

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

COE 271 Semiconductor Devices

Lecture 8

Operational Amplifiers OPAMP

EUR ING Dipl.-Ing. B. Kommey

bkommey.coe@knust.edu.gh

050 770 3286

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

"Learn from yesterday, live for today, hope for tomorrow. The important thing is to not stop questioning."

Albert Einstein

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Overview

Operational Amplifier

General Considerations

Op-Amp-Based Circuits

Linear Functions

Nonlinear Functions

Op-Amp Nonidealities

Design Examples

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Overview

Linear Functions

Noninverting Amplifier **Inverting Amplifier**

Integrator / Differentiator

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Overview

Nonlinear Functions

Precision Rectifier

Logarithmic Amplifier

Square Root Circuit

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Overview

Op-Amp Nonidealities

DC Offsets

Input Bias

Speed Limitations

Finite Input and Output Impedances

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Introduction to OP

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Introduction to OP

OP (-also called amplifiers or buffers in general)

Op is drawn as a triangle in a schematic

Op has two inputs (inverting and non-inverting)

Op has one output

Op also has power connections (NB: no explicit ground)

(WAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Basic Operational Amplifier

Internal Op-amplifier formula

$$V_{out} = A_0 \left(V_{in1} - V_{in2} \right)$$

- Op amp is a circuit that has two inputs and one output.
- It amplifies the difference between the two inputs.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Inverting and Non-inverting Op Amp

• If the negative input is grounded, the gain is positive.

If the positive input is grounded, the gain is negative.

WAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Ideal Operational Amplifier

- Infinite gain
- (- a voltage difference at the two inputs is magnified infinitely)
- (-meaning that the difference between + and terminal is amplified by say 200000)

WAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Ideal Operational Amplifier

- Infinite input impedance
- (-no current flows into the inputs)
- (-impedance is about $10^{12}\Omega$ for FET)
- Zero output impedance
- (-rock-solid independent of load)
- Infinite speed
- (-limited to few MHz range)

(WAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Op Amp with Supply Rails

- To explicitly show the supply voltages, V_{CC} and V_{EE} are shown.
- In some cases, V_{FF} is zero.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Virtual Short (Ideal Op with Neg. FB)

• Due to infinite gain of op amp, the circuit forces V_{in2} to be close to V_{in1} , thus creating a virtual short.

The negative feedback forces the "virtual short" condition to occur Golden Rules of Op Amps:

- 1. The output attempts to do whatever is necessary to make the voltage difference between the inputs zero.
- 2. The inputs draw no current.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Ideal OP Analysis (Open Loop)

$$v_o = A(v_p - v_n)$$
 $R_{in} \to \infty$
 $A \to \infty$
 $v_p = v_n$
 $i_p = i_n = 0$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Consequences of the Ideal

 Infinite input resistance means the current into the inverting input is zero:

$$i = 0$$

• Infinite gain means the difference between v_+ and v_- is zero:

$$V_{+} - V_{-} = 0$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Feedback Analysis

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Solving the Amplifier Circuit

Apply KCL at the inverting input:

$$i_1 + i_2 + i_- = 0$$

$$i_{-} = 0$$

$$i_1 = \frac{v_{in}}{i_2}$$

Solve for *v_{out}*

$$\frac{v_{in}}{R_1} = -\frac{v_{out}}{R_2}$$

$$i_1 = \frac{v_{in} - v_{-}}{R_1} = \frac{v_{in}}{R_1}$$

$$i_2 = \frac{v_{out} - v_{-}}{R_2} = \frac{v_{out}}{R_2}$$

Amplifier gain:

$$\frac{v_{out}}{v_{in}} = -\frac{R_2}{R_1}$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Recap

• The ideal op-amp model leads to the following conditions:

$$i_{-} = 0 = i_{+}$$
 $v_{+} = v_{-}$

• These conditions are used, along with KCL and other analysis techniques, to solve for the output voltage in terms of the input(s).

