MATH 2210 HOMEWORK WORKSHEET 7

Name:		
-------	--	--

Directional Derivatives and the Gradient Vector

1. Find the directional derivative of the function at the given point in the direction of the vector \mathbf{v} .

(a)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
, $(1,2)$, $\mathbf{v} = \langle 3, 5 \rangle$.

(b)
$$f(x, y, z) = xy^2 \tan^{-1} z$$
, $(2, 1, 1)$, $\mathbf{v} = \langle 1, 1, 1 \rangle$.

2. Find the maximum rate of change of

$$f(x, y, z) = x \ln(yz)$$

at the point $(1, 2, \frac{1}{2})$ and the direction in which it occurs.

3. Find equations of (a) the tangent plane and (b) the normal line to the surface

$$x = y^2 + z^2 + 1$$

at the point (3,1,-1). Hint: Recall that the normal line is the line through the point that is perpendicular (i.e. orthogonal) to the surface.

Maximum and Minimum Values

- **4.** Suppose (0,2) is a critical point of a function g with continuous second derivatives. In each case below, what can you say about g? Explain your reasoning.
- (a) $g_{xx}(0,2) = -1$, $g_{xy}(0,2) = 6$, $g_{yy}(0,2) = 1$.

(b)
$$g_{xx}(0,2) = -1$$
, $g_{xy}(0,2) = 2$, $g_{yy}(0,2) = -8$.

(c)
$$g_{xx}(0,2) = 4$$
, $g_{xy}(0,2) = 6$, $g_{yy}(0,2) = 9$.

5. Find the local maximum and minimum values and saddle point(s) of the function.

(a)
$$f(x,y) = y(e^x - 1)$$

(b)
$$f(x,y) = xye^{-(x^2+y^2)/2}$$