5.3.5 移存型计数器

移存型计数器的特点

- (1)属于同 步计数器,存 在反馈网络。
- (2) 第一级 触发器的激励 由输入(通过组 合逻辑电路)决 定,状态转移 表符合移存规

移存型计数器的一般结构 除第一级外,其他触发器更新均 符合 $Q_i^{n+1}=Q_{i-1}^n$, 对于DFF: $\mathbf{D}_{i}=\mathbf{Q}_{i-1}$, 对于JKFF: $\mathbf{J}_{i}=\mathbf{Q}_{i-1}$, $\mathbf{K}_{i} = \mathbf{Q}_{i}$

移存型计数器的分析

与同步时序电路的分析步骤相同,最后得到的状态转移表应满足移存规律。

环形计数器

电路构成特点:原码反馈,即: $\mathbf{D}_1 = \mathbf{Q}_4^n$

环形计数器

CP↑	Q_4	Q_3	Q_2	Q_1	状态转移路线
0	1	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	1	0	0	

结论:n位触发器可实现模M=n的环形计数器。

图5.3.38 环形计数器状态转移图

扭环形计数器

电路构成特点:反码反馈,即: $\mathbf{D}_1 = \overline{\mathbf{Q}}_4^n$

图5.3.40 扭环形计数器状态转移图

结论: (1) n位触发器可实现模M=2n的扭环形计数器

(2) 汉明距离为1,不会产生功能冒险。

修改偏离态:

0100->1000; 0110->1100

使其具有自启动性

修改后第一个触发器的激励为:

用MSI移存器构成环形或扭环形计数器。

图5.3.41 74194构成的环形计数器

$$\mathbf{Q}_0^{\mathrm{n+1}} = \mathbf{D}_{\mathrm{SR}} = \mathbf{Q}_3^{\mathrm{n}}$$

CP↑	Q_0	Q_1	Q_2	Q_3	状态转移路线		
1	1	1	1	0			
2	0	1	1	1			
3	1	0	1	1			
4	1	1	0	1			

- 1. 用触发器和逻辑门构成的任意进制计数器
 - 例1 试用JKFF和与非门设计按自然二进制码计数的M=5的同步加法计数器。
 - 解: (1)确定电路工作状态,求触发器级数。 取 n=3。
 - (2)设计各触发器的激励函数和电路的输出函数(综合表)。

1. 用触发器和逻辑门构成的任意进制计数器

例1 试用JKFF和与非门设计按自然二进制码计数的M=5的同步加法计数器。

•	Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	n+1 Q ₂	n+1 Q ₁	J ₃	K ₃	J_2	K ₂	J ₁	K ₁
•	0	0	0	0	0	1		Ø		Ø	1	Ø
	0	0	1	0	1	可先		1				
	0	1	0	0	1	项处理,然后检查自 启动性,若有必要再 作修正。						Ø
	0	1	1	1	0							1
	1	0	0	0	0	7		I	U	U	8	Ø
偏	1	0	1	0	1	1	Ø	1	1	Ø	Ø	0
离状	1	1	0	0	1	0	Ø	1	Ø	0	0	Ø
态		1	1	0	0	1	Ø	1	1	Ø	Ø	0

