

Imbalanced Data

Suppose we have two classes in target column (considering Binary Classification) 0 & 1 with 1000 records. Out of one 1000, 200 are with class 0 and 800 with class 1 then the dataset is called as imbalanced dataset.

Techniques to handle Imbalanced Dataset:

- 1. Choose proper evaluation metrics
- 2. Resampling
- 3. Smote

Classification Matrix

Confusion Matrix: The confusion matrix is used to have a more complete picture when assessing the performance of a model.

Metric	Formula	Interpretation	Predicted —		
Accuracy	TP+TN / TP + TN + FP + FN	Overall Performance of model	+	TP True Positive FP False Positive Type I	FN False Negative Type II
Precision	TP / TP + FP	How accurate the positive predictions are			
Recall / Sensitivity	TP/TP+FN	Coverage of actual positive sample	Actual		TN True Negative
Specificity	TN / TN + FP	Coverage of actual negative sample			
F1 Score	2TP / 2TP + FP + FN	Hybrid metric for unbalanced data			

Sklearn Metrics Regression Classification Explained variance score accuracy score Max error balanced accuracy score Mean absolute error f1 score Mean squared error log loss Mean squared log error precision score R2 square recall score roc_auc_score

ROC: The receiver operating curve is the plot of TPR vs FPR by varying the threshold.

TPR = TP / TP + FN → Recall, Sensitivity

FPR = FP / TN + FP → 1- Specificity

Bias and Variance

- Bias Error in training data
- Variance Error in testing data
- Generalized model: Low Bias and Low Variance
- Low Bias or / and High Variance Overfit model
- High Bias or / and low variance Underfit Model

Machine Learning Algorithms Logistic Regression Naïve Bayes KNN-Classification Classifier SVM Classifier Data Linear Regression Regression Knn-Regressor SVM Regression

Data Preprocessing

Normalization: Transforms the data in range [0,1]

From sklearn.preprocessing import Normalizer Norm = normalizer().fit_transform(X_train) norm_x_test = Norm.transform(x_test)

2. Standardization: Transforms the data with mean = 0 and STD = 1

From sklearn.preprocessing import StandardScaler SC = StandardScaler().fit_transform(X_train) scaled_x_test = SC.transform(X_test)

3. Label Encoding:

Datasets that contain multiple labels in one or more than one columns, we need to convert these words to number using label encoding.

From sklearn.preprocessing import LabelEncoder

LC = LabelEnconder()

LC.fit_transform(Data)

4. One Hot Encoding: process of converting categorical data variables so they can be provided to machine learning algorithms to improve predictions and any provided to machine and any provided to ma

Pd.get_dummies()

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Sharing or publishing the contents in part or full is liable for legal action.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Model	Library		
Train Test Split	From sklearn.model_selection import train_test_split		
Linear Regression	From sklearn.linear_model import LinearRegression		
Logistic Regression	From sklearn.linear_model import LogisticRegression		
Naïve Bayes	From sklearn.naive_bayes import GaussianNB		
K Nearest Neighbor	From sklean.neighbors import KneighborsClassifier From sklean.neighbors import KneighborsRegressor		
Support Vector Machine	From sklearn.svm import SVC From sklearn.svm import SVC		