Learning From Data Lecture 11: Mixture of Gaussians & EM

Shao-Lun Huang shaolun.huang@sz.tsinghua.edu.cn

12/17/2018

Today's Lecture

Unsupervised Learning (Part III)

- Mixture of Gaussians
- ► The EM Algorithm
- Factor Analysis

Problem Set 5 will be released soon.

Mixture of Gaussians

A "soft" version of k-means clustering.

Figure: Clustering results of iris dataset using mixture of Gaussians

Mixture models

Model-based clustering

A **mixture model** assumes data are generated by the following process:

1. Sample $z^{(i)} \in \{1, \dots, k\}$ and $z^{(i)} \sim \text{Multinomial}(\phi)$

$$p(z^{(i)} = j) = \phi_j$$
 for all j

2. Sample observables $x^{(i)}$ from some distribution $p(z^{(i)}, x^{(i)})$:

$$p(z^{(i)}, x^{(i)}) = p(z^{(i)})p(x^{(i)}|z^{(i)})$$

Examples:

- Unsupervised handwriting recognition is a mixture with 10 Bernoulli distributions
- Financial return estimation uses a mixture of 2 Gaussians for normal situtation and crisis time distribution

Mixture of Gaussians

Mixture of Gaussians Model:

$$z^{(i)} \sim \mathsf{Multinomial}(\phi)$$

 $x^{(i)}|z^{(i)} \sim \mathcal{N}(\mu_j, \Sigma_j)$

How to learn ϕ_j, μ_j and Σ_j for all j?

 $z^{(i)}$ is known: (supervised) use maximum likelihood estimation (quadratic discriminant analysis).

$$\phi_{j} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \}, \quad \mu_{j} = \frac{\sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \} x_{j}}{\sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \}}$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \}}$$

 $z^{(i)}$ is unknown: (unsupervised) use **expectation maximization**

The EM Algorithm

The EM algorithm is an iterative method for maximum likelihood estimation when the model depends on **latent (unobserved)** variables.

Log-likelihood of data:

$$I(\theta) = \sum_{i=1}^{m} \log p(x; \theta) = \sum_{i=1}^{m} \log \sum_{z} p(x, z; \theta)$$

Generalized EM Algorithm

Listing 1: Generalized EM Algorithm

```
Initialize \theta
Repeat untill convergence {
    (E-step) For each i , set
    Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)};\theta) \leftarrow \text{Posterior distribution } z|x \text{ under } \theta
    (M-step) Set
    \theta := \underset{\theta}{\operatorname{argmax}} \sum_{i} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)},z^{(i)};\theta)}{Q_i(z^{(i)})}    (*)
    \leftarrow \text{Update parameter } \theta
```

We will show...

- ▶ Solving (*) is equivalent to $\operatorname{argmax}_{\theta} I(\theta)$ → Equation (*) is a (tight) lower bound on log-likelihood $I(\theta)$
- This algorithm converges.

Proof of Correctness

Define

$$J(Q, \theta) = \sum_{i} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

Proposition 1

- 1. $J(Q, \theta)$ is a lower bound on log-likelihood $I(\theta)$
- 2. This lower bound is tight when $Q_i(z^{(i)}) = p(z^{(i)}|x^{(i)};\theta)$

(Hint: use Jensen's inequality)

Jensen's Inequality

Theorem 1

Let f be a **convex** function, and let X be a random variable. Then

$$\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$$

Remarks

- 1. Let f be a **concave** function, then $\mathbb{E}[f(X)] \leq f(E[X])$
- 2. When f(X) is a constant function, $\mathbb{E}[f(X)] = f(\mathbb{E}[X])$

Proof of Convergence

Proposition 2

EM always monotonically improves the log likelihood, i.e. Let $\theta^{(t)}$ be the parameter value in the t-th iteration

$$I(\theta^{(t)}) \leq I(\theta^{(t+1)})$$

EM for mixture of Gaussians

Gaussian Mixture Model

$$z^{(i)} \sim \mathsf{Multinomial}(\phi)$$

 $x^{(i)}|z^{(i)} \sim \mathcal{N}(\mu_j, \Sigma_j)$

Learn parameters μ, Σ, ϕ

E-Step:
$$w_j^{(i)} = Q_i(z^{(i)} = j) = p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma)$$

