Topologia Algebrica

Topologia portami via.

Parigi 1905 H. Poincarè

Professore: Gilberto Bini

Umile scriba: *Gabriele Bozzola*

Ho scritto queste note come strumento personale per lo studio della topologia algebrica, e per questo motivo solo lontane dall'essere rigorose e sicuramente saranno ricche di errori e imprecisioni. Molte definizioni o concetti sono qui riportati perché, essendo uno studente di fisica, inizialmente ero a digiuno in merito ad argomenti che per gli studenti di matematica sono banalità. Queste note sono basate sulle lezioni del Professor Gilberto Bini dell'anno accademico 2016/2017, ma sono riportate in un ordine differente rispetto a quello cronologico, e alcune dimostrazioni sono state sistemate da me prima di essere scritte. I file .tex di questo documento sono tutti disponibili su GitHub all'indirizzo https://github.com/Sbozzolo/Topologia-Algebrica, chiunque lo desideri può forkarli e modificarli a piacere, correggendo i numerosi errori qui presenti.

Milano, 29 novembre 2016

Gabriele Bozzola

Indice

1	Ricl	Richimi di algebra e geometria						
	1.1	Richiami di algebra	5					
	1.2	Richiami sul gruppo fondamentale	9					
		1.2.1 Omomorfismo tra \mathbb{R} e \mathbb{R}^N	12					
2	Om	ologia Singolare	15					
	2.1	Introduzione						
	2.2	Simplessi singolari						
		$2.2.\overline{1}$ $H_0(X)$	22					
		$2.2.2 H_1(X) \dots \dots$	24					
	2.3	Morfismi indotti	30					
	2.4	Successioni esatte	33					
		2.4.1 Omomorfismo di connessione	34					
	2.5	Omologia singolare relativa	37					
		2.5.1 Successioni spezzanti	38					
	2.6	Omologia singolare ridotta						
	2.7	Assiomi di una teoria omologica						
		2.7.1 Omologia ridotta per una qualsiasi teoria omologica	47					
	2.8							
		2.8.1 Teoria del grado	55					
		2.8.2 Escissione e omotopia	58					
3	Om	ologia cellulare	64					
	3.1	CW-complessi	64					
	3.2	Congettura di Poincaré	66					
	3.3	Costruzione dell'omologia cellulare	76					
		3.3.1 Calcolo dell'omologia cellulare di alcuni spazi	82					
	3.4	Successione di Mayer-Vietoris	88					
4	Coo	omologia singolare	92					
		Dradatta tangara	വാ					

Lista dei simboli e abbreviazioni

Simbolo	Significato	Pagin	aSimbolo	Significato	Pagina
\mathbb{N}	Numeri naturali	3	\mathbb{C}^{\star}	Piano complesso	
${\mathbb Z}$	Numeri interi	3		privato dell'origine	72
$ar{U}$	Chiusura di ${\cal U}$	3	\otimes	Prodotto tensore	92
int(U)	Interno di ${\cal U}$	3			
\oplus	Somma diretta	3			
${\cal R}$	Anello	5			
$<\cdots>$	Gruppo generato	6			
Ker(f)	Nucleo di f	6			
$\operatorname{Im}(f)$	Immagine f	6			
X	Spazio topologico	7			
\simeq	Spazi omeomorfi	8			
\sim_H	Relazione di omotopia	9			
$\xrightarrow{\sim}$	Omeomorfismo	13			
π_1	Gruppo fondamentale	13			
Δ_k	Simplesso standard	15			
\sim_{hom}	Relazione di omologia	21			
\vee	Bouquet	29			
f_{\sharp}	Applicazione indotta				
	da f sulle catene	30			
f_{\star}	Applicazione indotta				
	da f sui gruppi di	2.0			
TT	omologia	30			
II	Somma topologica	45			
${\cal G}$	Gruppo dei coefficienti	47			
\mathcal{S}^n	n-sfera	47			
\mathcal{D}^n	n-disco	49			
	Calotta superiore	49			
\mathcal{D}^n_+	dell'n-disco	49			
Ц	Unione disgiunta	64			
e(X)	Caratteristica di	01			
- ()	Eulero di X	71			
$\mathbf{P}^n(\mathbb{C})$	Spazio proiettivo				
` '	complesso	72			

1 Richimi di algebra e geometria

1.1 Richiami di algebra

Definizione 1.1.1 Un anello è un insieme \mathcal{R} dotato di due operazioni + $e \cdot$ tali che \mathcal{R} sia un gruppo abeliano con l'addizione, sia un monoide con la moltiplicazione (ovvero la moltiplicazione è associativa e possiede un elemento neutro¹) e goda della proprietà distributiva rispetto all'addizione.

Definizione 1.1.2 Un anello si dice **anello commutativo** se l'operazione di moltiplicazione è commutativa.

Definizione 1.1.3 *Un campo* è un anello commutativo in cui ogni elemento non nullo ammette un inverso moltiplicativo.

Definizione 1.1.4 Sia $\mathcal R$ un anello commutativo si definisce l' $\mathcal R$ -modulo un gruppo abeliano $\mathcal M$ equipaggiato con un'operazione di moltiplicazione per uno scalare in $\mathcal R$ tale che $\forall v,w\in \mathcal M$ e $\forall a,b\in \mathcal R$ vale che:

- a(v+w) = av + aw
- (a+b)v = av + bv
- (ab)v = a(bv)

Osservazione 1.1.5 *Se* \mathcal{R} *è un campo allora l'* \mathcal{R} *-modulo è uno spazio vettoriale.*

Sostanzialmente la nozione di \mathcal{R} -modulo generalizza agli anelli il concetto di spazio vettoriale sui campi.

Osservazione 1.1.6 Ogni gruppo abeliano \mathcal{G} è uno \mathbb{Z} -modulo in modo univoco, cioè \mathcal{G} è un gruppo abeliano se e solo se è uno \mathbb{Z} -modulo.

Dimostrazione: Sia $x \in \mathcal{G}$ si definisce l'applicazione di moltiplicazione per un elemento $n \in \mathbb{Z}$ come

$$nx = \begin{cases} \underbrace{x + x + x + \dots}_{n \text{ volte}} & \text{se } n > 0 \\ 0 & \text{se } n = 0 \\ \underbrace{-x - x - x - \dots}_{|n| \text{ volte}} & \text{se } n < 0 \end{cases}$$

¹La richiesta di esistenza dell'elemento neutro, cioè dell'unità non è comune a tutti gli autori, chi non la richiede chiama anello unitario la presente definizione di anello.

Si verifica banalmente che questa operazione è ben definita e soddisfa le giuste proprietà perché la coppia $(\mathcal{G}, \mathbb{Z})$ sia uno \mathbb{Z} -modulo. A questo punto non è possibile costruire applicazioni diverse che soddisfino le proprietà richieste infatti utilizzando la struttura di anello di \mathbb{Z} : $nx = (1+1+1+1+\dots)x = x+x+x\dots$, quindi quella definita è l'unica possibile. \square

Definizione 1.1.7 Un gruppo \mathcal{G} si dice **generato** dai suoi elementi $x_1, x_2, \dots \in \mathcal{G}$ se ogni suo elemento si può scrivere come combinazione lineare a elementi interi di x_1, x_2, \dots In questo caso si indica $\mathcal{G} = \langle \{x_1, x_2, \dots \} \rangle$.

Definizione 1.1.8 Un gruppo abeliano si dice **libero** se è generato da un numero finito di elementi linearmente indipendenti, il numero di tali elementi definisce il **rango** del gruppo.

Definizione 1.1.9 Siano (X, \cdot) e (Y, \star) due gruppi, un **omomorfismo** è un'applicazione f tra X e Y che preserva la struttura di gruppo, cioè tale che:

$$\forall u, v \in X \quad f(u \cdot v) = f(u) \star f(v)$$

Osservazione 1.1.10 Da questa definizione si trova immediatamente che gli omomorfismi si comportano bene nei confronti dell'inverso, cioè $\forall v \in X$ vale che $f(v^{-1}) = f(v)^{-1}$.

Teorema 1.1.11 (Teorema fondamentale degli omomorfismi) Sia $f: \mathcal{G}_1 \to \mathcal{G}_2$ un omomorfismo tra gruppi abeliani, allora vale che:

$$\mathcal{G}_1/_{\mathrm{Ker}(f)} \cong \mathrm{Im}(f)$$

Voglio studiare gli omomorfismi tra \mathbb{Z} -moduli.

Definizione 1.1.12 Sia $\varphi: \mathcal{M} \to \mathcal{N}$ un omomorfismo tra gli \mathcal{R} -moduli \mathcal{M} e \mathcal{N} , allora si definisce il **nucleo** e l'**immagine**:

$$\operatorname{Ker}(\varphi) := \{\, m \in \mathcal{M} \mid \varphi(m) = 0 \,\} \qquad \operatorname{Im}(\varphi) := \{\, m \in \mathcal{N} \mid \exists k \in M \text{ con } m = \varphi(k) \,\}$$

Osservazione 1.1.13 $\operatorname{Ker}(\varphi)$ e $\operatorname{Im}(\varphi)$ sono $\mathcal R$ -sottomoduli, cioè sono sottoinsiemi di $\mathcal M$ e $\mathcal N$ che posseggono la struttura di $\mathcal R$ -modulo.

Se M_i sono \mathcal{R} -moduli posso fare composizioni di omomorfismi, come:

$$\mathcal{M}_1 \xrightarrow{\varphi_1} \mathcal{M}_2 \xrightarrow{\varphi_2} \mathcal{M}_3$$
 o equivalentemente $\mathcal{M}_1 \xrightarrow{\varphi_2 \circ \varphi_1} \mathcal{M}_3$

Proposizione 1.1.14 *Se vale* $\varphi_2 \circ \varphi_1 = 0$ *allora* $\operatorname{Im}(\varphi_1) \subseteq \operatorname{Ker}(\varphi_2)$.

Dimostrazione: Se $u \in \text{Im}(\varphi_1)$ allora $\exists v \in \mathcal{M}_2$ tale che $\varphi_1(v) = u$, ma $\varphi_2(u) = \varphi_2(\varphi_1(v)) = (\varphi_2 \circ \varphi_1)(v) = 0$ per ipotesi, quindi $u \in \text{Ker}(\varphi_2)$.

Mi interessano questi morfismi perché hanno un preciso significato geometrico che sarà chiaro successivamente.

Definizione 1.1.15 Siano \mathcal{M} un \mathcal{R} -modulo e \mathcal{N} un suo sottomodulo, allora il **modulo quo**ziente di \mathcal{M} con \mathcal{N} e definito da:

$$\mathcal{M}/_{\mathcal{N}} := \mathcal{M}/_{\mathcal{N}}$$
 dove \sim è definita da: $x \sim y \Leftrightarrow x - y \in \mathcal{N}$

Dove $\mathcal{M}/_{\sim}$ è l'insieme delle classi di equivalenza di \sim equipaggiate con operazioni indotte dall' \mathcal{R} -modulo, cioè se $[u], [w] \in \mathcal{M}/_{\sim}$ e $a \in \mathcal{R}$:

- [u] + [w] = [u + w]
- a[u] = [au]

In questo caso gli elementi di $^{\mathcal{M}}/_{\mathcal{N}}$ sono le classi di equivalenza $[m]=\{m+n\mid n\in\mathcal{N}\}.$

Proposizione 1.1.16 Si dimostra che:

- Se uno spazio è connesso o connesso per archi allora anche tutti i suoi quozienti lo sono.
- Se uno spazio è compatto anche tutti i suoi quozienti lo sono.

Inoltre ovviamente la mappa di proiezione al quoziente è suriettiva.

Siccome $\mathrm{Im}(\varphi)$ è sottomodulo di $\mathrm{Ker}(\varphi)$ allora posso prendere il quoziente:

$$\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)$$

Questo è un sottomodulo. Si nota che questo è sensato solo se si impone la condizione $\varphi_2 \circ \varphi_1 = 0$, altrimenti non c'è l'inclusione e quindi non è possibile fare l'operazione di quoziente. A questo punto ci sono due possibilità:

- 1. $\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)=0$, che significa che $\operatorname{Ker}(\varphi_2)=\operatorname{Im}(\varphi_1)$ in quanto non ci sono elementi di $\operatorname{Ker}(\varphi_2)$ fuori da $\operatorname{Im}(\varphi_1)$, dato che l'unica classe di equivalenza presente è [0] significa che $\forall m\in\operatorname{Ker}(\varphi_1)\ \exists n\in\operatorname{Im}(\varphi_2)$ tale che m-n=0, cioè m e n coincidono e quindi $\operatorname{Ker}(\varphi_2)=\operatorname{Im}(\varphi_1)$.
- 2. $\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1) \neq 0$, cioè $\exists v \in \operatorname{Ker}(\varphi_2)$ tale che $v \notin \operatorname{Im}(\varphi_1)$ e quindi $\operatorname{Im}(\varphi_1) \subsetneq \operatorname{Ker}(\varphi_2)$.

Nel primo caso si dice che la successione dei moduli \mathcal{M} e delle applicazioni φ è **esatta** in \mathcal{M}_2 , nel secondo caso la successione è detta **complesso di moduli**.

Sostanzialmente il modulo quoziente quantifica la non esattezza nel punto \mathcal{M}_2 della successione.

Definizione 1.1.17 $H(\mathcal{M}_{\bullet}) = \operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)$ è detto modulo di omologia del complesso $M_{\bullet} = M_1 \longrightarrow M_2 \longrightarrow M_3$ con le applicazioni φ_1 e φ_2 .

Per questo $H(\mathcal{M}_{\bullet})$ quantifica quanto il complesso \mathcal{M}_{\bullet} non è esatto. Questo deriva da un problema topologico concreto.

Definizione 1.1.18 La coppia (X, \mathcal{T}) è detta **spazio topologico** (generalmente si omette la \mathcal{T}) se \mathcal{T} è una **topologia**, cioè se è una collezione di insiemi di X tali che:

- 1. $\varnothing, X \in \mathcal{T}$
- 2. $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T}$ se $A_n \in \mathcal{T} \ \forall n \in \mathbb{N}$
- 3. $\bigcap_{n \in \{0,1,\ldots,N\}} A_n \in \mathcal{T}$ se $A_n \in \mathcal{T} \ \forall n \in \{0,1,\ldots,N\}$

Gli elementi di \mathcal{T} sono detti **aperti**.

Osservazione 1.1.19 Se τ è la collezione di tutti i sottoinsiemi di X allora le proprietà sono automaticamente verificate e questa è la **topologia discreta**, invece $\tau = \{\varnothing, X\}$ è una topologia ed è la **topologia triviale**. Infine in \mathbb{R}^n si definisce la **topologia usuale** che è la topologia in cui gli aperti sono iperintervalli aperti del tipo $(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\cdots\times (a_n,b_n)$. Si dimostra che se si ammettono intersezioni infinite allora la topologia usuale coincide con la topologia triviale in \mathbb{R}^n .

Osservazione 1.1.20 Uno spazio metrico si può rendere topologico definendo gli insiemi aperti come gli intorni sferici aperti.

Osservazione 1.1.21 Sia $A \subseteq X$ spazio topologico, si può rendere anche A uno spazio topologico equipaggiandolo con la **topologia indotta** in cui gli aperti sono gli aperti di X intersecati con A.

Osservazione 1.1.22 Uno spazio topologico è **connesso** se si può scrivere come unione disgiunta di due suoi aperti.

Definizione 1.1.23 Sia X uno spazio topologico l'insieme $\{A_i \mid A_i \in X \ \forall i\}$ è un **ricoprimento** di X se:

$$\bigcup_{i} A_i = X$$

Se in particolare gli insiemi A_i sono aperti il ricoprimento è detto **ricoprimento aperto**.

Definizione 1.1.24 Un insieme U è detto **compatto** se per ogni suo possibile ricoprimento aperto ne esiste un sottoinsieme che è un ricoprimento finito di U.

Definizione 1.1.25 Una mappa tra spazi topologici è detta **omeomorfismo** se è continua e ammette inverso continuo, cioè se è una mappa uno a uno. Se due spazi sono omeomorfi si utilizza il simbolo \simeq .

Siccome gli omeomorfismi sono mappe uno a uno due spazi omeomorfi sono essenzialmente identici. La relazione di omeomorfismo costituisce una relazione di equivalenza. Molti degli strumenti sviluppati in questo corso servono a capire se due spazi sono omeomorfi o meno.

1.2 Richiami sul gruppo fondamentale

Definizione 1.2.1 Sia X uno spazio topologico e x_0 un suo punto, allora un **laccio** è un arco in X avente come punto di partenza e punto di arrivo il punto x_0 . Un laccio c_{x_0} si dice **costante** se $\forall t \in I$ $c_{x_0}(t) = x_0$ con $x_0 \in X$.

Vorrei strutturare l'insieme dei lacci in uno spazio X come un gruppo con l'operazione di giunzione e avente come unità il laccio costante. Questo non si riesce a fare perché non sempre la giunzione di un laccio con il suo inverso è il laccio costante. Per questo si passa al quoziente rispetto la relazione di omotopia.

Definizione 1.2.2 Sia X uno spazio topologico e $x_0 \in X$ un suo punto, allora la coppia (X, x_0) è detta spazio topologico puntato.

Definizione 1.2.3 Sia (X,x_0) uno spazio topologico puntato $e : I \to X$ una mappa continua tale che $f(0) = f(1) = x_0 \ \forall t \in I$, cioè un laccio di base x_0 , si dice che una funzione continua g è **omotopicamente equivalente** a $f(g \sim_H f)$ se esiste una funzione continua $F: I \times I \to X$ tale che:

- $F(0,x) = f(x) \ \forall x \in I$
- $F(1,x) = g(x) \ \forall x \in I$
- $F(t,0) = x_0 \ \forall s \in I$
- $F(t,1) = x_0 \ \forall s \in I$

La relazione \sim_H è detta relazione di omotopia tra lacci e si dimostra essere una relazione di equivalenza.

Figura 1.1: Omotopia: deforma f in g in modo continuo.

Si definisce l'insieme;

$$\pi_1(X,x_0) = \big\{\, f \colon I \to X \mid f \text{ continua}, f(0) = f(1) = x_0 \,\big\} \big/_{\sim_H}$$

Questo insieme può essere equipaggiato con un'operazione di somma facendolo diventare un gruppo, questo è noto come **gruppo fondamentale**, e i suoi elementi si indicano con la usuale notazione di classe di equivalenza. Si vogliono definire le operazioni di gruppo: siano $[f], [g] \in \pi_i(X, x_0)$, si definisce $[f][g] := [f \star g]$, dove l'operazione \star è il **cammino composto**, o **giunzione**, definita da:

$$(f \star g)(t) = \begin{cases} f(2t) & \text{se } 0 \le t \le \frac{1}{2} \\ g(2t-1) & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$$

Cioè è un cammino di base x_0 percorso a velocità doppia, metà del tempo percorso su f l'altra metà su g. L'elemento neutro di questa operazione è il cammino costante $1_{\pi_1(X,x_0)}=[C_{x_0}]$ con $C_{x_0}(t)=x_0 \ \forall t$. L'inverso di un elemento invece è $[f]^{-1}=[\bar{f}]$ dove \bar{f} è il cammino percorso in verso opposto, cioè definito da $\bar{f}(t)=f(1-t)$, in questo modo $\bar{f}(0)=f(1)$ e $\bar{f}(1)=f(0)$.

Alcune proprietà del gruppo fondamentale:

• $\pi_1(X, x_0)$ è invariante omotopico, cioè se $X \sim_H Y$, cioè se

$$\exists f: X \to Y, g: Y \to X \mid f \circ g \sim_H 1_Y e \ g \circ f \sim_H 1_X$$

allora $\pi_1(X,x_o)\cong\pi_1(Y,f(x_0))$. Questo in particolare porta alla seguente utile osservazione:

Osservazione 1.2.4 Se due spazi topologici puntati hanno gruppi fondamentali non isomorfi allora non possono essere omotopicamente equivalenti.

- Se X è **contraibile** (cioè è omotopo ad un punto) allora vale che $\pi_1(X, x_0) \cong 1$, cioè il gruppo fondamentale è banale.
- Si dimostra che:

Proposizione 1.2.5 Se uno spazio tologico X è connesso per archi allora tutti i gruppi fondamentali degli spazi puntati (X,x_0) sono isomorfi, cioè si può omettere la dipendenza da x_0 .

Questo intuitivamente è vero perché se gli spazi sono connessi per archi allora esistono cammini che collegano qualunque coppia di punti.

Definizione 1.2.6 *Uno spazio topologico connesso per archi si dice semplicemente connesso se il suo gruppo fondamentale è banale.*

Osservazione 1.2.7 Tutti gli spazi contraibili sono semplicemente connessi, ma non tutti gli spazi semplicemente connessi sono contraibili, come ad esempio S^2 .

• $\pi_1(\mathcal{S}^1) \cong \mathbb{Z}$, infatti si può costruire la mappa:

$$\sigma \colon I \to \mathcal{S}^1$$
$$t \mapsto e^{2\pi i t}$$

Questa è tale che $\sigma(0) = \sigma(1) = 1$ quindi $[\sigma] \in \pi_1(\mathcal{S}^1)$ e:

$$\pi_1(\mathcal{S}^1) \to \mathbb{Z}$$
 $[\sigma] \mapsto 1$

Ogni elemento è multiplo di σ e il fattore di proporzionalità conta il numero di avvolgimenti con segno del cammino su sé stesso.

- $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$
- Il gruppo fondamentale si calcola o partendo da gruppi omotopi oppure utilizzando il **teorema di Seifert-van Kampen**, il quale fornisce un metodo algoritmico per il calcolo.

Esempio 1.2.8 Si definisce:

$$V_g = egin{cases} \mathcal{S}^2 & ext{ se } g = 0 \ P_{rac{Ag}{N}} & ext{ se } g \geq 1 \in \mathbb{N} \end{cases}$$

con $P_{\frac{k}{N}}$ poligono con k lati e con identificazioni a coppie, come ad esempio nel caso g=1 si ottiene un toro piatto identificando lati opposti di un quadrato. Si usano simboli combinatori

Figura 1.2: Toro

per descrivere l'identificazione: si definisce un verso di percorrenza, si assegnano delle lettere a ciascun lato e si scrivono in ordine tali lettere, aggiungendo un esponente -1 quando il verso di percorrenza è opposto. In questo caso quindi si ha $aba^{-1}b^{-1}$. Questo si estende a poligoni con 4g lati e si usa l'identificazione $a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$.

Si dimostra che queste sono varietà topologiche, in particolare per g=1 si ha un toro, per g=2 un bitoro, g è detto **genere** .

Definizione 1.2.9 Una varietà topologica \mathcal{M} è uno spazio topologico che localmente sembra uno spazio reale n-dimensionale, cioè tale che esiste un interno n detto **dimensione** tale ogni punto in \mathcal{M} possiede un intorno che è omeomorfo a \mathbb{R}^n .

Si trova con il teorema di Seifert-Van Kampen che:

$$\pi_1(V_g)\cong egin{cases} 1 & ext{se }g=0 \ \mathbb{Z}\oplus\mathbb{Z} & ext{se }g=1 \ \langle a_1b_1\dots\Pi_{i=1}^g[a_i,b_i]=1
angle & ext{se }g>1 \end{cases}$$

Dove [,] è il commutatore, cioè esattamente $a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$. Solo per g=0 o g=1 si ottengono dei gruppi abeliani, ma io vorrei averlo sempre abeliano, quindi lo abelianizzo.

$$\operatorname{Ab}(\pi_1(X)) = \frac{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = \frac{\pi_1(X)}{\pi'_1(X)}$$

Chiaramente questo gruppo è abeliano e si calcola facilmente che $\mathrm{Ab}\left(\pi_1(V_g)\right) \cong \mathbb{Z}^{2g}$ per $g \geq 2$, infatti il gruppo è generato su 2g generatori $a_1,b_1,a_2,b_2,\ldots,a_g,b_g$ e poi si impone la relazione di identificazione e i commutatori diventano tutti banali. Si vedono facilmente anche i generatori, ad esempio per un toro sono riportati in figura.

1.2.1 Omomorfismo tra \mathbb{R} e \mathbb{R}^N

Definizione 1.2.10 Un arco in uno spazio topologico X tra i punti $x_0 \in X$ e $y_0 \in X$ è una funzione continua da I = [0,1] a X tale che $\alpha(0) = x_0$ e $\alpha(1) = y_0$. Si dice che l'arco parte da x_0 e finisce in y_0 .

Definizione 1.2.11 Uno spazio topologico X è **connesso per archi** se per ogni coppia di punti $x, y \in X$ esiste un arco che parte da x e termina in y.

Definizione 1.2.12 Uno spazio topologico X si dice **connesso per archi** se $\forall x, y \in X$ esiste un arco con punto iniziale x e punto finale y.

Proposizione 1.2.13 Se $f: X \to Y$ è una mappa continua suriettiva tra spazi topologici e se X è connesso per archi allora Y è connesso per archi. Questo vale in particolare se f è un omeomorfismo, cioè la connessione per archi è una proprietà invariante per omeomorfismi.

Dimostrazione: Siano y_0, y_1 due punti di Y. La funzione f è suriettiva, e dunque esistono x_0 e x_1 in X tali che $f(x_0) = y_0$ e $f(x_1) = y_1$. Dato che X è connesso, esiste un cammino $\alpha: [0,1] \to X$ tale che $\alpha(0) = x_0$ e $\alpha(1) = x_1$. Ma la composizione di funzioni continue è continua, e quindi il cammino ottenuto componendo α con $f\colon f\circ\alpha: [0,1] \to X \to Y$ è un cammino continuo che parte da y_0 e arriva a y_1 .

Si sa inoltre che:

Proposizione 1.2.14 \mathbb{R}^n è connesso per archi $\forall n \in \mathbb{N}$.

È noto che $\mathbb{R} \not\simeq \mathbb{R}^N$ per $n \ge 2$, infatti basta togliere un punto a \mathbb{R} che diventa sconnesso per archi mentre \mathbb{R}^N rimane connesso per archi anche togliendogli un punto. In questa dimostrazione ho utilizzato il seguente risultato fondamentale:

Proposizione 1.2.15 Se $f: X \to Y$ è omeomorfismo tra spazi topologici allora $f|_U: U \to f(U)$ è omeomorfismo per ogni $U \subseteq X$.

Nel caso considerato $U=x_0$, siccome ho trovato un U per cui la funzione ristretta non è omeomorfismo f non può essere omeomorfismo. Infatti l'immagine di un punto rimane un punto.

Tuttavia vale anche che $\mathbb{R}^2 \not\simeq \mathbb{R}^N$ per $n \geq 3$, infatti: **Dimostrazione**: Per assurdo $f: \mathbb{R}^2 \xrightarrow{\sim} \mathbb{R}^N$ è un omeomorfismo con $n \geq 3$, tolgo un punto da \mathbb{R}^2 , se f omeomorfismo anche la restrizione deve essere omeomorfismo, cioè $\forall p \in \mathbb{R}^2 \quad f: \mathbb{R}^2 - \{p\} \xrightarrow{\sim} \mathbb{R}^N - \{f(p)\}$. Ma $\mathbb{R}^2 - \{p\} \simeq \mathbb{R} \times \mathcal{S}^1$ con la mappa $\underline{x} \mapsto \left(||\underline{x}||, \frac{\underline{x}}{||\underline{x}||}\right)$ (dopo aver fatto una traslazione di p nell'origine, operazione che è certamente un omeomorfismo). In pratica sto dicendo che il piano senza un punto è omeomorfo ad un cilindro infinito. Analogamente $\mathbb{R}^n-\{\,f(p)\,\}\simeq\mathbb{R}\times\mathcal{S}^{n-1}$. Quindi se esiste un omeomorfismo tra \mathbb{R}^2 e \mathbb{R}^n significherebbe che $\mathbb{R} \times \mathcal{S}^1 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, ma quindi i gruppi fondamentali dovrebbero essere isomorfi: $\pi_1(\mathbb{R} \times \mathcal{S}^1) \simeq \pi_1(\mathbb{R} \times \mathcal{S}^{n-1})$ ma $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ infatti il gruppo fondamentale di un prodotto è il prodotto dei gruppi fondamentali e $\pi_1(\mathbb{R}) = 1$, $\pi_1(\mathcal{S}^1)=\mathbb{Z}$ dato che i lacci omotopicamente distinti sono quelli che avvolgono il buco un numero differente di volte. Analogamente $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = 1$ perché le sfere sono contraibili. Trovo quindi che dovrebbero essere isomorfi $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ e $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = 1$ che

Ho quindi dedotto proprietà topologiche a partire da considerazioni algebriche (con il gruppo fondamentale). Il gruppo fondamentale è un invariante algebrico per problemi topologici.

Definizione 1.2.16 Si definisce il **gruppo fondamentale** di uno spazio topologico X connesso per archi attorno al punto $x_0 \in X$

$$\pi_1(X, x_0) = \{ g : \mathcal{S}^1 \to X \mid g \text{ continua}, g(1) = x_0 \} /_{\sim}$$

 $e \sim \grave{e}$ la relazione di omotopia: $g_1 \sim g_2$ se $\exists G : S^1 \times I \to X$ tale che $G(z,0) = g_1(z), G(z,1) = g_1(z)$ $g_2(z), G(1,t)=x_o \ {\rm con} \ \hat{G} \ {\rm continua}.$ In questo vedo $\mathcal{S}^1 \ {\rm come} \ {\rm sottospazio} \ di \ \mathbb{R}^2 \ {\rm con} \ la \ topologia$ indotta (il punto 1 è un punto della circonferenza vedendola come insieme nello spazio complesso $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$).

Sostanzialmente il gruppo fondamentale è l'insieme dei lacci quozientato rispetto alla relazione di omotopia. Infatti g è un laccio dato che è un arco e il punto di partenza e il punto di arrivo necessariamente coincidono dato che g è definito su \mathcal{S}^1 . Questo perché l'insieme dei lacci non è strutturabile come gruppo in quanto il laccio costante non è l'unità.

Ora voglio mostrare per assurdo che non esiste omomorfismo tra \mathbb{R}^3 e \mathbb{R}^N .

Dimostrazione: Come nel caso precedente suppongo esiste f omeomorfismo tra \mathbb{R}^3 a \mathbb{R}^n , tolgo q da \mathbb{R}^3 e f(q) da \mathbb{R}^n , quindi ottengo l'omomorfismo tra $\mathbb{R} \times \mathcal{S}^2 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, ma i gruppi fondamentali associati sono banali, quindi sono isomorfi, e non è possibile replicare il ragionamento utilizzato sopra.

Poincaré introdusse i gruppi di omotopia superiore.

Definizione 1.2.17 Si definiscono i gruppi di omotopia superiore di uno spazio topologico X attorno al punto x_0 per $k \geq 2$:

$$\pi_k(X)(X,x_0) = \{\,g: \mathcal{S}^k \to X \mid g \text{ continua}, \ g(p_0) = x_0\,\} /_{\sim}$$

1 Richimi di algebra e geometria

Con $p_0 \in \mathcal{S}^k$ e \sim relazione di omotopia.

Studiare i gruppi di omotopia superiore è un problema aperto della topologia moderna. Tuttavia si sa che:

- 1. $\pi_k(S^m) = 1$ per $1 \le k < m \ (m > 2)$
- 2. $\pi_m(\mathcal{S}^m) \simeq \mathbb{Z}$ per k = m
- 3. $\pi_1(S^2) = 1$
- 4. $\pi_2(\mathcal{S}^2) \simeq \mathbb{Z}$
- 5. $\pi_3(\mathcal{S}^2) \simeq \mathbb{Z}^2$

Definizione 1.2.18 Sia $A \subseteq X$ con X spazio topologico $i: A \to X$ si definisce mappa di **inclusione** e si scrive $i: A \hookrightarrow X$ se $\forall a \in A$ vale che i(a) = a.

Anche se non so calcolare i gruppi di omotopia superiore non vorrei buttarli via...Vorrei degli invarianti algebrici per problemi topologici, come i gruppi di omotopia.

 $^{^2\}mathrm{Questo}$ da origine alla fibrazione di Hopf che ha molte applicazioni in fisica.

2 Omologia Singolare

2.1 Introduzione

Inizio definendo l'omologia singolare, che è la più generale.

2.2 Simplessi singolari

Uso la teoria dell'omologia che mi permette di semplificare i problemi. La teoria dell'omologia serve ad associare agli spazi topologici degli oggetti algebrici meno complicati dei gruppi di omotopia. Ci sono varie possibilità:

- Omologia singolare
- · Omologia cellulare
- Omologia persistente¹
- · Omologia simpliciale

Ma cosa è l'omologia? Assocerò ad ogni spazio topologico (anche patologico) gruppi abeliani e omomorfismi a partire da applicazioni continue tra due spazi topologici. In tutto questo lavoro sempre con anello di base \mathbb{Z} , che quindi rimane sottinteso a meno di scriverlo esplicitamente.

Definizione 2.2.1 In \mathbb{R}^{k+1} si definisce il **simplesso standard** Δ_k l'insieme:

$$\Delta_k = \{ (x_1, x_2, \dots) \in \mathbb{R}^{k+1} \mid \forall i \ 0 \le x_i \le 1 \ e \sum_{i=1}^{k+1} x_i = 1 \}$$

Le coordinate x_i sono dette coordinate baricentrali.

Osservazione 2.2.2 Alcuni esempi sono:

- Δ_0 è un punto.
- Δ_1 è un segmento, che è omeomorfo a [0,1].
- Δ_2 è un triangolo
- Δ_3 è un tetraedro
- ...

Figura 2.1: 1-Simplesso standard

Figura 2.2: Simplessi standard

Definizione 2.2.3 Dato uno spazio topologico X si definisce il k-simplesso singolare in X come un'applicazione continua $\sigma: \Delta_k \to X$.

Spesso conviene identificare il k-simplesso con la sua immagine in X. In questo modo uno 0-simplesso è un punto in X, mentre un 1-simplesso singolare potrebbe essere sia un segmento che un punto (se la mappa è costante). Siccome non c'è relazione tra la dimensione dello spazio di partenza e lo spazio di arrivo (ad esempio la curva di Peano) il simplesso può deformare, ed è per questo che è detto singolare.

Esempio 2.2.4 Un esempio di k-simplesso singolare in cui è particolarmente evidente la possibilità di fare l'identificazione è la mappa identità: $\mathbb{I}: \Delta_k \to \Delta_k$.

Voglio costruire un complesso di gruppi abeliani e definire l'omologia singolare come l'omologia di tale complesso.

 S_{\bullet} è il compesso (S sta per singolare), cioè:

$$\cdots \to S_{k+1}(X) \to S_k(X) \to S_{k-1}(X) \to \cdots \to S_0(X)$$

Dove:

$$S_k(X) = \{ \text{combinazioni lineari finite a coefficienti interi:} \\ \sum_g n_g g \mid n_g \in \mathbb{Z}, g \ k - \text{simplessi singolari di } X \}$$

¹Questa ha numerose applicazioni pratiche, come la ricostruzione di immagini.

 $S_k(X)$ è un gruppo abeliano con l'operazione somma definita naturalmente:

$$\sum_{g} n_{g}g + \sum_{h} n_{h}h = \sum_{g} n_{g}g + \sum_{g} n_{g}^{*}g = \sum_{g} (n_{g} + n_{g}^{*})g$$

Inoltre $\forall k < 0$ si pone $S_k(X) = 0$. Un elemento generico di $S_k(X)$ è una somma formale finita (cioè con un numero finito di coefficienti non nulli) su tutti i possibili k-simplessi singolari in X.

Esempio 2.2.5

$$(n_1g_1 + n_2g_2 + 2n_3g_3) + (m_1g_1 + m_4g_4) = (n_1 + m_1)g_1 + n_2g_2 + 2n_3g_3 + m_4g_4$$

Questa è una somma con tutte le giuste proprietà. Lo zero è la catena con tutti i coefficienti nulli, mentre l'inverso è la catena con i coefficienti opposti. Queste catene sono chiamate k-catene singolari. $S_k(X)$ è generato da tutte le possibili applicazioni continue da Δ_k a X, cioè:

$$S_k(X) = \langle \{ g \mid g \text{ } k\text{-simplesso singolare in } X \} \rangle$$

Si nota che le catene sono somme formali di mappe e non sono esse stesse mappe.

Esempio 2.2.6 (k = 0) Se k = 0 allora $S_0(X)$ sono catene di punti ($g_0 : \Delta_0 \to X$, identifico l'applicazione con il punto in X sapendo che l'immagine di un punto è un punto)

$$S_0(X) = \{ \sum n_i p_i \mid n_i \in \mathbb{Z}, \ p_i \in X \}$$

Osservazione 2.2.7 Quando è possibile faccio un abuso di notazione e identifico la mappa con la sua immagine nello spazio topologico.

Ora devo introdurre le applicazioni tra i vari S_k , queste applicazioni saranno il bordo. Definisco $h: \Delta_1 \to X$ in modo tale che $h(\Delta) = \alpha$ dove α è un **arco**.

Figura 2.3: 1-Simplesso singolare

Posso ottenere una 0-catena prendendo i punti estremi dell'arco, infatti il bordo di un 1-simplesso è uno 0-simplesso. L'idea è quindi ottenere simplessi di ordine più piccolo prendendo il bordo dei simplessi.

Definizione 2.2.8 Sia Δ_k un k-simplesso standard con $k \geq 0$ si definisce l'operatore **faccia** come la mappa $F_i^k: \Delta_{k-1} \to \Delta_k$ tale che $F_i^k(\Delta_{k-1})$ è una faccia di Δ_k .

L'operatore faccia prende un k-simplesso standard e lo immerge in un qualche senso in un simplesso più grande, ad esempio manda un punto in uno degli estremi di un segmento (nel caso k=0),

Esempio 2.2.9 (k = 2**)** *Per* k = 2 *vale che:*

$$\Delta_2 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1, \ 0 \le x_i \le 1 \ \forall i \}$$

Si definisce la base $e_0=(1,0,0)$ $e_1=(0,1,0)$ $e_2=(0,0,1)$, voglio vedere il bordo del triangolo come facce.

Figura 2.4: Azione dell'operatore faccia

Il segmento faccia i-esimo è quello che non contiene il vertice i-esimo, cioè dimentico un punto e gli altri punti diventano vertici del simplesso.

In generale se Δ_k è un simplesso standard definisco la base canonica (si noti che la base canonica è ordinata):

$$e_0 = (1, 0, 0, \dots)$$

 $e_1 = (0, 1, 0, \dots)$
 $e_2 = (0, 0, 1, \dots)$

Questi sono i vertici del simplesso, definisco l'azione dell'operatore faccia come:

$$\begin{cases} F_i^{\ k}(e_j) = e_{j+1} & \text{se } j \ge i \\ F_i^{\ k}(e_j) = e_j & \text{se } j < i \end{cases}$$

Se fosse un tetraedro dimenticando punti ottengo triangoli e dimenticando triangoli ottengo punti, come è giusto.

Esercizio 1 Dimostrare che se $[\cdot, \cdot]$ indica l'inviluppo convesso allora:

1. Per
$$j > i$$
 vale che $F_i^{k+1} \circ F_i^{k} = [e_0, \dots, \hat{e}_i, \dots, \hat{e}_j, \dots, e_k]$.

2. Per
$$j \leq i$$
 vale che $F_i^{k+1} \circ F_i^k = [e_0, \dots, \hat{e}_j, \dots, \hat{e}_{i+1}, \dots, e_k]$.

dove i cappucci indicano che quell'elemento è omesso.

Definizione 2.2.10 L'inviluppo convesso di un insieme U in \mathbb{R}^n è il più piccolo insieme convesso che contiene U.

Definizione 2.2.11 Un insieme in \mathbb{R}^n si dice **convesso** se contiene il segmento che unisce ogni coppia di punti dell'insieme.

Definizione 2.2.12 Dato un k-simplesso singolare $\sigma: \Delta_k \to X$ si definisce la mappa $\sigma^{(i)}: \Delta_{k-1} \to X$ come la restrizione di σ sulla faccia i-esima del simplesso, cioè $\sigma^{(i)} = \sigma \circ F_i{}^k$, si definisce quindi il **bordo** come la mappa:

$$\partial \colon \Sigma_k(X) \to \Sigma_{k-1}(X)$$

$$\sigma \mapsto \sum_{i=0}^k (-)^i \sigma^{(i)}$$

dove $\Sigma_k(X)$ indica lo spazio dei k-simplessi singolari di X.

Il bordo sostanzialmente corrisponde alla somma alterna delle facce.

Figura 2.5: Azione di σ e $\sigma^{(i)}$

Esempio 2.2.13 (k = 1) Per k = 1 vale che $\partial_1 \sigma = p_1 - p_0$, infatti:

$$\sigma^{0} = \sigma \circ F_{0}^{1} = \sigma(1) = p_{1}$$
 $\sigma^{1} = \sigma \circ F_{1}^{1} = \sigma(0) = p_{0}$

Il bordo è la somma con i segni alternati: $\partial_1 \sigma = p_1 - p_0$. Tecnicamente il bordo è una mappa quindi sarebbe più corretto scrivere $\partial_1 \sigma = \sigma^{(1)} - \sigma^{(0)}$ dove l'azione di queste due mappe è quella di mandare un estremo dell'intervallo [0,1] in p_0 o p_1 .

Allora si definisce l'operatore bordo sul complesso delle catene $\partial_k: S_k(X) \to S_{k-1}(X)$ estendendolo per linearità $\partial_k \left(\sum_g n_g g \right) = \sum_g n_g \partial_k g$ (infatti si è definita l'azione sui generatori g).

Devo mostrare che ∂_k è un omomorfismo e che soddisfa $\partial_k \circ \partial_{k+1} = 0$. Comincio con il fatto che è un omomorfismo.

Dimostrazione:

$$\partial_k \left(\sum_g n_g g + \sum_g m_g g \right) = \partial_k \left(\sum_g (m_g + n_g) g \right) = \sum_g (m_g + n_g) \partial_k g =$$

$$= \sum_g n_g \partial_k g + \sum_g m_g \partial_k g = \partial_k \left(\sum_g n_g g \right) + \partial_k \left(\sum_g m_g g \right)$$

Dove si è usato che la mappa di bordo è lineare.

Quindi il complesso è costituito da:

$$\dots \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1}(X) \xrightarrow{\partial_{k-1}} \dots$$

Devo verificare che $\partial_k \circ \partial_{k+1} = 0$ (spesso come notazione si pone $\partial^2 = 0$). SISTEMARE **Dimostrazione**: Se σ è un k-complesso singolare, cioè $\sigma : \Delta_k \to X$ continua:

$$\begin{split} \partial_k \circ \partial_{k+1} \sigma &= \partial_k \left(\sum_{j=0}^{k+1} (-)^j (\sigma \circ F_j^{\ k+1}) \right) = \sum_{j=0}^{k+1} (-)^j \partial_k (\sigma \circ F_j^{\ k+1}) \\ &= \sum_{j=0}^{k+1} (-)^j \sum_{i=0}^k (-)^i (\sigma \circ F_j^{\ k+1}) \circ F_i^{\ k} = \sum_{j=0}^{k+1} \sum_{i=0}^k (-)^{j+i} \sigma \circ F_j^{\ k+1} \circ F_j^{\ k} \\ &= \sum_{0 \le i < j \le k+1} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} + \sum_{0 \le j < i \le k} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} \end{aligned} = \end{split}$$

Rinominando nella seconda sommatoria ..

$$= \sum_{0 \le i < j \le k+1} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} + \sum_{0 \le j < i \le k} (-)^{i+j} \sigma \circ F_{i+1}^{\ k+1} \circ F_j^{\ k} \\ = 0$$

Dove nel penultimo passaggio si sono utilizzate le identità lasciate da dimostrare come esercizio, e nell'ultimo si è rinominato nel secondo termine i+1 con i.

Esercizio 2 Verificare che fa veramente zero.

Si nota che è di importanza cruciale il fatto che si è definito il bordo con i segni alternati. \square Sia X uno spazio topologico, voglio definire l'omologia singolare $H_k(X)$, cioè il k-esimo gruppo di omologia singolare. Costruisco il complesso $(S_{\bullet}(X), \partial)$ con:

$$S_k(X) = \{ \sum_g n_g g \mid g \text{ simplesso singolare, } n_g \in \mathbb{Z} \}$$

E $\partial_k: S_k(X) \to S_{k-1}(X)$ applicazione di bordo con $\partial_k(g) = \sum_{i=0}^k (-)^i g^{(i)}$ con $g: \Delta_k \to X$, e poi lo estendo per linearità su tutti gli elementi di S, dove $g^{(i)} = g \circ F_i^{\ k}$. Siccome $\partial_{k-1} \circ \partial_k = 0$ si ha il complesso

$$\dots \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1}(X) \xrightarrow{\partial_{k-1}} \dots$$

Inoltre $\partial_k \circ \partial_{k-1}$ è la mappa nulla dalle catene singolari di $S_k(X)$ a quelle di $S_{k-2}(X)$, in questo modo $(S_{\bullet}(X), \partial)$ è un complesso di gruppi abeliani. Posso quindi calcolare l'omologia di $(S_{\bullet}(X), \partial)$ come l'avevo definita in precedenza:

$$H_k(S_{\bullet}(X)) = \frac{\operatorname{Ker}(\partial_k)}{\operatorname{Im}(\partial_{k+1})}$$

Vale che ${\rm Ker}(\partial_k)=\{\,c\in S_k(X)\mid \partial_k(c)=0\,\}$, cioè le k-catene con bordo nullo, questi sono chiamati k-cicli.

Definizione 2.2.14 Sia $(S_{\bullet}(X), \partial)$ un complesso di moduli, gli elementi di $Ker(\partial)$ sono detti k-cicli. Un k-ciclo è quindi una k-catena con bordo nullo:

$$c \ ciclo \Leftrightarrow \partial c = 0$$

L'insieme dei k-cicli è indicato con $Z_k(X)$, cioè: $Z_k(X) = \operatorname{Ker}(\partial)$.

Si pone invece $B_k(X)$ come l'insieme dei bordi, cioè le k-catene singolari che sono immagini di k+1-catene, cioè esplicitamente:

$$B_k(X) = \{ \eta \in S_k(X) \mid \exists b \in S_{k+1}(X), \partial b = \eta \}$$

Per definizione si ha quindi che $H_k(X)={Z_k(X)}/{B_k(X)}$, cioè il gruppo di omologia è formato dai cicli modulo i bordi.

Esplicitamente gli elementi di $H_k(X)$ sono classi di equivalenza tali che se $[c] \in H_k(X)$ con $\partial c = 0$, e $c_1 \in [c]$ allora $c_1 - c \in B_k(X)$ e $\partial c_1 = 0$ quindi esiste b tale che $c_1 - c = \partial b$. Cioè due elementi stanno nella stessa classe di equivalenza se differiscono per un bordo:

Definizione 2.2.15 Due elementi a, b si dicono **omologhi** se differiscono per un bordo.

$$a \sim_{hom} b \Leftrightarrow \exists c \mid \partial_k c = a - b$$

Osservazione 2.2.16 Vale che $H_k(X) = 0 \Leftrightarrow B_k(X) = Z_k(X)$, cioè se ogni ciclo è un bordo, come si è già osservato. In generale si ha che $B_k(X) \subseteq Z_k(X)$ e possono esserci cicli che non sono immagini di bordi.

 $\partial_k c$ è il bordo di un k-ciclo, se $\partial_k c=0$ significa che il ciclo non ha bordo, inoltre se $c=\partial_{k+1}b$ allora c è bordo di qualcosa: c è un bordo che non ha bordo. Questo tipo di oggetti è di interesse centrale.

Scopo del corso è studiare $H_k(X)$ e capire se si possono determinare a meno di isomorfismi. In alcuni casi è possibile calcolare esplicitamente tutti i gruppi di omologia (come nel caso dell'omologia cellulare).

2.2.1 $H_0(X)$

Proposizione 2.2.17 Sia X uno spazio topologico connesso per archi, allora $H_0 \cong \mathbb{Z}$, cioè è uno \mathbb{Z} -modulo libero di rango 1. In effetti $H_0(X)$ conta le componenti connesse per archi in X e quindi dà informazioni di natura geometrica.

Dimostrazione: Calcolo H_0 a partire dalla definizione di omologia:

$$H_0(X) = \frac{Z_0(X)}{B_0(X)}$$

Ho il complesso:

$$\ldots \longrightarrow S_1(X) \xrightarrow{\partial_1} S_0(X) \xrightarrow{\partial_0} 0$$

Quindi $Z_0={
m Ker}(\partial_0)=S_0(X)$ in quanto ogni elemento di $S_0(X)$ viene mandato in 0. Quindi per ora ho che:

$$Z_0(X) = \text{Ker}(\partial_0) = S_0(X) \implies H_0(X) = \frac{S_0(X)}{B_0(X)}$$

Per definizione $B_0(X)=\operatorname{Im}(\partial_1)=\{x\in S_0(X)\mid \exists \alpha\in S_1(X),\ \partial_1(\alpha)=x\}$. Ma $S_0(X)$ è il gruppo libero generato dagli 0-simplessi singolari, che sono mappe $\Delta_0\to X$, e siccome Δ_0 è un punto si possono identificare con i punti di X, perciò si può immaginare formalmente $S_0(X)$ come il gruppo libero generato dai punti di X. $B_0(X)$ è l'insieme delle coppie di punti di X che sono bordo di un 1-simplesso singolare, il quale è una mappa $\Delta_1\cong I\to X$, cioè è un arco. Siccome lo spazio è connesso per archi ogni coppia di punti è bordo di qualcosa, fissando un putno $x\in X$ sostanzialmente $B_0(X)$ lo si può immaginare con X e quindi $H_0(X)\cong \mathbb{Z}$ in quanto quoziente tra un gruppo libero generato da un insieme di punti e l'insieme di punti stessi. Sostanzialmente esiste un'unica classe di equivalenza che è la classe di equivalenza di un punto, in quanto ogni coppia di punti è omologa essendo collegata da un arco.

La mappa che realizza questo omomorfismo è nota come grado.

Definizione 2.2.18 Si definisce la mappa **grado** come l'applicazione che manda una catena in $S_0(X)$ nella somma dei suoi coefficienti:

$$\deg \colon S_0(X) \to \mathbb{Z}$$
$$\sum n_i p_i \mapsto \sum n_i$$

Proposizione 2.2.19 La mappa grado gode di alcune proprietà:

- 1. deg è un omomorfismo di gruppi abeliani
- 2. deg è suriettivo
- 3. $\operatorname{Ker}(\operatorname{deg}) \cong B_0(X)$

Se dimostro questa proprietà utilizando il primo teorema fondamentale di isomorfismo:

$$S_0(X)/B_0(X) \cong \operatorname{Im}(\operatorname{deg})$$

Ma deg è suriettiva, quindi $Im(deg) = \mathbb{Z}$, perciò:

$$H_0(X) = {S_0(X) / B_0(X)} \cong \mathbb{Z}$$

Dimostro quindi questa proposizione.

Dimostrazione:

1. Sia $c_1 = \sum n_i p_i$ e $c_2 = \sum m_i q_i$, bisogna mostrare che:

$$\deg(c_1 + c_2) = \deg(c_1) + \deg(c_2)$$

ma:

$$c_1 + c_2 = \sum n_i p_i + \sum m_i q_i = \sum (n_i + m_i) r_i$$

dove r_i è quello comune tra le catene, oppure è zero se l'elemento è presente in solo uno delle due catene. Quindi:

$$\deg(c_1 + c_2) = \sum (n_i + m_i) = \sum n_i + \sum m_i = \deg(c_1) + \deg(c_2)$$

Alternativamente in modo più semplice si può osservare l'azione di deg sui generatori di $S_0(X)$, che è unico e viene mandato dalla mappa grado in 1, quindi si estende per linearità.

- 2. La mappa è suriettiva, è sufficiente prendere un punto $p \in X$ e la controimmagine di $m \in \mathbb{Z}$ è $\deg^{-1}(m) = mp$
- 3. Mostro che $\operatorname{Ker}(\deg) = B_0(X)$, e lo faccio m
sotrando che $\operatorname{Ker}(\deg) \subseteq B_0(X)$ e che $\operatorname{Ker}(\deg) \supseteq B_0(X)$.

Inizio con Ker(deg) $\subseteq B_0(X)$: sia $c \in \text{Ker}(\text{deg})$ cioè tale che deg(c) = 0, se $c = \sum n_i p_i$ allora $\sum n_i = 0$, voglio mostrare che $c \in B_0(X)$, cioè che $\exists b \in S_1(X)$ con $\partial_1 b = c$.

Fissato p_0 considero i p_i , ci sono archi $\lambda_i s$ che li uniscono a p_0 . b si può costruire in questo modo: siano $\lambda_i:[0,1]\to X$ con $\lambda_i(0)=p_0$ e $\lambda_i(1)=p_i$ allora:

$$c - \partial \left(\sum n_1 \lambda_i\right) = c - \sum n_i \partial \lambda_i = c - \sum n_i (p_i - p_0) =$$
$$= c - \sum n_i p_i + \sum n_i p_0 = p_0 \sum n_i = 0$$

In cui si è usato che per ipotesi $c \in \operatorname{Ker}(\deg)$ quindi $\sum n_i = 0$ e che $c = \sum n_i p_i$. Ma quindi $c = \partial(\sum n_i \lambda_i)$ e definendo $\sum n_i \lambda_i = b$ si è trovato l'elemento b, per cui $\operatorname{Ker}(\deg) \subseteq B_0(X)$.

Mi rimane da mostrare che $B_0(X)\subseteq \operatorname{Ker}(\deg)$: mostro che se $c\in B_0(X)$ allora $c\in \operatorname{Ker}(\deg)$, cioè, $\deg(c)=0$. Siccome $c\in B_0(X)$ esiste $b\in S_1(X)$ tale che $c=\partial b$, ma $S_1(X)$ è lo spazio generato dagli 1-simplessi singolari, cioè dagli archi, quindi chiamando λ_i gli archi si può scrivere $b=\sum m_i\lambda_i$. A questo punto:

$$deg(c) = deg(\partial b) = \sum n_i deg(\partial \lambda_i) = 0$$

In quando $\partial \lambda_i = \lambda_i(1) - \lambda_i(0)$ e l'azione dell'operta
ore grado è quella di sommare i coefficienti, che sono opposti.

Siccome $Ker(deg) = B_0(X)$ in particolare gli spazi sono isomorfi.

Per questo si può utlizzare il primo teorema dell'isomorfismo.

Se ci sono più componenti connesse per archi posso ripetere il ragionamento senza connettere componenti distinte, quindi trovo che:

$$H_0(X) \cong \mathbb{Z}^{N_c}$$

Dove N_c è il numero di componenti connesse per archi di X con $N_c < +\infty$, in pratica $H_0(X)$ è generato da un insieme formato da un punto per ogni componente connessa per archi.

2.2.2 $H_1(X)$

Cosa si può dire invece su $H_1(X)$?

Sia X spazio topologico e $x_0 \in X$, allora alla coppia (X,x_0) si associa il gruppo fondamentale $\pi_1(X,x_0)$. In generale il gruppo fondamentale non è abeliano, allora conviene studiare la versione abelianizzata: Ab $(\pi_1(X,x_0)) = \frac{\pi_1(X,x_0)}{\pi_1(X,x_0)'}$ dove ' indica il **gruppo derivato**, cioè il gruppo generato dai commutatori.

$$\pi_1(X, x_0)' = [\pi_1(X, x_0), \pi_1(X, x_0)] = \langle \{ [g, h] \mid g, h \in \pi_1(X, x_0) \} \rangle$$

Se X è connesso per archi allora mostrerò che $\mathrm{Ab}\left(\pi_1(X,x_0)\right)\cong H_1(X)$, quindi conoscendo il gruppo fondamentale si può calcolare anche il primo gruppo di omologia, che quindi è sostanzialmente formato dai lacci (modulo omotopia) che commutano tra loro.

Osservazione 2.2.20 Sia X uno spazio topologico connesso per archi e $\mathcal G$ un gruppo abeliano se esiste un omomorfismo di gruppi $\varphi:\pi_1(X)\to\mathcal G$ allora esiste $\varphi':\operatorname{Ab}(\pi_1(X))\to\mathcal G$ omomorfismo di gruppi abeliani.

$$\begin{array}{c}
\pi_1(X) \xrightarrow{\varphi} \mathcal{G} \\
\downarrow^P & \\
\operatorname{Ab}(\pi_1(X))
\end{array}$$

dove P è la proiezione sul quoziente.

Dimostrazione: φ' è definita da $\varphi'(P(c)) = \varphi(c)$, ma bisogna controllare se questa è ben definita, cioè se prendendo rappresentanti equivalenti si ottengono le stesse immagini, cioè se con $c \sim_H d$:

$$\varphi'(a) = \varphi'(P(c)) = \varphi(c)$$
 e $\varphi'(a) = \varphi'(P(d)) = \varphi(d)$

implica $\varphi(c) = \varphi(d)$. Se $c \sim_H d$ allora P(c) = P(d), e quindi c = d[x,y] per opprtuni x e y, in quanto gli elementi in $\mathrm{Ab}\left(\pi_1(X)\right)$ differiscono per commutatori. Applicando φ : $\varphi(c) = \varphi(d[x,y])$, siccome φ è omomorfismo:

$$\varphi(d[x,y]) = \varphi(d)\varphi([x,y]) = \varphi(d)\varphi(xyx^{-1}y^{-1}) = \varphi(d)\varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = \varphi(d)$$

dove nell'ultimo passaggio ho utilizzato che il gruppo è abeliano. Si nota che questa osservazione dipende crucialmente dal fatto che il gruppo è abeliano. \Box

Per dimostrare che Ab $(\pi_1(X)) \cong H_1(X)$ mi serve prima un lemma:

Lemma 2.2.21 Se $f \sim_H g$ allora $f \sim_{hom} g$, cioè se f e g sono lacci che definiscono lo stesso elemento nel gruppo fondamentale allora differiscono per un bordo.

Dimostrazione: Siccome $f \sim_H g$ allora $\exists F$ continua tale $F: I \times I \to X$ tale che F(0, x) = f(x), F(1, x) = g(x) e $F(t, 0) = F(t, 1) = x_0$.

Figura 2.6: Omotopia: deforma f in g in modo continuo.

Figura 2.7: La relazione di equivalenza fa passare da un quadrato a un triangolo in quanto fa collassare un intervallo nel punto e_0

Voglio mostrare che f-g è bordo di un 2-simplesso. Identificando tutti i punti di un uno dei due intervalli con l'equivalenza $I \times I/\{0\} \times I$ si ottiene qualcosa che è omeomorfo a Δ_2 , F sullo spigolo $\{0\} \times I$ assume sempre lo stesso valore.

Siccome F rimane costante sul sottospazio su cui su quozienta, dove vale sempre x_0 , F induce $F' \colon \Delta_2 \to X$ continua in cui e_0 viene mandato in x_0 :

$$I \times I \xrightarrow{F} X$$

$$\downarrow_{P} \xrightarrow{F'} X$$

$$I \times I/_{0 \times I} \simeq \Delta_{2}$$

Calcolo il bordo: $\partial F' = F'^{(0)} - F'^{(1)} + F'^{(2)} = K - g + f$ dove K è il cammino costante per definizione di omotopia, cioè è C_{x_0} . Se K fosse il bordo di qualcosa avrei finito ($\partial w = f - g$). Ma K è il 2-simplesso singolare costante uguale a x_0 , cioe $K \colon \Delta_2 \to \{x_0\}$, quindi il suo bordo:

$$\partial K = K^{(0)} - K^{(1)} + K^{(2)} = K^{(2)}$$

in quanto tutti i tre termini sono uguali a $k\colon \Delta_1\to \{x_0\}$, quindi $\partial K=K^{(2)}=k$, cioè k è un bordo, perciò:

$$\partial F' = \partial k - F'^{(1)} + F'^{(2)} \Rightarrow \partial F' - \partial k = f - g \Rightarrow \partial (F' - k) = f - g$$

F'-k è 2-simplesso singolare, lo chiamo σ ed è tale che $\partial \sigma=f-g$, quindi f e g sono omologhi e σ è il 2-simplesso singolare che realizza l'omologia.

Proposizione 2.2.22 Se X è uno spazio topologico connesso per archi allora $Ab(\pi_1(X)) \cong H_1(X)$, cioè si può passare dall'equivalenza omologica a quella omotopica, e in questo modo per il teorema di Seifert-van Kampen si possono ottenere tante informazioni su $H_1(X)$.

Dimostrazione: Per dimostrare che $\mathrm{Ab}\,(\pi_1(X))\cong H_1(X)$ trovo un isomorfismo di gruppi abeliani tra $\pi_1(X)$ a $H_1(X)$, infatti se costruisco $\varphi\colon \pi_1(X)\to H_1(X)$ omomorfismo di gruppi ottengo gratuitamente la mappa da $\mathrm{Ab}\,(\pi_1(X))$ a $H_1(X)$ per l'osservazione

precedente.

$$\begin{array}{ccc}
\pi_1(X) & \xrightarrow{\varphi} & H_1(X) \\
\downarrow^P & & & & \\
\operatorname{Ab}(\pi_1(X)) & & & & \\
\end{array}$$

Poi dovrò mostrare che questa mappa è invertibile, cioè $\exists \psi: H_1(X) \to A_1(X)$ tale che $\varphi' \circ \psi = \mathbb{I}_{H_1(X)}$ e $\psi \circ \varphi' = \mathbb{I}_{\mathrm{Ab}(\pi_1(X))}$.

Per il lemma appena dimostrato una possibile costruzione di φ è:

$$\varphi: \pi_1(X) \to H_1(X)$$
$$[f]_H \mapsto [f]_{hom} = \llbracket f \rrbracket$$

In tutto ciò non ho ancora utilizzato la connessione per archi. Mostro che φ è omomorfismo, in questo modo anche φ' lo è. Siano $[f]_H, [g]_H \in \pi_1(X)$ voglio fare vedere che:

$$\varphi([f]_H[g]_H) = \varphi([f]_H) + \varphi([g]_H)$$

Questo è verso se e solo se:

$$\varphi([f \star g]_H) = [f]_{hom} + [g]_{hom}$$

Che è vera se e solo se:

$$[f \star g]_{hom} = [f + g]_{hom}$$

Questo è vero se e solo se i due rappresentati sono equivalenti, cioè se differiscono per un bordo, ovvero se:

$$\exists T: \Delta_2 \to X$$
 2-simplesso singolare tale che $\partial T = f + g - f \star g$

Cioè:

$$\partial T = T^{(0)} - T^{(1)} + T^{(2)} = f + g - f \star g$$

Una possibile costruzione parte tracciando la retta che congiunge due punti medi di due segmenti, quindi si richiede che T abbia valori costanti sulle rette parallele.

Al momento la situazione è che ho $\varphi: \pi_1(X, x_0) \to H_1(X)$ omomorfismo di gruppi ben definito anche con X non necessariamente connesso per archi, e dato che $H_1(X)$ è abeliano ho $\varphi': \operatorname{Ab}(\pi_1(X)) \to H_1(X)$ omomorfismo di gruppi abeliani.

La conclusione della dimostrazione è nota come **teorema di Hurewicz**.

Teorema 2.2.23 (Teorema di Hurewicz) Se X è uno spazio topologico connesso per archi allora $\varphi \colon \operatorname{Ab}(\pi_1(X)) \to H_1(X)$ è un isomorfismo, quindi $\operatorname{Ab}(\pi_1(X)) \cong H_1(X)$.

Dimostrazione: Sketch of proof, la dimostrazione completa è piuttosto noiosa. Per dimostrare che φ' è isomorfismo o dimostro che è iniettiva e suriettiva o che ammette un inverso. Procedo con la seconda possibilità: mostro che $\exists \psi \colon H_1(X) \to \operatorname{Ab}(\pi_1(X))$ tale che ψ è inverso di φ' .

Figura 2.8: Costruzione dell'omomorfismo

Figura 2.9: Dimostrazione della proposizione

Considero un arco $f\colon \Delta_1 \to X$ con $f(0), f(1) \in X$. Siccome lo spazio è connesso per archi esiste un cammino da x_0 a f(0), cioè una funzione $\lambda_{f(0)}\colon I \to X$ tale che $\lambda_{f(0)} = x_0$ e $\lambda_{f(1)} = f(0)$. Lo stesso vale per x_0 e f(1). Questi archi sono orientati partendo da x_0 , posso considerare il cammino con verso opposto $\bar{\lambda}_{f(1)}$ e quindi costruire il laccio di base x_0 : $\lambda_{f(0)}\star f\star \bar{\lambda}_{f(1)}=:\tilde{f}$. Vale che $\psi(f)=[\![\tilde{f}]\!]$, dove $[\![\tilde{f}]\!]=P\left([\tilde{f}]\!]_H\right)$. Bisogna mostrare che:

- 1. ψ è ben definito, cioè se $f\sim_{hom} g$ allora $\psi(f)=\psi(g)$ e che ψ non dipende dalla scelta del cammino.
- 2. ψ è omomorfismo di gruppi
- 3. $\varphi' \circ \psi = \mathbb{I}_{H_1(X)}$
- 4. $\psi \circ \varphi' = \mathbb{I}_{Ab(\pi_1(X))}$

Lo studente interessato può verificare queste asserzioni.

Esercizio 3 Verificarli.

Una volta verificati si trova in particolare che $H_1(X) \cong \mathrm{Ab}\,(\pi_1(X))$.

Esempio 2.2.24

- $H_1(V_q) \cong \mathbb{Z}^{2g} \text{ con } g \geq 0$
- $H_1(\bigvee_{i=1}^k S^1) \cong \mathbb{Z}^k$ con $\bigvee_{i=1}^k S^1$ bouquet, cioè k circonferenze incollate in un punto.
- $H_1(\mathbb{R}^3 \mathcal{S}^1) \cong \mathbb{Z}$ (è un toro tappato)
- $H_1(U_1)\cong \mathbb{Z}_2$ dove U_1 è il piano proiettivo reale $\mathbb{P}^2(\mathbb{R})=\mathbb{R}^3-\set{0}/_{\sim}$ con $\underline{x}\sim\underline{y}$ se $\underline{x}=ay$ con $a\in\mathbb{R}$
- $H_1(U_2) \cong \mathbb{Z} \oplus \mathbb{Z}_2$ dove U_2 è la bottiglia di Klein. Infatti $\pi_1(U_2) = \{a, b \mid aba^{-1}b^{-1} = 1\}$ per abeliannizzarlo bisogna porre $aba^{-1}b = 1$ e $aba^{-1}b^{-1} = 1$ cioè $b^2 = 1$ e a libero: $Ab(\pi_1(U_2)) = \{a, b \mid aba^{-1}b = 1\}$.

Definizione 2.2.25 Siano (X, x_0) e (Y, y_0) due spazi topologici puntati, si definisce il **bouquet** $X \vee Y$ come lo spazio topologico definito da:

$$X\vee Y={^{\textstyle X\amalg Y}/_{\sim}}$$

in cui \sim identifica x_0 con y_0 . In pratica si incollano X e Y per lo stesso punto.

(b) Bottiglia di Klein, si nota che rispetto al toro di Clifford c'è una torsione nella a di destra

Figura 2.10: Bottiglia di Klein

2.3 Morfismi indotti

Sia $g\colon X\to Y$ mappa continua tra spazi topologici, allora g induce un'applicazione tra $H_k(X)$ e $H_k(Y)$. Infatti, considero $\sigma\colon \Delta_k\to X$ k-simplesso singolare, posso considerare la composizione con g definendno $g'\colon \Delta_k\to Y$ con $g'=g\circ\sigma$:

$$g' \colon \Delta_k \xrightarrow{\sigma} X \xrightarrow{g} Y$$

Siccome sia g che σ sono continue allora g' è continua, quindi è un k-simplesso singolare in Y. Si definisce g_{\sharp} come l'estensione di g' su tutte le k-catene per linearità:

$$g_{\sharp} \colon S_k(X) \to S_k(Y)$$
$$\sum_{\sigma} n_{\sigma} \sigma \mapsto \sum_{\sigma} n_{\sigma} g' = \sum_{\sigma} n_{\sigma} (g \circ \sigma)$$

Questa mappa è ben definita ed è lineare quindi g_{\sharp} è un omomorfismo di gruppi abeliani che manda k-catene in $S_k(X)$ in k-catene in $S_k(Y)$. Ora voglio ottenere un'applicazione a livello di omologia singolare, quindi definisco g_{\star} .

$$g_{\star} \colon H_k(X) \to H_k(Y)$$

 $[c] \mapsto [g_{\sharp}(c)]$

Si dice che g è **covariante** perché va da X a Y, cioè rispetta il verso della applicazione g. Devo verificare se questa applicazione è ben definita, cioè non se dipende dalla scelta del rappresentate della classe. Considero $d \in S_k(X)$ tale che $\partial d = 0$, suppongo che $d \sim_{hom} c$, questo vale se e solo se [d] = [c] con $\partial c = 0$, mi chiedo è vero che $g_{\star}([d]) = g_{\star}([c])$? Devo cioè mostrare che $g_{\sharp}(d) \sim_{hom} g_{\sharp}(c)$, ma questo è vero se e solo se $\exists \tau \in S_{k+1}(Y)$ tale che $g_{\sharp}(d) - g_{\sharp}(c) = \partial \tau$. Siccome g_{\sharp} è omomorfismo allora deve essere $g_{\sharp}(d-c) = \partial \tau$, ma d e c sono omologhi per ipotesi, quindi:

$$\exists u \in S_{k+1}(X) \mid \partial u = d - c$$

Quindi $g_{\sharp}(\partial u) = g_{\sharp}(d-c)$, e questo implica che $[g_{\sharp}(d)] = [g_{\sharp}(c)]$, infatti trovo τ a partire da u:

$$g_{\sharp}(\partial u) = g_{\sharp} \left(\sum_{i=0}^{k+1} (-)^{i} u^{(i)} \right) = \sum_{i=0}^{k+1} (-)^{i} g_{\sharp}(u^{(i)}) = \sum_{i=0}^{k+1} (-)^{i} g \circ u^{(i)} =$$

$$= \sum_{i=0}^{k+1} (-)^{i} g \circ (u \circ F_{i}^{k+1}) = \sum_{i=0}^{k+1} (-)^{i} (g \circ u) \circ F_{i}^{k+1} =$$

$$= \sum_{i=0}^{k+1} (-)^{i} (g \circ u)^{(i)} = \partial (g \circ u)$$

Ma quindi $g_{\sharp}(\partial u) = \partial(g_{\sharp}(u))$ cioè:

$$g_{\sharp}(d-c) = g_{\sharp}(\partial u) = \partial(g_{\sharp}(u)) = \partial \tau \quad \text{con } \tau = g_{\sharp}(u)$$

Quindi g_\star è ben definita ed è omomorfismo in quanto è il passaggio a quoziente di omomorfismi. Noto in particolare che ho mostrato che $g_\sharp\circ\partial=\partial\circ g_\sharp$ in quanto l'ho mostrato sui generatori.

Esempio 2.3.1 Sia $j: \mathcal{S}^1 \to \mathcal{S}^2$ l'immersione di un equatore in una sfera allora $j_\star: H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^2)$ è una mappa costante in quanto \mathcal{S}^2 ha gruppo fondamentale banale quindi $H_1(\mathcal{S}^2)$ è banale. Si nota che j era iniettiva, ma j_\star è costante quindi non è più iniettiva.

Esempio 2.3.2 Se considero $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$

$$f \colon \mathcal{S}^1 \to \mathcal{S}^1$$
$$z \to z^4$$

Come è fatta $f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$? Si sa che $H_1(\mathcal{S}^1) \cong \mathbb{Z}$ in quanto il gruppo fondamentale di \mathcal{S}^1 è \mathbb{Z} che è già abeliano. C'è quindi un solo generatore, che posso prendere il simplesso singolare:

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \to e^{2\pi i t}$$

Cioè in pratica $[\sigma] \to 1$, il laccio si avvolge su sè stesso una volta.

$$f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

$$[\sigma] \mapsto [f_{\sharp}(\sigma)] = [f \circ \sigma]$$

Si ha:

$$\Delta_1 \xrightarrow{\sigma} \mathcal{S}^1 \xrightarrow{f} \mathcal{S}^1$$

Con:

$$t \xrightarrow{\sigma} e^{2\pi i t} \xrightarrow{f} e^{8\pi i t}$$

Quindi:

$$f \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$

 $t \mapsto e^{8\pi i t}$

Sostanzialmente $f \circ \sigma$ è un cammino in S^1 ed è quindi potenza di σ , che è l'unico generatore:

$$f \circ \sigma = \sigma^4 = \sigma \star \sigma \star \sigma \star \sigma$$

Cioè avvolgo il laccio quattro volte, quindi:

$$f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

 $[\sigma] \mapsto [\sigma^4]$

Cioè:

$$f_{\star} \colon \mathbb{Z} \to \mathbb{Z}$$

$$1 \mapsto 4$$

 f_{\star} è iniettivo ma non suriettivo (non tutti gli interi sono multipli di 4)

Osservazione 2.3.3 Siano X spazio topologico: $\mathbb{I}_X : X \to X$ allora:

$$(\mathbb{I}_X)_{\star}: H_k(X) \to H_k(X)$$
$$[c] \mapsto [(\mathbb{I}_X)_{\sharp}(c)] = [c]$$

Quindi $(\mathbb{I}_X)_+$ è proprio l'identità a livello di gruppi di omologia, cioè:

$$(\mathbb{I}_X)_{\star} = \mathbb{I}_{H_k(X)}$$

Osservazione 2.3.4 Siano X,Y,Z spazi topologici e $f:X\to Y$, $g:Y\to Z$ funzioni continue, allora $g\circ f:X\to Z$ è continua, si ha quindi:

$$X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z$$

E:

$$H_k(X) \xrightarrow{f_\star} H_k(Y) \xrightarrow{g_\star} H_k(Z)$$

Sono ben definite $g_{\star} \circ f_{\star} \colon H_k(X) \to H_k(Z)$ e $(g \circ f)_{\star} \colon H_k(X) \to H_k(Z)$, vale che $g_{\star} \circ f_{\star} = (g \circ f)_{\star}$, infatti se σ è simplesso singolare (poi basta estendere per linearlità):

$$(g \circ f)_{\star} ([\sigma]) = [(g \circ f)_{\sharp}(\sigma)] = [(g \circ f) \circ \sigma] = [g \circ (f \circ \sigma)] =$$
$$= [g_{\sharp}(f \circ \sigma)] = [g_{\sharp} \circ f_{\sharp}(\sigma)] = (g_{\star} \circ f_{\star})([\sigma])$$

Quindi sulla categoria degli spazi topologici questo fornisce un funtore covariante, in quanto questa associazione si comporta bene rispetto all'identità e alla composizione.

2.4 Successioni esatte

Considero due complessi (C_{\bullet}, ∂) e $(C'_{\bullet}, \partial')$, considero l'omomorfismo di \mathbb{Z} -moduli $F \colon (C_{\bullet}, \partial) \to (C'_{\bullet}, \partial')$ tale che $\forall k$ si formi un diagramma commutativo, cioè valga $F \circ \partial = \partial' \circ F$

Tutti i quadrati che si formano devono essere commutativi. Si pone questa richiesta di commutatività in quanto considerando $f\colon X\to Y$ e quindi $F=f_\sharp\colon (S_\bullet(X),\partial)\to (S_\bullet(Y),\partial')$ la condizione di commutatività è $f_\sharp\circ\partial=\partial'\circ f_\sharp$ che è proprio quella che ho utilizzato prima per mostrare che l'applicazione è ben definita a livello di omologia (avevo usato $g_\sharp\circ\partial=\partial\circ g_\sharp$). Una funzione F fatta in questo modo è detta **mappa tra complessi**.

Definizione 2.4.1 Si definisce una successione esatta corta di gruppi la successione:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C$$

con α omomorfismo iniettivo, β omomorfismo suriettivo e $\mathrm{Ker}(\beta) = \mathrm{Im}(\alpha)$. Si nota che richiedere queste condizioni su α e β è equivalente a scrivere la successione esatta come:

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

Infatti indicando le mappe sottointese con $i\colon 0\to A$ e $j\colon C\to 0$ allora per l'esattezza vale che $\operatorname{Ker}(\alpha)=\operatorname{Im}(i)=0$ in quanto i è omomorfismo, ma $\operatorname{Ker}(\alpha)=0$ signfiica che α è iniettiva, inoltre $\operatorname{Ker}(j)=\operatorname{Im}(\beta)=C$, quindi β è suriettiva. Quindi automaticamente $C\cong B/A$ infatti per il teorema fondamentale degli omomorfismi $B/\operatorname{Ker}(\beta)\cong\operatorname{Im}(\beta)\stackrel{\text{suriettività}}{=} C$, ma per l'esattezza $\operatorname{Ker}(\beta)=\operatorname{Im}(\alpha)$ quindi $\operatorname{Ker}(\beta)=\alpha(A)$ ed essendo α iniettiva $\alpha(A)\cong A$.

Definizione 2.4.2 Si definisce una successione esatta corta di complessi la successione:

$$0 \longrightarrow A_{\bullet} \stackrel{\alpha}{\longrightarrow} B_{\bullet} \stackrel{\beta}{\longrightarrow} C_{\bullet} \longrightarrow 0$$

con $(A_{\bullet}, \partial^A)$, $(B_{\bullet}, \partial^B)$ e $(C_{\bullet}, \partial^C)$ complessi, e α mappa tra complessi iniettiva, β mappa tra complessi suriettiva e deve valere che $\forall k$ sia $C_k \cong B_k/A_k$.

In modo più esteso questo significa:

Le colonne sono successioni esatte corte di Z-moduli, quindi l'immagine di α è uguale al nucleo e la mappa è iniettiva perciò la prima riga è formata da zero (infatti se è iniettiva il nucleo è zero), similmente siccome la mappa β è suriettiva quindi l'ultima riga è formata da zero. Inoltre tutti i quadrati sono commutativi.

2.4.1 Omomorfismo di connessione

A partire da una successione esatta corta posso passare all'omologia, se passo brutalmente all'omologia non ottengo una successione esatta, ma c'è il modo per indurre una successione esatta lunga:

Teorema 2.4.3 *Una successione esatta corta di complessi induce una successione esatta lunga tale che sia fatta così:*

$$\dots \longrightarrow H_p(A_{\bullet}) \xrightarrow{\alpha_{\star}} H_p(B_{\bullet}) \xrightarrow{\beta_{\star}} H_p(C_{\bullet}) \xrightarrow{\delta} H_{p-1}(A_{\bullet}) \xrightarrow{\alpha_{\star}} \dots$$

Esatta signfiica che $\forall p$:

$$Im(\alpha_{\star}) = Ker(\beta_{\star})$$

$$Im(\beta_{\star}) = Ker(\delta)$$

$$Im(\delta) = Ker(\alpha_{\star})$$

 δ è detto ${\it omomorfismo\ di\ connessione}$ in quanto cambia il grado dell'omologia.

La scrittura estesa della successione è:

Dimostrazione: Per dimostrare il teorema bisogna:

- 1. Dimostrare che α_{\star} e β_{\star} sono ben definite
- Costruire l'omomorfismo di connessione e verificare che è effettivamente un omomorfismo
- 3. Mostare che la successione è esatta, cioè che

$$Im(\alpha_{\star}) = Ker(\beta_{\star})$$

$$Im(\beta_{\star}) = Ker(\delta)$$

$$Im(\delta) = Ker(\alpha_{\star})$$

Sketch of proof, la dimostrazione è lunga e noiosa.

Per costruire l'omomorfismo di connessione devo trovare un elemento in A_{k-1} a partire da uno in C_k . Sia $c \in C_k$ un ciclo, quindi tale che $\partial c = 0$, siccome β_k è suriettiva $\exists b \in B_k$ tale che $\beta_k(b) = c$, voglio recuperare un elemento $a \in A_{k-1}$, in questo modo posso definire l'azione dell'omomorfismo di connessione con $\delta \colon \llbracket c \rrbracket \mapsto \llbracket a \rrbracket$.

$$a \in A_{k-1}$$

$$\downarrow^{\alpha_{k-1}}$$

$$b \in B_k \xrightarrow{\partial} B_{k-1}$$

$$\downarrow^{\beta_k} \qquad \qquad \downarrow^{\beta_{k-1}}$$

$$c \in C_k \xrightarrow{\partial} C_{k-1}$$

Prendo il bordo per passare a B_{k-1} ($\partial b \in B_{k-1}$), poi applico β_{k-1} e usando la commutatività $\beta_{k-1} \circ \partial = \partial \circ \beta_k$:

$$\beta_{k-1}(\partial b) = \partial \beta_k(b) = \partial c = 0$$

Quindi $\beta_{k-1}(b)=0$, e quindi $\partial b\in \operatorname{Ker}(\beta_{k-1})$, ma le colonne sono esatte quindi $\partial b\in \operatorname{Im}(\alpha_{k-1})=\operatorname{Ker}(\beta_{k-1})$, perciò $\exists a\in A_{k-1}$ tale che $\alpha_{k-1}(a)=\partial b$, quindi a partire da $c\in C_k$ ho associato un elemento $a\in A_{k-1}$. Per scendere a livello di omologia a deve essere un ciclo, cioè $\partial a=0$, per verificarlo apllico α_{k-2} a ∂a e uso la commutatività:

$$\alpha_{k-2}(\partial a) = \partial \alpha_{k-1}(a) = \partial \partial b = 0$$

Ma α_{k-2} è iniettiva, quindi $\partial a=0$. Sono partito da un k-ciclo in C_k e ho trovato un k-1-ciclo in A_{k-1} , che è quello che mi proponevo di fare.

Ci sono un paio di dettagli da verificare:

- 1. È univoca la scelta dell'elemento *b*? Se non lo è ci sono problemi?
- 2. Se prendo in C_k un elemento c' che è omologo a c è sicuro che trovo un a' che è omologo ad a?

Se queste due problematiche non sono verificate l'applicazione a livello di non è ben definita. Verifico che comunque scelga una controimmagine di β_k si ottiene in A_{k-1} un elemento omologo ad a: suppongo di aver scelto la controimmagine $b' \in B_k$ e quindi valga $\beta_k(b') = \beta_k(b) = c$, allora:

$$\beta_k(b'-b) = 0 \iff b'-b \in \operatorname{Ker}(\beta_k) = \operatorname{Im}(\alpha_k)$$

Quindi esiste $a_0 \in A_k$ tale che $\alpha_k(\alpha_0) = b' - b$, prendendo il bordo:

$$\partial(b'-b) = \partial(\alpha_k(a_0)) \Rightarrow \partial b' - \partial b = (\partial \circ \alpha_k)(a_0) = \alpha_{k-1}(\partial a_0)$$

Ma per come costruisco l'omomorfismo di connessione $\partial b = \alpha_{k-1}(a)$, e analogamente $\partial b' = \alpha_{k-1}(a')$:

$$\alpha_{k-1}(a') - \alpha_{k-1}(a) = \alpha_{k-1}(\partial a_0) \Rightarrow \alpha_{k-1}(a' - a - \partial a_0) = 0$$

Ma α_{k-1} è iniettivo quindi $a'-a-\partial a_0=0$, e perciò $a'\sim_{hom}a$, in quanto a e a' differiscono per un bordo.

Per quanto riguarda la seconda questione considero $c'' \sim_{hom} c$ in C_k allora mostro che $a'' \sim_{hom} a$ in A_{k-1} , e così facendo mostro che l'applicazione è ben definita.

$$c'' \sim_{hom} c \iff \exists c_0 \in C_{k+1} \mid c'' - c = \partial c_0$$

Ma per la suriettività $\exists b, b''$ tale che $c = \beta_k(b), c'' = \beta_k(b'')$ e $c_0 = \beta_{k+1}(c_0)$, quindi:

$$\beta_k(b'') - \beta_k(b) = \partial c_0 \Rightarrow \beta_k(b'' - b) = \partial c_0 \Rightarrow \beta_k(b'' - b) = \partial (\beta_{k+1}(b_0)) = \beta_k(\partial b_0)$$

Quindi:

$$\beta_k(b''-b-\partial b_0)=0 \Rightarrow b''-b-\partial b_0 \in \operatorname{Ker}(\beta_k)=\operatorname{Im}(\alpha_k)$$

Perciò $\exists \tilde{a} \in A_k$ tale che $b'' - b - \partial b_0 = \alpha_k(\tilde{a})$, e applicando il bordo si ottiene $\partial b'' - \partial b - \partial \alpha_k(\tilde{a}) = 0$, quindi dalla definizione dell'omomorfismo di connessione e dalla commutatività:

$$\partial b'' - \partial b = \partial \alpha_k(\tilde{a}) \Rightarrow \alpha_{k-1}(a'') - \alpha_{k-1}(a) = \alpha_{k-1}(\partial \tilde{a})$$

Ma α_{k-1} è omomorfismo iniettivo quindi $a''-a-\partial \tilde{a}=0$ cioè $a''-a=\partial \tilde{a}$, quindi siccome a'' e a differiscono per un bordo sono omologhi.

Si può quindi definire δ su $[\![c]\!] \in H_p(C_k)$:

$$\delta(\llbracket c \rrbracket) = \llbracket \alpha \circ \partial \circ \beta^{-1}(c) \rrbracket$$

Questa è ben definita.

2.5 Omologia singolare relativa

Sia X uno spazio topologico e A sottospazio generico di X (anche improprio), cioè $A \hookrightarrow X$. Vorrei definire l'omologia singolare di X tenendo presente la presenza di A, cioè $H_k(X,A)$, il k-esimo gruppo di omologia singolare dellla coppia (X,A). Sia $S_k(A)$ lo spazio delle k-catene in A, cioè lo spazio generato dai simplessi singolari in A, la mappa di inclusione $i\colon A\to X$ induce una mappa $i_\sharp\colon S_k(A)\to S_k(X)$. Questa mappa è sicuramente iniettiva (basta vedere le catene di A come catene di X, per cui $S_k(A)\subseteq S_k(X)$). A questo punto la successione

$$0 \xrightarrow{h} S_k(A) \xrightarrow{i_{\sharp}} S_k(X) \xrightarrow{\beta} S_k(X) /_{S_k(A)} \xrightarrow{k} 0$$

è esatta infatti hiniettiva e β suriettiva. Vale che:

$$\operatorname{Im}(h) = \operatorname{Ker}(i_{\sharp}) = 0$$

$$\operatorname{Ker}(k) = \operatorname{Im}(\beta) = \frac{S_k(X)}{S_k(A)}$$

$$\operatorname{Ker}(\beta) = \operatorname{Im}(i_{\sharp})$$

di cui l'ultima è valida in quanto il nucleo della proiezione su un sottospazio è il sottospazio stesso e $\mathrm{Im}(i_\sharp)\cong S_k(A)$ in quanto i_\sharp è iniettiva. Pongo come notazione $S_k(X)/S_k(A)=S_k(X,A)$, in questo modo la successione diventa:

$$0 \longrightarrow S_k(A) \xrightarrow{i_{\sharp}} S_k(X) \xrightarrow{\beta} S_k(X,A) \longrightarrow 0$$

A partire da questa successione posso costruire una successione esatta corta di complessi (la mappa tra complessi è l'applicazione bordo):

I quadrati sono commutativi quindi questa successione esatta corta di complessi ne induce una esatta lunga. Si ottiene quindi:

$$\dots \longrightarrow H_k(A) \xrightarrow{\alpha_*} H_k(B) \xrightarrow{\beta_*} H_k(X,A) \xrightarrow{\delta} H_{k-1}(A) \longrightarrow \dots$$

Si definisce quindi in questo modo l'**omologia singolare della coppia** $H_k(X, A)$.

2.5.1 Successioni spezzanti

Definizione 2.5.1 (Prima definizione) Si dice che una successione esatta corta di Z-moduli:

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

spezza se esiste un endomorfismo continuo $\varphi \colon B \to B$ idempotente (cioè tale che $\varphi^2 = \varphi$) e tale che $\operatorname{Ker}(\varphi) = \operatorname{Im}(\alpha) = \operatorname{Ker}(\beta)$ oppure $\operatorname{Im}(\varphi) = \operatorname{Im}(\alpha) = \operatorname{Ker}(\beta)$

Sia $B = A \oplus C$ con A, C \mathbb{Z} -moduli, in quello che segue il ruolo di A e C può essere scambiato. A questi moduli sono associate la mappa di inclusione e di passaggio al quoziente:

$$i \colon A \to A \oplus C$$

 $a \mapsto (a,0)$

$$j \colon A \oplus C \to C$$

 $(a,c) \mapsto c$

La mappa i è iniettiva perché è un'inclusione, mentre j è suriettiva perché è un passaggio al quoziente, si può quindi costruire la successione esatta corta:

$$0 \longrightarrow A \stackrel{i}{\longrightarrow} B = A \oplus C \stackrel{j}{\longrightarrow} C \longrightarrow 0$$

Ma esiste anche l'inclusione $s \colon C \to B$ e quindi ho;

$$C \xrightarrow{s} A \oplus C \xrightarrow{j} C$$
$$c \longmapsto (0,c) \longmapsto c$$

Vale che e $j \circ s = \mathbb{I}_C$. Se B è proprio somma diretta di A e C posso sempre fare questa costruzione, ma nelle successioni esatte generiche non è cosi. Una successione spezza quando ha un comportamento come questo, e la mappa s tale che $j \circ s = \mathbb{I}_C$ è detta **sezione dell'omomorfismo** $j \colon B \to C$.

Definizione 2.5.2 (Seconda definizione) Si dice che la successione esatta di Z-moduli

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

 ${\it spezza}$ se esiste una sezione da C a B o da B ad A, cioè:

 $\exists s \colon C \to B \text{ omomorfismo continuo tale che } \beta \circ s = \mathbb{I}_C$ oppure

 $\exists s' \colon B o A$ omomorfismo continuo tale che $s' \circ \alpha = \mathbb{I}_A$

Questo è equivalente a dire che $B=A\oplus s(C)$, infatti vale l'osservazione

Osservazione 2.5.3 Se la successione $0 \to A \to B \to C \to 0$ spezza allora $B \cong A \oplus s(C)$ con s sezione. Il viceversa l'ho già dimostrato, infatti se B si scrive come somma diretta la sezione è hangle

Dimostrazione: Per dimostrare che $B \cong A \oplus s(C)$ per prima cosa mostro che l'intersezione tra A e s(C) è vuota.

Siccome α è iniettiva allora $\alpha(A)\cong A$, inoltre $s(C)\subseteq B$ in quanto per ipotesi $s\colon C\to B$. Sia $x\in\alpha(A)\cap s(C)$, mostro che x=0.Siccome $x\in\alpha(A)$ allora esiste $a\in A$ tale che $x=\alpha(a)$ e siccome $x\in s(C)$ allora esiste $k\in C$ tale che x=s(k), naturalmente $\alpha(a)=s(k)$. Applicando β si ottiene $(\beta\circ\alpha)(a)=(\beta\circ s)(k)$, ma $\beta\circ\alpha=0$ in quanto la successione è esatta, quindi $(\beta\circ s)(k)=0$. Ma s è sezione quindi $\beta\circ s=\mathbb{I}_C$, quindi k=0, ma siccome s è omomorfismo allora s(k)=0, perciò x=s(k)=0.

A questo punto bisogna dimostrare che ogni elemento di B si scrive come somma di un elemento di $\alpha(A)$ e di un elemento di s(C).

Sia $b \in B$ allora $\beta(b) \in C$, ci sono due possibilità:

- 1. Se $\beta(b) = 0$ significa $b \in \text{Ker}(\beta) = \text{Im}(\alpha)$, quindi $b \in \text{Im}(a)$, cioè $\exists \alpha \in A$ tale che $b = \alpha(a)$ e quindi si scrive come elemento di A sommato a zero.
- 2. Se $\beta(b)=c\neq 0$ allora $b-s(t)\in B$, mostro che $b-s(t)\in {\rm Ker}(\beta)$ e quindi posso usare lo stesso ragionamento di prima.

$$\beta(b - s(t)) = \beta(b) - \beta(s(t)) = t - t = 0 \Rightarrow \beta(b - s(t)) \in \text{Ker}(b) = \text{Im}(\alpha)$$

Quindi esiste $a' \in A$ tale che $\alpha(a') = b - s(t)$ e quindi vale che $b = s(t) + \alpha(a')$

Siccome l'intersezione tra A e s(C) è vuota e ogni elemento di B si può scrivere come somma di un elemento di A e di uno di s(C) allora B è somma diretta di A e s(C).

Sostanzialmente una successione esatta corta spezza se vale il diagramma commutativo:

Esempio 2.5.4 (Successione non spezzante) Considero la successione:

$$0 \longrightarrow n\mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \stackrel{\beta}{\longrightarrow} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

Questa successione è esatta ma non spezza, infatti se spezzasse varrebbe che:

$$\mathbb{Z}_n \oplus n\mathbb{Z} \cong \mathbb{Z}$$

Ma questa non è possibile in quanto $n\mathbb{Z} \cong \mathbb{Z}$ e \mathbb{Z}_n non è banale. Più precisamente si vede che non può esistere una sezione $s \colon \mathbb{Z}_n \to Z$.

Proposizione 2.5.5 Le due definizioni di successione che spezza sono equivalenti, cioè se $\exists s \colon C \to B$ tale che $\beta \circ s = \mathbb{I}_C$ allora $\exists \varphi \colon B \to B$ tale che sia idempotente e che $\mathrm{Ker}(\varphi) = \mathrm{Ker}(\beta)$

Dimostrazione: Una possibile costruzione è $\varphi = s \circ \beta$, infatti:

$$\varphi^2 = s \circ \beta \circ s \circ \beta = s \circ \mathbb{I}_C \circ \beta = s \circ \beta = \varphi$$

Quindi φ è idempotente. Siccome s omomorfismo $\operatorname{Ker}(\beta) \subseteq \operatorname{Ker}(s \circ \beta)$, mostro che $\operatorname{Ker}(s \circ \beta) \subseteq \operatorname{Ker}(\beta)$:

$$\operatorname{Ker}(\varphi) = \operatorname{Ker}(s \circ \beta) = \{ b \in B \mid (s \circ \beta)(b) = 0 \}$$

Quindi $s(\beta(b)) = 0$ cioè $\beta \circ s \circ \beta(b) = 0$ quindi $\beta(b) = 0$ che significa che $b \in \text{Ker}(\beta)$. Ma quindi $\text{Ker}(\beta) \subseteq \text{Ker}(s \circ \beta) \subseteq \text{Ker}(\beta)$ allora $\text{Ker}(s \circ \beta) = \text{Ker}(\beta)$. Rimane da mostrare il viceversa.

Esercizio 4 Mostrare che se esiste l'endomorfismo φ allora si può costruire una sezione.

Le due definizioni sono quindi equivalenti.

2.6 Omologia singolare ridotta

Fin ora ho parlato di omologia singolare $H_k(X)$, omologia singolare relativa $H_k(X,A)$, ora introduco l'omologia singolare ridotta.

Definizione 2.6.1 Sia X uno spazio topologico e $A = \{x_0 \in X\}$, è ben definita l'omologia relativa $H_k(X,A)$, si definisce questa come **omologia singolare ridotta** $\tilde{H}_k(X)$. L'omologia singolare ridotta è l'omologia relativa ad un punto.

Per costruire l'omologia singolare ridotta servono le k-catene in X e le k-catene in $\{x_0\}$

$$0 \longrightarrow S_k(\lbrace x_0 \rbrace) \longrightarrow S_k(X) \longrightarrow S_k(X)/S_k(\lbrace x_0 \rbrace) = S_k(X,\lbrace x_0 \rbrace) \longrightarrow \dots$$

In $S_k \sigma \colon \Delta_k \to \{x_0\}$ è simplesso sono le applicazioni costanti dal k-simplesso standard in $\{x_0\}$. Quindi $S_k(\{x_0\}) = \langle \sigma_k \rangle \sigma_k$ è l'unica mappa che c'è.

Lemma 2.6.2 (Omologia di un punto) Sia $X = \{x_0\}$ con $x_0 \in X$, allora:

$$H_k(\lbrace x_0 \rbrace) \cong \begin{cases} \mathbb{Z} & \text{se } k = 0 \\ 0 & \text{se } k \ge 1 \end{cases}$$

Dimostrazione: Il generico k-simplesso singolare in X è una mappa continua $\sigma_k \colon \Delta_k \to \{x_0\}$, quindi fissato k esiste un solo simplesso singolare, che è la mappa costante dal simplesso standard a x_0 . Il generico $S_k(X)$ quindi è il gruppo libero generato da questo simplesso singolare, cioè $S_k(X) = \langle \sigma_k \rangle$. A questo punto fissato k si può computare semplicemente il bordo di σ_k :

$$\partial \sigma_k = \sum_{i=0}^k (-)^i \sigma_k^{(i)} \, \operatorname{con} \, \sigma_k^{(i)} \colon \Delta_{k-1} \overset{F_k^{\ i}}{\to} \Delta_k \overset{\sigma_k}{\to} \{ \, x_0 \, \} \, \operatorname{cioè} \, \sigma_k^{(i)} = \sigma_{k-1}$$

Fissato k nella sommatoria che calcola il bordo tutte le quantita sono uguali, quindi la somma a segni alterni è nulla oppure è uguale a σ_{k-1} a seconda della parità di k.

$$\partial \sigma_k = \begin{cases} 0 & \text{se } k \text{ dispari} \\ \sigma_{k-1} & \text{se } k \text{ pari} \end{cases}$$

A questo punto si può calcolare facilmente il nucleo e l'immagine dell'operatore bordo:

$$\operatorname{Ker}(\partial_k) = \begin{cases} 0 & k \text{ dispari} \\ S_k(X) & k \ge 2 \text{ pari} \end{cases}$$

E:

$$\operatorname{Im}(\partial_{k+1}) = egin{cases} 0 & k ext{ dispari} \\ S_k(X) & k \geq 2 ext{ pari} \end{cases}$$

Infatti, se $k \ge 2$ ed è pari:

$$\partial_k \colon S_k(\lbrace x_0 \rbrace) \to S_{k-1}(\lbrace x_0 \rbrace)$$

 $\sigma_k \mapsto \sigma_{k-1}$

quindi solo lo 0 è mandato in 0, mentre se è dispari:

$$\partial_k \colon S_k(\lbrace x_0 \rbrace) \to S_{k-1}(\lbrace x_0 \rbrace)$$

 $\sigma_k \mapsto 0$

quindi tutto viene mandato in 0 Invece per k pari:

$$\partial_{k+1} \colon S_{k+1}(\lbrace x_0 \rbrace) \to S_k(\lbrace x_0 \rbrace)$$

 $\sigma_{k+1} \mapsto \sigma_k$

quindi l'immagine è il generatore, cioè tutto $S_k(X)$, mentre per $k \geq 2$ pari:

$$\partial_k \colon S_k(\lbrace x_0 \rbrace) \to S_{k-1}(\lbrace x_0 \rbrace)$$
 $\sigma_k \mapsto 0$

Quindi l'immagine è solo 0.

A questo punto se $k \ge 2 \operatorname{Im}(\partial_{k+1}) = \operatorname{Ker}(\partial_k)$, quindi:

$$H_k(X) = \frac{\operatorname{Ker}(\partial_k)}{\operatorname{Im}(\partial_{k+1})} \cong 0$$

Invece se k=0 vale che $\mathrm{Ker}(\partial_0)=S_0(X)$, mentre $\mathrm{Im}(\partial_1)=0$ quindi:

$$\operatorname{Ker}(\partial_0)/_{\operatorname{Im}(\partial_1)} \cong S_0(X)$$

Questo è sostanzialmente l'unico caso in cui si può calcolare direttamente dalla definizione i gruppi di omologia. $\hfill\Box$

Proposizione 2.6.3 *Vale che:*

$$ilde{H}_k(X)\cong egin{cases} H_0(X)/\mathbb{Z} & \textit{se } k=0 \ H_k(X) & \textit{se } k\geq 1 \end{cases}$$

Dimostrazione: Per dimostrarlo uso la successione esatta lunga in omologia relativa:

$$\dots \longrightarrow H_{k+1}(\lbrace x_0 \rbrace) \longrightarrow H_{k+1}(X) \longrightarrow \tilde{H}_{k+1}(X) \longrightarrow H_k(\lbrace x_0 \rbrace) \longrightarrow \dots$$

Nel caso $k \ge 1$ tutti i gruppi di omologia del punto sono banali, quindi il complesso diventa:

$$0 \xrightarrow{i} H_{k+1}(X) \xrightarrow{\psi} \tilde{H}_{k+1}(X) \xrightarrow{j} 0$$

La successione è esatta quindi ψ è iniettiva, ma è suriettiva essendo una proiezione al quoziente, quindi è un isomorfismo e perciò $H_m(X)\cong \tilde{H}_m(X)$ per $m\geq 2$. Mi rimane da calcolare il caso k=1 e il caso k=0. Considero la successione esatta:

$$0 \to H_1(\{x_0\}) \to H_1(X) \to \tilde{H}_1(X) \to H_0(\{x_0\}) \to H_0(X) \to \tilde{H}_0(X) \to 0$$

So che $H_1(\{x_0\}) = 0$ quindi:

$$0 \longrightarrow H_1(X) \stackrel{\varphi}{\longrightarrow} \tilde{H}_1(X) \stackrel{j}{\longrightarrow} H_0(\{x_0\}) \stackrel{i_\star}{\longrightarrow} H_0(X) \stackrel{\tau}{\longrightarrow} \tilde{H}_0(X) \longrightarrow 0$$

Inoltre so sempre dall'omologia di un punto che $H_0(\{x_0\})$ è il gruppo libero di rango uno, sia la classe di $\sigma_0 \colon \Delta_0 \to \{x_0\}$ il generatore. È definita una mappa di inclusione $i \colon \{x_0\} \to X$ che induce

$$i_{\star} \colon H_0(\lbrace x_0 \rbrace) \to H_0(X)$$

$$\llbracket \sigma_0 \rrbracket \mapsto \llbracket i \circ \sigma_0 \rrbracket = \llbracket \sigma_0 \rrbracket$$

Poi si estende per linearità al generico elemento $c=k\sigma_0$ con $k\in\mathbb{Z}$, inoltre si è usato che $i\circ\sigma_0=\sigma_0$ perché σ_0 è lo 0-simplesso singolare costante che vale x_0 . In particolare $\mathrm{Im}(i_\star)=H_0(\{\,x_0\,\})$. Questa mappa indotta è iniettiva, infatti sia $c=k\sigma_0\in H_0(\{\,x_0\,\})$:

$$i_{\star}(\llbracket c \rrbracket) = \llbracket 0 \rrbracket \iff \llbracket i \circ c \rrbracket = \llbracket 0 \rrbracket \iff \exists u \in S_1(X) \text{ tale che } i \circ c - 0 = \partial u \Rightarrow i \circ c = \partial u$$

Ma $c=k\sigma_0$, quindi:

$$ki \circ \sigma_0 = \partial u \Rightarrow k \circ \sigma_0 = \partial u \Rightarrow c = \partial u$$

Ma quindi c e 0 differiscono per un bordo, quindi c è nella stessa classe di equivalenza di 0, cioè [c] = [0] e quindi $\mathrm{Ker}(i_\star) = 0$, cioè i_\star è iniettiva. Quindi $\mathrm{Ker}(i_\star) = 0$ da cui $\mathrm{Im}(j) = \mathrm{Ker}(i_\star) = 0$, perciò posso scrivere la successione esatta corta:

$$0 \longrightarrow H_1(X) \stackrel{\varphi}{\longrightarrow} \tilde{H}_1(X) \stackrel{j}{\longrightarrow} 0$$

Siccome φ è iniettiva ma e è anche suriettiva perché è proiezione sul quoziente allora è isomorfismo e quindi $H_1(X)\cong \tilde{H}_1(X)$. [NON SONO SICURO DI QUESTO, RIASCOLTARE!!!] Ma siccome $H_1(X)\cong \tilde{H}_1(X)$ allora la successione lunga iniziale diventa:

$$0 \longrightarrow H_1(X) \stackrel{j}{\longrightarrow} H_0(\lbrace x_0 \rbrace) \stackrel{i_{\star}}{\longrightarrow} H_0(X) \stackrel{\tau}{\longrightarrow} \tilde{H}_0(X) \longrightarrow 0$$

Quindi ora j è iniettiva perciò sono 0 va in 0:

$$0 \longrightarrow H_0(\lbrace x_0 \rbrace) \xrightarrow{i_{\star}} H_0(X) \xrightarrow{\tau} \tilde{H}_0(X) \longrightarrow 0$$

Ma τ è suriettiva, quindi $\operatorname{Im}(\tau) = \tilde{H}_0(X)$, inoltre la successione è esatta quindi $\operatorname{Ker}(\tau) = \operatorname{Im}(i_\star) = H_0(\{x_0\})$, quindi $H_0(X)/H_0(\{x_0\}) \cong \tilde{H}_0(X)$ infatti $H_0(X)/\operatorname{Ker}(\tau) \cong \operatorname{Im}(\tau)$ per il teorema fondamentale dell'isomorfismo.

Quindi ho trovato che $\forall k \geq 1$ i gruppi di omologia singolare e omologia singolare ridotta sono isomorfi, mentre per k=0 ho trovato che:

$$\tilde{H}_0(X) = \frac{H_0(X)}{H_0(\{x_0\})} \cong \frac{H_0(X)}{Z}$$

Se voglio mostrare che $H_0(X) \cong \tilde{H}_0(X) \oplus \mathbb{Z}$ basta che mostro che esiste una sezione, ovvero che la successione esatta corta:

$$0 \longrightarrow H_0(X) \longrightarrow \tilde{H}_0(X) \longrightarrow \mathbb{Z} \longrightarrow 0$$

spezza. Questo è sempre vero, a meno di casi eccezionalmente patologici.

Esempio 2.6.4 Considero ad esempio $H_k(S^n)$ con $n \ge 1$:

$$H_k(\mathcal{S}^n) \cong egin{cases} \mathbb{Z} & \textit{se } k \in \{\,0, n\,\} \ 0 & \textit{se } k
ot\in \{\,0, n\,\} \end{cases}$$

Fin ora so che:

$$H_1(\mathcal{S}^n)\congegin{cases} \mathbb{Z} & \textit{se } n=1 \ 0 & \textit{se } n\geq 2 \end{cases}$$

E che $H_0(S^n) \cong \mathbb{Z}$ per $n \geq 1$, vorrei calcolare gli altri gruppi di omologia, ma per farlo mi servono altri strumenti.

2.7 Assiomi di una teoria omologica

Definizione 2.7.1 (Teoria omologica secondo Eilenberg e Steenrod) Una teoria omologica sulla categoria di tutte le coppie di spazi topologici e mappe continue è un funtore che assegna ad ogni coppia di spazi (X,A) un gruppo abeliano $H_p(X,A)$ per il quale si pone $H_k(X) := H_k(X,\varnothing)$ e ad ogni applicazione continua $f: (X,A) \to (Y,B)$ un omomorfismo $f_\star\colon H_k(X,A) \to H_k(Y,B)$ con una trasformazione naturale $\delta_k\colon H_k(X,A) \to H_{k-1}(A)$, detta omomorfismo di connessione tale che siano soddisfatti i seguenti assiomi:

- 1. (Omotopia): se $f \sim_H g$ con $f, g: (X, A) \to (Y, B)$ mappe continue, allora $f_\star = g_\star$. Dove $f \sim_H g$ se esiste una funzione continua $F: X \times I \to Y$ tale che F(x, 0) = f(x), F(x, 1) = g(x) e $F(a, t) \subseteq B \ \forall a \in A \ e \ \forall t \in I$.
- 2. (Esattezza): Per ogni inclusione $i: A \hookrightarrow X$ e $j: X \hookrightarrow (X,A)$ la successione:

$$\dots \longrightarrow H_p(A) \xrightarrow{i_{\star}} H_p(X) \xrightarrow{j_{\star}} H_p(X,A) \xrightarrow{\delta_p} H_{p-1}(A) \longrightarrow \dots$$

è esatta.

- 3. (Dimensione): $H_k(P) = 0 \ \forall k \neq 0$ dove P è lo spazio formato da un solo punto.
- 4. (Additività): Se X è la somma topologica di spazi X_{α} allora $H_p(X) = \bigoplus_{\alpha} H_p(X_{\alpha})$
- 5. (Escissione): Se U è un aperto in X tale che $\bar{U} \subset \operatorname{int}(A)$ allora la mappa di inclusione di (X-U,A-U) in (X,A) induce un isomorfismo tra i gruppi di omologia:

$$H_k(X-U,A-U) \cong H_k(X,A) \quad \forall k \in \mathbb{N}$$

(cioè togliendo un opportuno insieme da (X, A) l'omologia non sente della escissione).

Per trasformazione naturale si intende che $\forall f\colon (X,A)\to (Y,B)$ il seguente diagramma è commutativo:

$$H_p(X,A) \xrightarrow{\delta} H_{p-1}(A)$$

$$\downarrow^{f_{\star}} \qquad \qquad \downarrow^{f'_{\star}}$$

$$H_p(Y,B) \xrightarrow{\delta} H_{p-1}(B)$$

dove $f'=f\big|_A$. Mentre la richiesta che sia funtore significa che se $f\colon (X,A)\to (Y,B)$ e $g\colon (Y,B)\to (Z,C)$ sono mappe continue allora $(g\circ f)_\star=g_\star\circ f_\star$ e che $(\mathbb{I}_X)_\star=\mathbb{I}_{H_k(X)}$.

L'omologia singolare relativa soddisfa tutti questi assiomi, ma non tutti sono stati ancora verificati, cioè l'omotopia e l'escissione.

Definizione 2.7.2 Sia $\{X_{\alpha}\}$ una famiglia di spazi topologici, si definisce la **somma topologica** $X = \coprod_{\alpha} X_{\alpha}$ come lo spazio topologico formato dall'unione disgiunta di tutti gli X_{α} equipaggiato con la **topologia debole**, ovvero un insieme è aperto se e solo se è aperto rispetto alla topologia di ogni X_{α} .

Proposizione 2.7.3 Esiste almeno una teoria che soddisfa gli assiomi di Eilenberg e Steenrod.

Dimostrazione: [MANCA DA SISTEMARE TUTTA QUESTA PROOF!!!] L'omologia singolare relativa soddisfa gli assiomi di Eilenberg e Steenrod, ne ripercorro la costruzione e metto in luce il collegamento con gli assiomi.

Ho introdotto gli spazi di k-catene e ho definito $S_k(X,A) = \frac{S_k(X)}{S_k(A)}$, poi ho costruito con l'operatore di bordo ∂ e la proiezione al quoziente P la successione esatta corta:

$$0 \longrightarrow S_k(A) \longrightarrow S_k(X) \longrightarrow S_k(X,A) = \frac{S_k(X)}{S_k(A)} \longrightarrow 0$$

Cioè in modo più esteso:

Posso costruire ∂' tale che i quadrati siano commutativi, cioè tale che $P \circ \partial = \partial' \circ P$, infatti: sia $c \in S_{k+1}(X)$ allora la sua immagine tramite P è la classe di equivalenza $P(c) = [c' \in S_{k+1}(X)$ tale che $c' - c \in S_{k+1}(A)]$, allora definisco $\partial'([c]_A) := [\partial c]_A$ dove con il pedice A indico la relazione di equivalenza indotta dalle k-catene in A, così la relazione è automaticamente soddisfatta.

Devo verificare che ∂' è ben definita cioè che se prendo elementi equivalenti ottengo elementi equivalenti. Se $c'\sim_A c$ allora $\exists a\in S_{k+1}(A)$ tale che c'-c=a, prendo il bordo

 $\partial c' - \partial c = \partial a$, ma $\partial a \in S_k(A)$ quindi $\partial c'$ e ∂c differiscono per un elemento in $S_k(A)$ e quindi $\partial c' \sim_A \partial c$ perciò l'applicazione è ben definita.

L'omologia relativa singolare è l'omologia singolare del complesso $S_{\bullet}(X,A)$, cioè per definizione:

$$H_k(X,A) = H_k(S_{\bullet}(X,A)) = \frac{\operatorname{Ker}(S_k(X,A) \to S_{k-1}(X,A))}{\operatorname{Im}(S_{k+1}(X,A) \to S_k(X,A))}$$

Questo gruppo abeliano (in quanto è quoziente di gruppi abeliani) è detto gruppo di omologia relativa della coppia (X,A). Se in particolare $A=\varnothing$ allora riottengo $H_k(X,\varnothing)=H_k(X)$. Ho fatto un'associazione da una coppia a un gruppo, voglio verificare che questa sia funtoriale.

Sia $f:(X,A)\to (Y,B)$ continua tale che $f(A)\subseteq B$, definisco:

$$f_{\star} \colon H_k(X, A) \to H_k(Y, B)$$

$$\llbracket c \rrbracket_A \mapsto \llbracket f_{\dagger}(c) \rrbracket_B$$

I pedici A e B stanno a ricordare che l'omologia è relativa. Quindi ho;

 f_{\sharp} esiste, infatti:

$$S_{k}(X) \xrightarrow{f} S_{k}(Y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{k}(X)/S_{k}(A) \xrightarrow{f_{\sharp}} S_{k}(Y)/S_{k}(B)$$

 f_{\sharp} esiste perché $S_k(A) \to S_k(B)$ per la condizione $f(A) \subseteq B$ quindi simplessi singolari in A vanno a finire in simplessi singolari in B. Una volta che ho f_{\sharp} posso scendere a livello di omologia prendendo la classe di equivalenza.

Inoltre ho dimostrato che se $(X,A) \xrightarrow{f} (Y,B) \xrightarrow{g} (Z,C)$, allora $(g \circ f)_{\star} = g_{\star} \circ f_{\star}$ e $(X,A) \xrightarrow{\mathbb{I}_{X}} (X,A)$ allora $(\mathbb{I}_{X})_{\star} = \mathbb{I}_{H_{k}(X,A)}$.

Poi ho δ omomorfismo di connessione $\delta \colon H_{k+1}(X,A) \to H_k(A)$, ho che se ho una successione esatta di complessi:

$$0 \longrightarrow S_{\bullet}(A) \longrightarrow S_{\bullet}(X) \longrightarrow S_{\bullet}(X,A) \longrightarrow \dots$$

Esiste una successione lunga in omologia:

$$\dots \longrightarrow H_k(A) \longrightarrow H_k(X) \longrightarrow H_k(X,A) \stackrel{\delta}{\longrightarrow} H_{k-1}(A) \longrightarrow \dots$$

Ho dimostrato che $H_k(P)=H_k(P,\varnothing)=0$ per $k\geq 1$ e P insieme formato da un solo punto in X, inoltre so che $H_k(\coprod_{\alpha} X_{\alpha})\cong \bigoplus_{\alpha} H_k(X_{\alpha})$ con X_{α} varie componenti connesse per archi.

Mi rimangono da verificare l'invarianza omotopica e l'escissione.

Quindi gli assiomi di Eilenberg e Steenrod non definiscono una teoria vuota ma c'è almeno una teoria a soddisfarli, che è l'omologia singolare relativa.

In futuro verificherò gli assiomi mancanti.

2.7.1 Omologia ridotta per una qualsiasi teoria omologica

Sia $X \neq \emptyset$ spazio topologico e $p \in X$ punto $(P = \{p\})$, allora sono ben definite le applicazioni di inclusione i e la mappa costante ϵ :

$$i: P \to X$$

 $\epsilon: X \to P$

Si ha che $\epsilon \circ i = \mathbb{I}_P$ in quanto $P \overset{i}{\to} X \overset{\epsilon}{\to} P$. Dagli assiomi deriva l'esistenza di un'applicazione indotta sui gruppi di omologia: $\epsilon_\star \colon H_0(X) \to H_0(P)$, questa è suriettiva perché per le proprietà funtoriali $(\epsilon \circ i)_\star = (\mathbb{I}_p)_\star = \mathbb{I}_{H_0(p)}$ e $(\epsilon \circ i)_\star = \epsilon_\star \circ i_\star$ quindi $\epsilon_\star \circ i_\star = \mathbb{I}_{H_0(p)}$, quindi:

$$\forall y \in H_0(P)$$
 vale che $(\epsilon_{\star} \circ i_{\star})(y) = y$ quindi $\epsilon_{\star}(i_{\star}(y)) = y$

Sia $i_{\star}(y)=x\in H_0(X)$ allora $\epsilon_{\star}(x)=y$, quindi ϵ_{\star} è suriettiva. A partire da ciò posso costruire una successione esatta, infatti per ora ho:

$$H_0(X) \xrightarrow{\epsilon_{\star}} H_0(P) \longrightarrow 0$$

Per il teorema fondamentale degli omomorfismi:

$$H_0(X)/_{\operatorname{Ker}(\epsilon_{\star})} \cong \operatorname{Im}(\epsilon_{\star}) = H_0(P)$$

Se ora considero la mappa iniettiva $\alpha \colon \operatorname{Ker}(\epsilon_\star) \hookrightarrow H_0(X)$, quindi tale che $\operatorname{Im}(\alpha) = \operatorname{Ker}(\epsilon_\star)$, la successione corta è automaticamente esatta (infatti $\epsilon_\star \circ \alpha = 0$, dato che in $H_0(P) \operatorname{Ker}(\epsilon_\star)$ è ridotto al solo 0):

$$0 \longrightarrow \operatorname{Ker}(\epsilon_{\star}) \xrightarrow{\alpha} H_0(X) \xrightarrow{\epsilon_{\star}} H_0(P) \longrightarrow 0$$

Inoltre, siccome $\epsilon_\star \circ i_\star = \mathbb{I}_{H_0(p)}$, la successione spezza perché esiste una sezione i_\star , perciò $H_0(X) \cong \operatorname{Ker}(\epsilon_\star) \oplus H_0(P)$. Si ha quindi che per qualsiasi teoria omologia che soddisfa gli assiomi di Eilenberg e Steenrod (infatti ho utilizzato solo gli assiomi), e quindi in particolare per l'omologia singolare relativa, si ha che $H_0(X) \cong \operatorname{Ker}(\epsilon_\star) \oplus H_0(P)$.

Generalmente si chiama $H_0(P)$ il **gruppo dei coefficienti** di una teoria omologica e viene denotato con $\mathcal G$. Nell'omologia singolare relativa questo è $\mathbb Z$. Inoltre si definisce $\operatorname{Ker}(\epsilon_\star)=\tilde H_0(X)$ **gruppo di omologia ridotta di ordine zero**, quindi ho trovato che $H_0(X)\cong \tilde H_0(X)\oplus \mathcal G$.

Cosa sono invece gli $\tilde{H}_k(X)$? Vorrei che fossero proprio $H_k(X)$, così come nel solo nel caso dell'omologia singolare.

Proposizione 2.7.4 In qualsiasi teoria omologica di Eilenberg e Steenrod, se $\tilde{H}_k(X)$ sono i gruppi di omologia ridotta allora:

$$H_k(X)\cong egin{cases} ilde{H}_0(X)\oplus \mathcal{G} & \textit{se }k=0\ ilde{H}_k(X) & \textit{se }k
eq 0 \end{cases}$$

 $\mathit{Con}\ \epsilon \colon X \to P\ \mathit{dove}\ P = \{\ p\ \}\ \mathit{con}\ p \in X.$

Dimostrazione: Considero $F: (X, A) \rightarrow (P, P)$ con:

$$F = \begin{cases} \epsilon_X \colon X \to P \\ \epsilon_A \colon A \to P \end{cases}$$

In generale:

$$0 \longrightarrow \operatorname{Ker}(\epsilon_X) \longrightarrow H_k(X) \xrightarrow{\epsilon_{\star}} H_k(P) \longrightarrow 0$$

Per $k \geq 1$ $\operatorname{Ker}(\epsilon_X) = H_k(X)$, in quanto per gli assiomi $H_k(P) \cong 0$ se $k \geq 1$, quindi la successione si riduce a:

$$0 \longrightarrow \operatorname{Ker}(\epsilon_X) \longrightarrow H_k(X) \longrightarrow 0$$

Mentre per k=0 ho che $H_0(X)\cong \tilde{H}_0(X)\oplus \mathcal{G}$, quindi:

$$ilde{H}_k(X) = egin{cases} H_k(X) & \operatorname{per} k \geq 1 \\ ilde{H}_0(X) \oplus \mathcal{G} & \operatorname{per} k = 0 \end{cases}$$

Questo lo posso fare anche nel caso di una coppia.

$$0 \longrightarrow \operatorname{Ker}(F_{\star}) \longrightarrow H_k(X, A) \longrightarrow H_k(p, p) \longrightarrow 0$$

E si definisce $\tilde{H}_k(X,A) = \operatorname{Ker}(F_\star)$. Calcolo $H_k(P,P)$ con P spazio formato da un solo punto in X. So che c'è una successione esatta lunga per gli assiomi:

$$\dots \longrightarrow H_k(P) \longrightarrow H_k(P) \longrightarrow H_k(P,P) \longrightarrow H_{k-1}(P) \longrightarrow \dots$$

Cioè ho posto X=P e A=P. Ma io conosco l'omologia di un punto, che è nulla per $k\geq 1$ mentre vale il gruppo dei coefficienti per k=0. Supponendo $k\geq 2$ la successione diventa:

$$0 \longrightarrow H_k(P,P) \longrightarrow 0$$

E quindi $H_k(P, P) = 0$. Mentre se k = 1 allora:

$$\dots \to H_1(P) \to H_1(P) \to H_1(P,P) \to H_0(P) \to H_0(P) \to H_0(P,P) \to 0$$

Cioè siccome $H_1(P) \cong 0$:

$$0 \longrightarrow H_1(P,P) \stackrel{i}{\longrightarrow} H_0(P) \stackrel{j}{\longrightarrow} H_0(P) \stackrel{k}{\longrightarrow} H_0(P,P) \longrightarrow 0$$

Ma quindi ho $H_0(P) \to H_0(P)$ che sarebbe $H_0(A) \to H_0(X)$ e quindi la mappa che li collega è quella indotta dall'inclusione, che per X=A=P e l'indentità, ma per la funtorialità viene mandata nell'indentità, quindi j è isomorfismo. Per l'esattezza della successione $\mathrm{Ker}(j)=\mathrm{Im}(i)$, quindi posso riscrivere la prima parte della successione come:

$$0 \longrightarrow H_1(P,P) \longrightarrow 0$$

Da cui
$$H_1(P,P)=0$$
. Similmente $\operatorname{Ker}(k)=\operatorname{Im}(j)=H_0(P)$ quindi $H_0(P,P)=0$ perché $H_0(P,P)\cong H_0(P)\big/_{\operatorname{Ker}(k)}\cong H_0(P)\big/_{H_0(P)}=0$.

Corollario 2.7.5 Se X è uno spazio topologico contraibile allora $\tilde{H}_k(X) = 0$.

Dimostrazione: Se X è contraibile allora $X \sim_H P$ cioè $\exists f \colon X \to P$ e $\exists g \colon P \to X$ continue tali che $f \circ g \sim_H \mathbb{I}_P$ e $g \circ f \sim_H \mathbb{I}_X$, quindi per la funtorialità e l'assioma dell'omotopia vale che passando a livello di omologia: $f_\star \circ g_\star = \mathbb{I}_{H_k(P)}$ e $g_\star \circ f_\star = \mathbb{I}_{H_k(X)}$ quindi f_\star e g_\star sono inversi l'una dell'altra, ma sempre per la funtorialità: $(f \circ g)_\star = (\mathbb{I}_P)_\star$ e $(g \circ f)_\star = (\mathbb{I}_X)_\star$.

$$H_k(X) \cong H_k(P) \cong egin{cases} \tilde{H}_k(X) = 0 & \text{se } k \geq 1 \\ \tilde{H}_0(X) \oplus \mathcal{G} = \mathcal{G} & \text{se } k = 0 \end{cases}$$

Ma quindi $\mathcal{G} = H_0(P) = \tilde{H}_0(X) \oplus \mathcal{G}$ e quindi $\tilde{H}_0(X) = 0$. Un secondo importantissimo corollario è l'omologia delle sfere.

2.8 Omologia delle sfere

Teorema 2.8.1 (Omologia di dischi e sfere) Siano per $n \ge 1$:

$$S^{n} = \{ \underline{x} \in \mathbb{R}^{n+1} \mid ||\underline{x}||^{2} = 1 \}$$

$$\mathcal{D}^{n} = \{ \underline{x} \in \mathbb{R}^{n} \mid ||\underline{x}||^{2} \le 1 \}$$

$$\mathcal{D}^{n}_{+} = \{ \underline{x} \in \mathbb{R}^{n+1} \mid ||\underline{x}||^{2} \le 1, x_{n} \ge 0 \}$$

Allora in una qualsiasi teoria omologica avente ${\cal G}$ come gruppo dei coefficienti:

$$ilde{H}_k(\mathcal{S}^n) \cong egin{cases} \mathcal{G} & \textit{se } k = n \ 0 & \textit{se } k
eq n \end{cases}$$
 $H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong egin{cases} \mathcal{G} & \textit{se } k = n \ 0 & \textit{se } k
eq n \end{cases}$
 $H_k(\mathcal{S}^n, \mathcal{D}^n_+) \cong egin{cases} \mathcal{G} & \textit{se } k = n \ 0 & \textit{se } k
eq n \end{cases}$

Quindi $\tilde{H}_k(\mathcal{S}^n) \cong H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_k(\mathcal{S}^n, \mathcal{D}^n_+).$

Dimostrazione: Comincio calcolando $H_k(\mathcal{S}^0, \mathcal{D}^0_+)$. Ho $\mathcal{S}^0 = \{-1, +1\}$ e $\mathcal{D}^0 = \{+1\}$. Siccome $\mathcal{D}^0 \subseteq \mathcal{S}^0$ per l'assioma dell'esattezza esiste una successione esatta in omologia:

$$\dots \longrightarrow H_k(\mathcal{D}^0) \longrightarrow H_k(\mathcal{S}^0) \longrightarrow H_k(\mathcal{S}^0, \mathcal{D}^0) \longrightarrow H_{k-1}(\mathcal{D}^0) \longrightarrow \dots$$

Per $k \geq 2$ $H_k(\mathcal{D}^0) = H_{k-1}(\mathcal{D}^0) \cong 0$ perché \mathcal{D}^0 è un punto, quindi la successione diventa:

$$0 \longrightarrow H_k(\mathcal{S}^0) \stackrel{i}{\longrightarrow} H_k(\mathcal{S}^0, \mathcal{D}^0) \stackrel{j}{\longrightarrow} 0$$

Ma per l'assione di additività, siccome S^0 è la somma di due punti $H_k(S^0) \cong 0$, siccome i è iniettiva perché la successione è esatta ed è suriettiva perché essendo la successione esatta $\operatorname{Im}(i) = \operatorname{Ker}(j) = H_k(S^0, \mathcal{D}^0)$ allora è isomorfismo quindi anche $H_k(S^0, \mathcal{D}^0) \cong 0$. Per calcolare i casi k = 1 e k = 0 considero la successione esatta:

$$\ldots \to H_1(\mathcal{D}^0) \to H_1(\mathcal{S}^0) \to H_1(\mathcal{S}^0, \mathcal{D}^0) \to H_0(\mathcal{D}^0) \to H_0(\mathcal{S}^0) \to H_0(\mathcal{S}^0, \mathcal{D}^0) \to 0$$

Cioè siccome l'omologia di un punto è nulla per $k \neq 0$:

$$0 \longrightarrow H_1(\mathcal{D}^0, \mathcal{S}^0) \xrightarrow{i} H_0(\mathcal{D}^0) \xrightarrow{j} H_0(\mathcal{S}^0) \longrightarrow H_0(\mathcal{S}^0, \mathcal{D}^0) \longrightarrow 0$$

Siccome $\mathcal{D}^0 \hookrightarrow \mathcal{S}^0$ in quanto $\{+1\} \hookrightarrow \{-1,+1\}$ è inieittiva a livello di omologia per l'assioma di addittività $j \colon H_0(\{+1\}) \to H_0(\{-1\}) \oplus H_0(\{+1\})$ è iniettiva, quindi $\operatorname{Ker}(j) = \operatorname{Im}(i) = 0$ quindi posso riscrivere la prima parte della successione come:

$$0 \longrightarrow H_1(\mathcal{S}^0, \mathcal{D}^0) \longrightarrow 0$$

Da cui $H_1(\mathcal{S}^0, \mathcal{D}^0) = 0$ per lo stesso ragionamento di prima. Infine per definizione $H_0(\mathcal{D}^0) = \mathcal{G}$ e per l'additività $H_0(\mathcal{S}^0) = \mathcal{G} \oplus \mathcal{G}$ quindi $H_0(\mathcal{S}^0, \mathcal{D}^0) \cong \mathcal{G} \oplus \mathcal{G}/_{\mathcal{G}} \cong \mathcal{G}$. In conclusione:

$$H_k(\mathcal{S}^0, \mathcal{D}^0) \cong egin{cases} \mathcal{G} & ext{se } k = 0 \\ 0 & ext{se } k
eq 0 \end{cases}$$

Mostro che $\tilde{H}_k(\mathcal{S}^n) \cong H_k(\mathcal{D}^n, \mathcal{S}^{n-1})$. Ho che \mathcal{S}^{n-1} è il bordo di \mathcal{D}^n quindi c'è una mappa naturale di inclusione e ponendo $X = \mathcal{D}^n$ e $A = \mathcal{S}^{n-1}$ è ben definita la successione esatta lunga:

$$\dots \rightarrow H_k(\mathcal{S}^{n-1}) \rightarrow H_k(\mathcal{D}^n) \rightarrow H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \rightarrow H_{k-1}(\mathcal{S}^{n-1}) \rightarrow H_{k-1}(\mathcal{D}^n) \rightarrow H_{k-1}(\mathcal{D}^n, \mathcal{S}^{n-1}) \rightarrow \dots$$

Per $k \geq 1$ $H_k(\mathcal{D}^n) = 0$ perché \mathcal{D}^n è contraibile, quindi ho la successione:

$$0 \to H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \to H_{k-1}(\mathcal{S}^{n-1}) \to H_{k-1}(\mathcal{D}^n) \to H_{k-1}(\mathcal{D}^n, \mathcal{S}^{n-1}) \to \dots$$

Se $k \ge 2$ la successione si riduce a:

$$0 \to H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \xrightarrow{i} H_{k-1}(\mathcal{S}^{n-1}) \to 0$$

Quindi i è inieittiva e suriettiva e perciò $H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_{k-1}(\mathcal{S}^{n-1}) \cong \tilde{H}_{k-1}(\mathcal{S}^{n-1})$. Per k=1 ho la successione:

$$0 \to H_1(\mathcal{D}^n, \mathcal{S}^{n-1}) \to H_0(\mathcal{S}^{n-1}) \to H_0(\mathcal{D}^n) \to H_0(\mathcal{D}^n, \mathcal{S}^{n-1}) \to 0$$

Quindi $H_1(\mathcal{D}^n, \mathcal{S}^{n-1}) = 0$ per i soliti motivi. Ma esiste $i \colon \mathcal{S}^{n-1} \hookrightarrow \mathcal{D}^n$ iniettiva, quindi esiste $i_\star \colon H_0(\mathcal{S}^{n-1}) \to H_0(\mathcal{D}^n)$. Ma \mathcal{D}^n è contraibile quindi posso prendere come generatore un punto di \mathcal{D}^n , e ne prendo uno sul bordo, cioè in \mathcal{S}^{n-1} , quindi:

$$i_{\star} \colon H_0(\mathcal{S}^{n-1}) \to H_0(\mathcal{D}^n)$$

 $\llbracket p \rrbracket \mapsto \llbracket p \rrbracket$

Quindi $H_0(\mathcal{D}^n,\mathcal{S}^{n-1})=0$ in quanto $H_0(\mathcal{S}^{n-1})\to H_0(\mathcal{D}^n)$ è iniettiva e suriettiva e $H_0(\mathcal{D}^n,\mathcal{S}^{n-1})\cong H_0(\mathcal{D}^n)\big/_{H_0(\mathcal{S}^{n-1})}\cong 0$. In conclusione ho trovato che $H_k(\mathcal{D}^n,\mathcal{S}^{n-1})=0$ per $k\in\{0,1\}$. Mi rimane da verificare l'ultimo, osservo intanto che $\mathcal{D}^n_+\simeq\mathcal{D}^n$, quindi in quello che segue sostanzialmente ometto il +.

Considero la successione esatta ($\mathcal{D}^n \subseteq \mathcal{S}^n$):

$$\dots \longrightarrow H_k(\mathcal{D}^n) \longrightarrow H_k(\mathcal{S}^n) \longrightarrow H_k(\mathcal{S}^n, \mathcal{D}^n) \longrightarrow H_{k-1}(\mathcal{D}^n) \longrightarrow \dots$$

Per $k \geq 2$ ho che $H_k(\mathcal{D}^n) \cong 0$ e che $H_{k-1}(\mathcal{D}^n) \cong 0$ quindi la successione diventa:

$$0 \longrightarrow H_k(\mathcal{S}^n) \longrightarrow H_k(\mathcal{S}^n, \mathcal{D}^n) \longrightarrow 0$$

Quindi $H_k(\mathcal{S}^n, \mathcal{D}^n) \cong H_k(\mathcal{S}^n) \cong \tilde{H}_k(\mathcal{S}^n)$ per $k \geq 2$. Per k = 1 la successione è:

$$0 \to H_1(\mathcal{S}^n) \to H_1(\mathcal{S}^n, \mathcal{D}^n) \to H_0(\mathcal{D}^n) \to H_0(\mathcal{S}^n) \to H_0(\mathcal{S}^n, \mathcal{D}^n) \to 0$$

Ma $H_0(X)$ conta le componenti connesse per archi di X quindi $H_0(\mathcal{D}^n) \cong H_0(\mathcal{S}^n)$ e per lo stesso motivo di prima $H_0(\mathcal{S}^n, \mathcal{D}^n) \cong 0$

$$H_k(\mathcal{S}^n, \mathcal{D}^n) = \begin{cases} H_k(\mathcal{S}^n) & \text{se } k \ge 1\\ 0 & \text{se } k = 0 \end{cases}$$

Rimane da vedere come si comportano i gruppi di omologia $\tilde{H}_k(\mathcal{S}^n)$ con $k\geq 1$. Per n=0 è noto perché sono \mathcal{S}^0 sono due punti, per k=0 anche perché sono connessi per archi, infine so che: $H_k(\mathcal{S}^n)\cong \tilde{H}_k(\mathcal{S}^n)$ per $k\geq 1$, ma anche che $H_k(\mathcal{S}^n,\mathcal{D}^n)\cong H_k(\mathcal{S}^n)$, se mostro che $H_p(\mathcal{S}^n,\mathcal{D}^n)\cong H_p(\mathcal{D}^n,\mathcal{S}^{n-1})$ allora $H_k(\mathcal{S}^n,\mathcal{D}^n)\cong H_k(\mathcal{D}^n,\mathcal{S}^{n-1})$. Ma ho mostrato che $H_k(\mathcal{D}^n,\mathcal{S}^{n-1})\cong H_{k-1}(\mathcal{S}^{n-1})$, quindi posso procedere per induzione:

$$\tilde{H}_k(\mathcal{S}^n) \cong H_k(\mathcal{S}^n) \cong H_k(\mathcal{S}^n, \mathcal{D}^n) \cong H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_{k-1}(\mathcal{S}^{n-1}) \cong \dots$$

Per far vedere che $H_p(\mathcal{S}^n) \cong H_p(\mathcal{D}^n, \mathcal{S}^{n-1})$ uso l'escissione: considero U intorno opportuno del polo nord di \mathcal{S}^n , per l'escissione:

$$H_p(\mathcal{S}^n, \mathcal{D}^n) \cong H_p(\mathcal{S}^n - U, \mathcal{D}^n - U)$$

Per l'equivalenza omotopica $H_p(\mathcal{S}^n-U,\mathcal{D}^n-U)\cong H_p(\mathcal{D}^n,\mathcal{S}^{n-1})$, in pratica deformo il buco facendolo retrarre.

Corollario 2.8.2 *Se il gruppo dei coefficienti è* \mathbb{Z} :

$$H_k(\mathcal{S}^n) \cong egin{cases} \mathbb{Z} & \textit{se } k \in \{\,0, n\,\} \ 0 & \textit{se } k
otin \{\,0, n\,\} \end{cases}$$

Questo risultato ha numerose conseguenze, infatti ho trovato uno strumento più fine del gruppo fondamentale che riesce a distinguere spazi diversi.

Corollario 2.8.3 $S^n \simeq S^m$ se e solo se n = m.

Dimostrazione: Se n=m vale che $\mathcal{S}^n=\mathcal{S}^m$ quindi in particolare $\mathcal{S}^n\simeq\mathcal{S}^m$ con la mappa identità. Assumo $n\neq m$ e senza perdita di generalità pongo n>m.

Per assurdo $S^n \simeq S^m$, quindi esiste un omomorfismo $F: S^n \xrightarrow{\sim} S^m$, quindi esiste anche l'omomorfismo inverso $G: S^m \xrightarrow{\sim} S^n$. Quindi esistono anche:

$$F_{\star}: H_k(\mathcal{S}^n) \to H_k(\mathcal{S}^m)$$
 e $G_{\star}: H_k(\mathcal{S}^m) \to H_k(\mathcal{S}^n)$

Ma $F\circ G=\mathbb{I}_{\mathcal{S}^n}$ e $G\circ F=\mathbb{I}_{\mathcal{S}^m}$ perché sono omeomorfismi, ma utilizzando la funtorialità si trova quindi che:

$$F_{\star} \circ G_{\star} = \mathbb{I}_{H_k(\mathcal{S}^m)}$$
 e $G_{\star} \circ F_{\star} = \mathbb{I}_{H_k(\mathcal{S}^n)}$

Da cui si deduce che F_{\star} e G_{\star} sono continue e sono inverse l'una dell'altra. Vale quindi che:

$$H_k(\mathcal{S}^n) \cong H_k(\mathcal{S}^m) \ \forall k \ge 0$$

Se vale per ogni k in particolare vale per k=n, cioè:

$$H_n(\mathcal{S}^n) = H_n(\mathcal{S}^m)$$

Ma $H_n(\mathcal{S}^n) \cong \mathbb{Z}$ e $H_n(\mathcal{S}^m) \cong 0$ da cui $\mathbb{Z} \cong 0$, che è assurdo.

Corollario 2.8.4 (Invarianza topologica della dimensione) $\mathbb{R}^n \simeq \mathbb{R}^m$ se e solo se n=

Come si è visto non si riesce a dimostrare questo corollario utilizzano solo il gruppo fondamentale. **Dimostrazione**: Per assurdo esiste un omomorfismo $f:\mathbb{R}^n \longrightarrow \mathbb{R}^m$ con n>m>2. Con i vincolo imposti su m e n gli spazi sono contraibili, quindi il gruppo fondamentale è in entrambi i casi banale. Togliendo un punto $p \in \mathbb{R}^n$ e $f(p) \in \mathbb{R}^m$, e restringendo f in modo da ottenere l'omomorfismo $f'\colon \mathbb{R}^n-\{\,p\,\} \stackrel{\sim}{\longrightarrow} \mathbb{R}^m-\{\,f(p)\,\}$. Si sa inoltre che per $s\geq 2$ vale che $\mathbb{R}^s-\{\,q\,\} \simeq \mathcal{S}^{s-1}\times \mathbb{R}$, infatti è sufficiente mandare a 0 il punto q con una traslazione (che è certamente un omomorfismo) e quindi si ha:

$$\mathbb{R}^{k} - \{q\} \to \mathcal{S}^{k-1} \times \mathbb{R}^{+} \simeq \mathcal{S}^{k-1} \times \mathbb{R}$$
$$\underline{x} \mapsto \left(\underline{x}, \frac{\underline{x}}{||\underline{x}||}\right)$$

Quindi:

$$\mathbb{R}^n - \{p\} \simeq \mathbb{R}^m - \{f(p)\} \iff \mathcal{S}^{n-1} \times \mathbb{R} \simeq \mathcal{S}^{m-1} \times \mathbb{R}$$

Si ha la tentazione di eliminare $\mathbb R$ dalla precedente relazione, ma questo non si può fare come mostrano alcuni casi molto patologici. Tuttavia è possibile passare alla omotopia sapendo che $\mathcal S^k \times \mathbb R \sim \mathcal S^k$, da cui $\mathcal S^{n-1} \sim \mathcal S^{m-1}$. Ma l'omologia è invariante omotopico, cioè $H_k(\mathcal S^{n-1}) \cong H_k(\mathcal S^{m-1})$, utilizzando il trucco di prima scelgo k=n-1 e quindi:

$$H_{n-1}(\mathcal{S}^{n-1}) \cong H_{n-1}(\mathcal{S}^{m-1}) \iff \mathbb{Z} \cong 0$$

Che è assurdo. □

Corollario 2.8.5 S^{n-1} non è un retratto di deformazione di \mathcal{D}^n per $n \geq 2$

Dimostrazione: Si ricorda che:

$$\mathcal{D}^n = \{ \underline{x} \in \mathbb{R}^n \mid ||\underline{x}|| \le 1 \} \quad \mathcal{S}^{n-1} = \partial \mathcal{D}^n = \{ \underline{x} \in \mathbb{R}^n \mid ||\underline{x}|| = 1 \}$$

Chiaramente esiste $i: \mathcal{S}^{n-1} \hookrightarrow \mathcal{D}^n$.

Definizione 2.8.6 Uno spazio topologico Y si dice **retratto di deformazione** di un altro spazio topologico X tale che $Y \hookrightarrow X$ se esiste una funzione continua $r \colon X \to Y$ che inverte a meno di omotopia la mappa di inclusione $i \colon Y \to X$, cioè tale che soddisfa:

- 1. $r: X \to Y$ continua
- 2. $i \circ r \sim \mathbb{I}_X$
- 3. $r \circ i = \mathbb{I}_V$

Una mappa che soddisfa queste condizioni è detta retrazione.

Suppongo per assurdo che S^{n-1} è un retratto di deformazione di D^n , cioè che esiste una retrazione r. Passando all'omologia:

$$\begin{split} i_\star \colon H_k(\mathcal{S}^{n-1}) &\to H_k(\mathcal{D}^n) \\ r_\star \colon H_k(\mathcal{D}^n) &\to H_k(\mathcal{S}^{n-1}) \\ (i \circ r)_\star &= (\mathbb{I}_{\mathcal{D}^n})_\star \text{ e } (r \circ i)_\star = (\mathbb{I}_{\mathcal{S}^{n-1}})_\star \end{split}$$

Quindi:

$$i_{\star} \circ r_{\star} = \mathbb{I}_{H_k(\mathcal{D}^n)} e r_{\star} \circ i_{\star} = \mathbb{I}_{H_k(\mathcal{S}^{n-1})} \ \forall k \in \mathbb{N}$$

In particolare considero k = n - 1:

$$i_{\star} \colon H_n - 1(\mathcal{S}^{n-1}) \to H_n - 1(\mathcal{D}^n)$$

 $r_{\star} \colon H_n - 1(\mathcal{D}^n) \to H_n - 1(\mathcal{S}^{n-1})$

Cioè: $i_{\star} \colon \mathbb{Z} \to 0$. Considero un generatore α di $H_{n-1}(\mathcal{S}^{n-1}) \cong \mathbb{Z}$, cioè tale che $\langle \alpha \rangle = H_{n-1}(\mathcal{S}^{n-1})$ allora $i_{\star}(\alpha) = 0$ quindi $r_{\star} \circ i_{\star} = 0$, ma $(r \circ i)_{\star} = \mathbb{I}_{\mathcal{S}^{n-1}_{\star}}$ quindi significherebbe $\mathbb{I}_{\mathcal{S}^{n-1}_{\star}}(\alpha) = 0$, cioè che $\alpha = 0$, che è assurdo perché $\mathbb{Z} \neq \langle 0 \rangle$.

