Enhancing ENIGMA Given Clause Guidance

Jan Jakubův¹ Josef Urban¹
AITP'18, Aussois, 29th March 2018

¹Czech Technical University in Prague

Outline

ATPs & Given Clauses

Enigma Models

Enhanced Features

Experiments with Boosting & Looping

Outline

ATPs & Given Clauses

Enigma Models

Enhanced Features

Experiments with Boosting & Looping

Given Clause Loop Paradigm

Problem representation

- first order clauses (ex. " $x = 0 \lor \neg P(f(x, x))$ ")
- posed for proof by contradiction

Given an initial set C of clauses and a set of inference rules, find a derivation of the *empty clause* (for example, by the resolution of clauses with conflicting literals L and $\neg L$).

Basic Loop

```
Proc = \{\}
Unproc = all available clauses
while (no proof found)
   select a given clause C from Unproc
  move C from Unproc to Proc
   apply inference rules to C and Proc
  put inferred clauses to Unproc
```

Clause Selection Heuristics in E Prover

- E Prover has several pre-defined clause weight functions.
 (and others can be easily implemented)
- Each weight function assigns a real number to a clause.
- Clause with the smallest weight is selected.

E Prover Strategy

- E strategy = E parameters influencing proof search (term ordering, literal selection, clause splitting, ...)
- Weight functions to guide given clause selection.
- Several clause weight functions can be combined together:

Outline

ATPs & Given Clauses

Enigma Models

Enhanced Features

Experiments with Boosting & Looping

Enigma Basics

- Idea: Use fast linear classifier to guide given clause selection!
- ENIGMA stands for...

Enigma Basics

- Idea: Use fast linear classifier to guide given clause selection!
- ENIGMA stands for...

Efficient learNing-based Inference Guiding MAchine

LIBLINEAR: Linear Classifier

- LIBLINEAR: open source library¹
- input: positive and negative examples (float vectors)
- output: model (~ a vector of weights)
- evaluation of a generic vector: dot product with the model

¹http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Consider the literal as a tree and simplify (sign, vars, skolems).

Features are descending paths of length 3 (triples of symbols).

Collect and enumerate all the features. Count the clause features.

#	feature	count
1	(⊕,=,a)	0
:	l :	:
	•	-
11	(⊕,=,f)	1
12	(⊕,=,g)	1
13	(=,f,⊛)	2
14	(=,g,⊙)	2
15	(g,⊙,⊛)	1
:	:	:

Take the counts as a feature vector.

#	feature	count
1	(⊕,=,a)	0
:	:	:
11	(⊕,=,f)	1
12	(⊕,=,g)	1
13	(=,f,⊛)	2
14	(=,g,⊙)	2
15	(g,⊙,⊛)	1
:	:	:

Enigma Model Construction

- 1. Collect training examples from E runs (useful/useless clauses).
- 2. Enumerate all the features (π :: feature \rightarrow int).
- 3. Translate clauses to feature vectors.
- 4. Train a LIBLINEAR classifier ($w :: float^{|dom(\pi)|}$).
- 5. Enigma model is $\mathcal{E} = (\pi, w)$.

Given Clause Selection by Enigma

We have Enigma model $\mathcal{E} = (\pi, w)$ and a generated clause C.

- 1. Translate C to feature vector Φ_C using π .
- 2. Compute prediction:

$$\operatorname{weight}_0(C) = \begin{cases} 1 & \text{iff } w \cdot \Phi_C > 0 \\ 10 & \text{otherwise} \end{cases}$$

3. Combine prediction with clause length:

$$\mathsf{weight}(C) = \mathsf{weight}_0(C) + \delta * |C|$$

Enigma Given Clause Selection

- We have implemented Enigma weight function in E.
- Enigma model can be used alone to select a given clause:

```
(1 * Enigma(\mathcal{E}, \delta))
```

• or in combination with other E weight functions:

```
(23 * Enigma(\mathcal{E},\delta),

3 * StandardWeight(...),

20 * StephanWeight(...))
```

Outline

ATPs & Given Clauses

Enigma Models

Enhanced Features

Experiments with Boosting & Looping

Conjecture Features

- ullet Enigma classifier ${\mathcal E}$ is independent on the goal conjecture!
- Improvement: Extend Φ_C with goal conjecture features.
- Instead of vector Φ_C take vector (Φ_C, Φ_G) .

Conjecture Features and Prediction Rates (%)

AIM	train accuracy		10-fold cross-val	
data	noconj conj		noconj conj	
simple	84.7	84.6	84.6	84.5
50-50	76.3	78.0	76.3	77.8

MZR	train accuracy		10-fold cross-va	
data	noconj	conj	noconj	conj
simple	92.2	95.0	90.8	93.9
50-50	89.2	91.9	88.8	91.5

Horizontal Features

Function applications and arguments top-level symbols.

#	feature	count
1	(⊕,=,a)	0
÷		:
100	=(f,g)	1
101	$f(\circledast,\circledast)$	1
102	$g(\odot,\odot)$	1
103	⊙(⊛)	1
:	:	:

Static Clause Features

For a clause, its length and the number of pos./neg. literals.

#	feature	count/val
103	⊙(⊛)	1
:	:	:
200	len	9
201	pos	1
202	neg	0
:	:	:

Static Symbol Features

For each symbol, its count and maximum depth.

#	feature	count/val
202	neg	0
:	:	:
300	# _⊕ (f)	1
301	# _⊖ (f)	0
:	:	:
310	% _⊕ (⊛)	4
311	% _⊖ (⊛)	0
:	:	:

Static Symbol Features

For each symbol, its count and maximum depth.

#	feature	count/val
202	neg	0
:	:	:
300	# _⊕ (f)	1
301	# _⊖ (f)	0
:	:	:
310	% ⊕(*)	4
311	%⊖(⊛)	0
:	:	:

Outline

ATPs & Given Clauses

Enigma Models

Enhanced Features

Experiments with Boosting & Looping

Boosting

- Training data are uneven.
- Usually we have more negative examples (cca 10 times).
- Previously: Repeat positive examples 10 times.

Smarter Boosting

- 1. Collect training data.
- 2. Create classifier $\mathcal{E} = (\pi, w)$.
- 3. Compute prediction accuracy on the training data (using w).
- 4. If $(acc^+ > acc^-)$ then finish.
- 5. Repeat misclassified positive clauses in the training data.
- 6. **Goto** 2.

Looping

- 1. Run E prover with strategy S on problems P.
- 2. Collect/extend training data.
- 3. Create classifier $\mathcal{E} = (\pi, w)$ from the training data.
- 4. Construct strategies $S^0_{\mathcal{E}}$ and $S_{\mathcal{E}}$.
- 5. Evaluate $S_{\mathcal{E}}^0$ and $S_{\mathcal{E}}$ on problems P.
- 6. **Goto** 2.

Experiments with Clustering

- MPTP benchmarks (2079 problems from Mizar).
- 10 E Prover strategies from auto mode (autos).
- Problems are clustered into 33 articles/categories.
- We train Enigma separately on all articles (for each S).
- We take best-performing strategies on each article.

Best Enigma Models per Article

article	total	best	best	Enigma+
		autos	Enigma	
compts	23	7	7	+0.0%
enumset1	96	86	86	+0.0%
pre	37	21	22	+4.8%
relset	32	20	22	+10.0%
funct	235	160	185	+15.6%
filter	65	6	7	+16.7%
orders	61	28	36	+28.6%
wellord1	59	27	35	+29.6%
waybel	174	42	74	+76.2%

Total Portfolio Improvement on MPTP

portfolio	solved	autos%	autos+	autos-
E (auto-schedule)	1343	-3.8%	+25	-79
autos (10)	1397	+0%	+0	-0
Enigmas (62)	1450	+3.7%	+103	-50

Thank you.

