11			
MATHEMATHS EXT !	TRIAL FXAM, 2004	SoLutions	

Question 1: (12 marty) Cale
$$\frac{1}{6}$$

$$0 \leqslant x^{2} - 7x + 10$$

$$0 \leqslant (x - 5)(x - 2)$$

$$m_{1} = 4 \text{ and } m_{2} = -3$$

$$+ 4 - (-\frac{3}{2})$$

$$= \frac{1}{1 + 4 (\frac{3}{2})}$$

$$= \frac{1}{10}$$

$$= 47 + 44$$

$$= \frac{1}{2} \int_{0}^{T_{3}} 1 - \cos kx \, dx$$

$$=\frac{1}{2}\left[\left(\frac{\pi}{3}-0\right)-0\right]$$

$$=\frac{1}{6}\left[\left(\frac{\pi}{3}-0\right)-0\right]$$

Commerts :

- (a) Must state that x #2.
- (b) Learn formula convectly complete be except with minus eight to. with absolute value sign!
- (d) Many involved substitution for
- ~ } }, f(t) dt ≠ ∫, f(t) dt. Show all washing Dail Goget to change the limits હ

·S		3	·.
OVESTION 2: (12 marks) Res 3	a) y= 2c2. sin-13x	4= 22 v= 31 32 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Me = 2x3n-1(3x) + 3x2

- (oc t 7 =) No. of avagenests 2 8. (b) PARABOLA
- Since a is real, a = #3. If divisible by x-a, thun P(a) = 0 P = 80 = 0 0 = (93 - 9)(03+1) (c) P(x) = ax = 8xx = 9

Comments:

ga y:24-'(1-1) 1-1 th 0 0 x 2 x 3 1 - 1 to 0 = x 2 x 3 x 3 0 = 1/4 - ft x 11 (- x) = -1(x-0) x - 283 = 1 દ

(1) 4 A46 = 45° because the angle of	the cate is twice the agte	at the circumference, standing	on the some are, AO. (and	,
٠.5				

~ (+ m - 45 (+ m - 4 = 180) ~

- a) to differentiate sin-if(x)
 it is move successful to use
 the rule. doc (sin+fcx) = -1 × + (x)
- b) Well done .
- The resulting equection is a quadratic II+ was solved very badly. You should recognise equations at this fam. c) Must BE Stated that P(a) = 0
- discoult any need to find one transport gradient because it is a common stangent.
- Draw a close/large chiagram. solution generally Draw a chear fluid, the

TOVERLE

(c) x = - 1 pre-x where µ=2	を(ない) = -な.2.e-* ななかっこ カンチューターコロース	\$\frac{2}{4}\frac{2}{x} = 2e^{-x} + 0\\ \frac{x}{x}\frac{2}{x} = 2e^{-x} + 0\\ \frac{2}{x}\frac{2}{x} = 2e^{-x}\\ \frac{2}{x}\frac{2}{x} = 2e^{-x}\\ \frac{2}{x}\frac{2}{x} = 2e^{-x}\\ \frac{2}{x}\frac{2}{x} = 4e^{-x}\\ \frac{2}{x}\frac{2}{x} = 2e^{-x}\\ \frac{2}{x}\frac{2}{x}\frac{2}{x}\frac{2}{x}\frac{2}{x}\frac{2}{x}\frac{2}{x}	ii) V= ± /4e-x = ± 2e -x/2 Since e-x/2 >0 for all as and the initial conditions gives the velocity is 2 m/s. (positive velocity) ··· V>0 for all as	4 3 4 0	$t = e^{x_{2}} - 1$ $e^{x_{1}} = t + 1$ $\frac{x_{2}}{x_{1}} = \frac{1}{x_{1}}(t + 1)$ $x = 2\frac{1}{x_{1}}(t + 1)$ (ay) $x = 4x_{1}(t + 1)$ (ay)
QUESTION 4: (12 mmls) key 34 (a) $f(x) = 17 + 2 \sin^{-1}(\frac{x}{3})$	(i) Donain: -35253 Range: 05 f(x) 5 27	(ii) 2.11 (3,211) (2,211) (2,211) (2,211) (2,211)	(b) x ³ + px ² + q = 0 (i) Let roob be ", t and p. Roduct of roob. 7. t. p = -q	(ii) $\sum_{\alpha \neq \alpha \text{ const.}} (x + \frac{1}{4} - 9 = -p)$ (i) $\frac{1}{4} + \frac{1}{4} - 9 = -p$ (ii) $\frac{1}{4} + \frac{1}{4} - \frac{1}{4} = -p$ (ii) $\frac{1}{4} + \frac{1}{4} - \frac{1}{4} = -p$ (ii) $\frac{1}{4} + \frac{1}{4} - \frac{1}{4} = -p$ (ii) $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = -p$ (iii) $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = -p$ (iv) $\frac{1}{$	0 = q - q = 1 1 = q + q = 0 1 = q = q - 1 1 = q = q - 1 2 = q - 1 3 = q - 1

