

Résumé du cours d'analyse de Sup et Spé

Réalisé par :

Fathi Ismail

"Make studying easy with EASIER"

Contents

0.1	Topolo	ogie	2
	0.1.1	Normes, normes équivalentes	2
	0.1.2	Voisinage	2
	0.1.3	Ouverts, intérieur	2
	0.1.4	Fermés, adhérence	3
	0.1.5	Compacte	3
0.2	Foncti	ons	3
	0.2.1	Fonctions continues	3
	0.2.2	Fonctions lipschitziennes	4
	0.2.3	Fonctions différentiables	4
	0.2.4		4
	0.2.5	Fonctions convexes	6
0.3	Intégr	ation	6
0.4	Séries	numériques	7
0.5	Suites	et séries de fonctions	8
	0.5.1	Suites de fonctions	8
	0.5.2	Séries de fonctions	9
0.6	Séries	entières	11
	0.6.1	Définitions et Théorèmes	11
0.7	Intégr	ales dépendant d'un paramètre	11
	0.7.1	Théorème de passage à la limite sous le signe somme	11
	0.7.2	Théorème de continuité d'une intégrale à paramètres	12
	0.7.3	Théorème de dérivation sous le signe somme (ou théorème de Leibniz)	12
	0.7.4	Théorème de dérivation sous le signe somme généralisé	12
	0.7.5	Étude de la fonction Γ	13
0.8	Équat	ions Différentielles	13
	0.8.1	Théorèmes de Cauchy	13
	0.8.2	Étude d'un Exemple	
0.9	Équiva	alences Usuelles	

0.1 Topologie

0.1.1 Normes, normes équivalentes

Une norme sur le K-espace vectoriel E est une application N de E dans \mathbb{R} vérifiant :

- $\forall x \in E, N(x) > 0$ (positivité)
- $\forall x \in E, (N(x) = 0) \Rightarrow x = 0$ (axiome de séparation)
- $\forall x \in E, \forall \lambda \in K, N(\lambda x) = |\lambda| N(x)$ (homogénéité)
- $\forall (x,y) \in E^2, N(x+y) \leq N(x) + N(y)$ (inégalité triangulaire)

Les normes N et N' sont équivalentes si et seulement s'il existe deux réels strictement positifs α et β tels que :

$$\forall x \in E, \quad \alpha N(x) \le N'(x) \le \beta N(x)$$

Théorème. Si E est de dimension finie sur K, toutes les normes sont équivalentes.

0.1.2 Voisinage

Soit $x \in E$. Un voisinage de x est une partie de l'espace vectoriel normé (E, N) qui contient une boule ouverte non vide de centre x. L'ensemble des voisinages de x se note V(x).

$$V(x) = \{ V \subset E \mid \exists r > 0, B(x, r) \subseteq V \}$$

Théorème. Une réunion quelconque de voisinages de x est un voisinage de x. Une intersection finie de voisinages de x est un voisinage de x.

0.1.3 Ouverts, intérieur

Ouvert. Un ouvert de l'espace vectoriel normé (E, N) est soit \emptyset , soit une partie non vide de E voisinage de chacun de ses points. Si O est une partie non vide de E, alors O est ouvert si :

$$\forall x \in O, \quad \exists r > 0 \text{ tel que } B(x,r) \subset O$$

Théorème. Une réunion quelconque d'ouverts est un ouvert. Une intersection finie d'ouverts est un ouvert.

Intérieur. Un élément x de $A \neq \emptyset$ est intérieur à A si et seulement si A est voisinage de x.

$$\mathring{A} = \{ x \in A \mid A \in V(x) \}$$

Théorème. \mathring{A} est le plus grand ouvert contenu dans A.

Théorème. A est ouvert si et seulement si $A = \mathring{A}$.

0.1.4 Fermés, adhérence

Fermé. A est fermé si et seulement si le complémentaire de A est ouvert.

$$\overline{A} = E \setminus A^{\complement}$$

Théorème. Une intersection quelconque de fermés est un fermé. Une réunion finie de fermés est un fermé.

Théorème (caractérisation séquentielle des fermés). Une partie non vide A est fermée si et seulement si toute suite convergente d'éléments de A converge dans A.

Adhérence. Un élément x de E est dans l'adhérence de A si toute boule ouverte centrée en x contient un point de A. L'adhérence de A est l'ensemble des points adhérents à A, notée \overline{A} .

$$\overline{A} = \{ x \in E \mid \forall r > 0, B(x, r) \cap A \neq \emptyset \}$$

Théorème. \overline{A} est le plus petit fermé contenant A. **Théorème.** A est fermé si et seulement si $A = \overline{A}$.

0.1.5 Compacte

Une partie K de l'espace vectoriel normé (E, N) est dite compacte si toute suite (x_n) d'éléments de K admet une sous-suite $(x_{\phi(n)})$ convergente vers un élément de K.

K est compacte \iff toute suite $(x_n) \in K$ admet une sous-suite convergente dans K

Théorème. Dans un espace de dimension finie, une partie K est compacte si et seulement si elle est fermée et bornée.

K compacte $\iff K$ fermée et bornée (en dimension finie)

Théorème (Borel-Lebesgue). Si K est une partie d'un espace vectoriel normé de dimension finie (E, N), alors K est compacte si et seulement si elle est fermée et bornée.

Théorème (Bolzano-Weierstrass). Dans un espace vectoriel normé de dimension finie (E, N), de toute suite bornée, on peut extraire une sous-suite convergente.

0.2 Fonctions

0.2.1 Fonctions continues

Soit $f: E \to F$, où E et F sont des espaces vectoriels normés. On dit que f est continue en un point $x_0 \in E$ si :

$$\forall \epsilon > 0, \exists \delta > 0 \text{ tel que } \forall x \in E, \quad N(x - x_0) < \delta \Rightarrow M(f(x) - f(x_0)) < \epsilon$$

Théorème. Une fonction continue sur un compact est uniformément continue.

Si f est continue sur K compact, alors f est uniformément continue sur K.

Propriété. Si f et g sont continues et si $\alpha \in \mathbb{R}$, alors $\alpha f + g$ est continue.

Si f, g continues et $\alpha \in \mathbb{R}$, alors $\alpha f + g$ est continue.

Propriété. La composée de fonctions continues est continue.

Si $f: E \to F$ et $g: F \to G$ sont continues, alors $g \circ f$ est continue.

0.2.2 Fonctions lipschitziennes

Une fonction $f: E \to F$ est dite lipschitzienne s'il existe une constante L > 0 telle que :

$$\forall (x,y) \in E^2, \quad M(f(x) - f(y)) \le LN(x - y)$$

Théorème. Toute fonction lipschitzienne est uniformément continue.

Si f est lipschitzienne, alors f est uniformément continue.

Propriété. La composée de deux fonctions lipschitziennes est lipschitzienne.

Si f et g sont lipschitziennes, alors $g \circ f$ est lipschitzienne.

0.2.3 Fonctions différentiables

0.2.4

Fonctions lipschitziennes Soit $f: E \to F$. On dit que f est différentiable en un point x_0 si :

$$\exists L \in \mathcal{L}(E, F) \text{ tel que } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{N(h)} = 0$$

Théorème. Si f est différentiable en x_0 , alors f est continue en x_0 .

Si f est différentiable en x_0 , alors f est continue en x_0 .

Propriété. La dérivée de la somme de deux fonctions est la somme de leurs dérivées.

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

Propriété. La dérivée de la composée de deux fonctions est le produit des dérivées.

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

Théorème de Rolle.

Si f est continue sur [a, b] et différentiable sur [a, b], avec f(a) = f(b), alors $\exists c \in]a, b[$ tel que f'(c) = 0.

Théorème des Accroissements Finis (TAF).

Si f est continue sur [a, b] et différentiable sur]a, b[, alors $\exists c \in]a, b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Inégalité des Accroissements Finis (IAF).

Si f est continue sur [a, b] et différentiable sur [a, b], alors pour tout $x, y \in [a, b]$, $|f(x) - f(y)| \le M \cdot |x - y|$,

où
$$M = \sup_{c \in [a,b[} |f'(c)|.$$

Théorème de Leibniz - Dérivée n-ième .

Soient u(x) et v(x) deux fonctions de classe C^n sur un intervalle I de \mathbb{R} . Alors, la dérivée n-ième du produit de u(x) et v(x) est donnée par la formule suivante :

$$\frac{d^n}{dx^n} \left[u(x)v(x) \right] = \sum_{k=0}^n \binom{n}{k} \frac{d^k}{dx^k} u(x) \cdot \frac{d^{n-k}}{dx^{n-k}} v(x)$$

où $\binom{n}{k}$ est le coefficient binomial, défini par :

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Formule de Taylor-Laplace. Soit f une application définie sur un intervalle $I \subset \mathbb{R}$ à valeurs dans \mathbb{R} ou \mathbb{C} , de classe C^{n+1} sur I. Alors, pour tout $(a,b) \in I^2$, on a :

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt$$

Inégalité de Taylor-Lagrange. Soit f une application définie sur un intervalle $I \subset \mathbb{R}$ à valeurs dans \mathbb{R} ou \mathbb{C} , n+1 fois dérivable sur I. On suppose que $|f^{(n+1)}|$ est majorée par le réel M_{n+1} sur I. Alors, pour tout $(a,b) \in I^2$, on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right| \le \frac{M_{n+1}}{(n+1)!} |b-a|^{n+1}$$

0.2.5 Fonctions convexes

Une fonction $f: E \to \mathbb{R}$ est dite convexe si :

$$\forall (x,y) \in E^2, \forall \lambda \in [0,1], \quad f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

Théorème de Jensen. Si f est convexe, alors pour toute famille finie $(x_i)_{1 \le i \le n}$ d'éléments de E et toute famille $(\lambda_i)_{1 \le i \le n}$ de réels positifs tels que $\sum_{i=1}^n \lambda_i = 1$:

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

Propriété. La somme de deux fonctions convexes est convexe.

