

Problem R-04E (C₈H₁₂O) IR spectrum (neat)

	olem R-04 ctra provid		etermine the	e structure (or pa	art stru	icture) of	R-04E fro	m the ¹ H N	IMR, ¹³ C NI	MR and
(a) [DBE	b) What inforn	nation can y	ou obtain from th	ne IR s	spectrum	(give frequ	uency and	interpretatio	n)?
		40								
	nterpret the uctures.	e ¹³ C NMR spe	ectrum. Iden	tify what kind of	carbor	n each si	gnal corres	sponds to,	and write po	ssible
No	ppm Ty	rpe of C (e.g. s	sp ³ CH ₂) and	d/or part structur	es (e.g	g. N-CH ₂)				
1	13.6	_			5	73.6	_			
2	21.8				6	83.5				
3	33.8				7	128.5				
4	62.3				8	133.9				
	ng constant		ween δ 0.8 a	and δ 2.2 in the	¹ H NM	IR spectri	um. Repor	t multiplicit	v. coupling	
consta		part structure		obtain from the						shifts
				5 4.8 in the ¹ H N nem, and circle y				the structu	re of R-04E	. If

Problem R-04E (C₈H₁₂O). Determine the structure (or part structure) of R-04E from the ¹H NMR, ¹³C NMR and IR spectra provided.

- (a) DBE 3 (b) What information can you obtain from the IR spectrum (give frequency and interpretation)?
 - nothing strong around 1700 cm⁻¹, so no C=O group
 - 2120 cm⁻¹ probably a C≡C stretch
- 3300 cm⁻¹ C≡C−H stretch
- 3400 cm⁻¹ broad H-bonded OH
- 1680 cm⁻¹ C=C stretch

4

5

5

4

(c) Interpret the ¹³C NMR spectrum. Identify what kind of carbon each signal corresponds to, and write possible part structures. Because of the much larger J_{C-H}

alkynyl CH give misleading info in No ppm Type of C (e.g. sp³ CH₂) and/or part structures (e.g. N-CH₂) **DEPT** C≡C (actually C≡C-H 1 13.6 C = C - H (actually C = C - C) 21.8 2 83.5 3 128.5 sp^2 4

133.9

(d) Analyze the multiplets between δ 5.5 and δ 6.1 in the ¹H NMR spectrum. Report multiplicity, coupling constants and the part structure you could obtain from the signals. Label the part structure with chemical shifts and coupling constants.

(d) Analyze the multiplets between δ 0.8 and δ 2.2 in the ¹H NMR spectrum. Report multiplicity, coupling constants and the part structures you could obtain from the signals. Label the part structures with chemical shifts and coupling constants.

CH₃—CH₂—CH₂—CH

$$\delta$$
 2.1, apparent q, J = 7 (actually a td or dt)
 δ 1.4, apparent sextet, J = 7 Hz (actually tq)
 δ 0.9, t, J = 7 Hz

(e) Analyze the the signals at δ 2.7 and δ 4.8 in the ¹H NMR spectrum. Determine the structure of **R-04E**. If more than one structure is possible, show them, and circle your best choice.

