Das Pumping-Lemma für kontextfreie Sprachen

Chomsky-Hierarchie

Тур	Name	Erlaubte Produktionen	Akzeptierende Maschine	Beispiel
3	Regulär	$N \to wM$ $w \in T^*$	Endlicher Automat	a^n
2	Kontextfrei	$N \to w$ $w \in (N \cup T)^*$	Kellerautomat	a^nb^n
I	Kontext- sensitiv	uNv \rightarrow uwv u, v \in $(N \cup T)^*$ $w \in (N \cup T)^+$ $S \rightarrow eps$	Linear gebundener Automat	$a^nb^nc^n$
0	Rekursiv aufzählbar	$u \rightarrow v$ $u \in V^*NV^*, v \in V^*$ $V = (N \cup T)$	Turing Maschine	Halteproblem

Abgrenzung kontextfreier Sprachen

 Die Zugehörigkeit einer Sprache zu dieser Sprachklasse kann durch Angabe einer Typ-2-Grammatik oder eines Kellerautomaten beweisen werden.

Wie beweist man die Nicht-Zugehörigkeit?

Rückblick

- Die Nichtzugehörigkeit einer Sprache zur Klasse der regulären Sprachen können wir mit Hilfe des Pumping-Lemmas für reguläre Sprachen zeigen.
- Gibt es so etwas auch für kontextfreie Sprachen?
- Das Pumping-Lemma für reguläre Sprachen basiert auf Schleifen beim Ablauf eines endlichen Automaten.
- Welche Schleifen finden wir bei kontextfreien Grammatiken?

Schleifen bei kontextfreien Grammatiken

- NonTerminals im Ableitungsbaum können sich wiederholen
- Dadurch können sich Teile der Ableitung wiederholen

Beispiel Schleife

Produktionsregeln:

$$S \rightarrow UA$$

$$U \rightarrow u$$

$$A \rightarrow WY$$

$$Y \rightarrow y$$

$$W \rightarrow w$$

Welche Sprache wird durch diese Produktionsregeln erzeugt?

Beispiel Schleife

Produktionsregeln:

 $S \rightarrow UA$

 $U \rightarrow u$

 $A \rightarrow WY$

 $Y \rightarrow y$

 $W \rightarrow w$

Weitere Produktionsregeln

 $W \rightarrow VB$

 $V \rightarrow v$

 $B \rightarrow WX$

 $X \rightarrow x$

Welche Sprache wird durch diese Produktionsregeln erzeugt?

Sei $G = (\{A, B, C\}, \{0, 1, 2\}, A, \{A \rightarrow 0B0 | 2, B \rightarrow C | CC, C \rightarrow 1A1\})$

Eine lange Ableitungsfolge:

$$A \to 0B0 \xrightarrow{B \to CC} C \to 1A1 \\ A \to 0B0 \Rightarrow 0CC0 \Rightarrow 01A1C0$$

$$01A1C0 \xrightarrow{A \to 0B0} 010B01C0 \xrightarrow{B \to C} 010C01C0 \Rightarrow 0101A101C0$$

$$0101A101C0 \Rightarrow 01010B0101C0 \Rightarrow 01010B01011A10 \Rightarrow 01010B01011210 \Rightarrow 01010B01011210 \Rightarrow 010101011210$$

$$010101A1010111210 \Rightarrow 010101210101210$$

 $A \rightarrow 2$

- $ightharpoonup 0101012101011210 \in L$
- $ightharpoonup 010121011210 \in L$
- $ightharpoonup 01010101210101011210 \in L$
- ightharpoonup 0101010101121010101011210 $\in L$
- $ightharpoonup 0101010101010101010101011210 \in L$
- **...**

Schleifen bei kontextfreien Grammatiken

- Wenn die Tiefe des Ableitungsbaums größer ist als die Zahl der NonTerminals in der Grammatik, dann muss sich ein NonTerminal im Ableitungsbaum wiederholen
- Wenn wir eine Mindesttiefe des Ableitungsbaums garantieren können, dann können wir auch die Existenz einer Schleife garantieren
- Können wir einen Zusammenhang zwischen der Länge eines Wortes und der Tiefe des Ableitungsbaums herstellen?

Pfadlänge bei Grammatiken in Chomsky-Normalform

- ▶ Sei G = (N, T, S, P) eine Grammatik in Chomsky-Normalform.
- Sei dazu B ein Ableitungsbaum zu einem Wort $w \in L(G)$ und n der längste Pfad in B.
- ▶ Dann gilt: $|w| \le 2^{n-1}$.

