

Aprendizagem de Máquina

Alessandro L. Koerich / Alceu S. Britto

Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR)

Aprendizagem Baseada em Instâncias

Plano de Aula

- Introdução
- Espaço Euclidiano
- Aprendizagem Baseada em Instâncias
- Regra k vizinhos mais próximos (k-NN)
- Exemplos

Introdução

- O problema central de aprendizagem é induzir funções gerais a partir de exemplos de treinamento específicos.
- Muitos métodos de aprendizagem constroem uma descrição geral e explícita da função alvo a partir de exemplos de treinamento (AD, NB, etc...).
- Os métodos de aprendizagem baseados em instâncias simplesmente armazenam os exemplos de treinamento.
- A generalização é feita somente quando uma nova instância tiver que ser classificada.

Introdução

 Métodos de aprendizagem baseados em instâncias assumem que as instâncias podem ser representadas como pontos em um espaço Euclidiano.

Introdução

- Os métodos de aprendizagem baseados em instâncias são métodos não paramétricos.
- Métodos não paramétricos: podem ser usados com distribuições arbitrárias e sem a suposição de que a forma das densidades são conhecidas.

Aprendizagem Baseada em Instâncias

 A aprendizagem consiste somente em armazenar os exemplos de treinamento <x₁,c₁>,
<x₂,c₂> . . . <x_n,c_n>.

vetor de atributos ou características

valor do conceito alvo ou classe

 Após a aprendizagem, para encontrar o valor do conceito alvo (classe) associado a uma instância de testes <x_t, ? >, um conjunto de instâncias similares são buscadas na memória e utilizadas para classificar a nova instância.

Aprendizagem Baseada em Instâncias

Aprendizagem Baseada em Instâncias

- No final teremos um conjunto de distâncias (medida de similaridade) entre a instância de teste x_t e todos as instâncias de treinamento x₁, x₂,...,x_n
- Qual valor de conceito alvo (classe) atribuímos a instância x_t?

O conceito alvo associado ao exemplo de treinamento mais similar !!

Aprendizagem Baseada em Instâncias

- Isto é, pegamos a instância de treinamento cuja distância seja a menor e verificamos a classe associada a esta instância.
- Suponha que a distância dx₉x_t seja a menor entre as n distâncias avaliadas, logo a instância mais próxima da instância de teste x_t é <x₉,c₉>.
- Assim, atribuímos à x_t a classe associada à x₉, ou seja, c₉!!!

Aprendizagem Baseada em Instâncias

- Observações importantes:
 - Constroem uma aproximações para a função alvo para cada instância de teste diferente.
 - Constrói uma aproximação local da função alvo.
 - Podem utilizar representações mais complexas e simbólicas para as instâncias
 - Uma desvantagem é o alto custo para classificação.
 - Toda computação ocorre no momento da classificação !!!
 - Aumenta com a quantidade de exemplo de treinamento.

Aprendizagem k-NN

- k-NN = k Nearest Neighbor = k Vizinhos mais Próximos
- O algoritmo k–NN é o método de aprendizagem baseado em instâncias mais elementar.
- O algoritmo k–NN assume que todas as instâncias correspondem a pontos em um espaço n–dimensional.
- Os "vizinhos mais próximos" de uma instância são definidos em termos da distância Euclidiana.

Regra k-NN

A regra dos vizinhos mais próximos:

Meta: Classificar x_t atribuindo a ele o rótulo representado mais freqüentemente dentre as k amostras mais próximas e utilizando um esquema de votação.

