Contributions to the structure theory of ω -languages

Albert Zeyer

10. Februar 2011

Inhaltsverzeichnis

1	Intr	roduction	3
2	Aut	tomaton	4
	2.1	Path	4
	2.2	Acceptence of finite words	4
3	*-la	nguages	4
	3.1	regular languages	4
	3.2	piece-wise testable	5
	3.3	k-locally testable	5
	3.4	dot-depth-n	5
	3.5	starfree	5
	3.6	locally modulo testable	5
	3.7	R-trivial	5
	3.8	endlich / co-endlich	5
	3.9	endwise testable	5
4	ω -l a	anguages	5
	4.1	Büchi automaton	5
	4.2	Muller automaton	5
	4.3	Rabin automaton	5
	4.4	Staiger Wagner class of $\mathcal K$	6
5	One	erations: *-language K to ω -language $L_{\omega}(K)$	6
0			6
6	Q.	prachklassen	7
U	6.1	regular	7
	6.2	piece-wise testable	7
	6.2	k-locally testable	7
	6.4	dot-depth- n	7
	6.5	starfree	7
	6.6		7
	6.7	locally modulo testable	7
	6.8	endlich / co-endlich	7
	6.9	endwise testable	7
	0.9	CHUMIDE RESURDIE	1

7	ω-Sprachklassen 7.1 Staiger Wagner Klasse zu K	7
	Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$ 8.1	7
	Lemmas 9.1 piece-wise testable	8

1 Introduction

...

2 Automaton

An **automaton** \mathcal{A} on the alphabet Σ is given by a set Q of states and a subset $E \subset Q \times A \times Q$ of transitions. In most cases you also have a subset $I \subset Q$ of initial states and a subset $F \subset Q$ of final states.

We write:

$$\mathcal{A} = (Q, \Sigma, E, I, F).$$

The automaton is **finite** iff Q and Σ are finite.

The automaton is **deterministic** iff E is a set of functions $Q \times A \to \mathcal{Q}$ and there is only a single initial state.

2.1 Path

Two transitions $(p, a, q), (p', a', q') \in E$ are **consecutive** iff q = p'.

A path in the automaton A is a sequence of consecutive transitions, written as:

$$q_0 \rightarrow^{a_0} q_1 \rightarrow^{a_1} q_2 \dots$$

2.2 Acceptence of finite words

An automaton $\mathcal{A} = (Q, \Sigma, E, I, F)$ accepts a finite word $w = (a_0, a_1, ..., a_n) \in \Sigma^*$ iff there is a path $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \cdots \to^{a_n} q_{n+1}$ with $q_0 \in I$ und $q_{n+1} \in F$.

The language $L^*(\mathcal{A})$ is defined as set of all words which are accepted by \mathcal{A} .

3 *-languages

The *-languages are all languages of words $w \in \Sigma^*$, i.e. the set of languages of finite words.

3.1 regular languages

A languages is regular iff an automaton accepts it.

- 3.2 piece-wise testable
- 3.3 k-locally testable
- 3.4 dot-depth-n
- 3.5 starfree
- 3.6 locally modulo testable
- 3.7 R-trivial
- 3.8 endlich / co-endlich
- 3.9 endwise testable

4 ω -languages

4.1 Büchi automaton

An automaton $\mathcal{A} = (Q, \Sigma, E, I, F)$ **Büchi-accepts** a word $\alpha = (a_0, a_1, a_2, ...) \in \Sigma^{\omega}$ iff there is an infinite path $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \to^{a_2} q_3...$ with $q_0 \in I$ and $\{q_i | q_i \in F\}$ infinite, i.e. which reaches a state in F infinitely often.

The language $L^{\omega}(\mathcal{A})$ is defined as the set of all infinite words which are Büchi-accepted by \mathcal{A} .

An automaton \mathcal{A} is a Büchi automaton iff you use the Büchi-acceptence.

4.2 Muller automaton

A Muller automaton \mathcal{A} is a finite, deterministic automaton with **Muller acceptence** and a set $\mathcal{T} \in 2^Q$, called the **table** of the automaton (instead of the set F). A word $w \in \Sigma^{\omega}$ is accepted iff there is a path p with $Inf(p) \in \mathcal{T}$, where Inf(p) is the set of infinitely often reached states of the path p.

We write:

$$\mathcal{A} = (Q, \Sigma, E, i, \mathcal{T}).$$

4.3 Rabin automaton

A Rabin automaton is a tuple $\mathcal{A} = (Q, \Sigma, E, i, \mathcal{R})$, where (Q, Σ, E) is a deterministic automaton, i is the initial state and $\mathcal{R} = \{(L_j, U_j) | j \in J\}$ is a family of pairs of state-sets. A path p is successfull iff it starts in i and there is an index j inJ such that p reaches U_j infinitely often and L_j only finitely often. If the automaton is finite, this is equivalent to

$$\operatorname{Inf}(p) \cap L_j = \emptyset$$
 and $\operatorname{Inf}(p) \cap U_j \neq \emptyset$.

4.4 Staiger Wagner class of K

5 Operations: *-language K to ω -language $L_{\omega}(K)$

5.1 ...

