0.1 Linguaggio

possiamo definire un linguaggio L su E un sottoinsieme di E^* tale che $L \subseteq E^*$. Per esempio, preso $E = \{a, b, c\}$, un linguaggio L potrebbe essere $L_1 = \{aa, cbc\}$. Un linguaggio può essere finito (vedi L_1), oppure infiniti (es. $L_2 = \{w \in E^* \mid w \text{ contiene lo stesso numero di } a e c\}$).

Preso un linguaggio $L\subseteq E^{\star},$ possiamo affermare che:

- 1. $\emptyset \subseteq L$;
- 2. $\varepsilon \subseteq L$;
- 3. $E^* \subset L$;

sono tutti linguaggi. La principale caratteristica di un linguaggio è che esso deve essere riconosciuto e interpretato da una macchina (o automa) ed essa deve anche essere in grado di generarlo tramite una *grammatica*.

Problema di Decisione. Il problema di decisione si presenta nel momento in cui, dato un quesito, le possibili risposte sono sempre e sole "sì" o "no".

Problema di Membership. Il problema di Memebership è legato al concetto di stringa (come input), di linguaggio e di appartenenza ad un determinato linguaggio. Data una stringa w in input, una determinata macchina deve essere in grado di dire se essa appartiene ad un linguaggio oppure no.

DEFINIZIONI Una forma sentenziale è una stringa di simboli terminali e non terminali: $\gamma \in (V \cup T)^*$

0.2 Grammatica NON context-free

Il linguaggio di esempio (di tipo 2): $L = \{w \in \{a, b, c\}^* | w = a^n b^n c^n, n \ge 1\}$ è generato dalla seguente grammatica (NON context-free):

$$G = (\{S, X, B, C\}, \{a, b, c\}, P, S)$$

e dove le regole di produzione sono:

- 1. $S \rightarrow aSBC$
- 2. $S \rightarrow aBC$
- 3. $CB \rightarrow XB$

- 4. $XB \rightarrow XC$
- 5. $XC \rightarrow BC$
- 6. $aB \rightarrow ab$
- 7. $bB \rightarrow bb$
- 8. $bC \rightarrow bc$
- 9. $cC \rightarrow cc$

Le grammatuche 3,4,5 possono essere "collassate" in $CB \to BC$ Si può dimostrare , usando il Pumping Lemma per i CFL, che non è context-free.

Esempio di Derivazione:

Deriviamo la stringa abc (corrispondente a n = 1), indicando anche ad ogni passo la regola usata.

$$S(2) \rightarrow aBC(6) \rightarrow abC(8) \rightarrow abc$$

Deriviamo la stringa aabbce (corrispondente a n=1), indicando anche ad ogni passo la regola usata.

$$S(1) \rightarrow aSBC(2) \rightarrow aaBCBC(3) \rightarrow aaBXBC(4) \rightarrow aaBXCC(5) \rightarrow aaAXC(5) \rightarrow aaBXCC(5) \rightarrow aaBXC(5) \rightarrow aaBXC(5)$$

$$\rightarrow aaBBCC(6) \rightarrow aabBCC(7) \rightarrow aabbCC(8) \rightarrow aabbcC(9) \rightarrow aa$$

In generale, per derivare $a^n b^n c^n$, per n < 1:

$$S(n-1 \ volte \to (1))a^{n-1}S(BC)^{n-1} \to (2)a^n(BC)^n(n(n-1)/2 \ volte \ la$$

$$sequenza \rightarrow (3), \rightarrow (4), \rightarrow (5))a^nB^nC^n...slide$$

Esercizio: creo una CFG su $L=\{a^{n+m}xc^nyd^m,\;conn,m\geq 0\}$: