Extending the reach of LANs

- Where there is a need to extend or interconnect LANs three devices can be used:
 - Repeaters:
 - Used to interconnect identical LANs i.e. LANs using the same MAC protocols (e.g. conforming to IEEE 802.3 or 802.5 etc.).
 - Repeaters do <u>not</u> process frames.
 - Bridges:
 - Used to interconnect LANs that use <u>similar</u> or <u>different MAC</u> protocols (e.g. IEEE 802.3 <u>and/or</u> 802.5 etc.).
 - Bridges <u>do</u> process frames.

Extending LANs - contd.

 Routers: Similar to bridges but with extra functionality i.e. used to interconnect different LAN technologies. To be examined later under the topic Internetworking

Repeaters

- Repeaters are used to overcome the distance limitation of LANs:
 - Recall that transmission signals attenuate over distance.
 - The length of a LAN segment is restricted to address attenuation e.g. a 10Base5 LAN has a length restriction of 500m.
 - When there is a need to interconnect stations beyond this distance,
 a Repeater can be used.
- A Repeater connects segments of a LAN:
 - It does <u>not</u> connect two LANs i.e. unique addressing is still required.
- Basic functionality:
 - Repeaters regenerate attenuated bits. For each bit received a fresh signal is reproduced.
 - Repeaters forward every frame <u>without</u> filtering.

Repeater Implementation

Bridges

- Bridges facilitate the interconnection of <u>small</u> LANs to create <u>one</u> large LAN:
 - This is preferable to creating a single large LAN.
- Advantages of using <u>small</u> interconnected LANs:
 - Reliability: The effects of a fault can be contained and restricted to only a few stations.
 - Performance: Smaller LANs provide better performance to <u>locally</u> attached devices. This ties in with the *Principal of Locality of Reference*:
 - The majority of traffic is often between <u>locally</u> connected stations.

Bridges – contd.

- Security: With some LAN topologies such as Bus and Wireless LANs <u>all</u> stations can potentially see <u>all</u> frames. The use of a Bridge facilitates the *physical* isolation of high security traffic <u>and</u> users with special security access.
- Geography: It facilitates extending a LAN to isolated clusters of stations using long distance communications links e.g. microwave links, satellite links etc.
- The next slide shows a typical implementation of a Bridge connecting two LANs:
 - However, Bridges can interconnect more than 2 LANs.

Bridge Implementation

Functions of a Bridge

- Basic Bridges only understand <u>one</u> frame format e.g. 802.3, 805.5 etc. These are sometimes called MAC Relay Bridges.
- Basic Bridges provide the following functionality:
 - Store and Forward:
 - Operating in *promiscuous mode* a Bridge <u>reads</u> all frames transmitted on one LAN.
 - It <u>retransmits</u> frames to an outgoing port to which another LAN is connected only if the destination station is on that LAN.
 - The <u>retransmission</u> is done <u>without modification</u> to the frame i.e. bit-by-bit.
 - This function is performed in <u>both</u> directions.
 - Routing and Addressing:
 - Not <u>all</u> frames are copied. Only those relevant to a particular LAN segment are copied. This implies a **routing** capability.

Functions of a Bridge

- The use of a bridge <u>does not</u> affect how stations communicate with each other:
 - Unique MAC addresses are used for routing frames between stations connected to the same bridged network.
- A routing strategy is used to decide which frames are forwarded onto another LAN.
- There are two routing strategies to consider:
 - Fixed routing.
 - Address Learning.

Fixed Routing Strategy

Fixed routing:

- For <u>each</u> pair of source-destination station a route is created in a routing table stored on the bridge.
- Based on the destination address in a received MAC frame the bridge performs a <u>lookup</u> of the routing table to determine if the frame is to be forwarded.

Advantages/Disadvantages of fixed routing:

- Simplicity. Requires minimal processing overhead. However,
 this can become very complicated if multiple bridges are used.
- Requires a lot of manual intervention when more stations/bridges are added or removed.

