Cybersecurity and Quantum-Safe
Cryptography in the Age of Quantum
Computing

Dieter Bong / Chris Meyer

Q-safe 1.0 Launch

Quantum computers take advantage of quantum physics for solving <u>selected</u> problems that even the **fastest** supercomputers couldn't solve in a reasonable amount of time today.

This will have an impact on complex search algorithms & data analysis simulations.

Major industry players

Mega Trend: Quantum Computer

Problem Statement

- Shor's Algorithm
 breaks asymmetric crypto
 - Breaks RSA by quickly factoring large numbers
 - Breaks Elliptic Curve
 Cryptography and Diffie Hellman by solving the
 discrete log problem
- Grover's Algorithm
 weakens symmetric crypto
 - Square-root speedup on search algorithms
 - Weakens symmetric encryption and hashing by 50%

Туре	Algorithm	Key Strength Classic (bits)	Key Strength Quantum (bits)	Quantum Attack	
Asymmetric	RSA 2048	112		Shor's Algorithm	
	RSA 3072	128	0		
	ECC 256	128	0		
	ECC 521	256			
Symmetric	AES 128	128	64	Grover's Algorithm	
	AES 256	256	128		

Mega Trend: Quantum Computer

Problem Statement – In practice

- TLS key agreement
- IPSec key agreement
- SSH key agreement
- ... all breakable
- User authentication
- Device authentication
- ... mostly breakable
- ... impersonation attacks
- Integrity and authenticity of contracts, crypto wallets, land records – digital signatures in general etc.

... gone

Туре	Algorithm	Key Strength Classic (bits)	Key Strength Quantum (bits)	Quantum Attack	
Asymmetric	RSA 2048	112		Shor's Algorithm	
	RSA 3072	128	0		
	ECC 256	128	0		
	ECC 521	256			
Symmetric	AES 128	128	64	Grover's	
	AES 256	256	128	Algorithm	

Mega Trend: Quantum Computer

Problem Statement – To whom is this relevant?

Critical Infrastructure Sectors

Energy & Water

Health

Transport

Financial

ICT

Food

Order & Safety

Public & Legal Government & Military

Driver for enterprise: **Risk & Cost**

Customer wants to protect existing products / processes from being broken

Driver for solution provider: **Innovation & Growth**

Customer / IT solution provider wants to offer PQC enabled or enabling new product generations

NIST PQC Standardization Process

Progress in development and standardization of PQC

The PQC market is **expected to take off 2025** (limited by NIST approval of new algorithms) – but **innovation and risk assessment initiatives MUST start earlier**.

The risk of not being secured by Post Quantum Cryptography

Problem Statement – Why should you care ... now?

Especially organizations with the need to secure products and infrastructures over long periods of time (automotive, government, energy, manufacturing) have already started with road mapping, PoCs & implementations.

PQC products are **expected to take off 2025** (limited by NIST approval of new algorithms) – but **innovation and risk assessment initiatives MUST start earlier**.

How to respond to the quantum threat?

UTIMACO Q-safe 1.0

Get support

https://csrc.nist.gov/CSRC/media/Presentations/Let-s-Get-Ready-to-Rumble-The-NIST-POC-Competiti/images-media/POCrvpto-April2018_Moodv.pdf

Challenges

- Increased complexity:
 Choose the right algorithm
 - Key size
 - Storage space required
 - Speed of execution

- Identify the impact on your business
- Start now to prepare for migration!
- Learn about the impact of the new algorithms on your infrastructure

UTIMACO Q-safe 1.0

Get the tools

Quantum-Safe Cryptography	Digital Signature	Public-Key Encryption	Key Agreement
Hash-based Signatures (XMSS, HSS,)	X		
Lattices (Dilithium, Kyber, NewHope, Frodo,)	X	X	X
Error Correcting Codes (Classic McEliece,)	X	X	
Elliptic Curve Isogenies (SIKE)	X	X	X
Multivariate (Rainbow,)	X	X	

Q-safe is the only commercially available HSM extension in the market today, that allows you to run quantum-safe algorithms within the secure perimeter of an HSM.

UTIMACO Q-safe 1.0

Q-safe Offering – What's in?

Which algorithm?	Why this one?			
Hash-based Signature Schemes				
XMSS (eXtended Merkle Signature Scheme) XMSS-MT (XMSS Multi Tree)	 Recognized as quantum-safe Approved by German BSI (Federal Office for Information Security) Advanced standardization 			
HSS (Hierarchical Signature Scheme)	Recognized as quantum-safeAdvanced standardization			
Lattice-based schemes				
Dilithium-128 (signature scheme)	Several requests from customers & solution vendors			
Kyber-768, Kyber-1024 (key encapsulation)	Several requests from customers & solution vendors			
Coming with Q-safe 1.1 in Q3				
HSS-MT (HSS Multi Tree), Dilithium-90, Kyber-512	Completing algorithm options / key sizes			

Q-safe Offering – What's in it?

- Firmware Module implementing PQC algorithms
 - Extension for SecurityServer Se-Series Gen2 and CSe-Series
 - Retro-fittable to installed base
 - Minimum requirement: SecurityServer 4.31.0
 - For Windows and Linux simulator
- PKCS#11 Vendor Defined Mechanisms for
 - Key generation
 - Signature creation / verification
 - Key Derivation
- Tool for Key Export / Import
- Documentation
- Sample Code for each supported algorithm

UTIMACO Q-safe 1.0
Firmware Module

UTIMACO SecurityServer
Firmware

UTIMACO CryptoServer
Hardware

Is your business secured against quantum attacks?

Page 15

3 UTIMACO PQC building blocks: Knowhow & network, consultancy, tools

UTIMACO offers you the knowhow & network, the consultancy and the tools to

- assess which part of your technical infrastructure is prone to PQC risk,
- determine your PQC roadmap & identify critical paths (in cooperation with partners)
- **implement** the technical tools for proof of concept setups to make your crypto infrastructure and thus the future of your business quantum secure.

Implementation Tools
UTIMACO Portfolio

PQC Consultancy
UTIMACO Services

Knowhow & Network u.Trust Program

Germanusstraße 4 52080 Aachen Germany Phone +49 241 1696-0

Web https://hsm.utimaco.com
E-Mail hsm@utimaco.com

Copyright © 2020 - UTIMACO GmbH

UTIMACO® is a trademark of UTIMACO GmbH. All other named Trademarks are Trademarks of the particular copyright holder. All rights reserved. Specifications are subject to change without notice.