CS 352 Introduction to Usability Engineering

Empirical Evaluation with Users
Part II

Think-Aloud Research Studies

- Analyze data for patterns, surprises, etc.
- No stats: not enough subjects for this
- Sample think-aloud results: from VL/ HCC'03 (Prabhakararao et al.)

Example

People's Strategies with a spreadsheet debug feature

- Research questions:
 - RQ1: Perceived value?
 - RQ3; What debugging strategies used?
 - RQ4- Influence of feature on their strategies?
- Sample results:
 - RQ1: 4/5 users used it at least once. (#3 forgot it, but wished he had remembered)
 - RQ3&4: Dataflow debugging was a success and the feature encouraged it

Statistical Studies

- We will not use them, but ...
 - You need to know the basics
- Goal: answer a binary question
 - eg. Does system X help users create animations?
 - eg. Are people better debuggers using X than Y?
- Advantage: your audience believes it
- Disadvantage: you may not find out about "why or why not?"

Hypothesis Testing

- Need to be specific and provable/refutable
 - e.g. "users will debug better using X than Y"
 - Strictly speaking we use the "null" hypothesis,
 which says there won't be a difference
 - Pick a significance value (rule of thumb is 0.05)
 - If you get a p-value <=0.05 this says you've shown a significant difference, but there's a 5% chance the difference is a fluke

Design the Experiment

- Identify outputs (dependent variables) for the hypotheses:
 - eg, more bugs fixed?
 - eg. Fewer minutes to fix the same number of bugs
- Identify independent variables we'll manipulate (treatments):
 - Which system used, X or Y?

- Decide on within vs. between subject
 - "Within": 1 group experiments all treatments
 - In random order
 - "within is best, if possible (Why?)
- How many subjects?
- Rule of thumbe: 30/treatment
- More subjects -> more statistical power -> more likely to get p<=0.5 if there really is a difference

- Design the task they will do
 - Since you usually run a lot of these at one time and you're comparing them, you need to be careful with length
 - Long enough to get over the learning curve
 - Big enough to be convincing
 - Small enough to be do-able in the amount of time subjects have available
 - Vary the order if multiple tasks

- Develop the tutorial
 - Practice like crasy! (must work the same for everyone!)
- Plan the data to gather
 - Log files?
 - Questionnaires before/after?
 - Saved results files at end?

- Water in the beer:
 - Sources of uncontrolled variation spoil results
- Sources
 - Too much variation in subject background
 - Not good enough tutorial
 - Task not a good match for goal
 - and so on …
- Result: no significant difference

Finally, Analyze the Data

- Choose an appropriate statistical test. (there are entire courses on this!)
- Run it
- Hope for p<=0.5
- Summary
 - Statistical studies are a lot of work (too much for this class)
 - Right choice for answering X>Y questions

Recommendation

- How to Lie with Statistics, 1st ed., Darrel Huff, 1954.
- First edition is still in print!
- Excellent description of the (unintended?) implicit bias that can arise in presenting statistical data