LEVEL-I

The co-efficient of x in the expansion of $(1-2x^3+3x^5)[1+(1/x)]^8$ is 1. (B) 65 (A) 56

(D) 62 (C) 154

2. If the fourth term in the expansion of $(px+1/x)^n$ is 5/2 then the value of p is

(B) 1/2(C)6(D) 2

If x = 1/3, Then the greatest term in the expansion of $(1+4x)^8$ is 3.

> (B) $56\left(\frac{4}{3}\right)^5$ (A) $56\left(\frac{3}{4}\right)^4$

> (D) $56\left(\frac{2}{5}\right)^4$ (C) $56\left(\frac{3}{4}\right)^5$

4.

The two consecutive terms in the expansion of $(3+2x)^{74}$ whose coefficients are equal is (A) 30^{th} and 31^{st} term terms (B) 29^{th} and 30^{th} terms (C) 31^{st} and 32^{nd} terms (D) 28^{th} and 29^{th} terms (A) 30th and 31st term terms (C) 31st and 32nd terms

If $z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5$, then 5.

(A) Re(z) = 0

(B) $I_m(Z) = 0$ (D) Re(z) > 0, $I_m(z) < 0$ (C) Re(z) > 0, $I_m(z) > 0$

The coefficient of x^n in $\left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + + \frac{(-1)^n x^n}{n!}\right)^2$ is 6.

(A) $\frac{(-n)^n}{n!}$

(D) $-\frac{1}{(n!)^2}$ (C) $\frac{1}{(n!)^2}$

The sum of coefficients of even powers of x in the expansion of $\left(x + \frac{1}{x}\right)^{11}$ is 7.

(B) $\frac{11}{2} \times {}^{11}C_6$ (A) $11 \times {}^{11}C_5$

(C) $11(^{11}C_5 + ^{11}C_6)$ (D) 0

The number of irrational terms in the expansion of $\left(5^{\frac{1}{8}} + 2^{\frac{1}{6}}\right)^{100}$ is equal to; 8.

(A) 97 (D) 99 (C)96

In the expansion of $(1 + ax)^n$, $n \in N$, then the coefficient of x and x^2 are 8 and 24 9. respectively. Then

(A) a = 2, n = 4(B) a = 4, n = 2

	(C)) a	= 2,	n	=	6
--	-----	-----	------	---	---	---

(D) none of these

In the coefficients of the (m + 1)th term and the (m + 3) th term in the expansion of $(1 + x)^{20}$ 10. are equal then the value of m is

(A) 10

(B) 8

(C) 9

(D) none of these

The number of distinct terms in the expansion of $(2x+3y-z+\omega$ -7 μ)ⁿ is (A) n + 1 (B) $^{(n+4)}C_4$ (C) $^{(n+5)}C_5$ (D) nC_5 11.

The coefficient of x^5 in the expansion of $(1 - x + 2x^2)^4$ is...... 12.

The two successive terms in the expansion of $(1+x)^{24}$ whose coefficients are in the ratio 4:1 13.

(A) 3rd and 4th

(B) 4th and 5th (D) 6th and 7th

(C) 5th and 6th

The expression ${}^{n}C_{0} + 4.{}^{n}C_{1} + 4^{2^{n}}C_{2} + \dots + 4^{n^{n}}C_{n}$, equals 14.

(A) 2^{2n} (B) 2^{3n}

(C) 5^n (D) None of these

260 when divided by 7 leaves the remainder 15.

(A) 1

(B) 6

(D) 2

The sum of the coefficients in the expansion of $(1+x-3x^2)^{2163}$ is 16.

(A) 1

(D) None of these

The value of $\left(1 + \frac{{}^{n}C_{1}}{{}^{n}C_{0}}\right)\left(1 + \frac{{}^{n}C_{2}}{{}^{n}C_{1}}\right) \dots \left(1 + \frac{{}^{n}C_{n}}{{}^{n}C_{n-1}}\right)$ is equal to 17.

