Linear Series

X a compact Riemann surface. D a divisor on X.

H'(X, O(D)) is a fin dim C-vector space. In fact, let D be effective, then

 $\dim H^{0}(X, O(D)) \leq \deg D + 1.$

(In general we get $\leq deg(D^{\dagger}) + 1$)

 $(X, O(D)) = \begin{cases} f \in \mathcal{M}_X \mid (f) + D \ge 0 \end{cases}$ = $\begin{cases} Hol \cdot sec \cdot g \text{ corresponding } L \end{cases}$.

PH(X,000) = {E| F~D & E>0} =: |D|

Def: A linear system is a pair (V, D) where V C H (X, O(D)). is a vector subspace.

· Base point.

 $EX: X \xrightarrow{i} P^{n}.$ $L = \varphi^{*}O(i)$ $D = \varphi^{*}H$

Get a linear series $V \subset H^0(X,L)$ given by $V = \{ \varphi^* (\Sigma a; X_i) \}$

|V| C ID| base-point free

{ Restrictions of hyperplanes?

deg(V,D) := deg D dim(V,D) := dim V. dim(V,D) := dim V. $i: X \rightarrow IP^n$

When is i an embedding?

What is an embedding? X, Y complex manifolds. $\varphi: X \to Y$ is an embedding if

- (i) $\times \longrightarrow \varphi(x)$ is a homeomorphism.
- (2) $\forall p \in X$ and $f \in O_{X,p} \exists g \in O_{Y,p}$ such that $f = g|_{X}$.

Restatement g(2): The restriction map $O_Y \rightarrow f_* O_X$ is a surjection.

Non-Example $\Delta = \text{disk } \{z \in \mathbb{C} \mid |z| < 1\}$ $\varphi: \Delta \to \mathbb{C}^2$ $z \mapsto (z,z^3).$

Then of satisfies (1). but not (2).

 $\underline{Frample} \quad Z \mapsto (Z, Z^2). \qquad) \rightarrow ($

For a Riemann surface X, for (2), it suffices to have $9 \in O_{Y,p}$ st $9 \mid_X$ is a uniformizer at p.

Let us examine (2) for $X \rightarrow IP^n$ given by (V, L). Let $p \in X$.

 $\varphi(p) = \left[\sigma_0(p) : \dots : \sigma_n(p) \right]$ By a linear change of courdinates $\sigma_0(x) \neq 0$ & $\sigma_1(p) = 0$.

So locally $p: \varphi(x) = \left(\frac{\sigma_1}{\sigma_0}(x), \frac{\sigma_n(x)}{\sigma_0}(x)\right) \in A^n$ Near $p \mapsto 0$

 $O_{A,0} = (conv)$ powersenes. $\exists f \in \mathcal{O}_{A,0}$ s.t. $f|_X$ is a uniformizer at p€] i s.t. $\frac{\sigma_i}{\sigma_0}(x)$ is a uniformizer at p €] i s.1. of has a simple zero at p Def: (V,D) a linear system. We say it separates tangent vectors at p if 7 of st. or has a simple zero at p. Examine (1): X compact . $X \rightarrow P^n$ nomeo onto image iff one-one. iff $\forall p \neq q$, $\exists \sigma \in V \text{ s.t. } \sigma(p) = 0$ & $\sigma(q) \neq 0$. Del: (VID) separates points if —a—. Thm: Let (V,D) be a base point free linear system. Then the induced map $\varphi: X \to IP^n$ is an embedding iff it separates points and tangent vectors. Explain the terminology.

Extended Example: X = compactification of $\frac{2}{2} = x^3 + 1^3$ D = 3.00. so $\frac{2}{3} = \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \frac{2}{3} = \frac{2}{3} + \frac{2}{3} = \frac{2}{3} =$

(1) =
$$3\infty$$

(x) = $5+t+\infty$
(z) = $p+q+\gamma$.

BPF. Also separates points and tangent veetos.

Note:
$$\varphi(X)$$
 satisfies $AC = A + B^3$

X a compact R.S. K a canonical divisor.

D a divisor on X. of degree d dim
$$H^0(X,O(D)) = d - g + 1 + H^0(X,O(K-D))$$
.

What is
$$g(C)$$
?

$$[x:y:z]$$

$$C \xrightarrow{\varphi} P^1$$
 , $L = O(1)$, X, Y .

Want X, Y not to vanish simult on C i.e. [0:0:1] & C.

 $Q: What is Ram(\varphi)$?

$$C \ni P = [A:B:c] \qquad \text{assume} \quad B \neq 0$$

$$= \begin{bmatrix} A:1:G \end{bmatrix} \in \mathbb{C}^2_{(2,2)}$$

$$= \mathbb{C}^2_{(2,2)}$$

$$C \cap C^{2} \quad def. \quad by \quad f(x,t) = 0$$

$$\int_{0}^{(x,t)} f(x,t) = F(x,1,t).$$

$$C \quad \alpha.$$

$$E \quad \alpha.$$

P is ramified iff
$$\frac{\partial f}{\partial z}(p) = 0$$
.

$$\underline{\text{More}}: \text{Ord } p(\text{Ram} \varphi) = \text{Ord } p \frac{\partial f}{\partial Z} = \text{Ord } p(\frac{\partial F}{\partial Z})$$

So
$$Ram(\varphi) = div(\frac{\partial F}{\partial Z})$$
.
Section of $O(d-1)$.
So $deg Ram(\varphi) = d \cdot (d-1)$
so $2g_c - 2 = (-2) \cdot d + d(d-1)$
 $= d^2 - 3d$
 $g_c = \frac{d^2 - 3d + 2}{2}$
 $g_c = \frac{(d-1)(d-2)}{2}$

- Q:1) Are all compact R.S. of genus (d-1)(d-2)

 Plane curves of degree d?
 - 2) What about R.S. of genus not of this form?
 - 3) What's the "Simplest" way to exhibit a R.S. as a projective curve?