Recitation 9

Thurs Sep 26, 2024

1 Recap

1.1 Orthogonality of Vectors

Let u and v be vectors in \mathbb{R}^m . Their dot ("inner") product " $u \cdot v$ " can be written $u^T v = v^T u$ in linear-algebra notation (some people also use the notation $\langle u, v \rangle$). A matrix transpose (swapping rows and columns) has the key property that it moves the matrix to the other side of a dot product: $u \cdot (Av) = u^T Av = (A^T u)^T v = (A^T u) \cdot v$ for any u, v. Indeed, this can be treated as the definition of a matrix transpose (with swapping rows and columns being the consequence), and the practical applications of matrix transposes always involves a dot product somewhere.

We say that u and v are orthogonal if and only if their dot product is 0. Furthermore, we define a set of vectors $\{v_1, v_2, ..., v_n\}$ as pairwise orthogonal if and only if every pair of distinct vectors is orthogonal. In other words, v_i and v_j are orthogonal for any $i, j \in \{1, 2, ..., n\}$ such that $i \neq j$. A set of pairwise orthogonal nonzero vectors is always linearly independent.

A set of vectors $\{q_1, q_2, ..., q_n\}$ in \mathbb{R}^n is *orthonormal* if it is pairwise orthogonal, and each q_i is a unit vector $||q_i|| = 1$. (" q_k " in linear algebra almost always means that the vectors are orthonormal.).

If we put such orthonormal vectors into the columns of a matrix, we get the $m \times n$ matrix $Q = (q_1 \ q_2 \ \cdots \ q_n)$, and the orthonormality is equivalent to the property that $Q^TQ = I$ (the $n \times n$ identity). It does not follow that $Q^T = Q^{-1}$ unless Q is square (which we call an "orthogonal" or "unitary" matrix); for a non-square $Q, QQ^T \neq I$.

Two key factors that make orthonormal bases nice is that (1) finding their coefficients only involves dot products and (2) they preserve lengths. That is, if x = Qc, then the basis coefficients c are simply $c = Q^T x$, and also ||x|| = ||c||.

1.2 Orthogonality of Subspaces

Two subspaces S_1 and S_2 of V are *orthogonal* if every vector in S_1 is orthogonal to every vector in S_2 , meaning that $x^Ty = 0$ for all $x \in S_1$ and $y \in S_2$. Furthermore, it follows that $\dim S_1 + \dim S_2 \leq \dim V$.

1.3 Orthogonal Complement of Subspaces

Given a subspace S of V, its orthogonal complement S^{\perp} is defined as the subspace containing all vectors in V that are orthogonal to every vector in S. In other words,

$$S^{\perp} = \left\{ w \in V : w^T x = 0 \text{ for any } x \in S \right\}.$$

Therefore, S^{\perp} is the largest subspace that is orthogonal to S. Here are some properties of the orthogonal complement:

- 1. $\dim S + \dim S^{\perp} = \dim V$
- 2. $(S^{\perp})^{\perp} = S$

1.4 Some Familiar Orthogonal Complements

We have already seen and worked on orthogonal complements, but we just didn't realize that they are!

Theorem 1 N(A) and $C(A^T)$ are orthogonal complements in \mathbb{R}^n . Similarly, C(A) and $N(A^T)$ are orthogonal complements in \mathbb{R}^m .

2 Exercises

- 1. $A^TB \neq B^TA$ for general matrices (with compatible sizes), but B^TA is the _____ of A^TB . However, for column vectors, $x^Ty = y^Tx$ for any $x, y \in \mathbb{R}^m$. Why does it work for any vectors but not any matrices?
- 2. If S is any subspace of V, then the intersection of S with S^{\perp} must be _____?
- 3. We've already seen permutation matrices $P: m \times m$ matrices that re-order vectors in \mathbb{R}^m . Explain why any such P must have orthonormal columns (and rows), so it is an "orthogonal (unitary) matrix:" $P^{-1} = P^T$ (as we claimed without proof a few lectures ago!).
- 4. Denote a subspace $V = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} : 2v_1 + 3v_2 + 5v_3 = 0 \right\}$. Find V^{\perp} (give a basis). Can you relate V and V^{\perp} to column and/or null spaces of some matrix and/or its transpose?
- 5. Suppose that we have a subspace S with an orthogonal (but *not* necessarily orthonormal) basis $\{v_1, ..., v_k\}$.
 - (a) By the definition of basis, any vector $v \in \mathcal{S}$ can be expressed as

$$v = \sum_{i=1}^{k} \alpha_i v_i = \alpha_1 v_1 + \dots + \alpha_k v_k$$

for some constants $\alpha_1, ..., \alpha_k$. Determine each α_j in terms of $v_1, ..., v_k$ and v. How does it differ from the orthonormal case? Will the same derivation work without the orthogonality of $\{v_1, ..., v_k\}$?

