总线系统

笔记源文件: <u>Markdown</u>, <u>长</u>图, <u>PDF</u>, <u>HTML</u>

1. 总线概述

1.1. 总线概念

1 总线含义:连接各部件的信息通路&共享传输介质

2 总线组成:连接计算机各部件的逻辑电路,不止是单纯的连线

3 总线性质:同一时刻,只允许一个部件发信,但允许多个部件收信

1.2. 总线特性

类别	特性
机械特性	尺寸、形状
电气特性	传输方向和有效的电平范围
功能特性	总线上所传信号的功能,按照功能总线可分为地址/数据/控制总线
时间特性	任一根线上的信号在什么时间有效

1.3. 总线性能指标

指标	含义	单位
总线宽度	总线的根数(一次并行传输几位)	bit
总线带宽	单位时间总线传输的数据量,等于 <mark>工作频率×总线宽度</mark>	MB/s, MBps
工作频率	总线时钟信号频率	m MHz
控制方式	集中控制/分散控制	#
通信方式	同步通信/异步通信	#
信号线数	各类信号线的的总根数,可通过复用减少线数	#
负载能力	可扩增电路板的数量	#
扩展能力	总线宽度是否可扩展	#

1.4. 三种类型: 片内/系统/通信

1片内总线:连接芯片内各部件,如CPU内部总线

CPU内部总线

2 系统总线:单机系统内各**大部件**间,信息传输的公共通路

总线类 型	传输内容	传输方向	总线宽度
数据总线	数据	双向	等于机器字长/CPU字长
地址总线	地址	单向	2 ^{宽度} = 最大存储单元大小
控制总线	CPU发出控制/反馈给 CPU状态	总体双向/每根 单向	#

3 通信总线

1. 串行:数据从低位→高位,逐位传送
2. 并行:一字节(字)一字节(字)地传送

1.5. 总线协议

1 系统总线

名称	描述
ISA	最早的微型计算机系统总线,应用在IBM的AT机上
EISA	扩展的ISA总线,适用于32位CPU,与ISA完全兼容
VESA(VL-BUS)	32位计算机局部总线,针对多媒体PC的高速传送需求设计
PCI	高性能的32位或64位总线,适用于外围部件和处理器/存储器系统的互连
PCI-Express	最新的总线和接口标准,将全面取代PCI和AGP

2 设备总线

名称	描述
IDE	集成设备电路接口,用于处理器和磁盘驱动器间的连接

ATP	描述 图形接口,专用于连接主存和图形存储器	
USB	用于外部设备的快速连接	
SATA	串行高级技术附件,一种行业标准的串行硬件驱动器接口	

2. 总线结构:单/多总线

2.1. 单总线: 只有一根系统总线

1单总线:包含了数据/地址/控制总线,连接所有的部件

2 特点:结构简单,各部分**分时**使用(效率低)

2.2. 双总线

1 CPU中心结构: CPU $\stackrel{\hat{a}$ \hat{a} \hat{a} \hat{a} \hat{a} \hat{b} \hat{a} \hat{b} \hat{c} \hat{c}

2 内存中心结构: $CPU \overset{\bar{a}$ 速通道}{\longleftrightarrow} 主存, $IO \overset{\bar{a}$ 接访问}{\longleftrightarrow} 主存,但CPU/IO不可同时访问主存

2.3. 三总线结构

以CPU为中心: CPU ← 高速通道 主存, IO ← 主存

3. (集中式)总线仲裁

3.0. 前置概念

1 什么是总线仲裁:同一时刻只有一个部件能往总线发数据,所以,谁来

2 两类连接总线的设备

类型	特征	举例
主设备	能发出总线请求,能启动总线操作	CPU, DMA控制器, IO设备
从设备	被动响应主模块发来的命令	主存, IO设备

3 仲裁思路

1. 软件思路: 为每个主设备设置优先级,多个主设备请求总线是,总线优先给优先级高的

2. 硬件思路: 总线控制器中, 设置仲裁机构

3.1. 链式查询方式: 所有部件共用一根总线请求线

1 控制信号线

类型	功能	用途
总线请求 BR	主模块 发送请求信号 主模块 BR BR	公用, 发送请求

类型	功能	用途
总线同意 BG	主模块← 回送同意信号 总线控制 BG 器	是对于BR的响应,意味着请求得到响应
总线忙BS	主模块 BS 总线控制器	相当于占用了总线的主模块,宣称其占有

2 设计要点

1. 结构:通过优先链,将所有主模块串起来

2. 优先级: 再上述串中, 离总线控制器越近的优先级越高

3. 查询方法:

。 从最靠近控制器的主模块开始查: 你要不要用总线?

