数学標準問題集

Ver.1.6.0

最終更新日: 2022 年 09 月 26 日

はじめに

この問題集では、今までに解いた問題、及び良いなと思った問題を集めています. 試験等からの引用は解答篇で[] で示しています. 保存、印刷は OK ですが、転載、譲渡は禁止です.

訂正, 誤字脱字衍字などは, Instagram の DM, または, ruyur10707@gmail.com からお願いします.

更新情報

- 2022.09.26【Ver.1.6.0】 (1) **12.1** 行列, **9.2** 導関数, **9.3** 微分の応用 **??** を追加.
 - (2) 第1, 2, 3, 8, 9章の最初に「重要事項」の項目を追加.
 - (3) すべての章の冒頭に「重要事項」の項目を追加することを決定.
 - (4) 小問が多い場合、縦書きから横書きに変更.
- 2022.09.09【Ver.1.5.0】 **1.3** 剰余定理・因数定理, **1.4** 分数式, **1.5** 実数, **1.6** 複素数 **1** ~ **4** , **4.6** 逆関数・合成 関数, **5.5** 逆三角関数・双曲線関数・逆双曲線関数, **9.2** 導関数, **9.3** 微分の応用, **11.1** 平面ベクトルを追加.
- 2022.09.01【Ver.1.4.0】 **1.6** 複素数 **5** , **8.4** 関数の展開 **??** を追加.
- 2022.08.27【Ver.1.3.0】 1.1 式の展開, 1.2 因数分解, 8.1 数列の追加開始.
- 2022.08.16【Ver.1.2.0】 (1) デザインを変更.
 - (2) 2.1 いろいろな方程式, 2.2 いろいろな不等式, 5.1 三角関数を削除.
- 2021.10.16【Ver.1.1.7】 (1) 2.1 いろいろな方程式, 2.2 いろいろな不等式, 5.1 三角関数を追加.
 - (2) セクションの修正.

目次

第1章	数と式の計算	9
1.1	式の展開	10
1.2	因数分解	10
1.3	剰余定理・因数定理	11
1.4	分数式	11
1.5	実 数	12
1.6	複素数	13
第2章	方程式・不等式	15
2.1	いろいろな方程式	
2.2	判別式	
2.3	解と係数の関係	
$\frac{2.3}{2.4}$	いろいろな不等式	
$\frac{2.4}{2.5}$	比例式・恒等式	
$\frac{2.5}{2.6}$	等式/不等式の証明	
2.0	・サス/ 小寺式の証明	11
第3章	集合・命題	19
3.1	集 合	20
3.2	命 題	20
第4章	初等関数 1	21
4.1	2 次関数	21
4.2	幕関数	
4.3		
4.4	分数関数	
4.5	無理関数	
4.6	逆関数·合成関数	
4.7	指数関数	
4.8	対数関数	22
1.0		
第5章	初等関数2-三角関数,双曲線関数	23
5.1	三角関数の相互関係	23
5.2	三角形への応用	23
5.3	加法定理と三角関数の性質....................................	23
5.4	三角関数を含む方程式・不等式	23
5.5	逆三角関数・双曲線関数・逆双曲線関数....................................	23

<u>6</u> 目次

第6章	平面図形	25
6.1	点と直線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
6.2	2 次曲線	25
6.3	不等式と領域	
第7章		27
7.1	場合の数	27
7.2	2 項定理	27
7.3	多項定理	27
第8章	数 列	29
8.1	数 列	
8.2	漸化式	
8.3	数学的帰納法	
8.4	関数の展開	
0.1	N3A-7/ACNG	01
第9章	1変数関数の微分	33
9.1	関数の極限	35
9.2	導関数	35
9.3	微分の応用	36
第 10 章	1変数関数の積分	37
10.1	- プログログ	
10.2	定積分	
10.3	広義積分	
10.4	ガンマ関数 $\Gamma(z)$ ・ベータ関数 $B(x, y)$	
10.5	積分の応用	
10.6	1 変数関数の微分積分の発展	
10.0		•
第 11 章	ベクトル	39
11.1	平面ベクトル	39
11.2	空間ベクトル	40
第 12 章	行 列	41
12.1	行 列	
12.2	連立 1 次方程式	
12.2		-11
第 13 章	行列式	43
13.1	行列式	43
13.2	線形変換	43
13.3	固有値	43
第 14 章	2 変数以上の関数の微分	45
14.1	多変数関数の極限	
		45

14.2	偏微分	45
14.3	合成関数の微分	45
14.4	全微分	45
14.5	偏微分の応用	45
第 15 章	2変数以上の関数の積分	47
15.1	2 重積分	47
15.2	3 重積分	47
15.3	広義重積分	47
15.4	重積分における変数変換	47
第 16 章	微分方程式	49
16.1	1 階微分方程式	49
16.2	2 階微分方程式	49
第 17 章	確率	51
第 18 章	データ	53
第 19 章	ラプラス変換	55
第 20 章	フーリエ解析	57
第 21 章	ベクトル解析	59
第 22 章	複素関数	61

注意事項

• 特に指定が無い限り, i は虚数単位を, π は円周率を, e はネピア数を表す:

 $i^2 = -1$, $\pi = 3.141592...$, e = 2.718281...

• N は自然数全体の集合, $\mathbb Z$ は整数全体の集合, $\mathbb Q$ は有理数全体の集合, $\mathbb R$ は実数全体の集合, $\mathbb C$ は複素数全体の集合を表す:

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

- 1 は比較的難しい問題である.
- ベクトルは第 11 章までは \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{AB} , \cdots で、第 12 章からは a, b, c, \cdots で表す.

第1章 数と式の計算

重要事項

1 【式の展開, 因数分解】

[1]
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$
 (複号同順)

[2]
$$(a+b)(a-b) = a^2 - b^2$$

[3]
$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

[4]
$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$
 (複号同順)

[5]
$$(a \pm b)(a^2 \mp ab + b^2) = a^3 \pm b^3$$
 (複号同順)

[6]
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

2 【剰余定理 (remainder theorem)】

[1] 整式 P(x) を x-a で割った余りは P(a) に等しい.

[2] 整式
$$P(x)$$
 を $ax - b$ $(a \neq 0)$ で割った余りは $P\left(\frac{b}{a}\right)$ に等しい.

3 【因数定理 (factor theorem)】

整式 P(x) について

$$P(a) = 0 \iff P(x)$$
 は $x - a$ で割り切れる

4 【分数式】(複号同順)

$$\frac{A}{B} \pm \frac{C}{D} = \frac{AD \pm BC}{BD}, \quad \frac{A}{B} \times \frac{C}{D} = \frac{AC}{BD}, \quad \frac{A}{B} \div \frac{C}{D} = \frac{AD}{BC}$$

5 【絶対値 (absolute value)】

$$[1] |a| = \begin{cases} a & (a \ge 0) \\ -a & (a < 0) \end{cases}$$

$$[2] |-a| = |a|$$

$$[3] |ab| = |a||b|$$

$$[4] \left| \frac{a}{b} \right| = \frac{|a|}{|b|} \quad (b \neq 0)$$

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

6 【対称式 (symmetric polynomial)】

 $\dfrac{-}{2}$ つの変数を入れ替えても変わらない多項式. $f(x,\ y)=f(y,\ x)$ が成り立つ.

例) $f(x,\ y)=x^2+xy+y^2$ において $f(y,\ x)=y^2+yx+x^2=x^2+xy+y^2=f(x,\ y)$ また, x+y, xy を (2 変数の) 基 本 対 称 式 といい,すべての対称式はこの基本対称式のみで

また、x+y、xy を(2 変数の) 基本 $^\circ$ 対 $^\circ$ 式 といい、すべての対称式はこの基本対称式のみで表すことができる。

6 【平方根 (square root)】

$$[1] \ \left(\sqrt{a}\right)^2 = a \quad (a \ge 0)$$

$$[2] \quad \sqrt{a^2} = |a|$$

[3]
$$\sqrt{a}\sqrt{b} = \sqrt{ab}$$
 $(a \ge 0, b \ge 0)$

$$[4] \quad \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \quad (a \ge 0, \ b > 0)$$

7 【複素数 (complex number)】

[1]
$$i^2 = -1$$

[2]
$$\sqrt{-k} = \sqrt{k}i$$
 $(k > 0)$

[3]
$$\alpha = a + bi$$
 $(a, b \in \mathbb{R})$ とすると、共役複素数 $\alpha = a - bi$. また、 $\alpha = \alpha$

[4]
$$|\alpha| = |a + bi| = \sqrt{a^2 + b^2}$$

1.1 式の展開

- 1 次の式を展開せよ.
- (1) (x+1)(x+2)(x+3)(x+4)
- (2) $(x^2 + x + 1)(x^2 x + 1)(x^4 x^2 + 1)$
- (3) $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
- $(4) (x^4 + x^2 + 3)^2 + (x^4 x^2 + 3)^2 + (x^4 + x^2 3)^2 + (x^4 x^2 3)^2$
- (5) $(x-y+z)^3$

1.2 因数分解

- 1 次の式を整数範囲で因数分解せよ.
- $(1) a^3 (2a b)^3$

(2) $6x^2y^2 - 2xyz + 9xy - 3z$

(3) $x^2 + ax - 3ab - 3bx$

(4) $z - x - y - xyz + xy^2 + x^2y$

1.3 剰余定理・因数定理

(5)
$$a^2 + b^2 - c^2 + 2ab + cd + da + bd$$

(6)
$$bc(b-c) + ca(c-a) + ab(a-b)$$

(7)
$$(a+b)(b+c)(c+a) + abc$$

(8)
$$(a-b)c^2 + (b-c)a^2 + (c-a)b^2$$

(9)
$$x^4 - x^3 - 7x^2 + x + 6$$

(10)
$$(ab+1)(a+1)(b+1) + ab$$

(11)
$$a^3 - 2a^2b - 9a + 18b$$

(12)
$$x^3 + x^2 - x - 1$$

1.3 剰余定理・因数定理

1 因数定理を使って因数分解せよ.

(1)
$$2x^3 - 11x^2 + 14x + 10$$

(2)
$$4x^3 - 2x^2 - 12x + 9$$

(3)
$$4x^4 - 2x^2 - x - 1$$

(4)
$$x^4 + 3x^3 - 5x^2 - 3x + 4$$

2 次の各問に答えよ.

(1) 整式 $P(x) = x^3 + 3ax^2 + bx - 2$ が x - 1 で割り切れ, x - 2 で割ると 2 余るように a, b の値を求めよ.

(2) 整式 $P(x) = x^{10} - 1$ を x(x+1)(x+2) で割った余りを求めよ.

(3) 整式 P(x) は x-2 で割ると 4 余り,その商を x+3 で割ると 3 余る.P(x) を x^2+x-6 及び x+3 で割っ た余りを求めよ.

(4) 整式 P(x) を Q(x) で割ると、商が x^2+1 で余りが x^3+2x になった。 P(x) を x^2+1 で割った余りを求めよ。

(5) 整式 $P(x) = 2x^4 - ax^3 + x^2 - 5ax + 24$ が x - 2a で割り切れるように a の値を求めよ.

(6) 整式 $P(x) = 2x^3 + ax^2 + bx - 2$ が (x+1)(x-2) で割り切れるように a, b の値を求めよ.

分数式 1.4

① 次の式を計算せよ.
(1)
$$\frac{1}{x-1} - \frac{2}{x+1} - \frac{2x}{x^2-1}$$

(2)
$$\frac{x-2}{x-4} - \frac{3x-1}{x-2} + 2$$

(3)
$$\frac{a^2}{(a-b)(a-c)} + \frac{b^2}{(b-c)(c-a)} + \frac{c^2}{(c-a)(c-b)}$$

$$(4) \ \frac{b+c}{(a-b)(a-c)} + \frac{c+a}{(b-c)(b-a)} + \frac{a+b}{(c-a)(c-b)}$$

(5)
$$\frac{a - \frac{1}{1 + \frac{1}{a}}}{a + \frac{1}{1 - \frac{1}{a}}}$$

$$(6) \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1}}}}$$

$$(7) \quad \frac{\frac{a+b}{a-b} - \frac{a-b}{a+b}}{\frac{a+b}{a-b} + \frac{a-b}{a+b}}$$

1.5 実数

1 次の計算をせよ (有理化をして答えること).

$$(1) \quad \frac{1}{1 - \sqrt{2} + \sqrt{3}}$$

(2)
$$\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{3}-\sqrt{2}} + \frac{1}{\sqrt{4}-\sqrt{3}}$$

(3)
$$\sqrt{(-7-2\sqrt{2})^2}+2|\sqrt{2}-7|$$

(4)
$$a - \sqrt{a^2 - 2a + 1}$$

(5)
$$(1+\sqrt{2}+\sqrt{3})^2$$

2 次の2重根号をはずせ.

(1)
$$\sqrt{8+\sqrt{60}}$$

(2)
$$\sqrt{6-3\sqrt{3}}$$

(3)
$$\sqrt{4+\sqrt{7}}$$

 $\boxed{\mathbf{3}}$ $a \geq \frac{1}{2}$, $x = \sqrt{2a-1}$ のとき, $\sqrt{a^2-x^2}$ の値を求めよ.

 $\boxed{\textbf{4}} \quad x = \frac{2}{\sqrt{7} - \sqrt{3}}, \ y = \frac{2}{\sqrt{7} + \sqrt{3}} \ \mathcal{O}$ とき、次の値を求めよ.

$$(1) x^2 + y^2$$

(2)
$$x^3 + y^3$$

5 $x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}, \ y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ のとき、次の値を求めよ.

$$(1) \quad \frac{y}{x} + \frac{x}{y}$$

(2)
$$\frac{y+1}{x-1} + \frac{x+1}{y-1}$$

6 $x = \sqrt{11 - 2\sqrt{30}}$, $\sqrt{11 + 2\sqrt{30}}$ のとき, 次の値を求めよ.

$$(1) \quad \frac{1}{x} + \frac{1}{y}$$

(2)
$$\frac{y}{x} + \frac{x}{y}$$

7 $x+y=\sqrt{5}, x-y=\sqrt{3}$ のとき, 次の値を求めよ.

$$(1)$$
 xy

(2)
$$x^2 + y^2$$

(3)
$$\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}}$$

8 $a-b=3+\sqrt{5}$, $b-c=3-\sqrt{5}$ のとき, $a^2+b^2+c^2-ab-bc-ca$ の値を求めよ.

 $\boxed{\mathbf{9}}$ $\frac{5}{\sqrt{7-2\sqrt{6}}}$ の整数部分を a, 小数部分を b とするとき, $\frac{1}{a}+\frac{1}{b}$ の値を求めよ.

1.6 複素数

 $\boxed{\mathbf{1}}$ 次の計算をせよ. ただし、解答は a+bi の形で答えること.

$$(1) (1-i)^3$$

(2)
$$\bar{i}(2-2i)$$

(3)
$$(3+\sqrt{2}i)\overline{(3+\sqrt{2}i)}$$

(4)
$$1 + \frac{2}{i} + \frac{3}{i^2} + \frac{4}{i^3}$$

(5)
$$i+i^2+i^3+i^4+\frac{1}{i}$$

(6)
$$\left(\frac{1+i}{2}\right)^{10}$$

$$(7) \quad \left| \frac{3 - \sqrt{15} \, i}{2} \right|$$

(8)
$$|(2-\sqrt{6})+(2+\sqrt{6})i|$$

(9)
$$|6(4\sqrt{5}+i)i|$$

$$(10) \left| \left(\frac{8-i}{2+3i} \right)^2 \right|$$

2 次の等式を満たす実数 a, b を求めよ.

(1)
$$(3a-2) + (2b+1)i = 4-3i$$

(2)
$$(ab-1)+(3a-1)i=0$$

(3)
$$\frac{a-i}{3+5i} = 1+bi$$

③ $\frac{1+ai}{3+i}$ が純虚数となるように実数 a を求めよ.

 $|\mathbf{4}|$ 複素数 α , β について,次のことを証明せよ.

(1)
$$\alpha \overline{\alpha} = |\alpha|^2$$

(2)
$$\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$$

(3)
$$\overline{\alpha\beta} = \overline{\alpha} \overline{\beta}$$

(4)
$$|\alpha| = |\overline{\alpha}|$$

(5)
$$|\alpha + \beta|^2 = |\alpha|^2 + \alpha \overline{\beta} + \overline{\alpha}\beta + |\beta|^2$$

(6)
$$\left| \frac{\alpha}{\beta} \right| = \frac{|\alpha|}{|\beta|} \quad (\beta \neq 0)$$

 14
 第1章 数と式の計算

 $oxed{5}$ i の平方根を a+bi $(a,\ b$ は実数) の形で表せ.

第2章 方程式・不等式

1 【2 次方程式 (quadratic equation)】

[1] 2次方程式 $ax^2 + bx + c = 0$ の解

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- [2] 判別式 $D = b^2 4ac$
 - $D > 0 \Longleftrightarrow$ 異なる 2 つの実数解
 - D = 0 ⇐⇒ 実数の2重解
 - D < 0 ⇐⇒ 異なる 2 つの虚数解
- [3] 解と係数の関係 (解を α , β とする.)

(I)
$$\alpha + \beta = -\frac{b}{a}$$

(II)
$$\alpha\beta = \frac{c}{a}$$

(III)
$$ax^2 + bx + c = a(x - \alpha)(x - \beta)$$
 (複素数範囲の因数分解)

2 【分数方程式・無理方程式】

無縁解が現れることがある.

3 【絶対値を含む方程式】

絶対値の中身が 0 以上か負かで場合分け.

4 【1 次不等式 (linear inequality)】

不等式の両辺に負の数を掛けると不等号の向きが変わる.

5 【2 次不等式 (inequality of second degree)】

 $\alpha, \beta \in \mathbb{R}, \alpha < \beta \mathcal{O} \succeq \mathfrak{F}$

$$(x-\alpha)(x-\beta)>0$$
 の解は $x<\alpha,\ x>\beta$ $(x-\alpha)(x-\beta)<0$ の解は $\alpha< x<\beta$

不等号が \geq , \leq のときも同様である.

6 【絶対値を含む不等式・分数不等式】

場合分けを行う or グラフを描いて考える.

7 【恒等式 (identical equation)】

a, b, c, a', b', c' を定数とする.

$$ax^2 + bx + c = a'x^2 + b'x + c'$$

が x についての恒等式であるための条件は

$$a = a', b = b', c = c'$$

を満たすときに限る. n 次式の恒等式でも同様である.

8 【不等式の証明】

次の性質を用いる $(A, B \in \mathbb{R})$.

- [1] $A \ge B \iff A B \ge 0$
- $[2] \ A^2 \geq 0 \ (等号成立: A = 0) \ , \qquad A^2 + B^2 \geq 0 \ (等号成立: A = B = 0)$
- [3] $A \ge 0$, $B \ge 0$ のとき $A \ge B \iff A^2 \ge B^2 \iff A^2 B^2 \ge 0$
- [4] 相加 平均と相乗 平均の関係 $a_1>0,\;a_2>0,\;\cdots,\;a_n>0$ とするとき

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n}$$

が成り立つ (等号成立: $a_1 = a_2 = \cdots = a_n$).

2 変数のとき: a > 0, b > 0 とするとき

$$\frac{a+b}{2} \ge \sqrt{ab}$$

が成り立つ (等号成立:a=b).

2.1 いろいろな方程式

2.2 判別式

2.3 解と係数の関係17

2.3	解と	係数		閱	儑
≠.∪	77 -		~,	ızı	1/13

- 2.4 いろいろな不等式
- 2.5 比例式・恒等式
- 2.6 等式/不等式の証明

第3章 集合·命題

重要事項

1【集合】

$$A = \{1, 2, 3, 4, 5\}, \qquad B = \{2, 4, 6, 8, \cdots\}$$
 (3.1)

$$C = \{x \mid x \text{ は 5 以下の自然数 }\}, \qquad D = \{x \mid 0 < x \le 15, \ x \in \mathbb{N}\}$$
 (3.2)

集合は、(3.1) の A, B のように要素を書き並べるか、(3.2) の C, D のように集合の要素を定める条件を用いて書く方法がある.

a が集合 A の要素であることを $a \in A$ と書き, a は A に**属する**という. 属さないとき $a \notin A$ と書く.

集合 A の要素がすべて集合 B の要素になっているとき, $A \subset B$ と書き,A は B の**部分集合**(subset)という.なお, $A \subset B$ は A = B の場合も含まれる.

 $A \cap B$ 共通集合 (intersection) 「A かつ B」

 $A \cup B$ 和集合 (union) 「A または B」

集合 U, A $(A \subset U)$ があるとき, A に属さない U の集合を A の補集合(complement)といい, \overline{A} または A^c と書く.

要素を1つも含まない集合を**空集合**(empty set)といい、 \emptyset と書く.

 $A, B \subset U$ のとき

 $\overline{\overline{A}} = A$, $A \cup \overline{A} = U$, $A \cap \overline{A} = \emptyset$, $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

2 【命題 (proposition)】

命題 $p \to q$ が常に正しいとき、真 (true) であるという. 「p であるのに、q でないもの;反例 (counterexample) があるとき、偽 (false) という. p を仮定 (assumption)、q を結論 (conclusion) という.

