アプリケーションベンチマーク システム班・ベンチマーク

2012/9/19資料東京工業大学松岡聡

アプリfs・システム班としての初年度 のマイルストーン

- 1. ベンチマークのデータ・メタデータの(データ ベース的)スキーマの定義・調査・標準化
- 2. それらの取得のための測定ソフトウェアツールのサーベイ・整備、並びに、並びにそれらによるデータの性能データの標準的な取得手続きの策定・ドキュメント化
- 3.ミニアプリの作成法の策定、およびいくつかの サンプルミニアプリの作成
- 4. 各FSの横断的なベンチマークチームの形成、 特にメタデータ等定義の合意形成

HPCI一般利用による京の利用

• 採択(代表 • 松岡聡):利用可能資源

	2012下期	2013上期	2013下期
京	53.3万ノード時間 (申請: 100万)	13.3万ノード時間 (申請: 25万)	5.3万ノード時間 (申請: 10万)
TSUBAME2.0	3万ノード時間	3万ノード時間	3万ノード時間
九州大 FX10	48ノード 占有	48ノード 占有	48ノード 占有

ベンチマークのメタデータ及び スキーマの標準化

- ベンチマークの結果の共通化の必要性
 - 単なる「数字」では意味がない⇒気象・天文・地質調査などのサーベイにおけるデータと同様に、意味の統一化が必要
 - 「当社比」では客観性がなく、意味がない
- メタデータの(データベース的)スキーマの標準化
 - メタデータ: 結果や計測環境の共通的な意味(セマンティックス)の 表記
 - 結果のデータベースへの統一的な格納
 - 結果の統一的な比較や利用を可能に
 - FS後、今後の調達や研究開発にも役立つ、更に国際貢献
- スキーマに応じたメタデータの標準的な取得法の手続きの 策定・ドキュメント化
 - Scalasca, TAUなどの標準的な計測ツールを使用
 - ベンダーのカスタムツールも可能、ただしスキーマへ合わせるための作業はアプリFSとしては直接はサポートしない

メタデータのスキーマの例

- 例1: SPECベンチの投稿時データ
 - SPEC MPIから抜粋
 - システム名, 計測日, CPUスペック, ノード内CPU数, メモリ, ディスク, アクセラレータ,
 - コンパイラ, コンパイルオプション、MPIライブラリ, ファイルシステム, ネットワーク(ベンダ モデルトポロジ バンド幅),
 - チューニングの有無と内容, ..., ベンチマーク結果
 - 無論これらでは十分とは言えない。
- ・ 例2: 京の大規模実行時の審査基準
 - 単体性能(ピーク比)、並列化効率(これらはデータ)
 - 一定の並列化効率がないと大規模実行させてもらえなかった⇒統一的な指標

スキーマの標準化に向けて

目標

- 収集すべき情報が何なのかを決定
- これらの情報を半自動で(=マニュアルの通りにやれば)取れるような手続きの 策定・標準ツールを利用
- 結果を収集して、比較できるリポジトリを作る
- FSで一過性な話ではない
 - FS終了後も我が国のHPC分野が常用できる手法や環境を構築するのが目標
 - 今後の研究開発、論文や調達に利用可能な手法
 - 日米などの国際協力、標準化へ

Issues

- 海外や国内のベンダはどのようなデータを集めているのか情報収集
- すでに標準があれば、それを検討・採用・共同研究等(ただし、あまりない)
- 難しいデータの取得:電力、Scaling等をどう取得・表現するか等検討
- どのような性能データ・メタデータをそれぞれの分野で欲しいか、という各方面の需要を容易に反映するにはどうするか

海外におけるベンチマークの結果のメタデータスキーマの事例

- 1. OTF: Open Trace Format that works with a number of tools: http://www.tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/software_werkzeuge_zur_unterstuetzung_von_programmierung_und_optimierung/otf, including Tau, Scalasca
- 2. Tau: a comprehensive performance tool that includes a performance database(not standard, but commonly used): http://www.paratools.com/TAU
- 3. PAPI: a standard tool that serves as an interface to most hardware counters: http://icl.cs.utk.edu/papi/

計測環境の整備状況

- ScalascaとTAUによる解析をテスト中
 - 特にInstrumentを入れずとも、以下のパラメータは 自動的に収集可能

	Scalasca	TAU
実行時間	〇 (関数/OpenMPブロック)	0
HWカウンタ (キャッシュミスetc)	O (PAPIを利用)	O? (PAPIを利用)
通信: ノードごとのIn/Out	0	0
通信トポロジ	×?	O (Communication Matrix)
I/O	?	?
CUDA	×	0
OpenACC	×	×
計測環境(システム・並列度等)	?	0

- Instrumentを入れて、Human Readableになるのか
 - 例: C++のTemplate Programming(Thrust), Fortranのループ

そのほかのツール候補と取りうる情報

- Valgrind
 - Working set size, アクセスパターン, ...
 - メタデータとしてどう表現するか
- NVIDIA GPU Profiler
 - GPU以外の環境でも同意味のデータはとれるか
- Cray社のプロファイリングツール (XK6/7・東工大に8ノード、年度末40ノード)
 - 何が取れるのか調査中、OpenACC対応?
- Vampire
 - TAUやScalascaで取れない情報(VampirTrace)はあるか調査中
- ASPEN
 - 性能とアーキテクチャのモデリングを可能にするDomain Specific Language (SC12にて発表)
- 別途測り方を考えなければいけないもの?
 - Arithmetic Intensity (= Bytes/Flops)
 - 演算数を手で数えるのは無理
 - I/O: POSIX IO, HDF5, MPI-IO
 - どのデータがどこに書かれたかを把握したい
 - 電力関連

他FSチームとの連携

- システムFSチームと、アプリFSチームの間でベンチマークの実行環境・測定項目・結果の収集方法を共通化
 - ベンチマーク結果には客観性が必要・「当社比」の排除
 - アプリFSチームと同じスキーマおよび取得法
 - 各FSチームからベンチマーク共通化窓口となる人を選出: 下記候補(敬称略)
 - 東大FS 片桐
 - 東北大FS 江川·板倉(JAMSTEC)
 - 筑波FS 高橋(大)
 - FS全体として合意できる統一スキーマや手法を制定
 - SC前に一度システム班との横断ミーティングを開催(10月、 日程調整必要)