Note:

- 1. The problems are from the textbook by G. H. Givens and J. A. Hoeting
- 2. There are total 2 questions: 6.7 and 6.8.
- 3. The full grade is 10 in this HW with point distributed as

6.7 (a)	1
(b)	2
(c)	1
(d)	1
(e)	1
6.8	4

- **6.7.** Consider pricing a European call option on an underlying stock with current price $S^{(0)} = 50$, strike price K = 52, and volatility $\sigma = 0.5$. Suppose that there are N = 30 days to maturity and that the risk-free rate of return is r = 0.05.
 - **a.** Confirm that the fair price for this option is 2.10 when the payoff is based on $S^{(30)}$ [i.e., a standard option with payoff as in (6.74)].
 - **b.** Consider the analogous Asian option (same $S^{(0)}$, K, σ , N, and r) with payoff based on the arithmetic mean stock price during the holding period, as in (6.77). Using simple Monte Carlo, estimate the fair price for this option.
 - ${f c.}$ Improve upon the estimate in (b) using the control variate strategy described in Example 6.13.
 - **d.** Try an antithetic approach to estimate the fair price for the option described in part (b).
 - **e.** Using simulation and/or analysis, compare the sampling distributions of the estimators in (b), (c), and (d).
- **6.8.** Consider the model given by $X \sim \text{Lognormal}(0, 1)$ and $\log Y = 9 + 3 \log X + \epsilon$, where $\epsilon \sim N(0, 1)$. We wish to estimate $E\{Y/X\}$. Compare the performance of the standard Monte Carlo estimator and the Rao-Blackwellized estimator.