Sin responder aúr	n	
Se puntúa como 0	sobre 50,00	
Marcar pregun	ta	
	ljunto "datos.txt", y	$gr(t_n)$ de R en R; cuyas N ordenadas son los datos en el las abscisas comienzan en t=0 siendo equidistantes entre sí y
Graficar	$gr(t_n)$, considerance	0
"datos.txt" e	s "audiovoz02.txt", o	on una frecuencia de muestreo fs=16000 muestras por segundo,
y resulta que	Dt= *1	^(-4) con 3 decimales
Encontra	ır	
Gr(k) =	$TDF\{gr(t_n)\}$, que	es la Transformada Discreta de Fourier de la gr_n , y que se usa
N= 8912	(entero), y Δw=	(con tres decimales)
Graficar	Módulo de $Gr(k)$	
	lel Módulo de $Gr(k)$	
	-	
іа атрінца і	Máxima es Adm=	con 2 decimales
para la frecu	encia fm=	con 2 decimales

Pregunta 1

A efectos de ser utilizado como **filtro**, se plantea el siguiente sistema de EDO de primer orden, con valores iniciales nulos, en el mismo rango de abscisas que la función discreta dato $gr(t_n)$:

Para una entrada
$$g(t)$$
, y las siguientes EDO
$$\begin{cases} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \\ \frac{dx_3(t)}{dt} \end{cases} = \begin{bmatrix} 0 & 1 & 0 \\ -(\omega_n)^2 & -2\xi\omega_n & 0 \\ 1 & 0 & -\omega_n \end{bmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} g(t)$$
 (1) La salida es
$$y(t) = x_3(t)$$

con ζ =0.4 y ω_n =fm (la frecuencia de la amplitud Máxima del Módulo de Gr(k)

Encontrar la función h(t), que es la salida del **filtro** planteado por el sistema (1) para una entrada dada por a un impulso unitario; y encontrar H(k), que es la Transformada Discreta de Fourier de h(t).

Graficar h(t)

Graficar Módulo de H(k)

Obtener las siguientes amplitudes del Módulo de H(k)

en la frecuencia fm la amplitud Ah es = *10^(-6) con 3 decimales

Pregunta 2

Sin responder aún

Se puntúa como 0 sobre 20,00

Marcar pregunta

METODOS DE RUNGE KUTTA

Los algoritmos de los métodos de Runge Kutta de Segundo Orden se pueden resumir como:

Dado
$$(t_n,u(t_n)=(t_n,u_n),$$
 para n entero mayor o igual a 1;
Se calcula $k_1=\Delta t \ f(t_n,u_n)$ $u_G=u_n+k_1/(2\omega)$ $t_G=t_n+\Delta t/(2\omega)$
Se calcula $k_2=\Delta t \ f(t_G,u_G)$ $u_{n+1}=u_n+(1-\omega)\ k_1+\omega\ k_2$ $t_{n+1}=t_n+\Delta t$

DERIVACIÓN NUMÉRICA

Si f(x) está dada en forma discreta es posible considerar los siguientes algoritmos numéricos para calcular la derivada primera

Algoritmos con 3 puntos	Algoritmos con 2 puntos
$\begin{cases} f_s' = \left[\left(\frac{-3}{2h} \right) \cdot f_s + \left(\frac{+4}{2h} \right) \cdot f_{s+1} + \left(\frac{-1}{2h} \right) \cdot f_{s+2} \right] \\ Er = -\frac{h^2 f_s'''}{3} \end{cases}$	$\int f_s' = \left[\left(\frac{-1}{h} \right) \cdot f_s + \left(\frac{1}{h} \right) \cdot f_{s+1} \right]$
$Er = -\frac{h^2 f_s^{\prime\prime\prime}}{3}$	$Er = -\frac{h}{2}f_s^{"}$
$\begin{cases} f_s' = \left[\left(\frac{-1}{2h} \right) \cdot f_{s-1} + 0 \cdot f_s + \left(\frac{1}{2h} \right) \cdot f_{s+1} \right] \\ Er = \frac{h^2}{6} f_s''' \end{cases}$	$\int f_s' = \left[\left(\frac{-1}{h} \right) \cdot f_{s-1} + \left(\frac{1}{h} \right) \cdot f_s \right]$
	$Er = \pm \frac{h}{2} f_s^{"}$
$\begin{cases} f_s' = \left[\left(\frac{3}{2h} \right) \cdot f_s + \left(\frac{-4}{2h} \right) \cdot f_{s-1} + \left(\frac{1}{2h} \right) \cdot f_{s-2} \right] \\ Er = -\frac{h^2 f_s'''}{3} \end{cases}$	
$Er = -\frac{h^2 f_s^{\prime\prime\prime}}{3}$	

La derivada primera calculada con algoritmos con 3 Puntos son tales que:

a) su velocidad de converç	gencia es igual a	15000.57% 199-00075 0519007 Jun #195000
ya que ese es el valor		\$ que aparece en el término del error

b) se pueden aplicar en forma exacta hasta funciones polinómicas de grado ,

ya que ese es el valor	•	que aparece en el término de
	(15)	

error

Los algoritmos con 2 Puntos tienen con 3 Puntos, para igual incremento	¢ de abscisas		os algoritmos ento de abscisas
de 10, el error de los algoritmos de 2			e el error de los
algoritmos de 3 Puntos se reduce en			

INTEGRACIÓN NUMÉRICA

El algoritmo de integración de Trapecios Simple, que se puede resumir como

$$I_{TS} = \int_{x_k}^{x_{k+1}} f(x) dx = \frac{\Delta x}{2} (f(x_k) + f(x_{k+1})) + E_{TS}$$
$$E_{TS} = C \frac{d^r (f(x))}{dx^r} \Big|_{\xi} (\Delta x)^p$$

En el caso de aplicar acumulativamente la regla de Trapecios Simple, el algoritmo se transforma el denominado Trapecios Múltiple o Compuesto; resulta

$$I_{TM} = \int_{x_1}^{x_{N+1}} f(x) dx = \sum_{k=1}^{N} \left\{ \int_{x_k}^{x_{k+1}} f(x) dx \right\} = \sum_{k=1}^{N} I_{TS}$$

F_tdf	٠.			
Cada valor de la fur	nción F_tdf, TDF de f(t	n), está asociada	a a	•
La TDF inversa pen	nite obtener la función	n discreta f(tn) c	onocidos los NP	i
		de la TDF de f(t	tn).	
La TDF está asocia	da con el Método de N	, línimos Cuadrad	los (Min2) cuando se usan	como Base
	.			
Entonces, el sistem	a de ecuaciones linea	les de Min2 (Φ ^T	* Φ * alfa = $\Phi^{T*}g$),	
				\$.
Ejemplo Simple				
	n discreta g de N=12 p	puntos,		
g=[1234500	0 0 0 0 0]			
con frecuencia de n	nuestreo fs=50 muestr	ras por segundo	; entonces resulta, Dt=	
segun <mark>d</mark> os y <mark>la f</mark> recu	encia fundamental Dv	v=	(con 3 decimales)	
El resultado de fft(g) entregado por octav	e es:		
G_tdf=				
15.00000 + 0.00000 3.46410i -1.73205 +		-6.00000 + 0.00	0000i 3.00000 + 2.00000i	0.00000 -
3.00000 + 0.00000i 0.00000i 1.73205 +		0.00000 + 3.464	410i 3.00000 - 2.00000i -6	5.00000 -
		stema de ecuaci	iones normales de Min2 (b	$= \Phi^{T*} a $ tiene
Entonces el término	independiente del si	Stema de cedaci		4 g / delle

-) y para la frecuencia f=2*Dw, la amplitud es A= (con 3 decimales)