Решеточные газы, решеточное уравнение Больцмана

Отчёт по второму этапу группового проекта

Команда №4: Абакумова Олеся Максимовна (НФИбд-02-22) Астраханцева Анастасия Александровна (НФИбд-01-22) Ганина Таисия Сергеевна (НФИбд-01-22) Ибатулина Дарья Эдуардовна (НФИбд-01-22)

Содержание

1		дение		5					
	1.1		проекта	5					
	1.2		и второго этапа проекта	5					
	1.3	Актуа	альность	5					
2	Осн	Основная часть							
	2.1	Моде	ль HPP (Hardy–Pomeau–Pazzis)	6					
		2.1.1		6					
		2.1.2	Математическое описание	8					
		2.1.3		9					
	2.2	Моде	ль FHP-I (Frisch-Hasslacher-Pomeau)	9					
		2.2.1	·	9					
		2.2.2		10					
		2.2.3		11					
	2.3	Моде	ль FHP-III	11					
		2.3.1		11					
		2.3.2		13					
		2.3.3		13					
	2.4	Моде	ль с 9 направлениями скорости	15					
		2.4.1	Основные характеристики модели с 9 направлениями ско-						
			рости	15					
		2.4.2	Физические параметры	17					
		2.4.3		17					
		2.4.4		18					
	2.5	Реше	точное уравнение Больцмана (LBE, Lattice Boltzmann Equation)	18					
		2.5.1		18					
		2.5.2	Преимущества LBĒ	20					
		2.5.3	Недостатки LBE	21					
		2.5.4	Применение LBE	21					
	2.6	Моде	ль с взаимодействием между частицами	22					
			Основные характеристики модели с взаимодействием меж-						
			ду частицами	22					
		2.6.2	Алгоритм моделирования с взаимодействием	23					
		2.6.3	Применение	24					
	2.7		ль с несколькими компонентами	24					
		2.7.1	Основные характеристики модели с несколькими компо-						
			нентами	2.4					

4	Список лит	гературы	29
3	3.1 Закли	ельная часть ючение	
	2.7.3	Математическое описание	. 26
	2.7.2	Алгоритм моделирования с несколькими компонентами	. 25

Список иллюстраций

2.1	Примеры перемещений частиц в модели НРР	7
2.2	Решетка и некоторые возможные столкновения частиц в модели	
	FHP-I(a), некоторые возможные столкновения с участием покоя-	
	щихся частиц в модели FHP-III(б)	14
2.3	Возможные направления движения частиц в модели с девятью	
	направлениями	16

1 Введение

1.1 Цель проекта

Разработать и проанализировать модель на основе решеточного уравнения Больцмана для описания течений газа.

1.2 Задачи второго этапа проекта

1. Исследовать алгоритмы решения задачи

1.3 Актуальность

Моделирование газовых потоков и жидкостей традиционными методами требует значительных вычислительных ресурсов. В связи с этим, методы решеточных газов (LGA) и решеточного уравнения Больцмана (LBE) становятся все более актуальными. Они позволяют упростить вычисления, сохраняя при этом физическую достоверность, и находят применение в различных областях, от гидродинамики до биофизики. В данном докладе мы рассмотрим основные алгоритмы и модели, используемые для решения задач с применением LGA и LBE [1,2].

2 Основная часть

2.1 Модель HPP (Hardy-Pomeau-Pazzis)

Модель HPP (Hardy-Pomeau-Pazzis) — это базовая модель решеточных газов (LGA), используемая для моделирования гидродинамических явлений на микроскопическом уровне. Она представляет собой дискретную систему, где пространство и время дискретизованы, а частицы двигаются по узлам квадратной решетки [3].

2.1.1 Основные характеристики модели НРР

- 1. **Решетка**: используется двумерная квадратная решетка, где узлы расположены на одинаковом расстоянии друг от друга.
- 2. **Частицы**: в каждом узле решетки могут находиться частицы единичной массы. Каждая частица может двигаться в одном из четырех направлений: вверх, вниз, вправо или влево.
- 3. **Скорость**: все частицы имеют одинаковую скорость, направленную к соседнему узлу. Расстояние между узлами (Δx) и шаг времени (Δt) выбираются так, чтобы частица могла переместиться в соседний узел за один временной шаг.
- 4. **Принцип исключения**: в каждом узле может находиться не более одной частицы, движущейся в заданном направлении.

5. Этапы эволюции:

- **Pacпространение (Streaming)**: частицы перемещаются в соседние узлы в соответствии со своими скоростями. За один шаг времени частица переходит в соседний узел в направлении своего движения.
- **Столкновения (Collision)**: в узлах происходят столкновения частиц, при которых сохраняются количество частиц и полный импульс.
- 6. **Правила столкновений**: столкновения происходят таким образом, чтобы выполнялись законы сохранения. В модели НРР нетривиальные столкновения происходят, когда две частицы движутся навстречу друг другу (почти "лоб в лоб"). После столкновения частицы меняют направления движения на 90 градусов. Во всех остальных случаях столкновения считаются несущественными, и частицы продолжают двигаться в прежних направлениях (рис. 2.1).

Рис. 2.1: Примеры перемещений частиц в модели НРР

7. **Кодирование состояний**: состояние каждого узла решетки кодируется битами. Поскольку имеется четыре возможных направления движения,

для кодирования состояния узла требуется четыре бита. Каждый бит соответствует одному из направлений: 0 — нет частицы, 1 — есть частица, движущаяся в этом направлении. Например, если частицы движутся вправо и вверх, состояние узла кодируется как 1100 в двоичном формате.

2.1.2 Математическое описание

Обозначим возможные направления скорости как $d_1, d_2, d_3, d_4 \$$. Тогда:

•
$$d_1 = 0001_2 = 1$$

•
$$d_2 = 0010_2 = 2$$

•
$$d_3 = 0100_2 = 4$$

•
$$d_4 = 1000_2 = 8$$

Основные операции для работы с состояниями узлов:

1. **Добавление частицы**: добавление к состоянию S частицы с направлением скорости d_k :

$$S \, \mathrm{OR} \, d_k \to S$$

2. **Проверка наличия частицы**: проверка, есть ли в состоянии S частица с направлением скорости d_k :

$$\text{if } (S \, \text{AND} \, d_k) \neq 0$$

Если результат не равен 0, то частица с направлением d_k присутствует в узле [4].

2.1.3 Недостатки модели НРР

- 1. **Отсутствие симметрии**: квадратная решетка с четырьмя направлениями скорости недостаточно симметрична, что приводит к анизотропии в макроскопических свойствах.
- 2. **Нефизичное поведение**: модель HPP неточно описывает гидродинамические свойства жидкостей и газов.

Для устранения этих недостатков были разработаны более совершенные модели, такие как FHP (Frisch-Hasslacher-Pomeau) на треугольных решетках и модели с добавлением покоящихся частиц.

2.2 Модель FHP-I (Frisch-Hasslacher-Pomeau)

Модель FHP-I (Frisch-Hasslacher-Pomeau) — это улучшенная модель решеточных газов (LGA), разработанная для устранения недостатков модели HPP, связанных с недостаточной симметрией. В модели FHP-I используется треугольная сетка и шесть направлений скорости [4].

2.2.1 Основные характеристики модели FHP-I

- 1. **Решетка**: используется двумерная треугольная решетка, где каждый узел имеет шесть ближайших соседних узлов, расположенных под углами 60 градусов друг к другу.
- 2. **Частицы**: в каждом узле решетки могут находиться частицы единичной массы. Каждая частица может двигаться в одном из шести направлений к соседним узлам.
- 3. **Скорость**: все частицы имеют одинаковую скорость, направленную к соседнему узлу. Как и в модели HPP, расстояние между узлами и шаг времени

выбираются так, чтобы частица могла переместиться в соседний узел за один временной шаг.

4. **Принцип исключения**: в каждом узле может находиться не более одной частицы, движущейся в заданном направлении.

