Moh. Alfi Amal (1811142002)

Imanuel Agung Sembe (1811141008)

Nur Fadli (18111410003)

Suriyandi (1811141009)

Muhammad Nur Ilham (1811142011)

Muh. Asrul Reza Rusli (1811140007)

Section 5.3 - Continuous Function On Intervals

(2) Misalkan $I := [a_1b]$ den $g: I \rightarrow \mathbb{R}$ den $g: f \rightarrow \mathbb{R}$ kontinu pak I.

Tonjuklan behnn $E := \{ x \in I : f(x) = g(x) \}$ menenh jika $(x_n) \subseteq E$ den $(x_n) \rightarrow f$ 0 malon $f \in E$.

Paydyain:

Dik: 5 dan gkuntinu pade t

Adit: Xn CE dan Xn -> xo => xo EE.

Butti:

Myxlam (rn) SE dan rn -> ro.

Konna (Kn) CE make krouni definor E dipoculli

f(xx)=9(xn), +n € N(1)

Perhatikan betwee of dan g kantou di I dan I 2 E Sehingga kontuke (Kn) CE dan Kn -> Ko berkaku

Day Personan (1), (2), day (3) departer

Known $x_0 \in T$ den $f(x_0) = g(x_0)$ mestlikh $x_0 \in E$.

(4) Tunjuktan untuk senua palinumial berderejat granil diga kackisma bil. Real mempunyai mininal 1 atam real.

Paydesusn:

Myclan P adolch polinoral bodoxyet gangl days looping bl. ral. $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

Mosellan Karushyn terts go menjadi 2.

Perform untuk an >0

dan (1) dan (2), maka pesti ada x, ER sebrya. P(x,) <0 dan X2 tR sebrya. P(x2) >0.

Kita ketzhui bahua pulinerial itu kuntinu pida R, maka menunt teorana "By zono"s Internediate Value", ada X3 ElR sehryya P(X3) = O. X3 akar tal dari P(X).

kny lader until an < 0.

Kenbeli dipooleh, ada $x_1, x_2 \in \mathbb{R}$ sehngga $P(x_1) < 0$ dan $P(x_2) > 0$, den P(x) kontinu di \mathbb{R} . Monurot Teorem Bulzono's Internedicate Yalue ada $x_3 \in \mathbb{R}$ sehingga $P(x_3) = 0$. x_3 Abarkal der $P(x_3)$.

(a) Misalkan f kontinu pada interval [0,1] keR dan jedemikian jehingga f(0)=f(1), Buktikan bahwa terdapat suatu titik c dalam $[0,\frac{1}{2}]$ sedemikan jehingga $f(c)=f(c+\frac{1}{2})$.

[Petunge: Pandang g(x) = f(x) - f(x+2)].

Simpulkan bahua, sebarang waktu, terdapat titik - titik antipudal pada equatur buni Yang mempunyai temperatur yang sama.

Penyelogian:

Milalkan $g(x) := f(x) - f(x+\frac{1}{2})$

Karena J kantino pada [0,1] traka g kantino pada [0,1] Kenudian perhatikan

$$g(0) = f(0) - f(\frac{1}{2})$$

 $g(\frac{1}{2}) = f(\frac{1}{2}) - f(0)$
 $= f(\frac{1}{2}) - f(0)$

> Tika f(1)=f(0) hata c=0.

> Jika f(2) f f(0) dan f(2)>f(0), maka

9(0) <0 dan g(2) >0.

Menurut Teorena J:3.5, ada C € [0,1] sehngga g(c) =0

> Tile f(t) ff(0) dan f(t) < f(0), malia g(t) < 0 dan g(0)>0

Menurot technic 5.3.5, ada (£[0,1]) sehinggin g(c) = 0 $\Leftrightarrow f(c) = f(c+\frac{1}{2})$

: Fc ← [0,1] + f(c) = f(c+{\frac{1}{2}}).

$$Gakt \rightarrow e = \frac{|x_1 - x_2|}{2}$$

$$, \quad \star_{c} = \frac{x_1 + x_2}{2}$$

Iteraji I

Iterasi II

I tragi II

Iterasi IV

$$\frac{\text{Lterajt V}}{X_1 = X_2 = 1,4375}, X_2 = 1,5 \quad \text{i} \quad X_2 = 1,46875}$$

$$f(X_2) = -0,01925638$$

Iterasi VI

$$X_1 = X_2 = 1,46871, X_2 = 1,5$$
, $X_2 = 1,5$, $X_3 = 1,484375$
 $F(X_1) = 0,00833691$ $P = 0.015625$

(0) The metode beginden digunates pada interval young panjangay 1, dengan Pn title tengah interval dan galat | Pn - c | < 10 -5.

