1

Graph Neural Network

Sang Yup Lee

- What is GNN?
 - It is a type of neural networks that can be applied to graph data.
- Then what is a graph (a.k.a., network)?
 - Something that is composed of nodes (or vertices) and ties (edges) between nodes.
 - A graph can be denoted as $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$, where $\mathcal{V} = \{v_1, \dots, v_N\}$ is a set of N = $|\mathcal{V}|$ nodes and $\mathcal{E} = \{e_1, \dots, e_M\}$ is a set of M edges.

Example graph

Graph

- 그래프의 예
 - 소셜 네트워크, 인터넷, 분자, 텍스트, 지역, 인용 네트워크 등
 - 타이의 종류 두 가지
 - 방향성이 없는 타이 (undirected tie)
 - 대칭적 타이 (symmetric tie) 라고도 함
 - 친구 관계, 연인 관계, 페이스북에서의 친구 관계 등
 - 방향성이 있는 타이 (directed tie)
 - 비대칭 (asymmetric) 타이라고도 함
 - 의사-환자, follower-followee 등

Graph

- 그래프의 종류
 - Undirected graph
 - Undirected ties로 구성된 그래프
 - 예) 친구 관계 네트워크
 - Directed graph
 - Directed ties로 구성된 그래프
 - 예) 인용 네트워크

- GNN 관련 주요 작업의 종류
 - Node level tasks
 - Node classification
 - 예) 소셜 네트워크에서 사람들의 정치 성향
 - Nodes clustering
 - Identifying influential nodes
 - Graph level task
 - Graph classification
 - 예) 문서 분류, 분자 분류 등
 - Edge level task
 - Edge prediction (link prediction)

- 파이썬을 이용한 그래프 분석 (network analysis 라고도 함)
 - NetworkX 모듈 사용
 - https://networkx.org/
 - 예제 그래프

Graph

- 파이썬을 이용한 그래프 분석
 - 예제 코드: graph_basics.ipynb
- Main procedure of graph analysis using NetworkX
 - 1) Prepare graph data
 - that is information about nodes and their ties
 - 2) Construct a graph representing the graph data using NetworkX
 - create an empty graph
 - add nodes to the graph
 - add edges to the graph
 - 3) Analysis
 - Do graph analysis using NetworkX
 - We usually do EDA with NetworkX
 - Or export network data to other programs and do some analysis

Graph Neural Networks

- GNN 작업의 주요 과정
 - 분석하고자 하는 그래프 데이터 준비
 - 무엇을 노드로 하고, 노드들 간의 연결을 어떻게 정의할 것인지에 대해서 생각해 보는 것이 필요
 - 분석 목적에 적합한 GNN 모형 적용, 학습
 - 예측 / Inference

- GNN 작업의 주요 과정의 예: 문서 분류
 - 주요 과정은 아래와 같음
 - 텍스트 데이터 수집 및 전처리
 - 분석 목적 (즉, 문서 분류)을 위해 텍스트 데이터를 어떠한 형태의 그래프로 / 어떻게 표현할 것인지를 결정하는 것 필요 (선행연구들을 참고할 수 있음)
 - 예) 하나의 문서를 하나의 그래프로 표현 => 단어가 노드가 되고 단어들 간의 연결 관계가 타이 정보가 됨 => 그래프 분류 문제
 - 전체 코퍼스를 하나의 그래프로 표현 => 단어와 문서가 각각의
 노드가 됨 => 노드 분류 문제
 - 데이터를 학습 데이터와 평가 데이터로 구분
 - 분석 목적과 데이터 특성에 적합한 GNN 알고리즘 선택 및 적용 GCN, GraphSAGE, GAT 등 많은 알고리즘 존재
 - 예측

- GNN 학습의 주요 목적
 - 학습을 통해 노드 또는 그래프의 특성을 잘 나타내는 embedding 벡터를 생성하는 것 ⇒ representation learning으로 간주 가능
 - Node level의 작업을 위해서는 작업과 관련된 node의 특성을 잘 반영하는 embedding vector를 생성하는 것이 중요
 - Graph level의 작업을 위해서는 그래프의 특성을 잘 반영하는 embedding vector를 생성하는 것이 중요
 - 그래프의 임베딩 벡터는 일반적으로 노드의 특성을 나타내는 임베딩 벡터 정보를 활용해서 만들어 짐 (예, 평균, LSTM 등)
 - 이를 위해서 일반적으로 GNN 모형은 크게 filtering 부분과 pooling 부분으로 구성

Filtering

- 노드의 임베딩 정보를 계산하기 위해서는 일반적으로 두 가지 정보를 사용
 - 노드의 특성 정보 (i.e., features)
 - 노드의 속성 정보라고도 함
 - 그래프의 구조 정보
 - 이는 일반적으로 노드들 간의 연결 정보를 의미
- 노드의 특성 정보와 그래프의 구조 정보를 이용해서 노드의 임베딩 벡터를 계산하는 과정은 아래와 같이 표현

$$\mathbf{F}^{(\text{of})} = h(\mathbf{A}, \mathbf{F}^{(\text{if})})$$

- A ∈ $\mathbb{R}^{N \times N}$ denotes the adjacency matrix of the graph with N nodes \Rightarrow graph structure $\square \square$
- $\mathbf{F}^{(\mathrm{if})} \in \mathbb{R}^{\mathrm{N} \times d_{\mathrm{if}}}$ and $\mathbf{F}^{(\mathrm{of})} \in \mathbb{R}^{\mathrm{N} \times d_{\mathrm{of}}}$ denote the input and output feature matrices where d_{if} and d_{of} are their dimensions, respectively

