Team B2: Jamming Attack on Voice Activated Systems

Final Presentation
Cyrus Daruwala, Eugene Luo, Spencer Yu

Recap

Motivation: Previous research has shown attacks to covertly manipulate voice activated systems are possible, and we are aiming to show the relevance of these attacks by demonstrating them on commodity hardware.

Goal: reduce the accuracy with which the wake word ("Hey Siri") is recognized.

Solution:

- 1. Determine the input to jam the wake word (done)
- 2. Ensure that the jamming input is within latency bounds (done)
- 3. Reduce the % of false positives without compromising on the % of false negatives (goal for next week)

Changes to Solution Approach: MFCC + DTW

Figure 2. A cost matrix with the minimum-distance warp path traced through it.

Overall goal: Compare the similarity between two sounds of different lengths by aligning their identifying characteristics.

MFCC: coefficients that characterize the speech

DTW: matches characteristics in sound by

stretching/compressing

Source: https://cs.fit.edu/~pkc/papers/tdm04.pdf

System Diagram

Demo: Complete Solution

Demo: Selective Jamming

Measuring Performance

How do we verify the overall **performance and speed** of our system?

Latency: time sync + manual validation via MATLAB scripts

Response time average 462.5ms over 10 queries

System Validation: tested against Spencer's iPhone 7 Plus

Response rate drops to 46.67% over 30 queries

Metrics by Sound

Noise Type	White Noise	Music w/ vocals ^[1]	Music w/o vocals ^[2]	Podcasts ^[3]	Human Speech ^[4]		
False Negative Rate	N/A	N/A	N/A	0%	0%		
False Positive Rate	0%	3.43% 20.3/min	2.105% 15/min	2.7% 17.5/min	0.263%, 5.22/min		

False Negative Rate: % where attack does not trigger when it should

False Positive Rate: % where attack triggers when it should not

- [1] Sound of a box fan (https://www.youtube.com/watch?v=Qq_wJFvhfrg)
- [1] "Hey Jude" by the Beatles
- [2] "The Sleeping Beauty, Op. 66, TH 13: No. 6, Valse" by Pyotr Ilyich Tchaikovsky, conducted by Eugene Ormandy
- [3] "Great Bitter Lake Association", 99% Invisible by Roman Mars
- [4] Spencer Yu

Validating Signal Processing

How do we verify each **individual component** of our attack works as expected?

MFCC: IDCT + spectrogram

DTW: IDCT + spectrogram Play out sounds

Project Management

	Week of (date corresponding to the start of the week)										
	10/7	10/14	10/21	10/28	11/4	11/11	11/18	11/25	12/2	12/4	12/10
Determining Jamming Inputs											
Design Review Presentation (10/7 or 10/9)											
Design Document (10/14)											
Timing Infrastructure						10.					
Building timing infrastructure for testing attack											
Testing inputs on Siri											
Optimizing audio I/O program latency											
Testing timing metrics for performance											
Building program to listen for Siri wakeword					ε,						
Training model to recognize first half of wake command											
Speech Recognition											
Investigating NLP models in Python and C++ (fast compute)											
Looking into MFCC coefficents for faster speech recognition											
Tuning the prediction model that uses MFCC coefficents											
Stretch Goal: Adaptive Timing					0.1						
Investigating dynamic time warping											
Reducing false positives					ļ.]]					
Implementing dynamic time warping											
Increasing program speed											
Investigating volume threshold											
In-Lab Demo (12/2)											
Final Presentation (12/4)											
Final Presentation Report (12/8)											
Public Demo (12/10)											

Obstacles Encountered

Choice of language

Before: Python

After: Matlab

Area of ECE Explored in Project

• **Before:** Software with signal support

• After: Largely signal processing with software implementation

Solution Approach

• **Before:** ML for generating/triggering adversarial input

After: Signal processing

Lessons Learned

Scope of project

Having backup plans

Constant feedback from experts

Choose interesting projects

Take risks and try something new