Геометријске неједнакости

Алекса Вучковић

Математичка гимназија

Март 2019.

Ментор: Бранко Грбић, Регионални центар за таленте "Михајло Пупин" Панчево

Садржај

- Теометријске неједнакости
 - Увод
 - Основне неједнакости троугла
- Птоломејева неједнакост
 - Доказ Птоломејеве неједнакости
 - Примена Птоломејеве неједнакости
- Неједнакости између средина
- Ојлерова неједнакост

Увод

Под **геометријском неједнакошћу** се најчешће подразумева она неједнакост која важи за елементе(странице, углове, тежишне дужи,...) произвољног троугла или неке сложеније фигуре(четвороугла...). У ширем смислу геометријска је свака неједнакост која се односи на неку конкретну геометријску слику.

Увод

Под **геометријском неједнакошћу** се најчешће подразумева она неједнакост која важи за елементе(странице, углове, тежишне дужи,...) произвољног троугла или неке сложеније фигуре(четвороугла...). У ширем смислу геометријска је свака неједнакост која се односи на неку конкретну геометријску слику.

Основна неједнакост троугла

$$a+6>$$
 μ $6+\mu>$ a $\mu+a>$ 6

Теорема 1.

Наспрам веће странице у троуглу је већи угао тог троугла; и обратно, наспрам већег угла троугла је већа страница.

Теорема 1.

Наспрам веће странице у троуглу је већи угао тог троугла; и обратно, наспрам већег угла троугла је већа страница.

Теорема 2.

(Неједнакост троугла) Збир две ивице троугла већи је од треће.

Теорема 2.

(Неједнакост троугла) Збир две ивице троугла већи је од треће.

Птоломејева неједнакост

Дефиниција

Нека су $A, \mathcal{B}, \mathcal{U}, \mathcal{J}$ било које четири тачке у равни. Тада важи неједнакост

$$A \mathcal{B} \cdot \mathcal{U} \mathcal{J} + A \mathcal{J} \cdot \mathcal{B} \mathcal{U} \geq A \mathcal{U} \cdot \mathcal{B} \mathcal{J}.$$

Птоломејева неједнакост

Дефиниција

Нека су $A, \mathcal{B}, \mathcal{U}, \mathcal{J}$ било које четири тачке у равни. Тада важи неједнакост

$$A \mathcal{B} \cdot \mathcal{U} \mathcal{J} + A \mathcal{J} \cdot \mathcal{B} \mathcal{U} \geq A \mathcal{U} \cdot \mathcal{B} \mathcal{J}.$$

Једнакост

Једнакост важи акко је четвороугао $A \not = U \not = U$ тетивни са дијагоналама $A \not = U \not = U$ или су тачке $A, \not = U, \not = U$ колинеарне при чему једна од тачака $B \not = U \not = U$ лежи ижмеђу тачака $A \not = U \not = U$ друга не.

Доказ инверзијом

Задатак 1.

Доказати да важи:
$$au_{a}<rac{ heta+\mu}{2}$$

Задатак 1.

Доказати да важи:
$$au_a < rac{ extit{6} + extit{4}}{2}$$

Примењујући Птоломејеву неједнакост на четвороугао $A \mathcal{B} A_1 \mathcal{U}$ добијамо $A \mathcal{B} \cdot A_1 \mathcal{U} + \mathcal{B} A_1 \cdot \mathcal{U} A > \mathcal{B} \mathcal{U} \cdot A A_1$, односно $\mathcal{U} \cdot \frac{a}{2} + \frac{a}{2} \cdot \delta > a \cdot \tau_a$, што је еквивалентно траженој неједнакости.

Задатак 2.

Доказати да важи: $2\Pi \le 6$ ц

Задатак 2.

Доказати да важи: $2\Pi \le 6\mu$

Применом

Задатак 3.

Доказати да важи: $\pi_a < \frac{26\mu}{6+\mu}$ (где је π_a одсечак бисектрисе)

Задатак 3.

Доказати да важи:
$$\eta_a < \frac{26\mu}{6+\mu}$$
 (где је η_a одсечак бисектрисе)

Применом

Птоломејеве теореме на четвороугао $A \mathcal{B} \mathcal{L} \mathcal{L} \mathcal{L}$ добијамо $A \mathcal{B} \cdot \mathcal{L} \mathcal{L} \mathcal{L} + \mathcal{B} \mathcal{L} \cdot \mathcal{L} \mathcal{A} > \mathcal{B} \mathcal{L} \cdot \mathcal{A} \mathcal{L}$, што

даљим поступком сводимо на тражену неједнакост.

Неједнакости између средина

Неједнакости између средина за а и б:

$$\frac{2}{\frac{1}{a}+\frac{1}{6}}\leq \sqrt{a\delta}\leq \frac{a+6}{2}\leq \sqrt{\frac{a^2+6^2}{2}}.$$

Ојлерова неједнакост

Теорема

Ако су P и p, редом, полупречници описане и уписане кружнице троугла, тада важи $P \ge 2p$.

Тврђење се може доказати и применом Ојлеровог идентитета, $O\mathcal{U}^2=P^2-2Pp$, где су O и \mathcal{U} центри описане и уписане кружнице датог троугла

Геометријске неједнакости Птоломејева неједнакост Неједнакости између средина Ојлерова неједнакост

Хвала на пажњи!