Elliptic PDE

Laplace equation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

4 Boundary Conditions; 2 for x, 2 for y.

$$\Delta x = \frac{L}{M}$$
; $\Delta y = \frac{H}{N}$; $M, n \# grid points$

$$\frac{\partial^2 T}{\partial x^2} = \frac{\int_{i+1,j-2}^{i+1,j-2} T_{i,j} + T_{i+1,j}}{\Delta x^2}$$

$$i = x - pos^{\frac{1}{2}}$$

$$\frac{\partial^2 T}{\partial y^2} = \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{Ay^2} \quad j = y - p \circ s^2$$

substitute these in

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

$$\frac{T_{i+1,j} - QT_{i,j} + T_{i-1,j}}{\Delta x^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j+1}}{\Delta y^2} = 0$$

let Ax = Ay

Poisson's equation:
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -4$$

B.c.
$$X=0, X=1$$
 $\phi=0$
 $Y=0, Y=1$ $\phi=0$

Assume $\Delta x = \Delta y = 0.25$. Compute $\phi(x,y)$

$$\frac{\phi_{i+1,j} - 2\phi_{i,j} + \phi_{i+1,j} + \phi_{i,j+1} - 2\phi_{i,j} + \phi_{i,j+1}}{\Delta y^{2}} = -4$$

DX = Ay = 0.25

 $\phi_{i+1,j}$ + $\phi_{i+1,j}$ + $\phi_{i,j+1}$ + $\phi_{i,j+1}$ - 4 $\phi_{i,j}$ = -4.4×2 = $(-4)(0.25)^2$ = -0.25

ψίτις + φίτις + φίτι + ψίτι - 4 φίτ = - 0.25

i = x-position; j= y-position

x = Δχί = 0.25 ί

i	0	1	2	3	4
×	b	0.25	0.5	0.75	1

y = Δy j = 0·zs j

ĵ	6	1	2	3	4
y	0	0.25	0.5	0.75	1

ì	i XX	0	0.25	2 0.5	3	- 1
0	0	0	0	0	0	
1	0.25	O	0.1719	૦.ગૄક્ષ્ટ	0·141	0
L	0.5	0	0.5188	0.28/1	0.1188	0
3	0.45	0	0.1719	૦૫18	0.1719	0
4	1	0	0	0	0	0
					ı	

 $Φ_{i+1,j} + Φ_{i+1,j} + Φ_{i,j+1} + Φ_{i,j+1} - 4Φ_{i,j} = -0.25$

$$\frac{i=1}{j=1} \int_{-2}^{2} \int_{-2}^{2} + \frac{4}{9} \int_{0}^{2} + \frac{4}{9} \int_{0}^{2} + \frac{4}{9} \int_{0}^{2} - 4 \int_{0}^{2} = -0.25$$

$$\frac{i=1}{j=2} \int_{-2}^{2} \int_{-2}^{2} + \frac{4}{9} \int_{0}^{2} + \frac{4}{9} \int_{0}^{2} + \frac{4}{9} \int_{0}^{2} = -0.25$$

$$\frac{i=1}{j=3} \int_{-2}^{2} \int_{-2}^{2} \int_{0}^{2} \int_{0}^{2} + \frac{4}{9} \int_{0}^{2} + \frac{4}{9} \int_{0}^{2} - 4 \int_{0}^{2} \int_{0}^{2} = -0.25$$

$$\frac{i=2}{j=2} \int_{0}^{2} \int_{0}$$