Determinants in computing measures of geometric objects

Lecture 5: Matrices and determinants

Table of contents

- Matrices
- 2 Matrix algebra
- 3 Determinants
- 4 Determinants in computing measures of geometric objects

Matrices

- A matrix is a rectangular array of numbers.
 The numbers in the array are called entries of the matrix.
- The **size** of a matrix is described in terms of

$$(\# \text{ rows}) \times (\# \text{ columns})$$

 $oldsymbol{\bullet}$ $\mathbf{A}=(\mathbf{a_{ij}})_{\mathbf{m} imes \mathbf{n}}$ is the following m imes n matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Remark: We also use $(A)_{ij}$ to denote the (i,j)th entry of A.

Example 1

Determine the dimensions of the following matrices

$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 & 0 & -3 \end{bmatrix},$$

$$\begin{bmatrix} e & \pi & -\sqrt{2} \\ 0 & 0.1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \end{bmatrix}$$

Rows, columns, square matrices

A row matrix (or a row) = matrix with only one row.
 A column matrix (or a column) = matrix with only one column.

$$a = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Rows, columns, square matrices

A row matrix (or a row) = matrix with only one row.
 A column matrix (or a column) = matrix with only one column.

$$a = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

ullet A square matrix of order ${f n}$ has exactly n rows and n columns.

$$A = (a_{ij})_{n \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{mnn} \end{bmatrix}$$

Diagonal entries

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

- The diagonal entries of A are $a_{11}, a_{22}, \ldots, a_{nn}$.
- The **non-diagonal entries** of A are a_{ij} with $i \neq j$.

Diagonal matrices

• A diagonal matrix if has all non-diagonal entries equal 0.

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Diagonal matrices

• A diagonal matrix if has all non-diagonal entries equal 0.

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

• Example 2: Which of the following matrices are diagonal matrices?

$$\begin{bmatrix} 4 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & \pi & 0 \\ 0 & 0 & 0 & \sqrt{2} \end{bmatrix}$$

Identity matrix and zero matrix

ullet The identity matrix of order n, denoted by ${\bf I_n}$, is

$$I_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{n \times n}$$

Identity matrix and zero matrix

ullet The identity matrix of order n, denoted by ${\bf I_n}$, is

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{n \times n}$$

• The zero matrix $\mathbf{0_{m \times n}}$ has all entries equal to 0. Sometimes, we simply write 0 for the zero matrix if there is no danger of confusion.

$$0_{m \times n} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{m \times n}$$

Determinants in computing measures of geometric objects

Equal matrices

ullet Two matrices A and B are **equal** if and only if they have the **same size** and the **same corresponding entries**

Equal matrices

- ullet Two matrices A and B are equal if and only if they have the same size and the same corresponding entries
- ullet $A=(a_{ij})_{m imes n}$ and $B=(b_{ij})_{p imes q}$ are equal if and only if
 - 0 m=n, p=q and
 - $a_{ij} = b_{ij} \text{ for all } i, j$

Example 3

Consider the matrices

$$A = \begin{bmatrix} 2 & 1 \\ 3 & x \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 5 & 0 \end{bmatrix}$$

What can be the value of x such that A=B? B=C? A=C?

Algebraic operations on matrices

We will discuss three algebraic operations on matrices

- Matrix addition
- Scalar multiplication
- Matrix multiplication

Matrix addition and subtraction

• Let A and B be matrices of the same size, say

$$A = (a_{ij})_{m \times n}$$
 and $B = (b_{ij})_{m \times n}$

Matrix addition and subtraction

• Let A and B be matrices of the **same size**, say

$$A = (a_{ij})_{m \times n}$$
 and $B = (b_{ij})_{m \times n}$

• The sum A + B is defined by

$$(A+B)_{ij} = (A)_{ij} + (B)_{ij} = a_{ij} + b_{ij}$$

Matrix addition and subtraction

• Let A and B be matrices of the **same size**, say

$$A = (a_{ij})_{m \times n}$$
 and $B = (b_{ij})_{m \times n}$

• The sum A + B is defined by

$$(A+B)_{ij} = (A)_{ij} + (B)_{ij} = a_{ij} + b_{ij}$$

• The difference A-B is defined by

$$(A - B)_{ij} = (A)_{ij} - (B)_{ij} = a_{ij} - b_{ij}$$

Example 4

Consider the matrices

$$A = \begin{bmatrix} 2 & 1 & 0 & 3 \\ -1 & 0 & 2 & 4 \\ 4 & -2 & 7 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} -4 & 3 & 5 & 1 \\ 2 & 2 & 0 & -1 \\ 3 & 2 & -4 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

Find
$$A + B, A - B, A + C, A - C, B + C, B - C$$
.

Let A be an $m \times n$ matrix. What is $A + 0_{m \times n}$? What is A - A?

