(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出關公開番号 特期2001-287982 (P2001-287982A)

(43) 公開日 平成13年10月16日(2001.10.16)

(51) Int.Cl.' C 0 4 B 35/10

C 2 3 C 16/458

微別記号

PΙ C23C 16/458 テーマコート*(参考) 4G030

C 0 4 B 35/10

Z 4K030

審査請求 未請求 請求項の数6 OL (全 7 頁)

特臘2000-103665(P2000-103665) (21)出願番号 平成12年4月5日(2000.4.5) (22)出願日

(71)出版人 000183266

住友大阪セメント株式会社 東京都千代田区六番町六番地28

(72)発明者 大塚 剛史

千葉県船橋市豊富町585番地 住友大阪セ

メント株式会社新規材料研究所内

(72)発明者 川瀬 剛

千葉県船橋市豊富町585番地 住友大阪セ

メント株式会社新規材料研究所内

(74)代理人 100064908

弁理士 志賀 正武 (外6名)

Fターム(参考) 4Q030 AA36 AA47 AA60 AA61 BA02

GA09 GA29

4K030 GA02 KA46 KA47

(54) 【発明の名称】 サセプタ及びその製造方法

(57)【要約】

【課題】 サセプタに内蔵された内部電極に確実に通電 可能なサセプタを得る。

【解決手段】 支持板13に固定孔16,16を形成 し、ついで、この固定孔16、16に、アルミナータン タルカーバイト複合導電性焼結体、アルミナータングス テン複合導電性焼結体、及びアルミナー炭化珪素複合導 電性焼結体のうちいずれかからなる給電用端子14,1 4を、支持板13を貫通するようにして固定し、つい で、この支持板13上に、給電用端子14に接するよう に、アルミナータンタルカーバイト複合導電性材料、ア ルミナータングステン複合導電性材料、及びアルミナー 炭化珪素複合導電性材料のうちいずれかの複合導電性材 料からなる塗料を塗布して乾燥させ、ついで、この塗布 面を介して支持板13と載置板11とを重ね合わせ、加 圧下にて熱処理してこれらを一体化すると共に、前記複 合導電性材料に対応する複合導電性焼結体からなる内部 電極12を形成する。

【特許請求の範囲】

【請求項1】 試料を載置する載置板と、この載置板と 一体化される支持板と、これら載置板と支持板との間に 設けられた内部電極と、この内部電極に接するように前 記支持板に貫通して設けられた給電用端子とからなり、 前記内部電極と給電用端子が、アルミナータンタルカー バイト複合導電性焼結体、アルミナータングステン複合 導電性焼結体、及びアルミナー炭化珪素複合導電性焼結 体のうちいずれかの複合導電性焼結体からなるものであ るサセプタ。

