Special Matrices and their Properties

Term	Definition	Unique Attributes / Key Properties
Diagonal		- Determinant is product of diagonal entries
	$a_{ij} = 0 \text{ for } i \neq j$	- Eigenvalues are diagonal entries
		- A^k is diagonal with entries raised to k
Symmetric	$\mathbf{A} = \mathbf{A}^T$, i.e., $a_{ij} = a_{ji}$	$-\mathbf{x}^T \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x})^T \mathbf{x}$ for all \mathbf{x} if \mathbf{A} is symmetric
		$\ \mathbf{v}^{ op}\mathbf{A}\mathbf{v} \leq \lambda_{\max}(\mathbf{A})\ \mathbf{v}\ ^2$
		- All eigenvalues are real
		- Eigenvectors for distinct eigenvalues are orthogonal
		- Diagonalizable via orthogonal matrices
Identity (I)	$I_{ij} = \delta_{ij}$	-AI = IA = A
		$-I^{-1}=I$
		- All eigenvalues are 1
Inventible (No-	Exists A^{-1} such that $AA^{-1} = A^{-1}A = I$	$-\det(A) \neq 0$
Invertible (Non-		- Linearly independent rows and columns
singular)		- No zero eigenvalues
	A square matrix with $det(A) = 0$	- Not invertible
Singular		- May have linearly dependent rows or columns
		- At least one zero eigenvalue
Orthogonal	$A^{-1} = A^T$, so $A^T A = I$	- Rows and columns form an orthonormal set
		- Preserves lengths and angles
		$-\det(A) = \pm 1$
	$A^{T}A = I \text{ (tall matrix, } n \ge d)$	- Columns are orthonormal
Left Orthogonal		$-A^{\dagger} = A^T$ (left pseudoinverse)
Lett Of thogonal		- Used when A has full column rank
		- Condition: rank $(A) = d$ where $A \in \mathbb{R}^{n \times d}$
Right Orthogo-	$AA^T = I$ (wide matrix, $n \le d$)	- Rows are orthonormal
		,
nal		- Used when A has full row rank
		- Condition: rank $(A) = n$ where $A \in \mathbb{R}^{n \times d}$
	Ioore — isfying the four Penrose con-	- Always exists and is unique for any matrix
		- Full column rank $(n \ge d, \operatorname{rank}(A) = d)$:
Pseudoinverse		$A^{\dagger} = (A^T A)^{-1} A^T$ (left pseudoinverse)
$({f Moore-}$		- Full row rank $(n \le d, \operatorname{rank}(A) = n)$:
Penrose)		$A^{\dagger} = A^T (AA^T)^{-1}$ (right pseudoinverse)
		- Square and invertible: $A^{\dagger}=A^{-1}$
		- Rank deficient: Computed via SVD decomposition

