

planetmath.org

Math for the people, by the people.

special elements in a C^* -algebra and their spectral properties

Canonical name Special Elements In A Calgebra And Their Spectral Properties

Date of creation 2013-03-22 17:28:36 Last modified on 2013-03-22 17:28:36 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 11

Author asteroid (17536)

Entry type Definition Classification msc 46L05

Defines normal elements and spectral radius
Defines spectrum of self-adjoint elements
Defines spectrum of unitary elements
Defines spectrum of projections

Defines spectrum of positive elements

Definition - Suppose \mathcal{A} is a http://planetmath.org/CAlgebra C^* -algebra. An element $x \in \mathcal{A}$ is said to be:

- **normal** if $x^*x = xx^*$
- self-adjoint if $x^* = x$
- unitary if A has an identity element e and $x^*x = xx^* = e$
- positive if $x = y^*y$ for some element $y \in \mathcal{A}$
- projection if $x^* = x$ and $x^2 = x$
- partial isometry if x^*x and xx^* are both projections

0.0.1 Properties of the special elements in terms of their spectrum

In the following $\sigma(x)$ denotes the spectrum of an element x and $R_{\sigma}(x)$ its spectral radius.

Theorem 1 - Suppose \mathcal{A} is a C^* -algebra and $x \in \mathcal{A}$. If x is normal then $||x|| = R_{\sigma}(x)$

Theorem 2 - Suppose \mathcal{A} is a C^* -algebra and $x \in \mathcal{A}$.

- If x is self-adjoint, then $\sigma(x) \subset \mathbb{R}$.
- If x is unitary, then $\sigma(x) \subset \partial D$, where $D \subset \mathbb{C}$ is the unit disk.
- If x is positive, then $\sigma(x) \subset \mathbb{R}^+$
- If x is a projection, then $\sigma(x) \subset \{0,1\}$

Theorem 3 - Suppose \mathcal{A} is a commutative C^* -algebra and $x \in \mathcal{A}$. Then

- x is self-adjoint if and only if $\sigma(x) \subset \mathbb{R}$.
- x is unitary if and only if $\sigma(x) \subset \partial D$, where $D \subset \mathbb{C}$ is the unit disk.
- x is positive if and only if $\sigma(x) \subset \mathbb{R}^+$
- x is a projection if and only if $\sigma(x) \subset \{0,1\}$

Theorem 4 - Suppose \mathcal{A} is a C^* -algebra and x is normal in \mathcal{A} . Then

- x is self-adjoint if and only if $\sigma(x) \subset \mathbb{R}$.
- x is unitary if and only if $\sigma(x) \subset \partial D$, where $D \subset \mathbb{C}$ is the unit disk.
- x is positive if and only if $\sigma(x) \subset \mathbb{R}^+$
- x is a projection if and only if $\sigma(x) \subset \{0,1\}$