Laboratorio de Datos Estadística descriptiva

Primer Cuatrimestre 2025
Turno noche

Facultad de Ciencias Exactas y Naturales, UBA

Variables Categóricas vs Numéricas

Variables Categóricas

Son variables que representan diferentes categorías o grupos. Las variables categóricas se pueden dividir en dos tipos: nominal y ordinal.

- Nominal: No tienen un orden intrínseco.
- Ordinal: Tienen un orden intrínseco.

Ejemplos

Variable Categórica:

- Nominal: Color de los ojos
 - Azul
 - Marrón
 - Verde
 - Gris
- Ordinal: Nivel de educación
 - Primaria
 - Secundaria
 - Universitaria
 - Posgrado

Variables Categóricas vs Numéricas

Variables Numéricas

Son variables que representan cantidades numéricas. Las variables numéricas se pueden dividir en dos tipos: discreta y continua.

- **Discreta:** Representa valores contables y no puede tomar valores intermedios.
- Continua: Representa medidas y puede tomar cualquier valor dentro de un rango.

Ejemplos

Variable Numérica:

- Discreta: Número de hijos
 - 0
 - 1
 - 2
 - 3
- Continua: Altura (en metros)
 - 1.60
 - 1.75
 - 1.82
 - 1.68

Medidas de tendencia central: media y mediana

Media

La media es el promedio de un conjunto de datos y se calcula sumando todos los valores y dividiéndolos por el número total de valores.

$$\mathsf{Media} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$

Mediana

La mediana es el valor del medio cuando un conjunto de datos se ordena de menor a mayor. Si hay una cantidad par de datos, se toma el promedio entre los dos valores del medio.

Ejemplos Numéricos

Conjunto de datos 1: 2, 6, 8, 10, 9

Media:

$$\frac{2+6+8+10+9}{5} = \frac{35}{5} = 7$$

• Mediana: ordenamos de menor a mayor 2,6,8,9,10 La mediana es 8.

Conjunto de datos 2: 2, 6, 8, 50, 9

Media:

$$\frac{2+6+8+50+9}{5} = \frac{75}{5} = 15$$

• Mediana: ordenamos de menor a mayor 2,6,8,9,50 La mediana es 8.

Diferencia entre Media y Mediana: Outliers

Un outlier o valor atípico es una observación dentro de una muestra que no es consistente con el resto.

Media

La media es sensible a los valores atípicos (outliers), ya que se calcula sumando todos los valores y dividiéndolos por el número total de valores.

 Si hay outliers, la media puede sesgarse significativamente hacia los valores extremos.

Mediana

La mediana no se ve afectada por los valores atípicos, ya que es el valor central de un conjunto de datos ordenados.

• Es más robusta frente a valores extremos que la media.

Media y mediana

Varianza y desvío Estándar

Definición

La varianza y el desvío estándar son *medidas de dispersión* que indican cuánto varían los valores de un conjunto de datos respecto a la media.

Fórmula

La varianza se calcula mediante la fórmula:

$$varianza = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n},$$

donde μ es la media de los datos.

El desvío se calcula como la raíz cuadrada de la varianza:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}.$$

Interpretación

- Un desvío estándar pequeño indica que los datos están cercanos a la media.
- Un desvío estándar grande indica que los datos están dispersos y alejados de la media.

Ejemplo

Consideramos el siguiente conjunto de datos: 1, 2, 3, 4, 5

- Media (μ): 3
- Varianza: $\frac{2^2+1^2+0+1^2+2^2}{5}=2$
- Desvío Estándar (σ): $\sqrt{2} = 1.41$

El desvío estándar está en las "mismas unidades" que los datos y puede ser más interpretable.