Computing lattice constant, bulk modulus and equilibrium energies of bulk cubic SrTiO₃

James Sifuna George Manyali George Amolo

Information required to run a first-principles simulation

The most convenient thermodynamic potential in first-principles theoretical analysis is the total energy $E(N,\Omega,S)$ at ${\bf T}$ = 0

It is straightforward to carry out electronic structure calculations at fixed $|\Omega|$

First test: determine theoretical predictions for $|\Omega_0|$ and |B| for the known zero-pressure crystal structure

Definition of some fundamental quantities

Energy

$$E(N,\Omega,S)$$

Pressure

$$P = -\frac{dE}{d\Omega}$$

Bulk modulus

$$B = -\Omega \frac{dP}{d\Omega} = \Omega \frac{d^2E}{d\Omega^2}$$

Why Ω_0 and B:

- Can be measured with great accuracy.
- Can be extrapolated at T = 0

Ω_0 and B can be measured with great accuracy and extrapolated at $T=\mathbf{0}$

Ω_0 and B can be measured with great accuracy and extrapolated at $T=\mathbf{0}$

H (d) 0.002 500		After data a	K. C	Sschi rom l	neidnei F. Bircl	, Jr.,	Soli Hand	k modu tempe id State dbook	eratu e Ph of ph	ire lysics hysic	s 16, 2	275-	126 (1964 eolo	i); se	everal Soci-								He to 0.00 1168
Li 0.116 8.62	Be 1.003 0.997	consul theses	ted are bra	whe esti acke	n value mates. ts refer	Lette to the	e nee ers in he te	07–173 eded for parentempera K; [c] =	r res	searc ses r	h pur efer to	pose:	s. Va	lues tal f	in p	paren-	B 1.7 0.5		.43 .226	N (e) 0.01:			F	Ne td 0.010
Na 0.068 14.7	Mg 0.354 2.82				Bulk mo	odulus	s in u	units 10	12 dy	n/cm	or 10	11. N/r	n²				AI 0.7 1.3		.988	Р (b) 0.30 3.29	4 0.	(r) 178 62	CI	Ar (a) 0.013 79.
K 0.032 31.	Ca 0.152 6.58	Sc 0.435 2.30		051 951	V 1.619 0.618		01	Mn 0.596 1.68	COLUMN TO SERVICE AND ADDRESS OF THE PARTY O	583	Co 1.914 0.522		86	Cu 1.3 0.7	7	Zn 0.598 1.67	Ga 0.5 1.7	69 0	ie .772 .29	As 0.394 2.54	Committee of the Committee of the	091	Br	Kr (a) 0.018
Rb 0.031 32.	Sr 0.116 8.62	Y 0.366 2.73	Zr 0.8 1.2	333	Nb 1.702 0.587	Mo 2.7: 0.3	25	Tc (2.97) (0.34)		208	Rh 2.704 0.369		808 553	Ag 1.0	07	Cd 0.467 2.14	in 0.4 2.4	11 1	in (g) .11 .901	Sb 0.383 2.61		230	ı	'Xe
Cs 0.020 50.	Ba 0.103 9.97	La 0.243 4.12	Hf 1.0 0.9	9	Ta 2.00 0.50	W 3.23 0.30	32	Re 3.72 0.269		18)	Ir 3.55 0.282		783 359	Au 1:.7: 0.5		Hg (c) 0.382 2.60	TI 0.3 2.7		b .430 .33	Bi 0.315 3.17	Po (0.	26)	At	Rn
Fr (0.020) (50.)	Ra (0.132 (7.6)	Ac (0.25) (4.)		Ce 0.2: 4.1:	39 0.	306	Nd 0.32 3.00	27 (0.	35)	Sm 0.2 3.4	94 0	u .147 .80	Gd 0.3 2.6	83	Tb 0.3 2.5		384	Ho 0.397 2.52	Er 0.4	11 0	m .397	Yb 0.1	33 0	u 0.411 2.43
				Th 0.54	PERSONAL PROPERTY.	76)	U 0.98	efficiency and property	68)	Pu 0.5-	4	m	Cm	.	Bk			Es	Fm		/ld	No		r

