112-1 Calculus Chapter_7.1 Homework 2023/12/22

學號:412770116 姓名:許嘉隆

請默寫下P.383 P.384的Standard Integral Form

Hyperbolic Functions

Standard Ingegral Forms

Constants, Powers	$1.\int k \cdot du = ku6 \cdot + C$	$2.\int u^r \cdot du = \begin{cases} \frac{u^{r+1}}{r+1} + C & , r \neq -1\\ \ln u + C & , r = -1 \end{cases}$
Exponentials	$3.\int e^u \cdot du = e^u + C$	$4. \int a^{u} \cdot du = a^{u} \cdot \frac{1}{\ln a} + C, \ a \neq 1, \ a > 0$
Trigonometric Functions	$5.\int \sin u \cdot du = -\cos u + C$	$6.\int \cos u \cdot du = \sin u + C$
	$7.\int \sec^2 u \cdot du = \tan u + C$	$8.\int \csc^2 u \cdot du = -\cot u + C (Remember \ minus \ sign)$
	$9.\int \sec u \tan u \cdot du = \sec u + C$	$10. \int \csc u \cot u \cdot du = \csc u + C (Remember minus sign)$
	$11.\int \tan u \cdot du = -\ln \cos u + C$	$12. \int \cot u \cdot du = \ln \sin u + C$
	$13.\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C$	$14. \int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C$
	$15.\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1}\left(\frac{ u }{a}\right) + C$	

 $16. \int \sinh u \cdot du = \cosh u + C \qquad \qquad 17. \int \cosh u \cdot du = \sinh u + C$