CS 577 - Divide and Conquer

Marc Renault

Department of Computer Sciences University of Wisconsin – Madison

> Spring 2021 TopHat Join Code: 524741

Divide and Conquer

Divide and Conquer (DC)

Overview

- Split problem into smaller sub-problems.
- Solve (usually recurse on) the smaller sub-problems.
- Use the output from the smaller sub-problems to build the solution.

DIVIDE AND CONQUER MERGESORT INV COUNT SELECTION INT MULT MATRIX MULT CLOSEST PAIRS* MAX SUBARRAY

DIVIDE AND CONQUER (DC)

Overview

- Split problem into smaller sub-problems.
- Solve (usually recurse on) the smaller sub-problems.
- Use the output from the smaller sub-problems to build the solution.

Tendencies of DC

- Naturally recursive solutions
- Solving complexities often involve recurrences.
- Often used to improve efficiency of efficient solutions, e.g. $O(n^2) \to O(n \log n)$.
- Used in conjunction with other techniques.

Linear Search

- Brute force approach: check every item in order.
- TopHat 1: What is the time complexity to search through *n* items?

Linear Search

- Brute force approach: check every item in order.
- Time complexity: O(n)

Linear Search

- Brute force approach: check every item in order.
- Time complexity: O(n)

Divide and Conquer Approach

Linear Search

- Brute force approach: check every item in order.
- Time complexity: O(n)

Divide and Conquer Approach

• Binary Search

Linear Search

- Brute force approach: check every item in order.
- Time complexity: O(n)

Divide and Conquer Approach

- Binary Search
- Complexity: $O(\log n)$

Ordering some (multi)set of n items.

Brute Force

• Test all possible orderings.

Ordering some (multi)set of *n* items.

Brute Force

- Test all possible orderings.
- TopHat 2: What is the time complexity?

Ordering some (multi)set of *n* items.

Brute Force

- Test all possible orderings.
- \bullet $O(n \cdot n!)$

Ordering some (multi)set of n items.

Brute Force

- Test all possible orderings.
- \bullet $O(n \cdot n!)$

Simple Sorts

• Insertion Sort, Selection Sort, Bubble Sort

Ordering some (multi)set of n items.

Brute Force

- Test all possible orderings.
- \bullet $O(n \cdot n!)$

Simple Sorts

- Insertion Sort, Selection Sort, Bubble Sort
- TopHat 3: What is the time complexity?

Ordering some (multi)set of n items.

Brute Force

- Test all possible orderings.
- \bullet $O(n \cdot n!)$

Simple Sorts

- Insertion Sort, Selection Sort, Bubble Sort
- $O(n^2)$

Ordering some (multi)set of n items.

Brute Force

- Test all possible orderings.
- \bullet $O(n \cdot n!)$

Simple Sorts

- Insertion Sort, Selection Sort, Bubble Sort
- $O(n^2)$

Efficient Sorts

• Divide & Conquer: Quick Sort $(O(n^2))$, Merge Sort

Divide and Conquer MergeSort Inv Count Selection Int Mult Matrix Mult Closest Pairs* Max Subarray

SORTING

Ordering some (multi)set of n items.

Brute Force

- Test all possible orderings.
- \bullet $O(n \cdot n!)$

Simple Sorts

- Insertion Sort, Selection Sort, Bubble Sort
- $O(n^2)$

Efficient Sorts

- Divide & Conquer: Quick Sort $(O(n^2))$, Merge Sort
- TopHat 4: What is the time complexity of Merge Sort?

Divide and Conquer **MergeSort** Inv Count Selection Int Mult Matrix Mult Closest Pairs* Max Subarray

SORTING

Ordering some (multi)set of *n* items.

Brute Force

- Test all possible orderings.
- \bullet $O(n \cdot n!)$

Simple Sorts

- Insertion Sort, Selection Sort, Bubble Sort
- \bullet $O(n^2)$

Efficient Sorts

• Divide & Conquer: Quick Sort $(O(n^2))$, Merge Sort $(O(n \log n))$

Divide and Conquer **MergeSort** Inv Count Selection Int Mult Matrix Mult Closest Pairs* Max Subarray

SORTING

Ordering some (multi)set of *n* items.

Simple Sorts

- Insertion Sort, Selection Sort, Bubble Sort
- $O(n^2)$

Efficient Sorts

• Divide & Conquer: Quick Sort $(O(n^2))$, Merge Sort $(O(n \log n))$

Trick Sorts

- Radix Sort $(O(n\lceil \log k \rceil))$, Counting Sort (O(n+k))
- *k* is the maximum key size.

Divide and Conquer **MergeSort** Inv Count Selection Int Mult Matrix Mult Closest Pairs* Max Subarra^{*}

SORTING

Ordering some (multi)set of *n* items.

Simple Sorts

- Insertion Sort, Selection Sort, Bubble Sort
- \bullet $O(n^2)$

Efficient Sorts

• Divide & Conquer: Quick Sort $(O(n^2))$, Merge Sort $(O(n \log n))$

Trick Sorts

- Radix Sort $(O(n\lceil \log k \rceil))$, Counting Sort (O(n+k))
- *k* is the maximum key size.
- TopHat 5: What value of k would make both sorts have time complexity no better than Merge Sort?

Divide and Conquer **MergeSort** Inv Count Selection Int Mult Matrix Mult Closest Pairs* Max Subarra^{*}

SORTING

Ordering some (multi)set of *n* items.

Simple Sorts

- Insertion Sort, Selection Sort, Bubble Sort
- \bullet $O(n^2)$

Efficient Sorts

• Divide & Conquer: Quick Sort $(O(n^2))$, Merge Sort $(O(n \log n))$

Trick Sorts

- Radix Sort $(O(n\lceil \log k \rceil))$, Counting Sort (O(n+k))
- *k* is the maximum key size.
- TopHat 5: What value of k would make both sorts have time complexity no better than Merge Sort? $\Omega(n \log n)$

Algorithm: MergeSort

Input: A list A of n comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$

 $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*.

if |A| = 1 then return A

 $A_1 := MergeSort(Front-half of A)$

 $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Algorithm: Merge

Input: Two lists of comparable items: *A* and *B*.

Output: A merged list.

Initialize *S* to an empty list.

while *either A or B is not empty* **do**

Pop and append $\min\{\text{front of } A, \text{front of } B\}$ to S.

end

return S

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*.

if |A| = 1 then return A

 $A_1 := MergeSort(Front-half of A)$

 $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Algorithm: Merge

Input: Two lists of comparable items: *A* and *B*.

Output: A merged list.

Initialize *S* to an empty list.

while *either A or B is not empty* **do**

Pop and append $min\{front of A, front of B\}$ to S.

end

return S

TopHat 6: What is the complexity of Merge?

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*.

if |A| = 1 then return A

 $A_1 := MergeSort(Front-half of A)$

 $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Algorithm: Merge

Input: Two lists of comparable items: *A* and *B*.

Output: A merged list.

Initialize *S* to an empty list.

while *either A or B is not empty* **do**

Pop and append $\min\{\text{front of } A, \text{front of } B\}$ to S.

end

return S

TopHat 6: What is the complexity of Merge? O(n)

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Program Correctness:

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1, A_2)$

Program Correctness:

Invariant:

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1, A_2)$

Program Correctness:

• Invariant: List *A* is sorted after call to MergeSort.

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Program Correctness:

• Invariant: List *A* is sorted after call to MergeSort. Proof:

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Program Correctness:

• Invariant: List *A* is sorted after call to MergeSort. Proof: By strong induction on list length:

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Program Correctness:

Invariant: List A is sorted after call to MergeSort.
 Proof: By strong induction on list length:
 Base cases: k = 1: List is sorted; k = 2: Split into size 1, then Merge produces sorted list.

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Program Correctness:

 $oldsymbol{0}$ Invariant: List A is sorted after call to MergeSort.

Proof: By strong induction on list length:

Base cases: k = 1: List is sorted; k = 2: Split into size 1, then Merge produces sorted list.

Inductive step: By ind hyp, A_1 and A_2 are sorted, and, then, by definition, Merge will produce a sorted list.

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Program Correctness:

- Invariant: List *A* is sorted after call to MergeSort.
- Soundness: Immediate from invariant.

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$ $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Program Correctness:

- Invariant: List *A* is sorted after call to MergeSort.
- Soundness: Immediate from invariant.
- Complete: Handles lists of any size, and each recursion makes progress towards base case by splitting the list in half.

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$

 $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Run time Considerations:

MergeSort

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := MergeSort(Front-half of A)$

 $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Run time Considerations:

• Cost to Merge: O(n).

MergeSort

Algorithm: MergeSort

Input: A list *A* of *n* comparable items.

Output: A sorted list *A*. if |A| = 1 then return *A*

 $A_1 := \text{MergeSort}(\text{Front-half of } A)$

 $A_2 := MergeSort(Back-half of A)$

return $Merge(A_1,A_2)$

Run time Considerations:

- Cost to Merge: O(n).
- Recurrences: 2 calls to MergeSort with lists half the size.

MERGESORT RECURRENCE

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

MergeSort Recurrence

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Notes

- More precise: $T(n) \le T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$
- Usually, we can asymptotically ignore floor and ceilings.
- Essentially, we are assuming n is a power of 2.
- Alternate form: $T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + O(n); T(1) \le O(1)$

MergeSort Recurrence

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Notes

- More precise: $T(n) \le T(\left|\frac{n}{2}\right|) + T(\left[\frac{n}{2}\right]) + cn$
- Usually, we can asymptotically ignore floor and ceilings.
- Essentially, we are assuming n is a power of 2.
- Alternate form: $T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + O(n); T(1) \le O(1)$

Methods

- Unwind / Recurrence Tree
- Guess
- Master Theorem
- Nuclear Bomb Theorem / Master Master Theorem

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

 $\le 2\left(2T\left(\frac{n}{4}\right) + c\frac{n}{2}\right) + cn$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(2T\left(\frac{n}{4}\right) + c\frac{n}{2}\right) + cn$$

$$\le 2\left(2\left(2T\left(\frac{n}{2^3}\right) + c\frac{n}{2^2}\right) + c\frac{n}{2}\right) + cn$$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(2T\left(\frac{n}{4}\right) + c\frac{n}{2}\right) + cn$$

$$\le 2\left(2\left(2T\left(\frac{n}{2^3}\right) + c\frac{n}{2^2}\right) + c\frac{n}{2}\right) + cn$$

$$\vdots$$

$$\le 2^k T\left(\frac{n}{2^k}\right) + kcn$$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(2T\left(\frac{n}{4}\right) + c\frac{n}{2}\right) + cn$$

$$\le 2\left(2\left(2T\left(\frac{n}{2^3}\right) + c\frac{n}{2^2}\right) + c\frac{n}{2}\right) + cn$$

$$\vdots$$

$$\le 2^k T\left(\frac{n}{2^k}\right) + kcn$$

$$1 = \frac{n}{2^k}$$

$$\iff 2^k = n$$

$$\iff k = \log_2(n)$$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(2T\left(\frac{n}{4}\right) + c\frac{n}{2}\right) + cn$$

$$\le 2\left(2\left(2T\left(\frac{n}{2^3}\right) + c\frac{n}{2^2}\right) + c\frac{n}{2}\right) + cn$$

$$\vdots$$

$$\le 2^k T\left(\frac{n}{2^k}\right) + kcn$$

$$= nT(1) + cn\log(n)$$

$$1 = \frac{n}{2^k}$$

$$\iff 2^k = n$$

$$\iff k = \log_2(n)$$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(2T\left(\frac{n}{4}\right) + c\frac{n}{2}\right) + cn$$

$$\le 2\left(2\left(2T\left(\frac{n}{2^3}\right) + c\frac{n}{2^2}\right) + c\frac{n}{2}\right) + cn$$

$$\vdots$$

$$\le 2^k T\left(\frac{n}{2^k}\right) + kcn$$

$$= nT(1) + cn\log(n)$$

$$= cn + cn\log n$$

$$1 = \frac{n}{2^k}$$

$$\iff 2^k = n$$

$$\iff k = \log_2(n)$$

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(2T\left(\frac{n}{4}\right) + c\frac{n}{2}\right) + cn$$

$$\leq 2\left(2\left(2T\left(\frac{n}{2^3}\right) + c\frac{n}{2^2}\right) + c\frac{n}{2}\right) + cn$$

$$\vdots$$

$$\leq 2^k T\left(\frac{n}{2^k}\right) + kcn$$

$$= nT(1) + cn\log(n)$$

$$= cn + cn\log n$$

$$= O(n\log(n))$$

$$1 = \frac{n}{2^k}$$

$$\iff 2^k = n$$

$$\iff k = \log_2(n)$$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

 $^{^{1}} Based \ on: \ \texttt{http://www.texample.net/tikz/examples/merge-sort-recursion-tree/}$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

 $^{^{1}} Based \ on: \ \texttt{http://www.texample.net/tikz/examples/merge-sort-recursion-tree/}$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

 $^{^{1}} Based \ on: \ \texttt{http://www.texample.net/tikz/examples/merge-sort-recursion-tree/}$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

 $^{^{1}} Based \ on: \ http://www.texample.net/tikz/examples/merge-sort-recursion-tree/$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

 $^{^{1}} Based \ on: \ http://www.texample.net/tikz/examples/merge-sort-recursion-tree/$

 $T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$

RECURSION TREE METHOD

cn

 $^{^{1}} Based \ on: \ http://www.texample.net/tikz/examples/merge-sort-recursion-tree/$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

 $^{^{1} {\}it Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/}$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

 $^{^{1}} Based \ on: \ http://www.texample.net/tikz/examples/merge-sort-recursion-tree/$

Guess Method

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Procedure

① Guess: Seems like $O(n \log n)$ -ish.

Guess Method

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Procedure

- **①** Guess: Seems like $O(n \log n)$ -ish.
- Prove by induction! Not valid without proof!

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn \le cn \lg n + cn; T(1) \le c$$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn \le cn \lg n + cn; T(1) \le c$$

Base Case: n = 2.

$$T(2) = 2 \cdot T(1) + 2c \le 4c$$

= $c \cdot 2 \lg 2 + 2c$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn \le cn \lg n + cn; T(1) \le c$$

Base Case: n=2.

$$T(2) = 2 \cdot T(1) + 2c \le 4c$$

= $c \cdot 2 \lg 2 + 2c$

Inductive step:

$$T(k) = 2 \cdot T(k/2) + ck$$

$$\leq 2\left(\frac{ck}{2}\lg\frac{k}{2} + \frac{ck}{2}\right) + ck$$

$$= ck\lg(k/2) + 2ck$$

$$= ck\lg k - ck + 2ck$$

$$= ck\lg k + ck$$

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + cn \le cn \lg n + cn; T(1) \le c$$

Base Case: n = 2.

$$T(2) = 2 \cdot T(1) + 2c \le 4c$$

= $c \cdot 2 \lg 2 + 2c$

Inductive step:

$$T(k) = 2 \cdot T(k/2) + ck$$

$$\leq 2\left(\frac{ck}{2} \lg \frac{k}{2} + \frac{ck}{2}\right) + ck$$

$$= ck \lg(k/2) + 2ck$$

$$= ck \lg k - ck + 2ck$$

$$= ck \lg k + ck$$

 $\therefore O(n \log n)$

$$T(n) \le q \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

$$T(n) \le q \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Case q > 2

$$T(n) \le q \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Case q > 2 $O\left(n^{\lg q}\right)$

$$O(n^{\lg q})$$

$$T(n) \le q \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Case q > 2

$$O\left(n^{\lg q}\right)$$

Case
$$q = 2$$

 $O(n \log n)$

$$T(n) \le q \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Case q > 2

 $O\left(n^{\lg q}\right)$

Case q = 2

 $O(n \log n)$

Case q = 1

$$T(n) \le q \cdot T\left(\frac{n}{2}\right) + cn; T(1) \le c$$

Case q > 2

 $O\left(n^{\lg q}\right)$

Case q = 2

 $O(n \log n)$

Case q = 1

O(n)

Master Theorem

COOKBOOK RECURRENCE SOLVING

Master Theorem

COOKBOOK RECURRENCE SOLVING

Theorem 1

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n)be defined on the non-negative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n = b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n)has the following asymptotic bounds:

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a}).$
- $\textbf{2} \quad If f(n) = \Theta\left(n^{\log_b a}\right), \text{ then } T(n) = \Theta\left(n^{\log_b a} \log n\right).$
- **3** If $\Omega\left(n^{\log_b a + \varepsilon}\right)$ for some constant $\varepsilon > 0$, and if $a \cdot f(n/b) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Nuclear Bomb / Master Master Theorem

AKRA AND BAZZI, 1998

Theorem 2

Given a recurrence of the form:

$$T(n) = \sum_{i=1}^{k} a_i T(n/b_i) + f(n) ,$$

where k is a constant, $a_i > 0$ and $b_i > 1$ are constants for all i, and $f(n) = \Omega(n^c)$ and $f(n) = O(n^d)$ for some constants $0 < c \le d$. Then,

$$T(n) = \Theta\left(n^{\rho}\left(1 + \int_{1}^{n} \frac{f(u)}{u^{\rho+1}} du\right)\right) ,$$

where ρ is the unique real solution to the equation

$$\sum_{i=1}^k \frac{a_i}{b_i^{\rho}} = 1 .$$

INVERSION COUNT

COUNTING INVERSIONS

Inversion

Given a list A of comparable items. An inversion is a pair of items (a_i, a_j) such that $a_i > a_j$ and i < j, where i and j are the index of the items in A.

Counting Inversions

Inversion

Given a list A of comparable items. An inversion is a pair of items (a_i, a_j) such that $a_i > a_j$ and i < j, where i and j are the index of the items in A.

Inversion Count

Count the number of inversions in a list A, containing n comparable items.

Divide and Conquer MergeSort Inv Count Selection Int Mult Matrix Mult Closest Pairs* Max Subarray*

Counting Inversions

Inversion

Given a list A of comparable items. An inversion is a pair of items (a_i, a_j) such that $a_i > a_j$ and i < j, where i and j are the index of the items in A.

Inversion Count

Count the number of inversions in a list A, containing n comparable items.

Exercise – Teams of 2 or 3

- Solve the problem in $\Theta(n^2)$.
- Solve the problem in $O(n \log n)$.
- Prove correctness and complexity.

Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLPAIRS
Input: A list A of n comparable items.
Output: Number of inversions in A.
Let c := 0
for i := 1 \text{ to } len(A) - 1 \text{ do}
   for j := i to len(A) do
       if A[i] > A[j] then
       c := c + 1
       end
   end
end
return c
```

Part 1: Give a $\Theta(n^2)$ solution.

Algorithm: CHECKALLPAIRS

Input: A list *A* of *n* comparable items.

Output: Number of inversions in *A*.

```
Let c := 0
for i := 1 to len(A) - 1 do
   for j := i to len(A) do
       if A[i] > A[j] then
        c := c + 1
       end
   end
end
```

return c

Analysis

• Correct: Checks all pairs and counts the inversions.

Part 1: Give a $\Theta(n^2)$ solution.

Algorithm: CHECKALLPAIRS

Input: A list A of n comparable items.

Output: Number of inversions in *A*.

end

return c

Analysis

- Correct: Checks all pairs and counts the inversions.
- Complexity: For each i, check n i pairs. Overall:

$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = \Theta(n^2) .$$

Part 2: Give an $O(n \log n)$ solution.

Algorithm: CountSort

Input: A list *A* of *n* comparable items.

Output: A sorted array and the number of inversions.

if |A| = 1 then return (A, 0)

 $(A_1, c_1) := \text{CountSort}(\text{Front-half of } A)$

 $(A_2, c_2) := \text{CountSort}(\text{Back-half of } A)$

 $(A,c) := MergeCount(A_1,A_2)$

return $(A, c + c_1 + c_2)$

Part 2: Give an $O(n \log n)$ solution.

```
Algorithm: MergeCount
Input: Two lists of comparable items: A and B.
Output: A merged list and the count of inversions.
Initialize S to an empty list and c := 0.
while either A or B is not empty do
   Pop and append \min\{\text{front of } A, \text{ front of } B\} to S.
   if Appended item is from B then
    | c := c + |A|.
   end
end
return (S, c)
```

Divide and Conquer MergeSort Inv Count Selection Int Mult Matrix Mult Closest Pairs* Max Subarray*

Part 2: Give an $O(n \log n)$ solution.

```
Algorithm: MergeCount
```

Input: Two lists of comparable items: *A* and *B*.

Output: A merged list and the count of inversions.

Initialize *S* to an empty list and c := 0.

while either A or B is not empty **do**

Pop and append $\min\{\text{front of } A, \text{ front of } B\}$ to S.

if *Appended item is from B* **then**

| c := c + |A|.

end

end

return (S, c)

Analysis

- Correctness: Need to show that the inversions are counted.
- Complexity: Same recurrence as MergeSort.

LINEAR TIME SELECTION

LINEAR TIME SELECTION

Problem

Find the *k*th value in an unsorted array *A* of *n* numbers if *A* were sorted.

Divide and Conquer MergeSort – Inv Count **Selection**. Int Mult Matrix Mult Closest Pairs* Max Subarray*

LINEAR TIME SELECTION

Problem

Find the *k*th value in an unsorted array *A* of *n* numbers if *A* were sorted.

```
Algorithm: QUICKSELECT
```

```
Input : A array A[1..n] and an int k.
Output: The kth element of A if A were sorted.
if n = 1 then return A[1]
Choose a pivot A[p]
r := \text{Partition}(A[1..n], p)
if k < r then
   return QuickSelect(A[1..r-1],k)
else if k > r then
   return QuickSelect(A[r+1..n],k-r)
else
   return A[r]
end
```

Partition around a Pivot

Partition around a Pivot

PARTITION AROUND A PIVOT

TopHat 7: How much work is done to partition around a pivot?

PARTITION AROUND A PIVOT

How much work is done to partition around a pivot? O(n)

QUICKSELECT RECURRENCE

$$T(n) \le \max_{1 \le r \le n} \max \{T(r-1), T(n-r)\} + cn$$

Algorithm: QuickSelect

```
Input: A array A[1..n] and an int k.
Output: The kth element of A.
if n = 1 then return A[1]
Choose a pivot A[p]
r := \text{Partition}(A[1..n], p)
if k < r then
   return QuickSelect(A[1..r-1],k)
else if k > r then
   return QuickSelect(A[r+1..n],k-r)
else
   return A[r]
end
```

$$T(n) \le \max_{1 \le r \le n} \max \{T(r-1), T(n-r)\} + cn$$

$$\le \max_{1 \le \ell \le n-1} T(\ell) + cn$$

$$\le T(n-1) + cn$$

$$\in O(n^2)$$

MEDIAN OF MEDIANS

Algorithm: MomSelect

```
Input : A array A[1..n] and an int k.
Output: The kth element of A.
if n is small then Solve by brute force.
m := \lceil n/5 \rceil
for i := 1 to m do
   M[i] := brute force find median of A[5i - 4..5i]
end
mom := MomSelect(M[1..m], |m/3|)
r := \text{Partition}(A[1..n], mom)
if k < r then
   return MomSelect(A[1..r-1],k)
else if k > r then
   return MomSelect(A[r+1..n],k-r)
else
   return A[r]
end
```

MomSelect Analysis

MomSelect Pivot

- greater and less than $> \lfloor \lceil n/5 \rceil/2 \rfloor 1 \approx n/10$ medians.
- Therefore, MomSelect Pivot is greater and less than 3n/10 items.
- So, worst-case partition size is 7n/10.

MomSelect Analysis

MomSelect Pivot

- greater and less than $> \lfloor \lceil n/5 \rceil/2 \rfloor 1 \approx n/10$ medians.
- Therefore, MomSelect Pivot is greater and less than 3n/10 items.
- So, worst-case partition size is 7n/10.

Recurrence:

$$T(n) \le T(n/5) + T(7n/10) + cn \in O(n)$$

Partial Product Method:

$$\begin{array}{r}
1100 \\
\times 1101 \\
12 \\
\hline
1100 \\
\times 13 \\
\hline
36 \\
1100 \\
\hline
12 \\
\hline
156 \\
\hline
10011100
\end{array}$$

Problem

Multiple two binary numbers *x* and *y*, counting every bitwise operation.

Partial Product Method:

$$\begin{array}{r}
1100 \\
\times 1101 \\
12 \\
\times 13 \\
\hline
36 \\
1100 \\
\underline{12} \\
156 \\
\hline
\end{array}$$

$$\begin{array}{r}
1100 \\
1100 \\
1100 \\
\hline
100111100 \\
\end{array}$$

Problem

Multiple two binary numbers *x* and *y*, counting every bitwise operation.

TopHat 8: What is the complexity of the partial product method?

Partial Product Method:

$$\begin{array}{rcl}
 & & 1100 \\
 \times & 1101 \\
12 & & 1100 \\
 \times & 13 & 0000 \\
\hline
 & 36 & 1100 \\
 \hline
 & 12 & 1100 \\
\hline
 & 156 & 10011100
\end{array}$$

Problem

Multiple two binary numbers x and y, counting every bitwise operation.

TopHat 8: What is the complexity of the partial product method? $O(n^2)$.

TopHat Discussion 1: Suggest how to divide the problem.

Divide & Conouer v1

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

$$= x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$$

• TH9: How many recursive calls?

Divide & Conouer v1

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

$$= x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$$

• How many recursive calls? 4.

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

- How many recursive calls? 4.
- Cost per call?

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

- How many recursive calls? 4.
- Cost per call? O(n)

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

- How many recursive calls? 4.
- Cost per call? O(n)
- TH10: What is the size of the recursive calls?

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

- How many recursive calls? 4.
- Cost per call? O(n)
- What is the size of the recursive calls? n/2.

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

- How many recursive calls? 4.
- Cost per call? O(n)
- What is the size of the recursive calls? n/2.
- TH11: What is the recurrence?

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

- How many recursive calls? 4.
- Cost per call? O(n)
- What is the size of the recursive calls? n/2.
- What is the recurrence?

$$T(n) \le 4T(n/2) + cn$$

High and low bits

Consider $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

- How many recursive calls? 4.
- Cost per call? O(n)
- What is the size of the recursive calls? n/2.
- What is the recurrence?

$$T(n) \le 4T(n/2) + cn = O\left(n^{\lg 4}\right) = O\left(n^2\right)$$

DIVIDE & CONQUER V2

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

$$= x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1) \cdot 2^{n/2} + x_0 y_0$$

Hint:
$$(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$
.

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint:
$$(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$
.

- Recursions:
 - $p := intMult(x_1 + x_0, y_1 + y_0)$
 - $x_1y_1 := intMult(x_1, y_1)$
 - $x_0y_0 := intMult(x_0, y_0)$

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint:
$$(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$
.

- Recursions:
 - $p := intMult(x_1 + x_0, y_1 + y_0)$
 - $x_1y_1 := intMult(x_1, y_1)$
 - $x_0y_0 := intMult(x_0, y_0)$
- Combine: Return $x_1y_1 \cdot 2^n + (p x_1y_1 x_0y_0) \cdot 2^{n/2} + x_0y_0$

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint:
$$(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$
.

- Recursions:
 - $p := intMult(x_1 + x_0, y_1 + y_0)$
 - $x_1y_1 := intMult(x_1, y_1)$
 - $x_0y_0 := intMult(x_0, y_0)$
- Combine: Return $x_1y_1 \cdot 2^n + (p x_1y_1 x_0y_0) \cdot 2^{n/2} + x_0y_0$
- Recurrence: $T(n) \le 3T(n/2) + O(n) = O(n^{\lg 3}) = O(n^{1.59})$

MATRIX MULTIPLICATION

MATRIX MULTIPLICATION

Problem

Multiple two *n*x*n* matrices, *A* and *B*. Let C = AB.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}$$

Divide and Conquer MergeSort Inv Count Selection Int Mult **Matrix Mult** Closest Pairs* Max Subarray*

MATRIX MULTIPLICATION

Problem

Multiple two nxn matrices, A and B. Let C = AB.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}$$

Algorithm: Naïve Method

```
\begin{array}{l|l} \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ & \textbf{for } j \leftarrow 1 \textbf{ to } n \textbf{ do} \\ & & \textbf{for } k \leftarrow 1 \textbf{ to } n \textbf{ do} \\ & & & C[i][j] + = A[i][k] \cdot B[k][j] \\ & \textbf{end} \\ & \textbf{end} \end{array}
```

end

TopHat 12: What is the complexity of the Naïve Method?

MATRIX MULTIPLICATION

Problem

Multiple two nxn matrices, A and B. Let C = AB.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}$$

Algorithm: Naïve Method

end

TopHat 12: What is the complexity of the Naïve Method? $O(n^3)$.

DIVIDE & CONQUER V1

TopHat Discussion 2: Suggest how to divide the problem.

DIVIDE & CONOUER V1

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

• TH13: How many recursive calls?

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

• How many recursive calls? 8.

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

- How many recursive calls? 8.
- Cost per call?

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- TH14: What is the size of the recursive calls?

DIVIDE & CONQUER V1

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? n/2.

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? n/2.
- TH15: What is the recurrence?

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? n/2.
- What is the recurrence?

$$T(n) \le 8T(n/2) + cn^2$$

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? n/2.
- What is the recurrence?

$$T(n) \le 8T(n/2) + cn^2 = O(n^{\lg 8}) = O(n^3)$$

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{array}\right]$$

Strassen's Method (1969)

•
$$p_1 := a(f - h)$$

•
$$p_2 := (a + b)h$$

•
$$p_3 := (c + d)e$$

•
$$p_4 := d(g - e)$$

•
$$p_5 := (a+d)(e+h)$$

•
$$p_6 := (b - d)(g + h)$$

•
$$p_7 := (a - c)(e + f)$$

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{array}\right]$$

Strassen's Method (1969)

•
$$p_1 := a(f - h)$$

•
$$p_2 := (a + b)h$$

•
$$p_3 := (c + d)e$$

•
$$p_4 := d(g - e)$$

•
$$p_5 := (a+d)(e+h)$$

•
$$p_6 := (b - d)(g + h)$$

•
$$p_7 := (a - c)(e + f)$$

TH16: What is the recurrence?

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{array}\right]$$

Strassen's Method (1969)

•
$$p_1 := a(f - h)$$

•
$$p_2 := (a + b)h$$

•
$$p_3 := (c + d)e$$

•
$$p_4 := d(g - e)$$

•
$$p_5 := (a+d)(e+h)$$

•
$$p_6 := (b - d)(g + h)$$

•
$$p_7 := (a - c)(e + f)$$

What is the recurrence?

$$T(n) \le 7T(n/2) + cn^2 = O\left(n^{\lg 7}\right) = O\left(n^{2.8074}\right)$$

DIVIDE & CONQUER V2

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{bmatrix}$$

Current Champ: $O(n^{2.373})$

Virginia Vassilevska Williams, MIT

CLOSEST PAIRS*

Divide and Conquer MergeSort – Inv Count Selection Int Mult Matrix Mult **Closest Pairs*** Max Subarray*

FINDING THE CLOSES PAIR OF POINTS

Problem

Given a set of n points, $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$, in the plane. Find the closest pair. That is, solve $\arg\min_{(p_i, p_j) \in \mathcal{P}} \{d(p_i, p_j)\}$, where $d(\cdot, \cdot)$ is the Euclidean distance.

Divide and Conquer MergeSort — Inv Count Selection Int Mult Matrix Mult **Closest Pairs*** Max Subarray*

FINDING THE CLOSES PAIR OF POINTS

Problem

Given a set of n points, $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$, in the plane. Find the closest pair. That is, solve $\arg\min_{(p_i, p_j) \in \mathcal{P}} \{d(p_i, p_j)\}$, where $d(\cdot, \cdot)$ is the Euclidean distance.

What is the $O(n^2)$ solution?

1-d Closest Pair

1-d Closest Pair

The points are on the line.

1-d Closest Pair

The points are on the line.

 $O(n \log n)$ for 1-d Closest Pair

1-d Closest Pair

The points are on the line.

$O(n \log n)$ for 1-d Closest Pair

• Sort the points

1-d Closest Pair

The points are on the line.

$O(n \log n)$ for 1-d Closest Pair

• Sort the points $(O(n \log n))$.

1-d Closest Pair

The points are on the line.

$O(n \log n)$ for 1-d Closest Pair

- Sort the points $(O(n \log n))$.
- Walk through sorted points and find minimum pair

1-d Closest Pair

The points are on the line.

$O(n \log n)$ for 1-d Closest Pair

- Sort the points $(O(n \log n))$.
- Walk through sorted points and find minimum pair (O(n)).

2-D CLOSEST PAIR

DIVIDE AND CONQUER

• Divide: Split point set (in half?).

2-D CLOSEST PAIR

DIVIDE AND CONQUER

- Divide: Split point set (in half?).
- 2 Conquer: Find closest pair in each partition.

2-D CLOSEST PAIR

DIVIDE AND CONQUER

• Divide: Split point set (in half?).

2 Conquer: Find closest pair in each partition.

3 Combine: Merge the solutions.

Definitions

- \mathcal{P}_x : Points sorted by *x*-coordinate.
- \mathcal{P}_{v} : Points sorted by *y*-coordinate.
- Q (resp. R) is left (resp. right) half of \mathcal{P}_x .

2. Conquer: Find the min in Q and R

Key Observations

• From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_Y without resorting.

2. Conquer: Find the min in Q and R

Key Observations

- From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_Y without resorting.
- Running time for this:

2. Conquer: Find the min in Q and R

Key Observations

- From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_Y without resorting.
- Running time for this: O(n).
- Let (q_0^*, q_1^*) and (r_0^*, r_1^*) be closest pairs in Q and R.

Key Observations

- From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_Y without resorting.
- Running time for this:
- Let (q_0^*, q_1^*) and (r_0^*, r_1^*) be closest pairs in Q and R.

Claim 1

[TopHat] Let $\delta := \min\{d(q_0^*, q_1^*), d(r_0^*, r_1^*)\}$. If there exists a $q \in Q$ and an $r \in R$ for which $d(q, r) < \delta$, then each of q and r are within \square of L.

Claim 1

Let $\delta := \min\{d(q_0^*, q_1^*), d(r_0^*, r_1^*)\}$. If there exists a $q \in Q$ and an $r \in R$ for which $d(q,r) < \delta$, then each of q and r are within δ of L.

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_y .

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_{ψ} .

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_y .

Divide and Conquer MergeSort — Inv Count Selection Int Mult Matrix Mult **Closest Pairs*** Max Subarray^a

3. Combine the Solutions.

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_{ν} .

Proof.

• Partition δ -space around L into $\delta/2$ squares.

Divide and Conquer MergeSort Inv Count Selection Int Mult Matrix Mult **Closest Pairs*** Max Subarray

3. Combine the Solutions.

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_{ν} .

Proof.

- Partition δ -space around L into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ .

Divide and Conquer MergeSort Inv Count Selection Int Mult Matrix Mult **Closest Pairs*** Max Subarray

3. Combine the Solutions.

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_y .

Proof.

- Partition δ -space around L into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ .
- By way of contradiction, say $d(s,s') < \delta$ and s and s' separated by 16 positions.

Divide and Conquer MergeSort — Inv Count Selection Int Mult Matrix Mult **Closest Pairs*** Max Subarray

3. Combine the Solutions.

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_{ν} .

Proof.

- Partition δ -space around L into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ .
- By way of contradiction, say $d(s,s') < \delta$ and s and s' separated by 16 positions.
- By counting argument, s and s' are separated by 3 rows which is at least $3\delta/2$.

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_y .

Completing the Algorithm

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_y .

Completing the Algorithm

• Find the min pair (s, s') in S.

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_y .

Completing the Algorithm

- Find the min pair (s, s') in S.
 - For each $p \in S$, check the distance to each of next 15 points in S_y .

Lemma 3

Let S be the set of points within δ of L. If there exists a $s, s' \in S$ and $d(s, s') < \delta$, then s and s' are within 15 positions of each other in S_y .

Completing the Algorithm

- Find the min pair (s, s') in S.
 - For each $p \in S$, check the distance to each of next 15 points in S_y .
- If $d(s, s') < \delta$, return (s, s')
- else return min of (q_0^*, q_1^*) and (r_0^*, r_1^*) .

Correctness of the Algorithm

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

Sorting by x and by y

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by x and by y ($O(n \log n)$).
- TH: How many recursive calls?

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by x and by y ($O(n \log n)$).
- How many recursive calls? 2.

COMPLETING THE ANALYSIS

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by x and by y ($O(n \log n)$).
- How many recursive calls? 2.
- TH: What is the size of the recursive calls?

COMPLETING THE ANALYSIS

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by x and by y ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? n/2.

Completing the Analysis

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by x and by y ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? n/2.
- Work per call: check points in *S*.

Divide and Conquer MergeSort Inv Count Selection Int Mult Matrix Mult **Closest Pairs*** Max Subarray*

Completing the Analysis

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by x and by y ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? n/2.
- Work per call: check points in *S*.
 - $15 \cdot |S| = O(n)$.

COMPLETING THE ANALYSIS

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by x and by y ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? n/2.
- Work per call: check points in *S*.
 - $15 \cdot |S| = O(n)$.
- TH: What is the recurrence?

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by x and by y ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? n/2.
- Work per call: check points in *S*.
 - $15 \cdot |S| = O(n)$.
- What is the recurrence?

$$T(n) \le 2T(n/2) + cn = O(n \log n) .$$

Max Subarray*

Max Subarray

Problem

Given an array A of integers, find the contiguous subarray of A of maximum sum.

Max Subarray

Problem

Given an array *A* of integers, find the contiguous subarray of *A* of maximum sum.

Exercise – Teams of 3 or so

- Solve the problem in $\Theta(n^2)$.
- Solve the problem in $O(n \log n)$.
- Prove correctness and complexity.

Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRAYS
Input: Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
      if sum(A[i..j]) > sum(M) then
       M := A[i..j]
      end
   end
end
return M
```

Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRA
Input: Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
      if sum(A[i..j]) > sum(M
         M := A[i..j]
      end
   end
end
return M
```

Analysis

 Correct: Checks all possible contiguous subarrays.

Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRA
Input: Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
      if sum(A[i..j]) > sum(M
       M := A[i..j]
       end
   end
end
return M
```

Analysis

- Correct: Checks all possible contiguous subarrays.
- Complexity:
 - Re-calculating the sum will make it $O(n^3)$. Key is to calculate the sum as you iterate.
 - For each i, check n i + 1 ends. Overall:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

Part 2: Give an $O(n \log n)$ solution.

```
Algorithm: MaxSubarray
```

Input: Array *A* of *n* ints. **Output:** Max subarray in *A*.

 $A_1 := MaxSubarray(Front-half of A)$

 $A_2 := MaxSubarray(Back-half of A)$

M := MidMaxSubarray(A)

return *Array with max sum of* $\{A_1, A_2, M\}$

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarray

Input: Array A of n ints.

Output: Max subarray in *A*.

 $A_1 := MaxSubarray(Front-half of A)$

 $A_2 := \text{MaxSubarray}(\text{Back-half of } A)$

M := MidMaxSubarray(A)

return Array with max sum of $\{A_1, A_2, M\}$

Algorithm: MIDMAXSUBARRAY

Input: Array A of n ints.

Output: Max subarray that crosses midpoint *A*.

m := mid-point of A

 $L := \max \text{ subarray in } A[i, m-1] \text{ for } i = m-1 \rightarrow i$

 $R := \max \text{ subarray in } A[m, j] \text{ for } j = m \rightarrow n$

return $L \cup R$ // subarray formed by combining L and R.

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarray

Input: Array *A* of *n* ints. **Output:** Max subarray in *A*.

 $A_1 := MaxSubarray(Front-half of A)$ $A_2 := MaxSubarray(Back-half of A)$

M := MidMaxSubarray(A)

return *Array with max sum of* $\{A_1, A_2, M\}$

Analysis

- Correctness: By induction, A_1 and A_2 are max for subarray and M is max mid-crossing array.
- Complexity: Same recurrence as MergeSort.

Appendix References

Appendix

Appendix References

REFERENCES

PPENDIX REFERENCES

IMAGE SOURCES I

