

### Ingeniería Informática

### Medios de Transmisión (MT)

## Tema 4 Análisis de Fourier de señales y sistemas contínuos

Curso 2007-08

Respuesta de un sistema LTI a una combinación lineal de exponenciales complejas







#### Entrada

$$x(t) = \frac{1}{2} + \cos 2\pi t - \frac{1}{2}\cos 4\pi t$$



Respuesta al impulso

$$h(t) = 2\pi e^{-2\pi t} u(t)$$

Respuesta en frecuencia

$$H(\omega) = \frac{1}{1 + j\frac{\omega}{2\pi}}$$





4.5

Respuesta de un sistema LTI a una combinación lineal de exponenciales complejas



$$y(t) = \frac{1}{2} + \frac{1}{\sqrt{2}} \cos\left(2\pi t - \frac{\pi}{4}\right) - \frac{1}{2\sqrt{5}} \cos(4\pi t - 1.11)$$



Jean Baptiste Fourier (1768-1830)



#### Apuntes biográficos de J. B. Fourier

- 1768: nace el 21 de marzo de 1768 en Auxerre, Francia
- 1780: ingresa en la *Ecole Royale Militaire* de Auxerre
- 1787: toma el hábito de novicio en la abadía de Saint Benoit-sur-Loire
- 1789: abandona St. Benoit. Participa en el Comité Revolucionario de Auxerre
- 1795: consigue un puesto como profesor en la *Ecole Polytechnique* de París
- 1798: se alista en las tropas napoleónicas de Egipto como asesor científico
- 1801: regresa a Francia y es nombrado prefecto de Isere
- 1807: escribe su trabajo Sobre la propagación del calor en cuerpos sólidos
- 1810: completa su obra *Descripción de Egipto* que supervisa Napoleón
- 1814: Napoleón es exiliado a la isla de Elba. Fourier dimite de su puesto de prefecto y se une a los Borbones.
- 1815: Napoleón regresa de su exilio y nombra a Fourier prefecto de Rhone
- 1815: Napoleón es finalmente derrotado el 1 de julio en Waterloo. Fourier es cesado de todos sus cargos políticos y académicos y regresa a París.
- 1816: es elegido miembro de la Academia de Ciencias.
- 1822: es elegido Secretario de la Academia. Se publica su trabajo *Sobre la propagación del calor*
- 1830: fallece en París el 16 de mayo.

### Respuesta al Impulso de un Radiocanal de Telefonía Móvil





## Transformada de Fourier de la señal exponencial unilateral

$$x(t) = e^{-t}u(t)$$







## Transformada de Fourier de la señal exponencial unilateral

$$x(t) = e^{-t/5}u(t)$$







# Transformada de Fourier de la señal exponencial unilateral

$$x(t) = e^{-5t}u(t)$$







### Respuesta al Impulso de un Cable Coaxial



Transformada de Fourier de la señal exponencial bilateral

Exponencial bilateral

$$x(t) = e^{-a|t|}$$



Transformada de Fourier de la señal pulso rectangular

T=2





Transformada de Fourier de la señal pulso rectangular

$$T = \frac{1}{2}$$





### Transformada de Fourier de la señal pulso rectangular







### Transformada de Fourier de la señal sinc



$$x(t) = \frac{sen(t)}{\pi t}$$



## Transformada de Fourier de la señal sinc



$$x(t) = \frac{sen(4t)}{\pi t}$$



### Inversión de un sistema LTI



Respuesta en frecuencia sistema directo



#### Propiedad de dualidad de la Transformada de Fourier



Figure 4.27 Relationship between the Fourier transform pair of eqs. (4.95) and (4.96).

Transformada de Fourier de una señal sinusoidal



Coseno

$$x(t) = \cos(2\pi t)$$



### Transformada de Fourier de una señal sinusoidal



Coseno

$$x(t) = \cos(4\pi t)$$













Modulo TF exponencial decreciente multiplicada p r coseno

10





-15

-10

-20

$$r(t) = \begin{cases} 1 & -3 < t < 3 \\ 0 & resto \end{cases}$$

$$x(t) = r(t)\cos(2\pi t)$$





$$r(t) = \begin{cases} 1 & -3 < t < 3 \\ 0 & resto \end{cases}$$

$$x(t) = r(t)\cos(4\pi t)$$



























