Progetto: "Uso di Elasticsearch-Logstash-Kibana (ELK) per l'analisi del traffico di rete (netflow) catturato in remoto"

DESCRIZIONE DELLA RETE

Per realizzare questo progetto abbiamo pensato di progettare una rete costituita da tre macchine virtuali.

Una prima macchina virtuale, che agisce da router, con tre schede di rete:

- 1. Scheda con bridge
- 2. Rete interna (la stessa dell'host)
- 3. Rete interna (la stessa del server)

Una seconda macchina virtuale, che agisce da *host*, con una scheda di rete interna (la stessa della seconda scheda di rete del router).

Infine, una terza macchina virtuale, che agisce da *collettore*, anch'essa con una scheda di rete interna (la stessa della terza scheda di rete del router).

- SUBNET-1 [10.0.0.0/24]
 - o [VM-1] Router 10.0.0.1
 - o [VM-3] Collettore 10.0.0.15
- SUBNET-2 [192.168.0.0/24]
 - o [VM-1] Router 192.168.0.1
 - o [VM-2] Host 192.168.0.15
- SCHEDA CON BRIDGE
 - [VM-1] Router IP assegnato tramite DHCP rete locale

DESCRIZIONE DEL SISTEMA

Una volta messa in piedi la rete, abbiamo innanzitutto connesso tra loro le varie macchine virtuali. Abbiamo quindi configurato la prima macchina per svolgere la funzione di router e dhcp server per le due subnet di host e collettore.

Per svolgere la funzione da router sono state aggiunte delle regole alle tabelle di routing tramite il seguente script bash:

router.sh	
#!/bin/bash	
sysctl -w net.ipv4.ip_forward=1	
iptables -t nat -A POSTROUTING -o enp0s3 -j MASQUERADE	
iptables -t nat -L -v -nline-numbers	

Mentre per svolgere la funzione di server dhcp sono stati utilizzati i seguenti comandi:

- Installazione Server DHCP
 - o sudo apt install isc-dhcp-server

Configurazione Server DHCP

A questo punto abbiamo lavorato sulla macchina router, installando come prima cosa netflow e nfdump. Una volta installati, abbiamo configurato netflow e iptables.

- Installazione Netflow
 - o sudo apt install iptables-netflow-dkms
- Configurazione NetFlow
 - o sudo modprobe ipt_NETFLOW destination=10.0.0.1:2056 protocol=9 natevents=1
- Configurazione Iptables

Questa regola permette di intercettare tutti e solo i pacchetti che transitano per il router (non quelli che partono o arrivano al router) per la cattura Netflow

- o sudo iptables -I FORWARD -j NETFLOW
- Installazione nfdump
 - o sudo apt install nfdump
 - o sudo systemctl enable nfdump.service
 - o sudo systemctl status nfdump.service
 - o sudo systemctl stop nfdump.service
 - o sudo systemctl daemon-relaod
 - o sudo systemctl start nfdump.service
 - o sudo systemctl status nfdump.service

Lo step successivo è stato quello dell'installazione e della configurazione degli applicativi dello Stack ELK.

Abbiamo installato prima Elasticsearch e Kibana sulla macchina collettore, e poi Filebeat sulla macchina router.

- Elasticsearch
 - wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.11.3-linuxx86 64.tar.gz
 - wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.11.3-linuxx86 64.tar.gz.sha512
 - shasum -a 512 -c elasticsearch-8.11.3-linux-x86_64.tar.gz.sha512
 Comando per la verifica dell'integrità del file scaricato
 - o tar -xzf elasticsearch-8.11.3-linux-x86_64.tar.gz

 sudo sysctl -w vm.max_map_count=262144
 Modifica variabile del kernel che è associata alla mappatura massima del conteggio di pagine di memoria virtuale in un processo. Modifica necessaria per applicazioni che utilizzano una gran quantità di memoria virtuale come appunto Elasticsearch

- Kibana

- curl -O https://artifacts.elastic.co/downloads/kibana/kibana-8.11.3-linux-x86_64.tar.gz
- o curl https://artifacts.elastic.co/downloads/kibana/kibana-8.11.3-linux-x86_64.tar.gz.sha512 | shasum -a 512 -c -
- o tar -xzf kibana-8.11.3-linux-x86 64.tar.gz

- Filebeat

È uno dei sottosistemi della componente Beats dello Stack ELK e tra i vari moduli di cui dispone, ne ha uno apposito per Netflow.

- curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-8.11.3-linuxx86 64.tar.gz
- o tar xzvf filebeat-8.11.3-linux-x86_64.tar.gz
- ./filebeat modules enable netflow
 Comando per l'attivazione del modulo Netflow di Filebeat

In seguito, si è resa necessaria la modifica di alcuni file di configurazione (per praticità verranno riportate soltanto le configurazioni modificate). ------ elasticsearch-8.11.3/config/elasticsearch.yml cluster-name: NETFLOW network.host: 10.0.0.15 http.port: 9200 xpack.security.enabled: false xpack.security.enrollment.enabled: false xpack.security.http.ssl: enabled: false xpack.security.transport.ssl: enabled: false ______ ------ kibana-8.11.3/config/kibana.yml server.port: 5601 server.host: "10.0.0.15" server.name: "netflow-kibana" elasticsearch.hosts: ["http://10.0.0.15:9200"]

A questo punto abbiamo iniziato ad utilizzare ELK per l'analisi del traffico di rete Netflow.

Grazie a questo stack, e in particolare alla componente Kibana, è stato possibile visualizzare ed esplorare i risultati dell'analisi del traffico di rete.

Sono riportate di seguito alcune immagini della visualizzazione dei dati tramite Kibana.

Kibana, infatti, permette la visualizzazione dei dati archiviati in Elasticsearch, e lo fa tramite l'uso di istogrammi, grafici a torta, mappe di calore, ecc.

Nota

Per una questione di praticità abbiamo aggiunto una regola iptables per visualizzare Kibana direttamente dal browser della macchina guest:

o sudo iptables -t nat -A PREROUTING -p tcp --dport 5601 -j DNAT --to-destination 10.0.0.15:5601