MAT2041

Midterm Exam Sample Papers

Time: Nov/12/22 Sun 10:00am - 12:00pm University Stadium

DURATION OF EXAMINATION: 2 hours in-class

This examination paper includes 6 pages and 6 problems. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

1. (30 points) Solving a linear system of equations For a real number c, consider the linear system:

$$x_1 + x_2 + cx_3 + x_4 = c (1)$$

$$-x_2 + x_3 + 2x_4 = 0 (2)$$

$$x_1 + 2x_2 + x_3 - x_4 = -c (3)$$

Do the following:

- (a) Write out the *coefficient matrix* of the system.
- (b) Write out the augmented matrix for this system and calculate its row-reduced echelon form.
- (c) Write out the complete set of solutions in vector form.
- (d) What is the rank of the coefficient matrix A? Justify your answer.
- (e) Find a *basis* of the subspace of solutions when c = 0.

2. (20 points) Linear space

Find a basis for each of the following spaces.

- Space of $n \times n$ skew symmetric matrices (i.e. those matrix satisfying $\boldsymbol{A} = -\boldsymbol{A}^{\top}$)
- The space of all *polynomials* of the form $ax^2 + bx + 2a + 3b$, where $a, b \in \mathbb{R}$.
- Span $\{x-1, x+1, 2x^2-2\}$.

- 3. **(15 points)** *Matrix multiplications* Prove the following statements:
 - (a) Define the set of $n \times n$ diagonal matrices to be K. Prove that for a diagonal matrix \mathbf{D} with distinct elements (i.e. $\mathbf{D}_{ii} \neq \mathbf{D}_{jj}, \forall i \neq j$), the set $\{\mathbf{A} \in \mathbb{R}^{n \times n} | \mathbf{A}\mathbf{D} = \mathbf{D}\mathbf{A}\}$ is exactly K.
 - (b) If an $n \times n$ matrix \boldsymbol{A} satisfies $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{B}\boldsymbol{A}$ for any $n \times n$ matrix \boldsymbol{B} , then \boldsymbol{A} must be of the form $c\boldsymbol{I}$, where c is a scalar.

4. (10 points) Matrix Inverse

- (a) Compute the inverse of the matrix $\begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$.

 (b) Compute the inverse of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ if it exists. When does the inverse of the matrix exist?

5. (15 points) Matrix rank

- (a) Suppose $u \in \mathbb{R}^{n \times 1}$ satisfies ||u|| = 1. What is the rank of the matrix $I uu^{\top}$?
- (b) Suppose $u \in \mathbb{R}^{n \times 1}$ satisfies ||u|| = 1. Define $P = I uu^{\top}$. What is the rank of P^2 ? What about P^5 ?
- (c) Suppose $x, y \in \mathbb{R}^{n \times 1}$. What is the rank of the matrix $I xy^{\top}$?

6. (20 points) Orthogonal subspaces

Let \mathbf{v} be a nonzero vector in a linear space V. Let W be the set of all vectors in V that are orthogonal to \mathbf{v} . Prove that W is a subspace of V.