

Microcontroladores

Sistemas Digitais Microprocessados (SDM) INT (Interrupção)

Profa. Ana T. Y. Watanabe atywata@gmail.com.br

"O Senhor é o meu refúgio" Salmos 91:9

Int – Interrupção

Agenda:

- Conceito de Interrupção;
- Interrupção no ATMEGA328P;
- Modo de funcionamento;
- Interrupção Externa e seus registradores;
- Exercício de Aplicação: exercícios do laboratório
- Interrupção Interna: timer
- Exercício da Máquina de Lavar com ADC/INT

Conceito de Interrupção:

- Interrupção é um processo pelo qual um dispositivo externo ou evento interno pode interromper o curso normal de uma determinada tarefa do microcontrolador.
- Permite que um determinado evento no momento em que ocorre possa executar um conjunto de instruções saindo do curso normal de um programa. Exemplos: acionamento de botão de emergência, overflow de uma contador interno, sair do modo de economia de energia...

Interrupção no ATMEGA 328P:

1) As interrupções são vetoradas, ou seja, tem endereços: pg. 158

Tab. 6.1 - Interrupções do ATmega328 e seus endereços na memória de programa.

programa pronta

	Vetor	End.	Fonte	Definição da Interrupção	Prioridade
	1	0x00	RESET	Pino externo, Power-on Reset, Brown-out Reset e Watchdog Reset	†
Int. externa	2	0x01	INT0	interrupção externa 0	}
	3	0x02	INT1	interrupção externa 1	
' [4	0x03	PCINT0	interrupção 0 por mudança de pino]
Mudança de pino	5	0x04	PCINT1	interrupção 1 por mudança de pino	
	6	0x05	PCINT2	interrupção 2 por mudança de pino	
	7	0x06	WDT	estouro do temporizador Watchdog	
	8	0x07	TIMER2 COMPA	igualdade de comparação A do TC2	
	9	0x08	TIMER2 COMPB	igualdade de comparação B do TC2	1
	10	0x09	TIMER2 OVF	estouro do TC2	1
	11	0x0A	TIMER1 CAPT	evento de captura do TC1	
	12	0x0B	TIMER1 COMPA	igualdade de comparação A do TC1	
	13	0x0C	TIMER1 COMPB	igualdade de comparação B do TC1	
Timer 1 ====	14	0x0D	TIMER1 OVF	estouro do TC1	1
	15	0x0E	TIMER0 COMPA	igualdade de comparação A do TC0	1
	16	0x0F	TIMER0 COMPB	igualdade de comparação B do TC0	1
	17	0x10	TIMER0 OVF	estouro do TC0	1
	18	0x11	SPI, STC	transferência serial completa - SPI]
	19	0x12	USART, RX	USART, recepção completa	
	20	0x13	USART, UDRE	USART, limpeza do registrador de dados]
	21	0x14	USART, TX	USART, transmissão completa	1
	22	0x15	ADC	conversão do ADC completa	1
	23	0x16	EE_RDY	EEPROM pronta	1
	24	0x17	ANA_COMP	comparador analógico	1
	25	0v18	TWI	interface serial TWI = I2C	1

26

0x19

SPM RDY

Maior prioridade

Menor prioridade

Interrupção no ATMEGA 328P:

- 2) Cada interrupção pode individualmente ser habilitada ou desabilitada, através de um bit específico, a isso chamamos de mascaráveis.
- 3) Há um bit (I) no registrador SREG que pode habilitar ou desabilitar todas as interrupções de uma só vez. Instruções sei() ou cli().
- 4) Quando o microcontrolador é inicializado o PC inicia com o valor de endereço 0 (endereço do reset).

MODO DE FUNCIONAMENTO de uma interrupção no ATMEGA328P:

- a) Ocorre uma interrupção;
- b) A CPU completa a instrução em andamento;
- c) Carrega na pilha o endereço da próxima instrução que seria executada;
- d) Desvia para a posição de memória correspondente à interrupção;
- e) O código escrito no endereço da interrupção é executado até encontrar um RETI;
- f) O PC recebe o valor armazenado na pilha;
- g) O programa roda a partir do ponto em que parou antes da interrupção.

Algumas características:

- Ao atender uma interrupção, o microcontrolador desabilita todas as outras interrupções através do bit I (zerando) do SREG;
- Ao retornar da interrupção (RETI), o bit I é colocado em 1 no SREG;
- 3) O microcontrolador vai tratar a interrupção pela ordem de prioridade;
- 4) Antes de atender qualquer interrupção, o AVR **sempre** executará uma instrução do programa principal.

TIPOS de INTERRUPÇÕES NO AVR:

1º. Tipo) O bit de sinalização é ativado indicando que a interrupção ocorreu e é mantido até que a interrupção é atendida, sendo zerado automaticamente pelo hardware;

<u>Caracteristica</u>: Várias interrupções podem ficar ativas enquanto uma está sendo atendida, e permite que sejam processadas por ordem de prioridade.

TIPOS de INTERRUPÇÕES NO AVR:

2º. Tipo) Não existe bit de sinalização e a interrupção é disparada quando o evento que a gera está presente. Este é o caso de uma interrupção externa por nível.

<u>Característica</u>: A interrupção só é atendida se sua condição existir quando a chave geral estiver ativa.

PORTB	
PB0	ICP1 – entrada de captura para o Temporizador/Contador 1. CLKO – salda de clock do sistema. PCINTO – interrupção 0 por mudança no pino.
PB1	OC1A – salda da Igualdade de comparação A do Temportzador/Contador 1 (PWM). PCINT1 – Interrupção 1 por mudança no pino.
PB2	SS – pino de seleção de escravo da SPI (Serial Peripheral Interface). OC1B – salda da Igualdade de comparação B do Temporizador/Contador 1 (PWM). PCINT2 – Interrupção 2 por mudança no pino.
PB3	MOSI – pino mestre de saída e escravo de entrada da SPI. OC2A – saída da Igualdade de comparação A do Temporizador/Contador 2 (PWM). PCINT3 – interrupção 3 por mudança no pino.
PB4	MISO – pino mestre de entrada e escravo de salda da SPI. PCINT4 – interrupção 4 por mudança no pino.
PB5	SCK – plno de <i>clock</i> da SPI. PCINTS – Interrupção 5 por mudança no pino.
PB6	XTAL1 – entrada 1 do oscilador ou entrada de clock externa. TOSC1 – entrada 1 para o oscilador do temporizador (RTC). PCINT6 – interrupção 6 por mudança no pino.
PB7	XTAL2 – entrada 2 do oscilador. TOSC2 – entrada 2 para o oscilador do temporizador (RTC). PCINT7 – interrupção 7 por mudança no pino.
PORTC	
PC0	ADCO – canal O de entrada do conversor AD. PCINT8 – Interrupção 8 por mudança no pino.
PC1	ADC1 – canal 1 de entrada do conversor AD. PCINT9 – Interrupção 9 por mudança no pino.
PC2	ADC2 – canal 2 de entrada do conversor AD. PCINT10 – Interrupção 10 por mudança no pino.
PC3	ADC3 – canal 3 de entrada do conversor AD. PCINT11 – Interrupção 11 por mudança no pino.
PC4	ADC4 – canal 4 de entrada do conversor AD. SDA – entrada e salda de dados da Interface a 2 flos (TWI – I2C). PCINT12 – Interrupção 12 por mudança no pino.
PC5	ADC5 – canal 5 de entrada do conversor AD. SCL – clock da Interface a 2 flos (TWI – I2C). PCINT13 – Interrupção 13 por mudança no pino.
PC6	RESET – pino de inicialização. PCINT14 – interrupção 14 por mudança no pino.

PORTD	
PD0	RXD – pino de entrada (leitura) da USART. PCINT16 – interrupção 16 por mudança no pino.
PD1	TXD – pino de salda (escrita) da USART. PCINT17 – interrupção 17 por mudança no pino.
PD2	INTO – entrada da Interrupção externa 0. PCINT18 – Interrupção 18 por mudança no pino.
PD3	INT1 – entrada da Interrupção externa 1. OC2B – saída da Igualdade de comparação B do Temporizador/Contador 2 (PWM) PCINT19 – Interrupção 19 por mudança no pino.
PD4	XCK – clock externo de entrada e salda da USART. T0 – entrada de contagem externa para o Temporizador/Contador 0. PCINT 20 – Interrupção 20 por mudança no pino.
PD5	T1 – entrada de contagem externa para o Temporizador/Contador 1. OC0B – saída da Igualdade de comparação B do Temporizador/Contador 0 (PWM). PCINT 21 – Interrupção 21 por mudança no pino.
PD6	AINO – entrada positiva do comparador analógico. OCOA – saída da igualdade de comparação A do Temporizador/Contador 0 (PWM). PCINT 22 – interrupção 22 por mudança no pino.
PD7	AIN1 – entrada negativa do comparador analógico. PCINT 23 – interrupção 23 por mudança no pino.

CHAVES DE HABILITAÇÃO DAS INTERRUPÇÕES:

м

INTERRUPÇÃO EXTERNA:

- Todos os pinos de I/O do ATMEGA328 podem gerar interrupções externas por <u>mudança de estado lógico</u> no pino PCINT0 a PCINT23:
- PCINTOB: PCINTO PCINT7
- PCINT1C: PCINT8 PCINT14
- PCINT2D: PCINT16 PCINT23
- É necessário testar qual pino gerou a interrupção!
- INT0 e INT1 podem gerar interrupções na borda de subida, descida ou na manutenção do nível do estado lógico do pino.

REGISTRADORES:

- EICRA (INT0 e INT1): pg. 163
- EIMSK (INT0 e INT1): pg. 164
- PCICR (Int. Externa): pg. 165
- PCMSK0 (Int. Externa): pg. 165
- PCMSK1 (Int. Externa): pg. 166
- PCMSK2 (Int. Externa): pg. 167

Exemplo de Interrupção externa por mudança de pino:

Exercício do laboratório (Atmel Studio)

int_mudança de pino

Exemplo de Interrupção externa nos pinos INT0 e INT1

Exempo no Atmel Studio:

int_INT0_INT1

INTERRUPÇÃO INTERNA: timer

Configuração do temporizador/contador: modo normal para gerar interrupção de timer Página 211

ISR(TIMER1_OVF_vect); // Protótipo da Interrupção TIMER1 do TC1.

```
main() {
...

TCCR1A = 0; // timer oper.Normal OC1A e OC1B desconect. pg.217

TCCR1B = 0; // TOP=0xffff, limpa registrador

TCCR1B |= (1<<CS10)|(1 << CS12); // configura prescaler 1024

TCNT1 = 0xC2F7; // valor para que estouro ocorra em 1 segundo

// 65536-(16MHz/1024)/1Hz = 65536 - 15.625 =

// 49911(0xC2F7),pois a contagem inicia de

// TCNT1 até 65535

TIMSK1 |= (1 << TOIE1); // habilita interrupção do TC1
}
```