

Non-Regular Languages (1.4)

COT 4210 Discrete Structures II
Summer 2025
Department of Computer Science
Dr. Steinberg

Non-Regular Languages

We need to know our limitations!

$$L = \{ 0^n 1^n | n > 0 \}$$

Is L regular?

$$L = \{ 0^n 1^n | n > 0 \}$$

Is L regular?

NO!

L has to count the number of 0's and 1's. Plus that number is arbitrary.

$$L = \{ 0^n 1^n | n > 0 \}$$

Is L regular?

Do you remember what the <u>F</u> in <u>FSM</u>, <u>DFA</u>, and <u>NFA</u> stand for?

$$L = \{ 0^n 1^n | n > 0 \}$$

Is L regular?

FINITE!!!

Pigeonhole Principle

Time for a flashback because this does play a role!

The Pigeonhole Principle

- Suppose if a flock of 20 pigeons roosts in a set of 19 pigeonholes, one of the pigeonholes must have more than 1 pigeon.
- **Pigeonhole Principle Theorem**: If k is a positive integer and k+1 objects are placed into k boxes, then at least one box contains two or more objects.

• **Proof**: Lets use a proof by contraposition. Suppose none of the k boxes has more than one object. Then the total number of objects would be at most k. This contradicts the statement that we have k+1

1 objects.

Image from rosen, discrete math and its applications eighth edition, mcgraw hill, 2019

The Pigeonhole Principle

Suppose if a flock of 20 pigeons roosts in a set of 19 pigeonholes, one of the pigeonholes must have more than 1 pigeon.

Pigeonhole Principle Theorem: If k is a positive integer and k+1 objects are placed into k boxes, then at least one box contains two or more objects.

Proof: Lets use 1 objects.

Then the total n Don't worry you will understand at we have k + 1where this is going!

(a)

(b)

(c)

n one object.

Image from rosen, discrete math and its applications eighth edition, mcgraw hill, 2019

Counting and DFAs

This is where we are going!

Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that the string has as many symbols as the DFA has states
- What does that mean we can say, with complete certainty?

110

Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that the string has as many symbols as the DFA has states
- What does that mean we can say, with complete certainty?

We cycled at least once

But that means...

1**1**0

Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that the string has as many symbols as the DFA has states
- What does that mean we can say, with complete certainty?

But that means...

We can run that same cycle indefinitely-

University of Central Florida – COT4210 Page 13

The Pumping Lemma

If A is a regular language, then there is a number p – the **pumping length** – so that if s is a string in A with length of at least p, then s = xyz so that:

- xy^iz is a string in A for all $i \ge 0$,
- |y| > 0, and
- $|xy| \leq p$

Notes:

- y^i just means "y concatenated to itself i times"
- |s| means the length of a string s
- x and z can be empty, but y can't be this is the whole point of the lemma
- We call it a lemma because all it's good for is showing that some languages aren't regular

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

We already showed the important parts of this.

- We go around a cycle that is, we hit at least one state at least twice
- x is the part of the string **before** the cycle, y is the **cyclic** part, and z is the part **after** the cycle

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

We already showed the important parts of this.

- We go around a cycle that is, we hit at least one state at least twice
- *x* is the part of the string **before** the cycle, *y* is the **cyclic** part, and *z* is the part **after** the cycle All we're saying is:
 - 1. We can go around the cycle as many times as we want, since it's a cycle

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

We already showed the important parts of this.

- We go around a cycle that is, we hit at least one state at least twice
- *x* is the part of the string **before** the cycle, *y* is the **cyclic** part, and *z* is the part **after** the cycle All we're saying is:
 - 1. We can go around the cycle as many times as we want, since it's a cycle
 - 2. The before and after parts can be empty, but **the cyclic part can't be empty** or we don't have enough states

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

We already showed the important parts of this.

- We go around a cycle that is, we hit at least one state at least twice
- x is the part of the string **before** the cycle, y is the **cyclic** part, and z is the part **after** the cycle All we're saying is:
 - 1. We can go around the cycle as many times as we want, since it's a cycle
 - 2. The before and after parts can be empty, but the cyclic part can't be empty or we don't have enough states
 - 3. We have to hit some state twice by the time we hit a number of symbols equal to the number of states

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2 \dots r_{n+1}$ be the sequence of states that M enters while computing S.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2 \dots r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length n + 1, which is at least p + 1
- Within the first p+1 states in the sequence, two <u>different</u> points in the sequence have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2 \dots r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length n + 1, which is at least p + 1
- Within the first p+1 states in the sequence, two <u>different</u> points in the sequence have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1 ... s_{j-1}$, $y = s_j ... s_{k-1}$, and $z = s_k ... s_n$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2 \dots r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length n + 1, which is at least p + 1
- Within the first p+1 states in the sequence, two <u>different</u> points in the sequence have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1 \dots s_{j-1}$, $y = s_j \dots s_{k-1}$, and $z = s_k \dots s_n$. Observe that:

- x takes M from r_1 to r_j
- y takes M from r_j to r_k
- z takes M from r_k to r_{n+1}
- But r_i and r_k are the same state!
- Therefore, M must accept xy^iz for all $i \geq 0$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2 \dots r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length n + 1, which is at least p + 1
- Within the first p+1 states in the sequence, two <u>different</u> points in the sequence have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1 \dots s_{j-1}$, $y = s_j \dots s_{k-1}$, and $z = s_k \dots s_n$. Observe that:

- x takes M from r_1 to r_j
- y takes M from r_i to r_k
- z takes M from r_k to r_{n+1}
- But r_i and r_k are the same state!
- Therefore, M must accept xy^iz for all $i \geq 0$.

Observe that:

• Since $j \neq k$, |y| > 0

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = rvz so that rviz is a string in A for all $i \ge 0$

Let $s = s_1 s_2 \dots s_n$ be

Let $r_1 r_2 ... r_{n+1}$ be t

We have shown that all three conditions of the pumping lemma hold. □

enters while computing S. Observe that:

- The state sequence has length n + 1, which is at least p + 1
- Within the first p+1 states in the sequence, two <u>different</u> points in the sequence have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1 \dots s_{j-1}$, $y = s_j \dots s_{k-1}$, and $z = s_k \dots s_n$. Observe that:

• x takes M from r_1 to r_j

• Therefore, M must accept xy^iz for all $i \ge 0$.

ame state!

Observe that:

• Since $j \neq k$, |y| > 0

Finally, observe that:

• Since $k \le p + 1$, $|xy| \le p$

Using the Pumping Lemma

The pumping lemma is basically only good for proofs by contradiction. Three steps:

1. Set Up the Pump

- Assume a language A is regular
- Observe that, therefore, by the pumping lemma, there is a p so that any string s in A, of length p or greater, can be cut into xyz and pumped
 - You don't need to know what p is only that it exists!

2. Break the Pump

- Find a string s in it, of length p or greater, that can't be pumped
- Demonstrate that no matter how you cut it into xyz, it still can't be pumped
 - Remember all parts of the pumping lemma here part 3 can be more useful than you'd think

3. Clean Up the Mess

- Observe that since string s in A, of length p or greater, can't be pumped; and A is regular; we have a contradiction with the pumping lemma
- Conclude that A is not regular

Examples of Non-Regular Languages

University of Central Florida – COT4210 Page 30

1. Assume by contradiction that L is regular.

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists n > 0 such that $\forall w \in L$, $|w| \ge n$, w can be decomposed w = xyz with $|xy| \le n$ and |y| > 0 and $w_i = xy^iz \in L$.

University of Central Florida – COT4210 Page 32

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists n > 0 such that $\forall w \in L$, $|w| \ge n$, w can be decomposed w = xyz with $|xy| \le n$ and |y| > 0 and $w_i = xy^iz \in L$.
- 3. Choose our string w. $w = a^n b^n$ (w = xyz). Since $|xy| \le n \Rightarrow y$ contains only a's. $y = a^k$ with $k \ge 1$ Let $x = a^u$

$$w = a^u a^k a^{n-u-k} b^n$$

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists n > 0 such that $\forall w \in L$, $|w| \ge n$, w can be decomposed w = xyz with $|xy| \le n$ and |y| > 0 and $w_i = xy^iz \in L$.
- 3. Choose our string w. $w = a^n b^n$ (w = xyz). Since $|xy| \le n \Rightarrow y$ contains only a's. $y = a^k$ with $k \ge 1$ Let $x = a^u$

$$w = \underbrace{a^{u}}_{\chi} \underbrace{a^{k}}_{y} \underbrace{a^{n-u-k}b^{n}}_{Z}$$

