Series Polynomials

Dyson

27th October, 2021

The challenge question in Exercise 3B of the Edexcel AS and A Level Further Maths Core book is about series sums of polynomials.

Part a of this question asks for polynomials $f_2(x)$, $f_3(x)$, $f_4(x)$ such that for every $n \in \mathbb{N}$, n > 1,

$$\sum_{r=1}^{n} f_2(r) = n^2$$

$$\sum_{r=1}^{n} f_3(r) = n^3$$

$$\sum_{r=1}^{n} f_4(r) = n^4$$

1

Finding these polynomials reveals a very interesting pattern.

1 Finding Polynomials

Throughout this paper, all $n \in \mathbb{N}$, n > 1.

Let's first establish some basic lemmas about series.

Lemma 1
$$\sum_{r=1}^{n} (f(r) + g(r)) = \sum_{r=1}^{n} f(r) + \sum_{r=1}^{n} g(r)$$

Lemma 2
$$\sum_{r=1}^{n} kf(r) = k \sum_{r=1}^{n} f(r)$$

Lemma 3
$$\sum_{r=1}^{n} 1 = n$$

Lemma 4
$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

Lemma 5
$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

Lemma 6
$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

1.1 Finding $f_2(r)$

We want a polynomial $f_2(r)$ such that $\sum_{r=1}^n f_2(r) = n^2$.

We already have, by Lemma 4,

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1) = \frac{1}{2}(n^2 + n)$$

We need to get rid of the $\frac{1}{2}$, which we can do by multiplying by 2 to get

$$2\sum_{r=1}^{n} r = \sum_{r=1}^{n} 2r = n^2 + n$$

Then, we just need to get rid of the n.

We know, by Lemma 3, that $\sum_{r=1}^{n} 1 = n$, so

$$\sum_{r=1}^{n} 2r - \sum_{r=1}^{n} 1 = \sum_{r=1}^{n} (2r - 1) = n^{2}$$
$$\therefore f_{2}(r) = 2r - 1$$

1.2 Finding $f_3(r)$

Next, we want a polynomial $f_3(r)$ such that $\sum_{r=1}^n f_3(r) = n^3$.

Similarly to with $f_2(r)$, by Lemma 5, we already have

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$
$$= \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$
$$= \frac{1}{3}\left(n^3 + \frac{3}{2}n^2 + \frac{1}{2}n\right)$$

We can then multiply by 3 to remove the $\frac{1}{3}$ and get

$$3\sum_{r=1}^{n} r^2 = \sum_{r=1}^{n} 3r^2 = n^3 + \frac{3}{2}n^2 + \frac{1}{2}n$$

To get rid of the $\frac{1}{2}n$, we can just do

$$\sum_{r=1}^{n} 3r^2 - \sum_{r=1}^{n} \frac{1}{2} = \sum_{r=1}^{n} \left(3r^2 - \frac{1}{2} \right) = n^3 + \frac{3}{2}n^2$$

We know that $\sum_{r=1}^{n} f_2(r) = n^2$, so we simply need to subtract $\frac{3}{2}f_2(r)$ from our polynomial to get rid of the resultant $\frac{3}{2}n^2$.

$$3r^{2} - \frac{1}{2} - \frac{3}{2}(2r - 1) = 3r^{2} - 3r + 1$$
$$\therefore f_{3}(r) = 3r^{2} - 3r + 1$$

1.3 Finding $f_4(r)$

Next, we want a polynomial $f_4(r)$ such that $\sum_{r=1}^n f_4(r) = n^4$.

We know, by Lemma 6, that

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$
$$= \frac{1}{4} (n^4 + 2n^3 + n^2)$$

We can multiply by 4 to get

$$4\sum_{r=1}^{n} r^{3} = \sum_{r=1}^{n} 4r^{3} = n^{4} + 2n^{3} + n^{2}$$

We can then get n^4 on its own by subtracting $2f_3(r)$ and $f_2(r)$ from $4r^3$.

$$4r^{3} - 2(3r^{2} - 3r + 1) - (2r - 1)$$

$$= 4r^{3} - 6r^{2} + 6r - 2 - 2r + 1$$

$$= 4r^{3} - 6r^{2} + 4r - 1$$

$$\therefore f_{4}(r) = 4r^{3} - 6r^{2} + 4r - 1$$

2 Finding Patterns

We can find $f_1(r)$, where $\sum_{r=1}^n f_1(r) = n^1 = n$ to trivially be 1.

These are our polynomials:

$$f_1(r) = 1$$

$$f_2(r) = 2r - 1$$

$$f_3(r) = 3r^2 - 3r + 1$$

$$f_4(r) = 4r^3 - 6r^2 + 4r - 1$$

After looking at these for a while, we can notice a few things. Firstly, the constants are always ± 1 , and the signs of these constants alternate with increasing degrees of polynomial. In fact, all the signs alternate.

Secondly, we can notice that the first term of $f_a(r)$ is always of the form ar^{a-1} .

However, the most interesting thing to notice with these polynomials is that the coefficients look like binomial expansions of $(r-1)^a$, albeit with the leading term removed and the signs flipped.

We can continue this pattern to make a conjecture about $f_5(r)$.

Conjecture 1
$$f_5(r) = 5r^4 - 10r^3 + 10r^2 - 5r + 1$$

To find a general form, we have to think about how we go from $(r-1)^a$ to these polynomials.

3

Lets look at the example of $f_4(r)$.

$$(r-1)^4 = r^4 - 4r^3 + 6r^2 - 4r + 1$$

We have the change the signs of all of these, so we get

$$-(r-1)^4 = -r^4 + 4r^3 - 6r^2 + 4r - 1$$

Then we have to remove the leading $-r^4$ and we get $-(r-1)^4 + r^4$, or more simply, $r^4 - (r-1)^4$.

This form of $r^a - (r-1)^a$ gives the results seen previously for $f_a(r)$, so we can conjecture that this pattern continues for all $a \in \mathbb{Z}^+$.

 \mathbb{Z}^+ is simply the set of positive integers, not including 0. This is simpler than writing $a \in \mathbb{N}, a > 0$.

Rather than conjecturing about $f_a(r)$, we want to conjecture about its sum to n.

Conjecture 2
$$\forall a, n \in \mathbb{Z}^+, n > 1, \sum_{r=1}^{n} (r^a - (r-1)^a) = n^a$$

2.1 Proving Conjecture 1

In order to prove Conjecture 1, we need to know the formula for $\sum_{r=1}^{n} r^4$. Wolfram Alpha says:

Lemma 7
$$\sum_{r=1}^{n} r^4 = \frac{1}{30}n(n+1)(2n+1)(3n^2+3n-1)$$

This can then be expanded to give

$$\frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n$$
$$= \frac{1}{5}\left(n^5 + \frac{5}{2}n^4 + \frac{5}{3}n^3 - \frac{1}{6}n\right)$$

We can multiply by 5 to get

$$5\sum_{r=1}^{n}r^{4}=\sum_{r=1}^{n}5r^{4}=n^{5}+\frac{5}{2}n^{4}+\frac{5}{3}n^{3}-\frac{1}{6}n$$

Now, we just need to get rid of the other terms to get a polynomial $f_5(r)$ such that $\sum_{r=1}^{n} f_5(r) = n^5$.

$$f_5(r) = 5r^4 - \frac{5}{2}f_4(r) - \frac{5}{3}f_3(r) + \frac{1}{6}f_1(r)$$

$$= 5r^4 - \frac{5}{2}(4r^3 - 6r^2 + 4r - 1) - \frac{5}{3}(3r^2 - 3r + 1) + \frac{1}{6}$$

$$= 5r^4 - 10r^3 + 10r^2 - 5r + 1$$

This proves Conjecture 1.

However, to prove Conjecture 2, I think I need to find more patterns.

3 Finding Patterns (again)

Let's look at sums of powers of r. By Lemmas 3 to 7, we have

$$\sum_{r=1}^{n} r^{0} = n$$

$$= n$$

$$\sum_{r=1}^{n} r^{1} = \frac{1}{2}n(n+1)$$

$$= \frac{1}{2}n^{2} + \frac{1}{2}n$$

$$= \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n$$

$$= \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n$$

$$= \frac{1}{4}n^{4} + \frac{1}{2}n^{3} + \frac{1}{4}n^{2}$$

$$\sum_{r=1}^{n} r^{4} = \frac{1}{30}n(n+1)(2n+1)\left(3n^{2} + 3n - 1\right) = \frac{1}{5}n^{5} + \frac{1}{2}n^{4} + \frac{1}{3}n^{3} - \frac{1}{30}n$$

I can't see much of a pattern here, but the first term of $\sum_{r=1}^{n} r^{b}$ always seems to be $\frac{1}{b+1}n^{b+1}$ and the second term always seems to be $\frac{1}{2}n^{b}$, except in the case of b=0.

I don't think I would able to find a formula for $\sum_{r=1}^{n} r^{b}$ on my own, but in doing some research on this topic, I found this wiki page on brilliant.org about sums which mentions Faulhaber's formula. I shall rewrite it here.

$$\sum_{r=1}^{n} r^{b} = \frac{1}{b+1} \sum_{j=0}^{b} (-1)^{j} {b+1 \choose j} B_{j} n^{b+1-j}$$

where B_j is the jth Bernoulli number.

In doing further research, I found that this is were the Bernoulli numbers where found by Jakob Bernoulli in $Ars\ Conjectandi$, published in 1713. He was trying to find a general formula for $\sum_{r=1}^{n} r^{b}$ and found these numbers. He could not relate them to anything, and de Moivre named them after him.[1]

Not only that, but Jakob Bernoulli mentioned Faulhaber by name in *Ars Conjectandi*. People have wondered about this problem long before me, and this is where the famous Bernoulli numbers originally came from.

Bernoulli would have written $\sum_{r=1}^{n} r^{b}$ as

$$\sum_{r=1}^{n} r^{b} = \sum_{r=0}^{b} \frac{B_{r}}{r!} b^{r-1} n^{b-r+1}$$

where $p^{\underline{q}}$ is the falling factorial $p \times (p-1) \times (p-2) \times \cdots \times (p-q+1)$.

4 Proving Conjecture 2

Proving Conjecture 2 will undoubtedly be hard, and will definitely require knowledge of the Bernoulli numbers. Unfortunately, there seems to be no easy formula for B_k . The Bernoulli numbers are usually either defined with a recurrence relation, or with a generating function, or in terms of things like the Riemann Zeta function. So, nothing friendly. Unfortunately, it seems like proving this conjecture is a bit out of my reach currently. But I posited it, and I want to prove it, even if it takes ages.

References

 $[1] \quad \textit{Bernoulli number}. \ \texttt{URL: https://en.wikipedia.org/wiki/Bernoulli_number}.$