Chapitre 4 - Calcul différentiel

Dans tout le chapitre, E, F, G sont des \mathbb{R} -evn de dim $< +\infty$ non nulles (avec $n = \dim E$, $p = \dim F$), U désigne un ouvert de E et I un intervalle ouvert de \mathbb{R} .

1. Dérivation d'une fonction d'une variable réelle à valeurs vectorielles

<u>Définition</u>: Soit I un ouvert non vide de \mathbb{R} , $f:I\subset\mathbb{R}\to F$. On dit que f est **dérivable** en a si le taux d'accroissement

$$\frac{1}{t} \big(f(a+t) - f(a) \big)$$

admet une limite finie $\ell \in F$ lorsque $t \to 0$ ($t \ne 0$). Sa limite ℓ est alors appelée **vecteur dérivé** de f en a et noté f'(a).

<u>Définition</u>: Une fonction $f: I \subset \mathbb{R} \to F$ est dite dérivable si elle l'est en tout point de l'ouvert non vide I. On peut alors introduire l'application $f': I \to F$ appelée fonction dérivée de f.

$$t \mapsto f'(t)$$

<u>Théorème</u>: Soient $B=(e_1,\ldots,e_p)$ une base de F et $f:I\subset\mathbb{R}\to F$ de fonction coordonnées f_1,\ldots,f_p dans la base B. On a équivalence entre :

- (i) f est dérivable sur I
- (ii) Les fonctions f_1, \dots, f_p sont dérivables sur I

De plus, si tel est le cas, on a

$$\forall t \in I, f'(t) = \sum_{k=1}^{p} f'_k(t)e_k$$

Proposition:

Soient $f,g:I\to F$ deux fonctions dérivables sur I. Pour tout $\lambda\in\mathbb{R}$, la fonction $\lambda f+g$ est aussi dérivable sur I et

$$\forall t \in I, (\lambda f + g)'(t) = \lambda f'(t) + g'(t)$$

2. <u>Différentielle d'une fonction</u>

1) Développement limité à l'ordre 1

Définition:

Soient $f:U\subset E\to F$ et $a\in U$. On dit que f admet un développement limité à l'ordre 1 en a s'il existe une application linéaire $u:E\to F$ et une fonction ε définie au voisinage de 0_E telle que

$$f(a+h) = f(a) + u(h) + ||h|| \varepsilon(h)$$
, avec $\varepsilon(h) \xrightarrow[h \to 0_F]{} 0_F$

On notera alors f(a + h) = f(a) + u(h) + o(||h||) lorsque $h \to 0_E$.

Exemple:

Pour
$$f:\mathbb{R}^2 \to \mathbb{R}$$
 , prenons $\|\ \|_2$ sur \mathbb{R}^2 .
$$(x,y) \mapsto f(x,y)$$
 f admet un DL_1 en $(0,0)$ ssi $\exists a,b \in \mathbb{R}$ tq
$$f(h_1,h_2) = f(0,0) + ah_1 + bh_2 + \mathop{o}_{(h_1,h_2) \to (0,0)} (\|(h_1,h_2)\|)$$

<u>Proposition</u>: Soient $f: U \subset E \to F$ et $a \in E$. Si f admet un développement limité à l'ordre 1 en a, il y a unicité de l'application linéaire u décrivant le développement limité.

2) Différentiabilité en un point

<u>Définition</u>: Soit $f:U\subset E\to F$. On dit que f est **différentiable** en $a\in U$ s'il existe une application linéaire $u:E\to F$ telle que :

$$\lim_{\substack{h \to 0_E \\ h \neq 0_E}} \frac{\|f(a+h) - f(a) - u(h)\|_F}{\|h\|_E} = 0_E$$

Remarque: Puisque nous sommes dans des evn de dim finie, toutes les normes sont équivalentes et la notion de limite est invariante par passage à une norme équivalente, donc on peut choisir les normes que l'on veut sur E et F. Ainsi on marquera donc $\|\cdot\|$ pour toutes les normes dans la suite du cours.

<u>Proposition</u>: Soient $f:U\subset E\to F$ et $a\in U$. On a équivalence entre :

- (i) f est différentiable en a
- (ii) f admet un développement limité à l'ordre 1 en a.

