Babeş-Bolyai University, Faculty of Mathematics and Computer Science Mathematical Analysis - Homework Solutions Computer Science, Academic Year: 2020/2021

Homework 1

Seminar 1

Exercise 1.1. Prove that for every $n \in \mathbb{N}$, $n \ge 2$, we have $\sum_{m=1}^{n} \frac{1}{\sqrt{m}} > \sqrt{n}$.

Solution We use mathematical induction. Consider the following statement for $n \in \mathbb{N}$ with $n \geq 2$:

$$P(n)$$
: " $\sum_{m=1}^{n} \frac{1}{\sqrt{m}} > \sqrt{n}$ ".

One can easily verify that P(2) is true. Now let $k \in \mathbb{N}$ such that $k \geq 2$ and assume that P(k) is valid. Then

$$\sum_{m=1}^{k+1} \frac{1}{\sqrt{m}} = \frac{1}{\sqrt{k+1}} + \sum_{m=1}^{k} \frac{1}{\sqrt{m}} > \frac{1}{\sqrt{k+1}} + \sqrt{k} = \frac{1+\sqrt{k(k+1)}}{\sqrt{k+1}} > \frac{1+k}{\sqrt{k+1}} = \sqrt{k+1},$$

hence P(k+1) is valid as well. We can conclude that P(n) is true for all $n \in \mathbb{N}$, $n \geq 2$.

Exercise 1.2. Let x > 0 and $n \in \mathbb{N}$. Use the inequality $G(x_1, \ldots, x_m) \leq A(x_1, \ldots, x_m)$ for some appropriate choice of $m \in \mathbb{N}$ and of real numbers $x_1, \ldots, x_m > 0$ to deduce that:

a)
$$\frac{x^n}{1+x+\ldots+x^{2n}} \le \frac{1}{2n+1}$$
;

b)
$$1 + (n+1)x \le (1+x)^{n+1}$$
.

Solution a) Take m = 2n + 1 and $x_i = x^{i-1}$ for $i \in \{1, ..., 2n + 1\}$.

b) Take m = n + 1, $x_1 = 1 + (n + 1)x$ and $x_i = 1$ for $i \in \{2, ..., n + 1\}$.

Exercise 1.3. Prove that for every $n \in \mathbb{N}$ with $n \geq 2$ and for any numbers $x_1, x_2, \ldots, x_n \in [-1, \infty)$ all of the same sign, we have

$$(1+x_1)(1+x_2)\cdot\ldots\cdot(1+x_n)\geq 1+x_1+x_2+\ldots+x_n$$
 (the generalized Bernoulli inequality).

Solution We use mathematical induction. Consider the following statement for $n \in \mathbb{N}$ with $n \geq 2$:

$$P(n)$$
: " $\forall x_1, x_2, \dots, x_n \ge -1$ all of the same sign we have $(1+x_1)(1+x_2)\cdot \dots \cdot (1+x_n) \ge 1+x_1+x_2+\dots+x_n$ ".

We verify that P(2) is true. Let $x_1, x_2 \ge -1$ of the same sign. Then

$$(1+x_1)(1+x_2) = 1+x_1+x_2+x_1x_2 \ge 1+x_1+x_2$$

Now let $k \in \mathbb{N}$ such that $k \geq 2$ and assume that P(k) is valid. Let $x_1, x_2, \ldots, x_{k+1} \geq -1$ all of the same sign. Then

$$(1+x_1)(1+x_2)\cdot\ldots\cdot(1+x_k)(1+x_{k+1}) \ge (1+x_1+x_2+\ldots+x_k)(1+x_{k+1})$$

$$= 1+x_1+x_2+\ldots+x_k+x_{k+1}+x_1x_{k+1}+x_2x_{k+1}+\ldots+x_kx_{k+1}$$

$$\ge 1+x_1+x_2+\ldots+x_k+x_{k+1}.$$

Thus, P(k+1) is also true. We can conclude that P(n) is true for all $n \in \mathbb{N}$, $n \ge 2$.

