Introducción
Conceptos y definiciones
Operaciones con funciones
Funciones inversas
Funciones de permutación

Funciones

Luis Eduardo Amaya Sede Guanacaste, Universidad de Costa Rica.

> MA-0320 - Matemáticas Discretas Octubre 2020

Contents

- Introducción
 - Justificación
 - Un poco de historia
- Conceptos y definiciones
 - Conceptos básicos
 - Tipos de funciones
 - Dominio, puntos de intersección y signo de funciones
 - Propiedades de funciones
- Operaciones con funciones
- Funciones inversas
 - Definiciones
- Funciones de permutación

Funciones de permutación

Tipos de funciones

Introducción

Describiremos algunos tipo de funciones, esto sin olvidar de que existen un sin fin de ellas.

Función constante

A,500), (B,500), (C,500), (D,500), (E,500)

Sea f una función de A en B, si existe un elemento $k \in B$, tal que

 $\forall x \in A$, se tiene que f(x) = k, entonces se dice que f es la función

constante de valor k.

constante de valor k.

$$f(x) = 1.6$$

$$f(3) = 1.6$$

$$f(4) = 1.6$$

Función identidad

(2,2),(0,0),(-5,-5)

La función de A en A, denotada por id tal que $\forall x \in A$, se tiene que

id(x) = x, se llama función identidad de A.

$$f_{10}$$
 f_{10}
 f_{10}
 f_{10}
 f_{10}
 f_{10}
 f_{10}
 f_{10}

Ejemplo 7: Si $f : \{0, 2, 3, 5\} \rightarrow \{0, 2, 3, 5\}$, la función identidad sobre este conjunto tiene como gráfico a $G_f = \{(0, 0), (2, 2), (3, 3), (5, 5)\}$.

Función factorial

La función factorial de n, $f: \mathbb{N} \to \mathbb{N}$ denotada por f(n) = n!, está definida por

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot \cdot 3 \cdot 2 \cdot 1$$

donde además se tiene 0! = 1.

Es importante recordar $n! = n \cdot (n-1)!$

274.273.272

Ejemplo 7: determine el valor numérico de la expresión,

Función parte entera

La función $f: \mathbb{R} \to \mathbb{Z}$ definida por f(x) = n donde n es el entero que satisface $n \le x < n+1$, se llama función parte entera o la función piso, es decir, la función piso de x corresponde al entero más grande que sea menor o igual a x. Se denota por $\lfloor x \rfloor$.

De forma análoga se define la función techo, que se denota por $\lceil x \rceil$, como el entero más peque~no que sea mayor o igual a x.

Función parte entera

Ejemplo 8: determine el valor numérico de la expresión

$$\left\lfloor \left(\frac{\left\lceil \pi \right\rceil}{\sqrt{2} + \left\lfloor 5.74 \right\rfloor} \right) \right\rfloor$$

Tenemos:

Función parte entera

Con algunas de las funciones anteriores se puede definir un resultado muy interesante en la teoría de números

Si $E_p(m)$ denota el exponente del primo p en la factorización prima de m. entonces

$$E_p(n!) = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \cdots \lfloor \frac{n}{p^k} \rfloor + \cdots$$

donde la suma es finita, pues es claro que, a partir de algún s, la potencia p^s será mayor que n y los términos sucesivos serán cero.

Ejemplo 9: resolver los siguientes ejercicios

- O Determinar $E_3(486) = 5$ Determinar $E_3(486) = 5$ Determinar $E_3(486) = 5$
- Determinar $E_3(85!)$
- Pruebe que los últimos 20 dígitos de 85! son iguales a 0.

Ejemplo 9

$$[3(85!)^{2}] + [85] +$$

$$9-C$$
 5 , 5×10^{20}
 $100....0$
 $10=2.5=22.5^{20}$? 20 and 20
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$
 $(2.5)=10^{20}$

$$(2.5)^{20} = 2^{20} \cdot 5^{20}$$

$$2^{1} = 2^{1} \cdot 2^{20} \cdot 5^{20}$$

$$2^{1} = 2^{1} \cdot 2^{20} \cdot 5^{20}$$

$$4$$

$$E_{5}(85!) = \left[\frac{85}{5}\right] + \left[\frac{85}{5^{2}}\right]$$

$$17+3 = 20$$

Con la argumentación anterior se demuestra que 85! termina con 20 ceros...!

Funciones de permutación

Tipos de funciones

Función característica

Sea E un conjunto y $A \subseteq E$. La función $\chi_A : E \to \{0,1\}$ definida por:

$$\chi_A = \begin{cases} 1 & si \quad x \in A \\ 0 & si \quad x \notin A \end{cases}$$

se llama función característica de A.

Ejemplo 10: Si $E = \{1, 2, 3, 4, 5\}$ determinar $\chi_{\{2,5\}}(1) \geq \chi_{\{2,5\}}(1) \geq \chi_{\{2,5\}}(2) = \chi_{\{2,5\}}(1) =$

Funciones polinomiales

Dada una función $f: \mathbb{R} \to \mathbb{R}$ se llama función polinomial de orden n a la expresión

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

donde $a_i \in \mathbb{R}$, i = 0, 1, ..., n Los casos más conocidos suelen ser

- Función lineal: f(x) = mx + b.
- ② Función cuadrática: $f(x) = ax^2 + bx + c$, $a \neq 0$.
- Solution Función cúbica: $f(x) = ax^3 + bx^2 + cx + d$, $a \neq 0$.