Reading Quiz Section 4.2

- 1. Let $\mathcal{U} = \mathbb{Z}$, $A = 2\mathbb{Z}$, $B = \{1, 3, 5\}$. Which of the following statements are true?
 - (a) $B \subseteq A^{\mathsf{C}}$.
 - (b) A and B are not disjoint
 - (c) $A \cup B = \mathbb{Z}$.
 - (d) $\mathbb{Z} \setminus B$ is finite
 - (e) $A^{C} = 2\mathbb{Z} + 1$
- 2. True or False: if *A* and *B* are sets, then $B \subseteq A \cup B$.
- 3. For sets *A* and *B*, the result that $(A \cup B)^{\mathsf{C}} = A^{\mathsf{C}} \cap B^{\mathsf{C}}$ is most similar to which of the following laws of logic?
 - (a) Law of double negation
 - (b) Law of absorption
 - (c) De Morgan's law(s)
 - (d) Law of associativity
- 4. For sets *A* and *B*, which of the following are true?
 - (a) $A \cap B \subseteq A \setminus B$
 - (b) $B = (A \cap B) \cup (B \setminus A)$
 - (c) $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$
 - (d) $A \setminus B = B \setminus A$

Practice Problems Section 4.2

1. Let $a, b, c, d \in \mathbb{R}$. Show

$$(a,b)\cap(c,d)=\big(\max\{a,c\},\min\{b,d\}\big)$$

where we take the convention that $(\alpha, \beta) = \emptyset$ if $\beta < \alpha$.

Video Solution

2. Let \mathcal{U} be a universal set and A and B sets. Prove that $(A \setminus B)^{\mathsf{C}} = A^{\mathsf{C}} \cup B$.

Video Solution

3. Let *A* be a set. Prove that if $A \cup B \subseteq B$ for every set *B*, then $A = \emptyset$.

Video Solution