Constraint Satisfaction

Jacky Baltes

Department of Computer Science University of Manitoba Email: jacky@cs.umanitoba.ca WWW:

http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/COMP_4190-

ArtificialIntelligence/current/index.php

ky Baltes

all 2007

Map Colouring

• Map with four colours

Jacky Raltes Fall

Map Colouring

- How many colours does it take to colour this map?
- Adjacent countries must have different colour
- Joined by a line (not a point)

Fall 2007

Constraint Satisfaction

- Does this work for any map?
- What is minimum colours needed to colour any map?
- Can we find an algorithm to colour the map?

lacky Baltes

Four Colour Theorem

- Francis Guthrie (1852) posed the question when colouring a map of English counties
- 1878 1976: Various "proofs" were published and (much) later proven to be incorrect.
- Appel and Haken (1976)

Poltos

Proof of the Four Colour Theorem (Outline)

- At some point no more countries can be removed
 - Let's call this a canonical map
- Calculate the set of all possible minimal maps
- Show that for any minimal map a four colouring exists

HOR WAR NTH

Proof of the Four Colour Theorem (Outline)

- Reducibility
 - Create a smaller problem and show that if the smaller problem can be solved, so can the larger one.
 - 633 configurations (Robertson et al)

E-11.00

Reducibility

• Can reduce regions iteratively from the

map

Jacky Baltes

Fall 2

Jacky Balte

Proof of the Four Colour Theorem (Outline)

- Part of the Appel-Haken proof uses a computer
 - 1476 different minimal maps/graphs
 - 300 "discharging rules"
- Generation gap
 - This is not a proof!
 - How do we check the computer part?
 - What can we learn from it?

. Dales

• Showed a counterexample to the 4 colour theorem (April 1, 1975)

• 1998 • Asky Balas Fall 2007

Map Colouring

 $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$

12007

Constraint satisfaction problem (CSP)

- A value needs to be assigned to each variable (node)
- No two adjacent nodes can have the same value
- Two nodes already have values

Fall 200

Constraint Satisfaction Problem Map Colouring

- Represent the map as a graph
 - Nodes are regions of the map
 - Edges between nodes indicate that two regions are adjacent
- Find an assignmens of colours to nodes such that no two adjacent nodes have the same colour

Formal definition of a CSP problem

```
A CSP is a triplet { V, D, C }. A CSP has a finite set of variables V = \{ V_1, V_2, V_4 \}.
```

Each variable may be assigned a value from a domain D of values. Each member of C is a pair. The first member of each pair is a set of variables. The second element is a set of legal values which that set may take.

· C may be represented explicitly or implicitly

Jacky Baltes Fall 2007

Constraint Graph

- Nodes are variables
- Constraints are edges

acky Baltes

11 2007

Cryptarithmetic Puzzles

T W O + T W O = F O U R

Can this be represented as a constraints satisfaction problem? How?

variables? domains? constraints?

Landau Dalean

Fall 2007

Cryptarithmetic Puzzles

T W O + T W O F O U R

 $\begin{array}{l} \mbox{Variables: } F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \\ \mbox{Domains: } \{0,1,2,3,4,5,6,7,8,9\} \\ \mbox{Constraints} \\ \mbox{all} \mbox{diff}(F,T,U,W,R,O) \\ O+O=R+10 \cdot X_1, \ \mbox{etc.} \end{array}$

Iacky Raltos

Fall 2007

Cryptarithmetic Puzzles

- SEND + MORE = MONEY
- How do humans solve this puzzle?
- M=1->S=8 or 9->

Inchy Baltes

Sudoku

• Each row, column, box must have the numbers from 1..9 in it exactly once

from 1...) in it exactly

• 9 Rows A..I

• 9 Columns 1..9

• Variables?

• Domains?

• Constraints?

Varieties of CSP

- · Discrete variables
 - Finite domains
 - Infinite domains
 - Linear constraints solvable, non-linear constraints are undecidable
- · Continuous variables
 - Linear constraints

ichu Raltos

Sudoku

Variables

- A1,A2,A3,...

• Domains

- {1..9}

Constraints

- A1,A2,A3,...A9=

 $-\{1,2,3,4,5,6,7,8,9\}$ or

- {2,1,3,4,5,...}...

				8	3	1		7
					$\boxed{4}$			9
			7	9			8	
6	3			2			4	1
9		2		4		5		6
$\boxed{4}$	5			7			9	2
	1			6	2			
7			8					
3		9	5	1				

Varieties of CSP

- Unary constraints: Only 1 variable affected
 - V1 = re
- · A binary CSP: each constraint relates at most two variables
 - V1 != V2
- Higher order (More than two variables)
 - Cryptoarithmetic constraints
 - Map colouring in general
- · Preferences (Soft constraints)
 - Red is better than blue
 - Implemented as cost function for value assignment

Jacky Baltes - But often more complex. More later

Real World CSP Problems

- Teaching assignments
- Timetabling
- Hardware configuration (VLSI layout)
- Logistics (transport scheduling)
- Job shop scheduling (Operations research)

ky Baltes

Fall 2007

Solving a CSP problem

- Search space
 - States: Partial assignment of values to variables
 - S1={V1=R,V2=G,V3=?,V4=R} ...
 - Initial State: S_Initial = {V1=?,V2=?,...Vn=?}
 - Goal State: All variables are assigned a value and all constraints are satisfied
 - Successor: {...,Vk=?,...} -> {...,Vk=R,...}
 - Cost function (for heuristic search): 0

Jacky Raltes

Fall 2007

Solving a CSP problem

- A CSP problem can be solved through search
- Definition of a search problem (Search space)
 - States
 - Successor function
 - Goal
- What are these in a CSP problem?

Jacky Baltes

Fall 2007

Solving a CSP problem (Exhaustive search)

START = $(V_1 =? V_2 =? V_3 =? V_4 =? V_5 =? V_6 =?)$ succs(START) =

 $(V_1=R \ V_2=? \ V_3=? \ V_4=? \ V_5=? \ V_6=?)$ $(V_1=G \ V_2=? \ V_3=? \ V_4=? \ V_5=? \ V_6=?)$ $(V_1=B \ V_2=? \ V_3=? \ V_4=? \ V_5=? \ V_6=?)$

- How many possible successor states for initial?
- Is the order of the assignment important?
- · What is the depth of the search tree?

Jacky Baltes

Solving a CSP problem (Exhaustive search)

START = $(V_1=? V_2=? V_3=? V_4=? V_5=? V_6=?)$ succs(START) =

 $(V_1=R \ V_2=? \ V_3=? \ V_4=? \ V_5=? \ V_6=?)$ $(V_1=G \ V_2=? \ V_3=? \ V_4=? \ V_5=? \ V_6=?)$ $(V_1=B \ V_2=? \ V_3=? \ V_4=? \ V_5=? \ V_6=?)$

- How many possible successor states for initial? 6 * 3 = 18
- Is the order of the assignment important? No

• What is the depth of the search tree? 6

Jacky Baltes

Fall 20

Solving a CSP problem

- Search strategy:
 - Breadth-first search
 - Depth first search
 - Beam search
 - A* search
 - IDA*

Raltos

Solving a CSP problem

• Total size of the state space: $3^6 = 729$

• Exhaustive search space:

- 18 * 15 * 12 * 9 * 6 * 3 = 524880

- Extremely inefficient (6!) 720 times larger

• Ordered search space: 729

• BUT: order is important if we use smarter search methods

les

Breadth First Search

- Show the execution of BFS on the sample problem
- Why is BFS not suitable for CSP problems?

Depth First Search

- Possibility of finding a solution quickly
- Trace the DFS algorithm on this problem. Assign values in the order B,G,R
- Looks pretty stupid, because it does not check constraints
- · Generate and Test algorithm
- · 6109 expanded nodes

- <B,?,?,?,?,?>
- <B,B,????>
- <B,B,B,???> Aaargghhh!!!
- •

Jacky Baltes

Fall 200

Backtracking Search

 $\begin{array}{l} \textbf{function Backtracking-Search}(\textit{csp}) \ \textbf{returns solution/failure} \\ \textbf{return Recursive-Backtracking}([], \textit{csp}) \end{array}$

function Recursive-Backtracking(assigned, csp) returns solution/failure if assigned is complete then return assigned

var ← SELECT-UNASSIGNED-VARIABLE (VARIABLES[csp], assigned, csp) for each value in ORDER-DOMAIN-VALUES(var, assigned, csp) do if value is consistent with assigned according to CONSTRAINTS[csp] then result ← RECURSIVE-BACKTRACKING([var = value] assigned], csp) if result ≠ failure then return result

 $\begin{array}{c} \mathbf{end} \\ \mathbf{return} \ failure \end{array}$

Raltos

Eall 2007

Backtracking Search Check Constraints

- · Obvious improvement
 - Backtrack if constraints are violated

- Trace the execution of Backtracking search
- 15 steps until it finds a solution
- Computational overhead?

Jacky Baltes

Fall 20

Backtracking Example

Fell 2007

Improving Backtracking

- What information can we use to make backtracking more efficient?
- How to speed up the general algorithm?

ky Raltee

Improving Backtracking

- The problem is when we backtrack!
 - Avoid backtracking
 - Smarter backtracking
- Implementation
 - Order of variables
 - Order of values
- · Break up into smaller problems

ooky Poltos

Fall 2007

Forward Checking

- Keep track of remaining values for all variables
- Backtrack if any variable has no more legal

WA NT Q NSW V SA T

Jacky Raltes

Fall 200

Forward Checking

- At the start, record the set of all legal values
- If you assign a variable, remove from all other nodes values that are now not legal anymore
- If a node's set of legal values becomes empty, then backtrack immediately
- Efficient way to check the constraints

Jacky Poltac

Fall 2007

Forward Checking

WA NT Q NSW V SA T

Inchy Bulton

Constraint Propagation

- Forward checking can not detect all failures
- May still need to backtrack
- NT and SA can not both be blue!

WA	NT	Q	NSW	v	SA	т

Jacky Raltes

Arc Consistency

- Simplest form makes arcs consistent
- X -> Y is consistent iff
 - for every value of X, there is some value of Y

v Baltes

1 2007

Arc Consistency

- Simplest form makes arcs consistent
- X -> Y is consistent iff
 - for every value of X, there is some value of Y

Arc Consistency

• If X looses a value, neighbors of X need to be rechecked

Jacky Raltes

Fall 2007

Arc Consistency

- Arc consistency detects failures earlier than forward checking
- Can be run as a preprocessor after each assignment

Arc Consistency Algorithm

function AC3(csp) returns the CSP, possibly with reduced domains local variables: queue, a queue of arcs, initially all the arcs in csp

loop while queue is not empty do $(X_i, X_j) \leftarrow \text{REMOVE-FRONT}(queue)$ if $\text{REMOVE-INCONSISTENT}(X_i, X_j)$ then for each X_k in $\text{NEIGHBORS}[X_i]$ do add (X_k, X_i) to queue

function REMOVE-INCONSISTENT(X_i, X_j) returns true iff we remove a value

loop for each x in $DOMAIN[X_i]$ do

if (x,y) satisfies the constraint for some value y in DOMAIN $[X_j]$

then delete x from DOMAIN[X_i]; $removed \leftarrow true$

acky Baltes

all 2007

Constraint Propagation Example 2

- · In this case, no backtracking. Not always this good
- · Constraint propagation can be done
 - Preprocessing
 - Dynamically, more expensive when backtracking

Constraint Propagation

- Forward checking creates the set of legal values only at the start
- Domain of variables are only updated if it is mentioned in a constraint directly
- Constraint propagation carries this further:
 - If you delete a value from the domain of a variable
 - Then propagate the change to all other variables

icky Baltes Fall 20

Graph Colouring and Constraint Propagation

- In graph colouring problems, CP is simple
- If a node has only one colour left, propagate this colour to all neighbors

PropagateColorAtNode(node,color)

- remove color from all of "available lists" of our uninstantiated neighbors.
- 2. If any of these neighbors gets the empty set, it's time to
- Foreach n in these neighbors: if n previously had two or more available colors but now has only one color c, run PropagateColorAtNode(n,c)

acky Baltes Fall

Constraint Propagation

 In general CSP problems, CP is more useful than just propagating if a variable was assigned a specific value

Jay Palea

General Constraint Propagation Algorithm General Constraint Propagation A denotes the current set of possible values for finished = FALSE while not finished sets may be changed by this call (they'll have one or more elements removed) finished = TRUE foreach constraint C Assume C concerns variables $V_1, V_2, ... V_k$ $Set NewA_{V1} = \{\}, NewA_{V2} = \{\}, ... NewA_{Vk} = \{\}$ Foreach assignment (V₁=x₁, V₂=x₂, ... V_k=x_k) in C If x_1 in A_{V1} and x_2 in A_{V2} and ... x_k in A_{Vk} Add x_1 to NewA_{V1} , x_2 to NewA_{V2} ,... x_k to NewA_{Vk} i = 1 , 2 ... k A_{Vi} := A_{Vi} intersection NewA_{Vi} We'll keep iterating until we do a full iteration in which none of the availability lists change. The finished' file gis just to record whether a change took place. 're toast. Break out with "Backtrack" signal.

General Constraint Propagation Algorithm General Constraint Propagation opagate(A₁, A₂,...A_n) finished = FALSE Specification: Takes a set of availability-lists for each and every node and uses all the while not finished finished = TRUE constraints to filter out impossible values that are currently in availability lists foreach constraint C Assume C concerns variables V_1 , V_2 ,... V_k Set NewA $_{V1}$ = {} , NewA $_{V2}$ = {} , ... NewA $_{Vk}$ = {} Foreach assignment (V₁=x₁, V₂=x₂, ... V_k=x_k) in C If x_1 in A_{V1} and x_2 in A_{V2} and ... x_k in A_{Vk} Add x_1 to NewA_{V1} , x_2 to NewA_{V2} ,... x_k to NewA_{V8} for i = 1 . 2 ... k $A_{vi} := A_{vi}$ intersection NewA_{vi} If A., was made smaller by that intersection finished = FALSE If A., is empty, we're toast, Break out with "Backtrack" signal Details on next slide

Semi-Magical Squares

- Rows and columns sum up to 6
- One diagonal sums up to 6
- How to represent the constraints?

V ₁	V ₂	V_3	This row must sum to 6
V_4	V_5	V ₆	This row must sum to 6
V ₇	V ₈	V_9	This row must sum to 6
This column must sum to 6	This column must sum to 6	This column must sum to 6	This diagonal must sum to 6

After all row and column constraints 23 23 123 123 This row must sum to 6 23 123 123 This row must sum to 6 This column This column This column This diagonal must sum to 6 must sum to 6 must sum to 6 must sum to 6

• What happens in the next iteration?

Next Iteration

1	23	23	This row must sum to 6
23	23 (12)	This row must sum to 6
23 (12)	23	This row must sum to 6
This column must sum to 6	This column must sum to 6	This column must sum to 6	This diagonal must sum to 6

- Constraints apply even if no variable is down to a single value
- Next iteration?

CSP Search with Constraint Propagation CSP Sea Specification: Find out if there's opagation any combination of values in the combination of the given availability lists that satisifes all CPSearch($A_1, A_2, ..., A_n$) Let i = lowest index such that A_i has more than one value foreach available value x in A₁ foreach k in 1, 2... n Define A₁ := A A' has committed to value x. Define $A'_k := A_{k-1}$ This call may prune away some values in some of the copied availability lists A':= { x } Call Propagate(A'₁, A'₂,... A'_n) The integration of the integrat Assuming that we terminate deep in the recursion if we find a solution, the CPSeach function only terminates normally if no

CSP Search with Constraint Propagation CSP Search with Constraint Propagation $$\begin{split} & \mathsf{CPSearch}(A_1,A_2,\dots A_n) \\ & \mathsf{Let} \, \mathsf{i} = \mathsf{lowest} \, \mathsf{index} \, \mathsf{such} \, \mathsf{that} \, A_i \mathsf{has} \, \mathsf{more} \, \mathsf{than} \, \mathsf{one} \, \mathsf{vallue} \, \mathsf{foreach} \, \mathsf{valimbia} \, \mathsf{value} \, \mathsf{x} \, \mathsf{in} \, A_i \\ & \mathsf{foreach} \, \mathsf{k} \, \mathsf{in} \, \mathsf{1}, 2 \dots \mathsf{n} \\ & \mathsf{Define} \, A_k^* := A_k \\ & A^* := I_k \mathsf{value} \, \mathsf{value}$$ $A'_i := \{x\}$ Call Propagate(A'₁, A'₂,...A'_n) If no "Backtrack" signal If A'_1 , A'_2 ,... A'_n are all unique we're done! Recursively Call CPSearch(A'_1 , A'_2 ,... A'_n)

Problem Structure

- Suppose each problem has c variables out of n total
- Worst case solution time is n/c * d^c
- Linear in n, very good
- E.g., n = 80, d = 2, c = 20
 - $-2^80 = 4$ billion years at 10 million nodes/sec.
 - $-4 * 2^20 = 0.4$ secs. at 10 million nodes/sec.

Problem Structure

- Tasmania and mainland are separate problems
- Identifiable as connected components of the constraint graph

Tree Structured CSPs

- Theorem: If the constraint graph has no loops then the CSP can be solved in O(n d^2) time
- General CSP: Worst case is O(d^n)
- This property also applies to logical and probabilistic reasoning: syntactic restrictions and the complexity of reasoning

sky Baltes Fa

acky Baltes

Tree Structured CSP

- Algorithm
 - Choose a variable as root
 - Order variables from root to leaves such that every nodes parent precedes it in the ordering
 - For j = n to 2, apply RemoveInconsistent(Parent(Xj), Xj)
 - For j = 1 to n, assign Xj consistent with Parent(Xj)

Jacky Baltes

Eall 2007

Nearly Tree Structured CSPs

Iacky Raltee

Fall 2007

Nearly Tree Structured CSP

- Conditioning: Instance a variable, prune its neighbors domains
- Cutset conditioning: Instantiate (in all ways) a set of variables in such a way that the remaining constraint graph is a tree
- Cutset size c -> runtime $O(d^c * (n-c)d^2)$
- Very fast for small c

Jacky Paltas

E-11 2007

Scheduling

- A very big, important use of CSP methods.
 - Used in many industries. Makes many multi-million dollar decisions.
 - Used extensively for space mission planning.
 - Military uses
- Problems with phenomenally huge state spaces. But for which solutions are needed very quickly.
- · Many kinds of scheduling problems e.g.:
 - Job shop: Discrete time; weird ordering of operations possible; set of separate jobs.
 - Batch shop: Discrete or continuous time; restricted operation of ordering; grouping is important.
 - Manufacturing cell: Discrete, automated version of open job shop.

Jacky Baltes

Job Shop Scheduling

- Make various products. Each product is a job
 - Job1: Make a polished thing with a hole.
 - Job2: Paint and drill a hole in a widget
- Each job requires several operations
 - Operations for Job1: polish, drill
 - Operations for Job2: paint, drill

Poltos

Job Shop Scheduling

- Order constraints
- Some of the operations have to be done in a specific order
 - Drill before you paint

Fall 200

Job Shop Scheduling

- Each operation needs several resources
- · Polishing needs
 - Polishing machine
 - Polishing expert Pat
- Drilling
 - Drilling machine
 - Pat or drill expert Dave

Jacky Baltes

E-11 2007

Formal Definition of a Job Shop

```
A Job Shop problem is a pair ( J , RES ) J is a set of jobs J = \{j_1, j_2, ..., j_n\} RES is a set of resources RES = \{R_1 ... R_n\}
```

Each job j_i is specified by:

- a set of operations O' = {O'₁ O'₂ ... O'_{n(l)}}
- and must be carried out between release-date rd_i and due-date dd_i.
- and a partial order of operations: (Oⁱ_i before Oⁱ_i), (Oⁱ_{i'} before Oⁱ_{i'}), etc...

Each operation O_i^l has a variable start time st_i^l and a fixed duration du_i^l and requires a set of resources. e.g.: O_i^l requires $\{R_{id}^l, R_{i2}^l, \ldots\}$.

Each resource can be accomplished by one of several possible physical resources, e.g. R'_{if} might be accomplished by any one of $\{r'_{ijt}$, r'_{ij2} , ...}. Each of the r'_{iijk} s are a member of RES.

Jacky Baltes

Job Shop Example

```
\begin{split} &j_1 = polished-hole-thing = \{ O_{1}^{1}, O_{2}^{1} \} \\ &j_2 = painted-hole-widget = \{ O_{2}^{2}, O_{2}^{2} \} \\ &RES = \{ \text{Pat,Chris,Drill,Paint,Drill,Polisher} \} \\ &O_{1}^{1} = polish-thing: need resources... \\ &\{ R_{11}^{1} = Pat, R_{12}^{1} = Polisher \} \\ &O_{2}^{1} = drill-thing: need resources... \\ &\{ R_{21}^{1} = (r_{211}^{1} = Pat \text{ or } r_{212}^{1} = Chris), R_{22}^{1} = Drill \} \\ &O_{1}^{2} = paint-widget: need resources... \\ &\{ R_{21}^{2} = Paint \} \\ &O_{2}^{2} = drill-widget: need resources... \\ &\{ R_{22}^{2} = (r_{211}^{2} = Pat \text{ or } r_{212}^{2} = Chris), R_{22}^{2} = Drill \} \\ &\text{Precedence constraints: } O_{2}^{2} \text{ before } O_{1}^{2}, \text{ All operations take one time unit } du_{1}^{i} \\ &= 1 \text{ forall } i, i. \text{ Both jobs have release-date } rd^{i} = 0 \text{ and due-date } dd^{i} = 1. \end{split}
```

JS Example

Example from [Sadeh and Fox, 96]: Norman M. Sadeh and Mark S. Fox, Variable and Value Ordering Heuristics for the Job Shop Scheduling Constraint Satisfaction Problem, Artificial Intelligence Journal, Number Vol 86, No1, pages 1-41, 1996. Available from citeseer.rj.nee.com/sadeh90e/arable.html

- · 4 jobs. 3 units each.
- Release date =0, Due date = 15

Release date =0, Due date = 13

Job Shop as a Constraint Satisfaction Problem

- How do we solve a JS problem?
- How do we represent it as a CSP?

Variables

- · The operation state times sti
- The resources Rⁱ_{ij} (usually these are obvious from the definition of O_j. Only need to be assigned values when there are alternative physical resources available, e.g. Pat or Chris for operating the drill).
 Constraints:
- Precedence constraints. (Some O's must be before some other O's).
- Capacity constraints. There must never be a pair of operations with overlapping periods of operation that use the same resources.

altes Fall 2007

CSP Heuristics

- Graph colouring with four colours
- Which node to colour first?

altes

CSP Heuristics: Variable ordering

- Most constrained variable first
- Most constraining variable first

Mag

Variable Ordering

• Most constrained variable

• Most constraining variable (tie-breaker)

E-11 200

Variable Ordering

• Least constraining variable

Jacky Raltos

Fall 2007

CSP Heuristics: Value ordering

• Least constrained value :- choose the value that causes the smallest reduction in the number of connected variables

Jacky Baltes

Sadeh and Fox General CSP Algorithm

(From Sadeh+Fox)

- If all values have been successfully assigned then stop, else go on to 2.
- Apply the consistency enforcing procedure (e.g. forward-checking if feeling computationally mean, or constraint propagation if extravagant. There are other possibilities, too.)
- If a deadend is detected then backtrack (simplest case: DFS-type backtrack. Other options can be tried, too). Else go on to step 4.
- Select the next variable to be assigned (using your variable ordering heuristic).
- 5. Select a promising value (using your value ordering heuristic).
- Create a new search state. Cache the info you need for backtracking. And go back to 1.
- Best methods for steps 2,3,4,5, and 6 depend on the domain

y Baltes

CSP and Reactive Methods

- Say you have built a large schedule.
- Disaster! Halfway through execution, one of the resources breaks down. We have to reschedule!
- Bad to have to wait 15 minutes for the scheduler to make a new suggestion.
- · Efficient schedule repair methods
- · Take possibility of breakdown into consideration from the start
 - Plans that are easy to fix
 - Soft constraints (Preferences)

Job Shop Example Consistency Enforcement

- Sadeh claims that generally forward-checking is better, computationally, than full constraint propagation. But it can be supplemented with a Job-shop specific trick.
- The precedence constraints (i.e. the available times for the operations to start due to the ordering of operations) can be computed exactly, given a partial schedule, very efficiently.

icky Baltes Fall 20

Other Approaches

- Local methods (e.g., Hill climbing, Tabu search)
- Genetic algorithms, ANN, Simulated Annealing

Jacky Baltes Fall 2007

4 Queens Problem

States: 4 queens in 4 columns ($4^4 = 256$ states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

cky Baltes Fall 20

Summary

- Map colouring and the four colour theorem
- Formal and informal definition of CSP problems
 - How to convert a problem into a CSP problem
- Backtracking search, forward checking, constraint propagation
- Job Shop scheduling as a CSP problem

Jacky Raites Fall 20

References

- · Four Colour Theorem:
 - http://www.math.gatech.edu/~thomas/FC/fourcolor.html
 - http://mathworld.wolfram.com/Four-ColorTheorem.html
- · Constraint satisfaction
 - Russel and Norvig, AI a Modern Approach, Chapter 5
 - Andrew Moore slides, www.cs.cmu.edu/~awm/tutorials (Many slides taken from his CSP presentation)

altes