8. The New Keynesian Model

Adv. Macro: Heterogenous Agent Models

OF PARTY OF THE PA

Nicolai Waldstrøm

2024

Previously:

- 1. Economic content: Long run trends and outcomes
- 2. Methods: Stationary eq., Non-linear transition path and perfect foresight

Previously:

- 1. Economic content: Long run trends and outcomes
- 2. Methods: Stationary eq., Non-linear transition path and perfect foresight

Today:

- 1. Business cycles in the New Keynesian model
- 2. Linearized solution in models with aggregate risk

Previously:

- 1. Economic content: Long run trends and outcomes
- Methods: Stationary eq., Non-linear transition path and perfect foresight

Today:

- 1. Business cycles in the New Keynesian model
- 2. Linearized solution in models with aggregate risk

Literature:

- NK:
 - 1. Gali textbook ch. 3-4
 - 2. Macroeconomics textbook ch. 16
 - Solution methods:
 - Auclert et. al. (2021), »Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models«
 - Boppart et. al. (2018), »Exploiting MIT shocks in heterogeneous-agent economies: The impulse response as a numerical derivative«
 - 3. Documentation for GEModelTools

Business cycles

Macro variables relatively volatile around long-run trends

Business cycles

Macro variables relatievly volatile around long-run trends

- Rest of the course:
 - Study how aggregate shocks cause business cycles
 - Does the transmission change with heterogeneous agents?
 - Implications for fiscal and monetary policy

Business cycles

Macro variables relatievly volatile around long-run trends

- Rest of the course:
 - Study how aggregate shocks cause business cycles
 - Does the transmission change with heterogeneous agents?
 - Implications for fiscal and monetary policy
- First point on agenda: Need role for monetary policy
 - Models so far in the course have featured monetary-non neutrality
 - Monetary policy cannot affect real quantities (unemployment, GDP)

 A proper mode of business cycles and stabalization policy require that output is partially demand determined

- A proper mode of business cycles and stabalization policy require that output is partially demand determined
- The study of monetary policy requires monetary-non neutrality

- A proper mode of business cycles and stabalization policy require that output is partially demand determined
- The study of monetary policy requires monetary-non neutrality
- The New Keynesian (NK) model adresses these two concerns by adding to the standard model:
 - Monopolistic competetion (price-setting)
 - Price rigidities

- A proper mode of business cycles and stabalization policy require that output is partially demand determined
- The study of monetary policy requires monetary-non neutrality
- The New Keynesian (NK) model adresses these two concerns by adding to the standard model:
 - Monopolistic competetion (price-setting)
 - Price rigidities
- The basic NK model is simple (can be reduced to 3 equations) but extremely influential

The New Keynesian model

Model

Several version of the NK model

Model

- Several version of the NK model
- I present the simplest version her

Model

- Several version of the NK model
- I present the simplest version her
- The model consists of the following agents:
 - A representative household who consumes, saves and supplies labor
 - Firms with market power who produce output using labor and sets prices subject to nominal rigidities
 - A central bank which conduct monetary policy

- Households:
 - 1. Representativ agent
 - 2. Supply labor and choose consumption

Households:

- 1. Representativ agent
- 2. Supply labor and choose consumption
- Intermediary goods firms (continuum)
 - 1. Produce differentiated goods with labor
 - 2. Set price under monopolistic competition
 - 3. Pay profits to households

Households:

- 1. Representativ agent
- 2. Supply labor and choose consumption

Intermediary goods firms (continuum)

- 1. Produce differentiated goods with labor
- 2. Set price under monopolistic competition
- 3. Pay profits to households

Final goods firms (representative)

- 1. Produce final good with intermediary goods
- 2. Take price as given under perfect competition

Households:

- 1. Representativ agent
- 2. Supply labor and choose consumption
- Intermediary goods firms (continuum)
 - 1. Produce differentiated goods with labor
 - 2. Set price under monopolistic competition
 - 3. Pay profits to households
- Final goods firms (representative)
 - 1. Produce final good with intermediary goods
 - 2. Take price as given under perfect competition
- Central bank: Sets nominal interest rate

Households

Representative household solve the following problem:

$$\max_{C_t, A_t, L_t} E_0 \sum_{t=0}^{\infty} \beta^t \left[u(C_t) - \nu(L_t^{hh}) \right]$$

$$s.t.$$

$$C_t + A_t = (1 + r_t) A_{t-1} + \left(w_t L_t^{hh} + \Pi_t \right)$$

- Note: Expectation taken w.r.t aggregate shocks (TFP, monetary policy, markup etc.)
- Standard first-order conditions:

$$u'(C_t) = E_t \beta (1 + r_{t+1}) u'(C_{t+1})$$

$$\nu'(L_t^{hh}) = w_t u'(C_t)$$

• Final goods firm buy goods y_{jt} from intermediary goods firms and assemble into aggregate output Y_t using CES technology with sub. elaticity ϵ

- Final goods firm buy goods y_{jt} from intermediary goods firms and assemble into aggregate output Y_t using CES technology with sub. elaticity ϵ
- Intermediary firms/intermediary goods indexed by $j \in [0,1]$

- Final goods firm buy goods y_{jt} from intermediary goods firms and assemble into aggregate output Y_t using CES technology with sub. elaticity ϵ
- Intermediary firms/intermediary goods indexed by $j \in [0, 1]$
- Static problem for representative final good firm:

$$\max_{y_{jt} \ \forall j} P_t Y_t - \int_0^1 p_{jt} y_{jt} dj \text{ s.t. } Y_t = \left(\int_0^1 y_{jt}^{\frac{\epsilon-1}{\epsilon}} dj \right)^{\frac{\epsilon}{\epsilon-1}}$$

for given output price, P_t , and input prices, p_{jt}

- Final goods firm buy goods y_{jt} from intermediary goods firms and assemble into aggregate output Y_t using CES technology with sub. elaticity ϵ
- Intermediary firms/intermediary goods indexed by $j \in [0, 1]$
- Static problem for representative final good firm:

$$\max_{y_{jt}\,\forall j}P_tY_t-\int_0^1p_{jt}y_{jt}dj \text{ s.t. } Y_t=\left(\int_0^1y_{jt}^{\frac{\epsilon-1}{\epsilon}}dj\right)^{\frac{\epsilon}{\epsilon-1}}$$

