1 Exercices

Résoudre l'équation d'onde sans CB	1.1
Équation de diffusion avec CI, sans CB	1.2
Équation de diffusion avec CI, sans CB	1.3
Équation de diffusion avec CI, sans CB,	1.4
séparation p / q	
Diffusion avec CB mixtes	1.5
Onde avec CB mixtes	1.6
Polynôme quadratique	1.7
Fourier	1.8
Onde + Fourier	1.9
Laplace	1.10

1.1 Série 2 - Exercice 1

1. Résoudre $u_{tt} = c^2 u_{xx}$, $u(x, 0) = e^x$, $u_t(x, 0) = \sin(x)$.

On utilise la fonction générale

$$u(x,t) = \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \sin(s)ds = \frac{1}{2} \left(e^{x+ct} + e^{x-ct}\right) + \frac{1}{2c} \left(-\cos(x+ct) + \cos(x-ct)\right)$$

On peut simplifier un peu les expressions

$$\frac{1}{2} \left(e^{x+ct} + e^{x-ct} \right) + \underbrace{\frac{1}{2c} \left(-\cos(x+ct) + \cos(x-ct) \right)}_{\frac{1}{2} (\sin(x)\sin(ct))} = e^{x} \underbrace{\frac{1}{2} \left(e^{ct} + e^{-ct} \right)}_{\cosh(ct)} + \underbrace{\frac{1}{2} \sin(x)\sin(ct)}_{\cosh(ct)}$$

1.2 Série 3 - Exercice 2

2. Résoudre l'équation de diffusion avec la condition initiale

$$\phi(x) = 1$$
, pour $|x| \le \ell$ et $\phi(x) = 0$, pour $|x| > \ell$.

Ecrire la réponse en utilisant la fonction $\mathcal{E}rf(x)$.

On utilise la fonction de base

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy$$

On applique la fonction $\phi(x)$

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-l}^{l} e^{-\frac{(x-y)^2}{4kt}} dy$$

Puis on effectue un changement de variable $p(y) = \frac{x-y}{\sqrt{4kt}}$

$$dy = -\sqrt{4kt}dp$$
 $l \to \frac{x-l}{\sqrt{4kt}}$ $-l \to \frac{x+l}{\sqrt{4kt}}$

$$u(x,t) = \frac{-\sqrt{4kt}}{2\sqrt{\pi kt}} \int_{\frac{x+l}{\sqrt{4kt}}}^{\frac{x-l}{\sqrt{4kt}}} e^{-p^2} dp = \frac{-1}{\sqrt{\pi}} \int_{\frac{x+l}{\sqrt{4kt}}}^{\frac{x-l}{\sqrt{4kt}}} e^{-p^2} dp$$

On inverse les bornes (et le signe devant l'intégrale)

$$u(x,t) = \frac{1}{\sqrt{\pi}} \int_{\frac{x-l}{\sqrt{4kt}}}^{\frac{x+l}{\sqrt{4kt}}} e^{-p^2} dp$$

On utilise la fonction erf

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-p^2} dp$$

$$u(x,t) = \frac{1}{\sqrt{\pi}} \left(\frac{\sqrt{\pi}}{2} \operatorname{erf}\left(\frac{x+l}{\sqrt{4kt}}\right) - \frac{\sqrt{\pi}}{2} \operatorname{erf}\left(\frac{x-l}{\sqrt{4kt}}\right) \right)$$

$$u(x,t) = \frac{1}{2} \left(\operatorname{erf}\left(\frac{x+l}{\sqrt{4kt}}\right) - \operatorname{erf}\left(\frac{x-l}{\sqrt{4kt}}\right) \right)$$

(même chose que le corrigé)

1.3 Série 3 - Exercice 3

3. Résoudre l'équation de diffusion avec la condition initiale $\phi(x) = e^{3x}$.

On commence par poser l'équation de base

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy$$

On remplace par l'expression de $\phi(y)$

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} e^{3y} dy = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt} + 3y} dy = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2 - 12kty}{4kt}} dy$$

On doit enlever le terme 12kty qui empêche de faire la simplification avec erf. On s'intéresse à la puissance de e et on utilise $(y + 2kt - x)^2$ (dans le résumé)

$$-\frac{(x-y)^2 - 12kty}{4kt} = -\frac{x^2 - 2xy + y^2 - 12kty}{4kt}$$

$$(y + 2kt - x)^2 = y^2 + 4k^2t^2 + x^2 + 4kty - 4ktx - 2xy$$

ça ressemble un peu mais on aimerait -12kty au lieu de 4kty, on inverse x et y et on multiplie le terme central par 3

$$(x + 6kt - y)^2 = y^2 + 36k^2t^2 + x^2 + 12ktx - 12kty - 2xy$$

C'est parfait, on a plus qu'à adapter l'équation de base pour utiliser ce terme

$$-\frac{(x+6kt-y)^2-36k^2t^2-12ktx}{4kt} = -\frac{x^2-2xy+y^2-12kty}{4kt}$$

Maintenant qu'on a le bon terme, il suffit de séparer pour garder les y d'un seul côté

$$-\frac{(x+6kt-y)^2}{4kt} + \frac{36k^2t^2 + 12ktx}{4kt} = -\frac{(x+6kt-y)^2}{4kt} + 9kt + 3x$$

On a plus qu'à remettre tout ça dans l'équation de base et résoudre

$$\frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x+6kt-y)^2}{4kt} + 9kt + 3x} dy = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\left(\frac{x+6kt-y}{\sqrt{4kt}}\right)^2} e^{9kt + 3x} dy$$

Comme le dernier terme ne dépend pas de y, on le sort

$$e^{9kt+3x}\frac{1}{2\sqrt{\pi kt}}\int_{-\infty}^{\infty}e^{-\left(\frac{x+6kt-y}{\sqrt{4kt}}\right)^2}dy$$

On effectue le changement de variable

$$p(y) = \frac{x + 6kt - y}{\sqrt{4kt}} \longrightarrow \begin{cases} \infty \to -\infty \\ -\infty \to \infty \\ dy \to -\sqrt{4kt}dp \end{cases}$$

$$e^{9kt+3x} \frac{-\sqrt{4kt}}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-p^2} dy = e^{9kt+3x} \frac{-1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^2} dy$$

On inverse les bornes (et le signe au début)

$$u(x,t) = e^{9kt+3x} \frac{1}{\sqrt{\pi}} \underbrace{\int_{-\infty}^{\infty} e^{-p^2} dy}_{\sqrt{\pi}}$$

On a donc finalement

$$u(x,t) = e^{9kt + 3x}$$

1.4 Série 3 - Exercice 4

4. Faire de même pour $\phi(x) = 1$ pour x > 0 et $\phi(x) = 3$ pour x < 0.

On commence par poser l'équation de base

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy$$

On applique la fonction $\phi(y)$ et on trouve deux intégrales

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \left(3 \int_{-\infty}^{0} e^{-\frac{(x-y)^2}{4kt}} dy + \int_{0}^{\infty} e^{-\frac{(x-y)^2}{4kt}} dy \right)$$

Important! : on va effectuer deux changements de variables différents pour simplifier les calculs par la suite (voir le résumé)

$$p = \frac{x - y}{\sqrt{4kt}} \qquad q = \frac{y - x}{\sqrt{4kt}}$$

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \left(-3\sqrt{4kt} \int_{-\infty}^{\frac{x}{\sqrt{4kt}}} e^{-p^2} dp + \sqrt{4kt} \int_{-\frac{x}{\sqrt{4kt}}}^{\infty} e^{-p^2} dp \right)$$

$$u(x,t) = \frac{\sqrt{4kt}}{2\sqrt{\pi kt}} \left(3 \underbrace{\int_{\frac{x}{\sqrt{4kt}}}^{\infty} e^{-p^2} dp}_{\sqrt{\frac{x}{\sqrt{4kt}}}} + \underbrace{\int_{-\frac{x}{\sqrt{4kt}}}^{\infty} e^{-p^2} dp}_{\sqrt{0} + \int_{0}^{\infty} + \int_{0}^{x}} e^{-p^2} dp \right)$$

