평면벡터의 크기와 연산

1 *

삼각형 ABC 에서 $\overrightarrow{AB}=2$, $\angle B=90^\circ$, $\angle C=30^\circ$ 이다. 점 P 가 $\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0}$ 를 만족시킬 때, $\left|\overrightarrow{PA}\right|^2$ 의 값은?

- ① 5
- 2 5
- ③ 7

- **4** 8
- ⑤ 9

2 *

한 직선 위에 있지 않은 서로 다른 세 점 A, B, C 에 대하여

$$2\overrightarrow{AB} + p\overrightarrow{BC} = q\overrightarrow{CA}$$

일 때, p-q 의 값은? (단, p 와 q 는 실수이다.)

- 1
- 2 2
- 3 3
- 4
- **⑤** 5

3 *

평면 위의 네 점 A, B, C, D 가 다음 조건을 만족시킬 때, | 🕁 | 의 값은?

(7†)
$$|\overrightarrow{AB}| = 2$$
, $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{0}$

$$(\ \, | \ \, \overrightarrow{\mathrm{BD}} \ \, \big| = \big| \ \, \overrightarrow{\mathrm{BA}} - \overrightarrow{\mathrm{BC}} \ \, \big| = 6$$

- ① $2\sqrt{5}$
- ② $2\sqrt{6}$
- ③ $2\sqrt{7}$

- (4) $4\sqrt{2}$
- **⑤** 6

4 **

삼각형 ABC 에 대하여 점 P 는

$$3\overrightarrow{PA} + 2\overrightarrow{PB} + \overrightarrow{PC} = k\overrightarrow{BC}$$

를 만족한다. 점 P 가 삼각형 ABC 의 내부에 있도록 하는 모든 정수 k 의 값의 합은?

- $\bigcirc 1 -2 \qquad \bigcirc 2 -1 \qquad \bigcirc 3 \ 0$

- 4 15 2

5 **

타원 $\frac{x^2}{4} + y^2 = 1$ 의 두 초점을 F, F' 이라 하자. 이 타원 위의 점 P 가 $\left|\overrightarrow{OP} + \overrightarrow{OF}\right| = 1$ 을 만족시킬 때, 선분 PF 의 길이는 k 이다. 5k 의 값을 구하시오. (단, O 는 원점이다.)

6 **

 $\overline{AB}=8$, $\overline{BC}=6$ 인 직사각형 ABCD 에 대하여 네 선분 AB, CD, DA, BD 의 중점을 각각 E, F, G, H 라 하자. 선분 CF 를 지름으로 하는 원 위의 점 P 에 대하여 $\left|\overrightarrow{\mathrm{EG}}+\overrightarrow{\mathrm{HP}}\right|$ 의 최댓값은?

- ① 8 ② $2 + 2\sqrt{10}$ ③ $2 + 2\sqrt{11}$
- (4) $2 + 4\sqrt{3}$ (5) $2 + 2\sqrt{13}$

7 **

좌표평면에서 중심이 각각 O(0, 0), A(4, 0), B(4, 6)이고 반지름의 길이가 1 인 세 원 C_1 , C_2 , C_3 가 있다. 세 점 P, Q, R 이 각각 세 원 C_1 , C_2 , C_3 위를 움직일 때, $\left|\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}\right|$ 의 최솟값을 구하시오.

8 ***

좌표평면 위에 두 점 A(3, 0), B(0, 3) 과 직선 x = 1 위의 점 P(1, a) 가 있다. 점 Q 가 중심각의 크기가 $\frac{\pi}{2}$ 인 부채꼴 OAB 의 호 AB 위를 움직일 때, $\left|\overrightarrow{OP} + \overrightarrow{OQ}\right|$ 의 최댓값을 f(a) 라 하자. f(a) = 5 가 되도록 하는 모든 실수 a 의 값의 곱은? (단, O 는 원점이다.)

- ① $-5\sqrt{3}$
- ② $-4\sqrt{3}$
- $(3) -3\sqrt{3}$
- $(4) -2\sqrt{3}$
- ⑤ $-\sqrt{3}$

9

아래 그림과 같이 정오각형 ABCDE 에서 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AE} = \overrightarrow{b}$ 라 할 때, \overrightarrow{AC} 를 \overrightarrow{a} , \overrightarrow{b} 로 나타내면?

$$3 \frac{\sqrt{5}+1}{2}\overrightarrow{a}+\overrightarrow{b}$$

$$(4) \frac{\sqrt{5}+1}{2} \overrightarrow{b} + \overrightarrow{a}$$

$$(5) \ \frac{\sqrt{5}+1}{2}\overrightarrow{a} + \frac{\sqrt{5}+1}{2}\overrightarrow{b}$$

10 ***

그림과 같이 평면 위에 반지름의 길이가 1 인 네 개의 원 C_1 , C_2 , C_3 , C_4 가 서로 외접하고 있고, 두원 C_1 , C_2 의 접점을 A 라 하자. 원 C_3 위를 움직이는 점 P 와 원 C_4 위를 움직이는 점 Q 에 대하여 $|\overrightarrow{AP} + \overrightarrow{AQ}|$ 의 최댓값은?

- (1) $4\sqrt{3} \sqrt{2}$
- 2 6
- $3\sqrt{3}+1$
- (4) $3\sqrt{3} + \sqrt{2}$

⑤ 7

11 ***

좌표평면 위에 네 점 A(-2, 0), B(1, 0), C(2, 1), D(0, 1) 이 있다. 반원의 호

$$(x+1)^2 + y^2 = 1 \quad (0 \le y \le 1)$$

위를 움직이는 점 P 와 삼각형 BCD 위를 움직이는 점 Q 에 대하여 $\left|\overrightarrow{OP}+\overrightarrow{AQ}\right|$ 의 최댓값을 M, 최솟값을 m 이라 하자. $M^2+m^2=p+2\sqrt{q}$ 일 때, $p\times q$ 의 값을 구하시오. (단, O 는 원점이고, p 와 q 는 유리수 이다.)

12 ★★★

좌표평면 위에 두 점 $A(1,\ 0)$, $B(0,\ 1)$ 이 있다. 중심 각의 크기가 $\frac{\pi}{2}$ 인 부채꼴 OAB 의 호 AB 위를 움직 이는 점 X 와 함수 $y=(x-2)^2+1\ (2\leq x\leq 3)$ 의 그래프 위를 움직이는 점 Y 에 대하여

$$\overrightarrow{OP} = \overrightarrow{OY} - \overrightarrow{OX}$$

를 만족시키는 점 P 가 나타내는 영역을 R 이라 하자. 점 O 로부터 영역 R 에 있는 점까지의 거리의 최댓값을 M, 최솟값을 m 이라 할 때, M^2+m^2 의 값은? (단, O 는 원점이다.)

- ① $16 2\sqrt{5}$
- ② $16 \sqrt{5}$

③ 16

- (4) $16 + \sqrt{5}$
- (5) $16 + 2\sqrt{5}$

기하 - 평면벡터 유형정리

13 ★★★

그림과 같이 선분 AB 위에 $\overline{AE} = \overline{DB} = 2$ 인 두 점D, E가 있다. 두 선분 AE, DB 를 각각 지름으로 하는 두 반원의 호 AE, DB가 만나는 점을 C라 하고, 선분 AB 위에 $\overline{O_1A} = \overline{O_2B} = 1$ 인 두 점을 O_1 , O_2 라 하자. 호 AC 위를 움직이는 점P와 호 DC위를 움직이는 점Q에 대하여 $|\overline{O_1P} + \overline{O_2Q}|$ 의 최솟값이 $\frac{1}{2}$ 일때, 선분 AB의 길이는 $\frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, $1 < \overline{O_1O_2}$, 2이고, p와 q는 서로소인자연수이다.)

평면벡터의 성분

14 ★

두 벡터 $\overrightarrow{a}=(1,\;-2)$, $\overrightarrow{b}=(-1,\;4)$ 에 대하여 벡터 $\overrightarrow{a} + 2\overrightarrow{b}$ 의 모든 성분이 합은?

- ① 1 ② 2 ③ 3
- **4 4 5 5**

15 ★

두 벡터 $\overrightarrow{a}=(2,\ 3)$ 과 $\overrightarrow{b}=(1,\ 1)$ 에 대하여 $\left| \overrightarrow{a} + \overrightarrow{b} \right|$ 의 값은?

- ① 1 ② 2 ③ 3
- **4 5 5**

16 ★

두 벡터 $\overrightarrow{a}=(4t-2,\;-1),\;\overrightarrow{b}=\left(2,\;1+\frac{3}{t}\right)$ 에 대하여 $\left|\overrightarrow{a}+\overrightarrow{b}\right|^2$ 이 최솟값을 구하시오. (단, t>0)

17 ★

두 벡터 $\overrightarrow{a}=(3,\ 1)$, $\overrightarrow{b}=(4,\ -2)$ 가 있다. 벡터 \overrightarrow{v} 에 대하여 두 벡터 \overrightarrow{a} 와 $\overrightarrow{v}+\overrightarrow{b}$ 가 서로 평행할 때, $\left|\overrightarrow{v}\right|^2$ 의 최솟값은?

- 1 6
- ② 7
- 3 8

- **4** 9
- ⑤ 10

18 ★

그림과 같이 변 AD 가 변 BC 와 평행하고 \angle CBA = \angle DCB 인 사다리꼴 ABCD 가 있다.

 $\left| \overrightarrow{AD} \; \right| = 2, \quad \left| \; \overrightarrow{BC} \; \right| = 4, \quad \left| \; \overrightarrow{AB} + \overrightarrow{AC} \; \right| = 2\sqrt{5}$ 일 때, BD 의 값은?

- ① $\sqrt{10}$
- \bigcirc $\sqrt{11}$
- ③ $2\sqrt{3}$

- (4) $\sqrt{13}$
- (5) $\sqrt{14}$

19 ******

쌍곡선 $\frac{x^2}{2} - \frac{y^2}{2} = 1$ 의 꼭짓점 중 x 좌표가 양수인 점을 A 라 하자. 이 쌍곡선 위의 점 P 에 대하여 $\overrightarrow{\mathrm{OA}} + \overrightarrow{\mathrm{OP}} \, \Big| \, = \, k \,$ 를 만족시키는 점 P 의 개수가 3일 때, 상수 k 의 값은? (단, O 는 원점이다.)

- ① 1 ② $\sqrt{2}$
- (4) $2\sqrt{2}$ (5) 4

20 ★★★

좌표평면 위의 네 점 A, B, C, D 가 다음 조건을 만족 시킨다.

- (가) 사각형 ABCD 는 정사각형이다.
- (나) 점 A 의 y 좌표는 점 D 의 y 좌표보다 작다.

$$(\Box) \ \overrightarrow{OA} + \overrightarrow{OC} = (6, \ 0), \ \overrightarrow{OA} - \overrightarrow{OB} = (-4, \ 2)$$

$$\overrightarrow{OC} + \overrightarrow{OD} \Big|^2$$
 의 값을 구하시오.

(단, O 는 원점이다.)

내분점과 외분점의 위치벡터

21 *

타원 $\frac{x^2}{9} + \frac{y^2}{5} = 1$ 위의 점 P 와 두 초점 F, F' 에 대하여 $\left|\overrightarrow{\mathrm{PF}}+\overrightarrow{\mathrm{PF'}}\right|$ 의 최댓값은?

- ① 5
- **②** 6
- 3 7
- **4** 8
- **⑤** 9

22 **

넓이가 90 인 삼각형 ABC 의 내부의 한 점 P 에 대하 여 $5\overrightarrow{PA} + 2\overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$ 일 때, $\triangle PAB$ 의 넓이는?

- 1 5
- ② 10 ③ 15
- **4** 20 **5** 25

23 ★★

그림과 같이 평면 위의 정삼각형 ABC 에서 선분 BC, CA, AB 를 각각 $2:1,\ 1:1,\ 2:1$ 로 내분 하는 점을 차례로 D, E, F 라 하자. 점 D, E, F 를 출발하여 \overrightarrow{BC} , \overrightarrow{CA} , \overrightarrow{AB} 의 방향으로 같은 속력으로 움직이고 있는 점을 각각 P, Q, R 라 하고, 삼각형 PQR 의 무게중심을 G 라 하자. 평면 위의 일정한 점 O 에 대하여

$$\overrightarrow{OG} = l \overrightarrow{OA} + m \overrightarrow{OB} + n \overrightarrow{OC}$$

일 때, l + m + n 의 값은? (단, l, m, n 은 상수이다.)

- 1
- $2 \frac{19}{18}$
- $3\frac{10}{9}$

- $\frac{7}{6}$
- $\frac{11}{9}$

24 ★★★

그림과 같이 $\overline{AB}=3$, $\overline{BC}=8$, $\overline{CA}=9$ 인 삼각형 ABC 의 내접원의 중심을 P 라고 하자.

$$\overrightarrow{AP} = m\overrightarrow{AB} + n\overrightarrow{AC}$$

를 만족시키는 두 실수 m, n 에 대하여 m-n 의 값은?

- $\bigcirc \frac{1}{5}$
- $3\frac{3}{10}$

- $(4) \frac{2}{5}$
- $(5) \frac{1}{2}$

25

삼각형 ABC 의 내부의 한 점 P 에 대하여

$$2\overrightarrow{AP} + \overrightarrow{BP} + 3\overrightarrow{CP} = \overrightarrow{0}$$

가 성립하고, 세 선분 AP, BP, CP 의 연장선이 각각 세 변 BC, CA, AB 와 만나는 점을 각각 D, E, F 라고 할 때, 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

- \neg . AF: FB = 1:2
- Arr $2\overrightarrow{BP} = \overrightarrow{BC} + \overrightarrow{BF}$
- c. 삼각형 APE 의 넓이가 3 이면 삼각형 AFP 의 넓이는 6 이다.
- (1) ¬
- ② □ ③ ¬, ∟
- (4) L, C (5) 7, L, C

26

 $\overline{AB} = 1$, $\overline{BC} = 3$ 이고, $\angle B = 90^{\circ}$ 인 직각삼각형 ABC 가 있다. $(x-5)^2 + (y-5)^2 = 10$ 인 두 실수 x, y 에 대하여 P 가 $\overrightarrow{\mathrm{BP}} = \frac{x\overrightarrow{\mathrm{AB}} + y\overrightarrow{\mathrm{AC}}}{x + y}$ 를 만족시킬 때, $\left|\overrightarrow{\mathrm{AP}}\right|^2$ 의 최댓값은 $\frac{q}{p}$ 이다. p+q 의 값을 구하시

- 오. (단, p, q 는 서로소인 자연수이다.)

평면벡터가 그리는 도형

27 *

그림과 같이 한 평면 위에서 서로 평행한 세 직선 $l_1,\ l_2,\ l_3$ 이 평행한 두 직선 $m_1,\ m_2$ 와 A, B, C, X, O, Y 에서 만나고 있다. $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ 라고 할 때.

$$\overrightarrow{\mathrm{AP}} = \left(\overrightarrow{c} - \overrightarrow{b} - \overrightarrow{a}\right)t$$
 $(t 는 실수)$

를 만족시키는 점 P 가 나타내는 도형은?

- ① 직선 AY
- ② 직선 AO
- ③ 직선 AX
- ④ 직선 AB
- ⑤ 직선 CX

28 ★

좌표평면 위의 세 점 P, Q, R 가 다음 두 조건 (r)와 (u)를 만족시킨다.

- (가) 두 점 P 와 Q 는 직선 y=x 에 대하여 대칭이다.
- (나) $\overrightarrow{OP} + \overrightarrow{OQ} = \overrightarrow{OR}$ (단, O 는 원점)

점 P 가 원점을 중심으로 하는 단위원 위를 움직일 때, 점 R 는 어떤 도형 위를 움직이는가?

① 점

- ② 타원
- ③ 선분
- ④ 쌍곡선
- ⑤ 평행사변형

29

평면 위에 삼각형 OAB 가 있다.

$$\overrightarrow{OP} = s\overrightarrow{OA} + t\overrightarrow{OB} \quad (s \ge 0, \ t \ge 0)$$

를 만족하는 점 P 가 그리는 도형에 대한 옳은 설명을 〈보기〉에서 모두 고른 것은?

