

SINGLE-CHANNEL	DUAL-CHANNEL
6N137	HCPL-2630
HCPL-2601	HCPL-2631
HCPL-2611	

DESCRIPTION

The 6N137, HCPL-2601/2611 single-channel and HCPL-2630/2631 dual-channel optocouplers consist of a 850 nm AlGaAS LED, optically coupled to a very high speed integrated photodetector logic gate with a strobable output. This output features an open collector, thereby permitting wired OR outputs. The coupled parameters are guaranteed over the temperature range of -40 ℃ to +85 ℃. A maximum input signal of 5 mA will provide a minimum output sink current of 13 mA (fan out of 8).

An internal noise shield provides superior common mode rejection of typically 10 kV/ μ s. The HCPL- 2601 and HCPL- 2631 has a minimum CMR of 5 kV/ μ s. The HCPL-2611 has a minimum CMR of 10 kV/ μ s.

FEATURES

- · Very high speed-10 MBit/s
- Superior CMR-10 kV/μs
- Double working voltage-480V
- Fan-out of 8 over -40 ℃ to +85 ℃
- Logic gate output
- Strobable output
- Wired OR-open collector
- U.L. recognized (File # E90700)

APPLICATIONS

- · Ground loop elimination
- LSTTL to TTL, LSTTL or 5-volt CMOS
- · Line receiver, data transmission
- Data multiplexing
- · Switching power supplies
- Pulse transformer replacement
- · Computer-peripheral interface

Single-channel circuit drawing

Dual-channel circuit drawing

TRUTH TABLE (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
Н	NC	L
L	NC	Н

A 0.1 μF bypass capacitor must be connected between pins 8 and 5. (See note 1)

SINGLE-CHANNEL 6N137 HCPL-2601 HCPL-2611 DUAL-CHANNEL HCPL-2630 HCPL-2631

ABSOLUTE MAXIMUM RATINGS (No derating required up to 85℃)				
Parameter		Symbol	Value	Units
Storage Temperature		T _{STG}	-55 to +125	°C
Operating Temperature		T _{OPR}	-40 to +85	∾
Lead Solder Temperature		T _{SOL}	260 for 10 sec	°C
EMITTER DC/Average Forward Single channel		I _F	50	mA
Input Current	Dual channel (Each channel)	1	30	
Enable Input Voltage Single channel Not to exceed V _{CC} by more than 500 mV		V _E	5.5	V
Reverse Input Voltage	Each channel	V _R	5.0	V
Power Dissipation Single channel Dual channel (Each channel)		Б	100	\A/
		- P _I	45	mW
DETECTOR Supply Voltage		V _{CC} (1 minute max)	7.0	٧
Output Current	Single channel		50	т Л
	Dual channel (Each channel)	- I ₀	50	mA
Output Voltage	Each channel	V _O	7.0	V
Collector Output	Single channel	ь	85	m\\\
Power Dissipation	Dual channel (Each channel)	- P _O	60	mW

RECOMMENDED OPERATING CONDITIONS				
Parameter	Symbol	Min	Max	Units
Input Current, Low Level	I _{FL}	0	250	μΑ
Input Current, High Level	I _{FH}	*6.3	15	mA
Supply Voltage, Output	V _{CC}	4.5	5.5	V
Enable Voltage, Low Level	V _{EL}	0	0.8	V
Enable Voltage, High Level	V _{EH}	2.0	V _{CC}	V
Low Level Supply Current	T _A	-40	+85	℃
Fan Out (TTL load)	N		8	

^{* 6.3} mA is a guard banded value which allows for at least 20 % CTR degradation. Initial input current threshold value is 5.0 mA or less

SINGLE-CHANNEL

6N137 HCPL-2601 HCPL-2630 HCPL-2631

DUAL-CHANNEL

HCPL-2611

ELECTRICAL CHARACTERISTICS (T_A = -40 ℃ to +85 ℃ Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameter		Test Conditions	Symbol	Min	Typ**	Max	Unit
EMITTER		$(I_F = 10 \text{ mA})$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			1.8	.,
Input Forward Voltage		T _A =25 °C	V _F		1.4	1.75	V
Input Reverse Breakdown V	oltage/	$(I_R = 10 \mu A)$	B _{VR}	5.0			٧
Input Capacitance		$(V_F = 0, f = 1 MHz)$	C _{IN}		60		pF
Input Diode Temperature Co	efficient	$(I_F = 10 \text{ mA})$	$\Delta V_F / \Delta T_A$		-1.4		mV/℃
DETECTOR					7	10	
High Level Supply Current	Single Channel	$(V_{CC} = 5.5 \text{ V}, I_F = 0 \text{ mA})$	I _{CCH}		7	10	mA
	Dual Channel	$(V_E = 0.5 V)$			15	20	
Low Level Supply Current	Single Channel	$(V_{CC} = 5.5 \text{ V}, I_F = 10 \text{ mA})$			9	13	A
	Dual Channel	$(V_E = 0.5 V)$	ICCL		19	26	mA
Low Level Enable Current		$(V_{CC} = 5.5 \text{ V}, V_{E} = 0.5 \text{ V})$	I _{EL}		-0.8	-1.6	mA
High Level Enable Current		$(V_{CC} = 5.5 \text{ V}, V_{E} = 2.0 \text{ V})$	I _{EH}		-0.6	-1.6	mA
High Level Enable Voltage		$(V_{CC} = 5.5 \text{ V}, I_F = 10 \text{ mA})$	V _{EH}	2.0			٧
Low Level Enable Voltage	(V _{CC} =	5.5 V, I _F = 10 mA) (Note 3)	V _{EL}			0.8	V

