ΑΝΑΛΥΣΗ ΘΕΜΑΤΟΣ 3

ΒΗΜΑΤΑ ΣΤΗΝ ΑΝΑΛΥΣΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ:

- Εξέταση αν η γραμματική είναι LL(1)
- Κατασκευή προβλέποντος συντακτικού πίνακα
- Δημιουργία Κώδικα

Εξέταση αν η γραμματική είναι LL(1)

Στο θέμα 3 μας δίδεται μια γραμματική και το πρώτο ζητούμενο είναι να εξετάσουμε αν η γραμματική αυτή είναι LL(1).

Η γραμματική που μας δίνεται είναι η εξής:

 $s \rightarrow (x)$

 $X \rightarrow YZ$

Y→a | b | S

 $Z \rightarrow *X \mid -X \mid +X \mid \epsilon$

Την οποία μπορούμε να την αναλύσουμε σε απλούστερους κανόνες και να τους αριθμήσουμε με το παρακάτω τρόπο:

1.
$$S \rightarrow (X)$$

2.
$$X \rightarrow YZ$$

3.
$$Y \rightarrow a$$

$$4. Y \rightarrow b$$

5.
$$Y \rightarrow S$$

6.
$$Z \rightarrow *X$$

7.
$$Z \rightarrow -X$$

8.
$$Z \rightarrow +X$$

9. Z
$$\rightarrow \epsilon$$

Αρχικά πρέπει να εξετάσουμε αν η γραμματική είναι LL(1).

Μια γραμματική χωρίς συμφραζόμενα G=(N,T,P,S) είναι LL(1) εάν και μόνο εάν για κάθε ζεύγος διαφορετικών παραγωγών A > α και A > β στη γραμματική που έχουν το ίδιο αριστερό μέλος,ισχύει:

LOOKAHEAD($A \rightarrow \alpha$) \cap LOOKAHEAD ($A \rightarrow \beta$)= \emptyset

Συμπερασματικά , πρέπει να βρούμε τα σύνολα FIRST, FOLLOW, EMPTY, LOOKAHEAD.

Τα βήματα που ακολουθούμε είναι τα εξής:

Για να βρούμε το σύνολο **FIRST** ενός συμβόλου οι κανόνες είναι:

ΣΥΝΟΛΑ FIRST

• Ορισμός – FIRST(α):

Το σύνολο των τερματικών συμβόλων που εμφανίζονται στην αριστερή πλευρά των συμβολοσειρών που παράγονται από το α

- Υπολογισμός:
- 1. Av X \rightarrow t α , όπου t τερματικό, τότε το t \in FIRST(X)
- 2. FIRST(t) = { t } , αν το t είναι τερματικό
- 3. $\epsilon \in First(X)$ $\alpha v \ X \to \epsilon$ $\alpha v \ X \to A1$... An kal $\epsilon \in FIRST(Ai$) yia $1 \le i \le n$
- 4. FIRST(X) \supseteq FIRST(α) αν X \rightarrow A1 ...An α και ε ∈ FIRST(Ai) για 1 ≤ i ≤ n Σε κάθε περίπτωση για να βρούμε το FIRST(X) εξετάζουμε τους κανόνες παραγωγής που περιέχουν το X στο αριστερό μέλος X \rightarrow ...

Σύμφωνα με τα παραπάνω έχουμε ότι:

ΣΥΝΟΛΑ FOLLOW

Ορισμός – FOLLOW(α):

Το σύνολο των τερματικών συμβόλων που μπορούν να εμφανιστούν αμέσως στα δεξιά του α σε κάποια προτασιακή μορφή

- Υπολογισμός
- 1. $$ \in Follow(S)$
- 2. A $\rightarrow \alpha X \beta$: Follow(X) \supseteq First(β) { ϵ }
- 3. A \Diamond αX ή A \rightarrow αXβ με ε∈First(β) : Follow(X) \supseteq Follow(A) Σε κάθε περίπτωση για να βρούμε το FOLLOW(X) εξετάζουμε τους κανόνες παραγωγής που περιέχουν το X στο δεξί μέλος ... \rightarrow ... X ...

