XM452 Lecture Notes 10

Erdaifu Luo

30 April 2023

§45 Introduction to Quadratic Fields

A common technique in solving an equation is factoring it.

Example 45.1

$$0 = x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2}),$$

so in particular, there are no integer nor rational solutions.

Let $\mathbb Z$ denote the set of integers, let $\mathbb Q$ denote the set of rational numbers, and $\mathbb R$ denote the set of real numbers.

Definition 45.2 (Quadratic Fields). Let d be a fixed rational number which is not a square of a rational number (e. g. d = p, p is a prime).

Let $\mathbb{Q} \left| \sqrt{d} \right|$ denote the set of numbers

$$a + b\sqrt{d}$$

where a and b are arbitrary real numbers.

 $\mathbb{Q}\left[\sqrt{d}\right]$ is called a quadratic field. If d>0, $\mathbb{Q}\left[\sqrt{d}\right]$ is called a real quadratic field. If d<0, $\mathbb{Q}\left[\sqrt{d}\right]$ is called an imaginary quadratic field.

Example 45.3

 $1+\sqrt{2}$ and $\frac{\sqrt{2}}{3}$ are both numbers of $\mathbb{Q}\left[\sqrt{2}\right]$. Notice also that all rational numbers are members of $\mathbb{Q}\left[\sqrt{d}\right]$ since $a\in\mathbb{Q}$ means $a+0\sqrt{2}\in\mathbb{Q}\left[\sqrt{2}\right]$

Theorem 45.4

 $a+b\sqrt{d}=c+e\sqrt{d}$ if and only if a=c and b=e.

Proof. $a + b\sqrt{d} = c + e\sqrt{d}$ means that

$$\left(a + b\sqrt{d}\right) - \left(c + e\sqrt{d}\right) = 0.$$

1

This means that

$$(a-c) + (b-e)\sqrt{d} = 0$$

or

$$a - c = (e - b)\sqrt{d},$$

where $a - c \in \mathbb{Q}$ and $b - e \in \mathbb{Q}$. But since $\sqrt{d} \notin \mathbb{Q}$ then $e \neq b$, $(e - b)\sqrt{d}$ is irrational. But $(e - b)\sqrt{d} = a - c$ which is rational. Thus, e - b = 0, meaning that e = b, and therefore 0 = a - c, or a = c.

Theorem 45.5

Let $\alpha, \beta \in \mathbb{Q}\left[\sqrt{d}\right]$. Then $\alpha + \beta, \alpha - \beta, \alpha\beta \in \mathbb{Q}\left[\sqrt{d}\right]$ and if $\beta \neq 0, \frac{\alpha}{\beta} \in \mathbb{Q}\left[\sqrt{d}\right]$.

Proof. Say $\alpha = a + b\sqrt{d}$, $\beta = c + e\sqrt{d}$. Then

$$\alpha + \beta = (a+c) + (b+e)\sqrt{d} \in \mathbb{Q}\left[\sqrt{d}\right]$$
$$\alpha - \beta = (a-c) + (b-e)\sqrt{d} \in \mathbb{Q}\left[\sqrt{d}\right]$$
$$\alpha\beta = (ac+bed) + (ae+bc)\sqrt{d} \in \mathbb{Q}\left[\sqrt{d}\right]$$

and if $\beta \neq 0$,

$$\frac{\alpha}{\beta} = \left(\frac{ac - bed}{c^2 - e^2d}\right) + \left(\frac{bc - ae}{c^2 - e^2d}\right) \in \mathbb{Q}\left[\sqrt{d}\right].$$

Theorem 45.6

If r and s are integers, then

$$\mathbb{Q}\left[\sqrt{\frac{r}{s}}\right] = \mathbb{Q}\left[\sqrt{rs}\right]$$

Because of this it is enough to consider rational fields $\mathbb{Q}\left[\sqrt{d}\right]$ where d is an integer.

Definition 45.7. If $\alpha = a + b\sqrt{d}$, then the conjugate of α , written $\overline{\alpha} = a - b\sqrt{d}$.

