DMA Přednáška – Dělitelnost

Definice.

Nechť $a, b \in \mathbb{Z}$. Řekneme, že a **dělí** b, značeno $a \mid b$, jestliže existuje $k \in \mathbb{Z}$ takové, že $b = k \cdot a$. V takovém případě říkáme, že a je **faktor** b a že b je **násobek** a. Také říkáme, že b je **dělitelné** a.

Fakt.

Pro každé $a \in \mathbb{Z}$ platí $1 \mid a$, $a \mid a$ a $a \mid 0$.

Věta.

Nechť $a, b, c \in \mathbb{Z}$.

- (i) Jestliže $a \mid b$ a $b \mid c$, pak $a \mid c$.
- (ii) $a \mid b$ právě tehdy, když $|a| \mid |b|$.
- (iii) Jestliže $a \mid b \text{ a } b \neq 0$, tak $|a| \leq |b|$.

Věta.

Nechť $a, b \in \mathbb{N}$. Jestliže $a \mid b$ a $b \mid a$, pak a = b.

Definice.

Nechť $a \in \mathbb{N}, a \geq 2$.

Řekneme, že je to **prvočíslo** (**prime**), jestliže jediná přirozená čísla, která a dělí, jsou 1 a a. Řekneme, že a je **složené číslo**, jestliže to není prvočíslo.

Nechť $a, b \in \mathbb{Z}$.

Číslo $d \in \mathbb{N}$ je **společný dělitel** čísel a, b, jestliže $d \mid a \text{ a } d \mid b$.

Číslo $d \in \mathbb{N}$ je **společný násobek** čísel a, b, jestliže $a \mid d$ a $b \mid d$.

Definice.

Nechť $a, b \in \mathbb{Z}$.

Definujeme jejich **největší společný dělitel**, značeno gcd(a,b), jako největší prvek množiny jejich společných dělitelů, pokud je alespoň jedno z a,b nenulové. Jinak definujeme gcd(0,0) = 0.

Definujeme jejich **nejmenší společný násobek**, značeno lcm(a, b), jako nejmenší prvek množiny jejich společných násobků, pokud jsou a, b obě nenulové. Jinak definujeme lcm(a, 0) = lcm(0, b) = 0.

Definice.

Řekneme, že čísla $a, b \in \mathbb{Z}$ jsou **nesoudělná**, jestliže $\gcd(a, b) = 1$.

Fakt.

Nechť p je prvočíslo. Pak pro libovolné $a \in \mathbb{Z}$ platí, že buď je s p nesoudělné, nebo p dělí a.

Fakt.

Nechť $a \in \mathbb{N}$. Pak gcd(a, 0) = a, lcm(a, 0) = 0 a gcd(a, a) = lcm(a, a) = a.

Fakt.

Nechť $a, b \in \mathbb{Z}$. Pak gcd(a, b) = gcd(|a|, |b|) a lcm(a, b) = lcm(|a|, |b|).

Věta.

Nechť $a, b \in \mathbb{Z}$. Pak $lcm(a, b) \cdot gcd(a, b) = |a| \cdot |b|$.

Věta. (o dělení se zbytkem)

Nechť $a,d\in\mathbb{Z},\ d\neq 0$. Pak existují $q\in\mathbb{Z}$ a $r\in\mathbb{N}_0$ takové, že a=qd+r a $0\leq r<|d|$. Čísla q a r jsou jednoznačně určena.

Definice.

Číslu r říkáme **zbytek** při dělení a číslem d a značíme jej $r=a \mod d$. Číslu q říkáme **částečný podíl**.

Fakt.

Nechť $a, b \in \mathbb{Z}$, $a \neq 0$. Pak $a \mid b$ právě tehdy, když $b \mod |a| = 0$, tedy zbytek po dělení b číslem |a| je 0.

Lemma.

Nechť $a > b \in \mathbb{N}$, nechť $q, r \in \mathbb{N}_0$ splňují a = qb + r. Pak platí následující: (i) $d \in \mathbb{N}$ je společný dělitel a, b právě tehdy, když je to společný dělitel b, r. (ii) $\gcd(a, b) = \gcd(b, r)$.

Euklidův algoritmus pro nalezení gcd(a, b) pro $a > b \in \mathbb{N}$.

Verze 1. nebo Verze 2. Iniciace: $r_0 := a, r_1 := b, k := 0$. Krok: $k := k+1, r_{k-1} = q_k \cdot r_k + r_{k+1}$ opakovat dokud nenastane $r_{k+1} = 0$. Pak $\gcd(a,b) = r_k$. $r := a \mod b;$ a := b; b := r; until b = 0; output: a;

Věta. (Bezoutova věta/rovnost)

Nechť $a, b \in \mathbb{Z}$. Pak existují $A, B \in \mathbb{Z}$ takové, že $\gcd(a, b) = Aa + Bb$.

Rozšířený Euklidův algoritmus pro nalezení gcd(a, b) = Aa + Bb pro $a > b \in \mathbb{N}$.

Verze 1.

Inicializace: $r_0 := a, r_1 := b, k := 0,$ $A_0 := 1, A_1 := 0, B_0 := 0, B_1 := 1.$ Krok: $k := k + 1, , q_k := \left\lfloor \frac{r_{k-1}}{r_k} \right\rfloor,$ $r_{k+1} := r_{k-1} - q_k r_k,$ $A_{k+1} := A_{k-1} - q_k A_k,$ $B_{k+1} := B_{k-1} - q_k B_k.$

Opakovat dokud nenastane $r_{k+1} = 0$.

Pak $gcd(a, b) = r_k = A_k a + B_k b$.

nebo Verze 2.

procedure gcd-Bezout(a, b: integer) $A_0 := 1$; $A_1 := 0$; $B_0 := 0$; $B_1 := 1$;

repeat

 $\begin{aligned} q_k &:= \left \lfloor \frac{r_{k-1}}{r_k} \right \rfloor; \\ r &:= a - qb; \\ a &:= b; \ b := r; \\ r_a &:= A_0 - qA_1; \\ r_b &:= B_0 - qB_1; \\ a &:= b; \ b := r; \\ A_0 &:= A_1; \ A_1 := r_a; \\ B_0 &:= B_1; \ B_1 := r_b; \\ \text{until } b &= 0; \end{aligned}$

output: a, A_0, B_0 ;

Lemma. (Euklidovo lemma)

Nechť $a, b, d \in \mathbb{Z}$.

Jestliže $d \mid (ab)$ a gcd(d, a) = 1, pak $d \mid b$.

Prvočísla v první stovce:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Lemma.

Nechť $a_1, \ldots, a_m \in \mathbb{N}$ a p je prvočíslo.

Jestliže $p \mid (a_1 a_2 \cdots a_m)$, pak existuje i takové, že $p \mid a_i$.

Lemma.

Pro každé $a \in \mathbb{N}$, $a \ge 2$ existuje prvočíslo, které jej dělí.

Věta. (Fundamentální věta aritmetiky, prvočíselný rozklad) Nechť $n \in \mathbb{N}$. Pak existují prvočísla p_1, p_2, \ldots, p_m a exponenty $k_1, k_2, \dots, k_m \in \mathbb{N}_0$ takové, že

$$n = p_1^{k_1} \cdot p_2^{k_2} \cdots p_m^{k_m} = \prod_{i=1}^m p_i^{k_i}.$$

 $n=p_1^{k_1}\cdot p_2^{k_2}\cdots p_m^{k_m}=\prod_{i=1}^m p_i^{k_i}.$ Jestliže přidáme podmínky $p_1< p_2<\ldots< p_m$ a $k_i>0$, tak je tato dekompozice jednoznačně určena.

DMA Přednáška – Kongruence, počítání modulo

Definice.

Nechť $n \in \mathbb{N}$. Řekneme, že čísla $a, b \in \mathbb{Z}$ jsou **kongruentní modulo** n, značeno $a \equiv b \pmod{n}$, jestliže $n \mid (b-a)$.

Věta.

Nechť $n \in \mathbb{N}$. Pro čísla $a, b \in \mathbb{Z}$ jsou následující podmínky ekvivalentní:

- (i) $a \equiv b \pmod{n}$,
- (ii) existuje $k \in \mathbb{Z}$ takové, že b = a + kn,
- (iii) $a \mod n = b \mod n$, tj. jsou si rovny zbytky po dělení číslem n.

Fakt.

Nechť $n \in \mathbb{N}$. Pak platí:

- (i) Pro každé $a \in \mathbb{Z}$ je $a \equiv a \pmod{n}$.
- (ii) Pro každé $a, b \in \mathbb{Z}$ platí, že $a \equiv b \pmod{n}$ je ekvivalentní s $b \equiv a \pmod{n}$.
- (iii) Pro každé $a, b, c \in \mathbb{Z}$ platí, že jestliže $a \equiv b \pmod{n}$ a $b \equiv c \pmod{n}$, pak také $a \equiv c \pmod{n}$.

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $a, b, u, v \in \mathbb{Z}$ takové, že $a \equiv u \pmod{n}$ a $b \equiv v \pmod{n}$. Pak platí následující:

- (i) $a + b \equiv u + v \pmod{n}$;
- (ii) $a b \equiv u v \pmod{n}$;
- (iii) $ab \equiv uv \pmod{n}$.

Fakt.

Nechť $n \in \mathbb{N}$, uvažujme $a \in \mathbb{Z}$. Jestliže $r = a \mod n$, tedy r je zbytek po dělení a číslem n, pak $a \equiv r \pmod n$.

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $a, u \in \mathbb{Z}$ takové, že $a \equiv u \pmod{n}$. Pak pro všechna $k \in \mathbb{N}$ platí $a^k \equiv u^k \pmod{n}$.

Nechť $n \in \mathbb{N}$.

Uvažujme $a \in \mathbb{Z}$. Řekneme, že $b \in \mathbb{Z}$ je **inverzní číslo** (**inverse number**) k a **modulo** n, jestliže $a \cdot b \equiv 1 \pmod{n}$.

Věta.

Nechť $n \in \mathbb{N}$. Pro $a \in \mathbb{Z}$ existuje inverzní číslo modulo n právě tehdy, když $\gcd(a,n) = 1$.

Věta.

Nechť $n \in \mathbb{N}$. Předpokládejme, že $a, x \in \mathbb{Z}$ a x je inverzní prvek k a modulo n. Pak $y \in \mathbb{Z}$ je inverzní prvek k a modulo n právě tehdy, když $y \equiv x \pmod{n}$.

Věta. (malá Fermatova věta)

Nechť $n \in \mathbb{N}$ je prvočíslo. Je-li $a \in \mathbb{Z}$ nesoudělné s n, pak platí $a^{n-1} \equiv 1 \pmod{n}$. Pro každé $a \in \mathbb{Z}$ platí $a^n \equiv a \pmod{n}$.

Nechť $n \in \mathbb{N}$, označme $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. Pro $a, b \in \mathbb{Z}_n$ definujme operace

$$a \oplus b = (a+b) \bmod n,$$

$$a \odot b = (a \cdot b) \mod n$$
.

Věta.

Nechť $n \in \mathbb{N}$. Pro libovolné $a, b, c \in \mathbb{Z}_n$ platí následující:

- (i) $a \oplus b = b \oplus a$ (komutativita);
- (ii) $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ (asociativita);
- (iii) $a \oplus 0 = 0 \oplus a = a$;
- (iv) $a \odot b = b \odot a$ (komutativita);
- (v) $a \odot (b \odot c) = (a \odot b) \odot c$ (asociativita);
- (vi) $a \odot 1 = 1 \odot a = a$;
- (vii) $a \odot 0 = 0 \odot a = 0$;
- (viii) $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$ (distributivní zákon).

Definice.

Uvažujme $n \in \mathbb{N}$.

Nechť $a \in \mathbb{Z}_n$. Řekneme, že $b \in \mathbb{Z}_n$ je **inverzní prvek** k $a \vee \mathbb{Z}_n$, jestliže $a \odot b = 1 \vee \mathbb{Z}_n$.

Pokud takovýto prvek b existuje, pak jej značíme $b = a^{-1}$ a řekneme, že a je **invertibilní** (**invertible**) v \mathbb{Z}_n .

Věta.

Nechť $n \in \mathbb{N}$.

Uvažujme $a \in \mathbb{Z}_n$. Inverzní prvek a^{-1} v \mathbb{Z}_n existuje právě tehdy, když $\gcd(a,n) = 1$. Pokud existuje, tak je tento prvek jediný.

Algoritmus pro hledání inverzního prvku k $a \vee \mathbb{Z}_n$.

- **0.** Například pomocí rozšířeného Euklidova algoritmu najděte gcd(a, n) = Aa + Bn.
- 1. Jestliže gcd(a, n) > 1, pak inverzní prvek k $a \vee \mathbb{Z}_n$ neexistuje.

Pokud umíte gcd(a, n) získat snadněji než Euklidovým algoritmem (třeba pohledem) a vyjde číslo větší než 1, je možné krok $\mathbf{0}$ přeskočit.

2. Jestliže $\gcd(a,n)=1$, pak Bezoutova identita dává $1=a\cdot A+B\cdot n$. To znamená, že $a\cdot A\equiv 1\pmod n$ a x=A je inverzní číslo k a modulo n. Pak $a^{-1}=A$ mod n.

(Ideálního kongruentního zástupce čísla A z rozmezí $1,2,\ldots,n-1$ získáme buď přičtením/odečtením vhodného násobku n, nebo dělením se zbytkem.)

Definice.

Nechť $n \in \mathbb{N}$, nechť $a \in \mathbb{Z}_n$. Řekneme, že $b \in \mathbb{Z}_n$ je **opačný prvek** k $a \vee \mathbb{Z}_n$, jestliže $a \oplus b = 0 \vee \mathbb{Z}_n$.

Fakt.

Nechť $n \in \mathbb{N}$.

- (i) (-0) = 0.
- (ii) Jestliže $a \in \mathbb{Z}_n$ a $a \neq 0$, pak (-a) = n a.

Odečítání: **opačné prvky** (-a) splňují $a \oplus (-a) = 0$.

pro $a \in \mathbb{Z}_n$, $a \neq 0$ platí (-a) = n - a.

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
$\overline{2}$	2	3	0	1
3	3	0	1	2

\odot	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
2	0	2	4	6	8	10	12	0	2	4	6	8	10	12
3	0	3	6	9	12	1	4	7	10	13	2	5	8	11
4	0	4	8	12	2	6	10	0	4	8	12	2	6	10
5	0	5	10	1	6	11	2	7	12	3	8	13	4	9
6	0	6	12	4	10	2	8	0	6	12	4	10	2	8
7	0	7	0	7	0	7	0	7	0	7	0	7	0	7
8	0	8	2	10	4	12	6	0	8	2	10	4	12	6
9	0	9	4	13	8	3	12	7	2	11	6	1	10	5
10	0	10	6	2	12	8	4	0	10	6	2	12	8	4
11	0	11	8	5	2	13	10	7	4	1	12	9	6	3
12	0	12	10	8	6	4	2	0	12	10	8	6	4	2
13	0	13	12	11	10	9	8	7	6	5	4	3	2	1

Lemma. (Euklidovo lemma)

Nechť $a, b, d \in \mathbb{Z}$.

Jestliže $d \mid (ab)$ a gcd(d, a) = 1, pak $d \mid b$.

Lemma.

Nechť $p, p \in \mathbb{N}$ jsou nesoudělná. Pro čísla $a, b \in \mathbb{Z}$ platí $a \equiv b \pmod{pq}$ právě tehdy, když $a \equiv b \pmod{p}$ a $a \equiv b \pmod{q}$.

 $T(a)=a^e \pmod n, \qquad \qquad de\equiv 1 \pmod {n-1} \text{ pak } T^{-1}(b)=b^d \pmod n.$

DMA Přednáška – Rovnice nad \mathbb{Z}

Definice.

Pojmem lineární diofantická rovnice označujeme libovolnou rovnici typu ax+by=c s neznámými x,y, kde $a, b, c \in \mathbb{Z}$ a vyžadujeme také řešení $x, y \in \mathbb{Z}$.

Věta.

Nechť $a,b,c\in\mathbb{Z}$. Lineární diofantická rovnice ax+by=c má alespoň jedno řešení právě tehdy, když c je násobkem gcd(a,b).

Definice.

Je-li dána lineární diofantická rovnice ax + by = c, pak definujeme její **přidruženou homogenní rovnici** jako ax + by = 0.

Věta.

Nechť $a,b,c\in\mathbb{Z}$. Uvažujme lineární diofantickou rovnici ax+by=c.

Nechť $(x_p,y_p)\in\mathbb{Z}^2$ je nějaké její **partikulární** řešení. Dvojice $(x_0,y_0)\in\mathbb{Z}^2$ je řešení této rovnice právě tehdy, když

existuje $(x_h, y_h) \in \mathbb{Z}^2$ takové, že $(x_0, y_0) = (x_p, y_p) + (x_h, y_h)$ a (x_h, y_h) řeší přidruženou homogenní rovnici.

Věta.

Uvažujme rovnici ax + by = 0 pro $a, b \in \mathbb{Z}$. Množina všech jejích celočíselných řešení je

$$\left\{ \left(k \frac{b}{\gcd(a,b)}, -k \frac{a}{\gcd(a,b)}\right) : k \in \mathbb{Z} \right\}.$$

Algoritmus pro nalezení všech celočíselných řešení rovnice ax + by = c.

- **0.** Například pomocí rozšířeného Euklidova algoritmu najděte gcd(a, b) = Aa + Bb.
- 1. Jestliže c není násobkem gcd(a, b), pak řešení rovnice neexistuje.
- **2.** Případ gcd(a, b) dělí c:
- a) Získanou rovnost $aA + bB = \gcd(a, b)$ vynásobte číslem $c' = \frac{c}{\gcd(a, b)} \in \mathbb{Z}$ tak, aby se zachovaly koeficienty a, b, a dostanete a(Ac') + b(Bc') = c, tudíž i jedno partikulární řešení $x_p = Ac'$, $y_p = Bc'$ neboli vektor (Ac', Bc').
- b) Přidruženou homogenní rovnici ax + by = 0 zkraťte číslem gcd(a, b) na tvar a'x + b'y = 0, což dává řešení $x_h = b'k, y_h = -a'k$ neboli dvojice (b'k, -a'k) pro $k \in \mathbb{Z}$, popřípadě $x_h = -b'k, y_h = a'k$ neboli dvojice (-b'k, a'k).
- c) Sečtením partikulárního a obecného homogenního řešení získáte množinu všech celočíselných řešení

$$\{(x_p+kb',y_p-ka'):k\in\mathbb{Z}\}$$
neboli $x=x_p+kb',\ y=x_p-ka'$ pro $k\in\mathbb{Z},$

popřípadě verzi s mínusem u y_h .

Termínem lineární kongruence označujeme rovnice typu $ax \equiv b \pmod{n}$, kde $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$ a hledáme celočíselná řešení x.

Fakt.

Nechť $n \in \mathbb{N}$. Uvažujme $a, b \in \mathbb{Z}$. Číslo $x_0 \in \mathbb{Z}$ řeší lineární kongruenci $ax \equiv b \pmod{n}$ právě tehdy, když pro nějaké $y_0 \in \mathbb{Z}$ řeší vektor (x_0, y_0) diofantickou rovnici ax + ny = b.

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $a, b \in \mathbb{Z}$.

- (i) Jestliže b není násobkem $\gcd(a,n)$, tak řešení rovnice $ax \equiv b \pmod{n}$ neexistuje.
- (ii) Jestliže $\gcd(a,n)$ dělí b, tak rovnice $ax \equiv b \pmod n$ má nějaké řešení $x_p \in \mathbb{Z}$. Označme $n' = \frac{n}{\gcd(a,n)}$. Množina všech řešení lineární kongruence $ax \equiv b \pmod n$ je

$$\{x_p + kn' : k \in \mathbb{Z}\}.$$

Věta.

Nechť $n \in \mathbb{N}$, uvažujme kongruenci $ax \equiv b \pmod{n}$ pro nějaká $a,b \in \mathbb{Z}$. Nechť x_p je nějaké její partikulární řešení. Definujme čísla $x_i = x_p + \frac{n}{\gcd(a,n)}i$ pro $i = 0,1,\ldots,\gcd(a,b)-1$. Množina všech řešení dané kongruence je sjednocením množin $\{x_i + kn : k \in \mathbb{Z}\}$ pro $i = 0,1,\ldots,\gcd(a,b)-1$, tyto množiny jsou navzájem disjunktní.

Věta.

Nechť $n \in \mathbb{N}$. Uvažujme kongruenci $ax \equiv b \pmod n$ pro nějaká $a,b \in \mathbb{Z}$, nechť x_p je nějaké její řešení. Číslo $x_0 \in \mathbb{Z}$ je řešením kongruence $ax \equiv b \pmod n$ právě tehdy, když existuje $x_h \in \mathbb{Z}$, které splňuje $x_0 = x_p + x_h$ a je řešením přidružené homogenní rovnice $ax \equiv 0 \pmod n$.

• Množinu všech řešení rovnice $a \odot x = b$ v \mathbb{Z}_n získáme tak, že v množině všech řešení kongruence $ax \equiv b$ (m	od n
nahradíme všechna čísla jejich zbytky po dělení n neboli jejich kongruentními zástupci z množiny \mathbb{Z}_n .	

Věta.

Nechť $n \in \mathbb{N}$, uvažujme rovnici ax = b v \mathbb{Z}_n pro nějaká $a, b \in \mathbb{Z}_n$.

- (i) Jestliže $\gcd(a,n)$ nedělí b, pak řešení neexistuje.
- (ii) Předpokládejme, že $\gcd(a,n)$ dělí b. Nechť $x_p \in \mathbb{Z}$ řeší kongruenci $ax \equiv \pmod{n}$, označme $n' = \frac{n}{\gcd(a,n)}$. Nechť $x_0 = \min\{x_p + kn' : k \in \mathbb{Z} \text{ a } x_p + kn' \geq 0\}$. Pak množina všech řešení rovnice ax = b v \mathbb{Z}_n je

$${x_0 + in' : i = 0, 1, \dots, \gcd(a, n) - 1}.$$

Jde o gcd(a, n) různých čísel.

```
Soustavy lineárních kongruencí:
```

Jsou dány moduly $n_1, \ldots, n_m \in \mathbb{N}$ a pravé strany $b_1, \ldots, b_m \in \mathbb{Z}$. Hledáme celá čísla x taková, že

```
x \equiv b_1 \pmod{n_1}
x \equiv b_2 \pmod{n_2}
\vdots
x \equiv b_m \pmod{n_m}.
```

Věta.

Uvažujme moduly $n_1, n_2, \ldots, n_m \in \mathbb{N}$ a čísla $b_1, b_2, \ldots, b_m \in \mathbb{Z}$.

Nechť x_p je nějaké řešení soustavy kongruencí

```
x \equiv b_1 \pmod{n_1}
x \equiv b_2 \pmod{n_2}
\vdots
x \equiv b_m \pmod{n_m}.
```

Číslo x_0 je také řešením této soustavy právě tehdy, pokud existuje číslo x_h takové, že $x_0 = x_p + x_h$ a x_h je řešením přidružené homogenní soustavy kongruencí

```
x \equiv 0 \pmod{n_1}
x \equiv 0 \pmod{n_2}
\vdots
x \equiv 0 \pmod{n_m}.
```

Věta. (Čínská věta o zbytcích)

Nechť $n_1, n_2, \ldots, n_m \in \mathbb{N}, b_1, b_2, \ldots, b_m \in \mathbb{Z}$. Uvažujme soustavu rovnic

```
x \equiv b_1 \pmod{n_1}
x \equiv b_2 \pmod{n_2}
\vdots
x \equiv b_m \pmod{n_m}.
```

Jestliže jsou všechna čísla n_i po dvou nesoudělná, pak má tato soustava řešení $x_0 \in \mathbb{Z}$. Množina všech řešení je $\{x_0 + kn : k \in \mathbb{Z}\}$, kde $n = n_1 n_2 \cdots n_m$.

Algoritmus pro řešení soustavy kongruencí $x \equiv b_1 \pmod{n_1}, x \equiv b_2 \pmod{n_2}, \dots, x \equiv b_m \pmod{n_m}$ pro případ, že jsou všechna čísla n_i po dvou nesoudělná.

- 1. Označte $n=n_1n_2\cdots n_m$ a $N_i=\frac{n}{n_i}$ pro všechna i.2. Pro každé i najděte inverzní číslo k N_i vzhledem k násobení modulo $n_i.$
- **3.** Nechť $x_p = \sum_{i=1}^m b_i N_i x_i$. Množina všech řešení soustavy je $\{x_p + kn : k \in \mathbb{Z}\}$.

DMA Přednáška – Relace

Definice.

Nechť A, B jsou množiny. Libovolná podmnožina $R \subseteq A \times B$ se nazývá **relace** z A do B.

Jestliže $(a, b) \in R$, pak to značíme aRb a řekneme, že a **je v relaci k** b vzhledem k R.

Definice.

Nechť A je množina. Řekneme, že R je relace na A, jestliže je to relace z A do A.

Příklad: Uvažujme malou školu se studenty **F**rodo, **M**erry, **P**ippin a **S**am, škola nabízí kursy **c**estování, **d**iskrétní matiky, **e**lfštiny a **f**rodologie.

Frodo si zapsal cestování a elfštinu, Merry a Pippin si zapsali cestování a diskrétku, Sam si zapsal elfštinu a frodologii.

Definice.

Nechť $A=\{a_1,a_2,\ldots,a_m\}$ a $B=\{b_1,b_2,\ldots,b_n\}$ jsou množiny. Pro relaci R z A do B definujeme **matici relace** $M_R=(m_{ij})_{i,j=1}^{m,n}$ předpisem

$$m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R; \\ 0, & (a_i, b_j) \notin R. \end{cases}$$

Příklad: Nechť je A množina všech měst (v České republice, aby jich nebylo tolik). Nechť R_1 je relace na A definovaná tak, že aR_1b právě tehdy, jestli se dá z a do b dostat autobusem, a R_2 je relace na A definovaná tak, že aR_2b právě tehdy, jestli se dá z a do b dostat vlakem.

Definice.

Nechť R je relace z nějaké množiny A do nějaké množiny B. Definujeme **relaci inverzní k** R, značeno R^{-1} , jako relaci z B do A předpisem

$$R^{-1} = \{(b, a) : (a, b) \in R\}.$$

Tedy

 $bR^{-1}a$ právě tehdy, když aRb.

Nechť R je relace z nějaké množiny A do nějaké množiny B a S je relace z B do nějaké množiny C. Definujeme jejich složení $S \circ R$ jako relaci z A do C definovanou

$$S \circ R = \{(a, c) \in A \times C : \exists b \in B : [(a, b) \in R \land (b, c) \in S] \}.$$

Příklad: Připomeňme, že $A = \{F, M, P, S\}$ jsou studenti, $B = \{b, c, d, e\}$ kursy a relace $R = \{(F, c), (F, e), (M, c), (M, d), (P, c), (P, d), (S, e), (S, f)\}$ říká, který student si zapsal jaký kurs. Množina učitelů $C = \{\mathcal{E}\text{Irond}, \mathcal{G}\text{andalf}, \mathcal{T}\text{om Bombadil}\}$, relace který kurs je učen kterým učitelem: $S = \{(c, \mathcal{G}), (d, \mathcal{T}), (e, \mathcal{E}), (f, \mathcal{G})\}$.

