Curso de

Sistemas Operacionais

Gerenciamento de Arquivos Parte 2

Prof. Dr. Robson Siscoutto

e-mail: robson@unoeste.br

Sistemas Operacionais

Gerenciamento de Arquivos

- Introdução;
- Arquivos;
- Diretórios;
- Implementação do Sistema de Arquivos:
 - Implementação de Arquivos;
 - Implementação de Diretórios;
 - Arquivos Compartilhado;
 - Gerenciamento de Espaço em Disco
 - Monitoração dos Blocos Livres
 - Desempenho do Sistema de Arquivos
 - Sistema de arquivos LOG Estruturado
 - Exemplos de Sistemas de Arquivos

Implementação do Sistema de Arquivos

Implementação de Diretórios

Implementação do Sistema de Arquivos

• Implementação de Diretórios:

- Quando um arquivo é aberto:
 - S.O. usa o <u>nome do caminho</u> fornecido pelo usuário para localizar a <u>entrada do diretório</u>;
 - A entrada do diretório fornece:
 - informações necessárias para encontrar os blocos de disco;
 - Dependo do sistema:
 - 1. pode ser o endereço do disco de todo o arquivo (alocação contígua);
 - 2. O número do primeiro bloco (lista encadeadas);
 - 3. O número do i-node (Linux/Unix);

- Implementação de Diretórios:
 - Onde manter os atributos dos arquivos:
 - Alternativa óbvia:
 - Armazenamento direto na entrada do diretório;
 - Exemplo: diretório formato por:
 - uma <u>lista de entradas de tamanho fixo</u>, um por arquivo, contendo um nome de arquivo (8.3)
 - uma <u>estrutura de atributos</u> do arquivo
 - <u>um ou mais endereços de disco</u> indicando onde os blocos de disco estão;

Implementação do Sistema de Arquivos

- Implementação de Diretórios:
 - Onde manter os atributos dos arquivos:
 - (a) Um simples diretório MSDOS e WINDOWS
 - entradas de tamanho fixo
 - endereços de disco e atributos na entrada de diretório

• (b) Diretório no qual cada entrada se refere a um i-node - Linux/Unix

Nome do Arquivo

	The second secon
games	attributes
mail	attributes
news	attributes
work	attributes

Nome do Arquivo End. I-node

games

mail

news

work

Data structure containing the attributes

(a)

Implementação do Sistema de Arquivos

- · Implementação de Diretórios:
 - Entradas (nomes) de Tamanhos Variados
 - Duas soluções:
 - Primeira Solução: em linhas:
 - cabeçalho tem uma **parte fixa**: tamanho da entrada, nome do proprietário, horário de criação, proteção e
 - Seguida pelo nome do arquivo de tamanho indeterminado, finalizado por um caractere especial;
 - **Desvantagem**: lacuna de tamanho variado no diretório, podendo não caber um novo arquivo;
 - Solução: compactação do diretório, pois ele está na memória;

(a)

Entry for one file

Implementação do Sistema de Arquivos

- · Implementação de Diretórios:
 - Entradas de Tamanhos Variados (Nomes de tamanho variado)
 - Segunda Solução:

Entradas de tamanho fixo e juntar nomes dos arquivos numa área temporária (heap) no final do diretório;

⁷antagem:

- não lacunas e sempre caberá um novo arquivo;
- Não é necessário completar os nomes com caracteres especiais

Heap Utilização de algoritmos de tabela *hash* para agilizar o ocessamento de busca

- Implementação de Diretórios:
 - Exemplo CP/M
 - Só existe um diretório com todos os arquivos:
 - Cada entrada possui os numero dos blocos no disco;

Implementação do Sistema de Arquivos

• Implementação de Diretórios:

- Exemplo DOS
 - utiliza alocação com lista ligada usando tabela na memória

- Exemplo Linux/Unix
 - cada entrada no diretório é formada pelo nome do arquivo e seu numero de i-node (localizado num endereço fixo no disco): Bytes 2

Implementação do Sistema de Arquivos

Arquivos Compartilhados

Arquivo Compartilhado

• Por meio de links físicos;

 Grafo cíclico Orientado - DAG Root directory B В В

Shared file

Arquivo Compartilhado

• Problema:

- <u>Se os diretórios contiverem realmente os endereços de disco</u>: deve ser feita uma copia dos endereços do disco de A para o outro diretório de B;
- Se B adicionar blocos, apenas a tabela de diretório do usuário que fez a adição conterá os novos blocos;
- Não sendo visível ao outro usuário A;

• Solução: Duas maneiras:

- (1^a) os blocos são relacionados em uma pequena estrutura de dados associado com o arquivo e todo mundo aponta (link Físico);
- (2^a) criar um **link simbólico** (Atalho)

Arquivo Compartilhado

- (1^a) Solução: link Físico ou Hard Link:
 - os blocos são relacionados em uma pequena estrutura de dados associado com o arquivo
 - Os diretórios apontam apenas para a pequena estrutura de dados;
 - estratégia utilizada pelo Linux/Unix
 - estrutura de dados : i-node

• Problema:

- •A criação de uma ligação não altera a propriedade, só aumento o contador de ligações
- •Se o dono apagar o arquivo e zerar o i-node, B fica com ponteiro errado;

Arquivo Compartilhado

Arquivo Compartilhado:

- (a) Situação antes da ligação;
- (b) Situação após ligação;
- (c) Depois do proprietário remover o arquivo;

Arquivo Compartilhado

Criando Hard Links (SVC)

```
#include <sys/unistd.h>
int link (const char *path1, const char *path2);
    // Cria um hard link (path2 -> path1)
int unlink (const char *path1, const char *path2);
    // Apaga um hard link
```

Exemplo: criando um hard link

```
#include <stdio.h>
#include <sys/stat.h>
...
   if (link("/dirA/name1","/dirB/name2") == -1)
        perror("Failed to make a new link in /dirB");
...
```

ln /dirA/name1 /dirB/name2

Arquivo Compartilhado

• (2^a) Link Simbólico

- cria-se um arquivo que contem apenas o caminho do arquivo ao qual ele está ligado;
- Somente o verdadeiro proprietário tem um ponteiro para inode;
 - usuário tem apenas o caminho para o arquivo;
- arquivo destruído, falha no acesso;
- Desvantagem:
 - numero excessivo de acesso a disco para resolver o caminho;

Arquivo Compartilhado

Implementação do Sistema de Arquivos

Gerenciamento de Espaço em Disco

- Gerenciamento de Espaço em Disco:
 - Duas Estratégias gerais para armazenar um arquivo:
 - 1. Alocar os seus n bytes consecutivos de espaço em disco;
 - 2. O arquivo é dividido em vários blocos (não necessariamente), de tamanho fixo, contíguos ou não.
 - Mais utilizados pelos S.O.

- Gerenciamento de Espaço em Disco:
 - Tamanho do Bloco

- Unidade de alocação grande:
 - desperdiço de espaço interno do bloco;
- Unidade de alocação pequena
 - significa que cada arquivo será formado por vários blocos;
 - Ler cada bloco requer em geral uma busca e um atraso rotacional;
 - Leitura lenta;

- Gerenciamento de Espaço em Disco:
 - Tamanho do Bloco
 - Linux/Unix:
 - Usa-se em geral tamanho de bloco
 - 1 KB -> 2KB -> 4KB
 - WINDOWS
 - Usa-se qualquer potência de 2 entre 512 bytes e 32 KB
 - o tamanho do disco influência diretamente:
 - o numero máximo de blocos em uma partição de disco é de 2¹⁶, o que força grandes blocos em grandes discos;

- Gerenciamento de Espaço em Disco:
 - Tamanho do Bloco:
 - Tempo de acesso = tempo de posicionamento + tempo de atraso rotacional + tempo de leitura
 - Pequenos blocos são ruins para o desempenho, mas bons para a ocupação do espaço em disco;
 - Não há desperdiço de espaço em disco
 - Grandes blocos são bons para o desempenho, mas ruins para ocupação do espaço em disco;
 - Desperdiço interno dos blocos

Implementação do Sistema de Arquivos

Gerenciamento de Espaço em Disco:

- Curva Contínua: mostra a taxa de dados do disco;
- Curva tracejada: revela a eficiência de ocupação do disco;
- Todos os arquivos são de 2 KB.

