aleph-comandos.sty

Andrés Merino

2019-12-17

Resumen

aleph-comandos.sty es un paquete creado para recopilar varios comandos de uso común entre los colegas de Andrés Merino, dentro de su proyecto personal Alephsub0.

1. Introducción

El paquete aleph-comandos.sty es parte del conjunto de clases y paquetes creados por Andrés Merino dentro de su proyecto personal Alephsub0. Este paquete está basado en el paquete comandosEPN.sty del mismo autor y se cambió su nombre para continuar con el mantenimiento del mismo dentro del proyecto Alephsub0.

El paquete provee de una variedad de comandos generados por Juan Carlos Trujillo, Jonathan Ortiz y Andrés Merino, que facilitan la escritura matemática.

2. Uso

Para cargar la clase se utiliza: \usepackage{aleph-comandos}.

3. Comandos

3.1. Comandos de función

\funcion El comando \funcion tiene 5 argumentos en el formato

 $\fine \cone \cone\cone \cone \cone \cone \cone \cone \cone \cone \cone \cone \cone$

$$\funcion{f}{A}{B}{x}{f(x)}$$

$$f \colon A \longrightarrow B$$
$$x \longmapsto f(x)$$

\func El comando \func tiene 3 argumentos en el formato \func{\(\lambda\) \f\(\lambda\) \f\(\lambda\) \formation de llegada\(\rangle\) \formation esto, la funci\(\lambda\) genera

$$func{f}{A}{B}$$

3.2. Conjuntos

A continuación se detallan las definiciones de conjuntos:

Comando	Resultado	Conjunto
\N	N	Números naturales
\Nbb	\mathbb{N}	Números naturales
\Z	${\mathbb Z}$	Números enteros
\Zbb	${\mathbb Z}$	Números enteros
\Q	$\mathbb Q$	Números racionales
\Qbb	$\mathbb Q$	Números racionales
\R	${\mathbb R}$	Números reales
\Rbb	${\mathbb R}$	Números reales
\reales	${\mathbb R}$	Números reales
\C	$\mathbb C$	Números complejos
\Cbb	$\mathbb C$	Números complejos
\Ibb	I	Números irracionales
\K	K	Campo
\Kbb	K	Campo
\Pbb	${\mathbb P}$	Primos
\Pol	${\cal P}$	Polinomios
	\mathcal{M}	Matrices

A pesar de las definiciones para matrices y polinomios, la notación recomendada es:

- $\mathbb{R}_n[x]$: para polinomios de grado menor igual que n a coeficientes reales en la variable x;
- $\mathbb{R}^{n \times m}$: para matrices de orden $n \times m$ a coeficientes reales.

\Mat Para este último se define el comando \Mat con dos argumentos obligatorios y uno opcional, con la siguiente sintaxis:

 $\label{lambda} $$ \mathbf{\Delta t} [\langle coeficiente \rangle] {\langle no. filas \rangle} {\langle no. columnas \rangle}, $$ con esto, el comando genera$

$$\mathbb{R}^{3\times 1}$$

$$\mathbb{R}^{3\times 1}$$

$$\mathbb{Q}^{3\times 1}$$

3.3. Operadores

A continuación se detallan las definiciones de operadores matemáticos:

Comando	Resultado	Operador
\dom	dom	Dominio
\Dom	Dom	Dominio
\rec	rec	Recorrido
\Rec	Rec	Recorrido

Comando	Resultado	Operador
\img		Imagen
\Img	img Ima	Imagen
· ·	Img	S
\rg	rg	Rango de una matriz
\rang	rang	Rango de una matriz
\adj	adj	Matriz adjunta
\cof	cof	Matriz de cofactores
\proy	proy	Proyección
\norm	norm	Componente normal
\inte	int	Interior de un conjunto
\sin	sen	Seno
\arccsc	arc csc	Arcocosecante
\arccot	arc cot	Arcocotangente
\arcsec	arc sec	Arcosecante
\spn	span	Espacio generado
\gen	gen	Espacio generado
\im	Im	Parte imaginaria
\re	Re	Parte real
\graf	graf	Gráfico de una función
\sgn	sgn	Signo
\CVA	CVA	Conjunto de valores admisibles
\sol	Sol	Conjunto solución
\Sol	Sol	Conjunto solución
\Cis	Cis	Operador cis ($\cos +i \operatorname{sen}$)
\cis	Cis	Operador cis ($\cos +i \operatorname{sen}$)
\diam	diam	Diámetro
\Var	Var	Varianza
\Tr	tr	Traza
\tr	tr	Traza
\mcd	mcd	Máximo común divisor
\mcm	mcm	Mínimo común múltiplo
\dive	div	Divergencia
\rot	rot	Rotacional
\partes	\mathcal{P}	Partes de un conjunto

