Warm Up: Objects in Free-Fall, Projectiles

Prof. Jordan C. Hanson

September 23, 2022

1 Memory

- 1. $y(t) = -\frac{1}{2}gt^2 + v_{i,y}t + y_i$... Vertical displacement.
- 2. $v_y(t) = -gt + v_{i,y}$... Vertical velocity.

2 Objects in Free-Fall, Projectiles

1. Note in Fig. 1 the initial velocity is brockn into the vertical and horizontal components.

Figure 1: The initial velocity \vec{v}_0 launched at an angle θ with respect to the x-axis.

2. Suppose an object is launched into the air from the origin at an angle θ with respect to the horizontal, with an initial velocity \vec{v}_i , eventually landing back at y=0. Use the second equation in the Memory bank to show that the total time spent in the air is

$$T = \frac{v_i \sin \theta}{q} \tag{1}$$

3. Use the first equation in the Memory Bank to show that T is given by Eq. 1.

4. Hints: for the first exercise, ask yourself what the velocity is at the apex of the trajectory? For the second exercise, solve the quadratic for the times that make y = 0.