Numerical Modeling of Marine Hydrokinetic (MHK) Turbines and their Environmental Effects

Teymour Javaherchi Alberto Aliseda

Background

- A numerical methodology for simulating flow field around and in the wake of a horizontal axis MHK turbine was developed and validated.
- Two of the numerical models in this methodology are:
 - Single Reference Frame (SRF)
 - Virtual Blade Model (VBM)
- These models have different level of fidelity and adequacy in capturing detail physics of the flow field.
- The simulated and validated flow field is used toward studying the potential environmental effects of the MHK turbines.

COLLEGE OF ENGINEERING

UNIVERSITY of WASHINGTON

Potential Environmental Effects

 Study of the sudden pressure fluctuation impact on small marine species swimming through turbine blades.

 Study the sedimentation process of suspended particles in a tidal channel as they interacting with the turbulent wake of the turbine.

Sudden Pressure Fluctuation Effect

Injection Grid and Assumptions

Numerical model	Single Reference Frame (SRF)	
Injection plane	At the Inlet	
Particle Distribution	5 x 10 [evenly located particles on each rake]	
Diameter	5 [mm]	
Density ratio w.r.t water	0.95	

Results

UNIVERSITY of WASHINGTON

Results

Results

Modeling Results vs. Experimental Data from PNNL

$Z_{initial}$	$\Delta t [sec]$	$\Delta P[kPa]$	$\frac{\Delta P}{\Delta t} \big[\frac{kPa}{sec} \big]$
12.80	0.13	12.95	99.62
13.40	0.18	12.36	68.67
14.00	0.20	11.18	55.90
14.50	0.18	10.02	55.67

Test #	$\Delta t [sec]$	$\Delta P[kPa]$	$\tfrac{\Delta P}{\Delta t} \big[\tfrac{kPa}{sec} \big]$
1	0.40	131.70	329.25
2	0.40	111.40	278.50

Potential Environmental Effects

 Study of the sudden pressure fluctuation impact on small marine species swimming through turbine blades.

Study the sedimentation process of suspended particles in a tidal channel as they interacting with the turbulent wake of the turbine.

Study the Sedimentation process of Suspended Particles in the Turbulent Wake of the device

Assumptions

- -Virtual Blade Model (VBM)
- Spherical Particles
- Particle size: 1 [cm], 5 [mm], 1 [mm], 100 [micron]
- Particle density: 1200 [kg.m-3]
- Injected from a 20 by 20 grid at the inlet
- Discrete Random Walk (DRW) model
- 10 realizations for each particles

Length of Channel without Turbine [m]

Sedimentation of 5[mm] particles on the bottom of the channel

Length of Channel with Turbine [m]

Percentage of 1[mm] Particles at the Outlet of the Channel.

UNIVERSITY of WASHINGTON

Modification of the Turbulent Intensity Value at the Inlet of the Channel

Turbulence intensity is defined as the ratio of Root-Mean-Square (RMS) of turbulent velocity fluctuations to the mean velocity of the flow:

$$I = \frac{\sqrt{< u'^2 >}}{< u >}$$

In order to have more realistic boundary conditions, the value of turbulent intensity at the inlet of the channel was increased from 1% to 10%.

[J. Thomson and B. Polagye 2010]

Sedimentation of 5[mm] particles on the bottom of the channel (TI=10%)

Percentage of 1[mm] Particles at the Outlet of the Channel (TI=10%)

Summary

- A methodology was developed to study the pressure history on slightly buoyant particles, representing juvenile fish, going through the turbine blades.
- The strongest pressure fluctuations were observed for particles that flow through the tip of the blade, on the suction side.
- Sedimentation process of large particles were dominated by gravity and turbulent fluctuations in the wake did not effect them significantly.
- Sedimentation process of intermediate size particles was enhanced on bands close to the turbine due to the momentum deficit in the turbulent wake.
- Small particles were pushed up and pulled down significantly due to the turbulent fluctuations generated by rotating blades of the MHK turbine.
- Higher value of turbulent intensity at the inlet (10%) results in more homogeneous and less concentrated sedimentation on the seabed.

Questions or Comments?