Ch. Kittel, Introduction to Solid State Physics, Eighth Edition, J. Wiley & sons (2005)

Bulk SrTiO₃: a perovskite oxide that at high temperatures crystallizes in the simple cubic structure

Go to the directory where the exercise on the structure of Si is stored Inspect the input file, SrTiO₃.fdf

SystemName Bulk SrTiO3 Centrosymmetric paraelectric configuration LDA-CA 400 Ry 6 x 6 x 6; 0.5 0.5 0.5 MP mesh SystemLabel SrTi03 NumberOfAtoms NumberOfSpecies %block ChemicalSpeciesLabel 1 38 Sr 22 Тi %endblock ChemicalSpeciesLabel LatticeConstant 3.70 Ang %block LatticeVectors 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 %endblock LatticeVectors Fractional AtomicCoordinatesFormat %block AtomicCoordinatesAndAtomicSpecies 0.00000000 0.00000000 0.00000000 1 87.62 Sr0.50000000 0.50000000 0.50000000 2 47.867 Τi 0.50000000 0.50000000 0.00000000 3 15.9994 0.50000000 0.00000000 0.50000000 3 15.9994 0.00000000 0.50000000 0.50000000 3 15.9994 %endblock AtomicCoordinatesAndAtomicSpecies

%block kgrid_Monkhorst_Pack

0.5

0 6 0 0.5 0 0 6 0.5 %endblock kgrid_Monkhorst_Pack More information at the Siesta web page http://www.icmab.es/siesta and follow the link Documentations, Manual

The theoretical lattice constant of SrTiO₃ for this first example

Cubic SrTiO₃ structure:

Simple cubic lattice A

+ a basis of five atoms

Sampling in k in the first Brillouin zone to achieve self-consistency

Procedure to compute the equilibrium volume and bulk modulus

Step 1: Given a structure, compute the energy E for several values of the volume Ω

Run the code,

The name of the output file is free, but since we are running bulk SrTiO₃ with this lattice constant, this seems very sensible...

For this particular example, run from 3.70 Å up to 4.05 Å in steps of 0.05 Å.

Save each output file in a different file

Save in a file the data needed to plot the energy versus volume curve

grep "Total =" SrTiO₃.*.out > SrTiO₃.evslc.dat

Procedure to compute the equilibrium volume and bulk modulus

Step 1: Given a structure, compute the energy E for several values of the volume Ω

Edit the SrTiO₃.evslc.dat file and leave only two columns:

cubic	
3.70	-3738.617262
3.75	-3739.029827
3.80	-3739.282341
3.85	-3739.395325
3.90	-3739.396974
3.95	-3739.295355
4.00	-3739.088046
4.05	-3738.806515

Add a first line with the kind of lattice (cubic, bcc, fcc, diamond...)

Energy of the unit cell (in eV)

Procedure to compute the equilibrium volume and bulk modulus

Step 2: Fit to an analytic form, e. g., the Murnaghan equation of state

$$E(\Omega) = E_0 + \frac{B_0 \Omega}{B_0'} \left[\frac{\left(\frac{\Omega_0}{\Omega}\right)^{B_0'}}{B_0' - 1} + 1 \right] - \frac{\Omega_0 B_0}{B_0' - 1} \quad \text{F. D. Murnaghan,} \quad \text{Proc. Nat. Acad. Sci. USA, 30, 244 (1944)}$$

 B_0 bulk modulus at the equilibrium volume

 B_0' pressure derivative of the bulk modulus at the equilibrium volume

To do this, we have prepared an script in python python fit_results.py SrTiO₃.evslc.dat

