هوش مصنوعي

بهار ۱۴۰۲ استاد: دکتر سمیعی

گردآورندگان: سیاوش رحیمی، امیرحسین عابدی

دانشگاه صنعتی شریف دانشکدهی مهندسی کامپیوتر

تمرین چهارم آمار و احتمال مهلت ارسال: ۲۵ فروردین

- مهلت ارسال پاسخ تا ساعت ۲۳:۵۹ روز مشخص شده است.
 - در طول ترم امكان ارسال با تاخير پاسخ وجود ندارد.
- همکاری و همفکری شما در انجام تمرین مانعی ندارد اما پاسخ ارسالی هر کس حتما باید توسط خود او نوشته شده باشد.
- در صورت همفکری و یا استفاده از هر منابع خارج درسی، نام همفکران و آدرس منابع مورد استفاده برای حل سوال مورد نظر را ذکر کنید.
 - لطفا تصویری واضح از پاسخ سوالات نظری بارگذاری کنید. در غیر این صورت پاسخ شما تصحیح نخواهد شد.

سوالات نظری (۱۴۰ نمره)

- مطلوب S=X+Y میکنیم $X,Y\sim \mathrm{Unif}(\,\cdot\,,\,1)$ مطلوب .۱ در اختیار داریم. تعریف میکنیم $X,Y\sim \mathrm{Unif}(\,\cdot\,,\,1)$ مطلوب است:
 - S تابع چگالی احتمال متغیر تصادفی S.
 - X|S تابع چگالی احتمال X
 - $\mathbb{E}[X|S = \cdot / \Delta]$ مقدار (ج)
- (د) تعریف میکنیم $M=\mathbb{E}[X|S]$ که خود تابعی از S میباشد بنابراین خود یک متغیر تصادفی است. تابع چگالی احتمال این متغیر تصادفی را بدست آورید.
- ۲. (۱۰ نمره) تورنومنتی با Υ^n تیم برگزار میشود و هردفعه Υ^n تا از آنها باهم بازی میکنند و یکی از آنها حذف میشود. پیش از برگزاری بازی ها از شما میخواهیم که نتایج بازی را حدس بزنید. به ازای هر حدس درست در عمق i از بازی ها مقدار Υ^{i-1} امتیاز به شما اضافه میشود. واضح است که ماکسیمم امتیازی که یک نفر میتواند داشته باشد برابر است با $\Upsilon^{i-1}(n-1)$. فرض کنید شما میخواهید بدون هیچ دانش پیشینی هرکدام از پیش بینی هارا با یک سکه متوازن انجام دهید. سود خود را Υ مینامیم. مقدار عبارت $\mathbb{E}[X]$ را بدست آورید.
- $f_{X,Y}$ داریم که این فضا برای ما ناشناخته است. تنها اطلاعاتی که از این ۲ متغیر تصادفی از فضای احتمال ۱ متفاوت هستند و همینطور هردو نامنفی هستند. که از این ۲ متغیر تصادفی داریم این است که با احتمال ۱ متفاوت هستند و همینطور هردو نامنفی هستند فرض کنید یکی از X,Y به شما نشان داده شود (اما نمیدانیم کدام)، که اسم آن را W میگذاریم. همینطور اسم متغیر تصادفی دیگر که هنوز ندیده ایم را Z میگذاریم. استراتژی ای ارائه دهید که با آن بتوانیم حدس بزنیم مقدار X از X بیشتر است یا خیر و همینطور احتمال موفقیت این استراتژی برای یک X بزرگتر از صفر برابر باشد با X باشد با X برگتر از صفر برابر باشد با X
- ۴. (۳۰ نمره) فرض کنید از برجی به برج دیگر میخواهیم مقدار θ را ارسال کنیم. برای اینکار n بار مقدار θ را به برج دیگر ارسال میکنیم و همینطور میدانیم که در هر بار ارسال یک نویز گوسی $x \sim \mathcal{N}(\cdot, 1)$ به آن اضافه میشود و در طرف دیگر خوانده میشود.

$$Y = \theta + x$$

- (آ) تخمین گر MLE را برای θ بدست آورید.
- (ب) consistent بودن یا نبودن تخمینگر قسمت قبل را بررسی کنید.
- (+) فرض کنید در برجی که مقدار Y دریافت میشود بدانیم که مقدار θ همواره یکی از مقادیر Y و Y میباشد که توسط یک متغیر تصادفی $Z\sim \mathrm{Bernoulli}(p)$ مناسب یک تخمین گر برای Y پیدا کنید.
- (د) حال فرض کنید داشته باشیم $x_i \sim \mathcal{N}(\cdot, \sigma_i^{\Upsilon})$. در این حالت میخواهیم تخمین گری به فرم $\hat{\theta} = \sum_{i=1}^N \alpha_i Y_i$ داشته باشیم که بایاس نداشته باشد و همینطور کمترین واریانس ممکن را داشته باشد. مقادیر α_i را پیدا کنید.
- \mathbb{R} توسط شهردار شهر \mathbb{R} میخواهد یک آتشنشانی بسازد. امکان احتمال آتشسوزی بر روی خط \mathbb{R} توسط تابع چگالی احتمال f_X مدل شدهاست. حال شهردار به کمک شما احتیاج دارد تا مکان ساختن ساختمان L_x مینشانی را مشخص کنید. روند این کار به این صورت است که در ابتدا شهردار به شما یک تابع ریسک $\mathbb{E}[L_x(c)]$ میدهد و شما باید مقدار $\mathbb{E}[L_x(c)]$ که به ازای آن مقدار $\mathbb{E}[L_x(c)]$ کمینه میشود $\mathbb{E}[L_x(c)]$ را به شهردار گزارش کنید. در صورت وجود جواب را به صورت فرم بسته بنویسید.

$$L_x(c) = |x - c| \tag{1}$$

$$L_x(c) = (x - c)^{\mathsf{Y}}$$

$$L_x(c) = \begin{cases} k(c-x) & \text{if } c \ge x \\ x-c & \text{O.W} \end{cases}$$

- ۷. (۲۰ نمره) فرض کنید دادههای $(x_1, y_1), \dots, (x_n, y_n)$ به شما داده شدهاست که میخواهیم رابطه X, Y را در آن پیدا کنیم. یک فرض ساده کننده که در خیلی از مواقع از آن استفاده میکنیم این است که فرض کنیم رابطه آنها خطی است.

$$y_i = ax_i + b + \epsilon_i$$

که در این رابطه a,b ضرایبی هستند که میخواهیم پیدا کنیم و ϵ_i ها توزیع گوسی دارند.

$$\epsilon_i \sim \mathcal{N}(\, \cdot \,, \sigma^{\, \mathsf{Y}})$$

- بیابید. a, b برای MLE تخمین (آ)
- (ب) نشان دهید این تخمین گرها با جواب Least Squares برابرند.

$$a_{LS}, b_{LS} = \operatorname{argmin}_{a,b} \sum_{i=1}^{n} (y - h_{a,b}(x))^{\mathsf{Y}}$$
 , $h_{a,b}(x) = ax + b$