Novembro 2012

Nome completo:_____ Número:_____

1. (3 valores) Considere a equação

$$\frac{dy}{dx} - 6xy = 2xy^2 \tag{1}$$

(a) Usando a mudança de variável $u=\displaystyle\frac{1}{y}$ mostre que a equação (1) reduz-se a

$$\frac{du}{dx} + 6xu = -2x \tag{2}$$

(b) Resolva a equação (2) e, em seguida, escreva a solução geral de (1).

2	(7.5 valores)	Cada res	sposta correcta	tem cotação	o 1 5 valores	Cada respos	ta errada descont	a 0 5 valores
۷.	(1,5 values	l Caua ies	розта соптеста	tem cotação	U 1,U Valuics.	Caua respus	la citaua uescotti	a U.J Valules.

(~)	۸	colução	4~	problema	com	condição	inicia	ı.
ı a ı	А	solucao	ao	problema	com	condicao	inicia	I:

$$\begin{cases} y' = 2y \\ y(1) = 2 \end{cases}$$

- \square é a função $y(t)=e^{2t}+2$
- \Box é a função $y(t) = 2e^{2t-2}$
- ☐ não é nenhuma das duas funções anteriores.

(b) A função
$$y(t) = \cos(t^2)$$
 é solução da EDO $y' + aty = 0$

- $\square \ \, \mathrm{se} \,\, a=1$
- \square se a=-2
- \square y nunca é solução desse tipo de EDO.

(c) A mudança de variável
$$u=t^2y$$
 transforma a EDO $y'=\frac{\cos{(t^2y)}-2ty}{t^2}$

- \Box na EDO $u' = t^2 \cos u$
- \square na EDO $u' = \cos u$
- ☐ em nenhuma EDO das anteriores.
- (d) A solução geral da EDO $y'' + 16y = e^t$
 - \square é $y(t)=rac{1}{17}e^t+C_1e^{4t}+C_2e^{-4t}$, com C_1,C_2 constantes;
 - \Box é $y(t) = \frac{1}{17}e^t + C_1\cos(4t) + C_2\sin(4t)$, com C_1, C_2 constantes;
 - ☐ não é nenhuma das indicadas acima.
- (e) Suponha-se que $y_1(t) = \ln t$ e $y_2(t) = 2t + \ln t$ são soluções de uma EDO linear homogénea de ordem 2. A solução dessa EDO verificando y(1) = 2 e y'(1) = 2
 - $\Box \ \text{\'e} \ y(t) = 2 \ln t + 2t$
 - \Box é y(t) = 2t
 - $\Box \ \, \text{\'e} \ \, y(t) = 2 \ln t + 2(\ln t + t)$
- 3. (1,5 valores) Utilise o método numérico de Euler com passo h=1/2 para calcular o valor aproximado da solução do problema

$$\frac{dx}{dt} + x^2 = t, \qquad x(0) = 0,$$

no ponto t=2.

4. (3 valores) Suponha que a evolução da temperatura T de um objecto, ao longo do tempo t, num ambiente com temperatura constante T_0 é dada pela chamada Lei de Newton do arrefecimento:

$$\frac{dT}{dt} + kT = kT_0,$$

onde k > 0 é uma constante real.

Um computador trabalha à temperatura de $70^{o}C$ numa sala com temperatura constante de $20^{o}C$. O computador é desligado a uma hora desconhecida, mas às 18h a sua temperatura é de $50^{o}C$ e passado uma hora é de $40^{o}C$. A que horas foi desligado o computador?

5. (5 valores) Considere a equação do oscilador harmónico forçado

$$\frac{d^2x}{dt^2} + w^2x = \cos(wt),$$

onde w > 0 é uma constante real.

- (a) Determine a solução geral \boldsymbol{x}_h da equação homogénea correspondente.
- (b) Determine uma solução particular x_p da forma $x_p(t) = At \sin(wt)$, onde A é uma constante real a determinar.
- (c) Escreva a solução geral da equação dada. Justifique.
- (d) Calcule $\lim_{t\to +\infty} x(t)$ e explique a ocorrência de ressonâncias.
- (e) Determine a solução que satisfaz as condições iniciais x'(0) = x(0) = 0 e represente-a graficamente.