Homework

Chapter 1

Week 1

1. Consider the following sequence $\{a_n\}$ with the few first terms given as

$$\{-\frac{1}{2}, \frac{16}{3}, -\frac{81}{4}, \frac{256}{5}, -\frac{625}{6}, \ldots\}$$

Find a formula for the general term a_n .

2. If \$600 is invested at 4% interest, compounded annually. Find the size of investment after 7 years.

3. Determine the limits of the following sequences

a)
$$a_n = \frac{3n^3}{n^3+1}$$

b)
$$b_n = \left(\frac{5+n}{n}\right)^n$$

c)
$$c_n = n^{1/n}$$

d)
$$d_n = \ln(n^3 + 1) - \ln(3n^3 + 10n)$$

4. Using squeeze Theorem find the limit of the sequence

$$a_n = \frac{\sin(2n)}{2^n}$$

Week 2

1. Check the following series if the series is convergent or divergent

a)
$$\sum_{n=0}^{\infty} 2^{1-3n} 3^{n+2}$$

b)
$$\sum_{n=1}^{\infty} \frac{3}{n^2 + 7n + 12}$$

- 2 Using integral test to check the following series if the series converges or diverges.
 - a) $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$
 - b) $\sum_{n=0}^{\infty} \frac{2}{5n+3}$
 - c) $\sum_{n=0}^{\infty} \frac{n^2}{n^3+1}$
 - d) $\sum_{n=0}^{\infty} \frac{1}{n^2+4}$
- **3.** Using the Divergence Test to determine if the following series diverges or conclude that the Divergence Test is inconclusive
 - a) $\sum_{n=1}^{\infty} \frac{3^n+1}{2^n}$
 - b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
 - c) $\sum_{n=2}^{\infty} \frac{n}{\ln(n)}$
- **4.** Using comparison test or limit comparison test to determine if the following series diverges or converges
 - a) $\sum_{n=1}^{\infty} (\frac{1}{n^2} + 1)^2$
 - b) $\sum_{n=1}^{\infty} \frac{4}{n^2 2n 3}$
 - c) $\sum_{n=1}^{\infty} \frac{n^3}{2n^4-1}$
 - d) $\sum_{n=2}^{\infty} \frac{\ln(n)}{n^3}$
- **5.** Determine whether the following series converges or diverges
 - a) $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n}}$
 - b) $\sum_{n=0}^{\infty} \frac{10}{n^2+9}$
 - c) $\sum_{n=2}^{\infty} \frac{4}{n \ln^2(n)}$

Calculus 2 homework

6 Consider the series

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^p(n)}$$

where p is a real number.

- i) Using the integral test to determine the value of p for which the series converges
- ii) Does the series converge faster for p=2 or p=3? Explain.