Adopted Levels, Gammas

	Н	istory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 111,2331 (2010)	30-Jun-2010

 $Q(\beta^{-})=-1.850\times10^{4} \text{ syst}; S(n)=1.897\times10^{4} \text{ 5}; S(p)=4395.5 \text{ 7}; Q(\alpha)=-9343.0 \text{ 4}$ 2012Wa38

Note: Current evaluation has used the following Q record -18506 syst 18974 50 4399 3 -9343 4 2009AuZZ.

 $\Delta Q(\beta^{-}) = 196(\text{syst}) (2009 \text{AuZZ}).$

 $Q(\beta^{-})=18510\ 200(\text{syst}),\ S(n)=18970\ 50,\ S(p)=4399\ 3,\ S(\alpha)=-9343\ 4\ (2003\text{Au03}).$

 $^{1}\text{H}(^{30}\text{S},^{30}\text{S})$, E=53 MeV/u: 2000Bl25,2001Kh17 and 2001Bl17 (same group): measured recoil proton spectra, deduced $\sigma(\text{E},\theta)$.

 1 H(31 S, 30 S), E=71 MeV/u: 2008Ga07 and 2007Ga46 (same group): measured Ey, particle- γ coincidence, reported 1192 γ , 2210 γ and 3402 γ .

³⁰S Levels

Cross Reference (XREF) Flags

- A 31 Ar β^+ p decay
- B $^{28}\text{Si}(^{3}\text{He,n}\gamma), ^{28}\text{Si}(^{3}\text{He,n})$
- C Coulomb excitation
- D $^{32}S(p,t)$

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{@}$	L	XREF	Comments
0	0+	1.178 s 5		ABCD	$\%\varepsilon + \%\beta^{+} = 100$
					J^{π} : L=0 in (p,t).
2210.6 [‡] 5	2+	156 fs 9		ABCD	$T_{1/2}$: From 1980Wi13. Others: 1.22 s 3 (1971Mo27), 1.18 s 4 (1967Ba36). J^{π} : L=2 in (p,t).
2210.0* 3	2	130 18 9		ADCD	$T_{1/2}$: Weighted average of 158 fs 12 (3 He,n γ) and 153 fs 13 (Coul. Ex.).
3402.6 [‡] 5	2+	109 fs 12		AB D	J^{π} : L=2 in (p,t).
3667.5 [‡] 10		>1 ps		AB	
3676 [‡] <i>3</i>	(1^{+})	97 fs <i>55</i>		AB D	J^{π} : Angular distribution consistent with 1^+ , does not agree with 0^+ in (p,t) .
4704 5	(3 ⁺)			D	E(level), J^{π} : Energy and angular distribution consistent with 3^{+} assignment; less likely possibility is 2^{+} (p,t).
4814 3	(2+)			D	J^{π} : From comparison of the 2+3 state location with the prediction by isobaric multiple mass equation (IMME) ((p,t) – 2010Se07).
5136 [‡] 2	(3 ⁺)	38 fs <i>14</i>		AB D	J^{π} : From comparison of the 3+2 state location with the prediction by IMME
5160.6	(44)		4 . 0	_	((p,t) - 2010Se07).
5168 6	(4 ⁺)		4+0	D	J^{π} : L=4+0 for doublet in (p,t).
5217.4 [#] 7	(0^{+})			A D	XREF: D(5226). E(level): From ³¹ Ar β ⁺ p decay.
					J^{π} : L=4+0 for doublet in (p,t).
5318 <i>4</i>	(3^{-})			B D	XREF: B(5288).
	, ,				J^{π} : L=3 (³ He,n) and prediction of the 3 ⁻ state location (p,t).
5389 [#] 2	(2^+)			A D	J^{π} : From prediction and L=3,(2) in (p,t).
5843 5	(1^{-})			A D	J^{π} : L=(1) in (p,t) and also L=2,3,4 are possible.
5945 3				A	
6071 11				A D	
6202 <i>3</i> 6280.1 <i>12</i>				A A	
6341 5				A D	
6532 13				A D	
6643 <i>3</i>				A	

E(level) [†]	\mathbf{J}^{π}	L	XREF	Comments
6766 10	2+	2	A D	J^{π} : L=2 in (p,t).
6855 <i>4</i>			Α	
6927 <i>4</i>			Α	
7074 9			A D	
7123 10			AB	
7295 <i>14</i>			AB	
7352 8			AB	
7485 <i>4</i>			AB	
7598 <i>4</i>			Α	
7693 <i>4</i>			A	
7924 5			A	

 $^{^{\}dagger}$ From $^{32}S(p,t),$ except otherwise noted or when only one ref dataset. ‡ From $^{28}Si(^{3}He,n\gamma).$ # From ^{31}Ar $\beta^{+}p$ decay.
@ From $(^{3}He,n\gamma),$ except otherwise noted.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡
2210.6	2+	2210.6 5	100	0	0+	E2
3402.6	2+	1192.0 5	100 4	2210.6	2+	
		3402.6 <i>13</i>	25 4	0	0_{+}	Q
3667.5		1456.6 <i>11</i>	100	2210.6	2+	
3676	(1^+)	1466 <i>3</i>	67 17	2210.6	2+	
		3676 <i>3</i>	100 17	0	0_{+}	D
5136	(3^{+})	2925 2	100	2210.6	2+	Q

[†] From (3 He,n γ).

[‡] From (3 He, $^{}$ n $^{}$), based on γ -ray angular correlations.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

History

Type Author Citation Literature Cutoff Date
Full Evaluation Christian Ouellet, Balraj Singh NDS 112,2199 (2011)

24-Aug-2011

 $Q(\beta^{-})=-12680.9 \ 6$; $S(n)=15044.33 \ 23$; S(p)=8864; $Q(\alpha)=-6948 \ 2012Wa38$

Note: Current evaluation has used the following Q record -12680.4 9 15043.8 10 8863.96 1-6947.65 1 2011AuZZ

S(2n)=28096 3, S(2p)=16160.51 2 (2011AuZZ).

Values in 2003Au03: $Q(\beta^-)=-12686$ 7, S(n)=15042.4 15 S(p)=8863.78 21, $Q(\alpha)=-6947.82$ 14, S(2n)=28096 3, S(2p)=16160.71 14.

Following corrections made by B. Singh (McMaster), Sept 20, 2022: 29 Si(α ,n) dataset from 1975Ba01 removed as it leads to resonances in 33 S from 9699 to 11175 keV, not in 32 S. 33 S(p,d) dataset from 1974ShZZ (BAPS abstract) added as cited by 1978Ka18 for levels up to 9976. Resulting, mostly minor changes, made in the Adopted Levels (B. Singh, Sept 17, 2022), for example: 1. 7882.9, J^{π} =4+, not 4-; added a new level at 7885 4, J^{π} =0-,1-,2-. 2. new level added at 8281 keV with J^{π} =(0:4)+ from 33 S(p,d). 3. Seven levels at 10133, 10182, 10417, 10493, 10678, 10988, 11175 from 29 Si(α ,n) removed. 4. Widths of the following levels from 29 Si(α ,n) removed: 9704.8, 9809, 9935, 9997, 10021, 10079, 10310, 10636.4, 10941, 11009.9, 11078. 5. Missing or unknown γ -branchings in 1997Br07 from the 7921, 7975, 8296, 8407 and 8729 levels from the 31 P(p, γ) dataset added.

Four lowest states in ³²S appear to be vibrational in character (1971In02), first 2⁺ is one phonon and 0⁺,2⁺,4⁺ make up a spherical vibrational triplet. Quadrupole moment of first 2⁺ state is negative and interestingly indicates a large prolate deformation (1998Ka31).

Additional evaluations for ³²S include 1997Br07 and specific to lifetimes, 1998Ka31. These are in broad agreement with the current evaluation.

E(p)=811 is a common absolute Resonance Strength by which other relative Resonance Strengths are compared to (1978Pa03). Mass measurements: 2009Sc29, 2009Kw02.

Mass deduced by IMME analysis: 2010Ka30.

2010Pa18: ¹²C(²⁰Ne,X),E=145,160 MeV; measured Εγ, Ιγ, γγ-coin. Deduced highest spin and high energy excitations from the shapes of giant dipole resonances (GDR), strength functions and parameters using rotating liquid drop model (RLDM) and thermal shape fluctuation model (TSFM). Calculated liquid drop model free energy surfaces, and equilibrium shapes as a function of quadrupole deformation parameters and spin. Possible connection to molecular structure of ¹⁶O+¹⁶O in a ³²S superdeformed band. Structure calculations: Intruder levels, spins and parities, shell model: 2009Bo30.

32S Levels

Levels populated in datasets with XREF=Y.

 $^{32}P \beta^{-}$ decay (14.268 d): 0.

 36 K εα decay (342 ms): 0.

 $^{16}O(^{20}Ne.\alpha)$: 11700, 11940, 12760, 13040, 13760, 14000, 14810, 15200.

²⁸Si(¹²C, ⁸Be): 0, 2230, 5010.

²⁸Si(¹⁶O, ¹²C): 0, 2230, 3780, 4280, 4460, 4700, 5010, 5800, 6220, 6850, 7000.

³²S(d,d'),(pol d,d'): 0, 2230, 4290, 4470, 5010.

 32 S(α,α'): 0, 2230, 3777, 4278, 4458.

Coulomb excitation: 0, 2230. Additional information 1.

Cross Reference (XREF) Flags

Α	32 Cl ε decay (298 ms)	M	$^{31}P(p,\alpha)$:resonances	Y	$^{32}P \beta^{-}$ decay (14.268 d)
В	4 He(28 Si, α):resonances	N	$^{31}P(d,n),^{2}H(^{31}P,N)$	Z	³³ Ar ε p decay (173.0 ms)
C	28 Si (α, γ)	0	$^{31}P(^{3}He,d)$	Other	rs:
D	28 Si(α , α):resonances	P	32 S(γ,γ'),(pol γ,γ')	AA	36 K $\varepsilon\alpha$ decay (342 ms)
E	²⁸ Si(⁶ Li,pnγ)	Q	32 S(e,e')	AB	$^{16}{\rm O}(^{20}{\rm Ne},\alpha)$
F	28 Si(6 Li,d)	R	$^{32}S(\pi^+,\pi^{+\prime}),(\pi^-,\pi^{-\prime})$	AC	²⁸ Si(¹² C, ⁸ Be)
G	28 Si(7 Li,t)	S	32 S(n,n' γ),(n,n')	AD	²⁸ Si(¹⁶ O, ¹² C)

³²S is one of the most extensively studied nuclei in the sd-shell (1998Ka31).

³³Ar ε p decay (173.0 ms): 0, 2231.

```
<sup>28</sup>Si(<sup>18</sup>O, <sup>14</sup>C)
                                                                        ^{32}S(p,p'),(pol\ p,p')
                                                                                                              ^{32}S(d,d'),(pol d,d')
                           Н
                                                                 T
                                                                                                      ΑE
                                  ^{29}Si(\alpha,n\gamma)
                                                                        ^{32}S(p,p'\gamma)
                                                                                                              ^{32}\mathrm{S}(\alpha,\alpha')
                           Ι
                                                                 U
                                                                                                      AF
                                  30Si(16O,14C)
                                                                        ^{33}S(p,d)
                           J
                                                                 ٧
                                                                                                      AG
                                                                                                              Coulomb excitation
                                                                        ^{33}S(^{3}He,\alpha)
                                  ^{31}P(p,\gamma)
                           K
                                                                        ^{34}S(p,t)
                                  ^{31}P(p,p')
E(level)
                            T_{1/2}
                                                          XREF
                                                                                                                      Comments
                         stable
                                          A C
                                                 FGHIJK
                                                             NOP
                                                                     STUVWXYZ
                                                                                      XREF: Others: AA, AC, AD, AE, AF, AG
                                                                                      \langle r^2 \rangle^{1/2} = 3.2611 fm 18 (2008 update of 2004An14 evaluation
                                                                                        by I. Angeli: available at http://cdfe.sinp.msu.ru.).
                                                                                      J^{\pi}: measurements by optical spectroscopy
                                                                                        (1936Ol01,1931Na01).
2230.57 15 2+
                        169 fs 11
                                          A C FGHI K NOPO STUVWX Z
                                                                                      XREF: Others: AC, AD, AE, AF, AG
                                                                                      \mu = +0.94 \ 18 \ (1979Za01, 1989Ra17)
                                                                                      Q=-0.154 20 (1981Sp07,1989Ra17)
                                                                                     E(level): from {}^{32}S(\gamma,\gamma').
                                                                                      J^{\pi}: E2 \gamma to 0^+.
                                                                                      T<sub>1/2</sub>: weighted average of 175 fs 28 (1998Ka31), 135 fs 49
                                                                                        (1974Ch09), 128 fs 52 (1972Co12), 243 fs 42 (1971In02),
                                                                                         180 fs 55 (1969Th03), 121 fs 21 (1971Re15), 147 fs 24
                                                                                        (2002Ba28), 228 fs 55 (1964Ma01), 250 fs 27 (1964Lo08),
                                                                                         240 fs 40 (1971In02), 164 fs 11 (1971Ga04), 160 fs 40
                                                                                        (1980Ba40). 2001Ra27 evaluation gives 171 fs 8 from a set
                                                                                        of 22 quoted measurements from 1956 to 1980 using DSA,
                                                                                        Coul. ex., (\gamma, \gamma') and (e, e').
                                                                                      \mu: transient-fields (1979Za01). See also 2005St24 compilation.
                                                                                      Q: reorientation in Coulomb ex. (recalculated by 1981Sp07).
                                                                                         Measurements: -0.160 22 or -0.133 22 (1982Ve09), -0.18 4
                                                                                         or -0.15 4 (1981Da08), -0.12 5 (1980Ba40). See also
                                                                                        2005St24 compilation.
                                                                                      XREF: Others: AD, AF
3778.4 10
                 0+
                           0.89 ps 9
                                         A C EFG I K NO Q STUVWX
                                                                                      J^{\pi}: from <sup>34</sup>S(p,t) L=0 angular distribution.
                                                                                      T_{1/2}: from <sup>28</sup>Si(<sup>6</sup>Li,pn\gamma).
                                                                                     XREF: Others: AD, AE, AF
4281.8 3
                 2^{+}
                         42 fs 4
                                          A C E HI K NOPq STUVWX
                                                                                      E(level): from ^{32}S(\gamma,\gamma').
                                                                                     J^{\pi}: from <sup>32</sup>S(p,t) L=2, <sup>31</sup>P(p,\gamma) \gamma\gamma(\theta), <sup>32</sup>S(p,p'\gamma) \gamma\gamma(\theta).
                                                                                      T_{1/2}: from weighted average of all available data.
                                                                                      Additional information 2.
4459.18
                        124 fs 27
                                                FGHI K
                                                                     STUVWX
                                                                                      XREF: Others: AD, AE, AF
                                                                                      \mu=+1.6 6 (1988Si14,1989Ra17)
                                                                                     E(level): from ^{31}P(p,\gamma).
                                                                                     J^{\pi}: from <sup>31</sup>P(p,\gamma) \gamma\gamma(\theta), <sup>32</sup>S(p,p') Ay(\theta), <sup>32</sup>S(p,p'\gamma),
                                                                                        \gamma\gamma(\theta) and L=4 in ^{34}S(p,t).
                                                                                      T_{1/2}: from ^{32}S(\alpha,\alpha').
                                                                                      μ: transient-fields (1988Si14). See also 2005St24 compilation.
4695.3 4
                        286 fs 74
                                          A C
                                                                       TUVWX
                                                                                      XREF: Others: AD
                                                                                     E(level): from ^{31}P(p,\gamma).
                                                                                      J^{\pi}: from <sup>32</sup>S(p,p'\gamma) \gamma\gamma(\theta); L(p,d)=0+2 from 3/2<sup>+</sup>.
                                                                                      T_{1/2}: from <sup>29</sup>Si(\alpha,n\gamma).
5006.2 3
                 3-
                           0.52 ps 3
                                            C FGHI K NO O STUVWX
                                                                                      XREF: Others: AC, AD, AE
                                                                                      B(E3)\(\gamma=0.0127\) 20 (2002Ki06)
                                                                                     E(level): from ^{31}P(p,\gamma).
                                                                                      J^{\pi}: from <sup>31</sup>P(p,\gamma) \gamma(\theta) and polarization, <sup>28</sup>Si(\alpha,\gamma) \gamma\gamma(\theta),
                                                                                        ^{32}S(p,p') angular distributions and L=3 in ^{31}P(d,n) from
                                                                                        1/2^{+} and ^{33}S(p,d) from 3/2^{+}.
                                                                                      T_{1/2}: from weighted average of all available data.
                                                                                      Additional information 3.
5412.6 10
                       148 fs 19
                                                                        UVWX
                                                                                      E(level): from ^{31}P(p,\gamma).
                                            C EF I K NO
```

E(level) [†]	J^{π}	T _{1/2}		KREF	Comments
5548.5 10	2+	57 fs 8	A C I K	NO TUVWX	J ^{π} : from ³¹ P(p, γ) $\gamma(\theta)$; L=2 in ³¹ P(³ He,d) from 1/2 ⁺ ; and in ³³ S(p,d) from 3/2 ⁺ . T _{1/2} : from weighted average of all available data. E(level): from ²⁹ Si(α ,n). J ^{π} : from ³² S(p,p') Ay(θ), ³⁴ S(p,t) angular distribution
5796.8 <i>3</i>	1-	5.6 fs 9	C FGHI K	NOPQ STUVWX	and L=2 in ${}^{31}P({}^{3}He,d)$ from $1/2^+$; L=0+2 in ${}^{33}S(p,d)$ from $3/2^+$. $T_{1/2}$: from ${}^{31}P(p,\gamma)$. XREF: Others: AD E(level): from ${}^{32}S(\gamma,\gamma')$.
6222.9 8	2-	66 fs <i>12</i>	FIK	NO SUWX	J ^π : from 32 S(p,p' γ) $\gamma\gamma(\theta)$ and L=1 in 31 P(3 He,d) from 1 /2+ and in 33 S(p,d) from 3 /2+. T _{1/2} : from 32 S(γ , γ'). XREF: Others: AD E(level): from 31 P(p, γ). J ^π : from 31 P(p, γ) $\gamma(\theta)$ and RUL, 32 S(p,p' γ) $\gamma\gamma(\theta)$;
6411 2	4+	24.3 fs <i>35</i>	CEIK	NO STU WX	L=1 in ${}^{31}P({}^{3}\text{He,d})$ from $1/2^{+}$. $T_{1/2}$: from weighted average of all available data. E(level): weighted average of ${}^{31}P(p,\gamma)$ and ${}^{29}\text{Si}(\alpha,n)$. J^{π} : from ${}^{32}\text{S}(p,p')$,(pol p,p') Ay(θ). $T_{1/2}$: from ${}^{28}\text{Si}({}^{6}\text{Li,pn}\gamma)$.
6582 5	(2+,3-)			0 q T V X	XREF: V(?). E(level): from weighted average of 31 P(3 He,d) and 34 S(p,t). J ^{π} : from 32 S(p,p'),(pol p,p') Ay(θ).
6621.7 3	4-	0.36 ps <i>6</i>	ΙK	NO q S VW	E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from ${}^{31}P(p,\gamma)$ $\gamma(\theta)$ and RUL, and L=3 in ${}^{31}P({}^{3}\text{He,d})$ from $1/2^{+}$ and in ${}^{33}S(p,d)$ from $3/2^{+}$. $T_{1/2}$: from ${}^{31}P(p,\gamma)$; note that the single ${}^{29}Si(\alpha,n\gamma)$ disagrees significantly.
6666.1 10	2+	40 fs <i>10</i>	A IK	NO UVWX	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$, $^{34}S(p,t)$ angular distributions and L=2 in $^{31}P(^{3}He,d)$ from $1/2^{+}$; L=0+2 in $^{33}S(p,d)$ from $3/2^{+}$. $T_{1/2}$: from $^{31}P(p,\gamma)$.
6761.6 <i>10</i>	5-	260 fs 35	GHI K	NO ST VWX	E(level): from 31 P(p, γ). J^{π} : from 29 Si(α ,n γ) n γ (θ).
6851.5 <i>15</i>	4+	66 fs <i>17</i>	ΙK	NO VWX	$T_{1/2}$: from $^{31}P(p,\gamma)$. XREF: Others: AD E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{29}Si(\alpha,n\gamma)$ n- $\gamma(\theta)$ correlation. $T_{1/2}$: from $^{31}P(p,\gamma)$.
7001.4 4	1+	1.5 fs 5	A K	NO Q T VWX	XREF: Others: AD E(level): from ³¹ P(p,γ). J^{π} : from ³¹ P(p,γ) $\gamma(\theta)$ and L=2 in ³¹ P(³ He,d) from $1/2^+$; L=0+2 in ³³ S(p,d) from $3/2^+$; isobar analog state of g.s. 1 ⁺ in ³² p and ³² Cl. $T_{1/2}$: from ³¹ P(p,γ).
7115.3 10	2+	1.73 fs <i>35</i>	A C H K	NO VWX	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and decay multipolarity, $^{34}S(p,t)$ angular distribution; L=2 in $^{31}P(^{3}He,d)$ from

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$		X	REF		Comments
7190.1 <i>15</i>	1+	8.0 fs <i>21</i>	A	K	NO Q	T VW	$1/2^+$; L=0+2 in 33 S(p,d) from $3/2^+$. $T_{1/2}$: from 31 P(p, γ). E(level): from 31 P(p, γ). J^{π} : from 31 P(p, γ) $\gamma(\theta)$; L=0 in 31 P(3 He,d) from $1/2^+$; L=0+2 in 33 S(p,d) from $3/2^+$.
7350.0 6	3(+)			K	NO	VWX	$T_{1/2}$: from ${}^{31}P(p,\gamma)$ and ${}^{31}P(d,n)$. E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from ${}^{31}P(p,\gamma)$ $\gamma(\theta)$; L=2 in ${}^{33}S(p,d)$ from ${}^{3/2}$.
7367				K			
7434 3	1-	7.7 fs <i>10</i>	FC	н к	NO	W	E(level): from $^{31}P(p,\gamma)$. J^{π} : L=1 in $^{31}P(^{3}He,d)$ and $^{31}P(d,n)$. $T_{1/2}$: from weighted average of $^{31}P(p,\gamma)$ and $^{31}P(^{3}He,d)$.
7484.0 <i>4</i>	2+	4.9 fs <i>12</i>	С	K	NOP	VW	E(level): from $^{32}S(\gamma,\gamma')$, $^{32}S(\text{pol }\gamma,\gamma')$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and RUL, $^{32}S(\gamma,\gamma')$ $\gamma(\theta)$, $^{32}S(\text{pol }\gamma,\gamma')$ $\gamma(\theta)$; L=2 in $^{33}S(p,d)$ from $^{3/2^{+}}$.
7535.7 10	0+	2.6 fs 7	C	K	NO	VWX	$T_{1/2}$: weighted average of all available data. E(level): from $^{31}P(p,\gamma)$. J^{π} : L=0 in $^{31}P(^{3}He,d)$ and $^{31}P(d,n)$; L=2 in $^{33}S(p,d)$ from $3/2^{+}$.
7566.8 9	5+	150 fs <i>32</i>		I K			$T_{1/2}$: weighted average of $^{31}P(p,\gamma)$ and $^{31}P(d,n)$. E(level), J^{π} , $T_{1/2}$: from $^{29}Si(\alpha,n\gamma)$ from n - $\gamma(\theta)$ correlation.
7637.0 <i>10</i> 7648 <i>5</i>	1			K		T X W	E(level), J^{π} : from $^{32}S(p,p')$ angular distribution.
7701.44 <i>36</i>	3-	66 fs <i>19</i>		н к	NO Q	X	E(level), $T_{1/2}$: from ³¹ P(p,γ). J^{π} : from ³¹ P(p,γ) γ(θ); L=3 in ³¹ P(³ He,d) from $1/2^{+}$.
7882.9 8	4 ⁺			K			J^{π} : from ³¹ P(p, γ) $\gamma(\theta)$.
7885 <i>4</i> 7921.0 <i>10</i>	0 ⁻ ,1 ⁻ ,2 ⁻ 1 ⁺			K	NO	т х	J^{π} : L(³ He,d)=L(d,n)=1 from 1/2 ⁺ . E(level): from ³¹ P(p, γ).
	4-	146 C 25			0		J^{π} : from ³¹ P(p,p'),(pol p,p') angular distribution.
7950.1 4	4-	146 fs <i>35</i>		ΙK	0		E(level), $T_{1/2}$: from ³¹ P(p, γ). J^{π} : from ³¹ P(p, γ) from $\gamma(\theta)$ and RUL, and L=3 in ³¹ P(³ He,d).
7974.9 7	4-	<21 fs		K	NO	VWX	E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from L=3 in $^{31}P(^{3}He,d)$ and $^{31}P(d,n)$ in disagreement with $^{31}P(p,\gamma)$ and parity in $^{34}S(p,t)$.
8125.40 20	1+	0.144 fs <i>21</i>		K	NOPQ	T X	E(level): from ${}^{32}S(\gamma,\gamma'),{}^{32}S(\text{pol }\gamma,\gamma').$ J^{π} : from ${}^{32}S(\gamma,\gamma'),{}^{32}S(\text{pol }\gamma,\gamma')$ angular distribution and L=0 in ${}^{31}P({}^{3}\text{He,d}).$ $T_{1/2}$: weighted average of ${}^{32}S(\gamma,\gamma'),{}^{32}S(\text{pol }\gamma,\gamma').$
8191.1 6	4			K	0		E(level): from $^{31}P(p,\gamma)$.
8270.3 14	3-,5-	<60 fs		ΙK	0	X	E(level), J^{π} , $T_{1/2}$: from 29 Si(α ,n γ) n- $\gamma(\theta)$ correlation.
8281 8296.1 <i>10</i>	$(0 \text{ to } 4)^+$ 3^-			K	o NO	V	E(level), J^{π} : from ³³ S(p,d) with L=2 from 3/2 ⁺ . E(level): from ³¹ P(p, γ).

E(level) [†]	J^{π}	$T_{1/2}$		XR	EF			Comments
8343 <i>3</i> 8346.4 <i>14</i>	2 ⁺ 4 ⁺	<28 fs		I K	0		v x	J ^π : from ³¹ P(p,γ) $\gamma(\theta)$ and L=3 in ³¹ P(d,n), ³¹ P(³ He,d). J ^π : L(p,t)=2. E(level),J ^π : 4 ⁺ , 6 ⁺ from ²⁹ Si(α,nγ) n-γ(θ); L=2 in ³³ S(p,d) from 3/2 ⁺ .
8380 <i>5</i> 8407.0 <i>14</i> 8499.3 <i>5</i>	2 1 ⁻	1.30 fs 24	BC F	K 'g K	O O NOP		V V V X	$T_{1/2}$: from $^{31}P(p,\gamma)$. E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$. XREF: Others: AF XREF: V(8489). E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$.
8671.7 8684.0 8687.6 8729.3 6 8736.7	3+		A C	K I	NO O	S S S	v v x	J^{π} : from L=1 in ${}^{31}P(d,n)$ and ${}^{31}P({}^{3}He,d)$. E(level): from ${}^{32}S(n,n'\gamma),(n,n')$. E(level), J^{π} : from ${}^{31}P(p,\gamma)$ $\gamma(\theta)$ and RUL.
8741.8 8745.6 8 8751.0 8782.9 8797.5 8809.7	3			K		S S S S		J^{π} : from ³¹ P(p, γ) $\gamma(\theta)$.
8838.7 8861 2 8895.3 8906.0 8921.8 8941.9 8945.1 8953.6 8977.5	2+		A C	K	0	S S S S S	v x	E(level): from 28 Si(α, γ). J ^{π} : from γ decay in 31 P(p, γ).
8984.7 9007.3 9009.2 9012.7 9023.8 21	4-	0.27 ps 6	С	I K	NO	S S S S	X	E(level): from 29 Si(α ,n γ). J ^{π} : 4 ⁻ ,6 ⁻ from 29 Si(α ,n γ); L=3 in 31 P(3 He,d) from 1/2 ⁺ target; L=1 in 31 P(d,n) is apparently in disagreement but in another (d,n) study L=1 or 3 is also indicated.
9031.1 9042.0 9055.1 9059 2	1-			K	NO	S S S	v	E(level): from 31 P(p, γ). J $^{\pi}$: from L=1 in 31 P(3 He,d).
9065 2 9087.9 9090.9 9139.9 9159.0		<14 fs	С	K		S S S	v V	E(level), $T_{1/2}$: from ²⁸ Si(α, γ).
9170 <i>3</i> 9196 <i>8</i> 9200.8	3 ⁺ 2 ⁺			I K	0	S	V X	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(^{3}He,d) \gamma \delta$ coincidence. E(level), J^{π} : from $^{34}S(p,t)$.

E(level) [†]	J^{π}	T _{1/2}		XREF	Comments
9207.55 71	1+	4.2 fs <i>14</i>		K MNOP	E(level): from 31 P(p, γ) $\gamma\gamma(\theta)$. J^{π} , $T_{1/2}$: from 32 S(γ , γ'), 32 S(pol γ , γ').
9210.6				S	5 ,11/2. Hom 5(7,7), 5(por 7,7).
9211.2 9235.2 24	1-	<60 fs	A C	S I K MNO	E(level), $T_{1/2}$: from $^{29}Si(\alpha,n\gamma)$. J^{π} : from $^{31}P(^{3}He,d)$ L=1 and angular distribution. The γ -rays reported in $^{29}Si(\alpha,n\gamma)$ do not match those from $^{28}Si(\alpha,\gamma)$ we report here the older values but clearly more investigation is necessary.
9253 1	2+			К О	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(^{3}He,d)$ d γ coincidences.
9268.0 9271.7 9280 9287.9 9289.0 <i>I</i>	1 1+			S S T S K MNO	E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and $\gamma\gamma(\theta)$.
9297.0 9309.2 9317.1 9344.9 9357.6 9360.5	1			S S S S S S S S S S S S S S S S S S S	Effecting . Hom $\Gamma(p,y)$ $\gamma(0)$ and $\gamma\gamma(0)$.
9388 1	2+			K MNO	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(^{3}He,d)$ as well as L=1 in $^{31}P(d,n)$.
9395.0 9397.2 9402.1 9436.0 9450.6				S S S S	
9463.4 <i>10</i> 9466.0 <i>15</i>	5 ⁻ ,7 ⁻ 2 ⁺	<70 fs <49 fs	A C	I K M O	X E(level), J^{π} : from $^{28}Si(\alpha,\gamma)$ n- $\gamma(\theta)$ correlation. $T_{1/2}$: from $^{31}P(p,\gamma)$.
9481.5 9485.7 <i>10</i>	1-	8.2 eV <i>25</i>	С	K MNO S	E(level): from 31 P(p,γ). $T_{1/2}$: from 31 P(p,α) and 31 P(p,γ). J^{π} : from 31 P(p,γ) $\gamma(\theta)$ and L=1 in 31 P(3 He,d), 31 P(d,n).
9500 9515.9 9524.3 9534.0 9534.9 9560.6			F	S S S S S	
9562 <i>10</i> 9597.1 9619.4 9634.6 <i>18</i>	1 ⁻ ,2 ⁻ 4 ⁻ ,6 ⁺	0.09 ps 6		0 S S	J^{π} : from L=1 in ³¹ P(³ He,d).
9650 <i>30</i> 9650.2 <i>5</i>	6 ⁻ 2 ⁺		A	R	v X E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$, $\gamma\gamma(\theta)$ and L=2 in $^{34}S(p,t)$.
9655.2 9656.7 9660.1 <i>11</i> 9665.4	1+	2.4 eV 7			V V
				_	

E(level) [†]	${ m J}^{\pi}$	T _{1/2}		XREF	Comments
9671.7 9674.6 9693.4				S S S	
9704 8 9711.9 <i>14</i>	2+	3.6 eV	A C	K X	E(level): from 34 S(p,t). E(level), $T_{1/2}$: from 31 P(p, γ). J^{π} : from 28 Si(α , γ) γ (θ) and correlation.
9724 <i>I</i> 9727.9 <i>5</i> 9731 <i>I</i>	2,3,4 1 ⁻ ,2 ⁻			K O K K NO	J^{π} : from ³¹ P(p, γ) $\gamma(\theta)$. E(level): from ³¹ P(p, γ).
9783 20	6	0.14 fs + <i>13</i> - <i>11</i>		I V	J^{π} : from 31 P(d,n) L=1 and 31 P(3 He,d) L=3,1. J^{π} : from 29 Si(α ,n γ) γ (θ).
9810 9816.8 <i>10</i>	3-,4-			R K NO X	E(level): from 31 P(p, γ). J ^{π} : from L=3 in 31 P(3 He,d).
9827 <i>3</i> 9848 <i>1</i>	1-	0.100 keV 10	С	K K MNO	E(level): from $^{31}P(p,\gamma)$. $T_{1/2}$: from $^{31}P(p,\alpha)$. J^{π} : from $^{31}P(p,\alpha)$ angular distribution with L=1
9883.3 <i>5</i> 9887.3 <i>6</i>	2+,3+	0.010 keV 5	A	K v K NO v	in ${}^{31}P({}^{3}He,d)$. E(level), $T_{1/2}$: from ${}^{31}P(p,\gamma)$.
9919.3 5	2+	0.010 keV 5		K X	J^{π} : from L=2 in $^{31}P(^{3}He,d)$. $E(level),T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{34}S(p,t)$ L=2 angular distribution and modeling.
9935 6	1		С	Т	E(level): from 28 Si(α,γ). J^{π} : from 32 S(p,p'), 32 S($pol\ p,p'$) angular distributions.
9946.6 5	1-	0.150 keV <i>15</i>	A	K NO V	E(level), $T_{1/2}$: from ³¹ P(p, γ). J^{π} : from ³¹ P(³ He,d) L=1 and RUL.
9977.9 5	4			K N v	E(level), J^{π} : from $^{31}P(p,\gamma) \gamma(\theta)$.
9978.3 1	3			K Q v	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ disagrees with 1^{+} from $^{31}P(e,e')$.
9982.7 6	2,0+	0.100 keV <i>10</i>	A	K	E(level), $T_{1/2}$: from ³¹ P(p, γ). J^{π} : this is a doublet with J=0 ⁺ coming from ³² Cl decay.
9988 10	3-,4-	≈4 keV		M O	E(level), $T_{1/2}$: from $^{31}P(p,\alpha)$. J^{π} : from L=3 $^{31}P(^{3}He,d)$.
9997 6 10021 10 10073.4 6	3 ⁻ ,4 ⁻ 2 ⁻	1.50 keV <i>15</i>	С	O K MNO	E(level): from ${}^{28}\text{Si}(\alpha, \gamma)$. E(level), J^{π} : from L=3 ${}^{31}\text{P}({}^{3}\text{He,d})$. E(level), J^{π} , $T_{1/2}$: from ${}^{31}\text{P}(p,\gamma)$, very strong M2 γ to 0^{4} forces this to be 2^{-} despite L=1 from
10079 2 10090 10	(1) 2 ⁻ 4 ⁽⁺⁾	1.7 keV 4		L Q	31 P(3 He,d) and 31 P(d,n). E(level),J ^{π} ,T _{1/2} : from 31 P(p,p'). J ^{π} : M2 transition.
10102.3 <i>10</i> 10113 <i>6</i> 10218.8 <i>6</i>	3 ⁺	0.010 keV 5	C C	K O K N	E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$. E(level), J^{π} , $T_{1/2}$: from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and
10221.2 6	3-	0.056 keV <i>10</i>		KLM O	E3+M2 decay to 4961. E(level), J^{π} , $T_{1/2}$: from ³¹ P(p, γ) with L=3 from

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$		XREF		Comments
						$^{31}P(^{3}\text{He,d})$, note however that $^{31}P(p,\alpha)$ found a very different lifetime and possibility of J=2.
10225.0 <i>16</i> 10230.3 <i>6</i>	1+	0.18 keV 2 0.025 keV 3	A	K K		E(level), J^{π} : from $^{31}P(p,\gamma)$ from $\gamma(\theta)$ and RUL.
10256.1 7	4-	0.035 keV 4		KLMNO		E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and L=3 in $^{31}P(^{3}He,d)$.
10276 8	4+			N	X	E(level),J ^π : from ³⁴ S(p,t) L=4 and microscopic model comparison.
10286.3 7	3-	0.16 keV 2	С	K MNO		E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\alpha)$ angular distribution and L=3 in $^{31}P(^{3}He,d)$.
10290.2 6	2	0.125 keV <i>13</i>	Α	K		E(level), J^{π} , $T_{1/2}$: from ³¹ P(p, γ) $\gamma(\theta)$.
10292.0 <i>15</i>	3	0.07 keV <i>1</i>	C	K M		E(level), $T_{1/2}$: from ³¹ P(p, γ).
						J ^{π} : from ³¹ P(p, α) angular distribution. T _{1/2} : ³¹ P(p, α) found a much higher half life than ³¹ P(p, γ).
10310					R	21 2
10331.1 <i>15</i>	1-	6.1 keV 7		K MNO		E(level), J^{π} , $T_{1/2}$: from L=1 from ³¹ P(³ He,d) and ³¹ P(d,n).
10337 <i>3</i> 10369	(0 ⁺)	9 keV 2 5.8 keV	C B D	L	TU W	E(level), J^{π} , $T_{1/2}$: from 31 P(p,p') with L=(1). XREF: B(10250). J^{π} : from 28 Si(α , α) R-matrix fits.
10370.6 6	2+	0.025 keV 3		KLM O	X	E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{34}S(p,t)$ angular distribution and L=2 in $^{31}P(^{3}He,d)$.
10396.7 6	4-	0.012 keV 2		K MNO		E(level), J^{π} , $T_{1/2}$: from 31 P(p, γ) $\gamma(\theta)$ with L=3 in 31 P(3 He,d).
10405 <i>3</i> 10428 <i>10</i>	2+,3+,3-,4-	11 keV 4	F	L O		E(level), $T_{1/2}$: from ${}^{31}P(p,p')$. J^{π} : from ${}^{31}P({}^{3}He,d)$ L=2,3.
10456 <i>6</i>	1+	2.9 keV	A C	M Q		E(level), $T_{1/2}$: from ³¹ P(p, α).
						J^{π} : from $^{31}P(e,e')$ angular distribution. Additional information 4.
10500	(0^+)	1.7 keV	B D		T	XREF: Others: AE XREF: B(10380).
10507.9 10		0.010 keV 5		K		AREI : B(10300).
10534 <i>4</i>	3-,4-	1.8 keV	A C	LM O	X	E(level): from ${}^{31}P(p,p')$.
						$T_{1/2}$: from ${}^{31}P(p,\alpha)$. J^{π} : from L=3 in ${}^{31}P({}^{3}He,d)$ disagrees with J=2 from ${}^{31}P(p,\alpha)$.
10556.1 <i>10</i>				KL		E(level): from 31 P(p, γ).
10570	(0+)	1.2 keV	B D		T X	XREF: Others: AF XREF: B(10460).
10574.4 <i>10</i> 10603.8 <i>10</i>	5 ⁺	0.015 keV 2 0.15 keV 2		K K		
10624 6	3-,4-	3.1 keV		МО		E(level), $T_{1/2}$: from ³¹ P(p, α). J ^{π} : from L=3 in ³¹ P(³ He,d).
10636.4 10			С	K		E(level): from $^{31}P(p,\gamma)$.
10658	(1 ⁻)	2.3 keV	B D		T W	XREF: Others: AE XREF: B(10530).

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF	Comments
10696.1 10		0.18 keV 2		K	
10700.5 10	1-	21 keV 4		КМо	E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\alpha)$ angular distribution and L=1 in $^{31}P(^{3}\text{He,d})$.
10705.3 10	1-,2-	20 keV 3	С	KL No	E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from L=1 in ${}^{31}P(d,n)$.
10745	(0 ⁺)	8.9 keV	B D	R T WX	XREF: B(10650). E(level), $T_{1/2}$: from 28 Si(α , α) angular distribution.
10756.7 10	3(+)	0.05 keV 1		K N	$E(\text{level}),J^{\pi},T_{1/2}$: from $^{31}P(p,\gamma)$ $\gamma(\theta)$.
10778.8 10	2+	0.62 keV 7	A	K M O X	E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$ note however that in $^{31}P(p,\alpha)$ a much higher half life was found, the spin discrepancy additionally indicates this level may be a doublet. J^{π} : from L=2 in $^{34}S(p,t)$, parity disagrees with L=1 in
40=00 0 40				_	31 $P(^3He,t)$.
10783.8 <i>10</i> 10784.5 <i>10</i>		0.75 keV 8 0.60 keV 6		K K	
10791.3 10	1	0.00 keV 0	A C	KLM	E(level), $T_{1/2}$: from ³¹ P(p, γ).
10771.5 10		0.17 RC V 2		N.D.I	J ^π : from ³¹ P(p,α) angular distribution and ²⁸ Si(α,γ) $\gamma(\theta)$.
10806	2		C F	_	E(level), J^{π} : from 28 Si(α , γ).
10816	(3-,5-)	4.7 keV	B D	T	XREF: Others: AG XREF: B(10700).
10825.4 10	2-	22 keV 4		KLMNO Q X	E(level), $T_{1/2}$: from ³¹ P(p, γ) note that ³¹ P(p, α) gives a much lower approximate estimate. J ^{π} : from ³² S(e,e') strength and L=1 in ³¹ P(³ He,d) and ³¹ P(d,n), parity disagrees with ³⁴ S(p,t) and spin with ³¹ P(p, α).
10827.0 <i>10</i> 10830 <i>3</i>		0.32 keV <i>3</i> ≈4 keV		K m	E(level), $T_{1/2}$: from ³¹ P(p, γ).
10830 3	2,(3)	≈4 ke v ≈2.5 keV	С	M M	E(level), $T_{1/2}$: from ³¹ P(p, α).
10032 3	2,(3)	~2.5 Re v	C	n	J^{π} : from ²⁸ Si(α, γ) $\gamma(\theta)$ disagrees with J=2,(3) of ³¹ P(p, α).
10841 10	2	≈0.4 keV	С	M	E(level), $T_{1/2}$: from ³¹ P(p, α).
					J^{π} : from ²⁸ Si(α, γ) $\gamma(\theta)$.
10851 10868	1 (2 ⁺)	7.7 keV	C B D	T	XREF: Others: AG XREF: B(10780).
10880 40	6-			R	
10907 <i>10</i>	1+	2.1 keV		M Q	E(level), $T_{1/2}$: from $^{31}P(p,\alpha)$. J^{π} : from $^{31}P(e,e')$ strength and $^{31}P(p,\alpha)$ angular distribution.
10915 2 10933.7 <i>10</i>	3			K K	
10941	1		С	K	E(level), J^{π} : from ²⁸ Si(α, γ) $\gamma \gamma(\theta)$.
10956	(0^+)	2.9 keV	B D	T	XREF: B(10880).
10977 10	$(1^-,2^-)$			LM O	J^{π} : from L=(1) in ${}^{31}P({}^{3}He,d)$.
10980 40	6-			QR	E(level), J^{π} : from 32 S(e,e').
10998	(4)		С	W 0	E4 1 17 C 31 D() (6)
11009.9 <i>10</i> 11020	4 ⁺ (1 ⁻ ,2 ⁻)			K O N	E(level), J^{π} : from ³¹ P(p, γ) $\gamma(\theta)$.
11020	(4)		С	14	
11064	2+		A		

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$		XREF	Comments
11078 11092.3 <i>10</i>	2 3 ⁻		С	KLM O	E(level), J^{π} : from $^{28}Si(\alpha, \gamma) \ \gamma \gamma(\theta)$. E(level): from $^{31}P(p, \gamma)$.
11107	(2+)	67.4 keV	BCD	T W	J ^{π} : from ³¹ P(p, γ) $\gamma(\theta)$ and L=3 in ³¹ P(³ He,d). XREF: B(10950). E(level): average of ²⁸ Si(α , α) and ²⁸ Si(α , γ).
11114 2 11123 <i>I</i>				K K	J^{π} , $T_{1/2}$: from ²⁸ Si(α , α), R-Matrix fits.
11130 11131 2	(0 ⁺)	1.8 keV	B D	T W K T	XREF: B(11050). E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from ${}^{31}P(p,p')$.
11139.8 <i>10</i>	1+			K Q	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(e,e')$.
11170 50 11198 10 11235.5 10	6 ⁻ 3 ⁻ ,4 ⁻ 3	9 keV		Q NO K M O	E(level), J^{π} : from L=3 $^{31}P(^{3}He,d)$ and L=3 $^{31}P(d,n)$. E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ note that $^{31}P(p,\alpha)$ finds J=1.
11253.9 10	(3 ⁻)	1.1 keV	В D	K O TUW	$T_{1/2}$: from $^{31}P(p,\alpha)$. XREF: B(11250). E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{28}Si(\alpha,\alpha)$:res R-matrix fit.
11332.8 <i>10</i> 11366 <i>10</i> 11410	(3-)	1.9 keV	В D	К О Т	XREF: Others: AE
11425 <i>10</i> 11438 <i>10</i>	1	≈4 keV		M O	XREF: B(11380).
11474.6 <i>10</i> 11485.8 <i>10</i>	3 1 ⁺			K O Q	E(level), J^{π} : from $^{31}P(p,\gamma) \gamma(\theta)$. E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{32}S(e,e')$.
11554 10	(0,1)	6.1 keV		МО	E(level): average of ${}^{31}P({}^{3}He,d)$ and ${}^{31}P(p,\alpha)$. $T_{1/2},J^{\pi}$: from ${}^{31}P(p,\alpha)$ angular distribution.
11589.7 <i>10</i>	1-	10.7 keV		K MNO	E(level): $^{31}P(p,\gamma)$. $J^{\pi},T_{1/2}$: from $^{31}P(p,\alpha)$ angular distribution with L=1 in $^{31}P(d,n)$.
11602.4 <i>10</i> 11620 <i>7</i> 11629	1 ⁺ (1,2 ⁺ ,3 ⁻)	5.7 keV	B D	K 0 0 Q T	E(level): from 31 P(p, γ) $\gamma(\theta)$. E(level), J^{π} : from 32 S(e,e'). XREF: Others: AF XREF: B(11410). E(level), $T_{1/2}$: from 28 Si(α , α):res. J^{π} : 32 S(p,p') J=1; $^{3-}$ from 28 Si(α , α'); $^{2+}$ from 4 He(28 Si, α). There may be two different levels near this energy.
11637.1 <i>10</i> 11648 <i>10</i> 11660 <i>10</i>	1	6.6 keV		K K O	
11669.6 <i>10</i> 11690 <i>10</i>	5 ⁺ (3 ⁻)	1.2 keV	B D	K O T W	XREF: Others: AG XREF: B(11570). E(level): from ³¹ P(³ He,d).
11696.7 10	5+			K m	J^{π} , $T_{1/2}$: from 28 Si(α , α):res R-matrix fit. XREF: Others: AB E(level), J^{π} : from 31 P(p, γ).

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF	Comments
					$T_{1/2}$: 8.0 keV from $^{31}P(p,\alpha)$ and 55 keV 24 from $^{16}O(^{20}Ne,\alpha)$ may belong to this level but many levels overlap within uncertainties.
11720 <i>10</i> 11750 <i>10</i>	1		С	0 0	E(level): from ³¹ P(³ He,d).
11730 10	1		C	U	J^{π} : from ${}^{28}Si(\alpha,\gamma) \gamma(\theta)$.
11758.8 <i>10</i>				K	
11783 10	1	30 keV	С	мо	E(level): from 31 P(3 He,d). J^{π} : from 28 Si(α , γ) $\gamma(\theta)$ note that 31 P(p, α) favors J=2.
11806 10	1,2		C F	0	$T_{1/2}$: from $^{31}P(p,\alpha)$. E(level): from $^{31}P(^{3}He,d)$. J^{π} : from $^{28}Si(\alpha,\gamma) \gamma(\theta)$.
11823 10	1-,2-			NO	E(level): from ${}^{31}P({}^{3}He,d)$.
11848	(3-)	10.4 keV	В D	T WX	J^{π} : from ³¹ P(d,n) L=1. XREF: B(11650).
11861 <i>10</i>	(0)	10111101	2 2	0	221021 2(22000)
11876 <i>10</i>	1	76137		0	C32C(/) 131D()
11883 10	1	7.6 keV		M Q T	E(level): average of ${}^{32}S(e,e')$ and ${}^{31}P(p,\alpha)$. J^{π} : from ${}^{31}P(p,\alpha)$ angular distribution and ${}^{32}S(p,p')$, $J=2^{-32}S(e,e')$ disagrees.
11900 <i>10</i>				0	21 2
11936 <i>10</i>	3-	7.3 keV		МО	E(level): from ${}^{31}P({}^{3}\text{He,d})$. $J^{\pi}, T_{1/2}$: from ${}^{31}P(p,\alpha)$ angular distribution and L=3 from ${}^{31}P({}^{3}\text{He,d})$.
11940 20	6-	86 keV 24		QR	E(level): from $^{16}O(^{20}Ne,\alpha)$. J^{π} : from $^{32}S(e,e')$ and $^{32}S(\pi^{+},\pi^{+})$, disagrees with 5^{-} assignment of $^{16}O(^{20}Ne,\alpha)$ however large uncertainties mean there may be several levels here.
11940.1 <i>10</i> 11955 <i>10</i>	3 $(2^+,3^-)$	3.2 keV	В D	K O T	XREF: B(11800).
11)33 10	(2 ,5)	3.2 KC V	ט ט	0 1	E(level): from 31 P(3 He,d).
					J^{π} , $T_{1/2}$: from ²⁸ Si(α , α):res R-matrix fit.
12002 10	2	11.8 keV		M O	E(level): from 31 P(3 He,t).
12030 10			С	q TU x	J^{π} , $T_{1/2}$: from 31 P(p, α) angular distribution. XREF: Others: AE , AG XREF: C(12037).
					E(level), J^{π} : from 32 S(e,e') likely a doublet or triplet of levels since the spins reported are all in disagreement, uncertainties are also large or absent making it impossible to make clear assignments.
12043.9 10				K no q x	E(level), J^{π} : from ³¹ P(p, γ) which resolved the triplet.
12044.19 28	2,3,4			K no q x	E(level), J^{π} : from ³¹ P(p, γ) which resolved the triplet.
12047.96 28	0+		С	K no	E(level), J^{π} : from ³¹ P(p, γ) which resolved the triplet.
12050	$(2^+,3^-)$		B D	Т	XREF: Others: AF XREF: B(11940).
12124 12160 <i>10</i>	$(3^+,2^+)$	6.9 keV 22 keV	В	M M O TU	XREF: Others: AG

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$	XREF			Comments
						XREF: B(12170).
						E(level): from ${}^{31}P({}^{3}He,t)$.
						J^{π} , $T_{1/2}$: from ³¹ P(p, α) angular distribution with
						$L=(2)$ from ${}^{31}P({}^{3}He,t)$.
12196 <i>10</i>	1-			NO Q	R	E(level): from 32 S(e,e').
						J^{π} : From ³² S(e,e') but with parity from L=1 in
12100	(2-)	6 4 1 37				³¹ P(d,n).
12198	(3^{-}) $(2^{+},3^{+})$	6.4 keV	B D	0	TU	XREF: B(12000).
12235 <i>10</i> 12260	$[3^{-}]$		В	0		
12270	0	21 keV		M		
12308 10				0		
12340 <i>10</i>				0		21
12362 10	3,(2)	4.8 keV		M O		E(level), J^{π} , $T_{1/2}$: from ³¹ P(p, α) angular distribution.
12393 10	3	7.7 keV		MNO		E(level): from ³¹ P(³ He,d).
10406 10	2.0	12.0.1.37	ъ	w 0	TTI	$T_{1/2}$, J^{π} : from 31 P(p, α) angular distribution.
12426 <i>10</i>	3,2	13.9 keV	В	МО	TU	XREF: Others: AF XREF: B(12440).
						E(level), J^{π} : from $^{31}P(^{3}He,d)$.
						$T_{1/2}$: from $^{31}P(p,\alpha)$ angular distribution.
12465 10	2	7.8 keV		мо		E(level): from 31 P(3 He,d).
12.00 10	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0		J^{π} , $T_{1/2}$: from ³¹ P(p, α) angular distribution.
12491 <i>10</i>	(2,1)	18.6 keV		M O		E(level): from ${}^{31}P({}^{3}He,d)$.
						J^{π} , $T_{1/2}$: from ³¹ P(p, α) angular distribution.
12510	[3-]		В			
12553	2	8.4 keV		M	_	
12560 12568	1 2	3.0 keV		M	T	
12600	3,2	7.9 keV		M		
12630 30	6-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			R	E(level), J^{π} : from ${}^{32}S(\pi^+,\pi^+)$ note that L=1 in
						³¹ P(d,n) probably means there are several levels
						in this vicinity.
12650 <i>10</i>	1+	<0.10 MeV	В	Q		XREF: B(12650).
12710	$(5^-,3^-)^{\ddagger}$	5 keV	B D		TU	XREF: Others: AE, AG
12740 40	4 -			01	n	XREF: B(12730).
12740 40	6 ⁻ 6 ⁺	84 keV <i>24</i>		Ql	K	XREF: Others: AB
12770	$(2^+)^{\ddagger}$	10 keV	D			ARLI. Oulcis. Ab
12830	$(2^{-})^{\ddagger}$	1 keV	D			
	$(3^{-})^{\ddagger}$					
12860		38 keV	D			VDEE D(12000)
12910	$(3^{-})^{\ddagger}$	8 keV	B D		TU	XREF: B(12880).
12930	$(3^{-})^{\ddagger}$	29 keV 5	B D		TU	XREF: Others: AE
12980 <i>10</i>	1+			01	D	XREF: B(12930). E(level),J ^{\pi} : from ³² S(e,e').
13040 20	(4 ⁺)	<47 keV	В	Ql	T W	XREF: Others: AB, AE
15010 20	(')	(17 Re v	2		- "	XREF: B(13050).
13086	$(3^{-})^{\ddagger}$	26 keV 7	B D		T	XREF: Others: AE
	(- /		= =		=	XREF: B(13110).
13220	[3-]	<0.06 MeV	В			
13230	1				T	77 27 2 370 6
13260 <i>50</i>	6-			QI		E(level), J^{π} : from ³² S(e,e').
13268	$(3^{-})^{\ddagger}$	49 keV <i>3</i>	B D		TU	XREF: Others: AE, AG

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF		Comments
13339	(3 ⁻)	28.8 keV <i>13</i>	B D	М	T X	XREF: B(13270). XREF: Others: AE , AG XREF: B(13360)D(13370). E(level): average of 31 P(p, α) and 28 Si(α , α). J ^{π} : from 31 P(p, α) angular distribution and L=(3) in 28 Si(α , α):res.
13410 <i>10</i> 13430	1 ⁺ ,(2 ⁻) 3 ⁻ ,4 ⁻			Q N		$T_{1/2}$: from ²⁸ Si(α,α):res.
13490	(3 ⁻) [‡]	54 keV 5	B D		T W	XREF: Others: AE XREF: B(13500).
13540 <i>50</i> 13588	5 ⁻ (3 ⁻) [‡]	18 keV 4	B D	Q	T WX	XREF: Others: AE XREF: B(13560).
13655	$(3^{-})^{\ddagger}$	74 keV 2	D			ARLI . B(13300).
13696	$(4^+,3^-)^{\ddagger}$	23.6 keV 9	B D		TU X	XREF: Others: AE XREF: B(13620).
13760 20	6 ⁺ 1 ⁺	50 keV 24		0	. T	XREF: Others: AB E(level), J^{π} : from 32 S(e,e').
13780 <i>10</i> 13807	$(3^{-})^{\ddagger}$	47.4 keV 8	B D	Q	T X	XREF: Others: AE, AG XREF: B(13670).
13870	$(5^-,3^-)^{\ddagger}$	22.0 keV 11	B D		T	XREF: Others: AE, AG XREF: B(13790).
13896	$(4^+)^{\ddagger}$	22.4 keV 1	B D		T	XREF: Others: AE XREF: B(13830).
13900 13970 <i>10</i> 14000 <i>20</i>	1 1 ⁺ ,(2 ⁻) (7 ⁻)	50 keV 24		Q	T !	XREF: Others: AB
14070	(3-)‡	29.6 keV 7	B D		T	XREF: Others: AE, AF XREF: B(14030).
14131	$(5^{-})^{\ddagger}$	15.2 keV 6	B D		T	XREF: Others: AF XREF: B(14110).
14177	$(4^+)^{\ddagger}$	42.0 keV 11	B D		T X	XREF: Others: AF XREF: B(14160).
14234	$(3^{-})^{\ddagger}$	89 keV 2	B D		TU	XREF: Others: AF XREF: B(14220).
14290 50	6-			Q	R	
14429 14450 <i>10</i>	(3 ⁻) [‡]	40 keV 2	B D	0	T	XREF: Others: AE, AF, AG XREF: B(14370).
14542	$(4^+,5^-)^{\ddagger}$	84.5 keV <i>11</i>	B D	Q	T W	XREF: Others: AF XREF: B(14550).
14633 14730	$(5^{-})^{\ddagger}$ [4 ⁺]	7.0 keV 9	D B			
14770 <i>10</i> 14810 <i>20</i>	2 ⁻ (8 ⁺)	<0.08 MeV 91 keV 24		Q	!	XREF: Others: AB
14832	$(4^+)^{\ddagger}$	37.5 keV 5	B D		T	XREF: Others: AF XREF: B(14810).
14878 14880	(4 ⁺) [‡]	25.5 keV 7	D		Т	
15025	$(4^+)^{\ddagger}$	30.5 keV 11	B D		T	XREF: Others: AF

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF			Comments
							XREF: B(14980).
15040	1				T		
15116	$(5^{-})^{\ddagger}$	36 keV 2	B D		T	W	XREF: Others: AF XREF: B(15140).
$15.2 \times 10^3 I$	6+	119 keV 24					XREF: Others: AB
15230	$(4^+,5^-)^{\ddagger}$	18 keV 2	B D		TU	W	XREF: Others: AE XREF: B(15230).
15344	(5 ⁻) [‡]	45.9 keV <i>1</i>	B D		T	W	XREF: Others: AE XREF: B(15330).
15385	$(5^{-})^{\ddagger}$	24.5 keV 6	B D		T	W	XREF: Others: AE XREF: B(15380).
15441	$(5^{-})^{\ddagger}$	34.3 keV 3	B D		T	W	XREF: Others: AF XREF: B(15440).
15527	$(5^{-})^{\ddagger}$	46.8 keV 3	B D		T	W	XREF: Others: AE XREF: B(15530).
15580	1				T		11121 (2(10000))
15600			F				
15631	$(5^{-})^{\ddagger}$	29.9 keV 3	B D		T	WX	XREF: B(15610).
15686	$(5^-,6^+)^{\ddagger}$	35.9 keV <i>1</i>	B D		TU	W	XREF: Others: AG XREF: B(15720).
15700	1				T		
15758	$(6^+,5^-)^{\ddagger}$	41.0 keV 9	B D			WX	XREF: Others: AG XREF: B(15760).
15840	1				T		
15847	$(4^+,5^-)^{\ddagger}$	47 keV 2	B D		TU		XREF: B(15820).
15894	$(5^-,4^+)^{\ddagger}$	28.0 keV 8	B D			W	XREF: B(15890).
15955	$(6^+)^{\ddagger}$	21.6 keV 5	B D		T	WX	XREF: B(15960).
16052	$(5^{-})^{\ddagger}$	54 keV 2	B D		T	X	XREF: B(16060).
16243	$(6^+)^{\ddagger}$	41.3 keV 8	B D		T	X	XREF: B(16160).
16250 16310 <i>70</i>	[5 ⁻] 6 ⁻		В	R			
16341	(5 ⁻) [‡]	86 keV 2	B D		Т	X	XREF: Others: AE
16370 16430 <i>70</i>	[5 ⁻] 6 ⁻		В	Q			XREF: B(16330).
16495	$(5^{-})^{\ddagger}$	64 keV 3	B D		T	X	XREF: Others: AF XREF: B(16480).
16615 16650 <i>70</i>	(6 ⁺) [‡] 6 ⁻	60 keV 2	B D	R	T	WX	XREF: B(16650).
16691	$(5^-,6^+)^{\ddagger}$	23 keV 2	B D		Т	X	XREF: B(16690).
16747	$(6^+)^{\ddagger}$	45 keV 2	B D		T	X	XREF: Others: AG XREF: B(16780).
16795	$(6^+)^{\ddagger}$	76 keV 6	D				11121 (2(10/00))
16866	$(6^+)^{\ddagger}$	38.1 keV 6	B D		T	X	XREF: Others: AG XREF: B(16870).
16920	$(6^+)^{\ddagger}$	35.0 keV 8	D				
16978	$(6^+)^{\ddagger}$	47 keV 3	B D		T	X	XREF: Others: AG
17080	(6 ⁺) [‡]	58.0 keV <i>14</i>	B D		T	X	XREF: B(16970). XREF: Others: AG XREF: B(17060).

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF	Comments
17120 <i>70</i> 17180 <i>80</i>	6 ⁻ 6 ⁻			R Q	
17250	$(5^-)^{\ddagger}$	92 keV <i>14</i>	B D	TU X	XREF: Others: AG XREF: B(17260).
17393	$(7^{-})^{\ddagger}$	35 keV 6	B D	T W	XREF: Others: AE, AG XREF: B(17350).
17420	[7-]		В		11121 (2(1)200)
17570 17656	$[7^{-}]$ $(7^{-})^{\ddagger}$	36 keV 2	B B D	T X	XREF: Others: AG
			БЪ	1 A	XREF: B(17690).
17688	$(7^{-})^{\ddagger}$	26 keV 2	D		
17868	$(6^+,7^-)^{\ddagger}$	82 keV 7	B D	T	XREF: Others: AG XREF: B(17800).
17880	[7 ⁻]	40.1 37.4	В		VDEE OIL AT AC
17934	(7 ⁻) [‡]	48 keV <i>4</i>	B D	T	XREF: Others: AF, AG XREF: B(17940).
18042	(7-)‡	44 keV 2	B D	T X	XREF: B(18060).
18213 18400	(7 ⁻) [‡] [9 ⁻]	76 keV 7	B D B	TU	XREF: B(18220).
18458	$(7^{-})^{\ddagger}$	66 keV 5	B D	T	XREF: Others: AF, AG XREF: B(18470).
18554	$(7^{-})^{\ddagger}$	73.6 keV <i>14</i>	B D	T WX	XREF: B(18560).
18660	$(7^{-})^{\ddagger}$	74 keV 5	B D	T X	XREF: B(18660).
18736	$(7^{-})^{\ddagger}$	75 keV 6	B D	T W	XREF: Others: AG
	a.				XREF: B(18750).
18803 18810	$(8^+,7^-)^{\ddagger}$ [7 ⁻]	46 keV <i>3</i>	B D B	Т	XREF: B(18890).
18986	$(8^+,7^-)^{\ddagger}$	34 keV 2	B D	T	XREF: B(18980).
19119	$(8^+,7^-)^{\ddagger}$	84 keV 7	B D	TU	XREF: B(19120).
19190	[7-]		В		
19248	$(8^+)^{\ddagger}$	54 keV <i>10</i>	B D	TU	XREF: Others: AE XREF: B(19320).
19250	[7-]		В		
19442 19450	$(7^-,8^+)^{\ddagger}$ $[7^-]$	72 keV 2	B D B	T W	XREF: B(19500).
19551	(8 ⁺) [‡]	75 keV 18	B D	T X	XREF: B(19610).
19653	(8 ⁺) [‡]	54 keV 2	B D	T X	XREF: B(19690).
19747	$(8^+,7^-)^{\ddagger}$	79 keV 9	B D	T	XREF: B(19800).
20200 20270	[8 ⁺] [8 ⁺]		B B		
20275	$(7^-,8^+)^{\ddagger}$	44 keV <i>4</i>	B D	U	XREF: Others: AE
20273	(7,0)	TI KE V 7	2 2		XREF: B(20320).
20381	(8+)‡	72 keV <i>17</i>	B D	TU	XREF: Others: AF XREF: B(20410).
20485	(8 ⁺) [‡]	84 keV <i>4</i>	B D	U W	XREF: Others: AE XREF: B(20530).
20610 20680	[8 ⁺]		B B		
20703	(8 ⁺) [‡]	37 keV 4	B D	U W	XREF: Others: AG XREF: B(20750).

E(level) [†]	J^{π}	T _{1/2}		XREF			Comments
20800	[8+]		В				
20835	(8 ⁺) [‡]	59 keV 2	B D		U	X	XREF: B(20860).
20950	[8+]		В				, ,
21050	[9-]		В				
21212	(9 ⁻) [‡]	69 keV <i>3</i>	B D		TU		XREF: B(21280).
21395	(9-)‡	70 keV 5	B D		TU		XREF: Others: AE, AF XREF: B(21430).
21457	(9 ⁻) [‡]	45 keV 4	B D		TU		XREF: Others: AF XREF: B(21490).
21532 21720	(9 ⁻) [‡] [9 ⁻]	39 keV <i>10</i>	B D B		TU I	N	XREF: B(21590).
21783 22000	(8 ⁺ ,9 ⁻) [‡] [9 ⁻]	53 keV 2	B D B		TU		XREF: B(21810).
22135	(9-)‡	74 keV <i>4</i>	B D		TU		XREF: Others: AG XREF: B(22170).
22205	(9-)‡	54 keV 9	B D		U		XREF: Others: AF XREF: B(22240).
22308	(9-)‡	47 keV <i>14</i>	B D		TU		XREF: Others: AE XREF: B(22310).
22355	(8 ⁺) [‡]	24 keV 5	B D		U		XREF: Others: AE XREF: B(22390).
22590	[9-]		В				
22710	[9-]		В				
22846	(9-)‡	51 keV 5	B D		TU		XREF: B(22810).
22964	$(10^+,9^-)^{\ddagger}$	58 keV <i>3</i>	B D		U		XREF: Others: AE XREF: B(23030).
23226	(9 ⁻) [‡]	74 keV <i>16</i>	B D		TU	X	XREF: Others: AE XREF: B(23160).
23296	(9 ⁻) [‡]	52 keV 7	B D		U	X	XREF: Others: AE XREF: B(23260).
23430	[9 ⁻]		В				
23493	$(10^+)^{\ddagger}$	93 keV <i>12</i>	B D		U	N	XREF: Others: AE, AG XREF: B(23750?).
23.86×10^3	7-‡	≈0.1 MeV	D				
24.93×10^3	8+‡	≈0.1 MeV	D				
26.90×10^3	11-‡	≈0.2 MeV	D				
27.25×10^3	9-‡	0.08 MeV	D				
27.44×10^3	8+‡	0.04 MeV	D				
27.69×10^3	9-‡	0.15 MeV	D				
27.82×10^3	9-‡	0.11 MeV	D				
28.04×10^3	10+‡	0.04 MeV	D				
28.17×10^3	10+‡	0.07 MeV	D				
28.30×10^3	8+‡	0.08 MeV	D				
28.48×10^3	10+‡	0.17 MeV	D				
28.67×10^3	10+‡	0.22 MeV	D				
28.97×10^3	10+‡	0.19 MeV	D				
29.25×10^3	9-‡	0.13 MeV	D				
29.66×10^3	10 ^{+‡}	0.16 MeV	D				
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.10 Int	_				

E(level) [†]	J^{π}	T _{1/2}	XREF
29.88×10^3	10+‡	0.20 MeV	D
29.91×10^3	10 ^{+‡}	0.16 MeV	D
30.26×10^3	9-‡	0.17 MeV	D
30.37×10^3	10 ^{+‡}	0.13 MeV	D
30.61×10^3	$11^{-\ddagger}$	0.25 MeV	D
30.89×10^3	12 ^{+‡}	0.14 MeV	D
31.19×10^3	12 ^{+‡}	0.20 MeV	D
31.71×10^3	9-‡	0.22 MeV	D
31.98×10^3	12 ^{+‡}	0.22 MeV	D
32.7×10^3		≈0.3 MeV	D
33.5×10^3		≈0.2 MeV	D

[†] From least-squares fit to E γ data for levels populated in γ -ray studies. For others, weighted averages are taken when possible. [‡] From L(α , α) for resonances (2003Ka07,2010Lo12); R-matrix analysis in 2010Lo12.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\mathrm{I}_{(\gamma+ce)}$	Comments
2230.57	2+	2230.49 15	100	$0 0^{+}$	E2			E_{γ} : from $^{32}S(\gamma,\gamma')$.
3778.4	0^{+}	1548.8 <i>15</i>	100	2230.57 2+	[E2]			B(E2)(W.u.)=11.8 I2
		3778		$0 0^{+}$	[E0]		0.035 6	$q_K^2(E0/E2)=0.044 8$, $X(E0/E2)=0.047 9$, $\rho^2=0.019 5$ (2005Ki02
								evaluation).
								$I_{(\gamma+ce)}$: from ³¹ P(³ He,d) (1975Ad02). γ intensity <10.
4281.8	2+	503.7	< 0.4	3778.4 0 ⁺				(yitte)
		2052.6 15	14.9 <i>6</i>	2230.57 2+	E2+M1	-26 16		$B(M1)(W.u.)=1.2\times10^{-5} +15-12$; $B(E2)(W.u.)=7.99$
								Mult., δ : from ³¹ P(p,p' γ).
		4281.5 <i>3</i>	100.0 6	$0 0^{+}$				E_{γ} : from ${}^{32}S(\gamma,\gamma')$.
4459.1	4+	681.4	< 0.3	3778.4 0 ⁺				L_{γ} . Holli $S(\gamma, \gamma)$.
4437.1	7	2229.4 12	100.0	2230.57 2 ⁺	E2			B(E2)(W.u.)=14 3
		4458.4	<1.0	$0 0^{+}$	LZ			D(L2)(W.u.)=14.3
4695.3	1+	414.1	< 0.98	4281.8 2 ⁺				
1075.5	1	917.8	< 0.65	3778.4 0 ⁺				
		2466.0 <i>15</i>	100.0 17	2230.57 2 ⁺	M1(+E2)	-0.08 10		B(M1)(W.u.)=(0.0031 8); B(E2)(W.u.)=(0.014 +35-14)
		2100.015	100.0 17	2230.37 2	1111(122)	0.00 10		Mult., δ : note ³¹ P(p,p' γ) makes a case for a stronger E2 component.
		4694.0 25	63.9 17	$0 0^{+}$	[M1]			B(M1)(W.u.)=0.00029 8
5006.2	3-	724.8	<0.1	4281.8 2+	[111]			D(M1)(W.u.)=0.00027 0
3000.2	5	1228.4	<0.4	3778.4 0 ⁺				
		2776.2 12	100.0 5	2230.57 2 ⁺	E1(+M2)	0.00 5		$B(E1)(W.u.)=(5.8\times10^{-5} 4)$
		5005.4	3.5 5	$0 0^{+}$	E3	0.00 3		B(E3)(W.u.)=16 3
5412.6	3 ⁺	406.2	<2	5006.2 3	LS			D(LS)(W.u.)=10.5
3112.0	5	716.9	<1	4695.3 1 ⁺				
		953.3	<1	4459.1 4 ⁺				
		1131.0	<6	4281.8 2+				
		1634.6	<20	3778.4 0 ⁺				
		3181.8	100	2230.57 2+	E2+M1	+7.6 19		B(M1)(W.u.)=7.E-5 4; B(E2)(W.u.)=1.6 3
		5411.4	<5	$0 0^{+}$	22.1111	. , . 0 1 >		5(M1)(Mai) /12 6 1, 5(22)(Mai) 116 6
5548.5	2+	541.2	< 0.7	5006.2 3-				
	_	851.9	<1.6	4695.3 1+				
		1088.3	<3.3	4459.1 4+				
		1265.9	<1.6	4281.8 2 ⁺				
		1769.6	<1.6	3778.4 0 ⁺				
		3318.5	100.0 25	2230.57 2+	E2+M1	$-5.2\ 21$		B(M1)(W.u.)=0.00022 18; B(E2)(W.u.)=2.3 3
		5546.4	66.7 25	$0 0^{+}$				
5796.8	1-	791.3	<1	5006.2 3-				
		1102.0	<1	4695.3 1 ⁺				
		1338.3	<1.5	4459.1 4+				
		1516.0	<1	4281.8 2+				
		2019.7	<1.5	3778.4 0 ⁺				
		3566.8	<5	2230.57 2+				

γ (32S) (continued)

	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
		_						E_{γ} : from $^{32}S(\gamma,\gamma')$.
	5796.8 6222.9	1 ⁻ 2 ⁻	5796.3 3	100.0				E_{γ} : from ${}^{3}S(\gamma,\gamma')$.
	6222.9	2	811.3 1217.5	<0.2 3 2	5412.6 3 ⁺ 5006.2 3 ⁻			
			1528.1	< 0.5	4695.3 1 ⁺			
			1764.5	< 0.6	4459.1 4+			
			1942.2	<1.5	4281.8 2+			
			2445.8	< 0.8	3778.4 0 ⁺			
			3993.0 20	100.0 21	2230.57 2 ⁺	E1+M2	-0.07 3	B(E1)(W.u.)=0.00015 3; B(M2)(W.u.)=0.21 19
			6222.4	<1.5	0 0+			= (==)() *******************************
	6411	4+	4179	100.0	2230.57 2 ⁺			
	6621.7	4-	1209.1	<1.2	5412.6 3 ⁺	E1		B(E1)(W.u.)=5.E-6.5
			1615.2	100.0 14	5006.2 3-	E2+M1	2.9 8	B(M1)(W.u.)=0.0011 6; B(E2)(W.u.)=15 3
			1925.9	< 0.4	4695.3 1 ⁺			
			2162.2	32.9 10	4459.1 4+	E1(+M2)	-0.062	$B(E1)(W.u.)=(4.4\times10^{-5} 8); B(M2)(W.u.)=(0.15 11)$
			2339.9	< 0.27	4281.8 2+			
			2843.5	< 0.82	3778.4 0 ⁺			
			4390.6	4.1 5	$2230.57 \ 2^{+}$	M2+E3	-0.41 8	B(M2)(W.u.)=0.13 3; B(E3)(W.u.)=8 3
			6620.0	< 0.41	0 0+			
)	6666.1	2+	1253.3	<2	5412.6 3 ⁺			
			1659.5	<8	5006.2 3			
			1970.2	29 4	4695.3 1+			
			2206.5	<6	4459.1 4+			
			2384.2	<14	4281.8 2+			
			2887.9 20	100 11	3778.4 0 ⁺			
			4434.8	76 9	2230.57 2+			
	6761.6	5-	6664.3	<6	$0 0^+$			
	0/01.0	3	1349.1 1755.3	<4 100 <i>4</i>	5412.6 3 ⁺ 5006.2 3 ⁻	[E2]		B(E2)(W.u.)=14 3
			1733.3	100 4	3000.2 3	[E2]		Additional information 5.
			2066.0	<11	4695.3 1+			Additional information 3.
			2302.3	32 14	4459.1 4 ⁺	E1+M2	-0.6	$B(E1)(W.u.)=3.3\times10^{-5} 16$; $B(M2)(W.u.)=10.5$
			2302.3	32 14	4439.1 4	EI+WIZ	-0.0	Additional information 6. $I(0, B(MZ)(W.u.) = 10.5$
			2480.0	<4	4281.8 2 ⁺			Additional information o.
			2983.6	<5	3778.4 0 ⁺			
			4530.6	<9	2230.57 2 ⁺			
			6760.1	2.7 14	$0 0^{+}$			
	6851.5	4 ⁺	1439.9	13 7	5412.6 3 ⁺			
			1846.1	<16.2	5006.2 3			
			2156.7	<6	4695.3 1 ⁺			
			2393.1	13 7	4459.1 4 ⁺	E2		Additional information 7.
								Mult.: from 29 Si $(\alpha, n\gamma)$.
			2570.8	100 13	4281.8 2+	E2		B(E2)(W.u.)=83

						<u>A</u>	-	S) (continued)	³² ₁₆ S ₁₆ -24
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_f \underline{\mathbf{J}_f^{\pi}}$	Mult. [†]	δ^{\dagger}	Comments	
24	9289.0	1 ⁺	1163.6 1753.2 2173.5 2287.4 2623.0 2667.3 3065.0 3491.1 3741.1 3876.1 4282.2 4592.8 4829.1 5006.8 5510.3 7057.0 9286.1 1262.6 2626.2 2722.0 2766.2 2766.2 3164.0 3590.1 3840.1 3975.1 4381.2 4691.8 4928.1 5105.7 5609.2 7156.0 9385.0	<pre><2 14.0 13 39.1 23 2.5 5 <1 <1 6.3 8 2.8 5 <4 <2 <3 39.1 23 <2 <3 39.1 23 <2 <3 <2 46.9 23 100 5 2.08 16 <0.6 <0.6 2.1 5 25.4 12 3.0 5 2.7 5 1.44 16 12.5 7 3.2 4 <0.9 3.0 4 <0.8 100 4 4.0 16</pre>	8125.40 1+ 7535.7 0+ 7115.3 2+ 7001.4 1+ 6666.1 2+ 6621.7 4- 6222.9 2- 5796.8 1- 5548.5 2+ 5412.6 3+ 5006.2 3- 4695.3 1+ 4281.8 2+ 3778.4 0+ 2230.57 2+ 0 0+ 8125.40 1+ 6761.6 5- 6666.1 2+ 6621.7 4- 6222.9 2- 5796.8 1- 5548.5 2+ 5412.6 3+ 5006.2 3- 4695.3 1+ 4281.8 2+ 3778.4 0+ 2230.57 2+ 0 0+ 8125.40 1- 6221.9 2- 8125.40 1- 8125	M1(+E2)	0.01 I	Additional information 19.	From ENSDF
	9463.4	5-,7-	2701	100	6761.6 5	M1+E2	-0.82 25	E_{γ} , I_{γ} : from 29 Si(α , $n\gamma$). Additional information 20. Mult., δ : from 29 Si(α , $n\gamma$).	
	9466.0	2+	2347.8 3675 [‡] 4455 [‡] 4767.0 5005 [‡] 5684.5	13 4 12 4 12 4 50 8 12 4 11 3	7115.3 2 ⁺ 5796.8 1 ⁻ 5006.2 3 ⁻ 4695.3 1 ⁺ 4459.1 4 ⁺ 3778.4 0 ⁺				³² S ₁₆ -24

$\gamma(^{32}S)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}
9660.1	1+	7426.8	12.3 <i>13</i>	2230.57 2+
		9655.9	100 10	$0 0^{+}$
9711.9	2+	1586.5	6.7 17	8125.40 1+
		2596.4	7.2 12	$7115.3 2^+$
		2710.2	7.2 12	$7001.4 1^+$
		3487.8	<4	$6222.9 2^{-}$
		3913.9	8.4 21	5796.8 1
		4163.9	<4	5548.5 2 ⁺
		4298.9	<3	5412.6 3 ⁺
		4705.0	4.88 24	$5006.2 3^-$
		5015.6	60 <i>5</i>	4695.3 1+
		5251.9	2.8 12	4459.1 4+
		5429.5	6.5 19	4281.8 2+
		5933.0	14.9 5	3778.4 0+
		7479.7	100 17	2230.57 2+
0724	224	9708.7	15.3 17	$0 0^+$
9724	2,3,4	1773.8	<2	7950.1 4
		2022.9	2.4 13	7701.44 3
		2188.1	<1	7535.7 0 ⁺
		2608.5	<1	7115.3 2+
		2962.1	12.4 5	6761.6 5 ⁻ 6621.7 4 ⁻
		3102.2 3499.9	100 8 32 4	6621.7 4 ⁻ 6222.9 2 ⁻
		3926.0	32 4 <1	5796.8 1 ⁻
		4176.0	<2	5548.5 2 ⁺
		4311.0	<2	5412.6 3 ⁺
		4717.1	95 8	5006.2 3
		5027.7	<2	4695.3 1 ⁺
		5264.0	<2	4459.1 4+
		5441.6	<2	4281.8 2+
		5945.1	<3	3778.4 0 ⁺
		7491.8	2.0 5	2230.57 2+
		9720.8	<1	0 0+
9731	$1^{-},2^{-}$	1605.6	19 3	8125.40 1+
	,	1780.8	5.5 14	7950.1 4
		2029.9	<3	7701.44 3-
		2615.5	9	7115.3 2 ⁺
		3109.2	<1	6621.7 4-
		3506.9	91 9	$6222.9 2^{-}$
		3933.0	91 9	5796.8 1
		4183.0	4.5 23	5548.5 2+
		4318.0	<6	5412.6 3 ⁺

Comments

	_	

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
9731	$1^{-},2^{-}$	4724.1	14 7	5006.2 3-
	- ,-	5034.6	24 4	4695.3 1 ⁺
		5271.0	<2	4459.1 4+
		5448.6	100 9	4281.8 2+
		5952.1	<4	$3778.4 0^{+}$
		7498.8	86 9	2230.57 2+
		9727.8	18.2 <i>23</i>	$0 0^{+}$
9783	6	5324	100	4459.1 4+
9816.8	3-,4-	2701.3	17.2 <i>12</i>	7115.3 2+
		3195.0	<1.2	$6621.7 4^-$
		3592.7	11.2 14	$6222.9 2^{-}$
		4018.8	5.4 6	5796.8 1
		4268.8	<1.4	5548.5 2+
		4403.7	<3	5412.6 3 ⁺
		4809.8	100 6	5006.2 3
		5120.4	<1.8	4695.3 1+
		5356.7	3.4 8	4459.1 4+
		5534.4	20 4	4281.8 2+
		6037.9	<1.6	$3778.4 0^{+}$
		7584.6	40 4	2230.57 2+
		9813.6	1.4 4	$0 0_{+}$
9848	1-	2732.4	53 <i>4</i>	7115.3 2+
		3181.9	<2.7	6666.1 2+
		3226.2	<1	6621.7 4
		3623.9	<4.3	6222.9 2-
		4049.9	11.18 20	5796.8 1
		4300.0	<1.8	5548.5 2+
		4434.9	<3.3	5412.6 3 ⁺
		4841.0	<2	5006.2 3
		5151.6	4.7 10	4695.3 1+
		5387.9	< 2.5	4459.1 4+
		5565.6	3.5 12	4281.8 2+
		6069.1	<1	$3778.4 0^+$
		7615.8	100 8	2230.57 2+
		9844.7	19.6 20	0 0+
9887.3	$2^+,3^+$	2771.7	100 14	$7115.3 2^+$
		2885.6	53 7	7001.4 1+
		3221.2	8.0 9	6666.1 2+
		3663.1	<1.1	$6222.9 2^{-}$

27

E_{γ},I_{γ}: from ²⁹Si(α ,n γ). Additional information 22. Mult., δ : from ²⁹Si(α ,n γ).

$\gamma(^{32}S)$ (continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9919.3 2+ 2383.4 2.0 10 7535.7 0+ 2862.7 13.2 14 7115.3 2+ 7655.0 22.2 23 2230.57 2+ 2435.2 7.1 8 7484.0 2+ 2435.2 7.1 8 7484.0 2+ 2435.2 7.1 8 7484.0 2+ 2803.7 22.0 25 7115.3 2+ 3253.1 <12.2 66666.1 2+ 3253.1 <12.2 66666.1 2+ 3253.1 <12.2 66666.1 2+ 3253.1 <12.2 66666.1 2+ 3253.1 <12.2 66666.1 2+ 3253.1 <12.2 66661.7 4- 3253.1 <12.2 66661.7 4- 3253.1 <12.2 66661.7 4- 3253.1 <12.2 66661.7 4- 3253.1 <12.2 66661.7 4- 3253.1 <12.2 66661.7 4- 3253.1 <12.2 66661.7 4- 3253.1 <12.2 66661.7 4- 3253.1 <12.2 66661.7 4- 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 2+ 3253.1 <12.2 6666.1 <12.1 <12.2 6666.1 <12.2 523.1 <12.2 52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9978.3 3 1634.2 2.2 6 8346.4 4+ 5190.9 11.11 23 4695.3 1+ 5427.2 0.44 23 4459.1 4+ 5604.8 8.4 12 4281.8 2+ 6108.3 <1.3 3778.4 0+ 9884.0 3.8 5 0 0+ 9884.0 3.8 5 0 0+ 2383.4 2.0 10 7535.7 0+ 2283.7 22.0 25 7115.3 2+ 2803.7 22.0 25 7115.3 2+ 3066.6 18.05 25 6851.5 4+ 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.4 <2.7 6621.7 4- 3297.5 0.0 8 0 0 0+ 4371.3 85 8 5548.5 2+ 4371.3 85 8 548.6 2+ 4371.3 85 8 548.6 2+ 4371.3 85 8 548.6 2+ 4371.3 85 8 548.6 2+ 4371.3 85 8 548.6 2+ 4371.3 85 8 548.6 2+ 4371.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4371.3 85 8 5548.5 2+ 4506.2 6.59 25 5412.6 3+ 4912.3 <2.7 5006.2 3- 5222.9 <26.8 4695.3 1+ 5459.2 <3.4 4459.1 4+ 6199.3 <2.4 3778.4 0+ 7746.0 100 9 2230.57 2+ 9975.0 0.8 0 0+ 2981.0 2.9 8 7001.4 1+
4506.2 6.59 25 5412.6 3+ 4912.3 <2.7 5006.2 3- 5222.9 <26.8 4695.3 1+ 5459.2 <3.4 4459.1 4+ 7746.0 100 9 2230.57 2+ 9975.0 0.8 0 0+ 2867.1 1.3 5 7115.3 2+ 2981.0 2.9 8 7001.4 1+
4912.3 <2.7 5006.2 3 ⁻ 9975.0 0.8 0 0 ⁺ 5222.9 <26.8 4695.3 1 ⁺ 9982.7 2,0 ⁺ 2867.1 1.3 5 7115.3 2 ⁺ 5459.2 <3.4 4459.1 4 ⁺ 2981.0 2.9 8 7001.4 1 ⁺
5222.9 <26.8 4695.3 1 ⁺ 9982.7 2,0 ⁺ 2867.1 1.3 5 7115.3 2 ⁺ 5459.2 <3.4 4459.1 4 ⁺ 2981.0 2.9 8 7001.4 1 ⁺
5459.2 <3.4 4459.1 4+ 2981.0 2.9 8 7001.4 1+
5636.8 2.9 1/ 4281.8 2 3130.0 1.3 4 6851.5 4
6140.3 <3.2 3778.4 0 ⁺ 3360.8 1.9 7 6621.7 4 ⁻ 7687.0 100 10 2230.57 2 ⁺ 3758.5 <1.8 6222.9 2 ⁻
9916.0 <2.7 0 0 ⁺ 4184.6 <1.4 5796.8 1 ⁻ 9946.6 1 ⁻ 1821.2 10.3 8 8125.40 1 ⁺ 4434.6 15.2 <i>15</i> 5548.5 2 ⁺
2831.0 2.0 3 7115.3 2 ⁺ 4569.6 <1.6 5412.6 3 ⁺
2944.9 0.53 <i>14</i> 7001.4 1 ⁺ 4975.7 <1.6 5006.2 3 ⁻
$3324.7 < 0.7 6621.7 4^{-1}$ $5286.3 34 4 4695.3 1^{+}$
3722.4 <0.5 6222.9 2 ⁻ 5522.6 <1.4 4459.1 4 ⁺
4148.5 <0.4 5796.8 1 ⁻ 5700.2 2.6 8 4281.8 2 ⁺
$4398.6 < 1$ $5548.5 2^{+}$ $6203.7 < 0.9$ $3778.4 0^{+}$
4533.5 <0.4 5412.6 3 ⁺ 7750.4 100 10 2230.57 2 ⁺
4939.6 <0.4 5006.2 3 ⁻ 9979.4 1.13 <i>17</i> 0 0 ⁺
5250.2 2.0 4 4695.3 1+ 10073.4 2- 1574.0 0.41 21 8499.3 1-
5486.5 <1.3 4459.1 4 ⁺ 1777.2 0.8 4 8296.1 3 ⁻
5664.1 2.9 4 4281.8 2 ⁺ 1948.0 0.61 2 <i>I</i> 8125.40 1 ⁺
6167.6 3.7 8 3778.4 0 ⁺ 2372.2 0.61 21 7701.44 3 ⁻
7714.3 10.7 <i>1</i> 2 2230.57 2 ⁺ 2957.8 1.4 7 7115.3 2 ⁺
9943.3 $100 \ 10$ $0 \ 0^{+}$ $3407.2 \ <1.4 \ 6666.1 \ 2^{+}$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}
10073.4	2-	3451.5	<1.4	$\frac{7}{6621.7}$ $\frac{7}{4}$		
10073.4	2	3849.2	100 4	$6222.9 2^{-}$		
		4275.3	<3.0	5796.8 1 ⁻		
		4525.3	<1.4	5548.5 2 ⁺		
		4660.3	8.8 7	5412.6 3 ⁺		
		5066.3	28.2 15	5006.2 3		
		5376.9	1.43 21	4695.3 1 ⁺		
		5613.2	<1.43 21	4459.1 4 ⁺		
		5790.9	3.06 21	4281.8 2 ⁺		
		6294.4	< 0.8	3778.4 0 ⁺		
		7841.0	60 3	2230.57 2 ⁺		
		10070.0	3.47 21	$0 0^{+}$	M2	
10102.3	4(+)			5412.6 3 ⁺	1112	
10102.3	4` ′	4689.3 5095.4	16.5 <i>15</i> 49.8 <i>15</i>	5006.2 3		
		5642.2	49.8 <i>13</i> 46.7 <i>15</i>	4459.1 4 ⁺		
		5820.1	22.9 12	4281.8 2 ⁺		
		7870.0	100.0 22	2230.57 2 ⁺		
10218.8	3 ⁺	2734.6	2.7 5	7484.0 2 ⁺		
10216.6	3	3028.4	1.22 25	7190.1 1 ⁺		
		3103.2	100 8	7130.1 1 7115.3 2 ⁺		
		3552.6	1.7 5	6666.1 2 ⁺		
		3596.9	<1.7 5	6621.7 4		
		3994.6	<1.7	6222.9 2		
		4420.6	<1.7	5796.8 1 ⁻		
		4670.7	16.6 17	5548.5 2 ⁺		
		4805.6	7.1 8	5412.6 3 ⁺		
		5211.7	12.0 17	5006.2 3		
		5522.3	46 5	4695.3 1 ⁺		
		5758.6	12.9 13	4459.1 4 ⁺		
		5936.2	16.6 15	4281.8 2+		
		6439.7	<1.7	3778.4 0 ⁺		
		7986.4	29.3 25	2230.57 2 ⁺		
		10215.3	3.9 5	$0 0^{+}$		
10221.2	3-	2737.0	< 0.65	7484.0 2 ⁺		
10221.2	3	3105.6	3.2 25	7115.3 2 ⁺	E1+M2	+0.233 17
		3555.0	1.1 4	6666.1 2 ⁺	21 1 1712	10.233 17
		3599.3	< 0.96	6621.7 4		
		3997.0	< 0.96	6222.9 2		
		4423.0	<1.3	5796.8 1 ⁻		
		4673.1	<1.6	5548.5 2 ⁺		
		4808.0	0.6 4	5412.6 3 ⁺		

γ (32S) (continued)

\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
3-	5214.1	100 8	5006.2 3	$\overline{D(+Q)}$	-0.06 6	δ : from ²⁸ Si(α , γ).
	5524.7	<1.6	4695.3 1+	M2+E3	-0.227	
	5761.0	34 4		D+Q	-0.092	δ : from ²⁸ Si(α , γ).
	5938.6	<1.6				
	7988.8	22.6 17	2230.57 2+	E1+M2	-0.705	δ : other: +0.11 5 from 28 Si(α, γ).
1+						
	3228.5					
			0222.9 Z 5706.8 1=			
	6451.2	6.0 13	3778.4 0 ⁺			
	7997.9	19.1 20	2230.57 2+			
		16.2 <i>17</i>				
4-		7.4 8				
		< 0.4				
				M1+E2	$-0.9 \ 3$	
				M1 . F2	. 0 2 1	
			3000.2 3 4605.2 1+	WH+E2	+0.2 1	
				E1+M2	0.0.2	
				E1+W12	-0.9 3	
	3-1+	3- 5214.1 5524.7 5761.0 5938.6 6442.1 7988.8 10217.7 1+ 2694.4 3039.9 3114.7 3228.5 3377.5 3468.3 3564.1 3608.4 4006.1 4432.1 4682.2 4817.1 5223.2 5533.8 5770.1 5947.7 6451.2 7997.9 10226.8	3- 5214.1 100 8 5524.7 <1.6 5761.0 34 4 5938.6 <1.6 6442.1 <0.32 7988.8 22.6 17 10217.7 0.5 4 1+ 2694.4 11.5 15 3039.9 1.9 5 3114.7 6.8 22 3228.5 100 7 3377.5 <2 3468.3 <2.3 3564.1 <2 3608.4 <1.9 4006.1 8.9 20 4432.1 <2 4682.2 5.3 11 4817.1 6.8 7 5223.2 <3 5533.8 9.1 13 5770.1 <2.1 5947.7 23.4 22 6451.2 6.0 13 7997.9 19.1 20 10226.8 16.2 17 4- 2305.8 7.4 8 2554.9 <0.4 2906.1 3494.1 3.4 8 3634.2 100 7 3845.6 0.7 3 4708.0 <0.4 4842.9 <0.3 5249.0 6.2 7 5559.6 <0.13 5795.9 12.8 10 5973.5 <0.3 6477.0 <0.1	3- 5214.1 100 8 5006.2 3- 5524.7 <1.6 4695.3 1+ 5761.0 34 4 4459.1 4+ 5938.6 <1.6 4281.8 2+ 6442.1 <0.32 3778.4 0+ 7988.8 22.6 17 2230.57 2+ 10217.7 0.5 4 0 0+ 12694.4 11.5 15 7535.7 0+ 3039.9 1.9 5 7190.1 1+ 3114.7 6.8 22 7115.3 2+ 3228.5 100 7 7001.4 1+ 3377.5 <2 6851.5 4+ 3468.3 <2.3 6761.6 5- 3564.1 <2 6666.1 2+ 3608.4 <1.9 6621.7 4- 4006.1 8.9 20 6222.9 2- 4432.1 <2 5796.8 1- 4682.2 5.3 11 5548.5 2+ 4817.1 6.8 7 5412.6 3+ 5223.2 <3 5006.2 3- 5533.8 9.1 13 4695.3 1+ 5770.1 <2.1 4459.1 4+ 5947.7 23.4 22 4281.8 2+ 6451.2 6.0 13 3778.4 0+ 7997.9 19.1 20 2230.57 2+ 10226.8 16.2 17 0 0+ 4006.1 6851.5 4+ 2305.8 7.4 8 7950.1 4- 2554.9 <0.4 7701.44 3- 7350.0 3(+) 3406.1 6851.5 4+ 3494.1 3.4 8 6761.6 5- 3634.2 100 7 6621.7 4- 3845.6 0.7 3 6411 4+ 4708.0 <0.4 5548.5 2+ 4842.9 <0.3 5412.6 3+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 6477.0 <0.1 3778.4 0+	3- 5214.1 100 8 5006.2 3- D(+Q) 5524.7 <1.6 4695.3 1+ M2+E3 5761.0 34 4 4459.1 4+ D+Q 5938.6 <1.6 4281.8 2+ 6442.1 <0.32 3778.4 0+ 7988.8 22.6 17 2230.57 2+ E1+M2 10217.7 0.5 4 0 0+ 3039.9 1.9 5 7190.1 1+ 3114.7 6.8 22 7115.3 2+ 3228.5 100 7 7001.4 1+ 3377.5 <2 6851.5 4+ 3468.3 <2.3 6761.6 5- 3564.1 <2 6666.1 2+ 3608.4 <1.9 6621.7 4- 4006.1 8.9 20 6222.9 2- 4432.1 <2 5796.8 1- 4682.2 5.3 11 5548.5 2+ 4817.1 6.8 7 5412.6 3+ 5223.2 <3 5006.2 3- 5533.8 9.1 13 4695.3 1+ 5947.7 23.4 22 4281.8 2+ 6451.2 6.0 13 3778.4 0+ 7997.9 19.1 20 2230.57 2+ 10226.8 16.2 17 0 0+ 2305.8 7.4 8 7950.1 4- 2305.8	3- 5214.1 100 8 5006.2 3- D(+Q) -0.06 6 5524.7 <1.6 4695.3 1+ M2+E3 -0.22 7 5761.0 34 4 4459.1 4+ D+Q -0.09 2 5938.6 <1.6 4281.8 2+ 6442.1 <0.32 3778.4 0+ 7988.8 22.6 17 2230.57 2+ E1+M2 -0.70 5 10217.7 0.5 4 0 0+ 3039.9 1.9 5 7190.1 1+ 3114.7 6.8 22 7115.3 2+ 3228.5 100 7 7001.4 1+ 3377.5 <2 6851.5 4+ 3468.3 <2.3 6761.6 5- 3564.1 <2 6666.1 2+ 3608.4 <1.9 6621.7 4- 4006.1 8.9 20 6222.9 2- 4432.1 <2 5796.8 1- 4682.2 5.3 11 5548.5 2+ 4817.1 6.8 7 5412.6 3+ 5223.2 <3 5006.2 3- 5533.8 9.1 13 4695.3 1+ 5770.1 <2.1 4459.1 4+ 5947.7 23.4 22 4281.8 2+ 6451.2 6.0 13 3778.4 0+ 7997.9 19.1 20 2230.57 2+ 10226.8 16.2 17 0 0+ 4- 2305.8 7.4 8 7950.1 4- 7997.9 19.1 20 2230.57 2+ 10226.8 16.2 17 0 0+ 4- 2305.8 7.4 8 7950.1 4- 2906.1 7350.0 3(+) 3406.1 6851.5 4+ 3494.1 3.4 8 6761.6 5- 3634.2 100 7 6621.7 4- 4708.0 <0.4 7701.44 3- 2906.1 7350.0 3(+) 3494.1 3.4 8 6761.6 5- 3634.2 100 7 6621.7 4- 4708.0 <0.4 5548.5 2+ 4842.9 <0.3 5412.6 3+ 5559.6 <0.13 4695.3 1+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5579.5 0.3 42

$\gamma(^{32}S)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}
10256.1	4-	10252.6	<0.4	0 0+	10370.6	2+	3517.8	<1.5	6851.5	4+		
10286.3	3-	5279.2	100.0	5006.2 3-			3704.3	35.0 25	6666.1	2+		
		5826.1	20.2	4459.1 4+			3748.6	<1.5	6621.7	4-		
		8053.8	14.8	2230.57 2+			4146.3	5.0 8	6222.9	2-		
		10282.8	9.6	$0 0^{+}$			4572.4	<1.5	5796.8	1-		
10290.2	2	2164.7	10 <i>3</i>	8125.40 1+			4822.4	6.8 8	5548.5	2+		
		2806.0	< 6.6	$7484.0 2^{+}$			4957.4	30.0 25	5412.6	3 ⁺		
		3288.4	4.3	7001.4 1+			5363.4	5.8 5	5006.2	3-		
		3624.0	5 3	6666.1 2 ⁺			5674.0	23.0 18	4695.3	1+		
		3668.2	<4	$6621.7 4^-$			5910.3	< 0.75	4459.1	4+		
		4065.9	83 6	$6222.9 2^{-}$			6088.0	100 8	4281.8	2+		
		4492.0	6.9 23	5796.8 1			6591.4	1.5 5	3778.4	0_{+}		
		4742.0	<4.9	5548.5 2+			8138.1	30.0 25	2230.57	2+		
		4877.0	6.3 23	5412.6 3+			10367.0	2.5 5	0	0_{+}		
		5283.1	69 <i>3</i>	5006.2 3	10396.7	4-	2271.2	1.0 6	8125.40			
		5593.7	<2.9	4695.3 1+			2421.6	< 0.5	7974.9	4-		
		5830.0	<8.6	4459.1 4+			2446.4	4.8 5	7950.1	4-		
		6007.6	8.0 12	4281.8 2+			2695.5	< 0.3	7701.44			
		6511.1	<4.3	3778.4 0 ⁺			2829.4	0.4 8	7566.8	5+		
		8057.7	100 12	2230.57 2+			3029.3	0.85 14	7367			
10221 1	1-	10286.6	11.4 12	0 0+			3394.9	0.37 9	7001.4	1+		
10331.1	1-	2205.6	7.4 15	8125.40 1+			3543.9	1.6 6	6851.5	4 ⁺		
		3329.3	<3	7001.4 1+			3634.7	2.7 21	6761.6	5-	M1 . F2	. 0 0 2
		3569.1	<4.2	6761.6 5 ⁻ 6666.1 2 ⁺			3774.7	100 6	6621.7	4 ⁻ 4 ⁺	M1+E2	+0.9 3
		3664.8	<3.2				3986.2	0.61 25	6411			
		3709.1	<3.8 <3.7	6621.7 4 ⁻ 6222.9 2 ⁻			4172.4 4598.5	<2.4 0.37 8	6222.9 5796.8	2 ⁻ 1 ⁻		
		4106.8 4532.9	<5.7 <5	5796.8 1 ⁻			4848.5	<0.6	5548.5	2+		
		4782.9	<16.2	5548.5 2 ⁺			4983.5	0.12 4	5412.6	3 ⁺		
		4917.9	<3.8	5412.6 3 ⁺			5389.5	7.8 6	5006.2	3-	M1+E2	+0.2 1
		5323.9	<1.9	5006.2 3			5700.1	<0.4	4695.3	1+	WITTE	10.2 1
		5634.5	17.6 15	4695.3 1 ⁺			5936.4	1.7 5	4459.1	4 ⁺		
		5870.8	<1.9	4459.1 4 ⁺			6114.0	2.2 6	4281.8	2+		
		6048.5	<1.2	4281.8 2+			6617.5	0.37 24	3778.4	0^{+}		
		6552.0	<3.4	3778.4 0 ⁺			8164.2	1.0 4	2230.57	2+		
		8098.6	100 9	2230.57 2+			10393.1	<1.1	0	0^{+}		
		10327.5	22 3	0 0+	10507.9		3317.4	7.7 8	7190.1	1+		
10370.6	2+	2886.4	6.5 23	7484.0 2+			3392.2	100.0 19	7115.3	2+		
		3020.3 [#]	0.75	7350.0 3 ⁽⁺⁾			3506.0	<8	7001.4	1+		
		3180.2	3.0 23	7190.1 1+			3655.1	<3	6851.5	4 ⁺		
		3368.8	0.50 18	7001.4 1+			3745.8	<3	6761.6	5-		
		3300.0	0.50 10	,001.1	1		37 13.0	~3	3701.0	5		

$\gamma(^{32}S)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\dagger}$	E_f	${\rm J}_f^\pi$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\dagger}$	E_f	${\rm J}_f^\pi$
10507.9	_	3841.6	3.0 6	6666.1	2+	10696.1		6235.7	1.4	4459.1	4+
10507.5		3885.9	<3	6621.7	$\frac{2}{4^{-}}$	10070.1		6413.5	14.3	4281.8	2 ⁺
		4283.6	<14.8	6222.9	2-			6916.8	4.3	3778.4	0+
		4709.7	4.0 4	5796.8	1-			8463.4	7.1	2230.57	2+
		4959.7	5.5 11	5548.5	2+			10692.3	100.0	0	0^{+}
		5094.6	14.0 6	5412.6	3+	10700.5	1-	4902.2	4.8	5796.8	1-
		5500.8	2.2 4	5006.2	3-			6003.8	3.6	4695.3	1+
		5811.3	1.6 4	4695.3	1+			6921.2	4.8	3778.4	0^{+}
		6047.6	< 2.8	4459.1	4+			8467.8	6.0	2230.57	2+
		6225.2	13.6 8	4281.8	2+			10696.7	100	0	0_{+}
		6728.7	<5	3778.4	0_{+}	10705.3	$1^{-},2^{-}$	3003.6	16.7 <i>18</i>	7701.44	3-
		8275.3	41.7 11	2230.57	2+			3943.2	60 <i>3</i>	6761.6	5-
		10504.2	10.7 <i>17</i>	0	0_{+}			4083.2	100 4	6621.7	4-
10556.1		8323.5	100	2230.57	2+			6244.9	16 <i>4</i>	4459.1	4+
		10552.4	67	0	0_{+}	10756.7	3 ⁽⁺⁾	1691.6	1.2 4	9065	
10574.4	5+	2304.2	3.8 4	8270.3	$3^{-},5^{-}$			2027.3	1.8 6	8729.3	3+
		3224.1	6.8 6	7350.0	$3^{(+)}$			3054.9	3.5 4	7701.44	3-
		3812.3	6.0 6	6761.6	5-			3406.3	6.2 4	7350.0	3(+)
		3952.4	4.4 6	6621.7	4-			3641.0	2.6 4	7115.3	2+
		4163.8	2.7 8	6411	4+			3903.8	5.5 4	6851.5	4+
		5161.1	52.5 10	5412.6	3+			4092.4	3.5	6666.1	2+
		6114.0	100.0 <i>17</i>	4459.1	4+			4134.6	2.3 6	6621.7	4-
		8341.8	80	2230.57	2+			5208.4	31.7 11	5548.5	2+
		10570.7	12.8	0	0_{+}			5343.3	13.4 7	5412.6	3 ⁺
10603.8		2478.3	7.7	8125.40	1+			6296.3	100.0 <i>16</i>	4459.1	4 ⁺
		3488.1	25.6	7115.3	2+			6474.1	6.2 4	4281.8	2+
		4805.5	12.8	5796.8	1-			8524.0	1.9 4	2230.57	2+
		5055.5	100	5548.5	2+	10778.8	2+	1755.7	2.80 24	9023.8	4-
		5190.5	25.6	5412.6	3+			2803.6	4.9 5	7974.9	4-
		5596.6	20.5	5006.2	3-			3294.5	1.86 24	7484.0	2+
		8371.1	15.4	2230.57	2+			3428.4	0.70 24	7350.0	3 ⁽⁺⁾
		10600.0	48.7	0	0_{+}			3776.9	30.1 7	7001.4	1+
10636.4		2686.1	22.7 12	7950.1	4-			4112.4	3.7 5	6666.1	2+
		2934.7	5.5 9	7701.44	3-			4980.5	1.40 24	5796.8	1-
		3874.3	13.3 13	6761.6	5-			5230.5	1.40 24	5548.5	2+
		4014.4	100.0 22	6621.7	4-			5365.4	16.6 5	5412.6	3+
10696.1		2994.4	0.7	7701.44	3-			6082.1	10.5 5	4695.3	1+
		3160.1	0.7	7535.7	0+			6496.2	38.9 7	4281.8	2+
		4897.8	4.3	5796.8	1-			8546.0	100.0 21	2230.57	2+
		5147.8	2.9	5548.5	2+	10502.6		10774.9	19.3 5	0	0+
		5688.9	4.3	5006.2	3-	10783.8		2862.5	2.51 20	7921.0	1+
		5999.4	2.9	4695.3	1+			3146.5	1.35 20	7637.0	1

$\gamma(^{32}S)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^π	Comments
10933.7	$\frac{\iota}{3}$	6473.2	23.4 10		 4 ⁺	
10933.7	3	6651.0	100.0 10	4281.8	2 ⁺	
		8700.9	7.7 13	2230.57	2+	
		10929.7	<3		0+	
10941	1	8708 [‡]	39	2230.57	2+	Additional information 32.
		,				δ : 0.00 18 or 3.0 15 ²⁸ Si(α,γ).
		10937‡	100		0+	Additional information 33.
10998	(4)	4577 [‡]	9		4+	
		5987 [‡]	5		3-	
		6537 [‡]	100		4+	Additional information 34.
11009.9	4+	2739.6	1.46 21		3-,5-	
		3059.5 3126.7	0.63 <i>21</i> 4.38 <i>21</i>		4 ⁻ 4 ⁺	
		3308.1	2.29 21	7701.44		
		3525.6	0.83 21		2+	
		3575.3 [#]	25		1-	
		3659.5	2.50 21		3(+)	
		3894.1	1.04 21		2 ⁺	
		4247.7 4343.5	1.04 <i>21</i> 2.92 <i>21</i>		5 ⁻ 2 ⁺	
		4387.8	0.63 21		4 ⁻	
		4599.2	16.46 <i>21</i>	6411	4 ⁺	
		5596.4	3.13 21		3+	
		6002.6 6549.4	37.9 <i>7</i> 100.0 <i>11</i>		3 ⁻ 4 ⁺	
		6727.2	23.5 5	4281.8	2 ⁺	
		8777.0	8.96 <i>21</i>	2230.57		
11052	(4)	4611 [‡]	<5	6411	4 ⁺	
		6041 [‡]	<5	5006.2	3-	
		6590 [‡]	100	4459.1	4 ⁺	$A_2 = +0.14 7$, $A_4 = +0.15 8^{28} \text{Si}(\alpha, \gamma)$.
11078	2	11074 [‡]	100		0+	Additional information 35.
11092.3	3-	2795.9	23.1 9		3-	
		2900.9	3.0 9		4 1-	
		3117.1 3141.9	13.2 <i>5</i> 18.4 <i>9</i>		4 ⁻ 4 ⁻	
		3390.5	51.7 13	7701.44		
		4330.1	3.0 17	6761.6	5-	
		4470.1	100.0 17	6621.7	4 ⁻	
		4867.8	55.1 <i>17</i>	6222.9	2-	

$\gamma(^{32}S)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$
11092.3	3-	6085.0	85 <i>3</i>	5006.2 3-	11253.9	(3^{-})	3062.5	7.31 16	8191.1 4
110,210		6631.7	63 3	4459.1 4+	11200.5	(5)	3303.4	2.74 16	7950.1 4
		6809.5	10.3 17	4281.8 2+			3552.0	1.22 16	7701.44 3
		8859.4 [#]		2230.57 2+			4400.9	1.83 16	6851.5 4+
		11088.2 <mark>#</mark>		$0 0^{+}$			4587.4	2.89 16	6666.1 2+
11107	(2^{+})	6099 [‡]	<67	5006.2 3-			4843.1	2.44 16	6411 4+
		8877 [‡]	>100	2230.57 2+			5705.4	1.67 <i>16</i>	5548.5 2 ⁺
11114		4490 <i>1</i>		6621.7 4			5840.4	1.83 16	5412.6 3+
		6109 <i>3</i>		5006.2 3			6246.5	7.2 3	5006.2 3
		8881 <i>10</i>		2230.57 2+			6557.0	1.67 16	4695.3 1 ⁺
		11113 86		$0 0^{+}$			6971.1	8.5 <i>3</i>	4281.8 2 ⁺
11123		2432.8 <mark>#</mark>	11.4	8687.6			9020.9	100.0 8	2230.57 2+
		4121.0	9.1 <i>3</i>	7001.4 1+	11332.8		1673.7	30 <i>3</i>	9660.1 1+
		6426.1	6.7 <i>3</i>	4695.3 1 ⁺			3207.1	46.9 23	8125.40 1+
		7343.5	9.6 <i>3</i>	$3778.4 0^{+}$			4216.9	21 3	7115.3 2+
		8890.0	14.4 5	2230.57 2+			4330.7	6 3	7001.4 1+
		11118.9	100.0 8	$0 0^{+}$			4922.0	26 <i>3</i>	$6411 4^+$
11139.8	1+	3603.7	0.47 12	7535.7 0+			6325.4	19 <i>3</i>	5006.2 3
		3946.4	1.2	7190.1 1+			6635.8	16 3	4695.3 1+
		4137.8	0.71 12	7001.4 1+			7049.9	57 4	4281.8 2+
		4915.3	0.47 12	6222.9 2	114546	2	11328.5	100.0 7	$0 0^{+}$
		5589.9	< 0.6	5548.5 2 ⁺	11474.6	3	2728.8	4.99 14	8745.6 3
		6442.9	2.71 24	4695.3 1 ⁺ 3778.4 0 ⁺			2745.0	4.99 14	8729.3 3 ⁺ 6851.5 4 ⁺
		7360.3 8906.8	2.12 <i>24</i> 10.8 <i>7</i>	3778.4 0 ⁺ 2230.57 2 ⁺			4621.5 4808.0	1.62 <i>14</i> 2.56 <i>14</i>	6851.5 4 ⁺ 6666.1 2 ⁺
		11135.6	100.0 9	$0 0^{+}$			4852.3	2.29 14	6621.7 4
11235.5	3	2545.3	2.95 21	8687.6			5063.7	0.54 14	6411 4+
11233.3	5	3044.1	6.53 21	8191.1 4			5250.0	0.94 14	6222.9 2
		3533.6	3.16 21	7701.44 3			5926.0	1.35 14	5548.5 2 ⁺
		4824.7	4.2 5	6411 4+			6061.0	9.03 14	5412.6 3+
		5687.0	2.7 5	5548.5 2 ⁺			7013.8	6.33 14	4459.1 4+
		5822.0	7.2 5	5412.6 3+			7191.7	100.0 6	4281.8 2+
		6774.9	6.5 5	4459.1 4+	11485.8	1+	3360.1	55 10	8125.40 1+
		6952.7	77.5 13	4281.8 2+			6478.3	81 <i>15</i>	5006.2 3-
		9002.5	100.0 <i>13</i>	$2230.57 \ 2^{+}$			7706.1	100 12	$3778.4 0^+$
11253.9	(3^{-})	2392.7	1.37 16	8861 2+	11589.7	1-	3182.4	4.5 3	8407.0 2
		2524.4	1.22 16	8729.3 3 ⁺			4473.7	25.8 8	7115.3 2+
		2563.7	3.65 16	8687.6			4923.1	1.1 6	6666.1 2+
		2846.6	4.11 16	8407.0 2			5178.8	0.8 6	6411 4+
		2957.5	0.61 <i>16</i>	8296.1 3	I		6582.1	7.6 8	5006.2 3

$\gamma(^{32}S)$ (continued)

E _I (level) J_1^T E_Y^{\dagger} L_Y^{\dagger} E_f J_f^T Comments 11589.7 1 ⁻ 6892.6 1.8 6 4695.3 1 ⁺ 7306.7 56.6 11 4481.1 4 ⁺ 7810.0 8.4 8 3778.4 0 ⁺ 9356.5 38.2 14 2230.57 11585.2 100.0 9 0 11602.4 4066.1 12.0 16 7535.7 4411.6 31.8 16 7190.1 1 ⁺ 6953.8 37.8 20 5548.5 2 ⁺ 6904.8 451.23 3006.2 3 ⁻ 3715.6 0.57 12 7921.0 1 ⁺ 4446.3 0.46 12 7484.0 2 ⁺ 4446.3 0.46 12 7484.0 2 ⁺ 4446.3 0.46 12 7190.1 1 ⁺ 4634.9 0.80 12 7001.4 1 ⁺ 490.5 0.69 12 5666.1 2 ⁺ 5412.4 0.57 12 6222.9 2 ⁻						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11589.7	_	6892.6	1.8 6	4695.3 1+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
7810.0 8.4 8 3778.4 0 ⁺ 9356.5 38.2 14 2230.57 2 ⁺ 11585.2 100.0 19 0 0 ⁺ 11602.4 4066.1 12.0 16 7535.7 0 ⁺ 4411.6 31.8 16 7190.1 1 ⁺ 6053.8 37.8 20 5548.5 2 ⁺ 6594.8 45.1 23 5006.2 3 ⁻ 6905.3 100 4 4695.3 1 ⁺ 11637.1 3290.4 0.80 12 3715.6 0.57 12 7921.0 1 ⁺ 4152.6 0.46 12 7484.0 2 ⁺ 4202.5 0.23 12 7434 1 ⁻ 4446.3 0.46 12 7190.1 1 ⁺ 4434.9 0.80 12 7001.4 1 ⁺ 4434.9 0.80 12 7001.4 1 ⁺ 4534.9 0.80 12 7001.4 1 ⁺ 4534.9 0.80 12 7001.4 1 ⁺ 4634.9 0.80 12 5796.8 1 ⁻ 5412.4 0.57 12 6222.9 2 ⁻ 5838.5 0.69 12 5796.8 1 ⁻ 6088.5 3.55 12 5548.5 2 ⁺ 6940.0 2.17 12 4695.3 1 ⁺ 7857.3 1.26 12 3778.4 0 ⁺ 9403.8 2.75 23 2230.57 2 ⁺ 11669.6 5 ⁺ 2940.0 0.63 16 8729.3 3 ⁺						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9356.5			
4411.6 31.8 16 7190.1 1 ⁺ 6053.8 37.8 20 5548.5 2 ⁺ 6594.8 45.1 23 5006.2 3 ⁻ 6905.3 100 4 4695.3 1 ⁺ 11637.1 3290.4 0.80 12 3715.6 0.57 12 7921.0 1 ⁺ 4152.6 0.46 12 7484.0 2 ⁺ 4202.5 0.23 12 7434 1 ⁻ 4446.3 0.46 12 7190.1 1 ⁺ 4634.9 0.80 12 7001.4 1 ⁺ 4970.5 0.69 12 6666.1 2 ⁺ 5412.4 0.57 12 622.9 2 ⁻ 5838.5 0.69 12 5796.8 1 ⁻ 6088.5 3.55 12 5548.5 2 ⁺ 6940.0 2.17 12 4695.3 1 ⁺ 7857.3 1.26 12 3778.4 0 ⁺ 9403.8 2.75 23 2230.57 2 ⁺ 11632.6 100.0 6 0 0 0 ⁺ 11669.6 5 ⁺ 2940.0 0.63 16 8729.3 3 ⁺				100.0 19		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11602.4		4066.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5006.2 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					4695.3 1+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11637.1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
5838.5 0.69 12 5796.8 1 ⁻ 6088.5 3.55 12 5548.5 2 ⁺ 6940.0 2.17 12 4695.3 1 ⁺ 7857.3 1.26 12 3778.4 0 ⁺ 9403.8 2.75 23 2230.57 2 ⁺ 11632.6 100.0 6 0 0 ⁺ 11669.6 5 ⁺ 2940.0 0.63 16 8729.3 3 ⁺						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
7857.3 1.26 12 3778.4 0 ⁺ 9403.8 2.75 23 2230.57 2 ⁺ 11632.6 100.0 6 0 0 ⁺ 11669.6 5 ⁺ 2940.0 0.63 16 8729.3 3 ⁺						
9403.8 2.75 23 2230.57 2 ⁺ 11632.6 100.0 6 0 0 ⁺ 11669.6 5 ⁺ 2940.0 0.63 16 8729.3 3 ⁺						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
11669.6 5 ⁺ 2940.0 0.63 16 8729.3 3 ⁺						
	11669 6	5+				
	11007.0	5	3322.9	6.2 4	0727.5	
3478.1 15.2 4 8191.1 4					8191.1 4	
$4102.0 21.4 4 7566.8 5^+$				21.4 4		
4907.2 0.63 16 6761.6 5						
5258.7 100.0 7 6411 4+						
$7208.8 14.4 4459.1 4^+$						
11696.7 5 ⁺ 3350.0 6.66 <i>17</i>	11696.7	5 ⁺	3350.0	6.66 17		
3505.2 10.15 <i>17</i> 8191.1 4					8191.1 4	
$4129.1 14.6 4 7566.8 5^+$			4129.1	14.6 <i>4</i>		
$4346.1 1.66 17 7350.0 3^{(+)}$			4346.1	1.66 17		
5074.3 1.5 4 6621.7 4						
$5285.8 100.0 \ 7 \qquad 6411 \qquad 4^{+}$						
$7235.8 31.9 4 4459.1 4^+$				31.9 4	4459.1 4+	
11750 1 7464^{\ddagger} 100 4281.8 2^+ Additional information 36.	11750	1	7464 [‡]	100	4281.8 2 ⁺	Additional information 36.
δ : -0.21 2 or 1.8 I^{28} Si(α , γ).						

γ (32S) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
11750	1	11741 [‡]	2	0	0^{+}
11758.8		3462.3	14.0 4	8296.1	3-
		3808.2	14.2 11	7950.1	4-
		4996.4	100.0 11	6761.6	5-
		5136.4	49.5 9	6621.7	4-
		6751.2	4.4 8	5006.2	3-
11783	1	11780 [‡]	100	0	0_{+}
11806	1,2	4682 [‡]	<5	7115.3	2+
		11798 [‡]	100	0	0_{+}
11940.1	3	3532.7	1.4 3	8407.0	2
		3989.5	6.5 <i>3</i>	7950.1	4-
		5086.8	2.2 3	6851.5	4+
		5317.7	15.7 6	6621.7	4-
		5715.3	6.2 3	6222.9	2-
		6391.3	21.6 9	5548.5	2+
		6526.3	27.8 6	5412.6	3+
		7479.1	100.0 12	4459.1	4+
		7656.9	50.0 6	4281.8	2+
		9706.6	49.4 9	2230.57	2+
12030		4520 [‡]	10	7535.7	0_{+}
		4900 [‡]	14	7115.3	2+
		9788 [‡]	14	2230.57	2+
		12016 [‡]	100	0	0_{+}
12043.9		4093.2	3.2 5	7950.1	4-
		5281.4	19.0 <i>11</i>	6761.6	5-
		5421.4	2.7 5	6621.7	4^{-}
		7036.1	100.0 <i>13</i>	5006.2	3-
		7582.9	2.5 4	4459.1	4+
12044.19	2,3,4	7036.33	100	5006.2	3-
		9811.8	1	2230.57	2+
12047.96	0^+	2840.32 <i>14</i>	11.2 8	9207.55	1+
		3922.37 <i>15</i>	100.0 11	8125.40	1+
		5046.1 <i>4</i>	7.5 8	7001.4	1+
		9816 [#]	≤0.30	2230.57	2+

Additional information 37.

Additional information 38.

 I_{γ} : intensity seen in only one part of the doublet.

Additional information 39.

Additional information 40.

Comments

 $^{^\}dagger$ From $^{31}\text{P}(\text{p},\!\gamma),$ unless otherwise noted. ‡ From $^{28}\text{Si}(\alpha,\!\gamma).$ # Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

60

Level Scheme (continued)

Level Scheme (continued)

	Н	listory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ninel Nica, Balraj Singh	NDS 113,1563 (2012)	28-May-2012

 $Q(\beta^{-}) = -5491.60 \ 4$; $S(n) = 11417.16 \ 4$; $S(p) = 10883.3 \ 11$; $Q(\alpha) = -7923.65 \ 5$ 2012Wa38

Note: Current evaluation has used the following Q record -5491.634 4311417.12 310883.3 11-7923.62 6 2011AuZZ S(2n)=20058.76 3, S(2p)=20431.9 3 (2011AuZZ).

Values in 2003Au03: $Q(\beta^-) = -5492.01$ 15, S(n) = 11417.11 9, S(p) = 10883.3 11, $Q(\alpha) = -7923.78$ 11, S(2n) = 20058.73 9, S(2p) = 20428.82 12.

XREF table: levels populated in reactions labelled with XREF=Y: 28 Si(34 S, 34 S'), 34 S(p,p' γ), 206 Pb(34 S, 34 S' γ): 0, 2128.

The following abbreviations are used in the table: $^{33}S(n,\gamma)$ for $^{33}S(n,\gamma)$ E=thermal; $^{33}S(n,\gamma)$,(n,n) for $^{33}S(n,\gamma)$,(n,n):resonances; $^{30}Si(\alpha,\gamma)$,(\alpha,n) for $^{30}Si(\alpha,\gamma)$,(\alpha,n):resonances.

Evidence of rotational behavior in alpha-clusters is shown in 2011No06: ${}^{4}\text{He}({}^{28}\text{Si},X)$ E=150 MeV, by measuring E α , I α , $\sigma(\theta)$ and resonance energies.

³⁴S stable isotope identified in mass spectrographic studies by F.W. Aston, Nature 117 (1926) 893. Additional information 1.

³⁴S Levels

Table: the Γ_{γ} values are from $^{30}\mathrm{Si}(\alpha,\gamma)$, (α,n) , and the $\Gamma_{\gamma 0}$ values are from $^{34}\mathrm{S}(\gamma,\gamma')$, $(\mathrm{pol}\ \gamma,\gamma')$, unless noted otherwise.

Cross Reference (XREF) Flags

		B 34C C 34C D 24M E 30S F 31P G 31P H 32S I 32S	β^- decay (12.43 s) 1 ε decay (1.5266 s) 1 ε decay (31.99 min) $\log(^{16}O, \alpha 2p\gamma)$ $i(\alpha, \gamma), (\alpha, n)$: resonances (α, p) $(\alpha, p\gamma)$ (t, p) $(t, p\gamma)$ $(t, p\gamma)$ (α, α, α)	K L M N O P Q R S	33 S(r 33 S(c 34 S(r) 34 S(r 34 S(r 34 S(r 34 S(r 34 S(r	$(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$	U V W X Y Z Other	$^{35}\text{Cl}(\gamma, p)$ $^{35}\text{Cl}(n, d)$ $^{35}\text{Cl}(d, ^{3}\text{He})$ $^{35}\text{Cl}(t, \alpha \gamma)$ $^{28}\text{Si}(^{34}\text{S}, ^{34}\text{S}')$ $^{34}\text{S}(p, p' \gamma)$ rs: $^{206}\text{Pb}(^{34}\text{S}, ^{34}\text{S}'\gamma)$	
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF				(Comments	
0.0#	0+	stable	ABCDEFGHIJK M OPQ	RSTUV	WXYZ	XREF: Others: AA <r<sup>2>^{1/2}=3.2847 fm 21 (2004An14 evaluation and its 2008 update on webpage: http://cdfe.sinp.msu.ru). J^π: microwave spectroscopy measurement (1948To10) shows no hyperfine structure.</r<sup>			
2127.564# 13	2+	318 fs 8	A CDEFGHI K M OPQ	RSTUV	WXYZ	reanalysing 1985, optical potential). μ: from 1979Za01 timplantation metl Q: +0.06 4 in 1980 reorientation metl See also 1989Ra1	85Al03 Al03 da by pertunod. Ba40 by nod rec. 7 evalu	alsp07,2011StZZ) a); 0.24 2 (1999Ma63 by ata with Becchetti-Greenless arbed angular correlation after ion by Coulomb excitation alculated by 1981Sp07 as 0.04 3.	

E(level) [†]	<u>J</u> π‡	T _{1/2}	XREF	Comments
3304.212 <i>13</i>	2+	136 fs 7	CDE GHI K M OPQRSTUVWX	T _{1/2} : mean lifetime τ in fs, from ³¹ P(α ,p γ): 440 50 (1970Gr11), 400 32 (1970Ra17), 400 40 (1974Gr06), 460 95 (1970Br18), 467 90 (1970Cu02); from ³² S(t,p γ): 490 30 (1977He12); from ³⁴ S(e,e'): 486 17 (1985Wo06); from ³⁴ S(α , α'): 442 25 (1980Ba40); from ²⁸ Si(³⁴ S, ³⁴ S'): 462 26 (1977Sc36). Weighted average (external uncertainty) τ : 459 fs 11. Others T _{1/2} : 350 fs 60 (1969Gr03, from ³¹ P(α ,p γ)); 380 fs 60 (1974Ol02, from ²⁰⁶ Pb(³⁴ S, ³⁴ S' γ)); 307 fs 17 (2001Ra27 evaluation, total of 14 measurements are listed in this evaluation). B(E2)↑=0.00246 13
330 1.212 13			CDE GIT K II OT QUOTOVIII	J ^π : E2 ΔJ=2 γ to 0 ⁺ , g.s. (²⁴ Mg(¹⁶ O, α 2p γ)). T _{1/2} : mean lifetime τ in fs, from ³¹ P(α ,p γ): 218 30 (1970Gr11); 175 25 (1970Ra17); 190 40 (1970Br18). From ³¹ P(α ,p γ): 192 13 (1977He12). From ³⁴ S(e,e'): 216 25 (1985Wo06). Weighted average: 196 10. Others (from ³¹ P(α ,p γ)): 145 20 (1974Gr06); 144 28 (1970Cu02); 120 30 (1969Gr03).
3916.408 <i>21</i>	0+	1.12 ps 9	A FGH K M RSTU	J ^{π} : L=0 in ³² S(t,p). T _{1/2} : mean lifetime τ in fs, from ³¹ P(α ,p γ): 1600 130 (1970Gr11); 1890 500. Weighted average: 1618 126.
4074.667 <i>14</i>	1+	<17 fs	A GH K M RS U W	XREF: s(4094). J ^π : D ΔJ=1 γ to 0 ⁺ , g.s. (1970Mo09, 1971Mu03); π =+ from L=0 in ³⁵ Cl(d, ³ He). T _{1/2} : mean lifetime τ in fs, from ³¹ P(α ,p γ): <33 (1970Gr11); <24 (1970Ra17); ≤50 (1974Gr06).
4114.813 23	2+	73 fs 6	A C GH K M QRSTU	(1970Gr11), $\langle 24 \rangle$ (1970Ra17), $\langle 30 \rangle$ (1974Gr06). XREF: s(4094). J ^{π} : E2 Δ J=2 γ to 0 ⁺ , g.s. (31 P(α ,p γ)), or L=2 in 32 S(t,p). T _{1/2} : mean lifetime τ in fs (31 P(α ,p γ)): 89 20 (1970Gr11); 110 10 (1970Ra17); 100 15 (1974Gr06). Weighted average: 105 9.
4624.404 [@] 16	3-	84 fs 5	D GH JK M QRs U X	XREF: s(4655). J^{π} : L=3 in 32 S(t,p), and also from 34 S(p,p'),(pol p,p'). $T_{1/2}$: mean lifetime τ in fs, from 31 P(α ,py): 125 20 (1970Gr11); 135 17 (1970Ra17); 145 50 (1971So01); 115 10 (1974Gr06). Weighted average: 121 8. Adopted B(E3)=0.008 2 (2002Ki06 evaluation).
4688.98 [#] 5	4+	88 fs 4	CD GH K M QRSTU WX	XREF: s(4655). J ^π : E2 ΔJ=2 γ to 2 ⁺ , 2127 and test of spin hyphotheses (³¹ P(α ,p γ)); also J=4 in ³⁴ S(n,n),(n,n $'$). T _{1/2} : mean lifetime τ in fs, from ³¹ P(α ,p γ): 132 <i>15</i> (1970Gr11); 131 <i>13</i> (1970Ra17); 110 <i>20</i> (1971So01); 125 <i>10</i> (1974Gr06); 130 <i>20</i> (1977GrZH). Weighted
4876.839 24	3+	40 fs <i>15</i>	CD G K M u w	average: 127 6. XREF: u(4880)w(4900). J^{π} : M1+E2 ΔJ =1 γ to 2 ⁺ , 3303 and test of spin hyphotheses (1971Mu03). $T_{1/2}$: mean lifetime τ in fs, from ³¹ P(α ,p γ): 57 22 (1970Ra17). Others: <85 (1970Gr11), \leq 70 (1974Gr06).
4882 14	4+		R uw	XREF: u(4880)w(4900).

E(level) [†]	Jπ‡	$T_{1/2}$		XREI	7	Comments
4889.756 22	2+	29 fs <i>10</i>	GH	K M	R TU w	J ^π : from ³⁴ S(p,p'),(pol p,p'). XREF: w(4900). J ^π : E2 ΔJ=2 γ to 0 ⁺ g.s. ³¹ P(α ,p γ).
						$T_{1/2}$: mean lifetime τ in fs, from $^{31}P(\alpha,p\gamma)$: <40 (1970Gr11); 52 <i>14</i> (1970Ra17). Weighted average (external uncertainty): 42 <i>15</i> .
5228.175 23	0^{+}	4-0 <		K M	R T	J^{π} : L=0 in ³² S(t,p).
5322.51 3	2 ⁽⁻⁾	17 fs 6	GH	K M	RT W	J ^π : D+Q ΔJ=0 γ to 2 ⁺ , 2127; π =(-) based on statement in ³⁴ S(α , α').
						$T_{1/2}$: mean lifetime τ in fs, from ³¹ P(α,pγ): 24 10 (1970Gr11). Other: ≤40 (1974Gr06).
5380.99 4	1+	<49 fs	GH	K M	R U	E(level): 5380 (1971Mu03); 5382 4 (1974Gr06). J^{π} : D $\Delta J=1$ γ to 0 ⁺ , g.s. and M1+E2 $\Delta J=1$ γ to 2 ⁺ , 2127 (³¹ P(α ,p γ)).
0						$T_{1/2}$: mean lifetime τ in fs from ³¹ P(α,pγ): ≤70 (1974Gr06).
5679.927 ^{&} 17	3-		D G	K M	R	J ^π : D ΔJ=1 γ from 4 ⁻ , 6251 (²⁴ Mg(¹⁶ O, α 2p γ)); π =- from L=1 in ³³ S(d,p).
5690.7 [@] 6	5-	36.9 ps <i>15</i>	D GH	J M	R T X	E(level): from 24 Mg(16 O, α 2pγ). J^{π} : E2 ΔJ =2 γ to 3 $^{-}$, 4625 and E1 ΔJ =1 γ to 4 $^{+}$, 4689 (24 Mg(16 O, α 2pγ)).
						$T_{1/2}$: mean lifetime τ in ps, from 31 P(α ,pγ): 54 5 (1972Gr15); from 35 Cl(t, α γ): 55 7 (1976Co11); from 24 Mg(16 O, α 2pγ): 52.9 24 (1976Me03). Weighted average: 53.3 21.
5755.875 21	1-		GH	K M	R U	J^{π} : L=1 in ${}^{32}S(t,p)$, also from ${}^{34}S(p,p')$,(pol p,p').
5847.53 <i>3</i>	0_{+}		GH	K M	R	J^{π} : L=0 in ${}^{32}S(t,p)$.
5998.10 8	2+		GH	K M	R T	J^{π} : L=2 in ${}^{32}S(t,p)$.
6121.49 <i>12</i>	2+		GH		R T	J^{π} : L=2 in ${}^{32}S(t,p)$.
6168.86 <i>3</i>	3-		GH	K M	R w	XREF: w(6220). J^{π} : from ${}^{34}S(p,p')$,(pol p,p'); J=3 from D+Q $\Delta J=1$ gammas to 2^+ , 3303 and 4^+ , 4688 (${}^{31}P(\alpha,p\gamma)$); $\pi=-$ from L=1+3 in ${}^{33}S(d,p)$.
6251.22 19	4+	0.42 ps +49-21	d G	K	r UVW	XREF: $d(6251.5)r(6248)$. J^{π} : M1+E2 ΔJ =1 γ to 3 ⁺ , 4875 and test of spin hypotheses ($^{31}P(\alpha,p\gamma)$).
						nypoineses ($^{-1}P(\alpha,p\gamma)$). $T_{1/2}$: mean lifetime τ in fs, from $^{31}P(\alpha,p\gamma)$: 600 +700–300.
6251.68 ^{&} 9	4-		d H	K M	r V	XREF: d(6251.5)r(6248). J^{π} : E2 ΔJ=2 γ from 6, 7791 (24 Mg(16 O, α 2p γ)); π =– from L=3 in 33 S(d,p).
6342.50 10	1-		GH	K M	R	J^{π} : L=1 in ${}^{32}S(t,p)$.
6421.42 12	4-			K M	R	J ^π : D ΔJ=0 γ to 4 ⁺ , 4689 (³¹ P(α ,p γ)); π =– from L=3 in ³³ S(d,p).
6428.12 8	(2 ⁺)			K		J^{π} : $(2^+,3^+)$ from gammas to 1^+ , 4075 and 4^+ , 4689; (3^+) less likely from γ from $(1)^-$, 7781.
6478.770 22	1-		GH	K M	R	J^{π} : D+Q $\Delta J=1$ γ to 2^{+} , 2128 and test of spin hypotheses ($^{31}P(\alpha,p\gamma)$); $\pi=-$ from L=1 in $^{33}S(d,p)$.
6535 <i>15</i>			Н	M		
6639 <i>1</i>	4 ⁽⁻⁾	42 fs <i>10</i>	GH	M	R T	E(level): from 31 P(α,pγ). J^{π} : D $\Delta J=1$ γ to 3^{-} , 5680 (31 P(α,pγ); $J=2$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments
						excluded by 1977GrZH); π =(-) from L=(3) in 33 S(d,p) sustained by argument in 34 S(α,α'). $T_{1/2}$: mean lifetime τ in fs from 31 P($\alpha,p\gamma$): 60 <i>15</i> .
6685.33 <i>3</i>	$(0 \text{ to } 3)^{-}$		н км	R		J^{π} : from γ to 1 ⁻ , 5756; π =- from L=1 in ³³ S(d,p).
6731	2 ⁽⁺⁾ ,4 ⁽⁺⁾		GH	R		E(level): from 31 P(α,pγ). J^{π} : D+Q ΔJ=0 γ, or Q ΔJ=2 γ, to 2 ⁺ , 2128; π =(+) from gammas to 2 ⁺ , 3304 and 4 ⁺ 4689.
6828.85 19	2+		GH K M	R	W	J^{π} : L=2 in ${}^{32}S(t,p)$.
6847.90 7	$(1,2^+)$		K			J^{π} : from gammas to 0 ⁺ , g.s. and 2 ⁻ , 5323.
6864 1	5-	27 fs 7	GH	R		J ^{π} : from ³⁴ S(p,p'),(pol p,p'). T _{1/2} : mean lifetime τ in fs from ³¹ P(α ,p γ): 39 10 (1977GrZH).
6890 <i>1</i>	$(3,4)^+$	<14 fs	GH	R	W	E(level): ${}^{31}P(\alpha,p\gamma)$.
0070 1	(0,1)	11.15		-		J^{π} : from ³¹ P(α ,p γ); π =+ from ³⁵ Cl(d, ³ He).
						$T_{1/2}$: mean lifetime τ in fs, from ³¹ P(α,pγ): <20 (1977GrZH).
6954.22 3	(2)-		GH K M	R		J ^π : test of spin hypotheses of secondary 4892 γ with primary 2058 γ treated as unobserved (31 P(α ,p γ));
7110 45 4	2-		11 IZ M	ъ		π =- from L=1 in 33 S(d,p). J $^{\pi}$: L=3 in 32 S(t,p).
7110.45 <i>4</i> 7112	3 ⁻ 2 ⁺		H K M G	R	W	J^{n} : L=3 in n S(t,p). E(level): from 31 P(α ,p γ).
/112	2		G		W	J^{π} : Q, $\Delta J = 2 \gamma$ to 0^+ , g.s. and test of spin hypotheses
						$(^{31}P(\alpha,p\gamma)); \pi=+$ from L=0 in (d, 3 He).
7164.47 <i>18</i>	$(0 \text{ to } 3)^+$		K		W	J^{π} : γ to 1 ⁺ , 4075 and γ to 2 ⁺ , 2128 (33 S(n, γ)); π =+ from L=2 in 35 Cl(d, 3 He).
7219.28 7	(2^{+})		G K N			$\Gamma_{\gamma 0} = 0.92 \text{ eV } 28$
						$\Gamma_{\gamma 0}$: for $J^{\pi}=2^+$ (³⁴ S(γ,γ'),(pol γ,γ')).
7248 2	(4)	14 fs 7	Gј	r		J^{π} : (1,2 ⁺) from ${}^{34}S(\gamma,\gamma')$,(pol γ,γ'); γ to 4 ⁺ . XREF: $j(7240)r(7248)$.
						J ^{π} : (2,4) from 1977GrZH in ³¹ P(α ,p γ); (4) from D ΔJ=1 γ to 5 ⁻ , 5688.
						T _{1/2} : mean lifetime τ in fs, from ³¹ P(α ,p γ): 20 10 (1977GrZH).
7248.05 11	$(2^+,3^-)$		н јк	r		XREF: j(7240)r(7248).
7264? 18				D		J^{π} : L=(2,3) in $^{32}S(t,p)$.
7367.42 10	$(1^+,2^+)$		K	R		J^{π} : gammas to 0 ⁺ , 3916 and 3 ⁺ , 4877 (³³ S(n, γ)).
7388 <i>15</i>	3-	150 C 25	Н	ъ		J^{π} : L=3 in ${}^{32}S(t,p)$.
7392 1	5,(4)	159 fs <i>35</i>	G M	R		E(level): from ${}^{31}P(\alpha,p\gamma)$. J^{π} : 5,(4) from ${}^{31}P(\alpha,p\gamma)$.
						T _{1/2} : mean lifetime τ in fs, from ³¹ P(α ,p γ): 230 50 (1977GrZH).
7467.72 <i>10</i> 7552.69 <i>8</i>	$(0^+,1,2)$ $(1,2,3^-)$		Н К Н К М	R R		J^{π} : γ to 1 ⁻ , 6479, γ to 2 ⁺ , 5998, and γ to 1 ⁺ , 4075. J^{π} : γ to 1 ⁻ , 6343, γ to 2 ⁻ , 5323, and γ to 2 ⁺ , 3304.
7629.907 21	3-	14 fs 7	GH K M	R		J^{π} : L=3 in ${}^{32}S(t,p)$.
,02,1,0, 21		11.15 /	5	-		$T_{1/2}$: mean lifetime τ in fs, from $^{31}P(\alpha,p\gamma)$: 20 10 (1977GrZH).
7655 9	(-)		М	R		E(level): weighted average of 7649 $14 (^{34}S(p,p'),(pol p,p'))$ and 7659 $11 (^{33}S(d,p))$.
7730.79 15	(1-,2-,3-)		нкм	R		J ^{π} : L=(3) in ³³ S(d,p). J ^{π} : π =(-) from L=(1+3) in ³³ S(d,p); γ to 2 ⁺ , 2128.
7750.79 13	2+		H M	K		J^{π} : L=2 in ³² S(t,p); ³³ S(d,p) gives π =- from L=1

E(level) [†]	Jπ‡	$T_{1/2}$	XRE	îF	Comments
		,			(not adopted).
					E(level): weighted average of 7739 16 (32 S(t,p)) and
					7753 9 (³³ S(d,p)).
7781.22 6	$(1)^{-}$		K MN	R W	****
	. ,				J^{π} : (1) from ³⁴ S(γ, γ'),(pol γ, γ'); π =– from L=1 in
					33 S(d,p).
7790.7 <mark>&</mark> 7	6-	97 fs 20	D G		E(level): from 24 Mg(16 O, α 2p γ).
,,,,,,,,,	Ü) / 15 2 0	<i>y</i> 0		J^{π} : M1+E2 $\Delta J=1$ γ to 5 ⁻ , 5691 and E2 $\Delta J=2$ γ to
					4^{-} , 6252 (24 Mg(16 O, α 2p γ).
					$T_{1/2}$: weighted average of values (in fs), from
					$^{24}\text{Mg}(^{16}\text{O},\alpha2\text{p}\gamma)$: 132 35 (2005Ma03), and from
					$^{31}P(\alpha,p\gamma)$: 80 24 (from mean lifetime τ 115 35
					(1977GrZH)).
7805 <i>5</i>	2+		Н	R	E(level): weighted average of 7801 16 (32S(t,p)) and
					7805 5 (³⁴ S(p,p'),(pol p,p')).
					J^{π} : L=2 in ${}^{32}S(t,p)$.
7974.72 16	$(1,2^+)$		н к	R	J^{π} : γ to 0^+ .
8025 16	0+		Н		J^{π} : L=0 in $^{32}S(t,p)$.
8036.30 14	$(1^-,2^+)$		K	R	J^{π} : gammas to 0^{+} , g.s. and 3^{-} , 7110.
8083 <i>1</i>	5	44 fs 7	G		E(level): from ${}^{31}P(\alpha,p\gamma)$.
					J^{π} : from ³¹ P(α ,p γ).
					$T_{1/2}$: mean lifetime τ in fs, from ³¹ P(α ,p γ): 64 10
					(1977GrZH).
8138.10 8	$(1)^{-}$		K M		J^{π} : (1,2 ⁺) from gammas to 0 ⁺ , g.s., 1 ⁻ , 6343, and 2 ⁺ ,
					2128; π =- from L=1 in ³³ S(d,p).
8175.1 <i>5</i>	$(1,2^+)$		K		J^{π} : γ to 0^+ .
8185.46 <i>13</i>	$(1)^{+}$		K N		$\Gamma_{\gamma 0} = 0.78 \text{ eV } 20$
0005 40 0	(1- , 4-)				J^{π} : from $^{34}S(\gamma,\gamma')$,(pol γ,γ').
8205.40 8	$(1^- \text{ to } 4^+)$		К		J^{π} : gammas to 2 ⁺ , 2128 and to 3 ⁻ , 4624.
8255 16	2+	-20 f-	H Ch		J^{π} : L=2 in 32 S(t,p).
8293 2	4	<28 fs	Gh m	r	XREF: $h(8293)m(8299)r(8296)$. E(level), J^{π} : from $^{31}P(\alpha,p\gamma)$.
					E(level), J [*] : from $^{-1}P(\alpha,p\gamma)$. $T_{1/2}$: mean lifetime τ in fs from $^{31}P(\alpha,p\gamma)$: <40
					$1_{1/2}$: mean meaning τ in is from τ $P(\alpha,p\gamma)$: <40 (1977GrZH).
8294.39 9	$(0^+ \text{ to } 3^-)$		h K m	r	XREF: h(8293)m(8299)r(8296).
02) 1.3)	(0 103)		11 10 11	-	J^{π} : gammas to 2 ⁺ , 2128 and to 1 ⁻ , 6343.
8371.1 [@] 7	7-	83 fs <i>13</i>	D G		E(level): from 24 Mg(16 O, α 2p γ).
03/1.1 /	,	03 13 13	<i>D</i> 0		J^{π} : E2 $\Delta J=2 \gamma$ to 5 ⁻ , 5691 and D $\Delta J=1 \gamma$ to 6 ⁻ ,
					7791; 7 ⁻ in 2005Ma03.
					$T_{1/2}$: weighted average of values (in fs) from
					$^{24}\text{Mg}(^{16}\text{O},\alpha2\text{p}\gamma)$: 85 28 (2005Ma03) and from
					³¹ P(α ,p γ): 83 14 (from mean lifetime τ in fs: 120
					20 (1977GrZH)).
8385.40 <i>6</i>	1-		H K N	R	$\Gamma_{\gamma 0} = 0.49 \text{ eV} 15$
					J^{π} : L=1 in ${}^{32}S(t,p)$.
8423 5	4 ⁺		Н	R	E(level): from 34 S(p,p'),(pol p,p').
					J^{π} : L=4 in ${}^{32}S(t,p)$.
8503.8 [#] 7	6+	28 fs 7	D G J		XREF: J(8450).
					E(level): from 24 Mg(16 O, α 2p γ).
					J^{π} : D $\Delta J=1 \gamma$ to 5, 5691; $\pi=+$ from band structure.
					$T_{1/2}$: mean lifetime τ in fs from $^{31}P(\alpha,p\gamma)$: 40 10
					(1977GrZH).

E(level) [†]	Jπ‡	T _{1/2}		XRE	F	Comments
8506.77 <i>4</i>	1-		Н	K N	R	$\Gamma_{\gamma 0}$ =0.52 eV 9 J ^{π} : L=1 in ³² S(t,p).
8580 <i>5</i> 8615.74 <i>4</i> 8656 <i>4</i>	$(2^-,3^+)$ $(1)^+$			K M N	R R R	E(level): from ${}^{34}S(p,p')$,(pol p,p'). J^{π} : gammas to 1 ⁺ , 4075 and to 4 ⁻ 6252. $\Gamma_{\gamma 0}$ =0.41 eV 19 E(level): weighted average of 8656 5 (${}^{34}S(p,p')$,(pol p,p')) and 8657 7 (${}^{34}S(\gamma,\gamma')$,(pol γ,γ')).
8671 <i>5</i> 8702.35 <i>13</i>	(1-,2)			K	R	J^{π} : from ${}^{34}S(\gamma, \gamma')$,(pol γ, γ'). J^{π} : (1 ⁻ ,2,3 ⁻) from γ to 3 ⁻ , 5680 and γ to 1 ⁻ , 5756; (3 ⁻) less likely from γ to (1) ⁺ , 8186.
8718 <i>5</i> 8727.63 <i>8</i>	$(1^-,2^+)$			K	R	J^{π} : γ to 0^+ , g.s. and γ to 3^- , 7110.
8734.9 <i>8</i> 8792 <i>5</i>	6 ⁽⁻⁾		D		R R	J^{π} : D+Q $\Delta J=1 \ \gamma \text{ to } 5^{-}, 5691.$
8805.66 25 8874.02 8 8953 5	$(1,2^+)$ $(1^-,2,3^+)$			K K	R R	J^{π} : γ to 0^+ . J^{π} : γ to 1^+ , 4075 and 3^- , 7630.
8970.7 <i>7</i> 8987 <i>5</i>	6 ⁽⁻⁾		D		R	J^{π} : D $\Delta J=1 \gamma$ from 7, 9913.
9026.31 <i>6</i> 9120 <i>5</i>	$(1,2^+)$			K	R	J^{π} : γ to 0^+ .
9158.71 <i>3</i> 9171 <i>5</i>	$(1,2^+)$			K K		J^{π} : γ to 0^+ .
9208.04 <i>6</i> 9226 <i>6</i> 9347 <i>10</i>	(1,2+)			K K K	R	J^{π} : γ to 0^+ .
9413.9 <i>7</i> 9429 <i>5</i> 9445 <i>5</i>	6 ⁽⁻⁾		D		R R	J^{π} : D+Q $\Delta J=1 \ \gamma \ \text{to } 5, 5691.$
9479 3	(1)+			NC		$\Gamma_{\gamma 0}$ =1.1 eV 3 E(level): weighted average of 9478 4 (³⁴ S(γ,γ'),(pol γ,γ')) and 9481 5 (³⁴ S(p,p'),(pol p,p')).
9546.09 <i>7</i> 9566 <i>10</i> 9598.41 <i>8</i>	$(1,2^+)$			K K	R R	J^{π} : gamma to 0^+ .
9640 <i>4</i>	$(1,2^+)$			N		$\Gamma_{\gamma 0}$ =3.6 eV 7 J ^{π} : from ³⁴ S(γ,γ'),(pol γ,γ').
9665.74 <i>4</i> 9706 <i>4</i>	(1,2+)			K N	R	$\Gamma_{\gamma 0}$ =0.50 eV <i>14</i> E(level): weighted average of 9700 6 (34 S(p,p'),(pol p,p')) and 9711 <i>5</i> (34 S(γ,γ'),(pol γ,γ')). J ^{π} : from 34 S(γ,γ'),(pol γ,γ').
9801.89 <i>10</i> 9836.70 <i>6</i>	$(1,2^+)$			K K		J^{π} : γ to 0^+ .
9868 <i>4</i>	(1)+			NO) R	$\Gamma_{\gamma 0}$ =0.60 eV 12 E(level): weighted average of 9860 7 (34 S(γ,γ'),(pol γ,γ')) and 9872 5 (34 S(p,p'),(pol p,p')). J ^{π} : from 34 S(γ,γ'),(pol γ,γ').
9912.8 7	7 ⁽⁺⁾	184 fs <i>38</i>	D			J ^{π} : If $S(\gamma, \gamma)$, $Q(1 \gamma, \gamma)$. J ^{π} : D $\Delta J = 1$ γ to 6^+ , 8504. $T_{1/2}$: from $^{24}Mg(^{16}O, \alpha 2p\gamma)$.
9933.35 <i>13</i> 9981 <i>4</i>	1 ⁻ 1 ⁻		E E	K	R R	J^{π} : E1 $\Delta J=1$ γ to 0^+ , g.s. E(level): from ${}^{30}Si(\alpha,\gamma),(\alpha,n)$. J^{π} : E1 $\Delta J=1$, E1 γ to 0^+ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		XR	EF	Comments
10000 10 10092.23 16 10097 4 10140 4 10169 4	1+		E E E	K	0	J^{π} : E1 ΔJ =1, E1 γ to 0^{+} .
10170 5	(1) ⁺			1	N	$\Gamma_{\gamma 0} = 1.06 \text{ eV } 20$ J^{π} : from $^{34}S(\gamma, \gamma')$,(pol γ, γ').
10179.59 6 10180 10 10201 4 10212.15 5 10236 4	(1,2,3) 1 ⁺		E E	K K	0	
10248 <i>4</i> 10311.53 <i>3</i> 10385 <i>4</i>	1 ⁻ 2 ⁺		E E E	K		Additional information 2. J^{π} : E2 $\Delta J=2 \gamma$ to 0^{+} .
10399.8 ^{&} 7 10407 4 10430 10 10447 4	8 ⁽⁻⁾ 2 ⁺ 1 ⁺		D E E		0	J^{π} : Q ΔJ=2 γ to 6 ⁻ , 7791. J^{π} : E2 ΔJ=2 γ to 0 ⁺ , g.s.
10493 <i>4</i> 10528 <i>4</i>	1-		E E			Γ_{γ} =0.84 eV J ^{π} : E1 Δ J=1 γ to 0 ⁺ , g.s.
10586 4	1-		E			$\Gamma_{\gamma} > 1.3 \text{ eV}$ J^{π} : E1 $\Delta J = 1 \gamma$ to 0^+ , g.s.
10616 <i>4</i> 10625 <i>4</i>	1-		E E			Γ_{γ} >0.7 eV J ^{\pi} : E1 \Delta J=1 \gamma to 0 ⁺ , g.s.
10650.11 20 10651.6 [#] 8 10660 10 10662 4	8 ⁺ 1 ⁺ ,(2 ⁻)	35 fs <i>17</i>	D E	K	0	J ^{π} : E2 ΔJ=2 γ to 6 ⁺ , 8504.
10670 4	1-		E			Γ_{γ} =0.73 eV J^{π} : E1 ΔJ =1 γ to 2 ⁺ , 3304 (angular correlation excludes 3 ⁻).
10700 10704 <i>4</i>	(6 ⁺)		E	J		J^{π} : based on angular distribution ($^{32}S(\alpha,^{2}He)$).
10767 <i>4</i> 10791 <i>4</i>	2 ⁺ 1 ⁻		E E	1	N	J^{π} : M1+E2 ΔJ=0 γ to 2 ⁺ , 3304. Γ_{γ} =3 eV $\Gamma_{\gamma0}$ =0.75 eV 14 J^{π} : E1 ΔJ=1 γ to 0 ⁺ , g.s.
10800 <i>10</i> 10803 <i>6</i>	1 ⁺ (1,2 ⁺)			1	O N	Can be same level as 10803. $\Gamma_{\gamma 0}$ =0.60 eV 11 Can be same level as 10800.
10840.64 <i>15</i> 10868 <i>4</i> 10895 <i>4</i> 10916 <i>4</i>	3-		E E E	K		J^{π} : E1+M2 ΔJ =1 γ to 2 ⁺ , 2128.
10930 <i>4</i> 10994 <i>4</i>	1 ⁻ 2 ⁺		E E			J ^π : E1+M2 Δ J=1 γ to 2 ⁺ , 2128 (angular correlation excludes 3 ⁻). J ^π : M1+E2 Δ J=0 γ to 2 ⁺ , 2128.
11014 <i>4</i> 11020 <i>10</i> 11024.94 <i>11</i>	2 ⁺ 1 ⁺ 1 ⁻		E E	K	0	J^{π} : M1+E2 ΔJ=0 γ to 2 ⁺ , 2128. $\Gamma_{\gamma 0}$ =1.7 eV
11047 4			E	-		J^{π} : E1 $\Delta J=1$ γ to 0^+ .

³⁴S Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}		XREF	Comments
11087 4	2+		Е		Γ_{γ} =0.2 eV
					J^{π} : E2 $\Delta J=2 \gamma$ to 0^+ , g.s.
11107 4	3-		E		J^{π} : E1+M2 ΔJ =1 γ to 2 ⁺ , 2128 (angular
11107 7	5		_		correlation excludes 1 ⁻).
11141 <i>4</i>	1-		E		Γ_{γ} =2.6 eV
111111 /	1				J^{π} : E1 $\Delta J=1$ γ to 0^+ , g.s.
11165 4	1-		E		$\Gamma_{\gamma}=1.7 \text{ eV}$
11103 4	1		L		J^{π} : E1 $\Delta J=1$ γ to 0^+ , g.s.
11179 <i>4</i>			E		$J : \Box I \ \Delta J = I \ \gamma \ to \ 0 \ , g.s.$
11173 4			E		
11220 4	(2^{+})		E		Γ_{ν} =0.2 eV
11220 4	(2)		L		J^{π} : (E2) $\Delta J=2 \gamma$ to 0^+ , g.s.
11233 4	1-		E		$\Gamma_{\gamma} = 2.8 \text{ eV}$
11233 7	1		L		J^{π} : E1 $\Delta J=1$ γ to 0^+ , g.s.
11272 4	2+		E		J^{π} : M1+E2 ΔJ =0 γ to 2 ⁺ , 2128.
	2		E		\mathbf{J} . WHTEZ $\Delta \mathbf{J} = 0$ y to \mathbf{Z} , 2128.
11288 4	2+				$\Gamma = 0.09 \text{ eV}$
11314 4	2.		E		Γ_{γ} =0.08 eV
11222 4	1-				J^{π} : E2 $\Delta J=2 \gamma$ to 0^+ , g.s.
11323 4	1-		E		Γ_{γ} =2.2 eV
11250 10	1+			•	J^{π} : E1 $\Delta J=1 \gamma$ to 0^+ , g.s.
11350 10	1+		_	0	
11357 4	1-		E		Γ_{γ} =1.4 eV
11051 /	2-		_		J^{π} : E1 ΔJ =1 γ to 0 ⁺ , g.s.
11371 4	3-		E		Γ_{γ} =1.5 eV
					J^{π} : E1+M2 $\Delta J=1$ γ to 2 ⁺ , 2128 (angular
					correlation excludes 1 ⁻).
11374.2 8	8(+)		D		J^{π} : D $\Delta J=1 \ \gamma \text{ to } 7^{-}, 8371.$
11380 4	2+		E		Γ_{γ} =0.1 eV
					J^{π} : E2 $\Delta J=2 \gamma$ to 0^+ , g.s.
11398 <i>4</i>			E		
11405 <i>4</i>			E		
11411.31	2+			L	Γ_{γ} =1.5 eV
					Γ_{γ} : from ³³ S(n, γ),(n,n).
					E(level): Fictitious level with a negative E(n)
					value.
(11417.223 16)	$1^+, 2^+$			K	E(level): from least-squares fit to E γ data in
(11.17.1220 10)	- ,_				33 S(n, γ) dataset. This value is higher by ≈ 0.10
					keV than $S(n)=11417.12$ 6 (2011AuZZ). Other:
					$S(n)=11417.11 \ 9 \ (2003Au03), \ 11417.22 \ 5 \ and$
					11417.12 <i>10</i> (1983Ra04) using 'mass-doublet
					standard' and 'gold standard', respectively.
					J^{π} : s-wave capture in ³³ S g.s., J^{π} =3/2 ⁺ .
					*
					Observed deexcitation intensity is 83% 2, other
					17% intensity of the primary γ rays is
4440			_		unaccounted.
11419 <i>4</i>	1-		E		Γ_{γ} =4.4 eV
44400 :=	-			_	J^{π} : E1 $\Delta J=1 \gamma$ to 0^+ , g.s.
11430.17	2+	0.116 keV 20	_	L	$\Gamma_{\rm n}$ =75.0 eV 8; Γ_{γ} =0.21 eV 5; $\Gamma\alpha$ =41 eV 5
11434.23	2-	0.049 keV 10	E	L	$\Gamma_{\rm n}$ =39.1 eV 8; Γ_{γ} =0.90 eV 5
					All data are from ${}^{33}S(n,\gamma),(n,n)$.
11440.36	3-	0.0198 keV 10	E	L	$\Gamma_{\rm n}$ =16.0 eV 9; Γ_{γ} =1.44 eV 10; $\Gamma \alpha$ =2.5 eV 3
					All data are from $^{33}S(n,\gamma),(n,n)$.
11447.97		<0.015 keV		L	
11457 <i>4</i>	3-		E		J^{π} : E1+M2 ΔJ =1 to 2 ⁺ , 2128 (angular
					correlation excludes 1 ⁻).
					,

³⁴S Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$		XREF	Comments
11467.68	2+	0.368 keV 8		L	
11469.11	3-	0.152 keV 15		Ĺ	
11473 4	1-	0.132 RC V 13	E	L	J^{π} : E1+M2 ΔJ =1 to 2 ⁺ , 2128 (angular correlation
11474 51	2-	0.451.37.6			excludes 3 ⁻).
11474.51	2-	0.45 keV 6	_	L	$\Gamma_{\rm n}$ =275 eV 5; Γ_{γ} =1.08 eV 7; Γ_{α} =0.17 keV 5
11485.90 <i>4</i>	1-		E	L	$\Gamma_{\rm n}$ =65 eV 10; Γ_{γ} =0.6 eV; $\Gamma \alpha$ =0.11 keV 6
					$\Gamma_{\rm n}$ and $\Gamma \alpha$ from $^{33}{\rm S}({\rm n},\gamma),({\rm n},{\rm n}); \Gamma_{\gamma}$ from
					$^{30}\mathrm{Si}(\alpha,\gamma),(\alpha,\mathrm{n}).$
					J^{π} : E1 $\Delta J=1$ γ to 0^+ , g.s.
11492.64	2-	0.51 keV 10		L	$\Gamma_{\rm n}$ =507 eV 13; Γ_{γ} =2.11 eV 14
11496.06	2 ⁺	0.71 keV 3		Ĺ	$\Gamma_{\rm n}$ =705 eV 19; Γ_{γ} =0.94 eV 6; Γ_{α} =4 eV 2
11499.48	1-	0.71 KC V 3		Ĺ	$\Gamma_n = 1.33 \text{ keV } 8$; $\Gamma_{\alpha} = 4.0 \text{ keV } 6$
	1 ⁺				$1_{n}-1.33$ KeV 0, $1\alpha-4.0$ KeV 0
11500 10		0.202.1 37.25		0	E 200 V 20 E 211 V 14 E 10 V 5
11502.15	1-	0.292 keV 25		L	$\Gamma_{\rm n}$ =280 eV 20; Γ_{γ} =2.11 eV 14; Γ_{α} =10 eV 5
11502.82	(1^{-})	0.26 keV 5	E	L	All data are from 33 S(n, γ),(n,n).
					J^{π} : E1+M2 ΔJ =(1) γ to 2 ⁺ , 2128 (angular
					correlation excludes 3 ⁻).
11515.21	2-	1.262 keV 25		L	$\Gamma_{\rm n}$ =1.260 keV 25; Γ_{γ} =1.48 eV 13
11541.09	1-	0.63 keV 7		L	$\Gamma_{\rm n}$ =0.36 keV 4; $\Gamma_{\rm v}$ =1.4 eV 4; Γ_{α} =0.27 keV 6
11543.84	1-	0.20 keV 4	E	L	$\Gamma_{\gamma}=1.0 \text{ eV}$
					J^{π} : E1 $\Delta J=1 \gamma$ to 0^+ , g.s.
					E(level): from 33 S(n, γ),(n,n).
					Γ from 33 S(n, γ),(n,n) and Γ_{γ} from 30 Si(α , γ),(α ,n).
11546 07		0.001 37.4			1 from $S(\mathbf{n}, \gamma), (\mathbf{n}, \mathbf{n})$ and \mathbf{r}_{γ} from $S(\alpha, \gamma), (\alpha, \mathbf{n})$.
11546.27		0.23 keV 4		L	
11551.22		0.15 keV 3		L	
11564.19	≥1			L	
11574.64	(0^{-})			L	
11580.67	2-	3.42 keV 8		L	Γ_n =3.42 keV 8; Γ_{γ} =2.6 eV 3
11590.12	2-	0.76 keV 4		L	$\Gamma_{\rm n}$ =0.76 keV 4; Γ_{γ} =0.87 eV 11
11607.88	3-	0.62 keV 3		L	$\Gamma_{\rm n}$ =0.61 keV 3; Γ_{γ} =1.33 eV 12
11610.31		0.70 keV 14		L	
11614.26	3-	2.1 keV 8	E	L	Γ_n =2.09 keV 8; Γ_{γ} =2.17 eV 20; $\Gamma\alpha$ =14 eV 5
					All data are from ${}^{33}S(n,\gamma),(n,n)$.
11621.66		0.31 keV 6		L	~ () () () () () () () () () (
11626.32		<0.12 keV		L	
11631.75	2+	0.75 keV 7		Ĺ	$\Gamma_{\rm n}$ =0.69 keV 7; Γ_{γ} =1.2 eV 4; $\Gamma\alpha$ =55 eV 20
11633.67	0^{+}	5.3 keV 10	E	Ĺ	$\Gamma_{\rm n}$ =4.4 keV 9; Γ_{α} =0.9 keV 3
11055.07	U	3.3 KC V 10		_	All data are from $^{33}S(n,\gamma),(n,n)$.
11629.02	2-	0.06.117.6		T	
11638.93	3-	0.96 keV 6		L	$\Gamma_{\rm n}$ =0.76 keV 5; Γ_{γ} =0.81 eV 13; $\Gamma \alpha$ =0.20 keV 3
11642 <i>4</i>	1-		E		Γ_{γ} =2.3 eV
11649.64	2-	0.61 1.37 12			J^{π} : E1 $\Delta J=1 \gamma$ to 0^+ , g.s.
11648.64	3-	0.61 keV 12	_	L	$\Gamma_{\rm n}$ =0.46 keV 3; Γ_{γ} =1.82 eV 20
11668.93	2	0.40 keV 8	E	L	$\Gamma_{\rm n}$ =0.67 keV 6; $\Gamma_{\rm y}$ =2.4 eV 2
					All data are from ${}^{33}S(n,\gamma),(n,n)$.
11670.29	1+	0.55 keV 11		L	$\Gamma_{\rm n}$ =0.23 keV 7; Γ_{γ} =2.1 eV 3
11703.75		0.61 keV <i>12</i>		L	
11706.47	1-	0.79 keV 16	E	L	E(level), Γ : from 33 S(n, γ),(n,n).
					J^{π} : E1+M2 ΔJ =1 γ to 2 ⁺ , 2128 (angular correlation
11716 66		0.67 keV 14		т	excludes 3 ⁻).
11716.66		0.67 keV 14		L	
11743.05		0.28 keV 6	-	L	
11751 4		0.401.37.0	E		
11773.61		0.40 keV 8		L	
11783.80		1.40 keV 25	_	L	
11789 <i>4</i>			E		

³⁴S Levels (continued)

E(level) [†]	$J^\pi \ddagger$	$T_{1/2}$		XREF	Comments
11796.80		1.30 keV 25		L	
11807.4 8	8 ⁽⁺⁾		D		J^{π} : D $\Delta J = 1 \ \gamma$ to 7 ⁻ , 8371.
11829.80		1.7 keV 3		L	
11849 <i>4</i>			E		
11858 4		221 37 5	E		E(I I) E (330() ()
11868.71 11878 <i>4</i>		3.3 keV 5	E E	L	E(level), Γ : from ³³ S(n, γ),(n,n).
11908 4			E		
11921 4	(3-)		E		J^{π} : (E1) ΔJ =(1) γ to 2 ⁺ , 2128 (angular correlation excludes 1 ⁻).
11931 4	1-		E		J^{π} : E1 $\Delta J=1 \gamma$ to 2^+ , 2128 (angular correlation excludes 3^-).
11949.24		2.3 keV 4		L	Γ : from 33 S(n, γ),(n,n).
11956 4	3-	2.3 RC V 7	E	L	J^{π} : E1+M2 ΔJ =1 γ to 2 ⁺ , 2128 (angular correlation excludes 1 ⁻).
11978 <i>4</i>			E		
12033 4	1-		E		J^{π} : E1 $\Delta J=1 \gamma$ to 0^+ , g.s.
12062 4			E		
12076 <i>4</i> 12099 <i>4</i>	1-		E E		J^{π} : E1 $\Delta J=1 \gamma$ to 0^+ , g.s.
12120 10	1+		£	0	$J : EI \Delta J = I \gamma \text{ to } 0$, g.s.
12136 4	1		E		
12141.3 7	9(+)	173 fs <i>35</i>	D		J ^{π} : E2 ΔJ=2 γ to 7 ⁽⁺⁾ , 9912. T _{1/2} : from ²⁴ Mg(¹⁶ O, α 2p γ).
12150 4			E		$1_{1/2}$. Holli Mg($0,a2py$).
12164 <i>4</i>			E		
12172 4			E		
12180 <i>10</i>	2-		_	0	IT E1 A1 1
12193 <i>4</i> 12223 <i>4</i>	1-		E E		J^{π} : E1 $\Delta J=1 \gamma$ to 0^+ , g.s.
12242 4			E		
12255 4			E		
12270 4			E		
12280 4	1+ (2-)		E		
12460 <i>10</i> 12660 <i>10</i>	1 ⁺ ,(2 ⁻) 1 ⁺			0 0	
12930 10	$2^{-},(1^{+})$			0	
12985.5 8	(9 ⁺)		D	·	J ^{π} : gamma to 8 ⁺ ; M1+E2 γ from 10 ⁽⁺⁾ , 13342.
13320.2 [@] 11	(9-)		D		J^{π} : γ to 7^{-} ; $\Delta J=2$ band structure.
13341.6 8	10 ⁽⁺⁾	180 fs 28	D		J^{π} : E2 $\Delta J = 2 \gamma$ to $8^{(+)}$, 11374.
13590 <i>10</i>	2-			0	
13790 10	2-			0	
13960.5 [#] 11	(10 ⁺)		D	•	J^{π} : γ to 8^+ ; $\Delta J=2$ band structure.
13990 <i>10</i> 14200 <i>10</i>	1 ⁺ ,(2 ⁻)			0 0	
14320 10	$2^{-},(1^{+})$			0	
14430 10	$1^+,(2^-)$			0	
14576.4 12	(10^+)		D		J^{π} : γ to $8^{(+)}$.
14800 10	2-			0	
15244.4 10	$(10,11,12^+)$		D		J^{π} : γ to $10^{(+)}$.
15281.0 ^{&} 18	(10)		D		J^{π} : γ to $8^{(-)}$; $\Delta J=2$ band structure.
16649.1 [#] <i>14</i>	$(10,11,12^+)$		D		J^{π} : γ to (10^+) .

³⁴S Levels (continued)

 † From $^{33}S(n,\gamma),$ unless noted otherwise. ‡ The states populated by $^{32}S(t,p)$ and $^{30}Si(\alpha,\gamma),(\alpha,n)$ reactions are only of natural parity. $^{\#}$ Band(A): g.s. band.

[@] Band(B): γ cascade based on 3⁻, 4624. & Band(C): γ cascade based on 3⁻, 5680.

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}^2	π Mult.	δ	Comments
2127.564	2+	2127.499 20	100	0.0 0	+ E2		B(E2)(W.u.)=6.24 16
2201212			10000			0.45	Mult.: from 31 P(α ,p γ), 24 Mg(16 O, α 2p γ).
3304.212	2+	1176.650 20	100.0 9	2127.564 2	⁺ M1+E2	-0.16 2	B(M1)(W.u.)=0.052 3; B(E2)(W.u.)=3.8 10 Mult.,δ: D+Q ΔJ=0 γ (³¹ P(α ,p γ)).
		3304.031 20	87.2 9	0.0	+ E2		B(E2)(W.u.)=0.75 4
							Mult.: Q $\Delta J=2 \gamma (^{31}P(\alpha,p\gamma))$.
3916.408	0_{+}	612.16 5	0.33 4	3304.212 2			D/D2//W \ 4.2.7
		1788.794 20	100 10	2127.564 2	+ E2		B(E2)(W.u.)=4.2 7 Mult.: D,Q Δ J=0,1,2 γ , D,E2 based on RUL (31 P(α ,p γ)); D excluded based
							on level scheme. $P(A, B, B,$
		3916.2 [@]	<2	0.0	+ [E0]		$X(E0/E2)=0.093 \ 15, \ \rho^2(E0)=0.011 \ 3, \ q_K^2(E0/E2)=0.055 \ 9 \ (2005Ki02)$
							evaluation).
							E_{γ} : from ΔE_{levels} . I_{γ} : from ${}^{31}P(\alpha,p\gamma)$.
4074.667	1+	158.3 [@]	< 0.2	3916.408 0	+		r_{γ} . Holli $r(\alpha, p_{\gamma})$.
4074.007	1	770.428 20	8.9 8	3304.212 2			Mult.: D γ based on RUL.
		1947.060 20	94 10	2127.564 2	⁺ M1+E2	+1.3 +9-32	B(M1)(W.u.)>0.0039; B(E2)(W.u.)>26
							Mult.: D+Q $\Delta J=1 \gamma$, M1+E2 based on RUL ($^{31}P(\alpha,p\gamma)$).
		4074.418 20	100 10	0.0 0	+ D		δ: from ${}^{31}P(\alpha,p\gamma)$. Mult.: D $\Delta J=1 \gamma ({}^{31}P(\alpha,p\gamma))$.
4114.813	2+	198.4 [@]	< 0.35	3916.408 0			Mult $D \Delta J = 1 \gamma (F(\alpha, p\gamma))$.
7117.013	2	810.6 [@]	< 0.70	3304.212 2			
		1987.19 <i>3</i>	76 8	2127.564 2		-0.40 5	B(M1)(W.u.)=0.0143 23; B(E2)(W.u.)=2.3 6
							Mult.: D+Q $\Delta J=0 \gamma$, M1+E2 based on RUL ($^{31}P(\alpha,p\gamma)$).
		4114.50.4	100 10	0.0 0	+ E2		δ: from ${}^{31}P(\alpha, p\gamma)$. B(E2)(W.u.)=0.57 9
		4114.52 <i>4</i>	100 10	0.0	+ E2		Mult.: Q $\Delta J=2 \gamma$, E2 based on RUL ($^{31}P(\alpha,p\gamma)$).
4624.404	3-	509.6 [@] 12	<4	4114.813 2	+		From ΔE_{levels} .
							I_{γ} : from $^{31}P(\alpha,p\gamma)$.
		549.7 [@]	< 0.13	4074.667 1	+		
		708.0 [@]	< 0.29	3916.408 0			
		1320.169 20	100 11	3304.212 2	+ D		Mult.: from ${}^{31}P(\alpha,p\gamma)$ and ${}^{24}Mg({}^{16}O,\alpha 2p\gamma)$.
		2406 726 20	41 4	2127.564. 2	+ D		$δ$: $-0.03 \ 5 \ (^{31}P(α,pγ))$. Mult.: from $^{31}P(α,pγ)$ and $^{24}Mg(^{16}O,α2pγ)$.
		2496.726 20	41 4	2127.564 2	D		with: from $P(\alpha, \beta \gamma)$ and $\text{wig}({}^{3}Q, \alpha 2\beta \gamma)$. δ : $+0.02 \ 4 \ ({}^{31}P(\alpha, \beta \gamma))$.
		4624.2 [@] 5	0.55 13	0.0	+ [E3]		B(E3)(W.u.)=18.5
4688.98	4+	573.4 [@] 11	<3	4114.813 2			E_{γ} : from ΔE_{levels} .
	-						I_{γ} : from $^{31}P(\alpha,p\gamma)$.

$\gamma(^{34}S)$ (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^{π}	Mult.	δ	Comments
4688.98	4+	615.7 [@] 12	<4	4074.667	1+			E_{γ} : from ΔE_{levels} . I_{γ} : from ${}^{31}P(\alpha,p\gamma)$.
		774.5 [@] 12	<7	3916.408	0+			E_{γ} : from ΔE_{levels} . I_{γ} : from $^{31}P(\alpha,p\gamma)$.
		1384.4 [@] 8	<2	3304.212	2+			E_{γ} : from ΔE_{levels} . I_{γ} : from $^{31}P(\alpha,p\gamma)$.
		2561.36 <i>5</i>	100 11	2127.564	2+	E2		B(E2)(W.u.)=8.2 14 Mult.: Q $\Delta J=2 \gamma$, E2 based on RUL ($^{31}P(\alpha,p\gamma)$).
		4687.3 [@] 7	<1	0.0	0+			E_{γ} : from ΔE_{levels} . I_{γ} : from ${}^{31}P(\alpha,p\gamma)$.
4876.839	3 ⁺	187.9 [@]	< 0.4	4688.98	4+			-7 (,-7)
		252.4 [@]	< 0.4	4624.404	3-			
		762.0 [@]	<1.6	4114.813				
		802.2 [@]	< 9.1	4074.667				
		960.4 [@]	<1.1	3916.408	0^{+}			
		1572.57 5	80 9	3304.212		M1+E2	-0.094	B(M1)(W.u.)=0.060 24; B(E2)(W.u.)=0.8 8
								Mult.: D+Q $\Delta J=1 \gamma$, M1+E2 based on RUL ($^{31}P(\alpha,p\gamma)$). δ : from $^{31}P(\alpha,p\gamma)$.
		2749.24 5	100 10	2127.564	2+	M1+E2	-0.11 <i>3</i>	B(M1)(W.u.)=0.014 6; B(E2)(W.u.)=0.09 6
								Mult.: D+Q $\Delta J=1 \gamma$, M1+E2 based on RUL ($^{31}P(\alpha,p\gamma)$). δ : from $^{31}P(\alpha,p\gamma)$.
		4876.8 [@]	< 3.6	0.0	0_{+}			
4889.756	2+	200.8	< 0.7	4688.98	4+			
		265.4 [@]	< 0.7	4624.404	3-			
		774.9 [@]	<3	4114.813	2+			
		815.1 [@]	<2	4074.667	1+			
		973.3 [@]	<1.7	3916.408	0^{+}			
		1585.510 20	84 8	3304.212				
		2762.10 8	100 10	2127.564		F-2		D/D2\/4Y_\ 0.05 12
		4889.30 8	90 10	0.0	0_{+}	E2		B(E2)(W.u.)=0.35 13
5228.175	0+	338.4 [@]	< 0.3	4889.756	2+			Mult.: Q $\Delta J=2 \gamma$, E2 based on RUL ($^{31}P(\alpha,p\gamma)$).
		351.3 [@]	<1	4876.839				
		539.2 [@]	< 0.4	4688.98				
		603.8 [@]						

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ	Comments
5228.175	$\frac{i}{0^{+}}$	1113.27 9	4.1 6	$\frac{1}{4114.813} \frac{1}{2^{+}}$			
3220.173	Ü	1153.492 20	100 9	4074.667 1+	D		Mult.: D $\Delta J=1 \gamma (^{31}P(\alpha,p\gamma))$.
		1924.0 [@]	<2	3304.212 2+			
		3100.6 [@]	<2	2127.564 2+			
5322.51	$2^{(-)}$	432.8 [@]	< 0.8	4889.756 2 ⁺			
		445.7 [@]	< 0.8	4876.839 3 ⁺			
		633.5 [@]	<1.51	4688.98 4 ⁺			
		698.18 <i>13</i>	1.4 14	4624.404 3-			
		1207.7 [@]	<2.2	4114.813 2+			
		1247.92 6	8.0 7	4074.667 1+			
		1406.1 [@] 2018.3 [@]	<1.4	3916.408 0+			
		2018.3° 3194.74 <i>5</i>	<1.5 100 <i>11</i>	3304.212 2 ⁺ 2127.564 2 ⁺	D+Q	-0.17 6	Mult.: D+Q $\Delta J=0 \gamma (^{31}P(\alpha,p\gamma))$.
							δ : from ³¹ P(α ,p γ).
		5322.5 [@]	<3.2	$0.0 0^{+}$			
5380.99	1+	151.8 [@]	< 0.5	5228.175 0 ⁺			
		491.2 [@]	<1.6	4889.756 2 ⁺			
		504.2 [@]	<1.6	4876.839 3 ⁺			
		692.0 [@]	<1.6	4688.98 4+			
		756.6 [@]	<1.6	4624.404 3			
		1266.11 <i>5</i> 1306.3 [@]	17.4 18	4114.813 2+			
		1306.3 ° 1464.6 [@]	<2.6	4074.667 1 ⁺			
		2076.89 8	<2.6 39 <i>4</i>	3916.408 0 ⁺ 3304.212 2 ⁺			
		3253.21 6	100 11	2127.564 2 ⁺	M1+E2	-1.1 10	$B(M1)(W.u.)>1.2\times10^{-5}$; $B(E2)(W.u.)>0.22$
							Mult.: D+Q $\Delta J=1 \gamma$, M1+E2 based on RUL ($^{31}P(\alpha,p\gamma)$).
		5290 50 O	50.5	0.0 0+	D		δ : from ³¹ P(α ,p γ). Mult.: D ΔJ=1 γ (³¹ P(α ,p γ)).
5679.927	3-	5380.59 <i>9</i> 357.4 [@]	52 <i>5</i> < 0.2	$0.0 0^+ $ $5322.51 2^{(-)}$	D		with. $D \Delta J = 1 \gamma (P(\alpha, p\gamma))$.
3079.927	3	451.8 [@]	<0.2	5228.175 0 ⁺			
		789.1 <i>6</i>	1.5 7	4889.756 2 ⁺			
		803.103 27	4.4 11	4876.839 3 ⁺			
		990.9 [@]	< 0.4	4688.98 4 ⁺			
		1055.491 20	27 3	4624.404 3			
		1564.8 <i>5</i>	3.5 20	4114.813 2+			

$\gamma(^{34}S)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${ m I}_{\gamma}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
5679.927	3-	1605.3 [@]	<0.4	4074.667	1+			
		1763.5 [@]	< 0.4	3916.408				
		2375.657 20	100 9	3304.212		D+Q	<-0.4	Mult.: D+Q γ (³¹ P(α ,p γ)).
								δ : from ³¹ P(α,pγ): <-0.4 or >+2.4.
		3552.08 <i>4</i>	66.7 7	2127.564	2+	D+Q	-0.47 + 7 - 11	Mult.: D+Q γ (³¹ P(α ,p γ)).
								δ : from ³¹ P(α ,p γ).
		5679.9 [@]	< 2.0		0_{+}			
5690.7	5-	1001.6 5	100 10	4688.98	4+	E1		$B(E1)(W.u.) = 9.4 \times 10^{-6} 13$
								$E_{\gamma}I_{\gamma}$: from ²⁴ Mg(¹⁶ O, α 2p γ).
		1066.2 5	83 10	4624.404	2-	E2		Mult.: D(+Q) Δ J=1 γ , E1 from polarization measurement (31 P(α ,p γ)). B(E2)(W.u.)=0.76 12
		1000.2 3	65 10	4024.404	3	E2		$E_{\gamma}I_{\gamma}$: from ²⁴ Mg(¹⁶ O, α 2p γ).
								Mult.: Q $\Delta J=2 \gamma$, E2 from polarization measurement ($^{31}P(\alpha,p\gamma)$).
		3562.7 6	2.9 12	2127.564	2+	[E3]		B(E3)(W.u.)=1.0 5
								E_{γ} , I_{γ} : from 24 Mg(16 O, α 2p γ).
5755.875	1-	433.4 [@]	< 0.3	5322.51	$2^{(-)}$			
		527.7 [@]	< 0.3	5228.175	0^{+}			
		866.1 [@]	< 0.4	4889.756	2+			
		879.0 [@]	< 0.4	4876.839	3+			
		1066.9 [@]	< 0.5	4688.98	4+			
		1131.5 [@]	< 0.5	4624.404				
		1640.7 10	1.0 10	4114.813				
		1681.2 [@]	< 0.5	4074.667	1+			
		1839.5 [@]	<4.0	3916.408				
		2451.557 20	30 3	3304.212				
		3628.10 <i>4</i> 5755.5 <i>5</i>	100 <i>9</i> 2.9 <i>5</i>	2127.564 0.0	0+			
5847.53	0^{+}	525.0 [@]	<0.9		2 ⁽⁻⁾			
2011.22	J	619.4 [@]	<0.9	5228.175				
		957.8 [@]	<1.5	4889.756				
		970.7 [@]	<1.5	4876.839				
		1158.6 [@]	<2.7		3 4 ⁺			
		1223.1@	<2.7	4624.404				
		1732.7 [@]	<7.85	4114.813				
		1732.7 1772.82 <i>4</i>	14.6 15	4074.667				

$\gamma(^{34}S)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	Comments
5847.53	0+	2543.13 [#] 10	100 [#] 9	3304.212 2+			
5017.55	O	3719.68 <i>16</i>	19.9 21	2127.564 2+			
5998.10	2+	1121.33 9	57 8	4876.839 3 ⁺			
		1922.92 22	100 18	4074.667 1+			
		3870.51 <i>31</i>	92 <i>13</i>	2127.564 2+			
		5997.30 <i>31</i>	56 10	$0.0 0^{+}$	Q		Mult.: Q $\Delta J=2 \gamma (^{31}P(\alpha,p\gamma))$.
6121.49	2+	2817.76 [#] 25	100 [#] 15	3304.212 2+	Q		Mult.: Q $\Delta J=0 \gamma ({}^{31}P(\alpha,p\gamma)).$ δ : $-0.09 4 ({}^{31}P(\alpha,p\gamma)).$
		3994.8 8	30 8	2127.564 2+			
6168.86	3-	846.1 <i>13</i>	2.6 17	5322.51 2 ⁽⁻⁾			
		940.7 [@]	< 2.7	5228.175 0 ⁺			
		1279.1 [@]	<1.0	4889.756 2 ⁺			
		1279.1 1292.0 [@]	<0.8	4876.839 3 ⁺			
		1479.73 <i>15</i>	<0.8 2.4 <i>3</i>	4876.839 3° 4688.98 4 ⁺	D(+Q)	+0.04 +6-3	Mult.: D(+Q) $\Delta J=1 \gamma (^{31}P(\alpha,p\gamma))$.
					D(+Q)	+0.04 +0-3	δ : from ³¹ P(α,pγ).
		1544.41 [#] <i>10</i>	23.7 [#] 22	4624.404 3-			
		2053.94 14	5.4 8	4114.813 2+			
		2094.2 [@]	<1.0	4074.667 1+			
		2252.5 [@]	<1.0	3916.408 0+			
		2864.56 <i>4</i>	100 10	3304.212 2+	D+Q	-0.23 7	Mult.: D+Q $\Delta J=1 \gamma (^{31}P(\alpha,p\gamma))$. δ : from $^{31}P(\alpha,p\gamma)$.
		4040.63 29	5.0 7	2127.564 2+	D+Q	-0.43 16	Mult.: D+Q $\Delta J=1 \gamma$ ($^{31}P(\alpha,p\gamma)$).
							δ : -0.43 16 or -1.0 3 (31 P(α ,p γ)).
6251.22	4+	1374.34 20	46 10	4876.839 3+	M1+E2	-3.7 + 7 - 26	B(M1)(W.u.)=0.0004 +3-4; $B(E2)(W.u.)=12 +8-12$
							Mult.: D+Q $\Delta J=1 \gamma$, M1+E2 based on RUL ($^{31}P(\alpha,p\gamma)$).
							δ : from ³¹ P(α ,p γ).
		1562.3 5	100 25	4688.98 4+			C '' ''
6251.68	4-	571.7 6	42 16	5679.927 3-	D		Mult.: D, $\Delta J=1 \gamma$ from $^{24}Mg(^{16}O,\alpha 2p\gamma)$ (angular distribution and
							R(ADO)).
		1627.2 10	100 37	4624.404 3-			
6342.50	1-	3038.2 <i>3</i>	100 13	3304.212 2+	D+Q	-0.55 65	Mult.: D+Q $\Delta J=1 \gamma (^{31}P(\alpha,p\gamma))$.
					-		δ : from ${}^{31}P(\alpha,p\gamma)$.
		6341.6 <i>3</i>	35 6	$0.0 0^{+}$	D		Mult.: D $\Delta J=1 \gamma (^{31}P(\alpha,p\gamma))$.
6421.42	4-	1544.41 [#] <i>10</i>	100 [#] 9	4876.839 3 ⁺	D		Mult.: D $\Delta J=1 \gamma (^{31}P(\alpha,p\gamma))$.
	•	1	- 30 /		2		$δ: 0.00 \ 6 \ {}^{(31}P(\alpha,p\gamma)).$
		1732.39 11	17.1 23	4688.98 4+	D		Mult.: D $\Delta J=0 \gamma (^{31}P(\alpha,p\gamma))$.
		1104,07 11	11.1 23	1000.70 T	D		$\delta: 0.00 + 32 - 14 {}^{(31}P(\alpha, p\gamma)).$

$\gamma(^{34}S)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
6428.12	(2+)	306.63 16	19 4	6121.49	2+		' <u></u>	
		1739.32 9	100 13	4688.98	4+			
		2353.06 21	48 8	4074.667	1+			
6478.770	1-	631.13 6	2.7 3	5847.53	0_{+}			
		722.95 14	1.5 2	5755.875				
		798.92 10	2.8 4	5679.927				
		1156.39 7	15.0 <i>17</i>	5322.51	$2^{(-)}$			
		1250.6 [@]	<2.1	5228.175				
		1589.0 [@]	<1.1	4889.756				
		1602.06 <i>15</i>	4.1 7	4876.839				
		1854.28 <i>4</i>	12.2 12	4624.404				
		2404.04 6	10.2 11	4074.667				
		3174.37 5	100 10	3304.212				21
		4350.85 9	59 7	2127.564	2+	D+Q	-1.1 9	Mult.: D+Q $\Delta J=1 \gamma (^{31}P(\alpha,p\gamma))$. δ : from $^{31}P(\alpha,p\gamma)$.
		6478.8 [@]	< 0.2	0.0	0^{+}			(/I/)
6639	4 ⁽⁻⁾	959.9 <i>14</i>	28 13	5679.927		D		E_{γ},I_{γ} : from ³¹ P(α ,p γ).
000)	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20 10	00//1/2/		_		Mult.: D $\Delta J=1 \gamma$ ($^{31}P(\alpha,p\gamma)$ and RUL).
		2016.8 12	100 13	4624.404	3-			E_{γ} , I_{γ} : from ³¹ $P(\alpha, p\gamma)$.
6685.33	$(0 \text{ to } 3)^{-}$	929.436 <i>21</i>	100	5755.875				$L_{y,y}$. Hold $L_{(u,y)}$.
6731	$2^{(+)},4^{(+)}$	1857	9 9	4876.839				E_{γ},I_{γ} : from ³¹ P(α ,p γ).
0,01	_ ,.	2043	36 13	4688.98				E_{γ},I_{γ} : from $^{31}P(\alpha,p\gamma)$.
		3428	36 13	3304.212				E_{γ} , I_{γ} : from 31 P(α ,p γ).
		4604	100 9	2127.564		D+Q,Q	+1.8 3	E_{γ} , I_{γ} : from 31 P(α ,p γ).
		7007	100)	2127.304	2	D i Q,Q	11.0 3	Mult.: D+Q $\Delta J=0 \gamma$, or Q $\Delta J=2 \gamma$.
								δ : +1.8 3 (for J=2); 0.00 3 (for J=4) (1972Jo10).
6828.85	2+	2207		4624.404	3-			E_{γ} : from $^{31}P(\alpha,p\gamma)$.
0020.00	_	2714		4114.813				E_{γ} : from ${}^{31}P(\alpha,p\gamma)$.
		2753.3 [@] 13		4074.667				<i>Ly.</i> Hom 1 (4,p7).
		6830		0.0	0+	Q		E_{γ} : from ³¹ P(α ,p γ).
		0830		0.0	U	Q		Mult.: Q $\Delta J=2 \gamma (^{31}P(\alpha,p\gamma))$.
6847.90	$(1,2^+)$	1525.39 6	100 10	5322.51	2(-)			
5517.70	(1,2)	6846.4 <i>3</i>	50 6	0.0	0^{+}			
6864	5-	2176.3 11	200	4688.98	4 ⁺			E_{γ},I_{γ} : from ³¹ P(α ,p γ).
0001	-	2241.6 12		4624.404		Q		E_{γ},I_{γ} : from ${}^{31}P(\alpha,p\gamma)$.
						-		Mult.: Q $\Delta J=2$ ($^{31}P(\alpha,p\gamma)$).
		4737.2 11		2127.564	2+	[E3]		E_{γ},I_{γ} : from ³¹ P(α ,p γ).
6954.22	$(2)^{-}$	1274.30 <i>4</i>	38 4	5679.927		-		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
6954.22	(2)	1631.641 25	94 10	5322.51	2 ⁽⁻⁾			
	· /	2839.3 4	32 5	4114.813				
		3649.88 12	100 10	3304.212				
		4826.0 5	3.6 16	2127.564				
7110.45	3-	281.34 24	0.46 16		2+			
		941.59 6	8.2 10	6168.86	3-			
		989.1 [#] <i>3</i>	1.6 [#] 5	6121.49	2+			
		2233.49 4	100 10	4876.839				
		2995.8 6	7.4 20	4114.813				
		4982.44 20	26 <i>3</i>	2127.564				
7112	2+	3809	40 11	3304.212				E_{γ},I_{γ} : from ³¹ P(α ,p γ).
		4985	100 11	2127.564		[D+Q]	+0.27 +19-15	$E_{\gamma}I_{\gamma}$: from ³¹ P(α ,p γ).
						[()		δ : +0.27 +19-15 or +1.2 +7-4 (31 P(α ,p γ)).
		7112	12 9	0.0	0^{+}	Q		E_{γ},I_{γ} : from ³¹ P(α ,p γ).
		7112	12)	0.0	O	Q		Mult.: Q, $\Delta J=2 \gamma (^{31}P(\alpha,p\gamma))$.
7164.47	$(0 \text{ to } 3)^+$	3089.5 <i>3</i>	100 20	4074.667	1+			(α, β, β)
,	(* ** *)	5036.4 7	45 11	2127.564				
7219.28	(2^{+})	2328.8 5	5.2 15	4889.756				
	, ,	2530.25 10	19 <i>3</i>	4688.98	4+			
		5091.3		2127.564	2+			E_{γ} : from ³¹ P(α ,p γ) (Δ E _{levels}).
		7218.48 <i>13</i>	100 11	0.0	0^{+}	Q		Mult.: Q, $\Delta J=2 \gamma (^{31}P(\alpha,p\gamma))$.
7248	(4)	1560 4	100	5690.7	5-	(D)		E_{γ} : from ${}^{31}P(\alpha,p\gamma)$.
	· /					()		Mult.: (D) $\Delta J=1 \gamma$ based on RUL.
7248.05	$(2^+,3^-)$	2558.82 <i>13</i>	100	4688.98	4+			
7367.42	$(1^+,2^+)$	2490.6 <i>13</i>	95 25	4876.839	3 ⁺			
		3451.5 9	54 <i>15</i>	3916.408				
		5239.8 <i>4</i>	100 14	2127.564				
7467.72	$(0^+,1,2)$	989.1 [#] <i>3</i>	5.0 [#] <i>15</i>	6478.770	1-			
		1469.67 <i>24</i>	15 <i>3</i>	5998.10				
		3392.86 24	100 12	4074.667	1+			
7552.69	$(1,2,3^{-})$	1210.04 <i>13</i>	10.2 14	6342.50	1-			
		2230.14 14	50 6	5322.51	$2^{(-)}$			
		4248.28 <i>21</i>	100 11	3304.212	2+			
7629.907	3-	2307.4 [@]	<1.0	5322.51	$2^{(-)}$			
		2401.7 [@]	<1.0	5228.175				
		2740.2 [@]	<1.4	4889.756				
		2940.4 3	<1.4 8.3 <i>12</i>	4889.736	4 ⁺			
		3005.39 5	8.3 12 79 8	4624.404				
		3515.07 <i>11</i>	11.3 13	4114.813				
		3313.07 11	11.3 13	T117.013	_			

$\gamma(^{34}S)$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
7629.907	3-	3713.5 [@]	<1.4	3916.408	0^{+}			
70231307		4325.40 3	100 9	3304.212				
		7629.9 [@]	< 2.6		0^{+}			
7730.79	$(1^-,2^-,3^-)$	5602.78 15	100	2127.564				
7781.22	(1)	1353.46 16	10.0 13		(2^{+})			
	(-)	7780.22 10	100 13		0+			
7790.7	6-	1539.6 <i>5</i>	19 <i>4</i>	6251.68	4-	E2		B(E2)(W.u.)=16.6
								E_{γ} , I_{γ} , Mult.: from 24 Mg(16 O, α 2p γ).
		2099.6 8	100 11	5690.7	5-	M1+E2	-1.8 <i>I</i>	B(M1)(W.u.)=0.0049 13; B(E2)(W.u.)=14 4
								$E_{\gamma}, I_{\gamma}, Mult., \delta$: from $^{24}Mg(^{16}O, \alpha 2p\gamma)$.
7974.72	$(1,2^+)$	4670.1 6	26 14	3304.212				
		5847.4 5	60 14	2127.564				
2026.20	(4 - a -b)	7973.45 25	100 14		0^{+}			
8036.30	$(1^-,2^+)$	925.79 14	95 12		3-			
		8036.6 7	100 22		0+			
8138.10	(1)	1795.3 [#] 3	14 [#] 4		1-			
		2290.26 15	19 4		0+			
		6010.3 3	36 6	2127.564				
0.4== 4	(4.01)	8136.98 <i>17</i>	100 11		0+			
8175.1	$(1,2^+)$	2945.8 [#] 10	100 [#] 30	5228.175				
0105 46	$(1)^{+}$	8173.8 9	53 10		0^{+}			
8185.46		8184.70 24	100 31 <i>6</i>	4624.404				
8205.40	$(1^- \text{ to } 4^+)$	3581.2 <i>4</i> 6077.27 <i>12</i>	100 11	2127.564				
8294.39	$(0^+ \text{ to } 3^-)$	1951.77 19	34 19		1-			
0294.39	(0 10 3)	6166.24 <i>13</i>	100 11	2127.564				
8371.1	7-	580.3 6	2 1		6-	D		E_{γ} , I_{γ} , Mult.: from 24 Mg(16 O, α 2p γ).
03/1.1	,	2680.5 6	100 10		5-	E2		B(E2)(W.u.)=7.4 16
		2000.5 0	100 10	3070.7	5	112		E_{γ} , I_{γ} , $Mult.$: from ²⁴ $Mg(^{16}O, \alpha 2p\gamma)$.
8385.40	1-	8384.28 9	100	0.0	0^{+}			$L_{\gamma,1\gamma,1\gamma,1\alpha}$
8503.8	6 ⁺	2812.7 9	100 18		5-	D		E_{γ} , Mult.: from 24 Mg(16 O, α 2p γ).
0505.0	J	3813.6 7	51 10		4 ⁺	D		E_{γ} ; from ²⁴ Mg(¹⁶ O, α 2p γ).
8506.77	1-	3183.9 7	2.6 17		2(-)			Ly. 110111 1115(0,02p)).
8300.77	1	4391.8 3	9.4 19	4114.813				
		5202.06 6	64 6	3304.212				
		8505.68 <i>10</i>	100 11		0+			
8615.74	$(2^-,3^+)$	2363.97 8	58 31		4-			
3010	(= ,=)	3738.69 <i>17</i>	33 57	4876.839				
		3990.7 7	8.1 19	4624.404				
			47.6					
		3990.7 <i>7</i> 4540.68 <i>15</i>		4624.404 4074.667				

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \qquad \mathrm{J}_f^\pi$	Mult.	Comments
8615.74	$(2^-,3^+)$	5311.10 <i>15</i>	22 3	3304.212 2+		
		6487.48 <i>6</i>	100 11	2127.564 2+		
8656	$(1)^{+}$	8655 4		$0.0 0^{+}$		E_{γ} : from ΔE_{levels} .
8702.35	$(1^-,2)$	516.86 <i>12</i>	29 5	8185.46 (1)+		
		2945.8 [#] <i>10</i>	28 [#] 8	5755.875 1-		
		3022.0 10	15 8	5679.927 3-		
		3812.0 5	23 6	4889.756 2 ⁺		
		6573.6 <i>4</i>	100 17	2127.564 2+		
8727.63	$(1^-,2^+)$	1617.00 <i>12</i>	100 13	7110.45 3		
		3500.3 5	25 6	5228.175 0 ⁺		
		6600.1 7	12 3	2127.564 2+		
0=0.4.0	-()	8726.78 24	23 3	$0.0 0^{+}$		7
8734.9	6 ⁽⁻⁾	3044.1 6	100	5690.7 5-	D+Q	E_{γ} ,Mult.: from 24 Mg(16 O, α 2p γ).
8805.66	$(1,2^+)$	2326.2 [#] 10	11 [#] 9	6478.770 1		
		5501.4 5	100 20	3304.212 2+		
007403	(1 - 2 2+)	8804.4 <i>4</i>	52 9	$0.0 0^{+}$		
8874.02	$(1^-,2,3^+)$	1244.32 <i>21</i>	4.4 11	7629.907 3 ⁻		
		4758.8 <i>3</i>	17 3	4114.813 2+		
		4799.1 <i>3</i> 6745.64 <i>16</i>	19 <i>3</i> 100 <i>11</i>	4074.667 1 ⁺ 2127.564 2 ⁺		
8970.7	6 ⁽⁻⁾	1180 <i>I</i>	6 3	7790.7 6 ⁻		E_{γ} : from ²⁴ Mg(¹⁶ O, α 2p γ).
6970.7	0.	3280.0 6		5690.7 5 ⁻		E_{γ} . Holling $(G, \alpha 2p\gamma)$. E_{γ} : from $^{24}\text{Mg}(^{16}\text{O}, \alpha 2p\gamma)$.
9026.31	$(1,2^+)$	3644.8 8	100 <i>20</i> 60 <i>13</i>	5380.99 1+		E_{γ} . Iroin wig($O,\alpha 2p\gamma$).
9020.31	(1,2)	9024.95 <i>17</i>	100 11	$0.0 0^{+}$		
9158.71	$(1,2^+)$	3311.6 5	39 7	5847.53 0 ⁺		
7130.71	(1,2)	5043.3 4	100 19	4114.813 2+		
		5084.2 5	9 3	4074.667 1+		
9208.04	$(1,2^+)$	334.21 <i>15</i>	4.8 11	8874.02 (1-,2,3+	.)	
		1840.52 <i>12</i>	64 10	$7367.42 (1^+,2^+)$		
		1959.67 <i>17</i>	100 13	$7248.05 (2^+,3^-)$		
		9206.7 <i>3</i>	40 6	$0.0 0^{+}$		
9413.9	$6^{(-)}$	1043.8 7	21 12	8371.1 7		
		3722.6 <i>6</i>	100 <i>21</i>	5690.7 5	D+Q	
9479	(1)+	9478 <i>4</i>	100	0.0 0+		E_{γ} : from ΔE_{levels} (measured by $^{34}S(\gamma,\gamma')$,(pol γ,γ')).
9546.09	$(1,2^+)$	672.00 10	34 4	8874.02 (1-,2,3+	·)	
		2326.2 [#] <i>10</i>	11 [#] 9	$7219.28 (2^+)$		
		6241.0 5	100 16	3304.212 2+		
		9544.8 <i>3</i>	84 11	$0.0 0^{+}$		
9598.41		982.68 9	27 4	$8615.74 (2^-,3^+)$		
		3476.95 <i>18</i>	100 14	6121.49 2+		

$\gamma(^{34}S)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\dagger}$	\mathbf{E}_f J	$\frac{\pi}{f}$ Mult.	Comments
9640	$(1,2^+)$	9639 4		0.0 0+		
9665.74		2817.76 [#] 25	100 [#] <i>15</i>	6847.90 (1,2	2+)	
		7536.2 7	52 12	2127.564 2+	,	
9706	$(1,2^+)$	9705 <i>5</i>		$0.0 0^{+}$		E_{γ} : from ΔE_{levels} (measured by $^{34}S(\gamma,\gamma')$,(pol γ,γ')).
9801.89	$(1,2^+)$	5884.6 <i>6</i>	48 11	3916.408 0+		
		6496.62 <i>23</i>	100 13	3304.212 2+		
0026 70		7675.0 8	29 7	2127.564 2+	.4.	
9836.70		2989.9 7	41 11	6847.90 (1,2	2*)	
0060	(1)+	7708.3 3	100 16	2127.564 2+		E C AE (11 345(/) (1 /)
9868	$(1)^+$ $7^{(+)}$	9866 4	20.0	$0.0 0^{+}$		E_{γ} : from ΔE_{levels} (measured by $^{34}S(\gamma,\gamma')$,(pol γ,γ')).
9912.8	/(1)	942.3 5	28 9	8970.7 6 ⁽⁻⁾ 8734.9 6 ⁽⁻⁾		E _y ,Mult.: from ${}^{24}\text{Mg}({}^{16}\text{O},\alpha 2\text{py})$.
		1178 <i>I</i>	14 7			E _y : from ${}^{24}\text{Mg}({}^{16}\text{O},\alpha2\text{py})$.
		1408.6 9	30 9	8503.8 6 ⁺	D	E _y ,Mult.: from 24 Mg(16 O, α 2py).
		1541.5 5	13 7	8371.1 7		E _y : from ${}^{24}\text{Mg}({}^{16}\text{O},\alpha2\text{py})$.
9933.35	1-	2122.9 <i>6</i> 725.25 22	100 14	7790.7 6 ⁻ 9208.04 (1,2)+\	E_{γ} : from ²⁴ Mg(¹⁶ O, α 2p γ).
9933.33	1	1795.3 [#] 3	61 <i>10</i> 100 [#] 26			
				8138.10 (1)		
		2152.41 <i>23</i> 7804.8	89 <i>26</i> 13 <i>3</i>	7781.22 (1) ⁻² 2127.564 2 ⁺		E_{γ},I_{γ} : from ΔE_{levels} (γ observed in $^{30}Si(\alpha,\gamma),(\alpha,n)$).
					E1 [‡]	E_{γ}, I_{γ} . Irom ΔE_{levels} (γ observed in $SI(\alpha, \gamma), (\alpha, \Pi)$).
		9932.1 6	43 10	0.0 0+	EI*	
9981	1-	7852 [‡]	100‡	2127.564 2+	4.	
		9979‡	40 [‡]	$0.0 0^{+}$	E1 [‡]	
10092.23		1364.4 4	69 19		,2+)	
		3664.8 <i>4</i>	100 21	6428.12 (2+)	
10097		7968‡	100‡	2127.564 2+		
		10095‡@	<10‡	$0.0 0^{+}$		
10169	1-	8040 [‡]	100‡	2127.564 2+		
		10167 [‡]	30 [‡]	$0.0 0^{+}$	E1 [‡]	
10170	$(1)^{+}$	10168 5		$0.0 0^{+}$		
10179.59	(1,2,3)	4499.7 10	88 27	5679.927 3-		
		8051.1 6	100 19	2127.564 2+		
10212.15		4532.6 7	49 15	5679.927 3		
		8083.5 <i>3</i>	100 15	2127.564 2+		
10248	1-	8119 [‡]	100‡	2127.564 2+		
		10246 [‡]	20 [‡]	$0.0 0^{+}$	E1 [‡]	
10311.53	2+	1925.94 <i>17</i>	44 13	8385.40 1		1925.9, 2173.5, 2843.7, 4988.6 and 6236.3 γ transitions are from (n,γ) , whereas 8182.9 and 10309.9 are from (α,γ) , (α,n) . Relative branches are given here from (n,γ) .

