Quiz 2 • Graded

Student

Paolo Vasquez Grahammer

Total Points

16 / 20 pts

Question 1

Point k-d-tree 5 / 5 pts

- + 3.5 pts Click here to replace this description.
- + 1 pt Click here to replace this description.
- + **0.5 pts** Click here to replace this description.

hB-tree 4 / 4 pts

+ 0 pts

$$X=4$$

$$2/8$$

$$Y=12$$

$$X=10$$

$$X=4$$

$$Y=10$$

$$X=9$$

$$X$$

+ 2 pts Click here to replace this description.

Question 3

BSP-tree 5 / 5 pts

- + **4.5 pts** Click here to replace this description.
- + 1.5 pts Click here to replace this description.
- + 4 pts Click here to replace this description.

Question 4

Polygon 2 / 6 pts

- + 6 pts Correcto!
- + 0 pts Click here to replace this description.
- → + 2 pts Click here to replace this description.
 - + 1 pt Click here to replace this description.
 - + **0.5 pts** Click here to replace this description.

Question 5

Puntitos 0 / 0 pts

- + 0 pts Tu no :'c
- + 1 pt
- - + 3 pts

Estructura de datos Avanzados

Pregrado 2024-1

Profesor: Victor Flores Benites	$\supset 0$
Apellidos: Narquez quilammer	Nombres:
Fecha: 22/04/2023	Nota:
Indicaciones: La Duración es de 30 minutos. La evaluación consta de 5 preguntas.	

1. Borre los puntos A, H, D del siguiente Point Kd-Tree. Grafique el resultado.

3. Inserte los segmentos de la figura a un BSP-Tree : Front y grafique el resultado. [5 pts] (Dericha

E

DEL A DEL H: DEL D:

4. Proponga un algoritmo para generar n polígonos coplanares aleatorios (pueden ser convexos o no convexos) en un espacio \mathbb{R}^3 . Sugerencia: Asegure generar puntos aleatorios sobre un plano $\mathbb P$ definido por un punto P_0 y un vector normal \vec{v} . Para tal motivo, puede generar una base del espacio R2, definido por el plano P, a través de dos vectores ortogonales al vector normal: \vec{u}_1 y \vec{u}_2 . Entonces, cualquier punto en el plano P puede ser obtenido a partir de $P_0 + a\vec{u}_1 + b\vec{u}_2$.

generate random PS(r, place): lai=16 n: weets & ponts > ps = grps() gen rudom polgon (plane, PS)

Jen ravdom polyon (plm, ps)

1. Net U1 and U2 be orlogond
vectors to plane. Normal

2. P = au + bu 2 // with the
we obtain a and b

