# Generation of a Square wave using Astable Multivibrator

 by connecting the bistable multivibrator with an RC circuit in a feedback loop





## Square wave Generator

The Square Wave Generator Using Op amp means the astable multivibrator circuit using op-amp, which generates the square wave of required frequency.

It looks like a comparator with hysteresis (schmitt trigger), except that the input voltage is replaced by a capacitor. The circuit has a time dependent elements such as resistance and capacitor to set the frequency of oscillation.

When  $V_o$  is at +Vsat, the feedback voltage is called the upper threshold voltage  $V_{IIT}$  and is given as

$$V_{UT} = \frac{R_1 \cdot + V_{sat}}{R_1 + R_2}$$

When  $V_o$  is at —Vsat, the feedback voltage is called the lower-threshold voltage  $V_{LT}$  and is given as  $V_{LT} = \frac{R_1 . - V_{sat}}{R_1 + R_2}$ 



### Operation:

- When power is turn ON:  $V_{\text{out}}$  automatically swings either to  $+V_{\text{sat}}$  or to  $V_{\text{sat}}$  since these are the only stable states allowed by the schmitt trigger.
- Assume it swings to  $+V_{sat}$ : With Vo=  $+V_{sat}$  and  $V_p = V_{UT}$  and capacitor starts charging towards  $+V_{sat}$  through the feedback path provided by the resistor  $R_f$  to the inverting (—) input.
- As long as the capacitor voltage  $V_c$  is less than  $V_{uT}$ , the output voltage remains at +Vsat.
- As soon as  $V_c$  charges to a value slightly greater than  $V_{uT}$ , the (—) input goes positive with respect to the (+) input. This switches the output voltage from  $+V_{sat}$  to  $-V_{sat}$  and we have  $V_p = V_{LT}$  which is negative with respect to ground. As  $V_o$  switches to  $-V_{sat}$ , capacitor starts discharging via  $R_f$ .
- The current I discharges capacitor to 0 V and recharges capacitor to VLT. When Vc becomes slightly more negative than the feedback voltage VLT, output voltage V. switches back to +V<sub>sat</sub>



#### Waveform

- As a result, the condition is reestablished except that capacitor now has a initial charge equal to VLT.
- The capacitor will discharge from  $V_{LT}$  to OV and then recharge to  $V_{UT}$ , and the process is repeating.
- Once the, initial cycle is completed, the waveforms become periodic.



## Frequency of Oscillations

• The frequency of oscillation is determined by the time it takes the <u>capacitor</u> to charge from  $V_{LT}$  to  $V_{UT}$  and vice versa. The voltage across the capacitor as a function of time is given as

$$V_C(t) = V_{max} + (V_{initial} - V_{max}) e^{(-t/T)}$$

- where  $V_c(t)$  is the instantaneous voltage across the capacitor.
- V<sub>initial</sub> is the initial voltage
- $V_{max}$  is the voltage toward which the capacitor is charging.

• Let us consider the charging of capacitor from  $V_{LT}$  to  $V_{UT}$ , where  $V_{LT}$  is the initial voltage,  $V_{UT}$  is the instantaneous voltage and +  $V_{sat}$  is the maximum voltage. At t =  $T_{l}$ , voltage across capacitor reaches  $V_{UT}$  and therefore equation becomes

$$V_{UT} = +V_{sat} + (V_{LT} - +V_{sat}) e^{(-T_{I}/R_{f}C)}$$

$$\therefore -(V_{LT} - +V_{sat}) e^{(-T_{I}/R_{f}C)} = +V_{sat} - V_{UT}$$

$$\therefore e^{(-T_{I}/R_{f}C)} = \frac{(+V_{sat} - V_{UT})}{(+V_{sat} - V_{LT})}$$

$$\frac{-T_{I}}{R_{f}C} = ln \left(\frac{+V_{sat} - V_{UT}}{+V_{sat} - V_{LT}}\right)$$

$$T_{I} = -R_{f}C ln \left(\frac{+V_{sat} - V_{UT}}{+V_{sat} - V_{LT}}\right)$$

$$= R_{f}C ln \left(\frac{+V_{sat} - V_{LT}}{+V_{sat} - V_{UT}}\right)$$

• The time taken by capacitor to charge from  $V_{UT}$  to  $V_{LT}$  is same as time required for charging capacitor from  $V_{LT}$  to  $V_{UT}$ . Therefore, total time required for one oscillation is given as

$$T = 2T_{1}$$

$$= 2R_{f} C \ln \left( \frac{+V_{\text{sat}} - V_{\text{LT}}}{+V_{\text{sat}} - V_{\text{UT}}} \right)$$

$$T = 2R_{f} C \ln \left( \frac{1+\beta}{1-\beta} \right)$$

$$V_{UT} = +\beta V_{sat}$$

$$V_{UT} = +\beta V_{sat}$$

- The frequency of oscillation can be determined as  $f_o = 1/T$ , where T represents the time required for one oscillation.
- Substituting the value of T we get,

$$f_o = \frac{1}{2 R_f C \ln \left( \frac{+V_{\text{sat}} - V_{\text{LT}}}{+V_{\text{sat}} - V_{\text{UT}}} \right)} \qquad f_o = \frac{1}{2 R_f C \ln \left( \frac{1 + \beta}{1 - \beta} \right)}$$