Si f et g sont convexes, alors f+g est convexe.

Propriété. Si f est convexe et affine, alors f est convexe.

Si f est affine, alors f est convexe.

Théorème. Une fonction convexe est continue sur l'intérieur de son domaine de définition.

Si f est convexe, alors f est continue sur Int(D(f)).

0.3 Intégration

Théorème. (Théorème fondamental de l'analyse)

Si F est une primitive de f sur un intervalle [a,b], alors $\int_a^b f(x) dx = F(b) - F(a)$.

Propriété. Linéarité de l'intégrale.

Pour toutes fonctions f et g intégrables sur [a,b] et tout $\alpha \in \mathbb{R}$, $\int_a^b (\alpha f(x) + g(x)) dx = \alpha \int_a^b f(x) dx + \int_a^b g(x) dx$.

Propriété. Intégrale d'une fonction continue.

Soit f une fonction continue sur un intervalle $I \subset \mathbb{R}$ à valeurs dans \mathbb{R} ou \mathbb{C} . Alors, pour tout x_0 de I, la fonction

$$F: x \mapsto \int_{x_0}^x f(t) dt$$

est de classe C^1 sur I et $\forall x \in I$, F'(x) = f(x).

Critère	Description
Critère de comparaison	Si $f(x) \ge g(x) \ge 0$ pour x grand et $\int_a^\infty f(x) dx$
	converge, alors $\int_a^\infty g(x) dx$ converge aussi.
Critère asymptotique	Si $f(x) \sim g(x)$, alors les intégrales $\int_a^\infty f(x) dx$ et
	$\int_a^\infty g(x) dx$ convergent ou divergent ensemble.
Intégrale de comparaison	Comparez $\int_a^\infty f(x) dx$ avec $\int_a^\infty g(x) dx$ pour une
	fonction g connue en termes de convergence ou
	divergence.
Test de l'intégrale	Si $\int_a^\infty f(x) dx$ converge, alors la série $\sum_{n=a}^\infty f(n)$
	converge aussi (et vice versa pour la divergence).

Table 1: Critères de convergence des intégrales

0.4 Séries numériques

Règle de d'Alembert. Soit (u_n) une suite complexe, ne s'annulant pas à partir d'un certain rang telle que

Produit de Cauchy de deux séries absolument convergentes. Si les séries de termes généraux u_n et v_n sont absolument convergentes, alors la série de terme général

$$w_n = \sum_{k=0}^n u_k v_{n-k}$$

converge et dans ce cas,

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

Critère spécial aux séries alternées (ou théorème de Leibniz). Soit (u_n) une suite réelle alternée en signe, dont la valeur absolue tend vers 0 en décroissant. Alors, la série de terme général u_n converge. De plus, S, S_n et R_n sont du signe de leur premier terme et leur valeur absolue est majorée par la valeur absolue de leur premier terme.

Théorème (séries télescopiques). Soit (a_n) une suite complexe. La suite (a_n) et la série de terme général $a_{n+1} - a_n$ sont de même nature.

Comparaison séries-intégrales. Si f est une fonction continue par morceaux sur $[0, +\infty[$, à valeurs réelles positives décroissantes, la série de terme général

converge. En particulier, la série de terme général converge si et seulement si est intégrable sur $[0, +\infty[$. lorsque $n \to +\infty$.

• Si la série de terme général converge, alors la série de terme général converge et

(règle de l'équivalence des restes de séries à termes positifs convergentes).

• Si la série de terme général diverge, alors la série de terme général diverge et

(règle de l'équivalence des sommes partielles de séries à termes positifs divergentes).

Théorème (sommation des relations de comparaison). Soient (a_n) et (b_n) deux suites réelles strictement positives telles que

Théorème de Fubini. Soit $(u_{i,j})$ une suite complexe double. Si pour tout i, la série de terme général est absolument convergente et que

$$\sum_{i=0}^{+\infty} \left(\sum_{j=0}^{+\infty} |u_{i,j}| \right) < +\infty,$$

alors la suite $(u_{i,j})$ est sommable et de plus,

$$\sum_{i=0}^{+\infty} \left(\sum_{j=0}^{+\infty} u_{i,j} \right) = \sum_{j=0}^{+\infty} \left(\sum_{i=0}^{+\infty} u_{i,j} \right).$$

•Critère de comparaison : Si $\sum a_n$ et $\sum b_n$ sont des séries de termes positifs avec $a_n \leq b_n$ pour n suffisamment grand, alors si $\sum b_n$ converge, $\sum a_n$ converge aussi.

