BENCHTEMP: A General Benchmark for Evaluating Temporal Graph Neural Networks

Authors' Response to Reviewer RjkE

Opportunities For Improvement:

- **O1.** The discussion regarding the results of the evaluation experiments is shallow. In particular, the high accuracy and speed of NAT for link prediction, as already reported in NAT's paper, do not provide novelty. Also, there is a limited specific discussion on how dataset differences impact accuracy. It would be more interesting if the authors could demonstrate new insights that are not easily inferred from existing papers.
- **O2.** The discussion of the experimental results is mainly limited to the aspects listed in Table 1 (Memory, Attention, RNN, TempWalk, Scalability), so they lack detailed analysis. For example, CAWN and NeurTW both leverage TempWalk, but the experiments in Table 3 demonstrate that these two have different strengths and weaknesses on different datasets. Therefore, there should be more discussion on what specific differences in the characteristics between CAWN and NeurTW contribute to these strengths and weaknesses. Similar discussions should be made for other methods to show the correlations between the design of existing methods and the datasets. Regarding the statement "NeurTW introduces a continuous-time operation that can depict evolution trajectory, which is potentially suitable for CanParl with a large time granularity", the meaning is unclear due to the lack of a sufficient description of the correlation between the evolution trajectory and large time granularity.
- **O3.** While the difficulty of the inductive New-New setting task is understandable, however, to say "Nevertheless, CAWN, NeurTW, and NAT still perform well due to their structure-aware techniques" is not sufficient. More detailed explanations of the structure-aware techniques should be provided.
- **O4.** Regarding the efficiency evaluation, it may be desirable to discuss the elapsed time for users (i.e., per epoch time \ average number of epochs). Then, it would be beneficial to break down the analysis using the per epoch time and average number of epochs, respectively. Also, the paper only reports the execution time and memory usage without conducting in-depth analyses of their correlations with the design of each existing method.
- **O5.** Node classification becomes more challenging as the number of labels increases, but the paper only handles binary classification, limiting the benchmark's generality. Performance benchmarks for tasks with multiple label numbers are desired.
- **O6.** The statement "MOOC is relatively denser, and the temporal walk mechanism can effectively perceive local structures" is interesting, however, there is insufficient evidence to support the claim. Can the paper demonstrate that the effectiveness of the temporal walk mechanism changes in response to changes in graph density?
- **O7.** The proposed technique, TeMP, is only briefly described in seven lines, making it difficult to fully understand its features.

General Response:

- 3 Thanks for the valuable suggestion! We have updated Section 4.4 in the paper (https://
- 4 openreview.net/pdf?id=rnZm2vQq31). We provide summaries of the state-of-the-art results,
- the limitations of existing methods, and discuss future directions of TGNN research.

 Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks. Do not distribute.

- 6 We have updated Section 4.4 in the paper (https://openreview.net/pdf?id=rnZm2vQq31) for
- 7 the discussion differences between CAWN [1] and NeurTW [2]. We have updated the sentence
- 8 in Section 4.2 of the paper (https://openreview.net/pdf?id=rnZm2vQq31) and added more
- 9 detailes of the structure-aware techniques.
- We have added the inference time metric to evaluate the efficiency of methods. We have added
- 11 experiments of the node classification task with multiple label numbers. We have demonstrated that
- the effectiveness of the CAWN based on temporal walk mechanism changes in response to changes
- in graph density. We have added the details of TeMP in Appendix.

4 We provide our response to each individual comment below:

Comment 1

O1. The discussion regarding the results of the evaluation experiments is shallow. In particular, the high accuracy and speed of NAT for link prediction, as already reported in NAT's paper, do not provide novelty. Also, there is a limited specific discussion on how dataset differences impact accuracy. It would be more interesting if the authors could demonstrate new insights that are not easily inferred from existing papers.

15

Response:

- We thank the reviewer for the suggestions! We have updated Section 4.4 in the paper (https:
- //openreview.net/pdf?id=rnZm2vQq31). We provide summaries of the state-of-the-art results,
- the limitations of existing methods, and discuss future directions of TGNN research.
- 20 For example, the high accuracy and speed of NAT [3] for dynamic link prediction task are already
- 21 reported in NAT's paper. However, NAT's original paper did not perform experiments for dynamic
- 22 node classification task. We implement the dynamic node classification task of NAT, the experimental
- results are shown in Table 5 in the paper (https://openreview.net/pdf?id=rnZm2vQq31) and
- 24 reveal that NAT performs poorly on the node classification task. The node classification task does
- 25 not rely on structural features as much as the link prediction task, so that the joint neighborhood
- 26 mechanism of NAT may be less effective.
- 27 Besides, In the original paper of NeurTW [2], the efficiency of NeurTW is not discussed. In
- 28 BenchTeMP proposed by us, we evaluated NeurTW with diverse workloads, including performances
- 29 and efficiency (runtime in the paper, running memory in the paper, inference time shown in Figure
- 30 1 of this response file). We reveal that *NeurTW performs poorly on efficiency*.
- 31 Furthermore, previous works conduct experiments on datasets with a small number of nodes
- and edges. Thus, in this response file, we have added six datasets (eBay-Small, eBay-Large,
- 33 Taobal-Large, DGraphFin, YouTubeReddit-Small, YouTubeReddit-Large), including four large-
- scale datasets (eBay-Large, Taobao-Large, DGraphFin, YouTubeReddit-Large). The statistics of
- 35 the new datasets are shown in Table 1. The eBay datasets are a collection of the user transac-
- 36 tions on eBay's e-commerce platform. We thank our industrial collaborator for sharing their
- 37 datasets in our research. Considering user privacy and security, eBay datasets could only be
- 38 shared among collaborators. Any researchers who are interested in the eBay datasets, please
- email our team (jonnyhuanghnu@gmail.com). For easy access, all datasets have been hosted on
- 40 the open-source platform zenodo with a Digital Object Identifier (DOI) 10.5281/zenodo.8267846
- 41 (https://zenodo.org/record/8267846).
- 42 The experimental results on large-scale datasets (eBay-Large, Taobao-
- Large, DGraphFin, YouTubeReddit-Large) may be more convincing. Furthermore, we have
- 44 added Average Rank metric for ranking model performances on the newly added large-scale datasets
- 45 (eBay-Large, Taobao-Large, DGraphFin, YouTubeReddit-Large) to evaluate TGNN models on
- dynamic link prediction task and node classification task shown in Table 2 and Table 4.