Fakt.

Nechť R je relace z nějaké množiny A do nějaké množiny B, S je relace z B do nějaké množiny C a T je relace z C do nějaké množiny D. Pak $(T \circ S) \circ R = T \circ (S \circ R)$.

Definice.

Nechť R je relace na nějaké množině A. Pak definujeme její **mocninu** rekurzivně jako

- (0) $R^1 = R$;
- (1) $R^{n+1} = R \circ R^n$ pro $n \in \mathbb{N}$.

Nechť R je relace na množině A.

Řekneme, že R je **reflexivní**, jestliže pro všechna $a \in A$ platí aRa.

Řekneme, že R je **symetrická**, jestliže pro všechna $a,b\in A$ platí $aRb\implies bRa$.

Řekneme, že R je **antisymetrická**, jestliže pro všechna $a,b \in A$ platí $(aRb \wedge bRa) \implies a = b$.

Řekneme, že R je **tranzitivní**, jestliže pro všechna $a,b,c\in A$ platí $(aRb\wedge bRc)\implies aRc.$

DMA Přednáška – Speciální relace

Definice.

Nechť R je relace na nějaké množině A. Řekneme, že R je **částečné uspořádání**, jestliže je reflexivní, antisymetrická a tranzitivní.

V tom případě značíme relaci \preceq a řekneme, že dvojice (A, \preceq) je **částečně uspořádaná množina**.

Fakt.

Jestliže je (A, \preceq) částečně uspořádaná množina, pak je i (A, \preceq^{-1}) částečně uspořádaná množina.

Definice.

Nechť (A, \preceq) je částečné uspořádání. Definujeme relaci \prec na A předpisem $a \prec b$ právě tehdy, když $a \preceq b$ a $a \neq b$.

Algoritmus pro vytváření Hasseova diagramu částečného uspořádání (A, \preceq) pro konečnou množinu A.

- 1. Najít prvky $a \in A$, které v ostrém srovnání nikdy nejsou napravo, tedy v pozici $x \prec a$ (nevedou do nich šipky). Dát do spodní řady. Odebrat tyto prvky z A, odebrat všechna srovnání s těmito body.
- 2. Ve zbylé množině hledat prvky, které v ostrém srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do druhé řady zdola, odebrat je z množiny prvků.

Spojit horní řadu s dolní tam, kde je relace, odebrat tyto dvojice ze seznamu srovnání.

3. Ve zbylé množině hledat prvky, které ve srovnání \prec nikdy nejsou napravo (nevedou do nich šipky). Vytvořit z nich novou řadu nahoře, odebrat z množiny prvků.

Spojit horní řadu s nižšími tam, kde je relace, přičemž postupujeme shora dolů (nejprve spojujeme horní řadu s tou pod ní, pak horní s tou o jedno níže, atd. až po horní s dolní). Existující dvojice vyškrtáváme ze seznamu, ale do grafu je kreslíme jen tehdy, pokud ještě tuto cestu nelze absolvovat pomocí již nakreslených spojnit, a to vždy směrem zdola nahoru.

4. Opakovat krok 3., dokud jsou v množině body.

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina a \prec odpovídající odvozená relace. Nechť M je neprázdná podmnožina A.

Řekneme, že prvek $m \in A$ je **nejmenší prvek** množiny M, jestliže $m \in M$ a pro všechna $x \in M$ platí $m \leq x$.

Řekneme, že prvek $m \in A$ je **největší prvek** množiny M, jestliže $m \in M$ a pro všechna $x \in M$ platí $x \leq m$.

Řekneme, že prvek $m \in A$ je **minimální prvek** množiny M, jestliže $m \in M$ a neexistuje $x \in M$: $x \prec m$. Značíme to $m = \min(M)$.

Řekneme, že prvek $m \in A$ je **maximální prvek** množiny M, jestliže $m \in M$ a neexistuje $x \in M$: $m \prec x$. Značíme to $m = \max(M)$.

Věta.

Nechť je (A, \preceq) částečně uspořádaná množina, uvažujme neprázdnou podmnožinu $M \subseteq A$. Pak platí následující:

- (i) Jestliže existuje nejmenší prvek M, pak je jediný.
 - Jestliže existuje největší prvek M, pak je jediný.
- (ii) Jestliže je m nejmenší prvek M, pak $m = \min(M)$ a jiné minimum už není. Jestliže je m největší prvek M, pak $m = \max(M)$ a jiné maximum už není.

Věta.

Nechť (A, \preceq) je částečně uspořádaná množina. Jestliže je M konečná neprázdná podmnožina A, pak existuje $\min(M)$ a $\max(M)$.

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina. Řekneme, že $a, b \in A$ jsou **porovnatelné**, jestliže $a \preceq b$ nebo $b \preceq a$.

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina. Řekneme, že \preceq je **lineární uspořádání**, jestliže jsou každé dva prvky z A porovnatelné.

Věta.

Nechť (A, \preceq) je lineárně uspořádaná množina. Jestliže je M její neprázdná konečná podmnožina, pak má nejmenší a největší prvek.

Věta.

Nechť (A, \preceq) je konečná částečně uspořádaná množina. Je to lineární uspořádaní právě tehdy, jestliže lze prvky A napsat jako $A = \{a_1, \ldots, a_n\}$ tak, aby $a_1 \prec a_2 \prec \cdots \prec a_n$.

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina. Relace \preceq_L na A se nazývá **lineární rozšíření** relace \preceq , jestliže je (A, \preceq_L) lineárně uspořádaná množina a $\preceq \subseteq \preceq_L$, tedy pro všechna $a, b \in A$ splňující $a \preceq b$ platí i $a \preceq_L b$.

Věta.

Pro každou konečnou částečně uspořádanou množinu (A, \preceq) existuje lineární rozšíření \preceq_L na A.

```
\begin{split} & \text{procedure } topological \ sort((A, \preceq)) \\ & k := 0; \\ & \text{while } A \neq \emptyset \text{ do} \\ & k := k+1 \\ & a_k := \min(A) \\ & A := A - \{a_k\}; \\ & \text{output: } (a_1 \prec_L a_2 \prec_L \cdots \prec_L a_k); \end{split}
```

Nechť (A, \preceq) je částečně uspořádaná množina. Řekneme, že (A, \preceq) je **dobře uspořádaná množina**, jestliže každá neprázdná podmnožina množiny A má nejmenší prvek.

Fakt.

Každé dobré uspořádání je také lineární.

Axiom (princip dobrého uspořádání)

 (\mathbb{N},\leq) je dobře uspořádaná množina.

Uvažujme částečně uspořádané množiny $(A_1, \leq_1), \ldots, (A_n, \leq_n)$. Definujeme **lexikografické uspořádání** na $A = A_1 \times \cdots \times A_n$ následovně: Pro $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in A$ platí $a \leq_L b$ právě tehdy, jestliže $a_i = b_i$ pro všechna $i = 1, \ldots, n$ (tedy a = b), nebo existuje index k takový, že $a_i = b_i$ pro všechna i splňující $1 \leq i < k$ a $a_k \prec_k b_k$.

Věta.

Uvažujme dobře uspořádané množiny $(A_1, \preceq_1), \ldots, (A_n, \preceq_n)$. Pak je $A = A_1 \times \cdots \times A_n$ spolu s lexikografickým uspořádaním \preceq_L dobře uspořádaná množina.

Relace na množině se nazývá ekvivalence, jestliže je reflexivní, symetrická a tranzitivní.

Definice.

Nechť R je relace ekvivalence na nějaké množině A. Pro $a \in A$ definujeme **třídu ekvivalence** prvku a vzhledem k R jako

$$[a]_R = \{b \in A : aRb\}.$$

Věta.

Nechť R je relace ekvivalence na nějaké množině A, nechť $a \in A$.

- (i) Pro každé $b, c \in [a]_R$ platí bRc.
- (ii) Pro každé $b \in [a]_R$ a $c \in A$ platí, že jestliže bRc, pak $c \in [a]_R$.
- (iii) Pro každé $b \in [a]_R$: $[a]_R = [b]_R$.
- (iv) Pro každé $a, b \in A$ platí: aRb právě tehdy, když $[a]_R = [b]_R$.
- (v) Pro všechna $a, b \in A$ platí, že buď $[a]_R = [b]_R$, nebo $[a]_R \cap [b]_R = \emptyset$.

Definice.

Uvažujme množinu A. Jejím **rozkladem** rozumíme libovolný soubor $\{A_i\}_{i\in I}$ neprázdných podmnožin A takových, že $A=\bigcup_{i\in I}A_i$ a pro všechna $i\neq j\in I$ jsou A_i,A_j disjunktní.

Věta.

Nechť A je množina.

- (i) Jestliže je R ekvivalence na A, pak $\{[a]_R\}_{a\in A}$ je rozklad množiny A.
- (ii) Jestliže je $\{A_i\}_{i\in I}$ nějaký rozklad množiny A, pak existuje relace ekvivalence R na A taková, že $\{A_i\}_{i\in I}$ jsou přesně třídy ekvivalence R.

Věta.

Pro každé $n \in \mathbb{N}$ je relace "být kongruentní modulo n" ekvivalence na \mathbb{Z} .

Definice.

Prostor \mathbb{Z}_n definujeme jako množinu všech tříd ekvivalence v \mathbb{Z} vzhledem k relaci být kongruentní modulo n, tedy $\mathbb{Z}_n = \{[a]_n : a \in \mathbb{Z}\}.$

Pro $[a]_n, [b]_n \in \mathbb{Z}_n$ definujeme

$$[a]_n \oplus [b]_n = [a+b]_n,$$

$$[a]_n \odot [b]_n = [a \cdot b]_n.$$

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $a,b,u,v \in \mathbb{Z}$ takové, že $[a]_n = [u]_n$ a $[b]_n = [v]_n$. Pak $[a+b]_n = [u+v]_n$ a $[a\cdot b]_n = [u\cdot v]_n$.

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $[a]_n \in \mathbb{Z}_n$.

- (i) Vždy existuje prvek opačný $-[a]_n = [n-a]_n$.
- (ii) $[a]_n$ je invertibilní vůči \odot právě tehdy, když jsou a a n nesoudělné.

DMA Přednáška – Zobrazení

Definice.

Nechť A,B jsou množiny. Definujeme **zobrazení** z A do B jako libovolnou podmnožinu $A\times B$ splňující

$$\forall a \in A \ \exists! b \in B: \ (a,b) \in T.$$

Množina A je **definiční obor** T, značeno D(T), množina B je cílová množina T. Definujeme také **obor** hodnot T jako

$$R(T) = \{b \in B : \exists a \in A : T(a) = b\} = \{T(a) : a \in A\}.$$

Definice.

Nechť $T\colon A\mapsto B$ a $S\colon C\mapsto D$ jsou zobrazení. Řekneme, že jsou si rovna, značeno T=S, jestliže $A=C,\,B=D$ a

$$\forall a \in A: T(a) = S(a).$$

Definice.

Nechť $T\colon A\mapsto B$ a $S\colon B\mapsto C$ jsou zobrazení. Definujeme jejich složené zobrazení či kompozici $S\circ T\colon A\mapsto C$ předpisem

$$(S \circ T)(a) = S(T(a))$$
 pro $a \in A$.

Značíme také $S \circ T = S(T)$.

Věta.

Nechť $T: A \mapsto B, S: B \mapsto C$ a $R: C \mapsto D$ jsou zobrazení. Pak platí $(R \circ S) \circ T = R \circ (S \circ T)$.

Definice.

Nechť $T\colon A\mapsto B$ je zobrazení. Řekneme, že zobrazení $S\colon B\mapsto A$ je **inverzní** k T, jestliže platí

- \bullet $(S \circ T)(a) = a$ pro všechna $a \in A$
- $(T \circ S)(b) = b$ pro všechna $b \in B$.

Pokud takové zobrazení existuje, tak řekneme, že T je **invertibilní**, a inverzní zobrazení značíme T^{-1} .

Nechť $T: A \mapsto B$ je invertibilní zobrazení. Pak $T^{-1}(b) = a$ právě tehdy, když T(a) = b.

Důsledek.

Nechť $T\colon A\mapsto B$ je zobrazení. Jestliže je invertibilní, tak je jeho inverzní zobrazení T^{-1} dáno jednoznačně.

Věta.

Nechť $T:A\mapsto B$ a $S:B\mapsto C$ jsou zobrazení. Jestliže jsou invertibilní, tak je i $S\circ T$ invertibilní a navíc platí $(S\circ T)^{-1}=T^{-1}\circ S^{-1}$.

Definice.

Nechť $T: A \mapsto B$ je zobrazení.

Řekneme, že T je **prosté** či **injektivní**, jestliže

$$\forall x, y \in A: T(x) = T(y) \implies x = y.$$

Řekneme, že T je **na** či **surjektivní**, jestliže R(T) = B.

Řekneme, že T je **vzájemně jednoznačné** či **bijekce**, jestliže je prosté a na.

Věta.

Nechť $T: A \mapsto B$ je zobrazení. Je invertibilní právě tehdy, když je to bijekce.

Nechť $T \colon\thinspace A \mapsto B$ a $S \colon\thinspace B \mapsto C$ jsou zobrazení. Pak platí:

- (i) Jestliže jsou T a S prosté, tak je $S\circ T$ prosté.
- (ii) Jestliže jsou T a S na, tak je $S \circ T$ na.
- (iii) Jestliže jsou T a S bijekce, tak je $S \circ T$ bijekce.

Nechť $T: A \mapsto B$ je zobrazení a A, B mají konečně mnoho prvků.

- (i) Jestliže má B více prvků než A, pak T nemůže být na.
- (ii) Jestliže má A více prvků než B, pak T nemůže být prosté.
- (iii) Jestliže A a B nemají stejně prvků, pak T nemůže být bijekce.

Definice.

Řekneme, že množiny A, B mají stejnou **mohutnost**, značeno |A| = |B|, jestliže existuje bijekce z A na B.

Řekneme, že množina A má mohutnost stejnou nebo menší než B, značeno $|A| \leq |B|$, jestliže existuje prosté zobrazení z A do B.

Fakt.

Nechť A, B jsou množiny.

- (i) |A| = |B| právě tehdy, když |B| = |A|.
- (ii) Jestliže |A| = |B|, pak $|A| \le |B|$ a $|B| \le |A|$.

Věta. (Cantor-Bernstein-Schroeder)

Nechť A, B jsou množiny. Jestliže $|A| \leq |B|$ a $|B| \leq |A|$, pak |A| = |B|.

Fakt.

Jestliže $A \subseteq B$, pak $|A| \le |B|$.

Množina A se nazve **konečná**, jestliže $A = \emptyset$ (pak píšeme |A| = 0) nebo existuje takové $m \in \mathbb{N}$, aby $|A| = |\{1, 2, ..., m\}|$, pak píšeme |A| = m.

Jinak se množina nazve **nekonečná**.

Množina A se nazve **spočetná**, jestliže má stejnou mohutnost jako množina \mathbb{N} .

Množina A se nazve **nespočetná**, jestliže je nekonečná, ale není spočetná.

Věta.

- (i) Jestliže je A konečná množina, pak je i každá její podmnožina B konečná a platí $|B| \leq |A|$. Je-li navíc B podmnožina vlastní, pak |B| < |A|.
- (ii) Nechť A,B jsou konečné množiny. Pak je i $A \cup B$ konečná a platí $|A \cup B| \le |A| + |B|$. Jsou-li navíc A,B disjunktní, pak $|A \cup B| = |A| + |B|$.
- (iii) Nechť A, B jsou konečné množiny. Pak je $A \times B$ konečná a platí $|A \times B| = |A| \cdot |B|$.

Věta.

(i) Jsou-li A_i pro $i=1,2,\ldots,n$ konečné množiny, pak je i $\bigcup_{i=1}^n A_i$ konečná a $\left|\bigcup_{i=1}^n A_i\right| \leq \sum_{i=1}^n |A_i|$.

Jsou-li navíc po dvou disjunktní, tak $\Big|\bigcup_{i=1}^n A_i\Big| = \sum_{i=1}^n |A_i|.$

(ii) Jsou-li A_i pro $i=1,2,\ldots,n$ konečné množiny, pak je i $A_1\times\cdots\times A_n$ konečná a

$$|A_1 \times \cdots \times A_n| = |A_1| \cdots |A_n| = \prod_{i=1}^n |A_i|.$$

Věta.

- (i) Jestliže je A nekonečná množina, pak je i každá její nadmnožina B nekonečná.
- (ii) Nechť A,Bjsou množiny. Jestliže je Anekonečná, pak je i $A\cup B$ nekonečná.
- (iii) Nechť A, B jsou množiny. Jestliže je A nekonečná a $B \neq \emptyset$, pak je $A \times B$ nekonečná.

Nechť A je množina. Jestliže je nekonečná, pak $|\mathbb{N}| \leq |A|.$

Věta.

- (i) Množina \mathbb{N}_0 je spočetná.
- (ii) Množina Z je spočetná.
- (iii) Množina $\mathbb{N} \times \mathbb{N}$ je spočetná.
- (iv) Množina $\mathbb{Z} \times \mathbb{Z}$ je spočetná.

Věta.

Množina racionálních čísel Q je spočetná.

Věta.

- (i) Jestliže je množina nekonečná, tak má vlastní podmnožinu, která má stejnou mohutnost.
- (ii) Nechť A, B jsou množiny, A je nekonečná a $|B| \leq |A|$. Pak $|A \cup B| = |A|$.
- (iii) Nechť A, B jsou množiny, A je nekonečná a $|B| \leq |A|$. Pak $|A \times B| = |A|$.

Fakt.

- (i) Jestliže jsou A_n pro $n \in \mathbb{N}$ nejvýše spočetné množiny, pak je $\bigcup_{n=1}^{\infty} A_n$ nejvýše spočetná. (ii) Jestliže jsou navíc A_n neprázdné a po dvou disjunktní, pak je $\bigcup_{n=1}^{\infty} A_n$ spočetná.

Věta.

Interval reálných čísel (0,1) je nespočetný.

Důsledek.

