ABE 201 Biological Thermodynamics 1

Module 10:

T P H and U Relationships

Enthalpy

Summary

- Thermodynamic properties (T, P, H, etc.) are related to one another by smooth functions with discontinuities at phase change boundaries
- This can be simplified as two types of thermal relationships: sensible and latent enthalpy (or internal energy)

$$\Delta H = \Delta H_{sensible} + \Delta H_{latent}$$

Latent heat/enthalpy is the energy of phase change:

$$\Delta H_{latent} = \Delta H_{LV}$$
 or $\Delta H_{vaporization}$ or $\Delta H_{melting}$

• <u>Sensible heat/enthalpy</u> can be calculated using heat capacity (Cp) as a function <u>integrated</u> over a temperature range.

$$\Delta H_{sensible} = \int_{T_1}^{T_2} m \cdot C_p dT$$

 Heat capacities for solids and most liquids are <u>constants</u> over large ranges of temperatures

$$\Delta H_{sensible} = \int m \cdot C_p dT = m \cdot C_p \int dT = m \cdot C_p \cdot \Delta T$$

 Heat capacities for biological materials can be measured, use tabulated values, or be estimated from the composition.

Finding Heat Capacities

- Table B.2
 - What is Cp for Water (liquid) at 50 C?

– What is Cp for Water (vapor) at 50 C?

From B.2: Liquid H2O

Cp = 0.0754 kJ/mol-K for T(0 - 100 C)

= 4.19 kJ/Kg-K

For Vapor

 $Cp = .03346 + 6.88 \times 10^{-6} \times T + 7.604 \times 10^{-9} \times T^2 - 3.593 \times 10^{-12} \times T^3$

= 0.0338 kJ/mol-K = 1.88 kJ/kg-K

Example

 In a cooling process hydrogen (H₂) is cooled from 800°C to 200°C. If 10 kmol/min is delivered to the cooler, calculate the heat removal rate in kW using the heat capacity formulas (Table B.2)

Table B.2 Heat Capacities*

Form 1: $C_p[kJ/(mol \cdot {}^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^2 + dT^3$ Form 2: $C_p[kJ/(mol \cdot {}^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^{-2}$

Example: $(C_p)_{\text{acetone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^{\circ}$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Acetone	CH ₃ COCH ₃	58.08	1	1	°C	123.0	18.6			-30-60
			g	1	°C	71.96	20.10	-12.78	34.76	0-1200
Acetylene	C_2H_2	26.04	g	1	°C	42.43	6.053	-5.033	18.20	0-1200
Air		29.0	g	1	°C	28.94	0.4147	0.3191	-1.965	0-1500
			g	1	K	28.09	0.1965	0.4799	-1.965	273-1800
Ammonia	NH_3	17.03	g	1	°C	35.15	2.954	0.4421	-6.686	0-1200
Ammonium sulfate	(NH4)2SO4	132.15	c	1	K	215.9				275-328
Benzene	C ₆ H ₆	78.11	1	1	$^{\circ}C$	126.5	23.4			6-67
			g	1	°C	74.06	32.95	-25.20	77.57	0-1200
Isobutane	C ₄ H ₁₀	58.12	g	1	°C	89.46	30.13	-18.91	49.87	0-1200
n-Butane	C4H10	58.12	g	1	°C	92.30	27.88	-15.47	34.98	0-1200
Isobutene	C_4H_8	56.10	g	1	°C	82.88	25.64	-17.27	50.50	0-1200
Calcium carbide	CaC ₂	64.10	c	2	K	68.62	1.19	-8.66×10^{10}	-	298-720
Calcium carbonate	CaCO ₃	100.09	c	2	K	82.34	4.975	-12.87×10^{10}	_	273-1033
Calcium hydroxide	Ca(OH) ₂	74.10	c	1	K	89.5				276-373
Calcium oxide	CaO	56.08	c	2	K	41.84	2.03	-4.52×10^{10}		273-1173
Carbon	C	12.01	c	2	K	11.18	1.095	-4.891×10^{10}		273-1373
Carbon dioxide	CO ₂	44.01	g	1	°C	36.11	4.233	-2.887	7.464	0-1500
Carbon monoxide	CO	28.01	g	1	°C	28.95	0.4110	0.3548	-2.220	0-1500
Carbon tetrachloride	CCl ₄	153.84	1	1	K	93.39	12.98			273-343
Chlorine	Cl ₂	70.91	g	1	°C	33.60	1.367	-1.607	6.473	0-1200
Copper	Cu	63.54	c	1	K	22.76	0.6117			273-1357

