Land Use Engineering Group

AdjacencySpatially-explicit optimisation

Monika Niederhuber - Jochen Breschan Andreas Gabriel - Marc Folini- Trivik Verma - Andreas Hill

Time table

10:15-10:25 -A- SOLUTION: Scheduling in Natural Resources Management 10:25-10:45 -**B**- Representation of space for optimisation purposes 10:45-11:30 -C- Spatially explicit scheduling of harvesting operations **C1** - Conceptualisation **C2** - Implementation 11:30-15:00 -D- Implement and solve problem [computer lab]

- A SOLUTION Scheduling in natural resources management

Scheduling of timber harvest

		+	$\overline{}$													St	ate varia	bles fo	what a	ge class	s. when	how mr	uch)				\neg				+
			tir	me peri	od 1	tim	e perio	d 2	tim	e perio	od 3	┢	time p	eriod 1	\neg		time peri				time p				time p	eriod 4	\neg				
			_	н 13	_		H23			ж33			_				y ₂₂ 3		Y24		_			y ₄₁	_						
Decision variables		x_{ij} . Area out [ha] in age class i at period j y_{ij} . Area of age class i at period	0	50	150	0	200	0	100	100	0	100	200	50	150	200	100 2	200	0	200	200	100	0	200	200	100	0				
			=	oxdot									=		=				=												UNITS
Objective function		v _{ii} : projected revenues in age class & at period & [CHF/ha]	7500) #####	#####	7500	35000	45000	7500	35000	45000																		MAX	19750000	[CHF]
Constraints																												LHSsu	SIGN	RHS	
[A] Initial state		stage 1: thicket										1																100	==	100	[ha]
		stage 2: pole											1															200		200	[ha]
		stage 3: timber												1														50	==	50	[ha]
		stage 4: mature timber													1													150		150	[ha]
[B] Dynamic model	Period 1	stage 1	1	1	1											-1												0	==	0	[ha]
		stage 2										1					-1											0	==	0	[ha]
		stage 3	-1										1					-1										0		0	[ha]
		stage 4		-1	-1									1	1				-1									0		0	[ha]
	Feriod 2	stage 1				1	1	1												-1								0		0	[ha]
		stage 2														1					-1							0		0	[ha]
		stage 3				-1											1					-1						0		0	[ha]
		stage 4					-1	-1										1	1				-1					0	==	0	[ha]
	Feriod 3	stage 1							1	1	1													-1				0	==	0	[ha]
		stage 2																		1					-1			0	==	0	[ha]
		stage 3							-1												1					-1		0		0	[ha]
		stage 4								-1	-1											1	1				-1	0	==	0	[ha]
[C] Restrict harvest to	Period 1	stage 2	-1										1															200	=>	0	[ha]
		stage 3		-1										1														0	=>	0	[ha]
		stage 4			-1										1													0	=>	0	[ha]
	Period 2	stage 2				-1											1											100	=>	0	[ha]
		stage 3					-1											1										0	=>	0	[ha]
		stage 4						-1											1									0	=>	0	[ha]
	Feriod 3	stage 2							-1												1							100	=>	0	[ha]
		stage 3								-1												1						0	=>	0	[ha]
		stage 4									-1		_									_	1					0	=>	0	[ha]
[D] Steady-state condi	tion	stage 1																		1				-1				0	==	0	[ha]
		stage 2																			1				-1			0	==	0	[ha]
		stage 3																				1				-1		0	==	0	[ha]
		stage 4																					1				-1	0	==	0	[ha]

Scheduling of timber harvest

Estimated revenues

CHF 19'750'000

Sensitivity – Count of planning periods

Count of planning periods

Vanish of «mature timber» is not a matter of limited time periods!

Add constraint for state variable which ensures a minimum area of «mature timber» at any time period

 $y_{t,mature\ timber} \ge area\ threshold$

Sensitivity - Estimated revenues [CHF per ha]

EXAMPLE

- B - Representation of space

Learning goals

CONCEPTUALIZE AND REPRESENT

Learn to formulate optimization models that include...

