NOIP 模拟赛

时间: 2025 年 7 月 13 日 07:40 ~ 12:10

题目名称	六出祁山	水淹七军	煮酒论英雄	威震逍遥津
题目类型	传统题	传统题	传统题	传统题
目录	climb	graph	cycle	name
可执行文件名	climb	graph	cycle	name
输入文件名	climb.in	graph.in	cycle.in	name.in
输出文件名	climb.out	graph.out	cycle.out	name.out
测试点时限	1.0 秒	1.0 秒	2.0 秒	1.0 秒
内存限制	512 MB	512 MB	512 MB	512 MB
是否捆绑测试	否	否	否	否

提交源程序文件名

对于 C++	climb.cpp	graph.cpp	cycle.cpp	name.cpp
	' '	0 1 11	, , ,	

编译选项

对于 C++	-lm -std=c++14 -O2 -Wl,stack=998244353

注意事项与提醒(请选手务必仔细阅读)

- 1. 选手提交的源程序必须存放在**已建立**好的,且**带有样例文件和下发文件的**的文件夹中,文件名称与对应试题英文名一致;
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. C++ 中函数 main() 的返回值类型必须是 int,值必须为 0。
- 4. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 5. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。。
- 6. 程序可使用的栈空间大小与该题内存空间限制一致。
- 7. 在终端中执行命令 ulimit -s unlimited 可将当前终端下的栈空间限制放大,但你使用的栈空间大小不应超过题目限制。
- 8. 若无特殊说明,每道题的代码大小限制为 100KB。
- 9. 若无特殊说明,输入与输出中同一行的相邻整数、字符串等均使用一个空格分隔。
- 10. 输入文件中可能存在行末空格,请选手使用更完善的读入方式 (例如 scanf 函数) 避免出错。
- 11. 直接复制 PDF 题面中的多行样例,数据将带有行号,建议选手直接使用对应目录下的样例文件进行测试。

- 12. 使用 std::deque 等 STL 容器时,请注意其内存空间消耗。
- 13. 请务必使用题面中规定的的编译参数,保证你的程序在本机能够通过编译。此外不 **允许在程序中手动开启其他编译选项**,一经发现,本题成绩以 0 分处理。

NOIP 模拟赛 1 六出祁山 (climb)

六出祁山 (climb)

【题目描述】

臣亮五出祁山,未得寸土,负罪非轻。今臣复统全师,再出祁山,誓竭力尽心,剿灭 汉贼,克复中原,鞠躬尽瘁,死而后已!

诸葛丞相在第六次北伐的路上遇到了 n 座大山排成一排,编号从 1 到 n 。每座山有高度 h_i 。

诸葛丞相精通奇门遁甲之术,能用法术移动山石。一次操作中,丞相选定一座山 $2 \le i \le n-1$,令 $h_i \leftarrow h_i-1$ 或 $h_i \leftarrow h_i+1$ 。同时,操作规定不能把山的高度修改为负数。特别注意:操作不能改变第一座山和最后一座山的高度!

爬山艰辛劳累,为了保存蜀汉军士的体力,以求兴复汉室,还于旧都,诸葛丞相要求操作结束后任意相邻两座山的高度差绝对值不大于 d 。即 $\forall 1 \leq i < n, |h_i - h_{i+1}| \leq d$ 。求达到这一条件的最小操作次数。如果无解,输出 -1 。

【输入格式】

从文件 climb.in 中读入数据。

第一行两个整数 n 和 d ,分别表示山的个数以及合法的最大高度差。

第二行 n 个整数 h_i ,表示每座山的初始高度。

【输出格式】

输出到文件 climb.out 中。

输出一个整数,表示最小的操作次数。若无解,输出-1。

【样例输入 1】

1 4 2

■ 13. 74144 3/1 ■

【样例输出 1】

3 0 6 3

1

NOIP 模拟赛 1 六出祁山 (climb)

【样例输入 2】

3 1

1

2 6 4 0

【样例输出 2】

1 -1

【测试点约束】

对于 10% 的数据, $2 \le n \le 10, 0 \le d, h_i \le 10$

对于 30% 的数据, $2 \le n \le 300, 0 \le d, h_i \le 300$

对于 100% 的数据, $2 \le n \le 300, 0 \le d, h_i \le 10^9$

NOIP 模拟赛 2 水淹七军 (graph)

水淹七军 (graph)

【题目描述】

夜半征鼙响震天,襄樊平地作深渊。关公神算谁能及,华夏威名万古传。

武圣关羽水淹七军,威震华夏,生擒了曹魏大将庞德和于禁。

关公所用的襄樊地区地图可以看作一张 n 个点 m 条边的无向图 **(不保证连通)**。现在关公要放水淹掉襄樊,就要对每条边确定一个方向。使其成为有向图。

为了尽快抓住曹魏士兵,关公希望定向后形成的有向图中,最长路径的长度尽可能小。现在关公将这个艰巨的任务交给你,请你输出最长路径长度的最小值,并输出每条边的方向。(图上一条路径的长度该为路径所经过的边的数量)

【输入格式】

从文件 graph.in 中读入数据。

第一行两个正整数 n 和 m , 分别表示点和边的数量。

之后 m 行,每行两个正整数 x_i, y_i 表示第 i 条无向边所连接的两个点。

保证图上没有自环, 但是不保证图上不存在重边, 也不保证连通。

【输出格式】

输出到文件 graph.out 中。

第一行输出一个整数,表示最长路径长度的最小值。

然后输出 m 行,每一行两个整数 u_i, v_i 。表示原来的第 i 条边定向为 $u_i \rightarrow v_i$ 。若方案不唯一,输出任意一组方案。

注意:本题使用 Special Judge,只要输出的定向方案对应的最长路径长度等于第一行输出的值,且该值为最优解,则认为答案正确。

【样例输入 1】

```
1 3 3 2 1 2 3 4 3 1
```

NOIP 模拟赛 2 水淹七军 (graph)

【样例输出 1】

```
1 2 2 2 3 4 1 3
```

【样例解释 1】

最优定向方案如下:

最长路径: $1 \rightarrow 2 \rightarrow 3$

【样例输入 2】

```
1 5 6
2 1 2
3 2 3
4 3 4
5 4 1
6 1 3
7 4 2
```

NOIP 模拟赛 2 水淹七军 (graph)

【样例输出 2】

```
      1
      3

      2
      1
      2

      3
      2
      3

      4
      4
      3

      5
      1
      4

      6
      1
      3

      7
      4
      2
```

【样例解释 2】

最优定向方案如下:

最长路径: $1 \rightarrow 4 \rightarrow 2 \rightarrow 3$

【测试点约束】

对于 20% 的数据, $2 \le n \le 10, 0 \le m \le 10$ 。

对于 100% 的数据, $1 \le n \le 16, 0 \le m \le 1000, 1 \le x_i, y_i \le n$ 。

煮酒论英雄 (cycle)

【题目描述】

"今天下英雄,唯使君与操尔。"

曹操与刘备在许都青梅煮酒论英雄,成就千古佳话。有一段野的不能再野的野史记载,曹操为了检验刘备智力是否正常,和刘备玩了这样一个游戏。

曹操的梅子有两种颜色,蓝色的用 B 表示,绿色的用 G 表示。现在曹操取出了若干个梅子 (数量未知,且至少有 2 个),在桌上摆成一个环形,这个环上每个梅子都是一个字符 B 或 G 。

阴险狡诈的曹阿瞒把梅子藏起来,然后告诉了刘备 n 条线索。每一条线索是一个字符串 s_i ,由 B 和 G 构成,表示这个环形中,存在连续的一段子串(从一个位置出发,向**顺时针或逆时针方向**走了若干步所经过的所有字符构成的字符串,**可能会绕很多圈**),这段子串与 s_i 相同。

现在刘备有了这 n 个线索,曹操要求他算出符合这 n 个条件的环形中,最少有几个梅子。刘备身为汉室宗亲,不想给老刘家丢脸,请你帮他写一个程序,输出环形中梅子个数的最小值。

【输入格式】

从文件 cycle.in 中读入数据。

第一行包含一个正整数 n , 表示线索个数。

下面 n 行每行一个字符串 s_i , 由 B 和 G 构成。表示第 i 个线索对应的子串。

【输出格式】

输出到文件 cycle.out 中。

输出一行一个正整数,表示环形中梅子个数的最小值。(已知梅子个数至少为 2!)

【样例输入 1】

1 3

2 BGGB

3 BGBGG

4 GGGBGB

【样例输出 1】

1 9

【样例解释 1】

最优方案: GGGBGBGGB (首尾相连)

从位置 6 开始,向右长度为 4 得到 BGGB

从位置 4 开始,向右长度为 5 得到 BGBGG

从位置 1 开始,向右长度为 6 得到 GGGBGB

【样例输入 2】

1 2

2 BGGGBBBGG

3 GBBBG

【样例输出 2】

1 6

【样例解释 2】

最优方案: BGGGBB (首尾相连)

从位置 1 开始,向右长度为 9 得到 BGGGBBBGG

从位置 2 开始, 向左长度为 5 得到 GBBBG

【测试点约束】

对于 10% 的数据, n=1。

对于 30% 的数据, $1 \le n \le 16, 1 \le |s_i| \le 100$ 。

对于 100% 的数据, $1 \le n \le 16, 1 \le |s_i| \le 2 \times 10^4$ 。

威震逍遥津 (name)

【题目描述】

八百铁骑踏江去,十万吴兵丧胆还。虎啸逍遥震千里,江东碧眼犹梦惊!

三国时期,孙权多次带兵攻打合肥未果。在逍遥津一役,张辽带领八百名骑兵突破了十万吴兵的防线,杀到孙权帐下。后来江东的小孩子们听见"张辽来了",吓得夜里都不敢啼哭。这就是"张辽止啼"的典故。孙权反思自己亲自领兵送人头的行为之后,决定去安抚东吴的小孩子们。孙权需要给小孩子们起名字。

一个小孩的名字是一个字符串,由'A'-'Z'和'a'-'z'构成。孙权通过如下规则给小孩取名:

- 初始时,字符串为"S"。
- 江东的百姓们制定了 *n* 个规则,每个规则规定一个大写字母可以转换成一个字符 串,例如'A'->"abCd"。表示每次操作可以从当前字符串中取出一个大写字母,按 照规则将其替换为对应字符串。
- **要求最后得出的字符串不含大写字母**。(大写字母比较大,会让小孩子联想起高大 威猛的张辽,所以小孩子们看到大写字母就会被吓掉半条命。)

现在给定 n 个规则和一个整数 l , 求通过任意次变换得到的长度恰好为 l 的字符串中,字典序最小的,并输出该字符串。

【输入格式】

从文件 name.in 中读入数据。

第一行两个整数 n,l,表示规则的个数和目标字符串的长度。

接下来 n 行每行输入一个大写拉丁字母 c_i ,后面一个等号"=",再后面一个字符串 s_i 。表示第 i 条规则为 $c_i \rightarrow s_i$

所有 s_i 由大写和小写的拉丁字母构成 $(s_i$ 可以为空)。

【输出格式】

输出到文件 name.out 中。

输出一个长度为l的字符串,表示能通过任意次操作得到的字典序最小的、长度为l的字符串。

如果不存在长度为 l 的字符串,输出"-"(双引号不输出)。

特别提醒: 当答案为空串时,输出一个空行。

【样例输入 1】

```
1 4 3
2 A=a
3 A=
4 S=ASb
5 S=Ab
```

【样例输出 1】

1 abb

【样例解释 1】

$$"S" \rightarrow "ASb" \rightarrow "AAbb" \rightarrow "aAbb" \rightarrow "abb"$$
 (1)

【样例输入 2】

```
1 4 5
2 A=aB
3 A=b
4 B=SA
5 S=A
```

【样例输出 2】

1 aabbb

【样例解释 2】

$$"S" \rightarrow "A" \rightarrow "aB" \rightarrow "aSA" \rightarrow "aAA" \rightarrow "aaBb"$$
 (2)

$$\rightarrow$$
 "aaSAb" \rightarrow "aaAAb" \rightarrow "aabbb" (3)

【测试点约束】

对于 10% 的数据, $|s_i|=1$ 。 对于另外 20% 的数据, $1 \le n \le 5$ 。 对于 100% 的数据, $1 \le n \le 50, 0 \le l, |s_i| \le 20$ 。