Digitalna obrada slike

drugi laboratorijski kolokvijum

UPUTSTVO: Rešenje kolokvijuma treba da budu skripte i funkcije koje rešavaju postavljene zadatke. Upotreba ugrađenih funkcija je dozvoljena, osim ako u zadatku nije eksplicitno navedeno da se određene funkcije ne smeju koristiti.

Zadatak 1. Napisati skriptu *zadatak1* koja učitava sliku *elementi.bmp* u promenljivu slika. Iz učitane slike potrebno je izdvojiti figurice koje su zelene boje segmentacijom HSV slike. Upotrebom morfoloških operacija korigovati dobijene maske tako da se uklone sitnije strukture i popune praznine. Zatim konstruisati novu sliku, takvu da na mestima izdvojenih struktura bude postavljena boja koja ima vrednost srednje vrednosti originalnih nijansi zelenih figurica.

Slika 1. Očekivani rezultat

Zadatak 2. Napisati u okviru skripte *zadatak2* funkciju *localThresh* koja na svakom pikselu primenjuje lokalni adaptivni prag koji je određen slećim izrazom

$$T_{x,y} = \mu_{x,y} + 0.25\sigma_{x,y} + 4$$

gde $\mu_{x,y}$ predstavlja lokalnu srednju vrednost slike a $\sigma_{x,y}$ lokalna standardna devijacija. Funkciju primeniti nad slikom *cellphone.png*. Koristiti simetrično proširenje i kvadratni kernel širine 5.

Zadatak 3. U skripti *zadatak3* na sliku *baboon.png* dodati impulsni so šum sa gustinom od 10%. Za potrebe uklanjanja šuma napisati funkciju koja implementira harmonijski usrednjivač za dimenziju posmatranog regiona i koja koristi simetrično proširenje. Filtar je definisan sledećim izrazom

$$\hat{I}(x,y) = \frac{Num}{\sum_{(s,t) \in S_{x,y}} I(s,t)^{-1}}$$

gde s i t predstavljaju koordinate u pravougaonoj okolini $S_{x,y}$ piksela na koordinatama (x,y) a Num je ukupan broj piksela obuhvaćen u okolini $S_{x,y}$. Šum ukloniti upotrebom ove funkcije nad regionom dimenzije 3x5. Prikazati sliku nakon dodavanja i nakon uklanjanja šuma i odrediti vršni odnos signalšum posle filtriranja.

Zadatak 4. Napisati skriptu *zadatak4* koja učitava sliku *lena.png*. Nad učitanom slikom potrebno je izvršiti LPC (Lossless predictive coding) i dekodovanje datim sledećim šablonima:

Formula za prediktor je data kao: $f'_n = 1 \cdot f_{n-i}$

gde je 1 jedini koeficijent prediktora prediktora a f_n n-ta **vrsta** slike. Prikazati sliku greške, njen histogram i dekodovanu sliku. Utvrditi da li ima gubitaka.