【請求項2】 前記アルミナータンタルカーバイト複合 導電性焼結体が、54~71重量%のタングステンを含 有するものである請求項1に記載のサセプタ。

【請求項3】 前記のアルミナータングステン複合導電性焼結体が54~95重量%のタングステンを含有するものである請求項1記載のサセプタ。

【請求項4】 前記のアルミナー炭化珪素複合導電性焼結体が5~30重量%の炭化珪素を含有するものである請求項1記載のサセブタ。

【請求項5】 前記載置板と前記支持板がアルミナ基焼 結体からなるものである請求項1~4のいずれか一項に 記載のサセプタ。

【請求項6】 支持板に固定孔を形成し、ついで、この 固定孔にアルミナータンタルカーバイト複合導電性焼結 体、アルミナータングステン複合導電性焼結体、及びア ルミナー炭化珪素複合導電性焼結体のうちいずれかの複 合導電性焼結体からなる給電用端子を、支持板を貫通す るようにして固定し、ついで、この給電用端子を保持す る支持板上に、給電用端子に接するように、アルミナー タンタルカーバイト複合導電性材料、アルミナータング ステン複合導電性材料、及びアルミナー炭化珪素複合導 電性材料のうちいずれかの複合導電性材料からなる途布 材を塗布して、乾燥させ、ついで、この塗布材の塗布面 を介して支持板と載置板とを重ね合わせ、加圧下にて熱 処理することによりこれらを一体化すると共に、これら の支持板と載置板との間に、前記複合導電性材料に対応 する複合導電性焼結体からなる内部電極を形成すること を特徴とするサセプタの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、サセプタ及びその 製造方法に関し、特にサセプタの内部に内蔵された内部 電極に確実に通電可能なサセプタ、及び該サセプタを歩 留まりよく廉価に製造することが可能なサセプタの製造 方法に関する。

[0002]

【従来の技術】近年、IC、LSI、VLSI等の半導体の製造工程において使用されるドライエッチング装置や、CVD装置等においては、エッチングやCVDによる成膜をウエハ毎に均一に行うため、半導体ウエハ、液

晶基板ガラス、プリント基板等の板状試料を、1枚ずつ 処理する枚葉化がすすんでいる。この枚葉式プロセスに おいては、板状試料を1枚ずつ処理室内に保持するため に、この板状試料をサセプタと称される試料台(台座) に載置し、所定の処理を施している。このサセプタは、 プラズマ中での使用に耐え、かつ高温での使用に耐え得 る必要があることから、耐プラズマ性に優れ、熱伝導率 が大きいことが要求される。このようなサセプタとして は、耐プラズマ性、熱伝導性に優れたセラミックス焼結 体からなるサセプタが使用されている。

【0003】このようなサセプタには、その内部に電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極、通電発熱させて板状試料を加熱するためのヒータ電極、高周波電力を通電してプラズマを発生させてプラズマ処理するためのプラズマ発生用電極等の内部電極を配設したものがある。

【0004】図3は、このような内部電極が内蔵されたサセプタの一例を示したものである。サセプタ5は、板状試料(図示せず)を載置する載置板1と、この載置板1を支える支持板3と、この載置板1と支持板3に挟まれて保持される内部電極2と、この内部電極2に接するように支持板3内に埋設され、電流を内部電極2に供給する給電用端子4,4からなる。

【0005】このようなサセプタ5の製造方法としては、例えば、予め支持板3に、給電用端子4,4を内部電極2につなげるための固定孔を形成し、この固定孔に金属製の給電用端子4,4を固定し、この給電端子4,4を有する支持板3と、載置板1との間に、タングステン等の高融点金属からなる内部電極2を配し、これらを各種接合剤により加圧下にて接合する方法が挙げられる。しかしながら、このようなサセプタ5の製造方法においては、載置板1と、給電用端子4,4を有する支持板3との接合の際に、前記載置板1や前記支持板3の熱膨張率と、給電用端子4,4の熱膨張率とを近似させるのが困難であった。また給電用端子4,4を形成する金属には、耐熱性に富む高価な高融点金属を用いる必要があった。

【0006】さらに、加圧下での高温接合の際に、金属製の給電用端子4,4のヤング率と、載置板1や支持板3のヤング率が大きく異なるため、大きな圧力で加圧すると、これらの変形率の差により、これらに破壊が生じるため、十分に加圧することができずに、給電用端子4,4と内部電極2との電気的な連結が十分でなかったり、内部電極2と載置板1との間に空隙が生じて、内部電極2の用途により、静電吸着性能が低下したり、ヒータ加熱性能が低下したり、載置板1上にプラズマが発生しなかったりすることがあり、更に接合剤が露出して接合剤成分が揮発、飛散して板状試料を汚染することもあった。

【0007】そこで、これらの不都合を解消するため、

サセプタ5内部に内部電極2を形成する方法として、例えば、所定のパターン形状で、内部電極2となる電極材料を支持板3上に印刷し、この支持板3と、載置板1とを、前記電極材料が印刷された面を介して重ね合わせて一体焼結した後、内部電極2とサセプタ5の外部との間に導電回路を形成するために、支持板3に、内部電極2に到達するように孔を穿設する作業を行い、この孔にリード線等の金属製給電用端子4,4を収め、ろう材を介して金属製給電用端子4,4と内部電極2とを接合する製造方法が一般的に行われている。

