Calculus Online Assignment 2

Click on a question number to see how your answers were marked and, where available, full solutions.

Question Number		Sco	ore
Question 1	5	/	5
Question 2	5	/	5
Question 3	5	/	5
Question 4	4	/	4
Total	19	/	19 (100%)

Performance Summary

Time Spent:	0:11:38
Exam Stop:	Thu Nov 18 2021 14:52:46
Exam Start:	Thu Nov 18 2021 14:41:07
Student's Name:	Debnath, Tanmoy (scone_prod.qzdPpmsTBh7wbv04ck5kOAKFEZqXTSdwoZzwy5DF:canvas-lms.76420)
Session ID:	14167224811
Exam Name:	Calculus Online Assignment 2

Question 1

Recall the rule, valid at least for integer powers n,

$$rac{d}{dx}x^n=nx^{n-1}.$$

a)

Find the derivative of the function $f(x) = 3x^2 - 3x^3 + 3$.

$$f'(x) = egin{bmatrix} \mathsf{6x} - \mathsf{9x^2} \end{bmatrix} \mathsf{6}x - \mathsf{9}x^2 \quad lacksquare$$

Your answer is numerically correct. You were awarded 2 marks.
You scored 2 marks for this part.

Score: 2/2 **✓**

b)

Find the slope of the tangent line to the graph of f at the point (3, -51).

Slope =
$$\begin{bmatrix} -63 \\ \end{bmatrix}$$
 -63

Find the equation of the tangent line to the graph of f at the point (3, -51).

Equation of tangent line is
$$y=mx+c$$
 where $m=$ $\begin{tabular}{|c|c|c|c|}\hline -63 \end{tabular}$ $\begin{tabular}{|c|c|c|c|} \hline -63 \end{tabular}$ $\begin{tabular}{|c|c|c|c|} \hline \hline 138 \end{tabular}$

Gap 0

✓ Your answer is numerically correct. You were awarded 1 mark.

Gap 1

✓ Your answer is correct. You were awarded **1** mark.

Gap 2

✓ Your answer is correct. You were awarded 1 mark.You scored 3 marks for this part.

Score: 3/3 ✓

Question 2

The Product Rule for differentiation states that

$$rac{d}{dx}ig(f(x) imes g(x)ig) = f(x) imes g'(x)\,+\,g(x) imes f'(x).$$

[Input powers as " $x^{(10)}$ ", say, and trigonometric functions as " $\sin(x)$ ", " $\cos(x)$ ".]

Find the derivative of the function

Expected answer:
$$(8*x^2 - 3)*\cos(x) + 16x*\sin(x)$$
 $\left(8x^2 - 3\right)\cos(x) + 16x\sin(x)$

Your answer is numerically correct. You were awarded **5** marks. You scored **5** marks for this part.

Score: 5/5

Question 3

The Quotient Rule for differentiation states that

$$rac{d}{dx}igg(rac{f(x)}{g(x)}igg) = rac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$$

Find the derivative of the function

$$h(x)=rac{5x^{10}+2}{6x^3+2}.$$

$$h'(x) = \frac{((6x^3 + 2)(50x^9) - (5x^10+2)(18x^2))/(6x^3 + 2)^2}{\frac{(6x^3 + 2) \times 50x^9 - (5x^{10} + 2) \times 18x^2}{(6x^3 + 2)^2}}$$

✓ Your answer is numerically correct. You were awarded 5 marks.You scored 5 marks for this part.

Score: 5/5 ✔

Question 4

The Chain Rule for differentiation is used to compute the derivative of a composition of functions. It states that

$$rac{d}{dx}ig((f\circ g)(x)ig)=f'ig(g(x)ig) imes g'(x).$$

$$\operatorname{Set} h(x) = \sin \left(10x^6 + 7 \right).$$

Write h(x) as the composition of functions $(f\circ g)(x)$ where

Compute the derivative of h:

$$h'(x) = \left\lceil \cos(10x^6 + 7)*(60x^5) \right\rceil \cos\left(10x^6 + 7\right) imes 60x^5$$

Gap 0

✓ Your answer is numerically correct. You were awarded 1 mark.

Gap 1

✓ Your answer is numerically correct. You were awarded 1 mark.

Gap 2

✓ Your answer is numerically correct. You were awarded 2 marks.

You scored 4 marks for this part.

Score: 4/4 **✓**

Created using Numbas (https://www.numbas.org.uk), developed by Newcastle University (http://www.newcastle.ac.uk).