Name	Date
LAB 2I: R's Normal Di Respons	· · · · · · · · · · · · · · · · · · ·
Directions: Record your responses to the lab question	s in the spaces provided.
Where we're headed	

Where we're headed

Ge	et set up
ls	it normal?
•	Is the distribution close to normal? Explain how you determined this. Describe the center and spread of the distribution.
•	Compute and write down the mean difference in the age of the actual survivors and the actual non-survivors.

Using the normal model

• Draw a sketch of a normal curve. Label the mean age difference, based on your shuffles, and the actual age difference of survivors minus non-survivors from the actual data. Then, shade in the area, under the normal curve, that is *smaller* than the actual difference.

Extreme probabilities

Simulating normal draws

P's and Q's

How tall can a man be and still be in the shortest 25% of heights if the mean height is 67 inches with a standard deviation of 3 inches?

Name	Date
. 16.1.10	24.0

LAB 2I: R's Normal Distribution Alphabet

	Response Sheet
On	your own
•	Using the titanic data: Were women on the Titanic typically younger than men?
•	Use a histogram, 500 random shuffles and a normal model to answer the question in the bullet above.
•	Using the cdc data: Using 500 random shuffles and a normal model, how much taller would the typical male have to be than the typical female in order for the difference to be in the upper 1% by chance alone?
•	How can we use this value to justify the claim that the average Male in our data is taller than the average Female?