Introduction to Network Security

Segurança em Redes de Comunicações Mestrado em Cibersegurança Mestrado em Engenharia de Computadores e Telemática DETI-UA

Type of Attacks (1)

- Objectives:
 - Fun and/or hacking reputation
 - Political purposes
 - Military purposes
 - Economical purposes
 - Other?
- Technical objectives:
 - Operation disruption
 - For data interception
 - Both
 - Disruption to intercept!
 - Intercept to disrupt!

Type of Attacks (2)

- Technical objectives:
 - Operation disruption.
 - → (Distributed) Denial-of-Service.
 - Resources hijack.
 - → Spam,
 - Crypt-currency mining/masternodes,
 - Platform to other attacks!
 - Data interception/stealing.
 - Personal data
 - As final goal,
 - Or as tool to achieve more value information!
 - Technical data,
 - Usually used to achieve more value information!
 - Commercial data
 - Digital objects, financial and/or engineering plans, ...
- Disruption may be used to achieve interception!
- Interception may me used to achieve disruption (operational or commercial)!

Disruption Attacks

Distributed DoS

- Multiple slow/small devices generating traffic to a target
 - ◆TCP vs. UDP
- Purpose of disruption
 - →By political/economical/"reputation"
 - -Redirection to other service/location?
- Solution at target
 - -Load-balancers
 - →For TCP, maybe its possible to survive making active (with licit client validation) session resets (server/firewalls)
 - White list solution, for completed session negotiation
 - →For UDP/DNS, block requests for known external relay/redirection DNS servers (blocks attack amplification, IP target spoofing)
 - Doesn't work with large botnets and direct requests to target
- Solution at source
 - -Anomalous behaviors detection
 - Low traffic variations hard to detect
 - Time and periodicity changes are easier to detect
 - Destinations of traffic changes
 - With "really low" data rates is impossible to detect
- Denial o service by physical signal jamming
 - Pure disruption, or
 - Disruption to activate secondary channels (more easily compromised).
 - Solution
 - -Detect, localized source and physically neutralize.

Attacks Phases

Attacks are Done Incrementally

- Escalation of goals and privileges.
 - Public knowledge opens doors to private information and access to protected domains [Infiltration].
 - The first illicit access to a protect domain may not provide a relevant outcome.
 - Attacker must acquire more knowledge [Learning].
 - The additional knowledge allows to access other secure domain zones/devices/data with increasing relevance [Propagation].
 - → At any phase the attacker may require additional knowledge [Learning].
 - When a relevant outcome is acquired it must be transferred to outside of the protected domain [Exfiltration].
 - Direct exfiltration may denounce the relevant points inside of the secure domain.
 - → The relevant outcome must be first transferred inside the protected domain to a less important point [Aggregation].
 - Attacker chooses a point that may be detected and lost without harm.

Technical Network Vulnerabilities

- Applications
- Frameworks/API
- Protocols
- Operating systems
 - -Kernel, kernel modules, drivers, and base applications.
 - -Configurations!
- Low level code
 - → CPU microcode, firmware, and BIOS/UEFI.
- Hardware
 - Physical tempering
 - Physical emissions
 - →Electromagnetic emissions, sound, ...
 - Power instability, Electromagnetic Pulses (EMP), etc ...
- Known vs. unknown
 - CVE
 - IDS/IPS and antivirus databases

Common Vulnerabilities and Exposures

Traditional Defenses

Insert

- Vulnerability patching.
- Firewalls
 - Centralized.
 - Distributed.
- Intrusion Prevention and Detection Systems (IDS/IPS).

Antivirus.

• All rely on previous knowledge of the threat and/or problem!

A BENEFIT HER

Web Servers

"Intelligent" Defenses

- Detection of unknown threats and/or problems.
 - In time to deploy counter-measures.
- Application of Big Data and Data Science techniques to network ans systems monitoring data.
- Some traditional solutions start to incorporate AI into their equipment
 - E.g., Palo Alto Network Firewalls, Cisco Appliances, ...
- Still limited to manufacturer based solutions and localized data.
- Still limited in scope.
 - Obvious threats vs. Stealth threats.
- Optimal deployment requires an overall network and systems knowledge.
 - Network and Systems (Cyber) Situational Awareness.

Infiltration Phase

- Licit machines must be compromised to implement the different attacks phases.
 - Ideally in a privileged "zone" of the network, and/or
 - With access credentials, and/or
 - User credentials, address(es), hardware key, etc...
 - With "special" software, and/or
 - Target data.
- May include the installation of software or usage of licit vulnerable software.
- May be remotely controlled (constantly or not).
 - Command and control (C&C).
- May have autonomous (AI) bots installed to perform illicit actions.
 - When remote C&C is not possible or subject to easy detection.

Propagation Phase

- Done using a mixture of methodologies:
 - Credentials exploitation.
 - Direct usage or by using allowed applications.
 - Impersonating users and systems.
 - Similar to credential exploitation but more advanced based on acquired knowledge (licit behavior).
 - Requires time to learn and mimic licit behavior.
 - Time patterns, traffic patterns, application patterns, etc...
 - Vulnerability exploitation.
 - Inside a protected domain systems are many times considered in a secure zone.
 - Less maintained and legacy OS/applications may be required to run (no patching).
 - Broader range of vulnerabilities

Aggregation and Exfiltration Phase

- Data transferred from machine to machine.
- Internally [Aggregation] it can be done using existing channels.
- Externally [Exfiltration]
 - It can be done directly using existing channels.
 - → File copy, email, file sharing, etc...
 - Can be detected.
 - It can be done hiding information within existing/allowed channels and licit communications.
 - Slower data transfer, harder (impossible?) to detect.
 - Examples:
 - Usage of steganography in photos (via social networking).
 - Usage of embed data in text and voice messages.

– ...

Security Metrics/KPI

- Access management
 - How many users have administrative access, and how often is used.
 - Shared passwords between staff.
- Preparedness
 - Percentage of devices fully patched and up to date.
- Days to patch
 - Average time between patch availability and deployment.
- Unidentified devices
 - Illicitly deployed devices.
 - BYoD policy, legacy devices, unlisted devices, IoT devices, etc...
- Security devices average/maximum load per time period.
- Intrusion attempts
 - Amount of detected and undetected attempts (in real time or after off-line auditing).
- Cost per incident
 - Includes staff overtime, external support, investigation costs, employee productivity loss, loss of communication, service failure, etc...

- Mean Time Between Failures (MTBF)
 - Average time between failures (hardware and/or software).
 - General or per device/service.
- Mean Time to Recovery (MTTR)
 - Average time between failure and recovery (hardware and/or software).
- Mean Time to Detect (MTTD)
 - Average time between intrusion and detection.
- Mean Time to Acknowledge (MTTA)
 - Average time between detection and start of countermeasures deployment.
- Mean Time to Contain (MTTC)
 - Average time between start of countermeasures deployment and complete mitigation.
- Mean Time to Resolve (MTTR)
 - MTTA+MTTR