Algebraische Geometrie II, SoSe 2016 Institut für Algebraische Geometrie Leibniz Universität Hannover

Prof. Dr. Klaus Hulek Benjamin Wieneck

ÜBUNGSBLATT 8

Aufgabe 1. Sei X ein irreduzibler topologischer Raum¹. Man zeige, dass die konstante Garbe \mathbb{Z}_X welk ist.

Bemerkung: Vergleiche mit Übungsblatt 7, Aufgabe 1.

Aufgabe 2. Sei $C \subset \mathbb{P}^2$ eine glatte irreduzible Kurve vom Grad d. Man berechne die Kohomologie $H^1(\mathbb{P}^2, \mathcal{O}_C)$.

Aufgabe 3. Man berechne die Kohomologie $H^i(\mathbb{P}^n, \Omega_{\mathbb{P}^n}(1))$.

Hinweis: Betrachte hierzu die (getwistete) Eulersequenz

$$0 \longrightarrow \Omega_{\mathbb{P}^n}(1) \longrightarrow \mathcal{O}_{\mathbb{P}^n}^{\oplus (n+1)} \longrightarrow \mathcal{O}_{\mathbb{P}^n}(1) \longrightarrow 0.$$

Aufgabe 4. Auf $X = \mathbb{P}^1 \times \mathbb{P}^1$ berechne man die Kohomologie $H^1(X, \mathcal{O}(a, b))$ wobei $\mathcal{O}(a, b) := \operatorname{pr}_1^\star \mathcal{O}_{\mathbb{P}^1}(a) \otimes \operatorname{pr}_2^\star \mathcal{O}_{\mathbb{P}^1}(b)$ für $a, b \in \mathbb{N}$ und $\operatorname{pr}_i : X \to \mathbb{P}^1$ die Projektionen sind. Hinweis: $Betrachte\ hierzu\ die\ Sequenz$

$$0 \longrightarrow \mathcal{O}(a-1,b) \longrightarrow \mathcal{O}(a,b) \longrightarrow \mathcal{O}_{\mathbb{P}^1}(b) \longrightarrow 0.$$

 $^{^1\}mathrm{Hier}$ bedeutet irreduzibel, dass sich Xnicht als Vereinigung von zweier nichttrivialer abgeschlossener Mengen schreiben lässt