5. Этапы эволюции:

- **Pacпpocтpaнeниe (Streaming)**: частицы перемещаются в соседние узлы в соответствии со своими скоростями.
- **Столкновения (Collision)**: в узлах происходят столкновения частиц, при которых сохраняются количество частиц и полный импульс.
- 6. **Правила столкновений**: столкновения происходят таким образом, чтобы выполнялись законы сохранения. Важным аспектом модели FHP-I является наличие нескольких типов столкновений, обеспечивающих сохранение массы и импульса. Примеры столкновений:
 - Две частицы, движущиеся навстречу друг другу, могут изменить направление на 60 градусов.
 - Три частицы, движущиеся по трем направлениям, могут изменить направления так, чтобы общий импульс остался неизменным.
- 7. **Кодирование состояний**: состояние каждого узла решетки кодируется битами. Поскольку имеется шесть возможных направлений движения, для кодирования состояния узла требуется шесть битов. Каждый бит соответствует одному из направлений: 0 нет частицы, 1 есть частица, движущаяся в этом направлении [5].

2.2.2 Преимущества модели FHP-I

1. **Улучшенная симметрия**: треугольная решетка с шестью направлениями скорости обладает большей симметрией по сравнению с квадратной

решеткой модели НРР. Это позволяет получить более точное описание гидродинамических свойств.

2. **Реалистичное поведение**: модель FHP-I более точно описывает гидродинамические свойства жидкостей и газов по сравнению с моделью HPP.

2.2.3 Недостаток модели FHP-I

Сложность реализации: треугольная решетка и более сложные правила столкновений делают реализацию модели FHP-I более сложной по сравнению с моделью HPP.

2.3 Модель FHP-III

Модель FHP-III — это расширение модели FHP-I, предназначенное для улучшения её физических свойств за счет добавления покоящихся частиц. Введение покоящихся частиц позволяет более точно моделировать гидродинамические явления и улучшить изотропность модели [6].

2.3.1 Основные характеристики модели FHP-III

- 1. **Решетка**: используется двумерная треугольная решетка, как и в модели FHP- I. Каждый узел имеет шесть ближайших соседних узлов, расположенных под углами 60 градусов друг к другу.
- 2. **Частицы**: в каждом узле решетки могут находиться частицы единичной массы. В отличие от FHP-I, в FHP-III добавлены покоящиеся частицы, которые не двигаются между узлами. Таким образом, у нас есть шесть движущихся частиц и покоящаяся частица.
- 3. **Скорость**: шесть движущихся частиц имеют одинаковую скорость, направленную к соседнему узлу. Покоящиеся частицы имеют нулевую скорость.

4. **Принцип исключения**: в каждом узле может находиться не более одной частицы, движущейся в заданном направлении, и не более одной покоящейся частицы.

5. Этапы эволюции:

- **Pacпространение (Streaming)**: движущиеся частицы перемещаются в соседние узлы в соответствии со своими скоростями. Покоящиеся частицы остаются на месте.
- **Столкновения (Collision)**: в узлах происходят столкновения частиц, при которых сохраняются количество частиц и полный импульс. В FHP-III добавляются новые правила столкновений, учитывающие покоящиеся частицы.
- 6. **Правила столкновений**: столкновения происходят таким образом, чтобы выполнялись законы сохранения. Некоторые примеры столкновений:
 - Две частицы, движущиеся навстречу друг другу, могут изменить направление на 60 градусов (как в FHP-I).
 - Частица может столкнуться с покоящейся частицей, изменив направление своего движения.
 - Покоящаяся частица может быть создана или уничтожена в результате столкновений.
- 7. **Кодирование состояний**: состояние каждого узла решетки кодируется битами. Поскольку имеется шесть возможных направлений движения и возможность наличия покоящейся частицы, для кодирования состояния узла требуется семь битов. Шесть битов соответствуют направлениям движения, а один бит наличию покоящейся частицы [2].

2.3.2 Преимущества модели FHP-III

- 1. **Улучшенная изотропность**: добавление покоящихся частиц улучшает изотропность модели, что позволяет получить более точное описание гидродинамических свойств.
- 2. **Более реалистичное поведение**: модель FHP-III более точно описывает гидродинамические свойства жидкостей и газов по сравнению с моделями HPP и FHP-I.

2.3.3 Недостаток модели FHP-III

Сложность реализации: добавление покоящихся частиц и новых правил столкновений делает реализацию модели FHP-III более сложной по сравнению с моделями HPP и FHP-I (рис. 2.2).

Рис. 2.2: Решетка и некоторые возможные столкновения частиц в модели FHP- I(a), некоторые возможные столкновения с участием покоящихся частиц в модели FHP-III(б)

Модель с 9 направлениями скорости является модификацией модели решеточных газов, предназначенной для улучшения изотропности и введения понятия температуры в систему. Она использует квадратную сетку, но расширяет возможные направления движения частиц, позволяя им перемещаться не только по горизонтали и вертикали, но и по диагонали. Кроме того, вводится понятие покоящихся частиц.

2.4 Модель с 9 направлениями скорости

2.4.1 Основные характеристики модели с 9 направлениями скорости

- 1. Решетка: используется двумерная квадратная решетка, как и в модели НРР.
- 2. **Частицы**: в каждом узле решетки могут находиться частицы, движущиеся в одном из восьми направлений (вверх, вниз, вправо, влево, и по четырем диагоналям), а также покоящиеся частицы.

3. Скорость:

- Частицы, движущиеся по горизонтали и вертикали, имеют скорость $v_1=1.$
- Частицы, движущиеся по диагонали, имеют скорость $v_2 = \sqrt{2}.$
- Покоящиеся частицы имеют нулевую скорость.

4. Направления движения:

- 4 направления с единичной скоростью: вправо, влево, вверх, вниз.
- 4 направления с диагональной скоростью: вправо-вверх, вправо-вниз, влево-вверх, влево-вниз.
- 1 состояние покоя (рис. 2.3).

Рис. 2.3: Возможные направления движения частиц в модели с девятью направлениями

5. Этапы эволюции:

- **Pacпространение (Streaming)**: частицы перемещаются в соседние узлы в соответствии со своими скоростями.
- **Столкновения (Collision)**: в узлах происходят столкновения частиц, при которых сохраняются количество частиц, импульс и энергия.

- 6. **Правила столкновений**: правила столкновений должны обеспечивать сохранение массы, импульса и энергии. Это достигается за счет более сложных правил столкновений по сравнению с моделями HPP и FHP.
- 7. **Кодирование состояний**: состояние каждого узла решетки кодируется битами. Поскольку имеется 9 возможных состояний (8 направлений движения и состояние покоя), для кодирования состояния узла требуется 9 битов.

2.4.2 Физические параметры

В модели с 9 направлениями скорости можно определить макроскопические параметры, такие как плотность, полная энергия и температура.

1. Плотность (ρ) :

$$\rho = n_0 + n_1 + n_2$$

- n_0 число покоящихся частиц.
- n_1 число частиц с единичной скоростью.
- n_2 число частиц со скоростью $\sqrt{2}$.
- 2. Полная энергия (E):

$$E = P + \frac{\rho u^2}{2} = \sum_{i} n_i \frac{v_i^2}{2} = \frac{n_1}{2} + n_2$$

- P давление.
- u макроскопическая скорость.
- 3. **Температура** (*T*): $T = \frac{P}{\rho}$

2.4.3 Преимущества модели с 9 направлениями скорости

1. **Изотропность**: добавление диагональных направлений движения улучшает изотропность модели по сравнению с моделью HPP.

- 2. **Возможность введения температуры**: наличие различных скоростей позволяет ввести понятие температуры, что важно для моделирования тепловых процессов.
- 3. **Более реалистичное поведение**: модель с 9 направлениями скорости более точно описывает гидродинамические свойства жидкостей и газов по сравнению с более простыми моделями.

2.4.4 Недостатки модели с 9 направлениями скорости

- 1. **Сложность реализации**: добавление новых направлений движения и покоящихся частиц усложняет реализацию модели по сравнению с моделями HPP и FHP.
- 2. **Вычислительные затраты**: большее число состояний и более сложные правила столкновений увеличивают вычислительные затраты [1].

2.5 Решеточное уравнение Больцмана (LBE, Lattice Boltzmann Equation)

Решеточное уравнение Больцмана (LBE) — это вычислительный метод, используемый для моделирования широкого спектра физических процессов, включая гидродинамику, фазовые переходы и химические реакции. LBE является более общим подходом по сравнению с моделями решеточных газов (LGA), такими как HPP, FHP-I и FHP-III, и предоставляет более точное и гибкое средство моделирования сложных систем [1,2].

2.5.1 Основные характеристики LBE

1. **Дискретизация пространства и времени**: LBE, как и LGA, дискретизует пространство и время. Пространство представляется в виде решетки

(обычно квадратной или треугольной), а время разбивается на дискретные шаги.

- 2. **Функция распределения**: в отличие от LGA, где отслеживаются отдельные частицы, LBE работает с функцией распределения $f_k(x,t)$, которая описывает вероятность нахождения частиц в узле x в момент времени t, движущихся в направлении k.
- 3. **Скорости**: частицы могут двигаться в нескольких дискретных направлениях c_k , определяемых геометрией решетки.
- 4. Основное уравнение: эволюция системы описывается уравнением:

$$f_k(x + c_k \Delta t, t + \Delta t) = f_k(x, t) + \Omega_k(x, t)$$

- $f_k(x,t)$ одночастичная функция распределения.
- c_k скорость частиц.
- $\Omega_k(x,t)$ столкновительный член, описывающий изменения функции распределения из-за столкновений частиц.
- 5. **Столкновительный член**: описывает, как частицы взаимодействуют друг с другом. Наиболее часто используется модель BGK (Bhatnagar-Gross-Krook):

$$\Omega_k = \frac{1}{\tau} (f_k^{eq} - f_k)$$

- au время релаксации, характеризующее скорость приближения системы к равновесию.
- f_k^{eq} равновесная функция распределения, описывающая состояние системы в равновесии.
- 6. **Равновесная функция распределения**: обычно выбирается в виде разложения по полиномам Эрмита или в другом подходящем виде, чтобы

обеспечить выполнение законов сохранения. Например, для модели D2Q9 (двумерная модель с 9 скоростями) равновесная функция распределения может быть записана как:

$$f_k^{eq} = w_k \rho \left[1 + \frac{c_k \cdot u}{c_s^2} + \frac{(c_k \cdot u)^2}{2c_s^4} - \frac{u^2}{2c_s^2} \right]$$

- w_k весовые коэффициенты, зависящие от направления скорости.
- ρ плотность.
- u макроскопическая скорость.
- c_s скорость звука в решеточной модели.
- 7. **Макроскопические параметры**: макроскопические параметры, такие как плотность и скорость, вычисляются через функции распределения:

$$\rho = \sum_{k} f_k$$

$$\rho u = \sum_{k} f_k c_k$$

2.5.2 Преимущества LBE

- 1. **Гибкость**: LBE может быть использован для моделирования широкого спектра физических явлений, включая гидродинамику, теплопередачу, фазовые переходы, химические реакции и многофазные потоки.
- 2. **Эффективность**: LBE обладает хорошей параллелизуемостью, что позволяет эффективно использовать многопроцессорные системы для моделирования больших систем.
- 3. **Точность**: LBE обеспечивает более точное описание гидродинамических свойств по сравнению с более простыми моделями LGA.
- 4. **Простота реализации граничных условий**: LBE позволяет легко реализовывать сложные граничные условия.

2.5.3 Недостатки LBE

- 1. **Ограничения по скорости**: LBE обычно работает хорошо для низкоскоростных течений. Для моделирования высокоскоростных течений требуются специальные модификации.
- 2. **Вычислительные затраты**: LBE требует больше вычислительных ресурсов по сравнению с простыми моделями LGA [1].

2.5.4 Применение LBE

LBE находит широкое применение в различных областях науки и техники, включая:

- 1. **Гидродинамика**: моделирование течений жидкостей и газов в сложных геометриях.
- 2. Аэродинамика: моделирование обтекания тел потоками воздуха.
- 3. Пористые среды: моделирование течений в пористых материалах.
- 4. Медицина: моделирование кровотока в сосудах.
- 5. **Химическая инженерия**: моделирование химических реакций в растворах.
- 6. **Моделирование фазовых переходов**: моделирование процессов конденсации, испарения и кристаллизации.

Модель с взаимодействием между частицами используется для моделирования фазовых переходов и разделения фаз. В этой модели к обычным алгоритмам решеточных газов или решеточного уравнения Больцмана добавляются силы, действующие между частицами, находящимися в разных узлах решетки.

2.6 Модель с взаимодействием между частицами

2.6.1 Основные характеристики модели с взаимодействием между частицами

1. **Взаимодействие между частицами**: для описания жидкостей и газов вводятся силы взаимодействия между частицами. Эти силы могут быть как отталкивающими (для моделирования разделения веществ), так и притягивающими (для моделирования фазовых переходов жидкость-газ).

2. Типы взаимодействий:

- **Отталкивание**: используется для моделирования разделения смеси веществ на компоненты. Частицы разных компонентов отталкиваются друг от друга, что приводит к их разделению.
- **Притяжение**: используется для моделирования фазовых переходов, таких как конденсация пара в жидкость или вскипание перегретой жидкости. Частицы притягиваются друг к другу, образуя кластеры или капли.
- 3. **Влияние внешних сил**: внешние силы могут быть учтены через изменение скорости частиц:

$$\Delta u = \frac{F\Delta t}{\rho}$$

- Δu изменение скорости.
- F— внешняя сила.
- Δt шаг времени.
- ρ плотность.

Уравнение Больцмана модифицируется добавкой:

$$f_k(x + c_k \Delta t, t + \Delta t) = f_k(x, t) + \Omega_k(x, t) + \Delta f_k$$

где:

$$\Delta f_k = f_k^{eq}(\rho, u + \Delta u) - f_k^{eq}(\rho, u)$$

- Δf_k изменение функции распределения, вызванное внешней силой.
- f_k^{eq} равновесная функция распределения.
- 4. **Моделирование фазовых переходов**: фазовые переходы моделируются через силы притяжения между соседними узлами:

$$F(x) = \psi(\rho(x)) \sum_k G_k e_k \psi(\rho(x+e_k))$$

- F(x) сила, действующая на узел x.
- $\psi(\rho(x))$ функция, зависящая от плотности в узле x.
- $G_k > 0$ константа, определяющая силу притяжения.
- e_k вектор, указывающий направление к соседнему узлу.

2.6.2 Алгоритм моделирования с взаимодействием

- 1. Инициализация:
 - Создание решетки (квадратной или треугольной).
 - Установка начальных условий (плотность, скорость, температура).
 - Определение параметров взаимодействия (сила притяжения или отталкивания).
- 2. **Распространение (Streaming)**: частицы перемещаются в соседние узлы в соответствии со своими скоростями.
- 3. **Вычисление сил взаимодействия**: для каждого узла вычисляется сила, действующая на него со стороны соседних узлов.

- 4. **Столкновения (Collision)**: в узлах происходят столкновения частиц, при которых сохраняются количество частиц, импульс и энергия. Учитывается влияние сил взаимодействия на изменение скоростей частиц.
- 5. **Обновление скоростей**: скорости частиц изменяются под действием сил взаимодействия и внешних сил.
- 6. **Повторение шагов 2-5**: процесс повторяется до достижения стационарного состояния или заданного времени моделирования.

2.6.3 Применение

- Моделирование конденсации и испарения: позволяет изучать процессы образования капель из пересыщенного пара и вскипания перегретой жидкости.
- **Разделение фаз (спинодальная декомпозиция)**: моделирование разделения смеси на фазы с разными свойствами.
- **Моделирование многофазных потоков**: изучение течений, в которых одновременно присутствуют несколько фаз (например, жидкость и газ) [4].

2.7 Модель с несколькими компонентами

Модель с несколькими компонентами используется для моделирования смесей веществ и химических реакций. В этой модели каждый компонент представлен своим набором частиц или функций распределения, и учитываются взаимодействия между различными компонентами [1].

2.7.1 Основные характеристики модели с несколькими компонентами

1. **Несколько типов частиц**: в системе присутствует несколько видов частиц, каждый из которых соответствует определенному компоненту смеси.

- 2. Функции распределения для каждого компонента: если используется подход LBE, то для каждого компонента определяется своя функция распределения $f_{k,i}(x,t)$, где i индекс компонента.
- 3. **Взаимодействия между компонентами**: учитываются силы взаимодействия между различными компонентами смеси. Эти силы могут быть как отталкивающими (для моделирования разделения фаз), так и притягивающими (для моделирования образования соединений).
- 4. **Химические реакции**: в модели могут быть реализованы химические реакции между компонентами. Для этого вводятся правила, определяющие, как и с какой вероятностью частицы разных компонентов могут превращаться друг в друга.
- 5. **Уравнения эволюции**: эволюция системы описывается набором уравнений, учитывающих как гидродинамические процессы, так и химические реакции.

2.7.2 Алгоритм моделирования с несколькими компонентами

1. Инициализация:

- Создание решетки (квадратной или треугольной).
- Установка начальных условий (плотность, скорость, концентрация каждого компонента).
- Определение параметров взаимодействия между компонентами.
- Задание правил химических реакций (если они есть).
- 2. **Распространение (Streaming)**: частицы каждого компонента перемещаются в соседние узлы в соответствии со своими скоростями.
- 3. **Вычисление сил взаимодействия**: для каждого узла вычисляются силы, действующие на частицы каждого компонента со стороны других компонентов.

- 4. **Столкновения (Collision)**: в узлах происходят столкновения частиц, при которых сохраняются количество частиц, импульс и энергия для каждого компонента. Учитывается влияние сил взаимодействия на изменение скоростей частиц.
- 5. **Химические реакции**: в узлах происходят химические реакции между компонентами в соответствии с заданными правилами. В результате этих реакций изменяется количество частиц каждого компонента.
- 6. **Обновление скоростей**: скорости частиц каждого компонента изменяются под действием сил взаимодействия и внешних сил.
- 7. **Повторение шагов 2-6**: процесс повторяется до достижения стационарного состояния или заданного времени моделирования [5].

2.7.3 Математическое описание

Для LBE с несколькими компонентами уравнение эволюции выглядит следующим образом:

$$f_{k,i}(x + c_k \Delta t, t + \Delta t) = f_{k,i}(x,t) + \Omega_{k,i}(x,t)$$

- $f_{k,i}(x,t)$ функция распределения для компонента i в узле x в момент времени t.
- c_k скорость частиц.
- $\Omega_{k,i}(x,t)$ столкновительный член, описывающий изменения функции распределения из-за столкновений и химических реакций.

Столкновительный член может включать в себя как релаксацию к равновесию, так и члены, описывающие химические реакции:

$$\Omega_{k,i} = \Omega_{k,i}^{collision} + \Omega_{k,i}^{reaction}$$

2.7.4 Применение

- Моделирование смешивания жидкостей: позволяет изучать процессы смешивания различных жидкостей и газов.
- Разделение веществ: моделирование разделения смеси на компоненты (например, разделение нефти на фракции).
- Моделирование химических реакций: изучение кинетики химических реакций в растворах и газах.
- Реакция-диффузия: моделирование процессов, в которых химические реакции сочетаются с диффузией веществ [4].

3 Заключительная часть

3.1 Заключение

Модели решеточных газов (LGA) и решеточное уравнение Больцмана (LBE) представляют собой эффективные инструменты для моделирования газовых потоков, требующие меньше вычислительных ресурсов по сравнению с традиционными методами.

Различные модели обладают разными характеристиками и применимы для разных задач. HPP- простая базовая модель, FHP-I и FHP-III улучшают симметрию и изотропность, а модель с 9 направлениями скорости позволяет вводить понятие температуры. LBE является наиболее общим и гибким подходом.

Выбор конкретного алгоритма зависит от требований к точности, вычислительным ресурсам и специфике решаемой задачи.

3.2 Выводы

Во время выполнения второго этапа группового проекта мы сделали теоретическое описание алгоитмов, которые могут быть использованы для моделирования решеточного уравнения Больцмана.

4 Список литературы

- 1. Медведев Д.А., др. Моделирование физических процессов и явлений на ПК: Учеб. пособие. Новосибирск: Новосиб. гос. ун-т, 2010. С. 101.
- 2. Куперштох А.Л. Моделирование течений с границами раздела жидкостьпар методом решеточных уравнениях Больцмана // Вестник НГУ. Сер. Математика, механика и информатика. 2005. Т. 5, № 3. С. 29–42.
- 3. Chen S. и др. A lattice gas model with temperature // Physica D. 1989. T. 37. C. 42–59.
- 4. Чащин Г.С. Метод решеточных уравнений Больцмана: моделирование изотермических низкоскоростных течений: 99. Препринты ИПМ им. М.В.Келдыша, 2021. С. 31.
- 5. Frisch U., Hasslacher B., Pomeau Y. Lattice Gas Automata for the Navier-Stokes Equation // Phys. Rev. Lett. 1986. T. 56, № 14. C. 1505–1508.
- 6. Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, 2001.