

Kiesha Prem

Saw Swee Hock School of Public Health, National University of Singapore

TM-CM02

Saw Swee Hock School of Public Health

Biostatistics for Public Health

J^{*} 2 assignments

Data prep, descriptive & inferential statistics, linear regression

Logistic regression

Data prep, descriptive & inferential statistics, logistics regression

Hypothesis testing

Inferential statistics

TM-CM02

Saw Swee Hock School of Public Health

Biostatistics for Public Health

- g quizzes
- J^{*} 2 assignments

Logistic regression

Data prep, descriptive & inferential statistics, logistics regression

Hypothesis testing

Inferential statistics

Today

The class will start with lectures at 9 am (There is a quiz next week!)

Lectures will end at around ~10 am

15-min Snack/bio break

Practicals will end at around ~1130 am

Number of trials or attempts at learning

Categorical data analysis (part 1 and 2)

By the end of the session, you will:

- Understand the basics of categorical data and its relevance in public health.
- > Perform descriptive analyses and visualise categorical data effectively.
- Apply statistical tests to assess relationships between categorical variables.
- > Compute and interpret measures of association and confidence intervals.
- (Next week) Build and interpret logistic regression models in public health contexts.

A categorical variable has a measurement scale consisting of a set of categories.

What is categorical data?

A categorical variable has a measurement scale consisting of a set of categories.

In social sciences,

• to measure opinions and attitudes.

A categorical variable has a measurement scale consisting of a set of categories.

In social sciences,

to measure opinions and attitudes.

In health sciences,

- to classify the severity of a burn (first degree, second degree,...).
- to categorise the smoking status of individuals in the study (non-smoker, former smoker, current smoker).

Skin Burns

NORMAL SKIN

FIRST DEGREE BURN

SECOND DEGREE BURN

THIRD DEGREE BURN

Nominal Variables

Categories with no intrinsic order

Sex: Male or Female

• Favourite type of music: Rock, Classical, Jazz,...

The statistical analyses on nominal variables should not depend on

any ordering.

Ordinal Variables

Categorical variables with ordered scales.

- Response to a medical treatment: excellent, good, fair and poor
- An excellent response is clearly better than a fair one.

The statistical analyses designed for nominal variables can be used with nominal or ordinal variables.

The statistical analyses designed for ordinal variables cannot be used with nominal variables.

Nominal vs Ordinal

Which one of these are categorical variables?

National University of Singapore	Saw Swee Hock School of Public Health
----------------------------------	--

	Α	В	С	D	Е	F	G	Н
1	id	age	gender	bmi	ethnicity	smoke	cvd	ldl
2	1	72	Female	23.9	Indians	Never-Smoker	0	3.49
3	2	73	Female	26.2	Chinese	Never-Smoker	0	3.55
4	3	67	Female	19.9	Malays	Never-Smoker	0	3.15
5	4	65	Female	27.8	Indians	Never-Smoker	0	2.97
6	5	72	Male	22.0	Indians	Daily smoker	0	3.90
7	6	55	Female	20.9	Indians	Never-Smoker	0	2.29
8	7	72	Female	21.8	Malays	Daily smoker	1	3.92
9	8	66	Female	28.3	Malays	Never-Smoker	0	3.06
10	9	66	Male	27.5	Malays	Never-Smoker	0	3.06
11	10	62	Female	21.9	Chinese	Occasional smoker	0	3.14
12	11	67	Male	20.9	Malays	Never-Smoker	0	3.14
13	12	81	Female	11.6	Indians	Occasional smoker	0	4.51
14	13	71	Female	34.2	Malays	Never-Smoker	0	3.39
15	14	72	Male	22.5	Indians	Never-Smoker	0	3.46
16	15	63	Male	23.8	Malays	Never-Smoker	0	2.82

Which one of these are categorical variables?

	Α	В	С	D	Е	F	G	н
1	id	age	gender	bmi	ethnicity	smoke	cvd	ldl
2	1	72	Female	23.9	Indians	Never-Smoker	0	3.49
3	2	73	Female	26.2	Chinese	Never-Smoker	0	3.55
4	3	67	Female	19.9	Malays	Never-Smoker	0	3.15
5	4	65	Female	27.8	Indians	Never-Smoker	0	2.97
6	5	72	Male	22.0	Indians	Daily smoker	0	3.90
7	6	55	Female	20.9	Indians	Never-Smoker	0	2.29
8	7	72	Female	21.8	Malays	Daily smoker	1	3.92
9	8	66	Female	28.3	Malays	Never-Smoker	0	3.06
10	9	66	Male	27.5	Malays	Never-Smoker	0	3.06
11	10	62	Female	21.9	Chinese	Occasional smoker	0	3.14
12	11	67	Male	20.9	Malays	Never-Smoker	0	3.14
13	12	81	Female	11.6	Indians	Occasional smoker	0	4.51
14	13	71	Female	34.2	Malays	Never-Smoker	0	3.39
15	14	72	Male	22.5	Indians	Never-Smoker	0	3.46
16	15	63	Male	23.8	Malays	Never-Smoker	0	2.82

Which one of these are categorical variables?

National University of Singapore Saw Swee Hock School of Public

Ordinal variable

Nominal variable

Using tables

Table: Alcohol consumption of 2000 Singapore residents aged 18 to 69 years

Alcohol	Non-	Occasional	Frequent	Regular
Consumption	drinker	Drinker	Drinker	Drinker
n	1078	718	152	52

Data for a single categorical variable can summarised by counting the number of observations in each category.

Using tables

Table: Alcohol consumption of 2000 Singapore residents aged 18 to 69 years

Alcohol	Non-	Occasional	Frequent	Regular	
Consumption	drinker	Drinker	Drinker	Drinker	
n	1078	718	152	52	_

Each cell represents the number of participants in each category

Data for a single categorical variable can summarised by counting the number of observations in each category.

Using bar chart

Visualise the data on a bar chart.

Just eat pies...

Don't make them into charts

2 × 2 Contingency Tables

Use a contingency table to study the relationship between two categorical variables

- Cross-tabulation

Cells can display counts, percentages or proportions.

- For an $I \times J$ contingency table
 - X has I categories with I rows for each category of X
 - Y has J categories with J columns for each category of Y
 - 1J possible combinations of outcomes

Basic Contingency Table Example

Favorite Flavor	Boys		Girls	
Vanilla	8	32%	9	26%
Chocolate	10	40%	6	17%
Strawberry	5	20%	14	40%
Mint Chip	2	8%	6	17%
Total	25	100%	35	100%

Thank you