Unit V - Cluster Analysis

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use:</u> Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies:</u> Observed earth quake epicenters should be clustered along continent faults

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Data Structures

- Data matrix
 - (two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
 - (one mode)

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- Nominal, ordinal, and ratio variables
- Variables of mixed types

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation:

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where
$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$$

Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

 Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$$
 where $i = (x_{i_1}, x_{i_2}, ..., x_{i_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two p -dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \geq 0$
 - d(i,i) = 0
 - $\bullet \ d(i,j) = d(j,i)$
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

Binary Variables

A contingency table for binary

Object i 0 c dataObject i 0 c data dataObject i data data

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Object *j*

$$d(i,j) = \frac{b+c}{a+b+c}$$

$$sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous.
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank

$$r_{if} \in \{1, \dots, M_f\}$$

map the range of each variable onto [0, 1] by replacing
 i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using methods for intervalscaled variables

Ratio-Scaled Variables

 Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae^{Bt} or Ae^{-Bt}

Methods:

- treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
- apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as interval-scaled

Variables of Mixed Types

- A database may contain all the six types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects $\sum_{f}^{p} \delta_{f}^{(f)} d_{f}^{(f)}$

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

f is binary or nominal:

$$d_{ij}^{(f)} = 0$$
 if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise

- f is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
 - compute ranks r_{if} and
 - and treat z_{if} as interval-scaled $z_{if} = \frac{r_{if} 1}{M_{f} 1}$

Vector Objects

- Vector objects: keywords in documents, gene features in micro-arrays, etc.
- Broad applications: information retrieval, biologic taxonomy, etc.
- Cosine measure $s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|}$

 \vec{X}^t is a transposition of vector \vec{X} , $|\vec{X}|$ is the Euclidean normal of vector \vec{X} ,

A variant: Tanimoto coefficient

$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{Y}^t \cdot \vec{Y} - \vec{X}^t \cdot \vec{Y}},$$

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

Major Clustering Approaches (II)

Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB

Frequent pattern-based:

- Based on the analysis of frequent patterns
- Typical methods: pCluster
- <u>User-guided or constraint-based</u>:
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = min(t_{ip}, t_{iq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = max(t_{ip}, t_{iq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e.,
 dis(K_i, K_j) = dis(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dis(K_i, K_j) = dis(M_i, M_j)
 - Medoid: one chosen, centrally located object in the cluster

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

Radius: square root of average distance from any point of the cluster to its centroid

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

Partitioning Algorithms: Basic Concept

<u>Partitioning method:</u> Construct a partition of a database **D** of **n** objects into a set of **k** clusters, s.t., min sum of squared distance

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2$$

- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

Example

Comments on the *K-Means* Method

- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- <u>Comment:</u> Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*

Weakness

- Applicable only when *mean* is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

Variations of the *K-Means* Method

- A few variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

A Typical K-Medoids Algorithm (PAM)

PAM (Partitioning Around Medoids) (1987)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select k representative objects arbitrarily
 - For each pair of non-selected object h and selected object i, calculate the total swapping cost TC_{ih}
 - For each pair of *i* and *h*,
 - If $TC_{ih} < 0$, **i** is replaced by **h**
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change

PAM Clustering: Total swapping cost $TC_{ih} = \sum_{j} C_{jih}$

 $C_{jih} = d(j, h) - d(j, i)$

$$C_{jih} = d(j, t) - d(j, i)$$

$$C_{jih} = 0$$

$$C_{jih} = d(j, h) - d(j, t)$$

What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- Pam works efficiently for small data sets but does not scale well for large data sets.
 - O(k(n-k)²) for each iteration
 where n is # of data,k is # of clusters
- → Sampling based method,
 CLARA(Clustering LARge Applications)

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Dendrogram: Shows How the Clusters are Merged

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Recent Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
 - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
 - ROCK (1999): clustering categorical data by neighbor and link analysis
 - CHAMELEON (1999): hierarchical clustering using dynamic modeling

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - STING (a STatistical INformation Grid approach) by Wang,
 Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB'98)
 - A multi-resolution clustering approach using wavelet method
 - CLIQUE: Agrawal, et al. (SIGMOD'98)
 - On high-dimensional data (thus put in the section of clustering high-dimensional data

