# Ay190 – Worksheet 06 Chatarin (Mee) Wong-u-railertkun Date: January 30, 2014

### 1 Discrete Fourier Transform

#### 1.1 Compare Results from dft and fft

With the input as a vector x, numpy.arange(10), table 1 shows result from two methods. We can see that our method yields the result very close to those from numpy.fft

| Method  | dft(x)               | fft(x)           |
|---------|----------------------|------------------|
| Index 0 | 45. +0.00000000e+00j | 45. +0.j         |
| Index 1 | -5. +1.53884177e+01j | -5.+15.38841769j |
| Index 2 | -5. +6.88190960e+00j | -5. +6.8819096j  |
| Index 3 | -5. +3.63271264e+00j | -5. +3.63271264j |
| Index 4 | -5. +1.62459848e+00j | -5. +1.62459848j |
| Index 5 | -5. +3.53452967e-14j | -5. +0.j         |
| Index 6 | -51.62459848e+00j    | -51.62459848j    |
| Index 7 | -53.63271264e+00j    | -53.63271264j    |
| Index 8 | -56.88190960e+00j    | -56.8819096j     |
| Index 9 | -51.53884177e+01j    | -515.38841769j   |

Table 1: Comparing results from two methods of Fourier transform with input of (0, 1, 2, ..., 9)

#### 1.2 dft computational time

From figure 1, we can see that the computational time  $\propto N^{1.5}$  instead of the expected  $N^2$ .



Figure 1: Plot the computational time of dft with respect to length of input vector.

## 1.3 Compare Computational Time

We can see from figure 2 that computational time for fft (x) increases much slower than that of dft (x).



Figure 2: Comparing the increase of computation with length of input vector, for two different methods of Fourier transform.