Notes

Paper Summary

Yu Chen

The Chinese University of HongKong, Department of Mechanical and Automation Engineering

E-mail: anschen@link.cuhk.edu.hk

Contents

1 Policy Gradient Methods for Reinforcement Learning with Function Approximation

1

1 Policy Gradient Methods for Reinforcement Learning with Function Approximation

This article[1] show theoretical possibility of using approximator to encode a policy. In this paper, the author prove the results for both two value functions, one is average reward,

$$V^{\pi}(s) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[r_1 + r_2 + \dots + r_n | s, \pi]$$
 (1.1)

$$Q^{\pi}(s,a) = \mathbb{E}[\sum_{t=1}^{+\infty} r_t - V^{\pi}(s)|s,a,\pi],$$
 (1.2)

the other is state-by-state reward,

$$V^{\pi}(s) = \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} r_t | s, \pi], \tag{1.3}$$

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{k=1}^{\infty} \gamma^{k-1} r_{t+k} | s_t = s, a_t = a, \pi\right]$$
(1.4)

We use parameters θ to approximate policy π , which means $\pi(s, a) = \pi(s, a; \theta)$.

Theorem 1.0.1 (Policy Gradient). For any MDP, in either the average-reward or state-state formulatios,

$$\frac{\partial V^{\pi}(s)}{\partial \theta} = \int ds da \rho^{\pi}(s) \frac{\partial \pi(s, a)}{\partial \theta} Q^{\pi}(s, a), \tag{1.5}$$

where $\rho^{\pi}(s)$ is discounted density for state s, defined as,

$$\rho^{\pi}(s) = \lim_{t \to \infty} p(s_t|s_0, \pi), \text{ stationary distribution for average reward,}$$
 (1.6)

$$\rho^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} p(s_{t} = s | s_{0}, \pi), \text{ state - state formulation.}$$
(1.7)

Proof:

Lemma 1.0.1. The state value function can be written as,

$$V^{\pi}(s) = \int ds da \rho^{\pi}(s) \pi(s, a) R_s^a, \qquad (1.8)$$

where $R_s^a = \int ds' r p(r, s'|s, a)$, where p(r, s'|s, a) is transition probability of MDPs.

Now, we firstly prove average-reward scheme.

$$\frac{\partial V^{\pi}(s)}{\partial \theta} = \frac{\partial}{\partial \theta} \sum_{a} \pi(s, a) Q^{\pi}(s, a) \tag{1.9}$$

$$= \sum_{\theta} \partial_{\theta} \pi Q^{\pi} + \pi \partial_{\theta} Q^{\pi} \tag{1.10}$$

$$= \sum_{a} \partial_{\theta} \pi Q^{\pi} + \pi \partial_{\theta} \left(R_s^a - V^{\pi}(s) + \sum_{s'} p(s'|s, a) V^{\pi}(s') \right)$$
(1.11)

$$= \sum_{a} \left(\partial_{\theta} \pi Q^{\pi} + \pi \sum_{s'} p(s'|s, a) \partial_{\theta} V^{\pi}(s') \right) - \partial_{\theta} V^{\pi}(s). \tag{1.12}$$

Since, for averaged reward, the value function depends on the final stationary distribution, we can,

$$\sum_{s} \rho^{\pi}(s) \partial_{\theta} V^{\pi}(s) = \sum_{s,a} \rho^{\pi}(s) Q^{\pi}(s,a) \partial_{\theta} \pi(s,a) + \sum_{s,a,s'} p(s'|s,a) \pi(s,a) \rho^{\pi}(s) \partial_{\theta} V^{\pi}(s')
- \sum_{s} \rho^{\pi}(s) \partial_{\theta} V^{\pi}(s)
= \sum_{s,a} \rho^{\pi}(s) Q^{\pi}(s,a) \partial_{\theta} \pi(s,a) + \sum_{s'} \rho^{\pi}(s') \partial_{\theta} V^{\pi}(s') - \sum_{s} \rho^{\pi}(s) \partial_{\theta} V^{\pi}(s)
= \sum_{s,a} \rho^{\pi}(s) Q^{\pi}(s,a) \partial_{\theta} \pi(s,a).$$
(1.13)

QED.

