CS 5/7350 - Test#2 November 2, 2022

Name: Bingying Liang
ID: 48999397

- 1. [9 pts] Consider heaps stored in an array:
 - (a) How many swaps (maximum) may be required to insert an element into a heap stored as an array that currently has 3 integers?

Solution: 2

(b) How many swaps (maximum) may be required to delete an element into a heap stored as an array that currently has 9 integers?

Solution:

$$\lfloor \log_2 9 \rfloor = 3$$

(c) How many swaps (maximum) may be required to create a heap from an array of 15 integers?

Solution: 11

- 2. [6 pts] If a smallest last ordering has the largest degree when deleted of 13 and a terminal clique size of 11
 - (a) What is the maximum number of colors that might be required by the ordering?

Solution: 14

(b) What is the minimum number of colors that must be required by the graph?

Solution: 11

3. [8 pts] When computing n Choose r(nCr), we can use the recursive equation of

$$_{n}C_{r} =_{(n-1)} C_{(r)} +_{(n-1)} C_{(r-1)}$$

Note that $_{n}C_{0} = 1$ and $_{n}C_{n} = 1$

1

(a) Show pseudo code of how you would implement a nieve recursive function to compute ${}_{n}C_{r}$.

Solution:

```
choose(n,r) {
    // base case
    if (r == 0) {
        return 1;
    }

    if (n == 0) {
        return 1;
    }

    return 1;
}
```

(b) What is the approximate asymptotic bound of the function representing the running time of your code?

Solution:

$$\Theta(2^n)$$

(c) Add a table to your recursive function to improve the running time.

Solution:

```
T[n,r] set T[0,r] = 1
set T[n,0] = 1
choose(n,r) {
   if T[n,r] = choose(n-1,r) + choose(n-1,r-1);
      return T[n,r]
}
```

(d) What is the new asymptotic bound of the function representing the running time of your code?

Solution:

$$\Theta(rn)$$

4. [10 pts] Set up the table as shown in class for the Extended Euclidian Algorithm and compute 1/31 mod 12597

	A	В	Q	R	α	β
-1					1	0
	12597	31	406	11	0	1
	31	11	2	9	1	-406
	11	9	1	2	-2	813
	9	2	4	1	3	-1219
	2	1	2	0	-14	5689
	1	0	-	-	31	12597

$$(-14) \times (12599) + 31 \times 5689 = 1$$

 $((-14) \times (12599)) \mod 12599 + (31 \times 5689) \mod 12599 = 1$
 $(31 \times 5689) \mod 12599 = 1$
 $\therefore (\frac{1}{31} \times 31) \mod 12599 = 1$
 $\therefore \frac{1}{31} \mod 12599 = 5689 \mod 12599 = 5689$

5. [5 pts] Show the swaps required to make a MIN heap using the HEAPIFY algorithm from the following array. Use one swap for each row in the table. Add extra rows if needed.

Solution:

6. [8 pts] Setup the table to find the longest increasing sub-sequence of the following sequence: 2 5 9 6 1 7 4 8

Solution:

2	2							
5	2	5						
9	2	5	9					
6	2	5	6					
1	1	5	6					
7	1	5	6	7				
4	4	5	6	7				
8	4	5	6	7	8			

The longest incraseing subsequence is 2, 5, 6, 7, 8

7. [6 pts] Draw a graph and give a smallest last vertex ordering of that graph where the terminal clique is not the largest complete subgraph. Circle the vertex you wrote down FIRST in the ordering.

Solution:

8. [8 pts] Set up a table to compute the length of the Longest Common Subsequence for the following two strings:

	-	A	С	T	T	С	G	С	С
-	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1
T	0	0	1	2	2	2	2	2	2
A	0	1	1	2	2	2	2	2	2
C	0	1	2	2	2	3	3	3	3
G	0	1	2	2	2	3	4	4	4
A	0	1	2	2	2	3	4	4	4
C	0	1	2	2	2	3	4	5	5

The Longest Common Subsequence: C T C G C

9. [8 pts] Set up a table to compute the length of the Levenshtein Edit Distance for the following two strings:

Solution:

	-	A	С	T	T	С	G	С	C
-	0	1	2	3	4	5	6	7	8
C	1	2	1	2	3	4	5	6	7
T	2	2	2	1	2	3	4	5	6
A	3	2	3	2	2	3	4	5	6
С	4	3	2	3	3	2	3	3	5
G	5	4	3	3	4	3	2	3	4
A	6	5	4	4	4	4	3	3	4
С	7	6	5	5	5	4	4	4	3

The Levenshtein Edit: 1.remove A: CTTCGCC

- 2. replace T to A: CTACGCC3. replace C to A: CTACGAC
- 10. [8 pts] You have received a message that was compressed with LZW. Remember that A=65, B=66, C=67, and D=68. The dynamic part of the dictionary starts with entry 256. The message you received was

$$66\ 65\ 66\ 68\ 257\ 259\ 260$$

(a) What was the original message and what is your dictionary after decompression?