- **eBay-Small** is a subset of the eBay-Large dataset. We sample 38,427 nodes and 384,677 edges from eBay-Large graph according to edge timestamps.
- YouTubeReddit-Small is a collection of massive visual contents on YouTube and long-term community activity on Reddit. This dataset covers a 3-month period from January to March 2020. Each row in the dataset represents a YouTube video v_i being shared in a subreddit s_j by some user u_k at time t [4]. Nodes are YouTube videos and subreddits, edges are the users' interactions between videos and subreddits. This dynamic graph has 264,443 nodes and 297,732 edges.
- **eBay-Large** is a million-scale dataset consisting of 1.3 million nodes and 1.1 million edges, which comprises the selected transaction records from the eBay e-commerce platform over a two-month period. eBay-Large is modeled as a user-item graph, where items are heterogeneous entities which include information such as phone numbers, addresses, and email addresses associated with a transaction. We selecte one month of transactions as seed nodes and then expand each seed node two hops back in time to enrich the topology while maintaining consistency in the distribution of seed nodes.
- **DGraphFin** is a collection of large-scale dynamic graph datasets, consisting of interactive objects, events and labels that evolve with time.It is a directed, unweighted dynamic graph consisting of millions of nodes and edges, representing a realistic user-to-user social network in financial industry. Nodes are users, and an edge from one user to another means that the user regards the other user as the emergency contact person [5].
- **Youtube-Reddit-Large** dataset covers **54** months of YouTube video propagation history from January 2018 to June 2022 [4]. This dataset has 5,724,111 nodes and 4,228,523 edges.
- **Taobao-Large** is a collection of the Taobao user behavior dataset intercepted based on the period 8:00 to 18:00 on 26 November 2017 [6]. Nodes are users and items, and edges are behaviors between users and items, such as favor, click, purchase, and add an item to shopping cart. This public dataset has 1,630,453 nodes and 5,008,74 user-item interaction edges.

72 A Experiments

We conduct extensive experiments on the tasks of *dynamic link prediction* and *dynamic node classifi-*cation. The experimental setup is the same as in the paper https://openreview.net/pdf?id=
rnZm2vQq31.

76 A.1 Link Prediction Task

We run the link prediction task on 7 TGNN models and the new datasets under different settings (Transductive, Inductive, Inductive New-Old, and Inductive New-New). The AUC and AP results for each new datasets are shown in Table 2 and Table 3, respectively. For the four large-scale datasets (eBay-Large, Taobao-Large, DGraphFin, YouTubeReddit-Large), we observe the similar results as in the paper. Specifically, NAT and NeurTW achieve the top-2 performance on almost all datasets under transductive and inductive settings.

Table 1: Dataset statistics of the newly added datasets.

	Domain	# Nodes	# Edges
eBay-Small YouTubeReddit-Small [4]	E-commerce Social	38,427 264,443	384,677 297,732
eBay-Large	E-commerce	1,333,594	1,119,454
DGraphFin [5] Youtube-Reddit-Large [4]	E-commerce Social	3,700,550 5,724,111	4,300,999 4,228,523
Taobao-Large [2, 6]	E-commerce	1,630,453	5,008,745

Table 2: ROC AUC results of new datasets on the *dynamic link prediction task*. The best and second-best results are highlighted as **bold red** and <u>underlined blue</u>. **Average Rank** are computed by the experimental results of models on four large-scale datasets (eBay-Large, Taobao-Large, DGraphFin, YouTubeReddit-Large). We do not highlight the second-best if the gap is > 0.05 compared with the best result.

