

Precision Monolithic Quad SPST CMOS Analog Switches

DESCRIPTION

The DG411HS series of monolithic quad analog switches was designed to provide high speed, low error switching of precision analog signals. Combining low power (0.35 µW) with high speed (t_{ON}: 68 ns), the DG411HS family is ideally suited for portable and battery powered industrial and military applications.

To achieve high-voltage ratings and superior switching performance, the DG411HS series was built on Vishay Siliconix's high voltage silicon gate process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks input voltages up to the supply levels when off.

The DG411HS and DG412HS respond to opposite control logic as shown in the Truth Table. The DG413HS has two normally open and two normally closed switches.

FEATURES

- 44 V supply max. rating
- ± 15 V analog signal range
- On-resistance $R_{DS(on)}$: 25 Ω
- Fast switching toN: 68 ns
- Ultra low power P_D: 0.35 μW
- TTL, CMOS compatible
- Single supply capability

BENEFITS

- Widest dynamic range
- Low signal rrrors and distortion
- Break-before-make switching action
- Simple interfacing

APPLICATIONS

- Precision automatic test equipment
- Precision data acquisition
- Communication systems
- Battery powered systems
- Computer peripherals

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE									
Logic	DG411HS	DG412HS							
0	ON	OFF							
1	OFF	ON							

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 72053 S13-1283-Rev. D, 27-May-13

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE									
Logic	SW ₁ , SW ₄	SW_2 , SW_3							
0	OFF	ON							
1	ON	OFF							

ORDERING INFORMATION								
Temp. Range	Package	Part Number						
DG411HS, DG412HS								
	16-Pin Plastic DIP	DG411HSDJ DG411HSDJ-E3						
	10-Fill Flastic DIF	DG412HSDJ DG412HSDJ-E3						
- 40 °C to 85 °C	16-Pin Narrow SOIC	DG411HSDY DG411HSDY-E3 DG411HSDY-T1 DG411HSDY-T1-E3						
	TO THI Namow Gold	DG412HSDY DG412HSDY-E3 DG412HSDY-T1 DG412HSDY-T1-E3						
	16-Pin QFN 4 x 4 mm (Variation 1)	DG411HSDN-T1-E4 DG412HSDN-T1-E4						
DG413HS	,							
	16-Pin Plastic DIP	DG413HSDJ DG413HSDJ-E3						
- 40 °C to 85 °C	16-Pin Narrow SOIC	DG413HSDY DG413HSDY-E3 DG413HSDY-T1 DG413HSDY-T1-E3						
	16-Pin QFN 4 x 4 mm (Variation 1)	DG413HSDN-T1-E4						

ABSOLUTE MAXIMUM RATINGS								
Parameter		Limit	Unit					
V+ to V-		44						
GND to V-		25						
V _L		(GND - 0.3) to (V+) + 0.3	V					
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 30 mA, whichever occurs first						
Continuous Current (Any terminal)		30	mA					
Peak Current, S or D (Pulsed 1 ms, 10 %	6 duty cycle)	100	IIIA					
Storage Temperature	(AK, AZ Suffix)	- 65 to 150	°C					
Storage remperature	(DJ, DY, DN Suffix)	- 65 to 125						
	16-Pin Plastic DIP ^c	470						
	16-Pin Narrow SOIC ^d	600						
Power Dissipation (Package) ^b	16-Pin CerDIP ^e	900	mW					
	LCC-20 ^e	900	7					
	16-Pin (4 x 4 mm) QFN ^f	1880						

- $a. \ Signals \ on \ S_X, \ D_X, \ or \ IN_X \ exceeding \ V+ \ or \ V- \ will \ be \ clamped \ by \ internal \ diodes. \ Limit \ forward \ diode \ current \ to \ maximum \ current \ ratings.$
- b. All leads welded or soldered to PC board.
- c. Derate 6 mW/°C above 25 °C.
- d. Derate 7.6 mW/°C above 75 °C.
- e. Derate 12 mW/°C above 75 °C.
- f. Derate 23.5 mW/°C above 70 °C.

