WZMACNIACZ TRANZYSTOROWY

T. Fas

17 kwietnia 2018

STRESZCZENIE

W doświadczeniu badano własności tranzystora, wyznaczano jego punkt pracy oraz własności wzmacniacza o wspólnym emiterze. Otrzymane wartości były zgodne z przewidywaniami.

WSTEP

Tranzystor to element elektroniczny oparty o materiały półprzewodnikowe, który jest zdolny do wzmacniania sygnału. Schemat tranzystora bipolarnego przedstawiono na Rysunku 1.

Rysunek 1: Schemat tranzystora.

Rysunek 2: Zależność I_C od U_{CE} .

Zależność między prądem bazy I_B a prądem kolektora I_C dana jest wzorem:

$$I_C = \beta I_B. \tag{1}$$

Tak więc mały prąd bazy może zostać wielokrotnie wzmocniony, przy czym konieczne jest zastosowanie źródła energii, w tym przypadku w postaci napięcia U_{CE} . Przykładowe wzmocnienie prądu bazy w zależności od napięcia zasilającego U_{CE} przedstawiono na Rysunku 2. Jak widać, wzmocnienie to nie jest osiągane natychmiastowo. Ze względu na istnienie takiej zależności wprowadzono pojęcie punktu pracy, dla którego to tranzystor pracuje w optymalnych warunkach. Dla wzmacniacza o wspólnym emiterze, przedstawionego na Rysunku (4), punkt pracy definiuje się jako punkt, dla którego napięcie kolektor-emiter jest połową napięcia zasilającego. Osiąga się to poprzez odpowiedni opornik bocznikowy R_B .

Dla wzmacniacza o wspólnym emiterze stosunek napięcia wyjściowego U_{WY} do napięcia wejściowego U_{WE} jest kombinacją odpowiednio przeskalowanych transmitancji filtru kolejno górno- i dolno- przepustowego, czyli zależy od częstości ω sygnału wejściowego. Odpowiednie równania są następujące:

$$\left| \frac{U_{WY}}{U_{WE}} \right| = \frac{k\omega}{\sqrt{\omega^2 + \omega_{k1}^2}} \tag{2}$$

$$\left| \frac{U_{WY}}{U_{WE}} \right| = \frac{k\omega_{k2}}{\sqrt{\omega^2 + \omega_{k2}^2}} \tag{3}$$

Przy czym k jest współczynnikiem wzmocnienia, a ω_{k1} i ω_{k2} to wartości częstości, dla których wzmocnienie przyjmuje wartość $k/\sqrt{2}$.

W doświadczeniu wykorzystano układ przedstawiony na Rysunku 3 do zbadania zależności z Równania (1) oraz do wyznaczenia punktu pracy tranzystora, korzystając z zależności:

$$R_B = 2R_L \beta \left(\frac{\mathcal{E} - 0.65V}{\mathcal{E}} \right). \tag{4}$$

Z kolei układ z Rysunku 4 wykorzystano do wyznaczenia wartości R_B poprzez manipulację opornikiem R_{B1} oraz do wyznaczenia zależności napięcia wyjściowego od napięcia wejściowego, jak i zależności współczynnika wzmocnienia od częstości napięcia wejściowego.

UKŁAD DOŚWIADCZALNY

Rysunek 3: Schemat pierwszego obwodu [1].

Rysunek 4: Schemat drugiego obwodu [1].

W doświadczeniu wykorzystano układy z Rysunku 3 i Rysunku 4, tranzystor bipolarny NPN, miernik uniwersalny, oscyloskop, zasilacz oraz generator sygnałów. W przypadku układu z Rysunku 3 wykorzystano miernik uniwersalny do pomiarów natężenia prądu bazy I_B , a oscyloskop do pomiarów napięcia na oporniku R2. Dzięki temu można było poznać natężenie I_C dzieląc otrzymane napięcie przez wartość oporu R2. Generatorem prądu bazy był zasilacz prądu stałego.

W przypadku układu z Rysunku 4 do wejścia podłączono generator sygnałów, a wyjście podłączono do oscyloskopu. Dodatkowo połączono też bezpośrednio generator i oscyloskop. Aby wyznaczyć wartość oporu bocznikowego manipulowano wartością oporu opornika R_{B1} oraz mierzono napięcie na kolektorze miernikiem uniwersalnym. W przypadku pomiarów współczynnika wzmocnienia mierzono napięcie wyjściowe przy pomocy oscyloskopu.

WYNIKI POMIARÓW

Wyniki pomiarów zależności prądu kolektora od prądu bazy przedstawiono w Tabeli 1. W tabeli umieszczono też wartość oporu R2. Pomiarów dokonywano dla wejściowego sygnału piłokształtnego o amplitudzie $10~\rm V$ i częstotliwości $100~\rm Hz$, a pomiar napięcia zdejmowano w obszarze plateau zależności z Rysunku 2.

Tabela 1: Wyniki pomiarów: prąd bazy i kolektora.