Critère de comparaison asymptotique : Si $a_n \sim b_n$ (c'est-à-dire $\frac{a_n}{b_n} \to 1$ lorsque $n \to \infty$), alors $\sum a_n$ et $\sum b_n$ convergent ou divergent ensemble.

Critère du rapport : Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$, avec L < 1, alors $\sum a_n$ converge. Si L > 1, la série diverge. Si L = 1, le critère est inconclusif.

Critère de la racine : Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$, avec L < 1, alors $\sum a_n$ converge. Si L > 1, la série diverge. Si L = 1, le critère est inconclusif.

0.5 Suites et séries de fonctions

0.5.1 Suites de fonctions

1) Convergence simple, uniforme

- La suite de fonctions (f_n) converge simplement sur D vers f si et seulement si, pour chaque x de D, la suite $(f_n(x))$ converge vers f(x).
- La suite de fonctions (f_n) converge uniformément vers f sur D si et seulement si la suite $(\|f f_n\|_{\infty})$ est définie à partir d'un certain rang et tend vers 0 quand n tend vers $+\infty$.

2) Interversion des limites

Théorème d'interversion des limites. Soit a adhérent à D (réel, infini, . . .). Si chaque f_n a une limite ℓ_n (réelle, complexe) quand x tend vers a et si (f_n) converge uniformément vers f sur D, alors :

- f a une limite quand x tend vers a;
- la suite (ℓ_n) converge;
- $\lim_{x\to a} f(x) = \lim_{n\to +\infty} \ell_n$ (c'est-à-dire $\lim_{x\to a} (\lim_{n\to +\infty} f_n(x))$) = $\lim_{n\to +\infty} (\lim_{x\to a} f_n(x))$).

3) Continuité

Théorème. Si (f_n) converge uniformément vers f sur D et si chaque f_n est continue sur D, alors f est continue sur D (une limite uniforme de fonctions continues est continue).

4) Dérivation

Théorème. Si

- (f_n) converge simplement vers f sur D;
- chaque f_n est dérivable sur D;
- la suite des dérivées (f'_n) converge uniformément sur D (vers sa limite).

Alors, f est dérivable sur D et $f' = \lim_{n \to +\infty} f'_n$ (c'est-à-dire $\frac{d}{dx} (\lim_{n \to +\infty} f_n) = \lim_{n \to +\infty} \left(\frac{d}{dx} f_n \right)$).

Théorème (généralisation). Si

- (f_n) converge simplement vers f sur D;
- chaque f_n est de classe C^p , $1 \le p \le +\infty$ sur D;
- les suites des dérivées $(f_n^{(k)})$, $1 \le k \le p$, convergent toutes uniformément sur D (vers leur limite).

Alors, f est de classe C^p sur D et $\forall k \in \{1, \dots, p\}, f^{(k)} = \lim_{n \to +\infty} f_n^{(k)}$.

5) Intégration

Théorème (convergence uniforme sur un segment). Si chaque f_n est continue par morceaux sur le segment [a,b] et si la suite (f_n) converge uniformément vers f sur [a,b], alors :

- f est continue par morceaux sur [a, b];
- la suite $\int_a^b f_n(x) dx$ converge;
- $\int_a^b f(x) dx = \lim_{n \to +\infty} \int_a^b f_n(x) dx$ (c'est-à-dire $\int_a^b \lim_{n \to +\infty} f_n(x) dx = \lim_{n \to +\infty} \int_a^b f_n(x) dx$).

Théorème de convergence dominée. Soit (f_n) une suite de fonctions continues par morceaux sur un intervalle quelconque I de \mathbb{R} à valeurs dans \mathbb{R} ou \mathbb{C} . Si la suite (f_n) converge simplement vers une fonction f continue par morceaux sur I et s'il existe une fonction ϕ continue par morceaux, positive et intégrable sur I telle que $\forall n \in \mathbb{N}, |f_n| \leq \phi$ (hypothèse de domination), alors f est intégrable sur I et

$$\int_{I} f(x) dx = \lim_{n \to +\infty} \int_{I} f_n(x) dx.$$

0.5.2 Séries de fonctions

- 1) Convergence simple, uniforme, absolue, normale
 - 2) Interversion des limites

Théorème d'interversion des limites. Soit a adhérent à D (réel, infini, ...). Si chaque f_n a une limite ℓ_n quand x tend vers a et si la série de fonctions de terme général f_n converge uniformément vers S sur D, alors :

- S a une limite quand x tend vers a;
- la série numérique de terme général ℓ_n converge ;

• $\lim_{x\to a} S(x) = \sum_{n=0}^{+\infty} \ell_n$.

3) Continuité

Théorème. Si la série de fonctions de terme général f_n converge uniformément vers S sur D et si chaque f_n est continue sur D, alors S est continue sur D.

4) Dérivation terme à terme

Théorème de dérivation terme à terme. Si

- la série de fonctions de terme général f_n converge simplement vers S sur D,
- chaque f_n est dérivable sur D,
- la série de fonctions de terme général f'_n converge uniformément sur D,

alors, S est dérivable sur D et $S' = \sum_{n=0}^{+\infty} f'_n$.

Théorème (généralisation). Si

- la série de fonctions de terme général f_n converge simplement vers S sur D,
- chaque f_n est de classe C^p , $1 \le p \le +\infty$ sur D,
- les séries de termes généraux $(f_n^{(k)})$, $1 \le k \le p$, convergent toutes uniformément sur D,

alors, S est de classe C^p sur D et $\forall k \in \{1, \dots, p\}, S^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$.

5) Intégration terme à terme

Théorème d'intégration terme à terme sur un segment. Si chaque f_n est continue par morceaux sur le segment [a,b] et si la série de terme général f_n converge uniformément vers S sur [a,b], alors :

- S est continue par morceaux sur [a, b];
- la série de terme général $\int_a^b f_n(x) dx$ converge;
- $\int_a^b S(x) dx = \sum_{n=0}^{+\infty} \int_a^b f_n(x) dx$.

Théorème d'intégration terme à terme. Si chaque f_n est continue par morceaux et intégrable sur I, si la série de terme général f_n converge simplement vers une fonction S continue par morceaux sur I et si $\sum_{n=0}^{+\infty} \int_I |f_n| < +\infty$, alors S est intégrable sur I et

$$\int_{I} S(x) dx = \sum_{n=0}^{+\infty} \int_{I} f_n(x) dx.$$

10

0.6 Séries entières

0.6.1 Définitions et Théorèmes

1) Rayon de convergence

2) Convergence normale

Théorème. La série

$$\sum a_n x^n$$

converge normalement sur tout [-r, r] (resp. tout disque fermé de rayon r) où $r \in R_a$.

Théorème. La somme d'une série entière est de classe \mathcal{C}^{∞} sur son intervalle ouvert de convergence, et les dérivées successives s'obtiennent par dérivation terme à terme. Idem pour la primitive par intégration terme à terme. Les différents rayons de convergence considérés sont égaux.

Théorème. Si pour tout $x \in]-R_a, R_a[$, on a

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n,$$

alors, pour tout $n \in \mathbb{N}$, les coefficients a_n sont donnés par

$$a_n = \frac{f^{(n)}(0)}{n!}.$$

0.7 Intégrales dépendant d'un paramètre

Soit I une partie de \mathbb{R} et J un intervalle quelconque de \mathbb{R} . Considérons la fonction $f:I\times J\to K$, où $K=\mathbb{R}$ ou $K=\mathbb{C}$, définie par $(x,t)\mapsto f(x,t)$. Pour $x\in I$, on définit la fonction F(x) par

$$F(x) = \int_{I} f(x, t) dt.$$

11

0.7.1 Théorème de passage à la limite sous le signe somme

Théorème. Soit a adhérent à D. Si

- pour tout x de I, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur J,
- pour tout t de J, la fonction $x \mapsto f(x,t)$ a une limite $\ell(t)$ quand x tend vers a, où ℓ est une fonction continue par morceaux sur J,
- il existe une fonction φ continue par morceaux, positive et intégrable sur J telle que, pour tout $(x,t) \in I \times J, |f(x,t)| \leq \varphi(t)$.

Alors.

- la fonction F a une limite quand x tend vers a,
- la fonction ℓ est intégrable sur J,
- $\lim_{x\to a} F(x) = \int_I \ell(t) dt$ (c'est-à-dire $\lim_{x\to a} \int_I f(x,t) dt = \int_I (\lim_{x\to a} f(x,t)) dt$).

0.7.2 Théorème de continuité d'une intégrale à paramètres

Théorème. Si

- pour tout x de I, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur J,
- pour tout t de J, la fonction $x \mapsto f(x,t)$ est continue sur I,
- il existe une fonction φ continue par morceaux, positive et intégrable sur J telle que, pour tout $(x,t) \in I \times J, |f(x,t)| \leq \varphi(t)$.

Alors, la fonction F est définie et continue sur I.

0.7.3 Théorème de dérivation sous le signe somme (ou théorème de Leibniz)

Théorème. Si

- pour tout x de I, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur J et intégrable sur I,
- la fonction f admet une dérivée partielle $\frac{\partial f}{\partial x}$ vérifiant les hypothèses du théorème précédent, c'est-à-dire
 - pour tout x de I, la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur J,
 - pour tout t de J, la fonction $x \mapsto \frac{\partial f}{\partial x} f(x,t)$ est continue sur I,
 - il existe une fonction φ continue par morceaux, positive et intégrable sur J telle que, pour tout $(x,t) \in I \times J$, $\left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi(t)$.

