

Тема: Прогнозирование конечных свойств новых материалов (композиционных материалов).

Токарева Людмила Евгеньевна

Постановка задачи

- 1. Обучить алгоритм машинного обучения, который будет определять значения:
 - Модуль упругости при растяжении, ГПа;
 - Прочность при растяжении, МПа.
- 2. Написать нейронную сеть, которая будет рекомендовать соотношение матрица-наполнитель.
- Написать приложение, которое будет выдавать прогноз, полученный в задании 1 или 2 (один или два прогноза, на выбор).
 - Сделать commit приложения на github.com.

Композиционные материалы — это искусственно созданные материалы, состоящие из нескольких других с четкой границей между ними. Композиты обладают теми свойствами, которые не наблюдаются у компонентов по отдельности. При этом композиты являются монолитным материалом, компоненты материала неотделимы друга разрушения конструкции в целом. Яркий пример композита — железобетон.

Входные данные

Первый анализ данных

В качестве входных данных нам был дан zip архив включающий в себя два Excel файла с данными:

- X_bp.xlsx (1023 строки)
- X_nup.xlsx (1040 строк)

Методом визуального наблюдения устанавливаем, что данные в файлах являются структурированными. Каждое свойство хранится в отдельной колонке (10 и 3 колонок данных соответственно), значения представляет собой числа с десятичным разделителем. Первая колонка – индекс (целое число). Первая строка содержит наименование свойств, указанных в

Α	В	С	D	
	Угол нашивки, г	Шаг нашивки	Плотность нашивки	И
0	0	4	57	
1	0	4	60	
2	0	4	70	
3	0	5	47	
4	0	5	57	
5	0	5	60	
6	0	5	70	
7	0	7	47	
8	0	7	57	

А	В	С	D	Е	F	G	Н	I	J	K	L
	Соотношение ма	Плотность, кг/м3	модуль упругос	Количество отве	Содержание эпо	Температура всі	Поверхностная	Модуль упругос	Прочность при р	Потребление смо	олы, г/м2
0	1,857142857	2030	738,7368421	30	22,26785714	100	210	70	3000	220	
1	1,857142857	2030	738,7368421	50	23,75	284,6153846	210	70	3000	220	
2	1,857142857	2030	738,7368421	49,9	33	284,6153846	210	70	3000	220	
3	1,857142857	2030	738,7368421	129	21,25	300	210	70	3000	220	
4	2,771331058	2030	753	111,86	22,26785714	284,6153846	210	70	3000	220	
5	2,767918089	2000	748	111,86	22,26785714	284,6153846	210	70	3000	220	
6	2,569620253	1910	807	111,86	22,26785714	284,6153846	210	70	3000	220	
7	2,56147541	1900	535	111,86	22,26785714	284,6153846	380	75	1800	120	

Объединение таблиц

Согласно условию задачи необходимо объединить две таблицы по индексу методом INNER JOIN и таким образом получить новый датасет в который войдут строки, присутствующие в обоих таблицах.

SELECT поля INTO "full_X_bp "
FROM "X_bp" AS A INNER JOIN "X_nup" AS B
ON A."indx" = B."Indx";

X_bp_nup_df = pandas.DataFrame.concat([X_bp_df, X_nup_df],
axis=1, join="inner")

В результирующей выборке будет 1023 строки и 13 колонок (свойств материалов)

Командой pandas.DataFrame.info() можно получить признаки датасета.

Признаки объединенного датасета

Название	Тип	Наличие пустых	Уникальных
	данных	значений	значений
1	2	3	4
Соотношение матрица- наполнитель	float64	нет	1014
Плотность, кг/м3	float64	нет	1013
модуль упругости, ГПа	float64	нет	1020
Количество отвердителя, м.%	float64	нет	1005
Содержание эпоксидных групп,%_2	float64	нет	1004
Температура вспышки, С_2	float64	нет	1003
Поверхностная плотность, г/м2	float64	нет	1004
Модуль упругости при растяжении, ГПа	float64	нет	1004
Прочность при растяжении, МПа	float64	нет	1004
Потребление смолы, г/м2	float64	нет	1003
Угол нашивки, град	float64	нет	2
Шаг нашивки	float64	нет	989
Плотность нашивки	float64	нет	988

Описательная статистика

Согласно заданию необходимо получить показатели описательной статистики набора данных (среднее, медиану, максимальное, минимальное и стандартное отклонение).