$I_B [\mu A]$	U_C [mA]	$I_B [\mu A]$	$U_C [\mathrm{mA}]$	
5,965	20	22,953	100	
8,147	30	25,073	110	
10,168	40	27,319	120	
12,249	50	29,162	130	
14,539	60	31,438	140	
16,534	70	33,467	150	
18,741	80	36,187	160	
20,948	90	$R2 = 20 \Omega$		

W Tabeli 2 przedstawiono wartości napięcia wejściowego i wyjściowego dla układu z Rysunku 4 dla sygnału sinusoidalnego o częstości 1 kHz.

Tabela 2: Wyniki pomiarów: wzmocnienie sygnału wyjściowego; stała częstość.

U_{WE} [mV]	U_{WY} [V]	$U_{WE} [mV]$	U_{WY} [V]
51,6	4,36	10	0,88
61,2	5,16	27	2,24
72	6	36,6	3,08
82,1	6,72	46,8	3,96
92,2	7,5	56,8	4,76
102	8,21	66	5,56
112	8,63	76,4	6,32
122	8,91	87,1	7,16
42,2	3,52	96,3	7,84
31,3	2,66	107	8,53
21,8	1,8	117	8,83

Tabela 3: Wyniki pomiarów: wzmocnienie sygnału wyjściowego; zmienna częstość.

$U_{WE} [mV]$	U_{WY} [V]	$f = \omega/2\pi \text{ [Hz]}$	U_{WE} [mV]	U_{WY} [V]	$f = \omega/2\pi \text{ [Hz]}$
53,2	87	10	50,4	7680	8000
52,8	133	15	50	7680	10000
52,8	181	30	50	7730	20000
53,2	284	50	50	7680	30000
53,6	440	80	50	7630	50000
52,4	541	100	48,8	7580	80000
52,4	789	150	48,8	7480	100000
52	1530	300	48,4	7190	200000
52	3680	800	46,8	6840	300000
52	4360	1000	44,4	6100	500000
51,2	6280	2000	40,4	5110	800000
51,6	7040	3000	38	4460	1000000
50,8	7550	5000			

Tabela 3 przedstawia wartości napięcia wyjściowego w zależności od częstości sygnału wejściowego.

Manipulując wartością oporu R_{B1} udało się osiągnąć punkt pracy dla wartości oporu bocznikowego $R_B=630,5~\mathrm{k}\Omega.$

ANALIZA DANYCH

Korzystając z danych z Tabeli 1 wykonano wykres zależności prądu kolektora od prądu bazy. Wykres przedstawiono na Rysunku 5. Do wykresu dopasowano prostą postaci ax + b, gdzie $a = \beta$, a b jest przesunięciem wynikłym z przyjętych przybliżeń. Przyjęto niepewność 2% wartości I_C .

Otrzymano wartości: $\beta = 234, 4 \pm 1, 0$ i $b = -390 \pm 23 \mu A$.

Korzystając z tej wartości β oraz z wartości R_L =1,5 k Ω i $\mathcal{E}=10$ V otrzymujemy $R_B=657,52$ k Ω . Różnica wartości zmierzonej i obliczonej wynosi 27 k Ω , czyli około 4% wartości zmierzonej. Jest to różnica na tyle mała, że można uznać te wartości za zgodne ze sobą.

Na Rysunku 6 przedstawiono wykres dla wartości z Tabeli 2 wraz z krzywą najlepszego dopasowania postaci ax+b. Przyjęto niepewność 2% wartości U_{WY} . Otrzymane wartości to $a=82,14\pm0,51$ i $b=0,058\pm0,014$ V. Krzywa ta jest bardzo dobrze dopasowana w obszarze liniowego wzmocnienia.

Rysunek 7 przedstawia dane z Tabeli 3 w skali logarytmicznej wraz z odpowiednio przeskalowanymi o czynnik 2π wartościami częstości. Do tych danych dopasowano zależności z Równania (2) i Równania (3), przy czym punktem granicznym była wartość 30 kHz. Tak jak wcześniej przyjęto błąd 2%. Otrzymano następujące parametry dopasowania: $k_1=152, 1\pm 8, 4, \ \omega_{k1}=8600\pm 660\ 1/\mathrm{s}, \ k_2=152, 6\pm 0, 9$ i $\omega_{k2}=7400000\pm 240000$ 1/s. Parametry k są ze sobą zgodne na mocy testu 3σ .

Jeśli założyć, że na wejściu wzmacniacza istnieje filtr górnoprzepustowy o oporze R, pojemności $C_1=47~\mathrm{nF}$ i częstości krytycznej ω_{k1} , to opór wejściowy tego wzmacniacza wynosi $R=0,28~\Omega$.

Rysunek 5: Zależność $I_C(I_B)$.

Rysunek 6: Zależność $U_{WY}(U_{WE})$.

Rysunek 7: Zależność $U_{WY}(\omega)$.

DYSKUSJA WYNIKÓW I WNIOSKI

Tranzystor oraz wzmacniacz zachowywał się zgodnie z oczekiwaniami i do wszystkich zależności udało się dopasować krzywe teoretyczne. Otrzymane wartości współczynników wzmocnienia były właściwego rzędu wielkości, a wartości oporu bocznikowego, otrzymane dwoma różnymi metodami, były ze sobą zgodne. W skrócie: pomiary zostały zakończone sukcesem.

Literatura

[1] Praca zbiorowa, Instrukcja do ćwiczenia "Wzmacniacz tranzystorowy", FUW, Warszawa, 2016.