AUSLANDER-REGULAR AND COHEN-MACAULAY QUANTUM GROUPS

J. GÓMEZ-TORRECILLAS AND F. J. LOBILLO

Let $U_q(C)$ be the quantum group or quantized enveloping algebra in the sense of [6, 7] associated to a Cartan matrix C. A relevant property of $U_q(C)$ is that it can be endowed with a multi-filtration such that the associated multi-graded algebra is an easy localization of the coordinate ring of a quantum affine space [7, Proposition 10.1]. Thus, it is not surprising if we claim that $U_q(C)$ is an Auslander-regular and Cohen-Macaulay algebra (see, e.g., [2] for these notions). However, when one tries to construct a mathematically sound argument to prove this, one realizes that there are not ready-to-use results for this in the literature. Here we use re-filtering methods (see Theorem 1) similar to that in [5] and [4] to prove, in conjunction with results from [2] and [14], that certain types of multi-filtered algebras are Auslander-regular and Cohen-Macaulay (Theorem 3). This is applied to obtain that $U_q(C)$ is Auslander-regular and Cohen-Macaulay.

In this note, K denotes a commutative ring and \mathbb{N}^n is the free abelian monoid with n generators $\epsilon_1, \ldots, \epsilon_n$. The elements in \mathbb{N}^n are vectors $\alpha = (\alpha_1, \ldots, \alpha_n)$ with non-negative integer entries. An admissible order \preceq on \mathbb{N}^n is a total order compatible with the sum in \mathbb{N}^n and such that $0 \preceq \alpha$ for every $\alpha \in \mathbb{N}^n$. In this way, \mathbb{N}^n becomes a well-ordered monoid. A fundamental example of admissible order on \mathbb{N}^n is the lexicographical order \leq_{lex} with $\epsilon_1 <_{lex} \cdots <_{lex} \epsilon_n$. Every vector \mathbf{w} with strictly positive entries gives an example of admissible order $\preceq_{\mathbf{w}}$ by putting

(1)
$$\alpha \preceq_{\mathbf{w}} \beta \iff \begin{cases} \langle \mathbf{w}, \alpha \rangle < \langle \mathbf{w}, \beta \rangle & \text{or} \\ \langle \mathbf{w}, \alpha \rangle = \langle \mathbf{w}, \beta \rangle & \text{and} \quad \alpha \leq_{\text{lex}} \beta \end{cases}$$

where $\langle -, - \rangle$ denotes the usual dot product in \mathbb{R}^n .

An (\mathbb{N}^n, \preceq) -filtration on a K-algebra R is a family $F = \{F_\alpha(R) \mid \alpha \in \mathbb{N}^n\}$ of K-submodules of R such that

- 1. $F_{\alpha}(R) \subseteq F_{\beta}(R)$ for all $\alpha \leq \beta \in \mathbb{N}^n$.
- 2. $F_{\alpha}(R)F_{\beta}(R) \subseteq F_{\alpha+\beta}(R)$ for all $\alpha, \beta \in \mathbb{N}^n$.
- 3. $\bigcup_{\alpha \in \mathbb{N}^n} F_{\alpha}(R) = R$.
- 4. $1 \in F_0(R)$.

The associated \mathbb{N}^n -graded algebra is given by $G^F(R) = \bigoplus_{\alpha \in \mathbb{N}^n} G_{\alpha}^F(R)$, where $G_{\alpha}^F(R) = F_{\alpha}(R)/F_{\alpha}^-(R)$ and $F_{\alpha}^-(R) = \bigcup_{\beta \prec \alpha} F_{\beta}(R)$. Further details can be found in [9]. The multi-degree of a nonzero element $r \in R$ is defined as $mdeg(r) = min\{\alpha \in \mathbb{N}^n \mid r \in F_{\alpha}(R)\}$.

When n = 1, the only admissible order is the usual one and multi-filtrations are just positive filtrations. In this case, the associated graded algebra will be denoted by gr(R).

We will use extensively the following terminology: Let Λ be a subalgebra of an algebra R, and let x_1, \ldots, x_n be elements in R. A standard monomial in x_1, \ldots, x_n is an expression $\mathbf{x}^{\alpha} = x_1^{\alpha_1} \ldots x_n^{\alpha_n}$, where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$. Assume that an element $r \in R$ can be written in the form

(2)
$$r = \sum_{\alpha \in \mathbb{N}^n} r_{\alpha} \mathbf{x}^{\alpha} \qquad (r_{\alpha} \in \Lambda)$$

The expression (2) is called a (left) standard representation of r. We will often refer as (left) polynomials to the elements of R having a standard representation.

Theorem 1. Let Λ be a left noetherian subalgebra of a K-algebra R, let s be a positive integer and let $q_{ii} \in \Lambda$ for $1 \le i < j \le s$. The following statements are equivalent

- (i) There is an admissible order \leq on some \mathbb{N}^n and an (\mathbb{N}^n, \leq) -filtration $F = \{F_\alpha(R) \mid \alpha \in \mathbb{N}^n\}$ on R such that $F_0(R) = \Lambda$, every $F_\alpha(R)$ is finitely generated as a left Λ -module and $G^F(R) = \Lambda[y_1; \sigma_1] \dots [y_s; \sigma_s]$ is an \mathbb{N}^n -graded iterated Ore extension for some homogeneous elements y_1, \dots, y_s such that $\sigma_j(y_i) = q_{ji}y_i$ for every $1 \leq i < j \leq s$.
- (ii) There is an \mathbb{N} -filtration $\{R_n \mid n \in \mathbb{N}\}$ on R such that $R_0 = \Lambda$, every R_n is finitely generated as a left Λ -module and $\operatorname{gr}(R) = \Lambda[y_1; \sigma_1] \dots [y_s; \sigma_s]$ is an \mathbb{N} -graded iterated Ore extension for some homogeneous elements y_1, \dots, y_s such that $\sigma_j(y_i) = q_{ji}y_i$ for every $1 \leq i < j \leq s$.
- (iii) There are elements $x_1, \ldots, x_s \in R$, an admissible order \preceq' on \mathbb{N}^s , and finite subsets $\Gamma_{ji}, \Gamma_k \subseteq \mathbb{N}^s$ for $1 \leqslant i < j \leqslant s, 1 \leqslant k \leqslant s$ with $\max_{\preceq'} \Gamma_{ji} \prec' \epsilon_i + \epsilon_j$ and $\max_{\preceq'} \Gamma_k \prec' \epsilon_k$ such that $\{\mathbf{x}^{\alpha} \mid \alpha \in \mathbb{N}^s\}$ is a basis of R as a left Λ -module and $x_j x_i = q_{ji} x_i x_j + \sum_{\alpha \in \Gamma_{ji}} c_{\alpha} \mathbf{x}^{\alpha}$ and for all $a \in \Lambda$, $x_k a = a^{(k)} x_k + \sum_{\alpha \in \Gamma_i} c_{\alpha} \mathbf{x}^{\alpha}$.

Proof. (i) implies (iii). Let $\alpha_i \in \mathbb{N}^n$ denote the multi-degree of y_i for $1 \leq i \leq s$. Clearly, $\{\mathbf{y}^{\gamma} \mid \gamma \in \mathbb{N}^s\}$ is a basis of $G^F(R)$ as a left Λ -module. Thus, given $r \in R$, the homogeneous element $r + F_{\mathrm{mdeg}(r)}^-(R) \in G^F(R)$ has a unique representation as homogeneous standard left polynomial in y_1, \ldots, y_s with coefficients in Λ . Thus,

(3)
$$r + F_{\mathrm{mdeg}(r)}^{-}(R) = \sum_{\gamma_1 \alpha_1 + \dots + \gamma_s \alpha_s = \mathrm{mdeg}(r)} c_{\gamma} \mathbf{y}^{\gamma},$$

where the c_{γ} 's are in Λ . Choose, for each $i = 1, \ldots, s$, an element $x_i \in F_{\alpha_i}(R)$ such that $y_i = x_i + F_{\alpha_i}^-(R)$. Let M denote the $s \times n$ matrix whose rows are $\alpha_1, \ldots, \alpha_s$. Write the equality (3) as

(4)
$$r + F_{\mathrm{mdeg}(r)}^{-}(R) = \sum_{\gamma M = \mathrm{mdeg}(r)} c_{\gamma} \mathbf{x}^{\gamma} + F_{\mathrm{mdeg}(r)}^{-}(R)$$

Therefore, we can prove by induction on mdeg(r) that

(5)
$$r = \sum_{\gamma M \leq \mathrm{mdeg}(r)} a_{\gamma} \mathbf{x}^{\gamma},$$

where $a_{\gamma} \in \Lambda$. To deduce that $\{\mathbf{x}^{\gamma} \mid \gamma \in \mathbb{N}^s\}$ is a basis for ${}_{\Lambda}R$ we only need to check the linear independence. Given a relation

(6)
$$\sum_{\gamma M \preceq \alpha} a_{\gamma} \mathbf{x}^{\gamma} = 0,$$

we proceed by induction on α . The relation (6) can be written as

(7)
$$\sum_{\gamma M = \alpha} a_{\gamma} \mathbf{x}^{\gamma} + \sum_{\gamma M \prec \alpha} a_{\gamma} \mathbf{x}^{\gamma} = 0$$

which, in $G^F(R)$, gives

$$\sum_{\gamma M = \alpha} a_{\gamma} \mathbf{y}^{\gamma} = 0$$

As the monomials \mathbf{y}^{γ} are Λ -linearly independent, we have that $a_{\gamma} = 0$ for $\gamma M = \alpha$. The remaining coefficients are zero by induction in view of (7).

Let $a \in \Lambda$ and $i \in \{1, ..., s\}$. Since $G_0^F(R) = F_0(R) = \Lambda$ and $y_i a = \sigma_i(a) y_i$ we get $\sigma_i(a)$ has degree 0, i.e., $\sigma_i(a) \in \Lambda$. Write $a^{(i)} = \sigma_i(a)$. Then

(8)
$$0 = y_i a - a^{(i)} y_i = (x_i a - a^{(i)} x_i) + F_{\alpha_i}(R)$$

Since Λ is left noetherian and $F_{\alpha_i}(R)$ is finitely generated as a left Λ -module, we have that $F_{\alpha_i}^-(R)$ is a noetherian left Λ -module. Thus, we deduce from (8), in conjunction with (5), that

(9)
$$x_i a = a^{(i)} x_i + \sum_{\gamma \in \Gamma_i} a_{\gamma} \mathbf{x}^{\gamma},$$

for some $a_{\gamma} \in \Lambda$, where Γ_i is a finite subset of \mathbb{N}^s such that $\gamma M \prec \alpha_i$ for every $\gamma \in \Gamma_i$. On the other hand, for $1 \leq i < j \leq s$, we have

$$0 = y_{j}y_{i} - q_{ji}y_{i}y_{j}$$

$$= (x_{j} + F_{\alpha_{j}}^{-}(R))(x_{i} + F_{\alpha_{i}}^{-}(R)) - q_{ji}(x_{i} + F_{\alpha_{i}}^{-}(R))(x_{j} + F_{\alpha_{j}}^{-}(R))$$

$$= (x_{j}x_{i} - q_{ji}x_{i}x_{j}) + F_{\alpha_{i}+\alpha_{i}}^{-}(R),$$

which entails, by (5),

(10)
$$x_j x_i - q_{ji} x_i x_j = \sum_{\gamma \in \Gamma_{ij}} a_{\gamma} \mathbf{x}^{\gamma},$$

where Γ_{ij} is a finite subset of \mathbb{N}^s such that $\gamma M \prec \alpha_i + \alpha_j$ for every $\gamma \in \Gamma_{ij}$. Let \preceq' be the admissible order on \mathbb{N}^s defined by

(11)
$$\gamma \preceq' \mu \iff \begin{cases} \gamma M \prec \mu M & \text{or} \\ \gamma M = \mu M & \text{and} \quad \gamma \leq_{\text{lex}} \mu \end{cases}$$

Since $\alpha_i = \epsilon_i M$ for every $i = 1, \ldots, s$, the relations (9) and (10) can be written as

(12)
$$x_i a - a^{(i)} x_i = \sum_{\substack{\gamma \prec' \epsilon_i \\ \gamma \in \Gamma_i}} a_{\gamma} \mathbf{x}^{\gamma}$$

and

(13)
$$x_j x_i - q_{ji} x_i x_j = \sum_{\substack{\gamma \prec' \epsilon_i + \epsilon_j \\ \gamma \in \Gamma_{ij}}} a_{\gamma} \mathbf{x}^{\gamma},$$

which gives (iii).

(iii) implies (ii). First, notice that, by hypothesis, the relations (12) and (13) are satisfied. Let

$$C = \{0\} \cup \left(\bigcup_{1 \le i \le s} C_i\right) \cup \left(\bigcup_{1 \le i \le j \le s} C_{ij}\right),\,$$

where $C_i = \Gamma_i - \epsilon_i$ and $C_{ij} = \Gamma_{ij} - \epsilon_i - \epsilon_j$. Clearly C is a finite subset of \mathbb{Z}^s whose maximum with respect to \leq is 0. By [5, Corollary 2.2] (see also [15] and [17]), there is $\mathbf{w} = (w_1, \dots, w_s) \in \mathbb{N}_+^s$ such that $\langle \mathbf{w}, \alpha \rangle < 0$ for every $\alpha \in C$. This implies that the relations (12) and (13) can be written as

(14)
$$x_i a - a^{(i)} x_i = \sum_{\langle \mathbf{w}, \gamma \rangle < w_i} a_{\gamma} \mathbf{x}^{\gamma}$$

and

(15)
$$x_j x_i - q_{ji} x_i x_j = \sum_{\langle \mathbf{w}, \gamma \rangle < w_i + w_j} a_{\gamma} \mathbf{x}^{\gamma}$$

By [5, Proposition 1.13], the family $\{H_{\alpha}(R) \mid \alpha \in \mathbb{N}^s\}$ where $H_{\alpha}(R)$ is the left Λ -module generated by the set $\{\mathbf{x}^{\beta} \mid \beta \preceq_{\mathbf{w}} \alpha\}$, is an $(\mathbb{N}^s, \preceq_{\mathbf{w}})$ -filtration on R. Since \mathbf{w} has no zero component, it follows that $H_{\alpha}(R)$ is finitely generated as a left Λ -module for every α . For each $n \in \mathbb{N}$, define $R_n = \bigcup_{\langle \mathbf{w}, \alpha \rangle \leqslant n} H_{\alpha}(R)$, which is a finitely generated left Λ -module. A straightforward verification shows that $\{R_n \mid n \in \mathbb{N}\}$ is a filtration on R. Clearly, $R_n = \sum_{\langle \mathbf{w}, \alpha \rangle \leqslant n} \Lambda \mathbf{x}^{\alpha}$ for every $\alpha \in \mathbb{N}^s$. Finally, let $y_i = x_i + R_{w_{i-1}}$ for $1 \leqslant i < j \leqslant s$. By (14) and (15), $x_i a = a^{(i)} x_i$ for every $a \in \Lambda$ and $x_j x_i = q_{ji} x_i x_j$. Moreover, since the monomials \mathbf{x}^{α} are Λ -linearly independent, it follows that $\{\mathbf{y}^{\alpha} \mid \alpha \in \mathbb{N}^s\}$ is a left Λ -basis for gr(R). It follows from [11, 2.1.(iii)] that

$$\operatorname{gr}(R) \cong \Lambda[y_1; \sigma_1] \cdots [y_s; \sigma_s]$$

Finally, (ii) implies (i) obviously.

In the following corollary, $K_0(R)$ denotes the Grothendieck group of R. Of course, the corollary says something new for rings satisfying (i) or (iii) in Theorem 1.

Corollary 2. Assume R satisfies one (and then all) of the equivalent conditions of Theorem 1. Suppose, in addition, that Λ is right noetherian, q_{ji} is a unit of Λ for $1 \leq i < j \leq s$ and that σ_i is an automorphism of Λ for $i = 1, \ldots, s$.

- 1. If every cyclic right Λ -module has finite projective dimension, then $K_0(\Lambda) \cong K_0(R)$.
- 2. If Λ is Auslander-regular then R Auslander-regular.

Proof. The first statement is a consequence of [12, Theorem 12.6.13]. If Λ is Auslander-regular, then, by [8, Theorem 4.2], $\operatorname{gr}(R) = \Lambda[y_1; \sigma_1] \cdots [y_s; \sigma_s]$ is Auslander-regular. The result follows now from [2, Theorem 3.9].

