AIHW3

NAME: 杨睦圳 ID: 11813010

Q1

For the first split, we have:

For A₁:

$$\frac{1}{5}(-\log_2 1) + \frac{4}{5}(-\frac{2}{4}\log_2(\frac{2}{4}) - \frac{2}{4}\log_2(\frac{2}{4})) = 0.8$$

For A_2 :

$$\frac{2}{5}(-\log_2 1) + \frac{3}{5}(-\frac{1}{3}\log_2(\frac{1}{3}) - \frac{2}{3}\log_2(\frac{2}{3})) = 0.55$$

For A₃:

$$\frac{3}{5}(-\frac{2}{3}\log_2(\frac{2}{3}) - \frac{1}{3}\log_2(\frac{1}{3})) + \frac{2}{5}(-\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2})) = 0.95$$

Since 0.95 > 0.8 > 0.55, choose A_2 for the first split.

For the second split, we only need to consider the remaining (x_3, x_4, x_5) :

For A_1 :

$$\frac{1}{3}(-\log_2 1) + \frac{2}{3}(-\log_2 1) = 0$$

For A₃:

$$\frac{2}{3}(-\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2})) + \frac{1}{3}(-\log_2 1) = 0.67$$

Since 0.67 > 0, choose A_1 for the second split.

i	Point before map P _i	Mapped point P _i '	Function value
1	[-1, -1]	[-1, 1]	-1
2	[-1, 1]	[-1, -1]	1
3	[1, -1]	[1, -1]	1
4	[1, 1]	[1, 1]	-1

The line $x_1x_2=0$ is the maximal margin separator with the margin of 1.

It is corresponds to the lines $x_1=0$ and $x_2=0$ in the origin space.

a.

Assume that the activation function at each node is g(x)=a*x+b, the the jth unit $a_j=\sum_i \omega_{i,j}x_i$

The output of the hidden layer are $H_j = g(a_j) = a \sum_i \omega_{i,j} x_i + b$

The output of the output layer are

$$g(\sum_j \omega_{j,k} H_j) = a*(\sum_j \omega_{j,k} (a\sum_i \omega_{i,j} x_i + b)) + b = a^2 \sum_j \omega_{j,k} \sum_i \omega_{i,j} x_i + b(c*\sum_j \omega_{j,k} + 1)$$

Since $a^2\sum_j\omega_{j,k}\sum_i\omega_{i,j}$ and $b(c*\sum_j\omega_{j,k}+1)$ are constant, let them to be k,d, then there is a network with no hidden units that computes the same function with the activation function g(x)=kx+d

b.

The method in (a) can be used to reduce an n-layer network to (n-1)-layer network. Then inductively, we can reduce it to (n-2)-layer network, (n-3)-layer network, ..., single-layer network.

C.

For the network with one hidden layer and linear activation functions has input and output n nodes and h hidden nodes, we can know that it has nh+nh=2nh weights. Without the hidden layer, there will be n^2 weights. When $h<< n,\ 2hn< n^2$, so there will be less weights in the network with hidden layer.