

Projets et Applications Musicales

Sound Recording and Audio Source Separation

Azal LE BAGOUSSE, Robin WENDLING, Jiale KANG

Supervisors: Benoit FABRE, Mathieu FONTAINE

M2 ATIAM 2024-2025

21, Feb, 2025

Problem statement

Suppose mixture follows additive hypothesis $\mathbf{x}_{ft} = \sum_{n=1}^{N} \mathbf{x}_{ftn} \in \mathbb{C}^{M}$

State Of the Art

Sound recording

Microphone techniques:

Coincident : MS Stereo

Near-coincident : ORTF, NOS

Spaced Microphone: Spaced omnis, spaced bidirectional...

Immersive: Optimized Cardioid Triangle (OCT), Ambisonic Microphones...

Techniques are selected based on what and where you want to record

Algorithms

- Independent Component Analysis (JADE/SOBI)
- Matrix factorisation methods (GaussMNMF, FastMNMF, ILRMA)
- Deep learning methods

DEMUCS

Non-negative matrix factorisation principle cr : Sawada 2013

See : **J.-F. Cardoso**, (1999)

See: Hiroshi Sawada et al, (2013)

See: T. Sekiguchi, (2020)

See: Ono. (2011)

Evaluation / Objective

Blind Source Separation Evaluation (BSS Eval), 2006

- Source-to-Distortion Ratio (SDR)
- Source-to-Interference Ratio (SIR)
- Sources-to-Artifacts Ratio (SAR)

Perceptual Evaluation methods for Audio Source Separation (PEASS), 2011

- Perceptually motivated assessment
- Integrate auditory models

Fréchet Audio Distance (FAD), 2019

- Need large database of studio recorded audio
- A distance

Evaluation / Subjective

Methods

Recording session

Legend Saxophone Bass Piano Singer Conga Cardioid microphone Bidirectional microphone Omnidirectional microphone Bar of 4 cardioid microphones Soundfield Microphone

Configuration of the recording of Schubert trio

Configuration of the recording of the jazz quartet

Recording session

Table: Microphone details for instruments and mixture microphones

Instrument	Microphone Model	Directivity
Clarinet (Classical)	AT4050	Cardioid
Violin (Classical)	AT4050	Cardioid
Piano (Classical)	DPA 4007	Omnidirectional
Conga (Jazz)	DPA 4007	Omnidirectional
Bass (Jazz)	DPA 4007	Omnidirectional
Piano (Jazz)	AT4050	Cardioid
Alto Sax (Jazz)	AT4050	Bidirectional
Mixture Microphones		
4 microphones bar	2 Schoeps MK4 (center), 2 DPA 4011 (ext)
Additionnal microphone	Soundfield	
Room Microphone		
Omnidirectional	DPA 4007	

Auxiliary microphone (sax)

Soundfield microphone

Bar holding the 4 cardioid microphones for mixture recording

Gaussian MNMF

- NMF extension to multichannel audio
- Local gaussian model

$$\mathbf{x}_{ftn} \sim \mathcal{N}_{\mathbb{C}} \Big(0, \, \lambda_{ftn} \, \mathbf{G}_{nf} \Big) \qquad \lambda_{ftn} = \sum_{k=1}^K w_{nkf} \, h_{nkt}$$

- ullet Power spectral density λ_{ftn}
- Spatial covariance matrix G_{nf}
- Multichannel Wiener filter

ILRMA

$$\mathbf{x}_{ftn} \sim \mathcal{N}_{\mathbb{C}} \Big(0, \, \lambda_{ftn} \, \mathbf{G}_{nf} \Big)$$

$$\lambda_{ftn} = \sum_{k=1}^K w_{nkf} \, h_{nkt}$$

Joint diagonalization for covariance matrices
 = common diagonalizer Qf for each freq bin

$$\mathbf{G}_{nf} = \mathbf{Q}_f^{-1}\operatorname{Diag}(ilde{\mathbf{g}}_n)\,\mathbf{Q}_f^{-H}, \quad orall\, n,$$

Frequency-invariant spatial parameters

$$ilde{\mathbf{g}}_n = [g_{n1}, g_{n2}, \ldots, g_{nM}]$$

$$\mathbf{x}_{ftn} \sim \mathcal{N}_{\mathbb{C}}\Big(0,\, \lambda_{ftn}\, \mathbf{a}_{nf} \mathbf{a}_{nf}^{\mathsf{H}}\Big),$$

$$\lambda_{ftn} = \sum_{k=1}^K w_{nkf} \, h_{nkt}$$

- Rank-1 spatial covariance model
- Controlled/less reverberant spaces

Deep learning models

DEMUCS

- Both time and frequency domain
- U-Net, Transformer
- 4-layer Encoder * 2 (T / F)
- 4-layer Decoder * 2 (T / F)

MUSDB18-hq, 10 hrs music tracks

Spleeter (commercial)

- U-Net
- 6-layer Encoder
- 6-layer Decoder

vocals / drums / bass / piano / others
Bean (private dataset), **79** hrs music

mainly pop and rock music

Evaluation / BSS Eval

Suppose:

acceptable deformation of the true source interference from other undesired source noise from source noise from algorithm

observed signal

Then:

SDR = overall quality of the separated sourceSIR = suppression of undesired sources in the separated signalSAR = amount of additional noise introduced by the separation process

Evaluation / MUSHRA

MUSHRA test example (how to use)

Results & Discussion

Comparison between algorithms

3 days / 53 participants / 1/3 Female, 2/3 Male / 19-62 yo

Statistics for Jazz Configuration in MUSHRA evaluation, normalized from 0 to 100

Jazz piano separation results

Influence of genres and input

Statistics for Jazz Configuration in MUSHRA evaluation, normalized from 0 to 100

Statistics for Classical Configuration in MUSHRA evaluation, normalized from 0 to 100

Inputs: Auxiliary Microphones / 4-cardioid-bar / Soundfield recordings Best results = stack of auxiliary microphones [MUSHRA tracks input = 4-cardioid + room microphone]

Objective vs. Subjective evaluation

Polar graph of the objective metrics

Table 3: Objective metric results for the jazz reconstruction

Algorithm/Metric	SDR (dB)	SIR (dB)	SAR (dB)
GaussMNMF	-9.6	22.1	-9.5
FastMNMF2	-4.6	26.0	-4.6
ILRMA	-15.0	16.3	-14.9
Demucs	0.4	30.8	0.4
Spleeter	11.9	41.3	11.9

Conclusion

Conclusion

Key factors affecting performance:

- Playing techniques: avoiding homorhythmic, electronic instruments;
- Recording conditions: microphone placement and instruments spacing influence leakage;
- Reverb effects: highly reverberant environment introduce longer decay.

Optimizing strategies:

- Auxiliary and directional microphones -> pre-isolate sources;
- Dictionary: map spectrogram to basis matrix -> MNMF based algorithms;
- Training on common stem dataset -> deep learning models;

Thank you!

Jazz configuration at CRR 93

Classical configuration at CRR 93

Project website with all results:

https://kjle.github.io/PAM-Music-Source-Separation/

References

- E. Vincent, R. Gribonval, and C. Fevotte. "Performance measurement in blind audio source separation". In: *IEEE Transactions on Audio, Speech, and Language Processing 14.4 (2006)*, pp. 1462–1469.
- Michael Schoeffler et al. "webMUSHRA A Comprehensive Framework for Web-based Listening Tests". In: *Journal of Open Research Software* (Feb. 2018).
- Romain Hennequin et al. "Spleeter: a fast and efficient music source separation tool with pre-trained models". In: *Journal of Open Source Software 5.50 (2020)*, p. 2154.
- A. Défossez et al. Demucs: Deep Extractor for Music Sources. 2019. arXiv: 1911 . 13254 [cs.SD].
- Kouhei Sekiguchi et al. "Fast Multichannel Nonnegative Matrix Factorization With Directivity-Aware Jointly-Diagonalizable Spatial Covariance Matrices for Blind Source Separation". In: *IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020)*, pp. 2610–2625.
- Hiroshi Sawada et al. "Multichannel Extensions of Nonnegative Matrix Factorization". In: *IEEE/ACM Transactions on Audio, Speech, and Language Processing 21.4 (2013)*, pp. 750–762.
- A. Ozerov and C. Févotte. "Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation". In: *IEEE Transactions on Audio, Speech, and Language Processing 18.3 (2010)*, pp. 550–563.
- George T ZANETAKIS Erika RUMBOLD and Bryan PARDO. "CORRELATIONS BETWEEN OBJECTIVE AND SUBJECTIVE EVALUATIONS OF MUSIC SOURCE SEPARATION". In: *SMC 2024 Book (2024)*, pp. 538–545. doi: 10 . 5281 / zenodo . 13918961.
- Niklas HARLANDER Valentin EMIYA Emmanuel VINCENT and Volker HOHMANN. "Subjective and objective quality assessment of audio source separation". In: *IEEE Transactions on Audio, Speech and Language Processing 19 (2011)*, pp. 2046–2057. doi: 10.1109/TASL.2011.2109381.

Appendices

STEREO PICKUP SYSTEMS	MICROPHONE TYPES	MICROPHONE POSITIONS	
K-A	2 - CARDIOID	AXES OF MAXIMUM RESPONSE AT 135° SPACING: COINCIDENT	5.10
ORTF (FRENCH BROADCASTING ORGANIZATION)	2 - CARDIOID	Axes of Maximum Response at 110° Spacing: Mear- Coincident (7 in.)	33.0°
NOS (DUTCH BROADCASTING FOUNDATION)	2 - CARDIOID	AXES OF MAXIMUM RESPONSE AT 90° SPACING: NEAR- COINCIDENT (12 IN.)	100 mm -1
MS (MID-SIDE)	1 - CARDIOID 1 - BIDIRECTIONAL	CARDIOID FORWARD- POINTED; BIDIRECTIONAL SIDE-POINTED; SPACING: COINCIDENT	SIDNRECTIONAL— Leases (10)
SPACED	2 - CARDIOID OR 2 - OMNIDIRECTIONAL	ANGLE AS DESIRED SPACING: 3-10 FT.	310 R

<u>Figure A1 : Different kinds of microphone techniques</u> <u>for sound recording</u>

Appendices

Figure A2: NMF method

spectrogram ≅ basis × activation