IGBT APPLICATION NOTE

CONTENTS

POWER DEVICES and IGBT	2
Variation of NIEC's IGBT Modules	4
Ratings and Characteristics	6
Power Loss and Thermal Design	10
Gate Drive	20
High Side Drive	24
3-Phase Bridge Inverter	26
Short circuit and Over-voltage Protection	30
Snubber	33
Parallel Operation	36

POWER DEVICES and IGBT

Diode is a fundamental semiconductor. Based on diode, switching characteristics of Thyristor, Bipolar Transistor, MOSFET, and IGBT are illustrated.

MOSFET can be turned on during the period when gate *voltage* is applied. Gate current flows only for a short period at turn-on and at turn-off. Between Drain and Source, diode is built-in on chip, and its current runs opposite to drain current.

VARIATION of NIEC's IGBT Modules

PHMB

Single

Example: PHMB400B12

PDMB

Doubler, 2 in 1

Example: PDMB100B12C

PBMB

Single-phase bridge, 4 in 1

Example: PBMB100B12C

PTMB

3-phase bridge, 6 in 1

Example: PTMB100B12C

PCHMB

PRHMB(-A), PRFMB

*1: PRFMB for 600V E-series

PVD

Example: PVD150-12

Example: PVD30-8

Ratings and Characteristics

For example, ratings and characteristics of PDMB100B12 are discussed here.

An excessive stress over these ratings may immediately damage device, or degrade reliability. Designers should always follow these ratings.

Maximum collector-emitter voltage with gate-emitter shorted

Maximum gate-emitter voltage with collector-emitter shorted

 Collector Current	DC	I_{C}	100	A
	1ms	I_{CP}	200	A
Collector Power Dissipation		P _C	500	W

Maximum DC or pulse collector current

Maximum power dissipation per IGBT element. This module (PDMB100B12) has two IGBT elements, so this value is effective for each of two elements.

Junction Temperature	T_j	$-40 \sim +150$	$^{\circ}\!\mathbb{C}$
Storage Temperature	T_{stg}	$-40 \sim +125$	$^{\circ}$ C

Chip temperature range during continuous operation

Storage or transportation temperature range with no electrical load

Γ	Isolation Voltage (Teute)	erminal to Base, AC, 1min-	V _{ISO}	2,500	V
	Mounting Torque	Module Base to Heatsink	F _{tor}	3 (30.6)	N·m
	Busbar to Main Terminal			2 (20.4)	(kgf· cm)
		oltage between any tel		and base, with all terminals shorted	

ELECTRICAL CHARACTERISTICS Tc=25°C (Per one IGBT)

	Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit		
	Characteristics	Symbol	Test Condition	171111.	ryp.	wax.	Omt		
_	Collector-Emitter Cut-off Current	I_{CES}	$V_{CE}=1200V, V_{GS}=0V$			2.0	mA		
\perp	Gate-Emitter Leakage Current	I_{GES}	$V_{GS}=\pm 20V, V_{CE}=0V$			1.0	μΑ		
	$ C $ φ								
L	—▶ ெ(니〈〈) Collector	· leakage	e current, with gate-emitt	er shorte	ed				
	onester realization, manager of managers of the second of								

Gate leakage current, with collector-emitter shorted

Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C =100A, V _{GS} =15V		1.9	2.4	V
Gate-Emitter Threshold Voltage	$V_{\text{GE(th)}}$	V _{CE} =5V, I _C =100mA	4.0		8.0	V
100A 15V 100A		A measure of IGBT ste tion, which refers to forw state voltage of SCR, o FET.	ard volt	age of c	liode, or	า-
G 100mA 100mA	5V (Gate-emitter voltage whe	n IGBT s	starts to	conduct	

Input Capacitance	Cies	V _{CE} =10V, V _{GE} =0V, f=1MHz		8,300		pF
-------------------	------	---	--	-------	--	----

Gate-emitter capacitance, with collector-emitter shorted in AC

Switching Time	Rise Time	t _r	V_{CE} =600V, R_{L} =6 Ω , R_{G} =10 Ω V_{GE} =±15V	0.25	0.45	μs
	Turn-on Time	t _{on}		0.40	0.70	
	Fall Time	t_{f}		0.25	0.35	
	Turn-off Time	$t_{ m off}$		0.80	1.10	

Definition of switching times

PDMB100B12 Maximum

$t_{d(on)}$	t_r	t _{on}	$t_{d(off)}$	t_{f}	$t_{\rm off}$
(0.25µs)	0.45μs	0.70μs	(0.75µs)	0.35μs	1.1µs

MAXIMUN RATINGS AND ELECTRICAL CHARACTERISTICS OF FWD Tc=25°C

Forward Current	DC	I_F	100	A
	1ms	I_{FM}	200	A

Maximum DC or pulse forward current of built-in diode

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Forward Voltage	V_{F}	$I_F=100A,V_{GE}=0V$		1.9	2.4	V
Reverse Recovery Time	t _{rr}	I_F =100A, V_{GE} =-10V -di/dt = 200A/ μ s		0.2	0.3	μs

Forward voltage of built-in diode at specified current

Required time for built-in diode to recover reverse blocking state

Definition of reverse recovery time

THERMAL CHARACTERISTICS

Characteristics		Symbol	Condition	Min.	Тур.	Max.	Unit
Thermal Resistance	IGBT	Rth(j-c)	Junction to Case			0.24	$^{\circ}\! C/W$
	Diode					0.42	

Thermal resistance of each of IGBT or built-in diode

Power Loss and Thermal design

Power loss in IGBT consists of steady-state (conduction) loss and switching loss. And, switching loss is sum of turn-on loss (Eon) and turn-off loss (Eoff) Also, that's of built-in diode is sum of steady state and switching (E_{RR} - reverse recovery). You can calculate average loss by multiplying E_{ON} , E_{OFF} , E_{RR} times switching frequency.

Measuring switching characteristics

PDMB100B12 Typical Tun-on and Eon

PDMB100B12 Typical Tun-off and E_{OFF}

1200V B-series Turn-on Loss E_{ON} (Tj= 125°C)

Find R_G (gate series resistance) on Datasheet.

1200V B-series Turn-off Loss E_{OFF} (Tj= 125°C)

1200V B-series Dependence of R_G on E_{ON} (Tj= 125°C)

1200V B-series Dependence of R_G on E_{OFF} (Tj= 125°C)

1200V B-series Diode Reverse Recovery Loss E_{RR} (Tj= 125°C)

Find R_G (gate series resistance) on Datasheet.

1200V B-series Dependence of R_G on E_{RR} (Tj= 125°C)

Losses in IGBT Module

IGBT

Steady-State Loss

Switching Losses (Turn-on Loss E_{ON}, Turn-off Loss (E_{OFF})

FWD

Steady-State Loss

Switching (Reverse Recovery) Loss E_{RR}

Calculation of Average Loss in a Chopper circuit

An example of average loss calculation

PRHMB100B12, Vcc=600V, Ic=100A, R_G =10 Ω , V_{GE} = \pm 15V, f=10kHz, Duty:3:1

IGBT Steady-state Loss: $100(A) \times 2.2^{*1}(V) \times 3/4 = 160(W)$

Turn-on Loss: $9.5(mJ) \times 10(kHz) = 95(W)$ Turn-off Loss: $9.5(mJ) \times 10(kHz) = 95(W)$

IGBT Loss in total : 350(W)

FWD Steady-state Loss: $100(A) \times 1.9^{*2}(V) \times 1/4 = 47.5(W)$ Switching (Reverse Recovery) Loss: $8.5(mJ) \times 10(kHz) = 85(W)$

FWD Loss in total: 132.5(W)

Module Loss 482.5(W)

- *1 Collector-Emitter saturation voltage @ Ic=100A, T_J=125°C
- *2 Forward voltage @ I_F=100A, T_J=125°C

Calculations follow the condition on previous page.

Junction to Case Temperature Rise

Case to Fin, and Case to Ambient Temperature Rise

Loss and Temperature Rise in 3-phase Inverter

We cannot easily estimate losses for applications which have sophisticated operating waveform, such as PWM inverter. In these cases, we recommend directly measure losses, using DSO. (Digital Storage Oscilloscope) which features computerized operation. (For example, Tektronix introduces TDSPWR3 software to analyze complicated losses.)

For choice of heatsink, an example how to evaluate losses is shown below.

