Finna Ace this Bih

Simple Linear Regression

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i$$

where \hat{Y}_i are the fitted values, and

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

 β_1 is the change in the mean of Y_i for a 1 unit increase in x_i , β_0 is the

$$S_{XX} = \sum (x_i - \bar{x})^2$$
, $S_{YY} = \sum (y_i - \bar{y})^2$, $S_{XY} = \sum (x_i - \bar{x})(y_i - \bar{y})$

Estimating σ^2

The larger σ^2 , the more dispersed the points will be around the line, i.e.

- 1) Standard deviation of $\hat{\beta}_1$: $\sigma_{\hat{\beta}_*} = \sqrt{var(\hat{\beta}_1)} = \sigma/\sqrt{S_{XX}}$
- 2) Variance of residuals: $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \frac{SSE}{n-2}$
- 3) $SSE = S_{YY} \hat{\beta}_1 S_{XY}$

4)
$$\hat{\sigma}_{\hat{\beta}_1} = \hat{\sigma}/\sqrt{S_{XX}}$$
, and $S_{XX} = \left(\frac{\hat{\sigma}}{\hat{\sigma}_{\hat{\beta}_1}}\right)^2$

Inference about β_1

- 1) When the error terms are normal, $\hat{\beta}_1 \sim \mathcal{N}(\beta_1, \sigma^2/S_{XX})$
- 2) $\mathcal{H}_0: \beta_1 = 0$ vs $\mathcal{H}_a: \beta_1 \neq 0$

$$T_{obs} = \frac{\hat{\beta}_1}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{S_{XX}}}, \quad RR = \{T_{obs} > t_{\alpha/2,n-2}\}$$

- 3) Could get same conclusion from p-value, which illustrates the probability that our results occurred under \mathcal{H}_0 . That is, the probability that $F > \mathcal{F}$ under \mathcal{H}_0 .
- 4) Confidence interval for β_1 : $\hat{\beta}_1 \pm t_{n-2,\alpha/2} \frac{\hat{\sigma}}{\sqrt{S_{XY}}}$.

$$SS_{reg} = S_{YY} - SSE = \sum (y_i - \bar{y})^2 - \sum (y_i - \hat{y}_i)^2 = \sum (\hat{y}_i - \bar{y})^2$$

$$T \sim t_v, \quad T^2 \sim \mathcal{F}(1, v)$$
Source df SS MS F p-value
$$Model \quad 1 \quad SS_{reg} \quad MST = SS_{reg}$$
Error $n-2 \quad SSE \quad MSE = \frac{SSE}{n-2}$

$$Total \quad n-1 \quad S_{YY}$$

lm summary table 1) t-value (slope): $T_{obs} = \frac{\hat{\beta}_1}{\hat{\sigma}\hat{\beta}_1}$,

- Std error (slope) : σ̂_{β̂1}
- 3) F-statistic : T_{obs}^2 ,
- 4) Residual std error: ô

Correlation

- 1) corr(X,Y) = corr(Y,X)
- 2) (Pearson's correlation) $r = S_{XY} / \sqrt{S_{XX}S_{YY}}$ is an estimator for ρ (the true pop. correlation). It measures the linear association between
- 3) $(1-\alpha)100\%$ confidence interval for ρ : transform r to $z=0.5\ln(\frac{1+r}{1-r})$.

Build an interval: $z \pm \frac{z_{\alpha/2}}{\sqrt{n-3}} = (c_l, c_u)$, where $z_{\alpha/2}$ is from the standard

Normal table. Then, the interval is $\left(\frac{e^{2c}L-1}{e^{2c}L+1}, \frac{e^{2c}U-1}{e^{2c}U+1}\right)$

