Sequential Modelling of the **Evolution of Word Representations** for Semantic Change Detection

Adam Tsakalidis & Maria Liakata

EMNLP 2020

Lexical Semantic Change

Ah, look at those **blackberries**, aren't they beautiful?

Where? I can't see them..

There! Where this little guy is **tweeting**!

<u>Task</u>: Identify words that change their meaning over time (Tahmasebi et al., 2018)

Applications: historical linguistics, evolution of communities, cultural shifts...

Related Work

Diachronic representations:

```
topics (Frermann & Lapata, 2016; Perrone et al., 2019) graphs (Mitra et al., 2014) neural (Hamilton et al., 2016; Shoemark et al., 2019; Schlechtweg et al., 2019)
```

Common practice (Hamilton et al., 2016):

- Learn word representations in two distinct time periods
- Align them via Orthogonal Procrustes (Schönemann, 1966)
- Measure cosine similarity

+Pros: Highly effective, fast

-Cons: Temporality? Non-linear?

Related Work & Contributions

Approaches taking time into consideration:

- Rely on linear transformations (Kulkarni et al., 2015; Shoemark et al., 2019)
- Focus on word representation (Kim et al., 2014; Dubossarsky et al., 2019)

Our contributions:

- Work with "any" pre-trained word representations over time
- Non-linear, sequential models for semantic change
- Evaluate models in a sequential dataset; compare against strong baselines

Input: Pre-trained word vectors

in T time periods:

 $[W_0, W_1, ..., W_{i-1}, W_i, W_{i+1}, ..., W_{T-1}]$

Goal: Learn how the vectors

evolve over time.

Semantic change: Words whose sequence

is hard to predict

<u>Input</u>: Pre-trained word vectors

in T time periods:

 $[W_0, W_1, ..., W_{i-1}, W_i, W_{i+1}, ..., W_{T-1}]$

Goal: Learn how the vectors

evolve over time.

How: (a) autoencoder

(b) future prediction

(c) multi-task

<u>Input</u>: Pre-trained word vectors

in T time periods:

 $[W_0, W_1, ..., W_{i-1}, W_i, W_{i+1}, ..., W_{T-1}]$

Goal: Learn how the vectors

evolve over time.

<u>How</u>: <u>(a) autoencoder</u> $seq2seq_r$

(b) future prediction

(c) multi-task

Reconstruct input sequence of word vectors through time

Input: Pre-trained word vectors

in T time periods:

 $[W_0, W_1, ..., W_{i-1}, W_i, W_{i+1}, ..., W_{T-1}]$

Goal: Learn how the vectors

evolve over time.

<u>How</u>: (a) autoencoder $seq2seq_r$

(b) future prediction $seq2seq_f$

(c) multi-task

Predict future sequence of word vectors through time

<u>Input</u>: Pre-trained word vectors

in T time periods:

 $[W_0, W_1, ..., W_{i-1}, W_i, W_{i+1}, ..., W_{T-1}]$

Goal: Learn how the vectors

evolve over time.

<u>How</u>: (a) autoencoder $seq2seq_r$ (b) future prediction $seq2seq_f$

(c) multi-task $seq2seq_{rf}$

Reconstruct past & predict future sequences

Dataset

UK Web Archive (Tsakalidis et al., 2019)

Size: 47.8K words

<u>Time period</u>: 2000-2013 - each year corresponds to a timestep in our modelling

<u>Vectors</u>: 100-dim (Mikolov et al., 2013), trained on each year independently

Split: 80/20 (train/test)

Proof of Concept (Experiments)

Synthetic Semantic Shift: force 5% of word vectors in the test set $(w^{(\alpha)})$ to shift their meaning towards $w^{(\beta)}$ over time:

$$w_t^{*(\alpha)} = \lambda_t w_t^{(\alpha)} + (1 - \lambda_t) w_t^{(\beta)}$$

Setting λ:

Selecting $w^{(\beta)}$:

Condition: $c - 0.1 < cos(w_0^{(\alpha)}, w_0^{(\beta)}) \le c$

Note: high c value => challenging! $w^{(\alpha)}$ moves towards a more similar $w^{(\beta)}$ - lower level of change

Proof of Concept (Results)

<u>Evaluation</u>: Rank words in test set based on their average *cosDist*

High cosDist => model failure => semantic change

Metric: average rank of the semantically shifted words (μ_r)

Note: high c value => challenging! $w^{(\alpha)}$ moves towards a more similar $w^{(\beta)}$ - lower level of change

Proof of Concept (Results)

Evaluation: Rank words in test set based on their average cosDist

High cosDist => model failure => semantic change

Metric: average rank of the semantically shifted words (μ_r)

Experiments & Comparisons

<u>Data</u>: 47.8K words - 65 words with altered meaning (Oxford English Dictionary)

