Shallow-Depth Insertion:

Peg in Shallow Hole through Robotic In-Hand Manipulation

The Hong Kong University of Science and Technology Chung Hee Kim & Jungwon Seo

Motivation

Conventional Peg-in-Hole

Shallow-Depth Insertion

Objective:

Assembly of thin peg-like object into hole with shallow depth that necessitates dexterous in-hand manipulation.

Application:

Our Approach

Manipulation Primitives

Force-Closure Grasps

Goal

Grasp Analysis

Moment Labeling

Contact A & B:

Friction cones represented by two unit wrenches per contact.

Contact G:

Two unit wrenches as two contact normal.

The object can be in *force-closure* with all the contact wrenches.

Grasp stability guaranteed.

Implementation

Scan the QR code to watch a video.

UR10 Robot Arm Force-Torque Sensor • Parallel-Jaw Gripper Webcam Hole ● **Thin Object AprilTag**

Scenarios

Result

Success Rate: 96% (154 successful attempts out of 160 trials)

Average Regrasp Time:

Fastest Regrasp Time: