姓名: SOLUTION

葉均承

應數一線性代數

考試日期: 2025/10/22

學號: _____

Quiz 6

不可使用手機、計算器,禁止作弊!

- 1. Given vectors $\vec{w}_1 = [1, 2, -1, 2], \vec{w}_2 = [-2, -3, 3, 1] \text{ and } \vec{w}_3 = [4, 7, -5, 3].$
 - (a) Determine whether the vectors $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ form a basis for the $sp(\vec{w}_1, \vec{w}_2, \vec{w}_3)$. (Yes / No)
 - (b) Determine whether the vectors $\{\vec{w}_1, \vec{w}_2\}$ form a basis for the $sp(\vec{w}_1, \vec{w}_2)$. (Yes / No)
 - (c) Determine whether the vectors $\{\vec{w}_1, \vec{w}_3\}$ form a basis for the $sp(\vec{w}_1, \vec{w}_3)$. (Yes / No)
 - (d) Is $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ a linear independent set? (Yes / No).
 - (e) Is $\{\vec{w}_1, \vec{w}_2\}$ a linear independent set?? (Yes / No) .
 - (f) Is $\{\vec{w}_1, \vec{w}_3\}$ a linear independent set?? (Yes / No) .

p.s. 記得每小題要分開給理由!!

Solution:

Similar with 113-1 quiz 6 problem 1.

2. Prove or disprove that the sum of two solution vectors of any homogeneous linear system is also a solution vector of the system.

Solution:

1-6 #38 (g) or Theorem 1.13 with r = s = 1.