Calculatrices autorisées : NON

Libellé du module : Réseaux Documents autorisés : NON

Réseaux interconnectés (13 pts)

Dans la figure ci-dessous, 3 réseaux sont connectés par des routeurs indiqués par des cercles, les hôtes sont représentés par des carrés. Le tableau donne des informations complémentaires sur ce réseau.

Routeur	Interface	Masquo	Adresse wire	ld. hôte
R R	eth0	/24	01 :01 :01 :01 :01 :01 02 :02 :02 :02 :02 :02	1
T	eth0	/24 /24	03 :03 :03 :03 :03 :03 04 :04 :04 :04 :04 :04	2

- 1. Donner l'adresse et le masque des réseaux LAN_i , $i=1\cdots 3$. (1.5914)
- 2. Donner l'identifiant réseau et l'identifiant hôte de B. (0,5966)
- 3. Donner toutes les adresses IP des routeurs R et T. 11960
- 4. L'hôte A souhaite connaître l'adresse MAC du routeur R sur l'interface eth₀. Quel est le protocole qui sera employé? En supposant que ses caches soient tous vides, donner les étapes et les champs de toutes les trames Ethernet échangées entre A et R. (1.574)
- 5. L'hôte A transmet au routeur R, sur l'interface etho, deux segments TCP de 100 octets de données chacun et R doit envoyer à A 2 segments de 300 octets de données chacun. On sait que A est à l'origine de l'établissement de la connexion avec un numéro séquence initial égal à 1000. Le numéro de séquence initial utilisé par R est 400. Donner le chronogramme des segments TCP échangés avec l'hypothèse que le deuxième segment de données envoyé par A est perdu. (2 per)
- Établir les tables de routage les plus courtes possibles des routeurs R et T sous la forme (destination, masque, passerelle, interface). (2014)
- 7. L'hôte A lance une commandes ping vers l'hôte C. Quel est le protocole employé et à quelle couche appartient-il? Donner les étapes successives des échanges résultants de cette commande, en précisant les adresses MAC et IP contenues dans les trames échangées, tout en expliquant les décisions prises par les routeurs. On considérera que les caches ARP contiennent toutes les correspondances entre les adresses IP et MAC nécessaires à cette requête. (2pts)
- 8. Le réseau LAN₁ doit être découpé en 4 sous-réseaux de taille identique.
 - (a) Quel est le masque de chacun de ces sous-réseaux? (0.5;0-1)
 - (b) Pour le deuxième sous-réseau résultant de ce découpage, donner :
 - son adresse (0,5 pts)
 - son adresse de diffusion (0,5 pts)
 - la première adresse IP utilisable pour un hôte (0,5 pts)
- 9. Quelle est l'adresse IPv6, en format canonique, de lien local associée à la machine C sachant que l'identifiant d'l'interface est basé sur le format EUI-64 modifié? (9.5pts)

Questions diverses (7 pts)

- Soit un code à trois bits, les mots de code valides sont ceux dont le nombre de bits à 1 est impair. Quelle est la distance. distance de Hamming de ce code? Combien d'erreurs peut-il détecter?
- 2. Le nombre et le type d'erreurs détectables par le CRC dépendent des caractéristiques du polynôme générateur G(x).

 Démontre et le type d'erreurs détectables par le CRC dépendent des caractéristiques du polynôme générateur G(x). Démontrer que pour détecter les erreurs doubles (2 bits erronés), G(x) ne doit pas diviser de binômes. G(x)
- *3. Expliquer le mécanisme de fragmentation dans le protocole IP. (1.5e)
- * 4. Expliquer le fonctionnement d'un serveur DNS en mode récursif. (1991)
 - Analyser la suite d'octets de contrôle HDLC suivante. Représenter et commenter le chronogramme associé à cette suite. (200)

00100001 | 00110001 | 01000001 | 01010001 | 10010100 | 01000001 | 01010001

Annexe

Abréviationa : dest. : destination, src. : source, MAC : adresse MAC, IP = adresse IP.

Trame Ethernet

6	6	2	46-1500	4	1
MAC dest.	MAC src.	0800	Données + remplissage	CRC]

Paquet ARP

6	6	2	1 2	1 2	11	1 1	1 2 1	6	4	6	4	ı
MAC dest.	MAC src.	0806	0001	0800	×	v	Op	MAC src.	IP src.	Mac dest.	IP dest.	1

- Op = 1 pour une requête ARP, Op = 2 pour une réponse ARP
- Type de trame = 0806 (protocole ARP), Type du matériel = 1 (Ethernet), Type protocole = 0800 (IP)
- Taille adresse matériel = x, Taille adresse protocole = y

HDLC

	F	orme	t che	mp c	ommane	ie		
bit	1	2	3	4	5	6	0.7	8
Trame I	0	N(s)			P/F	N(r)		
Trame S	1	0	81	82	P/F		N(r)	
Trame U	1	1	uı	1/2	P/F	ua	tie	Me

		Trames de supervision											
	1	2	3/81	4/82	5	6	7	8	Sémantique				
RR	1	0	0	0	P/F		N(r)		Récepteur prêt à recevoir				
REJ	1	0	0	1	P/F	N(r))	Rejet de toutes les trames à partir de N(r)				
RNR	1	0	1	0	P/F	N(r))	Rejet non prêt à recevoir				
SREF	1	0	- 1	1	P/F		N(r)		Rejet de la trame N(r)				

Entête IPv4

D 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 37 28 29 20 31 Longueur Longueur totale Type de services Version entête PM déplacement du fragment Identification Total de contrôle de l'entête Protocole Durée de vie ndresse IP source adresse IP destination Options

Entête TCP

0 1 2 3	7 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	Port source	Port destination
	Numéro de	e séquence
	Numéro de l'acc	usé de réception
Longueur	H C S S V I	Taille de la fenêtre
entête	Total de contrôle	Pointeur d'urgence
	Opt	ions