

Image. xkcd comics - # 835

Data Mining: Classification: Part 4

Decision Trees

CS 4821 - CS 5831 - s24

Some slides adapted from P. Smyth; A. Moore, D. Klein Han, Kamber, Pei; Tan, Steinbach, Kumar; L. Kaebling; R. Tibshirani; T. Taylor; and L. Hannah

Decision Trees

Decision Trees

Decision Trees are one of the most popular and useful data mining method

Pros:

- can handle nominal, ordinal, and numeric inputs
- speed and scalability
- robustness to outliers and missing values
- intrepretability / visualization
- compactness of classification rules
- trees can be used for regression or classification
- very popular in industry

Cons

- several tuning parameters to set
- decision boundary is non-continuous
- instability in learning

Example 1: Decision Trees

Example 1b: Same Data, Different Tree

Decision Tree: Deduction

Test Set

Example 2: Apply Model to Test Data

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Example 2: Apply Model to Test Data

Decision Tree Induction

Decision Tree Induction

Test Set

Induction Methods

There are **many** Decision Tree (DT) induction algorithms:

- Hunt's Algorithm
- CART (Classification and Regression Trees)
- ID3, C4.5, C5.0, C5.5, ... (Quinlin, information gain)
- CHAID (CHi-squared Automatic Interaction Detection)
- MARS
- SLIQ, SPRINT
- ... and many more

Intuition:

Use attributes to split the data recursively, until each split contains only a single class.

Decision Tree Hyper-parameters

Recursive Partitioning Method Choices

How do we learn a tree from training data?

Answer: iterative greedy splitting

Basic strategy is a top-down, recursive, divide-and-conquer method

Questions:

- How to split the data among different attribute types?
- How to determine the best split?
 - Entropy / information gain: ID3 Iterative Dichotomiser 3, C4.5
 - Gini index: CART Classification and Regression Trees
 - Classification error
- When to stop splitting?

How to Split? Different Attribute Types

- Trees induction methods in theory can work on categorical and numeric data
- In practice R methods can work on categorical data, Python's sklearn does not currently support this.
 - Must use encoding in sklearn to support categorical attributes
- For categorical, can explore exponential number of ways to split the values

How to Split? Nominal Attributes

Multi-way split: use as many partitions as values/categories

 Binary Split: divide values into two subsets; need to find optimal partitioning

How to Split? Ordinal Attributes

 Divide values into two subsets; need to find optimal partitioning

• What about this split?

Splitting Continuous Variables

- Discretization to form an ordinal variable
 - Static discretize the data once at the beginning Ex. equal interval, equal frequency, etc.
 - Dynamic discretize during the tree construction Ex. for a binary split $(X_j \leq x')$ or $(X_j > x')$, consider all possible splits and select the best cut

How to Determine the Best Split?

- Greedy approach
 - Nodes with homogeneous class distributions are preferred
- Need a measure of node impurity

C0: 5 C1: 5	C0: 9 C1: 1	
Non-homogeneous, Ho	Homogeneous,	
High degree of impurity Lo	Low degree of impurity	

- Measures of Node Impurity
 - Entropy
 - GINI Index
 - Classification Error

How to Find the Best Split?

For some measure **M** of node purity:

Entropy

Suppose node m has k classes with probabilities of:

$$p_m = (p_{m,1}, p_{m,2}, \ldots, p_{m,k})$$
, where $p_{m,i}$ is the relative frequency of class i at node m

Ex. data with 3 classes, a node m could have $p_{m,1}=0.25$, $p_{m,2}=0.42$ and $p_{m,3}=0.33$

Entropy:
$$H(X_m) = -\sum_{i=1}^k p_{m,i} \log p_{m,i}$$

- Maximized when $p_{m,i}=\frac{1}{k}$ with value $\log k$ when records are equally distribution among all classes implying least information
- Minimized, 0, when one class has all records in it
- Minimizing entropy will favor *pure* nodes

Examples with computing Entropy

$$H(X_m) = -\sum_{i=1}^{k} p_{m,i} \log p_{m,i}$$

C1	0	
C2	6	

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Entropy = -(2/6) log_2(2/6) - (4/6) log_2(4/6) = 0.92$

General Splitting Framework

- Parent node m, with n_m records and $p_m = (p_{m,1}, p_{m,2}, \dots, p_{m,k})$ relative frequencies of classes
- Split into j new child nodes $(m_l)_{1 \le l \le j}$
- Each child node has n_l records and relative frequencies $(p_{m_l,1}, p_{m_l,2}, \ldots, p_{m_l,k})$.

Splitting based on Gain in Entropy

- Parent node m, with n_m records and Entropy $H(X_m)$ is to be split into j new child nodes $(m_l)_{1 \le l \le j}$
- Each child node, m_l , has n_l records and probs. $(p_{m_l,1}, p_{m_l,2}, \ldots, p_{m_l,k})$, and Entropy, $H(X_{m_l})$
- The gain in Entropy for this split is

$$Gain(X_m)_H = H(X_m) - \frac{\sum_{l=1}^{j} n_l H(X_{m_l})}{\sum_{l=1}^{j} n_l}$$

$$= H(X_m) - \left(\sum_{l=1}^{j} \frac{n_l}{n_m} H(X_{m_l})\right)$$

Ave. Entropy among m's children

- Select node with largest gain (reduction in Entropy, H)
- Used in ID3, C4.5, C5.0
- Disadvantage: tends to prefer splits that result in large number of partitions, each being small but pure

Splitting based on Gain Ratio

Gain Ratio

$$GainRatio = \frac{Gain(X_m)_H}{SplitInfo}; \quad SplitInfo = -\sum_{l=1}^{J} \frac{n_l}{n_m} \log \frac{n_l}{n_m}$$

- Node m split into j partitions, n_i is the number of records in partition i
- Adjusts Information Gain by the entropy of the partitioning (SplitInfo), higher entropy partitioning (large number of small partitions) is penalized
- Used in C4.5

GINI Index

Suppose there are k classes and node m has probabilities:

$$p_t = (p_{m,1}, p_{m,1}, \dots, p_{m,k})$$

$$GINI(X_m) = \sum_{(j,j')\in\{1,\dots,k\}: j\neq j'} p_{m,j} p_{m,j'} = 1 - \sum_{j=1}^k p_{m,j}^2$$

- Maximized when $p_{m,j}=\frac{1}{k}$ with value $1-\frac{1}{k}$ when records are equally distributed among all classes
- Minimized, 0, when all records belong to a single class
- Minimizing GINI will favor pure nodes

Examples with computing GINI Index

$$GINI(X_m) = 1 - \sum_{j=1}^{k} p_{m,j}^2$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Gini = 1 - $(1/6)^2$ - $(5/6)^2$ = 0.278

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Maximal impurity here is $\frac{1}{2} = 0.5$

Splitting based on GINI Index

- Parent node m, with n_m records is to be split into j new child nodes $(m_l)_{1 \le l \le j}$
- Each child node, m_l , has n_l records and probs. $(p_{m_l,1}, p_{m_l,2}, \ldots, p_{m_l,k})$, and GINIs, $GINI(X_{m_l})$
- The $GINI_Split$ (Average GINI over m's children):

$$GINI_{Split}(X_m) = \frac{\sum_{l=1}^{j} n_l GINI(X_{m_l})}{\sum_{l=1}^{j} n_l} = \sum_{l=1}^{j} \frac{n_l}{n_m} GINI(X_{m_l})$$

Average GINI index for each of the children nodes of m

Select node with smallest in GINI_{Split}

Splitting based on Gain of GINI Index

- Parent node m, with n_m records is to be split into j new child nodes $(m_l)_{1 < l < j}$
- Each child node, m_l , has n_l records and probs. $(p_{m_l,1}, p_{m_l,2}, \ldots, p_{m_l,k})$, and GINIs, $GINI(X_{m_l})$
- \bullet The gain in GINI is:

$$Gain(X_m)_{GINI} = GINI(X_m) - \sum_{l=1}^{j} \frac{n_l}{n_m} GINI(X_{m_l})$$
$$= GINI(X_m) - GINI_{SPLIT}(X_m)$$

- Select node with largest gain in GINI index
- Used in CART, SLIQ, SPRINT

Classification Error

Suppose there are k classes and node m has probabilities $p_m = (p_{m,1}, p_{m,2}, \dots, p_{m,k})$

$$MC(X_m) = 1 - \max_{i} p_{m,i}$$

- Maximized with value $1 \frac{1}{k}$ when records are equally distributed among all classes
- Minimized, 0, when all records belong to a single class
- ullet Not as smooth as GINI and H

Examples with computing MC

$$MC(X_m) = 1 - \max_{i} p_{m,i}$$

C1	0	
C2	6	

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Error = 1 - max(0, 1) = 1 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Error = 1 - max(2/6, 4/6) = 1 - 4/6 = 1/3$

Compare Splitting Criterion

For a 2-class problem

Comparing Splitting Criterion

The measures, in general, return good results where:

- Information gain (Entropy):
 - biased towards multi-valued attributes
- Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
- Gini index:
 - biased to multi-valued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that results in equal-sized partitions and purity in both partitions

Other Attribute Selection Methods

- CHAID: a popular decision tree algorithm, measure based on χ^2 test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistic: has a close approximation to χ^2 distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
 - CART: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

Stopping Criterion for Tree Induction

- Stopping Criterion
 - Stop expanding a node when all the records belong to the same class
 - Stop expanding a node when all records have same attribute values
 - Early termination to be discussed
- Tree depth
 - As trees get deeper, or if splits are multi-way the number of data points per leaf node drops very quickly
 - Trees that are too deep tend to overfit the data

Overfitting in Tree Induction

- How to avoid overfitting?
 - stopping rules (pre-pruning)
 - post-pruning

Hyper-parameters for Decision Tree Pruning

- Pre-pruning vs. post-pruning
- Pre-pruning (restrict tree growth):
 - max_depth
 - max_leaf_nodes
 - min_samples_split
 - min_impurity_decrease

Example: No Pruning

Example: $max_depth = 4$

Example: $max_leaf_nodes = 8$

Example: min_samples_split = 50

Cost Complexity Pruning

Cost complexity pruning: add penalty for tree size

- fully expand tree
- \bullet |T| is the number of terminal/leaf nodes
- want to find a subtree that minimizes $Cost(\alpha)$ for a fixed α

$$Cost(\alpha) = \sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

where R_m is the rectangle corresponding to the mth terminal node and \hat{y}_{R_m} is mean of training observations in R_m

Example: Pre- and Post-Pruning

Cost-complexity Pruning

Max Leaf Nodes (Grid Search)

Decision Trees Summary

Decision Trees are one of the most popular and useful data mining method

- Pros:
 - can handle nominal, ordinal, and numeric inputs
 - speed and scalability
 - robustness to outliers and missing values
 - intrepretability / visualization
 - compactness of classification rules
 - trees can be used for regression or classification
- Cons
 - several tuning parameters to set
 - decision boundary is non-continuous
 - instability of learning trees