[0008]

【発明が解決しようとする課題】しかしながら、このよ うなサセプタ5の製造方法における、上記給電用端子 4, 4を固定するための孔の穿設作業は、支持板3の表 面から掘り進み、内部電極2に接触する面で正確に孔の 形成を止めなくてはならない。また、内部電極2と給電 用端子4, 4は良好に接触し、電気的に完全に接合され ることが要求されるが、内部電極2まで到達していない 場合はもちろん、内部電極2を貫通してしまった場合に は電気的な接合は不完全となり、内部電極2への通電は 不確実なものとなってしまう。また、一般に内部電極2 の厚さは数十μωオーダーであり、内部電極2の厚さの オーダー以下の穿設速度で加工を行う必要上、穿設作業 は極めて効率の悪い作業となり、また、正確に止め位置 を決定することができないため、加工歩留まり低下の原 因ともなっている。さらに、内部電極2が、双極型静電 チャック用電極のように、内部電極2のパターン平面上 の給電用端子4, 4の位置が重要となる場合は、X線透 過装置等を用いて穿設位置をモニタリングしながら慎重 に穿設作業を行う必要があり、手間を要する作業となっ てしまう。

【0009】このように、従来においては、内部電極2 と、給電用端子4,4を正確な位置に形成し、確実に内 部電極2に通電可能なサセプタ5、及び該サセプタ5を 歩留まりよく廉価に製造することが可能なサセプタ5の 製造方法として適切なものがなかった。本発明は、これ らの問題点に鑑みてなされたものであり、その為に具体 的に設定された課題は、サセプタの内部に形成された内 部電極に確実に通電可能なサセプタ、及び該サセプタを 歩留まりよく廉価に製造することが可能なサセプタの製 造方法を提供することにある。

[0010]

【課題を解決するための手段】本発明者らは、上記課題解決のため鋭意検討した結果、特定組成の導電性材料により内部電極と給電用端子を形成し、載置板と支持板とを加圧下で熱処理して一体化することにより上記課題を効率よく解決し得ることを知見し、本発明を完成するに至った。即ち、第1の発明においては、試料を載置する載置板と、この載置板と一体化される支持板と、これら載置板と支持板との間に設けられた内部電極と、この内

部電極に接するように前記支持板に貫通して設けられた 給電用端子とからなり、前記内部電極と給電用端子がア ルミナータンタルカーバイト複合導電性焼結体、アルミ ナータングステン複合導電性焼結体、及びアルミナー炭 化珪素複合導電性焼結体のうちいずれかの複合導電性焼 結体からなるものであるサセプタを提案する。

【0011】第2の発明においては、第1の発明において、前記のアルミナータンタルカーバイト複合導電性焼結体が54~71重量%のタンタルカーバイトを含有するものであるサセプタを提供する。第3の発明においては、請求項1の発明において、前記のアルミナータングステン複合導電性焼結体が54~95重量%のタングステンを含有するものであるサセプタを提供する。第4の発明においては、第1の発明において、前記のアルミナー炭化珪素複合導電性焼結体が5~30重量%の炭化珪素を含有するものであるサセプタを提供する。第5の発明においては、第1~第4の発明において、前記載置板と前記支持板がアルミナ基焼結体からなるものであるサセプタを提供する。

