1. Gegeben ist folgende Matrix $\mathbf{A}_{\alpha} \in \mathbb{R}^{2 \times 2}$:

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & \alpha \\ \alpha & 1 \end{bmatrix}$$

Für welche Werte von $\alpha \in \mathbb{R}$ ist \mathbf{A}_{α} indefinit?

Da A eine reelle, symmetrische Matrix ist, gilt:

A ist indefinit (=) A hat einen positiven und negativen Eigenwert

Weiter ist $det(A) = \lambda_1 \cdot \lambda_2$ for $spec(A) = \{\lambda_1, \lambda_2\}.$

Es gibt nun, da A $2x^2$ ist, genau dann einen positiven u. negativen EW, wenn $det(A) = 1 - \alpha^2 < 0$ gilt.

4 1- x2 < 0 (=) 1 < d2 (=) 1 < |a|

und damit ist A genau für « ∈ (-∞,-1) v (7, ∞) indefinit

Sind die Matrizen (s)pd, (s)nd, indefinit?

(1)
$$A = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 is + psd

(2)
$$B = Q \cdot \begin{bmatrix} 2 \\ 7 \end{bmatrix} \cdot Q^{T} \quad \text{for } Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 7 & -7 \\ 7 & 1 \end{bmatrix}$$
 ist pd

- Lo U unitar, EV von AAT in Spalten
- 6 V unitar, EV von ATA in Spalten
- Ls Z hat Wurzeln der EW von ATA bzw. AAT auf Hauptdiag.

(absteigend nach Größe sortiert, nicht negativ)

Beispiel
$$A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$

Schritt 1: Berechne ATA und EW + Eigenräume

$$A^{T}A = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$$
 mit $EW \lambda_1 = 4$, $\lambda_2 = 9$, mit $Eig(A^{T}A, 9) = lin(e_1)$

$$Eig(A^{T}A, 4) = lin(e_2)$$

Schritt Z: Berechne Singularwerte

$$\sigma_1 = \sqrt{9} = 3$$
 and $\sigma_2 = \sqrt{4} = 2$

Schriff 3: Wähle bel. ONB aus EV aus und definiere V

$$V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 with the square of the square of

Schritt 4: Berechne Matrix U

$$A \cdot e_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$A \cdot e_z = \begin{pmatrix} 0 \\ -2 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ \sigma_z \end{pmatrix} \cdot u_z = A \cdot u_z = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$= \lambda A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\alpha \qquad \Sigma \qquad V^{\mathsf{T}}$$

Beispiel
$$A = \begin{bmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Schritt 1: Berechne ATA und EW + Eigenräume

$$A^{T}A = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{mit} \quad Ew \quad \lambda_{1} = 4, \quad \lambda_{2} = 1$$

$$\text{mit} \quad E_{i}g(A^{T}A, 4) = \lim_{n \to \infty} (e_{1})$$

$$\text{Eig}(A^{T}A, 7) = \lim_{n \to \infty} (e_{2})$$

Schritt Z: Berechne Singularwerte

$$\sigma_1 = \sqrt{4} = 2$$
 and $\sigma_2 = \sqrt{7} = 1$ $\Rightarrow \Sigma = \begin{bmatrix} z & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

Schrift 3: Wähle bel. ONB aus EV aus

$$\Rightarrow V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Schritt 4: Berechne Matrix U

Formel : A.v. = o. u.

$$A \cdot e_1 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0_1 \\ 0_2 \end{pmatrix} \cdot \alpha_1 = 0$$

$$\Rightarrow A \cdot e_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \stackrel{!}{=} \sigma_2 \cdot u_2 = \lambda u_2 = e_3$$

jetzt fehlt aber noch uz!

Lyman Kann sich überlegen, dass das ein Vektor aus Kern (AT) muss

orthonormaler Vektor gewählt werden

Schritt 1: Berechne ATA und EW + Eigenräume

$$A^{T}A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$$
 mit $EW = \lambda_{1} = 0$, $\lambda_{2} = 5$, $denn = \chi_{A}(t) = (1-t)(4-t) - 4 = t^{2} - 5t = -t(5-t)$

hier schneller:

$$AA^{T} = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 5 \end{bmatrix}$$
 $\Rightarrow \lambda = 5$ ist EW von AA^{T}

und weil $A^{T}A$ und AA^{T} die selben von 0 verschiedenen EW haben, folgt sofort λ_{1} = 0, λ_{2} = 5 EW von $A^{T}A$

Wenn A nicht quadratisch ist, dann kann es also schneller sein die von O verschiedenen EW über die Kleinere der beiden Matrizen $A^{T}A$ bzw. AA^{T} auszurechnen.

Für die EV von ATA ergibt sich dann

$$E_{ig}(A^TA, 5) = Kevn(\begin{bmatrix} -4 & -2 \\ -2 & -1 \end{bmatrix}) = Iin(\begin{bmatrix} -7 \\ 2 \end{bmatrix})$$

Eig
$$(A^{T}A, 0)$$
 = Kern $\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$ = lin $(\begin{bmatrix} 2 \\ 1 \end{bmatrix})$ ein fach or thog. Vektor zu $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ suchen.

Schritt Z: Berechne Singularwerte

$$o_1 = \sqrt{5}$$
 $\rightarrow \Sigma = \sqrt{5} \ 0$

Schriff 3: Wähle bel. ONB aus EV aus und definiere V

$$\sim V = \frac{1}{\sqrt{5}} \begin{bmatrix} -7 & 2 \\ 2 & -7 \end{bmatrix}$$

Schritt 4: Berechne Matrix a Formel: A.v. = o; ·a;

$$A \cdot A \cdot \frac{1}{\sqrt{s}} \cdot \begin{bmatrix} -7 \\ 2 \end{bmatrix} = -\frac{5}{\sqrt{s}} = 0 \cdot u_1 = u_1 = \begin{bmatrix} -7 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 \end{bmatrix} \cdot \begin{bmatrix} 5 \end{bmatrix} 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{15} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

$$A = \begin{bmatrix} -1 \end{bmatrix} \cdot \begin{bmatrix} 5 \end{bmatrix} 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{15} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

Wiederholung: Interpolation Polynominterpolation eines Polynoms · pe IR[x] mit deg(p) ≤ n-7. · n Stätzstellen x₀,..., x_{n-1} pw. vers. Down ist a(x) = 27 p(x:1:0.(x) f

• n Stätzstellen $x_0, ..., x_{n-2}$ pw. verschieden

Dann ist $p(x) = \sum_{i=0}^{n-2} p(x_i) \cdot l_i(x)$ für alle $x \in \mathbb{R}$ (*)

P ist sein eigenes Interpolationspolynom

Wdh.: Koordinatenvektor und Basiswechsel

Se: B = (7, x, x2) eine Basis von V = [R[x] = 2

Der Koordinatenvektor $K_{\mathcal{B}}(p)$ für $p(x) = \alpha x^2 + \beta x + \gamma \in V$ ist (formal: $K_{\mathcal{B}}: V \to \mathbb{R}^{d_{im}(V)}$, linear $K_{\mathcal{B}}(b_i) = e_i$

 $K_{B}(\rho) = (\lambda, \beta, \alpha)^{T}$, denn $\lambda \cdot b_{1} + \beta \cdot b_{2} + \alpha \cdot b_{3} = \rho$

Analog ist z. B. $K_B^{-7}((3,7,0)^T) = 0 \times^2 + 7 \times + 3 \cdot 7 \quad (, K_B^{-7} \text{ dekodient Koeffizientenvektor"})$ = x + 3

K_B(p) gibt also an: "Wie viel von welchem Vektor aus β brauche ich, um peV darzustellen?"

Se: $\widetilde{B} = (\widetilde{b}_1, \widetilde{b}_2, \widetilde{b}_3)$ eine weitere Basis von V.

Für den Basiswechsel von B nach 🛱 berechnen wir nun:

Suche Koeff. $a_{1}^{(i)}, a_{2}^{(i)}, a_{3}^{(i)} \in \mathbb{R}$ mit $b_{i} = \sum_{j=1}^{3} a_{j}^{(i)} \cdot \tilde{b}_{j}$ für $1 \le i \le 3$ As Wie viel von welchen Vektoren aus $\tilde{\mathbb{B}}$ brauche ich,

um den j-ten Basisvektor aus \mathbb{B} darzustellen \mathbb{B}

Die Basiswechselabbildung $T_{B,\widetilde{g}}: \mathbb{R}^{\dim(V)} \to \mathbb{R}^{\dim(V)}$ ist also $T_{B,\widetilde{g}}(e_i):=K\widetilde{g}(K_{\overline{B}}^{-1}(e_i))=K\widetilde{g}(b_i)$ für $1 \le i \le \dim(V)$

Da TB,B linear ist, ergibt sich die darst. Matrix (Basiswechselmatrix) zu

 $\begin{bmatrix} T_{\mathbf{B},\widehat{\mathbf{g}}} \end{bmatrix} = \begin{bmatrix} K_{\widehat{\mathbf{g}}}(b_2) & K_{\widehat{\mathbf{g}}}(b_2) & K_{\widehat{\mathbf{g}}}(b_3) \end{bmatrix} = \begin{bmatrix} \alpha_1^{(1)} & \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} & \alpha_2^{(2)} \\ \alpha_3^{(1)} & \alpha_3^{(3)} & \alpha_3^{(3)} \end{bmatrix}$

Wir betrachten V= IR[x] = und die Stätzstellen x;=i , 0 ≤ i ≤ 4 (pw. versch.) sowie die Basen B= (1, x, x², x³, x4) und \tilde{B} = (l_0 , l_1 , l_2 , l_3 , l_4)

1) Bestimme
$$K_{\widehat{B}}(b_1)$$
 $Polynom$

Ly suche $\alpha_j \in \mathbb{R}$ mit $1 = \sum_{j=0}^{q} \alpha_j \cdot \widehat{b}_j = \sum_{j=0}^{q} \alpha_j \cdot \ell_j$

Mit (*) folgt, dass
$$1 = \sum_{j=0}^{4} 1 \cdot l_j$$
 gilt.

wir wissen, dass das Polynom
$$p(x) = \sum_{j=0}^{4} f(x_i) \cdot l_i(x_j)$$

die Funktion f an x_0, \dots, x_4 interpoliert.

Vorüberlegung (*), dass schon p=7 (auf ganz IR) gilt.

2) Bestimme
$$K_{\widehat{B}}(b_1)$$

4 Suche $\alpha_j \in \mathbb{R}$ mit $X = \sum_{j=0}^{4} \alpha_j \cdot \widehat{b}_j = \sum_{j=0}^{4} \alpha_j \cdot \widehat{l}_j$

Nach analoger Überlegung ist

$$X = \sum_{j=0}^{4} x_j \cdot \ell_j$$

$$\hat{\ell}_{2}(x_j) = x_j$$

3) ...
$$x^2 = \sum_{j=0}^{4} x_j^2 \cdot \mathcal{L}_j$$

... und im allgemeinen unter unseren Voraussetzungen

$$x^{K} = \sum_{j=0}^{4} x_{j}^{K} \cdot Q_{j} , 0 \le K \le 4$$

Damit ergibt sich die Basiswechselmatrix also zu

$$X_0^0 X_0^7 \dots X_0^4 \longrightarrow dos \text{ ist } die Vandermonde-Matrix!$$

$$X_1^0 X_1^7 \dots X_1^4 \dots X_2^4$$

$$A := X_1^0 X_1^7 \dots X_2^4 \dots X_2^4 \dots X_3^4 \dots X_3^4 \dots X_3^4 \dots X_4^4 \dots X_4^4$$

Die Basiswechselmatrix "Lagrange-Basis -> Monombasis" ist dann A-7. Is wie diese Inverse aussieht, hatten wir uns im 7. Tut zu Interpolation angeschaut