

Before J=0 started

V(0,0)=0	V(0,1)=0	V(0,2)=0	V(0,3)=0
N(0,0)=0	N(0,1)=0	N(0,2)=0	N(0,3)=0
V(1,0)=0	V(1,1)=0	V(1,2)=0	V(1,3)=0
N(1,0)=0	N(1,1)=0	N(1,2)=0	N(1,3)=0
V(2,0)=0	V(2,1)=0	V(2,2)=0	V(2,3)=0
N(2,0)=0	N(2,1)=0	N(2,2)=0	N(2,3)=0

After J=0 finished V(x,y) Update

```
V(0,0)=0.80298
                        V(0,1)=0.851495
                                             V(0,2)=0.95
                                                              V(0,3)=1
     N(0.0)=1
                           N(0.1)=1
                                              N(0.2)=1
                                                              N(0,3)=1
V(1,0)=0.70740075
                           V(1,1)=0
                                              V(1,2)=0
                                                              V(1,3)=0
     N(1,0)=1
                           N(1,1)=0
                                              N(1,2)=0
                                                              N(1,3)=0
/V(2,0)=0.66032674
                                              V(2,2)=0
                                                              V(2,3)=0
                           V(2,1)=0
     N(2,0)=1
                           N(2,1)=0
                                              N(2,2)=0
                                                              N(2,3)=0
```

Trajectory τ

* X, $r = \tau[-3] \Rightarrow [0, 1]$, -0.04 * $G_{k-2} = \gamma * G_{k-1} + R_{k-1} = 0.99 * 0.95 + (-0.04) = 0.9005 = \gamma^2 * R_{k+1} + \gamma * R_k + R_{k-1}$ * If X = [0, 1] is never visited before (not present in remaining list): False * X, $r = \tau[-4] \Rightarrow [0, 1]$, -0.04 * $G_{k-3} = \gamma * G_{k-2} + R_{k-2} = 00.99 * 0.9005 + (-0.04) = 0.851495 = \gamma^3 * R_{k+1} + \gamma^2 * R_k + \gamma * R_{k-1} + R_{k-2}$ * If X = [0, 1] is never visited before:

 $\{S_1, S_2, S_3, S_4, \ldots, S_k\}$ consists (X_k, r_{k+1}) where k <= 20 (episode length)

-0.04), ([0, 1], -0.04), ([0, 2], -0.04), ([0, 3], 1.0) }, where $\mathbf{k} = \mathbf{8}$

If X=[0,3] is never visited before (not present in remaining list):

If X=[0,2] is never visited before (not present in remaining list):

 $G_{k-1} = \gamma * G_k + R_k = 0.99 * 1.0 + (-0.04) = 0.95 = \gamma * R_{k+1} + R_k$

 $G_k = \gamma * G_{k+1} + R_{k+1} = 0.99 * 0 + 1.0 = 1.0 = \gamma * 0 + R_{k+1}$

There, are 12 states in this system and 4 possible actions. Each sample S_{ij} in the trajectory τ =

V(2,0), V(1,0), V(0,0), V(0,1), V(0,2), V(0,3) will be updated based on the criterion, $\nabla (x,y)$

 $V(X=[0,3])^* = V(X=[0,3]) + [G - V(X=[0,3])]/N(X=[0,3]) = 0 + [1 - 0]/1 = 1$

 $V(X=[0,2])^* = V(X=[0,2]) + [G - V(X=[0,2])]/N(X=[0,2]) = 0 + [0.95 - 0]/1 = 0.95$

At, $J = \emptyset$, $\tau = \{([2, 0], -0.04), ([1, 0], -0.04), ([1, 0], -0.04), ([0, 0], -0.04), ([0, 1], -0.04), ([0, 0], -0.04), ([0$

 $V(X=[0,1])^* = V(X=[0,1]) + [G - V(X=[0,1])]/N(X=[0,1]) = 0 + [0.9005 - 0]/1 = 0.851495$

G, $\gamma = 0.99$

For length(τ):

 $\leftarrow V_{L}(X,Y) + [G_{L} - V_{L}(X,Y)]/N_{L}(X,Y)$

 \star X. r = $\tau[-1] \Rightarrow [0, 3], 1.0$

N(X=[0.3]) += 1

 $X, r = \tau[-2] \Rightarrow [0, 2], -0.04$

N(X=[0,2]) += 1

* X, $r = \tau[-5] \Rightarrow [0, 0], -0.04$ * $G_{\nu-4} = \gamma * G_{\nu-2} + R_{\nu-2} = 0.99 * 0.851495 + (-0.04) = 0.80298 = \gamma^4 * R_{\nu+1} + \gamma^3 * R_{\nu} + \gamma^2 * R_{\nu-1} + \gamma * R_{\nu-2} + R_{\nu-3} + R_{\nu-4} + R_{\nu-4$

 \rightarrow N(X=[0.1]) += 1

 R_{k-3}

* If X=[0,0] is never visited before:

> N(X=[0,0]) += 1 > $V(X=[0,0])^* = V(X=[0,0]) + [G - V(X=[0,0])]/N(X=[0,0]) = 0 + [0.80298 - 0]/1 = 0.80298$

 \star X, $r = \tau[-6] \Rightarrow [1, 0], -0.04$

♦ $G_{k-5} = \gamma * G_{k-4} + R_{k-4} = 0.99 * 0.80298 + (-0.04) = 0.70740075$ ♦ If X=[1,0] is never visited before (not present in remaining list): False

Before J=0 started

V(0,0)=0	V(0,1)=0	V(0,2)=0	V(0,3)=0
N(0,0)=0	N(0,1)=0	N(0,2)=0	N(0,3)=0
V(1,0)=0	V(1,1)=0	V(1,2)=0	V(1,3)=0
N(1,0)=0	N(1,1)=0	N(1,2)=0	N(1,3)=0
V(2,0)=0	V(2,1)=0	V(2,2)=0	V(2,3)=0
N(2,0)=0	N(2,1)=0	N(2,2)=0	N(2,3)=0

After J=0 finished

V(0,0)=0.80298	V(0,1)=0.851495	V(0,2)=0.95	V(0,3)=1
N(0,0)=1	N(0,1)=1	N(0,2)=1	N(0,3)=1
V(1,0)=0.70740075	V(1,1)=0	V(1,2)=0	V(1,3)=0
N(1,0)=1	N(1,1)=0	N(1,2)=0	N(1,3)=0
V(2,0)=0.66032674	V(2,1)=0	V(2,2)=0	V(2,3)=0
N(2,0)=1	N(2,1)=0	N(2,2)=0	N(2,3)=0

After J=1 finished

V(0,0)=0.827237525 N(0,0)=2	V(0,1)=0.875997 5 N(0,1)=2	V(0,2)=0.95 N(0,2)=2	V(0,3)=1 N(0,3)=2
V(1,0)=0.7551904	V(1,1)=0	V(1,2)=0	V(1,3)=0
N(1,0)=2	N(1,1)=0	N(1,2)=0	N(1,3)=0
V(2,0)=0.707638495	V(2,1)=0	V(2,2)=0	V(2,3)=0
N(2,0)=2	N(2,1)=0	N(2,2)=0	N(2,3)=0

```
-0.04), ([0, 3], 1.0) }
# G = 0, \gamma = 0.99
```

At. J = 1. $\tau = \{([2, 0], -0.04), ([1, 0], -0.04), ([0, 0], -0.04), ([0, 1], -0.04), ([0, 2], -0.04), ([0, 0], -0.04), ([0$

V(2,0), V(1,0), V(0,0), V(0,1), V(0,2), V(0,3) will be updated based on the criterion, $V(x,y) \leftarrow V(x,y) + [G - V(x,y)]/N(x,y)$

```
For length(\tau): 
 • X, r = \tau[-1] => [0, 3], 1.0
```

- $G = \gamma * G + r = 0.99 * 0 + 1.0 = 1.0$
- ❖ If X=[0,3] is never visited before (not present in remaining list):

- $V(X=[0,3])^* = V(X=[0,3]) + [G V(X=[0,3])]/N(X=[0,3]) = 1 + [1 1]/2 = 1$ $V(X=[0,3])^* = V(X=[0,3]) + [G V(X=[0,3])]/N(X=[0,3]) = 1 + [1 1]/2 = 1$
- \bullet G = γ * G + r = 0.99 * 1.0 + (-0.04) = 0.95
- If X=[0,2] is never visited before (not present in remaining list):
 - \rightarrow N(X=[0,2]) += 1
 - $V(X=[0,2])^* = V(X=[0,2]) + [G V(X=[0,2])]/N(X=[0,2]) = 0.95 + [0.95 0.95]/2 = 0.95$
- \star X, r = $\tau[-3]$ => [0, 1], -0.04
 - $G = \gamma * G + r = 0.99 * 0.95 + (-0.04) = 0.9005$
 - If X=[0,1] is never visited before: N(X=[0,1]) += 1
 - 0.8759975
- \star X, r = $\tau[-4]$ => [0, 0], -0.04
- Φ G = γ * G + r = 0.99 * 0.9005 + (-0.04) = 0.851495
- - **0.80298005]/2 =** 0.827237525
- $G = \gamma * G + r = 0.99 * 0.851495 + (-0.04) = 0.80298005$
- \star X, $r = \tau[-6] \Rightarrow [2, 0], -0.04$

0.707400751/2 = 0.7551904

- $G = \gamma * G + r = 0.99 * 0.80298005 + (-0.04) = 0.75495025$
- If X=[2,0] is never visited before:
 N(X=[2.0]) += 1
 - $V(X=[2,0])^+ = V(X=[2,0]) + [G V(X=[2,0])]/N(X=[2,0]) = 0.66032674 + [0.75495025 -$

 $V(X=[0,1])^* = V(X=[0,1]) + [G - V(X=[0,1])]/N(X=[0,1]) = 0.851495 + [0.9005 - 0.851495]/2 =$

 $V(X=[0,0])^* = V(X=[0,0]) + [G - V(X=[0,0])]/N(X=[0,0]) = 0.80298005 + [0.851495 - 0.851495]$

 $V(X=[1,0])^* = V(X=[1,0]) + [G - V(X=[1,0])]/N(X=[1,0]) = 0.70740075 + [0.80298005 -$