

Лабораторная работа 2-3. Алгоритмы на строках

А. Сравнения подстрок

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Дана строка. Нужно уметь отвечать на запросы вида: равны ли подстроки [a..b] и [c..d].

Входные данные

Сперва строка S (не более 10^5 строчных латинских букв). Далее число M — количество запросов.

В следующих M строках запросы a,b,c,d. $0 \le M \le 10^5$, $1 \le a \le b \le |S|$, $1 \le c \le d \le |S|$

Выходные данные

M строк. Выведите Yes, если подстроки совпадают, и No иначе.

входные данные	SAR WE		SALL SIK	Скопировать
trololo				
3 1				
3 5 5 7				
1 1 1 5				
выходные данные	NA G.	TANK"	38/Gz	Скопировать
Yes				
Yes				
No				

В. Префикс-функция

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Постройте префикс-функцию для заданной строки S.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите значения префикс-функции строки s для всех индексов 1, 2, ..., |s|.

Пример

входные данные	SI AMERICA	341	The state of the s	Скопировать
aaaAAA				
выходные данные		Ar 16 SABOTE		Скопировать
0 1 2 0 0 0				

С. Z-функция

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Постройте Z-функцию для заданной строки s.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите значения Z-функции строки s для индексов 2, 3, ..., |s|.

Примеры

входные данные								Скопировать
aaaAAA								
выходные данные	****	sudat.	X X	NAME OF	* * *	Surfak	XI A	Скопировать
2 1 0 0 0								
входные данные		THE REAL PROPERTY OF THE PARTY	2000 - 2000 2010 - 2010 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010	*		THE PARTY NAMED IN COLUMN TO THE PARTY NAMED	8. D.W.	Скопировать
abacaba								
выходные данные								Скопировать

D. Быстрый поиск подстроки в строке

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Входные данные

0 1 0 3 0 1

Первая строка входного файла содержит p, вторая — t ($1 \le |p|, |t| \le 10^6$). Строки состоят из букв латинского алфавита.

Выходные данные

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

входные данные		Скопировать
TO WE TO THE	TO WE TO THE	TO THE PARTY OF TH

аbа аbаСаbа **ВЫХОДНЫЕ ДАННЫЕ**2
1 5

Е. Поиск периода

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Дана строка s. Требуется найти минимальную по длине строку t, такую что s представима в виде конкатенации одной или нескольких строк t.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите длину искомой строки t.

примеры	>>==	M. C. Se		Type - yr	277	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
входные данные							Скопировать
abcabcabc							
выходные данные	Aux Ro		製製	N. N. Alex	RANGE		Скопировать
3			700 100 1				
*\/\/\/\/	7-16	The of	7- 3/A	7.1	12 200	** \ / \ / m	
входные данные							Скопировать
abacaba							
выходные данные	激发 *	**************************************	3 4 1	* *****	* ****	k 3	Скопировать
7							

F. Подстроки-3

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Даны K строк из маленьких латинских букв. Требуется найти их наибольшую общую подстроку.

Входные данные

В первой строке число K ($1 \le K \le 10$).

В следующих K строках — собственно K строк (длины строк от 1 до $10\,000$).

Выходные данные

Наибольшая общая подстрока.

Пример

входные данные	****		19/4 N	* 7*** *		Скопировать
abacaba mycabarchive acabistrue						
выходные данные	WAK.	W. F.	ROLL TO	A SAR	* to	Скопировать
cab						

G. Множественный поиск

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: search4.in вывод: search4.out

Дан массив строк s_i и строка t. Требуется для каждой строки s_i определить, встречается ли она в t как подстрока.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки s_i выведите «YES», если она встречается в t и «NO» в противном случае. Строки нумеруются в порядке появления во входном файле.

Пример

Н. Множественный поиск 2

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: search5.in вывод: search5.out

Дан массив строк s_i и строка t. Требуется для каждой строки s_i определить, сколько раз она встречается в t как подстрока.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит s последняя строка входного файла содержит s (s последняя строчных латинских букв.

Выходные данные

Для каждой строки S_i выведите одно число: сколько раз она встречается в t. Строки нумеруются в порядке появления во входном файле.

Пример

Множественный поиск 3

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: search6.in вывод: search6.out

Дан массив строк s_i и строка t. Требуется для каждой строки s_i найти самое левое и самое правое вхождение в t как подстроки.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит s последняя строка входного файла содержит s ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки s_i выведите два числа: индексы самой левой и самой правой позиции, в которых она встречается в t. Если строка не встречается в t ни разу, выведите -1 -1. Строки нумеруются в порядке появления во входном файле. Позиции нумеруются с 0.

J. Суффиксный массив

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: array.in вывод: array.out

Постройте суффиксный массив для заданной строки S, для каждых двух соседних суффиксов найдите длину максимального общего префикса.

Входные данные

Первая строка входного файла содержит строку s ($1 \le |s| \le 400~000$). Строка состоит из строчных латинских букв.

Выходные данные

В первой строке выведите |s| различных чисел — номера первых символов суффиксов строки s так, чтобы соответствующие суффиксы были упорядочены в лексикографически возрастающем порядке. Во второй строке выведите |s| - 1 чисел — длины наибольших общих префиксов.

К. Количество подстрок

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: count.in вывод: count.out

Вычислите количество различных подстрок строки s.

Входные данные

Единственная строка входного файла содержит строку s ($1 \le |s| \le 400~000$). Строка состоит из строчных латинских букв.

Выходные данные

Выведите одно число — ответ на задачу.

Пример

входные данные	***	The training	***	Скопировать
ababb				
выходные данные				Скопировать
11				

L. Циклические сдвиги

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: shifts.in вывод: shifts.out

k-м циклическим сдвигом строки S называется строка, полученная перестановкой k первых символов строки S в конец строки.

Рассмотрим все различные циклические сдвиги строки S и отсортируем их по возрастанию. Требуется вычислить i-ю строчку этого массива.

Например, для строки abacabac существует четыре различных циклических сдвига: нулевой (abacabac), первый (bacabaca), второй (acabacab) и третий (cabacaba). После сортировки по возрастанию получится такой массив: abacabac, acabacab, bacabaca, cabacaba.

Входные данные

В первой строке входного файла записана строка S, длиной не более 100~000 символов с ASCII-кодами от 32 до 126. Во второй строке содержится единственное целое число k ($1 \le k \le 100~000$).

Выходные данные

В выходной файл выведите k-й по возрастанию циклический сдвиг строки S, или слово IMPOSSIBLE, если такого сдвига не существует.

Примеры

М. Наибольшая общая подстрока

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: common.in вывод: common.out

Найдите наибольшую общую подстроку строк s и t.

Входные данные

Первая строка входного файла содержит строку s, вторая — t ($1 \le |s|, |t| \le 100, 000$). Строки состоят из строчных латинских букв.

Выходные данные

Выведите одну строку — наибольшую общую подстроку строк s и t. В случае, если ответ не единственный, выведите минимальный лексикографически.

Пример

входные данные	adadz ×	week.		0.13.42_	west.	5/2	Скопировать
bababb zabacabba							
выходные данные			3	- 47	7	NI Z	Скопировать
aba							

Codeforces (c) Copyright 2010-2018 Михаил Мирзаянов Соревнования по программированию 2.0