TP-ML-NANA-ROMARIC-v1

September 16, 2021

1 TRAVAUX PRATIQUES

1.0.1 COURS DE MACHINE LEARNING - UNIVERSITE VIRTUELLE DU BURKINA FASO - MASTER FD & IA

- ETUDIANT : NANA SIDWENDLUIAN ROMARIC
- ENSEIGNANT : MADAME BIRBA ELIANE

1.0.2 1. Chargement des données

```
[1]: #importing pyspark
import pyspark

#importing sparksession
from pyspark.sql import SparkSession

from pyspark.sql.functions import *

from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator

from pyspark.ml.classification import DecisionTreeClassifier

from pyspark.ml.classification import RandomForestClassifier
```

- [2]: #creating a sparksession object and providing appName
 spark=SparkSession.builder.master("local").appName("tp").getOrCreate()
- [3]: datadft = spark.read.format("csv").options(header=True,inferSchema=True).

 →load("data/ccdefault.csv")

1.0.3 2. Analyse exploratoire

root
|-- ID: integer (nullable = true)
|-- LIMIT_BAL: integer (nullable = true)

```
|-- EDUCATION: integer (nullable = true)
     |-- MARRIAGE: integer (nullable = true)
    |-- AGE: integer (nullable = true)
     |-- PAY 0: integer (nullable = true)
     |-- PAY_2: integer (nullable = true)
     |-- PAY_3: integer (nullable = true)
    |-- PAY_4: integer (nullable = true)
    |-- PAY_5: integer (nullable = true)
     |-- PAY_6: integer (nullable = true)
     |-- BILL_AMT1: integer (nullable = true)
     |-- BILL_AMT2: integer (nullable = true)
     |-- BILL_AMT3: integer (nullable = true)
     |-- BILL_AMT4: integer (nullable = true)
     |-- BILL_AMT5: integer (nullable = true)
    |-- BILL_AMT6: integer (nullable = true)
     |-- PAY_AMT1: integer (nullable = true)
     |-- PAY_AMT2: integer (nullable = true)
    |-- PAY_AMT3: integer (nullable = true)
     |-- PAY_AMT4: integer (nullable = true)
     |-- PAY_AMT5: integer (nullable = true)
    |-- PAY_AMT6: integer (nullable = true)
     |-- DEFAULT: integer (nullable = true)
   datadft.count()
[5]: 30000
[6]: datadft.show(5)
    ---+----+
    | ID|LIMIT_BAL|SEX|EDUCATION|MARRIAGE|AGE|PAY_0|PAY_2|PAY_3|PAY_4|PAY_5|PAY_6|BI
   LL AMT1|BILL AMT2|BILL AMT3|BILL AMT4|BILL AMT5|BILL AMT6|PAY AMT1|PAY AMT2|PAY
   AMT3 | PAY_AMT4 | PAY_AMT5 | PAY_AMT6 | DEFAULT |
    2|
    | 1|
            200001
                             21
                                     1 | 24 |
                                              21
                                                    2|
                                                        -1|
                                                              -1|
                                                                   -2|
                                                                         -2|
                                           0|
                                                    01
                                                             0|
   3913|
                                  0|
                                                                   689|
             3102
                       689|
   01
                    0|
                             01
            01
                                    1|
    | 2|
           120000|
                   2|
                                     2 | 26 | -1 |
                                                    2|
                                                              01
                                                                    0|
                                                                          21
   2682
             1725
                      26821
                               3272
                                        3455
                                                  3261
                                                             0|
                                                                  1000
   1000
            1000|
                       0|
                             2000
                                       1|
    1 31
            900001
                                     2 | 34 |
                                              0|
                                                    0|
                                                               01
                                                                    01
                                                                          01
   29239
             14027
                      13559
                               14331
                                        14948
                                                  15549
                                                           1518
                                                                   1500 l
```

|-- SEX: integer (nullable = true)

