Überblick über verschiedene Datenanalyseverfahren mit einem Anwendungsbeispiel

Dr. Raphael Volz
Professor für Angewandte Informatik
Hochschule Pforzheim
März 2019

Überblick über verschiedene Datenanalyseverfahren am Beispiel Kraftstoffpreise

Ziel unserer Betrachtung ist die Prognose von Treibstoffpreisen an der Tankstelle

Agenda und Vorgehensweise

- Datensatz untersuchen und Intuition f
 ür Modelle entwickeln
- Mehrere Prognosemodelle bilden
 - Feature Engineering für Parameterauswahl
 - Unterschiedliche Verfahren anwenden
- Bestes Modell auswählen
- Prognose in Anwendung bringen

Preise für Treibstoffe an öffentlichen Tankstellen in Deutschland sind "in Echtzeit" frei verfügbar

Datensatz Treibstoffpreise in Deutschland (MTS-K)

- Meldung der Preise ist seit 31.8.2013 gesetzliche Pflicht für alle Tankstellen
 - Erhöhte Preistransparenz für Verbraucher
 - Verbesserung der "Eingriffsmöglichkeiten des Bundeskartellamts insbesondere bei [...]
 Missbrauchs von Marktmacht durch die erhobenen Preisdaten"⁽¹⁾
- Meldung an Markttransparenzstelle für Kraftstoffe (MTS-K) über
 Mobilitätsdatenmarktplatz des Bundesministeriums für Verkehr und Infrastruktur
 - Basis aller Tank-Apps, z.B: tankerkoenig.de
 - Basis für Live Services im Navigationsgerät
- Dateninhalte
 - Zeitpunkt der Preisänderung
 - Preise für wichtigste drei Treibstoffarten (E5,E10,Diesel)
 - Durchschnittlich 12 Preisänderungen pro Tankstelle und Tag im Jahr 2018⁽²⁾

Quelle: (1) http://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-Fuels/mtufuels_node.html (2) Eigene Analyse MTS-K Daten via tankerkoenig.de

Wo kann ich am günstigsten tanken?

Durchschnittspreise auf meinem Arbeitsweg 2019

Durchschnittspreis für E10 in 1.1.19 bis 27.3.19 zwischen Bad Herrenalb und Pforzheim Quelle: Eigene Analyse MTS-K Daten bezogen über tankerkoenig.de, Bildquelle: Bertha App aufgerufen am 24.3.19, Eigene Visualisierung mit Hilfe von http://umap.openstreetmap.fr/de/map/tankstellen-arbeitsweg 302007

Wann kann ich am günstigsten tanken?

Tanz der Preise im Jahr 2018

Eigene Animation der Veränderungen des E-10 Preis in 2018 an Tankstellen auf meinem Arbeitsweg im Jahr 2018 Quelle: Eigene Analyse der MTS-K Daten bezogen über tankerkoenig.de

Tankstellen implementieren unterschiedliche Preisstrategien und ändern diese regelmäßig

