ТЕМА: РАЗРАБОТКА ЛЕКСИЧЕСКОГО АНАЛИЗАТОРА

Цель курсовой работы: разработать диаграмму состояний и лексический анализатор регулярной грамматики, исследовать работу лексического анализатора.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ

В основе лексических анализаторов лежат регулярные грамматики, поэтому рассмотрим грамматики этого класса более подробно.

Под регулярной грамматикой будем понимать леволинейную грамматику.

Напомним, что грамматика G = (V, W, R, I) называется <u>леволинейной</u>, если каждое правило из R имеет вид $A \to Bt$ либо $A \to t$, где $A \in W$, $B \in W$, $t \in V$.

Предположим, что анализируемая цепочка заканчивается специальным символом \bot - признаком конца цепочки.

Для грамматик этого типа существует алгоритм определения того, принадлежит ли анализируемая цепочка языку, порождаемому этой грамматикой (алгоритм разбора):

- (1) первый символ исходной цепочки $a_1a_2...a_n \perp$ заменяем нетерминалом A, для которого в грамматике есть правило вывода A \rightarrow a_1 (другими словами, производим "свертку" терминала a_1 к нетерминалу A)
- (2) затем многократно (до тех пор, пока не считаем признак конца цепочки) выполняем следующие шаги: полученный на предыдущем шаге нетерминал A и расположенный непосредственно справа от него очередной терминал а₁ исходной цепочки заменяем нетерминалом B, для которого в грамматике есть правило вывода В → Aa₁ (i = 2, 3,.., n);

Это эквивалентно построению дерева разбора методом "снизу-вверх": на каждом шаге алгоритма строим один из уровней в дереве разбора, "поднимаясь" от листьев к корню.

При работе этого алгоритма возможны следующие ситуации:

- прочитана вся цепочка; на каждом шаге находилась единственная нужная "свертка"; на последнем шаге свертка произошла к символу І.
 Это означает, что исходная цепочка а₁а₂...a_n⊥ ∈ L(G).
- (2) прочитана вся цепочка; на каждом шаге находилась единственная нужная "свертка"; на последнем шаге свертка произошла к символу, отличному от І. Это означает, что исходная цепочка $a_1a_2...a_n\bot\notin L(G)$.
- (3) на некотором шаге не нашлось нужной свертки, т.е. для полученного на предыдущем шаге нетерминала A и расположенного непосредственно справа от него очередного терминала а_і исходной цепочки не нашлось нетерминала B, для которого в грамматике было

бы правило вывода $B \to Aa_i$. Это означает, что исходная цепочка $a_1a_2...a_n\bot \not\in L(G)$.

(4) на некотором шаге работы алгоритма оказалось, что есть более одной подходящей свертки, т.е. в грамматике разные нетерминалы имеют правила вывода с одинаковыми правыми частями, и поэтому непонятно, к какому из них производить свертку. Это говорит о недетерминированности разбора. Анализ этой ситуации будет дан ниже.

Допустим, что разбор на каждом шаге детерминированный.

Для того, чтобы быстрее находить правило с подходящей правой частью, зафиксируем все возможные свертки (это определяется только грамматикой и не зависит от вида анализируемой цепочки).

Это можно сделать в виде таблицы, строки которой помечены нетерминальными символами грамматики, столбцы - терминальными. Значение каждого элемента таблицы - это нетерминальный символ, к которому можно свернуть пару "нетерминал-терминал", которыми помечены соответствующие строка и столбец.

Например, для грамматики $G = (\{a, b, \bot\}, \{I, A, B, C\}, R, I)$, такая таблица будет выглядеть следующим образом:

R:
$$S \rightarrow C \perp$$

 $C \rightarrow Ab \mid Ba$
 $A \rightarrow a \mid Ca$
 $B \rightarrow b \mid Cb$

	a	b	Т
С	A	В	S
A	-	С	-
В	С	-	1
I	-	-	-

Знак "-" ставится в том случае, если для пары "терминал-нетерминал" свертки нет.

Но чаще информацию о возможных свертках представляют в виде диаграммы состояний (ДС) - неупорядоченного ориентированного помеченного графа, который строится следующим образом:

- (1) строят вершины графа, помеченные нетерминалами грамматики (для каждого нетерминала одну вершину), и еще одну вершину, помеченную символом, отличным от нетерминальных (например, Н). Эти вершины будем называть состояниями. Н начальное состояние.
- (2) соединяем эти состояния дугами по следующим правилам:
 - а) для каждого правила грамматики вида $W \to t$ соединяем дугой состояния H и W (от H к W) и помечаем дугу символом t;
 - b) для каждого правила $W \to Vt$ соединяем дугой состояния V и W (от V к W) и помечаем дугу символом t;

Диаграмма состояний для грамматики G (см. пример выше):

Замечание: на диаграмме состояний конечное состояние помечено вершиной S.

Алгоритм разбора по диаграмме состояний:

- (1) объявляем текущим состояние Н;
- (2) затем многократно (до тех пор, пока не считаем признак конца цепочки) выполняем следующие шаги: считываем очередной символ исходной цепочки и переходим из текущего состояния в другое состояние по дуге, помеченной этим символом. Состояние, в которое мы при этом попадаем, становится текущим.

При работе этого алгоритма возможны следующие ситуации (аналогичные ситуациям, которые возникают при разборе непосредственно по регулярной грамматике):

- (1) прочитана вся цепочка; на каждом шаге находилась единственная дуга, помеченная очередным символом анализируемой цепочки; в результате последнего перехода оказались в состоянии І. Это означает, что исходная цепочка принадлежит L(G).
- (2) прочитана вся цепочка; на каждом шаге находилась единственная "нужная" дуга; в результате последнего шага оказались в состоянии, отличном от І. Это означает, что исходная цепочка не принадлежит L(G).
- (3) на некотором шаге не нашлось дуги, выходящей из текущего состояния и помеченной очередным анализируемым символом. Это означает, что исходная цепочка не принадлежит L(G).
- (4) на некотором шаге работы алгоритма оказалось, что есть несколько дуг, выходящих из текущего состояния, помеченных очередным анализируемым символом, но ведущих в разные состояния. Это говорит о недетерминированности разбора. Анализ этой ситуации будет приведен ниже.

Диаграмма состояний определяет конечный автомат, построенный по регулярной грамматике, который допускает множество цепочек, составляющих язык, определяемый этой грамматикой. Состояния и дуги ДС - это графическое изображение функции переходов конечного автомата из состояния в состояние при условии, что очередной анализируемый символ совпадает с символом-меткой дуги. Среди всех состояний выделяется начальное (считается, что в начальный момент своей работы автомат находится в этом состоянии) и конечное (если автомат завершает работу переходом в это состояние, то анализируемая цепочка им допускается).

Для более удобной работы с диаграммами состояний введем несколько соглашений:

- а) если из одного состояния в другое выходит несколько дуг, помеченных разными символами, то будем изображать одну дугу, помеченную всеми этими символами;
- b) непомеченная дуга будет соответствовать переходу при любом символе, кроме тех, которыми помечены другие дуги, выходящие из этого состояния.
- с) введем состояние ошибки (ER); переход в это состояние будет означать, что исходная цепочка языку не принадлежит.

По диаграмме состояний легко написать анализатор для регулярной грамматики.

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

- 1. Разработать диаграмму состояний регулярной грамматики.
- 2. Разработать лексический анализатор регулярной грамматики.
- 3. Исследовать работу лексического анализатора.

Регулярная грамматика определяется по варианту, выданному преподавателю.

ВАРИАНТЫ ЗАДАНИЙ

1.
$$G = (\{a, b, \bot\}, \{I, A, B, C\}, R, I),$$
 где $R: I \to C\bot$
 $C \to Ab \mid Ba$
 $A \to a \mid Ca$
 $B \to b \mid Cb$

2. $G = (\{a, b, c, \bot\}, \{I, A, B, C\}, R, I),$ где $R: I \to Ab \mid C\bot$
 $A \to b \mid Bc$
 $B \to a \mid Aa$
 $C \to c \mid Cb$

3. $G = (\{a, b, \bot\}, \{I, A, B, C\}, R, I),$ где $R: I \to Ba \mid C\bot$
 $A \to a \mid Bb$
 $B \to b \mid Ca$
 $C \to Aa$

4. $G = (\{a, b, \bot\}, \{I, A, B, C\}, R, I),$ где $R: I \to A\bot$
 $A \to Ab \mid Ba$
 $C \to a \mid Ca$
 $B \to b \mid Cb$

5.
$$G = (\{a, b, c, \bot\}, \{I, A, B, C\}, R, I)$$
, где R : $I \to Ab \mid C\bot$
 $A \to b \mid Bc \mid Ba$
 $B \to a \mid Aa$
 $C \to c \mid Cb$
6. $G = (\{a, b, c, \bot\}, \{I, A, B, C\}, R, I)$, где R : $I \to Ab \mid B\bot$
 $A \to b \mid Ba$
 $B \to a \mid Aa$
 $C \to c \mid Cb$
7. $G = (\{a, b, c, \bot\}, \{I, A, B, C\}, R, I)$, где R : $I \to Bb \mid C\bot$
 $A \to b \mid Ba \mid Bb$
 $B \to a \mid Aa$
 $C \to c \mid Cb$
8. $G = (\{a, b, c, \bot\}, \{I, A, B, C\}, R, I)$, где R : $I \to A\bot$
 $A \to c \mid Bc \mid Ac$
 $B \to a \mid Aa$
 $C \to b \mid Cb$
9. $G = (\{a, b, \bot\}, \{I, A, B, C\}, R, I)$, где R : $I \to Ba \mid B\bot$
 $A \to a \mid Bb$
 $B \to b \mid Ca$
 $C \to Aa$
10. $G = (\{a, b, \bot\}, \{I, A, B, C\}, R, I)$, где R : $I \to B\bot$
 $A \to b \mid Ba$
 $B \to a \mid Ca$
 $C \to Ab$
11. $G = (\{a, b, c, \bot\}, \{I, A, B, C\}, R, I)$, где R : $I \to Bb \mid C\bot$
 $A \to b \mid Bc$
 $B \to a \mid Aa$
 $C \to c \mid Cb$
12. $G = (\{a, b, c, \bot\}, \{I, A, B, C\}, R, I)$, где R : $I \to AB\bot$
 $A \to a \mid AB$
 $A \to$

$$B \rightarrow a \mid Aa$$

$$C \rightarrow c \mid Ca$$