Tentukan nilai minimal dari n untuk | Pn - c | < 10 -5.

Penyelejajan:

Mijalkan ada interval [an, by] dagag 1.

$$|P_{n} - a_{n}| = \frac{1}{2}$$

$$|P_{n} - b_{n}| = \frac{1}{2}$$

$$|P_{n} - b_{n}| = \frac{1}{4}$$

$$|P_{n} - b_{n}| = \frac{1}{4}$$

$$|P_{n} - a_{n}| = \frac{1}{4}$$

Setensnya rembentuk bangan In,

selvings |Pn-c| = 1 / Pn titile taget dan c=an atro C=bn.

Kenuden akan di cari h , jedeniktan jetggy

$$|P_{h} - c| < 10^{-5}$$

$$\frac{1}{2^{n}} < 10^{-5}$$

$$2^{n} > 10^{5}$$

$$|\log 2^{n} > \log 10^{5}$$

$$|\log 2 > 5|_{\log 10}$$

$$|\log 2 > \frac{5}{\log 10}$$

(2) Mixilkan $I = [0, \frac{\pi}{2}]$, dan $f: I \longrightarrow \mathbb{R}$ didefiniskan oleh $f(x) = \sup \{\chi^2, \cos \chi^2\}$ untule $\chi \in I$.

Tunjuktan terdapat suct titik minimum muthale $\chi \in I$ untuk f pada I.

Tunjuktan bahwa χ_0 nerupakan Suatu solusi untuk penanaan $\omega x = \chi^2$.

Penyeletian:

Mixikan fi(x) = x2

dan $f_1(x) = (x) x$

Mualkan To + [O, I] adalah titik potong f, (x) = x? dan f2(x) = (0) x,

Maka f,(x0) = f2(x0)

Perhatikah bahun dari gambar diperoleh, $f_1(x) \leq f_2(x)$ pada $[0, x_0]$ dan $f_2(x) \leq f_1(x)$ pada $[x_0, x_0]$.

Ferhatikan bahua, Sup $\{f_1(x), f_2(x)\}$ = $f_2(x)$ Maka diperoleh $\forall x \in [0, x_0]$, $f(x) = Sup \{f_1(x), f_2(x)\}$ = $f_1(x) \geqslant f_2(x)$. $\exists adi, f(x) \geqslant f_2(x_0) \forall x \in [0, x_0]$.

Perhatikan bahua, Sup $\{f_i(x), f_i(x)\}$ = $f_i(x)$ Malca diporoleh $\forall x \in [x_0, \frac{\pi}{2}]$, $f(x) = \text{Sup}\{f_i(x), f_i(x)\}$ = $f_i(x) \geq f_i(x)$. Zadi, $f(x) \geq f_i(x_0)$ $\forall x \in [x_0, \frac{\pi}{2}]$.

Dari Kasus I dan II diperoleh,

f(x) f(x)

of (x)), $f(x_0)$ untuk settap $x \in [0, \frac{\pi}{2}]$, atau dengan kata lain x_0 adalah minimum mutlak dari f pada $[0, \frac{\pi}{2}]$. Juga dari (t) disin pulkan bahwa x_0 merupakan suatu solusi untuk persamaan $\cos x = x^2$.

Imanuel AS/1811141008 From

(4) Mishkan $f: R \rightarrow R$ kentinu pada R dan $\beta \in R$.

Tunjukkan bahwa jika $X_0 \in R$ sedemikian sehingga $f(X_0) < \beta$,

Mala tudapat satu lingkungan - Y U dari X_0 sedemikian sehinggan $f(x) < \beta$ untuk semua $X \in U$.

Penyelesaign: Perhatian! sebelum melihat penjelisan, ada bailonga helihat gambarnya / grafiknya kalebih dahulu, pada hal berikutnya.

Sebelumnya, diIngatkan kembali, kata akan menggunakan Pefinsi Kekentiman Fungsi. Pefinsi: Misalkan $A \subseteq \mathbb{R}$, $f:A \longrightarrow \mathbb{R}$, dan $C \in A$. Oikatakan f kentinuclic jilan untuk setiap E > 0, terdapat bilangan S > 0 sedemikian sehing g < 0 jila $X \in A$, |X - c| < 8 maka |f(x) - f(c)| < E.

