it, make steam, use steam to spin the turbine.
 - Nuclear, use the heat to make steam, use steam to spin a turbine.
 - Biomas, burn stuff to . . .
 - ▶ Gas, burn it to spin a turbine . . .
 - Fuel Oil or Diesel
 - Solar thermal, use the sun to make steam . . .
 - Water, falling water hits a turbine and spins it
 - Wind, spin a turbine
 - etc.
- Or don't spin a turbine and go for photovoltaic, PV.

Characteristics

- Nameplate, fully loaded under ideal conditions (MW)
- ► Ramp rate, how fast power (MW) can change MW/min
 - Not always constant, can differ by capacity factor (fraction of nameplate)
 - Not always symetric, up different from down.
 - Used to follow the load.
- ► Heat rate, BTU in/ BTU out, only used for generation that uses a fuel.
 - ▶ 1 is impossible but 1 kW = 3412 BTU.
 - Recent average from EIA, https://www.eia.gov/ electricity/annual/html/epa_08_01.html

Coal from the outside

http://appvoices.org/images/uploads/2012/02/ Asheville-coal-plant-e1432059203783.jpg

Coal on the inside

- ▶ Pulverize the coal, picture somethign that can do 20 Tons/hr
- Blow it into combustion chamber to burn
- ► Steam turns turbine, etc. https://youtu.be/IdPTuwKEfmA
- ► Clean up
 - ▶ NOx with ammonia common but plenty of others
 - Recover fly ash and sell it, great for concrete.
 - ► SOx, Mercury and other. BTW Radiation

Nuclear

Radiation to heat water and then \dots similar to coal. Just a reaction chamber

Local Reactor Columbia Generating Station

- ▶ 1,170 MW usually runs as load following. It reacts fast enough.
 - ► France is ~70% nuclear and they load follow.
- Most nuclear is run as base load, i.e., all the time since low variable cost and high fixed cost.
- ▶ Palo Verde (AZ) is larger 3.3GW

So, about nuclear

- So what to do with spent fuel.
- ▶ They probably produce less radiation than coal
- ► Can produce cheap, in the marginal cost sense, power. More on this later.

Natural Gas Conventional and Combined Cycle

- Combined cycle means
 - Taking mored than one pass at extracting energy.
 - Spin the turbines first.
 - ▶ Take the heat and run a steam turbine.
 - ► Take the remaining heat and use a different working fluid (with different phase change properties) to extract more.

CCNG

- Plants are more expensive
- ► Have higher heat rates
- Conventional
 - Cheap
 - Commonly run as peaking units.

Biomass

- ► Tend to be combined heat and power. Another way of using waste heat.
 - Cogeneration like this is common.
 - We have steam and chill water systems on campus
- ▶ While renewable, it is not, in general, clean
 - Particulates
 - Heavy metal concentration
 - etc.
- All this is improveing.

Biomas One in Eugene. 30 MW and keeps catching on fire.

Figure 3:

Geothermal

- ▶ Drill a hole down to where the temperature is high enough.
 - If it is dry, add water to make steam.
 - ▶ If wet, get steam
 - ▶ If temp is not high enough, use a few working fluids to generate electricity.
- Run through a turbine.

Neal Hot Spring in Malheur. 30 MW

Figure 4:

Diesel and other Fuel Oils

- You know the drill . . .
- ▶ Less than 1% in the US for electricity generation.
 - Still common heating fuel.
 - Backup fuel for NG generation
 - May be used in small distributed generation
- More common in less developed countries

Solar Thermal

- You have see the low and mid temperature designs for heating and cooling.
- ► High temperature designs are:
 - Dish
 - Tower
 - Trough
- Fluids:
 - ▶ Oil
 - Salt
 - Water steam
- ▶ Low and mid temperature are similar to roof top residential that you have seen.

Hydro

So, you spin a turbine

Figure 5:

Hydro can be complex

- Many constraints
 - Intra and interseason storage requirements
 - ► Temperature and turbidity constraints
 - ► Treaties and contracts
 - Minimum and maximum flow constraints
 - Dredging
 - Water quality
- Can you go all hydro?
 - ► US ~6%
 - ► Norway ~95%

Everything Comes with a cost

Hetch Hetchy Valley 1908. Photo by Isaiah West Taber

Figure 6:

Wind

- You find a good wind resource NREL Class 3 and up (http://www.nrel.gov/gis/wind_detail.html)
- ▶ Put up a suitably rated 1.5MW windmill. 8MW is the largest I've hear about.
- ▶ Maintain them, upgrade them and if need be demo them.
- What people complain about
 - Noise Can't hear after a mile or two
 - Raptor and bat kills Less now with larger slower moving designs.
 - Ugly In in the eye of the beholder.

PV

- Does not spin a turbine.
- ► PV effect generates DC electricity which is then converted to AC though an inverter

Levelized Cost of Electricity (LCOE)

- https://www.eia.gov/forecasts/archive/aeo15/pdf/ electricity_generation_2015.pdf Table 1
 - ► CC is Carbon Capture.
 - CCS is Carbon Capture and Storage

Economics and History

Question 1

Start with a natural monopoly, i.e., when average cost and MC are ever decreasing. Show DWL, CS and PS when this firm profit maximizes.

Question 2

Again start with a natural monopoly. Show DWI, CS and PS when this firm is subject to AC price regulation.

Question 3

Take a look at figure 1 in the original paper on the Averch - Johnson effect (http://stats.lib.pdx.edu/proxy.php?url=https://www.jstor.org/stable/1812181?seq=1#page_scan_tab_contents). Ignore most of the math unless you are into it. Explain what is the A-J effect and why it happens with the simple isoquant-iso cost diagram.