Statistical Data Analysis

ASSIGNMENT 1

Fall 2020

Instructor: Dr. Mainak Thakur

Table of contents

Title

•	Pro	cedure for generating custom PMF and PDF (without library functions)	3
•	Pro	cedure for generating samples from distributions (without library functions)	4
•	Disc	crete Distributions	
	0	Binomial	5
	0	Geometric	11
	0	Poisson	17
	0	Negative Binomial	23
	0	Discrete Uniform	29
•	Con	ntinuous Distributions	
	0	Normal	35
	0	Exponential	41
	0	Beta	47
	0	Gamma	53
	0	Lognormal	59

Page no.

Procedure for generating custom PMF and PDF (without library functions)

- For generating the PMF or PDF of distributions, we just wrote a function (that executes PDF or PMF formula) that takes in value of x and gives the corresponding PDF or PMF value depending upon the distribution
- For example:
 - Let us take Poisson Distribution
 - The formula of poisson distribution is:

$$f(k; \lambda) = Pr(X = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

• We simply wrote a function that outputs Poisson PMF value of x when x is given, the code snippet is below:

```
def my_poisson_function(x,lambda_value):
    return (np.power(lambda_value,x,dtype=np.float64)*(np.exp(-lambda_value)))/(scipy.special.factorial(x))|
```

Procedure for generating samples from distributions (without library functions)

- Once we are able to generate PMFs or PDFs the next thing to do is to drawing the samples from the distribution.
- We wrote a function to generate samples given a distribution, It takes the range of values Xo and X1 between which we wish to sample, no of samples we want, and the distribution PMFs or PDFs as input.
 - \circ First we sample a random value \mathbf{x} (using uniform distribution) between \mathbf{Xo} and $\mathbf{X1}$ and find the **probability of x**.
 - Then we compare its probability to random value sampled between 0 and 1(uniform distribution between 0 and 1)
 - o If probability of x > random uniform sampling between 0 and 1, then we keep <math>x in the sample otherwise we don't
 - We keep on doing this until we get required no of samples.
 - In this way, we draw samples from a any distribution (without using library functions)

Note: we only used code snippet once in previous slide to explain how we are generating PMFs and PDFs

Binomial Distribution

The PMF(Probability Mass Function) of Binomial distribution is as follows:

$$f(k,n,p)=\Pr(k;n,p)=\Pr(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

- Here n, p are the parameters. The mean and variance of the distribution depends on these parameters
- The formula for calculating mean and variance of the distributions are as follows:
 - Mean: np
 - Variance: np(1-p)

Plots of Binomial distribution for various values of n, p (1)

Graph of PMF

- Theoretical mean = 6.0
- Theoretical variance = 4.8

- Sample mean = 5.999
- Sample variance = 4.78789

Plots of Binomial distribution for various values of n, p (2)

Graph of PMF

- Theoretical mean = 10.0
- Theoretical variance = 5.0

- Sample mean = 10.0241
- Sample variance = 5.02331919

Plots of Binomial distribution for various values of n, p (3)

Graph of PMF

- Theoretical mean = 4.0
- Theoretical variance = 3.2

- Sample mean = 3.996
- Sample variance = 3.1529

Verifying Central Limit Theorem for Binomial Distribution

- Parameters:
 - n = 40
 - \circ p = 0.4
 - \mathbf{n} = 40 (each sample is average of 40 samples)
 - No of samples = 1000
- Mean of Binomial Distribution: np = 16
- Variance of Binomial Distribution: np(1-p) = 9.6
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately

$$\begin{array}{ll} \circ & \text{Mean} & : \mu = \mu_{distribution} & = \text{16} \\ \circ & \text{Variance} : \sigma^2 = \frac{\sigma_{distribution}^2}{\sigma^2} & = \text{0.24} \\ \end{array}$$

$$\circ$$
 Variance: $\sigma^2 = rac{\sigma_{distribution}^2}{\sigma} = 0.24$

Plot of Sample Mean Statistic

- Theoretical mean : 16.0
- Theoretical variance: 0.24
- Expectation of sample mean: 15.982
- Variance of sample mean: 0.2486
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Binomial Distribution

Geometric Distribution

$$\Pr(Y = k) = (1 - p)^k p$$
 for $k = 0, 1, 2, 3,$

- Here p is the parameter. The mean and variance of the distribution depends on these parameter
- The formula for calculating mean and variance of the distributions are as follows:

$$\circ$$
 Mean: $\frac{1-p}{p}$

$$\circ$$
 Variance: $\frac{1-p}{p^2}$

Plots of Geometric distribution for various values of p(1)

