Deflation results with MCMC

March 4, 2021

1 A handful of constant preconditioners

Constant preconditioners are considered for the realization $\xi = 1$, denoted by \mathbf{A}_0 .

1.1 Block Jacobi (bJ)

We first consider non-overlapping diagonal bJ preconditioners of the form

$$\mathbf{M}^{-1} = \sum_{j=1}^{n_b} \mathcal{R}_j \mathbf{M}_j^{-1} \mathcal{R}_j^T$$
 (1)

with canonical restrictions \mathcal{R}_j from a global vector to each block $j \in [1, n_b]$. For each j, \mathbf{M}_j^{-1} is applied with a Cholesky factorization $\mathbf{M}_j = \mathbf{L}_j \mathbf{L}_j^T = \mathcal{R}_j^T \mathbf{A} \mathcal{R}_j$.

1.2 Geometric domain decomposition

Let us consider a n_d -partition of Ω into subdomains $\{\Omega_d\}_{d=1}^{n_d}$ where each Ω_d is a contiguous union of elements, with a (non-Dirichlet) boundary denoted by $\partial\Omega_d$. The canonical restriction \mathcal{R}_d maps global (non-Dirichlet) degrees of freedom (DoFs) to mesh nodes contained in Ω_d . We assume local orderings such that $\mathcal{R}_d = [\mathcal{R}_{\mathrm{I},d}, \mathcal{R}_{\Gamma,d}]$, where $\mathcal{R}_{\mathrm{I},d}$ and $\mathcal{R}_{\Gamma,d}$ map nodes from $\Omega_d \setminus \partial\Omega_d$ and $\partial\Omega_d$, respectively. Then, we write

$$\mathcal{R}_{d}^{T} \mathbf{A} \mathcal{R}_{d} = \begin{bmatrix} \mathcal{R}_{\mathrm{I},d}^{T} \\ \mathcal{R}_{\mathrm{\Gamma},d}^{T} \end{bmatrix} \mathbf{A} \begin{bmatrix} \mathcal{R}_{\mathrm{I},d} & \mathcal{R}_{\Gamma,d} \end{bmatrix} =: \begin{bmatrix} \mathbf{A}_{\mathrm{II},d} & \mathbf{A}_{\mathrm{I\Gamma},d} \\ \mathbf{A}_{\Gamma\mathrm{I},d} & \mathbf{A}_{\Gamma\Gamma,d} \end{bmatrix}$$
(2)

and

$$\mathcal{R}_{d}^{T}\mathbf{b} = \begin{bmatrix} \mathcal{R}_{\mathbf{I},d}^{T} \\ \mathcal{R}_{\mathbf{\Gamma},d}^{T} \end{bmatrix} \mathbf{b} =: \begin{bmatrix} \mathbf{b}_{\mathbf{I},d} \\ \mathbf{b}_{\mathbf{\Gamma},d} \end{bmatrix}. \tag{3}$$

After elimination of \mathbf{u}_{I} from $\mathbf{A}\mathbf{u} = \mathbf{b}$, we have

$$\mathbf{S}\mathbf{u}_{\Gamma} = \mathbf{b}_{S} \tag{4}$$

where $\mathbf{b}_S = \text{and the Schur complement}$, \mathbf{S} , is applied

$$\mathbf{S}\mathbf{u}_{\Gamma} = \sum_{d=1}^{n_d} \mathbf{S}_d \mathbf{u}_{\Gamma,d} \tag{5}$$

with

$$\mathbf{S}_{d}\mathbf{u}_{\Gamma,d} = \mathbf{A}_{\Gamma\Gamma,d}\mathbf{u}_{\Gamma,d} - \mathbf{A}_{\Gamma I,d}\mathbf{A}_{I\Gamma,d}^{-1}\mathbf{A}_{I\Gamma,d}\mathbf{u}_{\Gamma,d}.$$
 (6)

For non-overlapping partitions, $\mathbf{A}_{\mathrm{II},d}$ is SPD but \mathbf{S}_d is semi-definite.

1.2.1 Neumann-Neumann (NN)

The NN preconditioner $\mathbf{M}_{NN}^{-1},$ see [], is defined as follows for Eq. (??),

$$\mathbf{M}_{NN}^{-1}\mathbf{u}_{\Gamma} = \sum_{d=1}^{n_d} \mathcal{R}_{\Gamma,d}$$
 (7)

where \mathbf{S}_d^\dagger denotes the pseudo-inverse of \mathbf{S}_d .

1.2.2 Balanced domain decomposition (BDD)

1.2.3 Low rank Schur (LORASC)

$$\mathbf{S}\mathbf{u} = \lambda \mathbf{A}_{\Gamma\Gamma} \mathbf{u} \tag{8}$$

$$\tilde{\mathbf{S}}^{-1} = \mathbf{A}_{\Gamma\Gamma}^{-1} + \mathbf{E}\boldsymbol{\Sigma}\mathbf{E}^{T} \tag{9}$$

where $\mathbf{E} = [\mathbf{v}_1, \dots, \mathbf{v}_i]$

1.3 Algebraic multigrid (AMG)

2 Deflation results

2.1 Weak scaling

Results in Tab. 1 are *.

2.2 Strong scaling results

2.3 Scaling of AMG

Table 1: Weak scaling results of deflation for a constant bJ preconditioner with $nvec = \lfloor 1.25 \times nb \rfloor$ and $spdim = 3 \times nb$.

n	nb	pcg	nvec	spdim	eigdefpcg	defpcg
11	110	iter ivec	nvec	spuiii	iter	iter
20,208	8	828.6 ± 166.5	10	24	488.6 ± 93.4	$xxx.xx \pm xx.xx$
40,406	16	$1,435.2 \pm 357.2$	20	48	715.3 ± 154.6	$xxx.xx \pm xx.xx$
80,598	32	$2,241.5 \pm 528.4$	40	96	$1,043.2 \pm 294.2$	$xxx.xx \pm xx.xx$
160,941	64	$3,321.4 \pm 559.3$	80	192	$1,340.8 \pm 370.6$	$xxx.xx \pm xx.xx$
321,386	128	$5,698.0 \pm 862.7$	160	384	$2,996.1 \pm 728.3$	$xxx.xx \pm xx.xx$

Table 2: Weak scaling results of deflation for a constant LORASC preconditioner with $\varepsilon=0,\;nvec=\lfloor 1.25\times ndom \rfloor$ and $spdim=3\times ndom$.

	,	pcg			eigdefpcg	defpcg
n	ndom	iter	nvec	$_{ m spdim}$	iter	iter
20,208	8	243.9 ± 49.9	10	24	158.6 ± 35.7	$xxx.x \pm xx.x$
40,406	16	348.3 ± 89.6	20	48	181.7 ± 43.0	$xxx.x \pm xx.x$
80,598	32	453.9 ± 115.9	40	96	201.6 ± 51.1	$xxx.x \pm xx.x$
160,941	64	603.2 ± 134.7	80	192	239.5 ± 47.0	$xxx.x \pm xx.x$
$321,\!386$	128	781.0 ± 000.0	160	384	280.0 ± 00.0	$xxx.x \pm xx.x$

Table 3: Weak scaling results of deflation for a constant LORASC preconditioner with $\varepsilon = 0.01, \, nvec = \lfloor 1.25 \times ndom \rfloor$ and $spdim = 3 \times ndom$.

n	ndom	pcg	nvec	spdim	eigdefpcg	defpcg
11	ndom	iter	111000	spaini	iter	iter
20,208	8	231.6 ± 47.8	10	24	160.0 ± 36.3	$xxx.x \pm xx.x$
40,406	16	324.5 ± 84.0	20	48	182.3 ± 44.2	$xxx.x \pm xx.x$
80,598	32	388.7 ± 98.3	40	96	202.5 ± 53.7	$xxx.x \pm xx.x$
160,941	64	498.3 ± 116.6	80	192	236.6 ± 45.4	$xxx.x \pm xx.x$
321,386	128	661.0 ± 000.0	160	384	283.0 ± 00.0	$xxx.x \pm xx.x$

Table 4: Weak scaling results of deflation for a constant Neumann-Neumann preconditioner with $nvec = \lfloor 1.25 \times ndom \rfloor$ and $spdim = 3 \times ndom$.

m	n-	ndom	pcg	nvec	spdim	eigdefpcg	defpcg
n	n_{Γ}	ndom	iter	nvec	spuiii	iter	${ m it}{ m er}$
20,208	641	8	77.6 ± 19.9	10	24	71.3 ± 17.8	$xxx.x \pm xx.x$
40,406	1,422	16	107.3 ± 28.3	20	48	89.7 ± 27.3	$xxx.x \pm xx.x$
80,598	2,800	32	157.2 ± 29.8	40	96	94.9 ± 27.2	$xxx.x \pm xx.x$
160,941	5,600	64	533.9 ± 88.0	80	192	273.1 ± 84.8	$xxx.x \pm xx.x$
321,386	11,200	128	794.0 ± 129.3	160	384	313.5 ± 83.0	$xxx.x \pm xx.x$

Table 5: Strong scaling results of deflation for a constant bJ preconditioner with $nvec = |1.25 \times nb|$ and $spdim = 3 \times nb$.

n	nb	$rac{ m pcg}{ m iter}$	nvec	spdim	eigdefpcg iter	$rac{\mathrm{defpcg}}{\mathrm{iter}}$	
321,386	8	$x,xxx.x \pm xx.xx$	10	24	$xxx.xx \pm xx.xx$	$xxx.xx \pm xx.xx$	
$321,\!386$	16	$x,xxx.x \pm xx.xx$	20	48	$xxx.xx \pm xx.xx$	$xxx.xx \pm xx.xx$	
$321,\!386$	32	$x,xxx.x \pm xx.xx$	40	96	$xxx.xx \pm xx.xx$	$xxx.xx \pm xx.xx$	
$321,\!386$	64	$4,256.9 \pm 452.4$	80	192	$1,959.0 \pm 550.7$	$xxx.xx \pm xx.xx$	
$321,\!386$	128	$5,698.0 \pm 862.7$	160	384	$2,996.1 \pm 728.3$	$ xxx.xx \pm xx.xx $	

Table 6: Strong scaling results of deflation for a constant LORASC preconditioner with $\varepsilon=0,\; nvec=\lfloor 1.25\times nb \rfloor$ and $spdim=3\times nb.$

n	nb	pcg	nyoe	spdim	eigdefpcg	defpcg
n	по	iter	nvec	spaini	iter	iter
321,386	8	$xxx.xx \pm xx.xx$	10	24	$xxx.xx \pm xx.xx$	$xxx.xx \pm xx.xx$
321,386	16	$xxx.xx \pm xx.xx$	20	48	$xxx.xx \pm xx.xx$	$xxx.xx \pm xx.xx$
321,386	32	$xxx.xx \pm xx.xx$	40	96	$xxx.xx \pm xx.xx$	$xxx.xx \pm xx.xx$
321,386	64	$xxx.xx \pm xx.xx$	80	192	$xxx.xx \pm xx.xx$	$xxx.xx \pm xx.xx$
321,386	128	$xxx.xx \pm xx.xx$	160	384	$xxx.xx \pm xx.xx$	$xxx.xx \pm xx.xx$

Table 7: Strong scaling results of deflation for a constant Neumann-Neumann preconditioner with $nvec = \lfloor 1.25 \times ndom \rfloor$ and $spdim = 3 \times ndom$.

•						
nn	ndom	pcg	nvec	spdim	eigdefpcg	defpcg
n_{Γ}		iter	nvec	spaini	$\begin{array}{c c} \text{iter} & \text{iter} \\ \hline xxx.x \pm xx.x & xxx.x \pm xx.x \\ xxx.x \pm xx.x & xxx.x \pm xx.x \\ \end{array}$	
XX	8	$xxx.x \pm xx.x$	10	24	$xxx.x \pm xx.x$	$xxx.x \pm xx.x$
XX	16	$xxx.x \pm xx.x$	20	48	$xxx.x \pm xx.x$	$xxx.x \pm xx.x$
XX	32	$xxx.x \pm xx.x$	40	96	$xxx.x \pm xx.x$	$xxx.x \pm xx.x$
XX	64	$xxx.x \pm xx.x$	80	192	$xxx.x \pm xx.x$	$xxx.x \pm xx.x$
XX	128	$xxx.x \pm xx.x$	160	384	$xxx.x \pm xx.x$	$xxx.x \pm xx.x$

Table 8: Scaling results of the constant AMG preconditioner.

n	pcg iter
20,208	125.9 ± 35.0
40,406	136.5 ± 39.2
80,598	144.7 ± 51.7
160,941	150.4 ± 48.3
321,386	$xxx.x \pm xx.x$