Bundesanstalt für Materialforschung und -prüfung (BAM)

in cooperation with the International Commission on Glass (ICG) and Deutsche Glastechnische Gesellschaft e.V. (DGG)

Certified Reference Material BAM-S006

Multielement Glass

Certified Values

Ele	ment	Mass frac	tion¹) in %	Uncertainty 2) in %
Al	(Al ₂ O ₃)	1.081	(2.042)	0.015
Ca	(CaO)	7.660	(10.72)	0.016
Mg	(Mg0)	1.163	(1.929)	0.010
Na	(Na ₂ O)	8.79	(11.85)	0.11
K	(K ₂ O)	0.577	(0.695)	0.008
Fe	(Fe₂O₃)	0.468	(0.669)	0.008
Cr	(Cr ₂ O ₃)	0.382	(0.558)	0.006
Mn	(MnO)	0.213	(0.275)	0.004
Si	(SiO ₂)	33.10	(70.83)	0.12
		in m	g/kg	in mg/kg
As	(As ₂ O ₃)	9.0	(11.8)	1.7
Ва	(BaO)	456	(509)	23
Cd	(CdO)	0.21	(0.24)	0.06
Со	(CoO)	172	(219)	5
Ni	(NiO)	19.3	(24.6)	1.4
Р	(P ₂ O ₅)	85	(195)	16
Pb	(PbO)	103	(111)	5
S	(SO₃)	201	(502)	9
Sb	(Sb ₂ O ₃)	10.8	(12.9)	1.5
Ti	(TiO ₂)	391	(652)	6

Unweighted mean value of the means of accepted sets of data (consisting of at least 1 single results), each set being obtained by a different laboratory and/or a different method of measurement. The values in brackets were calculated from the mass fractions of the elements using the atomic weights.

Sample Description

The Reference Material is available in the form of discs (approx. 38 mm diameter and 4 mm height) and in form of cullet.

Estimated expanded uncertainty U with a coverage factor of k = 2, corresponding to a level of confidence of approx. 95 %, as defined in the Guide to the Expression of Uncertainty in Measurement, (GUM, ISO/IEC Guide 98-3:2008). The stated measurement uncertainties refer only to the mass fractions of the elements.

This certificate is valid until there is a revocation from the producer of the material.

Values for Information

Ele	ement	Mass fractio	on ¹⁾ in mg/kg	Uncertainty 2) in mg/kg
CI		180		28
Cu	(CuO)	26	(33)	10
Sr	(SrO)	130	(154)	82
Zn	(ZnO)	61	(76)	7
Zr	(ZrO ₂)	139	(188)	28

Unweighted mean value of the means of accepted sets of data (consisting of at least 2 single results), each set being obtained by a different laboratory and/or a different method of measurement. Values were not certified, but given for information, because the uncertainty from the inter-laboratory certification was too large. The values in brackets were calculated from the mass fractions of the elements using the atomic weights.

Recommended Use

The CRM is intended for establishing or checking the calibration of X-ray spectrometers for the analysis of samples of similar matrix composition. The minimum sample size for wet chemical analysis is 0.2 g.

Instructions for Use

Before use of the disc, the surface of the material must be cleaned. After multiple measurements with XRF, discolouration of the glass may occur. This can be reversed by heat treatment at 300 - 400 °C.

Participating Laboratories

Ardagh Glass Packaging - Europe, Nienburg/Weser, Germany

Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany

Cetim, Illkirch-Graffenstaden, France

Corning European Technology Center (CETC), S&T European Laboratory, Fontainebleau, France

Corning US, Corning, NY, USA

Glashütte Freital GmbH, Freital, Germany

Glass Technology Services Ltd, Sheffield, South Yorkshire, United Kingdom

IGR Institut für Glas- und Rohstofftechnologie GmbH, Göttingen, Germany

INISMa (Institut Interuniversitaire des Silicates, Sols et Matériaux, Mons, Belgium

NSG, Lathom, United Kingdom

Schott AG, Jena, Germany

Schott AG, Mainz, Germany

Stazione Sperimentale del Vetro, Murano, Italy

Saint-Gobain Sekurit Deutschland GmbH, Herzogenrath, Germany

Stoelzle Oberglas GmbH, Köflach, Austria

T. Şişe ve Cam Fab. A.Ş. Science and Technology Center, Gebze Kocaeli, Turkey

Wiegand-Glashüttenwerke GmbH, Steinbach am Wald, Germany

Zentrum für Glas- und Umweltanalytik GmbH, Ilmenau-Unterpörlitz, Germany

Estimated expanded uncertainty U with a coverage factor of k = 2, corresponding to a level of confidence of approx. 95 %, as defined in the Guide to the Expression of Uncertainty in Measurement, (GUM, ISO/IEC Guide 98-3:2008). The stated measurement uncertainties refer only to the mass fractions of the elements.