So, for example,

$$\overline{\sqrt{d}} = -\sqrt{d}.$$

Theorem 45.8

If $\alpha, \beta \in \mathbb{Q}\left[\sqrt{d}\right]$, then $\overline{(\overline{\alpha})} = \alpha$, $\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$, $\overline{\alpha - \beta} = \overline{\alpha} - \overline{\beta}$, $\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$, and if $\beta \neq 0$, $\frac{\overline{\alpha}}{\beta} = \frac{\overline{\alpha}}{\overline{\beta}}$. Furthermore, $\alpha = \overline{\alpha}$ if and only if α is rational.

§46 Defining Equations and Quadratic Integers

Given an element $\alpha = a + b\sqrt{d} \in \mathbb{Q}\left[\sqrt{d}\right]$, notice that α is a solution to the quadratic equation

$$0 = \left(x - \left(a + b\sqrt{d}\right)\right) \cdot \left(x + \left(a - b\sqrt{d}\right)\right) = x^2 - 2ax + \left(a^2 - b^2d\right).$$

Notice that $\overline{\alpha} = a - b\sqrt{d}$ is also a solution to this equation.

This polynomial has rational coefficients since 2a and $a^2 - b^2d$ are rational because a, b, $d \in \mathbb{Q}$. If we multiply this equation by a common denominator for 2a and $a^2 - b^2d$ we get a quadratic equation with integral coefficients that is solved by α and $\overline{\alpha}$.

Definition 46.1. If α is an irrational number in $\mathbb{Q}\left[\sqrt{d}\right]$ then the equation $ax^2 + bx + c = 0$ is called the defining equation for α , if α satisfies the equation and $a, b, c \in \mathbb{Z}$, (a, b, c) = 1, and a > 0.

Claim 46.2 — A defining equation exists and is unique for every irrational $\alpha \in \mathbb{Q}\left[\sqrt{d}\right]$.

Proof. Let $ax^2 + bx + c = 0$ be a polynomial equation satisfied by $x = \alpha$ and with integral coefficients. By the argument above, we know such a polynomial exists. Now plug in $x = \overline{\alpha}$, we egt

$$a\overline{\alpha}^2 + b\overline{\alpha}^2 + c = \overline{a}\overline{\alpha}^2 + \overline{b}\overline{\alpha} + \overline{c}$$

since $a, b, c \in \mathbb{Z}$. The previous equals to

$$\overline{(a\alpha^2 + b\alpha + c)},$$

which equals to 0 from our definition. Thus if α is a root of the equation, so is α . Since α is irrational, $\alpha \neq \overline{\alpha}$, so we can factor the polynomial

$$ax^{2} + bx + c = a(x - \alpha)(x - \overline{\alpha}).$$

Definition 46.3. If $\alpha \in \mathbb{Q}\left[\sqrt{d}\right]$ we define the norm of α to be

$$N(\alpha) = \alpha \overline{\alpha}.$$

So if $\alpha = a + b\sqrt{d}$, $N(\alpha) = a^2 - b^2d$ which is a rational number.

Theorem 46.4

 $N(a)=a^2$ for a rational number. If $\alpha\in\mathbb{Q}\left[\sqrt{d}\right]$ then $N\left(\alpha\right)$ is rational. If d<0 then $N\left(a\right)\geq0$.

Also, if $\beta \in \mathbb{Q}\left[\sqrt{d}\right]$, then

$$N(\alpha\beta) = N(\alpha)N(\beta)$$

$$N\left(\frac{\alpha}{\beta}\right) = \frac{N(\alpha)}{N(\beta)}, \quad \beta \neq 0.$$

Proof. Observe that $\alpha = a + b\sqrt{d}$, then $N(a) = a^2 - b^2d$. The rest is just simple calculation.

Next, we would want to define integers in the quadratic field.

For ordinary integers, if $x^n \in \mathbb{Z}$ and x is rational, then $x \in \mathbb{Z}$. We want to keep this basic property in the notion of "integer" in $\mathbb{Q}\left[\sqrt{d}\right]$.

