Nama: Miladyna Fauzia

NPM : 41155050210023

Kelas: INF A1

Pertemuan 2

1. Lakukan praktek dari https://youtu.be/lcjq7-2zMSA?si=f4jWJR6lY8y0BZK1 dan buat screen shot hasil run dengan nama anda pada hasil run tersebut. Praktek tersebut yaitu

1.1. Sample dataset

1.2. Visualisasi dataset

1.3. Transformasi dataset

1.4. Training Simple Linear Regression Model

1.5. Visualisasi Simple Linear Regression Model | Penjelasan persamaan garis linear

Formula Linear Regression $y = \alpha + \beta x$

- y: response variable
- x: explanatory variable
- α: intercept
- β : slope

```
[19]: print(f'intercept: {model.intercept_}')
print(f'slope:{model.coef_}')
intercept: 1.965517241379315
slope:[0.9762931]
```

1.6. Mencari nilai slope

Nilai intercept pada Linear Regression bisa diperoleh dengan memanfaatkan formula berikut:

$$\beta = \frac{cov\left(x,y\right)}{var(x)}$$

1.7. Mencari nilai intercept

Nilai intercept pada Linear Regression bisa diperoleh dengan memanfaatkan formula berikut:

```
\alpha = y - \beta x
[31]: intercept = np.mean(y) - slope * np.mean(X)
print(f'intercept: {intercept}')
intercept: 1.9655172413793114
```

1.8. Prediksi harga pizza dengan Simple Linear Regression Model

```
File Edit View Run Kernel Settings Help Trusted

Trusted
```

1.9. Evaluasi Simpel Linear Regression Model

Training Simpel Linear Regression Model

```
[45]: model = LinearRegression()
model.fit(X_train, y_train)

[45]: LinearRegression © 0
LinearRegression()
```

1.10. Evaluasi model dengan Coefficient of Determination | R Squared (R^2)

1.11. Kalkulasi nilai R Squared | Coefficient of Determination

```
R^{2} = 1 - \frac{SS_{res}}{SS_{tot}}
SS_{res} = \sum_{i=1}^{n} (y_{i} - f(x))^{2}
SS_{tot} = \sum_{i=1}^{n} (y_{i} - f(y))^{2}
```


SS_{tot}

```
[61]: mean_y = np.mean(y_test)
ss_tot = sum([(y_i - mean_y)**2 for y_i in y_test])
print(f'ss_tot: (ss_tot)')
ss_tot: 56.8
```

R^2

```
[63]: r_squared = 1 - (ss_res / ss_tot)

print(f'R-squared; (r_squared)')

R-squared; 0.6620052929422553
```

- 2. Lakukan praktek dari https://youtu.be/nWJUJenAyB8?si=BQDzWwrMnr8jtzpV dan buat screen shot hasil run dengan nama anda pada hasil run tersebut. Praktek tersebut yaitu:
 - 2.1. Sample dataset

print(f'y_test: {y_test}')

y_test: [11. 8.5 15. 18. 11.]

X_Lest: [[8 2] [9 0] [11 2] [16 2] [12 0]]

2.3. Pengenalan Multiple Linear Regression | Apa itu Multiple Linear Regression? Multiple Linear Regression merupakan generalisasi dari Simple Linear Regression yang memungkinkan untuk menggunakan beberapa explanatory variables.

2.4. Pengenalan Polynomial Regression | Apa itu Polynomial Regression? itu Polynomial Regression memodelkan hubungna antara independent variable x dan dependent variable y sebagai polynomial dalam x

Proses Dataset

2.5. Quadratic Polynomial Regression

$$y = a + \beta_1 x + \beta_2 x^2$$

Polynomial Features

Training Model

Visualisasi Model

2.6. Linear Regression vs Quadratic Polynomial Regression vs Cubic Polynomial Regression

- 3. Lakukan praktek dari https://youtu.be/oe7DW4rSH1o?si=H-PZJ9rs9-Kab-Ln dan buat screen shot hasil run dengan nama anda pada hasil run tersebut. Praktek tersebut yaitu: Logistic Regression pada Binary Classification Task
 - 3.1. Formula dasar pembentuk Logistic Regression | Fungsi Sigmoid Simple Linear Regression
 - $y = a + \beta x$
 - $g(x) = a + \beta x$

Multiple Linear Regression

- $\bullet \quad y = a + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$
- $g(X) = a + \beta X$

Logistic Regression

- $g(X) = sigmoid(a + \beta X)$
- $sigmoid(x) = \frac{1}{1 + \exp(-x)}$
- 3.2. Persiapan dataset | SMS Spam Collection Dataset

3.3. Pembagian training dan testing dataset

3.4. Feature extraction dengan TF-IDF

3.5. Binary Classification dengan Logistic Regression

3.6. Evaluation Metrics pada Binary Classification Task

- Confusion Matrix
- Accuracy
- Precision dan Recall
- F1 Score
- ROC

Terminologi Dasar

- True Positive (TP)
- True Negative (TN)
- False Positive (FP)
- False Negative (FN)

3.7. Pengenalan Confusion Matrix

Confusion Matrix seringkali juga dikenal sebagai error matrix

3.8. Pengenalan Accuracy Score

Accurary mengukur porsi dari hasil prediksi yang tepat

$$Accurary = \frac{TP + TN}{TP + TN + FP + FN} = \frac{correct}{total}$$

3.9. Pengenalan Precision dan Recall

Selain menggunakan accurary, performa dari suatu classifier umumnya juga diukur berdasarkan nilai Precission dan Recall.

Precission or Positive Predictive Value (PPV)

$$Precission = \frac{TP}{TP + FP}$$

```
[18]: from sklearn.metrics import precision_score

precision_score(y_test, y_pred)

[18]: np.float64(0.9928857553956835)
```

Recall or True Positive Rate (TPR) or Sensitivity

$$Recall = \frac{TP}{TP + FN}$$

	11 1117
[23]:	from sklearn.metrics import recall_score
	recall_score(y_test, y_pred)
[23]:	np.float64(0.745945945945946)

3.10. Pengenalan F1 Score | F1 Measure

F1-score atau F1-measure adalah harmonic mean dari precission dan recall.

$$F1 \ score = \frac{precission \times recall}{precission + recall}$$

ı	precission recati
[24]:	from sklearn.metrics import fl_score
	f1_score(y_test, y_pred)
[24]:	np.float64(0.8518518518518519)

3.11. Pengenalan ROC | Receiver Operating Characteristic

