NPOLink

CS 373 – Software Engineering
IDB Project – Phase 1
10am Class- Group #6
npolink.me

By Georgina Garza, Gerardo Mares, Edgar Marroquin, Paul Purifoy, and Jacob Zillifro

Motivation

NPOLink is a web application which allows users to attain information about various non-profit organizations. Using this website, users are able to find out about non-profits in their area, non-profits by category, and even find ways to volunteer for and help these non-profits. We noticed that often websites either just gave direct information about a non-profit's name and tax-exempt code/non-profit category, or simply listed events to volunteer for. We wanted users to be able to find non-profits that they could actively be passionate about based on either location, category, or both, and find out various information about it.

User Stories

- 1. As a user, I should be able to get all of the organizations within one category so that I may find one that suits what I'm looking for.
 - Our RESTful API has been designed with a call that will directly allow for this to occur (GET Specific Category). This call will data will be originally scraped from the Nonprofit Explorer API, and then be held in our database. Our GET call will specifically access our database.
 - Estimated Implementation Time: 3hrs
 - Actual Implementation Time:
- 2. As a user, I should be able to extract the location of an organization so I can know if it is relevant to me or not.
 - Our RESTful API has been designed with a call that will directly allow for this to occur (GET NPO by Name). This will provide various data about the organization, which will include the location.
 - Estimated Implementation Time: 3hrs
 - Actual Implementation Time:
- 3. As a user, I should be able to extract the codes for any organization and find out what the code means so I can learn about the operations of the organization.
 - Our RESTful API has been designed with a call that will directly allow for this to occur (GET NPO by Name). This will provide various data about the organization, which will include the tax-exempt code.
 - Estimated Implementation Time: 3hrs
 - Actual Implementation Time:
- 4. As a user, I should be able to get volunteer opportunities connected to an organization so that I can know what is available to do for an organization.
 - Our RESTful API has been designed with a call that will directly allow for this to occur (GET NPO by Name). This will provide various data about the organization, which will include the volunteer opportunities.
 - Estimated Implementation Time: 3hrs
 - Actual Implementation Time:
- 5. As a user, I should be able to extract the description of every organization so that I can be informed about what each non-profit does.
 - Our RESTful API has been designed with a call that will directly allow for this to occur (GET NPO by Name). This will provide various data about the organization, which will include the description.
 - Estimated Implementation Time: 3hrs
 - Actual Implementation Time:
- 6. As a user, I would like to see multiple types of multimedia for instance pages so I can get a better insight into the instance.
 - We have added various forms of multimedia for our instance pages since Phase
 1. For example, we have added maps onto our Location and Nonprofit instance pages

- Estimated Implementation Time: 2hrs
- Actual Implementation Time: 2hrs
- 7. As a user, I should be able to go to any of the three model pages and see multiple pages of data.
 - Our UI calls our API to gather the paginated results of elements in our database.
 In real time, when a model page is first loaded up an API call to page 1 is automatically made. From there, when a user clicks on a specific page number, the API is called for that page number.
 - Estimated Implementation Time: 3hrs
 - Actual Implementation Time: 3hrs
- 8. As a user, I should be able to go to one of the three model pages and see updated information so that I can see the most updated instances at all times.
 - Our database is updated through scraping every few days so that our model pages will be as up to date with instances at all times.
 - Estimated Implementation Time: 1hr
 - Actual Implementation Time: 1hr
- 9. As a user, I should be able to go to any instance of any model and have a page that shows related instances of the other two models.
 - For each instance in the database, we have stored the related models as keys, which we can then access the information for by the key. On our UI for each instance, we make a clickable link to the related models for that instance, which allows a user to see the relations and connections.
 - Estimated Implementation Time: 2hrs
 - Actual Implementation Time: 1.5hrs
- 10. As a user, I should be able to see five pieces of information for each instance on the model page.
 - For each model page, on the grid for the instances, we always show 5 attributes. For nonprofits, we show an image, name, description, EIN, and location. For categories, we show category name, category code, image, parent category, and a short description. For locations, we show the name of the location, city, state, a description, and an image.
 - Estimated Implementation Time: 1hr
 - Actual Implementation Time: 1hr

RESTful API

The overall documentation for out RESTful API can be found at the following link: https://documenter.getpostman.com/view/5491513/RzZ3K1zY

All of our calls will be formatted in the way the documentation has specified, and return a JSON object. Here is some information about the various GET calls that we have implemented:

Nonprofits Endpoint

- GET NPOs
 - o Retrieves a list of all non-profit organizations within our database.
- GET NPOs by Page
 - Retrieves a list of 12 non-profit organizations within our database based on the page number given.
- GET NPOs by ID
 - o Returns the non-profit organization with the given ID.
- GET NPO by Location
 - Returns a list of the non-profit organizations that are located in the location ID given.
- GET NPO by State
 - Returns a list of non-profit organizations that are located in the state specified by its 2-letter abbreviation.
- GET NPO by City
 - Returns a list of non-profit organizations that are located in the city and state specified.
- GET NPO by Location and Category
 - Returns a list of non-profit organizations that are located in the location ID given and that have the category ID given.
- GET NPO by State and Category Code
 - Returns a list of non-profit organizations that are located in the 2-letter abbreviation of the state given and that have the category code
- GET NPO by Keyword(s)
 - Retrieves a non-profit organization based on a keyword found in either the description or list of events.

Locations Endpoint

- GET All Locations
 - o Retrieves all the locations for non-profit organizations held within our database.
- GET Locations by page
 - Retrieves a list of 12 locations within our database based on the page number given.
- GET Location by Location ID
 - Returns the location with the given location ID.
- GET Locations by Category
 - Returns a list of locations that contain non-profit organizations that have the category ID that is given.
- GET Locations by Category Code
 - Returns a list of locations that contain non-profit organizations that have the category code that is given.
- GET Locations by Nonprofit ID
 - o Returns the location of the specified non-profit organization ID.

Categories Endpoint

- GET All Categories
 - o Retrieves all categories for non-profit organizations held within our database.
- GET Categories by page
 - Retrieves a list of 12 categories within our database based on the page number given.
- GET Category by Category ID
 - Returns the category with the given category ID.
- GET Categories by Location ID
 - Returns a list of categories which have associated non-profit organizations in the location ID given.
- Get Categories by Nonprofit ID
 - Returns the category of the non-profit organization specified by the non-profit organization ID given.

Models

- 1. Non-profit Organizations
 - This model shows various non-profit organizations.
 - Attributes so far:
 - i. Name (String): The name of the organization.
 - ii. Description (String): The description/mission of the organization.
 - iii. Image/Logo (URL (String) to image): A logo/image for this organization.
 - iv. Address (String): The address of where this nonprofit is located.
 - v. Location (Key/Link): In the database a key, on the UI a link, to the Location instance of Locations model for this nonprofit.
 - vi. Category (Key/Link): In the database a key, on the UI a link, to the Category instance of Categories model for this nonprofit.
 - vii. Volunteer Opportunities (List of Events (Each has Name (string), Description (string), Link)): A list of volunteer opportunities for this nonprofit organization where each holds information about the name, description, and link for a user to find out more.

2. Locations

- This model shows various locations that have non-profit organizations.
- Attributes so far:
 - i. Name (String): The city and state combination for this location.
 - ii. Description (String): A description of this city.
 - iii. City (String): The city of this location.
 - iv. State (String): The state of this location.
 - v. Image (URL (String) to image): An image that represents this city

- vi. Organizations (List of Keys/Links): In the database, this is a list of keys of the non-profit organization instances located in this location, and on the UI a list of clickable links to those nonprofits.
- vii. Categories (List of Keys/Links): In the database, this is a list of keys of the category instances located in this location, and on the UI a list of clickable links to these categories.

3. Categories

- This model shows various categories for non-profit organizations.
- Attributes so far:
 - i. Name (String): The associated name of the category for the given category code.
 - ii. Description (String): A description of what the non-profits in this category represent.
 - iii. Code (String): The code associated with this category. This is considered the id for the category.
 - iv. Parent Category (Char): The category code which this category is listed under. For example, given category code 'A01' the parent category would be 'A'.
 - v. Image (URL (String) to image): An image that represents this category's parent category.
 - vi. Organizations (List of Keys/Links): In the database, this is a list of keys of the non-profit organizations which have this as their category code, and on the UI a list of clickable links to these non-profits.
 - vii. Locations (List of Keys/Links): In the database, this is a list of keys of the location instances of Locations where non-profits for this category code exist, and on the UI, a list of clickable links to these locations.

Tools

1. Namecheap

• We used Namecheap in order to obtain our URL (npolink.me), and as a way to help redirect our AWS Elastic Beanstalk application to the correct URL (see more information under Hosting).

2. Amazon Webservices – S3

 Currently, we are taking a zip of our repository files and holding them in an S3 bucket so that our Elastic Beanstalk can have access to the code. We hope to further implement this in a more dynamic way so that when the repository updates, the website does as well.

3. Amazon Webservices – Elastic Beanstalk

 We are using AWS's Elastic Beanstalk service to host our website. By grabbing the code from the S3 bucket, and then redirecting to our URL, this application hosts our web application.

4. Docker

• We are using Docker as a simple way to run the application.

5. Docker-Compose

 We are using Docker-Compose in order to create a way to work with multiple containers to run both the backend and the frontend at the same time. This will allow for greater efficiency in our program and will be further implemented as the website becomes dynamic.

6. Gitlab

 We currently use Gitlab as a way to hold our code and work interactively. We create issues within our repository in order to keep track of what still needs to be completed and make various branches so that different aspects of the project may be worked on concurrently without merge conflicts.

7. Postman

- To use Postman, one of our team members created a workspace and then downloaded the Postman app (available for download online) in order to begin.
- We used Postman to scrape the data that is currently being represented statically on our website. To do this, we looked into the details of our API's and discovered the type of 'GET' calls we would need to make in order for our team to get the information we needed.
- We also used Postman to design our API, and create the documentation for it.
 Refer to RESTful API portion for more details. This was created by considering what users may be interested in being able to access using our API, and designing various 'GET' requests to meet these needs.
- In Phase 2 we began using Postman for the unit tests of our API. Postman allowed us to make example calls and check the results against what we would expect.

8. React-Bootstrap

 React-Bootstrap was used across the entirety of our website in order to provide quality layouts and styling for our web application's frontend. By using react in general, we were able to break up our application into components, allowing for faster designing of each page. For example, a component could be made which represented the layout for each of the model pages.

9. ReactStrap

 In addition to React-Bootstrap, in a few instances, we used ReactStrap for our frontend. This included the home page, navigation bar, and pages for the instances of the various models. ReactStrap furthered our possibilities for our layout and provided ways in which we could easily add interactive tiles.

10. Flask

 Flask is a python framework we are using for the backend of our application. As our web application is not dynamic yet, we have not gotten in too deep to using Flask.

11. Grammarly

 Grammarly was used in order to clean up and polish the writing within the technical report.

12. Slack

- Slack was a simple tool the group used to interact and communicate throughout the project.
- Slack was directly integrated with our GitLab repository in order for automatic messages to be sent about recent updates about code and issues.

13. AWS-RDS/PostgreSQL

 We host our database on the AWS provided tool, RDS. RDS is AWS's way to manage a relational database. We then specifically use PostgreSQL. This allows for easy connection between our elastic beanstalk and database.

14. PlantUML

PlantUML is an online service that helps a user create a UML diagram. We used
this in our group to create our UML diagram which represents our database,
including the various models and how they relate to each other in the database.

15. HTML5 UP

 We used HTML5 UP as a way to improve the creativity of the front end. By using this, we were able to more clear templates for our pages, especially the homepage, and our navigation bar. We were able to use HTML5 UP in connection with our previous React and Bootstrap Elements.

16. SQLAlchemy

SQLAlchemy was used as the interface to access our database. This tool allowed
us to create code for scraping data and creating relations in the python
language.

17. Python: unittest

 We used the unittest feature from python as a way to create unit tests for our backend, and also our acceptance tests of the GUI. This allowed for simple and continual testing, and therefore proper unit testing through the gitlab pipeline.

18. Selenium

• Selenium was a tool we used to create the acceptance tests of the GUI. This tool is an easy way to bring up a mock web driver and test that certain links can be reached, and then that these links contain the appropriate information.

19. Mocha

• Mocha was the tool we used to create the unit tests of our frontend.

Hosting

We are currently using both Namecheap and Amazon Web Services to host our website. We used Namecheap in order to obtain our URL, npolink.me, through their education account options. Once we had the URL, we worked on the website itself and put that code into a zip, and placed it into an AWS S3 bucket. Following this, we set up the Elastic Beanstalk application's environment, which was dependent on the code in the S3 bucket, and obtained the automatic URL this application was being hosted on. From here, we used AWS's Route 53 Management Console to create a way for the Elastic Beanstalk application to automatically redirect the given URL to redirect to our custom one. To do this, we created a Hosted Zone, with the name of our application, and within that created a CNAME Record Set with the value

set to the automatic URL from the Elastic Beanstalk application. This set up the AWS side. We then had to go into Namecheap and create redirect URL's from our website to that of the automatic URL for the application. This can be done by creating CNAME records and URL redirect records through Namecheap. At the end of these steps, the web application was then properly hosted on our custom URL.