

Lab Meeting

- A Maxime U. Garcia
- maxulysse.github.io
- **○** @MaxUlysse
- **9** @gau

2019-02-12

Karolinska Institutet

Barntumörbanken

SciLifeLab

Analysis germline and somatic workflow

http://sarek.scilifelab.se/

- Analysis germline and somatic workflow
- Whole genome or targeted sequencing

http://sarek.scilifelab.se/

- Analysis germline and somatic workflow
- Whole genome or targeted sequencing
- Developed with NGI and NBIS

http://sarek.scilifelab.se/

- Analysis germline and somatic workflow
- Whole genome or targeted sequencing
- Developed with NGI and NBIS
- Support from The Swedish Childhood Tumor Biobank

Powered by

https://www.sylabs.io/singularity/

https://www.nextflow.io/

Data-driven workflow language

https://www.sylabs.io/singularity/

HPC specific container engine

https://bioconda.github.io/

Virtual environment management system

Sarek exists in multiple flavors

Sarek exists in multiple flavors

Sarek exists in multiple flavors

Data and files workflow

References Genomes

AWS iGenomes *** ama

https://ewels.github.io/AWS-iGenomes/

- Human GRCh37 from the GATK Resource Bundle
- Human GRCh38 from the GATK Resource Bundle

AWS iGenomes webs

https://ewels.github.io/AWS-iGenomes/

- Human GRCh37 from the GATK Resource Bundle
- Human GRCh38 from the GATK Resource Bundle
- Dog CanFam3.1 🔑
- Mouse GRCm38 🔑

https://software.broadinstitute.org/gatk/best-practices/

https://software.broadinstitute.org/gatk/best-practices/

Based on GATK Best Practices (GATK 4.0)

Reads mapped to reference genome with bwa mem

https://software.broadinstitute.org/gatk/best-practices/

- Reads mapped to reference genome with bwa mem
 - FASTQs or BAMs

https://software.broadinstitute.org/gatk/best-practices/

- Reads mapped to reference genome with bwa mem
 - FASTQs or BAMs
- Duplicates marked with picard MarkDuplicates

https://software.broadinstitute.org/gatk/best-practices/

- Reads mapped to reference genome with bwa mem
 - FASTQs or BAMs
- Duplicates marked with picard MarkDuplicates
- Recalibrate with GATK BaseRecalibrator

SNVs and small indels:

- SNVs and small indels:
 - Freebayes
 - HaplotypeCaller
 - MuTect2 ●
 - Strelka2 🍑/🍑

- SNVs and small indels:
 - Freebayes
 - HaplotypeCaller
 - MuTect2 ●
 - Strelka2 **>**/**>**
- Structural variants:

- SNVs and small indels:
 - Freebayes
 - HaplotypeCaller
 - MuTect2
- Structural variants:
 - Manta 🍑/🍑
- Sample heterogeneity, ploidy and CNVs:

- SNVs and small indels:
 - Freebayes
 - HaplotypeCaller
 - MuTect2
 - Strelka2 🍑/🍑
- Structural variants:
 - Manta 🍛/🍛
- Sample heterogeneity, ploidy and CNVs:
 - ASCAT ●

Annotation

- VEP and SnpEff
- ClinVar, COSMIC, dbSNP, GENCODE, gnomAD, polyphen, sift, etc.

Annotation

- VEP and SnpEff
- ClinVar, COSMIC, dbSNP, GENCODE, gnomAD, polyphen, sift, etc.
- Possibility to use cache directories

Prioritization

What we need

Adapt settings where necessary, and ensure they give good results

Markus Mayrhofer

Prioritization

What we need

- Adapt settings where necessary, and ensure they give good results
- Coherent overview to allow critical assessment of sequence and variant quality

Markus Mayrhofer

Prioritization

What we need

- Adapt settings where necessary, and ensure they give good results
- Coherent overview to allow critical assessment of sequence and variant quality
- Tables of variants with probable relevance for the disease

Markus Mayrhofer

Prioritization with pathfindr

Our solution

• Parse all results into R environment

Prioritization with pathfindr

Our solution

- Parse all results into R environment
- Rank variants based on evidence for being a driver mutation

Prioritization with pathfindr

Our solution

- Parse all results into R environment
- Rank variants based on evidence for being a driver mutation
- Visualize in portable html report for easy browsing

Tables and visualization

Gene	Mutation	Rank score	Rank Terms	Allele_ratio
EGFR	289/1210 A/V	10	T1_gene moderate_impact clinvar polyphen/SIFT hotspot cosmic_>50	0.94
TP53		9	T1_gene high_impact high+TSG clinvar cosmic_>50	0.86
HIST1H3B	28/136 K/M	7	T1_gene	0.23

EGFR 288/1210 AV

RESTT-BB 28/138 KM)

FREPS 300-022 T/Z | 2

5 6 7 8 9

SNVs, Indels

Tables and visualization

Gene	Mutation	Rank score	Rank Terms
EGFR	gain	5	T1_gene focal high_amp
ETNK1	gain	5	T1_gene focal high_amp
KRAS	gain	5	T1_gene focal high_amp

Copy number

Sarek at work

• 50 tumor/normal pairs with GRCh37 reference

Sarek at work

- 50 tumor/normal pairs with GRCh37 reference
- 90 tumor/normal pairs (with some relapse) with GRCh38 reference

Sarek at work

- 50 tumor/normal pairs with GRCh37 reference
- 90 tumor/normal pairs (with some relapse) with GRCh38 reference
- The whole SweGen dataset with GRCh38 reference
 - 1 000 samples in germline settings

Sarek at work

- 50 tumor/normal pairs with GRCh37 reference
- 90 tumor/normal pairs (with some relapse) with GRCh38 reference
- The whole SweGen dataset with GRCh38 reference
 - 1 000 samples in germline settings
- Clinical samples with Genomic Medicine Sweden initiative

Sarek at work

- 50 tumor/normal pairs with GRCh37 reference
- 90 tumor/normal pairs (with some relapse) with GRCh38 reference
- The whole SweGen dataset with GRCh38 reference
 - 1 000 samples in germline settings
- Clinical samples with Genomic Medicine Sweden initiative
- Used at NGI
 - 200 samples
 - testing it in production
 - plans for validation

Preprocessing time

On a research settings
On UPPMAX secure cluster Bianca

Preprocessing time

On a clinical settings
On our own secure server munin

https://aws.amazon.com/

Johannes Alneberg

Improved AWS usage

Johannes Alneberg

QC reports

http://multiqc.info/

munin

The CMM server room

munin

munin

Acknowledgments

Kenny Billiau

Barntumörbanken Elisa Basmaci NGI Johannes Alneberg NBIS Sebastian DiLorenzo

Szilveszter Juhos Anandashankar Anil Malin Larsson Gustaf Liungman Franziska Ronath Marcel Martin Monica Nistèr Orlando Contreras-López Markus Mayrhofer Gabriela Prochazka Phil Fwels Biörn Nystedt Johanna Sandgren Sofia Haglund Markus Ringnér Teresita Díaz De Ståhl Max Käller Pall I Olason Katarzyna Zielinska-Chomei Anna Konrad Jonas Söderberg

Pär Lundin

Grupp Nistèr Saad Alqahtani Remi-Andre Olsen Clinical Genomics
Min Guo Senthilkumar Panneerselvam

Min Guo Senthilkumar Panneerselvam Hassan Foroughi Asl Daniel Hägerstrand Fanny Taborsak Valtteri Wirta Anna Hedrén Chuan Wang

Martin Proks Nextflow folks Paolo Di Tommaso
Rong Yu Sven Fillinger

Jian Zhao Clinical Genetics Jesper Eisfeldt Alexander Peltzer

Any questions?

