Lecture 5: Sketch of Big Data

Xiaotie Deng

AIMS Lab
Department of Computer Science
Shanghai Jiaotong University

October 16, 2017

- Synopsis Structures
- 2 Frequent Elements
- 3 Stream Counting
- 4 Count Distinct Items

Sketching and Streaming
Synopsis Structures
Frequent Elements
Stream Counting
Count Distinct Items

Synopsis Structures

Summary of Data

- Approximately Summarize the properties of data.
 - Random Sampling
 - Sketching
- Synopsis Structure Functionality:
 - Insert, delete, query
 - Merge databases
- Limitation in Sketching Algorithms
 - One or two passes of data in cpu.
 - Limited size of working cpu/memory

Data Stream

- Approximately Summarize the properties of data.
 - Random Sampling
 - Sketching
- Synopsis Structure Functionality:
 - Insert, delete, query
 - Easy to merging databases
- Applications:
 - Network Traffic Management
 - I/O Efficiency
 - Real Time Data

Sketching and Streaming Synopsis Structures Frequent Elements Stream Counting Count Distinct Items

Frequent Elements

Description of Problem

- Data: $\{m_i : i = 1, 2, \dots, n\}$ where m_i represents frequencies of the type i element.
- Output: the top-k last elements with m_i , $i = 0, 1, 2, \dots, k$:
- Practicality: Power Law Property of Data.

Misra Gries Algorithm

- Place a counter on the first *k* distinct elements.
- On the (k + 1)-st elements, reduce each counter by 1 and remove counters of value zero.
- Report counter value on any query.
- Estimation Error: at most $\frac{m-m'}{k+1}$ less where m total data, m' total data in structure.

Merge of Two Database

- Merge the common element counter, keep distinct counters.
- Remove small counters to keep *k* largest (by reducing counter then remove counters of value zero.
- Report counter value on any query.
- Estimation Error: at most $\frac{m-m'}{k+1}$ less where m total data, m' total data in structure.

Sketching and Streaming Synopsis Structures Frequent Elements Stream Counting Count Distinct Items

Stream Counting

Morris Counting

- Standard: Use a register and increase by one on reading each item, taking space $O(\log n)$.
- Morris' idea: Tracking log n using log log n bits.
 - Keep a counter x of value "log n".
 - Increase the counter with probability $p = 2^{-x}$.
 - On a query, return $2^x 1$.

Running Example

Input Data		а	b	С	d	е	f	g	h	i
Counter n	0	1	2	3	4	5	6	7	8	9
Counter x	0	1	1	2	2	2	2	2	3	3
Inc-prob p	1	.5	.5	.25	.25	.25	.25	.25	.125	.125
estimate \tilde{n}	0	1	1	3	3	3	3	3	7	7

Expected Returned Value

Theorem: Expected value after reading n input data is n.

- Base case: n = 0.
 - Exprected returned value at time 0: n = x = 0 and $2^x 1 = 0$
 - True value n = 0.
- Assume claim true for n = k: $EX[\tilde{n}] = n$.
- Consider n = k + 1
 - $EX[\tilde{n}+1] = EX[2^{X_n}] = \sum_{all \ j \ge 1} P[X_{n-1} = j]EX[2^{X_n}|X_{n-1} = j]$
 - $EX[2^{X_n}|X_{n-1}=j] = P(X_n=j+1)*2^{j+1} + P(X_n=j)2^{j}$
 - $EX[2^{X_n}|X_{n-1}=j]=2^{-j}*2^{j+1}+(1-2^{-j})2^j=2^j+1$
 - $EX[\tilde{n}] = \sum_{a|l| j > 1} 2^{j} P[X_{n-1} = j] = EX[\tilde{k} + 1] = k + 1 = n$
- Therefore, $EX[\tilde{n}] = n$ for all $n \ge 0$.

 $Reference: \ http://www.cohenwang.com/edith/bigdataclass 2013/lectures/lecture 1.pdf$

Sketching and Streaming Synopsis Structures Frequent Elements Stream Counting Count Distinct Items

Count Distinct Items

The frequency moments of input sequence A

- Input sequence $A = \{a_1, a_2, \dots, a_m\}, a_i \in N = \{1, 2, \dots, n\}.$
 - $m_i = \{j : a_j = i\}$ represents frequencies of the type i element.
- Output: $F_k = \sum_{i=1}^n m_i^k$, $k = 0, 1, 2, \cdots$.
- F_0 number of distinct elements in list, F_1 length of sequence.
- *F*₂ Ginis index of homogeneity.
- $F_{\infty}^* = \max_{1 \leq i \leq n} m_i$.

General Theorem

• Theorem Computing an approximation Y of F_k on the sequence $A = \{a_1, a_2, \cdots, a_m\}$ of members of $N = \{1, 2, \cdots, n\}$ using $O(\frac{k \log 1/\epsilon}{\lambda^2} n^{1-1/k} (\log n + \log m)$ memory bits, where Y deviates from F_k by more than λF_k is no more than ϵ .

Improved Performance Approximating Distinct Items

Fix a constant c > 2. Compute Y of approximation for F_0 , the number of distinguished elements in the input sequence A.

- Memory requirement: log *n* bits
- Property of output: Probability that the ratio between Y and F_0 is not between 1/c and c is at most 2/c. $(c \ge 2)$.