Množina reálných čísel \mathbb{R} je nespočetná.

Nechť A je množina. Definujeme **potenční množinu** A, značeno P(A), jako množinu všech podmnožin A.

Fakt.

Jestliže je Akonečná množina, pak $|P(A)|=2^{|A|}.$

Věta. (Cantorova)

Pro každou množinu A platí |A| < |P(A)|.

DMA Přednáška – Indukce

Kroky při důkazu indukcí:

- 1. Zformulujeme přesně tvrzení a oznámíme, jak jej dokážeme.
- 2. Dokážeme základní krok.
- 3. Dokážeme indukční krok. Pro jisté (libovolné) $n \ge n_0$ předpokládáme, že platí "indukční předpoklad" V(n), pomocí něj pak dokážeme platnost V(n+1).
- 4. Uděláme závěr.

Slabý princip matematické indukce.

Nechť $n_0 \in \mathbb{Z}$, nechť V(n) je vlastnost celých čísel, která má smysl pro $n \geq n_0$.

Předpokládejme, že následující předpoklady jsou splněny:

- (0) $V(n_0)$ platí.
- (1) Pro každé $n \in \mathbb{Z}$, $n \ge n_0$ je pravdivá následující implikace: Jestliže platí V(n), pak platí i V(n+1). Potom V(n) platí pro všechna $n \in \mathbb{Z}$, $n \ge n_0$.

Věta.

Princip indukce je ekvivalentní s principem dobrého uspořádání.

Silný princip matematické indukce.

Nechť $n_0 \in \mathbb{Z}$, nechť V(n) je vlastnost celých čísel, která má smysl pro $n \geq n_0$.

Předpokládejme, že následující předpoklady jsou splněny:

- (0) $V(n_0)$ platí.
- (1) Pro každé $n \in \mathbb{Z}$, $n \ge n_0$ je pravdivá následující implikace: Jestliže platí V(k) pro všechna $k = n_0, n_0 + 1, \ldots, n$, pak platí i V(n+1).

Potom V(n) platí pro všechna $n \in \mathbb{Z}$, $n \geq n_0$.

Věta.

Slabý a silný princip matematické indukce jsou ekvivalentní.

Modifikovaný silný princip matematické indukce.

Nechť $n_0 \in \mathbb{Z}$, nechť V(n) je vlastnost celých čísel, která má smysl pro $n \geq n_0$. Nechť $m \in \mathbb{N}$. Předpokládejme, že následující předpoklady jsou splněny:

- (0) $V(n_0)$, $V(n_0 + 1)$, $V(n_0 + 2)$, ..., $V(n_0 + m 1)$ platí.
- (1) Pro každé $n \in \mathbb{Z}$, $n \ge n_0 + m 1$ je pravdivá následující implikace: Jestliže platí V(k) pro všechna $k = n m + 1, n m + 2, \ldots, n$, pak platí i V(n + 1).

Potom V(n) platí pro všechna $n \in \mathbb{Z}$, $n \ge n_0$.

Induktivní definice množin.

Při definici konkrétní množiny M uvažujme následující dva druhy specifikací:

- (0) **Základní pravidla** definují přímo, které prvky jsou v množině M.
- (1) **Induktivní pravidla** určují, jak lze pomocí prvků, které již v množině jsou (tzv. **předpoklady** pravidla), vytvářet další prvky z M (tzv. **závěr** pravidla).

Množina M se pak skládá ze všech prvků, které lze obdržet konečným počtem použití pravidel (0) a (1) (tedy prvky, které lze takto získat, leží v M, a ty, které takto získat nelze, pak v M neleží).

Princip strukturální indukce.

Uvažujme množinu M definovanou induktivně pomocí nějakých základních pravidel (0) a induktivních pravidel

(1). Uvažujme vlastnost V(m), která má smysl pro všechny $m \in M$.

Předpokládejme, že jsou splněny následující podmínky:

- (0) V je splněna pro všechny prvky, které jsou do M dodány základními pravidly.
- (1) Pro každé induktivní pravidlo platí: Jestliže je V splněna pro prvky z jeho předpokladů, pak je splněna i pro prvek z jeho závěru.

Pak je vlastnost V splněna pro všechny prvky $m \in M$.

Věta.

Platnost principu strukturální indukce je ekvivalentní platnosti principu matematické indukce.

DMA Přednáška – Posloupnosti

Definice.

Posloupnost je libovolné zobrazení z nějaké množiny $\{n_0, n_0 + 1, n_0 + 2, \dots\}$ do \mathbb{R} , kde pro $n_0 \in \mathbb{Z}$.

Definice.

Nechť $\{a_k\}$ je posloupnost.

Řekneme, že tato posloupnost jde do nekonečna, popřípadě že má limitu nekonečno, značeno $\lim(a_k) = \infty$ popřípadě $a_k \to \infty$, jestliže

pro každé K > 0 existuje k_0 tak, aby $a_k > K$ pro všechna $k \ge k_0$.

Řekneme, že tato posloupnost jde k nule, popřípadě že konverguje k nule, popřípadě že má limitu rovnou nule, značeno $\lim(a_k) = 0$ popřípadě $a_k \to 0$, jestliže

pro každé K > 0 existuje k_0 tak, aby $|a_k| < K$ pro všechna $k \ge k_0$.

Fakt.

- (i) Nechť a>0. Pak $k^a\to\infty$ a $\frac{1}{k^a}\to 0$. (ii) Jestliže q>1, pak $q^k\to\infty$.
- Jestliže |q| < 1, pak $q^k \to 0$.
- (iii) $k! \to \infty$.
- (iv) $k^k \to \infty$.
- (v) Nechť b > 0. Pak $[\ln(k)]^b \to \infty$.

10^6 oper	ací za 1	sec.	čas i	n ms.	s=sec	$m=\min$	d=d	en r	=rok
k =	5	10	20	50	100	1000	10^{5}	10^{8}	
ln(k):	0.0016	0.0023	0.003	0.004	0.0046	0.007	0.01	0.018	
• k:	0.005	0.01	0.02	0.05	0.1	1	0.1s	1.7m	
\bullet k^2 :	0.025	0.1	0.4	2.5	10	1s	28m	317r	
100	0.0002	0.001	0.004	0.025	0.01	10	$1.7 \mathrm{m}$	3.2r	
$k^{1.585}$:	0.013	0.038	0.12	0.49	1.5	57	1.4m	55d	
2^k :	0.03	1	1s	35.7r	$4\times10^{16}\mathrm{r}$	$3 \times 10^{287} \mathrm{r}$			

Hardware	seti	ip: $k = 10$	$) \implies 1se$	ec. č	as in s.	m=min
k =	10	20	30	40	50	100
$\ln(k)$:	1	1.3	1.5	1.6	1.7	2
• k:	1	2	3	4	5	10
20k:	1	2	3	4	5	10
20k + 5:	1	2	3	3.9	4.9	9.8
k^2 :	1	4	9	16	25	$1 \mathrm{m} 40 \mathrm{s}$
k^3 :	1	8	27	1m	2m	$17 \mathrm{m}$
2^k :	1	17m	12d	34r	$35 \times 10^3 \mathrm{r}$	$4 \times 10^{19} \mathrm{r}$
k!:	1	21×10^3 r	$2 \times 10^{18} \mathrm{r}$	7×10^{33} r	$3 \times 10^{50} \mathrm{r}$	

d=den r=rok

Definice.

Nechť $\{a_k\}$, $\{b_k\}$ jsou posloupnosti splňující $a_k \to \infty$, $b_k \to \infty$. Řekneme, že a_k je $o(b_k)$, jestliže $\frac{a_k}{b_k} \to 0$ neboli $\frac{b_k}{a_k} \to \infty$. Řekneme, že a_k je $\omega(b_k)$, jestliže $\frac{a_k}{b_k} \to \infty$ neboli $\frac{b_k}{a_k} \to 0$. Řekneme, že a_k je $O(b_k)$, jestliže $\exists N \in \mathbb{N} \ \exists K > 0$ aby $\forall k \geq N \colon a_k \leq K b_k$.

Řekneme, že a_k je $\Omega(b_k)$, jestliže $\exists N \in \mathbb{N} \ \exists L > 0 \ \text{aby} \ \forall k \geq N \colon a_k \geq Lb_k$.

Řekneme, že a_k je $\Theta(b_k)$ nebo že $a_k \approx b_k$, jestliže $\exists N \in \mathbb{N} \ \exists K, L > 0 \ \text{aby} \ \forall k \geq N \colon Lb_k \leq a_k \leq Kb_k$.

Fakt.

Nechť $\{a_k\}$, $\{b_k\}$ jsou posloupnosti splňující $a_k \to \infty$, $b_k \to \infty$. Jestliže $\frac{a_k}{b_k} \to A > 0$, pak a_k je $\Theta(b_k)$.

Věta. (škála mocnin)

(i) Nechť a, b > 0 a q > 1. Pak platí

 $[\ln(k)]^a$ je $o(k^b)$, k^b je $o(q^k)$, q^k je o(k!) a k! je $o(k^k)$.

- (ii) Jestliže 0 < a < b, pak $[\ln(k)]^a$ je $o([\ln(k)]^b)$ a k^a je $o(k^b)$.
- (iii) Jestliže 1 < q < r, pak q^k je $o(r^k)$.

Fakt.

Jestliže $b_k = o(a_k)$, pak $a_k + b_k = \Theta(a_k)$.

DMA Přednáška – Rekurentní rovnice

Definice.

Rekurentní rovnice či rekurzivní rovnice pro posloupnost $\{a_n\}$ je vztah

$$a_{n+1} = G(a_n, a_{n-1}, \dots, a_{n-m}), \ n \ge n_0 + m,$$

kde G je nějaká funkce m+1 proměnných.

Jejím **řešením** nazveme libovolnou posloupnost $\{a_n\}_{n=n_0}^{\infty}$ takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna $n \geq n_0 + m$ pravdivý výrok.

Definice.

Lineární rekurentní rovnice, popřípadě lineární rekursivní rovnice řádu $k \in \mathbb{N}_0$ je libovolná rovnice ve tvaru

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \dots + c_2(n)a_{n+2} + c_1(n)a_{n+1} + c_0(n)a_n = b_n, \quad n \ge n_0,$$

kde $n_0 \in \mathbb{Z}$, $c_i(n)$ pro $i = \{0, \dots, k-1\}$ (tzv. **koeficienty** rovnice) jsou nějaké funkce $\mathbb{Z} \mapsto \mathbb{R}$, přičemž $c_0(n)$ není identicky nulová funkce, a $\{b_n\}_{n=n_0}^{\infty}$ (tzv. **pravá strana rovnice**) je pevně zvolená posloupnost reálných čísel.

Jestliže $b_n = 0$ pro všechna $n \ge n_0$, pak se příslušná rovnice nazývá **homogenní**.

Zápis rovnice pomocí sumačního znaménka:

$$a_{n+k} + \sum_{i=0}^{k-1} c_i(n) a_{n+i} = b_n.$$

Definice.

Nechť je dána lineární rekurentní rovnice řádu k

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = b_n, \quad n \ge n_0.$$

Za **počáteční podmínky** (initial conditions) pro tuto rovnici považujeme libovolnou soustavu rovnic $a_{n_0} = A_0$, $a_{n_0+1}=A_1,\,\ldots\,,\,a_{n_0+k-1}=A_{k-1},$ kde $A_i\in\mathbb{R}$ jsou pevně zvolená čísla.

Definice.

Uvažujme lineární rekurentní rovnici

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = b_n, \quad n \ge n_0.$$

Pak se lineární rekurentní rovnice

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = 0, \quad n \ge n_0$$

nazývá k ní přidružená homogenní rovnice.

Věta. (o struktuře řešení lineární rekurentní rovnice) Nechť je dána lineární rekurentní rovnice

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = b_n, \quad n \ge n_0$$

a nějaké její řešení $\{a_{p,n}\}_{n=n_0}^{\infty}$. Posloupnost $\{a_n\}_{n=n_0}^{\infty}$ je řešením této rovnice právě tehdy, pokud se dá napsat jako $\{a_n\} = \{a_{p,n}\} + \{a_{h,n}\}$, kde $\{a_{h,n}\}_{n=n_0}^{\infty}$ je nějaké řešení přidružené homogenní rovnice.

Množina všech řešení dané lineární rekurentní rovnice je tedy

 $\{\{a_{p,n}\}+\{a_{h,n}\}; \{a_{h,n}\} \text{ řeší přidruženou homogenní rovnici}\}.$

Věta. (o prostoru řešení homogenní lineární rekurentní rovnice)

Množina všech řešení dané homogenní lineární rekurentní rovnice řádu k je vektorový prostor dimenze k.

Definice.

Lineární rekurentní rovnice s konstantními koeficienty je libovolná rovnice ve tvaru

$$a_{n+k} + c_{k-1}a_{n+k-1} + \ldots + c_1a_{n+1} + c_0a_n = b_n, \quad n \ge n_0,$$

kde $n_0 \in \mathbb{Z}$, $c_i \in \mathbb{R}$ pro $i = 0, \dots, k-1$ jsou pevně zvolená čísla a $\{b_n\}_{n=n_0}^{\infty}$ je pevně zvolená posloupnost reálných čísel.

Definice.

Nechť je dána lineární rekurentní rovnice s konstantními koeficienty

$$a_{n+k} + c_{k-1}a_{n+k-1} + \ldots + c_1a_{n+1} + c_0a_n = b_n, \quad n \ge n_0.$$

Její charakteristický polynom je definován jako polynom

$$p(\lambda) = \lambda^k + c_{k-1}\lambda^{k-1} + \ldots + c_1\lambda + c_0.$$

Kořeny charakteristického polynomu se nazývají **charakteristická čísla**, popřípadě **vlastní čísla** dané rovnice. Řešené rovnici

$$\lambda^k + c_{k-1}\lambda^{k-1} + \ldots + c_1\lambda + c_0 = 0$$

se také říká charakteristická rovnice.

Fakt

Jestliže je λ_0 charakteristickým číslem dané homogenní lineární rekurentní rovnice s konstantními koeficienty, pak je posloupnost $\{\lambda_0^n\}_{n=n_0}^{\infty}$ jejím řešením.

Věta.

Uvažujme homogenní lineární rekurentní rovnici s konstantními koeficienty. Jestliže jsou λ_i různá její charakteristická čísla, pak $\{\lambda_i^n\}_{n=n_0}^{\infty}$ tvoří lineárně nezávislou množinu řešení této rovnice.

Fakt.

Nechť je dána homogenní lineární rekurentní rovnice s konstantními koeficienty. Jestliže je λ_0 její charakteristické číslo a má násobnost m jako kořen charakteristického polynomu, pak posloupnosti $\{\lambda_0^n\}, \{n\lambda_0^n\}, \dots, \{n^{m-1}\lambda_0^n\}$ jsou řešení dané rovnice a tvoří lineárně nezávislou množinu.

Věta.

Nechť je dána homogenní lineární rekurentní rovnice s konstantními koeficienty řádu k. Nechť jsou $\lambda_1, \ldots, \lambda_M$ její různá charakteristická čísla, přičemž každé λ_i má násobnost $m_i \in \mathbb{N}$. Pak je množina

$$\left\{\{\lambda_1^n\},\{n\lambda_1^n\},\dots,\{n^{m_1-1}\lambda_1^n\},\{\lambda_2^n\},\{n\lambda_2^n\},\dots,\{n^{m_2-1}\lambda_2^n\},\dots,\{\lambda_M^n\},\{n\lambda_M^n\},\dots,\{n^{m_M-1}\lambda_M^n\}\right\}$$

bází prostoru řešení dané rovnice.

Algoritmus pro řešení homogenní lineární rekurentní rovnice $a_{n+k} + \sum_{i=0}^{k-1} c_i a_{n+i} = 0$, $n \ge n_0$, řádu k.

1. Sestavte charakteristický polynom $p(\lambda) = \lambda^k + \sum_{i=0}^{k-1} c_i \lambda^i$.

Řešením rovnice $p(\lambda)=0$ najděte všechna charakteristická čísla dané rovnice.

- 2. Sestavte množinu posloupností B takto:
- pro každé reálné charakteristické číslo λ přidejte do B posloupnost $\{\lambda^n\}_{n=n_0}^{\infty}$;
- ullet pro každé reálné charakteristické číslo λ , jehož násobnost je m>1, přidejte do B rovněž posloupnosti $\{n\lambda^n\}_{n=n_0}^{\infty},\ldots,\{n^{m-1}\lambda^n\}_{n=n_0}^{\infty};$
- pro každé komplexní charakteristické číslo $\lambda = r[\cos(\varphi) + i\sin(\varphi)]$, které není reálné, přidejte do B posloupnosti
- $\{r^n\cos(n\varphi)\}_{n=n_0}^{\infty}$ a $\{r^n\sin(n\varphi)\}_{n=n_0}^{\infty}$; pro jeho komplexně sdružené číslo λ^* již do B nic nepřidáváme; pro každé komplexní charakteristické číslo $\lambda = r[\cos(\varphi) + i\sin(\varphi)]$, které není reálné a jehož násobnost je m > 1, přidejte do B posloupnosti $\{nr^n\cos(n\varphi)\}_{n=n_0}^{\infty}, \ldots, \{n^{m-1}r^n\cos(n\varphi)\}_{n=n_0}^{\infty}$ a $\{nr^n\sin(n\varphi)\}_{n=n_0}^{\infty}, \ldots, \{n^{m-1}r^n\sin(n\varphi)\}_{n=n_0}^{\infty}$; pro jeho komplexně sdružené číslo λ^* již do B nic nepřidáváme.
- Množina B je bází prostoru řešení.
- **3.** Označíme-li $B = \{\{a_{1,n}\}, \dots, \{a_{k,n}\}\}$, pak je obecné řešení dané rovnice určeno vzorcem $\{\sum_{i=1}^k u_i a_{i,n}\}_{n=n}^{\infty}$ pro $u_1,\ldots,u_k\in\mathbb{R}.$
- **4.** Jsou-li dány počáteční podmínky, pak do nich za příslušná a_j pro $j=n_0,\ldots,n_0+k-1$ dosadíme vzorce $a_j = \sum_{i=1}^{K} u_i a_{i,j}$ a vyřešíme vzniklých k rovnic pro k neznámých u_i . Ty po dosazení do obecného řešení určí příslušné partikulární řešení.

