Forecast Time Series Data Project1 Alison Yao (yy2564)

Data Description

This project uses the monthly stock price of Netflix from 2002-06-01 to 2022-03-01 (238 observations) for time series forecast. The 2022-03-01 data is the latest entry because I obtained the data in late March from Yahoo Finance. By the time this report is graded, there may or may not be data for 2022-04-01, but I am not able to obtain it at the time being.

The head of the table is shown below:

NFLX_5y

Date	Open	High	Low	Close	Adj Close	Volume
2017-04-01	146.699997	153.520004	138.660004	152.199997	152.199997	149779000
2017-05-01	151.910004	164.750000	151.610001	163.070007	163.070007	116795800
2017-06-01	163.520004	166.869995	147.300003	149.410004	149.410004	135699700
2017-07-01	149.800003	191.500000	144.250000	181.660004	181.660004	185144700
2017-08-01	182.490005	184.619995	164.229996	174.710007	174.710007	136534400

Time Series Plot

First, we plot the time series plot of adjusted closing stock price. The Adj Close stock price grows exponentially over time as a general trend. Surprisingly, while Adj Close did not drop during COVID time (probably because streaming was a favorable entertainment during lockdown), it is declining sharply in recent months, starting from 2021-10-01.

There is strong evidence of level-dependent volatility, as the stock price is relatively stable in early years but much more volatile in recent years, which is especially easy to see if we take the difference of Adj Close price. Therefore, we take the natural log of adjusted closing stock price and plot another time series plot.

After taking log, we get rid of level-dependent volatility and linearize the exponential trend at the same time.

Model Selection

Now, for the first step of choosing an ARIMA model, we need to determine if we should difference the data and how many times should we difference the data if we need to. We can look at the ACF plot of LogAdjClose.

The hanging behavior is strong evidence that we should difference the data. Differencing once gives us:

Differencing twice shows strong evidence of over-differencing as lag-1 is significantly negative and close to -0.5.

Therefore, we conclude that we only need to difference once to make the data stationary, so we choose d = 1 in our ARIMA model.

As for the values of p and q, we can check the ACF and PACF of DifLogAdjClose, both of which are statistically significant at lag 1. Therefore, we choose p,q=0,1 and test the following models:

We know N = n - d = 238 - 1 = 237.

Without Constant					With Constant						
p	d	q	SS	AICc	p	d	q	SS	AICc		
0	1	0	6.10529	-865.14335	0	1	0	5.95598	-868.97718		
1	1	0	5.96747	-868.52041	1	1	0	5.85750	-870.87692		
0	1	1	5.97965	-868.03717	0	1	1	5.86326	-870.64398		
1	1	1	5.94664	-867.29740	1	1	1	5.85116	-869.06418		

The ARIMA(1,1,0) model with constant yields the smallest AICc -870.87692, so we choose ARIMA(1,1,0) with constant for all following procedures.

Estimation

The Minitab output for ARIMA(1,1,0) with constant is:

ARIMA Model: LogAdjClose

		of Param		
Type	Coef	SE Coef	T-Value	P-Value
AR 1	0.1286	0.0647	1.99	0.048
Constant	0.0218	0.0103	2.13	0.035

Number of observations: Original series 238, after differencing 237

Both the AR1 parameter and the constant are statistically significant, with p-values less than 0.05.

If we denote $\{x_t\}$ as the time series of Adj Close, $\{y_t\}$ as LogAdjClose and $\{z_t\}$ as DifLogAdjClose. LogAdjClose fits the ARIMA(1,1,0) model with a constant. The best estimate of the AR1 coefficient is 0.1286 and that of the constant is 0.0218. Therefore, the fitted model is $z_t = 0.0218 + 0.1286z_{t-1} + \epsilon_t$ where $z_t = y_t - y_{t-1} = \log x_t - \log x_{t-1}$.

Diagnostic Checking

The output of the Ljung-Box test is:

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	7.95	22.51	35.05	42.25
DF	10	22	34	46
P-Value	0.634	0.430	0.418	0.630

Since all 4 p-values are greater than 0.05, we fail to reject the null hypothesis that the model is inadequate. Therefore, we conclude that the model is adequate.

The plot of the residuals is as follows:

The residuals look quite random, with only a few with absolute values over 0.5.

The ACF and PACF of the residuals are as follows:

The residuals look uncorrelated. The plots do not indicate much inadequacy in the model.

