Implementation of Cluster Establishing algorithm to improve delay in Vehicular Networks

Presenter: Doan Lien Huong

Supervisor: Dr. Nguyen Minh Huong

ICT Department - USTH

October 2020

- Problem Statement
- 2 Methodologies and Tools
- 3 Implementation
- 4 Results
- **6** Conclusion and Future Work

Section 1

Problem Statement

Problem Statement 0000

Introduction to VANETs

Problem Statement 0000

- Vehicular Ad-hoc NETworks
- improve road safety, information transmission
- safety application, non-safety application

Introduction to VANETs

Problem:

Problem Statement 0000

- Low packet coverage (due to nature of VANET)
 - → retransmission
 - How to manage the retransmission
 - Trade-off in delay

Solution: Cluster establishment

Figure 1: Connectivity problem

- Implement the protocol using ns-3 simulator
- Design simulation scenarios for safety application
- Investigate the protocol in terms of improving the connectivity of the network while optimizing the delay

Section 2

Methodologies and Tools

Cluster establishment

General definition:

- Group similar nodes in the same cluster
- Cluster Head and Cluster Members

Cluster Head criteria:

- The most number of neighbours
- Nearest to the RSU (in case RSU available)

Cluster establishment in message dissemination

CM broadcasts a safety message

Cluster establishment in message dissemination

CH rebroadcasts that message

System overview

- Vehicle nodes operate in cycles
- A cycle consists of 3 processes

Figure 2: Time cycle in clustering protocol

Process descriptions

BEACON_EXCHANGE process

- nodes are in UN (Unknown) state
- nodes exchange beacon messages (position, velocity)
- nodes construct their neighbor list

Process descriptions

BEACON_EXCHANGE process

- nodes are in UN (Unknown) state
- nodes exchange beacon messages (position, velocity)
- nodes construct their neighbor list

CLUSTER_FORMATION process

- nodes wait to become CH in T_{wait} seconds
- If a node receive FormationMsg, it joins that cluster as a CM.
- Else, it becomes CH and broadcasts its own FormationMsg

Process descriptions

BEACON_EXCHANGE process

- nodes are in UN (Unknown) state
- nodes exchange beacon messages (position, velocity)
- nodes construct their neighbor list

CLUSTER_FORMATION process

- nodes wait to become CH in T_{wait} seconds
- If a node receive FormationMsg, it joins that cluster as a CM.
- Else, it becomes CH and broadcasts its own FormationMsg

DATA_EXCHANGE process

If CH receives a data packet, it rebroadcasts that packet

ns-3 simulator

- A discrete-event network simulator
- Developed for networking research and education
- Programs can be written in C++ or Python

Section 3

Implementation

ICT Department - USTH

Implementation 000

Design of classes

Figure 3: Design of Classes

Implementation 000

Design of Headers

Figure 4: Design of Headers

ICT Department - USTH

Section 4

Results

Scenario Descriptions

Table 1: Simulation cases

Simulation no.	No. of sender(s)	No. of packet(s)
1	1	1
2	1	10
3	2	1
4	2	10

Evaluation metrics:

- PDR (Packet Delivery Rate) = $\frac{\text{No. of receiver nodes}}{\text{Total nodes}}$
- Average Delay (s): average delay time of received packets

Comparison

Blind rebroadcast technique:

- All nodes rebroadcast packets after an amount of time.
- **Advantages:** increase connectivity
- Drawbacks:
 - channel congestion
 - packet collision
 - high delay time

Simulation case 1: 1 node broadcasts 1 packet

Figure 5: Average Delay and PDR in case: 1 node broadcasts 1 packet

Simulation case 2: 1 node broadcasts 10 packets

Figure 6: Average Delay and PDR in case: 1 node broadcasts 10 packets

Simulation case 3: 2 nodes broadcast 1 packet

Figure 7: Average Delay and PDR in case: 2 nodes broadcast 1 packet

Simulation case 4: 2 nodes broadcast 10 packets

Figure 8: Average Delay and PDR in case: 2 nodes broadcast 10 packets

Section 5

Conclusion and Future Work

Conclusion and Future Work

- Include channel parameters
- Inter-communication implementation
- Modify the calculation formula

Thank you for your attention!

