When $f: A \to B$ is a bijection, then the inverse image of a single element, $f^{-1}(\{y\})$, is always a unique element of A. We then consider f^{-1} as a function $f^{-1}: B \to A$ and we write simply $f^{-1}(y)$. In this case, we call f^{-1} the *inverse function* of f. For instance, for the bijection $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^3$, we have $f^{-1}(x) = \sqrt[3]{x}$.

Definition 0.3.18. Consider $f: A \to B$ and $g: B \to C$. The *composition* of the functions f and g is the function $g \circ f: A \to C$ defined as

$$(g \circ f)(x) := g(f(x)).$$

For example, if $f: \mathbb{R} \to \mathbb{R}$ is $f(x) := x^3$ and $g: \mathbb{R} \to \mathbb{R}$ is $g(y) = \sin(y)$, then $(g \circ f)(x) = \sin(x^3)$. It is left to the reader as an easy exericise to show that composition of one-to-one maps is one-to-one and composition of onto maps is onto. Therefore, composition of bijections is a bijection.

0.3.4 Relations and equivalence classes

We often compare two objects in some way. We say 1 < 2 for natural numbers, or 1/2 = 2/4 for rational numbers, or $\{a, c\} \subset \{a, b, c\}$ for sets. The '<', '=', and ' \subset ' are examples of relations.

Definition 0.3.19. Given a set A, a *binary relation* on A is a subset $\Re \subset A \times A$, which are those pairs where the relation is said to hold. Instead of $(a, b) \in \Re$, we write $a \Re b$.

Example 0.3.20: Take $A := \{1, 2, 3\}$.

Consider the relation '<'. The corresponding set of pairs is $\{(1,2), (1,3), (2,3)\}$. So 1 < 2 holds as (1,2) is in the corresponding set of pairs, but 3 < 1 does not hold as (3,1) is not in the set.

Similarly, the relation '=' is defined by the set of pairs $\{(1,1),(2,2),(3,3)\}$.

Any subset of $A \times A$ is a relation. Let us define the relation \dagger via $\{(1,2), (2,1), (2,3), (3,1)\}$, then $1 \dagger 2$ and $3 \dagger 1$ are true, but $1 \dagger 3$ is not.

Definition 0.3.21. Let \mathcal{R} be a relation on a set A. Then \mathcal{R} is said to be

- (i) Reflexive if $a \Re a$ for all $a \in A$.
- (ii) *Symmetric* if $a \Re b$ implies $b \Re a$.
- (iii) *Transitive* if $a \Re b$ and $b \Re c$ implies $a \Re c$.

If \Re is reflexive, symmetric, and transitive, then it is said to be an *equivalence relation*.

Example 0.3.22: Let $A := \{1,2,3\}$. The relation '<' is transitive, but neither reflexive nor symmetric. The relation ' \leq ' defined by $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$ is reflexive and transitive, but not symmetric. Finally, a relation ' \star ' defined by $\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$ is an equivalence relation.

Equivalence relations are useful in that they divide a set into sets of "equivalent" elements.