PHY1002 Homework on Error Analysis

1 Significant figures (2 pts)

1.1 Determine the significant figures

Write down the number of significant figures for the following numbers

(2)	1 00101	,	١
(a)	1.00101)

(b)
$$1.0110 \times 10^{-3}$$

(f)
$$1.68 \times 10^4$$

1.2 Significant figures in calculations

Express the results of the following calculations with the correct significant figures.

(a)
$$3.1416 \times 0.28/2.34$$

(b)
$$123.62 + 7.1 - 5.33$$

2 Propagation of Uncertainty (Error)

Let us first define the standard deviation s. Suppose we perform N measurements x_1, x_2, \cdots, x_N with the average \bar{x} . Then the deviation of each measurement is given by $\delta x_i = x_i - \bar{x}$ with $i = 1, 2, \cdots, N$. The standard deviation s is

$$s = \sqrt{\frac{\sum_{i=1}^{N} (\delta x_i)^2}{N-1}}$$

When we report the average value of N measurements, the uncertainty we should associate with this average value is the standard error.

$$\sigma = \frac{s}{\sqrt{N}} = \sqrt{\frac{\sum_{i=1}^{N} (\delta x_i)^2}{N(N-1)}}$$

The standard error is smaller than the standard deviation by a factor of $1/\sqrt{N}$, since the statistical uncertainty can be reduced by large number of measurements. Also it is useful to write $\sigma_u^2 = \delta u^2 \equiv \frac{1}{N(N-1)} \sum_{i=1}^N \delta u_i^2$.

Suppose we want to determine a quantity x = f(u, v), which depends on u and v. We want to know the error in x = f(u, v) if we measure u and v with errors σ_u and σ_v . Using the Taylor expansion, we can obtain the law of the error propagation as follows

$$(\delta x)^2 = \left(\frac{\partial f}{\partial u}\right)^2 (\delta u)^2 + \left(\frac{\partial f}{\partial v}\right)^2 (\delta v)^2 + 2\left(\frac{\partial f}{\partial u}\frac{\partial f}{\partial v}\right) (\delta u \delta v)$$

If the measurements of u and v are uncorrelated, then, on the average, we should expect to find equal distributions of positive and negative values for this term, and we

should expect $\overline{(\delta u \delta v)} = 0$. At the end of the day, using the definition of the standard error σ , we can obtain

$$\sigma_{\mathsf{X}} = \sqrt{\left(\frac{\partial f}{\partial u}\right)^2 \sigma_u^2 + \left(\frac{\partial f}{\partial v}\right)^2 \sigma_v^2}$$

Exercise problems: Now find the standard error σ_x in x = f(u, v) as a function of the errors in σ_u and σ_v for the following functions:

(a)
$$x = u + v$$
 (0.5 pts)
You can find the absolute uncertainty of the sum

(or difference) is the root square sum of the <u>individual absolute uncertainties</u> when adding (or subtracting).

(b)
$$x = u \times v$$
 (0.5 pts)

(c)
$$x = u/v$$
 (1 pt)

You can find that the relative uncertainty of the product (quotient) is the root square sum of the individual relative uncertainties.

(d)
$$x = uv^2$$
 (1 pt)

(e)
$$x = u \exp(cv)$$
 with c constant. (0.5 pts)

(f)
$$x = 1/u$$
 (0.5 pts)

3 Snell's Law (2 pts)

Through the equation $n_1 \sin \theta_1 = n_2 \sin \theta_2$, the Snell's law relates the incident angle θ_1 of a ray traveling in a medium of index n_1 to the refraction angle θ_2 of the same light ray in the medium of refraction index n_2 . Find n_2 and its uncertainty from the following measurements

$$\theta_1 = 22.0^{\circ} \pm 0.2^{\circ}$$

 $\theta_2 = 16.3^{\circ} \pm 0.2^{\circ}$
 $n_1 = 1.000$ (assumed to be exact)

Note that $\delta \theta$ must be converted into <u>radians</u> when you

compute the uncertainty. In calculus, we only use radians in trigonometrical functions.

4 Simple Pendulum (2 pts)

Suppose you determine the acceleration of gravity $g=\frac{4\pi^2L}{T^2}$ by measuring the oscillation period T of a pendulum with length L. Determine the value and uncertainty of g from the following measurement

$$T = 2.01 \pm 0.02 s$$
, $L = 1.000 \pm 0.002 m$.

If you wish to improve the above measurement significantly, which part of the measurement (T or L) do you want to improve? Why?