

Data Preprocessing

Machine Learning for Engineering Applications

Fall 2023

Dealing with Missing Data

- Missing data from the dataset is very common
- You will see blanks, NULLs, N/A, etc...
- There are techniques to deal with missing data
- Caution: The wrong technique can cause a baddesign model & accuracies

- Pandas! (Not the cute animal we all love)
- Pandas is a Python library for data analytics
- Pandas is great for importing & managing data in the world of Python
- Pandas is one of the most used libraries for data management in the Machine Learning World!

Site: https://pandas.pydata.org/

pandas

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

Importing and identifying missing data

```
import pandas as pd
from io import StringIO
csv data = \
... '''A,B,C,D
... 1.0,2.0,3.0,4.0
                                    10.0 11.0 12.0
... 5.0,6.0,,8.0
... 10.0,11.0,12.0,'''
df = pd.read csv(StringIO(csv data))
df
```

Location and count of missing data

```
import pandas as pd
from io import StringIO
csv data = \
... '''A,B,C,D
... 1.0,2.0,3.0,4.0
... 5.0,6.0,,8.0
... 10.0,11.0,12.0,'''
df = pd.read csv(StringIO(csv data))
df.isnull().sum*()
```

Numpy Array-like representation of Data Frame

```
import pandas as pd
csv data = \
                          array([[ 1., 2., 3., 4.],
... '''A,B,C,D
                                 [ 5., 6., nan, 8.],
... 1.0,2.0,3.0,4.0
                                  [ 10., 11., 12., nan]])
... 5.0,6.0,,8.0
... 10.0,11.0,12.0,'''
df = pd.read csv(csv data)
df.values
```

Technique of Elimination

Numpy Array-like representation of Data Frame

```
import pandas as pd
csv data = \
... '''A,B,C,D
... 1.0,2.0,3.0,4.0
... 5.0,6.0,,8.0
... 10.0,11.0,12.0,'''
df = pd.read csv(csv data)
df.dropna(axis=0) -
```

• axis=0 means: eliminate rows (samples) with "nan" values

Numpy Array-like representation of Data Frame

```
import pandas as pd
                                    0 1.0 2.0
csv data = \
... '''A,B,C,D
                                    1 5.0 6.0
... 1.0,2.0,3.0,4.0
... 5.0,6.0,,8.0
                                    2 10.0 11.0
... 10.0,11.0,12.0,'''
df = pd.read csv(csv data)
df.dropna(axis=1) ____
```

• axis=1 means: eliminate features (columns) with "nan" values

Threshold operation

 Removes samples with less than four feature values in the data frame

 Goes into feature 'C' and remove samples with "nan"

- Danger in removing too many samples
 - Analysis is not reliable or impossible
- Danger in removing too many features
 - Valuable feature information missing can affect the label classes needed for the machine to learn from

Imputing Missing Values

 In statistics, <u>imputation</u> is the process of replacing missing data with substituted values. When substituting for a data point, it is known as "*unit imputation;*" when substituting for a component of a data point, it is known as "*item imputation.*"

-- Wikipedia

- Dr. Valles calls it: Interpolation
- There are plenty of interpolation techniques to help in adding/replacing values to your dataset.

Average/Mean imputation

```
from sklearn.preprocessing import Imputer
                                                By feature
imr = Imputer (missing values='NaN', strategy='mean', axis=0)
imr = imr.fit(df.values)
imputed data = imr.transform(df.values)
imputed data
                                                    Median

    Most frequent

                                                    Less frequent
                           array([[ 1., 2., 3., 4.],
     2.0
                                  [ 5., 6., 7.5, 8.],
 5.0 6.0 NaN
               8.0
 10.0 11.0 12.0 NaN
                                   [ 10., 11., 12., 6.]])
```

Strings & Numerical Values

- Data comes in different flavors
- Some values consists of numerical values: integers, decimals, scientific notation, etc.
- Some values consist of characters: string of characters, single characters, special characters, etc.
- ML Models evaluate information in a numerical fashion; therefore, we need to "transform" string-like values to something that is workable.

- Ordinal features: values that can be categorized in a sorted or listed in an understandable order.
- Example: Clothing sizes
 - Small < Medium < Large < X-Large < so on
 - These are not numerical
 - However, the order is universally understood
- Ordinal features can then be arranged in such a way the ML model can "understand" the order its learning or the impact of such order.

