CS396: Computational Complexity Homework III

Zihao Ye

December 30, 2016

EXERCISE 4.10

Consider the QBF:

$$Q = \exists x_1 \forall x_2 \exists \cdots \forall / \exists x_n \phi(x_1, x_2, \cdots, x_n)$$

- Q = true implies player 1 has a winning strategy.
- Q = false implies

$$\overline{Q} = \forall x_1 \exists x_2 \forall \cdots \exists / \forall x_n \phi(x_1, x_2, \cdots, x_n) = true$$

Which means player 2 has a winning strategy.

EXERCISE 4.11

Suppose $L \in \text{coNSPACE}(S(n))$, then $\overline{L} \in \text{NSPACE}(S(n))$, since S is space constructible, by constructing the configuration graph of L on a turing machine, we derive

$$\forall x, x \in L \iff \overline{\text{PATH}}(G(x), s, t) = 1$$

In which the graph size is $2^{S(|x|)}$. Then according to the fact that $\overline{PATH} \in NL$, we have

$$L \in NL(2^{S(n)}) = NSPACE(S(n))$$

For the same reason, we derive

$$L \in \text{NSPACE}(S(n)) \Longrightarrow L \in \text{coNSPACE}(S(n))$$

Combine the results above, NSPACE = coNSPACE will be derived.

EXERCISE 5.5

We first prove that

$$ATIME(T(n)) \subseteq SPACE(T(n))$$

For every $L \in ATIME(T(n))$, given an exact input x, by traversing the configuration tree(Assume that T(n) is time-constructible) of $M_L(x)$ (which requires additional space no more than O(T(n))), we could decide whether $x \in L$.

Thus we derive $ATIME(T(n)) \subseteq SPACE(T(n))$, which means

$AP \subseteq PSPACE$

For the other direction, for every $L \in SPACE(P(n))$, given an input x with length n, considering the **Divide and Conquer** method we used in proving *Savitch Theorem*.

The configuration graph has $M=2^{P(n)}$ nodes. We need to construct an ATM to decide whether C_{accept} is reachable from C_{start} .

The **Divide and Conquer** algorithm could be described as:

Multiple branch(k of them at all) could be converted to log(k) layers of binary branch structures.

Thus the tree's depth is no more than $O(log^2(M)) = P(n)^2$. We could decide whether $x \in L$ in ATIME $(P(n)^2) \subseteq AP$.

Combine the results above, we have

AP = PSPACE

EXERCISE 5.9

Ι

$$(G, k) \in \text{EXACT INDSET} \iff \forall S \subseteq V, \exists S' \in V, (S' \in \text{INDSET}, |S'| = k, S' \subseteq S \implies S \notin \text{INDSET})$$

Π

$$(G,k) \in \mathsf{EXACT} \; \mathsf{INDSET} \iff (G,k) \in \mathsf{INDSET} \land (G,k+1) \not\in \mathsf{INDSET}$$
 While $\mathsf{INDSET} \in \mathsf{NP}, \{(G,k) \mid (G,k) \not\in \mathsf{INDSET}\} \in \mathsf{coNP}, \; \mathsf{thus}$:

$$(G, k) \in \mathrm{DP}$$

Ш

For each $L \in DP$, Suppose $L = L_1 \cap L_2$, while $L_1 \in NP$ and $L_2 \in coNP$.

We could make a reduction from $L \in NP$ to a 3SAT : ϕ , furthermore an INDSET : (G, k). While a $L \in coNP$ could be reduced to an \overline{INDSET} problem. Suppose these two reductions are $\phi_1 \to (G_1, k_1)$ and $\phi_2 \to (G_2, k_2)$, respectively.

Such reduction doesn't not suggest any lower bound for largest size of independent set. So we introduce $k_i - 1$ new nodes for each reduction, and add edges from new nodes to all existing nodes. However this augmentation guarantee that largest size of independent size can't be lower than $k_i - 1$.

Construct a new graph $G_1 \times G_2$ as described below:

$$V = V_1 \times V_2$$

$$(\langle v_1, v_2 \rangle, \langle v_1', v_2' \rangle) \in E \iff (v_1, v_1') \in E_1 \vee (v_2, v_2') \in E_2$$

While this construction indicates a indset with size $|\text{IND}_1| \cdot |\text{IND}_2|$, and in this case, $|\text{IND}_1| = k_1$, $|\text{IND}_2| = k_2 - 1$. If $k_1 = k_2$, none of the cases could yield a EXACT_INDSET with size $k_1(k_2 - 1)$.

After all these conversions, we could decide whether $x \in L$ by

EXACT_INDSET(
$$G$$
, $k_1(k_2 - 1)$)

EXERCISE 6.3

Suppose *B* is the set used in the proof of *Baker-Gill-Solovay Theorem* that satisfies $U_B \in \mathbb{NP}^B$ and $U_B \notin P^B$, in which $U_B = \{1^n \mid \exists b \in B, |b| = n\}$.

While in **Exercise 3.3**, it has been proved B could be made exponentially polynomial decidable.

 $P \subseteq P^B$, thus $U_B \notin P$. While as it's a unary function, according to **Clamin 6.8**, $U_B \in P_{/poly}$.

EXERCISE 6.16

Suppose *A* is a $n \times n$ matrix.

Suppose $\lambda_1, \lambda_2, \dots, \lambda_n$ are *n* eigenvalues of *A*,

$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

In order to compute det(A) in a circuit with O(log(n)) layers, we introduce intermediate variables $\{P_i\}$, $\{E_i\}$ defined as follows:

$$P_i = \sum_{k=1}^n \lambda_k^i$$

$$E_i = \sum_{k_1, k_2, \dots, k_l \in \binom{[n]}{i}} \lambda_{k_1} \lambda_{k_2} \dots \lambda_{k_l}$$

For convenience, let E_0 be 1.

Their relations could be formulated as(Newton's Identity):

$$E_i = 1/i \cdot (-1)^{i+1} \sum_{k=1}^{i} P_k E_{i-k}$$

Vieta's formulas implies $\{(-1)^i E_i\}$ are the coefficients of the polynomial $\det(\lambda I - A)$, let c_i be $(-1)^i E_i$, then $(-1)^n c_n = E_n = \det(A)$.

While we could find the relation between c_i and P_i

$$-c_i = 1/i \sum_{k=1}^{i} (-1)^{i-k} P_k c_{i-k}$$

To vectorize this formula, we have to transform it to:

$$-\frac{P_i}{i} = \sum_{k=1}^{i} (-1)^{k-1} \frac{P_{i-k}}{i} c_k$$

Whose matrix form is:

$$\begin{bmatrix} -P_1 \\ -\frac{P_2}{2} \\ -\frac{P_3}{3} \\ \vdots \\ -\frac{P_n}{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -\frac{P_1}{2} & 1 & 0 & \cdots & 0 \\ -\frac{P_2}{3} & -\frac{P_1}{3} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -\frac{P_{n-1}}{n} & -\frac{P_{n-2}}{n} & -\frac{P_{n-3}}{n} & \cdots & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix}$$

Use W to denote the weight matrix, then P = WC, $C = W^{-1}P$. Suppose W = I - L (L is a lower-triangular matrix with all-zero diagonal elements), $W^{-1} = I + L + L^2 + \cdots + L^{n-1}$.

To show

$$\{\langle M, k \rangle \mid \det(M) = k\}$$

is actually in NC, we construct a circuit with $O(\log(n))$ layers and O(Poly(n)) gates as follows:

- Addition, Subtraction, Mutliplication and Division Module: These could be implemented by combining some 'AND' and 'OR' gates, the number of gates is O(n).
- **Sum Module**: Summation of $\{a_i\}$ could be reformulated as:

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n/2} a_i + \sum_{i=n/2+1}^{n} a_i$$

Apply the same technique on the first half and the second half, then we derive a module with $O(\log(n))$ layers and O(n) gates.

- Matrix Multiplication Module: Create n^3 modules to parallelly compute $A_{ik}B_{kj}(n^3)$ of them). Then use n^2 Sum Module to parallely compute AB. This module has $O(\log(n))$ layers and $O(n^3)$ gates.
- Matrix Power Module: Use the same technique we used in Sum Module, and this could be handled with $O(\log^2(n))$ layers and $O(n^4)$ gates.

By combining these modules we could construct a circuit to effectively calculate $\det(M)$ with $O(\log^c(n))$ layer and O(Poly(n)) gates. Thus $\{\langle M, k \rangle \mid \det(M) = k\} \in NC$.

ACKNOWLEDGEMENT

Thanks Yurong You for his discussion with me.

Thanks Lequn Chen for his generous help on searching some excellent solutions online.

REFERENCE

- 1. http://drona.csa.iisc.ernet.in/~chandan/courses/arithmetic_circuits/
 notes/lec6.pdf
- 2. http://zoo.cs.yale.edu/classes/cs468/spr15/solutions/HW3-Solutions.pdf