Means of Accepted Data Sets

Certified values Mass fraction in %

mass fraction in mg/kg

	יום זו וומכנ		1	1	1	1		1	1	1	1	5,5		1	1	
Line No.	Al	Ca	Mg	Na	К	Fe	Cr	Mn	Si	As	Ва	Cd	Со	Ni	Р	Pb
1	1.023	7.619	1.140	8.649	0.549	0.428		0.201	32.83	4.3	394	0.11		15.2	74.0	90.0
2	1.047	7.619	1.143	8.703	0.549	0.443		0.202	32.93	4.6	408	0.13	157.0	16.6	76.5	91.5
3	1.060	7.633	1.145	8.718	0.550	0.446	0.353	0.202	32.97	7.2	425	0.20	161.5	17.5	84.3	92.8
4	1.062	7.640	1.146	8.748	0.562	0.452	0.365	0.203	33.00	7.6	446	0.23	163.2	17.5	85.2	93.5
5	1.076	7.653	1.151	8.753	0.564	0.461	0.371	0.209	33.05	8.1	451	0.25	166.8	17.7	90.0	94.7
6	1.079	7.654	1.153	8.758	0.565	0.463	0.373	0.209	33.05	8.9	453	0.25	169.2	17.8	91.7	95.4
7	1.082	7.659	1.156	8.776	0.566	0.469	0.375	0.212	33.10	9.5	464	0.29	170.0	18.0	93.5	99.1
8	1.083	7.663	1.162	8.790	0.571	0.471	0.382	0.214	33.12	9.9	470		171.6	18.1		102.8
9	1.085	7.674	1.163	8.796	0.575	0.473	0.382	0.214	33.14	10.0	472		173.8	18.9		103.5
10	1.087	7.675	1.164	8.801	0.576	0.475	0.383	0.215	33.17	10.6	474	< 1	177.4	20.5		106.0
11	1.087	7.678	1.164	8.802	0.580	0.475	0.384	0.215	33.18	12.3	477	< 1	178.3	21.6		108.1
12	1.093	7.680	1.167	8.803	0.580	0.475	0.385	0.217	33.20	14.4	538	< 2	179.4	21.8		108.3
13	1.094	7.681	1.170	8.810	0.581	0.476	0.387	0.217	33.26			< 2	179.8	21.8		109.5
14	1.094	7.710	1.173	8.830	0.581	0.477	0.388	0.220	33.35				179.9	21.9		109.6
15	1.095		1.175	8.861	0.582	0.478	0.388	0.221					180.4	24.4		110.3
16	1.100		1.175	8.870	0.590	0.483	0.389	0.223								111.6
17	1.105		1.188	8.892	0.596	0.484	0.390	0.229								114.7
18	1.106		1.197	8.925	0.593	0.489	0.390									120.3
19					0.595		0.395									
20					0.598		0.404									
21					0.621											
M	1.081	7.660	1.163	8.794	0.577	0.468	0.382	0.213	33.10	9.0	456	0.21	172.0	19.3	85.0	103.4
S_M	0.022	0.026	0.016	0.069	0.019	0.016	0.012	0.008	0.14	2.9	38	0.07	7.7	2.6	7.5	8.9
\bar{s}_{i}	0.020	0.027	0.008	0.048	0.006	0.005	0.003	0.002	0.04	1.5	23	0.03	1.8	0.8	5.7	2.0

Certified values values for information
Mass fraction in mg/kg mass fraction in mg/kg

				111433 1146	J.			
Line No.	S	Sb	Ti	Cl	Cu	5r	Zn	Zr
1	181	7.10	373	153	11.4	121.8		130.0
2	185	8.05	382	156	22.0	122.8	57.3	133.5
3	197	8.76	387	169	25.0	125.1	58.3	134.0
4	200	9.91	394	200	27.3	127.1	68.0	137.2
5	200	10.32	394	223	42.0	130.0		141.4
6	205	10.33	395			139.5		143.8
7	208	12.47	395			140.0		154.0
8	214	12.53	397					
9	219	13.90	400					
10		14.17						
11		14.40						
M	201	10.8	391	180	25.5	129.5	61.2	139.1
S_{M}	13	2.5	9	31	11.0	7.6	6.0	8.1
\bar{s}_{i}	10	1.2	9	25	4.3	1.8	5.3	6.3

The laboratory mean values have been examined statistically to eliminate outlying values. Where a " --- " appears in the table it indicates that an outlying value has been omitted. A data set consists of at least one single value of one laboratory.

