TEC0001 – Teoria da Computação Aula 06 Enumeradores

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2017

Enumeradores

 $\label{eq:LinguagemRecursivamente} \begin{tabular}{ll} Linguagem Recursivamente Enumerável == Linguagens \\ Turing-Reconhecíveis \\ \end{tabular}$

Enumerador

- Máquina de Turing +
- Impressora

Karina G. Roggia 2017 TEC0001 - Aula05 2 / 8

Enumerador

Definição (Enumerador)

Um enumerador é uma estrutura $E = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{imprime}, q_{aceita} \rangle$ onde

- Q é o conjunto finito de estados
- Σ é o alfabeto de saída
- Γ é o alfabeto da fita de trabalho
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{E, D\} \times (\Sigma \cup \{\varepsilon\})$ é a função programa
- $q_0 \in Q$ é o estado inicial
- $q_{imprime} \in Q$ é o estado de impressão
- $q_{aceita} \in Q$ é o estado de aceitação e $q_{aceita} \neq q_{imprime}$

Enumerador

Computação: tal como a de uma MT com as seguintes diferenças

- Possui duas fitas: uma de trabalho e uma de preparação para impressão
- · Ambas fitas iniciam em branco
- $\delta(q, a) = (r, b, E, c)$ significa que, no estado q, lendo a da fita de trabalho
 - Vai para o estado r
 - escreve b na fita de trabalho
 - move a fita de trabalho para a esquerda
 - escreve c na fita de preparação e, caso $c \neq \varepsilon$, move a fita de preparação para a direita.
- Sempre que o estado q_{imprime} é atingido
 - Imprime o conteúdo da fita de preparação
 - Esvazia a fita de preparação e posiciona o cabeçote para a posição mais à esquerda

Karina G. Roggia 2017 TEC0001 - Aula05 4 /

Enumerador

- Computação encerra ao atingir estado q_{aceita}
- $L(E) = \{ w \in \Sigma^* \mid w \text{ foi impressa durante}$ a computação de $E \}$

Dado um Enumerador E

- Linguagem enumerada por E: conjunto de todas as cadeias que E imprime.
- Não há ordem obrigatória na enumeração
- Possivelmente há repetições de cadeias impressas

Karina G. Roggia 2017 TEC0001 - Aula05 5

$MT \Leftrightarrow Enum$

Teorema (Linguagens Recursivamente Enumeráveis)

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Demonstração:

- MT \Rightarrow Enum
- Enum \Rightarrow MT

2017

$Enum \Rightarrow MT$

Seja E um enumerador que enumera a linguagem A, então temos a MT M_F como segue:

 $M_E =$ Sobre a entrada w

- Rode E. Toda vez que E imprimir uma cadeia v, compare-a com w.
- **2** Se v = w, aceite; caso contrário, repita 1. até o enumerador parar. Caso E pare e não foi encontrado v = w, rejeite.

Karina G. Roggia 2017 TEC0001 - Aula05 7 / 3

UDESC

$MT \Rightarrow Enum$

Seja M uma máquina de Turing que aceita a linguagem B. Construiremos o seguinte enumerador E_M .

Seja s_1, s_2, \ldots uma lista de todas as cadeias sobre Σ^* .

 $E_M = Ignore a entrada$

- **1** Repita o seguinte para i = 1, 2, ...
- **2** Rode M por i passos sobre cada entrada s_1, s_2, \ldots, s_i
- Se quaisquer computações forem aceitas, imprima a s_j correspondente

Karina G. Roggia 2017 TEC0001 - Aula05 8 /