Cryptography (and Information Security) 6CCS3CIS / 7CCSMCIS

Prof. Luca Viganò

Department of Informatics King's College London, UK

First term 2020/21

Lecture 7.1: Some number theory

Some number theory

- Relatively prime numbers and greatest common divisor
- Euclid's algorithm and Extended Euclid's algorithm
- Modular arithmetics
- Euler Totient Function

- Some number theory
 - Relatively prime numbers and greatest common divisor
 - Euclid's algorithm and Extended Euclid's algorithm
 - Modular arithmetics
 - Euler Totient Function

Prime factorization

- Numbers: naturals $\mathbb{N} = \{0, 1, 2, ...\}$, integers $\mathbb{Z} = \{0, 1, -1, ...\}$, primes $\mathcal{P} = \{2, 3, 5, 7, ...\}$.
- To **factor** a number a is to write it as a product of other numbers, e.g., $a = b \times c \times d$.
- Multiplying numbers is easy, factoring numbers appears hard.
 We cannot factor most numbers with more than 1024 bits.
- The prime factorization of a number a amounts to writing it as a product of powers of primes:

$$a = \prod_{p \in \mathcal{P}} p^{a_p} = 2^{a_2} \times 3^{a_3} \times 5^{a_5} \times 7^{a_7} \times 11^{a_{11}} \times \dots$$
 where $a_p \in \mathbb{N}$

For any particular value of a, most of the exponents a_p will be 0, e.g.,

$$\begin{array}{rcl}
91 & = & 7 \times 13 \\
3600 & = & 2^4 \times 3^2 \times 5^2 \\
11011 & = & 7 \times 11^2 \times 13
\end{array}$$

Divisors

- $a \neq 0$ divides b (written $a \mid b$) if there is an m such that $m \times a = b$.
 - Examples: 3 | 6 and 7 | 21.
- a does not divide b (written a/b) if there is no m such that $m \times a = b$.
 - Examples: 3/7, 3/10 and 7/22.

Relatively prime numbers & greatest common divisor

Two natural numbers *a*, *b* are **relatively prime** if they have no common divisors/factors apart from 1, i.e., if their **greatest common divisor** gcd is equal to 1

$$gcd(a, b) = 1$$
.

- For example, 8 and 15 are relatively prime since
 - factors of 8 are 1, 2, 4, 8,
 - factors of 15 are 1, 3, 5, 15,
 - and 1 is the only common factor.
- Conversely, we can determine the greatest common divisor by comparing their prime factorizations and using least powers, e.g.
 - $150 = 2^1 \times 3^1 \times 5^2$ and $18 = 2^1 \times 3^2$, thus $gcd(18, 150) = 2^1 \times 3^1 \times 5^0 = 6$.
 - $60 = 2^2 \times 3 \times 5$ and $14 = 2 \times 7$, thus gcd(60, 14) = 2.

- Some number theory
 - Relatively prime numbers and greatest common divisor
 - Euclid's algorithm and Extended Euclid's algorithm
 - Modular arithmetics
 - Euler Totient Function

Greatest common divisor and Euclid's algorithm

gcd can be computed quickly using Euclid's algorithm.

$$gcd(60, 14)$$
 : $60 = (4 \times 14) + 4$
 $gcd(14, 4)$: $14 = (3 \times 4) + 2$
 $gcd(4, 2)$: $4 = 2 \times 2$

• Extended Euclid's algorithm computes $x, y \in \mathbb{Z}$ such that

$$\gcd(a,b)=(x\times a)+(y\times b)$$

Here
$$2 = 14 - 3 \times (60 - (4 \times 14)) = (-3 \times 60) + (13 \times 14)$$

Euclid's Algorithm

Euclid's algorithm is based on the theorem

 $gcd(a, b) = gcd(b, a \mod b)$ for any nonnegative integer a and any positive integer b.

For example:

Euclid's algorithm

Euclid(a, b)

1 if b = 0

2 then return a

3 **else return** Euclid(b, a mod b)

For example:

• Euclid(30, 21) = Euclid(21, 9) = Euclid(9, 3) = Euclid(3, 0) = 3.

Extended Euclid's Algorithm

Extend Euclid's algorithm to compute integer coefficients x, y such that

$$d = \gcd(a, b) = (a \times x) + (b \times y)$$

Extended Euclid's algorithm

```
Extended-Euclid(a, b)
```

1 if
$$b = 0$$

2 then

3 **return** (*a*, 1, 0)

4 else

5 $(d', x', y') \leftarrow \text{Extended-Euclid}(b, a \mod b)$

6
$$(d, x, y) \leftarrow (d', y', x' - (|a/b| \times y'))$$

7 return (d, x, y)

where $q = \lfloor a/b \rfloor$ is the **quotient of the division** (for $a = (q \times b) + r$).

Note: the *d* here is the greatest common **d**ivisor, not to be confused with the *d* that is (part of) an RSA private key (discussed later on).

Extended Euclid's Algorithm: example

Extended-Euclid(99, 78) = 3 =
$$(99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a , b)
1 if $b = 0$
2 then
3 return (a , 1, 0)
4 else
5 $(d', x', y') \leftarrow$ Extended-Euclid(b , $a \mod b$)
6 $(d, x, y) \leftarrow (d', y', x' - (\lfloor a/b \rfloor \times y'))$
7 return (d , x , y)

a	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1	3	– 11	14
78	21	3	3	3	– 11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

Each line shows one level of the recursion.

- Some number theory
 - Relatively prime numbers and greatest common divisor
 - Euclid's algorithm and Extended Euclid's algorithm
 - Modular arithmetics
 - Euler Totient Function

Modular arithmetics

Remainder

• $\forall a \, n. \, \exists q \, r. \, (a = (q \times n) + r)$ where $0 \le r < n.$ Here r is the **remainder**, which we write as

$$r = a \mod n$$
.

Congruent modulo

• $a, b \in \mathbb{Z}$ are **congruent modulo** n, if $a \mod n = b \mod n$. We write this as

$$a =_n b$$
.

Modulo operator has following properties (of congruences)

- Reflexivity: $a =_n a$.
- Symmetry: If $a =_n b$ then $b =_n a$.
- Transitivity: If $(a =_n b \text{ and } b =_n c)$ then $a =_n c$.

Other properties of the modulo operator

$$(a \bullet b) =_n (a \mod n) \bullet (b \mod n)$$
 for $\bullet \in \{+, -, \times\}$

i.e., $(a \bullet b) \mod n = [(a \mod n) \bullet (b \mod n)] \mod n$

Example:

$$2 = (5 \times 6) \mod 4$$

= $[(5 \mod 4) \times (6 \mod 4)] \mod 4$
= $(1 \times 2) \mod 4 = 2 \mod 4 = 2$

If $a \times b =_n a \times c$ and a relatively prime to n, then $b =_n c$.

Example:

- $8 \times 4 =_3 8 \times 1$.
- 8 is relatively prime to 3.
- So: $4 =_3 1$.

If
$$a_1 =_n b_1$$
 and $a_2 =_n b_2$, then

$$(a_1 + a_2) =_n (b_1 + b_2)$$
 and $(a_1 \times a_2) =_n (b_1 \times b_2)$

This can also be expressed as

$$[(a_1 \mod n) + (a_2 \mod n)] \mod n = (a_1 + a_2) \mod n$$

$$[(a_1 \bmod n) \times (a_2 \bmod n)] \bmod n = (a_1 \times a_2) \bmod n$$

• Example: Let $r_a = a \mod n$ and $r_b = b \mod n$. Then, there are integers j and k such that

$$a = r_a + jn$$
 and $b = r_b + kn$

and we can proceed as follows:

$$(a+b) \bmod n = (r_a + jn + r_b + kn) \bmod n$$

$$= (r_a + r_b + (j+k)n) \bmod n$$

$$= (r_a + r_b) \bmod n$$

$$= [(a \bmod n) + (b \bmod n)] \bmod n$$

and

- $a = q \times n + r$ with $q = \lfloor a/n \rfloor$ and $0 \le r < n$ and $r = a \mod n$
- For any integer a, we can rewrite this as follows:

$$a = \lfloor a/n \rfloor \times n + (a \bmod n)$$

Then, for example:

- 11 mod 7 = 4
- \bullet -11 mod 7 = -4 (= 3 when reasoning modulo 7)
- 73 =₂₃ 4
- $21 =_{10} -9$
- $147 =_{220} -73$

- If $a =_n 0$ then $n \mid a$
- $a =_n b$ if n | (a b)
- To demonstrate the last point, if $n \mid (a b)$, then $(a b) = k \times n$ for some k.

So we can write $a = b + (k \times n)$.

Therefore, $(a \mod n) = (remainder when <math>b + (k \times n)$ is divided by $n = (remainder when b is divided by <math>n = (b \mod n)$.

- Then, for example:
 - $23 =_5 8$ because $23 8 = 15 = 5 \times 3$
 - -11 = 85 because $-11 5 = -16 = 8 \times (-2)$
 - 81 = 27 0 because $81 0 = 81 = 27 \times 3$

Modular arithmetics: two theorems

Theorem

Suppose that $a, b \in \mathbb{Z}$ are relatively prime. There is a $c \in \mathbb{Z}$ satisfying $(b \times c)$ mod a = 1, i.e., we can compute b^{-1} mod a.

Proof: From the Extended Euclid's Algorithm, there exist $x, y \in \mathbb{Z}$ where

$$1 = (a \times x) + (b \times y)$$

Since $a \mid (a \times x)$, we have $(b \times y)$ mod a = 1. Assertion follows with c = y.

Fermat's little theorem

For a and n relatively prime and n prime

$$a^{n-1} =_n 1$$

Example: $4^6 \mod 7 = (16 \times 16 \times 16) \mod 7 = (2 \times 2 \times 2) \mod 7 = 1$.

Proof of Fermat's Little Theorem

- Consider the set $\{1, 2, ..., n-1\}$ of positive integers less than n.
- Multiply each element by a, modulo n, to get the set $X = \{a \mod n, 2a \mod n, \dots, (n-1)a \mod n\}$.
- We can prove that:
 - None of the elements of X is equal to 0 because n does not divide a.
 - Furthermore, no two of the integers in X are equal.
 - To see this, assume that $x \times a =_n y \times a$ for $1 \le x < y \le n-1$.
 - Because a and n are relatively prime, we can eliminate a from both sides and obtain $x =_n y$, which is impossible as we assumed that x and y are both positive integers less than n, with x < y.
- Therefore, we know that the (n-1) elements of X are all positive integers with no two elements equal.
- Hence, *X* consists of the set of integers $\{1, 2, ..., n-1\}$ in some order.
- Multiplying the numbers in both sets, and taking the result mod n yields

$$a \times 2a \times ... \times (n-1)a =_n [1 \times 2 \times ... \times (n-1)]$$

 $a^{n-1} \times (n-1)! =_n (n-1)!$

• As n is prime, (n-1)! is relatively prime to n; so canceling the (n-1)! yields

$$a^{n-1} =_n 1$$

- Relatively prime numbers and greatest common divisor
- Euclid's algorithm and Extended Euclid's algorithm
- Modular arithmetics
- Euler Totient Function

Euler Totient Function

- When doing arithmetic modulo n.
- Complete set of residues is 0,..., n 1.
- Reduced set of residues consists of those numbers (residues) that are relatively prime to n.

For instance, for n = 10:

- complete set of residues is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
- reduced set of residues is $\{1, 3, 7, 9\}$.
- Number of elements in reduced set of residues is called the **Euler** Totient Function $\phi(n)$.
 - In other words, $\phi(n)$ is the number of positive integers less than n which are relatively prime to n, i.e.,

 $\phi(n)$ is the number of $a \in \{1, 2, \dots, n-1\}$ with gcd(a, n) = 1.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\overline{\phi(n)}$	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8

Euler's Totient Function and Euler's Theorem

Properties:

- $\phi(1) = 1$.
- $\phi(p) = p 1$ if p is prime.
- $\phi(p \times q) = \phi(p) \times \phi(q) = (p-1) \times (q-1)$ if p and q are prime and $p \neq q$.

So that Fermat's little theorem (for a and n relatively prime and n prime) can be rewritten to

Euler's Theorem

 $a^{\phi(n)} =_n 1$ for all a, n such that n is prime and gcd(a, n) = 1.

Examples:

- If a = 3 and n = 10, then $\phi(10) = 4$ and $3^4 = 81 =_{10} 1$
- If a = 2 and n = 11, then $\phi(11) = 10$ and $2^{10} = 1024 =_{11} 1$

Bibliography

- William Stallings. Cryptography and Network Security. Principles and Practice, 7th ed., Prentice Hall, 2016.
- Keith Martin. Everyday Cryptography, 2nd ed., Oxford, 2017.
- Dieter Gollmann. Computer Security. Wiley, 2011.
- Bruce Schneier. Applied Cryptography, John Wiley & Sons, 1996 (and 20th anniversary edition in 2016).
- Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone.
 Handbook of Applied Cryptography. CRC Press, 1996. Available online.
- Arthur E. Hutt, Seymour Bosworth, Douglas B. Hoyt. Computer Security Handbook. Wiley, 1995.