WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

B1

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: A1 | C12N 15/86, C07K 14/16, C12N 5/10, C12N 7/04, C12N 15/49

(11) International Publication Number: (43) International Publication Date:

WO 00/15819

23 March 2000 (23.03.2000)

(21) International Application Number:

PCT/US99/20675

(22) International Filing Date: 10 September 1999 (10.09.1999)

Published

(30) Priority Data:

60/100,022 60/100,063

11 September 1998 (11.09.1998) US 12 September 1998 (12.09.1998) US

(60) Parent Application or Grant

THE CHILDREN'S MEDICAL CENTER CORPORATION [/]; (). GRAY, John, T. [/]; (). MULLIGAN, Richard, C. [/]; (). BROOK, David, E.; ().

(54) Title: PACKAGING CELL LINES FOR HIV-DERIVED RETROVIRAL VECTOR PARTICLES

(54) Titre: LIGNEES DE CELLULES D'ENCAPSIDATION POUR PARTICULES DE VECTEUR RETROVIRAL DERIVE DU VIH

(57) Abstract

Novel packaging cell lines useful for generating viral accessory protein independent HIV-derived retroviral vector particles, methods of constructing such packaging cell lines and methods of using the viral accessory protein independent HIV-derived retroviral vector particles are disclosed.

(57) Abrégé

L'invention concerne de nouvelles lignées de cellules d'encapsidation utiles pour produire des particules de vecteur rétroviral dérivé du VIH indépendantes de protéines accessoires virales, des procédés de mise au point de ces lignées de cellules d'encapsidation et des procédés d'utilisation des particules de vecteur rétroviral dérivé du VIH indépendantes de protéines accessoires virales.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:	ĺ	(11) International Publication Number: WO 00/1581
C12N 15/86, 5/10, 7/04, 15/49, C07K 14/16	A1	(43) International Publication Date: 23 March 2000 (23.03.00
(21) International Application Number: PCT/US((22) International Filing Date: 10 September 1999 (1)		CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC
(30) Priority Data: 60/100,022 11 September 1998 (11.09.9) 60/100,063 12 September 1998 (12.09.9) (71) Applicant: THE CHILDREN'S MEDICAL CENTE PORATION [US/US]; 300 Longwood Avenue, Bos 02115 (US). (72) Inventors: GRAY, John, T.; 48 Spring Road, West F MA 02132 (US). MULLIGAN, Richard, C.; 2 San Road, Lincoln, MA 01773 (US). (74) Agents: BROOK, David, E. et al.; Hamilton, Brook, S Reynolds, P.C., Two Militia Drive, Lexington, MA (US).	8) U	A () () () () () () () () () (

(54) Title: PACKAGING CELL LINES FOR HIV-DERIVED RETROVIRAL VECTOR PARTICLES

(57) Abstract

Novel packaging cell lines useful for generating viral accessory protein independent HIV-derived retroviral vector particles, methods of constructing such packaging cell lines and methods of using the viral accessory protein independent HIV-derived retroviral vector particles are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

l							
ΑL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
A7.	Azerhaijan	GB	United Kingdom	MC	Monaco	TD	Chad
RA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	. GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	CR	Greece		Republic of Macedonia	TR	Turkey
ВG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
D.	Benin	18	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	11.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	rr	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NB	Niger	VN	Vict Nam
CG	Congo	KB	Кепуа	NI.	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal .		
Cυ	Cuba	KZ	Kazakstan	RO-	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Licchtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Description

ø

10

15

20

25

30

35

. 15

20

40

45

50

55

-1-

BACKGROUND OF THE INVENTION

Retroviral vectors based on lentiviruses, such as human immunodeficiency viruses (HIV), can infect nondividing cells, and integration of proviral DNA occurs without the need for cell division. These properties make lentiviruses attractive for gene transfer into nondividing cells, such as hepatocytes, myofibers, hematopoietic stem cells, and neurons.

PACKAGING CELL LINES FOR HIV-DERIVED RETROVIRAL VECTOR PARTICLES

However, the use of lentivirus vectors, particularly HIV vectors, particularly for gene therapy, is hampered by concern over their safety. Thus, a need for the 10 development of lentivirus vectors, particularly HIV vectors, with improved safety, particularly for gene therapy, exists.

SUMMARY OF THE INVENTION

The present invention relates to novel packaging cell lines useful for generating viral accessory protein independent lentivirus-derived, particularly HIV-derived, retroviral vector particles, to construction of such cell lines and to methods of using the accessory protein independent lentivirus-derived retroviral vector particles to introduce DNA of interest into cells (e.g, eukaryotic cells such as animal (particularly mammalian), plant or yeast cells or prokaryotic cells such as bacterial cells). In a preferred embodiment, the packaging cell lines of the present invention are stable packaging cell lines.

In one embodiment of the invention, packaging cell lines for producing a viral accessory protein independent lentivirus-derived retroviral vector particles comprise (a) a cell (e.g., mammalian cell); and (b) a retroviral nucleotide sequence in the cell which comprises a coding sequence for lentivirus gagpol, wherein said coding sequence has

5

10

15

20

25

30

35

40

45

50

been codon optimized by mutagenisis to improve expression of the lentivirus gagpol proteins.

-2-

In second embodiment of the invention, packaging cell lines for producing a viral accessory protein independent lentivirus-derived retroviral vector particles comprise (a) a cell (e.g., mammalian cell); (b) a first retroviral nucleotide sequence in the cell which comprises a coding sequence for lentivirus gagpol, wherein said coding sequence has been codon optimized by mutagenisis to improve expression of the lentivirus gagpol proteins; and (c) a second retroviral nucleotide sequence in the cell which comprises the coding sequence for a heterologous envelope protein.

In a third embodiment of the invention, packaging cell lines for producing a viral accessory protein independent lentivirus-derived retroviral vector particles comprise (a) a cell (e.g., mammalian cell); (b) a first retroviral nucleotide sequence in the cell which comprises a coding sequence for lentivirus gagpol, wherein said coding sequence has been codon optimized by mutagenisis to improve expression of the lentivirus gagpol proteins; (c) a second retroviral nucleotide sequence in the cell which comprises the coding sequence for a heterologous envelope protein; and (d) a third retroviral nucleotide sequence which comprises a DNA sequence of interest and lentivirus cisacting sequences required for packaging, reverse transcription and integration.

In a fourth embodiment of the invention, packaging cell lines for producing a viral accessory protein independent lentivirus-derived retroviral vector particles comprise (a) a cell (e.g., mammalian cell); (b) a retroviral nucleotide sequence in the cell which comprises a coding sequence for lentivirus gagpol, wherein said coding sequence has been codon optimized by mutagenisis to improve expression of the lentivirus gagpol proteins; and (c) a retroviral nucleotide sequence which comprises a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and integration.

In a fifth embodiment of the invention, packaging cell lines for producing a viral accessory protein independent HIV-derived retroviral vector particles comprise (a) a cell

10

15

20

25

30

35

20

40

45

50

55

(e.g., mammalian cell); and (b) a retroviral nucleotide sequence in the cell which comprises a coding sequence for HIV gagpol, wherein said coding sequence has been codon optimized by mutagenisis to improve expression of the HIV gagpol proteins.

-3-

In sixth embodiment of the invention, packaging cell lines for producing a viral accessory protein independent HIV-derived retroviral vector particles comprise (a) a cell (e.g., mammalian cell); (b) a first retroviral nucleotide sequence in the cell which comprises a coding sequence for HIV gagpol, wherein said coding sequence has been codon optimized by mutagenisis to improve expression of the HIV gagpol proteins; and (c) a second retroviral nucleotide sequence in the cell which comprises the coding sequence for a heterologous envelope protein.

In a seventh embodiment of the invention, packaging cell lines for producing a viral accessory protein independent HIV-derived retroviral vector particles comprise (a) a cell (e.g., mammalian cell); (b) a first retroviral nucleotide sequence in the cell which comprises a coding sequence for HIV gagpol, wherein said coding sequence has been codon optimized by mutagenisis to improve expression of the HIV gagpol proteins; (c) a second retroviral nucleotide sequence in the cell which comprises the coding sequence for a heterologous envelope protein; and (d) a third retroviral nucleotide sequence which comprises a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration.

In a eighth embodiment of the invention, packaging cell lines for producing a viral accessory protein independent HIV-derived retroviral vector particles comprise (a) a cell (e.g., mammalian cell); (b) a retroviral nucleotide sequence in the cell which comprises a coding sequence for HIV gagpol, wherein said coding sequence has been codon optimized by mutagenisis to improve expression of the HIV gagpol proteins; and (c) a retroviral nucleotide sequence which comprises a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration.

Alternatively, each of the packaging cell lines described herein can be produced using (1) a retroviral nucleotide sequence which comprises a codon optimized gag

-4-

10

15

20

10

25

30

35

40

45

50

55

coding sequence and (2) a retroviral nucleotide sequence which comprises a codon optimized pol coding sequence, in place of the retroviral nucleotide sequence which comprises a codon optimized gagpol coding sequence.

In a particular embodiment, the heterologous envelope protein is the G glycoprotein of vesicular stomatitis virus (VSV G). In another embodiment, the heterologous envelope protein is the amphotropic envelope of the Moloney leukemia

Cell lines for producing a viral accessory protein independent lentivirus-derived retroviral vector particles are produced by transfecting host cells (e.g., mammalian host cells) with a plasmid comprising a DNA sequence which encodes lentivirus gagpol proteins, wherein said DNA sequence has been codon optimized by mutagenisis to improve expression of the lentivirus gagpol proteins. Depending upon the particular cell line being produced, the host cells are also co-transfected with a plasmid comprising a DNA sequence which encodes a heterologous envelope protein, or a plasmid comprising a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and integration, or both of these plasmids. Alternatively, host cells are transfected with a plasmid comprising a codon optimized DNA sequence encoding a lentivirus gag protein and a plasmid comprising a codon optimized DNA sequence encoding a lentivirus pol protein, in place of the plasmid comprising a codon optimized DNA sequence encoding both lentivirus gagpol proteins.

Cell lines for producing a viral accessory protein independent HIV-derived retroviral vector particles are produced by co-transfecting host cells (e.g., mammalian host cells) with a plasmid comprising a DNA sequence which encodes HIV gagpol proteins, wherein said DNA sequence has been codon optimized by mutagenisis to 25 improve expression of the HIV gagpol proteins. Depending upon the particular cell line being produced, the host cells are also co-transfected with a plasmid comprising a DNA sequence which encodes a heterologous envelope protein, or a plasmid comprising a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse

-5-

transcription and integration, or both of these plasmids. Alternatively, host cells are transfected with a plasmid comprising a codon optimized DNA sequence encoding a HIV gag protein and a plasmid comprising a codon optimized DNA sequence encoding a HIV pol protein, in place of the plasmid comprising a codon optimized DNA sequence encoding both HIV gagpol proteins.

The present invention also relates to methods of producing viral accessory protein independent lentivirus-derived retroviral vector particles, comprising cotransfecting host cells (e.g., mammalian host cells) with (a) a first plasmid comprising a DNA sequence which encodes lentivirus gagpol proteins, wherein said DNA sequence has been codon optimized by mutagenisis to improve expression of the lentivirus gagpol proteins; (b) a second plasmid comprising a DNA sequence which encodes a heterologous envelope protein; and (c) a third plasmid comprising a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and integration. Alternatively, host cells are transfected with a plasmid comprising a codon optimized DNA sequence encoding a lentivirus gag protein and a plasmid comprising a codon optimized DNA sequence encoding a lentivirus pol protein, in place of the first plasmid comprising a codon optimized DNA sequence encoding both lentivirus gagpol proteins.

In a particular embodiment, the invention relates to methods of producing viral accessory protein independent HIV-derived retroviral vector particles, comprising cotransfecting host cells (c.g., mammalian host cells) with (a) a first plasmid comprising a DNA sequence which encodes HIV gagpol proteins, wherein said DNA sequence has been codon optimized by mutagenisis to improve expression of the HIV gagpol proteins; (b) a second plasmid comprising a DNA sequence which encodes a heterologous envelope protein; and (c) a third plasmid comprising a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration. Alternatively, bost cells are transfected with a plasmid comprising a codon optimized DNA sequence encoding a HIV gag protein and a plasmid comprising a

10

15

20

25

30

35

40

45

50

55

codon optimized DNA sequence encoding a HIV pol protein, in place of the first plasmid comprising a codon optimized DNA sequence encoding both HIV gagpol proteins.

The present invention also relates to viral accessory protein-independent retroviral particles produced by or obtainable by (obtained by) the methods described herein.

The present invention further relates to isolated DNA encoding a codon optimized lentivirus gagpol, isolated DNA encoding the gag coding region of a codon optimized lentivirus gagpol, and isolated DNA encoding the pol coding region of a codon optimized lentivirus gagpol. In a particular embodiment, the present invention relates to isolated DNA encoding a codon optimized HIV gagpol, isolated DNA encoding the gag coding region of a codon optimized HIV gagpol, and isolated DNA encoding the pol coding region of a codon optimized HIV gagpol.

The packaging cell lines and viral particles of the present invention can be used for gene therapy or gene replacement with improved safety. The packaging cell lines and viral particles of the present invention can also be used in development and production of vaccines, and in production of biochemical reagents. Gene therapy vectors produced with the cell lines of the present invention are expected to be valuable medical therapeutics.

20 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram of an expression cassette containing the codon optimized gagpol genes. The DNA was constructed in multiple segments, which are indicated at the top as 1/3, 2/3, 3/3 (A, B, C and D) and HIN. Restriction sites used to assemble the cloned segments are indicated above the kilobasepair (Kb) ruler. Below the ruler are multiple features showing the location of the human cytomegalovirus (CMV) promoter, human betaglobin sequences (Bglobin), mRNA sequences (thinner line represents intronic sequence), the gag and pol open reading frames, the individual

45

50

55

10

15

66(12):7176-7182 (1992).

proteolytic fragment coding sequences (p17_MA, p24_CA, p7, p6, PR, p51_RT, RNaseH and integrase (IN)) and each synthetic oligonucleotide used in the assembly process (multiple adjacent open arrows).

Figure 2 is a table which depicts codon usage frequencies in genes which are highly expressed and in the codon optimized gagpol open reading frame of the HIV packaging construct described herein.

Figure 3 is a schematic representation of the HIV provirus and a three-plasmid expression system used for generating a pseudotyped HIV-based vector by transient transfection as described in Naldini et al., Science, 272:263-267 (1996).

Figure 4 is a list of some characteristics relating to the HIV Rev protein.

Figure 5 is a list of some points relating to codon optimization of HIV gagpol.

Figure 6 is a partial DNA sequence of HIV gag (SEQ ID NO: 1), showing inactivation of inhibitory sequences as described in Schwartz, S. et al., J. Virol.,

Figure 7 a plot of the %(G+C) content of wildtype FIIV gagpol sequences and theoretically codon optimized HIV gagpol sequences. The percent of bases, either G or C, was calculated for a 30 nucleotide moving window for the entire length of the gagpol gene, and the value plotted versus nucleotide position. Diamonds = HIV gagpol sequences; squares = full optimal back-translation for gag open reading frame; triangles = full optimal back-translation for pol open reading frame; CO = codon optimized.

Figures 8A-8E depict the alignment of the nucleotide sequences and predicted amino acid sequences for the gag coding region of a wildtype HIV gagpol and a codon optimized HIV gagpol. "NL4-3 genbank.SEQ" indicates the nucleotide sequence (SEQ ID NO:2) and predicted amino acid sequence (SEQ ID NO:3) for the gag coding region of a wildtype HIV gagpol. "pHDMHgpm2.seq" indicates the nucleotide sequence (SEQ ID NO:4) and predicted amino acid sequence (SEQ ID NO:5) for the gag coding region

15

-8-

10

15

20

25

3**0**

35

40

45

50

55

of a codon optimized HIV gagpol. The "NL4-3 genbank.SEQ" sequences are publicly available at the NIH GenBank sequence repository (Accesssion No. M19921).

Figures 9A-9L depict the alignment of the nucleotide sequences and predicted amino acid sequences for the *pol* coding region of a wildtype HIV *gagpol* and a codon optimized HIV *gagpol*. "NL4-3 genbank.SEQ" indicates a nucleotide sequence (SEQ ID NO:6) and a predicted amino acid sequence (SEQ ID NO:7) for the *pol* coding region of a wildtype HIV *gagpol* available in the NIH GenBank sequence repository (Accesssion No. M19921). The nucleotide and amino acid sequences for the *pol* coding region available in the GenBank sequence repository contain two sequence errors, which are indicated in Figures 9A-9L with shading. "pNL4-3.seq" indicates the correct nucleotide sequence (SEQ ID NO:8) and predicted amino acid sequence (SEQ ID NO:9) for the *pol* coding region of a wildtype HIV *gagpol*. "pHDMHgpm2.seq" indicates the nucleotide sequence (SEQ ID NO:10) and predicted amino acid sequence (SEQ ID NO:11) for the *pol* coding region of a codon optimized HIV *gagpol*.

Figures 10A-10D depict the DNA sequence (SEQ ID NO:12) for pHDMHgpm2. The CMV enhancer/promoter is at nucleotides 97 to 679, human betaglobin sequences (Bglobin) are at nucleotides 761 to 864, 865 to 1303 and 5710 to 6469 (end of Bglobin is at nucleotides 6445 to 6469), mRNA sequences are at nucleotides 680 to 778 and 1255 to 5921, SV40 origin of replication is at nucleotides 8796 to 8908, beta-lactamasc (bla) coding region is at nucleotides 6709 to 7569, intron sequences are at nucleotides 779 to 1254, the codon optimized *gag* coding region is at nucleotides 1318 to 2820, the codon optimized *pol* coding region is at nucleotides 2619 to 5624 and the poly A site is at nucleotides 5897 to 5921.

Figure 11 is a circular map of plasmid pHDMHgpm2.

25 DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to novel packaging cell lines useful for generating viral accessory protein independent lentivirus-derived, particularly HIV-derived,

-9-

retroviral vector particles, to construction of such cell lines and to methods of using the accessory protein independent lentivirus-derived retroviral vector particles to introduce DNA of interest into cells (e.g., eukaryotic cells such as animal (particularly mammalian), plant or yeast cells or prokaryotic cells such as bacterial cells). In a particular embodiment, the packaging cell lines of the present invention are stable packaging cell lines.

The cell lines are engineered to express the lentivirus proteins necessary for virus particle formation (gagpol proteins), without containing DNA sequences from lentivirus accessory proteins (tat, vif, vpr, vpu, nef and rev proteins and Rev response element (RRE)). Additionally, no viral sequences (such as cis-acting elements termed constitutive transport elements (CTEs)) will be expressed as RNA of any kind. DNA sequences for lentivirus gagpol are codon optimized by extensively mutagenizing the sequences to improve expression and to reduce the risk of recombination between transfer vector sequences and gagpol messenger RNA. This greatly improves the safety of virus preparations generated from these cell lines. In a particular embodiment, the DNA sequences for lentivirus gagpol are not codon optimized in the overlap region between the gag and pol sequences and in cis-acting signals necessary for translation of pol.

Examples of lentiviruses include human immunodeficiency viruses (e.g., HIV-1, HIV-2, HIV-3), bovine lentiviruses (e.g., bovine immunodeficiency viruses, bovine immunodeficiency-like viruses, Jembrana disease viruses), equine lentiviruses (e.g., equine infectious anemia viruses), feline lentiviruses (e.g., feline immunodeficiency viruses, panther lentiviruses, puma lentiviruses), ovine/caprine lentiviruses (e.g., Brazilian caprine lentiviruses, caprine arthritis-encephalitis viruses, Maedi-Visna viruses, Maedi-Visna-like viruses, Maedi-Visna-related viruses, ovine lentiviruses, Visna lentiviruses), Simian AIDS retroviruses (e.g., human T-cell lymphotropic virus type 4), simian immunodeficiency viruses, simian-human immunodeficiency viruses, human lymphotrophic viruses (e.g., type III), simian T-cell lymphotrophic viruses.

In another embodiment, cell lines are engineered to express the HIV proteins necessary for virus particle formation (gagpol proteins), without containing DNA sequences from HIV accessory proteins (tat, vif, vpr, vpu, nef and rev proteins and Rev response element (RRE)). Additionally, no viral sequences (such as cis-acting elements termed constitutive transport elements (CTEs)) will be expressed as RNA of any kind. DNA sequences for a HIV gagpol are codon optimized by mutagenesis to improve expression and to reduce the risk of recombination between transfer vector sequences and gagpol messenger RNA. In a particular embodiment, the DNA sequences for HIV gagpol are not codon optimized in the overlap region between the gag and pol sequences and in cis-acting signals necessary for translation of pol.

Alternatively, each of the packaging cell lines described herein can be produced using (1) a nucleotide sequence which comprises a codon optimized gag coding sequence and (2) a nucleotide sequence which comprises a codon optimized pol coding sequence, in place of the nucleotide sequence which comprises a codon optimized gagpol coding sequence. In this embodiment, the gag and pol coding sequences can be completely codon optimized

Benefits of the present invention include the removal of potentially harmful lentivirus accessory proteins and other viral sequences, and the reduction of the risk of recombination to produce replication competent virus.

Packaging cell lines for producing a viral accessory protein independent lentivirus-derived retroviral vector particles comprise a mammalian cell and a retroviral nucleotide sequence comprising a coding sequence for a lentivirus gagpol which has been codon optimized. In a particular embodiment the packaging cell lines further comprise a retroviral nucleotide sequence comprising a coding sequence for a heterologous envelope protein. In a second embodiment, the packaging cell lines further comprise a retroviral nucleotide sequence comprising a coding sequence for a heterologous envelope protein and a retroviral nucleotide sequence which comprises a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse

-11-

10

15

20

25

30

35

20

25

40

45

50

55

transcription and integration. In third embodiment, the packaging cell lines further comprise a retroviral nucleotide sequence which comprises a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration. Alternatively, the packaging cell lines of the present invention comprise a retroviral nucleotide sequence which comprises a codon optimized gag coding sequence and (2) a retroviral nucleotide sequence which comprises a codon optimized pol coding sequence, in place of the retroviral nucleotide sequence which comprises a codon optimized gagpol coding sequence.

The coding sequence(s) for lentivirus gagpol which has (have) been codon optimized results in improved expression of the lentivirus gagpol proteins and reduces the risk of recombination between the transfer vector and gagpol messenger RNA. Codon optimization of the coding sequence(s) for lentivirus gagpol was obtained by mutagenizing for each particular amino acid residue, specific nucleic acid bases in a codon for the particular amino acid residue to a nucleic acid base which is present in a codon which occurs at a high frequency in genes which are highly expressed for the same amino acid residue. In a particular embodiment, the resulting optimized codon also does not cause introduction of mRNA splicing signals into the codon optimized sequence. Thus, in a particular embodiment, codon optimization of the coding sequence(s) for lentivirus gagpol is obtained by mutagenizing for each particular amino acid residue, specific nucleic acid bases in a codon for the particular amino acid residue to a nucleic acid base that is present in a codon which (1) occurs at a high frequency in genes which are highly expressed for the same amino acid residue and (2) does not cause introduction of mRNA splicing signals into the codon optimized sequence. Codon optimization typically results in the removal of nucleic acid base A-rich instability elements.

In a particular embodiment, the coding sequence for a HIV gagpol (pNL4-3; available through the AIDS repository, NIH; Adachi et al., J. Virol., 59:284-291 (1986)) has been codon optimized to improve translational efficiency of the HIV gagpol

-12-

proteins and reduce the risk of recombination between the transfer vector and HIV gagpol messenger RNA. Two hundred thirty-seven base pairs (237 bp) consisting of the gag pol overlap and cis-acting signals necessary for translation of pol (nucleotides 2583 to 2819 of SEQ ID NO: 12) were not optimized. The HIV gagpol sequence obtained—using the codon optimization process does not differ at the amino acid level from the wildtype HIV gagpol sequence, but differs at the nucleotide level from the HIV gagpol sequence. A codon optimized HIV gag sequence is shown in Figures 8A-8E (pHDMHgpm2.seq) (SEQ ID NO:4). A codon optimized HIV pol sequence is shown in Figures 9A-9L (pHDMHgpm2.seq) (SEQ ID NO:10).

A plasmid comprising DNA sequences which encode codon optimized lentivirus gagpol proteins is also referred to hercin as a packaging construct. This plasmid includes a promoter which drives the expression of the gagpol proteins, such as the human cytomegalovirus (hCMV) immediate early promoter. This plasmid is defective for the production of the viral envelope and accessory proteins tat, vif, vpr, vpu, nef and rev and the Rev response element (RRE). The packaging construct also does not contain viral sequences which are transcribed into mRNA, such as constitutive transport elements (CTEs).

A packaging construct comprising a codon optimized HIV gagpol is depicted in Figure 1 and in Figure 11. Figures 10A-10D depict the DNA sequence (SEQ ID NO:12) for the packaging construct pHDMHgpm2. This packaging construct (pHDMHgpm2) was constructed as follows: Plasmid pMDA.HIVgp mam was generated by chemical synthesis and PCR assembly (which is described in, for example, Stemmer et al., Gene, 164:49-53 (1995)) of 215 different oligonucleotides. The DNA sequence for pMDA.HIVgp mam is the same as the DNA sequence for pMDA.HIVgp jtg except for 4.3 kb which was codon optimized using the DNAStar program (LaserGene, Madison, WI). Two hundred thirty-seven base pairs (237 bp) consisting of the gag pol overlap and cis-acting signals necessary for translation of pol (nucleotides 2583 to 2819 of SEQ ID NO: 12) were not optimized due to dual reading

5

frame constraints. A Nsil site 5' of IN was preserved to aid fusion with wildtype sequences. Several single or double base pair silent mutations were introduced either to prevent potential splice donors and acceptors, or by the synthesis process. pMDA.HIVgp jtg was derived from HIV-1 strain NL4-3. The protease mutation that is present in the NL4-3 NIH GenBank sequence was then repaired (Figure 9B), changing the nucleotide present at position 2948 of SEQ ID NO:12 from a "G" to a "C", thereby producing the codon present at nucleotide positions 2948 to 2950 of SEQ ID NO:12 which encodes an arginine instead of the glycine present in the NL4-3 GenBank amino acid sequence. The resulting plasmid was named pMDHgpmam. The EcoRI-HindIII fragment of pMDHgpmam was inserted into pHDM2b, a high copy version of the pMD vector (Ory, D. et al., Proc. Natl. Acad. Sci. USA, 93(21):11400-11406 (1996)), to produce plasmid pHDMHgpm. The sequencing mutation that is present in the RNase domain of the NL4-3 NIH GenBank sequence was repaired (Figure 9H), changing the codon present at nucleotide positions 4724 to 4726 of SEQ ID NO:12 from "GGG" to "AAG", thereby producing a codon encoding a lysine instead of the glycine present in the NL4-3 GenBank amino acid sequence. The resulting plasmid was named pHDMHgpm2. Codon usage frequencies in the codon optimized gagpol open reading frame of the packaging construct pHDMHgpm2 are shown in Figure 2.

As used herein, a heterologous envelope protein permits pseudotyping of particles generated by the packaging construct and includes the G glycoprotein of vesicular stomatitis virus (VSV G) and the amphotropic envelope of the Moloney leukemia virus (MLV). A plasmid comprising a DNA sequence which encodes a heterologous envelope protein is also referred to herein as an envelope coding plasmid.

The terms "mammal" and "mammalian", as used herein, refer to any vertebrate animal, including monotremes, marsupials and placental, that suckle their young and either give birth to living young (eutharian or placental mammals) or are egg-laying (metatharian or nonplacental mammals). Examples of mammalian species include

50

40

45

.15

20

25

30

35

40

45

50

humans and other primates (e.g., monkeys, chimpanzees), rodents (e.g., rats, mice, guinea pigs) and ruminents (e.g., cows, pigs, horses).

Examples of mammalian cells include human (such as HeLa cells, 293T cells, NIH 3T3 cells), bovine, ovine, porcine, murine (such as embryonic stem cells), rabbit and monkey (such as COS1 cells) cells. The cell may be a non-dividing cell (including hepatocytes, myofibers, hematopoietic stem cells, neurons) or a dividing cell. The cell may be an embryonic cell, bone marrow stem cell or other progenitor cell. Where the cell is a somatic cell, the cell can be, for example, an epithelial cell, fibroblast, smooth muscle cell, blood cell (including a hematopoietic cell, red blood cell, T-cell, B-cell, etc.), tumor cell, cardiac muscle cell, macrophage, dendritic cell, neuronal cell (e.g., a glial cell or astrocyte), or pathogen-infected cell (e.g., those infected by bacteria, viruses, virusoids, parasites, or prions).

Typically, cells isolated from a specific tissue (such as epithelium, fibroblast or hematopoietic cells) are categorized as a "cell-type." The cells can be obtained commercially or from a depository or obtained directly from an animal, such as by biopsy. Alternatively, the cell need not be isolated at all from the animal where, for example, it is desirable to deliver the virus to the animal in gene therapy.

To produce the cell lines of the present invention for producing a viral accessory protein independent lentivirus-derived retroviral vector particles, mammalian host cells are co-transfected with (a) a first plasmid comprising DNA sequence which encode lentivirus gagpol proteins, wherein said DNA sequence has been codon optimized by mutagenisis, as described above, to improve expression of the lentivirus gagpol proteins; and (2) a second plasmid comprising a DNA sequence which encodes a heterologous envelope protein, or a retroviral nucleotide sequence which comprises a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and integration, or both, under conditions appropriate for transfection of the cells.

-15-

In a particular embodiment, to produce the cell lines of the present invention for producing viral accessory protein independent HIV-derived retroviral vector particles mammalian host cells were cotransfected with (a) a first plasmid comprising DNA sequence which encode HIV gagpol proteins, wherein said DNA sequence has been codon optimized by mutagenisis, as described above, to improve expression of the HIV gagpol proteins; and (2) a second plasmid comprising a DNA sequence which encodes a heterologous envelope protein, or a retroviral nucleotide sequence which comprises a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration, or both, under conditions appropriate for transfection of the cells.

Virus stocks consisting of viral accessory protein independent lentivirus-derived, particularly HIV-derived, retroviral vector particles of the present invention are produced by maintaining the transfected cells under conditions suitable for virus production (e.g., in an appropriate growth media and for an appropriate period of time). Such conditions, which are not critical to the invention, are generally known in the art. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor University Press, New York (1989); Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York (1998); U.S. Patent No. 5,449,614; and U.S. Patent No. 5,460,959, the teachings of which are incorporated herein by reference.

To generate viral accessory protein independent lentivirus-derived retroviral vector particles, mammalian host cells can be co-transfected with (a) a first plasmid comprising DNA sequence which encode lentivirus gagpol proteins, wherein said DNA sequence has been codon optimized by mutagenisis, as described above, to improve expression of the lentivirus gagpol proteins; (b) a second plasmid comprising a DNA sequence which encodes a heterologous envelope protein; and (c) a third plasmid comprising a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and integration. Alternatively, mammalian cells are

transfected with a plasmid comprising a codon optimized DNA sequence encoding a lentivirus gag protein and a plasmid comprising a codon optimized DNA sequence encoding a lentivirus pol protein, in place of the first plasmid comprising a codon optimized DNA sequence encoding both lentivirus gagpol proteins. Alternatively, mammalian host cells are transfected with a plasmid comprising a codon optimized DNA sequence encoding a lentivirus gag protein and a plasmid comprising a codon optimized DNA sequence encoding a lentivirus pol protein, in place of the first plasmid comprising a codon optimized DNA sequence encoding both lentivirus gagpol proteins.

-16-

In a particular embodiment, the invention relates to methods of producing viral accessory protein independent HIV-derived retroviral vector particles, comprising cotransfecting mammalian host cells with (a) a first plasmid comprising DNA sequence which encode HIV gagpol proteins, wherein said DNA sequence has been codon optimized by mutagenisis, as described above, to improve expression of the HIV gagpol proteins; (b) a second plasmid containing a DNA sequence which encodes a heterologous envelope protein; and (c) a third plasmid comprising a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration. Alternatively, mammalian host cells are transfected with a plasmid comprising a codon optimized DNA sequence encoding a HIV gag protein and a plasmid comprising a codon optimized DNA sequence encoding a HIV pol protein, in place of the first plasmid comprising a codon optimized DNA sequence encoding both HIV gagpol proteins.

Virus particles produced by the methods described herein, using a codon optimized HIV packaging construct produced as described herein, were compared by Western analysis with virus particles produced as described in Naldini et al., Science, 272:263-267 (1996), using the packaging construct plasmid pCMVAR8.2. Both the immunological reactivity and the proteolytic processing were confirmed to be indistinguishable.

-17-

10

15

20

25

30

35

40

45

25

50

55

A plasmid comprising a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration is also referred to herein as a transfer vector. A transfer vector, as used herein, refers to a vehicle which is used to introduce a DNA of interest into a eurkaryotic cell, particularly a mammalian cell.

Figure 3 depicts an example of a transfer vector.

DNA sequence of interest, as used herein, include all or a portion of a gene or genes encoding a nucleic acid product whose expression in a cell or a mammal is desired. In a particular embodiment, the nucleic acid product is a heterologous therapeutic protein. Examples of therapeutic proteins include antigens or immunogens, such as a polyvalent vaccine, cytokines, tumor necrosis factor, interferons, interleukins, adenosine deaminase, insulin, T-cell receptors, soluble CD4, growth factors, such as epidermal growth factor, human growth factor, insulin-like growth factors, fibroblast growth factors), blood factors, such as Factor VIII, Factor IX, cytochrome b, glucocerebrosidase, ApoE, ApoC, ApoAl, the LDL receptor, negative selection markers or "suicide proteins", such as thymidine kinase (including the HSV, CMV, VZV TK), anti-angiogenic factors, Fc receptors, plasminogen activators, such as t-PA, u-PA and streptokinase, dopamine, MHC, tumor suppressor genes such as p53 and Rb, monoclonal antibodies or antigen binding fragments thereof, drug resistance genes, ion channels, such as a calcium channel or a potassium channel, adrenergic receptors, hormones (including growth hormones) and anti-cancer agents. In another embodiment, the nucleic acid product is a gene product to be expressed in a cell or a mammal and which product is otherwise defective or absent in the cell or mammal. For example, the nucleic acid product can be a functional gene(s) which is defective or absent in the cell or mammal.

DNA sequence of interest includes DNA sequences (control sequences) which are necessary to drive the expression of the gene or genes. The control sequences are operably linked to the gene. The term "operably linked", as used herein, is defined to mean that the gene is linked to control sequences in a manner which allows expression

-18-

of the gene (or the nucleic acid sequence). Generally, operably linked means contiguous.

Control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal — binding sites and sequences which control termination of transcription and translation. In a particular embodiment, a recombinant gene encoding a desired nucleic acid product can be placed under the regulatory control of a promoter which can be induced or repressed, thereby offering a greater degree of control with respect to the level of the product produced.

As used herein, the term "promoter" refers to a sequence of DNA, usually upstream (5') of the coding region of a structural gene, which controls the expression of the coding region by providing recognition and binding sites for RNA polymerase and other factors which may be required for initiation of transcription. Suitable promoters are well known in the art. Exemplary promoters include the SV40, CMV and human elongation factor (EFI) promoters. Other suitable promoters are readily available in the art (see, e.g., Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York (1998); Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor University Press, New York (1989); and U.S. Patent No. 5,681,735).

A DNA sequence of interest can be isolated from nature, modified from native sequences or manufactured de novo, as described in, for example, Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York (1998); and Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor University Press, New York. (1989). DNA sequences can be isolated and fused together by methods known in the art, such as exploiting and manufacturing compatible cloning or restriction sites.

The packaging cell lines and viral particles of the present invention can be used, in vitro, in vivo and ex vivo, to introduce DNA of interest into a eukaryotic cell (e.g., a

25

5

10

15

20

25

30

35

. .

45

50

55

mammalian cell) or a mammal (e.g., a human or other mammal or vertebrate). The cells can be obtained commercially or from a depository or obtained directly from a mammal, such as by biopsy. The cells can be obtained from a mammal to whom they will be returned or from another/different mammal of the same or different species. For example, using the packaging cell lines or viral particles of the present invention, DNA of interest can be introduced into nonhuman cells, such as pig cells, which are then introduced into a human. Alternatively, the cell need not be isolated from the mammal where, for example, it is desirable to deliver vial particles of the present invention to the mammal in gene therapy.

-19-

Ex vivo therapy has been described, for example, in Kasid et al., Proc. Natl. Acad. Sci. USA, 87:473 (1990); Rosenberg et al., N. Engl. J. Med., 323:570 (1990); Williams et al., Nature, 310:476 (1984); Dick et al., Cell, 42:71 (1985); Keller et al., Nature, 318:149 (1985); and Anderson et al., United States Patent No. 5,399,346.

Methods for administering (introducing) viral particles directly to a mammal are generally known to those practiced in the art. For example, modes of administration include parenteral, injection, mucosal, systemic, implant, intraperitoneal, oral, intradermal, transdermal (e.g., in slow release polymers), intramuscular, intravenous including infusion and/or bolus injection, subcutaneous, topical, epidural, etc. Viral particles of the present invention can, preferably, be administered in a pharmaceutically acceptable carrier, such as saline, sterile water, Ringer's solution, and isotonic sodium chloride solution.

The dosage of a viral particle of the present invention administered to a mammal, including frequency of administration, will vary depending upon a variety of factors, including mode and route of administration; size, age, sex, health, body weight and diet of the recipient mammal; nature and extent of symptoms of the disease or disorder being treated; kind of concurrent treatment, frequency of treatment, and the effect desired.

-20-

The teachings of all the articles, patents, patent applications and GenBank sequences cited herein are incorporated by reference in their entirety.

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims

-21-

CLAIMS

10	

What is claimed is:

5

10

15

 A packaging cell line for producing a viral accessory protein independent HIVderived retroviral vector particle comprising:

a) a mammalian cell;

20

b) a first retroviral nucleotide sequence in the cell which comprises a coding sequence for a HIV gagpol, wherein said coding sequence has been mutagenized to improve expression of the HIV gagpol proteins:

 a second retroviral nucleotide sequence in the cell which comprises the coding sequence for a heterologous envelope protein; and

25

 a third retroviral nucleotide sequence in the cell which comprises a DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration.

30

A packaging cell line of Claim 1 wherein the heterologous envelope protein is
 the G glycoprotein of vesicular stomatitis virus (VSV G).

35

 A packaging cell line of Claim 1 wherein the heterologous envelope protein is the amphotropic envelope of the Moloney leukemia virus.

40

4. A packaging cell line of Claim 1 wherein the DNA sequence of interest encodes a heterologous therapeutic protein.

45

- 20 5. A packaging cell line comprising:
 - a) a mammalian cell;

50

5				-22-
10			b)	a first retroviral nucleotide sequence in the cell which comprises a coding sequence for a HIV gagpol, wherein said coding sequence has been mutagenized to improve expression of the HIV gagpol proteins; and a second retroviral nucleotide sequence in the cell which comprises a
15	5		c)	DNA sequence of interest and HIV cis-acting sequences required for packaging, reverse transcription and integration.
20		6.	-	kaging cell line of Claim 5 wherein the DNA sequence of interest encodes trologous therapeutic protein.
25	10	7.	A paca a) b)	kaging cell line comprising: a mammalian cell; a first retroviral nucleotide sequence in the cell which comprises a coding sequence for a HIV gagpol, wherein said coding sequence has
30	15		c)	been mutagenized to improve expression of the HIV gagpol proteins; and a second retroviral nucleotide sequence in the cell which comprises the coding sequence for a heterologous envelope protein.
35		8.	prote	thod of producing a packaging cell line for producing a viral accessory in independent HIV-derived retroviral vector particle, comprising cofecting mammalian host cells with:
40	20		a) b)	a first plasmid comprising a DNA sequence which encodes HIV gagpol proteins, wherein said DNA sequence has been mutagenized to improve expression of the HIV gag and pol proteins; a second plasmid comprising a DNA sequence which encodes a
45				heterologous envelope protein; and

5			-23-
: 10			 a third plasmid comprising a DNA sequence of interest and HIV cis- acting sequences required for packaging, reverse transcription and integration.
15	5	9.	A method of Claim 8 wherein the heterologous envelope protein is the G glycoprotein of vesicular stomatitis virus (VSV G).
20		10.	A method of Claim 8 wherein the heterologous envelope protein is the amphotropic envelope of the Moloney leukemia virus.
25	:	11.	A method of Claim 8 wherein the DNA sequence of interest is a heterologous therapeutic protein.
	10	12.	A method of producing a viral accessory protein independent HIV-derived
30			retroviral vector particle comprising co-transfecting mammalian host cells with: a) a first plasmid comprising a DNA sequence which encodes HIV gagpol proteins, wherein said DNA sequence has been mutagenized to improve expression of the HIV gagpol proteins;
35	15		b) a second plasmid comprising a DNA sequence which encodes a heterologous envelope protein; and
40			 a third plasmid comprising a DNA sequence of interest and HIV cis- acting sequences required for packaging, reverse transcription and integration.
	. 20	13.	A method of Claim 12 wherein the heterologous envelope protein is the G
15			glycoprotein of vesicular stomatitis virus (VSV G).

45

5		,	-24-
10		14.	A method of Claim 12 wherein the heterologous envelope protein is the amphotropic envelope of the Moloney leukemia virus.
70		15.	A method of Claim 12 wherein the DNA sequence of interest encodes a heterologous therapeutic protein.
15			netitologous metapeano protoni.
	5	16.	A packaging cell line for producing a viral accessory protein independent lentivirus-derived retroviral vector particle comprising:
20			a) a mammalian cell; b) a first retroviral nucleotide sequence in the cell which comprises a
25	10		coding sequence for a lentivirus gagpol, wherein said coding sequence has been mutagenized to improve expression of the lentivirus gagpol proteins;
30	15		 a second retroviral nucleotide sequence in the cell which comprises the coding sequence for a heterologous envelope protein; and a third retroviral nucleotide sequence in the cell which comprises a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and integration.
35		17.	A packaging cell line of Claim 16 wherein the heterologous envelope protein is the G glycoprotein of vesicular stomatitis virus (VSV G).
40	20	18.	A packaging cell line of Claim 16 wherein the heterologous envelope protein is the amphotropic envelope of the Moloney leukemia virus.
45		19.	A packaging cell line of Claim 16 wherein the DNA sequence of interest encodes a heterologous therapeutic protein.
		•	

1	•
-2	э-

		20.	A packaging cell line comprising:
10			a) a mammalian cell;
			b) a first retroviral nucleotide sequence in the cell which comprises a
			coding sequence for lentivirus gagpol, wherein said coding sequence-has
	5		been mutagenized to improve expression of the lentivirus gagpol
15			proteins; and
			c) a second retroviral nucleotide sequence in the cell which comprises a
			DNA sequence of interest and lentivirus cis-acting sequences required
20			for packaging, reverse transcription and integration.
	10	21.	A packaging cell line of Claim 20 wherein the DNA sequence of interest
			encodes a heterologous therapeutic protein.
25			
		22.	A packaging cell line comprising:
			a) a mammalian cell;
30			b) a first retroviral nucleotide sequence in the cell which comprises a
	15		coding sequence for lentivirus gagpol, wherein said coding sequence has
			been mutagenized to improve expression of the lentivirus gagpol
25			proteins; and
35			c) a second retroviral nucleotide sequence in the cell which comprises the
	-		coding sequence for a heterologous envelope protein.
٠			
40	20	23.	A method of producing a packaging cell line for producing a viral accessory
			protein independent lentivirus-derived retroviral vector particle, comprising co-
			transfecting mammalian host cells with:
45			a first plasmid comprising a DNA sequence which encodes lentivirus
			gagpol proteins, wherein said DNA sequence has been mutagenized to
	25		improve expression of the lentivirus gag and pol proteins;
50			·
50			

WO 00/15819

50

5			-26-
10	5		 a second plasmid comprising a DNA sequence which encodes a heterologous envelope protein; and a third plasmid comprising a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and—integration.
		24.	A method of Claim 23 wherein the heterologous envelope protein is the G glycoprotein of vesicular stomatitis virus (VSV G).
20		25.	A method of Claim 23 wherein the heterologous envelope protein is the amphotropic envelope of the Moloney leukemia virus.
25	10	26.	A method of Claim 23 wherein the DNA sequence of interest is a heterologous therapeutic protein.
30		27.	A method of producing a viral accessory protein independent lentivirus-derived retroviral vector particle comprising co-transfecting mammalian host cells with: a) a first plasmid comprising a DNA sequence which encodes lentivirus
35			 gagpol proteins, wherein said DNA sequence has been mutagenized to improve expression of the lentivirus gagpol proteins; a second plasmid comprising a DNA sequence which encodes a
40	20		heterologous envelope protein; and c) a third plasmid comprising a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and integration.
45		28.	A method of Claim 27 wherein the heterologous envelope protein is the G glycoprotein of vesicular stomatitis virus (VSV G).

J	•		-27-
10		29.	A method of Claim 27 wherein the heterologous envelope protein is the amphotropic envelope of the Moloney leukemia virus.
		30.	A method of Claim 27 wherein the DNA sequence of interest encodes a heterologous therapeutic protein.
15			
•	5	31.	A viral accessory protein independent HIV-derived retroviral vector particle produced by the method comprising co-transfecting mammalian host cells with:
20	·		 a) a first plasmid comprising a DNA sequence which encodes HIV gagpol proteins, wherein said DNA sequence has been mutagenized to improve expression of the HIV gagpol proteins;
25	10		 a second plasmid comprising a DNA sequence which encodes a heterologous envelope protein; and a third plasmid comprising a DNA sequence of interest and HIV cis-
30			acting sequences required for packaging, reverse transcription and integration.
	15	32.	A method of Claim 31 wherein the heterologous envelope protein is the G
35			glycoprotein of vesicular stomatitis virus (VSV G).
		33.	A method of Claim 31 wherein the heterologous envelope protein is the
40			amphotropic envelope of the Moloney leukemia virus.
	20	34.	A method of Claim 31 wherein the DNA sequence of interest encodes a heterologous therapeutic protein.
45			
50			

42.

•			-28-
10		35.	A viral accessory protein independent lentivirus-derived retroviral vector particle produced by the method comprising co-transfecting mammalian host cells with:
15	5		 a first plasmid comprising a DNA sequence which encodes lentivirus—gagpol proteins, wherein said DNA sequence has been mutagenized to improve expression of the lentivirus gagpol proteins; a second plasmid comprising a DNA sequence which encodes a
20	10		heterologous envelope protein; and a third plasmid comprising a DNA sequence of interest and lentivirus cis-acting sequences required for packaging, reverse transcription and integration.
25		36.	A method of Claim 35 wherein the heterologous envelope protein is the G glycoprotein of vesicular stomatitis virus (VSV G).
30	15	37.	A method of Claim 35 wherein the heterologous envelope protein is the amphotropic envelope of the Moloney leukemia virus.
35		38.	A method of Claim 35 wherein the DNA sequence of interest encodes a heterologous therapeutic protein.
40		39.	Isolated DNA encoding a codon optimized HIV gagpol.
		40.	Isolated DNA encoding a codon optimized HIV gag.
45 ·	20	41.	Isolated DNA of Claim 40 comprising the nucleotide sequence of SEQ ID NO:4.

Isolated DNA encoding a codon optimized HIV pol.

50

PCT/US99/20675

5 .			-29-
10		43.	Isolated DNA of Claim 42 comprising the nucleotide sequence of SEQ ID NO:10.
15	5	44.	A method of introducing a DNA sequence of interest into a mammal comprising introducing into said mammal a viral accessory protein independent HIV-derived retroviral vector particle comprising the DNA sequence of interest.
		45.	The method of Claim 44 wherein the mammal is a human.
20		46.	The method of Claim 44 wherein the DNA sequence of interest encodes a heterologous therapeutic protein.
25	10	47 .	A method of introducing a DNA sequence of interest into a mammal comprising the steps of:
30			 a) introducing into cells a viral accessory protein independent HIV-derived retroviral vector particle comprising the DNA sequence of interest; and b) returning the cells obtained in step a) to the mammal.
35		48.	The method of Claim 47 wherein the mammal is a human.
	15	49.	The method of Claim 47 wherein the DNA sequence of interest is a heterologoutherapeutic protein.
40			
45			
50			

Codon Usage Frequencies

Amino Acid	pNL4-3	mam	Amino Acid	DNL4-3	mam	Amino Acid	nNI 4.3	
	gagpol			gagpol			page	
gca Ala(A)	58	13	gga Gly(G)	55	4	cca Pro(P)	53	4
gcc Ala(A)	23	53	ggc Gly(G)	12	20	ccc Pro(P)	2.5	48
gcg Ala(A)	so.	11	ggg Gly(G)	27	24	ccg Pro(P)	. ~	2 5
gcu Ala(A)	14	17	ggu Gly(G)	9	12	ccu Pro(P)	, <u>r</u>	2
aga Arg(R)	63	2	cac Hi s(H)	24	79	age Ser (S)),,	2 2
agg Arg(R)	30	8	cau Hi s(H)	76	7 .	3011 Ser (S)	3,6	ţ <u> </u>
cga Arg(R)	4	9		· ·	i	uca Ser (S)	2 %	2 v
cgc Arg(R)	0	37	and Hafts			ucc Ser (S)	2	۶ د
cgg Arg(R)		21	ana ne(i)	<u>'</u>	n	(6) 100 000		ç (
Con Aro(R)	_	,	anc IIe(I)	- 12	77	ucg ser (s)	4	۷
(11)9111 190	>	`	auu Ile(I)	56	<u>~</u>	ucu Ser (S)	9	13
aac Asn(N)	27	78	cua Leu(L)	15	-	ana Thr (T)	5	-
aau Asn(N)	73	22	cue Leu(L)	2	, %	acc Thr (7)	76	± [
gac Asp(D)	40	75	cug Leu(L)	: =	× ×	acc Thr (T)	c -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
gau Asp(D)	9	25	cuu Leu(L)	:=	٠ <u>۲</u>	acs in (1)	- 00	2 2
uge Cys (C)	14	88	una Leu(L)	40	. ^	Hay Tra(M)	001	1 2
ugu Cys (C)		32	ung Leu(L)	13	9	()d.,, 99,,	3	3
			aaa Lys (K)	69	18	liac Tvr (V)	7,	7.
caa Gln(Q)	26	12	aag Lvs (K)		: &	""" (y) (1)	2 7	ŧ ;
cag Gln(Q)	44	88	(-)-(-0		770	uau 191 (I)	4	97
			ang Met (M)	001	001	gua Val (V)	58	2
i i						guc Val (V)	13	25
gaa Giu(E)	₹ :	52	unc Phe (F)	40	08	gug Val (V)	9	49
gag Glu(E)	30	75	uuu Phe (F)	09	50	Val	71	
							-	•

Fig. 2

Rev

- Regulates HIV gene expression by promoting cytoplasmic levels of unspliced and singly spliced mRNAs
- Postulated to affect splicing, stability, transport, and translation

Fig. 4

Codon Optimization of HIV gagpol

- Remove A-rich instability elements
- Improve translational efficiency
- Reduce risk of recombination with transfer vector

Inactivation of Inhibitory Sequences in gag Schwartz, S., et al.

tta gac aag ata gag gaa gag caa aac aaa agt aag aaa aaa gca cag caa gca gca gct atg ggt gcg aga gcg tca gta tta agc ggg gga gaa tta gat cga tgg gaa aaa att cgg tta agg cca ggg gga aag aaa aaa tat aaa tta aaa cat ata gta tgg gca agc agg gag <u>aca gta gca acc ctc tat tgt gtg cat caa agg ata gag ata aaa gac acc aag gaa gct</u> cta gaa cga ttc gca gtt aat cct ggc ctg tta gaa aca tca gaa ggc tgt aga caa ata ctg gga cag cta caa cca tcc ctt cag aca gga tca gaa gaa ctt aga tca tta tat aat Ö G C C C M_{2} gac aca gga cac agc aat cag gtc agc caa aat tac CC C. GC 0 0 0

Fig. 6

Nucleotide Content of HIV gagpol

8/29

Alignment Report of Codon optimization (gag) MEG, using Clustal method with PAM250 residue weight table.

							810									
792	М					\$	v	L								
792 1319			r GC A			TCC S		TT.	A AG S	C GG G					T AA	
1319		_													C AA	
		_										_				
		840										870				
837	W	E	K		R	L	R	P	G	G						
837 1364		3 GA⊿ È	≀ AA. K	A AT	r CGG	TTA L	AGG R	CC)	1. GG(G	∌e e G				ATA Y	T AAZ K	
1364															CAAG	pHDMHgpm2.seq
							_									-
							900									
882 882	L	К	H	I	V	W	A	5	R	E	L	Е		F	А	NL4-3 genbank.SEQ
1409		L AAJ K	H	I	A GTA V	TGG	GCA A	AGC 5	: AGC R	GA(S CT. L	AGA E	ACG/ R	TTC F	GCA A	
1409	CTC	AAG	CAC	: ATC	GTG	TGG	GCC								c GCC	paprangpaz.sec
												_				-
		930										960				_
927 927	V	א זיכהי	P	G	L CTT	L	E	T	5 mc1	E	G	C	R	Q	I ATA	NL4-3 genbank.SEQ
1454	A.	N N	6	G	L L	L	E	ACA	S	E E	i GG(. TG	r aga R	CAZ Q	ATA / I	pHDMHgpm2.seq
1454	GTG	AAC	ccc	GGC	CIG	CTG	GAG	ACC	TCC	GAG	GGG				ATC	P.I.D. Zidenz 10cd
																-
							990									-
972 972	L CTG	G GGA	CAG	L CTA	Q CAA	P CCA	5 TCC	L CTT	Q CAG	T ACA	G GGP	S TC	E A GAA	E GAA	L CTT	NL4-3 genbank.SEQ
1499	L	G	Q	Ļ	Q	P	s	L	Q	T	G	S	Ε	E	L	pHDMHgpm2.seq
1499	CTG	GGC	CAG	CTG	CAG	CCC	TÇC	CTG	CAA	ACC	GGC	TC	GAG	GAG	CTG	
		.020										1050				•
1017		5	L	Y	N	T	I	A	v	L	Ÿ	c	ν	н	0	NL4-3 genbank.SEQ
1017					AAT										CĂA	Man-3 yellbalik.352
1544 1544	R	S	L	Y	N	T	I	A	V	L	Y	TCC	V	H	Q	pHDMHgpm2.seq
1344	CGC	166	C16	IAC	AAL	ACC	AIC	GCC	616	CIG	IAC	rsc	Gre	CAC	CAG	
						1	080									
1062	R	ī	D	v	ĸ	Đ	Ť	ĸ	E	Α	L	D	К	ī	E	NL4-3 genbank.SEO
1062					AAA						TTA	GAT	AAG			war a generalities
1589 1589	R	I	GAC.	V GTG	K	CDC D	T	K AAG	E E	A ccc	CTG	E3C	K	I	E	pHDMHgpm2.seq
				***					3/13	300		بامت	~~~	A10	- GAG	
	1	110									1	140				
1107	E	Έ	Q	N	К	5	ĸ	К	К	A	Q	6	A	A	A	NL4-3 genbank.SEQ
1107					AAA.											-
1634 1634	E Gag	E GAG	Q CAG	N AAC	K AAG	S TCC .	K AAG	K AAG	K AAG	A GCC	Q CAG	Q CAG	A GCC	GCC.	A	pHDMHgpm2.seq
											~				500	

Alignment Report of Codon optimization (gag).MEG, using Clustal method with PAM250 residue weight table.

										٠						
	_					1	170									
1152	D	T	G	N	N	s	Q	v	8	Q	N	Y	P	I	٧	NL4-3 genbank.SEQ
1152	GAC	ACA							AGC	CAA	AAT	TAC	CCL	ATA	GIG	-1170.01
1679 1679	D	T	Ģ	N	N	S	Q	V	S	Q CAG	N	Y TAC	P	I ATC	OTG.	pHDMHgpm2.seq
1679	GAC	ACC	GGC	AAC	AAC	100	CAG	GIG	100	٠,٠٠٠	AAC	1.7.0			0.0	
	1:	200									1	230				•
1197	-0	N	I,	Q	G	Q	М	٧	н	Q	A	I	5	P		NL4-3 genbank.SEQ
1197	CĀG	AAC	CTC	CAG						CAG		ATA	TCA	CCT	AGA	
1724 1724	Q	N	L	Q	G	Q	M	A.	CAC	Q CAG	ecc A	I	S	CCC.	R	pHDMHgpm2.seq
1724	CAG	AAC	CTG	CAG	GGC	CAG	AIG	GIG	CAC	CAG	600	710	100	CCC	CGC	
						1	260									•
1242	T	L	N	A	W	v	ĸ	٧	٧	E	Ε	K	A	F	S	NL4-3 genbank.SEQ
1242													GCT			
1769	Ť ACC	L	N	A	W.C.C	V CTC	K	V CTC	CTC.	E E	E E	X X	CCC.	F	S TCC	pHDMHgpm2.seq
1769	ACC	CIG	AAC	GCC	166	616	7000	GIG	0.0	<u> </u>	<u> </u>	70.0				
	1	290									1	320				
1297	- 2	E	v	1	P	М	F	s	A	L	s	Е	G	A	T	NL4-3 genbank.5EQ
1287	CCA											GAA	eey	ecc	ACC	-umu2
1814	CCC	E	V	I	P	M	F	S TCC	GCC.	L CTG	S TCC	E	G GGC	A GCC	T ACC	pHDMHgpm2.seq
1814	CCC	GAA	GIC	AIC	CCC	71.0	110									
						1	350									
1332	P	Q	D	L	N	T	M	L	И	T	V	G	G	Ħ	Q	NL4-3 genbank.SEQ
	ССА									ACA	GTG	GGG	GGA G	CAT	CAA	pHDMHgpm2.seq
1859	P CCC	Q	D	L	N	T.	M	ETG.	N AAC	T ACC	V GTG	GGC				patragpar.seq
1823	ccc	CAG	GAC		7574	,,,,,,	,,,,									
	1	380									1	410				
1377	A	A	М	Q	М	L	К	E	T	1	N	E	Ε	A		NL4-3 gembank.SEQ
1377			ATG								aat N	GAG E	GAA E	GCT A	GCA A	pHDMHgpm2.sec
1904	A GCC	A	M	CAC.	M arc	L CTG	X	E GAG	T ACC	I ATC						Supraidbar : 200
1904	GCC	GCC	AIG	CAG	710		70.0									
						1	440					,				
1422	E	W	Ø	R	L	Н	P	٧	H	λ	G	P	Ī	A	P	NL4-3 genbank.SEQ
1422			GAT									CCT	ATT	GCA	CCA	nHDMHanm? sec
1949	E GAG	W	D	R	L	H	P	C.L.C	CAC	A GCC	GGC	P CCC	I ATC	A GCC	CCC	pHDMHgpm2.seq
1949	GAG	TGG	GAC	LUC	CIG	<u> </u>		413								-
	ı	470			•						1	500				
1467	G	_	M	R	E	P	R	G	s	D	I	A	G	T	T	NL4-3 genbank.SEC
1467	GGC	CĀG	ATG						AGT	GAC	ATA	GCA	GGA	ACT	ACT	
1994	G	Q	M	R	E	P	R	G	5	5	I	A	G	T	T	pHDMEgpm2.seq
1994	GGC	CAG	ATG	ÇĞC	GAG	CCC	CGC	GGC	TCC	GAC	AIC	occ	GGC	MUL	MUC	

Fig. 8B

10/29 Miniment Report of Codon optimization (gag).MEG, using Clustal method with PAM250 residue weight table

-ugun	0,14 1 40	p 0 0		op.	.,,,	σ _{(G}		,								•
						1	530									
1512	s	T	L	Q	E	Q	I	G	W	M	T	H	N	P		NL4-3 genbank.SEQ
1512	AGT	ACC	CTT	CAG	GAA	CAA	ATA	GGA	TGG	ATG	ACA	CAT	aat	CCA	CCT	
2039	S	T	L	Q	E	Q	I	G	W	M	T	H	N	P		pHDMHgpm2.seq
2039	TCC	ACC	CTG	CAA	GAG	CAG	ATC	GGC	TGG	ATG	ACC	CAC	AAC	CCC	ccc	
												-				·
	1	5,60					•	_			1	590				
1557	1	P	v	G	E	I	Y	K	R	W	I	I	L	G	L	NL4-3 genbank.SEQ
1557	ATC	CCA	GTA	GGA												
2084	I	P	٧	G	E	I	Y	K	R	W	I	I	L	G	L	pHDMHgpm2.seq
2084	ATC	CCC	GTG	GGC	GAG	ATC	TAC	AAG	CCC	TGG	ATC	ATC	CTG	GGC	CTG	
						1	620		<u> </u>							•
1602	N	К	<u> </u>	· v	R	м	Y	s	P	T	s	I	L	D	Ī	NL4-3 genbank.SEQ
1602				GTA	AGA	ATG	TAT	AGC	CCT	ACC	AGC	ATT	CTG	GAC	ATA	•
2129	N	K	I	v	R	M	Y	s	P	Ť	\$	I	L	Ð	I	pHDMHgpm2.seq
2129	AAC	AAG	ATC	GTG	CGC	atg	TAC	. TCC	CCC	ACC	TCC	ATC	CTG	GAC	ATC	
		_														•
	1	650										680				
1647	R	Q	G	P	K	Ε	P	Ε.	R	D	Y	V	D	R		NL4-3 genbank.SEQ
1647										GAC D	TAT	GTA V	GAC D	R		pHDMHgpm2.seq
2174 2174	R	C)C	G	CCC P	X nnc	GAG	CCC P	F TTC	R CGC		TAC					purudhus. sed
21/3	CGC		330			0,10										
						1	710									
1692	Y	К	T	L	R	A	E	Q	A	s	Q	E	V	K		NL4-3 genbank.SEQ
1692	TAT	AAA										GAG	GTA	AAA	AAT	
2219	¥	K	T	L	R	A	E	Q	A	5	Č.	E	V CTA	K		pHDMHgpm2.seq
2219	TAC	AAG	ACC	CTG	CGC	GCC	GAG	CAG	GCC	TCC	CAG	GAG	GIA	MAG	AAC	
	1	740									1	770				
1737	- W	<u> </u>	T	Е	T	L	L	ν	Q	N	A	N	P	D	С	NL4-3 genbank.SEQ
1737	TGG	ATG	ACA	GAA	ACC	TTG	TTG	GTC	CAA	AA.T	GCG	AAC	CCA	GAT	TGT	
2264	w	M	T	E	T	L	L	v	Q	N	A	N	P	Ð	С	pHDMHgpm2.seq
2264	TGG	ATG	ACC	GAG	ACC	CTG	CTG	GTG	CAG	AAC	GCC	AAC	ccc	GAC	TGC	
						1	800									•
1782	K	T	ī	L	ĸ	A	L	G	P	G	A	T	L	E	E	NL4-3 genbank.SEQ
1782	AAG	ACT	ATT	TTA	AAA	GCA	TTG	GGA	CCA	GGA	GCG	ACA	CTA	GAA	GAA	
2309	K	T	I	L	ĸ	А	L	G	2	G	А	T	ī	E	E	pHDMHgpm2.seq
2309	AAG	ACC	ATC	CTG	AAG	GCC	CTG	GGC	CCC	GGC	GCC	ACC	CTG	GAG	GAG	
		830									1	860				
		ــــــــــــــــــــــــــــــــــــــ	***	A	-c	Q	G	v	G	G	P	G	н	К	A	NL4-3 genbank.SEQ
1827 1827	M	M atc	T	GCA	TGT	CAG	GGA				ccc					7
2354	м	м	T	A	С	Q	G	v	٠G	G	P	G	Ħ	ĸ	A	pHDMHgpm2.seq
2354	ATG	ATG	ACC	GCC	TGC	CĀG	GGC				CCC	GGC	CAC	AAG		

Fig. 8C

ÿ

11/29

Alignment Report of Codon optimization (gag).MEG, using Clustal method with PAM250 residue weight table.

							-									
							890									
1872 1872	3	V	L	A	E	A CCD	M	S	CAA	V GTA	T aca	N AAT	P CCA	A GCT	T ACC	NL4-3 genbank.SEQ
2399	R	A.	L	A	E	A	M	5	Q	٧.	T	N	Ρ.	A	T	pHDMHgpm2.seq
2399																
												-				
	1	920									1	950				
1917	I	М		Q	K	G	N	F	R	N	Ç	R	X	T	v	NL4-3 genbank.SEC
1917																- #PN#7
2444	I	M	I	Q Q	K	G	N	E	R	N AAC	C.Y.C.	3	X	T ACC		pHDMHgpm2.seq
2944	ATC	ATG	AIC	CAG	AAG	330	<i>A</i> AC	110					,,,,,			
						1	980									
1962	K	С	7	N	С	G	K		G			Α	ĸ			NL4-3 genbank.SEQ
1962	AAG	TGT	TTC												TGC	
2489	X	c	F	N	C	G	Х	E	G	H	I	A	K	N	TCC	pHDMHgpm2.seq
2489	AAG	TGC	TTC	AAC	TGC	GGC	AAG	GAG	GGC	نبرن	AIC	GCC	AAG	-	160	
	2	010									2	040				•
2007	R	A	P	R	к	ĸ	G	С	W	K	С	G	к	Ξ	G	NL4-3 genbank.SEQ
2007	AGG	GCC	CCT	AGG	AAA	AAG	GGC	TGT	TGG	AAA	TGT					
2534	R	A	P	R	ĸ	ĸ	G	C	W	ĸ	c	G	K	Ξ	G	pHDMHgpm2.seq
2534	CGC	GCC	CCC	CGC	AAG	AAG	GGC	TGC	TGG	AAG	TGC	GGC	AAG	GVC	GGC	
						· 2	070									
2052	H	0	м	3	Ð	С	T	E	R	Q	A	N	F	L	G	NL4-3 genbank.SEQ
2052	CAC	CAA	ATG	AAA	GAT	TGT	ACT	GAG	AGA	CAG	GCT	AAT	TTT	TTA	GGG	
2579	H	0	M	K	D	С	T	Ξ	R	Q	A	N	F	<u>.</u>	G	pHDMHgpm2.seq
2579	CAC	CAG	ATG	AAA	GAT	TGT	ACT	GAG	AGA	CAG	GCT	AAT	TIT	TTA	GGG	
		100									2	130				•
2097	К	Ī	7,0	P	s	н	х	G	Я	P	G	N	F	==	Q	NL4-3 genbank.SEQ
2097	AAG	ATC	TGG	CCT	TCC	CAC	AAG	GGA	AGG	CCA	GGG	aat	TIT	CTT	CAG	
2624	ĸ	Ī	W	₽	S	Ħ	K	G	R	₽	G	N	F	L	Q	pHDMHgpm2.seq
2624	AAG	ATC	TGG	CCT	TCC	CAC	AAG	GGA	AGG	CCA	GGG	AAT.	TTT	CTT	CAG	
						2	160									
2142	<u> </u>	R	Б	E	P	T	'	P	P	E	E	s	E	R	e	NL4-3 genbank.SEQ
2142	AGC	AGA	CCA	GAG	CCA							AGC	TTC	AGG	TTT	-
2669	3	73	P	Ė	P	T	Α	P	5	E	ε	5	£	R	F	pHDMEgpm2.seq
2669	AGC	AGA	CCA	GAG	CCA	ACA	GCC	CCX	CCA	GΆλ	GAG	AGC	TTC	AGG	TTT	•
		190										220		-		
			-	T	T	T	P		Q	К	Q		2	ī	D	NL4-3 genbank.SEQ
2187 2187	G	E 2	E GAG	ACA												a germana.aug
2714	G	E	£	T	T	T	P	Ş	Q	ĸ	Q	E	P	I	D	pHDMHgpm2.seq
2714	GGG	GÄA	GAG	ACA	ACA	ACT	೦೦೦	TCT	CAG	AAG	CAG	GAG	CCG	ATA	GAC	

Fig. 8D

12/29

Alignment Report of Codon optimization (gag). MEG, using Clustal method with PAM250 residue weight table.

						2	250									
2232 2232	R AAG	E GAA	L CTG	Y TAT	P	L	A	S TCC	L	R AGA	S	L	î TTT	G	S	NL4-3 genbank.SEQ
2759	ĸ	E	Ł	Y	P		A	s	L	R	s	L	F	G	5	pHDMHgpm2.s€q
		280					•									
2277	D	5	s	5	Q	٠										NL4-3 genbank.SEQ
277	GAC	CCC	TCG	TCA	CAA	TAA										-
804	D GAC	P	S TCG	5 TCA	CAA	TAA										pHDMHgpm2.seq

Fig. 8E

Alignment Report of Codon Optimization (pol).MEG, using Clustal method with PAM250 residue weight table.

																
	21	90			•						2	120				
2087	F	F	R	E	D	L	A	2	P	Q	G	X	A	R		NL4-3 genbank.SEQ
2087	TII	TTT	AGG	GAA	GAT			TTC	CCA	CAA	ece	AAG	ecc	AGG	GAA E	pNL4-3.seq
2085 2085	F	F	R	E	D	L	A	F	P	Q CDD	GEG	yyg K	A GCC	R AGG		para-3.sed
			AGG R	GAA E	GAT D	L	A	F	P	Q.	G	K	A	R	E	pHDMHgpm2.seq
2612 2612	F.	E.	AGG	GAA	GAT	CTG	GCC	TTC	CCA	CÃA		AAG	GCC	AGG	GAA	• •
2012			,,,,,													
						2	150									
2132	F	s		E	Q	T	R	A	N	5		T	R	R		NL4-3 genbank.SEQ
2132		TCT	TCA	GAG	CAG	ACC	AGA	GCC	AAC	AGC	CCC	ACC	AGA	AGA	GAG	
2120	-	•	9	E	0	T	Q	A	N	S	2	T	R	ĸ	E	bwr4-3.zed
2130	TTT							ecc	AAC	AGC S	P CCC	ACC T	AGA R	R	E	pHDMHgpm2.sec
2657 2657	F	5	3	E	Q	T	R	A ccc	N	AGC	ccc					
2657	TTT	TCT	TCA	GAG	CAG	ALC	AGA	900	,,,,,	1.00						_
		180									2	210				
						R	D	N	N		L		E	A	G	NL4-3 genbank.SEQ
2177 2177	L	Q	V	W TCC	G	AGA	GAC	AAC	AAC							
2177		^	37	142	G	R	D	N	N	S	L	5	£		G	para-3.sed
2175	CTT	CAG	GTT	TGG	GGA	AGA	GAC	AAC	AAC	TCC	CTC	TCA	GAA	GCA	GGA	
	-	_	17	T.J	G	2	D	N	N	5	L	5	5	А	G	phomngpmz.seq
2702	CTT	CAG	GTT	TGG	GGA	AGA	GAC	AAC	AAC	TCC	CTC	TCA	GAA	GUA	Gan	
							240									-
							240			5	£	2	Q	<u> </u>	Ŧ	NL4-3 genbank.SEQ
2222 2222	A	D	R	Q	G	T	V GTA	3 TCC	شلط <u>ت</u>	AGC	TTC	cor	CĀG			
		n	D	0	G	T	v	S	F	5		2	¥		1	PMT1-2.26d
2220 2220	GCC A	GAT	AGA	CĂA	GGA	ACT	GTA	TCC	TTT	AGC	TTC	CCT	CAG	ATC	ACT	
		В		2	G	т	v	S	F	S	F	P	Q	-	T	phuringpiaz.sed
2747	GCC	GAT	AGA	CAA	GGA	ACT	GTA	TCC	TTI	AGC	TTC	CCT	CAG	ATC	ACT	
																-
	2	270							_		2	300				
2267	L	- 4	- 0	R	P	L	v	T	I	K	I	G	G	Q		NL4-3 genbank.SEQ
2267	CTT	TGG	CAG	CGA	ccc			ACA	ATA	AAG	ATA	GGG	GGG	CAA	. TTA	 mwt.1_3 eeg
2265	L	W	Q	R	P	L	V	T	I	K nac	I ata	CCC.	GGG	Q CAA	L TTA	pNL4-3.seq
	CII			CGA	. CCC	CTC L	GIC.	ACA T	ATA I	K	I	G	G	Q	L	pHDMHgpm2.seq
2792	L CTT	W	C)C	rea R	CCC	CTC	GTC	ACA	ATA	AAG						
2792	CIT	1.66	uno	Cun												_
							330									
				L	L			G		Đ	D	T	v	L		NL4-3 genbank.SEQ
2312	K	E 622	A	CTA	TTA	GAT	ACA	GGA	GCA	GĀT			GTA	TTA	. GAA	
2312 2310			n.		t.	D	Ŧ	G	A	D	Ü	-	v	_	<u> </u>	5MT4-2.26d
2310	226	CDA	GCT	CTA	TTA	GAT	ACA	GGA	GCA	GAT	GAT	ACA	GTA	. TTA	. GAA	
	M															
				т.	Ŧ.	ח	T	G	A	v	υ	-	•	b	-	Superiod Summer of A

14/29

Alignment Report of Codon Optimization (pol).MEG, using Clustal method with PAM250 residue weight table.

							-										
		236	3										239)			_
235	_					P	G	R	W	K				1	G	G	NL4-3 genbank.S
2357		A AT		T T	rg C	CA (GA	AGA	TG(S AA	A CC	A AA	A AT	G AT	A GG	G GG.	A -
2355		M				P	G	R	W	K	₽	K			G	G	pNL4-3.seg
2355									TGC		A CC	A AA	A AT	G AT	A GG	G GG	A T
2882		М				P	G	R	W	K	P	K	M	I	G	G	pHDMHgpm2.seq
2882	? GA	G AT	G A	rc ca	'G C	CC (GC	CGC	TGG	AA(S CC	C AA	G AT	G AT	c ee	C GG	c
	_	_					2	420									-
2402	· I	G	6	E		r -	ĸ	<u>'v</u>	∵ G	. Q	Y	D	Q	I	L	I	_ NL4-3 genbank.S
2402	AT	GG	A GG	T TI	T A	rc A	AA	GTA	GGP	CAC	TAT	'GA	r ca	G ATI	A CT	C ATA	ine. 5 yembank.5
2400	I	G	- 0		• :	ľ	ĸ	v	R	Q	Y	D	Q	I	L	I	pNL4-3.seg
2400	AT:	GG.	A GG	T TI	T A	C A	AΑ	GTA	AGA	CAC	TAI	GA:			A CTO	TATA	hwar aracd
2927		G	G	F	, 1	[X	ν	R	Q	Y	D	0	T	T.	7	DHIMHanm2 coa
2927	ATO	: GG	C GG	C TI	C A	C A	AA	GTC	CGC	CAG	TAC	GA	CA	G ATC	CTO	ATC	:
	-	2450					_						2480	 -			-
2447	E	Ī			F	· ·	ĸ	Α	- <u>-</u>	G	T	v	L	v	G	P	
2447	GAA	AT	TG												CC	CCI	NL4-3 genbank.SI
2445	E	I	c	G			K	A	I	G	T	v	L	V V	G	P	
445	GAA	ATO	: TG										ידי	. CTD	. ccr	CCT	pNL4-3.seq
972	E	I	C	G	H		ĸ	A	r	G	Ţ	v	L	V	G		
972	GAG	ATO	TG												GGC	P. CCC	pHDMHgpm2.seq
	_						25	510									_
492	T	P	v	N	Ī		Ι	G	R	N	L	L	Т	Q		G	NT 4 2 saabaab Cr
492	ACA													י ראה צ	. A.m.	GGC	NL4~3 genbank.SE
490	T	P	v	N	I		1	G.	R	N	L	L	Ť	Q	I		
	ACA										CTG	445.0	ACT	. כאכ	7 200	G	pNL4-3.seq
017	T	P	v	N	Ī			G	R	N	L	L	T	Q			- 550.51
-	ACC														I ATC	GGC	pEDMHgpm2.seq
		-											-				-
	2	540										2	570				
537	С	T	L	N	F		?	I	S	₽	I	E	T	v	P	v	NL4-3 genbank.SE
537	TGC	ACT	TTA	. AA3	TT	CC	C 1	\TT	AGT	CCT	ATT	GAG	ACT	GTA	CCA	GTA	•
535	С	T	L	N	F	E		I	S	P	I	E	T	v	P	v	pNL4-3.seq
535	TGC	ACT	TTA	AAI	TT	CC	:C)	ATT .	AGT	CCT	ATT	GAG	ACT	GTA	CCA	GTA	
062	С	T	L	N	F	E	•	I	s	P	I	E	T	v	P	v	pHDMHqpm2.seq
62	TGC	ACC	CTG	AAC	TTC	: c c	C A	ATC '	TCC	CCC	ATC	GAG	ACC	GTG	CCC	GTG	
							26	00									
582	-к	L	ĸ	P	G	M		D	G	P	x	v	ĸ	Q	W	P	NL4-3 genbank.SEG
82	AAA	TTA		-	GGA			_	GGC	_				CÃA		_	mar-a yermank.30
580	ĸ	L	ĸ	P.	G	М		D	G	P	K	v	ĸ	Q	W		nWT 4 2
	AAA			_	-											CC»	pNL4-3.seq
														~~~	* 00	~~~	
07	ĸ	L	К	P	G	M		D	G	P	ĸ	v	K	Q	W	₽	pHDMHqpm2.seq

Alignment Report of Coden Optimization (pol) MEG, using Clustal method with PAM250 residue weight table.

		263	0								-	2660	)			
262	7 <u> </u>	. 1	. 5	: 3	K	ī	ĸ	A	L	v	E	<u> </u>	c	T	E	- NI 4-3 conhort SEO
262	7 TT	G AC	A GA	A GA	A AA											NL4-3 genbank.SEQ
262						I	ĸ	A		v		1	c	T	_	pNL4-3.seg
2 6 2 3	5 TT	G AC	A GA	A GA	A AA	A AT	A AA	A GC	A TT	A GT	A GA	A AT				\\
315	2 L	. 1	. 6	E	K	I	K	A	L	v	E	I	С	T	E	pHDMHgpm2.seq
315	2 CT	G AC	C GA	.G GA	G AA	S ATC	: AAG	G GC	CT	G GT	G GA	AT	C TG	AC:		
							2690									_
2672					G	ĸ	I	ş	K	ī	G	5	E	N	P	
2672	TA S	G GA	A AA	G GA	A GG2	AA.	ATT	TC	AAA A	ATT	e GGG	CCT	GA.	AA:		,
2670	) M	Ξ	K	E	G	K	ľ	S	K	I	G	P	Ε	N	P	pNL4-3.sec
2570	) AT	G GA	a aa	e ey	A GG;	KAA /	ATT	TC	AAA	ATT	GGG	CCT	GA	L AA	CCA	
3197					G	ĸ	I	S	ĸ	I	G	P	E	N	₽	pHDMHgpm2.seq
3197	ATO	e GA	G AA	G GA	G GGC	: AAG	ATC	TCC	AAG	ATO	GGG	ccc	GYC	AAC	ccc	
		2720										2750				<del>.</del>
												2150				_
2717	_	N	T	P	V	F	Α	1	K	ĸ	K	Đ	S	T	K	
					A GTA										AAA	
2715	-	N	T	P	V	F	Α	I	К	K	X	Đ	S	T	K	pNL4-3.seg
					GTA											
3242	_	N	T	P	v	F	A	I	X	K	K	D	5	T	K	pHDMHgpm2.seq
3242	TAC	. AAI	AC	· ccc	GTG	TTC	GCC	ATC	AAG	AAG	AAG	GAC	rcc	ACC	AAG	
							780									-
2762				<del></del>			<u> </u>									•
2762 2762	W	R	K	L	V	ם כאת	F	R	E	L	N	X	R	T	Q	NL4-3 genbank.SEQ
2760		R	 X	L	GTA V	D	F	AGA R	E	L	N					
				_	GTA							K	202	T	Q	pNL4-3.seq
3287	W	R	ĸ	L	V	D GVT	F	R	E	L	N.	K	3	T	Q	
					GTG											pHDMHgpm2.seq
	•••				0.5					•••		. 4		700	<u>~~</u>	
		810					<del></del>					94C				•
2807	D	- <u>\-</u> -	W	E	~	Q	L	G	ı	P		, P	A	G	Ţ.	NL4-3 genbank.SEQ
2807					GTT		_	-								man a germank.asg
2805	D	F	W	E	v	Q	L	G	I	P	Н	P	A	G	L	DNL4-3.sec
2805	_	-	TGG	_				_	-					_		
3332	D	F	W	E	V	Q	L	G	I	P	Ħ	P	A	G	L	pHDMHgpm2.seq
3332	GAC	TTC	TGG	GAG	GTG	CAG	CTG	GGC	ATC	ccc	CAC	CCC	GCC			
						2	870									
2952	ĸ	Ç	K	ĸ	S	V	:	v	L	D	V	G	D	A	Y	NL1-3 genbank.SEC
2852	AAA	CAG	AAA	AAA	TCA	GTA	ACA	GIA	CTG	GAT.	GTG	GGC	gat	GCA	Tat	
2850	K	Q	ĸ	ĸ	s	V	T	V	L	Đ	٧	G	D	Α	¥	pNL1-3.seq
Z850	AAA	CAG	AAA	AAA	TCA	GTA	λCλ	GTA	CTG	GAT	CTG	GGC	GAT	GCA	TAT	<del>-</del>
3377	ĸ	Q	ĸ	K	S	V	T	V	L	D	V	G	Ð	A	Y	pHDMHgpm2.seq
3377	AAG	CXC	AAG	AAG	TCC	GTG .	ACC	GTG	CTG	GA.C	GTG	GGC	GAC	CCC	TAC	

16/29

Alignment Report of Codon Optimization (pol).MEG, using Clustal method with PAM250 residue weight table.

		2900									•	2930				
2897	F	3	v	P	L	D	К	D	F	R	K	Y	T	A	F	NL4-3 genbank.SEQ
2897		TC	GT	r cc	C TTA	GA?	LAA.	A GA	C TT	C AG	G AA	TA	AC:	r GC	A TTT	r
2895		S	٧	P	L	ם	K	D	F	R	ĸ	Y	T	A	F	pNL4-3.seq
2895					TTA											·
3422	-		v	P	L	D	K	D	F	R	K	Y	T	A	F	pHDMHgpm2.seq
3422	TTC	. TCC	. 610	s C.C	CTG	GAL	AAC	÷ (÷A(	TT	CGG	: AA	TAC	ACC	GC	TTC	
-	_						2960									<b>-</b>
2942			P	s	Ī	N	N	E	T	P		<u>.</u>				
2942	_	_	-	_	. ATA			-		-	G	I יידית:	R	Y	Q CAG	NL4-3 genbank.SEQ
2940		I	P	5	I	N	N V	. went	T	P	. 660	, al.	R	Y	Q	
2940	_	_	_	_	ATA			_								pNL4-3.seq
3467		I	P	S	I	N	N	E	T	P	G	1	R	Y	Q	pHDMHgpm2.seq
3467	ACC	ATC	CCC	TCC	ATC	AAC	AAC	GAG	ACC	ccc	GGC	ATO	: ccc			;
																_
	_ :	2990										3020				
2987	Y	N	٧	L	P	Q	G	W	K	G	s	P	A	I	F	NL4-3 genbank.SEQ
2987		AAT			CCA									ATA	TTC	
2985	_	N	V	L	P	Q	G	W	ĸ	G	S	P	A	I	F	pNL4-3.seq
2985					CCV											
3512	_	N	V	L	P	Q	G	W	K	G	S	P	A	I	<u> </u>	pHDMHgpm2.seq
3312	TAC	AAC	910	. 616		CAG	GGC	136	AAG	660	100	CLL	GCC	Arc	TTC	
						3	050								-	-
3032	-0		5	M	т	ĸ	<u> </u>	L	E	P	E	R	К	Q	И	NIA-3 manhank FEO
3032	_				ACA		-	_		CCT						NL4-3 genbank.SEQ
3030	Q	c	s	M	T	K	I	L	E	P	F	R	ĸ	0	N	pNL4-3.seq
3030	CAG	TGT	AGC	ATG	ACA	AAA	ATC	TTA	GAG	CCT	TTT	AGA	AAA	CAA	AAT	harr cannot
3557	Q	С	s	М	T	K	I	Ĺ	E	P	F	R	ĸ	Q	N	pHDMHgpm2.seq
3557	CAG	TGC	TCC	ATG	ACC	AAG	ATC	CTG	GAG	CCC	TTC	CGC	AAG	CAG	AAC	• •
	_															•
		080									3	110				•
3077	P	D	I	٧	I	Y	Q	Y	M	D	D	L	Y	v	G	NL4-3 genbank.SEQ
3077					ATC		CAA			GAT						
3075 3075	P	D	I	V	I ATC	Y	Q	Y	M	D	D	L	Y	V	G	pNL4-3.seq
3602	P	D	I	V	ATC I	Y	Q	TAC	ATG M	GAT D	GAT D	TIG L	Y	GTA V	GGA G	-UDW//
3602	_				ATC		-									pHDMHgpm2.seq
															J., C	
						3	140								·····	
3122	s	D	L	E	ī	G	<del>'</del> -	н	R	T	ĸ	ī	Ε	ε	L	NL4-3 genbank.SEQ
3122	TCT	-	TTA	-	ATA	-				ACA						"Pr 3 deimenv 255
3120	5	D	L	ε	1	G	Q	Ħ	R	T	K	I	E	E	L	pNL4-3.seg
3120	TCT	GAC	TTA	GAA	ATA	GGG	CAG	CAT	AGA	ACA	AAA	ATA	GAG	GAA		1
3647	3	D	L	E	I	G	Q	Ħ	R	T	K	I	E	E	L	pHDMHgpm2.seq
3647	TCC	GAC	CTG	GAG	ATC	GGC	CAG	CAC	CGG	ACC	AAG	ATC	GAG	GAG	CTG	-

Fig. 9D

17/29

Alignment Report of Codon Optimization (pol) MEG, using Clustal method with PAM250 residue weight table.

																	•
		31,7	0									320	00		-		<del></del>
316						L F				F 7	r :		P	D	К	К	NL4-3 genbank.SEQ
316	7 AG	A C	AA C	AT C	rg T	rg ag	G TG	G GC	A T	rt ac	C A	A C	CA G	AC.	AA,	AA A	A
316					L ]		L W		; 1	? 1	1	ľ	₽	D	ĸ	к	pNL4-3.seq
316	o AG	ia ca	AA C	AT C	rg T?	G AG							CA G	AC .	AAA	AA	а <del></del> -
369: 369:				1 1						7	. 1	:	P	D	K	K	pHDMHgpm2.seq
303	2 (6		ن ده	AC C	rG CI	'G CG	C TG	G GG	C T	C AC	CAC	C C	CC G	AC .	AAG	AA	G
							3230	)									_
3212	2 H		, P	E	. P	P	F	L	V	M	. G		<del>,</del>		_		
3212						T CC			 TO TO				.m ~	E	L	Н	NL4-3 genbank.SEQ
3210	Э	0	2 1		. P	P	F	L						AA ( E			
3210	CA	T CA	G AA			T CC	A TT	C CT	T TG		G GG	T ተደ	ለጥ G		L	E	pNL4-3.seq
3737	7 Н	Q	K	E	P	. 6	F	L	u	M	G	,	,	E	T.	2.5	- IIM 01 0
3737	CA	C CA	G AA	.G GA	e cc	c cc	C TTC	CT	G TG	G AT	GGG	C TA	C G	AG (	ΞG	CAC	pHDMHgpm2.seq
	_		<u>.                                    </u>														•
		3260	)									329	0				_
3257		D				V	Q	P	Į	v	L	P		:	к	D	NL4-3 genbank.SEQ
3257	CC	r ga	T AA	A TG	GAC	A GT	CAC	CC:	r at	A GT	G CT	G CC	A GA	A A	AG	GAC	J genbank.seg
3255	P	D	X	W	T	v	0	P	I	v	L	P		7	¥	D	TATE A 2
3255	CCI	r GA	T AA	A TG	G AC	A GTA	CAG	CC:	r at	A GT	G CT	CC	A GA	A A	AG	GAC	1
3782		D	K		T	٧	Q	₽	1	ν	L	P	E	2	K	D	pHDMHgpm2.seq
3782	CCC	GA	CAA	G TG	G ACC	GTG	CAG	ccc	CAT	GTO	CT	s cc	C G3	ig a	AG	GAC	
							3320								_		-
3302		W	T	v	N		ш.										-
3302						ם יפארי	I ATTA	Q	K	L	V	G	X		L	N	NL4-3 genbank.SEQ
3300	s	W	T	v	N	D	I	Q	K	L	V GIG						
3300							ATA	CZC	n n	מיניים מיניים	CTC	G	K	20 mai	L	N	pNL4-3.seq
3927	s	W	T	v	N	D	1	Q	K	L	V	G	٠ ٨٨ X		re . L		- 1771 - 1
3827	TCC	TGG					ATC	CAG	AAG	CTG	GTG	GGG	AA:	s ca	rc:	N Abc	pEDMHgpm2.seg
													_			-Lite	
	3	350									:	380					
3347	W	A	s	Q	ľ	Y	A	G	1	K	٧	R	Q	1	,	c	NL4-3 genbank.SEQ
3347	TGG	GCA	AGT	CAG		TAT	GCA	GGG	ATT	AAA	GTA	AGG	CA	T	A	rgt	,
3345	W	Α	S	Q	I	Y	A	G	I	ĸ	v	R	Q	I		С	pNL4-3.seq
3345	TGG	GCA	AGT	CAG	ATT	TAT							CAJ	<b>1</b> T1	'A 1	FGT	-
3872	W	A	5	Q	I	Y	A	G	I	K	٧	R	Q	I		С	pHDMHgpm2.seq
3872	166	GCC	TCC	CAG	ATC	TAC	GCC	GGC	ATC	AAA	GTC	CGC	CAC	; CI	'G 1	rGC	
,						3	410					_				-	
3392	К	L	L	3	G	T	K	A	<del></del> -	7	E	-,,					
						ACC			L CTA	T	E GD N	V CTA	V	P		L	NL4-3 genbank.SEQ
3390	ĸ	L	L	R	G	T	K	A	L	T	E	A A	GTA V			_	_100 4 4
						ACC			CTA	ACA	GAA	GTA	CT3	5	. ~	L Ta	pNL4~3.seq
3917	K	L	L	R	G	T	ĸ	A	L	T	E	A 2TV	V	P			nUTWU 2
3917	AAG	CIG	CTG						CTG	ACC	GAG	GTG	GTG	cc		TG.	pHDMHgpm2.seq

Fig. 91

18/29

Alignment Report of Codon Optimization (pol).MEG, using Clustal method with PAM250 residue weight table.

-wy.	C114 1 W	<b>,</b>		J,-		- C	,									
	3	440									3	470				
3437		E	E	A	Ε	L	E	L	A	2	N	R	E	I	L	NL4-3 genbank.SEQ
3437	ACA	GAA	GAA	GCA	GAG	CTA	GAA	CTG	GCA	GAA	AAC	AGG	GAG	ATT	CTA	
3435	T	E	E	Α	E	L	È	L	A	E	N	R	E	I	L	pNL4-3.seq_
3435	ACA	GAA	GAA	GCA	GAG	CTA	GAA	CIG	GCA	GAA	AAC	AGG	GAG	ATT	CTA	
962	T	E	E	Α	E	L	E	L	Α	E	N	R	E	I	L	pHDMHgpm2.seq
962	ACC	GAG	GAG	GCC	GAG	CTG	GAG	CTG	GCC	GAG	AAC	CGC	GAG	ATC	CTG	
		·					500									-
400			- n	v	Н.		v	Y	Y	D	P	5	ĸ	D	т.	NL4-3 genbank.SEQ
1482	K AAA	E	P				-									MD4-3 Genbeur.se
											P	s	K	D		DNT 4-2 cos
480	K AAA	E	Б.	V	H	G	V	Y	Y	D						pNL4-3.seq
							A.		Y	D	F	S	K	D		pHDMHgpm2.seq
007	k aag	E		V GTG	CAC	G GGC		Y TAC								phoradous . sed
												1				
	3	530									3	560				
1527	<u> </u>	A	E	I	Q	К	Q	G	Q	G	Q	W	T	Y		NL4-3 genbank.SEC
1527	ATA	GCA	GAA	ATA	CAG	AAG	CAG	GGG	CAA	GGC	CAA	TGG	ACA	TAT	CAA	
525	I	A	E	I	Q	K	Q	G	Q	G	Q	W	T	Y	Q	pNL4-3.seq
525	ATA	GCA	GAA	ATA	CAG	AAG	CAG	GGG	CAA	GGC	CAA	TGG	ACA	TAT	CAA	
052	I	A	E	1	Q	K	Q	G	Q	G	Q	W	T	Y	Q	pHDMHgpm2.seq
052	ATC	GCC	GAG	ATC	CAG	AAG	CAG	GGC	CAG	GGC	CAG	TGG	ACC	TAC	CAG	
							590									
572		Y	Q	E	P	F	٠.,	· N	L	К	T	G	к	Y	A	NL4-3 genbank.SEQ
	ATT															,
570	AI.		ο.	E	P	F	K	N	L	K	T	G.	ĸ	Y	A	pNL4-3.seq
	ATT	Y												_		burn arred
				E	P	F	K	N	L	K	T	G	ĸ	Y	A	pHDMHqpm2.seq
097 097	I ATC	Y TAC	Q CAG								_					burnandbwm . a. d
		1										· ·				
	3	620									3	650				
617	R	М	K	G	A	H	T	N	D	٧	K	Q	L	T	E	NL4-3 genbank.SEQ
617	AGA	ATG	AAG	GGT	GCC	CAC	ACT	AAT	GAT	GTG	AAA	CAA	TTA	ACA	GAG	
615	R	M	K	G	A	H	T	N	D	V	K	Q	L	T	E	pNL4-3.seq
615	AGA	ATG	AAG	GGT	GCC	CAC	ACT	AAT	GAT	GTG	AAA	CAA		ACA	GAG	
142	R	M	ĸ	G	A	Ħ	T	N	D	٧	K	Q	L	T	E	pHDMHgpm2.seq
142	CGC	ATG	AAG	GGC	GCC	CAC	ACC	AAC	GAC	GTG	AAG	CAG	CTG	ACC	GAG	
						3	680									
662		v	Q	ж	ī	A	Ť	Ε	S	ī	v	I	W	G	к	NL4-3 genbank.SEQ
662					ATA						GTA		TGG	GGA		-
660	A	v	Q	ĸ	I	A	T	E	5	I	٧	I	W	G	K	pNL4-3.seq
	GCA												TGG			-
187	A	V	Q	K	I	A	T	E	s	I	v	1	W	G	ĸ	pHDMHgpm2.seq .
187	GCC	GTG	CAG	AAG	ATC	GCC	ACC				GTG	ATC	TGG	GGC	AAG	
		5.5								_	-					

Alignment Report of Codon Optimization (pol).MEG, using Clustal method with PAM250 residue weight table.

19/29

•		•				-										_
	٠.	3710										3740				
3707		P	ĸ	£	К	L	P	ī	Q	ĸ	E	T	W	E	A	- NL4-3 genbank.SE
3707				-											GCA	
3705	7	₽	ĸ	F	к	L	P	I	Q	K	E	T	W	E.	A	pNL4-3.seg
3705	ACT	CCT	AAA	TTT	AAA	TTA	CCC	ATA	CAA	AAG	GAA	ACA	TGG	GAA	GCA	· -
4232	T	P	ĸ	F	ĸ	L	P	I	Q	K	E	T	W	E	A	pHDMHgpm2.seq
4232	ACT	ccc	AAG	TTC	AAG	CTG	CCC	ATC	CAG	AAG	GAG	ACC	TGG	GAG	GCC	
																-
						3	770									
752	D.	W	Т	E	Y	W	Q	A	T	W	I	P	E	W	E	NL4-3 genbank.SE(
3752	TGG	TGG	ACA												GAG	
3750	W	W	T	E	Y	W	Q	A	T	W	I	P	E	W	E	pNL4-3.seq
3750					TAT					TGG						
4277	W TGG	W TCC	T	E	Y	W TGG	C3G	A	T		I	P.	E	W TGC	E	pHDMHgpm2.seq
1211	166		ACC	GAG	IAC	100	CAG	GCC	ACC	100			ano		GAG	
	3	1800									3	18 30				
3797	F	v	N	т	P	P	L	v	K	L	W	Y	Q	L	E	NL4-3 genbank.SEQ
797	TTT	GTC	AAT	ACC	CCT	CCC	TTA	GTG	AAG	TTA	TGG	TAC	CAG	TTA	GAG	•
1795	F	ν	N	T	P	P	L	٧	K	L	W	Y	Q	L	E	pNL4-3.seq
795	TTT	GTC	AAT	ACC	CCT	CCC	TTA	GTG	AAG	TTA	TGG	TAC	CAG	TTA	GAG	-
1322	F	v	. <b>N</b>	T	P	P	L	V	K	L	W	Y	Q	L	E	pHDMHgpm2.seq
1322	TTC	GTG	AAC	ACC	ccc	CCC	CTG	GTG	AAG	CTG	TGG	TAC	CAG	CTG	GAG	
						3	860									
842	ĸ	3	P	I	I	G	A	E	T	F	Y	v	Ð	3	A	NL4-3 genbank.SEQ
	AAA															s genbanktud
840	к	E	2	I	1	G	A	E	T	F	Y	v	D	G	A	pNL4-3.seq
	AAA	GAA	CCC	ATA	ATA	GGA	GCA	GAA	ACT	TTC	TAT	GTA	GAT	GGG	GCA	•
1367	ĸ	E	P	I	I	G	А	E	T	F	Y	v	Ð	G	A	pHDMHgpm2.sec
367	AAG	GAG	CCC	ATC	ATC	GGC	GCC	GAG	ACC	TTC	TAC	GTG	GAC	GGC	GCC	
		-										-				
	3	890									3	920				
887	A	N	R	E	T	K	L	G	К	A	G	Y	V	7	D	NL4-3 genbank.SEQ
887					ACT									ACT		
1885	A	N	R	E	T	K	L	G	K	A	G	Y	V	T	D	pNL4-3.seq
	GCC															-UD)(U
412	A	N	R	E	T	K	L CTC	G	K	A	GC.	Y	V GTG	T	D D	pHDMHgpm2.seq
412	ecc	AAC	CGC	GAG	ALC		-16	330	MU		300	1110	310	ALC		
						3	950									
932	R	G	R	Q	ж	v	v	P	ī,	T	D	T	Ī	N	-Q	NL4-3 genbank.5EQ
932					AAA	GTT		_		ACG	GAC	ACA	ACA		_	
930	R	G	3	Q	ĸ	٧	٧	P	L	T	Ď	T	T	N	Q	pNL4-3.seq
930	AGA	GGA	AGA	CAA	AAA	GTT	GTC	CCC	CTA	ACG	GAC	ACA	ACA	aat	CAG	-
457	R	G	R	Q	K	V	٧	P	L	T	D	T	T	N	Q	pHDMHgpm2.seq
457	CGC	GGC	CGC	CAG	aag	GTG	GTG	CCC	CTG	ACC	GAC	ACC	ACC	AAC	CAG	

20/29

Alignment Report of Codon Optimization (pol).MEG, using Clustal method with PAM250 residue weight table.

		980										1010				
3977	К	T	E	L	Q	А	I	Ħ	L	A	L	Q	D	5	G	NL4-3 genbank.SEQ
3977		ACT													GGA	
3975	K Aag	T	E	L	Q	A	I Turk	H	L	A GCT	L	Q CAG	D GDT	S TCC	G	pNL4-3.seq
4502		T	E	L	· ∝	A	I	H	L	A	L	Q	D	S	G	pHDMHgpm2.seq
	AAG															
																-
						4	1040									
4022	L	E	v	N	1	v	T	D	. 5	Q	Y	A	L	G	I	
4022															ATC	
4020	L	E	V	N AAC	I	V	I	D	5 TC3	CAA Q	Y TAT	GCA.	L	G	I	pNL4-3.seq
4020 4547	TTA L	GAA	. GYA	N AAC	AIA I	V	T	D D	S	0	Y	A	L	G	I	pHDMHgpm2.seq
4547											TAT		TTG			F
				,												
	4	070									4	100			_	_
4067	<u> </u>	Q	A	Q	P	σ	К	S	Е	5	3	L	v	s	Q	NL4-3 genbank.SEQ
4067				. כאא												•
4065	I	Q	A	Q CAA	P	D	K	5 200	E	S TCB	E	L	C.C.C	S ACT	CAA	pNL4-3.seq
4065 4592	ATT	Q	. GCA A	. CAA	P	D	K	S	E	S	E	L	V	S	Q	pHDMHqpm2.seq
4592								_	_				GTG			F
						·										•
						4	130									
4112	I	I	Ĕ	Q	L	I	ĸ	ĸ	E	K	v	Y	L	A	W	NL4-3 genbank.SEQ
,4112																
4110	I	I	E	Q	L	I	K	K	E GAA	K	OTC.	љус Ā	L	A CC3	W TGG	pNL4-3.seq
4110 4637	ATA I	ATA	GAG E	Q	L	I	K	K	E	X	V	Y	L	A	W	pHDMHgpm2.seq
4637																F
	4	160									4	190				
4157	v	P	λ	н	к	Ģ	I	G	G	N	E	Q	٧	D	G	NL4-3 genbank.SEQ
4157	GTA	CCA	GCA	CAC												
4155	V	P	A	H	ĸ	G	I	G	G GGA	N	E	Q	V	D	K	pNL4-3.seq
4155 4682	GTA V	CCA P	GCA A	CAC H	AAA K	GGA	ATT	GGA	G	MAL N	E	Q	V	D	K	pHDMHqpm2.seq
4682	GTG	CCC	GCC													P
						4	220									
4202	L	v	3	A	G	I	R	к	v	L	F	L	D	G	ī	NL4-3 genbank.SEQ
4202	TTG	STC	-	GCT	GGA	ATC	AGG	AAA			TTT		GAT			_
4200	L	v	3	A	G	I	R	ĸ	V	L	P	L	D	G	I	pNL4-3.seq
4200	TTG			CCI			AGG R	AAA K	GTA V	CTA L	TTT	TTA L	D	GGA	ATA I	pHDMHqpm2.seq
4727 4727	L	V CTG	S	A GCC	GGC.	I ATC										humadhue acd
4161	-10	919		300	-											

Fig. 9H

21/29

Alignment Report of Codon Optimization (pol).MEG, using Clustal method with PAM250 residue weight table.

-							-									
		1250										4280				
4247	D		A	Q	E	E	H	E	к	Y	н	<u> </u>	N	W	R	_ NL4-3 genbank.SE
4247	GAT	AAG	GCC	CAA	. GAA	GAA	CAT	GAG	AA.	TAT	CAC	AG?	: AA1	TGO	AGA	
4245	_	K	A	Q	E	E	H	E	K	Y	Ħ	s	N	W	R	pNL4-3.seq
4245					L GAA	-									AGA	
4772		R DDC	A	. CJC	. c.c	E	H	E	K	Y	H	S	N	W	R CGC	pHDMHgpm2.seq
4/12	GAL	AAG		. CAG	, GNG	GAG	CAL	GAU	, AAG	iAC	. CAL	. 100		. 166		
							310									-
4292	A	М	A	S	D	F	N	L	P	P	٧	v	A	К	E	NL4-3 genbank.SEQ
4292		ATG			GAT											
4290		M	A	3	D	F	N	L	P	P	v	V	A	ĸ	E	pNL4-3.seq
4290 4817		ATG	GCI A	AGT S	GAT D	TTT	AAC N	Cra L	L CCA P	P	GYA V	CTA V	GC/A	L AAA	GAA E	-1/04/12
	GCC														_	pHDMHgpm2.seq
	-4	340			_							1370				
4337	1	v	A	S	С	D	K	С	Q	L	K	G	E	A	М	NL4-3 genbank.SEQ
4337			-		TGT											
4335	I ATA	V	A	S	C	D	K	C	ğ	L	K	G	E	A	M	pNL4-3.seq
4862	I	V	A	AGC 5	C	D GVT	K	C	Q	L	K	G	E	A	M	pHDMHqpm2.seq
	ATC															Proceed and page 10cd
																•
							400									
4382 4382	H	G	Q	V	D GAC	C	S	P	G	I	W	Q	5 CTN	D CDM	C TGT	NL4-3 genbank.SEQ
4380	H	G	0	V	D	C	S	P	G	I	W	0	L	D D	C	pNL4-3.sec
4380			_		GAC			-				-				bun, ained
4907	Н	G	Q	v	Đ	С	5	2	G	I	W	Q	L	D	С	pHDMHgpm2.seq
4907	CAC	GGC	CAG	GTG	GAC	TGC	TCC	ccc	GGC	ATC	TGG	CAG	CTG	GAC	TGC	
		430		<u></u>								460				
4427		H	L	Ē	G	К	v	I	L	v		v	н	v	A	NL4-3 genbank.SEQ
4427	ACA	-			GGA											nut-3 deimank.250
4425	T	Н	L	Z	G	ĸ	v	I	L	v	A	v	Н	v	A	pNL4-3.seq
4425	ACA	CAT	TTA	GAA	GGA	AAA	GTT	ATC	TTG	GTA	GCA	GTT	CAT	GTA	GCC	•
4952	T	H	L	E	G	K	V	I	L	V	A	v	H	V	A	pHDMHgpm2.seq
4952	ACC	CAC	CTG	GAG	GGC	AAG	GTG	ATC	CTG	GTG	GCC	GTG	CAC	GTG	GCC	
						4	490									
4472		G	Y	ī	E	- <u>·</u>	E	v	ī	P	A	E	7	G	Ç	NL4-3 genbank.SEC
4472	AGT				GAA			-				_				mut-3 yellualix.369
4470	s	G	Y	I	E	A	E	v	I	P	A	E	T	G	Q.	pNL4-3.seq
4470	AGT	GGA	TAT	ATA	GAA	GCA	GAA	GTA	ATT	CCA	GCA	GAG	ACA	GGG		•
4997	S	G	Y	I	E	A	E	٧	I	2	A	E	T	G	Q	pHDMHgpm2.seq
1997	TCC	GGC	TAC	ATC	GAG	GCC	GAG	GTG	ATC	CCC	GCC	GAG	ACC	GGC	CAG	

22/29

Alignment Report of Codon Optimization (pol). MEG, using Clustal method with PAM250 residue weight table.

	4	520									4	550		•		
4517	E	T	A	Y	F	L	L	K	L	A	G	R	W	P	٧	NL4-3 genbank.SE
1517	GAA	ACA	GCA	TAC	TTC	CTC			TTA							
4515	E	T	A	Y	F	L	L	K	L	A	G	R	W	P	ν	pNL4-3.seq
4515			GCA						TTA							
5042	Ε.	T	A	Y	F	L	L	K	L	A	G	R	W	CCC B	V	pHDMHgpm2.seq
5042	GAG	ACC	GCC	TAC	TIC	CIG	CTG	AAG	CIG		GGC	CGC	166		616	
						4	580									_
4562	K	T	v	H	T	D	N	G	5	N	F	T	S	T	T	NL4-3 genbank.SE
4562					ACA											
4560	K	T	V	H	T	D	N	G	5	N	F	T	S	T	T	pNL4-3.seq
4560				EAT	ACA T	GAC:	AAT N	GGC	AGC S	WAT	F	T	S	T	T	pHDMHgpm2.seq
5087 5087	K	T acc	E.L.C. Λ											-		provingpitz.seq
3007		ACC										-				
	4	610										640				
4607		ĸ	A	A	C	W	W	A	G	I	K	Q	E	F	G	NL4-3 genbank.5E
4607	GTT	AAG	GCC		TGT											
4605	V	K	A	A	c	W	W	A	G	I	K	Q	E	F	G	pNL4-3.seq
4605					TGT			GCG A		I	AAG K	Q	E	F	G	pHDMHqpm2.seq
5132	V	K	A	A	C TGC	W TCC	W		G					_	-	phormypuz.seq
5132	616	AAG			100		7									
						4	670									
4652	1	₽	Y	N	P	Q	S	Q	G	v	1	E	S	M	N	NL4-3 genbank.SE
4652	ATT	CCC			CCC											
4650	I	P	Y	N	P	Q	5	Q	G	v	I	E	5	M	N	pNL4-3.seq
4650			TAC						GGA	GTA V	ATA I	E	S	M W	AAT N	pHDMHgpm2.seq
5177	I	P	Y	N	P	CAC.	5 ******	CVC Ö	GC.							paningpaz.seq
5177	AIC	LLL	IAC	AAC		<u> </u>	100									
	4	700	_								4	730				
4697	K	E	L	ĸ	K	I	I	G	Q	V	R	D	Q	A	E	NL4-3 genbank.SE
4697	AAA	GAA			AAA											
4695	ĸ	E	L	ĸ	ĸ	I	I	G	Q	V	R	D	ς»ς	A	E	pNL4-3.seq
4695					AAA		ATA I	GGA G	CAG Q	GTA V	AGA R	D	Q	A	E	pHDMHgpm2.seg
5222	K	E	L	K	K AAG	I										Purudhur. sed
5222	AAG	GAG	CIG	AAG	AAG	AIC	λι τ									
						4	760									
4742	H	L	K	T	A	٧	Q	M	A	V	F	r	H	N	F	NL4-3 genbank.SE
4742	CAT	CTT	AAG	ACA	GCA											
4740	Ħ	L	ĸ	T	A	٧	Q	M	A	v	F_	I	H	N	F	pNL4-3.seq
4740		-			GCA										TTT	
5267	H	L	ĸ	Ŧ	A	V	Q	M	A	v	F	I	E	N	E	pHDMHgpm2.seq
5267	CAC	CTG	AAG	ACC	GCC	GTG	CAG	ATG	GCC	91.6	FIC	MIC	Ų,Ą(C	WW	110	

23/29

Alignment Report of Codon Optimization (pol).MEG, using Clustal method with PAM250 residue weight table.

							•	_ •								, worgin abbo.
•		479	0									4820	)			
4787		_			G	I	G	G	Y	s	A	G	Z	R	I	NL4-3 genbank.SE
4787		A AG	а аа	A GG	G GGG	AT1	GGG	G GG	TA(	AG:	CC	A GG	G GA	A AG	A AT	A Total
4785		-			G	I	G	G	Y	S	A	G	E			pNL4-3.seq
4785					G GGG							A GG		A AG	A AT	A
5312				-	G	I	G	G	Y	S	A	G	Е	R		pHDMHgpm2.seq
3312	. AA	5 CG	C AA	G GG	c eec	ATC	GGG	GGC	TAC	TCC	GC	GG	GA(	G CG	C AT	•
							4850									-
4832	v		I		A	Т	— <del>Li</del> D	Ī	Q	т	ĸ	E	L	Q	К	- NL4-3 genbank.SEQ
4832		-			A GCA											nra-s genbank.seQ
4830		D	I	1	A	T	D	I	Q	T	K	E	L	Q		pNL4-3.seq
4830	GT/	A GA	CAT	ATA A	GCA	ACA	GAC	: ATA	CAA	ACI	AAA	GA/	TT			
5357		D	I	I	A	T	D	I	Q	T	К	E,	L	Q	ĸ	pHDMHqpm2.sec
5357	GT	GA	CAT	C ATC	GCC	ACC	GAC	ATC	CAG	ACC	AAC	GAG	CT	CA	G AAC	;
		4880										4910				_
4877	-0	Ī	T	- к	I											
4877	_				ATT	Q CAA	N AAT	. Januar -	R	V TTT	Y Tat	Y	R	D	S AGC	
4875	Q	I	T	r Ann	I	Q	N	F	R	V	Y	Y	R	GA(		
4875	_	-		AAA		CAA									S AGC	pNL4-3.seq
5402	Q	I	T	ĸ	I	Q	N	E	R	v	Y	Y	R	D	S	pHDMHqpm2.seg
5402	CAG	ATO	: ACC	: AAG	ATC		AAC		CGC	GTG						
							940									-
4922	_						<u>,                                     </u>									_
4922	R	D GAT	, כני	V CTT	W TGG	K	G	5	A	K	L	L	W	K	G	NL4-3 genbank.SEQ
4920	R	D.	P	v	M	K	G	P	A	X	L	L	W	- AAA	GGT	
4920			-	GTT				-				_				pNL4-3.seq
5447	R	D	P	v	W	ж	G.	P	A	K	L	L	W	K	G	pHDMHgpm2.seq
5447				GTG	TGG											Pubraigpaz.seq
		<del>-</del>										7				
		970										000				-
4967	E	G	A	v	V	I	Q	D	N	S	D	I	Х	V	V	NL4-3 genbank.SEQ
4967		GGG			GTA											•
4965 4965	E	G	A	V CTA	V CTA	I	Q	D	N	, S	D	I	K	v.	V	pNL4-3.seq
4963 5492	E	GGG G	GCA A	GTA V	GTA V	ATA I	CAA Q	GAT D	AAT N	AGT S	GAC D	ATA I	AAA K			-HPM7
5492		-			GTG			_						V GTG	V STG	pHDMHgpm2.seq
													. • . •	510	313	
						50	030		-							
5012	P	R	R	K	A	ĸ	I	1	Я	D	Y	G	К	Q.	м	NL4-3 genbank.SEQ
5012	CCA	AGA	AGA	AAA	GCA .	AAG	ATC	ATC	AGG	GAT	TAT	GGA	AAA			- ,
5010	P	R	R	ĸ	A	ĸ	I	I	R	D	Y	G	ĸ	Q	M	pNL4-3.seq
5010					GCA .		ATC					GGA	AAA	CAG	ATG	
5537	P	R	R	K	A	K	I	I	R	D	Y	G	ĸ	Q	М	pHDMHgpm2.seq
5537	ccc	CGC	CGC	AAG	GCC .	AAG .	ATC	ATC	CGC	GAC	TAC	GGC	AAG	CAG	atg	

24/29

Alignment Report of Codon Optimization (pol), MEG, using Clustal method with PAM250 residue weight table.

		060									5	090			
5057	A	G	D	D	С	v	А	s	R	Q	D	E	D	4	NL4-3 genbank.SEQ
5057	GCA	GGT	GAT	GAT	TGT	GTG	GCA	AGT	AGA	CAG	gat	GAG	GAT	TAA.	
5055	A	G	D	D	C	v	A	S	R	Q	D	E	D	200	pNL4-3.seq
5055	GCA	GGT	GAT	GAT	TGT	GTG	GCA	AGT	AGA	CAG	GAT	GAG	GAT	TAA	
5582	A	G	D	D	C	٧	A	S	R	Q	D	E	D i		pHDMHgpm2.seq
5582	GCC	GGC	GAC	GAC	TGC	GTG	GCC	TCC	CGC	CAG	CAC	GAG	GAC	TAA	•

Fig. 9L

AGCTTGGCCC	ATTGCATACG	TTGTATCCAT	ATCATAATAT	GTACATTTAT	ATTGGCTCAT	60
GTCCAACATT	ACCGCCATGT	TGACATTGAT	TATTGACTAG	TTATTAATAG	TAATCAATTA	120
CGGGGTCATT	AGTTCATAGC	CCATATATGG	AGTTCCGCGT	TACATAACTT	ACGGTAAATG	180
GCCCGCCTGG	CTGACCGCCC	AACGACCCCC	GCCCATTGAC	GTCAATAATG	ACGTATGTTC	240
CCATAGTAAC	GCCAATAGGG	ACTTTCCATT	GACGTCAATG	GGTGGAGTAT	TTACGGTAAA	300
CTGCCCACTT	GGCAGTACAT	CAAGTGTATC	ATATGCCAAG	TACGCCCCCT	ATTGACGTCA	360
ATGACGGTAA	ATGGCCCGCC	TGGCATTATG	CCCAGTACAT	GACCTTATGG	GACTTTCCTA	420
CTTGGCAGTA	CATCTACGTA	TTAGTCATCG	CTATTACCAT	GGTGATGCGG	TTTTGGCAGT	480
ACATCAATGG	GCGTGGATAG	CGGTTTGACT	CACGGGGATT	TCCAAGTCTC	CACCCCATTG	540
ACGTCAATGG	GAGTTTGTTT	TGGCACCAAA	ATCAACGGGA	CTTTCCAAAA	TGTCGTAACA	600
ACTCCGCCCC	ATTGACGCAA	ATGGGCGGTA	GGCGTGTACG	GTGGGAGGTC	TATATAAGCA	660
GAGCTCGTTT	AGTGAACCGT	CAGATCGCCT	GGAGACGCCA	TCCACGCTGT	TTTGACCTCC	720
ATAGAAGACA	CCGGGACCGA	TCCAGCCTCC	CCTCGAAGCT	GATCCTGAGA	ACTTCAGGGT	780
GAGTCTATGG	GACCCTTGAT	GTTTTCTTTC	CCCTTCTTTT	CTATGGTTAA	GTTCATGTCA	840
TAGGAAGGGG	AGAAGTAACA	GGGTACACAT	ATTGACCAAA	TCAGGGTAAT	TTTGCATTTG	900
TAATTTTAAA	AAATGCTTTC	TTCTTTTAAT	ATACTTTTTT	GTTTATCTTA	TTTCTAATAC	960
TTTCCCTAAT	CTCTTTCTTT	CAGGGCAATA	ATGATACAAT	GTATCATGCC	TCTTTGCACC	1020
ATTCTAAAGA	ATAACAGTGA	TAATTTCTGG	GTTAAGGCAA	TAGCAATATT	TCTGCATATA	1080
	CATATAAATT					1140
	ACCATTCTGC					1200
	CCCTTTTGCT					1260
	TGGTCTGTGT					1320
	CCTCCGTGCT					1380
	GCAAGAAGCA					1440
	CCGTGAACCC					1500
	AGCCCTCCCT					1560
	TGTACTGCGT					1620
	AGGAGGAGCA					1680
	ACTCCCAGGT					1740
	AGGCCATCTC					1800
	CCCCGAAGT					1860
	ACACCATGCT					1920
	TCAACGAGGA					1980
	CCGGCCAGAT					2040
	AGCAGATCGG					2100
	GGATCATCCT					2160
	TCCGCCAGGG					2220
	GCGCCGAGCA					2280
	ACGCCAACCC					2340
	AGATGATGAC					2400
	AGGCCATGTC					2460
	ACCAGCGCAA					2520
	GCCGCGCCCC					2580
	ATTGTACTGA					2640
	CAGGGAATTT					2700
	TTGGGGAAGA					2760
GAACTGTATC	CTTTAGCTTC	CCTCAGATCA	CTCTTTGGCA	GUGACCCCTC	GICACAATAA	2820

AGATCGGTGG	CCAGCTGAAG	GAGGCCCTGC	TGGACACCGG	CGCCGACGAC	ACCGTGCTGG	2880
AGGAGATGAA	CCTGCCCGGC	CGCTGGAAGC	CCAAGATGAT	CGGCGGCATC	GGCGGCTTCA	2940
TCAAAGTCCG	CCAGTACGAC	CAGATCCTGA	TCGAGATCTG	CGGCCACAAG	GCCATCGGCA	3000
CCGTGCTGGT	GGGCCCCACC	CCCGTGAACA	TCATCGGCCG	CAACCTGCTG	ACCCAGATCG	3060
GCTGCACCCT	GAACTTCCCC	ATCTCCCCCA	TCGAGACCGT	GCCCGTGAAG	CTGAAGCCCG	3120
GCATGGACGG	CCCCAAAGTC	AAGCAGTGGC	CCCTGACCGA	GGAGAAGATC	AAGGCCCTGG	3180
TGGAGATCTG	CACCGAGATG	GAGAAGGAGG	GCAAGATCTC	CAAGATCGGC	CCCGAGAACC	3240
	CCCCGTGTTC					3300
TGGACTTCCG	CGAGCTGAAC	AAGCGCACCC	AGGACTTCTG	GGAGGTGCAG	CTGGGCATCC	3360
CCCACCCCGC	CGGCCTGAAG	CAGAAGAAGT	CCGTGACCGT	GCTGGACGTG	GGCGACGCCT	3420
ACTTCTCCGT	GCCCCTGGAC	AAGGACTTCC	GCAAGTACAC	CGCCTTCACC	ATCCCCTCCA	3480
TCAACAACGA	GACCCCCGGC	ATCCGCTACC	AGTACAACGT	GCTGCCCCAG	GGCTGGAAGG	3540
GCTCCCCCGC	CATCTTCCAG	TGCTCCATGA	CCAAGATCCT	GGAGCCCTTC	CGCAAGCAGA	3600
ACCCCGACAT	CGTGATCTAC	CAGTACATGG	ACGACCTGTA	CGTGGGCTCC	GACCTGGAGA	3660
TCGGCCAGCA	CCGCACCAAG	ATCGAGGAGC	TGCGCCAGCA	CCTGCTGCGC	TGGGGCTTCA	3720
CCACCCCGA	CAAGAAGCAC	CAGAAGGAGC	CCCCCTTCCT	GTGGATGGGC	TACGAGCTGC	3780
ACCCCGACAA	GTGGACCGTG	CAGCCCATCG	TGCTGCCCGA	GAAGGACTCC	TGGACCGTGA	3840
ACGACATCCA	GAAGCTGGTG	GGCAAGCTGA	ACTGGGCCTC	CCAGATCTAC	GCCGGCATCA	3900
AAGTCCGCCA	GCTGTGCAAG	CTGCTGCGCG	GCACCAAGGC	CCTGACCGAG	GTGGTGCCCC	3960
TGACCGAGGA	GGCCGAGCTG	GAGCTGGCCG	AGAACCGCGA	GATCCTGAAG	GAGCCCGTGC	4020
ACGGCGTGTA	CTACGACCCC	TCCAAGGACC	TGATCGCCGA	GATCCAGAAG	CAGGGCCAGG	4080
GCCAGTGGAC	CTACCAGATC	TACCAGGAGC	CCTTCAAGAA	CCTGAAGACC	GGCAAATACG	4140
CCCGCATGAA	GGGCGCCCAC	ACCAACGACG	TGAAGCAGCT	GACCGAGGCC	GTGCAGAAGA	4200
TCGCCACCGA	GTCCATCGTG	ATCTGGGGCA	AGACTCCCAA	GTTCAAGCTG	CCCATCCAGA	4260
AGGAGACCTG	GGAGGCCTGG	TGGACCGAGT	ACTGGCAGGC	CACCTGGATC	CCCGAGTGGG	4320
AGTTCGTGAA	CACCCCCCC	CTGGTGAAGC	TGTGGTACCA	GCTGGAGAAG	GAGCCCATCA	4380
TCGGCGCCGA	GACCTTCTAC	GTGGACGGCG	CCGCCAACCG	CGAGACCAAG	CTGGGCAAGG	4440
CCGGCTACGT	GACCGACCGC	GGCCGCCAGA	AGGTGGTGCC	CCTGACCGAC	ACCACCAACC	4500
AGAAGACCGA	GCTGCAGGCC	ATCCACCTGG	CCCTGCAAGA	CTCCGGCCTG	GAGGTGAACA	4560
TCGTGACCGA	CTCCCAGTAT	GCATTGGGCA	TCATCCAGGC	CCAGCCCGAC	AAGTCCGAGT	4620
CCGAGCTGGT	GTCCCAGATC	ATCGAGCAGC	TGATCAAGAA	GGAGAAGGTG	TACCTGGCCT	4680
GGGTGCCCGC	CCACAAGGGC	ATCGGCGGCA	ACGAGCAGGT	GGACAAGCTG	GTGTCCGCCG	4740
GCATCCGCAA	GGTGCTGTTC	CTGGACGGCA	TCGACAAGGC	CCAGGAGGAG	CACGAGAAGT	4800
ACCACTCCAA	CTGGCGCGCC	ATGGCCTCCG	ACTTCAACCT	GCCCCCGTG	GTGGCCAAGG	4860
AGATCGTGGC	CTCCTGCGAC	AAGTGCCAGC	TGAAGGGCGA	GGCCATGCAC	GGCCAGGTGG	4920
ACTGCTCCCC	CGGCATCTGG	CAGCTGGACT	GCACCCACCT	GGAGGGCAAG	GTGATCCTGG	4980
TGGCCGTGCA	CGTGGCCTCC	GGCTACATCG	AGGCCGAGGT	GATCCCCGCC	GAGACCGGCC	5040
AGGAGACCGC	CTACTTCCTG	CTGAAGCTGG	CCGGCCGCTG	GCCCGTGAAG	ACCGTGCACA	5100
CCGACAACGG	CTCCAACTTC	ACCTCCACCA	CCGTGAAGGC	CGCCTGCTGG	TGGGCCGGCA	5160
TCAAGCAGGA	GTTCGGCATC	CCCTACAACC	CCCAGTCCCA	GGGCGTGATC	GAGTCCATGA	5220
	GAAGAAGATC					5280
	GGCCGTGTTC					5340
CCGCCGGCGA	GCGCATCGTG	GACATCATCG	CCACCGACAT	CCAGACCAAG	GAGCTGCAGA	5400
AGCAGATCAC	CAAGATCCAG	AACTTCCGCG	TGTACTACCG	CGACTCCCGC	GACCCCGTGT	5460
GGAAGGGCCC	CGCCAAGCTG	CTGTGGAAGG	GCGAGGGCGC	CGTGGTGATC	CAGGACAACT	5520
CCGACATCAA	GGTGGTGCCC	CGCCGCAAGG	CCAAGATCAT	CCGCGACTAC	GGCAAGCAGA	5580
TGGCCGGCGA	CGACTGCGTG	GCCTCCCGCC	AGGACGAGGA	CTAACACATG	GAAAAGATTA	5640

GTAAAACACC	ATAGGCCGCT	CTAGAGGATC	CAAGCTTATC	GATACCGTCG	ACCTCGAGGG	5700
CCCAGATCTA	ATTCACCCCA	CCAGTGCAGG	CTGCCTATCA	GAAAGTGGTG	GCTGGTGTGG	5760
CTAATGCCCT	GGCCCACAAG	TATCACTAAG	CTCGCTTTCT	TGCTGTCCAA	TTTCTATTAA	5820
AGGTTCCTTT	GTTCCCTAAG	TCCAACTACT	AAACTGGGGG	ATATTATGAA	GGGCCTTGAG	5880
CATCTGGATT	CTGCCTAATA	AAAAACATTT	ATTTTCATTG	CAATGATGTA	TTTAAATTAT	5940
TTCTGAATAT	TTTACTAAAA	AGGGAATGTG	GGAGGTCAGT	GCATTTAAAA	CATAAAGAAA	6000
TGAAGAGCTA	GTTCAAACCT	TGGGAAAATA	CACTATATCT	TAAACTCCAT	GAAAGAAGGT	6060 <del>—</del>
GAGGCTGCAA	ACAGCTAATG	CACATTGGCA	ACAGCCCCTG	ATGCCTATGC	CTTATTCATC	6120
CCTCAGAAAA	GGATTCAAGT	AGAGGCTTGA	TTTGGAGGTT	AAAGTTTTGC	TATGCTGTAT	6180
TTTACATTAC	TTATTGTTTT	AGCTGTCCTC	ATGAATGTCT	TTTCACTACC	CATTTGCTTA	6240
TCCTGCATCT	CTCAGCCTTG	ACTCCACTCA	GTTCTCTTGC	TTAGAGATAC	CACCTTTCCC	6300
CTGAAGTGTT	CCTTCCATGT	TTTACGGCGA	GATGGTTTCT	CCTCGCCTGG	CCACTCAGCC	6360
TTAGTTGTCT	CTGTTGTCTT	ATAGAGGTCT	ACTTGAAGAA	GGAAAAACAG	GGGGCATGGT	6420
TTGACTGTCC	TGTGAGCCCT	TCTTCCCTGC	CTCCCCCACT	CACAGTGACC	CGGAATCCCT	6480
CGACATGGCA	GTCTAGATCA	TTCTTGAAGA	CGAAAGGGCC	TCGTGATACG	CCTATTTTTA	6540
TAGGTTAATG	TCATGATAAT	AATGGTTTCT	TAGACGTCAG	GTGGCACTTT	TCGGGGAAAT	6600
GTGCGCGGAA	CCCCTATTTG	TTTATTTTTC	TAAATACATT	CAAATATGTA	TCCGCTCATG	6660
AGACAATAAC	CCTGATAAAT	GCTTCAATAA	TATTGAAAAA	GGAAGAGTAT	GAGTATTCAA	6720
CATTTCCGTG	TCGCCCTTAT	TCCCTTTTTT	GCGGCATTTT	GCCTTCCTGT	TTTTGCTCAC	6780
CCAGAAACGC	TGGTGAAAGT	AAAAGATGCT	GAAGATCAGT	TGGGTGCACG	AGTGGGTTAC	6840
ATCGAACTGG	ATCTCAACAG	CGGTAAGATC	CTTGAGAGTT	TTCGCCCCGA	AGAACGTTTT	6900
CCAATGATGA	GCACTTTTAA	AGTTCTGCTA	TGTGGCGCGG	TATTATCCCG	TATTGACGCC	6960
GGGCAAGAGC	AACTCGGTCG	CCGCATACAC	TATTCTCAGA	ATGACTTGGT	TGAGTACTCA	7020
CCAGTCACAG	AAAAGCATCT	TACGGATGGC	ATGACAGTAA	GAGAATTATG	CAGTGCTGCC	7080
ATAACCATGA	GTGATAACAC	TGCGGCCAAC	TTACTTCTGA	CAACGATCGG	AGGACCGAAG	7140
GAGCTAACCG	CTTTTTTGCA	CAACATGGGG	GATCATGTAA	CTCGCCTTGA	TCGTTGGGAA	7200
CCGGAGCTGA	ATGAAGCCAT	ACCAAACGAC	GAGCGTGACA	CCACGATGCC	TGTAGCAATG	7260
GCAACAACGT	TGCGCAAACT	ATTAACTGGC	GAACTACTTA	CTCTAGCTTC	CCGGCAACAA	7320
TTAATAGAÇT	GGATGGAGGC	GGATAAAGTT	GCAGGACCAC	TTCTGCGCTC	GGCCCTTCCG	7380
GCTGGCTGGT	TTATTGCTGA	TAAATCTGGA	GCCGGTGAGC	GTGGGTCTCG	CCGTATCATT	7440
GCAGCACTGG	GGCCAGATGG	TAAGCCCTCC	CGTATCGTAG	TTATCTACAC	GACGGGGAGT	7500 7560
CAGGCAACTA	TGGATGAACG	AAATAGACAG	ATCGCTGAGA	TAGGTGCCTC	ACTGATTAAG	7620
CATTGGTAAC	TGTCAGACCA	AGTTTACTCA	TATATACTIT	AGATTGATTT	AAAACTTCAT	7620
TTTTAATTTA	AAAGGATCTA	GGTGAAGATC	CTTTTTGATA	ATCTCATGAC	CAAAATUUUT	7740
TAACGTGAGT	TTTCGTTCCA	CTGAGCGTCA	GACCCCGTAG	AAAAGATCAA	AGGATUTUT	7800
TGAGATCCTT	TTTTTCTGCG	CGTAATCTGC	TGCTTGCAAA	CAAAAAAACC	ACCGCTACCA	7860
GCGGTGGTTT	GTTTGCCGGA	TCAAGAGCTA	CCAACTCTTT	TICCGAAGGT	AAC.GGCT.C	7920
AGCAGAGCGC	AGATACCAAA	TACTGITCTT	CTAGTGTAGC	CGTAGTTAGG	CCACCACTIC	7980
AAGAACTCTG	TAGCACCGCC	TACATACCTC	GCTCTGCTAA	TCCTGTTACC	AGTGGCTGCT	8040
GCCAGTGGCG	ATAAGTCGTG	TCTTACCGGG	TTGGACTCAA	GACGATAGT:	ACCGGATAAG	8100
GCGCAGCGGT	CGGGCTGAAC	GGGGGGTTCG	TGCACACAGC	CCAGCTTGGA	GCGAACGACC	8160
TACACCGAAC	TGAGATACCT	ACAGCGTGAG	CTATGAGAAA	GCGCCACGCT	CACCACAGGG	8220
AGAAAGGCGG	ACAGGTATCC	GGTAAGCGGC	AGGGTCGGAA	CAGGAGAGCG	CULCUCACOCAG	8280
CTTCCAGGGG	GAAACGCCTG	GTATCTTTAT	AGTCCTGTCG	COTTTCGCCA	CCCCACCAC	8340
GAGCGTCGAT	TTTTGTGATG	CTCGTCAGGG	GGGGGGGGGCC	TATGGAAAAA	TOCCA ACCOM	8400
GGATGCGCCG	CGTGCGGCTG	CIGGAGATGG	AGRICACIOCAT	GOWINIGIIC	I GCCWWGGGI	8460
TGGTTTGCGC	ATTCACAGTT	CTCCGCAAGA	ATTGATTGGC	ICCAMITCIT	GONGIOGIGN	7400

### WO 00/15819

### 28/29 :

					TCCATGCACC	
GCGACGCAAC	GCGGGGAGGC	AGACAAGGTA	TAGGGCGGCG	CCTACAATCC	ATGCCAACCC	8580
GTTCCATGTG	CTCGCCGAGG	CGGCATAAAT	CCCCGTGACG	ATCAGCGGTC	CAATGATCGA	8640
	GTAAGAGCCG					8700
	AGCATGGCCT					8760
	AAGGCCATCC					8820
	TCCTCACTAC					8880
	ARRATTACT					-

Fig. 10D



Fig. 11

# INTERNATIONAL SEARCH REPORT

PCT/US 99/20675

		101/03/33/20073 .
A. CLASS IPC 7	ification of subject matter C12N15/86 C12N5/10 C12N7/	04 C12N15/49 C07K14/16
According t	o International Patent Classification (IPC) or to both national class	ification and IPC
	SEARCHED	
Minimum di IPC 7	ocumentation searched (classification system followed by classific C12N C07K	ation symbols)
Documenta	tion searched other than minimum documentation to the extent tha	at such documents are included in the fields searched —
Electronic d	ata base consulted during the international search (name of data	base and, where practical, search terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the	relevant passages Relevant to claim No.
A	NALDINI L ET AL: "IN VIVO GENE AND STABLE TRANSDUCTION OF NOND CELLS BY A LENTIVIRAL VECTOR" SCIENCE, US, AMERICAN ASSOCIATION ADVANCEMENT OF SCIENCE, vol. 272, no. 5259, 12 April 1996 (1996-04-12), page XP000583652 ISSN: 0036-8075 cited in the application the whole document	FOR THE
X Furth	er documents are listed in the continuation of box C.	Patent family members are listed in annex.
لننبا		
"A" docume conside "E" earlier diffing di "L" documer which is citation "O" docume other m"P" documer	ni which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	The later document published after the international fiting date or priority date and not in conflict with the application but clad to understand the principle or theory underlying the invention.  "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  "A" document member of the same patent family
	ctual completion of the international search	Date of mailing of the infamational search report
	February 2000	03/03/2000
Name and m	aking addrass of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL = 2280 HV Rijswijk, Tel. (-311-70) 340-2040, Tx. 31 651 epo nt, Fex: (+31-70) 340-2018	Chambonnet, F

Form PCT/ISA/210 (second sheet) (July 1992)

1

## INTERNATIONAL SEARCH REPORT

national Application No PCT/US 99/20675

CICantinu	Mind Company company to an	PCT/US 99/20675
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication where appropriate, of the relevant passages	Refevant to claim No.
A	HASELHORST D ET AL: "STABLE PACKAGING CELL LINES AND HIV-1 BASED RETROVIRAL VECTOR SYSTEMS"  GENE THERAPY, GB, MACMILLAN PRESS LTD., BASINGSTOKE, vol. 1, no. SUPPL. 02, 18 November 1994 (1994-11-18), page S14 XP002063698  ISSN: 0969-7128 the whole document	-
A	ST LOUIS D ET AL: "CONSTRUCTION AND CHARACTERIZATION OF HIV-1 RETROVIRAL VECTORS AND REPLICATION-DEFECTIVE HIV-1 PACKAGING CELL LINES" INTERNATIONAL CONFERENCE ON AIDS AND THE STD WORLD CONGRESS, XX, XX, 1 June 1993 (1993-06-01), page 244 XP002063695 the whole document	1
A	CARROLL R ET AL: "A HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 (HIV-1)-BASED RETROVIRAL VECTOR SYSTEM UTILIZING STABLE HIV-1 PACKAGING CELL LINES" JOURNAL OF VIROLOGY, US, THE AMERICAN SOCIETY FOR MICROBIOLOGY, vol. 68, no. 9, 1 September 1994 (1994-09-01), pages 6047-6051, XP002063697 ISSN: 0022-538X the whole document	1
x	HOLLER T P ET AL: "HIVI INTEGRASE EXPRESSED IN ESCHERICHIA COLI FROM A SYNTHETIC GENE" GENE, NL, ELSEVIER BIOMEDICAL PRESS. AMSTERDAM, vol. 136, 22 December 1993 (1993-12-22), pages 323-328, XP000199775 ISSN: 0378-1119 the whole document	39
	ANDRE S ET AL: "INCREASED IMMUNE RESPONSE ELICITED BY DNA VACCINATION WITH A SYNTHETIC GP120 SEQUENCE WITH OPTIMIZED CODON USAGE" JOURNAL OF VIROLOGY, US, THE AMERICAN SOCIETY FOR MICROBIOLOGY, vol. 72, no. 2, 1 February 1998 (1998-02-01), pages 1497-1503, XP002073767 ISSN: 0022-538X the whole document	39-43

1