Lab report outline for the Natural Science Program Kungholmens International Section

Title or Cover Page

Title - the reader should be able to understand the goal of the practical.

Name and Date the practical was performed

Lab partners.

Introduction:

Background: what is this lab going to be about, why is this important to know, what do we already know, and what is the relevance.

Theory: what technical information the reader needs to know so they can understand the experiment.

Overall question/Aim:

The overall question or aim is the problem or issue that you want to investigate. It should lead directly to the hypothesis.

Hypothesis:

The hypothesis is a statement about the relationship between an independent variable and a dependent variable. The hypothesis should basically imply or say what the **method** is going measure.

Method: (written in past tense)

Should follow directly from the hypothesis. The method needs to provide a clear description of how the dependent variable will be tested and measured. It must also clearly indicate how the independent variable will measured/changed/controlled.

A good method will also identify variables that are controlled or held constant.

Present your independent variable, the dependent variable, and the controlled variables in a bullet point list or table. Make sure to add a subheading called *Variables* under the heading **Method**. If you choose a table it needs a table number (in bold) and descriptive text – all in font size 10 if the body text is in font size 12). Then there could be a subtitle called Procedure where you describe the experimental set-up.

A method is more than a recipe or set of instructions

Results:

Raw and processed data in a table:

Table number: Table description (all in font size 10)

Table

Processed data in a graph:

Figure number: Figure description (all in font size 10)

Discussion and Conclusion:

Analysis: this is where you analyze your results and look for patterns/relationships/problems – you describe the processed data and graph. **You may only use your own results**

Conclusion: this is the answer to the hypothesis. Is the hypothesis supported/accepted or refuted/rejected?

Restate the hypothesis for clarity use the data and analysis to say if it is supported or not by the evidence/data collected.

Evaluation:

How certain are you that your conclusion is sound (good) / probable? What are potential issues in the method that could cast doubt on the conclusion? Human error is not a source of error unless you clarify exactly what you mean. All science is conducted by humans. There are random errors and systematic errors.

- Random errors are (like the name suggests) completely random. They are unpredictable and can't be eliminated by repeating the experiment again.
- Systematic Errors produce consistent errors, either a fixed amount (like 1 g) or a proportion (like 105% of the true value). If you repeat the experiment, you'll get the same error unless the reason is found.

E.g. Systematic errors consistently change the results in the same direction (e.g. they are always 50 g, 1% or 99 mm too large or too small). In contrast, **Random errors** produce different values in random directions. For example, you use a scale to weigh yourself and get 72Kg , 75 Kg, and 68 Kg. Random error could also be that e.g. that the tester is not the same person at each sample trial.