M-Step: Maximize
$$\sum_{i=1}^{m} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \phi, \mu, \Sigma)}{Q_i(z^{(i)})}$$
 with

respect to ϕ , μ and Σ

Expectation Maximization for Gaussian Mixtures

Listing 2: EM for Gaussian Mixtures

```
Repeat untill convergence {
(E-step) For each i, j, set
                     w_i^{(i)} := p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma)
(M-step) Update parameters: assume \phi_i = \mathbb{E}[w_i]
                    \phi_j := \frac{1}{m} \sum_{i=1}^m w_j^{(i)}
                    \mu_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} x^{(i)}}{\sum_{i=1}^{m} w_{j}^{(i)}}
\Sigma_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} w_{i}^{(i)}}
}
```

Illustration of EM steps

Comparison with k-means clustering

Listing 2: EM Algorithm

```
Repeat untill convergence { (E-step) For each i,j, (w_j^{(i)} := p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma) (M-step) Update parameters: \phi_j := \frac{1}{m} \sum_{i=1}^m w_j^{(i)}  \mu_j := \frac{\sum_{i=1}^m w_j^{(i)} x_j}{\sum_{i=1}^m w_j^{(i)} (x^{(i)} - \mu_j)(x^{(i)} - \mu_j)^T} \Sigma_j := \frac{\sum_{i=1}^m w_j^{(i)} (x^{(i)} - \mu_j)(x^{(i)} - \mu_j)^T}{\sum_{i=1}^m w_i^{(i)}} }
```

Listing 3: (Llyod's) k-means Alg.

```
Repeat untill convergence { (E-step) For every i, c^{(i)} := \underset{j}{\operatorname{argmin}} ||x^{(i)} - \mu_j||^2 (M-step) Update centroids: For each j \mu_j := \frac{\mathbf{1}\{c^{(i)} = j\}x^{(i)}}{\sum_{i=1}^m \mathbf{1}\{c^{(i)} = j\}} }
```

Factor Analysis: Example

How much do you identify yourself with the following traits?

1-- the least 9 -- the most talkative distant careless hardwork anxious kind

Figure: Self-ratings on 32 Personality Traits

Factor Analysis: Example

Figure: Pairwise correlation plot of 32 variables from 240 participants

Factor Analysis Terminology

b observed random variables $x \in \mathbb{R}^n$

$$x = \mu + \Lambda z + \epsilon$$

- ▶ **factor** $z \in \mathbb{R}^k$ is the hidden (latent) construct that "causes" the observed variables
- ▶ **factor loadings** $\Lambda \in \mathbb{R}^{n \times k}$: the degree to which variable x_i is "caused" by the factors
- ullet $\mu,\epsilon\in\mathbb{R}^n$ are the mean and error vectors

Table: Matrix of factor loading Λ for personality test data

variable	factor 1	factor 2	factor 3	factor 4
distant	0.59	0.27	0	0
talkative	-0.50	-0.51	0	0.27
careless	0.46	-0.47	0.11	0.14
hardworking	-0.46	0.33	-0.14	0.35
kind	-0.488	0.222	0	0
:				

Factor Analysis: Example

Figure: Visualize loading of the first two factors

Factor Analysis: Example

Figure: Visualize loading of the first two factors, rotated to align with axes

Factor Analysis Model

Observed variables: $x \in \mathbb{R}^n$ Latent variables: $z \in \mathbb{R}^k$ (k < n)The factor analysis model defines a joint distribution p(x, z) as

$$z \sim \mathcal{N}(0, I)$$

$$\epsilon \sim \mathcal{N}(0, \Psi)$$

$$x = \mu + \Lambda z + \epsilon$$

where $\Psi \in \mathbb{R}^{n \times n}$ is a diagonal matrix, $\epsilon, \mu \in \mathbb{R}^n$, $\Lambda \in \mathbb{R}^{n \times k}$

Given observations $x^{(i)},\dots,x^{(m)}$, how to fit the parameters μ,Λ,Ψ ?

The EM Algorithm

Listing 4: EM for Factor Analysis

```
Initialize \mu, \Lambda, \Psi
Repeat untill convergence {
  (E-step) For each i , set
  Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)}; \mu, \Lambda, \Psi) \leftarrow z is a continuous variable (M-step) Set
  \mu, \Lambda, \Psi := \operatorname*{argmax} \sum_{i=1}^m \int_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_i(z^{(i)})} dz^{(i)} (*)
```

First, we need to write $p(z^{(i)}|x^{(i)})$ and $p(x^{(i)},z^{(i)})$ in terms of the model parameters.