Implementação do Sistema de Arquivos

Monitoração dos Blocos Livres

Implementação do Sistema de Arquivos

- Monitoração dos Blocos Livres:
 - Dois métodos amplamente utilizados:
 - (a) Mantendo os blocos livre em uma Lista Ligada
 - (b) Mapa bits

• (a) Lista Ligada:

Ambos os métodos consideram que os blocos são numerados sequencialmente

• lista encadeada de blocos, com cada bloco contento tantos blocos livres quantos couberem nele;

• Exemplo: com um bloco = 1 KB e com blocos de disco de 32 bits, cada bloco na lista de blocos livres contém os números de 256 blocos livres;

Implementação do Sistema de Arquivos

Monitoração dos Blocos Livres:

Lista Ligada

A 1-KB disk block can hold 256 32-bit disk block numbers

- Monitoração dos Blocos Livres:
 - Quando usa lista ligada de livres:
 - Manter somente <u>um bloco de ponteiros para blocos livres na</u> <u>memória</u>;
 - Quando um arquivo é criado, os blocos necessários são retirados do bloco de ponteiros;
 - Quando esse bloco se esgota, um novo bloco de ponteiros é lido do disco;
 - Quando um arquivo é removido, seus blocos liberados são incluídos no bloco de ponteiros
 - Quando cheios são escritos no disco;

- Monitoração dos Blocos Livres:
 - Quando usa lista ligada de livres:
 - Manter somente <u>um bloco de ponteiros para blocos livres na</u> <u>memória</u>;
 - Desvantagens:
 - Número de E/S saída é alto quando o bloco está quase cheio;
 - enche o bloco, escreve no disco;
 - se precisar de blocos, lê do disco;
 - exemplos de remover ou adicionar 3 blocos:
 - transição entre a figura (a) e (b) seguinte:

- Monitoração dos Blocos Livres:
 - Quando usa lista ligada de livres:
 - Manter somente <u>um bloco de ponteiros para blocos livres na</u> <u>memória</u>;
 - Solução: repartir o bloco de ponteiros cheio ao meio, mantendo um bloco cheio pela metade; (a) \leftrightarrow (c)

- Monitoração dos Blocos Livres:
 - Dois métodos amplamente utilizados:
 - (a) Mantendo os blocos livre em uma Lista Ligada
 - (b) Mapa bits
 - (b) Mapa de Bits
 - um disco com n blocos requer um mapa de n bits;
 - blocos representados por 1 (livre) ou 0 (alocado);
 - Ocupa menos espaço que as lista ligadas, pois usa apenas 1 bit por bloco, enquanto a lista usa 32 bits por bloco;

Implementação do Sistema de Arquivos

Monitoração dos Blocos Livres:

A bitmap

- Monitoração dos Blocos Livres:
 - Com mapas de bits também é possível manter um bloco de memória e usar o disco somente quando o bloco estiver cheio ou vazio;

- Vantagem:
 - alocações em um bloco único de mapa de bits faz com que os blocos de disco fiquem próximos uns dos outros;
 - minimizando os movimentos dos braços de disco;

- Monitoração dos Blocos Livres:
 - Quotas do disco por usuários:
 - Quando o usuário abre um arquivo:
 - Tabela de Arquivos Abertos na RAM;
 - Colocados os Atributos e Endereços do Disco;
 - Tabela de Registro de Cotas para cada usuário
 - Extraída de um arquivos de cotas em disco;
 - Toda vez que um bloco é adicionado a um arquivo, o nº total de blocos é incrementado

