

RESOLUTION DES PROGRAMMES LINAIRES AVEC LA METHODE DU SIMPLEXE

Premier pas vers le Solveur Excel..

RIALI Maryame

EL MOUSSA Noura

RESOLUTION DES PROGRAMMES LINAIRES AVEC LA METHODE DU SIMPLEXE

Premier pas vers le Solveur Excel..

RIALI Maryame

EL MOUSSA Noura

A Mr AGHEZZAF et A Mr ABOU EL MAJD

« Nous souhaitons vous remercier par la présente occasion de nous avoir inspirer, mais tellement inspirer qu'on a pu prendre notre courage à deux mains et décider de ce qu'on souhaite faire dans notre carrière professionnelle, et qui est tout simplement prendre exemple sur les personnes réussites que vous êtes ..

Avec toute l'admiration et le respect que nous portons pour vous »

INTRODUCTION

Plutôt qu'un arsenal des méthodes-informatiques destiné à l'optimisation des processus de production et de diffusion des produits, la recherche opérationnelle est l'ensemble des méthodes et techniques rationnelles d'analyse et de synthèses des phénomènes d'organisation utilisables pour élaborer de meilleures décisions. Chaque fois que les hommes, les machines et les produits se trouvent en relations actives, on dira que l'on a affaire à *un phénomène d'organisation*. Il a été longtemps de mode de penser que les décisions, à propos des phénomènes d'organisation qui existent dans l'entreprise, la région , voire la nation , étaient ressort seul d'un bon sens , l'idée à retenir est que la recherche opérationnelle ne s'occupe pas des problèmes dans lesquels une solution de bon sens intervient tout naturellement .Son domaine réservé est celui des situations dans lesquels, pour une raison quelconque , le sens commun se révèle faible ou impuissant , tels sont *les problèmes combinatoires*, *les domaines aléatoires et les situations de concurrence* .

Dans la série des exercices proposée, nous traitions éventuellement des problèmes d'actualité en recherche opérationnelle d'une manière assez banalisé afin de s'approcher du contexte réel et de faire appel à la pédagogie traitée en cours. La complexité des situations oblige l'utilisation d'un solveur, dans notre cas le Solveur Excel, mais rien n'empêche de faire un petit sot en Lpsolve IDE pour comparer les résultats en matière de dégénérescence, sensibilité et nombre d'itération..

Problème 1 : Transport

C'est en 1941que Frank L .Hitchcock a formulé pour la première fois le problème du transport, qui consiste à minimiser le coût du transport total d'un plan d'expédition. le fait de minimiser à la fois la distance totale et le coût de transport fait partie des théories flux de réseaux.

I-Modélisation:

i) Fonction économique : (min) (7x1+4x2+8x3)+(5x4+7x5+9x6)+(6x7+7x8+3x9)

ii) Définition des contraintes :

(0) : limitation liée à la

Production Casablanca: x1+x2+x3<=3000

Jadida: x4+x5+x6 <= 5000

Berchide: x7+x8+x9<=4000

(1) : limitation liée au

Besoin Marrakech: x1+x4+x7>=6000

Rabat : x2+x5+x8>=3000Beni Mellal : x3+x6+x9>=2000

(2) : positivité des variables x1,x2,x3,x4,x5,x6,x7,x8,x9>=0

lii) Définition des variables :

X1 : quantité mensuelle produite a Casablanca en direction de Marrakech

X2 : quantité mensuelle produite a Casablanca en direction de Rabat

X3 : quantité mensuelle produite a Casablanca en direction de Beni mellal

X4 : quantité mensuelle produite a Jadida en direction de Marrakech

X5 : quantité mensuelle produite a Jadida en direction de Rabat

X6 : quantité mensuelle produite a Jadida en direction de Beni Mellal

X7 : quantité mensuelle produite a Berchide en direction de Marrakech

X8 : quantité mensuelle produite a Berchide en direction de Rabat

X9 : quantité mensuelle produite a Berchide en direction de Beni Mellal

REMARQUE : Nous procédons par relaxation des contraintes afin d'approcher ce qui se passe dans la vie réelle , on considère alors que la production est limitée strictement par une valeur maximale à ne pas dépasser pour éviter les surstocks tandis que le besoin peut dépasser moyennement le seuil minimale afin de réponde au besoin du marché .

