Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	Е
1.1 Описание входных данных	7
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	11
3.1 Алгоритм конструктора класса cl_1	11
3.2 Алгоритм метода Method класса cl_1	11
3.3 Алгоритм деструктора класса cl_1	11
3.4 Алгоритм конструктора класса cl_2	12
3.5 Алгоритм метода Method класса cl_2	12
3.6 Алгоритм конструктора класса cl_3	13
3.7 Алгоритм метода Method класса cl_3	13
3.8 Алгоритм конструктора класса cl_4	13
3.9 Алгоритм метода Method класса cl_4	14
3.10 Алгоритм функции main	14
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	16
5 КОД ПРОГРАММЫ	22
5.1 Файл cl_1.cpp	22
5.2 Файл cl_1.h	22
5.3 Файл cl_2.cpp	22
5.4 Файл cl_2.h	23
5.5 Файл cl_3.cpp	23
5.6 Файл cl_3.h	24
5.7 Файл cl_4.cpp	24
5.8 Файл cl_4.h	24
5.9 Файл main.cpp	25

6 ТЕСТИРОВАНИЕ	26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	27

1 ПОСТАНОВКА ЗАДАЧИ

Полиморфизм в иерархии классов

Описать четыре класса которые последовательно наследуют друг друга, с номерами классов 1, 2, 3, 4. В каждом классе реализовать виртуальный метод с открытым доступом и одинаковым именем. Метод вычисляет значение многочлена степени номера класса и возвращает полученный результат. Коэффициенты и переменная многочлена целочисленные.

В основной функции реализовать алгоритм, в котором использовать один указатель на объект класса. Алгоритм:

- 1. Объявление указателя на объект класса.
- 2. Объявление четырех целочисленных переменных a1, a2, a3 a4, которые соответствуют коэффициентам многочлена (a1*x + a2*x*x + a3*x*x*x + a4*x*x*x*x).
- 3. Объявление целочисленной переменной x, которая соответствует <u>переменной</u> многочлена.
- 4. Ввод значения переменных а1, а2, а3 а4.
- 5. Создание объекта класса 4 посредством параметризированного конструктора, передав в качестве аргументов а1, а2, а3 а4. Обеспечить передачу необходимых коэффициентов объектам согласно наследственности классов.

6. Начало цикла

- 6.1. Реализовать ввод значения переменной х.
- 6.2. Если значение х равно нулю, то завершить цикл.
- 6.3. Иначе, реализовать ввод значения номера класса.
- 6.4. Согласно номеру класса вызвать метод вычисления многочлена

посредством объекта, который соответствует номеру класса и результат вывести.

7. Конец цикла.

1.1 Описание входных данных

Первая строка:

«целое число, значение a1» «целое число, значение a2» «целое число, значение a3» «целое число, значение a4»

Начиная со второй строки, построчно:

«целое число, значение х» «целое число, номер класса»

1.2 Описание выходных данных

Первая строка:

a1 = «целое число» a2 = «целое число» a3 = «целое число» a4 = «целое число»

Наименование коэффициента отделяется от предыдущего целого числа четырьмя пробелами.

Со второй строки и далее построчно:

Фрагменту «F(» предшествует 4 пробела

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект а класса cl_4 предназначен для указатель на объект класса cl_1;
- функция new для выделение памяти под объект;
- функция delete для освобождение выделенной под объект памяти;
- сіп объект стандартного потока ввода;
- cout объект стандартного потока вывода;
- switch множественный условный оператор;
- case, default решение условного оператора;
- if условный оператор;
- while оператор цикла с условием.

Класс cl_1:

- свойства/поля:
 - о поле Коэффициент для первой степени:
 - наименование a1;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод cl_1 Конструктор;
 - о метод Method Значение многочлена;
 - о метод ~cl_1 Деструктор.

Kласс cl_2:

- свойства/поля:
 - о поле Коэффициент для первой степени:
 - наименование a2;
 - тип int;

- модификатор доступа private;
- функционал:
 - о метод cl_2 Конструктор;
 - о метод Method Значение многочлена.

Класс cl_3:

- свойства/поля:
 - о поле Коэффициент для первой степени:
 - наименование а3;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод cl_3 Конструктор;
 - о метод Method Значение многочлена.

