Exercice 1 : (Variance	e.)								★ ☆☆☆
Voici un tableau de vale	eurs re	présen	tant u	ne séri	e stat	istique	à deu	x vari	ables.
	x_i	1	2	3	4	5	6	7]
	y_i	11	6	4	6	8	5	7	-
	x_i^2								
	y_i^2								
1. Compléter les lignes du tableau en calculant les valeurs des x_i^2 et y_i^2 ;									
2. calculer \overline{x} , la moyenne des x_i :									
3. calculer \overline{y} , la moye	enne de	$e y_i$: .							
······									
4. calculer $\overline{x^2}$, la moyenne des x_i :									
$egin{array}{cccccccccccccccccccccccccccccccccccc$									
5. calcular y^2 , la moy	enne c	y_i :	 						

Exercice 2:	(Variance.	Covariance.)
-------------	------------	--------------

_			
\mathbf{x}	\square	\square	\mathcal{I}

Voici un tableau de valeurs représentant une série statistique à deux variables.

x_i	5	8	7	10	30	5	1
y_i	600	960	840	1 200	3 600	600	120
x_i^2							
x_iy_i							

6. en déduire les valeurs de V(x) et V(y):

1.	Compléter les lignes du tableau en calculant les valeurs des x_i^2 et x_iy_i ;
2.	calculer \overline{x} , la moyenne des x_i :
	calculer \overline{xy} , la moyenne de y :
	calculer $\overline{x^2}$, la moyenne des x_i :
	calculer \overline{xy} , la moyenne de x_iy_i :
	en déduire les valeurs de $V(x)$ et $Cov(x,y)$: