ーグラフとネットワーク1ー 数理計画と最適化

精密工学科 溪間

asama@robot.t.u-tokyo.ac.jp 凜, 徐 彬斌, 楊 簑原

グラフ理論

- ・オイラーグラフ(Eulerian Graph)
- すべての辺をちょうど一回ずつ通って出発点に戻る道
 - ・ ハミルトングラフ(Hamiltonian Graph)
- すべての点をちょうど一回ずつ通って出発点に戻る道
- · 木Tree
- どの2点の間にも道が一本しかないグラフ

ハミルトン・グラフではあるが、 オイラー・グラフではない

グラフ理論

(R)

グラフ(Graph) G=(V,E)

有向グラフ(Directed Graph)

ネットワーク

- グラフ上のフロー

- 枝や節点に何らかの属性や数値 が与えられている

行列によるグラフ表現

- 隣接行列Adjacency Matrix
- 点iと点jを結ぶ辺の本数を第ij要素とするn×nの行列
- 接続行列Incidence Matrix
- 点iと辺jに接続している場合,第ij要素が1であり,接続していない場合0であるようなn×mの行列

n: BEER

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} M = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

H H

最短経路問題

s \in Vから別の節点t \in Vへの路のなかで,最も長さの短いものを グラフG=(V,E)の各枝(i,j) $\in E$ が長さ a_{ij} をもつとき、ある節点 見つける問題を最短経路問題という

節点。から節点1への路とは、節点の列

P=(s, i, j, ..., k, t)

で、 $(s,i) \in E$, $(i,j) \in E$, …, $(k,t) \in E$ を満たすものをいい、それらの枝の長さの和

 $a_{si}+a_{ii}+\ldots+a_{kt}$

をこの路Pの長さと定義する。

100 しばしば路を*s→i→j→…→k→tのよ*うに表す.

下記のネットワークにおいて、節点1から節点 5に到達する最短経路を求めよ. 最短経路問題

ダイクストラ法

{1,2,1 kt}

11.2

Dijkstra's algorithm

- S は探索済接点の集合, \overline{S} は未探索接点の集合。Sは始点ノード 初期設定: $S := \phi, \overline{S} := V, d(s) := 0, d(i) := \infty (i \in V - \{s\})$ とおく.
 - 条件 SギV が真である限り次の手続きを繰り返す
- $d(v) = \min\{d(i) \mid i \in \overline{S}\}$ であるような節点 $v \in \overline{S}$ を選ぶ. $S := S \cup \{v\}, \overline{S} := \overline{S} \{v\}$ とする.
- ・すべての $\left(\mathbf{v},j
 ight)$ に対して次の手続きを繰り返す
 - 条件 (v, j)∈ E のとき,
- ・ 条件 $j \in \overline{S}$ かつ $d(j) > d(v) + a_v$ ならば $d(j) = d(v) + a_y, p(j) = v + 2 + \delta$
- S: 探索済みのリスト S: 探索すべきリスト
- d(i): sからまでの距離 a_{ij} : (i,j)の距離

p(j)はsからjまでの最短路においてjの直前に位置する節点を示す. (これが解を下す)

最適性の原理

から、への部分に分割できる.前半と後半の部分に対応する路をそれぞれP」, 部分を取り出しても,それがその両端の節点間を結ぶ最短路になっているこ いま仮に節点タからイへの最短路アがえられるものとし、路クに含まれる節点 路になっているはずである。実際、もし節点sからrヘP,より短い路P,が別に 立つことがわかる.一般に節点。から1への最短路Pにおいては、そのどの一 を一つ任意に選ぶ、その節点をrとすれば,路Pは節点sからrまでの部分とr $P_i \cup P_2$ より短い、これは節点sからlへの最短路が $ilde{P}$ であることに反する、節 P_{o} とすれば, P_{i} は節点sからrへの最短路であり, P_{o} は節点rからtへの最短 存在するとすれば、路P,'とP,をつないだ路P,'∪P,は明らかにもとの路P= 点がら、人の部分についても同様であるから、上に述べた性質は常に成り

 $S = \phi$, $\overline{S} = \{1,2,3,4,5\}$, d(1) = 0, $d(2) = d(3) = d(4) = d(5) = \infty$.

(d(4)=∞, d(5)=∞は変化しない).

 $S=\{1,2\},\overline{S}=\{3,4,5\}$ であり、さらに $d(3)=80>d(2)+a_{33}=50+20$ であるからd(3)=70, $p(3)=2となり、<math>d(4)=\infty>d(2)+a_{24}=50+15$ であるからd(4)=65, p(4)=2となる $d(4)=\infty>d(2)+\alpha_{24}=50+15$ であるからd(4)=65, p(4)=2となる p(4)=2となる p(4)=2となる $\min\{d(2), d(3), d(4), d(5)\} = \min\{50, 80, \infty, \infty\} \downarrow \emptyset \ v=2 \not\vdash \uparrow \not\vdash \not\supset$.

min{d(3), d(5)}=min{70,95}よりv=3となる. S={1,2,3,4}, S={5}であり、さらにd(5)=95>d(3)+a₃₅=70+15であるからd(5)=85、 $\min\{d(3), d(4), d(5)\}=\min\{70,65,\infty\}$ よりv=4となる. S={1,2,4}, \overline{S} ={3,5}であり、さらにd(5)=∞>d(4)+ a_{45} =65+30であるからd(5)=95, p(5)=4となる(d(3)=70は変化しない).

p(5)=3245.

S={5}であるから、自動的にv=5となる. S={1,2,3,4,5}, S= φとなる.

事实金值(的有有份、下小水利之)。乳粉 4771月元

Milletty n.m

100 (M+M) 00 CM1 (" h? - 0 (n) 10 P 4

演習問題

Aからスタートして、EIC至る最短路を求めよ.

