Some Problems of Statistical Estimation

Samvel B. GASPARYAN

Yerevan State University

GasparyanSB@gmail.com

AUA, 09 September 2016

Where we use Statistical Estimation?

• Suppose that we have electrons moving in a wire and we want to measure (in amperes) the flow of the electric charge (the electric current, hnumuph nidp). Denote it by θ .

Where we use Statistical Estimation?

- Suppose that we have electrons moving in a wire and we want to measure (in amperes) the flow of the electric charge (the electric current, hnumuph nidp). Denote it by θ .
- The first measurement gave as the value 5.4 amperes.

Where we use Statistical Estimation?

- Suppose that we have electrons moving in a wire and we want to measure (in amperes) the flow of the electric charge (the electric current, hnumuph nidp). Denote it by θ .
- The first measurement gave as the value 5.4 amperes.
- We know that measurements contain errors with 3 characteristics
 - 1. Errors are small.
 - 2. Errors are random we cannot in advance characterize them.
 - 3. There are no systematic errors our measurements can be greater as well as smaller than the true value θ .

Where we use Statistical Estimation? (cont.)

• The measurement gave as an approximate value of the electric current $\theta \approx 5.4$

Where we use Statistical Estimation? (cont.)

- The measurement gave as an approximate value of the electric current $\theta \approx 5.4$
- What can be done to have a more precise value of θ ?

Where we use Statistical Estimation? (cont.)

- The measurement gave as an approximate value of the electric current $\theta \approx 5.4$
- What can be done to have a more precise value of θ ?
- Of course, we have to do more measurements.

What is Statistical Estimation?

 Suppose that after 5 measurements values are 5.4 5.32 5.68 5.26 5.1

What is Statistical Estimation?

- Suppose that after 5 measurements values are 5.4 5.32 5.68 5.26 5.1
- The central question of the statistical estimation is:

What is Statistical Estimation?

- Suppose that after 5 measurements values are 5.4 5.32 5.68 5.26 5.1
- The central question of the statistical estimation is:
- What we have to do with the data to obtain a more precise estimate for θ?

A first look at data

```
x=c(5.4,5.32,5.68,5.26,5.1)
y=c(x[1],min(x),max(x),median(x),mean(x))
names(y)=c("First","Min","Max","Median","Mean")
sort(x)
   [1] 5.10 5.26 5.32 5.40 5.68
У
##
    First
             Min
                    Max Median
                                  Mean
```

##

5.400 5.100 5.680 5.320

5.352

Simualtions

 To do Statistical Estimation we need data, which we obtain by simulations (Կեղծակերպություն).

Simualtions

 To do Statistical Estimation we need data, which we obtain by simulations (Կեղծակերպություն).

We use simulations to illustrate theoretical results.

Simualtions

- To do Statistical Estimation we need data, which we obtain by simulations (Կեղծակերպություն).
- We use simulations to illustrate theoretical results.
- We simulate that we do not know the true value (in fact we do know) and check whether our estimates are really close to the true value or not.

Model 1 - Normal distribution

• Suppose we have n observations from a normal distribution $\mathcal{N}(\theta,1)$

$$X_n = (X_1, \cdots, X_n)$$

Model 1 - Normal distribution

• Suppose we have n observations from a normal distribution $\mathcal{N}(\theta,1)$

$$X_n = (X_1, \cdots, X_n)$$

 Using the date we have to construct a good estimator (one which approaches to the true value as the number of observations become bigger).

Model 1 - Normal distribution

• Suppose we have n observations from a normal distribution $\mathcal{N}(\theta,1)$

$$X_n = (X_1, \cdots, X_n)$$

- Using the date we have to construct a good estimator (one which approaches to the true value as the number of observations become bigger).
- We will be interested also in construction of the best possible estimator.

Model 1 - Normal distribution (part 2)

 The obvious choice (because of the law of large numbers) is the average of the data

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Model 1 - Normal distribution (part 2)

 The obvious choice (because of the law of large numbers) is the average of the data

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

But we can also construct another estimator

$$\bar{\theta}_n = \ln\left(\frac{1}{n}\sum_{i=1}e^{X_i}\right) - \frac{1}{2}.$$

Model 1 - Normal distribution (part 2)

 The obvious choice (because of the law of large numbers) is the average of the data

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

But we can also construct another estimator

$$\bar{\theta}_n = \ln\left(\frac{1}{n}\sum_{i=1}e^{X_i}\right) - \frac{1}{2}.$$

• We will see that both of them are good estimators. We'll figure out which one is better and how to find the best one.

Model 1 - The First Properties of Estimators

```
theta=2
n=500
X=rnorm(n,mean=theta,sd=1)
th1=cumsum(X)/(1:n)
th=cumsum(exp(X))/(1:n)
th2=log(th)-0.5
plot(1:n,th1,'l',col=3,ylim=c(1.5,2.5),
     xlab="Observations",ylab=c("Estimators"))
lines(1:n,th2,col=4)
abline(h=theta, lty=2, col=2)
legend(100,2.4,c("Average", "Second Estimator",
      "True Value"), lty=c(1,1,2), col=c(3,4,2))
```

Model 1 - The First Properties of Estimators (part 2)

 To compare estimators first of all we look at their convergence rate.

- To compare estimators first of all we look at their convergence rate.
- For both estimators the convergence rate is \sqrt{n}

$$\sqrt{n}(\hat{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, \sigma_1^2), \ \sqrt{n}(\bar{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, \sigma_2^2).$$

- To compare estimators first of all we look at their convergence rate.
- For both estimators the convergence rate is \sqrt{n}

$$\sqrt{n}(\hat{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, \sigma_1^2), \ \sqrt{n}(\bar{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, \sigma_2^2).$$

• Next, we have to look at the asymptotic variances σ_1^2 , σ_2^2 (smaller better).

- To compare estimators first of all we look at their convergence rate.
- For both estimators the convergence rate is \sqrt{n}

$$\sqrt{n}(\hat{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, \sigma_1^2), \ \sqrt{n}(\bar{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, \sigma_2^2).$$

- Next, we have to look at the asymptotic variances σ_1^2 , σ_2^2 (smaller better).
- Here $\sigma_1^2 = 1$, $\sigma_2^2 = e 1$, that is

$$\sigma_1^2 < \sigma_2^2$$
.

```
theta=2;m=1000;n=10000
th1=numeric();th2=numeric()
for(i in 1:m){
X=rnorm(n,mean=theta,sd=1)
th1[i]=mean(X)
th=mean(exp(X))
th2[i]=log(th)-0.5
}
int=seq(-3.5,3.5,0.001); s=exp(1)-1
par(mfrow=c(1,2))
hist(sqrt(n)*(th1-theta),nclass=50,freq=FALSE,
     main="Average", border="blue", col="lightblue",
     xlab="", ylim=c(0,0.4))
lines(int,dnorm(int,mean=0,sd=1),col=2)
hist(sqrt(n)*(th2-theta),nclass=50,freq=FALSE,
     main="The Second Estimator", border="blue".
     col="lightblue",xlab="",ylim=c(0,0.4))
lines(int,dnorm(int,mean=0,sd=sqrt(s)),col=2)
```


Asymptotically the best estimator

 To find asymptotically the best estimator we have to find an estimator with the highest rate of convergence and the smallest asymptotic variance.

Asymptotically the best estimator

- To find asymptotically the best estimator we have to find an estimator with the highest rate of convergence and the smallest asymptotic variance.
- In the Model 1 the highest rate of convergence is \sqrt{n} and the smallest asymptotic variance is 1.

Asymptotically the best estimator

- To find asymptotically the best estimator we have to find an estimator with the highest rate of convergence and the smallest asymptotic variance.
- In the Model 1 the highest rate of convergence is \sqrt{n} and the smallest asymptotic variance is 1.
- Therefore, in the Model 1 the asymptotically best estimator is the average.

Model 2 - Uniform distribution

• Suppose we have n observations from a uniform distribution $\mathbb{U}(0,\theta)$

$$X_n = (X_1, \cdots, X_n).$$

Model 2 - Uniform distribution

• Suppose we have n observations from a uniform distribution $\mathbb{U}(0,\theta)$

$$X_n = (X_1, \cdots, X_n).$$

Here too the average (corrected by the factor 2) will be a good estimator for θ

$$\hat{\theta}_n = \frac{2}{n} \sum_{i=1}^n X_i.$$

Model 2 - Uniform distribution

• Suppose we have n observations from a uniform distribution $\mathbb{U}(0,\theta)$

$$X_n = (X_1, \cdots, X_n).$$

• Here too the average (corrected by the factor 2) will be a good estimator for θ

$$\hat{\theta}_n = \frac{2}{n} \sum_{i=1}^n X_i.$$

As the second estimator choose the maximal value of observations

$$\bar{\theta}_n = \max_{1 \le i \le n} X_i = X_{(n)}.$$

Model 2 - Uniform distribution (cont.)

 To compare these two estimators we need to find their rates of convergences.

Model 2 - Uniform distribution (cont.)

- To compare these two estimators we need to find their rates of convergences.
- The following convergences hold

$$\sqrt{n}(\hat{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, \theta^2/3), \quad n(\theta - \bar{\theta}_n) \Longrightarrow \mathbb{E}\left(\frac{1}{\theta}\right),$$

where \mathbb{E} denotes the exponential distribution.

