CE 412 A: Water Supply & Wastewater Disposal Systems

Tutorial – 2022-23 II ● Part II: Wastewater Management

TUTORIAL 4 ● Tuesday, March 28, 2023

Design Primary Settling Tank(s) followed by Secondary Treatment Process consisting of an Activated Sludge Process for a locality with following information for which Preliminary Treatment Operations (Screen Chamber, Grit Chamber and Equalization Tank) were designed in Tutorial 3.

=	250 lpcd							
=	350 person per hectare							
=	690 hectares							
=	80% of W/S							
=	3.0							
=	7391 L per day per hectare							
=	50 MLD							
Plant (STP) = 50 MLD Some Relevant Parameters/Data/Information								
5,2000								
=	32 - 48 m ³ /m ² /d							
=	<125 m ³ /m/d							
=	< 4 h							
=	25 – 40 %							
=	50 – 75 %							
=	4000 – 6000 mg/L							
=	350 mg/l							
=	50 mg/L							
=	30 mg/L							
=	5 mg/L							
=	4 /d							
=	25 mg/L							
=	0.5							
=	0.05 /d							
=	1,500 – 3,000 mg/L							
=	8,000 – 10,000 mg/L							
	4-12 h							
	emoved, in kg/d] – 1.42.[Sludge							
=	Area of Influence: 5m x 5m x 3m (depth)							
=	Area of Influence: 6m x 6m x 4m (depth)							
=	2.0 kg O ₂ /h/KW							
=	80 % of Under Standard Conditions							
	= = = = = = = = = = = = = = = = = = =							

nergy requirements for maintaining		
completely mixed conditions in the aeration		
tank	=	$15 - 20 \text{ W/m}^3$

Nutrient Requirement/Removed: 0.121 g N and 0.022 g P per g biomass produced (or wasted)

Secondary Sedimentation Tank Design

Solids	V	Gravity Flux	u Underflow Flux		Total Flux
mg/L	m/hr	kg/m²/hr	m/hr	Kg/m²/hr	kg/m²/hr
2000	3.60	7.196	0.100	0.200	7.396
2500	1.86	4.655	0.100	0.250	4.905
3000	1.09	3.261	0.100	0.300	3.561
3500	0.69	2.414	0.100	0.350	2.764
4500	0.33	1.478	0.100	0.450	1.928
5000	0.24	1.203	0.100	0.500	1.703
6000	0.14	0.843	0.100	0.600	1.443
6500	0.11	0.721	0.100	0.650	1.371
8000	0.06	0.481	0.100	0.800	1.281
10000	0.03	0.311	0.100	1.000	1.311
12000	0.02	0.218	0.100	1.200	1.418

Interfacial Settling Velocity

 $y = (2E+10).x^{-2.9521}$

