Optimization for Deep Learning

Lecture 10-2: Gradient Clipping

Kun Yuan

Peking University

Main contents in this lecture

- Gradient exploding
- (L_0, L_1) -smoothness
- Gradient clipping

Recurrent neural network (RNN)

• RNN has the following recursion:

$$h_t = f(x_t, h_{t-1}; \theta_h)$$
$$\hat{y}_t = g(h_t; \theta_o)$$

where θ_h and θ_o are the parameters of $f(\cdot)$ and $g(\cdot)$, respectively, and h_0 can be initialized to arbitrary values.

ullet Given a sequence of training data $\{x_t,y_t\}_{t=1}^T$, we consider the loss function

$$F(\theta_h, \theta_o) = \frac{1}{T} \sum_{t=1}^{T} L(\hat{y}_t, y_t)$$

where $L(\hat{y}_t, y_t)$ measures the discrepancy between \hat{y}_t and y_t .

ullet We next calculate $abla_{\theta_h} F(\theta_h, \theta_o)$. To this end, we have

$$\frac{\partial F(\theta_h, \theta_o)}{\partial \theta_h} = \frac{1}{T} \sum_{t=1}^{T} \frac{\partial L(\hat{y}_t, y_t)}{\partial \theta_h}$$
$$= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial L(\hat{y}_t, y_t)}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial h_t} \cdot \frac{\partial h_t}{\partial \theta_h}$$

• The third term $\partial h_t/\partial \theta_h$ is tricky to handle.

• Since $h_t = f(x_t, h_{t-1}; \theta_h)$, we have

$$\frac{\partial h_t}{\partial \theta_h} = \frac{\partial f(x_t, h_{t-1}; \theta_h)}{\partial \theta_h} + \frac{\partial f(x_t, h_{t-1}; \theta_h)}{\partial h_{t-1}} \cdot \frac{\partial h_{t-1}}{\partial \theta_h}$$
(1)

which is a recursion in terms of $\partial h_t/\partial \theta_h$.

• By letting

$$a_{t} = \frac{\partial h_{t}}{\partial \theta_{h}}$$

$$b_{t} = \frac{\partial f(x_{t}, h_{t-1}; \theta_{h})}{\partial \theta_{h}}$$

$$c_{t} = \frac{\partial f(x_{t}, h_{t-1}; \theta_{h})}{\partial h_{t-1}}$$

Recursion (1) becomes

$$a_t = b_t + c_t a_{t-1}$$

By iterating the above recursion, we have

$$a_t = b_t + \sum_{i=1}^{t-1} \left(\prod_{j=i+1}^t c_j \right) b_i.$$

• Substituting a, b, and c, we have

$$\frac{\partial h_t}{\partial \theta_h} = \frac{\partial f(x_t, h_{t-1}; \theta_h)}{\partial \theta_h} + \sum_{i=1}^{t-1} \left(\prod_{j=i+1}^t \frac{\partial f(x_j, h_{j-1}; \theta_h)}{\partial h_{j-1}} \right) \frac{\partial f(x_i, h_{i-1}; \theta_h)}{\partial \theta_h},$$

where the chain $\prod_{j=i+1}^t rac{\partial f(x_j,h_{j-1}; heta_h)}{\partial h_{j-1}}$ can be very long for large t.

• In summary, the back-propagation in RNN is derived as

$$\frac{\partial F(\theta_h, \theta_o)}{\partial \theta_h} = \frac{1}{T} \sum_{t=1}^{T} \frac{\partial L(\hat{y}_t, y_t)}{\partial \hat{y}_t} \cdot \frac{\partial \hat{y}_t}{\partial h_t} \cdot \frac{\partial h_t}{\partial \theta_h},$$

$$\frac{\partial h_t}{\partial \theta_h} = \frac{\partial f(x_t, h_{t-1}; \theta_h)}{\partial \theta_h} + \sum_{i=1}^{t-1} \left(\prod_{j=i+1}^{t} \frac{\partial f(x_j, h_{j-1}; \theta_h)}{\partial h_{j-1}} \right) \frac{\partial f(x_i, h_{i-1}; \theta_h)}{\partial \theta_h}.$$

- The term $\partial F(\theta_h, \theta_o)/\partial \theta_o$ can be calculated in a similar manner
- We next consider a concrete example

Consider the following RNN formulation

$$h_t = W_x x_t + W_h h_{t-1}$$
$$\hat{y}_t = W_o h_t$$

where $W_x \in \mathbb{R}^{n \times d}, W_h \in \mathbb{R}^{n \times n}$, and $W_o \in \mathbb{R}^{m \times n}$ are parameters to learn, $x \in \mathbb{R}^d$ is the input data, $h \in \mathbb{R}^n$ is the hidden state, and $\hat{y} \in \mathbb{R}^m$ is the output label. We omit nonlinear activation for simplicity

· According to the above derivations for RNN backpropagation, we have

$$\frac{\partial F}{\partial W_x} = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t} (W_h^{\mathsf{T}})^{t-i} W_o^{\mathsf{T}} \frac{\partial L(\hat{y}_t, y_t)}{\partial \hat{y}_t} x_i^{\mathsf{T}} \in \mathbb{R}^{n \times d}.$$

 $\partial F/\partial W_h$ and $\partial F/\partial W_o$ can be derived similarly. We leave it as an exercise.

