MTRN2500 19T3 ASSIGNMENT 3

Vehicle Game

PRESENTED BY DYLAN SANUSI-GOH & JOSH BEHAR

Design Discussions

- Abstracted fundamental single base shapes (publish a single marker)
- Composition of multiple shapes (UAV, Landscape) as a multiple base shape (publish a marker array)
- UAV control and user interaction follow Observer and State Patterns
- Overall adherence to Design by Contract, SOLID, KISS, and DRY Principles.

TODAY'S MAIN TOPICS

CONFIG_PARSER

- > REDUCE USER INPUT ERRORS
- > CONFIGURE WORKING ENVIRONMENT

MAIN

- > CALLS SINGLE SHAPE CONSTRUCTION THEN DISPLAY MARKER
- > CALLS MULTI SHAPE (UAV, LANDSCAPE) CONSTRUCTION THEN DISPLAY MARKER ARRAY

SINGLE SHAPE CONSTRUCTION

- > CALLS SINGLE SHAPE GENERATOR
- > METHODS TO MODIFY/ACCESS FROM BASE SINGLE

MULTI SHAPE CONSTRUCTION

- > CALLS SINGLE SHAPE GENERATOR
- > METHODS TO MODIFY/ACCESS FROM BASE MULTI
- > PUSH BACK INTO MARKER ARRAY

SHAPE GENERATOR

- > CALLS MULTI SHAPE GENERATOR
- > METHODS TO MODIFY/ACCESS

SINGLE SHAPE DISPLAY > PUBLISHES MARKER TO RVIZ

MULTI SHAPE DISPLAY

> PUBLISHES MARKER ARRAY TO RVIZ

Polymorphism

PRISM (NUMBER OF SIDES, INPUT ANGLE, RADIUS, HEIGHT) > OCTAGONAL, RECTANGULAR, TRIANGULAR PRISM

PYRAMID (NUMBER OF SIDES, INPUT ANGLE, RADIUS, HEIGHT)
> OCTAGONAL, RECTANGULAR, TRIANGULAR, SQUARE PYRAMID

Inheritance

SHAPE_BASE(HEADING, FRAME NAME, MARKER)
> SPHERE, CUBE, FLAT_PLANE, PRISM, PYRAMID,
PARALLELEPIPED, TRIANGLE

SINGLE GETTER AND SETTER METHODS ARE SHARED.

SINGLE BASE FUNDAMENTAL SHAPE STRUCTURES ARE INHERITED FROM THE SHAPE_BASE.

Inheritance

SHAPE_BASE_MULTI(HEADING, FRAME NAME, MARKER ARRAY)
> UAV, LANDSCAPE

MULTI GETTER AND SETTER METHODS ARE SHARED.

MULTI BASE FUNDAMENTAL SHAPE STRUCTURES ARE INHERITED FROM THE SHAPE_BASE_MULTI

Composition

SHAPE_BASE_MULTI(HEADING, FRAME NAME, MARKER ARRAY)
> UAV, LANDSCAPE

SHAPE_GENERATOR.HPP

- > RECTANGULAR_PRISM_GEN(ID, X, Y, Z)
- > TRIANGULAR_PRISM_GEN(ID, RADIUS, HEIGHT)
- > OCTAGONAL_PRISM_GEN(ID, RADIUS, HEIGHT)
- > CYLINDER_GEN(ID, RADIUS, HEIGHT)
- > PARALLELEPIPED_GEN(ID, DIAG1, DIAG2, HEIGHT)
- > RECTANGULAR_PYRAMID_GEN(ID, X, Y, HEIGHT)
- > TRIANGULAR_PYRAMID_GEN(ID, RADIUS, HEIGHT)
- > SQUARE_PYRAMID_GEN(ID, RADIUS, HEIGHT)
- > OCTAGONAL_PYRAMID_GEN(ID, RADIUS, HEIGHT)
- > CONE_GEN(ID, RADIUS, HEIGHT)
- > SPHERE_GEN(ID, RADIUS)
- > CUBE_GEN(ID, RADIUS)
- > FLAT_PLANE_GEN(ID, LENGTH, WIDTH)

Functions

MAIN HANDLES:

- > SINGLE SHAPES + SINGLE DISPLAYS
- > MULTI SHAPES + MULTI DISPLAYS
- SETTER AND GETTER METHODS TO MODIFY SHAPES I.E. UAV CONTROL LOGIC

SHAPE ITSELF HANDLES:

- > COMPLEX METHODS WITHOUT OVERSHARING
- METHODS TO MODIFY SHAPE PROPERTIES I.E. RADIAN AND QUATERNION ROTATION LOGIC

DRY Principle

BASE SHAPE AVOIDS REPEATED METHOD DEFINITIONS

SHAPE GENERATOR AVOIDS REPEATED SHAPE CHECKS/DEFINITIONS

MULTI BASE SHAPE (MARKER ARRAY) AVOIDS REPEATED MARKER PUBLISHING

CONFIG PARSER/HANDLING PREVENTS AMBIGUOUS USER EXPERIENCES

SOLID Principle

SINGLE RESPONSIBILITY

- SHAPES AND METHODS ACCESS/CONTROL OVER SELF ONLY

OPEN/CLOSED PRINCIPLES

- SINGLE AND MULTI SHAPE BASES CAN BE EXTENDED BUT NOT MODIFIED

LISKOVS SUBSTITUTION PRINCIPLE

- SINGLE AND MULTI SHAPES CAN BE SUBSTITUTED WITHOUT ALTERING CORRECTNESS

INTERFACE SEGREGATION PRINCIPLE

- INTERFACES AND METHOD CALLS ARE RESTRICTED TO USE BY INDIVIDUAL CLIENTS ONLY

DEPENDENCY INVERSION PRINCIPLE

- SHAPE INHERITANCE/COMPOSITION BUILDS AROUND MODULARITY, WITH NO UNNECESSARY DEPENDENCIES ON OTHER CLIENTS

Design by Contract

MINIMISE SIDE EFFECTS DURING DEVELOPMENT BY PRESERVING SOLID PRINCIPLES

I.E. SINGLE SHAPE AND MULTI SHAPE DEVELOPMENT CAN OPERATE IN PARALLEL AND INDEPDENTLY