1ª. LISTA DE EXERCÍCIOS PARA A 2ª. PARTE DA DISCIPLINA DE INTELIGÊNCIA ARTIFICIAL

- 1) Explique a diferença entre incerteza por aleatoriedade e por imprecisão.
- 2) Considere os conjuntos difusos A e B, no intervalo X=[0; 10] de números reais, definidos pelas funções de pertinência

$$A(x) = x \overline{x+2}$$

$$B(x) = 2^{-x}$$

Resolva:

- a) Represente graficamente os conjuntos difusos A e B
- b) Obtenha a função de pertinência (graficamente e matematicamente) para os seguintes conjuntos:
 - b1) \overline{A}
 - b2) \overline{B}
 - b3) A∪B
 - b4) A ∩B
 - b5) $\overline{A} \cap B$
 - b4) $\overline{A} \cup \overline{B}$
- c) Os conjuntos difusos atendem às leis de Morgan?
- 3) Qual a diferença entre α -cut e strong α -cut?
- 4) Os machos humanos têm um cromossomo X e um cromossomo Y, enquanto que as fêmeas têm dois cromossomos X, cada cromossomo sendo herdado de um dos pais. A hemofilia é uma doença que apresenta herança recessiva ligada ao cromossomo X, o que significa que um homem que herda o gene que causa a doença no cromossomo X é afetado, enquanto que uma fêmea que transporta o gene em somente um de seus dois cromossomos X não é afetada. A doença é geralmente fatal para mulheres que herdam dois genes, e isso é muito raro, já que a freqüência de ocorrência do gene é reduzida em populações humanas.

Considere uma mulher que tem um irmão afetado, o que implica que a sua mãe deve ser uma portadora do gene da hemofilia com um "bom" e um "mau" gene da hemofilia. Também nos é dito que seu pai não é afetado, assim o própria mulher tem uma chance de 50-50 de ter o gene. A variável de interesse desconhecida, o estado da mulher em relação ao

gene da hemofilia, tem apenas dois valores: a mulher é uma portadora do gene ($\theta = 1$) ou não ($\theta = 0$). Com base nas informações fornecida até agora, a distribuição a priori para a variável desconhecida θ pode ser expressa simplesmente como $\Pr(\theta = 1) = \Pr(\theta = 0) = 1/2$.

Os dados utilizados para atualizar esta informação prévia consiste no estado dos filhos da mulher. Suponhamos que ela tenha tido dois filhos e que nenhum dos dois é afetado pela hemofilia. Seja yi = 1 ou 0 a meneira de indicar se um filho é afetado ou não pela hemofilia. Os resultados dos dois filhos são intercambiáveis e, condicionados à variável descolhecida θ são independentes. Assumimos também que os filhos não são gêmeos idênticos.

Diga qual a probabilidade da mulher ser portadora do cromossomo da hemofilia ($\theta = 1$) sabendo que os filhos não apresentam a doença $Pr(\theta=1|\ y1=0\ e\ y2=0)$.

5) Em um grupo de 50 turistas temos as seguintes variáveis descritas abaixo:

Nacionalidade	Masculino	Feminino
Brasileira	20	15
Estrangeira	5	10

Ao selecionar aleatoriamente uma pessoa do grupo obtenha as probabilidades de ocorrência dos seguintes eventos:

- a) O turista é brasileiro.
- b) O turista é estrangeiro.
- c) O turista é masculino.
- d) O turista é feminino.
- e) O turista é feminino e brasileiro.
- f) O turista é feminino e estrangeiro.
- g) O turista é masculino e brasileiro.
- h) O turista é masculino e estrangeiro
- i) O turista é feminino ou brasileiro.
- j) O turista é feminino ou estrangeiro.
- k) O turista é masculino ou brasileiro.
- I) O turista é masculino ou estrangeiro.
- m) O turista ser masculino se é brasileiro.

- n) O turista ser masculino se é estrangeiro.
- o) O turista ser feminino se é brasileiro.
- p) O turista ser feminino se é estrangeiro.
- q) O turista ser brasileiro se é masculino.
- r) O turista ser estrangeiro se é masculino.
- s) O turista ser brasileiro se é feminino.
- t) O turista ser estrangeiro se é feminino.
- 6) Para o diagnóstico de Edemas Subcutâneos Generalizados, tais como Celulite e Alergia, são considerados os seguintes sintomas: Febre, Cor Local, Dor História de Alergia e Prurido.

A seguir são explicitadas as probabilidades a priori P(Hi) e as probabilidades condicionais P(e/Hi).

Tab. 1 - Probabilidade de cada hipótese diagnóstica.

Hipóteses	P(Hi)
Diagnósticas	
Celulite	0,20
Alergia	0,80

Tab. 2 – Probabilidades condicionais de cada sintoma em relação às hipóteses diagnósticas.

Evidências	P(ek/Celulite)	P(ek/Alergia)
Febre		
Sim	0,85	0,5
Não	0,15	0,5
Cor Local		
Roxa	0,98	0,03
Rósea	0,02	0,97
Dor		
Leve	0,03	0,8
Intensa	0,97	0,2
História Alergia Família		

Sim Não	0,5 0,5	0,95 0,05
Prurido		
Sim	0,5	0,98
Não	0,5	0,02

Com os dados acima:

- a) Desenvolva um Sistema Especialista Probabilístico (Desenhe a Rede Bayesiana de Causas e Efeitos) para Apoio ao Diagnóstico de Edemas Subcutâneos Localizados.
- b) Explicite algumas probabilidades da rede bayesiana.