CS 310: Automata Theory

Krishna. S

DFA Equivalence and Minimization

- ▶ Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA
- Let $L(A, q) = \{ w \in \Sigma^* \mid \hat{\delta}(q, w) \in F \}$ (recall that $\hat{\delta}$ is the extended transition function, $\hat{\delta} : Q \times \Sigma^* \to Q$)
- ► $L(A) = L(A, q_0)$

2/2

DFA Equivalence and Minimization

- ▶ Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA
- Let $L(A, q) = \{ w \in \Sigma^* \mid \hat{\delta}(q, w) \in F \}$ (recall that $\hat{\delta}$ is the extended transition function, $\hat{\delta} : Q \times \Sigma^* \to Q$)
- $L(A) = L(A, q_0)$
- ▶ Two states q_1 , q_2 in A are equivalent if $L(A, q_1) = L(A, q_2)$. A state q_1 in DFA A_1 is equivalent to state q_2 in DFA A_2 if $L(A_1, q_1) = L(A_2, q_2)$.
- ▶ Two DFAs A_1 , A_2 are equivalent if $L(A_1) = L(A_2)$

DFA Equivalence and Minimization

- ▶ Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA
- Let $L(A, q) = \{ w \in \Sigma^* \mid \hat{\delta}(q, w) \in F \}$ (recall that $\hat{\delta}$ is the extended transition function, $\hat{\delta} : Q \times \Sigma^* \to Q$)
- $L(A) = L(A, q_0)$
- ▶ Two states q_1 , q_2 in A are equivalent if $L(A, q_1) = L(A, q_2)$. A state q_1 in DFA A_1 is equivalent to state q_2 in DFA A_2 if $L(A_1, q_1) = L(A_2, q_2)$.
- ▶ Two DFAs A_1 , A_2 are equivalent if $L(A_1) = L(A_2)$

DFA Equivalence

For every DFA, there exists a unique (upto state naming) minimal DFA.

Minimizing DFAs

Two observations:

- Unreachable states can be removed. This does not change the language accepted.
- Merging equivalent states. This also does not change the language accepted.

Minimizing DFAs

Two observations:

- Unreachable states can be removed. This does not change the language accepted.
- Merging equivalent states. This also does not change the language accepted.

Algorithms:

- 1. BFS or DFS to identify reachable states and pruning out the rest
- 2. Table-filling algorithm by E.F.Moore

- ► Two states are *distinguishable* if they are not equivalent
- ► Formally, states q_1 , q_2 are distinguishable if there exists $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$, $\hat{\delta}(q_2, w)$ is an accepting state.

4/20

- ► Two states are *distinguishable* if they are not equivalent
- ► Formally, states q_1, q_2 are *distinguishable* if there exists $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$, $\hat{\delta}(q_2, w)$ is an accepting state.
- ▶ Table-filling is recursive discovery of distinguishable pairs of states.

4/20

- ► Two states are *distinguishable* if they are not equivalent
- ► Formally, states q_1, q_2 are *distinguishable* if there exists $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$, $\hat{\delta}(q_2, w)$ is an accepting state.
- Table-filling is recursive discovery of distinguishable pairs of states.
- ▶ Base case : (p,q) is distinguishable if $p \in F$ and $q \notin F$ or $p \notin F$, $q \in F$. (why?)

- ► Two states are *distinguishable* if they are not equivalent
- ► Formally, states q_1, q_2 are *distinguishable* if there exists $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$, $\hat{\delta}(q_2, w)$ is an accepting state.
- Table-filling is recursive discovery of distinguishable pairs of states.
- ▶ Base case : (p, q) is distinguishable if $p \in F$ and $q \notin F$ or $p \notin F$, $q \in F$. (why?)
- ▶ Inductive hypothesis : (p, q) is distinguishable if $\delta(p, a)$ and $\delta(q, a)$ are distinguishable for some $a \in \Sigma$. (why?)

