Kernel Based Moving Object Detection (KB-MOD)

A. Becker, D. Halperin, B. Howe, A. Whitaker

Searching for Faint Objects in Imaging Data

```
Image(x,y) = Signal(x,y) + Noise(x,y)
```

"Faint" means low signal—to—noise ratio (S ~ N), i.e. below the detection threshold (S \gg N) in a single image

To accumulate signal on a given object, stack multiple images (which form a time-series)

S/N increases like sqrt(number of images)

For stationary objects, use a simple average

Searching for Faint *Moving*Objects in Imaging Data

In this case, a simple image coadd will not suffice Requires an image "shift and stack" along motion vector

Searching for Faint *Moving*Objects in Imaging Data

In this case, a simple image coadd will not suffice Requires an image "shift and stack" along motion vector

Every possible vector requires a different shift

For discovery, don't know beforehand which vectors are populated

Which means you need to try them all!

Traditional "Shift-and-Stack" Techniques

- Bernstein 2004: Image coaddition along 10¹⁴ tracks. 3 new objects found.
- Must scale up detection threshold given the large number of "experiments"
- Limit analyses to slowest moving objects (assume linear motion)
- KB-MOD uses an improved order of operations to speed up technique by x100
- Answering the question "does a point source exist at this location" can be reduced to a single pixel access operation in an image (or a database)

KB-MOD Applied to Sloan Digital Sky Survey

SDSS Stripe 82 region

300 square degrees

~70 epochs/position between 1998 and 2007

5-band photometry

3 of which we will use (gri)

Previously (and successfully) mined for slow moving objects

Temporal Structure in the Data

Temporal Structure in the Data

Goal: Rapid Intersect of Spatial-Temporal Trajectories with Imaging Data

Goal: Rapid Intersect of Spatial-Temporal Trajectories with Imaging Data

Database: Maximal Table Design

	Run (Night)	Set (Exposure)	Image (CCD)	Pixel
Primary Key	runld	setId	imageld	pixelld
Foreign Key		runld	setId	imageld
Spatial	bbox	bbox	bbox3d	integerldx
Temporal	tmin,tmax	tmin,tmax	DDOX3G	
Count	3E+02	5E+03	2E+06	5E+12

CREATE INDEX image_bbox3d_idx ON Image USING gist (bbox3d gist_geometry_ops_nd);

CLUSTER Image USING image_bbox3d_idx;

Database: Minimal Table Design

	Run (Night)	Image (CCD)	
Primary Key	runld	imageld	
Spatial	bbox	bbox3d	
Temporal	tmin,tmax		
Count	3E+02	2E+06	

Pixel access happens directly from the images

Query Timing vs. Week of Incubator

Outstanding Issues & Future Work

Data ingest remains a significant issue

- 10⁴ ingests/second means 2-3 years of ingest for 10¹² pixels
 - Similar cost for clustering
- Parallel database a possibility (Greenplum)

Since this cost is driven by the Pixels table, perhaps we could leave the pixels out of the database.

- Requires fast on-disk pixel access at the image level
- Read an image once using the intersections from multiple trajectories

LSST will be 4 orders of magnitude more imaging data / pixels

Scalability is key

To be continued...