SEQUENCE LISTING

<110> Gross, Jane A. Xu, Wenfeng Madden, Karen Yee, David P.

<120> SOLUBLE RECEPTOR BR43X2 AND METHODS OF USING

<130> 98-75

<150> 60/115.068

<151> 1999-01-07

<150> 60/169,890

<151> 1999-12-09

<160> 60

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 1192

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (6)...(746)

<400> 1

gagta atg agt ggc ctg ggc cgg agc agg cga ggt ggc cgg agc cgt gtg

Met Ser Gly Leu Gly Arg Ser Arg Arg Gly Gly Arg Ser Arg Val

1 5 10 15

98

gac cag gag gag cgc tgg tca ctc agc tgc cgc aag gag caa ggc aag Asp Gln Glu Glu Arg Trp Ser Leu Ser Cys Arg Lys Glu Gln Gly Lys 20 25 30

ttc tat gac cat ctc ctg agg gac tgc atc agc tgt gcc tcc atc tgt
Phe Tyr Asp His Leu Leu Arg Asp Cys Ile Ser Cys Ala Ser Ile Cys
35 40 45

gga Gly	cag Gln	cac His 50	cct Pro	aag Lys	caa Gln	tgt Cys	gca Ala 55	tac Tyr	ttc Phe	tgt Cys	gag Glu	aac Asn 60	aag Lys	ctc Leu	agg Arg	194
					cca Pro											242
gtt Val 80	gaa Glu	aac Asn	aat Asn	tca Ser	gac Asp 85	aac Asn	tcg Ser	gga Gly	agg Arg	tac Tyr 90	caa Gln	gga Gly	ttg Leu	gag Glu	cac His 95	290
					agt Ser											338
					gtc Val											386
					ctg Leu											434
					tgc Cys											482
					gat Asp 165											530
					gtg Val											578
					gag Glu											626
					tgg Trp											674

cct tgc cca cac atc cca gac agt ggc ctt ggc att gtg tgt g Pro Cys Pro His Ile Pro Asp Ser Gly Leu Gly Ile Val Cys 225 230 235	gtg cct 722 Val Pro
gcc cag gag ggg ggc cca ggt gca taaatggggg tcagggaggg aaa Ala Gln Glu Gly Gly Pro Gly Ala 240 245	aggaggag 776
ggagagagat ggagaggagg ggagagagaa agagaggtgg ggagagggga gaggagagaga	agggagaga 896 gcagagaag 956 agagggaga 1016 cccagtgca 1076 ctgctcaca 1136
<210> 2 <211> 247 <212> PRT <213> Homo sapiens	
<400> 2	
Met Ser Gly Leu Gly Arg Ser Arg Arg Gly Gly Arg Ser Arg \\ 1 \qquad 5 \qquad 10 \qquad 10	Val Asp 15
Gln Glu Glu Arg Trp Ser Leu Ser Cys Arg Lys Glu Gln Gly L 20 25 30	
Tyr Asp His Leu Leu Arg Asp Cys Ile Ser Cys Ala Ser Ile (Cys Gly
Gln His Pro Lys Gln Cys Ala Tyr Phe Cys Glu Asn Lys Leu A	Arg Ser
50 55 60 Pro Val Asn Leu Pro Pro Glu Leu Arg Arg Gln Arg Ser Gly G	
65 70 75 Glu Asn Asn Ser Asp Asn Ser Gly Arg Tyr Gln Gly Leu Glu F	
85 90 9 Gly Ser Glu Ala Ser Pro Ala Leu Pro Gly Leu Lys Leu Ser A	95 Ala Asp
100 105 110 Gln Val Ala Leu Val Tyr Ser Thr Leu Gly Leu Cys Leu Cys A	
115 120 125	
Leu Cys Cys Phe Leu Val Ala Val Ala Cys Phe Leu Lys Lys A 130 135 140	Arg Gly
Asp Pro Cys Ser Cys Gln Pro Arg Ser Arg Pro Arg Gln Ser P	
145 150 155 Lys Ser Ser Gln Asp His Ala Met Glu Ala Gly Ser Pro Val S	160 Ser Thr
165 170 1	175
Ser Pro Glu Pro Val Glu Thr Cys Ser Phe Cys Phe Pro Glu C	Cys Arg

Ala	Pro		180 Gln	Glu	Ser	Ala		185 Thr	Pro	Gly	Thr		190 Asp	Pro	Thr	
Cys		195 Gly	Arg	Trp	Gly	Cys	200 His	Thr	Arg	Thr		205 Val	Leu	Gln	Pro	
	210 Pro	His	Ile	Pro		215 Ser	Gly	Leu	Gly		220 Val	Cys	Val	Pro		
225 G1n	Glu	Gly	Gly	Pro 245	230 Gly	Ala				235					240	
	<'a	210> 211> 212> 213>	360 DNA	o sap	oiens	5										
	<'	220> 221> 222>		(3	360)											
	agt		ctg			agc Ser										48
						ctc Leu										96
				_		gac Asp	_		-	-	_			_	~ ~	144
						gca Ala 55										192
						gag Glu										240
						tcg Ser										288
ggc	tca	gaa	gca	agt	сса	gct	ctc	ccg	999	ctg	aag	ctg	agt	gca	gat	336

Gly Ser Glu Ala Ser Pro Ala Leu Pro Gly Leu Lys Leu Ser Ala Asp 105 cag gtg gcc ctg gtc tac agc acg 360 Gln Val Ala Leu Val Tyr Ser Thr 115 120 <210> 4 <211> 120 <212> PRT <213> Homo sapiens <400> 4 Met Ser Gly Leu Gly Arg Ser Arg Gly Gly Arg Ser Arg Val Asp 10 Gln Glu Glu Arg Trp Ser Leu Ser Cys Arg Lys Glu Gln Gly Lys Phe Tyr Asp His Leu Leu Arg Asp Cys Ile Ser Cys Ala Ser Ile Cys Gly 35 40 Gln His Pro Lys Gln Cys Ala Tyr Phe Cys Glu Asn Lys Leu Arg Ser Pro Val Asn Leu Pro Pro Glu Leu Arg Arg Gln Arg Ser Gly Glu Val Glu Asn Asn Ser Asp Asn Ser Gly Arg Tyr Gln Gly Leu Glu His Arg 90 Gly Ser Glu Ala Ser Pro Ala Leu Pro Gly Leu Lys Leu Ser Ala Asp 100 105 110 Gln Val Ala Leu Val Tyr Ser Thr 115 120 <210> 5 <211> 1377 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (14)...(895) <400> 5 agcatcctga gta atg agt ggc ctg ggc cgg agc agg cga ggt ggc cgg 49 Met Ser Gly Leu Gly Arg Ser Arg Arg Gly Gly Arg

10

												ctg Leu 25				97
												gat Asp				145
												cag Gln				193
												aag Lys				241
												tgt Cys				289
												gag Glu 105				337
												cag Gln				385
												caa G1n				433
												ctg Leu				481
												ctc Leu				529
gcc Ala	gtc Val	ctc Leu 175	tgc Cys	tgc Cys	ttc Phe	ctg Leu	gtg Val 180	gcg Ala	gtg Val	gcc Ala	tgc Cys	ttc Phe 185	ctc Leu	aag Lys	aag Lys	577
agg	999	gat	ССС	tgc	tcc	tgc	cag	ссс	cgc	tca	agg	ссс	cgt	caa	agt	625

Arg Gly Asp Pro Cys Ser Cys Gln Pro Arg Ser Arg Pro Arg Gln Ser 190 195 200												
ccg gcc aag tct tcc cag gat cac gcg atg gaa gcc ggc agc cct gtg Pro Ala Lys Ser Ser Gln Asp His Ala Met Glu Ala Gly Ser Pro Val 205 210 215 220	673											
agc aca tcc ccc gag cca gtg gag acc tgc agc ttc tgc ttc cct gag Ser Thr Ser Pro Glu Pro Val Glu Thr Cys Ser Phe Cys Phe Pro Glu 225 230 235	721											
tgc agg gcg ccc acg cag gag agc gca gtc acg cct ggg acc ccc gac Cys Arg Ala Pro Thr Gln Glu Ser Ala Val Thr Pro Gly Thr Pro Asp 240 245 250	769											
ccc act tgt gct gga agg tgg ggg tgc cac acc agg acc aca gtc ctg Pro Thr Cys Ala Gly Arg Trp Gly Cys His Thr Arg Thr Thr Val Leu 255 260 265	817											
cag cct tgc cca cac atc cca gac agt ggc ctt ggc att gtg tgt gtg Gln Pro Cys Pro His Ile Pro Asp Ser Gly Leu Gly Ile Val Cys Val 270 275 . 280	865											
cct gcc cag gag ggg ggc cca ggt gca taa atgggggtca gggagggaaa Pro Ala Gln Glu Gly Gly Pro Gly Ala * 285 290	915											
ggaggaggga gagagatgga gaggagggga gagagaaaga gaggtgggga gaggggagag agatatgagg agagagag												
<210> 6 <211> 293 <212> PRT <213> Homo sapiens												
<pre><400> 6 Met Ser Gly Leu Gly Arg Ser Arg Arg Gly Gly Arg Ser Arg Val Asp 1</pre>												

			20					O.C.					20		
Ser	Cys		20 Glu	Glu	Gln	Tyr		25 Asp	Pro	Leu	Leu		30 Thr	Cys	Met
Ser		35 Lys	Thr	Пе	Cys		40 His	Gln	Ser	Gln		45 Thr	Cys	Ala	Ala
	50 Cys	Arg	Ser	Leu		55 Cys	Arg	Lys	Glu		60 Gly	Lys	Phe	Tyr	
65 His	Leu	Leu	Arg	Asp 85	70 Cys	Ile	Ser	Cys		75 Ser	Ile	Cys	Gly		80 His
Pro	Lys	Gln	Cys 100		Tyr	Phe	Cys	Glu 105	90 Asn	Lys	Leu	Arg	Ser 110	95 Pro	Val
Asn	Leu	Pro 115		Glu	Leu	Arg	Arg 120		Arg	Ser	Gly	Glu 125		Glu	Asn
Asn	Ser 130		Asn	Ser	Gly	Arg 135		Gln	Gly	Leu	Glu 140	His	Arg	Gly	Ser
G1u 145		Ser	Pro	Ala	Leu 150		Gly	Leu	Lys	Leu 155		Ala	Asp	Gln	Val 160
	Leu	Val	Tyr	Ser 165		Leu	Gly	Leu	Cys 170		Cys	Ala	Val	Leu 175	
Cys	Phe	Leu	Val 180		Val	Ala	Cys	Phe 185	Leu	Lys	Lys	Arg	Gly 190		Pro
Cys	Ser	Cys 195	Gln	Pro	Arg	Ser	Arg 200	Pro	Arg	Gln	Ser	Pro 205		Lys	Ser
Ser	Gln 210	Asp	His	Ala	Met	G1u 215	Ala	Gly	Ser	Pro	Val 220	Ser	Thr	Ser	Pro
G1u 225	Pro	Val	Glu	Thr	Cys 230	Ser	Phe	Cys	Phe	Pro 235	Glu	Cys	Arg	Ala	Pro 240
Thr	Gln	Glu	Ser	Ala 245	Val	Thr	Pro	Gly	Thr 250	Pro	Asp	Pro	Thr	Cys 255	Ala
			260					265				Gln	270	-	
		275			Gly	Leu	G1y 280	He	Val	Cys	Val	Pro 285	Ala	Gln	Glu
Gly	GTy 290	Pro	Gly	Ala											
		210>													•
		211> 212>													
			Homo	sap	oiens	5									
		220>	ር በ												
			(219	9)	(773	3)									

