Detection error and fidelity benchmarking

Analyzing Ni group preliminary data 230213

Daniel Mark, MIT

1. Detection error

How to correct detection errors:

(Single qubit) "confusion matrix," from estimated detection errors

$$C_0 = \begin{pmatrix} 0.957 & 0.06 \\ 0.043 & 0.94 \end{pmatrix}$$

Post-processing expt. data: let $\vec{p}_{\rm Emp}$ be 2^N -vector of empirical frequencies of each bitstring. Corrected frequencies:

$$\overrightarrow{f'} = C^{-1 \otimes L} \overrightarrow{f}$$

Estimated frequencies $\overrightarrow{f'}(z)$ will not be normalized, may be negative, and does not lie in blockaded subspace. We project onto blockaded subspace and normalize:

$$\vec{f}_{\text{est}}(z) = \frac{\mathbb{P}_{\text{bl}}[f'(z)]}{\sum_{z} \mathbb{P}_{\text{bl}}[f'(z)]}$$

1. Detection error

 $C_0 = \begin{pmatrix} 0.957 & 0.06 \\ 0.043 & 0.94 \end{pmatrix}$

Sanity check on "confusion matrix": Checking percentage in blockaded subspace

Going the other way: With theoretical $p(z,t) = |\langle z|\Psi_0\rangle|^2$ (all z's in blockaded subspace), we can compute % of measured bitstrings in blockaded subspace:

$$\%_{\text{bl}} = \sum_{z \in \text{bl}} (C\vec{p})(z)$$

Simulation (with C_0): $\%_{\rm bl}^{\rm sim} = 88\%$

Experiment: $\%_{hl}^{exp} = 66\%$

Trying to match $\%_{bl}^{exp}$ with $\%_{bl}^{sim}$ gives $C_1 \approx \begin{pmatrix} 0.87 & 0.13 \\ 0.13 & 0.87 \end{pmatrix}$ (13% detection error), does not improve F_d scores (see below)

Important to figure out detection error confusion matrix (see 1*. for more sophisticated analysis)

Ground Rydberg

1.* Looking at marginals

Probability of finding these configurations, averaged over bulk (removing 2 boundary sites)

	00				
Data	0.37	0.27	0.27	0.08	
Sim. detection err., C_0	0.42	0.28	0.28	0.02	
Sim. detection err., C_1	0.39	0.27	0.27	0.07	
Ideal simulation	0.42	0.29	0.29	0	
Theoretical limit: inf. temp	0.44	0.28	0.28	0	

- 1. Few-qubit marginal probabilities can be used to verify detection error model (theory tbd)
- 2. Marginals from data are a lot closer to C_1 than C_0 (but not perfect agreement)

$$C_0 = \begin{pmatrix} 0.94 & 0.043 \\ 0.06 & 0.957 \end{pmatrix}, \qquad C_1 = \begin{pmatrix} 0.87 & 0.13 \\ 0.13 & 0.87 \end{pmatrix}$$

13% symmetric detection error, estimated by matching blockaded subspace probabilities

- 3. Can in principle identify correlated detection errors
- 4. Bitstring distribution from chaotic evolution is close to "inf. Temp." uniform distribution over blockaded bitstrings

	000	00	000	$\bigcirc \bullet \bullet$	• 00			
Data	0.23	0.13	0.22	0.06	0.14	0.13	0.07	0.02
Sim. detection err., \mathcal{C}_0	0.25	0.15	0.29	0.02	0.15	0.11	0.02	0.005
Sim. detection err., C_1	0.23	0.15	0.24	0.05	0.15	0.11	0.05	0.02
Ideal simulation	0.25	0.16	0.32	0	0.16	0.11	0	0
Theoretical limit: inf. temp	0.27	0.17	0.27	0	0.17	0.10	0	0

Detection error and fidelity benchmarking

Defect distribution

data_2_8.mat

	Left	Right
2us (469)	69.3%	66.3%
3.3us (490)	68.8%	68.0%
4.62us (421)	66.3%	56.3%

data_2_8_continue.mat

	Left	Right
2us (68)	70.6%	67.6%
3.3us (87)	72.4%	72.4%
4.62us (71)	67.6%	67.6%

data_2_9.mat

	L=24, PBC
2us (216)	37.5%
3.3us (198)	34.8%
4.62us (204)	29.9%

	00			
"2_8"	0.37	0.27	0.27	0.08
"2_9"	0.43	0.26	0.26	0.05

2. Benchmarking protocol

Benchmarking: Estimating fidelity by comparing simulated distribution p(z, t) with experimental one

Expt. Data

Inverting detection error

$$\{z_i\} \rightarrow p_{\rm Emp}(z) \rightarrow \vec{p}_{\rm Est} = (C^{-1})^{\bigotimes L} \vec{p}_{\rm Emp}$$

Simulation

Ideal distribution

$$p_{\text{avg}}(z) = \int_0^\infty p(z, t) \, dt$$

Estimated many-body fidelity

$$F_d \equiv 2 \frac{\sum_z p_{\text{Est}}(z) p(z,t) / p_{\text{avg}}(z)}{\sum_z p(z,t)^2 / p_{\text{avg}}(z)} - 1$$

Estimated fidelity

3. Actual data

2 chains of length 8

Start from $|g\rangle^{\otimes 8}$, evolve with

$$H = \sum_{j} \left(-\Delta_{j} \hat{n}_{j} + \frac{\Omega_{j}}{2} \hat{X}_{j} \right) + \sum_{i < j} \frac{C_{6}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|^{6}} \hat{n}_{i} \hat{n}_{j}$$

for 2us, 3.3us, 4.62us, with

$$\Delta_j \approx (2\pi) \times 0.1 \text{ MHz}$$
 $\Omega_j \approx (2\pi) \times 1.53 \text{ MHz}$
 $C_6/a^6 \approx (2\pi) \times 10 \text{ MHz}$

a = lattice constant

3. Benchmarking protocol: Actual data

Sanity check: testing against multiple times If model + data processing is correct, fidelity will peak at one time (2us)

Simulated data shows peak, but actual data doesn't Likely culprit: wrong confusion matrix

*Ideal simulated data still has small signal-to-noise ratio.

Cause: Scar-like physics of Hamiltonian, leads to small "effective dimension" Solution: Go to L=16 (next slide)

4. Fix for benchmarking protocol: Scaling up

- 1. With L = 16, effective dimension goes from $D \approx 7$ to $D \approx 50$
- 2. Signal to noise ratio a lot better! (dark blue curve)
- 3. Peak still prominent even with worst case 13% per site detection error, with 3000 samples (light blue curve). At 1000 samples, peak is less prominent

