Elements of Probability

Summer 2019

Lecture Introduction — 28.02, 2019

Prof. dr hab. Jacek Cichoń

Scribe: Krzysztof Agieńczuk

1 Overview

In this lecture we discussed the probability space, σ fields and open/closed sets.

2 Probability space

 σ -field on a set X is a collection Σ of subsets of X that includes X itself, is closed under complement, and is closed under countable unions.

By probability space we denote a triple (Ω, \mathcal{S}, P) , fulfilling the following conditions:

- $\Omega \neq \emptyset$
- S is a σ field of subsets of Ω
- P: $S \to [0,1]$

With such conditions two conclusions appear.

- $P(\emptyset)=0, P(\Omega)=1$
- If $(A_n)_{n\in\mathbb{N}}$ are S and $(\forall n,m)(n\neq m\to A_n\cap A_m=\emptyset)$ then $P(\bigcup A_n)=\sum_{n=0}^{\infty}P(A_n)$

2.1 Simple model

Let's use simple model. We define $\Omega = [0,1]^2$ and S as a family of subsets of Ω such that they have an "area". Let P(A) be this area.

Let's now imagine two disjoint sets in this area. The rest of Ω are infinitely many empty sets. Now, we sum it all. P(0)=0, and so we can write that

$$P(A \cup B) = \sum_{n=0}^{\infty} P(A_n) = P(A) + P(B) + P(0) + \dots = P(A) + P(B)$$

Quick Reminder DeMorgan Laws¹

- $(A \cup B)' = A' \cap B'$
- $(A \cap B)' = A' \cup B'$

 $^{^{1}}$ I differ here from professor Cichoń's notation, as I'm using 'instead of c . This is just a preference. Both mean compliment and in the rest of the notes I'll be using 'sign

Question 1 Fix Ω ; $A,B\subseteq\Omega$. What operations can be defined from A,B and $\cup,\cap,'$ where ' is defined as $(X' = \Omega \setminus X)$

Let's imagine situation like shown on 2.1^2

Now let's name $A \cap B = C_0$ and so on. $C_0, ..., C_3$ are components of the family of A,B. Now, if $i \neq j$, then $C_i \cap C_j = \emptyset$. Additionally $\sum_{i=0}^3 C_i = \Omega$

This is called partition of a set.

Now, let's say we have
$$S = \{C_T : T \subseteq \{0, 1, 2, 3\}\}$$
.
If $X, Y \in S \implies X', Y' \in S \implies X' \cup Y' \in S \implies (X' \cup Y') \in S = X \cap Y$

Note During the lecture prof also showed example where A was included in B. In such case, $A \cap B' = \emptyset$.

2.2 General Case

We have $A_1, A_2, ..., A_n \subseteq \Omega$. Let's start by building all components.

For $A_1^{\epsilon_1} \cap A_2^{\epsilon_2} \cap ... \cap A_n^{\epsilon_n}$ and $\epsilon_i \in \{0,1\}$ there is 2^n component each for $\epsilon \in \{0,1\}^n$, and $A_{\epsilon} = \bigcap_{k=1}^n A_k^{\epsilon_k}$.

Assume $\mathbb{T}=\{\epsilon:\{1,...,n\}\to\{0,1\}:A_\epsilon\neq\emptyset\}$. For such \mathbb{T} , we define k as $k=|\mathbb{T}|$. There is regularity that $1 \leq k \leq 2^n$.

For $T \subseteq \mathbb{T}$ we put $A_T = \bigcup_{\epsilon \in T} A_{\epsilon}$.

Let's put $S = \{A_T : T \subseteq \mathbb{T}\}$. Then S is closed under \cap, \cup and ' (negation). This way $|S| = 2^k$, so $|S| = 2^{(2^n)}$.

Example 1 For n=10, let's calculate |S| $2^{2^{10}} \approx 2^{1000} \approx (2^3)^{\frac{1000}{3}} \approx 10^300$

²Imagine & character is ∪. My default diagram editor doesn't support LaTeX inline :P

Definition 1 S is a σ -field of subsets of Ω if

• $(\forall x \in \mathcal{S})(X \subseteq \Omega)$

 $\bullet \ \emptyset \in \mathcal{S}$

• $(\forall x \in \mathcal{S})(X' \in \mathcal{S})$

• if $(A_n)_{n\in\mathbb{N}}$ are from \mathcal{S} then $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{S}$

Remark: $(\bigcup_{n\in\mathbb{N}} A_n)' = \bigcap_{n\in\mathbb{N}} A'_n$

Definition 2 Let \mathcal{A} be a family of subsets Ω . Then $\sigma(\mathcal{A})$ is the smallest field of subsets of Ω which contains \mathcal{A} .

Example 2 $\mathcal{A} = \{A_1, ..., A_n\}$ $\sigma(\mathcal{A}) = \{A_T : T \subseteq \{0, 1\}^n$

2.3 Theorem

 $\sigma(\mathcal{A})$ exists!

Proof 1 Take A, a family of subsets of Ω $P(\Omega) = \{X : X \subseteq \Omega\}$ is a σ -field.³.

Definition 3 A set $\mathcal{U} \subseteq \mathbb{R}$ is open if $(\forall x \in \mathcal{U})(\exists \epsilon > 0)((x - \epsilon), (x + \epsilon) \subseteq \mathcal{U})$

Example 3

- (0,1) is open
- •

0, 1

is not open

• $(-\infty, 0) \cup (1, +\infty)$ is open

Union of two open sets is open.

 $^{{}^{3}\}mathrm{P}(\Omega)$ means powerset

Definition 4 Analogically, $D \subseteq \mathcal{R}$ is closed if and only if D' is open.

Example 4 [0,1) is neither open, nor closed. We will say that $OPEN(\mathbb{R}) = \{ \mathcal{U} \subseteq \mathbb{R} : \mathcal{U}isopen \}$

Definition 5 Borel(\mathbb{R})= $\sigma(OPEN(\mathbb{R}))$

Definition 3 generalization A set $\mathcal{U} \subseteq \mathbb{R}^n$ is open if $(\forall x \subseteq \mathcal{U})(\exists \epsilon > 0)(B(x, \epsilon) \subseteq \mathcal{U})^4$ Quoting prof. Cichoń "All reasonable subsets of \mathbb{R} are Borel sets."

 $^{^4\}mathrm{B}$ probably means Borel set, as in Definition 5, but I am not sure. Somebody can confirm.