Module 7: Data Wrangling with Pandas

CPE 311 Computational Thinking with Python

Submitted by: De los Reyes, Jann Moises Nyll B.

Performed on: 20/03/2024 Submitted on: 20/03/2024

Submitted to: Engr. Roman M. Richard

7.1 Supplementary Activity

Using the dataset provided, perform the following exercises:

Exercise 1

We want to look at data for the Facebook, Apple, Amazon, Netflix, and Google (FAANG) stocks, but we were given each as separate CSV file. Combine them into a single file and store the dataframe of the FAANG data as a faang for the rest of exercises:

- 1. Read each file in.
- 2. Add a column to each dataframe, called ticker, indicating the ticker symbol it is for(Apple's is AAPL, for example). This is how you look up a stock. Each file's name is also the ticker symbol, so be sure to capitalize it.
- 3. Append them together into a single dataframe.
- 4. Save the result in a CSV file called faang csv.

Answer:

1. Reading each file in

```
1 # To read the following data on csv file, we need to import pandas.
2 import pandas as pd
3
4 #Reading the aapl.csv file
5 df1 = pd.read_csv('/content/drive/MyDrive/data/aapl.csv')
6
7 #Display the first 5 of aapl.csv
8 df1.head()
```

	date	open	high	low	close	volume	
0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	11.
1	2018-01-03	169.2521	171.2337	168.6929	168.9578	29517899	
2	2018-01-04	169.2619	170.1742	168.8106	169.7426	22434597	
3	2018-01-05	170.1448	172.0381	169.7622	171.6751	23660018	
4	2018-01-08	171.0375	172.2736	170.6255	171.0375	20567766	

```
Next steps: View recommended plots

1 #Reading the amzn.csv file
2 df2 =pd.read_csv('/content/drive/MyDrive/data/amzn.csv')
3
4 #Displaying te first 5 of amzn.csv
5 df2.head()
```


2. Add a column to each dataframe, called ticker, indicating the ticker symbol it is for(Apple's is AAPL, for example). This is how you look up a stock. Each file's name is also the ticker symbol, so be sure to capitalize it.

1 $new_df1 = df1.assign(ticker = 'AAPL')$ #adding a column called ticker for Apple's stock 2 $new_df1.head()$ #display the first 5 rows

		date	open	high	low	close	volume	ticker	
()	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	AAPL	11.
1	1	2018-01-03	169.2521	171.2337	168.6929	168.9578	29517899	AAPL	
2	2	2018-01-04	169.2619	170.1742	168.8106	169.7426	22434597	AAPL	
3	3	2018-01-05	170.1448	172.0381	169.7622	171.6751	23660018	AAPL	
4	4	2018-01-08	171.0375	172.2736	170.6255	171.0375	20567766	AAPL	

Next steps: View recommended plots

 $1\ \text{new_df2= df2.assign(ticker = 'AMZN') \# adding a column called ticker for Amazon's stock}$

2 new_df2.head() #display first 5 rows

	date	open	high	low	close	volume	ticker	
0	2018-01-02	1172.00	1190.00	1170.51	1189.01	2694494	AMZN	11.
1	2018-01-03	1188.30	1205.49	1188.30	1204.20	3108793	AMZN	
2	2018-01-04	1205.00	1215.87	1204.66	1209.59	3022089	AMZN	
3	2018-01-05	1217.51	1229.14	1210.00	1229.14	3544743	AMZN	
4	2018-01-08	1236.00	1253.08	1232.03	1246.87	4279475	AMZN	

Next steps: View recommended plots

1 new_df3 = df3.assign(ticker = 'FB') #adding a column called ticker for Facebook's stock
2 new_df3.head() #display first 5 rows

	date	open	high	low	close	volume	ticker	
0	2018-01-02	177.68	181.58	177.5500	181.42	18151903	FB	ıl.
1	2018-01-03	181.88	184.78	181.3300	184.67	16886563	FB	
2	2018-01-04	184.90	186.21	184.0996	184.33	13880896	FB	
3	2018-01-05	185.59	186.90	184.9300	186.85	13574535	FB	
4	2018-01-08	187.20	188.90	186.3300	188.28	17994726	FB	

Next steps: View recommended plots

1 new_df4 = df4.assign(ticker = 'GOOG') #adding a column called ticker for Google's stock

2 new_df4.head() #display first 5 rows

Next steps: View recommended plots

1 new_df5 = df5.assign(ticker = 'NFLX') #adding a column called ticker for Netflix's stock

2 new_df5.head() #display first 5 rows

Next steps: View recommended plots

3. Append them together into a single dataframe.

1 big_df = pd.concat([new_df1,new_df2,new_df3,new_df4,new_df5], axis =0)
2 big_df

Next steps: View recommended plots

4. Save the result in a CSV file called faang csv.

1 big_df.to_csv('/content/drive/MyDrive/data/faang.csv',index =False)

Screenshot of the faang.csv being saved in the drive.

- With faang, use type conversion to change the date column into datetime and the volume column into integers. Then, sort by date and ticker.
- Find the sever rows with the highest value for volume.
- Right now, the data is somewhere between long and wide format. Use melt() to make it completely long format. Hint: date and ticker are our ID variables(they uniquely identify each row.). We need to melt the rest so that we don't have separate column for open, high, low, close and volume.

Answer:

• With faang, use type conversion to change the date column into datetime and the volume column into integers. Then, sort by date and ticker.

```
1 # First we need to setup the csv file to get started.
2
3 df = pd.read_csv('/content/drive/MyDrive/data/faang.csv')
4 df
```

	date	open	high	low	close	volume	ticker	
0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	AAPL	
1	2018-01-03	169.2521	171.2337	168.6929	168.9578	29517899	AAPL	
2	2018-01-04	169.2619	170.1742	168.8106	169.7426	22434597	AAPL	
3	2018-01-05	170.1448	172.0381	169.7622	171.6751	23660018	AAPL	
4	2018-01-08	171.0375	172.2736	170.6255	171.0375	20567766	AAPL	
1250	2018-12-24	242.0000	250.6500	233.6800	233.8800	9547616	NFLX	
1251	2018-12-26	233.9200	254.5000	231.2300	253.6700	14402735	NFLX	
1252	2018-12-27	250.1100	255.5900	240.1000	255.5650	12235217	NFLX	
1253	2018-12-28	257.9400	261.9144	249.8000	256.0800	10987286	NFLX	
1254	2018-12-31	260.1600	270.1001	260.0000	267.6600	13508920	NFLX	
1255 rc	ws × 7 colum	ns						

Next steps: View recommended plots

We can now start the conversion, First we need to check the data type first.

1 df.dtypes

date object
open float64
high float64
low float64
close float64
volume int64
ticker object

dtype: object

As we can see the date column was not currently stored as a datetime, we can perform the conversion using pd.to_datetime()

```
1 df.loc[:,'date'] =pd.to_datetime(df.date)
2 df.dtypes
    <ipython-input-119-ad99edd1c048>:1: DeprecationWarning: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values i
     df.loc[:,'date'] =pd.to_datetime(df.date)
              datetime64[ns]
    date
    open
                     float64
    high
                     float64
                     float64
    low
    close
                     float64
    volume
                       int64
                      object
    ticker
```

Lets now perform the conversion for volume, we can use astype to perform the conversion.

- 1 df = df.assign(volume = df.volume.astype('int'))
- 2 df.head()

	date	open	high	low	close	volume	ticker	
0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	AAPL	ıl.
1	2018-01-03	169.2521	171.2337	168.6929	168.9578	29517899	AAPL	
2	2018-01-04	169.2619	170.1742	168.8106	169.7426	22434597	AAPL	
3	2018-01-05	170.1448	172.0381	169.7622	171.6751	23660018	AAPL	
4	2018-01-08	171.0375	172.2736	170.6255	171.0375	20567766	AAPL	

Next steps:

View recommended plots

We can now perform sorting by date and ticker.

- 1 sorted_df = df.sort_values(by = ['date','ticker'])
- ${\bf 2}$ #sort the dataframe by date and and ticker from oldest to new
- 3 sorted_df

	date	open	high	low	close	volume	ticker					
0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	AAPL	ılı				
251	2018-01-02	1172.0000	1190.0000	1170.5100	1189.0100	2694494	AMZN					
502	2018-01-02	177.6800	181.5800	177.5500	181.4200	18151903	FB					
753	2018-01-02	1048.3400	1066.9400	1045.2300	1065.0000	1237564	GOOG					
1004	2018-01-02	196.1000	201.6500	195.4200	201.0700	10966889	NFLX					
•••												
250	2018-12-31	157.8529	158.6794	155.8117	157.0663	35003466	AAPL					
501	2018-12-31	1510.8000	1520.7600	1487.0000	1501.9700	6954507	AMZN					
752	2018-12-31	134.4500	134.6400	129.9500	131.0900	24625308	FB					
1003	2018-12-31	1050.9600	1052.7000	1023.5900	1035.6100	1493722	GOOG					
1254	2018-12-31	260.1600	270.1001	260.0000	267.6600	13508920	NFLX					
1255 rd	1255 rows × 7 columns											

Next steps:

View recommended plots

- Find the seven rows with the highest value for volume.
- 1 df.nlargest(n=7,columns ='volume')
- ${\bf 2}$ # We use nlargest() to find the highest volume on our dataframe

	date	open	high	low	close	volume	ticker	
644	2018-07-26	174.8900	180.1300	173.7500	176.2600	169803668	FB	11.
555	2018-03-20	167.4700	170.2000	161.9500	168.1500	129851768	FB	
559	2018-03-26	160.8200	161.1000	149.0200	160.0600	126116634	FB	
556	2018-03-21	164.8000	173.4000	163.3000	169.3900	106598834	FB	
182	2018-09-21	219.0727	219.6482	215.6097	215.9768	96246748	AAPL	
245	2018-12-21	156.1901	157.4845	148.9909	150.0862	95744384	AAPL	
212	2018-11-02	207.9295	211.9978	203.8414	205.8755	91328654	AAPL	

• Right now, the data is somewhere between long and wide format. Use melt() to make it completely long format. Hint: date and ticker are our ID variables(they uniquely identify each row.). We need to melt the rest so that we don't have separate column for open, high, low, close and volume.

```
1 \# Before we perform melt(). we need to setup our data.
```

2 sorted_df.dtypes

```
date datetime64[ns]
open float64
high float64
low float64
close float64
volume int64
ticker object
```

We can change the volume column type as float

```
1 df = df.assign(volume = df.volume.astype('float'))
2 df.dtypes
              datetime64[ns]
    date
    open
                     float64
    high
                     float64
                     float64
    low
    close
                     float64
    volume
                     float64
    ticker
                      object
    dtype: object
```

1 df

	date	open	high	low	close	volume	ticker	
0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934.0	AAPL	
1	2018-01-03	169.2521	171.2337	168.6929	168.9578	29517899.0	AAPL	
2	2018-01-04	169.2619	170.1742	168.8106	169.7426	22434597.0	AAPL	
3	2018-01-05	170.1448	172.0381	169.7622	171.6751	23660018.0	AAPL	
4	2018-01-08	171.0375	172.2736	170.6255	171.0375	20567766.0	AAPL	
•••								
1250	2018-12-24	242.0000	250.6500	233.6800	233.8800	9547616.0	NFLX	
1251	2018-12-26	233.9200	254.5000	231.2300	253.6700	14402735.0	NFLX	
1252	2018-12-27	250.1100	255.5900	240.1000	255.5650	12235217.0	NFLX	
1253	2018-12-28	257.9400	261.9144	249.8000	256.0800	10987286.0	NFLX	
1254	2018-12-31	260.1600	270.1001	260.0000	267.6600	13508920.0	NFLX	
1255 rc	ws × 7 colum	ns						

Next steps: View recommended plots

```
1 melted_df = sorted_df.melt(
2    id_vars = ['date','ticker'],
3    value_vars=['open','high','low','close','volume']
4
5 )
6 melted_df
```

	date	ticker	variable	value						
0	2018-01-02	AAPL	open	1.669271e+02	11.					
1	2018-01-02	AMZN	open	1.172000e+03						
2	2018-01-02	FB	open	1.776800e+02						
3	2018-01-02	GOOG	open	1.048340e+03						
4	2018-01-02	NFLX	open	1.961000e+02						
•••										
6270	2018-12-31	AAPL	volume	3.500347e+07						
6271	2018-12-31	AMZN	volume	6.954507e+06						
6272	2018-12-31	FB	volume	2.462531e+07						
6273	2018-12-31	GOOG	volume	1.493722e+06						
6274	2018-12-31	NFLX	volume	1.350892e+07						
6275 rows × 4 columns										

Next steps:

View recommended plots

Exercise 3

- Using web scraping, search for the list of the hospitals, their address and contact information. Save the list in a new csv file, hospital.csv.
- Using the generated hospital.csv, convert the csv file into pandas dataframe. Prepare the data using the necessary preprocessing techniques.

Answer:

Using web scraping, search for the list of the hospitals, their address and contact information. Save the list in a new csv file, hospital.csv.

Conclusion:

Using pandas for reshaping, cleaning, and sorting stock data, especially for big names like Facebook, Apple, Amazon, Netflix, and Google, is incredibly efficient. It simplifies the process and makes handling large datasets much more manageable. However, I understand that web scraping can be tricky when dealing with unstructured data. It's a common hurdle but one that can be overcome with practice and the right tools.

1

1