Intraday Preisschwankungen an zwei Beispielen

A D A I	Kaiser-F	riadrich	-StraRa	DE
ANAL.	Kaisei-F	neaman	-30 aise.	. PF

Freie Tankstelle, Dietlinger Strasse, PF

Stunde/Jahr	2015	2016	2017	2018	2015	2016	2017	2018
-	6.0	10.6	10.8	1.1	- 1.0	- 1.5	- 1.6	- 1.1
1	6.0	10.6	10.8	1.1	- 1.0	- 1.5	- 1.6	- 1.1
2	6.0	10.6	10.8	1.1	- 1.0	- 1.5	- 1.6	- 1.1
3	6.0	10.7	10.8	1.1	- 1.0	- 1.5	- 1.6	- 1.1
4	6.0	10.7	10.8	1.1	- 0.9	- 1.3	- 1.2	- 1.0
5	6.0	9.6	8.4	1.0	0.8	0.8	1.9	- 0.6
6	4.3	5.2	3.3	5.8	3.1	3.9	4.3	0.3
7	0.0	- 1.1	- 0.9	6.1	3.2	4.3	5.2	4.0
8	- 1.6	- 2.3	- 3.1	2.8	2.6	4.1	3.9	3.9
9	- 2.8	- 3.2	- 3.7	- 0.5	1.6	2.9	2.5	2.9
10	- 4.1	- 4.5	- 4.6	- 1.4	0.9	1.7	1.8	2.0
11	- 4.9	- 5.5	- 5.4	- 2.8	0.5	1.0	1.1	0.9
12	- 3.8	- 3.1	- 3.0	1.7	0.2	0.4	0.4	0.1
13	- 4.5	- 3.6	- 3.3	1.7	- 0.1	0.1	- 0.0	- 0.0
14	- 6.0	- 5.9	- 5.6	- 0.7	- 0.3	- 0.3	- 0.3	- 0.1
15	- 6.7	- 7.8	- 8.2	- 3.6	- 0.4	- 0.6	- 0.7	- 0.4
16	- 6.9	- 8.3	- 8.4	- 4.0	- 0.5	- 0.8	- 1.1	- 0.7
17	- 7.0	- 8.6	- 7.2	0.6	- 0.7	- 1.1	- 1.3	- 0.9
18	- 7.2	- 8.8	- 7.4	- 1.2	- 0.9	- 1.3	- 1.6	- 0.9
19	- 7.3	- 8.9	- 8.0	- 4.1	- 1.0	- 1.5	- 1.7	- 1.0
20	4.6	- 8.0	- 8.5	- 4.2	- 1.0	- 1.6	- 1.7	- 1.1
21	6.0	- 7.9	- 8.7	- 4.2	- 1.0	- 1.5	- 1.6	- 1.1
22	6.0	9.0	9.3	0.6	- 1.0	- 1.5	- 1.6	- 1.1
23	6.0	10.6	10.8	1.0	- 1.0	- 1.5	- 1.6	- 1.1
Preisschwankung								
(absolut)	13.3	19.6	19.5	10.3	4.2	5.8	6.9	5.1
Preisschwankung (relativ)	9%	14%	13%	7%	3%	5%	5%	4%

Quelle: Eigene Analyse, E10 Preis als zeitgewichteter Durchschnitt über Stunde und Jahre, Daten MTS-K via tankerkoenig.de

Wann kann ich am günstigsten Tanken?

Dashboard für beliebige Tankstellen

Unterschied zum Durchschnittspreis im Zeitraum

 Stunde
 Abweichung in Cent

 21
 -4.6

 20
 -4.5

Der Rohölpreis bestimmt den Durchschnittspreis für Treibstoff wesentlich

Korrelation Rohölpreis und Kraftstoffpreis (E10)

Quelle: Eigene Analyse, Brent Oil Future Tagesschlusskurs Indikation Deutsche Bank in Euro ISIN: XC0009677409 via ariva.de (https://bit.ly/2J8vCU4),
E10 Preis als Tagesdurchschnitt der gemeldeten Preisänderungen an MTS-K via tankerkoenig.de

Ziel unserer Betrachtung ist die Prognose von Treibstoffpreisen an der Tankstelle

Agenda

- Datensatz untersuchen und Intuition für Modelle entwickeln
- Mehrere Prognosemodelle bilden
 - Feature Engineering für Parameterauswahl
 - Unterschiedliche Verfahren anwenden
- Bestes Modell auswählen
- Prognose in Anwendung bringen

Modellbildung ist ein kontrolliertes wissenschaftliches Experiment ...

Bildung mehrer Modellvarianten

- 1 Variation der Eingangsgrößen aus dem Datensatz
 - Nur Ölpreis (Bivariates Model)
 - Ölpreis + Stunde als Zahl oder Ölpreis + Stunde als Faktor
 - Ölpreis + Tag + Stunde
 - Ölpreis + 5 Minuten Blöcke (numerisch oder als Faktor)
 - etc.