SWITCHING CHARACTERISTICS (T _A = -40 °C to +85 °C, V _{CC} = 5 V, I _F = 7.5 mA Unless otherwise specified.)					
AC Characteristics Test Conditions	Symbol	Min	Typ**	Max	Unit
Propagation Delay Time (Note 4) (T _A =25 ℃)		20	45	75	
to Output High Level (R _L = 350 Ω , C _L = 15 pF) (Fig. 12)	T _{PLH}			100	ns
Propagation Delay Time (Note 5) (T _A =25 ℃)	_	25	45	75	
to Output Low Level (R _L = 350 Ω , C _L = 15 pF) (Fig. 12)	T _{PHL}			100	ns
Pulse Width Distortion (R _L = 350 Ω , C _L = 15 pF) (Fig. 12)	T _{PHL} -T _{PLH}		3	35	ns
Output Rise Time (10-90%) $(R_L = 350 \ \Omega, \ C_L = 15 \ pF)$ (Note 6) (Fig. 12)	t _r		50		ns
Output Fall Time (90-10%) $(R_L = 350 \ \Omega, \ C_L = 15 \ pF)$ (Note 7) (Fig. 12)	t _f		12		ns
Enable Propagation Delay Time $(I_F = 7.5 \text{ mA}, V_{EH} = 3.5 \text{ V})$ to Output High Level $(R_L = 350 \ \Omega, C_L = 15 \text{ pF})$ (Note 8) (Fig. 13)	telh		20		ns
Enable Propagation Delay Time $(I_F = 7.5 \text{ mA}, V_{EH} = 3.5 \text{ V})$ to Output Low Level $(R_L = 350 \ \Omega, C_L = 15 \text{ pF})$ (Note 9) (Fig. 13)	t _{EHL}		20		ns
Common Mode Transient Immunity $(T_A = 25 ^\circ \! C) V_{CM} = 50 V$, (Peak) (at Output High Level) $(I_F = 0 \text{mA}, V_{OH} (\text{Min.}) = 2.0 V)$ 6N137, HCPL-2630 $(R_L = 350 \Omega)$ (Note 10) HCPL-2601, HCPL-2631 (Fig. 14)	CM _H	5000	10,000 10,000		V/µs
HCPL-2611 V _{CM} = 400 V		10,000	15,000		
$ (R_{L} = 350 \ \Omega) \ (I_{F} = 7.5 \ mA, \ V_{OL} \ (Max.) = 0.8 \ V) $ Common Mode $ 6N137, \ HCPL-2630 \qquad V_{CM} = 50 \ V \ (Peak) $			10,000		W
Transient Immunity HCPL-2601, HCPL-2631 (T _A =25 ℃) (at Output Low Level) (Note 11) (Fig. 14)	CM _L	5000	10,000		V/µs
HCPL-2611 (T _A =25 °C) V _{CM} = 400 V		10,000	15,000		

SINGLE-CHANNEL
6N137 HCPL-2630
HCPL-2601 HCPL-2631
HCPL-2611

TRANSFER CHARACTERISTICS (T _A = -40 °C to +85 °C Unless otherwise specified.)						
DC Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit
High Level Output Current	$(V_{CC} = 5.5 \text{ V}, V_{O} = 5.5 \text{ V})$	1			100	
	$(I_F = 250 \ \mu\text{A}, \ V_E = 2.0 \ \text{V}) \ (\text{Note 2})$	'ОН			100	μΑ
Low Level Output Current	$(V_{CC} = 5.5 \text{ V}, I_F = 5 \text{ mA})$	V		.35	.06	V
	$(V_E = 2.0 \text{ V}, I_{CL} = 13 \text{ mA}) \text{ (Note 2)}$	V _{OL}		.5	.00	v
Input Threshold Current	$(V_{CC} = 5.5 \text{ V}, V_{O} = 0.6 \text{ V},$	I _{FT}		3	5	mA
mpat timeeriola darront	$V_E = 2.0 \text{ V}, I_{OL} = 13 \text{ mA})$	<u>.</u> F1		,	J	

