Data science HW3

Department of Computer Science National Tsing Hua University (NTHU) Hsinchu, Taiwan

Date: April 13th, 2021

TA Email: tfg10232338@gmail.com

HW3

- Description
- How to submit and choose predictions
- Baseline method
- Hints

Kaggle

- HW3 will be held on Kaggle
 - Please register a Kaggle account first
- A platform of
 - Machine learning competition
 - Sharing dataset
- https://zh.wikipedia.org/wiki/Kaggle

HW3

- HW3 Kaggle link
 - https://www.kaggle.com/t/8257d4321c074ef1b587535c2c775883
- Deadline: 2021/05/11 23:59 (4 weeks)
- We will use the result on Kaggle to score this homework
 - No need to hand in any files on iLMS
 - Remember to fill your Kaggle name in the google form
 https://docs.google.com/spreadsheets/d/1cg BPX6gKrcEXLbWzhnxKsYkZNGXXfPN6n7JZHlvN_U/edit?usp=sharing

Problem description

- Supervised binary classification problem
- Given a data set
 - Training set with label
 - Testing set without
- You need to predict the labels of testing data

Dataset description

- The dataset is **transformed** from real weather observations dataset
- 16 numeric features, 5 nominal features, 1 label
 - Numeric feature are nonlinear transformed
 - About 20% data become missing value
- Our dataset label is 'Weather'

Output format

- For each testing instance, there is a unique id
- Output your prediction to csv file with the following format and submit to kaggle

Remember to output the first line

- Id, Weather
- Id1, Weather 1
- Id2, Weather 2
- ...

1	Id	Weather
2	0	(
3	1	(
4	2	(
5	3	(
6	4	
7	5	
8	6	(

Evaluation

- We use F1-score
 - $2 \times \frac{precision \times recall}{precision + recall}$
- There are two leaderboards on Kaggle
 - Public
 - Can be seen during competition
 - Private
 - Can be seen after competition

Public and Private leaderboard

- **Public** (Can be seen during competition)
 - 30% testing data
 - For reference
- **Private** (Can be seen after competition)
 - the other 70%
 - Use this result for final scoring

Scoring

- Use private leaderboard result for final scoring
- Baseline scores
 - We will score according to given 7 baseline scores

	Public	Private	
Baseline 90	0.43261	0.42595	
Baseline 85	0.41335	0.42502	
Baseline 80	0.38176	0.38108	
Baseline 70	0.33909	0.35150	
Baseline 60	0.28220	0.28336	
Baseline 0	0.26584	0.25060	

Scoring

- You will get **0**, if your private score is between baseline 0 and baseline 60
- You will get **60**, if your private score is between *baseline 60* and *baseline 70*
- You will get **70**, if your private score is between baseline 70 and baseline 80
- And so on

Scoring

- Baseline scores
 - There are benchmarks on the leaderboard for reference

#	Team Name	Notebook	Team Members	Score @	Entries	Last
•	baseline 88			0.43261		
Q	baseline 83			0.41335		
Q	baseline 80					
Q	baseline 70			0.33909		
Q	baseline 60			0.28383		
Q	baseline 0			0.26584		
Q	sampleSubmission					

Other rules

- You can submit 15 times per day
- You can choose 4 predictions for final scoring
 - Kaggle will use the best one to be your final result

How to submit and choose predictions

How to submit

• Click 'Submit Predictions' button on the navigation bar

How to submit

Choose predictions for final scoring

You can see all your submissions in 'My Submissions'

• Remember to choose 4 predictions before the deadline

- We provide a simple baseline method code for your reference
 - Baseline 0
- The steps in baseline are as below
 - Read training/testing data
 - Drop columns which are not numeric features
 - Fill missing value
 - Train a decision tree classifier
 - Output prediction

Read training/testing data

- Drop columns which are not numeric features
- Fill missing value

```
# 將非數值欄位拿掉

df = df.drop(columns = [col for col in df.columns if df[col].dtype == np.object])

# 將 missing value 補 0

df = df.fillna(0)
```


Split dataset

```
from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(
    df.drop(columns = ['Weather']).values[:train_end_idx, :],
    df['Weather'].values[:train_end_idx], test_size=0.5)

X_test = df.drop(columns = ['Weather']).values[train_end_idx:, :]
```

• Train a decision tree classifier and output prediction

```
[5] ▷ ►를 M↓
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.metrics import accuracy_score, f1_score
        #train tree model
        model = DecisionTreeClassifier()
        model.fit(X train,y train)
        #predict
        y_pred_decision = model.predict(X_val)
        print('Accuracy: %f' % accuracy score(y val, y pred decision))
        print('f1-score: %f' % f1_score(y_val, y_pred_decision))
     Accuracy: 0.837695
     f1-score: 0.264122
[6] ▷ ►≡ MI
        ans pred = model.predict(X test)
        df_sap = pd.DataFrame(ans_pred.astype(int), columns = ['Weather'])
        df_sap.to_csv('myAns.csv', index_label = 'Id')
```

- You can try to encode features in object type
 - Some features in object type may contain important information

```
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
df['Loc'] = labelencoder.fit_transform(df['Loc'])
...
```

Fillna with median in numeric features instead of 0
 df[i] = df[i].fillna(median)

• Deal with data imbalance

```
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
X_train,y_train = m.fit_resample(X_train,y_train)
```

Complete these may achieve the same or higher effect as the baseline 60

- Try different models
 - KNN, SVM, Logistic Regression, Random Forest ...

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
```

Finetune the model may achieve higher effect than the baseline 70 and 80

- More techniques for better performance
 - Feature selection
 - Normalization
 - Dimension reduction (PCA, TSNE)
 - Try other different models
 - ...
- We use private leaderboard as the final score
 - Use public score to choose your model is dangerous
 - It's better to perform validation

Packages you may use

- Scikit-learn
 - https://scikit-learn.org/stable/index.html
- Pandas
 - https://pandas.pydata.org/pandas-docs/stable/
- Imbalance learn (for over sampling and down sampling)
 - https://imbalanced-learn.readthedocs.io/en/stable/