

Agenda

Clémentine Lévy-Fidel

- Motivation
- Applications
- Related work
- Approaches
 - Beat tracking and meter reconstruction
 - Chord detection
 - Score following
 - Dynamic Time Warping
- The Aligner tool
- Next steps
- Project highlights
- Acknowledgments

SEMESTER PROJECT PRESENTATION

Temporal axis

Motivation – score labels to audio alignment

• Goal: automate alignment

• **Desired outcome**: temporal positions of labels

Timestamp	Label
0.90	F.I{
1.48	viio6
2.22	I
4.96	IV
5.66	V

Motivation – score labels to audio alignment

Challenges:

- Extensive count of labels per piece:
 - Annotated Mozart Sonatas corpus: 104 to 756 labels
 - Time-consuming manual alignment

Motivation – score labels to audio alignment

Challenges:

Varying annotation or audio profiles

Applications

- Practical usability:
 - Transfer annotations from one recording to another
 - Switch between music formats: audio, score, MIDI...
- Behavioural experiments:
 - Align with EEG measurements
 - Align with assessments of perceived musical tension
- Support music theory:
 - Understand experts' annotations live
 - Live visualisation in context of presentations, teaching...
- Extend the use of the Annotated Mozart Sonatas corpus
 - 18 sonatas, 56 scores
- Apply to other databases and research, e.g. Montreux Jazz Festival

Related work

Meter inference – via stochastic models
 Beat and downbeat tracking systems:

- Bar pointer model (Whiteley et. al, 2006)
- Music tracking via stochastic models
 Score following for live performance accompaniment:
 - AnteScofo (IRCAM, 2009)
 - MusicPlusOne (Christopher Raphael, 2001)
 - Deep-learning based approaches on music sheet images
- Music synchronization via Dynamic Time Warping International Audio Laboratories Erlangen:
 - Fundamentals of Music Processing (FMP) (Müller et. al, 2015)
 - LibFMP (Müller et. al, 2020)
 - SyncToolBox (Müller et. al, 2021)

CITATION DECTED DECENITATION

Approaches – 1. Beat tracking

Detection by beat [1] and downbeat [2] tracking algorithms from madmom's models:

^[1] Krebs et. al, 2015

^[2] Böck et. al, 2016

EPFL

Approaches – 1. Beat tracking

Approaches – 1. Beat tracking

Pitfalls:

Misalignment

Approaches – 1. Beat tracking

Clémentine Lévy-Fidel

Pitfalls:

- Misalignment
- Phase locks with a correct metrical grid but not necessarily at the intended beat level:
- → Interprets half beats as beats
- → In general, happens to detect a multiple of the number of beats ("octave error")

Approaches – 2. Chord detection

Chord detection by chroma detection algorithms from madmom's models [3]:

Approaches – 2. Chord detection

Bach, Prelude in C

Approaches – 2. Chord detection

Pitfalls:

- Not robust enough:
 - Simplified chords (only major or minor)
 - Frequent false alarms / misses
- Correctness can vary upon annotator

Annotator:

C64

Detected chord:

F

SEMESTER PROJECT PRESENTATION

Approaches – 3. Score following

Deep learning approach reading score images [4]

Pitfalls:

- More demanding to use score images than XML or MIDI files if they are provided
- Method difficult to adapt
- Accuracy not entirely guaranteed

Break - solutions?

Possible workarounds for misalignment pitfalls:

- Use state-of-the-art sequence alignment algorithms
- Train madmom's models or score following models for our type of music
 - → higher correct detection rate
 - → more robust alignment

Remaining problems:

- → Need of manual verification
- → Lack of aligned data for comparison with ground truth

Approaches – 4. Dynamic Time Warping

Synchronization approach:

For *every* event in the score sequence (i.e., note), match with a corresponding event in the audio sequence

→ Dynamic Time Warping:

Find alignment path between two time series by minimizing distance

Fig. 4.1. Time alignment of two time-dependent sequences. Aligned points are indicated by the *arrows*

EPFL

Approaches – 4. Dynamic Time Warping (1/2)

Following Ewert et al. (2009):

- Audio feature extraction
 - Chroma onset (CO) features combining:
 - Chroma filtering
 - Onset energy peak picking
 - Locally adaptive normalization —
 - → normalize with local maximum of sequence to make CO features invariant to dynamic variations
 - Add temporal decay

Fig. 1. (a) First six measures of Burgmüller, Op. 100, Etude No. 2. (b) - (g) feature representations of a corresponding audio recording (see Sect. 2 for a description).

Approaches – 4. Dynamic Time Warping (2/2)

Following Ewert et al. (2009)

- Synchronization algorithm
 - Similarity (or cost) matrix: evaluates local similarity cost measure for each pair of features between both sequences
 - Determine optimum-cost alignment path

Fig. 2. (a)-(c) Illustration of the effect of the decay operation on the cost matrix level. (d) $C_{\rm chroma}$, (e), $C_{\rm DLNCO}$ (f) $C_{\rm chroma} + C_{\rm DLNCO}$ for Burg2.

The Aligner tool

Applying DTW to the Annotated Mozart Sonatas corpus

Dataset content:

Notes

quarterbeats	duration_qb	mc	mn	mc_onset	mn_onset	timesig	staff	voice	duration	gracenote	nominal_duration	scalar	tied	tpc	midi	chord_id
0	0.375	1	1	0	0	3/4	1	1	3/32		1/16	3/2		3	69	0
3/8	0.125	1	1	3/32	3/32	3/4	1	1	1/32		1/32	1		-1	65	1
1/2	0.375	1	1	1/8	1/8	3/4	1	1	3/32		1/16	3/2		-2	70	2

Harmonies

quarterbeats	duration_qb	mc	mn	mc_onset	mn_onset	timesig	staff	voice	label	į	globalkey	localkey	pedal	chord	numeral	form	figbass
0	0.5	1	1	0	0	3/4	2	1	F.I{	ı	F	1		I	I		
1/2	0.5	1	1	1/8	1/8	3/4	2	1	viio6		F	I		viio6	vii	0	6
1	2.0	1	1	1/4	1/4	3/4	2	1	I	ı	F	I		I	I		

The Aligner tool

Input: notes, labels, audio

Steps:

- Work on notes events: convert symbolic annotations to synthesized audio representation
- → Temporal occurrence, duration, pitch (midi), velocity, instrument
- → Extract similar features as out of audio
- Perform synchronization to audio by DTW
- Join notes and labels datasets on quarterbeats

The Aligner tool

Output

The Aligner tool

Github repository (https://github.com/clelf/Aligning-audio-to-annotated-score-labels) containing:

- Dataset preparation tutorial (using ms3 parser)
- Code to adapt SyncToolBox to the use of the Mozart Sonatas Annotated dataset
- Command line interface:

```
python aligner.py -a [audio_WAV_file] -n [notes_TSV_file]
-l [labels_TSV_file] -o [CSV_file_to_write_results_to]
```

The Aligner tool

Additional features

- Output aligned notes for score following purpose
- Evaluation module to be used if ground truth data is labelled

Next steps

Clémentine Lévy-Fidel

- Generalize pipeline to data outside the Mozart Sonatas corpus
- Generalize algorithm to scores and/or audio recordings that contain repetitions, following Grachten et. al (2013)
- Label data manually and use ML-based approaches
- Investigate JKU's matchmaker library when published

Personal highlights

Clémentine Lévy-Fidel

- Invaluable help of Steffen, Gabriele and Johannes ©
- Great introduction to the field of audio processing, music information retrieval, digital musicology ...
- Contact with Gerhard Widmer's lab at Johannes Kepler University (Linz)
- Creating a useful tool!

Acknowledgements

Thanks to the whole of DCML team for the warm welcome and insightful conversations

Questions?

I SEMESTER PROJECT PRESENTATIO