		Transductive						
Vao/TubeReddii-Small 0.8519±0.0007 0.8499±0.0012 0.8432±0.0032 0.8441±0.0014 0.0003 0.9442±0.0003 0.9043±0.0031 0.9032±0.0005 0.9045±0.0003 0.9442±0.0003 0.9442±0.0003 0.9442±0.0003 0.9442±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9482±0.0003 0.9462±0.000	_	JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT
Bay-Small 0.986 ± 0.0001 0.9753 ± 0.0002 0.754 ± 0.0003 0.7545 ± 0.0004 0.9698 ± 0.0006 0.7533 ± 0.0016 0.8978 ± 0.0002 0.7536 ± 0.0014 0.7515 ± 0.0005 0.7567 ± 0.0025 0.5224 ± 0.0003 0.9459 ± 0.0001 0.9608 ± 0.0006 0.7533 ± 0.0016 0.8978 ± 0.0032 0.9876 ± 0.0049 0.7516 ± 0.0004 0.7515 ± 0.0005 0.7567 ± 0.0025 0.5224 ± 0.0003 0.9459 ± 0.0001 0.9608 ± 0.0008 0.9569 ± 0.0001 0.9499 ± 0.0001 0.9499 ± 0.0001 0.9508 ± 0.0001 0.9508 ± 0.0001 0.9509 ± 0.0001 0.9509 ± 0.0001 0.9508 ± 0.0001 0.9933 ± 0.0008 0.9508 ± 0.0001 0.9938 ± 0.0001 0.9933 ± 0.0008 0.9508 ± 0.0001 0.9938 ± 0.0001 0.9933 ± 0.0001 0.9930 ± 0.0001	YouTubeReddit-Small eBay-Large DGraphFin Youtube-Reddit-Large	$\begin{array}{c} 0.8519 \pm 0.0007 \\ 0.9614 \pm 0.0 \\ 0.8165 \pm 0.0024 \\ 0.8532 \pm 0.0003 \end{array}$	0.8499 ± 0.0012 0.9619 ± 0.0001 0.8171 ± 0.0016 0.8529 ± 0.0006	0.8432 ± 0.0032 0.9642 ± 0.0003 0.8683 ± 0.0023 0.8458 ± 0.0025	0.8441 ± 0.0014 0.5311 ± 0.0003 0.6112 ± 0.0165 0.8536 ± 0.0026	0.7586 ± 0.0031 0.9442 ± 0.0003 0.5466 ± 0.0103 0.7466 ± 0.0012	0.9003 ± 0.0031 0.9608 ± 0.0 0.8611 ± 0.0035 0.916 ± 0.0025	0.8259 ± 0.005 0.9658 ± 0.0002 0.8258 ± 0.0001 0.8605 ± 0.0009
Bay-Small 0.9696 ± 0.0007 0.9674 ± 0.0018 0.9913 ± 0.0004 0.9698 ± 0.0006 0.9964 ± 0.0001 0.9982 ± 0.00 0.8978 ± 0.0002 0.8978 ± 0.0002 0.8978 ± 0.0002 0.8978 ± 0.0002 0.8978 ± 0.0002 0.8978 ± 0.0002 0.8978 ± 0.0002 0.8978 ± 0.0002 0.8978 ± 0.0002 0.8978 ± 0.0003 0.9876 ± 0.0049 0.7536 ± 0.0014 0.7515 ± 0.0006 0.7657 ± 0.0026 0.5224 ± 0.0003 0.9459 ± 0.0001 0.9608 ± 0.0 0.9999 ± 0.0001 0.9008 ± 0.0002 0.9008 ± 0.0001 0.9008 ± 0.0002 0.9	Average Rank	4.5	4.5	2.75	5.75	6	2.25	2.25
YouTubeReddit-Small 0.7582 ± 0.0003 0.7545 ± 0.0009 0.7276 ± 0.0033 0.7243 ± 0.0006 0.7533 ± 0.0016 0.8978 ± 0.0032 0.9876 ± 0.0014 0.7515 ± 0.0006 0.6439 ± 0.0089 0.5677 ± 0.0184 0.0479 ± 0.009 0.7683 ± 0.0014 0.7595 ± 0.0021 0.7539 ± 0.0005 0.9937 ± 0.0005 0.9939					Inductive			
Columbia Columbia	YouTubeReddit-Small eBay-Large DGraphFin Youtube-Reddit-Large	0.7582 ± 0.0003 0.7536 ± 0.0014 0.6884 ± 0.0051 0.7539 ± 0.0005	0.7545 ± 0.0009 0.7515 ± 0.0006 0.6876 ± 0.001 0.7554 ± 0.0003	0.7276 ± 0.0033 0.7657 ± 0.0026 0.6439 ± 0.0089 0.7243 ± 0.0016	0.7436 ± 0.0006 0.5224 ± 0.0003 0.5677 ± 0.0184 0.7501 ± 0.0019	0.7533 ± 0.0016 0.9459 ± 0.0001 0.5479 ± 0.009 0.7327 ± 0.0016	0.8978 ± 0.0032 0.9608 ± 0.0 0.8635 ± 0.0021 0.9128 ± 0.0031	0.9876 ± 0.0049 0.9999 ± 0.0001 0.7955 ± 0.0201 0.9863 ± 0.006
CBay-Small 0.9862 ± 0.0003 0.9836 ± 0.0016 0.9947 ± 0.0009 0.9712 ± 0.002 0.9985 ± 0.0 0.9988 ± 0.0 0.9999 ± 0.0	Average Rank	4	4.5	5.5	6.25	4.75	1.75	1.25