Theorem 3. Assume that R is an algebra over a field k satisfying one (and then all) of the equivalent conditions of Theorem 1. Suppose, in addition, that

- (a) The scalars q_{ji} are units of \mathbf{k} and the endomorphisms $\sigma_i : \Lambda \to \Lambda$ are automorphisms.
- (b) Λ is generated as an algebra by elements z_1, \ldots, z_t such that the standard filtration Λ_n obtained by giving degree 1 to each z_i satisfies that $gr(\Lambda) = \bigoplus_{n \geqslant 0} \Lambda_n / \Lambda_{n-1}$ is a finitely presented and noetherian algebra over \mathbf{k} .
- (c) $\sigma_i(\Lambda_1) \subseteq \Lambda_1$, for $i = 1, \ldots, s$.
- (d) either $gr(\Lambda)$ or $\Lambda[y_1; \sigma_1] \cdots [y_s; \sigma_s]$ is an Auslander-regular and Cohen-Macaulay algebra.

Then R is an Auslander-regular and Cohen-Macaulay algebra.

Proof. Let R_n be the filtration on R given by Theorem 1 with $\operatorname{gr}(R) = \Lambda[y_1; \sigma_1] \cdots [y_s; \sigma_s]$. Since $\sigma_i(\Lambda_1) \subseteq \Lambda_1$ for every $i = 1, \ldots, s$ and the filtration Λ_n is standard, we get that $y_i \Lambda_n \subseteq \Lambda_n y_i$ for every $i = 1, \ldots, s$ and every $n \geq 0$. Therefore, $\Lambda \subseteq \Lambda[y_1; \sigma_1] \cdots [y_s; \sigma_s]$ is a $\leq_{\mathbf{w}}$ -bounded extension of Λ in the sense of [5, Definition 1.8]. Here, $\mathbf{w} = (w_1, \ldots, w_s)$ with $w_i = \deg(y_i)$, $i = 1, \ldots, s$. Let \leq be the admissible order defined by

$$(i, \alpha) \preceq (j, \beta) \iff \begin{cases} \alpha \prec_{\mathbf{w}} \beta & \text{or } \\ \alpha = \beta \text{ and } i \leq j \end{cases}$$

Write $H(i, \alpha) = \sum_{(j,\beta) \leq (i,\alpha)} \Lambda_j \mathbf{y}^{\beta}$. By [5, Proposition 1.13], these vector subspaces form a $(\mathbb{N}^{s+1}, \preceq)$ -filtration for gr R. Let $\operatorname{gr}(R)_{(n)} = \sum_{i+\langle \mathbf{w}, \alpha \rangle \leq n} \Lambda_i \mathbf{y}^{\alpha}$. Since

$$\operatorname{gr}(R)_{(n)} = \bigcup_{\langle (1, \mathbf{w}), (i, \alpha) \rangle} H_{(i, \alpha)},$$

it follows that $\{\operatorname{gr}(R)_{(n)} \mid n \in \mathbb{N}\}$ is a filtration on $\operatorname{gr}(R)$. Moreover, the inclusion $\Lambda \subseteq \operatorname{gr}(R)$ is a strict filtered morphism, hence $\operatorname{gr}(\Lambda)$ can be viewed as a subalgebra of $\operatorname{gr}(\operatorname{gr}(R))$. Therefore, $\operatorname{gr}(\operatorname{gr}(R)) \cong \operatorname{gr}(\Lambda)[y_1;\sigma_1]\cdots[y_s;\sigma_s]$. Here, σ_i denotes the graded automorphism induced by the homonymous filtered automorphism of $\Lambda[y_1;\sigma_1]\cdots[y_{i-1};\sigma_{i-1}]$. Since $\operatorname{gr}(\Lambda)$ is a finitely presented and noetherian algebra, we see that $\operatorname{gr}(\operatorname{gr}(R))$ enjoys the same properties. Thus, the filtration R_n satisfies the hypotheses of [14, Theorem 1.3]. Now every finitely generated left R-module is endowed with a filtration such that $\operatorname{gr}(M)$ is finitely generated. By [14, Theorem 1.3], $\operatorname{GKdim}(M) = \operatorname{GKdim}(\operatorname{gr}(M))$. In particular, $\operatorname{GKdim}(R) = \operatorname{GKdim}(\operatorname{gr}(R))$. On the other hand, from the proof of [2, Theorem 3.9] we obtain that $j_R(M) = j_{\operatorname{gr}(R)}(\operatorname{gr}(M))$. If we assume that $\operatorname{gr}(R) = \Lambda[y_1;\sigma_1]\cdots[y_s;\sigma_s]$ is Cohen-Macaulay, then

$$\operatorname{GKdim}(R) = \operatorname{GKdim}(\operatorname{gr}(R)) = j_{\operatorname{gr}(R)}(\operatorname{gr}(M)) + \operatorname{GKdim}(\operatorname{gr}(M)) = j_R(M) + \operatorname{GKdim}(M),$$

whence R is Cohen-Macaulay too.

