0.2: Sampling Distributions

Print view Index of pages

O Help

PART 1: HISTOGRAMS AND PROBABILITY DENSITY FUNCTIONS

Learning Objectives

- Know that a histogram is a graphical summary of quantitative data.
- Know how to read and interpret a histogram.
- Know how to describe the distribution of a histogram.
- Know how we can use the area under a histogram to estimate relevant proportions for our data.
- Know that a probability density function (pdf) is an approximation for the distribution of data.
- Know how to use the area under a pdf to estimate relevant proportions / probabilities for our data.
- Define the standard normal distribution.

Describe the general shape of the pdf of a normal distribution.

- Know how any normal distribution can be standardized to a normal distribution.

Video for Part 1

Learning Objectives

PART 2: POPULATION AND SAMPLES

Define nonu

Video for Part 2

- Define population and sample.
- Given a study, identify the population of interest and the sample.
 Define parameter and statistic.
- Know that we use a statistic, which is a known value, to estimate an unknown parameter.
- Know that statistics vary from sample to sample, but a parameter is a fixed value.
- Define the sampling distribution of a sample statistic.
- Know that variance of the sampling distribution of a sample statistic generally decreases as sample size increases.

State the sampling distribution of the sample mean. Know the circumstances that result in the sampling distribution of the sample mean to follow a normal distribution.

PART 3: SAMPLING DISTRIBUTION OF SAMPLE MEANS

Know the circumstances that result in the sampling distribution of the sample mean to follow a normal distribution. Know how to perform probability calculations associated with sample means when their sampling distribution can be

Learning Objectives

- approximated by a normal distribution.
- Know how to use R to obtain probabilities associated with a standard normal distribution.
- Video for Part 3

Next