

- Diviser les données en train et test.
- Créer deux ensemble (critiques positives ,critiques négatives)
- Tokenizer et stop words.

```
from nltk.tokenize.casual import TweetTokenizer
2 t = TweetTokenizer()
  stop_words_fr = stopwords.words('french')
  exclude ponctuation = set(string.punctuation)
  stop words fr.extend(exclude ponctuation)
  stop_words_fr.extend(["...",","])
  def tok sentence(sentence):
    res = []
    res.extend(t.tokenize(sentence.lower()))
    res = [word for word in res if word not in stop words fr]
     return res
  def word feats(sentence):
    tokens = tok sentence(sentence)
    return dict([(word, True) for word in tokens])
  pos feats = [(word feats(review), 'positive') for review in all positive]
2 neg feats = [(word feats(review), 'negative') for review in all negative]
```


Analyse de données

Train:

Test:

col_0 Label

san

Fréquence de distribution et nuage de mots du train


```
col_0 count
Label
0 3518
1 3482
```


La classe la plus fréquente dans le train est 0 (négatif) 3518 critiques.

Fréquence de distribution et nuage de mots du test


```
col_0 count
Label 0 10408
1 9592
```


La classe la plus fréquente dans le test est 0 (négatif) 10408 critiques.

Analyse de données

Train

Top 50 mots des deux ensembles

Les mots les plus fréquents et communs aux deux ensembles :

- film
- plus
- très
- tout
- bien

Test

Analyse de données

- Créer des ensembles d'apprentissage et de validation à partir de train.
- Les proportions sont bien respectées.

```
Train set:

col_0 count
Label
0 0.502476
1 0.497524
Validation set:

col_0 count
Label
0 0.502857
1 0.497143
```

Algorithme et Evaluation du jeu de test

Modèle 1: Logistic regression

Validation

recall <---> 0.8471264367816091 precision <---> 0.8629976580796253 F1-Score <---> 0.8549883990719258 accuracy rate <---> 0.8571428571428571

Test

recall <----> 0.8697873227689742 precision <----> 0.8752622744439782 F1-Score <----> 0.8725162099979085 accuracy rate <----> 0.8781

Algorithme et Evaluation du jeu de test

Modèle 2: Logistic Regression avec TFIDF

	precision	recall	f1-score	support
0	0.90	0.89	0.89	10408
1	0.88	0.89	0.89	9592
accuracy			0.89	20000
macro avg	0.89	0.89	0.89	20000
weighted avg	0.89	0.89	0.89	20000
Accuracy: 0.	8897			

Test:

On diminue le nb de features.

Algorithme et Evaluation du jeu de test

Modèle 2: Logistic Regression avec TFIDF

	precision	recall	f1-score	support
	precision	rccuii	11 50010	Support
0	0.88	0.88	0.88	10408
1	0.87	0.86	0.87	9592
accuracy			0.87	20000
macro avg	0.87	0.87	0.87	20000
weighted avg	0.87	0.87	0.87	20000
Accuracy: 0.	8734			

Test:

- Le nb de features a largement diminué, mais les prédictions du modèle sont légèrement moins bonnes.
- Les coûts computationnels étant une problématique importante, on est alors gagnant.

Algorithme et Evaluation du jeu de test

Modèle 3: Naïve Bayésien avec Vectoriseur Tfldf

Validation:

Evaluation sur v	alidation	:		
pr	ecision	recall	f1-score	support
0	0.89	0.88	0.88	880
1	0.88	0.89	0.88	870
accuracy			0.88	1750
macro avg	0.88	0.88	0.88	1750
weighted avg	0.88	0.88	0.88	1750
Accuracy: 0.882	285714285	7143		

Predict Positive	774	106	- 700 - 600 - 500
tive			- 400
Predict Negative	100	770	- 300
redict			- 200
4			- 100
	Actual Positive	Actual Negative	

Test:

pr	est: ecision	recall	f1-score	support
0 1	0.89 0.89	0.89 0.89	0.89 0.89	10408 9592
accuracy macro avg weighted avg	0.89 0.89	0.89 0.89	0.89 0.89 0.89	20000 20000 20000
Accuracy: 0.89				

Les performances de ce modèle sont légèrement meilleures que les précédents, on a ici moins de faux positifs et négatifs