Vanishing gradient and exploding gradient

• Recall the gradient in linear RNN:

$$\frac{\partial F}{\partial W_x} = \frac{1}{T} \sum_{t=1}^T \sum_{i=1}^t (W_h^{\mathsf{T}})^{t-i} W_o^{\mathsf{T}} \frac{\partial L(\hat{y}_t, y_t)}{\partial \hat{y}_t} x_i^{\mathsf{T}} \in \mathbb{R}^{n \times d}.$$

- $(W_h^{\mathsf{T}})^t$ will cause a significant numerical issue in $\partial F/\partial W_x$
- If the largest magnitude of the eigenvalue is less than 1, i.e., $|\lambda(W_h^\intercal)| < 1$, it holds that $(W_h^\intercal)^{t-i} \to 0$ as t (or T) gets large; Gradient vanishing!
- If the largest magnitude of the eigenvalue is greater than 1, i.e., $|\lambda(W_h^\intercal)| > 1$, it holds that $(W_h^\intercal)^t \to +\infty$ as t (or T) gets large; Gradient exploding!
- Activation functions may also amplify gradient vanishing and exploding

References on gradient vanishing and exploding

RNN backpropagation:

- https://zhuanlan.zhihu.com/p/273729929
- M. Li et.al, Dive into Deep Learning, Sec. 9.7

Gradient vanishing and exploding

• R Pascanu et. al., On the Difficulty of Training Recurrent Neural Networks, ICML 2013.

How to overcome gradient vanishing and exploding?

- Residual deep neural network
- Batch normalization
- Proper initialization
- Gradient clipping (to be discussed in detail)

Gradient clipping

Consider the following non-convex optimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x)$$

• The gradient clipping algorithm iterates as follows

$$x_t = x_t - \gamma g_t$$
 where $g_t = \text{clip}(\nabla f(x_t), c)$

for some positive constant c > 0.

• The clipping operator is defined as

$$\begin{aligned} \operatorname{clip}(u,c) &= \min\{1, \frac{c}{\|u\|}\}u \quad \forall u \in \mathbb{R}^d \\ &= \left\{ \begin{array}{cc} u & \text{if } \|u\| \leq c \\ \frac{c}{\|u\|}u & \text{if } \|u\| > c \end{array} \right. \end{aligned}$$

where $\|\cdot\|$ is an ℓ_2 -norm.

Gradient clipping helps preventing gradient exploding

- Clipping operator does not change the gradient direction (in deterministic scenario); just scales gradient
- Clipping operator squeezes large gradient when $\|\nabla f(x)\| > c$, but does nothing to small gradient
- After clipping, it is guaranteed that $||u|| \le c$ for any $u \in \mathbb{R}^d$
- It is intuitive that gradient clipping can prevent gradient exploding

L-smooth condition

• Recall the traditional Lipschitz smoothness condition

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^d.$$
 (2)

- GD works well under the above Lipschitz smoothness condition
- But this condition cannot capture the gradient exploding phenomenon
- Recall the gradient in linear RNN:

$$\frac{\partial F}{\partial W_x} = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t} (W_h^{\mathsf{T}})^{t-i} W_o^{\mathsf{T}} \frac{\partial L(\hat{y}_t, y_t)}{\partial \hat{y}_t} x_i^{\mathsf{T}} \in \mathbb{R}^{n \times d}.$$

where the term $(W_h^{\mathsf{T}})^t$ breaks condition (2) when t is large

L-smooth condition

- A toy example $f(x) = x^3$ breaks condition (2). Similarly, $(W_h^{\mathsf{T}})^t$ will also break condition (2) when t is large.
- GD (or SGD) cannot work without assumption (2). To fix it, it is common to assume the iterate x_t to be within a compact set \mathcal{C} for any t. In this scenario, it is enough to assume

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathcal{C} \subset \mathbb{R}^d.$$

- ullet The constant L is proportional to the diameter of ${\mathcal C}$
- For example, if $C = \{x \mid ||x|| \le 100\}$, we have L = 1200.

$$\|\nabla f(x) - \nabla f(y)\| = 3\|x^2 - y^2\| \le 3\|x + y\| \|x - y\|$$

$$\le 6(\|x\| + \|y\|) \|x - y\| \le 1200\|x - y\|$$

(L_0, L_1) -smooth condition

Assumption 1 (Zhang et al. (2020); Koloskova et al. (2023))

A differentiable function $f:\mathbb{R}^d\to\mathbb{R}$ is said to be (L_0,L_1) -smooth if it verifies for all $x,y\in\mathbb{R}^d$ with $\|x-y\|\leq \frac{1}{L_1}$ that

$$\|\nabla f(x) - \nabla f(y)\| \le (L_0 + L_1 \|\nabla f(x)\|) \|x - y\|.$$

• Can be interpreted as

$$\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$$

when f(x) is twice-differentiable (Zhang et al., 2019).

• Recover the *L*-smoothness when $L_1 = 0$

(L_0, L_1) -smooth condition

- Recall the toy example $f(x) = x^3$
- When constraining x into the compact set $\mathcal{C}=\{x\mid \|x\|\leq 100\}$, it is L-smooth with L=1200
- Now we evaluate its Hessian

$$\|\nabla^2 f(x)\| = 6\|x\| \le 6 + 2\|3x^2\| = 6 + 3\|\nabla f(x)\|$$

which is (L_0, L_1) -smooth with $L_0 = 6$ and $L_1 = 2$

- It is important to note that $L_0 \ll L$ and $L_1 \ll L$
- In fact, any polynomial function satisfies the (L_0, L_1) -smooth condition

(L_0, L_1) -smooth condition

- The (L_0, L_1) -smooth condition well captures the RNN curvature
- An illustration on how smoothness varies with gradient norm¹

¹Figure is from (Zhang et al., 2019, 2020)

Theorem 1 (Koloskova et al. (2023))

Under Assumption 1, if the learning rate $\gamma \leq [9(L_0 + cL_1)]^{-1}$, the clipped gradient descent will converge at the following rate

$$\frac{1}{K} \sum_{k=1}^{K} \|\nabla f(x_k)\| \le \mathcal{O}\left(\sqrt{\frac{\Delta_0}{\gamma T}} + \frac{\Delta_0}{\gamma Tc}\right)$$

where $\Delta_0 = f(x_0) - f^*$.

- ullet Please note that the metric is $\|\cdot\|$ not $\|\cdot\|^2$
- Gradient clipping is typically not used in later phase due to small gradient
- ullet The clip threshold c only affects the higher-order term (i.e., the initial phrase)
- Smaller c results in slower convergence

• Recall the convergence rate of GD with standard *L*-smooth condition:

$$\left(\frac{1}{K} \sum_{k=1}^{K} \|\nabla f(x_k)\|\right)^2 \le \frac{1}{K} \sum_{k=1}^{K} \|\nabla f(x_k)\|^2 = \mathcal{O}\left(\frac{\Delta_0}{\gamma T}\right)$$

when $\gamma \leq 1/L$. The above inequality implies that

$$\frac{1}{K} \sum_{k=1}^{K} \|\nabla f(x_k)\| = \mathcal{O}\left(\sqrt{\frac{\Delta_0}{\gamma T}}\right)$$

• Comparing it with clipped GD

$$\begin{split} \text{GD:} \quad & \frac{1}{K} \sum_{k=1}^K \|\nabla f(x_k)\| = \mathcal{O}\Big(\sqrt{\frac{\Delta_0}{\gamma_{\text{gd}}T}}\Big) \\ \text{Clipped GD:} \quad & \frac{1}{K} \sum_{k=1}^K \|\nabla f(x_k)\| = \mathcal{O}\Big(\sqrt{\frac{\Delta_0}{\gamma_{\text{clip}}T}} + \frac{\Delta_0}{\gamma_{\text{clip}}Tc}\Big) \end{split}$$

• Recall the learning rate in different algorithms:

$$\gamma_{
m gd} = \mathcal{O}(rac{1}{L}) \qquad \gamma_{
m clip} = \mathcal{O}(rac{1}{L_0 + cL_1})$$

- Since $L_0 \ll L$ and $L_1 \ll L$, we can find Clipped GD is faster than GD
- Clipping not only stabilizes, but also accelerates the training process!

Language modeling (Zhang et al., 2019)

(a) Training loss of LSTM with different optimization parameters.

(b) Validation loss of LSTM with different optimization parameters.

Image classification (Zhang et al., 2019)

(c) Training loss of ResNet20 with different optimization parameters.

(d) Test accuracy of ResNet20 with different optimization parameters.

References I

- J. Zhang, T. He, S. Sra, and A. Jadbabaie, "Why gradient clipping accelerates training: A theoretical justification for adaptivity," arXiv:1905.11881, 2019.
- B. Zhang, J. Jin, C. Fang, and L. Wang, "Improved analysis of clipping algorithms for non-convex optimization," *Advances in Neural Information Processing Systems*, vol. 33, pp. 15511–15521, 2020.
- A. Koloskova, H. Hendrikx, and S. U. Stich, "Revisiting gradient clipping: Stochastic bias and tight convergence guarantees," in *ICML 2023-40th International Conference on Machine Learning*, 2023.