Cryptography 2/3

Reagan Shirk February 3, 2020

Class Ring - Multiplication

- $(\frac{\mathbb{Z}}{m\mathbb{Z}},+,\times)$ For the multiplication, you want to focus on the units
- $\left(\frac{\mathbb{Z}}{m\mathbb{Z}}^*\right)$: Units $-\left\{a \mid \gcd(a,m)=1\right\}$ $-\left|\left(\frac{\mathbb{Z}}{m\mathbb{Z}}^*\right)\right|=\varnothing(m)$ There are things you can say about the order
- - If $q^x = 1$ then $\operatorname{ord}(q)|x$
 - -x can be order x, or a multiple of ...? itself probably?
 - Proving is easy:
 - * Assume that $\operatorname{ord}(g) \nmid x$, then $x = q \operatorname{ord}(g) + r$ where r is the remainder between 0 and $\operatorname{ord}(g)$
 - * This gives a contradiction because $q^r = q^{x-gord(g)} = 1$
 - * This is a contradiction because $\operatorname{ord}(g)$ is supposed to be the smallest possible number but we
 - found a number smaller than $\operatorname{ord}(g)$ * Important equation: $\operatorname{ord}(g^n) = \frac{\operatorname{ord}(g)}{\gcd(n,\operatorname{ord}(g))}$
 - * Proof:

$$\frac{\operatorname{ord}(g)}{\gcd(n,\operatorname{ord}(g))} \mid \operatorname{ord}(g^n)$$

$$\iff \operatorname{ord}(g) \mid \operatorname{ord}(g^n)\gcd(n,\operatorname{ord}(g))$$
We know $(g^n)^{\operatorname{ord}(g^n)} = 1$

$$\iff \operatorname{ord}(g) \mid \operatorname{nord}(g^n)$$

He lost me, sorry

I'll look up the proof later

Fermat's Little Theorem

- If p is a prime number and gcd(a, p) = 1, then $a^{p-1} = 1 \pmod{p}$
- $p-1=\left|\frac{\mathbb{Z}}{p\mathbb{Z}}^*\right|$
- What is the application?
 - Very very important application is proving that 15 (or just any small number) is a composite
 - * Method 1: $15 = 3 \times 5 \rightarrow$ okay for this example but would be bad for a super big number
 - * Method 2: Use Fermat's Little Theorem
 - · If $2^{14} \neq 1 \pmod{15}$, then 15 is composite

Repeated Squaring Algorithm

- Take 2¹⁴
 - 14 is even, so we can say $2^{14}=2^{2\times7}~4^7$

- $\begin{array}{l} -\ 7 \ \text{is odd, so we can say} \ 2^{14} = 2^{2\times7} \ 4^7 = 4^{2\times3+1} = 4\times4^{2\times3} \\ -\ \text{We can continue the process:} \ 2^{14} = 2^{2\times7} \ 4^7 = 4^{2\times3+1} = 4\times4^{2\times3} = 4\times16^3 \equiv 4\times1 \ (\text{mod } 15) = 4 \end{array}$