MAT300 Spring 2021 Final Review

John J Li

April 21, 2021

Problem 1

Prove that for every nonnegative integer $n, 1 + 6n \le 7^n$.

 \square

Problem 2

Prove that every nonnegative integer n, $101|(10^2n-(-1)^n)$.

Problem 3

Let R be an equivalence relation on A and let $a, b \in A$.

Show that if aRb then $|a| \subseteq |b|$.

Show that $R \circ R \subseteq R$.

Problem 4

Let R be the following relation on \mathbb{Z} : xRy if $2|(x+y^2)$. Check if R is reflexive, symmetric, antisymmetric, and transitive (give a proof or a counterexample).

Problem 5

Let R be the following relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$, (x,y)R(z,w), if x|z and y|w.

Show that R is a partial order but not a total order.

Final all minimal elements (or state that none exists) of $(\mathbb{Z}^+ \times \mathbb{Z}^+) \setminus \{(1,1)\}.$

Problem 6

Prove that if $A \subseteq B$ and $C \subseteq B$, then $A \times \mathcal{P}(C) \subseteq B \times \mathcal{P}(B)$.

Problem 7

Let R be a relation on A. Show that R is symmetric if and only if $R^{-1} = R$.

Problem 8

Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be given by f((x,y)) = (3y-x, x-y). Check if f is injective and surjective.

Problem 9

Consider the following relation R on $\mathcal{Z} \times \mathcal{Z}$, (x,y)R(z,w) if 2|(x-z) and 2|(y-w). Prove that R is an equivalence relation and find $\mathcal{Z} \times \mathcal{Z} \setminus R$.

Problem 10

Let E be the set of positive even integers. Show that $E \times \{1,2\}$ is denumerable.

April 2021 2