ELTE IK - Programtervező Informatikus BSc

Záróvizsga tételek

4. Számelmélet, gráfok

Számelmélet, gráfok, kódoláselmélet

Halmazok, relációk, függvények és műveletek. Komplex számok. Leszámlálások véges halmazokon. Irányítatlan és irányított gráfok, fák, Euler-és Hamilton-gráfok, gráfok adatszerkezetei. Számelméleti alapfogalmak, oszthatóság, kongruencia, prímek. Polinomok és műveleteik, maradékos osztás.

1 Számelmélet

1.1 Halmazok

A halmaz (rendszer, osztály, összesség, ...) elemeinek gondolati burka. Egy halmazt az elemei egyértelműen meghatároznak.

Alapfogalmak

- Üres halmaz
 - Az a halmaz, amelynek nincs eleme az Üres halmaz. Jele: \emptyset . A meghatározottsági axióma alapján ez egyértelmű
- Részhalmaz

Azt mondjuk, hogy **A részhalmaza B-nek** $(A \subseteq B)$, ha $\forall a \in A : a \in B$, azaz A minden elemét tartalmazza B. **A valódi részhalmaza B-nek** $A \subset B$, ha $A \subseteq B$, de $A \neq B$, azaz B-nek van legalább egy olyan eleme, ami nem eleme A-nak.

• Hatvány halmaz

Ha A egy halmaz, akkor azt a halmazrendszert, melynek elemei pontosan az A halmaz részhalmazai az A hatványhalmazának mondjuk, és 2^A -val jelöljük.

$$\begin{split} &-A=\emptyset, 2^{\emptyset}=\emptyset\\ &-A=\{a\}, 2^{\{a\}}=\{\emptyset, \{a\}\}\\ &-A=\{a,b\}, 2^{\{a,b\}}=\{\emptyset, \{a\}, \{b\}, \{a,b\}\}\\ &-|2^A|=2^{|A|} \end{split}$$

Műveletek

- Unió
 - Az A és B halmazok uniója: $A \cup B$ az a halmaz, mely pontosan az A és a B elemeit tartalmazza.
- Metszet

Az A és B halmazok metszete: $A \cap B$ az a halmaz, mely pontosan az A és a B közös elemeit tartalmazza: $A \cap B = \{x \in A : x \in B\}$

• Diszjunkt

Ha $A \cap B = \emptyset$, akkor A és B diszjunktak.

- Különbség
 - Az A és B halmazok különbsége az $A \setminus B = \{x \in A : x \notin B\}$
- Komplementer
 - Egy rögzített X alaphalmaz és $A\subseteq X$ részhalmaz esetén az A halmaz komplementere az $\overline{A}=A'=X\diagdown A$
- Szimmetrikus differencia

$$A\triangle B = (A \diagdown B) \cup (B \diagdown A)$$

Tulajdonságok

- Unió
 - $-A \cup \emptyset = A$
 - $-A \cup (B \cup C) = (A \cup B) \cup C$ (asszociativitás)
 - $-A \cup B = B \cup A$ (kommutativitás)
 - $-A \cup A = A$ (idempotencia)
 - $-A \subseteq B \iff A \cup B = B$
- Metszet
 - $-A \cap \emptyset = \emptyset$
 - $-A \cap (B \cap C) = (A \cap B) \cap C$ (asszociativitás)
 - $-A \cap B = B \cap A$ (kommutativitás)
 - $-A \cap A = A$ (idempotencia)
 - $-A \subseteq B \iff A \cap B = A$
- Unió és Metszet disztributivitási tulajdonságai
 - $-A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Különbség
 - $-A \backslash B = A \cap \overline{B}$
- Komplementer
 - $-\overline{\overline{B}} = A$
 - $-\overline{\emptyset} = X$
 - $-\overline{X} = \emptyset$
 - $-A \cap \overline{A} = \emptyset$
 - $-A \cup \overline{A} = X$
 - $-A \subseteq B \Longleftrightarrow \overline{B} \subseteq \overline{A}$
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}$
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Szimmetrikus differencia
 - $-A\triangle B=(A\cup B)\setminus (B\cap A)$

1.2 Relációk, rendezések

Alapfogalmak

- Rendezett pár
 - (x,y) rendezett pár, ha $(x,y)=(u,v)\Longleftrightarrow x=u \land y=v$. Ezt a tulajdonságot halmazokkal definiáljuk:

$$(x,y) := \{\{x\}, \{x,y\}\}$$

• Descartes-szorzat

X,Y halmazok Descartes-szorzata vagy direkt szorzata:

$$X \times Y := \{(x, y) : x \in X, y \in Y\}$$

• Binér reláció

Egy halmazt binér reláció
nak nevezünk, ha minden eleme rendezett pár. Ha R binér reláció é
s $(x,y)\in R,$ akkor gyakran írjuk: xRy

• Reláció

Ha X, Y halmazokra $R \subset X \times Y$, akkor R reláció X és Y között.

• Értelmezési tartomány

Az R binér reláció értelmezési tartománya:

$$dmn(R) := \{x \mid \exists y : (x, y) \in R\}$$

• Érték készlet

Az R binér reláció érték készlete:

$$rng(R) := \{ y \mid \exists x : (x, y) \in R \}$$

 \bullet Inverz

Egy R binér reláció inverze:

$$R^{-1} := \{(a, b) : (b, a) \in R\}$$

• Halmaz képe

Legyen R binér reláció, és A halmaz. Az A halmaz képe:

$$R(A) := \{ y \mid \exists x \in A : (x, y) \in R \}$$

• Kompozíció

R és S binér relációk kompozíciója:

$$R \circ S := \{(x, y) \mid \exists z : (x, z) \in S \land (z, y) \in R \}$$

Tulajdonságok

Az R egy X-beli binér reláció (azaz $R \subset X \times X$)

1. tranzitív

$$\forall x, y, z : (x, y) \in R \land (y, z) \in R \Longrightarrow (x, z) \in R$$

2. szimmetrikus

$$\forall x, y : (x, y) \in R \Longrightarrow (y, x) \in R$$

3. antiszimmetrikus

$$\forall x, y : (x, y) \in R \land (y, x) \in R \Longrightarrow x = y$$

4. szigorúan antiszimmetrikus

$$\forall x, y : (x, y) \in R \Longrightarrow (y, x) \notin R$$

5. reflexív

$$\forall x \in X : (x, x) \in R$$

6. irreflexív

$$\forall x \in X : (x, x) \notin R$$

7. trichotóm

Ha minden $x,y\in X$ esetén az alábbiak közül pontosan egy teljesül

- a) x = y
- b) $(x, y) \in R$
- c) $(y, x) \in R$
- 8. dichotóm

$$\forall x, y \in X : (x, y) \in R \lor (y, x) \in R$$

Más néven az elemek összehasonlíthatóak.

Rendezések

• Ekvivalenciareláció, osztályozás

 \boldsymbol{X} halmaz, \boldsymbol{R} X-beli binér reláció ekvivalencia
reláció, ha

- Reflexív
- Tranzitív
- Szimmetrikus

X részhalmazainak egy $\mathcal O$ rendszerét osztályozásnak hívjuk, ha $\mathcal O$ páronként diszjunkt nemüres halmazokból álló halmazrendszer, melyre $\cup \mathcal O = X$

Tétel:

Egy ekvivalenciareláció meghatároz egy osztályozást. Fordítva: $\mathcal O$ osztályozásra

 $R = \bigcup \{Y \times Y : Y \in \mathcal{O}\}$ ekvivalenciareláció.

• Részbenrendezés

X halmaz, R X-beli binér reláció részbenrendezés, ha

- Reflexív
- Tranzitív
- Antiszimmetrikus
- Teljes rendezés

X halmaz, R X-beli binér reláció (teljes) rendezés, ha

- Reflexív
- Tranzitív
- Antiszimmetrikus
- Dichotóm

Magyarul ha egy részbenrendezés dichotóm (tehát minden eleme összehasonlítható), akkor (teljes) rendezés.

• Szigorú és gyenge reláció, rendezés

X halmaz, R,S relációk X-beliek. Ha

$$xRy \land x \neq y \Rightarrow xSy$$

akkor S-et az R szigorításának nevezzük.

Megfordítva, ha

$$xRy \lor x = y \Rightarrow xTy$$

akkor T az R-hez megfelelő gyenge reláció.

Megjegyzés: Tulajdonképpen a reflexívitás elvételéről és hozzáadásáról van szó. Egy részbenrendezés esetén a megfelelő szigorú reláció (szigorú részbenrendezés) tehát irreflexív, következésképpen szigorúan antiszimmetrikus is. Megfordítva: Egy X-beli szigorú részbenrendezés (tran., irrefl., szig. ant.) megfelelő gyenge relációja részbenrendezés.

Korlátok

• Legkisebb, legnagyobb, minimális, maximális elem

X halmazbeli részbenrendezés (\preccurlyeq) legkisebb (legelső) elemén egy olyan $x \in X$ elemet értünk, melyre: $\forall y \in X : x \preccurlyeq y$. (Ilyen nem biztos, hogy létezik, de ha igen, akkor egyértelmű).

Hasonlóan a legnagyobb (utolsó) elem olyan $x \in X$, hogy $\forall y \in X : y \leq x$.

x-et minimálisnak nevezzük, ha nincs nála kisebb elem, maximálisnak, ha nincs nála nagyobb elem. (Szemben a legkisebb/legnagyobb elemekkel, minimális/maximális elemből több is lehet. Ha viszont X rendezett, akkor legkisebb=minimális, legnagyobb=maximális.)

• Alsó, felső korlát

X részbenrendezett halmaz, $Y \subset X$. Az $x \in X$ elem az Y alsó korlátja $\forall y \in Y : x \leq y$. (felső korlátja: $\forall y \in Y : y \leq x$). Látható, hogy x nem feltétlenül eleme Y-nak, sőt az is lehet, hogy Y-nak nincs alsó/felső korlátja, vagy akár több is van. Ha azonban $x \in Y$, akkor egyértelmű és ez Y legkisebb eleme.

• Infimum, szuprémum

Ha az alsó korlátok között van legnagyobb elem, azt Y alsó határának, infimumának nevezzük. (Jele: $\inf Y$)

Ha a felső korlátok között van legnagyobb elem, azt Y felső határának, szuprémumának nevezzük. (Jele: $\sup Y$)

• Alsó, felső határ tulajdonság

X részbenrendezett halmaz. Ha $\forall \emptyset \neq Y \subset X: Y$ felülről korlátos és van szuprémuma, akkor felső határ tulajdonságú. Illetve ha $\forall \emptyset \neq Y \subset X: Y$ alulról korlátos és van infimuma, akkor alsó határ tulajdonságú.

1.3 Függvények és műveletek

1.3.1 Függvények

Definíció

Egy f reláció függvény, ha

$$(x,y) \in f \land (x,y') \in f \Longrightarrow y = y'$$

Más szóval minden x-hez legfeljebb egy olyan y létezik, hogy $(x,y) \in f$

Így minden $x \in \text{dmn}(f)$ -re az $f(x) = \{y\}$, melyet f(x) = y vagy $f: x \mapsto y$ vagy $f_x = y$ is szoktunk jelölni.

Értelmezési tartomány, értékkészlet

Az $f: X \to Y$ jelölést használjuk, ha dmn(f) = X.

Az $f \in X \to Y$ jelölést használjuk, ha dmn $(f) \subset X$ (amikor dmn $(f) \subsetneq X$ is előfordulhat).

Mindkét esetben $rng(f) \subset Y$.

Injektív

f függvény kölcsönösen egyértelmű/injektív, ha

$$f(x) = y \land f(x') = y \implies x = x'$$

Ez azzal ekvivalens, hogy f^{-1} reláció is függvény.

Szürjektív

Az f függvény szürjektív, ha

$$\forall y \in Y : \exists x \in X : f(x) = y$$

Azaz rng(f) = Y. Magyarul az f függvény az egész Y-ra képez.

Bijektív

Ha az f függvény injektív és szürjektív, akkor bijektív.

Indexelt család

Az x függvény i helyen felvett értékét x_i -vel is szoktuk jelölni. Ilyenkor gyakran dmn(f) = I értelmezési tartományt indexhalmaznak, elemeit indexeknek, rng(f)-et indexelt halmaznak, és magát az x függvényt indexelt családnak szoktuk nevezni.

1.3.2 Műveletek

Definíciók

- Binér művelet $X \text{ halmazon egy } f: X \times X \to X \text{ függvény binér művelet}.$
- Unér művelet $X \text{ halmazon egy } f: X \to X \text{ függvény unér művelet}.$
- Nullér művelet $X \text{ halmaz, } f: \{\emptyset\} \to X \text{ nullér művelet. (Gyakorlatilag elemkiválasztás)}$

Tulajdonságok

- Legyen \spadesuit , c binér műveletek X-en.
 - 1. ♠ asszociatív, ha

$$\forall x, y, z \in X : (x \spadesuit y) \spadesuit z = x \spadesuit (y \spadesuit z)$$

2. \spadesuit kommutatív, ha

$$\forall x, y \in X : x \triangleq y = y \triangleq x$$

3. \spadesuit disztributív a ©-ra, ha $\forall x, y, z \in X$:

$$x \spadesuit (y \bigcirc z) = (x \spadesuit y) \bigcirc (x \spadesuit z)$$
 - baloldali

$$(y \ \textcircled{c}) \ z) \ \spadesuit \ x = (y \ \spadesuit \ x) \ \textcircled{c}) \ (z \ \spadesuit \ x)$$
 - jobboldali

• Legyen \heartsuit binér művelet X-en és \S binér művelet Y-on $f: X \to Y$ művelettartó ha:

$$\forall x_1, x_2 \in X : f(x_1 \heartsuit x_2) = f(x_1) \S f(x_2)$$

1.4 Számfogalom, komplex számok

1.4.1 Számfogalom

Algebrai Struktúrák

1. Grupoid

G halmaz egy \star művelettel, azaz a (G, \star) párt grupoidnak nevezzük.

2. Félcsoport

Ha egy grupoidban a ★ művelet asszociatív, akkor a grupoid félcsoport.

3. Monoid

Semleges elemes félcsoportot monoidnak nevezzük.

Megyjegyzés: $a \in G$ semeleges elem, ha $\forall g \in G : a \star g = g \star a = g$

4. Csoport

Ha egy monoidban minden elemnek van inverze, akkor csoportról beszélünk.

Megyjegyzés: $g, g^{-1} \in G$ és $\xi \in G$ semleges elem, akkor a g^{-1} a g inverze, ha $g \star g^{-1} = \xi$ és $g^{-1} \star g = \xi$

5. Ábel-csoport

Ha egy csoportban a művelet kommutatív, akkor Abel-csoport.

6. Gyűrű

 $(R, +, \cdot)$ gyűrű, ha az összeadással Abel-csoport, a szorzással félcsoport és teljesül mindkét oldali disztributivitás.

Ha a szorzás kommutatív, akkor kommutatív gyűrű.

Ha a szorzásnak van egységeleme, akkor egységelemes gyűrű.

7. Integritási tartomány

Nullosztó mentes kommutatív gyűrű.

Nullosztó: x, y nullátók különböző elemek, de $x \cdot y = 0$

8. Rendezett integritási tartomány

R integritási tartomány rendezett integritási tartomány, ha rendezett halmaz, továbbá az összeadás és szorzás monoton.

Összeadás monoton: $x, y, z \in R$ és $x \le y \implies x + z \le y + z$

Szorzás monoton: $x, y \in R$ és $x, y \ge 0 \implies x \cdot y \ge 0$

9. Test

Egy R gyűrűt, ha $R \setminus \{0\}$ szorzással Abel-csoport, akkor test.

10. Rendezett test

Ha egy test rendezett integritási tartomány, akkor rendezett test.

Természetes számok

• Peano-axiómák

Legyen $\mathbb N$ egy halmaz és a $^+$ egy $\mathbb N$ -en értelmezett függvény. Az alábbi feltételeket Peano-axiómáknak nevezzük:

- 1. $0 \in \mathbb{N}$ 0 egy nullér művelet \mathbb{N} -en
- 2. ha $n \in \mathbb{N}$, akkor $n^+ \in N$ + egy unér művelet \mathbb{N} -en
- 3. ha $n \in \mathbb{N}$, akkor $n^+ \neq 0$ 0 nincs a + értékkészletében
- 4. ha $n, m \in \mathbb{N}$, és $m^+ = n^+$, akkor n = m + injektív
- 5. ha $S \subset \mathbb{N}, 0 \in S$, továbbá $n \in S : n^+ \in S$, akkor $S = \mathbb{N}$ a matematikai indukció elve

• Műveletek

összeadás

 $k, m, n \in \mathbb{N}$, akkor:

- 1. (k+m)+n=k+(m+n) asszociativitás
- 2. n + 0 = 0 + n = n 0 a nullelem (additiv semleges elem)
- 3. n+k=k+n $kommutativit\'{a}s$

4. n + k = m + k vagy k + n = k + m, akkor m = n - egyszerűsítési szabály

szorzás

 $k, m, n \in \mathbb{N}$, akkor:

- 1. $(k \cdot m) \cdot n = k \cdot (m \cdot n)$ asszociativitás
- $2. \ 0 \cdot n = n \cdot 0 = 0$
- 3. $n \cdot 1 = 1 \cdot n = n 1$ az egységelem (multiplikatív semleges elem)
- 4. $n \cdot k = k \cdot n$ $kommutativit\'{a}s$
- 5. $k \cdot (m+n) = k \cdot m + \cdot n$, illetve $(m+n) \cdot k = m \cdot k + n \cdot k$ disztributivitás
- 6. $k \neq 0$ esetén: $n \cdot k = m \cdot k$, akkor m = n egyszerűsítési szabály

Egész számok

Természetes számok körében az összeadásra nézve csak a nullának van inverze, másként szólva, a kivonás általában nem végezhető el.