____〈 보기 〉__

- ㄱ. s+t=1일 때, 점 P 가 그리는 도형은 선분 AB 이다.
- c_{-} $s+2t \le 1$ 일 때, 점 P 가 그리는 영역은 삼각형 OAB 를 포함한다.
- ① ¬
- ② ∟
- ③ ᄀ, ∟

- ④ ¬, ⊏
- ⑤ ∟, ⊏

30 ★★

좌표평면에서 포물선 $y^2=2x-2$ 의 꼭짓점을 A 라하자. 이 포물선 위를 움직이는 점 P 와 양의 실수 k에 대하여

$$\overrightarrow{\mathrm{OX}} = \overrightarrow{\mathrm{OA}} + \frac{k}{\left|\overrightarrow{\mathrm{OP}}\right|}\overrightarrow{\mathrm{OP}}$$

를 만족시키는 점 X 가 나타내는 도형을 C 라 하자. 도형 C 가 포물선 $y^2=2x-2$ 와 서로 다른 두 점에서 만나도록 하는 실수 k 의 최솟값을 m 이라 할 때, m^2 의 값을 구하시오. (단, O 는 원점이다.)

31 ***

좌표평면에서 한 변의 길이가 4 인 정육각형 ABCDEF의 변 위를 움직이는 점 P 가 있고, 점 C를 중심으로 하고 반지름의 길이가 1 인 원 위를 움직이는 점 Q 가 있다. 두 점 P, Q 와 실수 k 에 대하여점 X가 다음 조건을 만족시킬 때, $|\overrightarrow{CX}|$ 의 값이 최소가 되도록 하는 k의 값을 α , $|\overrightarrow{CX}|$ 의 값이 최대가되도록 하는 k의 값을 β 라 하자.

(가)
$$\overrightarrow{CX} = \frac{1}{2}\overrightarrow{CP} + \overrightarrow{CQ}$$

$$(\ \ \, \downarrow \ \,) \ \, \overrightarrow{XA} + \overrightarrow{XC} + 2\overrightarrow{XD} = k\overrightarrow{CD}$$

 $\alpha^2 + \beta^2$ 의 값을 구하시오.

평면벡터의 내적

32 ★

평면 위에 한 변의 길이가 1 인 정삼각형 ABC 와 정 사각형 BDEC 가 그림과 같이 변 BC 를 공유하고 있다. 이때 $\overrightarrow{AC} \cdot \overrightarrow{AD}$ 의 값은?

- ① 1 ② $\sqrt{2}$ ③ $\sqrt{3}$
- (4) $\frac{1+\sqrt{2}}{2}$ (5) $\frac{1+\sqrt{3}}{2}$

33 ★

두 벡터 \overrightarrow{a} , \overrightarrow{b} 에 대하여

$$\left|\overrightarrow{a}\right| = \sqrt{11}, \quad \left|\overrightarrow{b}\right| = 3, \quad \left|2\overrightarrow{a} - \overrightarrow{b}\right| = \sqrt{17}$$

일 때, $\left| \overrightarrow{a} - \overrightarrow{b} \right|$ 의 값은?

- ① $\frac{\sqrt{2}}{2}$ ② $\sqrt{2}$ ③ $\frac{3\sqrt{2}}{2}$
- (4) $2\sqrt{2}$ (5) $\frac{5\sqrt{2}}{2}$

34 ★

좌표평면 위의 네 점 O(0, 0), A(4, 2), B(0, 2), $\mathrm{C}(2,\ 0)$ 에 대하여 $\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{BC}}$ 의 값은?

- \bigcirc -4
- $\bigcirc 2 -2$ $\bigcirc 3 0$

- 4 2
- ⑤ 4

35 ★

좌표평면 위의 두 점 A(1, a), B(a, 2) 에 대하여 $\overrightarrow{OB} \cdot \overrightarrow{AB} = 14$ 일 때, 양수 a 의 값을 구하시오. (단, O 는 원점이다.)

