Problem 3.60 Let A = [2, 5], B = [3, 7], C = [1, 3], D = [2, 4]. Compute each of the following.

$$(a) (A \cap B) * (C \cap D)$$

$$(A \cap B) = \{ \}$$

$$(C \cap B) = \{ \}$$

$$(A \cap B) * (C \cap D) = \{ \}$$

$$(b) (A * C) \cap (B * D)$$

$$(A * C) = \{ [2, 2], [2, 4], [5, 2], [5, 4] \}$$

$$(B * D) = \{ [3, 2], [3, 4], [7, 2], [7, 4] \}$$

$$(A * C) \cap (B * D) = \{ \}$$

$$(e) A * (B \cap C)$$

$$A = [2, 5]$$

$$(B \cap C) = \{ 3 \}$$

$$A * (B \cap C) = \{ [2, 3], [5, 3] \}$$

$$(f) (A * B) \cap (A * C)$$

$$(A * B) = \{ [2, 3], [2, 7], [5, 3], [5, 7] \}$$

$$(A * C) = \{ [2, 1], [2, 3], [5, 1], [5, 3] \}$$

 $(A * B) \cap (A * C) = \{[2, 3], [5, 3]\}$

Problem 3.61 Let A, B, C and D be sets. Determine whether each of the following statements is true or false. If a statement is true, prove it. Otherwise, provide a counterexample.

(a) $(A \cap B) * (C \cap D) = (A * C) \cap (B * D)$: True

Let (x, y) be an element in $(A \cap B) * (C \cap D)$. This means that x is in A and B, and that y is in C and D.

Therefore, (x, y) is also in A * C and B * D. Hence, (x, y) is in the intersection of A * C and B * D, which is $(A * C) \cap (B * D)$.

Now we have to prove that $(A * C) \cap (B * D) = (A \cap B) * (C \cap D)$.

Let (x,y) be an element in $(A*C)\cap (B*D)$. Then, x is in A and y is in C, and x is also in B and y is in D.

Therefore, x is in A and B, and y is in C and D. This means that (x,y) is in the product of $(A \cap B)$ and $C \cap D$, which is $(A \cap B) * (C \cap D)$, meaning our statement is true.

$$(c) \ A * (B \cap C) = (A * B) \cap (A * C)$$
: True

Proof: we need to show that each element in $A*(B\cap C)$ is also in $(A*B)\cap (A*C)$, and vice versa.

Let (x, y) be an element in $A * (B \cap C)$. Then, x is in A, and y is in both B and C. Therefore, (x, y) is in A * B and A * C. Hence, (x, y) is in the intersection of $A \times B$ and $A \times C$, which is $(A * B) \cap (A * C)$.

Conversely, let (x, y) be an element in $(A * B) \cap (A * C)$. Then, x is in A, and y is in both B and C. Therefore, y is in the intersection of B and C, which is $B \cap C$.

Hence, (x, y) is in the product of A and $(B \cap C)$, which is $A * (B \cap C)$.

(e)
$$A * (A * B) = (A * B) \setminus (A * C)$$
: False Counterexample: $A = \{1\}, B = \{2\}, and C = \{3\}$

Problem 3.62 If A and B are sets, conjecture a way to rewrite $(A * B)^C$ in a way that involves A^C and B^C and then prove your conjecture.

Problem 4.4 For all $n \in N, \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Base Case
$$(n = 1)$$
:

$$\sum_{i=1}^{1} i = \frac{1(1+1)}{2}$$

$$1 = 1$$

Now we have proven that the base case, (n = 1), is true inductive step:

next we assume that the statement is true for n=k $\sum_{i=1}^k = \frac{k(k+1)}{2}$

we must then prove that the statement is true for n = k + 1, or $\frac{k+1(k+2)}{2}$

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + k + 1$$

$$= \sum_{i=1}^{k} i + k + 1$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

Now that we have proven that the statement is true for k + 1 the statement is proven using induction.

Problem 4.5 For all $n \in \mathbb{N}$, 3 divides $4^n - 1$.

This problem can be stated as $3|4^n-1=(4^n-1=3i)$ for some $i\in\mathbb{Z}$

Base case (n = 1):

$$4^1 - 1 = 3i$$

$$3 = 3i$$

$$i = 1$$

there exists an i such that 3 times i is equal to $4^{1} - 1$ and therefore we have proven our base case.

inductive step: Now assuming that the statement is true for all n=k we must prove it is true for all n=k+1

$$4^{k} - 1$$
 = $3i$
 4^{k} = $3i + 1$
 $4^{k} * 4$ = $(3i + 1)4$
 4^{k+1} = $12i + 4$
 $4^{k+1} - 1$ = $12i + 3$
 $4^{k+1} - 1$ = $3(4i + 1)$
 $4^{k+1} - 1$ = $3j$ for some $j \in \mathbb{Z}$

now we have proven that the statement is true for n = k+1 and therefore the statement is proven using induction.

Problem 4.6 For all $n \in \mathbb{N}$, 6 divides $n^3 - n$.

the statement can be expressed as $n^3-n=6i$ for some $i\in\mathbb{Z}$ Base case (n=0): $0^3-0=6i$ i=0

now we have proven that our statement is true for our base case inductive step: now assuming that the statement is true for all n=k we must prove that it is true for n=k+1

$$k^{3} - k = 6i$$

$$k^{3} - k + 3k^{2} + 3k = 6i + 3k^{2} + 3k$$

$$k^{3} + 3k^{2} + 3k - k = 6i + 3k^{2} + 3k$$

$$k^{3} + 3k^{2} + 3k - k + 1 - (k + 1) = 6i + 3k^{2} + 2k$$

$$(k + 1)^{3} - (k + 1) = 6i + 3k^{2} + 2k$$

now we have proven that the statement is true for n = k+1 and our statement is proven using induction.

Problem 4.7 Let $p_1, p_2, ..., p_n$ be n distinct points arranged on a circle. Then the number of line segments joining all pairs of points is $\frac{n^2-n}{2}$.

Problem 4.8 Consider a grid of square that is 2^n squares wide by 2^n squares long, where $n \in N$. One of the squares has been cut out, but you do not know which one! You have a bunch of L-shapes made up of 3 squares. Prove that you can perfectly cover this chess-board with the L-shapes (with no overlap) for any $n \in N$. Figure 4.1 depicts one possible covering of the case involving n = 2 and a fixed cut-out square.

Figure 4.1: One possible covering for the case involving n=2 for Problem 4.8.

5