Homework No. 6 (Due on 03/27/14)

Problem 1. Let X and Y have joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} Cx^2 e^{-x(1+y)} & \text{if } x, y > 0, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the constant C and the marginal densities $f_X(x)$ and $f_Y(y)$.
- (b) Find the conditional densities $f_{X|Y}(x \mid y)$ and $f_{Y|X}(y \mid x)$.
- (c) Compute $\mathbb{E}[X \mid Y = y]$ and $\mathbb{E}[Y \mid X = x]$.

Problem 2. The random variables X and Y have joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} \frac{cy}{x} & \text{if } 0 \le y < x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the constant c.
- (b) Find the marginal densities $f_X(x)$ and $f_Y(y)$.
- (c) Find $\mathbb{P}(X + Y \leq 1)$.

Problem 3. If X and Y have joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{2}(x+y)e^{-x-y} & \text{if } x,y > 0, \\ 0 & \text{otherwise,} \end{cases}$$

find the probability density function of Z = X + Y.

Problem 4. Random variables X, Y, and Z have joint probability density function

$$f(x, y, z) = \begin{cases} 8xyz & \text{if } 0 < x, y, z < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Are X, Y and Z independent? Find $\mathbb{P}(X > Y)$, $\mathbb{E}[Y^3 \mid Z]$, and $\mathbb{P}(X > Y > Z)$.

Problem 5. Suppose X and Y are independent random variables, each having the exponential distribution with parameter λ .

- (a) If $Z = 1 e^{-\lambda X}$, find the probability density function $f_Z(z)$ and the cumulative distribution function $F_Z(z)$.
- (b) Same as in part (a), if $Z = \min(X, Y)$.
- (c) Same as in part (a), if Z = X Y.
- (d) Find $\mathbb{P}(\min(X,Y) \leq aX)$ and $\mathbb{P}(\min(X,Y) \leq a\max(X,Y))$, where $a \in (0,1)$ is some constant.