Dr. Tizian Wenzel

Mathematical and Statistical Foundations of Machine Learning

Exercise sheet 1

Submission deadline on Wednesday 07.05.2025 at 9 am via moodle

Notation

For $p, q \in \mathbb{Z}$ such that $p \leq q$, we denote: $[p, q] = \{p, p + 1, \dots, q - 1, q\}$

Exercise 1 (Union bound). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, i.e., Ω a set, $\mathcal{F} \subset \mathcal{P}(\Omega)$ a σ -algebra and \mathbb{P} a probability measure on (Ω, \mathcal{F}) . Show that for any sequence $(A_i)_{i \in \mathbb{N}}$ of events, the following holds:

$$\mathbb{P}(\cup_i A_i) \le \sum_i \mathbb{P}(A_i).$$

Exercise 2 (Bernoulli random variable). Let $X \in \{0,1\}$ be a Bernoulli random variable with parameter $p \in [0,1]$, i.e., $\mathbb{P}(X=1) = p$. Calculate the expectation and variance of X.

Exercise 3 (Binomial random variable). Let $Y \in \{0, ..., N\}$ be a Binomial random variable with parameters $N \ge 2$ and $p \in [0, 1]$, i.e.:

$$\mathbb{P}(Y = k) = \binom{N}{k} p^k (1 - p)^{N - k}, \text{ for all } k = 0, ..., N.$$

Calculate the expectation and variance of Y.

Exercise 4 (Useful inequality).

Show that for every $x \in \mathbb{R}$:

$$1 - x \le \exp(-x)$$
.

Exercise 5 (Axis-aligned rectangles). An axis-aligned rectangle classifier in \mathbb{R}^d is a classifier that assigns the value 1 to a point if and only if it is inside a given rectangle. Formally, given real numbers $a_i \leq b_i$, for $i \in [1,d]$, we define an axis-aligned rectangle:

$$R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]$$

and an associated classifier h_R by

$$h_R(x_1, x_2, \dots, x_d) = \prod_{i=1}^d 1_{[a_i, b_i]}(x_i) = \begin{cases} 1 & \text{if } \forall i \in [1, d]: \\ 0 & \text{otherwise.} \end{cases}$$

The class of all axis-aligned rectangles in \mathbb{R}^d , denoted \mathcal{H}^d_{rec} is defined as the collection of all classifiers associated to axis-aligned rectangles. i.e.: $\mathcal{H}^d_{rec} = \{h_{[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_d,b_d]} : a_i \leq b_i, i \in [1,d] \}$. Note that this is an infinite size hypothesis class.

The aim of this detailed problem is to show that the concept class \mathcal{H}_{rec}^d is PAC-learnable (the definition of PAC-learnability is not needed to solve this problem).

- 1) Given an unknown axis-aligned rectangle R and labelled training data $S = \{(x_i, y_i)\}_{i=1}^m$, where $x_i \in \mathbb{R}^d$, and $y_i = h_R(x_i) \in \{0, 1\}$, let \mathcal{A}_S^d be the algorithm that returns the smallest rectangle R_S enclosing all positive examples in the training set. Show that h_{R_S} is an Empirical Risk Minimiser.
- 2) In this question, we treat the simple case d = 1. Let R be an unknown compact interval [a, b]. Let $\varepsilon > 0$ and $\delta > 0$.
 - (a) Let $S = \{(x_i, y_i)\}_{i=1}^m$ denote a sample generated according to a probability distribution \mathcal{D} on \mathbb{R} and let R_S be the compact interval returned by the algorithm \mathcal{A}_S^1 (i.e. the smallest compact interval enclosing all positive examples in S). We denote $\mathcal{R}(h_{R_S})$ the generalised error of the hypothesis h_{R_S} . Given a random variable X with distribution \mathcal{D} , show that $\mathcal{R}(h_{R_S}) = \mathbb{P}(X \in R R_S)$.
 - (b) Show that if $\mathbb{P}(X \in R) \leq \varepsilon$, then $\mathbb{P}_{S \sim \mathcal{D}^m}(\mathcal{R}(h_{R_S}) > \varepsilon) = 0$.
 - (c) We assume now that $\mathbb{P}(X \in R) > \varepsilon$. We define:

$$s = \inf\{u \in [a,b]; \mathbb{P}(X \in [a,u]) \ge \varepsilon/2\} \text{ and } t = \sup\{u \in [a,b]; \mathbb{P}(X \in [u,b]) \ge \varepsilon/2\}$$

and the intervals $r_1 = [a, s]$, $r_1^* = [a, s)$, $r_2 = [t, b]$ and $r_2^* = (t, b]$. Verify that:

$$\forall i \in \{1, 2\}: \quad \mathbb{P}(X \in r_i^*) \leq \varepsilon/2 \quad and \quad \mathbb{P}(X \in r_i) \geq \varepsilon/2$$

(d) Show that if R_S intersects both r_1 and r_2 then

$$\mathcal{R}(h_{R_S}) = \mathbb{P}(X \in R - R_S) \le \varepsilon.$$

- (e) Justify that, for $i \in \{1, 2\}$, $\mathbb{P}_{S \sim \mathcal{D}^m}(R_S \cap r_i = \varnothing) \leq (1 \varepsilon/2)^m$.
- (f) Using Exercise 4, deduce that $\mathbb{P}_{S \sim \mathcal{D}^m}(\mathcal{R}(h_{R_S}) > \varepsilon) \leq 2 \exp(-\frac{\varepsilon m}{2})$.
- (g) Conclude that if $m \geq m_1(\varepsilon, \delta) = \frac{2}{\varepsilon} \log(\frac{2}{\delta})$, then $\mathbb{P}_{S \sim \mathcal{D}^m}(\mathcal{R}(h_{R_S}) > \varepsilon) \leq \delta$. In other words, if \mathcal{A}_S^1 receives a training set of size $m \geq m_1(\varepsilon, \delta)$ then, with probability of at least 1δ it returns a hypothesis with error of at most ϵ .

Exercise 6 (Bonus question on axis aligned rectangles). We now treat the case d = 2. Let R be an unknown axis-aligned rectangle $[a_1, b_1] \times [a_2, b_2]$ and $\varepsilon > 0$. As in exercise, let R_S be the axis-aligned rectangle returned by the algorithm \mathcal{A}_S^2 , for S a labelled training data generated according to a probability distribution \mathcal{D} on \mathbb{R}^2 . X denotes a random variable with distribution \mathcal{D} .

- (a) Show that if $\mathbb{P}(X \in R) \leq \varepsilon$, then $\mathbb{P}_{S \sim \mathcal{D}^m}(\mathcal{R}(h_{R_S}) > \varepsilon) = 0$.
- (b) We assume now that $\mathbb{P}(X \in R) > \varepsilon$. We define:

$$\begin{cases} s_1 = \inf\{u \in [a_1, b_1]; \mathbb{P}(X \in [a_1, u] \times [a_2, b_2]) \ge \varepsilon/4\}; \\ t_1 = \sup\{u \in [a_1, b_1]; \mathbb{P}(X \in [u, b_1] \times [a_2, b_2]) \ge \varepsilon/4\}; \\ s_2 = \inf\{u \in [a_2, b_2]; \mathbb{P}(X \in [a_1, b_1] \times [a_2, u]) \ge \varepsilon/4\}; \\ t_2 = \sup\{u \in [a_2, b_2]; \mathbb{P}(X \in [a_1, b_1] \times [u, b_2]) \ge \varepsilon/4\} \end{cases}$$

and the rectangles:

$$r_1 = [a_1, s_1] \times [a_2, b_2], r_2 = [t, b_1] \times [a_2, b_2], r_3 = [a_1, b_1] \times [a_2, s_2], r_4 = [a_1, b_1] \times [t_2, b_2]$$

Show that if R_S intersects all rectangles $r_i, i \in [1, 4]$ then $\mathbb{P}(X \in R - R_S) \leq \varepsilon$.

- (c) Justify that, for $i \in [1, 4]$, $\mathbb{P}_{S \sim \mathcal{D}^m}(R_S \cap r_i = \emptyset) \leq (1 \varepsilon/4)^m$.
- (d) Prove that $\mathbb{P}_{S \sim \mathcal{D}^m}(\mathcal{R}(h_{R_S}) > \varepsilon) \leq 4 \exp(-\frac{\varepsilon m}{4})$.
- (e) Conclude that if A_S^2 receives a training set of size $m \ge m_2(\varepsilon, \delta) = \frac{4}{\varepsilon} \log(\frac{4}{\delta})$ then, with probability of at least 1δ it returns a hypothesis with error of at most ϵ .