Gyakorló feladatok:
Szoftver-modellellenőrzés absztrakcióval.
Modellezés Petri-hálókkal.
Petri-hálók tulajdonságai.
Színezett Petri-hálók.

Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Absztrakt állapottér szoftver-modellellenőrzéshez

- Rajzolja le a jobb oldali programrészlethez tartozó Control Flow Automaton (CFA) modellt!
 - A vezérlési helyeket a programsorokhoz írt sorszámokkal (0, 1, 2, ...) azonosítsa.
- x: int
 0: x = 0
 1: while (x < 5) {
 2: x = x + 1
 }
 3: assert (x <= 5)
- Az assert megsértése esetére vegyen fel egy err címkéjű vezérlési helyet, a jó végállapothoz egy end címkéjű vezérlési helyet.
- Rajzolja fel az absztrakt állapotteret, ha vezérlési hely absztrakciót alkalmazunk.
- Rajzolja fel az absztrakt állapotteret
 (az elérhető absztrakt állapotokat),
 ha CFA modellellenőrzésére vezérlési hely és predikátum
 absztrakciót alkalmazunk, ez utóbbihoz egyetlen (x <= 5)
 predikátumot használunk.

Absztrakt állapottér szoftvermodellellenőrzéshez – Megoldás

- CFA modell: Balra lent
- Vezérlési hely absztrakció: Ld. CFA struktúra
- Vezérlési hely és predikátum absztrakció:

Absztrakt állapottér szoftvermodellellenőrzéshez – Megoldás

- CFA modell: Balra lent
- Vezérlési hely absztrakció: Ld. CFA struktúra
- Vezérlési hely és predikátum absztrakció:

Absztrakt állapottér szoftvermodellellenőrzéshez – Megoldás

- CFA modell: Balra lent
- Vezérlési hely absztrakció: Ld. CFA struktúra
- Vezérlési hely és predikátum absztrakció:
- x: int
 0: x = 0
 1: while (x < 5) {
 2: x = x + 1
 }
 3: assert (x <= 5)

Szoftver-modellellenőrzés absztrakcióval

- Rajzolja le a programrészlethez tartozó Control Flow Automaton (CFA) modellt!
 - A vezérlési helyeket a programsorokhoz írt sorszámokkal (0, 1, 2) azonosítsa.
- y: int
 0: if !((y mod 2) ==0) {
 1: y := 2*y;
 }
 2: assert((y mod 2) == 0);
- Az assert megsértése esetére vegyen fel egy err címkéjű vezérlési helyet, a jó végállapothoz egy end címkéjű vezérlési helyet.
- A CFA modellellenőrzésére vezérlési hely és predikátum absztrakciót alkalmazunk, ez utóbbihoz egyetlen (y > 0) predikátumot használunk.
 Mik lehetnek az absztrakt állapottérben a kezdőállapotok (vezérlési hely, predikátumérték) alakban megadva, ha a program indulásakor az y egész értékű változó tetszőleges lehet?
- Hamis ellenpéldának tekinthető-e az err vezérlési hely eléréséhez az absztrakt állapottérben található (0, true) → (2, true) → (err, true) útvonal?

Szoftver-modellellenőrzés absztrakcióval – Megoldás

 Rajzolja le a Control Flow Automaton (CFA) modellt!

```
y : int
0:    if !((y mod 2) ==0) {
1:         y := 2*y;
    }
2:    assert((y mod 2) == 0);
```

- Megoldás: Ld. jobbra
- Az (y > 0) predikátumot használjuk.
 Mik lehetnek az absztrakt állapottérben a kezdőállapotok (vezérlési hely, predikátumérték) alakban megadva, ha a program indulásakor az y egész értékű változó tetszőleges lehet?
 - Megoldás: (0, true) és (0, false)
- Hamis ellenpéldának tekinthető-e az err vezérlési hely eléréséhez az absztrakt állapottérben lévő (0, true) → (2, true) → (err, true) útvonal?
 - Megoldás: (0, true) → (2, true) átmenet esetén (y>0) és (y mod 2 == 0) szükséges, előbbi a predikátum, utóbbi az átmenet feltétele.
 A (2, true) → (err, true) átmenet esetén (y>0) és !(y mod 2 == 0) szükséges, ahol az utóbbi az itteni átmenet feltétele. Ez ellentmond az előző átmenet feltételének, tehát az ellenpélda hamis.

Petri-háló állapotterének felvétele

Készítse el a jobbra látható Petri-háló elérhetőségi gráfját!

Petri-háló állapotterének felvétele – Megoldás

Készítse el a jobbra látható Petri-háló elérhetőségi gráfját!

Megoldás:

Minden jelölésből a lehetséges tüzelő tranzíciók és a kialakuló új jelölések felvétele.

Kapacitáskorlát Petri-hálókban

- Mit jelent az, hogy egy Petrihálóban egy hely kapacitáskorlátos?
- A mellékelt véges kapacitású háló kiegészítésével rajzoljon ekvivalens, kapacitáskorlát nélküli hálót!

Kapacitáskorlát Petri-hálókban – Megoldás

- Mit jelent az, hogy egy Petri-hálóban egy hely kapacitáskorlátos?
 - Az adott helyen a tokenszám nem lehet nagyobb, mint a kapacitáskorlát értéke.

 A mellékelt véges kapacitású háló kiegészítésével rajzoljon ekvivalens, kapacitáskorlát nélküli hálót!

- A szabad kapacitás megjelenítésére kp1 kiegészítő hely felvétele
- Szabad kapacitás változásának követése a megfelelő élekkel

Petri-háló fedési gráfjának felvétele

Rajzolja fel az alábbi Petri-háló fedési gráfját!