<u>Proposition</u>: Si f est différentiable en a, l'application linéaire u est unique. On la note $\mathrm{d}f(a)$, appelée différentielle de f en a.

Exemple:

- 1) Soit $f: E \to F$ une fonction constante (telle que $\forall x \in E, f(x) = C$) Soit $a \in E, \forall h \in E, f(a+h) = C = f(a) = f(a) + \underbrace{0_F}_{u(h)} + \underbrace{0_F}_{\|h\| \times 0_F}$ Donc $f(a+h) = f(a) + u(h) + \|h\| \varepsilon(h)$ avec $\varepsilon: h \mapsto 0_F$ et $u: E \to F, h \mapsto 0_F$ Comme $u \in \mathcal{L}(E,F)$, ceci montre que f admet un DL_1 en a donc f est différentiable en a et $\mathrm{d}f(a) = u = 0_{\mathcal{L}(E,F)}$
- 2) Soit $f: E \to F$ linéaire. Soit $a \in E, \forall h \in E,$ f(a+h) = f(a) + f(h) = f(a) + f(h) + f(h) = f(h) + f(h) + f(h) + f(h) = f(h) + f(h) + f(h) + f(h) = f(h) + f(h) + f(h) = f(h) + f(h) + f(h) + f(h) + f(h) = f(h) + f(

<u>Théorème</u>: Soit $f: U \subset E \to F$. Si f est différentiable en $a \in U$, alors f est continue en a.

<u>Proposition</u>: Soient I un intervalle ouvert non vide de $\boxed{\mathbb{R}}$, $a \in I$ et $f:I \to F$. On a équivalence entre :

- (i) f est différentiable en a,
- (ii) f est dérivable en a.

Dans ce cas, on a alors

$$df(a): \mathbb{R} \to F$$
 et $f'(a) = df(a)(1)$
 $h \mapsto hf'(a)$

Où
$$f'(a) = \lim_{t \to 0} \frac{1}{t} (f(a+t) - f(a)).$$

3) Fonctions différentiables

<u>Définition</u>: Une fonction $f:U\subset E\to F$ est dite **différentiable** (sur U) si elle est différentiable en tout point de a de U. L'application

$$df: U \to \mathcal{L}(E, F)$$

 $a \mapsto df(a)$

est alors appelée différentielle de f.

<u>Théorème</u>: Les fonctions différentiables sont continues.

<u>Proposition</u>: Si $f: E \to F$ est constante, alors f est différentiable et sa différentiable est l'application nulle: pour tout $a \in E$, df(a) = 0, où 0 = 0.

<u>Proposition</u>: Si $f: E \to F$ est linéaire, alors f est différentiable et sa différentielle est constante :

$$\forall a \in E, df(a) = f$$

Exemple:

<u>Proposition</u>: Soient I un intervalle ouvert (non vide) de \mathbb{R} et $f:I\subset\mathbb{R}\to F$. On a l'équivalence :

$$f$$
 est différentiable $\Leftrightarrow f$ est dérivable

Proposition:

Si $\varphi: E \times F \to G$ est une application bilinéaire, alors φ est différentiable, et on a :

$$\forall (x,y) \in E \times F, d\varphi(x,y) : E \times F \to G$$

$$(h,k) \mapsto \varphi(x,k) + \varphi(h,y)$$

4) Opérations sur les fonctions différentiables

<u>Proposition</u>: Soient $f, g: U \subset E \to F$. Pour tous $\lambda, \mu \in \mathbb{R}$, si f et g sont différentiables, alors $\lambda f + \mu g$ l'est aussi et

$$d(\lambda f + \mu g) = \lambda df + \mu dg$$

<u>Proposition</u>: Soient $B = (e_1, \dots e_p)$ une base de F et $f : U \subset E \to F$ de fonctions coordonnées $f_1, \dots f_p$ dans la base B. On a équivalence entre :

- (i) f est différentiable
- (ii) Les fonctions coordonnées $f_1, ..., f_p$ de f sont différentiables.

