Методы Оптимизации. Лабораторная работа №2

Раков Николай, Булкина Милена

1 Постановка задания

- 1. Реализовать и протестировать следующие алгоритмы:
 - Метод Градиентного Спуска
 - Метод Наискорейшего Спуска
 - Метод Сопряженных Градиентов
- 2. Оценить, как меняется скорость сходимости, если для поиска величины шага использовать различные методы одномерного поиска.
- 3. Проанализировать траектории методов для нескольких квадратичных функций.
- 4. Исследовать, как зависит число итераций от числа обусловленности и размерности пространства.

2 Анализ траектории методов для квадратичных функций

Исходная функция

$$f(x,y) = 24x^2 + 63y^2 + 56x - 122y + 2$$

Найдём производную по x_1 и x_2 и приравняем нулю

$$48x + 56 = 0$$

$$126y - 122 = 0$$

Получаем, что в (-1.66667, 0.96825) достигается минимум функции.

2.1 Метод Градиентного Спуска

В данном методе, чтобы вычислить следующую точку, выбирается направление, обратное градиенту и задается шаг. Значение шага получаем с предыдущей итерации. На каждой следующей итерации мы уменьшаем шаг в два раза до момента, пока значение функции в этой точке после

шага не станет меньше текущего.

	x1	x2
0	15	15
1	10.9809	5.84319
2	4.09621	-1.40942
3	0.873039	2.41303
4	-0.311116	0.211265
5	-0.805437	1.35937
6	-1.01287	0.769799
7	-1.10135	1.06951
8	-1.13864	0.917775
9	-1.15481	0.994208
10	-1.16151	0.955725
11	-1.16453	0.97502
12	-1.1657	0.965324
13	-1.16631	0.970169
14	-1.16648	0.967733
15	-1.16656	0.968338
16	-1.16663	0.9682
17	-1.16665	0.968273
18	-1.16666	0.968238
19	-1.16666	0.968257
20	-1.16667	0.968252

2.2 Метод Наискорейшего Спуска

Метод является улучшением метода градиентного спуска. Делаем шаг в минимум на прямой с направлением градиента. Чтобы найти минимум используется метод одномерной оптимизации.

определениетод одномерной оптимизации.				
	x1	x2		
0	15	15		
1	8.15702	-0.590716		
2	0.77182	2.65075		
3	-0.048697	0.781324		
4	-0.93423	1.17		
5	-1.03262	0.94584		
6	-1.1388	0.992444		
7	-1.15059	0.965566		
8	-1.16332	0.971155		
9	-1.16474	0.967932		
10	-1.16627	0.968602		
11	-1.16644	0.968215		
12	-1.16662	0.968296		
13	-1.16664	0.968249		
14	-1.16666	0.968259		
15	-1.16666	0.968253		

2.3 Метод Сопряженных Градиентов

В отличии от двух предыдущих методов, используется не только вектор антиградиета, в методе сопряженных градиентов направления спуска - это ортогональные вектора. Из-за этого число итераций не превышает размерность пространства.

	x1	x2
0	15	15
1	8.157016	-0.590716
2	0.771820	2.650750
3	-1.166667	0.968254

3 Траектория методов на различных квадратичных функциях

$$f_1(x,y) = x^2 + 10y^2 - 4x - 4y$$

4 Исследование зависимости числа итераций от размерности пространства и числа обусловленности

4.1 Метод Градиентного Спуска

Градиентный Спуск

k/n	10	100	1000	10000
2	12	14	15	26
5	21	25	26	37
10	39	43	45	56
25	131	129	133	140
50	281	281	298	311
100	656	676	683	686
200	1305	1342	1396	1458
300	2124	2156	2202	2253

4.2 Метод Наискорейшего Спуска

Наискорейший спуск

k/n	10	100	1000	10000
2	11	12	13	14
5	25	26	28	31
10	47	49	52	56
25	104	109	114	127
50	193	205	211	237
100	368	377	393	438
200	702	743	749	809
300	1034	1037	1039	1161

4.3 Метод Сопряженных Градиентов

Метод Сопряженных Градиентов

k/n	10	100	1000	10000
2	9	10	11	11
5	11	17	18	20
10	11	24	26	28
25	11	36	41	45
50	11	46	58	63
100	11	52	81	88
200	11	58	110	123
300	11	61	127	150

5 Выводы

5.1 Траектория

У метода градиентого спуска зигзагообразная траектория, из чего и вытекает существенное различие в числе итераций с методами наискорейшего спуска и сопряженных градиентов, которые, в свою очередь выстраивают достаточно оптимальную траекторию.

5.2 Зависимость числа итераций от числа обусловленности и размерности пространства.

Исходя из графика, видим, что метод градиетного спуска линейно зависит от числа обусловленности.

Число итераций метода сопряженных градиентов не больше размерности пространства. Также можем заметить, что только у этого метода есть верхняя граница числа итераций при фиксированной размерности.

5.3 Скорость сходимости

Выбор одномерного метода оптимизации практически не влияет на количество итераций метода наискорейшего спуска.