國立中興大學105學年度碩士班招生考試試題

科目:基礎數學

系所:資訊科學與工程學系

本科目不得使用計算機

本科目試題共2頁

Part I Discrete Mathematics

- 1. Answer the following questions. (4 % each)
 - (i) What is the general solution for the linear congruence $4x \equiv 5 \mod 7$?
 - (ii) How many solutions are there to the equality $y_1 + y_2 + y_3 = 13$, where y_1, y_2, y_3 are positive integers?
 - (iii) What are the minimal number of colors needed for a coloring of the graphs: C₄ and W₄, which represent cycle and wheel respectively?
 - (iv) How many edges does a full binary tree with 99 internal vertices have?
 - (v) How many bit strings of length 8 either start with a 0-bit or end with 01?
 - (vi) The following arithmetic expression is written in prefix notation. Please re-write it using infix notation. */93 + *24 76
- 2. True or false (2 % for each correct answer and -1 % for each wrong answer)
 - (a) Assume that a and p are positive integer greater than 1. If p is a prime, then $\alpha^{p-1} \equiv 1 \pmod{p}$.
 - (b) There exists an Euler path in the hypercube Q₃.
 - (c) The number of rationals in (0,1) is in infinite but is countable.
 - (d) $5^{222} \equiv 3 \pmod{11}$.
 - (e) " $\neg (\exists x \ f(x))$ " $\equiv "\forall x \ \neg f(x)$ ", where \neg stands for "not", \equiv for logical equivalence.
 - (f) Let P(x) and Q(x) be propositional functions. $\exists x ((P(x) \land Q(x)) \equiv (\exists x P(x) \land \exists x Q(x)).$
 - (g) The minimal number of colors needed for a coloring of plannar graphs is no more than 3.
 - (h) The relation R is not antisymmetric on S, where $R=\{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$ and $S=\{1,2,3,4\}$.
- 3. Pleae draw the Hasse Diagram of the poset ({1,2,4,5,10,15,20,30},\). (8%) Determine and explain whether this diagram is a lattice or not. (4%)

系所:資訊科學與工程學系

本科目不得使用計算機

本科目試題共2頁

Part II Linear Algebra

- 1. We say that two matrices A and B are similar if $A = SBS^{-1}$ for some invertible matrix S. For each of the following statements, indicate whether the statement is true or false, respectively (1 % each). If the statement is true, briefly state why. If the statement is false, give a counterexample or explain why (4 % each).
 - (a) If A and B are similar, then A and B have the same eigenvalues.
 - (b) If A and B are similar, then A 5I and B 5I are similar where I is the identity matrix.
 - (c) If A and B are similar, then A^T and B^T are similar.
 - (d) If A and B are similar, then AB and BA are similar.
 - (e) If A and B are similar, then A^2 and B^2 are similar.
 - (f) If A and A^{-1} are similar, then all the eigenvalues of A equal 1 or -1.
- 2. Let A be a 3×3 matrix having the characteristic equation $x^3 3x + 2 = 0$.
 - (a) True or false: A is diagonalizable. (1 %) Justify your answer. (4 %)
 - (b) True or false: A is noninvertible. (1 %)
 Justify your answer. (4 %)

3. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & -1 & 1 & 0 \\ 2 & 9 & 11 & 16 \end{bmatrix}$$
.

- (a) Give a condition on $b=\begin{bmatrix}\alpha\\\beta\\\gamma\end{bmatrix}$ such that Ax=b is solvable. (5 %)
- (b) Let $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Find the least square solution of the system Ax = b. (5 %)