Weakly Supervised Attention for Hashtag Recommendation using Graph Data

Amin Javari¹ Zhankui He² Zijie Huang³ Raj Jeetu¹ Kevin Chen-Chuan Chang¹

¹University of Illinois at Urbana-Champaign

²University of California San Diego

³University of California Los Angeles

April 22, 2020

Hashtag recommendation

- Overwhelming amount of microblogs are generated on websites like Twitter and Weibo.
- ► Hashtags are profoundly effective for labeling microblogs.
- However, a huge and dynamic pool of hashtags exists.
- Two perspectives of addressing the problem:
 - Hashtag recommendations for microbloggs
 - Hashtag recommendation for users.

Image: Twitter.com

Hashtag Recommendation for Users

How to build a user profile?

- Content based recommenders.
- Collaborative filtering based recommenders.

Only a small portion of users tend to generate content data.

Problem: How to recommend hashtags to a given user, in particular in the absence of sufficient content data?

Hashtag recommendation based on graph data

The problem can be approached by relying on graph data.

- Link data is more abundant than content data.
- A large portion of links can be regarded as interest-based links

Problem formulation

Inputs:

- ightharpoonup G(V, E): The user's directed connections
- ▶ $\mathbf{Y} \in \mathbb{R}^{M \times N}$: User-hashtag interaction matrix between the target set of users $U \subseteq V$ and the set of hashtags H

Task: Estimate the scores of unobserved entries in matrix **Y**.

PHAN: Model structure

Generalized Matrix Factorization (GMF) is used for relevance prediction.

$$\hat{\mathbf{y}}^{uh} = \sigma(\mathbf{W}^{\mathsf{T}}(\mathbf{h}^{\mathsf{h}} \odot \mathbf{u}^{uh}) + b)$$

- Hashtag embedding –
- User embedding -

Embedding hashtags

- Hashtags are not associated with any extra data but identities.
- Build a lookup table to embed hashtag.

How to embed users?

A trivial approach for user profiling using graph data

Profile a set of users based on their content/interaction data and then propagating their embeddings in the network.

- Efficiency: It is computationally expensive to propagate profiles in multiple iterations to a huge network like Twitter.
- Effectiveness: Such models build a fixed profile for each user.

Main idea: User profiling based on hub nodes

Key observation: Scale-freenes of microblogging networks.

Main Idea: Profile users based on the profiles of hub nodes.

- Hubness of a user indicates that the user represents a topic of interest.
- Hub nodes are associated with ample data.
- ► Hub nodes have low dynamic.

Selecting representative nodes

Hub nodes as user features:

- ▶ Given U and G = (V, E), the set of representative nodes $RN = \{r_1, r_2, ..., r_n\}$ is defined as nodes in V with at least L followers in U.
- RN_u is the representative followees of the user u
- ▶ *L* is decided by the size of *U*.

How to embed users based on hub nodes?

Design 1: Fixed embedding

Project the one-hot encoded vector to a fully connected dense embedding vector.

This trivial approach is oblivious to the target hashtag information.

Design 2: Embedding based on classic attention

Hashtags and representative nodes are projected into a shared latent space.

▶ If a user representative node *r* and uses hashtag *f*, it indicates proximity between *r* and *f*.

The embeddings of representative followees are aggregated in a weighted way.

Weights are determined based on the relevance of the representative nodes to the target hashtag.

Design 2: Embedding based on classic attention (continued)

Why classic attention does not generate accurate attention maps?

- The accuracy of the prediction model depends on the effectiveness of the attention model.
- Classically, the attention mechanism can be trained based on the final objective of the model.
- It is not quite effective for models with high complexity.
 - Overfitting issue
 - Vanishing gradient problem

Design 3: Embedding based on weakly supervised attention

Idea: Add supervision to the attention model.

Challenge: The labels of relevance for representative nodes and hashtags do not exist.

weak supervision: Generate weak labels for the relevance of nodes and hashtags by relying on statistical methods.

Co-occurrence based label $w_j^{uh} = P(j|h) = \frac{c(h,j)}{c(h)}$ Occurrence count of hashtag h

Informativeness based label

$$w_j^{uh} = \frac{c(h,j)}{c(h)} * \log \frac{c(j)}{c(h',j)}$$
 Occurrence count of node j occurrence count of node j in absence of hashtag h

Loss function

The joint loss function consist of tw

- The main loss function
- The attention based loss function

 λ is a trade-off setting.

Fusing content and graph data

Task: Find the relevance score between a hashtag h and a pair of text-followee list $< T_u, RN_u >$.

Encode text and followee data separately and then fuse them.

- Microblog-hashtag recommendation (MHR)
 - LSTM¹ is used to encode the single input microblog
- User-hashtag recommendation (UHR)
 - ► The memory model² is used to encode multiple microblogs.

¹Sepp Hochreiter et al. "Long Short-Term Memory". In: Neural Computation (1997).

²Haoran Huang et al. "Hashtag Recommendation Using End-To-End Memory Networks with Hierarchical Attention". In: *COLING*, 2016.

Experimental setting

Datasets

- ► Twitter³
- ▶ Weibo⁴

Statistics of the datasets.

Dataset	#Tweet	#Followees	#RN	#Hashtag	#User	Avg(# \mathbf{RN}_{user})
Twitter	217965	253818	9309	2873	23169	33.42
Weibo	10521	585475	8426	2017	7023	121.98

Metrics

- Hit Ratio (HR@K)
- Normalized Discounted Cumulative Gain (NDCG@K)

³https://www.kaggle.com/hwassner/TwitterFriends/home.

⁴https://www.aminer.cn/weibo-net-tweet.

Experiments: How effective is the proposed attention model?

The model's performance as a function of λ .

- Supervision improves the accuracy of the attention model
- \blacktriangleright Higher values of λ misled the model's objective function

Experiments: Performance of the proposed model for user-hashtag recommendation

	Twitter		Weibo	
Model	HR@10	NDCG@10	HR@10	NDCG@10
LDAR ⁵	18.74%	7.97%	15.96%	6.87%
LSTMR ⁶	23.14%	11.59%	39.47%	27.22%
MF ⁷	26.30%	14.98%	23.26%	12.29%
MNR ⁸	28.29%	17.00%	30.92%	20.75%
PHAN-FIXD	41.21%	24.33%	38.43%	24.78%
PHAN-CA	41.35%	24.25%	38.46%	24.83%
PHAN-SACO	42.79%	26.20%	40.45%	26.48%
PHAN-SAIN	43.73%	26.33%	42.06%	27.94%

- Representative nodes are informative for user profiling.
- PHAN with supervised attention outperforms the other variants of PHAN.

⁵Ralf Krestel et al. "Latent Dirichlet Allocation for Tag Recommendation". In: *RecSys.* 2009.

⁶Sepp Hochreiter et al. "Long Short-Term Memory". In: Neural Computation (1997).

⁷Hamidreza Alvari. "Twitter hashtag recommendation using matrix factorization". In: arXiv (2017).

⁸Haoran Huang et al. "Hashtag Recommendation Using End-To-End Memory Networks with Hierarchical Attention". In: *COLING*, 2016.

Experiments: Performance of the proposed model for microblog-hashtag recommendation

	Twitter		Weibo	
Model	HR@10	NDCG@10	HR@10	NDCG@10
LDAR	43.79%	22.03%	34.06%	27.43%
LSTMR	56.21%	38.31%	52.43%	35.47%
EmTaggeR ⁹	62.47%	49.69%	57.63%	44.09%
CNNAR ¹⁰	63.64%	49.48%	55.95%	43.71%
PHAN-FIXD	74.65%	55.76%	61.58%	51.40%
PHAN-CA	73.46%	53.79%	61.70%	51.42%
PHAN-SACO	74.64%	55.27%	63.41%	51.54%
PHAN-SAIN	77.57%	58.54%	65.31%	52.94%

⁹K. Dey et al. "EmTaggeR: A Word Embedding Based Novel Method for Hashtag Recommendation on Twitter". In: *ICDMW*, 2017.

¹⁰ Yuyun Gong and Qi Zhang. "Hashtag Recommendation Using Attention-based Convolutional Neural Network".
In: LICAL 2016

Thank you!