《基于全卷积神经网络的图像分类》

Presented by meijun

答辩人: 姚美君

指导老师: 喻玲娟

03 研究方法 **04** 总结分析

目录 CONTENTS

深度学习和神经网络的理念已经有几十年了, 现在才流行起来

01 选题背景

目前,图像分类最常用的网络模型是卷积神经网络CNN。它由交替的卷积层和池化层,其次是少量的全连接层。大多数的优化方案也是基于此基础架构。

研究发现,用相同步长的卷积层替代池化层之后,精确度并无损失。以找到更简单的适用于图像分类的神经网络架构为目标,研究仅有卷积层组成的全卷积神经网络FCN。

目标,重新评估CNN中各个基本组件的必要性,从两者在不同大小的数据集上的表现,在时间效率和精确度两个方面,研究和分析基于FCN的图像分类。

02 CNN和FCN原理

卷积层

边缘检测:

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

Conv1:filter size 5x5x3, stride 1

Conv2:filter size 5x5x3, stride 1

Conv3:filter size 5x5x20, stride 1

池化层

最大池化:

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

f: 过滤器大小

p: 补零 s: 步长

Size:32x32

conv: f=5*5 p=2 s=1

Size:32x32

pool: f=2*2 s=2

Size:16x16

全连接层

最简单的全连接层: 仅一层隐藏层

输出层输出f(W₂X₁+b₂) output layer

隐藏层输出: f(W₁X+b₁) hidden layer

input layer

全连接层表达式: $f(x) = G(W_2 * f(W_1X + b_1) + b_2)$ f为激活函数: sigmoid、tanh、relu; 若为多分类任务,G通常为softmax

①初始化W和b

②输入特征,通过如全连接层表达式的运算过程,得到预测值y

③通过梯度下降(迭代过程)寻找使损失函数J最小的W和b

常用激活函数示例

Sigmoid

$$x \in R$$

tanh

$$x \in R$$

$$-1 < y < 1$$

relu

$$x \in R$$

$$y = \begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$$

02 CNN和FCN原理

优化器(optimizer)

SGD(默认小批量梯度下降)

RMSProp

Adagrad

Adam

Adamax

.

损失函数(loss function) 凸函数: 全局最优解

均方误差 (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_{pred} - y_{true})^2$$

平均离差:

$$\frac{1}{n} \sum_{i=1}^{n} |y_{pred} - y_{true}|$$

交叉熵:

$$-\frac{1}{n}\sum_{i=1}^{n}y_{true}\log(y_{pred}) + (1-y_{true})\log(1-y_{pred})$$

• • • • •

梯度下降(Gradient descent):最快下降的方向

损失函数(loss function)均方误差 (MSE)

Repeat
$$\left\{ w \coloneqq w - \alpha \frac{dJ(w,b)}{dw} \right\}$$

Repeat
$$\left\{b \coloneqq b - \alpha \frac{dJ(w,b)}{db}\right\}$$

α学习率:决定梯度下降法中的步长;

梯度下降(Gradient descent):最快下降的方向

Repeat
$$\left\{\theta_0 \coloneqq \theta_0 - \alpha \frac{\sigma J(\theta_0, \theta_1)}{\sigma \theta_0}\right\}$$

Repeat
$$\left\{\theta_1 \coloneqq \theta_1 - \alpha \frac{\sigma J(\theta_0, \theta_1)}{\sigma \theta 1}\right\}$$

α学习率:决定梯度下降法中的步长;

损失函数(loss function)均方误差 (MSE)

Dropout: 训练过程中丢弃参数 (防止过拟合)

Flatten: 将多维阵列展平成一维向量 (全连接层前)

Softmax:多分类任务的全连接层的输出层常使用的激活函数

03 研究方法

编程语言: python

深度学习框架:keras

编译器:jupyter notebook

算法:CNN、FCN

Mnist: 手写数字图像集

Cifar-10: 飞机、鸟、猫...

mnist和cifar-10数据集对比

	Mnist 数据集	Cifar数据集
Size	11.5MB	175.5MB
颜色格式	灰度图像	RGB图像
数据内容	手写数字图像	飞机、车等十类图像
总数据样本数	60000	60000
训练集样本数	50000	50000
测试集样本数	10000	10000

Mnist 预测结果展示

Mnist / FCN 精确度和混淆矩阵

Mnist数据集: CNN和FCN实验结果对比

	FCN	CNN
时间	410s	490s
参数params	74362	98442
损失函数loss	0.0317	0.0632
训练集精确度acc	0.9901	0.9807
测试集损失函数val_loss	0.0230	0.0229
测试集精确度val_acc	0.9925	0.9922

Cifar-10 预测结果展示

Cifar-10 / FCN精确度和混淆矩阵

Cifar-10数据集: CNN和FCN实验结果对比

	FCN	CNN
时间	8000s	10000s
参数params	79184	553514
损失函数loss	0.7853	0.8370
训练集精确度acc	0.7219	0.7100
测试集损失函数val_loss	0.6935	0.7375
测试集精确度val_acc	0.7632	0.7512

04 总结分析

精确度

Mnist 数据集,FCN和CNN的精确度相差不大,FCN略高一点点。

Cifar数据集, FCN相比于CNN, 模型精确度表现更优异。

时间效率

Mnist 数据集,FCN和CNN中的参数数量,没有很大的区别,在时间效率上并无较大的区别。

Cifar 数据集,CNN中的参数参数相比于FCN有了一个数量级的增加,FCN的时间上的效率远远高于CNN。

卷积层参数是局部连接,全连接层中是全部连接,卷积可以 使训练参数更少,从而时间效率更高。

05 总结回顾

- (1) 如果数据集比较小: CNN和FCN都能表现的不错。
- (2) 若数据集较大,选择FCN能让你的模型在精确度 是时间效率上都更有优势。

CNN和FCN算法

应用场景分析

感谢聆听!

《基于全卷积神经网络的图像分类》

Presented by meijun

答辩人: 姚美君

指导老师: 喻玲娟