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists n > 0 such that $\forall w \in L$, $|w| \ge n$, w can be decomposed w = xyz with $|xy| \le n$ and |y| > 0 and $w_i = xy^iz \in L$.
- 3. Choose our string w. $w = a^n b^n$ (w = xyz). Since $|xy| \le n \Rightarrow y$ contains only a's. $y = a^k$ with $k \ge 1$ Let $x = a^u$

$$w = \underbrace{a^{u}}_{x} \underbrace{a^{k}}_{y} \underbrace{a^{n-u-k}b^{n}}_{z}$$

$$w_i = a^u(a^k)^i a^{n-u-k} b^n = a^{n-k}(a^k)^i b^n$$

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists n > 0 such that $\forall w \in L$, $|w| \ge n$, w can be decomposed w = xyz with $|xy| \le n$ and |y| > 0 and $w_i = xy^iz \in L$.
- 3. Choose our string w. $w = a^n b^n$ (w = xyz). Since $|xy| \le n \Rightarrow y$ contains only a's. $y = a^k$ with $k \ge 1$ Let $x = a^u$

$$w = \underbrace{a^{u}}_{x} \underbrace{a^{k}}_{y} \underbrace{a^{n-u-k}b^{n}}_{z}$$

$$w_i = a^u (a^k)^i a^{n-u-k} b^n = a^{n-k} (a^k)^i b^n$$

4. Choose i. i = 0 $w_0 = a^{n-k} (a^k)^0 b^n = a^{n-k} b^n$ $a^{n-k} b^n \notin L \Rightarrow \text{Contradicts our ASSUMPTION!}$ $\Rightarrow L \text{ is NOT regular}$

University of Central Florida – COT4210 Page 37

1. Assume by contradiction that L is regular.

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists m > 0 such that $\forall w \in L$, $|w| \ge m$, w can be decomposed w = xyz with $|xy| \le m$ and |y| > 0 and $w_i = xy^iz \in L$.

University of Central Florida – COT4210 Page 39

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists m > 0 such that $\forall w \in L$, $|w| \ge m$, w can be decomposed w = xyz with $|xy| \le m$ and |y| > 0 and $w_i = xy^iz \in L$.
- 3. Choose our string w. $w = a^m b^m b^m a^m$ (w = xyz). Since $|xy| \le m$ $|y| \ge 1 \Rightarrow y$ contains only a's. $y = a^k$ with $k \ge 1$

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists m > 0 such that $\forall w \in L$, $|w| \ge m$, w can be decomposed w = xyz with $|xy| \le m$ and |y| > 0 and $w_i = xy^iz \in L$.
- 3. Choose our string w. $w = a^m b^m b^m a^m$ (w = xyz). Since $|xy| \le m$ $|y| \ge 1 \Rightarrow y$ contains only a's. $y = a^k$ with $k \ge 1$

$$w = \underbrace{a^{m-k}}_{x} \underbrace{a^{k}}_{y} \underbrace{b^{m}b^{m}a^{m}}_{z}$$

$$w_i = a^{m-k} (a^k)^i b^m b^m a^m \in L$$

- 1. Assume by contradiction that L is regular.
- 2. Pumping Lemma states there exists m > 0 such that $\forall w \in L$, $|w| \ge m$, w can be decomposed w = xyz with $|xy| \le m$ and |y| > 0 and $w_i = xy^iz \in L$.
- 3. Choose our string w. $w = a^m b^m b^m a^m$ (w = xyz). Since $|xy| \le m$ $|y| \ge 1 \Rightarrow y$ contains only a's. $y = a^k$ with $k \ge 1$

$$w = \underbrace{a^{m-k}}_{x} \underbrace{a^{k}}_{y} \underbrace{b^{m}b^{m}a^{m}}_{z}$$

$$w_i = a^{m-k} (a^k)^i b^m b^m a^m \in L$$

4. Choose i. i = 0 $w_0 = a^{m-k} (a^k)^0 b^m b^m a^m = a^{m-k} b^m b^m a^m$ $a^{m-k} b^m b^m a^m \notin L \Rightarrow \text{Contradicts our ASSUMPTION!}$ $\Rightarrow L \text{ is NOT regular}$

More Examples on the Board

Categorizing Languages

- We have shown that there are plenty of languages we can't process using the tools we use for regular languages
- That does not mean we can't process them
 - Any language we can think of an algorithm to recognize can be recognized
 - It just can't be done with a DFA
- We consider regular languages the simplest class of languages worth putting serious thought into
- We have other tools for processing more complex classes of languages
- Over the next few weeks, we will walk our way up this hierarchy of languages

University of Central Florida – COT4210 Page 44

Acknowledgement

Some Notes and content come from Dr. Gerber, Dr. Hughes, and Mr. Guha's COT4210 class and the Sipser Textbook, *Introduction to the Theory of Computation*, 3rd ed., 2013