Tekintsük a $\sim \subset \mathbb{N} \times \mathbb{N}$ relációt, melyre $(m,n) \sim (m',n')$, ha m+n'=m'+n. És vegyük az (m,n)+(m',n')=(m+m',n+n') összeadást. A \sim reláció ekvivalenciareláció, az ekvivalenciaosztályok halmazát jelöljük \mathbb{Z} -vel. \mathbb{Z} elemeit egész számoknak nevezzük.

Az összeadás kompatibilis az ekvivalenciával, így az egész számok között értelmezve van, és $(\mathbb{Z}, +)$ Ábelcsoport.

Tehát $(\mathbb{Z}, +, \cdot)$ gyűrű.

 $Megjegyz\acute{e}s: *művelet kompatibilis a \times ekvivalenciarelációval, ha teljesül: <math>x \times x' \land y \times y' \implies x * y \times x' * y'$

Racionális számok

Az egész számok körében a nem nulla elemek közül csak az 1-nek és a -1-nek van multiplikatív inverze, másként szólva az osztás általában nem végezhető el.

Tekintsük a $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ -n a \sim relációt, melyre $(m,n) \sim (m',n')$, ha mn' = nm'. És vegyük az (m,n) + (m',n') = (mn'+nm',nn') összeadást és az $(m,n) \cdot (m',n') = (mm',nn')$ szorzást. A \sim reláció ekvivalenciareláció, az ekvivalenciaosztályok halmazát jelöljük \mathbb{Q} -val. \mathbb{Q} elemeit racionális számoknak nevezzük.

 $(\mathbb{Q}, +, \cdot)$ rendezett test.

Valós számok

Nincs olyan $a \in \mathbb{Q}$ szám, melynek négyzete 2. Tehát nem minden szám írható fel m/n $(m, n \in \mathbb{N}^+)$ alakban.

Archimédeszi rendezettség:

Egy F rendezett testet archimédeszien rendezett, ha $x, y \in F : \exists n \in \mathbb{N} : nx > y \quad (x > 0)$

A racionális számok rendezett teste archimédeszien rendezett, de nem felső határ tulajdonságú.

Egy felső határ tulajdonságú rendezett testet a valós számok testének nevezünk, és ℝ-rel jelöljük. (∃!ℝ)

1.4.2 Komplex számok

A komplex számok szükségét a harmadfokú egyenletek megoldására való Cardano-képlet szülte. Ugyanis abban az esetben, amikor az egyenletnek három különböző valós gyöke van, a képletben a gyökjel alá negatív szám kerül. Fokozatosan tisztult a "képzetes" számokkal való számolás szabályai, és a trigonometrikus függvényekkel való kapcsolat.

Definíció

A komplex számok halmaza $\mathbb{C} = \mathbb{R} \times \mathbb{R}$. \mathbb{C} az (x,y)+(x',y')=(x+x',y+y') összeadással és az $(x,y)\cdot (x',y')=(xx'-yy',y'x+yx')$ szorzással test. A komplex számok halmaza nem rendezett test, mivel (tétel alapján) egy rendezett integritási tartományban $x \neq 0 \Rightarrow x^2 > 0$. (Ez azonban $(0,1)^2 = i^2 = -1$ -re nem teljesül).

[A komplex számok körében (0,0) a nullelem, (1,0) egységelem, (x,y) additív inverze (-x,-y), és $(0,0) \neq (x,y)$ pár multiplikatív inverze az $(\frac{x}{x^2+y^2},\frac{-y}{x^2+y^2})$ pár.]

Valós számok azonosítása

Mivel (x,0) + (x',0) = (x+x',0) és $(x,0) \cdot (x',0) = (xx',0)$ így az összes $(x,0), x \in \mathbb{R}$ komplex számot azonosíthatjuk \mathbb{R} -rel.

Komplex számok algebrai alakja

Mivel

$$(x, y) = (x, 0) + (y, 0) \cdot i = x + yi$$

így a komplex számokat a + bi algebrai alakban is írhatjuk.

Ekkor az Re(z) = x valós számot a z = (x, y) komplex szám valós részének, az Im(z) = y valós számot pedig a képzetes részének nevezzük.

Konjugált

z = x + yi komplex szám konjugáltja: $\overline{z} = x - yi$

Tulajdonságai:

- 1. $\overline{z+w} = \overline{z} + \overline{w}$
- 2. $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. $\overline{\overline{z}} = z$
- 4. $z + \overline{z} = 2 \operatorname{Re}(z)$
- 5. $z \overline{z} = i \cdot 2 \operatorname{Im}(z)$

Abszolút érték

A z = (x, y) komplex szám abszolút értéke: $|z| = \sqrt{x^2 + y^2}$

Tulajdonságai:

- 1. $z \cdot \overline{z} = |z|^2$
- $2. \ \frac{1}{z} = \frac{\overline{z}}{|z|^2}$
- $3. |z| = \overline{|z|}$
- $4. |z \cdot w| = |z| \cdot |w|$
- 5. |z+w| < |z| + |w|

Trigonometrikus alak

- Argumentum
 - $z \neq 0$ esetén az a z argumentuma $\forall t \in \mathbb{R}$, melyre $\text{Re}(z) = |z| \cos(t)$, és $\text{Im}(z) = |z| \sin(t)$. Más szóval a z argumentuma az origóból a z-be mutató vektor és a pozitív valós tengellyel bezárt szöge.
- Trigonometrikus alak

A z komplex szám trigonometrikus alakja: $z = |z|(\cos(t) + i \cdot \sin(t))$

• Moivre-azonosságok

Legyen $z = |z|(\cos(t) + i \cdot \sin(t))$, és $w = |w|(\cos(s) + i \cdot \sin(s))$. Ekkor

$$z \cdot w = |z||w|(\cos(t+s) + i \cdot \sin(t+s))$$

$$\frac{z}{w} = \frac{|z|}{|w|}(\cos(t-s) + i \cdot \sin(t-s)) \quad (w \neq 0)$$

$$z^n = |z|^n (\cos(nt) + i \cdot \sin(nt)) \quad (n \in \mathbb{Z})$$

• Gyökvonás

Legyen $z^n = w$ ekkor:

$$\sqrt[n]{w} = \left\{ z_k = \sqrt[n]{|w|} \left(\cos\left(\frac{t + 2k\pi}{n}\right) + \sin\left(\frac{t + 2k\pi}{n}\right) \right), k = 0, \dots, n - 1 \right\}$$

De mivel ez a jelöltés összetéveszthető a valósak között (egyértelművé tett) valós gyökvonással. így ezt a jelölést nem használjuk. Vezessük be helyette a n-edik komplex egységgyök fogalmát:

$$\varepsilon_k = \cos\left(\frac{2k\pi}{n}\right) + i \cdot \sin\left(\frac{2k\pi}{n}\right), \quad k = 0, ..., n - 1$$

Ezek után a w gyökeit a z és az n-edik komplex egységgyökök segítségével kaphatjuk meg: $z\varepsilon_0,...,z\varepsilon_{n-1}$

1.5 Leszámlálások véges halmazokon

Véges halmazok

- Halmazok ekvivalenciája X,Y halmazok ekvivalensek, ha létezik \$X\$-et \$Y\$-ra képező bijekció. Jele: $X\sim Y$
- Véges és végtelen halmazok X halmaz véges, ha $\exists n \in \mathbb{N} : X \sim \{1, 2, ..., n\}$, egyébként végtelen. Ha létezik n, akkor az egyértelmű, és ekkor a halmaz elemszámának/számosságának nevezzük. Jele: #(X)

Skatulya elv

Ha X,Y véges halmazok és #(X) > #(Y), akkor egy $f:X \to Y$ leképezés nem lehet kölcsönösen egyértelmű (azaz bijekció).

Leszámolások

• Permutáció

A halmaz egy permutációja az önmagára való kölcsönösen egyértelmű leképezése. Az A halmaz összes permutációjának száma:

$$P_n = \prod_{k=1}^n k = n!$$

Variáció

Az A halmaz elemeiből készíthető, különböző tagokból álló $a_1, a_2, ..., a_k$ sorozatokat az A halmaz k-ad osztályú variációinak nevezzük. Ha A véges (#(A) = n), akkor V_n^k száma megegyezik az $\{1, 2, ..., k\}$ -t $\{1, 2, ..., n\}$ -be képező kölcsönösen egyértelmű leképezések számával:

$$V_n^k = \frac{n!}{(n-k)!}$$

• Kombináció

Ha A halmaz $k \in \mathbb{N}$ elemű részhalmazait k-ad osztályú kombinációinak nevezzük. Ha A véges, akkor C_n^k száma megegyezik $\{1, 2, ..., n\}$ k elemű részhalmazainak számával.

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Ismétléses permutáció

 $A = \{a_1, \dots, a_r\}$ halmaz elemeinek ismétlődései i_1, \dots, i_r . (Az elemek ismétléses permutációi olyan $i_1 + \dots + i_r = n$ tagú sorozatok, melyben az a_j elem i_j -szer fordul elő.)

$$P_n^{i_1,\dots,i_r} = \frac{n!}{i_1!i_2!\cdots i_r!}$$

• Ismétléses variáció

Az A véges halmaz elemeiből készíthető (nem feltétlenül különböző) a_1, \dots, a_k sorozatokat, az A halmaz

k-ad osztályú ismétléses variációinak nevezzük.

$$^{i}V_{n}^{k}=n^{k}$$

• Ismétléses kombináció

Az A véges halmaz. A halmazból k elemet kiválasztva, ismétléseket megengedve, de a sorrend figyelmen kívül hagyva, az A halmaz k-ad osztályú ismétléses kombinációit kapjuk.

$${}^{i}C_{n}^{k} = \binom{n+k-1}{k}$$

Tételek

• Binomiális tétel $x, y \in R$ (kommutatív egységelemes gyűrű), $n \in \mathbb{R}$. Ekkor

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

• Polinomiális tétel

 $r,n\in\mathbb{N}$ és $x_1,x_2,\cdots,x_r\in R$ (kommutatív egységelemes gyűrű), ekkor

$$(x_1 + \dots + x_r)^n = \sum_{i_1 + \dots + i_r = n} P_n^{i_1, \dots, i_r} x_1^{i_1} x_2^{i_2} \dots x_r^{i_r} \qquad (i_1, \dots, i_r \in \mathbb{N})$$

• Szita formula

 $X_1, \cdots, X_k \subset X$ (véges halmaz). f az X-en értelmezett, egy Abel-csoportba képző függvény. Legyen:

$$S = \sum_{x \in X} f(x)$$

 $S_r = \sum_{1 \le i_1 \le \dots \le i_r \le k} \left(\sum_{x \in X_{i_1} \cap \dots \cap X_{i_r}} f(x) \right)$

és

$$S_0 = \sum_{x \in X \setminus \bigcup_{i=1}^k X_i} f(x)$$

Ekkor

$$S_0 = S - S_1 + S_2 - S_3 + \dots + (-1)^k S_k$$

1.6 Számelméleti alapfogalmak, maradékos osztás, lineáris kongruencia-egyenletek

1.6.1 Számelméleti alapfogalmak

Oszthatóság egységelemes integritási tartományban

R egységelemes integritási tartomány, $a,b \in R$. Ha $\exists c \in R : a = bc$, akkor b osztója a-nak (a a b többszöröse). Jele: b|a

A b = 0-t kivéve legfeljebb egy ilyen c létezik.

Az oszthatóság tulajdonságai egységelemes integritási tartományban.

- Ha b|a és b'|a', akkor bb'|aa'
- $\forall a \in R : a | 0$ (a nullának minden elem osztója)
- $0|a \Leftrightarrow a = 0$ (a null csak saját magának osztója)

- $\forall a \in R : 1 | a$ (az egységelem minden elem osztója)
- $b|a \Rightarrow \forall c \in R : bc|ac$
- bc|ac és $c \neq 0 \Rightarrow b|a$
- $b|a_i \text{ és } c_i \in R, \ (i=1,\cdots,j) \Rightarrow b|\sum_{i=1}^j a_i c_i$
- az | reláció reflexív és tranzitív

Felbonthatatlan elem és prímelem

 $0, 1 \neq a \in R$ felbonthatatlan (irreducibilis), ha a = bc esetén b vagy c egység $(b, c \in R)$.

 $0,1 \neq p \in R$ prím, ha $\forall a,b \in R: p|ab$ esetén p|a vagy p|b

Legnagyobb közös osztó, legkisebb közös többszörös, relatív prím

R egységelemes integritási tartomány. $a_1, \dots, a_n \in R$ elemeknek $b \in R$ legnagyobb közös osztója, ha $b|a_i$ és $b'|a_i$ esetén b'|b. Ha b egység, akkor a_1, \dots, a_n relatív prímek.

 $a_1, \dots, a_n \in R$ elemeknek legkisebb közös többszöröse $b \in R$, ha $a_i \mid b$ és $a_i \mid b'$ esetén $b \mid b'$.

Bővített euklideszi algoritmus

Az eljárás meghatározza az $a, b \in \mathbb{Z}$ számok legnagyobb közös osztóját $(d \in \mathbb{Z})$, valamint $x, y \in \mathbb{Z}$ számokat úgy, hogy d = ax + by

A számelmélet alaptétele

Minden pozitív természetes szám (sorrendtől eltekintve) egyértelműen felbontható prímszámok szorzataként.

Erathoszthenész szitája

Adott n-ig a prímek meghatározásához: Írjuk fel a számokat 2-től n-ig. Az első szám (2) prím, összes többszöröse összetett, ezeket húzzuk ki. A fennmaradó számok közül az első (3) ugyancsak prím, stb. Az eljárás végén az n-nél nem nagyobb prímek maradnak.

1.6.2 Maradékos osztás

Legyen R egységelemes integritási tartomány, $f,g \in R[x], g \neq 0$ és tegyük fel, hogy g főegyütthatója egység R-ben. Ekkor

$$\exists !q, r \in R[x] : f = g \cdot q + r \qquad (\deg(r) < \deg(g))$$

1.6.3 Horner-séma

A Horner-módszer egy polinom helyettesítési értékének kiszámítására alkalmas. (Ezzel együtt természetesen az is eldönthető, hogy adott c érték a polinom gyöke-e vagy nem. 4-ed fok felett erre még analitikus megoldás sincs.)

A módszer lényege, hogy az egyébként $f_n x^n + f_{n-1} x^{n-1} + \cdots + f_0$ polinom helyettesítési értékének kiszámolásához rendkívül sok szorzásra és összeadásra lenne szükség. A polinom átalakításával azonban a műveletek számát lecsökkenthetjük. A maradékos osztást alkalmazva:

$$f_n x^n + f_{n-1} x^{n-1} + \dots + f_0 = (f_n x^{n-1} + f_{n-1} x^{n-2} + \dots)x + f_0$$

Ezt rekurzívan folytatva a következő alakra jutunk:

$$(((f_nx + f_n - 1)x + f_n - 2)x + \cdots)x + f_0$$

A helyettesítési érték kiszámítását egy táblázatban könnyebben elvégezhetjük.

	f_n	f_{n-1}	f_{n-2}	 f_0
c	f_n	$f_n c + f_{n-1}$	$(f_nc + f_{n-1})c + f_{n-2}$	 f(c)

A táblázat kitöltése a következőképp zajlik:

- 1. Az első sorba felírjuk a polinom együtthatóit
- 2. A második sor első cellájába beírjuk az argumentum értékét.
- 3. A főegyüttható alá beírjuk önmagát.
- 4. A második sor celláinak kitöltésével folytatjuk
- 5. Az előző cella elemét megszorozzuk az argumentummal
- 6. A szorzathoz adjuk hozzá az aktuális együtthatót
- 7. Az összeget írjuk be az aktuális cellába
- 8. Folytassuk az 5. ponttal, míg el nem jutunk az utolsó celláig

Az utolsó cellába a polinom helyettesítési értéke kerül. (Ha ez nulla, akkor az argumentum a polinom gyöke.)

1.6.4 Lineáris kongruencia egyenletek

Kongruencia

Ha $a, b, m \in \mathbb{Z}$ és m | (a - b), akkor azt mondjuk, hogy a és b kongruensek modulo m (Jele: $a \equiv b \mod m$).

A kongruencia ekvivalencia
reláció bármely m-re. Ha $a \in \mathbb{Z}$ akkor az ekvivalencia
osztály elemei $a+km, k \in \mathbb{Z}$ alakúak.

Maradékosztályok

Az $m \in \mathbb{Z}$ modulus szerinti ekvivalenciaosztályoknak nevezzük. A maradékosztályokat elemeikkel reprezentáljuk. (Az a elem által reprezentált maradékosztály $\widetilde{a} \mod m$).

Ha egy maradékosztály valamely eleme relatív prím a modulushoz, akkor mindegyik az és a maradékosztályt redukált maradékosztálynak nevezzük.

Páronként inkongruens egészek egy rendszerét maradékrendszernek nevezzük.

Ha egy maradékrendszer minden maradékosztályból tartalmaz elemet, akkor teljes maradékrendszer.

Ha maradékrendszer pontosan a redukált maradékosztályokból tartalmaz elemet, akkor redukált maradékrendszer.

Euler-féle φ függvény

m>0 egész szám. Az Euler-féle $\varphi(m)$ függvény a modulo m redukált maradékosztályok számát adja meg. Ez nyilván megegyezik a $0,1,\cdots,m-1$ számok közötti, m-hez relatív prímek számával.

Euler-Fermat tétel

m > 1 egész, a relatív prím m-hez, ekkor:

$$a^{\varphi(m)} \equiv 1 \mod m$$

Fermat tétel

Legyen p prím, és $a \in \mathbb{Z} : p \nmid a$, ekkor

$$a^{p-1} \equiv 1 \mod p$$

Lineáris kongruencia megoldása

Keressük az $ax \equiv b \mod m$ kongruencia megoldásait $(a, b, m \in \mathbb{Z} \text{ ismert})$. Ez ekvivalens azzal, hogy keressünk olyan x-et, melyre (valamely y-nal) ax + my = b.

Legyen $d=\ln \ker(a,m)$. Mivel d osztója ax+my-nak, b-t is osztania kell, különben nincs megoldás. Így $\frac{a}{d}x+\frac{m}{d}y=\frac{b}{d}$. Ekkor a'x+m'y=1. A bővített euklideszi algoritmus segítségével olyan u,v számokat kapunk, melyekkel a'u+m'v=1 (ui.: a',m' relatív prímek). Az egyenletet b'-vel beszorozva $a'ub'+m'vb'=b'\Rightarrow x\equiv ub'\mod m'$

Lineáris kongruenciarendszer megoldása

Két lineáris kongruencia esetén a megoldások $x \equiv a \mod m$ és $x \equiv b \mod n$. A közös megoldáshoz $x = a + my = b + nz \Leftrightarrow my - nz = b - a$ egyenletet kell megoldani. Akkor és csak akkor van megoldás, ha d = lnko(m,n) osztója b-a-nak. Ekkor a megoldás valamely x_1 egésszel $x \equiv x_1 \mod \text{lkkt}(m,n)$ alakban írható. (Több kongruencia esetén az eljárás folytatható.)

Kínai maradéktétel

 $1 < m_1, \cdots, m_n \in \mathbb{N}$ páronként relatív prímek, és $c_1, \cdots, c_n \in \mathbb{Z}$. Az $x \equiv c_j \mod m_j \ (j = 1, \cdots, n)$ kongruenciarendszer megoldható, és bármely két megoldása kongruens $\mod m_1 m_2 \cdots m_n$

2 Polinomok és műveleteik

Definíció

Legyen R gyűrű. Egy polinomot egy $\sum_{i=0}^{n} f_i x^i$ alakú véges összegnek tekintünk, ahol $n \in \mathbb{N}, f_i \in R$. Az f_n tagot a polinom főegyütthatójának nevezzük.

Műveletek

Legyen R[x] az $f = (f_0, f_1, \dots)$ végtelen sorozatok feletti gyűrű (polinomok gyűrűje), ahol $f_i \in R$. Ekkor az R[x]-beli műveletek:

• Összeadás:

$$f + q = (f_0 + q_0, f_1 + q_1, \cdots)$$
 $(f, q \in R[x])$

• Szorzás:

$$f\cdot g=h=(h_0,h_1,\cdots)$$
 $(f,g,h\in R[x]),$ ahol
$$h_k=\sum_{i+j=k}f_ig_j$$

Megjegyzés: Ha R kommutatív, akkor R[x] is az. Ha R egységelemes az 1 egységelemmel, akkor R[x] is az az $(1,0,0,\cdots)$ egységelemmel.

3 Gráfok

3.1 Általános és síkgráfok

Alapfogalmak

• Irányítatlan gráf

Egy irányítatlan gráf a $G = (V, E, \varphi)$ rendezett 3-as, ahol:

V - a csúcsok halmaza

E - élek halmaza

 φ - illeszkedési reláció ($\varphi \in E \times V$)

Ha $v \in \varphi(e)$, akkor v illeszkedik az e élre. $(v \in V, e \in E)$. Egy élnek mindig két vége van

- Él-, és csúcstípusok
 - Izolált csúcs

 $v \in V$ izolált csúcs, ha $\nexists e \in E : v \in \varphi(e)$

- Párhuzamos él

 $e, e' \in E$ élek párhuzamos élek, ha $\varphi(e) = \varphi(e')$

- Hurokél

 $e \in E$ hurokél, ha $|\varphi(e)| = 1$

• Irányított gráf

Egy irányítatott gráf a $G = (V, E, \psi)$ rendezett 3-as, ahol:

V - a csúcsok halmaza

 ${\cal E}$ - élek halmaza

 ψ - illeszkedési reláció ($\psi \in E \to V \times V$)

 $\psi(e) = (v, v')$, ahol v az e él kezdőpontja, v' a végpontja.

Véges, egyszerű gráfok - alapfogalmak

• Egyszerű gráf

 ${\cal G}$ gráf egyszerű, ha nem tartalmaz párhuzamos vagy hurokéleket

- Véges gráf $G = (V, E, \varphi)$ gráf véges, ha V, E véges halmazok.
- Szomszédság, fok

Két él szomszédos, ha van közös pontjuk.

Két csúcs szomszédos, ha van közös élük.

 $v \in V$ szomszédjainak száma a v foka. [Jele: deg(v) = d(v)]

• r-reguláris gráfok

G gráf r-reguláris, ha minden pont foka r

Teljes gráf

G gráf teljes gráf, ha minden él be van húzva, más szóval (|V|-1)-reguláris. (Jele: $K_{|V|}$)

• Páros gráf

G páros gráf, ha $V = V' \cup V''$ és $V' \cap V'' = \emptyset$ (diszjunkt), valamint él csak V' és V'' között fut.

Ha viszont így V' és V" között minden él be húzva, akkor teljes páros gráf. (Jele: $K_{n,m}$, ahol n = |V'|, m = |V''|)

• Részgráf

 $G=(V,E,\varphi)$ részgráfja $G'=(V',G',\varphi')$ -nek, ha $V\subset V\ \land\ E\subset E'\ \land\ \varphi\subset\varphi'$

• Séta, vonal, út

G gráfban egy n hosszú séta v-ből v'-be egy olyan

$$v_0, e_1, v_1, \cdots, v_{n-1}, e_n, v_n$$

sorozat, melyre $v = v_1, v' = v_n$ és $v_{i-1}, v_i \in \varphi(e_i)$

Egy séta vonal, ha minden él legfeljebb egyszer szerepel a sorozatban.

Egy vonal út, ha minden csúcs legfeljebb egyszer szerepel a sorozatban.

Egy séta/vonal/út zárt, ha kezdő és végpontja megegyezik, egyébként nyílt.

 \bullet Osszefüggő gráf Egy gráf összefüggő, ha bármely két csúcs közt van út.

Ez a reláció ekvivalenciareláció, melynek ekvivalenciaosztályait komponenseknek nevezzük.

• Címkézett, Súlyozott gráf

 $G = V, E, \varphi, C_e, c_e, C_v, c_v$) rendezett 7-es címkézett gráfot jelöl, ahol C_e, C_v tetszőleges halmazok, és

$$c_e: E \to C_e$$

$$c_v: E \to C_v$$

Ha $C_e = C_v = \mathbb{R}^+$, akkor a gráfot súlyozott gráfnak nevezzük, és w a csúcs/él súlya. $(w(e) = c_e(e), w(v) = c_v(v))$

Síkba rajzolhatóság

Fogalmak

• Síkba rajzolhatóság

Egy gráf síkba rajzolható, ha lerajzolható úgy, hogy az elei nem keresztezik egymást.

• Topologikus izomorfia

Két gráf topologikusan izomorf, ha a következő lépést illetve fordítottját véges sok ismétlésével egyikből a másikat kapjuk: Egy másodfokú csúcsot elhagyunk, és a szomszédjait összekötjük.

• Tartomány

Ha G gráf síkba rajzolható, akkor a tartományok az élek által határolt síkidomok. (A nem korlátolt síkidom is tartomány.)

Tételek

- 1. Minden véges gráf \mathbb{R}^3 -ban lerajzolható.
- 2. Ha egy véges gráf síkba rajzolható \iff gömbre rajzolható
- 3. Euler-tétel:

Ha a G véges gráf összefüggő, síkba rajzolható gráf, akkor:

$$|E| + 2 = |V| + |T|$$

4. Kuratowsky-tétel:

Egy véges gráf pontosan akkor síkba rajzolható, ha nem tartalmaz K_5 -tel, vagy $K_{3,3}$ -mal topologikusan izomorf részgráfot.

3.2 Fák

Fa

Egy gráfot fának nevezünk, ha összefüggő és körmentes.

Feszítőfa

F részgráfja G-nek. Ha F fa és csúcsainak halmaza megegyezik G csúcsainak halmazával, akkor F-et a G feszítőfájának nevezzük.

Tételek

- ullet Ha G egyszerű gráf, akkor a következő feltételek ekvivalensek:
 - 1. G fa
 - 2. G összefüggő, de bármely él törlésével már nem az
 - 3. Két különböző csúcs között csak egy út van
 - 4. G körmentes, de egy él hozzáadásával már nem az
- \bullet Ha G egyszerű véges gráf, akkor a következő feltételek ekvivalensek:
 - 1. *G* fa
 - 2. G-ben nincs kör és n-1 éle van
 - 3. G összefüggő és n-1 éle van

Irányított fa

Olyan fa, melyre: $\exists v \in V : d^-(v) = 0$ és $\forall v' \neq v : d^-(v') = 1$ (Egy csúscs befoka 0, a többié 1)

További fogalmak:

- $r \in V, d^-(r) = 0$ csúcsot gyökérnek nevezzük
- v' csúcs szintje a r, v' út hossza
- $(v, v') \in \psi(e)$, a v szülője v'-nek, v' gyereke, v-nek.
- $\bullet \ v$ levél, ha $d^+(v)=0$

3.3 Euler- és Hamilton-gráfok

3.3.1 Euler-gráf

Euler-vonal

Az Euler-vonal olyan vonal v-ből v'-be a gráfban, amelyben minden él szerepel. Ha v=v' akkor ezt a vonalat Euler-körvonalnak is szokás nevezni. Euler-vonallal rendelkező gráfot Euler-gráfnak nevezik.

Tétel

Egy összefüggő véges gráfban pontosan akkor létezik Euler-körvonal, ha minden csúcs páros fokú.

3.3.2 Hamilton-gráf

A Hamilton-út egy olyan út v-ből v'-be a gráfban, mely minden csúcsot tartalmat. Ha v=v' akkor ezt az utat Hamilton-körnek is szokás nevezni. Hamilton-úttal rendelkező gráfot Hamilton-gráfnak nevezik.

3.4 Gráfok adatszerkezetei

Gráfok számítógépes reprezentációjához legtöbbször láncolt listákat, vagy mátrixokat szoktak használni. A láncolt listák inkább ritka gráfokra, míg a mátrixok sűrű gráfok esetén gazdaságosak.

Illeszkedési mátrix

 $G = (V, E, \psi)$ irányított gráf esetén a gráfot egy $A = \{0, 1, -1\}^{n \times m}$ mátrix segítségével tudjuk reprezentálni, ahol $V = \{v_1, \dots, v_n\}$, és $E = \{e_1, \dots, e_m\}$. Ekkor a mátrix egyes elemei:

$$a_{ij} = \left\{ \begin{array}{ll} 1 & \text{ha } v_i \text{ kezdőpontja } e_j\text{-nek} \\ -1 & \text{ha } v_i \text{ végpontja } e_j\text{-nek} \\ 0 & \text{különben} \end{array} \right.$$

Ha G nem irányított, akkor $a_{ij} = |a_{i,j}|$

Csúcsmátrix

A fenti jelölésekkel irányított esetben $B \in \mathbb{Z}^{n \times n}$, ahol b_{ij} a v_i -ből v_j -be menő élek számát jelöli.

HaGirányítatlan, akkor b_{ii} v_i hurokéleinek száma, egyébként b_{ij} a v_i és v_j csúcsok közötti élek száma.