for given output price, P_t , and input prices, p_{jt}

Demand curve derived from FOC wrt. y_{jt}

$$\forall j: y_{jt} = \left(\frac{p_{jt}}{P_t}\right)^{-\epsilon} Y_t$$

- Final goods firm buy goods y_{jt} from intermediary goods firms and assemble into aggregate output Y_t using CES technology with sub. elaticity ϵ
- Intermediary firms/intermediary goods indexed by $j \in [0, 1]$
- Static problem for representative final good firm:

$$\max_{y_{jt}\,\forall j}P_tY_t-\int_0^1p_{jt}y_{jt}dj \text{ s.t. } Y_t=\left(\int_0^1y_{jt}^{\frac{\epsilon-1}{\epsilon}}dj\right)^{\frac{\epsilon}{\epsilon-1}}$$

for given output price, P_t , and input prices, p_{jt}

Demand curve derived from FOC wrt. y_{jt}

$$\forall j: y_{jt} = \left(\frac{p_{jt}}{P_t}\right)^{-\epsilon} Y_t$$

• Note: Zero profits (can be used to derive price index)

 Intermediary goods firms produce using labor, choose price subject to quadratic adjustment cost of changing prices (Rotemberg)

- Intermediary goods firms produce using labor, choose price subject to quadratic adjustment cost of changing prices (Rotemberg)
- Dynamic problem for intermediary goods firms:

$$J_{t}(p_{jt-1}) = \max_{y_{jt}, p_{jt}, l_{jt}} \left\{ \frac{p_{jt}}{P_{t}} y_{jt} - w_{t} l_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_{t} + E_{t} \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\}$$
s.t. $y_{jt} = \Gamma_{t} l_{jt}, \ y_{jt} = \left(\frac{p_{jt}}{P_{t}}\right)^{-\epsilon} Y_{t}, \ \Omega(p_{jt}, p_{jt-1}) = \frac{\theta}{2} \left[\frac{p_{jt}}{p_{jt-1}} - 1\right]^{2}$

- Intermediary goods firms produce using labor, choose price subject to quadratic adjustment cost of changing prices (Rotemberg)
- Dynamic problem for intermediary goods firms:

$$J_{t}(p_{jt-1}) = \max_{y_{jt}, p_{jt}, l_{jt}} \left\{ \frac{p_{jt}}{P_{t}} y_{jt} - w_{t} l_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_{t} + E_{t} \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\}$$
s.t. $y_{jt} = \Gamma_{t} l_{jt}, \ y_{jt} = \left(\frac{p_{jt}}{P_{t}}\right)^{-\epsilon} Y_{t}, \ \Omega(p_{jt}, p_{jt-1}) = \frac{\theta}{2} \left[\frac{p_{jt}}{p_{jt-1}} - 1\right]^{2}$

• **Symmetry:** In equilibrium all firms set the same price, $p_{jt} = P_t$

- Intermediary goods firms produce using labor, choose price subject to quadratic adjustment cost of changing prices (Rotemberg)
- Dynamic problem for intermediary goods firms:

$$J_{t}(p_{jt-1}) = \max_{y_{jt}, p_{jt}, l_{jt}} \left\{ \frac{p_{jt}}{P_{t}} y_{jt} - w_{t} l_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_{t} + E_{t} \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\}$$
s.t. $y_{jt} = \Gamma_{t} l_{jt}, \ y_{jt} = \left(\frac{p_{jt}}{P_{t}}\right)^{-\epsilon} Y_{t}, \ \Omega(p_{jt}, p_{jt-1}) = \frac{\theta}{2} \left[\frac{p_{jt}}{p_{jt-1}} - 1\right]^{2}$

- **Symmetry:** In equilibrium all firms set the same price, $p_{jt} = P_t$
- **NKPC** with slope $\kappa = \frac{\epsilon}{\theta}$ and $\mu = \frac{\epsilon}{\epsilon 1}$ derived from FOC wrt. p_{jt} and envelope condition (note $mc_t = \frac{MC_t}{P_t} = \frac{w_t}{\Gamma_t}$):

$$\pi_t(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + E_t \frac{Y_{t+1}}{Y_t} \frac{\pi_{t+1}(1+\pi_{t+1})}{1+r_{t+1}}, \ \pi_t \equiv P_t/P_{t-1} - 1$$

- Intermediary goods firms produce using labor, choose price subject to quadratic adjustment cost of changing prices (Rotemberg)
- Dynamic problem for intermediary goods firms:

$$J_{t}(p_{jt-1}) = \max_{y_{jt}, p_{jt}, l_{jt}} \left\{ \frac{p_{jt}}{P_{t}} y_{jt} - w_{t} l_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_{t} + E_{t} \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\}$$
s.t. $y_{jt} = \Gamma_{t} l_{jt}, \ y_{jt} = \left(\frac{p_{jt}}{P_{t}}\right)^{-\epsilon} Y_{t}, \ \Omega(p_{jt}, p_{jt-1}) = \frac{\theta}{2} \left[\frac{p_{jt}}{p_{jt-1}} - 1\right]^{2}$

- **Symmetry:** In equilibrium all firms set the same price, $p_{jt} = P_t$
- **NKPC** with slope $\kappa = \frac{\epsilon}{\theta}$ and $\mu = \frac{\epsilon}{\epsilon 1}$ derived from FOC wrt. p_{jt} and envelope condition (note $mc_t = \frac{MC_t}{P_t} = \frac{w_t}{\Gamma_t}$):

$$\pi_t(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + E_t \frac{Y_{t+1}}{Y_t} \frac{\pi_{t+1}(1+\pi_{t+1})}{1+r_{t+1}}, \ \ \pi_t \equiv P_t/P_{t-1} - 1$$

• Implied production: $Y_t = y_{jt}$, $L_t = l_{jt}$ (from symmetry)

- Intermediary goods firms produce using labor, choose price subject to quadratic adjustment cost of changing prices (Rotemberg)
- Dynamic problem for intermediary goods firms:

$$J_{t}(p_{jt-1}) = \max_{y_{jt}, p_{jt}, l_{jt}} \left\{ \frac{p_{jt}}{P_{t}} y_{jt} - w_{t} l_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_{t} + E_{t} \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\}$$
s.t. $y_{jt} = \Gamma_{t} l_{jt}, \ y_{jt} = \left(\frac{p_{jt}}{P_{t}}\right)^{-\epsilon} Y_{t}, \ \Omega(p_{jt}, p_{jt-1}) = \frac{\theta}{2} \left[\frac{p_{jt}}{p_{jt-1}} - 1\right]^{2}$

