

Young H. Cho, Ph.D.
University of Southern California

EE 542 Lecture 20: Machine Learning 2

University of Southern California

Tradition and Matapharolychics

My Thoughts

Machine Learning Approaches

	Unsupervised Learning	Supervised Learning
Discrete	Clustering	Classification
Continuous	Dimensionality Reduction	Regression

Automobile Application

• Data is collected from car's OBD2 port

- The app receives the data over Bluetooth and creates chunks of it.
- The app sends these chunks to the server periodically.

- The server receives the data in the form of binary files.
- It is then preprocessed and converted to CSV.
- The csv is then used for machine learning.

Collection and Transfer

Cloud Storage

Manually Classifying Data

Supervised ML

A/C OFF/Window UP 1

A/C ON/Window DOWN A/C OFF/Window UP 2 A/C OFF/Window DOWN run 1

Lessons Learned

- Careful Data Collection/Handling
 - Repeatable Experiments
 - Minimal Differences (Date/Time/Temperature)
 - Experiment One Parameter at a Time

- Results are Still Difficult to Interpret
 - Data Spread Range without Explanation
 - Opportunity to Hypothesize/Test Resulting Model/Weights

Oilfield Applications

- Oilfield Production Pipeline
- Industrial Internet of Things
- Sensors Placed at the Pipelines
- Can We Use ML on the Data to Predict Failures?
- Can We Use ML on the Data to Optimize Production?

Supervised Learning Example

Dataset for One of the Sensors for Gas Compressor Valve

Time Series Shapelet

- Portion of Timed Sequence of Sensor Data (A Shape)
- Training: Given training dataset for the sensor, search and extract a window of fixed sequence of data (shapelet) that differentiate failed operation to normal operation
- Classifier: Function that quantifies the similarity between the shapelet and a sequence of test data enclosed in the moving window of the same size
- Modification: Shapelet was modified based on the observed data sequence to increase effectiveness

Result

Lessons Learned

- Traditional Classifiers were NOT useful
 - This is a common method used in industry
 - Sometimes they work, but cannot determine why
 - Limits for the classifiers are not the absolute

- Need Application Specific Classifiers
 - Data abstraction may be modified to use classifiers
 - May be better to come up with a new classifier

Power Problem in Chips

Even yield is now largely affected by power

Parts of the chip run too HOT even though nothing is wrong structurally!

Power Problem in Chips

130nm Pentium III April 2001

~25% non-determinism

90nm Nvidia G80 November 2006

~50% non-determinism

22nm Processors Today!

> 75% non-determinism?!?

~\$300B per Year Industry

Our Test: Nvidia GTX1070

Total power consumption for 3 best cores is the same as 2 worst cores

Field Programmable Gate Arrays

Measurement Experiments

- Experiment Circuit
 - Regular structure
 - 200MHz design
 - Entire FPGA mapped
- Xilinx Spartan 3E
 - 90nm CMOS technology
 - 3-5% power variation on the same IC
 - ~14% average power variations across two different ICs
- Xilinx Spartan 6
 - 45nm CMOS technology
 - ~9% power variation across the same IC
- 7 Series and beyond
 - < 45nm CMOS technology
 - Higher variations expected

USC Viterbi On-line Power Monitoring School of Engineering

On-line Power Monitoring

Hardware Instrumentation

- External total chip power sensor (a low-cost ADC at power source)
- Digital logic based probes within chip
- Negligible chip overhead and resilient to noise
- Can leverage existing digital instrumentations
- 100% scalable to all future technology node

Purely Software Instrumentation (Alternative to HW)

- Software only solution can be used in place of hardware probes
- 2-5% software overhead dependent on program structure

Software Analytics

- Big Data created in real-time through digital monitoring
- Machine learning applied to the Big Data to extract chip-specific parameter
- Built-in self-calibration and real-time measurements
- Measurements at any granularity (down to per cycle)
- Determine sub-component level dynamic power and leakage
- Predict dynamic power and leakage for tasks/operations

Working Prototypes

Internet Protocol Router prototype

OpenRISC based SoC prototype

- Combinational Logic to SoC Design on FPGAs
- On chip as well as on board Power Measurements
- 3 Patents held through USC

Comparison

Measurement Technology	Deviation from ADC	Method of Measurement	No. of Channels	Sampling Rate	Workload Dependent	Target Power Monitoring Level
Direct ADC Measurement	-	Dedicated Current Sensors	6	4KS/s	No	Board level
Runtime Power Monitoring	12.5% (Average)	Power Model Table Look Up	22	1K S/s	Yes	Architectural components
Modeling w/Event Counters	10% (Average)	Power Model Event Counters	12	NA	Yes	Architectural components
USC OASYS RESEARCH	1.25 % (Max)	Weighted Power Measurements	350	250 KS/s	No	Board, Architectural, and Sub-circuit

Comparison between type of power estimation techniques

Comparison

Measurement Technology	Method of Measurement	No. of Channels	Sampling Rate	Overhead
Altera PowerPlay	Estimated power through simulation	4	-	USB, software based simulation
Xilinx XPower	Estimated power through simulation	14	-	USB, software based simulation
Performance-driven Clustering	Estimated Power derived through simulation	-	-	Inaccurate due to manufacturing variations
Intel Itanium	Model based power estimation	120	125kS/s	Counters, Voltage regulators, PLL and freqcontrollers.
AMD On-chip power estimation	Model based power estimation	95	-	Counters, Voltage regulators, PLL and freq controllers.
USC OASYS RESEARCH	Weighted Counter Values	350	250 KS/s	Digital Sensors

Comparison between other implementations

Lessons Learned

- Power Consumption is going to be (IF NOT ALREADY) the Biggest Problem for Cloud Computing and Data Center
 - Fine-grained monitoring with management is necessary
 - Big wins in chip yield and life, precise health monitoring, energy savings, and highest performance
- Machine Learning can be very powerful if the fundamental models can be integrated into the algorithm
 - Top-down training should be combined with bottom-up data representation and fundamental model

Summary

- Quality of Training Data Set
 - Emphasis of abstraction (retain the most relevant features)
 - Correct data labels
 - Filter out wrong/bad data from training set
 - Small set of high quality training is better than large set of bad training data
 - Manual prefiltering by human can drastically improve performance
- Custom Data Representation and Classifiers
 - Classifier that best fits the domain
 - Data context based modification
 - Default set of classifiers may never produce effective results
 - Application/Domain specific model integration may yield the best result
- Cloud Computing and Sensing Platform
 - Major problems with power, heat, and growing concerns for security
 - Need for fine-grained in-situ power and heat monitoring
 - Need for intelligent management

Current: Medical Research

Predicting Cancer based on Biomarkers

Research Challenges

High Complexity Data

- Traditionstall methods they heftechine tessusefulness
- A liener to bid ad fyredusting daten polyaitye petial by lating team amente ters
- Recursively correlate and remove largest parameter to amplify smaller

Data Quality and Quantity

- Possiblys infliege atted data af low for the healthey peopulation for training
- Aerheethtoolingifferænitiontingugvendthoutstessbeldtalatelongs
- Crottegcairegalacticiamabbotopselasoromolatohttehet uparbotatean for each person

Application-specific Knowledge

Bedegtatiologicavidendeassappointegritedingsrediation

Platform Related Research

- Rowien All gat versible firse in bowler Alight Perofoitorance and IVI orbite gesterns
- Skewnriityapiræbkærousrivtijt m 6 loittodrowithpuitgingtamed (Veofbileo Syptrementation)