- Variation von Verfahren und ihrer jeweiligen (Hyper)parameter
 - Lineare Regression
 - Entscheidungsbaum
 - Random Forest [<u>Breiman 2001</u>]
 - uvm. (vgl. [Caruana and Niculescu-Mizil 2006])
- Geeignete Auswahl der Trainingsdaten für die Modellbildung
 - Gesamte Historie (Nur neueste Daten als Test)
 - Teil der Historie (Auswahl nach Kriterium bzw. algorithmische Partitionierung)
 - Moving Window bei Zeitserien

Bildquelle: Eigene Darstellung

Lineare Regression lernt lineare Gleichungen

Prognose Preis 1 Liter E10 in Euro

• Verfahren lernt Koeffizienten β einer linearen Gleichung

$$\widehat{y_i} = \beta_{\ddot{o}} \cdot \ddot{o}_i + \vec{\beta}_s \cdot \overrightarrow{s_i} + \vec{\beta}_w \cdot \overrightarrow{w_i} + + \beta_0$$

- $\hat{y_i}$ (Preis Liter e10 in Cent, abhängige Variable)
- ö_i (Preis Barel Rohöl in Euro)
- $\overrightarrow{s_i}$ (Stunde des Tages als Faktor)
- $-\overrightarrow{w_i}$ (Wochentag als Faktor)
- Abweichung Prognose zu echter Beobachtung

$$y_i = \widehat{y}_i + \varepsilon_i$$

• Verfahren sucht β mit minimaler Fehlersumme $\sum_{i=1}^{n} \varepsilon_i$ für alle n Trainingsdaten

Anmerkung: Einheit der Betas ist Euro.

Trainingsdaten: Zeitraum 1.1.2015-30.12.2018

Testdaten: Zeitraum 31.12.2018

Datenquelle:

MTS-K Daten der Freien Tankstelle, Dietlinger Str., Pforzheim via tankerkönig.de Ölpreis Sorte Brent in Euro, um 16 Tage Zeitversetzt, via ariva.de

Residuals: Median -0.164703 -0.027582 -0.000952 0.022446 Coefficients: Std. Error t value Pr(>|t|) β_0 (Intercept) 5.754e-04 1753.138 < 2e-16 oilprice $eta_{\ddot{0}}$ 7.865e-06 958.778 < 2e-16 5.385e-04 hour1 0.237 0.813 0.744 hour2 5.388e-04 0.327 5.385e-04 0.237 0.813 hour3 hour4 5.385e-04 0.237 0.813 -5.548 2.88e-08 hour5 5.385e-04 hour6 5.385e-04 0.378 hour7 5.385e-04 -18.791 < 2e-16 hour8 5.385e-04 -45.846 < 2e-16 hour9 5.384e-04 -61.157 < 2e-16 hour10 5.384e-04 -81.761 < 2e-16 hour11 5.384e-04 -101.197 < 2e-16 hour12 5.384e-04 -88.072 < 2e-16 hour13 hour14 5.384e-04 -118.204 < 2e-16 hour15 5.384e-04 -132.158 < 2e-16 hour16 5.384e-04 -137.603 < 2e-16 *** hour17 5.384e-04 -116.132 < 2e-16 5.384e-04 -135.496 < 2e-16 hour18 hour19 5.384e-04 -144.595 < 2e-16 hour20 5.384e-04 -146.932 < 2e-16 *** hour21 5.384e-04 -147.262 < 2e-16 hour22 5.384e-04 -139.928 < 2e-16 hour23 5.384e-04 -24.943 < 2e-16 weekday1 2.909e-04 -9.313 < 2e-16 weekday2 2.909e-04 -12.595 < 2e-16 *** weekday3 2.907e-04 -15.646 < 2e-16 *** weekday4 $|m{eta}_{m{W}}|$ weekday5 2.905e-04 -9.072 < 2e-16 *** weekday6 2.905e-04 -5.774 7.73e-09 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04571 on 346004 degrees of freedom Multiple R-squared: 0.7573, Adjusted R-squared: 0.7573 F-statistic: 3.6e+04 on 30 and 346004 DF, p-value: < 2.2e-16

Abbildung: Screenshot Zusammenfassung lin. Modell in R [summary(lm(...))]