- 1. Distinguishable= $\{(p,q) \mid p \in F, q \notin F\}$
- 2. Repeat while no new pair is added
 - ▶ for every $a \in \Sigma$ add (p, q) to Distinguishable if $(\delta(p, a), \delta(q, a)) \in$ Distinguishable.
- 3. Return Distinguishable.

Example on Board

- 1. Distinguishable= $\{(p,q) \mid p \in F, q \notin F\}$
- 2. Repeat while no new pair is added
 - ▶ for every $a \in \Sigma$ add (p, q) to Distinguishable if $(\delta(p, a), \delta(q, a)) \in$ Distinguishable.
- 3. Return Distinguishable.

Example on Board

- 1. If two states are distinguished by the table-filling algorithm then they are not equivalent (obvious).
- 2. If two states are not distinguished by the table-filling algorithm then they are equivalent.

► Assume (*p*, *q*) is a pair which is not distinguished by the algorithm, but they are not equivalent.

6/20

- ▶ Assume (*p*, *q*) is a pair which is not distinguished by the algorithm, but they are not equivalent.
- \triangleright That is, (p, q) is distinguishable, but the algorithm did not find it
- ▶ Call such (p, q) a bad pair. There must be some $w \in \Sigma^*$ that distinguishes (p, q).

- ▶ Assume (*p*, *q*) is a pair which is not distinguished by the algorithm, but they are not equivalent.
- \triangleright That is, (p, q) is distinguishable, but the algorithm did not find it
- ▶ Call such (p, q) a bad pair. There must be some $w \in \Sigma^*$ that distinguishes (p, q).
- ▶ Take the shortest such distinguishing word w among all bad pairs, and consider the corresponding bad pair (p, q).

- ► Assume (*p*, *q*) is a pair which is not distinguished by the algorithm, but they are not equivalent.
- ▶ That is, (p, q) is distinguishable, but the algorithm did not find it
- ▶ Call such (p, q) a bad pair. There must be some $w \in \Sigma^*$ that distinguishes (p, q).
- ▶ Take the shortest such distinguishing word w among all bad pairs, and consider the corresponding bad pair (p, q).
 - $w \neq \epsilon$ (why?)

- ► Assume (*p*, *q*) is a pair which is not distinguished by the algorithm, but they are not equivalent.
- ▶ That is, (p, q) is distinguishable, but the algorithm did not find it
- ▶ Call such (p, q) a bad pair. There must be some $w \in \Sigma^*$ that distinguishes (p, q).
- ▶ Take the shortest such distinguishing word w among all bad pairs, and consider the corresponding bad pair (p, q).
 - $w \neq \epsilon$ (why?)
 - Let w = ax. As p, q are distinguishable, exactly one of $\hat{\delta}(p, ax), \hat{\delta}(q, ax)$ is accepting.
 - ▶ Then $p' = \delta(p, a)$ and $q' = \delta(q, a)$ are distinguished by x.

- ► Assume (*p*, *q*) is a pair which is not distinguished by the algorithm, but they are not equivalent.
- ▶ That is, (p, q) is distinguishable, but the algorithm did not find it
- ▶ Call such (p, q) a bad pair. There must be some $w \in \Sigma^*$ that distinguishes (p, q).
- ▶ Take the shortest such distinguishing word w among all bad pairs, and consider the corresponding bad pair (p, q).
 - $w \neq \epsilon$ (why?)
 - Let w = ax. As p, q are distinguishable, exactly one of $\hat{\delta}(p, ax), \hat{\delta}(q, ax)$ is accepting.
 - ▶ Then $p' = \delta(p, a)$ and $q' = \delta(q, a)$ are distinguished by x.
 - If (p', q') was discovered by the algorithm, then (p, q) would have been discovered as well.

