LIFLC – Logique classique

CM5 – Logique du premier ordre: termes

Licence informatique UCBL – Automne 2018–2019

https://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:logique: start

Premier ordre

2 Termes : syntaxe

Termes : sémantique

Opérations syntaxiques sur les termes

Des faits aux objets

Limite de la logique propositionnelle : pas d'objets

- faits uniquement
- objets fixés dans ces faits
- nombre fixé de faits (même si non borné) dans une formule

Un vocabulaire pour le discours

Objets différents

Vocabulaires différents

Symboles différents

Signature (pour les termes)

Lister les symboles utilisés

Definition

Une signature S = (C, F, ar):

- ullet ${\cal C}$: ensemble (non vide) de **symboles** de constantes
- $oldsymbol{\circ}$: ensemble de **symboles** de fonction
- \bullet $\mathit{ar}: \mathcal{F} \to \mathcal{N}^*:$ nombre d'arguments de chaque symbole de fonction

Notation

f/n signifie ar(f) = n

Exemple : expressions arithmétiques sur les entiers naturels

```
Entiers (de Peano) : \mathcal{S}_{peano} = (\mathcal{C}_{peano}, \mathcal{F}_{peano}, ar_{peano})
```

- $C_{peano} = \{zero\}$
- $\mathcal{F}_{peano} = \{succ/1, plus/2, mult/2\}$

← def implicite de arpeano

Exemple : expressions arithmétiques sur les entiers naturels

Entiers (de Peano) :
$$S_{peano} = (C_{peano}, F_{peano}, ar_{peano})$$

- $C_{peano} = \{zero\}$
- $\bullet \ \mathcal{F}_{\textit{peano}} = \{\textit{succ}/1, \textit{plus}/2, \textit{mult}/2\} \\ \leftarrow \ \text{def implicite de } \textit{ar}_{\textit{peano}}$

Exemple : chaînes de caractères sur a, b, c

Chaînes de caractères : $\mathcal{S}_{char} = (\mathcal{C}_{char}, \mathcal{F}_{char}, \mathit{ar}_{char})$

- $C_{char} = \{a, b, c\}$
- $\mathcal{F}_{char} = \{concat/2\}$

 \triangle concat \leftrightarrow 1 symbole (vrai aussi pour \mathcal{F}_{peano})

Exemple : chaînes de caractères sur a, b, c

Chaînes de caractères : $\mathcal{S}_{char} = (\mathcal{C}_{char}, \mathcal{F}_{char}, ar_{char})$

- $C_{char} = \{a, b, c\}$
- $\mathcal{F}_{char} = \{concat/2\}$

 \triangle concat \leftrightarrow 1 symbole (vrai aussi pour \mathcal{F}_{peano})

Variables

Parler uniquement d'objets fixés : peu intéressant

Ensemble de variables \mathcal{V} représentant des objets :

- infini
- tel qu'on peut toujours prendre une variable fraîche

Variables notées $x, y, x', x_1, ...$

variables au premier ordre variables propositionnelles

Premier ordre

2 Termes : syntaxe

3 Termes : sémantique

Opérations syntaxiques sur les termes

Ensemble inductif des termes

Combinaison bien construite des symboles de la signature et variables

Definition

L'ensemble des termes $\mathcal T$ sur $\mathcal S=(\mathcal C,\mathcal F,\mathit{ar})$ est le plus petit ensemble tel que :

- si $x \in \mathcal{V}$ alors $x \in \mathcal{T}$
- si $c \in \mathcal{C}$ alors $c \in \mathcal{T}$
- si $t_1 \in \mathcal{T}$, ..., $t_n \in \mathcal{T}$ et $f/n \in \mathcal{F}$ alors $f(t_1, ..., t_n) \in \mathcal{T}$

 \leftarrow terme composite

Ensemble inductif des termes

Combinaison bien construite des symboles de la signature et variables

Definition

L'ensemble des termes $\mathcal T$ sur $\mathcal S=(\mathcal C,\mathcal F,\mathit{ar})$ est le plus petit ensemble tel que :

- si $x \in \mathcal{V}$ alors $x \in \mathcal{T}$
- si $c \in \mathcal{C}$ alors $c \in \mathcal{T}$
- si $t_1 \in \mathcal{T}$, ..., $t_n \in \mathcal{T}$ et $f/n \in \mathcal{F}$ alors $f(t_1, ..., t_n) \in \mathcal{T}$

