Assignment 2 (ver 1) (CS5061 Topics in Computing)

Deadline: 21st Oct.

1. Let X be a random variable taking values in [0,1] such that $\mathbb{E}[X] \ge 1/4$ Show that $\Pr[X \ge 1/8] \ge 1/7$.

(Hint: Markov's inequality after some preparation)

2. For any $d \in \mathbb{N}$ and $w \in \mathbb{R}^{d+1}$, the degree d polynomial threshold function $h_w^d : \mathbb{R} \to \{0,1\}$ is defined as:

$$h_w^d(x) \triangleq \operatorname{sign}\left(\sum_{i=0}^d w_i x^i\right)$$

Denote the set of all polynomial threshold functions of degree d by \mathcal{P}_d . i.e., $\mathcal{P}_d = \{h_w^d \mid w \in \mathbb{R}^{d+1}\}$. Further, define $\mathcal{P} = \bigcup_d \mathcal{P}_d = \{h_w^d \mid w \in \mathbb{R}^{d+1}, d \in \mathbb{N}\}$ as the set of all polynomial threshold functions.

- i. Show that for every fixed $d \in \mathbb{N}$, the class \mathcal{P}_d has finite VC-dim by calculating it.
- ii. Show that \mathcal{P} does not have finite VC-dim.
- 3. Let the domain be $\{-1,1\}^n$. For any subset $S \subseteq [n]$, we define the parity function $\chi_S : \{-1,1\}^n \to \{-1,1\}$ as follows:

$$\chi_S(x) = \prod_{i \in S} x_i$$

Find the VC-dim of the class $\mathcal{H}_{parity} = \{h_S \mid S \subseteq [n]\}.$

4. Let $\operatorname{\mathsf{Rec}}^d$ be the set of all axis parallel rectangles in \mathbb{R}^d . More formally, let $\vec{a} = (a_1^1, a_1^2, \dots, a_d^1, a_d^2) \in \mathbb{R}^{2d}$ be such that $a_i^1 \leq a_i^2$ for all i. Then the axis parallel rectangle $h_{\vec{a}} : \mathbb{R}^d \to \{0,1\}$ is the function:

$$h_{\vec{a}}(x) = \begin{cases} 1 \text{ if } a_i^1 \le x_i \le a_i^2 \ \forall i \in [d] \\ 0 \text{ otherwise} \end{cases}$$

We can now define $\operatorname{Rec}^d = \{h_{\vec{a}} \mid a \in \mathbb{R}^{2d}\}$. Show that $\operatorname{VC-dim}(\operatorname{Rec}^d) = 2d$. (*Hint: Solve* d = 2 *first*)

5. Let \mathcal{H}_1 and \mathcal{H}_2 be two hypothesis classes over the same domain, with VC-dim d_1 and d_2 respectively. Establish an upper bound of the VC-dim m of the class $\mathcal{H}_1 \cup \mathcal{H}_2$ in terms of $\hat{d} = \max\{d_1, d_2\}$.

(Hint: Sauer Lemma. Then use inequality A.2 from the text)