Evaluación

¿Cómo saber si un sistema de IR funciona bien?

¿Cómo decidir las múltiples opciones en el diseño y configuración de un motor de búsqueda, optimizarlas y ponerlas a punto?

¿Cómo cuantificar y comparar qué sistema funciona mejor?

Necesidad de evaluar

- IR es una disciplina altamente empírica
- Guiar el desarrollo, validación, selección y optimización de modelos, algoritmos y sistemas de IR
 - Elegir modelos IR, variantes (p.e. en *tf-idf*), normalizaciones,
 stemming, stopwords, etc.
 - Ajuste de parámetros
 - Optimización y puesta a punto general del sistema
- Comparativas y diagnóstico
 - Evaluación de una respuesta, evaluación global del sistema
 - Identificación de fallos y puntos débiles
 - Comparación de sistemas

Calidad de un sistema de IR

- Satisfacción de la necesidad de información del usuario (utilidad)
 - Relevancia a la consulta

- Calidad del contenido, autoridad de la fuente...
- Actualidad, entretenimiento, idioma, ayudas...

_ ...

Requisitos técnicos

- Efectividad y escalabilidad: tiempo de respuesta, query throughput,
 rapidez de indexado, cobertura...
- Flexibilidad: actualización incremental, configurabilidad, extensibilidad...
- Usabilidad, calidad de la UI, efectividad de los snippets, etc.

— ···

Metodología

- Offline vs. online
 - Orientado al sistema vs. estudios con usuarios
- Paradigma Cranfield
 - Colección, conjunto de consultas, juicios de relevancia
- Sistemas, métricas, comparación
 - Comparativas entre varios sistemas sobre diferentes métricas
 - Optimización: usar consultas de entrenamiento y consultas de test
- Simplificaciones
 - La relevancia depende sólo de la consulta y el doc (nos abstraemos de otras cualidades del documento)
 - La relevancia no depende del usuario
 - Ni del tiempo, ni del contexto
 - La relevancia de un documento es independiente de la relevancia de los demás

Cyril W. Cleverdon (1914-1997)

Por la dificultad

se podrían usar)

de obtener juicios

relativos (si se tuvieran

Relevancia (recordatorio)

- Un concepto central en IR
 - La base de la evaluación de sistemas
 - La base de algunos modelos formales probabilísticos
- Una propiedad de un par consulta / documento
 - El documento es relevante si satisface la necesidad de información que motiva la consulta
 - Comúnmente considerada binaria (relevante / no relevante)
 - Pero métricas más recientes consideran grados de relevancia

Métricas

- Aplican a una lista ordenada (ránking) de documentos + una consulta
- Devuelven un número real
 - Generalmente positivo, y típicamente (pero no forzosamente) en [0,1]
- Versión @k aplica a los top k documentos del ránking
- Diferentes métricas captan diferentes matices
- Clásicas
 - Precisión, recall, media armónica, curva precisión/recall, R-precision,
 MAP, MRR, fallout...
- Más recientes
 - nDCG, ERR, RBP...
- Un campo muy abierto y activo de innovación e investigación
 - Formalización, unificación y generalización de métricas, modelos de usuario
 - Nuevas dimensiones: diversidad, novedad...

Métricas clásicas

$$P = \frac{|\text{Relevant } \cap \text{ Returned}|}{|\text{Returned}|}$$

P.e. típica búsqueda Web

Representa una tarea donde el usuario quiere encontrar un nº razonable de docs relevantes y valora el ratio de docs relevantes por unidad de esfuerzo

$$R = \frac{|\text{Relevant} \cap \text{Returned}|}{|\text{Relevant}|}$$

Medida de exhaustividad, representa una tarea donde el usuario quiere encontrar todos los docs relevantes y no repara en el esfuerzo de examinar docs irrelevantes

$$F = \frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2PR}{P + R}$$
 P.e. dominio judicial, patentes, escritorio, e

patentes, escritorio, email

Media armónica, combinación de precisión y recall que penaliza valores muy bajos en una u otra métrica

Efecto de la media armónica

Efecto de la media armónica

Ejemplo

Para una consulta q los documentos relevantes son:

$$d_3 \ d_5 \ d_6 \ d_7$$

Un sistema devuelve, por este orden, los documentos:

$$d_1 \ d_2 \ d_3 \ d_4 \ d_5$$

Otras formas de entender P y R

$$R = \frac{TP}{TP + FN}$$

$$Fallout = \frac{FP}{FP + TN}$$

Curva ROC: recall vs. fallout

AUC: Area Under the ROC Curve

	P	IV	
\widehat{P}	TP	FP	
Ñ	FN	TN	

¿Probabilidad de...?

Métricas

• Para evaluar un sistema s, las métricas m se promedian sobre una batería de consultas Q (p.e. mínimo 50)

$$m(s) = \underset{q \in \mathcal{Q}}{\operatorname{avg}} m(\underline{s(\mathcal{D}, q)}, q)$$

ránking devuelto por s en respuesta a q

Es común también tomar las métricas "at k" (top k rank cutoff)

$$m@k(R,q) = m(topk(R),q)$$
P.e. $P@k = \frac{|Relevant in top k|}{k}$

¿Por qué?

Evaluaciones comparativas

Generalmente el objetivo es comparar varios sistemas

_	P@10	P@20	MAP	nDCG	•••
sistema ₁	0.4201	0.4532	0.2124	0.2381	•••
sistema ₂	0.3912	0.4467	0.2033	0.2405	
sistema ₃	0.3109	0.3215	0.1906	0.2153	
• • •					

- Conviene medir la significatividad estadística de las comparaciones
 - Aunque lo obviaremos en esta asignatura

Evaluaciones comparativas

Generalmente el objetivo es comparar varios sistemas

- Conviene medir la significatividad estadística de las comparaciones
 - Aunque lo obviaremos en esta asignatura

Juicios de relevancia

- ¿Cómo sabemos qué documentos son relevantes al evaluar?
- Se necesita "etiquetado" manual de los pares consulta / doc (a.k.a. ground truth, gold standard)
 - Campañas de evaluación: TREC, NTCIR, CLEF...
 - El proveedor del motor de búsqueda recluta evaluadores (assessors, a pequeña o gran escala, ver p.e. Google quality rating program)
 - Se infiere una probabilidad de relevancia por los clicks de los usuarios
- En general difícilmente sabremos todos los relevantes
 - Se necesitaría anotar la relevancia de $Q \times \mathcal{D}!!$
 - Se suele hacer un muestreo (pooling)
 - Dificultad para calcular el valor exacto de métricas como recall o IDCG

Más métricas clásicas

$$AP = \underset{d_k \text{ relevant}}{\operatorname{avg}} P@k \longrightarrow MAP$$

Los relevantes no devueltos se consideran posición ∞

Algunos autores toman min(|Relevant|, n) en el denominador de AP@n

$$R$$
- $Precision = P@|Relevant|$

Más "justa" que P@k p.e. cuando hay menos de k docs relevantes Es el punto donde P@k = R@k Implícitamente combinan precisión y recall, pues dividen por |Relevant|

$$RR = \frac{1}{\min\{k | d_k \text{ relevant}\}} \rightarrow MRR$$

Representa una tarea donde al usuario le basta un doc relevante

Nuevas métricas

- No todos los documentos relevantes son igual de relevantes
 - No relevante, poco relevante, relevante, muy relevante...
 - Grados de relevancia
- No todas las posiciones en el ránking son iguales
 - Cuanto más alta la posición, más influye la relevancia del documento en la efectividad real para el usuario
 - Cuanto más baja la posición, menos probable que el usuario llegue a ver el documento
 - Descuento por posición
- No todas las consultas son igual de difíciles
 - Normalización para tener en cuenta la dificultad de la consulta

Nuevas métricas – nDCG

Normalized Discounted Cumulated Gain

$$nDCG = \frac{DCG}{IDCG} \qquad DCG = \sum_{k} \frac{g(d_k)}{\log_2(k+1)} \leftarrow \begin{array}{c} Grado \ de \\ relevancia \end{array}$$

$$0 \ Descuento \\ por \ posición \\ Normalización \\ nDCG \in [0,1] \longrightarrow IDCG = \max_{R \in \sigma(\mathcal{D})} DCG(R,q)$$

Con cutoff:
$$nDCG@k = \frac{DCG@k}{IDCG@k}$$

K. Jarvelin, J. Kekalainen. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems 20(4), 2001, pp. 422–446

Descuento por posición

Ver https://www.advancedwebranking.com/cloud/ctrstudy

Examinar consultas individuales

Histograma p.e. R-precision

- Permite comparar dos sistemas en detalle consulta a consulta
- Permite observar diferencias que se difuminan en el promedio sobre las consultas: varianza, outliers, tipos de consulta, etc.
- Mostrar R-precision(s_1, q_i) R-precision(s_2, q_i) para varias consultas q_i como diagrama de barras

Ejemplo

R-Precision histogram Google vs. Bing

Evaluación online

- Experimentos en laboratorio
- Crowdsourcing
- ◆ Tests A/B
- Evaluación con logs de búsqueda y clickthrough

Ejemplo protocolos evaluación en Google

https://www.google.com/search/howsearchworks/mission/users Ver también...

- http://www.youtube.com/watch?v=J5RZOU6vK4Q
- http://googleblog.blogspot.com.es/2008/09/search-evaluation-at-google.html

Sobre Google raters...

- http://searchenginewatch.com/article/2172154/How-Google-Uses-Human-Raters-in-Organic-Search
- https://www.youtube.com/watch?v=nmo3z8pHX1E
- http://searchengineland.com/interview-google-search-quality-rater-108702