3.4. Operadores como comandos

\cl El comando \cl tiene 1 argumento en el formato $\cl \{\langle conjunto \rangle \},$ con esto, el comando genera

 $\c A$

Si el argumento se lo deja vacío, este genera:

\norma{}

\prodinner

El comando \prodinner tiene dos argumentos en el formato \prodinner $\{\langle vector\ 1\rangle\}\{\langle vector\ 2\rangle\}$, con esto, el comando genera

Si los argumentos se los deja vacíos, el comando genera:

 $\prodinner{\}{}} \qquad \qquad \boxed{\langle \cdot, \cdot \rangle}$

 $\verb|\conjugado|$

El comando \conjugado tiene 1 argumento en el formato \conjugado $\{\langle n\'umero \rangle\}$, con esto, el comando genera

\conjugate{z} \overline{z}

\parcial

El comando \parcial tiene dos argumentos en el formato \parcial $\{\langle función \rangle\}\{\langle variable \rangle\}$, con esto, el comando genera

\derivada

El comando \derivada tiene dos argumentos en el formato \derivada $\{\langle funci\'on \rangle\}\{\langle variable \rangle\}$, con esto, el comando genera

Para más comandos útiles con respecto a derivadas, se puede utilizar el paquete cool (https://ctan.org/pkg/cool).

3.5. Abreviaciones

A continuación se detallan las abreviaciones que sirven únicamente en modo matemático.

Comando	Resultado	Operador
\setminus	\	Diferencia de conjuntos pequeña
\sset	\subseteq	Contenencia de conjuntos con igual
\emptyset	Ø	Conjunto vacío
\vepsilon	ε	Épsilon
\texty	. у .	Texto "y" con espacio
\yds	. у .	Texto "y" con espacio
\texto	. 0 .	Texto "o" con espacio
\ods	. 0 .	Texto "o" con espacio
\siysolosi	. si y solo si .	Texto "si y solo si" con espacio
\ssi	. si y solo si .	Texto "si y solo si" con espacio
\degre	0	Grados
\grad	0	Grados

3.6. Comandos desplegados

\dlim El comando \dlim funciona como una abreviación de \displaystyle\lim

\Lim El comando \Lim funciona como una abreviación de \displaystyle\lim

$$\lim_{x\to a} f(x)$$
 $\lim_{x\to a} f(x)$

\dsum El comando \dsum funciona como una abreviación de \displaystyle\sum

\Sum El comando \dsum funciona como una abreviación de \displaystyle\sum

$$\sum_{i=0}^{n} x_i$$

\Binom El comando \Binom funciona como una abreviación de \displaystyle\binom

\dint El comando \dint funciona como una abreviación de \displaystyle\int

\dint_a^b f
$$\int_a^b f$$

\Int El comando \dint funciona como una abreviación de \displaystyle\int

\Int_a^b f
$$\int_a^b f$$

3.7. Abreviaciones de operadores lógicos

A continuación se detallan las abreviaciones de operadores lógicos que sirven únicamente en modo matemático.