- ► Assume (*p*, *q*) is a pair which is not distinguished by the algorithm, but they are not equivalent.
- ▶ That is, (p, q) is distinguishable, but the algorithm did not find it
- ▶ Call such (p, q) a bad pair. There must be some $w \in \Sigma^*$ that distinguishes (p, q).
- ▶ Take the shortest such distinguishing word w among all bad pairs, and consider the corresponding bad pair (p, q).
 - $w \neq \epsilon$ (why?)
 - Let w = ax. As p, q are distinguishable, exactly one of $\hat{\delta}(p, ax), \hat{\delta}(q, ax)$ is accepting.
 - ▶ Then $p' = \delta(p, a)$ and $q' = \delta(q, a)$ are distinguished by x.
 - If (p', q') was discovered by the algorithm, then (p, q) would have been discovered as well.
 - If (p', q') is not discovered by the algorithm, then (p', q') is a bad pair with a shorter distinguishing word, a contradiction.

- ▶ Let A be a DFA with no unreachable states
- Let ≈⊆ Q × Q be the state equivalence relation (computed say by the table-filling algorithm)

$$p \approx q \Leftrightarrow \forall x \in \Sigma^*(\hat{\delta}(p,x) \in F \Leftrightarrow \hat{\delta}(q,x) \in F)$$

7/20

- ▶ Let A be a DFA with no unreachable states
- Let ≈⊆ Q × Q be the state equivalence relation (computed say by the table-filling algorithm)

$$p \approx q \Leftrightarrow \forall x \in \Sigma^*(\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

- ightharpoonup pprox is an equivalence relation with finitely many classes
- ▶ Let $[q] = \{q' \mid q' \approx q\}$

7/20

- Let A be a DFA with no unreachable states
- Let ≈⊆ Q × Q be the state equivalence relation (computed say by the table-filling algorithm)

$$p \approx q \Leftrightarrow \forall x \in \Sigma^*(\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

- ightharpoonup pprox is an equivalence relation with finitely many classes
- ▶ Let $[q] = \{q' \mid q' \approx q\}$
- ▶ Given DFA $A = (Q, \Sigma, \delta, q_0, F)$, we can minimize A to the DFA $A_{min} = (Q', \Sigma, \delta', q'_0, F')$ called the *Quotient Automata* where
 - ▶ $Q' = \{[q] \mid q \in Q\}$
 - ▶ $\delta'([q], a) = [\delta(q, a)]$ for all $a \in \Sigma$,

- Let A be a DFA with no unreachable states
- Let ≈⊆ Q × Q be the state equivalence relation (computed say by the table-filling algorithm)

$$p \approx q \Leftrightarrow \forall x \in \Sigma^*(\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

- ightharpoonup pprox is an equivalence relation with finitely many classes
- ▶ Let $[q] = \{q' \mid q' \approx q\}$
- ▶ Given DFA $A = (Q, \Sigma, \delta, q_0, F)$, we can minimize A to the DFA $A_{min} = (Q', \Sigma, \delta', q'_0, F')$ called the *Quotient Automata* where
 - ▶ $Q' = \{[q] \mid q \in Q\}$
 - $\delta'([q], a) = [\delta(q, a)]$ for all $a \in \Sigma$, If $p \approx q$ then $\delta(p, a) \approx \delta(q, a)$. That is, if [p] = [q], then $[\delta(p, a) = [\delta(q, a)]$
 - $q_0' = [q_0]$
 - $F' = \{[q] \mid q \in F\}$

- ▶ Let A be a DFA with no unreachable states
- Let ≈⊆ Q × Q be the state equivalence relation (computed say by the table-filling algorithm)

$$p \approx q \Leftrightarrow \forall x \in \Sigma^*(\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

- ightharpoonup pprox is an equivalence relation with finitely many classes
- ▶ Let $[q] = \{q' \mid q' \approx q\}$
- ▶ Given DFA $A = (Q, \Sigma, \delta, q_0, F)$, we can minimize A to the DFA $A_{min} = (Q', \Sigma, \delta', q'_0, F')$ called the *Quotient Automata* where
 - ▶ $Q' = \{ [q] \mid q \in Q \}$
 - $\delta'([q], a) = [\delta(q, a)]$ for all $a \in \Sigma$, If $p \approx q$ then $\delta(p, a) \approx \delta(q, a)$. That is, if [p] = [q], then $[\delta(p, a) = [\delta(q, a)]$
 - $q_0' = [q_0]$
 - ▶ $F' = \{[q] \mid q \in F\}$ $q \in F \text{ iff } [q] \in F'.$ If $p \approx q$ and $q \in F$, then $p \in F$. Each class is either inside F or disjoint from F.

$$L(A_{min}) = L(A)$$

1. $x \in L(A_{min})$ iff $\hat{\delta}'(q'_0, x) \in F'$ iff

$$L(A_{min}) = L(A)$$

- 1. $x \in L(A_{min})$ iff $\hat{\delta}'(q'_0, x) \in F'$ iff
- **2.** $\hat{\delta}'([q_0], x) \in F'$ iff

```
L(A_{min}) = L(A)
```

- 1. $x \in L(A_{min})$ iff $\hat{\delta'}(q'_0, x) \in F'$ iff
- **2.** $\hat{\delta}'([q_0], x) \in F'$ iff
- 3. $[\hat{\delta}(q_0,x)] \in F'$ iff

```
L(A_{min}) = L(A)
```

- 1. $x \in L(A_{min})$ iff $\hat{\delta}'(q'_0, x) \in F'$ iff
- **2.** $\hat{\delta}'([q_0], x) \in F'$ iff
- 3. $[\hat{\delta}(q_0,x)] \in F'$ iff
- 4. $\hat{\delta}(q_0, x) \in F$ iff

```
L(A_{min}) = L(A)
```

- 1. $x \in L(A_{min})$ iff $\hat{\delta}'(q'_0, x) \in F'$ iff
- 2. $\hat{\delta}'([q_0], x) \in F'$ iff
- 3. $[\hat{\delta}(q_0,x)] \in F'$ iff
- 4. $\hat{\delta}(q_0, x) \in F$ iff
- 5. $x \in L(A)$

$$L(A_{min}) = L(A)$$

- 1. $x \in L(A_{min})$ iff $\hat{\delta'}(q'_0, x) \in F'$ iff
- 2. $\hat{\delta}'([q_0], x) \in F'$ iff
- 3. $[\hat{\delta}(q_0,x)] \in F'$ iff
- 4. $\hat{\delta}(q_0, x) \in F$ iff
- 5. $x \in L(A)$

Claim

- 1. No two distinct states in A_{min} are equivalent.
- 2. A_{min} is the minimum and unique (upto state renaming) DFA equivalent to A.

Assume there is a DFA B with smaller number of states than A_{min} , such that L(B) = L(A).

- Assume there is a DFA B with smaller number of states than A_{min} , such that L(B) = L(A).
- ▶ Using the table-filling algorithm, compute equivalent states of B and A_{min}.

- Assume there is a DFA B with smaller number of states than A_{min} , such that L(B) = L(A).
- ► Using the table-filling algorithm, compute equivalent states of B and A_{min}.
- ▶ The initial states of B and A_{min} must be equivalent (why?)

- Assume there is a DFA B with smaller number of states than A_{min} , such that L(B) = L(A).
- ► Using the table-filling algorithm, compute equivalent states of B and A_{min}.
- ▶ The initial states of *B* and A_{min} must be equivalent (why?)
- After reading any $w \in \Sigma^*$ from their initial states, both DFAs enter equivalent states (why?)

- Assume there is a DFA B with smaller number of states than A_{min} , such that L(B) = L(A).
- ▶ Using the table-filling algorithm, compute equivalent states of B and A_{min}.
- ▶ The initial states of *B* and A_{min} must be equivalent (why?)
- After reading any $w \in \Sigma^*$ from their initial states, both DFAs enter equivalent states (why?)
- For every state of A_{min} , there is an equivalent state in B
- ▶ Since the number of states in B are < than those in A_{min} , there are at least two states p, q in A_{min} equivalent to some state in B.
- ▶ That is, p, q are equivalent, a contradiction.

A minimal DFA directly from the language

Given a regular language R, can we define the minimal DFA for R directly from it?

