ACE Examination Paper 4

Year 12 Mathematics Extension 2 Yearly Examination Worked solutions and marking guidelines

Section	Section I		
	Solution	Criteria	
1	$z \div w = \frac{3 - 4i}{\sqrt{3} + i} \times \frac{\sqrt{3} - i}{\sqrt{3} - i} = \frac{3\sqrt{3} - 4}{4} + \frac{(-4\sqrt{3} - 3)i}{4}$	1 Mark: A	
2	$\frac{d^2x}{dt^2} = 25 - 5x$	1 Mark: B	
	= -5(x - 5) Centre of motion at $x = 5$		
	(SHM $\frac{d^2x}{dt^2} = -n^2(x-b)$ with centre of motion at $x = b$)		
3	The diagonals of a rhombus are perpendicular. $\underbrace{\frac{y}{u} - y}_{u}$	1 Mark: C	
	Two vectors are perpendicular if and only if \underline{u} . $\underline{v}=0$		
	$(\underline{u} + \underline{v}) \cdot (\underline{u} - \underline{v}) = 0$		
4	The contrapositive of the statement 'If <i>A</i> then <i>B</i> ' is 'If not <i>B</i> then not <i>A</i> '. The contrapositive is true if and only if the statement itself is also true. (not B) \Rightarrow (not A)	1 Mark: C	
5	$v = 2\sqrt{1 - x^2} v^2 = 4(1 - x^2) \frac{1}{2}v^2 = 2(1 - x^2) a = \frac{d}{dx}(2(1 - x^2)) a = -4x$	1 Mark: D	
6	Let $x = \sin\theta$ with $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ $dx = \cos\theta d\theta$ $(1 - x^2)^{\frac{3}{2}} = (1 - \sin^2\theta)^{\frac{3}{2}}$ $= (\cos^2\theta)^{\frac{3}{2}} = \cos^3\theta$ $\int \frac{x^2}{(1 - x^2)^{\frac{3}{2}}} dx = \int \frac{\sin^2\theta}{\cos^3\theta} \cos\theta d\theta = \int \tan^2\theta d\theta$ $= \int (\sec^2\theta - 1)d\theta$ $= \tan\theta - \theta + C$ $= \frac{x}{(1 - x^2)^{\frac{1}{2}}} - \sin^{-1}x + C$	1 Mark: C	

7	Using the substitution $u = \ln x$	1 Mark: A
	$du = \frac{1}{x}dx$	
	$\int \frac{\sec^2(\ln x)}{x} dx = \int \sec^2 u du$	
	$= \tan u + C$	
	$= \tan(\ln x) + C$	
8	$Let (a+ib)^2 = 8+6i$	1 Mark: A
	$a^2 + 2abi - b^2 = 8 + 6i$	
	$a^2 - b^2 = 8 \textcircled{1}$	
	$2ab = 6 \ \textcircled{2}$	
	Solving equations ① and ② simultaneously	
	$a = 3$ and $b = 1$. \therefore Root is $3 + i$	
	$a = -3$ and $b = -1$. \therefore Root is $-3 - i$	
9	Equations of projectile motion	1 Mark: D
	$x = Vt\cos\alpha$ $30 = 20t\cos\alpha$	
	$t = \frac{3}{2\cos\alpha} \text{ (1)}$	
	$y = -\frac{1}{2}gt^2 + Vt\sin\alpha$	
	$8.75 = -\frac{1}{2} \times 10 \times t^2 + 20t \sin\alpha$	
	$35 = -20t^2 + 80t\sin\alpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	Substituting equation ① into equation ②	
	$35 = -20 \times \left(\frac{3}{2\cos\alpha}\right)^2 + 80 \times \left(\frac{3}{2\cos\alpha}\right) \times \sin\alpha$	
	$35 = -45\sec^2\alpha + 120\tan\alpha$	
	$7 = -9(\tan^2\alpha + 1) + 24\tan\alpha$	
	$9\tan^2\alpha - 24\tan\alpha + 16 = 0$	
	$(3\tan\alpha - 4)^2 = 0$	
	$3\tan \alpha = 4$	
	$\tan \alpha = \frac{4}{3}$	
	$\alpha = \tan^{-1}\left(\frac{4}{3}\right)$	
10	$(2+2i)z^2 + 8iz - 4(1-i)$	1 Mark: B
	$\Delta = (8i)^2 - 4 \times (2 + 2i) \times -4(1 - i)$	
	= -64 + 16(2 - 2i + 2i + 2) $= 0$	
L		

Section II		
	Solution	Criteria
11(a) (i)	$z_1 + \overline{z_2} = 2i + (1 - 3i)$ = 1 - i	1 Mark: Correct answer.
