Sensitivity, Uncertainty, and Robustness Analysis

EES 4760/5760

Agent-Based & Individual-Based Computational Modeling

Jonathan Gilligan

Class #25: Thursday April 13, 2016

Sensitivity, Uncertainty, Robustness

- Does ABM reproduce patterns robustly?
 - or are patterns sensitive to specific values for parameters?
- How uncertain are the results?
 - What can the model tell us about parameters that we can't measure?
- Sensitivity Analysis focuses on small changes in parameters.
- Robustness Analysis looks at large changes in parameters.

Is high sensitivity good or bad?

- **Bad:** If model is testing a general theory, but is very sensitive to parameter values, that is evidence *against* the theory.
 - Does model work across the entire range of observed values for parameters?
- **Good:** If the model is being used to evaluate parameters we can't measure, higher sensitivity can mean less uncertainty about parameters.

Challenges: Computational Complexity

- We would like to do global sensitivity analysis:
 - Vary all parameters over their entire ranges, in every combination.
 - Can't: computationally unfeasible.
 - There are strategies to make global sensitivity analysis feasible, but they are complicated.
- Instead: local sensitiity analysis:
 - Small variations around most likely values of parameters.
 - Vary one parameter at a time, or multiple parameters?
 - Interactions
 - Sampling parameter values
 - Random (Monte Carlo)
 - Systematic (e.g., Latin Hypercube)

Example: Wild Dog Model

- Packs of wild dogs in nature preserve.
- Goal: Keep them from going extinct in next 100 years.
- Vary parameters:
 - Mortality rate of adult dogs in pack
 - Mortality rate of dispersers
 - Meeting rate of disperser groups
 - Carrying capacity

Analyzing data:

- Contour plots
- "Small multiple" plots
- Analyze four-dimensional data set using a grid of nine plots.

Example Research Model

Example Research Model

- J.J. Jordan *et al.*, "Third-party punishment as a costly signal of trustworthiness," Nature **530**, 473 (2016). doi:10.1038/nature16981
- Cooperation and Cheating
 - Common situation:
 - Everyone is better off if everyone cooperates than if everyone cheats.
 - Once everyone else has chosen their action, any individual is better off cheating than cooperating.
 - Nash equilibrium: Everyone making the best choice for himself produces the worst outcome for everyone.
 - Opposite of the "invisible hand" in economics.

Prisoner's Dilemma

	B Cooperates	
A Cooperates	5, 5	0, 7
A Defects	7, 0	1, 1

- No matter what player A does, player B is better off defecting
- No matter what player B does, player A is better off defecting
- If both players defect, both are worse off than if both cooperated.

Tragedy of the commons

- Ten farmers share a pasture.
- A pasture can support 100 cows.
- If $N_{cows} \le 100$, each cow produces \$1,000 worth of milk per month.
- If N_{cows} > 100, each cow produces

$$\$1,000 imes \left(1 - rac{(N_{\mathsf{cows}} - 100)}{100}
ight)$$

worth of milk per month.

- Each farmer has 10 cows, each farmer earns \$10,000 per month.
- One farmer adds 1 cow: total 101.
 - .fragment Each cow produces $$1000 \times (1 (101 100)/100) = 990 .
 - .fragment First farmer earns (11 \$990 = \$10,890),
 - .fragment Everyone else earns \$9,900.
- Each farmer adds 1 cow: total 110.
 - Each cow produces \$900. Each farmer earns \$9,000.

Iterated games

- If only playing once, best strategy is to cheat, because it is rational for everyone else to cheat.
- If playing multiple turns, threat of punishment in future rounds promotes cooperation.
- It is generally costly to punish people.
- If someone cheats against you, it's often worthwhile to punish them.
- If you see someone cheating against another person and you aren't affected, is it worth your while to punish the cheater, even if it costs you?
- Does tragedy of commons inhibit people from punishing?

Theory

- Punishment sends a signal:
 - Deters cheaters.
 - Signals that you are trustworthy.

Game

- Player has two roles: Signaler and Chooser
- Signaler can be either Trustworthy or Exploitative.
- Two kinds of signals: Helping or Punishing a third party.
- Two stages:
- 1. Signalers can pay costs to send signals.
- 2. Choosers decide whether to accept Signalers as partners.
- Cost of signaling can be either small (₅) or large (ℓ)

Payoffs

Payoffs after second stage are:

	Trustworthy Signaller	Exploitative Signaller
Chooser Accepts	m, r	-e, r
Chooser Rejects	0, 0	0, 0

• *m* is benefit of mutual cooperation, *r* is reward for being trustworthy, *e* is harm from exploitation.

Rational strategies

Agent-based model

- Signaler randomly chosen to be Trustworthy or Exploitative.
- Chooser does not know Signaler type
- Evolution of strategies:
 - Each agent plays a certain number of turns (a generation)
 - Agents have probability of reproducing based on earnings from game.
 - Offspring inherit strategy with some random "mutations"

Outcome of evolution

Human Game

- Amazon Mechanical Turk (Internet)
- Human players assigned to one of three games:
 - Signaler can only punish.
 - Signaler can only help.
 - Signaler can help and punish.

Trust Game

- To check whether signals are interpreted accurately by Chooser agents, run a second game:
 - Chooser gets some money м.
 - Chooses how much to send to Signaler (x).
 - Money sent to Signaler is tripled (Signaler get 3x)
 - Signaler decides how much of the 3x to return to Chooser.

Perception of signaling:

- Chooser shows trust by sending more money to Signalers who punish and who help.
- Helping is a more powerful signal to Chooser than punishing.
- This matches theory of rational behavior.

Actual signaliing

- Signalers who punish are more trustworthy: return more money to Chooser.
- Helping is indeed a more accurate signal of trustworthiness.

Signaler Choice

• Signaler is less likely to punish when helping is an option.

Conclusions

- Evolved strategies of agents match both pure theory (rational strategy) and experimental results.
- It is advantageous for third parties to carry out costly punishments when the punishments can signal trustworthiness to others in the community.
- When there are less costly or more effective ways to signal trustworthiness, third parties are less likely to punish.

General ideas about agent-based modeling

- Model interactions between individuals
 - Direct: individual-individual
 - Indirect: individual-environment, environment-individual
- Focus on emergent properties
 - Patterns or phenomena that were not deliberately programmed in, but arise spontaneously from interactions of agents with each other and with environment.
- Pattern-oriented modeling:
 - Start simple, but aim to build in enough complexity to produce multiple patterns seen in nature, or predicted in theory.
 - As you design model think about what kinds of "currency" you will use to assess its value.