Proof. The proof is adapted from Rudin [141] (Section 12.9). By the Cauchy–Schwarz inequality, since

$$|\langle x, y \rangle| \le ||x|| \, ||y|| \,,$$

we see that the sesquilinear map $(x,y) \mapsto \langle x,y \rangle$ on $E \times E$ is continuous. Let $\varphi \colon E \times E \to \mathbb{C}$ be the sesquilinear map given by

$$\varphi(u,v) = \langle f(u), v \rangle$$
 for all $u, v \in E$.

Since f is continuous and the inner product $\langle -, - \rangle$ is continuous, this is a continuous map. By Proposition 48.10, there is a unique linear map $f^* \colon E \to E$ such that

$$\langle f(u), v \rangle = \varphi(u, v) = \langle u, f^*(v) \rangle$$
 for all $u, v \in E$,

with $||f^*|| = ||\varphi||$.

We can also prove that $\|\varphi\| = \|f\|$. First, by definition of $\|\varphi\|$ we have

$$\begin{split} \|\varphi\| &= \sup \left\{ |\varphi(x,y)| \mid \|x\| \le 1, \ \|y\| \le 1 \right\} \\ &= \sup \left\{ |\langle f(x),y \rangle| \mid \|x\| \le 1, \ \|y\| \le 1 \right\} \\ &\le \sup \left\{ \|f(x)\| \|y\| \mid \|x\| \le 1, \|y\| \le 1 \right\} \\ &\le \sup \left\{ \|f(x)\| \mid \|x\| \le 1 \right\} \\ &= \|f\| \, . \end{split}$$

In the other direction we have

$$||f(x)||^2 = \langle f(x), f(x) \rangle = \varphi(x, f(x)) \le ||\varphi|| \, ||x|| \, ||f(x)||,$$

and if $f(x) \neq 0$ we get $||f(x)|| \leq ||\varphi|| ||x||$. This inequality holds trivially if f(x) = 0, so we conclude that $||f|| \leq ||\varphi||$. Therefore we have

$$\|\varphi\| = \|f\|,$$

as claimed, and consequently $||f^*|| = ||\varphi|| = ||f||$.

It is easy to show that the adjoint satisfies the following properties:

$$(f+g)^* = f^* + g^*$$
$$(\lambda f)^* = \overline{\lambda} f^*$$
$$(f \circ g)^* = g^* \circ f^*$$
$$f^{**} = f.$$

One can also show that $||f^* \circ f|| = ||f||^2$ (see Rudin [141], Section 12.9).

As in the Hermitian case, given two Hilbert spaces E and F, the above results can be adapted to show that for any linear map $f : E \to F$, there is a unique linear map $f^* : F \to E$ such that

$$\langle f(u),v\rangle_2=\langle u,f^*(v)\rangle_1$$

for all $u \in E$ and all $v \in F$. The linear map f^* is also called the adjoint of f.