Dans ce cas, on a:

$$\forall a \in U, \forall h \in E, df(a)(h) = \sum_{i=1}^{p} df_i(a)(h)e_i$$

<u>Proposition</u>: Soient $F_1, ..., F_p$ des espaces vectoriels normés de dimensions finies (non nulles). On note $F = \prod_{i=1}^p F_i$. Soit $f: U \subset E \to F$. On peut écrire $f = (f_1, ..., f_p)$ avec $f_i: U \subset E \to F_i$ les fonctions composantes de f. On a équivalence entre :

- (i) f est différentiable
- (ii) Pour tout $i \in [1, p]$, f_i est différentiable

Dans ce cas, pour tout $a \in U$, df(a) = (df(a), ..., df(a))

Théorème : (Différentiation de fonctions composées)

Soient $f:U\subset E\to F,V$ un ouvert de F tel que $f(U)\subset V$ et $g:V\subset F\to G$. Si f est différentiable en $a\in U$ et g différentiable en $f(a)\in V$, la fonction composée $g\circ f:U\subset E\to G$ est différentiable en a et

$$\forall h \in E, d(g \circ f)(a)(h) = dg(f(a))(df(a)(h))$$

Par suite, si f et g sont différentiables (resp. sur U et sur V), $g \circ f$ est aussi différentiable et

$$\forall a \in U, d(g \circ f)(a) = dg(f(a)) \circ df(a)$$

<u>Proposition</u>: Soient $f: U \subset E \to F$, $\lambda: U \subset E \to \mathbb{R}$ une fonction scalaire et $a \in U$. Si f et λ sont différentiables en a, il en est de même de la fonction λf et on a

$$\forall h \in E, d(\lambda f)(a)(h) = \lambda(a)df(a)(h) + d\lambda(a)(h)f(a)$$

ie $\forall h \in E$, $d(\lambda f)(a) = d\lambda(a)f(a) + \lambda(a)df(a)$

Exemple : on considère $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

On a vu que f admet des dérivées directionnelles en (0,0) selon v et :

$$D_{v}f(0,0) = \begin{cases} \frac{v_1^3}{v_1^2 + v_2^2} & \text{si } v = (v_1, v_2) \neq (0,0) \\ 0 & \text{si } v = (0,0) \end{cases}$$

Supposons f différentiable en 0. Alors $\forall h, k \in \mathbb{R}^2$,

$$df(0,0)(h,k) = D_{h,k}f(a) = \begin{cases} \frac{h^3}{h^2 + k^2} & \text{si } (h,k) \neq (0,0) \\ 0 & \text{si } (h,k) = (0,0) \end{cases}$$

mais alors comme (1,1) = (1,0) + (0,1)

mais d'une part, $df(0,0)(1,1) = \frac{1}{2}$

et d'autre part, par linéarité de df(0,0),

$$df(0,0)(1,1) = df(0,0)(1,0) + df(0,0)(0,1)$$
$$= \frac{1^3}{1^2 + 0^2} + \frac{0^3}{0^2 + 1^2} = 1$$

C'est absurde, donc f n'est pas différentiable en (0,0).

3. Dérivées partielles

1) Dérivation selon un vecteur

Soient $f: U \subset E \to F$ et $a \in U$. Puisque U est un ouvert de E, il existe r > 0 tel que $B(a,r) \subset U$. Pour $v \in E$ fixé, la fonction

$$\varphi: t \in \mathbb{R} \to f(a+tv)$$

est définie au voisinage de 0. Elle étudie les valeurs prises par f sur la droite affine a + Vect(v) (lorsque $v \neq 0_E$)

Définition:

Soient $f: U \subset E \to F$, $a \in U$, $v \in E$. On dit que f est <u>dérivable selon le vecteur</u> v en a si la fonction d'une variable réelle $\varphi: t \mapsto f(a+tv)$ est dérivable en a.