Dictionary
A = 65
B = 66
C = 67
D = 68
256 = BA
257 = AB
258 = BD
259 = DA
260 = ABD
261 = DAA

	start w	read k	entry	output	Dictionary add	next w
0	-	66	В	В		В
1	В	65	A	A	BA = 256	A
2	A	66	В	В	AB = 257	В
3	В	68	D	D	BD = 258	D
4	D	257	AB	AB	DA = 259	AB
5	AB	259	DA	DA	ABD = 260	DA
6	DA	260	ABD	ABD	DAA = 261	ABD
7						

The original message is: B, A, B, D, AB, DA, ABD

(b) Assuming 8 bits per character, how many bits were in the uncompressed message?

Solution:

$$11 \times 8 = 88 \ bits$$

(c) Assuming the last entry of your dictionary was 2047, how many bits were in the compressed message

Solution:

$$\log_2 (2047 + 1) = \log_2 2048 = 11$$

7 × 11 = 77 bits

(d) Why might a larger dictionary increase the size of the compressed file?

Solution: More bits per entry in the file.

- 11. [8 pts] The Levensthein Edit Distance determines the edit distance between two strings when Addition, Deletion and Substitution are allowed all at a cost of 1. Assume you have two strings: A and B. the i^{th} character of A is Ai and the j^{th} character of B is Bj.
 - (a) When considering the i^{th} character of A and the j^{th} character of B, what is the formula you would use for determining the value placed in the table at location i,j?

```
1  // base case
2  if (i == 0) {
3     T[i,j] = T[0, j];
4  }
5  if (j == 0) {
6     T[i,j] = T[i, 0];
7  }
8  if (Ai == Bj) {
9     T[i,j] = min{T[i-1,j]+1,T[i, j-1]+1, T[i-1,j-1]};
10 }else{
```

```
T[i,j] = min\{T[i-1,j]+1, T[i,j-1]+1,T[i-1,j-1]+1\};
12 }
```

You have been given a new, string processing system that requires 1 cycle to delete a character, 2 cycles to substitute a character and 1 cycle to add a character.

(b) When converting from string A to string B and considering the i^{th} character of A and the j^{th} character of B, what is the formula you would use for determining the value placed in the table at location i,j?

Solution:

```
// base case
if (i == 0) {
    T[i,j] = T[0, j];

}

if (j == 0) {
    T[i,j] = T[i, 0];

}

if (Ai == Bj) {
    T[i,j] = min{T[i-1,j]+1,T[i, j-1]+1, T[i-1,j-1]};

}else {
    T[i,j] = min{T[i-1,j]+1, T[i,j-1]+1, T[i-1,j-1]+2};
}
```

(c) Fill in the table to determine the minimum number of cycles required to convert from string A = S G P Z T to string B = T S Z T M

Solution:

	-	S	G	P	Z	T
-	0	1	2	3	4	5
T	1	2	3	4	5	4
S	2	1	2	3	4	5
Z	3	2	3	4	3	4
T	4	3	5	5	4	3
M	5	4	5	6	5	4

(d) Using your table above, what is the minimum number of cycles required to convert from string A = S G P Z T to string B = T S Z T M

Solution: 4

12. [8 pts] You have 3 different dice. Dice 1 has sides {1,2,3}. Dice 2 has sides {2,2,2,3,3,3,4,4,4} and Dice 3 has sides 2,3,3,4. How many ways can you roll a 9 with these three dice? Set up the table for the dynamic programming algorithm and fill in the complete columns for Dice 1 and Dice 2. You may only fill in as much as you wish for Dice 3.

Solution:

sum / Dices	Dice 1	Dice 1,2	Dice 1,2,3
1	1	0	0
2	1	0	0
3	1	3	0
4	0	6	0
5	0	9	3
6	0	6	12
7	0	3	24
8	0	0	30
9	0	0	24

- 13. [8 pts] You have 2 different dice that are not evenly weighted:
 - Dice 1 has sides 1,2,3 and a 10% chance of rolling a 1, a 40% chance of rolling a 2 and a 50
 - Dice 2 has sides 2,2,3,3,4,4 with a 15% chance for each 2, a 15% chance for each 3 and a 20% chance for each 4
 - What is the probability of rolling a 6 with these dice? Set up the table for
 - the dynamic programming algorithm and fill in the complete column for Dice 1 and Dice 2.

Solution:

	Die#1	Die #2	Die #1,#2
1	10%	0	0
2	40%	30%	0
3	50%	30%	3%
4	0	40%	15%
5	0	0	31%
6	0	0	31%
7	0	0	20%
Sum	1	1	1

The probaility of rolling a 6 with these dice is 31%.