Maximizing the Guarded Boundary of an Art Gallery is APX complete

Christodoulos Fragoudakis¹ Euripides Markou² Stathis Zachos^{1,3}

¹Computer Science, ECE, National Technical University of Athens

²School of Computational Engineering & Science, McMaster University, Canada

³CIS Department, Brooklyn College, CUNY

2nd ACAC, August 2007

Motivation

Art gallery theorems and algorithms Applications

A gap preserving reduction

Promise problems and gap preserving reductions Construction part of the reduction Transformation of a feasible solution

Conclusion

Summary
Open problems

Motivation

Art gallery theorems and algorithms

Applications

A gap preserving reduction

Promise problems and gap preserving reductions Construction part of the reduction Transformation of a feasible solution

Conclusion

Summary
Open problems

Visibility in simple polygons

- ► Two objects are *visible* to each other, if they can be joined by a line segment that avoids all obstacles between the objects.
- ▶ Inside a simple polygon the obstacles are the polygon's edges.
- ▶ If a point is visible to a guard, we say that the guard *covers* the point.
- ► The problem is to place guards (point, vertex, edge) that fulfill a covering requirement (boundary, interior).

Combinatorial results

Theorem (V. Chvátal, 1975, S. Fisk, 1978)

 $\lfloor \frac{n}{3} \rfloor$ point guards are always sufficient and sometimes necessary in order to cover completely any simple polygon.

Conjecture (T. Shermer, 1994)

Are $\lfloor \frac{n}{4} \rfloor$ edge guards always sufficient?

Algorithmic results

Minimization problems

	NP-	-hard
--	-----	-------

- \triangleright $O(\log n)$ -approximable
- ▶ NP-hard for 3-link polygons
- APX-hard
- ▶ log *n*-hard for polygons with holes
- ► APX-hard for 2-link polygons
- ▶ 12-approximable for monotone polygons

(D. Lee, A. Lin, 1986)

(S. Ghosh, 1987) (B. Nilsson, 1995)

(S. Eidenbenz, 1998)

(S. Eidenbenz, 2000)

(B. Brodén et al, 2001)

(B. Nilsson, 2005)

Algorithmic results

Maximization problems

- ▶ 1 guard: FPTAS (S. Ntafos, M. Tsoukalas, 1994)
- ▶ k guards: O(1) deterministically approximable (I. Emiris, C. Fragoudakis, E. Markou, S. Zachos, 2002–2006)
 - vertex, edge guards,
 - oversee, watch,
 - length, value, area.
- \blacktriangleright k guards: O(1) approximable with high probability

(O. Cheong et al, 2004)

Motivation

Art gallery theorems and algorithms Applications

A gap preserving reduction

Promise problems and gap preserving reductions Construction part of the reduction Transformation of a feasible solution

Conclusion

Summary Open problem:

Applications

Minimization problems

- Guard exhibits in a gallery using a minimum number of guards.
- ▶ Wireless communication technology: place a minimum number of stations so that any point can communicate with at least one station.

Maximization problems

- More realistic setting.
- ► The given budget allows only a small number of stations.
- ▶ Place *k* stations in a way that most points can communicate.

A hierarchy of approximation classes

Motivation

Art gallery theorems and algorithms Applications

A gap preserving reduction

Promise problems and gap preserving reductions

Construction part of the reduction Transformation of a feasible solution

Conclusion

Summary Open problem

The basic problem that we studied

Definition (Maximum Length Vertex Guard)

Given is a simple polygon P and k vertex guards. The problem asks to place the guards so that the total length of the overseen part of P's boundary from all guards is maximized.

A variation of satisfiability

Definition (Maximum 5 Occurence 3 SAT)

Let Φ be a boolean formula given in CNF, with each clause consisting of at most 3 literals and each variable appearing in at most 5 clauses. The goal is to find a truth assignment for the variables of Φ such that the number of satisfied clauses is maximum.

Theorem (S. Arora, 1997)

For a set of instances of Max-5Occ-3SAT with m clauses an oracle promises that either OPT(I) = m or $OPT(I) < (1 - \epsilon)m$. It is NP-hard to decide which is the case for the optimal solution.

