Tugas 4 Komputasi Numerik

Kelompok 8:

Jericho Nathanael Chrisnanta / 5025221001

Adrian Aziz Santoso / 5025221229

Muhammad Bimatara Indianto / 5025221260

TUGAS 4

SOAL

Dapatkan akar-akar persamaan berikut :

a.
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

b.
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$

dengan :

- 1. Metode Iterasi
- 2. Metode Faktorisasi

Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan-persamaan:

3.
$$f(x) = -0.875x^2 + 1.75x + 2.625$$
 (x_i = 3.1)

4.
$$f(x) = -2.1 + 6.21x - 3.9x^2 + 0.667x^3$$

5.
$$f(x) = -23,33 + 79,35x - 88,09x^2 + 41,6x^3 - 8,68x^4 + 0,658x^5$$
 (x_i = 3,5)

Sekarang gunakan metode Secant untuk maksud yang sama dari persamaan :

6.
$$f(x) = 9.36 - 21.963x + 16.2965x^2 - 3.70377x^3$$

7.
$$f(x) = x^4 - 8.6x^3 - 35.51x^2 + 464x - 998.46 (x_{i-1} = 7 dan x_i = 9)$$

8.
$$f(x) = x^3 - 6x^2 + 11x - 6 (x_{i-1} = 2,5 dan x_i = 3,6)$$

9. Buatlah sebuah paparan untuk menjelaskan tentang metode Bairstow dan metode Quotient-Difference (Q-D). Dan buatlah sebuah kesimpulan mengenai kemudahan/kesulitan kedua metode tersebut didalam menyelesaikan masalah dibanding dengan metode2 yang telah anda pelajari dalam materi ini.

JAWABAN

1.

a. Iterasi

$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

 $x \land 3 = 6.6x \land 2 - 29.5x + 22.64 = 0$ dapat diasumsikan $x0 = 0$
 $x \land 3 = 6.6x \land 2 + 22.64 = 29.5x$
 $x = (x \land 3 + 6 * 6x \land 2 + 22.64) 29.05$
 $f(x) = (3x \land 2 + 13.2x)/(29.5)$
 $f' * (x0) = 0$ dan $0 < 1$ menandakan konvergen
 $f(x) = (x \land 3 + 6.6x \land 2 + 22.64) 29.05$

$$f(x) = (x^3 + 6.6x^2 + 22.64) / 29.05$$

$$= (0 + 0 + 22,64) / 29,05$$

= 0,7793

- Iterasi 2

$$f(x) = (0,7793^3 + 6,6(0,7793)^2 + 22,64) / 29,05$$

= (0,4733 + 4,0082 + 22,64) / 29,05
= 0,9336

- Iterasi 3

$$f(x) = (0.9336^3 + 6.6(0.9336)^2 + 22.64) / 29.05$$

= (0.8137 +5.7526 + 22.64) / 29.05
= 1.0054

b. Faktorisasi

Setelah melakukan faktorisasi didapatkan *x*=-66.44235

2.

a. Iterasi:

$$x^4 - 0.41x^3 + 1.632x^2 - 9.146 + 7.260 = 0$$
, dapat diasumsikan $xo = 0$
 $x^4 - 0.41x^2 + 1.632x^2 + 7.260 = 9.146x$
 $x = (x^4 - 0.41x^3 + 1.632x^2 + 7.260) / 9.146$
 $f(x) = (4x^3 - 1.23x^3 + 3.264x^2) / 9.146$
 $f'(x0) = 0$, dan) < 1 menandakan konvergen
 $f(x) = (x^4 - 0.41x^3 + 1.632x^2 + 7.260) / 9.146$

- Iterasi 1

$$f(x) = \frac{((x)^4 - 0.41(x)^3 + 1.632(x)^2 + 7.260)}{9.146}$$

= $\frac{(0-0+0+7.260)}{9.146}$
= $\frac{0.7938}$

- Iterasi 2

$$f(x) = ((0,7938)^4 - 0,41(0,7938)^3 + 1,632(0,7938)^2 + 7,260) / 9,146$$

= (0,7391 - 0,3268 + 1,4030 + 7,260) / 9,146
= 0.9272

- Iterasi 3

$$f(x) = ((0,9272)^4 - 0,41(0,9272)^3 + 1,632(0,9272)^2 + 7,260) / 9,146$$

= (0,7391 - 0,3268 + 1,4030 + 7,260) / 9,146
= 0,9923

b. Faktorisasi

Setelah melakukan faktorisasi ditemukan bahwa x=-1.060608,1.089621

3. Metode Newton-Raphson

$$f(x) = -0.875x^2 + 1.75x + 2.625$$
 (xi = 3, 1)

$$f'(x) = -1.75 \land x = -1.75 \land 1.75$$

Newton-Raphson menjadi : $Xn + 1 = xi - (-0.875x^2 + 1.75x + 2.625) / (-1.75x + 1.75)$

