$x = a_1 cos(o_1) + a_1 cos(o_1 + o_2)$ $y = a_1 sin(o_1) + a_1 sin(o_1 + o_2)$

se ty = ay + an + 2ay an coscon)

 $O_1 = Y - \beta$ $Y = tan^{\dagger}(4)$

tan (B) 2 an Sinon ay + an los on

DH Parameters.

4	Ynk.	Link length (ai)	ling offset(di)	Ynk Twist(xi)	Joint Angle (ai)
	2	0.025m	0	180	02
	3	0	0	dg = 0	03
	4	0	O	dy	0

last column of its represents a sign origin of (4) west (0)

 $y = a_1 \cos(a_1) + a_2 \cos(a_1 + a_2)$ $y = a_1 \sin(a_1) + a_2 \sin(a_1 + a_2)$ $z = a_1 - a_1 - a_2$

z = 1.5 - dy $x^2 + y^2 = a_1^2 + a_1^2 + 2a_1a_2 \cos(o_2)$

On = + Cust [22+yr-ai-ai] (To resolve ambiguity)

O3 =0 V t ≥0 (given)

Indexing of matles array into simulink is done using this formula.

ind = 14 sound (+ #100), + + 400

to is a discrete variable. it takes values b/w 0 = t = 20 with step size of 0.001

Logic: t = 2 x 10⁻³
Interpolated array (0-2008)

Sound(tx(ex) = 2//10 1 + sound (tx(ex) = 1+ x/10

Similar logic can be defined for t_step_size = 10^(-4). Run Parameters.m first to load all the model parameter in workspace. Then, run the model.slx to simulate dynamics and at last show_trajectory.m to see plot.