Example

- Query Analysis:
 - Query variables: Earthquake
 - Evidence (observed) variables and their values:
 JohnCalls, MaryCalls
 - Unobserved (hidden/latent) variables: Burglary, Alarm
- $P(E|j,m) = \alpha P(E,j,m)$
- $P(E,j,m) = \sum_{a} \sum_{b} P(E,j,m,b,a)$
 - marginalisation of all possible values of A and B
- $P(E,j,m) = \sum_{a} \sum_{b} P(b) P(E) P(a|b,E) P(j|a) P(m|a)$

Compute the probability that there is an earthquake given both John and Mary call.

$$P(E = T | J = T, M = T) = ?$$

Find the solution through inference.

Approaches to Inference (state estimation):

- Enumeration
- Variable elimination

2- Enumeration Approach: better solution

- A form of dynamic programming approach
 - * Using *factor tables* to store the immediate results
- Two key operations:
 - * Multiplication
 - * Marginalisation

Query Analysis:

$$P(E) \sum_{b} P(b) \sum_{a} P(a|b,E) P(j|a) P(m|a)$$

$$f_E(E) \sum_{\mathbf{b}} f_B(\mathbf{B}) \sum_{\mathbf{a}} f_A(\mathbf{A}, \mathbf{B}, \mathbf{E}) f_J(\mathbf{A}) f_M(\mathbf{A})$$

1	P(J=T A)	1	A	P(M=T A)
	0.90		Γ	0.70
7	0.05]	F	0.01

The initial factor tables are the reformatted CPTs:

B	$f_B(B)$
T	0.01
F	0.99

\boldsymbol{E}	$f_E(E)$
T	0.02
F	0.98

A	В	Е	$f_A(A,B,E)$
T	T	T	0 .95
T	T	F	0 .94
T	F	T	0.29
T	F	F	0.001
F	T	T	0.05
F	T	F	0.06
F	F	T	0.71
F	F	F	0 .999

\boldsymbol{A}	$f_{J}(A)$
T	0.9
F	0.05

A	$f_M(A)$
T	0.7
F	0.01

Variable Elimination Algorithm:

- Bottom-up computations
- Step1: $f_E(E) \sum_b f_B(B) \sum_a f_A(A,B,E) f_J(A) f_M(A)$
- $f_{JM}(A)=f_J(A)f_M(A)$ Multiplication

\boldsymbol{A}	$f_{JM}(A)$
T	.9×.7
F	.05 × .01

A	$f_M(A)$
T	0.7
F	0.01

A	$f_{JM}(A)$
T	.63
F	.0005

В	$f_B(B)$
T	0.01
F	0.99

E	$f_E(E)$
T	0.02
F	0.98

A	В	Е	$f_A(A,B,E)$
T	T	T	0 .95
T	T	F	0 .94
T	F	T	0.29
T	F	F	0.001
F	T	T	0 .05
F	T	F	0.06
F	F	T	0.71
F	F	F	0 .999

A	$f_{J}(A)$
T	0.9
F	0.05

A	$f_M(A)$
T	0.7
F	0.01

Variable Elimination Algorithm:

- Step2: $f_E(E) \sum_b f_B(B) \sum_a f_A(A,B,E) f_{IM}(A)$
- $f_{AJM}(A,B,E)=f_A(A,B,E)f_{JM}(A)$

	D A		 	•		
	$\mathbf{I} \mathbf{V} \mathbf{I}$		nl	ica	$t \cdot c$	n
→	IVI	ш		П		
			\triangleright .			

В	$f_B(B)$
T	0.01
F	0.99

E	$f_E(E)$
T	0.02
F	0.98

Step3

В	Е	$f_{\underline{A}JM}(A,B,E)$
T	T	$.95 \times .63 + .05 \times .0005$
T	F	$.94 \times .63 + .06 \times .0005$
F	T	$.29 \times .63 + .71 \times .0005$
F	F	$.001 \times .63 + .999 \times .0005$

Step2

A	В	Е	$f_{AJM}(A,B,E)$	
T	T	T	.95 × .63	
T	T	F	.94 × .63	
T	F	T	.29 × .63	
T	F	F	.001 × .63	•
F	T	T	.05 × .0005	
F	T	F	.06 × .0005	
F	F	T	$.71 \times .0005$	
F	F	F	.999 × .0005	

$f_{JM}(A)$	4.4
.63	X
0005	

.0005

A	В	E	$f_A(A,B,E)$
T	T	T	0 .95
T	T	F	0 .94
T	F	T	0.29
T	F	F	0.001
F	T	T	0.05
F	T	F	0.06
F	F	T	0.71
F	F	F	0 .999

- Step3: $f_E(E) \sum_b f_B(B) \sum_a f_{AJM}(A,B,E)$
- $f_{\underline{A}JM}(B,E) = \sum_{a} f_{AJM}(A,B,E)$

Marginalis	sation
------------------------------	--------

A	$f_{J}(A)$
T	0.9
F	0.05

A	$f_M(A)$
T	0.7
F	0.01

Variable Elimination Algorithm:

- Step4: $f_E(E) \sum_b f_B(B) f_{AJM}(B,E)$
- $f_{B\underline{A}JM}(B,E) = f_B(B)f_{\underline{A}JM}(B,E)$ Multiplication

Stan/

			<u> 31694</u>	
	$B \mid E \mid f_{\underline{A}JM}(A,B,E)$	В	$E \mid f_{BAJM}(B,E)$	
$ \begin{array}{c c} B & f_B(B) \\ \hline T & 0.01 \\ \hline F & 0.99 \end{array} $	T T .5985	T	T .01 × .5985	
	T F .5922	T	F .01 × .5922	
	F T .183	F	T .99 × .183	
	F F .001129	\mathbf{F}	F .99 × .001129	
				,

- In the same way
- Step5: Marginalisation over b $f_{BAJM}(E)$
- Step6: Multiplication $f_{EBAIM}(E)$
- Last Step: normalisation: $P(E|j,m) = \frac{0.0037}{0.0037 + 0.0069} = 0.3491$

