Technische Universität Berlin Fakultät II, Institut für Mathematik

Sekretariat MA 6–2, Antje Schulz Dr. Ambros Gleixner Holger Eble, Dr. Frank Lutz, Sarah Morell

Programmierprojekt: Young Tableaux

Teil 1: Visualisierung

1.1 Definition

Ein Young Tableau ist eine linksbündig ausgerichtete Auflistung von Reihen beschrifteter quadratischer Kästchen, sodass folgende Bedingungen erfüllt sind:

- Die Anzahl der Kästchen pro Reihe fällt (von oben nach unten).
- In jedem Kästchen steht eine Zahl aus $\mathbb{Z}_{\geq 1}$.
- Innerhalb jeder Reihe steigen die Zahlen (von links nach rechts).
- Innerhalb jeder Spalte steigen die Zahlen strikt (von oben nach unten).

Abbildung 1: Beispiel eines Young Tableaus

1.2 Aufgabenstellung

Legen Sie einen Projektordner Young Tableau und eine Datei visual.py an.

Schreiben Sie eine Funktion print_tex, welche die Visualisierung eines übergebenen Young Tableaus als LATEX-Code in die Datei visual.tex schreibt. Dabei soll ein zusätzlicher Eingabeparameter boxlength berücksichtigt werden, der die Länge eines quadratischen Kästchens festlegt.

Für die Visualisierung soll das TEX-Package TikZ benutzt werden, vgl. visual_temp.tex auf der ISIS-Seite. Kästchen sollen wie dort exemplarisch beschrieben mit

gezeichnet und mit \node beschriftet werden. Die letzte Reihe beginnt am Koordinatenursprung.

Teil 2: Parser

2.1 Wörter

Zu jedem Young Tableau T lässt sich durch Auflisten seiner Reihen von unten nach oben ein Wort w(T) über $\mathbb{Z}_{\geq 1}$ zuordenen. Beispielsweise liefert das Young Tableau von Abbildung 1 das Wort

"5 6 4 4 6 6 2 3 5 5 1 2 2 3 3 5" .

2.2 Aufgabenstellung

Legen Sie eine Datei words.py in Ihrem Projektordner an. Schreiben Sie dort eine Funktion parse_word(v), die für ein Wort v über $\mathbb{Z}_{\geq 1}$ ein Young Tableau T mit w(T) = v erstellt oder einen ValueError("no young tableau") wirft, falls v kein Young Tableau beschreibt.

Implementieren Sie eine Funktion parse(row, file), die auf die Datei file, in der ein Wort pro Zeile gespeichert ist, zugreift und die Zeile row ($\in \mathbb{Z}_{\geq 0}$) gemäß obiger Anweisung verarbeitet.

Teil 3: Algebraische Strukturen

3.1 Einfügen in Young Tableaux

Sei T ein Young Tableau und $x \in \mathbb{Z}_{\geq 1}$ ein Element, das in T eingefügt werden soll. Wir bezeichnen mit T_i die i-te Reihe von T wobei T_1 die oberste Reihe beschreibt. Das Einfügen von x in T soll folgendermaßen geschehen:

- 1) Setze i = 1.
- 2) Gibt es kein Element aus T_i , das echt größer als x ist, füge x am rechten Ende dieser Reihe hinzu und gebe das so entstehende Young Tableau zurück. Andernfalls nimm das linkeste aller echt größeren Elemente y aus T_i , ersetze y durch x und wiederhole Schritte 2) mit der nächsten (möglicherweise leeren) Reihe T_{i+1} und dem Element y.

Wir schreiben $(T \leftarrow x)$ für das so entstehende Young Tableau. Zum Beispiel ergibt sich für das Tableau T aus Abbildung 1 und x = 1 für $(T \leftarrow x)$ das Tableau

1	1	2	3	3	5
2	2	5	5		
3	4	6	6		
4	6				
5					

Abbildung 2: Resultierendes Young Tableau $(T \leftarrow x)$ für x = 1 und T aus Abbildung 1.

3.2 Multiplikation von Young Tableaux

Seien S und T zwei Young Tableaux und $w(T) = x_1 \dots x_s$ das Wort von T. Wir definieren das Produkt von S und T durch die binäre Operation

$$S \bullet T := ((((S \leftarrow x_1) \leftarrow x_2) \leftarrow ...) \leftarrow x_{s-1}) \leftarrow x_s$$
.

Proposition 1. Die Operation • auf der Menge der Young Tableaux definiert ein Monoid \mathcal{M}_{YT} .

3.3 Wörter

Auch auf Wörtern über $\mathbb{Z}_{\geq 1}$ kann eine Multiplikation definiert werden. Elemente werden wie üblich durch Konkatenierung multipliziert. Es gilt etwa

$$231 \cdot 392 = 231392$$
.

Hierdurch wird ebenfalls ein Monoid beschrieben, welches wir mit \mathcal{M}_W bezeichnen. Wir geben nun eine Relation \sim_K auf \mathcal{M}_W an: Für zwei Wörter $w_1, w_2 \in \mathcal{M}_W$ gilt $w_1 \sim_K w_2$, falls w_2 aus w_1 durch endlich viele Operationen (auf Teilwörtern der Länge 3) der folgenden Form hervorgeht:

- $K_1: *yzx* \mapsto *yxz*$, falls $x < y \le z$
- die zu K_1 inverse Operation

- $K_2: *xzy* \mapsto *zxy*$, falls $x \le y < z$
- die zu K_2 inverse Operation

Das Zeichen * steht hier für eine endliche, möglicherweise leere Zeichenkette über $\mathbb{Z}_{\geq 1}$. Beispielsweise gilt 4 2 1 3 5 \sim_K 2 4 3 1 5, da wir wie folgt entwickeln können:

$$4\ 2\ 1\ 3\ 5 \overset{K_1^{-1}}{\leadsto} 4\ 2\ 3\ 1\ 5 \overset{K_2^{-1}}{\leadsto} 2\ 4\ 3\ 1\ 5$$

Lemma 2. Die Relation \sim_K beschreibt eine Äquivalenzrelation auf \mathcal{M}_W .

