Problem Set 4

[Your Full Name Here]

MATH 100 — Introduction to Proof and Problem Solving — Summer 2023

Problem 4.1.	
(a) Let $x \in \mathbb{Z}$. Prove that $3x + 1$ is even if and only if $5x - 2$ is odd.	
Solution.	
(b) Let $a, b \in \mathbb{Z}$. Prove that if $a + b$ and ab are of the same parity, then a and b are even.	
Solution.	

Problem 4.2.

(a)	Let $a, b \in \mathbb{Z}$, where $a \neq 0$ and $b \neq 0$. Prove that if $a \mid b$ and $b \mid a$, then $a = b$ or $a = -b$.	
	Solution.	
(b)	Let <i>x</i> and <i>y</i> be <i>even</i> integers. Prove that $x^2 \equiv y^2 \mod 16$ if and only if either	
	(1) $x \equiv 0 \mod 4$ and $y \equiv 0 \mod 4$; or	
	(2) $x \equiv 2 \mod 4$ and $y \equiv 2 \mod 4$	
	Solution.	
(c)	Prove for every two real numbers x and y we have $ x + y \ge x - y $.	
	Solution.	

Problem 4.3.

(a) Prove that for every two sets A and B , the sets $A \setminus B$, $B \setminus A$ and $A \cap B$ are particle of the Give an element-wise proof.	irwise disjoint.
Solution.	
(b) Show, using set operation laws, that for every three sets A , B and C that $A \setminus (B \setminus C) = (A \cap C) \cup (A \setminus B).$	
$A \setminus (B \setminus C) = (A \cap C) \cup (A \setminus B).$ Solution.	

Collaborators:

References:

• [Book(s): Title, Author]

• [Online: Link]

• [Notes: Link]

Fin.