 $oldsymbol{M}$: mean of laboratory means

 $\boldsymbol{S}_{\boldsymbol{M}}$: standard deviation of laboratory means

 \overline{s}_{i} : averaged repeatability standard deviation (square root of the mean of laboratory variances)

Analytical methods used for certification

Element	Line Number	Method
Al	1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17 3, 9, 13, 18	XRF ICP-0ES
Ca	1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14 5, 6	XRF ICP-0ES
Mg	1, 2, 8, 13 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18 16	ICP-OES XRF FAAS
Na	1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18 2, 17 4, 13, 16	XRF FAAS ICP-OES
K	1, 19 2, 3, 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20 4 7, 8, 15, 21	FAAS XRF Laser Ablation ICP-MS ICP-OES
Fe	1, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18 2, 3, 6, 9, 11 4	XRF ICP-OES Laser Ablation ICP-MS

Element	Line Number	Method
Cr	3, 4, 5, 6, 7, 8, 11, 12, 14 9, 10, 13, 15, 16, 17, 18, 20 19	ICP-OES XRF FAAS
Mn	1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 7 12, 13, 14, 15, 16, 17	ICP-OES ICP-MS XRF
Si	1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 2 3	XRF Gravimetry ICP-0ES
As	1, 6, 9, 12 2, 3, 5, 7, 10 4, 11 8	ICP-MS ICP-OES XRF Laser Ablation ICP-MS
Ва	1, 4 2, 3, 5, 6, 7, 8, 9, 10, 11, 12	ICP-0ES XRF
Cd	1, 2, 10, 11 3, 6, 7, 12 4 5 13	ICP-MS ICP-OES Laser Ablation ICP-MS ETAAS XRF
Со	2, 5, 6, 8, 9, 12, 13, 14 3, 15 4, 7, 11 10	ICP-OES ICP-MS XRF Laser Ablation ICP-MS
Ni	1, 3, 10 2, 4, 5, 7, 8, 9, 13, 14 6 11, 12, 15	ICP-MS ICP-OES Laser Ablation ICP-MS XRF
Р	1, 3, 4, 5, 6, 7 2	XRF ICP-0ES
Pb	1, 5, 7, 8, 12, 18 2 3, 4, 6, 9, 10, 13, 14, 15, 16, 17 11	XRF Laser Ablation ICP-MS ICP-OES ICP-MS
S	1, 3, 5, 7, 8, 9 2, 4 6	XRF Combustion/IR ICP-OES
Sb	1, 2 3, 4, 6, 8 5, 7, 9, 11 10	XRF ICP-OES ICP-MS Laser Ablation ICP-MS
Ti	1 2, 3, 4, 5, 6, 7, 8, 9	ICP-0ES XRF

Element	Line Number	Method		
5r	1, 2, 3, 4, 5, 7 6	XRF ICP-0ES		
Zr	1, 2, 3, 4, 5, 6 7	XRF ICP-0ES		
Cu, Cl, Zn		XRF		
Abbreviations:	FAAS – Flame atomic absorption spectrometry ETAAS – Electrothermal atomic absorption spectrometry ICP-OES – Inductively coupled plasma - optical emission spectrometry ICP-MS – Mass spectrometry with inductively coupled plasma IR – Infrared detection XRF – X-ray fluorescence spectrometry			

Transport and Storage

The material should be stored in a dry and clean environment at room temperature. Transport under normal ambient conditions.

Metrological Traceability

To ensure traceability of the certified mass fractions to the SI (Système International d'Unités) calibration for most of the data sets was performed using standard solutions prepared from pure metals or stoichiometric compounds or well checked commercial calibration solutions. Some of the datasets are traceable to other certified reference materials or reference materials.

Technical Report

A detailed technical report describing the analysis procedures and the treatment of the analytical data used to certify BAM-S006 is available on request or can be downloaded from BAM website (www.bam.de).

Accepted as BAM-CRM on 2023-10-23

Bundesanstalt für Materialforschung und -prüfung (BAM)

5. Redn-gil

Dr. S. Richter Committee for Certification

Dr. S. Recknagel Project Coordinator

BAM holds an accreditation as a reference material producer according to ISO/IEC 17034. This accreditation is valid only for the scope as specified in the certificate D-RM-11075-01-00. DAkkS is a signatory of the multilateral agreement (MLA) between EA, ILAC and IAF for mutual acceptance.

This Reference Material is offered by:

Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str. 11. 12489 Berlin

 Phone: +49 30 8104 2061
 Email: sales.crm@bam.de

 Fax: +49 30 8104 72061
 Internet: www.webshop.bam.de