

Art of Problem Solving 2000 Balkan MO

Balkan MO 2000

1	Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(xf(x) + f(y)) = f^2(x) + y$
	for all $x, y \in \mathbb{R}$.
2	Let ABC be an acute-angled triangle and D the midpoint of BC . Let E be a point on segment AD and M its projection on BC . If N and P are the projections of M on AB and AC then the interior angule bisectors of $\angle NMP$ and $\angle NEP$ are parallel.
3	How many $1 \times 10\sqrt{2}$ rectangles can be cut from a 50×90 rectangle using cuts parallel to its edges?
4	Show that for any n we can find a set X of n distinct integers greater than 1, such that the average of the elements of any subset of X is a square, cube or higher power.