II- Résolution:

Probleme n°1:T	ransport	variable	x1	x2	х3	x4	x5	х6	х7	x8	х9
			0	3000	0	5000	0	0	1000	0	2000
					formule	membre droit					
		contraintes		c1	3000	3000					
				c2	5000	5000					
				c3	3000	4000					
				c4	6000	6000					
				c5	3000	3000					
				c6	2000	2000					
		optii	mum	49000							

Problème 2: Affectation

Le problème de l'affectation est un problème très complexe, le concept fait que pour une tache x un ou plusieurs employés pourraient être affectés pour objectif une minimisation de coût ou une maximisation de rentabilité

I-Modélisation:

i)Fonction économique : (max) 12 x1+13 x2+ 7 x3+ 9 x4+ 11 x5 + 12 x6+ 10 x7 + 14 x8 + 8x9

ii) Définition des contraintes :

(0) Un employé par tache : x1+x2+x3=1

X4 +x5+x6=1 X7+x8+x9=1

(1) Une tache par employé : x1+x4+x7=1

X2+x5+x8=1 X3+x6+x9=1

(2) Contrainte de positivité : x1,x2,x3,x4,x5,x6,x7,x8,x9>=0

iii)Variables:

x1 : possibilité d'affecter E1 à T1 , x2 : possibilité d'affecter E1 à T2

x3 : : possibilité d'affecter E1 à T3, x4: possibilité d'affecter E2 à T1

x5: possibilité d'affecter E2 à T2 , x6 : : possibilité d'affecter E2 à T3

x7 : : possibilité d'affecter E3 à T1 , x8 : possibilité d'affecter E3 à T2

x9: possibilité d'affecter E3 à T3 Données supposées binaires

II-Résolution:

								contraintes		
	Table	au des affect	ations			Matrice	des possibi	lités		
Probleme n°2:Affectation_Tache	12	13	7		0	0	1	. 1		
	9	11	12		0	1	0	1		
	10	14	8		1	0	0	1	Ligne	
				contraintes	1	1	1	. cold	onne	
	optii	mum	28							

Problème 3 : Choix de la meilleure localisation

Cette fois-ci le coût est passé en contrainte pour que l'objectif principal reste de maximiser ma rentabilité. C'est en fonction de cette rentabilité que j'aurais principalement à favoriser une localisation qu'une autre .

I-Modélisation:

Fonction économique : (max) 6x1+4x2+9x3+5x4

(0) Nombre d'entrepôt

Au total x1+x2=1

(1) Un Entrepôt par ville x1.x3+x2.x4=1

(2) Un entrepôt par ville x1<=1

X2<=1

(3) Une usine par ville x3<=1

X4<=1

(4) Coût totale 5x1+2x2+6x3+3x4 <= 10

(5) Positivité x1,x2,x3,x4>=0

Variables : x1 : possibilité d'implémenter un entrepôt au niveau de Casablanca

X2 : possibilité d'implémenter un entrepôt au niveau d'el Jadida

X3 : possibilité d'implémenter une usine au niveau de Casablanca

X4 : possibilité d'implémenter une usine au niveau d'el Jadida

Données supposées binaires

II-Résolution :

			Renta	bilité		variable		contrainte	limite	
Probleme n	°3:Affecattion_Usi_Depot		6		x1:E->C	0	c1	1	. 1	
			4	usine	x2:E->J	1	c2	1	. 1	
	valeur	binaire	9		x3:U->C	0	c3	5	10	
			5	depôt	x4:U->J	1	c4	Niveau solve	eur	
			optir	mum	9					

Problème 4: Fabrication

I-Modélisation:

Fonction économique : (max) 300x1+200x2

i)Contraintes:

(0) disponibilité d'Ahmed 6x1+4x2<=40

(1) disponibilté de Dounia 8x1+4x2<=40

(2) disponibilté de Chamsi 3x1+3x2<=20

(3) positivité des variables x1,x2>=0

ii) Définition des variables : x1 : quantité produite d'horloge de Grand-père par semaine

x2 : quantité produite d'horloge murale par semaine

II-Résolution :