(iii) P(t,t) P(t2,0)	N=(34,12) /	x=34 and y=t2			$\therefore y = \pm \cdot \left(\frac{4x}{3}\right)^{2}$	12 11
(0, 1) DQ (writpoding L =) (iii) P (t, t2) F (t, 2, 0)		(ii) LEBQ = 180 -x (L 2 st. live = 180)	POBC a eyelie graduletral	some apparte angles are supplemented	o) y=x, , P(t,t*)	Taget y=2tx-t2.

7	· : y = + · (**)	1 2 2 2 E	Gramedt:	(a) many no. attempts. ((bas)	(b) (s) Line power that S, off (12)	(11) shit same coveless, but improving.
	y=x", P(t,t)	Tanget y=2tx-t2.	m = - +	(4'0) imay	y-4 = -4 (x -0) /	1. 4 = + 4.
	(9)		· 3		٠.	

Los RO = AC + BC - 52	2.46.60	2 = 3h + h - 52 -	2. h.y. h 38. + 12 53. + 12 53. *	1342 = 52 2	h = 1624	: 4539	(1200)	3	Comments
QUESTION 6: (12 marks) Res	(a) (i) (i) C _{ty} = 330 V	(ن) ۹ د یا (ن)	(b) (i) A = = (1 + 4.4 + 1)	60 60 1: 0 =	(ii) A = 5 1 4x	= [+4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(") 1 1 = 0.7833	TT = 3.13 (Real)

3

Θ

(-)

(Kan)	Comments:	by Learn Simpsons rule property. ii) Very easy! We the standard integral page. iii) Hence means you must we your answers from parts is and iii) and iii) The is easter to solve. This problem using the solve. Match your rearranging et algebra is
(((((((((((((((((((le (Peri)	الماري الماري

.. 2 = + 5 .36 + 50.6 . 4.00 +80 0 = 180 ta + 0 - 300 ta 0 + 102 . 6 = 49'58 on 25"27 .. ten 8 = 300 = 1302 - 4.180.101 = -180 (42 + 1) 300 hours + 78 0 = -180 sec to +300 to - = 0 could be 50° or 25° to the = -1804,20 +300to 8-- 102 .. The initial angle of projection S\$+.0 40 (ii) when x = 300, 3=2. 24180 300 = SO & 60, St neavest dagger <u>-</u> - 13 . Semanth 1 50 mm. 0 3T-T/2, 4T-T/2,.. O= 0.18 + 18 5.0 = 0 3-11-11-12-00 when t=0, y=50s... 6... C=50s... \ \ \ \ \ QUESTION 7: (12 marter) cole 15 (4 (4 واسامك= کی اسامک ییدر ک= کوسی 1 - - 6 - 4 50,000 60 + 53 si. & was = 0 C+0 .. C = x . C=0 0 = (0 - 12 1 + 0 ton) & ton ... (4) 605 0 + (3 5,720 = 0 . x . Sotton & 0 = (244) T ... 0 = 1 . x = Sotus & 0 - E , 311, 557. 8,000 x 2 = -101 + C # - #c = 4 . H. (b) (c) (d) ני א

(a). Factorie!!

All solution orders find the govern solution.

really should indicate that n is an introc.

(b) (1) 'olerne' means you must show all being shown all and a probe a familia.

when t=0, y=80 .. C= 80

1 4 2 -5t + Sotsin + 60

y = -56 + sots. 0 + C

. 4 - -lot + sos. 8

(11) finding a tombre fire masks for be much the Element to and and and the angle shough and