(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- OMPIO OMPIO

(43) Internationales Veröffentlichungsdatum 15. März 2001 (15.03.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/17972 A2

(51) Internationale Patentklassifikation7:

C07D 231/00

(21) Internationales Aktenzeichen:

PCT/EP00/08656

(22) Internationales Anmeldedatum:

5. September 2000 (05.09.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

1642/99 7

7. September 1999 (07.09.1999) CH

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SYNGENTA PARTICIPATIONS AG [CH/CH]; CH-4058 Basel (CH).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): MAETZKE, Thomas [CH/CH]; Wilhelm-Haas-Weg 12, CH-4142 Münchenstein (CH). STOLLER, André [CH/FR]; 7, rue Charles Wolf, F-68730 Blotzheim (FR). WENDEBORN, Sebastian [DE/CH]; Kapellenweg 11, CH-4102 Binningen (CH). SZCZEPANSKI, Henry [CH/CH]; Bodenmatt, CH-4323 Wallbach (CH).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: NOVEL HERBICIDES
- (54) Bezeichnung: NEUE HERBIZIDE

- (57) Abstract: The invention relates to novel compounds of formula (I), wherein the substituents have the significance cited in claim (1) and the agronomically compatible salts, isomers and enantiomers of said compound, which are suitable for use as herbicides.
- (57) Zusammenfassung: Verbindungen der Formel (I), worin die Substituenten die in Anspruch 1 angegebenen Bedeutungen besitzen, sowie agronomisch verträgliche Salze, Isomere und Enantiomere dieser Verbindungen eignen sich zur Verwendung als Herbizide.

Neue Herbizide

Die vorliegende Erfindung betrifft neue, herbizid wirksame durch eine Phenylgruppe substituierte Heterocyclen, Verfahren zu ihrer Herstellung, Mittel, die diese Verbindungen enthalten, sowie ihre Verwendung zum Bekämpfen von Unkräutern, vor allem in Nutzpflanzenkulturen oder zum Hemmen des Pflanzenwachstums.

3-Hydroxy-4-aryl-5-oxo-pyrazolin-Derivate mit herbizider Wirkung sind beispielsweise in EP-A-0 508 126, WO 96/25395 und WO 96/21652 beschrieben.

Es wurden nun neue durch eine Phenylgruppe substituierte Heterocyclen mit herbiziden und wuchshemmenden Eigenschaften gefunden.

Gegenstand der vorliegenden Erfindung sind somit Verbindungen der Formel I

$$Q \xrightarrow{R_1} CH_3^{(I)}$$

worin

R₁ und R₃ unabhängig voneinander Ethyl, Halogenethyl, Ethinyl, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, C₁-C₂-Alkylcarbonyl, C₁-C₂-Hydroxyalkyl oder C₁-C₂-Alkoxycarbonyl bedeuten;

Q eine Gruppe

$$R_{17}$$
 R_{16}
 R_{16}
 R_{13}
 R

 R_4 und R_5 unabhängig voneinander $C_1\text{-}C_{10}\text{-}Alkyl,\ C_2\text{-}C_{10}\text{-}Alkenyl,\ C_2\text{-}C_{10}\text{-}Alkinyl,\ C_1\text{-}C_{10}\text{-}}$ Halogenalkyl, $C_2\text{-}C_{10}\text{-}Alkoxyalkyl,\ C_3\text{-}C_{10}\text{-}Alkenyloxyalkyl,\ C_3\text{-}C_{10}\text{-}Alkinyloxyalkyl,\ C_2\text{-}C_{10}\text{-}}$ Alkylthioalkyl, $C_2\text{-}C_{10}\text{-}Alkylsulfinylalkyl,\ C_2\text{-}C_{10}\text{-}Alkylsulfonylalkyl,\ C_2\text{-}C_{10}\text{-}Alkylcarbonyl-alkyl,\ C_2\text{-}C_{10}\text{-}Alkoxy-iminoalkyl,\ C_2\text{-}C_{10}\text{-}Alkoxycarbonylalkyl,\ C_1\text{-}C_{10}\text{-}Aminoalkyl,\ C_3\text{-}C_{10}\text{-}}$ Dialkylaminoalkyl, $C_2\text{-}C_{10}\text{-}Alkylaminoalkyl,\ C_1\text{-}C_{10}\text{-}Cyanoalkyl,\ C_4\text{-}C_{10}\text{-}Cycloalkylalkyl,\ C_1\text{-}C_{10}\text{-}}$ Phenylalkyl, $C_1\text{-}C_{10}\text{-}Heteroarylalkyl,\ C_1\text{-}C_{10}\text{-}Phenoxylalkyl,\ C_1\text{-}C_{10}\text{-}Heteroaryloxyalkyl,\ C_1\text{-}C_{10}\text{-}}$ Alkylaminocarbonylalkyl, $C_2\text{-}C_{10}\text{-}$ Dialkylaminocarbonylalkyl, $C_2\text{-}C_{10}\text{-}$

Alkylaminocarbonyloxyalkyl, C_3 - C_{10} -Dialkylaminocarbonyloxalkyl, C_2 - C_{10} -Alkoxycarbonylaminoalkyl, C_1 - C_{10} -N-Alkoxycarbonyl-N-alkylamino-alkyl,

C₁-C₁₀-Cycloalkyl, Aryl oder Heteroaryl bedeuten; oder

R₄ und R₅ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7-gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann und der zusätzlich eine anellierte oder spirogebundene, aus 2 bis 6 Kohlenstoffatomen bestehende Alkylen- oder Alkenylenkette enthalten kann, die ihrerseits ein oder zwei Heteroatome ausgewählt aus Sauerstoff und Schwefel enthalten kann, wobei dieser Cyclus mit Phenyl oder Benzyl substituiert sein kann, welche ihrerseits durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Cycloalkyl, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy oder Nitro substituiert sein können; R₂, R₆ und R₃₂ unabhängig voneinander C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Alkylthioalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkenyloxyalkyl, C₃-C₁₀-Alkinyloxyalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylcarbonyl-alkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl bedeuten;

 R_7 , R_{31} und R_{33} unabhängig voneinander Wasserstoff, C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkoxyalkyl;

R₈ Wasserstoff, C₁-C₁₀-Alkyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkinyloxyalkyl, C₂-C₁₀-Alkylthioalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl bedeuten; oder R₆ und R₇ oder R₂ und R₃₁ oder R₃₂ und R₃₃ bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann; oder R₆ und R₈ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5-bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

R₉, R₁₀, R₁₁ und R₁₂ unabängig voneinander C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkenyloxyalkyl, C₃-C₁₀-Alkinyloxyalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylcarbonyl-alkyl, C₃-C₁₀-Cyclolalkyl, Aryl oder Heteroaryl bedeuten; oder

R₉ und R₁₁ oder R₉ und R₁₀ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 $R_{13},\,R_{14},\,R_{34}$ und R_{35} unabängig voneinander $C_1\text{-}C_{10}\text{-}Alkyl,\,C_2\text{-}C_{10}\text{-}Alkenyl,\,C_2\text{-}C_{10}\text{-}Alkinyl,\,C_1\text{-}C_{10}\text{-}Halogenalkyl,\,C_2\text{-}C_{10}\text{-}Alkoxyalkyl,\,C_3\text{-}C_{10}\text{-}Alkenyloxyalkyl,\,C_3\text{-}C_{10}\text{-}Alkinyloxyalkyl,\,C_2\text{-}C_{10}\text{-}Alkylthioalkyl,\,C_2\text{-}C_{10}\text{-}Alkylsulfinylalkyl,\,C_2\text{-}C_{10}\text{-}Alkylsulfonylalkyl,\,C_2\text{-}C_{10}\text{-}Alkylcarbonylalkyl,\,C_3\text{-}C_{10}\text{-}Cycloalkyl,\,Aryl oder Heteroaryl bedeuten; oder$

 R_{13} und R_{14} oder R_{34} und R_{35} bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann,

R₁₅ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkenyloxyalkyl, C₃-C₁₀-Alkinyloxyalkyl, C₂-C₁₀-Alkylthioalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₁-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylaminoalkyl, C₁-C₁₀-Cyanoalkyl, C₄-C₁₀-Cycloalkylalkyl, C₁-C₁₀-Phenylalkyl, C₁-C₁₀-Heteroarylalkyl, C₁-C₁₀-Phenoxylalkyl, C₁-C₁₀-Heteroaryloxyalkyl, C₁-C₁₀-Nitroalkyl, C₃-Cycloalkyl, Aryl oder Heteroaryl bedeutet; R₁₆ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl;

R₁₇ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkenyloxyalkyl, C₃-C₁₀-Alkinyloxyalkyl, C₂-C₁₀-Alkylthioalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl bedeuten;

 R_{18} Wasserstoff, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl, C_1 - C_{10} -Alkyl oder C_1 - C_{10} -Alkoxyalkyl bedeutet; oder

 R_{17} und R_{18} bilden gemeinsam mit den Atomen, an die sie gebunden sind einen 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

Y Sauerstoff, Schwefel, C-R₁₉ oder N-R₃₆ bedeutet,

 $R_{19}\,$ und $R_{36}\,$ unabhängig voneinander $\,C_1$ - C_{10} -Alkyl, $\,C_1$ - C_{10} -Halogenalkyl, Phenyl oder Heteroaryl bedeuten; oder

R₁₈ und R₁₉ oder R₁₈ und R₃₆ bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 und G_{10} unabhängig voneinander Wasserstoff, -C(X₁)-R₂₀, -C(X₂)-X₃-R₂₁, -C(X₄)-N(R₂₂)-R₂₃, -SO₂-R₂₄, ein Alkali-, Erdalkali-, Sulfonium- oder Ammoniumkation, -P(X₅)(R₂₅)-R₂₆ oder -CH₂-X₆-R₂₇ bedeuten;

X₁, X₂, X₃, X₄, X₅ und X₆ unabhängig voneinander Sauerstoff oder Schwefel bedeuten; R₂₀, R₂₁, R₂₂ und R₂₃ unabhängig voneinander Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, $C_2-C_{10}-Alkinyl,\ C_1-C_{10}-Halogenalkyl,\ C_1-C_{10}-Cyanoalkyl,\ C_1-C_{10}-Nitroalkyl,\ C_1-C_{10}-Aminoalkyl,\ C_1-C$ $C_1-C_5-Alkylamino-C_1-C_5-alkyl,\ C_2-C_8-Dialkylamino-C_1-C_5-alkyl,\ C_3-C_7.Cycloalkyl-C_1-C_5-alkyl,\ C_8-C_8-Dialkylamino-C_1-C_5-alkyl,\ C_8-C_8-Dialkylamino-C_1-C_8-alkylamino-C_1-$ C2-C10-Alkoxy-alkyl, C4-C10-Alkenyloxy-alkyl, C4-C10-Alkinyloxy-alkyl, C2-C10-Alkylthio-alkyl, $C_1-C_5-Alkysulfoxyl-C_1-C_5-alkyl,\ C_1-C_5-Alkylsulfonyl-C_1-C_5-alkyl,\ C_2-C_8-Alkylideneamino-oxyl-C_1-C_5-alkyl,\ C_2-C_8-Alkylideneamino-oxyl-C_1-C_5-alkyl-C_1-C$ C₁-C₅-alkyl, C₁-C₅-Alkylcarbonyl-C₁-C₅-alkyl, C₁-C₅-Alkoxycarbonyl-C₁-C₅-alkyl, C₁-C₅-Aminocarbonyl-C1-C5-alkyl, C2-C8-Dialkylamino-carbonyl-C1-C5-alkyl, C1-C5-Alkylcarbonylamino-C1-C₅-alkyl, C₁-C₅-Alkylcarbonyl-(C₂-C₅-alkyl)-aminoalkyl, C₃-C₆-Trialkylsilyl-C₁-C₅-alkyl, Phenyl-C₁-C₅-alkyl, Heteroaryl-C₁-C₅-alkyl, Phenoxy- C₁-C₅-alkyl, Heteroaryloxy-C₁-C₅-alkyl, C₂-C₅-Alkenyl, C2-C5-Halogenalkenyl, C3-C8-Cycloalkyl, Phenyl, oder durch C1-C3-Alkyl, C1-C3-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl, oder Heteroaryl oder Heteroarylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Heteroaryl oder Heteroarylamino, Diheteroarylamino oder durch C1-C3-Alkyl, C1-C3-Halogenalkyl, C1-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diheteroarylamino, Phenylamino oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenylamino, Diphenylamino oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diphenylamino, oder C₃-C₇-Cycloalkylamino, Di-C₃-C₇-cycloalkylamino oder C₃-C₇-Cycloalkoxy bedeuten; R₂₄, R₂₅ und R₂₆ Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₁-C₁₀-Cyanoalkyl, C₁-C₁₀-Nitroalkyl, C₁- C₁₀-Aminoalkyl, C₁-C₅-Alkylamino-C₁-C₅-alkyl, C₂-C₈-Dialkylamino- C₁-C₅-alkyl, C₃-C₇-Cycloalkyl-C₁-C₅-alkyl, C₂-C₁₀-Alkoxy-alkyl, C₄-C₁₀-Alkenyloxy-alkyl, C₄-C₁₀-Alkinyloxy-alkyl, C₂- C₁₀-Alkylthio-alkyl, C₁-C₅-Alkysulfoxyl-C₁-C₅-alkyl, C₁-C₅-Alkylsulfonyl-C₁-C₅-alkyl, C₂-C₈-Alkylideneamino-oxy-C₁-C₅-alkyl, C₁-C₅-Alkylcarbonyl-C₁-C₅-alkyl, C₁-C₅-Alkoxycarbonyl-C₁-C₅-alkyl, C₁-C₅-Amino-carbonyl-C₁-C₅alkyl, C2-C8-Dialkylamino-carbonyl-C1-C5-alkyl, C1-C5-Alkylcarbonylamino-C1-C5-alkyl, C1-C5-Alkylcarbonyl-(C2-C5-alkyl)-aminoalkyl, C3-C6-Trialkylsilyl-C1-C5-alkyl, Phenyl-C1-C5-alkyl, Heteroaryl-C₁-C₅-alkyl, Phenoxy- C₁-C₅-alkyl, Heteroaryloxy- C₁-C₅-alkyl, C₂-C₅-Alkenyl, C₂-C₅-Halogenalkenyl, C₃-C₈-Cycloalkyl, Phenyl, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl, oder Heteroaryl oder Heteroarylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy. C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Heteroaryl oder

Heteroarylamino, Diheteroarylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diheteroarylamino, Phenylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenylamino, Diphenylamino oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diphenylamino, oder C₃-C₇-Cycloalkylamino, Di-C₃-C₇cycloalkylamino, C₃-C₇-Cycloalkoxy, C₁-C₁₀-Alkoxy, C₁-C₁₀-Halogenalkoxy, C₁-C₅-Alkylamino, C2-C8-Dialkylamino, Benzyloxy oder Phenoxy, wobei die Benzyl- und Phenylgruppen ihrerseits durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiert sein können, bedeuten; R₂₇ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₁-C₁₀-Cyanoalkyl, C₁- C_{10} -Nitroalkyl, C_1 - C_{10} -Aminoalkyl, C_1 - C_5 -Alkylamino- C_1 - C_5 -alkyl, C_2 - C_8 -Dialkylamino- C_1 - C_5 alkyl, C_3 - C_7 .Cycloalkyl- C_1 - C_5 -alkyl, C_2 - C_{10} -Alkoxy-alkyl, C_4 - C_{10} -Alkenyloxy-alkyl, C_4 - C_{10} -Alkoxy-alkyl, C_4 - C_{10} - C_{1 Alkinyloxy-alkyl, C2-C10-Alkylthio-alkyl, C1-C5-Alkylsulfoxyl- C1-C5-alkyl, C1-C5-Alkylsulfonyl- C_1-C_5 -alkyl, C_2-C_8 -Alkylideneamino-oxy- C_1-C_5 -alkyl, C_1-C_5 -alkyl Alkoxycarbonyl-C₁-C₅-alkyl, C₁-C₅-Amino-carbonyl-C₁-C₅-alkyl, C₂-C₈-Dialkylamino-carbonyl- C_1-C_5 -alkyl, C_1-C_5 -Alkylcarbonylamino- C_1-C_5 -alkyl, C_1-C_5 -Alkylcarbonyl-(C_2-C_5 -alkyl)aminoalkyl, C3-C6-Trialkylsilyl-C1-C5-alkyl, Phenyl-C1-C5-alkyl, Heteroaryl-C1-C5-alkyl, Phenoxy-C₁-C₅-alkyl, Heteroaryloxy-C₁-C₅-alkyl, C₂-C₅-Alkenyl, C₂-C₅-Halogenalkenyl, C₃-C₈-Cycloalkyl, Phenyl, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl, oder Heteroaryl, oder Heteroarylamino, oder durch C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Heteroaryl oder Heteroarylamino, Diheteroarylamino, durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diheteroarylamino, oder Phenylamino, durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenylamino, Diphenylamino, durch C1-C3-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diphenylamino, C3-C7-Cycloalkylamino, Di-C3-C7-cycloalkylamino, C3-C7-Cycloalkoxy oder C₁-C₁₀-Alkylcarbonyl bedeutet;

 $Y_2 \ Sauerstoff, \ Schwefel, \ C-R_{140}-R_{141} \ oder \ N-R_{142} \ bedeutet,$ $R_{55} \ C_{1}-C_{10}-Alkyl, \ C_{2}-C_{10}-Alkenyl, \ C_{2}-C_{10}-Alkinyl, \ C_{10}-Halogenalkyl, \ C_{2}-C_{10}-Alkoxyalkyl, \ C_{3}-C_{10}-Alkenyloxyalkyl, \ C_{2}-C_{10}-Alkylthioalkyl, \ C_{2}-C_{10}-Alkylsulfinylalkyl, \ C_{2}-C_{10}-Alkyl$

C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylcarbonyl-alkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl bedeutet:

 R_{137} Wasserstoff, C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl oder C_1 - C_{10} -Alkoxyalkyl bedeutet; oder

R₅₅ und R₁₃₇ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 3- bis 7gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_{138} und R_{139} unabhängig voneinander Wasserstoff, C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkoxyalkyl, und

 R_{140} und R_{141} unabhängig voneinander Wasserstoff, C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkoxyalkyl bedeuten; oder

R₅₅ und C-R₁₄₀ bilden gemeinsam mit den Atomen, an die sie gebunden sind einen gesättigten oder ungesättigten 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

R₁₄₂ Wasserstoff, C₁-C₁₀-Alkyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C

Die in den Substituentendefinitionen vorkommenden Alkylgruppen können geradkettig oder verzweigt sein und stehen beispielsweise für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sek.-Butyl, iso-Butyl, tert.-Butyl sowie die Isomeren Pentyle, Hexyle, Heptyle, Octyle, Nonyle und Decyle. Halogenalkyl ist beispielsweise Fluormethyl, Difluormethyl, Trifluormethyl, Chlormethyl, Dichlormethyl, Trichlormethyl, 2,2,2-Trifluorethyl, 2-Fluorethyl, 2-Chlorethyl, Pentafluorethyl, 1,1-Difluor-2,2,2-trichlorethyl, 2,2,3,3-Tetrafluorethyl und 2,2,2-Trichlorethyl; vorzugsweise Trichlormethyl, Difluorchlormethyl, Difluormethyl, Trifluormethyl und Dichlorfluormethyl. Alkoxyalkyl ist beispielsweise Methoxymethyl, Ethoxymethyl, Propoxyethyl, i-Propoxyethyl, n-Butoxymethyl, iso-Butoxyn-butyl, sek.-Butoxymethyl und tert.-Butoxy-i-propyl, vorzugsweise Methoxymethyl und Ethoxymethyl. Alkoxy-, Alkenyl-, Alkinyl-, Alkoxyalkyl-, Alkylthio-, Alkylsulfonyl-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-Alkylaminoalkyl, Phenylalkyl-, Nitroalkyl-, Aminoalkyl- und N-Alkoxycarbonyl-N-

alkylaminoalkylgruppen leiten sich von den genannten Alkylresten ab. Die Alkenyl- und Alkinylgruppen können ein- oder mehrfach ungesättigt sein. Unter Alkenyl ist beispielsweise Vinyl, Allyl, Methallyl, 1-Methylvinyl oder But-2-en-1-yl zu verstehen. Alkinyl bedeutet beispielsweise Ethinyl, Propargyl, But-2-in-1-yl, 2-Methylbutin-2-yl oder But-3-in-2-yl. Alkinyl bedeutet beispielsweise Ethinyl, Propargyl, But-2-in-1-yl, 2-Methylbutin-2-yl oder But-3-in-2vl. Halogenalkylgruppen haben vorzugsweise eine Kettenlänge von 1 bis 4 Kohlenstoffatomen. Halogenalkyl ist beispielsweise Fluormethyl, Difluormethyl, Trifluormethyl, Chlormethyl, Dichlormethyl, Trichlormethyl, 2,2,2-Trifluorethyl, 2-Fluorethyl, 2-Chlorethyl, Pentafluorethyl, 1,1-Difluor-2,2,2-trichlorethyl, 2,2,3,3-Tetrafluorethyl und 2,2,2-Trichlorethyl; vorzugsweise Trichlormethyl, Difluorchlormethyl, Difluormethyl, Trifluormethyl und Dichlorfluormethyl. Als Halogenalkenyl kommen ein- oder mehrfach durch Halogen substituierte Alkenylgruppen in Betracht, wobei Halogen Fluor, Chlor, Brom und Jod und insbesondere Fluor und Chlor bedeutet, beispielsweise 2,2-Difluor-1-methylvinyl, 3-· . Fluorpropenyl, 3-Chlorpropenyl, 3-Brompropenyl, 2,3,3-Trifluorpropenyl, 2,3,3-Trichlorpropenyl und 4,4,4-Trifluor-but-2-en-1-yl. Unter den durch Halogen 1-, 2- oder 3-fach substituierten C2-C6-Alkenylgruppen sind diejenigen bevorzugt, die eine Kettenlänge von 3 bis 5 Kohlenstoffatomen besitzen. Alkoxygruppen haben vorzugsweise eine Kettenlänge von 1 bis 6 Kohlenstoffatomen. Alkoxy ist beispielsweise Methoxy, Ethoxy, Propoxy, i-Propoxy, n-Butoxy, iso-Butoxy, sek.-Butoxy und tert.-Butoxy sowie die Isomeren Pentyloxy und Hexyloxy; vorzugsweise Methoxy und Ethoxy. Alkylcarbonyl steht vorzugsweise für Acetyl oder Propionyl. Alkoxycarbonyl bedeutet beispielsweise Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, iso-Propoxycarbonyl, n-Butoxycarbonyl, iso-Butoxycarbonyl, sek.-Butoxycarbonyl oder tert.-Butoxycarbonyl; vorzugsweise Methoxycarbonyl oder Ethoxycarbonyl. Alkylthiogruppen haben vorzugsweise eine Kettenlänge von 1 bis 4 Kohlenstoffatomen. Alkylthio ist beispielsweise Methylthio, Ethylthio, Propylthio, iso-Propylthio, n-Butylthio, iso-Butylthio, sek.-Butylthio oder tert.-Butylthio, vorzugsweise Methylthio und Ethylthio. Alkylsulfinyl ist beispielsweise Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, iso-Propylsulfinyl, n-Butylsulfinyl, iso-Butylsulfinyl, sek.-Butylsulfinyl, tert.-Butylsulfinyl; vorzugsweise Methylsulfinyl und Ethylsulfinyl. Alkylsulfonyl steht beispielsweise für Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, iso-Propylsulfonyl, n-Butylsulfonyl, iso-Butylsulfonyl, sek.-Butylsulfonyl oder tert.-Butylsulfonyl; vorzugsweise für Methylsulfonyl oder Ethylsulfonyl. Alkylamino ist beispielsweise Methylamino, Ethylamino, n-Propylamino, iso-Propylamino oder die isomeren Butylamine. Dialkylamino steht beispielsweise für Dimethylamino, Methylethylamino, Diethylamino, n-Propylmethylamino, Di-butylamino und Di-Isopropylamino. Alkoxyalkylgruppen haben vorzugsweise 1 bis 6 Kohlenstoffatome. Alkoxyalkyl bedeutet beispielsweise

Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, n-Propoxymethyl, n-Propoxyethyl, iso-Propoxymethyl oder iso-Propoxyethyl. Alkylthioalkyl bedeutet beispielsweise Methylthiomethyl, Methylthioethyl, Ethylthiomethyl, Ethylthioethyl, n-Propylthiomethyl, iso-Propylthiomethyl, iso-Propylthioethyl, Butylthioethyl, Butylthioethyl oder Butylthiobutyl. Phenyl, kann substituiert vorliegen. Die Substituenten können dann in ortho-, meta- und/oder para-Stellung stehen. Bevorzugte Substituentenstellungen sind die ortho- und para-Positionen zur Ringverknüpfungsstelle.

Aryl steht beispielsweise für Phenyl oder Naphtyl. Diese Gruppen können auch substituiert sein. Phenyl, auch als Teil eines Substitenten wie Phenylalkyl, kann beispielsweise- wenn in den Definitionen nicht anders angegeben, durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkyl, C₁-C₄-Alkylsulfoxy, C₁-C₄-Alkylsulfoxyl, Carboxyl, C₁-C₄-Alkylsulfoxyl, Carboxyl, C₁-C₄-Alkylsulfoxyl, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino oder C₁-C₄-Alkylcarbonylamino substituiert sein.

Heteroarylgruppen sind üblicherweise aromatische Heterocyclen, die vorzugsweise 1 bis 3 Heteroatome wie Stickstoff, Schwefel und Sauerstoff enthalten. Beispiele für geeignete Heterocyclen und Heteroaromaten sind: Pyrrolidin, Piperidin, Pyran, Dioxan, Azetidin, Oxetan, Pyridin, Pyrimidin, Triazin, Thiazol, Thiadiazol, Imidazol, Oxazol, Isoxazol sowie Pyrazin, Furan, Morpholin, Piperazin, Pyrazol, Benzoxazol, Benzthiazol, Chinoxalin und Chinolin. Diese Heterocyclen und Heteroaromaten können weiter substituiert sein, beispielsweise mit Halogen, Alkyl, Alkoxy, Haloalkyl, Haloalkoxy, Nitro, Cyano, Thioalkyl, Alkylamino oder Phenyl.

Unter den 3- bis 7- gliedrigen Cyclen sind im Rahmen der vorliegenden Erfindung Ringsysteme zu verstehen, die zusätzlich zu den gegebenenfalls im Ring der Substituenten Q bereits vorhandenen Heteroatomen neben den Kohlenstoffatomen ein oder mehrere Heteroatome wie Stickstoff, Sauerstoff und/oder Schwefel enthalten können. Sie können gesättigt oder ungesättigt sein. Die ungesättigte Bindung kann beispielsweise bei der Gruppe Q₂ durch die Substituenten R₅ und R₁ gebildet werden. Bevorzugt enthalten solche Ringsysteme 5 bis 7 Ringatome.

3- bis 7- gliedrige Cyclen einschließlich die Cycloalkyle wie z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl können auch substituiert sein. Geeignete Substituenten sind Halogen, Hydroxy, Nitro, Cyano, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Halogenalkyl, Keto, C₂-C₄-Alkenyloxyimino, C₁-C₄-Alkoxy, C₁-C₄-Alkoxyalkoxy, C₁-C₄-Alkylthio, oder eine der folgenden 3 Gruppen

$$X_8R_{28}$$
 X_8R_{28}
 X_8R_{28}

worin X_8 Schwefel oder Sauerstoff bedeutet, R_{28} C_1 - C_4 -Alkoxyl oder beide R_{28} bilden mit der $-X_8$ -C- X_8 -Brücke, an die sie gebunden sind, einen 5- oder 6-gliedrigen Ring, der mit Methyl, Ethyl, Methoxy oder einer Ketogruppe substituiert sein kann,

R₂₉ C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₄-Alkenyl oder C₂-C₄-Halogenalkenyl bedeutet, R₃₀ und R₃₇ unabhängig voneinander C₁-C₄-Alkyl, Phenyl, C₂-C₄-Alkenyl, oder R₃₀ und R₃₇ bilden zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6 gliedrigen Ring, der ein Heteroatom ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann.

In den Substituentendefinitionen bedeutet die Zahl der Kohlenstoffatome die Gesamtzahl der Kohlenstoffatome in den Alkyl-, Alkenyl- und Alkinylgruppen sowie den davon abgeleiteten Gruppen wie z.B. Halogenalkyl oder Alkenyloxy. C₂-C₃-Alkoxyalkyl umfaßt daher Methoxymethyl, Metoxyethyl und Ethoxymethyl. C₃-Alkoxycarbonylalkyl umfaßt Methoxycarbonylethyl und Ethoxycarbonylmethyl.

Alkali-, Erdalkali- oder Ammoniumkationen für die Substituenten G_1 bis G_{10} sind beispielsweise die Kationen von Natrium, Kalium, Magnesium, Kalzium und Ammonium. Bevorzugte Sulfoniumkationen sind insbesondere Trialkylsulfoniumkationen, worin die Alkylgruppen vorzugsweise je 1 bis 4 Kohlenstoffatome enthalten.

Die Verbindungen der Formel I können, auch in Abhängigkeit von der Art der Substituenten, als geometrische, und/oder optische Isomere und Isomerengemische sowie als Tautomere und Tautomerengemische vorliegen. Diese Verbindungen der Formel I bilden ebenfalls einen Gegenstand der vorliegenden Erfindung. Beispielsweise können die Verbindungen der Formel I, worin Q für Q₁ steht und die Gruppe G₁ Wasserstoff bedeutet, in den folgenden tautomeren Gleichgewichten vorliegen:

WO 01/17972

Wenn G₁ bis G₁₀ verschieden von Wasserstoff ist und der von R₄ und R₅ zusammen gebildete Cyclus unsymmetrisch substituiert, anelliert oder spiroverknüpft ist, kann beispielsweise die Verbindung der Formel I als Isomer der Formel Id

vorliegen.

Die Erfindung umfaßt ebenfalls die Salze, die die Verbindungen der Formel I vorzugsweise mit Aminen, Alkali- und Erdalkalimetallbasen oder quaternären Ammoniumbasen bilden können. Geeignete Salzbildner sind beispielsweise in WO 98/41089 beschrieben.

Die Erfindung umfaßt ebenfalls die Salze, die die Verbindungen der Formel I mit Aminen, Alkali- und Erdalkalimetallbasen oder quaternären Ammoniumbasen bilden können.

Unter den Alkali- und Erdalkalimetallhydroxiden als Salzbildner sind die Hydroxide von Lithium, Natrium, Kalium, Magnesium oder Calcium hervorzuheben, insbesondere aber die von Natrium oder Kalium.

Als Beispiele für zur Ammoniumsalzbildung geeignete Amine kommen sowohl Ammoniak wie auch primäre, sekundäre und tertiäre C₁-C₁8-Alkylamine, C₁-C₄-Hydroxyalkylamine und C2-C4-Alkoxyalkylamine in Betracht, beispielsweise Methylamin, Ethylamin, n-Propylamin, iso-Propylamin, die vier isomeren Butylamine, n-Amylamin, iso-Amylamin, Hexylamin. Heptylamin, Octylamin, Nonylamin, Decylamin, Pentadecylamin, Hexadecylamin, Heptadecylamin, Octadecylamin, Methyl-ethylamin, Methyl-iso-propylamin, Methylhexylamin, Methyl-nonylamin, Methyl-pentadecylamin, Methyl-octadecylamin, Ethylbutylamin, Ethyl-heptylamin, Ethyl-octylamin, Hexyl-heptylamin, Hexyl-octylamin, Dimethylamin, Diethylamin, Di-n-propylamin, Di-iso-propylamin, Di-n-butylamin, Di-namylamin, Di-iso-amylamin, Dihexylamin, Diheptylamin, Dioctylamin, Ethanolamin, n-Propanolamin, iso-Propanolamin, N,N-Diethanolamin, N-Ethylpropanolamin, N-Butylethanolamin, Allylamin, n-Butenyl-2-amin, n-Pentenyl-2-amin, 2,3-Dimethylbutenyl-2amin, Di-butenyl-2-amin, n-Hexenyl-2-amin, Propylendiamin, Trimethylamin, Triethylamin, Tri-n-propylamin, Tri-iso-propylamin, Tri-n-butylamin, Tri-iso-butylamin, Tri-sek.-butylamin, Tri-n-amylamin, Methoxyethylamin und Ethoxyethylamin; heterocyclische Amine wie z.B. Pyridin, Chinolin, iso-Chinolin, Morpholin, Piperidin, Pyrrolidin, Indolin, Chinuclidin und Azepin; primäre Arylamine wie z.B. Aniline, Methoxyaniline, Ethoxyaniline, o,m,p-Toluidine, Phenylendiamine, Benzidine, Naphthylamine und o,m,p-Chloraniline; insbesondere aber Triethylamin, iso-Propylamin und Di-iso-propylamin.

Bevorzugte quarternäre Ammoniumbasen, die zur Salzbildung geeignet sind, entsprechen z.B. der Formel [N($R_a R_b R_c R_d$)]OH, worin R_a , R_b , R_c und R_d unabhängig voneinander C_1 - C_4 Alkyl bedeuten. Andere geeignete Tetraalkylammoniumbasen mit anderen Anionen können beispielsweise durch Anionenaustauschreaktionen erhalten werden.

Von den Verbindungen der Formel I sind diejenigen bevorzugt, worin Q für Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 , Q_7 , Q_8 oder Q_9 steht.

Ferner bevorzugte Verbindungen der Formel I sind dadurch gekennzeichnet, daß R_4 und R_5 unahängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_4 - C_6 -Alkenyloxyalkyl, C_4 - C_6 -Alkinyloxyalkyl, C_2 - C_6 -Alkylthioalkyl, C_2 - C_6 -Alkylsulfoxylalkyl, C_2 - C_6 -Alkylcarbonyl-alkyl, C_3 - C_6 -N-Alkoxy-iminoalkyl, C_3 - C_6 -Alkylaminoalkyl, C_1 - C_6 -Aminoalkyl, C_2 - C_6 -Dialkylaminoalkyl, C_3 - C_6 -Alkylaminoalkyl, C_1 - C_6 - C_6 -Alkylaminoalkyl, C_1 - C_6 - C_6 -Alkylaminoalkyl, C_1 - C_6 -

C6-Cyanoalkyl, C4-C8-Cycloalkylalkyl, C7-C8-Phenylalkyl, C7-C8-Heteroarylalkyl, C7-C8-

Phenoxylalkyl, C7-C8-Heteroaryloxyalkyl, C4-C6-Alkylidenaminooxyalkyl, C1-C6-Nitroalkyl, C4-

C₈-Trialkylsilylalkyl, C₄-C₆-Alkylaminocarbonyl, C₃-C₆-Dialkylaminocarbonyl, C₄-C₈-

Alkylaminocarbonyloxyalkyl, C₄-C₈-Dialkylaminocarbonyloxalkyl, C₄-C₈-

Alkoxycarbonylaminoalkyl, C₄-C₈-N-Alkoxycarbonyl-N-alkylamino-alkyl,

C₃-C₈-Cycloalkyl, Aryl oder Heteroaryl bedeuten, oder

R₄ und R₅ gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7- gliedrigen Cyclus bilden.

Ferner sind diejenigen Verbindungen der Formel I bevorzugt, worin

R₂, R₆ und R₃₂ unabhängig voneinander C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkoxyalkyl,

C₄-C₆-Alkenyloxyalkyl, C₄-C₆-Alkinyloxyalkyl, C₂-C₆-Alkylthioalkyl, C₂-C₆-Alkylsulfoxylalkyl,

C₂-C₆-Alkylsulfonylalkyl, C₃-C₆-Alkylcarbonyl-alkyl,

C₃-C₈-Cyclolalkyl, Aryl oder Heteroaryl;

R₇, R₃₁ und R₃₃ Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxyalkyl;

 $R_8 \ Wasserstoff, \ C_1-C_6-Alkyl, \ C_1-C_6-Halogenalkyl, \ C_2-C_6-Alkoxyalkyl, \ C_4-C_6-Alkenyloxyalkyl, \ C_6-Alkoxyalkyl, \ C_8-C_8-Alkenyloxyalkyl, \ C_8-C_8-Alkenyloxyalkyl$

 $C_4-C_6-Alkinyloxyalkyl,\ C_1-C_6-Alkylthioalkyl,\ C_1-C_6-Alkylsulfinylalkyl,\ C_1-C_6-Alkylsulfonylalkyl,\ C_1-C_6-Alkylsulfonyl$

C₃-C₈-Cyclolalkyl, Aryl oder Heteroaryl bedeuten; oder

R₆ und R₇ oder R₂ und R₃₁ oder R₃₂ und R₃₃ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5-bis 7-gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann, oder

R₆ und R₈ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5-bis 7-gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_9 , R_{10} , R_{11} und R_{12} unabängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_4 - C_6 -Alkenyloxyalkyl, C_4 - C_6 -Alkinyloxyalkyl, C_2 - C_6 -Alkylsulfinylalkyl, C_2 - C_6 -Alkylsulfonylalkyl, C_3 - C_6 -Alkylcarbonyl-alkyl,

C₃-C₈-Cyclolalkyl, Aryl oder Heteroaryl bedeuten; oder

 R_9 und R_{11} oder R_9 und R_{10} bilden gemeinsam mit den Atomen, an die sie gebunden sind einen 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann, oder

R₉ und R₁₀ bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 3- bis 7-gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_{13} , R_{14} , R_{34} und R_{35} unabängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_4 - C_6 -Alkenyloxyalkyl, C_4 - C_6 -Alkinyloxyalkyl, C_2 - C_6 -Alkylthioalkyl, C_2 - C_6 -Alkylsulfoxylalkyl, C_3 - C_6 - C_6 -Alkylsulfoxylalkyl, C_3 - C_6

R₁₃ und R₁₄ oder R₃₄ und R₃₅ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7-gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann,

 $R_{15}\ C_1-C_6-Alkyl,\ C_1-C_6-Halogenalkyl,\ C_2-C_6-Alkoxyalkyl,\ C_4-C_6-Alkenyloxyalkyl,\ C_4-C_6-Alkylsulfoxylalkyl,\ C_2-C_6-Alkylsulfoxylalkyl,\ C_2-C_6-Alkylsulfoxylalkyl,\ C_3-C_6-Alkylsulfoxylalkyl,\ C_3-C_6-Alkylsulfoxylalkyl,\ C_4-C_6-Alkylsulfoxylalkyl,\ C_4-C_6-Dialkylaminoalkyl,\ C_4-C_6-Alkylaminoalkyl,\ C_2-C_6-Alkylaminoalkyl,\ C_2-C_6-Cyanoalkyl,\ C_3-C_8-Cycloalkylalkyl,\ C_7-C_8-Phenylalkyl,\ C_7-C_8-Heteroarylalkyl,\ C_7-C_8-Phenoxyalkyl,\ C_6-C_8-Heteroaryloxyalkyl,\ C_1-C_6-Nitroalkyl,\ C_3-C_8-Cycloalkyl,\ Aryl oder Heteroaryl;$

 R_{16} C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_4 - C_6 -Alkenyloxyalkyl, C_4 - C_6 -Alkinyloxyalkyl, C_2 - C_6 -Alkylthiolkyl, C_2 - C_6 -Alkylsulfinylalkyl, C_2 - C_6 -Alkylsulfonylalkyl, C_3 - C_8 -Cyclolalkyl, Aryl oder Heteroaryl;

 $R_{17}\ C_1-C_6-Alkyl,\ C_1-C_6-Halogenalkyl,\ C_2-C_6-Alkoxyalkyl,\ C_4-C_6-Alkenyloxyalkyl,\ C_4-C_6-Alkylsulfinylalkyl,\ C_2-C_6-Alkylsulfonylalkyl,\ C_3-C_6-Alkylsulfonylalkyl,\ C_3-C_$

R₁₈ Wasserstoff, C₁-C₆-Alkyl oder C₂-C₆-Alkoxalkyl; oder

 R_{17} und R_{18} bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann,

 R_{19} und R_{36} unabhängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, Phenyl, oder Heteroaryl bedeuten; oder

 R_{18} und R_{19} oder R_{18} und R_{36} bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

R₂₀, R₂₁, R₂₂, R₂₃, und R₂₇ unabhängig voneinander Wasserstoff.

 $C_1-C_8-Alkyl,\ C_1-C_8-Halogenalkyl,\ C_1-C_8-Cyanoalkyl,\ C_1-C_8-Nitroalkyl,\ C_1-C_8-Aminoalkyl,\ C_1-C_5-Alkylamino-C_1-C_2-alkyl,\ C_2-C_8-Dialkylamino-C_1-C_2-alkyl,\ C_3-C_7.Cycloalkyl-C_1-C_2-alkyl,\ C_2-C_8-Alkylamino-C_1-C_2-alkyl,\ C_2-C_8-Alkylamino-C_1-C_2-alkyl,\ C_2-C_8-Alkylamino-alkyl,\ C_1-C_2-Alkylamino-alkyl,\ C_1-C_2-Alkylamino-alkyl,\ C_1-C_2-alkyl,\ C_2-C_8-Alkylamino-alkyl,\ C_1-C_2-alkyl,\ C_1-C_2-alkyl,\ C_2-C_8-Alkylamino-alkyl,\ C_1-C_2-alkyl,\ C_1-C_2-alkyl,\ C_1-C_2-alkyl,\ C_1-C_2-alkyl,\ C_1-C_2-alkyl,\ C_1-C_2-alkyl,\ C_1-C_3-Amino-alkyl,\ C_1-C_3-Amin$

carbonyl-C₁-C₂-alkyl, C₂-C₈-Dialkylamino-carbonyl-C₁-C₂-alkyl, C₁-C₅-Alkylcarbonylamino-C₁-C₂-alkyl, C₁-C₂-Alkylcarbonyl-N-C₁-C₃-alkyl-C₁-C₂-aminoalkyl, C₃-C₆-Trialkylsilyl-C₁-C₃-alkyl, Phenyl-C₁-C₂-alkyl, Heteroaryl-C₁-C₂-alkyl, Phenoxy-C₁-C₂-alkyl, Heteroaryloxy-C₁-C₂-alkyl, C₂-C₅-Alkenyl, C₂-C₅-Halogenalkenyl, C₃-C₈-Cycloalkyl, Phenyl oder Heteroaryl bedeuten; R₂₄, R₂₅ und R₂₆ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Cyanoalkyl, C₁- C₈-Nitroalkyl, C₁- C₈-Aminoalkyl, C₁-C₅-Alkylamino-C₁-C₂-alkyl, C₂-C₆-Dialkylamino-C₁-C₂-alkyl, C₃-C₇-Cycloalkyl-C₁-C₂-alkyl, C₂-C₈-Alkoxy-alkyl, C₄- C₈-Alkenyloxyalkyl, C₄-C₈-Alkinyloxy-alkyl, C₂-C₈-Alkylthio-alkyl, C₁-C₂-Alkysulfoxyl-C₁-C₂-alkyl, C₁-C₂-Alkylsulfonyl-C₁-C₂-alkyl, C₂-C₈-Alkylideneamino-oxy-C₁-C₂-alkyl, C₁-C₅-Alkylcarbonyl-C₁-C₂alkyl, C₁-C₅-Alkoxycarbonyl-C₁-C₂-alkyl, C₁-C₅-Amino-carbonyl-C₁-C₂-alkyl, C₂-C₈-Dialkylamino-carbonyl-C₁-C₂-alkyl, C₁-C₅-Alkylcarbonylamino-C₁-C₂-alkyl, C₁-C₂-Alkylcarbonyl-N-C₁-C₃-alkyl-C₁-C₂-aminoalkyl, C₃-C₆-Trialkylsilyl-C₁-C₃-alkyl, Phenyl-C₁-C₂alkyl, Heteroaryl-C₁-C₂-alkyl, Phenoxy-C₁-C₂-alkyl, Heteroaryloxy-C₁-C₂-alkyl, C₂-C₅-Alkenyl, C₂-C₅-Halogenalkenyl, C₃-C₆-Cycloalkyl, Phenyl, Heteroaryl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₃-Alkylamino, C₂-C₆-Dialkylamino sowie Benzyloxy oder Phenoxy, wobei die Benzyl- und Phenylgruppen ihrerseits durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiert sein können, bedeuten; und

R₂₇ C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₁- C₈-Cyanoalkyl, C₁- C₈-Nitroalkyl, C₁- C₈-Aminoalkyl, C₁-C₅-Alkylamino-C₁-C₂-alkyl, C₂-C₆-Dialkylamino-C₁-C₂-alkyl, C₃-C₇.Cycloalkyl-C₁-C₂-alkyl, C₂-C₈-Alkoxy-alkyl, C₄- C₈-Alkenyloxy-alkyl, C₄-C₈-Alkinyloxy-alkyl, C₂-C₈-Alkylthio-alkyl, C₁-C₂-Alkysulfoxyl-C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₃-Alkylcarbonyl-C₁-C₂-alkyl, C₁-C₅-Alkylcarbonylamino-C₁-C₂-alkyl, C₁-C₂-alkyl, C₂-C₈-Dialkylamino-carbonyl-C₁-C₂-alkyl, C₁-C₅-Alkylcarbonylamino-C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₂-alkyl, C₁-C₂-alkyl, Phenyl-C₁-C₂-alkyl, Heteroaryl-C₁-C₃-alkyl, Phenyl-C₁-C₂-alkyl, Heteroaryl-C₁-C₂-alkyl, Phenyl-C₁-C₂-alkyl, Heteroaryl-C₁-C₂-alkyl, C₂-C₅-Alkenyl, C₂-C₅-Halogenalkenyl, C₃-C₈-Cycloalkyl, Phenyl, Heteroaryl, C₁-C₆-Alkoxy, C₁-C₆-Alkylcarbonyl, C₁-C₃-Alkylamino, C₂-C₆-Dialkylamino sowie Benzyloxy oder Phenoxy, wobei die Benzyl- und Phenylgruppen ihrerseits durch C₁-C₃-Alkyl, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, C₁

Besonders bevorzugte Verbindungen der Formel I sind dadurch gekennzeichnet, daß R₁ und R₃ unabhängig voneinander Ethyl, Halogenethyl, Ethinyl, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy oder C₁-C₂-Alkylcarbonyl bedeuten;

 R_4 und R_5 unahängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_2 - C_6 -Alkylcarbonyl-alkyl, C_3 - C_6 -Alkoxycarbonylalkyl, C_1 - C_6 -Aminoalkyl, C_2 - C_6 -Dialkylaminoalkyl, C_3 - C_6 -Alkylaminoalkyl, C_1 - C_6 -Cyanoalkyl, C_3 - C_8 -Cycloalkyl, Aryl oder Heteroaryl bedeuten; oder

 R_4 und R_5 bilden gemeinsam mit den Atomen, an die sie gebunden sind einen 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_2 , R_6 und R_{32} unabhängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_3 - C_8 -Cyclolalkyl, Aryl oder Heteroaryl;

R₇, R₃₁ und R₃₃ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxyalkyl bedeuten;

R₈ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkoxyalkyl, C₁-C₆-Alkylthioalkyl, C₃-C₈-Cyclolalkyl, Aryl oder Heteroaryl bedeutet; oder

 R_6 und R_7 oder R_2 und R_{31} oder R_{32} und R_{33} bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 3- bis 7- gliedriger Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann; oder

 R_6 und R_8 bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_9 , R_{10} , R_{11} und R_{12} unabängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_3 - C_8 -Cyclolalkyl, Aryl oder Heteroaryl bedeuten; oder

 R_9 und R_{11} bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7-gliedrigen Cyclus bildet, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann; oder

 R_{9} und R_{10} bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_{13} , R_{14} , R_{34} und R_{35} unabängig voneinander C_1 - C_6 -Alkyl, C_3 - C_8 -Cyclolalkyl, Aryl oder Heteroaryl bedeuten; oder

R₁₃ und R₁₄ oder R₃₄ und R₃₅ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7-gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann:

 R_{15} C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_4 - C_6 -Alkenyloxyalkyl, C_2 - C_6 -Alkylthioalkyl, C_2 - C_6 -Alkylsulfoxylalkyl, C_3 - C_6 -Alkoxycarbonylalkyl, C_3 - C_8 -Cyclolalkyl, Aryl oder Heteroaryl bedeutet;

 R_{16} C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_3 - C_8 -Cyclolalkyl, Aryl oder Heteroaryl bedeutet;

R₁₇ C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₈-Cyclolalkyl, Aryl oder Heteroaryl;

R₁₈ Wasserstoff, C₁-C₆-Alkyl oder C₂-C₆-Alkoxalkyl bedeutet; oder

R₁₇ und R₁₈ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann.

R₁₉ und R₃₆ unabhängig voneinander C₁-C₆-Alkyl oder C₁-C₆-Halogenalkyl bedeuten; oder R₁₈ und R₁₉ oder R₁₈ und R₃₆ bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_{20} , R_{21} , R_{22} und R_{23} unabhängig voneinander Wasserstoff, C_1 - C_8 -Alkyl, C_1 - C_8 -Halogenalkyl, C_3 - C_7 -Cycloalkyl- C_1 - C_2 -alkyl, C_2 - C_8 -Alkoxy-alkyl, Phenyl- C_1 - C_2 -alkyl, Heteroaryl- C_1 - C_2 -alkyl, Phenoxy- C_1 - C_2 -alkyl, C_2 - C_3 -Alkenyl, C_2 - C_5 -Alkenyl, C_2 - C_5 -Halogenalkenyl, C_3 - C_8 -Cycloalkyl, Phenyl oder Heteroaryl bedeuten;

R₂₄, R₂₅ und R₂₆ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₃-C₇-Cycloalkyl-C₁-C₂-alkyl, C₂-C₈-Alkoxy-alkyl, Phenyl-C₁-C₂-alkyl, Heteroaryl-C₁-C₂-alkyl, Phenoxy-C₁-C₂-alkyl, Heteroaryloxy-C₁-C₂-alkyl, C₂-C₅-Alkenyl, C₂-C₅-Halogenalkenyl, C₃-C₈-Cycloalkyl, Phenyl, Heteroaryl, C₁-C₆-Alkoxy, C₁-C₃-Alkylamino oder C₂-C₆-Dialkylamino bedeuten; und

 $R_{27}\ C_1-C_8-Alkyl,\ C_1-C_8-Halogenalkyl,\ C_3-C_7-Cycloalkyl-C_1-C_2-alkyl,\ C_2-C_8-Alkoxy-alkyl,\ Phenyl-C_1-C_2-alkyl,\ Heteroaryl-C_1-C_2-alkyl,\ Phenoxy-C_1-C_2-alkyl,\ Heteroaryloxy-C_1-C_2-alkyl,\ C_2-C_5-Alkenyl,\ C_2-C_5-Halogenalkenyl,\ C_3-C_8-Cycloalkyl,\ Phenyl,\ Heteroaryl,\ C_1-C_6-Alkoxy,\ C_1-C_3-Alkylamino,\ C_2-C_6-Dialkylamino oder\ C_1-C_8-Alkylcarbonyl\ bedeuten.$

Die Verbindungen der Formel I können hergestellt werden, indem man eine Verbindung der Formel XXX

worin Q für Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 , Q_7 , Q_8 , Q_9 oder Q_{10} steht, wobei deren Substituenten mit Ausnahme von G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 und G_{10} die oben angegebene Bedeutung haben und G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 und G_{10} Wasserstoff bedeutet, mit einer Verbindung der Formel XXXI

worin R₁ und R₃ die unter Formel I angegebene Bedeutung haben und Hal für Chlor, Brom oder Jod steht, in Gegenwart eines inerten Lösungsmittels, einer Base und eines Palladiumkatalysators bei Temperaturen von 30 bis 250 °C umsetzt. Die Reaktion wird vorzugsweise unter Inertgasatmosphäre durchgeführt.

Es hat sich überraschenderweise gezeigt, dass die Herstellung von Verbindungen der Formel I, worin R_1 und R_3 für Ethyl stehen, mit diesem Verfahren ganz besonders vorteilhaft ist. Die für die Herstellung dieser Verbindungen der Formel I eingesetzten Zwischenprodukte der Formel XXXI, worin R_1 und R_3 Ethyl bedeutet und Hal für Chlor, Brom oder Jod steht (Formel XXXIa) sind neu, wurden speziell für dieses Verfahren entwickelt und bilden daher ebenfalls einen Gegenstand der vorliegenden Erfindung.

Die Verbindungen der Formel XXX sind bekannt oder nach bekannten Verfahren, wie beispielsweise in J. Chem. Soc. Perkin Trans. 1 (1987), (4), 877-884 beschrieben, herstellbar. Die Verbindungen der Formel XXXI können beispielsweise nach bekannten Methoden wie z.B. Sandmeyer-Reaktion aus den entsprechenden Anilinen der Formel XXXII

worin R₁ und R₃ die unter Formel I angegebenen Bedeutungen haben, über die Diazoniumsalze hergestellt werden. Derartige Reaktionen sind beispielsweise in Vogel's Textbook of Practical Organic Chemistry, 5th Edition, B.S. Furniss, A.J. Hannaford, P.W.G.

Smith, A.R. Tatchell; Longman Scientific & Technical 1989, Seite 923 beschrieben. Die Verbindungen der Formel XXXII sind bekannt, teilweise kommerziell erhältlich oder können analog zu bekannten hergestellt werden.

Geeignet für diese Reaktion sind Basen, wie Tri-Alkalimetallphosphate, Alkali- und Erdalkalimetallhydride, Alkali- und Erdalkalimetallamide oder Alkalimetallalkoholate, beispielsweise Tri-Kaliumphosphat, Natriumhydrid, Lithiumdiisopropylamid (LDA), Na-tert.-Butylat oder K-tert.Butylat. Besonders bevorzugt sind Na-tert.-Butylat, K-tert.Butylat sowie Trikaliumphosphat.

Geeignete Lösungsmittel sind beispielsweise aromatische Kohlenwasserstoffe wie z.B. Xylol oder Toluol, Ether wie Tetrahydrofuran, Dioxan oder Ethylenglykoldimethylether, Dimethylsulfoxid oder tertiäre Amide wie Dimethylformamid, N-Methylpyrrolidinon oder Dimethylacetamid oder acyclische Harnstoffe wie N,N'-Dimethylpropylenharnstoff.

Die für die C-C-Verknüpfungsreaktion einer Verbindung der Formel XXX mit einer Verbindung der Formel XXXI in Betracht kommenden Palladiumkatalysatoren sind generell Palladium(II)- oder Palladium(0)-Komplexe wie z.B. Palladium(II)-dihalogenide, Palladium(II)-acetat, Palladium(II)-sulfat, Bis-(triphenylphosphin)-palladium(II)-dichlorid, Bis-(tricyclopentylphosphin)-palladium(II)-dichlorid, Bis-(tricyclohexylphosphin)-palladium(II)dichlorid, Bis-(dibenzylidenaceton)-palladium(0) oder Tetrakis-(triphenylphosphin)palladium(0). Der Palladiumkatalysator kann auch aus Palladium(II)- oder Palladium(0)-Verbindungen durch Komplexierung mit den gewünschten Liganden 'in situ' hergestellt werden, indem z.B. das zu komplexierende Palladium(II)-Salz beispielsweise Palladium(II)dichlorid (PdCl₂) oder Palladium(II)-acetat (Pd(OAc)₂) zusammen mit dem gewünschten Liganden beispielsweise Triphenylphosphin (PPh3), tricyclopentylphosphin oder Tricyclohexylphosphin zusammen mit dem gewählten Lösungsmittel, eine Verbindung der Formel XXXI, eine Verbindung der Formel XXX und Base vorgelegt wird. Bidendate Liganden kommen auch in Frage, wie zum Beispiel 1,1'-Bis-(Diphenylphosphino)ferrocen oder 1,2-Bis-(Diphenylphosphino)ethan. Durch Erwärmung des Reaktionsmediums bildet sich dann 'in situ' der für die C-C-Kopplungsreaktion gewünschte Palladium(II)- bzw. Palladium(0)-Komplex, welcher dann die C-C-Kopplungsreaktion startet. Die Palladiumkatalysatoren werden in einer Menge von 0,001 - 50 Mol%, bevorzugt in einer Menge von 0,1 – 15 Mol% bezogen auf die Verbindung der Formel XXXI eingesetzt.

Die Reaktionstemperaturen werden in Abhängigkeit des verwendeten Lösungsmittels und gegebenenfalls des Drucks gewählt. Vorzugsweise wird die Reaktion bei Atmosphärendruck durchgeführt.

Die Verbindungen der Formel I, worin Q für Q₁ steht, können analog den in WO 96/21652 beschriebenen Verfahren hergestellt werden. Verbindungen der Formel I worin Q für Q₂ steht, können beispielsweise nach den in EP-A-0 415 185, EP-A-0 521 334, EP-A-0 355 599 und EP-A-0 442 077 beschriebenen Verfahren hergestellt werden. Verbindungen der Formel I worin Q für Q₃, Q₄, Q₆ und Q₇ steht, können beispielsweise nach den in WO 96/35644 und WO 97/02243 beschriebenen Verfahren hergestellt werden. Verbindungen der Formel I worin Q für Q₅ steht können z.B. analog den in WO 97/14667 beschriebenen Verfahren hergestellt werden. Analogverfahren zur Herstellung von Verbindungen der Formel I worin Q für Q₇ steht, sind in WO 97/16436 beschrieben. Verbindungen der Formel I in denen Q für Q₈ steht, können analog US-A-5,994,274 hergestellt werden.

Verbindungen der Formel I in denen Q für Q₉ steht, können analog JP 11152273 A (Priorität: 19.11.1997 JP 318614), Verbindungen der Formel I, worin Q für Q₁₀ steht, können nach J. Org. Chem. (1979), 44(26), 4906-4912 oder

J. Org. Chem. (1977), 42(7), 1163-1169 oder analog hergestellt werden.

Die Umsetzungen zu Verbindungen der Formel I werden vorteilhafterweise in aprotischen, inerten organischen Lösungsmitteln vorgenommen. Solche Lösungsmittel sind Kohlenwasserstoffe wie Benzol, Toluol, Xylol oder Cyclohexan, chlorierte Kohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan oder Chlorbenzol, Ether wie Diethylether, Ethylenglykoldimethylether, Diethylenglykoldimethylether, Tetrahydrofuran oder Dioxan, Nitrile wie Acetonitril oder Propionitril, Amide wie N,N-Dimethylformamid, Diethylformamid oder N-Methylpyrrolidinon. Die Reaktionstemperaturen liegen vorzugsweise zwischen -20°C und +120°C. Die Umsetzungen verlaufen im allgemeinen leicht exotherm und können in der Regel bei Raumtemperatur durchgeführt werden. Zum Abkürzen der Reaktionszeit oder auch zum Einleiten der Umsetzung kann gegebenenfalls für kurze Zeit bis zum Siedepunkt des Reaktionsgemisches aufgewärmt werden. Die Reaktionszeiten können ebenfalls durch Zugabe einiger Tropfen Base als Reaktionskatalysator verkürzt werden. Als Basen sind insbesondere tertiäre Amine wie Trimethylamin, Triethylamin, Chinuclidin, 1,4-Diazabicyclo-[2.2.2]octan, 1,5-Diazabicyclo[4.3.0]non-5-en oder 1,5-Diazabicyclo[5.4.0]undec-7-en geeignet. Als Basen können aber auch anorganische Basen wie Hydride wie Natrium- oder Calciumhydrid,

WO 01/17972 PCT/EP00/08656

Hydroxide wie Natrium- oder Kaliumhydroxid, Carbonate wie Natrium- und Kaliumcarbonat oder Hydrogencarbonate wie Kalium- und Natriumhydrogencarbonat verwendet werden. Die Verbindungen der Formel I können auf übliche Weise durch Einengen und/oder Verdampfen des Lösungsmittels isoliert und durch Umkristallisieren oder Zerreiben des festen Rückstandes in Lösungsmitteln, in denen sie sich nicht gut lösen, wie Ether, aromatischen Kohlenwasserstoffe oder chlorierten Kohlenwasserstoffe, gereinigt werden.

Für die erfindungsgemäße Verwendung der Verbindungen der Formel I oder diese enthaltende Mittel kommen alle in der Landwirtschaft üblichen Applikationsmethoden wie z.B. preemergente Applikation, postemergente Applikation und Saatbeizung, sowie verschiedene Methoden und Techniken in Betracht, wie beispielsweise die kontrollierte Wirkstoffabgabe. Dazu wird der Wirkstoff in Lösung auf mineralische Granulatträger oder polymerisierte Granulate (Harnstoff/Formaldehyd) aufgezogen und getrocknet. Gegebenenfalls kann zusätzlich ein Überzug aufgebracht werden (Umhüllungsgranulate), der es erlaubt, den Wirkstoff über einen bestimmten Zeitraum dosiert abzugeben.

Die Verbindungen der Formel I können in unveränderter Form, d.h. wie sie in der Synthese anfallen, als Herbizide eingesetzt werden. Vorzugsweise verarbeitet man sie aber auf übliche Weise mit den in der Formulierungstechnik gebräuchlichen Hilfsmitteln z.B. zu emulgierbaren Konzentraten, direkt versprühbaren oder verdünnbaren Lösungen, verdünnten Emulsionen, Spritzpulvern, löslichen Pulvern, Stäubemitteln, Granulaten oder Mikrokapseln. Solche Formulierungen sind beispielsweise in der WO 97/34485 auf den Seiten 9 bis 13 beschrieben. Die Anwendungsverfahren wie Versprühen, Vernebeln, Verstäuben, Benetzen, Verstreuen oder Gießen werden gleich wie die Art der Mittel, den angestrebten Zielen und den gegebenen Verhältnissen entsprechend gewählt.

Die Formulierungen, d.h. die den Wirkstoff der Formel I bzw. mindestens einen Wirkstoff der Formel I und in der Regel einen oder mehrere feste oder flüssige Formulierungshilfsmittel enthaltenden Mittel, Zubereitungen oder Zusammensetzungen werden in bekannter Weise hergestellt, z.B. durch inniges Vermischen und/oder Vermahlen der Wirkstoffe mit den Formulierungshilfsmitteln wie z.B. Lösungsmittel oder festen Trägerstoffe. Ferner können zusätzlich oberflächenaktive Verbindungen (Tenside) bei der Herstellung der Formulierungen verwendet werden. Beispiele für Lösungsmittel und feste Trägerstoffe sind z.B. in der WO 97/34485 auf der Seite 6 angegeben.

Als oberflächenaktive Verbindungen kommen je nach der Art des zu formulierenden Wirkstoffes der Formel I nichtionogene, kation- und/oder anionaktive Tenside und Tensidgemische mit guten Emulgier-, Dispergier- und Netzeigenschaften in Betracht. Beispiele für geeignete anionische, nichtionische und kationische Tenside sind beispielsweise in der WO 97/34485 auf den Seiten 7 und 8 aufgezählt. Ferner sind auch die in der Formulierungstechnik gebräuchlichen Tenside, die u.a. in "Mc Cutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, München/Wien, 1981 und M. und J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81 beschrieben sind, zur Herstellung der erfindungsgemäßen herbiziden Mittel geeignet.

Erfindungsgemäße herbizide und den Pflanzenwuchs hemmende Mittel mit einem herbizid wirksamen Gehalt an Verbindung der Formel I können durch Zugabe von Sprühtank- Adjuvantien in ihrer Wirksamkeit gesteigert werden.

Diese Adjuvantien können beispielsweise sein: nichtionische Tenside, Mischungen von nichtionischen Tensiden, Mischungen von anionischen Tensiden mit nichtionischen Tensiden, kationische Tenside, silizium-organische Tenside, Mineralölderivate mit und ohne Tenside, Pflanzenölderivate mit und ohne Tensidzusatz, alkylierte Derivate von Ölen pflanzlichen oder mineralischen Ursprungs mit und ohne Tenside, Fischöle und andere tierische Öle tierischer Natur sowie deren Alkylderivate mit und ohne Tenside, natürlich vorkommende höhere Fettsäuren, vorzugsweise mit 8 bis 28 Kohlenstoffatomen, und deren Alkylesterderivate, organische Säuren enthaltend ein aromatisches Ringsystem und einen oder mehrere Carbonsäurerester, sowie deren Alkylderivaten, ferner Suspensionen von Polymeren des Vinylacetats oder Copolymeren von Vinylacetat-Acrylsäureestern. Mischungen einzelner Adjuvantien untereinander sowie in Kombination mit organischen Lösungsmitteln können zu einer weiteren Steigerung der Wirkung führen.

Als nichtionische Tenside kommen beispielsweise Polyglykoletherderivate von aliphatischen oder cycloaliphatischen Alkoholen, gesättigten oder ungesättigten Fettsäuren und Alkylphenolen in Frage, vorzugsweise die 3 bis 30 Glykolethergruppen und 8 bis 20 Kohlenstoffatome im (aliphatischen) Kohlenwasserstoffrest und 6 bis 18 Kohlenstoffatome im Alkylrest der Alkylphenole enthalten können.

Weitere geeignete nichtionische Tenside sind die wasserlöslichen, vorzugsweise 20 bis 250 Ethylenglykolethergruppen und 10 bis 100 Propylenglykolethergruppen enthaltenden Polyethylenoxidaddukte an Polypropylenglykol, Ethylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit vorzugsweise 1 bis 10 Kohlenstoffatomen in der Alkylkette. Die genannten Verbindungen enthalten üblicherweise pro Propylenglykol-Einheit 1 bis 5 Ethylenglykoleinheiten.

Als weitere Beispiele nichtionischer Tenside seien auch Nonylphenolpolyethoxyethanole, Ricinusölpolyglykolether, Polypropylen-Polyethylenoxidaddukte, Tributylphenoxypolyethoxyethanol, Polyethylenglykol und Octylphenoxypolyethoxyethanol erwähnt.

Ferner kommen auch Fettsäureester von Polyoxyethylensorbitan wie das Polyoxyethylensorbitan-trioleat in Betracht.

Bei anionischen Tensiden werden vor allem Alkylsulfate, Alkylsulfonate, Alkylarylsulfonate, alkylierte Phosphorsäuren bevorzugt sowie deren ethoxylierte Derivate. Die Alkylreste enthalten üblicherweise 8 bis 24 Kohlenstoffatome.

Bevorzugte nicht-ionische Tenside sind unter den folgenden Handelsnamen bekannt:

Polyoxyethylen Cocoalkylamin (z.B. AMIET® 105 (Kao Co.)), Polyoxyethylen Oleylamin (z.B. AMIET® 415 (Kao Co.)), Nonylphenolpolyethoxyethanole, Polyoxyethylen Stearylamin (z.B. AMIET® 320 (Kao Co.)), N-polyethoxyethylamines (z.B. GENAMIN® (Hoechst AG)), N,N,N',N'-Tetra(Polyethoxypolypropoxyethyl)ethylen-diamine (z.B. TERRONIL® und TETRONIC® (BASF Wyandotte Corp.)), BRIJ® (Atlas Chemicals), ETHYLAN® CD und ETHYLAN® D (Diamond Shamrock), GENAPOL® C, GENAPOL® O, GENAPOL® S und GENAPOL® X080 (Hoechst AG), EMULGEN® 104P, EMULGEN® 109P und EMULGEN® 408 (Kao Co.); DISTY® 125 (Geronazzo), SOPROPHOR® CY 18 (Rhone Poulenc S.A.); NONISOL® (Ciba-Geigy), MRYJ® (ICI); TWEEN® (ICI); EMULSOGEN® (Hoechst AG); AMIDOX® (Stephan Chemical Co.), ETHOMID® (Armak Co.); PLURONIC® (BASF Wyandotte Corp.), SOPROPHOR® 461P (Rhône Poulenc S.A.), SOPROPHOR® 496/P (Rhone Poulenc S.A.), ANTAROX FM-63 (Rhone Poulenc S.A.), SLYGARD 309 (Dow Corning), SILWET 408, SILWET L-7607N (Osi-Specialities).

Bei den kationischen Tensiden handelt es sich vor allem um quartäre Ammoniumsalze, welche als N-Substituenten mindestens einen Alkylrest mit 8 bis 22 C-Atomen enthalten und als weitere Substituenten niedrige, gegebenenfalls halogenierte Alkyl-, Benzyl- oder niedrige Hydroxyalkylreste aufweisen. Die Salze liegen vorzugsweise als Halogenide, Methylsulfate oder Ethylsulfate vor, z.B. das Stearyltrimethylammoniumchlorid oder das Benzyldi-(2-chlorethyl)-ethylammoniumbromid.

Die verwendeten Öle sind entweder von mineralischer oder natürlicher Herkunft. Die natürlichen Öle können zudemnoch von tierischem oder pflanzlichen Ursprung sein. Bei tierischen Ölen werden vor allem Derivate von Rindertalg bevorzugt, aber auch Fischöle (z.B. Sardinenöl) und deren Derivate werden verwendet. Pflanzliche Öle sind meist Saatöle verschiedener Herkunft. Als Beispiele für besonders verwendete Pflanzenöle können Kokos-, Raps- oder Sonnenblumenöle sowie deren Derivate genannt werden.

In dem erfindungsgemäßen Mittel betragen die Aufwandmengen an Öladditiv in der Regel zwischen 0,01 und 2 % in Bezug auf die Spritzbrühe. Beispielsweise kann das Öladditv nach Herstellung der Spritzbrühe in der gewünschten Konzentration in den Sprühtank gegeben werden.

Im erfindungsgemäßen Mittel bevorzugte Öladditive enthalten ein Öl pflanzlichen Ursprungs wie beispielsweise Rapsöl oder Sonnenblumenöl, Alkylester von Ölen pflanzlichen Ursprungs wie beispielsweise die Methylderivate, oder Mineralöle.

Besonders bevorzugte Öladditive enthalten Alkylester von höheren Fettsäuren (C_8 - C_{22}). insbesondere die Methylderivate von C_{12} - C_{18} Fettsäuren, beispielsweise die Methylester der Laurinsäure, Palmitinsäure und Ölsäure. Diese Ester sind bekannt als Methyllaurat (CAS-111-82-0), Methylpalmitat (CAS-112-39-0) und Methyloleat (CAS-112-62-9).

Das Ausbringen und die Wirkung der Öladditive kann durch deren Kombination mit oberflächenaktiven Substanzen wie nichtionische-, anionische oder kationische Tenside verbessert werden. Beispiele für geeignete anionische, nichtionische und kationische Tenside sind in der WO 97/34485 auf den Seiten 7 und 8 aufgezählt.

Bevorzugte oberflächenaktive Substanzen sind anionische Tenside vom Typ der Dodecylbenzylsulfonate, insbesondere die Calciumsalze davon sowie nichtionische Tenside vom Typ der Fettalkoholethoxylate. Insbeondere bevorzugt sind ethoxylierte C₁₂-C₂₂-Fettalkohole mit einem Ethoxylierungsgrad zwischen 5 und 40. Beispiele für kommerziell erhältliche, bevorzugte Tenside sind die Genapol Typen (Clariant AG, Muttenz, Schweiz). Die Konzentration der oberflächenaktiven Substanzen in Bezug auf das gesamte Additiv beträgt im allgemeinen zwischen 1 und 30 Gew.%.

Beispiele für Öladditive, die aus Mischungen von Ölen bzw. Mineralölen oder deren Derivaten mit Tensiden bestehen, sind Edenor ME SU®, Emery 2231® (Henkel Tochtergesellschaft Cognis GMBH, DE), Turbocharge® (Zeneca Agro, Stoney Creek, Ontario, CA) oder, besonders bevorzugt, Actipron® (BP Oil UK Limited, GB).

Ferner kann die Zugabe eines organischen Lösungsmittels zu dem Öladditiv/Tensidgemisch eine weitere Steigerung der Wirkung bewirken. Geeignete Lösungsmittel sind beispielsweise Solvesso® (ESSO) oder Aromatic Solvent® (Exxon Corporation) Typen.

Die Konzentration derartiger Lösungsmittel kann von 10 bis 80 Gew.% des Gesamtgewichtes betragen.

Derartige Öladditive, die beispielsweise auch in US-A-4,834,908 beschrieben sind, sind für das erfindungsgemäße Mittel besonders bevorzugt, Ein ganz besonders bevorzugtes Öladditiv ist unter dem Namen MERGE® bekannt, kann von der BASF Corporation bezogen werden und ist beispielsweise in US-A-4,834,908 in col. 5, als Example COC-1 im wesentlichen beschrieben. Ein weiteres erfindungsgemäß bevorzugtes Öladditiv ist SCORE® (Novartis Crop Protection Canada.)

In der Formulier- und Adjuvanttechnik gebräuchliche Tenside, Öle, insbesondere Pflanzenöle, Derivate davon wie alkylierte Fettsäuren und Mischungen davon, z.B. mit vorzugsweise anionischen Tensiden wie alkylierten Phosphorsäuren, Alkylsulfate und Alkylarylsulfonaten sowie höheren Fettsäuren, die auch in den erfindungsgemäßen Mitteln und Sprühtanklösungen davon verwendet werden können, sind u.a. in "Mc Cutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1998, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, München/Wien, 1990, M. und J. Ash, "Encyclopedia of Surfactants", Vol I-IV, Chemical Publishing Co., New York, 1981-89, G. Kapusta, "A Compendium of Herbicide Adjuvants", Southern Illinois Univ., 1998, L. Thomson Harvey, "A Guide to Agricultural Spray Adjuvants Used in the United States", Thomson Pubns., 1992 beschrieben.

Die herbiziden Formulierungen enthalten in der Regel 0,1 bis 99 Gew%, insbesondere 0,1 bis 95 Gew.-% Herbizid, 1 bis 99,9 Gew.-%, insbesondere 5 bis 99,8 Gew.-%, eines festen oder flüssigen Formulierungshilfsstoffes und 0 bis 25 Gew.-%, insbesondere 0,1 bis 25 Gew.-%, eines Tensides. Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel. Die Mittel können auch weitere Zusätze wie Stabilisatoren z.B. gegebenenfalls epoxydierte Pflanzenöle (epoxydiertes Kokosnußöl, Rapsöl oder Sojaöl), Entschäumer, z.B. Silikonöl, Konservierungsmittel, Viskositätsregulatoren, Bindemittel, Haftmittel sowie Dünger oder andere Wirkstoffe enthalten.

Die Wirkstoffe der Formel I werden in der Regel auf die Pflanze oder deren Lebensraum mit Aufwandmengen von 0,001 bis 4 kg/ha, insbesondere 0,005 bis 2 kg/ha eingesetzt. Die für die erwünschte Wirkung erforderliche Dosierung kann durch Versuche ermittelt werden. Sie ist abhängig von der Art der Wirkung, dem Entwicklungsstadium der Kulturpflanze und des Unkrauts sowie von der Applikation (Ort, Zeit, Verfahren) und kann, bedingt durch diese Parameter, innerhalb weiter Bereiche variieren.

Die Verbindungen der Formel I zeichnen sich durch herbizide und wuchshemmende Eigenschaften aus, die sie zum Einsatz in Kulturen von Nutzpflanzen, insbesondere in Getreide, Baumwolle, Soja, Zuckerrüben, Zuckerrohr, Plantagen, Raps, Mais und Reis sowie zur nicht-selektiven Unkrautkontrolle befähigen. Unter Kulturen sind auch solche zu verstehen, die durch konventionelle züchterische oder gentechnologische Methoden gegen Herbizide bzw. Herbizidklassen tolerant gemacht worden sind. Diese sind z.B. IMI Maize, Poast Protected Maize (Sethoxydim-Toleranz), Liberty Link Maize, B.t./Liberty Link Maize, IMI/Liberty Link /B.t. Maize, Roundup Ready Maize und Roundup Ready/B.t. Maize.

Bei den zu bekämpfenden Unkräutern kann es sich sowohl um mono- als auch um dikotyle Unkräuter handeln, wie zum Beispiel Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola und Veronica.

Es hat sich überraschenderweise gezeigt, daß spezielle, aus US-A-5,041,157, US-A-5,541,148, US-A-5,006,656, EP-A-0 094 349, EP-A-0 551 650, EP-A-0 268 554, EP-A-0

375 061, EP-A-0 174 562, EP-A-492 366, WO 91/7874, WO 94/987, DE-A-19612943, WO 96/29870, WO 98/13361, WO 98/39297, WO 98/27049, EP-A- 0 716 073, EP-A- 0 613 618, US-A-5,597,776 EP-A-0430 004, DE-A-4 331 448, WO 99/16744, WO 00/30447 und WO 00/00020 bekannte Safener zur Mischung mit dem erfindungsgemäßen herbiziden Mittel geeignet sind. Daher betrifft die vorliegende Erfindung auch ein selektivherbizides Mittel zur Bekämpfung von Gräsern und Unkräutern in Kulturen von Nutzpflanzen, insbesondere in Kulturen von Mais und Getreide, welches ein Herbizid der Formel I und einen Safener (Gegenmittel, Antidot) enthält und welches die Nutzpflanzen, nicht aber die Unkräuter vor der phytotoxischen Wirkung des Herbizides bewahrt, sowie die Verwendung dieses Mittels zur Unkrautbekämpfung in Nutzpflanzenkulturen.

Erfindungsgemäß wird somit ein selektiv-herbizides Mittel vorgeschlagen, welches dadurch gekennzeichnet ist, daß es neben üblichen inerten Formulierungshilfsmitteln wie Trägerstoffen, Lösungsmitteln und Netzmitteln als Wirkstoff eine Mischung aus a) einer herbizid-wirksamen Menge einer Verbindung der Formel I

$$Q \longrightarrow CH_3$$

(1),

worin R_1 , R_3 und Q die oben angegebenen Bedeutungen haben, mit der Maßgabe, daß Q verschieden von Q_1 ist; und

b) einer herbizid-antagonistisch wirksamen Menge entweder eine Verbindung der Formel X

$$\begin{array}{c}
X_6 \\
O - CH_2 - O - R_{37}
\end{array}$$
(X),

worin

 R_{37} Wasserstoff, C_1 - C_8 -Alkyl oder durch C_1 - C_6 -Alkoxy oder C_3 - C_6 -Alkenyloxy substituiertes C_1 - C_8 -Alkyl; und X_7 Wasserstoff oder Chlor bedeutet; oder einer Verbindung der Formel XI

worin E Stickstoff oder Methin;

R₃₈ -CCl₃, Phenyl oder durch Halogen substituiertes Phenyl; R₃₉ und R₄₀ unabhängig voneinander Wasserstoff oder Halogen; und R₄₁ C₁-C₄-Alkyl bedeuten; oder einer Verbindung der Formel XII

worin R_{44} und R_{45} unabhängig voneinander Wasserstoff oder Halogen und R_{46} , R_{47} und R_{48} unabhängig voneinander C_1 - C_4 -Alkyl bedeuten, oder einer Verbindung der Formel XIII

$$R_{51}$$
 N -CO-N
 R_{52}
 R_{53}
 R_{53}
 R_{50}
 R_{50}

worin A2 für eine Gruppe

PCT/EP00/08656

WO 01/17972

R₅₁ und R₅₂ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-

Alkenyl,
$$C_3$$
- C_6 -Alkinyl, ,oder durch C_1 - C_4 -Alkoxy oder

zusammen eine C4-C6-Alkylenbrücke, die durch Sauerstoff, Schwefel, SO, SO2, NH oder -N(C₁-C₄-Alkyl)- unterbrochen sein kann,

R₅₃ für Wasserstoff oder C₁-C₄-Alkyl;

R₄₉ für Wasserstoff, Halogen, Cyano, Trifluoromethyl, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁- $C_4\text{-}Alkylthio,\ C_1\text{-}C_4\text{-}Alkylsulfinyl,\ C_1\text{-}C_4\text{-}Alkylsulfonyl,\ -COOR_j,\ -CONR_kR_m,\ -COR_n,\ -R_m,\ -$ SO₂NR_kR_m oder -OSO₂-C₁-C₄-Alkyl;

Rg für Wasserstoff, Halogen, Cyano, Nitro, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, -COOR_i, -CONR_kR_m, -COR_n, -SO₂NR_kR_m, -OSO₂-C₁-C₄-Alkyl, C₁-C₆-Alkoxy, oder C₁-C₆alkoxy substituiert durch C₁-C₄-Alkoxy oder Halogen, C₃-C₆-Alkenyloxy, oder C₃-C₆-Alkenyloxy substituiert durch Halogen, oder C₃-C₆-Alkinyloxy, oder R₄₉ und R₅₀ zusammen bilden eine C₃-C₄-Alkylenbrücke, die durch Halogen oder C₁-C₄-Alkyl substituiert sein kann, oder bilden eine C₃-C₄-Alkenylenbrücke, die durch Halogen oder C₁-C₄-Alkyl substituiert sein kann, oder bilden eine C₄-Alkadienylenbrücke, die durch Halogen oder C₁-C₄-Alkyl substituiert sein kann;

 R_{50} und R_h unabhängig voneinander für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, Trifluormethyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylthio oder -COOR_i;

 R_c für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl oder Methoxy; R_d für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylsulfinyl, C_1 - C_4 -Alkylsulfonyl, - COOR $_1$ oder CONR $_k$ R $_m$;

 R_e für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, -COOR $_j$, Trifluormethyl or Methoxy, oder R_d und R_e bilden zusammen eine C_3 - C_4 -Alkylenbrücke;

Rp für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, -COOR_j, Trifluormethyl or Methoxy; Rq für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylsulfinyl, C_1 - C_4 -Alkylsulfonyl, -COOR_j oder CONR_kR_m; , oder Rp und Rq bilden zusammen eine C_3 - C_4 -Alkylenbrücke;

Rr für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, -COOR_j, Trifluormethyl or Methoxy; Rs für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylsulfinyl, C_1 - C_4 -Alkylsulfonyl, -COOR_j oder CONR_kR_m; , oder Rr und Rs bilden zusammen eine C_3 - C_4 -Alkylenbrücke;

Rt für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, -COOR_j, Trifluormethyl or Methoxy; Ru für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylsulfonyl, -COOR_j oder CONR_kR_m; , oder Rv und Ru bilden zusammen eine C_3 - C_4 -Alkylenbrücke;

R_I und Rv für Wasserstoff, Halogen oder C₁-C₄-Alkyl;

 R_x und R_y unabhängig voneinander für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, -COOR₅₄, Trifluoromethyl, Nitro oder Cyano;

 R_{j} , R_{k} und R_{m} unabhängig voneinander für Wasserstoff oder C_{1} - C_{4} -Alkyl; oder R_{k} und R_{m} bilden zusammen eine C_{4} - C_{6} -Alkylenbrücke, die durch Sauerstoff, NH oder - $N(C_{1}$ - C_{4} -Alkyl)- unterbrochen sein kann;

 R_n für C_1 - C_4 -Alkyl, Phenyl, oder durch Halogen, C_1 - C_4 -Alkyl, Methoxy, Nitro oder Trifluormethyl substituiertes Phenyl;

R₅₄ für Wasserstoff, C₁-C₁₀-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, Di-C₁-C₄-alkylamino-C₁-C₄-alkyl, Halogen-C₁-C₈-alkyl, C₂-C₈-Alkenyl, Halogen-C₂-C₈-alkenyl, C₃-C₈-Alkinyl, C₃-C₇-Cycloalkyl, Halogen-C₃-C₇-cycloalkyl, C₁-C₈-Alkylcarbonyl, Allylcarbonyl, C₃-C₇-Cycloalkylcarbonyl, Benzoyl, das unsubstituiert oder am Phenylring gleich oder verschieden bis zu dreifach durch Halogen, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, Halogen-C₁-C₄-alkoxy oder C₁-C₄-Alkoxy substituiert ist; oder Furoyl, Thienyl; oder C₁-C₄-Alkyl substituiert durch Phenyl, Halogenphenyl, C₁-C₄-Alkylphenyl, C₁-C₄-Alkoxyphenyl, Halogen-C₁-C₄-Alkoxyphenyl, Halogen-C₁-C₄-Alkylphenyl, C₁-C₄-Alkoxyphenyl, Halogen-C₁-C₄-Alkoxyphenyl, Halogen-C₁-C₄-Alkylphenyl, C₁-C₄-Alkoxyphenyl, Halogen-C₁-C₄-Alkylphenyl, C₁-C₄-Alkylphenyl, C₁-

C₁-C₄-alkylphenyl, Halogen-C₁-C₄-alkoxyphenyl, C₁-C₆-Alkoxycarbonyl, C₁-C₄-Alkoxy-C₁-C₈-alkoxycarbonyl, C₃-C₈-Alkenyloxycarbonyl, C₃-C₈-Alkinyloxycarbonyl, C₁-C₈-Alkylthiocarbonyl, C₃-C₈-Alkenylthiocarbonyl, C₃-C₈-Alkinylthiocarbonyl, Carbamoyl, Mono-C₁-C₄-alkylaminocarbonyl, Di-C₁-C₄-alkylaminocarbonyl; oder Phenylaminocarbonyl, das unsubstituiert oder am Phenyl gleich oder verschieden bis zu dreifach durch Halogen, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, Halogen-C₁-C₄-alkoxy oder C₁-C₄-Alkoxy oder einfach durch Cyano oder Nitro substituiert ist, oder Dioxolan-2-yl, das unsubstituiert ist oder durch ein oder zwei C₁-C₄-Alkylreste substituiert ist, oder Dioxan-2-yl, das unsubstituiert ist oder durch ein oder zwei C₁-C₄-Alkylreste substituiert ist, oder C₁-C₄-Alkyl, das durch Cyano, Nitro, Carboxyl oder C₁-C₈-Alkylthio-C₁-C₈-alkoxycarbonyl substituiert ist, bedeutet; oder einer Verbindung der Formel XIV

unabhängig voneinander für Wasserstoff oder C₁-C₆-Alkyl; oder R₅₆ und R₅₇ zusammen

R₆₀ und R₆₁ unabhängig voneinander für C₁-C₄-Alkyl, oder R₆₀ und R₆₁ zusammen -(CH₂)₅-;

oder
$$R_{56}$$
 und R_{57} zusammen für R_{69} R_{69} R_{69} R_{75} R_{75} R_{76} R_{76}

 R_{63} , R_{64} , R_{65} , R_{66} , R_{67} , R_{68} , R_{69} , R_{70} , R_{71} , R_{72} , R_{73} , R_{74} , R_{75} , R_{76} , R_{77} und R_{78} unabhängig voneinander für Wasserstoff oder C_1 - C_4 -Alkyl stehen; oder einer Verbindung der Formel XV

$$R_{80}$$
 $N-O$
 O
 (XV)

worin R₈₀ Wasserstoff oder Chlor und R₇₉ Cyano oder Trifluormethyl bedeutet, oder eine Verbindung der Formel XVI

$$R_{81}$$
 $N = CI$
 $N = CI$
 $N = CI$

worin R₈₁ Wasserstoff oder Methyl bedeutet, oder einer Verbindung der Formel XVII

worin

 R_{82} Wasserstoff, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkyl substituiert durch C_1 - C_4 -Alkyl- X_2 - oder C_1 - C_4 -Halogenalkyl- X_2 - bedeutet, oder für C_1 - C_4 -Halogenalkyl, Nitro, Cyano, -COOR₈₅, -NR₈₈R₈₇, -SO₂NR₈₈R₈₉ oder -CONR₉₀R₉₁ steht;

R₈₃ Wasserstoff, Halogen, C₁-C₄-Alkyl, Trifluormethyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy bedeutet;

R₈₄ Wasserstoff, Halogen oder C₁-C₄-Alkyl bedeutet;

U, V, W₁ und Z₄ unabhängig voneinander Sauerstoff, Schwefel, C(R₉₂)R₉₃, Carbonyl, NR₉₄,

eine Gruppe
$$C = A_1$$
 oder $C = C$ R_{102} bedeuten, worin R_{102} R_{96}

C2-C4-Alkenyl oder C2-C4-Alkinyl bedeutet; mit den Maßgaben, daß

a) mindestens eines der Ringglieder U, V, W₁ oder Z₄ Carbonyl ist, und ein zu diesem bzw.

diesen Ringgliedern benachbartes Ringglied die Gruppe

b) zwei benachbarte Ringglieder U und V, V und W_1 und W_1 und Z_4 nicht gleichzeitig Sauerstoff bedeuten können;

 R_{95} und R_{96} unabhängig voneinander Wasserstoff oder C_1 - C_8 -Alkyl bedeuten; oder R_{95} und R_{96} zusammen eine C_2 - C_6 -Alkylengruppe bilden;

A₁ R₉₉-Y₁- oder -NR₉₇R₉₈;

X₂ Sauerstoff oder -S(O)_s:

Y₁ Sauerstoff oder Schwefel bedeuten;

 R_{99} Wasserstoff, C_1 - C_8 -Alkyl, C_1 - C_8 -Halogenalkyl, C_1 - C_4 -Alkoxy- C_1 - C_8 -alkyl, C_3 - C_6 -Alkenyloxy- C_1 - C_8 -alkyl oder Phenyl- C_1 - C_8 -alkyl bedeutet, wobei der Phenylring durch Halogen, C_1 - C_4 -Alkyl, Trifluormethyl, Methoxy oder Methyl- $S(O)_s$ - substituiert sein kann, oder C_3 - C_6 -Alkenyl, C_3 - C_6 -Halogenalkenyl, Phenyl- C_3 - C_6 -alkenyl, C_3 - C_6 -Alkinyl, Phenyl- C_3 - C_6 -alkinyl, Oxetanyl, Furyl oder Tetrahydrofuryl bedeutet;

R₈₅ Wasserstoff oder C₁-C₄-Alkyl;

R₈₆ Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkylcarbonyl bedeuten;

R₈₇ Wasserstoff oder C₁-C₄-Alkyl bedeutet; oder

R₈₆ und R₈₇ zusammen eine C₄- oder C₅-Alkylengruppe bilden;

 R_{88} , R_{89} , R_{90} und R_{91} unabhängig voneinander Wasserstoff oder C_1 - C_4 -Alkyl bedeuten; oder R_{88} zusammen mit R_{89} oder R_{90} zusammen mit R_{91} unabhängig voneinander C_4 - oder C_5 -Alkylen sind, wobei ein Kohlenstoffatom durch Sauerstoff oder Schwefel, oder ein oder zwei Kohlenstoffatome durch -NR $_{100}$ - ersetzt sein können;

 R_{92} , R_{100} und R_{93} unabhängig voneinander Wasserstoff oder C_1 - C_8 -Alkyl sind; oder R_{92} und R_{93} zusammen C_2 - C_6 -Alkylen sind;

R₉₄ Wasserstoff oder C₁-C₈-Alkyl bedeutet;

R₉₇ Wasserstoff, C₁-C₈-Alkyl, Phenyl oder Phenyl-C₁-C₈-alkyl bedeutet, wobei die Phenylringe durch Fluor, Chlor, Brom, Nitro, Cyano, -OCH₃, C₁-C₄-Alkyl oder CH₃SO₂-substituiert sein können, oder für C₁-C₄-Alkoxy-C₁-C₈-alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl; R₉₈ Wasserstoff, C₁-C₈-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl steht; oder R₉₇ und R₉₈ zusammen C₄- oder C₅-Alkylen bedeuten, wobei ein Kohlenstoffatom durch Sauerstoff oder Schwefel, oder ein oder zwei Kohlenstoffatome durch

R₁₀₁ Wasserstoff oder C₁-C₄-Alkyl bedeutet;

r 0 oder 1 ist; und

-NR₁₀₁- ersetzt sein können;

s 0, 1 oder 2 bedeutet, oder eine Verbindung der Formel XVIII

worin R_{103} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl; und R_{104} , R_{105} und R_{106} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl oder C_1 - C_6 -Alkoxy bedeuten, mit der Maßgabe, daß einer der Substituenten R_{104} , R_{105} und R_{106} verschieden von Wasserstoff ist; oder eine Verbindung der Formel XIX

$$(R_{107})n$$
 R_{108}
 O
 F
 R_{109}
 (XIX)

worin Z₅ N oder CH, n für den Fall, daß Z₅ gleich N ist, 0, 1, 2 oder 3 und für den Fall, daß Z₅ CH ist, 0, 1, 2, 3 oder 4 bedeutet, R₁₀₇ Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkoxycarbonyl, Phenyl oder Phenoxy, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl oder Phenoxy bedeutet;

 R_{108} Wasserstoff oder C_1 - C_4 -Alkyl bedeutet, R_{109} Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_6 -Cycloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_1 - C_4 -Halogenalkyl, C_2 - C_6 -Halogenalkenyl, C_2 - C_6 -Halogenalkinyl, C_1 - C_4 -Alkylthio- C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylsulfonyl- C_1 - C_4 -alkyl, C_1 - C_4 -Alkenyloxy- C_1 - C_4 -Alkinyloxy- C_1 - C_4 -Alkyl ist; oder eine Verbindung der Formel XX

$$O$$
 Z_6
 O
 (XX)

worin Z₆ Sauerstoff oder N-R₁₁₀ und R₁₁₀ eine Gruppe der Formel

bedeutet, worin R_{111} und R_{112} unabhängig voneinander Cyano, Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_6 -Cycloalkyl, C_2 - C_6 -Alkenyl, Aryl, Phenyl oder Heteroaryl, oder durch C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl, Aryl oder Heteroaryl bedeuten;

oder eine Verbindung der Formel XXI

$$W_2$$
 W_3 R_{114} (XXI),

worin Z₇ Sauerstoff, Schwefel, S=O, SO₂ oder CH₂ bedeutet, R₁₁₃ und R₁₁₄ unabhängig voneinander Wasserstoff, Halogen oder C₁-C₄-Alkyl bedeuten, W₂ und W₃ unabhängig voneinander CH₂COOR₁₁₅ oder COOR₀₁₁₅ oder zusammen eine Gruppe der Formel - (CH₂)C(O)-O-C(O)-(CH₂)- bedeuten, und R₁₁₅ und R₀₁₁₅ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkyl, ein Metall- oder ein Ammonium- Kation bedeuten; oder eine Verbindung der Formel XXII

worin R_{119} und R_{120} unabhängig voneinander Wasserstoff, Halogen oder C_1 - C_4 -Halogenalkyl sind, R_{121} Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl, C_1 - C_4 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, ein Metalkation oder ein Ammoniumkation bedeuten, Z_8 N, CH, C-F oder C-Cl bedeuten und W_4 eine Gruppe der Formel

bedeutet, worin R_{122} und R_{123} unabhängig voneinander Wasserstoff oder C_1 - C_4 -Alkyl und R_{124} und R_{125} unabhängig voneinander Wasserstoff oder C_1 - C_4 -Alkyl bedeuten; oder eine Verbindung der Formel XXIII

worin R_{126} Wasserstoff, Cyano, Halogen, C_1 - C_4 -Alkyl, C_3 - C_6 -Cycloalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylthiocarbonyl, -NH- R_{128} , -C(O)NH- R_{0128} , Aryl oder Heteroaryl, oder durch C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Aryl oder Heteroaryl bedeutet;

R₁₂₇ Wasserstoff, Cyano, Nitro, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Thioalkyl bedeuten, und

R₁₂₈ und R₀₁₂₈ unabhängig voneinander C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₃-C₄-Cycloalkyl, Aryl oder Heteroaryl, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Aryl oder Heteroaryl, Formyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylsufonyl bedeuten; oder eine Verbindung der Formel XXIV

$$R_{132}$$
 R_{131}
 R_{130}
 R_{132}
 R_{133}
 R_{129}
 R_{129}
 R_{129}

worin R₁₂₉ und R₁₃₀ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Mono-C₁-C₈- oder Di-C₁-C₈-Alkylamino, C₃-C₆-Cycloalkyl, C₁-C₄-Thioalkyl, Phenyl oder Heteroaryl sind, R₁₃₁ die Bedeutung von R₁₂₉ hat und zusätzlich OH, NH₂, Halogen, Di- C₁-C₄-Aminoalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl oder C₁-C₄-Alkoxycarbonyl ist, R₁₃₂ die Bedeutung von R₁₂₉ hat und zusätzlich Cyano, Nitro, Carboxyl, C₁-C₄-Alkoxycarbonyl, Di- C₁-C₄-Aminoalkyl, C₁-C₄-Alkylthio, C₁-C₄- Alkylsulfonyl, SO₂-OH, i- C₁-C₄-Aminoalkylsulfonyl oder C₁-C₄-Alkoxysulfonyl ist, R₁₃₃ die Bedeutung von R₁₂₉ hat und zusätzlich OH, NH₂, Halogen, Di- C₁-C₄-Aminoalkyl, Pyrrolidin1-yl, Piperidin-1-yl, Morpholin-1-yl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkoxycarbonyl, Phenoxy, Naphtoxy, Phenylamino, Benzoyloxy oder Phenylsulfonyloxy ist; oder eine Verbindung der Formel XXV

$$R_{136}$$
 O R_{134} R_{135} (XXV) ,

worin R₁₃₄ Wasserstoff, C₄-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl oder C₁-C₄-Alkoxy-C₁-C₄-Alkyl bedeutet, R₁₃₅ Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy und R₁₃₆ Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy bedeuten, mit der Maßgabe, daß R₁₃₅ und R₁₃₆ nicht gleichzeitig Wasserstoff bedeuten, oder der Formel XXVI

worin

R₁₄₃ Wasserstoff, ein Alkali-, Erdalkali-, Sulfonium- oder Ammonium-Kation oder Ethyl bedeutet;

oder der Formel XXVII

worin R_{144} und R_{145} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl oder C_3 - C_6 -Cycloalkyl bedeuten;

R₁₄₆ Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy bedeutet;

R₁₄₇ Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxycarbonyl oder Nitro bedeutet; n₁ 0, 1, 2 oder 3; und

m 1 oder 2 bedeutet; oder der Formel XXVIII

worin

R₁₄₈ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₈-Cycloalkyl, Phenyl, Phenyl-C₁-C₆-alkyl oder Heteroaryl bedeutet; wobei die genannten Gruppen durch Halogen, Cyano, Nitro, Amino, Hydroxy, Carbonyl, Carboxyl, Formyl, Carbonamid oder Sulfonamid substituiert sein können;

R₁₄₉ Wasserstoff, C₁-C₆-Alkyl oder C₁-C₄-Halogenalkyl bedeutet; jedes R₁₅₀ unabhängig Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, Cyano, Nitro, Formyl oder Carboxyl bedeutet; R₁₅₁ Wasserstoff, C₁-C₆-Alkyl oder C₁-C₄-Halogenalkyl bedeutet; jedes R₁₅₂ unabhängig Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, Cyano, Nitro, Formyl oder Carboxyl bedeutet; O für 0, 1, oder 2 steht, und p 0, 1 oder 2 bedeutet; oder der Formel XXIX

worin

 R_{159} Wasserstoff, Formyl, C_{1-6} -Alkylcarbonyl, C_{1-6} -Alkenylcarbonyl, C_{1-6} -Alkinylcarbonyl, C_{1-6} -Alkylcarbonyl, C_{1-6} -Alkylcarbonyl, C_{1-6} -Alkylcarbonyl, C_{1-6} -Alkylcarbonyl, C_{1-6} -Alkylsulfonyl, C_{1-6} -

die vorstehend genannten Kohlenwasserstoffgruppen durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können; R₁₅₃ Wasserstoff, C₁₋₆-Alkyl, C₁₋₆-Alkenyl, C₁₋₆-Alkinyl, C₃₋₈-Cycloalkyl, Formyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkenylcarbonyl, C₁₋₆-Alkoxycarbonyl, C₁₋₆-Alkylthiocarbonyl, C₃₋₈-Cycloalkylcarbonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkenylsulfonyl oder Phenylsulfonyl bedeutet, wobei die vorstehend genannten Kohlenwasserstoffgruppen durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können;

R₁₅₄ Wasserstoff, C₁₋₆-Alkyl, C₁₋₆-Alkenyl, C₁₋₆-Alkinyl, C₃₋₈-Cycloalkyl, Formyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkenylcarbonyl, C₁₋₆-Alkoxycarbonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkenylsulfonyl oder Phenylsulfonyl bedeutet, wobei die vorstehend genannten Kohlenwasserstoffgruppen durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können;

 R_{155} , R_{156} , R_{157} , und R_{158} unabhängig voneinander Wasserstoff, Halogen, Amino, C_{1-3} -Alkylamino, C_{1-6} -Dialkylamino, Hydroxy, Cyano, Nitro, Formyl, Carboxyl, C_{1-6} -Alkoxy, C_{1-6} -Halogenalkoxy, C_{1-6} -Alkylcarbonyl, C_{1-6} -Alkoxycarboxyl, C_{1-6} -Alkyl, C_{1-6} -Halogenalkyl, C_{1-6} -Alkenyl oder C_{1-6} -Alkinyl bedeuten;

oder R₁₅₃ und R₁₅₈ bilden gemeinsam mit den Ringatomen, an die sie gebunden sind, einen fünf- oder sechsgliedrigen teilgesättigten oder ungesättigten Ring, der bis zu 2 gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthalten kann, wobei dieser Ring durch einen Rest Oxo substituiert sein kann; enthält.

Vorzugsweise enthält das erfindungsgemäße selektiv-herbizide Mittel als herbizidantagonistisch wirksame Menge entweder eine Verbindung der Formel X

$$\begin{array}{c}
X_6 \\
O - CH_2 - O - R_{37}
\end{array}$$
(X),

worin R_{37} Wasserstoff, C_1 - C_8 -Alkyl oder durch C_1 - C_6 -Alkoxy oder C_3 - C_6 -Alkenyloxy substituiertes C_1 - C_8 -Alkyl; und X_6 Wasserstoff oder Chlor bedeutet; oder eine Verbindung der Formel XI

worin

E Stickstoff oder Methin; R₃₈ -CCl₃, Phenyl oder durch Halogen substituiertes Phenyl; R₃₉ und R₄₀ unabhängig voneinander Wasserstoff oder Halogen; und R₄₁ C₁-C₄-Alkyl bedeuten; oder eine Verbindung der Formel XII

worin R44 und R45 unabhängig voneinander Wasserstoff oder Halogen und R46, R47 und R48 unabhängig voneinander C1-C4-Alkyl bedeuten.

Die oben genannten Bevorzugungen der Verbindungen der Formel I gelten auch bei Mischungen der Verbindungen der Formel I mit den Safenern der Formeln X bis XVIII.

Bevorzugte erfindungsgemäße Mittel enthalten einen Safener ausgewählt aus der Gruppe der Formel Xa

$$(Xa),$$

$$O-CH_2C(O)-O-CH(CH_3)C_5H_{11}-n$$

der Formel Xb

und der Formel XIa

Weitere bevorzugte Verbindungen der Formeln X, XI und XII sind auch in den Tabellen 9, 10 und 11 aufgelistet.

Tabelle 9: Verbindungen der Formel X:

$$X_6$$
 $O-CH_2$
 $O-R_{37}$
 (X)

Verb. Nr.	X ₆	R ₃₇
9.01	CI	-CH(CH₃)-C₅H₁₁-n
9.02	CI	-CH(CH ₃)-CH ₂ OCH ₂ CH=CH ₂
9.03	CI	Н
9.04	CI	C ₄ H ₉ -n

Bevorzugte Verbindungen der Formel XI sind in der folgenden Tabelle 10 aufgelistet.

Tabelle 10: Verbindungen der Formel XI:

Verb. Nr.	R ₄₁	R ₃₈	R ₃₉	R ₄₀	<u>E</u>
10.01	CH₃	Phenyl	2-CI	Н	СН
10.02	CH ₃	Phenyl	2-CI	4-CI	СН
10.03	CH₃	Phenyl	2-F	Н	СН
10.04	CH₃	2-Chlorphenyl	2-F	Н	СН
10.05	C ₂ H ₅	CCI ₃	2-CI	4-CI	N
10.06	CH ₃	Phenyl	2-CI	4-CF ₃	N ·
10.07	CH₃	Phenyl	2-CI	4-CF ₃	Ν

#

Bevorzugte Verbindungen der Formel XII sind in der folgenden Tabelle 11 aufgelistet. <u>Tabelle 11:</u> Verbindungen der Formel XII:

Verb. Nr.	R ₄₆	R ₄₇	R ₄₈	R ₄₄	R ₄₅
-					
11.01	CH₃	CH ₃	CH₃	2-CI	4-CI
11.02	CH ₃	C ₂ H ₅	СН₃	2-CI	4-CI
11.03	CH ₃	C ₂ H ₅	C ₂ H ₅	2-CI	4-CI

Bevorzugte Verbindungen der Formel XIII sind in der folgenden Tabelle 12 als Verbindungen der Formel XIIIa aufgelistet:

Tabelle 12: Verbindungen der Formel XIIIa:

Bevorzugte Verbindungen der Formel XIV sind in der folgenden Tabelle 13 aufgelistet:

<u>Tabelle 13:</u> Verbindungen der Formel XIV:

$$R_{56}$$
 N
 $CHCl_2$ (XIV)

Verb. Nr.	R ₅₆	R ₅₇	R ₅₆ +R ₅₇
13.001	CH ₂ =CHCH ₂	CH₂=CHCH₂	•
13.002		_	H³C CH³
			CH ₃
13.003	. 		O CH ₃ CH ₃
13.004	-	-	°

Bevorzugte Verbindungen der Formel XV sind in der folgenden Tabelle 14 aufgelistet:

Tabelle 14: Verbindungen der Formel XV:

Bevorzugte Verbindungen der Formel XVI sind in der folgenden Tabelle 15 aufgelistet:

Tabelle 15: Verbindungen der Formel XVI:

$$R_{g_1} \longrightarrow N \longrightarrow CI$$
 (XVI) Verb. Nr.
$$R_{g_1}$$

15.01 H 15.02 CH₃

Bevorzugte Verbindungen der Formel XVII sind in der folgenden Tabelle 16 als Verbindungen der Formel XVIIa aufgelistet:

Tabelle 16: Verbindungen der Formel XVIIa

$$R_{82}$$
 $(V)_r$ $(XVIIa)$

Verb. Nr.	R ₈₂	Z ₄	٧	r
16.001	Н	C = C C C C C C C C C C C C C C C C C C	0	1
16.002	Н	C=CH COOCH3	0	1
16.003	Н	C=CH CECH	0	1
16.004	Н	C=CH COOCH(CH3)(CH2)4CH3	0	1

Verb. Nr.	R ₈₂	Z ₄	V	r
16.005	н	C=CH COOCH?	CH₂	1
16.006	Н	C=CH CH³	CH₂	1
16.007	Н	C=CH COOCH3	S	1
16.008	Н	C=CH C C CH	S	1
16.009	Н	C=CH C C CH	NCH₃	1
16.010	H	C=CH COOCH3	NCH₃	1
16.011	Н	c=cH LH ²	NCH₃	1
16.012	Н	C=CH CH³	0	1
16.013	Н	C=CH CH3	S	1

Bevorzugte Verbindungen der Formel XVII sind in der folgenden Tabelle 17 als Verbindungen der Formel XVIIb aufgelistet:

Tabelle 17: Verbindungen der Formel XVIIb

Verb. Nr. 17.002	U O	R ₈₂ H	C=CH CC CH
17.003	0	5-Cl	C=CH ² COOCH ³
17.004	CH₂	Н	C=CH, COOCH3
17.005	CH₂	Н	C=CH_CO-CH2
17.006	CH₂	Н	C=CH COOC2H2
17.007	NH	5-CI	C=CH CH CH3
17.008	NH	5-CI	C=CH COOCH3
17.009	NH	Н	C=CH COOCH3
17.010	NH	Н	C=CH CH3 CH3
17.011	NCH₃	н	C=CH COOCH ³ C=CH CH ³ C=CH CH ³
17.012	NCH₃	н	C=CH COOCH3

Bevorzugte Verbindungen der Formel XVII sind in der folgenden Tabelle 18 als Verbindungen der Formel XVIIc aufgelistet:

Tabelle 18: Verbindungen der Formel XVIIc

$$\begin{array}{c|c} R_{82} & V & (V)_{r} & (XVIIc)_{r} \\ \hline & Z_{4} & W_{1} & \end{array}$$

Verb. Nr. 18.001	U O	V C=O	r 1	W₁ C=CH _C CH ₂ CH	Z₄ CH₂	R ₈₂ H
18.002	0	C=O	1	C=CH COOCH3	CH₂	Н
18.003	CH₂	C=O	1	C=CH CH3	CH₂	н
18.004	CH₂	C=O	1	C=CH	CH₂	н
18.005	CH ₂	CH ₂	1	C=CH ² COOCH ³	C=O	н
18.006	CH₂	CH₂	1	C=CH CH3	C=O	Н
18.007	NCH ₃	C=O	1	C=CH COOCH3	CH ₂	Н

Bevorzugte Verbindungen der Formel XVII sind in der folgenden Tabelle 19 als Verbindungen der Formel XVIId aufgelistet:

Tabelle 19: Verbindungen der Formel XVIId

Verb. Nr.
$$R_{82}$$
 W_1 19.004 H $C=CH$ CH_3 $CCOCH_3$ 19.005 $CCCCH_3$

Bevorzugte Verbindungen der Formel XVIII sind in der folgenden Tabelle 20 aufgelistet:

Tabelle 20: Verbindungen der Formel XVIII

$$\begin{array}{c|c}
 & N \\
 & R_{105} \\
 & R_{106}
\end{array}$$
(XVIII),

Verb. Nr.	R ₁₀₃	R ₁₀₄	R ₁₀₅	R ₁₀₆
20.01	CH₃	Н	Cyclopropyl	Н
20.02	CH ₃	C ₂ H ₅	Cyclopropyl	Н
20.03	CH ₃	Cyclopropyl	C ₂ H ₅	Н
20.04	CH ₃	CH₃	Н	н
20.05	CH₃	CH₃	Cyclopropyl	н
20.06	CH₃	OCH₃	OCH₃	Н
20.07	CH₃	CH₃	OCH₃	Н
20.08	CH ₃	OCH₃	CH₃	н
20.09	CH₃	CH₃	CH₃	Н
20.10	C ₂ H ₅	CH₃	CH₃	Н
20.11	C ₂ H ₅	OCH ₃	OCH₃	Н
20.12	Н	OCH ₃	OCH₃	Н
20.13	Н	CH₃	CH₃	Н
20.14	C₂H₅	Н	Ħ	CH₃
20.15	Н	Н	Н	CH₃
20.16	CH₃	Н	н	CH₃
20.17	CH₃	CH₃	н	СН₃

Von den Verbindungen der Formel XXVIII sind diejenigen bevorzugt, worin R₁₄₈ Wasserstoff, C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl oder Phenyl bedeutet, wobei die genannten Gruppen durch Halogen, Cyano, Nitro, Amino, Hydroxy, Carbonyl, Carboxyl Formyl, Carbonamid oder Sulfonamid substituiert sein können;

R₁₄₉ Wasserstoff bedeutet;

jedes R_{150} unabhängig Wasserstoff, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio, Cyano, Nitro oder Formyl bedeutet;

R₁₅₁ Wasserstoff bedeutet; und

jedes R_{152} unabhängig Wasserstoff, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio, Cyano, Nitro oder Formyl bedeutet.

Besonders bevorzugte Verbindungen der Formel XXVIII sind ausgewählt aus der Gruppe 2-Methoxy-N-[4-(2-methoxybenzoylsulfamoyl)phenyl]-acetamid,

N-[4-(2-Methoxybenzoylsulfamoyl)phenyl]-cyclopropancarboxamid,

N-[4-(2-Methoxy-benzoylsulfamoyl)-phenyl]- cyclobutancarboxamid,

N-[4-(2-Chlorobenzoylsulfamoyl)phenyl]-cyclopropancarboxamid,

N-[4-(2-Chloro-benzoylsulfamoyl)-phenyl]-acetamid,

N-[4-(2-Trifluoromethoxy-benzoylsulfamoyl)-phenyl]-acetamid,

N-[4-(2-Trifluormethylbenzoylsulfamoyl)phenyl]-cyclopropancarboxamid,

N-[4-(2-Trifluormethoxybenzoylsulfamoyl)phenyl]-cyclopropancarboxamid,

N-[4-(2-Trifluormethoxybenzoylsulfamoyl)phenyl]-cyclobutancarboxamid und

N-[4-(2-Trifluoromethyl-benzoylsulfamoyl)-phenyl]-acetamid.

Von den Verbindungen der Formel XXIX sind diejenigen bevorzugt, worin R₁₅₉ Wasserstoff, Formyl. C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkenylcarbonyl, C₁₋₆-Alkinylcarbonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylcarbonyl oder Phenylcarbonyl bedeutet, wobei die vorstehend genannten Kohlenwasserstoffreste durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können;

R₁₅₃ Wasserstoff, C₁₋₆-Alkyl, C₁₋₆-Alkenyl, C₁₋₆-Alkinyl, Formyl, C₁₋₆-Alkylcarbonyl oder C₁₋₆-Alkoxycarbonyl bedeutet, wobei die vorstehend genannten Kohlenwasserstoffreste durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können;

R₁₅₄ Wasserstoff, C₁₋₆-Alkyl, C₁₋₆-Alkenyl, C₁₋₆-Alkinyl, Formyl, C₁₋₆-Alkylcarbonyl oder C₁₋₆-Alkoxycarbonyl bedeutet, wobei die vorstehend genannten Kohlenwasserstoffreste durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können;

R₁₅₅, R₁₅₆, R₁₅₇, und R₁₅₈ unabhängig voneinander Wasserstoff, Halogen, Cyano, Nitro, Formyl, Carboxyl, C₁₋₆-Alkoxy, C₁₋₆-Halogenalkoxy, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkoxycarboxyl, C₁₋₆-Alkyl oder C₁₋₆-Halogenalkyl bedeuten;

oder R₁₅₃ und R₁₅₈ bilden gemeinsam mit den Ringatomen, an die sie gebunden sind, einen fünf oder sechsgliedrigen teilgesättigten oder ungesättigten Ring, der bis zu 2 gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthalten kann, wobei dieser Ring durch einen Rest Oxo substituiert sein kann.

Besonders bevorzugte Verbindungen der Formel XXIX sind dadurch gekennzeichnet, daß R₁₅₉ Wasserstoff, Formyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkenylcarbonyl, C₁₋₆-Alkinylcarbonyl, C₁₋₆-Alkylthiocarbonyl, C₃₋₈-Cyccloalkylcarbonyl oder Phenylcarbonyl bedeutet;

 R_{153} Wasserstoff, C_{1-6} -Alkyl, C_{1-6} -Alkenyl, C_{1-6} -Alkinyl, Formyl, C_{1-6} -Alkylcarbonyl oder C_{1-6} -Alkoxycarbonyl bedeutet;

 R_{154} : Wasserstoff, C_{1-6} -Alkyl, C_{1-6} -Alkenyl, C_{1-6} -Alkinyl, Formyl, C_{1-6} -Alkylcarbonyl oder C_{1-6} -Alkoxycarbonyl bedeutet;

R₁₅₅, R₁₅₆, R₁₅₇, und R₁₅₈ unabhängig voneinander Wasserstoff, Halogen, Cyano, Nitro, Formyl, C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl, C₁₋₆-Alkoxy oder C₁₋₆-Halogenalkoxy bedeuten; oder R₁₅₃ und R₁₅₈ bilden gemeinsam mit den Ringatomen, an die sie gebunden sind, einen fünf oder sechsgliedrigen teilgesättigten oder ungesättigten Ring, der bis zu 2 gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthalten kann, wobei dieser Ring durch einen Rest Oxo substituiert sein kann.

Ganz besonders bevorzugte Verbindungen der Formel XXIX sind ausgewählt aus der Gruppe

- 4-Hydroxy-1-methyl-3-(1.H.-tetrazol-5-carbonyl)-1.H.-chinolin-2-on,
- 1-Ethyl-4-hydroxy-3-(1.H.-tetrazol-5-carbonyl)-1.H.-chinolin-2-on,
- 6-Hydroxy-5-(1.H.-tetrazol-5-carbonyl)-1,2-dihydro-pyrrolo[3,2,1-.ij.]chinolin-4-on,
- 3-(1-Acetyl-1.H.-tetrazol-5-carbonyl)-4-hydroxy-1-methyl-1.H.-chinolin-2-on,
- 6-Chloro-4-hydroxy-1-methyl-3-(1.H.-tetrazol-5-carbonyl)-1.H.-chinolin-2-on,

6-Fluoro-4-hydroxy-1-methyl-3-(1.H.-tetrazol-5-carbonyl)-1.H.-chinolin-2-on,
4-Hydroxy-1,6-dimethyl-3-(1.H.-tetrazol-5-carbonyl)-1.H.-chinolin-2-on,
4-Hydroxy-6-methoxy-1-methyl-3-(1.H.-tetrazol-5-carbonyl)-1.H.-chinolin-2-on,
4-Hydroxy-6-methoxy-1-methyl-3-(1.H.-tetrazole-5-carbonyl)-1.H.-chinolin-2-on,
Acetic acid 1-methyl-2-oxo-3-(1.H.-tetrazol-5-carbonyl)-1,2-dihydro-chinolin-4-yl ester und
2,2-Dimethyl-propionic acid 1-methyl-2-oxo-3-(1.H.-tetrazol-5-carbonyl)-1,2-dihydro-chinolin-4-yl ester.

Als Kulturpflanzen, welche durch die Safener der Formel X, XI, XII, XIII, XIV, XV, XVI, XVII oder XVIII gegen die schädigende Wirkung der oben erwähnten Herbizide geschützt werden können, kommen insbesondere Getreide, Baumwolle, Soja, Zuckerrüben, Zuckerrohr, Plantagen, Raps, Mais und Reis, ganz besonders in Mais und Getreide in Betracht. Unter Kulturen sind auch solche zu verstehen, die durch konventionelle züchterische oder gentechnologische Methoden gegen Herbizide bzw. Herbizidklassen tolerant gemacht worden sind.

Bei den zu bekämpfenden Unkräutern kann es sich sowohl um monokotyle wie um dikotyle Unkräuter handeln, wie zum Beispiel die monokotylen Unkräuter Avena, Agrostis, Phalaris, Lolium, Bromus, Alopecurus, Setaria, Digitaria Brachiaria, Echinochloa, Panicum, Sorghum hal./bic., Rottboellia, Cyperus, Brachiaria, Echinochloa, Scirpus, Monochoria, Sagittaria, und Stellaria und die dikotylen Unkräuter Sinapis, Chenopodium, Galium, Viola, Veronica, Matricaria, Papaver, Solanum Abutilon, Sida, Xanthium, Amaranthus, Ipomoea und Chrysanthemum.

Als Anbauflächen gelten die bereits mit den Kulturpflanzen bewachsenen oder mit dem Saatgut dieser Kulturpflanzen beschickten Bodenareale wie auch die zur Bebauung mit diesen Kulturpflanzen bestimmten Böden.

Die Aufwandmengen an Herbizid liegt in der Regel zwischen 0,001 bis 2 kg/ha, vorzugsweise jedoch zwischen 0,005 bis 0,5 kg/ha.

Die erfindungsgemäßen Mittel sind für alle in der Landwirtschaft üblichen Applikationsmethoden wie z.B. preemergente Applikation, postemergente Applikation und Saatbeizung geeignet.

Bei der Samenbeizung werden im allgemeinen 0,001 bis 10 g Safener/kg Samen, vorzugsweise 0,05 bis 2 g Safener/kg Samen, appliziert. Wird der Safener in flüssiger Form kurz vor der Aussaat unter Samenquellung appliziert, so werden zweckmäßigerweise Safenerlösungen verwendet, welche den Wirkstoff in einer Konzentration von 1 bis 10000, vorzugsweise von 100 bis 1000 ppm, enthalten.

Lösungen, verdünnten Emulsionen, Spritzpulvern, löslichen Pulvern, Stäubemitteln, Granulaten oder Mikrokapseln.

Solche Formulierungen sind beispielsweise in der WO 97/34485 auf den Seiten 9 bis 13 beschrieben. Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch inniges Vermischen und/oder Vermahlen der Wirkstoffe mit flüssigen oder festen Formulierungshilfsmitteln wie z.B. Lösungsmitteln oder festen Trägerstoffen. Ferner können zusätzlich oberflächenaktive Verbindungen (Tenside) bei der Herstellung der Formulierungen verwendet werden. Für diesen Zweck geeignete Lösungsmittel und feste Trägerstoffe sind z.B. in der WO 97/34485 auf der Seite 6 angegeben.

Als oberflächenaktive Verbindungen kommen je nach der Art des zu formulierenden Wirkstoffes der Formel I nichtionogene, kation- und/oder anionaktive Tenside und Tensidgemische mit guten Emulgier-, Dispergier- und Netzeigenschaften in Betracht. Beispiele für geeignete anionische, nichtionische und kationische Tenside sind beispielsweise in der WO 97/34485 auf den Seiten 7 und 8 aufgezählt. Ferner sind auch die in der Formulierungstechnik gebräuchlichen Tenside, die u.a. in "Mc Cutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, München/Wien, 1981 und M. und J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81 beschrieben sind, zur Herstellung der erfindungsgemäßen herbiziden Mittel geeignet.

Wirkungen von Herbiziden der Formell kommen verschiedene Methoden und Techniken in Betracht, wie beispielsweise die folgenden:

i) Samenbeizung

Die Beizung des Saatguts oder die Behandlung des angekeimten Sämlings sind naturgemäß die bevorzugten Methoden der Applikation, weil die Wirkstoffbehandlung vollständig auf die Zielkultur gerichtet ist. Man verwendet in der Regel 1 bis 1000 g Antidot, vorzugsweise 5 bis 250 g Antidot, pro 100 kg Saatgut, wobei man je nach Methodik, die auch den Zusatz anderer Wirkstoffe oder Mikronährstoffe ermöglicht, von den angegebenen Grenzkonzentrationen nach oben oder unten abweichen kann (Wiederholungsbeize).

ii) Applikation als Tankmischung

Eine flüssige Aufarbeitung eines Gemisches von Antidot und Herbizid (gegenseitiges Mengenverhältnis zwischen 10:1 und 1:100) wird verwendet, wobei die Aufwandmenge an Herbizid 0,005 bis 5,0 kg pro Hektar beträgt. Solche Tankmischungen werden vor oder nach der Aussaat appliziert.

iii) Applikation in der Saatfurche

iv) Kontrollierte Wirkstoffabgabe

Diese Adjuvantien können beispielsweise sein: nichtionische Tenside, Mischungen von nichtionischen Tensiden, Mischungen von anionischen Tensiden mit nichtionischen Tensiden, kationische Tenside, silizium-organische Tenside, Mineralölderivate mit und ohne Tenside, Pflanzenölderivate mit und ohne Tensidzusatz, alkylierte Derivate von Ölen pflanzlichen oder mineralischen Ursprungs mit und ohne Tenside, Fischöle und andere tierische Öle tierischer Natur sowie deren Alkylderivate mit und ohne Tenside, natürlich vorkommende höhere Fettsäuren, vorzugsweise mit 8 bis 28 Kohlenstoffatomen, und deren Alkylesterderivate, organische Säuren enthaltend ein aromatisches Ringsystem und einen oder mehrere Carbonsäurerester, sowie deren Alkylderivaten, ferner Suspensionen von Polymeren des Vinylacetats oder Copolymeren von Vinylacetat-Acrylsäureestern. Mischungen einzelner Adjuvantien untereinander sowie in Kombination mit organischen Lösungsmitteln können zu einer weiteren Steigerung der Wirkung führen.

Als nichtionische Tenside kommen beispielsweise Polyglykoletherderivate von aliphatischen oder cycloaliphatischen Alkoholen, gesättigten oder ungesättigten Fettsäuren und Alkylphenolen in Frage, vorzugsweise die 3 bis 30 Glykolethergruppen und 8 bis 20 Kohlenstoffatome im (aliphatischen) Kohlenwasserstoffrest und 6 bis 18 Kohlenstoffatome im Alkylrest der Alkylphenole enthalten können.

Weitere geeignete nichtionische Tenside sind die wasserlöslichen, vorzugsweise 20 bis 250 Ethylenglykolethergruppen und 10 bis 100 Propylenglykolethergruppen enthaltenden Poly-

ethylenoxidaddukte an Polypropylenglykol, Ethylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit vorzugsweise 1 bis 10 Kohlenstoffatomen in der Alkylkette. Die genannten Verbindungen enthalten üblicherweise pro Propylenglykol-Einheit 1 bis 5 Ethylenglykoleinheiten.

Als weitere Beispiele nichtionischer Tenside seien auch Nonylphenolpolyethoxyethanole, Ricinusölpolyglykolether, Polypropylen-Polyethylenoxidaddukte, Tributylphenoxypolyethoxyethanol, Polyethylenglykol und Octylphenoxypolyethoxyethanol erwähnt.

Ferner kommen auch Fettsäureester von Polyoxyethylensorbitan wie das Polyoxyethylensorbitan-trioleat in Betracht.

Bei anionischen Tensiden werden vor allem Alkylsulfate, Alkylsulfonate, Alkylarylsulfonate, alkylierte Phosphorsäuren bevorzugt sowie deren ethoxylierte Derivate. Die Alkylreste enthalten üblicherweise 8 bis 24 Kohlenstoffatome.

Bevorzugte nicht-ionische Tenside sind unter den folgenden Handelsnamen bekannt:

Polyoxyethylen Cocoalkylamin (z.B. AMIET® 105 (Kao Co.)), Polyoxyethylen Oleylamin (z.B. AMIET® 415 (Kao Co.)), Nonylphenolpolyethoxyethanole, Polyoxyethylen Stearylamin (z.B. AMIET® 320 (Kao Co.)), N-polyethoxyethylamines (z.B. GENAMIN® (Hoechst AG)), N,N,N',N'-Tetra(Polyethoxypolypropoxyethyl)ethylen-diamine (z.B. TERRONIL® und TETRONIC® (BASF Wyandotte Corp.)), BRIJ® (Atlas Chemicals), ETHYLAN® CD und ETHYLAN® D (Diamond Shamrock), GENAPOL® C, GENAPOL® O, GENAPOL® S und GENAPOL® X080 (Hoechst AG), EMULGEN® 104P, EMULGEN® 109P und EMULGEN® 408 (Kao Co.); DISTY® 125 (Geronazzo), SOPROPHOR® CY 18 (Rhone Poulenc S.A.); NONISOL® (Ciba-Geigy), MRYJ® (ICI); TWEEN® (ICI); EMULSOGEN® (Hoechst AG); AMIDOX® (Stephan Chemical Co.), ETHOMID® (Armak Co.); PLURONIC® (BASF Wyandotte Corp.), SOPROPHOR® 461P (Rhône Poulenc S.A.), SOPROPHOR® 496/P (Rhone Poulenc S.A.), ANTAROX FM-63 (Rhone Poulenc S.A.), SLYGARD 309 (Dow Corning), SILWET 408, SILWET L-7607N (Osi-Specialities).

Bei den kationischen Tensiden handelt es sich vor allem um quartäre Ammoniumsalze, welche als N-Substituenten mindestens einen Alkylrest mit 8 bis 22 C-Atomen enthalten und als weitere Substituenten niedrige, gegebenenfalls halogenierte Alkyl-, Benzyl- oder niedrige Hydroxyalkylreste aufweisen. Die Salze liegen vorzugsweise als Halogenide, Methylsulfate oder Ethylsulfate vor, z.B. das Stearyltrimethylammoniumchlorid oder das Benzyldi-(2-chlorethyl)-ethylammoniumbromid.

Die verwendeten Öle sind entweder von mineralischer oder natürlicher Herkunft. Die natürlichen Öle können zudemnoch von tierischem oder pflanzlichen Ursprung sein. Bei tierischen Ölen werden vor allem Derivate von Rindertalg bevorzugt, aber auch Fischöle (z.B. Sardinenöl) und deren Derivate werden verwendet. Pflanzliche Öle sind meist Saatöle verschiedener Herkunft. Als Beispiele für besonders verwendete Pflanzenöle können Kokos-, Raps- oder Sonneblumenöle sowie deren Derivate genannt werden.

In dem erfindungsgemäßen Mittel betragen die Aufwandmengen an Öladditiv in der Regel zwischen 0,01 und 2 % in Bezug auf die Spritzbrühe. Beispielsweise kann das Öladditv nach Herstellung der Spritzbrühe in der gewünschten Konzentration in den Sprühtank gegeben werden.

Im erfindungsgemäßen Mittel bevorzugte Öladditive enthalten ein Öl pflanzlichen Ursprungs wie beispielsweise Rapsöl oder Sonnenblumenöl, Alkylester von Ölen pflanzlichen Ursprungs wie beispielsweise die Methylderivate, oder Mineralöle.

Besonders bevorzugte Öladditive enthalten Alkylester von höheren Fettsäuren (C_8 - C_{22}). insbesondere die Methylderivate von C_{12} - C_{18} Fettsäuren, beispielsweise die Methylester der Laurinsäure, Palmitinsäure und Ölsäure. Diese Ester sind bekannt als Methyllaurat (CAS-111-82-0), Methylpalmitat (CAS-112-39-0) und Methyloleat (CAS-112-62-9).

Das Ausbringen und die Wirkung der Öladditive kann durch deren Kombination mit oberflächenaktiven Substanzen wie nichtionische-, anionische oder kationische Tenside verbessert werden. Beispiele für geeignete anionische, nichtionische und kationische Tenside sind in der WO 97/34485 auf den Seiten 7 und 8 aufgezählt.

Bevorzugte oberflächenaktive Substanzen sind anionische Tenside vom Typ der Dodecylbenzylsulfonate, insbesondere die Calciumsalze davon sowie nichtionische Tenside vom Typ der Fettalkoholethoxylate. Insbeondere bevorzugt sind ethoxylierte C₁₂-C₂₂-Fettalkohole mit einem Ethoxylierungsgrad zwischen 5 und 40. Beispiele für kommerziell erhältliche, bevorzugte Tenside sind die Genapol Typen (Clariant AG, Muttenz, Schweiz). Die Konzentration der oberflächenaktiven Substanzen in Bezug auf das gesamte Additiv beträgt im allgemeinen zwischen 1 und 30 Gew.%.

Beispiele für Öladditive, die aus Mischungen von Ölen bzw. Mineralölen oder deren Derivaten mit Tensiden bestehen, sind Edenor ME SU®, Emery 2231® (Henkel Tochtergesellschaft Cognis GMBH, DE), Turbocharge® (Zeneca Agro, Stoney Creek, Ontario, CA) oder, besonders bevorzugt, Actipron® (BP Oil UK Limited, GB).

Ferner kann die Zugabe eines organischen Lösungsmittels zu dem Öladditiv/Tensidgemisch eine weitere Steigerung der Wirkung bewirken. Geeignete Lösungsmittel sind beispielsweise Solvesso® (ESSO) oder Aromatic Solvent® (Exxon Corporation) Typen. Die Konzentration derartiger Lösungsmittel kann von 10 bis 80 Gew.% des Gesamtgewichtes betragen.

Derartige Öladditive, die beispielsweise auch in US-A-4,834,908 beschrieben sind, sind für das erfindungsgemäße Mittel besonders bevorzugt. Ein ganz besonders bevorzugtes Öladditiv ist unter dem Namen MERGE® bekannt, kann von der BASF Corporation bezogen werden und ist beispielsweise in US-A-4,834,908 in col. 5, als Example COC-1 im wesentlichen beschrieben. Ein weiteres erfindungsgemäß bevorzugtes Öladditiv ist SCORE® (Novartis Crop Protection Canada.)

In der Formulier- und Adjuvanttechnik gebräuchliche Tenside, Öle, insbesondere Pflanzenöle, Derivate davon wie alkylierte Fettsäuren und Mischungen davon, z.B. mit vorzugsweise anionischen Tensiden wie alkylierten Phosphorsäuren, Alkylsulfate und Alkylarylsulfonaten sowie höheren Fettsäuren, die auch in den erfindungsgemäßen Mitteln und Sprühtanklösungen davon verwendet werden können, sind u.a. in "Mc Cutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1998, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, München/Wien, 1990, M. und J. Ash, "Encyclopedia of Surfactants", Vol I-IV, Chemical Publishing Co., New York, 1981-89, G. Kapusta, "A Compendium of Herbicide Adjuvants", Southern Illinois Univ., 1998, L. Thomson Harvey, "A Guide to Agricultural Spray Adjuvants Used in the United States", Thomson Pubns., 1992 beschrieben.

Insbesondere setzen sich bevorzugte Formulierungen folgendermaßen zusammen: (% = Gewichtsprozent)

Emulgierbare Konzentrate:

Aktives Wirkstoffgemisch:

1 bis 90 %, vorzugsweise 5 bis 20 %

oberflächenaktives Mittel:

1 bis 30 %, vorzugsweise 10 bis 20 %

flüssiges Trägermittel:

5 bis 94 %, vorzugsweise 70 bis 85 %

Stäube:

Aktives Wirkstoffgemisch:

0,1 bis 10 %, vorzugsweise 0,1 bis 5 %

festes Trägermittel:

99,9 bis 90 %, vorzugsweise 99,9 bis 99 %

Suspensions-Konzentrate:

Aktives Wirkstoffgemisch:

5 bis 75 %, vorzugsweise 10 bis 50 %

Wasser:

Jan Jan

94 bis 24 %, vorzugsweise 88 bis 30 %

oberflächenaktives Mittel:

1 bis 40 %, vorzugsweise 2 bis 30 %

Benetzbare Pulver:

Aktives Wirkstoffgemisch:

0,5 bis 90 %, vorzugsweise 1 bis 80 %

oberflächenaktives Mittel:

0,5 bis 20 %, vorzugsweise 1 bis 15 %

festes Trägermaterial:

5 bis 95 %, vorzugsweise 15 bis 90 %

Granulate:

Aktives Wirkstoffgemisch:

0,1 bis 30 %, vorzugsweise 0,1 bis 15 %

festes Trägermittel:

99,5 bis 70 %, vorzugsweise 97 bis 85 %

		<u> </u>	•	
F1. Emulsionskonzentrate	a)	b)	c)	d)
Wirkstoffgemisch	5 %	10 %	25 %	50 %
Ca-Dodecylbenzolsulfonat	6 %	8 %	6 %	8 %
Ricinusöl-polyglykolether	4 %	•	4 %	4 %
(36 Mol EO)				. ,0

WO 01/17972 PCT/EP00/08656

- 63 -

Octylphenol-polyglykolether	•	4 %	-	2 %
(7-8 Mol EO)	`			
Cyclohexanon		-	10 %	20 %
Arom. Kohlenwasserstoff-	85 %	78 %	55 %	16 %
gemisch C ₉ -C ₁₂				

Aus solchen Konzentraten können durch Verdünnung mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

F2. Lösungen	a)	b)	c)	d)
Wirkstoffgemisch	5 %	10 %	50 %	90 %
1-Methoxy-3-(3-methoxy-				
propoxy)-propan	-	20 %	20 %	-
Polyethylenglykol MG 400	20 %	10 %	-	-
N-Methyl-2-pyrrolidon	-	-	['] 30 %	10 %
Arom. Kohlenwasserstoff-	75 %	60 %	-	-
gemisch C ₉ -C ₁₂				

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

F3. Spritzpulver	a)	b)	c)	d)
Wirkstoffgemisch	5 %	25 %	50 %	80 %
Na-Ligninsulfonat	4 %	-	3 %	-
Na-Laurylsulfat	2 %	3 %	-	4 %
Na-Diisobutyl-naphthalinsulfonat	•	6 %	5 %	6 %
Octylphenol-polyglykolether	-	1 %	2 %	-
(7-8 Mol EO)				
Hochdisperse Kieselsäure	1 %	3 %	5 %	10 %
Kaolin	88 %	62 %	35 %	•

Der Wirkstoff wird mit den Zusatzstoffen gut vermischt und in einer geeigneten Mühle gut vermahlen. Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

F4. Umhüllungs-Granulate	a)	b)	c)
Wirkstoffgemisch	0.1 %	5 %	15 %
Hochdisperse Kieselsäure	0.9 %	2 %	2 %
Anorg. Trägermaterial	99.0 %	93 %	83 %
(Æ 0.1 - 1 mm)			

wie z.B. CaCO₃ oder SiO₂

Der Wirkstoff wird in Methylenchlorid gelöst, auf den Träger aufgesprüht und das Lösungsmittel anschließend im Vakuum abgedampft.

