Mask RCNN Final Results on Scale Rapid Annotated Images:

Last Modified Date: June 8, 2022

Author: Srirupa Guha (LinkedIn: https://www.linkedin.com/in/srirupa-guha/)

Dataset used: Scale.Rapid annotations on Mosquito Body Parts Dataset with augmentation

Dataset path: https://drive.google.com/drive/folders/1HK5Tk3KgwaQ8XRFzNql VTtUQLzo7HQG

Train, Val Split: 420 images for training, 23 images for validation

DagsHub Repository:

https://dagshub.com/Omdena/Vectech/src/master/Mask_RCNN_Mosquito_DatasetCustom_Instance_Segmentation

Model Used: Mask RCNN by Matterport

Trained Model Path: https://drive.google.com/drive/folders/1CJRgaTCZk7l5gW-3NRFWVygB2q2hETE1

(File Name: Full Trained MRCNN ModelOnMosquitoDataset.h5)

Source Code Used as Reference: https://github.com/matterport/Mask RCNN

Other Relevant References:

https://github.com/matterport/Mask RCNN/blob/master/samples/coco/coco.py

https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py

Resources and Source Code for converting annotated masked images to COCO json format for training Mask RCNN:

https://www.immersivelimit.com/tutorials/create-coco-annotations-from-scratch

https://github.com/chrise96/image-to-coco-json-converter/blob/master/src/create annotations.py

https://github.com/chrise96/image-to-coco-json-converter/blob/master/create-custom-coco-dataset.ipynb

Description:

- 1. Scale Rapid annotated images were converted to COCO json format
- 2. Matterport's Mask RCNN source code was implemented with necessary changes and the pre-trained Mask RCNN on COCO dataset was trained on the mosquito dataset
- 3. Model Backbone used: ResNet 101

4. Results:

Mean validation IoU Score across all images and classes: 0.851259177092646 (85.1%)

Mean classwise validation IoU scores are as follows:

abdomen	wing	leg	thorax	head	palps	proboscis	antennae
0.86775073905		0.96751705010	0.75421101351	0.697798657	0.8933212757		0
78588	44683	73201	57903	4172974	110596	861049	(0%)
(86.7%)	(88.3%)	(96.7%)	(75.4%)	(69.7%)	(89.3%)	(88.1%)	(070)

Observations and Insights:

- The Mask RCNN model fits well on the training mosquito data and generalizes well on the validation dataset as well
- Due to small dataset size, the dataset was split into only train and validation, no test dataset was used
 - o On increasing the dataset size the model can be further evaluated on a test dataset
- It is observed that all classes except the class "antennae" exhibit high IoU score, indicating that the model is able to identify these class masks well
 - Low IoU score for antennae is mainly due to class imbalance in the dataset and can be improved by training the model on more images containing the class antennae

5. Next Steps:

To train this model further on more Scale.Rapid annotated images with more data collected for minority classes where IoU scores are low (e.g.: proboscis, antennae etc.) and augmentations

6. Mask RCNN for instance segmentation reference article:

https://towardsdatascience.com/computer-vision-instance-segmentation-with-mask-r-cnn-7983502fcad1