

Pure Data

Cos'è PureData?

- Pure Data è un linguaggio di programmazione visuale creato da Miller Puckette. Sviluppato negli anni novanta, è un progetto open source rilasciato sotto licenza BSD.
- Oltre a manipolare elementi sonori, il software permette di gestire immagini e video tramite le OpenGL. Offre supporto MIDI e la possibilità di comunicare tramite FUDI, un protocollo di rete sviluppato sempre da Puckette.
- Una versione modificata del software, chiamata EAPd, è presente nel videogioco Spore.

Perché PureData?

- Pd è descritto dal suo creatore come un "real-time music and multimedia environment", e permette a musicisti, artisti, ricercatori e sviluppatore di creare software graficamente senza scrivere una riga di codice.
- Può essere usato per processare e generare suoni, video, grafica 2D/3D, e interfacciarsi con sensori e diversi dispositivi di input.

Le basi - 1

- Con PureData si può lavorare su una o più "patch" contemporaneamente, salvando e caricando nel formato .pd.
- Le funzioni sono rappresentate tramite piccoli rettangoli chiamati "objects", piazzati in una "tela" infinita detta "canvas".
- I dati vengono trasferiti da un oggetto all'altro tramite connessioni visibili chiamate "patch cords".

Le basi - 2

- Ciascun object esegue una azione specifica, che può variare in complessità da operazioni matematiche di basso livello a complicate funzioni audio o video come riverbero, trasformazioni FFT e decoding video.
- Gli objects includono, oltre a quelli integrati in Pd (Pd vanilla objects), anche "externals" (objects compilati da C o C++) o "abstractions" (intere patch di Pd caricate come un unico object).

Mascheramento: definizioni

- Si definisce mascheramento un' interazione percettiva tra suoni. In virtú di ció, gli studi sul mascheramento sono utili per comprendere la selettivitá del nostro sistema uditivo.
- Si definisce segnale una sensazione che si desidera percepire e controllare
- Si definisce rumore una sensazione che interferisce con la percezione del segnale in analisi
- Il mascheramento uditivo nel dominio della frequenza risulta noto come mascheramento spettrale, mentre nel dominio del tempo prende il nome di mascheramento temporale

Tipologie di mascheramento

Mascheramento tonale

- Con mascheramento tonale si intende una interazione percettiva tra due suoni tale da causare l'indistinguibilità di essi.
- La forza del mascheratore, ad ogni frequenza di mascheramento, é determinata dal livello della soglia di rilevamento del segnale, meglio conosciuta come masker threshold [MT]
- Se MT é alta, il mascheratore avrá un effetto debole sul probe
- Se MT é bassa, il mascheratore avrá un effetto forte sul probe

Mascheramento tonale

Mascheramento tonale

Mascheramento non tonale

- Si definisce mascheramento non tonale una interazione percettiva, ove il tono mascheratore risulta essere un rumore, il quale impedisce parzialmente o del tutto la percezione di un segnale uditivo (probe).
- Generalmente il rumore garantisce un effetto mascherante nettamente più forte rispetto ad un tono
- Il rumore interrompe la comunicazione uditiva più o meno uniformemente lungo tutto lo spettro di frequenza
- Per ogni 10dB di incremento all'ampiezza del rumore, il livello (in termini di ampiezza) del tono deve essere incrementato di 10dB per essere udibile

Banda critica

- Nel 1940 Harvey Fletcher espose il concetto di banda critica, il quale afferma che la forza del mascheramento dipende dalla quantità dell'energia del rumore entro la banda critica.
- Approssimativamente, la banda critica è la banda di frequenze audio entro cui un secondo tono interferisce con la percezione del primo tono mediante mascheramento uditivo.
- Piú il rumore sará intenso all'interno delle due frequenze di taglio, piú forte sará il mascheramento. Si ha una forte analogia con i filtri passa banda. Dunque il rumore al di fuori della banda critica viene attenuato.

Obiettivi del progetto

Studiare, utilizzando Pure Data, il mascheramento di un tono attraverso un rumore in relazione all'ampiezza della banda a cui quest'ultimo viene filtrato.

In un editor audio generare i seguenti segnali

- [T] Tono puro da 2000Hz, ampiezza 0.2
- [R] Rumore bianco (banda larga), ampiezza 0.8
- Testare il mascheramento in questi vari test
 - Riducendo l'ampiezza di T gradualmente

Riferimenti Bibliografici

Per la teoria:

- http://www.dtic.mil/dtic/tr/fulltext/u2/639118.pdf
- https://en.wikipedia.org/wiki/Auditory masking
- http://hyperphysics.phyastr.gsu.edu/hbase/Sound/mask.html
- http://www2.bcs.rochester.edu/courses/crsinf/221/14.pdf

Per Pure Data:

- https://puredata.info/
 Sito ufficiale
- https://www.reddit.com/r/puredata/ Reddit
- Gruppo Facebook
- http://www.pdpatchrepo.info/ Patch Repository

E per finire, la fonte per eccellenza:

•https://it.wikipedia.org/wiki/Pure_Data