

Basic Electrical Technology

Circuit Elements

Classification of Circuit Elements

Active Elements - Sources

Voltage Source:

≻Ideal:

- Maintains constant voltage irrespective of connected load
- \circ Internal resistance $R_s = 0$

→ Practical:

- Terminal voltage changes based on the connected load
- o Internal resistance R_s ≠ 0

Ideal Voltage Source (DC)

Practical Voltage Source

Active Elements - Sources

Current Source:

≻Ideal:

- Maintains constant current irrespective of the load connected
- \circ Internal resistance $R_s = \infty$

→ Practical:

- Output current changes based on the connected load
- $_{\circ}$ Internal resistance $R_s < \infty$

Ideal Current Source (DC)

Practical Current Source

Resistor

Energy Consuming Element

Resistor

➤ Passive electric device that dissipates energy

- ➤ Resistance: property which opposes flow of current
 - Symbol: R
 - Ounit: Ohms (Ω)
 - \circ Power Consumed = I^2R

- Reciprocal of resistance
- Symbol: G
- Unit Siemens (S)

Resistors in Series

Current (I) is same

$$V = V_1 + V_2 + V_3$$

$$R_{eq} = R_1 + R_2 + R_3$$

Resistors in Parallel

Voltage (V) is same

$$I = I_1 + I_2 + I_3$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Inductor

Energy Storing Element

Inductor

- ➤ Passive electric device that stores energy in its magnetic field when current flows through it
- A coil of wire wound on a core
 - Eg.: Air core Inductor, iron core inductor

Symbol: L

Unit: Henry (H)

$$v_L = L \frac{di}{dt}$$

Inductive Circuit

For a coil uniformly wound on a non-magnetic core of uniform cross section, self inductance is given by

$$L = \frac{\mu_0 A N^2}{l}$$

Where,

l = length of the magnetic circuit in meters

A =cross sectional area in square meters

 μ_o = Permeability of air = 4×10^{-7}

N = No. of turns in the coil

Equivalent Inductance

Inductors in series

$$L_{eq} = L_1 + L_2 + \dots + L_n$$

Inductors in Parallel

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$$

Energy Stored in an Inductor

► Instantaneous power,

$$p = v_L \cdot i = L i \frac{di}{dt}$$

 \triangleright Energy absorbed in 'dt' time is

$$dw = L i di$$

 \triangleright Energy absorbed by the magnetic field when current increases from $\bf 0$ to $\bf I$ amperes, is

$$W = \int_0^I L \, i \, di = \frac{1}{2} L \, I^2$$

Capacitor

Energy Storing Element

Capacitors

➤ Passive electric device that stores energy in the electric field between a pair of closely spaced conductors

Symbol: C

Ounit: Farad (F)

The capacitive current is proportional to the rate of change of voltage across it

$$i_c = C \frac{dv_c}{dt}$$

Charge stored in a capacitor whose plates are maintained at constant voltage:

$$Q = CV$$

Terminologies

Electric field strength,

$$E = \frac{V}{d} volts/m$$

Electric flux density,

$$D = \frac{Q}{A} C/m^2$$

Permittivity of free space,

$$\varepsilon_0 = 8.854 \times 10^{-12} \ F/m$$

- \succ Relative permittivity, $oldsymbol{arepsilon}_{r}$
- Capacitance of parallel plate capacitor

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

Equivalent Capacitance

Capacitors in Series

$$\frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_n}$$

Capacitors in Parallel

$$C_{eq} = C_1 + C_2 + \ldots + C_n$$

Energy stored in a Capacitor

► Instantaneous power

$$p = v_c \times i = C v_c \frac{dv_c}{dt}$$

 \triangleright Energy supplied during 'dt' time is:

$$dw = C v_c dv_c$$

 \triangleright Energy stored in the electric field when potential rises from ${f 0}$ to ${f V}$ volts is,

$$W = \int_0^V C v_c dv_c = \frac{1}{2} CV^2 \text{ Joules}$$

Illustration 1

- a) 15 resistors are connected as shown in the diagram. Each of the resistors has resistance 1 Ω . Find the equivalent resistance of the network between A & B.
- b) What will be the equivalent resistance of this network if the resistors arranged in the sequence extends to infinity?

Ans:

- a) 1.875 Ω
- b) 2Ω

Illustration 2

Two incandescent bulbs have the following ratings:

Bulb-1: 120 V, 60 W;

Bulb-2: 240 V, 480 W

- a) Both of them are connected in series with a voltage source.
 - i. Which bulb will glow brighter and why?
 - ii. What is the maximum voltage that can be applied so that non of the bulbs fuse?
- b) Now both of them are connected in parallel with a voltage source.
 - i. Which bulb will glow brighter and why?
 - ii. What is the maximum voltage that can be applied so that non of the bulbs fuse?

Assume that the incandescent bulbs are purely resistive.

Ans:

- a) i) Bulb-1 since it consumes more power, ii) 180 V
- b) i) Bulb-2 since it consumes more power, ii) 120 V

Illustration 3

Two incandescent bulbs of 40 W and 60 W ratings are connected in series across the mains. Then which of the following statement(s) is(are) correct?

- a) The bulbs together will consume 100 W
- b) The bulbs together will consume 50 W
- c) The 60 W bulb glows brighter
- d) The 40 W bulb glows brighter

Assume the voltage rating of both the bulbs to be same.

Ans: d) The 40 W bulb glows brighter

Homework 1

Reduce the network to its equivalent resistance between terminals A and B

Ans: $\frac{5}{6}$ R