YouTubeReddit-Small eBay-Large 0.7695 ± 0.001 0.7695 ± 0.001 0.7655 ± 0.0018 0.7396 ± 0.0034 0.7242 ± 0.0004 0.7573 ± 0.0022 0.6932 ± 0.0002 0.6969 ± 0.0007 0.6903 ± 0.0004 0.7573 ± 0.0022 0.6972 ± 0.0014 0.6109 ± 0.0244 0.5906 ± 0.0087 0.8134 ± 0.0105 0.6363 ± 0.0065 0.9569 ± 0.0007 0.8973 ± 0.0 0.8973 ± 0.0 0.5768 ± 0.0071 0.7584 ± 0.0017 0.7583 ± 0.0007 0.5564 ± 0.0021 0.5742 ± 0.013 0.5742 ± 0.013 0.5646 ± 0.0024 0.7702 ± 0.0043 0.8693 ± 0.0065 0.7671 ± 0.0052 0.7671 ± 0.0055 0.5104 ± 0.0106 0.7674 ± 0.005 0.8458 ± 0.0043 0.9965 ± 0.0005 0.9967 ± 0.0014 1.0 ± 0.0 0.8973 ± 0.0 0.00956 ± 0.0007 0.5564 ± 0.0024 0.7571 ± 0.0062 0.7511 ± 0.0022 0.9356 ± 0.0004 0.9958 ± 0.0025 0.7671 ± 0.0055 0.5104 ± 0.0106 0.7674 ± 0.005 0.8458 ± 0.0043 0.9965 ± 0.0005 Average Rank 4.25 5 5.5 5.75 4.25 2.25 1 Bay-Small eBay-Large 0.9388 ± 0.0009 0.7436 ± 0.0015 0.7436 ± 0.0018 0.7265 ± 0.0055 0.7639 ± 0.002 0.749 ± 0.0011 0.7479 ± 0.004 0.864 ± 0.0071 0.9868 ± 0.0049 0.7526 ± 0.0013 0.7500 ± 0.0005 0.7639 ± 0.002 0.7519 ± 0.0004 0.9542 ± 0.0003 0.9615 ± 0.0 0.9999 ± 0.0011 0.7307 ± 0.000 0.7307 ± 0.000 0.7323 ± 0.0000 0.6883 ± 0.0024 0.7269 ± 0.0 0.6942 ± 0.0028 0.8716 ± 0.0028 0.7584 ± 0.0032 0.7584 ± 0.0032 0.7543 ± 0.0001 0.7247 ± 0.0001 0.6885 ± 0.0024 0.7269 ± 0.005 0.7922 ± 0.0018 0.9996 ± 0.0002 0.9996 ± 0.0002 0.7243 ± 0.0001 0.7247 ± 0.0001 0.6885 ± 0.0024 0.7269 ± 0.005 0.7922 ± 0.0118 0.8906 ± 0.0088 0.9969 ± 0.0002 0.9969 ± 0.0002 0.7243 ± 0.0001 0.7247 ± 0.0001 0.6885 ± 0.0024 0.7269 ± 0.0054 0.7922 ± 0.0118 0.8906 ± 0.0088 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0.0002 0.9969 ± 0		l			Inductive New-Old	I		
Columbia Columbia	YouTubeReddit-Small eBay-Large DGraphFin Youtube-Reddit-Large	0.7695 ± 0.001 0.6109 ± 0.0244 0.5768 ± 0.0071 0.7844 ± 0.0015	0.7655 ± 0.0018 0.5906 ± 0.0087 0.5735 ± 0.0007 0.7894 ± 0.0017	0.7396 ± 0.0034 0.8134 ± 0.0105 0.5564 ± 0.0021 0.7623 ± 0.0031	0.7242 ± 0.0004 0.6363 ± 0.0605 0.5742 ± 0.013 0.7457 ± 0.0062	0.7573 ± 0.0022 0.9569 ± 0.0007 0.5646 ± 0.0244 0.7511 ± 0.0022	$0.922 \pm 0.0002 \\ 0.8973 \pm 0.0 \\ 0.7702 \pm 0.0043 \\ 0.9356 \pm 0.0004$	0.9967 ± 0.0014 1.0 ± 0.0 0.8693 ± 0.0066 0.9958 ± 0.0025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Average Rank	4.25	5	5.5	5.75	4.25	2.25	1
YouTubeReddit-Small eBay-Large 0.7436 ± 0.0015 0.7436 ± 0.0018 0.7265 ± 0.0055 0.749 ± 0.0011 0.7479 ± 0.004 0.864 ± 0.0071 0.9868 ± 0.0049 0.7526 ± 0.0013 0.7526 ± 0.0013 0.7500 ± 0.0005 0.7639 ± 0.0027 0.5196 ± 0.0002 0.9542 ± 0.0003 0.9615 ± 0.0 0.9999 ± 0.0001 DGraphFin 0.7307 ± 0.0007 0.7323 ± 0.0002 0.6843 ± 0.0131 0.5649 ± 0.0248 0.5417 ± 0.0099 0.9015 ± 0.0028 0.7558 ± 0.0024 Youtube-Reddit-Large 0.6932 ± 0.0026 0.7022 ± 0.0007 0.6703 ± 0.0024 0.7269 ± 0.0 0.6942 ± 0.0028 0.8716 ± 0.0077 0.9796 ± 0.0103 Taobao-Large 0.7243 ± 0.0001 0.7247 ± 0.0001 0.6885 ± 0.0024 0.5256 ± 0.0054 0.7922 ± 0.0118 0.8906 ± 0.0088 0.9969 ± 0.0002 Average Rank 5 4.25 5.5 5.75 4.5 1.75 1.25 JODIE DyRep TGN TGAT CAWN NeurTW NAT		l			Inductive New-Nev	v		
JODIE DyRep TGN TGAT CAWN NeurTW NAT	YouTubeReddit-Small eBay-Large DGraphFin Youtube-Reddit-Large	0.7436 ± 0.0015 0.7526 ± 0.0013 0.7307 ± 0.0007 0.6932 ± 0.0026	0.7436 ± 0.0018 0.7500 ± 0.0005 0.7323 ± 0.0002 0.7022 ± 0.0007	0.7265 ± 0.0055 0.7639 ± 0.0027 0.6843 ± 0.0131 0.6703 ± 0.0024	0.749 ± 0.0011 0.5196 ± 0.0002 0.5649 ± 0.0248 0.7269 ± 0.0	0.7479 ± 0.004 0.9542 ± 0.0003 0.5417 ± 0.0099 0.6942 ± 0.0028	$0.864 \pm 0.0071 0.9615 \pm 0.0 0.9051 \pm 0.0028 0.8716 \pm 0.0077$	0.9868 ± 0.0049 0.9999 ± 0.0001 0.7584 ± 0.0323 0.9796 ± 0.0103
1	Average Rank	5	4.25	5.5	5.75	4.5	1.75	1.25
Total Rank 4.44 4.56 4.81 5.88 4.88 2.00 1.44		JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT
	Total Rank	4.44	4.56	4.81	5.88	4.88	2.00	1.44

