Package 'bandit'

October 12, 2022

Type Package

Title Functions for Simple a/B Split Test and Multi-Armed Bandit Analysis	
Version 0.5.1	
Date 2022-06-028	
Imports boot, gam (>= 1.09)	
Author Thomas Lotze and Markus Loecher	
Maintainer Markus Loecher < markus.loecher@gmail.com>	
Description A set of functions for doing analysis of A/B split test data and web metrics in general.	
License GPL-3	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2022-06-29 11:20:12 UTC	
R topics documented:	
bandit-package	2
best_binomial_bandit	2
best_binomial_bandit_sim	3
best_poisson_bandit	5
deseasonalized_trend	6
distribution_estimate	7 8
significance_analysis	9
·	9 10
1	10
value_remaining	
Index	13

handit-nackara	Functions for simple A/P split test and multi-armed handi	analysis
bandit-package	Functions for simple A/B split test and multi-armed banding	anaiysis

Description

A set of functions for doing analysis of A/B split test data and web metrics in general.

Details

Package: bandit Type: Package

Title:

Functions for simple A/B split test and multi-armed bandit analysis

Version: 0.5.0 Date: 2014-05-03

Imports: boot, gam (>= 1.09)

Author: Thomas Lotze and Markus Loecher

Maintainer: Thomas Lotze <thomaslotze@thomaslotze.com>

License: GPL-3

Author(s)

Thomas Lotze and Markus Loecher

Description

Compute the Bayesian probabilities for each arm being the best binomial bandit.

Usage

```
best_binomial_bandit(x, n, alpha=1, beta=1)
```

Arguments

as in prop.test, a vector of the number of successes
 as in prop.test, a vector of the number of trials
 alpha
 shape parameter alpha for the prior beta distribution.
 shape parameter beta for the prior beta distribution.

Value

a vector of probabilities for each arm being the best binomial bandit; this can be used for future randomized allocation

Author(s)

Thomas Lotze <thomaslotze@thomaslotze.com> and Markus Loecher

References

Steven L. Scott, A modern Bayesian look at the multi-armed bandit, Appl. Stochastic Models Bus. Ind. 2010; 26:639-658. (http://www.economics.uci.edu/~ivan/asmb.874.pdf)

See Also

```
prop.test
```

Examples

```
x=c(10,20,30,50)
n=c(100,102,120,130)
arm_probabilities = best_binomial_bandit(x,n)
print(arm_probabilities)
paste("The best arm is likely ", which.max(arm_probabilities), ", with ",
round(100*max(arm_probabilities), 2), " percent probability of being the best.", sep="")
best\_binomial\_bandit(c(2,20),c(100,1000))
best_binomial_bandit(c(2,20),c(100,1000), alpha = 2, beta = 5)
#quick look at the various shapes of the beta distribution as we change the shape params:
AlphaBeta = cbind(alpha=c(0.5,5,1,2,2),beta=c(0.5,1,3,2,5))
M = nrow(AlphaBeta)
y= matrix(0,100,ncol=M)
x = seq(0,1,length=100)
for (i in 1:M) y[,i] = dbeta(x,AlphaBeta[i,1],AlphaBeta[i,2])
matplot(x,y,type="l", ylim = c(0,3.5), lty=1, lwd=2)
param_strings = paste("a=", AlphaBeta[,"alpha"], ", b=", AlphaBeta[,"beta"], sep="")
legend("top", legend = param_strings, col=1:M, lty=1)
```

```
{\tt best\_binomial\_bandit\_sim}
```

best_binomial_bandit_sim

Description

Compute the Bayesian probabilities for each arm being the best binomial bandit, using simulation.

Usage

```
best_binomial_bandit_sim(x, n, alpha = 1, beta = 1, ndraws = 5000)
```

Arguments

x as in prop.test, a vector of the number of successes
n as in prop.test, a vector of the number of trials
alpha shape parameter alpha for the prior beta distribution.
beta shape parameter beta for the prior beta distribution.
ndraws number of random draws from the posterior

Value

a vector of probabilities for each arm being the best binomial bandit; this can be used for future randomized allocation

Author(s)

Thomas Lotze and Markus Loecher

References

Steven L. Scott, A modern Bayesian look at the multi-armed bandit, Appl. Stochastic Models Bus. Ind. 2010; 26:639-658.

```
(http://www.economics.uci.edu/~ivan/asmb.874.pdf)
```

See Also

```
prop.test
```

```
x=c(10,20,30,33)
n=c(100,102,120,130)
best_binomial_bandit_sim(x,n, ndraws=1000)
round(best_binomial_bandit(x,n),3)

best_binomial_bandit_sim(c(2,20),c(100,1000))

best_binomial_bandit_sim(c(2,20),c(100,1000), alpha = 2, beta = 5)

#quick look at the various shapes of the beta distribution as we change the shape params:
AlphaBeta = cbind(alpha=c(0.5,5,1,2,2),beta=c(0.5,1,3,2,5))
M = nrow(AlphaBeta)
y= matrix(0,100,ncol=M)
x = seq(0,1,length=100)
for (i in 1:M) y[,i] = dbeta(x,AlphaBeta[i,1],AlphaBeta[i,2])
matplot(x,y,type="1", ylim = c(0,3.5), lty=1, lwd=2)
```

best_poisson_bandit 5

```
param_strings = paste("a=", AlphaBeta[,"alpha"], ", b=", AlphaBeta[,"beta"], sep="")
legend("top", legend = param_strings, col=1:M, lty=1)
```

best_poisson_bandit best_poisson_bandit

Description

Compute the Bayesian probabilities for each arm being the best poisson bandit.

Usage

```
best_poisson_bandit(x, n = NULL)
```

Arguments

x as in prop.test, a vector of the number of successes; it may alternatively be a list of vectors of the results of each trial, if n is not provided

n as in prop.test, a vector of the number of trials; if it is not provided, x must be a list of vectors of the results of each trial

Value

a vector of probabilities for each arm being the best poisson bandit; this can be used for future randomized allocation

Author(s)

Thomas Lotze <thomaslotze@thomaslotze.com>

References

Steven L. Scott, A modern Bayesian look at the multi-armed bandit, Appl. Stochastic Models Bus. Ind. 2010; 26:639-658. (http://www.economics.uci.edu/~ivan/asmb.874.pdf)

See Also

```
prop.test
```

```
p1 = rpois(100, lambda=10)
p2 = rpois(100, lambda=9)
x = sapply(list(p1, p2), sum)
n = sapply(list(p1, p2), length)
best_poisson_bandit(x,n)
```

6 deseasonalized_trend

```
deseasonalized_trend    deseasonalized_trend
```

Description

A convenience function to analyze a timeseries and return an estimate (via gam, using day of week factors and smoothed timestamp) of whether, after accounting for day-of-week, there is a significant time-based influence and what that influence is.

Usage

```
deseasonalized_trend(df, w=NULL)
```

Arguments

```
df a data frame containing timestamp and value entries w number of attempts (n for binomial data)
```

Value

a list with the following items:

```
pval given by anova on gam, to indicate whether s(timestamp) is significant smoothed_prediction
```

a smoothed prediction over time (on Wednesdays), to give a human-understandable idea of what the change over time has been

Author(s)

Thomas Lotze <thomaslotze@thomaslotze.com>

distribution_estimate 7

```
} else {
  print("No significant time-based factor")
}
```

distribution_estimate summarize_metrics

Description

A convenience function to perform overall metric analysis: mean, median, CI.

Usage

```
distribution_estimate(v, successes=NULL, num_quantiles=101, observed=FALSE)
```

Arguments

v a vector of values to be analyzed (for nonbinary data), or number of trials (for

binary data)

successes number of successes (for binary data)
num_quantiles number of quantiles to split into

observed whether to generate the observed distribution (rather than the estimated distri-

bution of the mean); default FALSE

Value

a data frame with the following columns:

quantiles	the estimated quantiles (0,0.01,0.02,,1) for the mean, using a Beta-binomial estimate of p for binomial data, a bootstrapped quantile distribution for real-valued numbers
Х	x values for plotting a lineplot of the estimated distribution
У	y values for plotting a lineplot of the estimated distribution
mids	mid values for plotting a barplot of the estimated distribution
lefts	left values for plotting a barplot of the estimated distribution
rights	right values for plotting a barplot of the estimated distribution
widths	width values for plotting a barplot of the estimated distribution
heights	height values for plotting a barplot of the estimated distribution
probabilities	probabilities indicating how much probability is contained in each barplot

Author(s)

Thomas Lotze <thomaslotze@thomaslotze.com>

8 prob_winner

Examples

prob_winner

prob_winner

Description

Function to compute probability that each arm is the winner, given simulated posterior results

Usage

```
prob_winner(post)
```

Arguments

post

the simulated results from the posterior, provided by sim_post

Author(s)

Thomas Lotze and Markus Loecher

```
x=c(10,20,30,50)
n=c(100,102,120,130)
betaPost = sim_post(x,n)
prob_winner(betaPost)
```

significance_analysis 9

```
significance_analysis significance_analysis
```

Description

A convenience function to perform overall proportion comparison using prop.test, before doing pairwise comparisons, to see what outcomes seem to be better than others.