Статистические функции PostgreSQL: AVG(поле), percentile_cont(0.5), MAX(поле), MIN(поле), stddev(поле)

Статистические функции pandas.DataFrame: describe(), mean(), median(), max(), min(), std()

Свойство	среднее	медиана	Makc.	минимум	станд. откл.
Соотношение матрица-наполнитель	2.9303657734325483	2.90687765033521	5.59174159869754	0.389402605178414	0.9132222362148388
Плотность, кг/м3	1975.7348881101545	1977.62165679058	2207.77348061119	1731.764635096	73.72923055065388
модуль упругости, ГПа	739.9232327560721	739.664327697792	1911.53647700054	2.4369087535075	330.23158056102693
Количество отвердителя, м.%	110.57076864736254	110.564839894065	198.953207190451	17.7402745562519	28.295911288788815
Содержание эпоксидных групп,%_2	22.24438954776773	22.2307437560244	33.0	14.2549854977161	2.4063012915294304
Температура вспышки, С_2	285.88215135162187	285.896812331237	413.273418243566	100.0	40.943259952923306
Поверхностная плотность, г/м2	482.73183303841853	451.86436518306	1399.54236233989	0.603739925153945	281.314690236661
Модуль упругости при растяжении, ГПа	73.32857125009068	73.2688045943481	82.682051035271	64.0540605597917	3.118982889469303
Прочность при растяжении, МПа	2466.922842697902	2459.52452600309	3848.43673187618	1036.85660535	485.62800627853596
Потребление смолы, г/м2	218.42314367654285	219.198882195134	414.590628361534	33.8030255329625	59.735930873323504
Угол нашивки, град	44.252199413489734	0.0	90.0	0.0	45.01579340761142
Шаг нашивки	6.8992220776750175	6.9161438559491	14.4405218753969	0.0	2.563467072833882
Плотность нашивки	57.153929432857645	57.3419198469929	103.988901301494	0.0	12.350968798651323

Плотность распределения и ящик с «усами»

Библиотека Seaborn и ее функции displot, rugplot, boxplot, stripplot позволяют построить плотность распределения и ящик с «усами».

Из гистограмм распределения переменных и диаграмм «ящик с усами» видно, что все признаки, кроме «Угол нашивки», имеют нормальное распределение (график в виде «колокола»), принимают неотрицательные значения и непрерывны. Также визуально видны «выбросы» – аномальные значения, которые отрицательно будут сказываться на выявлении общей закономерности и процессу обучения и предсказания.

Выявление выбросов (аномалий)

Есть следующие методы выявления выбросов для признаков с нормальным распределением:

1. Метод стандартного отклонения (3-х сигм), где верхняя (Limmax) и нижняя (Limmin) граница выбросов определяются по формуле:

```
Limmax = mean + Ns*S

Limmin = mean - Ns*S,

где mean - среднее значение;

S - <u>стандартное отклонение</u>;

Ns = 3 - заданное число стандартных отклонений (3-х сигм);
```

Ni = 1.5 — заданное число интерквартильного размаха.

2. Метод межквартильных расстояний, где верхняя (Limmax) и нижняя (Limmin) граница выбросов определяются по формуле:

```
Limmax=Q3+Ni*IQR

Limmin=Q1-Ni*IQR ,

где Q3 - третий квартиль (значение 75%);

Q1 - первый квартиль (значение 25%);

IQR — интерквартильное расстояние (или <u>интерквартильный размах</u>), определяемое по формуле

IQR= Q3- Q1;
```


Фильтрарция данных методом трех сигм

Реализовать формулы отсечения выбросов можно как средствами PostgreSQL конструкцией языка запросов SQL, так и Pandas.DataFrame.

SELECT * FROM public."full_X_bp" WHERE mat_nap > ((SELECT AVG(mat_nap) FROM public."full_X_bp") - 3.0 * (SELECT stddev(mat_nap) FROM public."full_X_bp")) AND mat_nap < ((SELECT AVG(mat_nap) FROM public."full_X_bp") + 3.0 * (SELECT stddev(mat_nap) FROM public."full_X_bp"))....

Из 1023 строк остается 1002 строки удален 21 выброс

for i in filtered_df.columns:

filtered_df = filtered_df[(filtered_df[i] > filtered_df[i].mean() - 3 *filtered_df[i].std()) & (filtered_df[i] = filtered_df[i] = filtered_df[

(filtered_df[i] < filtered_df[i].mean() + 3 *filtered_df[i].std())]

Из 1023 строк остается 1000 строк. Удалено 23 выброса

Задача регрессии

Предсказание значений вещественной, непрерывной переменной — это задача регрессии. В настоящее время разработано много математических методов регрессионного анализа и многие из них реализованы в программные алгоритмы, например, для Python такие алгоритмы собраны в библиотеку scikit-learn.

■ Математические методы регрессивного анализа и их релизация в библиотеке scikit-learn, например:

Математический метод	Функция библиотеки scikit-learn	Гиперпараметры
регрессивного анализа		со значениями по умалчанию
Линейная регрессия лассо	Lasso	{'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': 1000, 'positive':
		False, 'precompute': False, 'random_state': None, 'selection': 'cyclic', 'tol':
		0.0001, 'warm_start': False}

Использование:

объявить объект reg = Lasso()

обучить histoty = reg.Fit(X_train, Y_train)

• предсказать predict = reg.predict(x_train

Нормализация данных и разделение на 3 датасета

Нормализация данных это процесс предпроцессинга, приводящий данные к одному масштабу от значения от 0 до 1

■ Имеются средства sklearn.preprocessing.StandardScaler и sklearn.preprocessing.MinMaxScaler, но мы будем испольховать ручную нормалицацию по формуле (x – min()) / (max() – min()) с сохранением значений дельты и множителя для каждого поля.

Разделим нормализованные данные на три датасета, где целевой параметр поставим в последней колонке. Это позволить выделять входные параметры конструкцией X = values[:,:-1] # все кроме последнего и выходные параметры конструкцией Y = values[:,-1] # только последний.

Модуль прочности Модуль прочности

Материал - наполнитель

Json	
▼ Соотношение матрица-наполнитель:	
mnozitel:	5.202338993519127
delta:	0.389402605178414
▼ Плотность, кг/м3:	
mnozitel:	408.2565382314201
delta:	1784.48224524858
▼ модуль упругости, ГПа:	
mnozitel:	1646.9787971223625
delta:	2.4369087535075
▼ Количество отвердителя, м.%:	
mnozitel:	162.8955521795974
delta:	29.9561496534826
▼ Содержание эпоксидных групп,%_2:	
mnozitel:	13.259200571021099
delta:	15.6958938036288
▼ Температура вспышки, С_2:	
mnozitel:	230.16794095235497
delta:	173.484919924459
▼ Поверхностная плотность, г/м2:	
mnozitel:	1290.736374710296
delta:	0.603739925153945
▼ Модуль упругости при растяжении, ГПа:	
mnozitel:	18.627990475479308
delta:	64.0540605597917
▼ Прочность при растяжении, МПа:	
mnozitel:	2811.58012652618
delta:	1036.85660535
▼ Потребление смолы, г/м2:	
mnozitel:	345.8551534796663
delta:	41.0482779512307
▼ Угол нашивки, град:	
mnozitel:	90
delta:	0
▼ Шаг нашивки:	
mnozitel:	14.402882938698157
delta:	0.0376389366987437
▼ Плотность нашивки:	
mnozitel:	72.3918586171032
delta:	20.5716333306441

Подбор гиперпараметров

Модуль упругости

Модуль прочности

Материал - наполнитель

© С помощью GridSearchCV провожу оценку параметров с использование поиска по сетке с перекрестной проверкой с количеством блоков 10. Перекрестная проверка уже встроена в GridSearchCV, а количество блоков указывается в параметрах функции GridSearchCV - сv = 10, а значения гиперпараметров, которые необходимо перебирать, указывается в массиве. Такую операцию провожу для каждой модели и каждого целевого параметра.

Данные	Данные Метрика	
moduprrast.csv	max_error	{'alpha': 0.01}
moduprrast.csv	neg_mean_absolute_error	{'alpha': 0.0}
moduprrast.csv	neg_root_mean_squared_error	{'alpha': 0.0}
moduprrast.csv	r2	{'alpha': 0.0}
modprochrast.csv	max_error	{'alpha': 0.01}
modprochrast.csv	neg_mean_absolute_error	{'alpha': 0.01}
modprochrast.csv	neg_root_mean_squared_error	{'alpha': 0.01}
modprochrast.csv	r2	{'alpha': 0.01}
mat_nap.csv	max_error	{'alpha': 0.01}
mat_nap.csv	neg_mean_absolute_error	{'alpha': 0.01}
mat_nap.csv	neg_root_mean_squared_error	{'alpha': 0.01}
mat_nap.csv	r2	{'alpha': 0.01}

LinearRegression

Lasso

Ridge

svm.SVR

neighbors.Kneighbor sRegressor

tree.DecisionTreeRe gressor

ensemble.RandomF orestRegressor

ensemble.GradientB oostingRegressor

Испытание моделей

Настройки по умолчанию (default) и оптимальные (optimize)

Модуль упругости Train, test Модуль прочности

Скриптами (9_examine_mod_upr.py, 9_examine_mat_nap.py, 9_examine_modprocn.py) в цикле запускаю обучение и тестирование моделей с параметрами по умолчанию, т.е. модель из «коробки», и оптимально настроенными параметрами. Накапливаю оценочные показатели для тестовой и тренировочной выборки, для оптимальных и «дефолтовых» настроек и на основании, которых выстраиваю сравнительные графики и таблицу оценочных метрик В перечень моделей добавлен DummyRegressor, который делает прогнозы, используя простые правила. Этот регрессор полезен в качестве простой базовой линии для сравнения с другими (реальными) регрессорами.

DummyRegressor

LinearRegression

Lasso

Ridge

svm.SVR

neighbors.Kneighbor sRegressor

tree.DecisionTreeRe gressor

ensemble.RandomF orestRegressor

ensemble.GradientB oostingRegressor

Материал - наполнитель

TensorFlow

В качестве рабочего варианта модели для предсказаний написания приложения выберем tensorflow, которая имеет встроенную функцию сохранение обученной модели, которую можно загрузить из приложения и использовать в работе. Создание модели, обучение, тестирование и отображение хода обучения, а также сохранение обученной модели в файл выполним скриптами 12.1_keras_modupr.py, 12.2_keras_modproch.py, и 12.3_keras_mat_nap.py и соответственно получим файлы сохраненных моделей moduprmodel.keras, modprochrastmodel.keras и mat_napmodel.keras.

Ход обучения модели

На графиках обучения видно, что с этапами обучения (эпохами) количество ошибок уменьшается, и когда результат практически не улучшается заканчивается обучение функцией ранней остановки.

