РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

дисциплина: Операционные системы

Студент: Козлова Нонна **Группа:** НБИбд-04-22

Ст. билет №: 1132220816

Москва 2023 г.

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов

Ход работы

Перехожу на сайт и скачиваю виртуал бокс.

Дожидаюсь окончания скачивания и запускаю виртуальную машину. Далее создаю новую виртуальную машину и перехожу к настройке

Также скачиваю дистрибутив Fedora, на которую была ссылка в лабораторной работе.

Запускаю виртуальную машину. Захожу в Свойства - Носители в виртуальной машине и добавлю новый привод оптических дисков. Выбираю образ, который мы ранее скачали на наш компьютер-Fedora

Далее устанавливаю язык интерфейса, ввожу имя пользователя, а также придумываю пароль.

Вхожу под заданной при установке учетной записью. А в меню устройства в в носителях изымаю диск из привода, для корректной работы Fedora

Домашнее задание

Получите следующую информацию

- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (CPU0).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).

- 6. Тип файловой системы корневого раздела.(filesystem)
- 7. Последовательность монтирования файловых систем. (mount).

```
nonna@nonna-VirtualBox: ~
                             nonna@nonna-VirtualBox: ~
                                                                                                                                             nonna@nonna-VirtualBox: ~
nonna@nonna-VirtualBox:-$ dmesg | grep -i "Linux version"
[ 0.000000] Linux version 5.15.0-48-generic (buildd@lcy02-amd64-080) (gcc (Ubuntu 11. 2.0-19ubuntu1) 11.2.0, GNU ld (GNU Binutils for Ubuntu) 2.38) #54-Ubuntu SMP Fri Aug 26 13:26:29 UTC 2022 (Ubuntu 5.15.0-48.54-generic 5.15.53) nonna@nonna-VirtualBox:-$ dmesg | grep -i "Detected Mhz processor" nonna@nonna-VirtualBox:-$ dmesg | grep -i "Detected Mhz processor" nonna@nonna-VirtualBox:-$ dmesg | grep -i "Mhz processor"
[ 0.000008] tsc: Detected 2111.998 MHz processor
              0.000008] tsc: Detected 2111.998 MH
 nonna@nonna-VirtualBox:-$ dmesg | grep -i "CPU0"

[ 0.385425] smpboot: CPU0: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz (family: 0x6, mo
[ 0.385425] smpboot: CF del: 0x8e, stepping: 0xc)
 nonna@nonna-VirtualBox: $ dmesg | grep -i "Memory available"
nonna@nonna-VirtualBox: $ dmesg | grep -i "Memory"
              0.007892] ACPI: Reserving FACP table memory at [mem 0x3fff00f0-0x3fff01e3] 0.007893] ACPI: Reserving DSDT table memory at [mem 0x3fff0470-0x3fff2794]
                                                                                                                    nemory at [mem 0x3fff0470-0x3fff2794]
nemory at [mem 0x3fff0200-0x3fff023f]
nemory at [mem 0x3fff0200-0x3fff023f]
nemory at [mem 0x3fff0240-0x3fff0293]
nemory at [mem 0x3fff02a0-0x3fff046b]
              0.007894] ACPI: Reserving FACS table
               0.007895] ACPI: Reserving FACS table
              0.007896] ACPI: Reserving APIC table m
0.007897] ACPI: Reserving SSDT table m
              0.012084] Early memory node ranges
0.023741] PM: hibernation: Registered nosave m
              0.023743] PM: hibernation: Registered nosave memory: 0.023743] PM: hibernation: Registered nosave memory: 0.023744] PM: hibernation: Registered nosave memory: 0.023745] PM: hibernation: Registered nosave memory: 0.0262621
                                                                                                                                                           [mem 0x00000000-0x00000fff]
                                                                                                                                                          [mem 0x0009f000-0x0009ffff]
[mem 0x000a0000-0x000effff]
[mem 0x000f0000-0x000fffff]
  0.023745] PM: hibernation: Registered nosave Memory: [mem 0x00000000-0x0000fffff]
0.023745] PM: hibernation: Registered nosave memory: [mem 0x0000f0000-0x0000fffff]
0.026262] Memory: 921880K/1048120K available (16393K kernel code, 4377K rwdata, 108
04K rodata, 3224K init, 6580K bss, 125980K reserved, 0K cma-reserved)
0.275541] Freeing SMP alternatives memory: 40K
0.386286] x86/mm: Memory block size: 128MB
                1.688035] Freeing initrd m
                                                                                            ory: 61844K
               1.088035] Freeing unused decrypted memory: 2036K
1.715405] Freeing unused kernel image (initmem) memory: 3224K
1.715912] Freeing unused kernel image (text/rodata gap) memory: 2036K
1.725052] Freeing unused kernel image (rodata/data gap) memory: 1484K
5.968487] [TTM] Zone kernel: Available graphics memory: 496402 KiB
5.970674] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB, FIFO =
  2048 kB, surface = 507904 kB
                5.970684] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 kiB
```

```
nonna@nonna-VirtualBox: ~
                                                                                                                                      nonna@nonna-VirtualBox: ~
                            nonna@nonna-VirtualBox: ~
 2048 kB, surface = 507904 kB
 [ 5.970684] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 kiBnonna@nonna-VirtualBox:~$ dmesg | grep -i "Hypervisor"
             0.000000] Hypervi
                                                               detected: KVM
             0.240430] SRBDS: Unknown: Dependent on hypervisor status
nonna@nonna-VirtualBox:-$ dmesg | grep -i "Filesystem"
[ 0.853738] AppArmor: AppArmor Filesystem Enabled
[ 4.543753] EXT4-fs (sda3): mounted filesystem with
                                                                                                                    stem with ordered data mode. Opts: (null).
 Quota mode: none.
nonna@nonna-VirtualBox:~$ dmesg | grep -i "mount"
[ 0.236444] Mount-cache hash table entries: 2048 (order: 2, 16384 bytes, linear)
[ 0.236447] Mountpoint-cache hash table entries: 2048 (order: 2, 16384 bytes, linear)
             4.543753] EXT4-fs (sda3): mounted filesystem with ordered data mode. Opts: (null).
 Quota mode: none.
            5.431435] systemd[1]: Set up automount Arbitrary Executable File Formats File Syste
                     ount Point.
           5.433508] systemd[1]: Mounting Huge Pages File System...
5.434422] systemd[1]: Mounting POSIX Message Queue File System...
5.435371] systemd[1]: Mounting Kernel Debug File System...
5.435945] systemd[1]: Starting Kernel Page File System...
[ 5.435945] systemd[1]: Mounting Kernel Trace File System...
[ 5.632781] systemd[1]: Starting Remount Root and Kernel File Systems...
[ 5.642531] systemd[1]: Mounted Huge Pages File System.
[ 5.642615] systemd[1]: Mounted POSIX Message Queue File System.
[ 5.642674] systemd[1]: Mounted Kernel Debug File System.
[ 5.642727] systemd[1]: Mounted Kernel Trace File System.
[ 5.714957] EXT4-fs (sda3): re-mounted. Opts: errors=remount-ro. Quota mode: none.
[ 356.936003] audit: type=1400 audit(1676382774.759:71): apparmor="STATUS" operation="profile_load" profile="unconfined" name="/snap/snapd/17950/usr/lib/snapd/snap-confine//mount-namespace-capture-helper" pid=3603 comm="apparmor_parser"
[ 378.304451] audit: type=1400 audit(1676382796.130:88): apparmor="STATUS" operation="profile replace" profile="unconfined" name="/snap/snapd/17950/usr/lib/snapd/snap-confine/
[ 378.304451] audt: type=1400 audt(1070582790.130.88). appairiof = STATOS operation = profile_replace" profile="unconfined" name="/snapd/17950/usr/lib/snapd/snap-confine//mount-namespace-capture-helper" pid=3762 comm="apparmor_parser" [ 456.735326] audit: type=1400 audit(1676382874.575:105): apparmor="STATUS" operation="profile_replace" info="same as current profile, skipping" profile="unconfined" name="/snapsystamespace-capture-helper" pid=4000 comp
 ap/snapd/17950/usr/lib/snapd/snap-confine//mount-namespace-capture-helper" pid=4089 comm
 ="apparmor_parser'
 nonna@nonna-VirtualBox:~$
```

Контрольные вопросы

- 1. Какую информацию содержит учётная запись пользователя?
- 2. Укажите команды терминала и приведите примеры: для получения справки по команде; для перемещения по файловой системе; для просмотра содержимого каталога; для определения объёма каталога; для создания / удаления каталогов / файлов; для задания определённых прав на файл / каталог; для просмотра истории команд.
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.
- 4. Как посмотреть, какие файловые системы подмонтированы в OC?

5. Как удалить зависший процесс?

Ответы

1.имя и пароль

2.info

mν

ls

du

mkdir

chmod

History

3.Файловая система- это часть операционной системы, суть которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совместное использование файлов несколькими пользователями и процессами. Информация о разрешенном доступе, пароль для доступа к файлу, владелец файла, создатель файла, признак "только для чтения", признак "скрытый файл", признак "архивный файл", признак "двоичный/символьный", признак "временный" (удалить после завершения процесса), признак блокировки, длина записи, указатель на ключевое поле в записи, длина ключа, времена создания, последнего доступа и последнего изменения, текущий размер файла, максимальный размер файла.

- 4)Команда mount
- 5) Команда kill

Вывод:

В ходе выполнения лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы.