Discrete Event Simulation: Queues and Servers

Descripción del modelo

Este modelo simula un sistema de **colas M/M/n**, donde los clientes llegan y esperan en una cola hasta que uno de los servidores esté disponible para atenderlos. El número de servidores (hasta 10) y las tasas de llegada y servicio de los clientes son configurables. El modelo permite recopilar estadísticas agregadas sobre el tiempo promedio en la cola y en el sistema.

Propósito del modelo

El propósito del modelo es analizar el comportamiento de un sistema de colas y servidores, midiendo cómo factores como el número de servidores o la tasa de llegada afectan el tiempo de espera de los clientes.

Tipos de agentes

- 1. Clientes (customers): Los clientes son las entidades que llegan al sistema y esperan en la cola para ser atendidos. Cada cliente registra su tiempo de llegada y el tiempo en que comienza el servicio.
- 2. **Servidores (servers)**: Los servidores atienden a los clientes en orden de llegada. Cada servidor registra el cliente que está atendiendo y el tiempo estimado para finalizar el servicio.

Propiedades de los agentes

Propiedades de los clientes (customers):

- time-entered-queue: Tiempo en que el cliente ingresó al sistema (cola).
- **time-entered-service**: Tiempo en que el cliente comenzó a ser atendido por un servidor.

Propiedades de los servidores (servers):

• customer-being-served: El cliente que el servidor está atendiendo.

 service-completion-time: Tiempo estimado de finalización del servicio para el cliente actual.

Dinámica del modelo

- Los clientes llegan al sistema a intervalos de tiempo definidos por una tasa de llegada (lambda). Cuando llegan, entran a una cola si no hay servidores disponibles.
- Si hay un servidor disponible, el cliente pasa directamente a ser atendido.
- Los servidores atienden a los clientes en el orden en que llegaron (primero en entrar, primero en ser servido). Cada cliente tiene un tiempo de servicio, tras el cual el servidor se libera y puede atender a otro cliente.
- Las estadísticas sobre el tiempo que los clientes pasan en la cola y en el sistema completo se recopilan para calcular promedios.

Parámetros del modelo

- Número de servidores (n): Puedes configurar hasta 10 servidores.
- Tasa de llegada (lambda): Define el intervalo de tiempo entre la llegada de clientes al sistema.
- Tasa de servicio (mu): Determina cuánto tiempo tarda cada servidor en atender a un cliente.

Estadísticas y gráficos

El modelo recopila las siguientes estadísticas:

- **Tiempo promedio en la cola**: El tiempo que los clientes esperan en la cola antes de ser atendidos.
- **Tiempo promedio en el sistema**: El tiempo total que los clientes pasan en el sistema (cola + servicio).
- **Número de clientes en la cola**: La cantidad de clientes que esperan para ser atendidos en un momento dado.

Estas estadísticas se visualizan en gráficos a lo largo del tiempo, lo que permite observar el comportamiento del sistema bajo diferentes configuraciones.

Promedio y Probabilidades

Vamos a calcular el promedio y probabilidad que nos daría la simulación mediante ecuaciones para comparar los resultados y ver si la simulación nos da respuesta correctas o si hay un cambio en los resultados que dio la simulación a los que debería de dar con la ecuación. Para encontrar las ecuaciones seguimos la siguiente lógica de la simulación con su tasa de cambio y tasa de servicio.

 N_s

 $T_s = {\it Tiempo}$ en el Sistema

 $T_q = \text{Tiempo en Cola}$

 $N_q=$ Tamaño de la Cola

 $\lambda=$ tasa de cambio

 $\mu=$ tasa de servicio

 $K=\,$ tamaño de la cola

Estado	Tasa Sale	Tasa Entra	$\lambda P_0 = \mu P_1$
0	λP_0	μP_1	$P_1=rac{\lambda}{\mu}P_0$
1	$\lambda P_1 + \mu P_1$	$\lambda P_0 + \mu P_2$	$\lambda P_1 \mu P_1 = \lambda P_0 + \mu P_2$
2	$\lambda P_2 + \mu P_2$	$\lambda P_1 + \mu P_3$	$P_1(\lambda+\mu)=\lambda P_0+\mu P_1$
3	$\lambda P_3 + \mu P_3$	$\lambda P_2 + \mu P_4$	$rac{\lambda P_0}{\mu}(\lambda+\mu)=\lambda P_0+\mu P_2$
••••		•••	$rac{\lambda^2 P_0}{\mu} + \lambda P_0 = \lambda P_0 + \mu P_2$
n	$\lambda P_n + \mu P_n$	λP_{n-1}	$rac{\lambda^2 P_0}{\mu} = \mu P_2 ; P_2 = (rac{\lambda}{\mu})^2 P_0$

Encontramos las ecuaciones para saber cuanto vale ${\cal P}_n$

Ecuaciones:

$$P_n = (rac{\lambda}{\mu})^n P_0$$

$$\sum_{n=0}^K (rac{\lambda}{\mu})^n P_0 = 1$$

$$P_0 = rac{1}{\sum_{n=0}^K (rac{\lambda}{\mu})^n}$$

$$P_0 = rac{1}{rac{(rac{\lambda}{\mu})^{k+1} - 1}{(\lambda\mu) - 1}}$$

$$P_0 = rac{(rac{\lambda}{\mu})-1}{(\lambda\mu)^{k+1}-1} \ P_n = rac{(rac{\lambda}{\mu})^n(rac{\lambda}{\mu})-1}{[(\lambda\mu)^{k+1}-1]} \ \sum_{n=0}^K x^n = rac{-x^{k+1}x-1}{x-1} \ N_{(s)} = \sum_{n=0}^K P_n * n \ N_{(s)} = \sum_{n=0}^K rac{(rac{\lambda}{\mu})^k(rac{\lambda}{\mu}-1)}{[(rac{\lambda}{\mu})^{k+1}-1]} * n$$

Terminar la ecuación $N_{(s)}$ para encontrar la ecuación final de $N_{(s)}$ y así poder encontrar T_s, T_q, N_q .

$$egin{aligned} N_{(s)} &= \sum_{n=0}^K rac{n((rac{\lambda}{\mu}-1)(rac{\lambda}{\mu})^K)}{(rac{\lambda}{\mu})^{K+1}-1} \ N_{(s)} &= rac{K(K+1)((rac{\lambda}{\mu})-1)(rac{\lambda}{\mu})^K}{2((rac{\lambda}{\mu})^{K+1}-1)} \ T_s &= N_{(s)}*\lambda \ T_q &= T_s - rac{1}{\mu} \ N_q &= rac{T_s}{\lambda} \end{aligned}$$

Ya con las ecuaciones vamos a encontrarlos siguientes valores y compararlos con la simulacion

Lambda (λ) Mayor a Mu (μ)

Elegimos un valor para Lambda (λ) que sea mayor a Mu (μ) , pero el Mu (μ) debe estar en la misma unidad que Lambda (λ) con lo cual usamos la siguiente formula para encontrar Mu final (μ_{final}) :

$$\mu_{final} = rac{1}{\mu}$$

$$\lambda = 1 \quad \mu = 1.50 \quad \mu_{\mathrm{final}} = 0.67$$

Teorico

$$egin{aligned} N_{(s)} &= rac{1000(1000+1)((rac{1}{0.67})-1)(rac{1}{0.67})^{1000}}{2((rac{1}{0.67})^{1000+1}-1)} &
ightarrow N_{(s)} = 165, 165 \ &T_{(s)} = 165, 165 * 1 &
ightarrow T_{(s)} = 165, 165 \ &T_{(q)} = 165, 165 - rac{1}{0.67} &
ightarrow T_{(q)} = 165, 163.5074 \cdots \ &N_{(q)} = rac{165, 165}{1} &
ightarrow N_{(q)} = 165, 165 \end{aligned}$$

Simulado

Intento	$N_{(q)}$	$T_{(q)}$	$T_{(s)}$
1	184.784	162.966	164.141
2	151.106	147.059	148.232
3	131.014	139.427	140.681
4	155.601	158.691	159.914
5	138.453	140.614	141.826
6	162.033	153.947	155.201
7	85.801	88.218	89.937
8	176.517	171.619	172.861
9	155.375	165.101	166.382
10	151.393	149.057	150.271
Promedio	149.208	147.665	148.895