[&]quot;Adapted in part from D. M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 3rd Edition, © 1974, Table E.1. Adapted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

Answer:

• Part a: (Use table B.2)

$$\begin{split} \dot{\mathbf{Q}} &= \dot{\mathbf{n}} \Delta \hat{\mathbf{H}} \\ \Delta \hat{\mathbf{H}} &= \int_{800}^{200} \mathbf{C_p} \mathbf{dT} = \int_{800}^{200} (\mathbf{a} + \mathbf{b} \cdot \mathbf{T} + \mathbf{c} \cdot \mathbf{T}^2 + \mathbf{d} \cdot \mathbf{T}^3) \mathbf{dT} \\ \Delta \hat{\mathbf{H}} &= \left[a \cdot T + \frac{b \cdot T^2}{2} + \frac{c \cdot T^3}{3} + \frac{d \cdot T^4}{4} \right]_{800}^{200} = -17.29 kJ \ / \ mol \\ a &= 28.84 x 10^{-3}, b = 0.00765 x 10^{-5}, c = 0.3288 x 10^{-8}, d = -0.8698 x 10^{-12} \end{split}$$

$$\Delta H = \frac{-17.29kJ}{mol} \frac{10kmol}{\min} \frac{1000mol}{1kmol} \frac{1\min}{60 \text{ sec}} = -2882 \text{ kW}$$

Using Tabulated Values

 How much heat must be removed to cool 2.5 kg green beans (85% moisture content) from 20 C to -20 C?

Tabulated Heat Capacities for Selected Biological Materials from <u>Transport Processes and Unit Operations 3rd Ed</u>. by Geankoplis

Material	C _p (kJ/kg-K)	Material	C _p (kJ/kg-K)
Oak	2.39	Flour	1.80-1.88
Pine, yellow	2.81	Ice Cream (liquid)	3.27
Wool	1.36	Ice Cream (frozen)	1.88
Starch	1.218	Milk, whole	3.85
Glycerol	1.382	Olive Oil	2.01
Lactose	1.202	Green Beans (fresh)	3.81
Apples	3.73-4.02	Green Beans (frozen)	1.97
Bacon	3.43	Potatoes	3.52
Beef	3.43	Poultry (fresh)	3.31
Bread, white	2.72-2.85	Poultry (frozen)	1.55
Butter	2.30		
Eggs	3.18		
Corn (fresh)	3.32		
Corn (frozen)	1.77		

$$\Delta H + \Delta E_k + \Delta E_p = Q - W_s$$

 $\Delta H = Q$

Break up into 3 parts

- 1: Cool from 20C to 0C
- 2: Freezing Process (phase change)
- 3: Cool from 0C to -20C

$$Q = \Delta H_1 + \Delta H_2 + \Delta H_3$$

1:

$$\Delta H_1 = m^* c_{p(fresh)}^* (T2 - T1) = 2.5 \text{ kg } (3.81 \text{ kJ/kg-C}) (0 - 20) = -190.5 \text{ kJ}$$

Heat of melting (table B.1 -> water dHm = 6.0095 kJ/mol

2:
$$\Delta H_2 = m^*xwater * \Delta H_{freezing}$$

$$= 2.5(0.85)*(6.0095 \text{ kJ/mol})(1 \text{ mol}/18g)(1000g/1kg) = -709.5 \text{ kJ}$$

3:
$$\Delta H_3 = m * cp(frozen)*(T2 - T1) = 2.5 * (1.97)(-20 - 0) = -98.5 kJ$$

$$Q = \Delta H_1 + \Delta H_2 + \Delta H_3 = -190.5 - 709.5 - 98.5 = -998.5 \text{ kJ}$$

Green Beans

- Using the Seibels Equation, what are:
 - The heat capacity of fresh green beans (85% MC)?

