Numerical Optimisation: Assignmentgategogiert methodam Help

https://eduassistpro.github.

f.rullan@cs.uc

Add Western Inaturedu_assist_pr

re for Medical Image Com Centre for Inverse Problems University College London

Lecture 5 & 6

Conjugate gradient: CG

• The linear CG method was proposed by Hestens and Stiefel in 1952 as a direct method for solution of linear systems of

Assignment of the large and th

https://eduassistpro.github.

- Renaissance in early 1970 work by John Rei
 connection to relative methods. Came the assist pr
 the matrix (preconditioning).
- In top 10 algorithms of 20th century.
- Nonlinear conjugate gradient method proposed by Fletcher and Reeves 1960.

Linear CG

Solution of linear system

Assignment Project Exam Help with the symmetric positive definite matrix is equivalent to the

https://eduassistpro.github.

Both have the same unique solution. In fact

Add WeChat edu_assist_pr

thus the linear system is the 1st order necessary condition (which is also sufficient for strictly convex function ϕ).

Conjugate directions

A State of portere vectors project is state of the symmetric positive definite matrix of the symmetric positive definite matrix.

https://eduassistpro.github.

Conjugate directions are linearly independent

Conjugated the Conjugated to t

Conjugate direction method

Given a starting point x_0 and the set of conjugate directions

func https://eduassistpro.github.

Add We
$$\overset{\alpha_k}{\text{Chart}}$$
 edu_assist_pr

For any $x_0 \in \mathbb{R}^n$ the sequence converges to the solution x^* in at most n steps.

Proof: Because span $\{p_0, p_2, \dots p_{n-1}\} = \mathbb{R}^n$

$$x^{\star} - x_0 = \sigma_0 p_0 + \sigma_1 p_1 + \cdots + \sigma_{n-1} p_{n-1}.$$

Multiplying from the left by $p_k^{\mathrm{T}}A$ and using the conjugacy property

Assignment Project Exam Help $\sigma_k = \frac{p_k^T A(x^* - x_0)}{p_k^T A(x^* - x_0)}, \quad k = 0, \dots, n \quad 1.$

On the https://eduassistpro.github.

Multiplying from the left by p_k and p_1 edu_assist_property we have $p_k^{\mathrm{T}}A(x_k-x_0)=0$ and

$$p_k^{\mathrm{T}} A(x^* - x_0) = p_k^{\mathrm{T}} A(x^* - x_k) = p_k^{\mathrm{T}} (b - Ax_k) = -p_k^{\mathrm{T}} r_k.$$

Substituting into $\sigma_k = -\frac{p_k^T r_k}{p_k^T A p_k} = \alpha_k$ for $k = 0, \dots, n-1$.

Theorem: [Expanding subspace minimisation]

Assignment Project Exam bHelp conjugate direction method it holds

https://eduassistpro.github.

Add WeChat edu_assist_pr

Proof: Let's define

$$h(\sigma) = \phi(x_0 + \sigma_0 p_0 + \cdots + \sigma_{k-1} p_{k-1}),$$

where $\sigma = (\sigma_0, \sigma_1, \dots, \sigma_{k-1})^T$. Since $h(\sigma)$ is a strictly convex Assolved in the property of the prope

Usin https://eduassistpro.github.

$$\nabla \phi(\mathbf{x}_0 + \sigma^* \mathbf{p}_0 + \dots + \sigma^*_{k-1} \mathbf{p}_{k-1})^{\mathrm{T}} \mathbf{p}_i$$
 1.

Recall Add = Who Character Cu_assist_properties $\tilde{x} = x_0 + \sigma_0^* p_0 + \cdots + \sigma_{k-1}^* p_{k-1}$ on $\{0, 1, k-1\}$

 $r(\tilde{x})^{\mathrm{T}}p_i=0$ as claimed.

By induction:

For k = 1, from $x_1 = x_0 + \alpha_0 p_0$ being a minimiser of ϕ along p_0 it follows $r_1^{\mathrm{T}} p_0 = 0$.

Suppose that $r_{k-1}^{T}p_{i} = 0$ for i = 0, 1, ..., k-2.

$Assign \stackrel{Ax_k-b}{\text{ent}} \stackrel{A(x_k-b)}{\text{Project}} \stackrel{A(x_k-b)}{\text{Et}} \stackrel{A(x_k-b)}{\text{Et}}$

by that the state of the byth the state of the state of

Add We Chat edu_assist_pr

where the first term disappears because of the indu and the second because of the conjugacy of p_i . Thus we have shown $r_{\iota}^{\mathrm{T}}p_i=0$ for $i=0,1,\ldots,k-1$ and the proof is complete.

Conjugate gradient vs conjugate direction

So far the discussion was valid for any set of conjugate direction.

Assignmenteger vetto jecytimetrixainede intelp matrix A which are orthogonal and conjugate w.r.t. A.

https://eduassistpro.github. it requires to store all the directions to orthogonalise against.

• Conjugate gradient (CG) method has a ver it a computation p_{k-1} i.e. it does not need to know the vectors p_k while p_k is automatically conjugate to those vectors. This makes CG particularly cheap in terms of computation and memory.

Conjugate gradient

In CG each new direction is chosen as

Assignment Project Exam Help

wher

https://eduassistpro.github. follows from requiring that p_{k-1} , p_k be conjugate

follows from requiring that p_{k-1}, p_k be conjugate i.e. $p_{k-1}^T A p_k = 0$.

We initialled with the steepest descent and Lassist_property of th

As in the conjugate direction method, we perform successive one dimensional minimisation along each of the search directions.

CG: preliminary version

Assignment Project Exam Help while $r_k \neq 0$ do

https://eduassistpro.github.

```
\beta_{k+1} = \frac{r_{k+1}^{T} A \rho_{k}}{\rho_{k}^{T} A \rho_{k}}
PA_{k} = k+1
PA_{k+1} = \frac{r_{k+1}^{T} A \rho_{k}}{\rho_{k}^{T} A \rho_{k}}
```

end while

Assignment Project Exam Help while $r_k \neq 0$ do

https://eduassistpro.github.

```
\beta_{k+1} = \frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}}
PA_{1} d_{k} + W^{\beta} e^{-k} hat edu_assist_preduction while}
end while
```

Theorem:

For the kth iterate of the conjugate gradient method, $x_k \neq x^*$ the following hold:

Assignment
$$P_{\overline{r_0}, r_1, \dots, r_k} = \sup_{span\{r_0, Ar_0, \dots, Ar_0\}} H_2^{1} p$$

https://eduassistpro.github.

Therefore, the sequence $\{x_k\}$ converge The proof of this theorem relies on p_0 edu_assist_proof hold for other choices of p_0 .

Note that the gradients r_k are actually orthogonal, while the directions p_k are conjugate, thus the name of conjugate gradients is actually a misnomer.

Rate of convergence

From the properties of the k + 1st iterate we have

https://eduassistpro.github.

then

Recall that
$$d_{\text{minimis}} = \sum_{k=0}^{x_0 + P_k} d_{\text{minimis}} = \sum_{k=0}^{x_0 + P_$$

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Figure: Wiki: Conjugate gradient method

Thus CG computes the minimising polynomial over all polynomials of degree \boldsymbol{k}

$$\min_{P_k} \|x_0 + P_k(A)r_0 - x^*\|_A.$$

Assignment Project Exam Help Observe that similar expressions hold for the error

"https://eduassistpro.github.

and the Aredu WeChat edu_assist_pr

$$r_k = Ax_k - b = A(x_k - x^*) = 0$$

$$= \underbrace{A(x_0 - x^*)}_{-r_0} + AP_{k-1}(A)r_0 = [I + AP_{k-1}(A)]r_0$$

Let the eigenvalue decomposition of the symmetric positive definite matrix

Assignment Project Exam Help with
$$0 < \lambda_1 \quad \lambda_2$$
 and $v_i, i = 1, ..., n$ the

 s_{inc} https://eduassistpro.github.

Notice that any element of Ais also du_assis(t) provide the corresponding element of Ais also du_assis(t) provide the corresponding element of the corresponding

$$P_k(A)v_i = P_k(\lambda_i)v_i, \quad i = 1, \dots, n.$$

Hence

$$x_{k+1} - x^* = \sum_{i=1}^n [1 + \lambda_i P_k(\lambda_i)] \xi_i v_i$$

Assignment Project Exam Help

https://eduassistpro.github. $\|x_{k+1}-x^\star\|_A^2 = \min_{\substack{P_k \ p_i=1 < i < n}} \lambda_i [1+\frac{2^{-2}}{n}]$ Add WeChat edu_assist_pr

$$||x_{k+1} - x^*||_A^2 = \min_{P_k} \lambda_i [1 + \sum_{i=1}^{2} x_i]^2$$

$$= \min_{P_k} \max_{1 \le i \le n} [1 + \lambda_i P_k(\lambda_i)]^2 ||x_0 - x^*||_A^2.$$

Theorem If A has only r distinct eigenvalues, then CG will converge to the solution in at most r iterations.

Proof: Suppose the eigenvalues take on distinct *r* values

Assignment Project Exam Help
$$Q_r(\lambda) = \frac{P_r \text{oject Exam Help}}{\tau \tau \dots \tau}$$

and https://eduassistpro.github.

is of Ardd We Chat edu_assist_pr

$$0 \leq \min_{P_{r-1}} \max_{1 \leq i \leq n} [1 + \lambda_i P_{r-1}(i)]$$

$$\leq \max_{1 \leq i \leq n} [1 + \lambda_i \bar{P}_{r-1}(\lambda_i)]^2 = \max_{1 \leq i \leq n} Q_r^2(\lambda_i) = 0$$

and $||x_r - x^*||_A^2 = 0$ and hence $x_r = x^*$.

Convergence rate

Theorem If A has eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, we have that

Assignment Project Exam Help

Proof idea: Choose polynomial \bar{P}_k such that

https://eduassistpro.github.

Theorem terms of the column the column assist problem $\kappa(A) = \|A\|_2 \|A^{-1}\|_2 = \lambda_n/\lambda_1$, we have tha

$$\|x_k - x^*\|_A \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k \|x_0 - x^*\|_A.$$

Preconditioning

We can accelerate CG through transformations which cluster eigenvalues. This process is known as **preconditioning**.

Assignment Project Exam Help

The

https://eduassistpro.github.

Minimished equivalet Chattedu_assist_prequations

$$(C^{-\mathrm{T}}AC^{-1})\hat{x} = (C^{-\mathrm{T}}b)$$

and the convergence rate of CG depends on the eigenvalues of $C^{-\mathrm{T}}AC^{-1}$.

It is not necessary to carry out the transforms explicitly. We can apply CG to $\hat{\phi}$ in terms of \hat{x} and then invert the transformations to see that or girst ariste x Help

In fact, the ${\it preconditioned}$ ${\it CG}$ algorithm does not use the facto

յք we battps://eduassistpro.github.

Preconditioned CG (PCG)

```
Given x_0, preconditioner M
Assignment Project Exam Help
          v_0, k=0
       https://eduassistpro.github.
       r_{k+1} = r_k + \alpha_k A p_k
       Solve Myy+1-We Chat edu_assist_pr
       p_{k+1} = -y_{k+1} + \beta_{k+1} p_k
       k = k + 1
     end while
```

Nonlinear conjugate gradient

Recall that CG can be interpreted as a minimiser of a quadratic convex function

Assignment Project Exam Help

https://eduassistpro.github.

- step length α_k minimises ϕ along FATE Wormsuch using ledu_assist_property $\alpha_k = \min_{\alpha} f(x_k)$
- $r = Ax b = \nabla \phi(x)$. For general function $f: r \to \nabla f$

end while

Descent direction

Is p_k a descent direction?

thus https://eduassistpro.github.

If the linear search is not exact, due to the second term $\beta_k \nabla f_k^{\mathrm{T}} p_{k-1}$, p_k may fail to be a descent directi avoided by equirity where the strategy \mathbf{Q} U__assist_property Wolfe conditions

$$f(x_k + \alpha_k p_k) \leq f(x_k) + c_1 \alpha_k \nabla f_k^{\mathrm{T}} p_k, |\nabla f(x_k + \alpha_k p_k)^{\mathrm{T}} p_k| \leq -c_2 \nabla f_k^{\mathrm{T}} p_k$$

with $0 < c_1 < c_2 < \frac{1}{2}$.

Lemma [1]

Let f be twice continuously differentiable, and the level set $\{x:f(x) \leq f(x_0)\}$ is bounded. If the step length α_k in the first the method generates descent directions p_k that satisfy

https://eduassistpro.github.

Proof: First note that the upper bound (2 monotonically increases for $(0,\frac{1}{2})$ and $(0,\frac{1}{2})$ and $(0,\frac{1}{2})$ descent direction $\nabla f_k^{\mathrm{T}} p_k < 0$.

The inequalities can be shown by induction using the form of the update the second strong Wolfe condition.

Induction:

$$k=0: \quad p_0=-\nabla f_0 o rac{\nabla f_0^{\mathrm{T}} p_0}{\|\nabla f_0\|^2}=-1 \text{ and (7) holds.}$$

Assume (7) holds for some $k \ge 1$. From β_{k+1}^{FR} we have

Assignment Project Example Help

Plug k into

https://eduassistpro.github.

$$-1 + c_2 \frac{k}{\|\nabla f_k\|^2} \le \frac{k+1}{\|\nabla f_{k+1}\|^2} \frac{k}{\|\nabla f_{k+1}\|^2}$$

Substituting the lower bound for het edu_assist_pr

we obtain (7) for k+1

$$-1 - \frac{c_2}{1 - c_2} \le \frac{\nabla f_{k+1}^{\mathrm{T}} p_{k+1}}{\|\nabla f_{k+1}\|^2} \le -1 + \frac{c_2}{1 - c_2}.$$

Weakness of FR algorithm

If FR generates a bad direction and a tiny step, then the next direction and the next step are also likely to be poor.

Let $\theta_k = \angle(p_k, -\nabla f_k)$, Assignment Project Exam Help

A bad d

$$\frac{1 - 2c_2}{1 - c_2} \frac{\|\nabla f_k\|}{\|p_k\|} \le \cos \theta_k \le \frac{1}{1 - c_2} \frac{f_k}{1 - c_2}$$

Mult https://eduassistpro.github. $\frac{1-2c_2}{1-c_2}\frac{\|\nabla f_k\|}{\|p_k\|} \leq \cos\theta_k \leq \frac{1}{1-c_2}\frac{f_k}{\|\nabla f_k\|}$ Thus for the property of the control of the contr

likely tiny, i.e. $x_{k+1} \approx x_k$. Consequently, $\nabla f_k \approx \nabla f_{k+1}$ then

 $\beta_{k+1} \approx 1$ and finally given $\|\nabla f_{k+1}\| \approx \|\nabla f_k\| \ll \|p_k\|$, $p_{k+1} \approx p_k$ and the new direction will improve little.

If $\cos \theta_k \approx 0$ holds and the subsequent step is small, the following updates are unproductive.

Numerical Optimisation

Polak-Ribière

Polak-Ribière:

Assignment Project Exam Help

lf f ihttps://eduassistpro.github.

For general nonlinear functions and inexact line s experience the catter of the contract of th

As is, the strong Wolfe conditions do not guarantee that p_k is always a descent direction. For $\beta_{k+1} = \max\{\beta_{k+1}^{PR}, 0\}$, simple adaptation of strong Wolfe conditions ensures the descent property.

Other choices of β_k

Hestenes - Stiefel (similar to PR in both theory and practical performance):

https://eduassistpro.github.

Two competitive with PR choices which guaran descending the control wolf assist_presented with the competitive with PR choices which guaran

$$\beta_{k+1} = \frac{\|\nabla f_k\|}{(\nabla f_{k+1} - \nabla f_k)^{\mathrm{T}} \rho_k}$$
 (10)

$$\beta_{k+1} = \left(y_k - 2p_k \frac{\|y_k\|^2}{y_k^{\mathrm{T}} p_k} \right)^{\mathrm{T}} \frac{\nabla f_{k+1}}{y_k^{\mathrm{T}} p_k} \text{ with } y_k = \nabla f_{k+1} - \nabla f_k.$$
 (11)

M.M. Betcke

Restarts

Set $\beta_k = 0$ in every *n*th step i.e. take steepest descent step. Restarting serves to refresh the algorithm erasing old information that may be not beneficial. Such restarting leads to n step

Assignment Project Extam Help

Consider function which is strongly convex quadratic close to the solut

solut https://eduassistpro.github.

steps from the restart (recall that the finite termin

for linear CG only-holds if initiated with Add WeChat edu_assist_pr In practice, conjugate gradient methods are usu

large, hence *n* steps are never taken. Observe that the gradients are mutually orthogonal when f is a quadratic function. Restart when two consecutive gradients are far from orthogonal $\frac{|\nabla f_k^{\mathrm{T}} \nabla f_{k+1}|}{||\nabla f_k||^2} \geq \nu, \text{ with } \nu \text{ typically 0.1}.$

M.M. Betcke

When for some search direction p_k , $\cos\theta_k\approx 0$ and the subsequent step is small, substituting $\nabla f_{k+1}\approx \nabla f_k$ into β_{k+1}^{PR} results in $\beta_{k+1}^{PR}\approx 0$ and the next direction $p_{k+1}\approx -\nabla f_{k+1}$ the steepest descent direction. Therefore the PR algorithm essentially performs

Assignment Project Exam Help

The same argument applies to HS, and PR+.

fr https://eduassistpro.github.

Hybrid FR-PR:

Global convergence can be guaranteed if 2.

This sage following tegnat edu_assist_pr

$$\beta_{k} = \begin{cases} -\beta_{k}^{FR}, & \beta_{k}^{PR} < -\beta_{k}^{FR} \\ \beta_{k}^{PR}, & |\beta_{k}^{PR}| \le \beta_{k}^{FR} \\ \beta_{k}^{FR}, & \beta_{k}^{PR} > \beta_{k}^{FR} \end{cases}$$
(12)

Global convergence - assumptions

Assignment Project Exam Help i) The level set = x : f(x) $f(x_0)$ be bounded.

- ii) In s https://eduassistpro.github.

These assumptions imply that there is a constant

Add We@hatvedu_assist_pr

Global convergence - restarted CG method

From Zoutenjik's lemma it follows that any line search iteration

Assign the steller productions of the steller productions and the steller productions of the limit and the steller productions of the steller productions

https://eduassistpro.github.

Similarly, to the global convergence for line search, global convergence for restarted conjugate gr periodealy setting. Characters COU_assist_property a subsequence

$$\lim\inf_{k\to\infty}\|\nabla f_k\|=0.$$

Global convergence - unrestarted FR method

Theorem: [Al-Baali] Suppose that the assumptions i) and ii)
hold and FR algorithm is implemented with line search that
Assitts transfer to national states of the content o

Pro https://eduassistpro.github.

Lemma [1] recursively to show that the assumed to sequence in lower burner by harmonic editor.

Lemma [1] recursively to show that the assumed to sequence in lower burner by harmonic editor.

This global convergence result can be extended to any method satisfying $|\beta_k| \leq \beta_k^{FR}$ for all $k \geq 2$.

If constants $c_4, c_5 > 0$ exist such that

$$\cos heta_k \geq c_4 rac{\|
abla f_k\|}{\|oldsymbol{
ho}_k\|}, \quad rac{\|
abla f_k\|}{\|oldsymbol{
ho}_k\|} \geq c_5 > 0, \quad k = 1, 2, \dots$$

Assignment Project Exam Help

https://eduassistpro.github.

exact line search.

For general accounts that the partial east of performs better in practice than FR. PR method ca infinitely even if ideal line search is used i.e. line search which returns α_k that is the first positive stationary point of $f(x_k + \alpha p_k)$. Example relies on $\beta_k < 0$ which motivated the modification $\beta_k^+ = \max\{0, \beta_k\}$.