ANALIZA SKUPIEŃ

Zbiór metod służących do wyodrębniania jednorodnych podzbiorów obiektów populacji nosi nazwę *analiza skupień*.

Podstawową ideą analizy skupień jest rozdzielenie obiektów na pewną (ustaloną lub nieustaloną z góry) liczbę grup "podobnych" do siebie obiektów, które jednocześnie nie są "podobne" do obiektów z pozostałych grup.

- Jak określić prawdopodobieństwo obiektów?
- Jakimi metodami zidentyfikować skupienia?
- Jakie są założenia i ograniczenia analizy skupień?

Miary odległości (1)

Jest n obiektów: $O_1, O_2, ..., O_n$. Należy rozdzielić te obiekty na podzbiory $S_1, S_2, ..., S_K$ populacji generalnej Ω , spełniającej następujące warunki:

- rozłączność: $S_i \cap S_k = \emptyset, i \neq k$;
- \triangleright zupełność: $\bigcup S_i = \Omega$.

Niech każdy obiekt opisany jest przez parametry, np. obiekt O_x przez parametry $x_1, x_2, ..., x_p$, a O_y przez parametry $y_1, y_2, ..., y_p$, gdzie x = 1, 2, ..., n; y = 1, 2, ..., n. Każdy obiekt jest zatem opisany przez pewien punkt w przestrzeni p wymiarowej.

Miary odległości (2)

odległość Czebyszewa:

$$d(O_x, O_y) = \max_{i=1,2,\ldots,p} \{|x_i - y_i|\}.$$

odległość Euklidesowa:

$$d(O_x, O_y) = \sqrt{\sum_{i=1}^p (x_i - y_i)^2}.$$

odległość miejska (Manhattan, City Block):

$$d(O_x, O_y) = \sum_{i=1}^p |x_i - y_i|.$$

Miary odległości (3)

odległość Euklidesowa do kwadratu:

$$d(O_x, O_y) = \sum_{i=1}^p (x_i - y_i)^2.$$

Wybieramy ją, gdy chcemy przypisać większą wagę obiektom, które są bardziej oddalone.

➤ Jeżeli dwie zmienne opisujące obiekt wysoko ze sobą korelują, to odległość euklidesowa może dawać wyniki mylące i wtedy polecane jest stosowanie odległości Mahalanobisa:

$$d(O_x, O_y) = \sqrt{\sum_{i=1}^p \sum_{j=1}^p (x_i - y_i) \cdot (x_j - y_j) \cdot s_{ij}},$$

gdzie S_{ij} odpowiedni element macierzy, odwrotnej do macierzy kowariancji.

Miary odległości (4)

Wybranie konkretnej metryki umożliwia utworzenie macierzy odległości:

$$D = \begin{pmatrix} 0 & d_{12} & d_{13} & \dots & d_{1n} \\ d_{21} & 0 & d_{23} & \dots & d_{2n} \\ \dots & \dots & \dots & \dots \\ d_{n1} & d_{n2} & d_{3} & \dots & 0 \end{pmatrix}, \text{ gdzie } d_{ij} \text{ odległość obiektu}$$

i od obiektu *j*.

Macierz ta stanowi punkt wyjścia dla wielu procedur analizy skupień. Zwykle zmienne muszą być standaryzowane.

Miary odległości (5)

Metody analizy skupień dzielą się na *hierarchiczne* i *niehierarchiczne*.

Hierarchiczne metody zawierają dwie grupy technik:

- aglomeracyjne początkowo każdy obiekt jest odrębnym skupieniem. Następnie stopniowo łączymy najbliższe siebie obiekty w nowe skupienia, aż do uzyskania jednego skupienia;
- podziałowe początkowo wszystkie obiekty tworzą jedno skupienie, które kolejno dzielimy (rozszczepiamy) na mniejsze, aż do momentu uzyskania jednoelementowych skupień.

I. Grupowanie metodą k-średnich

Algorytm

- 1. Wybiera się losowo *k* obiektów jako początkowe środki *k* klas.
- 2. Obiekty przypisują się do klas: każdy obiekt jest przydzielany do tej klasy, dla której odległość obiektu od środka klasy jest najmniejsza.
- 3. Po przypisaniu (alokacji) obiektów do klas, uaktualniane są wartości średnie klas (środki klas) i powrót do kroku 2. Może się okazać, że na skutek aktualizacji średnich klas zachodzi konieczność przepisania obiektów. Proces przepisania obiektów i uaktualniania średnich klas jest powtarzany tak długo, jak długo występują zmiany przydziału obiektów do klas.

Warunek stopu może być zdefiniowany również w inny sposób, np. warunek time-out'u, zadana liczba iteracji, itp.

Przykład 1 (1)

W pierwszym kroku, algorytm wybiera losowo 3 punkty k_1, k_2, k_3 , spośród zbioru obiektów, które początkowo stanowią środki trzech klas c_1, c_2, c_3 .

Przykład 1 (2)

W kroku drugim, algorytm przydziela obiekty do klas. Przydział obiektów do klas jest zaznaczony na rysunku kolorami.

Przykład 1 (3)

W kolejnym kroku algorytmu następuje uaktualnienie średnich wszystkich klas.

Przykład 1 (4)

Po uaktualnieniu średnich wszystkich klas następuje powrót do kroku drugiego – przepisaniu obiektów.

Przykład 1 (5)

Konieczność przepisania (realokacji) dotyczy trzech obiektów.

Realokujemy obiekty do najbliższych klas i ponownie, przechodzimy do kolejnego kroku aktualizacji środków klas.

Przykład 1 (6)

Ponownie aktualizujemy średnie wszystkich klas i wracamy do kroku przepisania obiektów.

Dla każdego obiektu następuje weryfikacja, czy obiekt ten podlega przepisaniu. Jeżeli żaden z obiektów nie wymaga przepisania, następuje zakończenie działania algorytmu.

Przykład 1 (7)

W wyniku działania γ algorytmu uzyskujemy trzy klasy c_1, c_2, c_3 przedstawione na rysunku.

Złożoność algorytmu k-średnich

Złożoność algorytmu k-średnich jest rzędu $O(k \cdot n \cdot I)$, gdzie I oznacza liczbę iteracji algorytmu, n liczbę grupowanych obiektów, k oznacza zadaną liczbę klas. Zaletą algorytmu jest wysoka efektywność. Wady:

- algorytm ten jest bardzo czuły na dane zaszumione lub dane zawierające punkty osobliwe;
- wynik działania algorytmu (tj. ostateczny podział obiektów pomiędzy klasami) mocno zależy od początkowego podziału obiektów.
- algorytm może "wpaść" w optimum lokalne, które może odbiegać od optimum globalnego.

II. Algorytm grupowania metodą EM (1)

Podstawową ideą algorytmu EM (*expectation-maximization*) jest założenie, że badany zbiór danych może być zmodelowany za pomocą liniowej kombinacji wielomianowych rozkładów normalnych, a celem jest ocena parametrów rozkładów, które maksymalizują logarytmiczną funkcję prawdopodobieństwa, która z kolej wykorzystywana jest jako miara jakości modelu.

Algorytm grupowania metodą EM (2)

Zalety:

- mocna podstawa statystyczna;
- liniowy wzrost złożoności przy zwiększeniu ilości danych;
- odporność na szum i braki danych;
- szybka zbieżność przy udanej inicjalizacji.

Wady:

- nie zawsze zmienne mają rozkład normalny;
- przy nieudanej inicjalizacji zbieżność może być wolna;
- algorytm może zatrzymać się w lokalnym minimum i dać quasi-optymalne rozwiązanie.

Algorytm grupowania metodą EM (3)

Zadaniem jest podział n obiektów na k klas w zależności od wartości zmiennych $X_1, X_2, ..., X_q$, charakteryzujących każdy obiekt.

Zapiszmy macierz wartości danych na dwa sposoby:

$$X = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1q} \\ X_{21} & X_{22} & \dots & X_{2q} \\ \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nq} \end{pmatrix} = \begin{pmatrix} X_{1} & X_{2} & \dots & X_{q} \end{pmatrix} = \begin{pmatrix} X^{(1)} \\ X^{(2)} \\ \dots \\ X^{(n)} \end{pmatrix},$$

gdzie $I = \overline{1, q}$ - liczba zmiennych, $i = \overline{1, n}$ - liczba obiektów.

Algorytm grupowania metodą EM (4)

Parametry modelu:

 $W = \{w_1, w_2, ..., w_k\}$ - zbiór wag; dla wag musi być spełniony warunek $\sum_{i=1}^k w_j = 1$.

$$M = \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1q} \\ m_{21} & m_{22} & \dots & m_{2q} \\ \dots & \dots & \dots & \dots \\ m_{k1} & m_{k2} & \dots & m_{kq} \end{pmatrix} = \begin{pmatrix} M_1 \\ M_2 \\ M_k \end{pmatrix} - \text{zbi\'or warto\'sci \'srednich,}$$

gdzie m_{ij} - średnia wartość zmiennej X_i w klasie j.

 C_j - macierz kowariancji w klasie j, dim $(C_j) = q \times q$.

Algorytm grupowania metodą EM (5)

- 1. Początkowe parametry inicjalizacji algorytmu:
 - Początkowe wagi są jednakowe: $w_j = \frac{1}{k}$.
- Początkowe wartości średnich są wybierane w sposób losowy.
- Początkowe macierze kowariancji są jednakowe w każdej klasie i są równe macierzy kowariancji zmiennych X
- **2.** Dla każdego obiektu $X^{(i)}$ rozpatruje się mieszanka rozkładów normalnych:

$$p_{j}(X^{(i)}) = \frac{1}{(2\pi)^{\frac{q}{2}} \sqrt{\det(C_{j})}} e^{-\frac{1}{2}(X^{(i)} - M_{j})C_{j}^{-1}(X^{(i)} - M_{j})^{T}}.$$

Algorytm grupowania metodą EM (6)

3. Krok E - oczekiwanie: obliczenie oczekiwanych wartości ukrytych zmiennych g_{ij} , $i = \overline{1, n}$, $j = \overline{1, k}$ wg parametrów (W, M, C):

$$g_{ij} = \frac{w_j p_j \left(X^{(i)}\right)}{\sum_{j=1}^k w_j p_j \left(X^{(i)}\right)},$$

czyli prawdopodobieństw przynależności *i-*go obiektu do klasy *j*.

$$\dim(G) = n \times k$$
.

Algorytm grupowania metodą EM (7)

4. Obliczenie funkcji wiarygodności:

$$LL = \ln \prod_{i=1}^{n} p(X^{(i)}) = \sum_{i=1}^{n} \ln \sum_{j=1}^{k} w_{j} p_{j}(X^{(i)})$$

5. Krok *M* - maksymalizacja logarytmu funkcji wiarygodności wynikiem której są nowe wartości parametrów modelu:

$$W_{j} = \frac{\sum_{i=1}^{n} g_{ij}}{n}; \quad M_{j} = \frac{\sum_{i=1}^{n} g_{ij} X^{(i)}}{n w_{j}};$$

$$C_{j} = \frac{\left(X^{(i)} - M_{j}\right)^{T} g_{ij} \left(X^{(i)} - M_{j}\right)}{n w_{j}}.$$

Algorytm grupowania metodą EM (8)

6. Porównujemy wartość funkcji wiarygodności z wartością funkcji z poprzedniej iteracji (jeśli nr iteracji t = 1, to przyjmujemy, że na poprzednim kroku LL = 0).

Jeśli wartość bezwzględna różnicy funkcji wiarygodności jest mniejsza, niż dopuszczalny błąd obliczeń δ (który zadaje wykonawca), to algorytm się kończy:

if
$$\Delta LL = LL(iteracja\ t) - LL(iteracja\ t-1) \le \delta$$
,

Inaczej należy wrócić do kroku 2.

Jeszcze jednym dodatkowym ograniczeniem jest podanie maksymalnej liczby iteracji.

Przykład 2 (1)

Podzielić 6 obiektów wg 2 zmiennych na dwie grupy:

X_1	X_2
1	1
6	7
3	2
4	6
5	7
2	1

Błąd dopuszczalny δ wybrać 0,001.

Przykład 2 (2)

Dzielimy n = 6 obiektów na k = 2 klasy w zależności od wartości zmiennych $X_1, X_2, q = 2$, charakteryzujących każdy obiekt.

Macierz danych:

$$X = \begin{pmatrix} 1 & 1 \\ 6 & 7 \\ 3 & 2 \\ 4 & 6 \\ 6 & 7 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} X_1 & X_2 \end{pmatrix} = \begin{pmatrix} X^{(1)} \\ X^{(2)} \\ \vdots \\ X^{(6)} \end{pmatrix},$$

Przykład 2 (3)

1. Początkowe parametry inicjalizacji algorytmu:

Początkowe wagi są jednakowe: $w_j = \frac{1}{k}$, musi być spełniony

warunek
$$\sum_{j=1}^{k} w_j = 1$$
.

$$W = \{W_1, W_2\} = \{\frac{1}{2}, \frac{1}{2}\}$$
.

Przykład 2 (4)

Początkowe wartości średnich są wybierane w sposób losowy:

$$M = \begin{pmatrix} 3,5 & 3,8 \\ 3,5 & 4 \end{pmatrix}_{k \times q} = \begin{pmatrix} M_1 \\ M_2 \end{pmatrix}$$

- zbiór wartości średnich, gdzie przykładowo 3,8 wartość średniej dla zmiennej X_2 w klasie 1.

Przykład 2 (5)

Początkowe macierze kowariancji są jednakowe w każdej klasie i są równe macierzy kowariancji zmiennych X:

$$X = (3,5 \quad 4)$$

$$C_{1} = C_{2} = \frac{1}{6} \begin{pmatrix} 1 - 3,5 & 1 - 4 \\ 6 - 3,5 & 7 - 4 \\ 3 - 3,5 & 2 - 4 \\ 4 - 3,5 & 6 - 4 \\ 5 - 3,5 & 7 - 4 \\ 2 - 3,5 & 1 - 4 \end{pmatrix} \begin{pmatrix} 1 - 3,5 & 1 - 4 \\ 6 - 3,5 & 7 - 4 \\ 3 - 3,5 & 2 - 4 \\ 4 - 3,5 & 6 - 4 \\ 5 - 3,5 & 7 - 4 \\ 2 - 3,5 & 1 - 4 \end{pmatrix} = \begin{pmatrix} 2,9 & 4,3 \\ 4,3 & 7,3 \end{pmatrix}$$

$$\dim(C_j) = q \times q = 2 \times 2$$

Przykład 2 (6)

2. Dla każdego obiektu $X^{(i)}$ rozpatruje się mieszanka rozkładów normalnych (j = 1,2 - nr klasy, i = 1,2,...6 - nr obiektu, q = 2 liczba zmiennych):

$$p_{j}(X^{(i)}) = \frac{1}{(2\pi)^{\frac{q}{2}} \sqrt{\det(C_{j})}} e^{-\frac{1}{2}(X^{(i)} - M_{j})C_{j}^{-1}(X^{(i)} - M_{j})^{T}}$$

$$d^{(i)} = \left(X^{(i)} - M_j\right)C_j^{-1}\left(X^{(i)} - M_j\right)^T - \text{ odległość Mahalanobisa.}$$

$$p_{j}\left(X^{(i)}\right) = \frac{1}{2\pi\sqrt{\det\left(C_{j}\right)}}e^{-\frac{1}{2}d^{(i)}}$$

Przykład 2 (7)

Klasa 1 (j = 1):

	$X^{(i)}$		٨	1 ₁	$(X^{(i)})$	$-M_1$	$d^{(i)}$	$p_1(X^{(i)})$
X ⁽¹⁾	(1	1)	(3,5	3,8)	(-2,5)	-2,8)	3,1	0,02
X ⁽²⁾	(6	7)	(3,5	3,8)	(2,5	3,2)	2,4	0,03
$X^{(3)}$	(3	2)	(3,5	3,8)	(-0,5)	-1,8)	1,3	0,05
X ⁽⁴⁾	(4	6)	(3,5	3,8)	(0,5	2,2)	2,5	0,03
X ⁽⁵⁾	(5	7)	(3,5	3,8)	(1,5	3,2)	1,8	0,04
X ⁽⁶⁾	(2	1)	(3,5	3,8)	(-1,5	-2,8)	1,1	0,06

Przykład 2 (8)

Przykładowo dla $X^{(4)}$:

$$d^{(4)} = \left(X^{(4)} - M_1\right)C_1^{-1}\left(X^{(4)} - M_1\right)^T =$$

$$= \left(0,5 \quad 2,2\right) \begin{pmatrix} 2,9 & 4,3 \\ 4,3 & 7,3 \end{pmatrix}^{-1} \begin{pmatrix} 0,5 \\ 2,2 \end{pmatrix} = 2,5$$

$$p_{1}(X^{(4)}) = \frac{1}{2\pi\sqrt{\det(C_{1})}}e^{-\frac{1}{2}d^{(4)}} = \frac{1}{2\pi\cdot 1,62}e^{-0.5\cdot 2.5} = 0.03$$

Przykład 2 (9)

Klasa 2 (j = 2):

	$X^{(i)}$,	M	2	$(X^{(i)} -$	$-M_2$	$d^{(i)}$	$\rho_2(X^{(i)})$
$X^{(1)}$	(1	1)	(3,5	4)	(-2,5	-3)	2,7	0,03
$X^{(2)}$	(6	7)	(3,5	4)	(2,5	3)	2,7	0,03
$X^{(3)}$	(3	2)	(3,5	4)	(-0,5	-2)	1,9	0,04
$X^{(4)}$	(4	6)	(3,5	4)	(0,5	2)	1,9	0,04
$X^{(5)}$	(5	7)	(3,5	4)	(1,5	3)	1,4	0,05
X ⁽⁶⁾	(2	1)	(3,5	4)	(-1,5	-3)	1,4	0,05

Przykład 2 (10)

3. Krok *E* - *oczekiwanie*:
$$g_{ij} = \frac{w_j p_j (X^{(i)})}{\sum_{j=1}^k w_j p_j (X^{(i)})}$$

$$p_1(X^{(i)}) p_2(X^{(i)}) w_1 p_1(X^{(i)}) w_2 p_2(X^{(i)})$$

$\rho_1(X^{(i)})$	$p_2(X^{(i)})$	$W_1 p_1 (X^{(i)})$	$W_2 p_2 (X^{(i)})$	$\left \sum_{j=1}^{2} w_{j} p_{j} \left(X^{(i)} \right) \right $
0,02	0,03	$0,5\cdot 0,02=0,01$	0,015	0,01+0,015=
				=0,025
0,03	0,03	0,015	0,015	0,03
0,05	0,04	0,025	0,02	0,045
0,03	0,04	0,015	0,02	0,035
0,04	0,05	0,02	0,025	0,045
0,06	0,05	0,03	0,025	0,055

Przykład 2 (11)

$W_1 p_1 (X^{(i)})$	$w_2 p_2 (X^{(i)})$	$\sum_{j=1}^{2} w_{j} p_{j} \left(X^{(i)} \right)$	g_{i1}	g_{i2}
0,01	0,015	0,025	$\frac{0,01}{0,025}$ =	$\frac{0,015}{0,025} =$
			= 0,4	= 0,6
0,015	0,015	0,03	$\frac{0,015}{}$	$\frac{0,015}{}$ =
			0,03	0,03
			= 0,5	= 0,5
0,025	0,02	0,045	0,55	0,44
0,015	0,02	0,035	0,43	0,55
0,02	0,025	0,045	0,44	0,55
0,03	0,025	0,055	0,55	0,45

Przykład 2 (12)

4. Obliczenie funkcji wiarygodności:

$$LL = \sum_{i=1}^{n} \ln \sum_{j=1}^{k} w_{j} \rho_{j} (X^{i}) = \sum_{i=1}^{6} \ln \sum_{j=1}^{2} w_{j} \rho_{j} (X^{(i)})$$

	, · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
i	$\sum_{j=1}^{2} w_{j} p_{j} \left(X^{(i)} \right)$	$ \ln \sum_{j=1}^{2} w_{j} p_{j} \left(X^{(i)} \right) $
1	0,025	-3,7
2	0,03	-3,5
3	0,045	-3,1
4	0,035	-3,35
5	0,045	-3,1
6	0,055	-2,9
	LL	-19,65

$$LL = -19,65$$
.

Przykład 2 (13)

5. Krok *M* - maksymalizacja logarytmu funkcji wiarygodności.

Nowe wartości parametrów modelu: $w_j = \left(\sum_{i=1}^n g_{ij}\right)/n$

i	g_{i1}	g_{i2}
1	0,4	0,6
2	0,5	0,5
3	0,55	0,44
4	0,43	0,55
5	0,44	0,55
6	0,55	0,45
$\sum_{i=1}^n g_{ij}$	2,87	3,1

$$w_{1} = \frac{\sum_{i=1}^{n} g_{i1}}{6} = \frac{2,87}{6} = 0,48$$

$$w_{2} = \frac{\sum_{i=1}^{n} g_{i2}}{6} = \frac{3,1}{6} = 0,52$$
Ezyli nowe wagi:

Czyli nowe wagi:
$$W = \{w_1, w_2\} = \{0, 48; 0, 52\}.$$

Przykład 2 (14)
$$M_{j} = \left(\sum_{i=1}^{n} g_{ij} X^{(i)}\right) / (nw_{j})$$

i	$X^{(i)}$ g_{i1}		g_{i2}	g_{i1}	$X^{(i)}$	g_{i2}	$X^{(i)}$	
1	(1	1)	0,4	0,6	(0,4	0,4)		0,6)
2	(6	7)	0,5	0,5	(3	3,5)	(3	3,5)
3	(3	2)	0,55	0,44	(1,65	5 1,1)	(1,32	0,88)
4	(4	6)	0,43	0,55	(1,72	2,58)	(2,2	3,3)
5	(5	7)	0,44	0,55	(2,2	3,08)	(2,75	3,85)
6	(2	1)	0,55	0,45	(1,1	0,55)	(0,9	0,45)
	$\sum_{i=1}^n g_{ij} X^{(i)}$					11,21)	(10,77	12,58)

Przykład 2 (15)

$$M_{1} = \frac{\sum_{i=1}^{n} g_{i1} X^{(i)}}{n w_{1}} = \frac{(10,07 \quad 11,21)}{6 \cdot 0,48} = (3,5 \quad 3,9)$$

$$M_2 = \frac{\sum_{i=1}^{n} g_{i2} X^{(i)}}{n w_2} = \frac{(10,77 \quad 12,58)}{6 \cdot 0,52} = (3,45 \quad 4,03)$$

Nowa macierz średnich:

$$M = \begin{pmatrix} M_1 \\ M_2 \end{pmatrix} = \begin{pmatrix} 3,5 & 3,9 \\ 3,45 & 4,03 \end{pmatrix}$$

Przykład 2 (16)

Macierz kowariancji C_1 , klasa 1: $C_1 = \frac{\left(X^{(i)} - M_1\right)^T g_{i1} \left(X^{(i)} - M_1\right)}{6 \cdot w_1}$

g_{i1}	X	r(i)	٨	1 ₁	$(X^{(i)})$	$-M_1$	$g_{i1}(X^{(i)})$	(M_1)
0,4	(1	1)	(3,5	3,9)	(-2,5	-2,9)	(-1 -	-1,16)
0,5	(6	7)	(3,5	3,9)	(2,5	3,1)	(1,25	1,55)
0,55	(3	2)	(3,5	3,9)	(-0,5)	-1,9)	(-0,28	-1,04)
0,43	(4	6)	(3,5	3,9)	(0,5	2,1)	(0,21	0,9)
0,44	(5	7)	(3,5	3,9)	(1,5	3,1)	(0,66	1,36)
0,55	(2	1)	(3,5	3,9)	(-1,5	-2,9)	(-0.83)	1,59)

Przykład 2 (17)

$$C_{1} = \frac{1}{6 \cdot 0,48} \begin{pmatrix} -2,5 & -2,9 \\ 2,5 & 3,1 \\ -0,5 & -1,9 \\ 0,5 & 2,1 \\ 1,5 & 3,1 \\ -1,5 & 2,9 \end{pmatrix}^{T} \begin{pmatrix} -1 & -1,16 \\ 1,25 & 1,55 \\ -0,28 & -1,04 \\ 0,21 & 0,9 \\ 0,66 & 1,36 \\ -0,83 & 1,59 \end{pmatrix} = \begin{pmatrix} 2,81 & 4,23 \\ 4,23 & 7,26 \end{pmatrix}$$

Analogicznie szukamy nową macierz kowariancji C_2 w klasie 2:

$$C_2 = \begin{pmatrix} 3 & 4,4 \\ 4,4 & 7,32 \end{pmatrix}$$

Przykład 2 (18)

6. Porównujemy wartość funkcji wiarygodności z wartością funkcji z poprzedniej iteracji (jeśli nr iteracji t = 1, to przyjmujemy, że na poprzednim kroku LL = 0).

$$\Delta LL = |LL(t) - LL(t-1)| = |-19,65 - 0| = 19,65$$

 $\delta = 0,001$

Ponieważ $\Delta LL > \delta$, wracamy do **Kroku 2**.

Jeszcze jednym dodatkowym ograniczeniem jest podanie maksymalnej liczby iteracji.

Po wykonaniu 4 iteracji powstał następujący podział:

Obiekty $X^{(1)}, X^{(4)}, X^{(5)}$ należą do klasy 1; a $X^{(2)}, X^{(3)}, X^{(6)}$ do klasy 2.

Przykład 3 (1)

Podstawowy zbiór danych nie jest prosty z punktu widzenia zadania klasyfikacji, ponieważ jest w nim oczywiste pokrycie klas (strefa 1 i strefa 2).

Przykład 3 (2)

Dla algorytmu *k*-średnich trudności muszą być w miejscu pokrycia klas, co potwierdza się rysunkiem.

W miejscach pokrycia klas możemy obserwować największą liczbę błędów, ale z drugiej strony klasy 3 i 6 zostały rozpoznane bezbłędnie.

Przykład 3 (3)

Algorytm EM bezbłędnie rozpoznał pokrywające się klasy, ale prawie nie rozpoznał klasę 6.

III. Metoda Warda (1)

Metoda Warda zmierza do minimalizacji sumy kwadratów odchyleń wewnątrz skupień. W metodzie tej na każdym etapie spośród wszystkich możliwych do łączenia par skupień wybiera się taka para, która w rezultacie łączenia daje skupienie o minimalnym zróżnicowaniu. Marą takiego zróżnicowania jest wyrażenie *ESS*, zwane też błędem sumy kwadratów:

$$ESS = \sum_{i=1}^{k} \left(x_i - \overline{x} \right)^2,$$

gdzie x_i - wartość zmiennej będącej kryterium segmentacji dla i-tego obiektu; k - liczba obiektów w skupieniu.

Metoda Warda (2)

Metoda ta jest traktowana jako efektywna, chociaż zmierza do tworzenia skupień o małej wielkości.

Wartości zróżnicowania dla jednego skupienia (wszystkie wyniki) ze środkiem 14,7 jest równa ESS = 44,1. Z drugiej strony, jeśli utworzymy cztery skupienia:

$$S_1 = \{12,12\}, S_2 = \{14,14,14,14,14\}, S_3 = \{17\}, S_4 = \{18,18\}$$

to wartość zróżnicowania jest równa:

$$ESS = ESS_1 + ESS_2 + ESS_3 + ESS_4 = 0 + 0 + 0 + 0 = 0.$$

Oznacza to, że utworzenie czterech powyższych grup jest najlepszym grupowaniem.

Przykład 4 (1)

Dane są wyniki badań: 2,5,9,10,15. Wykorzystując metodę Warda, wykonać podział na grupy.

Krok 1. Tworzymy pierwsze skupienia z par obiektów i wybieramy parę, która tworzy skupienie o najmniejszym *ESS*.

obiekty										
ESS	4,5	24,5	32	84,5	8	12,5	50	0,5	18	12,5

Dla trzeciego i czwartego obiektów ESS = 0,5. Pierwsze skupienie S_1 tworzą te dwa obiekty.

Krok 2. Dla zredukowanego zbioru obiektów i nowo powstałego skupienia tworzy się ponownie wszystkie możliwe skupienia i wylicza się wartość *ESS*.

obiekty	1 i 2	1 i 5	2 i 5	S ₁ i 1	S ₁ i 2	S₁ i 5
ESS	4,5	84,5	50	38	14	20,66

Kolejne skupienie tworzą obiekty 1 i 2. Wartość ESS = 4,5.

Przykład 4 (2)

Krok 4. Ponownie obliczamy wartości ESS dla nowego układu skupień. Otrzymamy następujące wartości:

obiekty	S₁ i 5	S ₂ i 5	$S_1 i S_2$
ESS	20,66	92,66	41

Tym razem dołączamy obiekt piąty do pierwszego skupienia. Powstaje nowe skupienie S_3 , zawierające trzy obiekty $S_3 = \{O_3, O_4, O_5\}$.

Krok 5. Jest to krok ostatni. Pozostały tylko dwa obiekty S_3 i S_2 , które łączymy w jedno skupienie, obejmujące wszystkie 5 obiektów. Możemy wyróżnić dwie grupy obiektów $\{O_1, O_2\}$ i $\{O_3, O_4, O_5\}$.

IV. Metoda aglomeracji

Algorytm składa się z następujących kroków:

- Buduje się macierz odległości (na przykład, euklidesowych).
- Wybieramy najmniejsze wartości w macierzy odległości (poza główną przekątną) i tworzymy nowe skupienie z obiektów, których ta najmniejsza odległość dotyczy.
- Ponownie wyznaczamy macierz odległości dla nowego, zredukowanego układu obiektów. Odległości utworzonego skupienia musimy obliczyć.
- Wykorzystując nową macierz odległości, znajdujemy kolejną najmniejszą odległość, i tak do końca dopóki nie zostanie 1 skupienie. Utworzone skupienie zawiera już wszystkie obiekty. Kończymy zatem proces grupowania.

Przykład 5 (1)

Wykonać klasyfikację obiektów $O_1, O_2, ..., O_6$, objętych badaniem, w rezultacie którego otrzymane są następujące wyniki:

	X_1	X_2	X_3	X_4
O ₁	39,8	38	22,2	23,2
O_2	53,7	37,2	18,7	18,5
O_3	47,3	39,8	23,3	22,1
O_4	41,7	37,6	22,8	22,3
O ₅	44,7	38,5	24,8	24,4
O_6	47,9	39,8	22,0	23,3

Przykład 5 (2)

Algorytm składa się z następujących kroków:

Krok 1. Buduje się macierz odległości (na przykład, euklidesowych):

	O_1	O_2	O_3	O_4	O_5	O_6	
O_1	0,0	4,08	2,35	0,75	1,78	2,31	\
O_2	4,08	0,0	3,93	3,68	4,70	3,89	
O_3	2,35	3,93	0,0	2,30	1,87	0,88	-
O_4	0,75	3,68	2,30	0,0	1,75	2,43	
O_5	1,78	4,70	1,87	1,75	0,0	2,00	
O_6	2,31	3,89	0,88	2,43	2,00	0,0	

Dla analizy grupowania tych obiektów zastosujemy, na przykład, metodę najbliższego sąsiada. W metodzie tej odległość między dwoma skupieniami to najmniejsza odległość spośród wszystkich odległości pomiędzy obiektami.

Przykład 5 (3)

Krok 2. Wybieramy najmniejsze wartości w macierzy odległości (poza główną przekątną) i tworzymy nowe skupienie z obiektów, których ta najmniejsza odległość dotyczy. W naszym przykładzie jest to odległość między obiektem pierwszym a czwartym.

	O_1	O_2	O_3	O_4	O_5	O_6
O_1	0,0	4,08	2,35	0,75	1,78	2,31
O_2	4,08	0,0	3,93	3,68	4,70	3,89
O_3	2,35	3,93	0,0	2,30	1,87	0,88
O_4	0,75	3,68	2,30	0,0	1,75	2,43
O_5	1,78	4,70	1,87	1,75	0,0	2,00
O_6	2,31	3,89	0,88	2,43	2,00	0,0

Łączymy więc obiekty O_1, O_4 w nowe skupienie S_1 .

Przykład 5 (4)

Krok 3. Ponownie wyznaczamy macierz odległości dla nowego, zredukowanego układu obiektów. Odległości utworzonego skupienia musimy obliczyć. Przykładowo odległość między skupieniem S_1 i obiektem O_2 wyznaczamy wzorem:

$$d(S_1, O_2) = \min\{d(O_1, O_2), d(O_4, O_2)\} = \min\{4, 08; 3, 68\} = 3, 68.$$

Wyliczając w podobny sposób pozostałe odległości, otrzymujemy nową macierz odległości postaci:

Część macierzy została niewypełniona, ponieważ macierz jest symetryczna.

Przykład 5 (5)

Krok 4. Wykorzystując nową macierz odległości, znajdujemy kolejną najmniejszą odległość. Jest to odległość między obiektem O_3 i O_6 . Łączymy te obiekty w nowe skupienie S_2 i powtarzamy krok 3.

Krok 5. Zgodnie z metodą najbliższego sąsiada odległość między skupieniami S_1 i S_2 to najmniejsza odległość między obiektami, tworzącymi te skupienia: $S_1 = \{O_1, O_4\}, S_2 = \{O_3, O_6\}$

$$d(S_1, S_2) = \min\{d(O_1, O_3), d(O_1, O_6), d(O_4, O_3), d(O_4, O_6)\} = 0$$

= $\min\{2,35; 2,31; 2,30; 2,43\} = 2,30.$

Przykład 5 (6)

Krok 6. Najmniejszy element 1,75 pomiędzy skupieniem S_1 i obiektem O_5 . Tworzymy nowe skupienie $S_3 = \{S_1, O_5\} = \{O_1, O_4, O_5\}$.

$$S_3$$
 S_2 O_2

Krok 7. Nowa macierz odległości: $S_3 S_2 = \begin{bmatrix} 0,0 & \frac{1,87}{0,0} & 3,68 \\ 0,0 & 3,89 \\ 0 & 0,0 \end{bmatrix}$

Krok 8. Łączymy skupienia S_2 i S_3 , zawierające 5 obiektów $S_{23} = \{S_2, S_3\} = \{O_1, O_3, O_4, O_5, O_6\}.$

Krok 9. Ostatnia macierz odległości:
$$S_{23}$$
 $\begin{pmatrix} 0,0 & 3,68 \\ O_2 & 0,0 \end{pmatrix}$.

Dendrogram

Otrzymane rezultaty możemy przedstawić za pomocą dendrogramu (wykresu drzewkowego) ilustrującego hierarchiczną strukturę zbioru obiektów ze względu na zmniejszające się podobieństwo między nimi.

Grupowanie zmiennych

Wskazówki ustalenia liczby skupień

- In należy analizować dendrogram pod względem różnić odległości między kolejnymi węzłami. Duża wartość różnic oznacza, że skupienia są odległe (odległość między kolejnymi węzłami jest duża) i w tym miejscu dokonujemy podziału. Przykładowo, kierując się tą sugestią, wybieramy dolną strzałkę na wykresie [A];
- ➤ wykorzystać różne mierniki, takie jak: miernik Mojena, miernik Grabińskiego itp.

Reguła Mojena

Punktem odcięcia jest odległość wiązania, dla której spełniona jest nierówność:

$$d_i > d + k \cdot s_d$$
, gdzie

 $d_0, d_1, ..., d_{n-1}$ są odległościami wiązania dla etapu n, n-1,, 1;

 d, s_d - średnia oraz odchylenie standardowe d_i ;

k - pewna stała.

Mojen zasugerował, że wartość $k \in [2,75; 3,50]$ daje zadowalające wyniki.

Z kolej Miligan i Cooper (1985) sugerują, że wartość k = 1,25 daje najlepsze wyniki.

Reguła Grabińskiego

Największa wartość $q_i = \frac{d_i}{d_{i-1}}$ wskazuje miejsce podziału.

Często zdarza się, że q_i przyjmuje wartość najwyższą dla pierwszych odległości – jest to podstawowa wada tej reguły.

Przykład 6 (1)

	<i>X</i> ₁	X_2	X_3	X_4
O_1	39,8	38	19,2	23,2
O_2	47,6	39,8	22,4	22,1
O_3	41,7	37,6	21,0	22,3
O_4	40,7	38,5	24,8	23,4
O_5	47,9	39,8	22,0	23,3
O_6	39,7	38,0	20,0	22,3
O_7	48,0	39,9	23,3	22,1
O_8	39,5	37,9	20,2	23,3
O_9	47,7	39,7	22,7	23,0
O_{10}	47,8	39,8	22,0	23,3
O ₁₁	47,9	39,9	22,4	22,7
O ₁₂	39,4	37,6	19,8	22,5
O ₁₃	39,6	38,1	18,8	23,2
O ₁₄	48,1	39,7	23,0	22,3

	X_1	X_2	X_3	X_4
O ₁	-1,02	-0,90	-1,34	0,82
O_2	0,89	0,94	0,49	-1,36
O_3	-0,55	-1,30	-0,31	-0,96
O_4	-0,80	-0,39	1,87	1,22
O_5	0,96	0,94	0,26	1,02
O_6	-1,04	-0,90	-0,88	-0,96
O_7	0,99	1,04	1,01	-1,36
O ₈	-1,09	-1,00	-0,77	1,02
O_9	0,92	0,84	0,66	0,43
O ₁₀	0,94	0,94	0,26	1,02
O ₁₁	0,94	1,04	0,49	-0,17
O ₁₂	-1,11	-1,30	-1,00	-0,56
O ₁₃	-1,06	-0,79	-1,57	0,82
O ₁₄	1,01	-0,84	0,83	-0,96

Przykład 6 (2)

Przebieg aglomeracji:

	d														
1	0,10	O_5	O ₁₀												
2	0,42	O ₇	O ₁₄												
3	0,46	O ₁	O ₁₃												
4	0,51	O ₉	O ₁₁												
5	0,57		O ₁₂												
6	0,68	O ₉	O ₁₁	O ₂											
7	0,72	O ₉	O ₁₁	O ₂	O ₅	O ₁₀									
8	0,77	<i>O</i> ₉	O ₁₁	O ₂	O ₅	O ₁₀	O ₇	O ₁₄							
9	0,95		O ₁₂	O ₈											
10	1,05	O ₆	O ₁₂	O ₈	O ₁	O ₁₃									
11	2,27	O_6	O ₁₂	08	O ₁	O ₁₃	O_3								
12	4,17	O ₆	O ₁₂	O ₈	O ₁	O ₁₃	O_3	O_4							
13	6,45	O_6	O ₁₂		<i>O</i> ₁	O ₁₃	_	O_4	O ₉	O ₁₁	O ₂	O ₅	O ₁₀	O ₇	O ₁₄

Przykład 6 (3)

Reguła Mojena:

Wyznaczamy średnią \overline{d} oraz odchylenie standardowe s_d dla zmiennej Odłegłość:

$$d = 1,47$$
 $s_d = 1,84$

$$d_i > \overline{d} + 1,25 \cdot s_d = 1,47 + 1,25 \cdot 1,84 = 3,77$$

czyli sugerowany jest podział na kroku dwunastym, gdzie $d_{12} = 4{,}17 > 3{,}77.$

Podział na grupy na kroku 12:

$$\{O_9, O_{11}, O_2, O_5, O_{10}, O_7, O_{14}\},\$$

 $\{O_6, O_{12}, O_8, O_1, O_{13}, O_3, O_4\}$

Przykład 6 (4)

	d_{i}	d_{i-1}	$q_i = d_i / d_{i-1}$
1	0,10	-	
2	0,42	0,10	4,20
3	0,46	0,42	1,08
4	0,51	0,46	1,11
5	0,57	0,51	1,13
6	0,68	0,57	1,18
7	0,72	0,68	1,07
8	0,77	0,72	1,06
9	0,95	0,77	1,22
10	1,05	0,95	1,11
11	2,27	1,05	2,16
12	4,17	2,27	1,84
13	6,45	4,17	1,54

Reguła Grabińskiego: Jeżeli nie brać pod uwagę kilka pierwszych wartości q_i (ponieważ podstawową wadą tej reguły jest to, że często zdarza się, że q_i przyjmuje wartość najwyższą dla pierwszych odległości), to można zauważyć, że iloraz $q_i = \frac{d_i}{d_{i-1}}$ przyjmuje wartość największą na

kroku 11:

$$\left\{ O_{9}, O_{11}, O_{2}, O_{5}, O_{10}, O_{7}, O_{14} \right\},$$

$$\left\{ O_{6}, O_{12}, O_{8}, O_{1}, O_{13}, O_{3} \right\},$$

$$\left\{ O_{4} \right\}$$

Przykład 6 (5)

	d_{i}	d_{i-1}	$d_i - d_{i-1}$
1	0,10	-	
2	0,42	0,10	0,32
3	0,46	0,42	0,03
4	0,51	0,46	0,05
5	0,57	0,51	0,06
6	0,68	0,57	0,10
7	0,72	0,68	0,05
8	0,77	0,72	0,05
9	0,95	0,77	0,17
10	1,05	0,95	0,10
11	2,27	1,05	1,21
12	4,17	2,27	1,9
13	6,45	4,17	2,27

Reguła maksimum: maksymalna wartość $d_i - d_{i-1}$ jest równa 2,27, krok 13, ale ponieważ na kroku 13 wszystkie obiekty zostały połączone w jedną grupę, to bierzemy krok podział na kroku 12:

$$\{O_9, O_{11}, O_2, O_5, O_{10}, O_7, O_{14}\},\$$

 $\{O_6, O_{12}, O_8, O_1, O_{13}, O_3, O_4\}$

Przykład 6 (6)

Obiekt O_4 , który dołączony został do jednego ze skupień w ostatni moment wskazuje na wartość nietypową lub nową grupę. Badanie należy więc powtórzyć z o wiele większą grupą obiektów.

