

Prova escrita especialmente adequada destinada a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de técnico superior profissional,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

ENGENHARIA ELETROTÉCNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

SOLUÇÃO PROVA MODELO

Apenas são apresentadas as soluções. Respostas que exijam demonstrações ou desenvolvimento não são apresentadas

Grupo 1

- 1. (C)
- 2. (B)
- 3. (D)

Grupo 2

a) Se $x < \frac{\pi}{2}$ a função é contínua pois é produto de uma função polinomial com outra trigonométrica;

Se $x > \frac{\pi}{2}$ a função é contínua porque é polinomial;

Se $x = \frac{\pi}{2}$ usamos a definição:

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} x \cos x = \frac{\pi}{2} \cos \frac{\pi}{2} = 0 = f\left(\frac{\pi}{2}\right)$$

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{+}} (2x - \pi) = 2\frac{\pi}{2} - \pi = 0$$

Donde, f é contínua também no ponto $\frac{\pi}{2}$.

Conclusão: a função é contínua em R.

b)
$$f(0) = 0$$

$$f'(x) = x'\cos x + x(\cos x)' = \cos x - x \sin x$$
 e $f'(0) = \cos 0 - 0 \sin 0 = 1$

y = x é a equação da reta tangente ao gráfico da função no ponto de abcissa x = 0.

Grupo 3

1. (D)

2. (E)

3. (C)

Grupo 4

P1

a) $R_{12} = 4 \Omega$; $R_{34} = 15 \Omega$

b) $I_1 = 4 \text{ A}$

c) $V_1 = 16 \text{ V}$; $I_2 = 0.8 \text{ A}$

d) $V_2 = 60 \text{ V}$

Grupo 5

1.

a)

 $R = 46 \Omega$

b)

P = 1150 W

c)

W = 2300 Wh = 2.3 kWh

d)

U = 262,67 V

2.

 a_1

 $I_T = 10 \text{ A}$

 $R_T = 12 \Omega$

$$a_2$$
)
$$R_4 = 20 \Omega$$

$$b_1$$
)
$$R_T = 10 Ω$$

$$b_2$$
)
$$I_T = 12 A$$

$$I_A = 4 A$$

$$I_B = 2 A$$

$$I_C = 6 A$$

$$b_3$$
) $P = 1440 \text{ W}$

Grupo 6

(Desenvolvimento)