SIMULAÇÃO DE SENSOR DE FLUXO ULTRASSÔNICO

Trabalho de conclusão de curso II

Elias Frota Coutinho Filho Prof. Me. Luis Rodolfo Rebouças Coutinho

Universidade Federal do Ceará Resumo Simulação de fluxoModelagem de sistemaSensores

Sumário

- 01 Introdução
- 02 Trabalhos relacionados
- 03 Fundamentação Teórica
- 04 Metodologia
- 05 Resultados

Introdução

- Gestão de recursos
- Regulamentação
 Base de desenvolvimento

Fonte: Imagem gerada por IA

Objetivos Objetivo geral

Como objetivo geral, este trabalho busca utilizar a linguagem Julia para simular o comportamento de medição de um sensor de fluxo ultrassônico.

Objetivos Objetivos específicos

- Modelar o comportamento do sensor na linguagem Julia.
 Validar o modelo em um ambiente simulado.
- Aplicar métricas de desempenho ao modelo.

Trabalhos relacionados

- 01 High-precision time-of-flight determination algorithm for ultrasonic flow measurement
- Research on Coupling Method of Flow Field and Acoustic Field Based on COMSOL for Ultrasonic Flowmeter
- 03 Numerical Simulation of Transit-time Ultrasonic Flowmeters in Deep-regulating Units
- O4 Clamp-On Measurements of Fluid Flow in Small-Diameter Metal Pipes Using Ultrasonic Guided Waves

Trabalhos relacionados

Tabela 1 – Trabalhos relacionados

Trabalho	Utiliza simulador	Utiliza o método não invasivo	Utiliza ferramentas de código livre
(ZHENG et al., 2018)	Sim	Sim	Não
(SUNOL; GARCIA, 2018)	Não	Não	Sim
(SUN et al., 2019)	Sim	Sim	Não
(DIXON et al., 2021)	Não	Sim	Sim
Trabalho proposto	Sim	Sim	Sim

Fonte: Autor

Fundamentação Teórica

Fundamentação Teórica Conceitos abordados

01 Mecânica dos fluidos

02 Sensores

03 Sinais ultrassonicos

04 Fluxômetros

05 Simuladores

Mecânica dos fluidos

Mecânica dos fluidos

- Definição de fluidos
 - Substância que se deforma sob a ação de uma força tangencial.
- Propriedades
 - o Densidade.
 - Viscosidade.
 - o Pressão.

$$\rho = \frac{m}{V} [kg/m^3]$$

$$v = \frac{\mu}{\rho}$$

 Δp

Mecânica dos fluidos

Navier-Stokes

- Descrevem a dinâmica de um fluido ao longo do tempo.
- Expressas por um conjunto de equações diferenciais parciais

$$\nabla \cdot \vec{V} = 0$$

$$\rho \frac{\partial \vec{V}}{\partial t} = -\nabla p + \mu \nabla^2 \vec{V} + F$$

Sensores

Sensores

Definição

 Dispositivo sensível a formas de energia do ambiente, capaz de converter uma grandeza mensurável.

Sensores

- Tipos de respostas e formas de condicionamento.
 - Digital
 - Saturação.
 - Analógico
 - Amplificação.

Sensores

• Transdutores

o Dispositivos de medição completos, compostos por um sensor e por circuitos de interface.

Sinais ultrassonicos

Definição

 Sinais ultrassônicos recebem esse nome por operarem em uma faixa de frequência superior à audível pelo ser humano, acima de 20 kHz.

• Frequência

- A frequência de um sinal é definida como o número de oscilações periódicas em um determinado intervalo de tempo.
- o A unidade de medida padrão para frequência é o Hz.

Fluxômetros

Fluxômetros

Definição

o Dispositivos que têm a função de medir fluxo.

• Fluxômetros ultrassônico

- o Utilizam sinais de ultrassom para realizar a medição de fluxo.
- o Tempo de trânsito.

Simuladores

Simuladores

- k-Wave.
 - MATLAB/C++
- COMSOL Multiphysics Simulation Software.
 - Software proprietário.
- Ansys.
 - Software proprietário.

