CS109/Stat121/AC209/E-109 Data Science Bias and Sampling

Hanspeter Pfister & Joe Blitzstein pfister@seas.harvard.edu / blitzstein@stat.harvard.edu

This Week

- HWI due tonight at 11:59 pm
- HW2 will be posted by tonight start soon!
- Friday lab 10-11:30 am in MD G115
 - Pandas with Rahul, Brandon, and Steffen

Some Forms of Bias

selection bias
publication bias (file drawer problem)
censoring bias
length bias
sampling bias

Longevity Study

Profession	Average Longevity
chocolate maker	73.6
professors	66.6
clocksmiths	55.3
locksmiths	47.2
students	20.2

Sources: Lombard (1835), Wainer (1999), Stigler (2002)

Figure 2: Brand Keyword Click Substitution

MSN and Google click traffic is shown for two events where paid search was suspended (Left) and suspended and resumed (Right).

result from Blake-Nosko-Tadelis (2013) http://conference.nber.org/confer/2013/EoDs13/Tadelis.pdf

(Challenger Disaster)

Temperature 'F

Wainer (2000), Visual Revelations

Why sample from a population?

- often the only feasible option
- but it's useful to think about the question:
 What would you do if you had all the data?
- also often important for computational reasons

There are many sampling schemes...

simple random sampling

stratified sampling

cluster sampling

snowball sampling

Absolute vs. relative

In simple random sampling, which matters more: the relative sample size, or the absolute sample size?

For example, how much bigger a sample should you collect in China vs. in the US, to get the same standard error?

Snowball Sampling (Link-Tracing)

Bias of an Estimator

The bias of an estimator is how far off it is on average:

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

So why not just subtract off the bias?

Bias-Variance Tradeoff

one form:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + bias^2(\hat{\theta})$$

often a little bit of bias can make it possible to have much lower MSE

http://scott.fortmann-roe.com/docs/BiasVariance.html

Unbiased Estimation: Poisson Example

$$X \sim \text{Pois}(\lambda)$$

Goal: estimate $e^{-2\lambda}$

 $(-1)^X$ is the best (and only) unbiased estimator of $e^{-2\lambda}$

sensible?

Basu's Elephant

Estimate the total weight of 50 elephants.

Horvitz-Thompson Estimator

Estimate the total of some variable for a finite population:

$$\hat{T}_y = \sum_{i \in S} \frac{y_i}{\pi_i}$$

where S is the sample and $\pi_i > 0$ is the probability of i being in the sample

Unbiased! But what about the variance?

Fisher Weighting

How should we combine independent, unbiased estimators for a parameter into one estimator?

$$\hat{\theta} = \sum_{i=1}^{k} w_i \hat{\theta}_i$$

The weights should sum to I, but how should they be chosen?

$$w_i \propto \frac{1}{\operatorname{Var}(\hat{\theta}_i)}$$

(Inversely proportional to variance; why not SD?)