【0012】第5の発明においては、支持板に固定孔を 形成し、ついで、この固定孔にアルミナータンタルカー バイト複合導電性焼結体、アルミナータングステン複合 導電性焼結体、及びアルミナー炭化珪素複合導電性焼結 体のうちのいずれかの複合導電性焼結体からなる給電用 端子を、前記支持板を貫通するようにして固定し、つい で、この給電用端子を保持する支持板上に、給電用端子 に接するように、アルミナータンタルカーバイト複合導 電性材料、アルミナータングステン複合導電性材料、及 びアルミナー炭化珪素複合導電性材料のうちのいずれか の複合導電性材料からなる塗布材を塗布して、乾燥さ せ、ついで、この塗布材の塗布面を介して支持板と載置 板とを重ね合わせ、加圧下にて熱処理することによりこ れらを一体化すると共に、これらの支持板と載置板との 間に、前記の複合導電性材料に対応する複合導電性焼結 体からなる内部電極を形成することを特徴とするサセプ タの製造方法を提供する。

[0013]

【発明の実施の形態】以下、発明の実施の形態を掲げ、本発明を詳述する。なお、この発明の実施の形態は、特に限定のない限り発明の内容を制限するものではない。図1は、本発明のサセプタの一例を示したものである。サセプタ15は、板状試料を載置する載置板11と、この載置板11と一体化される支持板13と、この載置板11と支持板13との間に形成された内部電極12と、この内部電極12に通じ、前記支持板13内部に貫通するようにして設けられた給電用端子14、14とからなるものである。

【0014】上記載置板11および支持板13は、その 重ね合わせ面の形状を同じくし、ともに、アルミナ基焼 結体からなるものである。前記のアルミナ基焼結体とし ては、特に限定されるものではなく、一般に市販されているものでよい。また、前記アルミナ基焼結体は、焼結性や耐プラズマ性を向上させるために、イットリア(Y $_2$ O₃)、カルシア(C $_4$ O)、マグネシア(M $_4$ O)、炭化珪素(S $_4$ C)、チタニア(T $_4$ C)から選択された1種または2種以上を合計で0. $_4$ C)の重量%含有するようにしてもよい。

【0015】上記内部電極12は、電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極、通電発熱させて板状試料を加熱するためのヒータ電極、高周波電力を通電してプラズマを発生させてプラズマ処理するためのプラズマ発生用電極等として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。この内部電極12は、アルミナータングステン複合導電性焼結体、及びアルミナー炭化珪素複合導電性焼結体のうちいずれかの複合導電性焼結体からなる。

【0016】そして、これらの複合導電性焼結体のうち、アルミナータンタルカーバイト複合導電性焼結体とアルミナータングステン複合導電性焼結体とは、特に低い体積固有抵抗値(1×10-1~1×10-5 Q c m)を有するため、静電チャック用電極、通電発熱させて板状試料を加熱するためのヒータ電極、及び高周波電力を通じてプラズマを発生させてプラズマ処理するためのプラズマ発生用電極に好適に用いられる。一方、アルミナー炭化珪素複合導電性焼結体は、他の複合導電性焼結体よりも高い体積固有抵抗値(1×10-4~1×10-5 Q c m)を有するため、静電チャック用電極、通電発熱させて板状試料を加熱するためのヒータ電極に好適に用いられる。

【0017】上記アルミナータンタルカーバイト複合導電性焼結体としては、タンタルカーバイトの含有量が54~71重量%であるものであることが望ましい。タンタルカーバイトの含有量を54~71重量%としたのは、54重量%未満では内部電極12の抵抗値が高くなり、内部電極12として機能しなくなり、71重量%を超えると、内部電極12の熱膨張率が、前記載置板11と前記支持板13を形成するアルミナ基焼結体と大きく異なり、後工程の加圧熱処理により熱応力破壊するためである。

【0018】また、上記アルミナータングステン複合導電性焼結体としては、タングステンの含有量が54~95重量%であるものであることが望ましい。タングステンの含有量を54~95重量%としたのは、54重量%未満では内部電極12の抵抗値が高くなり、内部電極12として機能しなくなり、95重量%を超えると、内部電極12の熱膨張率が、前記載置板11と前記支持板13を形成するアルミナ基焼結体と大きく異なり、後工程の加圧熱処理により熱応力破壊するためである。