命題 $p \Rightarrow q$ が真のとき $\begin{cases} p$ は q であるための十分条件(sufficient condition)である q は p であるための必要条件(necessary condition)である $p \Rightarrow q$ が真かつ $q \Rightarrow p$ が真のとき

 $\begin{cases} p & \text{id } q \text{ } \text{であるための必要十分条件(necessary and sufficient condition)である} \\ q & \text{id } p \text{ } \text{であるための必要十分条件である} \\ p & \text{id } q \text{ } \text{loguivalent} \text{)} \text{ } \text{である} \end{cases}$

という.

20 第 3 章 集合 · 命題

条件 p の**否定** (negation) を \bar{p} と表す.

 $p \rightarrow q$ に対して

[1] $q \rightarrow p$ を**逆** (converse)

[2] $\overline{p} \rightarrow \overline{q}$ を裏 (reverse)

[3] $\overline{q} \rightarrow \overline{p}$ を対偶 (contraposition)

という. 命題とその対偶の真偽は一致する.

3 【証明法】

命題が真であることを示す方法.

対偶法 対偶を証明することによって、元の命題が証明されたとする方法.

転換法 p_1, p_1, p_3 がすべての場合を尽くして、共通部分がなく (排反)、 q_1, q_2, q_3 も排反であるとする。 「 $p_1 \rightarrow q_1, p_2 \rightarrow q_2, p_3 \rightarrow q_3$ 」が証明されたとき、逆も成り立つ。

背理法 証明したい命題を偽と仮定して、矛盾を導き、命題が真であることを結論する方法。

3.1 集合

3.2 命 題

第4章

初等関数1

4.1 2次関数

4.2 冪関数

4.3 関数 f の性質

4.4 分数関数

4.5 無理関数

4.6 逆関数・合成関数

- $f(x) = \cos x, \ g(x) = \sqrt{x}$ とする. 以下の各合成関数を求めよ.

- $(3) \quad g \circ g \qquad \qquad (4) \quad f \circ (g \circ g)$
- | ??|| 以下の各関数の逆関数 $f^{-1}(x)$ を求めよ.
- $(1) \quad y = 3x 2$
- (2) $y = \sqrt{2x+1}$ (3) $y = x^2 \ (x \ge 0)$

(4)
$$y = x^2 - 2x \ (x \le 1)$$
 (5) $y = \sqrt[3]{x}$

(5)
$$y = \sqrt[3]{x}$$

(6)
$$y = \frac{4x-1}{2x+3}$$

(7)
$$y = \frac{1}{x^2} (x > 0)$$
 (8) $y = 5\sqrt[3]{x-2}$ (9) $y = x^2 - 2x (x \ge 1)$

(8)
$$y = 5\sqrt[3]{x-2}$$

(9)
$$y = x^2 - 2x \ (x \ge 1)$$

4.7 指数関数

4.8 対数関数

第5章

初等関数2-三角関数, 双曲線関数

5.1 三角関数の相互関係

5.2 三角形への応用

5.3 加法定理と三角関数の性質

5.4 三角関数を含む方程式・不等式

5.5 逆三角関数・双曲線関数・逆双曲線関数

- **1** 次の値を求めよ.
- (1) $\arcsin \frac{\sqrt{3}}{2}$
- (2) $\arctan \frac{\sqrt{2}}{2}$ (3) $\arctan \frac{1}{\sqrt{3}}$
- $(4) \ \operatorname{arccos}(-1)$
- (5) $\arcsin\left(-\frac{1}{2}\right)$
- (6) $\arctan(-1)$

- (7) $\arcsin \frac{1}{\sqrt{2}}$
- (8) $\arccos\left(-\frac{\sqrt{3}}{2}\right)$
- (9) arctan 0

2 次の関数の逆関数を求めよ.

(1)
$$y = 2\sin x \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right)$$

$$(2) \quad y = \cos 3x \quad \left(0 \le x \le \frac{\pi}{3}\right)$$

(3)
$$y = 4 - 5\tan 6x \left(-\frac{\pi}{12} < x < \frac{\pi}{12}\right)$$

(4)
$$y = \sin x + \cos x \left(-\frac{3}{4}\pi \le x \le \frac{\pi}{4} \right)$$

$$(1) \sin\left(\arccos\frac{4}{5}\right)$$

$$(2) \cos(\arctan 3)$$

(3)
$$\tan\left(\arcsin\frac{1}{3}\right)$$

第6章 平面図形

- 6.1 点と直線
- 6.2 2 次曲線
- 6.3 不等式と領域

第7章 場合の数

- 7.1 場合の数
- 7.2 2項定理
- 7.3 多項定理

第8章

数列

重要事項

【等差数列(arithmetic sequence),等比数列(geometric series)】

数列 $\{a_n\}$ について、d を公差、r を公比、 S_n を第 n 項までの和とする.

[1] 等差数列の一般項

$$a_n = a_1 + (n-1)d$$

$$S_n = \frac{1}{2}n(a_1 + a_n) = \frac{1}{2}n\{2a_1 + (n-1)d\}$$

[3] 等比数列の一般項

$$a_n = a_1 r^{n-1}$$

[4] 等比数列の和

$$S_n = \begin{cases} \frac{a_1(r^n - 1)}{r - 1} & (r \neq 1) \\ na & (r = 1) \end{cases}$$

2 【総和記号 ∑ (sum)】

[1] 和の公式

$$\sum_{k=1}^{n} c = nc$$

$$\sum_{k=1}^{n} k^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{k=1}^{n} a_1 r^{k-1} = \frac{a_1(r^n - 1)}{r - 1} \quad (r \neq 1)$$

$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$$

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2 = \left\{\frac{1}{2}n(n+1)\right\}^2$$

[2] ∑の性質(線形性)

$$\sum_{k=1}^{n}(Aa_{k}\pm Bb_{k})=A\sum_{k=1}^{n}a_{k}\pm B\sum_{k=1}^{n}b_{k}$$
 (複号同順, $A,\ B$ は定数)

3 【漸化式 (reccurence formula)】

[1] 等差数列 $a_{n+1} - a_n = (定数)$

[2] 等比数列 $a_{n+1} = ra_n (r$ は定数)

[3] 階差数列 $a_{n+1} - a_n = f(n)$

[4] 特性方程式 $a_{n+1} = pa_n + q$

4 【数学的帰納法(mathematical induction)】

- (i) n=1 のとき, この命題が成り立つ.
- (ii) n=k のとき、この命題が成り立つと仮定すると、n=k+1 のときにも、この命題が成り立つ.

8.1 数列

- $\boxed{\mathbf{1}}$ 次の等差数列 $\{a_n\}$ の口を補い、数列の一般項を求めよ.
- $(2) \quad \boxed{}, -23, \boxed{}, \boxed{}, -11, \cdots$
- $(3) 2, \boxed{}, \boxed{}, 0, \cdots$
- (4) $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$ + 3, \cdots

- 2 第 15 項が 55, 第 26 項が 88 である等差数列の初項と公差を求めよ.
- 3 初項が3, 第6項が38, 末項が87である等差数列の公差と項数を求めよ.
- 4 第 5 項が 37, 初項から第 15 項までの和が 915 の等差数列の初項と公差を求めよ.
- **5** 10 と 40 の間に 9 個の数を入れて等差数列にした. このとき次の問いに答えよ.
- (1) 公差を求めよ.

8.2 漸化式 31

- (2) 入れた 9 個の数の和を求めよ.
- oxedge 6 oxedge 10 と 20 の間に k 個の数を入れて等差数列を作ったとき,その総和が 600 になった. k の値と公差を求めよ.
- | 7 | 第 23 項が 49, 第 32 項が 67 である等差数列について次の問いに答えよ.
- (1) 項の値が 20 と 50 の間にある項は第何項から第何項までか.
- (2) (2) の条件を満たす項の総和を求めよ.
- |8| 初項が50,公差が-3である等差数列について次の問いに答えよ.
- (1) 初項から第何項までの和が最大となるか.
- (2) 初項から第何項までの和が初めて負となるか.
- 9 次の問いに答えよ.
- (1) 一般項が n の 1 次式 $a_n = pn + q$ $(p \neq 0)$ で表される数列は等差数列であることを示し、その初項と公差を求めよ.
- $\{a_n\}$ が等差数列であれば $\{a_{3n}\}$ も等差数列であることを証明せよ.

8.2 漸化式

8.3 数学的帰納法

8.4 関数の展開

- 1 次の命題について、真ならば証明し、偽ならば反例を示せ、lpha、eta は定数とする.
- (1) $\lim_{n \to \infty} a_n = \infty$, $\lim_{n \to \infty} b_n = \infty$ ならば, $\lim_{n \to \infty} (a_n b_n) = 0$ である.
- $(2) \ \lim_{n \to \infty} (a_n b_n) = 0 \ \text{ならば,} \ \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \alpha \ \text{である}.$
- (3) $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} (a_n b_n) = 0$ ならば, $\lim_{n\to\infty} b_n = \alpha$ である.
- (4) $\lim_{n\to\infty}a_nb_n=0$ ならば, $\lim_{n\to\infty}a_n=0$ または $\lim_{n\to\infty}b_n=0$ である.
- (5) $\lim_{n\to\infty} a_n = \infty$, $\lim_{n\to\infty} b_n = 0$ ならば, $\lim_{n\to\infty} a_n b_n = 0$ である.

- $(6) \lim_{n\to\infty}b_n=0 \text{ \mathfrak{T} is, } \lim_{n\to\infty}\frac{a_n}{b_n}=\infty \text{ \mathfrak{T} is } \lim_{n\to\infty}\frac{a_n}{b_n}=-\infty \text{ \mathfrak{T} is.}$
- $(7) \ \ \text{fr} \ \ \alpha_n = 0, \ \lim_{n \to \infty} \frac{1}{a_n} = 0 \ \ \text{fig.} \ \lim_{n \to \infty} a_n = \infty \ \ \text{Tas.}$
- $(9) \ \ \text{time} \ a_n < b_n, \ \lim_{n \to \infty} a_n = \alpha, \ \lim_{n \to \infty} b_n = \beta \ \text{th}, \ \alpha < \beta \ \text{である}.$
- (10) $\lim_{n \to \infty} (a_{n+1} a_n) = 0$ ならば、 $\{a_n\}$ は収束する.
- (11) a_1, a_2, \cdots, a_n の平均を b_n とする. $\{a_n\}$ が発散するならば, $\{b_n\}$ も発散する.

第9章

1変数関数の微分

重要事項

1 【関数の極限値の性質】

極限値 $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$ が存在して、 $\lim_{x\to a} f(x) = \alpha$, $\lim_{x\to a} g(x) = \beta$ のとき

$$[1] \lim_{x \to a} cf(x) = c\alpha \qquad (c は定数)$$

[2]
$$\lim_{x \to a} \{f(x) \pm g(x)\} = \alpha \pm \beta$$
 (複号同順)

[3]
$$\lim_{x \to a} f(x)g(x) = \alpha \beta$$

[4]
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta}$$
 $(\beta \neq 0)$

[5] a に十分近いすべての x の値に対して常に, $f(x) \leq g(x)$ ならば $\alpha \leq \beta$

2 【片側極限 (one-sided limit)】

[1] x が a より大きい値をとりながら a に限りなく近づくことを $x \rightarrow a+0$ と表す.

[2] x が a より小さい値をとりながら a に限りなく近づくことを $x \rightarrow a-0$ と表す.

[3] [1], [2] で a = 0 の場合はそれぞれ $x \to +0$, $x \to -0$ と表す.

[4]
$$\lim_{x \to a} f(x) = \alpha \iff \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) = \alpha$$

3 【はさみうちの原理(squeeze theorem)】

 $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=\alpha$ のとき,a に十分近いすべての x の値に対して常に, $f(x)\leq h(x)\leq g(x)$ ならば

$$\lim_{x \to a} h(x)$$
 が存在して $\lim_{x \to a} h(x) = \alpha$

またこれより,一般に

$$\lim_{x \to a} |f(x)| = 0 \Longleftrightarrow \lim_{x \to a} f(x) = 0$$

4 【不定形 (indeterminate form)】

次のような不定形になる場合,変形が必要である:

$$\frac{0}{0}\,,\ \frac{\pm\infty}{\pm\infty}\ (複号任意),\ 0\times(\pm\infty),\ \infty-\infty,\ 0^0,\ 1^\infty,\ \infty^0$$

34

5 【導関数 (derivative)】 (微分はその性質上, 開区間行われる.)

定義
$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

6 【連続関数(continuous function)】

- [1] 関数 f は a で連続 $\iff \lim_{x \to a} f(x) = f(a)$
- [2] 連続関数の和,差,積,商(分母 🗕 0)は連続

[3]
$$f(x)$$
 は微分可能 \iff 導関数 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ が収束

- [4] f(x) は x = a で微分可能 $\Longrightarrow x = a$ で連続
- [5] 閉区間で連続な関数は、その区間内で最大値および最小値をもつ。

7 【中間値の定理(intermediate value theorem)】

関数 f が区間 [a, b] で連続で、 $f(a) \neq f(b)$ ならば、f(a) と f(b) の間の任意の値 k に対して、f(c) = k となる実数 c が区間 (a, b) に少なくとも 1 つ存在する.

特に, 関数 f が区間 [a, b] で連続で, f(a)f(b) < 0 (つまり f(a) と f(b) が異符号) ならば, 方程式 f(x) = 0 は区間 (a, b) に少なくとも 1 つの実数解をもつ.

8 【微分法(differential calculus)】

[1]
$$(hf \pm kg)' = hf' \pm kg'$$
 (線形性, h, k は定数)

$$[2] (fg)' = f'g + fg'$$

[3]
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

[4] 冪関数の導関数 α を実数の定数とする.

$$(x^{\alpha})' = \alpha x^{\alpha - 1}$$

[5] 合成関数の導関数
$$y = f(u), u = g(x)$$
 のとき

$$\frac{dy}{dx} = \frac{du}{dx}\frac{dy}{du} = f'(g(x))g'(x)$$

[6] 逆関数の導関数 $y = f^{-1}(x)$ のとき

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{f'(y)} \quad \left(\frac{dx}{dy} \neq 0\right)$$

[7] 陰関数の導関数

y を x の関数と見て両辺を x で微分する.

[8] 媒介変数の導関数 x=f(t), y=g(t) のとき * その他の初等関数の導関数は問題を参照.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)} \quad \left(\frac{dx}{dt} \neq 0\right)$$

9.1 関数の極限 35

| 9 | 【第 n 次導関数 (n-th derivative)]

第n 次導関数が存在するとき、その関数はn 回微分可能であるという.

$$y^{(n)}, f^{(n)}(x), \frac{d^n y}{dx^n}, \frac{d^n}{dx^n} f(x)$$

と表す.

| 10 | 【ライプニッツの公式 (Leibniz's formula)]

f, g が n 回微分可能な関数のとき

$$(fg)^n = \sum_{k=0}^n {}_{n}C_k f^{(n-k)} g^{(k)}$$

? 【ロピタルの定理(l'Hôpital's theorem)】

a でない a の近くで微分可能な関数 f, g が

[1]
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 または, $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x) = \pm \infty$ である.

[2] a を除く a の近くで $g(x) \neq 0$ である.

[3] 極限
$$\lim_{x\to a} \frac{f(x)}{g(x)}$$
 が存在する.

のすべてを満たすとき, $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$ が成り立つ.

 $% \lim_{n \to \infty} o(a)$ は、 $\pm \infty$ 、片側極限の場合でも成り立つ.

9.1 関数の極限

|??| a, b, c を定数とする. 3次方程式 $x^3 + ax^2 + bx + c = 0$ は少なくとも 1 つの実数解を持つことを示せ.

9.2 導関数

- 1 次の関数の導関数を、定義に従って求めよ.
- (1) f(x) = 2x + 1

(2)
$$f(x) = x^2 + 3x$$

(3)
$$f(x) = \sqrt{x}$$

(4)
$$f(x) = \frac{1}{x^2}$$

?? 次の関数の導関数を、定義に従って求めよ.

- $(1) \sin x$
- $(2) \cos x$
- (3) $\tan x$
- (4) $\sinh x$

- (5) $\cosh x$
- (6) $\tanh x$
- $(7) e^x$

?? 次の問いに答えよ.

(1) 一般の自然数 n について, 2 項定理

$$(a+b)^n = a^n + {}_{n}C_1a^{n-1}b + {}_{n}C_2a^{n-2}b^2 + \dots + {}_{n}C_{n-1}ab^{n-1} + b^n$$

を用いて, $(x^n)' = nx^{n-1}$ となることを示せ.

(2) α を実数の定数とするとき $(x^{\alpha})' = \alpha x^{\alpha-1}$ を対数微分法を用いて示せ.

 $\fbox{??}$ $f(x)=x^2\cos x$ である関数 f について, $\frac{d^{100}f}{dx^{100}}(\pi)$ を求めよ.

9.3 微分の応用

?? すべての実数 x > 0 について,以下とする.

$$g(x) = \lim_{r \to 0} \left((x+1)^{r+1} - x^{r+1} \right)^{\frac{1}{r}}$$

このとき, $\lim_{x \to \infty} \frac{g(x)}{x}$ を求めよ.

第10章 1変数関数の積分

第11章 ベクトル

11.1 平面ベクトル

- **1** 次の計算をせよ.
- (1) $2(\vec{a} 2\vec{b}) (3\vec{a} + \vec{b})$
- (2) $3(2\vec{a} \vec{b}) 2(\vec{a} + 2\vec{b})$
- (3) $3\vec{a} + (\vec{b} 2\vec{c}) 2(\vec{a} \vec{b} + \vec{c})$
- ② 次の等式を満たすベクトル \overrightarrow{x} を \overrightarrow{a} , \overrightarrow{b} で表せ. (1) $\overrightarrow{x} 3\overrightarrow{a} = 9\overrightarrow{b} 2\overrightarrow{x}$

- (2) $2(\vec{x} + 2\vec{b}) 3(\vec{x} + \vec{a}) = \vec{0}$
- $|\vec{a}| = 2$ のとき、 \vec{a} と同じ向きの単位ベクトルを求めよ.
- $|\overrightarrow{OA}| = 5$, $|\overrightarrow{OB}| = 12$ の長方形 OACB がある. このとき, 次のベクトルと平行な単位ベクトルを, \overrightarrow{OA} , \overrightarrow{OB} で 表せ.
- (1) \overrightarrow{OA}

- (2) \overrightarrow{OC}
- [5] $\vec{a} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ のとき、次のベクトルを成分で表せ、また、その大きさを求めよ、 (1) $\vec{a} + 3\vec{b}$ (2) $2\vec{a} \vec{b}$ (3) $5\vec{a} 2(-\vec{b} + 3\vec{b})$

(3) $5\vec{a} - 2(-\vec{b} + 3\vec{a})$

40 第 11 章 ベクトル

11.2 空間ベクトル

第12章 行 列

12.1 行列

?? 次の行列の積を計算せよ.

$$(1) \quad \begin{pmatrix} 5 & 4 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$(2) \quad \begin{pmatrix} -2 & 5 \\ 3 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$(3) \quad \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$$

$$(4) \quad \begin{pmatrix} 1 & 3 \\ -6 & 7 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$

$$(5) \quad \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 0 \\
3 & 2 & 1 \\
1 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & -1 \\
2 & 2 & -1
\end{pmatrix}$$

?? 次の行列の逆行列を求めよ.

$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ -2 & 0 & 1 & -1 \\ -2 & -1 & 2 & -3 \\ 4 & 1 & -1 & 3 \end{pmatrix}$$

$$A \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} = \begin{pmatrix} Ax_1 & Ax_2 & Ax_3 \end{pmatrix}$$

が成り立つ. このことを消去法を用いて、次の等式を満たす行列 X を求めよ.

$$\begin{pmatrix} 1 & -4 & -1 \\ 1 & 0 & -1 \\ -2 & 0 & 3 \\ 0 & -1 & -1 \end{pmatrix} X = \begin{pmatrix} -8 & 5 & 7 \\ -4 & 1 & 3 \\ 9 & -1 & -7 \\ -2 & 0 & 2 \end{pmatrix}$$

12.2 連立1次方程式

第13章 行列式

13.1 行列式

13.2 線形変換

13.3 固有値

第14章 2変数以上の関数の微分

14.1 多変数関数の極限

14.1.1 ε - δ 論法, ε -N 論法

14.2 偏微分

14.3 合成関数の微分

14.4 全微分

14.5 偏微分の応用

第15章 2変数以上の関数の積分

15.1 2 重積分

15.2 3 重積分

15.3 広義重積分

15.4 重積分における変数変換

第16章 微分方程式

重要事項

16.1 1階微分方程式

16.2 2 階微分方程式

第 17 章

確 率

\\ \bar{\cappa_{\cappa\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa\cappa_{\cappa_{\cappa_{\cappa_{\cappa\cappa_{\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\c

重 要 事 項

第18章 データ

重 要 事 項

第19章 ラプラス変換

\\ \bar{\cappa_{\cappa\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa\cappa_{\cappa_{\cappa_{\cappa_{\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\c

重要事項

第20章 フーリエ解析

重要事項

第21章 ベクトル解析

重要事項

第22章 複素関数