For state-state formulation, we can compute as,

$$\partial_{\theta} V^{\pi}(s) = \sum_{a} \partial_{\theta} \pi Q^{\pi} + \pi \partial_{\theta} Q^{\pi} \tag{1.14}$$

$$= \sum_{a} \partial_{\theta} \pi Q^{\pi} + \pi \partial_{\theta} \sum_{s'} rp(r, s'|s, a) + \gamma p(s'|s, a) V^{\pi}(s')$$
(1.15)

$$= \sum_{a} \partial_{\theta} \pi(s, a) Q^{\pi}(s, a) + \pi(s, a) \gamma p(s'|s, a) \partial_{\theta} V^{\pi}(s')$$
(1.16)

$$\begin{array}{ccc}
\cdot \cdot \cdot & & & \\
(1.17) & & & \\
\end{array}$$

$$= \sum_{s} \rho^{\pi}(s) \sum_{a} Q^{\pi}(s, a) \partial_{\theta} \pi(s, a). \tag{1.18}$$

From the above, we can find gradient of policy depends only on $Q^{\pi}(s, a)$ and is independent of $\partial_{\theta}Q^{\pi}$, which brings greate convinience. Then, we can introduce another approximation with parameters ω to approximate Q value function, denoted by $f_w(s, a)$. To make $f_w \to Q$, the following equation should be satisfied,

$$\partial_{w} \sum_{s} \sum_{a} \rho^{\pi}(s, a) \pi(s, a) (Q(s, a) - f_{w}(s, a))^{2} = 0$$

$$\Leftrightarrow \sum_{s} \sum_{a} \rho^{\pi}(s, a) \pi(s, a) (Q(s, a) - f_{w}(s, a)) \partial_{w} f_{w}(s, a) = 0.$$
(1.19)

Theorem 1.0.2 (Policy Gradient with Function Approximation). If f_{ω} satisfies Eq.(1.19) and.

$$\frac{\partial f_w(s,a)}{\partial \omega} = \frac{\partial \pi(s,a)}{\partial \theta} \frac{1}{\pi(s,a)},\tag{1.20}$$

then,

$$\frac{\partial V^{\pi}(s)}{\partial \theta} = \sum_{s} \rho^{s}(\pi) \sum_{a} \frac{\partial \pi(s, a)}{\partial \theta} f_{w}(s, a). \tag{1.21}$$

The proof is obvious. In the following, we can discuss Eq.(1.20), and construct approximators satisfying it. For example, we use a Gibbs distribution to parameterize $\pi(s, a)$ as,

$$\pi(s, a; \theta) = \frac{e^{\theta^T \phi(s, a)}}{\sum_{a'} e^{\theta^T \phi(s, b)}}.$$
(1.22)

And then, we obtain,

$$\frac{1}{\pi(s,a)} \frac{\partial \pi(s,a)}{\partial \theta} = \phi(s,a) - \sum_{b} \pi(s,b)\phi(s,b)$$
 (1.23)

Hence, we just need to parameterize $f_w(s, a)$ as,

$$f_w(s,a) = w^T(\phi(s,a) - \sum_b \pi(s,b)\phi(s,b)).$$
 (1.24)

Theorem 1.0.3 (Policy Iteration with Function Approximation). Let π and f_w be any differential function approximators for the policy and value function respectively that satisfy the compatibility condition 1.20 and for which $\max_{\theta,s,a,i,j} |\frac{\partial^2 \pi(s,a)}{\partial \theta_I \partial \theta_j}| < B < \infty$. Let $\{\alpha_k\}_{k=0}^{+\infty}$ be any step-size sequence such that $\lim_{k\to\infty} \alpha_k = 0$ and $\sum_k \alpha_k = \infty$. Then for any MDP with bounded rewards, the sequence $\{V^{\pi_k}\}$, defined by any θ_0, π_k , and,

$$w_k = w \text{ such that } \sum_s \rho^{\pi_k} \sum_a \pi_k(s, a) (Q^{\pi_k}(s, a) - f_w(s, a)) \partial_w f_w(s, a) = 0,$$
 (1.25)

$$\theta_{k+1} = \theta + \alpha_k \sum_{s} \rho^{\pi_k}(s) \sum_{a} f_{w_k}(s, a) \partial_{\theta} \pi_k(s, a), \tag{1.26}$$

converges such that $\lim_{k\to\infty} \frac{\partial V^{\pi_k}(s)}{\partial \theta} = 0$

References

[1] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In *Advances in neural information processing systems*, pages 1057–1063, 2000.