Synthetic Video Generation

Amit Kumar - B13107

Paawan Mukker - B13218

Dr. Dileep A.D.

Dr. Renu M Rameshan

Abstract

- Given a new script and subtitles and corpus of videos.
- Generate a new video by picking matching frames from the corpus.
- Identify location of shot.
- Characters involved.
- Identify Emotion, orientation, action of characters.
- Minimize continuous frame disparity.

Friends Characters Introduction

Joey Tribbiani

Chandler Bing

Ross Geller

Image Courtesy - www.wikipedia.org

Friends Characters Introduction

Monica Geller

Rachel Green

Phoebe Buffay

Image Courtesy - www.wikipedia.org

Friends Location Introduction

Monica and Rachel's apartment

Image Courtesy - www.hookedonhouses.net

Friends Location Introduction

Joey and Chandler's apartment

Image Courtesy -www.friends.wikia.com

Friends Location Introduction

Central Perk Cafe

Image Courtesy - www.atlasobscura.com

Scene Recognition[Recap]

- PlaceNet VGG Caffe Model
- Representation from fc6 layer

Emotion Recognition

Predict emotion of person in an image.

Face Detection

- Dlib for face detection
- Compare image with histogram of gradient image

Image Courtesy – dlib.net

Finding Landmarks points

Dlib for Landmark point detection.

Image Courtesy - dlib.net

Face Registration based on eyes

- Eyes centre by averaging points around eyes
- Register face Eyes on same place in each image.
 - Different width and height of face
 - Rotation of face
 - Crop extra region

Face Registration based on eyes

Image Courtesy – codalab.org

Feature Extraction - LBP Feature

- Took registered image
- ► Find out LBP Feature

Input image

LBP image

example

6	5	2
7	6	1
9	8	7

thresholded

1	0	0
1		0
1	1	1

weights

1	2	4
128		8
64	32	16

Pattern = 11110001

LBP =
$$1 + 16 + 32 + 64 + 128 = 241$$

Image Courtesy - ee.oulu.fi

Feature Extraction – HOG & CNN Feature

REGISTERED IMAGE(224*2 24)

HOG FEATURE REGISTERED IMAGE(224*2 24)

CNN FEATURE -FC6 LAYER

Codalab Emotion Recognition Database

- ▶ 31250 facial faces with different emotions
- ▶ 125 subject
- 50 different emotions.
- Micro emotion analysis.
- Classes like Complementary emotion-Dominant emotion.

angrily contempt

angrily disgusted

angrily sad

contemptly happy

angrily surprised

contemptly angry

Image Courtesy - codalab.org

Codalab Emotion Recognition Database n this database - 83.98

Table 4.1: Performance on Codalab emotion database

Misclassification
92.37
91.89
90.86
86.22

Character Identification - Recap

Image Courtesy - Openface, Brandon

Speaking action detection

- Use of visual features only
- Speech not used To make it challenging

Problem specs -

- Video input Unit used Shot
- ▶ Shot Frames of continuous video segment (\sim 1 sec)
- ► Frames Per Second ~ 24

Overview -

Image Courtesy - Lip activity detection. Meriem et al.

Lip localization

Lip bounding box

Based on scale of lip height and width

Lip tracking

Lip Activity Measure

Entropy(X_t, X_{t+1}) =
$$-\sum_{i} P(\alpha_i) \times log(P(\alpha_i))$$

$$Mv(X) = \frac{1}{N-1} \sum_{i=1}^{N-1} Entropy(X_{t+i-1}, X_{t+i})$$
 (2)

Then, the decision of talking face is taken by comparing Mv(X) to a given threshold.

Generative Adversarial Networks

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

GANs Evolution – Conditional Adversarial Networks

Image Courtesy - Conditional Generative adversarial Nets. Mirza et al.

GANs Evolution – Deep Convolutional GAN

Image Courtesy - Conditional Generative adversarial Nets. Mirza et al.

Text-to-image Synthesis

Image Courtesy - Generative adversarial text to image. Reed et al.

StackGAN

This bird has a yellow This bird is white belly and tarsus, grey back, wings, and brown throat, nape with a black face

with some black on its head and wings, and has a long orange beak

This flower has overlapping pink pointed petals surrounding a ring of short yellow filaments

(a) Stage-I images

Image Courtesy - StackGAN. Zhang et al.

Experimentation -

- Motivation Text-to-imageStackGAN
- Start with Vanilla GAN.

Generate digits using MNIST dataset.

Vanilla GAN results Conditional Vanilla GAN results with the 7th bit set high in conditional encoding

Experimentation -

DCGAN

Generate faces.

Experimentation -

Conditional DCGAN
Generate "Happy" faces.

Conclusion?

How to use in our context?

Generating Videos with Scene Dynamics Vondrick et al - MIT

Conclusion?

▶ These small 64 X 64 - 1 sec Gifs formed by training over dataset of

$$9 \text{ TB} = 1024 \text{ X } 9 = 9216 \text{ GB} !!!$$

Generating Videos with Scene Dynamics Vondrick et al - MIT

Sample Integration Videos

Timeline

End 7th Character Scene identification Recognition sem Winter Speaker Temporal Vacatio detection information Mid-8th Other Exploring of different problems emotion, sem solutions activity etc Refinement End 8th Complete and video and smoothening Sem of scene report boundaries

References

- F. Chollet. (2016, Aug.) Building powerful image classification models using very little data. [Online]. Available: https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for largescale image recognition," CoRR, vol. abs/1409.1556, 2014. [Online]. Available:http://arxiv.org/abs/1409.1556
- L. Wang, S. Guo, W. Huang, and Y. Qiao, "Places205-vggnet models for scene recognition," *CoRR*, vol. abs/1508.01667, 2015. [Online]. Available: http://arxiv.org/abs/1508.01667

References

- Wikipedia, "Friends wikipedia, the free encyclopedia," 2016, [Online; accessed 25-November-2016]. [Online]. Available: https://en.wikipedia.org/wiki/Friends
- N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in *Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Volume 1 Volume 01*, ser. CVPR '05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 886–893. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2005.177
- Y. T. Y. R. Wolf, "Deepface: Closing the gap to human-level performance in face ver- ification," in Conference on Computer Vision and Pattern Recognition (CVPR), 2014, June 2014.
- F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified embedding for face recognition and clustering," *CoRR*, vol. abs/1503.03832, 2015. [Online]. Available: http://arxiv.org/abs/1503.03832
- ▶ B. Amos, B. Ludwiczuk, and M. Satyanarayanan, "Openface: A general-purpose face recognition library with mobile applications," CMU-CS-16-118, CMU School of Com- puter Science, Tech. Rep., 2016.
- D. E. King, "Dlib-ml: A machine learning toolkit," *Journal of Machine Learning Re- search*, vol. 10, pp. 1755–1758, 2009.
- V. Kazemi and J. Sullivan, "One millisecond face alignment with an ensemble of regression trees," in *Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition*, ser. CVPR '14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 1867–1874. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2014.241