Given a language L (not necessarily regular), and words $u, v \in L$, define $u \sim_L v$ if for all $w \in \Sigma^*$, $uw \in L \Leftrightarrow vw \in L$.

- $\sim_L \subseteq \Sigma^* \times \Sigma^*$ is an equivalence relation on words
- ▶ Consider the equivalence classes of \sim_L
- ▶ When can \sim_L have only finitely many equivalence classes?

Properties of \sim_L

- > ~_L is a right congruence : that is, for any a ∈ Σ, x ~_L y \Rightarrow xa ~_L ya
- $ightharpoonup \sim_L$ refines L: that is, $x \sim_L y \Rightarrow x \in L \Leftrightarrow y \in L$

Myhill-Nerode relations

An equivalence relation on Σ^* is called a *Myhill-Nerode* relation for $L \subseteq \Sigma^*$ if it is a right congruence refining L, and has finitely many equivalence classes.

The relation was proposed by John Myhill and Anil Nerode.

An Example

Consider $L = \{a^n b^n \mid n \geqslant 0\}$. Recall \sim_L .

- ► Consider the set of words $\{a, a^2, ..., a^i, ...\}$.
- ▶ If \sim_L has finitely many classes, then there exists $a^m, a^n \ m \neq n$ such that $a^m \sim_L a^n$. That is, for all $w \in \Sigma^*$, $a^m.w \in L$ iff $a^n.w \in L$.
- ▶ However, $a^m b^m \in L$ but $a^n b^m \notin L$ if we choose $w = a^m$
- ▶ Hence $[a^m] \neq [a^n]$ for $m \neq n$.
- Infinitely many equivalence classes.

An Example

Consider $L = a^*b^*$. Recall \sim_L . What are the classes of \sim_L ?

13/2

An Example

Consider $L = a^*b^*$. Recall \sim_L . What are the classes of \sim_L ?

- $ightharpoonup [\epsilon] = a^*$
- $|b| = a^*b^+$
- $|ba| = a^*b^+a\Sigma^*$

If *L* is regular, then there exists a Myhill-Nerode relation \sim_A for *L* defined from the DFA *A* for *L*.

If *L* is regular, then there exists a Myhill-Nerode relation \sim_A for *L* defined from the DFA *A* for *L*.

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be the DFA with no inaccessible states such that L = L(A).
- ▶ Define $x \sim_A y$ iff $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$.
- ▶ It can be seen that \sim_A is a right congruence refining L.
- ▶ $[x] = \{y \mid \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)\}$. There is one equivalence class corresponding to each state in Q. Hence, finitely many classes.
- ▶ Hence, \sim_A is Myhill-Nerode.

If language L has a Myhill-Nerode relation \sim , then L is regular.

15/2

If language L has a Myhill-Nerode relation \sim , then L is regular.

▶ We know \sim is a right congruence refining L, with finitely many equivalence classes [x].

15/20

If language L has a Myhill-Nerode relation \sim , then L is regular.

- ▶ We know ~ is a right congruence refining L, with finitely many equivalence classes [x].
- ▶ From \sim , define a DFA $A_{\sim} = (Q, \Sigma, \delta, s, F)$ where $Q = \{[x] \mid x \in \Sigma^*\}$ $s = [\epsilon]$ $F = \{[x] \mid x \in L\}$ $\delta([x], a) = [xa].$
- ▶ Is A₂ well-defined?
- ▶ $x \in L$ iff $[x] \in F$. If $[x] \in F$, then all words in [x] are in L as \sim refines L.
- ▶ $L(A_{\sim}) = L$. $x \in L(A_{\sim})$ iff $\hat{\delta}([\epsilon], x) \in F$ iff $[x] \in F$ iff $x \in L$.

Two constructions

We did two things.

