Interligência Artificial Relatório - Q-learning

Paulo Sergio Campos de Lima Roberto Augusto dos Santos Colatto

Setembro de 2025

Implementação do jogo

Neste trabalho implementamos em Python um jogo da velha que pode ser jogado pelo usuário contra a máquina. O usuário pode escolher se jogará com "X" ou com "O" e se jogará antes ou depois da máquina. Também pode iniciar uma nova partida logo após terminar a partida atual ou retornar ao menu principal para alterar as configurações do jogo.

O treinamento do modelo é realizado a partir da simulação de partidas de máquina contra máquina, com o usuário podendo definir o número de partidas de treinamento. A atualização da Q-table se dá ao fim de cada partida, com as recompensas sendo por padrão os valores +1.0 em caso de vitória, +0.5 em caso de empate e -1.0 em caso de derrota. Após o treino os resultados de vitória, empate e derrota são exibidos.

Resultados

Os principais testes de parâmetros de entrada realizados sobre o modelo foram em relação ao valor do learning rate e à quantidade de episódios de treino. Verificamos os resultados obtidos após o treinamento do modelo ao mudar os parâmetros. Segue a tabela com os valores coletados:

Learning Rate	Episódios	Vitórias	Derrotas	Empates
0.001	1000	213	89	698
0.001	10000	9844	108	48
0.001	100000	186	68	99746
0.005	1000	842	122	36
0.005	10000	3512	91	6397
0.005	100000	99810	120	70
0.01	1000	141	83	776
0.01	10000	195	9769	36
0.01	100000	133	76	99791
0.05	1000	818	126	56
0.05	10000	204	84	9712
0.05	100000	176	75	99749
0.1	1000	159	92	749
0.1	10000	9837	115	48
0.1	100000	99893	83	24
0.5	1000	221	105	674
0.5	10000	135	100	9765
0.5	100000	216	99752	32