【0019】更に、上記アルミナー炭化珪素複合導電性

焼結体としては、炭化珪素の含有量が5~30重量%であるものであることが望ましい。炭化珪素の含有量を5~30重量%としたのは、5重量%未満では内部電極12の抵抗値が高くなり、内部電極12として機能しなくなり、30重量%を超えると、内部電極12の熱膨張率が、前記載置板11と前記支持板13を形成するアルミナ基焼結体と大きく異なり、後工程の加圧熱処理により熱応力破壊するためである

【0020】上記給電用端子14,14は、内部電極1 2に電流を供給するために設けられたもので、その数、 形状、大きさ等は、内部電極12の形状と、態様(即ち 静電チャック用電極、ヒータ電極、プラズマ発生電極等 のいずれのタイプの内部電極12とするか)により決定 される。この給電用端子14は、アルミナ粉末とタンタ ルカーバイト粉末とを混合するか、またはアルミナ粉末 とタングステン粉末とを混合するか、若しくはアルミナ 粉末と炭化珪素粉末とを混合し、この混合粉末を加圧焼 結した複合導電性焼結体からなり、その混合比は、上記 内部電極12と同様であることが望ましい。そして、ア ルミナータンタルカーバイト複合導電性焼結体とアルミ ナータングステン複合導電性焼結体とは、上述のように 充分に低い体積固有抵抗値を有するため、大電力を上記 内部電極12に投入することができ、上記内部電極12 をプラズマ発生電極として用いるときは高密度のプラズ マを発生させることができるので好適である

【0021】次に、このようなサセプタ15の製造方法を説明する。図2は、サセプタ15の製造工程を示したものである。まず、アルミナ基焼結体からなる支持板13に、予め給電用端子14,14を組み込み保持するための固定孔16,16を形成する。この固定孔16,16の穿設方法は、特に制限されるものでなく、例えば、ダイヤモンドドリルによる孔あけ加工法、レーザ加工法、放電加工法、超音波加工法を用いて穿設することができる。また、その加工精度は、通常の加工精度でよく、歩留まりはほぼ100%で加工できる。なお、固定孔16,16の穿設位置および数は、内部電極12の態様と形状により決定される。

【0022】次に、給電用端子14を、上記支持板13の固定孔16に密着固定し得る大きさ、形状となるように作製する。給電用端子14の作製方法は、アルミナ粉末とタンタルカーバイト粉末とを混合するか、またはアルミナ粉末とタングステン粉末とを混合するか、若してはアルミナ粉末と炭化珪素粉末とを混合し、この混合粉末を加圧焼結することによる。このとき、混合粉末の混合比は、上述の内部電極12に示した各焼結体での混合比は、上述の内部電極12に示した各焼結体での混合比と同様であることが好ましい。このような範囲を超えると、給電用端子14の抵抗値が高くなったり、また、給電用端子14の熱膨張率が、前記載置板11と前記支持板13を形成するアルミナ基焼結体と大きく異なり、後工程の加圧熱処理により熱応力破壊したりして不都合

となる。この給電用端子14の加工精度は、後の加圧熱処理で熱変形して固定されるので、日本工業規格(JIS)の標準公差レベルでクリアランスをもっていてもよい。

【0023】次に、この給電用端子14,14を、支持 板13の固定孔16, 16に嵌め込む。次に、給電用端 子14,14が組み込まれた支持板13の表面の所定領 域に、前記給電用端子14,14に接触するように、ア ルミナ粉末とタンタルカーバイト粉末の混合粉末、また はアルミナ粉末とタングステン粉末との混合粉末、若し くはアルミナ粉末と炭化珪素粉末との混合粉末を、エチ ルアルコール等の有機溶媒に分散した内部電極形成用塗 布剤を塗布し、乾燥して内部電極形成層12'を形成す る。混合粉末の混合比は、、上述の内部電極12に示し た各焼結体での混合比と同様であることが好ましい。こ のような鈴布液の鈴布方法としては、均一な厚さに鈴布 する必要があることから、スクリーン印刷法等を用いる ことが望ましい。また、上記混合粉末の混合比は、上記 サセプタ15の内部電極12における混合比となるよう に混合される。また、内部電極形成層12'の形成位置 以外の支持板13の表面領域に、絶縁性を向上させるた めにアルミナ粉末等の絶縁材層を介在させてもよい。

