1. Czy istnieje taka rodzina podwójnie indeksowana $\{A_{i,j}: i, j \in I\}$, że wszystkie zbiory: $\bigcup_i \bigcup_j A_{i,j}, \bigcup_i \bigcap_j A_{i,j}, \bigcap_i \bigcup_j A_{i,j}, \bigcap_i \bigcap_j A_{i,j}, \bigcap_j \bigcup_i A_{i,j}, \bigcap_j \bigcup_i A_{i,j}$ były parami różne? Odpowiedź uzasadnić.

Inaleziona Rodzina:
$$I = \{0, 1, 2\}$$

$$A_{0,0} = \emptyset \qquad A_{1,0} = \{2\} \qquad A_{2,0} = \{4, 2\}$$

$$A_{0,2} = \{0\} \qquad A_{1,1} = \{0, 1\} \qquad A_{2,1} = \{0, 2\}$$

$$A_{0,1} = \{2\} \qquad A_{1,2} = \{0, 2\} \qquad A_{2,1} = \{0, 2\}$$

$$A_{0,1} = \{2\} \qquad A_{1,2} = \{0, 2\} \qquad A_{2,1} = \{0, 2, 2\}$$
mire

1)
$$\bigcup_{j=1}^{\infty} A_{i,j}$$

Ustalarry j :
 $i = 0$
 $i = 1$
 $i = 2$
 $j = 0$
 $A_{0,6} = \emptyset$
 $A_{2,0} = \{2\}$
 $A_{2,0} = \{1,2\}$
 $A_{2,0} = \{0,2\}$
 $A_{2,1} = \{0,2\}$
 $A_{2,1} = \{0,2\}$
 $A_{2,2} = \{0,2\}$
 $A_{2,1} = \{0,2\}$
 $A_{2,2} = \{0,2\}$

2)
$$\bigcap_{i} \bigcup_{j} A_{i,j}$$

Ustalary j : $i = 0$ $i = 1$ $i = 2$
 $j = 0$ $A_{0,6} = \emptyset$ $A_{2,0} = \{2\}$ $A_{2,0} = \{1,2\}$
 $j = 1$ $A_{0,2} = \{0\}$ $A_{2,1} = \{0,2\}$ $A_{2,1} = \{0,2\}$
 $j = 1$ $A_{0,2} = \{1\}$ $A_{1,2} = \{0,2\}$ $A_{2,1} = \{0,1\}$ $A_{2,1} = \{0,1\}$ $A_{2,2} = \{0,1\}$

3)
$$\bigcup_{i} A_{ij}$$

Ustalamy $j: \qquad i = 0 \qquad i = 1 \qquad i = 2$
 $j = 0 \qquad A_{0,6} = \emptyset \qquad A_{2,0} = \{2\} \qquad A_{2,0} = \{1,2\}$
 $j = 1 \qquad A_{0,1} = \{0\} \qquad A_{2,2} = \{0,2\} \qquad A_{2,1} = \{0,2\}$
 $j = 2 \qquad A_{0,2} = \{1\} \qquad A_{2,2} = \{0,2\} \qquad A_{2,1} = \{0,4,2\}$
 $\bigcap_{i} = \emptyset \qquad \bigcap_{i} = \{2\}$
 $\bigcap_{i} = \emptyset \qquad \bigcap_{i} = \{2\}$
 $\bigcap_{i} = \emptyset \qquad \bigcap_{i} = \{1,2\}$
 $\bigcap_{i} = \emptyset \qquad \bigcap_{i} = \{1,2\}$

4)
$$\bigcap_{j=1}^{n} U_{j}$$
 $A:_{i,j}$

Ushalamy $j: i=0 \qquad i=1 \qquad i=2$

$$j=0 \qquad A_{0,0}=\emptyset \qquad A_{2,0}=\{2\} \qquad A_{2,0}=\{1,2\} \qquad U=\{1,2\}$$

$$j=1 \qquad A_{0,2}=\{0\} \qquad A_{2,2}=\{0,2\} \qquad A_{2,1}=\{0,2\} \qquad U=\{0,1,2\}$$

$$j=2 \qquad A_{0,2}=\{1\} \qquad A_{2,2}=\{0,2\} \qquad A_{2,1}=\{0,1,2\} \qquad U=\{0,1,2\}$$

$$\bigcap_{j=1}^{n} U_{j}=\{1,2\} \qquad \bigcap_{j=1}^{n} U_{j}=\{1,2$$

5)
$$UU A_{i,j}$$

Ustalamy $j: i = 0 \quad i = 1 \quad i = 2$

$$j = 0 \quad A_{0,6} = \emptyset \quad A_{2,0} = \{2\} \quad A_{2,0} = \{1,2\}$$

$$j = 1 \quad A_{0,2} = \{0\} \quad A_{2,2} = \{0,2\} \quad A_{2,1} = \{0,2\}$$

$$j = 2 \quad A_{0,2} = \{1\} \quad A_{2,2} = \{0,2\} \quad A_{2,1} = \{0,1,2\}$$

