Question 8

1. What does this algorithm compute?

Answer: It computes $1 + 2^2 + 3^2 + ... + n^2$

2. What is the input size?

Answer: n

3. What is the basic operation?

Answer: Multiplication

4. Set up a recurrence and a initial condition and find the number of times the basic operation is executed.

Answer:

$$M(n) = M(n-1) + 1, M(1) = 0$$

Solution: $M(n) = n - 1$

5. What is the efficiency class of this algorithm.

Answer: $\Theta(n)$

Question 9

a. The recurrence relation with initial condition is

$$Q(n) = Q(n-1) + 2n - 1$$
 for $n > 1$, $Q(1) = 1$

Computing the first few terms of the sequence yields the following:

$$Q(2) = Q(1) + 2 \times 2 - 1 = 1 + 2 \times 2 - 1 = 4;$$

$$Q(3) = Q(2) + 2 \times 3 - 1 = 4 + 2 \times 3 - 1 = 9;$$

$$Q(4) = Q(3) + 2 \times 4 - 1 = 9 + 2 \times 4 - 1 = 16;$$

It appears that $Q(n) = n^2$. (We check this hypothesis by substituting this formula into the recurrence equation and the initial condition. The left hand side yields $Q(n) = n^2$. The right hand side yields $Q(n-1) + 2n - 1 = (n-1)^2 + 2n - 1 = n^2$.)

b. The recurrence relation with initial condition is

$$M(n) = M(n-1) + 1$$
 for $n > 1$, $M(1) = 0$.

Solving it by backward substitutions (it is almost identical to the factorial example – see Example 1 in the section) generates solution M(n) = n - 1.

c. Let C(n) be the number of additions and subtractions made by the algorithm. The recurrence with initial condition for C(n) is C(n) = C(n-1)+3 for n > 1, C(1) = 0. Solving it by backward substitutions generates solution C(n) = 3(n-1).

Note: If we dont include in the count the subtractions needed to decrease n, the recurrence will be C(n) = C(n-1) + 2 for n > 1, C(1) = 0. The solution is C(n) = 2(n-1). This is also correct.

1

Question 10

1. What does the algorithm compute?

Answer: Search (binary search).

2. How is the input size n expressed in terms of the parameters?

Answer: n = r - l + 1

3. Assume that after comparison of K with A[m], the algorithm can determine whether K is smaller than, equal to, or larger than A[m]. Set up a recurrence (with an initial condition) for the worst case of this algorithm. Solve the recurrence for $n=2^k$, and determine the Θ efficiency class.

Answer: Recurrence for the worst case: $C(n) = C(\lfloor n/2 \rfloor) + 1$, for n > 1, C(1) = 1

When $n = 2^k$, the recurrence is $C(2^k) = C(2^{k-1}) + 1$. By using the backward substitution method, we have $C(2^k) = C(2^{k-1}) + 1 = C(2^{k-2}) + 2 = \dots = C(2^{k-i}) + i$.

Or we can write as $C(n) = C(n/2) + 1 = C(n/2^2) + 2 = \dots$ and have $C(n) = C(n/2^i) + i$.

Let i=k. Use the initial condition, and use $k=\log_2 n$. We have $C(n)=1+k=1+\log_2 n\in\Theta(\log n)$

4. What is the Θ efficiency class when $n \neq 2^k$? Why?

Answer: According to the Smoothness Rule, the efficiency class is also $\Theta(\log n)$ when $n \neq 2^k$.