Algorithm

- Choose $d: 2^d > n$ and construct the finite field $F = GF(2^d)$.
- N represented as binary vectors of length d in F.
- Algorithm:
 - a, b randomly chosen from F.
 - $\forall a_i \in A$ (in the order of the input sequence), hash a_i to $z_i = a * a_i + b \pmod{F}$ represented by a d-vector in F.
 - z_i uniformly random in F.
 - Define $r_i = r(z_i) = \max\{i : 2^i | z_i\}$.
 - NOTE: there are only upto $\log n$ different values for r_i s.
 - Define R to be the largest r_i over all elements of A.
 - log n different values for R needs log log n bits.
- Output $Y = 2^R$.

Key Ideas

- $z_i = a * a_i + b \pmod{F}$ is a random variable in $GF(2^d)$.
- If $a_i = a'_i$, $z_i = z'_i$.
- As $0 < z_i < 2^{\log n}$, $0 \le r(z_i) \le \log n$, $0 \le R \le \log n$ R requires $\log \log n$ bits.
- Hash function on $GF(2^d)$ requires $\log n$ bits.
- The more distinct members are in A, the bigger the value R.

Construct Filed $GF(2^d)$

- Z_p for primes p, e.g., Z_2 .
- Irreducible polynomials, and its representation by vector in F_2 .
- Mathematical operations in +, -, *, /.
- An example $x^3 + x + 1 \pmod{2}$.

Probabilistic Inequalities

- Markov Inequality: $Pr[X \ge d] \le \frac{EX[X]}{d}$ for random variable $X \ge 0$.
 - $EX[X] = \int xf(x)dx \ge d * \int_{x>d} f(x)dx = d * Pr[X \ge d].$
- Chebyshev Inequality: $Pr[|X \mu| \ge k\sigma] \le \frac{1}{k^2}$.

• LHS =
$$Pr((X - \mu)^2 \ge k^2 \sigma^2) \le EX[(X - \mu)^2]/(k\sigma)^2 = \frac{1}{k^2}$$

 Chernoff Bound: https://crypto.stanford.edu/ blynn/pr/chernoff.html

Correctness

- Let the correct answer is F_0 , the set of distinct elements in A.
- Consider the probability Y deviate significantly
 - $r(z_i) \ge r$ holds with probability 2^{-r} (number of ending 0s).
 - $Pro[r(z_i) \ge r, r(z_j) \ge r] = 2^{-2r}$, as z_i 's are pairwise independent.
- Define $W_x(r)=1$ if $r(ax+b)\geq r$ and $Z_r\equiv \sum_{x\in F_0}W_x(r)$ is the number of variables which has at least r rightmost bits of all zeros in its binary representation.

Correctness II

- By linearity of expectation, $E[Z_r] = F_0/2^r$.
- By pairwise independence of r_i , r_j for $a_i \neq a_j$, the variance of Z_r , $\sigma^2(Z_r) = F_0 \frac{1}{2^r} (1 \frac{1}{2^r}) < F_0/2^r$

Correctness III

- Choose the smallest constant r_c such that $2^{r_c} > cF_0$, $Pr(Y > cF_0) \le Pr(Z_{r_c} \ge 1) \le E[Z_r] = \frac{F_0}{2^r} < 1/c$ by
 - Markov Inequality: $Pro[X \ge a] \le \frac{E[X]}{a}$.
- NOTE: r_c is chosen for the purpose of proof only. c is determined later.
- Next, consider the case: $c * 2^r < F_0$.

Correctness IV

- Here choose r_d the largest integer $r: 2^r < F_0/d$
- $Pr(Y \le F_0/d) \le Pr(Z_{r_d+1} = 0) \le Var(Z_{r_d+1})/(E[Z_{r_d+1}])^2 < 1/E[Z_{r_d+1}] = 2^{r_d+1}/F_0 < \frac{2}{d}$ by Chebyshev's Inequality and conditions $Var(Z_r) < F_0/2^r = E(Z_r)$ and $F_0/2^{r_d} = E(Z_{r_d}) > d$.
- Use Chebyshev Inequality: $Pr(Z_{r_d+1} = 0) \le Pr(|Z_{r_d+1} E[Z_{r_d+1}]| \ge F_0/2^{r_d+1}) \le \frac{VAR(Z_{r_d+1})}{(F_0/2^{r_d+1})^2}$.

Correctness V

- We now estimate the probability the output $Y = 2^R$
- $Pr[F_0/d \le Y \le cF_0] \le 1 (\frac{1}{c} + \frac{2}{d}).$
- The two inequalities bounds the probability Y is bounded between 1/d and $c \ge 0$ of the true value with probability 1 (1/c + 2/d).

Algorithm II (second part)

- Given input $a_1, a_2, \dots, a_n \in [0, 1]$. Choose two random variables $X, Y \in U[0, 1]$ uniformly in [0, 1]. Compute $A_i = a_i X + Y \lfloor a_i X + Y \rfloor$.
 - What is probability distribution of A_i ?
 - Are A_i , A_j independent? What is their joint distribution?
 - What happens if $\forall i : a_i \in GF(p)$ and $X, Y \in GF(p)$ uniformly chosen, where GF(p) is the prime field, consisting of $\{0, 1, 2 \cdots, p-1\}$ under the (mod p) arithmetic operations.
- Implement the algorithm for counting distinct element.
 - Show a step by step running example.
 - And find a appropriate choices of parameters c and d to achieve the best approximation with respect to the exact number.
 - Compare how close is the theoretical approximation with practical output.