EXAMPLE

PTMB75B12C, Inverter output current (I_{OP}) 75A, Control Factor (m) 1, Switching frequency (f) 15kHz, Power factor $\cos \phi$ 0.85

Let's review losses in IGBT module. Losses in IGBT are sum of steady-state (conduction) loss Psat, turn-on loss P_{ON} , and turn-off loss P_{OFF} . And, losses in FWD are sum of steady-state loss P_F and reverse recovery loss P_{RR} .

$$\begin{split} \text{Psat} &= \frac{1}{2\pi} \int_{0}^{\pi} \left\{ I_{\text{OP}} \sin\theta \times V_{\text{CE(sat)}} \sin\theta \times (1 - m \sin(\theta + \phi)/2 \right\} \, d\theta \\ &= I_{\text{OP}} \, V_{\text{CE(sat)}} \quad (\frac{1}{8} + \frac{m}{3\pi} \, \cos\phi \,) \end{split}$$

Given
$$I_{OP}$$
=75A, $V_{CE(sat)}$ =2.2V (125°C), m=1, cos ϕ =0.85, Psat=35.5(W)

$$\begin{split} P_F &= \frac{1}{2\pi} \int_0^{2\pi} \left\{ (-I_{OP} \sin\theta) \times (V_F \sin\theta) \times (1 - m \sin(\theta + \phi)/2) \right\} d\theta \\ &= I_{OP} V_F \left(\frac{1}{8} - \frac{m}{3\pi} \cos\phi \right) \end{split}$$

$$V_F$$
 of FWD is 1.8V @75A, 125°C; P_F =4.7W

Referring datasheet, we know turn-on loss, turn-off loss, and reverse recovery loss per pulse are 7.5mJ, 7mJ, and 6mJ, respectively. Multiplying frequency (15kHz) and $1/\pi$, we after all have average losses.

$$E_{ON} = 35.8(W), E_{OFF} = 33.4(W), E_{RR} = 28.6(W)$$

*1
$$\frac{1}{2\pi} \int_{0}^{\pi} \sin\theta \ d\theta$$

Loss and Temperature Rise in 3-phase Inverter (Continued)

Loss per IGBT and FWD

Average Loss	Average Loss
per IGBT	per FWD
104.7W (Psat+P _{ON} +P _{OFF})	$33.3W$ (P_F+P_{RR})

Junction to Case Transient Temperature Rise

On previous page, the temperature rise is average (steady-state) value. Using transient thermal resistance, you can calculate peak temperature, when necessary.

$$\Delta T(j-c) = P \times (t_1/t_3) \times \{Rth(j-c) - r_{th}(t_3+t_1)\} + P \times (r_{th}(t_3+t_1) - r_{th}(t_3) + r_{th}(t_1)\}$$

 $r_{th}(t)$ is transient thermal resistance at time t

Check which is the highest temperature among IGBT elements, and consider transient temperature variation over average temperature.

Rated (Maximum) Gate Drive Voltage

Gate voltage range should be within ±20V

Exceeding this rating may destroy gate-emitter oxide (SiO₂), or degrade reliability of IGBT.

On-Gate Drive Voltage

$$I_{C}=100A (V_{CE}=600V)$$

V_{GE}	8V	10V	12V	15V
V _{CE(on)}	(600V)	2.25V	2.05V	1.95V
P_{C}	(60,000W)	225W	205W	195W

Lower gate voltages, such as 12V or 10V, cause an increase in collector loss. Lower voltage as low as 6V cannot lead IGBT to be on-state, and collector-emitter voltage maintains near supply voltage. Once such a low voltage is applied to gate, IGBT may possibly be destroyed due to excessive loss.

Standard On Gate Drive Voltage is +15V.

Reverse Gate Bias Voltage during Off-period (- V_{GE})

To avoid miss-firing, apply reverse gate bias of (-5V) to -15V during off-period.

(-5V) ~ -15V Standard : -15V

Dependence of on-gate voltage and off-gate bias on switching speed and noise

Increase in on-gate voltage $(+V_{GE})$ results in faster turn-on, and turn-on loss becomes lower. It follows additional switching noise.

As a matter of course, higher off-gate voltage (- V_{GE}) causes higher turn-off speed and lower turn-off loss. As expected, it follows higher turn-off surge voltage and switching noise.

 R_G , $+V_{GE}$, and $-V_{GE}$ are major factors which significantly affect switching speed of IGBT.

Effect of gate resistance R_G on switching

Series Gate Impedance vs. Switching Time (Typical)

Gate Capacitance

Series Gate Impedance Ra (Q)

 $\begin{array}{ll} \text{Input Capacitance} & \text{Cies} = \text{Cge} + \text{Cgc} \\ \text{Reverse Transfer Capacitance} & \text{Cres} = \text{Cgc} \\ \text{Output Capacitance} & \text{Coes} = \text{Cce} + \text{Cgc} \\ \end{array}$

Gate Reverse Bias Voltage and Gate-Emitter Resistance R_{GE}

Gate Wiring

To be free from harmful oscillation, be sure to confirm following points.

- *Set gate wiring as far as possible from power wiring, and do not set parallel to it.
- *If crossing is inevitable, cross in right angles.
- *Do not bundle gate wiring pairs.
- *Additional common mode inductor or ferrite bead to gate wiring is sometimes effective.

Using Gate Charge to estimete Drive Current and Power

Gate Drive Dissipation P_G , Peak Gate Drive Current i_{GP} (+ V_{GE} =15 V_{γ} - V_{GE} =-15 V_{γ} f=10kHz)

$$\begin{aligned} P_{G} &= \{ (+V_{GE}) - (-V_{GE}) \} \times Qg \times f \\ &= 30 \times 690 \times 10^{-9} \times 10^{4} \\ &= 0.207 \text{ (W)} \end{aligned}$$

Assuming turn-on time is 500ns;

$$i_{GP} = Qg / ton$$

 $= 690 \times 10^{-9} / 500 \times 10^{-9}$
 $= 1.4 (A)$

High Side and Low Side

IGBT is driven referred to emitter voltage. During switching operation, emitter voltage of high side IGBT V_E swings from 0V to bus voltage V+. So, required gate drive voltage for high side IGBT in AC200V circuit is as high as 300V (bus voltage) plus 15V, 315V. Consequently, we need high side drive circuit not influenced by switching operation.

Optocoupler or high voltage driver IC is usable solution these days.

High Side Drive Using Optocoupler

For high power applications, optocoupler is utilized for isolation, and, discrete buffer is added as output stage.

For medium or less power applications, hybrid IC integrated in a package illustrated on the left is a popular choice.

- * Use high common mode rejection (CMR) type.
- * To minimize dead time so as to decrease IGBT loss, use one with shortest transfer delay times, t_{PLH} and t_{PHL} are differences in delay time for output changes from L to H, or L to H, referred to input, respectively.
- * Major suppliers are Toshiba, Agilent Technologies, Sharp, NEC, and etc.
- * Application note of Agilent Technologies indicates that optocoupler ICs are recommended to $200V_{AC}$ motor driver of 30kW or less (600V IGBT), and to $400V_{AC}$ driver of 15kW or less (1,200V IGBT). (For higher power applications, discrete optocoupler plus buffer is used as gate driver.)

High Side Drive

High Side Drive using Driver IC

Available line-ups are; High side

> Half bridge High and Low

3-phase bridge Many have rating of 600V, while some have of 1200V.

- * Bootstrap diode should be fast recovery type, and its V_{RRM} should be same as V_{CES} of IGBT.
- * For bootstrap capacitor, use high frequency capacitor, such as film or ceramic, or add it in parallel.
- * Reduce line impedance of Vcc as small as possible.

Optocoupler vs. Driver IC

Comparison between the two are as follows.

	Optocoupler	Driver IC
Application Technique	Relatively easy	Relatively not easy
Structure	Hybrid	Monolithic
AC400V line		Tough on use
Typical Vcc current	10mA	Less than 2mA
Dead time	More than 2µs	Less than 1 µs is available
Assembly area	Large	Small
Protection	Built-in some	Plus current sensing
Inverter output		Especially useful for 3-phase 2.2~3.7kW
Improvements	Drive capability, Protection, Noise margin, Less difference in characteristics, Integrated current-sensing, etc	

3-phase Induction Motor Driver and Output Timing Chart

Inrush current Protection

3-Phase Inverter

AC line Voltage and Corresponding IGBT Rated V_{CES}

AC Line Voltage	200~240V	400~480V	575, 690V
IGBT V _{CES}	600V	1200V	1700V

Motor Output and IGBT Rated I_C (3-phase bridge)

 $I_{AC}=P/(\sqrt{3}\times V_{AC}\times cos\theta\times \eta)$

$$\begin{split} &I_{AC} \colon Motor \ Drive \ Current \ (A_{RMS}) \\ &P \colon 3\text{-phase Motor Output } \ (W) \\ &V_{AC} \colon Rated \ Voltage \ (V_{RMS}) \end{split}$$

cosθ : Power Factor η : Efficiency

Assuming power factor is 0.8, and efficiency is 70%, $I_{AC}\!\!=\!\!P\,/\left(0.970V_{AC}\right)$

 $\begin{array}{ll} AC200V \ applications & I_C = 0.0138P \\ AC400V \ applications & I_C = 0.00688P \end{array}$

3-phase Motor Output	$\begin{array}{c} AC200V \\ I_C \text{ of } 600V \text{ IGBT} \end{array}$	$\begin{array}{c} AC400V \\ I_C \text{ of 1,200V IGBT} \end{array}$
3.7kW	50A (51.0A)	25A (25.5A)
5.5kW	75A (75.9A)	
7.5kW	100A (103.5A)	50A (51.0A)
15kW	200A (207A)	100A (103.5A)
30kW	400A (414A)	200A (207A)
45kW	600A (621A)	300A (309.6A)
55kW		400A (379.5A)

(): Calculated Value

An example of AC200V 3-phase 2.2kW Inverter Circuit

Shown below is an example for study, and not for practical use. It is referred to March, 1999 issue of Transistor Gijutsu under approval of the author, Mr. Hajime Choshidani. Original is designed for 0.75kW output, and is partially modified for 2.2kW output.

Designing 3-phase Inverter using Driver IC

Design note how to apply 600V 3-phase driver IC IR2137 and current sensing IC IR2171 to 2.2kW inverter is available from International Rectifier (IR). http://www.irf-japan.com/technical-info/designtp/jpmotorinv.pdf

Also, you can buy the design kit IRMDAC4 from IR. http://www.irf.com/technical-info/designtp/irmdac4.pdf

These are very helpful to know driver IC.

Design kit
using driver IC IR2137 and current sensing IC IR2171
(International Rectifier)

Short-circuit and Over-voltage Protection

Flow to protect short-circuit and over-voltage

10µs short circuit SOA operation without additional protectiive devices.

Causes and Sensing of short-citcuit current

Causes

INVERTER

Device or Controller failure, Case isolation **LOAD**

Load failure, Arm short-circuit, Ground fault

Current Sensors

Current Transformer CT (AC, DC, or HF type) Shunt Resistor Current Sensing IC

Arm short-circuit due to device failure or to controller failure (Insufficient dead-time)

Short-circuit current due to series arm

Short-circuit current due to ground fault (Through ① or ② path)

Collector-Emitter Surge Voltage during turn-off of short-circuit current

In the event of arm (load) short-circuit, current is so large because it is only limited by ESR of electrolyte capacitor and gain of IGBT. Corresponding loss is also large, and IGBT will fail unless it is not turned-off within 10 μ s. Simultaneously, it followed by surge voltage (inductive voltage kick), and which is the product of collector-emitter stray inductance Ls and -di/dt. Assuming Ls is so small as 0.1 μ H, the voltage reaches as high as 200V if -di/dt is 2,000A/ μ s. To reduce -di/dt, IGBT should be turned-off slowly. In addition to soft turn-off, stray inductance should be minimized as small as possible

During transition from on-state to off-state, collector voltage rises. As a result, gate is charged up through reverse transfer capacitance Cgc. Given this situation, collector current is increased more and more, and gate is possibly destroyed. We recommend addition of both bypass resistor and zener diode between gate and emitter terminals.

Snubber

At turn-off, stored energy in inductance generates surge voltage, which is applied to collector-emitter of IGBT. As snubber capacitor is responsible for a part of turn-off energy, snubber circuit can suppress over-voltage and incidental turn-off loss. As a matter of course, stacked up energy in capacitor should be dissipated properly.