Probleme i	n°4:Production lim	nitée		varia	bles		contrainte	32	40	
				x1	x2			40	40	
		valeur e	entière	4	2			18	20	
				optir	num	1600				
	va	aleur nor	n entière	varia	bles		contrainte	33,33333333	40	
				x1	x2			40	40	
				3,33333333	3,33333333			20	20	
				optir	num	1666,66667				

III-Rapport de sensibilité :

Cellule Nom		Finale Valeur	Réduit Coût	Objectif Coefficient	Admissible Augmentation	Admissible Réduction	
\$D\$7	X1	3,333333333	0	300	100	100	
\$E\$7	X2	3,333333333	0	200	100	50	

Contraintes

		Finale	Ombre	Contrainte	Admissible	Admissible
Cellule	Nom	Valeur	Coût	à droite	Augmentation	Réduction
\$F\$9	C1	33,33333333	0	40	1E+30	6,666666667
\$F\$10	C2	40	25	40	13,33333333	13,33333333
\$F\$11	C3	20	33,33333333	20	10	5

C.1: solution optimale du problème: x1=10/3 et x2=10/3

c.2 : valeur optimale du problème : 10/3*(300)+10/3*(200)=1666+2/3

C.3 : solution optimale du dual : C1=0 C2=25 C3= 100/3

C.4 : valeur optimale du dual : 100/3*(0)+40*(25)+20*100/3=1666 +2/3

C.5 : diminution acceptable sur le profit de l'horloge murale : 50 dollars

C.6 : augmentation acceptable sur le nombre d'heure de Chamsi : 10heures

Problème 5: Production

I-Modélisation:

Fonction économique : (max) 6x+8y

i)Contraintes:

(0) Limitation de stock ½ x<=1000

½ x+ ¾ y<=2000

¼ y<=500

(1) Positivité x,y>=0

ii)Définition des variables :

x :quantité ensachée de « Doux réveil »

y : quantité ensachée « de Arôme velouté »

II-Résolution:

								_
Problème r	n°5: Producti	on de café						
								_
				Х	У			_
				2000	1333,33333		1 1 1	_
							membre droit	
			c1	0,5	0	1000	1000	
			c2	0,5	0,75	2000	2000	
			c3	0	0,25	333,3333333	500	
			optimum	22666,6667				

	Finale	Réduit	Objectif	Admissible	Admissible	
Cellule Nom	Valeur	Coût	Coefficient	Augmentation	Réduction	
\$F\$86 x	2000	0	6	1E+30	0,666666667	
\$G\$86 y	1333,333333	0	8	1	8	

		Finale	Ombre	Contrainte	Admissible	Admissible
Cellule	Nom	Valeur	Coût	à droite	Augmentation	Réduction
	c1					
\$1\$88	formule	1000	1,333333333	1000	1000	500
	c2					
\$1\$89	formule	2000	10,66666667	2000	500	1000
	c3					
\$1\$90	formule	333,3333333	0	500	1E+30	166,6666667

C-1 : Solution optimale du problème : x=2000 et y=1333,3333

C-2 :Valeur optimale du problème : 22666,6667

C-3: solution optimale du dual problème: y1=1000, y2=2000 et y3=333,3333333

C-4 : valeur optimale du dual problème : 1000*1,33333333+2000*10,66666667=22666,6667

C-5 : diminution admissible du profit pour le « doux réveil » : 0,666666667

C-6 : augmentation admissible de la quantité disponible du café colombien : 1E+30

Problème 6 : Transport

I-Modélisation

Pour approcher ce qui se passe en réalité, nous relaxons nos contraintes dans l'esprit où la production est limitée pour ne pas avoir des surstocks mais les quantités demandées peuvent variées tout en dépassant le nombre mentionné. On considère ici que la quantité produite est maximale et la quantité demandée est minimale . (même esprit que l'exercice 1)

- i) Fonction économique : (min) 600x1+400x2+800x3+900x4+700x5+600x6
- ii) Contraintes:
 - (0) Limitation des quantités demandées x1+x2>=300

X3+x4>=200

X5+x6>=400

(1) Limitation des quantités produites x1+x3+x5<=400

X2+x4+x6<=500

(2) Positivité des variables : x1,x2,x3,x4,x5,x6>=0

iii) Définition des variables :

