III. Messmethoden und Observable Experimental Physics I, University of Bayreuth

Lichtmikroskopie?

Hohe Zeitauflösung (bis zu wenigen μs)

Hohe räumliche Auflösung (typisch ~200nm; machbar bis 50nm)

=> Ideal für das Studium dynamischer Vorgänge in Zellen

Experimental Physics I, University of Bayreuth

Grundlagen des Lichtmikroskops

Strahlenoptik, zwei Linsen (Brennweiten legen Vergrößerung fest)

Bessere Selektivität?

Experimental Physics I, University of Bayreuth

Wichtiges aus der Quantenmechanik

Elektronen halten sich auf (unscharfen) diskreten Bahnen um Kern auf (Bohrsches Atommodell, Schrödinger/Heisenberg/Born QM)

Übergang von Elektronen zwischen Niveaus unter Absorption/Emission eines Photons möglich

Bei Molekülen zusätzliche Unterniveaus durch Vibration der Einzelatome

Auswahlregeln (z.B. bzgl. Spin) diktieren, welche Übergänge möglich sind

Experimental Physics I, University of Bayreuth

