PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Primee semestre 2022

Ayudantía 11 - MAT1610

1. Calcule el valor de $\int_{-1}^{5} f(x)dx$ si se sabe que

$$\int_{-2}^{2} f(x)dx = 3, \int_{2}^{5} 2f(x)dx = 6 \text{ y que } \int_{-1}^{-2} f(x)dx = 5$$

Solución

Observe que por propiedades de la integral del enunciado tenemos que $\int_2^5 f(x)dx = 3$, por lo tanto

$$\int_{-2}^{5} f(x)dx = 6$$

además $\int_{-2}^{-1} f(x)dx = -5$ por lo tanto $\int_{-1}^{5} f(x)dx = 11$

2. Demuestre que $\frac{\sqrt{2}\pi}{24} \le \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos(x) dx < \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{x} dx \le \frac{1}{2}$.

Solución

Notar que en el intervalo $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ el valor mínimo absoluto de la función $x \mapsto \cos(x)$ es $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ y la longitud del intervalo de integración es $\frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12}$

$$\frac{\sqrt{2}\pi}{24} = \frac{\sqrt{2}}{2} \frac{\pi}{12} \le \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos(x) dx$$

Por otro lado, para $x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$, como x < 1 entonces $1 < \frac{1}{x}$ y como $\cos(x) < 1$, por transitividad se tiene que, para $x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$, $\cos(x) < \frac{1}{x}$ y en consecuencia,

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos(x) dx < \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{x} dx$$

Por último, en el intervalo $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ el valor máximo absoluto de la función $x \mapsto \frac{1}{x}$ es $\frac{6}{\pi}$ y la longitud del intervalo de integración es $\frac{\pi}{12}$ entonces,

$$\int_{\frac{\pi}{c}}^{\frac{\pi}{4}} \frac{1}{x} dx \le \frac{6}{\pi} \frac{\pi}{12} = \frac{1}{2}$$

3. Determine la constante a y la función f(x) tales que

$$\int_{a}^{2x-a} f(t)dt = \operatorname{sen}(x-a) + \arctan(x-a) + a - 2$$

Solución:

Sea $G(x) = \int_a^{2x-a} f(t)dt$ entonces, $G(a) = \int_a^a f(t)dt = 0$, es decir, sen(0) + arctan(0) + a - 2 = 0 y en consecuencia a = 2 y

$$G(x) = \int_{a}^{2x-a} f(t)dt = \int_{2}^{2x-2} f(t)dt = \operatorname{sen}(x-2) + \arctan(x-2)$$

es decir,

$$\int_{a}^{2x-a} f(t)dt = \operatorname{sen}(x-2) + \arctan(x-2)$$

Entonces, derivando en ambos lados de la igualdad,

$$\frac{d}{dx} \int_{2}^{2x-2} f(t)dt = \cos(x-2) + \frac{1}{1 + (x-2)^{2}} \implies f(2x-2)\frac{d}{dx}(2x-2) = \cos(x-2) + \frac{1}{1 + (x-2)^{2}}$$

$$\implies f(2x-2) \cdot 2 = \cos(x-2) + \frac{1}{1 + (x-2)^{2}}$$

$$\implies f(2x-2) = \frac{\cos(x-2) + \frac{1}{1 + (x-2)^{2}}}{2}$$

$$\implies f(x) = \frac{\cos(\frac{x+2}{2} - 2) + \frac{1}{1 + (\frac{x+2}{2} - 2)^{2}}}{2}$$

4. Sea f la función cuyo gráfico se muestra a continuación

y G la función definida por

$$G(x) = \int_{1}^{x^2+1} f(t)dt$$

- a) Calcule G(1).
- b) Determine los intervalos de crecimiento y decrecimiento de G.

Solución:

Del gráfico se puede ver que $G(1) = \int_1^2 f(t)dt = 1$.

Del TFC tenemos que $G'(x) = 2xf(x^2 + 1)$, por lo tanto, para determinar los intervalos de monotonía de G debemos estudiar los signos de $2xf(x^2 + 1)$.

Observe que $G'(x) = 2xf(x^2 + 1) = 0$ si y solo si x = 0, x = 1, o x = -1. Al realizar una tabla de signos obtenemos por lo tanto la función G es creciente en $(-\infty, -1)$ y en (0, 1), es

G'(x)	+	-	+	-
$f(x^2+1)$	-	+	+	-
2x	-	-	+	+
intervalo	$(-\infty, -1)$	(-1,0)	(0,1)	$(1,\infty)$

decreciente en el intervalo (-1,0) y en el intervalo $(1,\infty)$.