4) Coefficient of determination: $R^2 = 1 - SSE/S_{VV}$

Estimating response

- 1) Mean response confidence interval:
- $\hat{y}_0 \pm t_{n-2,\alpha/2} \hat{\sigma} \sqrt{1/n + (x_0 \bar{x})^2/S_{XX}}$
- 2) Individual value Y₀ confidence interval:
- $\hat{y}_0 \pm t_{n-2,\alpha/2} \hat{\sigma} \sqrt{1 + 1/n + (x_0 \bar{x})^2/S_{XX}}$

Residual Analysis

We estimate error terms $\epsilon_1,...,\epsilon_n$ with residuals $\hat{\epsilon}_1,...,\hat{\epsilon}_n$, where $\hat{\epsilon}_i = y_i - \hat{y}_i$. It is recommended that we use the studentized residuals: $\hat{\epsilon}_i^{std} = \hat{\epsilon}_i/\hat{\sigma}$

- 1) Assumptions: ϵ_i are independent,
- $E(\epsilon_i) = 0$, $var(\epsilon_i) = \sigma^2$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- 2) Check Normality with QQ plot and histogram of the studentized residuals, which have mean 0, std dev 1, all residuals should lie within 3 std deviations
- 3) Check $E(\epsilon_i) = 0$ and $var(\epsilon_i) = \sigma^2$ (homoscedasticity) by plotting studentized residuals against fitted values. Points should have equal variance and zero mean, i.e. evenly distributed.

Polynomial Regression

 $Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + ... + \beta_p x_i^p \epsilon_i$, not all intermediate powers need

Higher-order terms are specified using the $I(\cdot)$ function in R.

- 1. Test that the quadratic term is zero: $H_0: \beta_2 = 0$.
- 2. If rejected, use linear and quadratic terms in model.
- 3. If not rejected, there is no evidence that the quadratic model gives
- significant improvement over the linear model.

Multiple Regression (2+ covariates)

 $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i$

The model is linear in the parameters (β_i) , not necessarily in the covariates (x_i) . Same assumptions are made about the residuals. β_i is the change in the mean of Y_i for a 1 unit increase of x_{ij} after adjusting for all other variables in the model.

- 1) $\hat{\sigma}^2 = (n-(K+1))^{-1} \sum (y_i \hat{y}_i)^2 = SSE/(n-(K+1))$ where (K+1) is the number of coefficients β_i in the model.
- 2) Can test each coefficient individually with same hypothesis as in simple regression. In which case, we test for e.g. β_i after adjusting for all other variables.
- 3) Confidence interval for β_j : $\hat{\beta}_j \pm t_{n-(K+1),\alpha/2} \cdot \hat{\sigma}_{\hat{\beta}_i}$
- 4) Global Fit: $R_a^2 = 1 \frac{n-1}{n-(K+1)} \left(\frac{SSY}{SYY}\right) = 1 \frac{n-1}{n-K-1} (1-R^2)$ $\mathcal{H}_0: \beta_1 = \beta_2 = \ldots = 0$ $\mathcal{H}_a:$ at least one $\beta_j \neq 0$

$$F = \frac{(S_{YY} - SSE)/K}{SSE/(n - (K + 1)} = \frac{R^2/K}{(1 - R^2)/(n - (K + 1))} = \frac{MSR}{MSE}$$

$$RR = \{F > \mathcal{F}_{\alpha | K | n - (K + 1)}\}$$

Interaction

if an interaction is suspected between X_1 and X_2 , we incorporate the interaction by setting $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$ $\beta_0 + \beta_1 x_{i1} + (\beta_2 + \beta_3 x_{i1}) x_{i2} + \epsilon_i = \beta_0 + (\beta_1 + \beta_3 x_{i2}) x_{i1} + \beta_2 x_{i2} + \epsilon_i$ In the above model, a 1-unit increase in x_2 for a fixed x_1 corresponds to an estimated $\hat{\beta}_2 + \hat{\beta}_3 x_1$ increase in Y_i .