Seminar 2

Exercise 2.1. For each set A_i from below find $\mathrm{lb}(A_i)$ and $\mathrm{ub}(A_i)$ (as subsets of \mathbb{R}), $\min(A_i)$ and $\max(A_i)$ (if they exist), and $\inf(A_i)$ and $\sup(A_i)$ (in $\overline{\mathbb{R}}$):

$$A_{1} = [-8, \pi) \cap \mathbb{Z}, \qquad A_{3} = \left\{ x + \frac{1}{x} \mid x \in \mathbb{R}, x < 0 \right\},$$

$$A_{2} = \left\{ 2^{m} + n! \mid m, n \in \mathbb{N} \right\}, \qquad A_{4} = \left\{ \frac{n}{1 - n^{2}} \mid n \in \mathbb{N}, n \ge 2 \right\}.$$

Solution

- A_1 : $A_1 = \{-8, -7, \dots, 2, 3\}$, so $lb(A_1) = (-\infty, -8]$, $min A_1 = -8 = inf A_1$, $ub(A_1) = [3, \infty)$, $max A_1 = 3 = sup A_1$.
- A_2 : Since

$$2^m + n! \ge 3$$
, for all $m, n \in \mathbb{N}$,

with equality for m = n = 1, we have $lb(A_2) = (-\infty, 3]$, $min A_2 = 3 = inf A_2$. The set A_2 is not bounded above, so $ub(A_2) = \emptyset$, no maximum, $sup A_2 = \infty$.

• A_3 : Since

$$x + \frac{1}{x} + 2 = \frac{(x+1)^2}{x} \le 0$$
, for all $x \in \mathbb{R}, x < 0$,

with equality for x = -1, we have $\operatorname{ub}(A_3) = [-2, \infty)$, $\max A_3 = -2 = \sup A_3$. The set A_3 is not bounded below, so $\operatorname{lb}(A_3) = \emptyset$, no minimum, $\inf A_3 = -\infty$.

• A_4 : Since

$$\frac{n}{1-n^2} = \frac{n-1+1}{1-n^2} = -\frac{1}{n+1} + \frac{1}{1-n^2} \ge -\frac{1}{3} - \frac{1}{3} = -\frac{2}{3}, \quad \text{for all } n \in \mathbb{N}, n \ge 2,$$

with equality for n=2, we have $lb(A_4)=(-\infty,-2/3]$, $\min A_4=-2/3=\inf A_4$. Note that $\frac{n}{1-n^2}<0$ for all $n\in\mathbb{N},\ n\geq 2$, so $0\in ub(A_4)$. To see that $\sup A_4=0$, it is enough to note that $\lim_{n\to\infty}\frac{n}{1-n^2}=0$. Then $ub(A_4)=[0,\infty)$, no maximum.

Exercise 2.2. Find two sets $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ such that the following conditions are simultaneously met:

- (i) one of the sets is unbounded (but not an interval) and the other is finite;
- (ii) $\sup A = \inf B = 2 \in A$;
- (iii) for every $a \in A$ and every $b \in B$, there exists $c \in \mathbb{R}$ with a < c < b.

Is it possible to choose B the finite set?

Solution Take, e.g., $A = \{2\}$ and $B = (2,3) \cup (4,\infty)$. Then, for every $b \in B$, c = (2+b)/2 = 1+b/2 satisfies 2 < c < b.

The set B cannot be chosen to be finite. Indeed, in this case, inf $B = \min B$. Since $\sup A \in A$, we have $\sup A = \max A$. Hence $\min B = \max A$ and condition (iii) does not hold.

Exercise 2.3. Decide which of the following sets are neighborhoods of 0. Justify.

$$A_1 = (-1, 0] \cup \{1\},$$
 $A_3 = \mathbb{R},$ $A_2 = \left[1 - \frac{3}{2}, 1 + \frac{3}{2}\right] \cup (3, 4),$ $A_4 = \mathbb{R} \setminus \mathbb{Q}.$

Solution

- A_1 : False because $\nexists \varepsilon > 0$ so that $(-\varepsilon, \varepsilon) \subseteq A_1$.
- A_2 : True because $(-1/2, 1/2) \subseteq A_2$.
- A_3 : True because $(-\varepsilon, \varepsilon) \subseteq A_3$ for all $\varepsilon > 0$.
- A_4 : False because, by the Density Property of $\mathbb Q$ in $\mathbb R$, between any two irrational numbers there exists a rational one, so A_4 contains no intervals. Moreover, $0 \notin A_4$.

Seminar 3

Exercise 3.1. Find the limit (as $n \to \infty$) of the sequence whose general term $x_n, n \in \mathbb{N}$, is given

a)
$$\frac{n+\sin(n^2)}{\cos(n)-3n}$$
, b) $(n^2+n)^{-\frac{n}{n+1}}$, c) $\left(1+\frac{1}{n^3+2n^2}\right)^{n-n^3}$, d) $\frac{1\cdot 1!+2\cdot 2!+\ldots+n\cdot n!}{(n+1)!}$,

e)
$$\sqrt[n]{1+2+\ldots+n}$$
, f) $n\left(\left(1+\frac{1}{n}\right)^{1+\frac{1}{n}}-1\right)$.

Solution a) $x_n = \frac{1 + \frac{\sin(n^2)}{n}}{-3 + \frac{\cos(n)}{n}}, n \in \mathbb{N}$. Since $\forall n \in \mathbb{N}, -\frac{1}{n} \leq \frac{\sin(n^2)}{n} \leq \frac{1}{n}$, by the Squeeze

Theorem, $\lim_{n \to \infty} \frac{\sin(n^2)}{n} = 0$. Similarly, $\lim_{n \to \infty} \frac{\cos(n)}{n} = 0$, and hence $\lim_{n \to \infty} x_n = -\frac{1}{3}$.

b) $\lim_{n\to\infty} x_n = 0$ (case ∞^{-1}).

c)
$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n^3 + 2n^2} \right)^{n^3 + 2n^2} \right]^{\frac{n - n^3}{n^3 + 2n^2}} = e^{-1} = \frac{1}{e}.$$

d) Define, for $n \in \mathbb{N}$, $a_n = 1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n!$ and $b_n = (n+1)!$. Then the sequence (b_n) is strictly increasing and $\lim_{n \to \infty} b_n = \infty$. In addition,

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \frac{(n+1)(n+1)!}{(n+2)! - (n+1)!} = \frac{(n+1)(n+1)!}{(n+1)!(n+2-1)} = 1.$$

By the Stolz-Casàro Theorem,
$$\lim_{n\to\infty} x_n = 1$$
.
e) $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{\sqrt[n]{n}\sqrt[n]{n+1}}{\sqrt[n]{2}} = 1$.

f) Since $\sqrt[n]{1+\frac{1}{n}} \le 1+\frac{1}{n^2}$ for all $n \in \mathbb{N}$ (see Seminar 3), we get

$$1 + \frac{1}{n} \le \left(1 + \frac{1}{n}\right)^{1 + \frac{1}{n}} \le \left(1 + \frac{1}{n}\right) \left(1 + \frac{1}{n^2}\right) = 1 + \frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3},$$

from where, subtracting 1 and then multiplying by n, we get $1 \le x_n \le 1 + \frac{1}{n} + \frac{1}{n^2}$. By the Squeeze Theorem, $\lim_{n \to \infty} x_n = 1$.

Exercise 3.2. For $n \in \mathbb{N}$, let $a_n, b_n \in \mathbb{R}$ such that $a_n \leq b_n$ and $\lim_{n \to \infty} (b_n - a_n) = 0$. Suppose, in addition, that $\forall n \in \mathbb{N}$, $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$. By the Nested Interval Property, $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$.

Can $\bigcap_{n=1} [a_n, b_n]$ contain more than one point?

Solution No, because supposing that there exist $x, y \in \mathbb{R}$ with $x \neq y$ such that $x, y \in \bigcap_{n=1}^{\infty} [a_n, b_n]$, we get that $\forall n \in \mathbb{N}, |x - y| \leq b_n - a_n$, so, $0 < |x - y| \leq 0 = \lim_{n \to \infty} (b_n - a_n)$, a contradiction.

Exercise 3.3. Let (x_n) be a sequence in \mathbb{Z} . If (x_n) is convergent, is it eventually constant (i.e., $\exists n_0 \in \mathbb{N}$ such that $\forall m, n \in \mathbb{N}$ with $m, n \geq n_0$ we have $x_m = x_n$)?

Solution Yes, (x_n) will eventually be constant. Denote $\lim_{n\to\infty} x_n = x$. Then there exists $n_0 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \ge n_0$ we have $|x_n - x| < 1/2$. Hence, for all $m, n \in \mathbb{N}$ with $m, n \ge n_0$ we have

$$|x_m - x_n| \le |x_m - x| + |x_n - x| < \frac{1}{2} + \frac{1}{2} = 1.$$

Since $x_m, x_n \in \mathbb{Z}$, it follows that $x_m = x_n$.