(b) If we put the vectors v_i as the columns of a matrix $V = (v_1 \cdots v_k)$, what special form does $V^T V$ have?

3 Solutions

1. They are transposes: $B^T A = (A^T B)^T$ (as claimed in class; you will derive this in pset 3). So they are not equal unless A^TB is symmetric (equal to its transpose). However, for vectors, x^Ty is a scalar (or "1 × 1" matrix), which is equal to its transpose, so $x^Ty = y^Tx$. You can also see this by writing out the dot product $x^Ty =$ $x_1y_1+\cdots+x_my_m$, which clearly equals y^Tx since the elementwise multiplications are commutative. You are probably also familiar with the statement that $x \cdot y = y \cdot x$ in high-school vector algebra, first-year physics, and so on. But it is good to re-examine this—we never want to take commutativity for granted in linear algebra!

- 2. The intersection must be $\{\vec{0}\}$: the zero-dimensional subspace consisting only of the origin $\vec{0}$ of V. The reason for this is that $\vec{0}$ is the only vector that can be orthogonal to itself: $\vec{0}^T \vec{0} = ||\vec{0}||^2 = 0$, which is not true for any other vector $x \neq \vec{0}$ since $x^T x = ||x||^2 > 0$ for non-zero vectors. And being orthogonal to itself is the only way it can be in both S and S^{\perp} .
- 3. There are several ways to see this, for example:
 - The most straightforward approach: PI = P, but this means that P consists of permuting the rows of the identity matrix I. The rows of I are orthonormal, and re-ordering them doesn't change this, so P has orthonormal rows, hence $PP^T = I$. Since P is square this also means $P^TP = I$ (i.e. P has orthonormal columns, simply a permutation P^T of the columns of I). Hence $P^T = P^{-1}$: it is an orthogonal (unitary) matrix.
 - Here is a more subtle proof that uses the relationship of unitary matrices to inner products: Take any vectors $x,y\in\mathbb{R}^m$. Then we must have x^Ty $(Px)^T(Py)$, since re-ordering the rows of both x and y in the same way cannot change their dot product. That is, P "preserves" inner products. But $(Px)^T(Py) = x^T P^T Py$ for all x, y, which can only be true if $P^T P = I$.
- 4. There are several ways to solve this problem. First, we realize that V resides in an ambient space \mathbb{R}^3 and has dimension 2. This means V^{\perp} has dimension 3-2=1, which means that if we can find a non-zero vector $w \in V^{\perp}$, we can write $V^{\perp} =$ $\operatorname{Span}\{w\}.$

Any
$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in V$$
 must satisfy $2v_1 + 3v_2 + 5v_3 = 0$, i.e. $\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0$. By definition, $V^{\perp} = \{w : w \cdot v = 0 \text{ for any } v \in V\}$. This implies that $w = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$ works, which

$$V^{\perp} = \{w : w \cdot v = 0 \text{ for any } v \in V\}$$
. This implies that $w = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$ works, which

means
$$V^{\perp} = \operatorname{Span} \left\{ \begin{bmatrix} 2\\3\\5 \end{bmatrix} \right\}$$
.

Another way to solve this problem is to notice that V = N(A) when $A = \begin{bmatrix} 2 & 3 & 5 \end{bmatrix}$.

This means
$$V^{\perp} = C(A^T) = \text{Span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \right\}$$
.

5. (a) To derive α_j , we take inner product, for both sides of the equation, with v_j .

$$v_{j}^{T}v = \sum_{i=1}^{k} v_{j}^{T}(\alpha_{i}v_{i}) = \sum_{i=1}^{k} \alpha_{i} \underbrace{v_{j}^{T}v_{i}}_{0 \text{ if } i \neq j} = \alpha_{j}v_{j}^{T}v_{j} = \alpha_{j}||v_{j}||^{2}.$$

This implies $\alpha_j = \frac{v_j^T v}{\|v_j\|^2}$. We make a crucial note that this derivation only works when $\{v_1, ..., v_k\}$ are orthogonal, which we used to cancel the $i \neq j$ terms. In the orthonormal case, things simplify further because $\|v_j\|^2 = 1$.

(b) The i, j entry of V^TV is $v_i^Tv_j$. This means that V^TV is a diagonal matrix of the form:

$$V^T V = \begin{pmatrix} \|v_1\|^2 & & & \\ & \|v_2\|^2 & & \\ & & \ddots & \\ & & & \|v_k\|^2 \end{pmatrix}$$

(which simplifies to the identity matrix if the basis is orthonormal).