How does mix-up help with robustness and generalization?

-Summary-

Introduction

Notation & Result

- Example : $(x_i, y_i) \sim P_{x,y}$ (i. i. d), where $x \in \mathbb{R}^p$, $y \in \mathbb{R}^m$ and $z_i = (x_i, y_i)$
- Set of training data : $S = \{(x_i, y_i)\}_{i=1}^n$, where $(x_i, y_i) \sim P_{x,y}$
- Pair of example : Mix-up example : $\tilde{x}_{i,j}(\lambda) = \lambda x_i + (1-\lambda)x_j$, $\tilde{y}_{i,j}(\lambda) = \lambda y_i + (1-\lambda)y_j$
- Standard population loss : $L(\theta) = \mathbb{E}_{z \sim P_{x,y}} l(\theta, z)$
- Standard empirical loss : $L_n^{std}(\theta, S) = \frac{1}{n} \sum_{i=1}^n l(\theta, z_i)$
- Mix-up loss : $L_n^{mix}(\theta, S) = \frac{1}{n^2} \sum_{i,j=1}^n \mathbb{E}_{\lambda \sim D_{\lambda}}[l(\theta, \tilde{z}_{i,j}(\lambda)]]$, where $\lambda \sim D_{\lambda} = Beta(\alpha, \beta)$, $\alpha > 0$, $\beta > 0$
- Gradient : $\nabla f_{\theta}(x)$, $\nabla_{\theta} f_{\theta}(x)$ is gradient with respect to x and θ
- Cosine : $cos(x, y) = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$
- Empirical Rademacher complexity of a function class $\mathcal{F}: \mathcal{R}_{\mathcal{S}}(\mathcal{F}) = Rad(\mathcal{F}, \mathcal{S}) = \frac{1}{n} \mathbb{E}_{\epsilon} [\sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \epsilon_{i} f(x_{i})]$

Result: Mix-up training minimizes an upper bound on the adversarial loss (=> robustness against FGSM)

+ Regularization terms are related with over-fitting and achieving better generalization behaviors

Results – The regularization effect of mix-up

Claim: $L_n^{mix}(\theta, S) = L_n^{std}(\theta, S) + regularization term$

Lemma 3.1 (By Taylor theorem)

Consider the loss function $l(\theta, (x, y)) = h(f_{\theta}(x)) - yf_{\theta}(x)$, where h, f are twice differentiable for all $\theta \in \Theta$. Let us denote $\widetilde{D}_{\lambda} = \frac{\alpha}{\alpha + \beta} Beta(\alpha + 1, \beta) + \frac{\beta}{\alpha + \beta} Beta(\beta + 1, \alpha)$, $D_X = \text{empirical distribution of } S = \{(x_i, y_i)\}_{i=1}^n$ Then, the following holds:

$$L_n^{mix}(\theta, S) = L_n^{std}(\theta, S) + \sum_{i=1}^3 R_i(\theta, S) + \mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}}[(1 - \lambda)^2 \varphi(1 - \lambda)]$$

where $\lim_{\lambda o 0} \varphi(\lambda) = 0$, and

$$R_{1}(\theta, S) = \frac{\mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}}[1 - \lambda]}{n} \sum_{i=1}^{n} (h'(f_{\theta}(x_{i})) - y_{i}) \nabla f_{\theta}(x_{i})^{T} \mathbb{E}_{r_{x} \sim D_{x}}[r_{x} - x_{i}]$$

$$R_{2}(\theta, S) = \frac{\mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}}[(1 - \lambda)^{2}]}{2n} \sum_{i=1}^{n} h''(f_{\theta}(x_{i})) \nabla f_{\theta}(x_{i})^{T} \mathbb{E}_{r_{x} \sim D_{x}}[(r_{x} - x_{i}) (r_{x} - x_{i})^{T}] \nabla f_{\theta}(x_{i})$$

$$R_{3}(\theta, S) = \frac{\mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}}[(1 - \lambda^{2})]}{2n} \sum_{i=1}^{n} (h'(f_{\theta}(x_{i})) - y_{i}) \mathbb{E}_{r_{x} \sim D_{x}}[(r_{x} - x_{i}) \nabla^{2} f_{\theta}(x_{i}) (r_{x} - x_{i})^{T}]$$

Results – The regularization effect of mix-up

Note

- 1. The loss function class $\mathcal{L} = \{l(\theta, (x, y)) | l(\theta, (x, y)) = h(f_{\theta}(x)) yf_{\theta}(x) \text{ for some function h} \}$ includes many commonly used loss functions
 - (ex : $h(x) = \log(1 + \exp(x))$) for logistic loss (= negative log-likelihood) or loss function induced by GLMs)
- 2. Quadratic approximation of $L_n^{mix}(\theta, S)$: $\tilde{L}_n^{mix}(\theta, S) = L_n^{std}(\theta, S) + \sum_{i=1}^3 R_i(\theta, S)$ [regularization terms] (Empirically, $\tilde{L}_n^{mix}(\theta, S)$ is very close to $L_n^{mix}(\theta, S)$)

Logistic Regression

Two Layer ReLU Neural Network

Analysis setting

Analysis setting:

1. Consider logistic regression:

$$l(\theta, z) = \log(1 + \exp(f_{\theta}(x))) - yf_{\theta}(x)$$
, where $y \in \{0,1\}$, $f_{\theta}(x) = \theta^T x$

- 2. Consider the case where $\theta \in \Theta = \{\theta \in \mathbb{R}^d \mid y_i f_{\theta}(x_i) + (y_i 1) f_{\theta}(x_i) \geq 0 \text{ for all } i = 1, ..., n\}$ (Note : Θ includes the set of all θ with zero training errors => $y_i = 1 \Rightarrow f_{\theta}(x_i) \geq 0$, $y_i = 0 \Rightarrow f_{\theta}(x_i) \leq 0$)
- 3. Consider the adversarial loss with l_2 -attack of size $\epsilon \sqrt{d}: L_n^{adv}\left(\theta, \mathcal{S}\right) = \frac{1}{n} \sum_{i=1}^n \max_{\left|\left|\delta_i\right|\right|_2 \le \epsilon \sqrt{d}} l(\theta, (x_i + \delta_i, y_i))$

Lemma 3.2

The second order Taylor approximation of $L_n^{adv}(\theta, S)$ is $\frac{1}{n}\sum_{i=1}^n \tilde{l}_{adv}\left(\epsilon\sqrt{d}, (x_i, y_i)\right)$, where for any $\eta > 0, x \in \mathbb{R}^p$ and $y \in \{0,1\}$,

$$\tilde{l}_{adv}(\eta, (x, y)) = l(\theta, (x, y)) + \eta |g(x^T \theta) - y| \cdot ||\theta||_2 + \frac{\eta^2}{2} g(x^T \theta) (1 - g(x^T \theta)) \cdot ||\theta||_2^2$$

where $g(s) = \frac{e^s}{1+e^s}$ is logistic function

Theorem 3.1

Suppose there exists a constant $c_x > 0$ such that $||x_i||_2 \ge c_x \sqrt{d}$ for all $i \in \{1, ..., n\}$. Then, for any $\theta \in \Theta$, we have

$$\tilde{L}_{n}^{mix}(\theta, S) \geq \frac{1}{n} \sum_{i=1}^{n} \tilde{l}_{adv} \left(\epsilon_{i} \sqrt{d}, (x_{i}, y_{i}) \right) \geq \frac{1}{n} \sum_{i=1}^{n} \tilde{l}_{adv} \left(\epsilon_{mix} \sqrt{d}, (x_{i}, y_{i}) \right)$$

where $\epsilon_i = R_i c_x \mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}}[1 - \lambda]$ with $R_i = |\cos(\theta, x_i)|$ and $\epsilon_{mix} = R c_x \mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}}[1 - \lambda]$ with $R = \min_{i \in \{1, \dots, n\}} |\cos(\theta, x_i)|$

Question : Can it be generalized in non-logistic circumstance, also some cases when $\nabla^2 f_{\theta}(x) \neq 0$??

Note

- 1. $\tilde{L}_{n}^{mix}(\theta,S)$ is upper bound of the second order taylor expansion of $L_{n}^{adv}(\theta,S)$ with l_{2} -attack size $\epsilon_{mix}\sqrt{d}$ => Minimizing the Mix-up loss would result in a small adversarial loss
- 2. $\epsilon_{mix}\sqrt{d}$ seems to be small attack in d-dimensional data (tends to be single-step attacks, such as FGSM), So future works for exploring robustness against large and sophisticated multiple-step attacks (ex : I-FGSM) are required.
- 3. ϵ_{mix} depends on θ , but we need constant lower bound => Theorem 3.2

Assumption for theorem 3.2 (Assumption 3.1)

Denote $\widehat{\Theta}_n = \{\theta \in \Theta \mid minimizer \ of \ \widetilde{L}_n^{mix}(\theta, S)\}$, and assume there exists a set Θ^* such that for all $n \geq N \in \mathbb{N}$, $\widehat{\Theta}_n \subseteq \Theta^*$ with probability at least $1 - \delta_n$, where $\delta_n \to 0$ as $n \to \infty$. Moreover, there exists a $\tau \in (0,1)$ such that $p_\tau = \mathbb{P}(\{x \in \mathcal{X}: |\cos(x,\theta)| \geq \tau \text{ for all } \theta \in \Theta^*\}) \in (0,1]$

Theorem 3.2

Under assumption 3.1, if there exists constants b_x , $c_x > 0$ such that $c_x \sqrt{d} \le ||x_i||_2 \le b_x \sqrt{d}$ for all $i \in \{1, ..., n\}$. Then,

with probability at least $1 - \delta_n - 2\exp(-\frac{np_\tau^2}{2})$, there exists constant $\kappa > 0$, $\kappa_2 > \kappa_1 > 0$, such that for any $\theta \in \widehat{\Theta}_n$, we have

$$\tilde{L}_{n}^{mix}(\theta, S) \ge \frac{1}{n} \sum_{i=1}^{n} \tilde{l}_{adv} \left(\tilde{\epsilon}_{mix} \sqrt{d}, (x_{i}, y_{i}) \right)$$

where
$$\tilde{\epsilon}_{mix} = \tilde{R} c_x \mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}} [1 - \lambda]$$
 and $\tilde{R} = \min\{\frac{p_{\tau} \kappa_1}{2\kappa_2 - p_{\tau}(\kappa_2 - \kappa_1)}, \sqrt{\frac{4\kappa p_{\tau}}{2 - p_{\tau} + 4\kappa p_{\tau}}}\} \cdot \tau$

Note

Now, consider more general case: NN with ReLU/Max-pooling

 $\Rightarrow f_{\theta}(x) = \beta^T \sigma(W_{N-1} \cdots (W_2 \sigma(W_1 x)))$, where σ = nonlinear function via ReLU / max-pooling

Note that $f_{\theta}(x) = \nabla f_{\theta}(x)^T x$ and $\nabla^2 f_{\theta}(x) = 0$ (almost everywhere)

Theorem 3.3

Assume that $f_{\theta}(x) = \nabla f_{\theta}(x)^T x$ and $\nabla^2 f_{\theta}(x) = 0$ and there exists a constant $c_x > 0$ such that $||x_i||_2 \ge c_x \sqrt{d}$ for all $i \in \{1, ..., n\}$. Then, for any $\theta \in \Theta$, we have

$$\tilde{L}_{n}^{mix}(\theta, S) \geq \frac{1}{n} \sum_{i=1}^{n} \tilde{l}_{adv} \left(\epsilon_{i} \sqrt{d}, (x_{i}, y_{i}) \right) \geq \frac{1}{n} \sum_{i=1}^{n} \tilde{l}_{adv} \left(\epsilon_{mix} \sqrt{d}, (x_{i}, y_{i}) \right)$$

 $\text{where } \epsilon_i = R_i c_x \mathbb{E}_{\lambda \sim \widetilde{D}_\lambda}[1-\lambda] \text{ with } R_i = |\cos(\nabla f_\theta(x_i), x_i)| \text{ and } \epsilon_{mix} = R c_x \mathbb{E}_{\lambda \sim \widetilde{D}_\lambda}[1-\lambda] \text{ with } R = \min_{i \in \{1, \dots, n\}} |\cos(\nabla f_\theta(x_i), x_i)|$

Assumption for theorem 3.A (Assumption 3.A)

Denote $\widehat{\Theta}_n = \{\theta \in \Theta \mid minimizer \ of \ \widetilde{L}_n^{mix}(\theta, S)\}$, and assume there exists a set Θ^* such that for all $n \geq N \in \mathbb{N}$, $\widehat{\Theta}_n \subseteq \Theta^*$ with probability at least $1 - \delta_n$, where $\delta_n \to 0$ as $n \to \infty$. Moreover, there exists a $\tau, \tau' \in (0,1)$ such that

$$p_{\tau,\tau'} = \mathbb{P}\big(\big\{x \in \mathcal{X} : \big| \cos\big(x, \nabla f_{\theta}(x)\big)\big| \ge \tau, \|\nabla f_{\theta}(x)\| \ge \tau' \text{ for all } \theta \in \Theta^*\big\}\big) \in (0,1)$$

Theorem 3.A

Under assumption 3.A, if there exists constants b_x , $c_x > 0$ such that $c_x \sqrt{d} \le ||x_i||_2 \le b_x \sqrt{d}$ for all $i \in \{1, ..., n\}$. Then, with

probability at least $1 - \delta_n - 2\exp(-\frac{np_{\tau,\tau'}^2}{2})$, there exists constant $\kappa > 0$, $\kappa_2 > \kappa_1 > 0$, such that for any $\theta \in \widehat{\Theta}_n$, we have

$$\tilde{L}_{n}^{mix}(\theta, S) \ge \frac{1}{n} \sum_{i=1}^{n} \tilde{l}_{adv} \left(\tilde{\epsilon}_{mix} \sqrt{d}, (x_{i}, y_{i}) \right)$$

$$\text{ where } \tilde{\epsilon}_{mix} = \tilde{R} c_x \mathbb{E}_{\lambda \sim \widetilde{D}_\lambda} [1 - \lambda] \text{ and } \tilde{R} = \min\{\frac{p_{\tau,\tau'} \kappa_1 \tau}{p_{\tau,\tau'} \kappa_1 \tau + \left(2 - p_{\tau,\tau'}\right) \kappa_2 \tau'}, \sqrt{\frac{p_{\tau,\tau'} \kappa \tau^2}{\frac{2 - p_{\tau,\tau'}}{4\tau'^2} + p_{\tau,\tau'} \kappa \tau^2}}\} \cdot \tau$$

Note and analysis setting

Here, We show that the data-dependent regularization induced by Mix-up directly controls the Rademacher complexity of the underlying function classes => yield concrete generalization error bounds.

Analysis setting:

- 1. GLM case : $l(\theta, (x, y)) = A(\theta^T x) y\theta^T x$, $f_{\theta}(x) = \theta^T x$
- 2. Non-linear two-layer NN case : $l(\theta, (x, y)) = (y f_{\theta}(x))^2$, $f_{\theta}(x) = \theta_1^T \sigma(Wx) + \theta_0$

Notations : (related with regularization terms obtained by the second-order approximation of $\tilde{L}_n^{mix}(\theta,S)$)

- $\mathcal{W}_{\gamma} = \{x \to \theta^T x \mid \mathbb{E}_x[A''(\theta^T x) \cdot \theta^T \Sigma_X \theta \leq \gamma\}$: function class in GLM (regularization induced by mix-up) where $\Sigma_X = \mathbb{E}[x_i x_i^T]$
- $\mathcal{W}_{\gamma}^{NN} = \{x \to f_{\theta}(x) \mid \theta_1^T \Sigma_X^{\sigma} \theta_1 \leq \gamma\}$: function class in NN (regularization induced by mix-up) where $\Sigma_X^{\sigma} = \mathbb{E}[\widehat{\Sigma}_X^{\sigma}]$, and $\widehat{\Sigma}_X^{\sigma} = \text{sample covariance matrix of } \{\sigma(Wx_i)\}_{i=1}^n$

Lemma 3.3/3.4 (by Talyor theorem)

Consider the centralized dataset S, that is, $\frac{1}{n}\sum_{i=1}^n x_i = 0$, and denote $\hat{\Sigma}_X = \frac{1}{n}x_ix_i^T$, $\hat{\Sigma}_X^{\sigma} = \text{sample covariance matrix of } \{\sigma(Wx_i)\}_{i=1}^n$.

For GLM, if $A(\cdot)$ is twice differentiable, then the regularization term (= $\sum_{i=1}^{3} R_i(\theta, S)$) obtained by the second-order approximation of $\tilde{L}_n^{mix}(\theta, S)$ is given by

$$\frac{1}{2n} \left[\sum_{i=1}^{n} A''(\theta^{T} x_{i}) \right] \cdot \mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}} \left[\frac{(1-\lambda)^{2}}{\lambda^{2}} \right] \theta^{T} \widehat{\Sigma}_{X} \theta$$

For NN, the regularization term is given by

$$\mathbb{E}_{\lambda \sim \widetilde{D}_{\lambda}} \left[\frac{(1-\lambda)^2}{\lambda^2} \right] \theta_1^T \, \widehat{\Sigma}_X^{\sigma} \theta_1$$

