Examen Semestral

Teoría de Control 1

Universidad Tecnológica de Panamá

Facultad de ingeniería eléctrica

Nombre: Fernando Guiraud

Cédula: 8-945-692

Grupo: 1EE131 Indicaciones:

• Los cálculos deben presentarlos a mano. No se aceptará capturas de Matlab, ni ningún otro software de simulación, ni calculadora.

- Si la pregunta tiene una o más "rayas", debe colocar ahí sus respuestas finales.
- En los recuadros deberá colocar el procedimiento correspondiente a cada pregunta.
- Su entrega debe ser en formato pdf.
- El parcial empezará el lunes 27 de Julio a las 5:00pm y terminará el mismo día a las 9:00pm.
- Su letra debe ser clara y sus operaciones deben estar ordenadas. Si hay varias respuestas y en las líneas no se entiende cual corresponde a que pregunta, está mal. Puede utilizar un procesador de texto o editor de ecuaciones si lo desea.
- Todas sus respuestas deben estar en decimales (4).
- Donde se requieran datos adicionales en los problemas, utilizará:
 - O Si su cédula tiene la estructura: XY-01234-4560 $a_1 \ es \ la \ suma \ de \ cada \ dígito \ del \ segundo \ segmento \ de \ la \ cédula, es \ decir \ a_1 = 1+2+3+4 = 10; \\ a_2 \ es \ la \ suma \ de \ cada \ dígito \ del \ tercer \ segmento \ de \ la \ cédula, es \ decir \ a_2 = 4+5+6=15; \\ a_3 \ se \ escoge \ con \ el \ sexo \ marcado \ en \ su \ cédula, si \ dice \ M \ utilizará \ 4 \ y \ si \ dice \ F \ utilizará \ 2. \\ a_4 = a_3 * \frac{a_2}{a_1}$

I. Introducción.

 Coloque los valores de a₁, a₂, a₃ y a₄ de acuerdo con lo mostrado en <u>el punto 5 de las</u> <u>indicaciones</u>. Todos los procedimientos y resultados del semestral dependerán del correcto conocimiento de estos parámetros.

8-945-692

a1 = 9 + 4 + 5 = 18

a2 = 6 + 9 + 2 = 17

a3 = M = 4

a4 = a3*(a2/a1) = 4*(17/18) = 3.7778

a1 = 18 ; a2 = 17 ; a3 = 4 ; a4 = 3.7778

II. Parte. Modelado.

1. Calcule la magnitud de la resistencia (R) del circuito mostrado en la figura, si el valor máximo del voltaje en ella no debe superar el límite de $V_{R,max} = 1.35 * V_s$. La entrada es $V_s = a_2 \ Volts$.

$$\frac{-0.264704 \cdot s}{s^2 + 0.014706} < r < \frac{-0.264704 \cdot s}{s^2 + 0.003813} \circ \frac{-0.264704 \cdot s}{s^2 + 0.003813} < r < \frac{-0.264704 \cdot s}{s^2 + 0.014706} \Omega$$

$$V_{R} = (T_{1}(s) - T_{2}(s))R$$

$$V_{R} = 0.01471 \cdot V_{S} \cdot R$$

$$R(s^{2} + 0.01471) + 0.2647 \cdot S$$

$$V_{S} = 17V$$

$$R(s^{2} + 0.01471) + 0.2647 \cdot S$$

$$V_{S} = 17V$$

$$Resolviendo la designal dal y Rem plazando |V_{S}| = 17V$$

$$-0.2647 \cdot S - ZR = \frac{-0.2647}{S^{2} + 0.014706}$$

$$0 -0.2647 \cdot S - ZR = \frac{-0.2647}{S^{2} + 0.003813}$$

$$0 -0.2647 \cdot S - ZR = \frac{-0.2647}{S^{2} + 0.003813}$$

$$0 -0.2647 \cdot S - ZR = \frac{-0.2647}{S^{2} + 0.014706}$$

II. Parte. Diseño de Controladores. No es necesario dibujar el LGR.

Los valores de p_1 son iguales a los de la sección V.

$$G(s) = \frac{K}{(s+p_1+15)(s^2+10s+34)}$$

Para la función de transferencia en lazo abierto mostrado arriba, calcule:

 Diseñe un controlador PID que regule el comportamiento de la salida del sistema mostrado en la figura. Los criterios de diseño son: 0.5 veces el tiempo de asentamiento del sistema no compensado, con un máximo sobrepaso de 15% y error en estado estable nulo. Suponga una entrada escalón unitario.

a) Tiempo pico del sistema no compensado: Tp = 0.4442s. b) Ganancia del sistema no compensado: K = 1195.28.

c) Ubicación del polo dominante en el sistema no compensado: $s = \frac{-4.2998 + i * 7.0712}{1}$. d) Ubicación del polo dominante en el sistema compensado (PD): s = -8.5397 + i * 14.1427.

e) Error en estado estable en el sistema compensado (PD): ess = 0.16.

f) Valores de las ganancias del controlador PD ($K_p y K_d$): Kp=5173.88, Kd=344.571.

g) Valores de las ganancias del controlador PID (K_p , K_d y K_i): Kp=5618.75, Kd=336.803, Ki=558.507.

