Mathmatics Analysis

一个短篇

2024年01月31日

目录

1	自然数	2
	1.1 加法	. 2

1 自然数

1.1 加法

Exercise 1.1 证明自然数加法的结合律。

Proof: 对 b 进行数学归纳法,当 b=0 时,等式为 (a+0)+c=a+(0+c),由加法定义及加法的交换律可得 a+c=a+c,即 b=0 时得证。现归纳性地假设 (a+b)+c=a+(b+c),待证 $(a+\mathrm{succ}\ b)+c=a+(\mathrm{succ}\ b+c)$,根据交换律及加法定义可以将其化简为 $\mathrm{succ}\ (a+b)+c=a+\mathrm{succ}\ (b+c)$,进一步化简为 $\mathrm{succ}\ (a+b+c)=\mathrm{succ}\ (a+b+c)$,等式两边相等。

Exercise 1.2 证明引理 2.2.10。

Proof: 对 a 进行归纳法,当 a=1 时,succ b=1,式子可以写成 b+1=0+1,由消去 律可以得到 $b=0, b\in \mathbb{N}$,现归纳性地假设 $\forall a\in \mathbb{Z}^+, \exists b\in \mathbb{N}, \text{succ } b=a,$ 需证明 succ b=succ a,此时 $b=a, b\in \mathbb{N}$ 。

Exercise 1.3 证明命题 1.1 自然数的序的基本性质。

Exercise 1.4 证明命题 2.2.13 证明中标注了(为什么?)的三个命题。

Exercise 1.5 证明命题 2.2.14。