

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) دانشکده ریاضی و علوم کامپیوتر

گزارش پنجم درس هوش مصنوعی

نگارش آرمان صالحی

استاد راهنما دکتر مهدی قطعی

بهار 1403

چکیده

در این برنامه ما دیتاست Banck Account Fraud Dataset Suit را بررسی میکنیم، و از طریق الگوریتم K-Means کاربران خود را بر اساس اطلاعاتی که از آنها داریم به سه دسته کلی تقسیم میکنیم.

صفحه	فهرست مطالب
Í	چکیده
3	گذارش کار

گزارش کار

انتخاب دیتاست و پردازش پیشداده

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from lazypredict.Supervised import LazyClassifier
from sklearn.metrics import accuracy_score, f1_score

data = pd.read_csv('bank_account_fraud.csv')
```

این کد کتابخانههای مورد نیاز را وارد می کند و سپس دیتاست را از مسیر مشخص شده بارگذاری می کند.

11 print(data.info())

این کد اطلاعات کلی از ساختار دادهها را نمایش میدهد، مانند تعداد رکوردها و نوع دادههای هر ستون.

```
13 X = data.drop('target', axis=1)
14 y = data['target']
```

در اینجا فرض شده است که ستون هدف (label) به نام `target` است. ستون `target` از دادهها جدا شده و بقیه ستونها به عنوان ویژگیها ('features') استفاده می شوند.

```
16 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

دادهها به دو قسمت `train` و `test` تقسیم می شوند. ۷۰٪ دادهها برای آموزش و ۳۰٪ برای تست مدل استفاده می شوند.

```
18   scaler = StandardScaler()
19   X_train = scaler.fit_transform(X_train)
20   X_test = scaler.transform(X_test)
```

ویژگیها استانداردسازی میشوند تا مقادیر آنها به مقیاسی مشابه تبدیل شوند. این کار کمک می کند تا مدلها بهتر عمل کنند.

- پیادهسازی مدل خوشهبندی

```
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X_train)
```

در این بخش از الگوریتم K-Means برای خوشه بندی داده ها استفاده می شود. این کد الگوریتم K-Means را پیاده سازی می کند و تعداد خوشه ها را ۳ تنظیم می کند.

- اضافه کردن برچسب خوشه به دادهها

```
25 data['cluster'] = kmeans.labels_
```

برچسب خوشههای ایجاد شده به دادهها اضافه میشود.

```
plt.scatter(X_train[:, 0], X_train[:, 1], c=kmeans.labels_, cmap='viridis')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('K-Means Clustering')
plt.show()
```

این کد نمودار پراکندگی دادهها را با رنگبندی بر اساس خوشههای ایجاد شده نمایش میدهد. این نمودار میتواند به شما کمک کند تا نتایج خوشهبندی را تحلیل کنید.

- پیادهسازی مدل طبقهبندی

```
clf = LazyClassifier()
models, predictions = clf.fit(X_train, X_test, y_train, y_test)

print(models)
```

در این بخش از کتابخانه `lazypredict` برای مقایسه مدلهای مختلف طبقهبندی استفاده می شود. این کد از کتابخانه 'lazypredict` استفاده می کند تا مدلهای مختلف طبقهبندی را با یکدیگر مقایسه کند و بهترین مدلها را براساس دادههای شما معرفی کند. نتایج این مقایسه در متغیر 'models` ذخیره می شود.

```
40 model = RandomForestClassifier(random_state=42)
41 model.fit(X_train, y_train)
42 y_pred = model.predict(X_test)
```

در اینجا یک مدل خاص (مثلاً RandomForestClassifier) انتخاب و پیادهسازی می شود. شما می توانید مدل دیگری که بهترین عملکرد را دارد انتخاب کنید.

```
44 accuracy = accuracy_score(y_test, y_pred)
45 f1 = f1_score(y_test, y_pred, average='weighted')
46
47 print(f'Accuracy: {accuracy}')
48 print(f'F1 Score: {f1}')
```

در این قسمت، مدل ارزیابی می شود و معیارهای دقت (accuracy) و امتیاز F1 محاسبه می شوند. این معیارها به شما کمک می کنند تا عملکرد مدل را بسنجید.