L1 MIEE 20 Avril 2021

Electricité

(durée 1h30, documents tolérés, calculatrices autorisées)

Exercice I

Entre le point A et le point B, calculer la résistance équivalente à l'association des résistances représentées sur le schéma ci-dessous :

Exercice II

On considère le circuit de la figure l, appelé circuit « diviseur de tension ».

- Calculer U_{MB} en fonction de U_{AB} , R_1 et R_2 .

Exercice III

On considère un circuit électrique dont le schéma est représenté ci-dessous

- 1- Calculer l'intensité I₃ du courant circulant dans la résistance R₃. Vous pouvez utiliser les lois de Kirchoff, le théorème de superposition ou les modèles de Thévenin ou de Norton, au choix (vous préciserez pourquoi vous avez fait ce choix).
- 2- Que se passe-t-il si E_1 =- E_2 et R_1 = R_2 ?

Exercice IV

On considère le circuit ci-contre dont le générateur délivre une tension alternative de grande amplitude

$$u_{AB}(t) = U_{AB}\sqrt{2} \times \cos(\omega t)$$
 avec $U_{AB} = 2 \text{ kV}$.

A l'aide du diviseur de tension constitué par les deux condensateurs de capacités C_1 et C_2 , on veut obtenir, entre M et B, une tension alternative $u_{MB}(t)$

telle que
$$u_{MB}(t) = U_{MB}\sqrt{2} \times \cos(\omega t + \phi)$$
 avec $U_{MB} = 20 \text{ V}$.

Dans la suite, on raisonnera avec les amplitudes complexes.

- a- Les valeurs U_{MB} et U_{AB} sont-elles des valeurs maximales ou des valeurs efficaces ?
- b- Exprimer l'impédance complexe \underline{Z}_{AB} de l'association en série de C_1 et C_2 .
- c- En déduire l'expression du rapport $\underline{U}_{MB}/\underline{U}_{AB}$ en fonction de C_1 et C_2 .
- d- Les tensions instantanées u_{MB} (t) et u_{AB} (t) sont-elles en phase?
- e- Calculer la valeur numérique de C_2 sachant que $C_1 = 0.99 \mu F$.
- f- Quel est l'intérêt de ce montage par rapport à celui de l'exercice I qui peut être utilisé en courant alternatif également ?

Exercice V Circuit RLC série

On considère un circuit RLC série comprenant une bobine d'inductance L et de résistance négligeable, un condensateur de capacité C et une résistance R. Ce circuit est alimenté par un générateur délivrant une tension sinusoïdale u(t) de pulsation ω réglable et de valeur efficace U, $u(t) = U\sqrt{2}\cos(\omega_0 t)$

On considère que le régime permanent est établi.

- 1- Résolution du circuit.
- (a) Donner l'expression de l'impédance complexe du circuit.
- (b) Déterminer l'intensité du courant i(t) sous la forme $i(t) = I\sqrt{2}\cos(\omega_0 t \phi)$, c'est à dire donner les grandeurs I et ϕ qui seront exprimées en fonction de R, L, C, ω et U.
- (c) Indiquer en fonction de ω les zones correspondant à un circuit capacitif, à un circuit résistif, et à un circuit inductif.
- 2- On souhaite maintenant étudier la résonance en intensité.
- (a) Donner rapidement l'allure de la courbe $I = g(\omega)$.
- (b) En déduire l'expression de la pulsation de résonance ω_0 pour laquelle I est maximale. Quelle est la valeur maximale I0 du courant efficace correspondant ?
- (c) Déterminer la bande passante en pulsation $\Delta\omega = \omega_2 \omega_1$ à -3dB du filtre ainsi constitué. En électronique, on exprime fréquemment le rapport de deux grandeurs en décibels (dB). Dans notre cas ω_1 et ω_2 représentent les valeurs des pulsations pour lesquelles $20\log(I/I_0) = -3$ dB soit $I = I_0/\sqrt{2}$.

On est donc amené à chercher ω_1 et ω_2 tels que $I(\omega) = I(\omega) = I_0 / \sqrt{2}$. On pourra poser

Q=L ω_0 /R=1/(RC ω_0), x_1 = ω_1/ω_0 et x_2 = ω_2/ω_0 .

- (d) En déduire l'expression du facteur de qualité $\omega_0/\Delta\omega$ du circuit.
- (e) Comment évolue le facteur de qualité en fonction de la valeur de R?
- (f) Comment évolue la courbe de résonance en fonction de la valeur de R?