PM004 - Métodos Numéricos e Aplicações http://www.ime.unicamp.br/~campello/pm004

Atividade 3 - AC3: Matrizes, Sistemas Lineares Data: 30/07/2014

O comando RandomReal[$\{a,b\},\{m,n\}$] gera uma matriz aleatória com entradas entre a e b e dimensões $m \times n$. O comando Timing[com], calcula o comando "com" (ou uma série de comandos) e retorna o tempo levado para calculá-lo. Por exemplo,

Timing[
$$a = 100000!$$
; $b = 10000!$; $c = a + b$;]

nos retorna um vetor $\{t, \text{Null}\}$ onde t é o tempo para realizar as operações (Null apenas nos diz que nossa sequência de comandos não exibiu na tela nenhum resultado).

Exercício 1. (Multiplicação de Matrizes)

- (a) Crie matrizes aleatórias A e B, quadradas, de tamanhos variados (e grandes). Teste o tempo necessário para multiplicar estas duas matrizes. Para cada tamanho, faça de 10 a 15 testes e tire a média de tempo.
- (b) Plote o resultado em um gráfico Tamanho da Matriz × Tempo. Dica: Você pode (e deve!) criar um *loop* (While ou For) que faça o item (a) "automaticamente".
- **Exercício 2.** (Sistemas Lineares) Considere o sistema linear Ax = b. Crie matrizes aleatórias (grandes) A, $n \times n$, e b, $n \times 1$. Para cada tamanho de matriz, faça de 10 a 15 testes nos itens (a) e (b).
 - (a) Calcule o tempo de resolver o sistema utilizando o comando Inverse[A] e calculando $A^{-1}b$. (Advertência: O comando $A^{\hat{}}(-1)$, no Mathematica, não inverte a matriz. Deve-se usar Inverse[A].)
 - (b) Calcule o tempo de resolver o sistema utilizando o comando LinearSolve[A, b].
 - (c) Plote um gráfico do tipo Tamanho da Matriz \times Tempo para os itens (a) e (b) e compare.
 - **Exercício 3.** (Jacobi) Faça uma função Jacobi $[A_-,b_-,e_-]$ que resolva um sistema do tipo Ax = b com precisão e. A função deve usar a forma matricial do método e, como critério de parada, calcular a norma do resído $r^{(k)} = b Ax^{(k)}$.