Kласс cl_4:

- свойства/поля:
 - о поле Коэффициент для первой степени:
 - наименование a4;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод cl_4 Конструктор;
 - о метод Method Значение многочлена.

Таблица 1 – Иерархия наследования классов

N₂	Имя класса		Модификатор	Описание	Номер
		наследники	доступа при		
			наследовании		
1	cl_1			Родительский класс	
		cl_2	public		2

N₂	Имя класса	Классы-	Модификатор	Описание	Номер
		наследники	доступа при		
			наследовании		
2	cl_2			Производный от cl_1	
		cl_3	public		3
3	cl_3			Производный от cl_2	
		cl_4	public		4
4	cl_4			Производный от cl_3	

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса cl_1

Функционал: Конструктор.

Параметры: int a1 - коэффициент.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl_1

N₂	Предикат	Действия	N₂
			перехода
1		присвоение полю a1=a1 - параметра	Ø

3.2 Алгоритм метода Method класса cl_1

Функционал: Значение многочлена.

Параметры: int x - переменная.

Возвращаемое значение: int - значение многочлена.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода Method класса cl_1

N₂	Предикат	Действия	No
			перехода
1		Возвращение а1*х	Ø

3.3 Алгоритм деструктора класса cl_1

Функционал: Деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 4.

Таблица 4 – Алгоритм деструктора класса cl_1

N	Предикат	Действия	No
			перехода
1		Уничтожение объекта	Ø

3.4 Алгоритм конструктора класса cl_2

Функционал: Конструктор.

Параметры: int a2,a1 - коэффициенты.

Алгоритм конструктора представлен в таблице 5.

Таблица 5 – Алгоритм конструктора класса cl_2

N₂	Предикат	Действия	No
			перехода
1		присвоение полю a2=a2 - параметра	Ø

3.5 Алгоритм метода Method класса cl_2

Функционал: Значение многочлена.

Параметры: int x - переменная.

Возвращаемое значение: int - значение многочлена.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода Method класса cl_2

No	Предикат	Действия	N₂
			перехода
1		Возвращение а2*х*х	Ø

3.6 Алгоритм конструктора класса cl_3

Функционал: Конструктор.

Параметры: int a3,a2,a1 - коэффициенты.

Алгоритм конструктора представлен в таблице 7.

Таблица 7 – Алгоритм конструктора класса cl_3

N₂	Предикат	Действия	N₂
			перехода
1		присвоение полю а3=а3 - параметра	Ø

3.7 Алгоритм метода Method класса cl_3

Функционал: Значение многочлена.

Параметры: int x - переменная.

Возвращаемое значение: int - значение многочлена.

Алгоритм метода представлен в таблице 8.

Таблица 8 – Алгоритм метода Method класса cl_3

No	Предикат	Действия	N₂
			перехода
1		Возвращение а3*х*х*х	Ø

3.8 Алгоритм конструктора класса cl_4

Функционал: Конструктор.

Параметры: int a4,a3,a2,a1 - коэффициенты.

Алгоритм конструктора представлен в таблице 9.

Таблица 9 – Алгоритм конструктора класса cl_4

N₂	Предикат	Действия	N₂
			перехода
1		присвоение полю а4=а4 - параметра	Ø

3.9 Алгоритм метода Method класса cl_4

Функционал: Значение многочлена.

Параметры: int x - переменная.

Возвращаемое значение: int - значение многочлена.

Алгоритм метода представлен в таблице 10.

Таблица 10 – Алгоритм метода Method класса cl_4

Nο	Предикат	Действия	N₂
			перехода
1		Возвращение а4*х*х*х	Ø

3.10 Алгоритм функции main

Функционал: Основной алгоритм программы.

Параметры: нет.

Возвращаемое значение: int - индикатор корректности завершения алгоритма.

Алгоритм функции представлен в таблице 11.

Таблица 11 – Алгоритм функции таіп

N₂	Предикат	Действия	N₂
			перехода
1	объявление указателя на объект а класса cl_1		2
2		объявление int a1, a2, a3, a4, x, i_cl	
3		ввод а1, а2, а3, а4 с клавиатуры	
4		вывод с первой строки коэффициентов через пробел	5
5		присвоение указателю a = new cl_4 с параметрами a1, a2, a3, a4	6
6	cin>>x		8
			7

N₂	Предикат	Действия	N₂
			перехода
7		освобождение памяти для указателя а	Ø
8	x==0		Ø
		ввод с клавиатуры i_cl	9
9		вывоод метода Method с параметром х для класса	6
		с именем "cl_i_class"	

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-6.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл cl_1.cpp

Листинг 1 - cl_1.cpp

```
#include "cl_1.h"
cl_1::cl_1(int a1){
    this->a1=a1;
}
int cl_1::Method(int x){
    return a1*x;
}
cl_1::~cl_1(){}
```

5.2 Файл cl_1.h

 $Листинг 2 - cl_1.h$

```
#ifndef __CL_1__H
#define __CL_1__H
class cl_1{
    private:
    int a1;
    public:
    cl_1(int a1);
    int Method(int x);
    ~cl_1();
};
#endif
```

5.3 Файл cl_2.cpp

 $Листинг 3 - cl_2.cpp$

```
#include "cl_2.h"
```

```
cl_2::cl_2(int a2, int a1):cl_1(a1){
    this->a2=a2;
}
int cl_2::Method(int x){
    return a2*x*x;
}
```

5.4 Файл cl_2.h

 $Листинг 4 - cl_2.h$

```
#ifndef __CL_2__H
  #define __CL_2__H
  #include "cl_1.h"
  class cl_2:public cl_1{
    private:
    int a2;
    public:
    cl_2(int a2,int a1);
    int Method(int x);
};
#endif
#indefi
#endif
```

5.5 Файл cl_3.cpp

Листинг 5 – cl_3.cpp

```
#include "cl_3.h"
cl_3::cl_3(int a3,int a2,int a1):cl_2(a2,a1){
    this->a3=a3;
}
int cl_3::Method(int x){
    return a3*x*x*x;
}
```

5.6 Файл cl_3.h

Листинг 6 – cl_3.h

```
#ifndef __CL_3__H
  #define __CL_3__H
  #include "cl_2.h"
  class cl_3:public cl_2{
    private:
    int a3;
    public:
    cl_3(int a3,int a2,int a1);
    int Method(int x);
};
#endif
```

5.7 Файл cl_4.cpp

Листинг 7 – cl_4.cpp

```
#include "cl_4.h"
cl_4::cl_4(int a1,int a2,int a3,int a4):cl_3(a3,a2,a1){
    this->a4=a4;
}
int cl_4::Method(int x){
    return a4*x*x*x*x;
}
```

5.8 Файл cl_4.h

Листинг $8 - cl_4.h$

```
#ifndef __CL_4__H
#define __CL_4__H
#include "cl_3.h"
class cl_4:public cl_3{
   private:
   int a4;
   public:
   cl_4(int a1,int a2,int a3,int a4);
   int Method(int x);
};
#endif
```

5.9 Файл таіп.срр

Листинг 9 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include "cl_1.h"
#include "cl_2.h"
#include "cl_3.h"
#include "cl_4.h"
#include <iostream>
using namespace std;
int main()
  cl_1* a;
  int a1, a2, a3, a4;
  int x,i_cl;
  cin>>a1>>a2>>a3>>a4;
  cout<<"a1="<<a1<<" a2="<<a2<<" a3="<<a3<<" a4="<<a4<<end1;
  a=new cl_4(a1,a2,a3,a4);
  while (cin>>x){
      if (x==0){
        return (0);
     cin>>i_cl;
      switch(i_cl){
        case(1):
           cout << "Class 1 F("<< x<<")="<< a->Method(x)<< endl;
           break;
        case(2):
                                                       F("<<x<<")="<<((cl_2*)a)-
           cout<<"Class
                              2
>cl_2::Method(x)<<endl;</pre>
           break;
        case(3):
           cout<<"Class
                              3
                                                       F("<<x<<")="<<((cl_3*)a)-
>cl_3::Method(x)<<endl;</pre>
           break;
        case(4):
           cout<<"Class
                              4
                                                       F("<<x<<")="<<((cl_4*)a)-
>cl_4::Method(x)<<endl;</pre>
           break;
        default:
           break;
      }
  delete a;
  return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 12.

Таблица 12 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
1 2 3 4	a1=1 a2=2 a3=3 a4=4	a1=1 a2=2 a3=3 a4=4
2 1	Class 1 F(2)=2	Class 1 F(2)=2

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).