。 跳过不要的, 一旦查到要的(优先级必定最高), 便让该模块使用总线

。 总线用完后释放, 然后继续往后边查: 你要不要用总线?

3 查询过程

1. 请求:假设1,n模块同时请求(BR有效)

2. 查询: BG信号开始沿优先链查询, 一直查询到模块1时BG截断

3. 占用:模块1回送BS信号,占用总线,撤销BG/BR信号

4. 释放:模块1使用完总线后,也撤销BS信号以此释放总线

◆缺点:查询速度慢,故障敏感(一个模块坏了后面都白搭),优先级固定不灵活

3.2. 计数器定时查询

1 结构: 总线控制器里植入一个计数器(查询用)

2 杳询讨程:

1. 初值设定: 查询开始, 计数器启动, 设定一初值(不一定为0)

2. 初值广播: 计数初值发往每个模块

3. 请求响应: 如果某个模块请求了总线, 且模块地址=计数值, 则获得总线控制权

4. 计数更新: 计数值++, 每次更新后, 都要将计数值广播

3 优先级确定:关键在干**计数器初值设置**

- 1. 初值=0,则0模块最优先
- 2. 初值=上次查询终止时计数器的值,则上次终止点最优先
- 3. 初始=程序设定

3.3. 独立请求

- 1 结构:
 - 1. 每个模块有一个专门BR, BG各自独立请求
 - 2. 总线控制器设置并行排队线路,将发来请求的模块全部进行排队
- 2 优先级:队列里排前面的优先级高

4. 总线通信: 部件 $1 \stackrel{\text{п, п, m}}{\longleftrightarrow}$ 部件n

4.1. 总线通信概念概述

1一次总线操作的过程

操作	描述
申请分配	主模块申请总线
寻址	主模块获得总线控制权,向从模块发地址&读写命令
传送	主从模块数据交互
结束	主模块让出总线

2 总线周期: 一次完整的总线操作耗时, 有以下几种

总线周期类型	地址传送时间	数据传送时间
正常总线周期	一次	一次
BURST总线周期	一次	多次*

*如果读写部件太慢了,则需要增加传送时间完成读写,增加的传送时间就是**总线等待状态**

3 总线操作类型

类型	方向	示例
内存读	从模块发送, 主模块接收	CPU或IO接口,从主存中读
内存写	主模块发送, 从模块接收	CPU或IO接口,从主存中写
外设读	从模块发送, 主模块接收	CPU, 从IO设备中读
外设写	主模块发送, 从模块接收	CPU, 从IO设备中写

4.2. 同步通信:由总线控制器时钟统一协调

- 1 时间分配
 - 1. 一个总线周期中, 所含时钟个数固定
 - 2. 所有的模块, 总线周期都一样长
- 2 总线同步的数据IO: 左边为读时序, 右边为写时序

时间	从模块读,数据输入主模块	从模块写,数据输出主模块
T_1	主模块 地址 从模块	主模块 地址 从模块
$T_{1.5}$	#	主模块一
T_2	主模块一族命令从模块	主模块 写命令 从模块
T_3	主模块〈遺出数据 从模块	等待数据写入从模块
T_4	主模块撤消读命令、地址	主模块撤消读命令、地址、数据

4.3. 异步通信: 无时钟/总线周期随模块工作时间变动

1 三种异步通信

方式	主模块	从模块
不互 锁	发出①后,过段时间默认对方收到 了①*	发出②后,过段时间默认对方收到了 ②**
半互锁	发出①后,收到②后才认定对方收 到①	发出②后,过段时间默认对方收到了 ②
全互锁	发出①后,收到②后才认定对方收 到①	发出②后,收到③后才认定对方收到 ②***

*确认对方收到①后,主模块撤销请求信号

**确认对方收到②后,从模块撤销ACK信号

***ACK的ACK实质上是主模块撤销请求信号的确认

2 全互锁异步通信的时序

1. 发出信号

部件	发送方向	发送内容
CPU	往主存	地址/读指令/主同步
主存	#	数据/从同步

2. 收到同步信号后的响应

部件	同步信号来源	操作
CPU	从同步	读数据,撤销主同步
主存	#	撤销数据,撤销从同步

3. 最后: CPU撤消地址和读指令