$$u(x,t) = \frac{1}{\sqrt{\pi}} \left(4 \underbrace{\int_{0}^{\infty} e^{-p^2} dp}_{\frac{\sqrt{x}}{2}} - 2 \underbrace{\int_{0}^{\frac{x}{\sqrt{4kt}}} e^{-p^2} dp}_{0} \right)$$

$$u(x,t) = 2 - \operatorname{erf}\left(\frac{x}{\sqrt{4kt}}\right)$$

1.5 Série 4 - Exercice 4

 Résoudre le problème de diffusion u_t = ku_{xx} sur 0 < x < ℓ, avec les conditions aux bords mixtes u(0, t) = u_x(ℓ, t) = 0.

On pose l'équation séparée

$$\frac{T'}{kT} = \frac{X''}{X} = -\lambda$$

$$T(t) = Ae^{-\lambda kt}$$

$$X(x) = A\cos(\beta x) + B\sin(\beta x)$$

$$X(0) = A + 0 = 0 \longrightarrow A = 0$$

$$X'(l) = B\beta \cos(\beta l) = 0 \longrightarrow \begin{cases} B = 0 \\ \beta = 0 \\ \beta l = n\pi + \frac{\pi}{2} \end{cases}$$

On va choisir la dernière option pour éviter que le problème soit trop facile

$$\beta = \frac{n\pi + \frac{\pi}{2}}{l} = \frac{\pi \left(n + \frac{1}{2}\right)}{l}$$

$$X(x) = B \sin\left(\frac{n\pi + \frac{\pi}{2}}{l}x\right)$$

$$u(x,t) = T(t)X(x) = Ce^{-\left(\frac{n\pi + \frac{\pi}{2}}{l}\right)^2 kt} \sin\left(\frac{n\pi + \frac{\pi}{2}}{l}x\right)$$
 $C = AB$

1.6 Série 4 - Exercice 5

- 5. Considérons l'équation $u_{tt} = c^2 u_{xx}$ pour $0 < x < \ell$, avec les conditions aux bords $u_x(0,t) = 0$, $u(\ell,t) = 0$ (Neumann à gauche, Dirichlet à droite).
 - (a) Montrer que les fonctions propres sont

$$\cos\left(\frac{(n+1/2)\pi}{\ell}x\right).$$

(b) Donner le développement en série de la solution.

1.6.1 (a)

$$\frac{X''}{X} = \frac{T''}{c^2 T} = -\lambda$$

$$\lambda = \beta^2$$

$$\begin{cases} T(t) = A\cos(\beta ct) + B\sin(\beta ct) \\ X(x) = C\cos(\beta x) + D\sin(\beta x) \end{cases}$$

$$X'(0) = D\beta = 0 \longrightarrow \begin{cases} D = 0 \\ \beta = 0 \end{cases}$$

On va supposer que D=0, sinon le problème n'est pas intéressant

$$X(l) = C\cos(\beta l) = 0 \longrightarrow \begin{cases} C = 0\\ \beta l = n\pi + \frac{\pi}{2} \end{cases}$$

On va supposer que c'est la deuxième option, sinon le problème n'est pas intéressant

$$\beta = \frac{n\pi + \frac{\pi}{2}}{l}$$

On a donc

$$X(x) = C\cos\left(\frac{n\pi + \frac{\pi}{2}}{l}x\right)$$

1.6.2 (b)

$$u(x,t) = \sum_{n=0}^{\infty} \left(A \cos \left(\frac{n\pi + \frac{\pi}{2}}{l} ct \right) + B \sin \left(\frac{n\pi + \frac{\pi}{2}}{l} ct \right) \right) C \cos \left(\frac{n\pi + \frac{\pi}{2}}{l} x \right)$$

1.7 Série 5 - Exercice 1

1. Résoudre $u_{xx} + u_{yy} = 0$ dans le rectangle $0 < x < a, \ 0 < y < b$ avec les conditions aux bords:

$$u_x = -a \operatorname{sur} x = 0$$
 $u_x = 0 \operatorname{sur} x = a$
 $u_y = b \operatorname{sur} y = 0$ $u_y = 0 \operatorname{sur} y = b$

 $Aide \colon$ Un raccourci consiste à supposer que la solution est un polynôme quadratique en x et y.