Comando	Resultado	Operador
\Di	\iff	Doble implicación
\dimp	\Leftrightarrow	Doble implicación
\Dimp	\iff	Doble implicación
\ightharpoonup	\Rightarrow	Implicación
\Imp	\Longrightarrow	Implicación
$\qlaim q$ land	. ^ .	Conjunción con espacio
\qlor	. ∨ .	Disyunción con espacio
\orm	. ∨ .	
\andm	. ^ .	Disyunción con espacio
\V	\mathbb{V}	Tautología
\F	\mathbb{F}	Contradicción

3.8. Delimitadores

Para delimitadores, se ulitizan las siguientes abreviaciones

Comando	Acción
\r	\right
\1	\left

Además, para delimitar intervalos mediante la notación de corchetes abiertos se utilizan las siguientes abreviaciones

Comando	Acción
\rop	\right[
\lop	\left]
\rcl	\right]
\lcl	\left[

\open Finalmente, en intervalos, se utilizan los comandos \open, \open1, \openr y \close, \open1 todos con un argumento obligatorio bajo la misma sintaxis que es \open $\{\langle extremos \rangle\}$, \close obteniendo

3.9. Sucesiones

\suc El comando \suc tiene un argumento obligatorio (nombre de la sucesión) y uno opcional (índice, por defecto, *n*) en el formato

 $\scalebox{$\scalebox{\sim} \scalebox{\sim} \scalebo$

 $\sum \{x_n\}$

 $(x_n)_{n\in\mathbb{N}}$

o

 $\sum[k]{x_k}$

 $(x_k)_{k\in\mathbb{N}}$

\sucl El comando \sucl es igual al anterior, pero genera llaves para las sucesiones.

 \sum_{x_n}

 $\{x_n\}_{n\in\mathbb{N}}$

o

 $\left[k\right]\left[x_k\right]$

 $\{x_k\}_{k\in\mathbb{N}}$

3.10. Comentarios

comentario El comando \comentario tiene un argumento en el formato
 \comentario{\langle comentario \rangle},
 con esto, el comando genera

\comentario{Texto comentado}

Texto comentado

3.11. Vectores

A continuación se detallan los comandos usados para vectores canónicos

Comando	Resultado
\veci	i
\vecj	j
\veck	k

3.12. Problemas

Cualquier problema, por favor reportarlo a mat.andresmerino@gmail.com.

4. Implementación

4.1. Identificación

Dado que esta clase utiliza el comando \RequirePackage, no funciona con versiones antiguas de \LaTeX 2 ϵ .

```
1 \NeedsTeXFormat{LaTeX2e} [2009/09/24]
```

El paquete se identifica con su fecha de lanzamiento y su número de versión.

```
2\ProvidesPackage{aleph-comandos}[2019/12/17 v1.0]
```

4.2. Paquetes

Son necesarios los siguientes paquetes para utilizar los comandos.

```
3 \RequirePackage{ifthen}
4 \RequirePackage{calc}
5 \RequirePackage{etex}
6 \RequirePackage{amsmath,amssymb}
7 \RequirePackage{xcolor}
```

4.3. Comandos de función

Función completa

```
8 \newcommand{\funcion}[5]{%
9
     {\setlength{\arraycolsep}{2pt}
     10
11
         #1\colon & #2 & \longrightarrow & #3\\
                 & #4 & \longmapsto & \displaystyle#5
12
13
     \end{array}
14
     }
15 }
Función dom-img
16 \newcommand{\func}[3]{ #1\colon #2 \rightarrow #3}
```

4.4. Conjuntos

```
Números naturales
```

```
17 \newcommand{\N}{\mathbb{N}}
18 \newcommand{\Nbb}{\mathbb{N}}
Números enteros
19 \newcommand{\Z}{\mathbb{Z}}
20 \newcommand{\Zbb}{\mathbb{Z}}
Números racionales
21 \newcommand{\Q}{\mathbb{Q}}
22 \newcommand{\Q}bb}{\mathbb{Q}}
```

Números reales

- $23 \mbox{ } 123 \mbox{ } 123$
- $24 \mod{\Rbb}{\mod{R}}$
- 25 \newcommand{\reales}{\mathbb{R}}

Números complejos

- $26 \mbox{ } \mbox{\command} \C}{\mbox{\command} \C}$
- $27 \mbox{ \newcommand{\Cbb}{\mbox{\mathbb{C}}}}$

Campos

- $28 \mbox{ } \{\mbox{ } \{\mbox{ } \{\mbox{ } \{\mbox{ } \}\} \}$
- 29 \newcommand{\Kbb}{\mathbb{K}}