aca agc	actc caga tgct	cag ctt	ctta cccc gctg	cgta catt	ag a tg c	accc tctg	acga gaat	a gc	aggc tgta	gaag gaga tc a M	ttc tat tg t	attg tact tg c	ttc tgt (ag a	tcaa cctt tg g et A	gcgaag cattct ccaggc ct ggg la Gly	120 180 236
		tcc Ser														284
		caa Gln 25														332
		tgt Cys														380
		tgg Trp														428
		cta Leu														476
		ttt Phe														524
		gaa Glu 105							-				-	-		572
ctc Leu	gag Glu 120	tac Tyr	acg Thr	gtg Val	gaa Glu	gaa Glu 125	tgc Cys	acc Thr	tgt Cys	gaa Glu	gac Asp 130	tgc Cys	atc Ile	aag Lys	agc Ser	620
		aag Lys														668
gaa	ggc	gca	acc	att	ctt	gtc	acc	acg	aaa	acg	aat	gac	tat	tgc	aag	716

10	
Glu Gly Ala Thr Ile Leu Val Thr Thr Lys Thr Asn Asp Tyr Cys Lys 155 160 165	
agc ctg cca gct gct ttg agt gct acg gag ata gag aaa tca att tct Ser Leu Pro Ala Ala Leu Ser Ala Thr Glu Ile Glu Lys Ser Ile Ser 170 175 180	764
gct agg taa ttaaccattt cgactcgagc agtgccactt taaaaatctt Ala Arg *	813
ttgtcagaat agatgatgtg tcagatctct ttaggatgac tgtattttc agttgccgat acagcttttt gtcctctaac tgtggaaact ctttatgtta gatatatttc tctaggttac tgttgggagc ttaatggtag aaacttcctt ggtttcatga ttaaagtctt ttttttcct ga	873 933 993 995
<210> 8 <211> 184 <212> PRT <213> Homo sapiens	
<400> 8	
Met Leu Gln Met Ala Gly Gln Cys Ser Gln Asn Glu Tyr Phe Asp Ser 1 5 10 15	
Leu Leu His Ala Cys Ile Pro Cys Gln Leu Arg Cys Ser Ser Asn.Thr 20 25 30	
Pro Pro Leu Thr Cys Gln Arg Tyr Cys Asn Ala Ser Val Thr Asn Ser	
35 40 45 Val Lys Gly Thr Asn Ala Ile Leu Trp Thr Cys Leu Gly Leu Ser Leu	
50 55 60 Ile Ile Ser Leu Ala Val Phe Val Leu Met Phe Jeu Leu Arg Lys Ile	
65 70 75 80	
Ser Ser Glu Pro Leu Lys Asp Glu Phe Lys Asn Thr Gly Ser Gly Leu 85 90 95	
Leu Gly Met Ala Asn Ile Asp Leu Glu Lys Ser Arg Thr Gly Asp Glu 100 105 110	
Ile Ile Leu Pro Arg Gly Leu Glu Tyr Thr Val Glu Glu Cys Thr Cys 115 120 125	
Glu Asp Cys Ile Lys Ser Lys Pro Lys Val Asp Ser Asp His Cys Phe	
Pro Leu Pro Ala Met Glu Glu Gly Ala Thr Ile Leu Val Thr Thr Lys	
145 150 155 160	
Thr Asn Asp Tyr Cys Lys Ser Leu Pro Ala Ala Leu Ser Ala Thr Glu 165 170 175	
Ile Glu Lys Ser Ile Ser Ala Arg	

180

<210> 9 <211> 245 <212> PRT <213> Homo sapiens

<400> 9 Gly Arg Ser Arg Arg Gly Gly Arg Ser Arg Val Asp Gln Glu Glu Arg Phe Pro Gln Gly Leu Trp Thr Gly Val Ala Met Arg Ser Cys Pro Glu Glu Gln Tyr Trp Asp Pro Leu Leu Gly Thr Cys Met Ser Cys Lys Thr Ile Cys Asn His Gln Ser Gln Arg Thr Cys Ala Ala Phe Cys Arg Ser 55 Leu Ser Cys Arg Lys Glu Gln Gly Lys Phe Tyr Asp His Leu Leu Arg Asp Cys Ile Ser Cys Ala Ser Ile Cys Gly Gln His Pro Lys Gln Cys 85 90 Ala Tyr Phe Cys Glu Asn Lys Leu Arg Ser Pro Val Asn Leu Pro Pro 105 Glu Leu Arg Arg Gln Arg Ser Gly Glu Val Glu Asn Asn Ser Asp Asn 120 Ser Gly Arg Tyr Gln Gly Leu Glu His Arg Gly Ser Glu Ala Ser Pro 135 Ala Leu Pro Gly Leu Lys Leu Ser Ala Asp Gln Val Ala Leu Val Tyr 150 155 Ser Thr Leu Gly Leu Cys Leu Cys Ala Val Leu Cys Cys Phe Leu Val 165 170 Ala Val Ala Cys Phe Leu Lys Lys Arg Gly Asp Pro Cys Ser Cys Gln 180 185 Pro Arg Ser Arg Pro Arg Gln Ser Pro Ala Lys Ser Ser Gln Asp His 195 200 Ala Met Glu Ala Gly Ser Pro Val Ser Thr Ser Pro Glu Pro Val Glu 215 220 Thr Cys Ser Phe Cys Phe Pro Glu Cys Arg Ala Pro Thr Gln Glu Ser 230 235 240 Ala Val Thr Pro Gly 245