ISOLATION CHARACTERISTICS (T _A = -40 ℃ to +85 ℃ Unless otherwise specified.)						
Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit
Input-Output	(Relative humidity = 45%)					
Insulation Leakage Current	$(T_A = 25 {}^{\circ}\!C, t = 5 s)$				1.0*	
	$(V_{I-O} = 3000 \text{ VDC})$	I _{I-O}			1.0*	μΑ
	(Note 12)					
Withstand Insulation Test Voltage	(RH < 50%, T _A = 25℃)	V	2500			\/
	(Note 12) ($t = 1 \text{ min.}$)	V _{ISO}	2500			V _{RMS}
Resistance (Input to Output)	$(V_{I-O} = 500 \text{ V}) \text{ (Note 12)}$	R _{I-O}		10 ¹²		Ω
Capacitance (Input to Output)	(f = 1 MHz) (Note 12)	C _{I-O}		0.6		pF

^{**} All typical values are at V_{CC} = 5 V, T_A = 25 °C

NOTES

- The V_{CC} supply to each optoisolator must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package V_{CC} and GND pins of each device.
- 2. Each channel.
- 3. Enable Input No pull up resistor required as the device has an internal pull up resistor.
- t_{PLH} Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- t_{PHL} Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- 6. t_r Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- 7. t_f Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- t_{ELH} Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input voltage pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- t_{EHL} Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input voltage pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- CM_H The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., V_{OUT} > 2.0 V). Measured in volts per microsecond (V/μs).
- CM_L The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the low output state (i.e., V_{OUT} < 0.8 V). Measured in volts per microsecond (V/μs).
- 12. Device considered a two-terminal device: Pins 1,2,3 and 4 shorted together, and Pins 5,6,7 and 8 shorted together.

SINGLE-CHANNEL 6N137 HCPL-2601 HCPL-2611

DUAL-CHANNEL HCPL-2630 HCPL-2631

Fig.1 Low Level Output Voltage vs. Ambient Temperature

Fig.3 Switching Time vs. Forward Current

Fig. 5 Input Threshold Current

Fig. 6 Output Voltage vs. Input Forward Current

SINGLE-CHANNEL 6N137 HCPL-2601 HCPL-2611

DUAL-CHANNEL HCPL-2630 HCPL-2631

Fig. 7 Pulse Width Distortion vs. Temperature

Fig. 8 Rise and Fall Time vs. Temperature

Fig. 9 Enable Propagation Delay vs. Temperature

Fig. 10 Switching Time vs. Temperature

Fig. 11 High Level Output Current

SINGLE-CHANNEL
6N137
HCPL-2601
HCPL-2611
DUAL-CHANNEL
HCPL-2630
HCPL-2631

Fig. 12 Test Circuit and Waveforms for $t_{\text{PLH}},\,t_{\text{PHL}_1}\,t_{\text{r}}$ and $t_{\text{f}}.$

Fig. 13 Test Circuit t_{EHL} and t_{ELH}.

DS300202 1/25/01 7 OF 11 www.fairchildsemi.com

SINGLE-CHANNEL
6N137 HCPL-2630
HCPL-2601 HCPL-2631
HCPL-2611

Fig. 14 Test Circuit Common Mode Transient Immunity

SINGLE-CHANNEL
6N137 HCPL-2630
HCPL-2601 HCPL-2631
HCPL-2611

NOTE
All dimensions are in inches (millimeters)

DS300202 1/25/01 9 OF 11 www.fairchildsemi.com

SINGLE-CHANNEL

6N137

HCPL-2601

HCPL-2611

DUAL-CHANNEL

HCPL-2630

HCPL-2631

ORDERING INFORMATION

Option	Order Entry Identifier	Description
R2	.R2	Opto Plus Reliability Conditioning
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and reel
W	.W	0.4" Lead Spacing

Corporate Headquarters QT Optoelectronics 610 North Mary Avenue Sunnyvale, CA 94086 (408) 720-1440 Phone (408) 720-0848 Fax

European Sales
QT Optoelectronics
"Le Levant"
2, rue du Nouveau Bercy
F-94277-CHARENTON-LE PONT Cedex
FRANCE
33 [0] 1.45.18.78.78 Phone
33 [0] 1.43.75.77.57 Fax

North American Sales QT Optoelectronics 16775 Addison Rd.,Suite 200 Addison, TX 75001 (972) 447-1300 Phone (972) 447-0784 Fax

Asia/Pacific Sales
QT Optoelectronics
B613, 6th Floor
East Wing, Wisma Tractors
Jalan SS16/1, Subang Jaya
47500 Petaling Jaya
Selangor Darul Eshan, Malaysia
603/735-2417 Phone
603/736-3382 Fax

European Sales
Quality Technologies Deutschland GmbH
Max-Huber-Strasse 8
D-85737 Ismaning, Germany
49 [0] 89/96.30.51 Phone
49 [0] 89/96.54.74 Fax

European Sales
Quality Technologies (U.K) Ltd.
10, Prebendal Court, Oxford Road
Aylesbury, Buckinghamshire
HP19-3EY United Kingdom
44 [0] 1296/30.44.99 Phone
44 [0] 1296/39.24.32 Fax

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation