

Maestro: Mauricio Alejandro Cabrera Arellano

Alumno: Alejandro Retana Rubio 22110315

Materia: Visión Artificial

Investigacion 3

Fecha: 23-03-2025

2.1 Manipulación de Brillo

La manipulación del brillo consiste en modificar la **luminosidad global** de una imagen. En términos simples, lo que se busca es hacer que la imagen se vea más clara o más oscura, dependiendo de las necesidades del análisis visual.

Esto se logra aplicando una **operación aritmética a cada píxel** de la imagen. Por ejemplo, sumando una constante a cada valor de intensidad de los píxeles, se consigue una imagen más clara. De forma inversa, al restar una constante, la imagen se oscurece.

Ejemplo práctico:

Si una imagen tiene una iluminación deficiente y está muy oscura, podemos sumarle un valor como 40 a todos los píxeles para aclararla.

Histograma y brillo

El histograma de una imagen muestra la frecuencia de cada nivel de intensidad. Cuando se modifica el brillo:

- Un aumento desplaza el histograma hacia la derecha.
- Una disminución lo desplaza hacia la izquierda.

Es importante evitar que los valores salgan del rango [0, 255] para no perder información (esto se conoce como saturación).

2.2 Transformación Inversa

La transformación inversa se utiliza principalmente en **procesos de corrección geométrica** o alineación de imágenes. Consiste en **aplicar la operación opuesta** a una transformación ya realizada (por ejemplo, una rotación, escalado o traslación).

Este método es común en aplicaciones como:

- Registro de imágenes médicas.
- Fusión de imágenes multiespectrales.
- Corrección de distorsiones ópticas.

En lugar de transformar directamente los píxeles desde la imagen original a la nueva, se trabaja **al revés**: se toma cada píxel de la imagen final y se calcula de dónde vino en la imagen original. Esto evita problemas como espacios vacíos o duplicación de información.

Ejemplo:

Si rotamos una imagen 30°, la transformación inversa sería rotarla -30° para volverla a su estado inicial.

♦ 2.3 Manipulación de Contraste

El contraste mide cuánta diferencia existe entre las zonas claras y oscuras de una imagen. Una imagen con buen contraste permite **identificar detalles con mayor facilidad**, mientras que una imagen con bajo contraste se ve "lavada" o plana.

Técnicas para mejorar el contraste:

1. Estiramiento lineal:

Se amplía el rango de niveles de gris, extendiéndolos para ocupar todo el rango [0, 255]. Esto aumenta la separación entre tonos.

2. Ecualización del histograma:

Redistribuye los niveles de gris de manera que todos tengan frecuencias similares, logrando una mejor representación visual.

3. Contraste adaptativo (CLAHE):

Ajusta el contraste localmente en distintas regiones de la imagen.

Aplicación típica:

En imágenes de radiografías o satelitales, el contraste es clave para resaltar detalles que no se aprecian a simple vista.

2.4 Transformaciones Lineales por Partes

Estas transformaciones dividen el dominio de niveles de intensidad en varios tramos y definen **una función lineal distinta para cada tramo**. Esto permite modificar el brillo y contraste de diferentes zonas de la imagen de forma independiente.

Se usan, por ejemplo, para:

- Mejorar el contraste solo en los tonos medios.
- Mantener constantes los niveles oscuros y brillantes.
- Crear efectos visuales personalizados.

Ejemplo:

Una función que aumenta el contraste en zonas medias pero no cambia los valores bajos ni altos.

Este tipo de transformación es muy útil en imágenes con iluminación no uniforme.

2.5 Tipos de Ruido de Imagen

El ruido es una alteración no deseada que afecta la calidad visual de la imagen. Puede tener diferentes orígenes: fallos del sensor, interferencias electrónicas, condiciones ambientales, etc.

Tipos más comunes:

• Ruido Gaussiano:

Proviene de sensores electrónicos. Tiene una distribución de probabilidad en forma de campana. Se ve como una textura granular muy fina.

Ruido de Sal y Pimienta:

Aparecen puntos blancos y negros aleatorios. Se asocia con errores en la transmisión o problemas en el sensor.

• Ruido Speckle:

Frecuente en imágenes por ultrasonido o radar. Aparece como un patrón moteado.

• Ruido Poisson:

Ocurre en condiciones de muy baja iluminación, relacionado con la estadística de los fotones recibidos.

El tipo de ruido determina el filtro más adecuado para su eliminación.

♦ 2.6 Filtros de Suavizado

Se utilizan para **reducir el ruido y eliminar detalles irrelevantes** en una imagen. Son útiles como paso previo a la segmentación o análisis.

Los filtros de suavizado trabajan sobre **vecindarios de píxeles**, reemplazando el valor original por otro basado en los valores vecinos.

2.6.1 Filtros de Suavizado Lineales

Usan operaciones aritméticas, como promedios ponderados. Ejemplos:

Filtro de media:

Reemplaza cada píxel por el promedio de sus vecinos. Suaviza la imagen pero puede borrar bordes.

• Filtro Gaussiano:

Da más peso a los píxeles cercanos al centro del vecindario. Es más efectivo que el promedio simple.

Ventaja: son rápidos y fáciles de implementar.

Desventaja: suavizan también los bordes, reduciendo detalles importantes.

2.6.2 Filtros de Suavizado No Lineales

No usan promedios, sino que aplican reglas más complejas, como ordenar valores o tomar estadísticas específicas.

• Filtro de mediana:

Ordena los valores del vecindario y selecciona el del medio. Muy bueno para eliminar ruido de sal y pimienta.

• Filtros adaptativos:

Cambian su comportamiento dependiendo del contenido local.

Ventaja: conservan mejor los bordes.

Desventaja: requieren más cálculo y son más lentos.

♦ 2.7 Filtros de Nitidez

A diferencia del suavizado, estos filtros buscan **resaltar bordes y detalles** de una imagen, mejorando su claridad visual.

Tipos de filtros de nitidez:

• Laplaciano:

Usa derivadas segundas para detectar bordes. Muy sensible a los cambios abruptos.

• Sobel y Prewitt:

Detectan bordes usando derivadas primeras. Pueden identificar la orientación del borde (horizontal, vertical).

Alta frecuencia:

Se obtiene restando una imagen suavizada de la original. Ideal para reforzar detalles.

Estos filtros son clave en tareas como reconocimiento facial, OCR, o seguimiento de objetos.

2.8 Operaciones Básicas entre Píxeles

Son las operaciones más simples pero más fundamentales en el procesamiento digital de imágenes. Actúan sobre **uno o varios píxeles al mismo tiempo**.

Tipos:

➤ Aritmético-lógicas:

- Suma y resta de imágenes.
- AND, OR, NOT, XOR entre imágenes binarias.

• Se usan para comparar, enmascarar, o resaltar regiones.

▶ Geométricas:

• Traslación: mueve la imagen en x o y.

• Rotación: gira la imagen.

• **Escalado**: cambia el tamaño de la imagen.

Son esenciales para preprocesamiento, aumento de datos, o detección de movimiento.