Wersja: A Numer inc	leksu:
Logika dla informatyków	
Sprawdzian nr 1, 3 listopada 2011 Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach lub n odwrocie tej kartki.	a
Zadanie 1 (4 punkty). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postac malnej równoważną formule $\neg(p\Rightarrow q) \land (p \lor \neg q)$	i nor-
Zadanie 2 (4 punkty). W prostokąt poniżej wpisz dowód tautologii $(p \Rightarrow q) \Rightarrow (\neg p)$ w systemie naturalnej dedukcji.	$\neg q \Rightarrow$

Zadanie 3 (4 punkty). Jeśli dla wszystkich formuł φ i ψ logiki pierwszego rzędu formuły $\exists x \, (\varphi \Leftrightarrow \psi)$ oraz $(\exists x \, \varphi) \Leftrightarrow (\exists x \, \psi)$ są równoważne, to w prostokąt poniżej wpisz słowo

"R	"RÓWNOWAZNE". W przeciwnym	m przypadku wpisz odpowiedni kontrp	orzykład.

Zadanie 4 (4 punkty). Udowodnij, że jeśli $\varphi_1 \wedge \neg \varphi_2$ jest formułą sprzeczną to $\neg \varphi_1 \vee \varphi_2$ jest tautologią.

Zadanie 5 (4 punkty). Udowodnij indukcyjnie¹ (względem głębokości φ), że dla każdej formuły φ rachunku zdań istnieje równoważna jej formuła, w której nie występuje symbol \Leftrightarrow .

¹To jest zadanie z indukcji. Nie interesują nas żadne inne dowody tej własności.

Wersja:	\mathbf{C}												1	Vum	er in	ndeks	su:	
				Logil	ka d	la inf	form	atyk	кów	,								
Rozwi	ązania	wszy	stkich		inny		cić si	ę w c				h pro	stoka	ıtach	lub	na		
Zadanie malnej ró							wpi	sz fo	$ m rm \iota$	ułę v	w dy	sjun	kcyjı	nej p	osta	ci no	or-	
Zadanie czyli taut												dow	odze	enia i	nie v	vpros	st,	

Zadanie 3 (4 punkty). Jeśli dla wszystkich formuł φ i ψ logiki pierwszego rzędu formuły $\forall x\,(\varphi \Leftrightarrow \psi)$ oraz $(\forall x\,\varphi) \Leftrightarrow (\forall x\,\psi)$ są równoważne, to w prostokąt poniżej wpisz słowo "RÓWNOWAŻNE". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Zadanie 4 (4 punkty). Rozważmy dowolny zbiór klauzul \mathcal{F} .

- (a) Rozważmy taki ciąg klauzul C_1, \ldots, C_n , że dla wszystkich $i \in \{1, \ldots, n\}$ $C_i \in \mathcal{F}$ lub istnieją takie j, k < i, że C_i jest rezolwentą C_j i C_k . Udowodnij, że dla wszystkich i klauzula C_i jest logiczną konsekwencją zbioru klauzul \mathcal{F} . Możesz przy tym skorzystać z udowodnionego na ćwiczeniach faktu, że dla dowolnych klauzul C i D oraz dowolnej zmiennej zdaniowej p rezolwenta $C \vee D$ jest logiczną konsekwencją zbioru $\{C \vee p, D \vee \neg p\}$.
- (b) Udowodnij, że jeśli istnieje rezolucyjny dowód sprzeczności zbioru \mathcal{F} , to \mathcal{F} jest zbiorem sprzecznym. Możesz przy tym skorzystać z poprzedniego punktu, nawet jeśli go nie udowodniłeś.

Zadanie 5 (4 punkty). Udowodnij, że jeśli $\varphi_1 \Rightarrow \varphi_2$ jest tautologią rachunku zdań to $\varphi_1 \wedge \neg \varphi_2$ jest formułą sprzeczną.