1000	1000	1000	5000	0						
4	50000	2	2	1 37	0	0	0	0	0	0
46990	48233	49291	28314	289	59	29547	20	001	2019	
1200	1100	1069	1000	0						
5	50000	1	2	1 57	-1	0	-1	0	0	0
8617	5670	35835	20940	1914	6	19131	200	001	36681	
10000	9000	689	679	0						
++	+	+	+	++-	+	+	+	+-	+	+
+-		-+	-+	+	+		-+		+	+
++										
only showing top 5 rows										

[7]: datadft.describe(datadft.columns).show()

4				
, ,		•	•	
+	· +	·	· +	
	· +	· +	· +	+
	+	·+	+	
+				+
summary	ID	LIMIT_BAL	SEX	
EDUCATION	MARRIAGE	AGE	PAY_0	
PAY_2	PAY_3	PAY_4	PAY_5	
PAY_6	BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4
BILL_AMT5	BILL_AMT6	PAY_AMT1	PAY_AMT2	
PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6	
DEFAULT				
	•	•	+	
·	•	•		
•	•	•		•
			+	
+	·	·		
count	300001	300001	300001	·
30000	30000	300001	300001	
30000	30000	30000	30000	
30000	30000	30000	30000	30000
30000	30000	30000	30000	30000
30000	30000	30000	30000	
mean	15000.5 1674	84.32266666667 1.6	6037333333333332 1.	8531333333333
333 1.5518666	6666666667	35.4855		
-0.0167 -0.13376666666666667 -0.1662 -0.2206666666666668				
-0.2662	-0.2911	51223.3309 4917	9.07516666667	47013.1548
	66666 40311.4009666	•	7604 5663.5	805
5921.1635	•	326.076866666666		
4799.38763333334 5215.502566666667 0.2212				
stddev 8660	0.398374208891 1297	747.66156720246 0.4	4891291960902602 0.	7903486597207

269 | 0.5219696006132467 | 9.217904068090155 | 1.1238015279973335 |

 $1.1971859730345495 \\ | 1.1968675684465686 \\ | 1.1691386224023357 \\ | 1.1331874060027525 \\ | 1.1691386224023357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.169138622402357 \\ | 1.1691386240257 \\ | 1.169138627 \\ | 1.169138627 \\ | 1.16913867 \\ |$ 149987625607897 | 73635 . 86057552966 | 71173 . 76878252832 | 69349 . 38742703677 | 64332 . 8561 $33916444 \hspace{-0.075cm}\mid\hspace{-0.075cm} 60797.15577026471 \hspace{-0.075cm}\mid\hspace{-0.075cm} 59554.1075367459 \hspace{-0.075cm}\mid\hspace{-0.075cm} 16563.28035402577 \hspace{-0.075cm}\mid\hspace{-0.075cm} 23040.870402057186$ | 17606.96146980311 | 15666.159744032062 | 15278.305679144742 | 17777.46577543531 | 0.415 06180569093254

min	1	10000	1	
0	0	21	-2	-2
-2	-2	-2	-2	-165580
-69777	-157264	-170000	-81334	-339603
0	0	0	0	0
0	0			
max	30000	1000000	2	
6	3	79	8	8
8	8	8	8	964511
983931	1664089	891586	927171	961664
873552	1684259	896040	621000	
426529	528666	1		
+	+	+	+	
+				
+				
	+	+	-+	+
	+		+	
+	+		+	+

[8]: datadft.describe("LIMIT_BAL", "BILL_AMT1", "PAY_AMT1", "BILL_AMT2", "PAY_AMT2"). →show()

+	+	+		
-+	+			
summary	LIMIT_BAL	BILL_AMT1	PAY_AMT1	
BILL_AMT2	PAY_AMT2			
+	+			
-+	+			
count	30000	30000	30000	
30000	30000			
mean 16748	4.32266666667	51223.3309		
5663.5805 4917	9.07516666667	5921.1635		
stddev 12974	7.66156720246 736	35.86057552966 16563	3.28035402577 71173.76878	325283
2 23040.870402	057186			
min	10000	-165580	0	
-69777	0			
max	1000000	964511	873552	
983931	1684259			
+		+	+	
-+	+			

```
+----+
    summary
                   LIMIT_BAL|
                        30000|
       count |
                                       30000|
        mean | 167484.32266666667 |
                                      35.4855|
    | stddev|129747.66156720246|9.217904068090155|
         min
                        10000
         max
                      1000000|
                                          79|
[10]: datadft.groupBy("SEX").count().orderBy(asc("count")).show() # SEXE ? HOMME=1
      →FEMME=2
    +---+
    |SEX|count|
    +---+
    | 1|11888|
    | 2|18112|
    +---+
[11]: datadft.groupBy("DEFAULT").count().orderBy(asc("count")).show() # DÉFAUT DE_
      → PAIEMENT ? OUI=1 NON=0
    +----+
    |DEFAULT|count|
    +----+
          1 | 6636 |
          0 | 23364 |
    +----+
[12]: datadft.groupBy(['DEFAULT', 'SEX']).count().orderBy(asc("DEFAULT")).show()
     # repartition de la variable cible en fonction du sexe
    +----+
    |DEFAULT|SEX|count|
    +----+
          0 | 1 | 9015 |
          0 | 2 | 14349 |
          1 2 3763
          1 | 1 | 2873 |
    +----+
```

[9]: datadft.describe("LIMIT_BAL", "AGE").show()

[13]: datadft.groupBy(['DEFAULT', 'EDUCATION']).count().orderBy(asc("DEFAULT")).show()
repartition de la variable cible en fonction du niveau d'instruction

+	+	++
DEFAULT	EDUCATION	count
+		++
0	0	14
0	1	8549
0	5	262
0	6	43
0	2	10700
0] 3	3680
0	4	116
1	2	3330
1	3	1237
1	1	2036
1	5	18
1	4	7
1	6	8
+	·	++

Les clients qui ont un niveau d'instruction plus élévé sont les plus nombreux à avoir un défaut de paiement D'après l'énoncé, la variable EDUCATION à pour valeur $\{1 = \text{graduate school}; 2 = \text{university}; 3 = \text{high school}; 4 = \text{others}\}$. Nous constatons cependant qu'il y a des lignes où la variable EDUCATION a des valeurs plus grandes que 4. Dans ce fichier nous conservons ces lignes, puis nous appliquerons un traitement plus tard dans un autre fichier.

[14]: datadft.groupBy(['DEFAULT','MARRIAGE']).count().orderBy(asc("DEFAULT")).show()
repartition de la variable cible en fonction du statut matrimonial

+	+-	+	+
DEFAU	JLT M	ARRIAGE	count
+	+-	+	+
1	0	0	49
1	0	1	10453
1	0	2	12623
1	0	3	239
1	1	0	5
1	1	2	3341
1	1	1	3206
1	1	3	84
+	+-	+	+

