TSIT: A Simple and Versatile Framework for Image-to-Image Translation

ECCV 2020 Spotlight

Contents

- Introduction
 - Image to image translation
 - Key points of this paper
- Methodology
 - Two-Stream Image-to-image Translation (TSIT) framework
 - Multi-scale feature normalization scheme
 - Prior normalization methods
 - FADE
 - FAdaIN
- Experiments
 - For each tasks

Introduction

Image-to-image translation

- Translate one image representation to another
- Ranging from arbitrary style transfer in the unsupervised setting, to semantic image synthesis in the supervised setting.
- * This paper aims at devising a general and unified framework that is applicable to different image-to-image translation tasks!!

Arbitrary Style Transfer natural images (summer -> winter) real-world scenes (day -> night) semantic Image Synthesis

Multi-Modal Image Synthesis

outdoor (mask -> image)

street scene (mask -> image)

indoor (mask -> image)

controllable styles by a single model (sunny -> diverse weathers/times)

Introduction

Image-to-image translation

- Conditional image synthesis tasks(like arbitrary style transfer; Unsupervised) demand,
 - cycle consistency
 - semantic features
 - pixel gradients&values
- Semantic image synthesis(Supervised) demand,
 - Losses to minimize per-pixel distance between the generated sample and ground truth.
 - specialized structures to maintain spatial coherence and resolution.

Introduction

Key points

- 1. A two-stream network design that integrates both content and style effectively.
- 2. Multi-scale feature normalization scheme that captures coarse-to-fine structure and style information.
 - FADE
 - FAdaIN

Two-Stream Image-to-image Translation (TSIT) framework

+ Discriminator

Two-Stream Image-to-image Translation (TSIT) framework

Content/style stream

- Two streams are symmetrical with the same network structure to extract corresponding feature representations in different levels(multi-scale)
- Standard residual blocks
 - 3 conv layers
 - Skip connection
 - Leaky ReLU
 - Batch normalization

(a) Content/Style ResBlk

Two-Stream Image-to-image Translation (TSIT) framework

Generator

- Inverse structure of content/style stream to consistently match the level of semantic abstraction at different feature scales
- A Gaussian noise map as the latent input
- Take multi-scale feature inputs from two streams
- Feature transformation
 - FADE residual blocks(for content)
 - FAdaIN(for style)

Two-Stream Image-to-image Translation (TSIT) framework

Multi-scale feature normalization scheme

Batch Norm

Instance Norm

**H

**H

C

N

- Batch normalization
- Instance normalization

$$BN(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta \qquad IN(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta \tag{4}$$

- Conditional batch normalization
- Adaptive instance normalization (AdaIN)

Multi-scale feature normalization scheme

Spatially adaptive denormalization (SPADE)*

$$\gamma_{c,y,x}^{i}(\mathbf{m}) \frac{h_{n,c,y,x}^{i} - \mu_{c}^{i}}{\sigma_{c}^{i}} + \beta_{c,y,x}^{i}(\mathbf{m}) \tag{1}$$

$$\mu_c^i = \frac{1}{NH^i W^i} \sum_{n,y,x} h_{n,c,y,x}^i$$
 (2)

$$\sigma_c^i = \sqrt{\frac{1}{NH^iW^i} \sum_{n,y,x} \left((h_{n,c,y,x}^i)^2 - (\mu_c^i)^2 \right)}.$$
 (3)

* Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

Feature adaptive denormalization(FADE)

- Inspired by SPADE
- we generalize the input to multi-scale feature representation f_i^c of the content image x_c
 - A. Apply batch normalization
 - B. Modulate the normalized feature by using the learned parameters scale γi and bias βi

Feature adaptive denormalization(FADE)

- N: batch size
- ullet L_i : the number of feature map channels in each layer
- Denormalized activation:

$$\gamma_i^{l,h,w} \cdot \frac{z_i^{n,l,h,w} - \mu_i^l}{\sigma_i^l} + \beta_i^{l,h,w},$$

$$\mu_i^l = \frac{1}{NH_iW_i} \sum_{n,h,w} z_i^{n,l,h,w},$$

$$\sigma_i^l = \sqrt{\frac{1}{NH_iW_i} \sum_{n,h,w} \left(z_i^{n,l,h,w} \right)^2 - \left(\mu_i^l \right)^2}.$$

