# **LOONGSON**

# **Loongson 1C 300 Processor DataSheet**

Version 1.0A

April, 2014

Loongson Technology Corporation Limited





## **Copyright notice**

The copyright of this document is owned by Beijing Loongson Technology Corporation Limited, and the company reserves all rights. Without written consent, any company and individual can't make public, reprint or distribute any part of the document to the third party in any form. Otherwise, related legal liability shall be investigated.

#### **Disclaimer**

This document only provides the stage message, and the contained content may be updated from time to time based on the actual product without prior notice. Our company won't be responsible for any direct or indirect loss caused by the inappropriate use of this document.

## **Loongson Technology Corporation Limited**

Loongson Park #2, Zhongguancun Environment Protection Park, Daoxianghu Road, Haidian District, Beijing

Tel: 010-62546668 Fax: 010-62600826



# **Revision history**

| Updated date  | Updated By | Version No. | Update content                                                                                                                                       |
|---------------|------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feb. 28, 2013 | R&D Center | V0.1        | Internal preview version                                                                                                                             |
| Mar. 6, 2013  | R&D Center | V0.1        | Update corresponding contents of pin assignment change                                                                                               |
| Apr. 15, 2013 | R&D Center | V0.2        | Update multiplexing relationship                                                                                                                     |
| Apr. 24, 2013 | R&D Center | V0.2        | Amend clock and partial multiplexing description                                                                                                     |
| Jun. 14, 2013 | R&D Center | V0.3        | Amend power supply descriptions                                                                                                                      |
| Feb. 28, 2014 | R&D Center | V0.9        | Amend changes in the second version                                                                                                                  |
| Apr. 21, 2014 | R&D Center | V1.0        | Add default multiplexing relationship and pull-up/pull-down descriptions Add SRAM pin description and some errors Update chip name as Loongson 1C300 |
|               |            |             |                                                                                                                                                      |
|               |            |             |                                                                                                                                                      |



## Content

| 1. Overview                                                                           | . 1 |
|---------------------------------------------------------------------------------------|-----|
| 1.1 Chip characteristics                                                              |     |
| 1.1.1 General characteristics                                                         | 1   |
| 1.1.2 Processor core                                                                  | 1   |
| 1.1.3 SDRAM controller                                                                | 2   |
| 1.1.4 SRAM/NOR FLASH controller                                                       | 2   |
| 1.1.5 NAND controller                                                                 | 2   |
| 1.1.6 Clock generator                                                                 |     |
| 1.1.7 I <sup>2</sup> S controller                                                     | 2   |
| 1.1.8 AC97 controller                                                                 |     |
| 1.1.9 LCD controller                                                                  |     |
| 1.1.10 Camera interface                                                               |     |
| 1.1.11 MAC controller                                                                 |     |
| 1.1.12 USB2.0 controller                                                              |     |
| 1.1.13 SPI controller                                                                 |     |
| 1.1.14 I <sup>2</sup> C controller                                                    | 3   |
| 1.1.15 UART controller                                                                |     |
| 1.1.16 GPIO                                                                           |     |
| 1.1.17 PWM controller                                                                 |     |
| 1.1.18 RTC                                                                            |     |
| 1.1.19 CAN controller                                                                 |     |
| 1.1.20 SDIO controller                                                                |     |
| 1.1.21 ADC controller                                                                 |     |
| 1.2 Document Conventions                                                              |     |
| 1.2.1 Signal designation                                                              |     |
| 1.2.2 Signal type                                                                     |     |
| 1.2.3 Numeric representation                                                          |     |
| 1.2.4 Register domain                                                                 |     |
| 2 Pin Definition                                                                      |     |
| 2.1 LCD Interface                                                                     |     |
| 2.2 SDRAM Interface                                                                   |     |
| 2.3 SRAM/NOR Flash Interface                                                          |     |
| 2.4 I <sup>2</sup> S Interface                                                        |     |
| 2.5 I <sup>2</sup> C Interface                                                        |     |
| 2.6 UART Interface                                                                    |     |
| 2.7 PWM Interface                                                                     |     |
| 2.8 ADC Interface                                                                     |     |
| 2.9 SPI Interface                                                                     |     |
| 2.10 EJTAG Interface                                                                  |     |
| 2.11 CAMERA Interface                                                                 |     |
| 2.12 NAND Interface                                                                   |     |
| 2.13 MAC Interface                                                                    |     |
| 2.14 OTG Interface                                                                    |     |
| 2.15 USB Interface                                                                    |     |
| 2.16 RTC Interface                                                                    |     |
| 2.17 Clock Configuration Signal.                                                      |     |
| 2.17 Clock Configuration Signal.                                                      |     |
| 2.19 Initialization Signal                                                            |     |
| 3 Function Description                                                                |     |
| 3.1 Description of SDRAM Controller Interface                                         |     |
| 3.1 Description of SDRAM Controller Interface  3.1.1 SDRAM controller characteristics |     |
|                                                                                       |     |
| 3.1.2 SDRAM basic reading timing sequence                                             |     |
| 3.1.3 SDRAM basic writing timing sequence                                             |     |
| 3.2 Description of CAMERA Interface  3.2.1 Characteristics of CAMERA interface        |     |
| 5.2.1 Characteristics of Camera interface                                             | 13  |



| 3.2.2 CAMERA interface protocol                  | 14 |
|--------------------------------------------------|----|
| 3.3 Description of ADC Controller Interface      | 15 |
| 3.3.1 Characteristics of A DC interface1         | 15 |
| 3.3.2 Touch screen application of ADC controller | 15 |
| 4 Initialization Sequence 1                      | 8  |
| 4.1 Power-on Sequence 1                          | 18 |
| 4.2 Reset Timing Sequence1                       | 18 |
| 5 Electrical Characteristics                     | 9  |
| 5.1 Power Supply                                 | 19 |
| 5.1.1 Recommended operating conditions           | 19 |
| 5.1.2 Absolute maximum rated value1              | 19 |
| 5.2 Characteristics of SDRAM Interface1          |    |
| 5.3 Characteristics of CAMERA Interface2         | 20 |
| 5.4 Characteristics of MAC Interface 2           |    |
| 5.5 Characteristics of USB Interface2            | 21 |
| 6 Pin Permutation and Package                    | 25 |
| 6.1 Package Pin According to the Pin Permutation | 25 |
| 6.1.1 Package pin of QFP100                      |    |
| 6.1.2 QFP176A package pin                        | 26 |
| 6.1.3 QFP176U package pin                        | 27 |
| 6.2 Top Pin Permutation 2                        | 29 |
| 6.2.1 QFP100 top pin permutation2                |    |
| 6.2.2 QFP176A top pin permutation2               | 29 |
| 6.2.3 QFP176U top pin permutation3               | 32 |
| 7 package Mechanical Dimensions                  | 4  |
| 7.1.1 Mechanical dimension of QFP100 package     | 34 |
| 7.1.2 Mechanical dimension of QFP176 package     | 35 |
| 8 Treatment Without Pin                          |    |
| 9 Appendix 3                                     |    |
| 9.1 Pin Multiplexing                             |    |



## **List of Figures**

| Figure 1-1 Structure chart of Loongson 1C             | 1  |
|-------------------------------------------------------|----|
| Figure 3-1 SDRAM read protocol                        | 12 |
| Figure 3-2 SDRAM write protocol                       | 13 |
| Figure 3-3 ITU-R BT.601 input timing sequence         |    |
| Figure 3-4 ITU-R BT.656 input timing sequence         | 14 |
| Figure 3-5 Measuring principles of touch screen       | 16 |
| Figure 6-1 QFP100 top pin permuation                  | 29 |
| Figure 6-2 QFP176A pin permuation (left figure)       | 31 |
| Figure 6-3 QFP176A top pin permuation (right figure)  | 31 |
| Figure 6-4 QFP176U pin permutation (left figure)      | 32 |
| Figure 6-5 QFP176U top pin permutation (right figure) | 33 |



## **List of Tables**

| Table 2-1 Configuration signals                                   | 10 |
|-------------------------------------------------------------------|----|
| Table 5-1 Recommended operating power supply voltage              | 19 |
| Table 5-2 Absolute maximum rated value                            | 19 |
| Table 5-3 Characteristics of SDRAM electrical AC timing sequence  | 20 |
| Table 5-4 Characteristics of CAMERA electrical AC timing sequence | 20 |
| Table 5-5 Characteristics of MAC electrical AC timing sequence    | 20 |
| Table 6-1 QFP100 package pin table ranked by pin                  | 25 |
| Table 9-1 Multiplexing relationship table of pin                  | 38 |
| Table 9-2Multiplexing relationship table of 1C1 pin 3-6           | 47 |
|                                                                   |    |



## 1. Overview

Loongson 1C300 (hereinafter referred to as 1C) chip is a cost-effective single chip system based on LS232 processor core, and is applicable to fields such as biological recognition of fingerprints and Internet of Things sensing.

1C includes the floating point processing unit, and can effectively enhance the processing ability of system floating point data. The memory interface of 1C supports several types of memories and allows the flexible system design. It supports 8-bit SLC NAND or MLC NAND FLASH, and provides the storage expansion interface of high capacity.

1C has provided various serial peripheral interfaces and on-chip modules for developers, including Camera controller, USB OTG 2.0 and USB HOST 2.0 interfaces, AC97/I2S controller, LCD controller, high-speed SPI interface, full-function UART interface, and owns the sufficient computing ability and multi-application connectivity.



Figure 1-1 Structure chart of Loongson 1C

## 1.1 Chip characteristics

#### 1.1.1 General characteristics

• Chip technology 0.13um CMOS

• Supply voltage I/O:  $3.3 \pm 0.3$ V; processor core:  $1.2 \pm 0.2$ V (The IO pins are 5V tolerant)

• Package QFP100, 0.5 mm pitch QFP176, 0.4 mm pitch

•Operating frequency 300MHz

• Power dissipation  $\leq 0.5$ W

## 1.1.2 Processor core



- Single core LS232, MIPS32 architecture compatible, and main frequency of 300MHZ.
- It supports the highly effective dual-issue technology (one clock tick executes two instructions)
- It supports the out-order issue and execution technologies such as register renaming, dynamic scheduling, and branch prediction
- 5-stage pipeline(instruction fetch, decode, issue, execution, write back and commit) micro-system structure
  - 16KB data cache and 16KB instruction cache
- It integrates 64-bit floating point unit, supports the fully pipelining of 64-bit floating point additive and multiplying operations. Its hardware has accomplished the floating point division operation.

#### 1.1.3 SDRAM controller

- SDRAM interface, operating frequency of 45-133MHz
- It supports the bus width of 8/16-bit parallel data.
- It supports the auto-refresh and self-refresh functions, and page mode.

#### 1.1.4 SRAM/NOR FLASH controller

- SRAM and NOR Flash direct link interface, working frequency of 66-133MHz
- It supports the chip select pin of static memory, and can be configured separately.
- It supports the bus width of 8-bit/16-bit parallel data.

#### 1.1.5 NAND controller

- It supports the single capacity of 4GB NAND FLASH at most
- It supports 512 bytes, 2K byte page and larger page FLASH
- Hardware ECC generation, detection and indication (software error correction)
- It supports the data reading speed of 8-10MB/S and writing speed of 5MB/s from Flash
- It supports the boot from NAND Flash
- It supports the mode of little endian

#### 1.1.6 Clock generator

- 1. It has one standard PLL input interface, and supports the external crystal as chip clock input.
  - It supports the on-chip output and can configure one way of clock for off-chip peripherals.
  - PLL configurable frequency software

## 1.1.7 I<sup>2</sup>S controller

- It supports the I<sup>2</sup>S input in master mode
- It supports the I<sup>2</sup>S output in master mode
- It supports the width of 8, 16, 18, 20, 24 and 32 bits
- It supports the audio data of mono and stereo
- It supports the sampling frequency of (16, 22.05, 32, 44.1 and 48)kHz
- It supports DMA transmission mode

#### 1.1.8 AC97 controller

- Variable sampling rate AC97 coder and decoder interfaces (48KHz and below)
- It supports the stereo PCM and single-track MIC input
- It supports 2-channel stereo PCM output
- It supports the DMA and interrupt operation
- It supports 16, 18 and 20 bits sampling precision, and variable sampling rate.



• It supports 16 bits, and 16 entry FIFOs for each channel.

#### 1.1.9 LCD controller

- It supports the 16/24-bit pixel mode
- It supports the display output of RGB444/555/565/888
- It supports the resolution of 1024x768, 800x600, 640 x 480 and 320 x 240
- It supports DMA transmission mode

#### 1.1.10 Camera interface

- It supports ITU-R BT.601/656 8-bit input.
- It supports RAW RGB, RGB565 and YUV4:2:2 data input.
- It supports YUV, RGB888, RGB0888 and RGB565 output
- It supports the resolution scaling of 320x240 and 640x480
- It supports the resolution input of 2Kx2K at most, and the resolution can be configured.
- It supports DMA transmission mode

#### 1.1.11 MAC controller

- It supports 10/100Mbps PHY device, including 10 Base-T, 100 Base-TX, 100Base-FX and 100 Base-T4;
- It's completely compatible with IEEE standard 802.3
- It's completely compatible with 802.3x full duplex flow control and half-duplex back pressure flow control
- It supports VLAN frames
- It supports DMA transmission mode
- It supports standard media independent interface (MII)
- It supports the standard Reduced Media Independent Interface (RMII), and may connect the external PHY chip.

#### 1.1.12 USB2.0 controller

- One USB OTG2.0 controller
- One USB HOST 2.0 controller
- It supports the high-speed and full-speed mode
- It supports DMA transmission mode
- It's compatible with USB Rev 1.1 and USB Rev 2.0 protocols

## 1.1.13 SPI controller

- It supports two-way independent SPI interface, and each way of SPI interface supports four chip selects.
- Follow specifications of serial peripheral interface (SPI)
- Support synchronous, serial and full duplex communication
- Support SPI master mode
- Each transmission of 8-16 bits
- It supports inquiries and interrupt transmission mode
- It supports the SPI nor flash boot.
- It supports the SPI interface two-way input and output, and the maximum data transmission speed is 24-96 Mbps.
- It supports the minimum communication rate as low as 25KB, and facilitates the matching of special device.