- a) * alle Sprachen $K\dot{\Sigma}^{\omega} = \text{ext}(K), K \in \mathcal{K}$
 - * offene G
- * Staiger Wagner Klasse http://de.wikipedia.org/wiki/Staiger-Wagner-Automat Erich Grädel, Wolfgang Thomas und Thomas Wilke (Herausgeber), Automata, Logics, and Infinite Games, LNCS 2500, 2002, Seite 20 (auf englisch) http://www.automata.rwth-aachen.de/material/skripte/areasenglish.pdf s.53
 - a') dual $\overline{K} = \omega$ -Wörter, deren alle Präfixe in K sind
 - b) Sprachen $\lim \mathcal{K}$ BC Muller-erkennbare (BC: boolean closure ?)
 - b') von einer Stelle an alle Prefixe in K
 - c) Kleene-Closure

alle der Form $\bigcup_{i=1}^n U_i \dot{V}_i^{\omega}, U_i, V_i \in \mathcal{K}$

d) \mathcal{K} nicht suffix sensitiv

 $K \in \mathcal{K} \Rightarrow K\dot{\Sigma}^* \in \mathcal{K}$

Hauptfrage: Für welche \mathcal{K} ergibt sich eine andere Sprache als bei $\mathcal{K} = \text{Reg.}$

6 *-Sprachklassen

- 6.1 regular
- 6.2 piece-wise testable
- 6.3 k-locally testable
- 6.4 dot-depth-n
- 6.5 starfree
- 6.6 locally modulo testable
- 6.7 R-trivial
- 6.8 endlich / co-endlich
- 6.9 endwise testable
- 7 ω -Sprachklassen
- 7.1 Staiger Wagner Klasse zu K
- 8 Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$
- 8.1 ...
- a) * alle Sprachen $K\dot{\Sigma}^{\omega} = \text{ext}(K), K \in \mathcal{K}$
 - * offene G
- * Staiger Wagner Klasse http://de.wikipedia.org/wiki/Staiger-Wagner-Automat Erich Grädel, Wolfgang Thomas und Thomas Wilke (Herausgeber), Automata, Logics, and Infinite Games, LNCS 2500, 2002, Seite 20 (auf englisch) http://www.automata.rwth-aachen.de/material/skripte/areasenglish.pdf s.53
 - a') dual $\overline{K} = \omega$ -Wörter, deren alle Präfixe in K sind
 - b) Sprachen $\lim \mathcal{K}$ BC Muller-erkennbare (BC: boolean closure?)
 - b') von einer Stelle an alle Prefixe in K
 - c) Kleene-Closure
 - alle der Form $\bigcup_{i=1}^{n} U_i \dot{V}_i^{\omega}, U_i, V_i \in \mathcal{K}$
 - d) \mathcal{K} nicht suffix sensitiv
 - $K \in \mathcal{K} \Rightarrow K\dot{\Sigma}^* \in \mathcal{K}$

9 Lemmas

9.1 piece-wise testable

Theorem 9.1.

 $BC \operatorname{ext} \mathcal{L}^*(\text{piece-wise testable}) = BC \lim \mathcal{L}^*(\text{piece-wise testable})$

Proof. L piece-wise testable $\Leftrightarrow L$ is a boolean algebra of $\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*$

 \subseteq : It is sufficient to show $\operatorname{ext}(\mathcal{L}^*(\operatorname{piece-wise testable})) \subseteq \operatorname{BC} \lim \mathcal{L}^*(\operatorname{piece-wise testable})$. By complete induction:

$$\operatorname{ext}(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) = \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^{\omega} = \lim(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)$$

$$\operatorname{ext}(\neg(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)) = \Sigma^{\omega} = \lim(\Sigma^*)$$

$$\operatorname{ext}(\emptyset) = \emptyset = \lim(\emptyset)$$

It is sufficient to show negation only for such ground terms because we can always push the negation down.

$$\operatorname{ext}(A \cup B) = \operatorname{ext}(A) \cup \operatorname{ext}(B)$$

 $\operatorname{ext}(A \cap B) = \operatorname{ext}(A) \cap \operatorname{ext}(B)$

This makes the induction complete.

 \supseteq : It is sufficient to show $\lim(\mathcal{L}^*(\text{piece-wise testable})) \subseteq \mathrm{BC}\,\mathrm{ext}\,\mathcal{L}^*(\text{piece-wise testable})$.

$$\begin{split} \lim(\emptyset) &= \text{ext}(\emptyset), \ \lim(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) = \text{ext}(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) \ \ (\text{see above}) \\ \lim(\neg(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)) &= \left\{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \notin \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*\right\} \\ &= \left\{\alpha \in \Sigma^\omega \mid \forall n \colon \alpha[0, n] \notin \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*\right\} \\ &= \neg \exp(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) \\ \lim(A \cup B) &= \left\{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \in A \cup B\right\} = \lim(A) \cup \lim(B) \\ \lim(A \cap B) &= \left\{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \in A \cap B\right\} \end{split}$$

and because A, B are piece-wise testable

$$= \left\{\alpha \in \Sigma^\omega \ \big| \ \exists n : \forall m > n \colon \alpha[0,m] \in A \cap B \right\} = \lim(A) \cap \lim(B)$$

9.2 extension of FO[+1]

Theorem 9.2.

$$\mathcal{L}^{\omega}(FO[+1]) = BC \operatorname{ext} \mathcal{L}^{*}(FO[+1])$$

Proof. The statement "sphere $\sigma \in \Sigma^+$ occurs $\geq n$ times" can be expressed by a sentence of the form

$$\psi := \exists \overline{x_1} \cdots \exists \overline{x_n} \phi(\overline{x_1}, \cdots, \overline{x_n})$$

where each $\overline{x_i}$ is a $|\sigma|$ -tuple of variables and the formula ϕ states: ...

Literatur