Chapter 6 Inner Product Spaces

6.1 Inner Products and Norms

Definition. Inner Product Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted $\langle x, y \rangle$, such that for all $x, y, z \in VE$ and all $c \in F$,

- 1. $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$
- 2. $\langle cx, y \rangle = c \langle x, y \rangle$
- 3. $\overline{\langle x, y \rangle} = \langle y, x \rangle$
- 4. $\langle x, x \rangle > 0$ if $x \neq 0$

First two condition requires inner product be linear in the first component. Also

$$\langle \sum_{i} a_i v_i, y \rangle = \sum_{i} a_i \langle v_i, y \rangle$$

Definition. Conjugate Transpose or Adjoint of a Matrix Let $A \in M_{m \times n}(F)$, the conjugate transpose or adjoint of A is an $n \times m$ matrix A^* such that $(A^*)_{ij} = \overline{A_{ji}}$ for all i, j. For $F = \mathbb{R}$, $A^* = A^T$

Definition. Inner Product Definition Example

1. Standard Inner Product on F^n For $x = (a_1, a_2, \dots, a_n)$ and $y = (b_1, b_2, \dots, b_n)$ in F^n , the standard inner product on F^n is given by

$$\langle x, y \rangle = \sum_{i=1}^{n} a_i \bar{b}_i$$

2. Inner Product for **Real-valued Continuous Functions** on [0,1]. Let V=C([0,1]), $f,g\in V$, define

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

3. Frobenius Inner Product for Matrices Let $V = M_{n \times n}(F)$, $A, B \in V$, then

$$\langle A, B \rangle = tr(B^*A) = \sum_{i=1}^{n} (B^*A)_{ii}$$

Definition. Inner Product Space A vector space over F endowed with a specific inner product is called an inner product space. If F = C, V is a complex inner product space; if $F = \mathbb{R}$, then V is a real inner product space

Theorem. 6.1 Properties From Inner Product Conditions Let V be an inner product space. Then for $x, y, z \in V$ and $c \in F$, the following statements are true

1.
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

2.
$$\langle x, cy \rangle = \overline{c} \langle x, y \rangle$$

3.
$$\langle x, 0 \rangle = \langle 0, x \rangle = 0$$

4.
$$\langle x, x \rangle = 0$$
 if and only if $x = 0$

5. If
$$\langle x, y \rangle = \langle x, z \rangle$$
 for all $x \in V$, then $y = z$

The inner product is conjugate linear in the second argument

Definition. Norm/Length Let V be an inner product space. For $x \in V$, define norm or length of x by

$$||x|| = \sqrt{\langle x, x \rangle}$$

Definition. 6.2 Properties of Norm Let V be an inner product space over F. Then for all $x, y \in V$ and $c \in F$, the following statements are true

1.
$$||cx|| = |c| \cdot ||x||$$

2.
$$||x|| = 0$$
 if and only if $x = 0$. In any case, $||x|| > 0$

3. Cauchy-Schwarz Inequality
$$|\langle x,y\rangle| \leq ||x|| \cdot ||y||$$

4. Triangular Inequality
$$||x+y|| \le ||x|| + ||y||$$

Definition. Angle For $F = \mathbb{R}$, $x, y \neq 0$, and θ be angle between x and y

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|} \qquad \theta = \cos^{-1} \left(\frac{\langle x, y \rangle}{\|x\| \|y\|} \right)$$

Note

$$\left| \frac{\langle x, y \rangle}{\|x\| \|y\|} \right| \le 1$$

So valid input to arccos function

Definition. Orthogonal Vectors Let V be an inner product space. Vectors x and y in V are orthogonal (perpendicular) if $\langle x, y \rangle = 0$.

Definition. Orthogonal Sets and Orthonormal Sets A subset S of V is orthogonal if any two distinct vectors in S are orthogonal. A vector x in V is a unit vector if ||x|| = 1. A subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.

1.
$$S = \{v_1, v_2, \dots\}$$
, then S is orthonormal if and only if $\langle v_i, v_j \rangle = \delta_{ij}$

2. We can **normalize** an orthogonal set S, by multiplying 1/||x|| for each $x \in S$

Definition. Orthonormal Set Property Let V be inner product space and $S = \{s_1, s_2, \dots\} \subseteq V$ be an orthonormal set. Let $v \in span(S)$, then $v = a_1s_1 + \dots + a_ks_k$. Then

$$\langle v, s_j \rangle = a_j$$

by

$$\langle v, s_j \rangle = \langle \sum_i a_i s_i, s_j \rangle = \sum_i a_i \langle s_i, s_j \rangle = \sum_i a_i \delta_{ij} = a_j$$

Gram-Schmidt Orthogonalization Process and Orthogonal Complements

Definition. Orthonormal Basis Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis that is orthonormal

Definition. Every Inner Product Space has n Orthogonal Basis Let V be an inner product space and $S = \{v_1, v_2, \dots, v_k\}$ be an orthogonal subset of V consisting of nonzero vectors. If $y \in span(S)$, then

$$y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i$$

Corollary. Special case for Orthonormal Set If, in addition to hypotheses of previous theorem, S is orthonormal and $y \in span(S)$, then

$$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

Corollary. Nonzero Orthonormal Set is Linearly Independent Let V be an inner product space, and flet S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent

Theorem. 6.4 Gram-Schmidt Process Let V be an inner product space and $S = \{w_1, w_2, \dots, w_n\}$ be a linearly independent subset of V. Define $S' = \{v_1, v_2, \dots, v_n\}$, where $v_1 = w_1$ and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j$$
 $2 \le k \le n$

Then S' is an orthogonal set of nonzero vectors such that span(S') = span(S)

Theorem. 6.5 Every Finite Dimensional I.P.S has an Orthonormal Basis Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis β . Furthermore, if $\beta = \{v_1, v_2, \dots, v_n\}$ and $x \in V$, then

$$x = \sum_{x=1}^{n} \langle x, v_i \rangle v_i$$

Corollary. Expression for Matrix Representation of Transformation on Orthonormal Basis Let V be a finite-dimensional inner product space with an orthonormal basis $\beta = \{v_1, v_2, \dots, v_n\}$. Let T be a linear operator on V, and let $A = [T]_{\beta}$. Then for any i and j, $A_{ij} = \langle T(v_j), v_i \rangle$, i.e.

$$T(v_j) = \sum_{i=1}^{n} \langle T(v_j), v_i \rangle v_i$$

Definition. Fourier Coefficients Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let $x \in V$. We define the Fourier coefficients of x relative to β to be the scalars $\langle x, y \rangle$, where $y \in \beta$

Orthogonal Complements

Definition. Orthogonal Complements Let S be a nonempty subset of an inner product space V. We define $S^{\perp} = \{x \in V : \langle x, y \rangle = 0 \text{ for all } y \in S\}$. The set S^{\perp} is called the orthogonal complement of S

1.
$$\{0\}^{\perp} = V \text{ and } V^{\perp} = \{0\}$$

Theorem. 6.6 Finding Projection of a Vector onto a Subspace Let W be a finite-dimensional subspace of an inner product space V, and let $y \in V$. Then there exist unique vectors $u \in W$ and $z \in W^{\perp}$ such that y = u + z. Furthermore, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis for W, then

$$u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

where u is the orthogonal projection of y on W.

Corollary. Orthogonal Projection is Unique and Closest to Projected Vector In the notation of previous theorem, the vector u the unique vector in W that is closest to y; that is, for any $x \in W$, $||y - x|| \ge ||y - u||$, and this inequality is an equality if and only if x = u

Theorem. 6.7 Orthonormal Basis and Subspaces Suppose that $S = \{v_1, v_2, \dots, v_k\}$ is an orthonormal set in an n-dimensional inner product space V. Then

- 1. S can be extended to an orthonormal basis $\{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n\}$ for V.
- 2. If W = span(S), then $S_1 = \{v_{k+1}, \dots, v_n\}$ is an orthonormal basis for W^{\perp}
- 3. If W is any subspace of V, then $dim(V) = dim(W) + dim(W^{\perp})$

6.3 The Adjoint of a Linear Operator

Definition. Dual Space is a space of all linear transformations from a vector space V to its field F.

Theorem. 6.8 Every Linear Transformation from V to F Can Be Written as a Inner Product Let V be a finite-dimensional inner product space over F, and let $g: V \to F$ be a linear transformation. Then there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$, where

$$y = \sum_{i} \overline{g(v_i)}v_i$$
 $\beta = \{v_1, \dots, v_n\}$ is orthonormal basis

Definition. Adjoint Linear Operator Given inner product space V, let T be a linear operator on V. The adjoint of operator T, T^* , is the unique operator on V satisfying

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$
 for all $x, y \in V$

Theorem. 6.9 Adjoint of an Linear Operator Exist for f.d. Inner Product Space Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Then there exists a unique function, called the adjoint of T, $T^*: V \to V$ such that

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$

for all $x, y \in V$. Furthermore, T^* is linear. We can view the equation symbolically as adding an asterik * to T when shifting position inside the inner product symbol

Theorem. 6.10 Adjoint of a Linear Operator in Matrix Form is the Adjoint of Matrix Form of that Linear Operator Let v be a finite-dimensional inner product space. Let β be an orthonormal basis for V. If T is a linear operator on V, there

$$[T^*]_{\beta} = [T]_{\beta}^*$$

Corollary. For Left-Matrix Transformation Let A be $n \times n$ matrix, then $L_{A^*} = (L_A)^*$. (theorem 2.16)

Theorem. 6.11 Properties of Adjoint of Linear Operators

Let V bewr an inner product space, and let T, U be linear operators on V, then

- 1. $(T+U)^* = T^* + U^*$
- 2. $(cT)^* = \overline{c}T^*$ for any $c \in F$
- 3. $(TU)^* = U^*T^*$
- 4. $T^{**} = T$
- 5. $I^* = I$

assuming adjoints always exists.

Corollary. For Matrix

Let A and B be $n \times n$ matrix, then

1.
$$(A+B)^* = A^* + B^*$$

2.
$$(cA)^* = \overline{c}A^*$$
 for all $c \in F$

3.
$$(AB)^* = B^*A^*$$

4.
$$A^{**} = A$$

5.
$$I^* = I$$

Least Squares Approximation

Definition. Some notation Fort $x, y \in F^n$

- 1. $\langle x,y\rangle_n$ is the standard inner product of x and y in F^n
- 2. If x and y are column vectors, then $\langle x, y \rangle_n = y^*x$

Lemma. Let $A \in M_{m \times n}(F)$, $x \in F^n$ and $y \in F^m$, then

$$\langle Ax, y \rangle_m = \langle x, A^*y \rangle_n$$

Lemma. Let $A \in M_{m \times n}(F)$. Then $rank(A^*A) = rank(A)$

Corollary. If A is $m \times n$ matrix such that rank(A) = n, then A^*A is invertible

Theorem. 6.12 Close Form Solution for Least Squared Problem Let $A \in M_{m \times n}(F)$ and $y \in F^m$. Then there exists $x_0 \in F^n$ such that $(A^*A)x_0 = A^*y$ and $||Ax_0 - y|| \le ||Ax - y||$ for all $x \in F^n$. Furthermore, if rank(A) = n, then $x_0 = (A^*A)^{-1}A^*y$

6.4 Normal and Self-Adjoint Operators

Definition. Motivation Condition for orthonormal basis of eigenvectors in

- 1. $F = \mathbb{C}$, T normal
- 2. $F = \mathbb{R}$, T self-adjoint

Lemma. Condition on Existence of Eigenvector for Adjoint Linear Operators Let T be a linear operator on a finite-dimensional inner product space V. If T has an eigenvector, then so does T^* . If λ is an eigenvalue of T, then $\overline{\lambda}$ is an eigenvalue of T^*

Proof. Let v be eigenvector of T with corresponding eigenvalue λ , then for any $x \in V$,

$$0 = \langle 0, x \rangle = \langle (T - \lambda I)(v), x \rangle = \langle v, (T - \lambda I)^*(x) \rangle = \langle v, (T^* - \overline{\lambda}I)(x) \rangle$$

Let
$$W = span(\{v\})$$
, so $R(T^* - \overline{\lambda}I) \subseteq W^{\perp}$. Note $rank(T^* - \overline{\lambda}I) \leq dim(W^{\perp}) = n - 1$, then $N(T^* - \overline{\lambda}I) \neq \{0\}$. So exists $u \in N(T^* - \overline{\lambda}I)$ such that $T^*(u) = \overline{\lambda}u$

Theorem. 6.14 (Schur's Theorem)

$P_T(t)$ Splits Implies Exists O.N. Basis st. $[T]_{\beta}$ is Upper Triangular

Let T be a linear operator on a finite-dimensional inner product space V. Suppose that the characteristic polybnomial of T splits. Then there exists an orthonormal basis β for V such that the matrix $[T]_{\beta}$ is upper triangular

Proof. With induction, idea is to construct an orthonormal basis $\beta = \gamma \cup \{z\}$, where γ is an orthonormal basis for W^{\perp} and $z \in W = span(z)$, where z is unit eigenvector for T^* whose existence ensured by previous lemma. The induction hypothesis mandates

1. W^{\perp} is a T-invariant subspace as an assumption, i.e. if $y \in W^{\perp}, x \in W$, then $\langle T(y), x \rangle = 0$

2. $P_{T_{W^{\perp}}}(t)|P_{T}(t)$, so characteristic polyonmial of $T_{W^{\perp}}$ splits

to get the orthonormal basis γ , for which $[T_{W^{\perp}}]_{\gamma}$ is upper triangular.

Definition. Normal Linear Operator Let V be an inner product space, and let T be a linear operator on V. We say that T is normal if $TT^* = T^*T$. An $n \times n$ real or complex matrix A is normal if $AA^* = A^*A$ (Commutativity).

- 1. Motivation is that if $[T]_{\beta}$ is diagonal, then T^* also diagonal, hence T and T^* commutes
- 2. T is normal if and only if $[T]_{\beta}$ is normal, where β is an orthonormal basis
- 3. Skew-symmetric matrix $(A^t = -A)$ is normal by $A^tA = -A^2 = AA^t$
- 4. Normality not sufficient to guarantee an orthonormal basis of eigenvectors. However, normality suffices if V is a complex inner product space

Theorem. 6.15 Properties of Normal Operator

Let V be an inner product space, and let T be a normal operator on V. Then the following are true

- 1. $||T(x)|| = ||T^*(x)||$ for all $x \in V$
- 2. T cI is normal for every $c \in F$
- 3. If x is an eigenvector of T, then x is also an eigenvector of T^* . In fact, if $T(x) = \lambda x$, then $T^*(x) = \overline{\lambda}x$

4. If λ_1 and λ_2 are distinct eigenvalues of T with corresponding eigenvectors x_1 and x_2 , then x_1 and x_2 are orthogonal, i.e. $\langle x_1, x_2 \rangle = 0$

Theorem. 6.16 Normal Operator iff Diagonalizable $(F = \mathbb{C})$

Let T be a linear operator on a finite-dimensional **complex** inner product space V. Then T is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Proof. Idea is the orthonormal basis that makes T an upper triangular matrix (using Schur's Theorem) happens to be a set of eigenvectors

- 1. example showing theorem does not work on infinite dimension vector spaces with problem definition here. Specifically an example where T is normal and that T has no eigenvectors
- 2. Normality not sufficient for existence of orthonormal basis of eigenvectors for real inner product spaces

Definition. Self-Adjoint (Hermitian) Let T be a linear operator on an inner product space V. We say that T is self-adjoint (Hermitian) if $T = T^*$. An $n \times n$ real or complex matrix A is self-adjoint (Hermitian) if $A = A^*$

- 1. If β is orthonormal basis, then T is self-adjoint if and only if $[T]_{\beta}$ is self-adjoint (symmetric matrix for $F = \mathbb{R}$)
- 2. If T is self-adjoint, then T is normal

Lemma. Properties of Self-Adjoints

Let T be a self-adjoint operator on a finite-dimensional inner product space V. Then

- 1. Every eigenvalue of T is real
- 2. Suppose that V is a real inner product space $(F = \mathbb{R})$. Then the characteristic polynomial of T splits

Theorem. 6.17 Self-Adjoints iff Diagonalizable $(F = \mathbb{R})$

Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint if and only if there exists an orthonormal basis β for v consisting of eigenvectors of T.

Definition. Computing Squared Root of Imaginary Number

Relies on Euler's formula

$$e^{ix} = \cos x + i \sin x$$

Therefore we have

$$e^{i\pi} = -1$$
 $i = \sqrt{-1} = e^{i\pi/2}$ $\sqrt{i} = e^{i\pi/4} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}$

Definition. Positive Definite/Semidefinite

A linear operator T on a finite-dimensional inner product space is called positive definite (positive semidefinite) if T is

- 1. self-adjoint, and
- 2. $\langle T(x), x \rangle > 0$ ($\langle T(x), x \rangle \geq 0$) for all $x \neq 0$

An $n \times n$ matrix A with entries from \mathbb{R} or \mathbb{C} is positive definite (positive semidefinite) if L_A is positive definite (positive semidefinite)

5.2 Direct Sums

Definition. Sum Let W_1, W_2, \dots, W_k be subspaces of a vector space V. The sum of these subspaces is the set

$$\{v_1 + \dots + v_k : v_i \in W_i \text{ for } 1 \le i \le k\}$$

which we denote by $W_1 + \cdots + W_k$ or $\sum_{i=1}^k W_i$

Definition. Direct Sum Let W_1, W_2, \dots, W_k be subspaces of a vector space V. We call V the direct sum of the subspaces W_1, W_2, \dots, W_k and write $V = W_1 \oplus W_2 \oplus \dots \oplus W_k$ if

$$V = \sum_{i=1}^{k} W_i$$
 and $W_j \cap \sum_{i \neq j} W_i = \{0\}$ for each $1 \leq j \leq k$

1. dimension of direct sum is sum of dimension of the subspaces in the sum

$$dim(V) = dim(W_1) + \cdots + dim(W_k)$$

Theorem. 5.10 Equivalence Condition for Direct Sum

Let $W_1, \dots W_k$ be subspaces of finite-dimensional vector space V. The following results are equivalent

- 1. $V = W_1 \oplus \cdots \oplus W_k$
- 2. $V = \sum_{i=1}^{k} W_i$ and, for any vector v_1, \dots, v_k such that $v_i \in W_i$ $(1 \le i \le k)$, if $v_1 + \dots + v_k = 0$, then $v_i = 0$ for all i.
- 3. Each vector $v \in V$ can be uniquely written as $v = v_1 + v_2 + \cdots + v_k$ where $v_i \in W_i$
- 4. If γ_i is an ordered basis for W_i $(1 \le i \le k)$, then $\gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_k$ is an ordered basis for V
- 5. For each $i=1,2,\cdots,k$, there exists an ordered basis γ_i for W_i such that $\gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_k$ is an ordered basis for V

