```
In [2]:
```

```
import re
import pandas as pd
```

In [3]:

```
with open('ath.fasta') as fget:
  contents = fget.read().split('>')
```

In [4]:

```
d = {}
for record in contents[1:]:
    tem = record.split('\n')
    try:
        match_object = re.match(r'.*\|geneid=(.*?)\|', tem[0])
        geneid = match_object.group(1)
    except AttributeError:
        pass
    seq = ''.join(tem[1:])
    d[geneid] = d.get(geneid, '') + seq
```

In [5]:

```
df_ref = pd.read_table('../to_rf.tsv', sep='\t', index_col = 'Probe Set ID')
columns = list(df_ref.columns)[4:]
columns.remove('class')
del df_ref
```

In [6]:

```
for geneid, seq in d.items():
    cache = re.match('(TGTC.{6,12}CTGT)', seq)
    if cache:
        print(geneid, cache.groups())
        '''
    for ele in columns:
        pattern = '.{7,9}'.join(ele.split('_'))
        print(re.match(pattern, seq))
    break
    '''
```

```
828892 ('TGTCTCGTTCTAGCTGT',)
28720531 ('TGTCGTTCAGCCTGT',)
```

```
In [7]:
for geneid, seq in d.items():
    cache = re.match('(TGTC.{6,14}GACA)', seq)
    if cache:
    print(geneid, cache.groups())
    for ele in columns:
        pattern = '.{7,9}'.join(ele.split('_'))
        print(re.match(pattern, seq))
    break
841453 ('TGTCATGATCACTTGACA',)
819060 ('TGTCACAGCAGTCGACA',)
28717530 ('TGTCGAGGGTGTGACA',)
28719438 ('TGTCGATAGCGACA',)
In [8]:
result = {}
for geneid, seq in d.items():
    cache = re.match('(TGTC.{2})', seq)
    if cache:
        result[geneid] = cache.groups()
    for ele in columns:
        pattern = '.{7,9}'.join(ele.split('_'))
        print(re.match(pattern, seq))
    break
In [10]:
flat_result = {}
for key, value in result.items():
    for gid in key.split(','):
        flat_result[gid] = value[0]
In [13]:
df_anno = pd.read_csv('/home/yijia/Desktop/DEG_analysis/NAA_analysis/Arabidopsis
 thaliana/ATH1-121501.na36.annot.csv')
In [33]:
list(df_anno[df_anno['Entrez Gene'] == '843750']['Probe Set ID'])[0]
```

Out[33]:

'260387_at'

```
In [34]:
```

```
PSID_result = {}
for key, value in flat_result.items():
    try:
        PSID = list(df_anno['Entrez Gene'] == key]['Probe Set ID'])[0]
        PSID result[PSID] = value
    except Exception as e:
        print(e)
list index out of range
In [38]:
df_element = pd.DataFrame(list(PSID_result.items()))
```

In [39]:

df_element

	0	1
0	264171 at	TGTCAA
1	262121 at	TGTCAA
_		
2	264610_at	TGTCGG
3	261809_at	TGTCAT
4	264507_at	TGTCAT
5	259398_at	TGTCAT
6	245641_at	TGTCGT
7	265162_at	TGTCGC
8	262463_at	TGTCAT
9	262255_at	TGTCAT
10	263003_at	TGTCTA
11	264998_at	TGTCTA
12	260357_at	TGTCAC
13	260419_at	TGTCCA
14	259744_at	TGTCCA
15	260387_at	TGTCTG
16	263853_at	TGTCTT
17	263837_at	TGTCGT
18	264106_at	TGTCAC
19	265933_at	TGTCTA
20	266827_at	TGTCCA
21	265995_at	TGTCAT
22	263541_at	TGTCTA
23	267632_at	TGTCTT
24	267370_at	TGTCAC
25	266465_at	TGTCTC
26	266484_at	TGTCCA
27	259331_at	TGTCAA
28	259210_at	TGTCTG
29	258653_at	TGTCCA
36	252181_at	TGTCTT
37	251803_at	TGTCCC
	054744	

38	251/14_at	IGICAA		
	0	1		
39	251522_at	TGTCAA		
40	251384_at	TGTCTG		
41	254724_at	TGTCTT		
42	245604_at	TGTCTC		
43	245341_at	TGTCTT		
44	254455_at	TGTCCA		
45	253833_at	TGTCTC		
46	253787_at	TGTCTC		
47	253554_at	TGTCTT		
48	253312_s_at	TGTCTT		
49	253227_at	TGTCTA		
50	253070_at	TGTCGT		
51	253035_at	TGTCCT		
52	252951_at	TGTCTT		
53	252878_at	TGTCTC		
54	251076_at	TGTCAA		
55	250472_at	TGTCCT		
56	245943_at	TGTCTG		
57	246125_at	TGTCAA		
58	249907_at	TGTCAT		
59	249875_at	TGTCAC		
60	249338_at	TGTCTT		
61	248078_at	TGTCTG		
62	247912_at	TGTCAT		
63	258446_at	TGTCTT		
64	259927_at	TGTCGC		
65	259956_at	TGTCGC		

66 rows × 2 columns

```
In [40]:
```

```
%matplotlib inline
import pickle
from scipy import stats
from matplotlib import pyplot as plt
import seaborn as sns
from pprint import pprint
from sklearn import linear_model
from sklearn.feature_selection import SelectFromModel, RFE, RFECV
In [42]:
df = pd.read_table('../integrated.tsv', sep='\t', index_col = 'Probe Set ID')[[
'NAA_mean', 'IAA_mean', 'p-value', 'NAA-IAA']]
In [43]:
AuxREs = list(set(PSID_result.values()))
Out[43]:
['TGTCGT',
 'TGTCTC',
 'TGTCGC'
 'TGTCAA'
 'TGTCGG',
 'TGTCAC'
 'TGTCCC'
 'TGTCCT'
 'TGTCTG',
 'TGTCAG'
 'TGTCAT'
 'TGTCTA',
 'TGTCTT',
 'TGTCCA']
In [45]:
for AuxRE in AuxREs:
    df[AuxRE] = 0
for key, value in PSID_result.items():
    df.loc[key, value] += 1
#df.to_csv('AuxRE_count_all.tsv', sep='\t')
In [53]:
with_AuxRE = df[df['TGTCTC']+df['TGTCTG']+df['TGTCGG']+df['TGTCCA']+df['TGTCAT']
+df['TGTCAG']+df['TGTCGC']+df['TGTCTA']+df['TGTCAA']+df['TGTCGT']+df['TGTCTT']+d
f['TGTCCC']+df['TGTCCT']+df['TGTCAC'] >= 1]
with_AuxRE.to_csv('promoter_with_AuxRE.tsv', sep='\t')
```

In [54]:

```
to_rf = with_AuxRE.copy()
to_rf['class'] = 0
for i in with_AuxRE.index:
    if to_rf.loc[i, 'NAA-IAA'] >= 1:
        to_rf.loc[i, 'class'] = 0
    elif to_rf.loc[i, 'NAA-IAA'] >= 0.5:
        to_rf.loc[i, 'class'] = 1
    elif to_rf.loc[i, 'NAA-IAA'] >= 0:
        to_rf.loc[i, 'class'] = 2
    elif to_rf.loc[i, 'NAA-IAA'] >= -0.5:
        to_rf.loc[i, 'class'] = 3
    elif to_rf.loc[i, 'nAA-IAA'] >= -1:
        to_rf.loc[i, 'class'] = 4
    else:
        to_rf.loc[i, 'class'] = 5
```

	NAA_mean	IAA_mean	p-value	NAA-IAA	TGTCGT	тстстс	тстсс
Probe Set ID							
245341_at	-0.195868	0.000823	0.493042	-0.196691	0	0	0
245604_at	0.085949	-0.746957	0.008400	0.832907	0	1	0
245641_at	-0.229192	-0.226666	0.991265	-0.002526	1	0	0
245943_at	-0.228244	0.365762	0.489465	-0.594006	0	0	0
246125_at	-0.028185	-0.236490	0.613994	0.208305	0	0	0
247912_at	-0.656348	-0.518475	0.614504	-0.137873	0	0	0
248078_at	-0.369745	0.229914	0.268882	-0.599659	0	0	0
249338_at	0.046248	0.446648	0.404348	-0.400400	0	0	0
249875_at	-0.761942	0.053716	0.049592	-0.815659	0	0	0
249907_at	-0.369632	-0.072718	0.577987	-0.296914	0	0	0
250472_at	-3.233041	-0.561792	0.012085	-2.671249	0	0	0
251076_at	-0.581004	0.299152	0.142982	-0.880156	0	0	0
251384_at	-0.704694	1.326325	0.010719	-2.031018	0	0	0
251522_at	0.938737	0.041399	0.136652	0.897339	0	0	0
251714_at	0.372800	-0.161851	0.315700	0.534652	0	0	0
251803_at	0.125052	0.285587	0.587628	-0.160535	0	0	0
252181_at	-0.424954	0.147334	0.108595	-0.572288	0	0	0
252878_at	-0.174563	0.139049	0.292544	-0.313611	0	1	0
252951_at	0.577065	-0.527271	0.027104	1.104336	0	0	0
253035_at	-0.426773	0.121441	0.140120	-0.548214	0	0	0
253070_at	0.743471	-0.030598	0.448077	0.774070	1	0	0
253227_at	-1.661551	-0.606973	0.086382	-1.054578	0	0	0
253312_s_at	0.449659	0.284586	0.697446	0.165073	0	0	0
253554_at	1.441347	-0.218896	0.001988	1.660243	0	0	0
253787_at	1.102017	-0.746054	0.066598	1.848071	0	1	0
253833_at	0.792368	0.175003	0.358694	0.617365	0	1	0
254455_at	0.806465	0.044155	0.078614	0.762311	0	0	0
254724_at	-0.139859	-0.189205	0.771945	0.049346	0	0	0
256638_at	-0.040083	-0.282299	0.558142	0.242217	0	0	0
256861_at	-0.061086	-0.080697	0.942257	0.019611	0	0	0
259210 at	0.511147	0.311613	0.452499	0.199533	0	0	0

	NAA_mean	IAA_mean	p-value	NAA-IAA	TGTCGT	тстстс	тстсс
Probe Set ID							
259331_at	0.452350	0.927621	0.545913	-0.475271	0	0	0
259398_at	-0.776583	-0.060348	0.387982	-0.716235	0	0	0
259744_at	0.264467	0.241427	0.961453	0.023040	0	0	0
259927_at	-0.535844	0.502326	0.037901	-1.038170	0	0	1
259956_at	0.907636	-0.069173	0.125841	0.976809	0	0	1
260357_at	0.751399	-0.236443	0.101614	0.987842	0	0	0
260387_at	-0.888110	0.119853	0.000077	-1.007963	0	0	0
260419_at	-0.088118	0.187186	0.537459	-0.275304	0	0	0
261809_at	-0.398822	-0.308123	0.765067	-0.090699	0	0	0
262121_at	-0.307288	-0.086468	0.716372	-0.220820	0	0	0
262255_at	0.285909	-0.503495	0.057316	0.789404	0	0	0
262463_at	-0.374931	-0.566353	0.659041	0.191422	0	0	0
263003_at	-0.216141	-0.409232	0.670091	0.193090	0	0	0
263541_at	-0.169162	-0.279504	0.654938	0.110342	0	0	0
263837_at	-0.323223	0.004379	0.328299	-0.327602	1	0	0
263853_at	-0.795741	0.794304	0.118355	-1.590046	0	0	0
264106_at	-0.038855	0.256276	0.519494	-0.295130	0	0	0
264171_at	-0.092816	-0.196683	0.850707	0.103867	0	0	0
264507_at	-0.311082	0.479900	0.280229	-0.790982	0	0	0
264610_at	-1.319850	0.085214	0.049572	-1.405064	0	0	0
264998_at	-0.106359	-0.573380	0.137015	0.467020	0	0	0
265162_at	-0.172598	-0.032449	0.623584	-0.140150	0	0	1
265933_at	0.375085	1.076705	0.232502	-0.701620	0	0	0
265995_at	-0.465574	-0.028440	0.451828	-0.437134	0	0	0
266465_at	0.146224	0.783837	0.394795	-0.637613	0	1	0
266484_at	-0.029005	0.351070	0.353448	-0.380074	0	0	0
266827_at	-0.803000	-0.150430	0.312066	-0.652570	0	0	0
267370_at	-0.483082	0.331650	0.001339	-0.814733	0	0	0
267632_at	-0.130554	0.166408	0.224012	-0.296962	0	0	0

```
In [55]:
columns = list(to_rf.columns)
columns.remove('NAA_mean')
columns.remove('IAA_mean')
columns.remove('p-value')
columns.remove('NAA-IAA')
columns.remove('class')
In [56]:
estimator = linear_model.Lasso()
selector = RFE(estimator, 5, step=1)
selector = selector.fit(to_rf[columns], to_rf['NAA-IAA'])
print(selector.support_)
print('=======')
print(selector.ranking_)
[False False False False False False False False True True
True
 True True]
[10 9 8 7 6 5 4 3 2 1 1 1 1 1]
In [60]:
columns[selector.support_[feature for feature, tag in zip(columns, rfecv.get_sup
port()) if tag]]
TypeError
                                       Traceback (most recent cal
l last)
<ipython-input-60-8253cb9b6e78> in <module>()
----> 1 columns[selector.support_]
```

