Consider the following Python dictionary data and Python list labels:

data = ({'birds': ['Cranes','Cranes','plovers','spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills', 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'yes', 'no', 'no']})

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

1. Create a DataFrame birds from this dictionary data which has the index labels.

Out[1]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no

	birds	age	visits	priority
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

2. Display a summary of the basic information about birds DataFrame and its data.

In [2]: birds.describe()

Out[2]:

	age	visits
count	8.000000	10.000000
mean	4.437500	2.900000
std	2.007797	0.875595
min	1.500000	2.000000
25%	3.375000	2.000000
50%	4.000000	3.000000
75%	5.625000	3.750000
max	8.000000	4.000000

3. Print the first 2 rows of the birds dataframe

In [3]: birds[:2]

Out[3]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes

4. Print all the rows with only 'birds' and 'age' columns from the dataframe

```
In [4]: x = birds[['birds','age']]
x
```

Out[4]:

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

```
In [5]: y = birds[['birds','age','visits']]
y = birds.iloc[[2,3,7],0:3]
y
```

Out[5]:

	birds	age	visits
С	plovers	1.5	3
d	spoonbills	NaN	4
h	Cranes	NaN	2

6. select the rows where the number of visits is less than 4

```
In [6]: birds[birds['visits'] < 4]</pre>
```

Out[6]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
C	plovers	1.5	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

```
In [7]: y = birds[['birds','visits']][np.isnan(birds['age'])]
y
```

Out[7]:

	birds	visits
d	spoonbills	4
h	Cranes	2

8. Select the rows where the birds is a Cranes and the age is less than 4

In [8]: birds[birds['birds'] == 'Cranes'][birds['age'] < 4]</pre>

/home/srikaran/anaconda3/lib/python3.6/site-packages/ipykernel_launche r.py:1: UserWarning: Boolean Series key will be reindexed to match Data Frame index.

"""Entry point for launching an IPython kernel.

Out[8]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no

9. Select the rows the age is between 2 and 4(inclusive)

In [9]: birds[birds['age'] >= 2][birds['age'] <= 4]</pre>

/home/srikaran/anaconda3/lib/python3.6/site-packages/ipykernel_launche r.py:1: UserWarning: Boolean Series key will be reindexed to match Data Frame index.

"""Entry point for launching an IPython kernel.

Out[9]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes

	birds	age	visits	priority
f	Cranes	3.0	4	no
j	spoonbills	4.0	2	no

10. Find the total number of visits of the bird Cranes

```
In [10]: birds['visits'][birds['birds'] == 'Cranes'].sum()
Out[10]: 12
```

11. Calculate the mean age for each different birds in dataframe.

12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the original DataFrame.

```
In [12]: birds.loc['k'] = ["piegeon",3,2,'yes']

#xf = pd.concat([birds,new_row])
print(birds)
print('**************')
birds = birds.drop('k')
print(birds)

birds age visits priority
a Cranes 3.5 2 yes
```

```
b
      Cranes 4.0
                              yes
     plovers 1.5
                              no
  spoonbills NaN
                              yes
  spoonbills 6.0
                              no
      Cranes 3.0
                              no
     plovers 5.5
g
                              no
h
      Cranes NaN
                              yes
  spoonbills 8.0
                              no
  spoonbills 4.0
                              no
     piegeon 3.0
                              yes
******
       birds age visits priority
      Cranes 3.5
                       2
                              yes
a
      Cranes 4.0
b
                              yes
     plovers 1.5
С
                              no
  spoonbills NaN
                              yes
 spoonbills 6.0
                              no
f
      Cranes 3.0
                              no
     plovers 5.5
g
                              no
h
      Cranes NaN
                              yes
i spoonbills 8.0
                              no
  spoonbills 4.0
                              no
```

13. Find the number of each type of birds in dataframe (Counts)

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

In [14]: birds.sort_values(by=['age','visits'],ascending=[False,True])

Out[14]:

	birds	age	visits	priority
i	spoonbills	8.0	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
j	spoonbills	4.0	2	no
b	Cranes	4.0	4	yes
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no
С	plovers	1.5	3	no
h	Cranes	NaN	2	yes
d	spoonbills	NaN	4	yes

15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

```
In [15]: birds['priority'] = birds['priority'].replace(['yes','no'],[1,0])
birds
```

Out[15]:

		birds	age	visits	priority	
	а	Cranes	3.5	2	1	
	b	Cranes	4.0	4	1	
	С	plovers	1.5	3	0	
	d	spoonbills	NaN	4	1	
	е	spoonbills	6.0	3	0	

	birds	age	visits	priority
f	Cranes	3.0	4	0
g	plovers	5.5	2	0
h	Cranes	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

```
In [16]: birds['birds'] = birds['birds'].replace('Cranes','trumpeters')
birds
```

Out[16]:

	birds	age	visits	priority
а	trumpeters	3.5	2	1
b	trumpeters	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	trumpeters	3.0	4	0
g	plovers	5.5	2	0
h	trumpeters	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0