PCC173/BCC463 - Otimização em Redes

Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

Conteúdo

- Modelagem de Problemas Clássicos
- Exemplos de Modelagem de Problemas de PL Contínua
- 3 Exemplos de Modelagem de Problemas de PL Inteira com Possibilidade de Aproximação Contínua
- Exemplos de Modelagem de Problemas de PL Inteira sem Aproximação Contínua

Aviso

Fonte

Este material é baseado no livro

▶ Goldbarg, M. C., & Luna, H. P. L. (2005). Otimização combinatória e programação linear: modelos e algoritmos. Elsevier.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

O Problema da Mochila 0-1

Dadas uma mochila de capacidade W e uma lista de n itens distintos e únicos (enumerados de 1 a n), cada um com um peso w_1, w_2, \ldots, w_n e um valor v_1, v_2, \ldots, v_n , maximizar o valor carregado na mochila, respeitando sua capacidade.

O Problema da Mochila 0-1

Dadas uma mochila de capacidade W e uma lista de n itens distintos e únicos (enumerados de 1 a n), cada um com um peso w_1, w_2, \ldots, w_n e um valor v_1, v_2, \ldots, v_n , maximizar o valor carregado na mochila, respeitando sua capacidade.

Dados e Variáveis

- \triangleright Capacidade da mochila W;
- pesos $w_i, j = 1, 2, ..., n$;
- ▶ valores $v_i, j = 1, 2, ..., n$;
- ightharpoonup variáveis de decisão $x_j, j = 1, 2, \dots, n$.

O Problema da Mochila 0-1

Dadas uma mochila de capacidade W e uma lista de n itens distintos e únicos (enumerados de 1 a n), cada um com um peso w_1, w_2, \ldots, w_n e um valor v_1, v_2, \ldots, v_n , maximizar o valor carregado na mochila, respeitando sua capacidade.

$$\max z = \sum_{j=1}^{n} v_j x_j$$

$$sujeito \ a:$$

$$\sum_{j=1}^{n} w_j x_j \le W$$

$$x_j \in \{0, 1\}, \ j = 1, 2, \dots, n$$

O Problema da Mochila 0-1

Consideremos a seguinte instância do Problema da Mochila 0-1:

Item	$ x_1 $	x_2	x_3	x_4	x_5
	52				7
Valor	100	60	70	15	8

Utilizando estes dados no modelo, temos:

$$max \ z = 100x_1 + 60x_2 + 70x_3 + 15x_4 + 8x_5$$

$$sujeito \ a:$$

$$52x_1 + 23x_2 + 35x_3 + 15x_4 + 7x_5 \le 60$$

$$x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$$

Bin Packing

Dados um conjunto *Itens* de objetos diferentes, cada um com volume w_j , e um conjunto *Caixas* de caixas de volume V, empacotar todos os objetos minimizando o número de caixas.

Bin Packing

Dados um conjunto *Itens* de objetos diferentes, cada um com volume w_j , e um conjunto *Caixas* de caixas de volume V, empacotar todos os objetos minimizando o número de caixas.

Dados e Variáveis

- ightharpoonup volume $w_i, \ \forall j \in Itens;$
- volume V das caixas;
- $\triangleright y_i$ indica a utilização da caixa i;
- $\triangleright x_{ij}$ indica se o item j é colocado na caixa i.

Bin Packing

$$\min \sum_{i \in Caixas} y_i \tag{1}$$

sujeito a:

$$\sum_{i \in Caixas} x_{ij} = 1, \ \forall j \in Itens$$
 (2)

$$\sum w_j x_{ij} \le V_i y_i, \ \forall i \in Caixas$$
 (3)

$$j \, \in \, Itens$$

$$x_{ij} \in \{0,1\}, \forall i \in Caixas, \ \forall j \in Itens$$

$$y_i \in \{0, 1\}, \forall i \in Caixas \tag{5}$$

(4)

Bin Packing

Consideremos a seguinte instância do $\mathit{Bin\ Packing}$: V=1 e

Objeto	1	2	3	4	5	6	7
Volume	0,2	0,5	0,4	0,7	0,1	0,3	0,8

Utilizando estes dados no modelo, temos:

$$min \ y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7$$
 $sujeito \ a:$.

 $y_1, y_2, y_3, y_4, y_5, y_6, y_7 \in \{0, 1\}$

Exemplo 1

Uma metalúrgica deseja maximizar sua receita bruta. A tabela abaixo indica a proporção de cada material na mistura para obtenção de uma tonelada das ligas passíveis de fabricação.

O preço está cotado em Reais, e as restrições de disponibilidade estão expressas em toneladas.

	Liga Especial de Baixa Resistência	Liga Especial de Alta Resistência	Disponibilidade de Matéria Prima
	Daixa Resistencia	Alta Resistencia	de Materia Frima
Cobre	0,5	0,2	16
Zinco	0,25	0,3	11
Chumbo	0,25	0,5	15
Preço de Venda	3.000	5.000	

Exemplo 1

As variáveis de decisão x_i indicam quantas toneladas de cada liga serão produzidas (i = 1 indica baixa resistência e i = 2 indica alta resistência).

A função objetivo visa maximizar o preço de venda da produção das ligas de baixa e alta resistência.

As restrições são relativas à disponibilidade dos metais que compõem as ligas.

Por fim, as variáveis não podem assumir valores negativos, portanto, adicionamos restrições de não-negatividade.

Exemplo 1

$$max \ 3000x_1 + 5000x_2 \tag{1}$$

sujeito a:

$$0,5x_1+0,2x_2 \le 16$$

$$0,25x_1+0,3x_2 \le 11$$

$$0,25x_1+0,5x_2 \le 15$$

$$x_1 \ge 0$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$
(5)

(2)

(3)

(4)

Exemplo 2

Um sitiante está planejando sua estratégia de plantio para o próximo ano, visando o maior lucro. Ele deseja cultivar trigo, arroz e milho e sabe de antemão qual é a produtividade de sua terra para cada uma das culturas, reportada na tabela abaixo.

	Produtividade	Lucro por		
	em kg por m^2	kg de produção		
Trigo	0,2	10,8 centavos		
Arroz	0,3	4,2 centavos		
Milho	0,4	2,03 centavos		

Por falta de um local de armazenamento próprio, a produção máxima está limitada a 60 toneladas. A área cultivável do sítio é de $200.000m^2$.

Por fim, para atender as demandas do próprio sítio, é imperativo que se plante $400m^2$ de trigo, $800m^2$ de arroz e $10.000m^2$ de milho.

Exemplo 2

As variáveis de decisão x_i indicam a área em m^2 a ser cultivada a cultura do tipo $i \in \{t\text{-trigo}, a\text{-arroz}, m\text{-milho}\}.$

A função objetivo visa maximizar o lucro com a produção, para tanto, multiplicamos a produtividade pelo lucro previsto.

As restrições são agrupadas em três conjuntos:

- Restrições associadas à demanda do sítio;
- Restrições associadas à área total disponível;
- Restrição associada ao armazenamento.

Novamente, as variáveis não podem assumir valores negativos, portanto, adicionamos restrições de não-negatividade.

Exemplo 2

$$max \ 2, 16x_t + 1, 26x_a + 0, 812x_m \tag{1}$$

sujeito a:

$$x_t \ge 400 \tag{2}$$

$$x_a \ge 800 \tag{3}$$

$$x_m \ge 10.000$$

$$x_t + x_a + x_m \le 200.000$$

$$0, 2x_t + 0, 3x_a + 0, 4x_m \le 60.000 \tag{6}$$

$$x_a \ge 0, x_t \ge 0, x_m \ge 0 \tag{7}$$

Exemplos de Modelagem de Problemas de PL Inteira com Possibilidade de Aproximação Contínua

Exemplo 1

Uma fábrica de móveis de madeira possui em seu portfólio escrivaninhas, mesas, armários e prateleiras. A composição de cada móvel é descrita na tabela abaixo, que também apresenta o valor de revenda e a disponibilidade de cada material.

	Consumo por unidade de produto (m^2)			Estoque (m^2)	
	Escrivaninha	Mesa	Armário	Prateleira	
Tábua	1	1	1	4	250
Prancha	0	1	1	2	600
Painel	3	2	4	0	500
Valor de Revenda	100	80	120	20	

O problema consiste em maximizar a receita com a venda de móveis.

Exemplos de Modelagem de Problemas de PL Inteira com Possibilidade de Aproximação Contínua

Exemplo 1

As variáveis de decisão x_i indicam a quantidade de ser produzida do móvel do tipo $i \in \{1\text{-escrivaninha}, 2\text{-mesa}, 3\text{-armário}, 4\text{-porta}\}.$

A função objetivo visa maximizar o lucro com a produção.

As restrições são relacionadas à disponibilidade de material.

Novamente, as variáveis não podem assumir valores negativos, portanto, adicionamos restrições de não-negatividade.

Exemplos de Modelagem de Problemas de PL Inteira com Possibilidade de Aproximação Contínua

Exemplo 1

$$max \ 100x_1 + 80x_2 + 120x_3 + 20x_4 \tag{1}$$

sujeito a:

$$x_1 + x_2 + x_3 + 4x_4 \le 250 \tag{2}$$

$$x_2 + x_3 + 2x_4 \le 600$$

$$3x_1 + 2x_2 + 4x_3 \le 500 \tag{4}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$$
 (5)

(3)

Exemplos de Modelagem de Problemas de PL Inteira sem Aproximação Contínua

Exemplo 1

Um hospital trabalha com atendimento variável em demanda 24 horas por dia, segundo a tabela abaixo.

Turno	Horário	Número Mínimo de Enfermeiros
1	08:00-12:00	50
2	12:00-16:00	60
3	16:00-20:00	50
4	20:00-00:00	40
5	00:00-04:00	30
6	04:00-08:00	20

A jornada de trabalho de um enfermeiro dura 8 horas consecutivas, exceto no turno 5, cuja jornada é de apenas 4 horas. A remuneração para o turno 4 possui uma gratificação de 50%. O problema consiste em minimizar o gasto com a mão de obra.

Exemplos de Modelagem de Problemas de PL Inteira sem Aproximação Contínua

Exemplo 1

As variáveis de decisão x_i indicam a quantidade de enfermeiros que iniciam sua jornada no turno i.

A princípio, os enfermeiros recebem a mesma remuneração, o que nos permite minimizar o número de enfermeiros. Entretanto, deve-se ponderar os enfermeiros do turno 4 levando em consideração a gratificação que recebem e também os enfermeiros do turno 5, que recebem o dobro por hora de trabalho.

As restrições são relacionadas ao número mínimo de enfermeiros por turno.

As variáveis não podem assumir valores negativos ou contínuos, portanto, adicionamos restrições de não-negatividade e de integralidade.

Exemplos de Modelagem de Problemas de PL Inteira sem Aproximação Contínua

Exemplo 1

$$min \ x_1 + x_2 + x_3 + 1,5x_4 + 2x_5 + x_6 \tag{1}$$

sujeito a:

$$x_6 + x_1 \ge 50 \tag{2}$$

$$x_1 + x_2 \ge 60$$

$$x_2 + x_3 \ge 50$$

$$x_3 + x_4 \ge 40$$

$$x_5 \ge 30$$

$$x_6 \ge 20$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in \mathcal{Z}^+$$

Dúvidas?

