Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизации обработки информации (АОИ)

ПОСТРОЕНИЕ ФОРМАЛЬНОЙ МОДЕЛИ СИСТЕМЫ

Отчет по практической работе №3

по дисциплине «Теория систем и системный анализ»

Выполнил:	
Студент гр. 422	-3
	_ К. Л. Захаров
«»	2014 г.
Проверил:	
преподаватель	
I	В. Н. Щербаков
«»	2014 г.
профессор каф.	* * *
	М. П. Силич
« »	2014 г

Построение формальной модели системы

Описание

Цель работы Получить практические навыки в формировании базовых моделей («черного ящика», состава, структуры) системы и описании их на формальном языке.

Формируемые компетенции

- владение культурой мышления, способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения (ОК-1).
- способность к формализации в своей предметной области с учетом ограничений используемых методов исследования (ПК-2).

Самостоятельная работа Изучение понятия модели, классификации моделей, языков описания моделей, базовых моделей систем.

Ход работы

Выбор системы Ноутбук

Построение формальной модели «Черного ящика» Для ноутбука множество входных переменных $X = \{x_i\}$ включает

```
x_0 - запуск программ
```

 x_1 - ввод с клавиатуры

 x_2 - перемещение указателя на $\delta x \delta y$ (мышь,тачпад,...)

 x_3 - информационный радио сигнал (wifi, bluetooth)

 x_4 - загрузка внешнего носителя данных

 x_5 - сигналы др. внешн. устройств (usb/com)

 x_6 - информационный сигнал по витой паре

 x_7 - звуковй сигнал с микрофона

 x_8 - кнопка вкл./выкл.

 x_9 - подключение/отключение зарядки

Множество выходных переменных $Y = \{y_i\}$ включает

 y_1 - запуск и работа программ

 y_2 - засветка пикселей экрана

 y_3 - звук на динамиках

 y_4 - информационный радиосигнал

 y_5 - запись на внешний носитель

 y_6 - ответный сигнал для внешних устройств (usb/com)

 y_7 - информационный сигнал по витой паре

 y_8 - индикаторы зарядки, загрузки винчестера/Ц Π

Множество переменных состояния $Z = \{Z_i\}$ включает

 z_1 - сетевая передача

 z_2 - запись/считывание информации с носителей

 z_3 - загруженность ЦП/видеокарты

 z_4 - работа пользовательских программ

Опишем наличие зависимостей между входными, выходными переменными и переменными состояния, а также закономерности, присущие системе: **ОШИБКА** (см. комментарии в Work.tex)

$$z_{1} = f_{1}(x_{3}, x_{6}, y_{4}, y_{7})$$

$$z_{2} = f_{2}(y_{5}, y_{6})$$

$$z_{3} = f_{3}(y_{1}, y_{4}, y_{5}, y_{7})$$

$$z_{4} = f_{4}(y_{1})$$

$$y_{1} = f_{5}(x_{0}, x_{3}, x_{6}, x_{7})$$

$$y_{2} = f_{5}(y_{1})$$

$$y_{3} = f_{6}(y_{1})$$

$$y_{4} = f_{8}(y_{1})$$

$$y_{5} = f_{9}(y_{6})$$

$$y_{6} = f_{10}(x_{4}, x_{5})$$

$$y_{7} = f_{11}(y_{1})$$

$$y_{8} = f_{12}(x_{8}, x_{9}, y_{4}, y_{5}, y_{7})$$

$$x_{0} = f_{13}(x_{1}, x_{2})$$

Построение формальной модели состава Введем множество $S = \{s_i\}$ подсистем и элеметов, которое включает

```
s_1 - ноутбук в целом s_2 - питание (БП/аккумулятор) s_3 - пользовательский ввод/вывод s_4 - сетевой обмен s_5 - программное обеспечение (в т.ч. драйвера, ОС)
```

Опишем модель состава (по отношению агрегации $R^{ag} = S \times S$, т.е. включения систем одной в другую)

$$s_1 R^{ag} s_2$$
, $s_1 R^{ag} s_3$, $s_1 R^{ag} s_4$, $s_1 R^{ag} s_5$, $s_3 R^{ag} s_5$, $s_4 R^{ag} s_5$

Построение формальной модели структуры Множество $V = \{v_i\}$

объектов окружающей среды включает

 v_1 - пользователь

 v_2 - розетка (220V) / постоянное напряжение (15-19V)

 v_3 - сети

 v_4 - внешние устройства (в т.ч. др. компьютеры в особом режиме)

Для модели структуры ноутбука введем множества R^v - физические воздействия и R^s - информационные сигналы.

Тогда модель структуры можно записать следующим образом

 $v_1 R^v s_1$ - носит, открывает/захлопывает, включает/выключает, клеит наклейки, безобразничает, роняет

 $v_1 R^v s_2$ - втыкает/выдергивает зарядку, вытаскивает/вставляет батарею

 $v_1 R^v s_3$ - жмет кнопки, водит указателем, кричит в микрофон

 $s_3 R^v v_1$ - засветка пикселей экрана, вибрация динамиков, изменение значений индикаторов

 $v_2 R^v s_2$ - подача напряжения

 $s_2R^ss_3$ - изменение значений индикаторов

 $s_2 R^s s_5$ - передача информации о питании

 $v_3 R^v s_4, s_4 R^v v_3$ - радиоволны, ВЧ импульсы (проводная связь), оптический сигнал

 $v_4 R^v s_4, s_4 R^v v_4$ - радиоволны, импульсный сигнал (проводная связь), ИК излучение

 $s_4 R^s s_5$ - интерпретация информации согласно принятым абстракциям (подъем по уровням модели OSI)

 $s_5 R^s s_4$ - кодирование абстракций по принятым соглашениям (протоколам передачи данных)

 $s_3R^ss_5$ - передача кодов нажатых кнопок, данных о перемещении указателя, колебаниях мембран, энергии в ячейках матрицы веб-камеры

 $s_5 R^s s_3$ - приведение к формату вывода, пригодному для драйверов (возможно через доп. устройства)

 $s_5 R^s s_1$ - управление ресурсами (энергопотребление, память, вычисления)