Count plots and bar plots

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Categorical plots

- Examples: count plots, bar plots
- Involve a categorical variable
- Comparisons between groups

catplot()

- Used to create categorical plots
- Same advantages of relplot()
- Easily create subplots with col= and row=

countplot() vs. catplot()

countplot() vs. catplot()

y="Internet usage", makes the countplot horizontal

Changing the order

```
import matplotlib.pyplot as plt
import seaborn as sns
category_order = ["No answer",
                   "Not at all",
                   "Not very",
                   "Somewhat",
                   "Very"]
sns.catplot(x="how_masculine",
            data=masculinity_data,
            kind="count",
            order=category_order)
plt.show(
                     works for all catplots()
```


Bar plots

Displays mean of quantitative variable per category one (day) to many (total_bills) relationship

95% confidence interval as an error bar (by default)

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

plt.show()

Confidence intervals

 Lines show 95% confidence intervals for the mean by default ci=95

Shows uncertainty about our estimate

Assumes our data is a random sample

95% chance the mean lies in the range , ci=95

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Turning off confidence intervals

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="day",
            y="total_bill",
            data=tips,
            kind="bar",
            ci=None)
plt.show()
```


¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Changing the orientation

one to many relationship: data (1) ->(m)total_bill

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Creating a box plot

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What is a box plot?

- Shows the distribution of quantitative data
- See median, spread, skewness, and outliers
- Facilitates comparisons between groups

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

How to create a box plot

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Change the order of categories

```
import matplotlib.pyplot as plt
import seaborn as sns
 = sns.catplot(x="time",
                y="total_bill",
                data=tips,
                kind="box",
                order=["Dinner",
                       "Lunch"])
plt.show()
```


¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Omitting the outliers using `sym`

```
import matplotlib.pyplot as plt
import seaborn as sns
 = sns.catplot(x="time",
                y="total_bill",
                data=tips,
                kind="box",
                sym="")
plt.show()
```

sym -> how outliers are shown:"" mean dont show

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Changing the whiskers using `whis`

whis = 1.5 (default) Extend to $1.5 \times IQR$ from Q1/Q3

- By default, the whiskers extend to 1.5 * the interquartile range
- Make them extend to 2.0 * IQR: whis=2.0
- Show the 5th and 95th percentiles: whis=[5, 95]
- Show min and max values: whis=[0, 100] Whiskers extend from the minimum to the maximum value. This means: All data points are included in the whiskers no outliers shown!

Changing the whiskers using `whis`

```
import matplotlib.pyplot as plt
import seaborn as sns
g = sns.catplot(x="time",
                y="total_bill",
                data=tips,
                kind="box",
                whis=[0, 100])
plt.show()
               IQR=Q3-Q1
```

Q1 – 1.5 × IQR (if there's a data point \neq that) Q3 + 1.5 × IQR (if there's a data point \neq that)

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Point plots

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What are point plots?

Points show mean of quantitative variable

 Vertical lines show 95% confidence intervals that mean lies in the range

default ci=95

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Line plot: average level of nitrogen dioxide over time

Point plot: average restaurant bill, smokers vs. non-smokers

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Point plots vs. line plots

Both show:

- Mean of quantitative variable
- 95% confidence intervals for the mean

Differences:

- Line plot has quantitative variable (usually time) on x-axis
- Point plot has categorical variable on x-axis

Point plots vs. bar plots

Both show:

- Mean of quantitative variable
- 95% confidence intervals for the mean

Point plots vs. bar plots

Creating a point plot

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="age",
            y="masculinity_important",
            data=masculinity_data,
            hue="feel_masculine",
            kind="point")
plt.show()
```


Disconnecting the points

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="age",
            y="masculinity_important",
            data=masculinity_data,
            hue="feel_masculine",
            kind="point",
            join=False)
plt.show()
```


Displaying the median

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="smoker",
            y="total_bill",
            data=tips,
            kind="point")
plt.show()
```


¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Displaying the median

```
25
import matplotlib.pyplot as plt
import seaborn as sns
                                                    20
from numpy import median
                                                    15
sns.catplot(x="smoker",
                                                  total bill
             y="total_bill",
             data=tips,
                                                    10
             kind="point",
             estimator=median)
               -> mean, median, maz eto
plt.show()
                                                              Yes
                                                                              No
                                                                     smoker
```

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Customizing the confidence intervals

¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Turning off confidence intervals

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="smoker",
            y="total_bill",
            data=tips,
            kind="point",
            ci=None)
plt.show()
```


¹ Waskom, M. L. (2021). seaborn: statistical data visualization. https://seaborn.pydata.org/

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