... decision units that refer to polygons

... control of spatial pattern of selected polygons

IMPLEMENT

- Automate the creation of large matrix notation optimisation models
- Learn to [1] import, [2] manipulate and [3] export shapefiles in MATLAB

Representation of discrete spatial units

 x_i : take action on polygon i

share of area where action will be applied to

apply action to polygon i

$$x_i \in [0,1] \quad real \\ x_i = \begin{cases} 1, yes \\ 0, no \end{cases} \quad integer \\ x_1 \qquad x_2 \\ \\ Planning units \\ x_3 \qquad x_4 \\ \end{cases}$$

Example

$$x_i = 0.25$$

 $x_1 = 0$ $x_2 = 1$ $x_3 = 0$ $x_4 = 0$ Many units result into many decision variables

Control shape of spatial patterns

Adjacency: list of neighboring polygons *i* and *j*

Compactness

Selected polygons create shapes characterized by low perimeter/area ratio

Contiguity

Any selected polygon can be reached from any other selected polygon within the shape created by the selected polygons

15

Dispersion

Selected polygons are distant from each other

Edge-focused

Selected polygons create edges relevant to the problem

Summary

Compactness

Spatial concentration of efforts

- [1] management
- [2] nature conservation

Contiguity

Corridor creation

e.g., nature conservation problems

Dispersion

Distribute obnoxious* actions in space

- [1] siting of power plants, waste depots, etc.
- [2] harvest operations

Edge-focused

Edge-related goals

- [1] nature conservation (forest edge)
- [2] manage interactions between neighboring polygons

* unliebsam

Representation of spatial data

Adjacency definition: «Polygons share an edge»

geometry

ID	shape	volume
1	polygon	300
2	polygon	500
3	polygon	400
4	polygon	300

THEORY

adjacency

ID_i	ID_j
1	2
2	3

Example: Attribute table in ArcGIS

GEOMETRY formats

ADJACENCY formats

- C Spatially explicit scheduling of harvesting operations

SPATIALLY EXPLICIT SCHEDULING OF HARVESTING OPERATIONS

The Uetliberg forest is divided up into more than 600 stands which are used as decision units for managing actions. All stands in the timber stage (n=266) have been selected for harvest in the next three upcoming periods.

The stands should be harvested in order to maximize harvested timber volume under the restriction that the size of openings after harvest is limited. Therefore, the management authority has set the policy that harvesting of neighboring stands during the same period is not allowed. The authority would like to know how to schedule harvest of the stands in order to concurrently meet the objective and the harvesting constraint. Come up with a map that indicates which stands are subject to harvest at which period!

StandsUetliberg [polygon feature]

attributes (incomplete)

STAND ID: Stand identifier [-]

SOD: Stage of development [classes]

timber volume of the stand $[m^3]$ Vol:

Conceptual model for the spatial scheduling problem

Use constraints for control of spatial patterns!

Decision variables

Harvest stand *i* at period *t*

$$X_{t,i} = \begin{cases} 1, \text{ yes} \\ 0, \text{ no} \end{cases}$$

O - Objective function

 f_i [m^3] timber volume in stand i

MAX
$$f_1x_{1,1} + f_2x_{1,2} + f_3x_{1,3} + f_4x_{1,4}$$
 period 1
 $f_1x_{2,1} + f_2x_{2,2} + f_3x_{2,3} + f_4x_{2,4}$ period 2
 $f_1x_{3,1} + f_2x_{3,2} + f_3x_{3,3} + f_4x_{3,4}$ period 3

or...

MAX
$$\sum_{t=1}^{m=3} \sum_{i=1}^{n=4} f_i x_{t,i}$$
 [m³]

C1 - Harvest once

short notation

$$\sum_{t=1}^{m=3} x_{t,i} \le 1 \quad \text{for all stands}$$

$$i=1,...,n$$

C2 - Adjacency restriction

generalised notation

$$x_{t,i} + x_{t,j} \le 1$$
 for all periods t=1,...,m and for all neighbors (i,j) $\in A$

A: adjacency list, a set of pairs of stands (i,j) which share an edge

Optimisation model

Decision variables

$$x_{t,i} = \begin{cases} 1, \text{ stand } i \text{ harvested in period } t \\ 0, \text{ else} \end{cases}$$

McDill ME, Rebain SA, Braze J (2002). Harvest scheduling with area-based adjacency constraints. *Forest Science*, 48(4), 631-642.