Gap preserving reduction

Definition

It is a polynomial reduction of an instance I of Max-5Occ-3SAT to an instance I^\prime of Max-Length-Vertex-Guard such that:

$$\begin{array}{cccc} \textit{OPT}(\textit{I}) = \textit{m} & \rightarrow & \textit{OPT}(\textit{I}') = \textit{L}(\partial \textit{P}) \\ \textit{OPT}(\textit{I}) < (1 - \epsilon)\textit{m} & \rightarrow & \textit{OPT}(\textit{I}') < \textit{L}(\partial \textit{P}) - \epsilon \textit{m8L}(\textit{e}_{\textit{short}}) \end{array}$$

Lemma

Unless P = NP there is no approximation algorithm for Max-Length-Vertex-Guards that achieves:

$$\frac{\textit{OPT(I')}}{\textit{SOL(I')}} < \frac{\textit{L(\partial P)}}{\textit{L(\partial P)} - \epsilon \textit{m8L}(e_{\textit{short}})}$$

Motivation

Art gallery theorems and algorithms Applications

A gap preserving reduction

Promise problems and gap preserving reductions

Construction part of the reduction

Transformation of a feasible solution

Conclusion

Summary

The final polygon

The literal pattern

 $\Phi = \begin{pmatrix} x_1 \vee \neg x_2 \vee x_3 \end{pmatrix} \wedge \begin{pmatrix} \neg x_1 \vee x_2 \vee \neg x_3 \end{pmatrix} \wedge \begin{pmatrix} x_1 \vee x_2 \vee \neg x_4 \end{pmatrix}$

The variable pattern

Spikes for a negative literal

 $\Phi = \begin{pmatrix} x_1 \vee \neg x_2 \vee x_3 \end{pmatrix} \wedge \begin{pmatrix} \neg x_1 \vee x_2 \vee \neg x_3 \end{pmatrix} \wedge \begin{pmatrix} x_1 \vee x_2 \vee \neg x_4 \end{pmatrix}$

Spikes for a positive literal

 $\Phi = \begin{pmatrix} x_1 \vee \neg x_2 \vee x_3 \end{pmatrix} \wedge \begin{pmatrix} \neg x_1 \vee x_2 \vee \neg x_3 \end{pmatrix} \wedge \begin{pmatrix} x_1 \vee x_2 \vee \neg x_4 \end{pmatrix}$

Motivation

Art gallery theorems and algorithms Applications

A gap preserving reduction

Promise problems and gap preserving reductions Construction part of the reduction

Transformation of a feasible solution

Conclusion

Summary
Open problems

Transformation of a feasible solution

From the truth assignment to the guard placement

- ▶ Suppose that a truth assignment satisfies all clauses of Φ . We place vertex k = |lit| + |var| + 1 guards in the polygon:
 - 1 guard on the distinguished vertex,
 - ▶ 1 guard on every variable pattern,
 - 1 guard on every literal pattern.
- ▶ If some clauses are not satisfied then the "short" edges in the corresponding clause patterns are not covered.
- Generally, the whole polygon is covered except possibly some "short" edges.

The whole polygon is covered

 $\Phi = \begin{pmatrix} x_1 \vee \neg x_2 \vee x_3 \end{pmatrix} \wedge \begin{pmatrix} \neg x_1 \vee x_2 \vee \neg x_3 \end{pmatrix} \wedge \begin{pmatrix} x_1 \vee x_2 \vee \neg x_4 \end{pmatrix}$

Some "short" edges are not covered

Transformation of a feasible solution

From the guard placement to the truth assignment

Given a guard placement, construct a modified guard placement:

- move guards so that the whole polygon (possibly except a number of "short" edges) is guarded,
- guarded length is at least as before
- \triangleright consistent guard placement at F_{lit} , T_{lit} , F_{var} , T_{var} .

Moving the given guards

Inapproximability result

Instances I' of Maximum Length Vertex Guard

Let $\epsilon' = \frac{8\epsilon L(e_{short})}{3L_V + 3L_I + 6L_S + L_C + L_r}$, then there is no polynomial time approximation algorithm that achieves:

$$rac{\mathit{OPT}(\mathit{I'})}{\mathit{SOL}(\mathit{I'})} < 1 + rac{\epsilon'}{1 - \epsilon'}$$

Patterns for edge guards

A hierarchy of approximation classes

Final placement of maximization problems

Motivation

Art gallery theorems and algorithms Applications

A gap preserving reduction

Promise problems and gap preserving reductions Construction part of the reduction Transformation of a feasible solution

Conclusion

Summary

Open problems

Summary

- We investigated the problem of maximizing the guarded boundary of an art gallery.
- We used vertex or edge guards.
- ► The same reasoning applies for several maximization variations (value, area, etc.)
- We proved that, unless P=NP all these variations do not admit a PTAS.
- Our main contribution is a gap preserving reduction from Max-5Occ-3SAT to Max-Length-Vertex Guards.

Motivation

Art gallery theorems and algorithms Applications

A gap preserving reduction

Promise problems and gap preserving reductions Construction part of the reduction Transformation of a feasible solution

Conclusion

Summary

Open problems

Open problems

- ▶ An approximation algorithm for Minimum-Point-Guards with any guarantee of performance better than O(n).
- Approximation algorithms for the maximization problems using point guards (inside the polygon).
- Robust implementations in order to gain intuition.

Thank you! Any questions?

