3.1. Introduction

"How do all these unusuals strike you, Watson?"

"Their cumulative effect is certainly considerable, and yet each of them is quite possible in itself." [Sherlock Homes and Dr. Watson]

Family of Normal Distribution has a pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- For each distribution, we will investigate
 - Moments such as Mean and Variance
 - Moment Generating Function
 - Relationship with other distributions

A. Discrete Uniform

$$X \sim \mathsf{Discrete}\ \mathsf{Uniform}(1,N)$$

$$f_X(x|N) = P(X = x|N) = \frac{1}{N}, \ \ x = 1, 2, \dots, N$$

$$E(X) = E(X^2) = Var(X) = 0$$

$$Y \sim \mathsf{Discrete} \; \mathsf{Uniform}(\mathit{N}_0, \mathit{N}_1)$$

$$f_Y(y|N_0,N_1)=\frac{1}{N_1-N_0+1}, \ y=N_0,\cdots,N_1$$

$$E(Y) = Var(Y) =$$

B. Hypergeometric Distribution

: Related with a single random sample w/o replacement

- Total N objects with 2 groups. One has M elements.
- Select a sample of size $K: \binom{N}{K}$ possible samples.
- Let X be the number of group 1 elements in the sample

B. Hypergeometric Distribution

$$X \sim \mathsf{Hypergeometric}(N,M,K)$$
 $P(X = x | N,M,K) = f_X(x | N,M,K) = \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}}$
 $x = 0,1,\cdots,K.$

$$Var(X) =$$

E(X) =

Sequence of Bernoulli Trials

- Sequence of Bernoulli Trials is a sequence of identical / uncorrelated trials with two outcomes Success(S) and failure(F).
- ▶ Success (or Failure) on *i*-th trial, $i = 1, \dots$, are assumed to be independent.
- ▶ $P(S \text{ on trial } i) = p, i = 1, 2, \cdots$
- Bernoulli, Binomial, Geometric, Negative Binomial distributions

C. Bernoulli distribution

Consider a single trial. Define X as

$$X = \begin{cases} 1, & \text{if the trial is a success,} \\ 0, & \text{if the trial is a failure.} \end{cases}$$

$$X \sim \mathsf{Bernoulli}(p)$$

$$f_X(x|p) = p^X(1-p)^{1-X}, \quad x = 0, 1.$$

$$E(X) =$$

$$Var(X) =$$

D. Binomial distribution

Let X be the number of success in the first n Bernoulli trials.

$$X \sim \text{Binomial}(n, p)$$

$$f_X(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n$$

$$E(X) =$$

$$Var(X) =$$

$$M_X(t) =$$

D. Binomial distribution

- \triangleright Example: Newly manufactured widgets adopt a Bernoulli process model with p=0.01 for whether these widgets fail a functional test;
- In 500 of these tests, what is the probability all widgets pass ?

X = Number of widgets not functional

$$X \sim \text{Binomial}(n = 500, p = 0.01)$$

$$f_X(? | n = 500, p = 0.01) =$$

D. Binomial distribution

- Now assume p is unknown and 20 defective are observed. What p is the outcome x=20 most likely?

$$f_X(20|n=500, p=?) = {500 \choose 20} p^{20} (1-p)^{480}$$

E. Geometric distribution

Let X be the trial on which the first success occurs or the number of trials until the first success.

$$X \sim \text{Geometry}(p)$$

$$f_X(x|p) = (1-p)^{x-1}p, \quad x = 1, 2, \cdots$$

Note that
$$\sum_{x=1}^{\infty} (1-p)^{x-1} = 1/p$$
. $E(X) =$

$$E[X(X-1)] =$$

$$Var(X) =$$

E. Geometric distribution

•
$$F_X(x|p) = P[X \le x|p] = 1 - P[X > x|p]$$

 \bullet For a given x_0 , the conditional probability of the remaining waiting time to the success given that we've waited to x_0 without seeing a success is

$$P[X = x_0 + x | X > x_0] =$$

•
$$M_X(t) =$$

E. Geometric distribution

ightharpoonup Example: The same example in the binomial distribution with p=0.01. What is the probability of running at least 50 units without a test failure ?

X = number of trials until the first test failure \sim Geometry(p).

$$P[X > 50] =$$

Y= number of test failure among the first 50 units. Then Y has Binomial distribution thus the probability is $P[Y=y]=\binom{50}{y}p^y(1-p)^{50-y}$

F. Negative Binomial distribution

X = trials on which the r-th success occurs.

 $X \sim \mathsf{Negative\ Binomial}(r,p)$

$$f_X(x|r,p) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, \cdots.$$

- If r = 1 then X has a geometric distribution.
- Y = X r= number of failure before r-th success

$$f_Y(y|r,p) =$$

$$E(X) = , Var(X) = M_X(t) =$$

G. Poisson distribution

Model for the number of occurrences of a relatively rare phenomenon across a fixed interval of time or area of space.

$$X \sim \mathsf{Poisson}(\lambda)$$

$$f_X(x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \cdots$$
 $f(X) = 0$ $f(X) = 0$

G. Poisson distribution

 \triangleright Example: A certain type of tree has seedlings randomly dispersed in a large area, with the mean density of seedlings being approximately five per square yard. If X is the number of such seedlings in 0.25 square yards, then

$$X \sim \mathsf{Poisson}(\lambda =)$$

$$P[X = 3] = P[X > 4] =$$

• Recursive:

$$P[X = x] = = (\lambda/x)P[X = x - 1]$$

• $X_1 \sim \mathsf{Poisson}(\lambda_1)$, $X_2 \sim \mathsf{Poisson}(\lambda_2)$, and X_1 and X_2 are independent. Then $Y = X_1 + X_2$ has

A. Uniform distribution

$$X \sim \mathsf{Unif}(a,b)$$
 $f_X(x|a,b) = rac{1}{b-a}, \ \ a < x < b.$

$$Var(X) =$$

E(X) =

$$M_X(t) =$$

• If $U \sim \text{Unif}(0,1)$, then X = a + (b-a)U has uniform distribution on (a,b).

B. Gamma distribution

$$X \sim \mathsf{Gamma}(\alpha, \beta)$$

$$f_X(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}, \ x>0, \ \alpha>0, \ \beta>0.$$

 α : Shape parameter β : Scale parameter

Γ function

1.
$$\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$$
, $\alpha > 0$

2.
$$\Gamma(\alpha+1) = \int_0^\infty t^\alpha e^{-t} dt = \alpha \int_0^\infty t^{\alpha-1} e^{-t} dt = \alpha \Gamma(\alpha)$$

3.
$$\Gamma(1) = 1$$

4.
$$\Gamma(n) = (n-1)!$$
, for positive integer n .

B. Gamma distribution: [Example 3.3.1 Gamma - Poisson Relationship]

Let $X \sim \text{Gamma}(\alpha, \beta)$, $Y \sim \text{Poisson}(x/\beta)$. Then we have

$$P(X \le x | \alpha, \beta) = P(Y \ge \alpha | \beta)$$

(See Example 3.1.1 for the recursive calculation.)

$$EX = \alpha \beta$$
 , $Var(X) = \alpha \beta^2$

$$M_X(t) = \frac{1}{(1-eta t)^{lpha}}, \quad t < \frac{1}{eta}$$

B. Gamma distribution: χ^2 Distribution

- Special gamma distribution
- 1. $X \sim \chi^2(p)$: χ^2 distribution with df p.

$$\chi^2(p)\equiv {\sf Gamma}\left(lpha=rac{p}{2},eta=2
ight)$$

$$EX =$$

$$Var(X) =$$

$$M_X(t) =$$

B. Gamma distribution: Exponential Distribution

2. $X \sim \text{Exp}(\beta)$: Exponential distribution.

$$\mathsf{Exp}(eta) \equiv \mathsf{Gamma}\left(lpha = 1, eta
ight)$$

$$F_X(x|\beta) = 1 - \exp[-x/\beta], \quad x > 0$$

$$EX =$$

$$Var(X) =$$

$$M_X(t) =$$

B. Gamma distribution: Exponential Distribution

: Used to describe the distribution of time required for the first event

: Memoryless properties For a give time *a*,

$$P(X > a + t | X > a) = P(X > t).$$

Conditional probability of waiting additional time t after waiting a is the same as the unconditional probability of waiting t. (See page 101.)

C. Normal distribution

C. Normal distribution

One of the most important distribution

$$X \sim N(\mu, \sigma^2)$$

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right],$$
$$-\infty < x < \infty, \quad -\infty < \mu < \infty, \quad \sigma^2 > 0$$
$$1 \stackrel{?}{=} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right] dx$$

Or, equivalently, (by setting $z = (x - \mu)/\sigma$)

$$1 \stackrel{?}{=} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}z^2\right] dz$$

(Use polar coordinate.)

C. Normal distribution

$$M_X(t) = \exp\left[\mu t + rac{1}{2}\sigma^2 t^2
ight], \quad \textit{EX} = \qquad \quad , \quad \textit{Var}(X) =$$

ullet Standard normal distribution: $\mathcal{N} \sim (0,1)$ If $X \sim (\mu,\sigma^2)$, then

$$Z = rac{X - \mu}{\sigma} \sim N(0, 1).$$

$$F_X(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^2\right] dt$$
$$= \int_{-\infty}^{(x-\mu)/\sigma} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z^2}{2}\right] dz = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

C. Normal distribution

• Often used as an approximated distribution of a certain RV. For example, let $X \sim \text{Binomial}(n,p)$. then under the suitable conditions, X is approximately distributed as $N(\mu = np, \sigma^2 = np(1-p))$. Let n=20 and p=0.5. Then $X \sim \text{Binomial}(20,0.5)$ can be approximated by $Y \sim N(10,5)$.

$$P(X \le 12) = \sum_{x=0}^{12} {20 \choose x} (0.5)^{20} = 0.8684.$$

$$P(Y \le 12) = P\left(Z \le \frac{12 - 10}{\sqrt{5}}\right) = 0.8133.$$

Not so good approximation \rightarrow Need continuity correction

$$P(X \le 12) = P(X \le 12.5) \approx P(Y \le 12.5) = 0.8686.$$

C. Normal distribution

10,000 generated binomial values: Mean=10.02 and Variance=4.99

C. Normal distribution

• $\chi^2(1)$ can be obtained from N(0,1): Let $Y=Z^2$, where $Z\sim N(0,1)$. Then

$$F_Y(y) = P(Z^2 \le y)$$

$$= P(-\sqrt{y} \le Z \le \sqrt{y})$$

$$= F_Z(\sqrt{y}) - F_Z(-\sqrt{y})$$

Then,

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_Z(\sqrt{y})/(2\sqrt{y}) + f_Z(-\sqrt{y})/(2\sqrt{y})$$

D. Beta distribution

$$X \sim \operatorname{Beta}(\alpha, \beta)$$

$$f_X(x|\alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 < x < 1, \ \alpha > 0, \ \beta > 0.$$

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

$$FX' =$$

$$\textit{EX} = \qquad , \textit{Var}(X) = \\ \text{If } \alpha = \beta = 1 \text{ then } X \sim \textit{U}(0,1) \\$$

3.4. Exponential Family

Definition

A family pdf pdf (or pmf) is called an exponential family if it can be expressed as

$$f_X(x|\theta) = h(x)c(\theta) \exp \left[\sum_{i=1}^k w_i(\theta)t_i(x)\right],$$

where h(x), $t_1(x)$, \cdots , $t_k(x)$ are real-valued function of x alone, $c(\theta)$, $w_1(\theta)$, \cdots , $w_k(\theta)$ are real valued function of θ only.

3.4. Exponential Family

 \triangleright Example: $X \sim \text{Binomial}(n, p)$. Known n.

$$f_X(x|p) = \binom{n}{x} p^x (1-p)^{(n-x)}$$

 \triangleright Example: $X \sim N(\mu, \sigma^2)$.

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

3.4. Exponential Family

 \triangleright Example: $X \sim \text{Geometric}(p)$.

$$f_X(x|p) = p(1-p)^{x-1}$$

 \triangleright Example: $X \sim \mathsf{Gamma}(\alpha, \beta)$.

$$f_X(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$$

Theorem

Let f(x) be any pdf and let $\mu \in \mathcal{R}$ and $\sigma > 0$ be given constants. Then the function

$$g(x|\mu,\sigma) = \frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$$

is a pdf.

Definition

Let f(x) be any pdf. Then the family of pdfs $f(x - \mu)$, $-\infty < \mu < \infty$, is called the *location family* with standard pdf f(x) and μ is called the *location parameter* for the family.

$$\triangleright$$
 Example: $f(x|\eta) = \exp[-(x-\eta)], x > \eta$

Used in life-testing application. $\boldsymbol{\eta}$ is often called threshold parameter.

• Location parameter is often related with a measure of central tendency of distribution.

ightharpoonup Example: $X \sim N(\mu, 1)$

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(x-\mu)^2\right]$$

$$f_X(x|\mu,\sigma^2) = \frac{1}{2} \exp[-|x-\eta|]$$

 $\mu,~\eta$ are mean, mode, median of distribution

Definition

Let f(x) be any pdf. Then the family of pdfs $(1/\sigma)f(x/\sigma)$, $0 < \sigma$, is called the *scale family* with standard pdf f(x) and σ is called the *scale parameter* for the family.

• The scale parameter σ either stretches $(\sigma > 1)$ or contracts $(\sigma < 1)$ the graph f(x) while still maintaining the basic shape of the distribution.

 \triangleright Examples: $X \sim N(0, \sigma^2)$, $X \sim \exp(\beta)$

Definition

Let f(x) be any pdf. Then the family of pdfs $(1/\sigma)f[(x-\mu)/\sigma]$, $-\infty < \mu < \infty$, $0 < \sigma$, is called the *location-scale family* with standard pdf f(x) and μ is called the *location parameter* and σ is called the *scale parameter* for the family.

 \triangleright Example: Standard distribution: $f(x) = \exp(-x)$, x > 0.

Location family:
$$e^{-(x-\eta)}$$
, $\eta > 0$, $x > \eta$

Scale family:
$$\frac{1}{\beta}e^{-x/\beta}$$
, $\beta > 0$, $x > 0$

Location-Scale family:
$$\frac{1}{\beta}e^{-(x-\eta)/\beta}, \quad \eta > 0, \quad \beta > 0, \quad x > \eta$$

Theorem

Let $f(\cdot)$ be any pdf. Let μ be any real number and let σ be any positive real number. Then X is a random variable with pdf

$$\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$$

if and only if there exists a random variable Z with pdf f(z) and $X = \sigma Z + \mu$.

Theorem

Let $Z \sim f(z)$ and assume E(Z) and Var(Z) exist. If X is a RV with pdf

$$\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$$

then

$$E(X) = \sigma E(Z) + \mu$$
, $Var(X) = \sigma^2 Var(Z)$.

If
$$E(Z) = 0$$
 and $Var(Z) = 1$ then $EX = \mu$ and $Var(X) = \sigma^2$.

3.6. Inequalities and Identities

3.6.1. Probability Inequality

Theorem (Chebychev's Inequality)

Let X be a random variable and let g(x) be a nonnegative function. Then, for any r > 0,

$$P[g(X) \ge r] \le \frac{E[g(X)]}{r}$$
.

3.6. Inequalities and Identities

3.6.1. Probability Inequality

Theorem

If
$$P[Y \ge 0] = 1$$
 and $P[Y = 0] < 1$, then for any $r > 0$

$$P[Y \ge r] \le \frac{EY}{r}$$

with equality if and only if

$$P[Y = r] = p = 1 - P[Y = 0], 0$$

3.6. Inequalities and Identities

3.6.2. Identity [Lemma 3.6.5 Stein's Lemma]

Lemma

 $X \sim N(\mu, \sigma^2)$. Let g be a differentiable function satisfying $E[|g'(x)|] < \infty$. Then

$$E[g(X)(X - \mu)] = \sigma^2 E[g'(X)].$$

$$EX^3 =$$