Primos

 $30 \mbox{ } \mbox{$

Polinomios

31 \newcommand{\Pol}{\mathcal{P}}

Matrices

32 \newcommand{\M}{\mathcal{M}}}

Matrices 2

33 \newcommand{\Mat}[3][\R]{ $\#1^{\#2\times \#3}$ }

Números irracionales

 $34 \model{Ibb}{\mathbb{I}}$

4.5. Operadores

Dominio

- 35 \DeclareMathOperator{\dom}{dom}
- 36 \DeclareMathOperator{\Dom}{Dom}

Recorrido

- 37 \DeclareMathOperator{\rec}{rec}
- $38 \verb|\DeclareMathOperator{\Rec}{Rec}|$

Imagen

- 39 \DeclareMathOperator{\img}{img}
- $40 \verb|\DeclareMathOperator{\Img}{Img}|$

Rango de una matriz

- 41 \DeclareMathOperator{\rg}{rg}
- $42 \ensuremath Operator {\ensuremath} {\en$

Matriz adjunta

 $43 \verb|\DeclareMathOperator{\adj}{adj}|$

Matriz de cofactores

44 \DeclareMathOperator{\cof}{cof}

Espacio generado

45 \DeclareMathOperator{\gen}{gen}

Proyección

46 \DeclareMathOperator{\proy}{proy}

Componente normal

47 \DeclareMathOperator{\norm}{norm}

Interior de un conjunto

48 \DeclareMathOperator{\inte}{int}

Trigonométricas

49 \renewcommand{\sin}{\sen}

Trigonométricas inversa

- 50 \let\arctan\relax
- 51 \DeclareMathOperator{\arctan}{arc\,tan}
- 52 \DeclareMathOperator{\arccsc}{arc\,csc}
- 53 \DeclareMathOperator{\arccot}{arc\,cot}
- $54 \verb|\DeclareMathOperator{\arcsec}{arc\,sec}|$

Espacio generado

55 \DeclareMathOperator{\spn}{span}

Parte real y parte imaginaria

- 56 \DeclareMathOperator{\im}{Im}
- 57 \DeclareMathOperator{\re}{Re}

Gráfico de una función

58 \DeclareMathOperator{\graf}{graf}

Operador signo

 $59 \DeclareMathOperator{\sgn}{sgn}$

Conjunto de valores admisible

60 \DeclareMathOperator{\CVA}{CVA}

Conjunto solución

- $61 \ensuremath Operator {\Sol} {\Sol}$
- $62\DeclareMathOperator{\sol}{Sol}$

Operador cis (cos + i sen)

- $63 \verb|\DeclareMathOperator{\Cis}{Cis}|$
- $64 \verb|\DeclareMathOperator{\cis}{Cis}|$

Diámetro

65 \DeclareMathOperator{\diam}{diam}

Varianza

66 \DeclareMathOperator{\Var}{Var}

```
Traza
67 \DeclareMathOperator{\Tr}{tr}
68 \DeclareMathOperator{\tr}{tr}
Máximo común divisor
69 \DeclareMathOperator{\mcd}{mcd}
Mínimo común múltiplo
70 \DeclareMathOperator{\mcm}{mcm}
Divergencia
71 \DeclareMathOperator{\dive}{div}
Rotacional
72 \DeclareMathOperator{\rot}{rot}
Partes de un conjunto
73 \DeclareMathOperator{\partes}{\mathcal{P}}
4.6. Operadores como comandos
Clausura de un conjunto
74 \mbox{ newcommand} \cl}[1]{\overline}
Norma
75 \newcommand{\norma}[1]{%
                   \left\{ \left( \frac{\#1}{\$} \right) \right\}
77
                                                                {\cdot}{#1}
                   \right\|}
Producto interno
79 \newcommand{\prodinner}[2]{%
                   \label{langle-ifthenelse} $$\left\{ \frac{\#1}{} \and \equal \equa
80
81
                                                       {\cdot,\cdot}
82
                                                       \{#1, \, #2\}
83
                   \right\rangle}
Conjugado
84 \newcommand{\conjugate}[1]{\overline{#1}}
Derivada parcial
85 \newcommand{\parcial}[2]{\dfrac{\partial #1 }{\partial #2}}
Derivada total
86 \newcommand{\derivada}[2]{\dfrac{d #1 }{d #2}}
4.7. Abreviaciones
Diferencia de conjuntos pequeña
```

11

87 \renewcommand{\setminus}{\smallsetminus}

Contenecia de conjuntos con igual

88 \newcommand{\sset}{\subseteq}

Conjunto vacío

89 \renewcommand{\emptyset}{\varnothing}

Épsilon

90 \newcommand{\vepsilon}{\varepsilon}

Texto "y" con espacio

- 91 \newcommand{\texty}{\qquad\text{y}\qquad}
- 92 \newcommand{\yds}{\qquad\text{y}\qquad}

Texto "o" con espacio

- 93 \newcommand{\texto}{\qquad\text{o}\qquad}
- $94 \end{ods}{\quad\text{o}\quad}$

Texto "si y solo si" con espacio

- 95 \newcommand{\siysolosi}{\quad\text{si y solo si}\quad}
- 96 \newcommand{\ssi}{\quad\text{si y solo si}\quad}

Grados

- 97 \newcommand{\degre}{\ensuremath{^\circ}}
- 98 \newcommand{\grad}{\ensuremath{^\circ}}

4.8. Comandos desplegados

Límite en formato desplegado

- 99 \newcommand{\dlim}{\displaystyle\lim}
- 100 \newcommand{\Lim}{\displaystyle\lim}

Sumatoria en formato desplegado

- 101 \newcommand{\dsum}{\displaystyle\sum}
- $102 \mbox{ } {\mbox{displaystyle} \mbox{sum}}$

Binomio en formato desplegado

103 \newcommand{\Binom}{\displaystyle\binom}

Integral en formato desplegado

- 104 \newcommand{\dint}{\displaystyle\int}
- 105 \newcommand{\Int}{\displaystyle\int}

4.9. Abreviaciones de operadores lógicos

Doble implicación

- 106 \newcommand{\Di}{\Longleftrightarrow}
- 107 \newcommand{\dimp}{\Leftrightarrow}
- 108 \newcommand{\Dimp}{\Longleftrightarrow}

Implicación

- 109 \newcommand{\Imp}{\Longrightarrow}
- 110 \newcommand{\imp}{\Rightarrow}

```
Conectores con espacio
```

```
111 \newcommand{\qland}{\quad \land \quad }
112 \newcommand{\qlor}{\quad \lor \quad }
113 \newcommand{\orm}{\quad \vee \quad }
114 \newcommand{\andm}{\quad \wedge \quad }

Tautología y contradicción
115 \newcommand{\V}{\mathbb{V}}
```

4.10. Delimitadores

```
Intervalo abierto izquierda
```

117 $\newcommand{\lop}{\left\lfloor heft \right\rfloor}$

116 $\mbox{newcommand}(\F}{\mathbb{F}}$

Intervalo cerrado izquierda

Intervalo abierto derecha

119 \newcommand{\rop}{\right[}

Intervalo cerrado derecha

120 \newcommand{\rcl}{\right]}

Izquierda

121 \renewcommand{\l}{\left}

Derecha

122 \renewcommand{\r}{\right}

Intervalos

```
123 \newcommand{\open}[1]{\left]#1\right[}
124 \newcommand{\open1}[1]{\left]#1\right]}
125 \newcommand{\openr}[1]{\left[#1\right[}
126 \newcommand{\close}[1]{\left[#1\right]}
```

4.11. Sucesiones

Sucesiones

```
\label{left(#2\right)_{#1\in\mathbb{N}}} Succesiones con llaves $$ 128 \newcommand{\sucl}[2][n]_{\left\{\frac{\#2\right}_{\#1\in\mathbb{N}}\right\}} $$
```

4.12. Comentarios

Comentarios

129 \newcommand{\comentario}[1]{\textcolor{red}{#1}}

4.13. Vectores

Vectores canónicos

- 130 \newcommand{\veci}{\mathbf{i}}
- 131 $\mbox{newcommand}(\vecj}{\mbox{mathbf{j}}}$
- $132 \mode {\weak} {\mode {k}}$

4.14. Formato

Formato

133 \allowdisplaybreaks