Homework 3

Kevin Martin CIS675 - Syracuse University

February 11, 2020

1. Question 1

(a) Table showing the intermediate distance values of all nodes at each iteration:

Iteration Node	Distance	Iteration	Node	Distance	l B	teration Node	Distance	Iteration	Node	Distance	Iteration	Node	Distance
0 A	0		1 A	0		2 A	0		3 A	0		4 A	0
В	00		В	15		В	15		В	15		В	15
С	00		С	21		С	21		C	21		С	21
D	00		D	00		D	00		D	00		D	30
E	00		E	00		E	25		E	25		E	25
F	00		F	00		F	00		F	00		F	00
G	00		G	00		G	00	li.	G	00		G	00
Н	00		Н	00		Н	19		Н	19		Н	19
I	00		1	00		1	37	8	1	36		1	36
													22.740
Iteration Node	Distance	Iteration	Node	Distance] <u>B</u>	teration Node	Distance	Iteration	Node	Distance	Iteration	Node	Distance
Iteration Node 5 A	<u>Distance</u> 0		Node 6 A	<u>Distance</u> 0] [teration Node	<u>Distance</u> 0		<u>Node</u> 8 <i>A</i>	<u>Distance</u> 0		<u>Node</u> 9 <i>A</i>	<u>Distance</u> 0
	Distance 0 15									Distance 0 15			Distance 0 15
5 A	0			0		7 A	0		8 <i>A</i>	0		9 A	Distance 0 15 21
5 A	0 15			0 15		7 A	0		8 <i>A</i>	0		9 A	0
5 A B C	0 15 21			0 15 21	<u> </u>	7 A	0 15 21		8 <i>A</i>	0 15 21		9 A	0 15 21
5 A B C	0 15 21 30			0 15 21 30	<u> </u>	7 A	0 15 21 30		8 <i>A</i>	0 15 21 30		9 A	0 15 21 30
5 A B C	0 15 21 30 25			0 15 21 30 25	<u>[i</u>	7 A	0 15 21 30 25		8 <i>A</i>	0 15 21 30 25		9 A	0 15 21 30 25
5 A B C D E F	0 15 21 30 25 34			0 15 21 30 25 34	<u> </u>	7 A B C D E F	0 15 21 30 25 34		8 A B C D E F	0 15 21 30 25 34		9 A B C D E F	0 15 21 30 25 34

(b) Final shortest-path tree:

(c) Adjaceny matrix representation with costs:

	Α	В	С	D	Е	F	G	Н	Т
Α	0	15	21	0	0	0	0	0	0
В	15	0	0	0	10	0	0	4	0
С	21		0	9	0	0	0	0	0
D	0	0	9	0	0	0	0	0	0
E	0	10	0	0	0	9	5	0	0
F	0	0	0	0	9	0	0	0	0
G	0	0	0	0		0	0	0	0
Н	0	4	0	0	0	0	0	0	17
I	0	0	0	0	0	0	0	17	0

(d) Adjaceny list representation with costs:

	15	21		
A:		В 🗪	C	100
	15	10	4	
B:		A	E	H
	21	9		
C:		Α 🗪	D	
	9			
D:		С		
	10	9	5	
E:		B	F \Longrightarrow	G
	9			
F:		E		
	5	100		
G:		E		
	4	17		
H:		В 🗪		
	17			
1:		Н	W. B.	

2. Question 2

(a) The intermediate values of the delay array in each iteration, using Prim's algorithm:

Primm's A	Algorithn	<u>n</u>												
Iteration	Node	Distance	Iteration	Node	Distance	Iteration	Node	Distance	Iteration	Node	Distance	Iteration	Node	Distance
	0	10		1	10		2	10		3	10		4	10
		2 ∞			24			24			24			24
		3 ∞			3 ∞			3 10			3 10			310
		4 ∞			4 ∞			4 ∞			4 ∞			4 ∞
		5 ∞			5 ∞			5 ∞			57			5 7
		6 ∞			6 ∞			6 ∞			6 ∞			62
		7 ∞			7 ∞			7 ∞			7 ∞			7 ∞
		8 ∞			8 ∞			8 ∞			8 ∞			8 ∞
		9 ∞			9 ∞			9 ∞			9 ∞			9 ∞
Iteration	Node	Distance	Iteration	Node	Distance	Iteration	Node	Distance	Iteration	Node	Distance	Iteration	Node	Distance
	5	10		6	10		7	10		8	10		9	10
		24											0	
		2 7			24			24			24			24
		310			24 310			24 310	n de					
											24		J	24
		310			310			310			24 310		3	24 310
		310 4 ∞			310 4∞			310 4 ∞			24 310 4 6			24 310 46
		310 4 ∞ 57			310 4 ∞ 57			310 4 ∞ 57			24 310 46 57			24 310 46 57
		310 4 ∞ 57 6 2			310 4 ∞ 57 62			310 4 ∞ 57 62			24 310 46 57 62			24 310 46 57 62

(b) The disjoint-sets data structure at every intermediate stage, both regular intervals as well as assuming compression, using Kruskal's algorithm:

3. Question 3

(a) Pseudocode for a greedy algorithm to compute optimal order and minimize wait time:

Sort the service time in ascending order, and serve them in order of increasing scheduling times.

Let n be the list of customers that need to be solved, with each time required t_i as the relevent index in the array:

```
def greedySort(n [])

sort(n); // in ascending order

currentJob = n[1]

for i = 1 to n:

currentJob = currentJob + t_i
```

(b) Claim: the running time of the proposed algorithm is O(nlogn)

Proof. Sorting the list to get the algorithm started is where most of the time is required. Sorting a list of n elements takes O(nlogn)

time. The rest of the algorithm can be completed in constant time, O(1). Because the algorithm can be written as $c_1 + (c_1 + c_2) + (c_1 + c_2 + ...c_n)\frac{1}{n}$, we can see that c_1 repeats itself the most times. As such, because it is the shortest time, then no other ordering could be correct. Therefore the greedy strategy holds true.

4. Question 4

(a) Optimum Huffman encoding (note: very unfavorable/inefficent outcome given the Fibonacci sequencing of the alphabet):

- (b) The expected bits per letter are as follows:
 - A: 8
 - B: 8
 - C:7
 - D: 6
 - E: 5
 - F: 4
 - G: 3
 - H: 2
 - I: 1
- 5. Question 5
 - (a) To represent the situation as a linear problem, we formulate as follows, letting x_1 be coffee mugs and x_2 be milk glasses:

Objective function Constraints

 $\max 25x_1 + 20x_2$ $20x_1 + 12x_2 \le 1800$

 $x_1/15 + x_2/15 \le 8$ $x_1, x_2 \ge 0$

(b) Graph of feasible region:

- (c) The coordinates of all vertices of the feasible region are: (0, 0), (90, 0), (45, 75), (0, 120)
- (d) The optimal product mix to maximize daily proift is: 45 coffee mugs at \$ 25 each and 90 milk glasses at \$ 20 each, which gives a total profit of \$2,625 per day. This is represented on the graph by the furthest out point on on the feasible region, where the tangential dotted line intercepts the point (45, 75).