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Review

- To solve an op-amp circuit, we usually apply KCL at one or both of the inputs.
- We then invoke the consequences of the ideal model.
 - The op amp will provide whatever output voltage is necessary to make both input voltages equal.
- We solve for the op-amp output voltage.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

The Non-Inverting Amplifier

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

KCL at the Inverting Input

$$i_{-} = 0$$

$$i_{1} = \frac{-v_{-}}{R_{1}} = \frac{-v_{in}}{R_{1}}$$

$$i_{2} = \frac{v_{out} - v_{-}}{R_{2}} = \frac{v_{out} - v_{in}}{R_{2}}$$

$$\frac{-v_{in}}{R_{1}} + \frac{v_{out} - v_{in}}{R_{2}} = 0$$

$$v_{out} = v_{in} \left(1 + \frac{R_{2}}{R_{1}}\right)$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

A Mixer Circuit

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

KCL at the Inverting Input

$$i_{1} = \frac{v_{1} - v_{-}}{R_{1}} = \frac{v_{1}}{R_{1}}$$

$$i_{2} = \frac{v_{2} - v_{-}}{R_{2}} = \frac{v_{2}}{R_{2}}$$

$$i_{-} = 0$$

$$i_f = \frac{v_{out} - v_{-}}{R_f} = \frac{v_{out}}{R_f}$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Inverting Amplifier Analysis

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Analysis Using the Ideal OP AMP

$$i_{S} + i_{f} = i_{n}$$

$$v_{n} = v_{p} = 0$$

$$i_{S} = \frac{v_{S}}{R_{S}}$$

$$i_{f} = \frac{v_{O}}{R_{f}}$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Inverting Amplifier Analysis

$$i_n = 0$$

$$i_f = -i_s$$

$$\frac{v_o}{R_f} = -\frac{v_s}{R_s}$$

$$v_o = -\frac{R_f}{R_s} v_s$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Non-Inverting Amplifier Analysis

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Analysis Using the Ideal OP AMP

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Non-Inverting Amplifier

Closed-loop voltage gain

$$A_{F} = \frac{v_{o}}{v_{i}}$$

$$v_{i} = v_{+} = v_{-} = \frac{R_{1}}{R_{1} + R_{2}} v_{o}$$

$$A_F = \frac{v_o}{v_i} = 1 + \frac{R_2}{R_1}$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Unity-Gain Buffer

Closed-loop voltage gain

$$A_F = \frac{v_o}{v_i}$$

$$v_i = v_+ = v_- = v_o$$

$$A_F = \frac{v_o}{v_i} = 1$$

Used as a "line driver" that transforms a high input impedance (resistance) to a low output impedance. Can provide substantial current gain.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Differential Amplifier

$$v_{+} = \frac{R_{2}}{R_{1} + R_{2}} v_{2}$$

$$\frac{v_1 - v_+}{R_1} = \frac{v_+ - v_0}{R_2}$$

$$\frac{v_1 - \frac{R_2}{R_1 + R_2} v_2}{R_1} = \frac{\frac{R_2}{R_1 + R_2} v_2 - v_0}{\frac{R_2}{R_2}}$$

(WAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Differential Amplifier

$$\frac{v_1 - \frac{R_2}{R_1 + R_2}v_2}{R_1} = \frac{\frac{R_2}{R_1 + R_2}v_2 - v_0}{R_2}$$

$$v_0 = -\frac{R_2}{R_1}v_1 + \frac{R_2}{R_1 + R_2}v_2 + \frac{R_2^2}{R_1(R_1 + R_2)}v_2$$

$$v_0 = -\frac{R_2}{R_1}v_1 + \frac{R_2}{R_1 + R_2} \left(1 + \frac{R_2}{R_1}\right)v_2$$

$$v_0 = \frac{R_2}{R_1} (v_2 - v_1)$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Current-to-Voltage Converter

$$i_i = i_f$$

$$v_{-}=v_{+}=0$$

$$0 - v_0 = i_f R_F$$

$$v_0 = -i_i R_F$$

Transresistance =
$$\Delta v_0 / \Delta i_i = -R_F$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Unity Gain Amplifier

$$\begin{aligned} V_{out} &= A_0 (V_{in} - V_{out}) \\ \frac{V_{out}}{V_{in}} &= \frac{A_0}{1 + A_0} \end{aligned}$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Noninverting Amplifier (Infinite A₀)

$$\frac{V_{out}}{V_{in}} = 1 + \frac{R_1}{R_2}$$

- A noninverting amplifier returns a fraction of output signal thru a resistor divider to the negative input.
- With a high A_o, V_{out}/V_{in} depends only on ratio of resistors, which is very precise.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Noninverting Amplifier (Finite A_0)

$$\left(\frac{V_{out}}{V_{in}} \approx \left(1 + \frac{R_1}{R_2} \right) \left[1 - \left(1 + \frac{R_1}{R_2} \right) \frac{1}{A_0} \right]$$