Aprendizagem k-NN

 Vamos considerar uma instância arbitrária x que é descrita pelo vetor de características:

$$x = \langle a_1(x), a_2(x), ..., a_n(x) \rangle$$

onde $a_r(x)$ representa o valor do r—ésimo atributo da instância x.

	a ₁	<i>a</i> ₂		a_n
x				

Aprendizagem k-NN

 Então a distância Euclidiana entre duas instâncias x_i e x_j é definida como d(x_i, x_j), onde:

$$d(x_i, x_j) \equiv \sqrt{\sum_{r=1}^n \left(a_r(x_i) - a_r(x_j)\right)^2}$$

Algoritmo k-NN

Algoritmo de treinamento

 Para cada exemplo de treinamento <x,c>, adicione o exemplo à lista training_examples

Algoritmo de classificação

- Dada uma instância x_t a ser classificada,
 - Faça x₁, ...,x_k representar as k instâncias de training_examples que estão mais próximas de x_t
 - Retorne

$$f(x_t) \leftarrow \underset{c \in C}{\operatorname{arg max}} \sum_{i=1}^k \delta(c, f(x_i))$$

onde $\delta(a,b)=1$ se a=b e $\delta(a,b)=0$ caso contrário.

Aprendizagem k-NN

FIGURE 4.15. The k-nearest-neighbor query starts at the test point \mathbf{x} and grows a spherical region until it encloses k training samples, and it labels the test point by a majority vote of these samples. In this k=5 case, the test point \mathbf{x} would be labeled the category of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Regra k-NN

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the category of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Algoritmo *k*–NN

Aprendizagem k-NN

- Supondo:
 - n exemplos de treinamento rotulados;
 - Vetores com d dimensões;
 - buscamos o exemplo mais próximo de uma instância de teste x_t (k=1).
- A eficiência do algoritmo k-NN = O(dn):
 - inspeciona cada exemplo armazenado, um após o outro;
 - calcula a distância Euclidiana até $x_t[O(d)]$;
 - retém a identidade somente do mais próximo;

Aprendizagem k-NN

- Existem técnicas para reduzir a computação do algoritmo k-NN:
 - distância parcial;
 - pré-estruturação;
 - edição dos protótipos armazenados;

Consultar pgs 185 e 186, R. O. Duda, P. E. Hart e D. G. Stork, *Pattern Classification*, Wiley Interscience, 2001.

k-NN com Distância Ponderada

- Refinamento do k–NN:
 - Ponderar a contribuição de cada um dos k vizinhos de acordo com suas distâncias até o ponto x_t que queremos classificar, dando maior peso aos vizinhos mais próximos.
- Podemos ponderar o voto de cada vizinho, de acordo com o quadrado do inverso de sua distância de x_t.

$$\hat{f}(x_t) \leftarrow \underset{c \in C}{\operatorname{arg\,max}} \sum_{i=1}^k w_i \delta(c, f(x_i)) \qquad w_i \equiv \frac{1}{d(x_t, x_i)^2}$$

• Porém, se $x_t = x_i$, o denominador $d(x_t, x_i)^2$ torna—se zero. Neste caso fazemos $f(x_t) = f(x_i)$.

k-NN com Distância Ponderada

- Todas as variações do algoritmo k–NN consideram somente os k vizinhos mais próximos para classificar o ponto desconhecido.
- Uma vez incluída a ponderação pela distância, não há problemas em considerar todos os exemplos de treinamento:
 - Exemplos muito distantes terão pouco efeito em $f(x_i)$.
 - Desvantagem: mais lento

Resumo

- Métodos de aprendizagem baseados em instâncias não necessitam formar uma hipótese explícita da função alvo sobre o espaço das instâncias.
- Eles formam uma aproximação local da função alvo para cada nova instância a "classificar".

Resumo

- O k-NN é um algoritmo baseado em instâncias para aproximar funções alvo de valor real ou de valor discreto, assumindo que as instâncias correspondem a pontos em um espaço d-dimensional.
- O valor da função alvo para um novo ponto é estimada a partir dos valores conhecidos dos k exemplos de treinamento mais próximos.

Resumo

Vantagens:

- habilidade para modelar funções alvo complexas por uma coleção de aproximações locais menos complexas.
- A informação presente nos exemplos de treinamento nunca é perdida.

Dificuldades:

- Tempo?
- Determinação de uma métrica.