Γ

100

Appendices

101

Appendix A

Letter to the Adviser

February 27, 2021

 \Box

Shem Durst Elijah Sandig

Professor College of Information and Communications Technology West Visayas State University Luna St. La Paz, Iloilo City 5000 Philippines

Dear Sir,

The undersigned are BS Information Systems Research 1/Thesis 1 students of CICT, this university. Our thesis/capstone project title is "Rice Sourcing, Distribution, and Transportation Management System". Knowing of your expertise in research and on the subject matter, we would like to request you to be our ADVISER.

We are positively hoping for your acceptance. Kindly check the corresponding box and affix your signature in the space provided. Thank you very much.

Respectfully yours,

Rouen I. Inawasan

Jay Czhelle B. Soberano

Karlene Joyce Baes

Kytar

102

Appendix B

Letter to the Grammarian

January 4, 2022

 \Box

DR. JOY PANTINO

Faculty, College of Arts and Sciences This University

Dear Dr. Pantino,

We are 4th year BSIT students of CICT in West Visayas State University - Main Campus. Our thesis project is entitled, "Rice Procurement and Management System", under the supervision of Prof. Shem Durst Elijah Sandig. Knowing your expertise in research, we would like to request you to be our thesis grammarian.

We believe that your expertise in this field will significantly improve and help us for the manuscript format and editing of our thesis worthy to be an example or guide for the future BSIS students.

We are hoping for your positive response regarding this request.

Respectfully yours,

Baes, Karlene Joyce A.

Inawasan, Rouen I.

Soberano, Jay Czhelle B.

Jah

103

Appendix C

Data Dictionary

A. User Table

 Γ

Field Type	Data Type	Field Size	Description	Example
userId	integer	6	Primary key of the user	092735
lastName	varchar	50	Last name of the user	Masipag
firstName	varchar	50	First name of the user	Adolfo
gender	varchar	1	Gender option of the user	М
dateOfBirt h	date	10	User's date of birth	04/27/1999
barangay	varchar	50	Barangay where the user lives	Duyanduyan
municipali ty	varchar	50	Municipality where the user lives	Santa Barbara
contactNum	integer	11	Contact number of the user	+639237465 298
userType	varchar	10	User type option of the user	Farmer
email	varchar	50	Email address of the user	adolfomasi pag@gmail. com
householdM onthlyInco me	integer	10	Household monthly income of the user	10,000

West Visayas State University COLLEGE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY La Pa3, Iloilo City

B. NFA Operations Personnel (Admin) Table

Field Type	Data Type	Field Size	Description	Example
userId	integer	6	Primary key of the NFA personnel (Admin)	107646
email	varchar	50	Email address of the NFA personnel (Admin)	nfa@exampl e.com
password	varchar	50	Password of the NFA personnel (Admin)	123456

C. Selling Table

 Γ

Field Type	Data Type	Field Size	Description	Example
sellingId	integer	6	Primary key of the posted selling product	985679
harvestDat e	date	10	Date when the palay was harvested	02/3/2022
numOfSacks	integer 10		Number of sacks for sale	50
kiloPerSac k	integer	10	Weight of the palay per sack in kilograms	40
pricePerKi lo	double	10	Price of the palay per kilograms	20

105

sellerId	integer	6	User id of the farmer who sold the palay	092735

D. Palay Table

Field Type	Data Type	Field Size	Description	Example
palayId	integer 6		Primary key of the palay variety	985679
palayVarie ty	varchar	50	Name of the variety of palay	sinandomen g

E. Transaction Table

Field Type	Data Type	Field Size	Description	Example
transId	integer	6	Primary key of the transaction	985679
transDate	date	10	Date when the palay was bought	03/26/2022
numOfSacks	integer	10	Number of sacks for sale	50
pricePerKi lo	double 10		Price of the palay per kilograms	20
buyerId	integer	6	User id of the trader who bought the palay	123465

106

F. Procurement Table

Field Type	Data Type	Field Size	Description	Example
procId	integer	6	Primary key of the procurement of palay	985679
procDate	date	10	Date when the palay was procured	03/26/2022
numOfSacks	integer	10	Number of sacks for sale	40
pricePerKi lo	double	10	Price of the palay per kilograms	19

G. Distribution Table

Field Type	Data Type	Field Size	Description	Example
distId	integer	6	Primary key of the distribution of rice	985679
distDate	date	10	Date when the rice was distributed	03/26/2022
numOfSacks	integer	10	Number of sacks distributed	100
recipientT ype	varchar	50	Type of recipient for the distribution	Relief operation

107

eventPurpo se	varchar	50	Purpose of the distribution	Relief operation for the victims of typhoon Karding.
------------------	---------	----	-----------------------------	--

H. Recipient Table

 Γ

Field Type	Data Type	Field Size	Description	Example
recipientI d	integer	6	Primary key of the recipient	80750
recipientN mae	varchar	50	Name of the recipient	Magdalena
recipientT ype	varchar	50	Type of recipient for the distribution	Relief operation
barangay	varchar	50	Barangay where the recipient is located	zone VI
municipali ty	varchar 50		Municipality where the recipient is located	Sta. Barbara
province	varchar	50	Province where the recipient is located	Iloilo

Г

108

```
Appendix D
                 Sample Program Codes
A. Login
              Log in to your account
                 </h1>
                 <form className="mt-6" action="#"</pre>
  method="POST">
                   <div>
                     <label className="block text-gray-</pre>
  700">Email Address</label>
                     <input
                       type="email"
                       name="email"
                       value={email}
                       onChange={ (event) =>
  setEmail(event.target.value)}
                       placeholder="Enter Email Address"
                       className="w-full px-4 py-3
  rounded-lg bg-gray-200 mt-2 border focus:border-blue-
  500 focus:bg-white focus:outline-none"
                       required
                     />
```

Г

109

```
</div>
                <div className="mt-4">
                  <label className="block text-gray-</pre>
700">Password</label>
                  <input
                     type="password"
                     name="password"
                     value={password}
                     onChange={ (event) =>
setPassword(event.target.value) }
                    placeholder="Enter Password"
                     className="w-full px-4 py-3
rounded-lg bg-gray-200 mt-2 border focus:border-blue-
500
        focus: bg-white focus: outline-none"
                     required
                  />
                </div>
                <div className="text-right mt-2">
```

Г

```
110
                  <button className="text-sm text-</pre>
primary hover:opacity-50">
                    Forgot Password?
                  </button>
                </div>
                <button
                  type="button"
                  onClick={onSubmit}
                  className="w-full block bg-primary
hover:opacity-80 text-white font-semibold rounded-lg
       px-4 py-3 mt-6"
                >
                  Log In
                </button>
              </form>
              <div className="my-6 border-gray-300 w-</pre>
full" />
              Need an account?{" "}
                <Link
```

to="/register"

```
111
\Box
                        className="text-primary
     hover:opacity-50 font-semibold"
   B. Dashboard
     </div>
              ) }
              {filterProcurement.length > 0 && (
              {filteredNFA.length > 0 && (
                <div className="lg:w-11/12 w-full bg-white</pre>
     rounded-lg">
                  <BarChart
                    dataArray={filterProcurement}
                    dataArray={filteredNFA}
                    width="40vw"
                    height="70vw"
                    axes={true}
   C. Distribution
       dataIndex: "quantity",
            key: "quantity",
            setDirections: sortTypes,
```

```
Г
     @@ -121,12 +121,19 @@ export default function
     Distribution() {
           sorter: sortRiceVariety,
         } ,
         {
           title: "Receiver",
           title: "Recipient Name",
           dataIndex: "receiver",
           key: "receiver",
           setDirections: sortTypes,
           sorter: sortRiceVariety,
         },
         {
           title: "Event Purpose",
           dataIndex: "eventPurpose",
           key: "eventPurpose",
           setDirections: sortTypes,
           sorter: sortRiceVariety,
         },
         {
           title: "Action",
           key: "action",
```

```
D. Inventory
     {
        title: "Email",
        dataIndex: "userEmail",
        key: "userEmail",
        setDirections: sortTypes,
        sorter: sortRiceVariety,
      } ,
      // {
      // title: "Email",
      // dataIndex: "userEmail",
      // key: "userEmail",
      // setDirections: sortTypes,
      // sorter: sortRiceVariety,
      // },
      {
        title: "Date Created",
        dataIndex: "date_created",
  @@ -218,7 +218,7 @@ export default function
  Inventory() {
          return (
```

 Γ

114

Appendix E

ISO 25010 Software Quality Evaluation Instrument

System Evaluation Sheet for "Rice Procurement and Distribution Management System"

Name of	Evaluato	or:		
Organi	zation &	Position:		

<u>Scale</u>	Description
6	Excellent
5	Very Good
4	Good
3	Fair
2	Poor
1	Very Poor