- 1) Fit the model including the covariates and interaction.
- 2) Conduct a global F-test with $\mathcal{H}_0: \beta_1 = \beta_2 = \beta_3 = 0$
- 3) If rejected, test for an interaction by using a Student t-test to test $\mathcal{H}_0: \beta_3 = 0$. If rejected, stop. Otherwise, re-fit the model without the interaction

Set $Z_i = 0 \ \forall i$ for reference group and $Z_i = \begin{cases} 1 & \text{if condition i} \\ 0 & \text{otherwise} \end{cases}$

$$Y_i = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \epsilon_i$$

Where $\hat{\beta}_0 = \mu_0$, $\hat{\beta}_1 = \mu_1 - \mu_0$, and $\hat{\beta}_2 = \mu_2 - \mu_0$, and $\mathcal{H}_0: \beta_1 = \beta_2 = 0 \iff \mathcal{H}_0: \mu_2 = \mu_1 = \mu_0$, $\mathcal{H}_a: \geq 1$ $\beta_i \neq 0$ Qualitative and quantitative:

The model is $Y_i = \beta_0 + \beta_1 z_i + \beta_2 x_i$.

- 1) $z_i = 0$: $Y_i = \beta_0 + \beta_2 x_i$
- 2) $z_i = 1$: $Y_i = \beta_0 + \beta_1 + \beta_2 x_i$

So the slope is the same, only y-intercept changes.

Interaction: $Y_i = \beta_0 + \beta_1 z_i + \beta_2 x_i + \beta_3 z_1 x_i$. Then, slopes vary:

- 1) $z_i = 0$: $Y_i = \beta_0 + \beta_2 x_i$
- 2) $z_i = 1$: $Y_i = \beta_0 + \beta_1 + (\beta_2 + \beta_3)x_i$

Where $\beta_1 + \beta_3 x_i$ is the difference in Y between $z_i = 1$ and $z_i = 0$. Should always test for existence of an interaction. If no evidence to reject \mathcal{H}_0 of no interaction, must re-fit model without interaction. If evidence of interaction, slopes are different and interpret the results accordingly.

Comparing Nested Models

 M_0 and M_1 are nested models if one contains a subset of the other. $M_0 = \beta_0 + ... + \beta_g x_g, M_1 = M_0 + \beta_{g+1} x_{g+1} + ... + \beta_k x_k$

$$\mathcal{H}_0: \beta_{q+1}x_{q+1} = \dots = \beta_k x_k = 0 \quad \mathcal{H}_a: \text{ at least } 1 \ \beta_i \neq 0$$

Note: we always have $SSE_{M_0} \ge SSE_{M_1}$.

1) $SSE_{M_0} - SSE_{M_1}$ large $\implies M_1$ explains more variance than just

 $2)SSE_{M_0} - SSE_{M_1}$ small \implies additional terms in M_1 don't contribute to model fit.

To determine how "large" the difference is:

$$F = \frac{(SSE_{M_0} - SSE_{M_1})/(k-g)}{SSE_{M_1}/(n-(k+1))}, \quad RR = \{F > \mathcal{F}(\alpha, k-g, n-(k+1))\}$$

Multicollinearity

When two covariates in a regression analysis are highly correlated with each other. The covariates "compete" for the explanatory power in the association with the response.

Multinomial Distribution

One qualitative variable C can take k possible values $\{c_1, ..., c_k\}$. Let X_i the # of times c_i occurs. The set of X_i has a multinomial

$$P(X_1 = n_1, ..., X_k = n_k) = \frac{n!}{n_1!...n_k!} p_1^{n_1} ... p_k^{n_k}$$

where $n_1 + ... + n_k = n$. $E(X_i) = np_i$.

Chi-square

 $\mathcal{H}_0: p_1 = p_1^*, ..., p_k = p_k^*$ $\mathcal{H}_a: p_i \neq p_i^*$ for at least one i Given by Pearson's chi-square statistic :

$$X_{obs}^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i}^{*})^{2}}{np_{i}^{*}} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Where O_i :=observed and E_i :=expected. Distribution of χ^2 under \mathcal{H}_0 is $\chi^2_{(k-1)}$, (k-1) := (deg. of freedom). Given α ,

 $RR=\{X_{obs}^2>\chi_{\alpha,(k-1)}^2\}$ and $p=Pr\{\chi_{(k-1)}^2>X_{obs}^2\}.$ Every expected count must be ≥ 5 for this test.

