JS³Inth

Spring 2015 - Final Presentation

Project Goal

Implement a fully working hardware synthesizer using the WM8731 chip on-board the Altera DE2-115 with a Cyclone IV E FPGA.

Background and Theory

- Every aural signal is composed by sine waves
- By combining sine waves, it is possible to replicate every sound in the universe
- Using VHDL, we stored sine waves in an FPGA to be played back to us as an analog signal.
 Expanding that, we have a playable musical scale

Tasks

- lan
 - Wave Modulation Reverb
- Sebastian R
 - WM8731 Controller, VGA Controller, Waveform ROM
- Spencer
 - I²C Controller and Configuration
- Sebastian W
 - Wave Modulation Flanger

Architecture

- The Cyclone IV E has 435 9k Block RAMs
 - Synthesized 41 of these as ROMs for data
- Streaming architecture using FIFOs
 - Easier to add waves, producing a cleaner sound
- WM8731 takes specific split clocks
 - Implemented a controller splits every required clock and serializes the ROM samples

Architecture

- 2 wave modulators (synthesizers) used
 - Synthesized a 2-bit multiplexer to control usage
 - Reverb
 - Used staggered FIFOs to re-add a previous sample to the current sample
 - Flanger
 - Used an FSM to control the length of the repeating sample

Simulation and Verification

- WM8731 Controller
 - Check single and multiple keys
- Sample Adders
 - Check correct gain when adding
- Wave Modulators
 - Check correct samples are being modulated

WM8731 Controller - data_in

/sampleadder16_tb	0000000100000001	0000	000100	1101 11001	11011 (111100	1110 (111000	1100 000000	00100000001	0001001101	1100111011	1111001110	1110001100
/sampleadder 16_tb	2	2										
/sampleadder 16_tb	-31711	-31711	5464	(-8531	(14373	(-27834	(-31711		5464	-8531	14373	-27834
/sampleadder16_tb	32226	32226	4414	(-1665)	/	(13015	32226		4414	-16657	-20683	13015
/sampleadder 16_tb	0	0										
/sampleadder 16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder 16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	0	0										
/sampleadder16_tb	257	257	4939	7-12594	(-3155	7409	257		4939	-12594	-3155	-7409

Sample Adders - output

C4 = 261 Hz

D5 = 587 Hz

Aural Verification

Implementation

- Total logic elements 6,782 / 114,480 (6%)
 - Total combinational functions 6,740 / 114,480 (6%)
 - Dedicated logic registers 531 / 114,480 (<1%)
- Total registers 531
- Total pins 65 / 529 (12%)
- Total memory bits 2,288 / 3,981,312 (<1%)

- Master Clock 50 MHz
- Audio Clock 18.25 MHz

Results

Future Work

- ROM to hold more natural-sounding waves
- Implementation of other wave modulators (i. e. chorus, distortion, etc.)
- Audio input using the WM8731 ADC through Line In
- Implementing a PS/2 keyboard or GPIO as alternate form of input

JS³Inth

Spring 2015 - Final Presentation