Parameters

 f_i : timber volume in stand i [m³]

- **1** Maximize harvested volume MAX $\sum_{t=1}^{\infty} \sum_{i=1}^{\infty} f_i x_{t,i}$
- **C1** Harvest once S.t. $x_{1,i}$... $+x_{t,i}$... $+x_{m,i} \le 1$ for all i=1,..,n
- **C2** Adjacency restriction $x_{t,i} + x_{t,j} \le 1$ for all t=1,...,m and all (i,j) $\in \mathbb{A}$

 $x_{t,i} \in \{0,1\}$

A: Adjacency list, set of pairs of stands (i,j) which share an edge

Link spatial information with optimisation model

31

THEORY

Problem sizes

Exercise 6 **Multiperiod planning** problem **Exercise 7 Spatially explicit Size of A-matrix** scheduling problem

⇒ need for automation of manual work!

Programming - what is it about?

What is the purpose of programming?

Identify a sequence of instructions that will automate performing a specific task [wikipedia]

What is the act of programming?

Transfer a calculation problem into an executable computer program

"The Pen is mightier than the sword" (i.e., computer)

How to copy picture by hand?

Iteratively improve your programming skills

Conceptualisation 2 work flow

Implementation ⇒ «chapter structure»

Plan the matrix notation model – RUDIMENTARY LAYOUT

for implementation in Matlab

40

Plan the matrix notation model – variables

Mriting the entire model is cumbersome! Make use of placeholders «...»

Plan the matrix notation model - constraints

Hierarchical order

constraint time unit type period

Implementation

C1		stand 1
		•••
		stand n
C2	period 1	adjacency 1
		adjacency A
	period m	adjacency 1
		adjacency A

Plan the matrix notation model - A-Matrix

			ре	eriod	1	period	pe	riod	m		
			X _{1,1}		X _{1,n}		X _{m,1}		X _{m,n}		
						хТуре					
						f					
C1		stand 1	1	0	0						
		•••	0	1	0						
		stand n	0	0	1						
C2	period 1	adjacency 1									
					9	ubmatrice	S	0		sign	
		adjacency $ \mathbb{A} $									
	period m	adjacency 1									
		adjacency A									

- (1) Identify those submatrices which contain non-zero values!
- (2) Characterize the content of those sub-matrices, and specify their size!

Automate creation of A-matrix: Concept

THEORY

Automate creation of A-matrix: Work flow


```
%% Compute A-matrix
   [1] Create Al-matrix
       % create A1-sub matrix
      % create A1-zeros
      % create A1 seed box
       % assign sub matrices to A1
   [2] Create A2-matrix
       % create A2-sub matrix
      % create A2-zeros
      % create A2 seed box
       % assign sub matrices to A2
   [3] Concatenate A1 and A2
```

45

Matrix notation model versions

V1: Easy-to-read

use for planning of matrix notation model

V2: Implementation

Matlab

$$f = \begin{pmatrix} 0 \\ \dots \\ a_3 \end{pmatrix} \qquad xType = \begin{pmatrix} 'B' \\ \dots \\ 'B' \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \dots & 0 \\ \dots & \ddots & \dots \\ 1 & \dots & 0 \end{pmatrix} \quad sign = \begin{pmatrix} 1 \\ \dots \\ 0 \end{pmatrix} \quad b = \begin{pmatrix} 0 \\ \dots \\ p \end{pmatrix}$$

Transpose f, xType

Exercise 7

plan matrix notation model

-

Task B

plan work flow

>

Task C

create code

Task D

represent results

by hand

MATLAB

ArcGIS

THEORY

IMPLEMENTATION

EXAMPLE