מבחני מובהקות

הסקה סטטיסטית - סמסטר ב תשפ"א

זבחן Z לממ וצע יחיד	2
נבחן t לממוצע יחיד	3
גבחן Z לפרופורציה יחידה	4
נבחן Z להפרש תוחלות במדגמים בלתי תלויים	5
נבחן t להפרש תוחלות במדגמים בלתי תלויים	6
נבחן t לתוחלת ההפרשים במדגמים תלויים / מזווגים	7
גבחן F למובהקות שוויון שונויות	8
גבחן t למובהקות מתאם פירסון	9
יתוח שונות פשוט (חד גורמי)	10
יתוח המשך - קונטרסט	11
<i>ו</i> בחן חי בריבוע לטיב התאמה	12
<i>ו</i> בחן חי בריבוע לאי תלות	13

מבחן Z לממוצע יחיד

כאשר השונות באוכלוסייה ידועה וסטטיסטי המבחן מתפלג נורמלי או נורמלי בקירוב

נתונים (להוציא מתוך השאלה)

שונות האוכלוסייה - σ^2

תוחלת האוכלוסייה - μ

ממוצע המדגם - $ar{X}$

גודל המדגם – N

השערות

השערה דו צדדית שמאלית השערה חד צדדית ימנית השערה חד צדדית שמאלית
$$H_0$$
: $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_1 : $\mu < \mu_0$ H_1 : $\mu \neq \mu_0$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- המשתנה מתפלג נורמלי באוכלוסייה / התפלגות הדגימה של הממוצע מתפלגת נורמלית
 הרוב (לפי משפט הגבול המרכזי, כאשר 30 \ N

קביעת רמת מובהקות ואזורי דחייה וקבלה

- (דו זנבי / חד זנבי ימני / חד זנבי שמאלי), α
 - $Z_{c}(\alpha) \bullet$
 - איזור דחייה •
 - איזור קבלה

מבחן סטטיסטי

טעות התקן (סטיית התקן של התפלגות הדגימה של הממוצע)

$$\sigma_{\overline{x}} = \frac{\sigma_{x}}{\sqrt{N}}$$

סטטיסטי המבחן

$$Z_{\overline{x}} = \frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}}$$

מבחן t לממוצע יחיד

כאשר השונות באוכלוסייה לא ידועה וסטטיסטי המבחן מתפלג t עם N-1 דרגות חופש

נתונים (להוציא מתוך השאלה)

תוחלת האוכלוסייה - μ

ממוצע המדגם - $ar{X}$

גודל המדגם – N

שונות המדגם – S^2

השערות

<u>השערה חד צדדית שמאלית</u>

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu < \mu_0$

<u>השערה חד צדדית ימנית</u>

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

<u>השערה דו צדדית</u>

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
 - המשתנה מתפלג נורמלי באוכלוסייה

קביעת רמת מובהקות ואזורי דחייה וקבלה

- סוג מבחן (דו זנבי / חד זנבי ימני / חד זנבי שמאלי), α
 - $df = N 1 \bullet$
 - $t_c(df, \alpha) \bullet$
 - איזור דחייה •
 - איזור קבלה

מבחן סטטיסטי

האומד חסר ההטיה לסטיית התקן של האוכלוסייה

$$\widehat{S}_{x} = \sqrt{\frac{\Sigma(x - \overline{x})^{2}}{N - 1}} = \sqrt{\frac{S^{2} \cdot N}{\frac{x}{N - 1}}}$$

טעות התקן (סטיית התקן של התפלגות הדגימה של הממוצע)

$$\widehat{S}_{\overline{x}} = \frac{\widehat{S}_{x}}{\sqrt{N}}$$

סטטיסטי המבחן

$$t_{\overline{x}} = \frac{\overline{X} - \mu_{\overline{X}}}{\widehat{S}_{\overline{x}}}$$

מבחן Z לפרופורציה יחידה

כאשר המשתנה מתפלג בינומית

השערות

<u>השערה חד צדדית שמאלית</u>

$$H_0: p = p_0$$

 $H_1: p < p_0$

<u>השערה חד צדדית ימנית</u>

$$H_0: p = p_0$$

$$H_1: p > p_0$$

<u>השערה דו צדדית</u>

$$H_0: p = p_0$$

$$H_1: p \neq p_0$$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- התפלגות הדגימה מתפלגת נורמלית בקירוב לפי הקירוב הנורמלי של הבינום

$$(N\cdot \hat{p}>5$$
 וגם: $N\cdot \hat{q}>5$ נדרש:

קביעת רמת מובהקות ואזורי דחייה וקבלה

- α •
- $Z_{c}(\alpha)$ •
- איזור דחייה •
- איזור קבלה

מבחן סטטיסטי

טעות התקן

$$\sigma_{\widehat{p}} = \sqrt{\frac{\widehat{q} \cdot \widehat{p}}{N}}$$

סטטיסטי המבחן

$$Z_{\widehat{p}} = \frac{\widehat{p} - p_0}{\sigma_{\widehat{p}}}$$

מבחו Z להפרש תוחלות במדגמים בלתי תלויים

כאשר השונויות באוכלוסיות ידועות ושוות

נתונים (להוציא מתוך השאלה)

שונויות האוכלוסיות -
$$\sigma_{1}^{2}$$
 , σ_{2}^{2} - σ_{1}^{2} , σ_{2}^{2} - ממוצעי המדגמים - σ_{1}^{2} , σ_{2}^{2} - σ_{1}^{2} , σ_{2}^{2}

השערות

<u>השערה דו צדדית</u> $H_1: \mu_1 - \mu_2 \neq d_0$ $H_1: \mu_1 - \mu_2 > d_0$ $H_1: \mu_1 - \mu_2 < d_0$

$$H_0: \mu_1 - \mu_2 = d_0$$
 $H_0: \mu_1 - \mu_2 = d_0$ $H_0: \mu_1 - \mu_2 = d_0$ $H_0: \mu_1 - \mu_2 = d_0$

$$H_0: \mu_1 - \mu_2 = d_0$$
 השערה חד צדדית שמאלית $H_0: \mu_1 - \mu_2 = d_0$ $H_1: \mu_1 - \mu_2 < d_0$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- המשתנה מתפלג נורמלי בשתי האוכלוסיות

קביעת רמת מובהקות ואזורי דחייה וקבלה

- (דו זנבי / חד זנבי / חד זנבי שמאלי) סוג מבחן (דו זנבי / חד זנבי α
 - $Z_{c}(\alpha)$ •
 - איזור דחייה •
 - איזור קבלה

מבחן סטטיסטי

טעות התקן

$$\sigma_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}$$

סטטיסטי המבחן

$$Z_{\overline{x}} = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sigma_{(\bar{x}_1 - \bar{x}_2)}}$$

מבחו t להפרש תוחלות במדגמים בלתי תלויים

כאשר השונויות באוכלוסיות לא ידועות

נתונים (להוציא מתוך השאלה)

ממוצעי המדגמים -
$$\overline{x}_1$$
 , \overline{x}_2 - ממוצעי המדגמים - N_1 , N_2 - שונויות המדגמים - S_1^2 , S_2^2

השערות

$$\frac{\text{השערה דו צדדית}}{H_0: \mu_1 - \mu_2 = d_0}$$
 $H_1: \mu_1 - \mu_2 \neq d_0$

$$\frac{\alpha}{\mu_0}$$
 השערה חד צדדית ימנית $\frac{\alpha}{\mu_0}$ השערה דו צדדית ימנית $H_0: \mu_1 - \mu_2 = d_0$ $H_0: \mu_1 - \mu_2 = d_0$ $H_1: \mu_1 - \mu_2 > d_0$

$$\frac{\mu_0: \mu_1 - \mu_2 = d_0}{\mu_1: \mu_1 - \mu_2 < d_0}$$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- המשתנה מתפלג נורמלי בשתי האוכלוסיות
 - שוויון שונויות בשתי האוכלוסיות

קביעת רמת מובהקות ואזורי דחייה וקבלה

- (דו זנבי / חד זנבי ימני / חד זנבי שמאלי), α
 - $df = N_1 + N_2 2 \bullet$
 - $t_c(df, \alpha) \bullet$
 - איזור דחייה •
 - איזור קבלה