- Iterasi 1

$$f(Xn+1) = 3.1 - (-0.875 * 3.1 ^ 2 + 1.75 * 3.1 + 2.625)(-1.75 * 3.1 + 1.75)$$

= 3.1 - (-8.40875 + 5.425 + 2625) / -3.675
= -716.5738

- Iterasi 2

$$x(1) = -716,5738$$

 $f(x1) = -716,5738 - (-0,875 * -716,57382 + 1,75 x - 716,5738 + 2,625) / (-1,75 x - 716,5738 + 1,75)$
 $= -716,5738 - (-447922,2756 / 1255,75415)$
 $= -359,8779$
 $x(2) = -359.8779$

- Iterasi 3

$$f(x1) = -359,8779 (-0,875 * -359,87792 + 1,75 * -359,8779 + 2,625) / (-1,75 x - 359,8779 + 1,75)$$

$$= -359,8779 - (-113323,0901 / 631,5363) = -180,4376$$

$$x(2) = -180,4376$$

4. Metode Newton Raphson

-
$$f(x) = -2.1 + 6.21x - 3.9x ^2 + 0.667x ^3$$

 $f'(x) = 6.21 - 7.8x + 200.1 x ^2$
 $xi + 1 = xi - (f(xi)*f'(xi))$
 $xi + 1 = (-2.1 + 6.21x - 3.9x ^2 + 0.667x ^3) / (6.21 - 7.8x + 0.201x ^2)$

- Setelah melakukan iterasi dari metode tersebut, berhasil didapatkan salah satu akar persamaan $f(x) = -2.1 + 6.21x - 3.9x ^ 2 + 0.667x = 0.456731734192752$

5. Metode Newton Raphson

$$f(x) = -23, 33 + 79, 35x - 88,09x^2 + 41,6x^3 - 8,68x^4 + 0,658x^5 (xi = 3, 5)$$

$$f'(x) = 79.35 - 176.18x + 124.8 x^2 - 34.72x^3 + 3.29x^4$$

$$xi = 3.5$$

$$f(xi) = 1,943937499999890$$

$$f'(xi) = -3,39437499999910$$

$$xi + 1 = xi - (f(x) / f(x))$$

$$xi + 1 = 3,5 - (1,943937499999890 / -3,39437499999910)$$

$$= 4,072693794881220$$

Setelah mendapati nilai x + 1, dapat ditemukan akar persamaan dari fungsi

 $-23,33 + 79,35x - 88,09 x^2 + 41,6x^3 - 8,68x^4 + 0,658x^5 (xi = 3,5)$ adalah 3,844083058608510.

6.
$$f(x) = 9.36 - 21.963x + 16.2965x^2 - 3.70377x^3$$

 $x_{i+1} = x_i - \frac{f(xi)(xi-1xi)}{f(xi-1)-f(xi)}$

Step	x 0	x 1	x 2	f(x2)
1	0.000000	1.000000	0.998904	-0.009736
2	1.000000	0.998904	0.978912	0.002221
3	0.998904	0.978912	0.982625	-0.000322
4	0.978912	0.982625	0.982154	-0.000008
5	0.982625	0.982154	0.982142	0.00000
6	0.982154	0.982142	0.982142	-0.000000
7	0.982142	0.982142	0.982142	0.00000

Akar : 0,982142

7.
$$x^4 - 8.6x^3 - 35.51x^2 + 464x - 998.46 (x_i = 9; x_{i-1} = 7)$$

 $x_{i+1} = x_i - \frac{f(xi)(xi-1xi)}{f(xi-1) - f(xi)}$

Step	ж0	x 1	x 2	f(x2)
1	7.000000	9.000000	7.124193	-28.738970
2	9.000000	7.124193	7.210923	-19.853227
3	7.124193	7.210923	7.404703	5.034972
4	7.210923	7.404703	7.365500	-0.591288
5	7.404703	7.365500	7.369620	-0.014579
6	7.365500	7.369620	7.369724	0.000044
7	7.369620	7.369724	7.369724	-0.000000

Akar: 7,369724

8.
$$x^3 - 6x^2 + 11x - 6$$
 ($x_{i-1} = 2,5$; $x_i = 3,6$)
 $x_{i+1} = x_i - \frac{f(xi)(xi-1xi)}{f(xi-1) - f(xi)}$

Step	x 0	x1	x 2	f(x2)
1	2.500000	3.600000	2.643678	-0.376988
2	3.600000	2.643678	2.769165	-0.314116
3	2.643678	2.769165	3.396103	1.325048
4	2.769165	3.396103	2.889306	-0.185985
5	3.396103	2.889306	2.951685	-0.089740
6	2.889306	2.951685	3.009848	0.019987
7	2.951685	3.009848	2.999253	-0.001492
8	3.009848	2.999253	2.999989	-0.000022
9	2.999253	2.999989	3.000000	0.000000

Akar = $\frac{3,00}{}$

9. Metode Bairstow:

Metode iteratif yang menggunakan pembagian sintetis dan metode Newton-Raphson untuk mencari akar persamaan polinomial.

Metode Quotient-Difference (Q-D):

Metode sederhana yang menggunakan perbedaan dan rasio dari nilai-nilai fungsi untuk menduga posisi akar-akar polinomial.

Kesimpulan:

Metode Bairstow stabil dan konvergen, cocok untuk polinomial kompleks. Metode Q-D sederhana, tapi bisa kesulitan dengan polinomial yang kompleks. Pilihan tergantung pada kebutuhan dan kompleksitas polinomial yang dihadapi.