Suite de matrices

Un cours sur les suites de matrices en terminale S spécialité où nous étudierons des suites convergentes vers une autre matrice.

I.Suite de nombres (Un) vérifiant $U_{n+1} = aUn + b_{\bullet}$

Une telle suite est dite arithmético-géométrique (ou à récurrence affine).

Etudions un exemple.La suite (Un) est définie par $U_0=12$ et pour tout entier naturel n, $U_{n+1}=0, 2U_n+4$.

1. De la formule de récurrence à la formule explicite.

Observons que si la suite (Un) converge, alors sa limite x est solution de l'équation x=0,2x+4.

Cette équation a pour solution x=5.Cela suggère de poser : pour tout entier naturel n, $x_n = u_n - 5$.

De
$$U_{n+1} = 0, 2U_n + 4$$
 et $5 = 0, 2, \times, 5 + 4$, on déduit par soustraction : $U_{n+1} - 5 = 0, 2(U_n - 5)$.

Soit $x_{n+1}=0,2x_n$. La suite (x_n) est géométrique de raison a = 0,2 et de premier terme $x_0=u_0-5=7$.

D'où pour tout entier naturel n, $x_n = x_0 \times 0$, $x_0 = x_0 \times 0$, $x_0 = x_0 \times 0$.

Ainsi $u_n - 5 = ,7 \times ,0,2^n \, {\rm donc} \, \, u_n, = ,7 \times ,0,2^n + 5.$

2.Méthode générale : détermination d'une formule explicite.

On considère une suite de nombre (Un) qui vérifie $U_{n+1}=aUn+b$, avec $a\neq 1$.

- 1. On résoud l'équation x = ax + b: elle a une solution unique c.
- 2. On introduit la suite auxiliaire (x_n) définie par $x_n=u_n-c$. On prouve qu'elle est géométrique de raison a.; il en résulte que pour tout naturel n, $x_n=x_0a^n$.
- 3. On revient à la suite initiale : pour tout entier naturel n, $u_n=x_n+c$. D'où l'expression : $u_n=a^n(u_0-c)+c$

3.Etude de la convergence

Sur notre exemple, la raison a=0,2 est telle que - 1<a<1 donc $\lim_{n \to +\infty} 0, 2^n = 0$.

Ainsi,
$$\lim_{n, \mapsto, +\infty} u_n = 5$$
.

Si on applique cette méthode dans le cas général, on obtient le résultat suivant :

Théorème:

Une suite de nombres (Un) vérifie $U_{n+1} = aUn + b$, avec -1<a<1.

Alors la suite (Un) converge vers le nombre c vérifiant c = ac+b.

Ce résultat découle de la formule explicite et de la condition -1<a<1, car alors, $\lim_{n,\mapsto,+\infty} a^n=0$.

Remarque:

On démontre que, si $a \le 1$, la suite est divergente (hormis le cas particuliers où $u_0 = c$, auquel cas elle est constante.

II.Suite de matrices colonnes (Un) vérifiant $U_{n+1} = AU_n + B_{\perp}$

Etudions un exemple.La suite de matrices colonne (Un) de format (2,1) est définie par :

$$U_0=\begin{pmatrix} ,3\\ ,-2, \end{pmatrix} \text{et pour tout entier naturel n, } U_{n+1}=AU_n+B \text{ où } A=\begin{pmatrix} ,1,4,\\ 1,2, \end{pmatrix} \text{et } B=\begin{pmatrix} ,12\\ -2, \end{pmatrix}.$$

1.De la formule de récurrence à la formule explicite.

Inspirons-nous de la méthode précédente. Cherchons une matrice colonne C de format (2,1), telle que C=AC+B. Cette équation d'inconnue C s'écrit C-AC=B, c'est-à-dire (I-A)C=B.

Si I-A est inversible, multiplions à gauche les deux membres par $(I-A)^{-1}:C=(I-A)^{-1})B$.

Or
$$I-A={(0,0,-4,\choose -1,-1)}$$
 cette matrice est inversible et $(I-A)^{-1}={(0,25,-1,\choose -0,25,0,}$

donc
$$C = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$
.

De $U_{n+1} = AU_n + B$ et C=AC+B, on déduit par soustraction : $U_{n+1} - C = A(U_n - C)$.

Poson alors, pour tout entier naturel n, $X_n = U_n - C$; on obient $X_{n+1} = AX_n$ (1).

Démontrons par récurrence que l'égalité $X_n=A^nX_0$ (2) est vraie pour tout entier naturel n.

- Pour n=0, l'égalité (2) est vraie car $A^0 = I$.
- Si $X_n=A^nX_0$ alors en multipliant à gauche les deux membres par A, on obtient $AX_n=A^{n+1}X_0$, c'est-à-dire d'après (1), $X_{n+1}=A^{n+1}X_0$. Ainsi, l'égalité (2) est héréditaire.
- ullet On conclut que pour tout entier naturel n, $X_n=A^nX_0$.

Revenons à la suite (U_n) : pour tout entier naturel n, $U_n-C=A^n(U_0-C)$ d'où

$$U_n = A^n(U_0 - C) + C.$$

2. Méthode générale : détermination d'une formule explicite.

Une suite de matrices colonnes (U_n) vérifie $U_{n+1} = AU_n + B$ où I - A est **inversible**.

- 1. On résout l'équation l'équation C=AC+B; elle admet une unique solution $C=(I-A)^{-1})B$
- 2. On introduit la suite auxiliaire (X_n) définie par $X_n = U_n C$.On prouve qu'elle vérifie, pour tout entier naturel n, $X_{n+1} = AX_n$ puis par récurrence que $X_n = A^n X_0$.
- 3. On revient à la suite initiale: pour tout entier naturel n, $U_n=X_n+C$. D'où l'expression $U_n=A^n(U_0-C)+C$.

3. Suites de matrices lignes

Si (U_n) est une suite de matrices lignes de même format telle que $V_{n+1} = V_n A + B$, où A est une matrice carrée et B une matrice ligne, on obtient des résultats analogues : si I - A est **inversible**, l'équation C = CA + B a une solution unique $C = B(I - A)^{-1}$.

Alors pour tout naturel n, $V_n = (V_0 - C)A^n + C$.

III. Convergence d'une suite de matrice

Définition:

 (U_n) est une suite de matrices de format donné, L est une matrice de même format.Dire que la suite (U_n) a pour **limite L**, signifie que, pour chaque emplacement, la suite des coefficients de (U_n) a pour limite le coefficient de L.

On dit aussi que (U_n) converge vers L.

Exemple:

$$U_n = \begin{pmatrix} 3+0,2^n \\ 2-0,5^n, \\ 7+0,3^n, \end{pmatrix} \text{converge vers la matrice } \begin{pmatrix} 3 \\ 2, \\ 7,7 \end{pmatrix}.$$