1 Covering Spaces

1.1 The Definition of Riemann Surfaces

Definition 1 Let X be 2-d manifold. A complex chart on X is a homeomorphism $\phi: U \to V$ of an open subset U of X onto an open subset $V \subset \mathbb{C}$. Two chart ϕ_1, ϕ_2 are said to be holomorphically compatible if the overlap map

$$\phi_2 \circ \phi_1^{-1} : \phi(U_1 \cap U_2) \to \phi(U_1 \circ U_2)$$

is biholomorphic. A complex atlas is a collection of mutually holomorphically compatible charts whose domains cover X.

Remark 1 Open subdomains of complex charts naturally induce a holomorphically compatible chart by restriction. Additionally, holomorphic compatibility is an equivalence relation.

Definition 2 A complex structure on a two-dimensional manifold is an equivalence class of holomorphically compatible atlases. A Riemann Surface is a pair of a connected 2-d manifold and a complex structure on the manifold.

Definition 3 Let X be a Riemann surface and $Y \subset X$ an open subset. A function $f: Y \to \mathbb{C}$ is called holomorphic is for every chart ψ , the composition $f \circ \psi^{-1}: U \cap V \to \mathbb{C}$ is holomorphic. The set of holomorphic functions on Y will be denoted by $\mathcal{O}(Y)$.

- **Remark 2** 1. The sum and product of holomorphic functions are again holomorphic, and constant functions are holomorphic. Thus $\mathcal{O}(Y)$ is a \mathbb{C} -algebra.
 - 2. One only needs check the holomorphicity of a covering set of charts for Y, not every single chart.
 - 3. The 'coordinate charts' ψ is trivially holomorphic. One usually uses the letter z instead of ψ .

Theorem 1 (Riemann's Removable Singularities Theorem) Let U be an open subset of a Riemann surface and $a \subset U$. Suppose $f \in \mathcal{O}(U \setminus \{a\})$ is bounded in some neighborhood of a. Then f can be uniquely extended to a function $\overline{f} \in \mathcal{O}(U)$

Definition 4 Suppose X and Y are Riemann surfaces. A cottinuous mapping $f: X \to Y$ is called holomorphic if every coordinate representation of the function is holomorphic as a map from \mathbb{C} to \mathbb{C} .

A mapping is biholomorphic if it is bijetive, holomorphic, and its inverse is holomorphic. Two surfaces are isomorphic if there is a biholomorphic mapping between them.

Remark 3 1. When the target space is the complex plane, holomorphic mappings are clearly the same as holomorphic functions.

- 2. Composition of holomorphic mappings are again holomorphic.
- 3. A holomorphic mapping induces a ring homomorphism:

$$f^*: \mathcal{O}(V) \to \mathcal{O}(f^{-1}(V)); \ f^*(\psi) = \psi \circ f$$

Theorem 2 (Identity Theorem) Suppose X and Y are Riemann surfaces and $f_1, f_2 : X \to Y$ are two holomorphic mappings which coincide on a set $A \subset X$ with limit point $a \in X$. Then f_1, f_2 are identically equal.

Theorem 3 Let $Y \subset_{op} X$ be an open subset of a Riemann surface X. A meromorphic function on Y is a holomorphic function $f: Y' \to \mathbb{C}$, Y' an open subset with the following:

- 1. $Y \setminus Y'$ consists of only isolated points.
- 2. For every point $p \in Y \setminus Y'$,

$$\lim_{x \to p} |f(x)| = \infty$$

The points of $Y \setminus Y'$ are called the poles of f. The set of all meromorphic functions on Y is denoted by $\mathcal{M}(Y)$.

Theorem 4 Suppose X is a Riemann surface and $f \in \mathcal{M}(X)$. For each pole p of f, define $f(p) = \infty$. Then $f: X \to \mathbb{P}^1$ is a holomorphic mapping. Conversely, if $f: X \to \mathbb{P}^1$ is a holomorphic mapping, then f is either identically equal to ∞ , or $f^{-1}(\infty)$ is a set of isolated points and thus $f: X \setminus f^{-1}(\infty) \to \mathbb{C}$ is a meromorphic function on X.

1.2 Elementary Properties of Holomorphic Mappings

Theorem 5 (Local Behavior of Holomorphic Mappings) Suppose X and Y are Riemann surfaces and $f: X \to Y$ a holomorphic mapping. Suppose $a \in X$ and b = f(a). Then there exists an integer $k \ge 1$ and charts $\phi: U \to V$ on X and $\psi: U' \to V'$ on Y with the following properties:

- 1. $a \in U$; $\phi(a) = 0$; $b \in U'$; $\psi(b) = 0$
- 2. $f(U) \subset U'$
- 3. The map $F = \psi \circ f \circ \phi^{-1} : V \to V'$ is given by $F(z) = z^k$

Remark 4 The number k is theorem 5 can be characterized in the following way. For every neighborhood U_0 of a there exist neighborhoods $U \subset U_0$ of a and W of b = f(a) such that the set $f^{-1}(y) \cap U$ contains k elements for every points $y \in W, y \neq b$. One calls k the multiplicity of f as a.

Corollary 1 Let X and Y be Riemann surfaces and let $f: X \to Y$ be a non-constant holomorphic mapping. Then f is open; taking open sets to open sets.

Corollary 2 Let X and Y be Riemann surfaces, and let $f: X \to Y$ be an injective holomorphic mapping. Then f is a biholomorphic mapping of X onto f(X).

Corollary 3 (Maximum Principle) Suppose X is a Riemann surface and $f: X \to \mathbb{C}$ is a non-constant holomorphic function. Then the absolute value of f does not attain its maximum.

Theorem 6 Suppose X and Y are Riemann surfaces. Suppose X is compact and $f: X \to Y$ is a non-constant holomorphic mapping. Then Y is compact and f is surjective.

Corollary 4 Every holomorphic function on a compact Riemann surface is constant.

Corollary 5 Every meromorphic function f on \mathbb{P}^1 is a rational function.

Theorem 7 (Liouville's Theorem) Every bounded holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is constant.

1.3 Branched and Unbranched Coverings

Definition 5 Suppose X and Y are topological spaces and $p: Y \to X$ is a continous map. For $x \in X$, the set $p^{-1}(x)$ is called the fiber of p over x. If $y \in p^{-1}(x)$, we say y lies over x. If $p: Y \to X$ and $q: Z \to X$ are continuous maps, then a map $f: Y \to Z$ is called fiber-preserving if $p = q \circ f$. This means that ny points $Y \in Y$ lying over the point $x \in X$ is mapped to a point which also lies over x.

A subset A of a topological space is called discrete if the subspace topology on A is discrete. A mapping $p: Y \to X$ between topological spaces X and Y is said to be discrete if every fiber is a discrete subset of Y.

Theorem 8 Suppose X and Y are Riemann surfaces and $p: Y \to X$ is a non-constant holomorphic map. Then p is open and discrete.

If p: YtoX is a non-constant holomorphic map, then we will say Y is a domain over X.

A holomorphic (meromorphic) function f may also be considered as a multivalued holomorphic function on X (??? this doesn't make sense).

Definition 6 Suppose X and Y are Riemann surfaces and $p: Y \to X$ is a non-constant holomorphic map. A point $y \in Y$ is called a branch point or ramification point of p, if there is no neighborhood V of y such that $p \upharpoonright_V$ is injective. The map p is called an unbranched holomorphic map if it has no branch points.

Theorem 9 Suppose X and Y are Riemann surfaces. A non-constant holomorphic map $p: Y \to X$ has no branch points iff p is a local homeomorphism, i.e. every point $y \in Y$ has an open neighborhood V which is mapped homeomorphically by p onto an open set U in X.