#### 1.1.14 I<sup>2</sup>C controller



- Three-channel standard I2C bus interface
- It supports configuration of master, slave or master / slave mode
- Programmable bus clock frequency

#### 1.1.15 UART controller

- It supports two full-function serial interfaces. Therein, the full-function serial interface 0 can be multiplexed as 4 two-wire serial interfaces, and support the smart card agreement.
- RxD0, TxD0, RxD1, TxD1, RxD2 and TxD2 based on interrupt operation;
- UART channel 0, 1 and 2 with IrDA 1.0
- UART channel 0 and 1 with RTS0, CTS0, RTS1 and CTS1

#### 1.1.16 GPIO

- It supports 105 GPIO at most
- All GPIO (except boot and system configuration) is defaulted as input after reset
- All GPIO supports interrupt function
- Each GPIO pin supports the level-triggered and edge-triggered modes, and can be configured independently.
- GPIO pin rate up to 4MHz

#### 1.1.17 PWM controller

- Four-way 32 bits can configure PWM timer.
- It supports the timer function
- It supports the counter function
- It supports the occurrence control in dead band prevention

#### 1.1.18 RTC

- Timing is accurate to 0.1 second
- It supports the external crystal as RTC clock input.
- It supports the operation powered by external battery, and later by battery after powered off.
- The special power pin may be connected to the battery or 3.3V main power supply.
- Provide seconds, minutes, hours, days, months and years

#### 1.1.19 CAN controller

- 2-channel independent CAN controller
- It's compatible with CAN2.0A and CAN2.0B protocols (the passive expansion frame in PCA82C200 compatible mode)
- It supports the CAN protocol extensions
- Bit rate is up to 1Mbits /s

#### 1.1.20 SDIO controller

- 1-channel independent SDIO controller
- It's compatible with SD Memory 2.0/MMC/SDIO 2.0 protocol.
- Support SDIO boot

#### 1.1.21 ADC controller

- Sampling rate up to 1MHz at most
- 4-channel ADC input
- Support 4-wire and 5-wire touch screens
- Support continuous sampling and single sampling



Support analog watchdog

#### **1.2 Document Conventions**

#### 1.2.1 Signal designation

The selection of the signal name complies with the principle of easy to remember and specify the identification function. Low desired signal is ended by n, and the high desired signal has no n. Without special instructions, the ACPI/GMAC/USB prefix signals are located in RSM domain, the prefix RTC signals in RTC domain, and other signals in SOC domain.

#### 1.2.2 Signal type

| Code     | Description        |
|----------|--------------------|
| A        | Simulation         |
| DIFF I/O | Two-way difference |
| DIFF IN  | Difference input   |
| DIFF OUT | Difference output  |
| I        | Input.             |
| I/O      | Two-way            |
| О        | Output             |
| OD       | Open-drain output  |
| P        | Power supply       |
| G        | Ground             |
| PU       | Pull up            |
| PD       | Pull down          |

#### 1.2.3 Numeric representation

Hexadecimal number is expressed as 'hxxx, binary number 'bxx, and others decimal numbers. The pins with the same function but different labels (such as DDR\_DQ0, DDR\_DQ1) is abbreviated by square brackets and numerical range (for example, DDR\_DQ [63:0]) similarly, the register domain is also expressed in this way.

#### 1.2.4 Register domain

Register is introduced in the form of [register name].[domain name]. For example, chip\_config0.uart\_split refers to the uart\_split domain of chip configuration register 0 (chip\_config0).



## 2 Pin Definition

## 2.1 LCD Interface

| Signal name   | Type | Pull-up/pull-down | Description                         | Voltage |
|---------------|------|-------------------|-------------------------------------|---------|
| LCD_CLK       | О    | PU                | LCD clock signals                   | 3.3V    |
| LCD_HSYNC     | О    | PU                | LCD horizontal synchronizing signal | 3.3V    |
| LCD_VSYNC     | О    | PU                | LCD vertical synchronizing signal   | 3.3V    |
| LCD_EN        | O    | PU                | LCD enable signal                   | 3.3V    |
| LCD_DAT[15:0] | О    | PU                | LCD data signal                     | 3.3V    |

[Notes] In QFP100 package, LCD interface can't be used. In QFP176 package, LCD may use 16bit and 24bit mode. In 16bit mode, the pin won't be multiplexed; in 24bit mode, the low bit needs to multiplex CAM DAT [7:0] or MAC signal.

## 2.2 SDRAM Interface

| Signal name   | Type | Pull-up/pull-down | Description                          | Voltage |
|---------------|------|-------------------|--------------------------------------|---------|
| SD_CLK        | О    | -                 | SDRAM clock signal                   | 3.3V    |
| SD_CKE        | O    | -                 | SDRAM clock enable signal, effective | 3.3V    |
|               |      |                   | high level                           |         |
| SD_CSn        | O    | -                 | SDRAM chip select signal, low level  | 3.3V    |
|               |      |                   | active                               |         |
| SD_RASn       | O    | -                 | SDRAM row strobe signal, low level   | 3.3V    |
| _             |      |                   | active                               |         |
| SD_CASn       | O    | -                 | SDRAM column strobe signal, low      | 3.3V    |
|               |      |                   | level active                         |         |
| SD_WE         | О    | -                 | SDRAM read and write signals, low    | 3.3V    |
|               |      |                   | level for write                      |         |
| SD_BA[1:0]    |      |                   | Bank signal of SDRAM, four banks in  |         |
|               | O    | -                 | total                                | 3.3V    |
| SD_ADDR[12:0] | О    | -                 | SDRAM address signal                 | 3.3V    |
| SD_DATA[15:0] | I/O  | -                 | SDRAM data signal                    | 3.3V    |
| SD_DQM[1:0]   | О    |                   | SDRAM data mask signals              | 3.3V    |

## 2.3 SRAM/NOR Flash Interface

| Signal name     | Type | Pull-up/pull-down | Description                                  | Voltage |
|-----------------|------|-------------------|----------------------------------------------|---------|
| SRAM_CSn        | О    | -                 | SRAM chip select signal, low level active    | 3.3V    |
| SRAM_WEn        | О    | -                 | SRAM writing enable signal, low level active | 3.3V    |
| SRAM_OEn        | O    | -                 | SRAM reading enable signal, low level active | 3.3V    |
| SRAM_ADDR[25:0] | O    | -                 | SRAM address signal                          | 3.3V    |
| SRAM_DATA[15:0] | I/O  | -                 | SRAM data signal                             | 3.3V    |
| SRAM_BHE        | О    |                   | SRAM high Byte Data desired signal           | 3.3V    |
| SRAM_BLE        | О    |                   | SRAM low Byte Data desired signal            | 3.3V    |

[Notes] In QFP100 and QFP176 packages, SRAM/NOR Flash pin isn't bonded, and needs multiplexing with SDRAM, so SRAM/NOR Flash can't be used together with SDRAM. See Table 9-1 for multiplexing relation. Through the configuration of corresponding register, this group of



interface signals is multiplexed.

## 2.4 I<sup>2</sup>S Interface

| Signal name | Type | Pull-up/pull-down | Description                   | Voltage |
|-------------|------|-------------------|-------------------------------|---------|
| I2S_MCLK    | О    | PU                | I2S clock signals             | 3.3V    |
| I2S_BCLK    | О    | PU                | I2S bit clock signal          | 3.3V    |
| I2S_LRCK    | О    | PU                | I2S channel selection signal  | 3.3V    |
| I2S_DI      | I    | PU                | I2S data serial input signal  | 3.3V    |
| I2S DO      | О    | PU                | I2S data serial output signal | 3.3V    |

[Notes] In QFP100 package, I2S interface isn't introduced, and needs to be multiplexed with MAC pin. In QFP176 package, I2S interface is introduced, and can be directly used.

## 2.5 I<sup>2</sup>C Interface

| Signal name  | Type | Pull-up/pull-down | Description      | Voltage |
|--------------|------|-------------------|------------------|---------|
| I2C[2:0]_SCL | О    | No introduction   | I2C serial clock | 3.3V    |
| I2C[2:0]_SDA | I/O  | No introduction   | I2C serial data  | 3.3V    |

[Notes] In QFP100 and QFP176 packages, I2C interface isn't introduced, and needs to be multiplexed with MAC, EJTAG, LCD or CAM pin.

#### 2.6 UART Interface

| Signal name | Type | Pull-up/pull-down | Description                | Voltage |
|-------------|------|-------------------|----------------------------|---------|
| UART0_TX    | O    | PU                | UART0 data transmission    | 3.3V    |
| UART0_RX    | I    | PU                | UART0 data reception       | 3.3V    |
| UART0_RTS   | I    | PU                | UART0 reception request    | 3.3V    |
| UART0_CTS   | I    | PU                | UART0 reception permission | 3.3V    |
| UART0_DSR   | I    | PU                | UART0 device ready         | 3.3V    |
| UART0_DTR   | О    | PU                | UART0 data terminal ready  | 3.3V    |
| UART0_DCD   | I    | PU                | UART0 carrier detect       | 3.3V    |
| UART0_RI    | I    | PU                | UART0 ringing tips         | 3.3V    |

[Notes] In QFP100 package, there is no full-function serial interface, and only two-wire type. In QFP176U package, the full-function serial interface can be directly used.

## **2.7 PWM Interface**

| Signal name | Type | Pull-up/pull-down | Description | Voltage |
|-------------|------|-------------------|-------------|---------|
| PWM0        | О    | PU                | PMW0 output | 3.3V    |
| PWM1        | О    | PU                | PMW1 output | 3.3V    |
| PWM2        | О    | No introduction   | PMW2 output | 3.3V    |
| PWM3        | О    | No introduction   | PMW3 output | 3.3V    |

[Notes] In QFP100 package, PWM isn't introduced and needs to be multiplexed with others. In QFP176 package, PWM0 and PWM1 can be directly used, and PWM2 and PWM3 need to be multiplexed with others.

## 2.8 ADC Interface

| Signal name Typ | e Pull-up/pull-down | Description              | Voltage |
|-----------------|---------------------|--------------------------|---------|
| ADC_REXT I      | -                   | ADC reference resistance | 25K Ohm |



| ADC_VREF | I | - | ADC reference voltage                                             | 0.5-0.9_VDDA  |
|----------|---|---|-------------------------------------------------------------------|---------------|
| ADC_VDDA | I | - | - ADC analog power supply                                         |               |
| ADC_VSSA | I | - | ADC analog ground                                                 | 0             |
| ADC_D0   | I | - | ADC Channel Zero sampling input                                   |               |
| ADC_D1   | I | - | ADC First Channel sampling input                                  |               |
| ADC_XP   | I | - | The 2 <sup>nd</sup> channel sampling input of touch screen X+/ADC | 0.01-0.99VREF |
| ADC_YP   | I | - | The third channel sampling input of touch screen Y+/ADC           |               |

[Notes] The AD interface can only be used in QFP176A package.

## 2.9 SPI Interface

| Signal name  | Type | Pull-up/pull-down | Description            | Voltage |
|--------------|------|-------------------|------------------------|---------|
| SPI_SCK      | O    | PU                | SPI clock output       | 3.3V    |
| SPI[3:0]_CSn | О    | PU                | SPI chip select 0 to 3 | 3.3V    |
| SPI_MOSI     | O    | PD                | SPI data output        | 3.3V    |
| SPI_MISO     | I    | PD                | SPI data input         | 3.3V    |

## 2.10 EJTAG Interface

| Signal name | Type | Pull-up/pull-down | Description                              | Voltage |
|-------------|------|-------------------|------------------------------------------|---------|
| EJTAG_SEL   | I    | PU                | JTAG selects(0: JTAG, 1: EJTAG)          | 3.3V    |
|             |      |                   | TAG pin function multiplex (when the     | 3.3V    |
| JTAG_SEL    | I    | PU                | bit is 1, select the multiplex function) | 3.3 V   |
| EJTAG_TCK   | I    | PU                | JTAG clock                               | 3.3V    |
| EJTAG_TDI   | I    | PU                | JTAG data input                          | 3.3V    |
| EJTAG_TMS   | I    | PU                | JTAG mode                                | 3.3V    |
| EJTAG_TRST  | I    | PU                | JTAG reset, to be pulled down            | 3.3V    |
| EJTAG_TDO   | О    | PU                | JTAG data output                         | 3.3V    |

[Notes] Does EJTAG\_SEL select JTAG or EJTAG? JTAG\_SEL is used to choose JTAG multiplex function. Please don't be confused.

## **2.11 CAMERA Interface**

| Signal name  | Type | Pull-up/pull-down | Description                              | Voltage |
|--------------|------|-------------------|------------------------------------------|---------|
| CAM_CLKOUT   | О    | PU                | Camera reference clock output            | 3.3V    |
| CAM_PCLK_I   | I    | PU                | Camera pixel clock input                 | 3.3V    |
| CAM_HSYNC    | I    | PU                | Camera horizontal synchronization signal | 3.3V    |
| CAM_VSYNC    | I    | PU                | Camera vertical synchronizing signal     | 3.3V    |
| CAMDATA[7:0] | I    | PU                | Camera data input                        | 3.3V    |

[Notes] In QFP100 package, CAM isn't introduced and needs to be multiplexed with NAND and MAC. In QFP176 package, CAM can be directly used.

## 2.12 NAND Interface

| Signal name | Type | Pull-up/pull-down | Description        | Voltage |
|-------------|------|-------------------|--------------------|---------|
| NAND CLE    | O    | PD                | NAND command latch | 3.3V    |



| NAND_ALE     | О   | PD | NAND address latch        | 3.3V |
|--------------|-----|----|---------------------------|------|
| NAND_RD      | О   | PD | NAND read signal          | 3.3V |
| NAND_WR      | О   | PD | NAND write signal         | 3.3V |
| NAND_CE      | О   | PD | NAND chip select 0        | 3.3V |
| NAND RDY     | I   | PD | NAND ready 0              | 3.3V |
| NAND_D [7:0] | I/O | PD | NAND address / data lines | 3.3V |

## 2.13 MAC Interface

| Signal name  | Type | Pull-up/pull-down | Description              | Voltage |
|--------------|------|-------------------|--------------------------|---------|
| MAC_TXCK     | О    | PU                | MII clock transmission   | 3.3V    |
| MAC_TXEN     | О    | PU                | MII control transmission | 3.3V    |
| MAC_TXD[3:0] | О    | PU                | MII data transmission    | 3.3V    |
| MAC_RXCK     | I    | PU                | MII clock reception      | 3.3V    |
| MAC_RXDV     | I    | PU                | MII control reception    | 3.3V    |
| MAC_RXD[3:0] | I    | PU                | MII data reception       | 3.3V    |
| MAC_MDCK     | О    | PU                | SMA interface clock      | 3.3V    |
| MAC_MDIO     | I/O  | PU                | SMA interface data       | 3.3V    |
| MAC_COL      | I    | PU                | MAC collision detection  | 3.3V    |
| MAC_CRS      | I    | PU                | MAC carrier detect       | 3.3V    |

[Notes] In QFP package, MAC can only use RMII mode. In QFP176 package, MII and RMII modes can be used.

## 2.14 OTG Interface

| Signal name | Type     | Pull-up/pull-down | Description                      | Voltage  |
|-------------|----------|-------------------|----------------------------------|----------|
| OTG_DVDD    |          |                   | OTG digital power                | 1.2V     |
| OTG_DVSS    |          |                   | OTG digital ground               | 0        |
| OTG_VDD33   |          |                   | OTG analog power supply          | 3.3V     |
| OTG_VSS33   |          |                   | OTG analog ground                | 0        |
| OTG_REXT    |          |                   | OTG reference resistor to ground | 44.2 Ohm |
| OTG_DP      | DIFF I/O | -                 | OTG differential signal line D+  | 5V       |
| OTG_DM      | DIFF I/O | -                 | OTG differential signal line D - | 5V       |
| OTG_VBUS    |          |                   | OTG_VBUS                         | 5V       |
| OTG_ID      |          |                   | OTG_ID                           | 3.3V     |

## 2.15 USB Interface

| Signal name | Type     | Pull-up/pull-down | Description                      | Voltage  |
|-------------|----------|-------------------|----------------------------------|----------|
| USB_DVDD    |          |                   | USB digital power                | 1.2V     |
| USB_DVSS    |          |                   | USB digital ground               | 0        |
| USB_VDD33   |          |                   | USB analog power supply          | 3.3V     |
| USB_VSS33   |          |                   | USB analog ground                | 0        |
| USB_REXT    |          |                   | USB reference resistor to ground | 44.2 Ohm |
| USB_DP      | DIFF I/O | -                 | USB differential signal line D + | 5V       |
| USB_DM      | DIFF I/O | -                 | USB differential signal line D - | 5V       |

[Notes] In QFP100 package, USB HOST can't be used. In QFP176 package, it can be used.

## 2.16 RTC Interface



| Signal name | Type | Pull-up/pull- | Description                   | Voltage |
|-------------|------|---------------|-------------------------------|---------|
|             |      | down          |                               |         |
| RTC_CLK_I   | I    | -             | RTC oscillator input, connect | -       |
|             |      |               | 32.768K oscillator            |         |
| RTC_CLK_O   | О    | -             | RTC oscillator output         | -       |
| VR_VDDA     |      |               | RTC power supply              | 3.0V    |

## 2.17 Clock Configuration Signal

| Signal name Type Pull-up/pull-down |   | Pull-up/pull-down | Description                                        | Voltage |
|------------------------------------|---|-------------------|----------------------------------------------------|---------|
| XTALI                              | I | -                 | System clock oscillator input, connection with 24M | -       |
| XTAL0                              | 0 | -                 | System clock oscillator output                     | -       |

## 2.18 Power Ground

| Signal name | Type | Pull-up/pull-down | Description                   | Voltage |
|-------------|------|-------------------|-------------------------------|---------|
| PLL_VDD33   | P    |                   | Core PLL analog power supply  | 3.3V    |
| PLL_VSS33   | G    |                   | Core PLL analog ground        | 0       |
| PLL_VDD12   | P    |                   | Core PLL digital power supply | 1.2V    |
| PLL_VSS12   | G    |                   | Core PLL digital ground       | 0       |
| CORE_VDD    | P    |                   | Core voltage power supply     | 1.2V    |
| CORE_VSS    | G    |                   | Core voltage ground           | 0       |
| IO_VDD      | P    |                   | IO power supply               | 3.3V    |

## 2.19 Initialization Signal

Loongson 1C has three starting methods: SPI FLASH, NAND FLASH and SDIO. Multiplex function pin obtains the configuration message from the pull-up and pull-down values during system reset for the software to judge the powered state.

**Table 2-1 Configuration signals** 

| Pin name     | Signal name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAND_D [3:0] | start_freq  | When powered on and booted, PLL is configured by frequency doubling, and CPU frequency is half of it (except bypass mode), SDRAM frequency half of CPU frequency. The frequency is calculated as follows:  Freq = 6*(4*NAND_D[3:0] + 40); When NAND_D[3:0]=0, it's the bypass mode.                                                                                                                                                                                                                           |
| NAND_D [5:4] | boot_sel    | In boot selection, it's different in QFP100 and QFP176 packages (under QEP100 package, NAND control signals aren't bonded into pin) from that under QFP100 package, and boot_sel is 01: it indicates the boot from SPI flash 10: it indicates the boot from NAND flash (multiplex SDRAM pin) 11: it indicates from NAND flash boot (multiplex MAC pin), in QFP176 package, boot_sel is 01: it indicates the boot from SPI flash 10: it indicates the boot from NAND flash 11: it indicates the boot from SDIO |
| NAND_D [7:6] | nand_type   | In NAND boot, configure the particle capacity of NAND flash 11: it indicates the capacity is equal to 2Gb (2KB page/4KB page/8KB page) 10: it indicates that capacity is 1Gb (2KB page)                                                                                                                                                                                                                                                                                                                       |



|          |               | 01: it indicates that the capacity is 512Mb (512 Bytes page) 00: it indicates the capacity is low and equal to 256MB (512 Bytes page)                                                                         |
|----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAND_CLE | rs_rd_cfg     | Whether ECC is adopted in NAND boot. It's only valid when boot_sel selects NAND flash boot. When the bit is 0, it indicates the NAND non-ECC boot. When the bit is 1, it indicates the NAND ECC boot.         |
| SPI0_CLK | usb_refclksel | For the clock selection signal of USB_HOST and USB_OTG, when the bit is 1, the clock is provided by internal PLL. When the bit is 0, the clock is provided by external crystal oscillator. Must be pulled up. |



## **3 Function Description**

## 3.1 Description of SDRAM Controller Interface

Integrating the memory controller, Loongson 1C supports the common 8bit and 16bit SDRAM particles, and stores at least 256MB.

#### 3.1.1 SDRAM controller characteristics

Loongson 1C processor has one memory controller, supports 2bit chip selection (not support all 1C1 packets), 14bit address bus (row/column multiplexing) and 2bit logic Bank address bus, realizes the maximum addressing unit of  $1G(2^{30})$  (1C1 is equal to 512M). If the data bit is 16bit wide, the maximum addressing space is 2GB (1C1 is equal to 1GB).

Before using SDRAM, it's necessary to set the parameters of SDRAM controller. For Loongson 1C processor, the maximum width of row address and column address supported by SDRAM controller is 14 and 13 respectively, and the logic bank signal is 2bit. Each determined row address, column address and bank address correspond to one and only memory cell, and the contents in each memory cell determine whether it's selected by DQM. It considers the address continuity of user memory and reduce the overhead of row changing. The mapping relation of physical address, line and column address is shown as follows:

Physical address= {cs, row, bank, col}\* data width / 8

(Note: no CS in 1C1)

The memory controller receives the memory read and writes requests sent by processor or peripheral. No matter the read or write operation, the memory controller is in slave state.

The memory controller has realized the function of dynamic page management. When accessing the memory, no intervention of software designers is needed, and the controller will select the latest closed row and staggered pre-charge strategy. The memory controller characteristics include:

- Refresh and go into low power mode;
- Configure memory controller parameters via registers;
- Different bank write and read operations realize the fully pipelining;
- Frequency: 33MHz-150MHz
- 8/16-bit selectable software bus width.

### 3.1.2 SDRAM basic reading timing sequence

Figure 3-1 shows the SDRAM read protocol, and commands (CMD) include RAS\_n, CAS\_n and WE n. When a read request occurs, RAS n=1, CAS n=0, WE n=1.



**Figure 3-1 SDRAM read protocol** Note: Cas Latency = 2, Burst Length = 4



## 3.1.3 SDRAM basic writing timing sequence

Figure 3-2 shows the SDRAM writing protocol and commands (CMD) including RAS\_n, CAS\_n and WE\_n. When a write request occurs, RAS\_n=1, CAS\_n=0, WE\_n=0. Different from read protocol, DQM is used to mask write data.



Figure 3-2 SDRAM write protocol

Note: Burst Length = 2.

## 3.2 Description of CAMERA Interface

Integrating the CAMERA interface, Loongson 1C supports ITU-R BT.601/656 YCbCr 8-bit standard and RGB565/888 8-bit standard transmission. It supports 640x480, 320x240 and any other resolution modes; it supports the scaling down by two in 640x480 resolution of RGB565\888 and ITU-R BT.601 modes, and the rest resolution doesn't support the function of scaling down; it supports the output in the format of YUV4:2:2/RGB565/RGB888/RGB0888.

#### 3.2.1 Characteristics of CAMERA interface

Loongson processor includes one camera controller, scales down and converts the input image based on the register configuration. Controller characteristics include:

- It supports the external interface of ITU-R BT.601/656 8-bit and RGB565/RGB888 8-bit modes.
- Support configuration by any resolution input;
- Only 640x480 supports the scaling down by two.
- Output format: YCbCr 4:2:2, RGB565, RGB888 and RGB0888 (32bits). When the output format is RGB565/ YCbCr 4:2:2, the input pixels must be integral times of 32; the output format is RGB888/RGB0888, and the input pixel is integral times of 16.
- It supports the input of ITU-R BT.601/656 8-bit in any pixel into the output in the format of RGB (565/0888), and doesn't support the conversion of RGB input into YCbCr4:2:2 output;
- The output area has four sections, each of which can configure the address space of one frame image, and can configure the base address of address space, offset address of u and v component storage in the format of YCbCr4:2:2
- It supports the conversion of RGB565 into RGB565;
- It supports the conversion of RGB888 into RGB888 and RGB0888;
- It supports the conversion of BT601 into RGB565, RGB0888 and YUV;
- It supports the conversion of BT656 into RGB565, RGB0888 and YUV;
- It supports the 640 x 480 scaling down by two (except the format of TU-R BT.656);
- It supports the matrix display of the output in the format of RGB.



#### 3.2.2 CAMERA interface protocol

Controller and Camera interface (CAMIF) signal

PCLK: 1bit input signal; Camera processor driven pixel clock.

VSYNC: 1bit input signal; Camera processor driven frame sync signal.

HREF: 1-bit input signal; Camera processor driven horizontal sync signal.

DATA: 8bit input signal; pixel data initiated by Camera processor.

ITU-R BT.601 8-bit input timing sequence is shown in Figure 3-3. Therein, the data input sequence may be YCbY Cr or YCrYCb or CrYCbY or CbYCrY.

RGB565/RGB888 8-bit input timing sequence and ITU-R BT.601 8-bit input timing sequence are consistent, and the data input sequence is different. For RGB888, the data input sequence may be R G B or B G R. For RGB565, the data input sequence may be R5G3 G3B5 or B5G3 G3R5. RGB565/RGB888 and ITU-R BT.601 input mode can set the line effective and frame effective high and low levels based on low two bits of status register.



Figure 3-3 ITU-R BT.601 input timing sequence

ITU-R BT.656 input timing sequence is shown in Figure 3-4. Therein, the data input sequence can be Y CbYCr or YCrYCb or CrYCbY or CbYCrY. SAV is the line start code, and EAV is end code. The definition of reference code is shown in Table 3-, and the definition of XY value is shown in Table 3-. Only when XY is 80, 9D combination or C7, DA combination, it's effective line data.



Figure 3-4 ITU-R BT.656 input timing sequence

Table 3-1 ITU-R BT.656 reference code

| Data bit | The first byte | The second byte | The third byte | The fourth byte |
|----------|----------------|-----------------|----------------|-----------------|
| number   | (3FF)          | (000)           | (000)          | (XYZ)           |
| 7(MSB)   | 1              | 0               | 0              | 1               |
| 6        | 1              | 0               | 0              | F               |
| 5        | 1              | 0               | 0              | V               |
| 4        | 1              | 0               | 0              | Н               |
| 3        | 1              | 0               | 0              | Р3              |
| 2        | 1              | 0               | 0              | P2              |
| 1        | 1              | 0               | 0              | P1              |
| 0        | 1              | 0               | 0              | P0              |



Note:

F 0 in field 1; 1 in field 2.

V 0 in other positions; 1 during field blanking interval

H 0 in SAV and 1 in EAV.

P0, P1, P2, P3: protection byte (see Table 3-)

Table 3-2 The fourth byte XY value

| MSB | SB LSB |   |   |    |    |    | VV conomi |           |
|-----|--------|---|---|----|----|----|-----------|-----------|
| 1   | F      | V | Н | Р3 | P2 | P1 | P0        | XY senary |
| 1   | 0      | 0 | 0 | 0  | 0  | 0  | 0         | 80        |
| 1   | 0      | 0 | 1 | 1  | 1  | 0  | 1         | 9D        |
| 1   | 0      | 1 | 0 | 1  | 0  | 1  | 1         | AB        |
| 1   | 0      | 1 | 1 | 0  | 1  | 1  | 0         | B6        |
| 1   | 1      | 0 | 0 | 0  | 1  | 1  | 1         | C7        |
| 1   | 1      | 0 | 1 | 1  | 0  | 1  | 0         | DA        |
| 1   | 1      | 1 | 0 | 1  | 1  | 0  | 0         | EC        |
| 1   | 1      | 1 | 1 | 0  | 0  | 0  | 1         | F1        |

## 3.3 Description of ADC Controller Interface

Integrating the ADC controller, Loongson 1C is used to control ADC channel and has realized some specific applications, such as continuous switch, single switch, touch screen application and analog watchdog.

#### 3.3.1 Characteristics of A DC interface

Main characteristic parameters of ADC controller in Loongson 1C include:

- 4-channel ADC analog input, 10bit output precision
- Measuring voltage range is 0.15- 0.99VREF and it's recommended that the simulated input voltage doesn't exceed 3.3V.
- The operating frequency of ADC can be configured from 0 to 16M
- The operating mode of ADC has single and continuous switch, and the touch screen application belong to the special continuous switch.
- The continuous conversion of ADC adopts DMA transmission data, but the coordinates of touch screen doesn't adopt DMA.
- The continuous conversion interval of ADC can be configured from 0 to 1M.
- In continuous switch, the unused channels of ADC may conduct the single switch.
- In touch screen application, when the touch screen is pressed, the interrupt is generated; when the touch screen is released, the interrupt is also generated.
- It can support four-wire touch screen and five-wire touch screen. In the connection of four-wire touch screen, two ways of general ADC may be used. In the connection of five-wire touch screen, three ways of general ADC may be used.
- It supports multi-channel scanning single conversion
- It supports the function of analog watchdog, and the upper and lower thresholds may be configured. And the interrupt is generated when exceeding the threshold.

#### 3.3.2 Touch screen application of ADC controller

The chip has four ways of ADC inputs in total, among which two ways are used for the sampling of touch screen (X and Y directions) and the rest two ways are general ADC input. ADC controller supports the four-wire and five-wire touch screens and their measuring methods are slightly different.

Measuring principles of four-wire touch screen are as follows:



Four-wire touch screen consists of two resistive layers. One layer has one vertical bus on right and left screen edges respectively, and the other layer has one horizontal bus on screen top and bottom. See the figure below. For the purpose of measurement in X direction, the left bus offset is 0V, and the right one is VRFF. Connect the top or bottom bus to ADC, and conduct one measurement when the top level meets the bottom one.

For the purpose of measurement in Y direction, the top bus offset is VRFF, and the bottom one is 0V. Connect the ADC input end to left bus or right bus, and conduct the voltage measurement when the top level meets the bottom one. Figure 3-5 has shown the simplified model when four-wire touch screen touches in two levels. For the four-wire touch screen, ideally connect the bus with the offset as VRFF to the positive reference input end of ADC, and connect the bus set to 0V to the positive reference input end of ADC.

In measuring the input of touch screen, except two ways of ADC inputs (X+ and Y+), two digital PAD (X- and Y-) pins need to be cooperated with.

In X-direction measurement, VREF and 0 are output in X+ and X- respectively, and the ADC conversion of Y+ is enabled at the same time; in Y-direction measurement, VREF and 0 are output in Y+ and Y- respectively, and the ADC conversion of X+ is enabled at the same time; in this way, the coordinates measurement is finished.



Figure 3-5 Measuring principles of touch screen

The principals of five-wire resistance screen measurement and four-wire measurement are basically the same, but slight different in measuring method.

The five-wire touch screen adopts one resistive layer and one conducting layer. The conducting layer has one contactor, which is always on one-side edge. Each touch spot is located in the four corners of the resistive layer. For the measurement in X axis, the top left and bottom left corners are offset to VREE, and the top right and bottom right are grounded. Because the voltage in right and left corners are the same, its effect is similar to that of the bus connecting right and left sides, like the method adopted in four-wire touch screen.

For the measurement in Y axis, the top left and top left corners are offset to VREE, and the bottom right and bottom right are grounded. Because the voltage in top and bottom corners are the same, its effect is similar to that of the bus connecting top and bottom edges, like the method adopted in four-wire touch screen. The advantage of this measuring algorithm is that the voltage in top left and bottom right remain unchanged. For the five-wire touch screen, ideally connect the top left (with the offset as VRFF) to the positive reference input end of ADC, and connect the bottom right (with the offset as 0V) to the negative reference input end of ADC.

In measuring the touch screen input, make one way of ADC input (Y+) cooperate with two digital PAD (X- and Y-) pins, connect LB (multiplexing X-) to the bottom left and RT (multiplexing Y-) to the top right, fix the top left to VREE and bottom right to 0V.

In X-direction measurement, VREF and 0 are output by bottom left and top right corners respectively, and the ADC conversion of Y+ is enabled at the same time; in Y-direction measurement, VREF and 0 are output by bottom left and top right respectively, and the ADC



conversion of  $Y^+$  is enabled at the same time; in this way, the coordinates measurement is finished.



# 4 Initialization Sequence

## 4.1 Power-on Sequence

- 1. RTC power supply VR\_VDDA 3.0V, interval >1us
- 2. IO\_VDD 3.3V, interval 1ms
- 3. PLL VDD 3.3V, interval 1ms
- 4. CORE VDD 1.2V

## **4.2 Reset Timing Sequence**

At beginning, the SYS\_RESET\_ reset input is low, and is pulled up at least 10 milliseconds after the completion of power-on sequence.



# **5 Electrical Characteristics**

## **5.1 Power Supply**

## **5.1.1 Recommended operating conditions**

Table 5-1 Recommended operating power supply voltage

| Darron grampler | Description             |        | Scope |        | May aumont  |  |
|-----------------|-------------------------|--------|-------|--------|-------------|--|
| Power supply    | Description             | Min.   | Тур.  | Max.   | Max current |  |
| CORE_VDD        | CPU domain power supply | 1.1V   | 1.2V  | 1.3V   | 0.5A        |  |
| IO_VDD          | IO power supply         | 3.135V | 3.3V  | 3.465V | TBD         |  |
| VR_VDDA         | RTC power supply        | 2.0V   | 3.0V  | 3.465V | 100uA       |  |
| ADC_VDDA        | ADC analog power supply | 3.135V | 3.3V  | 3.465V | 50mA        |  |
| OTG_VDD33       | OTG power supply        | 3.135V | 3.3V  | 3.465V | 50mA        |  |
| OTG_DVDD        | OTG power supply        | 1.1V   | 1.2V  | 1.3V   | 50mA        |  |
| USB_VDD33       | USB analog power supply | 3.135V | 3.3V  | 3.465V | 50mA        |  |
| USB_DVDD        | USB analog power supply | 1.1V   | 1.2V  | 1.3V   | 50mA        |  |
| PLL_VDD33       | PLL power supply        | 3.135V | 3.3V  | 3.465V | 50mA        |  |
| PLL_DVDD        | PLL power supply        | 1.1V   | 1.2V  | 1.3V   | 50mA        |  |

#### 5.1.2 Absolute maximum rated value

**Table 5-2 Absolute maximum rated value** 

| Parameters | Description             | Min  | Max  | Unit       |
|------------|-------------------------|------|------|------------|
| CORE_VDD   | CPU domain power supply | -0.2 | 1.3  | V          |
| IO_VDD     | IO power supply         | -0.3 | 3.46 | V          |
| VR_VDDA    | RTC power supply        | -0.3 | 3.46 | V          |
| OTG_VDD33  | OTG power supply        | -0.3 | 3.46 | V          |
| OTG_DVDD   | OTG power supply        | -0.3 | 1.2  | V          |
| USB_VDD33  | USB analog power supply | -0.3 | 3.46 | V          |
| USB_DVDD   | USB analog power supply | -0.3 | 1.2  | V          |
| PLL_VDD33  | PLL power supply        | -0.3 | 3.46 | V          |
| PLL_DVDD   | PLL power supply        | -0.3 | 1.2  | V          |
| Tstg       | Storage temperature     | -50  | 100  | $^{\circ}$ |
| Tw         | Operating temperature   | -40  | 80   | $^{\circ}$ |

## **5.2 Characteristics of SDRAM Interface**





Table 5-3 Characteristics of SDRAM electrical AC timing sequence

| Parameters       | Symbol | Min | Generally | Max  | Units |
|------------------|--------|-----|-----------|------|-------|
| Input setup time | Tsu    | 0.9 | -         | ı    | ns    |
| Input hold time  | Th     | 3.5 | -         | -    | ns    |
| Output delay     | Tval   | 1.1 | -         | 4.26 | ns    |

Notes: the above parameters are defined in chip pin, and the clock refers to SD CLK.

## **5.3 Characteristics of CAMERA Interface**



Table 5-4 Characteristics of CAMERA electrical AC timing sequence

| Parameters       | Symbol | Min | Generally | Max | Units |
|------------------|--------|-----|-----------|-----|-------|
| Input setup time | Tsu    | 2   | -         | -   | ns    |
| Input hold time  | Th     | 1   | -         | -   | ns    |

## **5.4 Characteristics of MAC Interface**



Table 5-5 Characteristics of MAC electrical AC timing sequence

| Parameters       | Symbol | Min | Generally | Max | Units |
|------------------|--------|-----|-----------|-----|-------|
| Input setup time | Tsu    | 10  | -         | -   | ns    |
| Input hold time  | Th     | 10  | -         | -   | ns    |
| Output delay     | Tval   | 0   | -         | 11  | ns    |

Notes: the above parameters have been defined by chip pin, and the RX and RX correspond to MAC TXC and MAC\_RXC in MII mode and MAC\_TXC in RMII mode.



## **5.5 Characteristics of USB Interface**

The table below sources from USB2.0 specification.

Table 5-6 USB DC electrical characteristics

| Symbol                         | Conditions         | Min.                        | Max.                                                                                                             | Units                                                                                                              |  |  |  |  |
|--------------------------------|--------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| InputLevelsforLow-/full-speed: |                    |                             |                                                                                                                  |                                                                                                                    |  |  |  |  |
| VIH                            |                    | 2                           |                                                                                                                  | V                                                                                                                  |  |  |  |  |
| VIHZ                           |                    | 2.7                         | 3.6                                                                                                              | V                                                                                                                  |  |  |  |  |
| VIL                            |                    |                             | 0.8                                                                                                              | V                                                                                                                  |  |  |  |  |
| VDI                            | (D+)-(D-)          | 0.2                         |                                                                                                                  | V                                                                                                                  |  |  |  |  |
| VCM                            | Includes VDI range | 0.8                         | 2.5                                                                                                              | V                                                                                                                  |  |  |  |  |
|                                | VIH VIHZ VIL VDI   | VIH VIHZ VIL VDI  (D+)-(D-) | VIH         2           VIHZ         2.7           VIL         VDI           VDI          (D+)-(D-)          0.2 | VIH         2           VIHZ         2.7           VIL         0.8           VDI          (D+)-(D-)            0.2 |  |  |  |  |



| High-speed squelch detection<br>threshold (differential signal<br>amplitude)       | VHSSQ   |                          | 100   | 150   | mV |
|------------------------------------------------------------------------------------|---------|--------------------------|-------|-------|----|
| High speed disconnect detection<br>threshold (differential signal<br>amplitude)    | VHSDSC  |                          | 525   | 625   | mV |
| High-speed differential input<br>signaling levels                                  |         |                          |       |       |    |
| High-speed data signaling common<br>mode voltage range(guide line for<br>receiver) | VHSCM   |                          | -50   | 500   | mV |
| Output Levels for Low-/full-speed:                                                 |         |                          |       |       |    |
| Low                                                                                | VOL     |                          | 0     | 0.3   | V  |
| High(Driven)                                                                       | VOH     |                          | 2.8   | 3.6   | V  |
| SE1                                                                                | VOSE1   |                          | 0.8   |       | V  |
| Output Signal Crossover Voltage                                                    | VCRS    |                          | 1.3   | 2     | V  |
| Output Levels for High-speed:                                                      |         |                          |       |       |    |
| High-speed idle level                                                              | VHSOI   |                          | -10   | 10    | mV |
| High-speed data signaling high                                                     | VHSOH   |                          | 360   | 440   | mV |
| High-speed data signaling low                                                      | VHSOL   |                          | -10   | 10    | mV |
| Chirp J level(differential voltage)                                                | VCHIRPJ |                          | 700   | 1100  | mV |
| Chirp K level(differential voltage)                                                | VCHIRPK |                          | -900  | -500  | mV |
| Decoupling Capacitance:                                                            |         |                          |       |       |    |
| Downstream Facing Port Bypass<br>Capacitance (perhub)                              | CHPB    | VBUS to GND              | 120   |       | μF |
| Upstream Facing Port Bypass<br>Capacitance                                         | CRPB    | VBUS to GND              | 1     | 10    | μF |
| Input Capacitance for Low-/full-sp                                                 | eed:    |                          |       |       |    |
| Downstream Facing Port                                                             | CIND    |                          |       | 150   | pF |
| Upstream Facing Port(w/ocable)                                                     | CINUB   |                          | 2     | 100   | pF |
| Transceiver edge rate control capacitance                                          | CEDGE   |                          | 92    | 75    | pF |
| InputImpedanceforHigh-speed:                                                       | 200 2   |                          |       | 200   |    |
| TDR specforhigh-speedtermination                                                   |         |                          |       |       |    |
| Terminations:                                                                      | 100     |                          |       | 20    |    |
| Bus Pull-up Resistoron Upstream<br>Facing Port                                     | RPU     | $1.5$ k $\Omega \pm 5\%$ | 1.425 | 1.575 | kΩ |
| Bus Pull-down Resistoron<br>Downstream Facing Port                                 | RPD     | $15k\Omega \pm 5\%$      | 14.25 | 15.75 | kΩ |
| Input impedance exclusive of pullup/pulldown(forlow-/full-speed)                   | ZINP    |                          | 300   | 3     | kΩ |



| Termination voltage for upstream<br>facing port pullup(RPU) | VTERM         |   | 3   | 3.6 | V  |
|-------------------------------------------------------------|---------------|---|-----|-----|----|
| Terminations in High-speed:                                 | Marco Control |   |     |     |    |
| Termination voltage in high-speed                           | VHSTERM       | 8 | -10 | 10  | mV |

Table 5-7 USB HS source electrical characteristics

| Parameter                                                                   | Symbol                                                 | Conditions     | Min.     | Max.                      | Units     |  |  |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------|----------------|----------|---------------------------|-----------|--|--|--|--|
| Driver Characteristics:                                                     |                                                        |                |          |                           |           |  |  |  |  |
| Rise Time(10%-90%)                                                          | THSR                                                   |                | 500      |                           | ps        |  |  |  |  |
| Fall Time(10%-90%)                                                          | THSF                                                   |                | 500      |                           | ps        |  |  |  |  |
|                                                                             | Driver wa                                              | veform require | ments    | <i>(</i>                  |           |  |  |  |  |
| Driver Output<br>Resistance(which also serves<br>as high-speed termination) | Resistance(which also serves ZHSDRV 40.5 49.5 $\Omega$ |                |          |                           |           |  |  |  |  |
|                                                                             | Cl                                                     | ock Timings:   |          | į.                        |           |  |  |  |  |
| High-speed Data Rate                                                        | THSDRAT                                                | 38             | 479.76   | 480.24                    | Mb/s      |  |  |  |  |
| Micro frame Interval                                                        | THSFRAM                                                |                | 124.9375 | 125.0625                  | μs        |  |  |  |  |
| Consecutive Micro frame<br>Interval Difference                              | THSRFI                                                 |                |          | 4 high-speed<br>bit times |           |  |  |  |  |
| High-speed Data Timings:                                                    |                                                        |                |          |                           |           |  |  |  |  |
| Data source jitter                                                          |                                                        |                |          | ecified by the ey         | e pattern |  |  |  |  |
| Receiver juler tolerance                                                    | Receiver jitter tolerance templatesin Section7.1.2.2   |                |          |                           |           |  |  |  |  |

Table 5-8 USB full-speed source electrical characteristics

| Param                                           | eter              | Symbol        | Conditions             | Min.   | Max.   | Units |
|-------------------------------------------------|-------------------|---------------|------------------------|--------|--------|-------|
|                                                 | D                 | river Charac  | teristics:             |        | 3      |       |
| Rise T                                          | ime               | TFR           | 8                      | 4      | 20     | ns    |
| Fall Ti                                         | me                | TFF           |                        | 4      | 20     | ns    |
| Differential Rise<br>Match                      |                   | TFRFM         | (TFR/TFF)              | 90     | 111.11 | %     |
| Driver Output Resi-<br>which is not high        |                   | ZDRV          |                        | 28     | 44     | Ω     |
|                                                 | 3900              | Clock Tim     | ings:                  | 1.8    | 97     |       |
| Full-speed Data Ra<br>devices which as<br>capab | re high-speed     | TFDRATHS      | Average bit rate       | 11.994 | 12.006 | Mb/s  |
| Full-speed Data R<br>which are not high         |                   | TFDRATE       | Average bit rate       | 11.97  | 12.03  | Mb/s  |
| Frame In                                        | terval            | TFRAME        |                        | 0.9995 | 1.0005 | ms    |
| Consecutive Fram                                | e Interval Jitter | TRFI          | No clock<br>adjustment | 13     | 42     | ns    |
|                                                 | Fu                | ll-speed Data | Timings:               |        |        |       |
| Source Jitter<br>Total(including                |                   |               |                        | -3.5   | 3.5    | ns    |
| frequency For Paired tolerance): Transitions    |                   | TDJ2          |                        | -4     | 4      | ns    |
| Source Jitter for<br>Transition to SE           |                   | TFDEOP        |                        | -2     | 5      | ns    |



| Bassiyan Tittan                                      | To Next<br>Transition     | TJR1   | -18.5 | 18.5 | ns |
|------------------------------------------------------|---------------------------|--------|-------|------|----|
| Receiver Jitter:                                     | For Paired<br>Transitions | TJR2   | -9    | 9    | ns |
| Source SE0 inte                                      | erval of EOP              | TFEOPT | 160   | 175  | ns |
| Receiver SE0 interval of EOP                         |                           | TFEOPR | 82    |      | ns |
| Width of SE0 interval during differential transition |                           | TFST   |       | 14   | ns |

Table 5-9 USB low-speed source electrical characteristics

| Param                                                   | Symbol                     | Min.     | Max.    | Units   |      |
|---------------------------------------------------------|----------------------------|----------|---------|---------|------|
|                                                         | Driver Characterist        | ics:     |         |         |      |
| Transition Time:                                        | Rise Time                  | TLR      | 75      | 300     | ns   |
| Transition Time.                                        | Fall Time                  | TLF      | 75      | 300     | ns   |
| Rise and Fall Ti                                        | me Matching                | TLRFM    | 80      | 125     | %    |
| Upstream Facing Port(w/                                 | cable, low-speed only)     | CLINUA   | 200     | 450     | pF   |
|                                                         | Clock Timings:             |          |         |         |      |
| Low-speed Data Rate for hi<br>capal                     | 0 1                        | TLDRATHS | 1.49925 | 1.50075 | Mb/s |
| Low-speed Data Rate for device capal                    |                            | TLDRATE  | 1.4775  | 1.5225  | Mb/s |
|                                                         | Low-speed Data Timi        | ngs:     |         |         |      |
| Upstream facing port source<br>Jitter Total(including   | To Next Transition         | TUDJ1    | -95     | 95      | ns   |
| frequency tolerance):                                   | For Paired Transitions     | TUDJ2    | -150    | 150     | ns   |
| Upstream facing port sour<br>Transition to SI           |                            | TLDEOP   | -40     | 100     | ns   |
| Upstream facing port                                    | To Next Transition         | TDJR1    | -75     | 75      | ns   |
| differential Receiver Jitter:                           | For Paired Transitions     | TDJR2    | -45     | 45      | ns   |
| Downstream facing port<br>source Jitter Total(including | To Next Transition         | TDDJ1    | -25     | 25      | ns   |
| frequency tolerance):                                   | For Paired Transitions     | TDDJ2    | -14     | 14      | ns   |
| Downstream facing port sou<br>Transition to SI          |                            |          |         |         | ns   |
| Downstream facing port                                  | To Next Transition         | TUJR1    | -152    | 152     | ns   |
| Differential Receiver Jitter:                           | For Paired Transitions     | TUJR2    | -200    | 200     | ns   |
| Source SE0 int                                          |                            | TLEOPT   | 1.25    | 1.5     | μs   |
| Receiver SE0 in                                         | terval of EOP              | TLEOPR   | 670     |         | ns   |
| Width of SE0 interval duri                              | ng differential transition | TLST     |         | 210     | ns   |



# 6 Pin Permutation and Package

In different applications, Loongson 1C has three packages: QFP100, QFP176A and QFP176U. Therein, QFP176A package supports ADC interface, and QFP176U package supports the full-function serial UART.

## **6.1 Package Pin According to the Pin Permutation**

## 6.1.1 Package pin of QFP100

QFP100 package pin table is as follows:

Table 6-1 QFP100 package pin table ranked by pin

| Table 6-1 QFP100 package pin table ranked by pin |          |               |                |               |               |  |  |  |
|--------------------------------------------------|----------|---------------|----------------|---------------|---------------|--|--|--|
| Pin<br>Number                                    | Net Name | Pin<br>Number | Net Name       | Pin<br>Number | Net Name      |  |  |  |
| 1                                                | XTALI    | 35            | SD_A12         | 69            | NAND_D2       |  |  |  |
| 2                                                | XTALO    | 36            | SD_A11         | 70            | NAND_D1       |  |  |  |
| 3                                                | LCD_CLK  | 37            | SD_A10         | 71            | NAND_D0       |  |  |  |
| 4                                                | LCD_EN   | 38            | SD_A09         | 72            | CORE_VDD      |  |  |  |
| 5                                                | SD_D15   | 39            | SD_A08         | 73            | SYS_RESET_    |  |  |  |
| 6                                                | SD_D14   | 40            | CORE_VDD       | 74            | JTAG_FUNC_SEL |  |  |  |
| 7                                                | SD_D13   | 41            | IO_VDD         | 75            | IO_VDD        |  |  |  |
| 8                                                | SD_D12   | 42            | SD_A07         | 76            | MAC_TXEN      |  |  |  |
| 9                                                | SD_D11   | 43            | SD_A06         | 77            | MAC_TXD0      |  |  |  |
| 10                                               | IO_VDD   | 44            | SD_A05         | 78            | MAC_TXD1      |  |  |  |
| 11                                               | SD_D10   | 45            | SD_A04         | 79            | MAC_RXER      |  |  |  |
| 12                                               | SD D09   | 46            | SD A03         | 80            | MAC RXDV      |  |  |  |
| 13                                               | SD_D08   | 47            | SD_A02         | 81            | MAC_RXD0      |  |  |  |
| 14                                               | CORE_VSS | 48            | SD_A01         | 82            | MAC_RXD1      |  |  |  |
| 15                                               | SD DQM1  | 49            | SD A00         | 83            | MAC TXC       |  |  |  |
| 16                                               | CORE_VDD | 50            | CORE_VSS       | 84            | OTG_DVSS      |  |  |  |
| 17                                               | SD_DQM0  | 51            | SPIO_MISO      | 85            | OTG_DVDD      |  |  |  |
| 18                                               | SD_D07   | 52            | SPIO_MOSI      | 86            | OTG_VDD33     |  |  |  |
| 19                                               | SD_D06   | 53            | SPIO_CSO       | 87            | OTG_VSS33     |  |  |  |
| 20                                               | SD_D05   | 54            | SPIO_CLK       | 88            | OTG_DM        |  |  |  |
| 21                                               | SD_D04   | 55            | EJTAG_FUNC_SEL | 89            | OTG_DP        |  |  |  |
| 22                                               | SD_D03   | 56            | EJTAG_TCK      | 90            | OTG_REXT      |  |  |  |
| 23                                               | SD_D02   | 57            | EJTAG_TMS      | 91            | OTG_VBUS      |  |  |  |
| 24                                               | SD_D01   | 58            | EJTAG_TDO      | 92            | OTG_ID        |  |  |  |
| 25                                               | SD_D00   | 59            | EJTAG_TDI      | 93            | CORE_VSS      |  |  |  |
| 26                                               | SD_WE    | 60            | EJTAG_RST      | 94            | PLL_VSS12     |  |  |  |
| 27                                               | SD_CASn  | 61            | CORE_VDD       | 95            | PLL_VDD12     |  |  |  |
| 28                                               | SD_RASn  | 62            | IO VDD         | 96            | PLL_VSS33     |  |  |  |
| 29                                               | SD_CSn   | 63            | CORE_VSS       | 97            | PLL_VDD33     |  |  |  |
| 30                                               | SD_BA1   | 64            | NAND_D7        | 98            | RTC_CLK_I     |  |  |  |
| 31                                               | CORE_VSS | 65            | NAND_D6        | 99            | RTC_CLK_O     |  |  |  |
| 32                                               | SD_BA0   | 66            | NAND_D5        | 100           | VR_VDDA       |  |  |  |
| 33                                               | SD_CKE   | 67            | NAND_D4        |               |               |  |  |  |
| 34                                               | SD_CLK   | 68            | NAND_D3        |               | (1)<br>(1)    |  |  |  |



## 6.1.2 QFP176A package pin

QFP176A package pin table is as follows:

Table 6-2 QFP176A package pin table according to the pin permutation

| Pin<br>Number | Net Name         | Pin<br>Number | Net Name | Pin<br>Number | Net Name            |
|---------------|------------------|---------------|----------|---------------|---------------------|
| 1             | XTALI            | 46            | SD WE    | 91            | SPIO MOSI           |
| 2             | XTALO            | 47            | SD CASn  | 92            | SPIO CSO            |
| 3             | LCD CLK          | 48            | SD RASn  | 93            | SPIO CS1            |
| 4             | LCD HSYNC        | 49            | SD CSn   | 94            | SPI CLK             |
| 5             | LCD_VSYNC        | 50            | SD_BA1   | 95            | EJTAG_FUNC_SE<br>L  |
| 6             | LCD EN           | 51            | CORE VSS | 96            | EJTAG TCK           |
| 7             | LCD_DAT0         | 52            | SD_BA0   | 97            | EJTAG_TMS           |
| 8             | LCD_DAT1         | 53            | SD_CKE   | 98            | EJTAG_TDO           |
| 9             | LCD_DAT2         | 54            | SD_CLK   | 99            | EJTAG_TDI           |
| 10            | LCD DAT3         | 55            | SD A12   | 100           | EJTAG RST           |
| 11            | CORE VDD         | 56            | SD A11   | 101           | CORE VDD            |
| 12            | LCD DAT4         | 57            | SD A10   | 102           | IO VDD              |
| 13            | LCD DAT5         | 58            | SD A09   | 103           | CAMDATA7            |
| 14            | LCD DAT6         | 59            | SD A08   | 104           | CAMDATA6            |
| 15            | LCD DAT7         | 60            | SD A07   | 105           | CAMDATA5            |
| 16            | LCD DAT8         | 61            | SD A06   | 106           | CAMDATA4            |
| 17            | LCD DAT9         | 62            | SD A05   | 107           | CAMDATA3            |
| 18            | IO VDD           | 63            | SD A04   | 108           | CAMDATA2            |
| 19            | LCD DAT10        | 64            | SD A03   | 109           | CAMDATA1            |
| 20            | LCD DAT11        | 65            | SD A02   | 110           | CAMDATA0            |
| 21            | LCD DAT12        | 66            | SD A01   | 111           | CORE VSS            |
| 22            | CORE VSS         | 67            | SD A00   | 112           | CAM HSYNC           |
| 23            | LCD DAT13        | 68            | CORE VDD | 113           | CAM VSYNC           |
| 24            | LCD DAT14        | 69            | IO VDD   | 114           | CAM CLKOUT          |
| 25            | LCD DAT15        | 70            | I2S DI   | 115           | CAM PCLK I          |
| 26            | CORE VDD         | 71            | I2S DO   | 116           | NAND D7             |
| 27            | SD D15           | 72            | I2S LRCK | 117           | NAND D6             |
| 28            | SD D14           | 73            | I2S BCLK | 118           | NAND D5             |
| 29            | SD D13           | 74            | I2C SDA0 | 119           | NAND D4             |
| 30            | SD D12           | 75            | I2C SCL0 | 120           | NAND D3             |
| 31            | SD D11           | 76            | I2S MCLK | 121           | NAND D2             |
| 32            | SD D10           | 77            | URTO RX  | 122           | NAND D1             |
| 33            | SD D09           | 78            | URTO TX  | 123           | NAND D0             |
| 34            | SD D08           | 79            | URTO RTS | 124           | CORE VDD            |
| 35            | SD DQM1          | 80            | URTO CTS | 125           | SYS RESET           |
| 36            | SD DQM0          | 81            | URTO DSR | 126           | JTAG FUNC SEI       |
| 37            | SD D07           | 82            | URTO DTR | 127           | NAND RDY            |
| 38            | SD D06           | 83            | URTO DCD | 128           | NAND CLE            |
| 39            | SD_D00           | 84            | URTO RI  | 129           | NAND ALE            |
| 40            | SD_D03           | 85            | PWM1     | 130           | NAND_ALE<br>NAND RD |
| 41            | SD_D04<br>SD_D03 | 86            | PWM0     | 131           | IO VDD              |
| 42            | SD D03           | 87            | SPIO CS2 | 132           | NAND CE             |
| 43            | <del>-</del>     | 88            | CORE VSS |               |                     |
| 44            | SD_D00           | 89            |          | 133           | NAND_WR             |
| 44            | SD_D00           | 09            | SPIO_CS3 | 134           | MAC_TXEN            |



Table 6-2 QFP176A package pin table according to the pin permutation

| Pin<br>Number | Net Name | Pin<br>Number | Net Name  | Pin<br>Number | Net Name  |
|---------------|----------|---------------|-----------|---------------|-----------|
| 136           | MAC_TXD1 | 150           | MAC_RXC   | 164           | USB_DVDD  |
| 137           | MAC_RXER | 151           | MAC_CRS   | 165           | USB_VDD33 |
| 138           | MAC_RXDV | 152           | CORE_VDD  | 166           | USB_VSS33 |
| 139           | MAC_RXD0 | 153           | OTG_DVSS  | 167           | USB_DM    |
| 140           | MAC_RXD1 | 154           | OTG_DVDD  | 168           | USB_REXT  |
| 141           | MAC_MDC  | 155           | OTG_VDD33 | 169           | USB_DP    |
| 142           | CORE_VSS | 156           | OTG_VSS33 | 170           | PLL_VSS12 |
| 143           | MAC_MDIO | 157           | OTG_DM    | 171           | PLL_VDD12 |
| 144           | MAC_RXD2 | 158           | OTG_DP    | 172           | PLL_VSS33 |
| 145           | MAC_TXD2 | 159           | OTG_REXT  | 173           | PLL_VDD33 |
| 146           | MAC_RXD3 | 160           | OTG_VBUS  | 174           | RTC_CLK_I |
| 147           | MAC_TXD3 | 161           | OTG_ID    | 175           | RTC_CLK_O |
| 148           | MAC_TXC  | 162           | CORE_VSS  | 176           | VR_VDDA   |
| 149           | MAC_COL  | 163           | USB_DVSS  |               |           |

## 6.1.3 QFP176U package pin

QFP176U package pin table is as follows:

Table 6-3 QFP176U package pin table according to the pin permutation

|               |           | package       | pin table according to | o the pin     | permutation |
|---------------|-----------|---------------|------------------------|---------------|-------------|
| Pin<br>Number | Net Name  | Pin<br>Number | Net Name               | Pin<br>Number | Net Name    |
| 1             | XTALI     | 27            | SD_D15                 | 53            | SD_CKE      |
| 2             | XTALO     | 28            | SD_D14                 | 54            | SD_CLK      |
| 3             | LCD_CLK   | 29            | SD_D13                 | 55            | SD_A12      |
| 4             | LCD_HSYNC | 30            | SD_D12                 | 56            | SD_A11      |
| 5             | LCD_VSYNC | 31            | SD_D11                 | 57            | SD_A10      |
| 6             | LCD_EN    | 32            | SD_D10                 | 58            | SD_A09      |
| 7             | LCD_DAT0  | 33            | SD_D09                 | 59            | SD_A08      |
| 8             | LCD_DAT1  | 34            | SD_D08                 | 60            | SD_A07      |
| 9             | LCD_DAT2  | 35            | SD_DQM1                | 61            | SD_A06      |
| 10            | LCD_DAT3  | 36            | SD_DQM0                | 62            | SD_A05      |
| 11            | CORE_VDD  | 37            | SD_D07                 | 63            | SD_A04      |
| 12            | LCD_DAT4  | 38            | SD_D06                 | 64            | SD_A03      |
| 13            | LCD_DAT5  | 39            | SD_D05                 | 65            | SD_A02      |
| 14            | LCD_DAT6  | 40            | SD_D04                 | 66            | SD_A01      |
| 15            | LCD_DAT7  | 41            | SD_D03                 | 67            | SD_A00      |
| 16            | LCD_DAT8  | 42            | SD_D02                 | 68            | CORE_VDD    |
| 17            | LCD_DAT9  | 43            | SD_D01                 | 69            | IO_VDD      |
| 18            | IO VDD    | 44            | SD D00                 | 70            | I2S DI      |



| 19 | LCD_DAT10 | 45 | IO_VDD   | 71 | I2S_DO   |
|----|-----------|----|----------|----|----------|
| 20 | LCD_DAT11 | 46 | SD_WE    | 72 | I2S_LRCK |
| 21 | LCD_DAT12 | 47 | SD_CASn  | 73 | I2S_BCLK |
| 22 | CORE_VSS  | 48 | SD_RASn  | 74 | I2C_SDA0 |
| 23 | LCD_DAT13 | 49 | SD_CSn   | 75 | I2C_SCL0 |
| 24 | LCD_DAT14 | 50 | SD_BA1   | 76 | I2S_MCLK |
| 25 | LCD_DAT15 | 51 | CORE_VSS | 77 | PWM1     |
| 26 | CORE_VDD  | 52 | SD_BA0   | 78 | PWM0     |

Table 6-3 QFP176U package pin table according to the pin permutation (continued)

| Iubic o c     | QF1 1700 package p | iii tabic t   | according to the pin | Perman            | ttion (continued) |
|---------------|--------------------|---------------|----------------------|-------------------|-------------------|
| Pin<br>Number | Net Name           | Pin<br>Number | Net Name             | Pin<br>Numbe<br>r | Net Name          |
| 79            | SPI0 CS2           | 112           | CAM HSYNC            | 145               | MAC TXD2          |
| 80            | CORE VSS           | 113           | CAM VSYNC            | 146               | MAC RXD3          |
| 81            | ADC REXT           | 114           | CAM CLKOUT           | 147               | MAC TXD3          |
| 82            | ADC VREF           | 115           | CAM PCLK I           | 148               | MAC TXC           |
| 83            | ADC VDDA           | 116           | NAND D7              | 149               | MAC COL           |
| 84            | ADC_VSSA           | 117           | NAND_D6              | 150               | MAC_RXC           |
| 85            | ADC_D0             | 118           | NAND_D5              | 151               | MAC_CRS           |
| 86            | ADC_D1             | 119           | NAND_D4              | 152               | CORE_VDD          |
| 87            | ADC_XP             | 120           | NAND_D3              | 153               | OTG_DVSS          |
| 88            | ADC_YP             | 121           | NAND_D2              | 154               | OTG_DVDD          |
| 89            | SPI0_CS3           | 122           | NAND_D1              | 155               | OTG_VDD33         |
| 90            | SPI0_MISO          | 123           | NAND_D0              | 156               | OTG_VSS33         |
| 91            | SPI0_MOSI          | 124           | CORE_VDD             | 157               | OTG_DM            |
| 92            | SPI0_CS0           | 125           | SYS_RESET_           | 158               | OTG_DP            |
| 93            | SPI0_CS1           | 126           | JTAG_FUNC_SEL        | 159               | OTG_REXT          |
| 94            | SPI_CLK            | 127           | NAND_RDY             | 160               | OTG_VBUS          |
| 95            | EJTAG_FUNC_SEL     | 128           | NAND_CLE             | 161               | OTG_ID            |
| 96            | EJTAG_TCK          | 129           | NAND_ALE             | 162               | CORE_VSS          |
| 97            | EJTAG_TMS          | 130           | NAND_RD              | 163               | USB_DVSS          |
| 98            | EJTAG_TDO          | 131           | IO_VDD               | 164               | USB_DVDD          |
| 99            | EJTAG_TDI          | 132           | NAND_CE              | 165               | USB_VDD33         |
| 100           | EJTAG_RST          | 133           | NAND_WR              | 166               | USB_VSS33         |
| 101           | CORE_VDD           | 134           | MAC_TXEN             | 167               | USB_DM            |
| 102           | IO_VDD             | 135           | MAC_TXD0             | 168               | USB_REXT          |
| 103           | CAMDATA7           | 136           | MAC_TXD1             | 169               | USB_DP            |
| 104           | CAMDATA6           | 137           | MAC_RXER             | 170               | PLL_VSS12         |
| 105           | CAMDATA5           | 138           | MAC_RXDV             | 171               | PLL_VDD12         |
| 106           | CAMDATA4           | 139           | MAC_RXD0             | 172               | PLL_VSS33         |
| 107           | CAMDATA3           | 140           | MAC_RXD1             | 173               | PLL_VDD33         |
| 108           | CAMDATA2           | 141           | MAC_MDC              | 174               | RTC_CLK_I         |
| 109           | CAMDATA1           | 142           | CORE_VSS             | 175               | RTC_CLK_O         |
| 110           | CAMDATA0           | 143           | MAC_MDIO             | 176               | VR_VDDA           |
| 111           | CORE_VSS           | 144           | MAC_RXD2             |                   |                   |



## **6.2 Top Pin Permutation**

## 6.2.1 QFP100 top pin permutation

QFP100 top pin permutation is shown in the figure below



Figure 6-1 QFP100 top pin permutation

## 6.2.2 QFP176A top pin permutation

QFP176A top pin permutation is shown in Figure 6-2 and 6-3.





Figure 6-2 QFP176A pin permutation (left figure)





Figure 6-3 QFP176A top pin permutation (right figure)



#### 6.2.3 QFP176U top pin permutation

QFP176U top pin permutation is shown in Figure 6-4 and 6-5.



Figure 6-4 QFP176U pin permutation (left figure)





Figure 6-5 QFP176U top pin permutation (right figure)



# 7 Package Mechanical Dimensions

### 7.1.1 Mechanical dimension of QFP100 package



| (UNITS | OF MEASU | JRE=MILLIN | METER) |
|--------|----------|------------|--------|
| SYMBOL | MIN      | NOM        | MAX    |
| Α      | -        | -          | 1.60   |
| A1     | 0.05     | -          | 0.15   |
| A2     | 1.35     | 1.40       | 1.45   |
| A3     | 0.59     | 0.64       | 0.69   |
| b      | 0.17     | -          | 0.27   |
| b1     | 0.17     | 0.20       | 0.23   |
| С      | 0.13     | -          | 0.18   |
| c1     | 0.12     | 0.127      | 0.134  |
| D      | 15.80    | 16.00      | 16.20  |
| D1     | 13.90    | 14.00      | 14.10  |
| E      | 15.80    | 16.00      | 16.20  |
| E1     | 13.90    | 14.00      | 14.10  |
| е      | 0.40     | 0.50       | 0.60   |
| L      | 0.45     | 0.60       | 0.75   |
| L1     |          | 1.00REF    |        |
| L2     |          | 0.25BSC    |        |
| R1     | 0.08     | -          | -      |
| R2     | 0.08     | -          | 0.20   |
| S      | 0.20     | -          | _      |
| θ      | 0,       | 3.5*       | 7*     |
| θ 1    | 0,       | -          | -      |
| θ 2    | 11*      | 12*        | 13*    |
| θ3     | 11*      | 12*        | 13*    |

COMMON DIMENSIONS







### 7.1.2 Mechanical dimension of QFP176 package





## 8 Treatment of Unused Pin

Unused pin needs to be treated under the following principles:

| Signal group            | Treatment when unused                                                    |
|-------------------------|--------------------------------------------------------------------------|
| USB                     | Can be floated                                                           |
| Input signal            | Needs pulling down, or using the software to configure as GPIO output 0. |
| Output signal           | Can be floated                                                           |
| Initialization signal   | Configuration pins must be pulled-up/pulled -down properly.              |
| The clock configuration | must be properly connected                                               |
| Power ground            | must be properly connected                                               |



### 9 Appendix

### 9.1 Pin Multiplexing

Signal names in the below table is given in the sequence of QFP176 package. In QFP100 package, some pins aren't bonded, and expressed as "-". QFP176 has two packages: QFP176A and QFP176U. The difference between two packages is in the 81-88 pins. Therein, QFP176A has ADC interface, and QFP176U has UART interface. In the table, the pin number with A in behind brackets indicates QFP176A package, and that with U in behind brackets QFP176U package.

In addition, some signals of multiplexing signals in table is multiplexed by group. For example, SDRAM/SRAM, SPI0/SDIO, SPI1/SDIO and I2S/AC97, these signals are configured by misc register, and the two signals are divided by "/" in the same cell of multiplexing table.

Notes: compared with 1C1, the 1C2 mainly changes in pin multiplexing. The newly added multiplexing relationship includes UART5-UART11 and SDRAM\_CS1 pins, and is distributed in the 4<sup>th</sup> and 5<sup>th</sup> multiplexing (see the green part in the table below); in addition, 1C2 transfers the multiplexing relationship of pins LCD\_CLK and LCD\_EN in 1C1 to LCD\_HSYNC and LCD\_VSYNC. Namely, in QFP176 package, the multiplexing of pin 3 is transferred to pin 1, and that of pin 6 is transferred to pin 5 (see the yellow part in table 9-1) Table 9-2 shows the multiplexing relationship of pins 3-6 in 1C1 corresponding to the yellow part in table 9-1.

Notes: the default multiplexing relation of the pin is in the last column. Except several pins are used as GPIO, others are all pin definition function; if there is no special instruction in the last column, the multiplexing relation is its pin definition function by default.



The pin multiplexing relation in 1C different packages is shown in the table below.

