Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subiectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP

(DEFUN F(L)

(COND

((NULL L) NIL)

(> (F (CAR L)) 0) (CONS (F (CAR L)) (F (CDR L)))))

(T (F (CAR L)))

)
```

Rescrieți această definiție pentru a evita apelul recursiv repetat (**F (CAR L))**. Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

C.	Pentru o valoare N dată, să se genereze lista permutărilor cu elementele N, N+1,,2*N-1 având proprietatea că valoare absolută a diferenței dintre două valori consecutive din permutare este <=2. Se vor scrie modelele matematice și modele	ea
,	absolută a diferenței dintre două valori consecutive din permutare este <=2. Se vor scrie modelele matematice și modele de flux pentru predicatele folosite.	ele

D. Se consideră o listă neliniară. Să se scrie o funcţie LISP care să aibă ca rezultat lista iniţială din care au fost eliminate toate apariţiile unui element e. Se va folosi o funcţie MAP.
<u>Exemplu</u>

a) dacă lista este (1 (2 A (3 A)) (A)) şi e este A => (1 (2 (3))) NIL)
b) dacă lista este (1 (2 (3))) şi e este A => (1 (2 (3)))