第六章 微分方程

考试内容

常微分方程的基本概念,变量可分离的微分方程、齐次微分方程、一阶线性微分方程、 伯努利(Bernoulli)方程、全微分方程,可用简单的变量代换求解的某些微分方程

可降阶的高阶微分方程,线性微分方程解的性质及解的结构定理,二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程、欧拉(Euler)方程、差分与差分方程的概念,差分方程的通解与特解,一阶常系数线性差分方程,微分方程的简单应用

考试要求

- 1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
- 2. 掌握变量可分离微分方程、齐次方程及一阶线性微分方程的解法.
- 3.会解伯努利方程和全微分方程(数学一),会用简单的变量代换解某些微分方程.
- 4.会用降阶法解 $y^{(n)} = f(x)$ 、 y'' = f(y, y')、 y'' = f(x, y')(数学一、二).
- 5.理解线性微分方程解的性质及解的结构.
- 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
- 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
 - 8.会解欧拉方程(数学一).
 - 9.会用微分方程解决一些简单的应用问题.
 - 10.了解差分与差分方程及其通解与特解等概念(数学三).
 - 11.了解一阶常系数线性差分方程的求解方法(数学三).
 - 12.会用微分方程求解简单的经济应用(数学三).

§1.微分方程的概念

1. 微分方程

含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程.若未知函数是 一元函数则称为常微分方程.

2. 微分方程的阶

微分方程中未知函数的最高阶导数的阶数称为微分方程的阶.

3. 微分方程的解、通解和特解

代入微分方程能使方程成为恒等式的函数称为微分方程的解:通解就是含有任意常数 的个数与方程的阶数相同的解;不含有任意常数或任意常数确定后的解称为特解.

4. 初始条件

要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件.

5. 线性方程

如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则 称这种微分方程为线性微分方程.

【例 6.1】下列微分方程中()是二阶微分方程.

$$(A) y^2 + xy = x$$

(A)
$$y^2 + xy = x$$
 (B) $y^2 + xy' = x$

(C)
$$(y')^2 + xy = e^x$$

$$(D) y^2 + xy'' = x$$

【答案】D

【例 6.2】下列选项中()是微分方程 y'' = 6x + 2 的特解,()是该方程的通解

(A)
$$y = x^3 + x^2 + x + C$$
. (B) $y = x^3 + x^2 + x + 1$.

(B)
$$y = x^3 + x^2 + x + 1$$
.

(C)
$$y = x^3 + x^2 + C_1 x + C_2$$
. (D) $y = x^3 + C_1 x^2 + x + C_2$.

(D)
$$y = x^3 + C_1 x^2 + x + C_2$$

【答案】(B): (C)

【例 6.3】下列选项中()是线性微分方程

$$(A) y^2 + xy = x$$

(A)
$$y^2 + xy = x$$
 (B) $y + x(y')^3 = x$

$$(C) y' + xy = e^x$$

(C)
$$y' + xy = e^x$$
 (D) $y^2 + xy'' = x$

【答案】(C)

§2.一阶微分方程

一、可分离变量的微分方程

如果一阶微分方程能写成

$$g(y)dy = f(x)dx$$

的形式,即能把微分方程写成一端只含y的函数和dy,另一端只含x的函数和dx,那么原方程就称为可分离变量的微分方程.

将上式两端积分,
$$\int g(y) dy = \int f(x) dx$$

设G(y)及F(x)依次为g(y)及f(x)的原函数,则通解G(y) = F(x) + C.

【例 6.4】求微分方程
$$(xy^2 + x)dx + (y - x^2y)dy = 0$$
的通解.

【答案】 $C(x^2-1)$.

【解析】因为
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy^2 + x}{x^2y - y} = \frac{x(1+y^2)}{y(x^2-1)}$$
,所以 $\int \frac{y\mathrm{d}y}{1+y^2} = \int \frac{x\mathrm{d}x}{x^2-1}$,故 $1+y^2 = C(x^2-1)$

【例 6.5】求微分方程
$$y' = \frac{1+x}{x} y$$
 满足 $y(1) = e$ 的特解.

【答案】 $y = xe^x$.

【解析】因为
$$\frac{\mathrm{d}y}{y} = (1 + \frac{1}{x})\mathrm{d}x$$
,两边同时积分,得 $\ln |y| = \ln |x| + x + C_1$,整理可得, $y = Cxe^x$

又因为y(1) = e,可得特解 $y = xe^x$.

二、齐次方程

如果一阶微分方程可化成

$$\frac{dy}{dx} = \varphi\left(\frac{y}{x}\right)$$
的形式,则称这方程为齐次方程.

令
$$u = \frac{y}{x}$$
,则 $y = ux$, $\frac{dy}{dx} = u + x \frac{du}{dx}$,得 $u + x \frac{du}{dx} = \varphi(u)$,分离变量,得 $\frac{du}{\varphi(u) - u} = \frac{dx}{x}$

两端积分,得 $\int \frac{\mathrm{d}u}{\varphi(u)-u} = \int \frac{\mathrm{d}x}{x}$, 求出积分后,再以 $\frac{y}{x}$ 代替u,便得所给齐次方程的通解.

【例 6.6】解方程
$$\frac{dy}{dx} = e^{\frac{y}{x}} + \frac{y}{x}$$

【答案】
$$-e^{-\frac{y}{x}} = \ln|x| + C$$
.

【解析】令
$$u = \frac{y}{x}$$
则 $\frac{dy}{dx} = u + x \frac{du}{dx}$ 代入上式中有 $u + x \frac{du}{dx} = e^u + u$

$$\mathbb{P} -e^{-u} = \ln |x| + C, \mathbb{P} -e^{-\frac{y}{x}} = \ln |x| + C.$$

【例 6.7】 求
$$x^2y' + xy = y^2$$
, $y(1) = 1$ 的特解.

【答案】
$$y-2x=-x^2y$$
.

【解析】原式可化为
$$\frac{dy}{dx} + \frac{y}{x} = (\frac{y}{x})^2$$
,令 $\frac{y}{x} = u$,则 $\frac{dy}{dx} = u + x \frac{du}{dx}$,代入上式,得

$$2u + x \frac{\mathrm{d}u}{\mathrm{d}x} = u^2$$
,变量分离,得 $\frac{2}{u(u-2)} \mathrm{d}u = \frac{2}{x} \mathrm{d}x$,两边同取积分,得 $\ln \left| \frac{u-2}{u} \right| = 2 \ln |x| + C_1$,整

理,得
$$y-2x=Cx^2y$$
,又因为 $y(1)=1$,可得 $C=-1$,故可得特解 $y-2x=-x^2y$.

三、一阶线性微分方程

方程 $\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)$ 叫做一阶线性微分方程.如果 $Q(x)\equiv 0$,则称方程为齐次的,如果 $Q(x)\neq 0$,则称方程为非齐次的.

通解公式
$$y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right)$$

【例 6.8】已知
$$y' = \frac{1}{1+x^2}y$$
,求其在 $y(0) = \pi$ 时的特解.

【答案】 $y = \pi e^{\arctan x}$.

【解析】将方程看作 $y' - \frac{1}{1+x^2}y = 0$,故通解为 $y = Ce^{\int \frac{1}{1+x^2} dx} = Ce^{\arctan x}$,代入初始条件

 $y(0) = \pi$,得 $C = \pi$,因此,特解为 $y = \pi e^{\arctan x}$.

【例 6.9】求方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解.

【答案】 $y = (1+x)^2 \left[\frac{2}{3} (1+x)^{\frac{3}{2}} + C \right]...$

【解析】带入通解公式后可得 $y = e^{\int \frac{2}{1+x} dx} \left(\int (1+x)^{\frac{5}{2}} e^{\int \frac{-2}{1+x} dx} dx + C \right)$,计算后可得通解

 $y = (1+x)^2 \left[\frac{2}{3} (1+x)^{\frac{3}{2}} + C \right].$

【例 6.10】求微分方程的特解 $xy' + 2y = x \ln x$,其中 $y(1) = -\frac{1}{9}$

【答案】 $y = \frac{1}{3}x \ln x - \frac{1}{9}x$..