Implementação do Sistema de Arquivos

Monitoração dos Blocos Livres:

Quotas do disco por usuários

Implementação do Sistema de Arquivos

Desempenho do Sistema de Arquivos

- Desempenho do Sistema de Arquivos
 - CACHE DE BLOCOS ou DE BUFFER:
 - Coleção de blocos mantidos em memória para fins de desempenho;
 - Algoritmo básico:
 - Verifica se o bloco está na cache a cada requisição;
 - Se estiver, requisição aceita sem acesso a disco;
 - Se não estiver, bloco será lido do disco para a cache;

- Desempenho do Sistema de Arquivos
 - CACHE DE BLOCOS ou DE BUFFER:
 - Operação da Cache:
 - Mapear o dispositivo e o endereço de disco em uma tabela HASH;
 - Todos os blocos com o mesmo valor HASH (colisões) são encadeados em lista duplamente ligada;
 - Se a cache estiver cheia, algum bloco deve ser removido para que um novo bloco possa entrar;

- Desempenho do Sistema de Arquivos
 - CACHE DE BLOCOS ou DE BUFFER:
 - Operação da Cache:
 - Além da lista ligada de blocos com o mesmo valor HASH,
 - Existe uma lista duplamente encadeada ligando todos os blocos pela ordem de uso:
 - Início: blocos menos recentemente usados
 - Fim: blocos mais recentemente usados

- Desempenho do Sistema de Arquivos
 - CACHE DE BLOCOS ou DE BUFFER:

- Desempenho do Sistema de Arquivos
 - CACHE DE BLOCOS ou DE BUFFER:
 - Medida para manter a integridade do arquivo:
 - Os S.O. utilizam duas táticas:
 - Linux/Unix Chamada SYNC: obriga a escrita de todos os blocos modificados (a cada 30 s);
 - WINDOWS: escreve o bloco modificado
 imediatamente técnica conhecida como caches de escrita direta.

Implementação do Sistema de Arquivos

- Desempenho do Sistema de Arquivos
 - LEITURA ANTECIPADA DE BLOCOS
 - Leitura Seqüencial do arquivo:
 - Se o bloco K for lido, provoca a leitura do bloco k+1;
 - Fica na esperança que vai ser utilizado;

Arquivos Aleatórios

- Não funciona;
- Uma idéia: monitorar os padrões de acesso de cada arquivo aberto;

- Desempenho do Sistema de Arquivos
 - REDUÇÃO DO MOVIMENTO DO BRAÇO DO DISCO
 - colocar os blocos sujeitos a mais acesso em seqüência, próximos uns dos outros, preferencialmente no mesmo cilindro;
 - utilizar <u>mapas de bits de blocos livres</u> fica mais fácil determinar blocos livres próximos;
 - a utilização de <u>lista ligadas de blocos livres</u> por ser utilizada realizando agrupamentos de blocos livres consecutivos.

Implementação do Sistema de Arquivos

Sistema de arquivos LOG Estruturado LFS

- Sistema de arquivos LOG Estruturado LFS
 - Estrutura do disco como um LOG;
 - Todas as escritas pendentes:
 - são coletadas em um único segmento
 - e escritas no disco como um único segmento continuo no final do log;
 - Um segmento pode conter:
 - i-node, blocos de diretório e blocos de dados
 - No inicio do segmento existe um resumo do segmento;

- Sistema de arquivos LOG Estruturado LFS
 - Diferença com o Linux/Unix:
 - Linux/Unix i-nodes no inicio do disco: posição fixa;
 - LFS: espalhados no disco;
 - utiliza mapa de i-nodes, indexados pelo i-número;
 - mapa mantido em disco e em memória (mais recentes);
 - Utiliza uma Thread limpador para varrer os logs e compactá-los;
 - Desempenho:
 - melhor que o Linux/Unix para pequenas escritas;
 - •Grandes leituras e escritas é tão bom quanto ou até superior;