Model 2 - Uniform distribution (cont.)

- To compare these two estimators we need to find their rates of convergences.
- The following convergences hold

$$\sqrt{n}(\hat{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, \theta^2/3), \quad n(\theta - \bar{\theta}_n) \Longrightarrow \mathbb{E}\left(\frac{1}{\bar{\theta}}\right),$$

where \mathbb{E} denotes the exponential distribution.

• This means that the rate of convergence for the average is \sqrt{n} , but for the maximum the rate of convergence is n, hence the latter is better.

```
set.seed(3)
theta=1
n = 150
X=runif(n,0,theta)
th1=2*cumsum(X)/(1:n)
th2=numeric()
for(i in 1:n){
th2[i]=max(X[1:i])
}
plot(1:n,th1,'1',col=3,ylim=c(0.8,1.2),
xlab="Observations",ylab=c("Estimators"))
lines(1:n,th2,col=4)
abline(h=theta, lty=2, col=2)
legend(75,1.1,c("2*Average","Max",
"True Value"), lty=c(1,1,2), col=c(3,4,2))
data=c(max(X),2*mean(X),theta)
names(data)=c("Max","2*Aver","True")
data
```


Max 2*Aver True ## 0.9932220 0.9685582 1.0000000

```
theta=1; m=1000; n=10000; s=theta^2/3
th1=numeric();th2=numeric()
for(i in 1:m){
X=runif(n,0,theta)
th1[i]=2*mean(X)
th2[i]=max(X)
}
int=seq(-3.5,3.5,0.001)
int2=seq(0,6,0.001)
par(mfrow=c(1,2))
hist(sqrt(n)*(th1-theta),nclass=50,freq=FALSE,
     main="2*Average", border="blue", col="lightblue",
     xlab="", vlim=c(0,1)
lines(int,dnorm(int,mean=0,sd=sqrt(s)),col=2)
hist(n*(theta-th2),nclass=50,freq=FALSE,main="Maximum",
     border="blue", col="lightblue", xlab="",
     ylim=c(0,1),xlim=c(0,6))
lines(int2,dexp(int2,1/theta),col=2)
```


• Suppose we have *n* observations from $X_n = (X_1, \dots, X_n)$ form the density

$$f(x,\theta) = e^{-(x-\theta)} \mathbb{1}_{[\theta,+\infty)}(x), x \in \mathbb{R}, \theta > 0,$$

or, which is the same, as having the distribution function

$$F(x,\theta) = (1 - e^{-(x-\theta)}) \mathbb{1}_{[\theta,+\infty)}(x), x \in \mathbb{R}, \theta > 0.$$

• Suppose we have *n* observations from $X_n = (X_1, \dots, X_n)$ form the density

$$f(x,\theta) = e^{-(x-\theta)} \mathbb{1}_{[\theta,+\infty)}(x), x \in \mathbb{R}, \theta > 0,$$

or, which is the same, as having the distribution function

$$F(x,\theta) = (1 - e^{-(x-\theta)}) \mathbb{1}_{[\theta,+\infty)}(x), x \in \mathbb{R}, \theta > 0.$$

Choose two estimators as follows

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i - 1, \quad \bar{\theta}_n = \min_{1 \le i \le n} X_i = X_{(1)}.$$

• Suppose we have *n* observations from $X_n = (X_1, \dots, X_n)$ form the density

$$f(x,\theta) = e^{-(x-\theta)} \mathbb{1}_{[\theta,+\infty)}(x), x \in \mathbf{R}, \theta > 0,$$

or, which is the same, as having the distribution function

$$F(x,\theta) = (1 - e^{-(x-\theta)}) \mathbb{1}_{[\theta,+\infty)}(x), x \in \mathbb{R}, \theta > 0.$$

Choose two estimators as follows

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i - 1, \quad \bar{\theta}_n = \min_{1 \le i \le n} X_i = X_{(1)}.$$

The first estimator is asymptotically normal

$$\sqrt{n}(\hat{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, 1),$$

• Suppose we have *n* observations from $X_n = (X_1, \dots, X_n)$ form the density

$$f(x,\theta) = e^{-(x-\theta)} \mathbb{1}_{[\theta,+\infty)}(x), x \in \mathbf{R}, \theta > 0,$$

or, which is the same, as having the distribution function

$$F(x,\theta) = (1 - e^{-(x-\theta)}) \mathbb{1}_{[\theta,+\infty)}(x), x \in \mathbb{R}, \theta > 0.$$

Choose two estimators as follows

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i - 1, \quad \bar{\theta}_n = \min_{1 \le i \le n} X_i = X_{(1)}.$$

The first estimator is asymptotically normal

$$\sqrt{n}(\hat{\theta}_n - \theta) \Longrightarrow \mathcal{N}(0, 1),$$

• for the second estimator we can calculate the non-asymptotic variance of the difference of the estimator and the parameter θ

$$n(\bar{\theta}_n - \theta)$$
 is from $\mathbb{E}(1)$, $\forall n \in \mathcal{N}$.