 The error term indicates that the larger the closed-loop gain, the less accurate the circuit becomes.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Extreme Cases of R_2 (Infinite A_0)

• If R_2 is zero, the loop is open and V_{out}/V_{in} is equal to the intrinsic gain of the op amp.

If R_2 is infinite, the circuit becomes a unity-gain amplifier and V_{out}/V_{in} becomes equal to one.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Inverting Amplifier

Infinite A₀ forces the negative input to be a virtual ground.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Another View of Inverting Amplifier

Inverting

Noninverting

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Gain Error Due to Finite A₀

$$\frac{V_{out}}{V_{in}} \approx -\frac{R_1}{R_2} \left[1 - \frac{1}{A_0} \left(1 + \frac{R_1}{R_2} \right) \right]$$

The larger the closed loop gain, the more inaccurate the circuit is.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Complex Impedances Around the Op Amp

 The closed-loop gain is still equal to the ratio of two impedances.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Integrator

$$\left(\frac{V_{out}}{V_{in}} = -\frac{1}{R_1 C_1 s}\right)$$

$$V_{out} = -\frac{1}{R_1 C_1} \int V_{in} dt$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Integrator with Pulse Input

$$V_{out} = -\frac{1}{R_1 C_1} \int V_{in} dt = -\frac{V_1}{R_1 C_1} t \ 0 < t < T_b$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Comparison of Integrator and RC Lowpass Filter

- The RC low-pass filter is actually a "passive" approximation to an integrator.
- With the RC time constant large enough, the RC filter output approaches a ramp.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Lossy Integrator

- When finite op amp gain is considered, the integrator becomes lossy as the pole moves from the origin to -1/[(1+ A_0) R_1C_1].
- It can be approximated as an RC circuit with C boosted by a factor of A₀+1.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Differentiator

$$V_{out} = -R_1 C_1 \frac{dV_{in}}{dt}$$

$$\frac{V_{out}}{V_{in}} = -\frac{R_1}{\frac{1}{C_1 S}} = -R_1 C_1 S$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Differentiator with Pulse Input

$$V_{out} = \mp R_1 C_1 V_1 \delta(t)$$

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Comparison of Differentiator and High-Pass Filter

- The RC high-pass filter is actually a passive approximation to the differentiator.
- When the RC time constant is small enough, the RC filter approximates a differentiator.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Lossy Differentiator

- When finite op amp gain is considered, the differentiator becomes lossy as the zero moves from the origin to $-(A_0+1)/R_1C_1$.
- It can be approximated as an RC circuit with R reduced by a factor of (A_0+1) .

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Op Amp with General Impedances

• This circuit cannot operate as ideal integrator or differentiator.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Voltage Adder

• If A_o is infinite, X is pinned at ground, currents proportional to V_1 and V_2 will flow to X and then across R_F to produce an output proportional to the sum of two voltages.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Precision Rectifier

- When V_{in} is positive, the circuit in b) behaves like that in a), so the output follows input.
- When V_{in} is negative, the diode opens, and the output drops to zero. Thus performing rectification.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Inverting Precision Rectifier

- When V_{in} is positive, the diode is on, V_{y} is pinned around $V_{D,on}$, and V_{x} at virtual ground.
- When V_{in} is negative, the diode is off, V_y goes extremely negative, and V_x becomes equal to V_{in} .

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Logarithmic Amplifier

- By inserting a bipolar transistor in the loop, an amplifier with logarithmic characteristic can be constructed.
- This is because the current to voltage conversion of a bipolar transistor is a natural logarithm.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Square-Root Amplifier

- By replacing the bipolar transistor with a MOSFET, an amplifier with a square-root characteristic can be built.
- This is because the current to voltage conversion of a MOSFET is square-root.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

Thank You

EUR ING Dipl.-Ing. B. Kommey bkommey.coe@knust.edu.gh 050 770 3286