F5. Umhüllungs-Granulate	a)	b)	c)
Wirkstoffgemisch	0.1 %	5 %	15 %
Polyethylenglykol MG 200	1.0 %	2 %	3 %
Hochdisperse Kieselsäure	0.9 %	1 %	2 %
Anorg. Trägermaterial	98.0 %	92 %	80 %
1000			

(Æ 0.1 - 1 mm)

wie z.B. CaCO₃ oder SiO₂

Der fein gemahlene Wirkstoff wird in einem Mischer auf das mit Polyethylenglykol angefeuchtete Trägermaterial gleichmäßig aufgetragen. Auf diese Weise erhält man staubfreie Umhüllungs-Granulate.

F6. Extruder-Granulate	a)	b)	c)	d)
Wirkstoffgemisch	0.1 %	3 %	5 %	15 %
Na-Ligninsulfonat	1.5 %	2 %	3 %	4 %
Carboxymethylcellulose	1.4 %	2 %	2 %	2 %
Kaolin	97.0 %	93 %	90 %	79 %

Der Wirkstoff wird mit den Zusatzstoffen vermischt, vermahlen und mit Wasser angefeuchtet. Dieses Gemisch wird extrudiert und anschließend im Luftstrom getrocknet.

F7. Stäubemittel	a)	b)	c)
Wirkstoffgemisch	0.1 %	1 %	5 %
Talkum	39.9 %	49 %	35 %
Kaolin	60.0 %	50 %	60 %

Man erhält anwendungsfertige Stäubemittel, indem der Wirkstoff mit den Trägerstoffen vermischt und auf einer geeigneten Mühle vermahlen wird.

F8. Suspensions-Konzentrate	a)	b)	c)	d)
Wirkstoffgemisch	3 %	10 %	25 %	50 %
Ethylenglykol	5 %	5 %	5 %	5 %
Nonylphenol-polyglykolether	-	1 %	2 %	-
(15 Mol EO)				
Na-Ligninsulfonat	3 %	3 %	4 %	5 %

PCT/EP00/08656

Carboxymethylcellulose	1 %	1 %	1 %	1 %
37%ige wäßrige Formaldehyd-	0.2 %	0.2 %	0.2 %	0.2 %
Lösung				
Silikonöl-Emulsion	0.8 %	0.8 %	0.8 %	0.8 %
Wasser	87 %	79 %	62 %	38 %

Der feingemahlene Wirkstoff wird mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensions-Konzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

Biologisches Beispiel 1: Safeningwirkung

Unter Gewächshausbedingungen werden die Testpflanzen in Kunstofftöpfen bis zum 4-Blattstadium angezogen. In diesem Stadium werden zum einen das Herbizid allein, als auch die Mischungen des Herbizids mit den als Safener zu prüfenden Testsubstanzen auf die Testpflanzen appliziert. Die Applikation erfolgt als wäßrige Suspension der Prüfsubstanzen, hergestellt aus einem 25 %igen Spritzpulver (Beispiel F3, b)), mit 500 I Wasser/ha. 2 bis 3 Wochen nach Applikation wird die phytotoxische Wirkung des Herbizids auf die Kulturpflanzen wie z.B. Mais und Getreide mit einer Prozentskala ausgewertet. 100 % bedeutet Testpflanze ist abgestorben, 0 % bedeutet keine phytotoxische Wirkung.

<u>Tabelle B5: Postemergente Wirkung einer erfindungsgemäßen Mischung aus Herbizid und Safener:</u>

Testpflanze	Verb. Nr. 1.01 (60 g/ha)	Verb. Nr. 1.01 (60 g/ha) +
		Verb. Nr. 11.03 (15 g/ha)
Gerste	20	0
Agrostis	70	70
Alopecurus	70	80
Lolium	70	70

Tabelle 5 läßt sich entnehmen, daß die Verbindung Nr. 1.01 auf Gerste eine nicht tolerierbare phytotoxische Wirkung von 20 % zeigt. Die Unkräuter Agrostis, Alopecurus und Lolium werden zufriedenstellend kontrolliert.

Im Gegensatz dazu zeigt die erfindungsgemäße Mischung bestehend aus dem Herbizid Nr. 1.01 und dem Safener Nr. 11.03 auf der Kulturpflanze keinerlei phytotoxische Wirkung. Dabei bleibt die herbizide Wirkung auf die Unkräuter nicht nur gleich, sondern wird überraschenderweise bei Alopecurus sogar noch verstärkt (80 % gegenüber 70 % bei der Applikation des Herbizids Nr. 1.01 allein).

Dieselben Resultate werden erhalten, wenn man die Mischungen gemäß den Beispielen F1, F2 und F4 bis F8 formuliert.

Die Verbindung der Formel I läßt sich mit Vorteil mit einer Reihe von weiteren bekannten Herbiziden mischen. Man erhält dadurch beispielsweise eine wesentliche Verbreiterung des Unkrautspektrums und in vielen Fällen auch eine Erhöhung der Selektivität bezüglich der Nutzpflanzen. Insbesondere sind die Mischungen der Verbindung der Formel I mit mindestens einem der folgenden Herbizide von Bedeutung:

Herbizide aus der Klasse der Phenoxy-phenoxypropionsäuren wie beispielsweise Diclofopmethyl, Fluazifop-P-butyl- Quizalafop-P-ethyl, Propaquizafop, Clodinafop-P-propargyl, Cyhalfop-butyl, Fenoxaprop-P-Ethyl, Haloxyfop-methyl oder Haloxyfop-etoethyl;

Herbizide aus der Klasse der Hydroxylamine wie z.B. Sethoxidim, Alloxydim, Clethodim, Cycloxydim, Tepralkoxydim, Tralkoxydim oder Butroxidim;

Herbizide aus der Klasse der Sulfonylharnstoffe, wie z.b. Amidosulfuron, Azimsulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Cinosulfuron, Chlorsulfuron, Chlorimuron, Cyclosulfamuron, Ethametsulfuron-methyl, Ethoxysulfuron, Fluazasulfuron, Flupyrsulfuron, Imazosulfuron, Iodosulfuron (CAS RN 144550-36-7 und 185119-76-0), Metsulfuron-methyl, Nicosulfuron, Oxasulfuron, Primisulfuron, Pyrazosulfuron-ethyl, Sulfosulfuron, Rimsulfuron, Thifensulfuron-methyl, Triasulfuron, Tribenuron-methyl, Triflusulfuron-methyl, Prosulfuron, Flucarbazon oder Tritosulfuron (CAS RN 142469-14-5);

Herbizide aus der Klasse der Imidazolinone, wie Imazethapyr, Imazamethabenz, Imazamethapyr, Imazaquin, Imazamox oder Imazapyr;

Herbizide aus der Klasse der Pyrimidine, wie Pyrithiobac-sodium, Pyriminobac, Bispyribac-sodium:

Herbizide aus der Klasse der Triazine, wie z.B. Atrazin, Simazin, Simethryne, Terbutryne, Terbuthylazine;

Herbizide aus der Klasse der Harnstoffe, wie Isoproturon, Chlortoluron, Diuron, Dymron, Fluometuron, Linuron oder Methabenzthiazuron;

Herbizide aus der Klasse der Phosphonsäurederivate, wie z.B. Glyphosate, Glufosinate, Sulfosate oder Phosphinothricin;

Herbizide aus der Klasse der PPO, wie z.B. Nitrofen, Bifenox, Acifluorfen, Lactofen, Oxyfluorfen, Ethoxyfen, Fluoroglycofen, Fomesafen, Halosafen, Azafenidin (CAS RN. - 68049-83-2), Benzfendizone (CAS RN 158755-95-4), Butafenacil (bekannt aus US-A-5,183,492,

CAS RN 158755-95-4), Carfentrazone-ethyl, Cinidon-ethyl (CAS RN 142891-20-1), Flumichlorac-pentyl, Flumioxazin, Fluthiacet-methyl, Oxadiargyl, Oxadiazon, Pentoxazon, Sulfentrazone, Fluazolate (CAS RN 174514-07-9) oder Pyraflufen-ethyl;

Herbizide aus der Klasse der Chloracetanilide wie z.B. Alachlor, Acetochlor, Butachlor, Dimethachlor, Dimethenamid, S-Dimethenamid, Metazachlor, Metolachlor, S-Metolachlor, Pretilachlor, Propisochlor, Thenylchlor oder Pethoamid (CAS RN 106700-29-2)

Herbizide aus der Klasse der Phenoxyessigsäuren wie z.B. 2,4-D, Fluroxypyr, MCPA, MCPP, MCPB, Trichlorpyr oder Mecropop-P;

Herbizide aus der Klasse der Triazinone wie z.B. Hexazinon, Metamitron oder Metribuzin;

Herbizide aus der Klasse der Dinitroaniline wie z.B. Oryzalin, Pendimethalin oder Trifluralin;

Herbizide aus der Klasse der Azinone wie z.B. Chloridazon oder Norflurazon;

Herbizide aus der Klasse der Carbamate, wie z.B. Chlorpropham, Desmedipham, Phenmedipham oder Propham;

Herbizide aus der Klasse der Oxyacetamide wie z.B. Mefenacet oder Fluthiacet;

Herbizide aus der Klasse der Thiolcarbamate wie z.B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb oder Triallate;

Herbizide aus der Klasse der Azoloharnstoffe wie z.B. Fentrazamide (CAS RN158237-07-1) oder Cafenstrole;

Herbizide aus der Klasse der Benzoesäuren wie z.B. Dicamba oder Picloram;

Herbizide aus der Klasse der Anilide wie z.B. Diflufenican, oder Propanil;

Herbizide aus der Klasse der Nitrile wie z.B. Bromoxynil, Dichlobenil oder loxynil;

Herbizide aus der Klasse der Trione wie z.B. Sulcotrione, Mesotrione (bekannt aus US-A-5,006,158), Isoxaflutole oder Isoxachlortole;

Herbizide aus der Klasse der Sulfonamide wie z.B. Flucarbazone (CAS RN 181274-17-9), Procarbazone (CAS RN 145026-81-9), Chlorasulam, Diclosulam (CAS RN 145701-21-9), Florasulam, Flumetsulam oder Metosulam;

sowie Amitrol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Chlopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Flurochloridone, Indanofane, Isoxaben, Oxaziclomefone, Pyridate, Pyridafol (CAS RN. 40020-01-7), Quinchlorac, Quinmerac, Tridiphane oder Flamprop.

Wenn nicht anders angegeben, sind die oben angegebenen Mischungspartner der Verbindung der Formel I aus The Pesticide Manual, Eleventh Edition, 1997, BCPC bekannt. Die Mischungspartner der Verbindung der Formel I können gegebenenfalls auch in Form von Estern oder Salzen vorliegen, wie sie z. B. in The Pesticide Manual, Eleventh Edition, 1997, BCPC, genannt sind.

Die folgenden Beispiele erläutern die Erfindung weiter, ohne sie zu beschränken.

Herstellungsbeispiele:

Beispiel H1: Herstellung von

$$H_3C$$
OMe
OMe
 H_3C
OMe

Zu einer Lösung aus 20 g 2-(2,6-Dibrom-4-methyl-phenyl)-malonsäuredimethylester (52,6 mmol) in 400 ml Toluol (3 x entgast, Vakuum/Argon) gibt man zuerst 36,7 g (0,116 mol) Tributylvinylstannan und anschließend 2 g Tetrakis-Triphenylphosphin-Palladium hinzu. Dann wird die Reaktionsmischung für 9 Stunden bei einer Temperatur von 90 bis 95 °C gerührt. Nach Filtration über Hyflo und Einengen am Rotationsverdampfer erhält man nach chromatographischer Reinigung 15,3 g (8) in Form eines gelben Öles, welches ohne weitere Reinigung in die nächste Reaktion eingesetzt wird.

Beispiel H2:

15,2 g der gemäß Beispiel H1 erhaltenen Verbindung (8) wird mit Wasserstoff über einen Palladiumkatalysator (Kohlenstoff als Träger, 7 g 5% Pd/C) in 160 ml Tetrahydrofuran bei einer Temperatur von 20 bis 25°C hydriert. Nach Beendigung der Hydrierung wird das Produkt über Hyflo filtriert und das erhaltene Filtrat wird am Rotationsverdampfer eingeengt. Man erhält 13,7 g (9) in Form gelber Kristalle mit einem Schmelzpunkt von 47 bis 49 °C.

Beispiel H3:

Zu einer Suspension von 40 g (0,15 mol) (4) in 1000 ml Xylol gibt man 71,8 g (0,71 mol) Triethylamin hinzu und entgast (4 x Vakuum/Argon). Anschließend wird die gelbe Suspension auf eine Temperatur von 60 °C erwärmt und 3 Stunden lang gerührt. Dann gibt man 42,5 g (0,15 mol) (5) hinzu und heizt auf eine Badtemperatur von 150 °C auf, um laufend überschüssiges Triethylamin und das entstandene Ethanol abzudestillieren. Nach 3 Stunden kühlt man die Reaktionsmischung auf eine Temperatur von 40 °C ab und gibt sie in 500 ml eines Eis/Wasser-Gemisches. Mit 100 ml wäßriger 1N-Natriumhydroxidlösung wird das Reaktionsgemisch alkalisch eingestellt und die wäßrige Phase (enthält das Produkt) zweimal mit Essigsäureethylester gewaschen. Nach zweimaligem Zurückwaschen der organischen Phase mit wäßriger 1N-Natriumhydroxidlösung werden die wäßrigen Phasen vereinigt, das verbliebene Xylol abdestilliert und die vereinigten wäßrigen Phasen mit 4 N HCl unter Kühlung auf pH 2-3 eingestellt. Das dabei ausfallende Produkt gibt man auf einen Saugfilter, wäscht den Filterrückstand mit Wasser und kurz mit Hexan und trocknet anschließend den Filterrückstand im Vakuum bei einer Temperatur von 60 °C über P₂O₅. Man erhält 34,6 g (6) als einen schwach beigen Feststoff mit einem Schmelzpunkt von 242-244 °C (Zers.).

PCT/EP00/08656 WO 01/17972

- 71 -

Beispiel H4:

Zu einer auf eine Temperatur von 0 °C gekühlte Lösung aus 3 g (10,4 mmol) (6) und 1,6 g (15,8 mmol) Triethylamin in 100 ml Tetrahydrofuran gibt man eine katalytische Menge 4-Dimethylaminopyridin hinzu. Anschließend gibt man 1,57 g (13,0 mmol) Pivaloylchlorid tropfenweise hinzu. Nach 30-minütigem Rühren bei einer Temperatur von 0 °C entfernt man die Kühlung und rührt für weitere 60 Minuten. Anschließend gibt man das Reaktionsgemisch in gesättigte wäßrige Natriumchloridlösung und trennt die organische Phase ab. Die organische Phase wird über Magnesiumsulfat getrocknet, abfiltriert und eingedampft. Nach chromatographischer Reinigung und Umkristallisation aus Diethylether erhält man 2,94 g (7) mit einem Schmelzpunkt von 135 bis 136 °C.

Beispiel H5: Herstellung von 2-(2,6-Diethyl-4-methyl-phenyl)-tetrahydro-pyrazolo[1,2-.a.]pyridazine-1,3-dion:

1,39 g Tetrahydro-pyrazolo[1,2-.a.]pyridazine-1,3-dion und 2,68 g Natriumtertiärbutylat werden in 20 ml Dimethylformamid bei 20° gelöst und mit 3,21 g 2,6-Diethyl-4-methyliodbenzol sowie 0.82 g Pd (TPP)2 Cl2 versetzt. Nun wird während 2,5 Stunden bei 125° gerührt. Nach dem Abkühlen auf Raumtemperatur wird mit 200 ml Essigester und 200 ml Ether versetzt und die Reaktionsmischung auf einen Saugfilter gegeben. Der Filterrückstand wird mit je 100 ml Wasser und Methylenchlorid versetzt und mit Salzsäure angesäuert. Die organische Phase wird abgetrennt, getrocknet und eingedampft. Der Rückstand (1.9 g) wird an Kieselgel chromatographiert (Essigester/Hexan 3:1). Man erhält 2-(2,6-Diethyl-4-methyl-phenyl)-tetrahydro-pyrazolo[1,2-.a.]pyridazine-1,3-dion in Form beiger Kristalle mit einem Schmelzpunkt von 174-175°.

Beispiel H6: Herstellung von 2-(2,6-Diethyl-4-methyl-phenyl)-tetrahydro-pyrazolo[1,2-.a.]pyridazine-1,3-dion:

Ċ

1,39 g Tetrahydro-pyrazolo[1,2-.a.]pyridazine-1,3-dion und 2,68 g Natriumtertiärbutylat werden in 20 ml Dimethylformamid bei 20° gelöst und mit 2,66 g 2,6-Diethyl-4-methyl-brombenzol sowie 0.82 g Pd (TPP)₂ Cl₂ versetzt. Nun wird während 2,5 Stunden bei 125° gerührt. Nach dem Abkühlen auf Raumtemperatur wird mit 200 ml Essigester und 200 ml Ether versetzt und die Reaktionsmischung auf einen Saugfilter gegeben. Der Filterrückstand wird mit je 100 ml Wasser und Methylenchlorid versetzt und mit Salzsäure angesäuert. Die organische Phase wird abgetrennt, getrocknet und eingedampft. Der Rückstand (1.4 g) wird an Kieselgel chromatographiert (Essigester/Hexan 3:1). Man erhält 2-(2,6-Diethyl-4-methyl-phenyl)-tetrahydro-pyrazolo[1,2-.a.]pyridazine-1,3-dion in Form beiger Kristalle mit einem Schmelzpunkt von 174-175°.

In den folgenden Tabellen sind die Schmelzpunkte in °C angegeben. Me bedeutet die Methylgruppe. Ist für die Substituenten G₁ bis G₁₀ sowie R₄ und R₅ (unabhängig voneinander) eine Formel dargestellt, so ist die linke Seite dieser Formel der Verknüpfungspunkt mit dem Sauerstoffatom des Heterocyclus Q₁ bis Q₁₀. Bei der Substituentenbedeutung R₄ und R₅ gemeinsam stellt die rechte Seite des Moleküls die Verknüpfungsstelle mit dem Heterocyclus Q₁ dar. Die übrigen endständigen Valenzen stellen Methylgruppen dar.

In den folgenden Tabellen bedeutet "LC/MS: M+" das positiv geladene molekulare Ion in daltons exprimiert, das aus dem Massenspektrum eruiert wurde bei der Analyse des Produktes mit gekoppelten HPLC (High Performance Liquid Chromatography) und MS (Mass Spectrometry) Geräten.

Tabelle 1: Verbindungen der Formel la:

Nr.	R ₁	R ₃	R₄/R₅	G ₁	Physik. Daten
1.1	Ethyl	Ethyl	-(CH₂)₄-	-H	Smp. 209-211
1.2	Ethyl	Ethyl	-(CH ₂) ₄ -	Î	Smp. 125-127
	•	•	, _,,	1	·
1.3	Ethyl	Ethyl		1	Smp. 195
1.4	Ethyl	Ethyl	$\langle \mathcal{L} \rangle$		Smp.180
1.5	Ethyl	Ethyl		-н	Wachs
1.6	Ethyl	Ethyl	•	Ļ	Fest
1.1	Ethyl	Ethyl	XX	ļ	Kristallin
1.2	Ethyl	Ethyl	XX	-H	Kristallin
1.3	Ethyl	Ethyl	\Diamond	-H	Fest
1.4	Ethyl	Ethyl		-H	Fest
1.5	Ethyl	Ethyl	но	-H	Fest
1.6	Ethyl	Ethyl	yl.C	Ļ	Smp. 153-155
1.7	Ethyl	Ethyl	You	Ļ	Öl
1.8	Ethyl	Ethyl		i	Öl

Nr.	R ₁	R ₃	R ₄ /R ₅	G ₁	Physik. Daten
1.9	Ethyl	Ethyl	но С		Fest
1.10	Ethyl	Ethyl	HO C	-Н	Fest
1.11	Ethyl	Ethyl	~.C	-H	Viskos
1.12	Ethyl	Ethyl	\.C	-H	
1.13	Ethyl	Ethyl	\sim	-H	Viskos
1.14	Ethyl	Ethyl	1.0	-11 -H	Viskos
1.15	Ethyl	Ethyl		-H	Viskos
1.16	Ethyl	Ethyl		7. P	Viskos
	•		1	/	Viskos
1.17	Ethyl	Ethyl	HO~o	-H	Viskos
1.18	Ethyl	Ethyl	HO LO	-H	Fest
1.19	Ethyl	Ethyl	#_\C	-H	Fest
1.20	Ethyl	Ethyl	ů.C	1	Fest
1.21	Ethyl	Ethyl	10) }	
ż			× % ×	/	Öl
1.22	Ethyl	Ethyl	~~~~	i,	Viskos
1.23	Ethyl	Ethyl	~~C	-н	Viskos
1.24	Ethyl	Ethyl	~~C	-H	Viskos
1.25	Ethyl	Ethyl	~~C	<u> </u>	Viskos
1.26	Ethyl	Ethyl	of.C	-H	Viskos
1.27	Ethyl	Ethyl	\bigcirc	-H	Fest
1.28	Ethyl	Ethyl		<u> </u>	Fest
1.29	Ethyl	Ethyl	\propto	-H	Kristallin
1.30	Ethyl	Ethyl		-H	Wachs
1.31	Ethyl	Ethyl	آ ا	<u> </u>	Viskos

.___

Nr.	R_1	R ₃	R₄/R₅	G ₁	Dhyaile Datas
		3	Π4/Π5	G ₁	Physik. Daten
1.32	Ethyl	Ethyl			Viskos
1.33	Ethyl	Ethyl		-H	Fest
1.34	Ethyl	Ethyl		Ļ	Wachs
1.35	Ethyl	Ethyl	HO CO	-H	Amorph
1.36	Ethyl	Ethyl		-H	Wachs
1.37	Ethyl	Ethyl	Ç~~.C	Ļ	Öl
1.38	Ethyl	Ethyl	$\stackrel{\circ}{\sim}$	-H	Kristallin
1.39	Ethyl	Ethyl	HO HO	-Н	Fest
1.40	Ethyl	Ethyl	но	1	Fest
1.41	Ethyl	Ethyl	\sim	-Н	Smp. 283
1.42	Ethyl	Ethyl	F ₂ C	-H	Smp. 227
1.43	Ethyl	Ethyl	F	Ļ	Smp.122-124
1.44	Ethyl	Ethyl	Q.C	-н	Smp. 148-151
1.45	Ethyl	Ethinyl	F	-H	Smp. 163-166
1.46	Ethyl	Ethinyl		Ļ	Smp. 114-116
1.47	Ethyl	Ethyl	Q.C	-Н	Fest
1.48	Ethyl	Ethyl	-(CH ₂) ₄ -	J _o	
1.49	Ethyl	Ethyl	-(CH ₂) ₄ -) 	
1.50	Ethyl	Ethyl	-(CH ₂) ₄ -	ОН	
1.51	Ethyl	Ethyl	-(CH ₂) ₄ -	°,s,o ,`s,`_	
1.52	Ethyl	Ethyl	-(CH ₂) ₄ -	0, s S	
1.53	Ethyl	Ethyl	-(CH ₂) ₄ -	S O CI	

Nr.	R ₁	R ₃	R₄/R₅	G ₁	Physik. Daten
1.54	Ethyl	Ethyl	-(CH₂) ₄ -	°,s,°°	
1.55	Ethyl	Ethyl	-(CH ₂) ₄ -	o, s, o	
1.56	Ethyl	Ethyl	-(CH ₂) ₄ -	o so	
1.57	Ethyl	Ethyl	-(CH ₂) ₄ -	0, 0 's',0	
1.58	Ethyl	Ethyl	-(CH ₂) ₄ -	0,0	
1.59	Ethyl	Ethyl	-(CH ₂) ₄ -	-CH₂-OMe	
1.60	Ethyl	Ethyl	-(CH ₂) ₄ -	-CH₂-SMe	
1.61	Ethyl	Ethyi	-(CH ₂) ₄ -	l _y	
1.62	Ethyl	Ethyl	-(CH ₂) ₄ -	i	
1.63	Ethyl	Ethyl	-(CH ₂) ₄ -		
1.64	Ethyl	Ethyl	-(CH ₂) ₄ -		
1.65	Ethyl	Ethyl	-(CH ₂) ₄ -		
1.66	MeO-	Ethyl	-(CH₂) ₄ -	ļ	Smp. 143-144°C
1.67	Ethyl-	Ethinyl	-(CH ₂) ₄ -	1	
1.68	-OCHF2	Ethyl	-(CH ₂) ₄ -	Ļ	
1.69	-СНО	Ethyl	-(CH ₂) ₄ -	Ļ	
1.70	1	Ethyl	-(CH ₂) ₄ -	Ļ	
1.71	OH OH	Ethyl	-(CH ₂) ₄ -	Ļ	
1.72	MeO-	MeO-	-(CH ₂) ₄	1	

Nr.	R ₁	R ₃	R₄/R₅	G ₁	Physik. Daten
1.73	MeO-	Ethyl	-(CH ₂) ₄ -	-H	Smp. 159 – 161°C
1.74	Ethyl-	Ethinyl	-(CH ₂) ₄ -	-H	
1.75	-OCHF2	Ethyl	-(CH ₂) ₄ -	-H	
1.76	-CHO	Ethyl	-(CH ₂) ₄ -	-H	
1.77	ļ	Ethyl	-(CH ₂) ₄ -	-H	•
1.78	ОН	Ethyl	-(CH ₂) ₄ -	-Н	
1.79	MeO-	MeO-	-(CH ₂) ₄ -	-H	
1.80	MeO-	Ethyl	-(CH ₂) ₄ -	-CO ₂ C ₂ H ₅	Smp. 112-113°C
1.81	Ethyl	Ethyl		-H	Smp. 283°C (Zers.)
1.82	Ethyl	Ethyl	0=0	-Н	Smp. 140°C
1.83	MeO-	Ethyl	اکی ک	-H	Fest
1.84	MeO-	Ethyl		i _k	Wachs
1.85	MeO-	Ethyl	но	-н	Smp. 177-180°C
1.86	MeO-	Ethyl	F	-H	Smp. 208-210°C
1.87	MeO-	Ethyl	F T	i _k	Smp. 102-104°C
1.88	Ethyl	Ethyl	,	-н	Smp. 193-194°C
			(trans)		
1.89	Ethyl	Ethyl	0	<u>\</u>	Smp. 163-165°C
1.90	Ethyl	Ethyl	(trans)	Ļ	Fest
			(trans)	·	
1.91	Ethyl	Ethyl		-H	Wachs
1.92	Ethyl	Ethyl	HC O	1	Wachs

Nr. 1.93	R₁ Ethyl	R₃ Ethyl	R₄/R₅	G₁ -H	Physik. Daten
1.50	Carry	Luiyi	W.o.	- п	Wachs
1.94	Ethyl	Ethyl			Wachs
1.95	Ethyl	Ethyl		1	Viskos
1.96	Ethyl	Ethyl	но-С	-H	Smp. 200-202°C
1.97	Ethyl	Ethyl	но	-Н	Smp. 210-220°C (Zers.)
1.98	Ethyl	Ethyl		-H	Fest
1.99	Ethyl	Ethinyl	SH,	-H	Wachs
1.100	Ethyl	Ethinyl	CH ₃	<u> i</u>	Wachs
1.101	Ethyl	Ethyl		1	Viskos
1.102	Ethyl	Ethyl	Carls	-Н	Wachs
1.103	OCH ₃	Ethyl	Str. C	J. SH.	Wachs
1.104	Ethyl	Ethyl	Er, °C	H,C CH,	Wachs
1.105	Ethyl	Ethyl	Ç ⁰¹ ,	н,с	Wachs
1.106	Ethyl	Ethyl	Com,	O Me	Wachs
1.107	Ethyl	Ethyl		°, s, o CI	Wachs
1.108	Ethyl	Ethyl		0 ,s,0 ,s,//	Wachs

Nr. 1.109	R ₁ Ethyl	R₃ Ethyl	R₄/R₅	G₁ ○、 _৽ ৴০ ∥	Physik. Daten Wachs
1.110	Ethyl	Ethyl		0,00 сн,	Wachs
1.111	Ethinyl	Ethyl		O S O Me	Wachs
1.112	Ethinyl	Ethyl	SH ₃	O O CI	Wachs
1.113	Ethinyl	Ethyl	SH,	°, s.0	Wachs
1.114	Ethinyl	Ethyl	۲۳۰ _۰ ک	°, s, °	Wachs
1.115	Ethinyl	Ethyl	CH4,	O CH,	Wachs
1.116	Ethyl	Ethyl	H ₃ C CH ₃	-Н	Wachs
1.117	Ethyl	Ethyl	CH ₃	-н	Wachs
1.118	Ethyl	Ethinyl	H,C CH,	-Н	Wachs
1.119	Ethyl	Ethinyl	CH,	-Н	Wachs
1.120	OCH ₃	Ethyl		-H	Smp. 130-136°C
1.121	OCH ₃	Ethyl	но—	-H	Smp. 198-200°C
1.122	Ethyl	Ethyl	GH ³	N_CH ₃	Wachs
1.123	Ethyl	OCH₃	Str. of	Д _у сн,	Wachs
1.124	Ethinyl	Ethyl	CH ₉	Ļ	Wachs
1.125	Ethinyl	Ethyl	CH ₄ C	o s.o	Wachs

Nr. 1.126	R₁ Ethinyl	R ₃ Ethyl	R ₄ /R ₅	G ₁ S n-C ₈ H ₁₇	Physik. Daten Wachs
1.127	Ethyl	Ethyl		-H	
1.128	Ethyl	Ethyl	CoH,		
1.129	OCH₃	Ethyl	CH ₃		Wachs
				F	(LC/MS: M ⁺ =552)
1.130	OCH₃	Ethyl	CH3 O	°;s=°° CI	Wachs (LC/MS: M⁺=590)
1.131	OCH₃	Ethyl	сн.	CI CH ₃	·
	00/13	Cary	6H²	S, CH,	Wachs (LC/MS: M⁺=535)
				H³C N O	(LO/NO. N =555)
1.132	OCH ₃	Ethyl	GH,	O, S, O	Wachs
					(LC/MS: M ⁺ =546)
				н,с	
1.133	OCH₃	Ethyl	GH,	0, s. 0	Wachs
			•	CI	(LC/MS: M ⁺ =584)
1.134	OCH₃	Ethyl	ÇH,	cí′ o _{``s} ,o	146 1
	003	Lary	°√°√	3	Wachs (LC/MS: M⁺=550)
				CI	(20////0.101 =000)
1.135	OCH ₃	Ethyl	ÇH,	0,50	Wachs
			~~ ₀ ~~	СН3	(LC/MS: M+=482)
1.136	OCH ₃	Ethyl	CH's	°, s, °° c'	Wachs
			.		(LC/MS: M+=550)
1.137	OCH₃	Ethyl	CH,	S C	Wachs
		•	-~-0~~	H ₃ C N CH ₃	(LC/MS: M+=568)
				•	•

Nr. 1.138	R₁ OCH₃	R ₃ Ethyl	R ₄ /R ₅	G ₁ O N S	Physik. Daten Wachs (LC/MS: M ⁺ =574)
1.139	OCH₃	Ethyl Ethyl	ÇH₃	O. S. O. (CH ₂) ₉ CH ₃	Wachs (LC/MS: M ⁺ =580) Wachs (LC/MS: M ⁺ =552)
1.141	OCH₃	Ethyl	CH ₃	°.is.io	Wachs (LC/MS: M⁺=550)
1.142	OCH₃	Ethyl	ÇH _s	O NO2	Wachs (LC/MS: M⁺=561)
1.143	OCH₃	Ethyl	CH3 O	O, O N N-CH,	Wachs (LC/MS: M ⁺ =520)
1.144	OCH ₃	Ethyl	ÇH,	-S(O)₂CH₃	Wachs
1.145	OCH ₃	Ethyl	CH3 O	°, s, °	(LC/MS: M ⁺ =454) Wachs (LC/MS: M ⁺ =516)
1.146	OCH ₃	Ethyl	CH ₃	°;s;°	Wachs (LC/MS: M ⁺ =584)
1.147	OCH₃	Ethyl	ÇH ₃	CF ₃ / O, O S CH ₃	Wachs
1.148	OCH ₃	Ethyl	CHI ₃	O. S. O. CH.	(LC/MS: M⁺=468) Wachs
1.149	OCH ₃	Ethyl	CH.	O, ,O ,S (CH ₂),CH ₃	(LC/MS: M ⁺ =496) Wachs (LC/MS: M ⁺ =552)
1.150	OCH₃	Ethyl	GH ₃	o s	Wachs (LC/MS: M ⁺ =541)

Nr. 1.151	R ₁ Ethyl	R₃ Ethyl	R ₄ /R ₅	G ₁ O S	Physik. Daten Wachs (LC/MS: M ⁺ =582)
1.152	Ethyl	Ethyl		O, S, O CI	Wachs (LC/MS: M ⁺ =620)
1.153	Ethyl	Ethyl		H ₃ C N CH ₃	Wachs (LC/MS: M ⁺ =565)
1.154	Ethyl	Ethyl		0,3,00	Wachs (LC/MS: M⁺=576)
1.155	Ethyl	Ethyl		H ₃ C	Wachs (LC/MS: M⁺=614)
1.156	Ethyl	Ethyl		o; s, o	Wachs (LC/MS: M⁺=580)
1.157	Ethyl	Ethyl		O, O CH,	Wachs (LC/MS: M ⁺ =512)
1.158	Ethyl	Ethyl			Wachs (LC/MS: M ⁺ =580)
1.159	Ethyl	Ethyl			Wachs (LC/MS: M ⁺ =642)
1.160	Ethyl	Ethyl		H _s C N CH _s	Wachs (LC/MS: M⁺=598)

Nr. 1.161	R₁ Ethyl	R₃ Ethyl	R₄/R₅	G ₁ O N S	Physik. Daten Wachs (LC/MS: M ⁺ =604)
1.162	Ethyl	Ethyl		O.S.O.	Wachs (LC/MS: M ⁺ =546)
1.163	Ethyl	Ethyl		o is in	Wachs (LC/MS: M ⁺ =582)
1.164	Ethyl	Ethyl		o is in	Wachs (LC/MS: M ⁺ =580)
1.165	Ethyl	Ethyl		O NO2	Wachs (LC/MS: M ⁺ =591)
1.166	Ethyl	Ethyl		O.S.O.N.CH,	Wachs (LC/MS: M ⁺ =550)
1.167	Ethyl	Ethyl		-S(O)₂CH₃	Wachs (LC/MS: M ⁺ =484)
1.168	Ethyl	Ethyl			Wachs (LC/MS: M⁺=546)
1.169	Ethyl	Ethyl		°,;s.*°	Wachs (LC/MS: M ⁺ =614)
1.170	Ethyl	Ethyl		CF ₃ / O, O CH ₃ H ₃ C	Wachs (LC/MS: M⁺=512)

Nr. 1.171	R₁ Ethyl	R₃ Ethyl	R ₄ /R ₅	G ₁ O, s, o CH ₃	Physik. Daten Wachs (LC/MS: M⁺=498)
1.172	Ethyl	Ethyl		O, S, O CH ₃	Wachs (LC/MS: M ⁺ =526)
1.173	Ethyl	Ethyl		O S (CH ₂) ₇ CH ₃	Wachs (LC/MS: M ⁺ =582)
1.174	Ethyl	Ethyl		o so	Wachs (LC/MS: M⁺=571)
1.175	Ethyl	Ethyl	CH,	F	Wachs (LC/MS: M⁺=550)
1.176	Ethyl	Ethyl	CH,	O, S, O CI	Wachs (LC/MS: M⁺=588)
1.177	Ethyl	Ethyl	CH3 O	H ₃ C N	Wachs (LC/MS: M⁺=533)
1.178	Ethyl	Ethyl	CH,		Wachs (LC/MS: M⁺=544)
1.179	Ethyl	Ethyl	CH,	H ₃ C	Wachs (LC/MS: M⁺=582)
1.180	Ethyl	Ethyl	Gr.	o co	Wachs (LC/MS: M⁺=548)
1.181	Ethyl	Ethyl	GH ₃	O, S, O CH ₃	Wachs (LC/MS: M⁺=480)

Nr. 1.182	R ₁ Ethyl	R ₃ Ethyl	R ₄ /R ₅	G ₁	Physik. Daten Wachs (LC/MS: M ⁺ =548)
1.183	Ethyl	Ethyl	CH,	O, SO CI	Wachs (LC/MS: M ⁺ =566)
1.184	Ethyl	Ethyl	CH,	O N S	Wachs (LC/MS: M ⁺ =572)
1.185	Ethyl	Ethyl	CH3 O	O. S. O. CI	Wachs (LC/MS: M⁺=514)
1.186	Ethyl	Ethyl	CH ₃		Wachs (LC/MS: M ⁺ =550)
1.187	Ethyl	Ethyl	CH4,	o s	Wachs (LC/MS: M⁺=548)
1.188	Ethyl	Ethyl	CH ₃	O'S NO ₂	Wachs (LC/MS: M⁺=559)
1.189	Ethyl	Ethyl	CH ₃	O S N N CH,	Wachs (LC/MS: M⁺=518)
1.190	Ethyl	Ethyl	GH3 O	-S(O)₂CH₃	Wachs
1.191	Ethyl	Ethyl	GH's 0	o, s. f. o	(LC/MS: M ⁺ =452) Wachs (LC/MS: M ⁺ =514)
1.192	Ethyl	Ethyl	CH4 ₃	0,3,0	Wachs (LC/MS: M⁺=582)
1.193	Ethyl	Ethyl	GH ₃	CF;/ O,O CH, H,C	Wachs (LC/MS: M⁺=480)
1.194	Ethyl	Ethyl	CH3 C	о, о , о , сн,	Wachs (LC/MS: M ⁺ =466)

Nr. 1.195	R ₁ Ethyl	R ₃ Ethyl	R ₄ /R ₅	G ₁ o, o	Physik. Daten Wachs
1.196	Ethyl	Ethyl	CH ₃	O, ,O ,S, (CH ₂),CH ³	(LC/MS: M ⁺ =494) Wachs (LC/MS: M ⁺ =550)
1.197	Ethyl	Ethyl	GH'	° s	Wachs (LC/MS: M ⁺ =539)
1.198	Ethyl	Ethyl	ÇH ₃	o, so of ch,	Wachs (LC/MS: M⁺=572)
1.199	OCH ₃	OCH ₃	-(CH ₂) ₄ -	-Н	Smp. 180-193°C
1.200	Ethyl	Ethyl		-CO ₂ C ₂ H ₅	Smp. 153-154°C

Tabelle 2: Verbindungen der Formel la:

Nr.	R ₁	R ₃	R₄	R ₅	G ₁	Physik.
2.01	Ethyl	Ethyl	Methyl	✓ OH	-H	Wachs
2.02	Ethyl	Ethyl	Methyl	/ _0\	-H	Fest
2.03	Ethyl	Ethyl	Methyl		-H	Fest
2.04	Ethyl	Ethyl	Methyl	~~°~	1	Wachs
2.05	Ethyl	Ethyl	Methyl		1	Wachs
2.06	Ethyl	Ethyl	, O_	~ ^0 ~	-Н	Smp. 171-

Nr.	R ₁	R ₃	R₄	R₅	G ₁	Physik.
2.07	Ethyl	Ethyl	\sim	$\langle \rangle$	Î,	Wachs
2.08	Ethyl	Ethyl	\sim °	\sim	-H	Amorph
2.09	Ethyl	Ethyl	~ ~° ~	^ 0\	1	Amorph
2.10	Ethyl	Ethyl	∕ OH	∕√ OH	-H	
2.11	Ethyl	Ethyl	Methyl `	Methyl	i~	
2.12	Ethyl	Ethyl	Methyl	Methyl	-SO₂CH₃	
2.13	Ethyl	MeO-	Methyl	Methyl	Ĭ~	
2.14	Ethyl	Ethinyl	Methyl	Methyl	i~	
2.15	Ethyl	Ethyl	Methyl	-Phenyl	1	
2.16	Ethyl	Ethyl	Methyl	-3-Pyridyl	i~	
2.17	Ethyl	Ethyl	Methyl	-2-Thienyl	i _Y	·
2.18	Ethyl	Ethyl	Methyl	-Allyi	i _Y	
2.19	Ethyl	Ethyl	Methyl	-Crotyl	1	
2.20	Ethyl	Ethyl	Methyl	-4-Chlor- phenyl	14	
2.21	MeO-	MeO-	Methyl	Allyl	-H	
2.22	Ethinyl	Ethyl	Phenyl-	Phenyl	-H	
2.23	Ethinyl	Ethyl	Phenyl	∕ CI	-н	
2.24	Ethyl	Ethyl		Methyl-	-н	
2.25	Ethyl	Ethyl		Methyl-	-н	
2.26	Ethyl	Ethyl	Phenyl	To	-H	

Nr.	R ₁	R ₃	R ₄	R ₅	G ₁	Physik.
2.27	Ethyl	Ethyl		Methyl-	-H	34,517
2.28	Ethyl	Ethyl	-Benzyl	Methyl-	-Н	
2.29	Ethyl	Ethyl		Methyl-	-H	
2.30	Ethyl	Ethyl		Methyl-	-H	
2.31	Ethyl	Ethyl		Methyl-	-H	,
2.32	Eṭḥyl	Ethyl	-(CH₂)₂OH	Allyl	-H	Smp. 180
	L			<u> </u>		185°C (Zers.)

Tabelle 3: Verbindungen der Formel Ib:

$$R_{8}$$
 R_{8}
 R_{3}
 R_{3}
 R_{3}
 R_{3}
 CH_{3}
 (Ib)

Nr.	R ₁	R ₃	R ₆	R ₇	R ₈	G ₂	Physik. Daten
3.01	Ethyl	Ethyl	-Me	-Me	-Me	-H	Smp. 249- 254°C
3.02	Ethyl	Ethyl	-Ме	-H	-Me	-H	
3.03	Ethyi	Ethyl	-CH ₂ -CH ₂ -O-CH ₂ - CH ₂ -		-Me	-Н	

Nr.	R ₁	R ₃	R ₆	R ₇	R ₈	G ₂	Physik. Daten
3.04	Ethinyl	Ethyl	-CH₂-CH₂-		-Allyl	-H	
3.05	Ethyl	Ethyl	-CH₂-(-Me	1	
3.06	Ethyl	Ethyl	-(Ch	1 ₂) ₂ -	-Me	-H	
3.07	Ethyl	Ethyl	-(CH ₂) ₂ -0	CH(CH₃)-	-Me	-H	
			(CH	2) 2-			
3.08	Ethyl	Ethyl	-(CH ₂) ₂ -1	C(CH ₃) ₂ -	-Me	-H	
·			(CH	l ₂) ₂ -			
3.09	Ethinyl	Ethyl	-(Cł	H ₂) ₄ -	-Me	-H	
3.10	MeO-	Ethyl	-(Cł	12)2-	<u>-H</u>	-H	
3.11	MeO-	Ethyl	-(Cl	H ₂) ₂ -	-Methyl	Ĭ~	
3.12	-C(O)CH ₃	Ethyl	-(CI	H ₂) ₂ -	Methyl	-H	
3.13	-OCHF₂	Ethyl	-(CH₂)₂-		Methyl		
3.14	Ethyl	Ethyl	-(Cł	H ₂) ₃ -	Methyl	İ	
						<u>.</u>	
3.15	Ethyl	Ethyl	-(CI	H ₂) ₅ -	-H	-Н	Smp. 222- 224°C
3.16	Ethyl	Ethyl	-(CI	H ₂) ₅ -	-H	Î,	Smp. 147- 149°C
3.17	Ethyl	Ethyl	Methyl	Methyl	-H	-H	Smp. 244- 246°C
3.18	Ethyl	Ethyl	Methyl	Methyl	-н	Ĭ~	Smp. 164- 166°C
3.19	Ethyl	Ethyl	-(CH ₂) ₅ -		- <i>n</i> -C ₄ H ₉	-H	Smp. 170- 175°C
3.20	Ethyl	Ethyl	-(CI	H ₂) ₅ -	- <i>n</i> -C ₄ H ₉		Smp. 99- 101°C

Nr.	T _B			T	Τ		
141.	R ₁	R ₃	R ₆	R ₇	R ₈	G ₂	Physik.
0.04				<u> </u>			Daten
3.21	Ethyl	Ethyl		H ₂) ₅ -	C₃H ₆ OMe	-H	fest
3.22	Ethyl	Ethyl	Methyl Methyl		Methyl		Smp. 94-
						1 X	101°C
3.23	Ethyl	Ethyl	-(Cl	H ₂) ₅ -	Methyl	-Н	Smp. 252-
							262°C
3.24	Ethyl	Ethyl	-(CH	H ₂) ₅ -	Methyl	0	Smp. 127-
							128°C
3.25	Ethyl	Ethyl	11		1	-H	kristallin
					CH ₂	• •	Kiistaiiiii
			H	N—C			
. 9.40			н	/ H ₂ I ₃ C	:		
0.00	Facilia			30			
3.26	Ethyl	Ethyl					Wachs
				NI.	CH ₂		,
			H	N—C		j	
			Н	³Ç į		-	
3.27	Ethyl	Ethyl]]			-H	kristallin
			人	, C	CH ₂		
İ			H´ `	Ņ—Ç´			
:							
				\ <u></u> 0,			
					CH ₃		
3.28	Ethyl	Ethyl				P	kristallin
	·		人	_ d			
			H N-G ' '				
			\o,				
				`	CH ₃		

Nr.	R ₁	R ₃	R ₆	R ₇	R ₈	G₂	Physik. Daten
3.29	Ethyl	Ethyl	H 0=	N—C H ₂	CH ₂	-H	fest
3.30	Ethyl	Ethyl	н	N	 ,CH₂	-Н	fest
3.31	Ethyl	Ethyl	H	N—C H ₂	CH ₂	CH, CH,	
3.32	Ethyl	Ethyl	H	N-CH ₂	CH ₂	-H	amorph

Nr.	R ₁	R ₃	R ₇	R ₆	R ₈	G ₂	Physik. Daten
3.33	Ethyl	Ethyl	Methyl	-(Cł	H ₂) ₄ -	1	

	1_	T	T				
Nr.	R ₁	R ₃	R ₇	R ₆	R ₈	G ₂	Physik.
3.34	Ethyd	Ethyd	N 4 - 4			0	Daten
3.34	Ethyl	Ethyl	Methyl	-(Ch	1 ₂) ₃ -		
3.35	Ethyl	Ethyl	-H	1.1	1	-H	
				H ₂ Ć	ĊH₂ ∕		i
			ļ	HC-	-C H₂		
				Он			
3.36	Ethyl	Ethyl	-H		1		
	·			H ₂ C	ĊH₂		
				HC-	·C H ₂	1	
				о́н			
3.37	Ethyl	Ethyl	-н		,CH₂		
				H ₂ Ċ		X	
				нс—	H ₂	,	
				Ò	<u> </u>		
Q1(, er							
3.38	Ethyl	Ethyl	-H			-H	
	•			H ₂ Ċ	ĊH₂		·
				HC-	C H ₂		
				Ó			
				`(CH₃		
3.39	Ethyl	Ethyl	-H	1	<u> </u>		
				H ₂ C	ĊH ₂		
				HÇ—	C H ₂	1	
				٥́		į	
				`(CH ₃		
3.40	Ethyl	Ethyl	-Н		1	-Н	
				H ₂ C	ĊH ₂		
				HÇ—(
				` هٰرِ	72		
				HC-C	СН ₃		
Щ	·					·	

Nr.	R ₁	R ₃	R ₇	R ₆	R ₈	G ₂	Physik. Daten
3.41	Ethyl	Ethyl	-H	H ₂ C HC-	CH ₂		
3.42	Ethyl	Ethyl	-H	H ₂ C HC—(CH ₂	-H	
3.43	Ethyl	Ethyl	-H	H ₂ C — C	CH ₂		
3.44	Ethyl	Ethyl	-H	H ₂ C HC	CH ₂	-H	
3.45	Ethyl	Ethyl	-H	H ₂ C H(H ₃ C C	CH ₂	Î/	

Tabelle 4: Verbindungen der Formel Ic:

Nr.	R ₁	R ₃	R ₂		T	
	111	113	Π2	R ₃₁	G₃	Phys.
4.01	FALI					Daten
4.01	Ethyl	Ethyl	Methyl	Methyl	-H	Smp. 224-
				 		226°C
4.02	Ethyl	Ethyl	Methyl	Methyl		Smp. 102-
						104°C
4.03	Ethyl	Ethyl	Methyl	Ethyl	-н	
4.04	Ethyl	Ethinyl	Methyl	Methyl	-H	
4.05	Ethyl	Ethinyl	Methyl	Methyl	Î	
					1/4	
4.06	Ethyl	Methoxy	Methyl Methyl		-H	
4.07	Ethyl	Ethyl	-(C	H ₂) ₂ -	-Н	
4.08	Ethyl	Ethyl	1	CH ₃)-(CH ₂) ₂ -	8	
4.09	Ethyl	Ethyl	-(CH ₂) ₂ -C(C	H ₃) ₂ -(CH ₂) ₂ -	9	
			, ,,	0,2 (5 12, 2		
4.10	Ethyl	Ethyl	-(CI	H ₂) ₄ -	-H	
4.11	Ethyl	Ethyl	1	D-CH ₂ -CH ₂ -	P	
				0112 0112	/	·
4.12	Ethyl	Ethyl	Methyl	Isopropyl	-H	
4.13	Ethyl	Ethyl	Methyl	Ethyl	-H	
4.14	Ethyl	Ethyl	Methyl	n-Butyl	R	
·	•	,		n-butyi		
4.15	Ethyl	Ethyl	Mothyd		8	
		Luiyi	Methyl	Н		
			L			

Nr.	R ₁	R ₃	R ₂	R ₃₁	G ₃	Phys. Daten
4.16	Ethyl	Ethyl	-н	-H	-H	Smp. 176- 178°C
4.17	Ethyl	Ethyl	-H	-Н	i~	Smp. 80- 82°C
4.18	OCH₃	Ethyl	-H	-Н	-H	Smp. 169- 171°C
4.19	OCH ₃	Ethyl	-H	-н	I L	Öl

Tabelle 5: Verbindungen der Formel Id:

Nr.	R ₁	R ₃	R ₃₂	R ₃₃	G ₄	Physik. Daten
5.01	Ethyl	Ethyl	Methyl	Methyl	-Н	Smp. 181- 183°C
5.02	Ethyl	Ethyl	Methyl	Methyl	1	Öl
5.03	Ethyl	Ethyl	Methyl	Ethyl	-H	
5.04	Ethyl	Ethinyl	Methyl	Methyl	-H	
5.05	Ethyl	Ethinyl	Methyl	Methyl	<u> </u>	
5.06	Ethyl	Methoxy	Methyl	Methyl	-H	
5.07	Ethyl	Ethyl	-(CH ₂) ₂ -		-H	
5.08	Ethyl	Ethyl	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		1	

Nr.	R ₁	R ₃	R ₃₂	R ₃₃	G ₄	Physik.
5.09	Ethyl	Ethyl	-(CH ₂) ₂ -C(-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -		Daten
5.10	Ethyl	Ethyl	-(-(CH₂) ₄ -		
5.11	Ethyl	Ethyl	-CH₂-CH	₂ -O-CH ₂ -CH ₂ -	1	
5.12	Ethyl	Ethyl	Methyl	Isopropyl	-Н	
5.13	Ethyl	Ethyl	Methyl	Ethyl	-Н	
5.14	Ethyl	Ethyl	Methyl	n-Butyl	1	
5.15	Ethyl	Ethyl	Methyl	Н	i,	
5.16	Ethyl	Ethyl	Methyl	Н	-H	Öl

Tabelle 6: Verbindungen der Formel le:

Nr.	R ₁	R ₃	R ₉	R ₁₀	R ₁₁	R ₁₂	G₅	Phys. Daten
6.01	Ethyl	Ethyl	Methyl	-H	Methyl	-H	1	
6.02	Ethyl	Ethyl	Methyl	Methyl	-H	-H	1	
6.03	Ethyl	Ethyl	-(CI	H ₂) ₂ -	-H	-H	-H	
6.04	Ethyl	Ethyl	-(CI	H ₂) ₄ -	Methyl	-Н	-H	
6.05	Ethyl	Ethyl			Н	-H	1	

Nr.	R ₁	R ₃	R ₉	R ₁₀	R ₁₁	R ₁₂	G ₅	Phys. Daten
6.06	Ethyl	Ethyl	-H	Methyl	-(CI	H ₂) ₄ -	Î/	
6.07	Ethyl	Ethyl	-H	-(-0-			
6.08	Ethyl	Ethyl	-H	-C	-CH₂-			
6.09	Ethyl	Ethinyl	-H	-(CI	-(CH ₂) ₃ -			
6.10	Ethyl	MeO-	-H	-(CH ₂) ₄ -		-H		
6.11	Ethyl	Ethinyl	-H	-(CI	H ₂) ₄ -	-H		

Tabelle 7: Verbindungen der Formel If:

Nr.	R ₁	R ₂	R ₁₃	R ₁₄	G ₆	Phys. Daten
7.01	Ethyl	Ethyl	Methyl	Methyl	-Н	
7.02	Ethyl	Ethyl	Methyl	-H	-H	
7.03	Ethyl	Ethyl	-H	Methyl	-H	
7.04	Ethyl	Ethyl	Ethyl	Methyl	-H	
7.05	Ethyl	Ethyl	-(CH ₂) ₄ -	-H	
7.06	Ethyl	MeO-	-(CH₂)₄-	-H	
7.07	Ethyl	Ethinyl	-(1	-(CH₂)₄-		·
7.08	Ethyl	Ethinyl	-(CH ₂) ₃ -	-H	

Tabelle 8: Verbindungen der Formel Ig:

Nr.	R ₁	R ₂	R ₃₄	R ₃₅	G ₇	Phys.
8.01	Ethyl	Ethyl	Methyl	Methyl	-H	Daten
8.02	Ethyl	Ethyl	Methyi	-H	-н	
8.03	Ethyl	Ethyl	-H	Methyl	-Н	4
8.04	Ethyl	Ethyl	Ethyl	Methyl	-H	
8.05	Ethyl	Ethyl	-((CH ₂) ₄ -	1	
8.06	Ethyl	Ethyl	-(CH₂)₃-	1	
8.07	Ethyl	Ethinyl	Methyl	Methyl	1	
8.08	Ethyl	Methoxy	Methyl	Methyl	i~	

Tabelle 9: Verbindungen der Formel Ih:

Nr.	R ₁	R₃	R ₁₅	G ₈	Physik. Daten
L	<u> </u>				

Nr.	R ₁	R ₃	R ₁₅	G ₈	Physik. Daten
9.01	Ethyl	Ethyl	Methyl	-H	
9.02	Ethyl	Methoxy	Phenyl	-H	
9.03	Ethyl	Ethinyl	-4-Chlorphenyl	-Н	
9.04	Ethyl	Ethyl	Ethyl	Ĭ~	
9.05	Ethyl	Ethyl	-OMe	1	
9.06	Ethyl	Ethyl	-CF₃	1	
9.07	Ethyl	Ethyl	Isopropyl	1	
9.08	Ethyl	Ethyl	n-Butyl	1	
9.09	Ethyl	Ethyl	Cyclopropyl	14	
9.10	Ethyl	Ethyl	Phenyl	-H	Smp. 208- 209°C
9.11	Ethyl	Ethyl	Phenyl	1	Smp. 147- 149°C
9.12	Ethyl	Ethyl	-4- <i>t</i> -Butyl- phenyl	-H	Smp. 222- 224°C
9.13	Ethyl	Ethyl	-4- <i>t</i> -Butyl phenyl	1	amorph
9.14	Ethyl	Ethyl	-4-Tolyl	-Н	
9.15	Ethyl	Ethyl	-4-Tolyl	1	
9.16	Ethyl	Ethyl	-3-Chlor-4- fluorphenyl	-H	Smp. 186- 188°C
9.17	Ethyl	Ethyl	-3-Chlor-4- fluorphenyl	1	Smp. 109-

Tabelle 10: Verbindungen der Formel lk:

[I			Т		т	
Nr.	R ₁	R ₃	R ₁₆	Y	R ₁₇	R ₁₈	G ₉	Phys.
				 	-	<u> </u>		Daten
10.01	Ethyl	Ethyl	Methyl	0	Methyl	-H		
			 					
10.02	Ethyl	Ethyl	Methyl	0	Methyl	Methyl		
6 (MA) (1)	-			<u> </u>	-	 		
10.03	Ethyl	Ethyl	Methyl	N-CH₃	Methyl	Methyl		
10.04	Ethyl	Esh. d		-	<u></u>		0	
10:04	Eary	Ethyl	Methyl		N	-H		
494 · ·								
10.05	Ethyl	Ethyl	Methyl	-CH ₂ -	Methyl	Methyl	R	
·	•			02	Wickling	INICITY		
10.06	Ethyl	Ethyl	Methyl	-CH ₂ -	Methyl	-н	8	
					lca.iy.	''		
10.07	Ethyl	Ethyl	Ethyl	-CH ₂ -	-(C	H ₂) ₂ -	P	
					,		1 / K	
10.08	Ethyl	Ethinyl	Methyl	-CH₂-	-H	Methyl	9	
							1 /	
10.09	Ethyl	MeO-	Methyl	-CH ₂ -	Methyl	Methyl	Î	
10.10	Ethyl	Ethyl	Methyl	0	Methyl	-н	-H	
10.11	Ethyl	Ethyl	Methyl	0	Methyl	Methyl	-H	
10.12	Ethyl	Ethyl	Methyl	N-CH₃	Methyl	Methyl	-H	
10.13	Ethyl	Ethyl	Methyl		N	-H	-H	
·					IV	Ţ		

Nr.	R ₁	R ₃	R ₁₆	Y	R ₁₇	R ₁₈	G ₉	Phys. Daten
10.14	Ethyl	Ethyl	Methyl	-CH ₂ -	Methyl	Methyl	-H	
10.15	Ethyl	Ethyl	Methyl	-CH ₂ -	Methyl	-H	-H	
10.16	Ethyl	Ethyl	Ethyl	-CH ₂ -	-(C	H ₂) ₂ -	-H	
10.17	Ethyl	Ethinyl	Methyl	-CH ₂ -	-H	Methyl	-H	
10.18	Ethyl	MeO-	Methyl	-CH ₂ -	Methyl	Methyl	-H	

In der folgenden Tabelle 21 steht Me für Methyl, Et für Ethyl, Pr für Propyl und Bu für Butyl:

Tabelle 21: Verbindungen der Formel Im:

Verb.	R ₁	R ₃	R ₅₅	R ₁₃₇	R ₁₃₈	R ₁₃₉	G ₁₀	Y ₂	Physik.
Nr.									Dat.
21.1	Et	Et	Н	Н	Н	H	н	0	
21.2	Et	Ethinyl	Н	Н	Н	Н	Н	0	
21.3	Et	Et	Me	Me	Me	Me	Н	0	
21.4	Et	OMe	Me	Me	Me	Ме	Н	0	
21.5	Et	_Et	Me	Н	Н	Н	Н	0	
21.6	Ethinyl	Et	Me	Н	Н	Н	Н	0	
21.7	Et	Et	Н	H	Me	Me	Н	0	
21.8	OMe	Et	Н	Н	Me	Me	Н	0	
21.9	Et	Et	Me	Н	Me	Ме	Н	0	
21.10	Et	Ethinyl	Me	Н	Ме	Me	н	0	
21.11	Et	Et	Н	Ме	Н	Ме	Н	0	
21.12	Et	OMe	Н	Me	Н	Ме	Н	0	
21.13	Et	Et	Me	Et	Н	Н	Н	0	

Verb. Nr.	R ₁	R ₃	R ₅₅	R ₁₃₇	R ₁₃₈	R ₁₃₉	G ₁₀	Y ₂	Physik Dat.
21.14	Ethinyl	Et	Ме	Et	Н	Н	Н	0	Dat.
21.15	Et	Et	Н	Et	Н	Et	Н	0	
21.16	OMe	Et	Н	Et	Н	Et	Н	0	1
21.17	Et	Et	Н	Н	-(C	H ₂) ₄ -	Н	0	
21.18	Et	Ethinyl	Н	Н	3	H ₂) ₄ -	Н	0	
21.19	Et	Et	Н	н	Н	Н	COCMe ₃		
21.20	Et	Ethinyl	н	н	Н	Н	SO ₂ Me	0	
21.21	Et	Et	Me	Me	Me	Me	COCMe ₃		
21.22	Et	OMe	Me	Me	Me	Me	SO₂-n-Pr		
21.23	Et	Et	Ме	Н	Н	Н	COCMe ₃		
21.24	Ethinyl	Et	Me	Н	Н	н	SO₂- <i>n-</i> Bu		
21.25	- Et	Et	Н .	Н	Me	Me	COCMe ₃		
21.26	OMe	Et	<u>H</u> .	Н	Ме	Me	SO ₂ C ₈ H ₁₇		
21.27	Et	Et	Me	Н	Ме	Me	COCMe ₃		
21.28	Et	Ethinyl	Me	Н	Me	Ме	SO₂Ph	0	
21.29	Et	Et	Н	Me	Н	Me	COCMe ₃	0	
21.30	Et	OMe	Н_	Me	Н	Me	SO₂Me	0	
21.31	Et	Et	Me	Et	Н	Н	COCMe ₃		
21.32	Ethinyl	Et	Me	Et	н	Н	COCMe ₃	0	
21.33	Et	Et	Н	Et	Н	Et	COCMe ₃	0	
21.34	OMe	Et	<u> </u>	Et	н	Et	COCMe ₃	0	
21.35	Et	<u>Et</u>	<u>H</u>	Н	-(CI	H ₂) ₄ -	COCMe ₃	0	
21.36	Et	Ethinyl	<u> </u>	Н	-(Cl	12)4-	COCMe ₃	0	
21.37	Et	<u>Et</u>	<u>H</u>	Н	Н	н	Н	S	
21.38	Et	Ethinyl	Н	н	Н	Н	Н	S	
21.39	Et	Et	Me	Me	Ме	Me	Н	S	
21.40	Et	OMe	Me	Me	Me	Me	н	S	
21.41	Et	Et	Me	Н	Н	Н	Н	S	
21.42	Ethinyl	Et	Me	Н	Н	Н	Н	S	
21.43	Et	Et	н	Н	Ме	Ме	Н	S	
21.44	OMe	Et	Н	Н	Me	Me	Н	S	
21.45	<u>Et</u>	Et	Me	Н	Me	Me	н	S	
21.46	Et	Ethinyl	Me	Н	Ме	Ме	н	S	

WO 01/17972 PCT/EP00/08656

- 103 -

Verb. Nr.	R ₁	R₃	R ₅₅	R ₁₃₇	R ₁₃₈	R ₁₃₉	G ₁₀	Y ₂	Physik. Dat.
21.47	Et	Et	Н	Me	Н	Me	Н	S	
21.48	Et	OMe	Н	Me	H	Me	Н	S	
21.49	Et	Et	Me	Et	Н	Н	Н	S	
21.50	Ethinyl	Et	Me	Et	H	Н	Н	S	
21.51	Et	Et	Н	Et	Н	Et	н	S	
21.52	OMe	Et	Н	Et	Н	Et	Н	S	
21.53	Et	Et	Н	Н	-(Cl	H ₂) ₄ -	Н	S	
21.54	Et	Ethinyl	Н	Н		H ₂) ₄ -	Н	S	
21.55	Et	Et	Н	Н	Н	Н	COCMe ₃	,	
21.56	Et	Ethinyl	Н	Н	Н	Н	SO₂Me	S	
21.57	Et	Et	Me	Me	Ме	Me	COCMe ₃		
21.58	Et	OMe	Ме	Me	Me	Me	SO ₂ -n-Pr	S	
21.59	Et	Et	Me	Н	Н	Н	COCMe ₃	S	
21.60	Ethinyl	Et	Me	H	Н	Н	SO₂- <i>n-</i> Bu	S	
21.61	Et	Et	Н	Н	Ме	Ме	COCMe ₃	S	
21.62	OMe	Et	н	Н	Me	Me	SO ₂ C ₈ H ₁₇	S	
21.63	Et	Et	Me	Н	Ме	Ме	COCMe ₃	S	
21.64	Et	Ethinyl	Me	Н	Ме	Me	SO₂Ph	S	
21.65	Et	Et	Н	Me	Н	Me	COCMe ₃	S	
21.66	Et	OMe	Н	Me	Н	Me	SO₂Me	S	
21.67	Et	Et	Me	Et	Н	H	COCMe ₃	S	
21.68	Ethinyl	Et	Ме	Et	Н	Н	COCMe ₃	S	
21.69	Et	Et	Н	Et	Н	Et	COCMe ₃	S	
21.70	OMe	Et	Н	Et	Н	Et	COCMe ₃	S	
21.71	Et	Et	Н	Н	-(CI	H ₂) ₄ -	COCMe ₃	S	
21.72	Et	Ethinyl	Н	н	-(CI	H ₂) ₄ -	COCMe ₃	S	
21.73	Et	Et	Н	Н	Н	Н	н	NCH(CH ₃) ₂	
21.74	Et	Et	H	Н	н	Н	н	NCH₃	
21.75	Et	Et	Н	Н	Н	Н	Н	NCH₂Ph	
21.76	Et	Ethinyl	Н	Н	Н	Н	н	NCH ₃	
21.77	Et	Et	Me	Ме	Ме	Me	Н	NCH(CH ₃) ₂	
21.78	Et	OMe	Ме	Me	Me	Ме	н	NCH ₃	
21.79	Et	Et	Ме	Н	Н	_ н	Н	NCH(CH₃)₂	

Verb. Nr.	R ₁	R ₃	R ₅₅	R ₁₃₇	R ₁₃₈	R ₁₃₉	G _{t0}	Y ₂	Physik Dat.
21.80	Ethinyl	Et	Ме	Н	Н	Н	Н	NCH ₃	Dat.
21.81	Et	Et	Н	Н	Me	Me	Н	NCH ₃	
21.82	OMe	Et	Н	н	Me	Me	Н	NCH(CH ₃) ₂	
21.83	Et	Et	Ме	Н	Me	Me	Н	NCH₂Ph	
21.84	Et	Ethinyl	Me	Н	Me	Me	Н	NCH ₃	
21.85	Et	Et	Н	Me	Н	Me	Н	NCH₂Ph	
21.86	Et	OMe	Н	Me	Н	Me	Н	NCH₃	
21.87	Et	Et	Me	Et	Н	Н	Н	NCH(CH ₃) ₂	
21.88	Ethinyl	Et	Me	Et	Н	Н	Н	NCH ₃	
21.89	Et	Et	Н	Et	Н	Et	Н	NCH₂Ph	
21.90	OMe	Et	Н	Et	Н	Et	н	NCH(CH ₃) ₂	
21.91	Et	Et	Н	Н	-(C	H ₂) ₄ -	Н	NCH(CH ₃) ₂	
21.92	Et	Ethinyl	Н	Н		H ₂) ₄ -	Н	NCH ₃	·
21.93	OMe	Et	Et	Me	Н	Н	Н	NCH ₃	
21.94	Et	Et	<u> </u>	Н	Н	Н		NCH(CH ₃) ₂	
21.95	Et	Et	Н	H	Н	Н	SO ₂ Me	NCH ₃	
21.96	Et	Et	Н	н	Н	Н	COCMe ₃		
21.97	Et	Ethinyl	Н	H	Н	Н	SO ₂ -n-Pr		
21.98	Et	Et	Ме	Ме	Me	Ме	1	NCH(CH ₃) ₂	
21.99	Et	OMe	Ме	Me	Me	Me	SO₂- <i>n-</i> Bu		
21.100	Et	Et	Ме	Н	Н	Н	1	NCH(CH ₃) ₂	
21.101	Ethinyl	<u>Et</u>	Me	н	Н	Н	SO ₂ C ₈ H ₁₇		
21.102	Et	Et	H	Н	Me	Me	COCMe ₃		
21.103	OMe	Et	H	Н	Ме	Me	1	NCH(CH ₃) ₂	
21.104	Et	<u>Et</u>	Мө	Н	Me	Me	COCMe ₃		
21.105	Et	Ethinyl	Мө	Н	Me	Me	SO ₂ Me	NCH ₃	
21.106	Et	Et	Н	Me	Н	Ме	COCMe ₃		
21.107	Et	OMe	Н	Me	Н	Ме	COCMe ₃	NCH ₃	
21.108	Et	Et	Me	Et	Н	Н		NCH(CH ₃) ₂	
21.109	Ethinyl	Et	Me	Et	Н	Н			
21.110	Et	Et	Н	Et	Н	Et			
21.111	OMe	Et	Н	Et	Н	Et		NCH(CH ₃) ₂	
21.112	Et	Et	Н	Н	-(CF			NCH(CH ₃) ₂	

Verb. Nr.	R ₁	R ₃	R ₅₅	R ₁₃₇	R ₁₃₈	R ₁₃₉	G ₁₀	Y ₂	Physik.
21.113	Et	Ethinyl	Н	Н	-(C	H ₂) ₄ -	SO ₂ C ₈ H ₁₇	NCH ₃	
21.114	OMe	Et	Et	Me	Н	Н	SO₂- <i>n-</i> Bu	NCH₃	
21.115	Et	Et	н	-(Cl	12)2-	н	н	CH ₂	
21.116	Et	Ethinyl	Н	-(Cl	12)2-	н	Н	CH₂	
21.117	Et	Et	-(CF	12)2-	Н	Н	Н	CH₂	
21.118	Et	OMe	-(CH	12)2-	Н_	н	Н	CH₂	
21.119	Et	Et	Н	Me	Me	Н	H	CH₂	
21.120	Ethinyl	Et	Н	Me	Me_	Н	Н	CH₂	
21.121	Et	Et	Et	Н	Н	H	н	CH ₂	
21.122	OMe	Et	Et	Н	Н	H	н	CH₂	
21.123	Et	Et	н	Н	Me	Me	Н	CH₂	
21.124	Et	Ethinyl	Н	Н	Me	Me	н	CH ₂	
21.125	Et	Et	Н	OMe	H	Н	Н	CH ₂	
21.126	Et	OMe	Н	OMe	н	Н	н	CH₂	
21.127	Et	Et	Н	-(Cl	վ₂) ₃ -	Н	н	CH ₂	
21.128	Ethinyl	Et	Н	-(CI	H ₂) ₃ -	Н	Н	CH₂	
21.129	Et	Et	Me	Н	Ме	Me	Н	CH₂	
21.130	OMe	Et	Me	н	Me	Me	н	CH₂_	
21.131	Et	Et	Me	OMe	Н	Н	Н	CH₂	
21.132	Et	Ethinyl	Me	OMe	н	Н	Н	CH₂	
21.133	Et	Et	Н	SMe	Н	Н	Н	CH₂	
21.134	Et	OMe	Н	SMe	Н	H	Н	CH₂	
21.135	Et	Et	Me	Me	Me	Me	Н	CH₂	
21.136	Ethinyl	Et	Ме	Me	Me	Me	Н	CH₂	
21.137	Et	Et	ОН	Ме	Ме	Me	н	CH₂	
21.138	OMe	Et	ОН	Me	Me	Me	Н	CH ₂	
21.139	Et	Et	Me	SMe	Н	н	н	CH₂	
21.140	Et	Ethinyl	Ме	SMe	н	Н	Н	CH₂	
21.141	Et	Et	Et	Et	Н	Ме	н	CH₂	
21.142	Et	Ethinyl	Et	Et	Н	Ме	Н	CH₂	
21.143	Et	Et	Ме	Me	Н	CH₂OMe	Н	CH₂	
21.144	Et	OMe	Me	Ме	н	CH₂OMe	1	CH ₂	
21.145	Et	Ethinyl	Ме	SMe	Н	OMe	Н	CH₂	

Verb. Nr.	R ₁	R ₃	R ₅₅	R ₁₃₇	R ₁₃₈	R ₁₃₉	G ₁₀	Y ₂	Physik Dat.
21.146	Et	Et	Me	SMe	Н	OMe	Н	CH ₂	Dat.
21.147	Et	ОМе	Ме	SMe	Н	OMe	Н	CH ₂	
21.148	Et .	Et	н	-(C	H ₂) ₂ -	Н	COCMe		
21.149	Et	Ethinyl	Н	1	H ₂) ₂ -	Н	COCMe		
21.150	Et	Et	-(C	H ₂) ₂ -	Н	Н	SO₂-n-P		
21.151	Et	OMe	II.	H ₂) ₂ -	Н	Н	COCMe		
21.152	Et	Et	Н	Me	Ме	Н	COCMe		
21.153	Ethinyl	Et	Н	Me	Me	Н	SO₂Me	CH₂	
21.154	Et	Et	Et	Н	Н	Н	COCMe		
21.155	OMe	Et	Et	Н	Н	Н	SO ₂ -n-Pi		
21.156	Et	Et	Н	Н	Ме	Me	COCMe		1
21.157	Et	Ethinyl	Н	Н	Me	Me	SO ₂ -n-Bu		
21.158	Et	Et	Н	OMe	Н	Н	COCMe ₃		
21.159	Et	OMe	Н	OMe	Н	Н	SO ₂ C ₈ H ₁₇		
21.160	Et	Et	н	-(C	H ₂) ₃ -	Н	COCMe ₃		
21.161	Ethinyl	<u>Et</u>	Н	-(C	H ₂) ₃ -	Н	COCMe ₃		
21.162	Et	Et	Me	Н	Me	Me	SO ₂ -n-Pr	7	
21.163	OMe	Et	Me	Н.	Me	Me	COCMe ₃		
21.164	Et	Et	Me	OMe	Н	Н	COCMe ₃		
21.165	Et	Ethinyl	Me	OMe	Н	н	SO ₂ Me	CH₂	
21.166	Et	Et	. H	SMe	Н	Н	COCMe ₃		
21.167	Et	OMe	Н	SMe	Н	Н	SO ₂ -n-Pr	CH₂	
21.168		Et	Me	Me	Me	Ме	COCMe ₃		
21.169	Ethinyl	Et	Me	Me	Me	Me	SO₂- <i>n-</i> Bu		
21.170		Et	OH	Me	Me	Me	COCMe ₃		·
21.171	OMe	Et	ОН	Me	Me	Me	SO₂C ₈ H ₁₇		
21.172	Et	Et	Me	SMe	Н	Н	COCMe ₃	CH₂	
21.173	Et	Ethinyl	Ме	SMe	н	Н	COCMe ₃	CH₂	
21.174	<u>Et</u>	Et	Et	Et	н	Me	COCMe ₃	CH₂	
21.175	Et	Ethinyl	Et	Et	Н	Me	SO ₂ C ₈ H ₁₇	CH₂	
21.176	Et	Et	Me	Ме	Н		SO ₂ -n-Pr	CH ₂	
21.177	Et	OMe	Me	Ме	Н	1 1	COCMe ₃	CH ₂	
21.178	Et	Ethinyl	Me	SMe	Н	OMe	COCMe ₃	CH₂	

WO 01/17972

Verb. Nr.	R ₁	R ₃	R ₅₅	R ₁₃₇	R ₁₃₈	R ₁₃₉	G ₁₀	Y ₂	Physik. Dat.
21.179	Et	Et	Me	SMe	Н	OMe	SO ₂ C ₈ H ₁₇	CH ₂	Dat.
21.180	Et	OMe	Me	SMe	Н	OMe	COCMe ₃	CH ₂	
21.181	Et	Et	Н	-(Cl	l ₂) ₂ -	н	Н	CHCH₃	
21.182	Et	Ethinyl	Н	-(Cł		Н	Н	CHCH₃	
21.183	Et	Et	-(Cl		·H	Н	Н	CHCH₃	
21.184	Et	ОМе	-(CH	12)2-	Н	Н	Н	CHCH₃	
21.185	Et	Et	Н	Me	Me	Н	Н	CHCH₃	
21.186	Ethinyl	Et	Н	Me	Me	Н	Н	CHCH₃	
21.187	Et	Et	Et	Н	Н	Н	Н	CHCH₃	
21.188	OMe	Et	Et	Н	Н	Н	Н	CHCH₃	
21.189	Et	Et	Н	Н	Me	Me	Н	CHCH₃	
21.190	Et	Ethinyl	Н	Н	Me	Ме	Н	CHCH₃	
21.191	Et	Et	Н	-(Cl	12)2-	Н	COCMe ₃	CHCH₃	
21.192	Et	Ethinyl	Н	-(Cl	1 ₂) ₂ -	Н	COCMe ₃	CHCH₃	
21.193	Et	Et	-(Cł	12)2-	Н	Н	SO₂- <i>n-</i> Pr	CHCH₃	
21.194	Et	OMe	-(Cl	12)2-	Н	Н	COCMe ₃	CHCH₃	
21.195	Et	Et	н	Me	Ме	Н	COCMe ₃	CHCH₃	
21.196	Ethinyi	Et	н	Me	Me	Н	SO₂Me	CHCH₃	
21.197	Et	Et	Et	Н	Н	Н	COCMe ₃	CHCH₃	
21.198	OMe	Et	Et	Н	Н	Н	SO ₂ -n-Pr	CHCH₃	
21.199	Et	Et	Н	Н	Ме	Me	COCMe ₃	CHCH₃	
21.200	Et	Ethinyl	Н	Н	Me	Me	SO₂- <i>n-</i> Bu	CHCH₃	
21.201	Et	<u>Et</u>	Н	-(CI	12)2-	Н	н	C(CH ₃) ₂	
21.202	Et	Ethinyl	Н	-(Cl	12)2-	Н	Н	C(CH ₃) ₂	
21.203	Et	<u>Et</u>	-(CI	12)2-	Н	Н	Н	C(CH ₃) ₂	
21.204	Et	OMe	-(CI	12)2-	н	Н	. н	C(CH ₃) ₂	
21.205	Et	Et	Н	Me	Ме	Н	Н	C(CH ₃) ₂	·
21.206	Ethinyl	Et	Н	Me	Me	Н	н	C(CH ₃) ₂	
21.207	Et	Et	Et	Н	Н	Н	Н	C(CH ₃) ₂	
21.208	OMe	<u>Et</u>	Et	н	Н	н	н	C(CH ₃) ₂	
21.209	Et	Et	н	-(Cł	12)2-	Н	COCMe ₃	C(CH ₃) ₂	
21.210	Et	Ethinyl	Н	-(Cl	H ₂) ₂ -	н	COCMe ₃	C(CH ₃) ₂	
21.211	Et	Et	-(Cl	12)2-	Н	Н	SO ₂ -n-Pr		

Verb. Nr.	R ₁	R ₃	R ₅₅	R ₁₃₇	R ₁₃₈	R ₁₃₉	G ₁₀	Y ₂	Physik. Dat.
21.212	Et	OMe	-(Cł	12)2-	Н	Н	COCMe ₃	C(CH ₃) ₂	Dat.
21.213	Et	Et	Н	Ме	Me	Н	COCMe ₃		
21.214	Ethinyl	Et	Н	Ме	Me	Н	SO ₂ Me	C(CH ₃) ₂	
21.215	Et	Et	Et	Н	Н	Н	COCMe ₃		
21.216	OMe	Et	Et	Н	Н	Н	SO ₂ -n-Pr	- C(CH ₃) ₂	
21.217	Et	Et	Me	Ме	Me	Me	Н	CHCO₂Me	
21.218	Et	Et	Н	Н	Н	Н	Н	CHCO₂Me	
21.219	Et	Et	Me	Ме	Ме	Me	COCMe ₃	CHCO₂Me	
21.220	Et	Et	Н	Н	Н	Н	1	CHCO₂Me	
21.221	Et	OMe	-(CF	12)2-	н	Н	Н	CHCO₂Me	
21.222	Et	OMe	-(CH	12)2-	Н	Н	COCMe ₃	CHCO ₂ Me	:W

Biologische Beispiele

Vergleichsversuch:

Die folgenden Verbindungen wurden auf ihre herbizide Wirkung untersucht:

Verbindung Nr. 1.02

gemäß vorliegender Erfindung, und Verbindung A

$$H_3C$$
 CH_3
 ## Beispiel B1: Herbizidwirkung vor dem Auflaufen der Pflanzen (pre-emergente Wirkung)

Monokotyle und dikotyle Unkräuter werden in Kunststofftöpfen in Standarderde ausgesät. Unmittelbar nach der Saat werden die Prüfsubstanzen als wäßrige Suspension (hergestellt aus einem 25 %igen Spritzpulver (Beispiel F3, b)) oder als Emulsion (hergestellt aus einem 25 %igen Emulsionskonzentrat (Beispiel F1, c)) appliziert (500 l Wasser/ha). Die Aufwandmenge beträgt 500 g/ha Aktivsubstanz. Anschließend werden die Testpflanzen im Gewächshaus unter Optimalbedingungen angezogen. Die Auswertung erfolgt 3 Wochen nach Applikation mit einer neunstufigen Boniturskala (1 = vollständige Schädigung, 9 = keine Wirkung). Boniturnoten von 1 bis 4 (insbesondere 1 bis 3) bedeuten eine gute bis sehr gute Herbizidwirkung.

Testpflanzen: Alopecurus (Alo), Avena (Ave), Lolium (Lol), Setaria (Set), Panicum (Pan), Sorghum (Sor), Digitaria (Dig), Echinocloa (Ech) und Brachiaria (Bra).

Tabelle B1: pre-emergente Wirkung:

Pre-emergente Wirkung bei 500 g ai/ha

Verb. Nr.	Alo	Ave	Lol	Set	Pan	Sor	Dig	Ech	Bra
Verbindung A	2	4	1	2	1	4	4	5	3
1.02	1	1	1	1	1	1	4	1	1

Beispiel B2: Herbizide Wirkung nach dem Auflaufen der Pflanzen (post-emergente Wirkung):

Monokotyle und dikotyle Unkräuter werden unter Gewächshausbedingungen in Kunststofftöpfen in Standarderde angezogen. Die Applikation der Prüfsubstanzen verfolgt im 3- bis 6-Blattstadium der Testpflanzen. Die Prüfsubstanzen werden als wäßrige Suspension (hergestellt aus einem 25 %igen Spritzpulver (Beispiel F3, b)) oder als Emulsion (hergestellt aus einem 25 %igen Emulsionskonzentrat (Beispiel F1, c)) (500 I Wasser/ha) mit einer Aufwandmenge von 500 g/ha Aktivsubstanz appliziert. Die Auswertung erfolgt 3 Wochen nach Applikation mit einer neunstufigen Boniturskala (1=vollständige Schädigung, 9 = keine Wirkung). Boniturnoten von 1 bis 4 (insbesondere 1 bis 3) bedeuten eine gute bis sehr gute Herbizidwirkung.

Testpflanzen: Alopecurus (Alo), Avena (Ave), Lolium (Lol), Setaria (Set), Panicum (Pan), Sorghum (Sor), Digitaria (Dig), Echinocloa (Ech) und Brachiaria (Bra).

Tabelle B2: Post-emergente Wirkung:

Post-emergente Wirkung bei 250 g ai/ha

Verb. Nr.	Alo	Ave	Lol	Set	Pan	Sor	Dig	Ech	Bra
Verbindung A	3	3	2	2	1	3	2	. 1	2
1.02	1	1	1	1	1	1	2	. 1	1

Aus dem Vergleich der herbiziden Wirksamkeit der Verbindung A gegen die Verbindung Nr. 1.02 der vorliegenden Erfindung läßt sich entnehmen, daß die Verbindung Nr. 1.02 bei allen getesteten Unkräutern überraschenderweise eine wesentlich bessere herbizide Wirkung aufweist, obwohl diese Verbindung sich gegenüber der Verbindung A lediglich dadurch unterscheidet, daß zwei Ethylgruppen durch Methylgruppen ersetzt sind.

Beispiel B3: Herbizidwirkung vor dem Auflaufen der Pflanzen (pre-emergente Wirkung) von Verbindungen der vorliegenden Erfindung:

Monokotyle und dikotyle Unkräuter werden in Kunststofftöpfen in Standarderde ausgesät. Unmittelbar nach der Saat werden die Prüfsubstanzen als wäßrige Suspension (hergestellt aus einem 25 %igen Spritzpulver (Beispiel F3, b)) oder als Emulsion (hergestellt aus einem 25 %igen Emulsionskonzentrat (Beispiel F1, c)) appliziert (500 I Wasser/ha). Die Aufwandmenge beträgt 500 g/ha Aktivsubstanz. Anschließend werden die Testpflanzen im Gewächshaus unter Optimalbedingungen angezogen. Die Auswertung erfolgt 3 Wochen nach Applikation mit einer neunstufigen Boniturskala (1 = vollständige Schädigung, 9 = keine Wirkung). Boniturnoten von 1 bis 4 (insbesondere 1 bis 3) bedeuten eine gute bis sehr gute Herbizidwirkung.

Testpflanzen: Avena (Ave), Lolium (Lol), Setaria (Set).

Tabelle B3: pre-emergente Wirkung: Als Öladditiv wird MERGE® in einer Konzentration von 0,7 Gew. % der Spritzbrühe verwendet.

	Testpflanze:						
Verb. Nr.	Ave	Lol	Set				
1.01	1	1	1				
1.02	1	1	1				
1.31	1	1	2				
1.35	1	1	1				

Dieselben Resultate werden erhalten, wenn man die Verbindungen der Formel I gemäß den Beispielen F2 und F4 bis F8 formuliert.

Beispiel B4: Herbizide Wirkung nach dem Auflaufen der Pflanzen (post-emergente Wirkung) von Verbindungen der vorliegenden Erfindung (Beschreibung siehe Beispiel B2): Testpflanzen: Avena (Ave), Lolium (Lol), Setaria (Set). Die Resultate sind in der folgenden Tabelle B4 angegeben:

<u>Tabelle B4: Post-emergente Wirkung: Als Öladditiv wird MERGE® in einer Konzentration von 0,7 Gew. % der Spritzbrühe verwendet.</u>

	Testpflanze:						
Verb. Nr.	Ave	Lol	Set				
1.01	1	1	1				
1.02	1	1	1				
1.04	1	1	1				
1.05	1	3	1				
1.07	1	1	1				
1.08	1	1	1				
1.10	1	1	1				

	Testpflanze:					
Verb. Nr.	Ave	Lol	Set			
1.11	1	1	1			
1.14	1	2	2			
1.15	1	2	1			
1.17	1	1	2			
1.19	. 1	1	1			
1.21	1	1	1			
1.23	1	1	1			
1.26	1	2	1			
1.27	1	1	2			
1.30	1	1	1			
1.31	1	1	1			
1.35	1	1	1			
1.37	1	1	- 1			
1.39	1	1	1			
1.40	1	1	2			
1.43	1	2	2			

Dieselben Resultate werden erhalten, wenn man die Verbindungen der Formel I gemäß den Beispielen F2 und F4 bis F8 formuliert.

Patentansprüche:

1. Verbindungen der Formel 1

$$Q \longrightarrow CH_3$$

worin

R₁ und R₃ unabhängig voneinander Ethyl, Halogenethyl, Ethinyl, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, C₁-C₂-Alkoxycarbonyl bedeuten;

Q eine Gruppe

$$R_{4}$$
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{14}
 R_{14}
 R_{15}
 R_{14}
 R_{15}
 $$R_{17}$$
 Q_{9} oder R_{138} Q_{138} Q_{10} Q_{10} bedeutet;

 R_4 und R_5 unabhängig voneinander $C_1\text{-}C_{10}\text{-}Alkyl,\ C_2\text{-}C_{10}\text{-}Alkenyl,\ C_2\text{-}C_{10}\text{-}Alkinyl,\ C_1\text{-}C_{10}\text{-}}$ Halogenalkyl, $C_2\text{-}C_{10}\text{-}Alkoxyalkyl,\ C_3\text{-}C_{10}\text{-}Alkenyloxyalkyl,\ C_3\text{-}C_{10}\text{-}Alkinyloxyalkyl,\ C_2\text{-}C_{10}\text{-}}$ Alkylthioalkyl, $C_2\text{-}C_{10}\text{-}Alkylsulfinylalkyl,\ C_2\text{-}C_{10}\text{-}Alkylsulfonylalkyl,\ C_2\text{-}C_{10}\text{-}Alkylsulfonylalkyl,\ C_2\text{-}C_{10}\text{-}Alkylsulfonylalkyl,\ C_2\text{-}C_{10}\text{-}Alkylsulfonylalkyl,\ C_3\text{-}C_{10}\text{-}}$ Dialkylaminoalkyl, $C_2\text{-}C_{10}\text{-}Alkoxycarbonylalkyl,\ C_1\text{-}C_{10}\text{-}Aminoalkyl,\ C_3\text{-}C_{10}\text{-}}$ Dialkylaminoalkyl, $C_2\text{-}C_{10}\text{-}Alkylaminoalkyl,\ C_1\text{-}C_{10}\text{-}Cyanoalkyl,\ C_4\text{-}C_{10}\text{-}Cycloalkylalkyl,\ C_1\text{-}C_{10}\text{-}}$ Phenylalkyl, $C_1\text{-}C_1\text{-}$ Heteroarylalkyl, $C_1\text{-}C_1\text{-}$ Phenoxylalkyl, $C_1\text{-}C_1\text{-}$ Heteroaryloxyalkyl, $C_1\text{-}C_1\text{-}$ Alkylidenaminooxyalkyl, $C_1\text{-}C_1\text{-}$ Nitroalkyl, $C_1\text{-}C_1\text{-}$ Trialkylsilylalkyl, $C_2\text{-}C_1\text{-}$ Alkylaminocarbonylalkyl, $C_2\text{-}C_1\text{-}$ Dialkylaminocarbonylalkyl, $C_2\text{-}C_1\text{-}$ Alkylaminocarbonyloxyalkyl, $C_3\text{-}C_1\text{-}$ Dialkylaminocarbonyloxalkyl, $C_2\text{-}C_1\text{-}$ Alkoxycarbonylaminoalkyl, $C_1\text{-}C_1\text{-}$ N-Alkoxycarbonyl-N-alkylamino-alkyl, $C_1\text{-}$ C_10-Cycloalkyl, Aryl oder Heteroaryl bedeuten; oder

R₄ und R₅ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann und der zusätzlich eine anellierte oder spirogebundene, aus 2 bis 6 Kohlenstoffatomen bestehende Alkylen- oder Alkenylenkette enthalten kann, die ihrerseits ein oder zwei Heteroatome ausgewählt aus Sauerstoff und Schwefel enthalten kann, wobei dieser Cyclus mit Phenyl oder Benzyl substituiert sein kann, welche ihrerseits durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Cycloalkyl, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkoxy, C₁-C₆-Alkoxy-C₁-C₆-alkoxy, C₁-C₆-Halogenalkoxy oder Nitro substituiert sein können; R₂, R₆ und R₃₂ unabhängig voneinander C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkinyloxyalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylcarbonyl-alkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl bedeuten;

R₇, R₃₁ und R₃₃ unabhängig voneinander Wasserstoff, C₁-C₁₀-Alkyl C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₂-C₁₀-Alkoxyalkyl;

R₈ Wasserstoff, C₁-C₁₀-Alkyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl bedeuten; oder R₆ und R₇ oder R₂ und R₃₁ oder R₃₂ und R₃₃ bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann; oder R₆ und R₈ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5-bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_9 , R_{10} , R_{11} und R_{12} unabängig voneinander C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl, C_3 - C_{10} -Alkoxyalkyl, C_3 - C_{10} -Alkenyloxyalkyl, C_3 - C_{10} -Alkinyloxyalkyl, C_2 - C_{10} -Alkylthialkyl, C_2 - C_{10} -Alkylsulfinylalkyl, C_2 - C_{10} -Alkylsulfonylalkyl, C_2 - C_{10} -Alkylsulfonylalkyl, C_3 -

R₉ und R₁₁ oder R₉ und R₁₀ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_{13} , R_{14} , R_{34} und R_{35} unabängig voneinander C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl, C_1 - C_{10} -Halogenalkyl, C_2 - C_{10} -Alkoxyalkyl, C_3 - C_{10} -Alkenyloxyalkyl, C_3 - C_{10} -Alkylsulfinylalkyl, C_2 - C_{10} -Alkylsulfonylalkyl, C_2 - C_{10} -Alkylsulfonylalkyl, C_2 - C_{10} -Alkylsulfonylalkyl, C_3 - C_{10} -Cycloalkyl, Aryl oder Heteroaryl bedeuten; oder

R₁₃ und R₁₄ oder R₃₄ und R₃₅ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann,

R₁₅ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkinyloxyalkyl, C₂-C₁₀-Alkylthioalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₁-C₁₀-Alkylsulfonylalkyl, C₁-C₁₀-Alkylaminoalkyl, C₂-C₁₀-Alkylaminoalkyl, C₁-C₁₀-Cyanoalkyl, C₄-C₁₀-Cycloalkylalkyl, C₁-C₁₀-Phenylalkyl, C₁-C₁₀-Heteroarylalkyl, C₁-C₁₀-Phenoxylalkyl, C₁-C₁₀-Heteroaryloxyalkyl, C₁-C₁₀-Nitroalkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl bedeutet; R₁₆ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Alkylthiolkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfinylalkyl, C₂-C₁₀-Alkylsulfonylalkyl, C₃-C₁₀-Cycloalkyl, Aryl oder Heteroaryl;

R₁₇ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₁₀-Alkenyloxyalkyl, C₃-C₁₀-Alkyloxyalkyl, C₂-C₁₀-Alkyloxyalkyl, C₂-C₁₀-C₁₀-Alkyloxyalkyl, C₂-C₁₀-Alkyloxyalkyl,
 R_{18} Wasserstoff, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl, C_1 - C_{10} -Alkyl oder C_1 - C_{10} -Alkoxyalkyl bedeutet; oder

 R_{17} und R_{18} bilden gemeinsam mit den Atomen, an die sie gebunden sind einen 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

Y Sauerstoff, Schwefel, C-R₁₉ oder N-R₃₆ bedeutet,

 R_{19} und R_{36} unabhängig voneinander C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl, C_1 - C_{10} -Halogenalkyl, Phenyl oder Heteroaryl bedeuten; oder

R₁₈ und R₁₉ oder R₁₈ und R₃₆ bilden gemeinsam mit dem Atom, an das sie gebunden sind, einen gesättigten 5- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 und G_{10} unabhängig voneinander Wasserstoff, -C(X₁)-R₂₀, -C(X₂)-X₃-R₂₁, -C(X₄)-N(R₂₂)-R₂₃, -SO₂-R₂₄, ein Alkali-, Erdalkali-, Sulfonium- oder Ammoniumkation, -P(X₅)(R₂₅)-R₂₆ oder -CH₂-X₆-R₂₇ bedeuten;

 $X_1,\,X_2,\,X_3,\,X_4$, X_5 und X_6 unabhängig voneinander Sauerstoff oder Schwefel bedeuten; R₂₀, R₂₁, R₂₂ und R₂₃ unabhängig voneinander Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C2-C10-Alkinyl, C1-C10-Halogenalkyl, C1-C10-Cyanoalkyl, C1-C10-Nitroalkyl, C1-C10-Aminoalkyl, C_1-C_5 -Alkylamino- C_1-C_5 -alkyl, C_2-C_8 -Dialkylamino- C_1-C_5 -alkyl, C_3-C_7 .Cycloalkyl- C_1-C_5 -alkyl, C_2 - C_{10} -Alkoxy-alkyl, C_4 - C_{10} -Alkenyloxy-alkyl, C_4 - C_{10} -Alkinyloxy-alkyl, C_2 - C_{10} -Alkylthio-alkyl, C_1-C_5 -Alkysulfoxyl- C_1-C_5 -alkyl, C_1-C_5 -Alkylsulfonyl- C_1-C_5 -alkyl, C_2-C_8 -Alkylideneamino-oxy- C_1 - C_5 -alkyl, C_1 - C_5 -Alkylcarbonyl- C_1 - C_5 -alkyl, C_1 - C_5 -Alkoxycarbonyl- C_1 - C_5 -alkyl, C_1 - C_5 -Amino $carbonyl-C_1-C_5-alkyl,\ C_2-C_8-Dialkylamino-carbonyl-C_1-C_5-alkyl,\ C_1-C_5-Alkylcarbonylamino-C_1-C_5-alkyl,\ C_2-C_8-Dialkylamino-C_1-C_5-alkyl,\ C_1-C_5-alkyl,\ C_2-C_8-Dialkylamino-C_1-C_5-alkyl,\ C_1-C_5-alkyl,\ C_2-C_8-Dialkylamino-C_1-C_5-alkyl,\ C_1-C_5-alkyl,\ C_2-C_8-Dialkylamino-C_1-C_5-alkyl,\ C_1-C_5-alkyl,\ C_1-C_5-alkyl,\ C_2-C_8-Dialkylamino-C_1-C_5-alkyl,\ C_1-C_5-alkyl,\ C_1-C_5-alkyl,\ C_2-C_8-Dialkylamino-C_1-C_5-alkyl,\ C_1-C_5-alkyl,\ C_1-C_5-alky$ C_5 -alkyl, C_1 - C_5 -Alkylcarbonyl-(C_2 - C_5 -alkyl)-aminoalkyl, C_3 - C_6 -Trialkylsilyl- C_1 - C_5 -alkyl, Phenyl- C_1 - C_5 -alkyl, Heteroaryl- C_1 - C_5 -alkyl, Phenoxy- C_1 - C_5 -alkyl, Heteroaryloxy- C_1 - C_5 -alkyl, C_2 - C_5 -Alkenyl, C2-C5-Halogenalkenyl, C3-C8-Cycloalkyl, Phenyl, oder durch C1-C3-Alkyl, C1-C3-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl, oder Heteroarylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Heteroaryl oder Heteroarylamino, Diheteroarylamino oder durch C1-C3-Alkyl, C1-C3-Halogenalkyl, C1-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes

Diheteroarylamino, Phenylamino oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenylamino. Diphenylamino oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diphenylamino, oder C3-C7-Cycloalkylamino, Di-C₃-C₇-cycloalkylamino oder C₃-C₇-Cycloalkoxy bedeuten; R₂₄, R₂₅ und R₂₆ Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₁-C₁₀-Cyanoalkyl, C₁-C₁₀-Nitroalkyl, C₁- C₁₀-Aminoalkyl, C₁-C₅-Alkylamino-C₁-C₅-alkyl, C₂-C₈-Dialkylamino- C₁-C₅-alkyl, C₃-C₇-Cycloalkyl-C₁-C₅-alkyl, C₂-C₁₀-Alkoxy-alkyl. C₄-C₁₀-Alkenyloxy-alkyl, C₄-C₁₀-Alkinyloxy-alkyl, C₂- C₁₀-Alkylthio-alkyl, C₁-C₅-Alkysulfoxyl-C₁-C₅-alkyl, C₁-C₅-alkyl, C₁-C₅-alkyl, C₂-C₈-Alkylideneamino-oxy-C₁-C₅-alkyl, C₁-C₅-Alkylcarbonyl-C₁-C₅-alkyl, C₁-C₅-Alkoxycarbonyl-C₁-C₅-alkyl, C₁-C₅-Amino-carbonyl-C₁-C₅alkyl, C2-C8-Dialkylamino-carbonyl-C1-C5-alkyl, C1-C5-Alkylcarbonylamino-C1-C5-alkyl, C1-C5-Alkylcarbonyl-(C2-C5-alkyl)-aminoalkyl, C3-C6-Trialkylsilyl-C1-C5-alkyl, Phenyl-C1-C5-alkyl, Heteroaryl-C₁-C₅-alkyl, Phenoxy- C₁-C₅-alkyl, Heteroaryloxy- C₁-C₅-alkyl, C₂-C₅-Alkenyl, C₂-C₅-Halogenalkenyl, C₃-C₈-Cycloalkyl, Phenyl, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl, oder Heteroaryl oder Heteroarylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Heteroaryl oder Heteroarylamino, Diheteroarylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diheteroarylamino, Phenylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenylamino, Diphenylamino oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diphenylamino, oder C₃-C₇-Cycloalkylamino, Di-C₃-C₇cycloalkylamino, C₃-C₇-Cycloalkoxy, C₁-C₁₀-Alkoxy, C₁-C₁₀-Halogenalkoxy, C₁-C₅-Alkylamino, C2-C8-Dialkylamino, Benzyloxy oder Phenoxy, wobei die Benzyl- und Phenylgruppen ihrerseits durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiert sein können, bedeuten: R₂₇ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₁-C₁₀-Halogenalkyl, C₁-C₁₀-Cyanoalkyl, C₁- C₁₀-Nitroalkyl, C₁-C₁₀-Aminoalkyl, C₁-C₅-Alkylamino-C₁-C₅-alkyl, C₂-C₈-Dialkylamino-C₁-C₅-alkyl, C₃-C₇-Cycloalkyl-C₁-C₅-alkyl, C₂-C₁₀-Alkoxy-alkyl, C₄-C₁₀-Alkenyloxy-alkyl, C₄-C₁₀-Alkinyloxy-alkyl, C2-C10-Alkylthio-alkyl, C1-C5-Alkylsulfoxyl- C1-C5-alkyl, C1-C5-Alkylsulfonyl-C₁-C₅-alkyl, C₂-C₈-Alkylideneamino-oxy-C₁-C₅-alkyl, C₁-C₅-alkyl, C₁-C₅-Alkoxycarbonyl-C₁-C₅-alkyl, C₁-C₅-Amino-carbonyl-C₁-C₅-alkyl, C₂-C₈-Dialkylamino-carbonyl-

31

7.9

į

.

C₁-C₅-alkyl, C₁-C₅-Alkylcarbonylamino-C₁-C₅-alkyl, C₁-C₅-alkyl, Heteroaryl-(C₂-C₅-alkyl, Phenyl-C₁-C₅-alkyl, Heteroaryl-C₁-C₅-alkyl, Phenoxy-C₁-C₅-alkyl, Heteroaryloxy-C₁-C₅-alkyl, C₂-C₅-Alkenyl, C₂-C₅-Alkoxy, C₁-C₅-alkyl, C₃-C₈-Cycloalkyl, Phenyl, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl, oder Heteroaryl, oder Heteroarylamino, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Heteroaryl oder Heteroarylamino, Diheteroarylamino, durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Diheteroarylamino, oder Phenylamino, durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenylamino, Diphenylamino, durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkoxy, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, C₁-C₃-C₃-Cy-Cycloalkylamino, Di-C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, Di-C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, Di-C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, Di-C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, Di-C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, Di-C₃-C₇-Cycloalkylamino, C₃-C₇-Cycloalkylamino, Di-C₃-C₇-Cycloalkylamino, Di-C₃-C₇-Cyclo

Y₂ Sauerstoff, Schwefel, C-R₁₄₀-R₁₄₁ oder N-R₁₄₂ bedeutet,

 $R_{55}\ C_1-C_{10}-Alkyl,\ C_2-C_{10}-Alkenyl,\ C_2-C_{10}-Alkinyl,\ C_1-C_{10}-Halogenalkyl,\ C_2-C_{10}-Alkoxyalkyl,\ C_3-C_{10}-Alkenyloxyalkyl,\ C_3-C_{10}-Alkyloxyalkyl,\ C_2-C_{10}-Alkyloxyalkyl,\ C_2-C_{10}-Alkyloxyalkyl,\ C_2-C_{10}-Alkyloxyalkyl,\ C_2-C_{10}-Alkyloxyalkyl,\ C_2-C_{10}-Alkyloxyalkyl,\ C_3-C_{10}-Cycloalkyl,\ Aryl oder Heteroaryl bedeutet;$

 R_{137} Wasserstoff, C_1 - C_{10} -Alkyl C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl, oder C_1 - C_{10} -Alkoxyalkyl bedeutet; oder

 R_{55} und R_{137} bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen 3- bis 7-gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_{138} und R_{139} unabhängig voneinander Wasserstoff, C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl, C_2 - C_{10} -Alkoxyalkyl, und

 R_{140} und R_{141} unabhängig voneinander Wasserstoff, C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl oder C_1 - C_{10} -Alkoxyalkyl bedeuten; oder

R₅₅ und C-R₁₄₀ bilden gemeinsam mit den Atomen, an die sie gebunden sind einen gesättigten oder ungesättigten 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann;

 R_{142} Wasserstoff, C_1 - C_{10} -Alkyl, C_1 - C_{10} -Halogenalkyl, C_2 - C_{10} -Alkoxyalkyl, C_3 - C_{10} -Alkenyloxyalkyl, C_3 - C_{10} -Alkinyloxyalkyl, C_2 - C_{10} -Alkylthioalkyl, C_2 - C_{10} -Alkylsulfonylalkyl, C_3 - C_{10} -Cycloalkyl, Aryl oder Heteroaryl bedeutet; oder

WO 01/17972 PCT/EP00/08656

R₅₅ und N-R₁₄₂ bilden gemeinsam mit den Atomen, an die sie gebunden sind, einen gesättigten oder ungesättigten 3- bis 7- gliedrigen Cyclus, der ein oder zwei Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann; sowie agronomisch verträgliche Salze, Isomere und Enantiomere dieser Verbindungen.

- 2. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß Q für Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 , Q_7 , Q_8 oder Q_9 steht.
- 3. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel XXX

worin Q für Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 , Q_7 , Q_8 , Q_9 oder Q_{10} steht, wobei deren Substituenten mit Ausnahme von G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 und G_{10} die oben angegebene Bedeutung haben und G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 und G_{10} Wasserstoff bedeutet, mit einer Verbindung der Formel XXXI

worin R₁ und R₃ die unter Formel I angegebene Bedeutung haben und Hal für Chlor, Brom oder Jod steht, in Gegenwart eines inerten Lösungsmittels, einer Base und eines Palladiumkatalysators bei Temperaturen von 30 bis 250 °C umsetzt.

- 4. Herbizides und den Pflanzenwuchs hemmendes Mittel, dadurch gekennzeichnet, daß es auf einem inerten Träger einen herbizid wirksamen Gehalt an Verbindung der Formel I aufweist.
- 5. Verfahren zur Bekämpfung unerwünschten Pflanzenwachstums, dadurch gekennzeichnet, daß man einen Wirkstoff der Formel I, oder ein diesen Wirkstoff enthaltendes

Mittel in einer herbizid wirksamen Menge auf die Pflanzen oder deren Lebensraum appliziert.

- 6. Verfahren zur Hemmung des Pflanzenwachstums, dadurch gekennzeichnet, daß man einen Wirkstoff der Formel I, oder ein diesen Wirkstoff enthaltendes Mittel in einer herbizid wirksamen Menge auf die Pflanzen ode deren Lebensraum appliziert.
- 7. Selektiv-herbizides Mittel, dadurch gekennzeichnet, daß es neben üblichen inerten Formulierungshilfsmitteln als Wirkstoff eine Mischung aus
- a) einer herbizid-wirksamen Menge einer Verbindung der Formel I gemäß Anspruch 1 mit der Maßgabe, daß Q verschieden von Q_1 ist; und
- b) einer herbizid-antagonistisch wirksamen Menge entweder einer Verbindung der Formel X

$$\begin{array}{c}
X_6 \\
O - CH_2 - O - R_{37}
\end{array}$$
(X),

worin

 R_{37} Wasserstoff, C_1 - C_8 -Alkyl oder durch C_1 - C_6 -Alkoxy oder C_3 - C_6 -Alkenyloxy substituiertes C_1 - C_8 -Alkyl; und X_7 Wasserstoff oder Chlor bedeutet; oder einer Verbindung der Formel XI

worin

E Stickstoff oder Methin; R_{38} -CCl₃, Phenyl oder durch Halogen substituiertes Phenyl; R_{39} und R_{40} unabhängig voneinander Wasserstoff oder Halogen; und

R₄₁ C₁-C₄-Alkyl bedeuten; oder einer Verbindung der Formel XII

worin R_{44} und R_{45} unabhängig voneinander Wasserstoff oder Halogen und R_{46} , R_{47} und R_{48} unabhängig voneinander C_1 - C_4 -Alkyl bedeuten, oder einer Verbindung der Formel XIII

$$R_{51}$$
 N -CO-N
 R_{52}
 R_{53}
 R_{50}
 worin A2 für eine Gruppe

· Seight · Thai

11.4

 R_{51} und R_{52} unabhängig voneinander Wasserstoff, C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl, C_3 - C_6 -

substituiertes C_1 - C_4 -Alkyl bedeutet; oder R_{51} und R_{52} bilden

zusammen eine C_4 - C_6 -Alkylenbrücke, die durch Sauerstoff, Schwefel, SO, SO₂, NH oder - $N(C_1$ - C_4 -Alkyl)- unterbrochen sein kann,

R₅₃ für Wasserstoff oder C₁-C₄-Alkyl;

 $R_{49} \ für \ Wasserstoff, \ Halogen, \ Cyano, \ Trifluoromethyl, \ Nitro, \ C_1-C_4-Alkyl, \ C_1-C_4-Alkoxy, \ C_1-C_4-Alkylsulfinyl, \ C_1-C_4-Alkylsulfonyl, \ -COOR_j, \ -CONR_kR_m, \ -COR_n, \ -SO_2NR_kR_m \ oder \ -OSO_2-C_1-C_4-Alkyl;$

R_g für Wasserstoff, Halogen, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, -COOR_i, -CONR_kR_m, -COR_n, -SO₂NR_kR_m, -OSO₂-C₁-C₄-Alkyl, C₁-C₆-Alkoxy, oder C₁-C₆alkoxy substituiert durch C₁-C₄-Alkoxy oder Halogen, C₃-C₆-Alkenyloxy, oder C₃-C₆-Alkenyloxy substituiert durch Halogen, oder C₃-C₆-Alkinyloxy, oder R₄₉ und R₅₀ zusammen bilden eine C₃-C₄-Alkylenbrücke, die durch Halogen oder C₁-C₄-Alkyl substituiert sein kann, oder bilden eine C₃-C₄-Alkenylenbrücke, die durch Halogen oder C₁-C₄-Alkyl substituiert sein kann, oder bilden eine C₄-Alkadienylenbrücke, die durch Halogen oder C₁-C₄-Alkyl substituiert sein kann;

 R_{50} und R_h unabhängig voneinander für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, Trifluormethyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylthio oder -COOR $_i$;

 R_c für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl oder Methoxy; R_d für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Alkylsulfinyl, C_1 - C_4 -Alkylsulfonyl, - COOR $_j$ oder CONR $_k$ R $_m$;

 R_e für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, -COOR $_i$, Trifluormethyl or Methoxy, oder R_d und R_e bilden zusammen eine C_3 - C_4 -Alkylenbrücke;

Rp für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, -COOR_j, Trifluormethyl or Methoxy; Rq für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylsulfinyl, C_1 - C_4 -Alkylsulfonyl, -COOR_j oder CONR_kR_m; , oder Rp und Rq bilden zusammen eine C_3 - C_4 -Alkylenbrücke;

Rr für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, -COOR_j, Trifluormethyl or Methoxy; Rs für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 Alkylthio, C_1 - C_4 -Alkylsulfonyl, -COOR_j oder CONR_kR_m; , oder Rr und Rs bilden zusammen eine C_3 - C_4 -Alkylenbrücke;

PCT/EP00/08656

Rt für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, -COOR_j, Trifluormethyl or Methoxy; Ru für Wasserstoff, Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 Alkylthio, C_1 - C_4 -Alkylsulfinyl, C_1 - C_4 -Alkylsulfonyl, -COOR_j oder CONR_kR_m; , oder Rv und Ru bilden zusammen eine C_3 - C_4 -Alkylenbrücke;

R_f und Rv für Wasserstoff, Halogen oder C₁-C₄-Alkyl;

 R_x und R_y unabhängig voneinander für Wasserstoff, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, -COOR₅₄, Trifluoromethyl, Nitro oder Cyano;

 R_j , R_k und R_m unabhängig voneinander für Wasserstoff oder C_1 - C_4 -Alkyl; oder R_k und R_m bilden zusammen eine C_4 - C_6 -Alkylenbrücke, die durch Sauerstoff, NH oder - $N(C_1$ - C_4 -Alkyl)- unterbrochen sein kann;

R_n für C₁-C₄-Alkyl, Phenyl, oder durch Halogen, C₁-C₄-Alkyl, Methoxy, Nitro oder Trifluormethyl substituiertes Phenyl;

R₅₄ für Wasserstoff, C₁-C₁₀-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, Di-C₁-C₄-alkylamino-C₁-C₄-alkyl, Halogen-C₁-C₈-alkyl, C₂-C₈-Alkenyl, Halogen-C₂-C₈-alkenyl, C₃-C₈-Alkinyl, C₃-C₇-Cycloalkyl, Halogen-C₃-C₇-cycloalkyl, C₁-C₈-Alkylcarbonyl, Allylcarbonyl, C₃-C₇-Cycloalkylcarbonyl, Benzoyl, das unsubstituiert oder am Phenylring gleich oder verschieden bis zu dreifach durch Halogen, C1-C4-Alkyl, Halogen-C1-C4-alkyl, Halogen-C1-C₄-alkoxy oder C₁-C₄-Alkoxy substituiert ist; oder Furoyl, Thienyl; oder C₁-C₄-Alkyl substituiert durch Phenyl, Halogenphenyl, C₁-C₄-Alkylphenyl, C₁-C₄-Alkoxyphenyl, Halogen--C₁-C₄-alkylphenyl, Halogen-C₁-C₄-alkoxyphenyl, C₁-C₆-Alkoxycarbonyl, C₁-C₄-Alkoxy-C₁-C₈-alkoxycarbonyl, C₃-C₈-Alkenyloxycarbonyl, C₃-C₈-Alkinyloxycarbonyl, C₁-C₈--Alkylthiocarbonyl, C₃-C₈-Alkenylthiocarbonyl, C₃-C₈-Alkinylthiocarbonyl, Carbamoyl, Mono--C₁-C₄-alkylaminocarbonyl, Di-C₁-C₄-alkylaminocarbonyl; oder Phenylaminocarbonyl, das unsubstituiert oder am Phenyl gleich oder verschieden bis zu dreifach durch Halogen, C1-C₄-Alkyl, Halogen-C₁-C₄-alkyl, Halogen-C₁-C₄-alkoxy oder C₁-C₄-Alkoxy oder einfach durch Cyano oder Nitro substituiert ist, oder Dioxolan-2-yl, das unsubstituiert ist oder durch ein oder zwei C1-C4-Alkylreste substituiert ist, oder Dioxan-2-yl, das unsubstituiert ist oder durch ein oder zwei C1-C4-Alkylreste substituiert ist, oder C1-C4-Alkyl, das durch Cyano, Nitro, Carboxyl oder C₁-C₈-Alkylthio-C₁-C₈-alkoxycarbonyl substituiert ist, bedeutet: oder einer Verbindung der Formel XIV

$$R_{56}$$
 N CHCl₂ (XIV),

worin R₅₆ und R₅₇ unabhängig voneinander für C₁-C₆-Alkyl oder C₂-C₆-Alkenyl; oder R₅₆ und

oder C₁-C₆-Alkyl; oder R₅₆ und R₅₇ zusammen für
$$R_{60}$$
 ,

 R_{60} und R_{61} unabhängig voneinander für C_1 - C_4 -Alkyl, oder R_{60} und R_{61} zusammen -(CH_2)₅-;

oder
$$R_{56}$$
 und R_{57} zusammen für R_{67} oder R_{70} oder R_{71} R_{75} R_{76} ;

 R_{63} , R_{64} , R_{65} , R_{66} , R_{67} , R_{68} , R_{69} , R_{70} , R_{71} , R_{72} , R_{73} , R_{74} , R_{75} , R_{76} , R_{77} und R_{78} unabhängig voneinander für Wasserstoff oder C_1 - C_4 -Alkyl stehen; oder einer Verbindung der Formel XV

$$R_{80}$$
 $N-O$
 O
 (XV)

worin R₈₀ Wasserstoff oder Chlor und R₇₉ Cyano oder Trifluormethyl bedeutet, oder eine Verbindung der Formel XVI

$$R_{g1}$$
 N
 CI
 (XVI)

worin R₈₁ Wasserstoff oder Methyl bedeutet, oder eine Verbindung der Formel XVI

$$R_{81} \longrightarrow N \longrightarrow CI \qquad (XVI)$$

worin R₈₁ Wasserstoff oder Methyl bedeutet, oder einer Verbindung der Formel XVII

$$\begin{array}{c|c} R_{82} & U & V' \\ R_{83} & V' & V' \\ R_{84} & Z_4 & W_1 \end{array} \quad (XVII),$$

worin

 R_{82} Wasserstoff, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkyl substituiert durch C_1 - C_4 -Alkyl- X_2 - oder C_1 - C_4 -Halogenalkyl- X_2 - bedeutet, oder für C_1 - C_4 -Halogenalkyl, Nitro, Cyano, -COOR₈₅, -NR₈₆R₈₇, -SO₂NR₈₈R₈₉ oder -CONR₉₀R₉₁ steht;

R₈₃ Wasserstoff, Halogen, C₁-C₄-Alkyl, Trifluormethyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy bedeutet;

R₈₄ Wasserstoff, Halogen oder C₁-C₄-Alkyl bedeutet;

U, V, W₁ und Z₄ unabhängig voneinander Sauerstoff, Schwefel, C(R₂₂)R₂₃, Carbonyl, NR₂₄,

eine Gruppe
$$C = A_1$$
 oder $C = C$
 R_{95}
 R_{96}
 R_{96}
 R_{95}
 R_{96}
bedeuten, worin R_{102}

C2-C4-Alkenyl oder C2-C4-Alkinyl bedeutet; mit den Maßgaben, daß

a) mindestens eines der Ringglieder U, V, W₁ oder Z₄ Carbonyl ist, und ein zu diesem bzw.

diesen Ringgliedern benachbartes Ringglied die Gruppe

b) zwei benachbarte Ringglieder U und V, V und W_1 und W_1 und Z_4 nicht gleichzeitig Sauerstoff bedeuten können;

 R_{95} und R_{96} unabhängig voneinander Wasserstoff oder C_1 - C_8 -Alkyl bedeuten; oder R_{95} und R_{96} zusammen eine C_2 - C_6 -Alkylengruppe bilden;

A₁ R₉₉-Y₁- oder -NR₉₇R₉₈;

X₂ Sauerstoff oder -S(O)_s;

Y₁ Sauerstoff oder Schwefel bedeuten;

 R_{99} Wasserstoff, C_1 - C_8 -Alkyl, C_1 - C_8 -Halogenalkyl, C_1 - C_4 -Alkoxy- C_1 - C_8 -alkyl, C_3 - C_6 -Alkenyloxy- C_1 - C_8 -alkyl oder Phenyl- C_1 - C_8 -alkyl bedeutet, wobei der Phenylring durch Halogen, C_1 - C_4 -Alkyl, Trifluormethyl, Methoxy oder Methyl- $S(O)_s$ - substituiert sein kann, oder C_3 - C_6 -Alkenyl, C_3 - C_6 -Halogenalkenyl, Phenyl- C_3 - C_6 -alkenyl, C_3 - C_6 -Alkinyl, Phenyl- C_3 - C_6 -alkinyl, Oxetanyl, Furyl oder Tetrahydrofuryl bedeutet;

R₈₅ Wasserstoff oder C₁-C₄-Alkyl:

R₈₆ Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkylcarbonyl bedeuten;

R₈₇ Wasserstoff oder C₁-C₄-Alkyl bedeutet; oder

R₈₆ und R₈₇ zusammen eine C₄- oder C₅-Alkylengruppe bilden;

 R_{88} , R_{89} , R_{90} und R_{91} unabhängig voneinander Wasserstoff oder C_1 - C_4 -Alkyl bedeuten; oder R_{88} zusammen mit R_{89} oder R_{90} zusammen mit R_{91} unabhängig voneinander C_4 - oder C_5 -

PCT/EP00/08656 WO 01/17972

- 127 -

Alkylen sind, wobei ein Kohlenstoffatom durch Sauerstoff oder Schwefel, oder ein oder zwei Kohlenstoffatome durch -NR₁₀₀- ersetzt sein können;

R₉₂, R₁₀₀ und R₉₃ unabhängig voneinander Wasserstoff oder C₁-C₈-Alkyl sind; oder R₉₂ und R₉₃ zusammen C₂-C₆-Alkylen sind;

R₉₄ Wasserstoff oder C₁-C₈-Alkyl bedeutet;

R₉₇ Wasserstoff, C₁-C₈-Alkyl, Phenyl oder Phenyl-C₁-C₈-alkyl bedeutet, wobei die Phenylringe durch Fluor, Chlor, Brom, Nitro, Cyano, -OCH₃, C₁-C₄-Alkyl oder CH₃SO₂substituiert sein können, oder für C₁-C₄-Alkoxy-C₁-C₈-alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl; R₉₈ Wasserstoff, C₁-C₈-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl steht; oder R₉₇ und R₉₈ zusammen C₄- oder C₅-Alkylen bedeuten, wobei ein Kohlenstoffatom durch Sauerstoff oder Schwefel, oder ein oder zwei Kohlenstoffatome durch -NR₁₀₁- ersetzt sein können;

R₁₀₁ Wasserstoff oder C₁-C₄-Alkyl bedeutet;

r 0 oder 1 ist; und

s 0, 1 oder 2 bedeutet,

oder eine Verbindung der Formel XVIII

worin R₁₀₃ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl; und R₁₀₄, R₁₀₅ und R₁₀₆ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl oder C₁-C₆-Alkoxy bedeuten, mit der Maßgabe, daß einer der Substituenten R₁₀₄, R₁₀₅ und R₁₀₆ verschieden von Wasserstoff ist:

oder eine Verbindung der Formel XIX

$$(R_{107})n$$
 Z_5
 R_{108}
 Q
 R_{109}
 (XIX)

worin Z_5 N oder CH, n für den Fall, daß Z_5 gleich N ist, 0, 1, 2 oder 3 und für den Fall, daß Z_5 CH ist, 0, 1, 2, 3 oder 4 bedeutet, R_{107} Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Nitro, C_1 - C_4 -Alkylthio, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Alkoxycarbonyl, Phenyl oder Phenoxy, oder durch C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl oder Phenoxy bedeutet;

 $R_{108} \ Wasserstoff \ oder \ C_1-C_4-Alkyl \ bedeutet, \ R_{109} \ Wasserstoff, \ C_1-C_4-Alkyl, \ C_3-C_6-Cycloalkyl, \ C_2-C_6-Alkenyl, \ C_2-C_6-Alkenyl, \ C_2-C_6-Halogenalkenyl, \ C_2-C_6-Halogenalkenyl, \ C_2-C_6-Halogenalkenyl, \ C_2-C_6-Halogenalkenyl, \ C_2-C_6-Halogenalkenyl, \ C_2-C_6-Halogenalkenyl, \ C_2-C_6-Alkylthio-C_1-C_4-alkyl, \ C_1-C_4-Alkylsulfonyl- \ C_1-C_4-alkyl, \ C_1-C_4-Alkoxy-C_1-C_4-alkyl, \ C_1-C_4-Alkenyloxy-C_1-C_4-alkyl \ oder \ C_1-C_4-Alkinyloxy-C_1-C_4-alkyl \ ist; \ oder eine Verbindung der Formel XX$

$$O$$
 Z_6
 O
 (XX)

worin Z₆ Sauerstoff oder N-R₁₁₀ und R₁₁₀ eine Gruppe der Formel

bedeutet, worin R_{111} und R_{112} unabhängig voneinander Cyano, Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_6 -Cycloalkyl, C_2 - C_6 -Alkenyl, Aryl, Phenyl oder Heteroaryl, oder durch C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Phenyl, Aryl oder Heteroaryl bedeuten;

oder eine Verbindung der Formel XXI

$$W_{2}$$
 W_{3} R_{114} (XXI) ,

worin Z₇ Sauerstoff, Schwefel, S=O, SO₂ oder CH₂ bedeutet, R₁₁₃ und R₁₁₄ unabhängig voneinander Wasserstoff, Halogen oder C₁-C₄-Alkyl bedeuten, W₂ und W₃ unabhängig voneinander CH₂COOR₁₁₅ oder COOR₀₁₁₅ oder zusammen eine Gruppe der Formel - (CH₂)C(O)-O-C(O)-(CH₂)- bedeuten, und R₁₁₅ und R₀₁₁₅ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkyl, ein Metall- oder ein Ammonium- Kation bedeuten; oder eine Verbindung der Formel XXII

$$R_{119}$$
 O OR_{121} O V_4 OR_{121} O

worin R_{119} und R_{120} unabhängig voneinander Wasserstoff, Halogen oder C_1 - C_4 -Halogenalkyl sind, R_{121} Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl, C_1 - C_4 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, ein Metalkation oder ein Ammoniumkation bedeuten, Z_8 N, CH, C-F oder C-Cl bedeuten und W_4 eine Gruppe der Formel

bedeutet, worin R_{122} und R_{123} unabhängig voneinander Wasserstoff oder C_1 - C_4 -Alkyl und R_{124} und R_{125} unabhängig voneinander Wasserstoff oder C_1 - C_4 -Alkyl bedeuten; oder eine Verbindung der Formel XXIII

worin R₁₂₆ Wasserstoff, Cyano, Halogen, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylthiocarbonyl, -NH-R₁₂₈, -C(O)NH-R₀₁₂₈, Aryl oder Heteroaryl, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Aryl oder Heteroaryl bedeutet;

 R_{127} Wasserstoff, Cyano, Nitro, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Thioalkyl bedeuten, und

R₁₂₈ und R₀₁₂₈ unabhängig voneinander C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₃-C₄-Cycloalkyl, Aryl oder Heteroaryl, oder durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiertes Aryl oder Heteroaryl, Formyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylsufonyl bedeuten; oder eine Verbindung der Formel XXIV

$$R_{132}$$
 R_{133}
 R_{130}
 R_{130}
 R_{129}
 R_{129}
 R_{129}

worin R₁₂₉ und R₁₃₀ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Mono-C₁-C₈- oder Di-C₁-C₈-Alkylamino, C₃-C₆-Cycloalkyl, C₁-C₄-Thioalkyl, Phenyl oder Heteroaryl sind, R₁₃₁ die Bedeutung von R₁₂₉ hat und zusätzlich OH, NH₂, Halogen, Di- C₁-C₄-Aminoalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl oder C₁-C₄-Alkoxycarbonyl ist, R₁₃₂ die Bedeutung von R₁₂₉ hat und zusätzlich Cyano, Nitro, Carboxyl, C₁-C₄-Alkoxycarbonyl, Di- C₁-C₄-Aminoalkyl, C₁-C₄-Alkylthio, C₁-C₄- Alkylsulfonyl, SO₂-OH, i- C₁-C₄-Aminoalkylsulfonyl oder C₁-C₄-Alkoxysulfonyl ist, R₁₃₃ die Bedeutung von R₁₂₉ hat und zusätzlich OH, NH₂, Halogen, Di- C₁-C₄-Aminoalkyl, Pyrrolidin1-yl, Piperidin-1-yl, Morpholin-1-yl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkoxycarbonyl, Phenoxy, Naphtoxy, Phenylamino, Benzoyloxy oder Phenylsulfonyloxy ist; oder eine Verbindung der Formel XXV

worin R_{134} Wasserstoff, C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl oder C_1 - C_4 -Alkoxy- C_1 - C_4 -Alkyl bedeutet, R_{135} Wasserstoff, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl

oder C₁-C₄-Alkoxy und R₁₃₆ Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy bedeuten, mit der Maßgabe, daß R₁₃₅ und R₁₃₆ nicht gleichzeitig Wasserstoff bedeuten,

oder der Formel XXVI

worin

R₁₄₃ Wasserstoff, ein Alkali-, Erdalkali-, Sulfonium- oder Ammonium-Kation oder Ethyl bedeutet;

oder der Formel XXVII

$$R_{144}$$
 R_{145}
 R_{145}
 R_{146}
 R_{146}
 R_{146}
 R_{147}
 R_{147}
 R_{147}
 R_{147}

worin R_{144} und R_{145} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl oder C_3 - C_6 -Cycloalkyl bedeuten;

 R_{146} Wasserstoff, Halogen, C_1 - C_4 -Alkyl, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Halogenalkoxy bedeutet;

 R_{147} Wasserstoff, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxycarbonyl oder Nitro bedeutet;

n₁ 0, 1, 2 oder 3; und

m 1 oder 2 bedeutet;.

oder der Formel XXVIII

$$R_{148}$$
 R_{149}
 R_{150}
 R_{151}
 R_{152}
 R_{152}
 R_{152}

worin

R₁₄₈ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₈-Cycloalkyl, Phenyl, Phenyl-C₁-C₆-alkyl oder Heteroaryl bedeutet; wobei die genannten Gruppen durch Halogen, Cyano, Nitro, Amino, Hydroxy, Carbonyl, Carboxyl, Formyl, Carbonamid oder Sulfonamid substituiert sein können;

R₁₄₉ Wasserstoff, C₁-C₆-Alkyl oder C₁-C₄-Halogenalkyl bedeutet; jedes R₁₅₀ unabhängig Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, Cyano, Nitro, Formyl oder Carboxyl bedeutet; R₁₅₁ Wasserstoff, C₁-C₆-Alkyl oder C₁-C₄-Halogenalkyl bedeutet; jedes R₁₅₂ unabhängig Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, Cyano, Nitro, Formyl oder Carboxyl bedeutet; O für 0, 1, oder 2 steht, und p 0, 1 oder 2 bedeutet; oder der Formel XXIX

worin

R₁₅₉ Wasserstoff, Formyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkenylcarbonyl, C₁₋₆-Alkinylcarbonyl, C₁₋₆-Alkinylcarbonyl, C₁₋₆-Alkinylcarbonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkenylsulfonyl oder Phenylsulfonyl bedeutet, wobei die vorstehend genannten Kohlenwasserstoffgruppen durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können; R₁₅₃ Wasserstoff, C₁₋₆-Alkyl, C₁₋₆-Alkenyl, C₁₋₆-Alkinyl, C₃₋₈-Cycloalkyl, Formyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkenylcarbonyl, C₁₋₆-Alkoxycarbonyl, C₁₋₆-Alkylthiocarbonyl, C₃₋₈-Cycloalkylcarbonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkenylsulfonyl oder Phenylsulfonyl bedeutet, wobei die vorstehend genannten Kohlenwasserstoffgruppen durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können;

R₁₅₄ Wasserstoff, C₁₋₆-Alkyl, C₁₋₆-Alkenyl, C₁₋₆-Alkinyl, C₃₋₈-Cycloalkyl, Formyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkoxycarbonyl, C₁₋₆-Alkoxycarbonyl, C₁₋₆-Alkylthiocarbonyl, C₃₋₈-Cycloalkylcarbonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkenylsulfonyl oder Phenylsulfonyl bedeutet, wobei die vorstehend genannten Kohlenwasserstoffgruppen durch ein oder mehrere Halogenatome, Cyano, Nitro, Amino, Methoxy, Ethoxy oder Phenyl substituiert sein können;

R₁₅₅, R₁₅₆, R₁₅₇, und R₁₅₈ unabhängig voneinander Wasserstoff, Halogen, Amino, C₁₋₃-Alkylamino, C₁₋₆-Dialkylamino, Hydroxy, Cyano, Nitro, Formyl, Carboxyl, C₁₋₆-Alkoxy, C₁₋₆-Alkoxy, C₁₋₆-Alkoxy, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkoxycarboxyl, C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl, C₁₋₆-Alkenyl oder C₁₋₈-Alkinyl bedeuten; oder R₁₅₃ und R₁₅₈ bilden gemeinsam mit den Ringatomen, an die sie gebunden sind, einen

fünf- oder sechsgliedrigen teilgesättigten oder ungesättigten Ring, der bis zu 2 gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthalten kann, wobei dieser Ring durch einen Rest Oxo substituiert sein kann; enthält.

- 8. Mittel nach Anspruch 7, dadurch gekennzeichnet, daß es eine herbizid-antagonistisch wirksamen Menge eines Safeners der Formel X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXII, XXIII, XXIV oder XXV enthält.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man die Nutzpflanzen, deren Samen oder Stecklinge oder deren Anbaufläche mit einer herbizid-antagonistisch wirksamen Menge eines Safeners der Formel X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXII, XXIII, XXIV oder XXV behandelt.
- 11. Mittel nach Anspruch 4, dadurch gekennzeichnet, daß es Sprühtank-Adjuvantien enthält.

- 12. Mittel nach Anspruch 7, dadurch gekennzeichnet, daß es Sprühtank-Adjuvantien enthält.
- 13. Verbindungen der Formel (XXXIa)

worin R_1 und R_3 für Ethyl stehen und Hal für Chlor, Brom oder Jod steht.

THIS PAGE BLANK (USPTO)