Classification at the Top

Ing. Václav Mácha

September 20, 2023

Supervisor: doc. Ing. Václav Šmídl, Ph.D.

Supervisor specialist: Mgr. Lukáš Adam, Ph.D.

Motivation

Binary Classification

General form of binary classification

- $x_i \in \mathbb{R}^d$ is a sample and $y_i \in \{0,1\}$ its corresponding label, $C_1, C_2 \in \mathbb{R}$ are constants
- $\mathcal{I} = \mathcal{I}_- \cup \mathcal{I}_+$ is a set of indices of all sample where

$$\mathcal{I}_{-} = \{i \mid i \in \{1, 2, \dots, n\} \land y_i = 0\}$$

$$\mathcal{I}_{+} = \{i \mid i \in \{1, 2, \dots, n\} \land y_i = 1\}$$

■ 1_[.] is Iverson function defined by

$$\mathbb{1}_{[x]} = \begin{cases} 0 & \text{if } x \text{ is false} \\ 1 & \text{if } x \text{ is true} \end{cases}$$

• Classifier consists of two parts: model $f: \mathbb{R}^d \mapsto \mathbb{R}$ with trainable parameters \boldsymbol{w} that maps samples \boldsymbol{x} to scores s and decision threshold $t \in \mathbb{R}$

1/18

False rates

• Inference: Sample ${\pmb x}$ is classified as positive if ${\pmb s}=f({\pmb x};{\pmb w})\geq t$

Classifier 1 is better ... or not?

Sometimes Classifier 2 is the better one...

Classification at the Top

General problem formulation

- Goal: classify correctly only the most relevant samples. The most relevant samples are samples with the highest scores
- General formulation

minimize
$$C_1 \sum_{i \in \mathcal{I}_-} \mathbb{1}_{[s_i \ge t]} + C_2 \sum_{i \in \mathcal{I}_+} \mathbb{1}_{[s_i < t]}$$

subject to $s_i = f(\mathbf{x}_i; \mathbf{w}), i \in \mathcal{I},$
 $t = G(\mathbf{s}, \mathbf{y})$

where threshold t is a function of all scores

Difficult problem: constrained, discontinuous, non-convex, and non-decomposable

How to get continuous objective function?

 \bullet By replacing $\mathbb{1}_{[\cdot]}$ Iverson function with its surrogate approximation

General surrogate formulation

■ Using the surrogate approximation to replace 1 lead to general surrogate formulation

$$\begin{aligned} & \underset{\boldsymbol{w}}{\text{minimize}} & & C_1 \sum_{i \in \mathcal{I}_-} I(\boldsymbol{s}_i - \boldsymbol{t}) + C_2 \sum_{i \in \mathcal{I}_+} I(\boldsymbol{t} - \boldsymbol{s}_i) \\ & \text{subject to} & & \boldsymbol{s}_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I}, \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & &$$

How to choose the decision threshold?

 For simplicity, we focus only on formulations that minimizes false-negative rate and compute the threshold only from negative samples

minimize
$$\frac{1}{2} \| \mathbf{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} I(t - s_i)$$
subject to $s_i = f(\mathbf{x}_i; \mathbf{w}), i \in \mathcal{I},$
$$t = G(s, \mathbf{y})$$

where we use $C_1 = 0$ and $C_2 = \frac{1}{n_+}$. Regularization is added for numerical stability.

How to choose the decision threshold?

 For simplicity, we focus only on formulations that minimizes false-negative rate and compute the threshold only from negative samples

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} I(t - s_i)$$
subject to
$$s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I},$$
$$t = G(\boldsymbol{s}, \boldsymbol{y})$$

where we use $C_1 = 0$ and $C_2 = \frac{1}{n_+}$. Regularization is added for numerical stability.

TopPush maximizes the number of positive samples at the top

$$t = G_{TopPush}(\boldsymbol{s}, \boldsymbol{y}) = \max_{j \in \mathcal{I}_{-}} s_{j}$$

How to choose the decision threshold?

 For simplicity, we focus only on formulations that minimizes false-negative rate and compute the threshold only from negative samples

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} l(t - s_i)$$
subject to $s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I},$
$$t = G(\boldsymbol{s}, \boldsymbol{y})$$

where we use $C_1 = 0$ and $C_2 = \frac{1}{n_+}$. Regularization is added for numerical stability.

TopPush maximizes the number of positive samples at the top

$$t = G_{TopPush}(\boldsymbol{s}, \boldsymbol{y}) = \max_{j \in \mathcal{I}_{-}} s_{j}$$

Pat&Mat-NP maximizes true-positive rate with fixed false-positive rate

$$t = G_{Pat\&Mat-NP}\left(s,y
ight) \iff t \text{ solves } \frac{1}{n_{-}} \sum_{i \in \mathcal{I}_{-}} I\left(s_{i}-t\right) = au$$

Classification at the Top:

Linear Model

Linear Model

• General surrogate formulation with linear model $f(x; w) = w^{T}x$

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} l(t - s_i)$$
subject to
$$s_i = \boldsymbol{w}^\top \boldsymbol{x}_i, \quad i \in \mathcal{I},$$
$$t = G(\boldsymbol{s}, \boldsymbol{y})$$

- Properties that we are interested in:
 - Convexity of the objective function
 - Robustness to outliers

Convexity of the objective function

Theorem

If the threshold t is a convex function of the weights \boldsymbol{w} , then function

$$L(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} I(t(\boldsymbol{w}) - \boldsymbol{w}^\top \boldsymbol{x}_i)$$

is convex.

- What does it mean?
 - Both formulations TopPush and Pat&Mat-NP have convex thresholds
 - Both formulations are convex and continuous
 - We can solve both formulations using gradient descent algorithm

How to solve it?

Using gradient descent

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k - \alpha^k \cdot \nabla L(\mathbf{w}^k),$$

where $\alpha^k > 0$ is a learning rate, and $\nabla L(\mathbf{w}^k)$ is a gradient of the objective function

$$abla L(\mathbf{w}) = \mathbf{w} + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} l' \left(t(\mathbf{w}) - \mathbf{w}^{\top} \mathbf{x}_i \right) \left(\nabla t(\mathbf{w}) - \mathbf{x}_i \right)$$

- How to compute gradient of the threshold $\nabla t(\mathbf{w})$?
 - For TopPush it is easy

$$j^\star = rg \max_{j \in \mathcal{I}_-} s_j \quad o \quad t = s_{j^\star} \quad o \quad
abla t(w) =
abla f(\mathbf{x}_{j^\star}; \mathbf{w}) = \mathbf{x}_{j^\star}$$

• For Pat&Mat-NP we have to use implicit function theorem.

When convexity is not enough...

Classification at the Top:

Non-linear Model

Non-linear Model

• General surrogate formulation with non-linear model f(x; w)

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + \frac{1}{n_+} \sum_{i \in \mathcal{I}_+} l(t - s_i)$$
subject to
$$s_i = f(\boldsymbol{x}_i; \boldsymbol{w}), \quad i \in \mathcal{I},$$
$$t = G(\boldsymbol{s}, \boldsymbol{y})$$

- Disadvantages:
 - Objective function is not convex
 - Non-linear models are usually large and expensive to train
- What to do if the dataset is too large to fit in memory? Stochastic gradient descent.

Issues with stochastic gradient descent

- ullet The threshold is a function of all scores o the loss function is non-decomposable
- As a result, stochastic gradient descent provides a biased gradient estimate

• How to reduce bias? Increase size of minibatch ...

Is there a better way to reduce bias?

• DeepTopPush: Add threshold from last minibatch

$$j^\star = rg \max_{j \in \mathcal{I}_-} s_j \quad o \quad t = s_{j^\star} \quad o \quad
abla t(oldsymbol{w}) =
abla f(oldsymbol{x}_{j^\star}; oldsymbol{w})$$

How does it work?

Steganalysis

AVAST: Malware detection

Contributions

Contributions

Unification Contributions:

- Introduction of a unified framework for classification at the top
- Shoewd that problems such as Ranking or Accuracy at the Top fall into the framework
- Introduction of Pat&Mat and Pat&Mat-NP formulations

Theoretical Contributions:

- Derivation of theoretical properties of formulations from the framework with linear model
- Derivation of dual forms and use of non-linear kernels

Algorithmic Contributions:

- Derivation of an efficient algorithm for solving dual forms
- Introduction of a modified stochastic gradient descent
- Introduction of *DeepTopPush* formulation

Thank you for your attention.