DDV

Les ptits devoirs de vacances

Xavier Pessoles

1 Petits exercices de méca sur les chaînes ouvertes – RT

Exercice 1 - Mouvement RT *

B2-12

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4} \operatorname{rad} \operatorname{et} \lambda(t) = 20 \, \mathrm{mm}.$

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir 6.

Exercice 2 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 7.

Exercice 3 - Mouvement RT *

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $\overline{V(B,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overrightarrow{V(B,2/0)}$ par composition.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\$ au point B.

Question 4 *Déterminer* $\Gamma(B, 2/0)$.

Xavier Pessoles 1

Indications:

1.
$$\overline{V(B,2/0)} = \dot{\lambda}(t)\overline{i_1} + \lambda(t)\dot{\theta}(t)\overline{j_1}$$
.

2. $\overline{V(B,2/0)} = \dot{\lambda}(t)\overline{i_1} + \lambda(t)\dot{\theta}(t)\overline{j_1}$.

3. $\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta}(t)\overline{k_0} \\ \dot{\lambda}(t)\overline{i_1} + \lambda(t)\dot{\theta}(t)\overline{j_1} \end{array} \right\}_B$.

4. $\overline{\Gamma(B,2/0)} = \left\{ \begin{array}{l} \dot{\beta}(t)\overline{k_0} \\ \dot{\lambda}(t)\overline{i_1} + \lambda(t)\dot{\theta}(t)\overline{j_1} \end{array} \right\}_B$.

($\dot{\lambda}(t)\dot{\theta}(t) + \dot{\lambda}(t)\dot{\theta}(t)\overline{j_1}$.

Corrigé voir 8.

chacun des actionneurs pour maintenir le mécanisme en équilibre.

Question 5 Proposer une démarche permettant de déterminer les efforts inconnus dans les liaisons.

Corrigé voir 9.

Exercice 4 - Mouvement RT *

B2-14

B2-15

C1-05

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$ et $\overrightarrow{AC} = R\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de 1;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un vérin électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer

Exercice 5 - Mouvement RT *

B2-14

B2-15

C2-07 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de 1;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet de maintenir $\mathbf{1}$ en équilibre. Un vérin électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet de maintenir $\mathbf{2}$ en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le couple moteur et l'effort à fournir par le vérin pour maintenir le système à l'équilibre.*

Question 3 Donner les actions mécaniques dans chacune des liaisons.

Corrigé voir 10.

Petits exercices de méca sur les chaînes ouvertes - RT - Corrigé

Exercice 6 - Mouvement RT * B2-12

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 7 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01\,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 8 - Mouvement RT *

B2-13

Question 1 Déterminer $\overline{V(B,2/0)}$ par dérivation vectorielle.

$$\overrightarrow{V(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\lambda(t)\overrightarrow{i_1}\right]_{\mathcal{R}_0} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$$

Question 2 Déterminer $\overrightarrow{V(B,2/0)}$ par composition.

$$\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$$

$$\forall P, \overrightarrow{V(P,2/1)} = \dot{\lambda}(t)\overrightarrow{i_1}.$$
Par ailleurs $\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = -\lambda(t)\overrightarrow{i_1} \wedge \dot{\theta}(t)\overrightarrow{k_0} = \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$
Au final, $\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_B.$$

Question 4 *Déterminer* $\Gamma(B,2/0)$.

$$\overrightarrow{\Gamma(B,2/0)} \ = \ \frac{\mathrm{d}}{\mathrm{d}\,t} \Big[\overrightarrow{V(B,2/0)} \Big]_{\mathcal{R}_0} \ = \ \ddot{\lambda}(t) \overrightarrow{i_1} \ + \ \dot{\lambda}(t) \dot{\theta} \ \overrightarrow{j_1} \ + \\ \dot{\lambda}(t) \dot{\theta} \ \overrightarrow{j_1} \ - \ \lambda(t) \dot{\theta}(t)^2 \overrightarrow{i_1} \ = \ \left(\ddot{\lambda}(t) - \lambda(t) \dot{\theta}(t)^2 \right) \overrightarrow{i_1} \ + \\ \left(\dot{\lambda}(t) \dot{\theta}(t) + \dot{\lambda}(t) \dot{\theta}(t) \right) \overrightarrow{j_1}.$$