(A) $\frac{(n+1)^{n+1}}{n!}$ (B) $\frac{(n+1)^n}{n!}$ (C) $\frac{n^{n-1}}{(n-1)!}$ (D) $\frac{(n+1)^{n-1}}{(n-1)!}$

The sum of the rational terms in the expansion of $\left(\sqrt{2} + 3^{\frac{1}{5}}\right)^{10}$ is 18.

If in the expansion of $(1 + x)^m$ $(1 - x)^n$, the co-efficient of x and x^2 are 3 and -6 respectively, 19. then m is

For $2 \le r \le n$, ${}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2}$ is equal to 20.

If $(1 + x + 2x^2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}$ then $a_1 + a_3 + a_5 + \dots + a_{37}$ equals 21.

The largest term in the expansion of $(3 + 2x)^{50}$ where $x = \frac{1}{5}$ is 22.

Let R = $(5\sqrt{5} + 11)^{2n+1}$ and f = R -[R] where [.] denotes the greatest integer function, then Rf 23.

 2^{3n} –7n –1 is divisible by 24.

25.	If $(1 - x + x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, then $a_0 + a_2 + a_4 + \dots + a_{2n}x^{2n}$
	equals to

- If the rth term in the expansion of $\left(\frac{x}{3} \frac{2}{x^2}\right)^{10}$ contains x^4 , then r is equal to 26.
- $1.^{n}C_{1} + 2.^{n}C_{2} + 3.^{n}C_{3} + \dots + n.^{n}C_{n}$ is equal to 27.

(A)
$$\frac{n(n+1)}{4}.2^n$$

(C) $n.2^{n-1}$

(B)
$$2^{n+1} - 3$$

(C)
$$n.2^{n-1}$$

(D) none of these

28. If the coefficient of
$$(2r + 2)$$
th and $(r + 1)$ th terms of the expansion $(1 + x)^{37}$ are equal then $r = (A) 12$ (B) 13

$$(C)$$
 14

29. The value of
$$2C_0 + 2^2 \frac{C_1}{2} + 2^3 \frac{C_2}{3} + 2^4 \frac{C_3}{4} + \dots + 2^{n+1} \frac{C_n}{n+1}$$
 is equal to

If the co-efficient of rth, (r+1)th and (r+2)th terms in the expansion of $(1+x)^{14}$ are in A.P., then 30. the value of r is

31. If
$$(1+ax)^n = 1+8x + 24x^2 + \dots$$
 then

$$(A) a = 3$$

(B)
$$n = 5$$

$$(C)$$
 a= 2

(D)
$$n = 4$$

If $ab \neq 0$ and the co-efficient of x^7 in $[ax^2+(1/bx)]^{11}$ is equal to the co-efficient of x^{-7} in 32. $\left[ax - \frac{1}{bx^2}\right]^{11}$, then a and b are connected by the relation

(A)
$$a = 1/b$$

(B)
$$a = 2/b$$

$$(C)$$
 ab = 1

$$(D)$$
 ab $= 2$

LEVEL-II

- Co-efficient of x^5 in the expansion of $(1+x^2)^5 (1+x)^4$ is 1.
 - (A) 40

(C) 30

The term independent of x in the expansion of $(x+1/x)^{2n}$ is 2.