Σύμφωνα με τα παραπάνω έχουμε ότι:

$$X \rightarrow YZ => FIRST(Z) - \{\epsilon\} \sqsubseteq FOLLOW(Y)$$

1.
$$\{*,+,-\} \sqsubseteq FOLLOW(Y)$$

$$S \rightarrow (X) => FIRST()) - \{\epsilon\} \subseteq FOLLOW(X)$$

2.) \in FOLLOW(X)

$X \rightarrow εYZ όπου ε ∈ FIRST(Z)$

- 3. FOLLOW(X) \sqsubseteq FOLLOW(Y)
- 4. $X \rightarrow YZ => FOLLOW(X) \sqsubseteq FOLLOW(Z)$
- 5. $Y \rightarrow \varepsilon S \Rightarrow FOLLOW(Y) \sqsubseteq FOLLOW(S)$
- 6. $Z \rightarrow *X \Rightarrow FOLLOW(Z) \sqsubseteq FOLLOW(X)$
- 7. $Z \rightarrow *X \Rightarrow FOLLOW(Z) \subseteq FOLLOW(X)$
- 8. $Z \rightarrow *X \Rightarrow FOLLOW(Z) \sqsubseteq FOLLOW(X)$

Παρατηρούμε ότι:

Aπό No1 Κανόνα **FOLLOW** → 8. \$ ∈ **FOLLOW**(S)

$$Aπό 4,6 → FOLLOW(X) = FOLLOW(Z) = { } }$$
 $Aπό 1,3 → FOLLOW(Y) = { *,-,+, } }$
 $Aπό 5,8 → FOLLOW(S) = { $,*,-,+, } }$

ΣΥΝΑΡΤΗΣΗ ΕΜΡΤΥ

- Έστω η γραμματική G=(N,T,P,S). Τώρα ορίζουμε τη συνάρτηση ΕΜΡΤΥ στο NUT:
- Κανόνες
- $EMPTY(\varepsilon) = TRUE$
- EMPTY(AB)=EMPTY(A) AND EMPTY(B) Δηλαδή, Empty(AB) = True μόνο εάν Empty(A) = true και Empty(B) = true

Άρα:

$$S \rightarrow (X)$$
 EMPTY(S) = FALSE

$$X \rightarrow YZ$$
 EMPTY(X)= FALSE

$$Y \rightarrow a \mid b \mid S$$
 EMPTY(Y)=FALSE

$$Z \rightarrow *X \mid -X \mid +X \mid \epsilon$$
 EMPTY(Z)=TRUE

ΣΥΝΑΡΤΗΣΗ LOOKAHEAD

- Ορισμός
- Av EMPTY(X1X2 ...Xn) = False & EMPTY(X1X2 ...Xi-1)= True με i <= n τότε

LOOKAHEAD(A
$$\rightarrow$$
 X1X2 ... Xi-1Xi ... Xn) = U { First(Xj) $\mu\epsilon$ j<=i }

- Av EMPTY(X1X2 ... Xn) = True τότε

LOOKAHEAD(A
$$\rightarrow$$
 X1X2 ...Xn) = U { First(Xi) $\mu\epsilon$ i <= n } U Follow(A

```
Επομένως:
```

LOOKAHAED($S \rightarrow (X)$) = {) } LOOKAHEAD($X \rightarrow YZ$) = { a , b , (}

LOOKAHEAD($Y \rightarrow a$)={a}

LOOKAHEAD($Y \rightarrow b$)={b}

LOOKAHEAD($Y \rightarrow S$)={(}

LOOKAHEAD($Z \rightarrow *X$)={*}

LOOKAHEAD($Z \rightarrow -X$)={-}

LOOKAHEAD($Z \rightarrow +X$)={+}

LOOKAHEAD($Z \rightarrow \varepsilon$)={) }

ПАРАТНРОУМЕ ОТІ:

LOOAKAHEAD($Y \rightarrow a$) \cap LOOKAHEAD($Y \rightarrow b$) \cap

 \cap LOOKAHEAD(Y \rightarrow S) =Ø

KAI

LOOKAHEAD($Z \rightarrow *X$) \cap LOOKAHEAD($Z \rightarrow -X$) \cap

 \cap LOOKAHEAD(Z \rightarrow +X) \cap LOOKAHEAD(Z \rightarrow ϵ)= \emptyset

Συμπεραίνουμε ότι η γραμματική είναι LL(1).

ΚΑΤΑΣΚΕΥΗ ΠΡΟΒΛΕΠΟΝΤΟΣ ΣΥΝΤΑΚΤΙΚΟΥ ΠΙΝΑΚΑ

- Ο συντακτικός πίνακας είναι ένας πίνακας του οποίου το κάθε στοιχείο είναι:
 - 1) Είτε ένας κανόνας παραγωγής της γραμματικής
 - 2) Είτε το κενό
- Υπάρχει μία γραμμή στο πίνακα για κάθε μη-τερματικό σύμβολο.
- Υπάρχει μια στήλη για κάθε τερματικό σύμβολο της γραμματικής.
- Επίσης υπάρχει μια στήλη για το σύμβολο \$.
 Τα σύμβολα τα οποία είνα τερματικά και σχηματίζουν τις στήλες του πίνακα είνα τα σύμβολα εισόδου τα οποία μπορούν να διαβαστούν από τον αναλυτή.
- Τα στοχεία του πίνακα:

Εξετάζουμε όλους τους καν΄νες της γραμματικής έναν προς ένα.

Εάν υπάρχει μια παραγωγή : $A \rightarrow x$ τότε εξετάζουμε το σύνολο **FIRST(x)**

Για κάθε σύμβολο α \neq ε όπου α \in **FIRST(x)** ο κανόνας παραγωγής A \rightarrow x τοποθετείται στον πίνακα στη γραμμή A και στήλη b, \forall b \in **FOLLOW(A)** . Εδώ το b μπορεί να είναι και το \$.

ΣΥΝΟΛΑ FIRST-FOLLOW

Για διευκρίνιση τον πίνακα θα τον ονομάσουμε Μ

1.
$$S \rightarrow (X)$$

FIRST((X)) = {(} $\triangle \rho \alpha M(S, () = S \rightarrow (X))$

2.
$$X \rightarrow YZ$$

FIRST(YZ)=FIRST(Y)={a,b,(} $\triangle \rho \alpha M(X, a) = X \rightarrow YZ$
 $\triangle \rho \alpha M(X, b) = X \rightarrow YZ$
 $\triangle \rho \alpha M(X, () = X \rightarrow YZ)$

3.
$$Y \rightarrow a$$
 $\forall A \rho \alpha M(Y, a) = Y \rightarrow a$

4.
$$Y \rightarrow b$$

FIRST(b)={b} $\forall A \rho \alpha M(Y, b) = Y \rightarrow b$

5.
$$Y \rightarrow S$$

FIRST(S)={(} $\triangle \rho \alpha M(Y, () = Y \rightarrow S)$

6.
$$Z \rightarrow *X$$

FIRST(*)={ * } $\triangle \rho \alpha M(Z, *) = Z \rightarrow *X$

8.
$$Z \rightarrow +X$$

FIRST(+)={ + } $\triangle \rho \alpha M(Z, +) = Z \rightarrow +X$

9.
$$Z \rightarrow \epsilon$$

FIRST(ϵ)={ ϵ } \rightarrow $\epsilon \in FIRST(\epsilon)$

Á $\rho\alpha$ $\epsilon \xi \epsilon \tau \dot{\alpha} \zeta o \nu \mu \epsilon \tau o FOLLOW(Z) ={)}

Á $\rho\alpha$ $M(Z,)$ = $Z \rightarrow \epsilon$$

Τελικά, από τους παραπάνω κανόνες δημιουργείται ο παρακάτω πίνακας:

V/T	()	a	b	*	-	+	\$
S	S → (X)							
X	X→YZ		X→YZ	X→YZ				
Υ	Y→S		Y→a	Y→b				
Z		S→ε			Z → *X	Z → -X	Z → +X	

Περιγραφή Αλγορίθμου

Αρχικά το πρόγραμμα ξεκινάει ζητώντας μια είσοδο του χρήστη (συμβολοσείρα).

Αφού δέχεται την είσοδο αυτή προσθέτει στο τέλος το σύμβολο «\$» και ξεκινάει η διαδικασία του συντακτικού αναλυτή.

Για κάθε ένα σύμβολο της συμβολοσείρας, ο συντακτικός αναλυτής παρακολουθεί τη κορυφή της στοίβας.

Αν το σύμβολο αυτό είναι το ίδιο τότε τα δυο αυτά σύμβολα διαγράφονται .Σε περίπτωση όπου είναι διαφορετικά, τότε ο συντακτικός αναλυτής κοιτάει το προβλέποντα συντακτικό πίνακα που δημιουργήσαμε και πιο συγκεκριμένα στο κελί με γραμμή το σύμβολο της κορυφής της στοίβας και στήλη το τρέχων σύμβολο της συμβολοσείρας(μιας που η διαδικασία θα γίνει για όλα τα σύμβολα). Αν υπάρχει κανόνας ,δηλαδη το κελί είναι μη-κενό, τότε αντικαθιστούμε τη κορυφή της στοίβας με το κανόνα αυτό αλλά ανεστραμμένο .

Αν δεν υπάρχει κανόνας η διαδικασία σταματά με τη συμβολοσειρά να χαρακτηρίζεται ως «μη-αναγνωρίσιμη».

Σε περίπτωση που η διαδικασία επαναληφθεί για όλα τα σύμβολα της συμβολοσείρας χωρίς να διακοπεί και δεν υπάρχουν άλλα σύμβολα , με τη κορυφή της στοίβας να είναι το σύμβολο «\$», τότε η συμβολοσειρά χαρακτηρίζεται ως «αναγνωρίσιμη» .

Επίδειξη Έκφρασης

Αρχκικά,η είσοδος του χρήστη είναι η ((b-a)*(a+b)).

Η διαδικασία ξεκινάει.

Please	insert	the	input
((b-a)-	(a,b))		

((b-	a)	*((a+k))

((D-u)*(u+b))			
Stack	Input	Rule	Production
\$S	((b-a)*(a+b))\$	M(S,()	S>(X)
\$)X(((b-a)*(a+b))\$		
\$)X	(b-a)*(a+b))\$	M(X,()	X>YZ
\$)ZY	(b-a)*(a+b))\$	M(Y,()	Y>S
\$)ZS	(b-a)*(a+b))\$	M(S,()	S>(X)
\$)Z)X((b-a)*(a+b))\$		
\$)Z)X	b-a)*(a+b))\$	M(X,b)	X>YZ
\$)Z)ZY	b-a)*(a+b))\$	M(Y,b)	Y>b
\$)Z)Zb	b-a)*(a+b))\$		
\$)Z)Z	-a)*(a+b))\$	M(Z,-)	Z>-X
\$)Z)X-	-a)*(a+b))\$		
\$)Z)X	a)*(a+b))\$	M(X,a)	X>YZ
\$)Z)ZY	a)*(a+b))\$	M(Y,a)	Y>a
\$)Z)Za	a)*(a+b))\$		
\$)Z)Z)*(a+b))\$	M(Z,))	Z>E
\$)Z))*(a+b))\$		
\$)Z	*(a+b))\$	M(Z,*)	Z>*X
\$)X*	*(a+b))\$		

```
1)
Η κορυφή της στοίβας είναι S
Το πρώτο συμβολο της εισόδου είναι (
Κοιτάμε το πίνακα στο κελί με γραμμή S και στήλη (
Το κελί περιέχει τη παραγωγή S \rightarrow (X)
Επομένως αντικαθιστούμε το S με το )Χ(
2)
Η κορυφή της στοίβας είναι (
Το πρώτο σύμβολο της εισόδου είναι (
Επομένως τα σύμβολα διαγράφονται
3)
Η κορυφή της στοίβας είναι Χ
Το πρώτο συμβολο της εισόδου είναι (
Κοιτάμε το πίνακα στο κελί με γραμμή Χ και στήλη (
Το κελί περιέχει τη παραγωγή Χ > ΥΖ
Επομένως αντικαθιστούμε το Χ με το ΖΥ
4)
Η κορυφή της στοίβας είναι Υ
Το πρώτο συμβολο της εισόδου είναι (
Κοιτάμε το πίνακα στο κελί με γραμμή Υ και στήλη (
Το κελί περιέχει τη παραγωγή Υ→S
Επομένως αντικαθιστούμε το Υ με το S
5)
Η κορυφή της στοίβας είναι S
Το πρώτο συμβολο της εισόδου είναι (
Κοιτάμε το πίνακα στο κελί με γραμμή S και στήλη (
```

Το κελί περιέχει τη παραγωγή S→(X) Επομένως αντικαθιστούμε το S με το)X(

6) Η κορυφή της στοίβας είναι (Το πρώτο συμβολο της εισόδου είναι (

Επομένως τα σύμβολα διαγράφονται

7)
Η κορυφή της στοίβας είναι Χ
Το πρώτο συμβολο της εισόδου είναι b
Κοιτάμε το πίνακα στο κελί με γραμμή X και στήλη b
Το κελί περιέχει τη παραγωγή X→YZ
Επομένως αντικαθιστούμε το X με το ZY

8)
Η κορυφή της στοίβας είναι Υ
Το πρώτο συμβολο της εισόδου είναι b
Κοιτάμε το πίνακα στο κελί με γραμμή Υ και στήλη b
Το κελί περιέχει τη παραγωγή Υ→b
Επομένως αντικαθιστούμε το Υ με το b

9) Η κορυφή της στοίβας είναι b Το πρώτο συμβολο της εισόδου είναι b Επομένως τα σύμβολα διαγράφονται

10)
Η κορυφή της στοίβας είναι Ζ
Το πρώτο συμβολο της εισόδου είναι Κοιτάμε το πίνακα στο κελί με γραμμή Ζ και στήλη Το κελί περιέχει τη παραγωγή Z→-X
Επομένως αντικαθιστούμε το Z με το X-

Η διαδικασία συνεχίζεται με παρόμοιο τρόπο ...