Goal: Better rank for the 65 words with altered lexical semantics

Metrics: μ_r (lower is better) rec@k (higher is better)

<u>Baselines</u>: Models from prior work & alterations of our models

Results

			µ_r	rec@5	rec@10	rec@50
	Prior Work	PROCR	30.63	18.46	27.69	78.46
		PROCR_k	31.01	<u>21.54</u>	27.69	75.38
		PROCR_kt	31.91	20.00	27.69	70.77
		RF	30.01	10.77	21.54	78.46
		LSTM_r	27.87	12.31	29.23	80.00
		LSTM_f	28.62	16.92	32.31	76.92
		GT_c	47.87	7.69	16.92	52.31
		GT_β	38.09	13.85	24.62	66.15
		PROCR_*	25.01	<u>21.54</u>	32.31	81.54
	Ours	seq2seq_r	<u>24.75</u>	<u>21.54</u>	<u>38.46</u>	<u>84.62</u>
		seq2seq_f	<u>23.86</u>	<u>26.15</u>	<u>46.15</u>	<u>84.62</u>
		seq2seq_rf	<u>24.28</u>	<u>29.23</u>	<u>36.92</u>	<u>84.62</u>

Results

		μ_r	rec@5	rec@10	rec@50
	PROCR	30.63	18.46	27.69	78.46
	PROCR_k	31.01	<u>21.54</u>	27.69	75.38
	PROCR_kt	31.91	20.00	27.69	70.77
Prior Work	RF	30.01	10.77	21.54	78.46
N N	LSTM_r	27.87	12.31	29.23	80.00
Pric	LSTM_f	28.62	16.92	32.31	76.92
	GT_c	47.87	7.69	16.92	52.31
	GТ_β	38.09	13.85	24.62	66.15
	PROCR_*	25.01	<u>21.54</u>	32.31	81.54
(0	seq2seq_r	<u>24.75</u>	<u>21.54</u>	<u>38.46</u>	<u>84.62</u>
Ours	seq2seq_f	<u>23.86</u>	<u>26.15</u>	<u>46.15</u>	<u>84.62</u>
	seq2seq_rf	<u>24.28</u>	<u>29.23</u>	<u>36.92</u>	84.62

Conclusion

3 variants of non-linear, sequential models for Semantic Change Detection

Experiments with synthetic/real data; comparison against strong baselines

Future Work:

- Contextual word representations (Devlin et al., 2018)
- Different languages/durations
- Anomaly detection approaches
- Different model architectures

References

[1] <u>Devlin et al., 2019</u> . BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In <i>NAACL</i> . [2] <u>Dubossarsky et al., 2019</u> . Time-Out: Temporal Referencing for Robust Modeling of Lexical Semantic Change. In <i>ACL</i> . [3] <u>Frermann & Lapata, 2016</u> . A Bayesian Model of Diachronic Meaning Change. In <i>Computational Linguistics</i> . [4] <u>Giulianelli et al., 2020</u> . Analysing Lexical Semantic Change with Contextualised Word Representations. In <i>ACL</i> . [5] <u>Hamilton et al., 2016</u> . Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. In <i>ACL</i> . [6] <u>Kim et al., 2014</u> . Temporal Analysis of Language through Neural Language Models. In <i>Workshop on Language Technologies and</i>							
Computational Social Science.							
[7] Kulkarni et al., 2015. Statistically Significant Detection of Linguistic Change. In WWW.							
[8] Mikolov et al., 2013. Distributed Representations of Words and Phrases and their Compositionality. In NIPS.							
[9] Mitra et al., 2014. That's Sick Dude!: Automatic Identification of Word Sense Change across Different Timescales. In ACL.							
[10] Perrone et al., 2019. GASC: Genre-aware Semantic Change for Ancient Greek. In International Workshop on Computational							
Approaches to Historical Language Change.							
[11] Schlechtweg et al., 2019. A Wind of Change: Detecting and Evaluating Lexical Semantic Change across Times and Domains.							
In ACL.							
[12] Schönemann, 1966. A Generalized Solution of the Orthogonal Procrustes Problem. In Psychometrika.							
[13] Shoemark et al., 2019. Room to Glo: A Systematic Comparison of Semantic Change Detection Approaches with Word							
Embeddings. In EMNLP.							
[14] <u>Tahmasebi et al., 2018</u> . Survey of Computational Approaches to Lexical Semantic Change. In <i>ArXiv</i> .							
[15] <u>Tsakalidis et al., 2019</u> . Mining the UK Web Archive for Semantic Change Detection. In <i>RANLP</i> .							

Thank you!

<u>Acknowledgements</u>: This work was supported by The Alan Turing Institute (grant EP/N510129/1) and by a Turing Al Fellowship to M. Liakata, funded by the Department of Business, Energy & Industrial Strategy.