【解析】利用公式,其中 $p(x) = \frac{2}{x}$, $q(x) = \ln x$,可得通解为

$$y = e^{-\int_{x}^{2} dx} \left[\int \ln x \, e^{\int_{x}^{2} dx} dx + C \right] = e^{-2\ln x} \left[\int x^{2} \ln x dx + C \right]$$

$$= \frac{1}{x^2} \left[\frac{1}{3} x^3 \ln x - \frac{1}{9} x^3 + C \right] = \frac{1}{3} x \ln x - \frac{1}{9} x + \frac{C}{x^2}.$$

代入初始条件 $y(1) = -\frac{1}{9}$,得 C = 0,因此, $y = \frac{1}{3}x \ln x - \frac{1}{9}x$.

§3.高阶微分方程

- 一、可降阶的高阶微分方程(数一、数二)
- 1. $y^{(n)} = f(x)$ 型的微分方程

微分方程 $y^{(n)}=f(x)$ 的右端仅含有自变量 x ,对方程两边积分,得到一个 n-1 阶的微分方程

$$y^{(n-1)} = \int f(x) \mathrm{d}x + C_1$$

同理可得
$$y^{(n-2)} = \int \left[\int f(x) dx + C_1 \right] dx + C_2$$
.

以此类推,接连积分n次,可得方程的含有n个任意常数的通解.

【例 6.11】求微分方程 $y''' = e^{2x} - \cos x$ 的通解.

【答案】
$$y = \frac{1}{8}e^{2x} + \sin x + \frac{1}{2}C_1x^2 + C_2x + C_3$$
.

【解析】将方程逐次还原即可得

$$y'' = \frac{1}{2}e^{2x} - \sin x + C_1,$$

$$y' = \frac{1}{4}e^{2x} + \cos x + C_1x + C_2$$

$$y = \frac{1}{8}e^{2x} + \sin x + \frac{1}{2}C_1x^2 + C_2x + C_3.$$

2. y'' = f(x, y') 型的微分方程

方程 y''=f(x,y') 的右端不显含未知函数 y .令 y'=p ,则 $y''=\frac{\mathrm{d}p}{\mathrm{d}x}=p'$,代入原方程有 p'=f(x,p) .

这是一个关于变量x,p的一阶微分方程.设其通解为

$$p = \varphi(x, C_1)$$

将
$$p = \frac{dy}{dx}$$
 回代,得到一个一阶微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi(x, C_1)$$

对它进行积分,得到原方程的通解为

$$y = \int \varphi(x, C_1) dx + C_2.$$

【例 6.12】求微分方程 $(1+x^2)y''=2xy'$ 满足初始条件 $y|_{x=0}=1$, $y'|_{x=0}=3$ 的特解.

【答案】 $y = 3x + x^3 + 1$.

【解析】令 y' = p, y'' = p',代入原方程得 $p' - \frac{2x}{1+x^2}p = 0$.

利用齐次线性通解公式有 $p=y'=C_1+C_1x^2$, 故 $y=C_1x+\frac{C_1}{3}x^3+C_2$,又因为 $y\big|_{x=0}=1$, $y'\big|_{x=0}=3$,可得特解 $y=3x+x^3+1$.

3. y'' = f(y, y') 型的微分方程

方程 y'' = f(y, y') 中不明显地含自变量 x .令 y' = p ,则

$$y'' = \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = p \frac{\mathrm{d}p}{\mathrm{d}y},$$

原方程变为

$$p\frac{\mathrm{d}p}{\mathrm{d}y} = f(y, p),$$

这是一个关于变量y,p的一阶微分方程.设它的通解为

$$y' = p = \varphi(y, C_1)$$

分离变量并积分,便得原方程的通解为

$$\int \frac{\mathrm{d}y}{\varphi(y,C_1)} = x + C_2.$$

【例 6.13】求微分方程 $yy'' - y'^2 = 0$ 的通解.

【答案】 $y = C_2 e^{C_1 x}$.

