Cache Efficient Parallel Partition Algorithms An In-Place Exclusive Read/Write Memory Algorithm

WHY IS THE PARTITION PROBLEM IMPORTANT?

The Partition Problem is a fundamental problem in computer science. Additionally, it is used in many algorithms such as

- ► Parallel Quicksort. This is the most well-known application of parallel-partition. Sorting is a very fundamental problem.
- ► Filtering operations.

Humans like sorted data.

Computers like sorted data.

OUR RESEARCH QUESTION

Can we create an algorithm with theoretical guarantees that is fast in practice?

RESULT

We created the *Smoothed Striding Algorithm*. Key Features:

- ► linear work and polylogarithmic span (like the Standard Algorithm)
- ► fast in practice (like the Strided Algorithm)
- ► theoretically optimal cache behavior (unlike any past algorithm)

SMOOTHED STRIDING ALGORITHM'S PERFORMANCE

VERSUS SMOOTHED-STRIDING **ALGORITHM**

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- ► Good cache behavior in practice
- ► Worst case span is $T_{\infty} \approx n$
- span is

Smoothed-Striding Algorithm

- ► Provably optimal cache behavior
- ► Span is $T_{\infty} = O(\log n \log \log n)$ with high probability in n

inside the algorithm

- ► On random inputs ► Uses randomization
 - $T_{\infty} = \tilde{O}(n^{2/3})$

APPLICATION TO PARALLEL QUICKSORT

Parallel Quicksort is the most important application of Parallel Partition. Parallel Quicksort works as follows:

- ► Chose a pivot value randomly from the array
- ► *Partition* the array relative to the pivot value
- ► Recursively sort the subarrays (in parallel) The depth of recursion is $O(\log n)$ with high probability in n, and each level of recursion requires span $O(\log n \log \log n)$ when using the smoothed striding algorithm, which results in span $O(\log^2 n \log \log n)$ and work $O(n \log n)$ for the entire parallel quicksort algorithm, which is within a factor of log log *n* of optimal, while additionally guaranteeing that the algorithm is cache-friendly.

SMOOTHED STRIDING ALGORITHM

Form groups U_i that contain a random element from each chunk. This randomization step was one of our key insights; it guarantees that the

Perform serial partitions on each U_i in parallel over the U_i 's. This step is highly parallel.

Define v_i = index of first element greater than the pivot in U_i .

Identify leftmost and right-

Recursively partition the subarray.

This step was previously impossible; adding randomization enables this step, which enables our algorithm's low span.

A KEY CHALLENGE

How do we store the U_i 's if they are all random?

Storing which elements make up each U_i takes too much space!

Strided Algorithm P_i .

HOW TO STORE THE GROUPS

Key Insight: While each U_i does need to contain a random element from each chunk, the U_i 's don't need to be *independent*.

We store U_1 , and all other groups are determined by a "circular shift" of U_1 (wraparound within each chunk).