- Symmetry: In equilibrium all firms set the same price, $p_{jt} = P_t$
- **NKPC** with slope $\kappa = \frac{\epsilon}{\theta}$ and $\mu = \frac{\epsilon}{\epsilon 1}$ derived from FOC wrt. p_{jt} and envelope condition (note $mc_t = \frac{MC_t}{P_t} = \frac{w_t}{\Gamma_t}$):

$$\pi_t(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + E_t \frac{Y_{t+1}}{Y_t} \frac{\pi_{t+1}(1+\pi_{t+1})}{1+r_{t+1}}, \ \ \pi_t \equiv P_t/P_{t-1} - 1$$

- Implied production: $Y_t = y_{jt}$, $L_t = I_{jt}$ (from symmetry)
- Implied dividends: $\Pi_t = Y_t w_t L_t rac{ heta}{2} \left[rac{p_{jt}}{p_{jt-1}} 1
 ight]^2 Y_t$

Derivation of NKPC

■ **FOC** wrt. *p_{it}*:

$$0 = (1 - \epsilon) \left(\frac{p_{jt}}{P_t}\right)^{-\epsilon} \frac{Y_t}{P_t} + \epsilon \frac{w_t}{\Gamma_t} \left(\frac{p_{jt}}{P_t}\right)^{-\epsilon - 1} \frac{Y_t}{P_t}$$
$$-\theta \left[\frac{p_{jt}}{p_{jt-1}} - 1\right] \frac{Y_t}{p_{jt-1}} + E_t \frac{J'_{t+1}(p_{jt})}{1 + r_{t+1}}$$

Derivation of NKPC

■ **FOC** wrt. *p_{it}*:

$$0 = (1 - \epsilon) \left(\frac{p_{jt}}{P_t}\right)^{-\epsilon} \frac{Y_t}{P_t} + \epsilon \frac{w_t}{\Gamma_t} \left(\frac{p_{jt}}{P_t}\right)^{-\epsilon - 1} \frac{Y_t}{P_t}$$
$$-\theta \left[\frac{p_{jt}}{p_{jt-1}} - 1\right] \frac{Y_t}{p_{jt-1}} + E_t \frac{J'_{t+1}(p_{jt})}{1 + r_{t+1}}$$

■ Envelope condition: $J'_{t+1}(p_{jt}) = -\theta \left[\frac{p_{jt+1}}{p_{jt}} - 1 \right] \left(\frac{p_{jt+1}}{p_{jt}^2} \right) Y_{t+1}$

Derivation of NKPC

■ **FOC** wrt. *p_{jt}*:

$$0 = (1 - \epsilon) \left(\frac{p_{jt}}{P_t}\right)^{-\epsilon} \frac{Y_t}{P_t} + \epsilon \frac{w_t}{\Gamma_t} \left(\frac{p_{jt}}{P_t}\right)^{-\epsilon - 1} \frac{Y_t}{P_t}$$
$$-\theta \left[\frac{p_{jt}}{p_{jt-1}} - 1\right] \frac{Y_t}{p_{jt-1}} + E_t \frac{J'_{t+1}(p_{jt})}{1 + r_{t+1}}$$

- Envelope condition: $J'_{t+1}(p_{jt}) = -\theta \left[\frac{p_{jt+1}}{p_{jt}} 1 \right] \left(\frac{p_{jt+1}}{p_{jt}^2} \right) Y_{t+1}$
- FOC + Envelope + Symmetry + $\pi_t = P_t/P_{t-1} 1$

$$0 = \left[(1 - \epsilon) + \epsilon \frac{w_t}{\Gamma_t} \right] \frac{Y_t}{P_t}$$
$$-\theta \left[\frac{P_t}{P_{t-1}} - 1 \right] \frac{Y_t}{P_{t-1}} - E_t \frac{\theta \left[\frac{P_{t+1}}{P_t} - 1 \right] \left(\frac{P_{t+1}}{P_t^2} \right) Y_{t+1}}{1 + r_{t+1}}$$

Central NKPC intution

$$\pi_{t}(1+\pi_{t}) = \kappa \left(\frac{w_{t}}{\Gamma_{t}} - \frac{1}{\mu}\right) + E_{t} \frac{Y_{t+1}}{Y_{t}} \frac{1}{1+r_{t+1}} \pi_{t+1} \left(1 + \pi_{t+1}\right)$$

1. Zero-inflation steady state:

$$\pi_t=0 o w_t=rac{\Gamma_t}{\mu} o$$
 wage is mark-downed relative to MPL $(\mu>1)$

Central NKPC intution

$$\pi_t(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + E_t \frac{Y_{t+1}}{Y_t} \frac{1}{1 + r_{t+1}} \pi_{t+1} \left(1 + \pi_{t+1}\right)$$

1. Zero-inflation steady state:

$$\pi_t=0 o w_t=rac{\Gamma_t}{\mu} o$$
 wage is mark-downed relative to MPL $(\mu>1)$

2. Larger adjustment costs, $\kappa \downarrow$ (more sticky prices): Less pass-through from marginal costs, $\frac{w_t}{\Gamma_t}$, to inflation, π_t

Central NKPC intution

$$\pi_t(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + E_t \frac{Y_{t+1}}{Y_t} \frac{1}{1+r_{t+1}} \pi_{t+1} \left(1 + \pi_{t+1}\right)$$

1. Zero-inflation steady state:

$$\pi_t=0 o w_t=rac{\Gamma_t}{\mu} o$$
 wage is mark-downed relative to MPL $(\mu>1)$

- 2. Larger adjustment costs, $\kappa \downarrow$ (more sticky prices): Less pass-through from marginal costs, $\frac{w_t}{\Gamma_t}$, to inflation, π_t
- 3. Larger (expected) future inflation, $\pi_{t+1} \uparrow$: Increase price today, $\pi_t \uparrow$ Especially in a boom, $\frac{Y_{t+1}}{Y_t} > 1$

Central NKPC intution

$$\pi_t(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + E_t \frac{Y_{t+1}}{Y_t} \frac{1}{1+r_{t+1}} \pi_{t+1} \left(1 + \pi_{t+1}\right)$$

1. Zero-inflation steady state:

$$\pi_t=0 o w_t=rac{\Gamma_t}{\mu} o$$
 wage is mark-downed relative to MPL $(\mu>1)$

- 2. Larger adjustment costs, $\kappa \downarrow$ (more sticky prices): Less pass-through from marginal costs, $\frac{w_t}{\Gamma_t}$, to inflation, π_t
- 3. Larger (expected) future inflation, $\pi_{t+1} \uparrow$: Increase price today, $\pi_t \uparrow$ Especially in a boom, $\frac{Y_{t+1}}{Y_t} > 1$
- 4. Note:
 - Sometimes a β^{firm} is used instead of $\frac{1}{1+r_{t+1}}$
 - $\pi_t(1+\pi_t) \approx \pi_t$ for small π_t

Government and central bank

Monetary policy: Follow Taylor-rule:

$$i_t = i_t^* + \phi \pi_t$$

where i_t^* is a monetary policy shock (target for CB)

Government and central bank

Monetary policy: Follow Taylor-rule:

$$i_t = i_t^* + \phi \pi_t$$

where i_t^* is a monetary policy shock (target for CB)

• Fisher relationship:

$$r_t = (1 + i_{t-1})/(1 + \pi_t) - 1$$

Government and central bank

Monetary policy: Follow Taylor-rule:

$$i_t = i_t^* + \phi \pi_t$$

where i_t^* is a monetary policy shock (target for CB)

Fisher relationship:

$$r_t = (1 + i_{t-1})/(1 + \pi_t) - 1$$

- Government: In standard model Government simply supplies bonds that are in net-zero supply, B=0
 - Note: HHs still make consumption-saving decisions (so cannot impose A=0 in budget), but in equilibrium prices will adjust such that A=B=0
 - Simplifying assumption, can easily incorporate more reaslitic government $\tau_t = r_t B_{ss} + G_t$ with $B_{ss} > 0$ (see HANK later)

• Three markets that need to clear in the NK model:

- Three markets that need to clear in the NK model:
- Goods market:

$$Y_t = C_t + \frac{\theta}{2} \pi_t^2 Y_t$$

- Three markets that need to clear in the NK model:
- Goods market:

$$Y_t = C_t + \frac{\theta}{2} \pi_t^2 Y_t$$

Labor market:

$$L_t^{hh}=L_t$$

- Three markets that need to clear in the NK model:
- Goods market:

$$Y_t = C_t + \frac{\theta}{2} \pi_t^2 Y_t$$

Labor market:

$$L_t^{hh} = L_t$$

Asset market:

$$A = 0$$

- Three markets that need to clear in the NK model:
- Goods market:

$$Y_t = C_t + \frac{\theta}{2} \pi_t^2 Y_t$$

Labor market:

$$L_t^{hh} = L_t$$

Asset market:

$$A = 0$$

 As usual, in practice we will only impose market clearing in two of the markets when solving the model

Aggregate shocks

- In the standard NK model business cycles arise due to fluctuations in aggregate shocks:
 - 1. TFP (supply)

$$\ln \Gamma_t = \overline{\Gamma} + \ln \Gamma_{t-1} + \epsilon_t^{\Gamma}, \quad \epsilon_t^{\Gamma} \sim \mathcal{N}\left(0, \sigma_{\Gamma}^2\right)$$

2. Discount factor (demand)

$$\ln \beta_t = \overline{\beta} + \ln \beta_{t-1} + \epsilon_t^{\beta}, \quad \epsilon_t^{\beta} \sim \mathcal{N}\left(0, \sigma_{\beta}^2\right)$$

3. Monetary policy

$$i_{t}^{*} = \overline{i^{*}} + \ln i_{t-1}^{*} + \epsilon_{t}^{i^{*}}, \quad \epsilon_{t}^{i^{*}} \sim \mathcal{N}\left(0, \sigma_{i^{*}}^{2}\right)$$

 Consider the deterministic, zero-inflation steady state of the model (with TFP and prices normalized to 1):

$$\pi_{ss}=0, \quad Y_{ss}=C_{ss}=1$$
 $r_{ss}=i_{ss}=rac{1}{eta}-1, \quad w_{ss}=rac{1}{\mu}$

 Consider the deterministic, zero-inflation steady state of the model (with TFP and prices normalized to 1):

$$\pi_{ss}=0, \quad Y_{ss}=C_{ss}=1$$
 $r_{ss}=i_{ss}=rac{1}{eta}-1, \quad w_{ss}=rac{1}{\mu}$

• Linearize the model arounds this steady state with notation $\hat{x}_t = x_t - x_{ss}$ for some endo. variable x_t

 Consider the deterministic, zero-inflation steady state of the model (with TFP and prices normalized to 1):

$$\pi_{ss}=0, \quad Y_{ss}=C_{ss}=1$$
 $r_{ss}=i_{ss}=rac{1}{eta}-1, \quad w_{ss}=rac{1}{\mu}$

- Linearize the model arounds this steady state with notation $\hat{x}_t = x_t x_{ss}$ for some endo. variable x_t
- The model can be reduced to three equations:

$$\begin{split} \hat{Y}_t &= -\sigma \left(i_t - \pi_{t+1}\right) + \hat{Y}_{t+1} + \epsilon^D_t \quad \text{(Euler/demand curve)} \\ \hat{\pi}_t &= \tilde{\kappa} \hat{Y}_t + \beta \hat{\pi}_{t+1} + \epsilon^S_t \quad \text{(NKPC/supply curve)} \\ \hat{i}_t &= \phi \hat{\pi}_t + \epsilon^i_t \quad \text{(Monetary policy)} \end{split}$$

 Consider the deterministic, zero-inflation steady state of the model (with TFP and prices normalized to 1):

$$\pi_{ss}=0, \quad Y_{ss}=C_{ss}=1$$
 $r_{ss}=i_{ss}=rac{1}{eta}-1, \quad w_{ss}=rac{1}{\mu}$

- Linearize the model arounds this steady state with notation $\hat{x}_t = x_t x_{ss}$ for some endo. variable x_t
- The model can be reduced to three equations:

$$\begin{split} \hat{Y}_t &= -\sigma \left(i_t - \pi_{t+1}\right) + \hat{Y}_{t+1} + \epsilon^D_t \quad \text{(Euler/demand curve)} \\ \hat{\pi}_t &= \tilde{\kappa} \hat{Y}_t + \beta \hat{\pi}_{t+1} + \epsilon^S_t \quad \text{(NKPC/supply curve)} \\ \hat{i}_t &= \phi \hat{\pi}_t + \epsilon^i_t \quad \text{(Monetary policy)} \end{split}$$

