*definition of a convex set?SM-9

*how to check a convex-hull edge?

Problem SM-5: Convex hull *how to check a convex-hull vertex?

Input: a set $S = \{v_1, v_2, ..., v_n\}$ of n points

Output: The convex hull *CH*(*S*) of *S* (clockwise)

Model: CREW PRAM of *n* processors sorted by *x*-coordinates

$$S = \{f, g, j, a, e, k, d, i, b, c\}$$

$$CH(S) = \{f, g, a, b, c, d, e\}$$

$$UH(S) = \{f, g, a, b, c\}$$

$$LH(S) = \{c, d, e, f\}$$

(1) Sort the points in *S* by their *x* coordinates. After the sorting, we have $x(v_1) < x(v_2) < ... < x(v_n)$.

Remark: Sorting *n* numbers can be done in $O(\log n)$ time on the EREW PRAM of *n* processors. (R. Cole, "Parallel merge sort," *SIAM Journal on Computing*, vol. 17, no. 4, pp. 770-785, 1988.)

(2) Let *p* and *q* be the points of the smallest and the largest *x* coordinates, respectively. Clearly, *p* and *q* belong to *CH*(*S*) and partition *CH*(*S*) into an upper hull *UH*(*S*) and a lower hull *LH*(*S*). In the following, we concentrate on determining *UH*(*S*).

For simplicity, assume that no two points have the same x or y coordinates and $n=2^k$.

(3) Algorithm UH(S)

$$S_1 = \{f, g, j, a, e\}$$

 $S_2 = \{k, d, i, b, c\}$

$$UH(S_1) = \{f, g, a, e\}$$

 $UH(S_2) = \{k, b, c\}$
upper common tangent: (a, b)

$$UH(S) = \{f, g, a, b, c\}$$

step 1: If $|S| \le 4$, then use a brute-force method to determine UH(S), and **exit**.

step 2: Let $S_1 = \{v_1, v_2, ..., v_{n/2}\}$ and $S_2 = \{v_{n/2+1}, v_{n/2+2}, ..., v_n\}$. Recursively, compute $UH(S_1)$ and $UH(S_2)$ in parallel.

step 3: Find the *upper common tangent* between $UH(S_1)$ and $UH(S_2)$, and deduce UH(S).

(4) Let
$$UH(S_1) = \{r_1, r_2, ..., r_s\}$$
 and $UH(S_2) = \{q_1, q_2, ..., q_t\}$.

Remark: Given a point r_i and a point q_k , we can determined in O(1) sequential time whether I < k, I = k, or I > k, where r_iq_i be the tangent from a point r_i to $UH(S_2)$.

In this example, we can conclude that l > k.

Remark: In O(1) time, the tangent from a point r_i to $UH(S_2)$ can be obtained on the CREW PRAM of $t^{1/2}$ processors.

(parallel *m*-way search)

step 1: From the points $q_{t^{1/2}}$, $q_{2\times t^{1/2}}$,..., $q_{t^{1/2}\times t^{1/2}}$, determine the index m that satisfies $(m-1)\times t^{1/2} < l \le m\times t^{1/2}$.

step 2: From the points $q_{m \times t^{1/2}+1}$, $q_{m \times t^{1/2}+2}$, ..., $q_{m \times t^{1/2}+t^{1/2}}$, determine the index I.

Remark: Let (r_uq_v) be the upper tangent of $UH(S_1)$ and $UH(S_2)$. Given a point r_i and r_iq_i (the tangent from r_i to $UH(S_2)$). We can determine in O(1) sequential time whether u < i, u = i, or u > i.

In this example, we can conclude that u < i.

$$\sqrt{s} \times \sqrt{t} \le \frac{s+t}{2} < s+t \le n$$
 SM-12

Remark: The upper tangent of $UH(S_1)$ and $UH(S_2)$ can be determined in O(1) time on a CREW PRAM of s+t processors.

step 1: For each point $r_{i \times s^{1/2}}$, determine the tangent to $UH(S_2)$. $(s^{1/2} \times t^{1/2} \text{ processors})$ Then, determine the index m that satisfies $(m-1) \times s^{1/2} < u \le m \times s^{1/2}$.

step 2: From the points
$$r_{m \times s^{1/2}+1}, r_{m \times s^{1/2}+2}, \dots, r_{m \times s^{1/2}+s^{1/2}}$$
, determine the index u . (Also, index v)

$$T_{s}(n) = 2T(n/2) + O(\lg^{2} n) + O(n)$$
(5) * $T(n) = O(1) + T(n/2) = O(\log n)$

* Divide and Conquer: [1] partition the input into the same subproblems of almost equal sizes, [2] solve recursively the subproblems in parallel, and [3] combine the solutions of subproblems.

Problem SM-6: Merging

Input: two sorted sequences A[1...n] and B[1...n]

Output: a sorted sequence C[1...2n]

Model: CREW PRAM of $n/\log n$ processors $(n = 2^m)$

Remark: This problem can be solved in O(n) sequential time.