- (1) Given a DFA A accepting L with no inaccessible state, we defined a Myhill-Nerode relation \sim_A from A.
- (2) Given a language L with a Myhill-Nerode relation \sim , we constructed the DFA A_{\sim} for L.
- (1), (2) are inverses upto isomorphism. That is,
 - ▶ Myhill-Nerode relation \sim → DFA A_\sim → Myhill-Nerode relation \sim_{A_\sim} would mean $\sim=\sim_{A_\sim}$.
 - ▶ DFA *A* for language *L* to Myhill-Nerode relation \sim_A to DFA A_{\sim_A} would imply *A* is isomorphic to A_{\sim_A} .

Myhill-Nerode and the Minimal DFA

- ▶ A relation \sim_1 is said to refine another relation \sim_2 if $\sim_1 \subseteq \sim_2$ when considered as sets of ordered pairs.
- ▶ That is, $x \sim_1 y \Rightarrow x \sim_2 y$.
- ▶ In other words, $[x]_1 \subseteq [x]_2$

Myhill-Nerode and the Minimal DFA

- ▶ A relation \sim_1 is said to refine another relation \sim_2 if $\sim_1 \subseteq \sim_2$ when considered as sets of ordered pairs.
- ▶ That is, $x \sim_1 y \Rightarrow x \sim_2 y$.
- ▶ In other words, $[x]_1 \subseteq [x]_2$
- ▶ The Myhill-Nerode relation \sim_L for a language L refines the relation which has 2 classes L and $\Sigma^* \setminus L$.
- ▶ If \sim_1 refines \sim_2 , then \sim_2 is coarser than \sim_1 while \sim_1 is finer than \sim_2
- ▶ Any set U, has a finest and coarsest equivalence relation : finest is the identity and coarsest is universal relation $\{(x,y) \mid x,y \in U\}$.

Myhill-Nerode and the Minimal DFA

Let *L* be some language. Recall the relation \sim_L we defined on *L*. \sim_L is a right congruence refining *L* and is the coarsest such relation.

- ▶ We already know \sim_I is a right congruence refining L.
- ▶ Show that \sim_L is coarsest. Let \equiv be a right congruence on L refining L. Then \equiv refines \sim_L :
 - $x \equiv y \Rightarrow \forall z(xz \equiv yz) \text{ (why?)}$
 - $\forall z(xz \equiv yz) \Rightarrow \forall z(xz \in L \Leftrightarrow yz \in L) \text{ (why?)}$
 - ▶ $\forall z(xz \in L \Leftrightarrow yz \in L) \Rightarrow x \sim_L y$ (definition of \sim_L)

Myhill-Nerode Theorem

The following are equivalent:

- 1. L is regular
- 2. there exists a Myhill-Nerode relation \sim_L for L
- 3. \sim_L is of finite index, that is, has finitely many equivalence classes.

Since \sim_L is the coarsest, the DFA it produces for L has the fewest states among all DFAs for L.

The table-filling algorithm gives the above minimal DFA. Show that the relation \sim_A computed from the collapsed DFA A is same as \sim_L .

Table-filling and the Myhill-Nerode DFA

Assume $A=(Q,\Sigma,\delta,q_0,F)$ is a DFA for L which has been collapsed by the table-filling algorithm. Recall the equivalence computed by the table-filling algorithm

$$p \approx q \Leftrightarrow \forall x \in \Sigma^*(\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

- ▶ If A is the collapsed automaton produced for L by the table-filling algorithm, we show that \sim_L and \sim_A are the same, where \sim_A is the Myhill-Nerode relation constructed from A.
- ▶ $x \sim_L y \text{ iff } \forall z (xz \in L \Leftrightarrow yz \in L)$
- $\blacktriangleright \Leftrightarrow \forall z (\hat{\delta}(q_0, xz) \in F \Leftrightarrow \hat{\delta}(q_0, yz) \in F))$
- $\Rightarrow \hat{\delta}(q_0, x) \approx \hat{\delta}(q_0, y)$
- $ightharpoonup \Leftrightarrow \hat{\delta}(q_0,x) = \hat{\delta}(q_0,y)$ as A is collapsed
- $ightharpoonup \Leftrightarrow X \sim_A V$