4.4.3. Изучение призмы с помощью гониометра

Цель работы: знакомство с работой и настройкой гониометра Γ 5, определение зависимости показателя преломления стекла призмы от длины волны, определение марки стекла и спектральных характеристик призмы.

В работе используются: гониометр, ртутная лампа, призма.

Теоретическая часть:

- 1. Гониометр служит для точного измерения углов.
- 2. Показатель преломления призмы.

Рис. 1: Призма.

Минимальное отклонение луча, преломленного призмой, от направления луча, падающего на призму, получается при симметричном ходе луча (δ — угол минимального отклонения, α — преломляющий угол, n — показатель преломления):

$$n = \frac{\sin\frac{\alpha + \delta}{2}}{\sin\frac{\alpha}{2}} \tag{1}$$

- 3. Дисперсионная кривая график зависимости $n(\lambda)$
 - (a) средняя дисперсия: $D = n_F n_C$
 - (b) коэффициент диспрсии: $\nu = \frac{n_D 1}{n_F n_C}$, где:

 n_D — показатель преломления для $\lambda_D = 589, 3nm$ (среднее значения длин волн желтого дуплета натрия)

 n_F — показатель преломления для $\lambda_F = 486, 1nm$ (голубая линия водорода)

 n_{C} — показатель преломления для $\lambda_{C} = 656, 3nm$ (красная линия водорода)

- 4. Разрешающая способность призмы: $R=\frac{\lambda}{\delta\lambda}=b\frac{dn}{d\lambda}$
 - $\delta\lambda$ минимальный интервал длин волн, разрешаемый по критерию Релея
 - b размер основания призмы, если вся рабочая грань призмы освещена параллельным пучком
- 5. Принцип Гюйгенса-Френеля: каждый элемент волнового фронта можно рассматривать как центр вторичных возмущений, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн. Дисперсия явления, обусловленные зависимостью абсолютного показателя преломления вещества

Экспериментальная установка:

от частоты света.

1. Оптическая схема и внешний вид гониометра

Ход работы:

1. Настройка гониометра.

І Отсчет углов: 84°22′15" \backsim 84°28′15"

2. Изучение призмы.

III Измерение преломляющего угла:

$$\begin{split} &\alpha_1=358°49'55"\\ &\alpha_2=241°19'55"\\ &\alpha=\alpha_1-\alpha_2=117°30'00"-$$
 преломляющий угол призмы

IV Минимальный угол отклонения:

желтый	63°56′54"	$\lambda = 578nm$
зеленый	64°46′54"	$\lambda = 546, 1nm$
голубой	65°21′52"	$\lambda = 491,6nm$
фиолетовый	63°32′52"	$\lambda = 404,7nm$

V Разрешающая способность:

- (a) желтый дуплет расстояние $\approx 1,5mm$
- (b) длина основания призмы b = 7cm

Обработка результатов:

1.

$$R = \frac{\lambda}{\delta \lambda} = b \frac{dn}{d\lambda}$$

$$D = \frac{m}{\sqrt{d^2 - m^2 \lambda^2}}$$

$$m \cdot N = R$$

$$N = d \cdot n,$$

где m — максимумы, d = 1/n, n = 100 штр/мм, d — длинна решетки.

2. Для каждой длинны волны определим показатель преломления:

λ, nm	404,7	491,6	546,1	578
δ	63°32'52"	65°21'52"	64°46'54"	63°56'54"
n	1,7179	1,7315	1,7272	1,7209

3. Соответсвие длинн волн и показателя преломления:

λ, nm	n	
589,3	1,67	d
486,1	1,72	f
656,3	1,7	С

4. Найдем среднюю диспрсию и коэффициент диспрсии:

$$D = 0.02$$

$$\nu = 33, 5$$

5. Найдем разрешающую способность призмы:

$$R = \frac{\lambda}{\delta \lambda} = 1964, 33$$

 $b_{\text{рабочая}} = 0,039$
 $R = b\frac{dn}{d\lambda} = 3500$

$$b_{\text{рабочая}} = 0,039$$

$$R = b \frac{dn}{d\lambda} = 3500$$

6. И наконец, построим график зависимости $n(\lambda)$:

Вывод:

Исследовали дисперсию стеклянной призмы, оппределили характеристики спектрального прибора. В ходе эксперемента установили, что для имеющегося образца $n \approx 1, 7$, что соответствует высокопреломляющему стеклу, из чего можно сделать вывод, что тип материала — минеральный.