MAT092: Remedial Course in Mathematics

Emon Hossain¹

¹Lecturer MNS department Brac University

Lecture-06

(University of Dhaka) 1/21

Notation and reminders

A function $f: A \to B$ means $\forall x \in A$ there exists a unique $y \in B$ with f(x) = y.

Inj (injective): $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

Surj (surjective): $\forall y \in B \ \exists x \in A \ \text{with} \ f(x) = y$.

Bij (bijective): both injective and surjective (equivalently invertible).

Always specify the domain and codomain.

(University of Dhaka) 2/21

(i) Function — Basic example (and rigorous justification)

Example (Basic). Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$.

(i) Function — Basic example (and rigorous justification)

Example (Basic). Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$.

<u>Justification</u>: For each $x \in \mathbb{R}$ the formula $x \mapsto x^2$ produces exactly one real number. Thus $\forall x \in \mathbb{R}$ there exists a unique $f(x) \in \mathbb{R}$. Hence f is a function.

(University of Dhaka) 3/21

(i) Function — Intermediate and hard examples

Example (Intermediate). $f: \{1,2,3\} \to \{a,b\}$ with f(1) = a, f(2) = a, f(3) = b.

(i) Function — Intermediate and hard examples

Example (Intermediate). $f: \{1,2,3\} \rightarrow \{a,b\}$ with

 $f(1) = a, \ f(2) = a, \ f(3) = b.$

<u>Justification:</u> Each element of the finite domain is assigned exactly one element of the codomain; repeats allowed. So f is a function.

Example (Hard). Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & x \in \mathbb{Q}, \\ -x & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

(University of Dhaka) 4/21

(i) Function — Intermediate and hard examples

Example (Intermediate). $f: \{1,2,3\} \rightarrow \{a,b\}$ with

$$f(1) = a$$
, $f(2) = a$, $f(3) = b$.

<u>Justification:</u> Each element of the finite domain is assigned exactly one element of the codomain; repeats allowed. So f is a function.

Example (Hard). Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & x \in \mathbb{Q}, \\ -x & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

<u>Justification</u>: For every real x the right-hand rule returns a single real number (either x or -x). Hence f is a well-defined function (uniqueness and totality hold).

(University of Dhaka) 4/21

(i) Function — Non-examples (rigorous reasons)

Non-example 1 (Basic). Relation $R \subset \mathbb{R} \times \mathbb{R}$ defined by xRy iff $y^2 = x$.

(University of Dhaka) 5/21

(i) Function — Non-examples (rigorous reasons)

Non-example 1 (Basic). Relation $R \subset \mathbb{R} \times \mathbb{R}$ defined by xRy iff $y^2 = x$. Reason: For x = 1 both y = 1 and y = -1 satisfy $y^2 = 1$. Uniqueness fails, so R is not a function.

(University of Dhaka) 5/21

(i) Function — Non-examples (rigorous reasons)

Non-example 1 (Basic). Relation $R \subset \mathbb{R} \times \mathbb{R}$ defined by xRy iff $y^2 = x$. Reason: For x = 1 both y = 1 and y = -1 satisfy $y^2 = 1$. Uniqueness fails, so R is not a function.

Non-example 2 (Intermediate). A "map" $g: \{1,2,3\} \rightarrow \{a,b\}$ with $g(1) = a, \ g(2) = b$ but g(3) undefined. Reason: Totality fails (some domain element has no image), so g is not a

<u>Reason:</u> Totality fails (some domain element has no image), so g is not a function.

(University of Dhaka) 5/21

Definition: Injective

 $f: A \rightarrow B$ is <u>injective</u> if

$$\forall x_1, x_2 \in A, \quad f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

Equivalently, distinct domain elements have distinct images.

(University of Dhaka) 6/21

(ii) Injective — Basic example with proof

Example (Basic). $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1.

(ii) Injective — Basic example with proof

Example (Basic). $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1.

<u>Proof:</u> Suppose $f(x_1) = f(x_2)$. Then $2x_1 + 1 = 2x_2 + 1$. Subtract 1: $2x_1 = 2x_2$. Divide by 2: $x_1 = x_2$. Thus f is injective.