<210> 10 <211> 40 <212> PRT

<213> Artificial Sequence

- <220>
- <223> Motif describing the cysteine-rich pseudo-repeat
 domain
- <221> VARIANT
- <222> (1)...(2)
- <223> Each Xaa is independently any amino acid residue
 except cysteine, or absent.
- <221> VARIANT
- <222> (4)...(4)
- <223> Xaa is any amino acid residue except cysteine.
- <221> VARIANT
- <222> (5)...(5)
- <223> Xaa is slutamine, glutamic acid, or lysine.
- <221> VARIANT
- <222> (6)...(6)
- <223> Xaa is glutamine, glutamic acid, lysine, asparagine, arginine, aspartic acid, histidine, or serine.
- <221> VARIANT
- <222> (7)...(7)
- <223> Xaa is glutamine or glutamic acid.
- <221> VARIANT
- <222> (8)...(9)
- <223> Each Xaa is independently any amino acid residue
 except cysteine, or absent.
- <221> VARIANT
- <222> (10)...(11)
- <223> Xaa is tyrosine, phenylalanine, or tryptophan.
- <221> VARIANT
- <222> (13)...(13)
- <223> Xaa is any amino acid residue except cysteine.
- <221> VARIANT
- <222> (16)...(17)
- <223> Each Xaa is independently any amino acid residue

except cysteine.

- <221> VARIANT
- <222> (19)...(19)
- <223> Xaa is isoleucine, methionine, leucine, or valine.
- <221> VARIANT
- <222> (20)...(20)
- <223> Xaa is any amino acid residue except cysteine.
- <221> VARIANT
- <222> (22)...(24)
- <223> Each Xaa is independently any amino acid residue
 except cysteine.
- <221> VARIANT
- <222> (26)...(31)
- <223> Each Xaa is independently any amino acid residue
 except cysteine.
- <221> VARIANT
- <222> (32)...(33)
- <223> Each Xaa is independently any amino acid residue
 except cysteine, or absent.
- <221> VARIANT
- <222> (35)...(36)
- <223> Each Xaa is independently any amino acid residue
 except cysteine.
- <221> VARIANT
- <222> (37)...(37)
- <223> Xaa is tyrosine or phenylalanine.
- <221> VARIANT
- <222> (39)...(40)
- <223> Each Xaa is independently any amino acid residue
 except cysteine, or absent.
- <400> 10
- Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa Leu Leu Xaa 1 5 10 15
- Xaa Cys Xaa Xaa Xaa Cys Xaa Xaa

```
35
                            40
      <210> 11
      <211> 360
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Degenerate oligonucleotide sequence encoding the
            polypeptide of SEQ ID NO:4
      <221> variation
      <222> (1)...(360)
      <223> Each N is independently A, T, G, or C.
      <400> 11
atgwsnggny tnggnmgnws nmgnmgnggn ggnmgnwsnm gngtngayca rgargarmgn
                                                                        60
tggwsnytnw sntgymgnaa rgarcarggn aarttytayg aycayytnyt nmgngaytgy
                                                                       120
athwsntgyg cnwsnathtg yggncarcay ccnaarcart gygcntaytt ytgygaraay
                                                                       180
aarytnmgnw snccngtnaa yytnccnccn garytnmgnm gncarmgnws nggngargtn
                                                                       240
garaayaayw sngayaayws nggnmgntay carqqnytng arcaymqngg nwsngargcn
                                                                       300
wsnccngcny tnccnggnyt naarytnwsn gcngaycarg tngcnytngt ntaywsnacn
                                                                       360
      <210> 12
      <211> 741
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Degenerate oligonucleotide sequence encoding a
            polypeptide of SEQ ID NO:2
      <221> variation
      <222> (1)...(741)
      <223> Each N is independently A, T, G, or C.
      <400> 12
atgwsnggny tnggnmgnws nmgnmgnggn ggnmgnwsnm gngtngayca rgargarmgn
                                                                        60
tggwsnytnw sntgymgnaa rgarcarggn aarttytayg aycayytnyt nmgngaytgy
                                                                       120
athwsntgyg cnwsnathtg yggncarcay ccnaarcart gygcntaytt ytgygaraay
                                                                       180
aarytnmgnw snccngtnaa yytnccnccn garytnmgnm gncarmgnws nggngargtn
                                                                       240
garaayaayw sngayaayws nggnmgntay carggnytng arcaymgngg nwsngargcn
                                                                       300
wsnccngcny tnccnggnyt naarytnwsn gcngaycarg tngcnytngt ntaywsnacn
                                                                       360
ytnggnytnt gyytntgygc ngtnytntgy tgyttyytng tngcngtngc ntgyttyytn
                                                                       420
aaraarmgng gngayccntg ywsntgycar ccnmgnwsnm qnccnmqnca rwsnccnqcn
                                                                       480
```

gtngaracnt g acnccnggna g tnytncarc	argaycaygc natggargcn ggnwsnccng tnwsnacnws no gywsnttytg yttyccngar tgymgngcnc cnacncarga rw cnccngaycc nacntgygcn ggnmgntggg gntgycayac nm cntgyccnca yathccngay wsnggnytng gnathgtntg yg gnccnggngc n	sngcngtn 600 gnacnacn 660
<210> <211> <212> <213>	· 8	
<220> <223>	· FLAG tag	
<400> Asp Tyr Lys 1	· 13 · Asp Asp Asp Lys · 5	
<210> <211> <212> <213>	· 7	
<220> <223>	· Glu-Glu tag	
<400> Glu Glu Tyr 1	14 Met Pro Met Glu 5	
<210> <211> <212> <213>	24	
<220> <223>	Oligonucleotide ZC19980	
<400> cgaagagcag t	15 tactgggatc ctct	24
<210> <211> <212> <213>	23	

		220> 223>	Oli	gonu	cleo	tide	ZC1	9981								
gcc		400> cca	16 ctgt	ctgg	ga t	gt										23
	<, <,	212>	17 1149 DNA Homo		pien	S										
<220> <221> CDS <222> (236)(1027)																
gcc	<pre><400> 17 gaattcggca cgaggcagaa aggagaaaat tcaggataac tctcctgagg ggtgagccaa gccctgccat gtagtgcacg caggacatca acaaacacag ataacaggaa atgatccatt ccctgtggtc acttattcta aaggccccaa ccttcaaagt tcaagtagtg atatggatga ctccacagaa agggagcagt cacgccttac ttcttgcctt aagaaaagag aagaa atg</pre>															60 120 180 238
								ctc Leu 10								286
								ctg Leu								334
gca Ala	ctg Leu 35	ctg Leu	tct Ser	tgc Cys	tgc Cys	ctc Leu 40	acg Thr	gtg Val	gtg Val	tct Ser	ttc Phe 45	tac Tyr	cag Gln	gtg Val	gcc Ala	382
gcc Ala 50	ctg Leu	caa Gln	ggg Gly	gac Asp	ctg Leu 55	gcc Ala	agc Ser	ctc Leu	cgg Arg	gca Ala 60	gag Glu	ctg Leu	cag Gln	ggc Gly	cac His 65	430
cac His	gcg Ala	gag Glu	aag Lys	ctg Leu 70	cca Pro	gca Ala	gga Gly	gca Ala	gga Gly 75	gcc Ala	ccc Pro	aag Lys	gcc Ala	ggc Gly 80	ctg Leu	478
gag	gaa	gct	сса	gct	gtc	acc	gcg	gga	ctg	aaa	atc	ttt	gaa	сса	cca	526

Glu	Glu	Ala	Pro 85	Ala	Val	Thr	Ala	Gly 90	Leu	Lys	Ile	Phe	Glu 95	Pro	Pro	
							agt Ser 105									574
							gtc Val									622
							ata Ile									670
							agg Arg									718
							act Thr									766
							tac Tyr 185									814
							gat Asp									862
cga Arg 210	tgt Cys	att Ile	caa Gln	aat Asn	atg Met 215	cct Pro	gaa Glu	aca Thr	cta Leu	ccc Pro 220	aat Asn	aat Asn	tcc Ser	tgc Cys	tat Tyr 225	910
							gaa Glu									958
ata Ile	cca Pro	aga Arg	gaa G1u 245	aat Asn	gca Ala	caa G1n	ata Ile	tca Ser 250	ctg Leu	gat Asp	gga Gly	gat Asp	gtc Val 255	aca Thr	ttt Phe	1006
ttt Phe	ggt Gly	gca Ala	ttg Leu	aaa Lys	ctg Leu	ctg Leu	tgac	ctac	ett ā	ıcaco	atgt	ic to	jtago	ctatt	,	1057

ttcctcctt tctctgtacc tctaagaaga aagaatctaa ctgaaaatac caaaaaaaaa 1117 aaaaaaaaaa aaaaaccct cgagcggccg cc . 1149																
<210> 18 <211> 264 <212> PRT <213> Homo sapiens																
	<	400>	18													
Met 1	Lys	Leu	Lys	G1u 5	Cys	۷a٦	Ser	Ile	Leu 10	Pro	Arg	Lys	Glu	Ser 15	Pro	
Ser	Val	Arg	Ser 20	Ser	Lys	Asp	Gly	Lys 25	Leu	Leu	Ala	Ala	Thr 30	Leu	Leu	
Leu	Ala	Leu 35	Leu	Ser	Cys	Cys	Leu 40	Thr	Val	Val	Ser	Phe 45	Tyr	Gln	Val	~
Ala	A1a 50	Leu	Gln	Gly	Asp	Leu 55	Ala	Ser	Leu	Arg	Ala 60	Glu	Leu	Gln	Gly	
His 65	His	Ala	Glu	Lys	Leu 70	Pro	Ala	Gly	Ala	Gly 75	Ala	Pro	Lys	Ala	Gly 80	
Leu	Glu	Glu	Ala	Pro 85	Ala	Val	Thr	Ala	G1y 90	Leu	Lys	Ile	Phe	Glu 95	Pro	
Pro	Ala	Pro	Gly 100	Glu	Gly	Asn	Ser	Ser 105	Gln	Asn	Ser	Arg	Asn 110	Lys	Arg	
Ala	Val	Gln 115	Gly	Pro	Glu	Glu	Thr 120	Val	Thr	Gln	Asp	Cys 125	Leu	Gln	Leu	
Ile	Ala 130	Asp	Ser	Glu	Thr	Pro 135	Thr	Ile	Gln	Lys	Gly 140	Ser	Tyr	Thr	Phe	
Val 145	Pro	Trp	Leu	Leu	Ser 150	Phe	Lys	Arg	Gly	Ser 155	Ala	Leu	Glu	Glu	Lys 160	
Glu	Asn	Lys	Ile	Leu 165	Val	Lys	Glu	Thr	Gly 170	Tyr	Phe	Phe	Ile	Tyr 175	Gly	
Gln	Val	Leu		Thr						Met				Ile	Gln	
Arg	Lys	Lys 195	Val	His	Val	Phe	Gly 200	Asp	Glu	Leu	Ser	Leu 205	Val	Thr	Leu	
Phe	Arg 210	Cys	Ile	Gln	Asn	Met 215	Pro	Glu	Thr	Leu	Pro 220	Asn	Asn	Ser	Cys	
Tyr 225	Ser	Ala	Gly	Пе	Ala 230	Lys	Leu	Glu	Glu	G1y 235	Asp	Glu	Leu	Gln	Leu 240	
Ala	Пе	Pro	Arg	G1u 245	Asn	Ala	Gln	Ile	Ser 250		Asp	Gly	Asp	Va1 255		
Phe	Phe	Gly	A1a 260	Leu	Lys	Leu	Leu									

