

MIGS: Multi-Identity Gaussian Splatting via Tensor Decomposition

Aggelina Chatziagapi, Grigorios G. Chrysos, Dimitris Samaras

Motivation

- ✓ Unified multi-identity neural representation of human avatars
- ✓ Robust animation under novel poses, out of the training distribution
- ✓ Significant decrease in the total number of learnable parameters

Single-Identity Models (Standard)

Multi-Identity Model (Ours)

Standard approaches learn multiple single-identity representations. We learn a *single* representation for *multiple* identities from monocular videos.

Method

Tensor ${oldsymbol{\mathcal{W}}}$

Multi-Identity Representation with 3D Gaussian Splatting

CP Decomposition

For each identity i, we learn a set of 3D Gaussians $\{G^{(i,g)}\}_{g=1}^{N_g}$. Each Gaussian is associated with a position $\boldsymbol{\mu}^{(i,g)} \in \mathbb{R}^3$, a scaling vector $\boldsymbol{s}^{(i,g)} \in \mathbb{R}^3$, a quartenion $\boldsymbol{q}^{(i,g)} \in \mathbb{R}^4$, a feature vector $\boldsymbol{f}^{(i,g)} \in \mathbb{R}^{32}$, and an opacity $\alpha^{(i,g)} \in \mathbb{R}$. Given N_i identities, we construct a tensor:

Multi-Identity Training

$$oldsymbol{\mathcal{W}} \in \mathbb{R}^{N_i imes N_g imes M}, ext{where } oldsymbol{w}_{i,g,:} = \left[oldsymbol{\mu}^{(i,g)}; oldsymbol{s}^{(i,g)}; oldsymbol{q}^{(i,g)}; oldsymbol{f}^{(i,g)}; oldsymbol{\alpha}^{(i,g)}; oldsymbol{a}^{(i,g)}; oldsymbol{a}^{(i,g)}; oldsymbol{s}^{(i,g)}; oldsymbol{a}^{(i,g)}; oldsymbol{a}^{(i,g)};$$

We assume a low-rank structure and learn a **CP Tensor Decomposition** [1] with rank R:

$$m{W}_{(2)}pprox m{U}_3 \left(m{U}_2\odotm{U}_1
ight)^T$$
 , where $m{W}_{(2)}\in\mathbb{R}^{N_g imes(N_iM)}$

Learnable parameters: $U_1 \in \mathbb{R}^{M \times R}$, $U_2 \in \mathbb{R}^{N_i \times R}$, $U_3 \in \mathbb{R}^{N_g \times R}$ i.e., $(M + N_i + N_g)R$ parameters instead of $M N_i N_g$.

For $N_i = 30$, $N_g = 5 \times 10^4$, M = 43, R = 100, MIGS learns 5×10^6 instead of 6.5×10^7 parameters, leading to a decrease by at least one order of magnitude.

References

- [1] Kolda, T.G. and Bader, B.W., Tensor decompositions and applications, SIAM Review, 2009
- [2] Qian, Z. et al., 3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting, CVPR, 2024

Animation under Novel Poses

Novel Identity

Ablation Study on Rank R and N_i

