EAiIB	Autor 1		Rok	Grupa	Zespół
Informatyka	Autor 2		II	V	II
Pracownia FIZYCZNA WFiIS AGH	Temat: Mostek Wheat	tstone'a			nr ćwiczenia: 32
Data wykonania: 7.10.2015	Data oddania: 14.10.2015	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:

1 Cel ćwiczenia

Praktyczne zastosowanie praw Kirchhoffa, sprawdzenie zależności określających opór zastępczy dla połączenia szeregowego i równoległego.

2 Opis eksperymentu

Przy przeprowadzaniu eksperymentu skorzystano z układu pomiarowego, którego schemat przedstawia rysunek (1). Pomiędzy punktami A i C znajduje się listwa z drutem oporowym o znanej długości. R_2 jest opornikiem wzorcowym o regulowanej wartości oporu, a R_x nieznanym oporem, którego wartość chcemy wyznaczyć. Zrównoważenie mostka polega na takim ustawieniu punktu D, aby dla zadanej wartości R_2 przez galwanometr nie płynął prąd.

Rysunek 1: Schemat mostka Wheatstone'a

3 Opracowanie wyników pomiarów

Do obliczenia obliczenia nieznanej oporności R_x na podstawie znanej oporności R_2 oraz zmierzonych długości a i l wykorzystujemy następujący wzór:

$$R_x = R_2 \frac{a}{l-a} \quad \text{gdzie: } l = 1000mm \tag{1}$$

Z kolei niepewność wartości R_x jest wyznaczana z następującego wzoru:

$$u(R_x) = \sqrt{\frac{\sum_{i=1}^n \left(R_i - \overline{R_x}\right)^2}{n(n-1)}}$$
 (2)

3.1 Opracowanie bezpośrednich wyników pomiarów

$R_2[\Omega]$	14	20	16	18	10	12	8	7	5	22
a[mm]	437	311	395	372	495	441	538	597	673	325
R_{x_1}	10,87	9,03	10,45	10,66	9,80	9,47	9,32	10,37	10,29	10,59

Tablica 1: Pomiary dla opornika R_{x_1}

$$\overline{R_{x_1}} = 10,08[\Omega] \tag{3}$$

$$u(R_{x_1}) = 0.20[\Omega] \tag{4}$$

$R_2[\Omega]$	50	40	54	58	64	68	72	76	44	48
a[mm]	466	525	453	435	411	394	374	365	505	480
$R_{x_2}[\Omega]$	43,63	44,21	44,72	44,65	44,66	44,21	43,02	43,69	44,89	44,31

Tablica 2: Pomiary dla opornika R_{x_2}

$$\overline{R_{x_2}} = 44,20[\Omega] \tag{5}$$

$$u(R_{x_2}) = 0.19[\Omega] \tag{6}$$

$R_2[\Omega]$	60	70	80	90	50	40	45	55	65	75
a[mm]	460	430	398	370	512	575	545	496	458	422
$R_{x_{12\text{szer}}}[\Omega]$	51,11	52,81	52,89	52,86	52,46	54,12	53,90	54,13	54,93	54,76

Tablica 3: Pomiary dla połączenia szeregowego oporników R_{x_2} i R_{x_1}

$$\overline{R_{x_{12\text{szer}}}} = 53,40[\Omega] \tag{7}$$

$$u(R_{x_{12\text{szer}}}) = 0.38[\Omega] \tag{8}$$

$R_2[\Omega]$	6	7	8	9	10	11	12	13	14	15
a[mm]		555								
$R_{x_{12\mathrm{rów}}}[\Omega]$	9,00	8,73	8,99	8,82	8,73	8,47	8,41	8,78	8,99	9,12

Tablica 4: Pomiary dla połączenia równoległego oporników R_{x_2} i R_{x_1}

$$\overline{R_{x_{12\text{rów}}}} = 8,80[\Omega] \tag{9}$$

$$u(R_{x_{12\text{rów}}}) = 0.08[\Omega]$$
 (10)

3.2 Połączenie szeregowe

Wartość oporu przy połączeniu szeregowym można też obliczyć na podstawie wzoru na opór zastępczy oraz wyznaczonych wartości R_{x_1} i R_{x_2}

$$R_{z_{xypr}} = R_{x_1} + R_{x_2} = 54,28[\Omega] \tag{11}$$

$$u(R_{z_{szer}}) = \sqrt{\left(\frac{\delta R_{z_{szer}}}{\delta R_{x_1}}\right)^2 u(R_{x_1})^2 + \left(\frac{\delta R_{z_{szer}}}{\delta R_{x_2}}\right)^2 u(R_{x_2})^2} = \sqrt{u(R_{x_1})^2 + u(R_{x_2})^2} = 0,28[\Omega]$$
(12)

3.3 Połączenie równoległe

Wartość oporu przy połączeniu równoległym można też obliczyć na podstawie wzoru na opór zastępczy oraz wyznaczonych wartości R_{x_1} i R_{x_2}

$$R_{z_{\text{rów}}} = \frac{R_{x_1} R_{x_2}}{R_{x_1} + R_{x_2}} = 8,21[\Omega]$$
(13)

$$u(R_{z_{\text{rów}}}) = \sqrt{\left(\frac{\delta R_{z_{\text{rów}}}}{\delta R_{x_1}}\right)^2 u(R_{x_1})^2 + \left(\frac{\delta R_{z_{\text{rów}}}}{\delta R_{x_2}}\right)^2 u(R_{x_2})^2} = \sqrt{\left(\frac{R_{x_1}}{R_{x_1} + R_{x_2}}\right)^4 u(R_{x_1})^2 + \left(\frac{R_{x_2}}{R_{x_1} + R_{x_2}}\right)^4 u(R_{x_2})^2} = 0,13[\Omega] \quad (14)$$

3.4 Porównanie wartości z pomiarów i wyznaczonych ze wzorów

	R wyznaczone $[\Omega]$	R obliczone $[\Omega]$
Połączenie szeregowe	$53,40\pm0,38$	$54,28 \pm 0,28$
Połączenie równoległe	$8,80 \pm 0,08$	$8,21 \pm 0,13$

4 Wnioski

- W przypadku połączenia szeregowego wartości uzyskane doświadczalnie i obliczone ze wzoru na opór zastępczy są ze sobą zgodne w granicach niepewności pomiarowych(biorąc pod uwagę niepewność rozszerzoną). W przypadku połączenia równoległego wartości te nie są zgodne.
- Wpływ na niedokładność wyników mógł mieć fakt, iż drut oporowy nie był idealnie prosty i naciągnięty, co wpływało na wartość pomiarów na nim wykonywanych.