<210> 19 <211> 14 <212> DN <213> Mu	30									
<220> <221> CD <222> (1	S 02)(848)									
<pre><400> 19 ttggcgcagg agcgtgcgta ggattgctcg ctcacaacag gcacctgact ggtattgaaa gccgagtctt cccttcctct ttaaaggatt ggtgaccagg c atg gct atg gca ttc</pre>										
tgc ccc aaa ga Cys Pro Lys As _l						164				
tgt gca ctg acc Cys Ala Leu Thi 25	r Cys Ser G1					212				
tgc aaa ttc atc Cys Lys Phe Ile 40						260				
ctc ctg ggg gcc Leu Leu Gly Ala 55		r Cys Asp S				308				
cag cag tgt gco Gln Gln Cys Ala 70	c cac ttc tg a His Phe Cy 75	t gag aaa a s Glu Lys /	agg ccc a Arg Pro <i>A</i> 80	aga agc cag Arg Ser Gln	gcg aac Ala Asn 85	356				
ctc cag ccc gag Leu Gln Pro Glu	g ctc ggg ag u Leu Gly Ar 90	a cca cag q g Pro Gln /	gcc ggg g Ala Gly G 95	gag gtg gaa Glu Val Glu	gtc agg Val Arg 100	404				
tca gac aac tca Ser Asp Asn Ser 105	↑Gly Arg Hi					452				
agg cta agt ago	gac cag ct	g act ctc 1	tac tgc a	aca ctg ggg	gtc tgc	500				

Arg	Leu	Ser 120	Ser	Asp	Gln	Leu	Thr 125	Leu	Tyr	Cys	Thr	Leu 130	Gly	Val	Cys	
ctc Leu	tgc Cys 135	gcc Ala	atc Ile	ttc Phe	tgc Cys	tgt Cys 140	ttc Phe	ttg Leu	gtg Val	gcc Ala	ttg Leu 145	gcc Ala	tcc Ser	ttc Phe	ctc Leu	548
														cgt Arg		596
														gct Ala 180		644
														ttc Phe		692
														tcg Ser		740
Gly														atg Met		788
gca Ala 230														gac Asp		836
cgt Arg	_	_		tgad	cagco	cg ā	iaaaa	itaaa	ia aa	igaca	attt	aga	iggat	tgga		888
ctgc gtgc cgag gtct taac gtgt atgc	acco ctgo aaag ttco ttgt gtct agat	cac good control of the control of t	caga tgtg gaga ggco tgtg tgag tgtg	ngcaa gtcct natga cttag ntgtg gttgt	ic aata ta ta control of ta ta ta ta control of ta	agca cttt gcac gata attc tata gtgt	acca ccag ctag gctg gggg tgtg	cct g ago g cat g agt g tta g cgo g ctg	gcag tagto taco gcag tgto ctat	cgc caac ctt tgt cata caaa cggt	ccac ctgt acaa ggat tgtg tatg atag	egtto egcct attct egtat gcate gtgte	cc act to the ctt of t	agcad ttct caaad gtgat cacgt aattd agatg	gcccgg ccgcct cttagt caagtg cttaag cgagtt ctgtgc gagggc ccgaat	948 1008 1068 1128 1188 1248 1308 1368 1428 1430

<210> 20 <211> 249 <212> PRT <213> Mus musculus

<400> 20 Met Ala Met Ala Phe Cys Pro Lys Asp Gln Tyr Trp Asp Ser Ser Arg 10 Lys Ser Cys Val Ser Cys Ala Leu Thr Cys Ser Gln Arg Ser Gln Arg Thr Cys Thr Asp Phe Cys Lys Phe Ile Asn Cys Arg Lys Glu Gln Gly 40 Arg Tyr Tyr Asp His Leu Leu Gly Ala Cys Val Ser Cys Asp Ser Thr Cys Thr Gln His Pro Gln Gln Cys Ala His Phe Cys Glu Lys Arg Pro Arg Ser Gln Ala Asn Leu Gln Pro Glu Leu Gly Arg Pro Gln Ala Gly Glu Val Glu Val Arg Ser Asp Asn Ser Gly Arg His Gln Gly Ser Glu His Gly Pro Gly Leu Arg Leu Ser Ser Asp Gln Leu Thr Leu Tyr Cys 120 125 Thr Leu Gly Val Cys Leu Cys Ala Ile Phe Cys Cys Phe Leu Val Ala 130 135 140 Leu Ala Ser Phe Leu Arg Arg Gly Glu Pro Leu Pro Ser Gln Pro 150 Ala Gly Pro Arg Gly Ser Gln Ala Asn Ser Pro His Ala His Arg Pro 170 Val Thr Glu Ala Cys Asp Glu Val Thr Ala Ser Pro Gln Pro Val Glu 180 185 Thr Cys Ser Phe Cys Phe Pro Glu Arg Ser Ser Pro Thr Gln Glu Ser 200 Ala Pro Arg Ser Leu Gly Ile His Gly Phe Ala Gly Thr Ala Ala Pro 220 Gln Pro Cys Met Arg Ala Thr Val Gly Gly Leu Gly Val Leu Arg Ala 230 235 240 Ser Thr Gly Asp Ala Arg Pro Ala Thr 245