Model-Based Clustering

- What is model-based clustering?
 - Attempt to optimize the fit between the given data and some mathematical model
 - Based on the assumption: Data are generated by a mixture of underlying probability distribution
- Typical methods
 - Statistical approach
 - EM (Expectation maximization), AutoClass
 - Machine learning approach
 - COBWEB, CLASSIT
 - Neural network approach
 - SOM (Self-Organizing Feature Map)

EM — Expectation Maximization

- EM A popular iterative refinement algorithm
- An extension to k-means
 - Assign each object to a cluster according to a weight (prob. distribution)
 - New means are computed based on weighted measures
- General idea
 - Starts with an initial estimate of the parameter vector
 - Iteratively rescores the patterns against the mixture density produced by the parameter vector
 - The rescored patterns are used to update the parameter updates
 - Patterns belonging to the same cluster, if they are placed by their scores in a particular component
- Algorithm converges fast but may not be in global optima

The EM (Expectation Maximization) Algorithm

- Initially, randomly assign k cluster centers
- Iteratively refine the clusters based on two steps
 - Expectation step: assign each data point X_i to cluster C_i with the following probability

$$P(X_i \in C_k) = p(C_k|X_i) = \frac{p(C_k)p(X_i|C_k)}{p(X_i)},$$

- Maximization step:
 - Estimation of model parameters

$$m_k = \frac{1}{N} \sum_{i=1}^{N} \frac{X_i P(X_i \in C_k)}{\sum_j P(X_i \in C_j)}.$$

Conceptual Clustering

- Conceptual clustering
 - A form of clustering in machine learning
 - Produces a classification scheme for a set of unlabeled objects
 - Finds characteristic description for each concept (class)
- COBWEB (Fisher'87)
 - A popular a simple method of incremental conceptual learning
 - Creates a hierarchical clustering in the form of a classification tree
 - Each node refers to a concept and contains a probabilistic description of that concept

Self-Organizing Feature Map (SOM)

- SOMs, also called topological ordered maps, or Kohonen Self-Organizing Feature Map (KSOMs)
- It maps all the points in a high-dimensional source space into a 2 to 3-d target space, s.t., the distance and proximity relationship (i.e., topology) are preserved as much as possible
- Similar to k-means: cluster centers tend to lie in a low-dimensional manifold in the feature space
- Clustering is performed by having several units competing for the current object
 - The unit whose weight vector is closest to the current object wins
 - The winner and its neighbors learn by having their weights adjusted
- SOMs are believed to resemble processing that can occur in the brain
- Useful for visualizing high-dimensional data in 2- or 3-D space

Web Document Clustering Using SOM

signoid

validation

- The result of SOM clustering of 12088 Web articles
- The picture on the right: drilling down on the keyword "mining"
- Based on websom.hut.fiWeb page

Clustering High-Dimensional Data

- Clustering high-dimensional data
 - Many applications: text documents, DNA micro-array data
 - Major challenges:
 - Many irrelevant dimensions may mask clusters
 - Distance measure becomes meaningless—due to equi-distance
 - Clusters may exist only in some subspaces
- Methods
 - Feature transformation: only effective if most dimensions are relevant
 - PCA & SVD useful only when features are highly correlated/redundant
 - Feature selection: wrapper or filter approaches
 - useful to find a subspace where the data have nice clusters
 - Subspace-clustering: find clusters in all the possible subspaces
 - CLIQUE, ProClus, and frequent pattern-based clustering

The Curse of Dimensionality

(graphs adapted from Parsons et al. KDD Explorations 2004)

- Data in only one dimension is relatively packed
- Adding a dimension "stretch" the points across that dimension, making them further apart
- Adding more dimensions will make the points further apart—high dimensional data is extremely sparse
- Distance measure becomes meaningless—due to equi-distance

(b) 6 Objects in One Unit Bin

(c) 4 Objects in One Unit Bin

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches
- There are still lots of research issues on cluster analysis

Problems and Challenges

- Considerable progress has been made in scalable clustering methods
 - Partitioning: k-means, k-medoids, CLARANS
 - Hierarchical: BIRCH, ROCK, CHAMELEON
 - Density-based: DBSCAN, OPTICS, DenClue
 - Grid-based: STING, WaveCluster, CLIQUE
 - Model-based: EM, Cobweb, SOM
 - Frequent pattern-based: pCluster
 - Constraint-based: COD, constrained-clustering
- Current clustering techniques do not <u>address</u> all the requirements adequately, still an active area of research