EM Derivations

It can be shown that, random vector $\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N}(\mu_{zx}, \Sigma)$ where

$$\mu_{\mathsf{xz}} = \begin{bmatrix} \mathbf{0} \\ \mu \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \mathbf{I} & \boldsymbol{\Lambda}^{\mathsf{T}} \\ \boldsymbol{\Lambda} & \boldsymbol{\Lambda}\boldsymbol{\Lambda}^{\mathsf{T}} + \boldsymbol{\Psi} \end{bmatrix}$$

E-Step

The posterior distribution $z^{(i)}|x^{(i)} \sim \mathcal{N}\left(\mu_{z^{(i)}|x^{(i)}}, \Sigma_{z^{(i)}|x^{(i)}}\right)$

$$\mu_{\mathbf{z}^{(i)}|\mathbf{x}^{(i)}} = \Lambda^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} (\mathbf{x}^{(i)} - \mu)$$

$$\Sigma_{\mathbf{z}^{(i)}|\mathbf{x}^{(i)}} = I - \Lambda^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} \Lambda$$

$$\begin{aligned} Q_{i}(z^{(i)}) &= p(z^{(i)}|x^{(i)}; \mu, \Lambda, \Psi) \\ &= \frac{1}{(2\pi)^{k/2}|\Sigma_{z^{(i)}|x^{(i)}}|} \exp\left(-\frac{1}{2}(z^{(i)} - \mu_{z^{(i)}|x^{(i)}})^{T} \Sigma_{z^{(i)}|x^{(i)}}^{-1}(z^{(i)} - \mu_{z^{(i)}|x^{(i)}})\right) \end{aligned}$$

EM Derivations

M-Step

$$\underset{\mu,\Lambda,\Psi}{\operatorname{argmax}} \sum_{i=1}^{m} \int_{z^{(i)}} Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_{i}(z^{(i)})} dz^{(i)} \qquad (\star)$$

Note that

$$\int_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_i(z^{(i)})} dz^{(i)}$$

$$= \mathbb{E}_{z \sim Q_i} [\log p(x^{(i)}|z^{(i)}; \mu, \Lambda, \Psi) + \log p(z^{(i)}) - \log Q_i(z^{(i)})]$$

(*) is equivalent to

$$\underset{\mu,\Lambda,\Psi}{\operatorname{argmax}} \sum_{i=1}^{m} \mathbb{E}_{z^{(i)} \sim Q_{i}}[\log p(x^{(i)}|z^{(i)}; \mu, \Lambda, \Psi)]$$

EM Derivations

M-Step (con't)

$$\begin{split} \operatorname*{argmax} \sum_{\mu,\Lambda,\Psi}^{m} \mathbb{E}_{z^{(i)} \sim Q_{i}}[\log p(x^{(i)}|z^{(i)};\mu,\Lambda,\Psi)] \quad (\star\star) \\ \text{Since } x = \mu + \Lambda z + \epsilon \text{ and } \epsilon \sim \mathcal{N}(0,\Psi) \\ x^{(i)}|z^{(i)} \sim \mathcal{N}(\mu + \Lambda z,\Psi) \end{split}$$

$$p(x^{(i)}|z^{(i)}; \mu, \Lambda, \Psi)$$

$$= \frac{1}{(2\pi)^{n/2} |\Psi|^{1/2}} \exp\left(-\frac{1}{2}(x^{(i)} - \mu - \Lambda z^{(i)})^{T} \Psi^{-1}(x^{(i)} - \mu - \Lambda z^{(i)})\right)$$

We can maximize $(\star\star)$ with respect to μ , Λ and Ψ

Factor Analysis Discussions

Comparison with Mixture of Gaussians

- ▶ Mixture of Gaussians assumes sufficient data and relative few response variables. i.e. when $n \approx m$ or n > m, Σ is singular
- ▶ Factor Analysis works when n > m by allowing model noise

Relationship to PCA

- Both PCA and factor analysis can find low dimensional latent subspace in data
- PCA is good for data reduction (reduce correlation among observed variables)
- ► Factor analysis is good for data exploration (find independent, common factors in observed variables)
- Factor analysis allows the noise to have an arbitrary diagonal covariance matrix, while PCA assumes the noise is spherical.