Algebra I (Doble Grado Matemáticas-Informática)

Relación 1

Curso 2019-2020

Conjuntos y aplicaciones

Ejercicio 1. Construir todas las aplicaciones del conjunto $X = \{a, b, c\}$ en el conjunto $Y = \{1, 2\}$ y clasificarlas según sean inyectivas, sobreyectivas, biyectivas ó de ninguno de estos tipos.

Ejercicio 2. Sea $A \subseteq X$, $B \subseteq Y$ y $f: X \to Y$ una aplicación. Demostrar:

- i) $f_*(f^*(B)) \subseteq B$ y se da la igualdad si f es sobreyectiva.
- ii) $A \subseteq f^*(f_*(A))$ y se da la igualdad si f es inyectiva.

Ejercicio 3. Se consideran las aplicaciones

$$A \xrightarrow{f} B \xrightarrow{g} C \quad y \quad X \xrightarrow{h} Y \xrightarrow{k} Z$$
.

Demostrar que f y h inducen una única aplicación $f \times h : A \times X \to B \times Y$ verificando que

$$f pr_A = pr_B(f \times h) \text{ y } hpr_X = pr_Y(f \times h)$$

donde pr denota en cada caso la aplicación proyección. Demostrar que

$$(g \times k)(f \times h) = (g f) \times (kh).$$

Ejercicio 4. Sea $f: X \to Y$ una aplicación, $A \subseteq X$ y $B \subseteq Y$. Demostrar

$$f_*[A \cap (f^*(B))] = (f_*(A)) \cap B$$

Ejercicio 5. Dada una aplicación $f: X \to Y$ y $A \subseteq X$, se llama saturación de A al conjunto $f^*(f_*(A))$. Se dice que A es saturado si $A = f^*(f_*(A))$.

- i) Caracterizar los subconjuntos saturados de f si $X = Y = \mathbb{R}$ y f es la aplicación definida por $f(x) = x^2 + 1$.
- ii) Hallar la saturación del conjunto $\{\pi\}$ si $X = Y = \mathbb{R}$ y f es la aplicación coseno.

Ejercicio 6. Sea $f: X \to Y$ una aplicación. Demostrar que son equivalentes las siguientes afirmaciones:

- i) *f* es inyectiva
- ii) $\forall A, B \in P(X), f_*(A \cap B) = f_*(A) \cap f_*(B).$

Ejercicio 7. Sean $f: X \to Y$ y $g: Y \to Z$ dos aplicaciones y sea h = gf la composición de dichas aplicaciones. Demostrar:

- i) Si h es inyectiva entonces f es inyectiva.
- ii)Si h es sobreyectiva entonces g es sobreyectiva.
- iii)Si h es inyectiva y f es sobreyectiva entonces g es inyectiva.
- iv)Si h es sobreyectiva y g es inyectiva entonces f es sobreyectiva.

Ejercicio 8. Sean las aplicaciones $f: X \to Y$, $g: Y \to Z$ y $h: Z \to X$ tales que hgf es inyectiva, gfh es inyectiva y fhg es sobreyectiva. Demostrar que las aplicaciones f, g y h son biyectivas.

Ejercicio 9. Demostrar que las siguientes relaciones en $\mathbb{R} \times \mathbb{R}$ son de equivalencia y describir geométricamente las clases de equivalencia:

i)
$$(a, b)R(c, d) \iff a^2 + b^2 = c^2 + d^2$$

ii)
$$(a, b)R(c, d) \iff ab = cd$$

Ejercicio 10. Sea $f : \mathbb{R} \to \mathbb{R}$ la aplicación definida por $f(x) = x^2$. Determinar R_f y el conjunto cociente de R bajo esta relación.

Ejercicio 11. Se considera la aplicación $f: \mathbb{N} \to \mathbb{N}$ dada por $f(x) = E(+\sqrt{x})$ donde E denota "parte entera".

i) Demostrar que la relación

$$x \sim y \iff E(+\sqrt{x}) = E(+\sqrt{y})$$

es una relación de equivalencia en N.

- ii) Calcular la clase de equivalencia de los elementos 1,2 y 5.
- iii) Calcular la clase de equivalencia de $n \in \mathbb{N}$.
- iv) Demostrar que f es sobrevectiva.
- v) Hallar la descomposición canónica de f.

Ejercicio 12. Sea $X = \{0, 1, 2, 3\}$, $Y = \{a, b, c\}$ y $f : X \to Y$ la aplicación dada por: f(0) = c; f(1) = f(2) = a; f(3) = b. Considerar la aplicación $f^* : \mathcal{P}(Y) \to \mathcal{P}(X)$ que a cada subconjunto $B \subseteq Y$ le hace corresponder su imagen inversa por f.

- i) ¿Es f^* invectiva, sobrevectiva o bivectiva?
- ii) Calcular la relación \sim_{f^*} en $\mathscr{P}(Y)$ asociada a f^* y el conjunto cociente $\mathscr{P}(Y)/\sim_{f^*}$.
- iii) Hallar la descomposición canónica de f^* .

Ejercicio 13. Sean X e Y dos conjuntos tales que $Y \subseteq X$. En el conjunto $\mathcal{P}(X)$ se define la siguiente relación binaria:

$$A \sim B \iff A \cap Y = B \cap Y$$

Demostrar que dicha relación es de equivalencia y describir el conjunto cociente.

