A voctor space that has no finite basis is called infinite-
dimensional. Thus: Let W be a subspace of FDVS V. Then: @ W is also FDVS and dim V = dim V
Ø W is also FDVS and dim V ≤ dur V
Table @ dim W = dim V iff W= V.
dûn V V
$3 \leftarrow \mathbb{R}^3$
2 Plane through the origin, R
Line through the origin, R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n+1 (polynomials of dagree <
mn & Mmxn (Matrices of order mxn
$\rightarrow P(\Lambda)$
unfinite (
infinite Symmetric matrices Voeter space In forder n
Thur: let V be a FDVS with dim V=n. Then:
a) Any II set in V contains at most n vectors.
a Any spanning set for V contains at least n vectors.
a A 15 at of exactly n vectors un V us a bass 1.
a) Any spanning set for V consisting of exactly n vectors is
a lana tor V.
@ Any LI set in V can be extended us a success,
Any spanning set for V can be reduced to a basis for
(3) Find the dimension of substace { (x1, x2, x3, x4, x5) : 3x1-x2+x3=0
of Rs.
To know démension, need to find basis:
$(x_1, x_2, x_3, x_4, x_5) = (x_1, 3x_1 + x_3, x_3, x_4, x_5) = x_1(1, 3, 0, 0, 0) +$
$x_3(0,1,1,0,0) + x_4(0,0,0,1,0) + x_5(0,0,0,0,1)$. [:.di =4]

Page-10