Simulation informatique des mouvements d'une foule.

Arnaud PELISSIER

- Présentation
- Modèle choisi
- Résultats / Validation
- Généralisation
- Conclusion

Le mouvement des foules

But et différents types de modèles

Objectifs:

- Eviter les accidents
- Optimiser le temps d'évacuation

Modèles:

- Modèles cellulaires
- Modèles macroscopiques
- Modèles microscopiques

FIGURE - Modèle microscopique

FIGURE - Modèle cellulaire

Fonctionnement des modèles microscopiques

- Chaque piéton possède un état $(\overrightarrow{v_i}, \overrightarrow{x_i}, \dots)_{i \in \mathbb{I}}$
- Le modèle est mise en mouvement par intégrations successives :

$$ightharpoonup \overrightarrow{a_i}(t+\Delta t)=rac{1}{m_i}\overrightarrow{F_i}(t+\Delta t)$$
 (2ème loi de Newton)

$$\overrightarrow{v_i}(t+\Delta t) = \overrightarrow{v_i}(t) + \Delta t \times \overrightarrow{a_i}(t)$$

$$\overrightarrow{x_i}(t+\Delta t) = \overrightarrow{x_i}(t) + \Delta t \times \overrightarrow{v_i}(t+\Delta t)$$

Gestion des collisions

Le modèle choisi

Caractéristiques

How simple rules determine pedestrian behaviors and crowd disasters

- Modèle heuristique
 - Les piétons cherchent le chemin le plus direct vers leur destination.
 - Les piétons ralentissent devant des obstacles pour éviter la collision.
- Implémentation en C++
 - ▶ Plus pratique que du C (bibliothèque standard / algorithmes / classes)
 - ▶ Plus rapide que du python

Le modèle choisi

Fonctionnement

Représentation d'un piéton

- Position \overrightarrow{x}_i , vitesse \overrightarrow{v}_i
- Rayon $r_i = \frac{m_i}{320}$, où $m_i \in [60, 100]$ est la masse du piéton
- Destination O_i
- Vitesse de croisière v_{0i}

Représentation du monde

- ullet Les murs sont un ensemble de segments $(p_{0,i},p_{1,i})_{i\in\mathbb{I}}$
- une zone de départ (x, y, w, h)
- un point d'arrivée
- Force de répulsion lors de la collision entre deux piétons
- Force de répulsion lors de la collision entre un piéton et un mur
- Recherche de l'angle / de la direction optimale pour un piéton

Implémentation

Calcul de l'angle d'un piéton

Implémentation

En C++

Validation du modèle : obstacle en face d'une sortie

Ce modèle prédit-il une heuristique observée empiriquement?

FIGURE - Première simulation

Validation du modèle : obstacle en face d'une sortie

Experience

Mesurer le nombre de passages par seconde à travers une porte

- Sans obstacle devant cette porte
- Avec obstacle

FIGURE - Avec obstacle

FIGURE - Sans obstacle

Résultats

FIGURE - Résultats

Résultats

Amélioration des collisions

Avant:

- Les collisions piéton-mur et piéton-piéton sont représentées par des forces
- Ces forces sont ensuite intégrées : $\overrightarrow{F_{murs}} + \overrightarrow{F_{piétons}} + \overrightarrow{F_{trajectoire}} = m\overrightarrow{a_i}$

Après:

- Les collisions sont résolues directement
- Si deux piétons se traversent, leurs positions sont immédiatement rectifiées, sans passer par $\sum \overrightarrow{F_i} = m \overrightarrow{a}$

Résultats

FIGURE – Les problèmes de collisions sont réglés

FIGURE – résultats après

Deuxième validation : trajectoires

Expériences empiriques

Understanding human queuing behaviour at exits : an empirical study

Deuxième validation : trajectoires

Prédictions du modèle

FIGURE - Beaucoup de piétons restent bloqués aux extrémités des murs

Deuxième validation : trajectoires

Prédictions du modèle

FIGURE - Après

FIGURE – Le problème

Généralisation

Graphe

Comment appliquer ce modèle sur des bâtiments plus complexes?

- Une ou plusieurs zones d'apparition
- Un graphe orienté
- Un noeud de sortie
- On calcul à chaque instant la densité de piétons autour d'un noeud donné
- Lorsque le piéton doit choisir entre deux noeuds, il choisit de se diriger vers le moins dense

```
11
25 0 1 4 1 0
3 11
4 0 0 6 0
5 0 4 6 4
6 0 0 0 4
7 6 0 6 4
8 3.5 0 3.5 1.8
9 3.5 2.2 3.5 1.8
10 4 1.7 4.2 2.0
11 4.2 2.0 4 2.3
12 3.8 1.9 3.8 2.1
13 3.8 1.9 4 1.7
14 3.8 2.1 4 2.3
15 2 1
16 5.5 2 1 1
```

FIGURE – Représentation informatique du niveau

Généralisation

Graphe

FIGURE - Simulation plus complexe avec un graphe

Conclusion

La suite :

- Calculer les forces de pression sur chaque piéton
- Calculer une carte de pression pour connaître les zones «à risques»
- Ajouter un éditeur de niveau graphique pour une utilisation plus simple du «logiciel»