Teorema 2.8.7 (Teorema del punto fisso di Brouwer) Ogni funzione continua $g: \mathcal{D}^n \to \mathcal{D}^n$ con $n \geq 2$ ammette almeno un punto fisso in \mathcal{D}^n , cioè:

$$\exists \underline{x_o} \in \mathcal{D}^n \mid g(\underline{x_0}) = \underline{x_0}$$

Dimostrazione: Per assurdo g non ammette punto fisso cioè esisto $\underline{x} \in \mathcal{D}^n$ tale che $g(\underline{x}) \neq \underline{x}$. Sicuramente tuttavia $g(\underline{x}) \in \mathcal{D}^n$. Considero la retta l passante per \underline{x} e $g(\underline{x})$. Questa retta interseca il bordo di \mathcal{D}^n in due punti $\{p_1, p_2\}$:

$$l \cap \partial \mathcal{D}^n = l \cap \mathcal{S}^{n-1} = \{ p_1, p_2 \}$$

Definisco la mappa $r\colon \mathcal{D}^n\to \partial\mathcal{D}^n=\mathcal{S}^{n-1}$ tale che associ ad ogni punto del disco il punto di intersezione della retta $l_{\underline{x}}$ che gli sta più vicino (infatti in \mathbb{R}^n è ben definita una nozione di distanza). La retta $l_{\underline{x}}$ è ben definita in quanto per due punti distinti (e per ipotesi $g(\underline{x})\neq\underline{x}$) passa una e una sola retta.

Figura 2.11: Schema per n=2

Esercizio 5 Dimostrare che r è continua.

Ho una mappa di inclusione naturale:

$$i \colon \mathcal{S}^{n-1} \to \mathcal{D}^n$$

$$\underline{x} \mapsto \underline{x}$$

Se dimostro che r è una retrazione trovo un assurdo per il corollario precedentemente dimostrato. Devo verificare $r \circ i = \mathbb{I}_{\mathcal{S}^{n-1}}$ e $i \circ r \sim \mathbb{I}_{\mathcal{D}^n}$. La prima uguaglianza è certamente vera perché se $\underline{x} \in \partial \mathcal{D}^n$ allora l'intersezione del bordo del disco che gli sta più vicina corrisponde a \underline{x} stesso. Costruisco esplicitamente una relazione di omotopia per mostrare la seconda: Siccome \mathcal{D}^n è convesso è ben definita $G(t,\underline{x}) = (1-t)\underline{x} + tr(\underline{x})$ con $t \in [0,1]$. Questa è una buona omotopia in quanto $\forall t,\underline{x}$:

- G è continua
- $G(t,\underline{x}) \in \mathcal{D}^n$
- G(0,X) = x
- G(1,X) = r(x)

Quindi r è retrazione ma questo è assurdo.

2.8.1 Teoria del grado

Definizione 2.8.8 Ad ogni applicazione continua $\varphi \colon \mathcal{S}^n \to \mathcal{S}^n$ continua è possibile associare in modo univoco un numero intero, questo è il **grado**:

$$\varphi_{\star} \colon H_n(\mathcal{S}^n) \to H_n(\mathcal{S}^n)$$

 $\alpha \mapsto \deg(\varphi)\alpha$

con α generatore.

Si ha che $H_n(\mathcal{S}^n)\cong \mathbb{Z}$, quindi $H_n(\mathcal{S}^n)$ è il gruppo libero di rango 1 generato da un singolo n-ciclo che non è un bordo, cioè esiste una mappa $f\colon \mathbb{Z}\to H_n(\mathcal{S}^n)$ tale che $f(1)=\alpha, \alpha$ generatore, in questo modo $H_n(\mathcal{S}^n)=\langle \alpha\rangle$. Considero $\varphi\colon \mathcal{S}^n\to \mathcal{S}^n$ continua con $n\geq 1$, questa induce $\varphi_\star\colon H_n(\mathcal{S}^n)\to H_n(\mathcal{S}^n)$. L'azione di φ_\star si calcola facilmente, infatti sia $c\in H_n(\mathcal{S}^n)$ allora $c=p\alpha$ con $p\in \mathbb{Z}$, quindi:

$$\varphi_{\star}(c) = \varphi_{\star}(p\alpha) = \varphi_{\star}(\underbrace{\alpha + \alpha + \alpha + \ldots}_{|\mathbf{p}| \, \mathrm{volte}}) = \underbrace{\varphi_{\star}(\alpha) + \varphi_{\star}(\alpha) + \ldots}_{|\mathbf{p}| \, \mathrm{volte}} = p\varphi_{\star}(\alpha)$$

Ma $\varphi_{\star}(\alpha) \in H_n(\mathcal{S}^n)$ quindi si deve poter scrivere come multiplo di α : $\varphi_{\star}(\alpha) = d\alpha$ da cui: $\varphi_{\star}(c) = pd\alpha = dc$ con $d \in \mathbb{Z}$.

Osservazione 2.8.9 Questo numero d viene fuori dall'immagine di un generatore, ma non dipende dalla scelta del generatore, infatti:

Dimostrazione: Sia β un altro generatore, siccome α è un generatore si può scrivere $\beta=m\alpha$ con $m\in\mathbb{Z}$. Pongo come notazione:

$$\varphi_{\star}(\beta) = d(\beta)\beta \quad \varphi_{\star}(\alpha) = d(\alpha)\alpha$$

Allora:

$$d(\beta)\beta = \varphi_{\star}(\beta) = m\varphi_{\star}(\alpha) = md(\alpha)\alpha = d(\alpha)\beta$$

Da cui $d(\beta)\beta = \beta d(\alpha)$ cioè $(d(\beta) - d(\alpha))\beta = 0$, siccome questo vale per ogni α e β allora $d(\alpha) = d(\beta)$.

Esempio 2.8.10 (n=1) Ad esempio per n=1 e $p \in \mathbb{N}$ e la mappa

$$\varphi \colon \mathcal{S}^1 \to \mathcal{S}^1$$
$$z \mapsto z^p$$

Vale che deg $(\varphi) = p$, *infatti prendo un generatore di* S^1 :

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \mapsto e^{2\pi i t}$$

Applicando la mappa:

$$\varphi \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \mapsto e^{2\pi i pt}$$

Cioè $\varphi \circ \sigma = \sigma \star \sigma \star \cdots = p\sigma$ volte, e quindi $\deg(\varphi) = p$.

Proposizione 2.8.11 Siano $f, g: \mathcal{S}^n \to \mathcal{S}^n$ mappe continue, allora $\deg(g \circ f) = \deg(f) \deg(g)$.

Dimostrazione: Per la funtorialità $(g \circ f)_{\star} = g_{\star} \circ f_{\star}$ quindi:

$$(g \circ f)_{\star}(\alpha) = (g_{\star} \circ f_{\star})(\alpha) \Rightarrow g_{\star}(f_{\star}(\alpha)) = g_{\star}(\deg(f)\alpha) = \deg(f)g_{\star}(\alpha) = \deg(f)\deg(g)\alpha$$

Quindi:

$$\deg(f)\deg(g)\alpha = (g \circ f)_{\star}(\alpha) = \deg(g \circ f)\alpha$$

Siccome α è generatore: $\deg\left(g\circ f\right)=\deg\left(f\right)\deg\left(g\right)$.

Voglio usare la teoria del grado per un'applicazione del teorema della palla pelosa.

Proposizione 2.8.12 Considero riflessione rispetto al sottospazio $x_{n+1} = 0$ in \mathbb{R}^{n+1}

$$\rho \colon \mathcal{S}^n \to \mathcal{S}^n$$
$$(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, -x_{n+1})$$

Il grado di questa applicazione è -1.

Dimostrazione: La dimostrazione è per induzione. Per n=1.

$$\rho \colon \mathcal{S}^1 \to \mathcal{S}^1$$
$$(x_0, x_1) \mapsto (x_0, -x_1)$$

Considero il generatore σ :

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$

$$t \mapsto (\cos(2\pi t), \sin(2\pi t))$$

Quindi:

$$\rho \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$

 $t \mapsto (\cos(2\pi t), -\sin(2\pi t)))$

Ma:

$$(\cos(2\pi t), -\sin(2\pi t))) = (\cos(-2\pi t), \sin(-2\pi t))) = (\cos(2\pi (1-t)), \sin(2\pi (1-t))))$$

Quindi $\rho \circ \sigma = \bar{\sigma} = -\sigma$ e quindi il grado è -1.

Suppongo che il risultato sia vero per \mathcal{S}^{n-1} mostro che è vero anche per \mathcal{S}^n . Ho dimostrato che

$$\tilde{H}_p(\mathcal{S}^n) \cong H_p(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_p(\mathcal{S}^n, \mathcal{D}^n)$$

Quindi considerando anche che ρ induce una mappa ρ_{\star} a livello di omologia:

$$H_n(\mathcal{S}^n) \xrightarrow{\rho_{\star}} H_n(\mathcal{S}^n)$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$H_n(\mathcal{D}^n, \mathcal{S}^{n-1}) \qquad \qquad H_n(\mathcal{D}^n, \mathcal{S}^{n-1})$$

Ho anche che $H_n(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_{n-1}(\mathcal{S}^{n-1})$, come ho dimostrato calcolando l'omologia delle sfere, quindi il diagramma diventa:

$$H_n(\mathcal{S}^n) \xrightarrow{\rho_{\star}} H_n(\mathcal{S}^n)$$

$$\downarrow^{\cong} \qquad \downarrow^{\cong}$$

$$H_{n-1}(\mathcal{S}^{n-1}) \xrightarrow{\rho_{\star}^{(n-1)}} H_{n-1}(\mathcal{S}^{n-1})$$

Ma per ipotesi induttiva per n-1 il grado è -1, quindi anche per n il grado è -1.

Considero l'applicazione antipodale che è quella che scambia di segno tutte le componenti:

$$A \colon \mathbb{R}^n \to \mathbb{R}^n$$
$$(x_1, \dots, x_n) \mapsto (-x, \dots, -x_n)$$

Questa è continua e vale che $A^2=\mathbb{I}_{\mathbb{R}^n}$. Definisco per $n\geq 2$ la restrizione della trasformazione antipodale su \mathcal{S}^{n-1} : $a=A|_{\mathcal{S}^{n-1}}$, vale che $a\colon \mathcal{S}^{n-1}\to \mathcal{S}^{n-1}$, infatti $\mathrm{Im}(a)=\mathcal{S}^{n-1}$. Quanto vale $\mathrm{deg}\,(a)$? Scrivo a come composizione di riflessioni:

$$a = \rho_n \circ \cdots \circ \rho_1$$

Per il risultato appena dimostrato:

$$\deg(a) = \deg(\rho_n \circ \cdots \circ \rho_1) = \deg(\rho_n) \deg(\rho_{n-1}) \ldots \deg(\rho_1) = (-)^n$$

Quindi $deg(a) = (-)^n$ e perciò cambia se n è pari o dispari.

Corollario 2.8.13 La mappa antipodale non è omotopicamente equivalente all'identità su S^n su n è pari.

Dimostrazione: Se le due applicazioni fossero omotope varrebbe che $a_{\star} = (\mathbb{I}_{S^n})_{\star}$ quindi:

$$deg(a) = deg(\mathbb{I}_{S^n}) = (-)^{n+1} = 1$$

Questo è vero solo se n+1 è pari, ma se n è pari n+1 non può esserlo.

Ciò non dimostra che per n pari invece le due applicazioni sono omotope. Questa è una dimostrazione avanzata che richiede i gruppi di omotopia superiori con i quali si dimostra che se due applicazioni definite su S^n hanno lo stesso grado allora sono omotope.

Corollario 2.8.14 Sia $f: \mathcal{S}^n \to \mathcal{S}^n$ una mappa continua con n pari, allora esiste almeno un punto $\underline{x_0} \in \mathcal{S}^n$ tale che $f(\underline{x_0}) = \pm x_0$.

Dimostrazione: Per assurdo $f(x) \neq \pm x \ \forall x \in \mathcal{S}^n$. Sia $F: \mathcal{S}^n \times I \to \mathcal{S}^n$ con:

$$F(\underline{x},t) = \frac{tf(\underline{x}) + (1-t)\underline{x}}{||tf(\underline{x}) + (1-t)\underline{x}||}$$

 $\begin{array}{l} \forall \underline{x}, t \text{ vale che } F(\underline{x}, t) \in \mathcal{S}^n. \text{ La norma al denominatore non \`e mai nulla per ipotesi, infatti}\\ ||tf(\underline{x}) + (1-t)\underline{x}|| = 0 \text{ significa che } tf(\underline{x}) = (1-t)\underline{x}, \text{ quindi se } t = 0 \text{ allora } 0 = -\underline{x} \text{ ma } \underline{x} = 0 \not\in \mathcal{S}^n, \text{ se } t \neq 0 \text{ allora } f(\underline{x}) = \left(\frac{t-1}{t}\right)\underline{x}, \text{ ma } \underline{x}, f(\underline{x}) \in \mathcal{S}^n \text{ quindi } ||f(\underline{x})|| = ||\underline{x}|| = 1 \text{ equindi } 1 = \left|\frac{t-1}{t}\right|, \text{ ma } t \in (0,1], \text{ quindi non \`e possibile trovare } t. \end{array}$

Inoltre $F(\underline{x},0)=\underline{x}$ e $F(\underline{x},1)=f(\underline{x})$ quindi F è una relazione di omotopia tra f e l'identità.

Mostro che f è anche omotopa all'applicazione antipodale, così per la transitività della relazione di omotopia trovo l'assurdo.

Si definisce $G \colon \bar{\mathcal{S}}^n \times I \to \mathcal{S}^n$:

$$G(\underline{x},t) = \frac{-t\underline{x} + (1-t)f(\underline{x})}{||-t\underline{x} + (1-t)f(\underline{x})||}$$

Con i medesimi ragionamenti si trova che $\forall \underline{x}, t$ vale che $G(\underline{x}, t) \in \mathcal{S}^n$, e inoltre $G(\underline{x}, 0) = f(\underline{x})$ e $G(\underline{x}, 1) = -\underline{x}$ quindi G realizza l'omotopia con l'applicazione antipodale.

2.8.2 Escissione e omotopia

Dimostro che l'omologia singolare soddisfa gli assiomi verificando quelli che mi mancano che sono l'escissione e l'omotopia.

Teorema 2.8.15 Sia X uno spazio topologico, e A, B suoi sottospazi topologici con la topologia indotta tali che $B \subseteq A \subseteq X$ e $\bar{B} \subseteq \operatorname{int}(A)$, allora è possibile escindere il sottoinsieme B da A e da X, cioè l'inclusione $i \colon (X - B, A - B) \hookrightarrow (X, A)$ induce un isomorfismo a livello di omologia $i_\star \colon H_k(X - B, A - B) \xrightarrow{\sim} H_k(X, A)$.

Dimostrazione: Sia $\mathcal{U} = \{A, X - B\}$ un ricoprimento per X (infatti $X = A \cup X - B$). Considero le k-catene singolari in A $S_k(A)$, le k-catene singolari in X - B $S_k(X - B)$ e definisco $S_k^{\mathcal{U}}(X)$ il sottocomplesso generato dai simplessi singolari $\sigma \colon \Delta_k \to X$ tali che σ sia un \mathcal{U} -piccolo.

Definizione 2.8.16 Un simplesso singolare in X si dice \mathcal{U} -piccolo se esiste una suddivisione baricentrica di Δ_k tale che abbia immagine in U_α , dove $\mathcal{U} = \bigcup_\alpha U_\alpha$.

Definizione 2.8.17 La definizione di **suddivisione baricentrica** è piuttosto tecnica e noiosa, ma l'idea fondamentale è quella di spezzettare il simplesso a partire dal suo baricentro (che sempre univocamente determinabile) in tanti simplessi tanto piccoli da essere completamente contenuti negli insiemi del ricoprimento.

Sostanzialmente $S_k^{\mathcal{U}}(X)$ sono le catene somme di simplessi completamente contenuti in uno degli U_{α} che formano il ricoprimento.

Esercizio 6 Dimostrare che $X = int(A) \cup int(X - B)$.

Sostanzialmente è quindi possibile prendere insiemi aperti per formare il ricoprimento \mathcal{U} , infatti se A e/o X-B non fossero aperti potrei considerare il ricoprimento $\mathcal{U}=\{\operatorname{int}(A),\operatorname{int}(X-B)\}$. La dimostrazione del teorema di escissione si basa ora su alcune assunzioni di natura algebrica.

Osservazione 2.8.18 Vale che $S_k^{\mathcal{U}}(X) = S_k(A) + S_k(X - B)$. L'operazione di somma è ben definita perché i complessi sono \mathbb{Z} -moduli. Per mostrare che questa asserzione è vera la verifico sui generatori $\sigma \colon \Delta_k \to X$. Per definizione di $S_k^{\mathcal{U}}(X)$ se $\sigma \in S_k^{\mathcal{U}}(X)$ o $\sigma \in S_k(A)$ oppure $\sigma \in S_k(X - B)$, quindi $S_k^{\mathcal{U}}(X) \subseteq S_k(A) + S_k(X - B)$. Inoltre se $\sigma_1 \colon \Delta_1 \to A$ e $\sigma_2 \colon \Delta_k \to X - B$ allora $\sigma_1 + \sigma_2 \colon \Delta_k \to X$ e naturalmente $\sigma_1 + \sigma_2 \in S_k^{\mathcal{U}}(X)$, quindi vale l'inclusione e quindi vale l'uguaglianza.

Osservazione 2.8.19 (Terzo teorema degli omomorfismi) $Vale\,che\,S_k(A-B)=S_k(A)\cap S_k(X-B),\,questo\,\grave{e}\,ovvio.$

Figura 2.12: Situazione

Osservazione 2.8.20 Vale che:

$$S_k(X-B)/A-B \cong S_k^{\mathcal{U}}(X)/S_k(A)$$

Infatti ...

Osservazione 2.8.21 Vale che:

$$S_k(X-B) \xrightarrow{\qquad} S_k(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_k(X-B)/S_k(A-B) \xrightarrow{\qquad} S_k(X)/S_k(A)$$

Quindi usando le osservazioni precedenti è ben definito il diagramma:

Passando all'omologia della coppia:

$$H_p(X-B,A-B) \xrightarrow{\cong} H_p^{\mathcal{U}}(X,A)$$

$$H_p(X,A)$$

Per dimostrare l'escissione bisogna mostrare che φ è un isomorfismo, e questo può essere ottenuto mostrando che ψ è isomorfismo (così sarebbe φ composizione di isomorfismi), cioè devo dimostrare che $H_p^{\mathcal{U}}(X,A) \cong H_p(X,A)$.

Questo risultato dipende da altre due osservazioni:

Osservazione 2.8.22 Se X è uno spazio topologico e $\mathcal{U} = \{U_{\alpha}\}$ un suo ricoprimento di aperti allora $H_p^{\mathcal{U}}(X) \cong H_p(X)$.

A questo punto voglio passare all'omologia relativa. Considero $U \cap A = \{U_{\alpha} \cap A\}$, questo è un ricoprimento aperto di A. Definisco:

$$S_k^{\mathcal{U}}(X,A) = \frac{S_k^{\mathcal{U}}(X)}{S_k^{\mathcal{U} \cap A}(A)}$$

Ho quindi la successione esatta corta:

$$0 \longrightarrow S_{k}^{\mathcal{U} \cap A}(A) \longrightarrow S_{k}^{\mathcal{U}}(X) \longrightarrow S_{k}^{\mathcal{U}}(X,A) \longrightarrow 0$$

Ma c'è anche la successione esatta corta:

$$0 \longrightarrow S_k(A) \longrightarrow S_k(X) \longrightarrow S_k(X,A) \longrightarrow 0$$

Quindi è ben definita la mappa tra successioni corte:

$$0 \longrightarrow S_k^{\mathcal{U} \cap A}(A) \longrightarrow S_k^{\mathcal{U}}(X) \longrightarrow S_k^{\mathcal{U}}(X,A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S_k(A) \longrightarrow S_k(X) \longrightarrow S_k(X,A) \longrightarrow 0$$

Queste successioni esatte corte ne inducono una esatta lunga in omologia:

$$\dots \to H_{i}^{\mathcal{U} \cap A}(A) \to H_{i}^{\mathcal{U}}(X) \to H_{i}^{\mathcal{U}}(X,A) \to H_{i_{1}}^{\mathcal{U} \cap A}(A) \to H_{i_{1}-1}^{\mathcal{U}}(X) \to \dots$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \downarrow \cong \qquad \downarrow \cong \qquad \downarrow \cong$$

$$\dots \to H_{i}(A) \longrightarrow H_{i}(X) \to H_{i}(X,A) \longrightarrow H_{i_{1}}(A) \longrightarrow H_{i-1}(X) \to \dots$$

In queste condizioni si può applicare il lemma dei cinque con il quale si trova immediatamente che $H_p^{\mathcal{U}}(X,A) \cong H_p(X,A)$.

Lemma 2.8.23 (Lemma dei cinque) Considerato il seguente diagramma formato da successioni esatte corte in cui ogni quadrato è commutativo:

Se $\alpha, \beta, \delta, \epsilon$ sono isomorfismi allora anche γ lo è.

Dimostrazione: [MANCA LA PROVA (HATCHER 129)]

Ora verifico l'assioma di omotopia. Riepilogo alcuni concetti: Siano X,Y spazi topologici e A,B sottospazi topologici di X e Y rispettivamente, siano $f_0\colon (X,A)\to (Y,B)$ e $f_1\colon (X,A)\to (Y,B)$ mappe continue con $f_0(A)\subseteq B$ e $f_1(A)\subseteq B, f_0$ e f_1 si dicono omotopicamente equivalenti se esiste una funzione continua $F\colon I\times X\to Y$ tale che $\forall x\in X$ $F(0,x)=f_0(x), F(1,x)=f_1(x)$ e $\forall t\in I$ $F(t,a)\in B$.

Teorema 2.8.24 Siano X,Y spazi topologici e A,B sottospazi topologici rispettivamente di X e Y, e $f_0, f_1: (X,A) \to (Y,B)$ funzioni continue omotope, allora le mappe indotte da queste funzioni sui gruppi di omologia coincidono, cioè $(f_0)_\star = (f_1)_\star$, con $(f_0)_\star, (f_1)_\star : H_l(X,A) \to H_k(Y,B)$.

Dimostrazione: L'intervallo I è omeomorfo al simplesso standard Δ_1 , introducendo $\epsilon_1 \colon \Delta_0 \to I$ e $\epsilon_0 \colon \Delta_0 \to I$ definiti da: $\epsilon_i(e_0) = i$ con $i \in \{0,1\}$, allora il bordo dell'intervallo è $\partial I = \epsilon_1 - \epsilon_0$. Chiamo I con abuso di notazione il simplesso che manda Δ_1 in I, Sia $c \in S_q(X)$, cioè $c \in S_q(X)$ allora $I \times c \in S_{q+1}(I \times X)$, infatti

$$I \times x \colon \Delta_1 \times \Delta_1 \to I \times X$$

 $(t, x) \mapsto (I(t), c(x))$

Il bordo di questa catena è:

$$\partial(I \times c) = \sum_{i=0}^{q} (-1)^{i+1} (I \times c)^{(i+1)} = (I \times C)^{(0)} - (I \times C)^{(1)} + \dots$$

Osservo che: [FIGURA]

$$= \epsilon_1 \times c - \epsilon_0 \times c - I \times \partial c$$

Definizione 2.8.25 Si definisce l'**operatore prisma** definendo la sua azione sui simplessi singolari e poi estendendo per linearità:

$$D \colon S_q(X) \to S_{q+1}(X)$$
$$c \mapsto I \times c$$

Esercizio 7 Verificare che l'operatore prisma è un omomorfismo.

Questo operatore sostanzialmente prende un simplesso e restituisce il prisma in figura. Per quanto detto sopra vale che:

$$\partial \circ D(c) + D \circ \partial(c) = \partial(I \times c) + I \times \partial c = \epsilon_1 \times c - \epsilon_0 \times c - I \times \partial c + I \times \partial c$$

Cioè:

$$\partial \circ D(c) + D \circ \partial(c) = \epsilon_1 \times x - \epsilon_0 \times c$$

Nella figura questo sono la faccia superiore e inferiore del prisma. Si definiscono le sezioni del prisma, con $t \in I$:

$$\eta_t \colon X \to I \times X$$

$$x \mapsto (t, x)$$

Le sezioni a t=0 e a t=1 (e anche le altre, ma non interessano) inducono una mappa sulle catene:

$$(\eta_i)_{\sharp} \colon S_k(X)S_k(I \times X)$$

 $c \mapsto \eta_i \circ c$

Ma $(\eta_i \circ c)(x) = (i,c(x)) = \epsilon_i(c)$, quindi $\partial \circ D(c) + D \circ \partial(c) = (\eta_1)_\sharp - (\eta_0)_\sharp$. Considero la relazione di omotopia $F \colon I \times X \to Y$, per definizione vale che $F(i,x) = f_i(x)$, e quindi $(F \circ \eta_i)(x) = f_i(x)$, cioè $F \circ \eta_i = f_i$. Essendo una funzione continua F induce una mappa sulle catene di simplessi: $F_\sharp \colon S_k(I \times X, I \times A) \to S_k(Y, B)$.

Considero $D \colon S_q(X,A) \to S_{q+1}(I \times X,I \times A)$, posso definire $G = F_\sharp \circ D$, questo è un omomorfismo tra $S_k(X,A)$ e $S_k(Y,B)$ in quanto composizione di omomorfismi. Sia $c \in S_q(X,A)$ allora:

$$\partial \circ G(c) = \partial (F_{\sharp} \circ D)(c)$$
$$G \circ \partial (c) = (F_{\sharp} \circ D)(\partial c)$$

 F_{\sharp} è un'applicazione tra complessi e si verifica che una chain map, cioè i quadrati che determina sono commutativi ($F_{\sharp} \circ \partial = \partial \circ F_{\sharp}$). In questo modo

$$\partial (F_{\sharp} \circ D)(c) + (F_{\sharp} \circ D)(\partial c) = F_{\sharp} \circ \partial \circ D(c) + F_{\sharp} \circ D \circ \partial(c) =$$

$$= F_{\sharp} \circ (\partial \circ D(c) + D \circ \partial(c)) = F_{\sharp} \circ ((\eta_{1})_{\sharp} - (\eta_{0})_{\sharp})(c)$$

2 Omologia Singolare

Quindi $\partial \circ G + G \circ \partial = (f_1)_{\sharp} - (f_0)_{\sharp}$. Passando a livello di omologia considero k un q-ciclo in (X,A), quindi tale che $\partial k = 0$. Allora:

$$(f_1)_{\star}(k) = [(f_1)_{\sharp}(k)]$$

Ma:

$$(f_1)_{\sharp}(k) = (f_0)_{\sharp}(k) + \partial \circ G(k) + G \circ \partial(k)$$

Quindi in (Y,B) $[(f_1)_{\sharp}(k)]=[(f_0)_{\sharp}(k)]$ in quanto differiscono per un bordo. Quindi $(f_1)_{\star}(k)=(f_2)_{\star}(k)$, ma siccome questo è vero per ogni k allora deve essere $(f_1)_{\star}=(f_2)_{\star}$. \Box La mappa G è un esempio di omotopia di catena:

Definizione 2.8.26 Siano $(A_{\bullet}, \partial^A)$ e $(B_{\bullet}, \partial^B)$ complessi, e siano $\varphi, \psi \colon A_{\bullet} \to B_{\bullet}$ mappe continue tra complessi, φ e ψ si dicono **omotope** (chain homotopic) se esiste una mappa tra complessi $D \colon A_{\bullet} \to B_{\bullet+1}$ tale che $\partial \circ D + D \circ \partial = \varphi - \psi$. Si ha quindi il diagramma:

$$\ldots \longrightarrow A_{i+1} \xrightarrow{\partial^A} A_i \xrightarrow{\partial^A} A_{i-1} \longrightarrow \ldots$$

$$\ldots \longrightarrow B_{i+1} \xrightarrow{\partial^B} B_i \xrightarrow{\partial^B} B_{i-1} \longrightarrow \ldots$$

3 Omologia cellulare

3.1 CW-complessi

Considero \mathcal{D}^n , vale che $\partial \mathcal{D}^n = \mathcal{S}^{n-1}$, considerato lo spazio quoziente $X = \mathcal{D}^n/\partial \mathcal{D}^n$, questo è il quoziente del disco per la relazione di equivalenza che fa collassare il bordo in un punto p. Si trova che $X \simeq \mathcal{S}^n$. In 2 dimensioni questo si visualizza facilmente: considerato il cerchio, si spinge il centro in basso in modo da ottenere una superficie semisferica, quindi indentificare tutti i punti del bordo con un unico punto vuol dire chiudere il cerchio ottenendo qualcosa di simile ad una goccia, che è omeomorfa ad una sfera. In pratica quello che ho fatto è: definisco $X^{(0)} = P = \{p\}$ e $\varphi \colon \mathcal{S}^{n-1} \to X^{(0)}$, posso definire:

$$X^{(1)} = X^{(0)} \cup_{\varphi} \mathcal{D}^n$$

Dove con \cup_{φ} si intende, con X,Y spazi topologici:

$$X^{(0)} \cup_{\varphi} \mathcal{D}^n = X^{(0)} \sqcup \mathcal{D}^n / p \sim \varphi(q) \quad \forall q \in \mathcal{S}^{n-1}$$

Quello che sto facendo in pratica è prendendo un punto e un disco, quindi identifico il bordo del disco con il punto.

Definizione 3.1.1 Si dice che lo spazio topologico X è un CW-complesso di tipo finito, dove C singif»»»»>ica closure finite e W weak topology se è dato dai seguenti oggetti topologici:

- 1. Un insieme finito $X^{(0)} = \{p_1, \dots, p_n\}$ detto 0-scheletro
- 2. Il k-scheletro X^k si costruisce induttivamente a partire da $X^{(k-1)}$ attaccando opportunamente dei dischi nel modo seguente. Considero un numero finito di dischi k-dimensionali \mathcal{D}^k_{α} , detti **celle** (o cella chiusa, mentre il loro interno è detto cella aperta) per ciascuno si definice una mappa continua di attaccamento $\varphi_{\alpha} \colon \partial \mathcal{D}^k_{\alpha} \to X^{(k-1)}$, quindi si definisce:

$$X^{(k)} = X^{(k-1)} \cup_{\varphi} \bigcup_{\alpha} \mathcal{D}_{\alpha}^k = \frac{X^{(k-1)} \sqcup \mathcal{D}_{\alpha}^k}{/_{x} \sim \varphi_{\alpha}(x)} \quad \forall \alpha \ \text{e} \ \forall x \in \partial \mathcal{D}_{\alpha}^k$$

3. Esiste $N \in \mathbb{N}$ tale che $X^{(0)} \subseteq X^{(1)} \subseteq \cdots \subseteq X^{(N)} =: X$

Si dimostra che in generale la cella chiusa non è omeomorfa all'immagine, mentre la cella aperta lo è.

In generale uno spazio ha numerose strutture di CW complesso.

La topologia è detta debole perché la topologia di unione disgiunta per tutti i k-scheletri, e questo è la topologia più debole di tutte. In questa topologia un insieme è aperto in X se e solo se è aperto la sua intersezione con tutti gli $X^{(i)}$ è aperta.

Esempio 3.1.2 (Sfere) S^n per $n \geq 1$ ammette una struttura di CW complesso: sia $X^{(0)} = \{p\}$ con $p \in S^n$ e sia $\varphi \colon \partial \mathcal{D}^n \to \{p\}$ mappa costante, allora $S^n = X^{(0)} \cup_{\varphi} \mathcal{D}^n = \mathcal{D}^n /_{\partial \mathcal{D}^n}$, cioè una 0-cella e una n-cella.

Alternativamente una seconda possibile struttura è: considero l'equatore di S^n che è uno S^{n-1} su questo attacco due dischi che sono calotta superiore e inferiore. $X^{(0)} = \{p_1, p_2\}$ e $X^{(1)} = \mathcal{D}_1^1 \cup \mathcal{D}_2^1$, quindi le mappe sono:

$$\varphi_1 : \partial \mathcal{D}_1^1 \to X^{(0)}$$
 cioè $\varphi_1 : \{-1, +1\} \to \{p_1, p_2\}$
 $\varphi_1 : \partial \mathcal{D}_2^1 \to X^{(0)}$ cioè $\varphi_2 : \{-1, +1\} \to \{p_1, p_2\}$

Quindi deve essere:

$$\varphi_1(1) = p_1 \quad \varphi_1(-1) = p_2 \quad \varphi_2(1) = p_2 \quad \varphi_2(-1) = p_1$$

A questo punto $X^{(1)} \cup_{\varphi} (\mathcal{D}_1^1 \cup \mathcal{D}_2^1) = \mathcal{S}^1$ e si può aggiungere \mathcal{D}^2 , cioè $X^{(2)} = \mathcal{D}_1^2 \cup \mathcal{D}_2^2$, ora:

$$\psi_1 \colon \partial \mathcal{D}_1^2 \to X^{(2)}$$

 $\psi_1 \colon \partial \mathcal{D}_2^2 \to X^{(0)}$

Cioè $\psi_j \colon \mathcal{S}^1 \to X^{(1)}$, quindi $\psi_j \colon \mathcal{S}^1 \to \mathcal{S}^1$ e quindi si può prendere l'identità. Si ottiene così una 2-sfera. A questo punto si può procedere ad libidum.

Esempio 3.1.3 (Toro) Considerato un toro $T = S^1 \times S^1$ una possibile costruzione si basa sul prendere come punti p i vertici del quadrato dal quale si fanno le identificazioni per ottenere il toro. $X^{(0)} = \{p\}$, ho quindi due lacci. Quindi:

$$X^{(1)} = (\mathcal{D}_1^1 \cup \mathcal{D}_2^1) \cup_{\varphi} X^{(0)}$$

Le mappe:

$$\varphi_1: \{-1, +1\} \to \{p\}
\varphi_2: \{-1, +1\} \to \{p\}$$

La cella è $X^{(2)}=(\mathcal{D}^2\cup_{\psi}X^{(1)})$ con $\psi\colon\mathcal{S}^1\to X^{(1)}$ [MANCA IL SECONDO MODO]

Definizione 3.1.4 Si definice lo spazio proiettivo reale $\mathbb{P}^n(\mathbb{R}) = \mathbb{R}^{n+1} - \{0\} /_{\infty}$ con $\underline{x} \sim y$ se e solo se \underline{x} e \underline{y} sono multipli, cioè se esiste $\lambda \in \mathbb{R}^+$ tale che $\underline{x} = \lambda y$.

Si dimostra che $\mathbb{P}^n(\mathbb{R})\cong \mathcal{S}^n/_H$ con $H=\{\mathbb{I}_{\mathcal{S}^n},a_{\mathcal{S}^n}\}.$ Si trova che:

- $\mathbb{P}^1(\mathbb{R}) = \mathcal{S}^1 = \mathbb{R} \cup \infty$
- $\mathbb{P}^2(\mathbb{R}) = \mathbb{P}^1(\mathbb{R}) \cup_{\varphi} \mathcal{D}^2$ Ho $\mathcal{S}^2/_H$, l'emisfero sud della sfera si identifica con quello nord per l'applicazione di antipodalità. $\varphi = a|_{\mathcal{S}^1}$ e $\mathcal{S}^1 = \mathbb{P}^1(\mathbb{R})$ e $\mathcal{S}^1 = \partial \mathcal{D}^2$, quindi:

$$\varphi \colon \mathcal{S}^1 \to \mathcal{S}^1$$

 $(x,y) \mapsto (-x,-y)$

• Se considero $\mathbb{P}^2(\mathbb{R}) \cup_{\varphi} \mathcal{D}^3$ con:

$$\varphi \colon \partial \mathcal{D}^3 \to \mathbb{P}^2(\mathbb{R})$$

cioè il passaggio al quoziente:

$$\varphi \colon \mathcal{S}^2 \to \mathcal{S}^1/_H$$

Esempio 3.1.5 (Spazi proiettivi) Se $X^{(k)} = \mathbb{P}^k(\mathbb{R}) \cup_{\omega} \mathcal{D}^{k+1}$ con

$$\varphi \colon \partial \mathcal{D}^{k+1} \to \mathbb{P}^k(\mathbb{R})$$

Cioè:

$$\varphi \colon \mathcal{S}^k \to \mathbb{P}^k(\mathbb{R})$$

Cioè scelgo φ come la proiezione sul quoziente da \mathcal{S}^k a $\mathbb{P}^k(\mathbb{R})=\mathcal{S}^{k+1}/_H$, questo è uno spazio compatto. $\mathbb{P}^k(\mathbb{R})$ è uno spazio di Hausdorf, voglio mostrare che $X^{(k+1)}\cong\mathbb{P}^{k+1}(\mathbb{R})$. Cerco un'applicazione continua biunivoca e chiusa $\Phi\colon X^{(k+1)}\to\mathbb{P}^{k+1}(\mathbb{R})$, cioè un omeomorfismo. Ho il digramma:

$$\mathbb{P}^{k}(\mathbb{R}) \sqcup \mathcal{D}^{k+1} \xrightarrow{\eta} \mathbb{P}^{k+1}(\mathbb{R})$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$X^{(k+1)}$$

Esercizio 8 Dimostrare che η è continua e gode di tutte le buone proprietà.

So che $i \colon \mathbb{P}^k(\mathbb{R}) \hookrightarrow \mathbb{P}^{k+1}(\mathbb{R})$ (è un iperpiano all'infinito), quindi posso usare l'inclusione. Devo trovare una mappa $j \colon \mathcal{D}^{k+1} \to \mathbb{P}^{k+1}(\mathbb{R})$. i è ovvia: $i([z_0, \dots, z_k]) = [z_0, \dots, z_k; 0]$, mentre j:

$$j: [z_0, \dots, z_k] \mapsto \left[z_0, \dots, z_{k+1} = \sqrt{1 - \sum_{j=1}^k z_i^2} \right]$$

Siccome $\sum_{j=1}^k z_i^2 \le 1$ l'applicazione è ben definita, quindi $\eta = (i,j)$.

3.2 Congettura di Poincaré

Ho calcolato l'omologia di una sfera generica:

$$H_k(\mathcal{S}^n) \cong \begin{cases} \mathbb{Z} & \text{se } k \in \{0, n\} \\ 0 & \text{se } k \notin \{0, n\} \end{cases}$$

In particolare ho $H_0(\mathcal{S}^n) \cong \mathbb{Z}$ ed è generato dalla classe di omologia di un punto qualsiasi, mentre $H_n(\mathcal{S}^n) \cong \mathbb{Z}$ è generato dalla classe di omologia di un n-simplesso singolare $\tau_n \colon \Delta_n \to \mathcal{S}^n$.

Per n=2 ho S^2 è una 2-varietà topologica compatta e connessa il cui gruppo fondamentale è banale e i gruppi di omologia noti.

Proposizione 3.2.1 Se \mathcal{M} è una 2-varietà topologica compatta e connessa tale che $\forall k \geq 2$ $H_k(\mathcal{M}) \cong H_k(\mathcal{S}^2)$ allora $\mathcal{M} \simeq \mathcal{S}^2$.

Dimostrazione: Esiste un teorema di classificazione delle varietà topologiche di dimensione 2 compatte e connesse, questo dice che $\mathcal{M} \simeq V_q$ oppure $\mathcal{M} \simeq U_n$. Dove:

$$V_g = \begin{cases} \mathcal{S}^2 & \text{se } g = 0\\ P_{4g}/_{\sim} & \text{se } g \ge 1 \end{cases}$$

Dove \sim è l'identificazione $a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$, come ad esempio il toro, mentre:

$$U_n = \begin{cases} \mathbb{P}^2(\mathbb{R}) & \text{se } n = 0\\ P_{2g}/_{\sim} & \text{se } n \ge 1 \end{cases}$$

Con \sim è l'identificazione $a_1a_1\ldots a_na_n$, come ad esempio la bottiglia di Klein. Tutti i V_g non sono omeomorfi tra loro, e similmente gli U_n , e neppure gli U_n e i V_g sono vicendevolmente omeomorfi in quanto i primi sono non orientabili, mentre i secondi si.

Ho calcolato:

$$H_1(V_g) \cong egin{cases} H_1(\mathcal{S}^2) & ext{se } g = 0 \\ \mathbb{Z}^{2g} & ext{se } g \ge 1 \end{cases}$$

 V_g con $g\geq 1$ non hanno lo stesso tipo di omologia di \mathcal{S}^2 perché $H_1(V_g)$ è non banale, mentre il gruppo fondamentale di \mathcal{S}^2 lo è. Similmente $H_1(\mathbb{P}^2(\mathbb{R}^))\cong \pi_1(\mathbb{P}^2(\mathbb{R}^))\cong \mathbb{Z}_2$, che non è banale, e $H_1(U_n)\cong \operatorname{Ab}(\pi_1(U_n))$, ma per Seifert-van Kampen:

$$\pi_1(U_n) = \langle a_t, \dots, a_n \mid a_1^2 \dots a_n^2 = 1 \rangle \Rightarrow \operatorname{Ab}(\pi_1(U_n)) = \langle a_t, \dots, a_n, c = a_1 \dots a_n \mid a_1^2 \dots a_n^2 = 1 \rangle = \mathbb{Z}_2 \oplus \mathbb{Z}^{n-1}$$

Dove \mathbb{Z}_2 viene dal fatto che abelianizzando $a_1^2 \dots a_n^2 = (a_1 \dots a_n)^2 = 1$ quindi $c = \pm 1$, mentre \mathbb{Z}^{n-1} è il gruppo libero generato dai rimanenti. Questo non è banale, quindi l'unico spazio possibile è proprio \mathcal{S}^2 .

Cosa si può invece dire su S^3 ? Vale la seguente proposizione:

Proposizione 3.2.2 Se \mathcal{M} è una 3-varietà topologica compatta e connessa tale che $\forall k \geq 3$ $H_k(\mathcal{M}) \cong H_k(\mathcal{S}^3)$ allora non si può concludere che $\mathcal{M} \simeq \mathcal{S}^3$.

Dimostrazione: Costruisco un controesempio, noto come **spazio dodecaedrico di Poincaré**, o anche spazio a omologia razionale. Costruisco P 3-varietà topologica compatta e connessa con lo stesso tipo di omologia di una 3-sfera ma non omeomorfa a S^3 in quanto il gruppo fondamentale è finito non abeliano di ordine 120. Parto da S^3 , posso scrivere:

$$S^3 \subseteq \mathbb{C}^2$$
 $S^3 = \{ (z_0, z_1) \in \mathbb{C}^2 \mid |z_0|^2 + |z_1|^2 = 1 \}$

Infatti $z_0=x+iy$ e $z_1=t+iw$ quindi $|z_0|^2=(x+iy)(x-iy)=x^2+y^2$ e $|z_0|^2=(t+iw)(t-iw)=t^2+w^2$ e quindi ottengo:

$$S^3 = \{ (x, y, t, w) \in \mathbb{R}^4 \mid x^2 + y^2 + t^2 + w^2 = 1 \}$$

Così come S^1 ha una struttura di gruppo U(1) è possibile strutturare S^3 come gruppo SU(2):

$$SU(2) = \{ A \in M_2(\mathbb{C}) \mid \det A = 1, AA^{\dagger} = \mathbb{I}_2 \}$$

Quindi $SU(2) \subset \mathbb{C}^4$, si dimostra che $A \in SU(2)$ se e solo se è della forma:

$$\begin{pmatrix} \alpha & -\beta^* \\ \beta & \alpha^* \end{pmatrix} \operatorname{con} \alpha, \beta \in \mathbb{C} \operatorname{e} |\alpha|^2 + |\beta|^2 = 1$$

Quello che sto dicendo è che i vettori in \mathbb{C}^2 (α, β) e $(-\beta^*, \alpha^*)$ sono normalizzati e sono tra di loro ortogonali.

Si costruisce immediatamente la corrispondenza buinivoca tra SU(2) e S^3 :

$$SU(2) \leftrightarrow S^{3}$$

$$\begin{pmatrix} \alpha & -\beta^{*} \\ \beta & \alpha^{*} \end{pmatrix} \leftrightarrow (\alpha, \beta)$$

In questo modo si può definire un prodotto su \mathcal{S}^3 rappresentanto x,y,t,w come numeri complessi e passando alla controparte matriciale, dove il prodotto è definito naturalmente come prodotto riga per colonna, quindi una volta svolto il prodotto si torna alla notazione a quattro reali. A questo punto è triviale trovare l'identità e l'elemento inverso che permettono di dare a \mathcal{S}^3 la struttura di gruppo.

SU(2) può essere visto come spazio topologico con topologia indotta da \mathbb{C}^4 , in questo senso SU(2) e \mathcal{S}^3 sono sia isomorfi come gruppi che omeomorfi come spazi topologici.

La costruzione dello spazio dodeca
edrico si basa sulle isometrie del dodeca
edro D_{12} , questo è un solido regolare con 12 facce, 30 spigoli e 20 vertici. Il gruppo di isometrie del dodeca
edro, cioè:

$$\operatorname{Isom}(D_{12}) = \{ g \colon \mathbb{R}^3 \to \mathbb{R}^3 \mid g \text{ regolare e } g(D_{12}) = D_{12} \}$$

Questo gruppo si può vedere come:

$$Isom(D_{12}) \cong A_5 \times \mathbb{Z}_2$$

Dove A_5 è un sottogruppo di Isom (D_{12}) ed è il gruppo alterno (cioè il gruppo delle permutazioni pari) su 5 elementi e quindi ha ordine 60. Le 60 trasformazioni che sono in A_5 sono l'identità, 24 rotazioni di $\frac{2}{5}\pi$ attorno agli assi per i centri di facce opposti, 20 rotazioni di $\frac{2}{3}\pi$ attorno agli assi per vertici opposti e 15 rotazioni di π attorno agli assi per i punti medi di spigoli opposti. \mathbb{Z}_2 invece è dovuto all'applicazione antipodale che è $(x,y,z)\mapsto (z,y,z)$. A_5 è un sottogruppo finito di SO(3) che sono le rotazioni di \mathbb{R}^3 attorno a una retta passante per l'origine, cioè:

$$SO(3) = \{ R \in M_3(\mathbb{R}) \mid \det R = 1, R^T R = \mathbb{I}_3 \}$$

Per passare da SO(3) a S^3 utilizzo la **rappresentazione spinoriale** (questo mi permette di passare dal dodecaedro che è tridimensionale alla 3-sfera). Sia ρ una rappresentazione di SU(2), cioè un omomorfismo:

$$\rho \colon \mathcal{S}^3 = \mathrm{SU}(2) \to \mathrm{GL}(V)$$

Dove V è uno spazio vettoriale di dimensione 3, quindi $V \cong \mathbb{R}^3$, scelgo lo spazio delle matrici antihermitiane a traccia nulla:

$$V = \{ H \in M_2(\mathbb{C}) \mid H + H^{\dagger} = 0, \text{ tr} H = 0 \}$$

Si trova che V è generato da:

$$E_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
 $E_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $E_3 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$

Perché ρ sia una rappresentazione dovrei verificare:

- 1. $\rho(T)$ lineare
- 2. $\rho(T)(H) \in V$
- 3. ρ omomorfismo
- 4. $\rho(T)$ inveribile

Verifico ad esempoi che $\rho(T)(H) \in V$:

$$THT^{\dagger} + TH^{\dagger}T^{\dagger} = 0 \iff T(H + H^{\dagger})T^{\dagger} = 0 \iff H \in V$$
$$\operatorname{tr}(THT^{\dagger}) = \operatorname{tr}(THT^{-1}) \stackrel{\text{ciclicità}}{=} \operatorname{tr}(H) = 0 \iff H \in V$$

Ho quindi $\rho \colon \mathcal{S}^3 \to \mathrm{GL}(V)$, vorrei cercare di restringere la questione a $\mathrm{O}(V)$ al posto di $\mathrm{GL}(V)$.

Per parlare di isometria bisogna prima definire un prodotto scalare definito positivo, e una possibile forma quadratrica naturale è in questo caso il determinante, infatti se $H \in V$ allora:

$$H = \begin{pmatrix} ia & c+ib \\ -c+ib & -ia \end{pmatrix}$$

Con $a, b, c \in \mathbb{R}$, infatti $\det H = a^2 + b^2 + c^2$ che è il consueto prodotto scalare in \mathbb{R}^3 . In questo modo V diventa uno spazio euclideo con prodotto scalare $q = \det$.

Mi chiedo $\rho(T)\colon V\to V$ è isometria? Questo è vero se $q(\rho(T)(H))=q(H)$ cioè se $\det(THT^\dagger)=\det H$, ma per Binet questo equivale a $\det T \det H \det T^\dagger=\det H$, utilizzando il fatto che il determinante di una matrice è un numero complesso e quindi commuta questo equivale a $\det T \det T^\dagger \det H = \det H$, sempre per Binet $\det(TT^\dagger) \det H = \det H$, ma per ipotesi $TT^\dagger = \mathbb{I}$ quindi effettivamente $\rho(T)$ è isometria, perciò:

$$\rho \colon \mathcal{S}^3 \to \mathrm{O}_3(V)$$

Esercizio 9 Verificare che ρ è continuo come applicazione tra spazi topologici equipaggiando $O_3(V)$ con la topologia indotta da \mathbb{R}^9 .

Essendo ρ continua manda compatti in compatti e connessi in connessi, quindi $\rho(S^3 = \mathrm{SU}(2))$ è connesso in $\mathrm{O}_3(V)$. Ma $\mathrm{O}_3(V)$ non è connesso, e anzi è formato da due componenti connesse, una è $\mathrm{SO}(3)$, l'altra è $\mathrm{SO}(3)$ moltiplicata per una qualunque matrice di determinante -1. Siccome ρ è omomorfismo $\rho(\mathbb{I}) = \mathbb{I}$, quindi $\rho(S^3) = \mathrm{SO}(3)$), in questo modo rappresento la 3-sfera come rotazioni in \mathbb{R}^3 . Si dimostra che ρ è suriettiva e $\mathrm{Ker}(\rho) = \{ (1,0,0,0), (-1,0,0,0) \}$ elementi che corrispondono a \mathbb{I} e $-\mathbb{I}$.

Quindi come gruppi:

$$\mathcal{S}^3/_{\mathrm{Ker}(\rho)} \cong \mathrm{SO}(3)$$

Ad una rotazione in \mathbb{R}^3 corrispondono due punti sulla 3-sfera che sono uno l'antipodale dell'altro.

Ora ho $A_5\subseteq \mathrm{SO}(3)$ definisco $G=\{T\in\mathcal{S}^3\mid \rho(T)\in A_5\}$, cioè sono tutti i punti della sfera a cui corrispondono le rotazioni in A_5 . G è un gruppo, infatti se $T,S\in G$ allora $\rho(T),\rho(S)\in A_5$ e $\rho(TS)=\rho(T)\rho(S)\in A_5$ in quanto A_5 gruppo. Inoltre $\mathbb{I}\in G$ in quanto $\rho(\mathbb{I})\in A_5$.

Definisco $\varphi=\rho|_G$, per costruzione $\varphi\colon G\to A$ ed è suriettiva. Inoltre $\mathrm{Ker}(\varphi)=\{\,T\in G\mid \varphi(T)=\mathbb{I}\,\}$, ma $\varphi(T)=\rho(T)$, quindi $T=\pm\mathbb{I}$, cioè $\mathrm{Ker}(\varphi)=\{\,-\mathbb{I},+\mathbb{I}\,\}$. Ho perciò la succession esatta di gruppi:

$$\mathbb{I} \longrightarrow \operatorname{Ker}(\varphi) \longrightarrow G \longrightarrow A \longrightarrow \mathbb{I}$$

Quindi $A = G/\text{Ker}(\varphi)$. $G \subseteq S^3$ e ha ordine 120, inoltre $\text{Ker}(\varphi)$ è normale in G. Quello che si trova è $G \simeq A_5 \times \text{Ker}(\varphi)$. Questo si verifica formalmente, ma lo si intuisce per il fatto che sostanzialmente G e formato da $(A, +\mathbb{I})$ e $(A, -\mathbb{I})$.

A questo punto posso definire l'azione del gruppo su S^3 :

$$G \times \mathcal{S}^3 \to \mathcal{S}^3$$

 $(g, x) \to gx$

A questo punto è sensato fare $\pi\colon \mathcal{S}^3\to \mathcal{S}^3/_G$. Quello che si trova è che lo spazio dodecaedrico è $P\cong \mathcal{S}^3/_G$, infatti P è connesso e compatto perché quoziente di uno spazio connesso e compatto, bisogna verificare:

- 1. P è una 3-varietà
- 2. $\pi_1(P)$ non è banale
- 3. $H_k(P) \cong H_k(\mathcal{S}^3) \ \forall k \in \mathbb{N}$

Si dimostra che π è un rivestimento, cioè comunque si prenda un punto $p \in P$ esiste intorno di p a cui corrispondono 120 intorni disgiunti su \mathcal{S}^3 . Siccome \mathcal{S}^3 è semplicemente connesso il rivestimento è universale.

Esercizio 10 Dimostrare che π è rivestimento universale di P su S^3 .

Siccome P è rivestito da S^3 localmente è di dimensione 3 perché localmente è fatto come S^3 . Dalla teoria generale dei rivestimenti si trova che $\pi_1(P) \cong G$, quindi $\pi_1(P)$ è non banale.

P è connesso per archi perché passaggio al quoziente di insieme connesso per archi quindi $H_0(P)\cong\mathbb{Z}$ e quindi $H_0(P)\cong H_0(\mathcal{S}^3)$.

Calcolo il gruppo di omologia per k=1 e k=2, sia $\sigma\colon \Delta_k\to P$ un simplesso singolare.

$$\Delta_k \xrightarrow{\sigma} P$$

Per il teorema di sollevamento siccome il rivestimento è universale σ si solleva e quindi vuol dire che c'è un elemento non banale in $H_k(S^3)$, ma per k=1 e per k=2 l'omologia è nulla, quindi non può esserci qualcosa di non banale, per questo $H_1(P)=0$ e $H_2(P)=0$.

Per calcolare $H_3(P)$ si usa un barbatrucco. S^3 ha una struttura di CW-complesso, quella di una 0-cella e una 3-cella.

Definizione 3.2.3 Per un CW-complesso finito X si definisce la caratteristica di Eulero come:

$$e(X) = \sum_{i=0}^{n} (-)^i a_i$$

dove a_i è il numero di i-celle, che per ipotesi è finito.

Si dimostra che

- 1. La caratteristica di Eulero non dipende dalla scelta della struttura di CW-complesso.
- 2. Vale la formula:

$$e(X) = \sum_{i>0} (-)^i \operatorname{Rank}(H_i(X))$$

3. Se $\pi \colon X \to Y$ è un riversimento d a 1 allora vale che e(X) = de(Y).

Per P:

$$e(P) = \operatorname{Rank}(H_0(P)) - \operatorname{Rank}(H_1(P)) + \operatorname{Rank}(H_2(P)) - \operatorname{Rank}(H_3(P)) = 0$$

Da cui $\operatorname{Rank}(H_3(P))=1$ e quindi $H_3(P)\cong \mathbb{Z}\oplus T$ dove T è una parte di torsione. Mostro che T è nulla.

Vale tuttavia il seguente risultato, dimostrato da Perelman nel 2003, noto come congettura di Poincaré:

Proposizione 3.2.4 (ex-Congettura di Poincaré) Se \mathcal{M} è una 3-varietà topologica compatta, connessa e semplicemente connessa tale che $\forall k \geq 3$ $H_k(\mathcal{M}) \cong H_k(\mathcal{S}^3)$ allora $\mathcal{M} \simeq \mathcal{S}^3$.

Questo mostra che il gruppo fondamentale è uno strumento più fine dei gruppi di omologia. Esempi di CW complessi:

Esempio 3.2.5 La sfera S^n per $n \geq 0$ possiede numerose strutture di CW complesso, ad esempio una 0-cella e una n-cella, oppure un politopo gonfiato.

Esempio 3.2.6 Lo spazio proiettivo reale di dimensione n $P^n(\mathbb{R})$ possiede una struttura di CW complesso con una 0-cella, una 1-cella, ..., una n-cella. Lo 0-scheletro è un punto, l'1-scheletro è $K^{(1)} = K^{(0)} \cup_{f_0} \mathcal{D}^1 \cong P^1(\mathbb{R})$ che è una retta proiettiva reale, il 2-scheletro è $K^{(2)} = K^{(1)} \cup_{f_1} \mathcal{D}^1 \cong P^2(\mathbb{R})$ che è un piano proiettivo reale, e cosí via con $f_j \colon \partial \mathcal{D}^j \to K^{(j-1)}$ per $j \geq 1$. In generale ho $\varphi_j \colon \mathcal{D}^j \to K^{(j-1)} \cong P^j - 1(\mathbb{R})$. $P^j - 1(\mathbb{R})$ contiene $P^1(\mathbb{R}) = P^1(\mathbb{R})$ come iperpiano all'infinito, ad esempio $p_j = 0$. Poi a $p_j = 0$ incollo $p_j = 0$ tramite la mappa antipodale. Ad esempio per $p_j = 0$ contiene $p_j =$

$$f \colon \mathcal{S}^1 \to \mathrm{P}^1(\mathbb{R})$$

 $z \mapsto [z]$

Che è la proiezione sul quoziente, infatti $\mathrm{P}^1(\mathbb{R}) = \mathcal{S}^1 /_H$. Quindi $\mathrm{P}^2(\mathbb{R}) = \mathrm{P}^1(\mathbb{R}) \cup_f \mathcal{D}^2$.

Figura 3.1: $P^1(\mathbb{R})$

Lo spazio proiettivo complesso invece è:

$$\mathbf{P}^n(\mathbb{C}) = \mathbb{C} - \{\underline{0}\}/_{\mathbb{C}^*}$$

Dove $\mathbb{C}^{\star}=\mathbb{C}-\{\,0\,\}$. Cioè lo spazio proiettivo complesso è dato dal quoziente con la relazione:

$$(z_0,\ldots,z_n)\sim(w_0,\ldots,w_n)\iff \exists \lambda_i\in\mathbb{C}^* \text{ tali che } z_i=\lambda w_i \ \forall i\in\{0,\ldots,n\}$$

Questo è uno spazio compatto, connesso, di Hausdorf, ed è una varietà topologia di dimensione reale 2n. Se $p \in \mathbf{P}^n(\mathbb{C})$ allora $p = [z_0, \dots, z_n]$ e sicuramente esiste $j \in \{0, \dots, n\}$ tale che $z_j \neq 0$, quindi si può costruire:

$$U_j = \{ [z_0, \dots, z_j] \in \mathbf{P}^n(\mathbb{C}) \mid z_j \neq 0 \}$$

Si ha la mappa:

$$\varphi_j \colon U_j \to \mathbb{C}^n \simeq \mathbb{R}^{2n}$$

$$[z_0, \dots, z_n] \mapsto \left(\frac{z_0}{z_j}, \dots, \frac{z_n}{z_j}\right)$$

Si dimostra che φ_j è omeomorfismo e quindi ogni aperto è omeomorfo a \mathbb{R}^{2n} e perciò la dimensione topologica è 2n.

Esempi:

Esempio 3.2.7 (n = 1) $P^1(\mathbb{C})$ è nota come retta complessa o sfera di Riemann, in quanto si trova che $P^1(\mathbb{C}) \simeq S^2$, infatti:

$$P^{1}(\mathbb{C}) = \{ [0:1] \} \cup U = \{ \infty \} \cup U$$

Ma la proeizione stenografica manda la sfera senza polo Nord in \mathbb{R}^2 , cioè $\mathcal{S}^2 - \{N\} \to \mathbb{R}^2$, quindi $P^1(\mathbb{C}) - \{\infty\} \simeq \mathbb{R}^2$ e quindi $P^1(\mathbb{C}) - \{\infty\} \simeq \mathcal{S}^2 - \{N\}$. Questi sono spazi non compatti ma di Hausdorf, so che la compattificazione di Alexander sono spazi omeomorfi, ma quindi: $P^1(\mathbb{C}) \simeq \mathcal{S}^2$.

In merito al generico spazio proiettivo complesso $P^n(\mathbb{C})$ vorrei sapere quale è la struttura di CW complesso, quale è il suo gruppo fondamentale e quali sono i suoi gruppi di omologia.

Inizio cercando la struttura di CW complesso, questa è simile a quella dello spazio proiettivo reale.

 $K^{(0)}$ è un punto $\mathrm{P}^0(\mathbb{C})$, poi $K^{(2)}=K^{(0)}\cup_f\mathcal{D}^2=\mathcal{S}^2\simeq\mathrm{P}^1(\mathbb{C})$ con f mappa che fa collassare il bordo in un punto.

Poi $K^{(4)}=K^{(2)}\cup_g \hat{\mathcal{D}^4}$ infatti $K^{(2)}=\mathrm{P}^1(\mathbb{C})$, poi prendo \mathcal{D}^4 so che $\partial\mathcal{D}^4=\mathcal{S}^3$ e la mappa al quoziente è $\pi:\mathcal{S}^3\to\mathrm{P}^1(\mathbb{C})$ che è fatta così:

$$\pi \colon \mathcal{S}^3 \mapsto \mathrm{P}^1(\mathbb{C})$$

 $(z_0, z_1) \mapsto [z_0, z_1]$

Posso fare agire S^1 :

$$\mathcal{S}^1 \times \mathcal{S}^3 \to \mathcal{S}^3$$
$$(\lambda, (z_0, z_1)) \mapsto (\lambda z_0, \lambda z_1)$$

Siccome $\lambda \in \mathcal{S}^1$ allora $|\lambda| = 1$ e quindi $|\lambda z_0|^2 + |\lambda z_1|^2 = 1$. Faccio il quoziente $\mathrm{P}^1(\mathbb{C}) = \frac{\mathcal{S}^3}{\mathcal{S}^1}$ e π è la proiezione al quoziente. Allora $K^{(4)} = K^{(2)} \cup_{\pi} \mathcal{D}^4 \simeq \mathrm{P}^2(\mathbb{C})$.

In generale $K^{(2n-2)}$ si costruisce prendendo \mathcal{D}^{2n} e con la mappa di proiezione $\pi\colon\partial\mathcal{D}^{2n}=\mathcal{S}^{n-1}\to\mathrm{P}^n-1(\mathbb{C})$, quindi $K^{(2n-2)}\cup_\pi\mathcal{D}^{2n}$. $\mathrm{P}^n(\mathbb{C})$ è un CW complesso ottenuto attaccando celle di dimensione 2j per $0\leq j\leq n$ Quindi ho una 0-cella, una 1-cella, ..., una 2n-cella.

Osservazione 3.2.8 In generale $P^n(\mathbb{C}) = P^n - (\mathbb{C}) \cup \mathbb{C}^n$ quindi si può srotolare.

Proposizione 3.2.9 Vale che $K^{(2n)} \simeq \mathbb{P}^n(\mathbb{C})$.

Dimostrazione: La dimostrazione è per induzione. Assumo che $K^{2t}=\mathrm{P}^t(\mathbb{C})$ per $0\leq t\leq n-1$.

Sia

$$h: \mathcal{D}^{2n} \to \mathbf{P}^n(\mathbb{C})$$

$$(z_0, \dots, z_{n-1}) \mapsto \left(z_0, \dots, \sqrt{1 - \sum_{i < n} |z_i|^2}\right)$$

So che $\partial \mathcal{D}^{2n} = \mathcal{S}^{2n-1} = \{ |z_0|^2 + \cdots + |z_{n-1}|^2 = 1 \}$ quindi h è ben definita in quanto la radice esiste, ed è continua.

$$h|_{\partial \mathcal{D}^{2n}} \colon \mathcal{S}^{2n-1} \to \mathbf{P}^n - 1(\mathbb{C})$$

 $(z_0, \dots, z_n) \mapsto [z_0, \dots, z_{n-1}, 0] = P$

Vale che:

$$(h|_{\partial \mathcal{D}^{2n}})^{-1}(P) = \{(\lambda_{z_0}, \dots, \lambda_{z_{n-1}}) \mid |\lambda| = 1\} \simeq \mathcal{S}^1$$

Queste sono le preimmagini. h non è iniettiva.

$$\mathcal{D}^{2n} \xrightarrow{h} P^{n}(\mathbb{C})$$

$$P^{n} - 1(\mathbb{C}) \cup_{\tau} \mathcal{D}^{n}$$

Dove $\tau=h\big|_{\partial\mathcal{D}^{2n}}$, con $P((z_0,\ldots,z_{n-1}))=([z_0,\ldots,z_{n-1}])$. F manda $\mathbf{P}^n-1(\mathbb{C})$ in $\mathbf{P}^n(\mathbb{C})$ banalmente e raccorda bene i dischi. F è iniettiva e suriettiva da uno spazio compatto a uno spazio di Hausdorf, quindi è un omeomorfismo.

Ho che $\pi_1(\mathrm{P}^n(\mathbb{C}))=\{1\}\ \forall n\geq 1$ infatti per n=1 $\pi_1(\mathrm{P}^1(\mathbb{C}))\cong \pi_1(\mathcal{S}^1)=\{1\}$. Per induzione suppongo che $\pi_1(\mathrm{P}^n-1(\mathbb{C}))=\{1\}$, voglio mostrare che $\pi_1(\mathrm{P}^n(\mathbb{C}))=\{1\}$. Per fa ciò uso il teorema di Seifert-van Kampen.

$$P^{n}(\mathbb{C}) = P^{n} - 1(\mathbb{C}) \cup_{\pi} \mathcal{D}^{2n}$$

Considero $x \in \mathcal{D}^{2n}$ e un aperto V disco centrato in x di raggio ϵ piccolo, cioè $V = \mathcal{D}^{2n}_{\epsilon}(x)$. Poi prendo $U=\mathrm{P}^n(\mathbb{C})-\{x\}$ aperto. Vale che $V\sim\{x\}$, poi \mathcal{D}^{2n} si ritrae al bordo, che si attacca. $U\simeq\mathrm{P}^n-1(\mathbb{C})$. Poi $V\cap U$ è una specie di corona circolare in \mathcal{D}^{2n} , quindi $V \cap U \sim \mathcal{S}^{2n-1}$. Quindi $\pi_1(\mathrm{P}^n(\mathbb{C})) = \mathrm{P}^n - 1(\mathbb{C}) \cong \{1\}$. È più interessante vedere l'omologia singolare. Si trova che:

$$H_k(\mathbf{P}^n(\mathbb{C})) \cong \begin{cases} \mathbb{Z} & \text{se } k \in \{0, 2, 4, \dots, 2n\} \\ 0 & \text{altrimenti} \end{cases}$$

Con k=1 è il gruppo fondamentale, quindi è nullo, e poi torna per n=1.

Per comodità si introduce l'omologia cellulare di X.

Se X è spazio topologico con struttura di CW complesso si introduce l'omologia cellulare $H_k^{CW}(X)$.

Si trova che $H_k^{CW}(X) \cong H_k(X)$ e c'è un algoritmo per calcolare $H_k^{CW}(X)$. So che $\mathrm{P}^n(\mathbb{C}) = \mathrm{P}^n - 1(\mathbb{C}) \cup_\pi \mathcal{D}^{2n}$. Fisso n voglio calcolare $H_s(\mathrm{P}^n(\mathbb{C})^{(t)}, \mathrm{P}^n(\mathbb{C})^{(t-1)})$.

Calcolo per induzione. So che $H_k(\mathrm{P}^1(\mathbb{C}))$ è a posto, voglio calcolare $H_k(\mathcal{S}^m)$ per induzione. Mi piacerebbe che:

$$H_s(\mathbf{P}^c(\mathbb{C})^{(t)}, \mathbf{P}^n(\mathbb{C})^{(t-1)}) \cong H_s(\mathbf{P}^n(\mathbb{C})^{(t)}/_{\mathbf{P}^n(\mathbb{C})^{(t-1)}})$$

Questo è vero in generale, se $A \subseteq X$ CW complessi allora:

$$H_k(X,A) \cong H_k(X/A)$$

Ma $P^n(\mathbb{C})^{(t)} = P^n(\mathbb{C})^{(t-1)} \cup_{\pi} \mathcal{D}^{2t}$, è come se collassa quello che è in comune alle celle, cioè il bordo del dei dischi ad un punto, cioè:

$$\mathbf{P}^n(\mathbb{C})^{(t)}/\mathbf{P}^n(\mathbb{C})^{(t-1)} \simeq \mathcal{S}^{2t}$$

Se $s \neq 2t$ allora $H_s(\mathbb{C}^{n}(\mathbb{C})^{(t)}/\mathbb{P}^n(\mathbb{C})^{(t-1)}) = 0.$

$$H_{2t}(\mathbf{P}^n(\mathbb{C})^{(t)}, \mathbf{P}^n(\mathbb{C})^{(t-1)}) \cong \mathbb{Z}$$

E gli altri sono zero. In generale $X^{(k)}-X^{(k-1)}\cup_{f_1}\mathcal{D}^k_{\alpha_1}\cup\cdots\cup_{f_n}\mathcal{D}^k_{\alpha_N}$ cosa è $H_s(X^{(k)},X^{(k-1)})$.

$$H_s(X^{(k)}, X^{(k-1)}) \cong H_s(X^{(k)}/X^{(k-1)})$$

 Ma $^{X^{(k)}}/_{X^{(k-1)}}$ è un bouquet, in quanto tutte le sfere hanno in comune il punto a cui si è contratto $X^{(k-1)}$. Quindi:

$$H_s(X^{(k)}, X^{(k-1)}) \cong \begin{cases} \mathbb{Z}^N & \text{se } k = s \\ 0 & \text{se } k \neq s \end{cases}$$

Considero $\mathbf{P}^n(\mathbb{C})$ ho che:

$$P^n - 2(\mathbb{C}) \hookrightarrow P^n - 1(\mathbb{C}) \hookrightarrow P^n(\mathbb{C})$$

Quindi:

$$(P^n - 1(\mathbb{C}), P^n - 2(\mathbb{C})) \to (P^n(\mathbb{C}), P^n - 1(\mathbb{C}))$$

e quindi

$$H_s(\mathbf{P}^n - 1(\mathbb{C}), \mathbf{P}^n - 2(\mathbb{C})) \to H_s(\mathbf{P}^n(\mathbb{C}), \mathbf{P}^n - 1(\mathbb{C}))$$

Ma il primo è diverso da zero se s=2n-2 e il secondo è diverso da zero se s=2n.

Da qui non ottengo informazioni di carattere generale, cioè quello che sto dicendo è che non è semplicemente la composizione della coppia allora uso un trucco.

Costruisco un'applicazione. FORSE

Sia X un CW complesso e Y un CW complesso, è possibile dare una struttura di CW complesso anche a $Z = X \times Y$. Se $\{e_{\alpha}\}$ sono le celle di X e $\{f_{\beta}\}$ quelle di Y, allora $\{\,e_{\alpha}\times f_{\beta}\,\}$ sono celle di Z. Bisogna solo capire come sono fatte le mappe di attaccamento.

Esempio 3.2.10 (Sfere) Sia $X = S^p$ allora una possibile struttura di CW è data da una 0cella e_0 e una p-cella e_p . Allora $X^{(0)}=\{X\}, \hat{X}^{(p)}=\{X\}\cup_f \mathcal{D}^p \ e \ f\colon \mathcal{D}^p\to \mathcal{S}^p \ \text{con}$ $f|_{\partial \mathcal{D}^p}=\mathrm{cost..}\ Y=\mathcal{S}^q\ con\ f_0\ 0$ -cella, $f_q\ q$ -cella, la mappa di attaccamento è: $g\colon \mathcal{D}^q o \mathcal{S}^q$

con $g\big|_{\partial \mathcal{D}^p}=\mathrm{cost..}$ Il prodotto è una 0-cella $e_0\times f_0$, una p-cella $e_p\times f_0$, una q-cella $e_0\times f_q$ e una p+q-cella $e_p\times f_q$. La mappa di attaccamento è per la prima $\{(x,y)\}$ con $x\in \mathcal{S}^p$ e $y\in \mathcal{S}^q$, per la seconda

$$F_{p0} \colon \mathcal{D}^p \to \mathcal{S}^p \times \mathcal{S}^q$$

 $z \mapsto (f(z), y)$

Per la terza

$$F_{0q} \colon \mathcal{D}^q \to \mathcal{S}^p \times \mathcal{S}^q$$

 $z \mapsto (z, g(u))$

Per la quarta:

$$F_{pq} \colon \mathcal{D}^{p+q} \to \mathcal{S}^p \times \mathcal{S}^q$$

 $(w, u) \mapsto (f(w), g(u))$

3.3 Costruzione dell'omologia cellulare

Definizione 3.3.1 Sia (Y, A) CW complessi con $A \subseteq Y$ la coppia (Y, A) si dice **buona** se allora esiste un intorno aperto V di A in Y tale che A sia un retratto di deformazione di A.

