Paper Report

周杰 2017/9/20

Attentive Interactive Neural Networks for Answer Selection in Community Question Answering

AAAI 2017
Peking University
Xiaodong Zhang

Motivation

- Attentive interactive neural network(AI-NN)
- Interactive
 - Model the relation between each segments of question and answer
- Row-wise and column-wise max-pooling
- Attention
 - Representation of segment
 - Question topic
 - Question type

AI-NN

Text Representation

Text Representation

• The t-th input of convolution layer χ_{t}

$$x_t = \left[e_{t-\lfloor d/2 \rfloor}^q, ..., e_t^q, ..., e_{t+\lceil d/2 \rceil - 1}^q \right]$$

The hidden states of convolution layer

$$h_i^q = \sigma(W^h * x_i + b^h)$$

Interaction

Interaction

• For the i-th hidden state h_i^q and the j-th hidden state h_j^c their interaction A_{ii}

$$A_{ij} = \sigma(W^a * [h_i^q, h_j^c] + b^a)$$

Max pooling

Max pooling

Row-wise max pooling

$$r_i^q = \max_{m \in [1, T^c]} A_{im}$$

Column-wise max pooling

$$r_j^c = \max_{n \in [1, T^q]} A_{nj}$$

Attention

Attention Calculation

$$\alpha_i^q = \frac{\exp(u_i^q)}{\sum_{k=1}^{T^q} \exp(u_k^q)} \qquad R^q = \sum_{l=1}^{T^q} \alpha_l^q r_l^q$$
$$u_i^q = a(h_i^q, r_i^q, \mathcal{T}, \mathcal{C})$$

- a is a feedforward neural network
- T:question topic
- C :question type

Additional features

- Whether answer and question are from the same user
- Whether the answer is anonymous(匿名)
- The order of an answer
- The length of an answer

$$R = [R^T, R^F]$$

$$R^T = \sigma(W^T * [R^q, R^c] + b^T)$$

Results

Dataset: SemEval-2016 Subtask A

Method	MAP	Acc	F1
ARC-I	77.05	74.07	69.50
ARC-II	77.98	75.26	71.64
AP	77.12	75.47	71.72
Kelp	79.19	75.11	64.36
ConvKN	77.66	75.54	66.16
AI-CNN	79.17	76.30	72.75
(w/o features)	/ / / / /		12.13
AI-CNN	80.14	76.87	73.03

Analysis of Attention

Additional features are not used

Information	MAP	Acc	F1
w/o attention	78.05	75.19	71.50
+ representation	78.83	75.95	72.16
+ interaction	78.75	75.92	72.43
+ question topic	77.91	75.25	71.93
+ question type	78.22	75.22	72.10
+ all	79.17	76.30	72.75

Table 4: Influence of different information to attention calculation.

Analysis of Additional features

Feature	MAP	Acc	F1
w/o feature	79.17	76.30	72.75
+ a) same user	79.62	76.50	72.46
+ b) anonymous	78.87	76.41	72.11
+ c) order	79.54	76.62	72.91
+ d) length	79.32	76.22	72.83
+ all	80.14	76.87	73.03

Table 5: Influence of different features.

Improving Word Embeddings with Convolutional Feature Learning and Subword Information

AAAI 2017
Singapore University
Shaosheng Cao

Motivation

- Convolutional feature learning
 - Capture the structural information of their context
- Exploring subword information
 - Character n-gram
 - Root/affix
 - Inflections

Model

Extracting Subword Features

Extracting Subword Features

Learning Context Embedding

Learning Context Embedding

Convolutional layer

$$y_i = \sigma(\varpi \tilde{x}_i + \xi)$$

$$\tilde{x}_i = x_{i:i+n-1} = [x_i^T, x_{i+1}^T, \dots, x_{i+n-1}^T]^T$$

Max pooling

$$c(j) = \max_{i=1,2,\dots,t-n+1} \{y_i(j)\}\$$

Learning Current Word Embedding

Learning Current Word Embedding

First full layer

$$q = \sigma(\varsigma^1 x + \tau^1)$$

Second full layer

$$w = \sigma(\varsigma^2 q + \tau^2)$$

Conditional Probability Based on Softmax

Conditional Probability Based on Softmax

$$p(\mathbf{w}|\mathbf{c}) = \frac{\exp(\gamma \cdot s(w,c))}{\exp(\gamma \cdot s(w,c)) + \sum_{\mathbf{w}_j' \in \mathbb{W}} \exp(\gamma \cdot s(w_j',c))}$$

