## 优化模型

目标函数:

$$\zeta_1 + \zeta_2 + \zeta_3 + \zeta_4 = 1$$

暂定成本、质量、安全、工期的偏重程度权重分别为0.3、0.3、0.25、0.15,系数

$$k_1 = k_2 = k_4 = 1$$
,  $k_3 = 0.5$ ,  $c = 1.5$ ,  $\eta = 3\%$ 

| ) | 序号     | のよく 参数 *** *******************************    | unt 意义 a 3 AVJ                |
|---|--------|-----------------------------------------------|-------------------------------|
| 1 | 7      | $\zeta_4$ , $\zeta_1$ , $\zeta_2$ , $\zeta_3$ | 项目对于工期、成本、质量和安全的权重,           |
| 2 | \      | $T_{c}$ $C_{c}$ $C_{gc}$ $C_{sc}$             | 业主要求的工期、成本、质量成本和安全成本          |
| 3 | ζ.     | β                                             | 工工程间接费率工时间,暂时取 13000 元/天      |
| 4 | <      | T                                             | 实际完工时间                        |
| 5 | ζ      | $\pi$                                         | 奖惩系数1万元/天                     |
| 6 | 5      | Q <sub>c</sub>                                | 合同要求质量水平,一般取 0.85,小于 1(见公式 1) |
| 7 | \<br>\ | $S_c$                                         | 合同要求安全水平,暂定 0.9, 小于 1(见公式 2)  |

约束条件: 
$$Q = \sum_{i=1}^{N} \omega_i \ Q_i$$
 s.t. 
$$Q = \sum_{i=1}^{N} \omega_i \ Ln(\alpha_i \times T_i + \beta_i) \ge Q_c$$
 (1)

$$\int_{\mathbf{S}_{i}}^{\mathbf{At}} = \left[1 - \sum_{j=1}^{m} \left(\varpi_{nj} (1 - S_{nj}^{in})\right) / m\right] \times S_{n} \ge S_{c}$$
(2)

$$C_{i} = C_{ip} + r_{i} \times (T_{i} - T_{in})^{2} \xrightarrow{T_{i} \leftrightarrow \rho \circ \rho} (5)$$

$$C_{in} \le C_{i} \le C_{i0} \tag{6}$$

$$Q_{i0} \le Q_i \le 1 \qquad \checkmark \tag{7}$$

$$Q_{i0} \leq Q_{i} \leq 1$$

$$T_{i0} \leq T_{i} \leq T_{in}$$

$$S_{i0} \leq S_{i} \leq 1$$

$$(7)$$

$$(8)$$

$$(9)$$

$$S_{i0} \leq S_i \leq 1$$
 (9)

其中参数公式:

$$r_{i} = \frac{C_{i0} - C_{in}}{(T_{in} - T_{i0})^{2}} \sqrt{\frac{e - e^{0.8877}}{11 - w}}$$
(10)

$$\alpha_{i} = \underbrace{e}_{T_{in} - T_{i0}} e^{Q_{i0}} \qquad (11)$$

$$\beta_{i} = \frac{e^{Q_{i0}} \times T_{in} - e \times T_{i0}}{T_{in} - T_{i0}} \qquad (12)$$

$$\omega_{i} = \frac{\sum_{g} \rho_{g} z_{gi}}{\sum_{i=1}^{N} \sum_{g} \rho_{g} z_{gi}}$$
(13)

$$a_{i} = \frac{e^{S_{in}} - e^{S_{i0}}}{T_{in} - T_{i0}}$$
 (14)

$$b_{i} = \frac{e^{S_{i0}} \times T_{in} - e^{S_{in}} \times T_{i0}}{T_{in} - T_{i0}} \quad \checkmark$$
 (15)



公式 4、公式 14、公式 15:

| 序号 | 参数          | 含义                               |
|----|-------------|----------------------------------|
| 1  | $S_{i0}$    | 第 $i$ 项工序在最短工期 $T_{i0}$ 内对应的安全系数 |
| 2  | $S_{ m in}$ | 正常工期 $T_{\rm in}$ 对应的安全系数        |
| 3  | $r_i$       | 第 i 项工序成本与工期之间的递增系数              |
| 4  | $T_{ m in}$ | 第 i 项工序的正常工作时间                   |

| 5 | $T_{ m i}$ | 第 i 项工序的实际工作时间 |
|---|------------|----------------|
| 6 | $S_{i}$    | 第 i 项工序的实际安全水平 |

## 公式 5, 公式 10:

| 序号 | 参数          | 含义                              |
|----|-------------|---------------------------------|
| 1  | $C_{i}$     | 第 i 项工序的实际成本                    |
| 2  | $C_{in}$    | 正常工作时间( $T_{in}$ )下第 i 项工序的完工成本 |
| 3  | $r_i$       | 第 i 项工序成本与工期之间的递增系数             |
| 4  | $T_{ m in}$ | 第 i 项工序的正常工作时间                  |
| 5  | $T_{\rm i}$ | 第 i 项工序的实际工作时间                  |
| 6  | $T_{i0}$    | 最短工期                            |
| 7  | $T_{i0}$    | 最短工期 $T_{i0}$ 对应的临界成本           |

## 公式 11、公式 12、公式 13、公式 16:

| 42/11/42/12/42/10/ |                 |                          |  |  |
|--------------------|-----------------|--------------------------|--|--|
| 序号                 | 参数              | 含义                       |  |  |
| 1                  | $Q_{i}$         | 第i项工序的实际质量水平             |  |  |
| 2                  | $Q_{i0}$        | 第i项工序在最短工作时间下获得的质量水平     |  |  |
| 3                  | e               | 自然常数                     |  |  |
| 4                  | $\omega_{ m i}$ | 质量权重系数                   |  |  |
| 5                  | $ ho_{ m g}$    | 第 g 项质量指标的重要程度           |  |  |
| 6                  | $z_{gi}$        | 第 g 项质量指标与第 i 道活动之间的关联程度 |  |  |

公式 2:



图 3-6 安全输出图

$$\begin{cases}
S_{i}^{\text{out}} = \left[1 - \sum_{j=1}^{m} \left(\varpi_{ij} (1 - S_{ij}^{\text{in}})\right) / m\right] \times S_{i} & \text{m} \ge 1 \\
S_{i}^{\text{out}} = S_{i} & \text{m} = 0
\end{cases}$$
(3-13)

 $S_i^{\text{out}}$  —第 i 项安全水平的输出值; $S_{ij}^{\text{in}}$  —第 i 项安全水平对应的第 j 项紧前工作输入值; $\varpi_{ij}$  —第 j 项紧前工作对第 i 项工作安全性的影响程度; $S_i$  —第 i 项工作自身安全系数。工序 m 为工序 i 的第 j 项紧前工序,则工序 i 的第 j 项安全输入值  $S_{ij}^{\text{in}}$  即为工序 m 的安全输出值  $S_{m}^{\text{out}}$  。而整个项目的安全水平则为最后一道工序的安全输出值,即:

$$S = S_{n}^{\text{out}} = \left[1 - \sum_{j=1}^{m} \left(\varpi_{nj} (1 - S_{nj}^{\text{in}})\right) / m\right] \times S_{n}$$
 (3-14)