(A)
$$\frac{1.3.5. - -(2n-1).2^n}{n!}$$

(B)
$$\frac{1.3.5. - -(2n-1).2^n}{n! \ n!}$$

(C)
$$\frac{1.3.5. - -(2n-1)}{n!}$$

(D)
$$\frac{1.3.5. - -(2n-1)}{n! \ n!}$$

3. If 6th term in the expansion of
$$\left[\frac{1}{x^{8/3}} + x^2 \log_{10} x\right]^8$$
 is 5600, then x is equal to

4.	If coefficient of $x^2 y^3 z^4$ in $(x + y + z)^n$ is A, the	hen coefficient of x ⁴ y ⁴ z is
	(A) 2A	(B) $\frac{\text{nA}}{2}$
	(O) A	2
	(C) $\frac{A}{2}$	(D) none of these
5.	The coefficient of x^6 in $\{(1 + x)^6 + (1 + x)^7 +$	+ (1 + x) ¹⁵ } is
	The coefficient of x^6 in $\{(1 + x)^6 + (1 + x)^7 + (A)^{16}C_9 \ (C)^{16}C_6 - 1\}$	(B) ${}^{16}C_5 - {}^{6}C_5$
		(D) none of these
6.	If $(1 + x)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{10}x^{10}$ ther is equal to	$(a_0 - a_2 + a_4 - a_6 + a_8 - a_{10})^2 + (a_1 - a_3 + a_5 - a_7 + a_9)^2$
	(A) 3^{10}	(B) 2 ¹⁰
	(C) 2 ⁹	(D) none of these
7.	The remainder of 7 ¹⁰³ when divided by 25 is	S
		(2)3
8.	The term independent of x in the expansion	of $\left(1+2x+\frac{2}{x}\right)$ is
9.	The number of irrational terms in the expan	sion of $\left(2^{\frac{1}{2}} + 3^{\frac{1}{10}}\right)^{55}$ is:
0.		
	(A) 47 (C) 50	(B) 56 (D) 48
10.	If ab $\neq 0$ and the co-efficient of x^7 in $(ax^2+(1)^{11})^{11}$	
	$\left(ax - \frac{1}{bx^2}\right)^{11}$, then a and b are connected	by the relation
	(A) a= 1/b	(B) a =2/b
	(C) ab= 1	(D) ab=2
11.	If $(1 + 2x + 3x^2)^{10} = \sum_{r=0}^{20} a_r x^r$ then a_2 is equal	I to:
	(A) 210 (C) 220	(B) 620 (D) none of these
		_
12.	If P_n denotes the product of all the co-efficient	ents in the expansion of $(1+x)^n$, then $\frac{P_{n+1}}{P_n}$ is equal
	to	· n
	$(A)\frac{(n+1)^n}{n!}$	(B) $\frac{(n+1)^{n+1}}{(n+1)!}$
	•••	
	(C) $\frac{(n+1)^{n+1}}{n!}$	(D) $\frac{(n+1)^n}{(n+1)!}$
		(11 1 1):
13.	Value of $\sum_{r=0}^{n} {}^{n}C_{r} \cdot \sin^{2}\frac{r\pi}{2}$, is equal to;	
	1-0	(P) 2 ⁿ⁻¹
	(A) 2 ⁿ (C) 2 ^{-n + 1}	(B) 2^{n-1} (D) $2^{n-1} -1$

- If a+b=1, then $\sum_{r=0}^{n} {^{n}C_{r}} a^{r}b^{n-r}$ equals
 - (A) 1
- (B) n
- (C) na
- (D) nb
- If $\{x\}$ denotes the fractional part of x, then $\left\{\frac{3^{2n}}{8}\right\}$, $n \in \mathbb{N}$ is 15.
 - (A) 3/8 (B) 7/8 (C) 1/8
- (D) None of these.
- The coefficient of x^m in : $(1+x)^m + (1+x)^{m+1} + \dots (1+x)^n$, $m \le n$ is 16.
 - (A) $^{n+1}C_{m+1}$ (B) $^{n-1}C_{m-1}$ (C) $^{n}C_{m}$ (D) $^{n}C_{m+1}$

- The expansion $\left[x + \left(x^3 1\right)^{\frac{1}{2}}\right]^5 + \left[x \left(x^3 1\right)^{\frac{1}{2}}\right]^5$ is a polynomial of degree 17.
- In the expansion of $\left(x^3 \frac{1}{x^2}\right)^n$, $n \in \mathbb{N}$, if the sum of the coefficients of x^5 and x^{10} is 0 then n 18.
 - (A) 25

(C) 15

- (B) 20 (D) none of these
- The sum $\frac{1}{2} {}^{10}\text{C}_0 {}^{10}\text{C}_1 + 2 \cdot {}^{10}\text{C}_2 2^2 \cdot {}^{10}\text{C}_3 + \dots + 2^9 \cdot {}^{10}\text{C}_{10}$ is equal to 19.
 - (A) $\frac{1}{2}$

(C) $\frac{1}{2}$.3¹⁰

- (D) none of these
- If the second, third and fourth terms in the expansion of (a+b) n are 135, 30 and 10/3 20. respectively, then
 - (A) a = 3

(B) b = 1/3

(C) n = 5

(D) all the above

LEVEL-III

- The co-efficient of x^{53} in the expansion $\sum_{m=0}^{100} {}^{100}C_m(x-3)^{100-m}2^m$ is (A) ${}^{100}C_{53}$ (B) ${}^{-}{}^{100}C_{53}$ (D) ${}^{100}C_{65}$ 1.
 - (A) ${}^{100}C_{53}$ (C) ${}^{65}C_{53}$

- If n is an even natural number and coefficient of x^r in the expansion of $\frac{(1+x)^n}{1-x}$ is 2^n , (|x|<1), 2. then
 - (A) $r \le n/2$

(B) $r \ge \frac{n-2}{2}$

(C) $r \leq \frac{n+2}{2}$

(D) $r \ge n$

3. Let n be an odd natural number and
$$A = \sum_{r=1}^{\frac{n-1}{2}} \frac{1}{{}^{n}C_{r}}$$
. Then value of $\sum_{r=1}^{n} \frac{r}{{}^{n}C_{r}}$ is equal to

(A) n(A-1)

(B) n(A+1)

(C) $\frac{nA}{2}$

(D) nA

4.
$$\frac{1}{1! \cdot (n-1)} + \frac{1}{3! \cdot (n-3)} + \frac{1}{5! \cdot (n-5)} + \dots$$
 is equal to

- (A) $\frac{2^{n-1}}{n!}$ for even values of n only
- (B) $\frac{2^{n-1}+1}{n!}$ for odd values of n only

(C) $\frac{2^{n-1}}{n!}$ for all $n \in \mathbb{N}$

(D) none of these

5. The greater of two numbers 300! and
$$\sqrt{300^{300}}$$
 is

- The co-efficient of x^4 in the expansion of $(1+x+x^2+x^3)^{11}$ is 6.

(C)900

(D) 895

7. Value of
$$\sum_{r=1}^{n} \left(\sum_{m=0}^{r} {}^{n}C_{r} \cdot {}^{r}C_{m} \right)$$
 is equal to;

(A) $2^n - 1$ (C) $3^n - 2^n$

(B) 3ⁿ -1 (D) none of these

8. Value of
$$\sum_{r=0}^{n} r \cdot ({}^{n}C_{r})^{2}$$
 is equal to

(A) n . ${}^{2n}C_n$

(B) $\frac{n \cdot {}^{2n}C_n}{2}$

(C) $n^2 \cdot {}^{2n}C_n$

(C) $\frac{n^2 \cdot {}^{2n}C_n}{2}$

9. If
$$\sum_{r=1}^{n} \frac{r}{{}^{n}C_{r}} = \lambda$$
, then value of $\sum_{r=0}^{n} \frac{1}{{}^{n}C_{r}}$ is equal to;