$$U = \{0,1,2\} \quad U = \{0,1,2\} \quad U = \{0,1,2\}$$

$$UU = \{0,1,2\} \quad U =$$

(6)
$$\bigcap_{i} A_{i,j}$$

Ustalamy j: $i = 0$ $i = 1$ $i = 2$
 $j = 0$ $A_{0,0} = \emptyset$ $A_{2,0} = \{2\}$ $A_{2,0} = \{1,2\}$
 $j = 1$ $A_{0,2} = \{0\}$ $A_{1,2} = \{0,2\}$ $A_{2,1} = \{0,2\}$
 $j = 1$ $A_{0,2} = \{1\}$ $A_{1,2} = \{0,2\}$ $A_{2,1} = \{0,2\}$
 $\bigcap_{i = 1} A_{0,2} = \{1\}$ $\bigcap_{i = 1} A_{2,2} = \{0,2\}$ $\bigcap_{i = 1} A_{2,2} = \{0,2\}$
 $\bigcap_{i = 1} A_{i,1} = \{1\}$ $\bigcap_{i = 1} A_{2,2} = \{0,2\}$ $\bigcap_{i = 1} A_{2,2} = \{0,2\}$

3. Niech $f, g: A \to A$. Czy jeśli dla każdego $x \in A$, f(g(x)) = g(f(x)), to f i g są wzajemnie swoimi funkcjami odwrotnymi? Odpowiedź uzasadnij!

Wshaze hontoprylitad:

$$f(g): N \to N$$

$$f(m) = m+1 \qquad \forall f(g(m)) = g(f(n)) \qquad \begin{cases} 0 \text{ odd na hlasa funkyi} \\ f(g) = m \end{cases}$$

$$g(m) = n \qquad f(m) = g(m+1) \qquad f(g) = m+1$$

$$2atoienie jest spetnione jednah \qquad f: A \to A$$

$$2atoienie jest spetnione jednah \qquad jeby nie było bijeligg \qquad g = id_A$$
osiggane
$$g = id_A$$

2. Niech $A_{i,j} = \{X \subseteq \mathbb{N}: i \in X \land j \notin X\}$ dla $i,j \in \mathbb{N}$. Znajdź $\bigcup_i \bigcup_j A_{i,j}, \bigcup_i \bigcap_j A_{i,j}, \bigcup_i \bigcap_{j>i} A_{i,j}, \bigcap_j \bigcup_i A_{i,j}$. Odpowiedzi wykaż.

Jah to driata A1,4 = { {1}, {0,1}, {0,1,2}, {0,1,2}, {0,1,2,3}, {0,1,2,3,4,5}, {1,5}, 1) UU Ai, j = P(N) (N, Ø) Nie jestesmy w stanie uzyslad zbiovu & a table nie możemy uzystać N Jeich duce dostać dowolny ale voiny od ø i od catego N podrbisv to po bodrie on elementem taligoo A: Ø \$ X \$ N =) Ø \$] = x' 77 XEAinj Amin(x), min(x') wige $\forall x \in U \cup Ai$, j $\emptyset \neq x \neq N$ bo n aleig do

welcome wsharanepo prezennie N nie jestesmy w stanie azystać bo zawsze usuwany

1 element

W jadnej vodzinie nie ma sbiovse pustego bo

2)
$$\bigcup \bigcap A_{i,j}$$

Ustalamy to i. $\bigcap A_{i,j}$. $\emptyset \in \{A_{i,j}\}=\} \bigcap A_{i,j}=\emptyset$
 $\bigcup \bigcap A_{i,j}=\bigcup \emptyset=\emptyset$

Sio Aioij

× jest ogr viorony zgsvy (jest shownouy)

3) U ∩ Aij = {xcN: 1x1c ≈ 1x ≠ Ø\$ Ustalany io Aioj = Aioj = [x c N: i. ex, max/x) = io}) Soiovy sp showsome

 $X \in U \cap A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j}$ $A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j}$ $A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j}$ $A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j}$ $A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j} = A_{i,j}$ $A_{i,j} = A_{i,j} = A$

bienemy $X \in A_{\max X, \max(X)+1}$ $\in A_{\max(X), \max(X)+1}$

Jomax(x) X & Amex(x), XE Max(x) A max (x) ij XE U A Aij

Ustalamy jo U Aijo = {x \in N: i \in X \lambda j \in X}

U Aijo = { X \in N: jo \in X}

\[
\frac{1}{2} \alpha \in \in \in \in \in \in X}
\]

\[
\frac{1}{2} \alpha \in \in \in \in \in \in X}
\]

\[
\frac{1}{2} \alpha \in \in \in X \in \in \in X}
\]

\[
\frac{1}{2} \alpha \in \in X \in \in X}
\]

\[
\frac{1}{2} \alpha \in \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in \in \in X \in X}
\]

\[
\frac{1}{2} \alpha \in \in \in X \in X}
\]

\[
\frac{1}{2} \alpha \in \in X \in X}
\]

\[
\frac{1}{2} \alpha \in \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X \in X \in X}
\]

\[
\frac{1}{2} \alpha \in X}
\]

\[
\fr