Ejercicio 14. i) Calcular cuantas relaciones de equivalencia distintas se pueden definir en un conjunto de 3 elementos y construir todos los conjuntos cocientes.

ii) Demostrar que un conjunto de 4 elementos admite exactamente 15 conjuntos cociente.

Ejercicio 15. Sea $f: X \to Y$ una aplicación y sea R una relación de equivalencia en Y. Estudiar si la siguiente relación binaria S en X

$$x_1Sx_2 \Leftrightarrow f(x_1)Rf(x_2)$$

es una relación de equivalencia.

Ejercicio 16. Una relación binaria R en un conjunto X se dice que es circular si satisface la siguiente propiedad:

$$x_1Rx_2 \wedge x_2Rx_3 \Rightarrow x_3Rx_1$$

Demostrar que una relación binaria en X es de equivalencia si y solo si es reflexiva y circular.

Ejercicio 17. Sea $X = Y = \{a, b, c, d\}$ y sea $f : X \to Y$ la aplicación dada por el grafo $\{(a, a), (b, a), (c, d), (d, c)\}$. Considérense las aplicaciones inducidas $f_* : P(X) \to P(Y)$ y $f^* : P(Y) \to P(X)$ y determínense entonces los conjuntos cociente de P(X) y P(Y) bajo las relaciones de equivalencia inducidas por f_* y f^* .

Ejercicio 18. Sean $f: X \to Y$ y $g: X \to Z$ dos aplicaciones tales que f es sobreyectiva y $R_f \subseteq R_g$. Demostrar que existe una aplicación $h: Y \to Z$ tal que g = hf.

Ejercicio 19. Si X e Y son dos conjuntos y R y S son relaciones de equivalencia en X e Y respectivamente, definir en el conjunto $X \times Y$ una relación de equivalencia T tal que exista una biyección

$$(X \times Y)/T \cong (X/R) \times (Y/S)$$

Ejercicio 20. Sea *X* un conjunto y *A* un subconjunto de *X*. Se considera la aplicación:

$$f: \mathscr{P}(X) \to \mathscr{P}(A)$$

definida, para cada $B \in \mathcal{P}(X)$, por $f(B) = B \cap A$.

- i) Estudiar si la aplicación f es invectiva, sobrevectiva o bivectiva.
- ii) En el caso particular de que $X = \{a, b, c\}$ y $A = \{b, c\}$, calcular el conjunto cociente de $\mathscr{P}(X)$ bajo la relación de equivalencia R_f definida por la aplicación f.

Ejercicio 21. Sea $X = \{1,2,3,4,5\}$ y sea $A = \{1,3\}$. En P(X) se define la relación binaria

$$B \mathcal{R} C \Leftrightarrow B \cap \bar{A} = C \cap \bar{A}$$

donde \bar{A} denota el complementario de A en X. Demostrar que \mathscr{R} es una relación de equivalencia y calcular el conjunto cociente $P(X)/\mathscr{R}$.

Ejercicio 22. Sea $D = \{n \in \mathbb{N} \mid n \text{ divide a } 30\}$ y sea $f: D \to \{1,2,3,4,5,6,7,8\}$ la aplicación definida, para cada $a \in D$, por f(a) =número de divisores de a. Estudiar si la aplicación f es inyectiva, sobreyectiva o biyectiva. Calcular la imagen de f y la imagen inversa $f^*(\{3,4\})$. Construir el conjunto cociente D/R_f donde R_f es la relación de equivalencia inducida por f.

Ejercicio 23. Sea *A* y *B* subconjuntos de un conjunto *X*. Se define

$$A * B = \{x \in X \mid x \notin A \lor x \in B\}.$$

i) Demostrar que si *C* es otro subconjunto de *X* se tiene que

$$C \subseteq A * B \iff A \cap C \subseteq B$$
.

ii) Sea $X = \{0,1\}$. Consideramos el conjunto P(X) de partes de X y la aplicación $f: P(X) \times P(X) \to P(X)$ definida por f(A,B) = A*B. Calcular $f(\{0\},\emptyset)$. Estudiar si f es inyectiva, sobreyectiva o biyectiva. Calcular el conjunto cociente $P(X) \times P(X)/R_f$ donde R_f es la relación de equivalencia en $P(X) \times P(X)$ inducida por la aplicación f.

Ejercicio 24. Sea $X = \{1, 2, 3\}$ y $I = \{f : X \to X \mid f \text{ es inyectiva}\}$. Se considera la aplicación

$$\varphi:I\to X\times\{a,b\}$$

definida por $\varphi(f) = (f(1), b)$. Listar los elementos de I y estudiar si φ es inyectiva, sobreyectiva o biyectiva. Dar explícitamente los elementos del conjunto cociente I/R_{φ} (donde R_{φ} denota la relación de equivalencia en I inducida por φ).

Ejercicio 25. Sea $f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{N}$ la aplicación definida por f(x, y) = |xy| para todo $x, y \in \mathbb{Z}$ y se considera el conjunto cociente $\frac{\mathbb{Z} \times \mathbb{Z}}{R_f}$.

- 1. Halla la clase del par (p, 1) con p primo.
- 2. ¿Hay alguna clase con 4 elementos?
- 3. ¿Cuántas hay con infinitos elementos?
- 4. ¿Hay alguna clase con 12 elementos?