D'après l'énoncé, la variable MARRIAGE à pour valeur $\{1 = \text{married}; 2 = \text{single}; 3 = \text{others} \}$. Nous constatons cependant qu'il y a des lignes où la variable MARRIAGE a une valeur 0 dans certaines lignes. Dans ce fichier nous conservons ces lignes, puis nous appliquerons un traitement plus tard dans un autre fichier.

```
[15]: datadft.groupBy(['DEFAULT','AGE']).count().orderBy(asc("DEFAULT")).show()
     +----+
     |DEFAULT|AGE|count|
     +----+
            0 | 42 | 609 |
            0 | 27 | 1164 |
            0| 39|
                   755|
            0| 58|
                     91|
            0 | 71 |
                      31
            0 | 28 | 1123 |
            0| 56|
                    129|
            0| 50|
                    310|
            0 | 22 |
                    391|
            0 | 31 |
                    988 l
            0 | 67 |
                     11|
            0 | 40 |
                    683|
            0 | 57 |
                     95|
            0| 32|
                    933|
            0| 60|
                     44|
            0| 73|
                      1|
            0 | 65 |
                     19|
            0| 70|
                      8|
            0 | 48 |
                    3621
            0 | 25 |
                    884|
     +----+
     only showing top 20 rows
[16]: datadft.groupBy(['DEFAULT','LIMIT_BAL']).count().orderBy(desc("DEFAULT")).
       →orderBy(desc("count")).show()
     +----+
     |DEFAULT|LIMIT_BAL|count|
            0|
                  50000| 2480|
            0|
                  20000 | 1278 |
            01
                 200000| 1258|
            01
                  80000 | 1204 |
            01
                  30000 | 1042 |
            0|
                150000| 923|
                 50000| 885|
            1|
            0|
                 180000| 819|
            01
                 100000| 776|
     I
            0|
                 360000| 727|
            1|
                  20000| 698|
            0|
                 500000| 641|
            0|
                 230000| 624|
```

```
01
             60000| 592|
         01
            140000| 579|
         0|
            130000| 572|
         11
             300001 5681
         01
             160000| 557|
         0|
             120000| 547|
    +----+
    only showing top 20 rows
[17]: datadft.createOrReplaceTempView("dataView")
    spark.sql("SELECT DEFAULT, avg(LIMIT BAL) AS BALANCE FROM dataView GROUP BY ...
     →DEFAULT ORDER BY BALANCE DESC").show()
    +----+
    |DEFAULT|
                   BALANCE
    +----+
         0 | 178099 . 72607430234 |
         1 | 130109 . 65641952984 |
    +----+
[18]: datadft
[18]: DataFrame[ID: int, LIMIT_BAL: int, SEX: int, EDUCATION: int, MARRIAGE: int, AGE:
    int, PAY_0: int, PAY_2: int, PAY_3: int, PAY_4: int, PAY_5: int, PAY_6: int,
    BILL_AMT1: int, BILL_AMT2: int, BILL_AMT3: int, BILL_AMT4: int, BILL_AMT5: int,
    BILL_AMT6: int, PAY_AMT1: int, PAY_AMT2: int, PAY_AMT3: int, PAY_AMT4: int,
    PAY_AMT5: int, PAY_AMT6: int, DEFAULT: int]
    1.0.4 3. Preparation des données
    Renommons la colonne DEFAULT en label
[19]: # datadft bis = datadft.
     →withColumn("ID", "LIMIT_BAL", "SEX", "EDUCATION", "MARRIAGE", "AGE", "PAY_0", "PAY_2", "PAY_3", "PAY
    renamedDatadft = datadft.withColumnRenamed("DEFAULT","label")
[20]: renamedDatadft.show(5)
    ---+---+
    | ID|LIMIT_BAL|SEX|EDUCATION|MARRIAGE|AGE|PAY_0|PAY_2|PAY_3|PAY_4|PAY_5|PAY_6|BI
    LL_AMT1|BILL_AMT2|BILL_AMT3|BILL_AMT4|BILL_AMT5|BILL_AMT6|PAY_AMT1|PAY_AMT2|PAY_
    AMT3|PAY_AMT4|PAY_AMT5|PAY_AMT6|label|
```