Forecasting

The forecasts and 95% forecast intervals for 1-150 are as follows:

Forecasts from period 238

		95% Li	imits													
Period	Forecast	Lower	Upper	Actual												
239	5.96579	5.65629	6.2753		276	6.89054	4.70905	9.0720								
240	5.98990	5.52320	6.4566		277		4.70534	9.1258	317		4.76500					
241	6.01481	5.42878	6.6008		278		4.70200	9.1792		7.94145						
242	6.03982	5.35460	6.7250		279	6.96561	4.69902	9.2322		7.96647						
243	6.06484	5.29303	6.8366		280	6.99063	4.69638	9.2849		7.99149						
244	6.08986	5.24025	6.9395		281	7.01565	4.69407	9.3372		8.01651						
245		5.19401	7.0357		282		4.69208	9.3893		8.06655						
246		5.15291	7.1269		283		4.69039	9.4410		8.09157						
247			7.1209		284		4.68901	9.4924	325		4.80892					
1		5.11596			285		4.68791	9.5436		8.14162			357	8.91728	5.04716	12.7874
248		5.08248	7.2974		286		4.68708	9.5944		8.16664			358	8.94230	5.05592	12.8287
249		5.05194	7.3780		287		4.68653	9.6450		8.19166			359		5.06474	
250		5.02393	7.4560		288		4.68624	9.6954 9.7454		8.21668			360		5.07363	
251	6.26501	4.99814	7.5319		289		4.68640	9.7454		8.24170			361		5.08259	
252	6.29003	4.97431	7.6057		291		4.68685	9.7955	331		4.84654		362		5.09161	
253	6.31505	4.95223	7.6779		292		4.68753		332		4.85316		363		5.10070	
254	6.34007	4.93173	7.7484		293		4.68843	9.9434	333	8.31677	4.85989	11.7736	364		5.10985	
255	6.36509	4.91265	7.8175		294		4.68955	9.9923	334	8.34179	4.86671	11.8169	365		5.11907 5.12834	
256	6.39011	4.89487	7.8854		295		4.69089		335	8.36681	4.87363	11.8600	366 367		5.12834	
257	6.41514	4.87829	7.9520		296		4.69243		336	8.39183	4.88064	11.9030	368		5.14708	
258	6.44016	4.86280	8.0175		297	7.41599	4.69418	10.1378	337	8.41685	4.88774	11.9460	369		5.15654	
259	6.46518	4.84832	8.0820		298	7.44102	4.69612	10.1859	338	8.44188			370		5.16606	
260	6.49020	4.83479	8.1456		299	7.46604	4.69826	10.2338	339	8.46690			371		5.17563	
261		4.82213	8.2083		300		4.70058			8.49192			372	9.29261	5.18527	13.3999
262		4.81030	8.2702		301		4.70309			8.51694			373	9.31763	5.19496	13.4403
263		4.79923	8.3313		302		4.70578			8.54196			374		5.20471	
264		4.78889	8.3917		303		4.70864			8.56698			375		5.21451	
265	6.61531	4.77923	8.4514		304		4.71167			8.59200 8.61703			376		5.22437	
		4.77021			305			10.5175		8.64205			377		5.23429	
266	6.64033		8.5104		306		4.71822			8.66707			378		5.24426	
267	6.66535	4.76180	8.5689		307		4.72542			8.69209			379		5.25428	
268	6.69037	4.75397	8.6268		309		4.72925		349		4.97966		380 381		5.26436 5.27449	
269	6.71539	4.74668	8.6841		310		4.73323		350	8.74213			382		5.27449	
270	6.74041	4.73992	8.7409		311		4.73735		351		4.99610		383		5.29491	
271	6.76544	4.73365	8.7972		312		4.74162			8.79218			384		5.30519	
272	6.79046	4.72786	8.8531		313		4.74602			8.81720			385		5.31552	
273	6.81548	4.72253	8.9084		314		4.75057		354	8.84222			386		5.32591	
274	6.84050	4.71762	8.9634		315		4.75525		355		5.02986		387		5.33634	
275	6.86552	4.71313	9.0179		316	7.89140	4.76006	11.0227	356		5.03847		388	9.69295	5.34683	14.0391

The forecast looks reasonable. We can see that the point estimate shows a linear trend because the model is with a constant and d = 1. The forecast interval has a tendency to blow up because LogAdjClose is not stationary.

According to the back-testing at t = 150, 100 and 50, the forecast intervals are wide enough to cover all datapoints, but the forecast intervals seem excessively wide.

Conclusions

Since our best model is an ARIMA(1,1,0) with a constant/drift and the constant term is greater than 0, we conclude that Netflix is a good company to buy and hold. We can do an out-of-sample test for the forecast in the future when we have future data.