Lösungsvorschläge zu Aufgabenblatt 3

(Ordnungsrelationen)

Aufgabe 3.1

Es seien M_1, M_2 nichtleere Mengen, und R_i sei eine Ordnungsrelation auf M_i für i = 1, 2. Wir verwenden die Notation

$$x_i \sqsubseteq_i y_i :\Leftrightarrow (x_i, y_i) \in R_i$$
 für alle $x_i, y_i \in M_i$ und $i = 1, 2$.

Auf $M := M_1 \times M_2$ definiere die Relation

$$(x_1, x_2) \sqsubseteq (y_1, y_2) :\Leftrightarrow x_1 \sqsubseteq_1 y_1 \text{ und } x_2 \sqsubseteq_2 y_2 \text{ für alle } (x_1, x_2), (y_1, y_2) \in M.$$

- (a) Zeigen Sie, dass \sqsubseteq eine Ordnungsrelation auf M definiert.
- (b) Betrachte speziell den Fall $M_1 = M_2 = \mathbb{N}_0$ und $\sqsubseteq_1 = \sqsubseteq_2 = \leqslant$. Ist dann die Ordnungsrelation \sqsubseteq auf $\mathbb{N}_0 \times \mathbb{N}_0$ eine totale Ordnung?

Lösung

(a) \sqsubseteq ist reflexiv: Sei $(x_1, x_2) \in M$. Da R_1 und R_2 reflexiv sind, gilt $x_1 \sqsubseteq_1 x_1$ und $x_2 \sqsubseteq_2 x_2$. Nach Definition gilt also auch

$$(x_1, x_2) \sqsubseteq (x_1, x_2).$$

 \sqsubseteq ist antisymmetrisch: Seien $(x_1, x_2), (y_1, y_2) \in M$. Es gelte $(x_1, x_2) \sqsubseteq (y_1, y_2)$ und $(y_1, y_2) \sqsubseteq (x_1, x_2)$. Nach Definition gilt dann

$$(x_1 \sqsubseteq_1 y_1 \land x_2 \sqsubseteq_2 y_2)$$
 und $(y_1 \sqsubseteq_1 x_1 \land y_2 \sqsubseteq_2 x_2)$

Da R_1 antisymmetrisch ist, folgt aus $x_1 \sqsubseteq_1 y_1$ und $y_1 \sqsubseteq_1 x_1$, dass $x_1 = y_1$ ist, und da auch R_2 antisymmetrisch ist, folgt aus $x_2 \sqsubseteq_2 y_2$ und $y_2 \sqsubseteq_2 x_2$, dass $x_2 = y_2$ ist. Also ist $(x_1, x_2) = (y_1, y_2)$. \sqsubseteq ist transitiv: Seien $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M$ mit $(x_1, x_2) \sqsubseteq (y_1, y_2)$ und $(y_1, y_2) \sqsubseteq (z_1, z_2)$. Zu zeigen: $(x_1, x_2) \sqsubseteq (z_1, z_2)$.

Nach Definition gilt

$$(x_1 \sqsubseteq_1 y_1 \land x_2 \sqsubseteq_2 y_2)$$
 und $(y_1 \sqsubseteq_1 z_1 \land y_2 \sqsubseteq_2 z_2)$.

Da R_1 transitiv ist, folgt aus $x_1 \sqsubseteq_1 y_1$ und $y_1 \sqsubseteq_1 z_1$, dass $x_1 \sqsubseteq_1 z_1$ ist, und da auch R_2 transitiv ist, folgt aus $x_2 \sqsubseteq_2 y_2$ und $y_2 \sqsubseteq_2 z_2$, dass $x_2 \sqsubseteq_2 z_2$ ist. Also ist $(x_1, x_2) \sqsubseteq (z_1, z_2)$.

(b) Die Ordnungsrelation \sqsubseteq auf $\mathbb{N}_0 \times \mathbb{N}_0$ ist keine totale Ordnung, denn es gilt z.B. weder $(0,1) \sqsubseteq (1,0)$ noch $(1,0) \sqsubseteq (0,1)$, da 0 < 1, aber 1 > 0 ist.

Es sei X eine Menge und M := P(X) die Potenzmenge von X.

- (a) Zeigen Sie, dass die Teilmengen-Relation ⊆ eine Ordnungsrelation ist.
- (b) Zeigen Sie, dass für alle $A, B \in M$ gilt $\sup\{A, B\} = A \cup B$ und $\inf\{A, B\} = A \cap B$.

Lösung

- (a) \subseteq ist reflexiv: Sei $A \in M$. In Disk. Math. 1 wurde gezeigt $A \subseteq A$.
- \subseteq ist antisymmetrisch: Seien $A, B \in M$. Es gelte $A \subseteq B$ und $B \subseteq A$. In Disk. Math. 1 wurde gezeigt, dass dies gleichbedeutend ist mit A = B.
- \subseteq ist transitiv: Seien $A, B, C \in M$ mit $A \subseteq B$ und $B \subseteq C$. Zu zeigen: $A \subseteq C$.

Sei dazu $x \in A$. Wegen $A \subseteq B$ folgt hieraus $x \in B$, und wegen $B \subseteq C$ folgt damit auch $x \in C$. Damit ist $A \subseteq C$ bewiesen.

(b) Seien $A, B \in M$.

Beweis von $\sup\{A, B\} = A \cup B$. Hierfür sind zwei Aussagen zu zeigen:

- (i) $A \cup B$ ist obere Schranke von $\{A, B\}$.
- (ii) $A \cup B$ ist sogar kleinste obere Schranke von $\{A, B\}$.
- Zu (i): In Disk. Math. 1 wurde gezeigt: $A \subseteq A \cup B$ und $B \subseteq A \cup B$. Dies heißt gerade, dass $A \cup B$ eine obere Schranke von $\{A, B\}$ ist.
- Zu (ii): Sei $C \in M$ eine weitere obere Schranke von $\{A, B\}$. Dann ist zu zeigen: $A \cup B \subseteq C$.

Da C eine obere Schranke von $\{A, B\}$ ist, gilt nach Definition $A \subseteq C$ und $B \subseteq C$. Damit folgt aber auch $A \cup B \subseteq C$, was zu zeigen war.

Beweis von $\inf\{A, B\} = A \cap B$. Hierfür sind zwei Aussagen zu zeigen:

- (i) $A \cap B$ ist untere Schranke von $\{A, B\}$.
- (ii) $A \cap B$ ist sogar größte untere Schranke von $\{A, B\}$.
- Zu (i): In Disk. Math. 1 wurde gezeigt: $A \cap B \subseteq A$ und $A \cap B \subseteq B$. Dies heißt gerade, dass $A \cap B$ eine untere Schranke von $\{A, B\}$ ist.
- Zu (ii): Sei $C \in M$ eine weitere untere Schranke von $\{A,B\}$. Dann ist zu zeigen: $C \subseteq A \cap B$.

Da C eine untere Schranke von $\{A, B\}$ ist, gilt nach Definition $C \subseteq A$ und $C \subseteq B$. Damit folgt aber auch $C \subseteq A \cap B$, was zu zeigen war.

Für eine Zahl $n \in \mathbb{N}$ bezeichne $T(n) := \{k \in \mathbb{N} \mid k \mid n\}$ die Menge aller Teiler von n, ausgestattet mit der Teiler-Ordnung. Erstellen Sie die Hasse-Diagramme von T(5), T(6), T(24) und T(648).

Betrachte die Menge $M := \{0, 2, 3, 4, 6, 7, 8, 9, 12, 24, 25\}$ ausgestattet mit der | (teilt)-Relation.

- (a) Erstellen sie das zugehörige Hasse-Diagramm.
- (b) Bestimmen Sie alle maximalen und minimalen Elemente sowie größtes und kleines Element von M, sofern diese existieren.
- (c) Bestimmen Sie alle oberen und unteren Schranken von $A := \{4, 6, 12\}$ sowie inf A und sup A, sofern diese existieren.

Lösungsskizze

(a)

Hasse-Diagramm

- (b) Größtes Element von M ist 0, denn allgemein gilt x|0 für alle $x \in \mathbb{N}_0$. Damit ist 0 auch einziges maximales Element von M. Minimale Elemente sind 2, 3, 7, 25 (ablesen im Hasse-Diagramm), und es gibt kein kleinstes Element von M.
- (c) Die Menge der oberen Schranken von A ist $\{12,24,0\}$. Da diese Menge das kleinste Element 12 besitzt, existiert auch das Supremum von A, und es gilt sup A = 12.

Untere Schranke von A ist nur die 2, also gilt auch inf A = 2.

Es sei R eine Ordnungsrelation auf der Menge M.

- (a) Zeigen Sie, dass die inverse Relation \mathbb{R}^{-1} ebenfalls eine Ordnungsrelation auf M ist.
- (b) Seien $A \subseteq M$ und $b \in M$. Zeigen Sie: b ist genau dann größtes Element (resp. maximales Element/obere Schranke/obere Grenze/Supremum) von A bezüglich R, wenn b kleinstes Element (resp. minimales Element/untere Schranke/untere Grenze/Infimum) von A bezüglich R^{-1} ist.

Lösung

(a) R^{-1} ist reflexiv: Sei $x \in M$. Da R reflexiv ist, gilt $(x, x) \in R$, nach Definition der inversen Relation gilt also auch $(x, x) \in R^{-1}$.

 R^{-1} ist antisymmetrisch: Seien $x, y \in M$ mit $(x, y) \in R^{-1}$ und $(y, x) \in R^{-1}$. Nach Definition der inversen Relation folgt damit $(y, x) \in R$ und $(x, y) \in R$. Da R antisymmetrisch ist, folgt x = y. R^{-1} ist transitiv: Seien $x, y, z \in M$ mit $(x, y) \in R^{-1}$ und $(y, z) \in R^{-1}$. Nach Definition der inversen Relation folgt damit $(y, x) \in R$ und $(z, y) \in R$, also $(z, y) \in R$ und $(y, x) \in R$. Da R transitiv ist, folgt $(z, x) \in R$, also gilt nach Definition der inversen Relation $(x, z) \in R^{-1}$.

(b) Schreiben wir (wie üblich) $x \sqsubseteq y$ für $(x, y) \in R$, so gilt

$$(x,y) \in R^{-1} \Leftrightarrow y \sqsubseteq x.$$

Damit folgen die Aussagen für maximale/minimale und größte/kleinste Elemente sowie für obere/untere Schranken unmittelbar aus den Definitionen.

Sei nun S die Menge der oberen Schranken von A bzgl. R, dann gilt für alle $s \in M$

```
s \in S \iff \forall a \in A : a \sqsubseteq s \Leftrightarrow \forall a \in A : (s, a) \in R^{-1}
\Leftrightarrow s \text{ ist untere Schranke von } A \text{ bzgl. } R^{-1},
```

also ist S gleich der Menge der unteren Schranken von A bzgl. R^{-1} . Sei nun $g \in M$, dann gilt

```
g ist obere Grenze von A bzgl. R \Leftrightarrow g ist minimales Element von S bzgl. R \Leftrightarrow g ist maximales Element von S bzgl. R^{-1} \Leftrightarrow g ist untere Grenze von A bzgl. R^{-1},
```

und es gilt

```
g ist Supremum von A bzgl. R \Leftrightarrow g ist kleinstes Element von S bzgl. R \Leftrightarrow g ist größtes Element von S bzgl. R^{-1} \Leftrightarrow g ist Infimum von A bzgl. R^{-1}.
```

Es sei $M := \mathbb{Q}$ ausgestattet mit der \leq -Ordnung und $A := \{\frac{1}{n} \mid n \in \mathbb{N}\} \subseteq M$. Bestimmen Sie inf A und sup A.

Lösung

Zum Supremum. Für alle $n \in \mathbb{N}$ gilt $\frac{1}{n} \leq 1$. Andererseits ist $1 = \frac{1}{1} \in A$. Also ist 1 größtes Element von A, und damit insbesondere auch sup A = 1.

Zum Infimum. Für alle $n \in \mathbb{N}$ gilt $\frac{1}{n} \ge 0$, also ist 0 eine untere Schranke von A. Wir wollen zeigen, dass 0 sogar größte untere Schranke von A ist. Dazu ist zu zeigen:

 $\forall s \in \mathbb{Q} : s \text{ untere Schranke von } A \Rightarrow s \leq 0.$

Wir zeigen dazu die Kontraposition, also:

 $\forall s \in \mathbb{Q} : s > 0 \Rightarrow s$ keine untere Schranke von A.

Wir lösen dies weiter auf: Dass $s \in Q$ eine untere Schranke von A ist, bedeutet: $\forall a \in A : s \leq a$. Also ist zu zeigen:

$$\forall s \in \mathbb{Q} : s > 0 \Rightarrow (\exists a \in A : a < s.)$$

Sei also $s \in \mathbb{Q}$. Es gelte s > 0. Wähle ein $n \in \mathbb{N}$ mit $n > \frac{1}{s}$ (dies ist möglich, da \mathbb{N} keine oberen Schranken in \mathbb{Q} besitzt). Setze $a := \frac{1}{n}$, dann ist $a \in A$, und es gilt $a = \frac{1}{n} < s$, was zu zeigen war.