Perhatikan bahwa, kerena kita ingin nenunjukkan f(to) < B dan seterusnya....
Maka, kita akan memilih E Sbb:

untuk menjamin. daerah e yang dipilih tidak lewat dari kilai \beta (sesuri request soal). Selanjut nya, dengan menggunakan Pefinisi kita diatas,

Angraphah A= Uz (xo), dan karena Uz (xo) ER, juga xo E Uz (xo). Maka Pefindi diatas, dapat renjadi:

.. Untile * (U)(x0) diperoleh f(x) < B

Imanuel AS /18/114/008

Pilih Jebarang grafik untuk +(x), dengan s yarat f(x) < B Asumsikan lah grafik tsh adahah Shgar barikut:

Imanuel AS/1811141008 Char

(b) Ujilah penetaan dari Interval - Interval buka [artar, tutup] dibawak Fungy - Fungyr $g(x) = \frac{1}{x^2+1}$ den $h(x) = x^3$, untik $x \in \mathbb{R}$

Proychyar :

Diletchui: $g(x) = \frac{1}{x^2+1}$, $x \in \mathbb{R}$ Kontinu.

Akan ditunikku: Uji penetaan dari interval -interval buka [atau, tutop]
pada masing- masing rugsi.

Teorema 5.3.9

Misalkan I = [a,b] sunto interial totop den terbatas.

Mishlen pula $f: I \rightarrow \mathbb{R}$ tentino pada I.

Make himpunan & (I) = {f(x) : x & I } adaleh interval total dan terbates

Pengan menggunakan Tearons 5.3.9 / diparulah

Misallan a, b ER, a < b

Perhatikan bahwar

> Knus 1: 4 0 (a (b

=> 0 < g(b) < g(a)

Diperdet, $g(\langle a,b\rangle) = \langle \frac{1}{b^2+1}, \frac{1}{a^2+1} \rangle$ adulah interval buka.

> Kasus I : 4 a < 5 < 0

⇒ g(a) < g(b) < 0

Piperoleh, $g(\langle a,b\rangle) = \langle \frac{1}{a^2+1}, \frac{1}{b^2+1} \rangle$ adalah interval buka.

> Kous 1 : 4 a < 0 < 5

$$\Rightarrow$$
 $C = Inf \left\{ \frac{1}{a^2+1}, \frac{1}{b^2+1} \right\}$

Piperoleh, g((a,b)) = (c,1] adalah interval buka tutup.

Catatan: <>: Interval buka []: Interval tulup Selanjutnya, Ontok h

h(x) = x3, x EIR Kontine.

Pengan nenggundan Techena 5.3.9

Aubil sebarang a, b & R , a < b
Perhatikan bahwa,

Jadi, untula setrap interval terbuka di bawah pemetaan hi adalah juga interval terbuka. Ah

(B) Misalkan I = [a,b] dan $f: I \rightarrow \mathbb{R}$ scaturingsi (tidak perlo loontino) dengen sifat bahan untuk sehinp $x \in I$, fungsi f terbatas pada Suatu lingkungen $V_{f}(x)$ dari x (dalam pengertian pada Perinisi 4.2.1). Buktikan bahan f terbatas pada I.

Penyelesajan:

Pandang/pertimbingkan lingkungin & V, (x): x EI3

1elas bahwa, I=[a,b] = U V, (x).

Oleh Karena itu himpunan A= { Vo (x): x E I } adalah bagjan terbulca dari [a,b] dan mempunyai sub bagjan terbatas,

Make, terdapat XI, X2, ..., Xn & I sedemikian Jehingga

Sekarang, $\pm M_i > 0$, i = 1, ..., h sedenskian Sehinggar $| \pm (x) | < M_i + x \in I \cap V_{x_i}(x_i)$ [Refiner 5.3.1]

Mrsalkan M= max M; . Maka untuk i=1,..., h

|fx)| < M , 4x & [] (I) V_{x,} (x;) |fx)| < M , 4x & [] (I) V_{x,} (x;)) |fx)| < M , 4x & [] (I) (I) V_{x,} (x;))

Dan dari (*) diletatui bahwa In (in Voxi (xi)) = I.

Jadi, If (x) (< M, +x EI yang menunjukkan bahua f terbatas pada I.

