

DEPARTMENT OF ELECTRONICSAND COMPUTER SCIENCE

Fyn	erim	nent	Nο	7
EXP	enn	ient	INO.	_/

Semester	B.E. Semester VII
Subject	Deep Learning
Subject Professor In-	Dr. Nayana Mahajan
charge	
Laboratory	M201B

Student Name	Harsh Jain	Division	В
Roll Number	22108B0054	Batch	4
Grade and Subject			
Teacher's Signature			

Experiment	7		
Number			
Experiment Title	Implement RNN for sentiment analysis on movie reviews.		
Resources /			
Apparatus	Software: Google Colab		
Required			
Algorithm			
	• Start		
	Import Required Libraries		
	Load IMDB Movie Review Dataset		
	Pad Sequences to Equal Length		
	Define Sequential Model		
	Add Embedding and SimpleRNN Layers		
	Add Dense Output Layer with Sigmoid Activation		
	Compile the Model with Optimizer and Loss Function		
	Train the Model with Training and Validation Data		
	Evaluate Model Performance and Display Results		
Due come and a			
Program code	# RNN Sentiment Analysis on IMDB Movie Reviews (Google Colab Compatible)		
	import tensorflow as tf		
	from tensorflow.keras.datasets import imdb		
	from tensorflow.keras.preprocessing.sequence import pad_sequences		
	from tensorflow.keras.models import Sequential		
	from tensorflow.keras.layers import Dense, SimpleRNN, Embedding		
	# 1. Load IMDB dataset (top 10,000 most frequent words)		
	num_words = 10000		
	(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=num_words)		
	<pre>print("Training samples:", len(X_train)) print("Test samples:", len(X_test))</pre>		
	1		


```
# 2. Pad sequences to have equal length (50 words per review)
maxlen = 50
X train = pad sequences(X train, maxlen=maxlen, padding='post')
X test = pad sequences(X test, maxlen=maxlen, padding='post')
print("Shape of X train:", X train.shape)
print("Shape of X_test:", X_test.shape)
# 3. Build RNN model
model = Sequential()
model.add(Embedding(input dim=num words, output dim=32,
input length=maxlen))
model.add(SimpleRNN(32, return sequences=False))
model.add(Dense(1, activation='sigmoid'))
# 4. Compile model
model.compile(optimizer='adam', loss='binary crossentropy',
metrics=['accuracy'])
# 5. Train the model
history = model.fit(X_train, y_train,
          epochs=5,
          batch size=128,
          validation_data=(X_test, y_test))
# <a> 6. Evaluate model</a>
test loss, test acc = model.evaluate(X test, y test, verbose=0)
print("\nTest Loss:", test loss)
print("Test Accuracy:", test acc)
# 7. Plot accuracy vs epochs
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 4))
plt.plot(history.history['accuracy'], label="Training Accuracy")
plt.plot(history.history['val_accuracy'], label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("RNN Accuracy on IMDB Sentiment Analysis")
plt.legend()
plt.grid()
plt.show()
```


suitable for natural language processing tasks like sentiment classification.