Lemma 3. Die Menge $\overline{\mathcal{M}}_W := \mathcal{M}_W / \sim_K wird mit der induzierten (d.h. von <math>\mathcal{M}_W$ geerbten) Operation zu einem Monoid.

Wir schreiben $\bar{w} := \pi \circ w$ mit der Quotientenabbildung $\pi \colon \mathcal{M}_W \longrightarrow \overline{\mathcal{M}}_W$. Beachten und verifizieren Sie anhand von Beispielen, dass die Äquivalenzrelation \sim_K so erstellt wurde, dass sie verträglich mit der Einfügeoperation aus Teil 3.1 ist, d.h. aus der Definition erhalten wir anhand elementarer Betrachtungen folgende Aussage:

Proposition 4. Für ein Young Tableau T und ein $x \in \mathbb{Z}_{\geq 1}$ gilt $\bar{w}(T \leftarrow x) = \bar{w}(T) \cdot \bar{w}(x)$ in $\overline{\mathcal{M}}_W$, wobei wir x auf der rechten Seite als einelementiges Young Tableau auffassen.

Corollary 5. Für zwei Young Tableaux S und T gilt $\bar{w}(S \bullet T) = \bar{w}(S) \cdot \bar{w}(T)$ in $\overline{\mathcal{M}}_W$.

Lemma 6. Die Abbildung $\overline{w} \colon \mathcal{M}_{YT} \longrightarrow \overline{\mathcal{M}}_W$ ist surjektiv.

Beweisen Sie alle drei Lemmata. Konstruieren Sie insbesondere zu jedem Wort w ein Young Tableau T mit zu w equivalentem Wort w(T). Dies ist das (theoretische) Kernstück dieses Programmierprojekts!

Tatsächlich ist \bar{w} auch injektiv, was schwieriger zu zeigen ist und wir als gegeben hinnehmen.

Theorem 7. Die Abbildung $\overline{w}: \mathcal{M}_{YT} \longrightarrow \overline{\mathcal{M}}_W$ ist ein Isomorphismus.

3.4 Aufgabenstellung

Beweisen Sie die Lemmata 2, 3 und 6.

Machen Sie sich klar, was für Propositionen 1 zu zeigen ist und was davon offensichtlich ist. Leiten Sie Korollar 5 aus Proposition 4 her.

Legen Sie eine Datei ytmath.py in Ihrem Projektordner an. Schreiben Sie dort eine Funktion row_insert, welche für ein Young Tableau T und ein $x \in \mathbb{Z}_{\geq 1}$ das Young Tableau $(T \leftarrow x)$ zurückgibt. Implementieren sie dort auch die Multiplikation (siehe 3.2) und denken Sie an das neutrale Element.

Verfahren Sie ähnlich mit der Multiplikation von Wörtern und implementieren Sie die Funktionen K1, K1_inv, K2 und K2_inv, siehe unten.

Die Klassen youngtableau und word

Legen Sie eine Datei struc.py in Ihrem Projektordner an.

4.1 Die Klasse youngtableau

Implementeren Sie die Klasse youngtableau mit den folgenden Methoden:

- __init__(self, word): Erstellt ein Young Tableau aus einem Wort, sieheTeil 2.
- visual(self, boxlength, file): Speichert die Visualisierung in der Datei file ab.
- row_insert(self, x): Gibt das Young Tableau (self $\leftarrow x$) zurück.
- word(self): Gibt w(self) als word zurück.

Schreiben Sie zudem Funktionen

- create_from(row, file), welche ein Young Tableau aus Zeile row ($\in \mathbb{Z}_{\geq 0}$) von Datei file zurückgibt, siehe Konvention aus Teil 2.
- multiply(S, T), welche das Produkt von S und T (als youngtableau) zurückgibt.

4.2 Die Klasse word

Implementieren Sie die Klasse word, welche ein Wort über $\mathbb{Z}_{\geq 1}$ als Liste speichert und folgende Methoden bereitstellt:

- K1(self, index): Betrachtet das Unterwort self[index:index+3] der Länge 3 und gibt das durch K_1 modifizierte Wort (siehe 3.3) zurück, falls die Voraussetzungen erfüllt sind, oder wirft einen ValueError("K-operation impossible").
- K1_inv(self, index): analog
- K2(self, index): analog
- K2_inv(self, index): analog
- youngtableau(self): Gibt $\bar{w}^{-1}(\overline{\text{self}})$ als youngtableau zurück.

Schreiben Sie zudem Funktionen

- mult_classes(word1, word2), welche einen Repräsentant von word1 · word2 (Multiplikation in $\overline{\mathcal{M}}_W$) als word zurückgibt.
- are_equiv(word1, word2), die True zurückgibt, falls word1 \sim_K word2 gilt und ansonsten False zurückgibt.

In der Datei struc.py sollten überwiegend Aufrufe der in den Teilen 1 bis 3 implementierten Module erfolgen. Modifizieren oder erweitern Sie diese, falls nötig.

Abgabe

Das Projekt muss bis spätestens Donnerstag, den 4. Juli 2019, beim CoMa-Team vorgestellt werden. Vereinbaren Sie hierfür einen Termin mit Ihrer Betreuerin bzw. Ihrem Betreuer.