Amendments to the Claims

Please amend the listing of claims as follows:

- 1. (Original) A pharmaceutical composition for the treatment of cancer comprising an effective amount of a compound having two gold(I) atoms each covalently bonded to a carbon atom in a covalent link connecting the two gold(I) atoms and a pharmaceutically acceptable excipient.
- 2. (Original) A pharmaceutical composition in accordance with claim 1, wherein said compound has a first gold(I) atom covalently bonded to a first carbon atom and a second gold(I) atom covalently bonded to a second carbon atom.
- 3. (Original) A pharmaceutical composition in accordance with claim 2, wherein said compound comprises a substituted or unsubstituted aromatic group as part of the covalent link.
- 4. (Currently Amended) A pharmaceutical composition in accordance with claim 2-or 3, wherein the first carbon atom is part of a substituted or unsubstituted aromatic group.
- 5. (Original) A pharmaceutical composition in accordance with claim 4, wherein the substituted or unsubstituted aromatic group is a substituted or unsubstituted phenyl group.
- 6. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 2-to-5, wherein the second carbon atom is part of a substituted or unsubstituted alkyl, alkene, alkyne, aryl or aromatic group.
- 7. (Original) A pharmaceutical composition in accordance with claim 6, wherein the aromatic group of which the second carbon atom is a part is a substituted or unsubstituted phenyl group.
- 8. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 2-to-7, wherein said compound incorporates a moiety having the formula:

$$Au^{1}$$
— C^{1} — Z_{n} — C^{2} — Au^{2}

where: Au^1 is said first gold (I) atom; Au^2 is said second gold (I) atom; C^1 is said first carbon atom; C^2 is said second carbon atom; Z is a linking group; and n is 0 or 1.

- 9. (Currently Amended) A pharmaceutical composition in accordance with any preceding claim 1, wherein said compound comprises a ligand bonded to each of said gold(I) atoms, each of said ligands being individually selected from the group consisting of PR₃, P(OR)₃, CNR, NCR, PR_n(CH₂OR[‡])_{3-n}, N₄C₆H₁₂, [N₄C₆H₁₂-N-CH₃]⁺, PN₃C₆H₁₂, and P[N₃C₆H₁₂-N-CH₃]⁺, where R is a substituted or unsubstituted hydrocarbon moiety and R[‡] is selected from the group consisting of H, Me, SO₂⁻, PO₃⁻, alkyl and aryl, and each R[‡] in any one ligand is the same or different.
- 10. (Original) A pharmaceutical composition in accordance with claim 9, wherein R is a substituted or unsubstituted alkyl, alkene, alkyne, aryl or aromatic group and each R in any one ligand is the same or different.
- 11. (Currently Amended) A pharmaceutical composition in accordance with claim 9-or 10, wherein R is selected from the group consisting of methyl, ethyl, propyl, butyl and phenyl groups.
- 12. (Currently Amended) A pharmaceutical composition in accordance with claim 9, 10 or 11, wherein the ligand is PPh₃.
- 13. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 1-to-7, wherein said compound has the formula:

where: L and L' are ligands; R' and R" are substituted or unsubstituted divalent hydrocarbon moieties; a is 0 or 3; b is 0 or 3; R" is H, SO_3^- , PO_4^{2-} , CO_2H , OH, $(CH_2)_nCH_3$, O(CH₂)_nCH₃, $S(CH_2)_nCH_3$, or NR""C(O)(R"") where R"" and R"" are $(CH_2)_nCH_3$; and n is 0 to 6.

14. (Original) A pharmaceutical composition in accordance with claim 13, wherein said compound has a formula selected from the group consisting of:

15. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 1-to 7, wherein said compound has the formula:

where: L and L' are ligands; R' and R" are substituted or unsubstituted divalent hydrocarbon moieties; a is 0 or 3; b is 0 or 3; R" is H, SO_3^- , PO_4^{2-} , CO_2H , OH, $(CH_2)_nCH_3$, O(CH₂)_nCH₃, S(CH₂)_nCH₃, or NR""C(O)(R"") where R" and R"" are $(CH_2)_nCH_3$; and n is 0 to 6.

16. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 1-to 7, wherein said compound has the formula:

where: L and L' are ligands; R' and R" are substituted or unsubstituted divalent hydrocarbon moieties; a is 0 or 3; b is 0 or 3; R" is H, SO_3^- , PO_4^{2-} , CO_2H , OH, $(CH_2)_nCH_3$, $O(CH_2)_nCH_3$, $S(CH_2)_nCH_3$, or NR''''C(O)(R''''') where R'''' and R''''' are $(CH_2)_nCH_3$; and n is 0 to 6; and X is a linking group.

- 17. (Original) A pharmaceutical composition in accordance with claim 16, wherein X is selected from the group consisting of: O, S, PR or NR in which R is a substituted or unsubstituted hydrocarbon moiety.
- 18. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 1-to 7, wherein said compound has the formula:

where: L and L' are ligands; R' and R" are substituted or unsubstituted divalent hydrocarbon moieties; a is 0 or 3; b is 0 or 3; R" is H, SO_3^- , PO_4^{2-} , CO_2H , OH, $(CH_2)_nCH_3$, O(CH₂)_nCH₃, $S(CH_2)_nCH_3$, or NR""C(O)(R"") where R"" and R"" are $(CH_2)_nCH_3$; and n is 0 to 6.

19. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 1-to-7, wherein said compound has the formula:

Where Y is selected from the group consisting of (R')_bAuL' and

where: L and L' are ligands; R' and R" are substituted or unsubstituted divalent hydrocarbon moieties; a is 0 or 3; b is 0 or 3; R" is H, SO_3^- , PO_4^{2-} , CO_2H , OH, $(CH_2)_nCH_3$, $O(CH_2)_nCH_3$, $S(CH_2)_nCH_3$, or NR''''C(O)(R''''') where R'''' and R''''' are $(CH_2)_nCH_3$; and n is 0 to 6.

- 20. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 13-to-19, wherein L and L' are independently selected from the group consisting of PR₃, P(OR)₃, CNR, NCR, PR_n(CH₂OR[‡])_{3-n}, N₄C₆H₁₂, [N₄C₆H₁₂-N-CH₃]⁺, PN₃C₆H₁₂, and P[N₃C₆H₁₂-N-CH₃]⁺, where R is a substituted or unsubstituted hydrocarbon moiety and R[‡] is selected from the group consisting of H, Me, SO₂⁻, PO₃⁻, alkyl and aryl, and each R[‡] in any one ligand is the same or different.
- 21. (Original) A pharmaceutical composition in accordance with claim 20, wherein R is a substituted or unsubstituted alkyl, alkene, alkyne, aryl or aromatic group and each R in any one ligand is the same or different.
- 22. (Currently Amended) A pharmaceutical composition in accordance with claim 20-or 21, wherein R is selected from the group consisting of methyl, ethyl, propyl, butyl and phenyl groups.

- 23. (Currently Amended) A pharmaceutical composition in accordance with claim 20, 21 or 22, wherein the ligand is PPh₃.
- 24. (Currently Amended) A pharmaceutical composition in accordance with any one of claims 13-to 23, wherein R' and R" are each independently selected from the group consisting of methylene, ethylene, propylene, butylene and phenylene groups.
- 25. (Original) A compound having two gold(I) atoms each covalently bonded to a carbon atom in a covalent link connecting the two gold(I) atoms for use as a chemotherapeutic agent.

26.-30. (Canceled)

- 31. (Original) A method of treating a cancer in a human or animal patient comprising administering to said patient a therapeutically effective amount of a compound having two gold(I) atoms each covalently bonded to a carbon atom in a covalent link connecting the two gold(I) atoms.
- 32. (Original) A method in accordance with claim 31, wherein the cancer is resistant to a platinum drug.
- 33. (Original) A method in accordance with claim 32, wherein the cancer is resistant to cisplatinum and/or carboplatinum.
- 34. (Currently Amended) A method in accordance with claim 31, 32 or 33, wherein the cancer is ovarian or lung cancer.

35. (Canceled)

36. (Original) A pharmaceutical composition for the treatment of cancer comprising an effective amount of a compound having a first gold atom which is a gold(III) atom and a second gold atom which is either a gold(I) atom or a gold(III) atom, each of said first and second gold atoms being covalently bonded to a carbon atom in a covalent link connecting the first and second gold atoms, and the or each gold(III) atom being reducible, *in vivo*, to a gold(I) atom, and a pharmaceutically acceptable excipient.

- 37. (Original) A pharmaceutical composition in accordance with claim 36, wherein said second gold atom is a gold(III) atom.
- 38. (Original) A compound having a first gold atom which is a gold(III) atom and a second gold atom which is either a gold(I) atom or a gold(III) atom, each of said first and second gold atoms being covalently bonded to a carbon atom in a covalent link connecting the first and second gold atoms, and the or each gold(III) atom being reducible, *in vivo*, to a gold(I) atom for use as a chemotherapeutic agent.

39. (Canceled)

40. (Original) A method of treating a cancer in a human or animal patient comprising administering to said patient a therapeutically effective amount of a compound having a first gold atom which is a gold(III) atom and a second gold atom which is either a gold(I) atom or a gold(III) atom, each of said first and second gold atoms being covalently bonded to a carbon atom in a covalent link connecting the first and second gold atoms, and the or each gold(III) atom being reducible, *in vivo*, to a gold(I) atom.