Latches & Flip-Flops

Combination/Sequential circuits

- Combinational circuits
 - Uses primitive gates
- Sequential circuits
 - Uses primitive gates
 - Also uses feedback and memory elements
 - Latched and flip-flops
 - Have feedback and are a memory element
 - Can be asynchronous not synchronized to a clock
 - Can be synchronous synchronized to a clock

Latch

- Since latches are a memory with feedback
 - Always concerned with the
 - Present output or state Q_t
 - And the next output state Q_{t+1}
- Combinational circuits (what we have done so far)
 - Output only depends on the inputs
- Sequential circuits (with latches and flip flops)
 - Output depends on the inputs but also on the current state or current output values
- Many different kinds SR, D, JK, T etc,

SR Latch

• States (outputs) can be defined by a truth table

"Truth table" or "characteristic table"

		Current State	Next State
S	R	Q_t	Q_{t+1}
0	0	0	0 }
0	0	1	1
0	1	0	οζ
0	1	1	0
1	0	0	1 \
1	0	1	1
1	1	0	?
1	1	1	5

S	R	Q_{t+1}
0	0	Q_t
0	1	0
1	0	1
1	1	0/1 ?

undefined state

Gated SR Latch (with clock)

- States (outputs) can be defined by a truth table
- Clock square wave, 50 % duty, at given frequency

Characteristic table

Clock	S	R	Q_{t+1}
0	x	x	Q_t
1	0	0	Q_t
1	0	Þ	O
1	ø	10	ф
1	0	1	0/1

Gated SR Latch - NAND (with clock)

- Can also be done using just NAND gates
- Clock square wave, 50 % duty, at given frequency

Characteristic table

Clock	S	R	Q_{t+1}
0	x	x	Q_t
1	0	0	Q_t
1	0	0	1
1	0	1	0
1	0	1	0

Gated D Latch (with clock)

- D-latch transfers input D to putput Q
 - Next state $Q_{t+1} = D$
 - Simple 1-bit register (memory cell)
 - From SR latch but $R = \overline{S}$

D-latch symbol

Characteristic table

	Clock	D	Q_{t+1}
	0	Х	Q_t
•	(1)	0	0 = 0
	1	1	1 = D
	is when clock's on		

Make 1 latch from another type

- JK-latch from a D
- Need to produce D as a function of J and K

