Théorème 10.11 - dérivée d'une composée par une application linéaire

Soit E, F deux \mathbb{R} -espaces vectoriels normés de dimension finie, u une application linéaire de E dans F, et f une fonction de classe \mathcal{C}^1 définie sur un intervalle I de \mathbb{R} à valeurs dans E. Alors $u \circ f$ est une fonction de classe $\mathcal{C}^1(I,F)$ et :

$$(u \circ f)' = u \circ f'$$

Théorème 10.12 - dérivée d'une composée par une application bilinéaire

Soit E, F et G trois espaces vectoriels normés de dimension finie, B une application bilinéaire de $E \times F$ vers G, et f et g deux fonctions de classe C^1 sur un intervalle I de \mathbb{R} à valeurs respectives dans E et F. Alors B(f,g) est une fonction de classe $C^1(I,G)$, et :

$$\left(B(f,g)\right)' = B(f',g) + B(f,g')$$

Théorème 10.29 - construction de l'intégrale d'une fonction continue par morceaux

Soit E un espace vectoriel normé de dimension finie, $f \in \mathcal{CM}([a\,;\,b],E)$. Si $(\varphi_n)_{n\in\mathbb{N}}$ est une suite de fonctions en escalier convergeant uniformément vers f, alors la suite $\left(\int_{[a\,;\,b]}\varphi_n\right)_{n\in\mathbb{N}}$ est convergente.

Définition 10.30 - intégrale d'une fonction continue par morceaux

Soit E un espace vectoriel normé de dimension finie, $f \in \mathcal{CM}([a\,;b],E)$. Il existe par densité de $\mathcal{E}([a\,;b],E)$ dans $\mathcal{CM}([a\,;b],E)$ une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions de $\mathcal{E}([a\,;b])$ convergeant uniformément vers f. On appelle intégrale de f sur $[a\,;b]$, notée $\int_{[a\,;b]} f$ le vecteur $\lim_{n\to+\infty} \int_{[a\,;b]} \varphi_n$. Cette intégrale ne dépend pas de la suite de $\mathcal{E}([a\,;b])^{\mathbb{N}}$ choisie.