STAT 320: Principles of Probability Unit 6 Part:B A Few Commonly Used Continuous Probability Distributions

United Arab Emirates University

Department of Statistics

Outline

- **Uniform Distribution**

Uniform Distribution

The uniform random variable is used to model the behavior of a continuous random variable whose values are uniformly or evenly distributed over a given interval.

Definition (Uniform Distribution)

A random variable X is said to be uniformly distributed over the interval [a,b], denoted by $X\sim \mathsf{Uniform}(a,b)$, if its density function is

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{Otherwise} \end{cases}$$

If $X \sim \text{Uniform}(a, b)$, then:

$$E(X) = \frac{a+b}{2}$$
, and $Var(X) = \frac{(b-a)^2}{12}$

Let $X \sim \text{Uniform}(a, b)$ for a < b

Mean
$$E(X) = \frac{a+b}{2}$$

Variance
$$VAR(X) = \frac{(b-a)^2}{12}$$

$$\mathsf{MGF} \ \mathsf{M}_{\scriptscriptstyle X}(t) = egin{cases} rac{e^{tb}-e^{ta}}{t(b-a)} & ext{if } t
eq 0 \ 1 & ext{if } t
eq 0 \end{cases}$$

Distribution	Support \mathbb{S}_X	pdf $f_X(x)$	Mean E(X)	Variance Var(X)	$M_{X}(t)$		
Uniform(a, b)	[a, b]	$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$	$M_X(t) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{if } t \neq 0\\ 1 & \text{if } t \neq 0 \end{cases}$		

Example

Example:

The time (in min) for a lab assistant to prepare the equipment for a certain experiment is believed to have a uniform distribution with a = 25 and b = 35.

Write the pdf of X and sketch its graph.

What is the probability that preparation time exceeds 33 min?

What is the probability that preparation time is within 2 min of the mean time?

Example

Example: The time (in min) for a lab assistant to prepare the equipment for a certain experiment is believed to have a uniform distribution with a = 25 and b = 35.

Write the pdf of X and sketch its graph.

What is the probability that preparation time exceeds 33 min?

What is the probability that preparation time is within 2 min of the mean time?

$$P(X > 33)$$
= $\int_{33}^{35} f(x) dx$
= $(\frac{x}{10}) \Big|_{33}^{35}$
= $\frac{35 - 32}{10}$
= 0.2

Mean of the random variable is $E(X) = \frac{25+35}{2} = 30$. $P\left(\begin{array}{c|c} E(X) & -2 < X < E(X) & +2 \end{array}\right)$ = P(30-2 < X < 30+2)= P(28 < X < 32) $\int_{28}^{32} f(x) dx$ $\left(\frac{x}{10}\right)_{28}^{32}$ 32 - 28

Uniform Distribution Exponential Distribution Gamma Distribut

Exercise

Example: Upon studying low bids for shipping contracts, a microcomputer company finds that intrastate contracts have low bids that are uniformly distributed between 20 and 25, in units of thousands of dollars.

- Find the probability that the low bid on the next intrastate shippingcontract is below \$22,000.
- Find the probability that the low bid on the next intrastate shipping contract is in excess of \$24,000.
- Find the expected value and standard deviation of low bids on contracts of the type described above.

Exercise

Example: A grocery store receives delivery each morning at a time that varies uniformly between 5:00 and 7:00 AM.

- Write and sketch the pdf of the delivery arrival.
- Find the probability that the delivery on a given morning will occur between 5:30 and 5:45 A M.
- Find the probability that the time of delivery will be within one-half standard deviation of the expected time.

Outline

- **Exponential Distribution**

Exponential Distribution: Context

- The exponential distribution is often used to model time (waiting time, interarrival time, hardware lifetime, failure time, etc.).
- When the number of occurrences of an event follows Poisson distribution, the time between occurrences follows exponential distribution.

Exponential Distribution

Definition (Exponential Distribution)

The exponential probability distribution with parameter $\lambda > 0$ (called the rate parameter) is

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

If
$$X \sim \mathsf{Exponential}(\lambda)$$
 then $E(X) = \frac{1}{\lambda}$ and $\mathsf{,Var}(X) = \frac{1}{\lambda^2}$

The cdf of the exponential distribution is

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 - e^{-\lambda x} & \text{if } x > 0 \end{cases}$$

Let $X \sim \text{Exponential}(\text{ rate } = \lambda) \text{ for } \lambda > 0$

Mean
$$E(X) = \frac{1}{\lambda}$$

Variance
$$VAR(X) = \frac{1}{\lambda^2}$$

MGF
$$M_X(t) = \frac{\lambda}{\lambda - t}$$
 if $0 \le t < \lambda$

Distribution	Support \mathbb{S}_X	6' 1 (.)		Variance Var(X)	$M_{X}(t)$	
Exponential(rate $= \lambda$)	(0, ∞)	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}.$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$ if $0 \le t < \lambda$	

Uniform Distribution Exponential Distribution Gamma Distribut

Example

Example: Suppose that a study of a certain computer system reveals that the response time, in seconds, has an exponential distribution with a mean of 3 seconds. What is the probability that response time exceeds 5 seconds?