מבחן סטטיסטי

האומד חסר ההטיה לסטיית התקן של האוכלוסייה

$$\hat{S}_{x} = \sqrt{\frac{\sum(x_{1} - \bar{x}_{1})^{2} + \sum(x_{2} - \bar{x}_{2})^{2}}{N_{1} + N_{2} - 2}} = \sqrt{\frac{\frac{S^{2} \cdot N_{1} + S^{2} \cdot N_{2}}{x_{1} - x_{2} \cdot N_{2}}}{N_{1} + N_{2} - 2}}$$

טעות התקן (סטיית התקן של התפלגות הדגימה של הממוצע)

$$\hat{S}_{(\bar{x}_1 - \bar{x}_2)} = \hat{S}_x \cdot \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}$$

$$t_{(\bar{x}_1 - \bar{x}_2)} = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\hat{S}_{(\bar{x}_1 - \bar{x}_2)}}$$

מבחן t לתוחלת ההפרשים במדגמים תלויים / מזווגים

כאשר השונויות באוכלוסיות לא ידועות

נתונים (להוציא מתוך השאלה)

ממוצעי המדגמים - \bar{x}_1 , \bar{x}_2

גודל המדגמים - N

שונות המדגמים – S^2

השערות

<u>השערה דו צדדית</u>

$$H_0: \mu_d = d_0$$

$$H_1: \mu_d \neq d_0$$

<u>השערה חד צדדית ימנית</u>

$$H_0: \mu_d = d_0$$
$$H_1: \mu_d > d_0$$

<u>השערה חד צדדית שמאלית</u>

$$H_0: \mu_d = d_0$$

 $H_1: \mu_d < d_0$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- המשתנה (d) מתפלג נורמלית באוכלוסייה

קביעת רמת מובהקות ואזורי דחייה וקבלה

- (דו זנבי / חד זנבי ימני / חד זנבי שמאלי), α
 - $df = N 1 \bullet$
 - $t_{c}(df, \alpha) \bullet$
 - איזור דחייה •
 - איזור קבלה

מבחן סטטיסטי

האומד חסר ההטיה לסטיית התקן של האוכלוסייה (אוכלוסיית ההפרשים)

$$\hat{S}_d = \sqrt{\frac{\Sigma (d - \overline{d})^2}{N - 1}}$$

טעות התקן (סטיית התקן של התפלגות הדגימה של הממוצע)

$$\widehat{S}_{\overline{d}} = \frac{\widehat{S}_d}{\sqrt{N}}$$

סטטיסטי המבחן

$$t_{\overline{d}} = \frac{\overline{d} - d_0}{\widehat{S}_{\overline{d}}}$$

מבחן F למובהקות שוויון שונויות

השערות

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- המשתנה מתפלג נורמלי בשתי האוכלוסיות

קביעת רמת מובהקות ואזורי דחייה וקבלה

- α
- $df_1 = n_1 1$; $df_2 = n_2 1$
 - $F_{c}(df_{1}, df_{2}, \alpha) \bullet$
 - איזור דחייה •
 - איזור קבלה

מבחן סטטיסטי

האומד חסר ההטיה לשונות האוכלוסייה

$$\hat{S}_{1}^{2} = \frac{\Sigma(x - \bar{x}_{1})^{2}}{n_{1} - 1} = \frac{S_{1}^{2} \cdot N}{n_{1} - 1}$$

$$\hat{S}_{2}^{2} = \frac{\Sigma(x - \bar{x}_{2})^{2}}{n_{2} - 1} = \frac{S_{2}^{2} \cdot N}{n_{2} - 1}$$

סטטיסטי המבחן

$$F = \frac{\hat{S}_1^2}{\hat{S}_2^2}$$

מבחן t למובהקות מתאם פירסון

השערות

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- התפלגות האוכלוסיה היא נורמלית דו-משתנית

קביעת רמת מובהקות ואזורי דחייה וקבלה

- $df = N 2 \bullet$
 - $t_{\mathcal{C}}(df, \alpha) \bullet$
 - איזור דחייה •
 - איזור קבלה

מבחן סטטיסטי

$$t = r \sqrt{\frac{N-2}{1-r^2}}$$

ניתוח שונות פשוט (חד גורמי)

השערות

$$H_0^{}:\; \mu_1^{}\; =\; \mu_2^{}\; =\; ...\; = \mu_n^{}$$
לפחות אחת מהתוחלות שונה

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות במדגמים
 - המשתנה מתפלג נורמלית באוכלוסיות
 - שוויון / הומוגניות שונויות
 - המדגמים בלתי תלויים