\$)X	(a+b))\$	M(X,()	X>YZ
\$)ZY	(a+b))\$	M(Y,()	Y>S
\$)ZS	(a+b))\$	M(S,()	S>(X)
\$)Z)X((a+b))\$		
\$)Z)X	a+b))\$	M(X,a)	X>YZ
\$)Z)ZY	a+b))\$	M(Y,a)	Y>a
\$)Z)Za	a+b))\$		
\$)Z)Z	+b))\$	M(Z,+)	Z>+X
\$)Z)X+	+b))\$		
\$)Z)X	b))\$	M(X,b)	X>YZ
\$)Z)ZY	b))\$	M(Y,b)	Y>b
\$)Z)Zb	b))\$		
\$)Z)Z))\$	M(Z,))	Z>E
\$)Z)))\$		
\$)Z)\$	M(Z,))	Z>E
\$))\$		
\$	\$		
Recognised			

Το δέντρο τυπώνεται ως εξής:

Στη περίπτωση όπου το Υ μας εμφανίζει S , το αποτέλεσμα του Z επιλέγουμε να τυπώνεται σε επόμενη γραμμή (δεξιά από το αποτέλεσμα επόμενου Z μέχι να βρεθεί περίπτωση όπου επόμενο Y να εμφανίζει τελικό σύμβολο

ΆΛΛΟ ΠΑΡΑΔΕΙΓΜΑ Για έκφραση (β-α)

(b-a)			
Stack	Input	Rule	Production
\$S	(b-a)\$	M(S,()	S>(X)
\$)X((b-a)\$		
\$)X	b-a)\$	M(X,b)	X>YZ
\$)ZY	b-a)\$	M(Y,b)	Y>b
\$)Zb	b-a)\$		
\$)Z	-a)\$	M(Z,-)	Z>-X
\$)X-	-a)\$		
\$)X	a)\$	M(X,a)	X>YZ
\$)ZY	a)\$	M(Y,a)	Y>a
\$)Za	a)\$		
\$)Z)\$	M(Z,))	Z>E
\$))\$		
\$	\$		
Recognised			
	S		
((X)		
,	/ Z		
b	- X		
	Y Z		
	a E		

Τα σύμβολα στην είσοδο πρέπει να είναι στα λατινικά .

ΠΑΡΑΔΕΙΓΜΑΤΑ ΓΙΑ ΕΚΦΡΑΣΗ ΠΟΥ ΔΕΝ ΑΝΑΓΝΩΡΙΖΕΤΑΙ

1)

Please inse	ert the input		
abcd			
Stack	Input	Rule	Production
\$S	abcd\$		
There was n	ot such rule as	M(S,a)	S>0

((a-b))a			
Stack	Input	Rule	Production
\$S	((a-b))a\$	M(S,()	S>(X)
\$)X(((a-b))a\$		
\$)X	(a-b))a\$	M(X,()	X>YZ
\$)ZY	(a-b))a\$	M(Y,()	Y>S
\$)ZS	(a-b))a\$	M(S,()	S>(X)
\$)Z)X((a-b))a\$		
\$)Z)X	a-b))a\$	M(X,a)	X>YZ
\$)Z)ZY	a-b))a\$	M(Y,a)	Y>a
\$)Z)Za	a-b))a\$		
\$)Z)Z	-b))a\$	M(Z,-)	Z>-X
\$)Z)X-	-b))a\$		
\$)Z)X	b))a\$	M(X,b)	X>YZ
\$)Z)ZY	b))a\$	M(Y,b)	Y>b
\$)Z)Zb	b))a\$		
\$)Z)Z))a\$	M(Z,))	Z>E
\$)Z)))a\$		
\$)Z)a\$	M(Z,))	Z>E
\$))a\$		
\$	a\$		

Οδηγίες για εκτέλεση

Με τη προυπόθεση οτι έχουμε ένα C++ compiler π.χ(MINGW):

Για την εκτέλεση του προγράμματος μπορούμε να εκτελέσουμε τις εξής εντολές σε ένα terminal Με τη προυπόθεση το αρχείο ASKHSH3.cpp να βρίσκεται στο τρέχων κατάλογο:

g++ ASKHSH3.cpp -o ASKHSH3

Για WindowsΓια Linux/MacASKHSH3./ASKHSH3.out