In [1]: #Step-1 Importing all the required libraries

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

```
In [2]: df=pd.read_csv(r"C:\Users\DELL\Downloads\used_cars_data.csv")
    df
```

Out[2]:

		S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats
	0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0
	1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0
	2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0
	3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0
	4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0
7	'248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	First	20.54 kmpl	1598 CC	103.6 bhp	5.0
7	249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	First	17.21 kmpl	1197 CC	103.6 bhp	5.0
7	250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	First	23.08 kmpl	1461 CC	63.1 bhp	5.0
7	'251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	Third	17.2 kmpl	1197 CC	103.6 bhp	5.0
7	252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	First	10.0 kmpl	2148 CC	170 bhp	5.0

7253 rows × 14 columns

4

```
In [3]: df = df[['Kilometers_Driven','Year']]
         #Taking only selected two attributes from dataset
         df.columns = ['kil','yr']
 In [4]: print('This Dataframe contains %d Rows and %d Columns'%(df.shape))
         This Dataframe contains 7253 Rows and 2 Columns
 In [5]: df.head()
 Out[5]:
               kil
                     yr
          0 72000 2010
          1 41000 2015
          2 46000 2011
          3 87000 2012
          4 40670 2013
In [10]: df.tail()
Out[10]:
                  kil
                       yr
          7248 89411 2011
          7249 59000 2015
          7250 28000 2012
          7251 52262 2013
          7252 72443 2014
```

In [11]: df.describe()

Out[11]:

	kil	yr
count	7.253000e+03	7253.000000
mean	5.869906e+04	2013.365366
std	8.442772e+04	3.254421
min	1.710000e+02	1996.000000
25%	3.400000e+04	2011.000000
50%	5.341600e+04	2014.000000
75%	7.300000e+04	2016.000000
max	6.500000e+06	2019.000000

```
In [12]: sns.lmplot(x="kil",y="yr", data = df, order = 3, ci = None)
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x21256080750>


```
In [13]: df.fillna(method ='ffill', inplace = True)
         C:\Users\DELL\AppData\Local\Temp\ipykernel_23732\48824337.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html
         #returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#retu
         rning-a-view-versus-a-copy)
           df.fillna(method ='ffill', inplace = True)
In [14]: # Step-5: Training Our Model
         X = np.array(df['kil']).reshape(-1, 1)
         y = np.array(df['yr']).reshape(-1, 1)
         #Seperating the data into independent
In [15]: |X_train,X_test,y_train,y_test = train_test_split(X, y, test_size = 0.25)
         # Splitting the data into training data and test data
         regr = LinearRegression()
         regr.fit(X_train, y_train)
         print(regr.score(X test, y test))
```

0.05558829028626311

```
In [16]: y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color = 'k')
plt.show()
```



```
In [17]: df500 = df[:][:500]
# Selecting the 1st 500 rows of teh data
sns.lmplot(x = "kil", y = "yr", data = df500, order = 1, ci = None)
```

Out[17]: <seaborn.axisgrid.FacetGrid at 0x21240644110>


```
In [18]: sns.pairplot(df)
```

Out[18]: <seaborn.axisgrid.PairGrid at 0x212560ef090>

In []: