Hodgepodge Metagenomics: A collection of novel tools for viral and bacterial sequences

Cody Glickman CPBS Update Talk

Jan 29th, 2018

Table of Contents

Introduction

Metagenomic Simulation Study

GRAB

BUD

Non-Tuberculosis Mycobacterial (NTM) Infections

Number of Cases

The number of NTM cases is estimated over 100K

Increasing Case

The rate of cases is estimated to grow at 8% every year

Populations at risk of developing NTM

- Immunocompromised individuals
- Patients with lung damage or malfunction
- Residing in warm costal areas especially Hawaii

Connecting NTM to Metagenomics

The curious case of NTM

Introduction

- Certain populations
- Lady Windemere Syndrome

Location, Location

Why do NTM infections so commonly occur in the lung?

Of "Viral" Importance

Bacteriophages aka Phages

Phages are DNA viruses that infect prokaryotes

Bacteriophage Adherence to Mucus (BAM)

- Phages act as an innate immune system in mucosal tissues
- Prior studies identified Ig-like motifs in induced phages from Pseudomonas cultures

Phages in the Lungs

The abundance of phages is significantly lower in the lungs

The BAM model

Molecular Methods to Study Phages

Difficulties of phage study

- · Lack of universal marker gene
- Sequence heterogeneaity
- Misclassification in databases

Phage Isolation Methods

- Biological filtration
- In Silico Methods

Objective

Develop new tools and incorporate them into pipelines to identify and quantify bacteriophage elements in shotgun metagenomic sequences.

Secondary Goal

Identify relationships between bacteria and phages using the quantification across multiple studies.

Metagenomics Gold Standard

CAMI Why Viruses cause worsening performance? Why the gold standard was Pyrete

Viral Metagenomics Gold Standard

Study Design

This study establishes the feasibility for the filtration and novel viral identification pipeline in development.

Simulation Study

A simulated mixed metagenome is used to compare the viral taxonomic identification performance

Sensitivity Study

A real longitudinal metagenomic dataset is spiked with a rare virus to measure sensitivity of taxonomic assignments.

Tools Used in Study

The tools used in this study are selected based on recent publications

Assembler

MEGAHIT - Effective at assembling viromes $_{\rm Roux,\ Simon,\ et\ al.\ Peer J\ 2017}$

Filtration Methods

VirFinder - Viral contig K-mer identification model Ren, Jie, et al. Microbiome 2017

Blastx - Filtering against a viral protein database Camacho C., et al. BMC Bioinformatics 2008

Tools Used in Study Continued

Simulation Tools

BBMAP - a suite of tools designed for sequencing data $_{\mbox{\scriptsize Bushnell},\mbox{\ B.},\mbox{\ JGI}\ 2016}$

Taxonomic Identification

Kraken - A reference-free K-mer taxonomic identifier Wood, Derrick E., and Steven L. Salzberg Genome 2014

Blastx - Referenced against a viral protein database Camacho C., et al. BMC Bioinformatics 2008

Prophage Identification

Phaster - A popular prophage discovery web tool Arndt, David, et al., Nucleic Acids Research 2016

Genomes in Simulation

Virus - 0.12 Mb

- Bacillus phage Pony
- Caulobacter phage CcrColossus
- Mycobacterium phage Bxb1
- Mycobacterium phage Che9d
- Mycobacterium phage TM4
- Pseudomonas phage vB-PaeM-C2-10-Ab1
- Staphylococcus phage CNPH82
- uncultured phage crAssphage

Bacteria - 4.72 Mb

- Bacillus subtilis subs. subtilis 168
- Clostridium acetobutylicum ATCC 824
- Clostridium perfringes str. 13
- Lactococcus lactis subsp. lactis Il1403
- Pseudomonas aeruginosa LESB58
- Staphylococcus aureus subsp. aureus N315
- Streptococcus pyogenes M1 476
- Xylella fastidiosa 9a5c

GRAB ○●○○○○

Jillulation Details

Library Size 10 Million Reads
Insert Size 150 BPs non-paired
Error Rate No errors introduced

My Pipeline

Performance Measurements

TP = True Positive; FP = False Positive; FN = False Negative Precision

$$P = \frac{TP}{TP + FP}$$

Recall

$$R = \frac{TP}{TP + FN}$$

F1 Score

$$F1 = \frac{2(TP)}{2(TP) + FP + FN}$$

Results

Performance of methods identifying viral elements in simulated metagenome

	Precision	Recall	F1 Score
Raw Reads	0.0593	1	0.1119
Full Assembly	0.3478	1	0.5161
Filter Pipeline	0.4615	0.75	0.5714
Blastx Filter	0.4444	0.5	0.4706

Table: The F1 performance of the filter pipeline exceeds all other methods. The filtration method trades recall for overall performance.

Troubleshooting

Prophages

The bacterial genomes selected all contain prophage elements Casjens, Sherwood. Molecular microbiology 2003

Prophage Discovery

The web-tool Phaster collected prophage prediction taxonomy on genomes used in simulation

No overlap of FP viruses and prophages predicted (Performed on Assembly and Filtered only)

Data

A longitudinal survey of the Cystic Fibrosis airway of a single patient

Number of Samples 36 Samples

Avg Library Size 33.3 Mb per Sample

Insert Size 300 BPs non-paired (454 pyrosequencing)

Read Composition Samples pre-filtered human samples using Deconseq

Schmieder, Robert, and Robert Edwards. PloS one 2011

Synthetic Spike-In

To test sensitivity of pipeline added a rare virus to real dataset

Zaire ebolavirus

18.96 Kb genome size Generated 2000 reads using BBMap

Synthetic Assembly

Generated a single contig 18.93Kb

Distributed Reads

Incorporated 56 random ebola reads into samples

Results

The results are based on presence absence in kraken taxonomic identities

Combined Sample Assembly Identifies Zaire ebolavirus

Significant Viral Contigs Absent

Viral Reads and Assembled Absent

Discussion and Future Directions

Synthetic Metagenome

- The taxonomic identification performance of the filtration model exceeds that of both the raw and assembled reads.
- Increasing the complexity of the simulation by both adding mutations and increasing the number of genomes is planned for this week

Synthetic Spike-In

Acknowledgements

Elaine Epperson

Michael Strong

Davidson Lab

HongWei Chu

Rebecca Davidson

Computational Bioscience Program

Chris Miller

Cathy Lozupone

James Costello

Kirk Harris Funding

NLM: 5 T15 LM 9451-09

Questions?

Cody Glickman

cody.glickman@ucdenver.edu www.github.com/glickmac www.codyglickman.com

Bias in Average Fold Coverage by GC

Average Fold Coverage by GC Content

References

Barr, Jeremy, et al., PNAS 2013 Tariq, Mohammad, et al., Frontiers in Microbiology 2015