Multivariable Calculus (Lecture-6)

Department of Mathematics Bennett University India

31st October, 2018

Differentiation of Scalar Valued Function of Vector Variable (Scalar Field)

 $F:S\subseteq\mathbb{R}^2\to\mathbb{R}$

Learning Outcome of the lecture

In this lecture, We learn Differentiation of $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$, where S is an open set of \mathbb{R}^2 .

- Partial Derivatives
- Partial Derivatives versus Continuity

Differential Calculus for $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$

Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$.

Differential Calculus for $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$

Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$.

Questions:

- What does it mean to say that *F* is differentiable?
- How to define differentiability of *F* at a point $X_0 = (x_0, y_0)$?
- How to determine $F'(X_0)$?

Let F(x, y) be a real valued function defined on an open set S in \mathbb{R}^2 . Let $X_0 = (x_0, y_0)$ be a point in S.

Let F(x, y) be a real valued function defined on an open set S in \mathbb{R}^2 . Let $X_0 = (x_0, y_0)$ be a point in S.

Definition

The partial derivative of F with respect to the variable x at the point $X_0 = (x_0, y_0)$ is denoted by $\frac{\partial F}{\partial x}(x_0, y_0)$ and is defined by

$$\frac{\partial F}{\partial x}(x_0, y_0) := \lim_{h \to 0} \frac{F(x_0 + h, y_0) - F(x_0, y_0)}{h}$$

provided the limit exists.

Definition

The partial derivative of F with respect to the variable y at the point $X_0 = (x_0, y_0)$ is denoted by $\frac{\partial F}{\partial y}(x_0, y_0)$ and is defined by

$$\frac{\partial F}{\partial y}(x_0, y_0) := \lim_{k \to 0} \frac{F(x_0, y_0 + k) - F(x_0, y_0)}{k}$$

provided the limit exists.

Definition

The partial derivative of F with respect to the variable y at the point $X_0 = (x_0, y_0)$ is denoted by $\frac{\partial F}{\partial y}(x_0, y_0)$ and is defined by

$$\frac{\partial F}{\partial y}(x_0, y_0) := \lim_{k \to 0} \frac{F(x_0, y_0 + k) - F(x_0, y_0)}{k}$$

provided the limit exists.

Interpretation of Partial Derivatives:

Definition

The partial derivative of F with respect to the variable y at the point $X_0 = (x_0, y_0)$ is denoted by $\frac{\partial F}{\partial y}(x_0, y_0)$ and is defined by

$$\frac{\partial F}{\partial y}(x_0, y_0) := \lim_{k \to 0} \frac{F(x_0, y_0 + k) - F(x_0, y_0)}{k}$$

provided the limit exists.

Interpretation of Partial Derivatives:

• $\frac{\partial F}{\partial x}(x_0, y_0)$ is the slope of the tangent to the curve $C_1 : z = F(x, y)$ in the plane $y = y_0$ at the point $(x_0, y_0, F(x_0, y_0))$.

Definition

The partial derivative of F with respect to the variable y at the point $X_0 = (x_0, y_0)$ is denoted by $\frac{\partial F}{\partial y}(x_0, y_0)$ and is defined by

$$\frac{\partial F}{\partial y}(x_0, y_0) := \lim_{k \to 0} \frac{F(x_0, y_0 + k) - F(x_0, y_0)}{k}$$

provided the limit exists.

Interpretation of Partial Derivatives:

- $\frac{\partial F}{\partial x}(x_0, y_0)$ is the slope of the tangent to the curve $C_1 : z = F(x, y)$ in the plane $y = y_0$ at the point $(x_0, y_0, F(x_0, y_0))$.
- $\frac{\partial F}{\partial y}(x_0, y_0)$ is the slope of the tangent to the curve $C_2: z = F(x, y)$ in the plane $x = x_0$ at the point $(x_0, y_0, F(x_0, y_0))$.

Picture explaining Partial Derivatives of F at (x_0, y_0)

• $\frac{\partial F}{\partial x}(x_0, y_0)$ gives the rate of change of F with respect to x at x_0 when y is held fixed at the value y_0 .

- $\frac{\partial F}{\partial x}(x_0, y_0)$ gives the rate of change of F with respect to x at x_0 when y is held fixed at the value y_0 .
- $\frac{\partial F}{\partial x}(x_0, y_0)$ is basically the rate of change of F in the direction of $\hat{i} = (1, 0) = e_1$ at (x_0, y_0) .

$$\frac{\partial F}{\partial x}(x_0, y_0) := \lim_{t \to 0} \frac{F(X_0 + te_1) - F(X_0)}{t}$$

- $\frac{\partial F}{\partial x}(x_0, y_0)$ gives the rate of change of F with respect to x at x_0 when y is held fixed at the value y_0 .
- $\frac{\partial F}{\partial x}(x_0, y_0)$ is basically the rate of change of F in the direction of $\hat{i} = (1, 0) = e_1$ at (x_0, y_0) .

$$\frac{\partial F}{\partial x}(x_0, y_0) := \lim_{t \to 0} \frac{F(X_0 + te_1) - F(X_0)}{t}$$

• $\frac{\partial F}{\partial y}(x_0, y_0)$ gives the rate of change of F with respect to y at y_0 when x is held fixed at the value x_0 .

- $\frac{\partial F}{\partial x}(x_0, y_0)$ gives the rate of change of F with respect to x at x_0 when y is held fixed at the value y_0 .
- $\frac{\partial F}{\partial x}(x_0, y_0)$ is basically the rate of change of F in the direction of $\hat{i} = (1, 0) = e_1$ at (x_0, y_0) .

$$\frac{\partial F}{\partial x}(x_0, y_0) := \lim_{t \to 0} \frac{F(X_0 + te_1) - F(X_0)}{t}$$

- $\frac{\partial F}{\partial y}(x_0, y_0)$ gives the rate of change of F with respect to y at y_0 when x is held fixed at the value x_0 .
- $\frac{\partial F}{\partial y}(x_0, y_0)$ is basically the rate of change of F in the direction of $\hat{j} = (0, 1) = e_2$ at (x_0, y_0) .

$$\frac{\partial F}{\partial y}(x_0, y_0) := \lim_{t \to 0} \frac{F(X_0 + te_2) - F(X_0)}{t}$$

Notations for Partial Derivatives

•

$$\frac{\partial F}{\partial x}(X_0) = \frac{\partial F(X_0)}{\partial x} = F_x(X_0) = D_1 F(X_0) = (D_1 F)(X_0).$$

Notations for Partial Derivatives

•

•

$$\frac{\partial F}{\partial x}(X_0) = \frac{\partial F(X_0)}{\partial x} = F_x(X_0) = D_1 F(X_0) = (D_1 F)(X_0).$$

$$\frac{\partial F}{\partial y}(X_0) = \frac{\partial F(X_0)}{\partial y} = F_y(X_0) = D_2 F(X_0) = (D_2 F)(X_0).$$

Notations for Partial Derivatives

•

$$\frac{\partial F}{\partial x}(X_0) = \frac{\partial F(X_0)}{\partial x} = F_x(X_0) = D_1 F(X_0) = (D_1 F)(X_0).$$

•

$$\frac{\partial F}{\partial y}(X_0) = \frac{\partial F(X_0)}{\partial y} = F_y(X_0) = D_2 F(X_0) = (D_2 F)(X_0).$$

• If z = F(x, y) then $\frac{\partial z}{\partial x}$ is used to denote $\frac{\partial F}{\partial x}$ and $\frac{\partial z}{\partial y}$ is used to denote $\frac{\partial F}{\partial y}$.

Example-1: Partial derivatives of F exist & F is continuous

Let F(x, y) = xy for $(x, y) \in \mathbb{R}^2$. Let $X_0 = (x_0, y_0)$ be an arbitrary point in \mathbb{R}^2 .

Example-1: Partial derivatives of F exist & F is continuous

Let F(x, y) = xy for $(x, y) \in \mathbb{R}^2$. Let $X_0 = (x_0, y_0)$ be an arbitrary point in \mathbb{R}^2 .

Question: Examine the existence of (first order) partial derivatives of F at X_0 . Also examine the continuity of F at X_0 .

Example-1: Partial derivatives of F exist & F is continuous

Let F(x, y) = xy for $(x, y) \in \mathbb{R}^2$. Let $X_0 = (x_0, y_0)$ be an arbitrary point in \mathbb{R}^2 .

Question: Examine the existence of (first order) partial derivatives of F at X_0 . Also examine the continuity of F at X_0 .

Answer:

$$\frac{\partial F}{\partial x}(X_0) = y_0 \text{ and } \frac{\partial F}{\partial y}(X_0) = x_0.$$

The function F(x, y) = xy is continuous at X_0 .

Example-2: Partial derivatives of F exist &F is not continuous

Let
$$F(x,y) = \frac{xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$. And $F(0,0) = 0$.

Example-2: Partial derivatives of F exist &F is not continuous

Let
$$F(x, y) = \frac{xy}{x^2 + y^2}$$
 if $(x, y) \neq (0, 0)$. And $F(0, 0) = 0$.

Question: Examine the existence of (first order) partial derivatives of F at (0,0). Also examine the continuity of F at (0,0).

Example-2: Partial derivatives of F exist &F is not continuous

Let
$$F(x, y) = \frac{xy}{x^2 + y^2}$$
 if $(x, y) \neq (0, 0)$. And $F(0, 0) = 0$.

Question: Examine the existence of (first order) partial derivatives of F at (0,0). Also examine the continuity of F at (0,0).

Answer:

$$\frac{\partial F}{\partial x}(0,0) = 0$$
 and $\frac{\partial F}{\partial y}(0,0) = 0$.

The function $F(x, y) = \frac{xy}{x^2 + y^2}$ is not continuous at (0, 0).

Details are worked out in the class.

Example-3: F is continuous & Some partial derivatives do not exist

Let $F(x, y) = x \sin \frac{1}{x} + y$ if $x \neq 0$.. And F(x, y) = y, if x = 0.

Example-3: F is continuous & Some partial derivatives do not exist

Let
$$F(x, y) = x \sin \frac{1}{x} + y$$
 if $x \neq 0$.. And $F(x, y) = y$, if $x = 0$.

Question: Examine the existence of (first order) partial derivatives of F at (0,0). Also examine the continuity of F at (0,0).

Example-3: F is continuous & Some partial derivatives do not exist

Let
$$F(x, y) = x \sin \frac{1}{x} + y$$
 if $x \neq 0$.. And $F(x, y) = y$, if $x = 0$.

Question: Examine the existence of (first order) partial derivatives of F at (0,0). Also examine the continuity of F at (0,0).

Answer:

$$\frac{\partial F}{\partial x}(0,0)$$
 does not exist and $\frac{\partial F}{\partial y}(0,0)=1$.

The function $F(x, y) = x \sin \frac{1}{x} + y$ is continuous at (0, 0).

Details are worked out in the class.