- s(w,c) :similarity function
- w: the current word; c: context word

$$l(\mathbf{w}, \mathbf{c}; \theta) = -\log p(\mathbf{w}|\mathbf{c}) = \log(1 + \sum_{j} \exp(-\gamma \cdot \Delta_{j}(w, c)))$$
$$\Delta_{j}(w, c) = s(w, c) - s(w'_{j}, c)$$
$$L(\theta) = \sum_{(\mathbf{w}, \mathbf{c}) \in \mathcal{D}} \log(1 + \sum_{j} \exp(-\gamma \cdot \Delta_{j}(w, c)))$$

Experiment

- Word Similarity
 - DataSets: WordSim353、MEN、MT、Rel122、RG
 - Pairs of words together with their similarity scores
- Word Analogy
 - DataSets: 3CosAdd and 3CosMul
 - "a is to b that is similar to u is to v"

Word Similarity

$\rho \times 100$ Model	F. et al. WS353	B. et al. MEN	R. et al. MT	S. et al. Rel122	R. et al.
skipgram (neg=10)	63.2	59.8	61.8	53.3	64.0
skipgram (neg=100)	59.5	58.1	60.8	53.8	64.1
char n-gram	59.5	21.7	60.3	51.0	51.3
GloVe	62.6	65.1	60.2	48.8	58.1
DSSM	51.1	41.5	44.1	31.6	37.7
Our Model	65.7	69.0	64.8	57.6	72.7

Table 1: Performance on word similarity task

Effect of Convolutional Feature learning

	Goo	ogle	Microsoft		
Model	3CosAdd	3CosMul	3CosAdd	3CosMul	
DSSM	31.6	31.8	41.4	41.7	
DSSM (l+r+n)	41.7	41.7	48.5	48.9	
Our Model (l+r+n)	43.7	44.0	52.5	52.8	

Table 3: Performance comparison (on word analogy task) between Our Model (l+r+n) and DSSM (l+r+n) when all subword features are considered

Importance of subword information

(a) Performance on Word Similarity

(b) Performance on Word Analogy

Neural Ranking Models with Weak Supervision

SIGIR 2017
University of Amsterdam
Mostafa Dehghani

Motivation

- A neural ranking model using weak supervision
 - Labels: Unsupervised ranking model, such as BM25
- Various learning scenarios
 - point-wise & pair-wise models
- Different input representation

Weak Supervision for Ranking

- Pseudo-Labeling
 - pseudo-labeler: Unsupervised ranking model, such as BM25
- A set of neural network-based ranking models

Ranking Architectures

Figure 1: Different Ranking Architectures

Score model

Figure 1: Different Ranking Architectures

Score model

Loss function

$$\mathcal{L}(b;\theta) = \frac{1}{|b|} \sum_{i=1}^{|b|} (\mathcal{S}(\{q,d\}_i;\theta) - s_{\{q,d\}_i})^2$$

- |b| : batch b
- $S(q,d;\theta)$: retrieval score
- $ullet S_{\{q,d\}_i}$: the relevance score
- $\tau = (q, d, s_{q,d})$: instance

Rank model

Figure 1: Different Ranking Architectures

Rank model

Loss function

$$\mathcal{L}(b;\theta) = \frac{1}{|b|} \sum_{i=1}^{|b|} \max \{0, \varepsilon - \text{sign}(s_{\{q,d_1\}_i} - s_{\{q,d_2\}_i}) \}$$

$$(\mathcal{S}(\{q,d_1\}_i;\theta) - \mathcal{S}(\{q,d_2\}_i;\theta))\}$$

- Compress the outputs to the range of [-1,1]
- $\tau = (p, d_1, d_2, s_{qd_1}, s_{qd_2})$: instance

RankProb model

Figure 1: Different Ranking Architectures

RankProb model

Loss function_cross-entropy

$$\mathcal{L}(b;\theta) = -\frac{1}{|b|} \sum_{i=1}^{|b|} P_{\{q,d_1,d_2\}_i} \log(\mathcal{R}(\{q,d_1,d_2\}_i;\theta)) + (1 - P_{\{q,d_1,d_2\}_i}) \log(1 - \mathcal{R}(\{q,d_1,d_2\}_i;\theta))$$

 The probability of document d1 being ranked higher than d2

$$P_{\{q,d_1,d_2\}_i} = \frac{s_{\{q,d_1\}_i}}{s_{\{q,d_1\}_i} + s_{\{q,d_2\}_i}}$$

Input Representation

- Dense vector representation (Dense)
- Sparse vector representation (Sparse)
- Embedding vector representation (Embed)

Dense vector representation (Dense)

 A dense feature vector composed of features used in traditional IR model

$$\psi(q,d) = [N||avg(l_d)_D||l_d||\{df(t_i)||tf(t_i,d)\}_{1 \le i \le k}]$$

- D: the total number of the documents
- avg(ld): the average length of documents
- Id: the length of the document
- df(ti):the frequency of each term
- df(ti):document frequency of each term

Sparse vector representation (Sparse)

Bag-of-word representation

$$\psi(q,d) = [tfv_c||tfv_q||tfv_d]$$

- tfvc: term frequency vector of collection
- tfvq: term frequency vector of query
- tfvd: term frequency vector of document

Embedding vector representation (Embed)

Word Embedding

$$\psi(q,d) = [\odot_{i=1}^{|q|} (\mathcal{E}(t_i^q), \mathcal{W}(t_i^q)) || \odot_{i=1}^{|d|} (\mathcal{E}(t_i^d), \mathcal{W}(t_i^d))]$$

$$\bigcirc_{i=1}^{n}(\mathcal{E}(t_i),\mathcal{W}(t_i)) = \sum_{i=1}^{n}\widehat{\mathcal{W}}(t_i)\cdot\mathcal{E}(t_i)$$

$$\widehat{W}(t_i) = \frac{\exp(W(t_i))}{\sum_{j=1}^n \exp(W(t_j))}$$

Experiment

Results

Method		Robust04			ClueWeb			
	MAP	P@20	nDCG@20	MAP	P@20	nDCG@20		
BM25	0.2503	0.3569	0.4102	0.1021	0.2418	0.2070		
Score + Dense	0.1961▽	0.2787▽	0.3260▽	0.0689▽	0.1518▽	0.1430▽		
Score + Sparse	0.2141^{\triangledown}	0.3180°	0.3604▽	0.0701▽	0.1889°	0.1495▽		
Score + Embed	0.2423^{\triangledown}	0.3501	0.3999	0.1002	0.2513	0.2130		
Rank + Dense	0.1940▽	0.2830▽	0.3317▽	0.0622▽	0.1516▽	0.1383▽		
Rank + Sparse	0.2213▽	0.3216^{\triangledown}	0.3628▽	0.0776 [▽]	0.1989°	0.1816▽		
Rank + Embed	0.2811	0.3773	0.4302	0.1306	0.2839*	0.2216		
RankProb + Dense	0.2192▽	0.2966▽	0.3278▽	0.0702▽	0.1711▽	0.1506▽		
RankProb + Sparse	0.2246^{\triangledown}	0.3250^{\triangledown}	0.3763▽	0.0894^{\triangledown}	0.2109^{\triangledown}	0.1916		
RankProb + Embed	0.2837	0.3802	0.4389*	0.1387	0.2967	0.2330		

Experiment

 How useful is learning with weak supervision for supervised ranking?

Method	Robust04			ClueWeb		
	MAP	P@20	nDCG@20	MAP	P@20	nDCG@20
Weakly supervised	0.2837	0.3802	0.4389	0.1387	0.2967	0.2330
Fully supervised	0.1790	0.2863	0.3402	0.0680	0.1425	0.1652
Weakly supervised + Fully supervised	0.2912	0.4126	0.4509*	0.1520*	0.3077	0.2461