DAILY ASSESSMENT FORMAT

Date:	1 June 2020	Name:	Karegowda kn
Course:	DSP	USN:	4al16ec029
Topic:	FFT Using MATLAB, Study and Analysis of FIR and IIR, Filtering SignalECG Signal Analysis.	Semester & Section:	6 th sem & B sec
Github Repository:	Karegowda-courses		

FORENOON SESSION DETAILS

Fourier Transforms:

Digital Signal Processing/Discrete Fourier Transform. As the name implies, the
Discrete Fourier Transform (DFT) is purely discrete: discrete-time data sets are converted
into a discrete-frequency representation. This is in contrast to the DTFT that uses discrete
time, but converts to continuous frequency.

Fast Fourier Transform:

$$X_{p} = \sum_{n=0}^{N-1} x_{n} \bullet W_{N}^{np} \qquad 0 \le p \le N-1$$

$$W_{N} \stackrel{\Delta}{=} e^{-j\frac{2\pi}{N}}$$

FIR and IIR Filters:

1. FIR Filter

- Consider the function described by the transfer function.
- The corresponding difference equation.

2. IIR Filter

- Consider the function described by the transfer function.
- The corresponding difference equation.

FIR and IIR Filters:

1. FIR Filter

- Consider the function described by the transfer function.
- The corresponding difference equation.

2. IIR Filter

- Consider the function described by the transfer function.
- • The corresponding difference equation.

Date:	1 June 2020	1	Name:	Karegowda kn			
Course:	Python	I	USN:	4al16ec029			
Topic:	File processing		Semester & Section:	6 th sem & B sec			
	AFTERNOON SESSION DETAILS						

```
Report -
1.writing Text to a file
with open("files\fruits.txt", "w") as myfile:
    myfile.write("tomato\ncucumber\nchilli\n")
    myfile.write("chitranna")
2.appending text to a existing file
with open("files\fruits.txt","a+") as myfile:
    myfile.write("\napple")
    content = myfile.read()
print (content)
3.summary
File processing
Read an existing file with python
with open("file.txt") as file:
  content = file.read()
Create new file and write some text to it
with open("file.txt", "w") as file:
  content = file.write("Sample text")
Append a textbtoa existing file without overwriting it
with open("file.txt", "a") as file:
  content = file.write("More sample text")
Append and read a file with
with open("file.txt", "a+") as file:
  content = file.write("Even more sample text")
  file.seek(0)
```

