Predicting Fares

The opportunity

 85% of rides are inside Chicago, which amounts to a net income of roughly 74.2 million USD

The value of the data collected (1/2)

• More than 1 million rides do share all the information (privacy filter inactive).

The value of the data collected (2/2)

 Partnerships and deals can be done with credit card companies which amount to almost 40% of the payment methods used. Also with Taxicab companies.

Fare Prediction: Data preprocessing

- Removing missing fares (NaN/Null).
- Removing missing fields (NaN/Null).
- Removing outliers (IQR).
- Fixing fields (values=0)
- Removing unnecessary fields.

	Number of samples
Missing Fares	608
Missing Fields	117704
Hiden (Privacy)	2759599
Complete Samples	
(all fields)	1070134
Total	3948045

Pie Chart of Proportion of data removed from Dataset

Fare Prediction: Data preparation

- 2 datasets were prepared:
 - Inside Chicago dataset: containing only samples inside Chicago, 851,154 samples (Table 4).
 - Whole dataset: all the samples combined inside/outside Chicago 3,199,179 samples (Table 4).

Fare Prediction: Benchmark models

• Trained with all features/fields

	Linear Regression	Random Forest	AdaBoost	GradientBoost	XGBoost
R2 Score	0.96483346	0.99261667	0.93243551	0.99203469	0.99311352
MSE	7.98039558	1.67550918	15.33251201	1.80758010	1.56275934
RMSE	2.82495939	1.29441461	3.91567517	1.34446276	1.25010373

Fare Prediction: Removing fields

• All fields were removed except for ["Trip Miles", "Trip Seconds", "Company", "Payment Type"]. The comparison with the retrained models is:

	Linear Regression		Random Forest		AdaBoost		GradientBoost		XGBoost	
	Metric	Difference	Metric	Difference	Metric	Difference	Metric	Difference	Metric	Difference
R2 Score	0.92738848	-0.03744499	0.98796322	-0.00465345	0.92819775	-0.00423776	0.98861066	-0.00342403	0.98923736	-0.00387616
MSE	16.47784320	8.49744762	2.73152476	1.05601558	16.29419402	0.96168201	2.58460028	0.77702017	2.44238257	0.87962323
RMSE	4.05929097	1.23433158	1.65273251	0.35831790	4.03660675	0.12093158	1.60766921	0.26320645	1.56281239	0.31270866

• **Conclusion**: in this analysis it was shown that most features in the dataset are not relevant in the estimation of the Fare. In the estimation of the Fare less than 0.5% accuracy loss is observed compared with benchmark models in the previous slide.

Fare Prediction: Final Model

• XGBoost with all the data available but only considering ["Trip Miles", "Trip

Seconds", "Company", "Payment Type"].

	XGBoost (Pooled Data)
R2 Score	0.97123309
MSE	5.47489559
RMSE	2.33984948