Contingency tables

-				
Y/X	1	2	 c	Total
1	n_{11}	n_{12}	 n_{1c}	$n_{1\bullet}$
2	n_{21}	n_{22}	 n_{2c}	$n_{2\bullet}$
r	n_{r1}	n_{r2}	 n_{rc}	$n_{r \bullet}$
Total	n • 1	$n_{\bullet 2}$	 $n_{\bullet c}$	n

 $n_{j\bullet} = n_{j1} + ... + n_{jc}, n_{\bullet k} = n_{1k} + ... + n_{rk}.$

 $n_{1\bullet} + \dots + n_{r\bullet} = n_{\bullet 1} + \dots + n_{\bullet c} = n$ (sum of all entries).

 $\mathcal{H}_0: X, Y$ independent vs $\mathcal{H}_a: X, Y$ not independent. The expected counts are given by $\hat{E}_{ik} = n\hat{p}_{i\bullet}\hat{p}_{\bullet k} = n_{i\bullet}n_{\bullet k}/n$, where $\hat{p}_{i\bullet} = n_{i\bullet}/n$,

$$X^{2} = \sum_{i=1}^{r} \sum_{k=1}^{c} \frac{(n_{jk} - \hat{E}_{jk})^{2}}{\hat{E}_{jk}}, \quad RR = \{X^{2} > \chi^{2}_{\alpha,(r-1)(c-1)}\}$$

Conditions: Must have expected cell count > 5 for all cells, counts represent a random sample from the population, observations be mutually independent and identically distributed.

Fisher's exact test

If expected cell count is not > 5 for all cells.

McNemar's test

Matched pairs experiments, e.g.

Response 1/2	Yes	No	Total
Yes	n_{11}	n_{12}	$n_1 \bullet$
No	n_{21}	n_{22}	$n_{2\bullet}$
Total	$n_{\bullet 1}$	$n_{\bullet 2}$	n

Want to test whether the proportions are the same in both responses, i.e. $\mathcal{H}_0: p_1 = p_2, \, \mathcal{H}_a: p_1 \neq p_2.$

$$Q_M = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}}, \qquad RR = \{Q_M > \chi^2_{\alpha, 1}\}$$

Non-Parametric statistics

Wilcoxon test

To test the hypothesis that the probability distributions of both pop. are equivalent $(D_0 = D_1)$.

Conditions: independent samples, cts distributions.

- 1) order together the observations from both samples
- 2) assign a rank to each, if equality, take average of ranks.
- 3) take sum of ranks of each group, let T the sum of sample with

 $\mathcal{H}_0: D_0 = D_1, \mathcal{H}_a: (T_U, T_L \text{ are table values}),$

- 1) D_1 left of D_2 : $RR = \{T \leq T_L\}$ if $T = T_1, \{T \geq T_U\}$ o.w.
- 2) D_1 right of D_2 : $RR = \{T \geq T_U\}$ if $T = T_1$, $\{T \leq T_L\}$ o.w.
- 3) D_1 either left or right of D_2 : $RR = \{T < T_L \text{ or } T > T_U\}$.