(A) $\frac{n\lambda}{2}$

(B) $\frac{2\lambda}{n}$

(C) $\frac{n}{2\lambda}$

(D) none of these

10. Value of
$$\sum_{r=0}^{n} {}^{n}C_{r} \cos rx \cdot \sin(n-r)x$$
 is;

 $(A)2^{n-1} \sin nx$

(B) $2^{n-1} \cos nx$

(C) 2ⁿ cos nx

(D) 2ⁿ sin nx

11. Value of
$$\sum_{0 \le i < j \le n} \sum_{i=1}^{n} i^{n}C_{j}$$
 is;
(A) $n.2^{n-3}$

(B) $(n-1) \cdot 2^{n-3}$

(C) n(n -1) . 2^{n -3}

(D) none of these

12.	The coefficient of x^n in the polynomial ($x+^n$ (A) $n2^n$ (C) $(n +1)2^n$	(C_0) (x+3 nC_1) (x+5 nC_2)(x+(2n + 1) nC_n) is (B) $n2^{n+1}$ (D) $n2^n + 1$
13.	Value of $\sum_{r=0}^{2n} r\binom{2n}{r} \cdot \frac{1}{r+2}$ is equal to	
	(A) $\frac{2^{n+1}(2n^2 - n + 1) - 2}{(2n+1)(2n+2)}$	(B) $\frac{2^{2n+1}(2n^2+n-1)+2}{(2n+1)(2n+2)}$
	(C) $\frac{2^{2n+1}(2n^2+2n-1)}{(2n+1)(2n+2)}$	(D) None of these
14.	If R = $(5\sqrt{3} + 8)^{2n+1}$ and f = R - [R]; where [·] denotes G. I. F., then R · f is equal to
	(A) 11^{2n} (C) 11^{2n+1}	(B) 11^{2n-1}
4-5		(D) 11
15.	Value of $\sum_{0 \le i < j \le n} {n \choose i} C_i + {n \choose j}^2$ is	
	(A) $n \cdot {}^{2n}C_n + 2^{2n}$	(B) $(n+1)^{2n}C_n + 2^{2n}$
	(C) $(n-1)^{2n}C_n - 2^{2n}$	(D) $(n-1)^{2n}C_n + 2^{2n}$
16.	The remainder when 7^{103} is divided by 25 is	
	(A) 0 (C) 16	(B) 18 (D) 9
17.	The number $101^{100} - 1$ is divisible by	
	(A) 10	(B) 10 ²
	(C) 10^3	(D) 10^4
18.	Integral part of $\left(5\sqrt{5}+11\right)^{2n+1}$ is	
	(A) Even	(B) Odd
	(C) Neither	(D) Can't Say
19.		atest value of the integer which divides f(n) for all
	'n' is (A) 27	(B) 9
	(C) 3	(D) None
20.	If $\sum_{r=0}^{n} \left(\frac{r+2}{r+1} \right)^{n} C_{r} = \frac{2^{8}-1}{6}$, then 'n' is	
	(A) 8	(B) 4
	(C) 6	(D) 5

ANSWERS

LEVEL -I

	B A C B		B C C 41	19.	D B A 12	20.	A -56 B ⁿ⁺² C _r
	$2^{39} - 2^{19}$ $3^{n} + 1$		$^{50}\text{C}_6\ 3^{44}\ (2x)^6$			24.	
25.	$\frac{3^{n}+1}{3}$	26.	3	27.	С	28.	Α

29.
$$\frac{3^{n+1}-1}{n+1}$$
 30. D 31. C 32. C

LEVEL -II

1.	D	2.	Α	3.	D	4.	С
5.	Α	6.	В	7.	- 7	8.	${}^{3}C_{0} + 2 \cdot {}^{3}C_{1}$
9.	В	10.	С	11.	Α	12.	Α
13.	В	14.	Α	15.	С	16.	Α
17.	7	18.	С	19.	Α	20.	D

LEVEL -III

1.	В	2.	D	3.	В	4.	С
5.	300!	6.	В	7.	В	8.	В
9.	В	10.	Α	11.	С	12.	С
13.	Α	14.	C.	15.	D	16.	В
17.	A, B, C, D	18.	Α	19.	В	20.	D