Lastly, if $gr(\Lambda)$ is Cohen-Macaulay, then gr(gr(R)) satisfies the hypotheses of [16, Lemma], which implies that it is Cohen-Macaulay. Since the filtration $gr(R)_{(n)}$ is finite-dimensional, we obtain that gr(R) is Cohen-Macaulay. Thus, R is Cohen-Macaulay by the foregoing argument.

If $Q = (q_{ij})$ is a multiplicatively anti-symmetric $s \times s$ matrix with coefficients in \mathbf{k} , the coordinate ring of the quantum affine space $\mathcal{O}_Q(\mathbf{k}^s) = \mathbf{k}_Q[x_1, \dots, x_s]$ is the \mathbf{k} -algebra generated by x_1, \dots, x_s subject to the relations $x_j x_i = q_{ji} x_i x_j$.

For our purposes, we are interested in certain localizations of $\mathcal{O}_Q(\mathbf{k}^s)$. Thus, consider some of the variables which, for simplicity, we assume to be x_1, \ldots, x_t with $t \leq s$. Since x_1, \ldots, x_t are normal elements, they generate a multiplicatively closed Ore set, so that we can construct the localized algebra

$$\mathbf{k}_Q[x_1^{\pm 1}, \dots, x_t^{\pm 1}, x_{t+1}, \dots, x_s]$$

Although the following proposition should be well-known, we have not found a precise reference.

Proposition 4. The algebra $A = \mathbf{k}_Q[x_1^{\pm 1}, \dots, x_t^{\pm 1}, x_{t+1}, \dots, x_s]$ is Auslander-regular and Cohen-Macaulay.

Proof. Clearly, A is an iterated Ore extension of a McConnell-Pettit algebra, whence its global homological dimension is finite by [13, 3.1] and [8, Theorem 4.2]. On the other hand,

$$\mathbf{k}_Q[x_1,\ldots,x_t,x_{t+1},\ldots,x_s]$$

is Auslander-regular and Cohen-Macaulay (see, e.g., [10, Theorem 3.5]). By [1, Proposition 2.1], A satisfies the Auslander condition. Since the multiplicative set generated by x_1, \ldots, x_t consists of monomials, which are local normal elements, we have, by [1, Theorem 2.4], that our algebra A is Cohen-Macaulay.

Theorem 5. The quantized enveloping $\mathbb{C}(q)$ -algebra $U_q(C)$ associated to a Cartan matrix C is Auslander-regular and Cohen-Macaulay.

Proof. Accordingly with [7, Proposition 10.1], $U = U_q(C)$ is endowed with a (\mathbb{N}^n, \preceq) -filtration $\{F_\alpha(U) \mid \alpha \in \mathbb{N}^n\}$ for some n and a lexicographical order \preceq in such a way that the multi-graded associated algebra $G^F(U) \cong \mathbb{C}(q)_Q[x_1^{\pm 1}, \ldots, x_t^{\pm 1}, x_{t+1}, \ldots, x_s]$ for a certain multiplicatively anti-symmetric matrix Q. By Proposition 4, $G^F(U)$ is Auslander-regular and Cohen-Macaulay. Moreover, $F_0(U) = \mathbb{C}(q)[z_1^{\pm 1}, \ldots, z_t^{\pm 1}]$, a commutative Laurent polynomial ring. Filter $F_0(U)$ with the standard filtration obtained by giving degree 1 to $z_i^{\pm 1}$ ($i=1,\ldots,t$). Then $gr(F_0(U))$ is a factor algebra of the commutative polynomial ring in 2t variables with coefficients in $\mathbb{C}(q)$. In particular, it is finitely presented and noetherian. Therefore, the hypotheses of Theorem 3 are fulfilled and, hence, $U_q(C)$ is Auslander-regular and Cohen-Macaulay.