Graph of PMF

- Theoretical mean = 4.0
- Theoretical variance = 19.999

- Sample mean = 3.9788
- Sample variance = 19.87015056

Plots of Geometric distribution for various values of p (2)

Graph of PMF

- Theoretical mean = 1.4999
- Theoretical variance = 3.7499

- Sample mean = 1.4968
- Sample variance = 3.62238

Plots of Geometric distribution for various values of p (3)

Graph of PMF

- Theoretical mean = 0.24999
- Theoretical variance = 0.312499
- Sample mean = 0.2476
- Sample variance = 0.30729424

Verifying Central Limit Theorem for Geometric

Distribution

- Parameters:
 - p = 0.4
 - \mathbf{n} = 40 (each sample is average of 40 samples)
 - No of samples = 1000
- Mean of Geometric Distribution: $\frac{1-p}{p} = 1.4999$ Variance of Geometric Distribution: $\frac{1-p}{p^2} = 3.75$
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately

$$\circ$$
 Mean : $\mu = \mu_{distribution}$ = 1.4999

$$\circ$$
 Variance: $\sigma^2 = \frac{\sigma_{distribution}^2}{\sigma} = 0.0937$

Plot of Sample Mean Statistic

- Theoretical mean : 1.49999
- Theoretical variance: 0.09374999
- Expectation of sample mean: 1.501225
- Variance of sample mean: 0.096247874
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Geometric Distribution

Poisson Distribution

$$f(k; \lambda) = Pr(X = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

- ullet Here χ is the parameter. The mean and variance of the distribution depends on these parameter
- The formula for calculating mean and variance of the distributions are as follows:
 - \circ Mean: λ

 \circ Variance: λ

Plots of Poisson distribution for various values of λ (1)

Graph of PDF

- Theoretical mean = 1
- Theoretical variance = 1

- Sample mean = 0.9969
- Sample variance = 1.0102

Plots of Poisson distribution for various values of λ (2)

Graph of PMF

- Theoretical mean = 4.0
- Theoretical variance = 4.0

- Sample mean = 3.9510
- Sample variance = 4.004

Plots of Poisson distribution for various values of λ (3)

Graph of PMF

- Theoretical mean = 10.0
- Theoretical variance = 10.0

- Sample mean = 9.9513
- Sample variance = 9.4629

Verifying Central Limit Theorem for Poisson Distribution

Parameters:

- \circ λ = 10
- \circ **n** = 40 (each sample is average of 40 samples)
- \circ No of samples = 1000
- Mean of Poisson Distribution: λ = 10
- Variance of Poisson Distribution: λ = 10
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately

$$\circ$$
 Mean : $\mu=\mu_{distribution}$ = 10

$$\circ$$
 Variance: $\sigma^2 = rac{\sigma^2_{distribution}}{\sigma}$ = 0.25

Plot of Sample Mean Statistic

- Theoretical mean : 10.0
- Theoretical variance: 0.25
- Expectation of sample mean: 10.003
- Variance of sample mean: 0.230
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Poisson Distribution

Negative Binomial Distribution

$$Pr(X=k)=inom{k+r-1}{r-1}(1-p)^kp^r$$

 Here r, p are the parameters. The mean and variance of the distribution depends on these parameters

• The formula for calculating mean and variance of the distributions are as follows:

$$\circ$$
 Mean: $\dfrac{r*(1-p)}{p}$

$$\circ$$
 Variance: $\frac{r*(1-p)}{p^2}$

Plots of Negative Binomial distribution for values: r=1, p=0.09

Graph of PMF

- Theoretical mean = 10.12
- Theoretical variance = 112.34

- Sample mean = 11.11
- Sample variance = 112.89

Plots of Negative Binomial distribution for values: r=2, p=0.09

Graph of PMF

- Theoretical mean = 20.22
- Theoretical variance = 224.69

- Sample mean = 20.34
- Sample variance = 225.43

Plots of Negative Binomial distribution for values: r=4, p=0.09

Graph of PMF

- Theoretical mean = 40.44
- Theoretical variance = 449.38

- Sample mean = 40.27
- Sample variance = 452.89

Verifying Central Limit Theorem for Negative Binomial

Parameters:

- \circ $\mathbf{r} = 1$
- o **p** = 0.09
- $\mathbf{n} = 40$ (each sample is average of 40 samples)
- No of samples = 1000
- $\frac{r*(1-p)}{n}$ = 10.1111 Mean of Negative Binomial:
- Variance of Negative Binomial: $\frac{r * (1-p)}{r^2} = 112.3456$
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately
 - = 10.1111
 - \circ Mean : $\mu=\mu_{distribution}$ = 10.111 \circ Variance: $\sigma^2=\frac{\sigma_{distribution}^2}{\sigma^2}$ = 2.8086

Plot of Sample Mean Statistic

- Theoretical mean : 10.1111
- Theoretical variance: 2.8086
- Expectation of sample mean:10.10
- Variance of sample mean: 2.75
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Negative Binomial Distribution

Discrete Uniform Distribution

The PMF(Probability Mass Function) of **Discrete Uniform distribution** is as follows here both
 a and b are inclusive:

$$f(x; a, b) = Pr(x = k) = \frac{1}{b - a + 1}$$

- Here a and b are parameters. The mean and variance of the distribution depends on these parameter
- The formula for calculating mean and variance of the distributions are as follows:

$$\circ$$
 Mean: $\frac{a+b}{2}$

$$\circ$$
 Variance: $\frac{\left(b-a+1\right)^2-1}{12}$

Plots of Discrete Uniform distribution for various values of a and b (1)

Graph of PMF

- Theoretical mean = 4.5
- Theoretical variance = 1.25

- Sample mean = 4.4881
- Sample variance = 1.25445839

Plots of Discrete Uniform distribution for various values of \mathbf{a} and \mathbf{b} (2)

Graph of PMF

- Theoretical mean = 7.5
- Theoretical variance = 2.9166

- Sample mean = 7.4902
- Sample variance = 2.9329

Plots of Discrete Uniform distribution for various values of a and b (3)

Graph of PMF

- Theoretical mean = 5.5
- Theoretical variance = 0.25

- Sample mean = 5.5066
- Sample variance = 0.2499

Verifying Central Limit Theorem for Poisson Distribution

Parameters:

- o **a** = 3 and **b** = 6
- \circ **n** = 40 (each sample is average of 40 samples)
- \circ No of samples = 1000
- Mean of Discrete Uniform Distribution: $\frac{a+b}{2}$ = 4.5
- Variance of Discrete Uniform Distribution: $\frac{(b-a+1)^2-1}{12} = 1.25$
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately
 - \circ Mean : $\mu = \mu_{distribution}$ = 4.5
 - \circ Variance: $\sigma^2 = \frac{\sigma_{distribution}^2}{\sigma}$ = 0.03125

Plot of Sample Mean Statistic

Theoretical mean : 4.5

• Theoretical variance: 0.03125

Expectation of sample mean: 4.5024

Variance of sample mean : 0.0299

- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Discrete Uniform Distribution

Normal Distribution

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

ullet Here μ and ullet are the parameters. The mean and variance of the distribution depends on these parameters

- The formula for calculating mean and variance of the distributions are as follows:
 - \circ Mean: μ
 - \circ Variance: $oldsymbol{\sigma}^2$

Plots of Normal distribution for value: $\mu=0$, $\sigma=1$ (1)

Graph of PDF

- Theoretical mean = 0.00
- Theoretical variance = 1.00

- Sample mean = 0.004
- Sample variance = 1.004

Plots of Normal distribution for value: $\mu=0$, $\sigma=0.447$ (2)

Graph of PDF

- Theoretical mean = 0.00
- Theoretical variance = 0.19

$$\mu = 0, \sigma = 0.447$$

- Sample mean = 0.015
- Sample variance = 0.20

Plots of Normal distribution for value: $\mu=2$, $\sigma=0.707$ (1)

• Graph of PDF

- Theoretical mean = 2.00
- Theoretical variance = 0.499

$$\mu = 2, \sigma = 0.707$$

- Sample mean = 2.01
- Sample variance = 0.5

Verifying Central Limit Theorem for Normal Distribution

Parameter:

