Задача А. Степени вершин

Имя входного файла: standard input Имя выходного файла: standard output

Ограничение по времени: 2 seconds Ограничение по памяти: 512 mebibytes

На зелёном-зелёном континенте жила необычная зебра Гиппо, которая интересовалась математикой и программированием. И вот однажды на этом континенте собрались проводить соревнования для программистов, но внезапно оказалось, что у организаторов не хватает задач... системы... членов жюри... Так что зебра Гиппо внезапно была приглашена в жюри этой олимпиады.

Ей сразу поручили ответственное задание — проверить существование и уникальность ответа к одной из задач олимпиады. Задана последовательность d, длина которой равна N. Требуется выяснить, существует ли дерево с N вершинами такое, что его i-я вершина соединена рёбрами ровно с d_i другими вершинами. Если такого дерева не существует, требуется вывести «None», если оно единственно с точностью до изоморфизма — то «Unique», иначе — «Multiple».

Напоминаем, что деревья T_1 и T_2 называются изоморфными, если существует такое взаимно однозначное соответствие f между множествами вершин T_1 и T_2 , что для каждой пары вершин (u, v) из дерева T_1 ребро между вершинами u и v в дереве T_1 существует тогда и только тогда, когда существует ребро между вершинами f(u) и f(v) в дереве T_2 .

Так как для подготовки качественной олимпиады дублирование является обязательным условием, Вам поручено написать такую же программу.

Формат входного файла

В первой строке ввода содержится целое число N ($2 \le N \le 100$). Вторая строка ввода содержит N разделённых пробелами целых чисел d_1, \ldots, d_N ($1 \le d_i \le N - 1$).

Формат выходного файла

B соответствии с условиями задачи выведите одну из следующих строк: «None», «Unique», или «Multiple».

standard input	standard output
6	Unique
1 1 3 1 3 1	
3	None
2 2 2	

Задача В. Лягушки

Имя входного файла: standard input Имя выходного файла: standard output

Ограничение по времени: 2 seconds Ограничение по памяти: 512 mebibytes

Перед открытием олимпиады членов жюри повезли на экскурсию к водопаду. Но водопад был закрыт на профилактику. После этого зебра Гиппо решила осмотреть окрестности самостоятельно и добралась до знаменитого Длинного Барьерного болота.

Болото представляет собой бесконечно длинную последовательность кочек, занумерованных последовательными неотрицательными целыми числами. Для каждого $i \geq 0$ высота кочки i равна остатку от деления x^i на p.

В начальный момент времени k лягушек, занумерованных последовательными целыми числами от 1 до k, находятся на кочке 0, при этом усталость каждой лягушки равна 1. Понаблюдав за лягушками, Гиппо заметила, что лягушки двигаются в соответствии со следующими правилами:

- 1. Лягушка с номером 1 двигается на одну кочку вперёд, и её усталость увеличивается на величину, равную высоте новой кочки.
- 2. Оставшиеся лягушки двигаются по очереди, начиная со второй, так: i-я лягушка двигается на одну кочку вперёд, если i-1-я лягушка тоже двигалась и усталость i-1-й лягушки делится на m (в этом случае усталость i-й лягушки увеличивается на величину, равную высоте кочки, на которую она попала), иначе она остаётся на месте (и тогда её усталость не меняется).
- 3. Если расстояние между первой и k-й лягушками не менее d, лягушки прекращают движение. В противном случае процесс повторяется, начиная с пункта 1.

Вычислите, на какой кочке окажется первая лягушка в момент окончания движения.

Формат входного файла

Вход содержит пять целых чисел x $(1 \le x \le p-1), p$ $(2 \le p \le 10^5), k$ $(2 \le k \le 10), m$ $(2 \le m \le 10)$ и d $(1 \le d \le 10^{12}).$

Гарантируется, что число p является **простым**.

Формат выходного файла

Выведите номер кочки, на которой окажется первая лягушка в момент, когда лягушки прекратят движение.

standard input	standard output
1 2 3 2 10	14
58 10007 10 10 123456789012	123456789143

Задача С. Зелёный треугольник

Имя входного файла: standard input Имя выходного файла: standard output

Ограничение по времени: 2 seconds Ограничение по памяти: 512 mebibytes

Так как у организаторов олимпиады не хватило волонтёров, то к оформлению зала, в котором пройдёт закрытие, привлекли и членов жюри. Так, зебра Гиппо получила задание нарисовать зелёный треугольник.

Гиппо решила действовать следующим образом: на плоскости заданы N точек, никакие три из которых не лежат на одной прямой. Зебра выбирает случайным образом три различные точки, строит треугольник с вершинами в выбранных точках и красит его в зелёный цвет. Для окраски треугольника площади s требуется s миллилитров зелёной краски. Вычислите математическое ожидание количества краски, которая будет потрачена зеброй.

Формат входного файла

В первой строке входного файла содержится целое число $N(3 \le N \le 2\,000)$ — количество точек. Последующие N строк задают точки, i-я из этих строк содержит два целых числа x_i и y_i ($0 \le x_i, y_i \le 10^9$), разделённых пробелом — координаты i-й точки. Гарантируется, что никакие три заданные точки не лежат на одной прямой.

Формат выходного файла

Выведите математическое ожидание количества краски, которое Γ иппо потратит на раскраску треугольника с абсолютной или относительной точностью не хуже 10^{-9} .

standard input	standard output
4	0.75000000000
0 0	
0 1	
1 1	
2 0	
10	9.06666666667
9 6	
5 7	
9 2	
4 6	
3 2	
2 1	
0 8	
7 3	
4 8	
1 1	

Задача D. MathWorlds

Имя входного файла: standard input Имя выходного файла: standard output

Ограничение по времени: 2 seconds Ограничение по памяти: 512 mebibytes

В последний момент организаторы олимпиады приняли решение заменить одну из задача. Задача основывается на игре MathWorlds, в которой игроку даётся формула в виде x [operator] y = z. Игрок должен выбрать один из операторов x (сложение), x (вычитание), x (умножение) или x (деление) после подстановки которого формула станет верной. Зебра Гиппо, которой поручили координировать подготовку задачи, просит вас написать программу, которая валидирует сгенерированные для игры формулы.

Вам заданы три целых числа x, y и z. Выведите оператор, при подстановке которого в выражение «x [operator] y=z» формула становится тождеством. Если такого оператора не существует или формулу обращают в тождество несколько операторов, выведите «Invalid». Обратите внимание на то, что деление («/») в этой задаче **является точным**, а не целочисленным.

Формат входного файла

Входной файл содержит три целых числа x,y и z ($0 \le x,y,z \le 10^9$), разделённых пробелами.

Формат выходного файла

Выведите в соответствии с результатом проверки примера одну из следующих строк: «+», «-», «/» или «Invalid».

standard input	standard output
3 2 1	_
2 2 4	Invalid

Яндекс. Алгоритм Второй отборочный раунд, 18 иоля 2013 года

Задача Е. Малые циклы

Имя входного файла: standard input Имя выходного файла: standard output

Ограничение по времени: 2 seconds Ограничение по памяти: 512 mebibytes

Прочитав предлагаемые на соревнования задачи, зебра Гиппо обратила внимание на то, что в максимальном тесте к одной из задач в графе слишком мало рёбер. Тест представляет собой неориентированный граф G, обладающий следующими свойствами:

- G простой граф, то есть он не содержит петель и кратных рёбер.
- G является связным.
- G не содержит простых циклов длиной 4 или более. Последовательность k различных вершин v_1, \ldots, v_k называется простым циклом длины k, если для каждого i вершины v_i и v_{i+1} соединены ребром и, кроме того, v_1 и v_k также соединены ребром.