Usage

```
significance_analysis(x, n)
```

Arguments

x as in prop.test, a vector of the number of successes
n as in prop.test, a vector of the number of trials

Value

a data frame with the following columns:

 $\begin{array}{ccc} successes & x \\ totals & n \\ estimated_proportion \\ & x/n \end{array}$

lower 0.95 confidence interval on the estimated amount by which this alternative out-

performs the next-lower alternative

upper 0.95 confidence interval on the estimated amount by which this alternative out-

performs the next-lower alternative

significance p-value for the test that this alternative outperforms the next-lower alternative

order order, by highest success proportion

best 1 if it is part of the 'highest performing group' – those groups which were not

significantly different from the best group

p_best Bayesian posterior probability that this alternative is the best binomial bandit

Note

This is intended for use in A/B split testing – so sizes of n should be roughly equal. Also, note that alternatives which have the same rank are grouped together for analysis with the 'next-lower' alternative, so you may want to check to see if ranks are equal.

Author(s)

Thomas Lotze <thomaslotze@thomaslotze.com>

10 sim_post

See Also

```
prop.test
```

Examples

```
x = c(10,20,30,50)
n = c(100,102,120,130)
sa = significance_analysis(x,n)
sa[rev(order(sa$estimated_proportion)), ]

x = c(37,41,30,43,39,30,31,35,50,30)
n = rep(50, length(x))
sa = significance_analysis(x,n)
sa[rev(order(sa$estimated_proportion)), ]

x = c(37,41,30,43,39,30,31,37,50,30)
n = rep(50, length(x))
sa = significance_analysis(x,n)
sa[rev(order(sa$estimated_proportion)), ]
```

sim_post

sim_post

Description

Simulate the posterior distribution the Bayesian probabilities for each arm being the best binomial bandit

Usage

```
sim_post(x, n, alpha = 1, beta = 1, ndraws = 5000)
```

Arguments

x as in prop.test, a vector of the number of successes
n as in prop.test, a vector of the number of trials
alpha shape parameter alpha for the prior beta distribution.
beta shape parameter beta for the prior beta distribution.
ndraws number of random draws from the posterior

Author(s)

Thomas Lotze and Markus Loecher

summarize_metrics 11

Examples

```
x=c(10,20,30,50)
n=c(100,102,120,130)
sim_post(x,n)
```

summarize_metrics

summarize_metrics

Description

A convenience function to perform overall metric analysis: mean, median, CI.

Usage

```
summarize_metrics(v, successes=NULL)
```

Arguments

v a vector of values to be analyzed (for nonbinary data), or number of trials (for

binary data)

successes number of successes (for binary data)

Value

a list with the following items:

mean mean median median

10wer 0.95 confidence interval on the mean upper 0.95 confidence interval on the mean num_obs number of observations of this metric

total the sum of all values of this metric (mean*num_obs)

Author(s)

Thomas Lotze <thomaslotze@thomaslotze.com>

12 value_remaining

value_remaining	
-----------------	--

Description

Compute the "value_remaining" in the binomial bandits

Usage

```
value_remaining(x, n, alpha = 1, beta = 1, ndraws = 10000)
```

Arguments

Х	as in prop.test, a vector of the number of successes
n	as in prop.test, a vector of the number of trials
alpha	shape parameter alpha for the prior beta distribution.
beta	shape parameter beta for the prior beta distribution.
ndraws	number of random draws from the posterior

Value

value_remaining distribution; the distribution of improvement amounts that another arm might have over the current best arm

Author(s)

Thomas Lotze and Markus Loecher

```
x=c(10,20,30,80)
n=c(100,102,120,240)
vr = value_remaining(x, n)
hist(vr)
best_arm = which.max(best_binomial_bandit(x, n))
# "potential value" remaining in the experiment
potential_value = quantile(vr, 0.95)
paste("Were still unsure about the CvR for the best arm (arm ", best_arm,
"), but whatever it is, one of the other arms might beat it by as much as ",
round(potential_value*100, 4), " percent.", sep="")
```

Index

```
* design
    best_binomial_bandit, 2
    best_poisson_bandit, 5
    significance_analysis,9
* htest
    best_binomial_bandit, 2
    best_poisson_bandit, 5
    deseasonalized_trend, 6
    distribution_estimate, 7
    significance_analysis,9
    summarize_metrics, 11
* package
    bandit-package, 2
bandit (bandit-package), 2
bandit-package, 2
bbb (best_binomial_bandit), 2
best_binomial_bandit, 2
best_binomial_bandit_sim, 3
best_poisson_bandit, 5
bpb (best_poisson_bandit), 5
deseasonalized_trend, 6
{\tt distribution\_estimate}, {\tt 7}
prob_winner, 8
prop. test, 3-5, 10
\verb|significance_analysis|, 9
sim_post, 10
summarize_metrics, 11
value_remaining, 12
```