ECE236B Discussion 6

Xin Jiang

Department of Electrical and Computer Engineering, UCLA

ECE236B Convex Optimization (Spring 2018)

May 11, 2018

Problem setup

standard form problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$ maximize $g(\lambda,\nu)$ subject to $\lambda \succeq 0$

the domain of primal problem $\mathcal{D} = \cap_{i=0}^m \operatorname{dom} f_i \cap \cap_{i=1}^p \operatorname{dom} h_i$

Lagrangian $L: \mathbf{R}^m \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Lagrange dual function: the infimum of $L(x, \lambda, \nu)$

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left\{ f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right\}$$

Deriving the dual and weak duality

common tricks on deriving the dual

- introduce new variables and equality constraints
- make explicit constraints implicit, or vice versa
- transform objective or constraint functions

weak duality

$$d^{\star} \leq p^{\star}$$

- dual feasible: $\lambda \succeq 0$ and $(\lambda, \nu) \in \operatorname{dom} g$
- weak duality always holds, even for nonconvex problems
- $\bullet \;$ weak duality can be meaningless when $g(\lambda,\nu)=-\infty$

Two-way partition example

$$\begin{array}{ll} \text{minimize} & x^T W x \\ \text{subject to} & x_i^2 = 1 \end{array} \qquad \text{(primal)} \qquad \begin{array}{ll} \text{maximize} & g(\nu) = -\mathbf{1}^T \nu \\ \text{subject to} & W + \mathbf{diag}(\nu) \succeq 0 \end{array} \qquad \text{(dual)}$$

minimize
$$x^T W x$$
 subject to $\sum x_i^2 = n$ (relax) minimize $\mathbf{tr}(WX)$ subject to $X_{ii} = 1, \ X \succeq 0$ (dual 2)

minimize
$$\mathbf{tr}(WX)$$
 subject to $X_{ii}=1$ (primal SDP) $X\succeq 0,\ \mathbf{rank}\, X=1$

- p^* , d^* , q^* are the optimal values for (primal), (dual), and (relax), respectively
- $\tilde{\nu} = -\lambda_{\min}(W) \cdot \mathbf{1}$ is feasible for (dual), with $g(\tilde{\nu}) = n\lambda_{\min}(W)$

$$p^* \ge d^* \ge g(\tilde{\nu}) = q^*$$

(dual 2) is a relaxation of (primal) or (primal SDP)

Strong duality and Slater's condition

now consider a convex optimization problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

- strong duality: $p^* = d^*$
- convex problems do not always have strong duality, and problems with strong duality are not always convex problems
- convex problems + constraint qualification ⇒ strong duality
- Slater's theorem: for a convex problem, if there exists x with $f_i(x) < 0$, then
 - 1. strong duality holds, *i.e.*, $p^* = d^*$;
 - 2. furthermore, if $p^* > -\infty$, the dual optimum is attained, *i.e.*, there exists (λ^*, ν^*) with $g(\lambda^*, \nu^*) = d^* = p^*$

Example: convex problem vs. strong duality

a convex problem without strong duality (T5.21)

$$\begin{array}{ll} \text{minimize} & e^{-x} \\ \text{subject to} & f_1(x,y) \leq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & 0 \\ \text{subject to} & \lambda \geq 0 \end{array}$$

where
$$f_1(x,y) = \begin{cases} x^2/y \le 0, & y > 0 \\ \infty, & \text{otherwise} \end{cases}$$

a nonconvex problem with strong duality

$$\begin{array}{ll} \text{minimize} & x^TAx + 2b^Tx \\ \text{subject to} & x^Tx \leq 1 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -t - \lambda \\ \text{subject to} & \begin{bmatrix} A + \lambda I & b \\ b^T & t \end{bmatrix} \succeq 0 \\ \end{array}$$

Geometric interpretation

$$\mathcal{A} = \{(u, t) \in \mathbf{R}^2 \mid f_1(x) \leq u, f_0(x) \leq t \text{ for some } x \in \mathcal{D}\}$$

- for convex problems, \mathcal{A} is convex; there is a supporting hyperplane at $(0, p^*)$
- Slater's condition: if there exists a pair of $(\tilde{u},\tilde{t})\in\mathcal{A}$ with $\tilde{u}<0$, then supporting hyperplanes at $(0,p^{\star})$ must be non-vertical

Slater's condition	 ×	×	×
strong duality	 $\sqrt{}$	$\sqrt{}$	×
dual optimal attained	 $\sqrt{}$	×	$\sqrt{}$

Karush-Kuhn-Tucker conditions

if the pair $(\tilde{x},\tilde{\lambda},\tilde{\nu})$ satisfies KKT conditions, then it means

- 1° primal constraints: $f_i(\tilde{x}) \leq 0, i = 1, \ldots, m, h_i(\tilde{x}) = 0, i = 1, \ldots, p$
- 2° dual constraints: $\tilde{\lambda} \succeq 0$
- 3° complementary slackness: $\tilde{\lambda}_i f_i(\tilde{x}) = 0$, $i = 1, \dots, m$
- 4° (a) \tilde{x} minimizes $L(x, \tilde{\lambda}, \tilde{\nu})$ over x
 - (b) gradient of Lagrangian with respect to x vanishes

$$\nabla f_0(\tilde{x}) + \sum_{i=1}^m \tilde{\lambda}_i \nabla f_i(\tilde{x}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{x}) = 0$$

primal and dual optimal, strong duality \iff KKT condition with 4(a)

if the problem is convex, differentiable, and satisfies Slater's condition

primal and dual optimal \iff KKT condition with 4(b)

Example: KKT condition vs. optimality

KKT (with 4b) is not sufficient for optimality in a nonconvex problem (T5.29)

minimize
$$-3x_1^2 + x_2^2 + 2x_3^2 + 2(x_1 + x_2 + x_3)$$

subject to $x_1^2 + x_2^2 + x_3^2 = 1$

KKT condition:
$$\frac{1}{(-3+\nu)^2} + \frac{1}{(1+\nu)^2} + \frac{1}{(2+\nu)^2} = 1$$

this is also an example of solving the problem via optimality conditions

KKT is not necessary for optimality when Slater's condition fails (T5.26)

minimize
$$x_1^2 + x_2^2$$
 subject to $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$ $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$

Slater's condition fails, but strong duality holds and dual optimal is not attained

Example: projection onto ℓ_1 -norm ball

(A4.5) derive the dual problem and describe an efficient method for solving it

minimize
$$(1/2)\|x-a\|_2^2$$
 subject to $\|x\|_1 \le 1$

the Lagrangian is

$$L(x,\lambda) = \frac{1}{2}||x - a||_2^2 + \lambda(||x||_1 - 1) = \frac{1}{2}\sum_{k=1}^n((x_k - a_k)^2 + 2\lambda|x_k|) - \lambda$$

for a given λ , the minimizer \tilde{x} has elements:

$$\tilde{x}_k = \max\{|a_k| - \lambda^*, 0\} = \begin{cases} a_k - \lambda & a_k \ge \lambda \\ 0 & |a_k| \le \lambda \\ a_k + \lambda & a_k \le -\lambda \end{cases}$$

Example: projection onto ℓ_1 -norm ball

 $(x^\star,\lambda^\star,\nu^\star)$ are primal-dual optimal if and only if they satisfy the KKT conditions:

- 1. primal feasibility: $||x^*||_1 \leq 1$
- 2. dual feasibility: $\lambda^{\star} \geq 0$
- 3. complementary slackness: $\lambda(1-||x||_1)=0$
- 4. x^* is the minimizer of $L(x, \lambda^*)$:

$$x_k^* = \begin{cases} a_k - \lambda^* & a_k \ge \lambda^* \\ 0 & |a_k| \le \lambda^* \\ a_k + \lambda^* & a_k \le -\lambda^* \end{cases}$$

Example: projection onto ℓ_1 -norm ball

- $\lambda^* = 0$ only if $||a||_1 \le 1$
- $\lambda^* > 0$ only if it satisfies (assuming $|a_1| \leq |a_2| \leq \cdots \leq |a_n|$)

$$||x^*||_1 = \sum_{k=1}^n \max\{|a_k| - \lambda^*, 0\} = 1$$