Theorem. 5.11 A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigenspaces of T

6.6 Orthogonal Projection and the Spectral Theorem

Definition. Projection on a Subspace

Let V be a vector space and W_1 and W_2 be subspaces of V such that $V = W_1 \oplus W_2$. A function $T: V \to V$ is called the projection on W_1 along W_2 if, for $x = x_1 + x_2$ with $x_1 \in W_1$ and $x_2 \in W_2$, we have $T(x) = x_1$

- 1. $R(T) = W_1 = \{x \in V : T(x) = x\}$ and $N(T) = W_2$
- 2. $V = R(T) \oplus N(T)$, i.e.
 - (a) every projection uniquely determined by its range and nullspace
 - (b) W_1 does not uniquely determine T
- 3. T is a projection if and only if $T = T^2$

Proof. Proving T is a projection iff $T^2 = T$. Forward direction,

$$T^{2}(x) = T(T(x)) = T(x_{1}) = x_{1} = T(x)$$

For reverse direction, assume $T^2 = T$, then $T(I-T) = 0_V$. Let $W_1 = R(T)$ and $W_2 = N(T)$, now claim $V = W_1 \oplus W_2$. We first prove N(T) = R(I-T). Since T(I-T) = 0, then $R(I-T) \subseteq N(T)$. Conversely, if $x \in N(T)$, then (I-T)(x) = x - T(x) = x, i.e. $x \in R(I-T)$. Now write I = T + I - T, then x = T(x) + (I - T)(x) for any $x \in V$. Then $v = w_1 + w_2$ where $w_1 \in W_1$ and $w_2 \in W_2$. Now we prove uniqueness, i.e. $\{0\} = R(T) \cap N(T)$. Let $T(x) \in R(T) \cap N(T)$ as $T(x) \in R(T)$ by default and let $T(x) \in N(T)$. Then T(x) = 0. Proved $V = W_1 \oplus W_2$. Then we can write $x = x_1 + x_2$ where $x_1 \in R(T)$ and $x_2 \in N(T)$, hence

$$T(x) = T(x_1 + x_2) = T(x_1) + T(x_2) = T(x_1) = x_1$$

where the last equality given by letting $x_1 = T(y)$, then $T(x_1) = T^2(y) = T(y) = x_1$

Definition. Orthogonal Projection Let V be an inner product space, and let $T: V \to V$ be a a linear operator. We say that T is an orthogonal projection if

- 1. T is a projection, and
- 2. $R(T)^{\perp} = N(T) \text{ and } N(T)^{\perp} = R(T)$

Note

- 1. If V finite-dimensional, need to assume either condition in 2. hold.
- 2. Orthogonal projection T is uniquely determined by its range W, so instead call T the orthogonal projection of V on W

Proposition. Projection of Vector to a Subspace is an Orthogonal Projection Let W be subspace of V. there exists $u \in W$ and $z \in W^{\perp}$ and $y \in V$ such that y = u + z. If we define linear operator $T: V \to V$ by

$$T(y) = u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

where $\{v_1, \dots, v_n\}$ is an orthonormal basis for W. Then T is an orthogonal projection.

Proof. Prove that $T^2 = T = T^*$. For any $v_i \in \beta$, we have

$$T(T(v_j)) = T(\sum_{i=1}^{k} \langle v_j, v_i \rangle v_i) = T(v_j)$$

therefore $T^2 = T$ since linear operator characterized by basis entirely. Let $x, y \in V$,

$$\langle T(x),y\rangle = \langle \sum_i \langle x,v_i\rangle v_i,y\rangle = \sum_i \langle x,v_i\rangle \langle v_i,y\rangle = \sum_i \overline{\langle y,v_i\rangle} \langle x,v_i\rangle = \langle x,\sum_i \langle y,v_i\rangle v_i\rangle = \langle x,T(y)\rangle$$

therefore $T = T^*$ by theorem 6.24, T is orthogonal projection.

Proof. Alternatively we can prove that N(T) and R(T) are reciprocally orthogonal sets. Since T is a projection, we have $V = R(T) \oplus N(T)$, where $N(T) = \{x \in V : \langle x, v_i \rangle = 0 \text{ for all } i\} = W^{\perp}$ and R(T) = W. Therefore $N(T) = R(T)^{\perp}$ and $N(T)^{\perp} = (R(T)^{\perp})^{\perp} \supseteq R(T)$. Now we show if $x \in N(T)^{\perp}$, then $x \in R(T) = W$. Now by direct sum, we can write x = y + w where $y \in N(T)$ and $w \in R(T) = W$, then

$$0 = \langle x, y \rangle = \langle y, y \rangle + \langle w, y \rangle \quad \rightarrow \quad \langle y, y \rangle = 0 \quad \rightarrow \quad y = 0$$

therefore $x = w \in W$.

Theorem. 6.24 $T^2 = T = T^*$ iff Orthogonal Projection

Let V be an inner product space, and let T be a linear operator on V. Then T is an orthogonal projection if and only if T has an adjoint T^* and $T^2 = T = T^*$

1. Let T be orthogonal projection of V on W, and $\beta = \{v_1, \dots, v_n\}$ is an orthonormal basis for V, and $\{v_1, \dots, v_k\}$ is a basis for W, then

$$[T]_{\beta} = \begin{pmatrix} I_k & O \\ O & O \end{pmatrix}$$

2. Let U be any projection on W, then exists γ such that $[U]_{\gamma}$ has same for as above, but γ need not be orthonormal

Theorem. 6.25 The Spectral Theorem

Suppose T a linear operator on a finite-dimensional inner product space V over F with distinct eigenvalues $\lambda_1, \dots, \lambda_k$. Assume T is normal if $F = \mathbb{C}$ and that T is self-adjoint if $F = \mathbb{R}$. (i.e. guarantees orthonormal basis of eigenvectors). For each i $(1 \le i \le k)$, let W_i be the eigenspace of T corresponding to the eigenvalue λ_i , and let T_i be the orthogonal projection of V on W_i . Then the following statements are true

- 1. $V = W_1 \oplus \cdots \oplus W_k$
- 2. If W'_i denotes the direct sum of subspaces W_j for $j \neq i$, then $W_i^{\perp} = W'_i$
- 3. $T_i T_j = \delta_{ij} T_i \text{ for } 1 \leq i, j \leq k$
- 4. $I = T_1 + T_2 + \cdots + T_k$ (resolution of identity operator induced by T)
- 5. $T = \lambda_1 T_1 + \lambda_2 T_2 + \cdots + \lambda_k T_k$ (spectral decomposition)

note

- 1. Note since T_i orthogonal projection, we have $N(T_i) = R(T_i)^{\perp} = W_i^{\perp} = W_i^{\perp}$
- 2. **Spectrum** The set $\{\lambda_1, \dots, \lambda_k\}$ is called spectrum of T
- 3. Let β be union of orthonormal basis of W_i 's and let $m_i = dim(W_i)$, then

$$[T]_{\beta} = \begin{pmatrix} \lambda_1 I_{m_1} & O & \cdots & O \\ O & \lambda_2 I_{m_2} & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & \lambda_k I_{m_k} \end{pmatrix}$$

Corollary. Condition for Normal If $F = \mathbb{C}$, then T is normal if and only if $T^* = g(T)$ for some polynomial

Corollary. Condition of Unitary If $F = \mathbb{C}$, then T is unitary if and only if T is normal and $|\lambda| = 1$ for every eigenvalue λ of T

Corollary. Condition for Self-Adjoint If $F = \mathbb{C}$ and T is normal, then T is self-adjoint if and only if every eigenvalue of T is real