

Arduino-basic [wk03]

LCD & LED

Learn how to code Arduino from scratch

Comsi, INJE University

2nd semester, 2019

Email: chaos21c@gmail.com

My ID (ARnn)

AR01	염현제
AR02	강민수
AR03	구병준
AR04	김종민
AR05	박성철
AR06	이승현
AR07	이창호
AR08	변성연
AR09	손성빈
AR10	안예찬
AR11	유종인
AR12	이석민
AR13	이주원
AR14	정재영
AR15	차유신

AR16	아태성
AR17	강현이
AR18	신종원
AR19	최진솔
AR20	김경미
AR21	김경영
AR22	김규년
AR23	김민재
AR24	김영록
AR25	송다은
AR26	정지환
AR27	김종건

[Review]

- ♦ [wk02]
- > Serial comm.
- Complete your project
- upload folder: Arnn_Rpt01 in github.com repo "arnn"

wk02: Practice-01: ARnn_Rpt01.zip

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload 4 figures in github.com

제출폴더명: ARnn_Rpt01

- 제출할 파일들

- ① ARnn_blink.png
- ② ARnn_sawtooth.png
- 3 ARnn_loop_escape.png
- 4 ARnn_sum100.png

Blink

aLED

Blink a LED!


```
Blink§
   Blink
   Turns on an LED on for one second, then off for one second, repeatedly.
7// the setup function runs once when you press reset or power the board
8 void setup() {
9 // initialize digital pin 13 as an output.
10 pinMode(13, OUTPUT);
11 }
13 // the loop function runs over and over again forever
| 14 | void | loop() {
digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000);
                       // wait for a second
digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second
```


2. Serial comm.

monitor &

plotter

2. Serial comm.

시리얼 통신

- 2.1 Arduino에서 컴퓨터로 데이터 전송하기
- 2.2 변수 유형별로 컴퓨터에 전송하기
- 2.3 Arduino에서 시리얼 통신을 이용하여 데이터 수신하기

2.1.3 Arduino에서 컴퓨터로 데이터 전송하기

DIY-1. sawtooth signal

Save ARnn_sawtooth.png

2. 시리얼 통신 (Serial comm.)

2.2

변수 유형별로 컴퓨터에 전송하기

```
*** Hello Arduino ***

*** char Value ***
Binary:1000001
Decimal:65
Hexadecimal:41
ASCII:A

*** int Value ***
int Value:65
char(intValue):A

*** float Value ***
float Value:65.00
```


DIY-2. Escape from loop()

응용 문제 [DIY-2] 0~15까지 10진수를 2진수와 16진수로 출력하는 스케치를 작성해보자

[Hint]

- 1. int number = 0; // starting number
- 2. loop()에서 1초 간격으로 number를 1씩 증가
- 3. 옆의 방식으로 결과 출력
- 4. number가 15를 초과하면 loop() 탈출 exit(0); // loop 탈출 함수

ARnn_loop_escape.png

DIY-2. Escape from loop() - code

응용 문제 [DIY-2] 0~15까지 10진수를 2진수와 16진수로 출력하는 스케치를 작성해보자

```
AR00_loop_escape
1 /*
2 DIY-2
3 */
5 // start number
6 int number = 0;
8 // 문자열 세가지를 설정한다.
9 String stringValue[]={"Binary:", "Hexadecimal:"};
10
11 void setup() {
    // 9600bps로 시리얼 통신 설정
   Serial begin (9600);
14}
```

```
16 void loop() {
17
   // 'char Value'를 출력하고 문자열과 숫자를 변수 유형별로 출력한다
19 Serial.print("Number = ");
20 Serial print (number);
21 Serial print(", ");
22 Serial print(stringValue[0]); // stringValue 중 첫 번째 문자열 출력
23 Serial print (number, BIN); // 2진수 형태로 출력
24 Serial print(", ");
25 Serial.print(stringValue[1]); // stringValue 중 첫 번째 문자열 출력
26 Serial print (number, HEX); // 16진수 형태로 즐릭
27 // 줄바꿈
   Serial printin();
29
   number++; // number 1 증가
    If (number > 15) {
     Serial print ("Mission completed!");
     delay(1000);
35
    exit(0);
36
38 delay(1000); // 1초동안 지연시킨다.
39 }
```


DIY-3. sum from 1 to 100

응용 문제 [DIY-3] Results on serial monitor and plotter

DIY-3. sum from 1 to 100 - code

응용 문제 [DIY-3] Results on serial monitor and plotter

```
1 /*
2 DIY-3
3 */
4
5 // start number
6 int number = 0;
7 int sum = 0;
8
9 void setup() {
10 // 9600bps로 시리얼 통신 설정
11 Serial.begin(9600);
12 }
```

```
9 void setup() {
    // 9600bps로 시리얼 통신 설정
10
    Serial.begin(9600);
12]
13
14 void loop() {
15
16
    number++;
17
    sum += number;
    Serial.print("Number = ");
18
    Serial print (number);
19
    Serial.print(", Sum = ");
20
21
    Serial.printin(sum);
22
23
    if (number = 100) {
24
      Serial printin();
      Serial.print("ARnn: 1 + 2 + ... + 100 =");
25
      Serial printin(sum);
26
      delay(1000);
27
      exit(0);
28
29
    delay(100); // 0.1초동안 지연시킨다.
31
32 }
```


2.3 Serial monitor & plotter

2.3

시리얼 통신을 이용하여 데이터 수신하기

2.3.1 시리얼 통신을 이용하여 데이터 수신하기

EX 2.3 변수 유형별 Arduino에서 컴퓨터로 전송하기 (1/3)

- 실습목표 1. 컴퓨터에서 Arduino로 0~9의 숫자를 전송한다.
 - 2. Arduino에서는 전송 받은 숫자만큼 Arduino 보드의 LED를 점멸시킨다.

Hardware Arduino와 PC를 USB 케이블로 연결한다.

그림 2.1 Arduino와 PC와의 연결

3.3.2 시리얼 통신을 이용하여 데이터 수신하기

EX 2.3 변수 유형별 Arduino에서 컴퓨터로 전송하기 (2/3)

Commands

Serial.available()

시리얼 통신에 수신된 데이터가 있는지 확인한다. 있을 경우 참(true)의 값을 갖는다.

Serial.read()

시리얼 통신을 통하여 수신된 값을 읽는다.

• isDigit(변수)

변수의 값이 ASCII 코드의 0~9의 숫자 범위에 있는지 여부를 판단. 범위에 있을 경우 참(true)의 값을 갖는다.

• pinMode(핀번호, 설정)

핀의 입출력 모드를 설정한다. '핀번호'에는 설정하고자 하는 핀의 번호와 '설정'에는 입력으로 사용하기 위해선 'INPUT', 출력으로 사용하기 위해선 'OUTPUT', 입력이며 풀업 사용시 'INPUT_PULLUP'을 적는다.

• digitalWrite(핀번호, 값)

핀에 디지털 출력(High or Low)을 한다. '핀번호'에는 출력하고자 하는 핀의 번호를, '값'에는 'HIGH' 혹은 'LOW'를 설정하여 High 혹은 Low 출력을 한다.

2.3.3 시리얼 통신을 이용하여 데이터 수신하기

변수 유형별 Arduino에서 컴퓨터로 전송하기 (3/3) **EX 2.3**

- Sketch 구성 1. 13번 핀에 연결된 내장 LED를 이용한다.
 - 2. 시리얼 통신 상태를 감시한 후 시리얼 통신으로 입력되는 데이터가 있을 때 이를 저장한다.
 - 3. 전송된 값은 ASCII 코드값이므로 이를 숫자로 변경한다.
 - 4. 숫자만큼 LED를 0.2초 간격으로 점멸시킨다.

IDE의 시리얼 모니터를 실행시켜 전송란에 0~9의 값을 입력한 후 실습 결과 Arduino의 LED가 입력한 값 만큼 점멸하는지를 확인해 본다..

- 1. 0~9의 입력 값에 따라 점멸 주기가 변화하는 스케치를 작성해 보자. 응용 문제
 - 2. 0~9의 숫자를 전송하면 전송된 수의 2진수와 16진수를 컴퓨터로 전송하는 스케치를 만들어보자. (hint: 예제 2.2를 참고하자)

2.3.3 시리얼 통신을 이용하여 데이터 수신하기

EX 2.3 변수 유형별 Arduino에서 컴퓨터로 전송하기 (code)

```
ex_2_3_final
1 /*
   예제 2.3
   컴퓨터로부터 시리얼 통신을 통하여 데이터 수신하기
<u>6|// LED 출력을 할 핀 번호 설정</u>
 ᠯ const int ledPin = 13;
위// 점멸횟수 변수 설정·
l(|int_blinkNumber = 0;
12 void setup() {
   // 9600bps로 시리얼 통신 설정
   Serial.begin(9600);
   // 13번 핀을 출력으로 설정
  pinMode(ledPin, OUTPUT);
17|}
```

```
19 void loop() {
   // 시리얼 통신으로 입력 받은 데이터가 있는지를 검사하여
   // 데이터가 이유 겨오에 if무 아이 명령<u></u>에를 실해
  if (Serial.available()) {
23
     // val 변수에 시리얼 통신값 읽어오기
24
     char val = Serial.read();
25
     // 입력된 값이 0~9의 숫자인지를 판단
     if (isDigit(val)) {
26
27
       // val은 ASCII 코드값이므로 숫자로 바꿔주기 위하여
28
      -// '0'의 아스키 코드값을 빼줌
       // blinkNumber에는 실제 숫자가 저장된다.
29
       blinkNumber = (val - '0');
31
32
     Serial.print("입력한 수:");
     Serial.println(blinkNumber);
     // Serial.println();
34
     delay(2000);
35
36
     // blinkNumber 만큼 LED의 켬상태를 길게 유지.
37
38
     for (char i = 0; i < blinkNumber; i++) {</pre>
       digitalWrite(ledPin, HIGH);
39
       delay(100);
40
       digitalWrite(ledPin, LOW);
41
42
       delay(100);
43
44
    // 점멸 횟수를 리셋함
  iblinkNumber = 0;
47 }
```


DIY-4. 점멸 주기가 변화

응용 문제 [DIY-4] 0~9의 입력 값에 따라 점멸 주기가 변화하는 스케치를 작성해 보자.

- 시리얼모니터에 입력한 수를 표시
- 입력한 수에 비례해서 LED 켬 상태를 길게 유지.

완성된 스케치 code를
ARnn_period.ino
로 저장해서 제출.

DIY-5. 입력된 수를 변환하여 출력

응용 문제 [DIY-5] 0~9의 숫자를 전송하면 입력 값에 따라 점멸 주기를 변화시키며, 전송된 수의 2진수와 8진수를 컴퓨터로 전송하는 스케치를 만들어보자. (hint: 예제 2.2를 참고하자).

- 아래 출력 참조.

완성된 스케치 code를
ARnn_number.ino
로 저장해서 제출.

3. LCD

Liquid Crystal Display

핀에 직접 연결 7 핀

> l²C 통신 2 핀

얇은 액정판 아래 조명을 비추는 장치로서 액정판의 전류 흐름을 제어하여 문자나 그림을 표시

3. LCD

Liquid crystal display

- 3.1 입출력 핀을 이용하여 LCD 모듈에 표시하기
- 3.2 I²C를 이용한 LCD 출력

3.1.1Introduction to LCD Module

3.1.2 Introduction to LCD Module

LCD (Liquid Crystal Display, 16 X 2)

- 1. GND
- 2. VCC (+5V)
- 3. Vo (contrast, 가변저항기 연결)
- 4. RS
- 5. R/W
- 6. E
- D0 ~ D7 (data, 7~14)
- A (15, Backlight+, 220 or 330 Ω)
- K (16, Backlight-)

3.1.3 Introduction to LCD Module

LCD (Liquid Crystal Display, 16 X 2)

Pin 2 to Arduino +5V
Pin 3 to wiper
Pin 4 to Arduino pin D12
Pin 5 to Arduino GND
Pin 6 to Arduino pin D11
Pin 11 to Arduino pin D5
Pin 12 to Arduino pin D4
Pin 13 to Arduino pin D3
Pin 14 to Arduino pin D2
Pin 15 to +5V (with 220 or 330 Ω)
Pin 16 to GND

Pin 1 to Arduino GND

(pin-1, 2, 3, 5, 15,16)

Pin 1 to Arduino GND Pin 2 to Arduino +5V Pin 3 to wiper (potentiometer) Pin 5 to Arduino GND Pin 15 to +5V Pin 16 to GND

> 전원 연결 후 LCD 초기화

(pin-4, 6, 11,12,13,14) 3.1.5 데이터 입력 초기화

Pin 1 to Arduino GND

Pin 2 to Arduino 5V

Pin 3 to wiper

Pin 4 to Arduino pin D12

Pin 5 to Arduino GND

Pin 6 to Arduino pin D11

Pin 11 to Arduino pin D5

Pin 12 to Arduino pin D4

Pin 13 to Arduino pin D3

Pin 14 to Arduino pin D2

Pin 15 to +5V

Pin 16 to GND

DIY-6. LCD module circuit

3.1.6 Introduction to LCD - code "Hello ARnn"

- LiquidCrytral lcd(rs, en, d4, d5, d6, d7) Icd란 이름으로 I2C에 연결된 LCD 모듈 객체.
- · lcd.begin(행, 열) lcd란 이름의 LCD 모듈의 크기를 정의한다.
- lcd.clear() lcd란 이름의 LCD 모듈의 화면의 모든 표시를 지우고 커서를 왼쪽 위로 옮긴다.
- lcd.home() lcd란 이름의 LCD 모듈의 커서를 왼쪽 위로 옮긴다.
- · lcd.setCursor(행, 열) lcd란 이름의 LCD 모듈의 커서를 원하는 위치로 이동시킨다.
- lcd.print(데이터) Icd란 이름의 LCD 모듈에 데이터를 출력한다.
- lcd.noBacklight(); lcd란 이름의 LCD 모듈의 백라이트를 소등한다.
- lcd.backlight(); Icd란 이름의 LCD 모듈의 백라이트를 점등한다.

3.1.7 Introduction to LCD - code "Hello ARnn"

```
hello_LCD
 7 // include the library code:
 8 #include <LiquidCrystal.h>
10// initialize the library with the numbers of the interface pins
13 void setup() {
    // set up the LCD's number of columns and rows:
    - Icd.begin(16, 2);
15
    // Print a message to the LCD.
    lcd.print("Hello, ARnn!");
18|}
19
20 void loop() {
     // set the cursor to column 0, line 1
    lcd.setCursor(0, 1); // second line, first column
     // print the number of seconds since reset:
24
     lcd.print(millis() / 1000);
     lcd.print(" sec");
26|}
```


3.2 I²C를 이용한 LCD 출력

I²C(^{아이스케어드시}, Inter-Integrated Circuit)는 필립스에서 개발한 직렬 버스이다. 마더보드, 임베디드 시스템, 휴대 전화 등에 저속의 주변 기기를 연결하기 위해 사용된다.

I²C 는 <u>물업 저항</u>이 연결된 직렬 데이터(SDA)와 직렬 클럭(SCL)이라는 두 개의 양 방향 <u>오픈 컬렉터</u> 라인을 사용한다. 최대 전압은 +5 V 이며, 일반적으로 +3.3 V 시스템이 사용되지만 다른 전압도 가능하다.

https://ko.wikipedia.org/wiki/I%C2%B2C

http://www.ifuturetech.org/product/16x2-lcd-i2c-lcd/

3.2.1 I²C를 이용한 LCD 출력

표 3.1 LCD 모듈 문자표

특수문자나 기호는 LCD 모듈 문자표를 참고하여 출력

Lower Upper 4													4400		4440	
A Bis	0000 CG.	0001	0010	0011	0100	0101	0110	0111	1000	100	1010	1011	1100	1101	1110	1111
xxx0000	RAM (1)			И	al	۲	_	P					3	<u>Ę</u>	α	p
xxxx0001	(2)		!	1	A	Q	а	9			•	7	チ	L_k	ä	9
xxxx0010	(3)		Ш	2	В	R	b	r			Г	4	y	火	ß	θ
xxx0011	(4)		#	3	С	S	C	s			L	ゥ	テ	Ŧ	$\boldsymbol{\varepsilon}$	00
xxx0100	(5)		\$	4	D	T	d	t			N	I	 -	ł	μ	Ω
xxxx0101	(6)		%	5	E	U	e	Ü			•	才	ナ	ュ	G	ü
xxx0110	(7)		&	6	F	Ų	f	Ų			Ŧ	ታ	=	=	ρ	Σ
xxxx0111	(8)		7	7	G	W	9	W			7	‡	X	ラ	9	ĸ
xxx1000	(1)		(8	H	X	h	×			4	ク	木	IJ	Ţ	$\bar{\mathbf{x}}$
xxx1001	(2))	9	Ι	Υ	i	9			÷	ታ	Į	JΙν	-1	Ч
xxx1010	(3)		*		J	Ζ	j	Z			I	コ	/\	L	j	手
xxx1011	(4)		+	7	K		k	{			才	サ	Ł	口	×	Я
xxx1100	(5)		7	<	L	¥	1				ł	Э	フ	7	¢	A
xxx1101	(6)		-	=	М]	M	}			ı	ス	^	ン	Ł	÷
xxx1110	(7)			>	N	^	n	→			3	乜	赤	**	ñ	
xxxx1111	(8)		/	?	0	_	0	÷			IJ	ソ	マ	٠	ö	

3.2.2 I²C를 이용한 LCD 출력

I²C (Inter Integrated Circuit)

그림 3.2 fC를 이용한 네트워크

- ✓ Phillips사에서 개발된 규격이며 TWI라고도 함.
- ✓ SDA(Serial Data line), SCL(Serial Clock Line)두 선으로 통신
- ✓ Master와 Slave로 구분되어 Master에서 통신을 주관
- ✓ 최대 112개의 노드를 연결 가능하고 최고 3.4Mbps의 속도
- ✓ LCD 모듈을 I²C 통신으로 제어하기 위해선
 PCF8574 IC를 사용
- ✓ SDA, SCL 두 개의 입출력 핀만 필요

3.2.3 I²C를 이용한 LCD 출력

라이브러리 매니저를 이용하여 I²C LCD용 라이브러리(LiquidCrystal I2C)를 설치

스케치 > 라이브러리 포함하기 > 라이브러리 관리

3.2.4 I²C를 이용한 LCD 출력

EX 3.2

I²C를 이용한 LCD 출력 (1/3)

- 실습목표
- 1. 16X2 도트매트릭스 LCD를 l²C를 이용하여 제어한다.
- 2. 'Welcome' 메시지와 함께 백라이트를 점멸시킨다.
- 3. 시리얼 포트로 입력 받은 값을 LCD에 출력한다.

Hardware

- 1. I²C LCD 모듈과 Arduino는 전원핀 Vcc, GND와 I²C 통신핀 SDA, SCL이 연결되어야 한다.
- 2. I²C LCD 모듈의 Vcc와 GND를 Arduino의 5V와 GND에 연결한다.
- 3. SDA는 A4에, SCL은 A5에 연결한다.

3.2.5 I²C를 이용한 LCD 출력

EX 3.2 I²C를 이용한 LCD 출력 (2/3)

Commands

- LiquidCrytral_I2C(I2C 주소, 가로 글자수, 세로 글자수)
 LCD 모듈이 연결된 I2C 주소와 LCD의 가로, 세로 글자수를 설정한다.
- lcd.init(); LCD 모듈을 설정한다.
- lcd.clear(): lcd란 이름의 LCD 모듈의 화면의 모든 표시를 지우고 커서를 왼쪽 위로 옮긴다.
- lcd.home(): lcd란 이름의 LCD 모듈의 커서를 왼쪽 위로 옮긴다.
- lcd.setCursor(행, 열): lcd란 이름의 LCD 모듈의 커서를 원하는 위치로 이동시킨다.
- lcd.print(데이터): lcd란 이름의 LCD 모듈에 데이터를 출력한다.
- lcd.noBacklight(): lcd란 이름의 LCD 모듈의 백라이트를 소등한다.
- lcd.backlight(); lcd란 이름의 LCD 모듈의 백라이트를 점등한다.

Sketch 구성

- 1. I²C 방식의 LCD 모듈을 사용하기 위해 앞서 다운받은 라이브러리를 추가해 준다.
- 2. 라이브러리의 함수를 이용하여 LCD를 설정해 준다.
- 3. setup()에서 'Welcome'메시지와 백라이트를 점멸시킨다.
- 4. 시리얼 통신으로 데이터를 입력받기위해서 시리얼 통신 설정을 해 준다.
- 5. 데이터 입력이 있을 때 이를 LCD에 출력해 준다.

3.2.6 I²C를 이용한 LCD 출력 (code-1)

EX 3.2 I²C를 이용한 LCD 출력 (code)

```
ec_3_2_final

6  // I2C 통신 라이브려리 설정
7  #Include <Wire.h>
8  // I2C LCD 라리브러리 설정
9  #Include <LiquidCrystal_I2C.h>
10
11  // LCD I2C address 설정 PCF8574:0x27, PCF8574A:0x3F
12  LiquidCrystal_I2C Icd(0x3F,16,2); // LCD address:0x27,
```



```
14 vold setup()
15
    // 9600 bps로 시리얼 통신 설정
    Serial begin (9600);
    Icd. Init(): // LCD 설정
    lcd.clear(); // LCD를 모두 지운다.
    Icd.backlight(); // 백라이트를 켠다.
    // Arduino LCD, Welcome 丑人
    lcd.setCursor(0,0);
    lcd.print("Arduino LCD");
    delay(3000);
    lcd.setCursor(0,1);
    lcd.print("Welcome");
    delay(250);
27
    // LCD 백라이트를 두 번 점멸
   lcd.noBacklight();
  delay(250);
   lcd.backlight();
   delay(250);
   lcd.noBacklight();
   delay(250);
   lcd.backlight();
   delay(3000);
    // Open Serial Monitor, Type to display 丑人
   lcd.clear();
   Icd.setCursor(0,0); //Start at character 0 on line 0
   !cd.print("Open Serial Mntr");
43 Icd.setCursor(0,1);
   lcd.print("Type to display");
```


3.2.6 I²C를 이용한 LCD 출력 (code-2)

EX 3.2 I²C를 이용한 LCD 출력 (code)


```
47 void loop()
48 {
49
    // 시리얼 통신 수신 값이 있을 때
    if (Serial.available()) {
50
      delay(100);
52
     // 모두 삭제
     lcd.clear();
53
     // 커서를 좌측 상단으로
54
     lcd.setCursor(0,0);
55
      // "Message from PC" 출력
56
      lcd.print("Message from PC");
     // 커서를 두 번째 줄로
58
     lcd.setCursor(0,1);
59
60
      // LCD에 PC에서 전송된 데이터를 출력
61
     while (Serial.available() > 0) {
62
       lcd.write(Serial.read());
63
64
65
66 ]
```


3.2.6 I²C를 이용한 LCD 출력

EX 3.2 I²C를 이용한 LCD 출력 (3/3)

- 실습 결과 1. Arduino LCD 표시 후 백라이트가 2회 점멸한다.
 - 2. 시리얼 모니터를 실행 시킨 후 메시지를 입력하여 보자. → "Hello ARnn"
 - 3. 메시지가 LCD에 출력되는지를 확인해 보자.

Take a photo of LCD screen.

Save photo as ARnn_LCD_hello.png

[DIY-7] I²C를 이용한 LCD 출력

DIY-7 시리얼 통신으로 입력 받은 1~9의 숫자에 대하여 LCD의 백라이트가 입력된 숫자만큼 점멸하고 점멸 횟수를 LCD에 표시하는 스케치를 작성해 보자.

(hint: 예제 2.3을 참고하자)

Save ARnn_LCD.ino

4. LED

Light Emitting Diode

4. LED

LED (Light Emitting Diode)

- ✔ 전기 신호를 빛으로 출력하는 반도체 소자
- ✓ 고효율, 반영구적 수명
- ✔ 가정용 실내등, 산업용 특수등, 자동차용 전조등 및 실내등에 사용

Polarity of LED

Polarity of Diode and LED

Find the longer leg, which should indicate the positive, anode pin.

https://learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity

4.1 LED control

4 .1 LED 교차 점멸

4.1.1 LED control - 교차 점멸

EX 4.1 LED 교차 점멸 (1/3)

실습목표 두 개의 LED를 0.1초 간격으로 교차하여 점멸시키자.

Hardware

Save ARnn_2LED.fzz

4.1.2 LED control - 교차 점멸

EX 4.1 LED 교차 점멸 (2/3)

Commands

• pinMode(핀번호, 설정)

핀의 입출력 모드를 설정한다. '핀번호' 에는 설정하고자 하는 핀의 번호와 '설정'에는 입력으로 사용하기 위해선 'INPUT', 출력으로 사용하기 위해선 'OUTPUT', 입력이며 풀업 사용시 'INPUT_PULLUP'을 설정한다.

• digitalWrite(핀번호, 값)

핀에 디지털 출력 (High or Low) 을 한다. '핀번호' 에는 출력하고자 하는 핀의 번호를, '값'에는 'HIGH' 혹은 'LOW' 를 설정하여 High 혹은 Low 출력을 한다.

Sketch 구성

- 1. LED의 핀 번호를 설정한다.
 - 2. setup()에서는 LED 출력으로 사용할 핀을 출력핀으로 설정한다.
 - 3. loop()에서는 하나의 LED를 켠 후 일정시간이 지난 후에 소등하고, 다른 LED를 켠다.

4.1.3 LED control - 교차 점멸

EX 4.1 LED 교차 점멸 (3/3)

실습 결과 LED A와 B가 0.1초 단위로 교차하며 점멸한다.

delay = 500 msec

응용 문제 점멸 주기가 0.1초부터 2초로 0.1초 단위로 증가하였다가 다시 반대로 2초부터 0.1초까지 감소하는 동작을 반복하는 스케치를 작성해 보자. (hint: delay 명령어의 괄호 안의 숫자를 증감시킨다.)

delay = 1600 msec delay = 500 msec delay = 1700 msec delay = 400 msec delay = 1800 msec delay = 300 msec delay = 1900 msec delay = 200 msec delay = 2000 msec delav = 100 msec delay = 1900 msec delay = 200 msec delay = 1800 msec delay = 300 msec delay = 1700 msec delay = 400 msec

delay = 1600 msec

4.1.4 LED control - 교차 점멸 (code)

6 const int ledA

```
ex_4_1
 1 /*
   예제 4.1
   LED 점멸
 4 \times /
6 const int ledA
 7 const int TedB
                     = 5:
 8
9 void setup()
10 |{
     pinMode(ledA, OUTPUT);
     pinMode(ledB, OUTPUT);
12
13|}
14
15 void loop()
16 |
     digitalWrite(ledA,HIGH);
17 l
18
     digitalWrite(ledB,LOW);
     delay(100);
19
     digitalWrite(ledA,LOW);
20
21
     digitalWrite(ledB,HIGH);
22
     delay(100);
23|}
```

```
7 const int ledB = 5;
8
9 int number = 1;
10 boolean flag = true;
```

3;

```
12 void setup()
13 {
14    Serial.begin(9600);
15    pinMode(ledA, OUTPUT);
16    pinMode(ledB, OUTPUT);
17 }
```

```
완성된 스케치 code를
ARnn_2led.ino
로 저장해서 제출.
```

```
19 void loop()
20 K
21 i digitalWrite(ledA, HIGH);
22 digitalWrite(ledB, LOW);
23 | delay(100 * number);
24 digitalWrite(ledA, LOW);
25 digitalWrite(ledB, HIGH);
   Serial.print("delay = ");
   Serial.print(100 * number);
    Serial.println(" msec");
   delay(100 * number);
30
  if (flag) {
      number++;
33 i } else {
      number--;
341
      Fill in your code!
39
  else if (number == 1) {
43 }
```


4.2 LED control - 밝기 조절

밝기 조절: 디밍 (Dimming)

- ✓ LED에 입력되는 전력은 PWM (Pulse Width Modulation)을 이용하여 조절.
- ✓ PWM : 고속의 스위칭으로 High와 Low 신호의 비율을 조절하여 LED의 밝기, 모터의 회전 등을 조절하는 방법
- ✓ Arduino에서는 analogWrite() 명령어로 구현
- ✓ Arduino UNO의 경우 3, 5, 6, 9, 10, 11 번 핀이 PWM을 지원한다.

4.2.1 LED control - 밝기 조절

PWM (Pulse Width Modulation)

Using <u>analogWrite(pin, pwm_value)</u> function in fading an LED off and on. AnalogWrite uses <u>pulse width modulation (PWM)</u>, turning a digital pin on and off very quickly with different ratio between on and off, to create a fading effect.

A call to <u>analogWrite()</u> is on a scale of **0 - 255**, such that analogWrite(255) requests a 100% duty cycle (always on), and analogWrite(127) is a 50% duty cycle (on half the time)

PWM frequency = 500 Hz

https://www.arduino.cc/en/Tutorial/PWM

4.2.2 LED control - 밝기 조절

EX 4.2 LED 밝기 조절 (1/2)

- 실습목표
- 1. 두 개의 LED의 밝기를 조절하자.
- 2. 각각의 LED가 교차하며 밝아졌다 어두워 졌다를 반복하도록 하자.

Hardware

- 1. 청색과 적색 LED의 Anode핀을 Arduino의 3번 5번 핀에 연결한다.
- 2. Cathode핀에 330Ω저항을 연결하여 저항의 반대쪽은 Arduino의 GND에 연결한다.
- 3. LED가 연결된 핀에 HIGH신호가 출력될 때 LED가 점등된다.

4.2.3 LED control - 밝기 조절

EX 4.2 LED 밝기 조절 (2/2)

Commands · analogWrite(핀번호, 값)

정해진 핀에 아날로그 출력을 한다. '값' 에는 0~255의 값을 넣는다.

Sketch 구성 1. LED의 핀 번호를 설정한다.

2. setup()에서는 LED 출력으로 사용할 핀을 출력핀으로 설정한다.

3. 밝기를 저장할 변수를 설정한다.

4. 하나의 LED가 밝아질 때 다른 LED는 어두워져야 하므로 이를 조절할 변수를 설정한다.

5. loop()에서는 밝기와 밝기 변수 증감을 위한 변수를 조절하여 두 개의 LED를 교차 점멸시키는 동작을 반복한다.

실습 결과 LED A와 B가 밝기가 변화하며 점멸한다.

응용 문제 1. 네개의 다른 색깔의 LED를 Arduino에 연결한다.

2. 네개의 LED가 순서대로 디밍하는 스케치를 작성해보자.

4.2.4 LED control - 밝기 조절 (code)

```
ex_4_2_start
2 에제 4.2
3 LED 밝기 조절
6 const int ledA = 3; //LED A를 3번핀에 연결
                        //LED B를 5번핀에 연결
7 const int ledB = 5;
₹ int brightness = 0;
                      //밝기를 조절하기 위한 변수

¶ int increment = 1;

                      //밝기 변수 증감을 위한 변수
11 void setup()
1<mark>1</mark>// analogWrite 핀에는 별도의 설정이 불필요하다
14|}
15
16 void loop()
18 <mark>analogWrite(ledA,brightness); // LED A 밝기 조절</mark>
19 <mark>! analogWrite</mark>(ledB,255-brightness); i// LED B 밝기 조절
20
  !brightness = brightness + increment; // 밝기 조절
22 : if((brightness >= 255)||(brightness <= 0)) increment = -increment; i// 밝기 변수 증감 방향 변경
   delay(10); // 0.01 초간 지연
24|}
```


4.2.5 LED control - DIY

- DIY. 1. 네개의 다른 색깔의 LED를 Arduino에 연결한다.
 - 2. 네개의 LED가 순서대로 디밍하는 스케치를 작성해보자.

