Approximate Curve-Restricted Simplification of Polygonal Curves

Ali Gholami Rudi

Babol Noshirvani University of Technology

$$P' = \langle p'_1, \dots, p'_m \rangle$$
 is a simplification of $P = \langle p_1, \dots, p_n \rangle$ if:

- $\rho_1 = \rho'_1 \text{ and } \rho_n = \rho'_1$
- $m \leq n$
- $D(P, P') \leq \varepsilon$

Simplified Curve: ----

Vertex-restricted: for each i, $p'_i = p_j$ for some j.

Usually studied in two settings:

- Min- ε problem: m specified, minimize ε
- Min-# problem: ε fixed, minimize m

Simplified Curve: ----

Local/Global Error

The error between P and P': computed globally or locally.

- global: distance between whole curves
 - D(S, T): the distance between two curves
- local: max distance between corresponding sub-curves

$$E(P,P')=\max(D_1,D_2)$$

Distance measures: Fréchet or Hausdorff

Directed Hausdorff from S to T

$$H(S,T) = \max_{p \in S} dist(p,T)$$

Douglass and Peucker (1973)

- Recursively splits at the most distant vertex if $d > \varepsilon$
- Does not minimise m
- Time complexity improved to $O(n \log n)$

Imai and Iri (1988)

- Builds a shortcut graph
- Minimises m
- Time complexity improved to $O(n^2)$

Global undirected Hausdorff distance

Proved NP-Hard: van Kreveld et al. (2018)

Global directed Hausdorff from P' to P

- $O(n^4)$: van Kreveld et al. (2018)
- $O(n^2 \log n)$: van de Kerkhoff et al. (preprint; 2018)

Global Fréchet distance

- $O(mn^5)$: van Kreveld et al. (2018)
- $O(n^4)$: van de Kerkhof et al. (preprint; 2018)
- $O(n^3)$: Bringmann and Chaudhury (preprint; 2018)

Our Goal 9

- Min-#
- Curve-restricted simplification
- Local directed Hausdorff from P to P'

Global curve-rest. simp. for directed Hausdorff is NP-hard (Kerkhof, Kostitsyna, Löffler, Mirzanezhad, Wenk; 2018)

Lemma: intersecting the ε -neighbourhood of vertices

Lemma: If there is a link from $p_i p_{i+1}$ to $p_j p_{j+1}$, there exists another link, for which one of the following properties (next page) holds for at least two values of k for $i < k \le j$:

Lemma: If there is a link from $p_i p_{i+1}$ to $p_j p_{j+1}$, there exists another link, for which one of the following properties holds for at least two values of k for $i < k \le j$:

- It is a tangent to $N(p_k)$.
- It passes through the end points of $p_i p_{i+1}$ or $p_j p_{j+1}$ or their intersection with $N(p_k)$.

Algorithm for finding a link between $p_i p_{i+1}$ and $p_j p_{j+1}$:

- \blacksquare Try every pair of indices for k
- test if there is a link

Time complexity: $O(n^3)$.

Handling tangents: two parallel lines with distance ε

Def: A disjoint link chain (DLC) is a sequence of segments D:

- $p'_{2i-1}p_{2i}$ is a valid link
- p'_{2i} and p'_{2i+1} are on the same edge of P
- The vertices appear in order on P

From a DLC
$$D = \langle p_1' p_2', p_3' p_4', \cdots, p_{2k-1}' p_{2k}' \rangle$$

A simp. with 2k vertices can be obtained (if $p'_1 = p_1$)

Def: For curve $C = \langle p_1, p_2, \dots, p_m \rangle$,

- $FLP_k(C)$ is the first point on $p_{m-1}p_m$
- to which there is a DLC with k links.

 $\mathsf{FLP}_1(\langle p_1, \cdots, p_m \rangle)$ can be computed in $O(m^3)$

Dyn. Prog. for obtaining minimum link DLC:

$$F[i][j]$$
 is $FLP_j(\langle p_1, \dots, p_i \rangle)$

- $F[i][1] = FLP_1(\langle p_1, \dots, p_i \rangle)$
- $F[i][j] = \min_{1 \le k < i} FLP_1(\langle F[k][j-1], \rho_k, \dots, \rho_i \rangle)$

Time complexity: $O(n^6)$

Obtain a DLC using F[n][m]

 \blacksquare m is the largest index such that F[n][m] is filled

Induction: F[i][j] is filled iff:

■ A DLC with j links exists for $\langle p_1, \dots, p_i \rangle$

The DLC computed using DP: *D* with *k* links

- Simp. P' from D with 2k links
- An optimal curve-restricted simp.
 - Is also a DLC
 - Has no less than k links

- $O(n^6)$ is too slow
- Faster exact/approximate results
 - Introducing new vertices and using vertex-rest. algs.