- 1. Биссектриса угла A треугольника ABC пересекает его описанную окружность в точке L. Докажите, что BL = CL.
- 2. Биссектрисы треугольника ABC пересекают описанную окружность (ABC) в точках A_1 , B_1 , C_1 . Докажите, что высоты треугольника $A_1B_1C_1$ лежат на прямых AA_1 , BB_1 , CC_1 .
- 3. Точки A, B, C, D лежат на окружности. Точки M, N, K, L середины дуг AB, BC, CD, DA соответственно. Докажите, что $MK \perp NL$.
- 4. (Лемма Фусса) Окружности ω_1 и ω_2 пересекаются в точках A и B. Через точку A проведена прямая вторично пересекающая окружность ω_1 в точке A_1 и окружность ω_2 в точке A_2 . Точки B_1 и B_2 для прямой через точку B определяются аналогично. Докажите, что $A_1B_1 \parallel A_2B_2$.
- 5. В трапеции ABCD проведена окружность ω , проходящая через точки A и D. Окружность пересекает боковые стороны AB и CD (или их продолжения) в точках N и M соответственно. Докажите, что если точка пересечения прямых BM и CN равноудалена от точек A и D, то она лежит на окружности ω .
- 6. В остроугольном треугольнике *ABC* на высоте, проведённой из вершины *A*, выбрана точка *P*. Пусть B_1 и C_1 проекции точки *P* на прямые *AC* и *AB* соответственно.
 - (a) Докажите, что точки B, C, B_1 , C_1 концикличны.
 - (b)* Докажите, что отрезок, соединяющий проекции точек \mathcal{B}_1 и \mathcal{C}_1 , на прямые \mathcal{AB} и \mathcal{AC} соответственно, параллелен стороне \mathcal{BC} .
- 7. (а) (Точка Микеля треугольника) На сторонах AB, BC и AC треугольника ABC или их продолжениях, выбраны точки C_1 , B_1 и A_1 соответственно. Докажите, что окружности (AB_1C_1) , (A_1BC_1) и (A_1B_1C) пересекаются в одной точке.
 - (b)* (Точка Микеля четырехсторонника) Прямая ℓ пересекает прямые содержащие стороны треугольника AB, BC и AC в точках F, D, E соотвественно. Тогда окружности 4 окружности (ABC), (AFE), (BFD) и (CDE) имеют общую точку.
- 8. В треугольнике ABC точки B_4 и C_4 основания высот, проведенных из вершин B и C соответственно. Точка D проекция точки B_4 на сторону AB, точка E пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB_4 . Докажите, что $EC_4 \perp BB_4$.
- 9. На гипотенузе AC прямоугольного треугольника ABC во внешнюю сторону построен квадрат с центром в точке O. Докажите, что BO биссектриса угла ABC.

- 10. В треугольнике ABC угол A равен 60° . Биссектрисы треугольника BB_1 и CC_1 пересекаются в точке I. Докажите, что $IB_1 = IC_1$.
- 11. Прямая ℓ касается описанной окружности треугольника ABC в точке B. Точки A_1 и C_1 проекции точки $P \in \ell$ на прямые AB и BC соответственно. Докажите, что $A_1C_1 \perp AC$.
- 12. Продолжения противоположных сторон *AB* и *CD* вписанного четырехугольника *ABCD* пересекаются в точке *M*, а сторон *AD* и *BD* в точке *N*. Докажите, что биссектрисы углов *AMD* и *DNC* взаимно перпендикулярны.
- 13. Прямая проходяшая через точку A и центр O описанной окружности треугольника ABC, вторично пересекает описанную окружность в точке N. Докажите, что треугольники BON и CON равнобедренные.
- 14.* Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая ℓ касается окружностей ω_1 и ω_2 в точках P и Q соответственно (точка B^1 лежит внутри треугольника APQ). Прямая BP вторично пересекает ω_2 в точке T. Докажите, что AQ биссектриса угла LPAT.

¹Точка В называется точкой Шалтая треугольника APQ.