Remark 6. In [3, Proposition 2.2] it is shown that $U_q(C)$ is Auslander-regular. It is also proved [3, Theorem 2.3] that $U_q(C)$ is Cohen-Macaulay with respect to the Krull dimension in case q is a root of unity.

Remark 7. The normal separation of the prime spectrum of $U_q(C)$ would imply in view of Theorem 4 and [10, Theorem 1.6] that $U_q(C)$ is catenary. However, the (classical) universal enveloping algebras are not normally separated in general. So, as the referee pointed out, it is interesting to know if $U_q(C)$ does not really enjoy this property and why.

References

- K. Ajitabh, S.P. Smith, and J.J. Zhang, Injective resolutions of some regular rings, J. Pure Appl. Algebra 140 (1999), 1–21.
- [2] J.-E. Björk, The Auslander condition on noetherian rings, Sém. d'Algèbre P. Dubreil et M.-P. Malliavin 1987–1988 (M.-P. Malliavin, ed.), Lecture Notes in Mathematics, no. 1404, Springer-Verlag, 1989, pp. 137–173.
- [3] K.R Brown and K.R. Goodearl, Homological aspects of noetherian PI Hopf algebras and irreducible modules of maximal dimension, J. Algebra 198 (1997), 240–265.
- [4] J.L. Bueso, J. Gómez-Torrecillas, and Lobillo F.J., Computing the Gelfand-Kirillov dimension, II, Proceedings of the SAGA V conference held in León, 1999. To appear in Lect. Notes. Pure Appl. Maths., Marcel Dekker, 1999.
- [5] J.L. Bueso, J. Gómez-Torrecillas, and F.J. Lobillo, *Re-filtering and exactness of the Gelfand-Kirillov dimension*, Bull. Sci. Math., por aparecer.
- [6] C. De Concini and V. Kac, Representations of quantum groups at roots of 1, Progress in Math., vol. 92, Birkhäuser, 1990, pp. 471–506.
- [7] C. De Concini and C. Procesi, Quantum groups, D-Modules, Representation Theory and Quantum groups (G. Zampieri and A. D'Agnolo, eds.), Lecture Notes in Math., vol. 1565, Springer, 1993, pp. 31–140.
- [8] E. K. Ekström, The Auslander condition on graded and filtered noetherian rings, Séminaire Dubreil-Malliavin 1987–1988, Lecture Notes in Mathematics, vol. 1404, Springer, 1989, pp. 220–245.
- [9] J. Gómez-Torrecillas, Gelfand-Kirillov dimension of multi-filtered algebras., P. Edinburgh Math. Soc (1999), 155–168.
- [10] K. R. Goodearl and T. H. Lenagan, Catenarity in quantum algebras, J. Pure Appl. Algebra 111 (1996), 123–142.
- [11] K. R. Goodearl and E. S. Letzter, *Prime ideals in skew and q-skew polynomial rings*, Mem. Am. Math. Soc. **109** (1994).
- [12] J. McConnell and J. C. Robson, Noncommutative noetherian rings, Wiley Interscience, New York, 1988.
- [13] J.C. McConnell and J.J. Pettit, Crossed products and multiplicative analogues of Weyl algebras, J. London Math. Soc. 38 (1988), no. 2, 47–55.
- [14] J.C. McConnell and J.T. Stafford, Gelfand-Kirillov dimension and associated graded modules, J. Algebra 125 (1989), 197–214.
- [15] T. Mora and L. Robbiano, *The Gröbner fan of an ideal*, J. Symbolic Comput. **6** (1988), no. 2-3, 183–208.
- [16] Levasseur T. and J. T. Stafford, The quantum coordinate ring of special linear group, J. Pure Appl. Algebra 86 (1993), 181–186.
- [17] V. Weispfenning, Constructing Universal Gröbner Bases, Proceedings of AAECC 5, Springer LNCS, 356, 1987, pp. 408–417.

DEPARTAMENTO DE ÁLGEBRA, UNIVERSIDAD DE GRANADA, E18071, GRANADA, SPAIN

 $E ext{-}mail\ address: torrecil@ugr.es} \ E ext{-}mail\ address: jlobillo@ugr.es}$