RELATÓRIO

RESOLUÇÃO DE UM SISTEMA DE EQUAÇÕES PARCIAIS PELO MÉTODO NUMÉRICO

MODELO DE NEURÔNIO DE HODGKIN-HUXLEY

Junho/2019

Centro Universitário SENAC - Bacharelado em Ciências da Computação

5° Período

Lucas Lopes Correa Nunes

Luiz Reginaldo Gabriel Guimarães

INTRODUÇÃO O objetivo deste projeto é simular o modelo de neurônio de Hodgkin-Huxley. O modelo consiste em um neurônio inicialmente em estado de repouso que em algum momento sofre uma perturbação elétrica, que percorrendo toda a extensão do nervo gera uma tensão, variando em função do tempo e da posição na cauda do neurônio. A simulação é feita adaptando a fórmula geral do modelo na linguagem Javascript, onde as iterações podem ser realizadas inúmeras vezes rapidamente. A biblioteca escolhida para desenhar os gráficos em um processo paralelo aos cálculos foi a p5.js.

METODOLOGIA Esta é a fórmula geral do modelo de Hodgkin-Huxley:

$$\frac{A}{2R} \frac{\partial^2 V}{\partial x^2} = Cm \frac{\partial V}{\partial t} + Gk N^4 (V - Vk) + Gna M^3 H (V - Vna) + Gl (V - Vl)$$

Isola-se a tensão e discretizamos a função que é contínua utilizando diferenças centrais para derivadas de segunda ordem e diferenças adiantadas(progressivas) para derivadas de primeira ordem:

$$V\,i,\,j+1 = \frac{\left[\frac{A}{2R}\left(\frac{V\,i-1,\,j-2V\,i,j+V\,i+1,j}{\Delta x^2}\right) - Gk\,N^4\,(V-V\,k) - Gna\,M^3H\,(V-V\,na) - Gl\,(V-V\,l)\right]}{Cm}\,\Delta t + V\,i,j$$

Onde N, M e H são dados respectivamente por

$$\frac{dn}{dt} = \alpha n \ V \ m(1-n) - \beta n \ V \ m \ n$$

$$\frac{dm}{dt} = \alpha m \ V \ m(1-m) - \beta m \ V \ m \ m$$

$$\frac{dh}{dt} = \alpha h \ V \ m(1-h) - \beta h \ V \ m \ h$$

$$\alpha_n(V_m) = \frac{0.01(V_m - 10)}{\exp\left(\frac{V_m - 10}{10}\right) - 1} \qquad \alpha_m(V_m) = \frac{0.1(V_m - 25)}{\exp\left(\frac{V_m - 25}{10}\right) - 1} \qquad \alpha_h(V_m) = 0.07 \exp\left(\frac{V_m}{20}\right)$$

$$\beta_n(V_m) = 0.125 \exp\left(\frac{V_m}{80}\right) \qquad \beta_m(V_m) = 4 \exp\left(\frac{V_m}{18}\right) \qquad \beta_h(V_m) = \frac{1}{\exp\left(\frac{V_m - 30}{10}\right) + 1}$$

Além disso, as variáveis observadas na equação e os valores adotados na resolução do problema são como segue:

Vij	Potencial em relação ao tempo (i) e espaço (j)
A	diâmetro da cauda do neurônio
R	resistência elétrica do neurônio
Gk e Vk	Condutância e potencial do potássio
Gna e Vna	Condutância e potencial do sódio
GI e VI	Condutância e potencial de vazamento
Cm	Capacitância do neurônio

Essas fórmulas são transcritas para o programa e processadas de acordo com o fluxograma a seguir.

É importante observar que o potencial depende tanto da posição quanto do tempo, o que acaba resultando em uma matriz bidimensional que representa a função Voltagem(tempo,espaço):

espaco(m) > tempo(s) V	0.000 m	0.100 m	0.200 m	0.300 m	0.400 m	0.500 m	0.600 m	0.700 m	0.800 m	0.900 m	1.000 m
0.0000	-65.0020	9.8020	9.6079	9.4176	9.2312	9.0484	8.8692	8.6936	8.5214	8.3527	0.0000
0.1000	-65.0020	-0.7910	9.6084	9.4182	9.2317	9.0489	8.8697	8.6941	8.5219	7.1968	0.0000
0.2000	-65.0020	-8.3367	8.1675	9.4735	9.2870	9.1042	8.9250	8.7494	8.4139	6.4223	0.0000
0.3000	-65.0020	-13.9463	6.0837	9.3255	9.3504	9.1676	8.9884	8.7896	8.2428	5.8593	0.0000
0.4000	-65.0020	-18.2708	3.7702	8.9289	9.3787	9.2258	9.0433	8.7982	8.0411	5.4261	0.0000
0.5000	-65.0020	-21.7061	1.4377	8.3158	9.3456	9.2736	9.0864	8.7778	7.8306	5.0810	0.0000
0.6000	-65.0020	-24.5057	-0.8130	7.5365	9.2367	9.3041	9.1160	8.7344	7.6228	4.7985	0.0000
0.7000	-65.0020	-26.8371	-2.9381	6.6394	9.0481	9.3100	9.1307	8.6733	7.4229	4.5617	0.0000
0.8000	-65.0020	-28.8143	-4.9231	5.6646	8.7826	9.2855	9.1292	8.5991	7.2332	4.3593	0.0000
0.9000	-65.0020	-30.5171	-6.7682	4.6435	8.4472	9.2263	9.1103	8.5150	7.0541	4.1834	0.0000
1.0000	-65.0020	-32.0031	-8.4803	3.5994	8.0504	9.1303	9.0731	8.4232	6.8854	4.0284	0.0000

O cálculo é feito utilizando o que chamamos de Molécula-Computacional dentro de uma malha, onde a linha atual (linha = tempo) é calculado usando os valores da linha anterior referentes ao espaço anterior, o espaço atual e o espaço próximo:

Dois tipos de gráfico podem ser gerados para expressar o resultado de maneira visual:

1. Gráfico das Voltagens em cada espaço em função do tempo (cada espaço tem uma cor diferente):

2. Gráfico das Voltagens em função de cada espaço (fotografias em função do tempo):

RESULTADO A interface nos possibilita alterar alguns valores da equação, as condições iniciais e de fronteira. Temos assim uma ferramenta que cumpre o objetivo de construir um programa que calcule os os diferenciais de potenciais num neurônio quando este recebe um pulso elétrico, sendo este valor em função do tempo e do espaço (Equação diferencial Parcial - EDP):

BIBLIOGRAFIA A. L. Hodgkin and A. F. Huxley, A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE (1952), Disponível em https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/ (Acesso em 14.06.19 08:26)