- $_{\circ}$ μ = 0, σ = 1
- \circ **n** = 40 (each sample is average of 40 samples)
- \circ No of samples = 1000
- Mean of Normal Distribution: μ = 0.0
- Variance of Normal Distribution: $\sigma^2 = 1.0$
- If Central limit theorem holds true then for then **mean and Variance** of the expectation of static sample should be approximately
 - \circ Mean : $\mu = \mu_{distribution} = 0.00$
 - \circ Variance: $\sigma^2 = \frac{\sigma_{distribution}^2}{\sigma} = 0.025$

Plot of Sample Mean Statistic

- Theoretical mean : 0.0
- Theoretical variance: 0.025
- Expectation of sample mean : 0.0
- Variance of sample mean : 0.023
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Normal Distribution

Exponential Distribution

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

ullet Here $oldsymbol{\lambda}$ is the parameter. The mean and variance of the distribution depends on these parameters

- The formula for calculating mean and variance of the distributions are as follows:
 - \circ Mean: $1/\lambda$

 \circ Variance: $1/\lambda^2$

Plots of Exponential distribution for value: $\lambda = 0.1$

Graph of PDF

- Theoretical mean = 10.0
- Theoretical variance = 99.99

- Sample mean = 11.14
- Sample variance = 99.67

Plots of Exponential distribution for value: $\lambda = 0.5$

Graph of PDF

- Theoretical mean = 2.0
- Theoretical variance = 4.0

- Sample mean = 2.02
- Sample variance = 3.96

Plots of Exponential distribution for value: $\lambda = 1$

Graph of PDF

- Theoretical mean = 1.0
- Theoretical variance = 1.0

- Sample mean = 1.008
- Sample variance = 0.99

Verifying Central Limit Theorem for Exponential

Parameter:

- \circ $\lambda = 1$
- \circ **n** = 40 (each sample is average of 40 samples)
- \circ No of samples = 1000
- Mean of Negative Binomial: $1/\lambda$ = 1.0
- Variance of Negative Binomial: $1/\lambda^2$ = 1.0
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately
 - \circ Mean : $\mu = \mu_{distribution}$ = 1.00
 - \circ Variance: $\sigma^2 = \frac{\sigma_{distribution}^2}{n} = 0.025$

Plot of Sample Mean Statistic

- Theoretical mean : 1.0
- Theoretical variance: 0.025
- Expectation of sample mean : 1.0
- Variance of sample mean : 0.0248
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Exponential Distribution

Beta Distribution

$$f(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)x^{(\alpha - 1)}(1 - x)^{(\beta - 1)}}{\Gamma(\alpha)\Gamma(\beta)}$$

- Here α and β are shape parameters. The mean and variance of the distribution depends on these parameters
- The formula for calculating mean and variance of the distributions are as follows:

$$\circ$$
 Mean: $\dfrac{lpha}{lpha+eta}$

$$\circ$$
 Variance: $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Plots of Beta distribution for various values of α and β (1)

Graph of PDF

- Theoretical mean = 0.5
- Theoretical variance = 0.125

- Sample mean = 0.505
- Sample variance = 0.125

Plots of Beta distribution for various values of α and β (2)

Graph of PDF

- Theoretical mean = 0.8334
- Theoretical variance = 0.0198

- Sample mean = 0.8338
- Sample variance = 0.0198

Plots of Beta distribution for various values of α and β (3)

• Graph of PDF

- Theoretical mean = 0.25
- Theoretical variance = 0.0375

- Sample mean = 0.2522
- Sample variance = 0.0381

Verifying Central Limit Theorem for Beta Distribution

Parameters:

- \circ **a** = 0.5, β = 0.5
- \circ **n** = 40 (each sample is average of 40 samples)
- No of samples = 1000
- Mean of Beta Distribution: $\frac{\alpha}{\alpha + \beta}$ = 0.5
- Variance of Beta Distribution: $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ = 0.125
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately
 - \circ Mean : $\mu = \mu_{distribution}$ = 0.5
 - \circ Variance: $\sigma^2 = \frac{\sigma_{distribution}^2}{\sigma}$ = 0.003125

Plot of Sample Mean Statistic

- Theoretical mean : 0.5
- Theoretical variance: 0.003125
- Expectation of sample mean: 0.5008
- Variance of sample mean: 0.00327
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Beta Distribution

Gamma Distribution

• The PDF(Probability Density Function) of Gamma distribution f(x) is as follows:

$$f(x; \alpha, \theta) = \frac{x^{\alpha - 1}e^{\frac{-x}{\theta}}}{\theta^{\alpha}\Gamma(\alpha)}$$