קביעת רמת מובהקות ואזורי דחייה וקבלה

- מבחן חד זנבי ימני α
 - $F_{C}(df_{B}, df_{W}, \alpha) \bullet$
 - איזור קבלה
 - איזור דחייה •

מבחן סטטיסטי

	ss	DF	MS
В	$SSB = \sum_{j} n_{j} (x_{j} - x)^{2}$ $SSB = df_{B} \cdot MSB$ $SSB = SST - SSW$	$df_{B} = J - 1$ $df_{B} = SSB/MSB$ $df_{B} = df_{T} - df_{B}$	$MSB = SSB/df_B$
W	$SSW = \sum_{j} \sum_{i} (x_{ij} - \overline{x}_{j})^{2}$ $SSW = df_{W} \cdot MSW$ $SSW = SST - SSB$	$df_{W} = N - J$ $df_{W} = SSW/MSW$ $df_{W} = df_{T} - df_{B}$	$MSW = SSW/df_{W}$
т	$SST = \sum_{j} \sum_{i} (x_{ij} - \overline{x}_{j})^{2}$ $SST = df_{T} \cdot MST$ $SST = SSB + SSW$	$df_{T} = N - 1$ $df_{T} = SST/MST$ $df_{T} = df_{B} + df_{w}$	$MST = SST/df_T$

$$F = \frac{MSB}{MSW}$$

ניתוח המשך - קונטרסט

K-1 השוואות אורתוגונליות - סידור אפשרי

	Group 1	Group 2	Group 3	Group 4	Group 5
<i>C</i> ₁	- 1	1	0	0	0
C ₂	- 1	- 1	2	0	0
<i>C</i> ₃	- 1	- 1	- 1	3	0
C ₄	- 1	- 1	- 1	- 1	4

בדיקת אורתוגונליות

עבור שלוש קבוצות

$$\Sigma C_{j1} \cdot C_{j2} = (-1 \cdot -1) + (1 \cdot -1) + (0 \cdot 2) = 0$$

עבור ארבע קבוצות

$$\begin{split} \Sigma C_{j1} \cdot C_{j2} &= (-1 \cdot -1) + (1 \cdot -1) + (0 \cdot 2) + (0 \cdot 0) = 0 \\ \Sigma C j_{1} \cdot C_{j3} &= (-1 \cdot -1) + (1 \cdot -1) + (0 \cdot -1) + (0 \cdot 3) = 0 \\ \Sigma C_{j2} \cdot C_{j3} &= (-1 \cdot -1) + (-1 \cdot -1) + (2 \cdot -1) + (0 \cdot 3) = 0 \end{split}$$

עבור חמש קבוצות

$$\begin{split} \Sigma C_{j1} \cdot C_{j2} &= (-1 \cdot -1) + (1 \cdot -1) + (0 \cdot 2) + (0 \cdot 0) + (0 \cdot 0) = 0 \\ \Sigma C_{j1} \cdot C_{j3} &= (-1 \cdot -1) + (1 \cdot -1) + (0 \cdot -1) + (0 \cdot 3) + (0 \cdot 0) = 0 \\ \Sigma C_{j1} \cdot C_{j4} &= (-1 \cdot -1) + (1 \cdot -1) + (0 \cdot -1) + (0 \cdot -1) + (0 \cdot 4) = 0 \\ \Sigma C_{j2} \cdot C_{j3} &= (-1 \cdot -1) + (-1 \cdot -1) + (2 \cdot -1) + (0 \cdot 3) + (0 \cdot 0) = 0 \\ \Sigma C_{j2} \cdot C_{j4} &= (-1 \cdot -1) + (-1 \cdot -1) + (2 \cdot -1) + (0 \cdot -1) + (0 \cdot 4) = 0 \end{split}$$

מבחן סטטיסטי - עבור כל סט משקולות

$$df_{comp} = 1$$
 ; $SS_{COMP} = \frac{n[\sum C_j \cdot \overline{X}_j]}{\sum C_j^2}$

$$MS_{COMP} = \frac{SS_{COMP}}{df_{COMP}} = \frac{SS_{COMP}}{1} = SS_{COMP}$$

$$F_{C}(df_{comp}, df_{W}, \alpha)$$

$$F = \frac{MS_{COMP}}{MS_{W}}$$

מבחן חי בריבוע לטיב התאמה

נתונים (להוציא מתוך השאלה)