Table 9-1 Multiplexing relationship table of pin

| NAME               | PIN_NO<br>QFP176 | PIN_NO<br>QFP100 | GPIO   | The first multiplexing | The second multiplexing | The third multiplexing | The fourth multiplexing | The fifth multiplexing | Default<br>multiplexing |
|--------------------|------------------|------------------|--------|------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|
| BANK0              |                  |                  |        |                        |                         |                        |                         |                        |                         |
| XTALI              | 1                | 1                |        |                        |                         |                        |                         |                        |                         |
| XTAL0              | 2                | 2                |        |                        |                         |                        |                         |                        |                         |
| LCD_CLK<br>PIX_CLK | 3                | 3                | GPIO76 |                        |                         |                        |                         |                        |                         |
| LCD_HSYNC          | 4                | -                | GPIO74 | SPI0_CS1/<br>Sdio Dat2 | UART0_RX                | PWM2                   | I2C_SDA1                | SDRAM_CS1              |                         |
| LCD_VSYNC          | 5                | -                | GPIO75 | SPI0_CS2/<br>Sdio Dat3 | UART0_TX                | PWM3                   | I2C_SCL1                |                        |                         |
| LCD_EN             | 6                | 4                | GPIO77 | _                      |                         |                        |                         |                        |                         |
| LCD_D0<br>LCD_B3   | 7                | -                | GPIO58 |                        |                         |                        |                         | UART4_RX/<br>UART0_CTS |                         |
| LCD_D1<br>LCD_B4   | 8                | -                | GPIO59 |                        |                         |                        |                         | UART4_TX/<br>UART0_RTS |                         |
| LCD_D2<br>LCD_B5   | 9                | -                | GPIO60 |                        |                         |                        |                         | UART5_RX/<br>UART0_DSR |                         |
| LCD_D3<br>LCD_B6   | 10               | -                | GPIO61 |                        |                         |                        |                         | UART5_TX/<br>UART0_DTR |                         |
| CORE_VDD           | 11               | -                |        |                        |                         |                        |                         | _                      |                         |
| LCD_D4<br>LCD_B7   | 12               | -                | GPIO62 |                        |                         |                        |                         | UART6_RX/<br>UART0_DCD |                         |
| LCD_D5<br>LCD_G2   | 13               | -                | GPIO63 |                        |                         |                        |                         | UART6_TX/<br>UART0_RI  |                         |
| LCD_D6<br>LCD_G3   | 14               | -                | GPIO64 |                        |                         |                        |                         | UART7_RX               |                         |
| LCD_D7             | 15               | -                | GPIO65 |                        |                         |                        |                         | UART7_TX               |                         |



| 1        |     |          | · · · · · · · · · · · · · · · · · · · |            |                                         |                                                 |           |            |  |
|----------|-----|----------|---------------------------------------|------------|-----------------------------------------|-------------------------------------------------|-----------|------------|--|
| LCD_G4   |     |          |                                       |            |                                         |                                                 |           |            |  |
| LCD_D8   | 16  |          | GPIO66                                |            |                                         |                                                 |           | IIADTO DV  |  |
| LCD_G5   | 10  | Ī        | GP1000                                |            |                                         |                                                 |           | UART8_RX   |  |
| LCD_D9   | 1.7 |          | CDIO(7                                |            |                                         |                                                 |           | LIADTO TV  |  |
| LCD G6   | 17  | Ī        | GPIO67                                |            |                                         |                                                 |           | UART8_TX   |  |
| IO VDD   | 18  | 10       |                                       |            |                                         |                                                 |           |            |  |
| LCD_D10  | 1.0 |          | CDIO (0                               |            |                                         |                                                 |           | UART9 RX/  |  |
| LCD G7   | 19  |          | GPIO68                                |            |                                         |                                                 |           | UART8 CTS  |  |
| LCD_R3   | 20  |          | GDIO (0                               |            |                                         |                                                 |           | UART9 TX/  |  |
| LCD D11  | 20  | <u> </u> | GPIO69                                |            |                                         |                                                 |           | UART8 RTS  |  |
| LCD D12  |     |          |                                       |            |                                         |                                                 |           | UART10 RX/ |  |
| LCD R4   | 21  | -        | GPIO70                                |            |                                         |                                                 |           | UART8 DSR  |  |
| CORE VSS | 22  | 14       |                                       |            |                                         |                                                 |           |            |  |
| LCD D13  |     |          | GD7.0.54                              |            |                                         |                                                 |           | UART10 TX/ |  |
| LCD_R5   | 23  | -        | GPIO71                                |            |                                         |                                                 |           | UART8_DTR  |  |
| LCD D14  |     |          |                                       |            |                                         |                                                 |           | UART11 RX/ |  |
| LCD R6   | 24  | -        | GPIO72                                |            |                                         |                                                 |           | UART8 DCD  |  |
| LCD D15  |     |          |                                       |            |                                         |                                                 |           | UART11 TX/ |  |
| LCD_R7   | 25  | -        | GPIO73                                |            |                                         |                                                 |           | UART8 RI   |  |
| CORE VDD | 26  | 16       |                                       |            |                                         |                                                 |           | _          |  |
| SD D15/  |     |          | GDI O 1 0 4                           | TAG GGT    | D1111 12                                | D.T.2                                           | 1 (17)    |            |  |
| SRAM D15 | 27  | 5        | GPIO104                               | I2C_SCL    | PWM3                                    | UART2_TX                                        | MDIO      |            |  |
| SD D14/  | •   |          | GDI O 1 0 2                           | TO C. CD.  | D1111 (0                                | TILL DEED DAY                                   | 1 m c     |            |  |
| SRAM D14 | 28  | 6        | GPIO103                               | I2C_SDA    | PWM2                                    | UART2_RX                                        | MDC       |            |  |
| SD D13/  | • • |          | GDY 0.4.04                            |            |                                         |                                                 |           |            |  |
| SRAM D13 | 29  | 7        | GPIO102                               | UART1_TX   | NAND_CE#                                | I2C_SCL1                                        | PWM1      |            |  |
| SD D12/  | 30  | 8        | GPIO101                               | UART1 RX   | NAND RDY                                | I2C SDA1                                        | PWM0      |            |  |
| SRAM D13 |     |          |                                       |            | _                                       |                                                 |           |            |  |
| SD D11/  | 2.1 |          | GDIO 100                              | TAG I D GW | 1111D WE!                               | T. I. D. T. | CANIL TIM |            |  |
| SRAM D11 | 31  | 9        | GPIO100                               | I2S_LRCK   | NAND_WR#                                | UART0_TX                                        | CAN1_TX   |            |  |
| SD D10/  | 2.2 | 1.1      | GDIOOG                                | vac Di     | 111111111111111111111111111111111111111 | T. I. D. T. C. D. T. T.                         | CANIA DV  |            |  |
| SRAM D10 | 32  | 11       | GPIO99                                | I2S_DI     | NAND_ALE                                | UART0_RX                                        | CAN1_RX   |            |  |
| SD D09/  | 33  | 12       | GPIO98                                | I2S BCLK   | NAND RD#                                | I2C SCL2                                        | CANO TX   |            |  |
|          |     |          |                                       |            |                                         |                                                 | 12222     |            |  |



| SRAM D09            | 1    |    | 1      |          |          | 1        |         | 1          |          |
|---------------------|------|----|--------|----------|----------|----------|---------|------------|----------|
| SD D08/             |      |    |        |          |          |          |         |            |          |
| SRAM_D08            | 34   | 13 | GPIO97 | I2S_MCLK | NAND_CLE | I2C_SDA2 | CAN0_RX |            |          |
|                     |      |    |        | _        | _        |          | _       | IIADTC DV/ |          |
| SD_DQM1/            | 35   | 15 | GPIO96 | I2S_DO   | PWM1     | XTALI    |         | UART6_RX/  | 1        |
| SRAM_BHEn           |      |    |        | _        |          |          |         | UART0_DCD  |          |
| SD_DQM0/            | 36   | 17 |        |          |          |          |         |            |          |
| SRAM_BLEn           | _    |    |        |          |          |          |         |            |          |
| SD_D07/             | 37   | 18 |        |          |          |          |         |            |          |
| SRAM_D07            |      |    |        |          |          |          |         |            | <u> </u> |
| SD_D06/             | 38   | 19 |        |          |          |          |         |            | 1        |
| SRAM_D06            |      |    |        |          |          |          |         |            | <u> </u> |
| SD_D05/             | 39   | 20 |        |          |          |          |         |            |          |
| SRAM_D05            | _    |    |        |          |          |          |         |            |          |
| SD_D04/             | 40   | 21 |        |          |          |          |         |            |          |
| SRAM_D04            | _    |    |        |          |          |          |         |            |          |
| SD_D03/<br>SRAM_D03 | 41   | 22 |        |          |          |          |         |            |          |
|                     |      |    |        |          |          |          |         |            |          |
| SD_D02/             | 42   | 23 |        |          |          |          |         |            |          |
| SRAM_D02            | _    |    |        |          |          |          |         |            |          |
| SD_D01/             | 43   | 24 |        |          |          |          |         |            |          |
| SRAM_D01            | 44   | 25 |        |          |          |          |         |            |          |
| SD_D00/             | 44   | 25 |        |          |          |          |         |            |          |
| SRAM_D00            |      |    |        |          |          |          |         | <u> </u>   | _        |
| BANK1               | 14.5 | 1  | 1      | 1        |          | 1        |         | 1          |          |
| IO_VDD              | 45   | -  |        |          |          |          |         |            |          |
| SD_WEn/             | 46   | 26 |        |          |          |          |         |            |          |
| SRAM_WEn            | 1    |    |        |          |          |          |         |            | <u> </u> |
| SD_CASn/            | 47   | 27 |        |          |          |          |         |            |          |
| SRAM_A15            |      |    |        |          |          |          |         |            |          |
| SD_RASn/            | 48   | 28 |        |          |          |          |         |            |          |
| SRAM_A14            |      | -  |        |          |          |          |         |            |          |
| SD_CSn/             | 49   | 29 |        |          |          |          |         |            |          |
| SRAM_CSn            |      | -  |        |          |          |          |         |            |          |



| _                   |    |    |  | _ | _ | _ |  |
|---------------------|----|----|--|---|---|---|--|
| SD_BA1/<br>SRAM_A16 | 50 | 30 |  |   |   |   |  |
| CORE VSS            | 51 | 31 |  |   |   |   |  |
| SD_BA0/<br>SRAM_A17 |    | 32 |  |   |   |   |  |
| SD_CKE/<br>SRAM_A13 | 53 | 33 |  |   |   |   |  |
| SD_CLK/<br>SRAM_OEn | 54 | 34 |  |   |   |   |  |
| SD_A12/<br>SRAM_A12 | 55 | 35 |  |   |   |   |  |
| SD_A11/<br>SRAM_A11 | 56 | 36 |  |   |   |   |  |
| SD_A10/<br>SRAM_A10 | 57 | 37 |  |   |   |   |  |
| SD_A09/<br>SRAM_A09 | 58 | 38 |  |   |   |   |  |
| SD_A08/<br>SRAM_A08 | 59 | 39 |  |   |   |   |  |
| SD_A07/<br>SRAM_A07 | 60 | 42 |  |   |   |   |  |
| SD_A06/<br>SRAM_A06 | 61 | 43 |  |   |   |   |  |
| SD_A05/<br>SRAM_A05 | 62 | 44 |  |   |   |   |  |
| SD_A04/<br>SRAM_A04 | 63 | 45 |  |   |   |   |  |
| SD_A03/<br>SRAM_A03 | 64 | 46 |  |   |   |   |  |
| SD_A02/<br>SRAM_A02 | 65 | 47 |  |   |   |   |  |
| SD_A01/<br>SRAM_A01 | 66 | 48 |  |   |   |   |  |



|          | - <del>i</del> | _ <del> </del> | <del></del> | <del>- i</del> | +        |         |           |           |  |
|----------|----------------|----------------|-------------|----------------|----------|---------|-----------|-----------|--|
| SD_A00/  | 67             | 49             |             |                |          |         |           |           |  |
| SRAM_A00 | 07             | 77             |             |                |          |         |           |           |  |
| CORE_VDD | 68             | 40             |             |                |          |         |           |           |  |
| IO_VDD   | 69             | 41             |             |                |          |         |           |           |  |
| I2S_DI   | 70             | -              | GPIO87      |                |          |         |           | UART7_RX  |  |
| I2S DO   | 71             | _              | GPIO88      |                |          |         |           | UART7 TX  |  |
| I2S_LRCK | 72             | -              | GPIO89      |                |          |         |           | UART8 RX  |  |
| I2S BCLK | 73             | _              | GPIO90      |                |          |         |           | UART8 TX  |  |
| I2C_SDA0 | 74             |                | GPIO85      |                |          |         |           | UART9_RX/ |  |
|          |                |                |             |                |          |         |           | UART8_CTS |  |
| I2C_SCL0 | 75             | _              | GPIO86      |                |          |         |           | UART9_TX/ |  |
|          |                |                |             |                |          |         |           | UART8_RTS |  |
| I2S_MCLK | 76             | _              | GPIO91      |                |          |         |           |           |  |
| URT0_RX  | 77(U)          | -              | GPIO38      |                |          |         |           |           |  |
| URT0_TX  | 78(U)          | -              | GPIO39      |                |          |         |           |           |  |
| URT0_RTS | 79(U)          | -              | GPIO41      | SRAM_A19       | UART1_TX | PWM3    | NAND_RDY3 |           |  |
| URT0_CTS | 80(U)          | -              | GPIO40      | SRAM_A18       | UART1_RX | PWM2    | NAND_CE#3 |           |  |
| URT0_DSR | 81(U)          | -              | GPIO42      | SRAM_A20       | UART2_RX | CAN0_RX | I2C_SDA1  |           |  |
| URT0_DTR | 82(U)          | -              | GPIO43      | SRAM_A21       | UART2_TX | CAN0_TX | I2C_SCL1  |           |  |
| URT0_DCD | 83(U)          | -              | GPIO44      | SRAM_A22       | UART3_RX | CAN1_RX | I2C_SDA2  |           |  |
| URT0_RI  | 84(U)          | -              | GPIO45      | SRAM_A23       | UART3_TX | CAN1_TX | I2C_SCL2  |           |  |
| PWM1     | 77(A)<br>85(U) | -              | GPIO92      |                |          |         |           |           |  |
| PWM0     | 78(A)<br>86(U) | -              | GPIO06      | CAMCLKOUT      |          |         |           |           |  |
| SPI0 CS2 | 79(A)          | _              | GPIO83      | Sdio Dat3      |          |         |           |           |  |
| CORE_VSS | 80(A)<br>88(U) | 50             |             | _              |          |         |           |           |  |
| ADC_REXT | 81(A)          | -              |             |                |          |         |           |           |  |
| ADC_VREF | 82(A)          | -              |             |                |          |         |           |           |  |
| ADC_VDDA | 83(A)          | -              |             |                |          |         |           |           |  |
| ADC_VSSA | 84A)           | -              |             |                |          |         |           |           |  |
| <u> </u> |                | •              |             | •              | •        | •       | •         | •         |  |



| ADC_D0 | 85(A) | _ |  |  |  |  |
|--------|-------|---|--|--|--|--|
| ADC_D1 | 86(A) | - |  |  |  |  |
| ADC_XP | 87(A) | - |  |  |  |  |
| ADC_YP | 88(A) | - |  |  |  |  |