Test: RMSE 0.0513

Entscheidungsbäume lernen Fallunterscheidungen

Prognose Preis 1 Liter E10 in Euro

- Fallunterscheidung auf Basis der bereitgestellten Variablen
 - ö_i (Preis Barel Rohöl in Euro)
 - $\overrightarrow{s_i}$ (Stunde des Tages als Faktor)
 - $-\overrightarrow{w_i}$ (Wochentag als Faktor)
- Minimierung Fehlerquadrate durch recursive Partitionierung Datensatz
- Blattknoten ergeben Prognose \widehat{y}_i (Preis Liter e10 in Cent)

Anmerkung: Einheit der Blattknoten ist Euro. Trainingsdaten: Zeitraum 1.1.2015-30.12.2018

Testdaten: Zeitraum 31.12.2018

Test: RMSE 0.0733

Datenquelle:

MTS-K Daten der Freien Tankstelle, Dietlinger Str., Pforzheim via tankerkönig.de Ölpreis Sorte Brent in Euro, um 16 Tage Zeitversetzt, via ariva.de

Abbildung: Plot Entscheidungsbaum in R [summary(lm(...))]

Random Forest bildet ein Ensemble aus vielen unterschiedlich gebildeten Entscheidungsbäumen

Prognose Preis 1 Liter E10 in Euro

- Bildung mehrere Entscheidungsbäume auf Basis randomisierter Partitionen des Datensatzes und bereitgestellten Variablen
 - ö_i (Preis Barel Rohöl in Euro)
 - $\overrightarrow{s_i}$ (Stunde des Tages als Faktor)
 - $-\overrightarrow{w_i}$ (Wochentag als Faktor)
- Mehrheitsentscheid über alle n Bäume ergibt Prognose $\widehat{y_i}$ (Preis Liter e10 in Cent)

Parameter

Random Forest

Tree-1

Tree-2

Tree-n

Prognose A

Prognose 2

Prognose N

Prognose N

Prognose N

Anmerkung: Einheit der Prognose ist Euro. Trainingsdaten: Zeitraum 1.1.2015-30.12.2018

Testdaten: Zeitraum 31.12.2018

Datenquelle:

MTS-K Daten der Freien Tankstelle, Dietlinger Str., Pforzheim via tankerkönig.de Ölpreis Sorte Brent in Euro, um 16 Tage Zeitversetzt, via ariva.de

Bildquelle: William Koehrsen, Medium, https://bit.ly/2znDYCd

... mit abschließender Wahl eines besten Modells

Auswahl aus Modellvarianten

- 4 Beurteilung der Güte der Modelle mit Testdaten
- oftmals Verfahrensspezifisch (z.B. R² für lineare Regression)
- Aber auch allgemein
 - Accuracy bei Klassifikation (% richtig gemacht)

=?	0	1
0	R	F
1	F	R

Accuracy =
$$\frac{|R|}{|R|+|F|}$$

Wurzel mittlerer quadratischer Fehler (RMSE) bei Regression

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Bildquelle: Filter Icon von Freepik bei www.flaticon.com

Vergleicht man die Verfahren für mehrere Tankstellen erzeugt Random Forest die besten Prognosen

Median RMSE (in Cent) im Vergleich

Variablen	Input Parameter	Lineare Regression	Entscheidungs- baum	Random Forest
1	Nur Rohölpreis in Euro (-11T)	6,59	6,53	4,99
2 (24)	Rohölpreis, Stunde (Faktor in LR)	5,34	5,33	2,12
2 (297)	Rohölpreis, 5 Minuten Blöcke (Faktor in LR)	5,30	5,30	2,60
3 (30)	Rohölpreis, Stunde (Faktor in LR), Wochentag (Faktor in LR)	5,34	5.33	2,08

Anmerkung: Mittlere Abweichung (RMSE) auf dem Testdatensatz (31.12.18), Training (1.1.2015-30.12.2018), Tabelle zeigt Mittelwert der RMSE für die vorgenannten Tankstellen auf meinem Arbeitsweg, Quelle: Eigene Analyse, Berechnet mit R (Im, rpart) und R/H2O (RandomForest)

Training mit Rolling Windows adressiert wechselnde Preisstrategien und verbessert zumeist die Prognose

