Problem 3

We are going to study the price of houses using the designed linear model.

We fit the model on our training set and obtain the following parameters considering interaction with the categorical variable bathrooms for all the covariates:

(Intercept)	2950.82579 485.38799 6.079 1.71e-08 ***
two.bathroomsTRUE	76.45448 749.35912 0.102 0.91892
two.bathroomsFALSE:footage	23.86056 1.58780 15.027 < 2e-16 ***
two.bathroomsTRUE:footage	25.50310 1.50318 16.966 < 2e-16 ***
two.bathroomsFALSE:age	-10.04729 4.88797 -2.056 0.04215 *
two.bathroomsTRUE:age	5.34187 4.54048 1.176 0.24189
two.bathroomsFALSE:renovation	-7.99892 18.16029 -0.440 0.66045
two.bathroomsTRUE:renovation	2.70081 17.10305 0.158 0.87481
two.bathroomsFALSE:transport	0.70526 1.18230 0.597 0.55203
two.bathroomsTRUE:transport	-0.17971 1.22098 -0.147 0.88325
two.bathroomsFALSE:center	-0.11016
two.bathroomsTRUE:center	-0.07404
two.bathroomsFALSE:supermarket	-0.25634 1.01536 -0.252 0.80114
two.bathroomsTRUE:supermarket	0.27011 1.02672 0.263 0.79297
two.bathroomsFALSE:park	-0.17230 0.12889 -1.337 0.18398
two.bathroomsTRUE:park	-0.35496 0.14485 -2.450 0.01581 *

And sigma is 462.8797

We can trust the model since by looking at the residual we see no patterns so the homoscedastic assumption is met; they seem to be gaussian and there are no leverage points. The Shapiro test on the residuals gives a p-values of 0.6531 so we confirm the gaussianity intuition on the residuals.

The VIF values are big in some cases so we suppose exists collinearity between variables.

By Performing a Lasso regression with parameter lambda = 45 we get keep following covariates.

(Intercept)	2954.28242488
# two.bathroomsFALSE:footage	20.59126191
# two.bathroomsTRUE:footage	24.33863521
# two.bathroomsFALSE:age	-4.25396034
# two.bathroomsTRUE:age	0.84029839
# two.bathroomsFALSE:center	-0.09434332
# two.bathroomsTRUE:center	-0.02832479
# two.bathroomsTRUE:park	-0.13420861

Via cross validations we find that the best lambda is 11 and the corresponding coefficients are:

(Intercept) 3076.30865895

two.bathroomsFALSE:footage 23.01042330 # two.bathroomsTRUE:footage 25.29765737 # two.bathroomsFALSE:age -9.09855389 # two.bathroomsTRUE:age 4.54539917 # two.bathroomsFALSE:renovation -4.11485707 # two.bathroomsFALSE:center -0.10960538 # two.bathroomsTRUE:center -0.06355008 # two.bathroomsFALSE:park -0.10227143 # two.bathroomsTRUE:park -0.29203071

The price prediction for the chosen apartment is 3580.72€