SPECIFICATIONS	a									
		Test Conditions Unless Specified			A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C			
Parameter	Symbol	V+ = 15 V, V- = -15 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^f$	Temp.b	Typ. ^c	Min.d	Max. ^d	Min. ^d	Max.d	Unit	
Analog Switch										
Analog Signal Range ^e	V _{ANALOG}		Full		- 15	15	- 15	15	V	
Drain-Source On-Resistance	R _{DS(on)}	V+ = 13.5 V, V- = -13.5 V $I_S = -10 \text{ mA}, V_D = \pm 8.5 \text{ V}$	Room Full	25		35 45		35 45	Ω	
Switch Off	I _{S(off)}	V+ = 16.5 V, V- = - 16.5 V	Room Full	± 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5		
Leakage Current	I _{D(off)}	$V_D = \pm 15.5 \text{ mA}, V_S = \pm 15.5 \text{ V}$	Room Full	± 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5	nA	
Channel On	1	V+ = 16.5 V, V- = - 16.5 V	Room	± 0.1	- 0.4	0.4	- 0.4	0.4		
Leakage Current	I _{D(on)}	$V_D = V_S = \pm 15.5 \text{ V}$	Full		- 40	40	- 10	10		
Digital Control										
Input Current, V _{IN} Low	I _{IL}	V _{IN} under test = 0.8 V	Full	0.005	- 0.5	0.5	- 0.5	0.5	μΑ	
Input Current, V _{IN} High	I _{IH}	V _{IN} under test = 2.4 V	Full	0.005	- 0.5	0.5	- 0.5	0.5	μΑ	
Input Capacitance ^e	C _{IN}	f = 1 MHz	Room	5					pF	
Dynamic Characteristics										
Turn-On Time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$	Room Full	68		105 127		105 116		
Turn-Off Time	t _{OFF}	$V_S = \pm 10 \text{ V}$, see figure 2	Room Full	42		80 94		80 90	ns	
Break-Before-Make Time Delay	t _D	DG413HS only, $V_S = 10 \text{ V}$ $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Room	20						
Charge Injection ^e	Q	$V_{a} = 0 \text{ V}, R_{a} = 0 \Omega, C_{L} = 10 \text{ nF}$	Room	22					рС	

DG411HS, DG412HS, DG413HS

Vishay Siliconix

SPECIFICATIONS ^a										
		Test Conditions Unless Specified			A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C			
Parameter	Symbol	$V_{+} = 15 \text{ V}, V_{-} = -15 \text{ V}$ $V_{L} = 5 \text{ V}, V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^{f}$	Temp.b	Typ. ^c	Min.d	Max. ^d	Min. ^d	Max. ^d	Unit	
Dynamic Characteristics (Con	ťd)									
Off Isolation ^e	OIRR	$R_L = 50 \Omega, C_L = 5 pF$	Room	- 91					dB	
Channel-to-Channel Crosstalke	X _{TALK}	f = 1 MHz	Room	- 88					ав	
Source Off Capacitance ^e	C _{S(off)}		Room	12						
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	Room	12					pF	
Channel On Capacitance ^e	C _{D(on)}		Room	30						
Power Supplies										
Positive Supply Current	I+		Room Full	0.0001		1 5		1 5		
Negative Supply Current	l-	V+ = 16.5 V, V- = - 16.5 V	Room Full	- 0.0001	- 1 - 5		- 1 - 5			
Logic Supply Current	IL	V _{IN} = 0 or 5 V	Room Full	0.0001		1 5		1 5	μΑ	
Ground Current	I _{GND}		Room Full	- 0.0001	- 1 - 5		- 1 - 5			

SPECIFICATIONS ^a (for Unipolar Supplies)											
		Test Conditions Unless Specified			A Suffix - 55 °C to 125 °C			uffix to 85 °C			
Parameter	Symbol	$V_{+} = 12 \text{ V}, V_{-} = 0 \text{ V}$ $V_{L} = 5 \text{ V}, V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^{f}$	Temp.b	Typ. ^c	Min.d	Max. ^d	Min. ^d	Max. ^d	Unit		
Analog Switch											
Analog Signal Range ^e	V _{ANALOG}		Full			12		12	V		
Drain-Source On-Resistance	R _{DS(on)}	$V+ = 10.8 \text{ V}, I_S = -10 \text{ mA}$ $V_D = 3 \text{ V}, 8 \text{ V}$	Room Full	49		80 100		80 100	Ω		
Dynamic Characteristics											
Turn-On Time	t _{ON}	$R_1 = 300 \Omega, C_1 = 35 pF$	Room Hot	95		140 180		140 160			
Turn-Off Time	t _{OFF}	$V_S = 8 \text{ V}$, see figure 2	Room Hot	36		70 79		70 74	ns		
Break-Before-Make Time Delay	t _D	DG413HS only, $V_S = 8 \text{ V}$ $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Room	60							
Charge Injection	Q	$V_{g} = 6 \text{ V}, R_{g} = 0 \Omega, C_{L} = 1 \text{ nF}$	Room	60					рС		
Power Supplies		<u> </u>									
Positive Supply Current	l+		Room Hot	0.0001		1 5		1 5			
Negative Supply Current	I-	,	Room Hot	- 0.0001	- 1 - 5		- 1 - 5				
Logic Supply Current	IL	$V+ = 13.2 \text{ V}, V_{IN} = 0 \text{ or } 5 \text{ V}$	Room Hot	0.0001		1 5		1 5	μΑ		
Ground Current	I _{GND}		Room Hot	- 0.0001	- 1 - 5		- 1 - 5				

