Cours de maths synthétique (pour $\frac{X/ENS}{CCINP/CENTRALE/MINES}$)

sous "la direction lo
l" de Hugo BECKER et Mohamad MIDAEV facturé 12€80 December 22, 2023

- * Deux matrices diagonales commutent
- * Si A est une matrice triangulaire supérieure et inversible, alors A^{-1} est triangulaire supérieure
- * Soit A et B deux parties de E. Si A est une partie génératrice de E et si $A \subset B$ alors B est une parties génératrice de E (c'est la même chose pour les familles)
- *(x,y) liée signifie que x et y sont colinéaires.
- * Toutes sous-famille d'une famille finie libre est libre
- * Toutes sous-famille d'une famille finie liée est liée
- * Une familel finie de polynômes non nuls de degrés 2 à 2 distincts est libre
- * Une application $u \in L(E, F)$ est injective ssi $Keru = \{0\}$
- * Une symétrie s est un automorphisme donc $s^{-1} = s$
- * Soit H un SEV de E. Alors H est un hyperplan de E s
si il existe une droite vectorielle D telle que $E=H\oplus D$
- * Théorème de la base incomplète : Toute famille libre fini d'un EV de dimension fini peut être complété en une base de cet EV
- * Théorème de la base extraite : Toutes familles génératrice finie d'un EV fini on peut extraire une base de cet EV
- $* dim(E \times F) = dim(E) + dim(F)$
- $* dim(E \oplus F) = dim(E) + dim(F)$
- * $dim(F+G) = dim(F) + dim(G) dim(F \cap G)$
- * Théorème du rang : $\dim(E) = rg(u) + \dim(Ker u)$
- * Soit E et F deux EV de même dimensions finie. On a que $u \in L(E, F)$ on a : u surjective \Leftrightarrow u injective \Leftrightarrow u bijective
- $* dimL(E, F) = dim(E) \times dim(F)$
- * $HhyperplandeE \leftrightarrow dim(H) = dim(E) 1$
- * $Mat_B(v \circ u) = Mat_B(v)Mat_B(u)$
- * $\dim(\text{Ker A}) + \operatorname{rg}(A) = \operatorname{p} \operatorname{avec} A \in M_{n,p}(K)$
- * Une matrice carré $A \in M_n(K)$ est inversible ssi rg(A) = n
- * Une matrice carré $A \in M_n(K)$ est inversible ssi $\forall X \in K^n AX = 0 \to X = 0$

- * Si $(A,B) \in M_n(K)^2$ vérifient $AB = I_n$, alors A et B sont inversibles et inverse l'une de l'autre
- * Une matrice est de rang ri ssi elle est équivalente à la matrice J_r
- * Deux matrices de même taille sont équivalentes ssi elles ont même rang
- * Une matrice et sa transposée ont même rang
- * une sous matrice de A a un rang inférieur à A
- $* \operatorname{tr}(AB) = \operatorname{tr}(BA)$
- * Deux matrices semblables ont la même trace
- $* tr(v \circ u) = tr(u \circ v)$
- * la trace d'un projecteur est égal à son rang
- * inégalité triangulaire : $||a+b|| \le ||a|| + ||b||$
- * théorème de pythagore : ||x+y|| = ||x|| + ||y|| ssi x et y sont orthogonaux
- * Toute famille orthogonale de vecteurs non nuls de E est libre, en particulier, toute famille orthonormée de E est libre
- * Toute espace euclidien possède une base orthonormée
- * Théorème de la base orthonormée incomplète : Toute famille orthonormée de E peut être complétée en une base orthonormée de E
- * Si deux endomorphismes commutent, les sous espaces propres de l'un sont stable par l'autre
- * Si $(\lambda_i)_{i\in I}$ est une famille finie de valeurs propres de u deux à deux distinctes, alors les sous espaces propres associées $E_{\lambda_i}(u)$, pour $i\in I$, sont en somme directe.
- * Toutes famille de vecteurs propres associées à des valeurs propres deux à deux distinctes est libre
- * Deux matrices semblambles ont le même spectre et les sous-espaces propres associés sont de même dimension
- * Si A est une matrice triangulaire, alors l'ensemble de ses valeurs propres est sa diagonale
- * Un scalaire $\lambda \in K$ est une valeur propre de A ssi il est racine du polynôme caractéristique de A
- * on a pour tout $\lambda \in Sp(u)$: $1 \leq dim(E_{\lambda}(u) \leq m(\lambda)$
- \ast Si le polynôme caractéristique de u est scindé à racines simples, alors u est diagonalisable

- \ast Théorème de Cayley-Hamilton : Le plynôme caractéristique de u annule u
- * Un endomorphisme

0.0.1 Caractérisations sur l'inversibilité d'une matrice

A est inversible $\underline{{\rm SI}~{\rm ET}~{\rm SEULEMENT}~{\rm SI}}$:

- * A est de determinant nul
- $\ast\,$ 0 n'est pas valeur propre de A
- * rg(A) = n
- $\ast\,$ le système linéaire homogène AX=0a pour seule solution X=0
- $* Ker(A) = \{0\}$
- * Il existe un polynôme annulateur de A dont 0 n'est pas racine

0.0.2 Propriété sur la semblablilité de deux matrices

A et B sont semblables $\underline{\rm SI}\ \underline{\rm ET}\ \underline{\rm SEULEMENT}\ \underline{\rm SI}$:

- $\ast \ \det(A) = \det(B)$
- * tr(A) = tr(B)
- * rg(A) = rg(B)