Geometry of Surfaces - Exercises

- 1. True or False? Justify your answer!
 - (a) Every regular curve is unit speed.
 - (b) Every unit speed curve is regular.
 - (c) There is exactly one unit speed parametrization of a given regular curve.
 - (d) Every curve whose image is a circle is regular.
- **2.** Let $\gamma:(a,b)\to\mathbb{R}^n$ be a unit speed curve. Compute the length of γ .
- **3.** Show that the length of a curve $\gamma:(a,b)\to\mathbb{R}^n$ does not depend on its parametrization.
- **4.** Let $\gamma:(a,b) \to \mathbb{R}^n$ be a curve and a < c < d < b. Show that

$$\|\gamma(c) - \gamma(d)\| \le \text{Length}(\gamma : (c, d) \to \mathbb{R}^n).$$

In other words, straight lines are the shortest curves joining two given points.

5. Let

$$\gamma:(0,1)\to\mathbb{R}^3\;,\;t\mapsto\left(t\sin(t),t\cos(t),\frac{\sqrt{8}}{3}t^{\frac{3}{2}}\right).$$

Compute the length of γ and the arc-length starting at 0. Then, find a unit speed reparametrization of γ .

- **6.** Let $\gamma:(a,b)\to\mathbb{R}^2$ be a regular curve and let ℓ be a straight line which does not intersect γ . Assume that $t_0\in(a,b)$ so that $\gamma(t_0)$ is a point on γ that is closest to ℓ . Show that $\dot{\gamma}(t_0)$ is parallel to ℓ . [Recall that the distance from a point p to a line ℓ is $\frac{|v\cdot(p-p_0)|}{\|v\|}$ where v is any vector perpendicular to ℓ and p_0 is any point on ℓ .]
- 7. Consider the circular helix

$$\gamma: \mathbb{R} \to \mathbb{R}^3$$
, $t \mapsto (\cos(t), \sin(t), 2t)$.

Calculate the tangent vectors of γ and show that they trace out a circle as t varies. What is the radius of such circle? Find a unit-speed reparametrization of γ .

8. Let $\gamma:(a,b)\to\mathbb{R}^3$ be a curve that does not pass through 0 and suppose that $\gamma(t_0)$, $t_0\in(a,b)$, is its closest point to 0. Show that $\gamma(t_0)\cdot\dot{\gamma}(t_0)=0$.