Algebra II: Homework 5

Due on March 10, 2021

Professor Walton

Gabriel Gress
Last edited March 10, 2021

Collaborated with the Yellow group.

PROBLEM 1

Claim. Take a *G*-homomorphism $\varphi: V \to W$. Show that

- (a). $Ker(\varphi)$ is a subrepresentation of V, and
- (b). $Im(\varphi)$ is a subrepresentation of W.

Proof. (a). First, observe that $Ker(\varphi)$ is a vector subspace of V. To verify that it is a subrepresentation, we apply the g-action on an arbitrary element. Let $v \in Ker(\varphi)$:

$$\varphi(\rho_{\mathfrak{L}}(v)) = \rho_{\mathfrak{L}}(\varphi(v)) = \rho_{\mathfrak{L}}(0) = 0.$$

And hence it is closed under the *g*-action.

(b). Liekwise, we know that $Im(\varphi)$ is a vector subpace of V. Now we verify it is a subrepresentation:

$$\rho_{g}(w) = \rho_{g}(\varphi(v)) = \varphi(\rho_{g}(v))$$

and hence $\varphi_g(v)$ is in the image of φ as desired.

PROBLEM 2

Claim. Let (V, ρ) be a representation of G, and take $g \in G$. Let X_V represent the character table of G. Prove:

- 1. $X_V(e) = \dim V$
- 2. $X_{V \oplus W}(g) = X_V(g) + X_W(g)$
- 3. $X_V(g^{-1}) = \overline{X_V(g)}$
- 4. $\overline{X_V}$ is a character of G

Proof.

Problem 3

Claim. Prove directly that the map $a + b\sqrt{2} \mapsto a - b\sqrt{2}$ is an isomorphism of $\mathbb{Q}(\sqrt{2})$ with itself.

Proof.

PROBLEM 4

Claim. Given a finite abelian group G, describe its irreducible complex representations, up to equivalence. Illustrate this for the Klein-four group $G = C_2 \times C_2$.

Proof. \Box

Problem 5

Claim. Let *V* and *W* be irreducible complex representations of a group *G*, and take $\varphi \in \operatorname{Hom}_G(V, W)$. Show that

- (a). If $V \ncong W$, then φ is the zero map.
- (b). If $V \cong W$ and $\varphi \neq 0$, then φ is a *G*-isomorphism.

Proof. \Box

Problem 6

Claim. There is a group G of order 8 that has five conjugacy classes of elements; suppose that the representations are g_1, \ldots, g_5 . Given irreducible characters χ_1, \ldots, χ_4 , complete the character table below for the row corresponding to the final irreducible character χ_5 . Make sure to verify that χ_5 is indeed irreducible and pairwise inequivalent to χ_1, \ldots, χ_4 by using its values $\chi_5(g_j)$ for $j = 1, \ldots, 5$.

g_i	<i>g</i> ₁	<i>g</i> 2	83	84	<i>8</i> 5
$ C_G(g_i) $	8	8	4	4	4
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χ_3	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	?	?	?	?	?

Proof.

Problem 7

Claim. Let χ_1, \ldots, χ_r be the irreducible characters of a finite group *G*. Show that

$$Z(G) = \left\{ g \in G \mid \sum_{i=1}^r \overline{\chi_i(g)} \chi_i(g) = |G| \right\}.$$

Here, Z(G) is the center of G, which consist of elements $g \in G$ so that gh = hg for each $h \in G$.

Proof. \Box