<210> 21

<211> 473

<212> DNA

<213> Artificial Sequence

<220> <223> Northern Blot Probe	
<pre><400> 21 ctgtggacgg gggtggctat gagatcctgc cccgaagagc agtactggga tcctctgctg ggtacctgca tgtcctgcaa aaccatttgc aaccatcaga gccagcgcac ctgtgcagcc ttctgcaggt cactcagctg ccgcaaggag caaggcaagt tctatgacca tctcctgagg gactgcatca gctgtgcctc catctgtgga cagcacccta agcaatgtgc atacttctgt gagaacaagc tcaggagccc agtgaacctt ccaccagagc tcaggagaca gcggagtgga gaagttgaaa acaattcaga caactcggga aggtaccaag gattggagca cagaggctca gaagcaagtc cagctctccc ggggctgaag ctgagtgcag atcaggtggc cctggtctac agcacgctgg ggctctgcct gtgtgccgtc ctctgctgct tcctggtggc ggt</pre>	60 120 180 240 300 360 420 473
<210> 22 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> ZC20061	
<400> 22 ctgtggacag gggtggctat gagat	25
<210> 23 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC20062	
<400> 23 accgccacca ggaagcacag aggac	25
<210> 24 <211> 256 <212> DNA <213> Artificial Sequence	
<220> <223> Northern Blot probe	
<400> 24 tgcgattctc tggacctgtt tgggactgag cttaataatt tctttggcag ttttcgtgct	60

aatgtttttg ctaaggaaga taagctctga accattaaag gacgagttta aaaacacagg atcaggtctc ctgggcatgg ctaacattga cctggaaaag agcaggactg gtgatgaaat tattcttccg agaggcctcg agtacacggt ggaagaatgc acctgtgaag actgcatcaa gagcaaaccg aaggtc	120 180 240 256
<210> 25 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC21065	
<400> 25 tgcgattctc tggacctgtt tg	22
<210> 26 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC21067	
<400> 26 gaccttcggt ttgctcttga tg	22
<210> 27 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC24200	
<400> 27 acactggggg tctgcctctg	20
<210> 28 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC24201	

	<400> 28 ccgt gtatccc	17
	<210> 29 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide ZC24198	
	<400> 29 gcac gctgggg	17
•	<210> 30 <211> 16 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide ZC24199	
	<400> 30 gtgg ggtcgg	16
<	<210> 31 <211> 19 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide ZC24271	
	<400> 31 taat gcaagtgtg	19
<	<210> 32 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide ZC24272	

<400> 32 tagctgggag tggaaag	17
<210> 33 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC24495	
<400> 33 tccaagcgtg accagttcag	20
<210> 34 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC24496	
<400> 34 agttggcttc tccatccc	18
<210> 35 <211> 1090 <212> DNA <213> Homo sapiens	
<400> 35	
taactctcct gaggggtgag ccaagccctg ccatgtagtg cacgcaggac atcaacaaac acagataaca ggaaatgatc cattccctgt ggtcacttat tctaaaggcc ccaaccttca aagttcaagt agtgatatgg atgactccac agaaagggag cagtcacgcc ttacttcttg ccttaagaaa agagaagaaa tgaaactgaa ggagtgtgtt tccatcctcc cacggaagga	60 120 180 240
aagcccctct gtccgatcct ccaaagacgg aaagctgctg gctgcaacct tgctgctggc	300
actgctgtct tgctgcctca cggtggtgtc tttctaccag gtggccgccc tgcaagggga cctggccagc ctccgggcag agctgcaggg ccaccacgcg gagaagctgc cagcaggagc	360 420
aggagcccc aaggccgc tggaggaagc tccagctgtc accgcgggac tgaaaatctt	480
tgaaccacca gctccaggag aaggcaactc cagtcagaac agcagaaata agcgtgccgt	540
tcagggtcca gaagaaacag tcactcaaga ctgcttgcaa ctgattgcag acagtgaaac	600
accaactata caaaaaggat cttacacatt tgttccatgg cttctcagct ttaaaagggg	660
aagtgcccta gaagaaaaag agaataaaat attggtcaaa gaaactggtt actttttat	720 780
atatggtcag gttttatata ctgataagac ctacgccatg ggacatctaa ttcagaggaa gaaggtccat gtctttgggg atgaattgag tctggtgact ttgtttcgat gtattcaaaa	840

tatgcctgaa acactaccca ataattcctg ctattcagct ggcattgcaa aactggaaga aggagatgaa ctccaacttg caataccaag agaaaatgca caaatatcac tggatggaga tgtcacattt tttggtgcat tgaaactgct gtgacctact tacaccatgt ctgtagctat tttcctccct ttctctgtac ctctaagaag aaagaatcta actgaaaata ccaaaaaaaa aaaaaaaaaa	900 960 1020 1080 1090
<210> 36 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 36 cgcgcggttt aaacgccacc atggatgact ccaca	35
<210> 37 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 37 gtatacggcg cgcctcacag cagtttcaat gc	32
<210> 38 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC17251	
<400> 38 tctggacgtc ctcctgctgg tatag	25
<210> 39 <211> 25 <212> DNA <213> Artificial Sequence	
<220>	