Definice.

Řekneme, že posloupnost $\{b_n\}_{n=n_0}^{\infty}$ je **kvazipolynom**, jestliže existuje $\lambda \in \mathbb{R}$ a polynom P(n) takový, že $b_n =$ $P(n)\lambda^n$ pro všechna $n \geq n_0$.

Věta.

Uvažujme rovnici

$$a_{n+k} + c_{k-1}a_{n+k-1} + \dots + c_1a_{n+1} + c_0a_n = b_n, \quad n \ge n_0.$$

Předpokládejme, že existují $\lambda \in \mathbb{R}$ a polynom P takový, že $b_n = P(n)\lambda^n$ pro všechna $n \geq n_0$. Nechť m je násobnost tohoto čísla λ jako charakteristického čísla přidružené homogenní rovnice, přičemž m=0 v případě, že toto λ vůbec charakteristickým číslem není.

Pak existuje polynom Q(n) stupně stejného jako P takový, že $\{n^mQ(n)\lambda^n\}$ je řešením dané rovnice.

$a_{n+2} - 9a_n = [\lambda = -3, 3]$	$\begin{vmatrix} a_{n+2} - 3a_{n+1} + 2a_n = \\ [\lambda = 1, 2] \end{vmatrix}$	$\begin{vmatrix} a_{n+2} - 4a_{n+1} + 4a_n = \\ [\lambda = 2 \ (2\times)] \end{vmatrix}$	$L = /= b_n$
			$= n 2^n$ $[\lambda = 2]$
			$= n^2(-1)^n$ $[\lambda = -1]$
			=2n-5
			$[\lambda = -3]$

Algoritmus pro nalezení řešení rovnice $a_{n+k} + c_{k-1}a_{n+k-1} + \ldots + c_1a_{n+1} + c_0a_n = b_n$, $n \ge n_0$, kde $b_n = P(n)\lambda^n$, $c_i \in \mathbb{R} \text{ a } c_0 \neq 0 \text{ (tedy řád } k).$

- 1. Nejprve řešte přidruženou homogenní rovnici $a_{n+k}+c_{k-1}a_{n+k-1}+\ldots+c_1a_{n+1}+c_0a_n=0$. a) Najděte všechna charakteristická čísla λ_j s násobnostmi m_j řešením rovnice $\lambda_k+c_{k-1}\lambda^{k-1}+\cdots+c_1\lambda+c_0=0$.
- b) Sestavte bázi prostoru řešení $B = \{\{a_{i,n}\}_{n=n_0}^{\infty}; i = 1, \dots, k\}.$
- c) Obecné řešení přidružené homogenní rovnice je $\{a_{h,n}\} = \left\{\sum_{i=1}^k u_i a_{i,n}\right\}$ pro $u_i \in \mathbb{R}$.

Pokud byla zadaná rovnice již homogenní, jděte na 3.

- 2. Pokud nebyla zadaná rovnice homogenní, zkontrolujte, že je pravá strana kvazipolynom, tedy $b_n = P(n)\lambda^n$ pro nějaké $\lambda \in \mathbb{R}$ a polynom P.
- a) Porovnejte λ s charakteristickými čísly λ_i z kroku 1. Pokud se žádnému nerovná, položte m=0. Pokud pro nějaké j platí $\lambda=\lambda_j,$ položte $m=m_j$ (násobnost dotyčného charakteristického čísla).
- b) Sestavte obecný polynom Q stupně stejného jako P, tradičně se používá $Q(n) = A + Bn + \cdots$
- c) Uhádněte řešení $a_n = n^m Q(n) \lambda^n$. Dosaďte jej do dané rovnice a po zkrácení λ zjednodušte levou stranu do tvaru polynomu. Porovnáním koeficientů polynomů na levé a pravé straně získáte tolik rovnic, kolik je neznámých koeficientů v Q.
- d) Vyřešte tyto rovnice a obdržené konstanty dosaď
te zpět do Q. Získáte jedno konkrétní řešení $a_{p,n}$.
- e) Obecné řešení dané úlohy je $\left\{a_{p,n} + \sum_{i=1}^k u_i a_{i,n}\right\}_{n=n_0}^{\infty}$ či $a_n = a_{p,n} + \sum_{i=1}^k u_i a_{i,n}$ pro $n \ge n_0$.

 3. Pokud byly s rovnicí zadány také počáteční podmínky, dosaďte za a_j v těchto podmínkách vzorce pro a_j z
- obecného řešení, které jste našli. Získáte k rovnic pro k neznámých u_1, \ldots, u_k . Vyřešte tuto soustavu, získaná u_i dosaďte do vzorce pro obecné řešení a dostanete tak partikulární řešení pro zadanou úlohu.

Věta.

Nechť $k \in \mathbb{N}$, uvažujme funkce $c_0(n), c_1(n), \ldots, c_{k-1}(n) \colon \mathbb{Z} \mapsto \mathbb{R}$.

Jestliže posloupnost
$$\{a_n\}_{n=n_0}^{\infty}$$
 řeší rovnici $a_{n+k} + \sum_{i=0}^{k-1} c_i(n) a_{n+i} = b_n, \ n \geq n_0$

a posloupnost
$$\{\tilde{a}_n\}_{n=n_0}^{\infty}$$
 řeší rovnici $a_{n+k} + \sum_{i=0}^{k-1} c_i(n) a_{n+i} = \tilde{b}_n, \ n \ge n_0,$

pak posloupnost
$$\{a_n + \tilde{a}_n\}_{n=n_0}^{\infty}$$
 řeší rovnici $a_{n+k} + \sum_{i=0}^{k-1} c_i(n) a_{n+i} = b_n + \tilde{b}_n$ pro všechna $n \ge n_0$.

Fakt.

Nechťje funkce f na \mathbb{N} dána vzorcem $f(n) = a \cdot f(\frac{n}{b})$ pro a > 0 a $b \in \mathbb{N}$, $b \geq 2$. Pak pro $n \in \{b^k; k \in \mathbb{N}\}$ platí $f(n) = n^{\log_b(a)} f(1)$.

Věta. (The Master theorem)

Uvažujme neklesající nezápornou funkci f na \mathbb{N} . Pro nějaké $b \in \mathbb{N}, b \geq 2$ označme $M = \{b^k; k \in \mathbb{N}\}$ a předpokládejme, že f splňuje na M rovnici $f(n) = a \cdot f(\frac{n}{h}) + cn^d$ pro konstanty $a, c \in \mathbb{R}, d \in \mathbb{N}_0$ splňující $a \ge 1$ a c > 0. Pak platí následující:

- (i) Jestliže $a > b^d$, tak $f(n) = \Theta(n^{\log_b(a)})$. (ii) Jestliže $a = b^d$, tak $f(n) = \Theta(n^d \log_2(n))$. (iii) Jestliže $a < b^d$, tak $f(n) = \Theta(n^d)$.

Důsledek.

Uvažujme neklesající nezápornou funkci f na $\mathbb N$. Pro nějaké $b\in\mathbb N,\ b\geq 2$ označme $M=\{b^k;\ k\in\mathbb N\}$ a předpokládejme, že f splňuje na M rovnici $f(n) = a \cdot f\left(\frac{n}{b}\right) + cn^d$ pro konstanty $a, c \in \mathbb{R}, d \in \mathbb{N}_0$ splňující $a \ge 1$ a $c \geq 0$. Pak platí následující:

- (i) Jestliže $d < \log_b(a)$ nebo c = 0, tak f(n) je $\Theta(n^{\log_b(a)})$.
- (ii) Jestliže $d = \log_b(a)$, tak f(n) je $\Theta(n^{\log_b(a)} \log_2(n)) = \Theta(n^d \log_2(n))$.
- (iii) Jestliže $d > \log_b(a)$, tak f(n) je $\Theta(n^d)$.

DMA Přednáška – Kombinatorika

	bez opakování	s opakováním
s pořadím (variace)	$\frac{n!}{(n-k)!}$	n^k
bez pořadí (kombinace)	$\binom{n}{k}$	$\binom{n+k-1}{k}$

Věta. (Princip inkluze a exkluze)

Jsou-li A_i pro $i=1,2,\ldots,n$ konečné množiny, pak

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}| + \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{k}| - \dots + (-1)^{n-1} \left| \bigcap_{i=1}^{n} A_{i} \right|$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} |A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}|.$$

Dirichletův šuplíkový princip

- ullet Jestliže je alespo
ň k+1 objektů rozděleno do k krabiček, tak musí být krabička obsahující alespo
ň dva objekty.
- \bullet Nechť A,Bjsou konečné množiny. Jestliže |A|>|B|, pak pro každé zobrazení $T\colon\thinspace A\mapsto B$ existuje $b\in B$ takové, že $|T^{-1}[\{b\}]|>1.$
- \bullet Nechť $c,k\in\mathbb{N}.$ Je-li alespo
ňck+1objektů umístěno do k krabiček, pak existuje krabička, která má více ne
žcobjektů.
- \bullet Je-liNobjektů umístěno do k krabiček, pak existuje krabička, která má alespoň $\left\lceil \frac{N}{k}\right\rceil$ objektů.