Assignment 16

kartik thakur

```
In [121]: # 1. Merge the files in one dataframe.
          # 2. Clean the data.
          # 3. Change the object type column into integer type or float type.
          # 4. Get the month value from the order date?
          # 5. Which was the most productive month in terms of sales?
          # 6. Which city had the highest number of sales?
          # 7. At what time people mostly purchase the product?
          # 8. What is the average purchase by city?
          # 9. Which product has the highest sales?
          # 10. In Month of September, which product has the lowest sales?
In [122]: # firstly we imported all files into on code and save in one dataframe
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
In [123]: | files=['Sales_January_2019.csv','Sales_February_2019.csv','Sales_March_2019.csv'
          dataframe=[]
          for file in files:
              df=pd.read csv(file)
              dataframe.append(df)
In [124]: merge=pd.concat(dataframe,ignore index=True)
```

In [125]: merge

							6-
•	Purchase Address	Date	Each	Ordered	Product	ID	
ı	944 Walnut St, Boston, MA 02215	01/22/19 21:25	700	1	iPhone	141234	0
	185 Maple St, Portland, OR 97035	01/28/19 14:15	14.95	1	Lightning Charging Cable	141235	1
	538 Adams St, San Francisco, CA 94016	01/17/19 13:33	11.99	2	Wired Headphones	141236	2
	738 10th St, Los Angeles, CA 90001	01/05/19 20:33	149.99	1	27in FHD Monitor	141237	3
	387 10th St, Austin, TX 73301	01/25/19 11:59	11.99	1	Wired Headphones	141238	4
			•••				
	14 Madison St, San Francisco, CA 94016	12/11/19 20:58	14.95	1	Lightning Charging Cab l e	319666	186845
	549 Willow St, Los Angeles, CA 90001	12/01/19 12:01	3.84	2	AA Batteries (4- pack)	319667	186846

clean the data

In [126]: | data=merge.copy() data

Out[126]:

	Order ID	Product	Quantity Price Ordered Each		Order Date	Purchase Address	
0	141234	iPhone	1	700	01/22/19 21:25	944 Walnut St, Boston, MA 02215	
1	141235	Lightning Charging Cable	1	14.95	01/28/19 14:15	185 Maple St, Portland, OR 97035	
2	141236	Wired Headphones	2	11.99	01/17/19 13:33	538 Adams St, San Francisco, CA 94016	
3	141237	27in FHD Monitor	1	149.99	01/05/19 20:33	738 10th St, Los Angeles, CA 90001	
4	141238	Wired Headphones	1	11.99	01/25/19 11:59	387 10th St, Austin, TX 73301	
				•••	***		
186845	319666	Lightning Charging Cable	1	14.95	12/11/19 20:58	14 Madison St, San Francisco, CA 94016	
186846	319667	AA Batteries (4-pack)	2	3.84	12/01/19 12:01	549 Willow St, Los Angeles, CA 90001	
186847	319668	Vareebadd Phone	1	400	12/09/19 06:43	273 Wilson St, Seattle, WA 98101	
186848	319669	Wired Headphones	1	11.99	12/03/19 10:39	778 River St, Dallas, TX 75001	
186849	319670	Bose SoundSport Headphones	1	99.99	12/21/19 21:45	747 Chestnut St, Los Angeles, CA 90001	

186850 rows × 6 columns

In [127]: data.isnull().sum()

Out[127]: Order ID 545 545 Product Quantity Ordered 545 Price Each 545 Order Date 545 Purchase Address 545 dtype: int64

In [128]: data.dropna(inplace=True)

```
In [129]: | data.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 186305 entries, 0 to 186849
          Data columns (total 6 columns):
              Column
                                Non-Null Count
                                                Dtype
           0
              Order ID
                                186305 non-null object
           1
              Product
                                186305 non-null object
              Quantity Ordered 186305 non-null object
           2
           3
              Price Each 186305 non-null object
              Order Date 186305 non-null object
           5
              Purchase Address 186305 non-null object
          dtypes: object(6)
          memory usage: 9.9+ MB
          data['Order ID']=pd.to_numeric(data['Order ID'],errors='coerce')
In [130]:
          data.dropna(inplace=True)
In [131]: # cleaning the order time column from duplicates and null values
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 185950 entries, 0 to 186849
          Data columns (total 6 columns):
           #
              Column
                                Non-Null Count
                                                 Dtype
              ----
                                -----
              Order ID
           0
                               185950 non-null float64
                                185950 non-null object
           1
              Product
              Quantity Ordered 185950 non-null object
           2
           3
              Price Each
                                185950 non-null object
              Order Date
                                185950 non-null object
              Purchase Address 185950 non-null object
          dtypes: float64(1), object(5)
          memory usage: 9.9+ MB
```

