AAE 567 quiz Spring 2021:

Write your final answers on the exam.

Open book with Matlab.

Hand in your work.

NAME:

Problem 1. Consider the optimization problem

$$d = ||y - A\hat{x}|| = \min\{||y - Ax|| : x \in \mathbb{C}^2\}$$

where the matrix A and vector y are infinite dimensional and given by

$$A = \begin{bmatrix} 1 & 1 \\ a & b \\ a^2 & b^2 \\ a^3 & b^3 \\ \vdots & \vdots \end{bmatrix} \quad \text{and} \quad y = \begin{bmatrix} 1 \\ c \\ c^2 \\ c^3 \\ \vdots \end{bmatrix} \quad \text{and} \quad \left\| \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix} \right\|^2 = \sum_{j=0}^{\infty} |f_j|^2$$

Here $a=\frac{1}{2}$ and $b=\frac{2}{3}$ and $c=\frac{3}{4}$. Hint: if |r|<1, then $\sum_{j=0}^{\infty}r^{j}=\frac{1}{1-r}$

(i) Find an optimal $\widehat{x} \in \mathbb{C}^2$ solving this optimization problem:

$$\hat{x} =$$

- (ii) The optimal solution \hat{x} is unique. Circle one: TRUE FALSE
- (iii) Find the error squared

$$d^2 =$$

Problem 2. The pair $\{C, A\}$ is given by

$$A = \begin{bmatrix} 2 & 6 \\ -2 & -5 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 2 & 3 \end{bmatrix}$$

Consider the optimization problem

$$d^{2} = \int_{0}^{\infty} |26e^{-3t} - Ce^{At}\widehat{x}|^{2}dt = \min\left\{ \int_{0}^{\infty} |26e^{-3t} - Ce^{At}x|^{2}dt : x \in \mathbb{C}^{2} \right\}$$

- (i) The pair $\{C,A\}$ is observable. Circle one: **TRUE FALSE**
- (ii) The optimal solution \hat{x} is unique. Circle one: TRUE FALSE
- (iii) Find \hat{x} of smallest possible norm which solves this optimization problem:

$$\hat{x} =$$

(iv) Find the error squared

$$d^2 =$$

Problem 3. Let \mathbf{x} , \mathbf{u} and \mathbf{v} be three independent uniform random variables over the interval [0,1]. Let \mathbf{y} be the random variable defined by

$$y = x + u + v$$

Let \mathcal{H} be the subspace defined by $\mathcal{H} = \operatorname{span}\{1, \mathbf{y}\}.$

(i) Find the orthogonal projection $\hat{\mathbf{x}} = P_{\mathcal{H}}\mathbf{x}$, that is, find the constants α and β :

$$\hat{\mathbf{x}} = P_{\mathcal{H}}\mathbf{x} = \alpha + \beta \mathbf{y} =$$

(ii) Find the following error in estimation

$$E(\mathbf{x} - \widehat{\mathbf{x}})^2 =$$

Problem 4. Let \mathbf{x} and \mathbf{v} be two independent random variables. The density functions for \mathbf{x} and \mathbf{v} are given by

$$f_{\mathbf{x}}(x) = xe^{-x}$$
 if $x \ge 0$ and $f_{\mathbf{x}}(x) = 0$ if $x < 0$

$$f_{\mathbf{v}}(v) = e^{-v}$$
 if $v \ge 0$ and $f_{\mathbf{v}}(v) = 0$ if $v < 0$

Assume that the random variable y = x + v. Recall that the joint density

$$f_{\mathbf{x},\mathbf{y}}(x,y) = f_{\mathbf{x}}(x)f_{\mathbf{v}}(y-x)$$
$$f_{\mathbf{y}}(y) = \int_{-\infty}^{\infty} f_{\mathbf{x}}(x)f_{\mathbf{v}}(y-x)dx = \int_{0}^{y} f_{\mathbf{x}}(x)f_{\mathbf{v}}(y-x)dx \quad (y \ge 0)$$

In this case, $f_{\mathbf{y}}(y) = 0$ for y < 0.

(i) Find the following conditional expectation

$$\widehat{g}(y) = E(\mathbf{x}|\mathbf{y} = y) =$$

(ii) Let $\mathcal{H} = \text{span}\{1, \mathbf{y}\}$. Find α and β such that $P_{\mathcal{H}}\mathbf{x} = \alpha + \beta \mathbf{y}$.

$$P_{\mathcal{H}}\mathbf{x} = \alpha + \beta \mathbf{y} =$$