【解析】令 y'=p, $y''=\frac{\mathrm{d}p}{\mathrm{d}x}=\frac{\mathrm{d}p}{\mathrm{d}y}\cdot\frac{\mathrm{d}y}{\mathrm{d}x}=p\frac{\mathrm{d}p}{\mathrm{d}y}$,代入原方程可得 $y\frac{\mathrm{d}p}{\mathrm{d}y}=p$,解后可得 $p=y'=C_1y$,故可得 $y=C_2\mathrm{e}^{C_1x}$.

二、线性微分方程解的结构

1. 一阶线性微分方程解的结构

- (1)若 $y_1(x)$, $y_2(x)$ 为一阶齐次线性方程的两个特解,则它们的线性组合 $k_1y_1(x)+k_2y_2(x)$ 仍为原方程的解.
- (2) 若 $y^*(x)$ 为一阶非齐次方程的一个特解,而 Cy(x) 为对应的一阶齐次线性方程的通解,则 $y = Cy(x) + y^*(x)$ 是此一阶非齐次线性方程的通解.
- (3) 设 $y_1^*(x)$ 与 $y_2^*(x)$ 分别是 $y' + P(x)y = f_i(x)$ 的特解, (i = 1, 2) 则 $y_1^*(x) + y_2^*(x)$ 是 $y' + P(x)y = f_1(x) + f_2(x)$ 的特解.
- **【例 6.14】**设非齐次线性微分方程 y'+P(x)y=Q(x) 有两个不同的解 $y_1(x)$ 与 $y_2(x)$, C 为任意常数,则该方程的通解是(

(A)
$$C[y_1(x) - y_2(x)]$$
.

(B)
$$y_1(x) + C[y_1(x) - y_2(x)].$$

(C)
$$C[y_1(x) + y_2(x)].$$

(D)
$$y_1(x) + C[y_1(x) + y_2(x)].$$

【答案】(B).

2. 高阶线性微分方程解的结构

- (1)若 $y_1(x)$, $y_2(x)$ 为二阶齐次线性方程的两个特解,则它们的线性组合 $C_1y_1(x)+C_2y_2(x)$ 仍为原方程的解.特别地,当 $y_1(x)\neq\lambda y_2(x)$ (λ 为常数),也即 $y_1(x)$ 与 $y_2(x)$ 线性无关时,原方程的通解为 $y=C_1y_1(x)+C_2y_2(x)$.
 - (2) 若 $y^*(x)$ 为二阶非齐次方程的一个特解,而 $C_1y_1(x) + C_2y_2(x)$ 为对应的二阶齐次线

性方程的通解,则 $y = C_1 y_1(x) + C_2 y_2(x) + y^*(x)$ 是此二阶非齐次线性方程的通解.

(3) 设
$$y_1^*(x)$$
 与 $y_2^*(x)$ 分别是 $y'' + P(x)y' + Q(x)y = f_i(x)$ 的特解, $(i = 1, 2)$ 则

 $y_1^*(x) + y_2^*(x) \not\in y'' + P(x)y' + Q(x)y = f_1(x) + f_2(x)$ 的特解.

【注】以上性质也可推广到n阶齐次和非齐次线性方程.

【例 6.15】已知 $y_1 = 1$, $y_2 = x$, $y_3 = x^2$ 是某二阶非齐次线性微分方程的三个解,则该方程的通解为______.

【答案】
$$y = C_1(x-1) + C_2(x^2-1) + 1$$
.

【解析】根据解的结构可知 $y_2-y_1=x-1$, $y_3-y_1=x^2-1$ 是对应齐次方程的两个线性无关的解,故非齐次方程的通解是 $y=C_1(x-1)+C_2(x^2-1)+1$.(不唯一)

三、 常系数齐次线性微分方程

- 1. 二阶齐次、非齐次线性微分方程
 - 二阶齐次线性方程 y'' + P(x)y' + Q(x)y = 0;
 - 二阶非齐次线性方程 y'' + P(x)y' + Q(x)y = f(x).