#### Monostable Multivibrator

- At initial power on (that is t = 0), the output  $(V_{OUT})$  will saturate towards either the positive rail (+Vcc), or to the negative rail (-Vcc), since these are the only two stable states allowed by the op-amp.
- Lets assume for now that the output has swung towards the positive supply rail,  $+V_{cc}$ . Then the voltage at the non-inverting input,  $V_B$  will be equal to  $+Vcc*\beta$  where  $\beta$  is the feedback fraction.
- The inverting input is held at 0.7 volts, the forward volt drop of diode,  $D_1$  and clamped to 0v (ground) by the diode, preventing it from going any more positive. Thus the potential at  $V_A$  is much less than that at  $V_B$  and the output remains stable at +Vcc.
- At the same time, the capacitor, (C) charges up to the same 0.7 volts potential and is held there by the forward-biased voltage drop of the diode.



#### Monostable Multivibrator

- If we were to apply a negative pulse to the non-inverting input, the 0.7v voltage at  $V_A$  now becomes greater than the voltage at  $V_B$  since  $V_B$  is now negative. Thus the output of the Schmitt configured op-amp switches state and saturates towards the negative supply rail, -Vcc. The result is that the potential at  $V_B$  is now equal to -Vcc\* $\beta$ .
- This temporary meta-stable state causes the capacitor to charge up exponentially in the opposite direction through the feedback resistor, R from +0.7 volts down to the saturated output which it has just switched too, -Vcc. Diode, D<sub>1</sub> becomes reverse-biased so has no effect. The capacitor, C will discharge at a time constant τ = RC.
- As soon as the capacitor voltage at V<sub>A</sub> reaches the same potential as V<sub>B</sub>, that is

-Vcc\* $\beta$ , the op-amp switches back to its original permanent stable state with the output saturated once again at +V<sub>cc</sub>.



#### Waveform

- Note that once the timing period is complete and the op-amps output changes back to its stable state and saturates towards the positive supply rail, the capacitor tries to charge up in reverse to +Vcc but can only charge to a maximum value of 0.7v given by the diodes forward voltage drop. We can show this effect graphically as:
- Then we can see that a negative-going trigger input, will switch the op-amp monostable circuit into its temporary unstable state. After a time delay, T while the capacitor, C charges up through the feedback resistor, R, the circuit switches back to its normal stable state once the capacitor voltage reaches the required potential.



#### With RC differentiator circuit

- The advantage of using a differentiator circuit is that any constant DC voltage or slowly varying signal will be blocked allowing only rapidly varying trigger pulses to initiate the monostable timing period. Diode, D ensures that the trigger pulse arriving at the op-amps non-inverting input is always negative.
- Generally for a RC differentiator circuit, the peak value of the negative spike is approximately equal to the magnitude of the trigger waveform. Also, as a general rule-of-thumb, for an RC differentiator circuit to produce good sharp narrow spikes, the time constant, (τ) should be at least ten times smaller than the input pulse width.



#### Time Period

- Solution for single time constant RC circuit,  $v_o = V_f + (V_i V_f)e^{-t/RC}$
- For the circuit,  $V_f = -V_{sat}$ , and  $V_i = V_D$ ;  $v_c = -V_{sat} + (V_D + V_{sat})e^{-t/RC}$

• At t = T 
$$v_c = -\beta V_{sat}$$
 then  $-\beta V_{sat} = -V_{sat} + (V_D + V_{sat})e^{-T/RC}$ 

- Pulse width T  $T = RC \ln \frac{\left(1 + V_D/V_{sat}\right)}{1 \beta}$
- If,  $V_{sat} >> V_D R_1 = R_2$  so that  $\beta = 0.5$ , T = 0.69RC

#### 555 Timer

- The circuit consists of two comparators, an SR flip-flop, and a transistor Q1 that operates as a switch. One power supply (VCC) is required for operation.
- A resistive voltage divider, consisting of the three equal-valued resistors labeled  $R_1$ , is connected across  $V_{CC}$  and establishes the reference (threshold) voltages for the two comparators. These are  $V_{TH} = 2/3 \ V_{CC}$  for comparator 1 and  $V_{TL} = 1/3 V_{CC}$  for comparator 2.



- Here note that an SR flip-flop is a bistable circuit having complementary outputs, denoted Q and Q. In the  $set\_state$ , the output at Q is "high" (approximately equal to  $V_{cc}$ ) and that at Q is "low" (approximately equal to 0 V).
- In the other stable state, termed the *reset* state, the output at Q is low and that  $at\overline{Q}$  is high. The flip-flop is set by applying a high level ( $V_{cc}$ ) to its set input terminal, labeled S. To reset the flip-flop, a high level is applied to the reset input terminal, labeled R. Note that the reset and set input terminals of the flip-flop in the 555 circuit are connected to the outputs of comparator 1 and comparator 2, respectively.
- The positive-input terminal of comparator 1 is brought out to an external terminal of the 555 package, labeled Threshold. Similarly, the negative-input terminal of comparator 2 is connected to an external terminal labeled Trigger, and the collector of transistor Q1 is connected to a terminal labeled Discharge.