3. Change the object type column into integer type or float type.

```
In [132]: data[data["Price Each"]=="Price Each"].index
Out[132]: Int64Index([], dtype='int64')
```

```
In [133]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 185950 entries, 0 to 186849
          Data columns (total 6 columns):
               Column
                                 Non-Null Count
                                                  Dtype
          ---
                                                  ____
           0
               Order ID
                                 185950 non-null float64
           1
               Product
                                 185950 non-null object
           2
               Quantity Ordered 185950 non-null object
           3
               Price Each
                                 185950 non-null object
           4
               Order Date
                                 185950 non-null object
               Purchase Address 185950 non-null object
           5
          dtypes: float64(1), object(5)
          memory usage: 9.9+ MB
In [134]: | data.drop(data[data["Price Each"]=="Price Each"].index,inplace=True)
In [135]: | data['Price Each']=data['Price Each'].astype('float')
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 185950 entries, 0 to 186849
          Data columns (total 6 columns):
           #
               Column
                                 Non-Null Count
                                                  Dtype
                                 185950 non-null float64
               Order ID
           0
           1
               Product
                                 185950 non-null object
               Quantity Ordered 185950 non-null object
           2
           3
               Price Each
                                 185950 non-null float64
           4
               Order Date
                                 185950 non-null object
           5
               Purchase Address 185950 non-null object
          dtypes: float64(2), object(4)
          memory usage: 9.9+ MB
In [136]: data[data["Price Each"]=="Price Each"].index
Out[136]: Int64Index([], dtype='int64')
In [137]: | data["Price Each"]=data["Price Each"].astype('float64')
In [138]: data["Order ID"]=data["Order ID"].astype('int64')
In [139]: data["Quantity Ordered"]=data["Quantity Ordered"].astype('int32')
```

```
In [140]: data.info()
          <class 'pandas.core.frame.DataFrame'>
         Int64Index: 185950 entries, 0 to 186849
         Data columns (total 6 columns):
                               Non-Null Count
                                               Dtype
              ____
                               -----
                                               ----
              Order ID
                              185950 non-null int64
          0
              Product
                              185950 non-null object
          1
          2
              Quantity Ordered 185950 non-null int32
          3
                              185950 non-null float64
              Price Each
              Order Date 185950 non-null object
          4
              Purchase Address 185950 non-null object
          dtypes: float64(1), int32(1), int64(1), object(3)
         memory usage: 9.2+ MB
```

4. Get the month value from the order date?

```
In [*]:
        import datetime
        month=pd.to datetime(data['Order Date']).dt.month
        month
In [*]: data['month']=month
        data
```

5. Which was the most productive month in terms of sales?

```
In [*]: data['Sales']=data['Quantity Ordered']*data['Price Each']
In [*]: data.head()
In [*]: | a=data.groupby('month')["Sales"].sum().sort_values(ascending=False)
        а
In [*]: | c_data = data.groupby(by = 'month', as_index = False )['Sales'].sum()
        c_data = c_data.sort_values(by = 'Sales', ascending = False)
        c_data.head()
```

```
In [*]: | sns.barplot(x='month',y='Sales',data=c data,ci=None)
```

6. Which city had the highest number of sales?

```
In [*]: | data['city'] = data['Purchase Address'].apply(lambda x: x.split(',')[1])
        data.head()
In [*]: c_data = data.groupby(by = 'city', as_index = False )['Sales'].sum()
        c_data = c_data.sort_values(by = 'Sales', ascending = False)
        c_data.head()
In [*]: | sns.barplot(x='city',y='Sales',data=c_data,ci=None)
        plt.xticks(rotation=45);
```

7. At what time people mostly purchase the product?

```
In [*]:
        hour= pd.to datetime(data['Order Date']).dt.hour
In [*]: |data['hour']=hour
        data.head()
In [*]: k=data.groupby(by='hour' ,as_index=False)['Quantity Ordered'].sum()
        k.sort values(by='Quantity Ordered' ,ascending=False)
In [*]: | data['hour'].value_counts().head()
In [*]: | sns.barplot(x='hour',y='Quantity Ordered',data=k,palette='magma')
        plt.xticks(rotation=45);
```

8. What is the average purchase by city?

```
In [*]: g=data.groupby(by='city' ,as_index=False)['Sales'].mean()
    g.sort_values(by='Sales' ,ascending=False)
In [*]: |sns.barplot(x='city',y='Sales',data=g,palette='magma')
           plt.xticks(rotation=45);
```

9. Which product has the highest sales?

```
In [*]: | g=data.groupby(by='Product' ,as_index=False)['Sales'].sum()
        g.sort_values(by='Sales' ,ascending=False)
In [*]: | sns.barplot(x='Product',y='Sales',data=g,palette='magma');
        plt.xticks(rotation=90);
In [*]: | sept=data[data['month']== 9]
        sept
In [*]: | g=sept.groupby(by='Product' ,as_index=False)['Sales'].sum()
        t=g.sort_values(by='Sales' ,ascending=False)
In [*]: | sns.barplot(x='Product',y='Sales',data=t,palette='magma')
        plt.xticks(rotation=90);
```

In month of sept, AAA Batteries (4-Pack) has lowest sale

5. Which was the most productive month in terms of sales?

```
In [*]: | ### December was the most productive month in terms of sales
```

6. Which city had the highest number of sales?

```
In [*]: # San Francisco has the highest number of sales
```

7. At what time people mostly purchase the product?

In [*]: | # At 19:00 people mostly purchase the product

8. What is the average purchase by city?

In [*]: # Atlanta has the maximum average purchase by the cities

9. Which product has the highest sales?

In [*]: # Macbook Pro Laptop has the highest sales.

10. In Month of September, which product has the lowest sales?

In	[*]:	# In	month	of	september	AAA	Batteries	(4-pack)	has t	he Lowes	t sale	
In	[]:											
In	[]:											