CS 302 **QUIZ** 3

20 October, 2016

ANSWER

Suppose that L is regular. Let n > 0 be the integer given by the pumping lemma.

Choose $w = 0^{n+1} \cdot 1 \cdot 0^{n+1}$; then $|w| \ge n$ and $w \in L$ with k=n+1 and m = 1 < n+1.

Then by pumping lemma w = x.y. z and $|x.y| \le n$ and |y| > 0 and thus $x.y = 0^p$ and

for $y = 0^q$ with q > 0 we have $x = 0^{p-q}$; $z = 0^{n+1-p} \cdot 1 \cdot 0^{n+1}$. Hence $x \cdot y^i \cdot z = x \cdot z$ for i = 0 and

 $x.z = 0^{p-q}.0^{n+1-p}.1.0^{n+1} = 0^{n+1-q}.1.0^{n+1} \notin L$ since q > 0. This contradicts the conclusion of

the pumping lemma which states that $x.y^i.z \in L$ for all i, in particular for i=0.