Algorithme et Evaluation du jeu de test

Modèle 4: Naïve Bayésien avec CountVectoriser

Validation:

Evaluation :	sur validatio	n:		
	precision	recall	f1-score	support
	·			
	0.88	0.88	0.88	880
	1 0.88	0.88	0.88	870
accurac	y		0.88	1750
macro av	g 0.88	0.88	0.88	1750
weighted av	g 0.88	0.88	0.88	1750
	-			
Accuracy:	0.87657142857	14286		
,				

Test:

					ict Po	9369
Evaluation sur p	test: recision	recall	f1-score	support	Predict	
0 1 accuracy macro avg weighted avg	0.89 0.89 0.89 0.89	0.90 0.88 0.89 0.89	0.89 0.88 0.89 0.89	10408 9592 20000 20000 20000	Predict Negative	1180
Accuracy: 0.88	905					Actual Positive

La diminution des performances est très légère.

Algorithme et Evaluation du jeu de test

Modèle 4: Naïve Bayésien avec CountVectoriser

• Testons 2 exemples de critique au hasard et regardons si elle est bien catégorisée

```
review_test = ["ce film est très intéressant, les acteurs livrent de belles performances"]

#On veut savoir comment est vectorisé cet exemple avec le transformer qu'on a initié toute à l'heure
#mat_reviewTest = vect2.transform(review_test)

#mais de quels termes s'agit-il ?
print(np.asarray(vect2.get_feature_names())[mat_reviewTest.indices])

['acteurs' 'belles' 'film' 'intéressant' 'livrent' 'performances' 'très']

predicted2 = NB_clf2.predict(mat_reviewTest)
print(predicted2)

[1]
```

```
review_test = ["le scénario n'était pas à la hauteur, tout comme le rythme trop mou de l'ensemble du film"]

#On veut savoir comment est vectorisé cet exemple avec le transformer qu'on a initié toute à l'heure
mat_reviewTest = vect2.transform(review_test)
print(mat_reviewTest)

print(np.asarray(vect2.get_feature_names())[mat_reviewTest.indices])

predicted2 = NB_clf2.predict(mat_reviewTest)
print(predicted2)

['comme' 'film' 'hauteur' "l'ensemble" 'mou' "n'était" 'rythme' 'scénario'
'tout' 'trop']
[0]
```

Nos deux exemples ont bien été catégorisés.

Algorithme et Evaluation du jeu de test

Modèle 5: SVM

	precision	recall	f1-score	support
0	0.89	0.89	0.89	10408
1	0.88	0.89	0.88	9592
accuracy			0.89	20000
macro avg	0.89	0.89	0.89	20000
weighted avg	0.89	0.89	0.89	20000

Test:

Accuracy:

0.8863

Pas d'augmentation conséquente

Algorithme et Evaluation du jeu de test

Deep Neural Networks

Modèle 6: Keras Model

Model: "sequential_12"		
Layer (type)	Output Shape	Param #
dense_26 (Dense)	(None, 10)	312640
dense_27 (Dense)	(None, 1)	11
=======================================	=======================================	======
Total params: 312,651		

Total params: 312,651 Trainable params: 312,651 Non-trainable params: 0

Training Accuracy: 0.9998
Testing Accuracy: 0.8424

- ✓ Les performances du modèle sont en dessous de ce qu'on prévoyai
- ✓ Mais pourtant c'est un modèle intéressant

Algorithme et Evaluation du jeu de test

Deep Neural Networks

Modèle 7: Keras TSNE

Model: "sequential_11"		
Layer (type)	Output Shape	Param #
dense_24 (Dense)	(None, 10)	30
dense_25 (Dense)	(None, 1)	11
 Total params: 41 Trainable params: 41 Non-trainable params: 0		

Training Accuracy: 0.5899 Testing Accuracy: 0.4979

- Le modèle PCA n'est pas adapté à résoudre ce type de problème.
- Underfitting

Conclusion

Le choix de la méthode de transformation et modèle sera entre :

- Vectoriseur Tfldf et un Naïve Bayésien (version multinomial).
- Logistic Regression mais en faisant un TFIDF.

Le choix de la méthode de transformation et du modèle est très important pour la construction d'un bon modèle de classification.