4.2.5 LED control - DIY

DIY. 1. 네개의 다른 색깔의 LED를 Arduino에 연결한다. (pwm pin: 3,5,6,9)

완성된 회로를 ARnn_4led.fzz

로 저장해서 제출.

4.2.5 LED control - DIY: code-1

ARnn 4 led start.ino

```
1 /*
2 Dimming 4 leds
3 */
4
5 int ledR = 3;  / LED connected to digital pin 3
6 int ledG = 5;
7 int ledB = 6;
8 int ledY = 9;
9
10 int dimTime = 20;
11
12 void setup() {
13  // nothing happens in setup
14 }
```

```
16 void loop() {
17 ! // fade in from min to max in increments of 5 points:
18 | for(int fadeYalue = 0 ; fadeYalue <= 255; fadeYalue +=5) {
      // sets the value (range from 0 to 255):
      analogWrite(ledR, fadeValue);
     // wait for 30 milliseconds to see the dimming effect
      delay(dimTime);
23 |
24
25 1/ fade out from max to min in increments of 5 points:
26 | for(int fadeValue = 255 ; fadeValue >= 0; fadeValue -=5) {
     // sets the value (range from 0 to 255):
     analogWrite(ledR, fadeValue);
29 li
     // wait for 30 milliseconds to see the dimming effect
30
      delay(dimTime);
31
        --- 각 led에 동일한 dimming code 적용
33 for(int fadeValue = 0; fadeValue <= 255; fadeValue +=5) {
      // sets the value (range from 0 to 255):
34
35
      analogWrite(ledG, fadeValue);
36
      // wait for 30 milliseconds to see the dimming effect
37
      delay(dimTime);
```


4.2.5 LED control - DIY: code-2

```
1 /*
2 Dimming 4 leds
3 */
4 
5 int ledR = 3;  // LED connected to digital pin 3
6 int ledG = 5;
7 int ledB = 6;
8 int ledY = 9;
9 
10 int dimTime = 20;
11 
12 void setup() {
13  // nothing happens in setup
14 }
```

완성된 스케치 code를
ARnn_4led.ino
로 저장해서 제출.

```
16 void loop() {
   // fade ledR
    dimLed(ledR);
    // fade ledG
                    각 led에 동일한 dimming code 적용
    dimLed(ledG);
    // fade ledB
                    dimLed(int led) 반복 사용
    dimLed(ledB);
    // fade ledY
    dimLed(TedY);
26 void dimLed(int led) {
     // fade in from min to max in increments of 5 points:
    for(int fadeValue = 0 ; fadeValue <= 255; fadeValue +=5) {</pre>
     // sets the value (range from 0 to 255):
     analogWrite(led, fadeValue);
     // wait for 20 milliseconds to see the dimming effect
      delay(dimTime);
33
    // fade out from max to min in increments of 5 points:
    for(int fadeValue = 255 ; fadeValue >= 0; fadeValue -=5) {
    // sets the value (range from 0 to 255):
37
     analogWrite(led, fadeValue);
     // wait for 20 milliseconds to see the dimming effect
      delay(dimTime);
40
```


[Practice]

- ◆ [wk03]
- ➤ Arduino LCD & LED-I.
- Complete your project
- Submit folder : ARnn_Rpt02

wk03: Practice-02: ARnn_Rpt02

- [Target of this week]
 - Complete your works
 - Save your outcomes
 - Upload all in github.

제출폴더명 : ARnn_Rpt02

- 압축할 파일들
 - ① ARnn_period.ino
 - 2 ARnn_number.ino
 - 3 ARnn_LCD_hello.png
 - 4 ARnn_LCD.ino

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.github.com GitHub
- http://www.google.com Googling
- ✓ https://www.youtube.com Youtube

Github.com/Redwoods/Arduino

Github.com/Redwoods/Arduino

주교재

Uno team

아두이노 키트(Kit)

http://arduinostory.com/goods/goods_view.php?goodsNo=1000000306

아두이노 키트(Kit): Part-1

아두이노 키트(Kit): Part-2

