Numerical simulation of 1D convection equation

Teaching Assistants:

- P. Balty pierre.balty@uclouvain.be
- G. Poncelet gilles.poncelet@uclouvain.be **Teacher:**

- G. Winckelmans

LMECA2660 Homework

Goals

- Validation of the periodic approximation
- Production of a C code to
 - ★ investigate convection phenomena,
 - ★ investigate the numerical properties of different discretisation schemes of the temporal and convective terms.
 - ★ Investigate of the numerical properties of a stretched mesh
 - Investigate the convection of wave packets

Problem statement

Convection equation (1D-problem):

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

with a Gaussian function as initial condition

$$u(x,0) = U \exp(-\frac{x^2}{\sigma^2})$$

 Analytical solution (initial function moving at a constant velocity c)

$$u(x,t) = U \exp\left(-\frac{(x-ct)^2}{\sigma^2}\right)$$

Periodic approximation

- The Gaussian function has an unbounded support
 - → impossible to solve that problem numerically
- We use a periodic domain of period L instead of an unbounded domain
 - ightarrow valid approximation as long as $~L>>\sigma$

The first part of the homework will allow to assess the validity of this approximation

Reminder on Fourier Transforms and Fourier Series

Fourier Transform (continuous and non periodic function)

The Fourier transform $\widehat{f}(k)$ of a function f(x) is defined as:

$$\widehat{f}(k) = \mathcal{F}(f(x)) = \int_{-\infty}^{\infty} f(x) \exp(-ikx) dx$$

while the inverse transform is defined as:

$$f(x) = \mathcal{F}^{-1}\left(\widehat{f}(k)\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(k) \exp(ikx) dk$$
.

For a periodic signal: Fourier series (discrete)

$$f(x) = \sum_{j=-\infty}^{\infty} \widehat{F}(k_j) \exp(ik_j x) ,$$
where $\widehat{F}(k_j) = \frac{1}{L} \int_{-L/2}^{L/2} f(x) \exp(-ik_j x) dx$

Reminder on Fourier Transforms and Fourier Series

Discretization of the function

Spatial domain

$$x_i = -\frac{L}{2} + ih$$

Discrete and periodic Fourier Series

Spectral domain

$$f_i = f(x_i) = \sum_{j=-N/2}^{N/2} \hat{F}(k_j) exp(ik_j x_i),$$

where
$$\hat{F}_{j} = \hat{F}(k_{j}) = \frac{1}{N} \sum_{i=0}^{N-1} f(x_{i}) exp(-ik_{j}x_{i})$$

Discrete Fourier Series in Matlab/Python

- The Fourier coefficients $\hat{F}(k)$ may be obtained using the flt function in Matlab or Python.
- Caution: the definition differs and the result has to be divided by N (see the documentation)
- The N coefficients are provided in the following form:

Indices of the vector returned by the fft function

Produce a C-code

- Lost in C? -> Google your issue!
 - http://stackoverflow.com
 - https://openclassrooms.com/courses/apprenez-a-programmer-en-c (french only!)

FDs and periodic domain

Spatial discretization: N points numbered from 0 to N-1

Computation of the first order derivative using a E2 scheme

$$\left. \frac{\partial u}{\partial x} \right|_{i} = \frac{U_{i+1} - U_{i-1}}{2h} + \mathcal{O}(h^2)$$

★ Point in the middle of the domain

FDs and periodic domain

Spatial discretization: N points numbered from 0 to N-1

Computation of the first order derivative using a E2 scheme

$$\left. \frac{\partial u}{\partial x} \right|_{i} = \frac{U_{i+1} - U_{i-1}}{2h} + \mathcal{O}(h^2)$$

★ Point on the edge of the domain (periodic condition)

Implicit scheme — Thomas algorithm

+ Little trick to use Thomas Algorithm for a periodic problem

C language: dos and don'ts

Periodic domain: modulo is your best friend!

```
0 \% 10 = 0
1 \% 10 = 1
11 \% 10 = 1
```

never do a if condition inside a for loop

```
for (i=0; i<n; ++i){
   if (i==0) ....
   else ....
}</pre>
```

use calloc instead of malloc

```
double* x = (double*) calloc(n, sizeof(double))
```


Pure convection case: example

Non uniform grid spacing

• Mapping between the « numerical space » ξ with uniform spacing to the « physical space » with non uniform resolution

$$x = g(\xi) = \xi - a \frac{L}{2\pi} sin\left(2\pi \frac{\xi}{L}\right) \qquad \qquad \frac{dx}{d\xi} = g'(\xi) = 1 - acos\left(2\pi \frac{\xi}{L}\right)$$

Obtain the transport equation in a conservative form

$$\frac{\partial v}{\partial t} + \frac{\partial (bv)}{\partial \xi} = 0$$

• Perform the numerical simulation with a=1/2 and N=128

Advection of a wave-packet

Practical information

- Hand over: 18th March at 6 pm
- Moodle (report + code)
- No fancy covers needed
- French or English
- Questions?

Wednesday 4.15 to 6.15 pm (starting next week)