Gradient Descent Optimization

by Ahmet Sacan

Optimization

- Minimize a function f(x)
 - Maximization problems can trivially be restated as minimization.
- e.g., find $argmin(x^2 8x + 10)$

Optimization using Calculus

When (our) Calculus is not enough

$$f(x) = x^2 + 5\sin(x)$$
$$f'(x) = 2x + 5\cos(x)$$

Zooming in

- x = -1.110510504
- f'(x)=-0.000000027142

Gradient Descent

- · A gradient (derivative) based optimization method
- aka Steepest Descent
- Start with $x = x_0$.
- Calculate derivative: f'(x).
- Take a step in the opposite direction:
 - -step: $\Delta x = -\eta f'(x)$
 - next value of x: $x_{i+1} = x_i \eta f'(x_i)$
 - $-\eta$ is the learning rate.
- Repeat until you are happy

Gradient Descent Example

- f(x) = 2sinx + 3cosx + x + 3
- Start at initial guess $x_0 = 2$.
- Perform three iterations of gradient descent.
- Use $\eta = 0.5$

$$f(x) = 2sinx + 3cosx + x + 3$$

 $f'(x) = 2cosx - 3sinx + 1$

•
$$f'(2) = -2.6$$

•
$$\Delta x = -\eta f'(2)$$

•
$$= +1.3$$

•
$$x_1 = x_0 + \Delta x$$

$$f(x) = 2sinx + 3cosx + x + 3$$

 $f'(x) = 2cosx - 3sinx + 1$

•
$$f'(3.3) = -0.6$$

•
$$\Delta x = -\eta f'(3.3)$$

•
$$= +0.3$$

•
$$x_2 = x_1 + \Delta x$$

•
$$= 3.6$$

$$f(x) = 2sinx + 3cosx + x + 3$$

 $f'(x) = 2cosx - 3sinx + 1$

•
$$f'(3.6) = +0.4$$

•
$$\Delta x = -\eta f'(3.6)$$

•
$$= -0.2$$

•
$$x_3 = x_2 + \Delta x$$

Gradient Descent iterations

$$x_0 = 2$$
 $x_1 = 3.28$
 $x_2 = 3.56$

• • •

$$x_{14} = 3.451$$

$$x_{15} = 3.446$$

• • •

$$x_{60} = 3.448560357$$

$$x_{61} = 3.448560355$$

Stopping Criteria

- Stop when derivative becomes too small.
 - $-e.g., f'(x_t) < 0.001$
- Stop when the change in function value is too small.
 - -e.g., $f(x_{t+1}) f(x_t) < 0.001$
- Stop when the step size is too small.
 - $-e.g., \Delta x < 0.001$
- Stop after a fixed number of iterations.
 - e.g., 100 iterations.
- Any combination of the above.

Learning rate η

• Large η : risky

• Small η : slow

• Typical values: $\eta = 0.01$, $\eta = 0.001$

Adaptive learning rate

- · Predefined schedule. e.g.,
 - Start with $\eta = 0.1$
 - Decrease η by 10% after each iteration.
- Reactive rules. e.g.,
 - If the derivative is in the same direction as the previous iteration, increase η by 10%.
 - If the derivative is not in the same as direction as the previous iteration, decrease η by 10%.

When gradient is zero

Can stall if the gradient is ever 0 not at the minimum.

· Solution: momentum

$$\Delta x = -\eta f'(x_t) + \gamma \Delta x_{t-1}$$

• Typical: $\gamma = 0.5 \sim 0.9$

Local vs. Global Minima

- Local minima: The minima we can get to if we rolled down from a starting point
- · Global minima: The lowest of all possible minimums.

Convex Functions

- A function is convex if a line segment between any two points on the graph of the function lies above the graph.
- Any local minimum of a convex function is also a global minimum.

Gradient Descent in higher dimensions

 In higher dimensions, use partial derivatives (aka gradient field)

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \vdots \end{bmatrix}$$

•
$$f(x,y) = x^2 + 3xy + 7x - y^2$$

•
$$\nabla f = \begin{bmatrix} 2x + 3y + 7 \\ 3x - 2y \end{bmatrix}$$

• Let
$$x_0 = 4$$
, $y_0 = 5$, $\eta = 0.5$

•
$$\nabla f = \begin{bmatrix} 2*4+3*5+7 \\ 3*4-2*5 \end{bmatrix} = \begin{bmatrix} 30 \\ 2 \end{bmatrix}$$

•
$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} - \eta \nabla f = \begin{bmatrix} 4 \\ 5 \end{bmatrix} - .5 \begin{bmatrix} 30 \\ 2 \end{bmatrix} = \begin{bmatrix} -11 \\ 4 \end{bmatrix}$$

Gradient Descent in 2 dimensions

When goal is to replicate g(x)

• Find the parameters θ such that $f_{\theta}(x)$ has the same/similar value as g(x)

Error/cost function:

$$E_{\theta}(x) = (f_{\theta}(x) - g(x))^{2}$$

- Redefined the problem:
 - Find the parameters θ such that $E_{\theta}(x)$ is minimized
- Minimize $E_{\theta}(x)$ using gradient descent.

When derivative is not available

- f(x) is available, but f'(x) is not.
- One solution:
 - Estimate f'(x) using: $\frac{f(x+\epsilon)-f(x)}{\epsilon}$

- Another solution:
 - Calculate $f(x + \epsilon)$ and $f(x \epsilon)$
 - Move in the direction of the smaller one.

Related terms & methods

- · Function: objective, cost, error, loss, energy
- Steepest ascent, hill-climbing
- Line search
- First order method

Second order: Newton's method, conjugate gradient method

Conclusion

- Gradient descent
 - easy to implement
 - slow convergence
 - choice of learning rate
 - local minima
- Most programming libraries implement improved alternatives
 - Newton's method