h) Tiempo pico obtenido con el PID: $\underline{Tp} = 0.2254.$

$$G(S) = \frac{K}{(5+91+15)(5^2+10.5+31)}$$

$$G(S) = \frac{K}{(5+32)(5^2+10.5+31)}$$

$$(5 = 15\%)$$

$$15 = 100 e^{-\frac{1}{1-5}}$$

$$15 = 0.5169$$

$$W_1 = W_1 \sqrt{1-5^2}$$

$$W_2 = 0.8560 \cdot W_1$$

CS Escaneado con CamScanne

S=- Ewn + iwd

S= -0.5/69 Wn+j0.8560 Wn

Polino mio Coracleristico
$$S^{3} + 425^{2} + 3545 + K + 1088 = 0$$
Recimpla Fanco S
$$K + 0.9983 \text{ wn}^{3} - 19.5537 \text{w}^{2} - 187.994 \text{ wn} + 1088 + (0.05896 \text{ wn}^{3} - 37.1706 \text{w}^{2}, ...)$$
... + 303.034 w) i = 0

Parte real

$$W + 0.998261 \text{ wn}^{3} - 19.5537 \text{w}^{2} - 182.994 \text{ wn} + 1088 = 0$$
Parte imag i maria

$$0.05896 \text{ wn}^{3} - 37.1706 \text{wn}^{2} + 303.034 \text{ wn} = 0$$
Resolviendo $0 \neq 0$

$$K = -2.3281 \times 10^{8} \text{ wn} = 622.234 \times 108 \text{ mn} = 0 \times 1088 \text{ mn} =$$

CS Escaneado con CamScanner

$$W_{n} = 8.26075 \qquad ?OS = 15 \implies \S = 0.5169$$

$$T_{p} = \frac{7C}{W_{n}\sqrt{1-\S^{2}}}$$

$$T_{p} = \frac{7C}{(8.26075)\sqrt{1-(0.5169)^{2}}}$$

$$T_{p} = \frac{7C}{(8.26075)\sqrt{1-(0.516$$

Z=16.5826 , K=344.571

PD

G(S) =
$$\frac{344.571(5+16.5826)}{(5+32)(5^2+105+34)}$$

Tipo 0

Kp = $\frac{1im}{5.70}(\frac{344.571(5+16.5826)}{(5+32)(5^2+105+34)})$

Kp = $\frac{5.2517}{5.2517}$

Escalón Unitario A = 1

...

ess = $\frac{1}{1+Kp} = \frac{1}{1+5.2517} = 0.1600$

Por lo que se requiere un Compensador in-legual ideal para hacerlo 0. a=0.1

G(S) = $\frac{K(5+16.5826)(5+0.1)}{5(5+32)(5^2+105+34)}$

%OS = $\frac{15}{5} \Rightarrow \frac{5}{5} = 0.5169$

Wd = Wn $\sqrt{1-\frac{5}{5}^2}$

Wd = Wn $\sqrt{1-\frac{5}{5}^2}$

Wd = 0.8560.Wn

S= - \(\text{S} wn + \(\text{j} \) Wd

 $S = -0.5169 \text{ Wn} + \mathbf{j}(0.8560) \text{ Wn}$ Polinomio (arac-leristico) $K (5+16.5826)(5+0.1) + 5(5+32)(5^2+105+34) = 0$ Remplazan do S $K(-0.46555 \text{ Wn}^2 - 8.62324 \text{ Wn} + 1.65826) - 0.56639 \text{ Wn} (\text{Wn}^3 - 74.0191 \text{W}^2 ... + 290.985 \text{ Wn} + 992.97) - 0.8849 (K (\text{Wn} - 16.1372) ... - 0.9311 (W_n^3 + 3.0029 \text{ Wn}^2 - 380.195 \text{ Wn} + 1130.31)) \text{Wn} \cdot \hat{\mathbf{i}} = 0$ ① Parte Real $K(-0.46555 \text{ Wn}^2 - 8.62324 \text{ Wn} + 1.65826) - 0.56639 \text{ Wn} (\text{W}^3 - 74.0191 \text{W}^2 ... + 290.985 \text{ Wn} + 992.97) = 0$ ② Parte Imaginaria $-0.8849 (K (\text{Wn} - 16.1372) - 0.9311 (W_n^3 + 3.00287 \text{Wn}^2 - 380.195 \text{ Wn} + 1130.31)) \text{Wn} = 0$

-0.8849 (K (Wn-16.1372)-0.9311 ($W_n^3+3.00287W_n^2-380.19$ Resolvience el sistema ① y ② $K=197.215\pm 458.4761$, $Wn=12.6928\pm 11.0203i$ X $K=-64.942\pm 11.0454i$, $Wn=0.03512\pm 0.6150$ X K=0, Wn=0 X K=336.803, Wn=16.2816

CS Escaneado con CamScanner

 $G_{7(5)} = \frac{336.803(5+16.58.26)(5+0.1)}{(5+32)(5^2+105+34)}$

Ganancias del Compensador PD

344.57 (S+16.5826)

5713.88 + 344,571.5

KP=5713.88, KD=314.571

Gamancias de Compensador PID

336.803 (5+16.5826)(S+0.1)

5618.75 + 336.803.5 + 558.507

KP= 5618,75

KD = 336, 803

KI = 558,507

CS Escaneado con CamScanner

$$T_p = \frac{11}{(16.2816)\sqrt{1 - (0.5169)^2}}$$

CS Escaneado con CamScanne

2. Garantice la validez de su resultado, comprobando los criterios explicados en clase.

$$(1)^{\circ}/_{\circ}OS = 15 \implies \xi = 0.5169$$
 No se cambio V

Wn = 16.2816 -7 Dato final en el integrador

2)
$$Ts = \frac{4}{\xi Wn} = \frac{4}{(0.5169)(16.2816)} = 0.47535 V$$

Error en estado estable

$$G(5) = \frac{336.803(5+16.5826)(5+0.1)}{5(5+32)(5^2+105+34)}$$

Entrada escalon Unitario [A=1]

3)
$$ess = \frac{1}{1 + Kp} = \frac{1}{1 + \infty} = 0$$
/
No tiene error en estado estable