Chapter 4: Orthogonality

Val Anthony Balagon

January 2019

Abstract

This chapter focuses on the orthogonality of the four subspaces, projections, and least squares approximations.

Two vectors are orthogonal when their dot product is zero $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = 0$. This chapter will revolve around orthogonal subspaces, orthogonal bases, and orthogonal matrices.

Definition 0.1. Orthogonal vectors have the following properties:

i.
$$v^T w = 0$$

ii.
$$||\boldsymbol{v}||^2 + ||\boldsymbol{w}||^2 = ||\boldsymbol{v} + \boldsymbol{w}||^2$$

Remark. The subspaces have orthogonal properties.

- 1. The rowspace $C(A^T)$ is perpendicular to the nullspace N(A). Every row of A is perpendicular to the solution of $A\mathbf{x} = \mathbf{0}$.
- 2. The column space C(A) is perpendicular to the left nullspaces $N(A^T)$. When \mathbf{b} is outside of the column space when we're trying to solve for $A\mathbf{x} = \mathbf{b}$, then this nullspace of A^T comes into its own. It contains the error $\mathbf{e} = \mathbf{b} A\mathbf{x}$ in the least-squares solution.

Definition 0.2. Two subspaces V and W of a vector space are orthogonal if every vector v in V is perpendicular to every vector w in W.

$$\boldsymbol{v}^T \boldsymbol{w} = 0$$
 for all \boldsymbol{v} in \boldsymbol{V} and all \boldsymbol{w} in \boldsymbol{W} .

Figure 1: The Four Subspaces. There are two pairs of orthogonal subspaces.

Remark. Every vector \mathbf{x} in the nullspace is perpendicular to every row of A, because $A\mathbf{x} = \mathbf{0}$. The nullspace N(A) and the row space $C(A^T)$ are orthogonal subspaces of \mathbb{R}^n .

$$A\mathbf{x} = \begin{bmatrix} row \ 1 \\ \vdots \\ row \ m \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

(row 1) $\cdot \boldsymbol{x}$ is zero and (row m) $\cdot \boldsymbol{x}$ is also zero. Every row has a zero dot product with \boldsymbol{x} . Then \boldsymbol{x} is perpendicular to every combination of the rows. The whole row space $C(A^T)$ is orthogonal to N(A).