THE PERSONALITY OF THE SNAKE:

Personality Recognition using Convolutional Neural Networks

AUTHOR PROLING (AP)

Given a text, AP seeks to classify authors with respect to their demographics traits.

Demographics:

- Age.
- Gender.
- Personality traits.
- Political preferences.

Texts from:

- Essays.
- Blog posts.
- Social media.
- Source code.

Big Five or Factor Model which include five traits (Boyle et al., 2008):

Agreeable Agreeableness relates to a focus on maintaining positive social relations.

Conscientious Conscientiousness measures preference for an organized approach to life.

Extroverted Extroversion measures a tendency to seek stimulation in the external world.

Open Openness is related to imagination, creativity, curiosity, tolerance, political liberalism, and appreciation for culture.

Stable Emotional Stability measures the tendency to experience mood swings.

METHODOLOGY

- Convolutional Neural Networks trained with word embeddings for Author Proling
- Explore a task-independent text representation.
- Global Vectors for Word Representation. (Pennington et al., 2014)

Figure 2: Input matrix padded to feed a CNN. Shadowed rows represent the area covered by a filter of height 3.

AUTHOR PROLING TASK AT PAN 2015

- PAN-AP-2015 dataset, used in the 3rd Author Proling shared task (Rangel et al., 2015).
- Twitter.
- English.

Figure 3: CNN architecture of our best performing system.

RESULTS

CNN Architecture	WE	RMSEt	RMSE
F=3, NF=32, HU=1, BN, MP	25	0.2253	0.1650
F=7, NF=32, HU=1, BN, MP	25	0.2090	0.1647
F=357, NF=32, HU=1, BN, MP	25	0.2213	0.1625
F=357, NF=32, HU=1, BN	50	0.2204	0.1633
F=3, NF=64, HU=2, DR	50	0.1995	0.1692

Table 1: Evaluation results of our best CNN models. RMSE: metric used in the competition. RMSEt: RMSE for each tweet. WE: DZmension of the word embedding. MP: If a max pooling layer was employed. F: Height of the filters used. NF: Number of Iters used. HU: the number of hidden units. DR: If dropout was applied. BN: If batch normalization was applied.

CONCLUSIONS AND FUTURE WORK

- We have presented a shallow CNN model for predicting Personality Traits from Social Media texts.
- We have used pre-trained word embeddings.
- Without handcrafted features or any external resource, we have trained a model able to achieve a good performance compared against state-of-the-art models for Author Proling.
- Learn word-embeddings in an unsupervised fashion from the task at hand.
- Explore deeper CNN architectures.
- Validate this model in datasets from dierent domains and dierent sources.

TOOLKITS

ABOUT ME

Maite Giménez

PhD student in Natural Language Processing, Deep Leraning and Social Media

hi@maigimenez.es Github: @maigimenez