11(a) (ii)	$z_1 z_2 = 2i(1+3i) = -6+2i$	1 Mark: Correct answer.
11(a) (iii)	$\frac{1}{z_2} = \frac{1 - 3i}{(1 + 3i)(1 - 3i)}$ $= \frac{1 - 3i}{1 + 9}$ $= \frac{1}{10} - \frac{3}{10}i$	1 Mark: Correct answer.
11(b)	$\int \frac{1}{\sqrt{5+4x-x^2}} dx = \int \frac{1}{\sqrt{9-(x^2-4x+4)}} dx$ $= \int \frac{1}{\sqrt{9-(x-2)^2}} dx$	2 Marks: Correct answer. 1 Mark: Completes
	$=\sin^{-1}\left(\frac{x-2}{3}\right)+C$	the square.
11(c) (i)	$\overrightarrow{OR} = \overrightarrow{OP} + \frac{1}{2}\overrightarrow{PQ}$ $= p + \frac{1}{2}(q - p)$ $= \frac{1}{2}(p + q)$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
11(c) (ii)	$\overrightarrow{PR} = -2\overrightarrow{PQ}$ $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{PR}$ $= \overrightarrow{OP} - 2\overrightarrow{PQ}$ $= p - 2(q - p)$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
11(c) (iii)	$= 3p - 2q$ $\overrightarrow{OR} = \overrightarrow{OP} + \frac{1}{3}\overrightarrow{PQ}$ $= p + \frac{1}{3}(q - p) = \frac{1}{3}(2p + q)$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
11(d)	Use the substitution $u = x^2 + 2x + 5$ $\frac{du}{dx} = 2x + 2$ $0.5du = (x + 1)dx$ When $x = 2$ then $u = 13$ and when $x = 3$ then $u = 20$ $\int_{2}^{3} \frac{x + 1}{\sqrt{x^2 + 2x + 5}} dx = \int_{13}^{20} \frac{0.5du}{u^{\frac{1}{2}}}$ $= \left[u^{\frac{1}{2}}\right]_{13}^{20}$ $= \sqrt{20} - \sqrt{13}$	2 Marks: Correct answer. 1 Mark: Finds the primitive function or sets up the integration using substitution.

11(e)	$z^{n} = (\cos\theta + i\sin\theta)^{n}$ $= \cos n\theta + i\sin n\theta$	2 Marks: Correct answer.
	$\frac{1}{z^n} = (\cos\theta + i\sin\theta)^{-n}$	1 M 1 H
	$z^{n} = \cos n\theta - i\sin n\theta$	1 Mark: Uses De Moivre's theorem.
	$\therefore z^{n} + \frac{1}{z^{n}} = \cos n\theta + i \sin n\theta + \cos n\theta - i \sin n\theta$	
	$= 2\cos n\theta$	
12(a)	If $ a < 1$ and $ b < 1$ then	2 Marks: Correct
	$(1 - a^2)(1 - b^2) > 0$	answer.
	$1 - a^2 - b^2 + a^2 b^2 > 0$	1 Mark: Shows some
	$a^2 + b^2 + 2ab < 1 + a^2b^2 + 2ab$	understanding.
	$(a+b)^2 < (1+ab)^2$	
	$\therefore a+b < 1+ab $	
12(b) (i)	$\frac{z_1}{z_2} = \frac{1+i}{\sqrt{3}-i} \times \frac{\sqrt{3}+i}{\sqrt{3}+i}$	1 Mark: Correct answer.
	$= \frac{\sqrt{3} - 1}{4} + i \frac{\sqrt{3} + 1}{4}$ $z_1 = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$ (1,i)	
12(b) (ii)	$z_1 = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) $ $\sqrt{2}$ (1,i)	2 Marks: Correct answer.
	\leftarrow $\frac{\pi}{4}$	1 Mark: Finds one of
	$z_2 = 2\left\{\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right\} \qquad \uparrow^y$	the points in modulus-argument form.
	$\frac{\pi}{6}$	
	$(\sqrt{3}, -i)$	
12(b) (iii)	$\frac{z_1}{z_2} = \frac{\sqrt{2}}{2} \left\{ \cos\left(\frac{\pi}{4} + \frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{4} + \frac{\pi}{6}\right) \right\}$	2 Marks: Correct answer.
	$=\frac{\sqrt{3}-1}{4}+i\frac{\sqrt{3}+1}{4}$	1 Mark: Shows some
	4 4 Equating the real parts	understanding.
	$\frac{1}{\sqrt{2}}\cos\left(\frac{5\pi}{12}\right) = \frac{\sqrt{3}-1}{4}$	
	V 2	
	$\therefore \cos\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$	
12(c)	Integration by parts	2 Marks: Correct
	$\int \frac{\ln x}{x^2} dx = \int \ln x \times \frac{d}{dx} \left(-\frac{1}{x} \right) dx$	answer.
	$= -\frac{\ln x}{x} - \int \frac{d}{dx} \ln x \times -\frac{1}{x} dx$	1 Mark: Sets up integration by parts.
	$= -\frac{\ln x}{x} - \frac{1}{x} + C$	
	$= -\frac{\ln x + 1}{x} + C$	
		1

12(d)	Using the conjugate root theorem $1 + i$ and $1 + i$ are both roots of the equation $z^3 + pz + q = 0$	2 Marks: Correct answer.
	$(1+i) + (1-i) + \alpha = 0 \text{ (sum of the roots)}$	
	$\alpha = -2$ $(1+i) \times (1-i) \times (-2) = -q \text{ (product of the roots)}$ $(1+1) \times -2 = -q$ $q = 4$	1 Mark: Recognises the conjugate root theorem.
	(1+i)(1-i) + (1-i)(-2) + (1+i)(-2) = p $p = -2$	
	$\therefore p = -2 \text{ and } q = 4.$	
12(e) (i)	$\frac{1}{(x+1)(x^2+2)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+2}$	2 Marks: Correct answer.
	$1 = A(x^{2} + 2) + (Bx + C)(x + 1)$ Let $x = -1$	1 Mark: Finds one of the pronumerals or shows some
	$1 = 3A \text{ or } A = \frac{1}{3}$	understanding.
	Equating the coefficients of x^2 .	
	0 = A + B	
	$B = -\frac{1}{3}$	
	Equating the constants	
	1 = 2A + C	
	$C=\frac{1}{3}$	
	$\therefore A = \frac{1}{3}, B = -\frac{1}{3} \text{ and } C = \frac{1}{3}.$	
12(e) (ii)	$\int \frac{1}{(x+1)(x^2+2)} dx = \int \frac{\frac{1}{3}}{x+1} + \frac{-\frac{1}{3}x + \frac{1}{3}}{x^2+2} dx$	2 Marks: Correct answer.
	$= \int \frac{1}{3} \times \frac{1}{x+1} - \frac{1}{3} \times \frac{x}{x^2+2} + \frac{1}{3} \times \frac{1}{x^2+2} dx$	1 Mark: Correctly finds one of the integrals
	$= \frac{1}{3}\ln x+1 - \frac{1}{6}\ln(x^2+2) + \frac{1}{3\sqrt{2}}\tan^{-1}\frac{x}{\sqrt{2}} + C$	integrals
13(a)	Step 1: Prove the statement true for $n = 1$	4 Marks: Correct
	$7^1 + 15^1 = 22$	answer. 3 Marks: Makes
	which is divisible by 11. True	significant progress towards the solution.