SM-12a

Let $R_A[i]$ be the rank of A[i] in B (i.e., the number of values $\leq A[i]$ in B.) Define $R_B[i]$ similarly. The merge problem can be viewed as that of determining $R_A[1...n]$ and $R_B[1...n]$. For simplicity, assume that all elements in A and B are distinct.

bug !!! how to fix ???

stage 1: (partition) Determine $R_A[i \times m]$, $1 \le i \le n/m$. Then, partition A and B into A/s and B/s respectively, where $A_i = \{A[(i-1) \times m+1], \ldots, A[i \times m]\}$ and $B_i = \{B[R_A[(i-1) \times m]+1], \ldots, B[R_A[i \times m]\}$.

say, \leq 2lg n

stage 2: For each pair of A_i and B_i , $1 \le i \le n/m$, if $|B_i| = O(\log n)$, then rank all elements in A_i and B_i sequentially. Otherwise, apply the partition technique used in **stage 1** to partition A_i and B_i into $A_{i,j}$'s and $B_{i,j}$'s of size $O(\log n)$ (in this case, B_i plays the role of A and A_i plays the role of B). And then, for each pair of $A_{i,j}$ and $B_{i,j}$, rank all elements in $A_{i,j}$ and $B_{i,j}$ sequentially.

- * $T(n)=O(\log n)$
- * *Partition*:(1) break up the given problem into *p* independent subproblems of almost equal size, and then (2) solve the *p* subproblems concurrently, where *p* is the number of processors available.

Remark: The main work in the divide-and-conquer strategy usually lies in the merging of sub-solutions, whereas the main work in the partition strategy lies in carefully partitioning the problem into independent sub-problems.

Problem SM-7: Inserting a sorted sequence into a 2-3 tree **Input**: a 2-3 tree *T* holding *n* items $a_1 < a_2 < ... < a_n$, and a sequence $b_1 < b_2 < ... < b_k$ (Assume *k* is much smaller that *n*.)

(the balanced ST that is easiest to implement)

Output: the 2-3 tree obtained from T by inserting $b_1, b_2, ..., b_k$ **Model**: CREW PRAM of k processors

- (1) A 2-3 tree is a rooted tree in which (i) each internal node has either 2 or 3 children, and (ii) every path from the root to a leaf is of the same length. Clearly, if the number of leaves is n the height of the tree is $O(\log n)$. $\log_3 n \sim \log_2 n$
- (2) A sorted list $a_1, a_2, ..., a_n$, can be represented by a 2-3 tree T, where the leaves hold the data items in a left-to-right order. And, an internal node will hold the largest data items stored in its subtrees. Searching for a data item on T can be performed in $O(\log n)$ time.
- (3) Inserting an item b into a 2-3 tree in $O(\log n)$ time
- step 1: (1) locate 14, (2) create a leaf to hold 14, and (3) then insert it into <11:15:19>.

step 2: (1) split the node <11:15:19> into two nodes <11:14> and <15:19>, and then (2) insert <11:14> into <6:9:19>.

step 3: (1) split the node <6:9:19> into two nodes <6:9> and <14:19>, and then (2) insert <6:9> into <19:88>.

* after step 3

SM-17

(4) Inserting a sorted sequence into a 2-3 tree

step 1: (1) locate b_i 's, and (2) create leaves to hold them.

step 2: Let us call a **chain** the order set of elements among the *bi*'s that have to fit between two consecutive leaves of *T*. Insert the medians of all **chains** into appropriate parents. (An internal node at height 1 may now have at

step 3: (1) split nodes at height 1 that have more than 3 children and insert them into appropriate parents. (An internal node at height 2 may now have at most six children.) And, (2) then start the inserting of the medians of current chains.

step 4: (1) split nodes at height 1 and 2 that have more than 3 children and insert them into appropriate parents. And, then (2) start the inserting of the medians of current chains.

SM-19

SM-19a

- * $T(n, k) = O(\log n + \log k)$
- * *Pipelining*: Breaking up a task into a sequence of subtasks t_1 , t_2 , ..., t_k , such that, once t_1 is completed, the sequence corresponding to a new task can begin and can proceed at the same rate as the previous task.

 \longrightarrow align to the longest delay (2, 3, 1000 => 1000)

pipeline

time: $3m \Rightarrow 3 + (m-1)$ time: $km \Rightarrow k + (m-1)$ (Speedup = k)

* Implementation details?

* Q: How to adapt the algorithm to EREW PRAM?

- * sequential: O(n)
- * EREW: bal. binary tree method, n PEs, O(lg n) time M-20

Problem SM-8: Finding maximum

Input: $A[1...n]=\{3, 7, 8, 4\}$ (Assume all elements are distinct.)

Output: max{ A[1], A[2], ..., A[n] } Model: CRCW PRAM of n^2 processors

(For simplicity, we assume that each processor is indexed with a unique pair of (i, j).)

step 1: (1) $P_{i,1}$ sets MARK[i] as 0. (2) $P_{i,j}$ sets C[i, j] as 0 if $(A[i] \ge A[j])$ and 1 otherwise. $P_{1,3}$

step 2: (1) $P_{i,j}$ sets MARK[i] = 1 if C[i, j] = 1. (2) $P_{i,1}$ sets max = A[i] if MARK[i] = 0.

* OR operation can be done in O(1) time using n PEs.