Lab 6 report

김지현 (20220302)

1. 개요

- 이번 Lab 6 에서는 다양한 counter (계수기) 를 구현해보며 순차 회로에 대해 알아볼 것이다.

2. 이론적 배경

- D Flip Flop:

- D FF 는 delay flip flop 이며 디지털 논리 회로의 기본 구성 요소 중 하나이다. 이 Flip Flop 은 한 비트의 정보를 저장할 수 있으며 디지털 신호의 타이밍을 동기화하고 제 어하는데에 사용되는 순차적 논리 장치이다.
- DFF에 입력되는 값 D는 Q+에 그대로 반영된다.
- JK FF 을 이용해 J = D 그리고 K = ~D 로 연결하면 D FF 을 만들 수 있다.

Counter

○ Counter 는 순차 회로 중 하나로 clock 시그널에 따라 정해진 순서의 숫자들을 저장하 거나 출력하는 역할을 한다. Counter 를 이용해서 밑에서 다룰 BCD counter 나 ring counter 등 을 만들수 있다.

- Synchronous Counter

○ 동기 계수기라고도 불리는 synchronous counter 는 counter 내의 모든 FF 이 동시에 clock 되어서 delay 가 없다. 반대로 Asynchronous counter 또는 ripple counter 라고 불리는 비동기 계수기는 ripple 되는 과정에서 delay 가 발생한다. 따라서 Synchronous counter 를 더 자주 사용한다.

- Decade Counter

○ Decade counter 는 10진수 수의 BCD 를 계산하기 위한 계수기이다. 0 부터 9 까지 카 운트 한 다음 다시 0으로 재설정하여 카운트 사이클을 다시 시작하도록 설계되어있 다.

- State transition table and diagram
 - 상태 전이도는 state 들과 다음 state 를 나타내는 화살표를 이용해 나타내고 상태 전이표는 state change 와 input 값을 나타낸 것을 말한다.

3. 실험 준비

- (1) JK FF 을 이용한 Synchronous decade BCD counter
 - a. 계수기의 상태 전이도

b. 상태 전의표와 각 상태 전환에 필요한 JK FF 의 입력

	present state				nex+ state				JK inpot.									TJK FF:				
	Α	В	С	D	A ⁺	β [‡]	C [†]	D‡	JA	k _A	Jg	kβ	Jc	kc	J,	K _D		۵	Ø,	J	k	
	0	0	0	0	0	0	0	ı	0	χ	0	Χ	0	χ	ı	X		0	0	0	X	
	0	0	0	1	0	0	1	0	0	X	0	χ	١	X	X	1		0	ι	ι	χ	
	0	0	1	0	0	0	- 1	1	0	X	0	χ	×	0		X		1	0	х	- 1	
	0	0	1	1	0	ı	0	0	0	ķ	ı	K	X	1	×	1		1	. 1	Х	0	
	0	- 1	0	0	0	1	0	1	0	Χ	K	0	0	Χ	ı	X				•	_	
	0	1	0	1	0	1	1	0	0	K	x	0	ı	k	X							
	0	. 1	1	0	0	1	1	1	0	χ	X	0	K	0	1	X						
٠	0	. 1	. 1	. /	1	0	0	0	ι	X	Х	ι	Ιχ	1	K	(
	1	0	0	0	1	0	0	1	X	0	0	Χ	0	Χ	1	Х					,	
	. /	. 0	0	,	0	0	0	0	x	ı	0	X	0	Χ.	X							

c. JK FF 입력의 단순화

d. 전체 회로도

- (2) JK FF 을 이용한 두자릿수 Decade BCD counter (0~99)
 - a. 계수기의 대략적인 상태 전이도

b. 회로도

(3) D FF 을 이용한 3, 6, 9 계수기

a. 계수기의 상태 전이도

b. 상태 전이표와 각 상태 전환에 필요한 D FF 의 입력

	=>	Ų EH	건이도	:	pre	sent	state		next		state		OFF input			
					Α	В	С	D	Α ⁺	β [†]	C+	D [†]	DA	Dв	Pc	DD
					0	0	0	0	0	0	1	١	0	0	١	- 1
			•		0	0	١	1	0	1	١	0	0	1	1	0
					0	1	١	0	ι ΄	0	0	ı	ι	0	0	ı
		•	•	•	· t	0	0		l i	1	0	1	1	1	0	ı
,				•	1	1	0	1	0	1	1	0	0	ι	1	0

c. D FF 의 단순화

d. 전체 회로도

4. 실험 결과

- (1) JK FF 을 이용한 Synchronous decade BCD counter
 - a. Schematic 기능으로 확인한 회로도

b. Test bench 를 이용해 확인한 시뮬레이션 결과

(2) JK FF 을 이용한 두자릿수 Decade BCD counter

a. Schematic 기능으로 확인한 회로도

b. Test bench 를 이용해 확인한 시뮬레이션 결과

(3) D FF 을 이용한 3, 6, 9 계수기

a. Schematic 기능으로 확인한 회로도

b. Test bench 를 이용해 확인한 시뮬레이션 결과

5. 논의

- 이번 Lab 을 통해서 순차회로 중 한 종류인 계수기에 대해서 잘 알 수 있게 되었다. 강의에서 배웠을 때는 어디에 사용하는 것인지 잘 예상이 되지 않았는데 decade counter 를 만들어보며 응용할 수 있는 분야에 대해 생각할 수 있었다.
- 369 계수기의 패턴이 익숙하지 않아 이해하는데에 시간이 걸렸지만 D FF을 이용해 회로도를 구성하는 과정에서 강의 시간에 자주 사용했던 JK FF 이나 T FF 외의 FF을 사용할 수 있어서 좋은 경험이 되었을 것 같다.