X1 : quantité produite à l'usine U1 en direction du client C1

X2 : quantité produite à l'usine U2 en direction du client C1

X3 : quantité produite à l'usine U1 en direction du client C2

X4 : quantité produite à l'usine U2 en direction du client C2

X5 : quantité produite à l'usine U1 en direction du client C3

X6 : quantité produite à l'usine U2 en direction du client C3

II-Résolution:

_										
Prob	lème n°6: transpor	+								
1100		-	x1	x2	x3	x4	x5	хб		
			0	300	200	0	200	200		
									formule	membre droit
		c1	1	1	0	0	0	0	300	300
		c2	0	0	1	1	0	0	200	200
		c3	0	0	0	0	1	1	400	400
		c4	1	0	1	0	1	0	400	400
		c5	0	1	0	1	0	1	500	500
			600	400	800	900	700	600		
		optimum	540000							

Utilisation de la méthode coin nord ouest :

Dans ce problème les quantités demandées sont égales aux quantités disponibles , nous procédons par méthode normal du coin nord ouest pour résoudre ce problème.

600	800	700	400
400	900	600	500
300	200	400	900

300	100		0
	100	400	0
0	0	0	

Valeur optimale:

300*600+100*800+100*900+400*600=590 000

Cellules variables

		Finale	Réduit	Objectif	Admissible	Admissible
Cellule	Nom	Valeur	Coût	Coefficient	Augmentation	Réduction
\$E\$17	x1	0	100	600	1E+30	100
\$F\$17	X2	300	0	400	100	500
\$G\$17	x3	200	0	800	200	800
\$H\$17	X4	0	200	900	1E+30	200
\$I\$17	X5	200	0	700	100	100
\$J\$17	Х6	200	0	600	100	100

Contraintes

		Finale	Ombre	Contrainte	Admissible	Admissible
Cellule	Nom	Valeur	Coût	à droite	Augmentation	Réduction
\$E\$18	C1 x1	300	500	300	0	200
\$E\$19	C2 x1	200	800	200	0	200
\$E\$20	c3 x1	400	700	400	0	200
\$E\$21	C4 x1	400	0	400	1E+30	0
\$E\$22	c5 x1	500	-100	500	200	0

C-1 : solution du primal : (x1=0,x2=300,x3=200,x4=0,x5=200,x6=200)

c-2 : valeur du primal : 400*300+800*200+700*200+200*600=540 000

c-3 : solution du dual : (y1=500,y2=800,y3=700,y4=0,y5=-100)

c-4 : valeur du dual : 300*500+200*800+400*700+500*(-100)=540 000

c-5 : diminution admissible du coût unitaire de livraison de U1 vers c3 : 100

c-6 : augmentation admissible du coût unitaire de livraison de U2 vers C2 : 1E+30

c-7 : diminution admissible de la quantité demandée de C2 : 200

ANNEXE:

Nous avons choisit de réaliser quelques uns de ces problème en LP-SOLVE IDE permettant ainsi de comparer les résultats en matière de dégénérescence des solutions et notamment en matière de garder sens des contraintes et répondre le plus efficacement au problème .

Les documents sont sur le CD qui joint le rapport .

Problème_N1_Transport	10/12/2015 23:40	LP File
Problème_N2_Affectation	12/12/2015 17:46	LP File
Problème_N3_Localisation	12/12/2015 18:55	LP File
Problème_N4_Production	12/12/2015 18:58	LP File
□■ restaurateur_GLPK	09/12/2015 19:40	LP File

REMARQUE:

- 1- Le LP-SOLVE IDE offre une solution moins dégénérée est plus optimale que celle retrouvée par le solveur Excel pour le problème de Transport n°1 Valeur Excel : 49 000 avec 5 variables remises à 0 à l'optimum Valeur LP-SOLVE : 42 000 avec 4 variables remises à 0 à l'optimum
- 2- Pour le problème d'affectation n°2 , le LP-DOLVE IDE ne considère par les restriction sur un seul choix par ligne et par colonne , se qui l'emporte pour lui c'est l'optimalité de la solution mais on arrive pas a affecter un seul Employé à Une seule tâche et vis versa
 - Valeur Excel : 28 avec une et une seule tache pour chaque employé et un employé par tache.
 - Valeur LP-SOLVE IDE : 17 et avec une solution dégénérée (aucun employé pour T1 et T2)
- 3- L'Exercice 4 par contre présente une similitude de convergence vers le même optimum par les deux solveurs.