For simulations of a random variable distributed as $F(x,\theta)$ we have to calculate the inverse of the distribution function $F^{-1}(y)=\theta-\log(1-y),\ y\in[0,1],$ then simulate a r.v. ξ from standard unidorm distribution, then $F^{-1}(\xi)$ will be distributed as $F(x,\theta)$.

```
set.seed(1000); n=100; th=1; th2=numeric()
rF=function(n) th-log(1-runif(n,0,1))
X=rF(n)
th1=cumsum(X)/(1:n)-1
for(i in 1:n) th2[i]=min(X[1:i])
plot(1:n,th1,'l',ylim=c(0.8,1.4),
     xlab="Observations",ylab="")
lines(1:n,th2,col=2)
abline(h=th,col=3,lty=2)
legend(40,1.4,c("Average-1","Min","True"),
       col=c(1,2,3),ltv=c(1,1,2))
data=c(th1[n],th2[n],th)
names(data)=c("Average-1","Min","True");data
```


Average-1 Min True ## 0.8895571 1.0112123 1.0000000

```
n=10000; m=1000; th=1; th1=numeric(); th2=numeric()
rF=function(n) th-log(1-runif(n,0,1))
for(i in 1:m){
X=rF(n)
th1[i]=mean(X)-1
th2[i]=min(X)
int=seq(-3,3,0.001); int2=seq(0,6,0.001)
y=sqrt(n)*(th1-th); z=n*(th2-th)
par(mfrow=c(1,2))
hist(y,freq=FALSE,nclass=50,col="lightblue",
     border="blue", main="Average-1", ylab="", ylim=c(0,1))
lines(int,dnorm(int),col=2)
hist(z,freq=FALSE,nclass=50,col="lightblue",
     border="blue", main="Min", ylab="", ylim=c(0,1))
lines(int2,dexp(int2,1),col=2)
```


How theory works for the real Data?

 Stephen M. Stigler (1977), "Do robust estimators work with real data?", Annals of Statistics, 5, 1055-1098 in his paper took historical data of measurments of the light in the air, and compared the performences of 11 estimators.

How theory works for the real Data?

- Stephen M. Stigler (1977), "Do robust estimators work with real data?", Annals of Statistics, 5, 1055-1098 in his paper took historical data of measurments of the light in the air, and compared the performences of 11 estimators.
- As we know, if we have independent measurements, then the best estimator is the mean (if the error is normally distributed).

How theory works for the real Data?

- Stephen M. Stigler (1977), "Do robust estimators work with real data?", Annals of Statistics, 5, 1055-1098 in his paper took historical data of measurments of the light in the air, and compared the performences of 11 estimators.
- As we know, if we have independent measurements, then the best estimator is the mean (if the error is normally distributed).
- Here we do not have the distribution of the error and have only 100 observations. So, his answer is that the 15%-trimmed mean has the best performence.

```
#install.packages("HistData")
library(HistData)
```

Warning: package 'HistData' was built under R version 3

```
data(Michelson)
head(Michelson)
```

```
## velocity
## 1 850
## 2 740
## 3 900
## 4 1070
## 5 930
## 6 850
```


length(Michelson\$velocity)

Չորս գնահատականներ

🕕 10%-կարված միջինը (trimmed mean) սահմանվում է

$$\bar{X}_{.1} = \frac{X_{11} + \dots + X_{90}}{80}.$$

2 15%-կարված միջինն է

$$\bar{X}_{.15} = \frac{X_{16} + \dots + X_{85}}{70}.$$

🔞 25%-կարված միջինն է

$$\bar{X}_{.25} = \frac{X_{26} + \dots + X_{75}}{50}.$$

4 Էդջուորթը (Edgeworth) առաջին քառորդիչի, կիսորդիչի և երրորդ քառորդիչի կշիռներով միջինն է՝ 5:6:5 հարաբերակցությամբ

$$X_{\mathbb{E}} = \frac{5 * Q1 + 6 * Q2 + 5 * Q3}{16}.$$

<u> Գնահափականների համեմափումը</u>

Ավելացնենք նաև միջինը և կիսորդիչը։ Իրական արժեքը 734.5 է։

```
## 10% 15% 25% E Mean Median ## 852.2500 851.4286 849.0000 836.7188 852.4000 850.0000
```