<223> Oligonucleotide ZC17252	
<400> 39 ggtatggagc aaggggcaag ttggg	25
<210> 40 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC17156	
<400> 40 gagtggcaac ttccagggcc aggagag	27
<210> 41 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC17157	
<400> 41 cttttgctag cctcaaccct gactatc	27
<210> 42 <211> 813 <212> DNA <213> Homo sapiens	
<400> 42	
ggcacagcac ggggcgatgg gcgcgtttcg ggccctgtgc ggcctggcgc tgctgtgcgc gctcagcctg ggtcagcgcc ccaccggggg tcccgggtgc ggccctgggc gcctcctgct tgggacggga acggacgcg gctgctgccg ggttcacacg acgcgctgct gccgcgatta cccgggcgag gagtgctgtt ccgagtggga ctgcatgtgt gtccagcctg aattcactg cggagaccct tgctgcacga cctgccggca ccacccttgt ccccagggc agggggtaca gtcccagggg aaattcagtt ttggcttcca gtgtatcgac tgtgcctcgg ggaccttctc cggggggccac gaaggccact gcaaaccttg gacagactgc acccagttcg ggtttctcac tgtgttccct gggaacaaga cccacaacgc tgtgtgcgcc ccagggtccc cgccggcaga gccgcttggg tggctgaccg tcgtcctcct ggccgtggcc gcctgcgtcc tcctcctgac	60 120 180 240 300 360 420 480 540
ctcggcccag cttggactg tegteeteet ggccgtggce gcctgcgtce teeteetgac gacccagctg ctgctggagg tgccgccgtc gaccgaagac gccagaagct gccagttccc cgaggaagag cggggcgagc gatcggcaga ggagaagggg cggctgggag acctgtgggt	600 660 720

				gca Ala 35													144
				ccc Pro													192
				gtg Val													240
				gtg Val													288
				cag Gln													336
				cag Gln 115												,	384
_				gcc Ala													432
				ccc Pro													480
				acc Thr												!	528
ggc Gly 175	ttc Phe	tat Tyr	ccc Pro	agc Ser	gac Asp 180	atc Ile	gcc Ala	gtg Val	gag Glu	tgg Trp 185	gag Glu	agc Ser	aat Asn	ggg Gly	cag Gln 190	!	576
ccg Pro	gag Glu	aac Asn	aac Asn	tac Tyr 195	aag Lys	acc Thr	acg Thr	cct Pro	ccc Pro 200	gtg Val	ctg Leu	gac Asp	tcc Ser	gac Asp 205	ggc Gly	(624
tcc	ttc	ttc	ctc	tac	agc	aag	ctc	acc	gtg	gac	aag	agc	agg	tgg	cag	(672

Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Ara	Trp	Gln		
	٠		210	J		J		215			- 3 -		220		•		
			gtc Val														720
			cag Gln										taat	ctag	ja		768
	<2 <2	210> 211> 212> 213>	52	fici	ial S	Seque	ence										
	<220> <223> Oligonucletide ZC15345																
ccgt	<400> 46 ccgtgcccag cacctgaagc cgagggggca ccgtcagtct tcctcttccc cc												52				
<210> 47 <211> 31 <212> DNA <213> Artificial Sequence																	
		?20> ?23>	Olig	onuc	leot	ide	ZC15	347									
ggat		.00> .ga t	47 :ttta	tacc	cc gg	jagac	aggg	ı a									31
	<2 <2	210> 211> 212> 213>	55	fici	al S	eque	ence										
		20>	Olig	onuc	:leot	ide	ZC15	517									
ggtg		00> ct c	48 ccag	atgg	g to	ctgt	ccga	gcc	caga	ıtct	tcag	acaa	aa c	tcac	:		55

	<210> 49 <211> 18 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide ZC15530	
tgggag	<400> 49 gggct ttgttgga	18
	<210> 50 <211> 42 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide ZC15518	
	<400> 50 caaag ccctcccatc ctccatcgag aaaaccatct cc	42
	<210> 51 <211> 57 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide ZC15516	
	<400> 51 matcc atgaagcacc tgtggttctt cctcctgctg gtggcggctc ccagatg	57
	<210> 52 <211> 59 <212> DNA <213> Artificial Sequence	
	<220> <223> oligonucleotide primer	
	<400> 52 cagg aaatccatgc cgagttgaga cgcttccgta gaatgagtgg cctgggccg	59
	<210> 53	

	<211> 48 <212> DI <213> A		Sequence				
	<220> <223> 0	ligonucleo	tide primo	er			
gcatgt	<400> 5; gtga gt	-	agatctggg	ctccttcagc	cccgggag		48
	<210> 54 <211> 59 <212> DI <213> AI	9	Sequence				
	<220> <223> 0	ligonucleo	tide prime	er			
ctcago	<400> 54 ccagg aaa		gagttgaga	cgcttccgta	gaatgagtgg	cctgggccg	59
	<210> 59 <211> 59 <212> DI <213> AI	9	Sequence				
	<220> <223> 0	ligonucleo	tide prime	er			
	<400> 59 tggg cat		tttgtctga	agatctgggc	tccttcagcc	ccgggagag	59
	<210> 56 <211> 60 <212> DN <213> An	0	Sequence				
	<220> <223> 0	ligonucleo	tide prime	er			
	<400> 56 aggc tca		tccagctct	cccggggctg	aaggagccca	gatcttcaga	60
	<210> 57 <211> 56						

```
<212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 57
ggggtgggta caaccccaga gctgttttaa tctagattat ttacccggag acaggg
                                                                         56
      <210> 58
      <211> 59
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 58
ctaacatgtc agcgttattg taatgcaagt gtgaccaatt cagagcccag atcttcaga
                                                                         59
      <210> 59
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Antibody peptide
      <400> 59
Ser Ala Gly Ile Ala Lys Leu Glu Glu Gly Pro Glu Leu Gln Leu Ala
                                     10
                                                         15
Ile Pro Arg Glu
            20
      <210> 60
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Antibody peptide
      <400> 60
Ser Phe Lys Arg Gly Ser Ala Leu Glu Glu Lys Glu Asn Lys Glu Leu
                 5
1
                                                         15
```

Val Lys Glu Thr