• With three unknowns (per period) $\hat{Y}_t, \hat{\pi}_t, \hat{i}_t$

• Effects of a positive TFP shock (increase Γ_t)

• Effects of a positive TFP shock (increase Γ_t)

• Increase in productivity decreases marginal costs w_t/Γ_t

• Effects of a positive TFP shock (increase Γ_t)

- Increase in productivity decreases marginal costs w_t/Γ_t
- Firms reduce prices ⇒ CB reduce nominal interest rate

• Effects of a positive TFP shock (increase Γ_t)

- Increase in productivity decreases marginal costs w_t/Γ_t
- Firms reduce prices ⇒ CB reduce nominal interest rate
- Intertemporal sub. $\Rightarrow C, Y \uparrow$

Monetary policy shocks in the NK model

• Effects of accomodating monetary policy (easing) with persistent decline in i_t^*

Monetary policy shocks in the NK model

• Effects of accomodating monetary policy (easing) with persistent decline in i_t^*

Decrease real rate r which induce intertemporal substitution, so
 C, Y ↑

Monetary policy shocks in the NK model

• Effects of accomodating monetary policy (easing) with persistent decline in i_t^*

- Decrease real rate r which induce intertemporal substitution, so
 C, Y ↑
- Increase in employment pushes up wages (marginal costs), so inflation increases

Monetary neutrality

- Monetary policy can affect consumption, employment and output in the short run because the model features monetary non-neutrality
 - Comes from sticky prices of firms

Monetary neutrality

- Monetary policy can affect consumption, employment and output in the short run because the model features monetary non-neutrality
 - Comes from sticky prices of firms
- Consider monetary policy shock with increasing slope of NKPC κ
 - \blacksquare Recall $\kappa \to \infty$ is flexible prices (think Ramsey) and constant markup

Monetary neutrality

- Monetary policy can affect consumption, employment and output in the short run because the model features monetary non-neutrality
 - Comes from sticky prices of firms
- Consider monetary policy shock with increasing slope of NKPC κ
 - \blacksquare Recall $\kappa \to \infty$ is flexible prices (think Ramsey) and constant markup

 Why? With completely flexible prices monetary policy just increases inflation 1-1 without affecting r

Review questions

• Consider the standard New Keynesian model

Review questions

- Consider the standard New Keynesian model
- Review questions
 - 1. How does a positive demand shock ϵ_t^{β} (which decrease β) affect output Y, inflation π , and interest rates i, r?
 - 2. Are firm markups pro-cyclical or counter-cyclical (w.r.t Y) in response to the demand shock?
 - 3. Consider an extension with a government that spends ${\it G}$ and raises lumpsum taxes τ
 - What is the effect of a shock to G? Is the fiscal multiplier $\frac{dY}{dG}$ above or below one?
 - Does the effects of the shock dependent on the method of financing (debt vs taxes)?

IRFs and simulation

• In business cycle model common to have aggregate uncertainty

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$
- This implies that all variables which are functions of x are also random.
 - If TFP is random ⇒ wages, interest rates, labor demand etc. are random until observed

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$
- This implies that all variables which are functions of x are also random.
 - If TFP is random ⇒ wages, interest rates, labor demand etc. are random until observed
- Implies that we need to compute expectation in Euler, NKPC and other forward looking equations:

$$u'(C_t) = \beta \mathbb{E}_t \left[R_{t+1} \left(x_{t+1} \right) u' \left(C_t \left(x_{t+1} \right) \right) \right]$$

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$
- This implies that all variables which are functions of x are also random.
 - If TFP is random ⇒ wages, interest rates, labor demand etc. are random until observed
- Implies that we need to compute expectation in Euler, NKPC and other forward looking equations:

$$u'\left(C_{t}\right) = \beta \mathbb{E}_{t}\left[R_{t+1}\left(x_{t+1}\right)u'\left(C_{t}\left(x_{t+1}\right)\right)\right]$$

- Note: So far in the course we have generally assumed perfect foresight w.r.t aggregate variables (w, r) so no expectation
 - Implies that aggregate shocks are not random process, but rather MIT shocks

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$
- This implies that all variables which are functions of x are also random.
 - If TFP is random ⇒ wages, interest rates, labor demand etc. are random until observed
- Implies that we need to compute expectation in Euler, NKPC and other forward looking equations:

$$u'\left(C_{t}\right) = \beta \mathbb{E}_{t}\left[R_{t+1}\left(x_{t+1}\right)u'\left(C_{t}\left(x_{t+1}\right)\right)\right]$$

- Note: So far in the course we have generally assumed perfect foresight w.r.t aggregate variables (w, r) so no expectation
 - Implies that aggregate shocks are not random process, but rather MIT shocks
- Interpretation of MIT shocks generally hard to reconcile with business cycles

Stochastic vs deterministic models

 To see how the **stochastic** model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

 To see how the **stochastic** model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

• First-order Taylor approx. around deterministic ss (use $R\beta = 1$):

$$du'(C_t) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_t x_{t+1}$$

 To see how the stochastic model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

• First-order Taylor approx. around deterministic ss (use $R\beta = 1$):

$$du'(C_t) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_t x_{t+1}$$

• Assume $x_t = \rho^x x_{t-1} + \epsilon_t^x$ with $\mathbb{E}\epsilon_t^x = 0$. Period 0 solution in deterministic/perfect foresight model:

$$du'(C_0) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot \rho^x d\epsilon_0^x$$

 To see how the stochastic model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

• First-order Taylor approx. around deterministic ss (use $R\beta = 1$):

$$du'(C_t) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_t x_{t+1}$$

• Assume $x_t = \rho^x x_{t-1} + \epsilon_t^x$ with $\mathbb{E}\epsilon_t^x = 0$. Period 0 solution in deterministic/perfect foresight model:

$$du'(C_0) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot \rho^x d\epsilon_0^x$$

Stochastic model we use:

$$d\mathbb{E}_0 x_1 = d\mathbb{E}_0 \left(\rho^{\mathsf{x}} x_0 + \epsilon_1^{\mathsf{x}} \right)$$

= $\rho^{\mathsf{x}} d\mathbb{E}_0 x_0 = \rho^{\mathsf{x}} d\epsilon_0^{\mathsf{x}} = dx_1$

 To see how the stochastic model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

• First-order Taylor approx. around deterministic ss (use $R\beta = 1$):

$$du'(C_t) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_t x_{t+1}$$

• Assume $x_t = \rho^x x_{t-1} + \epsilon_t^x$ with $\mathbb{E}\epsilon_t^x = 0$. Period 0 solution in deterministic/perfect foresight model:

$$du'(C_0) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot \rho^x d\epsilon_0^x$$

Stochastic model we use:

$$d\mathbb{E}_0 x_1 = d\mathbb{E}_0 \left(\rho^{\mathsf{x}} x_0 + \epsilon_1^{\mathsf{x}} \right)$$
$$= \rho^{\mathsf{x}} d\mathbb{E}_0 x_0 = \rho^{\mathsf{x}} d\epsilon_0^{\mathsf{x}} = dx_1$$

 Same result! Aggregate uncertainty does not matter to first-order when linearizing w.r.t aggregate shock

• **Insight:** The IRF from an MIT shock is <u>equivalent</u> to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)

- Insight: The IRF from an MIT shock is <u>equivalent</u> to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)
- What about high order?

- Insight: The IRF from an MIT shock is <u>equivalent</u> to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)
- What about **high order**?
- Approximate Euler to second order:

$$du'\left(C_{t}\right) \approx u''\left(C_{ss}\right) \cdot C'\left(x_{ss}\right) \cdot d\mathbb{E}_{t}x_{t+1} + \frac{1}{2}u'''\left(C_{ss}\right)C''\left(x_{ss}\right) \cdot \mathbb{E}_{t}\left(x_{t+1} - x_{ss}\right)^{2}$$
$$u''\left(C_{ss}\right) \cdot C'\left(x_{ss}\right) \cdot d\mathbb{E}_{t}x_{t+1} + \frac{1}{2}u'''\left(C_{ss}\right)C''\left(x_{ss}\right) \cdot \sigma_{x,t}^{2}$$

- Insight: The IRF from an MIT shock is <u>equivalent</u> to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)
- What about **high order**?
- Approximate Euler to second order:

$$du'(C_{t}) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_{t} x_{t+1} + \frac{1}{2} u'''(C_{ss}) C''(x_{ss}) \cdot \mathbb{E}_{t} (x_{t+1} - x_{ss})^{2}$$
$$u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_{t} x_{t+1} + \frac{1}{2} u'''(C_{ss}) C''(x_{ss}) \cdot \sigma_{x,t}^{2}$$

- In deterministic model $\sigma_{x,t}^2 = 0$ not true in stochastic model!
 - Models deviate once we go beyond 1st order approximation (linearization)

- Insight: The IRF from an MIT shock is <u>equivalent</u> to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)
- What about **high order**?
- Approximate Euler to second order:

$$du'(C_{t}) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_{t} x_{t+1} + \frac{1}{2} u'''(C_{ss}) C''(x_{ss}) \cdot \mathbb{E}_{t} (x_{t+1} - x_{ss})^{2}$$
$$u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_{t} x_{t+1} + \frac{1}{2} u'''(C_{ss}) C''(x_{ss}) \cdot \sigma_{x,t}^{2}$$

- In deterministic model $\sigma_{x,t}^2 = 0$ not true in stochastic model!
 - Models deviate once we go beyond 1st order approximation (linearization)
- Still extremely usefull though we may solve deterministic models to first-order and interpret as models with aggregate uncertainty
 - How do we linearize models numerically?

Reminder of model class

- Unknowns: U
- Shock: Z
- Additional variables: X
- Target equation system:

$$H(U,Z)=0$$

Reminder of model class

- Unknowns: U
- Shock: Z
- Additional variables: X
- Target equation system:

$$H(U,Z)=0$$

- In deterministic, perfect foresight model, solve H(U, Z) = 0 w.r.t U by:
 - 1. Calculating the jacobian of **H**w.r.t **U**around steady state
 - 2. Use Newton/Broyden's method to find non-linear transition path given shocks \boldsymbol{Z}

• What if just want first order solution?

- What if just want *first order solution*?
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1}H_Z}_{\equiv G_U} dZ$$

- What if just want first order solution?
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1}H_Z}_{\equiv G_U} dZ$$

• Computation: Same for $oldsymbol{Z}$ as for $oldsymbol{U}$

- What if just want first order solution?
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1}H_Z}_{\equiv G_U} dZ$$

- Computation: Same for Z as for U
- Limitations:

- What if just want first order solution?
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ$$

- Computation: Same for Z as for U
- Limitations:
 - 1. Imprecise for *large* shocks

- What if just want first order solution?
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ$$

- Computation: Same for Z as for U
- Limitations:
 - 1. Imprecise for large shocks
 - 2. Imprecise in models with aggregate non-linearities

- What if just want first order solution?
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ$$

- Computation: Same for Z as for U
- Limitations:
 - 1. Imprecise for large shocks
 - 2. Imprecise in models with aggregate non-linearities
 - No aggregate uncertainty (precautionary savings w.r.t aggregate shocks etc.)

- What if just want first order solution?
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1}H_Z}_{\equiv G_U} dZ$$

- Computation: Same for Z as for U
- Limitations:
 - 1. Imprecise for large shocks
 - 2. Imprecise in models with aggregate non-linearities
 - 3. No aggregate uncertainty (precautionary savings w.r.t aggregate shocks etc.)
- Next slide: Can we solve model with aggregate risk globally (i.e. to more than first-order)?

Aggregate risk (dynamic equilibrium)

- To solve models with aggregate risk we need to write them in state-space form instead of sequence-space
 - Think of HA household problem that is always in state-space form
 - Endogenous variables c_t , a_t as function of current states a_{t-1} , z_t

Aggregate risk (dynamic equilibrium)

- To solve models with aggregate risk we need to write them in state-space form instead of sequence-space
 - Think of HA household problem that is always in state-space form
 - Endogenous variables c_t , a_t as function of current states a_{t-1} , z_t
- Aggregate stochastic variables: Z follow some known process with innovations ε. State space form: RHS is what is known today

$$\left[egin{array}{c} oldsymbol{U}_t \ oldsymbol{Z}_t \end{array}
ight] = \mathcal{M} \left(\left[egin{array}{c} oldsymbol{U}_{t-1} \ oldsymbol{Z}_{t-1} \end{array}
ight], oldsymbol{\epsilon}_t
ight)$$

≠ perfect foresight wrt. future agg. variables in sequence-space

Aggregate risk (dynamic equilibrium)

