实验四 差动放大电路

一、实验目的

- 1、熟悉差动放大器工作原理。
- 2、掌握差动放大器的基本测试方法。

二、原理简介

图 4-1 是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。它用晶体管恒流源代替发射极电阻 RE,可以进一步提高差动放大器抑制共模信号的能力。构成具有恒流源的差动放大器。

调零电位器 RP3 用来调节 2V1、2V2 管的静态工作点,使得输入信号 Vi=0 时,双端输出电压 Vo=0。晶体管恒流源为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模 电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。

图 4-1

三、实验内容及步骤

- 1、测量静态工作点。
- (1) 调零

将 Vi1 和 Vi2 输入端短路并接地,接通直流电源,调节电位器 Rp3,使双端(Vc1, Vc2)输出电压 Vo=0。

(2) 测量静态工作点

测量 2V1、2V2、2V3 各极对地电压,填入表 4.1 中。

表 4.1

对地电压	V_{c_1}	V_{c2}	V_{c3}	V_{b1}	$V_{\rm b2}$	$V_{\rm b3}$	V_{e1}	$V_{\rm e2}$	V_{e3}
测量值 (V)									

2、测量差模电压放大倍数。

在输入端分别加入直流电压信号 V_{id} =±0. 1V, 按表 4. 2 要求测量并记录,由测量数据算出单端和双端输出的电压放大倍数。注意先调好直流信号源的 0UT1 和 0UT2,使其输出分别为正 0. 1V 和负 0. 1V, 再接入 Vi1 和 Vi2。

3、测量共模电压放大倍数。

将输入端 Vi1、Vi2 短接,再接到直流信号源的输入端,信号源另一端接地。

直流信号源分别接 OUT1 和 OUT2,分别测量并填入表 4.2。由测量数据算出单端和双端输出的电压放大倍数。进一步算出共模抑制比:

CMRR=
$$\left| \frac{A^d}{A^c} \right|$$

表 4.2

松)	差模输入 Vi1=+0.1V, Vi2=-0.1V					共模输入						共模抑制	
输入信号 Vi 测量值		计算值		测量值			计算值			计算值			
测量及计算值	V_{c1}	V_{c2}	$V_{\circ {\overline{\mathcal{M}}}}$	$A_{\scriptscriptstyle \rm d1}$	$A_{\rm d2}$	A _{d 双}	V_{c_1}	V_{c2}	V _{o 双}	A_{c_1}	A_{c2}	A _C	CMRR
+0.1V													
-0.1V													

$$A_{d} = \frac{V_{o}}{V_{i}}, A_{c} = \frac{V_{o}}{V_{i}}$$

- 4、在实验板上组成单端输入的差放电路进行下列实验。
- (1) 在图 4-1 中将 Vi2 接地,组成单端输入差动放大器;从 Vi1 端接入信号源,测量单端及双端输出,填表 4.3 记录电压值。计算单端输入时的单端及双端输出的电压放大倍数,并与双端输入时的单端及双端差模电压放大倍数进行比较。
- (2) Vi2 接地,从 Vi1 端加人正弦交流信号 V_i=100mV, f=1KZ 分别测量、记录单端及双端输出电压,填入表 4-3 计算单端及双端的差模放大倍数。

注意:输入交流信号时,用示波器监视 Vc1、Vc2 波形,若有失真现象时,可减小输入电压值,使 Vc1、Vc2 都不失真为止。

表 4.3

输入信号		电压值		
测量计数值	Vc1	Vc2	Vo	放大倍数
直流+0.1V				
直流-0.1V				
正弦信号(100mV、				
1KHZ)				

四、实验器材

1、实验箱 2、数字万用表 3、函数信号发生器 4、交流毫伏表 5、双踪示波器

五、实验预习要求

- 1、计算图 4-1 的静态工作点(设 r_{bc} =3K, β =100)及电压放大倍数。
- 2、在图 4-1 基础上画出单端输入和共模输入的电路。

六、实验报告要求

- 1、根据实测数据计算图1电路的静态工作点,与预计计算结果相比较。
- 2、整理实验数据, 计算各种接法的 Ad, 并与理论计算值相比较。
- 3、计算实验步骤3中Ac和CMRR值。
- 4、总结差放电路的性能和特点。