On sais que la solution sera de la forme

$$u(x,y) = Ax^2 + By^2 + Cxy + Dx + Ey + F$$

On applique les conditions aux bords de manière successive. D'abord sur \boldsymbol{x} :

$$u_x(0,y) = -a \qquad u_x(a,y) = 0$$

$$u_x(0,y) = C_y + D = -a \longrightarrow \boxed{C = 0} \boxed{D = -a}$$

$$u_x(a,y) = 2Aa - a = 0 \longrightarrow \boxed{A = \frac{1}{2}}$$

Ensuite sur y

$$u_y(x,0) = b$$
 $u_y(x,b) = 0$
 $u_y(x,0) = C_x + E = b \longrightarrow \boxed{E = b}$
 $u_y(x,b) = 2Bb + b \longrightarrow \boxed{B = -\frac{1}{2}}$

On a directement la solution finale

$$u(x,y) = \frac{1}{2}x^2 - \frac{1}{2}y^2 - ax + by + C_1 \qquad C_1 \in \mathbb{R}$$

1.8 Série 6 - Exercice 2

2. Soit

$$\phi(x) \equiv x^2$$
 pour $0 \le x \le 1 = \ell$.

- (a) Calculer sa série de Fourier en sinus (impaire).
- (b) Calculer sa série de Fourier en cosinus (paire).

1.8.1 (a)

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{l}x\right)$$
$$A_n = \frac{2}{l} \int_0^l x^2 \sin\left(\frac{n\pi x}{l}\right) dx$$

On utilise l'intégration par parties pour supprimer le x^2

$$A_{n} = \frac{2}{l} \int_{0}^{1} \underbrace{x^{2}}_{v} \underbrace{\sin(n\pi x)}_{u'} dx = \frac{2}{l} \left(\left(-x^{2} \frac{1}{n\pi} \cos(n\pi x) \right)_{0}^{1} + \int_{0}^{1} 2x \frac{1}{n\pi} \cos(n\pi x) dx \right)$$

On refait une intégration par parties

$$A_n = \frac{2}{l} \left(\frac{-1}{n\pi} \cos(n\pi) + \underbrace{\left(2x \frac{1}{n^2 \pi^2} \sin(n\pi x)\right)_0^1}_{0} - \int_0^1 2 \frac{1}{n^2 \pi^2} \sin(n\pi x) dx \right)$$

on effectue l'intégrale

$$A_n = \frac{2}{l} \left(\frac{-1}{n\pi} \cos(n\pi) + \frac{2}{n^2 \pi^2} \left(\frac{1}{n\pi} \cos(n\pi x) \right)_0^1 \right) = \frac{-2}{n\pi} \cos(n\pi) + \frac{4}{n^3 \pi^3} \left(\cos(n\pi) - 1 \right)$$
$$A_n = \frac{(4 - 2n^2 \pi^2)(-1)^n - 4}{n^3 \pi^3}$$

On obtient donc l'équation finale

$$\phi(x) = \sum_{n=1}^{\infty} \frac{(4 - 2\pi^2 n^2)(-1)^n - 4}{\pi^3 n^3} \sin(n\pi x)$$

1.8.2 (b)

Comme avant on pose les équations de base

$$\phi(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\pi x)$$

$$A_n = 2 \int_0^1 \phi(x) \cos(n\pi x) dx$$

On commence par déterminer A_0 qui est facile

$$A_0 = 2 \int_0^1 x^2 dx = 2 \left(\frac{x^3}{3}\right)_0^1 = \frac{2}{3}$$

On fait une intégration par parties

$$A_{n} = 2 \int_{0}^{1} \underbrace{x^{2}}_{v} \underbrace{\cos(n\pi x)}_{u'} dx = 2 \left(\underbrace{\left(x^{2} \frac{1}{n\pi} \sin(n\pi x)\right)_{0}^{1}}_{0} - \int_{0}^{1} 2x \frac{1}{n\pi} \sin(n\pi x) dx \right)$$