- Nominal features: values are understood but do not have an order meaning or impact to its own information.
- Example: Colors
 - Blue < Red < Pink < Grey < so on ????
 - These are not numerical, and no order is understood
 - However, the value of the feature is known to be important
- Nominal features <u>will have to be transformed to a numeral form</u> that
 has represents the same information and it must be impactful to the
 overall learning of the machine.

```
import pandas as pd
```

```
color size price classlabel
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1
```

Color: Nominal Feature
Size: Ordinal Feature

Price: Numerical Feature

- Ordinal features: values can be assigned!
- Example: Clothing Sizes

classlabel	price	size	color	
class1	10.1	1	green	0
class2	13.5	2	red	1
class1	15.3	3	blue	2

Don't forget the other ordinal feature!

```
import numpy as np
```

This is transforming 'classlabel' using Numpy

```
class mapping = {label:idx for idx, label in
    ...enumerate(np.unique(df['classlabel']))}
df['classlabel'] = df['classlabel'].map(class mapping)
df
                                  classlabel
           color size
                         price
                      1 10.1
           green
                      2 13.5
             red
                    3 15.3
            blue
```

Don't forget the other ordinal feature!...part 2

```
from sklearn.preprocessing import LabelEncoder
```

```
class_le = LabelEncoder()
```

```
y = class le.fit transform(df['classlabel'].values)
```


This is transforming 'classlabel' using Scikit-Learn

Encoding (Nominal)

- Encoders in Python are great!... Sort of...
- They help to quickly take care of the transformation of nominal features

- The simplest case is the Label Encoder
 - This encoder detects string values
 - Assigns integer values

What's the problem with this...?

Example:

```
X = df[['color', 'size', 'price']].values
color le = LabelEncoder()
X[:, 0] = color le.fit transform(X[:, 0])
                                                 blue = 0
                                                 green = 1
                                                 red = 2
                        3, 15.3]], dtype=object)
```

One-Hot Encoding: This will help with the problem below

- This technique will help create temporary (dummy) features to better break the Nominal feature.
- Binary representations for each feature
- Expand the number of columns to add all possible differences

Example

```
from sklearn.preprocessing import OneHotEncoder
```

```
ohe = OneHotEncoder(categorical_features=[0])
ohe.fit_transform(X)
```

```
array([[ 0. , 1. , 0. , 1. , 10.1], [ 0. , 0. , 1. , 2. , 13.5], [ 1. , 0. , 0. , 3. , 15.3]])
```

Don't Forget... Partition your Data

```
from sklearn.model selection import train test split
X, y = df wine.iloc[:, 1:].values, df wine.iloc[:, 0].values
X_train, X_test, y_train, y_test = \
     ... train test split(X, y,
     \dots test size=0.3,
     ... random state=0,
     ... stratify=y)
```

Normalization Standardization

Already covered this one

 Standardized the feature range where the Mean = 0 and Standard Deviation = 1

from sklearn.preprocessing import
StandardScaler

stdsc = StandardScaler()

X_train_std = stdsc.fit_transform(X_train)

X_test_std = stdsc.transform(X_test)

$x_{std}^{(i)}$	_	$x^{(i)} - \mu_x$
	_	σ_{x}

Input	Standardized
0.0	-1.46385
1.0	-0.87831
2.0	-0.29277
3.0	0.29277
4.0	0.87831
5.0	1.46385

Normalization transforms the range of the feature [0,1]

- Knowing the minimum & maximum is crucial
- Therefore, Python has the magical min-max scaling capabilities

```
from sklearn.preprocessing import \min X_{norm} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}}

x_{norm}^{(i)} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}}

x_{max}^{(i)} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}}

x_{max}^{(i)} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}}
```

For every data sample in the feature:

- Not all models require features to be normalized or standardize
- Random Forest, Decision Tree, *k*-NNs do not really benefit from having its features scaled.
- Some highly require it due to the design and architecture of the model (perceptron)
- Research will lead you to the right answers!

Impactful Features

 L1 yields to spares feature vectors (many zeros for feature weights)

 L1 is mainly used as the technique to perform feature selection

- This is useful for high dimensional datasets
- The L1 Penalty:

$$L1: \|\boldsymbol{w}\|_{1} = \sum_{j=1}^{m} |w_{j}|$$

- L2 is a penalty term that is added to the cost function of the model
- L2 help to regulate the size of the big weights vs smaller weights
- The <u>penalty strength</u> is the *lambda* term (λ)
- The L2 Penalty:

$$L2: \|\mathbf{w}\|_{2}^{2} = \sum_{j=1}^{m} w_{j}^{2}$$


```
from sklearn.linear model import LogisticRegression
lr = LogisticRegression(penalty='11', C=1.0)
lr.fit(X train std, y train)
print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 1.0
print('Test accuracy:', lr.score(X test std, y test))
Test accuracy: 1.0
lr.coef
array([[1.24559337, 0.18041967, 0.74328894, -1.16046277, 0., 0., 1.1678711,
0., 0., 0., 0., 0.54941931, 2.51017406],
[-1.53720749, -0.38727002, -0.99539203, 0.3651479, -0.0596352, 0.,
0.66833149, 0., 0., -1.9346134, 1.23297955, 0., -2.23135027],
1.56391408, -0.81933286, -0.49187817, 0.]])
```

Feature Selection & Extraction

One of the ways to avoid overfitting: Dimensionality reduction

Two types:

- Feature Selection
- Feature Extraction
- Feature Selection: generate a subset of features
- Feature Extraction: create a new feature from features

Next Assignment