PSQF 4143: Section 5

Brandon LeBeau

Tester

- For the score distribution below, which of the following score changes yields the greatest change in percentile rank?
 - -70 to 80
 - -80 to 90
 - 90 to 100
 - The change is equal
 - Cannot determine

Figure 1: Dist

Motivating Example

	Univ 1	Univ 2	Univ 3
Score	60	60	60
Mean	70	50	55
SD	10	20	2.5

- Which score is more extreme?
- We can transform into Standard Scores.

Linear Transformations

- A linear transformation is an algebraic rule for changing scores in a distribution where the distance between scores are preserved.
 - This means the shape of the distribution is unchanged.
- Example:
 - Suppose we want to change scores by multiplying each score by 5 and adding 20
 - Let X be the original score
 - Then Y = X * 5 + 20
 - Y is then said to be a linear transformation of X

Linear Transformation Example

- Suppose we have the following scores:
 - X: 3, 5, 7, 9, 11
 - Y: 35, 45, 55, 65, 75

Figure 2: plot of chunk ltplot

Linear Transformations (cont.)

- In general we can multiply by any value and add any value:
 - -Y = bX + a
 - Where Y is transformed scores
 - X is the original scores
 - b is the multiplicative constant
 - a is the additive constant

Add a constant to every score

$$Y = X + a$$
$$b = 1$$

- a must be a real number

Figure 3: plot of chunk addconstant

Add a constant: Data Example

	X	Y = X + 2	Y = X - 4
	4	6	0
	5	7	1
	6	8	2
	7	9	3
	8	10	4
Sum X	30	40	10
Sum X^2	190	330	30
mean	6	8	2
var	2	2	2
std dev	1.4	1.4	1.4

• Rule 1:

$$- If Y = X + a$$

$$- Then \bar{Y} = \bar{X} + a$$

• Rule 2:

$$- If Y = X + a$$

$$- Then s_y^2 = s_x^2$$

$$- and s_y = s_x$$

Multiply every score by a constant

$$Y = bX$$
$$a = 0$$

- b must be a real number

Figure 4: plot of chunk multiplyconstant

Multiply a constant: Data Example

	X	Y = 2X	Y = -4X
	4	8	-16
	5	10	-20
	6	12	-24
	7	14	-28
	8	16	-32
Sum X	30	60	-120
Sum X^2	190	760	3040
mean	6	12	-24
var	2	8	32
std dev	1.4	2.8	5.6

• Rule 1:

$$- \text{ If } Y = bX$$

$$- \text{ Then } \bar{Y} = \bar{X} * b$$

• Rule 2:

- If
$$Y = X + a$$

- Then $s_y^2 = b^2 s_x^2$
- and $s_y = |b| s_x$

Multiply by a constant, then add a constant

$$Y = bX + a$$

- a and b must be real numbers

Figure 5: plot of chunk multaddconstant

Multiply a constant, add constant: Data Example

	X	Y = 2X - 2
	4	6
	5	8
	6	10
	7	12
	8	14
Sum X	30	50
Sum X^2	190	540
mean	6	10
var	2	8
std dev	1.4	2.8

• Rule 1:

$$- \text{ If } Y = bX + a$$

$$- \text{ Then } \overline{Y} = \overline{X} * b + a$$

$$- \text{ and } s_y^2 = b^2 s_x^2$$

$$- \text{ and } s_y = |b| s_x$$

Example

- Suppose the mean score on an attitude survey was 23 and the SD was 7. The score distribution was transformed by Y = 3X + 11.
 - What is the mean of the transformed scores?
 - What is the SD of the transformed scores?

Special Linear Transformation

• One transformation has been used a lot and has a special name called *Standard Scores*, *Normal Scores*, or more commonly *z-scores*.

$$Y = \frac{1}{s_x}X + \frac{-\bar{X}}{s_x}$$

- where $b = \frac{1}{s_s}$ and $a = \frac{-\bar{X}}{s_x}$
- This can be reformulated as:

$$Z = \frac{(X - \bar{X})}{s_x}$$

z-score examples

- What z-score corresponds to a raw score of 60 in a distribution having a mean of 70 and a standard deviation of 20?
- In a distribution with a mean of 23 and a standard deviation of 4, what raw score corresponds to a z-score of -2.25?

z-score properties

$$\bar{z} = 0$$

$$s_z = 1$$

$$s_z^2 = 1$$

- z-scores are great for comparing distributions that have different means and standard deviations.
- To backtransform z-scores:

$$X = s_x * z + \bar{X}$$

6

Transform z-score example

- In a distribution with a mean of 71 and a SD of 18, a raw score of 85 was found. What is the equivalent score in a distribution with a mean of 50 and a standard deviation of 10?
- More formally:

$$X_n = \left(\frac{s_n}{s_o}\right) X_o + \bar{X}_n - \left(\frac{s_n}{s_o}\right) \bar{X}_o$$

Other common scales

- z-scores are also useful to place scores on a desired scale.
- There are many common scales that have been used over time.
 - T-scores: mean of 50, sd of 10
 - Stanines: mean of 5, sd of 2
 - Normal Curve Equivalents (NCE): mean of 50, sd of 21
 - SAT: mean of 500, sd of 100, rounded to nearest 10
 - ACT: mean of 21, sd of 5, rounded to nearest whole number
 - GRE: mean of 150, sd of 8.75

Figure 6: Score Scales

Combining scores from different scales

• Suppose two students are competing for a college scholarship, and we need to decide which student has a better academic record.

	ACT	HSGPA	Total
A B	25 31	3.7 3.3	28.7 34.3
Mean	28	$\frac{3.5}{3.5}$	
SD	3	0.2	

Normalizing Transformations

- Linear transformations preserve the shape of the distribution.
- This is one of their strengths and why they are used extensively.
- However, as we progress to inferential statistics, our methods assume a normal distribution or bell curve.
- As such, what to do with skewed distributions?
- There are nonlinear transformations that can take a skewed distribution and transform it to behave more normal.
 - These transformations change the shape and thus the distance between scores.

Figure 7: Normalizing Transformation