

Capturing Mutual Fund Holdings:

A Network Analysis with Machine Learning

(very preliminary draft)

Xingkong Wei*

May 12, 2018

Introduction

Motivation

Is it possible to predict mutual fund managers' behaviours with public information? It is common that some mutual fund managers pick up the same stocks for their portfolios. But there are also some stocks chosen by only a few mutual funds. For a given period, will these less chosen stocks be picked up by other mutual funds in the next period? If so, what kind of stocks are more likely to be selected by other mutual funds? If mutual funds managers are well-informed, those stocks with less mutual funds coverage may be a signal of undervalued stocks because those fairly priced stocks should have more mutual funds coverage and those trash stocks should have no mutual funds coverage.

If we can predict which stocks would be covered by other mutual funds in the next period, we can build a strategy on that. In this project, I plan to use mutual funds holding networks to do some data mining and use machine learning techniques to predict whether some less covered stocks would be covered by other mutual funds. Just to clarify, these less covered stocks mean that they are selected by at least one mutual fund.

^{*}Fintech Institute, Tsinghua PBCSF. email:weixk@pbcsf.tsinghua.edu.cn

Networks

Bipartie Networks

Bipartite graphs B = (U, V, E) have two node sets U,V and edges in E that only connect nodes from opposite sets. It is common in the literature to use an spatial analogy referring to the two node sets as top and bottom nodes.

Network Features

Betweenness Centrality Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v:

$$c_B(v) = \sum_{s,t \in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$$

where *V* is the set of nodes, $\sigma(s,t)$ is the number of shortest (s,t)-paths, and $\sigma(s,t|v)$ is the number of those paths passing through some node *v* other than s,t. If s=t, $\sigma(s,t)=1$, and if $v \in s,t$, $\sigma(s,t|v)=0$

Closeness Centrality The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected to all other nodes in the connected component containing that node. Thus the closeness centrality for node v in the two bipartite sets U with n nodes and V with m nodes is

$$c_v = \frac{m+2(n-1)}{d}$$
, for $v \in U$,

$$c_v = \frac{n+2(m-1)}{d}$$
, for $v \in V$,

where d is the sum of the distances from v to all other nodes. Higher values of closeness indicate higher centrality.

Degree Centrality Compute the degree centrality for nodes in a bipartite network.

The degree centrality for a node v is the fraction of nodes connected to it.

Page Rank PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

Clustering Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density of connections defined as [R158]:

$$c_u = \frac{\sum_{v \in N(N(v))} c_{uv}}{|N(N(u))|}$$

where N(N(u)) are the second order neighbors of u in G excluding u, and c_{uv} is the pairwise clustering coefficient between nodes u and v.

The mode selects the function for c_{uv} which can be:

dot:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$

min:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$

max:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{max(|N(u)|, |N(v)|)}$$

Data

Table 1: 变量名称对应表

Variable	变量名称
holding_shares	持股占流通股比(%)
coverage_funds	持有基金数
total_share_holdings	持股总量
seasonal_holding_change	季度持仓变动(万股)
total_market_value	持股总市值(万元)
buy_sec	券商评级: 买入
hold_sec	券商评级: 持有
neutral_sec	券商评级:中性
pledge_parity	股票质押方数量
pledge_shares	股票质押数量
pledge_market_value	股票质押市值
y	新增持有基金数
y_degree	是否有新增基金公司持有

	count	mean	std	min	25%	50%	75%	max
holding_shares	1215.0	2.916783	4.332290	0.000007	0.207457	1.231583	3.618788	3.503806e+01
coverage_funds	1215.0	22.046091	59.820513	1.000000	2.000000	6.000000	16.000000	8.570000e+02
total_share_holdings	1215.0	3760.189396	11270.007651	0.005000	115.598350	740.184800	2788.640400	1.744305e+05
seasonal_holding_change	1215.0	1092.785143	3604.799098	-6836.756000	5.000000	131.062400	816.770700	4.843970e+04
total_market_value	1215.0	73774.233220	266745.509142	0.052600	1770.224400	11105.829000	44352.233239	4.923366e+06
closeness_fund	1215.0	0.308970	0.047998	0.252714	0.275803	0.292397	0.327471	5.083333e-01
betweenness_fund	1215.0	0.000580	0.001754	0.000000	0.000002	0.000031	0.000249	1.888093e-02
pagerank_fund	1215.0	0.000375	0.000427	0.000113	0.000147	0.000212	0.000407	3.252711e-03
coverage_fund	1215.0	8.931687	13.341582	1.000000	2.000000	4.000000	10.000000	9.800000e+01
clustering_fund	1215.0	0.123512	0.035114	0.048889	0.101872	0.114503	0.134316	2.741882e-01
degree_centrality_fund	1215.0	0.078348	0.117031	0.008772	0.017544	0.035088	0.087719	8.596491e-01
buy_sec	1215.0	0.607536	0.294299	0.000000	0.466667	0.666667	0.812500	1.000000e+00
hold_sec	1215.0	0.383802	0.291972	0.000000	0.175192	0.333333	0.500000	1.000000e+00
neutral_sec	1215.0	0.008619	0.059694	0.000000	0.000000	0.000000	0.000000	1.000000e+00
coverge_sec	1215.0	10.076543	7.735212	1.000000	4.000000	8.000000	15.000000	3.900000e+01
clustering_sec	1215.0	0.166799	0.028386	0.084286	0.144685	0.165294	0.189484	2.424944e-01
degree_sec	1215.0	0.157534	0.123521	0.021277	0.063830	0.127660	0.234043	6.808511e-01
closeness_sec	1215.0	0.380176	0.058516	0.258773	0.334394	0.386454	0.429058	4.939287e-01
betweenness_sec	1215.0	0.000318	0.000444	0.000000	0.000015	0.000128	0.000461	3.131027e-03
pledge_parity	1215.0	4.332510	7.984936	0.000000	0.000000	1.000000	5.000000	9.100000e+01
pledge_shares	1215.0	11409.119102	35856.345619	0.000000	0.000000	1200.000000	10396.760000	8.702692e+05
pledge_market_value	1215.0	154751.272958	386529.408318	0.000000	0.000000	28516.000000	174321.459155	7.066903e+06
y	1215.0	3.639506	4.850152	0.000000	0.000000	2.000000	5.000000	3.400000e+01
y_degree	1215.0	0.715226	0.451492	0.000000	0.000000	1.000000	1.000000	1.000000e+00

Features Selection

Random Forest Classifier

For those who are interested in algorithms, I suggest to look at the following link.

 $Random\ Forest: \textit{https}: \textit{//en.wikipedia.org/wiki/Random_forest}$

Feature Importance

As we can see, the top five most important features come from mutual fund holding networks

ROC Curve

Potential mutual funds holding predictions

Table 2: Predictions with Machine Learning Algorithms

Classifier	accuracy_score
DGBT	0.75
GradientBoostingRegressor	0.744
XGBoost	0.786
NeuralNetwork	0.71
SVM	0.707
LogisticRegression	0.766
SDG	0.76
<i>DecisionTree</i>	0.786
RandomForest	0.76

Empirical Strategy

 H_0 : Stocks' network features are related to potential mutual funds holdings.

$$y_i = \alpha + \beta_1 Network_i + \varepsilon_i$$

where $Network_i$ includes $pagerank_fund$, $betweenness_fund$, $closeness_fund$, $betweenness_degree_sec$, $clustering_fund$. The features with fund postfix stand for network features extracting from fund-stock network; the features with sec postfix stand for network features extracting from securities company-stock network.

Table 3: Network features and potential mutual fund holdings

			V		
pagerank_fund	5,007.708***	15,662.260***	y 10,677.290***	7,656.825***	7,384.123***
1.6.	(525.578)	(943.085)	(2,484.185)	(2,527.049)	(2,514.690)
betweenness_fund	(= = = =)	-2,771.450***	-2,227.508***	-1,865.879***	-1,805.174***
		(218.405)	(332.349)	(338.464)	(337.424)
closeness_fund		,	27.320**	27.940**	26.694**
			(11.978)	(11.665)	(11.705)
betweenness_degree_sec			,	2,568.256***	2,528.955***
				(447.270)	(447.640)
clustering_fund					-6.043***
-					(2.022)
Constant	1.762***	-0.626^{***}	-7.513**	-7.599***	-6.388**
	(0.183)	(0.200)	(2.972)	(2.893)	(2.992)
N	1,215	1,215	1,215	1,215	1,215
\mathbb{R}^2	0.194	0.319	0.322	0.357	0.358
Adjusted R ²	0.194	0.318	0.321	0.355	0.356
Residual Std. Error	4.355	4.006	3.998	3.896	3.894
F Statistic	292.870***	283.886***	192.036***	167.762***	134.960***

Notes:

Here we use feature importance score from random forest algorithm to help us select independent variables in the regression.

^{***}Significant at the 1 percent level.

^{**}Significant at the 5 percent level.

^{*}Significant at the 10 percent level.

Blue nodes are mutual funds, gray nodes are stocks hold by mutual funds, orange nodes are stocks that are hold by more than 7 mutual funds