

## University of Primorska UP FAMNIT Academic year 2021/2022

## Algebra I Midterm 2 – January 20, 2022 –

Time: 135 minutes. Maximum number of points: 100. You are allowed to use a pen and a calculator. Write clearly, and justify all your answers. Good luck!

- 1. (a) Write the definition of a left and right inverse of an  $m \times n$  matrix A. Then, prove the following statement: If a square matrix A has both a left inverse X and a right inverse Y, then X = Y.
  - (b) Prove the following statement: Let A be an  $m \times n$  matrix. Then, A has a right inverse if and only if rang(A) = m. (8 points)
  - (c) For an  $n \times n$  matrix A, write the definition of the adjoint matrix adj(A). Then, prove the following statements:

i) 
$$A \cdot adj(A) = det(A) \cdot I_n = adj(A) \cdot A.$$
 (4 points)

ii) If 
$$A$$
 is invertible, then  $A^{-1} = \frac{1}{\det(A)} adj(A)$ . (3 points)

- 2. i) Find the inverse of matrix  $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$  by elementary row operations. (10 points)
  - ii) Express  $\begin{bmatrix} 2 & 5 & -7 \\ -9 & 12 & 4 \\ 15 & -13 & 6 \end{bmatrix}$  as the sum of a lower triangular matrix and an upper triangular matrix with zero leading (main) diagonal. (10 points)
- 3. Show that the system of equations

$$2x_1 - 2x_2 + x_3 = \lambda x_1$$
$$2x_1 - 3x_2 + 2x_3 = \lambda x_2$$
$$-x_1 + 2x_2 = \lambda x_3$$

can possess a non-trivial solution only if  $\lambda = 1$  or  $\lambda = -3$ . Obtain the general solution in each case. (20 points)

4. (a) Determine  $x \in \mathbb{R}$  such that det(AB) = 0, where

$$A = \begin{bmatrix} x & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & x \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

(10 points)

- (b) Let  $A, B, X \in \mathbb{R}^{n \times n}$  be matrices such that det(B) = det(A) 1 and  $3A^2X = XB$ . Determine det(X).
- 5. Let  $a,b\in\mathbb{R}$ . Compute the determinant of the following  $n\times n$  matrix

$$\begin{bmatrix} a & b & b & \cdots & b & b \\ b & a & 0 & \cdots & 0 & 0 \\ b & 0 & a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ b & 0 & 0 & \cdots & a & 0 \\ b & 0 & 0 & \cdots & 0 & a \end{bmatrix}.$$

(20 points)