Note: This document is a part of the lectures given during the Jan-May 2020 Semester.

Options (General Properties):

Put-Call-Parity for European Options on a Stock That Pays No Dividends:

For a stock that pays no dividends the following relation holds between the prices of European call option (C^E) and European put option (P^E) , both with exercise price X and exercise time T:

$$C^E - P^E = S(0) - Xe^{-rT}$$
.

- 1. Suppose that $C^E P^E > S(0) Xe^{-rT}$.
 - (a) At time t = 0:
 - i. Sell one call option for C^E .
 - ii. Buy one put option for P^E .
 - iii. Buy one share for S(0).
 - iv. Invest the amount $C^E P^E S(0)$ at the rate r for time T.
 - (b) At time t = T:
 - i. Receive an amount $(C^E P^E S(0))e^{rT}$.
 - ii. Sell the share for X either by exercising the put (if $S(T) \leq X$) or settling the short position in call (if S(T) > X).

The balance will be $(C^E - P^E - S(0))e^{rT} + X > 0$, which violates the no-arbitrage principle.

- 2. Suppose that $C^E P^E < S(0) Xe^{-rT}$.
 - (a) At time t = 0:
 - i. Short sell one share for S(0).
 - ii. Buy one call option for C^E .
 - iii. Sell one put option for P^E .
 - iv. Invest the amount $S(0) C^E + P^E$ at the rate r for time T.
 - (b) At time t = T:
 - i. Receive an amount $(S(0) C^E + P^E)e^{rT}$.
 - ii. Buy one share for X either by exercising the call (if S(T) > X) or settling the short position in put (if $S(T) \le X$), and close the short position in stock.

The balance will be $(S(0) - C^E + P^E)e^{rT} - X > 0$, which violates the no-arbitrage principle.

Put-Call-Parity for European Options on a Stock That Pays Dividends:

1. For a stock paying dividend between time 0 and expiry time T, with div_0 being the value of the dividend discounted to time 0,

$$C^{E} - P^{E} = S(0) - div_{0} - Xe^{-rT}$$
.

2. For a stock paying dividend continuously at a rate r_{div} ,

$$C^{E} - P^{E} = S(0)e^{-r_{div}T} - Xe^{-rT}$$
.

Put-Call-Parity Estimates for American Options on a Stock That Pays No Dividends:

The prices of American call option (C^A) and American put option (P^A) with the same strike price X and expiry time T on a stock that pays no dividends satisfy:

$$S(0) - Xe^{-rT} \ge C^A - P^A \ge S(0) - X.$$

- 1. Suppose that $C^A P^A S(0) + Xe^{-rT} > 0$.
 - (a) At time t = 0:
 - i. Sell one call option for C^A .
 - ii. Buy one put option for P^A .
 - iii. Buy one share for S(0).
 - iv. Invest the amount $C^A P^A S(0)$ at the rate r.
 - (b) At time $t \leq T$: If the holder of the American call chooses to exercise it at time $t \leq T$ then,
 - i. Receive X for the share.
 - ii. Receive an amount $(C^A P^A S(0))e^{rt}$.

The balance will be

$$(C^A - P^A - S(0))e^{rt} + X = (C^A - P^A - S(0) + Xe^{-rt})e^{rt} \ge (C^A - P^A - S(0) + Xe^{-rT})e^{rt} > 0,$$

which violates the no-arbitrage principle.

- (c) At time t = T: If the call option is not exercised then,
 - i. Receive an amount $(C^A P^A S(0))e^{rT}$.
 - ii. Sell the share for X by exercising the put.

The balance will be $(C^A - P^A - S(0))e^{rT} + X > 0$, which violates the no-arbitrage principle.

- 2. Suppose that $-C^A + P^A + S(0) X > 0$.
 - (a) At time t = 0:
 - i. Sell one call option for C^A .
 - ii. Buy one put option for P^A .
 - iii. Short sell share for S(0).
 - iv. Invest the amount $-C^A + P^A + S(0)$ at the rate r.

(b) At time $t \leq T$: If the holder of the American put chooses to exercise it at time $t \leq T$ then,

- i. Receive an amount $(-C^A + P^A + S(0))e^{rt}$.
- ii. Buy a share for X and close the short sale position.

The balance will be $(-C^A + P^A + S(0))e^{rt} - X > Xe^{rt} - X > 0$, which violates the no-arbitrage principle.

- (c) At time t = T: If the call option is not exercised then,
 - i. Receive an amount $(-C^A + P^A + S(0))e^{rT}$.
 - ii. Buy a share for X by exercising the call option and close the short sale position.

The balance will be $(-C^A + P^A + S(0))e^{rT} - X > Xe^{rT} - X > 0$, which violates the no-arbitrage principle.

Put-Call-Parity Estimates for American Options on a Stock That Pays Dividends:

1. For a stock paying dividend between time 0 and expiry time T, with div_0 being the value of the dividend discounted to time 0,

$$S(0) - Xe^{-rT} \ge C^A - P^A \ge S(0) - div_0 - X.$$

2. For a stock paying dividend continuously at a rate r_{div} ,

$$S(0) - Xe^{-rT} \ge C^A - P^A \ge S(0)e^{-r_{div}T} - X.$$

Bounds on Option Prices:

We first note the obvious inequalities

$$C^E \leq C^A, P^E \leq P^A,$$

for European and American options with the same strike price X and expiry time T. They hold because an American option gives at least the same rights as the corresponding European option.

It is also obvious that the price of a call or put option has to be non-negative because an option of this kind offers the possibility of a future gain with no liability. Therefore,

$$C^E \ge 0, P^E \ge 0.$$

Similar inequalities are of course valid for the more valuable American options, that is,

$$C^A \ge 0, P^A \ge 0.$$