		- All eigenvalues are positive
Positive Definite	$\mathbf{x}^T A \mathbf{x} > 0$ for all non-zero \mathbf{x}	$-\det(A) > 0$
		- Invertible
Positive Semi-	$A = A^T, \mathbf{x}^T A \mathbf{x} \ge 0 \text{ for all } \mathbf{x}$	- All eigenvalues are non-negative
		$-\det(A) \ge 0$
		- Always symmetric
Definite	·	- Can always be written as $X^T X$ for some X (Gram matrix)
		- Defines a semi-inner product
Triangular (IIn	Upper: $a_{ij} = 0$ for $i > j$; Lower: $a_{ij} = 0$ for $i < j$	- Determinant is product of diagonal entries
Triangular (Up-		- Eigenvalues are diagonal entries
per / Lower)		- Solves systems efficiently via substitution
Skew-Symmetric	$A = -A^T$, so $a_{ii} = 0$	- Eigenvalues are 0 or purely imaginary
Skew-Symmetric	$u_{ii} = u_i$, so $u_{ii} = u_i$	$-\mathbf{x}^T A \mathbf{x} = 0 \text{ for all } \mathbf{x}$
Idempotent	$A^2 = A$	- Used in projection operations
		- Eigenvalues are 0 or 1
Nilpotent	$A^k = 0$ for some $k \in \mathbb{N}$	- All eigenvalues are 0
Orthogonal Pro-	$\begin{bmatrix} \text{Linear transformation } P \end{bmatrix}$	- Projects onto a subspace along its orthogonal complement
jection	where $P^2 = P$ and $P = P^T$	- Minimizes distance to the subspace (best approximation)
		- $\operatorname{Im}(P)$ is a subspace; $\operatorname{Ker}(P) = \operatorname{Im}(I - P)$
Linear Map	Function $T: V \to W$ satis-	- Represented by a matrix in finite dimensions
(Transforma-	$fying T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + \int_{a}^{b} T(a\mathbf{x} + b\mathbf{y}) d\mathbf{x} d\mathbf{y}$	- Preserves linear structure
tion)	$bT(\mathbf{y})$	- Kernel and image define fundamental subspaces
Fundamental	Column space now space	- Column space: span of columns (range of A)
	Column space, row space,	- Row space: span of rows = col space of A^T - Null space: solutions to $A\mathbf{x} = 0$
Subspaces	null space, left null space	- Null space: solutions to $A\mathbf{x} = 0$ - Left null space: null space of A^T
	$U^{\dagger} = U^{-1}$, where U^{\dagger} is the conjugate transpose of U	- Left fluir space. Thus space of A - $U^{\dagger}U = UU^{\dagger} = I$
		- Preserves inner products: $\langle U\mathbf{x}, U\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$
Unitary		- All eigenvalues lie on the unit circle: $ \lambda = 1$
		- Generalization of orthogonal matrices to complex space
		- Always positive semi-definite
	$G = X^T X$ for some matrix X	- Symmetric by construction
Gram Matrix		- Entries are inner products: $G_{ij} = \langle x_i, x_j \rangle$
		- Used in least squares and quadratic forms
	Matrix with known eigenvalues $\lambda_1, \ldots, \lambda_n$	- Can be diagonalized as $A = P\Lambda P^{-1}$
Eigenvalue Ma-		- Λ is diagonal matrix of eigenvalues
trix		- P contains corresponding eigenvectors as columns
		- Powers: $A^k = P\Lambda^k P^{-1}$
	Diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$	- Contains eigenvalues on the diagonal
Eigenvalue Ma-		- Result of eigendecomposition/PCA
trix (A)		$-\Lambda_{ii} = \lambda_i, \Lambda_{ij} = 0 \text{ for } i \neq j$
		- Used in spectral analysis and dimensionality reduction
Covariance Matrix	$\begin{bmatrix} \operatorname{Cov}(X) = \frac{1}{n-1} (X - \mu)^T (X - \mu)^T \\ \mu \end{bmatrix}$	- Always positive semi-definite
		- Symmetric by construction
		- Diagonal entries are variances
Correlation Matrix	Normalized covariance matrix with unit diagonal	- Off-diagonal entries are covariances
		- Positive semi-definite
		- Symmetric with $\rho_{ii} = 1$ Entries satisfy $-1 \le \alpha_{ii} \le 1$
		- Entries satisfy $-1 \le \rho_{ij} \le 1$ - Used in statistics and data analysis
		- Obed III Statistics and data analysis

Householder Matrix	$H = I - 2\frac{vv^T}{v^Tv} \text{ for vector } v$	- Symmetric and orthogonal - $H^2 = I$ (involutory)
		- Reflects vectors across hyperplane - Used in QR decomposition
Permutation Matrix	Matrix with exactly one 1 in each row and column	- Orthogonal matrix - Determinant is ± 1 - Reorders rows/columns when multiplied - $P^TP = I$ and $P^{-1} = P^T$
Circulant Matrix	Each row is cyclic shift of previous row	 Diagonalized by Discrete Fourier Transform Eigenvalues given by DFT of first row Used in signal processing Fast matrix-vector multiplication via FFT
Toeplitz Matrix	Constant along each diagonal: $a_{ij} = a_{i-j}$	 Determined by 2n - 1 parameters Includes circulant matrices as special case Used in time series and signal processing Fast algorithms available for solving systems
Hankel Matrix	Constant along each anti- diagonal: $a_{ij} = a_{i+j}$	Symmetric if squareRelated to Toeplitz matricesUsed in system identificationConnection to moment problems