36 ★

그림과 같이 한 변의 길이가 1 인 정사각형 ABCD 에서

$$\left(\overrightarrow{\mathrm{AB}} + k\overrightarrow{\mathrm{BC}}\right) \cdot \left(\overrightarrow{\mathrm{AC}} + 3k\overrightarrow{\mathrm{CD}}\right) = 0$$

일 때, 실수 k 의 값은?

- $3\frac{1}{3}$
- $\frac{1}{4}$

37 ★★

중심이 O 이고 반지름의 길이가 1 인 원 위의 두 점 A, B 에 대하여

$$\left| \overrightarrow{3OA} + 2\overrightarrow{OB} \right| = \sqrt{5}$$

일 때, 삼각형 OAB 의 넓이는?

- ① $\frac{\sqrt{3}}{7}$ ② $\frac{\sqrt{3}}{6}$ ③ $\frac{\sqrt{5}}{8}$ ④ $\frac{\sqrt{5}}{6}$

38 ★★

한 변의 길이가 3 인 정삼각형 ABC 에서 변 AB 를 2:1 로 내분하는 점을 D 라 하고, 변 AC 를 3:1 과 1:3 으로 내분하는 점을 각각 E,F 라 할 때, $\left|\overrightarrow{BF} + \overrightarrow{DE}\right|^2$ 의 값은?

- 17
- ② 18
- ③ 19

- 4 20
- ⑤ 21

39 ★★

함수 $f(x)=x^2$ 일 때, y 축 위의 점 $A(0,\ t)$ 와 곡 선 y=f(x) 위의 임의의 두 점 P, Q 에 대하여 $\overrightarrow{PA}\cdot\overrightarrow{AQ}\leq 0$ 가 항상 성립하도록 하는 실수 t 의 최댓값을 M 이라고 하자. $48M^2$ 의 값을 구하시오.

40 ★★★

평면에서 한 점 P 에서 만나는 두 삼각형 ABP, CDP 가 다음 조건을 만족시킨다.

(7†)
$$\overline{AP} = \overline{BP} = 2\sqrt{2}$$

(L)
$$\overline{CP} = \overline{DP} = 2\sqrt{5}$$

(다)
$$\angle APB = \angle CPD = \frac{\pi}{4}$$

두 벡터 \overrightarrow{AD} . \overrightarrow{BC} 에 대하여 $\overrightarrow{AD} \cdot \overrightarrow{BC} = 18\sqrt{2}$ 이다 $\angle APC = \theta$ 라 할 때, $\sin \theta$ 의 값은?

$$\left($$
단, $0 \le \theta \le \frac{\pi}{2}\right)$

- ① $\frac{\sqrt{2}}{3}$ ② $\frac{\sqrt{5}}{5}$ ③ $\frac{2\sqrt{5}}{5}$

41 ★★★

그림과 같이 점 O 를 중심으로 하고 길이가 4 인 선분 AB 를 지름으로 하는 반원이 있다. 이 반원의 내분에 $\overline{AC} = 1$ 인 점 C = C 를 잡고, 삼각형 ABC 의 내접원의 중심을 O' 이라 하자. 선분 AO' 의 연장선과 선분 BC 의 교점을 N, 반원과의 교점을 P 라 하고, 선분 BC 의 중점을 M, 선분 AM 의 연장선과 선분 BP 의 교점을 Q 라 하자. $\overrightarrow{AB} = \overrightarrow{b}$, $\overrightarrow{AC} = \overrightarrow{c}$ 라 하면

$$\overrightarrow{\mathrm{AM}} = x \left(\overrightarrow{b} + \overrightarrow{c} \right), \ \overrightarrow{\mathrm{AN}} \cdot \overrightarrow{\mathrm{BQ}} = y, \ \overrightarrow{\mathrm{AQ}} = z \overrightarrow{\mathrm{AM}}$$

이 성립할 때, 10(x + y + z) 의 값은?

- 1 17
- ② 19
- ③ 21

- (4) 23
- (5) 25

42

좌표평면에서 $\overline{OA}=\sqrt{2}$, $\overline{OB}=2\sqrt{2}$ 이고 $\cos(\angle AOB)=\frac{1}{4}$ 인 평행사변형 OACB 에 대하여 점 P 가 다음 조건을 만족시킨다.