Normal approx. of Wilcoxon

If $n_1,n_2\geq 10$. $Z=\frac{T_1-(n_1(n_1+n_2+1)/2)}{\sqrt{n_1n_2(n_1+n_2+1)/12}}$, where T_1 sum of ranks corresponding to $D_1,\,n_i$ sample size. Then, $Z\sim\mathcal{N}(0,1)$ and, letting z_α

the value from normal table:

- (1) $RR = \{Z < -z_{\alpha}\}; p value = Pr(Z < Z_{obs})$
- (2) $RR = \{Z > z_{\alpha}\}; p value = Pr(Z > Z_{obs})$ (3) $RR = \{|Z| > z_{\alpha/2}\}; p value = 2 \times Pr(Z > |Z_{obs}|)$

Wilcoxon's signed rank test (for paired data)

Let $X_1, ..., X_n, Y_1, ..., Y_n$ random samples of paired observations. $Diff_1 = X_1 - Y_1, ..., Diff_n = X_n - Y_n$. Don't need normality of the

Conditions: The sample of differences is randomly selected from the population of differences. The probability distribution from which the sample is drawn is continuous.

- 1) order absolute values of differences, take out the zeros
- 2) rank the differences, ties handled as usual
- 3) let T_+ , T_- sum of ranks of positive and negative differences

 $\mathcal{H}_0: D_1 = D_2, \mathcal{H}_a:$ same as before, with T_0 table value:

- 1) $RR = \{T_{+} \leq T_{0}\}$ 2) $RR = \{T_{-} \leq T_{0}\}$
- 3) $RR = \{T \leq T_0\}$ where T = the smallest of T_-, T_+

Note: in the table values, n is the number of differences left after removal of the zeros.

Large sample Wilcoxon's signed rank test

If the number of pairs $n \geq 25$ (after excluding zeros), then

$$Z = \frac{T_+ - (n(n+1)/4)}{\sqrt{n(n+1)(2n+1)/24}}, Z \sim \mathcal{N}(0,1), RR$$
 same as 2 sections above.

Kruskal-Wallis test (CRD)

Def. (CRD): treatments are assigned randomly so that each experimental unit gets the same chance of receiving any one treatment. KW: Rank-based non-parametric test to test difference in distribution among > 2 groups.

Conditions: the K samples are random and independent, 5 or more measurements in each sample, the K probability distributions from which the samples are drawn are continuous.

 \mathcal{H}_0 : the k distributions are identical, \mathcal{H}_a : at least one differs.

- 1) Take ranks of observations, as if they belonged to the same group.
- 2) Let \overline{R}_i be the rank average of group j, $\overline{R} = (n+1)/2$ the overall avg. Under \mathcal{H}_0 , we expect $\overline{R}_1 \approx ... \approx \overline{R}_k$.

$$KW = \frac{12}{n(n+1)} \sum_{j=1}^{k} n_j (\overline{R}_j - \overline{R})^2 \qquad RR = \{KW > \chi^2_{\alpha,k-1}\}$$

Friedman test (RBD)

A matched set of B blocks are formed with each consisting of K experimental units. One experimental unit from each block is randomly assigned to each treatment. Special case: We have B subjects, each receives all K treatments. Each subject is a block and the experimental units are the repeat assessments on the same subject. Note: We should not give the subjects each treatment in the same order.

Conditions: Treatments are randomly assigned to the experimental units within the blocks, measurements can be ranked within blocks, K prob dist. from which the samples are drawn are continuous, B or K

- Rank the observations within blocks.
- R_i average of ranks within treatment j.

Total average of ranks is K(K+1)/2, under \mathcal{H}_0 , we expect $\overline{R}_1 \approx ... \approx \overline{R}_K$.

$$F_r = \frac{12B}{K(K+1)} \sum_{j=1}^{K} (\overline{R}_j - \overline{R})^2$$
 $RR = \{F_r > \chi^2_{\alpha, K-1}\}$

Spearman's rank correlation coefficient

Measures the linear association between the ranks of the values. Consider n mutually indep. and indentically distributed pairs of variables $(X_1, Y_1), \dots, (X_n, Y_n)$.

Condition: Random samples from continuous prob dist.

- Rank the observations within X : u_i and Y : v_i
- 2) if no ties in both, $r_s = 1 \frac{6}{n(n^2-1)} \sum_{i=1}^{n} (v_i u_i)^2$
- 3) else, $r_s = \frac{SS_{uv}}{\sqrt{SS_{uu}SS_{vv}}}$, where $SS_{uv} = \sum (u_i \bar{u})(v_i \bar{v})$ A confidence interval for ρ is built the same way as earlier.

To test the equality of means in K populations.

 $\mathcal{H}_0: \mu_1 = \ldots = \mu_K = \mu, \mathcal{H}_a:$ at least one differs. Conditions: homoscedasticity $(\sigma_1^2 = \ldots = \sigma_k^2)$, normally distributed response.

Let $\overline{Y}_k = 1/n_k(Y_{k1} + \ldots + Y_{kn_k}) = \hat{\mu}_k, \, \hat{\mu} = \overline{Y}.$ $SSE = \sum_{k=1}^K \sum_{i=1}^{n_k} (Y_{ki} - \overline{Y}_k)^2 = \sum_{k=1}^K (n_k - 1)S_k^2, \text{ where } S_k^2 \text{ the sample variance in group k, } SST = \sum_{k=1}^K n_k (\hat{\mu}_k - \hat{\mu})^2.$

$$F = \frac{MST}{MSE} = \frac{SST/(K-1)}{SSE/(n-K)}, \quad RR = \{F > \mathcal{F}_{\alpha,K-1,n-K}\}$$

Source	$^{\mathrm{df}}$	SS	MS	F	p-value
Treat	K-1	SST	MST	MST MSE	$P\left(\mathcal{F}_{K-1,n-K} > F\right)$
Error	n - K	SSE	MSE		
Total	n-1	SS_{tot}	= SSE	+SST	

Comparing means

Student t-test for means

Estimates the true difference between two group means. $100(1-\alpha)\%$ CI for the mean difference:

$$(\overline{Y}_i - \overline{Y}_j) \pm t_{\alpha/2, n_i + n_j - 2} \sqrt{S_p^2/n_i + S_p^2/n_j}$$

where $S_p^2 = \frac{(n_i-1)S_i^2 + (n_j-1)S_j^2}{n_i + n_j}$ is the pooled variance.

Want to compare differences between groups two at a time to see how different they are. Assume equal var, normality. Conf. int for diff. in

means:
$$(\bar{Y}_i - \bar{Y}_j) \pm t_{(\alpha/2, n-K)} \sqrt{MSE/n_i + MSE/n_j}$$

Bonferroni: if we want an experiment-wise error α_E , then should take comparison-wise error α_E/C where C is the # of comparisons. Turkey's HSD: all groups of equal size, only pair-wise comp. Scheffe's: for linear comb. of means : $\mu_1 + \mu_2 - \mu_3$

ANOVA for RBD

Conditions: B blocks are randomly selected, K treatments are randomly assigned to experimental units within blocks, prob dist. of responses for each BK block-treatment combination is approximately Normal, the BK block-treatment prob dist. have equal variances. Note: SST and SS_{Tot} stay the same whether the blocks are included or not.

Source	df	SS	MS	F
Treat	K-1	SST	$MST = \frac{SST}{K-1}$	MST MSE
Blocks	B-1	SSB	$MSB = \frac{SSB}{B-1}$	MSB MSE
Error	n - K - B + 1	SSE	$MSE = \frac{\overline{SSE}}{n - K - B + 1}$	
Total	n-1	SS_{Tot}	•	

Anova F-test (treat): $\mathcal{H}_0: \mu_1 = ... = \mu_k, \mathcal{H}_a: \geq 1$ differs.

$$F = \frac{SST/(K-1)}{SSE/(n-K-B+1)} = \frac{MST}{MSE}, RR = \{F > \mathcal{F}_{\alpha,K-1,n-K-B+1}\}$$

Anova F-test (block): same as above, but with the means within blocks. Replace SST with SSB, (K-1) with (B-1). SSB is the same as SST, but within blocks. If \mathcal{H}_0 rejected, proceed with MC of means.

2-way ANOVA

To explore effect of two factors A and B on a response variable. A: J levels, B: K levels. R replications for each of the $J \times K$ combinations: total observations is $n = J \times K \times R$. Let Y_{ikr} the response val. for factors A: lvl j, B: lvl k, replication r. That is, r^{th} rep. within treat.

- 1) test interaction between A & B. If \mathcal{H}_0 : no interaction is rejected: use MC to compare pairs of treatments.
- else test for main effect of A (resp. B). If evidence of main effect, use MC for pairs within A (resp. B) only.

$$\begin{array}{l} SST = R \sum_{j=1}^{J} \sum_{k=1}^{K} (\overline{Y}_{jk\bullet} \overline{Y})^2, \ SSA = RK \sum_{j=1}^{J} (\overline{Y}_{j\bullet\bullet} - \overline{Y})^2, \\ SSB = RJ \sum_{k=1}^{K} (\overline{Y}_{\bullet \bullet\bullet} - \overline{Y})^2, \ SS(AB) = SST - SSA - SSB, \ \text{where} \\ \overline{Y} \ \text{the overall mean.} \ The sample variance for } (j,k) \ \text{is} \end{array}$$

$$_{jk}^{2} = \frac{1}{R-1} \sum_{r=1}^{R} (Y_{jkr} - \overline{Y}_{jk\bullet})^{2},$$

If the overall mean. In example variance for
$$(j,k)$$
 is $S_{jk}^2 = \frac{1}{R-1} \sum_{r=1}^R (Y_{jkr} - \overline{Y}_{jk\bullet})^2$, $SSE = \sum_{j,k,r=1}^{J,K,R} (Y_{jkr} - \overline{Y}_{jk\bullet})^2 = (R-1) \sum_{j,k=1}^{J,K} S_{jk}^2$

Source	df	SS	MS	F
A	J-1	SSA	$MSA = \frac{SSA}{J-1}$	MSA MSE
В	K-1	SSB	$MSB = \frac{SSB}{B-1}$	MSE MSB MSE
AB	(J-1)(K-1)	SS(AB)	$\frac{SS(AB)}{(J-1)(K-1)}$	$\frac{MS(AB)}{MSE}$
Error	n - JK	SSE	$MSE = \frac{SSE}{n - JK}$	
Total	n-1	SS_{Tot}		

 \mathcal{H}_0 : Factors A and B don't interact, \mathcal{H}_a : they do.

$$F = \frac{MS(AB)}{MSE}, \qquad RR = \{F > \mathcal{F}_{\alpha,(J-1)(K-1),n-JK}\}$$

If \mathcal{H}_0 of no interaction is not rejected. \mathcal{H}_0 : No difference among the J population mean responses due to factor A, \mathcal{H}_a : At least two of the

$$F = \frac{SSA/(J-1)}{SSE/(n-JK)} = \frac{MSA}{MSE}, \quad RR = \{F > \mathcal{F}_{\alpha,J-1,n-JK}\}$$

Conditions: Random and independent samples of experimental units are associated with each treatment, prob dist. of responses for each JKtreatment is approximately Normal, JK factor-level combination (treatment) probability distributions have equal variances.

Steps for HT on Final

- 1) Hypotheses clearly defined. Including explanation of the parameters involved.
- 2) Observed test statistics:

If not provided in an output: Show complete work used to get the value.

- If provided in an output: only write the number E.g. $F_{obs} = ...$
- 3) If no p-value is provided: Compute a Rejection Region. Write it as a region, specify the alpha, df, etc. and the final table value.

If a p-value is provided in a output: only write the p-value.

4) Decision: say whether or not you reject Ho, and mention the alpha, justify the decision:

If the decision is taken from a computed RR, then say, E.g. Since $F_{obs} = 14.3 > 4.46$ then ...

If a p-value is provided from an output, then say, E.g. Since $p-value=\ldots>\alpha$ then \ldots

5) Conclusion.

Write a conclusion in the context of the question. No more than 2 sentences