RCD Snubber

Loss in RCD Snubber

Snubbers individually connected to each IGBT are more effective than ones between DC bus and ground. But, we have a difficulty that loss in Rs is large. Loss in Rs is Li_c^2 times switching frequency, for example, the loss is 20W, assumed L=0.2 μ H, i_c=100A, and f=10kHz. In this case, total snubber loss reaches as high as 120W in 3-phase circuit. So, our choice is to set frequency lower, or, to regenerate the energy.

To reduce Δe , minimize stray inductance in main circuit loop at first, so we will have a smaller Cs in accordance to the reduced inductance.

The v_s is the sum of $(dic/dt) \times (stray inductance of wiring)$, forward recovery voltage of Ds, and $dic/dt \times (stray inductance of Cs)$.

Considerations on snubber are;

- *Drive IGBT in lower -dic/dt. (Turn-off IGBT slowly.)
- *Place electrolytic capacitors as close to IGBT module as possible, apply copper bars to wiring, and laminate them where possible, so as to minimize wiring inductance of main circuit
- *Also, set snubber as close to IGBT module as possible, use high frequency oriented capacitors, such as film capacitors.
- *Use low forward recovery, fast and soft reverse recovery diode as Ds.

Popular Snubbers

Shown are lump snubbers (between power buss and ground).

Guideline of Snubber Capacitance

Snubber1 on previous page cuts damping resistor, and sometimes oscillations occur on power buss. So, it is fit for lower power applications. Among 3 types of snubbers, you will find which is the generic choice, and capacitance for lump snubber below. Half of the capacitance is right value when snubber is attached to each IGBT.

In highest power applications, snubbers would be not enough to be free from device failure or malfunction due to noise otherwise wiring inductance could be minimized using copper bars or laminated them.

Discharge Surpressing Snubber (Snubber3)

Assuming all of the stored energy in L is absorbed by Cs,

$$1/2 \cdot L \cdot i_C^2 = 1/2 \cdot Cs \cdot \Delta e^2$$

Thus,

$$C_S = L \times (i_C/\Delta e)^2$$

Charge in Cs must be fully discharged before the next turn-on, and we focus on time constant ($Cs \times Rs$). To discharge below 90%;

Rs
$$\leq 1/(2.3 \cdot \text{Cs} \cdot \text{f})$$
 f: switching frequency

This relationship indicates minimum value of Rs. In addition, an excessively small Rs may result in harmful oscillation at turn-on, so, somewhat larger resistance would be preferable.

Dissipation in Rs, P(Rs), is independent of Rs.

$$P(Rs) = 1/2 \cdot L \cdot i_C^2$$

Parallel Operation

Parallel Operation and Current Imbalance

We introduce high current IGBT modules, which extend to 1,200A for 600V series, and 800A for 1,200V series. So, we cover up to 100kW 3-phase inverters. Consequently, parallel operation of IGBT modules is not so important, but, when designing 3-phase inverters, information on rules for parallel operation may possibly be useful. Let us show you the points in brief.

Current sharing during parallel operation depends on both circuit design and device characteristics.

Oscillations caused by gate-emitter wiring inductance L_G , resistance R_G , and Cies, will possibly be the origin of device failures as a result of malfunction or non-saturation of IGBT. Minimal R_G required is in proportion to $\sqrt{L_G}$. Accordingly, minimize the inductance, and R_G should also be larger than or equal to recommended.

*Differences in wiring inductance lead to poor current sharing at turn-on or at turn-off. Collector and emitter wiring to each IGBT should be equal and minimal.

*Each IGBT needs gate resistor, and gate wirings should also be equal and minimal. Connect emitter wiring to auxiliary emitter terminal, not to main emitter terminal.

*Saturation voltage $V_{\text{CE(sat)}}$ and some other characteristics are depend on temperature. Obtain smallest possible deference in temperature rises among modules.

V_{CE(sat)} Rank for Parallel Operation

Some current imbalance in parallel operation is inescapable, and handling current per module is roughly decreased to 80%. For example, expected total current of 4 300A modules in parallel is $300\times0.8\times4=960$ A.

On your request, we can ship $V_{\text{CE(sat)}}$ ranked modules for larger than 1,200A/600V or 800A/1200V applications. Contact us for further information.

For your repeat order when repair is needed, we ship group of modules in a $V_{\text{CE(sat)}}$ rank, but the rank may not be same as the original.