Lecture notes: Introduction to Lyapunov Stability and position regulation for robot

Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

RBE502, 2018

Outline

This lecture note is based on

• Chapter 8 in M. Spong Robot modeling and control.

Properties of robot manipulator dynamics

Given the model of n-link robot manipulator:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau$$

- M(q) is symmetric, positive definite.
- $\dot{M}(q) 2C(q, \dot{q})$ is skew symmetric.

property: for all
$$v \in \mathbb{R}^n$$
, $A \in \mathbb{R}^{n \times n}$

$$v^T A v = 0$$

$$prov f: (v^T A v)^T = v^T A^T v = -v^T A v$$

$$(v^T A v)^T + v^T A v = 0$$

Passivity

$$\int_{0}^{T} \dot{q}^{T}(\zeta)\tau(\zeta)d\zeta \geq -\beta, \quad \beta > 0, \forall T > 0$$

The energy dissipated from the system has a lower bound $-\beta$.

To tal Energy.

$$H(2,i) = \frac{1}{2} i^{T} M(2) i^{U} + P(2)$$

$$H(2,i) = \frac{\partial H}{\partial 2} i^{U} + \frac{\partial H}{\partial i} i^{U}$$

$$= (\frac{1}{2} i^{T} M(2) + \frac{\partial P}{\partial i}) i^{U} + i^{T} M(2) i^{U}$$

$$= \frac{1}{2} i^{T} (M(2) - 2C(2,i)) i^{U} + N(2) i^{U} - i^{T} N(2) + i^{T} C$$

$$= i^{T}$$

Centralized control of robot manipulator

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau$$

Special case: Plannar manipulator, N(q) = 0.

Control objective: Set point tracking.

 asymptotic stabilization (= regulation) of the closed-loop equilibrium state $q_d \in \mathbb{R}^n$.

$$q=q_d, \quad \dot{q}=0.$$

PD CONTROL: proportional + derivative action on the error.

$$u = K_P(q - q_d) \vec{A} K_D \dot{q}. \qquad \dot{q} = \dot{q} - \dot{q}_d \text{ error in }$$

$$\dot{q}_d = 0$$

Asymptotic convergence with PD

N(q) = 0, the decentralized control $u = -K_P e - K_D \dot{e}$ achieves asymptotic convergence for set point tracking.

Proof: Lyapunov function

pof: Lyapunov function
$$V = \frac{1}{2}\dot{q}^{T}M(q)\dot{q} + \frac{1}{2}e^{T}K_{P}e.$$

$$\dot{v} = \frac{\partial V}{\partial \theta}\dot{q} + \frac{\partial V}{\partial \dot{q}}\dot{q}'$$

$$= \dot{q}^{T}M(q)\dot{q} + \frac{1}{2}e^{T}K_{P}e.$$

$$\dot{v} = \frac{\partial V}{\partial \theta}\dot{q} + \frac{\partial V}{\partial \dot{q}}\dot{q}'$$

$$= \dot{q}^{T}M(q)\dot{q} + \frac{1}{2}e^{T}K_{P}e.$$

$$= \dot{q}^{T}M(q)\dot{q} + \frac{1}{2}e^{T}M(q)\dot{q} + \frac{1}{2}e^{T}K_{P}e.$$

$$= \dot{q}^{T}M(q)\dot{q} + \frac{1}{2}e^{T}M(q)\dot{q} + \frac{1}{2}e^$$

$$= -\dot{q}^{T} \ \text{Kp} \ e \ - \dot{q}^{T} \ \text{Kp} \ \dot{e} \ + \ e^{T} \ \text{Kp} \ \dot{q} \ = - \dot{q}^{T} \ \text{Kp} \ \dot{q} \ \leq 0$$

$$\text{Kp} \quad \text{symmetric} \qquad \qquad \text{Negative definite}$$

$$\text{KD} \quad \text{positive definite} \qquad \qquad \text{and} \quad = 0 \quad \text{only if}$$

$$\vec{q} = 0$$

$$\text{A.S.} \quad \text{Laureness candidate} \quad \text{V} \geq 0$$

A.S: Lyapunov cardidore
$$V = 0$$

 $\dot{V} = 0$ and only $= 0$ at equilibrium.

Equilibrium:
$$Qd$$
, $\dot{Q}d=0$

$$\begin{cases}
x \mid \dot{V} = 0
\end{cases} \qquad \dot{V} = -\dot{Q}^{T} K_{0} \dot{q}$$

$$\dot{q} = 0 \quad \& \quad \ddot{q} = 0$$

$$M\ddot{q} + C(Q, \dot{q}) \dot{q} = -K_{p}(Q-2d) - K_{0}(\dot{q})$$

$$k_{p}(Q-Qd) = 0 \quad \Rightarrow \quad Q = Qd$$

$$K_{p}(2-2l) = 0 \Rightarrow Q = Q$$

Asymptotic convergence with PD

$$\mathcal{U} = - k_{p} \left\{ \begin{array}{l} \mathcal{U}_{1} \\ \mathcal{U}_{2} \\ \mathcal{U}_{3} \end{array} \right\} = - \left[\begin{array}{l} \mathcal{V}_{1} \\ \mathcal{V}_{2} \\ \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{1} \\ \mathcal{V}_{2} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{1} \\ \mathcal{V}_{2} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} \\ \mathcal{V}_{2} - \mathcal{V}_{3} \\ \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} \\ \mathcal{V}_{2} - \mathcal{V}_{3} \\ \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{3} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{1} - \mathcal{V}_{2} \\ \mathcal{V}_{3} - \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} - \mathcal{V}_{3} \\ \mathcal{V}_{3} - \mathcal{V}_{3} - \mathcal{V}_{3} - \mathcal{V}_{3} \end{array} \right] \left[\begin{array}{l} \mathcal{V}_{1} - \mathcal{V}_{2} - \mathcal{V}_{3} \\ \mathcal{V}_{3} - \mathcal{V}$$

Asymptotic convergence with PD

Challenge: V = 0 when q = 0, but does not show $q = q_d$.

The closed-loop system is asymptotically stable, witnessed by LaSalle's invariance principle.

Preliminaries: Consider an unforced system $\dot{x} = f(x)$, f(0) = 0.

Defn: A set X is

- an invariant set: if $x(0) \in X$, then for all $t \in R$, $x(t) \in X$.
- a positively invariant set: if $x(0) \in X$, then for all t > 0, $x(t) \in X$.

LaSalle's invariance principle

Thm: (LaSalle's theorem)

- Let Ω be a postively invariant set.
- If: ∃V function (not need to be a Lyapunov candiate) in Ω:
 V(x) ≤ 0 along the trajectory of x = f(x)
- Then: system trajectories starting within Ω asymptotically converge to the the largest invariant set

$$V \equiv 0$$
 $M \subseteq S = \{x \in \mathbb{R}^n : \dot{V}(x) = 0\}.$

Unlike Lyapunov theorems, LaSalles theorem does not require the function *V* to be positive definite.

Corrollary:

 $M = \{0\}$: asymptotic stability.

LaSalle's invariance principle

Revisit the PD controller:

PD with gravity compensation

PD without gravity compensation:

usation:

$$u = -K_P e - K_D \dot{e} \mid M\dot{q} + CL \dot{q} = C - N(\xi)$$

$$C'' = W$$

with gravity compensation

$$u = -K_P e - K_D \dot{e} + N(q)$$

The same Lyapunov function

$$V = \frac{1}{2}\dot{q}^T M(q)\dot{q} + \frac{1}{2}e^T K_P e.$$

and verify that

$$\dot{V} = \dot{q}^{T}(u - N(q) + K_{P}e)$$

$$= \hat{q}^{T}(-k_{P}e - k_{P}\dot{e} + k_{P}e) = -\tilde{q}^{T}k_{P}\dot{e} = -\tilde{q}^{T}k_{P}\dot{e}$$

Comments on PD control

- " choice of control gains affects robot evolution during transients and practical settling times.
- full K_P and K_D gain matrices allow to assign desired eigenvalues to the linear approximation of the robot dynamics around the final desired state $(q_d, 0)$.
- when (joint) viscous friction $-F_{\nu}\dot{q}$ is present, the derivative term $K_{D}\dot{q}$ in the control law is not strictly necessary. But having $K_{D}\dot{q}$ allows more flexible modulation.
- in the absence of tachometers, the actual realization of the derivative term in the feedback law requires some processing of the position data measured at the joints by encoders or resolvers.