 Γ

Character istic	Sub- characteristic s	Description	Evaluat ion Rating
Functiona 1 Suitabili ty	Functional completeness	Degree to which the set of functions covers all the specified tasks and user objectives.	
	Functional correctness	Degree to which a product or system provides the correct results with the needed degree of precision.	
	Functional appropriatenes s	Degree to which the functions facilitate the accomplishment of specified tasks and objectives.	
Performan ce efficienc Y	Time behavior	Degree to which the response and processing times and throughput rates of a product or system, when performing	

		its functions, meet requirements.	
	Resource utilization	Degree to which the amounts and types of resources used by a product or system, when performing its functions, meet requirements.	
	Capacity	Degree to which the maximum limits of a product or system parameter meet requirements.	
Compatibi lity	Co-existence	Degree to which a product can perform its required functions efficiently while sharing a common environment and resources with other products, without detrimental impact on any other product.	
	Interoperabili ty	Degree to which two or more systems, products or components can exchange information and use the information that has been exchanged.	
Usability	Appropriatenes s recognizabilit Y	Degree to which users can recognize whether a product or system is appropriate for their needs.	
	Learnability	Degree to which a product or system can be used by specified users to achieve specified goals of learning to use the product or system with effectiveness, efficiency, freedom from risk and satisfaction in a specified context of use.	

Γ			
	Operability	Degree to which a product or system has attributes that make it easy to operate and control.	
	User error protection	Degree to which a system protects users against making errors.	
	User interface aesthetics	Degree to which a user interface enables pleasing and satisfying interaction for the user.	
	Accessibility	Degree to which a product or system can be used by people with the widest range of characteristics and capabilities to achieve a specified goal in a specified context of use.	
Reliabili	Maturity	Degree to which a system, product or component meets needs for reliability under normal operation.	
	Availability	Degree to which a system, product or component is operational and accessible when required for use.	
	Fault tolerance	Degree to which a system, product or component operates as intended despite the presence of hardware or software faults.	
	Recoverability	Degree to which, in the event of an interruption or a failure, a product or system can recover the data directly affected and re-establish the desired state of the system.	
Security	Confidentialit Y	Degree to which a product or system ensures that data are accessible only	

Γ			_
		to those authorized to	
		have access.	
		Degree to which a system,	
		product or component	
		prevents unauthorized	
	Integrity	access to, or	
		modification of, computer	
		programs or data.	
		Degree to which actions	
	Non- repudiation	or events can be proven	
		to have taken place so	
		that the events or	
		actions cannot be	
		repudiated later.	
		Degree to which the	
	7 1 1 1 7 1 1	actions of an entity can	
	Accountability	be traced uniquely to the	
		entity.	
		Degree to which the	
	7	identity of a subject or	
	Authenticity	resource can be proved to	
		be the one claimed.	
	Modularity	Degree to which a system	
		or computer program is	
		composed of discrete	
		components such that a	
		change to one component	
		has minimal impact on	
		other components.	
	Reusability	Degree to which an asset	
		can be used in more than	
		one system, or in	
Maintaina		building other assets.	
bility	Analyzability	Degree of effectiveness	
		and efficiency with which it is possible to assess	
		the impact on a product	
		or system of an intended	
		change to one or more of	
		its parts, or to diagnose	
		a product for	
		deficiencies or causes of	
		failures, or to identify	
		parts to be modified.	
	1	<u> </u>	I.

			119
	Modifiability	Degree to which a product or system can be effectively and efficiently modified without introducing defects or degrading existing product quality.	
	Testability	Degree of effectiveness and efficiency with which test criteria can be established for a system, product or component and tests can be performed to determine whether those criteria have been met.	
	Adaptability	Degree to which a product or system can effectively and efficiently be adapted for different or evolving hardware, software or other operational or usage environments.	
Portabili ty	Installability	Degree of effectiveness and efficiency with which a product or system can be successfully installed and/or uninstalled in a specified environment.	
	Replaceability	Degree to which a product can replace another specified software product for the same purpose in the same environment.	

120

Appendix F

Disclaimer

This software project and its corresponding

Documentation entitled "Rice Procurement and Distribution

Management System" is submitted to the College of

Information and Communications Technology, West Visayas

State University, in partial fulfillment of the

requirements for the degree, Bachelor of Science in

Information Systems. It is the product of our own work,

except where indicated text.

We hereby grant the College of Information and Communications Technology permission to freely use, publish in local or international journal/conferences, reproduce, or distribute publicly the paper and electronic copies of this software project and its corresponding documentation in whole or in part, provided that we are acknowledged.

KARLENE JOYCE A. BAES

Г

ROUEN I. INAWASAN

JAY CZHELLE B. SOBERANO

August 2022