On peut simplifier puis on refait une intégration par parties

$$A_{n} = \frac{-4}{n\pi} \int_{0}^{1} \underbrace{x}_{v} \underbrace{\sin(n\pi x)}_{n'} dx = \frac{-4}{n\pi} \left(\left(-x \frac{1}{n\pi} \cos(n\pi x) \right)_{0}^{1} + \int_{0}^{1} \frac{1}{n\pi} \cos(n\pi x) dx \right)$$

$$A_{n} = \frac{-4}{n^{2}\pi^{2}} \left(\underbrace{(-x\cos(n\pi x))_{0}^{1}}_{-\cos(n\pi)} + \underbrace{\left(\frac{1}{n\pi}\sin(n\pi x)\right)_{0}^{1}}_{0} \right)$$

On a donc finalement

$$A_n = \frac{4(-1)^n}{n^2 \pi^2}$$

Et l'équation finale

$$\phi(x) = \frac{1}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2 \pi^2} \cos(n\pi x)$$

1.9 Série 6 - Exercice 5

Résoudre

$$u_{tt} = c^2 u_{xx}$$
 pour $0 < x < \pi$

avec les conditions aux bords

$$u_x(0,t) = u_x(\pi,t) = 0$$

et les conditions initiales

$$u(x, 0) = 0$$
 et $u_t(x, 0) = \cos^2(x)$.

Utiliser le fait que $\cos^2(x) = 1/2 + \cos(2x)/2$.

On utilise la solution générale de l'équation d'onde pour un problème avec conditions aux bords de Neumann $(u_x(0,t)=u_x(l,t)=0)$

$$u(x,t) = \frac{1}{2}A_0 + \frac{1}{2}B_0t + \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{n\pi c}{l}t\right) + B_n \sin\left(\frac{n\pi c}{l}t\right) \right) \cos\left(\frac{n\pi}{l}x\right)$$

Avec les conditions initiales

$$\phi(x) = u(x,0) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{l}x\right)$$

$$\psi(x) = u_t(x,0) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\left(\frac{n\pi}{l}x\right)$$

On applique les conditions initiales

$$u(x,0) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{l}x\right) = 0 \longrightarrow \begin{cases} A_0 = 0\\ A_n = 0 \end{cases}$$

$$u_t(x,0) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\left(\frac{n\pi}{l}x\right) = \frac{1}{2} + \frac{\cos(2x)}{2}$$

$$\frac{1}{2}B_0 = \frac{1}{2} \longrightarrow \boxed{B_0 = 1}$$

$$\sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\left(\frac{n\pi}{l}x\right) = \frac{\cos(2x)}{2}$$
On a $n = 2$ et $l = \pi$

$$\frac{2\pi c}{\pi} B_2 \cos\left(\frac{2\pi}{\pi}x\right) = \frac{\cos(2x)}{2}$$

$$2cB_2 \cos(2x) = \frac{\cos(2x)}{2}$$

$$2cB_2 = \frac{1}{2}$$

$$4cB_2 = 1$$

On écrit donc la solution finale

$$u(x,t) = \frac{1}{2}t + \frac{1}{4c}\sin(2ct)\cos(2x)$$

 $B_2 = \frac{1}{4\pi}$

1.10 Série 7 - Exercice 4

4. Faire appel à la transformée de Laplace pour résoudre l'équation différentielle $y'' - k^2y = 0$ satisfaisant les conditions initiales y(0) = A et y'(0) = B, où k, A et B sont des constantes.

$$s^{2}Y(s) - sy(0) - y'(0) - k^{2}Y(s) = 0$$

$$Y(s)(s^{2} - k^{2}) = sy(0) + y'(0)$$

$$Y(s) = \frac{sy(0)}{s^{2} - k^{2}} + \frac{y'(0)}{s^{2} - k^{2}} = A\frac{s}{s^{2} - k^{2}} + \frac{B}{k}\frac{k}{s^{2} - k^{2}}$$

$$y(t) = A\cosh(kt) + \frac{B}{k}\sinh(kt)$$