 \leftarrow terme composite

⚠ Pas d'évaluation ici ⚠

Exemple: expressions arithmétiques

Avec
$$\mathcal{S}_{peano} = (\mathcal{C}_{peano}, \mathcal{F}_{peano}, ar_{peano})$$

- $C_{peano} = \{zero\}$
- $\mathcal{F}_{peano} = \{succ/1, plus/2, mult/2\}$

L'ensemble des termes \mathcal{T}_{peano} sur \mathcal{S}_{peano} est le plus petit ensemble tel que :

- si $x \in \mathcal{V}$ alors $x \in \mathcal{T}_{peano}$
- ullet si $c=\mathit{zero}$ alors $c\in\mathcal{T}_{\mathit{peano}}$
- ullet si $t \in \mathcal{T}_{peano}$ alors $succ(t) \in \mathcal{T}_{peano}$
- ullet si t_1 , $t_2 \in \mathcal{T}_{peano}$ alors $\mathit{plus}(t_1, t_2) \in \mathcal{T}_{peano}$
- ullet si $t_1, t_2 \in \mathcal{T}_{peano}$ alors $mult(t_1, t_2) \in \mathcal{T}_{peano}$

zero ∈ T_{peano}
0
x
succ(zero)
plus(zero)
plus(succ(zero), x)

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano} : 0$ n'est pas dans la signature
- X = 7
- $succ(zero) \in T_{maxim}$
- plus(zero) & T_{peans} a pas le bon nombre d'arguments
- $plus(succ(zero), x) \in \mathcal{T}_{pulse}$

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- X =
- succ(zero) ∈ T_{perm}
- plus(zero) d'T_{assas} a pas le bon nombre d'arguments
- plus(succ(zero), x) ∈ T_{max}

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- X ∈ I_{peano}
- succ(zero) ∈ T
- plus(zero) @ T_{max}
- plus(succ(zero), x) = 1

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- \bullet $x \in \mathcal{T}_{peano}$
- succ(zero)
- plus(zero) & Types and le bon nombre d'argument
- $plus(succ(zero), x) \in T_{peaks}$

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- \bullet $x \in \mathcal{T}_{peano}$
- $succ(zero) \in T_{peano}$
- plus(zero) & Image pas le bon nombre
- plus(succ(zero), x) ∈ 7,...

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- \bullet $x \in \mathcal{T}_{peano}$
- $succ(zero) \in \mathcal{T}_{peano}$
- plus(zero)
- $plus(succ(zero), x) \in T_{passing}$

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- \bullet $x \in \mathcal{T}_{peano}$
- $\quad \bullet \ \, \textit{succ}(\textit{zero}) \in \mathcal{T}_{\textit{peano}}$
- ullet $plus(zero)
 ot\in T_{peano}$: pas le bon nombre d'argument.
- plus(succ(zero), x)

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- \bullet $x \in \mathcal{T}_{peano}$
- ullet succ(zero) $\in \mathcal{T}_{peano}$
- $plus(zero) \notin T_{peano}$: pas le bon nombre d'arguments
- plus(succ(zero), x)

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- \bullet $x \in \mathcal{T}_{peano}$
- ullet succ(zero) $\in \mathcal{T}_{peano}$
- $plus(zero) \notin \mathcal{T}_{peano}$: pas le bon nombre d'arguments
- $plus(succ(zero), x) \in T_{peans}$

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- \bullet $x \in \mathcal{T}_{peano}$
- ullet succ(zero) $\in \mathcal{T}_{peano}$
- $plus(zero) \notin \mathcal{T}_{peano}$: pas le bon nombre d'arguments
- $plus(succ(zero), x) \in T_{peano}$

- ullet zero $\in \mathcal{T}_{peano}$
- $0 \notin \mathcal{T}_{peano}$: 0 n'est pas dans la signature
- \bullet $x \in \mathcal{T}_{peano}$
- ullet succ(zero) $\in \mathcal{T}_{peano}$
- $plus(zero) \notin \mathcal{T}_{peano}$: pas le bon nombre d'arguments
- $plus(succ(zero), x) \in \mathcal{T}_{peano}$

Exemple : chaînes de caractères

Avec
$$\mathcal{S}_{\textit{char}} = (\mathcal{C}_{\textit{char}}, \mathcal{F}_{\textit{char}}, \textit{ar}_{\textit{char}})$$

- $C_{char} = \{a, b, c\}$
- $\mathcal{F}_{char} = \{concat/2\}$

L'ensemble des termes \mathcal{T}_{char} sur \mathcal{S}_{char} est le plus petit ensemble tel que :

- si $x \in \mathcal{V}$ alors $x \in \mathcal{T}_{char}$
- si a $\in \mathcal{T}_{char}$, b $\in \mathcal{T}_{char}$ et c $\in \mathcal{T}_{char}$
- ullet si t_1 , $t_2 \in \mathcal{T}_{char}$ alors $concat(t_1, t_2) \in \mathcal{T}_{char}$

- \bullet a $\in \mathcal{T}_{char}$
- concat(a, c)
- ac é Taux nes dans les rècles de constructions

 \triangle Terme eq évaluation d'une expression \triangle

- \bullet a $\in \mathcal{T}_{char}$
- ullet concat(a, c) $\in \mathcal{T}_{char}$
- ac é face pas dans les règles de construction

 \triangle Terme \neq évaluation d'une expression \triangle

- \bullet a $\in \mathcal{T}_{char}$
- ullet concat(a, c) $\in \mathcal{T}_{char}$
- ac

 \triangle Terme \neq évaluation d'une expression \triangle

- \bullet a $\in \mathcal{T}_{char}$
- ullet concat(a, c) $\in \mathcal{T}_{char}$
- ac # Takas : pas dans les règles de construction

 \triangle Terme eq évaluation d'une expression \triangle

- \bullet a $\in \mathcal{T}_{char}$
- $\quad \text{oncat}(\mathtt{a},\mathtt{c}) \in \mathcal{T}_{char}$
- ac $\notin \mathcal{T}_{char}$: pas dans les règles de construction

 \triangle Terme \neq évaluation d'une expression \triangle

- \bullet a $\in \mathcal{T}_{char}$
- ullet concat(a, c) $\in \mathcal{T}_{char}$
- ac $\notin \mathcal{T}_{char}$: pas dans les règles de construction

 \triangle Terme \neq évaluation d'une expression \triangle

Arbre de syntaxe abstraite d'un terme

Représentation en arbre de la structure d'un terme défini sur $\mathcal{S} = (\mathcal{C}, \mathcal{F}, \mathit{ar})$

Definition

Fonction récursive ast(t):

- si $c \in \mathcal{C}$ alors ast(c) = c
- si $x \in \mathcal{V}$ alors ast(x) = x
- si $t = f(t_1, ..., t_n)$ alors ast(t) =

Exemple: expression arithmétique

$$ast(mult(succ(x), plus(succ(zero), y))) =$$

$$\begin{vmatrix}
succ & plus \\
& & \\
x & succ & y \\
& & \\
& & \\
zero
\end{vmatrix}$$

mult

Exemple : expression sur chaînes de caractères

Premier ordre

2 Termes : syntaxe

3 Termes : sémantique

Opérations syntaxiques sur les termes

Interpréter les termes

Moyen pour donner du sens aux termes

Questions:

- Quelles valeurs possibles?
- Valeur (?) d'un symbole
- Variables?

Univers

Definition

Ensemble $\mathcal U$ des valeurs possibles pour les termes

Pas vraiment contraint, mais fixé lorsqu'on interprète les termes

Interpréter les symboles

Interprétation I des symboles dans $\mathcal C$ et $\mathcal F$

Constantes : valeur fixée qui ne dépend que de l'interprétation I :

Si
$$c \in \mathcal{C}$$
 alors $I(c) \in \mathcal{U}$

Symboles de fonction : interprétés par des fonctions On veut interpréter les termes dans \mathcal{U} :

Si
$$f/n \in \mathcal{F}$$
 alors $I(f) : \mathcal{U}^n \to \mathcal{U}$

Interpréter les variables

Interprétation : fixe une vision du monde

Valeur d'une variable peut changer pour une même interprétation

Definition (Valuation)

Fonction $\zeta: \mathcal{V} \to \mathcal{U}$

Retour sur l'interprétation des termes

Évaluation : fonction récursive

- sur les termes
- ullet qui dépend aussi de l'interprétation I et de la valuation ζ