	Step 2: Assume true for $n = k$ (where k is a positive odd integer)	2 Marks: Proves the
	$7^k + 15^k = 11P(1)$	result true for <i>n</i> = 1 Attempts to use the
	where P is an integer	result of $n = k$ to prove the result for
		n = k + 2.
	Step 3: Prove the result true for $n = k + 2$	1 Mayle Drave - 41-
	$7^{k+2} + 15^{k+2} = 11Q \text{ where } Q \text{ is an integer}$	1 Mark: Proves the result true for $n = 1$.

	$LHS = 7^{k+2} + 15^{k+2}$	
	$=7^k \times 49 + 15^k \times 225$	
	$= 7^k \times 49 + (49 + 176) \times 15^k$	
	$= 49(7^k + 15^k) + 176 \times 15^k$	
	$= 49(11P) + 176 \times 15^k$ from (1)	
	$= 11(49P + 16 \times 15^k)$	
	= 11Q	
	= RHS	
	Step 4: True by induction.	
13(b)	$\int \frac{e^{3x} + 1}{e^x + 1} dx = \int \frac{(e^x)^3 + 1^3}{e^x + 1} dx$	2 Marks: Correct answer.
	$= \int \frac{(e^x + 1)(e^{2x} - e^x + 1)}{e^x + 1} dx$ $= \int (e^{2x} - e^x + 1) dx$ $= \frac{1}{2}e^{2x} - e^x + x + C$	1 Mark: Simplifies the integrand by factoring the sum of two cubes.
13(c)	When $t = 1$ then $x = 2$	2 Marks: Correct
(i)	$2 = A\cos\left(\frac{\pi}{4} \times 1 + \alpha\right)$	answer.
	$= A \left(\cos \frac{\pi}{4} \cos \alpha - \sin \frac{\pi}{4} \sin \alpha \right)$ $= A \left(\frac{1}{\sqrt{2}} \cos \alpha - \frac{1}{\sqrt{2}} \sin \alpha \right)$	1 Mark: Finds one of the equations or uses the compound angle formula with the
	$2\sqrt{2} = A\cos\alpha - A\sin\alpha$	given information.
	$\therefore A\sin\alpha - A\cos\alpha = -2\sqrt{2}$	
	When $t = 3$ then $x = -4$ $-4 = A\cos\left(\frac{\pi}{4} \times 3 + \alpha\right)$	
	$= A \left(\cos \frac{3\pi}{4} \cos \alpha - \sin \frac{3\pi}{4} \sin \alpha \right)$	
	$=A\left(-\frac{1}{\sqrt{2}}\cos\alpha-\frac{1}{\sqrt{2}}\sin\alpha\right)$	
	$-4\sqrt{2} = -A\cos\alpha - A\sin\alpha$	
	$\therefore A\sin\alpha + A\cos\alpha = 4\sqrt{2}$	
13(c)	$A\sin\alpha - A\cos\alpha = -2\sqrt{2} \ (1)$	2 Marks: Correct
(ii)	$A\sin\alpha + A\cos\alpha = 4\sqrt{2} \ (2)$	answer.
	Adding equations 1 and 2	1 Mark: Finds A or α .
	$2A\sin\alpha = 2\sqrt{2}$	Alternatively shows
	Subtracting equation ① from equation ②	some understanding of the problem.
	$2A\cos\alpha = 6\sqrt{2}$	-

	Now	
	$(2A\sin\alpha)^2 + (2A\cos\alpha)^2 = (2\sqrt{2})^2 + (6\sqrt{2})^2$	
	$4A^2(\sin^2\alpha + \cos^2\alpha) = 8 + 72$	
	$A^2 = 20$	
	$\therefore A = 2\sqrt{5}$	
	Also	
	$2A\sin\alpha$ $2\sqrt{2}$	
	$\frac{2A\sin\alpha}{2A\cos\alpha} = \frac{2\sqrt{2}}{6\sqrt{2}}$	
	$\tan \alpha = \frac{1}{3}$	
	$\therefore \alpha = \tan^{-1} \frac{1}{3}$	
13(c)	Particle passes through O when $x = 0$	2 Marks: Correct
(iii)	$A\cos\left(\frac{\pi}{4}t + \alpha\right) = 0$	answer.
	$\frac{\pi}{4}t + \alpha = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$	1 Mark: Finds
	$\frac{1}{4}t + \alpha = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	
	First passes through O	$\frac{\pi}{4}t + \alpha = \frac{\pi}{2}$
	$\frac{\pi}{4}t + \alpha = \frac{\pi}{2}$	or shows some
	· -	understanding.
	$\frac{\pi}{4}t + \tan^{-1}\frac{1}{3} = \frac{\pi}{2}$	
	1 5 2	
	$\frac{\pi}{4}t = \frac{\pi}{2} - \tan^{-1}\frac{1}{3}$	
	$\frac{\pi}{4}t = \tan^{-1}3$	
	· ·	
	$\therefore t = \frac{4}{\pi} \tan^{-1} 3 \approx 1.59 \text{ seconds}$	
13(d)	$(a+b)^2 = (a-b)^2 + 4ab$	2 Marks: Correct
	$\geq 4ab$ (since $(a-b)^2$ is a positive)	answer.
		1 Mark: Shows some
	$\frac{(a+b)}{ab} \ge \frac{4}{(a+b)}$	understanding.
	$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{t}$	
	$\frac{a}{a} + \frac{b}{b} \le \frac{1}{t}$	
14(a)	<i>y</i>	2 Marks: Correct
	y = x	answer.
		1 Mark: Draws
	$x^2 + y^2 = 1$	$ z \ge 1$ or π
		$-\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}.$
	$\rightarrow x$	ı T
	-2 -4 2	
	-1	
	N = 2 ×	
	y = -x	
	-2 +	

14(b)	Resolving forces	2 Marks: Correct
(i)	$m\ddot{x} = -mk - mv^2$	answer.
	$\ddot{x} = -k - v^2$	1 Mark: Resolves
	$\frac{1}{2}\frac{dv^2}{dx} = -k - v^2$	forces.
	$\int \frac{dv^2}{k + v^2} = \int -2dx$	
	$\ln(k+v^2) = -2x + C$	
	Initial conditions $v = u$, $x = 0$ then $C = \ln(k + u^2)$	
	$\ln(k + v^2) = -2x + \ln(k + u^2)$	
	$x = -\frac{1}{2} \ln \frac{(k+v^2)}{(k+u^2)}$	
14(b)	$\ddot{x} = -k - v^2$	3 Marks: Correct
(ii)	$\frac{dv}{dt} = -k - v^2$	answer.
	ui	2 Marks: Makes
	$\frac{dv}{k+v^2} = -dt$	significant progress.
	$\frac{1}{\sqrt{k}} \tan^{-1} \frac{v}{\sqrt{k}} = -t + C$	1 Mark: Recognises $\frac{dv}{dt} = -k - v^2$
	Initial conditions $t = 0$, $v = u$ then $C = \frac{1}{\sqrt{k}} \tan^{-1} \frac{u}{\sqrt{k}}$	or has some understanding of the
	$t = \frac{1}{\sqrt{k}} \tan^{-1} \frac{u}{\sqrt{k}} - \frac{1}{\sqrt{k}} \tan^{-1} \frac{v}{\sqrt{k}}$	problem.
	Particle is at rest when $v = 0$	
	$\therefore t = \frac{1}{\sqrt{k}} \tan^{-1} \frac{u}{\sqrt{k}}$	
14(c) (i)	$I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$ $n = 1,2,3,$	3 Marks: Correct answer.
	$= [x(1+x^2)^{-n}]_0^1 - \int_0^1 x(-n)(1+x^2)^{-n-1} (2x)dx$	2 Marks: Makes significant progress towards the solution
	$= 2^{-n} + 2n \int_0^1 [(1+x^2) - 1](1+x^2)^{-n-1} dx$	1 Mark: Correctly applies integration by
	$= 2^{-n} + 2n \int_0^1 \left[(1+x^2)^{-n} - (1+x^2)^{-(n+1)} \right] dx$	parts.
	$= 2^{-n} + 2nI_n - 2nI_{n+1}$	
	$2nI_{n+1} = (2n-1)I_n + 2^{-n}$	
	$I_{n+1} = \frac{2n-1}{2n}I_n + \frac{1}{n \times 2^{n+1}}$	

14(c) (ii)	$I_3 = \frac{3}{4}I_2 + \frac{1}{16}$	2 Marks: Correct answer.
	$= \frac{3}{4} \left(\frac{1}{2} I_1 + \frac{1}{4} \right) + \frac{1}{16}$	1 Mark: Applies the
	$=\frac{3}{8}I_1+\frac{1}{4}$	recurrence relation to find an expression for I_3
	$I_1 = \int_0^1 \frac{1}{1+x^2} dx$	101 13
	$= [\tan^{-1}x]_0^1$	
	$=\frac{\pi}{4}$	
	$\therefore \int_0^1 \frac{1}{(1+x^2)^3} dx = \frac{3\pi + 8}{32}$	
14(d) (i)	$z = \frac{1 + i\sqrt{3}}{2} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$	2 Marks: Correct answer.
	$=1\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$	1 Mark: Expresses z
	$z^3 = 1(\cos\pi + i\sin\pi)$	in modulus argument form.
	= -1	
14(d) (ii)	$z^{10} = (z^3)^3 \times z$ $= (-1)^3 \times z$	1 Mark: Correct answer.
	$= -\frac{1}{2} - i\frac{\sqrt{3}}{2}$	
15(a)	$\overrightarrow{OP} = \underline{\imath} + 3\underline{\jmath} - \underline{k}, \ \overrightarrow{OQ} = 2\underline{\imath} + \underline{\jmath}, \ \overrightarrow{OR} = 3\underline{\imath} - 2\underline{\jmath} - 2\underline{k}$	4 Marks: Correct
	$\overrightarrow{QP} = \overrightarrow{OP} - \overrightarrow{OQ}$	answer.
	$= -\underline{i} + 2\underline{j} - \underline{k}$	3 Marks: Uses the angle between two
	$\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ}$	vectors.
	= i - 3j - 2k	2 Marks: Finds $ \overrightarrow{QP} $
	$ \overrightarrow{QP} = \sqrt{(-1)^2 + 2^2 + (-1)^2} = \sqrt{6}$	and $ \overrightarrow{QR} $.
	$ \overrightarrow{QR} = \sqrt{(1)^2 + (-3)^2 + (-2)^2} = \sqrt{14}$ $\overrightarrow{QP} \cdot \overrightarrow{QR} = (-1 \times 1) + (2 \times -3) + (-1 \times -2) = -5$	1 Mark: Finds \overrightarrow{QP} and
		\overrightarrow{QR} .
	$\cos \angle PQR = \frac{\overrightarrow{QP} \cdot \overrightarrow{QR}}{ \overrightarrow{QP} \overrightarrow{QR} } = \frac{-5}{\sqrt{6}\sqrt{14}}$	
	$\angle PQR = 123.0618$	
	≈ 123.1°	
15(b) (i)	$(1-3i)^2 = 1 - 6i + 9i^2$ = 1 - 6i - 9	1 Mark: Correct answer.
(1)	= 1 - 6i - 9 $= -8 - 6i$	

15(b)	$2z^2 - 8z + (12 + 3i) = 0$	2 Marks: Correct
(ii)	Using $\sqrt{-8-6i} = \pm (1-3i)$	answer.
	$z = \frac{8 \pm \sqrt{64 - 4 \times 2 \times (12 + 3i)}}{4}$	1 Mark: Uses the result from part (a)
	$= \frac{8 \pm \sqrt{64 - 96 - 24i}}{4}$	and shows some understanding.
	<u> </u>	under standing.
	$=\frac{8\pm\sqrt{-32-24i}}{4}=\frac{8\pm\sqrt{4(-8-6i)}}{4}$	
	$= \frac{4 \pm (1 - 3i)}{2}$	
	$z = \frac{5}{2} - \frac{3}{2}i \text{ or } z = \frac{3}{2} + \frac{3}{2}i$	
15(c)	Step 1: To prove true for $n = 1$	4 Marks: Correct
	$T_1 = (1+3)2^1 = 8$	answer.
	Result is true for $n = 1$	
	To prove true for $n = 2$	3 Marks: Makes significant progress
	$T_2 = (2+3)2^2 = 20$	towards the solution.
	Result is true for $n = 2$	
	Step 2: Assume true for $n = k$	2 Marks: Proves the
	$T_k = (k+3)2^k$ Stop 2. To prove true for $n = k+1$	result true for $n = 1$
	Step 3: To prove true for $n = k + 1$ $T_{k+1} = (k+4)2^{k+1} \text{ given } T_{k+1} = 4T_k - 4T_{k-1}$	and $n = 2$. Attempts
	$ T_{k+1} - (K + 4)Z \text{given } T_{k+1} - 4T_k - 4T_{k-1}$ $ LHS = 4T_k - 4T_{k-1}$	to use the result of <i>n</i> = <i>k</i> to prove the
	$= 4(k+3)2^{k} - 4(k+2)2^{k-1}$	result for
	$= 4k2^{k} + 12 \times 2^{k} - 4k2^{k-1} - 8 \times 2^{k-1}$	n = k + 1.
	$= 4k2^{k} + 12 \times 2^{k} - 2k2^{k} - 4 \times 2^{k}$	
	$= 2^{k+1}(2k+6-k-2)$	1 Mark: Proves the
	$= (k+4)2^{k+1}$	result true for $n = 1$
	= RHS	or $n = 2$.
	Step 4: True by induction	
15(d)	$ u + y ^2 = (u + y).(u + y)$	2 Marks: Correct
	$= \underbrace{y \cdot y + y \cdot y + y \cdot y + y \cdot y}_{=}$	answer.
	$= u ^{2} + 2u \cdot v + v ^{2}$	
	$= 6^{2} + 2 \times -4 + 5^{2} = 53$	1 Mark: Makes some
	$ \underline{u} + \underline{v} = \sqrt{53}$	progress.
15(e)	$t = \tan \frac{x}{2}$	4 Marks: Correct answer.
	$dt = \frac{1}{2}\sec^2\frac{x}{2}dx dx = \frac{2}{1+t^2}dt$	3 Marks: Makes
	$at = \frac{1}{2} \sec^2 \frac{1}{2} ax ax = \frac{1}{1+t^2} at$	significant progress.
	When $x = 0$ then $t = 0$ and when $x = \frac{\pi}{2}$ then $t = 1$	2 Marks: Finds sinx
	_	and cosx in terms
	$3 - \cos x - 2\sin x = \frac{3(1+t^2) - (1-t^2) - 4t}{1+t^2}$	of t.
	$=\frac{4t^2-4t+2}{1+t^2}=\frac{2(2t^2-2t+1)}{1+t^2}$	1 Mark: Shows some understanding.
	$-\frac{1+t^2}{1+t^2}-\frac{1+t^2}{1+t^2}$	

	$\int_{0}^{\frac{\pi}{2}} \frac{1}{3 - \cos x - 2\sin x} dx = \int_{0}^{1} \frac{1 + t^{2}}{2(2t^{2} - 2t + 1)} \times \frac{2}{1 + t^{2}} dt$ $= \int_{0}^{1} \frac{1}{2t^{2} - 2t + 1} dt$ $= \int_{0}^{1} \frac{1}{2\left(t^{2} - t + \frac{1}{2}\right)} dt$ $= \int_{0}^{1} \frac{1}{2\left(t - \frac{1}{2}\right)^{2} + \frac{1}{4}} dt$ $= \left[\tan^{-1}2\left(t - \frac{1}{2}\right)\right]_{0}^{1}$	
	$= \tan^{-1} 1 - \tan^{-1} (-1) = \frac{\pi}{2}$	
16(a)	$ \overrightarrow{OA} = \sqrt{3^2 + 2^2 + (-4)^2}$ $= \sqrt{29}$ $ \overrightarrow{OA} = \frac{\overrightarrow{OA}}{ \overrightarrow{OA} }$ $= \frac{1}{\sqrt{29}} (3\underline{\imath} + 2\underline{\jmath} - 4\underline{k})$	2 Marks: Correct answer. 1 Mark: Finds the magnitude of \overrightarrow{OA} .
16(b)	Resolving forces $(m = 30 \text{ kg})$ $ma = -mg - kv^2$ $30a = -30g - kv^2$ $a = -g - \frac{1}{30}kv^2$ $\frac{dv}{dt} = -g - \frac{1}{30}kv^2$ $\frac{dt}{dv} = \frac{-30}{kv^2 + 30g}dv$ $t = \int \frac{-30}{kv^2 + 30g}dv$ The particle has an initial speed of u ms ⁻¹ and reaches maximum height when $v = 0$. $t = \int_{u}^{0} \frac{-30}{kv^2 + 30g}dv$ $= \frac{30}{\sqrt{k}} \int_{0}^{u} \frac{\sqrt{k}}{(\sqrt{30g})^2 + (\sqrt{k}v)^2}dv$ $= \frac{30}{\sqrt{k}} \left[\frac{1}{\sqrt{30g}} \tan^{-1} \frac{\sqrt{k}v}{\sqrt{30g}}\right]_{0}^{u}$ $= \frac{30}{\sqrt{30gk}} \left[\tan^{-1} \frac{\sqrt{k}v}{\sqrt{30g}}\right]_{0}^{u}$ $= \frac{30}{\sqrt{gk}} \tan^{-1} \frac{\sqrt{k}u}{\sqrt{30g}}$	4 Marks: Correct answer. 3 Marks: Makes significant progress towards the solution. 2 Marks: Finds $t = \int \frac{-30}{kv^2 + 30g} dv$ 1 Mark: Resolves the forces

16(c)	Let $f(x) = x - \ln(1+x)$ and $f'(x) = 1 - \frac{1}{1+x}$	3 Marks: Correct answer.
	Minimum occurs when $f'(x) = 0$ $1 - \frac{1}{1+x} = 0$ $\frac{1+x}{1+x} - \frac{1}{1+x} = 0$ $1+x-1 = 0$ $x = 0 \ (x \neq -1)$ $Test f''(x) = \frac{1}{(1+x)^2}$ $f''(0) = 1 > 0 \text{ Minima}$ $Therefore the least value of f(x) is at x = 0 f(0) = 0 - \ln(1+0) = 0 \text{ hence } f(x) \geq 0 f(x) = x - \ln(1+x) \geq 0 \therefore x \geq \ln(1+x)$	2 Marks: Makes significant progress towards the solution. 1 Mark: Sets up the function and correctly uses calculus.
16(d) (i)	$ \underline{u} = \sqrt{3^2 + m^2 + 1^2} = 10$ $\sqrt{10 + m^2} = 10$ $10 + m^2 = 100$ $m^2 = 90$ $m = \pm 3\sqrt{10}$	2 Marks: Correct answer. 1 Mark: Shows understanding of the magnitude of a vector.
16(d) (ii)	$ \underline{u} = \sqrt{3^2 + m^2 + 1^2}$ $= \sqrt{10 + m^2}$ $\underline{u} = 3\underline{u} + m\underline{y} + \underline{k}$ $y\text{-axis: } \underline{y} \text{ (unit length of 1)}$ $\underline{u} \cdot \underline{y} = (3 \times 0) + (m \times 1) + (1 \times 0) = m$ $\cos\theta = \frac{\underline{u} \cdot \underline{y}}{ \underline{u} \underline{y} } = \frac{m}{\sqrt{10 + m^2}} = \frac{1}{3}$ $\frac{m^2}{10 + m^2} = \frac{1}{9}$ $9m^2 = 10 + m^2$ $8m^2 = 10$ $m = \pm \frac{\sqrt{5}}{2}$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Shows some understanding.