Основные свойства аффинных ортогональных тензоров

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

23 мая 2019 г.

Аннотация

Классификация тензоров. Теорема о полном тензоре. Теорема о существовании обратного тензора. Главные значения тензора. Инварианты тензора. Бискалярное произведение. Тензорное поле. Дивергенция тензора.

Пусть для выбранного тензора ${\pmb A}$ и произвольного вектора ${\vec r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r},$$

тогда возможны следующие варианты:

• все $\vec{r'}$ равны 0, тогда **A** – нулевой;

Пусть для выбранного тензора ${\pmb A}$ и произвольного вектора ${\vec r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r},$$

тогда возможны следующие варианты:

- все $\vec{r'}$ равны 0, тогда **A** нулевой;
- все $\vec{r'}$ лежат на одной прямой, тогда **А** линейный;

Пусть для выбранного тензора ${\pmb A}$ и произвольного вектора ${\vec r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r},$$

тогда возможны следующие варианты:

- все $\vec{r'}$ равны 0, тогда **A** нулевой;
- все $\vec{r'}$ лежат на одной прямой, тогда **А** линейный;
- все $\vec{r'}$ лежат в одной плоскости, тогда **A** планарный;

Пусть для выбранного тензора ${\pmb A}$ и произвольного вектора ${\vec r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r},$$

тогда возможны следующие варианты:

- все $\vec{r'}$ равны 0, тогда **A** нулевой;
- все $\vec{r'}$ лежат на одной прямой, тогда **А** линейный;
- все $\vec{r'}$ лежат в одной плоскости, тогда **A** планарный;
- $\vec{r'}$ описывают все векторы, тогда $m{A}$ полный;

Пусть для выбранного тензора ${\pmb A}$ и произвольного вектора ${\vec r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r}$$

тогда возможны следующие варианты:

- все $\vec{r'}$ равны 0, тогда **A** нулевой;
- все $\vec{r'}$ лежат на одной прямой, тогда **A** линейный;
- все $\vec{r'}$ лежат в одной плоскости, тогда A планарный;
- $\vec{r'}$ описывают все векторы, тогда **A** полный;

Задача

Привести пример тензора каждого типа и обосновать.

Теорема о полном тензоре

Теорема (о полноте тензора)

Для того, чтобы тензор Π был полным необходимо и достаточно, чтобы его определитель был отличен от 0.

Теорема о полном тензоре

Теорема (о полноте тензора)

Для того, чтобы тензор Π был полным необходимо и достаточно, чтобы его определитель был отличен от 0.

Доказательство.

 (\Rightarrow) Пусть тензор Π полный, тогда для любого вектора $\vec{r'} \in \mathbf{R}^3$ существует вектор $\vec{r} \in \mathbf{R}^3$, такой что $\vec{r'} = \Pi \cdot \vec{r}$. Для фиксированной системы координат это эквивалентно матричному равенству

$$\begin{cases}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{cases}
\begin{pmatrix}
r_1 \\
r_2 \\
r_3
\end{pmatrix} = \begin{pmatrix}
r'_1 \\
r'_2 \\
r'_3
\end{pmatrix},$$

где r_i' , r_j и p_{ks} – координаты соответствующих векторов и компоненты тензора в выбранной системе координат. Полученная система линейных уравнений имеет решение при любой правой части, следовательно $D(\mathbf{\Pi}) \neq 0$.

Теорема о полном тензоре

Теорема (о полноте тензора)

Для того, чтобы тензор Π был полным необходимо и достаточно, чтобы его определитель был отличен от 0.

Доказательство.

 (\Leftarrow) Пусть $D(\mathbf{\Pi})
eq 0$, тогда система линейных уравнений

$$\begin{cases} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{cases} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} r'_1 \\ r'_2 \\ r'_3 \end{pmatrix},$$

имеет решение r_j $(j=\overline{1,3})$ при любых значениях правой части r_i' $(i=\overline{1,3})$ где r_i' , r_j и p_{ks} – координаты векторов и компоненты тензора в фиксированной системе координат. Таким образом, у каждого вектора $\vec{r'}$ есть прообраз \vec{r} такой, что $\vec{r'}=\mathbf{\Pi}\cdot\vec{r}$. Следовательно тензор $\mathbf{\Pi}$ – полный.

Обратный тензор

Определение

Если для тензора Π существует тензор B такой, что

$$B \cdot \Pi = \Pi \cdot B = I$$
,

тогда тензор ${\pmb B}$ называется обратным тензором и обозначается ${\pmb \Pi}^{-1}$.

Теорема о существовании обратного тензора

Теорема

Полнота тензора есть необходимое и достаточное условие существования обратного тензора.

Доказательство.

Доказательство очевидно и вытекает из правила произведения тензоров как матриц и теоремы о полноте тензора.

Главные значения тензора

Определение

Если для заданного тензора Π , вектора \vec{r} и числа λ справедливо равенство

$$\mathbf{\Pi} \cdot \vec{r} = \lambda \vec{r} \quad (\vec{r} \neq 0),$$

то говорят, что λ — главное значение тензора Π , а \vec{r} — собственный вектор.

Пояснения

Так как тензоры и векторы перемножаются по таким же законам как и матрицы, то главные значения тензора и его собственные векторы аналогичны собственным значениям и векторам соответствующим матрице тензора Π в выбранной системе координат и не зависят от неё.

Инварианты тензора

Определение

Характеристическим многочленом тензора Π называется функция

$$\chi(\lambda) = D(\mathbf{\Pi} - \lambda I) = -\lambda^3 + I_1 \lambda^2 - I_2 \lambda + I_3.$$

Величины I_1 , I_2 , I_3 – называются инвариантами тензора Π .

Инварианты тензора

Определение

Характеристическим многочленом тензора Π называется функция

$$\chi(\lambda) = D(\mathbf{\Pi} - \lambda I) = -\lambda^3 + I_1 \lambda^2 - I_2 \lambda + I_3.$$

Величины I_1 , I_2 , I_3 – называются инвариантами тензора Π .

Независимость от системы координат Величины I_1 , I_2 , I_3 не зависят от выбора системы координат, т.к.

$$\chi(\lambda) = D(\mathbf{\Pi} - \lambda I) = \det(\Pi' - \lambda I) = \det(Q^T \Pi Q - \lambda E) =$$

$$= \det(Q^T(\Pi - \lambda E)Q) = \det Q^T \det(\Pi - \lambda E) \det Q = \det(\Pi - \lambda E),$$

где Π' и Π компоненты тензора Π в различных ортогональных системах координат, Q – матрица перехода ($Q^T = Q^{-1}$).

Формулы для вычисления инвариантов

Свойство Если $\Pi = (p_{ij})_{1 \leq i,j \leq 3}$ матрица компонент тензора Π в некотором базисе, тогда

$$\begin{split} I_1 &= p_{11} + p_{22} + p_{33} = \lambda_1 + \lambda_2 + \lambda_3, \\ I_2 &= \begin{vmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{vmatrix} + \begin{vmatrix} p_{22} & p_{23} \\ p_{32} & p_{33} \end{vmatrix} + \begin{vmatrix} p_{11} & p_{13} \\ p_{31} & p_{33} \end{vmatrix} = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3, \\ I_3 &= \begin{vmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{vmatrix} = \lambda_1 \lambda_2 \lambda_3, \end{split}$$

где λ_i – собственные числа тензора Π .