Exercice 9 - Mouvement RT *

B2-14

B2-15

C1-05

3

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

- liaison glissière: $\{\mathcal{T}(1 \to 2)\} = \left\{ \begin{array}{c} Y_{12} \overrightarrow{j_1} + Z_{12} \overrightarrow{k_1} \\ L_{12} \overrightarrow{i_1} + M_{12} \overrightarrow{j_1} + N_{12} \overrightarrow{k_1} \end{array} \right\}_C$;
- pesanteur sur 2: $\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_B$;

- action du vérin $\{\mathcal{T}(\text{Vérin} \to 2)\} = \begin{cases} F_{\nu} \overrightarrow{i_1} \\ \overrightarrow{0} \end{cases}$
- pesanteur sur 1: $\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}$;
- action du moteur $\{\mathcal{T}(Moteur \to 1)\} = \begin{cases} 0 \\ C_{vv} \overrightarrow{k_0} \end{cases}$

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

- liaison glissière : $\{\mathcal{T}(1 \to 2)\} = \left\{\begin{array}{c} Y_{12} \overline{j_1} \\ N_{12} \overline{k_1} \end{array}\right\}_C$;
- pesanteur sur 2: $\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}$;
- action du vérin $\{\mathcal{T}(\text{Vérin} \to 2)\} = \begin{cases} \overrightarrow{F_v} \overrightarrow{i_1} \\ \overrightarrow{0} \end{cases}$
- liaison pivot: $\{\mathcal{T}(0 \to 1)\} = \left\{\begin{array}{c} X_{01} \overrightarrow{i_1} + Y_{01} \overrightarrow{j_1} \\ \overrightarrow{0} \end{array}\right\}$;
- pesanteur sur 1: $\{\mathcal{T}(\text{pes} \to 1)\} = \begin{cases} -m_1 g \vec{j_0} \\ 0 \end{cases}$
- action du moteur $\{\mathcal{T}(Moteur \to 1)\} = \begin{cases} \overline{0} \\ C \end{cases}$

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

- On isole {1}. On réalise un théorème de la résul-• liaison pivot: $\{\mathcal{T}(0 \to 1)\} = \left\{ \begin{array}{c} (0 \to 1) \\ X_{01} \overrightarrow{i_1} + Y_{01} \overrightarrow{j_1} + Z_{01} \overrightarrow{k_1} \\ Z_{01} \overrightarrow{i_1} + M_{01} \overrightarrow{j_1} \\ Z_{01} \overrightarrow{j_1} + M_{01} \overrightarrow{j_1} + M_{01} \overrightarrow{j_1} \\ Z_{01} \overrightarrow{j_1} + M_{01} \overrightarrow{j_1} + M_{01} \overrightarrow{j_1} \\ Z_{01} \overrightarrow{j_1} + M_{01} \overrightarrow{$
 - statique en \overrightarrow{A} en projection sur $\overrightarrow{k_0}$: $\overline{\mathcal{M}}(A, 0 \to 1)$. $\overrightarrow{k_0}$ + $\overline{\mathcal{M}}(A, \operatorname{Pes} \to 2)$. $\overrightarrow{k_0}$ + $\overline{\mathcal{M}}(A, \operatorname{Pes} \to 2)$. $\overrightarrow{k_0}$ + $\overline{\mathcal{M}}(A, \operatorname{Pes} \to 2)$.

Question 5 Proposer une démarche permettant de déterminer les efforts inconnus dans les liaisons.

- On isole {1}. On réalise un théorème de la résultante statique en projection sur $\overrightarrow{j_1}$ et un théorème du moment statique C en projection sur $\overrightarrow{k_1}$.
- On isole {1+2}. On réalise un théorème de la résultante statique en projection sur i_1 et j_1 .

Exercice 10 - Mouvement RT *

B2-14

B2-15

Pas de corrigé pour cet exercice. C2-07

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le couple moteur et l'effort à fournir par le vérin pour maintenir le système à l'équilibre.

Question 3 Donner les actions mécaniques dans chacune des liaisons.

Xavier Pessoles 4