The problem is in \mathcal{NP} since we can exhibit a set X and check the size of its intersection with every set A_i .

We now show that 3-Dimensional Matching \leq_P Intersection Inference. Suppose we are given an instance of 3-Dimensional Matching, consisting of sets X, Y, and Z, each of size n, and a set T of m triples from $X \times Y \times Z$. We define the following instance of Intersection Inference. We define U = T. For each element $j \in X \cup Y \cup Z$, we create a set A_j of these triples that contain j. We then ask whether there is a set $M \subseteq U$ that has an intersection of size 1 with each set A_j .

Such sets are precisely those collections of triples for which each element of $X \cup Y \cup Z$ appears in exactly one: in other words, they are precisely the perfect three-dimensional matchings. Thus, our instance of *Intersection Inference* has a positive answer if and only if the original instance of 3-Dimensional Matching does.

 $^{^{1}}$ ex803.795.220