- Filtering (cont'd)
 - 이렇게 노드의 특성 정보와 구조 정보 (즉, 인접행렬)를 이용해서 특성 정보를 계산 또는 업데이트하는 과정을 graph filtering이라고 함
 - h() 가 그래프 필터가 되며, 그래프 필터에는 여러 가지 종류가 존재
 - 이러한 필터링 과정을 여러번 반복 (여러 개의 신경망 층을 적용한다고 생각할 수 있음)

- Node level 작업의 경우, 이러한 filtering 과정을 거쳐, 노드의 특성을 잘 나타내는 임베딩 벡터를 얻는 것으로 충분
- 하지만, graph level 작업의 경우는 추가적인 과정이 더 필요 ⇒ 풀링 과정

 $\mathbf{A} \in \{0, 1\}^{N \times N}, \mathbf{F}^{(if)} \in \mathbb{R}^{N \times d_{if}}$

 $\mathbf{A} \in \{0, 1\}^{N \times N}, \mathbf{F}^{(\text{of})} \in \mathbb{R}^{N \times d_{\text{of}}}$

Pooling

- Graph level 작업에서는 filtering을 거쳐 업데이트된 노드의 임베딩 정보를 통합해서 그래프의 특성을 나타내는 임베딩 정보를 계산하는 것이 필요 ⇒ pooling 과정이 필요
- Pooling 과정에서는 하나의 그래프에 대한 정보 (즉, 인접행렬과 노드의 피쳐 혹은 임베딩 정보)를 입력 받아, 노드의 수가 적은 그래프를 결과물로 출력 (이러한 그래프를 coarsened graph라고 표현)
- Pooling 과정의 결과물 ⇒ coarsened graph의 인접행렬과 노드 임베딩 벡터. 이는 아래와 같이 표현

$$\mathbf{A}^{(\text{op})}, \mathbf{F}^{(\text{op})} = \text{pool}(\mathbf{A}^{(\text{ip})}, \mathbf{F}^{(\text{ip})})$$

where $A^{(ip)}$, $F^{(ip)}$, $A^{(op)}$, $F^{(op)}$ are the adjacency matrices and feature matrices before and after the pooling operation, respectively.

- Pooling (cont'd)
 - 이를 그림으로 표현하면 아래와 같음

 $N_{\rm op}$ denotes the number of nodes in the coarsened graph and $N_{\rm op} < N_{\rm ip}$.

- 일반적인 GNN 모형의 구조
 - 여러 개의 filtering 부분과 pooling 부분으로 구성
 - Node level task
 - 여러 개의 filtering 사용 (No pooling required)
 - 하나의 filtering이 일반적으로 하나의 신경망 층을 의미하기 때문에 여러 개의 신경망 층을 사용한다는 것을 의미
 - Graph level task
 - Uses both graph filtering and graph pooling operations

- Node level 작업의 일반적 구조
 - 일반적으로 그래프 필터링 + 비선형 활성화 함수로 구성
 - downstream task에 적합한 노드 특성 정보 추출 (임베딩 생성)
 - downstream task를 위한 추가적인 층 사용

$$\mathbf{F}^{(i)} = h_i \left(\mathbf{A}, \alpha_{i-1} \left(\mathbf{F}^{(i-1)} \right) \right)$$

- $\mathbf{F}^{(i)}$ denotes the output of the ith graph filtering layer. $\mathbf{F}^{(i)} \in \mathbb{R}^{N \times di}$
- α_{i-1} () is the element-wise activation function following the (i-1)st graph filtering layer
- The final output $\mathbf{F}^{(L)}$ is leveraged as the input to some specific layers according to the downstream node-focused tasks.

- Graph level 작업의 일반적 구조
 - 일반적으로 filtering layer + activation + (graph) pooling layer로 구성
 - The graph pooling layer is utilized to summarize the node features and generate higher-level features that can capture the information of the entire graph.
 - Typically, a graph pooling layer follows a series of graph filtering and activation layers.
 - A coarsened graph with more abstract and higher-level node features is generated after the graph pooling layer.

- Graph level 작업의 일반적 구조 (cont'd)
 - 아래와 같은 block 여러 개 사용

The input of the block is the adjacency matrix $A^{(ib)}$ and the features $F^{(ib)}$ of a graph $G^{ib} = \{V^{ib}, E^{ib}\}$ and the output are the newly generated adjacency matrix $A^{(ob)}$ and the features $F^{(ob)}$ for the coarsened graph $G^{ob} = \{V^{ob}, E^{ob}\}$

<A block in GNN for graph level tasks>

- GNN block의 또 다른 예시
 - sampling operation과 skip connection이 포함된 경우

12/11/23

- Filtering의 예
 - Example graph

■ Graph-level task
$$X = \frac{1}{8} \sum_{i=0}^{7} x_i$$
?

- Filtering의 예
 - 이미지에서의 convolutional filter

- Filtering 의 예
 - Graph convolutions (1-hop nodes)

- Filtering 의 예
 - Graph convolutions (2-hop nodes)

■ Filtering 의 예

$$P = w_0 I + w_1 A + w_2 A^2 + \dots + w_n A^n$$
$$x' = Px$$

- Python libraries
 - PyTorch Geometric
 - Deep Graph Library (DGL)
 - Spektral
- Python code
 - Graph_classification_example.ipynb