A.2 Node Classification Task

The eBay-Small and eBay-Large datasets have node labels, so we conduct dynamic node classification experiments on both the eBay-Small and eBay-Large datasets. The AUC results are shown in Table 4. We can observe the similar results as in the paper. NeurTW achieves the best performance on both eBay-Small and eBay-Large datasets. NAT performs poorly on the node classification task.

88 A.3 Efficiency

Considering many real world applications and , we add **the inference time** metric to evaluate the efficiency of models. The inference time comparison per 100,000 edges is shown in Figure 1. According to the figure, we can observe the similar model efficiency results as in the paper. In terms of the inference time, JODIE, DyRep, TGN have almost the same efficiency, while NeurTW are much slower. TGAT achieves the second-best efficiency. NAT is relatively faster than temporal walk-based methods through caching and parallelism optimizations, *achieving a good trade-off between model quality and efficiency*.

Table 3: AP results of new datasets on the *dynamic link prediction task*. The best and second-best results are highlighted as **bold red** and <u>underlined blue</u>. We do not highlight the second-best if the gap is > 0.05 compared with the best result.

Transductive						
JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT
0.9938 ± 0.0004	0.9936 ± 0.0006	0.9983 ± 0.0003	0.9819 ± 0.0009	0.9981 ± 0.0	0.9991 ± 0.0	0.9975 ± 0.0002
0.8612 ± 0.0009	0.8594 ± 0.0012		0.8515 ± 0.0012	0.7625 ± 0.0042	0.9112 ± 0.0021	0.8325 ± 0.0068
						0.9398 ± 0.0004
						0.7956 ± 0.0012
						0.8628 ± 0.0015
0.7164 ± 0.0003	0.7142 ± 0.0008	0.844 ± 0.0011	0.5761 ± 0.0023	0.7616 ± 0.0069	0.8568 ± 0.016	0.7904 ± 0.0008
			Inductive			
0.9638 ± 0.0007	0.9619 ± 0.0017	0.9898 ± 0.0005	0.9675 ± 0.0007	0.9953 ± 0.0002	0.9982 ± 0.0	0.9998 ± 0.0001
0.7866 ± 0.0007	0.7833 ± 0.0009	0.7387 ± 0.0069	0.7551 ± 0.0002	0.7568 ± 0.0031	0.9086 ± 0.0022	0.9872 ± 0.0056
0.6989 ± 0.0018	0.6973 ± 0.0007	0.7096 ± 0.0030	0.518 ± 0.0002	0.9174 ± 0.0001	0.9308 ± 0.0	0.9999 ± 0.0001
0.6563 ± 0.002	0.6567 ± 0.0009	0.624 ± 0.006	0.5866 ± 0.0123	0.5428 ± 0.0082	0.8626 ± 0.0012	0.7053 ± 0.0185
0.7796 ± 0.0009	0.7818 ± 0.0009	0.73 ± 0.0029	0.7587 ± 0.0025	0.7353 ± 0.0022	0.9192 ± 0.0022	0.9849 ± 0.0071
0.6763 ± 0.0011	0.6746 ± 0.0011	0.6664 ± 0.0012	0.5315 ± 0.0027	0.7533 ± 0.011	0.8596 ± 0.0205	0.9941 ± 0.0007
			Inductive New-Old	l		
0.9849 ± 0.0007	0.9836 ± 0.0013	0.9931 ± 0.0008	0.9682 ± 0.0028	0.9985 ± 0.0001	0.999 ± 0.0	0.9999 ± 0.0
0.7963 ± 0.0013	0.7937 ± 0.0014	0.729 ± 0.0086	0.7296 ± 0.0013	0.762 ± 0.0041	0.9244 ± 0.0015	0.9966 ± 0.0016
0.5670 ± 0.0186	0.5870 ± 0.0074	0.8024 ± 0.0060	0.6504 ± 0.0385	0.9592 ± 0.0008	0.8458 ± 0.0	1.0 ± 0.0
0.6005 ± 0.0048	0.5872 ± 0.0059	0.5753 ± 0.0062	0.5927 ± 0.0058	0.5669 ± 0.0269	0.7572 ± 0.0025	0.8184 ± 0.0088
0.808 ± 0.0014	0.8142 ± 0.0019	0.7472 ± 0.0043	0.7526 ± 0.0097	0.7553 ± 0.0025	0.9368 ± 0.0009	0.9953 ± 0.0028
0.7009 ± 0.0013	0.698 ± 0.0014	0.6879 ± 0.0008	0.5254 ± 0.0074	0.7597 ± 0.0053	0.8459 ± 0.0103	0.9969 ± 0.0004
Inductive New-New						
0.923 ± 0.001	0.9226 ± 0.0024	0.98 ± 0.0007	0.9505 ± 0.0009	0.991 ± 0.0001	0.9973 ± 0.0	0.9997 ± 0.0004
0.7578 ± 0.0015	0.7582 ± 0.0021	0.7564 ± 0.0043	0.7718 ± 0.0023	0.7498 ± 0.004	0.8868 ± 0.0034	0.9861 ± 0.0063
0.6976 ± 0.0016	0.6957 ± 0.0007	0.7078 ± 0.0031	0.5154 ± 0.0001	0.93 ± 0.0003	0.9318 ± 0.0	0.9999 ± 0.0001
0.6802 ± 0.0005	0.6811 ± 0.0002	0.6526 ± 0.0098	0.5831 ± 0.0184	0.5379 ± 0.0071	0.8977 ± 0.0014	0.6529 ± 0.0249
0.7038 ± 0.0024	0.7115 ± 0.0007	0.6979 ± 0.002	0.7414 ± 0.0012	0.6965 ± 0.004	0.8848 ± 0.0023	0.9761 ± 0.0134
0.6738 ± 0.0005	0.6742 ± 0.0005	0.6611 ± 0.0011	0.53 ± 0.0023	0.7521 ± 0.0127	0.8738 ± 0.0145	0.9973 ± 0.0001
	0.9938 ± 0.0004 0.8612 ± 0.0009 0.9318 ± 0.0002 0.7705 ± 0.0009 0.8622 ± 0.0007 0.7164 ± 0.0003 0.9638 ± 0.0007 0.7866 ± 0.0007 0.6989 ± 0.0018 0.6563 ± 0.002 0.7796 ± 0.0009 0.6763 ± 0.0011 0.9849 ± 0.0013 0.5670 ± 0.018 0.6005 ± 0.004 0.7009 ± 0.0013 0.7009 ± 0.0013	0.9938 ± 0.0004	$\begin{array}{c} 0.9938 \pm 0.0004 \\ 0.8612 \pm 0.0009 \\ 0.8612 \pm 0.0009 \\ 0.8793 \pm 0.0002 \\ 0.9318 \pm 0.0002 \\ 0.9322 \pm 0.0002 \\ 0.9357 \pm 0.0009 \\ 0.8622 \pm 0.0007 \\ 0.8622 \pm 0.0007 \\ 0.7164 \pm 0.0003 \\ 0.7142 \pm 0.0008 \\ 0.7866 \pm 0.0007 \\ 0.6862 \pm 0.0007 \\ 0.7866 \pm 0.0007 \\ 0.6989 \pm 0.0018 \\ 0.6973 \pm 0.0009 \\ 0.6793 \pm 0.0012 \\ 0.9357 \pm 0.0009 \\ 0.8622 \pm 0.0007 \\ 0.9618 \pm 0.0007 \\ 0.9618 \pm 0.0007 \\ 0.9638 \pm 0.0017 \\ 0.9839 \pm 0.0018 \\ 0.6973 \pm 0.0007 \\ 0.6963 \pm 0.0011 \\ 0.6746 \pm 0.0011 \\ 0.6746 \pm 0.0011 \\ 0.6746 \pm 0.0011 \\ 0.9849 \pm 0.0007 \\ 0.9836 \pm 0.0013 \\ 0.9931 \pm 0.0008 \\ 0.5670 \pm 0.0186 \\ 0.5870 \pm 0.0074 \\ 0.808 \pm 0.0014 \\ 0.6973 \pm 0.0014 \\ 0.7992 \pm 0.0008 \\ 0.9931 \pm 0.0008 \\ 0.5972 \pm 0.0008 \\ 0.5972 \pm 0.0008 \\ 0.7078 \pm 0.0007 \\ 0.7578 \pm 0.0015 \\ 0.7582 \pm 0.0021 \\ 0.7564 \pm 0.0043 \\ 0.6975 \pm 0.0007 \\ 0.6802 \pm 0.0005 \\ 0.6811 \pm 0.0007 \\ 0.6979 \pm 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DODIE DyRep TGN TGAT CAWN	JODIE DyRep TGN TGAT CAWN NeurTW 0.9938 ± 0.0004 0.9936 ± 0.0006 0.9983 ± 0.0003 0.8515 ± 0.0001 0.7625 ± 0.0042 0.9112 ± 0.0021 0.9318 ± 0.0002 0.9322 ± 0.0002 0.9357 ± 0.0006 0.5239 ± 0.0002 0.9441 ± 0.0004 0.9307 ± 0.0 0.97705 ± 0.0024 0.8571 ± 0.0099 0.7705 ± 0.0024 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0009 0.7705 ± 0.0004 0.8571 ± 0.0002 0.8591 ± 0.0006 0.7475 ± 0.0017 0.9222 ± 0.0013 0.7164 ± 0.0003 0.7142 ± 0.0008 0.844 ± 0.0011 0.5761 ± 0.0023 0.7616 ± 0.0069 0.8568 ± 0.016 ■ Inductive 0.9638 ± 0.0007 0.9619 ± 0.0017 0.9898 ± 0.0005 0.9675 ± 0.0007 0.9953 ± 0.0002 0.9868 ± 0.0016 0.7568 ± 0.0017 0.7866 ± 0.0007 0.7333 ± 0.0009 0.7387 ± 0.0005 0.518 ± 0.0002 0.7568 ± 0.0031 0.9981 ± 0.0 0.06563 ± 0.001 0.9308 ± 0.0 0.06567 ± 0.0009 0.624 ± 0.006 0.5866 ± 0.0123 0.5428 ± 0.0082 0.8626 ± 0.0012 0.7796 ± 0.0009 0.7818 ± 0.0009 0.73 ± 0.0007 0.7587 ± 0.0025 0.7533 ± 0.0002 0.8664 ± 0.0011 0.6746 ± 0.0011 0.6664 ± 0.0012 0.5315 ± 0.0002 0.7353 ± 0.0002 0.9192 ± 0.0022 0.6763 ± 0.0013 0.7937 ± 0.0014 0.8024 ± 0.0060 0.6504 ± 0.0385 0.9952 ± 0.0001 0.9994 ± 0.0 0.6504 ± 0.0385 0.9952 ± 0.0001 0.9944 ± 0.0015 0.5870 ± 0.0188 0.5872 ± 0.0074 0.8024 ± 0.0060 0.6504 ± 0.0385 0.9952 ± 0.0008 0.8458 ± 0.0014 0.8024 ± 0.0060 0.5254 ± 0.00074 0.8142 ± 0.0015 0.7582 ± 0.0014 0.6879 ± 0.0003 0.7582 ± 0.0001 0.7564 ± 0.0043 0.7718 ± 0.0002 0.7553 ± 0.0003 0.9318 ± 0.0 0.000 0.9318 ± 0.000 0.6802 ± 0.0015 0.6987 ± 0.0007 0.7584 ± 0.0001 0.9550 ± 0.0003 0.9318 ± 0.0 0.000 0.6802 ± 0.0005 0.6811 ± 0.0002 0.6526 ± 0.0098 0.5814 ± 0.0001 0.9318 ± 0.00 0.9318 ± 0.0001 0.7564 ± 0.0015 0.6802 ± 0.0005 0.6811 ± 0.0002 0.6526 ± 0.0098 0.5814 ± 0.0001 0.9318 ± 0.001 0.7579 ± 0.0014 0.6802 ± 0.0005 0.6811 ± 0.0002 0.6526 ± 0.0098 0.5814 ± 0.0001 0.9318 ± 0.001 0.9931 ± 0.0