Notes:

- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 $^{\circ}\text{C},\,\text{Full}$ = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

On-Resistance vs. $V_{\rm D}$ and Dual Supply Voltage

Leakage Current vs. Analog Voltage

300 T_A = 25 °C ${}^{r}{}_{DS(on)}$ - Drain-Source On-Resistance (Ω) $V_L = 5 V$ V + = 3.0 V250 $V_L = 3 V$ 200 V + = 5.0 V150 100 V+ = 15.0 V 50 V + = 20.0 V0 16 V_D - Drain Voltage (V)

On-Resistance vs. $\mathbf{V}_{\mathbf{D}}$ and Unipolar Supply Voltage

On-Resistance vs. V_D and Temperature

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

DG411HS, DG412HS, DG413HS

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Charge Injection vs. Analog Voltage

Charge Injection vs. Analog Voltage

100 mA V+ = 15 V V-=-15 V 10 mA = 1 SW 1 mA = 4 SW SUPPLY 100 μΑ 10 μΑ 1 μΑ 100 nA 10 nA 10 10 k 1 M f - Frequency (Hz)

Supply Current vs. Input Switching Frequency

SCHEMATIC DIAGRAM (Typical Channel)

Figure 1.

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_O = V_S$$

$$\frac{R_L}{R_L + r_{DS(on)}}$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Figure 2. Switching Time

Figure 3. Break-Before-Make (DG413HS)

TEST CIRCUITS

Figure 4. Charge Injection

Figure 5. Crosstalk

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72053.

SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	HES
Dim	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A ₁	0.10	0.20	0.004	0.008
В	0.38	0.51	0.015	0.020
С	0.18	0.23	0.007 0.00	
D	9.80	10.00	0.385	0.393
E	3.80	4.00	0.149	0.157
е	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
0	0°	8°	0°	8°
ECN: S-0	3946—Rev. F	, 09-Jul-01		

DWG: 5300

PDIP: 16-LEAD

	MILLIN	IETERS	INC	HES				
Dim	Min	Max	Min	Max				
Α	3.81	5.08	0.150	0.200				
A ₁	0.38	1.27	0.015	0.050				
В	0.38	0.51	0.015	0.020				
B ₁	0.89	1.65	0.035	0.065				
С	0.20	0.30	0.008	0.012				
D	18.93	21.33	0.745	0.840				
E	7.62	8.26	0.300	0.325				
E ₁	5.59	7.11	0.220	0.280				
e ₁	2.29	2.79	0.090	0.110				
e _A	7.37	7.87	0.290	0.310				
L	2.79	3.81	0.110	0.150				
Q ₁	1.27	2.03	0.050	0.080				
S	0.38	1.52	.015	0.060				
ECN: S-03946—Rev. D, 09-Jul-01								

DWG: 5482

Document Number: 71261 www.vishay.com 06-Jul-01

QFN 4x4-16L Case Outline

	VARIATION 1			VARIATION 2									
DIM	МІ	MILLIMETERS ⁽¹⁾		INCHES		MILLIMETERS ⁽¹⁾		S ⁽¹⁾		INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.75	0.85	0.95	0.029	0.033	0.037	0.75	0.85	0.95	0.029	0.033	0.037	
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002	
A3		0.20 ref.			0.008 ref.			0.20 ref.			0.008 ref.)8 ref.	
b	0.25	0.30	0.35	0.010	0.012	0.014	0.25	0.30	0.35	0.010	0.012	0.014	
D		4.00 BS0	0	0.157 BSC 4.00 BSC		4.00 BSC 0.157 BSC							
D2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106	
е		0.65 BS0)		0.026 BSC			0.65 BSC			0.026 BSC		
Е		4.00 BS0	0		0.157 BSC		4.00 BSC			0.157 BSC			
E2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106	
К		0.20 min			0.008 min.		0.20 min.			0.008 min.			
L	0.5	0.6	0.7	0.020	0.024	0.028	0.3	0.4	0.5	0.012	0.016	0.020	
N ⁽³⁾		16		16		16		16					
Nd ⁽³⁾		4			4			4		4			
Ne ⁽³⁾		4			4			4			4		

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: S13-0893-Rev. B, 22-Apr-13

DWG: 5890

Revision: 22-Apr-13

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.