UNIVERSIDAD DE LAS AMÉRICAS PUEBLA

Método de Composición Temas Selectos I

Dr. Rubén Blancas Rivera

Universidad de las Américas Puebla

Otoño 2025

Content

Caso Discreto

Mezclas de Distribuciones

Supongamos que tenemos un método eficiente para simular el valor de una variable aleatoria cuyo función de probabilidad es $\{p_j^{(1)}, j \geq 0\}$ o $\{p_j^{(2)}, j \geq 0\}$, y que queremos simular el valor de una variable aleatoria X con función de probabilidad

$$\mathbb{P}\{X=j\} = \alpha p_j^{(1)} + (1-\alpha)p_j^{(2)}, \quad j \ge 0,$$
 (1)

donde $0 < \alpha < 1$.

Simulación de Mezclas de Distribuciones

Una manera de simular tal variable aleatoria X es notar que si X_1 y X_2 son variables aleatorias con funciones de probabilidad $\{p_j^{(1)}\}$ y $\{p_j^{(2)}\}$ respectivamente, entonces la variable X definida por

$$X = \begin{cases} X_1 & \text{con probabilidad } \alpha, \\ X_2 & \text{con probabilidad } 1 - \alpha, \end{cases}$$

tendrá la función de probabilidad dada en (1).

Algoritmo

- 1. Simular $U \sim U(0,1)$
- 2. Si $U < \alpha$ entonces simulamos X_1 y poner $X = X_1$. En caso contrario ir al paso 3.
- 3. Simular X_2 y poner $X = X_2$.

Ejemplo

Supongamos que queremos generar el valor de una variable aleatoria \boldsymbol{X} tal que

$$p_j = \mathbb{P}\{X = j\} = \begin{cases} 0.05, & j = 1, 2, 3, 4, 5, \\ 0.15, & j = 6, 7, 8, 9, 10, \end{cases}$$

Ejemplo

Observe que

$$p_j = 0.5 p_j^{(1)} + 0.5 p_j^{(2)},$$

donde

$$p_j^{(1)} = \begin{cases} 0.1, & j = 1, \dots, 10, \end{cases} \qquad p_j^{(2)} = \begin{cases} 0, & j = 1, 2, 3, 4, 5, \\ 0.2, & j = 6, 7, 8, 9, 10. \end{cases}$$

Ejemplo

Podemos lograr esto generando primero un número aleatorio U y luego simulando de la uniforme discreta sobre $\{1,\ldots,10\}$ si U<0.5, y de la uniforme discreta sobre $\{6,7,8,9,10\}$ en otro caso.

Es decir, podemos simular X de la siguiente manera:

- 1. Generar un número aleatorio U_1 .
- 2. Generar un número aleatorio U_2 .
- 3. Si $U_1 < 0.5$, definir $X = \lfloor 10U_2 \rfloor + 1$. En otro caso, definir $X = \lfloor 5U_2 \rfloor + 6$.

Caso General

Si F_i , $i=1,\ldots,n$, son funciones de distribución y α_i , $i=1,\ldots,n$, son números no negativos que suman 1, entonces la función de distribución F dada por

$$F(x) = \sum_{i=1}^{n} \alpha_i F_i(x)$$

se llama una *mezcla*, o una *composición*, de las funciones de distribución F_i , $i=1,\ldots,n$.

Caso General

Una forma de simular de F es primero simular una variable aleatoria I, igual a i con probabilidad α_i , $i=1,\ldots,n$, y luego simular de la distribución F_I . (Es decir, si el valor simulado de I es j, entonces la segunda simulación es de F_j .) Este enfoque de simular a partir de F se conoce comúnmente como el **método de composición**.