(7†)
$$\overrightarrow{\mathrm{OP}} = s\overrightarrow{\mathrm{OA}} + t\overrightarrow{\mathrm{OB}} \quad (0 \leq s \leq 1, \ 0 \leq t \leq 1)$$

$$(\Box) \overrightarrow{OP} \cdot \overrightarrow{OB} + \overrightarrow{BP} \cdot \overrightarrow{BC} = 2$$

점 O 를 중심으로 하고 점 A 를 지나는 원 위를 움직이는 점 X 에 대하여 $\left|\overrightarrow{3OP}-\overrightarrow{OX}\right|$ 의 최댓값과 최솟 값을 각각 $M,\ m$ 이라 하자. $M\times m=a\sqrt{6}+b$ 일 때, a^2+b^2 의 값을 구하시오. (단, a 와 b 는 유리수이다.)

기하 - 평면벡터 정답 및 해설

정답 및 해설

1.	3	https://youtu.be/ki7nyk8EWsg?t=0
2.	4	https://youtu.be/ki7nyk8EWsg?t=117
3.	4	https://youtu.be/ki7nyk8EWsg?t=318
4.	2	https://youtu.be/ki7nyk8EWsg?t=492
5.	15	https://youtu.be/ki7nyk8EWsg?t=854
6.	2	https://youtu.be/ki7nyk8EWsg?t=1354
7.	7	https://youtu.be/ki7nyk8EWsg?t=1586
8.	3	https://youtu.be/ki7nyk8EWsg?t=1892
9.	3	https://youtu.be/ki7nyk8EWsg?t=2229
10.	2	https://youtu.be/ki7nyk8EWsg?t=2495
11.	115	https://youtu.be/ki7nyk8EWsg?t=2781
12.	1	https://youtu.be/ki7nyk8EWsg?t=3569
13.	19	https://youtu.be/ki7nyk8EWsg?t=3959
14.	(5)	https://youtu.be/767_DUNPEEg?t=0
15.	(5)	https://youtu.be/767_DUNPEEg?t=53
16.	24	https://youtu.be/767_DUNPEEg?t=95
17.	(5)	https://youtu.be/767_DUNPEEg?t=200
18.	4	https://youtu.be/767_DUNPEEg?t=400
19.	4	https://youtu.be/767_DUNPEEg?t=659
20.	80	https://youtu.be/767_DUNPEEg?t=962
21.	2	https://youtu.be/BPdRkQDgUOA?t=0
22.	4	https://youtu.be/BPdRkQDgUOA?t=154
23.	1	https://youtu.be/BPdRkQDgUOA?t=379
24.	3	https://youtu.be/BPdRkQDgUOA?t=817
25.	3	https://youtu.be/BPdRkQDgUOA?t=1279
26.	161	https://youtu.be/BPdRkQDgUOA?t=1846
27.	1	https://youtu.be/UzBa1rjHDE8?t=0
28.	3	https://youtu.be/UzBa1rjHDE8?t=225
29.	1	https://youtu.be/UzBa1rjHDE8?t=411
30.	24	https://youtu.be/UzBa1rjHDE8?t=806
31.	8	https://youtu.be/UzBa1rjHDE8?t=1408
32.	(5)	https://youtu.be/mlWCsW7E0zQ?t=0
33.	2	https://youtu.be/mlWCsW7EOzQ?t=196
34.	(5)	https://youtu.be/mlWCsW7E0zQ?t=367
35.	5	https://youtu.be/mlWCsW7E0zQ?t=430
36.	2	https://youtu.be/mlWCsW7EOzQ?t=513

기하 - 평면벡터 정답 및 해설

- 37. ⑤ https://youtu.be/mlWCsW7E0zQ?t=749
- 38. ③ https://youtu.be/mlWCsW7EOzQ?t=968
- 39. 3 https://youtu.be/mlWCsW7EOzQ?t=1256
- $40. \ensuremath{\textcircled{3}} \qquad \texttt{https://youtu.be/mlWCsW7E0zQ?t=1532}$
- 41. ③ https://youtu.be/mlWCsW7EOzQ?t=1947
- 42. 100 https://youtu.be/mlWCsW7EOzQ?t=2610