5.2 Definite Integral

Definition The *definite integral* of f(x) from a to b is the limit of the left and right hand sums as the number of rectangles approaches infinity. We write:

n = number of rectangles

 $\Delta x = \text{width of one rectangle}$

1. Consider the rectangular approximation of $\int_1^3 \left(0.5x^2 + \frac{x}{3}\right) dx$ shown on the graph.

- (a) Is this a right or left rectangular approximation?
- (b) Is it an under or over approximation of the integral?
- (c) Write an expression for the right rectangular approximation using summation notation.

2. Let f be the graph of the function shown to below. Calculate each of the integrals that follow exactly.

(a)
$$\int_0^1 f(x) \, dx =$$

(b)
$$\int_0^2 f(x) \, dx =$$

(c)
$$\int_0^4 f(x) \, dx =$$

(d)
$$\int_{4}^{7} f(x) dx =$$

(e)
$$\int_0^1 5f(x) \, dx =$$

(f)
$$\int_{7}^{1} 3f(x) dx =$$

3. Let g be the function defined on $0 \le t \le 20$, some of whose values are shown in the table below.

- (a) Estimate the value of $\int_0^{12} f(x) dx$ using left rectangular sums.
- (b) Is your estimate an over or under estimate? Why?
- (c) Find a more accurate estimate of the integral. Why is it more accurate?