Binary Classification and Logistic Regression

Binary Classification - Problem Motivation

- Common examples of classification problems:
 - identifying spam emails to prevent people from receiving spam
 - predicting if borrowers will default on their loans
 - determining whether someone has a disease to guide treatment decisions
- All of these are <u>binary</u> classification problems

Binary Classification - Mathematical Description

- A classifier model is a mapping between your feature space and a finite set
- A binary classifier maps onto {0, 1}
- Example
 - Features: GPA [0, 4], SAT score [600, 2400]
 - Target: Not admitted {0}, Admitted {1}
 - \circ $F: [0,4] \times [600,2400] \mapsto \{0,1\}$
- Binary classifiers can generalize to multiple classes

Logistic Regression - Introduction

- Very popular binary classifier
- Estimates probability that an observation is in a given category based on the observation's features
 - Regression step estimates the probability
 - Classification step rounds the probability to 0 or 1

Logistic Regression - Model Framework

- Model assumes each observation is an independent Bernoulli random variable
- Recall that a Bernoulli random variable takes value 1 with probability p and value 0 with probability 1-p

$$f(k; p) = p^k (1-p)^{1-k}$$
 for $k \in \{0, 1\}$.

 Logistic regression estimates parameter p of the Bernoulli

Logistic Regression - Graph

Logistic Regression - Graph

Logistic Regression - Graph

Mapping Feature Space onto Probabilities

- Modeling probabilities requires a functional form that maps onto interval [0,1]
- Typical choice is the logistic function*

$$h_{\theta}(x) = \frac{1}{(1 + e^{-\theta^T x})}$$

^{*}Other less common choices include the inverse Gaussian ("probit") and the hyperbolic tangent functions.

Log-Odds Ratio

 Logistic model of probability is equivalent to a linear model of the log-odds ratio

$$h_{\theta}(x) = \frac{1}{(1 + e^{-\theta^T x})} \to \ln\left(\frac{p}{1 - p}\right) = \theta^T x$$

Example Model

See IPython notebook

Decision Boundary

- The category favored by the hypothesis function flips from 0 to 1 in a certain region of the feature space
- That region is called the "decision boundary"
- Occurs when estimated probability = .5

Decision Boundary

decision boundary is the surface defined by

$$h_{\theta}(x) = .5$$

$$\rightarrow \frac{1}{1 + e^{-\theta^{T}x}} = .5$$

$$\rightarrow 1 = e^{-\theta^{T}x}$$

$$\rightarrow \theta^{T}x = 0$$

Note: can use threshold values other than .5

Finding Coefficients

- Coefficients for logistic regression are found using Maximum Likelihood Estimation (MLE)
- Likelihood of an observation given the model:

$$p(y_i|x_i;\theta) = h_{\theta}(x_i)^{y_i} (1 - h_{\theta}(x_i))^{1 - y_i}$$

Assuming each observation is independent:

$$p(\vec{y}|X;\theta) = \prod_{i=1}^{n} h_{\theta}(x_i)^{y_i} (1 - h_{\theta}(x_i))^{1-y_i}$$

Choose the coefficients that maximize this expression

Finding Coefficients

• In practice, we maximize the log likelihood:

$$\ln p(\vec{y}|X;\theta) = \sum_{i=1}^{n} (y_i \ln h_{\theta}(x_i) + (1 - y_i) \ln(1 - h_{\theta}(x_i)))$$

Observe how the value of each term varies:

$$y_{i} = 0 \Rightarrow \lim_{h_{\theta}(x) \to 0} (y_{i} \ln h_{\theta}(x_{i}) + (1 - y_{i}) \ln(1 - h_{\theta}(x_{i}))) = 0$$

$$y_{i} = 0 \Rightarrow \lim_{h_{\theta}(x) \to 1} (y_{i} \ln h_{\theta}(x_{i}) + (1 - y_{i}) \ln(1 - h_{\theta}(x_{i}))) = -\infty$$

$$y_{i} = 1 \Rightarrow \lim_{h_{\theta}(x) \to 1} (y_{i} \ln h_{\theta}(x_{i}) + (1 - y_{i}) \ln(1 - h_{\theta}(x_{i}))) = 0$$

$$y_{i} = 1 \Rightarrow \lim_{h_{\theta}(x) \to 0} (y_{i} \ln h_{\theta}(x_{i}) + (1 - y_{i}) \ln(1 - h_{\theta}(x_{i}))) = -\infty$$

Interpreting Coefficients

 Recall that logistic regression implies a linear relationship between the features and the logit odds:

$$\ln \frac{p}{1-p} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

• Increasing feature value by 1 increases logit odds by θ and odds by $e^{\Lambda}\theta$

Accuracy

- Percent of observations correctly classified: $\frac{TP+TN}{n}$
- Most intuitively understandable metric
- Unfortunately, accuracy is a problematic metric
 - Imbalanced classes will inflate accuracy
 - Ex. If 90% of the population is in one category, then naive model has 90% accuracy
 - Doesn't reveal what kind of errors are being made

Confusion Matrix

	Predicted Positive	Predicted Negative
Actually	True	False
Positive	Positives	Negatives
Actually	False	True
Negative	Positives	Negatives

Classifier Metrics

Accuracy

$$\frac{TP+TN}{n}$$

True Positive Rate (Sensitivity/Recall)

$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

True Negative Rate (Specificity)

$$\frac{TN}{N} = \frac{TN}{TN + FP}$$

Precision

$$\frac{TP}{TP + FP}$$

F1 Score

harmonic mean of precision and recall

$$F_1 = \frac{2*precision*recall}{precision+recall} = \frac{2}{\frac{1}{precision}+\frac{1}{recall}}$$

F_β Score

$$F_{\beta} = (1 + \beta^2) \frac{precision * recall}{\beta^2 precision + recall}$$

ROC Plot

 Shows how true and false positive rates vary as the decision boundary is moved (<u>animation</u>)

ROC Plot

- If classifier A's ROC curve is strictly greater than classifier B's, then classifier A is always preferred
- If two classifier's ROC curves intersect, then the choice depends on relative importance of sensitivity and specificity

ROC - Area Under Curve (AUC)

- equals the probability that the model will rank a randomly chosen positive observation higher than a randomly chosen negative observation
- useful for comparing different classes of models in general setting

Imbalanced Class Problem

- What happen if your sample is imbalanced?
 - o E.g. 99% not spam, 99% healthy, 99% no default
- This is a problem when interested in minority class
 - i.e. False positive not equal in cost to false negative

Solutions to Imbalanced Class Problem

- Under/oversampling
- Cost-sensitive learning

Over- and Under-sampling for Imbalanced Classes

- Populations often do not have equal proportions of each class
- Over- and under-sampling can simulate balanced classes
- Oversampling
 - replicate samples in smaller class
 - can cause overfitting because noise is replicated
 - can generate new examples in neighborhood of observations
- Undersampling
 - subsample from larger class repeatedly and ensemble classifiers
- Can combine over- and under-sampling

Evaluating Logistic Regression

Likelihood Ratio Test

- A hypothesis test that compares one model with a null hypothesis model
- Given 2 models, where one model's parameters is a subset of the other, compute the likelihood ratio:

$$G^2 = 2 \ln \left(\frac{L}{L_0}\right) \sim \chi^2$$

 degrees of freedom equals difference in number of parameters between the two models

Evaluating Logistic Regression

Likelihood Ratio

 Common choice of null hypothesis is model with only intercept term (i.e. the sample mean of y)

$$H_0: \ln\left(\frac{p}{1-p}\right) = \frac{1}{1+e^{-\theta_0}}$$
$$H_1: \ln\left(\frac{p}{1-p}\right) = \frac{1}{1+e^{-\theta^T x}}$$

 Note that this has the same caveats as any frequentist hypothesis testing method