Unidad 5 – Parte 1 Ejercitación para resolver en clase

- 1. Sea X una variable aleatoria con distribución Bernoulli de parámetro θ y suponga que se selecciona una muestra aleatoria de tamaño n de dicha distribución.
 - a. Sea el estimador $\hat{\theta}_1 = \frac{\sum_{i=1}^n x_i}{n}$. Determinar si dicho estimador es insesgado y encontrar su variancia.
 - b. Sea el estimador $\hat{\theta}_2 = \frac{\sum_{i=1}^n x_i + 1}{n+2}$. Determinar si dicho estimador es insesgado y encontrar su variancia.
 - c. Determinar la cota de Cramer Rao para esta distribución.
 - d. Determinar si esta distribución pertenece a la familia exponencial y encontrar una estadística suficiente para θ .
- 2. Sea X una variable aleatoria con distribución Exponencial de parámetro θ y suponga que se selecciona una muestra aleatoria de tamaño n de dicha distribución.
 - a. Sea el estimador $\hat{\theta}_1 = \frac{\sum_{i=1}^n x_i}{n}$. Mostrar que este estimador es insesgado y encontrar su variancia.
 - b. Determinar la cota de Cramer Rao. ¿Es $\hat{\theta}_1$ un estimador eficiente de θ ?
 - c. Determinar si esta distribución pertenece a la familia exponencial y encontrar una estadística suficiente para θ .
- 3. Sea X una variable aleatoria con distribución Poisson de parámetro θ y suponga que se selecciona una muestra aleatoria de tamaño n de dicha distribución.
 - a. Sea el estimador $\hat{\theta}_1 = \frac{\sum_{i=1}^n x_i}{n}$. Mostrar que este estimador es insesgado y encontrar su variancia.
 - b. Determinar la cota de Cramer Rao.
 - c. Determinar si esta distribución pertenece a la familia exponencial y encontrar una estadística suficiente para θ .