Scalar multiplication

- Let $A = (a_{ij})_{m \times n}$ and let c be any scalar
- The product cA, called **scalar multiple** of A, is defined by

$$(cA)_{ij} = ca_{ij},$$

that is

$$c \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \end{bmatrix}$$

Example 5

Find
$$2A$$
, $-3B$, $\frac{1}{3}C$

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 2 & 7 \\ -1 & 3 & -5 \end{bmatrix}, \quad C = \begin{bmatrix} 9 & -6 & 3 \\ 3 & 0 & 12 \end{bmatrix}$$

Properties of matrix addition and scalar multiplication

Theorem 1

Matrix addition and scalar multiplication have properties similar to normal addition and multiplication of real numbers.

Properties of matrix addition and scalar multiplication

Theorem 1

Matrix addition and scalar multiplication have properties similar to normal addition and multiplication of real numbers.

- (a) Matrix addition
 - Associativity: (M+N)+P=M+(N+P)
 - Commutativity: M + N = N + M
 - Zero matrix: M+0=0+M=M
- (b) Scalar multiplication: r(sM) = (rs)M and 1M = M
- (c) Distributive rules

$$(r+s)M = rM + sM$$
 and $r(M+N) = rM + rN$

Matrix multiplication

• $A=(a_{ij})_{m \times n}$ and $B=(b_{ij})_{p \times q}$ can be multiplied in the order AB only if

$$\#$$
 columns of $A=\#$ rows of B , that is, $n=p$

• The resulting matrix AB is an $m \times q$ matrix:

$$``(m\times n)\cdot (n\times q)=m\times q"$$

Matrix multiplication

- $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times q} \Rightarrow AB$ is an $m \times q$ matrix
- Its (i, j)th entry is

$$\begin{array}{lll} (AB)_{ij} &=& (i \mathrm{th} \ \mathrm{row} \ \mathrm{of} \ A) \times (j \mathrm{th} \ \mathrm{column} \ \mathrm{of} \ B) \\ \\ &=& \left[a_{i1} \quad a_{i2} \quad \cdots \quad a_{in} \right] \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} \\ \\ &=& a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum^n a_{ik}b_{kj} \end{array}$$

The symbol \sum

 \bullet \sum is used to denote the sum of a sequence of numbers. It is used for sums with *many terms* or with *unknown number of terms*.

The symbol \sum

- \(\sum_{\text{is used}} \) is used to denote the sum of a sequence of numbers. It is used for sums with many terms or with unknown number of terms.
- Examples

$$\sum_{i=1}^{10} a_i = a_1 + a_2 + \dots + a_{10},$$

$$\sum_{x=1}^{\infty} f(x) = f(1) + f(2) + \dots + f(x) + \dots$$

$$\sum_{x=1}^{n} c_{ik} d_{kj} = c_{i1} d_{1j} + c_{i2} d_{2j} + \dots + c_{in} d_{nj}.$$

Summary on matrix multiplication

- If $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{n \times q}$, then AB has size $m \times q$.
- Its (i, j)th entry is

$$(AB)_{ij} =$$
 (ith row of A)× (jth column of B)= $\sum_{k=1}^{n} a_{ik} b_{kj}$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} =$$

Example 7

Let
$$A = (a_{ij})_{2\times 3}$$
 and $B = (b_{ij})_{3\times 4}$.

- (a) What is the size of AB?
- (b) Find the general formula for $(AB)_{13}$ and $(AB)_{24}$.

Does matrix product behave like the usual multiplication of numbers? Guess the answer for the following

• Is there a special matrix 1 so that A1 = A for any matrix A?

- Is there a special matrix 1 so that A1 = A for any matrix A?
- Is A0 = 0, where 0 is the zero matrix, for any matrix A?

- Is there a special matrix 1 so that A1 = A for any matrix A?
- Is A0 = 0, where 0 is the zero matrix, for any matrix A?
- Is matrix multiplication commutative, say AB = BA for any A, B?

- Is there a special matrix 1 so that A1 = A for any matrix A?
- Is A0 = 0, where 0 is the zero matrix, for any matrix A?
- Is matrix multiplication commutative, say AB = BA for any A, B?
- Is matrix multiplication associative, say (AB)C = A(BC)?

- Is there a special matrix 1 so that A1 = A for any matrix A?
- Is A0 = 0, where 0 is the zero matrix, for any matrix A?
- Is matrix multiplication commutative, say AB = BA for any A, B?
- Is matrix multiplication associative, say (AB)C = A(BC)?
- Is matrix multiplication is distributive, say

$$(A+B)C = AC + BC$$
, and $A(B+C) = AB + AC$?

Question 2

Does matrix product behave like the usual multiplication of numbers? Guess the answer for the following

- Is there a special matrix 1 so that A1 = A for any matrix A?
- Is A0 = 0, where 0 is the zero matrix, for any matrix A?
- Is matrix multiplication commutative, say AB = BA for any A, B?
- Is matrix multiplication associative, say (AB)C = A(BC)?
- Is matrix multiplication is distributive, say

$$(A+B)C = AC + BC$$
, and $A(B+C) = AB + AC$?

• Does AB = 0 implies either A = 0 or B = 0?

While most questions have answer yes, there are cases where matrix multiplication is different from the usual multiplication of numbers.

Exercise 1. Find an example of 2 matrices $A, B \in M_{2 \times 2}(\mathbb{R})$ such that

$$AB \neq BA$$
.

In other words, matrix multiplication is not commutative.

Exercise 2

(a) Find an example of 2 nonzero matrices $A,B\in M_{2\times 2}(\mathbb{R})$ such that

$$AB = 0.$$

Exercise 2

(b) Find an example of 3 nonzero matrices $A,B,C\in M_{2\times 2}(\mathbb{R})$ such that

$$AB=AC\text{, but }B\neq C.$$

Summary of exercises 1,2

Matrix multiplication is **not commutative** and **doesn't allow cancellation law**. In general, we have

Summary of exercises 1,2

Matrix multiplication is **not commutative** and **doesn't allow cancellation law**. In general, we have

- $AB \neq BA$
- $\bullet \ AB = 0 \not\Rightarrow A = 0 \text{ or } B = 0$
- $AB = AC \not\Rightarrow B = C$

Properties of matrix multiplication

Theorem 2

Let A,B,C be three matrices so that whenever we write the product of any two of them, it is well-defined. The following hold.

- (i) Identity matrix I: AI = A.
- (ii) Zero matrix 0: A0 = 0.
- (iii) Associativity: (AB)C = A(BC).
- (iv) Distributivity:

$$A(B+C) = AB + AC$$
 and $(A+B)C = AC + BC$.

Transpose of a matrix

- Let A be an $m \times n$ matrix.
- The **transpose** of A, denoted by A^T , is an $n \times m$ matrix that is obtained by interchanging the rows and columns of A.

$$(A^T)_{ij} = (A)_{ji}$$

Transpose of a matrix

- Let A be an $m \times n$ matrix.
- The **transpose** of A, denoted by A^T , is an $n \times m$ matrix that is obtained by interchanging the rows and columns of A.

$$(A^T)_{ij} = (A)_{ji}$$

Here is the general formula

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n} \Rightarrow A^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}_{n \times m}$$

Example 8

Given the following matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 5 & 6 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 4 \end{bmatrix}$$

(a) Find
$$A^T, B^T, C^T, D^T$$
.

(b) Find
$$(A^T)^T, (B^T)^T, (C^T)^T, (D^T)^T$$
.

Determinant as a function on matrices

• **Determinant** is a function "det" which takes input as square matrices and gives outputs as real numbers.

 $\det: \{ \text{square matrices} \} \to \mathbb{R}.$

Determinant as a function on matrices

• **Determinant** is a function "det" which takes input as square matrices and gives outputs as real numbers.

$$\det: \{ \text{square matrices} \} \to \mathbb{R}.$$

ullet For any square matrix A, $\det(A)$ is a real number. Sometimes, we use notation

$$\det(A) = |A|$$

Determinant as a function on matrices

• **Determinant** is a function "det" which takes input as square matrices and gives outputs as real numbers.

$$\det$$
 : {square matrices} $\to \mathbb{R}$.

ullet For any square matrix A, $\det(A)$ is a real number. Sometimes, we use notation

$$\det(A) = |A|$$

• In this course, we focus on 2×2 and 3×3 matrices.

Determinant of 1×1 and 2×2 matrices

• For 1×1 matrices, determinant is a "trivial function".

$$\det([c]) = c.$$

• For 2×2 matrices

$$\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = (\text{main diagonal}) - (\text{anti diagonal}) = ad - bc.$$

Determinant of 3×3 matrices

• For $A = (a_{ij})_{3\times 3}$, the **main diagonals** of A includes the *usual main diagonal* $a_{11} - a_{22} - a_{33}$ and *another two* which are parallel to it.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \text{ main diagonals } \underbrace{a_{11}a_{22}a_{33}, \ a_{12}a_{23}a_{31}, \ a_{21}a_{32}a_{13}}_{\text{also}}$$

Determinant of 3×3 matrices

• For $A=(a_{ij})_{3\times 3}$, the **main diagonals** of A includes the *usual main diagonal* $a_{11}-a_{22}-a_{33}$ and *another two* which are parallel to it.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \text{ main diagonals } \underbrace{a_{11}a_{22}a_{33}, \ a_{12}a_{23}a_{31}, \ a_{21}a_{32}a_{13}}_{\text{also}}$$

• The **anti diagonals** of A includes the *usual anti diagonal* $a_{13} - a_{22} - a_{31}$ and *another two* which are parallel to it.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \text{ anti diagonals } a_{13}a_{22}a_{31}, \ a_{12}a_{21}a_{33}, \ a_{23}a_{32}a_{11}$$

Determinant of 3×3 matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\det(A) = (\text{main diagonals}) - (\text{anti diagonals})$$

$$= (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13}) -$$

$$(a_{13}a_{22}a_{31} + a_{12}a_{21}a_{33} + a_{23}a_{32}a_{11})$$

Example 9

Find the determinants of
$$A = \begin{bmatrix} 1 & -1 & 5 \\ 2 & 7 & 0 \\ -5 & -3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 0 & -7 \\ 5 & 3 & 1 \end{bmatrix}$.

Determinant by row/column expansion

$$\bullet \ \, \text{Consider the } 3\times 3 \,\, \text{matrix} \,\, A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Determinant by row/column expansion

- ullet Consider the 3 imes 3 matrix $A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$
- Determinant of A by row expansion along the 1st row:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Determinant by row/column expansion

$$ullet$$
 Consider the $3 imes 3$ matrix $A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$

ullet Determinant of A by column expansion along the 1st column:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

Example 10

Compute
$$\det \begin{pmatrix} 10 & 0 & 5 \\ 1 & 2 & 1 \\ 5 & -1 & 3 \end{pmatrix}$$

Summary on determinants of 2×2 and 3×3 matrices

If
$$A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 or $A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, then

 $\det(A) =$ (main diagonal) - (anti-diagonal)

Triangular matrices

• $A = (a_{ij})_{n \times n}$ is an **upper triangular matrix** if all entries below the main diagonal are equal to 0

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix}$$

Triangular matrices

• $A = (a_{ij})_{n \times n}$ is an **upper triangular matrix** if all entries below the main diagonal are equal to 0

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix}$$

• A is a **lower triangular matrix** if all entries above the main diagonal are equal to 0

$$A = \begin{pmatrix} a_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

Triangular matrices

• $A = (a_{ij})_{n \times n}$ is an **upper triangular matrix** if all entries below the main diagonal are equal to 0

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix}$$

• A is a **lower triangular matrix** if all entries above the main diagonal are equal to 0

$$A = \begin{pmatrix} a_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

 A is a triangular matrix if it is either an upper triangular matrix or a lower triangular matrix.

2×2 triangular matrices

Find
$$\det \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$$
 and $\det \begin{pmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{pmatrix}$

3×3 triangular matrices

Find
$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$$
 and $\det \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$

Determinant of triangular matrices

Theorem 3

If $A = (a_{ij})_{n \times n}$ is a triangular matrix (upper triangular or lower triangular), say

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix} \quad \text{or} \quad A = \begin{pmatrix} a_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix},$$

then

 $\det(A) = \text{product of diagonal entries} = a_{11}a_{22} \cdots a_{nn}$

Parallelogram and parallelepiped

 A parallelogram can be formed by 2 vectors $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \vec{v}$ $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$

 A parallelepiped can be formed by 3 vectors

Area of parallelogram and volume of parallelepiped

Theorem 4

(a) The area of the parallelogram spanned by $\vec{u}=\begin{bmatrix}u_1\\u_2\end{bmatrix}$ and $\vec{v}=\begin{bmatrix}v_1\\v_2\end{bmatrix}$ is

$$\left| \det \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} \right|$$

(b) The volume of the parallelepiped spanned by

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}, \vec{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \text{ is } \det \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}.$$

Example 11

(a) Find the area of the parallelogram spanned by $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$

(b) Find the volume of the parallelepiped spanned by

$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \vec{v} = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix} \text{ and } \vec{w} = \begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix}$$

Remark on Theorem 4

• The formula to compute area of parallelogram formed by \vec{u}, \vec{v} is only applied for $\vec{u}, \vec{v} \in \mathbb{R}^2$:

$$\mathsf{Area} = \det[\vec{u} \ \vec{v}]$$

• What happens if you use this formula for $\vec{u}, \vec{v} \in \mathbb{R}^3$? What formula do you need to use to compute area of parallelogram formed by 2 vectors in \mathbb{R}^3 ?

Remark on Theorem 4

Exercise 4

Consider 2 vectors
$$\vec{u} = \begin{bmatrix} c-3 \\ -3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 3 \\ c+1 \end{bmatrix}$ in \mathbb{R}^2 .

- (a) Compute the parallelogram formed by \vec{u}, \vec{v} in terms of c?
- (b) For what value of c does the parallelogram formed by \vec{u}, \vec{v} has the smallest possible area?