AOC - INTRODUÇÃO

⁽²⁾EVOLUÇÃO DOS COMPUTADORES

1 - PRIMEIRA GERAÇÃO: VÁLVULAS

A primeira geração de computadores usou válvulas para elementos lógicos digitais e memória Uma série de pesquisas e computadores comerciais foram construídos com válvulas Uma técnica fundamental de projeto implementada em primeiro lugar no computador IAS é conhecida como conceito de programa armazenado

Essa estrutura é delineada na proposta antecedente de von Neumann (1945), que vale a pena citar neste ponto:

- **Primeiro** : Desde que o dispositivo seja primariamente um computador, ele terá de executar as operações elementares de aritmética de modo mais frequente
- **Segundo** : O controle lógico do dispositivo, isto é, o sequenciamento adequado de suas operações, pode ser mais especificamente executado por uma unidade cental de controle
- **Terceiro** : Qualquer dispositivo que for executa sequências longas e complicadas de operações deve ter uma memória considerável
- **Quarto** : O dispositivo deve ter unidades para transferir informação a partir de R para partes específicas C e M

O IAS consiste em:

- Uma **memória principal**, que armazena tanto dados como instruções
- Uma unidade lógica e aritmética (ALU) capaz de operar os dados binários
- Uma **unidade de controle**, que interpreta instruções que estão na memória e faz que sejam executadas
- Equipamento de **ENTRADA/SAÍDA** (E/S) controlado pela unidade de controle

A memória da IAS consiste em 4.096 locais de armazenamento, chamados de palavras, de 40 dígitos binários (bits) cada

Os números são representados na forma binária, e cada instrução é um código binário

Uma palavras pode, por suas vez, conter duas intruções de 20 bits, com cada instrução consistindo em um opcode de 8 bits que especifica a operação a ser executada e um endereço de 12 bits designando uma das palavras na memória

A unidade de controle comanda o IAS buscando instruções a partir da memória e executando-as uma por vez

A unidade de controle como a ALU contêm locais de armazenamento chamados de registradores, definidos desta maneira:

- **Registrador de buffer de memória (MBR)** : contém uma palavra a ser armazenada na memória ou enviada à unidade E/S ou é usado para receber uma palavra a partir da memória ou a partir da unidade E/S
- **Registrador de endereço de memória (MAR)** : Especifica o endereço na memória da palavra a ser escrito a partir ou lido na MBR
- Resgistrador de instruções (IR): Contém o opcode de 8 bits, da instrução opcode que está executada
- **Resgistrador de buffer de instrução (IBR)**: Empregado para manter temporariamente a instrução da direita, da palavra de memória
- Contador do programa (PC): Contém o endereço do próximo par de instruções a ser buscado na memória
- Acumulador (AC) e Quociente-Multiplicador (MQ): empregado para manter temporariamente os operandos e os resultados das operações da ALU

O computador IAS tem um total de 21 instruções, e podem ser agrupadas da seguinte maneira:

- **Transferencia de dados:** Move os dados entre a memória e os registradores da ALU ou entre dois registradores da ALU
- **Saltos incondicionais :** Em geral, a unidade de controle executa as instruções em sequência a partir da memória. Essa sequência pode ser mudada por uma instrução de salto, o que facilita as operações repetitivas
- **Saltos condicionais :** A execução de um salto pode ser dependente de uma condição, permitindo assmin pontos de decisão
- **Aritmética**: Operações desempenhandas pela ALU
- **Modificação do endereço :** Permite que os endereços sejam calculados na ALU e então inseridos nas intruções armazenadas na memória. Isso possibilita a um programa uma flexibilidade de endereçamento considerável

Tipo de instrução	Opcode	Representação simbólica	Descrição
Transferência	00001010	LOAD MQ	Conteúdos de transferência do registrador MQ ao acumulador AC
	00001001	LOAD MQ,M(X)	Conteúdos de transferência do local de memória X a MQ
	00100001	STOR M(X)	Conteúdos de transferências do acumulador ao local da memória X
de dados	00000001	LOAD M(X)	Transferência M(X) ao acumulador
	00000010	LOAD -M(X)	Transferência –M(X) ao acumulador
	00000011	LOAD M(X)	Valor absoluto de transferência de M(X) ao acumulador
	00000100	LOAD - M(X)	Transferência – M(X) ao acumulador
Salto incondicional	00001101	JUMP M(X,0:19)	Leva a próxima instrução a partir da metade esquerda de $M(X)$
incondicional	00001110	JUMP M(X,20:39)	Leva a próxima instrução a partir da metade direita de M(X)
Salto condicional	00001111	JUMP + M(X,0:19)	Se o número no acumulador for não negativo, tome a próxima instrução a partir da metade esquerda de M(X)
	00010000	JUMP + M(X,20:39)	Se o número no acumulador for não negativo, tome a próxima instrução a partir da metade direita de M(X)
	00000101	ADD M(X)	Adicionar M(X) a AC; coloque o resultado em AC
	00000111	ADD M(X)	Adicionar M(X) a AC; coloque o resultado em AC
	00000110	SUB M(X)	Subtrair M(X) a partir de AC; coloque o resultado em AC
	00001000	SUB [M(X)]	Subtrair M(X) a partir de AC; coloque o restante em AC
Aritmética	00001011	MUL M(X)	Multiplique $M(X)$ por MQ ; coloque os bits mais significativos do resultado em AC, coloque os bits menos significativos em MQ
	00001100	DIV M(X)	Divida AC por $M(X)$; coloque o quociente em MQ e o restante em AC
	00010100	LSH	Multiplique o acumulador por 2; isto é, desloque para a direita uma posição de bit
	00010101	RSH	Divida o acumulador por 2; isto é, desloque para a direita uma posição
Modificação de endereço	00010010	STOR M(X,8:19)	Substitua o campo de endereço esquerdo em $M(X)$ pelos 12 bits mais à direita de AC
	00010011	STOR M(X,28:39)	Substitua o campo de endereço direito em M(X) pelos 12 bits mais à direita de AC

2 - SEGUNDA GERAÇÃO: TRANSISTORES

O transistor foi inventado nos Bell Labs em 1947, e na década de 1950 houve uma revolução eletrônica Foi só no final dessa década, no entanto, que computadores totalmente transistorizados estiveram comercialmente disponíveis.

O uso de transistor define a segunda geração de computadores.

Os transistores são parentes bem próximos dos diodos, ou seja, eles também são semicondutores que permitem ou não a passagem de corrente. Entretanto, diferentemente nos diodos, os transistores também são capazes de limitar a passagem de corrente, como um resistor

O tamanho da memória principal, em múltiplos de 2^{10} palavras de 36 bits, cresceu de 2k (1 k = 2^{10}) para 32 k palavras, ao passo que o tempo para acessar uma palavra da memória, o tempo de ciclo de memória, caiu de 30 ms para 1,4 ms

A quantidade de opcodes cresceu de modestos 24 para 185 A velocidade relativa da CPU aumentou por um fator de 50

3 – TERCEIRA GERAÇÃO: CIRCUITOS INTEGRADOS

Os componenetes discretos eram fabricados separadamente, empacotados em seus próprios invólucros e soldados ou ligados em placas de circuito

Sempre que um equipamento eletrônico exigia um transistor, um pequeno tubo de metal, contendo uma peça de silício do tamanho de uma cabeça de alfinete, tinha de ser soldado a uma placa de circuito

Os elementos básicos de um computador digital, como sabemos, precisam realizar funções de armazenamento, movimentação, processamento e controle:

Porta: Uma porta é um dispositivo que implementa uma função booleana ou lógica simples Célula de memória: Um dispositivo que pode armazenar 1 bit de dados Elementos fundamentais do computador.

Podemos relacionar isso com nossas quatro funções básicas da seguinte forma:

- **Armazenamento de dados** : Fornecidos por células de memória
- **Processamento de dados** : fornecidos pelas portas
- Movimento de dados: Os caminhos entre os componentes são usados para movimentar dados da memória para a memória e da memória pelas portas até a memória
- **Controle** : Os caminhos entre os componentes podem transportar sinais de controle

O circuito integrado explora o fato de que componentes como transistores, resistores e condutores podem ser fabricados a partir de um semicondutor como o silício

Inicialmente, apenas algumas portas ou células de memória poderiam ser fabricados e encapsuladas de modo confiável, (Moore) o número de transistores dos chips teria um aumento de 100%, pelo mesmo custo, a cada dois anos As consequências da lei de moore são profundas:

- O custo de um chip permaneceu praticamente inalterado durante esse período de rápido crescimento na densidade
- Como os elementos lógicos e da memória são colocados muito próximos em chips mais densamente encapsulados, a extensão do caminho elétrico é diminuída, aumentando a velocidade de operação
- O computador torna-se menor, fazendo que seja mais possível colocá-lo em diversos ambientes
- Há uma redução dos requisitos de potência
- As interconexões no circuito integrado são muito mais confiáveis do que as conexões de solda

As característica de uma família são as seguintes:

- O conjunto de instruções semelhante ou idêntico
- SO semelhante ou idêntico
- Maior velocidade
- Número cada vez maior de portas de E/S
- Aumento do tamanho de memória
- Maior custo

4 - GERAÇÕES POSTERIORES

Com o rápido ritmo da tecnologia, a alta taxa de introdução de novos produtos e a importância do software e das comunicações, além do hardware, a classificação por geração torna-se menos clara e menos significativa

Geração	Datas aproximadas	Tecnologia	Velocidade normal (operações por segundo)
1	1946–1957	Válvula	40.000
2	1957–1964	Transistor	200.000
3	1965–1971	Integração em pequena e média escala	1.000.000
4	1972-1977	Integração em grande escala	10.000.000
5	1978–1991	Integração em escala muito grande	100.000.000
6	1991–	Integração de escala ultra grande	> 1.000.000.000

- **Integração em grande escala (LSI)** : 1.000 componentes em um único chip
- Integração em escala muito grande (VLSI): 10.000 componentes em um único chip
- **Integração em escala ultragrande (ULSI)** : Mais de 1 bilhão de componentes em um chip

A primeira aplicação da tecnologia de circuito integrado aos computadores foi a construção do processador em chips de circuito integrado. Mas também se descobriu que essa mesma tecnologia poderia ser usada para construir memórias

Desde 1970, a memória semicondutora tem passado por 13 gerações : 1 k, 4 k, 16 k, 64 k, 256 k, 1 M, 4 M, 16 M, 64 M, 156 M, 1 G, 4 G, etc...

Uma descoberta inovadora foi alcançada em 1971, quando a Intel desenvolveu seu 4004 Ele foi o primeiro chip a conter em si todos os componentes de uma CPU em um único chip: nascia o **microprocessador**

No final da década de 70 começa a necessidade das pessoas/escritorios terem computadores, a ideia do computador de uso geral ganha impulso na década de 80

	(a) Processadores da década de 1970				
	4004	8008	8080	8086	8088
Introduzido	1971	1972	1974	1978	1979
Velocidade de clock	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Largura do barramento	4 bits	8 bits	8 bits	16 bits	8 bits
Número de transistores	2.300	3.500	6.000	29.000	29.000
Dimensão da tecnologia de fabricação (µm)	10	8	6	3	6
Memória endereçável	640 bytes	16 kB	64 kB	1 MB	1 MB

	(b) Processadores da década de 1980			
	80286	386TM DX	386TM SX	486TM DX CPU
Introduzido	1982	1985	1988	1989
Velocidade de clock	6-12,5 MHz	16-33 MHz	16–33 MHz	25-50 MHz
Largura do barramento	16 bits	32 bits	16 bits	32 bits
Número de transistores	134.000	275.000	275.000	1,2 milhão
Dimensão da tecnologia de fabricação (µm)	1,5	1	1	0,8-1
Memória endereçável	16 MB	4 GB	16 MB	4 GB
Memória virtual	1 GB	64 TB	64 TB	64 TB
Cache	_	_	_	8 kB

	(c) Processadores da década de 1990			
	486TM SX	Pentium	Pentium Pro	Pentium II
Introduzido	1991	1993	1995	1997
Velocidade de clock	16-33 MHz	60-166 MHz,	150-200 MHz	200–300 MHz
Largura do barramento	32 bits	32 bits	64 bits	64 bits
Número de transistores	1,185 milhão	3,1 milhões	5,5 milhões	7,5 milhões
Dimensão da tecnologia de fabricação (µm)	1	0,8	0,6	0,35
Memória endereçável	4 GB	4 GB	64 GB	64 GB
Memória virtual	64 TB	64 TB	64 TB	64 TB
Cache	8 kB	8 kB	512 kB L1 e 1 MB L2	512 kB L2

	(d) Processadores recentes				
	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 4960X	
Introduzido	1999	2000	2006	2013	
Velocidade de clock	450-660 MHz	1,3-1,8 GHz	1,06-1,2 GHz	4 GHz	
Largura do barramento	64 bits	64 bits	64 bits	64 bits	
Número de transistores	9,5 milhões	42 milhões	167 milhões	1,86 bilhão	
Dimensão da tecnologia de fabricação (nm)	250	180	65	22	
Memória endereçável	64 GB	64 GB	64 GB	64 GB	
Memória virtual	64 TB	64 TB	64 TB	64 TB	
Cache	512 kB L2	256 kB L2	2 MB L2	1,5 MB L2/15 MB L3	
Número de cores	1	1	2	6	

5 - EXEMPLOS DE COMPUTADORES DE CADA GERAÇÃO

- PRIMEIRA GERAÇÃO

ENIAC (1946)

- Usava vávulas a vácuo
- Hardware e software eram uma coisa só
- Grande e consumia muita eletricidade

- TERCEIRA GERAÇÃO

IBM System/360 (1964)

- Usava circuitos integrados
- Suporte a multiprogramação e maior capacidade de processamento
- Variedade de modelos para diferentes aplicações

- SEGUNDA GERAÇÃO

IBM 1401 (1959)

- Usava transistores, tornando os computadores menores e mais confiáveis
- Introdução de linguagens de programação de alto nível, como COBOL e FORTRAN.

- QUARTA GERAÇÃO

Apple II (1977)

- Usava microprocessadores
- Computadores pessoais começaram a se popularizar
- Interface gráfica de usuários começou a se tornar comum