Nouveau Design

Largeur W_i & Shear stress τ_i

 $\tau_i = 6\mu Q/h^2 w_i$

 $h = 100 \mu m$

 $W_i = 500$; 750; 1125; 1687; 2531 μ m

Gamme large de shear stress

Pour Q = 67; 335 et 1700μ l/min :

 τ_i = 2.62; 3.93; 5.89; 8.84; 13.26; 19.90; 29.85; 44.77; 67.16; 100.77; 151.11; 226.66;

340dy/cm²

(Multiplication de *1.5 d'une étape à l'étape suivante)

Gamme continue de shear stress

$$\tau_{5 \text{ (Q=335)}} = \tau_{1 \text{ (Q=67)}} \& \tau_{5 \text{ (Q=1700)}} = \tau_{1 \text{ (Q=335)}}$$

Longueur d'entrée L_{entry(i)}

Dans chacune des zones, le flow a besoin d'une certaine longueur (L_{entry}) pour qu'il se développe suffisamment et ainsi nous pouvoir appliquer l'équation $\tau_i = 6\mu Q/h^2 w_i$

$$L_{entry(i)} = 0.08hRe_i$$

W_i = 500; 750; 1125; 1687; 2531µm

Re_i = $\rho QD_h/\mu hw_i$ $D_{h(i)} = 2hw_i/(h+w_i)$

Pour Q = 1700 μ l/min (supposé max) : $L_{entry(i)}$ = 755.55; 533.33; 370.06; 253.68; 172.30 μ m

Les longueurs L_i de chaque zone doivent être plus grande que $L_{\text{entry(i)}}$. Pour des raisons de sécurité j'ai pris un peu de marge dans chaque zone.

Donc les L_{entry(i)} considérées seront : 800; 600; 400; 300; 200µm

Longueur Li

✓ Méthode :

Avoir le **même nombre des photos** (points) dans chacune des zones à condition qu' elles soient prises dans des **régions exploitables** (dont le flow est suffisamment développé et homogène).

✓ Caractéristique du microscope (20x):

Espace d'imagerie XY : 6mm*6mm. Pour cela il faut que la **longueur totale** des zones du dispositif **ne dépasse pas 6mm.**

Champ de vision XY : 311μm*414μm.

Possibilité de 3 photos/zone L_i = 2060; 1440; 820; 720; 620μm

L_{entry(i)} = 800; 600; 400; 300; 200μm W_i = 500; 750; 1125; 1687; 2531μm