Example Bridge Routing Table

Address		Port
71:2B:13	:45:61:41	1
71:2B:13	:45:61:42	1
64:2B:13	:45:61:12	2
64:2B:13	:45:61:13	2

Bridge Table

Address Learning Routing Strategy

- Address Learning is an alternative approach to routing.
- Here the Bridge can *learn* the location of each station automatically because:
 - Each incoming MAC frame contains a source address field.
 - Each LAN attaches to one port only.
- Using both of these identifiers the bridge constructs a routing table automatically i.e. without manual intervention.

Address Learning Routing Strategy

- Address learning starts at boot-up time :
 - Initially the routing table is empty.
 - As MAC frames arrive on any of the incoming ports the Bridge constructs the routing table using the source MAC address/source port information.
- After a period of time known as the steadystate period the table is complete:
 - Frame filtering can commence in earnest.

Address Learning Process

Address Learning Routing Strategy

- Bridges that use an address learning strategy are known as Transparent Bridges:
 - Stations connected to the LAN are unaware of the existence of the bridge.
- A problem with Transparent Bridges is Looping:
 - Arises from the use of redundant bridges,
 - Redundant bridges are often used for reliability in the event that one bridge fails; another bridge can take over.
- Redundant bridges can create loops within the network as follows:

Bridge Loops

a. Station A sends a frame to station D

c. Both bridges forward the frame

b. Both bridges forward the frame

d. Both bridges forward the frame

Overcoming Bridging Loops

- Graph theory is used to create a loop-free bridge network:
 - A Spanning Tree is a graph in which there is no loop.
- To create a Spanning Tree the network is represented as a graph:
 - Here the graph *nodes* represent the bridges <u>and</u> the LANs to which they connect,
 - The connecting arcs represent the <u>connections</u> between a LAN(s) and a bridge(s),
 - Each arc is a assigned a cost metric ('1' in the direction of a bridge to a LAN and, '0' for the opposite direction)

An example Bridged Network

a. Actual system

b. Graph representation with cost assigned to each arc

Overcoming Bridge Loops

- Finding the Spanning Tree involves three steps:
 - Identify the *Root Bridge*. The bridge with the lowest value ID (usually the Bridge serial number) is designated the Root bridge,
 - 2. Find the *shortest path* from the Root Bridge to every other bridge and LAN in the network,
 - 3. Eliminate redundant routes. The routes with the shortest paths become the spanning tree.
- All bridge ports in the spanning tree are marked as forwarding ports:
 - All other ports are marked as blocking ports.

Finding the Shortest Path

a. Shortest paths

A loop-free Bridged Network

Ports 2 and 3 of bridge B3 are blocking ports (no frame is sent out of these ports). Port 1 of bridge B5 is also a blocking port (no frame is sent out of this port).

A loop-free Bridged Network

Advantages of using Bridges

- Advantages of using bridges are as follows:
 - Parallelism: Not every frame arriving at the bridge is copied to another LAN:
 - This allows for two pairs of stations to communicate simultaneously provided <u>each</u> pair is on a separate LAN and separated by a bridge.
 - Optimized performance:
 - Stations that are likely to communicate with each other frequently can be moved to the same LAN to ensure adherence to the *Prinicipal of Locality of Reference*.
 - Collision Domains are smaller, reducing the likelihood of collisions occurring.

Optimized performance and Parallelism

a. Without bridging

- b. With bridging
 - Without bridging each station perceives the speed of the LAN as:
 - (LAN Data Rate) / (number of stations).
 - This is significantly improved with bridging.

Collision Domains are reduced in size

a. Without bridging

b. With bridging

 With bridging the size of the collision domain is reduced and contention is therefore reduced.

Summary of Bridges

- Used to extend LANs creating small interconnected LANs rather than a single large LAN.
- Can connect LANs with similar <u>or</u> different MAC protocols.
- Contains Routing functionality to <u>filter</u> frames:
 - This facilitates parallelism which in turn improves performance of each connected LAN
 - Also, collisions are not copied between LANs which reduces the Collision Domain and improves contention ratio.
- Contains Store and Forward functionality:
 - Facilitates connecting fast, busy LANs to slow LANs.