【0024】次に、内部電極形成層12'を形成した支持板13上に、該内部電極形成層12'を介するように載置板11を重ねた後、これらを加圧下にて熱処理して一体化する。このように、この製造方法においては、前記支持板13と、前記載置板11との間に接合剤を介在させることなく、加圧下での熱処理のみで、載置板11と指示板13との接合一体化を達成することができる。このときの熱処理の条件としては、熱処理雰囲気は真空、Ar、He、N2などの不活性雰囲気であるのが好ましい。加圧力は5~10MPaが望ましく、また熱処理温度は1600~1850℃が望ましい。

【0025】そして、このとき、支持板13上に形成された内部電極形成層12'は、上記混合粉末が焼成されて、それぞれに対応する複合導電性焼結体製の内部電極12とされる。また、給電用端子14,14は、加圧下での熱処理で熱変形して支持板13の固定孔16,16に固定される。

【0026】このようなサセプタの製造方法によれば、支持板13に孔を形成して、給電用端子14を取り付ける後加工の作業なしに、サセプタ15を製造することができる。また、内部電極12および給電用端子14,14に、上記複合導電性焼結体からなるものを用いているので、載置板11と支持板13とを一体化させる処理において内部電極12を容易に形成することができ、給電用端子14,14を支持板13に固定させることができ、また、内部電極12と、給電用端子14との接続も確実に行うことができる。さらに、給電用端子14を安価に製造することができる。このように、サセプタ15

の製造方法によれば、内部電極12に確実に通電可能な サセプタ15を得ることができ、サセプタ15を歩留ま りよく廉価に製造することができる。

[0027]

【実施例】以下、内部電極12を静電チャック用電極と した場合の実施例を掲げ、本発明を更に詳述する。 (実施例1)

「給電用端子の作製」アルミナ粉末(平均粒径0.2 μ m、大明化学工業(株)製)40重量部、タンタルカーバイト粉末(平均粒径1 μ m、日本新金属(株)製)60重量部、イソプロピルアルコール150重量部とを混合し、更に遊星型ボールミルを用いて均一に分散させてスラリーを得た。このスラリーから、アルコール分を、吸引ろ過して除去し、乾燥してアルミナータンタルカーバイト複合物末を成型、焼結し、直径2.5 mm、長さ5 mmの棒状アルミナータンタルカーバイト複合導電性焼結体を得、これを給電用端子14とした。焼結は温度1700℃、圧力20MPaの条件でホットプレスによる加圧焼結を行った。焼結後のアルミナータンタルカーバイト複合導電性焼結体の相対密度は98%以上であった。

【0028】「支持板の作製」アルミナ粉末(平均拉径 0.2μm、大明化学工業(株)製)を成型、焼結し、 直径230mm、厚さ5mmの円盤状アルミナ焼結体

(支持板13)を得た。焼結時の条件は、上記給電用端子14の作製時と同様とした。次いで、このアルミナ焼結体に、給電用端子14,14を組み込み固定するための固定孔16,16を、ダイヤモンドドリルによって孔あけ加工することにより穿設し、アルミナ焼結体製の支持板13を得た。

【0029】「載置板の作製」上記アルミナ基焼結体製の支持板13の作製方法に準じて、直径230mm、厚さ5mmの円盤状アルミナ基焼結体を得た。次いで、この円盤状アルミナ基焼結体の一面(板状試料の載直面)を平坦度が10μm以下となるよう研摩し、アルミナ基焼結体製の載置板11を得た。