01

210000| 613|

```
20000| 2|
                          2|
                                  1 | 24 | 2 | 2 | -1 | -1 | -2 |
    | 1|
                                                                  -2|
                               01
                                      01
                                               0|
                                                        0|
    3913|
            3102
                     689|
                                                             689
    0|
           0|
                   0|
                          0|
                               1|
           120000| 2|
                          2|
                                  2 | 26 | -1 |
                                               2|
                                                    0| 0|
                                                                   21
    | 2|
                                                              01
    2682|
            1725
                     2682
                             3272
                                     3455
                                              3261
                                                        0|
                                                             1000|
    1000|
           1000
                     0|
                          2000
                                  1|
                                  2 | 34 | 0 |
    | 3|
           90000| 2|
                           21
                                               0|
                                                    0| 0|
                                                              01
                                                                   01
    29239
            14027|
                     13559
                             14331
                                     14948
                                              15549
                                                      1518
                                                             1500|
    10001
                          5000
           1000
                   1000
                                  0|
                                  1 | 37 | 0 |
                                               0|
                                                    0| 0|
                                                              0|
    | 4|
           50000| 2|
                           2|
                                                                   0|
    46990|
            48233|
                     49291
                             28314
                                     28959|
                                              29547|
                                                      2000
                                                             2019
    1200|
                          1000|
           1100|
                   1069|
                                  0|
           50000 1
                                  1 | 57 | -1 |
                                               0|
                                                   -1| 0|
                                                              0|
    | 5|
                           2|
                                                                   0|
    8617|
                            209401
                                     19146|
            5670|
                    35835|
                                             19131|
                                                     2000|
    100001
            90001
                     689 l
                            679 l
                                   01
    ______
    ---+----+
    only showing top 5 rows
[21]: # colonne des etiquettes
     colLabel = "label"
     # colonne numerique
     colNum = [col for col in renamedDatadft.columns if col!= colLabel]
[22]: colNum
[22]: ['ID',
      'LIMIT BAL',
      'SEX',
      'EDUCATION',
      'MARRIAGE',
      'AGE',
      'PAY_O',
      'PAY_2',
      'PAY_3',
      'PAY_4',
      'PAY_5',
     'PAY_6',
      'BILL_AMT1',
      'BILL_AMT2',
      'BILL_AMT3',
      'BILL_AMT4',
      'BILL AMT5',
```

```
'PAY_AMT1',
      'PAY_AMT2',
      'PAY_AMT3',
      'PAY_AMT4',
      'PAY_AMT5',
      'PAY_AMT6']
[23]: from pyspark.ml.feature import VectorAssembler, StandardScaler
     va = VectorAssembler().setInputCols(colNum).
      ⇒setOutputCol("to_be_scaled_features")
     featuredDatadft = va.transform(renamedDatadft)
     scaler = StandardScaler().setInputCol("to_be_scaled_features").
      ⇔setOutputCol("features")
     dataset = scaler.fit(featuredDatadft).transform(featuredDatadft).
      ⇔select("features", "label")
     dataset.show(5)
     +----+
                 features|label|
     +----+
                            1|
     |[1.15468129385139...|
     |[2.30936258770278...|
                           1|
     [3.46404388155417...]
                           01
     |[4.61872517540556...|
                           0|
     15.77340646925695...
     +----+
     only showing top 5 rows
     1.0.5 4. Application des modèles
[24]: trainSet, testSet = dataset.randomSplit([0.8,0.2])
[25]: trainSet.count()
[25]: 24010
[26]: testSet.count()
[26]: 5990
```

'BILL_AMT6',

[27]: trainSet.show(5)

1.0.6 4.1 Logistic Regression

```
[28]: from pyspark.ml.classification import LogisticRegression from pyspark.ml.evaluation import BinaryClassificationEvaluator

lr = LogisticRegression(maxIter=100, regParam=0.0001, elasticNetParam=0.1)
lrModel = lr.fit(trainSet)
```

```
[29]: # trainingSummary = lrModel.summary
print("Coefficients: " + str(lrModel.coefficients))
print("Intercept: " + str(lrModel.intercept))
```

Coefficients: [-0.021741799077511652,-0.10177122033887191,-0.04521580458898812,-0.07114937293373588,-0.07936493858026904,0.06967836813214995,0.6251280383863709, 0.11493582924386118,0.06944719240978961,0.05505572695441151,0.037448435283436596,0.0005579010558137603,-0.3227225426356211,-0.03194435843587904,0.11429461888777 985,0.05079451862353235,0.01823735451185488,0.05562332444776182,-0.1562284789069 5163,-0.2291329735750258,-0.08667448207609935,-0.05519722837168079,-0.0664881969 8795533,-0.045074589359989314]

Intercept: -0.6853446776524614

```
[30]: summary = lrModel.summary
print("training set AreaUnderROC: ",summary.areaUnderROC)
summary.roc.show()
summary.pr.show()
```

```
10.001871657754010...10.0114877589453860641
0.002085561497326... 0.015254237288135594
0.002139037433155...0.019585687382297552
0.002459893048128... | 0.022975517890772127 |
10.002513368983957...10.0273069679849340871
0.002727272727272...0.031073446327683617
|0.003262032085561...| 0.03370998116760829|
10.003475935828877...10.0374764595103578151
|0.003850267379679...| 0.04067796610169491|
0.004278074866310... 0.043691148775894535
|0.004652406417112299| 0.04689265536723164|
0.005026737967914439 0.050094161958568736
0.005240641711229946 0.05386064030131827
0.005508021390374332 0.05743879472693032
0.005989304812834224 0.060263653483992465
10.0063101604278074871 0.063653483992467051
+----+
only showing top 20 rows
```

|0.019585687382297552|0.72222222222222

 $\hspace{0.15cm} \hspace{0.1cm} \hspace{0.1cm}$

| 0.037476459510357815 | 0.7537878787878788 | | 0.04067796610169491 | 0.75 |

0.043691148775894535|0.7435897435897436|

0.043691148775894535[0.7435897435897436]

0.050094161958568736|0.7388888888888888

0.05386064030131827|0.7447916666666666|

0.05743879472693032|0.7475490196078431|

|0.060263653483992465|0.7407407407407407

| 0.06365348399246705|0.7412280701754386|

+----+

only showing top 20 rows

```
[31]: lr_predictions = lrModel.transform(testSet)
lr_predictions.select("prediction", "label", "features").show(25)

lr_evaluator = BinaryClassificationEvaluator()
print('Test Area Under ROC', lr_evaluator.evaluate(lr_predictions))
```

```
|prediction|label|
                               features
  -----+
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.0
                 1|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.0
                 1|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
only showing top 25 rows
```

Test Area Under ROC 0.7324437493693866

```
[32]: lr_evaluator2 = BinaryClassificationEvaluator()
    accuracy = lr_evaluator2.evaluate(lr_predictions)
    print("Accuracy = %s" % (accuracy))
    print("Test Error = %s" % (1.0 - accuracy))
```

Accuracy = 0.7324437493693866 Test Error = 0.2675562506306134

1.0.7 4.2 Decision Tree

```
|prediction|label|
                                 features
        0.0
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 0|(24,[0,1,2,3,4,5,...|
        0.01
                 1|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
        0.0
                 1|(24,[0,1,2,3,4,5,...|
        0.0
                 0|(24,[0,1,2,3,4,5,...|
```

```
only showing top 25 rows
```

Test Area Under ROC: 0.37598343203226675

1.0.8 4.3 Random Forest

```
[35]: from pyspark.ml.classification import RandomForestClassifier from pyspark.ml.evaluation import BinaryClassificationEvaluator

rfClassifier = RandomForestClassifier().setLabelCol("label").

→setFeaturesCol("features")

trainedModel = rfClassifier.fit(trainSet)

# make predictions on the test data

rf_predictions = trainedModel.transform(testSet)

rf_predictions.select("prediction", "label", "features").show(25)

# evaluate random forest model

rf_evaluator = BinaryClassificationEvaluator()

print("Test Area Under ROC: " + str(rf_evaluator.evaluate(rf_predictions, □

→{rf_evaluator.metricName: "areaUnderROC"})))
```

```
+----+
|prediction|label|
                               features|
        0.0
                1|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                1|(24,[0,1,2,3,4,5,...|
        0.01
                1|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                1|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.0
                0|(24,[0,1,2,3,4,5,...|
        0.01
                1|(24,[0,1,2,3,4,5,...|
        0.0
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                1|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
        0.01
                0|(24,[0,1,2,3,4,5,...|
                1|(24,[0,1,2,3,4,5,...|
        0.01
```

Test Area Under ROC: 0.7687806898059399

```
[36]: rf_evaluator2 = BinaryClassificationEvaluator(labelCol="label")
    rf_accuracy = rf_evaluator2.evaluate(rf_predictions)
    print("Accuracy = %s" % (rf_accuracy))
    print("Test Error = %s" % (1.0 - rf_accuracy))
```

Accuracy = 0.7687806898059399 Test Error = 0.23121931019406006