Зебра Гиппо хочет добавить к этому графу дополнительные рёбра так, чтобы вышеупомянутые свойства по-прежнему сохранялись. Какое количество дополнительных рёбер ей удастся добавить?

Формат входного файла

Первая строка входного файла содержит два целых числа V ($1 \le V \le 10^5$) и E ($0 \le E \le 10^5$), разделённые пробелом. Здесь V — количество вершин графа G, а E — количество рёбер графа G.

Последующие E строк задают рёбра графа. i-я из этих строк содержит два целых числа a_i и b_i $(1 \le a_i < b_i \le V)$, разделённые пробелом — номера вершин, которые соединяет i-е ребро. Вершины пронумерованы от 1 до V. Гарантируется, что G обладает описанными в условии задачи свойствами.

Формат выходного файла

Выведите наибольшее количество рёбер, которые зебра Γ иппо может добавить к графу G с сохранением вышеперечисленных свойств.

Яндекс. Алгоритм Второй отборочный раунд, 18 иоля 2013 года

standard input	standard output
7 6	3
1 2	
1 3	
1 4	
1 5	
1 6	
1 7	
9 9	2
1 2	
1 3	
2 3	
2 4	
4 5	
5 6	
3 7	
7 8	
8 9	

Задача F. Шарообмен

Имя входного файла: standard input Имя выходного файла: standard output

Ограничение по времени: 2 seconds Ограничение по памяти: 512 mebibytes

После того, как оргкомитет олимпиады провёл жеребьёвку для определения причины резкого замедления работы тестирующей системы в первый день соревнований, в зале заседаний остались три коробки и три разноцветных шара — красный, зелёный и синий.

Зебра Гиппо нашла эти шары и сейчас играет в следующую игру:

Три коробки пронумерованы последовательными целыми числами от 0 до 2. Первоначально в коробке с номером 0 лежит красный шар (обозначается как «R»), в коробке с номером 1 — зелёный шар (обозначается как «G»), а в коробке с номером 2 — синий шар (обозначается как «B»).

Разрешено делать следующие действия:

- Поменять местами шары в коробках 0 и 1. Всего такие действия необходимо проделать в точности p раз.
- Поменять местами шары в коробках 0 и 2. Всего такие действия необходимо проделать в точности q раз.
- Поменять местами шары в коробках 1 и 2. Всего такие действия необходимо проделать в точности r раз.

Порядок действий Гиппо может выбирать самостоятельно. Например, если (p,q,r)=(2,1,0), она может поменять местами шары в коробках 0 и 1, затем поменять местами шары в коробках 0 и 2, затем снова поменять местами шары в коробках 0 и 1.

После выполнения всех необходимых действий игра считается выигранной, если получена позиция s. Позиция задаётся строкой из трёх различных символов — обозначений цветов шаров «R», «G», «B». Символы расположены в порядке, соответствующем номерам коробок, в которых эти шары должны лежать. Если шары будут расположены иначе, игра считается проигранной.

По заданным p, q, r и позиции s выясните, может ли Γ иппо выиграть.

Формат входного файла

Первая строка входного файла содержит три целых числа p,q и r, разделённые пробелами $(0 \le p,q,r \le 10^9)$. Вторая строка содержит строку s, которая является перестановкой строки «RGB», то есть одной из следующих шести строк: «RGB», «RBG», «GRB», «GBR», «BRG» или «BGR».

Формат выходного файла

Если Гиппо может выиграть, выведите «Yes», в противном случае выведите «No».

standard input	standard output
2 1 0	Yes
BGR	
5 8 58	No
RGB	

Яндекс. Алгоритм Второй отборочный раунд, 18 иоля 2013 года

Note

В первом примере Гиппо может сперва поменять местами шары в коробках 0 и 2, из «RGB» получив «BGR», затем поменять местами шары в коробках 0 и 1 и получить «GBR», а после этого снова поменять местами шары в коробках 0 и 1 и опять получить «BGR».