

Apellidos:	Nombre:
DNI:	

PARTE 1

1. Se pretende encontrar el mejor clasificador para los datos del Titanic publicados en Kaggle (https://www.kaggle.com/c/titanic), que también podemos encontrarlos en el Campus Virtual.

La forma en la que vamos a abordar el problema es la siguiente:

- a) En primer lugar, realizaremos un examen del dataset y estudiaremos los atributos y si aparecen datos faltantes. Se pide obtener un dataset en el que se hayan eliminado los atributos innecesarios y se haya solucionado los atributos faltantes. El significado de los atributos son los siguientes:
 - PassangerId: identificador del pasajero.
 - Survived: Atributo de clasificación. 1, sobrevive; 2, no sobrevive.
 - Pclass: La clase del pasajero: 1 primera, 2 segunda o 3 tercera.
 - Name: Nombre del pasajero:
 - Sex: Sexo del pasajero
 - Age: Edad del pasajero

Justifica tu respuesta. (0.5 puntos)

NOTA: Para eliminar un atributo: dataframe\$atributoAeliminar<- NULL; para eliminar atributos nulos o NA: dataframe <- dataframe[! is.na(dataframe\$atributoconNAoNULL),])

- b) Entrenaremos los siguientes clasificadores: un árbol de decisión (paquete Rpart), un perceptron multicapa (paquete nnet) y una maquina de soporte vectorial (paquete e1071 o Kernlab) usando validación cruzado. Obtendremos el accuracy y el área bajo la curva para cada clasificador. (0.75 puntos)
- c) En tercer lugar, vamos a entrenar a cada uno de los clasificadores, usando validación cruzada y modificando sus parámetros como CP, size o el tipo de kernel, con el objetivo de encontrar el clasificador mejor de su clase. (0.75 puntos)
- d) Por último, obtendremos el mejor clasificador de todos y realizaremos una predicción con el mismo usando los datos de test de Titanic. (0.5 puntos)

A continuación se muestra un subconjunto de los pasajeros del Titanic:

Passengerld	Survived	Pclass	Name	Sex	Age
1	0	3	Braund, Mr. Owen Harris	male	22.00
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38.00
3	1	3	Heikkinen, Miss. Laina	female	26.00
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.00
5	0	3	Allen, Mr. William Henry	male	35.00
6	0	3	Moran, Mr. James	male	NA
7	0	1	McCarthy, Mr. Timothy J	male	54.00
8	0	3	Palsson, Master. Gosta Leonard	male	2.00
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.00

Apellidos:	Nombre:
DNI:	

- e) Realiza un árbol de decisión (tipo ID3). Itera hasta el nivel 1. Dibuja el árbol, describe las operaciones y muestra los datos usados en cada una de las iteraciones. El atributo PassangerId no interviene en le construcción del árbol. El atributo Survived se modifica con las etiquetas Si (1) y No (0). El atributo Pclass con el literal de la clase. El atributo Name se etiqueta con "Menor o igual que Futrelle" para aquellos nombre que cumpla que son lexicograficamente menores a la palabra Futrelle y "Mayor que Futrelle" para aquellos nombres mayores a Futrelle. El atributo Age, se etiqueta como "No adulto" a los pasajeros con edades menor o igual a 22 años, "Adulto" para los pasajeros con edad mayor a 22 años y "Desconocido" para los pasajeros que no se conozca su edad (NA). (2.5 puntos)
- f) Para el siguiente nivel considera un algoritmo de poda tal que se etiqueta el nodo con la clase mayoritaria del atributo objetivo (**Survived**). Completa el árbol. (0.5 puntos)
- g) Clasifica los siguientes pasajeros e indica si sobrevivirán o no. (0.5 puntos)

Survived	Pclass	Name	Sex	Age
1	1	Sloper, Mr. William Thompson	male	28.00
0	3	Palsson, Miss. Torborg Danira	female	8.00

2.

A partir del conjunto de datos que podemos encontrar en el campus virtual (denominado ejercicio2SVM.csv):

Determina si es separable linealmente e indica cual seria la función Kernel mas adecuada (indica tipo de función y sus parámetros) (1 puntos).

Calcula los siguientes parámetros de la Maquina de Soporte Vectorial que podemos obtener con el dataset anteriores y el Kernel elegido:

- Vectores Soporte. (0.25 puntos)
- Ancho del canal (0.5 puntos)
- Vector de Pesos normal al Hiperplano (W) (0.25 puntos)
- Vector B (0.25 puntos)
- La ecuación del Hiperplano y de los planos de soporte positivo y negativo. (0.75 puntos)
- Pinta el conjuntos de puntos y el Hiperplano. (0.75 puntos)
- Clasifica los puntos (0.5, 0,8) y (0.6,0,2). (0.25 puntos)

PARTE 2

Apellidos:	Nombre:
DNI:	

3. a) Teniendo en cuenta el dataset que se muestra en la Figura 1, calcula los pesos α según el algoritmo de boosting. Realiza dos separaciones que minimicen el número de puntos mal clasificados. (2.5 puntos)

Figura 1

b) Predice los siguientes puntos marcados con color rojos (Figura 2): (2.5 puntos)

Figura 2

4. El conjunto de datos Kyphosis (disponible con el paquete Rpart) nos indica si, tras una operación en la columna vertebral, una muestra de 81 niños presenta o no deformaciones en la columna vertebral (columna *Kyphosis*). El resto de columnas son:

Age: Año en meses.

Apellidos:	Nombre:
DNI.	

Number: Numero de la vértebra involucrada.

Start: Numero de la primera vértebra involucrada

Realiza un ensemble con tres maquinas de soporte vectorial (SVM) en el primer nivel y votación en el segundo. Usa SVM con Kernel polinómico. Cada una de las SVM debemos entrenarlas con dos atributos distintos y usando validación cruzada: la parte de entrenamiento de las SVM se obtiene aleatoriamente reservando un 75% de los datos para cada maquina SVM. (2.5 puntos)

Compara el accuracy del ensemble anterior con un Ramdon Forest. (2.5 puntos)