MATH 8253 Homework IV

David DeMark

15 November 2017

To the Grader: I've been sick and overwhelmed this week and this is the best I can do. I'm sorry you have to wade through it.

1.)

Prompt. Describe all open sets of $X = \operatorname{Spec} \mathbb{C}[t]/\langle t^2 - t \rangle$ and the restriction morphims of its structure sheaf \mathcal{O}_X .

Response. We recall that for ring R and ideal $I \leq R$, there is a bijection between prime ideals of R containing I and prime ideals of R/I. Thus, the prime ideals of $\mathbb{C}[t]/\langle t^2-t\rangle$ may be identified with those of $\mathbb{C}[t]$ containing t^2-t as $\mathbb{C}[t]$ is a PID. Moreover, again using that $\mathbb{C}[t]$ is a PID, we have that the only such ideals are those generated by divisors of t^2-t , that is $\langle t-1\rangle$ and $\langle t\rangle$. As both of these are closed points, X carries the discrete topology, so the only proper open sets are the singleton sets containing each. We consider $\mathcal{O}_X(\langle t\rangle) = D(t-1) = (\mathbb{C}[t]/\langle t^2-t\rangle)_{t-1}$. By basic computations with the localization equivalence relation, we see that the kernel of $\mathbb{C}[t]/\langle t^2-t\rangle \to (\mathbb{C}[t]/\langle t^2-t\rangle)_{t-1}$ is the ideal $\langle t\rangle$, and note that this implies that the image of the map is isomorphic to $\mathbb{C}[t]/\langle t\rangle$. By the universal mapping property of localization, we may conclude that this is the whole of $(\mathbb{C}[t]/\langle t^2-t\rangle)_{t-1}$. A similar argument (or application of the isomorphism $\mathbb{C}[t]/\langle t^2-t\rangle \to \mathbb{C}[t]/\langle t^2-t\rangle$ by $t\mapsto t-1$) shows that $\mathcal{O}_X(D(t))$

2.)

Proposition. Spec \mathbb{Z} is the terminal object of AffSch.

Proof. We recall that locally ringed space morphisms between affine schemes are determined by their ring morphism on global sections. The proposition is therefore equivalent to the claim that \mathbb{Z} is the initial object of **Ring**. This is indeed the case; as the free group on one generator, any group morphism $\mathbb{Z} \to G$ is determined by the image of its generator $1 \in \mathbb{Z}$, and any ring morphism $\mathbb{Z} \to R$ must preserve multiplicative identity, uniquely determining the image of 1. Thus, for any ring R, there is a unique morphism $\mathbb{Z} \to R$, proving the equivalent claim to the proposition. \square

Corollary 2.1. AffSch is in natural equivalence with the category of Affine Schemes over Spec \mathbb{Z}

Proof. Indeed, even better there is a categorical isomorphism between the two! This follows immediately from the fact that uniqueness of morphism to Spec \mathbb{Z} implies that any morphism between two Affine schemes X and Y commutes with their respective morphisms to Spec \mathbb{Z} .

3.)

4.)

Prompt. Suppose \mathscr{F} and \mathscr{G} are sheaves of Abelian groups on a topological space X. For any open set $U \subset X$, set $\underline{\operatorname{Hom}}(\mathscr{F},\mathscr{G})(U) := \operatorname{Hom}(\mathscr{F}|_U,\mathscr{G}|_U)$, where $\operatorname{Hom}(\mathscr{F}|_U,\mathscr{G}|_U)$ is the set of sheaf morphisms on U. Define the structure of a presheaf of Abelian groups of $\underline{\operatorname{Hom}}(\mathscr{F},\mathscr{G})$ on X.

Response. We have our global sections defined for us; what is left is to show that $\underline{\operatorname{Hom}}(\mathscr{F},\mathscr{G})(U)$ is an Abelian group and define the restriction maps. Indeed, for arbitrary morphisms of Abelian groups $\phi:G\to H$ and $\psi:G\to H$, we may define $(\phi\cdot\psi):G\to H$ by $(\phi\cdot\psi)(g)=\phi(g)\psi(g)$ for $g\in G$ and see that $(\psi\cdot\psi)(gh)=\phi(gh)\psi(gh)=\phi(g)\phi(h)\psi(g)\psi(h)=\phi(g)\psi(g)\phi(h)\psi(h)=(\phi\cdot\psi)(g)(\phi\cdot\psi)(h)$, showing $(\phi\cdot\psi)$ is indeed a morphism of Abelian groups. For $\phi,\psi\in\underline{\operatorname{Hom}}(\mathscr{F},\mathscr{G})(U)$, we may define the same analogously, simply defining $(\phi\cdot\psi)(V)$ as $(\phi(V)\cdot\psi(V))$ for $V\subseteq U$ open. The restriction maps come about in a similarly straightforward manner; we recall that $\phi\in\underline{\operatorname{Hom}}(\mathscr{F},\mathscr{G})(U)$ is the data of a set of maps $\phi(V):\mathscr{F}(V)\to\mathscr{G}(V)$ for all open $V\subset U$. We may then define $\phi|_W$ to be the set of $\phi(V)$ where $V\subset W\subset U$ are open, and see that the sheaf morphism structure of ϕ ensures in a quite natural manner that our restriction maps commute with the Abelian group structure of $\overline{\operatorname{Hom}}(\mathscr{F},\mathscr{G})(U)$.

Proposition. With the presheaf structure of above, $\text{Hom}(\mathscr{F},\mathscr{G})$ is indeed a sheaf.

Proof. Locality: We wish to show that for $U \subseteq X$ open, $0 \neq \phi \in \underline{\mathrm{Hom}}(\mathscr{F},\mathscr{G})(U)$, it is not the case that $\phi|_V = 0$ for all open $V \subset U$. We suppose the contrary: that ϕ is such a morphism and let $f \in \mathscr{F}(U)$ be such that $\phi(U)(f) = g \neq 0 \in \mathscr{G}(U)$. Then, as $\phi|_V = 0$ for all $V \subset U$, we have that $g|_V = \phi(V)(f) = \phi|_V(V)(f) = 0$, contradicting locality of \mathscr{G} .

Gluing: We let $\{U_{\alpha}\}_{\alpha\in A}$ be an open cover of U and let $\{\phi_{U_{\alpha}}\}_{\alpha\in A}$ be a compatible set of sheaf morphisms. We wish to show that there exists some $\phi\in \underline{\mathrm{Hom}}(\mathscr{F},\mathscr{G})(U)$ such that $\phi|_{U_{\alpha}}=\phi_{U_{\alpha}}$. We construct ϕ as such: for $V\subset U_{\alpha}$, we let $\phi(V)=\phi_{U_{\alpha}}|_{V}$; our assumption of compatibility ensures this is well-defined. Otherwise, we let $\{V_{\beta}\}_{\beta\in B}$ be an open cover of V such that each V_{β} is contained within some U_{α} and let $v:B\to A$ be a (possibly not uniquely determined) set map¹ such that $V_{\beta}\subset U_{r(\beta)}$. We let $f\in \mathscr{F}(V)$ and consider $\overline{\phi(V)(f)}:=\{\phi_{U_{r(\beta)}}(V_{\beta})(f|_{V_{\beta}})\}_{\beta\in B}$. Then, by the sheaf morphism structure of $\phi_{U_{r(\beta)}}$ and our assumption of compatibility on $\{\phi_{U_{\alpha}}\}$, we have that $\overline{\phi(V)(f)}$ is a compatible set of sections on $\mathscr{G}|_{V}$. Thus, there exists a unique element $g\in \mathscr{G}|_{V}(V)$ such that $g|_{V_{\beta}}=\phi_{U_{r(\beta)}}(V_{\beta})(f|_{V_{\beta}})$ by the gluing property of $\mathscr{G}|_{V}$; we let $\phi(V)(f)=g$. Then, it is clear that ϕ fits the desired properties.

5.)

a.)

Proposition. We let F be an abelian group and x a closed point of the topological space X. We define the presheaf on $X \mathscr{F}$ by:

$$\mathscr{F}(U) := \begin{cases} F & x \in U \\ 0 & x \notin U \end{cases} \tag{1}$$

Then, \mathcal{F} is a sheaf.

Proof. We first show locality: we let $0 \neq f \in \mathscr{F}(X) = F$ where $x \in U$ and suppose $f|_V = 0$ for all $V \subset X$ open. Then, as all restriction maps are isomorphisms or the zero map, we have that $x \notin V$ for all $V \subset X$ open. wait why is that a problem? Why can we not have that?

To show gluing, we let $\{U_{\alpha}\}_{\alpha}$ be an open cover of X and $\{f_{\alpha}\}_{\alpha}$ be compatible. Then, as all restriction maps are either isomorphisms or the zero map, we have that for $x \in U_{\alpha} \cap U_{\beta}$, we must have $f_{\alpha} = f_{\beta}$, and for $x \notin U_{\alpha} \cap U_{\beta}$, we have that both restriction maps are the zero map. Hence, we now have for some fixed $f \in F$,

$$f_{\alpha} = \begin{cases} 0 & x \notin U_{\alpha} \\ f & x \in U_{\alpha} \end{cases}$$

Then, $f \in \mathcal{F}(X) = F$ satisfies the requirement for the gluing axiom.

b.)

Proposition. The skyscraper sheaf is uniquely characterized by its stalks $\mathscr{F}_x = F$ and $\mathscr{F}_y = 0$ for $y \neq x$.

6.)

a.)

Proposition. For $X = \mathring{A}_k^1$ where k is a field, let \mathscr{F} be the skyscraper sheaf supported at $\mathbf{0} := [(t)]$ with group k(t) with the usual k[t]-module structure. Then, \mathscr{F} is an \mathcal{O}_X -module, but not quasicoherent.

Proof. We note for $\mathbf{0} \notin U \subset X$, $\mathscr{F}(U) = 0$ is trivially an $\mathcal{O}_X(U)$ -module. For $\mathbf{0} \in U \subset X$, we claim that k(t) has a natural $\mathcal{O}_X(U)$ -module structure. By problem 3 of homework 3, $\mathcal{O}_X(U)$ may be identified with a subset of the field of fractions of k[t], k(t), and hence the $\mathcal{O}_X(U)$ -module structure on k(t) is given by standard multiplication in k(t). However, \mathscr{F} is not quasicoherent, as for U = D(t), (again by the same homework problem coupled with flatness of $A[u^{-1}]$ for any ring A and multiplicative system u) $\mathscr{F}(U) = 0 \neq \mathcal{O}_X(U) \otimes \mathscr{F}(X) = k(t)$.

b.)

Proposition. We let $X = \mathring{A}_k^1$ and \mathscr{F} the skyscraper sheaf at $[\langle 0 \rangle]$ with k[t]-module k(t). Then \mathscr{F} is quasicoherent.

Proof. For any nonempty open set
$$U$$
, we have that $[\langle 0 \rangle] \in U$, so $\mathscr{F}(U) = k(t) = \mathcal{O}_X(U) \otimes k(t) = k(\tilde{t})$.

¹The actual details of r are not important here; it is pretty much a notational tool only.

7.)

Proposition (Heartshorne II.5.2(c)). For an A-module M, we denote the sheaf associated to M on Spec A by \tilde{M} or alternatively $(M)^{\sim}$ depending on clarity. Then, for $\{M_i\}$ a family of A-modules, $\bigoplus \tilde{M}_i \cong (\bigoplus M_i)^{\sim}$.

Remark. Rather than use Heartshorne's definition, we take the definition of "sheaf associated to M" to be the one given in Vakil, defined over the basic open sets D(f) as $\tilde{M}(D(F)) := M_f := A_f \otimes_A M$.

We use the following essential lemma:

Lemma. We let R be a commutative unital ring.² For N, $\{M_i\}_i$ R-modules, $N \otimes_R (\bigoplus_i M_i) = \bigoplus_i (N \otimes_R M_i)$.

Proof (of proposition). We recall that sheaves are uniquely recoverable from their data on distinguished open sets D(f), $f \in A$. As such, we shall show equivalence only on basic opens D(f); equivalence on basic opens then implies equivalence on arbitrary open sets U. We then have that $(\oplus M_i)^{\sim}(D(f)) = \mathcal{O}_X(D(f)) \otimes (\oplus M_i) = \oplus_i (\mathcal{O}_X(D(f)) \otimes M_i) = \oplus_i (\tilde{M}_i)(D(f))$

 2 as all rings are, of course