【0030】「一体化」上記支持板13に穿設された前記固定孔16,16に、前記の給電用端子14,14を押し込み、組み込み固定した。次いで、図2-(b)に示すように、この給電用端子14,14が組み込み固定された支持板13上に、後の加圧下での熱処理工程で内部電極12となるよう、40重量%のアルミナ粉末と60重量%のタンタルカーバイト粉末を含む、アルミナタンタルカーバイト複合導電性材料からなる塗布剤を、スクリーン印刷法にて印刷塗布し、乾燥して、内部電極形成層12'を形成した。次いで、図2-(c)に示すように、この内部電極形成層12'(印刷面)を挟み込むように、また、前記載置板11の研摩面が上面となるように、前記支持板13と載置板11とを重ね合わせて、ホットプレスにて加圧下にて熱処理して一体化して

実施例1のサセプタ15を作製した。このときの加圧、 熱処理条件は、温度1750℃、圧力7.5MPaの条件にて行った。

【0032】 (実施例2) タンタルカーバイト粉をタン グステン粉 (平均粒径0.5μm、東京タングステン

(株) 製)に変えた以外は、実施例1と同様にして、実施例2のサセプタ15を得た。このサセプタ15の接合断面をSEM観察したところ、前記載置板11と、前記支持板13と、前記給電用端子14,14とは良好に接合されていた。また、接合された前記載置板11、前記支持板13、前記給電用端子14,14に亀裂等の発生は無く、内部電極12の剥離も認められなかった。また、前記給電用端子14,14と前記内部電極12との間の導通も良好であり、電気的に確実に連結されていることも確認された。

【0033】(実施例3)タンタルカーパイト粉を炭化 珪素粉(平均粒径0.05μm、住友大阪セメント

(株) 製)に変え、混合粉末組成をアルミナ粉末:90 重量部、炭化珪素粉末:10重量部とした以外は、実施 例1と同様にして、実施例3のサセプタ15を得た。このサセプタ15の接合断面をSEM観察したところ、前 記載置板11と、前記支持板13と、前記給電用端子1 4,14とは良好に接合されていた。また、接合された 前記載置板11、前記支持板13、前記給電用端子1 4,14に亀裂等の発生は無く、内部電極12の剥離も 認められなかった。また、前記給電用端子14,14と 前記内部電極12との間の導通も良好であり、電気的に 確実に連結されていることも確認された。

[0034]

【発明の効果】以上説明したように、本発明のサセプタ は、給電用端子が内部電極と確実、強固に連結されてお り、通電確実性が極めて高いものである。また、上記サ セプタの内部電極および給電用端子が、タンタルカーバ イトを54~71重量%含むアルミナータンタルカーバ イト複合導電性焼結体か、またはタングステンを54~ 95重量%含むアルミナータングステン複合導電性焼結 体か、若しくは炭化珪素を5~30重量%含むアルミナ ー炭化珪素複合導電性焼結体からなるものであれば、そ の製造時における各部材間の熱膨張率の違い等に起因す る熱応力による破壊を防ぐことができるので、これら が、確実、強固に連結され、通電確実性がより高いもの となる。また、このようなサセプタによれば、前記給電 用端子と前記内部電極との間の導通も良好であり、電気 的に確実に連結される。また、本発明のサセプタの製造 方法によれば、上記の特性を備えたサセプタを高度な後 加工なしに歩留まり良く、しかも廉価に製造することが できる。

【図面の簡単な説明】

【図1】 本発明のサセプタの一例を示す断面図である。

【図2】 本発明のサセプタの製造方法の一例を示す工 程図である。

【図3】 従来のサセプタの一例を示す断面図である。 【符号の説明】

- 11 載置板
- 12 内部電極
- 13 支持板
- 14 給電用端子
- 15 サセプタ
- 16 固定孔

【図1】

【図3】