Implementação do Sistema de Arquivos

Exemplos de Sistemas de Arquivos

- Exemplos de Sistemas de Arquivos
 - CD-ROM ISO 9660
 - Não existe cilindros concêntricos com nos HDs;
 - Ao invés disso, espiral continua com bits sequências.
 - bits divididos em blocos lógicos ou setores lógicos de 2352 bytes;
 - Parte liquida de 2048 bytes;

- Exemplos de Sistemas de Arquivos
 - CD-ROM ISO 9660 Organização

- começa com 16 blocos livres não definidos: colocar um programa de boot, p.ex.
- depois, 1 bloco contendo o descritor de volume primário:

- Exemplos de Sistemas de Arquivos
 - CD-ROM ISO 9660 Organização
 - depois, 1 bloco contendo o descritor de volume primário:
 - identificador do sistema 32 bytes
 - identificador do volume 32 bytes
 - identificador do editor 128 bytes
 - identificador do preparador dos dados 128 bytes
 - nome de três arquivos: resumo, notificação e direitos autorais e informações bibliográficas;
 - entrada de diretório raiz no CD-ROM
 - a partir daí o sistema de arquivos pode ser localizado;

Implementação do Sistema de Arquivos

- Exemplos de Sistemas de Arquivos
 - CD-ROM ISO 9660 Entrada de Diretório

L = tamanho do nome

- Exemplos de Sistemas de Arquivos
 - CD-ROM ISO 9660 Entrada de Diretório
 - Profundidade de alinhamento = 8 diretórios
 - ISSO definiu 3 níveis:
 - nível 1: especifica nome com 8.3 caracteres e diretório com 8
 - •Nível 2: permite nomes com até 31 caracteres;
 - •Nível 3: limite de nome igual ao nível 2, os arquivos não precisam ficar contíguos;

Implementação do Sistema de Arquivos

• Exemplos de Sistemas de Arquivos

- CD-ROM JULIET
 - Inventado pela Microsoft para permitir que o Sistema de Arquivos do Windows fosse copiado para o CD-ROM;
 - As principais extensões oferecidas pelo Juliet, além das do ISO, são:
 - nomes de arquivos longos;
 - conjunto de caracteres UNICODE;
 - Aninhamento de diretórios mais profundos que 8;
 - nomes de diretórios com extensões

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do CP/M
 - Tem somente um diretório que contém entradas de tamanho fixo 32 bytes;
 - Todos os arquivos estão relacionados nesse diretório;
 - Depois de iniciado:
 - Carrega o diretório
 - Calcula o mapa de bits (23 bytes para disco de 180 K)
 - Mantida na memória durante a execução;
 - Descartada no desligamento do sistema

Implementação do Sistema de Arquivos

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do MSDOS
 - 1º versão: um único diretório
 - 2º versão: sistema de arquivo hierárquico;
 - FAT: utiliza alocação com lista ligada usando tabela na memória principal;
 - Três Versões de FAT: FAT-12, FAT-16 e FAT-32
 - dependendo de quantos bits ocupe um endereço de disco;

Tab

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do MSDOS FAT-12
 - Blocos de 512 bytes
 - Tamanho máximo de partição: 2¹² x 512
 - Tamanho máximo de partição: 2MB
 - Tabela FAT: 4096 entradas de 2 bytes cada;
 - Depois foi permitido blocos de 1K, 2K e 4 KB
 - •Tamanho máximo de partição: 16 MB
 - MSDOS suportava 4 partições: 4 x 16 = 64 MB

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do MSDOS FAT-16
 - endereço de disco de 16 bits;
 - blocos de 8 KB, 16 KB e 32 KB
 - Tabela FAT-16 ocupava 128 KB de RAM
 - Maior partição: 2 GB (64k entradas de 32 kb) e maior disco de 8 GB (4 partição de 2 GB)

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do MSDOS FAT-32
 - A partir da segunda versão de win95
 - endereços de disco de 28 bits;
 - Partições: 2²⁸ x 2¹⁵ bytes
 - na verdade limitadas a 2 Tera Bytes ou 2048 GB;
 - isso porque o sistema monitora os tamanhos das partições em setores de 512 bytes, um numero de 32 bits e 29 x 2³² corresponde a 2 TB

Implementação do Sistema de Arquivos

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do MSDOS
 - Monitorar blocos livres no disco:
 - blocos não alocados são marcados com um código especial;
 - quando um bloco livre é preciso, busca na FAT por uma entrada contendo esse código;

Blocos x partição

	_ , ,						
Block size	FAT-12	FAT-16	FAT-32				
0.5 KB	2 MB						
1 KB	4 MB						
2 KB	8 MB	128 MB					
4 KB	16 MB	256 MB	1 TB				
8 KB		512 MB	2 TB				
16 KB		1024 MB	2 TB				
32 KB		2048 MB	2 TB				

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do Windows 98
 - Utilização de Nomes longos

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do Windows 98
 - Utilização de Nomes longos
 - Atribui dois nomes para cada arquivo:
 - um longo (63 x 13 = 819 caracteres)
 - e um 8.3
 - Transformação de longo para curto
 - usa um algoritmo que pego os 6 primeiros caracteres e adiciona um ~1, ou ~2 etc.
 - Se um arquivo tem nome longo
 - Será armazenado em uma ou mais entradas de diretório precedendo o nome do arquivo DOS.

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do Windows 98
 - Entrada de um nome longo de arquivo

- Como o Windows sabe do nome longo?
 - campo atributos = 0x0F

Implementação do Sistema de Arq

• Exemplos de Sistemas de Arquivos

Sistema de Arquivos do UNIX V7

- Sistema de Arquivos na forma de arvore iniciando-se no diretório raiz;
- com a adição de ligações, formando um grafo orientado acíclico;
- Nomes de arquivos tem 14 caracteres e pode conter qualquer caractere ASCII exceto / e NUL.
- Entrada de Diretório i-node
 - nome do arquivo 14 bytes
 - e o numero do i-node para aquele arquivo 2 bytes

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do UNIX V7
 - I-node
 - Atributos:
 - tamanho do arquivo
 - criação, ultimo acesso e ultima alteração;
 - proprietário
 - grupo;
 - Proteção;
 - •Contador do números de entradas no diretório que apontam para o i-node;

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do UNIX V7
 - Organização do I-node:
 - 12 endereços direitos são armazenados no i-node;
 - para arquivos pequenos;
 - Para arquivos maiores:
 - um dos endereços do i-node aponta para um bloco de disco chamado **bloco indireto simples**; contem endereços adicionais de disco;
 - Se não for suficiente: bloco indireto duplo
 - Se não for suficiente: bloco indireto triplo

- Exemplos de Sistemas de Arquivos
 - Sistema de Arquivos do UNIX V7

- Exemplos de Sistemas de Arquivos
 - Passos para localizar /usr/ast/mbox

Root directory			I-node 6 is for /usr		Block 132 is /usr directory		I-node 26 is for /usr/ast		Block 406 is /usr/ast directory		
1			Mode size times		6	•		Mode size times		26	•
1					1	• •				6	••
4	bin				19	dick				64	grants
7	dev		132		30	erik		406		92	books
14	lib				51	jim				60	mbox
9	etc				26	ast				81	minix
6	usr				45	bal				17	src
8	tmp		l-node 6				2 7	I-node 26			
Looking up usr yields i-node 6			says that /usr is in block 132		/usr/ast is i-node 26		says that /usr/ast is in block 406		/usr/ast/mbox is i-node 60		

Referências Utilizadas:

- Livro do Tanenbaum
 - Sistemas Operacionais Modernos
 - www.cs.vu.nl/~ast
- Livro do Silberschatz
 - Operating System Concepts
 - www.bell-labs.com/topic/books/aos-book/
- Livro do Machado e Maia
 - Arquitetura de Sistemas Operacionais.