- To solve models with aggregate risk we need to write them in state-space form instead of sequence-space
 - Think of HA household problem that is always in state-space form
 - Endogenous variables c_t , a_t as function of current states a_{t-1} , z_t
- Aggregate stochastic variables: Z follow some known process with innovations ε. State space form: RHS is what is known today

$$\left[egin{array}{c} oldsymbol{U}_t \ oldsymbol{Z}_t \end{array}
ight] = \mathcal{M} \left(\left[egin{array}{c} oldsymbol{U}_{t-1} \ oldsymbol{Z}_{t-1} \end{array}
ight], oldsymbol{\epsilon}_t
ight)$$

≠ perfect foresight wrt. future agg. variables in sequence-space

 In standard NK model: no backward looking eqs. so number of state variables = Number of shocks

Example: Krussel-Smith

- What if we add heterogeneous agents? Canonical example: The Krussel-Smith model (1998)
 - HANC with aggregate uncertainty (TFP shocks)

Example: Krussel-Smith

- What if we add heterogeneous agents? Canonical example: The Krussel-Smith model (1998)
 - HANC with aggregate uncertainty (TFP shocks)
- Recursive formulation of household problem:

$$\begin{split} v(\boldsymbol{D}_{t}, \Gamma_{t}, z_{it}, a_{it-1}) &= \max_{a_{it}, c_{it}} u(c_{it}) + \beta \mathbb{E}_{t} \left[v(\boldsymbol{D}_{t+1}, \Gamma_{t+1}, z_{it+1}, a_{it}) \right] \\ \text{s.t.} \\ K_{t-1} &= \int a_{it-1} d\boldsymbol{D}_{t} \\ r_{t} &= \alpha \Gamma_{t} K_{t-1}^{\alpha - 1} - \delta \\ w_{t} &= (1 - \alpha) \Gamma_{t} K_{t-1}^{\alpha} \\ a_{it} + c_{it} &= (1 + r_{t}) a_{it-1} + w_{t} z_{it} \\ \log z_{it+1} &= \rho_{z} \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] = 1 \\ a_{it} &> 0, \end{split}$$

Example: Krussel-Smith

- What if we add heterogeneous agents? Canonical example: The Krussel-Smith model (1998)
 - HANC with aggregate uncertainty (TFP shocks)
- Recursive formulation of household problem:

$$\begin{split} v(\boldsymbol{D}_{t}, \Gamma_{t}, z_{it}, a_{it-1}) &= \max_{a_{it}, c_{it}} u(c_{it}) + \beta \mathbb{E}_{t} \left[v(\boldsymbol{D}_{t+1}, \Gamma_{t+1}, z_{it+1}, a_{it}) \right] \\ \text{s.t.} \\ K_{t-1} &= \int a_{it-1} d\boldsymbol{D}_{t} \\ r_{t} &= \alpha \Gamma_{t} K_{t-1}^{\alpha - 1} - \delta \\ w_{t} &= (1 - \alpha) \Gamma_{t} K_{t-1}^{\alpha} \\ a_{it} + c_{it} &= (1 + r_{t}) a_{it-1} + w_{t} z_{it} \\ \log z_{it+1} &= \rho_{z} \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] = 1 \\ a_{it} \geq 0, \end{split}$$

• D_t is a state variable \Rightarrow Massive state space

Comparisons

- State-space approach with linearization: Ahn et al. (2018);
 Bayer and Luetticke (2020); Bhandari et al. (2023); Bilal (2023)
 Con:
 - 1. Harder to implement
 - 2. Valuable to be able to interpret Jacobians

Pro:

- 1. Easier path to 2nd and higher order approximations
- **Global solution:** The distribution of households is a state variable for each household ⇒ *explosion in complexity*
 - 1. Original: Krusell and Smith (1997, 1998); Algan et al. (2014);
 - Deep learning: Fernández-Villaverde et al. (2021); Maliar et al. (2021); Han et al. (2021); Kase et al. (2022); Azinovic et al. (2022); Gu et al. (2023); Chen et al. (2023)
- Discrete aggregate risk: Lin and Peruffo (2023)

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
 - EX: If shock Z follows an AR(1) then $dZ_s = \rho^{s-t}\epsilon_{t-s}$

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$
- Linearized simulation:

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$
- Linearized simulation:
 - 1. Draw time series of innovations, $ilde{\epsilon}_t$

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
 - EX: If shock $m{Z}$ follows an AR(1) then $dm{Z}_s =
 ho^{s-t} \epsilon_{t-s}$
- Linearized simulation:
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, ...\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$

Linearized simulation:

- 1. Draw time series of innovations, $\tilde{\epsilon}_t$
- 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today
- 3. Calculate the time series of other aggregate variables as

$$d\tilde{\boldsymbol{X}}_t = \sum_{s=0}^{T-1} d\boldsymbol{X}_s \tilde{\boldsymbol{\epsilon}}_{t-s}$$

where dX_s is the IRF to a *unit-shock* after s periods (just needs jacobian of X w.r.t shocks Z)

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, ...\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$
- Linearized simulation:
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today
 - 3. Calculate the time series of other aggregate variables as

$$d\tilde{\boldsymbol{X}}_t = \sum_{s=0}^{T-1} d\boldsymbol{X}_s \tilde{\boldsymbol{\epsilon}}_{t-s}$$

where dX_s is the IRF to a *unit-shock* after s periods (just needs jacobian of X w.r.t shocks Z)

Intuition: Sum of first order effects from all previous shocks

• Generality: Prev. slide: Aggregate variables. What about micro level household variables?

- Generality: Prev. slide: Aggregate variables. What about micro level household variables?
- Full distribution:

- Generality: Prev. slide: Aggregate variables. What about micro level household variables?
- Full distribution:
 - 1. The IRF for grid point i_g in a policy function can be calculated as

$$da_{i_g,s}^* = \sum_{s'=s}^{T-1} \sum_{X^{hh} \in \mathbf{X}^{hh}} \frac{\partial a_{i_g}^*}{\partial X_{s'-s}^{hh}} dX_{s'}^{hh}.$$

where $\partial a_{ig}^*/\partial X_k^{hh}$ is the derivative to a k-period ahead shock to input X^{hh} (calculated in fake news algorithm)

- Generality: Prev. slide: Aggregate variables. What about micro level household variables?
- Full distribution:
 - 1. The IRF for grid point i_g in a policy function can be calculated as

$$da_{i_g,s}^* = \sum_{s'=s}^{T-1} \sum_{X^{hh} \in X^{hh}} \frac{\partial a_{i_g}^*}{\partial X_{s'-s}^{hh}} dX_{s'}^{hh}.$$

where $\partial a_{i_g}^*/\partial X_k^{hh}$ is the derivative to a k-period ahead shock to input X^{hh} (calculated in fake news algorithm)

2. The policy function can there be simulated as

$$\boldsymbol{a}_{i_g,t}^* = \sum_{s=0}^{T-1} da_{i_g,s}^* \tilde{\epsilon}_{t-s}$$

Generalized linearized simulation [advanced]

- Generality: Prev. slide: Aggregate variables. What about micro level household variables?
- Full distribution:
 - 1. The IRF for grid point i_g in a policy function can be calculated as

$$da_{i_g,s}^* = \sum_{s'=s}^{l-1} \sum_{X^{hh} \in X^{hh}} \frac{\partial a_{i_g}^*}{\partial X_{s'-s}^{hh}} dX_{s'}^{hh}.$$

where $\partial a_{i_g}^*/\partial X_k^{hh}$ is the derivative to a k-period ahead shock to input X^{hh} (calculated in fake news algorithm)

2. The policy function can there be simulated as

$$\boldsymbol{a}_{i_g,t}^* = \sum_{s=0}^{T-1} da_{i_g,s}^* \tilde{\epsilon}_{t-s}$$

3. Distribution can then be simulated forwards using standard method

Identical and independent distributed innovations:

$$\mathbb{E}\left[\epsilon_t^i \epsilon_{t'}^j\right] = \begin{cases} \sigma_i^2 & \text{if } t = t' \text{ and } i = j\\ 0 & \text{else} \end{cases}$$

Identical and independent distributed innovations:

$$\mathbb{E}\left[\epsilon_t^i \epsilon_{t'}^j\right] = \begin{cases} \sigma_i^2 & \text{if } t = t' \text{ and } i = j\\ 0 & \text{else} \end{cases}$$

• Calculating moments such as $var(dC_t)$ from the IRFs:

$$\operatorname{var}(dC_{t}) = \mathbb{E}\left[\left(\sum_{i \in \mathcal{Z}} \sum_{s=0}^{T-1} dC_{s}^{i} \epsilon_{t-s}^{i}\right)^{2}\right]$$

$$= \sum_{i \in \mathcal{Z}} \sum_{s=0}^{T-1} \mathbb{E}\left[\epsilon_{t-s}^{i} \epsilon_{t-s}^{i}\right] \left(dC_{s}^{i}\right)^{2}$$

$$= \sum_{i \in \mathcal{Z}} \sigma_{i}^{2} \sum_{s=0}^{T-1} \left(dC_{s}^{i}\right)^{2}$$

where dC_s^i is the IRF to a unit-shock to i after s periods and σ_i is the standard deviation of shock i

- Implications of prior slide:
 - Very easy to calculate business cycle moments

- Implications of prior slide:
 - Very easy to calculate business cycle moments
- Steps (variance of C) (1 shock):
 - 1. Formulate shock to e.g. public spending, $\{dG_t\}_{t=0}^T = d\mathbf{G}$ (could be an AR(1))
 - 2. Linearize and solve model to get IRF of $\{dC_t\}_{t=0}^T = d\mathbf{C}$ w.r.t $\{dG_t\}$
 - 3. Calculate variance $var(dC_t) = \sum_{s=0}^{T-1} (dC_s)^2$

- Implications of prior slide:
 - Very easy to calculate business cycle moments
- Steps (variance of C) (1 shock):
 - 1. Formulate shock to e.g. public spending, $\{dG_t\}_{t=0}^T = d\mathbf{G}$ (could be an AR(1))
 - 2. Linearize and solve model to get IRF of $\{dC_t\}_{t=0}^T = d\mathbf{C}$ w.r.t $\{dG_t\}$
 - 3. Calculate variance $var(dC_t) = \sum_{s=0}^{T-1} (dC_s)^2$
- Same principle with more shocks

Covariances:

$$\operatorname{cov}(dC_t, dY_{t+k}) = \sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i$$

Covariances:

$$cov(dC_t, dY_{t+k}) = \sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i$$

Covariance decomposition:

$$\frac{\text{contribution from one shock}}{\text{contributions from all shocks}} = \frac{\sigma_j^2 \sum_{s=0}^{T-1-k} dC_s^j dY_{s+k}^j}{\sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i}$$

Exercise

Exercise - NK model with government

- Familiarize yourself with the model equations in blocks.py. Do you understand all the equations?
- Compute the non-linear response to a temporary increase in government spending
 - 2.1 Use model.find_transition_path() for the non-linear response (results are in model.path)
 - 2.2 Use model.find_IRFs() for the linear response (results are in model.IRF)
- 3. Add a zero lower bound to the model:

$$i_t = \max\left\{i_{ss} + \phi \pi_t, 0\right\}$$

Compute linear and non-linear responses to a β -shock of size 0.05 and compare.

- 4. Assume that the government tries to stabilize the economy after the demand shock. Compute linear and non-linear responses to a simultaneous shock to β ($d\beta_0=0.05$) and G ($dG_0=0.03$).
- 5. Is stabilization policy more or less efficient once we take the ZLB into account? Hint: Compare the multipliers $\frac{dY^{\beta,G}-dY^{\beta}}{dG}$ for the linear and non-linear responses and compare.

MORE ON NEXT SLIDE

Exercise - NK model with government

6. Simulate a monetary policy shock of size 0.01. Calculate the variance of consumption using the analytical formula:

$$\operatorname{var}(dC) = \sum_{s=0}^{T-1} (dC_s)^2$$

Check that you get the same variance if you simulate a timeseries of consumption using model.simulate(skip_hh=True), and calculate the variance as:

$$\operatorname{var}(dC) = \frac{1}{N} \sum_{i=0}^{N} \left(dC_{i}^{sim} \right)^{2}$$

Hints: You can set the size of the shock for the IRFs using model.par.jump_eps_i, while the standard error of the shocks in the simulation is set using model.par.std_eps_i.

Make sure that the standard error of other shocks in the model are zero when you simulate. You can find the simulated series in model.sim.dC.

Summary

Summary and next week

Today:

- 1. The New Keynesian model
- 2. Aggregate risk and linearized dynamics (IRF and simulation)
- 3. Calculating aggregate moments (for calibration or estimation)
- Next week: HANK + Fiscal policy
- Homework:
 - 1. Work on exercise
 - 2. Skim-read Auclert et al. (2023),