Example

Example: Suppose that a study of a certain computer system reveals that the response time, in seconds, has an exponential distribution with a mean of 3 seconds. What is the probability that response time exceeds 5 seconds?

$$P(X > 5)$$
= 1 - P(X \le 5)
= 1 - F(5)
= 1 - \left(1 - e^{-\lambda 5}\right)
= e^{-5\lambda}
= e^{-5 \times \frac{1}{3}}
= 0.1889

Example: The failure rate for a type of electric light bulb is 0.002 per hour. Under the exponential model,

- Find the probability that a randomly selected light bulb will fail in less than 1000 hours.
- Find the probability that a randomly selected light bulb will last 2000 hours before failing.
- Find the mean and the variance of time until failure.
- Find the median time until failure.
- Find the time where 95% of these bulbs are expected to fail before it.

Exercise

- Example: An engineer thinks that the best model for time between breakdowns of a generator is the exponential distribution with a mean of 15 days.
 - If the generator has just broken down, what is the probability that it will break down in the next 21 days?
 - What is the probability that the generator will operate for 30 days without a breakdown?
- If the generator has been operating for the last 20 days, what is the probability that it will operate for another 30 days without a breakdown?
- Comment on the results of parts (b) and (c).

- Gamma Distribution

Definition (Gamma Distribution)

The gamma random variable X describes waiting times between events. It can be thought of as a waiting time between Poisson distributed events, the pdf of a Gamma(α, λ) for $\alpha > 0, \lambda > 0$ is given as:

$$f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}$$
 for $0 < x < \infty$.

The parameter α is known as the shape parameter, while λ is called rate parameter.

Note that: The quantity $\frac{1}{3}$ is referred to as the rate parameter.

If
$$X \sim \text{Gamma}(\alpha, \lambda)$$
 then $E(X) = \frac{\alpha}{\lambda}$ and $Var(X) = \frac{\alpha}{\lambda^2}$

Let
$$X \sim \text{Gamma}(\text{ shape } = \alpha, \text{ rate } = \lambda) \text{ for } \alpha > 0, \lambda > 0$$

$$E(X) = \frac{\alpha}{\lambda}$$

$$\mathsf{VAR}(X) = \frac{\alpha}{\lambda^2}$$

$$\mathsf{M}_{\chi}(t) = \frac{1}{\left(1 - \frac{t}{\lambda}\right)^{\alpha}} \text{ if } 0 \leq t < \lambda$$

Distribution	Support S _X	pdf $f_X(x)$	Mean E(X)	Variance Var(X)	$M_X(t)$
$Gamma(\alpha,\lambda)$	(0, ∞)	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\frac{1}{\left(1-\frac{t}{\lambda}\right)^{\alpha}} \text{ if } 0 \le t < \lambda$
$shape = \alpha, rate \ = \lambda$		if $x > 0$			` ^/

UAEU

Uniform Distribution Exponential Distribution Gamma Distribut

Exercise

Example: Suppose the time spent by a randomly selected student who uses a terminal connected to a local time-sharing computer facility has a gamma distribution with mean 20 min and variance 80 min².

- What are the values of α and λ ?
- What is the probability that a student uses the terminal for at most 24 min?
- What is the probability that a student spends between 20 and 40 min using the terminal?

Uniform Distribution Exponential Distribution Gamma Distribut

Exercise

Example: A pumping station operator observes that the demand for water at a certain hour of the day can be modeled as an exponential random variable with a mean of 100 cfs (cubic feet per second).

- 1 Find the probability that the demand will exceed 200 cfs on a randomly selected day.
- What is the maximum water producing capacity that the station should keep on line for this hour so that the demand will have a probability of only 0.01 of exceeding this production capacity?

Outline

- **Beta Distribution**

Beta Distribution

The beta random variable X represents the proportion or probability outcomes. For example, the beta distribution might be used to find how likely it is that the preferred candidate for mayor will receive 70% of the vote.

Definition (Beta Distribution)

Probability Density Function of the Beta(α, β), $\alpha > 0, \beta > 0$ is given as

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \text{ for } 0 \le x \le 1.,$$

where $\Gamma(\alpha)$ is defined by $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$.

If
$$X \sim \text{Beta}(\alpha, \beta)$$
 then $E(X) = \frac{\alpha}{\alpha + \beta}$ and $\operatorname{Var}(X) = \frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

Let $X \sim \text{Beta}(\alpha, \beta)$ for $\alpha > 0, \beta > 0$

Mean
$$E(X) = \frac{\alpha}{\alpha + \beta}$$

Variance
$$VAR(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

$$\mathsf{M}_{\scriptscriptstyle X}(t)=$$
 A Complicated Series

upport \mathbb{S}_X	$f_X(x)$	Mean E(X)	Variance Var(X)	$M_X(t)$
(0, 1)	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} x^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
	X	<u> </u>	$0,1) \qquad \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} x^{\beta-1} \qquad \frac{\alpha}{\alpha+\beta}$	0, 1) $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}x^{\beta-1} \qquad \frac{\alpha}{\alpha+\beta} \qquad \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Outline

- Normal Distribution