TypeError: only integer scalar arrays can be converted to a scalar i

RFECV

ndex

```
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
import numpy as np
# Build a classification task using 3 informative features
#X, y = make_classification(n_samples=3341, n_features=25, n_informative=3,
                           n_redundant=2, n_repeated=0, n_classes=8,
#
                           n_clusters_per_class=1, random_state=0)
# Create the RFE object and compute a cross-validated score.
svc = SVC(kernel="linear")
# The "accuracy" scoring is proportional to the number of correct
# classifications
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2),
              scoring='accuracy')
rfecv.fit(to_rf[columns], np.array(to_rf['class'], dtype=int))
print("Optimal number of features : %d" % rfecv.n_features_)
# Plot number of features VS. cross-validation scores
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (nb of correct classifications)")
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()
```

Optimal number of features: 8


```
In [62]:
```

```
1 = [feature for feature, tag in zip(columns, rfecv.get_support()) if tag]
1
```

Out[62]:

```
['TGTCTC', 'TGTCGC',
```

'TGTCGG',

TOTCOO,

'TGTCAC',

'TGTCCT',

'TGTCTG',

'TGTCTA'

'TGTCTT']

In [85]:

```
', '.join(l)
```

Out[85]:

'TGTCTC, TGTCGC, TGTCGG, TGTCAC, TGTCCT, TGTCTG, TGTCTA, TGTCTT'

In [65]:

```
plt.style.use(u'seaborn')
fig = plt.figure(1)#, figsize=(10,9))
subplots = [plt.subplot(2, 4, 1+i) for i in range(8)]
for i, AuxRE in zip(range(8), 1):
    subplots[i].scatter(x='IAA_mean', y='NAA_mean', data=df[df[AuxRE]==1], s=8)
    subplots[i].plot([-4,4], [-4,4], 'r')
    subplots[i].set_title(AuxRE)
fig.tight_layout()
```



```
In [69]:
```

```
with_AuxRE['AuxRE'] = 0
/home/yijia/anaconda3/lib/python3.6/site-packages/ipykernel_launche
r.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/indexing.html#indexing-view-versus-copy
  """Entry point for launching an IPython kernel.
In [67]:
def splited violinplot(dataf, x, order=None, bw=.2, figsize=(8,7)):
    df_copy = dataf.copy()
    1 = len(df_{copy})
    df_copy['logFC_mean'] = 0
    df_copy['hue'] = 'Null'
    df_copy = pd.concat([df_copy, df_copy], ignore_index=True)
    for i in range(1):
        df_copy.loc[i, 'logFC_mean'] = df_copy.loc[i, 'IAA_mean']
        df_copy.loc[i, 'hue'] = 'IAA'
        df_copy.loc[i+1, 'logFC_mean'] = df_copy.loc[i, 'NAA_mean']
        df copy.loc[i+l, 'hue'] = 'NAA'
    plt.figure(figsize=figsize)
    if order is None:
        return sns.violinplot(x=x, y='logFC_mean', hue='hue', data=df_copy, spli
t=True, bw=bw)
    return sns.violinplot(x=x, y='logFC mean', hue='hue', data=df copy, split=Tr
ue, order=order, bw=bw)
In [82]:
df selected = with AuxRE[['NAA mean', 'IAA mean','p-value','NAA-IAA'] + 1 + ['Au
xRE']]
df selected['AuxRE'] = with AuxRE['TGTCTC'] + with AuxRE['TGTCGC'] + with AuxRE[
'TGTCGG'] + with_AuxRE['TGTCAC'] + with_AuxRE['TGTCCT'] + with_AuxRE['TGTCTG'] +
with_AuxRE['TGTCTA'] + with_AuxRE['TGTCTT']
/home/yijia/anaconda3/lib/python3.6/site-packages/ipykernel_launche
r.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/indexing.html#indexing-view-versus-copy
```

In [84]:

splited_violinplot(df_selected, 'AuxRE', bw=.3)

Out[84]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f2df37f69e8>