Feature adaptive instance normalization (FAdaIN)

AdaIN
$$(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$

$$FAdaIN\left(z_{i}, f_{i}^{s}\right) = \sigma\left(f_{i}^{s}\right) \left(\frac{z_{i} - \mu\left(z_{i}\right)}{\sigma\left(z_{i}\right)}\right) + \mu\left(f_{i}^{s}\right), \tag{4}$$

Discriminator

- The standard multi-scale patch-based discriminators
 - 3 Discriminators at different scales, with identical architecture
 - Coarsest scale for capturing global information
 - Finest scale to produce better details
 - improve the robustness in different resolutions.
 - Serve as feature extractors for the generator to optimize the feature matching loss.

Objective function

$$\mathcal{L}_{G} = -\mathbb{E}\left[D\left(g\right)\right] + \lambda_{P}\mathcal{L}_{P}\left(g, x^{c}\right) + \lambda_{FM}\mathcal{L}_{FM}\left(g, x^{s}\right),$$

$$\mathcal{L}_{D} = -\mathbb{E}\left[\min\left(-1 + D\left(x^{s}\right), 0\right)\right] - \mathbb{E}\left[\min\left(-1 - D\left(g\right), 0\right)\right],$$

- For generator
 - Hinge-based adversarial loss
 - VGG-19 based Perceptual loss
 - Feature matching loss
- For discriminator
 - Hinge-based adversarial loss to distinguish real or fake image

$$g = G\left(z_0, x^c, x^s\right)$$

 z_0 : input noise map in latent space

x^c: Content image

x^SStyle image

Applications

- Arbitrary style transfer (unsupervised)
 - Winter to summer
 - Day to night
 - Photo to art
- Semantic image synthesis (supervised)
- Multi-modal image synthesis (enriching generation diversity)
 - Time and weather image-to-image translation

- FID: evaluating similarity of distribution between the generated images and the real images.
- IS(Inception Score): considering clarity and diversity.

Table 1. The FID and IS scores of our method compared to state-of-the-art methods in arbitrary style transfer tasks. A lower FID and a higher IS indicate better performance.

	$summer \rightarrow winter$		$\mathrm{day} \to \mathrm{night}$		$\mathrm{photo} o \mathrm{art}$	
Methods	FID \	IS ↑	$FID \downarrow$	IS ↑	$FID \downarrow$	IS ↑
MUNIT [14]	118.225	2.537	110.011	2.185	167.314	3.961
DMIT [49]	87.969	2.884	83.898	2.156	166.933	3.871
Ours	80.138	2.996	79.697	2.203	165.561	4.020

Fig. 4. Yosemite summer \rightarrow winter season transfer results compared to baselines.

Fig. 5. BDD100K day \rightarrow night time translation results compared to baselines.

Fig. 6. Photo \rightarrow art style transfer results compared to baselines.

Semantic image synthesis

- FID
- Segmentation accuracy (mean Intersection-over-Union (mIoU)
- Pixel accuracy (accu)

Table 2. The mIoU, pixel accuracy (accu) and FID scores of our method compared to state-of-the-art methods in semantic image synthesis tasks. A higher mIoU, a higher pixel accuracy (accu) and a lower FID indicate better performance.

	Cityscapes			ADE20K		
Methods	mIoU ↑	accu ↑	FID ↓	mIoU ↑	accu ↑	$\text{FID}\downarrow$
CRN [4]	52.4	77.1	104.7	22.4	68.8	73.3
SIMS [34]	47.2	75.5	49.7	N/A	N/A	N/A
pix2pixHD [41]	58.3	81.4	95.0	20.3	69.2	81.8
SPADE [33]	62.3	81.9	71.8	38.5	79.9	33.9
CC-FPSE [28]	65.5	82.3	54.3	43.7	82.9	31.7
Ours	65.9	94.4	59.2	38.6	80.8	31.6

Cityscapes Street Scene ADE20K Outdoor ADE20K Indoor Experim Semantic ima

Fig. 7. Semantic image synthesis results compared to baselines.

Multi-modal image synthesis

Fig. 8. BDD100K multi-modal image synthesis for different time and weather translation results by a *single* model.

Fig. 9. Cross validation of ineffectiveness

Fig. 10. Ablation studies of key modules (i.e., content stream (CS), style stream(SS)) and feature transformations in multi-modal image synthesis task.