Alors, la fonction F est de classe C^1 sur I et pour tout $x \in I$, $F'(x) = \int_J \frac{\partial f}{\partial x}(x,t) dt$.

0.7.4 Théorème de dérivation sous le signe somme généralisé

Théorème. Si

- pour tout x de I, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur J et intégrable sur I,
- la fonction f admet des dérivées partielles $\frac{\partial^k f}{\partial x^k}$ jusqu'à l'ordre $p, 1 \le k \le p \le +\infty$, vérifiant les hypothèses du théorème précédent, c'est-à-dire

- pour tout $k \in \{1, ..., p\}$ et pour tout x de I, la fonction $t \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ est continue par morceaux sur J,
- pour tout $k \in \{1, \ldots, p\}$ et pour tout t de J, la fonction $x \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ est continue sur I,
- pour tout $k \in \{1, \ldots, p\}$, il existe une fonction φ_k continue par morceaux, positive et intégrable sur J telle que, pour tout $(x,t) \in I \times J$, $\left|\frac{\partial^k f}{\partial x^k}(x,t)\right| \leq \varphi_k(t)$.

Alors, la fonction F est de classe C^p sur I et pour tout $x \in I$, $F^{(k)}(x) = \int_J \frac{\partial^k f}{\partial x^k}(x,t) dt$ pour tout $k \in \{1, \dots, p\}$.

0.7.5 Étude de la fonction Γ

La fonction Gamma, notée $\Gamma(x)$, est définie pour x > 0 par l'intégrale :

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Propriétés Principales

1. Relation avec la Factorielle : Pour les entiers naturels n, on a :

$$\Gamma(n) = (n-1)!$$

En particulier, pour n = 1, $\Gamma(1) = 0! = 1$.

- 2. **Prolongement Analytique :** La fonction Gamma peut être prolongée de manière analytique au complexe $\mathbb{C} \setminus \{0, -1, -2, -3, \ldots\}$. Les pôles de $\Gamma(x)$ sont simples et situés en ces points.
- 3. Relation de Récurence : La fonction Gamma satisfait la relation de récurrence :

$$\Gamma(x+1) = x\Gamma(x)$$

4. Identité d'Euler : Pour x > 0, il existe l'identité :

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$$

5. Formule d'Intégrale : La fonction Gamma est également définie par :

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

6. Fonction Beta: La fonction Gamma est liée à la fonction Beta B(x,y) par :

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

0.8 Équations Différentielles

0.8.1 Théorèmes de Cauchy

Théorème de Cauchy linéaire : Cas des équations différentielles scalaires du premier ordre. Soient a et b deux fonctions continues sur un intervalle I de \mathbb{R} à valeurs dans $K = \mathbb{R}$ ou $K = \mathbb{C}$. Alors, pour tout $(x_0, y_0) \in I \times K$, il existe une et une seule solution f de l'équation différentielle

$$y' + ay = b$$

sur I vérifiant de plus $f(x_0) = y_0$, à savoir :

$$\forall x \in I, \quad f(x) = y_0 e^{A(x)} + e^{A(x)} \int_{x_0}^x e^{-A(t)} b(t) dt$$

οù

$$A(x) = \int_{x_0}^x a(t) dt.$$

Théorème de Cauchy linéaire : Cas des systèmes du premier ordre à coefficients constants. Soit $A \in \operatorname{Mat}_n(K)$. Soit B une fonction continue sur un intervalle I de \mathbb{R} à valeurs dans $\operatorname{Mat}_{n,1}(K)$. Alors, pour tout $(t_0, X_0) \in I \times \operatorname{Mat}_{n,1}(K)$, il existe une et une seule solution X de l'équation différentielle

$$X' = AX + B$$

sur I vérifiant de plus $X(t_0) = X_0$, à savoir :

$$\forall t \in I, \quad X(t) = e^{tA} X_0 + e^{tA} \int_{t_0}^t e^{-uA} B(u) \, du.$$

Théorème de Cauchy linéaire : Cas général. Soient A et B deux fonctions continues sur un intervalle I de \mathbb{R} à valeurs respectivement dans $\operatorname{Mat}_n(K)$ et $\operatorname{Mat}_{n,1}(K)$. Alors, pour tout $(t_0, X_0) \in I \times \operatorname{Mat}_{n,1}(K)$, il existe une et une seule solution X de l'équation différentielle

$$X' = AX + B$$

sur I vérifiant de plus $X(t_0) = X_0$.

Théorème de Cauchy linéaire : Cas des équations différentielles scalaires du second ordre. Soient a, b et c trois fonctions continues sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{R} ou \mathbb{C} . Alors, pour tout $(x_0, y_0, z_0) \in I \times K \times K$, il existe une et une seule solution f de l'équation différentielle

$$y'' + ay' + by = c$$

sur I vérifiant de plus $f(x_0) = y_0$ et $f'(x_0) = z_0$.

0.8.2 Étude d'un Exemple

Considérons l'équation différentielle scalaire du premier ordre suivante :

$$y' + 2y = e^{-x}$$

avec la condition initiale y(0) = 1.

Identification des fonctions

Ici, nous avons:

- a(x) = 2
- $b(x) = e^{-x}$
- La condition initiale est y(0) = 1.

Application du Théorème de Cauchy linéaire

D'après le théorème, la solution y(x) de l'équation différentielle y' + ay = b peut être trouvée en utilisant la formule :

$$y(x) = y_0 e^{A(x)} + e^{A(x)} \int_{x_0}^x e^{-A(t)} b(t) dt$$

où $A(x) = \int_{x_0}^x a(t) dt$.

Calcul de A(x)

Calculons A(x) en utilisant a(x) = 2:

$$A(x) = \int_0^x 2 \, dt = 2x$$

Calcul de la solution générale

Substituons A(x) dans la formule de la solution :

$$y(x) = y_0 e^{2x} + e^{2x} \int_0^x e^{-2t} e^{-t} dt$$

$$y(x) = y_0 e^{2x} + e^{2x} \int_0^x e^{-3t} dt$$

Évaluation de l'intégrale

Calculons l'intégrale :

$$\int_0^x e^{-3t} dt = \left[-\frac{1}{3} e^{-3t} \right]_0^x = -\frac{1}{3} e^{-3x} + \frac{1}{3}$$

Substitution dans la solution

En substituant l'intégrale dans la formule de y(x):

$$y(x) = y_0 e^{2x} - \frac{1}{3}e^{-x} + \frac{1}{3}e^{2x}$$

$$y(x) = y_0 e^{2x} - \frac{1}{3}e^{-x} + \frac{1}{3}e^{2x}$$

Application de la condition initiale

Utilisons la condition initiale y(0) = 1 pour déterminer y_0 :

$$y(0) = y_0 e^0 - \frac{1}{3} e^0 + \frac{1}{3} e^0$$
$$1 = y_0 - \frac{1}{3} + \frac{1}{3}$$

Solution finale

En substituant $y_0 = 1$ dans la formule de y(x):

$$y(x) = \frac{4}{3}e^{2x} - \frac{1}{3}e^{-x}$$

La solution de l'équation différentielle $y'+2y=e^{-x}$ avec la condition initiale y(0)=1 est :

$$y(x) = \frac{4}{3}e^{2x} - \frac{1}{3}e^{-x}$$

0.9 Équivalences Usuelles

Notation	Équivalence
$f(x) = \mathcal{O}(g(x))$	$\exists C > 0 \text{ et } x_0 \text{ tels que } f(x) \le C g(x) \text{ pour } x \ge x_0$
f(x) = o(g(x))	$\forall \epsilon > 0, \exists x_0 \text{ tel que } f(x) \le \epsilon g(x) \text{ pour } x \ge x_0$
$f(x) = \Omega(g(x))$	$\exists C > 0 \text{ et } x_0 \text{ tels que } f(x) \ge C g(x) \text{ pour } x \ge x_0$
$f(x) = \Theta(g(x))$	$\exists C_1, C_2 > 0 \text{ et } x_0 \text{ tels que } C_1 g(x) \le f(x) \le C_2 g(x) \text{ pour } x \ge x_0$
$f(x) \sim g(x)$	$\lim_{x\to\infty}\frac{f(x)}{g(x)}=1$

Table 2: Équivalences usuelles en analyse asymptotique

Fonction	$\mathbf{Petit} \ \ \mathrm{o} \ (\infty)$	Grand $O(\infty)$	Équivalence (∞)
ln(x)	$ln(x) = o(x^{\alpha}) pour \alpha > 0$	$\mathcal{O}(\ln(x))$	$\ln(x) \sim \ln(x)$
\sqrt{x}	$\sqrt{x} = o(x)$	$\mathcal{O}(\sqrt{x})$	$\sqrt{x} \sim \sqrt{x}$
x	$x = o(x^2)$	$\mathcal{O}(x)$	$x \sim x$
x^2	$x^2 = o(x^3)$	$\mathcal{O}(x^2)$	$x^2 \sim x^2$
e^x	$e^x = o(2^x)$	$\mathcal{O}(e^x)$	$e^x \sim e^x$
2^x	$2^x = o(3^x)$	$\mathcal{O}(2^x)$	$2^x \sim 2^x$
$\ln(x) \cdot x^{\alpha}$	$\ln(x) \cdot x^{\alpha} = o(x^{\beta}) \text{ pour } \beta > \alpha$	$\mathcal{O}(\ln(x) \cdot x^{\alpha})$	$\ln(x) \cdot x^{\alpha} \sim \ln(x) \cdot x^{\alpha}$
$\sqrt{x} \cdot e^x$	$\sqrt{x} \cdot e^x = o(e^x)$	$\mathcal{O}(\sqrt{x} \cdot e^x)$	$\sqrt{x} \cdot e^x \sim \sqrt{x} \cdot e^x$
x^k pour $k > 0$	$x^k = o(x^{k+1})$	$\mathcal{O}(x^k)$	$x^k \sim x^k$
e^{-x^2}	$e^{x^2} = o(e^{-x^2 + \alpha x})$ pour $\alpha > 0$	$\mathcal{O}(e^{-x^2})$	$e^{x^2} \sim e^{x^2}$
$\sin(x)$	$\sin(x) = o(x)$	$\mathcal{O}(\sin(x))$	$\sin(x) \sim x \text{ lorsque } x \to 0$
$\cos(x)$	$\cos(x) = o(x)$	$\mathcal{O}(\cos(x))$	$\cos(x) \sim 1 \text{ lorsque } x \to 0$

Table 3: Équivalences usuelles pour les fonctions courantes en $+\infty$

Fonction	Petit o (0)	Grand O (0)	Équivalence (0)
ln(x)	ln(x) = o(1)	$\mathcal{O}(\ln(x))$	$\ln(x) \sim \ln(x)$
\sqrt{x}	$\sqrt{x} = o(1)$	$\mathcal{O}(\sqrt{x})$	$\sqrt{x} \sim \sqrt{x}$
x	x = o(1)	$\mathcal{O}(x)$	$x \sim x$
x^2	$x^2 = o(1)$	$\mathcal{O}(x^2)$	$x^2 \sim x^2$
e^x	$e^x = o(1)$	$\mathcal{O}(e^x)$	$e^x \sim e^x$
2^x	$2^x = o(1)$	$\mathcal{O}(2^x)$	$2^x \sim 2^x$
$\ln(x) \cdot x^{\alpha}$	$\ln(x) \cdot x^{\alpha} = o(x^{\beta}) \text{ pour } \beta > \alpha$	$\mathcal{O}(\ln(x) \cdot x^{\alpha})$	$\ln(x) \cdot x^{\alpha} \sim \ln(x) \cdot x^{\alpha}$
$\sqrt{x} \cdot e^x$	$\sqrt{x} \cdot e^x = o(e^x)$	$\mathcal{O}(\sqrt{x} \cdot e^x)$	$\sqrt{x} \cdot e^x \sim \sqrt{x} \cdot e^x$
x^k pour $k > 0$	$x^k = o(x^{k+1})$	$\mathcal{O}(x^k)$	$x^k \sim x^k$
e^{x^2}	$e^{x^2} = o(e^{x^2 + \alpha x}) \text{ pour } \alpha > 0$	$\mathcal{O}(e^{x^2})$	$e^{x^2} \sim \frac{1}{x^2}$
$\sin(x)$	$\sin(x) = o(x)$	$\mathcal{O}(\sin(x))$	$\sin(x) \sim x \text{ lorsque } x \to 0$
$\cos(x)$	$\cos(x) = o(x)$	$\mathcal{O}(\cos(x))$	$\cos(x) \sim 1 \text{ lorsque } x \to 0$

Table 4: Équivalences usuelles pour les fonctions courantes en 0

Fonction	Limite en 0	$\textbf{Limite en } \infty$
$\ln(x)$	$\lim_{x \to 0^+} \ln(x) = -\infty$	$\lim_{x \to \infty} \ln(x) = \infty$
e^x	$\lim_{x\to 0} e^x = 1$	$\lim_{x \to \infty} e^x = \infty$
2^x	$\lim_{x\to 0} 2^x = 1$	$\lim_{x \to \infty} 2^x = \infty$
\sqrt{x}	$\lim_{x \to 0^+} \sqrt{x} = 0$	$\lim_{x \to \infty} \sqrt{x} = \infty$
$\frac{1}{x}$	$\lim_{x\to 0^+} \frac{1}{x} = \infty$	$\lim_{x \to \infty} \frac{1}{x} = 0$
$\frac{1}{x^2}$	$\lim_{x\to 0^+} \frac{1}{x^2} = \infty$	$\lim_{x \to \infty} \frac{1}{x^2} = 0$
$\sin(x)$	$\lim_{x \to 0} \sin(x) = 0$	Pas de limite finie
$\cos(x)$	$\lim_{x\to 0}\cos(x)=1$	Pas de limite finie
tan(x)	$\lim_{x \to 0} \tan(x) = 0$	Pas de limite finie
$\cot(x)$	$\lim_{x\to 0}\cot(x)=\infty$	Pas de limite finie
$\sin(x)/x$	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	Pas de limite finie
$\cos(x) - 1$	$\lim_{x \to 0} (\cos(x) - 1) = 0$	Pas de limite finie
$\exp(-x)$	$\lim_{x \to 0} \exp(-x) = 1$	$\lim_{x \to \infty} \exp(-x) = 0$

Table 5: Limites usuelles des fonctions en 0 et en ∞