Интерфейс приложения

```
*IDLE Shell 3.11.6* — — X

File Edit Shell Debug Options Window Help

Python 3.11.6 (tags/v3.11.6:8b6ee5b, Oct 2 2023, 14:57:12) [MSC v.1935 64 bit ( ^ AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

= RESTART: C:\Users\visual_ist\AppData\Local\Programs\Python\Python311\13_consol eprogramms.py
Программа прогнозирования

1 - Модуля упругости при растяжении, ГПа и Прочности при растяжении, МПа
2 - Соотношения матрицы-наполнителя
Введите число 1,2 или 0 для выхода:
```

```
IDLE Shell 3.11.6
File Edit Shell Debug Options Window Help
                                    I HOH-HULL
                                   1 non-null
                                                 float64
       Шаг нашивки
    10 Плотность нашивки
                                   1 non-null
                                                 float64
   dtypes: float64(11)
   memory usage: 220.0 bytes
   1/1 [======] - ETA: 0s()))))))
   0 47ms/step
     Модуль упругости при растяжении, ГПа Прочность при растяжении, МПа
   Пля входных параметров:
     Соотношение матрица-наполнитель ... Плотность нашивки
                         2.930366 ...
   [1 rows x 11 columns]
   Соотношение матрица-наполнитель: 2.9303657734325483
   Плотность, кг/м3: 1975.7348881101545
   модуль упругости, ГПа: 739.9232327560721
   Количество отвердителя, м.%: 110.57076864736254
   Содержание эпоксидных групп,% 2: 22.24438954776773
   Температура вспышки, С 2: 285.88215135162187
   Повержностная плотность, г/м2: 482.73183303841853
   Потребление смолы, г/м2: 218.42314367654285
   Угол нашивки, град: 44,252199413489734
   Шаг нашивки: 6.8992220776750175
   Плотность нашивки: 57.15392943285765
   Предсказанные значения:
   Модуль упругости при растяжении, ГПа: 73.32903
   Прочность при растяжении, МПа: 2462.2065
   выполнено
>>>
                                                                Ln: 106 Col: 0
```


Разработка приложения

Json	
▼ Соотношение матрица-наполнитель:	
minimum:	0.389402605178414
maximum:	5.59174159869754
avg:	2.9303657734325483
▼ Плотность, кг/м3:	
minimum:	1731.764635096
maximum:	2207.77348061119
avg:	1975.7348881101545
▼ модуль упругости, ГПа:	
minimum:	2.4369087535075
maximum:	1911.53647700054
avg:	739.9232327560721
▼ Количество отвердителя, м.%:	
minimum:	17.7402745562519
maximum:	198.953207190451
avg:	110.57076864736254
▼ Содержание эпоксидных групп,%_2:	
minimum:	14.2549854977161
maximum:	33
avg:	22.24438954776773
▼ Температура вспышки, С_2:	
minimum:	100
maximum:	413.273418243566
avg:	285.88215135162187
▼ Поверхностная плотность, г/м2:	
minimum:	0.603739925153945
maximum:	1399.54236233989
avg:	482.73183303841853
▼ Модуль упругости при растяжении, ГПа:	
minimum:	64.0540605597917
maximum:	82.682051035271
avg:	73.32857125009068
▼ Прочность при растяжении, МПа:	
minimum:	1036.85660535
maximum:	3848.43673187618
avg:	2466.922842697902
▼ Потребление смолы, г/м2:	
minimum:	33.8030255329625
maximum:	414.590628361534
avg:	218.42314367654285

Json	
▼ Соотношение матрица-наполнитель:	
mnozitel:	5.202338993519127
delta:	0.389402605178414
▼ Плотность, кг/м3:	
mnozitel:	408.2565382314201
delta:	1784.48224524858
▼ модуль упругости, ГПа:	
mnozitel:	1646.9787971223625
delta:	2.4369087535075
▼ Количество отвердителя, м.%:	
mnozitel:	162.8955521795974
delta:	29.9561496534826
▼ Содержание эпоксидных групп,%_2:	
mnozitel:	13.259200571021099
delta:	15.6958938036288
▼ Температура вспышки, С_2:	
mnozitel:	230.16794095235497
delta:	173.484919924459
▼ Поверхностная плотность, г/м2:	
mnozitel:	1290.736374710296
delta:	0.603739925153945
▼ Модуль упругости при растяжении, ГПа:	
mnozitel:	18.627990475479308
delta:	64.0540605597917
▼ Прочность при растяжении, МПа:	
mnozitel:	2811.58012652618
delta:	1036.85660535
▼ Потребление смолы, г/м2:	
mnozitel:	345.8551534796663
delta:	41.0482779512307
▼ Угол нашивки, град:	
mnozitel:	90
delta:	0
▼ Шаг нашивки:	
mnozitel:	14.402882938698157
delta:	0.0376389366987437
▼ Плотность нашивки:	
mnozitel:	72.3918586171032
delta:	20.5716333306441

do.bmstu.ru

