Importing & Exporting Data with R

Aditya Dube

Monday, May 15, 2023

Loading Packages

```
library(data.table)
library(tidyverse)
library(knitr)
library(arrow)
library(bench)
library(ggbeeswarm)
library(haven)
```

Import the possum.csv data directly from the URL

```
possums <- read.csv("https://raw.githubusercontent.com/dilernia/STA418-518/main/Data/possum.csv")
# Printing first 6 columns and first 5 rows from the dataset
possums %>% dplyr::select(1:6) %>%
    slice_head(n = 5) %>% kable()
```

case	site	sex	age	$head_length_mm$	skull_width_mm
1	Cambarville	Male	8	94.1	60.4
2	Cambarville	Female	6	92.5	57.6
3	Cambarville	Female	6	94.0	60.0
4	Cambarville	Female	6	93.2	57.1
5	Cambarville	Female	2	91.5	56.3

Importing using the import wizard

```
possums_1 <- read_csv("possum.csv")

## Rows: 104 Columns: 14

## -- Column specification -------
## Delimiter: ","

## chr (3): site, sex, region

## dbl (11): case, age, head_length_mm, skull_width_mm, total_length_cm, tail_l...</pre>
```

```
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
```

Using read_csv

```
possums <- read_csv("https://raw.githubusercontent.com/dilernia/STA418-518/main/Data/possum.csv")

## Rows: 104 Columns: 14

## -- Column specification --------

## Delimiter: ","

## chr (3): site, sex, region

## dbl (11): case, age, head_length_mm, skull_width_mm, total_length_cm, tail_l...

##

## i Use 'spec()' to retrieve the full column specification for this data.

## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.

## Printing first 6 columns and first 5 rows from the dataset

possums %>% dplyr::select(1:6) %>%

slice_head(n = 5) %>% kable()
```

case	site	sex	age	head_length_mm	skull_width_mm
1	Cambarville	Male	8	94.1	60.4
2	Cambarville	Female	6	92.5	57.6
3	Cambarville	Female	6	94.0	60.0
4	Cambarville	Female	6	93.2	57.1
5	Cambarville	Female	2	91.5	56.3

Using read_parquet

```
possums <- read_parquet("possum.parquet")

# Printing first 8 columns and first 5 rows from the dataset
possums %>% dplyr::select(1:8) %>%
    slice_head(n = 5) %>% kable()
```

case	site	sex	age	head_length_mm	skull_width_mm	$total_length_cm$	$tail_length_cm$
1	Cambarville	Male	8	94.1	60.4	89.0	36.0
2	Cambarville	Female	6	92.5	57.6	91.5	36.5
3	Cambarville	Female	6	94.0	60.0	95.5	39.0
4	Cambarville	Female	6	93.2	57.1	92.0	38.0
5	Cambarville	Female	2	91.5	56.3	85.5	36.0

Using fread()

```
possum_fread <- fread("https://raw.githubusercontent.com/dilernia/STA418-518/main/Data/possum.csv")
# Printing first 6 columns and first 5 rows from the dataset
possum_fread %>% dplyr::select(1:6) %>%
    slice_head(n = 5) %>% kable()
```

case	site	sex	age	$head_length_mm$	$skull_width_mm$
1	Cambarville	Male	8	94.1	60.4
2	Cambarville	Female	6	92.5	57.6
3	Cambarville	Female	6	94.0	60.0
4	Cambarville	Female	6	93.2	57.1
5	Cambarville	Female	2	91.5	56.3

Comparing read speeds

```
# Generating 'big data'
set.seed(1994)
x <- runif(5e4)
y <- runif(5e4)
x[sample(5e4, 5e3)] <- NA
y[sample(5e4, 5e3)] <- NA
bigData <- as.data.frame(x = x, y = y)
# Saving as CSV file w/ data.table
fwrite(bigData, "bigData.csv")
# Saving as parquet file
write_parquet(bigData, "bigData.parquet")
# Saving as RDS file
write_rds(bigData, "bigData.rds")</pre>
```

expression	min	median	itr/sec	mem_alloc
read.csv()	$23.23 \mathrm{ms}$	$23.76 \mathrm{ms}$	39.60310	1.7MB
read_csv()	$15.39 \mathrm{ms}$	$16.38 \mathrm{ms}$	60.34031	359.5KB
read_parquet()	$4.23 \mathrm{ms}$	$4.77 \mathrm{ms}$	202.82383	204.5 KB
fread()	$3.04 \mathrm{ms}$	$3.27 \mathrm{ms}$	303.86058	$795.7 \mathrm{KB}$

expression	min	median	itr/sec	mem_alloc
read_rds()	495.62us	551.76 us	1786.85366	395.8KB

```
# Creating violin plots
importTimes %>% ggplot(aes(x = time, y = fct_reorder(expression, time))) +
  geom_violin(fill = "dodgerblue") +
  geom_jitter(
    height = 0.2,
    pch = 21,
    fill = "black",
    color = "white"
) +
  labs(title = "Comparison of read times", y = "", x = "Run time") +
  theme_bw()
```

Comparison of read times

Reproduce the table and violin plots for write function

```
# Comparing run times
writeBmResult <- mark(write.csv(bigData, "bigData.csv"), write_csv(bigData, "bigData.csv"),fwrite(bigDatag0bj <- plot(writeBmResult)
exportTimes <- gg0bj$data %>% mutate(expression =
```

```
paste0(map_chr(str_split(expression, pattern = "[(]"), 1), "()")
# Printing table
exportTimes %>% arrange(desc(median)) %>%
  select(expression:mem_alloc) %>% distinct() %>% knitr::kable()
```

expression	min	median	itr/sec	mem_alloc
write_csv()	$556.43 \mathrm{ms}$	$565.08 \mathrm{ms}$	1.754052	102.63KB
write.csv()	$64.09 \mathrm{ms}$	$64.91 \mathrm{ms}$	15.220177	1.51MB
write_parquet()	$9.31 \mathrm{ms}$	$10.57 \mathrm{ms}$	91.340077	15.39KB
fwrite()	$5.95 \mathrm{ms}$	$6.46 \mathrm{ms}$	153.954858	0B
$write_rds()$	$1.98 \mathrm{ms}$	$2.56 \mathrm{ms}$	384.425784	8.63KB

```
# Creating violin plots
exportTimes %>% ggplot(aes(x = time, y = fct_reorder(expression, time))) +
geom_violin(fill = "dodgerblue") +
geom_jitter(
   height = 0.2,
   pch = 21,
   fill = "black",
   color = "white"
) +
labs(title = "Comparison of write times", y = "", x = "Run time") +
theme_bw()
```

Comparison of write times

