Literature Survey

Title & Author (s)	Year	Technique (s)	Findings /pros /cons
Prediction of chronic kidney disease using data science -N V Ganapathi Raju; K Prasanna Lakshmi; K. Gayathri Praharshitha; Chittampalli Likhitha	2019	Support Vector Machine ,XG Boost	Diagnosis of CKD based on the classification report Suggest suitable diet plan for CKD patient using classification algorithm on medical test records.
A Machine Learning Methodology for Diagnosing Chronic Kidney Disease - Jiongming Qin; Lin Chen; Yuhua Liu; Chuanjun Liu; Changhao Feng; Bin Chen	2019	Machine learning, Neural Networks	Applying this methodology to the practical diagnosis of CKD would achieve a desirable effect. In addition, this methodology might be applicable to the clinical data of the other diseases in actual medical diagnosis
XGBoost Model for Chronic Kidney Disease Diagnosis - Adeola Ogunleye; Qing-Guo Wang	2019	XGBoost model, Artificial intelligence	In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is

			chosen as our base model for its high performance.
Predictive analytics for chronic kidney disease using machine learning techniques - Anusorn Charleonnan, Thipwan Fufaung; Tippawan Niyomwong; Wandee Chokchueypattanakit;	2019	KNN, Support Vector Machine	In this paper, we present machine learning techniques for predicting the chronic kidney disease using clinical data. Four machine learning methods are explored including K-nearest neighbors (KNN), support vector machine (SVM), logistic regression (LR), and decision tree classifiers.
Chronic Kidney Disease analysis using data mining classification techniques - Veenita Kunwar; Khushboo Chandel; A. Sai Sabitha; Abhay Bansal	2016	Data mining, Artificial neural networks	The objective of our paper is to predict Chronic Kidney Disease(CKD) using classification techniques like Naive Bayes and Artificial Neural Network(ANN). The experimental results implemented in Rapidminer tool show that Naive Bayes produce more accurate results than Artificial Neural Network