Notice that $\left(\sqrt{d}\right)^2 = d$, so that if $d \in \mathbb{Z}$ then we want to say that \sqrt{d} is an integer in $\mathbb{Q}\left[\sqrt{d}\right]$. Our quadratic "integers" should also be closed under addition and multiplication. So we should also have numbers of the form

$$n + m\sqrt{d}$$

where $n, m \in \mathbb{Z}$, be quadratic "integers".

Definition 46.5. A number $\alpha \in \mathbb{Q}\left[\sqrt{d}\right]$ is called a quadratic integer if either $\alpha \in \mathbb{Z}$ or if α is irrational and the coefficient of x^2 in the defining equation for α is 1. The numbers in \mathbb{Z} are called "rational integers".

Theorem 46.6

If $d \neq 1 \pmod 4$ then the quadratic integers of $\mathbb{Q}\left[\sqrt{d}\right]$ are those numbers of the form

$$n + m\sqrt{d}$$
,

where $n, m \in \mathbb{Z}$.

Theorem 46.7

If $\alpha \in \mathbb{Q}\left[\sqrt{d}\right]$ is a quadratic integer, then its norm $N\left(\alpha\right) \in \mathbb{Z}$.

Proof. By definition, if α is a quadratic integer, its defining equation is

$$0 = (x - \alpha)(x - \overline{\alpha})$$

which if $\alpha = a + b\sqrt{d}$ is equal to

$$x^2 - 2ax + (a^2 - b^2d) = 0.$$

Since the defining equation has integral coefficients,

$$N\left(\alpha\right) = a^2 - b^2 d,$$

which is exactly the norm of α , and is in the set \mathbb{Z} .

§47 Characterizing Quadratic Integers

Theorem 47.1

If $d \not\equiv 1 \pmod{4}$ then the quadratic integers of $\mathbb{Q}\left[\sqrt{d}\right]$ are those numbers of the form

$$a + b\sqrt{d}$$
,

where $a, b \in \mathbb{Z}$. If $d \equiv 1 \pmod{4}$, then the quadratic integers in $\mathbb{Q}\left[\sqrt{d}\right]$ are those numbers of the form $\frac{\left(a+b\sqrt{d}\right)}{2}$, where $a, b \in \mathbb{Z}$ and a and b are both even or both odd.j

Corollary 47.2

If $d \equiv 1 \pmod{4}$, a number in $\mathbb{Q}\left[\sqrt{d}\right]$ is a quadratic integer if and only if it can be written as

$$a+b\left(\frac{1+\sqrt{d}}{2}\right).$$

Proof of corollary assuming the below theorem. If $a, b \in \mathbb{Z}$,

$$a + b\left(\frac{1+\sqrt{d}}{2}\right) = \frac{(2a+b) + b\sqrt{d}}{2}$$

where $2a + b \equiv b \pmod{2}$, so 2a + b and b are both even or odd. Therefore, by the theorem, it is a quadratic integer. Similarly, if a, b are any two integers, both even or odd,

$$\frac{a+b\sqrt{d}}{2} = \frac{a-b}{2} + b\frac{1+\sqrt{d}}{2}$$

where $\frac{a-b}{2}$ both are integers.

Proof of theorem. If $a, b \in \mathbb{Z}$, then it is clear that $a + b\sqrt{d}$ is a quadratic integer because

$$\left(x - \left(a + b\sqrt{d}\right)\right)\left(x - \left(a - b\sqrt{d}\right)\right) = x^2 - 2ax + \left(a^2 - b^2d\right)$$

has integer coefficients. If $d \equiv 1 \pmod{4}$ then

$$\left(x - \frac{a + b\sqrt{d}}{2}\right)\left(x - \frac{a - b\sqrt{d}}{2}\right) = x^2 - ax + \frac{\left(a^2 - b^2d\right)}{4}$$

also has integral coefficients if a and b are both even or odd.

Too lazy to write further proof so gg.