(University of Dhaka) 7/21

(ii) Injective — Intermediate example with proof

Example (Intermediate). $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$.

(ii) Injective — Intermediate example with proof

Example (Intermediate). $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$.

Proof (order argument). For $x_1 < x_2$,

$$f(x_2) - f(x_1) = x_2^3 - x_1^3 = (x_2 - x_1)(x_2^2 + x_1x_2 + x_1^2).$$

Since $x_2 - x_1 > 0$ and $x_2^2 + x_1x_2 + x_1^2 > 0$ (the quadratic in x_2 has discriminant $-3x_1^2 \le 0$, so it never vanishes for unequal inputs), we get $f(x_2) - f(x_1) > 0$. Hence $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$, so f is strictly increasing and therefore injective.

(Alternatively: $x_1^3 = x_2^3 \Rightarrow x_1 = x_2$.)

(University of Dhaka) 8/21

(ii) Injective — Hard example with proof

Example (Hard). $f: \mathbb{R} \to (0, \infty)$ given by $f(x) = e^x$.

(ii) Injective — Hard example with proof

Example (Hard). $f: \mathbb{R} \to (0, \infty)$ given by $f(x) = e^x$.

<u>Proof:</u> If $e^{x_1} = e^{x_2}$, then $e^{x_1 - x_2} = 1$. Exponential function satisfies $e^t = 1 \iff t = 0$. Thus $x_1 - x_2 = 0 \Rightarrow x_1 = x_2$. Hence f is injective.

(University of Dhaka) 9/21

(ii) Injective — Non-examples (with counterexamples)

Non-example (Basic). $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$.

(ii) Injective — Non-examples (with counterexamples)

Non-example (Basic). $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$.

Counterexample: f(2) = 4 = f(-2) but $2 \neq -2$. So f is not injective on \mathbb{R} .

Remark: If we restrict the domain to $[0,\infty)$, then x^2 becomes injective on that domain.

(University of Dhaka) 10/21

Definition: Surjective

 $f: A \rightarrow B$ is surjective (onto) if

$$\forall y \in B \ \exists x \in A \quad f(x) = y.$$

Equivalently Im(f) = B.

(University of Dhaka) 11/21

(iii) Surjective — Basic example with proof

Example (Basic). Identity $f: \mathbb{R} \to \mathbb{R}$ with f(x) = x.

(iii) Surjective — Basic example with proof

Example (Basic). Identity $f: \mathbb{R} \to \mathbb{R}$ with f(x) = x.

<u>Proof:</u> For any $y \in \mathbb{R}$ choose x = y. Then f(x) = y. So f is surjective.

(University of Dhaka) 12/21

(iii) Surjective — Intermediate example with proof

Example (Intermediate). $f: \mathbb{R} \to [0, \infty)$ given by $f(x) = x^2$.

(University of Dhaka) 13 / 21

(iii) Surjective — Intermediate example with proof

Example (Intermediate). $f: \mathbb{R} \to [0, \infty)$ given by $f(x) = x^2$.

<u>Proof:</u> Let $y \in [0, \infty)$ be arbitrary. Choose $x = \sqrt{y}$ (if one prefers, either $+\sqrt{y}$ or $-\sqrt{y}$ works). Then $f(x) = x^2 = y$. Hence every $y \ge 0$ has a preimage, so f is surjective onto $[0, \infty)$.

(University of Dhaka) 13/21

(iii) Surjective — Hard example with proof

Example (Hard). $f: \mathbb{R} \to (0, \infty)$ defined by $f(x) = e^x$.

(iii) Surjective — Hard example with proof

Example (Hard). $f: \mathbb{R} \to (0, \infty)$ defined by $f(x) = e^x$.

<u>Proof:</u> Let $y \in (0, \infty)$. Take $x = \ln(y)$. Then $e^x = e^{\ln y} = y$. Thus every positive real has a preimage, so f is surjective onto $(0, \infty)$.

(University of Dhaka) 14/21

(iii) Surjective — Non-examples (with reason)

Non-example. $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$.

(iii) Surjective — Non-examples (with reason)

Non-example. $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$.

<u>Reason:</u> There exist codomain elements (e.g. -1) for which no $x \in \mathbb{R}$ satisfies $x^2 = -1$. Hence f is not surjective onto \mathbb{R} .

(University of Dhaka) 15 / 21

Definition: Bijective

 $f: A \rightarrow B$ is bijective iff it is both injective and surjective.

Equivalently: f has an inverse function $f^{-1} \colon B \to A$ with $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

(University of Dhaka) 16/21

(iv) Bijective — Basic and intermediate examples with proofs

Example (Basic). $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + 3.

(iv) Bijective — Basic and intermediate examples with proofs

Example (Basic). $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + 3.

<u>Proof:</u> Injective: $x_1 + 3 = x_2 + 3 \Rightarrow x_1 = x_2$. Surjective: for any $y \in \mathbb{R}$ choose x = y - 3 so f(x) = y. Therefore bijective; inverse $f^{-1}(y) = y - 3$.

Example (Intermediate). $f:(0,\infty)\to\mathbb{R}$ given by $f(x)=\ln(x)$.

(University of Dhaka) 17/21

(iv) Bijective — Basic and intermediate examples with proofs

Example (Basic). $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + 3.

<u>Proof:</u> Injective: $x_1 + 3 = x_2 + 3 \Rightarrow x_1 = x_2$. Surjective: for any $y \in \mathbb{R}$ choose x = y - 3 so f(x) = y. Therefore bijective; inverse $f^{-1}(y) = y - 3$.

Example (Intermediate). $f: (0,\infty) \to \mathbb{R}$ given by $f(x) = \ln(x)$. Proof: Injective: In is strictly increasing on $(0,\infty)$. Surjective: for any $y \in \mathbb{R}$ take $x = e^y$ (which lies in $(0,\infty)$); then $\ln(x) = y$. Thus $\ln(x) = y$.

(University of Dhaka) 17/21

(iv) Bijective — Hard example with proof

Example (Hard). tan: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$.

(iv) Bijective — Hard example with proof

Example (Hard). tan: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$.

<u>Proof sketch:</u> tan is continuous and strictly increasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Moreover.

$$\lim_{x\to -\pi/2^+}\tan x=-\infty, \qquad \lim_{x\to \pi/2^-}\tan x=+\infty.$$

By the intermediate value property and strict monotonicity, tan attains every real value exactly once on the interval. Hence tan is bijective onto \mathbb{R} ; inverse is arctan.

(University of Dhaka) 18/21

(iv) Bijective — Non-examples and fixes

Non-example 1. $f(x) = x^2$ as a map $\mathbb{R} \to \mathbb{R}$. Not injective (collisions) and not surjective (negatives missing).

(University of Dhaka)

(iv) Bijective — Non-examples and fixes

Non-example 1. $f(x) = x^2$ as a map $\mathbb{R} \to \mathbb{R}$. Not injective (collisions) and not surjective (negatives missing).

Fix: Restrict domain and codomain to $f:[0,\infty)\to[0,\infty)$ given by $f(x) = x^2$. This restricted map is bijective; inverse $f^{-1}(y) = \sqrt{y}$.

Non-example 2. $f(x) = e^x$ as $f: \mathbb{R} \to \mathbb{R}$. Injective but not surjective. Fix by changing codomain to $(0,\infty)$: $e^x : \mathbb{R} \to (0,\infty)$ is bijective.

19 / 21

Quick in-class exercises

Prove that $\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$ is injective and surjective.

Determine whether $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = n+1 is bijective. Find the inverse if it exists.

Decide injectivity/surjectivity of

$$f(x) = \begin{cases} x, & x \ge 0, \\ x+1, & x < 0, \end{cases}$$
 $f: \mathbb{R} \to \mathbb{R}.$

Give proofs or explicit counterexamples.

(University of Dhaka) 20 / 21

Takeaways (short)

Always state domain and codomain — injectivity and surjectivity depend on them.

Injective \Leftrightarrow no two domain elements map to the same codomain element.

Surjective \Leftrightarrow every codomain element is attained.

Bijective ⇔ invertible (has an inverse function).

(University of Dhaka) 21 / 21