Recall:
$$\widetilde{D}_{\lambda} = \frac{\alpha}{\alpha + \beta} Beta(\alpha + 1, \beta) + \frac{\beta}{\alpha + \beta} Beta(\beta + 1, \alpha)$$

Def : ρ -retentive distribution (for theorem 3.4)

The distribution of x is ρ -retentive for some $\rho \in \left(0, \frac{1}{2}\right]$ if for any non-zero vector $v \in \mathbb{R}^d$,

$$\left[\mathbb{E}_{x}\left[A^{\prime\prime}(x^{T}v)\right]\right]^{2} \geq \rho \cdot \min\{1, \mathbb{E}_{x}\left[\left(v^{T}x\right)^{2}\right]\}$$

Theorem 3.4 / 3.B

The empirical Rademacher complexity of \mathcal{W}_{ν} satisfies (when the distribution of x_i is ρ -retentive)

$$Rad(\mathcal{W}_{\gamma}, S) \leq \max\{\left(\frac{\gamma}{\rho}\right)^{\frac{1}{4}}, \left(\frac{\gamma}{\rho}\right)^{\frac{1}{2}}\} \cdot \sqrt{\frac{rank(\Sigma_X)}{n}}$$

The empirical Rademacher complexity of $\mathcal{W}^{NN}_{\gamma}$ satisfies

$$Rad(W_{\gamma}^{NN}, S) \leq 2\sqrt{\frac{\gamma \cdot rank(\Sigma_{X}^{\sigma}) + \left\|(\Sigma_{X}^{\sigma^{\frac{1}{2}}}\mathbb{E}_{x}[\sigma(Wx)]\right\|^{2}}{n}}$$

Recall : $\mathcal{W}_{\gamma} = \{x \to \theta^T x \mid \mathbb{E}_x[A''(\theta^T x) \cdot \theta^T \Sigma_X \theta \leq \gamma] , \mathcal{W}_{\gamma}^{NN} = \{x \to f_{\theta}(x) \mid \theta_1^T \Sigma_X^{\sigma} \theta_1 \leq \gamma\}$ $\Sigma_X = E[xx^T], \Sigma_X^{\sigma} = \mathbb{E}[\widehat{\Sigma}_X^{\sigma}], \widehat{\Sigma}_X^{\sigma} = \text{sample covariance matrix of } \{\sigma(Wx_i)\}_{i=1}^n.$

Corollary 3.1/ Theorem 3.5 (Apply Lemma A.1 to theorem 3.4/3.B)

Suppose $\mathcal{X}, \mathcal{Y}, \Theta$ are all bounded, then

For GLM, if $A(\cdot)$ is L_A -Lipschitz continuous, there exists constants L, B > 0, such that for all $f_\theta \in \mathcal{W}_\gamma$, we have ,with probability at least $1 - \delta$,

$$L(\theta) \leq L_n^{std}(\theta, S) + 2L \cdot L_A \left(\max \left\{ \left(\frac{\gamma}{\rho} \right)^{\frac{1}{4}}, \left(\frac{\gamma}{\rho} \right)^{\frac{1}{2}} \right\} \cdot \sqrt{\frac{rank(\Sigma_X)}{n}} \right) + B \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2n}}$$

For NN, there exists constants L, B > 0, such that for all $f_{\theta} \in \mathcal{W}_{\gamma}^{NN}$, we have ,with probability at least $1 - \delta$,

$$L(\theta) \leq L_n^{std}(\theta, S) + 4L \sqrt{\frac{\gamma \cdot rank(\Sigma_X^{\sigma}) + \left\| (\Sigma_X^{\sigma \frac{1}{2}} \mathbb{E}_X[\sigma(WX)] \right\|^2}{n} + B \sqrt{\frac{\log(\frac{1}{\delta})}{2n}}}$$

Recall : $L(\theta)$ is standard population loss

Conclusion (+appendix)

Appendix: Lemma A.1(Result from Bartlett & Mendelson, 2002)

For any B-uniformly bounded and L-Lipschitz function l, for all $f \in \mathcal{F}$, with probability at least 1- δ ,

$$\mathbb{E}[l(f(x))] \le \frac{1}{n} \sum_{i=1}^{n} l(f(x_i)) + 2L \cdot Rad(\mathcal{F}, S) + B\sqrt{\frac{\log(\frac{1}{\delta})}{2n}}$$

Conclusion

- Mix-up training is approximately a regularized loss minimization
- Derived regularization terms are used to demonstrate why Mix-up has improved generalization and robustness against one-step adversarial examples (small l_2 norm attack)