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
10311.53	2+	2173.55 21	25 8		(1)-			
		2843.7 6	94 21		$(0^+,1,2)$			
		4988.6 <i>4</i>	100 14		2(-)			
		6236.3 11	30 8	4074.667				
		8182.9		2127.564	2+			In (α, γ) , (α, n) relative intensities are: 100 for 8182.9 γ , and 40 for
		10309.9		0.0	0+	E2		10309.9 γ . These cannot be matched with intensities from (n,γ)
10399.8	8(-)	986.8 9	11 6		6 ⁽⁻⁾	E2		E_{γ} , I_{γ} : from ²⁴ Mg(¹⁶ O, α 2p γ).
10377.0	0	2028.8 6	46 10		7-			E_{γ} , I_{γ} : from 24 Mg(16 O, α 2p γ).
		2608.6 6	100 14		6-	Q		E_{γ} , I_{γ} : from 24 Mg(16 O, α 2p γ).
10407	2+	8278 [‡]	100 14	2127.564		Q		L_{γ}, L_{γ} . Holli $Mg(O, u2p\gamma)$.
10407	2	10405 [‡]	1001		0 ⁺	E2 [‡]		
10100	4-					E2*		
10493	1-	8364 ^{‡@}	<10‡	2127.564		+		
		10491‡	100‡		0_{+}	E1‡		
10586	1-	7281 [‡]	100 [‡]	3304.212	2+	E1 [‡]		$\alpha(N+)=0.00258 \ 4$
		.1.	4					$\alpha(IPF) = 0.00258 \ 4$
		8457‡	60 [‡]	2127.564				
10625	1-	8496 [‡]	100 [‡]	2127.564	2+			
		10623 [‡]	100‡		0_{+}	E1 [‡]		
10650.11		2919.7 5	100 26	7730.79	$(1^-, 2^-, 3^-)$			
		5268.9 [#] 6	63 [#] 16		1+			
10651.6	8+	2147.2 6	100 <i>21</i>	8503.8	6+	E2		B(E2)(W.u.)=27 15
								E_{γ} , I_{γ} , Mult.: from 24 Mg(16 O, α 2p γ).
		2280.4 10	100 <i>21</i>		7-	D		E_{γ} , I_{γ} , Mult.: from 24 Mg(16 O, α 2p γ).
10670	1-	7365 [‡]	100‡	3304.212	2+	E1 [‡]		
		8541 [‡]	30 [‡]	2127.564	2+			
		10668 ^{‡@}	<10 [‡]	0.0	0^{+}			
10767	2+	8638 [‡]	100‡	2127.564	2+	M1+E2 [‡]	+0.3 [‡]	
		10765 ^{‡@}	<10 [‡]	0.0	0^{+}			
10791	1-	7486 [‡]	5‡	3304.212				
10//1	•	8662 [‡]	20 [‡]	2127.564				
		10789 [‡]	100‡		0 ⁺	E1 [‡]		
10803	$(1,2^+)$	10789	100		0+	EI.		
10840.64	3-	748.43 <i>14</i>	71 9	10092.23	~			
	-	6152.1 5	100 28		4+			
		8711.9		2127.564		E1+M2	-0.024 17	E_{γ} , I_{γ} ,Mult.,δ: from 30 Si(α , γ),(α ,n) only (I_{γ} scale differs from that of γ rays from 33 S(n, γ)).

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
10930	1-	8801‡	100 [‡]	2127.564	2+	E1+M2 [‡]	+0.154 [‡] 17	
10994	2+	8865 [‡]	100 [‡]	2127.564	2+	M1+E2 [‡]	+0.078‡ 32	
11014	2+	8885 [‡]	100 [‡]	2127.564	2+	M1+E2 [‡]	$-0.52^{\ddagger} 22$	
11024.94	1-	1998.3 <i>4</i>	50 18	9026.31	$(1,2^+)$			1998.3, 4903.4 and 5268.9 γ transitions are from (n,γ) , whereas 7719.8, 8896.1 and 11023.0 are from (α,γ) , (α,n) . Relative branches are given here from (n,γ) .
		4903.4 5	100 29					
		5268.9 <i>6</i>	96 25	5755.875				
		7719.8		3304.212				In (α, γ) , (α, n) relative intensities are: 17 for 7719.8 γ , 14 for 8896.1 γ and 100 for 11023.0 γ . These cannot be matched with intensities from (n, γ) .
		8896.1 11023.0		2127.564 0.0	2 ⁺ 0 ⁺	E1		
11087	2+	7782 [‡]	47 [‡]	3304.212		171		
1100/	<i>L</i>	8958 [‡]	47 [‡]	2127.564				
		11085‡	100 [‡]		0 ⁺	E2 [‡]		
11107	3-	8978 [‡]	100*	2127.564		E1+M2 [‡]	+0.062‡ 1	
11141	1-	7836 [‡]	9‡	3304.212		L1+W12	+0.002* 1	
11171	1	9012 [‡]	18 [‡]	2127.564				
		11139 [‡]	100 [‡]	0.0	0 ⁺	E1 [‡]		
11165	1-	7860 [‡]	100	3304.212		DI		
11105	1	9036 [‡]	13 [‡]	2127.564				
		11163 [‡]	77 [‡]	0.0	0 ⁺	E1 [‡]		
11220	(2^{+})	X	100 [‡]	0.0	Ü	Li		Additional information 3.
11220	(2)	7915 [‡]	8 [‡]	3304.212	2+			reduction information 5.
		9091‡	10 [‡]	2127.564				
		11218‡	12 [‡]	0.0	0+	(E2) [‡]		
11233	1-	7928 [‡]	100 [‡]	3304.212		\/		
		9104 [‡]	24 [‡]	2127.564				
		11231‡	4 [‡]	0.0	0+	E1 [‡]		
11272	2+	9143 [‡]	100 [‡]	2127.564		M1+E2 [‡]	+0.18 [‡] 15	
11314	2+	8009 [‡]	67 [‡]	3304.212				
		9185‡	38 [‡]	2127.564				
		11312 [‡]	100 [‡]	0.0	0^{+}	E2 [‡]		
11323	1-	8018 [‡]	48 [‡]	3304.212				

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
	11323	1-	9194 [‡]	65 [‡]	2127.564	2+			
			11321 [‡]	100 [‡]	0.0	0^{+}	E1 [‡]		
	11357	1-	8052 [‡]	280 [‡]	3304.212	2+			
			9228 [‡]	49 [‡]	2127.564	2+			
			11355 [‡]	100 [‡]	0.0	0^{+}	E1 [‡]		
	11371	3-	8066 [‡]	44 [‡]	3304.212	2+			
			9242 [‡]	100 [‡]	2127.564	2+	E1+M2 [‡]	+0.022 6	
			11369 [‡]	6 [‡]	0.0	0^{+}	[E3]		
	11374.2	8(+)	1461.7 9	90 20	9912.8	7 ⁽⁺⁾	D(+Q)		
			3002.8 6	100 20	8371.1	7-	D		
	11380	2+	X	79 [‡]					Additional information 4.
			8075‡	11 [‡]	3304.212	2+			
			9251 [‡]	30 [‡]	2127.564	2+			
			11378 [‡]	100‡	0.0	0^{+}	E2 [‡]		
,	(11417.223)	$1^+, 2^+$	392.28 11	0.2 3		1-			Additional information 5.
.			576.80 <i>19</i> 767.20 <i>21</i>	0.24 <i>3</i> 0.16 <i>3</i>	10840.64 10650.11	3-			
			1105.673 21	2.40 24		2+			
			1205.05 4	0.98 10	10212.15				
			1237.61 5	0.84 10	10179.59	(1,2,3)			
			1325.2 3	0.53 11	10092.23	1-			
			1484.06 <i>19</i> 1580.50 <i>6</i>	0.53 <i>11</i> 1.06 <i>11</i>	9933.35 9836.70	1-			
			1615.24 10	3.7 5	9801.89	$(1,2^+)$			
			1751.43 <i>3</i>	2.32 23	9665.74	, ,			
			1818.96 <i>14</i>	0.61 10	9598.41	(1.2+)			
J			1871.04 <i>8</i> 2209.10 <i>6</i>	3.3 <i>4</i> 1.39 <i>15</i>	9546.09 9208.04	$(1,2^+)$ $(1,2^+)$			
			2258.430 23	6.0 7	9158.71	$(1,2^+)$			
			2390.82 6	2.15 23	9026.31	$(1,2^+)$			
			2543.13 [#] 10	15.5 [#] <i>15</i>	8874.02	$(1^-,2,3^+)$			
			2611.7 <i>4</i>	1.9 5	8805.66	$(1,2^+)$			
			2689.50 <i>10</i> 2714.50 <i>19</i>	3.5 <i>4</i> 4.5 <i>8</i>	8727.63	$(1^-,2^+)$			
			2714.50 <i>19</i> 2801.33 <i>5</i>	4.5 8 16.3 <i>16</i>	8702.35 8615.74	$(1^-,2)$ $(2^-,3^+)$			
			2910.28 5	16.1 16	8506.77	1-			
			3031.69 8	7.4 10	8385.40	1-			
			3122.65 <i>15</i>	4.4 7	8294.39	$(0^+ \text{ to } 3^-)$			
- [

E_i (level)	${\rm J}_i^\pi$	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
								Comments
11457	3-	9328‡	100	2127.564		E1+M2 [‡]	+0.037‡ 2	
11473	1-	9344 [‡]	100	2127.564	2+	E1+M2 [‡]	$-0.13^{\ddagger} 7$	
11485.90	1-	X	100‡					Additional information 11.
		8180.7‡	7.7‡	3304.212				
		9357.0‡	4.3 [‡]	2127.564		.1.		
		11483.9 [‡]	3.5 [‡]		0_{+}	E1 [‡]		
11502.82	(1^{-})	9373.9		2127.564	2+	E1+M2 [‡]	-0.058^{\ddagger} 16	
11543.84	1-	X	100‡					Additional information 12.
		8238.6	3.9 [‡]	3304.212				
		9414.9	6.2 [‡]	2127.564				
		11541.8	3.7 [‡]	0.0	0_{+}	E1 [‡]		
11642	1-	X	100‡					Additional information 13.
		8337‡	13 [‡]	3304.212	2+			
		9513 [‡]	2.7	2127.564	2+			
		11640 [‡]	3.3‡	0.0	0_{+}	E1 [‡]		
11706.47	1-	9577.5 [‡]		2127.564		E1+M2 [‡]	$-0.080^{\ddagger} 80$	
11807.4	$8^{(+)}$	1894.6 <i>6</i>	100 20	9912.8	7(+)			
		3436.1 6	100 40	8371.1	7-	D .		
11921	(3 ⁻)	9792 [‡]	100	2127.564		(E1) [‡]		
11931	1-	11929‡	100	0.0	0+	E1 [‡]	4	
11956	3-	9827 [‡]	100	2127.564		E1+M2 [‡]	+0.031 [‡] 4	
12033	1-	12031‡	100	0.0	0_{+}	E1‡		
12099	1-	12097‡	100	0.0	0+	E1 [‡]		
12141.3	9(+)	1489.2 6	7 4	10651.6	8+			
		1741.6 <i>5</i> 2228.8 <i>6</i>	13 <i>3</i> 100 <i>12</i>	10399.8 9912.8	8 ⁽⁻⁾ 7 ⁽⁺⁾	E2		B(E2)(W.u.)=7.6 20
12193	1-	12191 [‡]	100 12	0.0	0+	E2 E1 [‡]		D(E2)(W.U.) = 7.0.20
12193	(9 ⁺)	12191 · 1178 <i>I</i>	42 25	11807.4	8(+)	EI.		
12703.3	())	1611.5 7	50 25	11374.2	8(+)			
		2333.8 7	100 42	10651.6	8+			
13320.2	(9^{-})	2920.1 10	26 16	10399.8	$8^{(-)}$			
	(1)	4949.3 18	100 <i>21</i>	8371.1	7-	_		
13341.6	$10^{(+)}$	356.3 <i>6</i>	6 3	12985.5	(9^+)	D		
		1200.4 7	100 22 81 <i>19</i>	12141.3 11374.2	9 ⁽⁺⁾	M1+E2		D(E2)/W ₁₁ \=7.1.22
		1966.8 9	81 19	113/4.2	9(.)	E2		B(E2)(W.u.)=7.1 23

γ (³⁴S) (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}
13960.5	(10^+)	3308.8 8	100	10651.6	8+
14576.4	(10^+)	2768.9 9	100	11807.4	
15244.4	$(10,11,12^+)$	1902.7 6	100	13341.6	$10^{(+)}$
15281.0	(10)	4880.8 <i>16</i>	100	10399.8	$8^{(-)}$
16649.1	$(10,11,12^+)$	2688.4 8	100	13960.5	(10^{+})

[†] From ${}^{33}S(n,\gamma)$, unless noted otherwise. ‡ From ${}^{30}Si(\alpha,\gamma)$, (α,n) . # Multiply placed with undivided intensity. @ Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

 $_{16}^{34}S_{18}$ -37

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γDecay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

γ Decay (Uncertain)

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ninel Nica, John Cameron and Balraj Singh	NDS 113,1 (2012)	31-Dec-2011

 $Q(\beta^{-})=-1142.11 \ 19$; $S(n)=9889.22 \ 19$; $S(p)=13095.3 \ 19$; $Q(\alpha)=-9011.3 \ 4 \ 2012Wa38$

Note: Current evaluation has used the following Q record -1142.14 19 9889.2719 13095.319-9011.3635

S(2n)=16875.10 19, S(2p)=25285 14 (2011AuZZ).

В

Values in 2003Au03: $Q(\beta^-) = -1142.22$ 19, S(n) = 9889.04 21, $Q(\alpha) = -9008.08$ 22, S(2n) = 16874.92 22. S(p) and S(2p) are the same as in 2011AuZZ.

Identification of ³⁶S in mass spectrometer studies by A.O. Nier: Phys. Rev. 53, 282 (1938); measured ratio of ³⁶S to ³²S.

1971Ar32: production of ³⁶S in ²³²Th(⁴⁰Ar,X) at 290 MeV fragmentation reaction.

1983Ry04: 36 S(e,e) E=120, 240, 320 MeV. Measured $\sigma(\theta)$, deduced charge radius.

1985Gy02, 1985GyZZ: 36 S(π-,π-) E=48.4 MeV, measured $\sigma(\theta)$.

1985Ko43: ²⁰Ne(¹⁶O, ¹⁶O') E(c.m.)=24.5-35.5 MeV, deduced resonances.

1985Sc05: measured muonic atom x rays, deduced rms charge radii. Observed muonic x-ray energies: 515.985 14 (2p -> 1s),

616.28 8 (3p -> 1s), 651.30 10 (4p -> 1s), 667.63 12 (5p -> 1s).

1997Is02: 37 Cl(γ ,p) E \leq 32 MeV, measured E γ , I γ . GDR features deduced.

 $^{36}P \beta^{-} decay (5.6 s)$

 36 Cl ε decay (3.01×10⁵ y) H

1999Ai02: Si(³⁶S,X) E=46.17 MeV/nucleon, measured energy integrated cross sections, deduced radius.

Additional information 1.

³⁶S Levels

Cross Reference (XREF) Flags

 $^{37}Cl(n,d)$

Coulomb excitation M

N

 115 In(34 S,X γ)

 160 Gd(36 S, 36 S' γ),(34 S, 36 S' γ)

		$\begin{array}{ccc} & & ^{34}S(t,p) \\ D & & ^{34}S(t,p) \\ E & & ^{36}S(p,p) \end{array}$	(p) (p)	H $^{37}\text{Cl}(\text{n,d})$ N $^{166}\text{Gd}(^{35}\text{S},^{36}\text{S}'), (^{35}\text{S},^{36}\text{S}')$ I $^{37}\text{Cl}(^{3}\text{He})$ 0 $^{160}\text{Gd}(^{37}\text{Cl},\text{X}\gamma)$ J $^{37}\text{Cl}(^{36}\text{S},^{36}\text{S}')$ P $^{176}\text{Yb}(^{36}\text{S},\text{X})$:tentative K $^{40}\text{Ar}(\gamma,\alpha)$ L $^{40}\text{Ar}(^{3}\text{He},^{7}\text{Be})$
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0	0+	stable	ABCDEFGHIJKLMNOP	J^{π} : spin measurement by microwave spectroscopy (1949Lo21). Nuclear rms charge radius=3.2982 fm 21 (2004An14 evaluation); 3.2985 fm 24 from 2008 update of 2004An14. Mean radius r_0^2 =1.26 fm ² 10 from measured integrated σ_R =2.44 b 19 at 46.17 MeV/nucleon in Si(36 S,X) reaction (1999Ai02).
3290.9 3	2+	83 fs 7	A CDEFG IJk MNOP	μ =+2.6 10 (2008Sp01) $T_{1/2}$: from DSA in Coul. Ex. (2008Sp01). Other: 76 fs 21 (1972Sa09), also given in 2001Ra27 evaluation. J^{π} : E2 γ to 0 ⁺ . μ : transient field technique in Coulomb excitation in inverse kinematic reaction, g factor=+1.3 5 (2008Sp01).
3346 <i>4</i>	0^{+}	8.8 ns 2	CDE G I k	J^{π} : E0 transition to 0^+ .
4192.7 5	3-	0.62 ps 7	A CDEFG J MNOP	μ =+2.4 15 (2008Sp01) B(E3)=0.008 3 (2002Ki06 evaluation), from β_3 in (p,p') (1990Ho19). T _{1/2} : from DSA in Coul. Ex. (2008Sp01). Other: 0.8 ps +4-3 (DSA in (t,p γ) (1972Sa09). μ : transient field technique in Coulomb excitation in inverse kinematic reaction, g factor=+0.8 5 (2008Sp01).
4523.0 6	1 ⁺	0.017 ps 8 55 fs <i>10</i>	CDE G I k	
4575.2 <i>7</i> 5021.5 <i>3</i>	2 ⁺ 4 ⁻	33 IS 10	A CDE G I k A E MNOP	XREF: P(?).
5206.1 3	5-		A E M OP	XREF: P(?).
5251.2 10	3-	70 fs <i>30</i>	A CDE N	J^{π} : log $ft=5.57$ from 4 ⁻ ; γ to 2 ⁺ .

³⁶S Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}^{\#}$	X	KREF	Comments
5338 <i>3</i> 5391.4 <i>9</i>	2+	>0.2 ps	E CDE		XREF: E(5379). $T_{1/2}$: additional limit: <30 ns.
5462 <i>3</i> 5509.1 <i>5</i>	3 ⁺ (2,4)	0.19 ps 4	E CDE		XREF: E(5514). J ^{π} : 4 ⁻ proposed in (p,p'),(α , α ').
5573.1 <i>7</i> 5781.1 <i>10</i>	1-	<0.14 ps	CDE	M	
5830.9 <i>7</i> 6186.9 <i>8</i>	3 ⁻ 3 ⁻	55 fs 20	A E		XREF: E(5837). J^{π} : log ft =4.66 from 4^{-} ; γ to 2^{+} . XREF: E(6180).
6225.2 <i>10</i> 6350 <i>3</i>	2+	<20 fs	DE E		XREF: E(6220).
6472 <i>3</i> 6514.4 <i>4</i> 6553 <i>3</i>	1 ⁻ 4 ⁺	<0.2 ps	A CDE E	I	XREF: E(6510).
6690 7120 <i>14</i> 7271.9 <i>3</i> 7710 <i>25</i>	(6^+) $(1,2)^+$ $(3^-,4^-,5^-)$	<0.2 ps	CD A	I I	J^{π} : log ft =4.62 from 4 ⁻ .

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
3290.9	2+	3290.8 6	100	0 0+	E2		B(E2)(W.u.)=2.83 24
3346	0+	3346		0 0+	E0		Decay takes place by pair formation.
4192.7	3-	901.5 4	100	3290.9 2 ⁺	E1(+M2)	+0.03 3	B(E1)(W.u.)=0.00135 15
4523.0	1+	1232.1 4	33 13	3290.9 2+	,		()()
		4522.2 15	100 13	$0 0^{+}$	M1		B(M1)(W.u.)=0.0105
4575.2	2+	1284.2	100	3290.9 2+	M1(+E2)	+0.06 6	B(M1)(W.u.)=0.19 4
5021.5	4-	828.8	100 2	4192.7 3-	M1		
		1730.6	3 2	3290.9 2+			
5206.1	5-	184.6	100.0 23	5021.5 4-	D		
		1013.4	26.8 18	$4192.7 \ 3^{-}$	Q		
5251.2	3-	680		4575.2 2 ⁺			
		1059.6 <i>4</i>	43 11	$4192.7 \ 3^{-}$			
		1961.0 <i>4</i>	100 11	3290.9 2+	D+Q		
5391.4	2+	816.2 <i>4</i>	18 9	$4575.2 \ 2^{+}$			
		5391.0	100 9	$0 0^{+}$			
5509.1	(2,4)	1316.8 <i>4</i>	52 12	4192.7 3-			
		2217.7 <i>3</i>	100 12	3290.9 2 ⁺	D+Q		
5573.1	1-	2282.1 <i>3</i>	100	3290.9 2+			
5781.1		760.4	100	5021.5 4			
5830.9	3-	579.7	1.1 4	5251.2 3			
		809.4	15.2 9	5021.5 4			
		1255.7	12.7 9	$4575.2 \ 2^{+}$			
		1638.2	100 <i>3</i>	$4192.7 \ 3^{-}$			
		2539.9	49.3 23	$3290.9 \ 2^{+}$			
6186.9	3-	1994.8 <i>4</i>	33 11	4192.7 3-			

[†] From least-squares fit to Eγ data, assuming 0.3 keV uncertainty for each Eγ. [‡] Mainly from $\gamma\gamma(\theta)$ and lin pol data in $(t,p\gamma)$ and from comparison of $\sigma(\theta)$ data in $(p,p'),(\alpha,\alpha')$ to DWBA calculations. [#] From DSA in $(t,p\gamma)$, unless otherwise stated.

$\gamma(^{36}S)$ (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbb{E}_{γ}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
6186.9	3-	2894.8 5	100 11	3290.9 2+
6225.2	2+	1649.2 5	100 <i>13</i>	4575.2 2 ⁺
		2933.0 10	32 <i>13</i>	3290.9 2+
6514.4	4+	2321.6 [†]	100	4192.7 3-
6690	(6 ⁺)	1485	100	5206.1 5
7120	$(1,2)^+$	2550	28 7	4575.2 2 ⁺
		3830	11 7	3290.9 2+
		7120	100 7	$0 0_{+}$
7271.9	$(3^-,4^-,5^-)$	757.5	32 5	6514.4 4+
		1441.0	12 5	5830.9 3
		2020.6	100 7	5251.2 3-
		2065.7	15 5	5206.1 5
		2250.3	32 5	5021.5 4
		3079.1	54 12	4192.7 3

 $[\]rm E_{\gamma}, I_{\gamma}$: from $^{36}\rm P$ β^- decay (1986Du07); in (t,pγ), 1971Ol02 assign 3290.9 level as final state for single transition from 6514.4 level. For this γ ray, E γ =3223.3 and δ =-0.03 3.

Comments

 $^{^{\}dagger}$ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017

 $Q(\beta^{-})=2937$ 7; S(n)=8036 7; S(p)=15150 40; $Q(\alpha)=-9329$ 16

S(2n)=12340 7, S(2p)=29000 70 (2017Wa10).

First identification of ³⁸S nuclide is by 1958Ne10, according to the 2012Th10 compilation of isotope discovery. Other reactions:

1994De17: ⁴⁰Ar(e,e'2p) E=14.5 GeV; measured secondary protons.

1999Ai02: strong absorption radius deduced from measured cross section.

2005Ol04: 208 Pb(38 S,X γ): γ rays at 1292 and 1513 reported using CLARA Ge detector array and PRISMA magnetic spectrometer. (Preliminary results).

Structure calculations: 2015St17, 2015Wu07, 2014Eb02, 2013Xu01, 2012Ut02, 2011Ka03, 2011Si09, 2004In01, 2002Ro03,

1986Wo02. Consult NSR database for 16 other theory references.

Comparison of experimental and theoretical g factors: 2007Be42.

Additional information 1.

38S Levels

Cross Reference (XREF) Flags

		A ${}^{38}P \beta^- \text{ deca}$ B ${}^{39}P \beta^- \text{n dec}$ C ${}^{1}H({}^{38}S, {}^{38}S'$ D ${}^{12}C({}^{48}Ca, X)$ E ${}^{36}S(t, p)$	cay (0.28 s) G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	0+	170.3 min 7	ABCDEFGHI JKLM	%β ⁻ =100
1292.02 20	2+	3.3 ps +5-4	A CDEFGHIJKLM	T _{1/2} : weighted average of 172 min <i>I</i> (1958Ne10), 169.6 min 7 (1971En01), and 170.0 min 8 (1972Vi11). μ =+0.26 <i>I0</i> (2006St21,2006Da08) B(E2)↑=0.0235 <i>30</i> (1996Sc31)
				J ^π : L(t,p)=2 from 0 ⁺ . T _{1/2} : from B(E2)↑=0.0235 30 in Coulomb excitation (1996Sc31). Other: >0.31 ps from DSAM in (t,pγ). μ: from g=+0.13 5 (2006St21,2006Da08: high-velocity transient-field technique in Coulomb excitation). Compilation: 2014StZZ.
2805.1 20	(2+)	0.08 ps +9-5	D F KL	J^{π} : 1513 γ to 2 ⁺ ; 0 and 4 less likely from RUL; shell-model predicts 2 ⁺ (1994Fo04) in 160 Gd(36 S, 38 S γ). $T_{1/2}$: from DSAM in (t,p γ).
2825.3 11	4+	>0.14 ps	DEFGH KL	J^{π} : L(t,p)=4 from 0 ⁺ . $T_{1/2}$: from DSAM in (t,p γ).
3375 17	(2 ⁺)		E I	J^{π} : L(t,p)=2,(1) from 0^+ with L=2 preferred. J^{π} =1 not completely excluded.
3516.3 7 3658 6	(1,2 ⁺) (6 ⁺)		A DE KL	J^{π} : 3526.0 γ to 0 ⁺ ; 3 ⁻ is less likely but not completely ruled out. XREF: E(3690)K(3674)L(3674). J^{π} : L(t,p)=5,6; γ to 4 ⁺ ; shell-model predicts 6 ⁺ (1994Fo04) in 160 Gd(36 S, 38 S γ).
3725.3 15	(A±)		GH	\overline{W} , \overline{W}
4336 20 4461 22	(4^+) $(3^-,4^+)$		E E GH	J^{π} : L(t,p)=4,(3) with L=4 preferred. J^{π} =3 ⁻ not completely excluded. E(level): weighted average of 4430 20 from (14 C, 12 C) and 4478 22 from (t,p). J^{π} : L(t,p)=3,4.
4990.2 11	(2+)		A E	XREF: E(4955).

³⁸S Levels (continued)

E(level) [†]	J^{π}		XREF	Comments
				J^{π} : L(t,p)=2,(1,3) with L=2 preferred. $J^{\pi}=1^-,3^-$ not completely excluded.
5064 27	(3^{-})		E	J^{π} : L(t,p)=3,(2) with L=3 preferred. $J^{\pi}=2^{+}$ not completely excluded.
5278 28	(2^{+})		E	J^{π} : L(t,p)=2,(1,3) with L=2 preferred. $J^{\pi}=1^{-},3^{-}$ not completely excluded.
6005.6 11	(3^{-})	Α	E GH	J^{π} : L(t,p)=3,(4) with L=3 preferred. $J^{\pi}=4^+$ not completely excluded.
6605 60			E	

 $[\]dagger$ From a least-squares fit to γ -ray energies where available and the rest from (t,p), unless otherwise noted.

γ (38S)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbb{E}_f	J_f^{π}	Mult.	Comments
1292.02	2+	1292.0 2	100	0	0+	E2	B(E2)(W.u.)=6.3 9
							E _γ : weighted average of 1292.3 4 from ^{38}P β^- decay (0.64 s) and 1291.9 2 from (t,pγ). Others: 1296.2 4 from ($^{18}\text{O}, ^{16}\text{O}\gamma$), 1292 4 from ($^{48}\text{Ca}, X\gamma$), 1286 19 from Coulomb excitation.
2805.1	(2^{+})	1513 2	100	1292.02	2+		E_{γ} : from (t,p γ). Other: 1515 6 from (48 Ca, X_{γ}).
2825.3	4+	1533.2 10	100	1292.02	2+		E_{γ} : from (t,py). Other: 1538.2 5 from (^{18}O , $^{16}O\gamma$), 1534 5 from (^{48}Ca , $X\gamma$).
3516.3	$(1,2^+)$	2224.3 8	100 18	1292.02	2+		$E_{\gamma}I_{\gamma}$: from ³⁸ P β^- decay.
		3516.0 <i>10</i>	56 18	0	0^{+}		$E_{\gamma}I_{\gamma}$: from ³⁸ P β^- decay.
3658	(6^+)	833 5	100	2825.3	4+		E_{γ} : from (⁴⁸ Ca,X γ). Other: 849 from (³⁶ S, ³⁸ S γ).
3725.3		900 1	100	2825.3	4+		E_{γ} : from (^{18}O , $^{16}O_{\gamma}$) with value adjusted by 3 keV lower than the original value=903 <i>I</i> since all values in that dataset are systematically lower than values in other studies.
4990.2	(2^{+})	3698.0 <i>10</i>	100	1292.02	2+		E_{γ} : from ³⁸ P β^- decay.
6005.6	(3^{-})	4713.3 10	100	1292.02	2+		,

[†] Values from (^{18}O , $^{16}O\gamma$) seem systematically higher as compared to those in β^- decay, (t,p γ) and $^{160}Gd(^{36}S,^{38}S\gamma)$: 4 keV for 1296 γ , 5 keV for 1538 γ .

Level Scheme

Intensities: Relative photon branching from each level

