Discussion 14

Caches, FIFOs, DRAMs, Clocking, Parallelism, Pipelining

Caches - Direct Mapped

Caches - N-Way Set Associative

Caches - Fully Associative

FIFO Interfaces

- After write or read operation, FULL and EMPTY indicate status of buffer.
- Used by external logic to control own reading from or writing to the buffer.
- FIFO resets to EMPTY state.
- HALF FULL (or other indicator of partial fullness) is optional.

 Address pointers are used internally to keep next write position and next read position into a dual-port memory.

• If pointers equal after write ⇒ FULL:

If pointers equal after read ⇒ EMPTY:

3T DRAM

No constraints on device ratios
Reads are non-destructive
Value stored at node X when writing a "1" = V_{WWL}-V_{Th}

Can work with a logic IC process

1T DRAM

Write: C S is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance

 $C_S \ll C_{BL}$ Voltage swing is small; typically hundreds of mV.

Clock Distribution

Clock is distributed in a tree-like fashion Large chips (blocks) – many levels of buffers Goal minimize skew, supply-induced jitter

Clock Distribution

Clock is distributed in a tree-like fashion Large chips (blocks) – many levels of buffers Goal minimize skew, supply-induced jitter

Parallelism

Pipelining