 E_0 total energy at the minimum

Procedure to compute the equilibrium volume and bulk modulus

Step 2: Fit to an analytic form, e. g., the Murnaghan equation of state

$$E(\Omega) = E_0 + \frac{B_0 \Omega}{B_0'} \begin{bmatrix} \left(\frac{\Omega_0}{\Omega}\right)^{B_0'} \\ B_0' - 1 \end{bmatrix} - \frac{\Omega_0 B_0}{B_0' - 1}$$
 F. D. Murnaghan, Proc. Nat. Acad. Sci. USA, 30, 244 (1944)

 $|B_0|$ bulk modulus at the equilibrium volume

 B_0' pressure derivative of the bulk modulus at the equilibrium volume

 $|E_0|$ total energy at the minimum

Comparison of predicted equilibrium properties with experimental values are routine tests for calculations

	First-Princip	les Studies of F	erroelectric Oxides	125

Pinet Daineinlan Ctudina of Forma alastria Onidas

Table 2. Experimental and theoretical lattice constants (in \mathring{A}) of the cubic perovskite structure of various ABO₃ compounds

Compound	Experiment	Theory	Method	Reference				
I–V compou	ınds							
KNbO ₃	4.016	$3.956 (\pm 0.003)$	DFT (LDA)	[32, 35, 36, 38]				
		$4.028 \ (\pm 0.010)$	DFT (GGA)	[35, 38]				
		4.011	DFT (WDA)	[38]				
NaNbO ₃	3.937	3.914	DFT (LDA)	[32, 36]				
$KTaO_3$	3.983	$3.938 (\pm 0.018)$	DFT (LDA)	[35, 38, 115]				
		$4.033 (\pm 0.002)$	DFT (GGA)	[35, 38]				
		3.972	DFT (WDA)	[38]				
II–IV comp	ounds							
CaTiO ₃	3.836	$3.809 (\pm 0.003)$	DFT (LDA)	[32, 36]				
SrTiO ₃	3.905	$3.862 (\pm 0.012)$	DFT (LDA)	[32, 35, 36, 38, 40, 41]				
		$3.941 (\pm 0.007)$	DFT (GGA)	[35, 38, 40]				
		3.917	DFT (WDA)	[38]				
		3.94	B3LYP	[40]				
		3.92	HF	[40]				
$BaTiO_3$	4.000	$3.947 (\pm 0.013)$	DFT (LDA)	[28, 32, 35–38, 40, 41]				
anacoust districtly To		$4.028 (\pm 0.005)$	DFT (GGA)	[35, 38, 40, 41]				
		4.009	DFT (WDA)	[38]				
		4.04	B3LYP	[40]				
		4.01	HF	[40]				
$CdTiO_3$	3.800	3.805	DFT (LDA)	[116]				
$PbTiO_3$	3.969	$3.888 (\pm 0.005)$	DFT (LDA)	[29, 32, 36, 38, 97]				
		$3.965 (\pm 0.005)$	DFT (GGA)	[38, 40]				
		3.933	DFT (GGA')	[42]				
		3.941	DFT (WDA)	[38]				
		3.96	B3LYP	[40]				
		3.94	HF	[40]				
$PbZrO_3$	4.133	$4.115 (\pm 0.008)$	DFT (LDA)	[32, 36, 89, 117]				
BaZrO ₃	4.193	$4.152 (\pm 0.004)$	DFT (LDA)	[32, 36, 118]				
		4.207	DFT (GGA)	[119]				
$SrZrO_3$	4.101	4.17	DFT (GGA)	[119]				
$SrHfO_3$	4.069	4.069	DFT (LDA)	[120]				
PbVO ₃			DFT (LDA)	[121, 122]				
III–III comp	oounds							
BiGaO ₃	-	3.83	DFT (LDA)	[123]				
BiAlO ₃	-	3.75	DFT (LDA)	[123]				
$BiScO_3$		3.99	DFT (LDA)	[124]				
$YScO_3$	-	3.92	DFT (LDA)	[124]				

Ph. Ghosez and K. M. Rabe,
First-Principles Studies of Ferroelectric Oxides
In
Physics of Ferroelectrics
A Modern Perspective
Springer (Berlin 2007)