Week 2 – Physical Layer Contd

COMP90007
Internet Technologies

Wireless Transmission

- Mobile users requires a mobility enabled network contrast with the wired networks
- Wireless networks can provide advantages even in fixed location environments
- There are many types of wireless data transmission networks, but they all have a common basis – electromagnetic wave propagation
- Unlike previous mediums wireless signals are broadcasted over a region
- Potential signal collisions >> Need regulations

Electromagnetic Spectrum

Variety of sets of frequencies are for different things:

- Radio: wide-area broadcast;
- Infrared/Light: line-of-sight
- Microwave: LANs and 3G/4G;

ElectroMagnetic (EM) Spectrum

- Number of oscillations per second of a wave is called frequency, measured in Hertz (Hz).
- Distance between two consecutive minima or maxima is called wavelength.
- All EM waves travel at same speed (speed of light)
- Fundamental relationship:
 - Wavelength x Frequency = Speed of Light
 - □ Units: (m) x (1/s) = (m/s)

Wireless vs. Wires/Fiber

Wireless:

- Easy and inexpensive to deploy
- Naturally supports mobility
- Naturally supports broadcast
- Transmissions interfere and must be managed
- Signal strengths hence data rates vary greatly

Wires/Fiber:

- Easy to engineer a fixed data rate over point-to-point links
- Can be expensive to deploy, esp. over distances
- Doesn't readily support mobility or broadcast

Communication Satellites

Satellites are effective for broadcast distribution and anywhere/anytime communications

- Kinds of Satellites
 - Geostationary (GEO) Satellites
 - Medium-Earth Orbit (MEO) Satellites
 - Low-Earth Orbit (LEO) Satellites
- Satellites vs. Fiber is a key comparison

Kinds of Satellites

Satellites and their properties vary by altitude: Geostationary (GEO), Medium-Earth Orbit, (MEO), and Low-Earth Orbit (LEO)

global coverage

Geostationary Satellites

GEO satellites orbit 35,000 km above a fixed location

- VSAT (computers) can communicate with the help of a hub
- Different bands (L, S, C, Ku, Ka) in the GHz are in use but may be crowded or susceptible to rain.

Low-Earth Orbit Satellites

Systems such as Iridium use many low-latency satellites for coverage and route communications via them

Starlink constellation phase 1

First orbital shell: 72 orbits with 22 each = 1584 sattelites.

3 more shells active in phase 1 also!

Satellite vs. Fiber

Satellite:

- Can rapidly set up anywhere/anytime communications (after satellites have been launched)
- Can broadcast to large regions
- Limited bandwidth and interference to manage

Fiber:

- Enormous bandwidth over long distances
- Installation can be more expensive/difficult

Lets Look at Further Details: Putting Signals on a Copper Wire

Who found out Electromagnetic Waves?

 Electromagnetism was first predicted by Maxwell

- Later <u>Hertz</u> has proved they exist
- His name is used as a unit of frequency now

Origins of Electrical Signals

- Electromagnetic induction is at the origins of putting signals on to a wire
- Michael Faraday is the father of this
- All these famous scientists lived in 19th century

Faraday Disk as An Electric Generator

An Early Dynamo

Another Example

A Turbine

But How Bits Look as a Signal

- Information on wire transmitted by varying a physical property e.g., voltage, current etc
- Generating a periodic function is needed, imagine a simple Sine function for example
- E.g., the sine function: c*sin(ax+b):
 - Three things can change the behaviour of this function: c: Amplitude, a:Frequency and b:Phase

Change in Amplitude, Frequency, & Phase

Modulation is the term used

Modulating the amplitude, frequency/phase of a carrier signal sends bits in a (non-zero) frequency range

What Kind of Links We Can Have

Full-duplex link

- Used for transmission in both directions at once
- e.g., use different twisted pairs for each direction

Half-duplex link

- Both directions, but not at the same time
- e.g., senders take turns on a channel

Simplex link

 Only one fixed direction at all times; not common in communications

Multiplexing is used for sharing

- When multiple sources want to put things on to a medium
 - Time Division Multiplexing
 - Frequency Division Multiplexing
 - Statistical Multiplexing (for curious readers)
 - Code Division Multiple Access (we will mention later)

Time Division Multiplexing

- Users can send according to a fixed schedule
- Slotted access to the full speed of the media

Frequency Division Multiplexing

 Users can only use specific frequencies to send their data

