Package 'isogeochem'

October 6, 2021

```
Type Package
Title Tools For Carbonate Stable Isotope Geochemistry
Version 1.0.7
Date 2021-10-06
Description This toolbox makes working with carbonate oxygen,
     carbon, and clumped isotope data reproducible and straightforward.
     You can quickly calculate isotope fractionation factors,
     and apply paleothermometry equations.
License GPL (>= 3)
URL https://github.com/davidbajnai/isogeochem
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Suggests shades,
     viridisLite,
     knitr,
     rmarkdown,
     devtools,
     spelling,
     testthat (>= 3.0.0),
     covr
VignetteBuilder knitr
Imports stats,
     graphics,
     grDevices
Depends R (>= 2.10)
BugReports https://github.com/davidbajnai/isogeochem/issues
Language en-US
Config/testthat/edition 3
```

2 a13_CO2g_CO2aq

R topics documented:

	a13_CO2g_CO2aq	2
	a18_CO2acid_c	3
	a18_CO2aq_H2O	4
	a18_CO2g_H2O	5
	a18_CO3_H2O	6
	a18_c_H2O	7
	a18_H2O_OH	9
	a18_HCO3_H2O	10
	a_A_B	11
	A_from_a	12
	B_from_a	12
	d17O_c	13
	d18O_c	14
	d18O_H2O	15
	D47	16
	D48	17
	devilshole	18
	epsilon	19
	GTS2020	20
	LR04	21
	-	21
	prime	22
	temp_d18O	23
	1 =	24
	temp_D48	25
		26
	to_VSMOW	
	unprime	28
	– 1	29
	X_DIC	
	york_fit	
	york_plot	31
Index		34

a13_C02g_C02aq

13C/12C fractionation factor between CO2(g) and CO2(aq)

Description

a13_C02g_C02aq() calculates the 13C/12C fractionation factor between gaseous and dissolved CO2.

Usage

a13_C02g_C02aq(temp)

Arguments

temp

Temperature ($^{\circ}$ C).

a18_CO2acid_c

Details

$$\alpha_{CO2(g)/CO2(aq)}^{13} = (\frac{-1.18 + 0.0041 \times (T - 273.15)}{1000} + 1)^{-1}$$

Value

Returns the 13C/12C fractionation factor.

References

Vogel, J. C., Grootes, P. M., & Mook, W. G. (1970). Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschrift für Physik A: Hadrons and Nuclei, 230(3), 225-238. https://doi.org/10.1007/Bf01394688

See Also

Other fractionation_factors: a18_C02acid_c(), a18_C02aq_H20(), a18_C02g_H20(), a18_C03_H20(), a18_H20_OH(), a18_H20_OH(), a18_H20_OH(), a18_CH20(), a18_CH20(), a_A_B()

a18_C02acid_c

180/160 acid fractionation factor

Description

a18_C02acid_c() calculates the 18O/16O fractionation factor between CO2 produced from acid digestion and carbonate.

Usage

```
a18_CO2acid_c(temp, min)
```

Arguments

min Mineralogy. Options are "calcite" and "aragonite".

Details

calcite (Kim et al. 2015):

$$\alpha_{CO2acid/calcite}^{18} = e^{(3.48 \times \frac{1}{T} - 0.00147)}$$

aragonite (Kim et al. 2007):

$$\alpha_{CO2acid/aragonite}^{18} = e^{(3.39 \times \frac{1}{T} - 0.00083)}$$

Value

Returns the 18O/16O fractionation factor.

4 a18_CO2aq_H2O

References

Sharma, T., and Clayton, R. N. (1965). Measurement of ratios of total oxygen of carbonates. Geochimica et Cosmochimica Acta, 29(12), 1347-1353. https://doi.org/10.1016/0016-7037(65) 90011-6

Kim, S.-T., Mucci, A., and Taylor, B. E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246(3-4), 135-146. https://doi.org/10.1016/j.chemgeo.2007.08.005

Kim, S.-T., Coplen, T. B., and Horita, J. (2015). Normalization of stable isotope data for carbonate minerals: Implementation of IUPAC guidelines. Geochimica et Cosmochimica Acta, 158, 276-289. https://doi.org/10.1016/j.gca.2015.02.011

See Also

```
Other fractionation_factors: a13_C02g_C02aq(), a18_C02aq_H20(), a18_C02g_H20(), a18_C03_H20(), a18_H20_OH(), a18_H20_OH(), a18_H20_OH(), a18_CH20(), a
```

Examples

```
a18_CO2acid_c(temp = 90, min = "calcite")
a18_CO2acid_c(temp = 72, min = "aragonite")
```

a18_C02aq_H20

180/160 fractionation factor between CO2(aq) and H2O(l)

Description

a18_C02_H20() calculates the 18O/16O fractionation factor between dissolved CO2 and liquid water.

Usage

```
a18_C02aq_H20(temp)
```

Arguments

temp

Temperature (°C).

Details

$$\alpha_{CO2(aq)/H2O(l)}^{18} = e^{2.52 \times \frac{1000}{T^2} + 0.01212}$$

Value

Returns the 18O/16O fractionation factor.

References

Beck, W. C., Grossman, E. L., & Morse, J. W. (2005). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochimica et Cosmochimica Acta, 69(14), 3493-3503. https://doi.org/10.1016/j.gca.2005.02.003

a18_CO2g_H2O 5

See Also

Other fractionation_factors: a13_C02g_C02aq(), a18_C02acid_c(), a18_C02g_H20(), a18_C03_H20(), a18_H20_OH(), a18_H20_OH(), a18_H20_OH(), a18_C_H20(), a_A_B()

a18_C02g_H20

180/160 fractionation factor between CO2(g) and H2O(l)

Description

a18_C02_H20() calculates the 18O/16O fractionation factor between gaseous CO2 and liquid water.

Usage

a18_C02g_H20(temp)

Arguments

temp

Temperature (°C).

Details

$$\alpha_{CO2(g)/H2O(l)}^{18} = (17.604 \times \frac{1}{T} - 0.01793) + 1$$

Value

Returns the 18O/16O fractionation factor.

References

Brenninkmeijer, C. A. M., Kraft, P., & Mook, W. G. (1983). Oxygen isotope fractionation between CO2 and H2O. Chemical Geology, 41, 181-190. https://doi.org/10.1016/S0009-2541(83) 80015-1

See Also

Other fractionation_factors: a13_C02g_C02aq(), a18_C02acid_c(), a18_C02aq_H20(), a18_C03_H20(), a18_H20_OH(), a18_H20_OH(), a18_H20_OH(), a18_CH20(), a18_CH20(), a2A_B()

6 a18_CO3_H2O

a18_C03_H20

180/160 fractionation factor between CO3(2-) and H2O

Description

a18_C03_H20() calculates the 18O/16O fractionation factor between carbonate ion CO3(2-) and water.

Usage

```
a18_C03_H20(temp)
```

Arguments

temp

Temperature (°C).

Details

$$\alpha_{CO3(2-)/H2O}^{18} = e^{2.39 \times \frac{1000}{T^2} - 0.00270}$$

The equation above and in the function is the uncorrected equation in Beck et al. (2005). They experimentally determined the fractionation factor using BaCO3 precipitation experiments. However, they applied the acid fractionation factor of calcite during the data processing and not that of BaCO3. The acid fractionation factor of BaCO3 is not known accurately, which may result in a bias of up to 1% in the calculated 1000lna values.

Value

Returns the 18O/16O fractionation factor.

References

Beck, W. C., Grossman, E. L., & Morse, J. W. (2005). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochimica et Cosmochimica Acta, 69(14), 3493-3503. https://doi.org/10.1016/j.gca.2005.02.003

See Also

```
Other fractionation_factors: a13_C02g_C02aq(), a18_C02acid_c(), a18_C02aq_H20(), a18_C02g_H20(), a18_H20_OH(), a18_H20_OH(), a18_H20_OH(), a18_C_H20(), a_A_B()
```

7 a18_c_H2O

a18_c_H20

180/160 fractionation factor between carbonate and water

Description

a18_c_H20() calculates the 18O/16O fractionation factor between carbonate and water.

Usage

Arguments

Carbonate growth temperature (°C). temp

Mineralogy. Options are "calcite", "aragonite", apatite, siderite, and min

"dolomite".

Equation used for the calculations. See details. eq

Details

Options for eq if min = "calcite":

"ONei169": O'Neil et al. (1969), modified by Friedman and O'Neil (1977):

$$\alpha_{calcite/water}^{18} = e^{(2.78 \times \frac{1000}{T^2} - 0.00289)}$$

"K097-orig": Kim and O'Neil (1997):

$$\alpha_{calcite/water}^{18} = e^{(18.03 \times \frac{1}{T} - 0.03242)}$$

NOTE: The "KO97-orig" equation should only be applied to data that considers a CO2(acid)/calcite AFF as in Kim & O'Neil (1997), i.e., 10.44 at 25 °C.

"K097": Kim and O'Neil (1997), reprocessed here to match the IUPAC-recommended AFF as in Kim et al. (2007, 2015):

$$\alpha_{calcite/water}^{18} = e^{(18.04 \times \frac{1}{T} - 0.03218)}$$

"Coplen07": Coplen (2007):

$$\alpha_{calcite/water}^{18} = e^{(17.4 \times \frac{1}{T} - 0.0286)}$$

"Tremaine11": Tremaine et al. (2011):

$$\alpha_{calcite/water}^{18} = e^{(16.1 \times \frac{1}{T} - 0.0246)}$$

"Watkins13": Watkins et al. (2013):

$$\alpha_{calcite/water}^{18} = e^{(17.747 \times \frac{1}{T} - 0.029777)}$$

8 a18_c_H2O

"Daeron19": Daëron et al. (2019):

$$\alpha_{calcite/water}^{18} = e^{(17.57 \times \frac{1}{T} - 0.02913)}$$

Options for eq if min = "aragonite":

"GK86": Grossman and Ku (1986), modified by Dettman et al. (1999):

$$\alpha_{aragonite/water}^{18} = e^{(2.559 \times \frac{1000}{T^2} + 0.000715)}$$

"Kim07": Kim et al. (2007):

$$\alpha_{aragonite/water}^{18} = e^{(17.88 \times \frac{1}{T} - 0.03114)}$$

Options for eq if min = "apatite". Apatite refers to apatite-bound carbonate.

"Lecuyer10": Lécuyer et al. (2010):

$$\alpha_{apatite/water}^{18} = e^{(25.19 \times \frac{1}{T} - 0.05647)}$$

Options for eq if min = "siderite":

"vanDijk18": van Dijk et al. (2018):

$$\alpha_{siderite/water}^{18} = e^{(19.67 \times \frac{1}{T} - 0.03627)}$$

Options for eq if min = "dolomite":

"Vasconcelos05": Vasconcelos et al. (2005):

$$\alpha_{dolomite/water}^{18} = e^{(2.73 \times \frac{1000}{T^2} + 0.00026)}$$

Value

Returns the 18O/16O fractionation factor.

References

O'Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12), 5547-5558. https://doi.org/10.1063/1.1671982

Grossman, E. L., & Ku, T. L. (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology, 59(1), 59-74. https://doi.org/10.1016/0009-2541(86) 90044-6

Kim, S.-T., & O'Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16), 3461-3475. https://doi.org/10.1016/S0016-7037(97)00169-5

Dettman, D. L., Reische, A. K., & Lohmann, K. C. (1999). Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae). Geochimica et Cosmochimica Acta, 63(7-8), 1049-1057. https://doi.org/10.1016/s0016-7037(99)00020-4

Vasconcelos, C., McKenzie, J. A., Warthmann, R., & Bernasconi, S. M. (2005). Calibration of the d18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33(4), 317-320. https://doi.org/10.1130/g20992.1

a18_H2O_OH

Kim, S.-T., Mucci, A., & Taylor, B. E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246(3-4), 135-146. https://doi.org/10.1016/j.chemgeo.2007.08.005

Coplen, T. B. (2007). Calibration of the calcite—water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochimica et Cosmochimica Acta, 71(16), 3948-3957. https://doi.org/10.1016/j.gca.2007.05.028

Lécuyer, C., Balter, V., Martineau, F., Fourel, F., Bernard, A., Amiot, R., et al. (2010). Oxygen isotope fractionation between apatite-bound carbonate and water determined from controlled experiments with synthetic apatites precipitated at 10–37°C. Geochimica et Cosmochimica Acta, 74(7), 2072-2081. https://doi.org/10.1016/j.gca.2009.12.024

Tremaine, D. M., Froelich, P. N., & Wang, Y. (2011). Speleothem calcite farmed in situ: Modern calibration of d18O and d13C paleoclimate proxies in a continuously-monitored natural cave system. Geochimica et Cosmochimica Acta, 75(17), 4929-4950. https://doi.org/10.1016/j.gca.2011.06.005

Watkins, J. M., Nielsen, L. C., Ryerson, F. J., & DePaolo, D. J. (2013). The influence of kinetics on the oxygen isotope composition of calcium carbonate. Earth and Planetary Science Letters, 375, 349-360. https://doi.org/10.1016/j.epsl.2013.05.054

van Dijk, J., Fernandez, A., Müller, I. A., Lever, M., & Bernasconi, S. M. (2018). Oxygen isotope fractionation in the siderite-water system between 8.5 and 62 °C. Geochimica et Cosmochimica Acta, 220, 535-551. https://doi.org/10.1016/j.gca.2017.10.009

Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., et al. (2019). Most Earth-surface calcites precipitate out of isotopic equilibrium. Nature Communications, 10, 429. https://doi.org/10.1038/s41467-019-08336-5

See Also

```
Other fractionation_factors: a13_C02g_C02aq(), a18_C02acid_c(), a18_C02aq_H20(), a18_C02g_H20(), a18_C03_H20(), a18_H20_OH(), a18_H203_H20(), a_A_B()
```

Examples

```
a18_c_H20(temp = 25, min = "calcite", eq = "Coplen07")
a18_c_H20(temp = 25, min = "aragonite", "GK86")
```

a18_H20_OH

180/160 fractionation factor between water and hydroxide ion

Description

a18_H20_OH() calculates the 18O/16O fractionation factor between water and aqueous hydroxide ion.

Usage

```
a18_H20_OH(temp, eq)
```

10 a18_HCO3_H2O

Arguments

temp Temperature (°C).

eq Equation used for the calculations.

• Z20-X3LYP: the theoretical X3LYP/6-311+G(d,p) equation of Zeebe (2020).

• Z20-MP2: the theoretical MP2/aug-cc-pVDZ equation of Zeebe (2020).

Value

Returns the 18O/16O fractionation factor.

References

Zeebe, R. E. (2020). Oxygen isotope fractionation between water and the aqueous hydroxide ion. Geochimica et Cosmochimica Acta, 289, 182-195. https://doi.org/10.1016/j.gca.2020.08.025

See Also

```
Other fractionation_factors: a13_C02g_C02aq(), a18_C02acid_c(), a18_C02aq_H20(), a18_C02g_H20(), a18_C03_H20(), a18_HC03_H20(), a18_c_H20(), a_A_B()
```

Examples

```
a18_{H20_{OH}(temp = 90, eq = "Z20_{X3LYP"})}
```

a18_HC03_H20

180/160 fractionation factor between HCO3(-) and H2O

Description

a18_HC03_H20() calculates the 18O/16O fractionation factor between bicarbonate ion HCO3(-) and water.

Usage

```
a18_HC03_H20(temp)
```

Arguments

temp

Temperature (°C).

Details

$$\alpha_{HCO3(-)/H2O}^{18} = e^{2.59 \times \frac{1000}{T^2} + 0.00189}$$

The equation above and in the function is the uncorrected equation in Beck et al. (2005). They experimentally determined the fractionation factor using BaCO3 precipitation experiments. However, they applied the acid fractionation factor of calcite during the data processing and not that of BaCO3. The acid fractionation factor of BaCO3 is not known accurately, which may result in a bias of up to 1% in the calculated 1000lna values.

a_A_B

Value

Returns the 18O/16O fractionation factor.

References

Beck, W. C., Grossman, E. L., & Morse, J. W. (2005). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochimica et Cosmochimica Acta, 69(14), 3493-3503. https://doi.org/10.1016/j.gca.2005.02.003

See Also

```
Other fractionation_factors: a13_C02g_C02aq(), a18_C02acid_c(), a18_C02aq_H20(), a18_C02g_H20(), a18_C03_H20(), a18_H20_OH(), a18_c_H20(), a_A_B()
```

a_A_B

Isotope fractionation factor between A and B

Description

a_A_B() calculates the isotope fractionation factor.

Usage

$$a_AB(A, B)$$

Arguments

A Isotope delta value of A (%*o*).

B Isotope delta value of B (%).

Details

$$\alpha^i E_{A/B} = \frac{\delta^i E_A + 1}{\delta^i E_B + 1}$$

Value

Returns the isotope fractionation factor.

See Also

A_from_a() calculates the isotope delta value of A.

B_from_a() calculates the isotope delta value of B.

Other fractionation_factors: a13_C02g_C02aq(), a18_C02acid_c(), a18_C02aq_H20(), a18_C02g_H20(), a18_C03_H20(), a18_H20_OH(), a18_H20_OH(), a18_CH20()

```
a_AB(A = 10, B = 12)
```

B_from_a

A_from_a

Isotope delta from fractionation factor

Description

A_from_a() calculates the isotope delta value of A from the isotope fractionation factor and the isotope delta value of B.

Usage

```
A_from_a(a, B)
```

Arguments

- a Isotope fractionation factor between A and B.
- B Isotope delta value of B (%0).

Value

Returns the isotope delta value of B (%o).

See Also

- a_A_B() calculates the isotope fractionation factor between A and B.
- B_from_a() calculates the isotope delta value of B.

Examples

```
A_from_a(a = 1.033, B = -10)
```

B_from_a

Isotope delta from fractionation factor

Description

B_from_a() calculates the isotope delta value of B from the isotope fractionation factor and the isotope delta value of A.

Usage

```
B_from_a(a, A)
```

Arguments

- a Isotope fractionation factor between A and B.
- A Isotope delta value of A (%).

d17O_c

Value

Returns the Isotope delta value of B (%0).

See Also

a_A_B() calculates the isotope fractionation factor between A and B.

A_from_a() calculates the isotope delta value of A.

Examples

```
B_from_a(a = 1.033, A = 10)
```

d170_c

Triple oxygen isotope values

Description

d170_c() calculates the equilibrium d18O, d17O, and D17O values of a calcite grown at a given temperature.

Usage

```
d170_c(temp, d180_H20_VSMOW, eq18 = "Daeron19", lambda = 0.528)
```

Arguments

temp Calcite growth temperature ($^{\circ}$ C).

d180_H20_VSMOW Water d18O value expressed on the VSMOW scale (%e).

eq18 Equation used to calculate the 18O/16O fractionation factor between calcite and

water. Options are like those for calcite in a18_c_H20() with "Daeron19" being

here the default.

1ambda Triple oxygen isotope reference slope. Default 0.528.

Details

$$\theta_{A/B} = \frac{\alpha_{A/B}^{17}}{\alpha_{A/B}^{18}}$$

$$\delta'^{17}O_{H2O,VSMOW}=\beta\times\delta'^{18}O_{H2O,VSMOW}+\gamma$$
 , where $\beta=0.528$ and $\gamma=0$

$$\Delta^{17}O_{CaCO3,VSMOW} = \delta'^{17}O_{CaCO3,VSMOW} - \lambda \times \delta'^{18}O_{CaCO3,VSMOW}$$

14 d18O_c

Value

Returns a data frame:

- 1. d18O value of the carbonate expressed on the VSMOW scale (%0).
- 2. d18O value of the carbonate expressed on the VSMOW scale ($\%_o$).
- 3. D17O value of the carbonate expressed on the VSMOW scale (%0).

References

```
Guo, W., & Zhou, C. (2019). Triple oxygen isotope fractionation in the DIC-H2O-CO2 system: A numerical framework and its implications. Geochimica et Cosmochimica Acta, 246, 541-564. https://www.doi.org/10.1016/j.gca.2018.11.018
```

See Also

```
Other equilibrium_carbonate: D47(), D48(), d180_c()
```

Examples

```
d170\_c(temp = 10, d180\_H20\_VSMOW = -1) # Returns the data frame (length = 3) prime(d170\_c(temp = 10, d180\_H20\_VSMOW = -1)[, 2]) # Returns the d'170 value d170\_c(temp = 10, d180\_H20\_VSMOW = -1)[, 3] # Returns the D170 value
```

d180_c

Equilibrium carbonate d180 value

Description

d180_c() calculates the equilibrium d18O value of a carbonate grown at a given temperature.

Usage

```
d180_c(temp, d180_H20_VSMOW, min, eq)
```

Arguments

```
temp Carbonate growth temperature (°C).

d180_H20_VSMOW Water d18O value expressed on the VSMOW scale (‰).

min Mineralogy. Options are as in a18_c_H20().

eq Equation used for the calculations. Options depend on mineralogy and are listed in a18_c_H20().
```

Value

Returns the equilibrium carbonate d18O value expressed on the VSMOW scale (%0).

Note

```
Use to_VSMOW() and to_VPDB() to convert between the VSMOW and VPDB scales.
```

d18O_H2O

References

References are listed in the description of a18_c_H20().

See Also

d180_H20() calculates the d18O value of the ambient water from the d18O value of a carbonate and its growth temperature.

```
Other equilibrium_carbonate: D47(), D48(), d170_c()
```

Examples

d180_H20

Water d180 value

Description

 $d180_H20()$ calculates the d18O value of the ambient water from the d18O value of a carbonate and its growth temperature.

Usage

```
d180_H20(temp, d180_c_VSMOW, min, eq)
```

Arguments

temp	Carbonate growth temperature (°C).
d180_c_VSMOW	Carbonate d18O value expressed on the VSMOW scale (%o).
min	Mineralogy. Options are "calcite", "aragonite", and "dolomite".
eq	Equation used to calculate the equilibrium 18O/16O oxygen isotope fractionation factor between carbonate and water. Options depend on mineralogy and listed in a18_c_H2O().

Value

Returns the water d18O value expressed on the VSMOW scale (%0).

Note

Use to_VSMOW() and to_VPDB() to convert between the VSMOW and VPDB scales.

References

References are listed in the description of a18_c_H20().

16 D47

See Also

d180_c() calculates the equilibrium d18O value of a carbonate grown at a given temperature. temp_d18O() calculates growth temperatures from oxygen isotope data.

Examples

```
d180_H2O(temp = 33.7, d180_c_VSMOW = 14.58,
    min = "calcite", eq = "Coplen07")
d180_H2O(temp = 25, d180_c_VSMOW = to_VSMOW(-7.47),
    min = "aragonite", eq = "GK86")
```

D47

Equilibrium carbonate D47 value

Description

D47() calculates the equilibrium carbonate D47 value for a given temperature.

Usage

```
D47(temp, eq)
```

Arguments

temp

Carbonate growth temperature (°C).

eq

Equation used for the calculation.

- "Petersen19": the synthetic-only composite IUPAC-parameter calibration of Petersen et al. (2019).
- "Anderson21": the I-CDES90 calibration of Anderson et al. (2021).
- "Fiebig21": the CDES90 calibration of Fiebig et al. (2021).

Details

"Petersen19":

$$\Delta_{47,CDES90} = 0.0383 \times \frac{10^6}{T^2} + 0.170$$

"Anderson21":

$$\Delta_{47,I-CDES90} = 0.0391 \times \frac{10^6}{T^2} + 0.154$$

"Fiebig21":

$$\Delta_{47,CDES90} = 1.038 \times (-5.897 \times \frac{1}{T} - 3.521 \times \frac{10^3}{T^2} + 2.391 \times \frac{10^7}{T^3} - 3.541 \times \frac{10^9}{T^4}) + 0.1856$$

Value

Returns the carbonate D47 value expressed on the CDES90 scale (%0).

D48

References

Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington, K. W., John, C. M., et al. (2019). Effects of improved 17O correction on interlaboratory agreement in clumped isotope calibrations, estimates of mineral-specific offsets, and temperature dependence of acid digestion fractionation. Geochemistry, Geophysics, Geosystems, 20(7), 3495-3519. https://www.doi.org/10.1029/2018GC008127

Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita, J., et al. (2021). A unified clumped isotope thermometer calibration (0.5–1100°C) using carbonate-based standardization. Geophysical Research Letters, 48(7), e2020GL092069. https://doi.org/10.1029/2020g1092069

Fiebig, J., Daëron, M., Bernecker, M., Guo, W., Schneider, G., Boch, R., et al. (2021). Calibration of the dual clumped isotope thermometer for carbonates. Geochimica et Cosmochimica Acta. https://www.doi.org/10.1016/j.gca.2021.07.012

See Also

temp_D47() calculates growth temperature from a D47 value.

Other equilibrium_carbonate: D48(), d170_c(), d180_c()

Examples

```
D47(temp = 33.7, eq = "Petersen19") # Returns 0.577
D47(temp = 33.7, eq = "Fiebig21") # Returns 0.571
```

D48

Equilibrium carbonate D47 value

Description

D48() calculates the equilibrium carbonate D48 value for a given temperature.

Usage

```
D48(temp, eq)
```

Arguments

temp Carbonate growth temperature (°C).

eq Equation used for the calculation.

- "Fiebig21": the CDES90 calibration of Fiebig et al. (2021).
- "Swart21": the CDES90 "PBLM1" calibration in Swart et al. (2021).

Details

"Fiebig21":

$$\Delta_{48,CDES90} = 1.028 \times (6.002 \times \frac{1}{T} - 1.299 \times \frac{10^4}{T^2} + 8.996 \times \frac{10^6}{T^3} - 7.423 \times \frac{10^8}{T^4}) + 0.1245$$

"Swart21":

$$\Delta_{48,CDES90} = 0.0142 \times \frac{10^6}{T^2} + 0.088$$

18 devilshole

Value

Returns the carbonate equilibrium D48 value expressed on the CDES90 scale (‰).

References

Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., et al. (2020). Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11, 4005. https://doi.org/10.1038/s41467-020-17501-0

Fiebig, J., Daëron, M., Bernecker, M., Guo, W., Schneider, G., Boch, R., et al. (2021). Calibration of the dual clumped isotope thermometer for carbonates. Geochimica et Cosmochimica Acta. https://www.doi.org/10.1016/j.gca.2021.07.012

Swart, P. K., Lu, C., Moore, E., Smith, M., Murray, S. T., & Staudigel, P. T. (2021). A calibration equation between D48 values of carbonate and temperature. Rapid Communications in Mass Spectrometry, 35(17), e9147. https://www.doi.org/10.1002/rcm.9147

See Also

```
Other equilibrium_carbonate: D47(), d170_c(), d180_c()
```

Examples

```
D48(temp = 33.7, eq = "Fiebig21") # Returns 0.237
D48(temp = 33.7, eq = "Swart21") # Returns 0.239
```

devilshole

Devils Hole carbonate d180 time series

Description

A dataset containing the d18O values of the "original" Devils Hole cores.

Usage

devilshole

Format

A data frame with 442 rows and 4 variables:

age Interpolated uranium-series age of the sample expressed as thousands of years before present (ka).

d18O_VSMOW Carbonate d18O value expressed on the VSMOW scale (%e).

d18O error Standard deviation on the d18O value.

core Name of the core (DHC2-8, DHC2-3, DH-11).

Source

```
https://doi.org/10.3133/ofr20111082
```

epsilon 19

References

Winograd, I. J., Landwehr, J. M., Coplen, T. B., Sharp, W. D., Riggs, A. C., Ludwig, K. R., & Kolesar, P. T. (2006). Devils Hole, Nevada, d18O record extended to the mid-Holocene. Quaternary Research, 66(2), 202-212. https://doi.org/10.1016/j.yqres.2006.06.003

See Also

Other "datasets": GTS2020, LR04

epsilon

Isotope fractionation value

Description

epsilon() converts isotope fractionation factors to isotope fractionation values.

Usage

epsilon(alpha)

Arguments

alpha

Isotope fractionation factor

Details

$$\epsilon^i E_{A/B} = \alpha^i E_{A/B} - 1$$

Value

Returns the isotope fractionation value (%0).

See Also

a_A_B() calculates the isotope fractionation factor between A and B.

```
epsilon(a18_H20_OH(25, "Z20-X3LYP"))
```

20 GTS2020

GTS2020	Oxygen isotope stratigraphy from the Geologic Time Scale 2020: macrofossils

Description

A dataset containing a compilation of d18O and d13C values of various macrofossils (bivalves, gastropods, belemnites, ammonites) together with information on their age, shell mineralogy, and the climate zone they represent. This dataset is a condensed version of the entire dataset presented in the Geologic Time Scale 2020. Specifically, the full dataset was filtered for those "select" d18O and d13C values that also have age information.

Usage

GTS2020

Format

A data frame with 9676 rows and 8 variables:

```
age Age of the sample expressed as millions of years before present (Ma).
d18O_VPDB Carbonate d18O value expressed on the VPDB scale (%e).
d13C_VPDB Carbonate d13C value expressed on the VPDB scale (%e).
mineralogy The mineralogy of the carbonate hard part.
group Taxonomic group of the sample (bivalve, gastropod, belemnite, ammonite).
```

clim_zone The climate zone the sample represents.

Source

```
https://download.pangaea.de/dataset/930093/files/GTS2020-App_10.2A.xlsx
```

References

```
Grossman, E. L., & Joachimski, M. M. (2020). Oxygen isotope stratigraphy. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), Geologic Time Scale 2020: Volume 1 (pp. 279-307): Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00010-3
```

See Also

```
Other "datasets": LR04, devilshole
```

LR04 21

LR04

A Pliocene-Pleistocene benthic foraminifera d180 stack

Description

A dataset containing the LR04 benthic d18O stack.

Usage

LR04

Format

A data frame with 2115 rows and 3 variables:

```
age Age of the sample expressed as thousands of years before present (ka). d18O_VPDB Carbonate d18O value expressed on the VPDB scale (‰).
```

d18O_error Standard error on the d18O value.

Source

```
https://lorraine-lisiecki.com/stack.html
```

References

Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20(1), PA1003. https://doi.org/10.1029/2004pa001071

See Also

```
Other "datasets": GTS2020, devilshole
```

mix_d170

Mixing curves in triple oxygen isotope space

Description

mix_d170() produces mixing curves between two endmembers (A and B) in triple oxygen isotope space (d18O vs. D17O).

Usage

```
mix_d170(d180_A, d170_A, d180_B, d170_B, lambda = 0.528)
```

Arguments

d180_A	d18O value of component A (%).
d170_A	d17O value of component A (%).
d180_B	d18O value of component B (%o).
d170_B	d17O value of component B (%o).
lambda	Triple oxygen isotope reference slope. Default 0.528.

22 prime

Value

Returns a data frame:

- 1. d18O value of the mixture at x% mixing (%).
- 2. d18O value of the mixture x% mixing (%0).
- 3. relative amount of component B in the mixture (%): from 100% A and 0% B to 0% A and 100% B.

See Also

d170_c() calculates equilibrium calcite d18O, d17O, and D17O values for a given temperature.

Examples

prime

Converting delta to delta prime

Description

prime() converts "classical delta" values to "delta prime" values.

Usage

prime(classical)

Arguments

classical

"Classical delta" values to be converted (%0).

Details

$$\delta'^{17}O = 1000 \times \ln(\frac{\delta^{17}O}{1000} + 1)$$

Value

Returns the "delta prime" value (%o).

See Also

unprime() converts "delta prime" values to "classical delta" values.

```
prime(10) # Return 9.950331
```

temp_d18O 23

tem	n	٦1	ΩΛ
ceiii	ν	₋u ı	οU

Oxygen isotope thermometry

Description

temp_d180() calculates carbonate growth temperature from oxygen isotope data.

Usage

```
temp_d180(d180_c_VSMOW, d180_H20_VSMOW, min, eq)
```

Arguments

```
d180_c_VSMOW Carbonate d18O value expressed on the VSMOW scale (%o).

d180_H20_VSMOW Water d18O value expressed on the VSMOW scale (%o).

min Mineralogy. Options are as in a18_c_H20().

eq Equation used for the calculations. Options depend on mineralogy and listed in a18_c_H20().
```

Value

Returns the carbonate growth temperature (°C).

Note

Use to_VSMOW() and to_VPDB() to convert between the VSMOW and VPDB scales.

References

References are listed in the description of a18_c_H20().

See Also

```
d180_c() calculates the equilibrium d18O value of a carbonate grown at a given temperature.
```

d180_H20() calculates the d18O value of the ambient water from the d18O value of a carbonate and its growth temperature.

```
Other thermometry: temp_D47(), temp_D48()
```

```
temp_d180(d180_c_VSMOW = 14.58, d180_H20_VSMOW = -13.54,
min = "calcite", eq = "Coplen07")
```

24 temp_D47

temp_D47

Clumped isotope thermometry

Description

temp_D47() calculates carbonate growth temperature from D47 value.

Usage

```
temp_D47(D47_CDES90, D47_error, eq)
```

Arguments

D47_CDES90 Carbonate D47 values expressed on the CDES90 scale (%*e*).

D47_error Error on the D47 value. Optional.

eq Equation used for the calculation. Options are as in D47().

Details

The D47 vs temperature equations are listed at D47().

Value

Returns the carbonate growth temperature ($^{\circ}$ C). If D47_error is specified temp_D47() returns a data frame.

References

References are listed at D47().

See Also

```
D47() calculates the equilibrium carbonate D47 value.
```

```
Other thermometry: temp_D48(), temp_d180()
```

```
temp_D47(D47_CDES90 = 0.577, eq = "Petersen19")
```

temp_D48 25

t_m	n	Π 48
tem	p	D48

Dual clumped isotope thermometry

Description

temp_D48() calculates carbonate growth temperature from D47 and D48 values.

Usage

```
temp_D48(
   D47_CDES90,
   D48_CDES90,
   D47_error,
   D48_error,
   ks,
   add = FALSE,
   col = "black",
   pch = 19
)
```

Arguments

D47_CDES90	Carbonate D47 values expressed on the CDES90 scale (%).
D48_CDES90	Carbonate D48 values expressed on the CDES90 scale (‰).
D47_error	Error on the D47 value. Optional.
D48_error	Error on the D48 value. Optional.
ks	Kinetic slope. Has to be negative!
add	Add graphics to an already existing plot? Default: FALSE.
col	Graphical parameter. Optional.
pch	Graphical parameter. Optional.

Details

The function calculates a D47 value as an intersect of two curves: the equilibrium D47 vs D48 curve from Fiebig et al. (2021) and the kinetic slope. The resulting D47 value is then converted to temperature using the temp_D47() function and the equilibrium D47_CDES90 vs temperature equation of Fiebig et al. (2021).

Value

Returns the carbonate growth temperature (°C). If both D47_error and D48_error are specified temp_D48() returns a data frame.

Contributors

The source code of this function contains elements from the reconPlots package, available at https://github.com/andrewheiss/reconPlots

26 to_VPDB

References

References are listed at D48() and D47().

See Also

D47() calculates the equilibrium carbonate D47 value. D48() calculates the equilibrium carbonate D48 value.

Other thermometry: temp_D47(), temp_d180()

Examples

```
temp_D48(0.617, 0.139, ks = -0.6)
temp_D48(0.546, 0.277, ks = -1)
```

to_VPDB

Converting isotope delta from VSMOW to VPDB

Description

to_VPDB() convert d18O value expressed on the VSMOW scale to the VPDB scale.

Usage

```
to_VPDB(d180_VSMOW, eq = "IUPAC")
```

Arguments

d180_VSMOW

d18O values expressed on the VSMOW scale (%0).

eq

Equation used for the conversion.

- "IUPAC" (default): the IUPAC recommended equation listed in Brand et al. (2014) and Kim et al. (2015).
- "Coplen83": the equation listed in Coplen et al. (1983) and the Hoefs book.

Details

The IUPAC recommended equation to convert between the scales is:

$$\delta^{18}O_{VPDB} = 0.97001 \times \delta^{18}O_{VSMOW} - 29.99$$

Value

Returns the d18O value expressed on the VPDB scale (%0).

References

References are listed at to_VSMOW().

to_VSMOW 27

See Also

to_VSMOW() converts d18O values expressed on the VPDB scale to the VSMOW scale.

Examples

```
to_VPDB(0)
to_VPDB(0, eq = "Coplen83")
```

to_VSMOW

Converting isotope delta from VPDB to VSMOW

Description

to_VSMOW() converts d18O value expressed on the VPDB scale to the VSMOW scale.

Usage

```
to_VSMOW(d180_VPDB, eq = "IUPAC")
```

Arguments

d180_VPDB

d18O values expressed on the VPDB scale (%0).

eq

Equation used for the conversion.

- "IUPAC" (default): the IUPAC recommended equation listed in Brand et al. (2014) and Kim et al. (2015).
- "Coplen83": the equation listed in Coplen et al. (1983) and the Hoefs book.

Details

The IUPAC recommended equation to convert between the scales is:

$$\delta^{18}O_{VSMOW} = 1.03092 \times \delta^{18}O_{VPDB} + 30.92$$

Value

Returns the d18O value expressed on the VSMOW scale (%0).

References

Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302, 236-238. https://doi.org/10.1038/302236a0

Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., & Prohaska, T. (2014). Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure and Applied Chemistry, 86(3), 425-467. https://doi.org/10.1515/pac-2013-1023

Kim, S.-T., Coplen, T. B., & Horita, J. (2015). Normalization of stable isotope data for carbonate minerals: Implementation of IUPAC guidelines. Geochimica et Cosmochimica Acta, 158, 276-289. https://doi.org/10.1016/j.gca.2015.02.011

28 unprime

See Also

to_VPDB() converts d18O values expressed on the VSMOW scale to the VPDB scale.

Examples

```
to_VSMOW(0)
to_VSMOW(0, eq = "Coplen83")
```

unprime

Converting delta prime to delta

Description

unprime() converts "delta prime" values to "classical delta" values.

Usage

```
unprime(prime)
```

Arguments

prime

"Delta prime" values to be converted (%0).

Details

$$\delta^{17}O = 1000 \times e^{(\frac{\delta'^{17}O}{1000} + 1)}$$

Value

Returns the "classical delta" value (%o).

See Also

prime() converts "classical delta" values to "delta prime" values.

```
unprime(9.950331) # Return 10
```

 X_{a} bsorption 29

X_absorption	Relative rates of CO2 absorption reactions
--------------	--

Description

X_absorption() calculates the relative abundance of the DIC species as a function of solution temperature, pH, and salinity.

Usage

```
X_absorption(temp, pH, S)
```

Arguments

temp	The temperature of the solution (°C).
рН	The pH of the solution.
S	The salinity of the solution (g/kg or ‰)

Details

```
X_hydration = ((kCO2 / (kCO2 + kOHxKw / aH)) * 100), where
```

- kCO2 is the rate constant for CO2 hydration from Johnson (1982)
- kOHxKw is the rate constant for CO2 hydroxylation x Kw from Schulz et al. (2006).
- aH is 10^(-pH)

Value

Returns a data frame with the relative rates of CO2 absorption reactions:

- Relative rate of CO2 hydration (%).
- Relative rate of CO2 hydroxylation (%).

References

```
Johnson, K. S. (1982). Carbon dioxide hydration and dehydration kinetics in seawater. Limnology and Oceanography, 27(5), 894-855. https://doi.org/10.4319/lo.1982.27.5.0849
```

Schulz, K. G., Riebesell, U., Rost, B., Thoms, S., & Zeebe, R. E. (2006). Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Marine Chemistry, 100(1-2), 53-65. https://doi.org/10.1016/j.marchem.2005.11.001

```
X_absorption(temp = 25, pH = 7, S = 30)
```

30 york_fit

X_DIC	Dissolved inorganic carbon species

Description

X_DIC() calculates the relative abundance of the DIC species as a function of solution temperature, pH, and salinity.

Usage

```
X_DIC(temp, pH, S)
```

Arguments

temp The temperature of the solution (${}^{\circ}C$).

pH The pH of the solution.

S The salinity of the solution (g/kg or ‰).

Value

Returns a data frame with the relative abundance of the DIC species:

- Relative abundance of dissolved CO2 (%).
- Relative abundance of bicarbonate ion (%).
- Relative abundance of carbonate ion (%).

Examples

```
X_DIC(temp = 25, pH = 7, S = 30)
```

york_fit

Error-considering linear regression

Description

york_fit() calculates the regression parameters of an error-considering linear regression.

Usage

```
york_fit(x, y, x_err, y_err, r = 0)
```

Arguments

X	vector of x values.	

y vector of y values. Has to be same the length as x.

x_err Error on the x values. Has to be same the length as x.

y_err Error on the y values. Has to be same the length as x.

r Correlation coefficient of x_err and y_err at each data point. Default: 0 (inde-

pendent errors). Has to be same the length as x. Optional.

york_plot 31

Details

Regression fitting method according to York et al. (2004). The algorithm is described in the appendix of Wacker et al. (2014).

Value

A list with regression parameters:

- · slope and its standard error
- intercept and its standard error
- weights of the points (normalized to 1)
- residual standard error (sigma)
- R2
- p-value (two-tailed t-test).

Contributors

Julian Tödter

References

York, D., Evensen, N. M., López Martínez, M., & De Basabe Delgado, J. (2004). Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics, 72(3), 367-375. https://doi.org/10.1119/1.1632486

Wacker, U., Fiebig, J., Tödter, J., Schöne, B. R., Bahr, A., Friedrich, O., et al. (2014). Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica et Cosmochimica Acta, 141, 127-144. https://doi.org/10.1016/j.gca.2014.06.004

Examples

```
york_fit(
  x = c(1, 2, 3),
  y = c(1.1, 1.9, 3.2),
  x_err = c(0.1, 0.2, 0.1),
  y_err = c(0.2, 0.1, 0.2))
```

york_plot

Regression confidence intervals

Description

york_plot() calculates and optionally plots the confidence intervals of an (error-considering) linear regression.

32 york_plot

Usage

```
york_plot(
    x,
    slope,
    slope_se,
    intercept,
    intercept_se,
    cl = 0.95,
    weights = -1,
    add = FALSE,
    col = "black"
)
```

Arguments

x values of the data points.

slope regression slope.

slope_se Standard error of the slope.

intercept regression intercept.

intercept_se Standard error of the intercept. cl Confidence level. Default: 0.95.

weights Weights of the data points. If given, mean & SD of x are computed with the

weights. Has to be same the length as x. Optional.

add Add graphics to an already existing plot? Default: FALSE.

col Graphical parameter. Optional.

Details

The algorithm is described in the appendix of Wacker et al. (2014).

Value

A list with regression parameters:

- slope and its standard error
- · intercept and its standard error
- weights of the points (normalized to 1)
- residual standard error (sigma)
- R2
- p-value (two-tailed t-test).

Contributors

Julian Tödter

References

Wacker, U., Fiebig, J., Tödter, J., Schöne, B. R., Bahr, A., Friedrich, O., et al. (2014). Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica et Cosmochimica Acta, 141, 127-144. https://doi.org/10.1016/j.gca.2014.06.004

york_plot 33

```
york_plot(
  x = c(1, 2, 3),
  slope = 1.06,
  slope_se = 1.60,
  intercept = -0.05,
  intercept_se = 0.34,
  cl = 0.98)
```

Index

* datasets	d180_c(), <i>16</i> , <i>23</i>
devilshole, 18	d180_H20, <u>15</u>
GTS2020, 20	d180_H20(), <i>15</i> , <i>23</i>
LR04, 21	D47, <i>14</i> , <i>15</i> , 16, <i>18</i>
* equilibrium_carbonate	D47(), 24, 26
d170_c, 13	D48, <i>14</i> , <i>15</i> , <i>17</i> , 17
d180_c, 14	D48(), 26
D47, 16	devilshole, 18, 20, 21
D48, 17	
* fractionation_factors	epsilon, 19
a13_C02g_C02aq, 2	
a18_c_H20, 7	GTS2020, <i>19</i> , 20, <i>21</i>
a18_C02acid_c, 3	1004 10 20 21
a18_C02aq_H20, 4	LR04, 19, 20, 21
a18_C02g_H20, 5	mix_d170, 21
a18_C03_H20, 6	IIIX_U170, 21
a18_H20_OH, 9	prime, 22
a18_HC03_H20, 10	prime(), 28
a_A_B, 11	pr 1mc(), 20
* thermometry	temp_d180, 23, 24, 26
temp_d180, 23	temp_d180(), <i>16</i>
temp_D47, 24	temp_D47, 23, 24, 26
temp_D48, 25	temp_D47(), <i>17</i> , <i>25</i>
55p_5 15, 2 5	temp_D48, 23, 24, 25
a13_C02g_C02aq, 2, 4–6, 9–11	to_VPDB, 26
a18_c_H20, <i>3</i> – <i>6</i> , <i>7</i> , <i>10</i> , <i>11</i>	to_VPDB(), <i>14</i> , <i>15</i> , <i>23</i> , <i>28</i>
a18_c_H20(), <i>13–15</i> , <i>23</i>	to_VSMOW, 27
a18_C02acid_c, 3, 3, 5, 6, 9–11	to_VSMOW(), 14, 15, 23, 26, 27
a18_C02aq_H20, <i>3</i> , <i>4</i> , 4, <i>5</i> , <i>6</i> , <i>9</i> – <i>11</i>	_
a18_C02g_H20, <i>3</i> – <i>5</i> , <i>5</i> , <i>6</i> , <i>9</i> – <i>11</i>	unprime, 28
a18_C03_H20, <i>3</i> –5, 6, <i>9</i> – <i>11</i>	unprime(), 22
a18_H20_OH, <i>3</i> – <i>6</i> , <i>9</i> , <i>9</i> , <i>11</i>	
a18_HC03_H20, <i>3</i> – <i>6</i> , <i>9</i> , <i>10</i> , 10, <i>11</i>	X_absorption, 29
a_A_B, <i>3</i> – <i>6</i> , <i>9</i> – <i>11</i> , 11	X_DIC, 30
a_A_B(), <i>12</i> , <i>13</i>	
A_from_a, 12	york_fit, 30
A_from_a(), 11, 13	york_plot, 31
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
B_from_a, 12	
B_from_a(), 11, 12	
d170_c, 13, <i>15</i> , <i>17</i> , <i>18</i>	
d170_c(), 22	
d180_c, <i>14</i> , 14, <i>17</i> , <i>18</i>	