

NATIONAL UNIVERSITY OF COMPUTER & EMERGING SCIENCES

KARACHI CAMPUS

CLASS/SECTION: BAI-5A

DATE: 14/DEC/2024

INSTRUCTOR: SIR USAMA BIN UMAR

T20I CRICKET PREDICTION MODEL

This project aims to predict the winner of T20 International cricket matches based on historical data and statistical analysis. The model uses a Random Forest Classifier, which outperformed other algorithms, achieving an accuracy of 0.95 or 95%. Various machine learning models were evaluated, and an interactive GUI was developed to enhance user engagement.

DATASET OVERVIEW

The dataset is structured on a ball-by-ball basis, later aggregated by match date to eliminate duplicate rows. Key attributes include:

- Match ID, Date, Venue
- Batting and bowling statistics (runs, wickets, overs, etc.)
- Match outcomes like Winner and Toss Decision (Bat First/Second).

Selected Features for the Model:

- Bat First (toss winner)
- Bat Second
- Venue
- Winner (label/target column)

The dataset considers the toss-winning team as the team batting first.

MACHINE LEARNING MODELS EVALUATED

1. LOGISTIC REGRESSION

- > Testing Accuracy: 0.1078 or 10.78%
- Reason for Low Accuracy

Logistic Regression is primarily suited for binary classification. Since the target variable includes multiple teams as possible winners, the algorithm fails to generalize.

2. SUPPORT VECTOR CLASSIFIER (SVC)

- > Testing Accuracy: 0.11 or 11%
- ➤ Reason for Low Performance SVC struggles with multi-class classification when the dataset is large and complex. The need for significant parameter tuning also impacted its performance.

3. XGBOOST CLASSIFIER

- > Testing Accuracy: 0.6694 or 66.94%
- Reason for Partial Success: XGBoost handles classification tasks better but requires fine-tuned hyperparameters and specific handling of categorical features for optimal performance.

4. ADABOOST CLASSIFIER

- > Testing Accuracy: 0.0921 or 9.21%
- > Reason for Lower Performance:

AdaBoost relies heavily on weak learners and performs well for simpler datasets. The complexity and scale of the dataset limited its effectiveness.

5. RANDOM FOREST CLASSIFIER

> Testing Accuracy: 0.95 or 95%

Why It Succeeded

Random Forest effectively handles categorical variables, captures non-linear relationships, and prevents overfitting with its ensemble approach.

CREATING GUI FOR PREDICTION AND STATISTICS OF MATCHES

1. MATCH OUTCOME PREDICTION

- Functionality: Users can select:
 - > Team 1
 - > Team 2
 - Venue
 - > Toss Prediction (the team bat first)

Result: The model predicts the winning team based on past match winning statistics on this specific venue.

2. CHECKING OUR PREDICTION BY PAST MATCHES STATISTICS OF THIS SPECIFIC SELECTED FIELDS (GUI)

Feature: Displays all historical match data for the selected teams.

Purpose: Users can verify the accuracy of model predictions by comparing them with actual outcomes.

Testing Prediction:

✓ 2 matches played in the past between India and Pakistan at Dubai International Stadium where India was bat first in both games and Pakistan were won the both matches. Now when I am predicting for future match with same venue and other statistics. Our model is predicting Winner as "Pakistan".

3. GROUND SPECIFIC STATISTICS (GUI)

Feature: Users select Team 1, Team 2, and a specific venue.

Output: Displays past match statistics specific to the selected ground to help users understand performance trends.

MODEL DEVELOPMENT AND ANALYSIS

1. DATASET PREPROCESSING (PERFORMED EDA)

- Aggregated the dataset by date to ensure each match is represented as a single entry.
- Eliminated duplicate rows and retained only relevant features.

2. FEATURE ENGINEERING AND SCALING

- Encoded categorical variables such as teams and venues using one-hot encoding and label encoding.p
- Implement Standard Scaler to make sure the data is in small range.

3. Splitting In Training and Testing Data:

• Split the dataset into training (80%) and testing (20%) sets.

RESULTS AND CONCLUSION

- ➤ The Random Forest Classifier emerged as the best model, achieving a 95% testing accuracy.
- > GUI enhancements provide a user-friendly interface for exploring predictions and historical data.