EXAMEN CALCUL DIFERENTIAL SI INTEGRAL SERIA 13

OFICIU: 1 punct

OFICIU: 1 puncte SUBIECTUL 1. (2 puncte)
Sa se studieze natura seriei $\sum_{n=1}^{+\infty} \frac{(a+1)(a+2)\cdots(a+n)}{n!} \cdot \frac{1}{2n+1}$, unde a > 0.

Sa se determine punctele de extrem local ale functiei $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) =$ $x^4 - 16xy + y^4 \ \forall (x, y) \in \mathbb{R}^2.$

SUBIECTUL 3. (2 puncte)

Sa se calculeze $\int_{0}^{\frac{\pi}{2}} \sqrt[3]{\sin^{11} x \cos^{7} x} dx.$

SUBIECTUL 4. (3 puncte)

- a) Sa se calculeze $\iint_D xydxdy$, unde $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4, x \ge 0\}$. b) Fie $f: [0,+\infty) \to [0,+\infty)$ o functie continua cu f(0) = 0 care verifica inegalitatea $|f(x) f(y)| \ge |\sqrt{x} \sqrt{y}| \ \forall x,y \in [0+,\infty)$. Sa se arate ca functia

f este bijectiva.