On appelle alors « dérivée selon le vecteur v de f en a » la valeur de cette dérivée, notée

$$D_v f(a) = \varphi'(0) = \lim_{\substack{t \to 0 \ t \neq 0}} \frac{1}{t} (f(a + tv) - f(a))$$

<u>Théorème</u>: Soient $f:U\subset E\to F$ et $a\in U$. Si f est différentiable en a, alors f est dérivable en a selon tout vecteur $v\in E$ et on a

$$D_v f(a) = \mathrm{d} f(a)(v)$$

2) Dérivées partielles

Choisissons arbitrairement une base $B = (e_1, ..., e_n)$ de E. Soit $f : U \subset E \to F$

Définition:

Soient $f: U \subset E \to F$ et $i \in [1, n]$. On dit que f admet une i-ième dérivée partielle (dans la base B) en $a \in U$ si elle admet une dérivée directionnelle selon le vecteur e_i en a. On note alors :

$$\partial_i f(a) = D_{e_i} f(a) = \lim_{\substack{t \to 0}} \frac{1}{t} \left(f(a + te_i) - f(a) \right)$$

<u>Définition:</u>

Sous réserve d'existence, l'application $\partial_i f: U \subset E \to F$ est appelée i-ième dérivée partielle de f dans la base B

<u>Théorème 6</u>: Si $f: U \subset E \to F$ est différentiable alors les dérivées partielles de f dans la base $B = (e_1, ..., e_n)$ existent et pour tout $a \in U$, on a :

$$\partial_i f(a) = \mathrm{d} f(a)(e_i)$$

De plus, pour tout $h = \sum_{i=1}^n h_i e_i \in E$ (avec $(h_1, ... h_n) \in \mathbb{R}^n$),

$$df(a)(h) = D_h f(a) = \sum_{k=1}^{n} h_i \partial_i f(a)$$

<u>Corollaire</u>: Si $f:U\subset E\to F$ est différentiable en $a\in U$, le développement limité à l'ordre 1 de f en a s'écrit :

$$f(a+h) = f(a) + \sum_{i=1}^{n} h_i \partial_i f(a) + \underset{h \to 0}{o} (||h||)$$

3) Dérivées partielles d'une fonction de n variables réelles

Soit $f: U \subset \mathbb{R}^n \to F$ donnée par

$$f: x = (x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n)$$

On étudie les dérivées partielles de f dans la base canonique $B_c = (e_1, ... e_n)$ de \mathbb{R}^n .

Pour $i \in [1, n]$, on peut définir la *i*-ième application partielle de f au point a par :

$$f_{a,i}: t \mapsto f(a_1, ..., a_{i-1}, t, a_{i+1}, ..., a_n)$$

Comme U est un ouvert de \mathbb{R}^n , la fonction $f_{a,i}$ est au moins définie sur intervalle de la forme $a_i - \alpha$, $a_i + \alpha$, avec $\alpha \in \mathbb{R}_+^*$

<u>Proposition</u>: Soit $f: U \subset \mathbb{R}^n \to F$, $a \in U$, $i \in [1, n]$. On a équivalence entre :

- (i) f admet une i-ième dérivée partielle en a (dans la base canonique)
- (ii) La i-ième application partielle de f au point a, notée $f_{a,i}$ est dérivable en a_i

Dans ce cas, on a:

$$\partial_i f(a) = f'_{a,i}(a_i) = \frac{\mathrm{d}}{\mathrm{d}t} (f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_n))|_{t=a_i}$$

Remarque : Si l'on convient de noter x_1, \dots, x_n les éléments du n-uplet x, il est usuel de noter :

$$\partial_i f = \frac{\partial f}{\partial x_i}$$

4) Dérivées partielles d'une fonction d'une variable

Soit $f: U \subset E \to F$ et $B = (e_1, ..., e_n)$ une base de E. Pour $x \in U$, convenons de noter $x_1, ..., x_n \in \mathbb{R}$ les coordonnées de x dans la base B. On a alors $f(x) = f(x_1e_1 + \cdots + x_ne_n)$

$$\tilde{f}:\tilde{U}\subset\mathbb{R}^n\to F, (x_1,\dots,x_n)\mapsto f(x_1e_1+\dots+x_ne_n)$$

Proposition : Avec les notations précédentes, pour $a \in U$ et $i \in [1, n]$, on a équivalence entre :

- (i) f admet une i-ième dérivée partielle dans la base B en a
- (ii) f admet une i-ième dérivée partielle en $(a_1, ..., a_n)$ (dans la B_c de \mathbb{R}^n)

Dans ce cas, on a

$$\partial_i f(a) = \partial_i \tilde{f}(a_1, \dots, a_n) = \frac{\mathrm{d}}{\mathrm{d}t} \Big(\tilde{f}(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_n) \Big) \Big|_{t=a_i}$$

 $(où a = \sum_{k=1}^{n} a_k e_k)$

<u>Proposition</u>: Soit $f: U \subset E \to F$, $a \in U$, $i \in [1, n]$. On a équivalence entre :

- (i) f admet une i-ième dérivée partielle en a dans la base B de E,
- (ii) Les fonctions coordonnées de f dans une base de F admettent une i-ième dérivée partielle en a dans la base B

Dans ce cas, on a

$$\forall k \in [1, p], (\partial_i f)_k = \partial_i (f_k)$$

Où l'on a noté f_k et $(\partial_i f)_k$ les fonctions coordonnées de f et $\partial_i f$ dans une base donnée de F.

5) Matrice Jacobienne

<u>Définition</u>: Soient $B=(e_1,...,e_n)$ une base de E, et $B'=(e'_1,...,e'_n)$ une base de F. Soit $f:U\subset E\to F$ différentiable en $a\in U$. On appelle **matrice Jacobienne** de f en a la matrice de l'application linéaire $\mathrm{d} f(a)$ relatives aux bases B et B':

$$\operatorname{Jac}_f(a) = \operatorname{Mat}_{B,B'}(\operatorname{d}f(a)) \in M_{p,n}(\mathbb{R})$$

<u>Théorème</u>: Avec les mêmes notions, notons f_1, \dots, f_p les fonctions coordonnées de f dans la base B', alors

$$\operatorname{Jac}_f(a) = \left(\partial_j f_i(a)\right)_{i \in [\![1,p]\!], j \in [\![1,n]\!]} = \begin{pmatrix} \partial_1 f_1(a) & \dots & \partial_n f_1(a) \\ \vdots & & \vdots \\ \partial_1 f_p(a) & \dots & \partial_n f_p(a) \end{pmatrix}$$

Remarque : Si l'on convient de noter $(x_1, ..., x_n)$ les coordonnées de x dans B, on peut écrire :

$$\operatorname{Jac}_{f}(a) = \left(\frac{\partial f_{i}}{\partial x_{j}}(a)\right)_{i \in \llbracket 1, p \rrbracket, j \in \llbracket 1, n \rrbracket} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(a) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\ \vdots & & \vdots \\ \frac{\partial f_{p}}{\partial x_{1}}(a) & \dots & \frac{\partial f_{p}}{\partial x_{n}}(a) \end{pmatrix}$$

Remarque : la matrice Jacobienne caractérise entièrement la différentielle de f en a.

6) Dérivées partielles d'une fonction composée

Proposition: (Version matricielle du théorème de différentiation d'une composée)

Soient $f:U\subset E\to F$, $g:V\subset F\to G$, où V est un ouvert de F vérifiant $f(U)\subset V$ et $a\in U$. Si f est différentiable en a et g est différentiable en g est differentiable en g est differentia

$$\operatorname{Jac}_{g \circ f}(a) = \operatorname{Jac}_{g}(f(a)) \times \operatorname{Jac}_{f}(a)$$

Proposition: (Formule de dérivation en chaîne)

Soient $f:U\subset E\to F$, $g:V\subset F\to G$ où V est un ouvert de F tel que $f(U)\subset V$ et $a\in U$. Si f est différentiable en a et g différentiable en f(a), alors les dérivées partielles de $g\circ f$ en a dans une base $B=(e_1,\ldots,e_n)$ de E existent et sont données par

$$\partial_i(g \circ f)(a) = \sum_{k=1}^p \partial_i f_k(a) \partial_k g(f(a)) \quad \forall i \in [1, n]$$

Où l'on a noté f_1, \dots, f_p les fonctions coordonnées de f dans une base $B' = (e'_1, \dots, e'_p)$ de F.

Remarque : Si l'on convient de noter x_1, \dots, x_n les coordonnées d'un vecteur générique $x \in E$ dans la base B et y_1, \dots, y_p celles d'un vecteur générique $y \in F$ dans la base B', la formule précédente se réécrit sous la forme :

$$\frac{\partial (g \circ f)}{\partial x_i}(a) = \sum_{k=1}^p \frac{\partial f_k}{\partial x_i}(a) \frac{\partial g}{\partial y_k}(f(a)) \quad \forall i \in [1, n]$$