Table 4: ROC AUC results for the *dynamic node classification task* on the eBay datasets. The top-2 results are highlighted as **bold red** and <u>underlined blue</u>.

Dataset	JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT
eBay-Small eBay-Large	0.9274 ± 0.0017 0.7244 ± 0.0002	0.8677 ± 0.0356 0.7246 ± 0.0	0.913 ± 0.0025 0.6586 ± 0.0129	$\frac{0.9342 \pm 0.0002}{0.672 \pm 0.0016}$	0.9305 ± 0.0001 0.7710 ± 0.0002	0.9529 ± 0.0002 0.7859 ± 0.0	0.6797 ± 0.0115 0.5304 ± 0.0011
Average Rank	4	4.5	5.5	3.5	2.5	1	7

Figure 1: Inference time comparison per 100,000 edges.

O2. The discussion of the experimental results is mainly limited to the aspects listed in Table 1 (Memory, Attention, RNN, TempWalk, Scalability), so they lack detailed analysis. For example, CAWN and NeurTW both leverage TempWalk, but the experiments in Table 3 demonstrate that these two have different strengths and weaknesses on different datasets. Therefore, there should be more discussion on what specific differences in the characteristics

between CAWN and NeurTW contribute to these strengths and weaknesses. Similar discussions should be made for other methods to show the correlations between the design of existing methods and the datasets. Regarding the statement "NeurTW introduces a continuous-time operation that can depict evolution trajectory, which is potentially suitable for CanParl with a large time granularity", the meaning is unclear due to the lack of a sufficient description of the correlation between the evolution trajectory and large time granularity.

97

98

Response:

Thanks for the valuable suggestion! We have updated Section 4.4 in the paper (https://openreview.net/pdf?id=rnZm2vQq31) for discussing the differences between CAWN [1] and NeurTW [2].

CAWN [1] and NeurTW [2] perform well on the link prediction task and are both based on motifs and index anonymization operation. However, NeurTW [2] additionally constructs neural ordinary differential equations (NODEs). With a component based on neural ordinary differential equations, the extracted motifs allow for irregularly-sampled temporal nodes to be embedded explicitly over *multiple different interaction time intervals*, enabling the effective capture of the underlying spatiotemporal dynamics.

In NeurTW [2], The *Continuous Evolution* operation is illustrated in Equation 8 in the original paper (https://openreview.net/pdf?id=NqbktPUkZf7).

$$h'_{i} = h_{i-1} + \int_{t_{i-1}}^{t_{i}} f(h_{t}, \theta) dt,$$
 (1)

where $f\left(h_t, \theta\right)$ is the ODE function, implemented by an autoregressive gated recurrent unit with a parameter σ . The corresponding ODE function $\tilde{f}\left(\tilde{h}_s, s, \theta\right)$ follows:

$$\tilde{f}\left(\tilde{h}_{s}, s, \theta\right) := \frac{d\tilde{h}_{s}}{ds} = \left. \frac{dh_{t}}{dt} \right|_{t=s\left(t_{\text{end}}^{c} - t_{\text{start}}^{c}\right) + t_{\text{start}}^{c}} \frac{dt}{ds}$$

$$= f\left(h_{t}, t, \theta\right)|_{t=s\left(t_{\text{end}}^{c} - t_{\text{start}}^{c}\right) + t_{\text{start}}^{c}} \left(t_{\text{end}}^{c} - t_{\text{start}}^{c}\right)$$

$$= f\left(\tilde{h}_{s}, s\left(t_{\text{end}}^{c} - t_{\text{start}}^{c}\right) + t_{\text{start}}^{c}, \theta\right) \left(t_{\text{end}}^{c} - t_{\text{start}}^{c}\right)$$
(2)

Thus, Due to the neural ordinary differential equations (NODEs), NeurTW [2] performs better on datasets with a large time granularity.

114 CanParl is a Canadian parliament bill voting network extracted from open website [7]. Nodes are members of parliament (MPs), and edges are the interactions between MPs from 2006 to 2019.

We illustrate the distribution of temporal edge count for the CanParl dataset in Figure 2. As shown in Figure 2, CanParl dataset has a large time granularity and NeurTW [2] achieves the best performance on CanParl dataset. Inspired by the above analysis, we could infer that NeurTW is potentially suitable for datasets with a large time granularity, such as CanParl.

Figure 2: The distribution of temporal edge count for the CanParl dataset, and the illustration on the train-validation-test splitting.

O3. While the difficulty of the inductive New-New setting task is understandable, however, to say "Nevertheless, CAWN, NeurTW, and NAT still perform well due to their structure-aware techniques" is not sufficient. More detailed explanations of the structure-aware techniques should be provided.

121 Response:

- We appreciate this suggestion! We have updated the sentence in Section 4.2 of the paper (https:
- 123 //openreview.net/pdf?id=rnZm2vQq31) and added more detailes of the structure-aware tech-
- 124 niques.

120

- 125 CAWN, NeurTW, and NAT still perform well under the inductive New-New setting due to their
- 126 structure-aware techniques. CAWN and NeurTW are both based on motifs and index anonymization
- operation [1, 2]. NeurTW additionally constructs neural ordinary differential equations (NODEs).
- NAT relies on joint neighborhood features based on a dedicated data structure termed *N-caches* [3].

Comment 4

O4. Regarding the efficiency evaluation, it may be desirable to discuss the elapsed time for users (i.e., per epoch time \ average number of epochs). Then, it would be beneficial to break down the analysis using the per epoch time and average number of epochs, respectively. Also, the paper only reports the execution time and memory usage without conducting in-depth analyses of their correlations with the design of each existing method.

Response:

129

130

- 131 We appreciate the suggestion and totally agree!
- In many real world applications, the inference time (the elapsed time) of methods might be more
- important as they are deployed in the real world. Thus, we have added the inference time metric to
- evaluate the efficiency of TGNN models. See Section A.3 for details.

O5. Node classification becomes more challenging as the number of labels increases, but the paper only handles binary classification, limiting the benchmark's generality. Performance benchmarks for tasks with multiple label numbers are desired.

135

136

Response:

- Thanks for this valuable suggestion! We have added experiments of the node classification task with multiple label numbers.
- 139 In the previous works, only Reddit, Wikipedia, and MOOC datasets have node labels (two labels: 0
- and 1) and are used for binary node classification task. Through unremitting efforts, we have finded a
- multiple labels temporal dataset DGraphFin [5].
- DGraphFin is a collection of large-scale dynamic graph datasets, consisting of interactive objects,
- events and labels that evolve with time.It is a directed, unweighted dynamic graph consisting of
- millions of nodes and edges, representing a realistic user-to-user social network in financial industry.
- Nodes are users, and an edge from one user to another means that the user regards the other user as
- the emergency contact person [5].
- 147 There four classes. Below are the nodes counts of each class.
- occupation 0: 1210092
- 1491: 15509
- 150 2: 1620851
- 151 3: 854098
- Nodes of Class 1 are fraud users and nodes of 0 are normal users, and they the two classes to be predicted. Nodes of Class 2 and Class 3 are background users.
- We preprocess DGraphFin as the format of temporal graph. We open source the code of preprocess-
- ing DGraphFin dataset at https://github.com/qianghuangwhu/benchtemp/blob/master/
- 156 DGraphFin/DGraphFin.py.
- 157 DGraphFin dataset has been hosted on the open-source platform zenodo (https://zenodo.org/)
- with a Digital Object Identifier (DOI) 10.5281/zenodo.8267771 (https://zenodo.org/record/
- 159 8267846).
- The experimental results for dynamic node classification task on DGraphFin dataset are shown in
- Table 5. Different evaluation metrics are available, including Accuracy, Precision, Recall and F1.

$$\begin{aligned} & \text{Precision }_{\text{weighted}} = \frac{\sum_{i=1}^{N} \text{ Support }_{i} \times \text{ Precision }_{i}}{\sum_{i=1}^{N} \text{ Support }_{i}} \\ & \text{Recall }_{\text{weighted}} = \frac{\sum_{i=1}^{N} \text{ Support }_{i} \times \text{ Recall }_{i}}{\sum_{i=1}^{N} \text{ Support }_{i}} \\ & \text{F1}_{\text{weighted}} = \frac{2 \times \text{ Precision }_{\text{weighted}} \times \text{ Recall }_{\text{weighted}}}{\text{ Precision }_{\text{weighted}} \times \text{ Recall }_{\text{weighted}}} \end{aligned}$$

- where Support i is the number of supports for the i-th class.
- The experimental results of NeuralTW, and NAT are coming soon. As shown in Table 5, TGN
- achieves the best performance on dynamic node classification task with multiple labels, followed by
- 165 TGAT. JODIE and DyRep perform poorly.

Table 5: The experimental results for dynamic node classification task with multiple labels on DGraphFin dataset.

	JODIE	DyRep	TGN	TGAT	CAWN
		0.4400 ± 0.0117			
Precision	0.1933 ± 0.0062	0.1937 ± 0.0103	0.4806 ± 0.0053	0.4644 ± 0.0118	0.1906±0.0060
Recall	0.4396 ± 0.0070	0.4400 ± 0.0117	0.5696 ± 0.0056	0.5529 ± 0.0036	0.4366±0.0068
F1	0.2685 ± 0.0073	0.2690 ± 0.0121	0.4905 ± 0.0063	0.4744 ± 0.0020	0.2654±0.0071

O6. The statement "MOOC is relatively denser, and the temporal walk mechanism can effectively perceive local structures" is interesting, however, there is insufficient evidence to support the claim. Can the paper demonstrate that the effectiveness of the temporal walk mechanism changes in response to changes in graph density?

167 Response:

166

Figure 3: The distribution of temporal edge count for the MOOC dataset, and the illustration on the train-validation-test splitting.

We appreciate your valuable suggestion! We have added experiments to demonstrate that the effectiveness of the temporal walk mechanism changes in response to changes in graph density.

As shown in Figure 3, MOOC is relatively denser and CAWN based on the temporal walk mechanism (motifs) achieves the best performance on this dataset.

To demonstrate that the effectiveness of the temporal walk mechanism changes in response to changes in graph density, we adopt edges sampling strategy. We randomly sample a constant number N_e of temporal edges $\{(u_1,i_1),\ldots,(u_N,i_N)\}$ each time as a subgraph G_S of the original temporal graph. The number N_u of the source nodes is the number of the elements in set $\{u_1,\ldots,u_N\}$. The number N_i of the source nodes is the number of the elements in set $\{i_1,\ldots,i_N\}$.

The graph density σ_{D_S} in our paper is the temoral density of temoral edges (u_t, i_t) , the calculation formula is as follows:

$$\sigma_{D_S} = \frac{N_e}{N_u \times N_i}.\tag{4}$$

The number of sampled edges is a constant N_e . Thus, we sample two subgraph: G_{S_1} and G_{S_2} .

180 $N_u \times N_i$ of G_{S_1} is larger than that of G_{S_2} , so $\sigma_{D_{S_1}}$ is smaller than $\sigma_{D_{S_2}}$.

The parameters of sampled graphs G_{S_1} and G_{S_2} are shown in Table 6.

Table 6: The parameters of sampled graphs G_{S_1} and G_{S_2} .

	$ N_e $	N_u	N_i	$\mid \sigma_{D_S} \mid$
G_{S_1} G_{S_2}	100000 100000	4395 4264	36 75	0.6320 0.3127

The experimental results of CAWN based on the temporal walk mechanism (motifs) on G_{S_1} and G_{S_2} are shown in Table 7.

Table 7: The experimental results of CAWN on G_{S_1} and G_{S_2} .

		1			<i>D</i> 1	D 2	
		AUC				AP	
Transductive	Inductive	Inductive New-Old	Inductive New-Old	Transductive	Inductive	Inductive New-Old	Inductive New-Old
				0.8651 ± 0.021 0.8172 ± 0.0088			0.8511 ± 0.0174 0.7535 ± 0.0197

As shown in Table 7, CAWN performs better on G_{S_1} with a larger graph density. The experimental results demonstrate that the effectiveness of the CAWN based on temporal walk mechanism changes in response to changes in graph density.

Comment 7

O7. The proposed technique, TeMP, is only briefly described in seven lines, making it difficult to fully understand its features.

Response:

187

188

196

197

198

199

200

201

202

203

189 We are grateful for this suggestion!

TeMP is a novel approach that incorporates GNN aggregation and temporal structure. TeMP performs node pre-initialization as an alternative approach to global memory, and utilizes message passing on temporal subgraphs. Moreover, TeMP runs label propagation to capture evolving local structures, motivated by the temporal walk technique. We provide detail of TeMP at Section E of Appendix (https://openreview.net/attachment?id=rnZm2vQq31&name=supplementary_material).

Figure 4: Workflow of TeMP. U denotes user, and I denotes item.

As shown in Figure 4, given a dynamic graph (a), the processing of TeMP is as follows:

• Subgraph Construction (b).

We construct a subgraph with a temporal neighbor sampler with intervals adaptive to data. We try to find a reference timestamp and sample a subgraph before this timestamp. We have conducted experiments at various quantiles, and chosen the mean timestamp since it obtains the overall best performance.

• Embedding Generation (c). Upon subgraph construction, TeMP generates temporal embeddings for nodes and edges. The model architecture consists of three main components: temporal label propagation (LPA), message-passing operators, and a sequence updater. The temporal LPA captures

- the motif pattern, while the message-passing operators aggregate the original edge features. The sequence updater chooses RNN to update the embeddings with a memory module. Furthermore, TeMP uses a pre-initialization strategy to generate initial temporal node embeddings.
- We are '11 144' 15 CT MD 4 Cost of E of A cost 1 (114)
- We provide detail of TeMP at Section E of Appendix (https://openreview.net/attachment? id=rnZm2vQq31&name=supplementary_material).

References

- [1] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation learning in
 temporal networks via causal anonymous walks. In *International Conference on Learning Representations*,
 2021.
- 213 [2] Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learning on continuous-time dynamic graphs. In *Advances in Neural Information Processing Systems*, 2022.
- 215 [3] Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning. In *The First Learning on Graphs Conference*, 2022.
- 217 [4] Yiqiao Jin, Yeon-Chang Lee, Kartik Sharma, Meng Ye, Karan Sikka, Ajay Divakaran, and Srijan Kumar. 218 Predicting information pathways across online communities. *arXiv preprint arXiv:2306.02259*, 2023.
- [5] Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen, and
 Michalis Vazirgiannis. Dgraph: A large-scale financial dataset for graph anomaly detection. Advances in
 Neural Information Processing Systems, 35:22765–22777, 2022.
- [6] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. Learning tree-based deep
 model for recommender systems. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1079–1088, 2018.
- [7] Shenyang Huang, Yasmeen Hitti, Guillaume Rabusseau, and Reihaneh Rabbany. Laplacian change point
 detection for dynamic graphs. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 349–358, 2020.