Lambda (λ) menor a Mu (μ)

Elegimos un valor para Lambda (λ) que sea menor a Mu (μ)

$$\lambda = 0.20 \quad \mu = 3 \quad \mu_{ ext{final}} = 0.33$$

Teorico

$$egin{aligned} N_{(s)} &= rac{1000(1000+1)((rac{0.2}{0.33})-1)(rac{0.2}{0.33})^{1000}}{2((rac{0.2}{0.33})^{1000+1}-1)} &
ightarrow N_{(s)} = 6.46978 imes 10^{-213} \ & T_{(s)} = 6.46978 imes 10^{-213} * 0.2 &
ightarrow T_{(s)} = 1.293956 imes 10^{-213} \ & T_{(q)} = (1.293956 imes 10^{-213}) - rac{1}{0.33} &
ightarrow T_{(q)} = -3.0303 \cdots \ & N_{(q)} = rac{(1.293956 imes 10^{-213})}{0.2} &
ightarrow N_{(q)} = 6.46978 imes 10^{-213} \end{aligned}$$

Simulado

Intento	$N_{(q)}$	$T_{(q)}$	$T_{(s)}$
1	1.722	8.422	11.482
2	0.624	3.762	7.033
3	0.763	4.146	7.069

Intento	$N_{(q)}$	$T_{(q)}$	$T_{(s)}$
4	0.61	3.208	6.079
5	1.002	5.011	7.996
6	0.662	3.127	5.834
7	1.531	6.749	9.946
8	1.757	8.133	11.258
9	0.851	4.411	7.722
10	0.497	2.759	5.963
Promedio	1.0019	4.9728	8.0382

Lambda (λ) igual a Mu (μ)

Elegimos un valor para Lambda (λ) que sea mayor a Mu (μ) , escogimos un valor igual antes de convertir mu que en este caso es 2, porque al ser ambos iguales la ecuaciones teoricas quedan indeterminantes con lo cual no se pueden calcular.

$$\lambda=2$$
 $\mu=2$ $\mu_{
m final}=0.50$

Teorico

$$N_{(s)} = rac{1000(1000+1)((rac{2}{0.5})-1)(rac{2}{0.5})^{1000}}{2((rac{2}{0.5})^{1000+1}-1)}
ightarrow N_{(s)} = 375,375$$

$$egin{align} T_{(s)} &= 375,375*2 & o T_{(s)} &= 750,750 \ & \ T_{(q)} &= 750,750 - rac{1}{0.5} & o T_{(q)} &= 750,748 \ & \ N_{(q)} &= rac{750,748}{2} & o N_{(q)} &= 375,375 \ \end{array}$$

Simulado

Intento	$N_{(q)}$	$T_{(q)}$	$T_{(s)}$
1	762.878	381.642	382.93
2	772.328	372.291	373.553
3	757.528	362.112	363.362
4	751.127	383.401	384.663
5	714.532	380.418	381.739
6	795.513	387.231	388.614
7	746.151	376.756	377.953
8	764.686	398.792	400.119
9	777.959	402.741	404.297
10	754.027	381.697	382.96
Promedio	759.6729	382.7281	384.019

Conclusión:

Se realizó una simulación de un sistema de colas M/M/n, donde se compararon los resultados teóricos y simulados para analizar el comportamiento del sistema. Los resultados mostraron una coherencia general, pero se encontraron diferencias en las escalas de los valores teóricos y simulados. Estas discrepancias probablemente se deben a diferencias en las unidades de tiempo utilizadas o a pequeños errores de precisión en la simulación.

A lo largo del proceso, se aprendió que la correcta configuración de parámetros, como las tasas de llegada (λ \lambda λ) y servicio (μ \mu μ), es fundamental para obtener resultados consistentes. También se evidenció la importancia de tener en cuenta la aleatoriedad en las simulaciones.

El trabajo permitió reforzar el entendimiento del funcionamiento de los sistemas de colas y su aplicación en la simulación de eventos discretos.