THE COPPERBELT UNIVERSITY PHYSICS DEPARTMENT

TEST 1 - AUGUST 2020

PH 110 – INTRODUCTORY PHYSICS

TIME: 2 HOURS MAX MARKS: 100

ATTEMPT ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

CLEARLY INDICATED YOUR STUDENT IDENTIFICATION NUMBER AND LECTURE GROUP ON THE FRONT COVER OF THE ANSWER BOOKLET

You may use the following information:

Acceleration due to gravity, $g = 9.8 \text{ m/s}^2$

- Q1. (a) A car travels 1 km between two stops. It starts from rest and accelerates at 2.5 m/s² until it attains a velocity of 12.5 m/s. The car continues at this velocity for some time and decelerates at 3 m/s² until it stops. Calculate the total time for the journey. [10 marks]
 - (b) A crate slides from rest and accelerates uniformly at 4.9 m/s² along a frictionless roof 3 m long which is inclined at an angle of 30° to the horizontal as indicated in the Figure below. Determine:
 - (i) the velocity of the crate just after losing contact with the roof,
 - (ii) the velocity (magnitude and direction) of the crate just before it hits the ground,
 - (iii) the time the crate takes to hit the ground after losing contact with the roof, and
 - (iv) the horizontal distance between the point directly below the roof and the landing

 Point (i.e. the range).

 [15 marks]

Q2. (a) A block of weight W = 200 N is supported by a uniform beam of weight 140 N as shown in the Figure below. If $L_1 = 1.1$ m and $L_2 = 1.4$ m, find the tension in the wire and the vertical and horizontal components of the force exerted by the hinge on the beam.

[10 marks]

- (b) (i) Give two conditions required for an object to be static equilibrium. [4marks]
 - (ii) Two objects with masses $m_1 = 10 \text{ kg}$ and $m_2 = 5 \text{ kg}$ are connected by a light string that passes over a frictionless pulley as shown in the Figure below. If, when the system starts from rest, m_2 falls 1 m in 1.2 seconds, determine the coefficient of kinetic friction between m_1 and the table. [11 marks]

Q3. (a) The magnitude and directions of three vectors \vec{A} , \vec{B} and \vec{C} are as shown in the Figure below. Find the magnitude and direction of a fourth vector \vec{D} which when added to these three vectors will give a resultant of zero. [12 marks]

(b) Two people pull as hard as they can on ropes attached to a 200 kg object. If they pull in the same direction the object accelerates at 1.52 m/s² to the right. If they pull in opposite directions the object accelerates at 0.518 m/s² to the left. Ignoring any other forces, what is the force exerted by each person on the object?
[9 marks]

(c) If \vec{A} and \vec{B} are nonzero vectors, is it possible for $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$ both to be zero? Explain.

[4 marks]

- Q4. (a) An acre-foot is the volume of water that would cover 1 acre of flat land to a depth of 1 foot. How many gallons are in 1 acre-foot? [5 marks]
 - (b) You are using water to dilute small amounts of chemicals in the laboratory, drop by drop.

 How many drops of water are in a 1.0-L bottle? [9 marks]
 - (c) (i) State the principle of homogeneity. [2 marks]
 - (ii) The wavelength λ associated with a moving particle depends on its mass m, velocity ν and Planck's constant h which is measured in kgm²s⁻¹. Show dimensionally, that

$$\lambda \propto \frac{h}{mv}$$
 [9 marks]

QUESTION 1 a.

D+ =1 Km Vo = omls V = 12.5mls a = 2,5 m/s" az = 3m/s2

$$V = V_0 + at$$
 $12.5 = 0 + 2.5t$
 $\frac{2.5t}{2.5} = \frac{12.5}{2.5}$
 $t = 5 cc$

$$V = V_0 + at$$
 $0 = 12.5 + 1.3t$
 $3t = 12.5$
 3
 $t = 4.2$ Seconds

to Find the total distance we just find the are of the trapezium

$$b = \frac{1}{2} (a+6) h$$

D = 1km or 1000m

QUESTION 1 5

i)
$$CL = 4.9 \text{ m/s}^2$$

 $S = 3 \text{ m}$
 $V = ?$
 $V_0 = 0 \text{ m/s}$

$$V^{2} = V_{0}^{2} + 2as$$

$$V^{2} = 0^{2} + 2(4.9)(3)$$

$$V^{2} = \sqrt{29.4}$$

$$V = 5.4 \text{ m/s}$$

Y1 = 0

The Melocity is the x is the Same throughout the motion.

to find the du velocity in the y we use equation

$$V^{2} = V_{0}^{2} + 2a6$$

$$V^{2} = V_{0}^{2} + 2a6$$

$$V^{2} = V_{0}^{2} + 2a6$$

$$V^{2} = (0)^{2} + 2(a.8)(3)$$

$$V^{2} = (58.8)$$

:. magnitude =
$$\sqrt{(\sqrt{x})^2 + (\sqrt{y})^2}$$

= $\sqrt{5.4^2 + 7.7^2}$
= 9.4 m/s

i, the velocity is 9,4m/s and an angle of 55° below the positive x-eixis.

QUESTION 16

1 = Not + 1 at2 , we consider the vertal 7= Vot + 29t motion

3 = o(t) + 1 g+2 3 = 1 x 9.8xt2

3 = 4.9t2

It = 10.6122

t= 0.78 seconds

we conside the motion in the horizontal

a = 0 m/s X= Vot + / at2

x = 10+ + / (0)+2

x = 5.4 x 0.78

 $x = 4.212 \, \text{m}$

page 5.

QUESTION 2 a.

we resolve the T into its components

TSIN 45 + Fy - Wbeam - W WOLK =0

Tsm 45° + Fy - 140 - 200 =0

TSIN45°+Fy - 340 =0

Tsin 450+ Fy = 340 - - - (i)

Fx - TCOS 45 =0

Fx = T cos 45 = - - - (ic)

We find the torque EI = 0

- (200 × 1.4) - (140 × 0.7) + (1.1× TSin 45) = 0

-280 - 98 + 1.1751745 =0

11/ TSIN48 = 378 11/ SIN48 1:151n48

T = 485.98

T= 4864

Tension = 486 H

page 4

QUESTION2a.

April Hill I to the

aufotion Rb

(i)
$$S = 1 m$$

 $t = 1.2 seconfi$
 $V = 0 m/s$

$$X = Y_0 + 1_0 + 1_1 = 0(t) + 1_1 (a) (1.2)^2$$

$$U_{c} = -15a + 59$$

$$109$$

$$U_{c} = -15(1.4) + 5(9.8)$$

$$10(9.8)$$

$$M_{\rm K} = \frac{-21 + 49}{98} = 0.286$$

$$M_{\rm K} = 0.8$$

page 7

@ LLASTION 3 9

the positive x raxis.

Vector	1200	
A = 190m	laria	7-component
B = 200 m	2005180 = 190m	190 Sintso = om
1.11	120 cas330 = 29.9 m	150msin 330= -75m
, B	EFx = 81.3m	Et = 66, 4
Macl.		-17 - 98 4

Vector D = (x component) + G component) $D = x_0 + f_0$ $D = (x_0 + f_0)$

D=-81.31-66.4

= 104.97m

Direction tan-1 (66.4) = 39.24°-1

the angle 15 150 +39.24

! the magnitude is 104, 97m atoma angle of Q 19, 24 from the positive x-axis

Page 8

QUESTION 86

a=1.52m/s2

a= 0.518m/s2

Efx = ma

$$T_1 + T_2 = 304 - - - (i)$$

Et = ma

$$T_{2}-T_{1}=103.6$$
 $--- (ii)$

Solving simultaneousty

$$+\int_{-7}^{7} + T_2 = 3049 +$$

$$27_2 = 407.6$$

page 9.

QUESTION 36. It is possible because, dot product of any two orthogonal vectors is zero and the Cross product of any two linear product is , F Page 10.

QUESTION 4 a. 1 acre = 43560 ft 1 ++ = 7.48 gallons. Using dimensional analysis 7.48 gallon #3560 #12 = 325, 828. 8 gallons QUESTION 4 S. 1 L -> 1000 cm3 1 olrop -> 50 mm3 Converting Sommis to cm? (10mm)3 1 cm3 -> 1000 mm3 × -> Somm3 1000x = 50 cm3 1050 $X = 0.05 \, \text{cm}^3$ 1 drop - 5 0.05 cm3 × -> 1000 cm3 6.05x = 1000 0.05 x = 20 000 drops page 11

QUESTION 46

1) The dimensions of all terms on the hos Sides of the equation are the same.

Diameter 1

in hamarah X = Kmx Ya Lz L = Mx .[LT"] Y [ML2T"] L = Mx, Lx, Tx, M2 L2x T-2 L= Mx, M2, L7, L22, T-1, 7-2 L= Mx+2, L7+22, T-1-2 MOL'TO = MX+2, L+22, 7-1-2 x+ z = 0 - (il)' 1 = ++ 22 -10 0= - 4 - 2 -- tim 7+2=0 Jolving (th) and (vii) simultanearly 94+2= 03 - J+z=0 7+1=0 1) Z = 1 H=-1

Land of the

2+7=0 x+1=0 X= --1

A = Kmx Ny hz A= Km'v"h' n= kh

A & hence Thoron.

page 12