| BANK2     |     |    |        |           |          |         |           |                         |      |
|-----------|-----|----|--------|-----------|----------|---------|-----------|-------------------------|------|
| SPIO_CS3  | 89  | -  | GPI084 | CAMCLKOUT |          |         |           | UART10_RX/<br>UART8_DSR |      |
| SPIO-MISO | 90  | 51 | GPI080 | SdioCmd   |          |         |           | UART4_RX/<br>UART0_CTS  |      |
| SPIO_MOSI | 91  | 52 | GP1079 | Sdio_Dat0 |          |         |           | UART4_TX/<br>UART0_RTS  |      |
| SPIO_CSO  | 92  | 53 | GPI081 | Sdio_Dat1 |          |         | SDRAM_CS1 | UART5_RX/<br>UART0_DSR  |      |
| SPIO_CS1  | 93  | -  | GPI082 | Sdio_Dat2 |          |         |           | UART10_TX/<br>UART8_DTR |      |
| SPI_CLK   | 94  | 54 | GPI078 | Sdio-clk  |          |         |           | UART5_TX/<br>UART0_DTR  |      |
| EJTAG_SEL | 95  | 55 | GPI000 | CAMCLKOUT | I2C—SDA0 | CANOX   | UART3_RX  | SDRAM_CS1               | GPI0 |
| EJTAG_TCK | 96  | 56 | GPI001 | CAMPCLKIN | I2C_SCL0 | CANOTX  | UART3_TX  |                         | GPI0 |
| EJTAG_TMS | 97  | 57 | GPI004 | CAMDATA1  | I2C—SDA2 | PWMO    | UART2_RX  |                         | GPI0 |
| EJTAG_TDO | 98  | 58 | GPI003 | CAMHSYNC  | I2C_SCL1 | CAN1_TX | UART1_TX  |                         | GPI0 |
| EJTAG_TDI | 99  | 59 | GPI002 | CAMVSYNC  | I2C_SDA1 | CAN1_RX | UART1_RX  |                         | GPI0 |
| EJTAG_RST | 100 | 60 | GPI005 | CAMDATAO  | I2C—SCL2 | PWM1    | UART2—TX  |                         | GPI0 |
| CORE_VDD  | 101 | 61 |        |           |          |         |           |                         |      |
| IOVDD     | 102 | 62 |        |           |          |         |           |                         |      |
| CAMDATA7  | 103 | _  | GPI057 |           | LCD_R2   | CAN1TX  | I2C_SCL2  | UART7_RX                |      |



| CAMDATA6 | 104 | _ | GPI056 | LCD_R1 | CAN1_RX   | I2C_SDA2 | UART7_TX               |  |
|----------|-----|---|--------|--------|-----------|----------|------------------------|--|
| CAMDATA5 | 105 | - | GPI055 | LCD_R0 | CANO_TX   | I2C_SCL1 | UART8_RX               |  |
| CAMDATA4 | 106 | - | GPI054 | LCD_G1 | CANO_RX   | I2C_SDA1 | UART8_TX               |  |
| CAMDATA3 | 107 | _ | GPI053 | LCD_G0 | CAMCLKOUT | PWM3     | UART9_RX/<br>UART8 CTS |  |

| CAMDATA2  | 108 | -  | GPIO52  |           | LCD_B2                                 | SPI1_CS3          | PWM2     | UART9_TX/  |
|-----------|-----|----|---------|-----------|----------------------------------------|-------------------|----------|------------|
|           |     |    |         |           |                                        |                   |          | UART8_RTS  |
| CAMDATA1  | 109 | -  | GPIO51  |           | LCD_B1                                 | SPI1_CS2          | I2C_SCL2 | UART10_RX/ |
|           |     |    |         |           |                                        |                   |          | UART8_DSR  |
| CAMDATA0  | 110 | -  | GPIO50  |           | LCD_B0                                 | SPI1_CS1          | I2C_SDA2 | UART10_TX/ |
|           |     |    |         |           |                                        |                   |          | UART8_DTR  |
| CORE_VSS  | 111 | 63 |         |           |                                        |                   |          |            |
| CAMHSYNC  | 112 | -  | GPIO49  |           | NAND_RDY3                              | SPI1_CS0          | I2C_SCL1 | UART11_RX/ |
|           |     |    |         |           |                                        |                   |          | UART8_DCD  |
| CAMVSYNC  | 113 | -  | GPIO48  |           | NAND_CE#3                              | SPI1_MOSI         | I2C_SDA1 | UART11_TX/ |
|           |     |    |         |           |                                        |                   |          | UART8_RI   |
| CAMCLKOUT | 114 | -  | GPIO47  | SRAM_A25  | NAND_RDY2                              | SPI1_MISO         | PWM3     | UART6_RX/  |
|           |     |    |         |           |                                        |                   |          | UARTO_DCD  |
| CAMPCLKIN | 115 | -  | GPIO46  | SRAM_A24  | NAND_CE#2                              | SPI1_CLK          | PWM2     | UART6_TX/  |
|           |     |    |         |           |                                        |                   |          | UARTO_RI   |
| NAND_7    | 116 | 64 | GPIO20  | SPI1_CS1/ | MAC_MDIO                               | CAMDATA0          | I2C_SCL2 |            |
|           |     |    |         | Sdio_Dat2 |                                        |                   |          |            |
| NAND_6    | 117 | 65 | GPIO19  | SPI1_CS2/ | MAC_MDC                                | CAMDATA1          | I2C_SDA2 |            |
|           | 110 |    | CDI 010 | Sdio_Dat3 | ************************************** | G + 3 (F) + F + 2 | DIVID (0 |            |
| NAND_5    | 118 | 66 | GPIO18  | UART1_TX  | UART3_TX                               | CAMDATA2          | PWM2     |            |
| NAND_4    | 119 | 67 | GPIO17  | UART1_RX  | UART3_RX                               | CAMDATA3          | PWM3     |            |
| NAND_3    | 120 | 68 | GPIO16  | SPI1_CS0/ | CAN1_TX                                | CAMDATA4          | I2S_LRCK |            |
|           |     |    |         | Sdio_Dat1 |                                        |                   |          |            |



| NAND_2    | 121 | 69 | GPIO15 | SPI1_MOSI/<br>Sdio Dat0 | CAN1_RX   | CAMDATA5 | I2S_DO    |                        |      |
|-----------|-----|----|--------|-------------------------|-----------|----------|-----------|------------------------|------|
| NAND_1    | 122 | 70 | GPIO14 | SPI1_MISO/<br>Sdio Cmd  | CAN0_TX   | CAMDATA6 | I2S_BCLK  |                        |      |
| NAND_0    | 123 | 71 | GPIO13 | SPI1_CLK/<br>Sdio_clk   | CAN0_RX   | CAMDATA7 | I2S_MCLK  |                        | GPIO |
| CORE_VDD  | 124 | 72 |        | _                       |           |          |           |                        |      |
| SYS_RST_  | 125 | 73 |        |                         |           |          |           |                        |      |
| JTAG_SEL  | 126 | 74 |        |                         |           |          | SDRAM_CS1 | UART6_TX/<br>UARTO RI  |      |
| NAND RDY  | 127 | -  | GPIO07 |                         |           |          |           |                        |      |
| NAND_CLE  | 128 | -  | GPIO08 |                         |           |          |           |                        | GPI0 |
| NAND ALE  | 129 | -  | GPIO09 |                         |           |          |           |                        | GPI0 |
| NAND RD#  | 130 | -  | GPIO10 |                         |           |          |           |                        | GPI0 |
| IO VDD    | 131 | 75 |        |                         |           |          |           |                        |      |
| NAND CE#  | 132 | -  | GPIO11 |                         |           |          |           |                        | GPI0 |
| BANK3     |     |    |        |                         |           |          |           |                        |      |
| NAND_WR#  | 133 | -  | GPIO12 |                         |           |          |           |                        | GPI0 |
| MAC_TXCTL | 134 | 76 | GPIO21 | I2S_MCLK                | NAND_CLE  | I2C_SDA2 | CAN0_RX   | UART8 RX               |      |
| MAC_TXD0  | 135 | 77 | GPIO23 | I2S_DO                  | NAND_ALE  | UART0_RX | CAN1_RX   | UART4_RX/              |      |
| MAC_TXD1  | 136 | 78 | GPIO24 | I2S_LRCK                | NAND_WR#  | UART0_TX | CAN1_TX   | UARTO_CTS UART4_TX/    |      |
|           |     |    |        |                         |           |          |           | UARTO_RTS              |      |
| MAC_RXER  | 137 | 79 | GPIO25 | I2S_DI                  | NAND_RDY0 | I2C_SDA1 | CAMCLKOUT | UART5_RX/              |      |
|           |     |    |        |                         |           |          |           | UARTO_DSR              |      |
| MAC_RX_DV | 138 | 80 | GPIO26 | SPI1_CS3                | NAND_CE#0 | I2C_SCL1 | CAMPCLKIN | UART5_TX/<br>UART0_DTR | GPI0 |
| MAC_RXD0  | 139 | 81 | GPIO27 | I2C_SDA                 | PWM2      | UART2_RX | CAMVSYNC  | UART6_RX/<br>UART0_DCD | GPI0 |
| MAC_RXD1  | 140 | 82 | GPIO28 | I2C_SCL                 | PWM3      | UART2_TX | CAMHSYNC  | UARTO_DCD UART6_TX/    | GPIO |



|                       |     |    |        |          |           |          |                         | UARTO_RI                |      |
|-----------------------|-----|----|--------|----------|-----------|----------|-------------------------|-------------------------|------|
| MAC_MDC               | 141 | -  | GPIO29 | CAMDATA7 | NAND_CE#1 | PWM2     | I2C_SCL1                | UART8_TX                | GPI0 |
| CORE_VSS              | 142 | -  |        |          |           |          |                         |                         |      |
| MAC_MDIO              | 143 | -  | GPIO30 | CAMDATA6 | NAND_RDY1 | LCD_B0   | I2C_SDA1                |                         | GPI0 |
| MAC_RXD2              | 144 | -  | GPIO31 | CAMDATA5 | NAND_CS#2 | LCD_B1   | CAN1_RX                 | UART11_RX/<br>UART8_DCD | GPI0 |
| MAC_TXD2              | 145 | -  | GPIO32 | CAMDATA4 | NAND_RDY2 | LCD_B2   | CAN1_TX                 | UART11_TX/<br>UART8_RI  |      |
| MAC_RXD3              | 146 | -  | GPIO33 | CAMDATA3 | UART3_RX  | LCD_G0   | SPI1_CLK/<br>Sdio_clk   |                         |      |
| MAC_TXD3              | 147 | -  | GPIO34 | CAMDATA2 | UART3_TX  | LCD_G1   | SPI1_MISO/<br>Sdio_Cmd  |                         |      |
| MAC_TXC               | 148 | 83 | GPIO22 | I2S_BCLK | NAND_RD#  | I2C_SCL2 | CANO_TX                 | SDRAM_CS1               |      |
| MAC_COL               | 149 | -  | GPIO36 | CAMDATA0 | UART2_RX  | LCD_R1   | SPI1_CS0/<br>Sdio_Dat1  |                         |      |
| MAC_RXC               | 150 | -  | GPIO37 | PWM3     | UART2_TX  | LCD_R2   | SPI1_CS1/<br>Sdio_Dat2  |                         |      |
| MAC_CRS<br>(ONLY_MII) | 151 | -  | GPIO35 | CAMDATA1 | PWM1      | LCD_R0   | SPI1_MOSI/<br>Sdio_Dat0 |                         |      |
| CORE_VDD              | 152 | -  |        |          |           |          |                         |                         |      |
| OTG_DVSS              | 153 | 84 |        |          |           |          |                         |                         |      |
| OTG_DVDD              | 154 | 85 |        |          |           |          |                         |                         |      |
| OTG_DVDD33            | 155 | 86 |        |          |           |          |                         |                         |      |
| OTG_DVSS33            | 156 | 87 |        |          |           |          |                         |                         |      |
| OTG_DM                | 157 | 88 |        |          |           |          |                         |                         |      |
| OTG_DP                | 158 | 89 |        |          |           |          |                         |                         |      |
| OTG_REXT              | 159 | 90 |        |          |           |          |                         |                         |      |
| OTG_VBUS              | 160 | 91 |        |          |           |          |                         |                         |      |
| OTG_ID                | 161 | 92 |        |          |           |          |                         |                         |      |
| CORE_VSS              | 162 | 93 |        |          |           |          |                         |                         |      |
| USB_DVSS              | 163 | -  |        |          |           |          |                         |                         |      |



|             |     |     |  | • | 1 |  |  |
|-------------|-----|-----|--|---|---|--|--|
| USB_DVDD    | 164 | -   |  |   |   |  |  |
| USB_DVDD33  | 165 | _   |  |   |   |  |  |
| USB_DVSS33  | 166 | -   |  |   |   |  |  |
| USB_REXT    | 167 | -   |  |   |   |  |  |
| HOST_DM     | 168 | -   |  |   |   |  |  |
| HOST_DP     | 169 | -   |  |   |   |  |  |
| PLL_VSS12   | 170 | 94  |  |   |   |  |  |
| PLL_VDD12   | 171 | 95  |  |   |   |  |  |
| PLL_VSS33   | 172 | 96  |  |   |   |  |  |
| PLL_VDD33   | 173 | 97  |  |   |   |  |  |
| RTC_CLK_O   | 174 | 98  |  |   |   |  |  |
| RTC_CLK_I   | 175 | 99  |  |   |   |  |  |
| RTC_VR_VDDA | 176 | 100 |  |   |   |  |  |

Table 9-2 1 Multiplexing relationship table of 1C1 pin 3-6

| NAME      | PIN_NO | PIN_NO | GPIO   | The first    | The second   | The third    | The fourth   | The fifth    |
|-----------|--------|--------|--------|--------------|--------------|--------------|--------------|--------------|
|           | QFP176 | QFP100 |        | multiplexing | multiplexing | multiplexing | multiplexing | multiplexing |
| LCD_CLK   | 3      | 3      | GPIO76 | SPI0_CS1/    | UART0_RX     | PWM2         | I2C_SDA1     |              |
| PIX_CLK   |        |        |        | Sdio_Dat2    |              |              |              |              |
| LCD_HSYNC | 4      | -      | GPIO74 |              |              |              |              |              |
| LCD_VSYNC | 5      | -      | GPIO75 |              |              |              |              |              |
| LCD_EN    | 6      | 4      | GPIO77 | SPI0_CS2/    | UART0_TX     | PWM3         | I2C_SCL1     |              |
|           |        |        |        | Sdio_Dat3    |              |              |              |              |