## Moments, Stewness & kurbosis

Moments: - 9f X, 1 X2 --- XN are the N values assumed by the variable X, Enample  $\sqrt{n} = \frac{\sum_{j=1}^{N} x_{j}^{n}}{N}$  is called the "R-th moment" # The 1st moment with n=1 is the arithmetic mean x. # The R-th moment about the mean  $X^n$  is

[Enample] 5.2  $M_n = \frac{\sum_{j=1}^{N} (X_j - \overline{X})^n}{N}$ # gf nzl, @ ) m = O souted (V 9f N=2, (D) m<sub>2</sub>=s<sup>2</sup>= variance. # The n-th moment about any origin A is,

[Example]  $m_{\hat{N}} = \frac{\sum_{j=1}^{N} (x_j - A)^N}{N} = \frac{\sum_{j=1}^{N} d_j^N}{N} = \frac{3}{N}$ Where, di = Xi - A are the deviations of x from A.

98 A=0, (3) =) O.
50, (1) is often called the "n-th moment about 2 eno."

# 9f x, x2, --, x\* occur with frequenctes f, f2,--,
f\*, respectively,

$$0 = \frac{k}{x^n} = \frac{\sum_{j=1}^{k} f_j x_j^n}{\sum_{j=1}^{k} f_j}$$

$$N = \sum_{j=1}^{k} f_j$$

$$k$$

$$N = \sum_{j=1}^{N} f_{j}$$

$$N = \sum_{j=1}^{N} f_{j}(x_{j} - x)^{T}$$

$$b$$
  $b$   $m_{n}' = \frac{\sum_{j \neq i}^{k} f_{j} (x_{j} - A)^{R}}{N}$ 

Q, 5 & @ are used for grouped Lata.

## The relations between Moments:

The relations between "moments about the mean ma" and "moment about an arbitrary origin m's are:

$$m_2 = m_2' - m_1'^2$$

$$m_3 = m_3' - 3m_1' m_2' + 2m_1'^3$$

$$m_4 = m_4' - 4m_1' m_3' + 6m_1'^2 m_2' - 3m_1'^4$$

where,  $m'_i = X - A$ 

# 9f c is equal size of all class intervals,

Example  $d_j = x_j - A = C u_j$ ; where  $u_j = \frac{x_j - A}{C}$ 5.6, Thren,  $v_j = c$   $v_j = c$ 

Moments in dimensionless form:

The "dimensionless moments about the mean" by  $a_{R} = \frac{m_{R}}{s_{R}} = \frac{m_{R}}{\sqrt{m_{L}}} = \frac{m_{R}}{\sqrt{m_{L}^{R}}} = \frac{m_{R}}{\sqrt{m_{L}^{R}}}$ 

where,  $S=\sqrt{m_2}=S.D.$  since,  $m_1=0$  &  $m_2=S^2$ .

(3)  $a_1=0$  &  $a_2=1$ .

Stewness: Stewness is the Legree of asymmetry of a Morboutton.

as and or are sello

Positive stewness:

regative stewners:

Charles ( shitming Curry)

3 (Mean-Median) Stewness 2 - Mean-Mode

Standard deviation Standard deviation leanson's and Enample) Pearwon's 1st seemens. coefficient of stainers # 9n terms of quartiles & percentiles are; Quantile coefficient of skewness =  $\frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}$ =  $\frac{Q_3 - Q_2 + Q_1}{Q_3 - Q_2 + Q_1}$ 10-90 percentile n n q =  $\frac{(P_{90} - P_{50}) - (P_{50} - P_{10})}{Q_3 - Q_1}$ 1,000 P10 - P10 wery sungualan In dimensionless form,

Moment coefficient of stewners,  $a_3 = \frac{m_3}{s_3^3}$ [Enample] 5.12Another measure of stewners is sometimes given by  $b_1 = a_3$ .

For perfectly symmetrical curves (Normal curves)  $a_3$  and  $b_1$  are 2eno.

tuntosis: tuntosis is the degree of peakedness of a distribution, usually taken relatively to a normal distribution.

Leptotuntie: A distribution having a relatively high peat.

Platy trustie: Having a flat-topped.

Meso tuntie: A normal distribution, which is not very peated on very flat topped.



In dimensionless form,

Moment coefficient of tuntosis, 
$$a_4 = \frac{m_4}{3^4}$$

[Enample: 5.13]

For normal distribution,

 $b_2 = a_4 = 3$ .

Enample: 5.13

 $= \frac{m_4}{80}$ 
 $= \frac{m_4}{80}$ 
 $= b_2$  (dended by  $b_2$ )

For this reason, the Kurdosi's is sometimes defined by  $(b_2-3)$ . which is  $(+) \rightarrow for$  leptokurdic distribution  $(-) \rightarrow 11$  plats turkle 11  $(0) \rightarrow 11$  Normal n.

Based on both quartiles and percentiles,  $K(tappa) = \frac{Q}{P_{90}-P_{10}}$  where,  $Q = \frac{1}{2}(Q_3-Q_1)$ For the normal distribution, Jestionarie for 1.) Signingson to Carping John Della Linewiewsless ferra selficient of tuniosis all natural distribution the is every sol acres and but