

Sharif University of Technology Department of Computer Engineering

Embedded System Design

Communication

A. Ejlali

Distributed Embedded Systems

- Consist of several heterogeneous processing elements (PEs):
 - General-purpose processors (GPPs), Application specific instruction processor (ASIPs), ASICs, FPGAs, smart sensors, and smart actuators.
- These components are connected through an infrastructure of communication links (CLs).

Important Requirements

- Real-time behavior
 - Ethernet fail to meet this requirement
- Event driven communication
 - Polling based communication
 - Very predictable, suitable for real-time behavior
 - Unsuitable for emergency messages
- Scalability
 - New PEs can be added easily

CSMA/CD VS. CSMA/CA

CSMA/CD

- carrier-sense multiple access/collision detect
 - cannot be used when real-time constraints have to be met.

CSMA/CA

- Communication media are allocated to communication partners during arbitration phases, which follow communication phases.
- Suitable for Real-Time systems

Example: Controller Area Network (CAN)

- Developed in 1981 by Bosch and Intel for connecting controllers and peripherals.
- Popular in the automotive industry.
 - It allows the replacement of a large amount of wires by a single bus.
- CAN components are relatively cheap and are therefore also used in other areas such as smart homes.

CAN Properties

- Differential signaling with twisted pairs
- Arbitration using CSMA/CA
- Throughput between 10kbit/s and 1Mbit/s
- Low and high-priority signals
- Maximum latency of 134 µs for high priority signals
- Coding of signals similar to that of serial (RS-232) lines of PCs, with modifications for differential signaling.