- Induktion über die Länge des längsten Pfades.
- Induktions an n=1:
 - Nur ein Ableitungsschritt möglich.
 - ▶ Dieser muss von der Form $S \Rightarrow x, x \in T$ sein.
 - Also gilt $|w| = |x| = 1 = 2^{1-1}$.
- Induktionsvoraussetzung:
 - Für alle Grammatiken in CNF gilt: wenn der längste Pfad eines Ableitungsbaums zu einem Wort w die Länge n hat, dann gilt $|w| \le 2^{n-1}$.
- Induktionsschritt:
 - Sei G eine Grammatik in CNF und $w \in L(G)$ und B ein Ableitungsbaum für w, so dass der längste Pfad in B die Länge n+1 hat. $|w| \le 2^{(n+1)-1}$

Induktionsschritt:

- Sei G eine Grammatik in CNF und $w \in L(G)$ und B ein Ableitungsbaum für w, so dass der längste Pfad in B die Länge n+1 hat.
- Sei O.b.d.A $S \rightarrow UV, UV \in N$ die Produktion für die obersten Kanten im Ableitungsbaum.
- ▶ Dann gibt es $u, v \in T^*$ mit w = uv und $U \Rightarrow^* u$ und $V \Rightarrow^* v$
- \triangleright Dann hat der Teilbaum unterhalb von U als maximale Tiefe n.
- \blacktriangleright Dann hat der Teilbaum unterhalb von V als maximale Tiefe n.
- ▶ Dann gilt $|u| \le 2^{n-1}$ und $|v| \le 2^{n-1}$.
- Dann gilt $|w| = |u| + |v| \le 2^{n-1} + 2^{n-1} = 2^n = 2^{(n+1)-1}$.

Schleifen bei kontextfreien Grammatiken

- Wir können das Wiederholen eines NonTerminals im Ableitungsbaum garantieren
- ► Eine Ableitungsteilbaum der Form N → vNx wiederholt sich
- Am Schleifenende wird N → w abgeleitet
- Dazu kommen noch ein Präfix u und ein Postfix y
- Verify Unsere Ableitung mit Schleife produziert uv^kwx^ky

Pumping-Lemma für kontextfreie Sprachen

- \blacktriangleright Sei L eine kontextfreie Sprache über einem Alphabet A.
- ▶ Dann gibt es eine Konstante n derart, so dass für alle Wörter $z \in L$ mit $|z| \ge n$ gilt:
- ▶ Es gibt Wörter u, v, w, $x, y \in A^*$ mit z = uvwxy, für die gilt:
 - $vx \neq \varepsilon$
 - $|vwx| \le n$
 - $\forall k \in \mathbb{N}_0: uv^k wx^k y \in L$

- Sei G = (N, T, S, P) eine Grammatik in Chomsky-Normalform, mit L(G) = L.
 - ▶ Da L kontextfrei ist, existiert eine Grammatik (4.7) und daher auch eine in CNF (4.15).
- Sei k = |N|, sei $z \in L$ mit $|z| \ge 2^k = n$.
- ▶ Dann hat der längste Pfad für einen Ableitungsbaum von z in G mindestens die Länge k+1 (4.20).

- Seien $A_0A_1 \dots A_k$ die Nichtterminale auf diesem Pfad.
 - Das sind k Ableitungsschritte.
 - Mit einem weiteren Ableitungsschritt wir aus dem letzten Nichtterminal ein Terminal.
- \blacktriangleright Das sind k+1 Nichtterminale.
- In N sind aber nur k verschiedene Nichtterminale enthalten.
- Unter den k+1 Nichtterminalen aus $A_0A_1 \dots A_k$ muss es mindestens zwei gleiche geben.
- Seien i und j die Indizes dieser beiden Nichtterminalen, also $A_i = A_j$

Was wird aus diesen Nichtterminalen erzeugt?

• Was wird aus diesen Nichtterminalen erzeugt? Sei $A = A_i = A_j$

Was wird aus diesen Nichtterminalen erzeugt? Sei $A = A_i = A_j$

- Es kann im Ableitungsbaum also der unter A_i stehende Teilbaum durch denjenigen ersetzt werden, der unter A_j steht.
- Es kann im Ableitungsbaum also der unter A_j stehende Teilbaum beliebig häufig durch den unter A_i stehenden ersetzt werden.
- So entstehen Ableitungsbäume für Wörter alle Wörter der Form uv^kwx^ky mit $k\in\mathbb{N}_0$.
- ▶ Es gilt also: $\forall k \in \mathbb{N}_0$: $uv^k wx^k y \in L$
- Es bleibt zu zeigen: $vx \neq \varepsilon$ und $|vwx| \leq n$

$vx \neq \varepsilon$:

- Es gilt i < j.
- Daher wird auf dem Pfad zwischen A_i und A_j mindestens eine Produktion der Form $N \rightarrow XY$ verwendet.
- Nur einer von X oder Y wird im folgenden Pfad zu A_j abgeleitet.
- ▶ G ist in CNF, daher gibt es keine Produktionen der Form $N \to \varepsilon$ (außer Startsymbol).
- Aus dem anderen aus X und Y wird mindestens ein Terminal für v oder x.

$|vwx| \leq n$:

- A_i und A_j sind die letzte Doppelung von Nichtterminalen auf dem längsten Pfad.
- Der Pfad von A_i bis A_k hat daher maximal die länge k, bis zum Terminal also k+1.
- Das unter A_i erzeugte Wort vwx hat also maximal die Länge $2^{(k+1)-1} = 2^k = n$.

Anwendung des Pumping-Lemmas für kontextfreie Sprachen

- Annahme eine Sprache *L* sei kontextfrei.
- ▶ Zeige, dass für **beliebiges** *n* das Folgende gilt.
- ▶ Es gibt ein Wort $z \in L$ (im Allgemeinen abhängig von n), so dass
- es **keine** Zerlegung z = uvwxy gibt so dass gleichzeitig gilt:
- $vx \neq \varepsilon$ und
- $|vwx| \leq n$ und
- $\forall k \in \mathbb{N}_0: uv^k wx^k y \in L$

Anwendung des Pumping-Lemmas für kontextfreie Sprachen

- ▶ Annahme eine Sprache *L* sei kontextfrei.
- ▶ Zeige, dass für **beliebiges** *n* das Folgende gilt.
- ▶ Es gibt ein Wort $z \in L$ (bei Bedarf abhängig von n), so dass
- ▶ **Für alle** Zerlegungen z = uvwxy mit $vx \neq \varepsilon$ und $|vwx| \leq n$ gilt:
- ▶ **Es gibt** ein k, so dass $uv^kwx^ky \notin L$.

- Sei $L = \{0^t 1^t 2^t | t \in \mathbb{N}_0\}.$
- ▶ Behauptung: *L* ist nicht kontextfrei.

Beweis:

- ▶ Sei $n \in \mathbb{N}$ beliebig.
- Wir wählen $z = 0^n 1^n 2^n$.
- Sei uvwxy = z eine beliebige Zerlegung von z mit $vx \neq \varepsilon$ und $|vwx| \leq n$.
- Dann kann vwx nicht gleichzeitig Nullen und Zweien enthalten, da zwischen den Nullen und Zweien n Einsen liegen und $|vwx| \le n$.
- Damit bricht $v^k w x^k$ die Gleichheit zwischen Nullen, Einsen und Zweien

Pumping Lemma: Lernziele

- Sprachen in Typ 3, 2, 1 einteilen können
- Mathematische Beweismethoden Schubfachprinzip Widerspruchsbeweis Vollständige Induktion

Pumping Lemma: Mögliche Klausuraufgaben

Mithilfe der Pumping Lemma Beweisen dass eine Sprache einen gegebenen Typ nicht hat

Pumping Lemma: Survival Guide

- Definition des Pumping Lemma aufschreiben
- Beispielwort aus der Sprache wählen
- Beispielzerlegung erstellen
- Durch Aufpumpen der Beispielzerlegung ein Wort erzeugt, dass die Regeln der Sprache bricht
- Was muss die Zerlegung enthalten, damit Aufpumpen die Regeln der Sprache bricht?
- Zeigen dass ab einer bestimmten Wortlänge, jede Zerlegung mit einer Maximallänge einen solchen Aufpump-Regelbrecher enthält

Formale Sprachen: Lernziele

Wissen

- Definition Sprache
- Reguläre Ausdrücke
- Kontextfreie Grammatiken
- Ableitung
- Chomsky Hierarchie

Können

- Umgang mit formalen Definitionen und Regeln
- Verwenden von Hilfskonstrukten
- Keller und Rekursion

Wiederholungssession 13.12

- Online im BBB Raum
- ▶ 8:30 10:00 Marco
- 10:15 11:45 Markus
 Wiederholungsübung im Moodle
 Fragen für die Wiederholungssession könnt ihr ebenfalls im Moodle stellen