Instituto Tecnológico de Buenos Aires

22.13 Electrónica III

Trabajo práctico $N^{\circ}1$

Grupo 3

Mechoulam, Alan	58438
Lambertucci, Guido Enrique	58009
Martorel, Ariel	Legajo
LONDERO BONAPARTE, Tomás Guillermo	58150

Profesor

DEWALD, Kevin

Presentado: /19

Introducción

Desarrollo de la experiencia

Ejercicio 1

Se realizo un programa que calcula el rango y resolucion de la a entrada

Ejercicio 2

Dadas las siguientes expresiones:

$$f\left(e,d,c,b,a\right) = \sum m\left(0,2,4,7,8,10,12,16,18,20,23,24,25,26,27,28\right) \tag{1}$$

$$f(d, c, b, a) = \prod (M_0, M_2, M_4, M_7, M_8, M_{10}, M_{12})$$
 (2)

se procede a hallar la mínima expresión posible para ambas usando álgebra booleana y mapas de Karnaugh. Escribiendo la expresión (1) en forma de minterminos se obtiene:

$$f\left(e,d,c,b,a\right) = \bar{e}\bar{d}\bar{c}\bar{b}\bar{a} + \bar{e}\bar{d}\bar{c}b\bar{a} + \bar{e}\bar{d}c\bar{b}\bar{a} + \bar{e}\bar{d}c\bar{b}\bar{a} + \bar{e}\bar{d}\bar{c}b\bar{a} + \bar{e}$$

$$f\left(e,d,c,b,a\right) = \underbrace{\bar{e}d\bar{c}b\bar{a}}_{\bar{e}d\bar{c}a} + \underbrace{\bar{e}d\bar{c}b\bar{a}}_{\bar{e}d\bar{b}a} + \underbrace{\bar{e}d\bar{c}b\bar{a}}_{\bar{e}d\bar{c}a} + \underbrace{\bar{e}d\bar{c}b\bar{$$

De la anterior expresión, reordenando se consigue:

$$f\left(e,d,c,b,a\right) = \underbrace{\bar{e}d\bar{c}b\bar{a} + e\bar{d}\bar{c}a}_{\bar{d}\bar{c}\bar{a}} + \underbrace{\bar{e}d\bar{b}\bar{a} + \bar{e}d\bar{b}a}_{\bar{d}cba} + \bar{d}cba + ed\bar{c}\bar{b} + \underbrace{\bar{d}c\bar{b}\bar{a} + dc\bar{b}\bar{a}}_{c\bar{b}\bar{a}} + \underbrace{ed\bar{c}a}_{\bar{c}\bar{b}\bar{a}} + \underbrace{ed\bar{c}a}_{\bar{e}d\bar{c}} + \underbrace{ed\bar{c}a}_{\bar{e}d\bar{c}} + ed\bar{c}\bar{a}}_{\bar{e}d\bar{c}} + \underbrace{ed\bar{c}a}_{\bar{e}d\bar{c}} + \underbrace{ed\bar{c}}_{\bar{e}d\bar{c}} + ed\bar{c}\bar{b}}_{\bar{e}d\bar{c}} + \bar{e}\bar{b}\bar{a} + c\bar{b}\bar{a}$$

teniendo en cuenta que

$$c\bar{b}\bar{a} = ec\bar{b}\bar{a} + \bar{e}c\bar{b}\bar{a} + \bar{c}\bar{e}\bar{b}\bar{a}$$

$$\begin{array}{c} \bar{e}\bar{b}\bar{a}=c\bar{e}\bar{b}\bar{a}+\bar{c}\bar{e}\bar{b}\bar{a}+ce\bar{b}\bar{a}\\ \underline{\bar{e}}\bar{b}\bar{a}+ce\bar{b}\bar{a}\\ \underline{\bar{b}}\bar{a}&\underbrace{c\bar{b}\bar{a}+ce\bar{b}\bar{a}}_{\bar{b}\bar{a}} \\ \underline{\bar{b}}\bar{a}&\underbrace{\bar{b}}_{\bar{b}\bar{a}} \end{array}$$

se llega a la expresión

$$f(e,d,c,b,a) = bac\bar{d} + ed\bar{c} + \bar{c}\bar{a} + \bar{b}\bar{a}$$
(3)

Por otro lado, utilizando mapas de Karnaugh se consigue el siguiente gráfico:

$$e = 0$$

e = 1

Tabla 1: Mapa de Karnaugh de la expresión (1).

En este se pueden observar 4 grupos distintos:

- 1. Compuesto por los casilleros 0, 4, 8, 12, 16, 20, 24 y 28, obteniéndose la expresión $ba\bar{d}c;$
- 2. Compuesto por los casilleros 7 y 23, obteniéndose la expresión $ed\bar{c}$;

- 3. Compuesto por los casilleros 0, 2, 8, 10, 16, 18, 24 y 26, obteniéndose la expresión $\bar{c}\bar{a}$;
- 4. Compuesto por los casilleros 24, 25, 26 y 27, obteniéndose la expresión $\bar{b}\bar{a}$ de esta forma se llega a la expresión:

$$f(e,d,c,b,a) = ba\bar{d}c + ed\bar{c} + \bar{c}\bar{a} + \bar{b}\bar{a}$$

la cual coincide con la ecuación (3). De esta forma se representa, mediante un circuito de compuertas lógicas, la formula hallada.

Figura 1: Circuito resultante de simplificar la expresión (1).

Luego se dedujo una expresion para escribirlo con compuertas NOR

$$f\left(e,d,c,b,a\right) = \overline{\overline{badc}} \ + \ \overline{\overline{edc}} \ + \ \overline{\overline{\overline{ca}}} \ + \ \overline{\overline{\overline{ba}}}$$

$$f\left(e,d,c,b,a\right) = \overline{\overline{\overline{b}} + \overline{a} + d + \overline{c} + \overline{\overline{e}} + \overline{d} + c} + \overline{c + a} + \overline{b + a}$$
 A la cual le corresponde el siguiente circuito:

Figura 2: Circuito unicamente con NOR.

Por otro lado, la expresión (2) se escribe en forma de maxterminos:

$$f(d,c,b,a) = (a+b+c+d) \cdot \left(a+\bar{b}+c+d\right) \cdot \left(a+b+\bar{c}+d\right) \cdot \left(\bar{a}+\bar{b}+\bar{c}+d\right) \cdot \left(a+b+c+\bar{d}\right) \cdot \left(a+\bar{b}+c+\bar{d}\right) \cdot \left(a+b+\bar{c}+\bar{d}\right)$$

Su desarrollo utilizando álgebra booleana es el siguiente:

$$f\left(d,c,b,a\right) = \underbrace{\left(a+b+c+d\right)\cdot\left(a+b+\bar{c}+\bar{d}\right)}_{a+b}\cdot\left(\bar{a}+\bar{b}+\bar{c}+d\right)\cdot$$

$$(a+b+\bar{c}+d)\cdot \left(a+b+c+\bar{d}\right)\cdot \left(a+\bar{b}+c+d\right)\cdot \left(a+\bar{b}+c+\bar{d}\right)$$

$$f\left(d,c,b,a\right) = (a+b)\cdot \left(\bar{a}+\bar{b}+\bar{c}+d\right)\cdot \left(a+\bar{b}+c+d\right)\cdot \left(a+b+\bar{c}+d\right)\cdot \left(a+b+c+\bar{d}\right)\cdot \left(a+b+\bar{d}\right)\cdot \left(a+b+\bar{d}\right)\cdot \left(a+\bar{d}\right)\cdot \left($$

$$f(d,c,b,a) = (a+b) \cdot \left(\bar{a} + \bar{b} + \bar{c} + d\right) \cdot (a+c) \cdot \underbrace{\left(a + \bar{b} + c + d\right) \cdot \left(a + b + c + \bar{d}\right)}_{\alpha} \cdot \underbrace{\left(a + b + \bar{c} + d\right) \cdot \left(a + b + c + \bar{d}\right)}_{\beta}$$

CÁLCULO AUXILIAR

$$\alpha = \left[(a+c+d) + \overline{b} \right] \cdot \left[(a+c+\overline{d}) + b \right]$$

$$\alpha = \underbrace{(a+c+d) \cdot (a+c+\overline{d})}_{a+c} + (a+c+d) \cdot b + (a+c+\overline{d}) \cdot \overline{b} + \underbrace{d\overline{d}}_{0}$$

$$\alpha = a+c+\underbrace{(a+c) \cdot b + (a+c) \cdot \overline{b}}_{a+c} + \underbrace{db+d\overline{b}}_{1} = a+c+1$$

De forma análoga se puede llegar a que

$$\beta = a + b + 1$$

Por lo tanto,

$$\alpha \cdot \beta = (a+c+1) \cdot (a+b+1)$$

$$\alpha \cdot \beta = a+b+c+ab+ac+cb+1 = 1$$

Luego,

$$f(d,c,b,a) = (a+b) \cdot (\bar{a} + \bar{b} + \bar{c} + d) \cdot (a+c) \tag{4}$$

A su vez, usando mapas de Karnaugh, se obtiene lo siguiente:

dc	a 00	01	11	10
00	0	1	1	0
01	0	1	0	1
11	0	1	1	1
10	0	1	1	0

Tabla 2: Mapa de Karnaugh de la expresión (2).

En esta se pueden observar 3 grupos:

- 1. Compuesto por los casilleros 0, 4, 8 y 12, obteniéndose la expresión b + a;
- 2. Compuesto por el casillero 7, obteniéndose la expresión $\bar{a} + \bar{b} + \bar{c} + d$;
- 3. Compuesto por los casilleros 0, 2, 8 y 10, obteniéndose la expresión c+a obteniendo finalmente la expresión:

$$f(d, c, b, a) = (b + a) \cdot (c + a) \cdot (\bar{a} + \bar{b} + \bar{c} + d)$$
 (5)

coincidente con la ecuación (4). Por último, se utiliza dicha formula dicha para elaborar un circuito de compuertas lógicas que la represente.

Figura 3: Circuito resultante de simplificar la expresión (2).

Luego se dedujo una expresion para escribirlo con compuertas NOR

$$f\left(d,c,b,a\right) = \overline{\left(\overline{b} + a\right) \cdot \left(\overline{c} + a\right) \cdot \left(\overline{a} + \overline{b} + \overline{c} + d\right)}$$

$$f\left(d,c,b,a\right) = \overline{\left(\overline{b\ +\ a}\right) + \overline{\left(\overline{c\ +\ a}\right)} + \overline{\left(\overline{a\ +\ \overline{b}\ +\ \overline{c}\ +\ d}\right)}}$$

a la cual le corresponde el siguiente circuito.

Figura 4: Circuito únicamente con compuertas NOR.

Ejercicio 3

Ejercicio 4

En este punto se pidio armar un circuito que dados 4 bits de entrada en binario lo transforme a codigo de Gray se armo la tabla de verdad

d	c	b	a	m_{ij}	y_4	y_3	y_2	y_1
0	0	0	0	m_{i0}	0	0	0	0
0	0	0	1	m_{i1}	0	0	0	1
0	0	1	0	m_{i2}	0	0	1	1
0	0	1	1	m_{i3}	0	0	1	0
0	1	0	0	m_{i4}	0	1	1	0
0	1	0	1	m_{i5}	0	1	1	1
0	1	1	0	m_{i6}	0	1	0	1
0	1	1	1	m_{i7}	0	1	0	0
1	0	0	0	m_{i8}	1	1	0	0
1	0	0	1	m_{i9}	1	1	0	1
1	0	1	0	m_{iA}	1	1	1	1
1	0	1	1	m_{iB}	1	1	1	0
1	1	0	0	m_{iC}	1	0	1	0
1	1	0	1	m_{iD}	1	0	1	1
1	1	1	0	m_{iE}	1	0	0	1
1	1	1	1	m_{iF}	1	0	0	0

Se procede a escribir cada bit de salida en funcion de los minterminos:

$$y_4 = \sum_{j=8}^F m_{4j} \; ; \; y_3 = \sum_{j=4}^B m_{3j} \; ; \; y_2 = \sum_{j=2}^5 m_{2j} + \sum_{j=A}^D m_{2j} \; ; \; y_1 = m_{11} + m_{12} + m_{15} + m_{16} + m_{19} + m_{1A} + m_{1D} + m_{1E}$$

luego para llegar a la forma simplificada se hizo el mapa de Karnaugh de cada salida:

dc ba	a 00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	1	1	1	1

Tabla 3: Mapa de Karnaugh del bit y4 de salida.

Se puede ver que

$$y_4 = d$$

del segundo bit:

dc ba	a 00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	0
10	1	1	1	1

Tabla 4: Mapa de Karnaugh del bit y3 de salida.

De aqui

$$y_3 = \bar{d}c + d\bar{c}$$

continuando para la siguiente salida:

dc ba	a 00	01	11	10	
00	0	0	1	1	
01	1	1	0	0	
11	1	1	0	0	
10	0	0	1	1	

Tabla 5: Mapa de Karnaugh del bit y2 de salida.

De aqui

$$y_2 = \bar{c}b + c\bar{b}$$

continuando para la ultima salida:

Tabla 6: Mapa de Karnaugh del bit y1 de salida.

Finalmente se obtiene:

$$y_1 = \bar{b}a + \bar{a}b$$

Luego se armo el circuito únicamente utilizando compuertas OR AND y NOT

Finalmente se implemento en verilog un modulo que realiza la conversion de binario a codigo de gray utilizando la configuracion de compuertas de la $\,$ y una test bench que prueba todos los casos posibles.

Ejercicio 5

En este punto habia que implementar en verilog un modulo que reciba dos numeros en formato **BCD** y devuelva su producto como dos numeros en el mismo formato. A lo largo del la implementación se presentaron diversas complicaciones como el saber que scope tienen las variables, que bloques dentro de un modulo pueden tomar un set de lineas de manera procedural y como relacionar un modulo con otro. Luego de haber implementado el codigo se hizo tambien una test-bench que prueba todos los casos posibles

SUPONGO QUE HABRPA QUE ESCRIBIR MEJOR ESTO