Osservazione 3.3.2 Siccome V è un intorno aperto di A vale che $\bar{A} \subseteq \operatorname{int}(V) = V$. Questo è il requisito per poter applicare il teorema di escissione.

Lemma 3.3.3 Per coppie buone (Y, A) la proiezione al quoziente

$$q: (Y,A) \to (Y/A, A/A)$$

induce un isomorfismo:

$$q_{\star} \colon H_n(Y, A) \to H_n(Y/A, A/A)$$

Dimostrazione: Essendo A retratto di deformazione di V esiste una mappa di inclusione $i \colon A \to V$, per la funtorialità sono ben definite le mappe a livello di omologia:

$$H_n(Y,A) \xrightarrow{i_{\star}} H_n(Y,V)$$

$$\downarrow^{q_{\star}} \qquad \qquad \downarrow^{q_{\star}}$$

$$H_n(Y/_A,A/_A) \cong \tilde{H}_n(Y,A) \longrightarrow H_n(Y/_A,V/_A)$$

 $H_n(Y/A, A/A) \cong \tilde{H}_n(Y/A)$ in quanto il quoziente di A con sé stesso fa collassare A in un punto, quindi il gruppo di omologia è relativo ad un punto, e quindi è l'omologia ridotta. Ho la terna (A, V, Y) tale che $A \subseteq V \subseteq Y$ allora c'è l'inclusione $(Y, A) \hookrightarrow (Y, V)$. A questa inclusione corrisponde la successione esatta lunga:

$$\dots \longrightarrow H_{n+1}(V,A) \longrightarrow H_n(Y,A) \longrightarrow H_n(Y,V) \longrightarrow H_n(V,A) \longrightarrow \dots$$

Ma V è omotopa ad A quindi $H_n(V,A) \cong H_n(A,A)$ per l'assioma dell'omotopia Ma $H_n(A,A) \cong 0$, infatti: $H_n(A,A) \cong 0 \ \forall k$ in quanto il gruppo di omologia relativa di A con A stesso è definito dalla successione:

$$0 \longrightarrow H_k(A) \longrightarrow H_k(A) \longrightarrow H_k(A,A) \longrightarrow 0$$

Ma $H_k(A)\cong H_k(A)$ quindi $H_k(A,A)\cong {H_k(A)}/{H_k(A)}\cong 0.$ La successione diventa:

$$0 \longrightarrow H_n(Y,A) \longrightarrow H_n(Y,V) \longrightarrow 0$$

Quindi $H_k(Y,A)\cong H_n(Y,V)$. Se mostro che anche $^A/_A$ è retratto di $^V/_A$ allora per gli stessi motivi sono isomorfi $H_n(^Y/_A,^A/_A)$ e $H_n(^Y/_A,^V/_A)$. Quindi ho:

$$i: A \to V$$

 $r: V \to A$

E $^{A}/_{A}$ è retratto di $^{V}/_{A}$, Infatti compongo i e r con le proiezioni al quoziente:

$$j: {}^{A}/_{A} \to {}^{V}/_{A}$$

$$\rho: {}^{V}/_{A} \to {}^{A}/_{A}$$

Sono tali che $\rho\circ j=\mathbb{I}_{A/A}$ e $j\circ \rho=\mathbb{I}_{V/A}$, in quanto per ipotesi r è retrazione per i e quindi ρ è retrazione per j. Io ho $A\subseteq V\subseteq Y$, faccio l'escissione di A:

$$H_{n}(Y,A) \xrightarrow{\cong} H_{n}(Y,V) \longleftrightarrow_{\cong} H_{n}(Y-A,V-A)$$

$$\downarrow^{q_{\star}} \qquad \downarrow^{q_{\star}} \qquad \downarrow^{q_{\star}}$$

$$H_{n}(Y/A,A/A) \xrightarrow{\cong} H_{n}(Y/A,V/A) \longleftrightarrow_{\cong} H_{n}(Y/A-A/A,V/A-A/A)$$

Ho
$$^A/_A\subseteq ^V/_A\subseteq ^Y/_A.$$
 Inoltre

$$H_k(^Y/_A, ^V/_A) \cong H_n(^Y/_A - ^A/_A, ^V/_A - ^A/_A)$$

per l'assioma di escissione che posso applicare in quanto vale che $\bar{A} \subset \mathrm{int}(V)$. In questo è necessario che la coppia sia buona, ma nei CW complessi è sempre così, come si può verificare.

Esercizio 11 Dimostrare che la coppia formata da un k-scheletro e un k-1-scheletro è buona.

La q_{\star} di destra è un isomorfismo perché la sua restrizione sul complementare di A in Y è un omeomorfismo. Per la commutatività del diagramma q_{\star} è isomorfismo.

Corollario 3.3.4 Se (Y,A) è una coppia buona allora vale che $\tilde{H}_k(Y/A)\cong H_k(Y,A)$.

Lemma 3.3.5 Vale che:

$$\tilde{H}_k(\mathcal{S}^n_{\alpha_1} \vee \dots \vee \mathcal{S}^n_{\alpha_t}) \cong \bigoplus \tilde{H}_k(\mathcal{S}^n_{\alpha_j}) \cong \begin{cases} \mathbb{Z}^t & \text{se } k = n \\ 0 & \text{se } k \neq n \end{cases}$$

dove t è il numero di sfere.

 $\mbox{\bf Dimostrazione} : \mbox{Lavoro con } n \mbox{ fissato, conosco l'omologia delle sfere, in particolare quella ridotta è:}$

$$\tilde{H}_k(\mathcal{S}^n) \cong \begin{cases} \mathbb{Z} & \text{se } k = n \\ 0 & \text{se } k \neq n \end{cases}$$

Per k=0 e k=1 so calcolare i gruppi di omologia perché sono il gruppo fondamentale è il suo abelianizzato, mi metto quindi nel caso $k\geq 2$. Nel caso $k\geq 2$ omologia ridotta coincide con quella usuale. So anche calcolare i gruppi di omologia nel caso di una sfera, cioè t=1.

La dimostrazione è per induzione: suppongo di conoscere $\tilde{H}_k(\mathcal{S}_1^n \vee \ldots \mathcal{S}_{t-1}^n)$ voglio calcolare $\tilde{H}_k(\mathcal{S}_1^n \vee \ldots \mathcal{S}_t^n)$. Come notazione pongo $Z_t = \mathcal{S}_1^n \vee \ldots \mathcal{S}_t^n$ e $B = \mathcal{S}_t^n$, cioè vale che $Z_t = Z_{t-1} \vee B$.

L'ipotesi induttiva è:

$$\tilde{H}_k(Z_{t-1}) \cong \begin{cases} \mathbb{Z}^{t-1} & \text{se } k = n \\ 0 & \text{se } k \neq n \end{cases}$$

Siccome ci sono delle naturali mappe di inclusione vale la successione esatta lunga in omologia relativa:

$$\dots \to H_k(Z_{t-1}) \to H_k(Z_t) \to H_k(Z_t, Z_{t-1}) \to H_{k-1}(Z_{t-1}) \to \dots$$

Se $k \neq n$ e siccome $k \geq 2$ allora $H_k(Z_{t-1}) \cong 0$ per ipotesi induttiva. Ma come dimostrato nel lemma precedente vale che

$$H_k(Y,A) \cong \tilde{H}_k(Y/A)$$

Quindi:

$$H_k(Z_t, Z_{t-1}) \cong \tilde{H}_k(Z_t/Z_{t-1}) \cong \tilde{H}_k(\mathcal{S}_t^n) \cong 0$$

quindi la successione è:

$$0 \longrightarrow H_k(Z_t) \longrightarrow 0$$

e quindi $H_k(Z_t) = 0$ siccome la successione è esatta.

Se invece k = n allora vale la successione esatta:

$$\dots \to H_{n+1}(Z_t, Z_{t-1}) \to H_n(Z_{t-1}) \to H_n(Z_t) \to H_n(Z_t, Z_{t-1}) \to H_{n-1}(Z_{t-1}) \to \dots$$

Ma

$$H_{n+1}(Z_t, Z_{t-1}) \cong \tilde{H}_{n+1}(Z_t/Z_{t-1}) \cong \tilde{H}_{n+1}(S^n) \cong 0$$

E:

$$H_n(Z_t, Z_{t-1}) \cong \tilde{H}_n(Z_t/Z_{t-1}) \cong \tilde{H}_n(S^n) \cong \mathbb{Z}$$

Mentre $H_{n-1}(Z_{t-1}) \cong 0$ e $H_n(Z_{t-1}) \cong \mathbb{Z}^{t-1}$ per ipotesi induttiva quindi:

$$0 \longrightarrow \mathbb{Z}^{t-1} \longrightarrow H_n(Z_t) \longrightarrow \mathbb{Z} \longrightarrow 0$$

Quindi siccome la successione è spezzante $H_n(Z_t)\cong \mathbb{Z}^t$. [PERCHÈ LA SUCCESSIONE SPEZZA?]

Lemma 3.3.6 Sia X un CW complesso finito i cui k-scheletri sono $X^{(0)} \subseteq \cdots \subseteq X^{(n)} \subseteq \cdots \subseteq X^{(n)} \subseteq \cdots \subseteq X^{(n)} \subseteq \cdots \subseteq X^{(n)}$

1.

$$H_k(X^{(n)},X^{(n-1)})\cong egin{cases} \mathbb{Z}^{a_n} & ext{se }k=n ext{ con }a_n ext{ numero di }n ext{-celle} \ 0 & ext{se }k
eq n \end{cases}$$

2.

$$H_k(X^{(n)}) \cong egin{cases} 0 & \textit{per } k > n \\ H_k(X) & \textit{per } k < n \end{cases}$$

Dimostrazione:

1. La coppia $(X^{(n)}, X^{(n-1)})$ è una coppia buona, quindi vale che:

$$H_k(X^{(n)}, X^{(n-1)}) \cong \tilde{H}_k(X^{(n)}/_{X^{(n-1)}})$$

Ma

$$X^{(n)} = X^{(n-1)} \cup_f \mathcal{D}_{\alpha_i}^n \cup_{f_1} \cdots \cup_{f_t} \mathcal{D}_{\alpha_t}^n = \mathcal{S}_{\alpha_1}^n \vee \cdots \vee \mathcal{S}_{\alpha_t}^n$$

L'identificazione $X^{(n)}/X^{(n-1)}$ fa collassare i bordi in un punto, quindi ottengo un bouquet. Per il lemma precedente:

$$\tilde{H}_k(\mathcal{S}_{\alpha_1}^n \vee \cdots \vee \mathcal{S}_{\alpha_t}^n) \cong \bigoplus \tilde{H}_k(\mathcal{S}_{\alpha_j}^n)$$

Se k > n l'omologia di ogni sfera è nulla, mentre se k < n è $\mathbb Z$ per ogni cella.

2. Considero la successione esatta della coppia $(X^{(n)}, X^{(n-1)})$:

$$\dots \to H_{k+1}(X^{(n)}, X^{(n-1)}) \to H_k(X^{(n-1)}) \to H_k(X^{(n)}) \to H_k(X^{(n)}, X^{(n-1)}) \to \dots$$

Nel punto precedente ho calcolato i gruppi di omologia relativa: se $k \notin \{n, n-1\}$ allora sia $H_{k+1}(X^{(n)}, X^{(n-1)})$ che $H_k(X^{(n)}, X^{(n-1)})$ sono nulli quindi la successione diventa:

$$0 \longrightarrow H_k(X^{(n-1)}) \longrightarrow H_k(X^{(n)}) \longrightarrow 0$$

Quindi $H_k(X^{(n-1)})\cong H_k(X^{(n)}).$ Noto che per $k\neq 0$ vale che $H_k(X^{(0)})\cong 0$ in quanto $X^{(0)}$ sono punti, ma quindi:

$$H_k(X^{(n)}) \cong H_k(X^{(n-1)}) \cong H_k(X^{(n-2)}) \cong \dots \cong H_k(X^{(0)}) \cong 0$$

Quindi per k > n sono tutti banali in quanto sicuramente $k \notin \{n, n-1\}$, Se k < n considero la successione esatta lunga della coppia $(X^{(n+1)}, X^{(n)})$:

$$\dots \to H_{k+1}(X^{(n+1)}, X^{(n)}) \to H_k(X^{(n)}) \to H_k(X^{(n+1)}) \to H_k(X^{(n+1)}, X^{(n)}) \to \dots$$

Se k < n sicuramente $k+1 \neq n+1$ quindi $H_{k+1}(X^{(n+1)},X^{(n)}) \cong 0$, ma anche $H_k(X^{(n+1)}, X^{(n)}) \cong 0$ quindi ho la successione:

$$0 \longrightarrow H_k(X^{(n)}) \longrightarrow H_k(X^{(n+1)}) \longrightarrow 0$$

Da cui $H_k(X^{(n)}) \cong H_k(X^{(n+1)})$. Quindi:

$$H_k(X^{(n)}) \cong H_k(X^{(n+1)})$$
. Quind:
$$H_k(X^{(n)}) \cong H_k(X^{(n+1)}) \ldots \cong H_k(X^{(N)}) = H_k(X)$$

Sia X un CW complesso di tipo finito, voglio costruire un complesso (S^{CW}_{ullet}, d^{CW}) e voglio mostrare che l'omologia di questo complesso, detta omologia cellulare, è isomorfa con l'omologia singolare:

$$H_k^{CW}(X) = H_k(S_{\bullet}^{CW}(X)) \qquad H_k^{CW} = H_k(X^{(k)}, X^{(k-1)})$$

So che $(X^{(k+1)},X^{(k)})$ è una coppia e ho la successione esatta in omologia:

$$\dots \to H_{k+1}(X^{(k+1)}) \to H_{k+1}(X^{(k+1)}, X^{(k)}) \to H_k(X^{(k)}) \to H_k(X^{(k+1)}) \to \dots$$

Poi ho la coppia $(X^{(k)}, X^{(k-1)})$ e quindi la successione

$$\dots \to H_{k+1}(X^{(k)}, X^{(k-1)}) \to H_k(X^{(k-1)}) \to H_k(X^{(k)}) \to H_k(X^{(k)}, X^{(k-1)}) \to \dots$$

Incrociando le successioni e considerando che $H_k(X^{(k+1)},X^{(k)})\cong 0$:

Cioè definisco $d_k^{CW}=j_{k-1}\circ\delta_k$. Devo mostrare che questo è un complesso, cioè $d^2=0$, quindi posso definire l'omologia:

$$d_k^{CW} \circ d_{k+1}^{CW} = j_{k-1} \circ \delta_k \circ j_k \circ \delta_{k+1} = 0$$

Infatti $\delta_k \circ j_k$ è composizione in una successione esatta quindi è nulla. d^{CW} è un operatore di bordo

 $\begin{array}{l} \textbf{Definizione 3.3.7} \; \textit{Sia} \; X \; \textit{un} \; \textit{CW} \; \textit{complesso, siano} \; S_k^{CW}(X) := H_k(X^{(k)}, X^{(k-1)}) \; e \; d_k^{CW} = \\ j_{k-1} \circ \delta_k \; \textit{con} \; j_k \colon H_k(X^{(k)}) \to H_k(X^{(k)}, X^{(k-1)}) \; e \; \delta_k \colon H_k(X^{(k)}, X^{(k-1)}) \to H_{k-1}(X^{(k-1)}), \\ \textit{allora si definisce omologia cellulare come l'omologia del complesso} \; (S_{\bullet}^{CW}, d^{CW}). \end{array}$

Proposizione 3.3.8 L'omologia cellulare è isomorfa all'omologia singolare.

Dimostrazione: Ora voglio mostrare che l'omologia è isomorfa a quella singolare, devo mostrare che:

$$H_k(X) \cong H_k^{CW}(X) := \frac{\operatorname{Ker}(d_k^{CW})}{\operatorname{Im}(d_{k+1}^{CW})}$$

Avevo mostrato che $H_k(X^{(k-1))})=0$ quindi se n=k-1 allora $H_k(X^{(k-1)})=0$ quindi j_k è iniettiva in quanto $\mathrm{Ker}(j_k)=\mathrm{Im}(\sigma)=0$. Osservo che siccome τ è suriettiva $\mathrm{Im}(\tau)=H_k(X^{(k+1)})$, ma per il teorema fondamentale degli omeomorfismi $H_k(X^{(k)})/\mathrm{Ker}(\tau)\cong\mathrm{Im}(\tau)$ quindi $H_k(X^{(k+1)})\cong H_k(X^{(k)})/\mathrm{Ker}(\tau)$. Ma $H_k(X^{(k+1)})\cong H_k(X)$, quindi ho che: $H_k(X^{(k)})/\mathrm{Ker}(\tau)\cong H_k(X)$. Inoltre siccome la successione è esatta $\mathrm{Ker}(\tau)=\mathrm{Im}(\delta_{k+1})$ quindi nel complesso ho che

$$H_k(X) \cong {}^{H_k(X^{(k)})}/_{\operatorname{Im}(\delta_{k+1})}$$

Inoltre ho $j_k \colon H_k(X^{(k)}) \to H_k(X^{(k)}, X^{(k-1)})$ che è tale che:

$$j_k\left(\operatorname{Im}(\delta_{k+1})\right) = \operatorname{Im}(j_k \circ \delta_{k+1})$$

infatti se $z \in j_k\left(\operatorname{Im}(\delta_{k+1})\right)$ allora esiste u tale che $z = j_k(\delta_{k+1}(u)) = j_k \circ \delta_{k+1}(u)$, e se $w \in \operatorname{Im}(j_k \circ \delta_{k+1})$ allora esiste r tale che $w = j_k \circ \delta_{k+1}(r) = j_k(\delta_{k+1}(r))$. Quindi $j_k\left(\operatorname{Im}(\delta_{k+1})\right) = \operatorname{Im}(d_{k+1}^{CW})$, e perciò¹:

$$H_k(X) \cong j_k \left(H_k(X^{(k)}) \right) /_{\operatorname{Im}(d_{k+1}^{CW})}$$

Mi rimane da mostrare che $j_k\left(H_k(X^{(k)})\right)\cong \mathrm{Ker}(d_k^{CW})$. Per l'esattezza vale che:

$$j_k\left(H_k(X^{(k)})\right) = \operatorname{Im}(j_k) = \operatorname{Ker}(\delta_k)$$

 $^{{}^{1}}$ Usando il fatto che sej è iniettiva ${}^{A}/{}_{B}\cong{}^{j(A)}/{}_{j(B)}$

Ma $\operatorname{Ker}(\delta_k) = \operatorname{Ker}(d_k^{CW})$ in quanto se $z \in \operatorname{Ker}(\delta_k)$:

$$\delta_k(z) = 0 \stackrel{\text{iniettività}}{\Longrightarrow} j_{k-1} \circ \delta_k(z) = 0 \Rightarrow z \in \text{Ker}(j_k \circ \delta_k) = \text{Ker}(d_k^{CW})$$

Infine, se $w \in \operatorname{Ker}(d_k^{CW})$ allora $0 = d_k^{CW}(w) = j_{k-1} \circ \delta_k(w)$, ma j_{k-1} è iniettivo e perciò $\delta_k(w) = 0$ quindi $w \in \operatorname{Ker}(\delta_k)$.

Osservazione 3.3.9 So che $S_k^{CW}(X) = H_k(X^{(k)}, X^{(k-1)}) \cong \mathbb{Z}^{a_k}$ con a_k numero di celle, cosa posso dire su $d_k^{CW}: S_k^{CW}(X) \to S_{k-1}^{CW}(X)$?

Siccome $S_k^{CW}(X)\cong \mathbb{Z}^{a_k}$ e c'è un fattore \mathbb{Z} per ogni cella posso considerare $S_k^{CW}(X)$ generato da una base formata da k-celle e_1,\ldots,e_{a_k} , e similmente $S_{k-1}^{CW}(X)$ generato da k-1-celle $f_1,\ldots,f_{a_{k-1}}$. Siccome $d_k^{CW}(e_j)$ è un elemento in $S_{k-1}^{CW}(X)$ si può scrivere come combinazione lineare a coefficienti interi di f_m :

$$d_k^{CW}(e_j) = \sum_m A_{jm} f_m$$

Coma si calcolano gli A_{jm} ? Prendo e_j un generatore di $H_k(X^{(k)}, X^{(k-1)}) \cong \bigoplus_j H_k(\mathcal{S}_j^k)$. e_j genera il bordo di una cella.

Posso rileggere gli H_k :

$$H_k(\mathcal{S}_k^k) \cong H_k(\mathcal{D}^k/\partial \mathcal{D}^k) \cong H_k(\mathcal{D}^k,\partial \mathcal{D}^k) = H_k(\mathcal{D}^k,\mathcal{S}^{k-1}) \cong H_{k-1}(\mathcal{S}^{k-1})$$

Sono partito da S^k e sono arrivato in S^{k-1} . d_k^{CW} è la mappa in omologia indotta dall'applicazione:

$$\partial \mathcal{D}^k \xrightarrow{\varphi_k} X^{(k-1)} \downarrow \\ X^{(k-1)}/_{X^{(k-2)}} = \bigvee_{\alpha} \mathcal{S}_{\alpha}^{k-1} \xrightarrow{u_{\beta}} \mathcal{S}_{\beta}^{k-1}$$

Allora $A_{jb} = \deg u_{\beta} \circ \eta_{j}$.

3.3.1 Calcolo dell'omologia cellulare di alcuni spazi

Spazi V_q

Gli spazi V_g sono definiti a partire dai poligoni regolari con 4g lati, quozientati con l'identificazione $a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$. Di questi spazi conosco già $H_0(V_g)\cong \mathbb{Z}$ in quanto sono connessi per archi e $H_1(V_g)\cong \mathbb{Z}^{2g}$ in quanto conosco il gruppo fondamentale.

A questi spazi è possibile dare la struttura di CW complessi con una 0-cella che è il punto in cui tutti i vertici del poligono collassano sotto la proiezione $\pi\colon P_{4g}\to V_g$ quindi la 0-cella è $x=\pi(v)$, dove v sono i vertici. Poi 2g 1-celle $\alpha_1,\ldots,\alpha_g,\beta_1,\ldots,\beta_g$ con $\alpha_i=\pi(a_i)$ e $\beta_i=\pi(b_1)$. La funzione di attaccamento è:

$$f_1 \colon \partial \mathcal{D}^2 \to X^{(0)}$$

 $\pm 1 \mapsto x$

Infine una 2-cella che è l'immagine dell'interno, cioè ottenuta con la mappa di attaccamento

$$f \colon \mathcal{S}^1 \to X^{(1)} = \mathcal{S}^1_1 \vee \cdots \vee \mathcal{S}^1_{2q}$$

Calcolo l'omologia di V_g con $g \ge 1$, il complesso è:

$$0 \longrightarrow S_2^{CW}(V_g) \longrightarrow S_1^{CW}(V_g) \longrightarrow S_0^{CW}(V_g) \longrightarrow 0$$

Ma:

$$\begin{split} S_0^{CW}(V_g) &= H_0(X^{(0)}, X^{(-1)}) = H_0(X^{(0)}, \varnothing) = H_0(X^{(0)}) = H_0(X) \cong Z \\ S_1^{CW}(V_g) &= H_1(X^{(1)}, X^{(0)}) \cong \mathbb{Z}^{2g} \\ S_2^{CW}(V_g) &= H_2(X^{(2)}, X^{(0)}) \cong \mathbb{Z} \end{split}$$

Quindi il complesso è:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{d_2} \mathbb{Z}^{2g} \xrightarrow{d_1} \mathbb{Z} \xrightarrow{d_0} 0$$

Voglio calcolare i gruppi di omologia di questo complesso a partire dalla definizione di omologia e so che questi gruppi sono isomorfi ai gruppi di omologia singolare. d_0 è la mappa nulla per costruzione quindi $\operatorname{Ker}(d_0)\cong\mathbb{Z}$, mentre cosa è $d_1\colon\mathbb{Z}^{2g}\to\mathbb{Z}$? \mathbb{Z}^{2g} è in corrispondenza con le celle, quindi posso prende come generatori e_n celle in $X^{(1)}$. e_n è una 1-cella, quindi $e_n\in H_1(X^{(1)},X^{(0)})$, ma $H_1(X^{(1)},X^{(0)})\cong H_1(X^{(1)}/X^{(0)})$, inoltre $X^{(1)}=X^{(0)}\cup_{f_1}\mathcal{D}_1^1\cdots\cup_{f_{2g}}\mathcal{D}_{2g}^1$. Quando collasso i bordi ad un punto mi rimane un bouquet:

$$=h_1(\mathcal{S}_1^1\vee\cdots\vee\mathcal{S}_{4g}^1)\cong\bigoplus_n H_1(\mathcal{S}_n^1)$$

Quindi $e_n \in H_1(\mathcal{S}_n^1)$ per qualche n. Poi ho:

E $d_1(e_n) = \sum A_{kn} f_k$, con $A_{kn} = \deg{(r \circ s)}$. [...] Quello che trovo è $\mathrm{Im}(d) = 0$, quindi:

$$H_0^{CW}(V_g) = \frac{\operatorname{Ker}(d)}{\operatorname{Im}(d_1)} = \mathbb{Z}$$

Faccio la stessa cosa con d_2 , ho $\operatorname{Im}(d_2)=0$ e $\operatorname{Ker}(d_2)=\mathbb{Z}^{2g}$. Considero:

$$\partial \mathcal{D}^2 \xrightarrow{f} X^{(1)} \downarrow$$

$$X^{(1)}/_{X^{(0)}}$$

La mappa verticale non fa nulla in quanto fa collassare un punto in un punto. Quindi ho:

$$\mathcal{S}^1 \stackrel{f}{\longrightarrow} \mathcal{S}^1 \vee \dots \mathcal{S}^1$$

 S^1

xHo $d_2: S_2^{CW}(V_q) \to S_1^{CW}(V_q)$ cioè: $d_2: H_2(X^{(2)}, X^{(1)}) \to H_1(X^{(1)}, X^{(0)})$, ma:

$$H_2(X^{(2)}, X^{(1)}) \cong H_2(X^{(2)}/X^{(1)}) \cong H_2(S^2) \cong H_2(D^2, \partial D^1) \cong H_2(D^2, S^1) \cong H_1(S^1)$$

Quindi:

$$d_2 \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1_1 \vee \dots \vee \mathcal{S}^1_{2g})$$

 $1 \mapsto 0$

Infatti $a_1+b_1-a_1-b_1\cdots=0$ Quindi $\mathrm{Ker}(d_2)=\mathbb{Z}$ e $\mathrm{Im}(d_2)=0$, $H_2^{CW}(V_g)=\mathrm{Ker}(d_2)\big/_{\mathrm{Im}(d_3)}\cong\mathbb{Z}$ e $H_1^{CW}(V_g)=\mathrm{Ker}(d_1)\big/_{\mathrm{Im}(d_2)}\cong\mathbb{Z}^{2g}$. Si nota che

$$Rank(H_0(V_q)) - Rank(H_1(V_q)) + Rank(H_2(V_q)) = 1 - 2g + 1 = 2 - 2g$$

Questa è la caratteristica di Eulero di V_q : $\chi(V_q) = 2 - 2g$.

Osservazione 3.3.10 Se X è un CW complesso finito allora $H_k(X)=0$ se non ci sono k-celle, infatti $H_k(X)\cong H_k^{CW}\cong 0$ se non ci sono k-celle.

Osservazione 3.3.11 Se X è un CW complesso finito con a_n n-celle allora $H_n(X)$ è generato da al più a_n elementi, infatti $H_n(X) \cong H_n^{CW}(X)$ che è quoziente di $S_n^{CW}(X) \cong \mathbb{Z}^{a_n}$.

Corollario 3.3.12 Se X è CW complesso finito $H_k(X)$ è un gruppo abeliano finitamente generato, infatti $H_k(X) \cong H_k^{CW}(X)$ quoziente di un gruppo abeliano libero finitamente generato.

Teorema 3.3.13 (Teorema di struttura per gruppi abeliani liberi finitamente generati) Se $\mathcal G$ è un gruppo abeliano libero finitamente generato di rango $\operatorname{Rank}(\mathcal G)$ allora:

$$\mathcal{G} \cong \mathbb{Z}^{\operatorname{Rank}(\mathcal{G})} \oplus T_k$$

Dove T_k è il sotto gruppo di torsione di G.

Definizione 3.3.14 (Numero di Betti e caratteristica di Eulero) Se X è un CW complesso allora si definisce il k-esimo numero di Betti come $b_k(X) = \operatorname{Rank}(H_k(X))$, e si definisce la caratteristica di Eulero di X come:

$$\chi(X) = \sum_{k=0}^{N} (-)^k b_k(X)$$

Spazi proiettivi

Osservazione 3.3.15 Se X è un CW complesso che non ha celle in indici consecutivi allora $H_k(X)$ è abeliano libero con una base in corrispondenza con le k-celle.

Dimostrazione: Infatti ho il complesso:

$$\ldots \longrightarrow S^{CW}_{k+1}(X) \longrightarrow S^{CW}_{k}(X) \longrightarrow S^{CW}_{k-1}(X) \longrightarrow \ldots$$

Cioè:

$$\ldots \longrightarrow \mathbb{Z}^{a_{n-1}} \longrightarrow \mathbb{Z}^{a_n} \longrightarrow \mathbb{Z}^{a_{n-1}} \longrightarrow \ldots$$

Almeno alcuni di questi sono zeri, quindi alcuni differenziali sono zero.

Ad esempio se $Y=\mathrm{P}^n(\mathbb{C})$ ho una 0-cella, una 1-cella, . . . , e una n-cella, quindi la struttura del complesso è:

$$\ldots \longrightarrow S^{CW}_{2n}(Y) \longrightarrow 0 \longrightarrow S^{CW}_{2n-2}(X) \longrightarrow \ldots \longrightarrow 0$$

Quindi $H_{2n}^{CW}(Y)=S_{2n}^{CW}(Y)\big/_{\Set{0}}\cong S_{2n}^{CW}(Y)\cong \mathbb{Z}$, ecc, cioè:

$$H_{2k}^{CW}(Y) \cong \mathbb{Z} \text{ per } k \in \{0,\ldots,n\}$$

La caratteristica di Eulero è:

$$\chi(Y) = \sum_{k=0}^{N} (-)^{2k} = n+1$$

Esempio 3.3.16 Sia $X_1 = S^n$, $X_2 = S^n$ e $Z = X_1 \times X_2$, Z è un CW complesso finito, e siccome S^n ha una 0-cella e una n-cella, allora Z ha una 0-cella, due n-celle e una 2n-cella. Quindi ho:

$$0 \longrightarrow S_{2n}^{CW}(Z) \longrightarrow 0 \longrightarrow \ldots \longrightarrow S_{n}^{CW}(Z) \longrightarrow \ldots \longrightarrow 0$$

Quindi:

$$H_k(Z) \cong egin{cases} \mathbb{Z} & \textit{se } k \in \set{0,2n} \ \mathbb{Z}^2 & \textit{se } k = n \ 0 & \textit{se } k
otin \set{0,n,2n} \end{cases}$$

Spazi proiettivi reali

Lo spazio proiettivo reale è più complicato. So che $S^1 \simeq P^1(\mathbb{R})$ e $U_1 \simeq P^2(\mathbb{R})$.

Le celle del proiettivo reale sono una 0-cella, una 1-cella, ..., una n-cella, e siccome non ci sono buchi non si può usare lo stesso ragionamento di prima. So che;

$$X^{(k+1)} = X^{(k)} \cup_f \mathcal{D}^{k+1} \text{ con } f : \partial \mathcal{D}^{k+1} \to X^{(k)}$$

3 Omologia cellulare

Cioè $f \colon \mathcal{S}^k \to X^{(k)} = \mathrm{P}^k(\mathbb{R}) \cong \mathcal{S}^k /_{\sim}$ quindi f è la proiezione. Ho il complesso per $\mathrm{P}^2(\mathbb{R})$:

$$0 \longrightarrow S_2^{CW}(\mathbf{P}^2(\mathbb{R})) \longrightarrow S_1^{CW}(\mathbf{P}^2(\mathbb{R})) \longrightarrow S_0^{CW}(\mathbf{P}^2(\mathbb{R})) \longrightarrow 0$$

Cioè:

$$0 \xrightarrow{t_3} \mathbb{Z} \xrightarrow{t_2} \mathbb{Z} \xrightarrow{t_1} \mathbb{Z} \xrightarrow{t_0} 0$$

Devo calcolare nuclei e immagini. So che:

$$\begin{cases} \operatorname{Im}(t_3) = 0 \\ \operatorname{Ker}(t_3) = 0 \end{cases}$$

E:

$$\begin{cases} \operatorname{Im}(t_0) = 0 \\ \operatorname{Ker}(t_0) = \mathbb{Z} \end{cases}$$

Trovo che:

$$t_2 \colon \mathbb{Z} \to \mathbb{Z}$$

 $x \mapsto 2x$

Ho il diagramma:

$$S^{1} = \partial \mathcal{D}^{2} \xrightarrow{\mathcal{A}} P^{1}(\mathbb{R})$$

$$\downarrow^{\mathcal{A}} \qquad \qquad \downarrow^{\mathbb{I}}$$

$$P^{1}(\mathbb{R})$$

La mappa \mathcal{A} è la proiezione sul gruppo generato dalla mappa antipodale. Siccome è una mappa 2 a 1 viene quello che ho scritto. So che $H_1(\mathrm{P}^2(\mathbb{R})) \cong \mathbb{Z}/_{2\mathbb{Z}}$ quindi:

$$\operatorname{Ker}(t_1)/\operatorname{Im}(t_2) \cong \mathbb{Z}/2\mathbb{Z}$$

 $t_1 \colon \mathbb{Z} \to \mathbb{Z}$ viene da:

Quindi il grado è zero.

Nel complesso ho che:

$$0 \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{0} 0$$

Trovo che: $H_0\cong \mathbb{Z}, H_1\cong \mathbb{Z}ig/_{2\mathbb{Z}}, H_2\cong 0.$ In generale ho:

$$\begin{array}{ccc} \mathcal{S}^k & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

Cioè ho che:

$$0 \xrightarrow{\quad 0 \quad} \mathbb{Z} \xrightarrow{\quad t_n \quad} \mathbb{Z} \xrightarrow{\quad t_{n-1} \quad} \dots \xrightarrow{\quad t_1 \quad} \mathbb{Z} \xrightarrow{\quad t_0 \quad} 0$$

In generale il comportamento è differente per n pari o per n dispari, nel caso n=3:

$$0 \xrightarrow{0} \mathbb{Z} \xrightarrow{t_3} \mathbb{Z} \xrightarrow{t_2} \mathbb{Z} \xrightarrow{t_1} \mathbb{Z} \xrightarrow{t_0} 0$$

 $d_4\colon 0\to \mathbb{Z}$, quindi $\mathrm{Im}(t_4)=0$ e $\mathrm{Ker}(t_4)=0$, mentre $d_3\colon \mathbb{Z}\to \mathbb{Z}$ e ho:

$$\mathcal{S}^2 = \partial \mathcal{D}^3 \xrightarrow{\mathcal{A}} P^3(\mathbb{R})$$

$$P^3(\mathbb{R})/_{P^2(\mathbb{R})} \cong \mathcal{S}^2$$

Si trova che il grado di ${\mathcal A}$ è zero e:

$$t_3 \colon \mathbb{Z} \to \mathbb{Z}$$

 $x \mapsto \deg t_3 x$

Alla fine si ha che:

$$H_k(\mathbf{P}^3(\mathbb{R})) = \begin{cases} \mathbb{Z} & \text{se } k = 0 \\ \mathbb{Z}_2 & \text{se } k = 1 \\ 0 & \text{se } k = 2 \\ \mathbb{Z} & \text{se } k = 3 \end{cases}$$

Sia $P^n(\mathbb{R})$ ho il complesso:

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \dots \qquad \mathbb{Z} \longrightarrow 0$$

Ad esempio per n=3 ho:

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0$$

I bordi sono:

$$\mathcal{S}^2 = \partial \mathcal{D}^3 \xrightarrow{\Delta} P^2(\mathbb{R})$$

$$\downarrow^{\Delta} \downarrow^{P^2(\mathbb{R})}/_{P^1(\mathbb{R})} \simeq \mathcal{S}^1$$

Devo trovare il grado di Δ . Se α è un generatore di $H_2(\mathcal{S}^2)$ allora si definisce il grado di Δ con $\Delta_{\star}(\alpha) = \deg \Delta \alpha$. Un generatore di \mathcal{S}^2 è $\tau_2 \colon \mathcal{D}^2 \to \mathcal{S}^2$ mappa proiezione sul bordo. [FIGURA]

Poi ho $\tau' \colon \mathcal{D}^2 \to \mathcal{S}^2$ identificazione.

$$[\tau'] \in H_2(\mathcal{S}^2) \Rightarrow [\tau'] = m[\tau_2] = \deg \Delta_{\star}[\tau - 2]$$

Cioè $\tau_2\big|_{\partial\mathcal{D}^2}=\tau'\big|_{\partial\mathcal{D}^2}$ sul bordo si comportano come l'identità, cioè la cella viene mandata in \mathcal{S}^2 meno un punto. Poi $A\circ\tau_2\big|_{\mathrm{int}\mathcal{D}^2}=\tau'\big|_{\mathrm{int}\mathcal{D}^2}$ con A mappa antipodale, quindi:

$$\deg \Delta_{\star} = 1 + (-1)^{2+1} = 1 - 1 = 0$$

Quindi il complesso è:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \longrightarrow 0$$

Questo si generalizza immediatamente a n generico. Per n pari:

$$0 \longrightarrow \mathbb{Z} \stackrel{2}{\longrightarrow} \dots \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

Per n dispari:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{0} \dots \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow 0$$

Si ha l'alternanza di applicazione costante e moltiplicazione per 2.

