On The Run:

Switch between Highway A and Highway B at \mathbf{n} junctions. The time it takes to get from \mathbf{i} to $\mathbf{i+1}$ junction = $\mathbf{a(i)}$, or $\mathbf{b(i)}$. \mathbf{k} = time to switch roads. Find fastest path.

- OPT:
 - OPT(j,PATH):
 - j = minimal time to junction j
 - PATH = Highway A or B the junction belongs to
 - cases:
 - 1. We are on PATH A
 - 2. We are on PATH B
- Identity:
 - OPT(j,PATH)=
 - if j=1
 - 0, because no previous paths
 - if PATH = A
 - MIN(a(j-1)+OPT(j-1,A), b(j-1)+k+OPT(j-1,B))
 - if PATH = B
 - MIN(b(j-1)+OPT(j-1,B), a(j-1)+k+OPT(j-1,A))
- Explanation:
 - Suppose we have found the shortest path to junction j-1 for PATH (either A or B)
 - If we are on path A,
 - we find the minimum between having traversed path A, or having traversed path B with an added cost of k
 - If we are on path B
 - we find the minimum between having traversed path B, or having traversed path A with an added cost of k
- Computation(j,PATH)=
 - o if j=1
 - return 0, because no previous paths
 - if M[j] is empty
 - if PATH = A
 - M[j]=MIN(a(j-1)+OPT(j-1,A), b(j-1)+k+OPT(j-1,B))
 - if PATH = B
 - M[j]=MIN(b(j-1)+OPT(j-1,B), a(j-1)+k+OPT(j-1,A))
 - return M[j]
- Solution(j):
 - M[n]=MIN(Computation(n,A), Computation(n,B));
 - o for i in (1 to n), print M[n].PATH.
- Run time:
 - Compute OPT(j): O(2n) for OPT(n,A) and OPT(n,B)
 - O(2n) = O(n)
 - Solution = O(n), linear loop

Overall = O(n)

Engine Trouble:

L repairs are needed to repair your hog. Must be in specific order. Repair **i** will take **t(i)** hours. One person must do entire repair. Maggie charges **r** dollars/hour. Mikey takes flat rate **b** for 5 consecutive repairs. Find cheapest repair.

- OPT:
 - OPT(j, MECHANIC)=cheapest cost of repairs from 1 to j, with the current repairer MECHANIC, either Mikey or Maggie
 - case 1: Maggie is the current mechanic
 - case 2: Mikey is the current mechanic
- Identity:
 - OPT(j, MECHANIC)=
 - \blacksquare if $j \le 1$,
 - 0 since there were no previous repairs. Assuming we pay after the repair.
 - if MECHANIC = Maggie
 - r*t(j) + MIN(OPT(j-1,Maggie), OPT(j-1,Mikey))
 - if MECHANIC = Mikey
 - b + MIN(OPT(j-5, Maggie), OPT(j-5, Mikey))
- Explanation:
 - Assume we pay Mikey when all his repairs are finished.
 - Suppose OPT(j-1, MECHANIC) returns the cheapest cost of all repairs from 1 to j-1, and MECHANIC is the mechanic that worked on that repair
 - If our current mechanic is Maggie, our current repair cost is the cost of Maggie (r*t(j)) plus the previous repair j-1, which could have been from Maggie or Mikey
 - If our current mechanic is Mikey, our current repair cost is the cost of Mikey's constant (b) plus the previous repair path j-5, because b accounts for the last 5 repairs Mikey did, and previous to j-5, we could have either Maggie or Mikey do the repairs.
- Computation(j,MECHANIC):
 - \circ if j <= 1,
 - 0 since there were no previous repairs. Assuming we pay after the repair.
 - if M[j] is empty
 - if MECHANIC = Maggie
 - M[j] = r*t(j) + MIN(OPT(j-1,Maggie), OPT(j-1,Mikey))
 - if MECHANIC = Mikey
 - M[j] = b + MIN(OPT(j-5, Maggie), OPT(j-5, Mikey))
 - return M[j]
- Solution:
 - M[n]=MIN(Computation(n,A), Computation(n,B));
 - for i in (1 to n), print M[n].MECHANIC.

- Run time:
 - Compute OPT(j): O(2n) for OPT(n, Maggie) and OPT(n, Mikey)
 - O(2n) = O(n)
 - Solution = O(n), linear loop
 - Overall = O(n)

Achliopolis Vegan Hot Dog Eating Champion:

Each day you will make **c(i)** from entering the contest. You must fast for 2 days before and after each contest. Find optimal schedule.

- OPT:
 - OPT(j)=optimal money made up to day j
 - case 1: We will enter the contest on this day
 - case 2: We will not enter
- Identity:
 - OTP(j)=
 - if j<=0, return
 - MAX(OPT(j-2)+c(j), OPT(j-1))
- Explanation:
 - Suppose OPT(j-1) is the most amount of money earned from the contest up to day j-1.
 - On day j, we will either enter the contest or not.
 - o If we don't, we will still have the money we earned to day j-1, so OTP(j-1)
 - If we do, the the nearest last day we could have entered the contest was j-2, so we add OPT(j-2)+c(j) to obtain the money earned up to day j.
- Computation(j):
 - if j<=0 return
 - if M[j] is empty
 - M[j]=MAX(OPT(j-2)+c(j), OPT(j-1))
 - return M[j]
- Solution:
 - o for i in (1 to n)
 - if M[i] > M[i-1] (money was added)
 - We know we had entered the contest on the ith day.
 - print i
- Run time:
 - Compute OPT(j): O(n)
 - Solution = O(n), linear loop
 - Overall = O(n)