- Here a is shape parameter and θ is scale parameter. The mean and variance of the distribution depends on these parameters
- The formula for calculating mean and variance of the distributions are as follows:
 - \circ Mean: a heta
 - \circ Variance: $\alpha \theta^2$

Plots of Gamma distribution for various values of α and θ (1)

Graph of PDF

- Theoretical mean = 2.0
- Theoretical variance = 4.0

$$\alpha = 1.0, \theta = 2.0$$

- Sample mean = 1.9894
- Sample variance = 3.9023

Plots of Gamma distribution for various values of α and θ (2)

Graph of PDF

- Theoretical mean = 6.0
- Theoretical variance = 12.0

$$\alpha = 3.0, \theta = 2.0$$

- Sample mean = 5.9831
- Sample variance = 12.2188

Plots of Gamma distribution for various values of α and θ (3)

Graph of PDF

- Theoretical mean = 4.0
- Theoretical variance = 8.0

$$\alpha = 2.0, \theta = 2.0$$

- Sample mean = 4.0253
- Sample variance = 8.0941

Verifying Central Limit Theorem for Gamma Distribution

Parameters:

- \circ **a** = 1.0, θ = 2.0
- \circ **n** = 40 (each sample is average of 40 samples)
- No of samples = 1000
- Mean of Gamma Distribution: $a\theta$ = 2.0
- Variance of Gamma Distribution: $\alpha \theta^2 = 4.0$
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately
 - $_{\circ}$ Mean $_{:}\mu=\mu_{distribution}$ = 2.0
 - \circ Variance: $\sigma^2 = \frac{\sigma_{distribution}^2}{n}$ = 0.10

Plot of Sample Mean Statistic

- Theoretical mean : 2.0
- Theoretical variance: 0.10
- Expectation of sample mean: 1.9937
- Variance of sample mean: 0.1049
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Gamma Distribution

Lognormal Distribution

$$f(x; \mu, \sigma) = \frac{1}{x} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{\ln x - \mu^2}{2\sigma^2}\right)$$

- ullet Here μ and σ are parameters. The mean and variance of the distribution depends on these parameters
- The formula for calculating mean and variance of the distributions are as follows:

$$\circ$$
 Mean: $\exp(\mu + rac{\sigma^2}{2})$

$$\circ$$
 Variance: $(\exp{(\sigma^2)}-1)(\exp{(2\mu+\sigma^2)})$

Plots of Lognormal distribution for various values of μ and σ (1)

Graph of PDF

- Theoretical mean = 1.1331
- Theoretical variance = 0.3646

$$\mu=0$$
 , $\sigma=0.5$

- Sample mean = 1.1296
- Sample variance = 0.3714

Plots of Lognormal distribution for various values of μ and σ (2)

Count

20

Graph of PDF

- Theoretical mean = 1.2840
- Theoretical variance = 1.069

 Graph of values sampled from distribution(10,000 samples)

 $\mu = 0, \sigma = 0.707$

- Sample mean = 1.2863
- Sample variance = 1.0212

Plots of Lognormal distribution for various values of μ and σ (3)

Graph of PDF

- Theoretical mean = 1.6487
- Theoretical variance = 4.6707

- Sample mean = 1.6358
- Sample variance = 4.3357

Verifying Central Limit Theorem for Lognormal Distribution

- Parameters:
 - \circ $\mu = 0$ and $\sigma = 0.5$
 - \circ **n** = 40 (each sample is average of 40 samples)
 - \circ No of samples = 1000
- ullet Mean of Lognormal Distribution: $\exp(\mu + rac{\sigma^2}{2})$ = 1.13
- Variance of Lognormal Distribution: $(\exp{(\sigma^2)} 1)(\exp{(2\mu + \sigma^2)}) = 0.36$
- If Central limit theorem holds true then for then mean and Variance of the expectation of static sample should be approximately
 - \circ Mean : $\mu = \mu_{distribution}$ = 1.1331
 - \circ Variance: $\sigma^2 = \frac{\sigma_{distribution}^2}{n}$ = 0.0091

Plot of Sample Mean Statistic

- Theoretical mean : 1.1331
- Theoretical variance: 0.0091
- Expectation of sample mean: 1.1306
- Variance of sample mean: 0.0085
- As you can see from the above values that mean and variance of sample mean is approximately equal to theoretical ones.
- Hence, Central Limit Theorem holds for the Lognormal Distribution

Thank You