3.4 Successione di Mayer-Vietoris

Teorema 3.4.1 Sia X uno spazio topologico e A e B sottospazi aperti di X con la topologia indotta, se $X = A \cup B$ allora esiste la successione esatta di complessi:

$$0 \longrightarrow S_p(A \cap B) \longrightarrow S_p(A) \oplus S_p(B) \longrightarrow S_p(A \cup B) \longrightarrow 0$$

Quindi esiste una successione esatta lunga in omologia:

$$\dots \to H_p(A \cap B) \to H_p(A) \oplus H_p(B) \to H_p(A \cup B) \xrightarrow{\delta} H_{p-1}(A \cap B) \to \dots$$

Dimostrazione: Esistono le mappe di inclusione sono $i_A \colon A \cap B \hookrightarrow A$ e $i_B \colon A \cap B \hookrightarrow B$ quindi è ben definita:

$$i_{\sharp} \colon S_p(A \cap B) \to S_p(A) \oplus S_p(B)$$

$$c \mapsto (i_A^{\sharp}(c), i_B^{\sharp}(c))$$

Ma ci sono anche le inclusioni $j_A \colon A \hookrightarrow X$ e $j_B \colon B \hookrightarrow X$, quindi è ben definita

$$j_{\sharp} \colon S_p(A) \oplus S_p(B) \to S_p(A \cup B) = S_p(X)$$

 $(a,b) \mapsto j_A^{\sharp}(a) - j_B^{\sharp}(b)$

La successione è esatta, infatti sia $c \in S_p(A \cap B)$:

$$j_{\sharp} \circ i_{\sharp}(c) = (i_A^{\sharp}(c), i_B^{\sharp}(c)) = i_A^{\sharp}(c) - i_B^{\sharp}(c) = 0$$

In quanto sugli elementi di $S_p(A \cap B)$ i_A^{\sharp} e i_B^{\sharp} agiscono allo stesso modo.

Osservazione 3.4.2 Questa non è la forma più generale del teorema di Mayer-Veitoris, il quale ammette anche la possibilità che A e B non siano aperti ma che $X = \text{int} A \cup \text{int} B$, tuttavia questa possibilità si rivela necessaria solo in casi patologici.

Nel dimostrare il seguente teorema si dà per noto il seguente risultato:

Lemma 3.4.3 Se $f: \mathcal{D}^n \to \mathcal{S}^n$ è un embdetting allora $\tilde{H}_k(\mathcal{S}^r - f(\mathcal{D}^r)) = 0$.

Teorema 3.4.4 (Teorema di Jordan generalizzato) Sia $f: \mathcal{S}^r \to \mathcal{S}^n$ un embedding, cioè una funzione continua tale che $f(\mathcal{S}^r) \simeq \mathcal{S}^r$, allora:

$$ilde{H}_i(\mathcal{S}^n - f(\mathcal{S}^r)) \cong egin{cases} \mathbb{Z} & \textit{se } i = n-r-1 \ 0 & \textit{se } i
eq n-r-1 \end{cases}$$

Ovvero $\tilde{H}_i(\mathcal{S}^n - f(\mathcal{S}^r)) \cong \tilde{H}_i(\mathcal{S}^{n-r-1}).$

Dimostrazione: La dimostrazione è per induzione su r. Per r=0 $\mathcal{S}^0=\{+1,-1\}$, $f(\mathcal{S}^0)=\{p,q\}$ essendo un embedding. Allora $(\mathcal{S}^n-\{p\})-\{q\}\cong\mathbb{R}^n-\{\underline{0}\}\simeq\mathcal{S}^{n-1}$. Quindi $\tilde{H}_i(\mathcal{S}^n-f(\mathcal{S}^0))\cong\tilde{H}_i(\mathcal{S}^{n-1})$.

Suppongo di conoscere il risultato per r-1: sia $f\colon \mathcal{S}^r\to \mathcal{S}^n$ embedding, considero i due emisferi \mathcal{D}^r_+ e \mathcal{D}^r_- , vale che: $\mathcal{D}^r_+\cup \mathcal{D}^r_-=\mathcal{S}^r$ e $\mathcal{D}^r_+\cap \mathcal{D}^r_-=\mathcal{S}^{r-1}$. Sia $U_+=\mathcal{S}^n-f(\mathcal{D}^r_+)$ e $U_-=\mathcal{S}^n-f(\mathcal{D}^r_-)$, uno Mayer-Vietoris, infatti U_- e U_+ sono aperti in quanto sono complementari di chiusi in \mathcal{S}^n . Ho che:

$$U_{+} \cup U_{-} = \left(\mathcal{S}^{n} - f(\mathcal{D}_{+}^{r})\right) \cup \left(\mathcal{S}^{n} - f(\mathcal{D}_{-}^{r})\right) = \mathcal{S}^{n} - \left(f(\mathcal{D}_{+}^{r}) \cap f(\mathcal{D}_{-}^{r})\right) = f \stackrel{\text{$\hat{\mathbf{e}}$ embedding}}{=} \mathcal{S}^{n} - \left(f(\mathcal{D}_{+}^{r} \cap \mathcal{D}_{-}^{r})\right) = \mathcal{S}^{n} - f(\mathcal{S}^{r-1})$$

Mentre:

$$U_{+} \cap U_{-} = \left(\mathcal{S}^{n} - f(\mathcal{D}_{+}^{r})\right) \cap \left(\mathcal{S}^{n} - f(\mathcal{D}_{-}^{f})\right) \mathcal{S}^{n} - \left(f(\mathcal{D}_{+}^{r}) \cup f(\mathcal{D}_{-}^{r})\right) = f \stackrel{\text{\dot{e} embedding}}{=} \mathcal{S}^{n} - \left(f(\mathcal{D}_{+}^{r} \cup \mathcal{D}_{-}^{r})\right) = \mathcal{S}^{n} - f(\mathcal{S}^{r})$$

Per Mayers-Vietoris c'è:

$$\dots \to H_{i+1}(U_+) \oplus H_{i+1}(U_-) \to H_{i+1}(U_+ \cup U_-) \to H_i(U_+ \cap U_-) \to H_i(U_+) \oplus H_i(U_-) \to \dots$$

Da cui, utilizzando il precedente lemma ($H_i(U_{\pm}) \cong 0$):

$$0 \longrightarrow H_{i+1}(\mathcal{S}^n - f(\mathcal{S}^{r-1})) \longrightarrow H_i(\mathcal{S}^n - f(\mathcal{S}^r)) \longrightarrow 0$$

Da cui passando all'omologia ridotta $\tilde{H}_i(\mathcal{S}^n - f(\mathcal{S}^r)) \cong \tilde{H}_{i+1}(\mathcal{S}^n - f(\mathcal{S}^{r-1})) \cong \tilde{H}_{i+1}(\mathcal{S}^{n-r}) \cong \tilde{H}_{i+1}(\mathcal{S}^{n-r})$ per ipotesi induttiva.

Questo risultato generalizza il teorema di Jordan che dice che se C è una curva semplice (cioè che non si autointerseca) chiusa in \mathbb{R}^2 allora C divide \mathbb{R}^2 in due componenti connesse.

Esempio 3.4.5 Sia $f: S^1 \to S^2$ embedding allora:

$$ilde{H}_i(\mathcal{S}^2 - f(\mathcal{S}^1)) \cong egin{cases} \mathbb{Z} & \textit{se } i = 0 \ 0 & \textit{se } i
eq 0 \end{cases}$$

Proposizione 3.4.6 Il teorema di Jordan generalizzato implica il teorema di Jordan.

Dimostrazione: Ho $S^2 - \{p\} \cong \mathbb{R}^2$, per proiezione stenografica, sia $f: S^1 \to S^2$ embedding, $f(S^1)$ è una curva chiusa semplice, la denoto con $C = f(S^1)$. So che

$$\tilde{H}_i(\mathcal{S}^2 - C) \cong \begin{cases} \mathbb{Z} & \text{se } i = 0\\ 0 & \text{se } i \neq 0 \end{cases}$$

Ci sono due componenti connesse, infatti per i=0 l'omologia è \mathbb{Z}^2 (infatti l'omologia ridotta toglie uno \mathbb{Z}). Bisogna dimostrare che $\tilde{H}_1(\mathcal{S}^2-C)\cong \tilde{H}_1(\mathbb{R}^2-C)$. Mostro che $\tilde{H}_0(\mathcal{S}^2-C)\cong \tilde{H}_0(\mathbb{R}^2-C)$. Un modo per farlo è con Mayers-Vietoris. Sia $q\in C$, $\mathcal{S}^2-\{p\}\simeq H_{\mathbb{R}^2}-C'$ con $C'\simeq C$. Voglio mostrare che $\tilde{H}_0(\mathcal{S}^2-C)\cong \tilde{H}_0(\mathbb{R}^2-C)$ implica $H_0((\mathcal{S}^2-C)-\{q\})\cong H_0(\mathbb{R}^2-C)$. So che per il teorema di Jordan generalizzato $H_0(\mathcal{S}^2-C)\cong \mathbb{Z}^2$, devo mostrare che $H_0(\mathcal{S}^2-C-\{q\})\cong H_1(\mathcal{S}^2-C)$. Ma questo è ovvio perché togliere un punto non sconnette. In realtà questo non è vero.

Voglio mostrare che $H_q(S^2-C)\cong H_q((S^2-C)-\{q\})$. Prendo V(q) intorno di q omeomorfo a D, poi prendo D' e considero $S^2-C=K$, quindi K-D. [FIGURA] Uso Mayer-Vietoris $K=(K-D')\cup D$. So che $D\sim P$ punto e $(K-D')\cap D\sim S^1$ (è una corona circolare). Quindi per Mayers-Vietoris ho la successione esatta lunga:

$$\ldots \to H_1(S^1) \to H_1(K - \{q\}) \oplus H_1(P) \to H_1(K) \to H_0(S^1) \to H_0(K - \{q\}) \oplus H_0(P) \to H_0(K) \to 0$$

So che $H_1(K)\cong 0$ per il teorema di Jordan generalizzato e $H_0(K)\cong \mathbb{Z}^2$. Ma $1-\mathrm{Rank}((H_0(K-\{q\})))-1+2=0$ quindi $\mathrm{Rank}((H_0(K-\{q\})))=2$ e quindi $H_0(K-\{q\})\cong \mathbb{Z}^2$. [SISTEMARE QUESTA ROBA]

Teorema 3.4.7 (Invarianza topologica della dimensione) Se M è una varietà topologica di dimensione m e N una varietà topologica di dimensione n con $M \simeq N$ allora m = n, cioè la dimensione di una varietà topologica è un invariante topologico: se due spazi topologici sono omeomorfi allora hanno la stessa dimensione.

Dimostrazione: Mostro inizialmente che la dimensione di una varietà topologica è legata al gruppo di omologia della sfera. Sia $x \in M$ allora siccome M è una varietà topologica esiste un intorno aperto di x $\mathcal{D}^m(x)$, questo intorno è omeomorfo al disco aperto m-dimensionale. Sia $U = M - \mathcal{D}^m(x)$, U è chiuso perché complementare in M di un aperto. Vale che $\bar{U} = U \subseteq M - \{x\}$ perciò $U \subseteq M - \{x\}$ e quindi posso fare l'escissione:

$$H_i(M, M - \{x\}) \cong H_i(M - U, M - U - \{x\})$$

Ma:

$$M - U = M - (M - \mathcal{D}^m(x)) = \mathcal{D}^m(x)$$

Quindi:

$$H_i(M, M - \{x\}) \cong H_i(\mathcal{D}^m(x), \mathcal{D}^m(x) - \{x\}) \cong H_i(\mathcal{D}^m, \mathcal{D}^m - \{\underline{0}\})$$

L'immersione di $\mathcal{D}^m-\set{\underline{0}}$ in \mathcal{D}^m induce una successione esatta lunga in omologia relativa

Figura 3.2: Situazione

ridotta, da cui si trova facilmente che:

$$H_i(\mathcal{D}^m, \mathcal{D}^m - \{\underline{0}\}) \cong \tilde{H}_{i-1}(\mathcal{D}^m - \{\underline{0}\})$$

Ma $\mathcal{D}^m-\{\,\underline{0}\,\}\sim_h\mathcal{S}^{m-1}$ quindi $\tilde{H}_i(\mathcal{D}^m-\{\,\underline{0}\,\})\cong \tilde{H}_i(\mathcal{S}^{m-1})$ e perciò:

$$H_i(M, M - \{x\}) \cong \tilde{H}_i(\mathcal{S}^{m-1})$$

A questo punto diventa semplice collegare due varietà differenti: se $M \simeq N$ allora:

$$H_i(M, M - \{x\}) \cong H_i(N, N - \{y\})$$

Cioè:

$$\tilde{H}_i(\mathcal{S}^{m-1}) \cong \tilde{H}_i(\mathcal{S}^{n-1})$$

Quindi necessariamente m=n.

Osservazione 3.4.8 Non vale il viceversa, come ad esempio un toro e una sfera, che hanno la stessa dimensione topologica ma non sono omeomorfi.

4 Coomologia singolare

4.1 Prodotto tensore

Ho trovato che per n pari:

$$H_i(\mathrm{P}^n(\mathbb{R})) \cong egin{cases} \mathbb{Z} & \text{se } i = 0 \ \mathbb{Z}_2 & \text{se } i \text{ pari e } i < n \ 0 & \text{altrimenti} \end{cases}$$

Mentre per n dispari:

$$H_i(\mathrm{P}^n(\mathbb{R})) \cong egin{cases} \mathbb{Z} & \text{se } i = 0, n \\ \mathbb{Z}_2 & \text{se } i \text{ pari e } i < n \\ 0 & \text{altrimenti} \end{cases}$$

Non mi piace. Voglio cambiare i coefficienti.

Sia A, B gruppi abeliani, è ben definito il prodotto cartesiano:

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}$$

Sia F(A,B) il gruppo libero generato dalle coppie $(a,b) \in A \times B$ in notazione additiva. Il gruppo F(A,B) è abeliano in quanto A e B lo sono, e l'operazione di somma è:

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

Definizione 4.1.1 Se A, B sono \mathbb{Z} -moduli si definisce il **prodotto tensore** tra A e B, come:

$$A \otimes B = {F(A,B) / R(A,B)}$$

Dove F(A, B) è il gruppo libero generato da $A \times B$ con operazione $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$, e R(A, B) il gruppo generato in R(A, B) dalle espressioni:

$$(a_1 + a_2, b) - (a_1, b) - (a_2, b)$$

$$(a, b_1 + b_2) - (a, b_1) - (a, b_2)$$

$$n(a, b) - (na, b)$$

$$n(a, b) - (a, nb)$$

. Gli elementi di $A \otimes B$ sono $a \otimes b$ con $a \in A$ e $b \in B$ e vale che:

$$(a_1 + a_2) \otimes b = a_1 \otimes b + a_2 \otimes b$$
$$a \otimes (b_1 + b_2) = a \otimes b_1 + a \otimes b_2$$
$$n(a \otimes b) = (na) \otimes b$$
$$n(a \otimes b) = a \otimes (nb)$$

Infatti il quoziente manda a zero le espressioni in R(A, B).

Proposizione 4.1.2 (Proprietà universale) Sia G un gruppo abeliano e $\psi \colon A \times B \to G$ un'applicazione bilineare continua, allora esiste un unico omomorfismo $\varphi \colon A \otimes B \to G$ tale che il diagramma:

$$\begin{array}{c} A \times B \xrightarrow{\psi} G \\ \downarrow^{\pi} \\ A \otimes B \end{array}$$

è commutativo, con:

$$\pi \colon A \times B \to A \oplus B$$

 $(a,b) \mapsto a \otimes b$

In pratica ψ fattorizza per il prodotto tensoriale ($\psi = \varphi \circ \pi$). La proprietà è detta universale perché esiste mostra che esiste un solo prodotto tensoriale.

Dimostrazione: La costruzione di φ è banale, è tale che $\varphi(a \otimes b) = \varphi(\pi(a,b)) = \psi(a,b)$, bisogna solo verificare che è ben definita. Considero un elemento $c \otimes d$ equivalente a $a \otimes b$, cioè tali che $(a,b)-(c,d) \in R(A,B)$, devo mostrare che $\varphi(a \otimes b) = \varphi(c \otimes d)$, cioè che $\psi(a,b) = \psi(c,d)$, ovvero che $\psi(a,b) - \psi(c,d) = 0$, ma $(a,b) - (c,d) \in R(A,B)$ e:

$$\psi((c,d)-(a,b))=\sum_{\alpha}\psi((r_{\alpha},s_{\alpha}))=\sum_{\alpha}\varphi(\pi((r_{\alpha},s_{\alpha})))=0$$

con (r_{α}, s_{α}) base di R(A, B), che al quoziente vanno a zero.

Un'altra importante proprietà del prodotto tensore è il suo comportamento rispetto agli omomorfismi.

Proposizione 4.1.3 Siano $f: A \to B$ e $g: A' \to B'$ omomorfismi, posso definire:

$$f \otimes g \colon A \otimes A' \to B \otimes B'$$

 $a \otimes a' \to f(a) \otimes g(a')$

Allora $f \otimes g$ è omomorfismo di gruppi abeliani.

Dimostrazione:

Proof.

Proposizione 4.1.4 Vale che $A \otimes B \cong B \otimes A$, cioè il prodotto tensore è simmetrico.

Dimostrazione: Se per la proprietà universale (con $G=B\otimes A$) trovo una mappa bilineare continua $\psi\colon A\times B\to A\otimes B$ allora esiste un omomorfismo $\varphi_1\colon A\otimes B\to B\otimes A$, quindi posso scambiare A e B e trovare un secondo omomorfismo $\varphi_2\colon B\otimes A\to A\otimes B$, al che mostrare che φ_1 e φ_2 sono inverse. Sia:

$$\psi \colon A \times B \to B \otimes A$$
$$(x,y) \mapsto y \otimes x$$

Questa applicazione è continua e bilineare, allora ho φ_1 e φ_2 , e:

$$A \otimes B \xrightarrow{\varphi_1} B \otimes A \xrightarrow{\varphi_2} A \times B$$
$$a \otimes b \longmapsto b \otimes a \longmapsto a \otimes b$$

Quindi $\varphi_1 \circ \varphi_2 = \mathbb{I}_{A \otimes B}$, e analogamente $\varphi_2 \circ \varphi_1 = \mathbb{I}_{B \otimes A}$.

Un'ulteriore proprietà da analizzare è il comportamento rispetto alle successioni esatte. Considero una successone esatta corta di \mathbb{Z} -moduli:

П

$$0 \longrightarrow R \stackrel{\alpha}{\longrightarrow} F \stackrel{\beta}{\longrightarrow} A \longrightarrow 0$$

Considero G gruppo abeliano, allora ho:

$$R \otimes G \xrightarrow{\alpha'} F \otimes G \xrightarrow{\beta'} A \otimes G$$

Questa successione è esatta? Per verificarlo utilizzo un lemma:

Lemma 4.1.5 Se A è uno \mathbb{Z} -modulo allora $A \otimes \mathbb{Z} \cong A$.

Dimostrazione: Costruisco esplicitamente l'isomorfismo. Siano τ e σ definiti da:

$$\tau \colon A \to A \otimes \mathbb{Z}$$
$$a \mapsto a \otimes 1$$

E:

$$\sigma \colon A \otimes \mathbb{Z} \to A$$
$$\tilde{a} \otimes n \mapsto n\tilde{a}$$

Mostro che sono omomorfismi:

$$\tau(a+b) \otimes 1 = a \otimes 1 + b \otimes 1 = \tau(a) + \tau(b)$$

$$\sigma(\tilde{a} \otimes n + \tilde{b} \otimes m) = \sigma(n\tilde{a} \otimes 1 + m\tilde{b} \otimes 1) = \sigma((n\tilde{a} + m\tilde{b}) \otimes 1) =$$
$$= n\tilde{a} + m\tilde{b} = \sigma(\tilde{a} \otimes n) + \sigma(\tilde{b} \otimes m)$$

Poi σ e τ sono inversi, infatti:

$$A \longrightarrow A \otimes \mathbb{Z} \longrightarrow A$$
$$a \stackrel{\tau}{\longmapsto} a \otimes 1 \stackrel{\sigma}{\longmapsto} a$$

E:

$$A \otimes \mathbb{Z} \longrightarrow A \longrightarrow A \otimes Z$$

$$a \otimes n \stackrel{\sigma}{\longmapsto} n\tilde{a} \stackrel{\tau}{\longmapsto} n\tilde{a} \otimes 1 = \tilde{a} \otimes n$$

Quindi τ e σ costituiscono isomorfismi tra $A\otimes \mathbb{Z}$ e A.

Esempio 4.1.6 Considero la successione esatta corta:

$$0 \longrightarrow n\mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \stackrel{\beta}{\longrightarrow} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

In particolare per n=6:

$$0 \longrightarrow 6\mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{\beta} \mathbb{Z}/_{6\mathbb{Z}} \longrightarrow 0$$

Tensorizzo per \mathbb{Z} :

$$0 \longrightarrow 6\mathbb{Z} \otimes \mathbb{Z} \xrightarrow{\alpha \otimes \mathbb{I}} \mathbb{Z} \otimes \mathbb{Z} \xrightarrow{\beta \otimes \mathbb{I}} \mathbb{Z} / 6\mathbb{Z} \otimes \mathbb{Z} \longrightarrow 0$$
$$6x \otimes y \longmapsto x \otimes y \longmapsto \bar{x} \otimes y$$

Con \bar{x} classe modulo 6 di x. La successione è esatta perché passando all'isomorfismo la successione è:

$$0 \longrightarrow 6\mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{\beta} \mathbb{Z}_6 \longrightarrow 0$$

La quale è esatta.

Esempio 4.1.7 Considero la stessa successione di prima, ma ora tensorizzo per $\mathbb{Z}/_{4\mathbb{Z}}\cong\mathbb{Z}_4$:

$$0 \longrightarrow 6\mathbb{Z} \otimes \mathbb{Z}_4 \xrightarrow{\alpha \otimes \mathbb{I}} \mathbb{Z} \otimes \mathbb{Z}_4 \xrightarrow{\beta \otimes \mathbb{I}} \mathbb{Z}_6 \otimes \mathbb{Z}_4 \longrightarrow 0$$
$$6x \otimes \bar{y} \longmapsto x \otimes \bar{y} \longmapsto \bar{x} \otimes \bar{y}$$

Considero in particolare l'applicazione:

$$6\mathbb{Z}\otimes\mathbb{Z}_4\to\mathbb{Z}\otimes\mathbb{Z}_4$$
$$6x\otimes\bar{y}\mapsto x\otimes\bar{y}$$

Questa ha un nucleo non banale, usando il lemma precedente:

$$\mathbb{Z} \otimes \mathbb{Z}_4 \to \mathbb{Z}_4$$
$$x \otimes \bar{y} \mapsto \bar{xy}$$

E l'elemento x=6 e y=2 viene mandato in $\overline{12}$ che è 0 in \mathbb{Z}_4 .

Da questi esempi si nota che in generale successioni esatte non vanno in successioni esatte, cioè $R \otimes G \to F \otimes G \to A \otimes G$ non è sempre esatta. Magari riesco comunque a dire qualcosa.

Osservazione 4.1.8 *Considero* $\alpha \otimes \mathbb{I} : R \otimes G \rightarrow F \otimes G$ *allora*:

$$F \otimes G /_{(\alpha \otimes \mathbb{I})(R \otimes G)} \cong F /_{\alpha(R)} \otimes G$$

Dimostrazione: Infatti costruisco esplicitamente l'isomorfismo:

$$\eta \colon {}^F/_{\alpha(R)} \otimes G \to {}^F \otimes G/_{(\alpha \otimes \mathbb{I})(R \otimes G)}$$
$$[\alpha] \otimes g \mapsto [\alpha \otimes g]'$$

Questa mappa è ben definita, infatti se $b\sim a$, cioè se [b]=[a] allora $-b+a\in \alpha(R)$, quindi:

$$[b] \otimes g \mapsto [b \otimes g]'$$
$$[a] \otimes g \mapsto [a \otimes g]'$$

Ma $b=a+\alpha(r)$ con $r\in R$ quindi $b\otimes g=(a+\alpha(r))\otimes g=a\otimes g+\alpha(r)\otimes g$ e quindi:

$$[b \otimes g]' = [a \otimes g + \alpha(r) \otimes g]' = [a \otimes g]' + [\alpha(r) \otimes g]'$$

Ma;

$$[\alpha(r) \otimes g]' = [(\alpha \otimes \mathbb{I})(r \otimes g)]' = 0$$

In quanto []' è nello spazio quoziente rispetto $(\alpha \otimes \mathbb{I})$. L'applicazione è quindi ben definita e lineare, l'inversa è chiaramente la mappa $[a \otimes g]' \mapsto [a] \otimes g$, che è ben definita per il medesimo ragionamento.

Ma a questo punto $F/_{\alpha(R)}\otimes G\cong A\otimes G$, infatti per il teorema fondamentale degli omomorfismi:

$$F/_{\mathrm{Im}(\alpha)} = F/_{\mathrm{Ker}(\beta)} \cong \mathrm{Im}(\beta) = A$$

Quindi $A\otimes G\cong F\otimes G/(\alpha\otimes \mathbb{I})(R\otimes G)$. In questo modo posso sempre costruire una successione esatta tensorizzando, rinunciando all'iniettività di $\alpha\otimes \mathbb{I}$, ma mantenendo $\mathrm{Ker}(\beta\otimes \mathbb{I})=\mathrm{Im}(\alpha\otimes \mathbb{I})$ e $\beta\otimes \mathbb{I}$ iniettiva:

$$0 \longrightarrow \operatorname{Ker}(\alpha \otimes \mathbb{I}) \longrightarrow R \otimes G \xrightarrow{\alpha \otimes \mathbb{I}} F \otimes G \xrightarrow{\beta \otimes \mathbb{I}} A \otimes G \longrightarrow 0$$

Definizione 4.1.9 Se A, G sono \mathbb{Z} -moduli allora esiste una successione esatta corta detta **ri-soluzione di** A del tipo:

$$0 \longrightarrow R \stackrel{\alpha}{\longrightarrow} F \stackrel{\beta}{\longrightarrow} A \longrightarrow 0$$

con R e F \mathbb{Z} -moduli liberi. Sostanzialmente F è il gruppo libero generato da A e R il gruppo delle relazioni da imporre. Tensorizzando:

$$0 \longrightarrow \operatorname{Ker}(\alpha \otimes \mathbb{I}) \longrightarrow R \otimes G \xrightarrow{\alpha \otimes \mathbb{I}} F \otimes G \xrightarrow{\beta \otimes \mathbb{I}} A \otimes G \longrightarrow 0$$

Potrebbero esserci altre successioni esatte:

$$0 \longrightarrow R' \stackrel{\alpha}{\longrightarrow} F' \stackrel{\beta}{\longrightarrow} A \longrightarrow 0$$

Tensorizzando:

$$0 \longrightarrow \operatorname{Ker}(\alpha' \otimes \mathbb{I}) \longrightarrow R' \otimes G \xrightarrow{\alpha \otimes \mathbb{I}} F' \otimes G \xrightarrow{\beta \otimes \mathbb{I}} A \otimes G \longrightarrow 0$$

Definizione 4.1.10 *Si chiama modulo di torsione di* A *e di* G *il gruppo* $\operatorname{Ker}(\alpha \otimes \mathbb{I})$, *e lo si indica con* $\operatorname{Tor}_1(A,G)$. *Quindi vale che*:

$$0 \longrightarrow \operatorname{Tor}_1(A,G) \longrightarrow R \otimes G \xrightarrow{\alpha \otimes \mathbb{I}} F \otimes G \xrightarrow{\beta \otimes \mathbb{I}} A \otimes G \longrightarrow 0$$

Lemma 4.1.11 Il modulo di torsione non dipende dalla scelta della risoluzione di A, cioè con risoluzioni differenti si ottengono moduli di torsione isomorfi.

Lemma 4.1.12 Se F è un gruppo libero allora $Tor_1(A, F_1) \cong 0$.

Dimostrazione: Considero la successione esatta:

$$0 \longrightarrow R \longrightarrow F_1 \longrightarrow A \longrightarrow 0$$

Tensorizzo:

$$0 \longrightarrow \operatorname{Tor}_1(A, F_1) \longrightarrow R \otimes F_1 \stackrel{\varphi}{\longrightarrow} F \otimes F \longrightarrow A \otimes F_1 \longrightarrow 0$$

La mappa φ è iniettiva, infatti $R\cong\mathbb{Z}^n$, $F\cong\mathbb{Z}^n$ e $F_1\cong\mathbb{Z}^{n_1}$, quindi $\varphi\colon\mathbb{Z}^r\otimes\mathbb{Z}^n\to\mathbb{Z}^r\otimes\mathbb{Z}^{n_1}$, cioè:

$$\mathbb{Z}^n \otimes \mathbb{Z}^{n_1} \to \mathbb{Z}^n \otimes \mathbb{Z}^{n_1}$$
$$\underline{v} \otimes \underline{w} \mapsto \alpha(\underline{v}) \otimes \underline{w}$$

Esercizio 12 Mostrare che $\mathbb{Z}^s \otimes \mathbb{Z}^r \cong \mathbb{Z}^{sr}$.

Infatti $\{e_1 \otimes f_j\}$ è una base di $\mathbb{Z}^s \otimes \mathbb{Z}^r$ se $\{e_1\}$ e $\{f_j\}$ lo sono per \mathbb{Z}^s e \mathbb{Z}^r , Quindi">

$$\varphi \colon \mathbb{Z}^{rn_1} \to \mathbb{Z}^{nn_1}$$
$$\underline{v} \otimes \underline{w} \mapsto \alpha(\underline{v}) \otimes \underline{w}$$

Proposizione 4.1.13 Se A e B sono \mathbb{Z} -moduli allora $\operatorname{Tor}_1(A,B) \cong \operatorname{Tor}_1(B,A)$.

4 Coomologia singolare

Dimostrazione: La dimostrazione è un dimagra chase. Considero una risoluzione di B e di A:

$$0 \longrightarrow R_B \xrightarrow{\alpha} F_B \xrightarrow{\beta} B \longrightarrow 0$$
$$0 \longrightarrow R_A \xrightarrow{\alpha} F_A \xrightarrow{\beta} A \longrightarrow 0$$

Tensorizzo questa per B:

$$0 \longrightarrow \operatorname{Tor}_1(A,B) \longrightarrow R_A \otimes B \stackrel{\alpha}{\longrightarrow} F_A \otimes B \stackrel{\beta}{\longrightarrow} A \otimes B \longrightarrow 0$$

Tensorizzo altre cose e le metto in verticale, usando la simmetria:

Bisogna risalire da $\mathrm{Tor}_1(A,B)$ a $\mathrm{Tor}_1(B,A)$ e viceversa. Questa operazione è piuttosto noiosa. [MANCA]

Corollario 4.1.14 Vale che $\operatorname{Tor}_1(A,\mathbb{Z})=0.$

Dimostrazione: Infatti $\operatorname{Tor}_1(A, \mathbb{Z}) \cong \operatorname{Tor}_1(\mathbb{Z}, A)$.

Indice analitico

0-scheletro, 64 vedi Cammino composto, 10 \mathcal{R} -modulo, 5 Grado, 23 \mathbb{Z} -modulo libero, 6 Grado di una sfera, 55 \mathcal{U} -piccolo, 59 k-catene singolari, 17 k-ciclo, 21 logica, 47 k-scheletro, 64 Gruppo derivato, 24 k-simplesso singolare, 16 Gruppo generato, 6

Anello, 5 Anello commutativo, 5 Anello unitario, 5 Arco, 12

Bordo, 19 Bouquet, 29

Cammino composto, 10

Campo, 5 Caratteristica di Eulero di un CW-complesso,

Cella, 64

Complesso di moduli, 7 Complesso di moduli esatto, 7 Coordinate baricentrali, 15 Coppia Buona, 76 CW-complesso, 64

Dimensione di una varietà topologica, 11

Eilenberg

vedi Teoria omologica, 44 Elementi omologhi, 21 Embedding, 89

Genere, 11 Giunzione

Gruppi di omotopia superiore, 13 Gruppo dei coefficienti di una teoria omo-Gruppo fondamentale, 10, 13 Immagine, 6

Inclusione, 14 Insieme compatto, 8 Insieme convesso, 19 Insiemi aperti, 8 Invarianza topologica della dimensione, 90 Inviluppo convesso, 19

Laccio, 9 Lemma dei cinque, 61

Mappa tra complessi, 33 Modulo di omologia, 7 Modulo di torsione, 97 Modulo quoziente, 7

Nucleo, 6

Omeomorfismo, 8 Omologia cellulare, 81 Omologia singolare della coppia vedi Omologia singolare relativa, 38 Omologia singolare relativa, 38 Omologia singolare ridotta, 40 Omomorfismo, 6 Omomorfismo di connessione, 34, 44 Omotopia

Indice analitico

vedi Relazione di omotopia, 9 Omotopia di catena, 63 Operatore faccia, 18 Operatore prisma, 62

Prodotto tensore, 92 Proprietà universale vedi Prodotto tensore, 93

Rango di gruppo abeliano, 6 Rappresentazione spinoriale di SO(3), 68 Relazione di omotopia, 9 Retratto di deformazione, 53 Retrazione, 53 Ricoprimento, 8 Risoluzione di A, 96

Semplicemente connesso, 10 Sezione dell'omomorfismo, 39 Simplesso standard, 15 Somma topologica, 45 Spazio a omologia razionale vedi Spazio dodecaedrico, 67 Spazio connesso, 8 Spazio connesso per archi, 12 Spazio contraibile, 10 Spazio dodecaedrico, 67 Spazio proiettivo complesso, 72 Spazio proiettivo reale, 65 Spazio topologico, 8 Spazio topologico puntato, 9 Steendord vedi Teoria omologica, 44 Successione di Mayer-Vietoris, 88 Successione esatta corta, 33

Teorema del punto fisso, 54
Teorema di Hurewicz, 27
Teorema di Jordan, 89
Teorema di Jordan generalizzato, 89
Teorema di Seifert-van Kampen, 11
Teorema di struttura per gruppi abeliani liberi finitamente generati, 84

Successione spezza, 38, 39 Suddivisione baricentrica, 59 Teorema fondamentale degli omomorfismi, 6 Teoria omologica, 44 Terzo teorema degli omomorfismi, 59 Topologia, 8 Topologia debole, 45 Topologia discreta, 8 Topologia indotta, 8

Varietà topologica, 11