2. 二阶常系数齐次线性微分方程

在二阶齐次线性微分方程 y''+P(x)y'+Q(x)y=0中,如果 y'和 y 的系数 P(x),Q(x) 均为常数,即 y''+py'+qy=0,其中 p,q 是常数,称为二阶常系数齐次线性微分方程.

特征方程 $r^2 + pr + q = 0$,特征方程根的三种不同情形对应齐次方程通解的三种形式

特征方程 $r^2 + pr + q = 0$ 的两个根 r_1, r_2	微分方程 $y'' + py' + qy = 0$ 的通解
两个不相等的实根 r_1, r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
两个相等的实根 $r_1 = r_2$	$y = \left(C_1 + C_2 x\right) e^{\eta x}$
一对共轭复根 $r_{1,2} = \alpha \pm \beta i$	$y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right)$

【例 6.16】求微分方程 y'' - 7y' + 6y = 0 的通解.

新玩 大学生学习与发展中心

【答案】 $y = C_1 e^x + C_2 e^{6x}$.

【解析】特征方程 $r^2 - 7r + 6 = 0$,特征根 $r_1 = 1, r_2 = 6$,

微分方程通解为 $y = C_1 e^x + C_2 e^{6x}$.

【例 6.17】求微分方程 y'' - 2y' + y = 0 的通解.

【答案】 $y = (C_1 + xC_2)e^x$.

【解析】特征方程 $r^2 - 2r + 1 = 0$,特征根 $r_1 = r_2 = 1$,

微分方程通解为 $y = (C_1 + xC_2)e^x$.

【例 6.18】求微分方程 y'' - 6y' + 13y = 0的通解.

【答案】 $y = e^{3x} (C_1 \cos 2x + C_2 \sin 2x).$

【解析】特征方程 $r^2 - 6r + 13 = 0$.特征根 $r = 3 \pm 2i$,

微分方程通解 $y = e^{3x} (C_1 \cos 2x + C_2 \sin 2x)$.

3. n 阶常系数齐次线性微分方程

n阶常系数齐次线性微分方程的一般形式是

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_{n-1} y' + p_n y = 0$$
,其中 $p_1, p_2, \dots, p_{n-1}, p_n$ 都是常数.

特征方程 $r^n+p_1r^{n-1}+p_2r^{n-2}+\cdots+p_{n-1}r+p_n=0$,根据特征方程的根的形式,写出对应的微分方程的通解如下

特征方程的根	微分方程通解中的对应项
単实根 <i>r</i>	给出一项 Ce ^{rx}
一对单复根 $r_{1,2} = \alpha \pm \beta i$	给出两项 $e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$
k 重实根 r	给出 k 项 $e^{rx}(C_1+C_2x+\cdots+C_kx^{k-1})$
一对 k 重复根 $r_{1,2} = \alpha \pm \beta i$	给出 2k 项

$$e^{\alpha x}[(C_1 + C_2 x + \dots + C_k x^{k-1})\cos \beta x + (D_1 + D_2 x + \dots + D_k x^{k-1})\sin \beta x]$$

【例 6.19】求方程 $y^{(4)} - 2y''' + 5y'' = 0$ 的通解.

【答案】
$$y = C_1 + C_2 x + e^x (C_3 \cos 2x + C_4 \sin 2x)$$
.

【解析】特征方程为 $r^4 - 2r^3 + 5r^2 = 0$,

解得特征根为 $r_1 = r_2 = 0, r_{3,4} = 1 \pm 2i$,

故通解为 $y = C_1 + C_2 x + e^x (C_3 \cos 2x + C_4 \sin 2x)$.

四、 二阶常系数非齐次线性微分方程

- 1. 二阶常系数非齐次线性微分方程
 - 二阶常系数非齐次线性微分方程的一般形式是

$$y'' + py' + qy = f(x)$$

其中 p,q 是常数.其通解为 $y=C_1y_1(x)+C_2y_2(x)+y^*(x)$,其中 $C_1y_1(x)+C_2y_2(x)$ 为对应的二阶常系数齐次线性方程的通解.

2. 二阶常系数非齐次线性微分方程的特解

根据 f(x) 的形式先确定特解 $y^*(x)$ 的形式,其中包含一些待定的系数,然后代入方程确定这些系数就得到特解 $y^*(x)$,常见的 f(x) 的形式和相对应的特解 $y^*(x)$ 的形式如下

(1) $f(x) = e^{\lambda x} P_m(x)$ 型

- a. 若 λ 不是特征方程的根,则令 $y^*(x) = R_m(x)e^{\lambda x}$;
- b. 若 λ 是特征方程的单根,则令 $y^*(x) = xR_m(x)e^{\lambda x}$;
- c. 若 λ 是特征方程的重根,则令 $y^*(x) = x^2 R_m(x) e^{\lambda x}$.

其中 $R_m(x)$ 是与 $P_m(x)$ 同次(m %)的多项式.

【例 6.20】求微分方程 y'' - 2y' - 3y = 3x + 1 的通解.

【答案】
$$y = C_1 e^{-x} + C_2 e^{3x} + \frac{1}{3} - x$$
.

【解析】特征方程为 $r^2-2r-3=0$,特征根为 $r_1=-1$, $r_2=3$,设特解 $y^*=ax+b$,代入方程可得a=-1, $b=\frac{1}{3}$,所以特解为 $y^*=\frac{1}{3}-x$.故,通解为 $y=C_1e^{-x}+C_2e^{3x}+\frac{1}{3}-x$.

【例 6.21】求微分方程 $y'' - 5y' + 6y = xe^{2x}$ 的通解.

【答案】
$$y = C_1 e^{2x} + C_2 e^{3x} - x \left(\frac{1}{2}x + 1\right) e^{2x}$$

【解析】特征方程为 $r^2 - 5r + 6 = 0$.特征根为 $r_1 = 2, r_2 = 3$,

特解设成 $y^* = x(ax+b)e^{2x}$,将特解代入原非齐次方程,由此解得, $a = -\frac{1}{2}, b = -1$.

因此特解为
$$y^* = -x \left(\frac{1}{2}x + 1\right) e^{2x}$$
;

最后得原方程通解为 $y = C_1 e^{2x} + C_2 e^{3x} - x \left(\frac{1}{2}x + 1\right) e^{2x}$.

(2)
$$f(x) = e^{\lambda x} [P_l(x)\cos\omega x + Q_n(x)\sin\omega x]$$
型

其中 $R_m^{(1)}(x)$, $R_m^{(2)}(x)$ 是m次多项式, $m = \max\{l, n\}$.

【例 6.22】求微分方程 $y'' + y' - 2y = 2\cos 2x$ 的一个特解.

【答案】
$$y = C_1 e^{-2x} + C_2 e^x - \frac{3}{10} \cos 2x + \frac{1}{10} \sin 2x$$
.

新玩 大学生学习与发展中心

【解析】其特征方程为 $r^2+r-2=0$,特征根为 $r_1=-2,r_2=1$,

设非齐次线性方程的特解为 $y^* = a\cos 2x + b\sin 2x$.代入方程得 $a = -\frac{3}{10}$, $b = \frac{1}{10}$, 因此 $y^* = -\frac{3}{10}\cos 2x + \frac{1}{10}\sin 2x$.故原方程通解为

$$y = C_1 e^{-2x} + C_2 e^x - \frac{3}{10} \cos 2x + \frac{1}{10} \sin 2x$$
.

【例 6.23】微分方程 $y'' + y = x^2 + 1 + \sin x$ 的特解形式可设为 ()

(A)
$$y^* = ax^2 + bx + c + x(A\sin x + B\cos x)$$
. (B) $y^* = ax^2 + bx + c + A\sin x$.

(C)
$$y^* = x(ax^2 + bx + c + A\sin x + B\cos x)$$
. (D) $y^* = ax^2 + bx + c + A\cos x$.

【答案】(A).

【解析】特征方程为 $r^2+1=0$,故 $r=\pm i$.因此, $y''+y=x^2+1$ 的特解应设为 $y_1(x)=ax^2+bx+c$; $y''+y=\sin x$ 的特解应设为 $y_2(x)=(A\sin x+B\cos x)\cdot x$,然后相加,选(A).