Definition ($eval(I, \zeta)(t)$)

- Si $c \in \mathcal{C}$ alors $eval(I, \zeta)(c) = I(c)$
- Si $x \in \mathcal{V}$ alors $eval(I, \zeta)(x) = \zeta(x)$
- Si $t = f(t_1, ..., t_n)$ si $eval(I, \zeta)(t_1) = u_1, ..., eval(I, \zeta)(t_n) = u_n$, et si $I(f) = \phi$ alors

$$eval(I, \zeta)(t) = \phi(u_1, \dots, u_n)$$

Exemple: expression arithmétiques

Univers $\mathcal{U}_{\mathcal{N}} = \mathcal{N}$ entiers naturels

$$I_{\mathcal{N}}(zero) = 0$$

 $I_{\mathcal{N}}(succ) = n \mapsto n+1$
 $I_{\mathcal{N}}(plus) = n, m \mapsto n+m$
 $I_{\mathcal{N}}(mult) = n, m \mapsto n \times m$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

$$eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) =$$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

$$eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) =$$

$$\zeta(x) = 3$$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

$$eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) =$$

$$I_{\mathcal{N}}(succ) = n \mapsto n+1$$
 $(n \mapsto n+1)(3) = 4$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

$$eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) =$$

$$I_{\mathcal{N}}(zero) = 0$$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

$$eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) =$$

$$I_{\mathcal{N}}(succ) = n \mapsto n+1 \qquad (n \mapsto n+1)(0) = 1$$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

$$eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) =$$

$$\zeta(y) = 2$$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

$$eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) =$$

$$I_{\mathcal{N}}(plus) = n, m \mapsto n + m \qquad (n, m \mapsto n + m)(1, 2) = 3$$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

$$eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) =$$

$$I_{\mathcal{N}}(mult) = n, m \mapsto n \times m$$
 $(n, m \mapsto n \times m)(4, 3) = 12$

Soit
$$\zeta : x \mapsto 3, y \mapsto 2$$

 $eval(I_{\mathcal{N}}, \zeta)(mult(succ(x), plus(succ(zero), y))) = 12$

Exemple : chaînes de caractères

Univers $\mathcal{U}_{str}=\{\mathfrak{a},\mathfrak{b},\mathfrak{c}\}^*$: chaînes de caractères sur l'alphabet $\mathfrak{a},\mathfrak{b},\mathfrak{c}$

$$I_{str}(a) = \mathfrak{a}$$
 $I_{str}(b) = \mathfrak{b}$
 $I_{str}(c) = \mathfrak{c}$
 $I_{str}(concat) = s_1, s_2 \mapsto s_1 s_2$

Soit
$$\zeta: x \mapsto \mathfrak{c}, y \mapsto \mathfrak{a}$$

$$eval(I_{str})(concat(concat(x, \mathbf{a}), concat(\mathbf{b}, y))) = contact(\mathbf{c})$$

Soit
$$\zeta : x \mapsto \mathfrak{c}, y \mapsto \mathfrak{a}$$

$$eval(I_{str})(concat(concat(x, \mathbf{a}), concat(\mathbf{b}, y))) = contact(\mathbf{a})$$

$$\zeta(x) = c$$

Soit
$$\zeta : x \mapsto \mathfrak{c}, y \mapsto \mathfrak{a}$$

$$eval(I_{str})(concat(concat(x, \mathbf{a}), concat(\mathbf{b}, y))) = contact(\mathbf{a})$$

$$I_{str}(a) = \mathfrak{a}$$

Soit
$$\zeta : x \mapsto \mathfrak{c}, y \mapsto \mathfrak{a}$$

$$eval(I_{str})(concat(concat(x, \mathbf{a}), concat(\mathbf{b}, y))) = contact(\mathbf{a})$$

$$I_{str}(concat) = s_1, s_2 \mapsto s_1 s_2$$
 $(s_1, s_2 \mapsto s_1 s_2)(\mathfrak{c}, \mathfrak{a}) = \mathfrak{ca}$

Soit
$$\zeta : x \mapsto \mathfrak{c}, y \mapsto \mathfrak{a}$$

$$eval(I_{str})(concat(concat(x, \mathbf{a}), concat(\mathbf{b}, y))) = contact(\mathbf{a})$$

$$I_{str}(b) = b$$

Soit
$$\zeta: x \mapsto \mathfrak{c}, y \mapsto \mathfrak{a}$$

$$eval(I_{str})(concat(concat(x, \mathbf{a}), concat(\mathbf{b}, y))) = conta$$

$$\zeta(v) = \mathfrak{a}$$

Soit
$$\zeta: x \mapsto \mathfrak{c}, y \mapsto \mathfrak{a}$$

$$eval(I_{str})(concat(concat(x, \mathbf{a}), concat(\mathbf{b}, y))) = conta$$

$$I_{str}(concat) = s_1, s_2 \mapsto s_1 s_2$$
 $(s_1, s_2 \mapsto s_1 s_2)(b, a) = ba$

Soit
$$\zeta : x \mapsto \mathfrak{c}, y \mapsto \mathfrak{a}$$

$$eval(I_{str})(concat(concat(x, \mathbf{a}), concat(\mathbf{b}, y))) = \mathfrak{caba}$$

$$I_{str}(concat) = s_1, s_2 \mapsto s_1 s_2$$
 $(s_1, s_2 \mapsto s_1 s_2)(ca, ba) = caba$

Interprétations non naturelles

S'appuyer sur une connaissance *implicite* de l'univers est

Illusoire

→ considérer toutes les interprétations possibles même les plus farfelues

Exemple: Arithmétique étrange

 $I_{park}(zero) =$ la place la plus à droite

Univers $\mathcal{U}_{\textit{park}}$: 10 places de parking en ligne

 $I_{park}(succ) = p \mapsto la place à droite de p ou$

```
I_{park}(plus) = p_1, p_2 \mapsto la place plus proche du milieu de p_1 et p_2, en privilégiant la plus à gauche en cas d'égalité. I_{park}(mult) = p_1, p_2 \mapsto la place plus proche du milieu de p_1 et p_2, en privilégiant la plus à droite en cas d'égalité.
```

p s'il n'y a pas de place à droite de p

Premier ordre

2 Termes : syntaxe

3 Termes : sémantique

Opérations syntaxiques sur les termes

Substitutions

Replacer une partie d'un terme

- une ou plusieurs variables
- chacune par un terme

Definition

Une substitution est une fonction $\sigma: \mathcal{V} \to \mathcal{T}$ telle que $dom(\sigma)$ est fini

Notation

Si
$$dom(\sigma) = \{x_1, ..., x_n\}$$
 et si pour tout $1 \le i \le n$, $\sigma(x_i) = t_i$ alors σ notée $[x_1 := t_1, x_2 := t_2, ...]$

Appliquer une substitution

Appliquer une σ sur un terme $t\leftrightarrow$ faire le remplacement décrit par σ noté $t\sigma$

Definition (Application de substitution)

Récursivement définie par :

- $c\sigma = c \text{ si } c \in \mathcal{C}$
 - $x\sigma = \sigma(x)$ si $x \in dom(\sigma)$
 - $y\sigma = y$ si $y \in \mathcal{V}$ et $y \notin dom(\sigma)$
 - $f(t_1, \ldots, t_n)\sigma = f(t_1\sigma, \ldots, t_n\sigma)$

Exemple

$$plus(mult(x, succ(y)), plus(zero, plus(x, z)))[x := succ(zero), y := z]$$

$$= plus(mult(succ(zero), succ(z)), plus(zero, plus(succ(zero), z)))$$

$$plus \rightarrow plus$$

$$mult \quad plus \rightarrow plus$$

$$x \quad succ \quad zero \quad plus$$

$$y \quad x \quad z \quad zero \quad z \quad succ \quad z$$

$$zero$$

Motifs

Besoin correspondance terme \leftrightarrow forme

Décrire la forme

par un autre terme

 \leftarrow motif

• dont les variables représentent des "trous" à remplir

Filtrage de motif

Definition (Problème du filtrage de motif)

Étant donné un terme t et un autre terme m (le motif), existe-il une substitution σ telle que $m\sigma=t$.

Exemple

```
Soit m = plus(succ(x), mult(y, x))
```

- pour t = plus(succ(zero), mult(succ(z), zero)): $\sigma = [x := zero, y := succ(z)]$
- pour t = mult(succ(zero), mult(succ(z), zero)) :
 pas de correspondance sur mult
- pour t = plus(succ(zero), mult(succ(z), succ(zero))) :
 deux termes incompatibles pour x

Combiner des substitutions

Exemple précédent : 2 termes incompatibles pour *x* Combinaison de substitution

- pour les substitutions issues du filtrage de branches différentes d'ASA
- pouvant échouer

Definition (merge)

- $merge(\sigma_1, \sigma_2) = fail$ si on peut trouver $x \in dom(\sigma_1) \cap dom(\sigma_2)$ telle que $\sigma_1(x) \neq \sigma_2(x)$
- sinon $merge(\sigma_1, \sigma_2) = x \mapsto \begin{cases} \sigma_1(x) \text{ si } x \in dom(\sigma_1) \\ \sigma_2(x) \text{ si } x \in dom(\sigma_2) \setminus dom(\sigma_1) \end{cases}$

Combiner des substitutions

Exemple précédent : 2 termes incompatibles pour *x* Combinaison de substitution

- pour les substitutions issues du filtrage de branches différentes d'ASA
- pouvant échouer

Definition (merge)

- $merge(\sigma_1, ..., \sigma_n) = fail$ si on peut trouver i et j tels que $x \in dom(\sigma_i) \cap dom(\sigma_j)$ telle que $\sigma_i(x) \neq \sigma_j(x)$
- sinon $merge(\sigma_1, ..., \sigma_n) =$ $x \mapsto \begin{cases} \sigma_1(x) \text{ si } x \in dom(\sigma_1) \\ \sigma_2(x) \text{ si } x \in dom(\sigma_2) \setminus dom(\sigma_1) \\ ... \\ \sigma_n(x) \text{ si } x \in dom(\sigma_n) \setminus (dom(\sigma_{n-1}) \cup \cdots \cup dom(\sigma_1)) \end{cases}$

Calcul de filtrage de motif

Definition (match)

match(t, m) définie récursivement sur m par :

- si $m=c\in\mathcal{C}$ alors $match(t,c)=\left\{egin{array}{l} [] ext{ si } t=c \\ ext{ fail si } t
 eq c \end{array}
 ight.$
- si m = x alors match(t, x) = [x := t]
- si $m = f(m_1, ..., m_n)$ et $t = f(t_1, ..., t_n)$ alors soit $\sigma_i = match(t_i, m_i)$ pour $1 \le i \le n$
 - si il existe i tel que $\sigma_i = \text{fail alors } match(t, m) = \text{fail}$
 - sinon $match(t, m) = merge(\sigma_1, ..., \sigma_n)$
- sinon match(t, m) = fail

Unification

Definition

Soit t_1 et t_2 deux termes.

Existe-il une substitution σ telle que $t_1\sigma=t_2\sigma$?

Filtrage de motif à deux sens

Exemple

Unifier

$$plus(mult(x, y), plus(y, succ(z)))$$
et
 $plus(mult(u, v), plus(w, w))$

Solution

$$\sigma = [w := succ(z), y := succ(z), v := succ(z), x := u]$$

$$t_1\sigma = plus(mult(u, succ(z)), plus(succ(z), succ(z)))$$

Equations (syntaxiques) entre termes

Résoudre le problème d'unification

Équations entre termes :

$$t_i \stackrel{\triangle}{=} t'_i$$

Transformer ces équations selon un système de règles

Notation

- Une équation notée E
- Ensemble d'équations noté Ψ

← l'ordre n'est pas important, on omet {}

- Si $E = t \stackrel{\triangle}{=} t'$ alors $E\sigma = t\sigma \stackrel{\triangle}{=} t'\sigma$
- $Si \Psi = E_1, ..., E_n \text{ alors } \Psi \sigma = E_1 \sigma, ..., E_n \sigma$

Résolution des équations : règles

$$(Rev) \qquad \qquad \Psi, t \stackrel{\triangle}{=} x \qquad \rightsquigarrow \qquad \Psi, x \stackrel{\triangle}{=} t \qquad \text{si } t \notin \mathcal{V}$$

$$(Dec) \qquad \Psi, f(t_1, \dots, t_n) \stackrel{\triangle}{=} f(t'_1, \dots, t'_n) \qquad \rightsquigarrow \qquad \Psi, t_1 \stackrel{\triangle}{=} t'_1, \dots, t_n \stackrel{\triangle}{=} t'_n$$

$$(Sub) \qquad \qquad \Psi, x \stackrel{\triangle}{=} t \qquad \rightsquigarrow \qquad \Psi[x := t], x \stackrel{\triangle}{=} t$$

$$\text{si } x \notin V(f(t_1, \dots, t_n))$$

$$(FF) \qquad \Psi, f(t_1, \dots, t_n) \stackrel{\triangle}{=} g(t'_1, \dots, t'_m) \qquad \rightsquigarrow \qquad \text{fail} \qquad \text{si } f \neq g$$

$$(CC) \qquad \qquad \Psi, c_1 \stackrel{\triangle}{=} c_2 \qquad \rightsquigarrow \qquad \text{fail}$$

$$(FC) \qquad \qquad \Psi, f(t_1, \dots, t_n) \stackrel{\triangle}{=} c \qquad \rightsquigarrow \qquad \text{fail}$$

$$(CF) \qquad \qquad \Psi, x \stackrel{\triangle}{=} f(t_1, \dots, t_n) \qquad \rightsquigarrow \qquad \text{fail}$$

$$(Cyc) \qquad \qquad \Psi, x \stackrel{\triangle}{=} f(t_1, \dots, t_n) \qquad \rightsquigarrow \qquad \text{fail}$$

$$\text{si } x \in V(f(t_1, \dots, t_n))$$

Solution au problème d'unification

Appliquer les règles jusqu'à obtention d'un point fixe (i.e. jusqu'à ce qu'aucune règle ne puisse changer l'ensemble Ψ)

Si $\Psi \neq \mathtt{fail}$ alors Ψ est en **forme résolue**

Substitution σ_{Ψ} associée à Ψ :

$$\sigma_{\Psi}(x) = t$$
 si $x \stackrel{\triangle}{=} t \in \Psi$

pour avec $dom(\sigma_{\Psi}) = \{x \mid x \stackrel{\triangle}{=} t \in \Psi\}$

Théorème

Si $t \stackrel{\triangle}{=} t' \rightsquigarrow^* \Psi$ et Ψ en forme résolue alors le problème d'unification de t avec t' admet une solution : σ_{Ψ} .

Si $t \stackrel{\triangle}{=} t' \rightsquigarrow^*$ fail alors le problème d'unification de t avec t' n'admet pas de solution.

Exemple

$$succ(plus(x, succ(y))) \stackrel{\triangle}{=} succ(plus(u, u))$$

$$\rightsquigarrow plus(x, succ(y)) \stackrel{\triangle}{=} plus(u, u)$$
 (Dec)

$$\rightarrow x \stackrel{\triangle}{=} u, succ(y) \stackrel{\triangle}{=} u$$
 (Dec)

$$\Rightarrow x \stackrel{\triangle}{=} u, succ(y) \stackrel{\triangle}{=} x$$
 (Sub)

$$\rightarrow x \stackrel{\triangle}{=} u, x \stackrel{\triangle}{=} succ(y)$$
 (Rev)

$$\rightsquigarrow$$
 $succ(y) \stackrel{\triangle}{=} u, x \stackrel{\triangle}{=} succ(y)$ (Sub)

$$\Rightarrow u \stackrel{\triangle}{=} succ(y), x \stackrel{\triangle}{=} succ(y)$$
 (Rev)

$$\sigma = [x := succ(y), u := succ(y)]$$

Exemples: échecs

$$succ(mult(x, succ(y))) \stackrel{\triangle}{=} succ(plus(u, u))$$

$$\rightarrow$$
 $mult(x, succ(y)) \stackrel{\triangle}{=} plus(u, u)$ (Dec)

$$succ(plus(x, succ(x))) \stackrel{\triangle}{=} succ(plus(u, u))$$

$$\rightsquigarrow plus(x, succ(x)) \stackrel{\triangle}{=} plus(u, u)$$
 (Dec)

$$\rightarrow x \stackrel{\triangle}{=} u, succ(x) \stackrel{\triangle}{=} u$$

$$\Rightarrow x \stackrel{\triangle}{=} u, succ(x) \stackrel{\triangle}{=} x$$
 (Sub)

$$\triangle \qquad \triangle \qquad \triangle \qquad (Sub)$$

$$\rightarrow x \stackrel{\triangle}{=} u, x \stackrel{\triangle}{=} succ(x)$$
 (Rev)

(Dec)