CS224

Lab 06

Section 003

Furkan Mert Aksakal

22003191

11.12.2024

1.

No.	Cache Size KB	N way cache	Word Size	Block size (no. of words)	No. of Sets	Tag Size in bits	Index Size (Set No.) in bits	Word Block Offset Size in bits	Byte Offset Size in bits	Block Replacement Policy Needed (Yes/No)
1	64	1	32 bits	4	4096	16 bits	12 bits	2 bits	2 bits	No
2	64	2	32 bits	4	2048	17 bits	11 bits	2 bits	2 bits	Yes (2-way)
3	64	4	32 bits	8	512	19 bits	9 bits	3 bits	2 bits	Yes (4-way)
4	64	Full	32 bits	8	1	27 bits	0 bits	3 bits	2 bits	Yes (Fully Associative)
9	128	1	16 bits	4	8192	15 bits	13 bits	2 bits	2 bits	No
10	128	2	16 bits	4	4096	16 bits	12 bits	2 bits	2 bits	Yes (2-way)
11	128	4	16 bits	16	512	19 bits	9 bits	4 bits	2 bits	Yes (4-way)
12	128	Full	16 bits	16	1	26 bits	0 bits	4 bits	2 bits	Yes (Fully Associative)

2.

a)

Instruction	Iteration No.							
Instruction	1	2	3	4	5			
	Compulsory	Conflict						
lw \$t1, 0x4(\$0)	miss (first	miss (block	Conflict	Conflict	Conflict			
1W Φί1, UX4(ΦU)	access to	6 replaced	miss	miss	miss			
	block 2)	block 2)						
	Compulsory	Conflict						
lw \$t2, 0xC(\$0)	miss (first	miss (block	Conflict	Conflict	Conflict			
1W \$12, 0xC(\$0)	access to	4 replaced	miss	miss	miss			
	block 6)	block 6)						
	Compulsory	Conflict						
lw \$t3, 0x8(\$0)	miss (first	miss (block	Conflict	Conflict	Conflict			
1w φιο, θλο(φθ)	access to	2 replaced	miss	miss	miss			
	block 4)	block 4)						

b)

Number of blocks = Cache capacity / Block size \rightarrow 8/2 = 4 blocks

Data bits in each block = Block size \times Word size \Rightarrow 2 words \times 32 bits = 64 bits

Tag bits = 32 - (index + block offset + byte offset) $\rightarrow 32$ - (2 + 1 + 2) = 27 bits

Data bits = 64 bits // Tag bits = 27 bits // V bit = 1 bit \rightarrow Total per block = 64 + 27 + 1 = 92 bits

Total = Number of blocks \times Bits per block \rightarrow 4 \times 92 = 368 bits

c)

AND gates: 8 (4 for tag comparison with valid bits + 4 for decoder)

OR gates: 3 (inside the multiplexer for final data selection)

Equality Comparators: 4 (one 27-bit comparator per block)

Multiplexers: 1 (64-bit 4-to-1 MUX)

3.

a)

Instruction	Iteration No.							
Instruction	1	2	3	4	5			
lw \$t1, 0x4(\$0)	Compulsory miss (cache: [4, -])	Capacity miss (replaces addr 12, cache: [8, 4])	Capacity miss (replaces addr 12, cache: [8, 4])	Capacity miss (replaces addr 12, cache: [8, 4])	Capacity miss (replaces addr 12, cache: [8, 4])			
lw \$t2, 0xC(\$0)	Compulsory miss (cache: [4, 12])	Capacity miss (replaces addr 8, cache: [4, 12])	Capacity miss (replaces addr 8, cache: [4, 12])	Capacity miss (replaces addr 8, cache: [4, 12])	Capacity miss (replaces addr 8, cache: [4, 12])			
lw \$t3, 0x8(\$0	Capacity miss (replaces addr 4, cache: [12, 8])	Capacity miss (replaces addr 4, cache: [12, 8])	Capacity miss (replaces addr 4, cache: [12, 8])	Capacity miss (replaces addr 4, cache: [12, 8])	Capacity miss (replaces addr 4, cache: [12, 8])			

b)

Block size = 1 word = 32 bits

Number of blocks = 2

Main memory address = 32 bits

Byte offset = $log_2(4) = 2 bits$

Tag bits = 32 - 2 = 30 bits

Data bits = 32 bits (1 word) // Tag bits = <math>30 bits // V bit = 1 bit

Per block = 32 + 30 + 1 = 63 bits

Data + Tag + V bits = $63 \text{ bits} \times 2 \text{ blocks} = 126 \text{ bits}$

LRU bits = 1 bit

Total cache memory size = 126 + 1 = 127 bits

c)

AND gates: 3 (2 for tag comparison with valid bits + 1 for LRU)

OR gates: 2 (1 for multiplexer data selection + 1 for LRU)

Equality Comparators: 2 (one 30-bit comparator per block)

Multiplexers: 1 (32-bit 2-to-1 MUX)

4.

L1 Access:

Hit time = 1 cycle // Miss rate = 20% = 0.2 // On miss, goes to L2

L2 Access:

Hit time = 4 cycles // Miss rate = 5% = 0.05 // On miss, goes to main memory // When accessed from L1 miss: $0.2 \times (4 + 0.05 \times \text{main_memory_time})$

Main Memory Access:

Access time = $10 \times L2$ time = $10 \times 4 = 40$ cycles

AMAT Calculation:

Clock rate = $4 \text{ GHz} = 4 \times 10^9 \text{ cycles/second}$

Time per instruction = 2.2 cycles

Total cycles needed = $10^{12} \times 2.2 = 2.2 \times 10^{12}$ cycles

Total time = $(2.2 \times 10^{12}) \div (4 \times 10^{9})$

Total time = 550 seconds = 9.17 minutes