IIIT Hyderabad - Robotics Research Center Faculty Profile

K Madhava Krishna: Robotic Vision, Mobile & Aerial Robotics, ML in Robotics

Spandan Roy: Adaptive Control, Robotics and Control

Harikumar k:
Aerial Robotics, Multi
Robotic Systems, RL

Nagamanikandan G:
Dynamics, Mechanism Design
and Control

Associated Faculty:

Vineet Gandhi: Computer Vision, DL,

Language and Vision

Avinash Sharma: Computer Vision, Graph

Theory

Ravi Kiran: Computer Vision, Deep Learning

Startup Collaborators:

Marut Drones
Thanos Technologies

Industry Collaborations:
Mathworks
TCS
Rockwell Collins
AIRBUS

Robotics Research Center

Research Highlights

ROBUSTIFYING PAYLOAD CARRYING OPERATION UNDER TIME VARYING STATE CONSTRAINTS AND UNCERTAINTY (IROS 2020) (IROS 2021) (RA-L 2021)

Identifying and estimating salient parameters of a building using UAV-based remote sensing

CCO-VOXEL: Chance Constrained Optimization over Uncertain Voxel-Grid Representation for Safe Trajectory Planning (ICRA 2022)

Areas of Work

- 3D Reconstruction
- **Aerial Robotics**
- **Autonomous Navigation**
- **Novel Mechanisms**
- **Robotic Perception**
- Robust SLAM
- **Trajectory Planning**
- Non Linear Control

Lidar based perception system for self driving

visual servoing framework for long-range obstacle avoida Micro Air Vehicles (MAV) flying amongst tall skyscrap

RESE

<u>Dense Reconstruction And Canonicalization</u> of <u>Object shape (DRACO)</u> from one or more RGB images estimates 3D object shape in a coordinate space canonicalized for scale, rotation, and translation parameters

Design and Synthesis of Mechanisms

Gripper & Perching mechanism:

A mechanically actuated soft gripper that, in addition to being able to pick and place, can throw objects away. A mechanism that enables functionalities such as perching, grasping and landing to a regular drone.

The pipe climber is a robot that can move through pipes, acting as a surveillance equipment.

An End-to-end Framework for Table-Top

RoRD: Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching (IROS 2021)(MATHWORKS)

Sponsored Projects

Autonomous Landing

Unmanned Ground Vehicle

Autonomous Navigation

IHFC Project Aerial Manipulation in outdoor

Autonomous WheelChair

Hexacopter

Quadrotor

Contact: Harikumar

UAV based remote sensing -Window and Storey Count

UAV based remote sensing - Storey height

Drone-based Aerial Manipulation with Human-in-the-loop

•Objective: To develop a multirotor unmanned aerial vehicle (UAV) with manipulator capable of performing a task based on the supervisory inputs from the human operator.

•Industrial applications:

- •1. Targeted spraying of pesticides, fertilizer in precision farming and pollination.
- •2. Pick and place of tools and objects in construction and other industries.

Contact: Harikumar

Flapping Mechanism for UAVs

Autonomous Driving Research

Self Driving Car at Test on Campus

Autonomous Wheel Chair at Test in the Lab

Manipulation Planning and Object Rearrangement

Franka at work (Scene 1-1-1)

Following is one of the basic scenes that we have. In these set of pictures, you will see the Franka arm pick and place 4 objects into a given tray successfully.

Robotic Vision Research

"Turn in the direction that man is pointing to."

Vision and Language Guided Navigation [IROS-21]

Fig. 1: Given a monocular RGB image of a warehouse rack, we propose RackLay, a deep neural architecture that generates the *top-view* and *front-view* semantic layout for rack shelves and items placed on each shelf. Fusing these layouts provides a volumetric reconstruction of the rack, enabling 3D reasoning. For the considered rack in the figure, our system can report "Rack has 4 shelves, 12 box stacks, and 830cm³ of free space available".

Rotation Robust Feature Descriptors [IROS-21]

Deep Visual Servoing – [IROS-21]

Aerial Robotics

Real time state estimation, mapping and obstacle avoidance for drones

KCIS: Introduction

Adaptive Control of Robotic Systems

 Objective: Adaptive control design for unknown dynamics and circumstances for robotic systems

• Research: *Two interconnected threads*

Theoretical:

Adaptive-robust control Artificial delay control Switched dynamics

Experiment/Verification:

Drone based applications Legged robots Reconfigurable robotics

 Research Possibilities: contact: <u>spandan.roy@iiit.ac.in</u> & check Google Scholar for recent publications and various research domains

Robot Mechanisms – Design and Synthesis

Multipurpose gripper for throwing objects

KCIS: Introduction

Perching mechanism for Drones

Modular Pipe Climber [IROS-21]

Mechanisms - Drones

10/26/2022 Contact: Dr Nagamanikandan G

