Exercice 1 : On considère les fonctions f_k définies sur \mathbb{R} par $f_k(x) = x + k e^{-x}$ où k est un réel strictement positif.

- 1. On s'intéresse dans cette question au cas k=0,5, donc à la fonction $f_{0,5}$ définie sur ||Rpar : $f_{0,5}(x) = x + 0.5e^{-x}$.
 - a. Montrer que la dérivée de $f_{0.5}$, notée $f'_{0.5}$ vérifie $f'_{0.5}(x)=1-0.5\,\mathrm{e}^{-x}$.
 - b.Montrer que la fonction $f_{0,5}$ admet un minimum en $\ln(0,5)$.

Soit k un réel strictement positif. On donne le tableau de variation de la fonction f_k .

Valeurs de x	$-\infty$	ln(k)	$+\infty$
Variations de $f_k(x)$	+∞	$f_k(\ln k)$	8+

2. Montrer que pour tout réel positif k, $f_k(\ln k) = \ln k + 1$.

On note C_k la courbe représentative de la fonction f_k dans un plan muni d'un repère orthonormé. On note A_k le point de la courbe C_k d'abscisse $\ln k$.

On a représenté ci-dessous quelques courbes C_k pour différentes valeurs de k.

3. Indiquer si l'affirmation suivante est vraie ou fausse. Justifier la réponse. Affirmation : Pour tout réel k strictement positif, les points $A_{0,5}$, A_1 et A_k sont alignés.

Exercice 2:

On considère le cube ABCDEFGH qui est représenté ci-aprés.

Dans le repère orthonormé (A; \overrightarrow{AB} ; \overrightarrow{AD} ; \overrightarrow{AE}), on considère les points M, N et p de coordonnées :

$$M\left(1;1;\frac{3}{4}\right), \ N\left(0;\frac{1}{2};1\right), \ P\left(1;0;-\frac{5}{4}\right).$$

Dans cet exercice, on se propose de calculer le volume du tétraèdre FMNP.

- 1. Donner les coordonnées des vecteurs \overrightarrow{MN} et \overrightarrow{MP} .
- 2. Placer les points M, N et P sur la figure donnée ci-aprés qui est à rendre avec la copie.
- 3. Justifier que les points M, N et P ne sont pas alignés. Dés lors, les trois points définissent le plan (MNP).
- 4. a. Calculer le produit scalaire $\overline{MN} \cdot \overline{MP}$, puis en déduire la nature du triangle MNP. b. Calculer l'aire du triangle MNP.
- 5. a. Montrer que le vecteur $\vec{n} \begin{pmatrix} 5 \\ -8 \\ 4 \end{pmatrix}$ est un vecteur normal au plan (MNP).
 - b. En déduire qu'une équation cartésienne du plan (MNP) est 5x-8y+4z=0.
- 6. On rappelle que le point F a pour coordonnées F(1,0,1). Déterminer une représentation paramétrique de la droite d orthogonale au plan (MNP) et passant par le point F.
- 7. On note L le projeté orthogonal du point F sur le plan (MNP). Montrer que les coordonnées du point L sont : $L\left(\frac{4}{7}; \frac{24}{35}; \frac{23}{35}\right)$.
- 8. Montrer que $FL = \frac{3\sqrt{105}}{35}$, puis calculer le volume du tétraèdre FMNP.

A rendre avec la copie :