השכיחות היחסית של כל קטגוריה - $P_{_{1}}$, $P_{_{2}}$, $P_{_{3}}$... $P_{_{n}}$

השכיחות של כל קטגוריה כפי שהתקבלה במדגם - ${\it O}_{\rm 1},~{\it O}_{\rm 2},~{\it O}_{\rm 3}$... ${\it O}_{\rm n}$

גודל המדגם – N

השערות

התפלגות כמו באוכלוסייה: H_0

התפלגות לא כמו באוכלוסייה: H_1

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- הקטגוריות מוציאות וממצות כל תצפית נופלת בקטגוריה אחת בלבד
 - המדגם מספיק גדול
 - $Ex \geq 10$ בכל קטגוריה: cdf = 1
 - $Ex \geq 5$ בכל קטגוריה :df > 1 ס

קביעת רמת מובהקות ואזורי דחייה וקבלה

- מבחו חד זנבי ימני α
 - $df = j 1 \bullet$
 - $\chi^2_{C}(df, \alpha) \bullet$
 - איזור קבלה
 - איזור דחייה •

מבחן סטטיסטי

	קטגוריה 1	קטגוריה 2	קטגוריה 3
Expected	$E_1 = P_1 \cdot N$	$E_2 = P_3 \cdot N$	$E_3 = P_3 \cdot N$
Observed	01	02	03

$$\chi^2 = \sum_{j} \left[\frac{\left(O_j - E_j \right)^2}{E_j} \right]$$

מבחן חי בריבוע לאי תלות

השערות

<משתנה <אין תלות/קשר בין <משתנה <1+לבין <משתנה +

אבין אמשתנה 2> לבין (משתנה 2 $^{+}$: יש תלות/קשר בין יש בין $^{+}$

הנחות

- דגימה מקרית ובלתי תלויה של התצפיות
- הקטגוריות מוציאות וממצות כל תצפית נופלת בקטגוריה אחת בלבד
 - המדגם מספיק גדול
 - $Ex \geq 10$ בכל קטגוריה: df = 1 ס
 - $Ex \geq 5$ בכל קטגוריה: of > 1 ס

קביעת רמת מובהקות ואזורי דחייה וקבלה

- α , מבחן חד זנבי ימני
- $df = (Rows 1) \cdot (Columns 1) \bullet$
 - $\chi^2_{C}(df, \alpha) \quad \bullet$
 - איזור קבלה
 - איזור דחייה •

מבחן סטטיסטי

Observed

	קטגוריה 1	קטגוריה 2	קטגוריה 3	סה"כ
ערך 1	0 ₁₁	0 ₁₂	0 ₁₃	ΣO_{1k}
ערך 2	0 ₂₁	0 22	0 ₂₃	ΣO_{2k}
ערך 3	031	032	033	ΣO_{3k}
סה"כ	ΣO_{j1}	ΣO_{j2}	ΣO_{j3}	$N = \Sigma \Sigma O_{jk}$

Expected

	קטגוריה 1	קטגוריה 2	קטגוריה 3
ערך 1	$E_{11} = \frac{\Sigma O_{1k} \cdot \Sigma O_{j1}}{N}$	$E_{12} = \frac{\Sigma O_{1k} \cdot \Sigma O_{j2}}{N}$	$E_{13} = \frac{\Sigma O_{1k} \cdot \Sigma O_{j3}}{N}$
ערך 2	$E_{21} = \frac{\Sigma O_{2k} \cdot \Sigma O_{j1}}{N}$	$E_{22} = \frac{\Sigma O_{2k} \cdot \Sigma O_{j2}}{N}$	$E_{23} = \frac{\Sigma O_{2k} \cdot \Sigma O_{j3}}{N}$
ערך 3	$E_{31} = \frac{\Sigma O_{3k} \cdot \Sigma O_{j1}}{N}$	$E_{32} = \frac{\Sigma O_{3k} \cdot \Sigma O_{j1}}{N}$	$E_{33} = \frac{\Sigma O_{3k} \cdot \Sigma O_{j3}}{N}$

$$\chi^{2} = \sum_{j} \sum_{k} \left[\frac{(O_{jk} - E_{jk})^{2}}{E_{jk}} \right]$$