– The heat capacity of frozen green beans (85% MC)?

Fresh Green Beans:

$$C_p = 0.837 + 3.348*(0.85) = 3.68 \text{ kJ/kg-K}$$

Compare to tabulated value: $C_p = 3.81 \text{ kJ/kg-K}$

Frozen Green Beans:

$$C_p = 0.837 + 1.256*(0.85) = 1.91 \text{ kJ/kg-K}$$

Compare to tabulated value: $C_p = 1.97 \text{ kJ/kg-K}$

Using Choi and Okos Equation

 Calculate the heat capacity of a bacterial cell slurry that contains a bioproduct

Slurry Composition

75.0% water

17.5% carbohydrates

5.0% protein

2.0% lipids (fat)

0.5% ash

$$c_p = 4.180^*X_w + 1.711^*X_p + 1.928^*X_f$$

+ 1.547*X_c + 0.908*X_a

$$= 4.18(0.75) + 1.711(0.05) + 1.928(0.02)$$

 $+ 1.547(0.175) + 0.908(0.005)$

= 3.53 kJ/kg-K

Mass and Energy Balance

Whole milk is pasteurized at a rate of 250 kg/hr by heating from 4 C to 72C in an adiabatic plate-and-frame heat exchanger using superheated steam (2 bar, 140 C) at a rate of 12.5 kg/hr.

If the steam leaves the heat exchanger at 2 bar, what is the final conditions of the steam?

Plate and Frame Heat Exchangers

Tabulated Heat Capacities for Selected Biological Materials from <u>Transport Processes and Unit Operations 3rd Ed</u>. by Geankoplis

Material	C _p (kJ/kg-K)	Material	C _p (kJ/kg-K)
Oak	2.39	Flour	1.80-1.88
Pine, yellow	2.81	Ice Cream (liquid)	3.27
Wool	1.36	Ice Cream (frozen)	1.88
Starch	1.218	Milk, whole	3.85
Glycerol	1.382	Olive Oil	2.01
Lactose	1.202	Green Beans (fresh)	3.81
Apples	3.73-4.02	Green Beans (frozen)	1.97
Bacon	3.43	Potatoes	3.52
Beef	3.43	Poultry (fresh)	3.31
Bread, white	2.72-2.85	Poultry (frozen)	1.55
Butter	2.30		
Eggs	3.18		
Corn (fresh)	3.32		
Corn (frozen)	1.77		

$$\begin{split} &\Delta H + \Delta E_k + \Delta E_p = Q - W_s \\ &\Delta H = 0 \end{split}$$

$$&\Delta H_{milk} = \Delta H_{steam} \\ &\Delta H_{milk} = m^* c_p^* (T2 - T1) = 250 \text{ kg/hr } (3.85 \text{ kJ/kg-C}) (72 - 4) \\ &= 65450 \text{ kJ/hr} \\ &\Delta H_{steam} = m_{steam}^* (H_{initial,2bar,140C} - H_{final}) \\ &= 12.5(2748.3 \text{ kJ/kg} - H_{final}) = 34353.75 - 12.5^* H_{final} \\ &H_{final} = 2487.7 \text{ kJ/kg} \\ &H_{sat(2bar,v)} = 2706.2 \text{ kJ/kg} \\ &H_{sat(2bar,v)} = 504.70 \text{ kJ/kg} \\ &H_{final} = xH_{sat(2bar,v)} + (1-x) H_{sat(2bar,l)} \\ &Where \ x = quality \\ &2487.7 = x(2706.2) + (1-x) 504.70 \\ &x = 0.90 \end{split}$$

Outlet steam is saturated steam (120.2 C, 2 bar) at 90% quality.