Mittlere Abweichung (in Cent) im Vergleich

Variablen	Input Parameter	Lineare Regression	Entscheidungs- baum	Random Forest
1	Nur Rohölpreis in Euro (-11T)	6,59	6,53	4,99
2 (24)	Rohölpreis, Stunde (Faktor in LR)	5,34	5,33	2,12
2 (297)	Rohölpreis, 5 Minuten Blöcke (Faktor in LR)	5,30	5,30	2,60
3 (30)	Rohölpreis, Stunde (Faktor in LR), Wochentag (Faktor in LR)	5,34	5.33	<mark>2,08</mark>

Training jeweils nur auf Basis der letzten 8 Tage (Rolling Window)

Ergebnisse	Lineare Regression	Entscheidungs- baum	Random Forest
Minimaler RMSE (aller Zeitfenster im Jahr 2018)	0,95	1,00	0,88
Median RMSE (aller Zeitfenster im Jahr 2018)	<mark>2,04</mark>	2,08	1,21
Maximale RMSE (aller Zeitfensters im Jahr 2018)	8,92	7,93	7,45

Anmerkung: Testdatensatz ein Tag, Training auf Basis der 8 Tage davor, 364 8T Rolling Windows von 1.1.19 bis 30.12.19,
Mittlere Abweichung (RMSE) der vorgenannten Tankstellen auf meinem Arbeitsweg, Quelle: Eigene Analyse, Berechnet mit R (Im, rpart) und R/H2O (RandomForest)

Prognosemodelle und offene Daten ermöglichen Verbrauchern günstiger zu tanken

Zusammenfassung

- Hohe Qualität der Prognosen aufgrund der Korrelation zu Rohölpreis und wiederkehrender Preismuster
- "Künstliche Intelligenz" weniger wichtig als "menschliche Intelligenz" bei der Definition der Problemstellung
- Sie können künftig Geld sparen und besser entscheiden
 - wo Sie tanken und
 - (wichtiger!) wann Sie tanken
- *Ich* konnte Ihnen Überblick über verschiedene Datenanalyseverfahren geben

Quellcode, Folien und aktuelle Daten für ganz Deutschland unter tankzeit.de

BACKUP

Einbezug offener Daten verbessert Marktverständnis und Prognosemodelle

Ausblick

OpenStreetMap

- Wettbewerber in der Nähe (Berechnung Fahrdistanz)
- Lage an Straßentyp (z.B. Autobahn)

WikiData

Bevölkerung in der Nähe

Mobilitätsdatenmarktplatz

Aggregation nach Marken

Real	Jet	Shell	Aral
-2,1%	-1,9%	1,3%	1,4%

Average Quality of Linear Regression Models per Fuel Station

R2_train	R2_test	RMSE
Min. :0.0000856	Min. :-33.3227	Min. :0.0000026
1st Qu.:0.8489803	1st Qu.: 0.8490	1st Qu.:0.0226232
Median :0.8729650	Median : 0.8731	Median :0.0279559
Mean :0.8530319	Mean : 0.8489	Mean :0.0317893
3rd Qu.:0.9019500	3rd Qu.: 0.9020	3rd Qu.:0.0320182
Max. :0.9741170	Max. : 0.9742	Max. :1.9546183

Quality of Single Model for all stations linked by open data

Model Type	R2 Train	R2 Test	RMSE
Deep Learning	0,8081	0,3156	0,052
Random Forest	0,8938	0,3305	0,052
Linear Regression	0,8125	0,2818	0,054

Scaled variable importance in the Random Forest model for all stations

Brutto-Tankstellenmarge in Deutschland von 2008 bis 2017 nach Kraftstoffart (in Euro-Cent pro Liter)

- Eurosuper - Diesel

Quellen Energie Informationsdienst; Scope © Statista 2018 Weitere Informationen:

Deutschland

Preisstrategie Tankstellenbetreiber

- Deckung des Einkaufspreises
- Preisposition im Vergleich zu Wettbewerbern in direkter Umgebung
- Abverkauf vor nächster Lieferung zur Maximierung des möglichen Umsatz
- Preis als Werbemittel (Kommunikation bei geschlossener Tankstelle)

Bruttomargen im internationalen Vergleich

Brutto-Tankstellenmargen für Eurosuper in Cent/I*

Ein Oligopol beherrscht 68% des deutschen Tankstellenmarkt

Marktanteile nach Absatz 2017

Quelle: ARAL, Pressemeldung vom 8. März 2017, https://www.aral.de/de/retail/presse/pressemeldungen/pm2017-03-08-aral-behauptet-fuehrende-position.html

Preise für Treibstoffe an öffentlichen Tankstellen in Deutschland sind "in Echtzeit" frei verfügbar

Offener Datensatz MTS-K

 Meldung von Preisänderungen "in Echtzeit" an das Bundeskartellamt ist seit 31.8.2013 gesetzliche Pflicht für alle öffentlichen Tankstellen

Ziele:

- Erhöhte Preistransparenz für Verbraucher
- Verbesserung der "Eingriffsmöglichkeiten des Bundeskartellamts insbesondere bei [...] Missbrauchs von Marktmacht durch die erhobenen Preisdaten"⁽¹⁾
- Verfügbar über MDM Portal des BMVi
 - Basis aller Tank-Apps, z.B: tankerkoenig.de
 - Basis für Live Services im Navigationsgerät

Dateninhalte⁽²⁾

- Zeitpunkt der Änderung
- Preise für 3 Treibstoffarten (E5,E10,Diesel)
- 15 Tsd. Tankstellen (2018)
- 65,5 Mio. Preisänderungen (2018)
 - ✓ 180 Tsd. Änderungen pro Tag
 - ✓ 11,8 Änderungen pro Tankstelle | Tag

Quelle: (1) http://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-Fuels/mtufuels_node.html
(2) Eigene Analyse Basis MTS-K Daten über tankerkoenig.de, Eigene Darstellung auf Deutschlandkarten

Die Anzahl der Preisänderungen nimmt stetig zu...

... dabei konnten Tankstellenbetreiber höhere Bruttomargen erzielen

Entwicklung der Bruttomargen

Quelle: Eigene Analyse, Gemittelte Bruttomarge nach Absatzanteil Diesel (2/3) und Ottokraftstoffe (1/3) aus Jahresbericht 2018 Mineralölwirtschaftsverband e.V., Bruttomargen aus Scope Ratings Branchenstudie Tankstellenmarkt Deutschland 2017, Preisänderungen pro Tag und Tankstelle aus MTS-K Daten via tankerkoenig.de

In 2018 wurden Kraftstoffe für ca. 90 Mrd. € getankt

Umsatz und Absatz an Tankstellen in Deutschland

Treibstoff	Absatz in Tonnen (1)	Mrd. Liter (2)	€/Liter (3)	Umsatz in Mrd. € (4)
Otto	18,031,864	24.04	1.38	33.2
Diesel	37,503,429	44.65	1.28	57.3
				90.5

Quellen:

(1) Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA), MineralölINFO Dezember 2018 (Mineralölabsatz), https://www.bafa.de/SharedDocs/Kurzmeldungen/DE/Energie/Mineraloel/2018_12_mineraloelinfo.html, Veröffentlicht 26.2.2019

 $(2) \ Bundes verband \ der \ deutschen \ Bioethanolwirtschaft \ e. V \ (BDBE), \ Umrechnungsformeln \ für \ Biokraftstoffe, \ https://www.bdbe.de/daten/umrechnung-und-formeln \ finder \ biokraftstoffe, \ https://www.bdbe.de/daten/umrechnung-und-formeln \ biokraftstoffe, \ https://www.bdbe.de/daten/umrechnung-und-formeln \ finder \ biokraftstoffe, \ https://www.bdbe.de/daten/umrechnung-und-formeln \ biokraftstoffe, \ https://www.bdbe.de/daten/umrechnung-und-formeln \ biokraftstoffe, \ https://www.bdbe.de/daten/umrechnung-und-formeln \ biokraftstoffe, \ https://www.bdbe.de/daten/umrechnung-und-formeln \ biokraftstoffe, \ https://www.b$

(3) Durchschnittspreis 2018 aus MTS-K Preisänderungen via tankerkoenig.de, E10 für Otto

(4) Eigene Berechnung