1 Toposort of a binary relation. Kahn's algorithm

Определение

Дано отношение $r\subseteq A^2$, отношение r^L называется **топологической сортировкой** r, тогда и только тогда, когда

- $\bullet \ r \subseteq r^L$
- \bullet r^L линейный порядок на A

замечание

Если \leq - конечный линейный порядок на $A = \{a_1, \ldots, a_n\}$, то его диаграмма Хассе будет выглядеть как цепь:

$$a_{i_1} \leq a_{i_2} \leq \dots a_{i_n}$$

где все индексы i_j различны.

Алгоритм (Кана)

Дано отношение r, построим r^L . Начнём с инициализации двух переменных:

- \bullet S множество всех элементов из A без входящих рёбер,
- L пустая последовательность упорядоченных элементов из A.

Затем мы меняем S и L следующим циклом:

```
while S is non-empty do
    remove a node n from S
    add n to tail of L
    for each node m with an edge e from n to m do
        remove edge e from the graph
        if m has no other incoming edges then
            insert m into S
if graph has edges then
        return error (graph has at least one cycle)
else
    return L (a topologically sorted order)
```

2 Replacement theorem for propositional formulas (semantic)

Теорема (о семантической замене)

Пусть ϕ - формула, $\psi \sqsubseteq \phi$ - подформула и $\psi \sim \psi'$. Тогда если ϕ' является результатом замены некоторого вхождения подформулы ψ на ψ' , то $\phi \sim \phi'$

Доказательство

Доказывается индукцией по разности глубин $n=d(\phi)-d(\psi)$. Основание индукции: при $n=0,\ d(\phi)=d(\psi),$ и, следовательно, $\phi=\psi$. Шаг индукции. Предположим, что утверждение доказано для n, докажем его для n+1. Пусть $d(\phi)-d(\psi)=n+1>0,$ тогда имеет место один из следующих случаев:

- $\phi = \neg \chi$
- $\phi = (\chi_1 \wedge \chi_2)$
- $\bullet \ \phi = (\chi_2 \vee \chi_2)$
- $\bullet \ \phi = (\chi_1 \to \chi_2)$

Рассмотрим каждый из этих случаев. Пусть $\phi = \neg \chi$, $\psi \sqsubseteq \phi$. Тогда по лемме $4 \psi \sqsubseteq \chi$. Так как $d(\chi) = d(\phi) - 1$, то разность глубин ψ и χ будет равна $d(\chi) - d(\psi) = n$. Тогда., по предположению индукции, если χ' является результатом замены соответствующего вхождения ψ на ψ' , то по лемме 3 верно, что: $\phi' = \neg \chi' \sim \neg \chi = \phi$. Пусть $\phi = (\chi_1 \wedge \chi_2)$, $\psi \sqsubseteq \phi$. Тогда по лемме $4 \psi \sqsubseteq \chi_1$ или $\psi \sqsubseteq \chi_2$. Пусть ψ является подформулой формулы χ_1 . Так как $d(\chi_1) \leq d(\phi) - 1$, то разность глубин ψ и χ_1 будет равна $d(\chi_1) - d(\psi) \leq n$. Тогда, по предположению индукции, если χ'_1 является результатом замены соответствующего вхождения ψ в формулу χ_1 на ψ' , то по лемме 3 верно, что: $\phi' = (\chi'_1 \wedge \chi_2) \sim (\chi_1 \wedge \chi_2) = \phi$. Остальные случаи доказываются аналогично. \square

Лемма 3.

Даны две формулы: $\phi_1 \sim \phi_2$ и $\psi_1 \sim \psi_2$, верно, что

- 1. $\neg \phi_1 \sim \neg \phi_2$
- 2. $(\phi_1 \wedge \psi_1) \sim (\phi_2 \wedge \psi_2)$
- 3. $(\phi_1 \vee \psi_1) \sim (\phi_2 \vee \psi_2)$
- 4. $(\phi_1 \to \psi_1) \sim (\phi_2 \to \psi_2)$

Доказательство

Пусть $\phi_1 \sim \phi_2$. Покажем, что $\neg \phi_1 \sim \neg \phi_2$. Действительно, пусть γ - произвольное означивание. Тогда $\gamma(\neg \phi_1) = 1 \setminus \gamma(\phi_1) = 1 \setminus \gamma(\phi_2) = \gamma(\neg \phi_2)$. Теперь рассмотрим $\phi_1 \sim \phi_2$ и $\psi_1 \sim \psi_2$, γ - означивание. Отсюда следует, что $\gamma(\phi_1 \wedge \psi_1) = \gamma(\phi_1) \cap \gamma(\psi_1) = \gamma(\phi_2) \cap \gamma(\psi_2) = \gamma(\phi_2 \wedge \psi_2)$. Остальные случаи доказываются аналогично.

Лемма 4.

- 1. если $\psi \sqsubseteq \neg \phi$, то $\psi \sqsubseteq \phi$
- 2. если $\psi \sqsubset (\phi_1 \bullet \phi_2)$, то $\psi \sqsubseteq \phi_1$ или $\psi \sqsubseteq \phi_2$. Здесь $\bullet \in \{\land, \lor, \rightarrow\}$.

Доказательство

Докажем первое утверждение. Пусть $\psi \sqsubseteq \neg \phi$. Тогда ψ и ϕ две подформулы формулы $\neg \phi$, имеющие общие символы. Следовательно, по свойствам подформул $\phi \sqsubseteq \psi$, тогда $\phi = \psi$, или $\psi \sqsubseteq \phi$. Второе утверждение. Пусть $\psi \sqsubseteq (\phi_1 \bullet \phi_2)$. Тогда ψ , ϕ_1 и ϕ_2 - три подформулы формулы $\neg \phi$. Отметим, что ψ имеет общие символы с ϕ_1 , и, следовательно, $\psi \sqsubseteq \phi_1$, или же с ϕ_2 , и, следовательно, $\psi \sqsubseteq \phi_2$.

3 Theorem about the existence of a model (without proof), the completeness theorem for the predicate calculus

Теорема (существование модели)

Если Φ - непротиворечивое множество формул, то существует модель для Φ .

Теорема (о полноте, Гёдель)

Пусть Φ - множество формул, ψ - формула. Если $\Phi \models \psi$, то $\Phi \vdash \psi$, т.е. ψ может быть выведена из Φ .

Доказательство

Предположим, что $\Phi \not\models \psi$, т.е. ψ не может быть выведена из Φ . Тогда множество $\Phi \cup \{\neg \psi\}$ непротиворечиво. Действительно, если $\Phi \cup \{\neg \psi\}$ противоречиво, то существуют такие $\phi_1, \ldots, \phi_n \in \Phi$, что $\triangleright \phi_1, \ldots, \phi_n, \neg \psi \vdash \bot$. Но тогда $\triangleright \phi_1, \ldots, \phi_n \vdash \psi$, т.е. ψ может быть выведена из Φ . По теореме о существовании модели существует модель $\mathcal{M} \models \Phi \cup \{\neg \psi\}$. Но тогда $\mathcal{M} \models \Phi$ и $\mathcal{M} \not\models \psi$ противоречит $\Phi \models \psi$.