Petri-háló fedési gráfjának felvétele – Megoldás

Rajzolja fel az alábbi Petri-háló fedési gráfját!

Az előzőt erősen fedő jelölések esetén, az erősen fedő helyeken szaporodhat a token; ennek jelölésére megjelenik az ω szimbólum.

Petri-háló fedési gráfjának felvétele

Rajzolja fel az alábbi Petri-háló fedési gráfját! A Petri-háló P2 helye kapacitáskorlátos, K(P2)=1.

Petri-háló fedési gráfjának felvétele – Megoldás

Rajzolja fel az alábbi Petri-háló fedési gráfját! A Petri-háló P2 helye kapacitáskorlátos, K(P2)=1.

Általában figyelni kell: Kapacitáskorlátos helyen nem jelenhet meg ω szimbólum.

Lásd itt: $(1\ 0\ 0\ 0)$ után $(1\ 1\ 0\ 0)$ erősen fedő, de a P2 helyen nem jelenik meg ω .

Petri-hálók dinamikus tulajdonságai

Egy Petri-háló jobb oldali állapottere (kezdőállapot az (1 0 1 0) állapot) alapján jelölje be az alábbi dinamikus tulajdonságok teljesülését:

		igaz	hamis	dönthető el			igaz	hamis	dönthető el
(a)	A háló elérhetőségi és fedési gráfja azonos				(e)	A t1, t2, t4 tüzelési szekvencia egy T-invariánst alkot			
(b)	A háló nem perzisztens				(f)	<i>t3</i> és <i>t4</i> tranzíció korlátos fair			
(c)	A hálóban van holtpont (deadlock)				(g)	A (0 1 0 1) állapot visszatérő állapot			
(d)	t3 tranzíció L2-élő								

Dinamikus tulajdonságok – Háttér

Korlátosság

- Véges számú token jelenik-e meg minden helyen (normál háló esetén nincs erősen fedő jelölés)
- Biztosság: Az elérhetőségi gráfban csak 0 és 1 jelölések vannak-e

Megfordíthatóság

Minden elérhető állapotból vissza lehet-e jutni a kezdőállapotba?

Visszatérő állapot

 Egy visszatérő állapotba az abból elérhető minden állapotból vissza lehet jutni.

Perzisztens tranzíció

A tranzíció engedélyezetté válva az is marad-e, amíg nem tüzel.
 Ellenpélda: Egy állapotban több tranzíció engedélyezett,
 és ha nem az adott tranzíció tüzelt, akkor az így elért állapotban nem marad engedélyezett (azaz nem jelenik meg kimenő él címkéjeként)

Dinamikus tulajdonságok – Háttér

- Korlátozott fair tüzelési szekvencia
 - Egy engedélyezett tranzíció korlátosan sokszor tüzelhet-e, mielőtt a másik engedélyezett tranzíció tüzelne? Ellenpélda: Olyan ciklus, amiben az egyik tranzíció benne van, de a másik engedélyezett tranzíció nincs (mindig kimarad a tüzelésből).
- Tranzíció L1, L2, L3 élősége
 - Elég egy trajektóriát találni, ahol teljesül, hogy a tranzíció 1-szer (L1), k-szor (L2), végtelenszer (L3) tüzelhet (véges állapottérben: ciklus).
- Tranzíció L4 élősége
 - A tranzíció minden állapotból előbb-utóbb mindig tüzelhetővé válik-e?
- A háló élő
 - A háló akkor élő, ha minden tranzíciója L4-élő.
 Ellenpélda: Olyan tranzíció, ami egy adott állapotból folytatva a működést már nem válik előbb-utóbb tüzelhetővé.
 - Ha van holtpont, akkor a háló biztosan nem élő.
 - Ha holtpontmentes, akkor még nem biztos, hogy élő.

Petri-hálók dinamikus tulajdonságai

Egy Petri-háló jobb oldali állapottere (kezdőállapot az (1 0 1 0) állapot) alapján jelölje be az alábbi dinamikus tulajdonságok teljesülését:

	igaz	hamis	nem dönthető el			igaz	hamis	nem dönthető el
A háló elérhetőségi (a) és fedési gráfja azonos				(e)	A t1, t2, t4 tüzelési szekvencia egy T-invariánst alkot			
(b) A háló nem perzisztens				(f)	<i>t3</i> és <i>t4</i> tranzíció korlátos fair			
(c) A hálóban van holtpont (deadlock)				(g)	A (0 1 0 1) állapot visszatérő állapot			
(d) t3 tranzíció L2-élő								

Petri-hálók dinamikus tulajdonságai – Megoldás

- a) Elérhetőségi és fedési gráf azonos: Igaz, mert korlátos.
- b) A háló nem perzisztens: Igaz, lásd (0 0 1 2) esetén t3 és t4.
- c) A hálóban van holtpont: Igaz, lásd (0 0 0 3).
- d) t3 L2 élő: Igaz, mert t3-at tartalmazó ciklus van, de ebből kilépve holtpont.
- e) t1, t2, t3 tüzelési szekvencia T-invariáns: Hamis, ilyen ciklus nincs.
- f) t3 és t4 korlátos fair: Igaz, mert egymás nélkül nem szerepelnek ciklusban.
- g) (0 1 0 1) visszatérő állapot: Hamis, mert (0 0 0 3)-ból nem elérhető.

Strukturális tulajdonságok (1)

Adott az ábrán látható Petri-háló és a hozzátartozó W^T szomszédossági mátrix.

Milyen számokat kell a mátrixban a betűvel jelölt kitöltetlen helyekre írni?

- A =
- B =
- C =
- D =

$$\mathbf{W^{T}} = \begin{bmatrix} & t_1 & t_2 & t_3 & t_4 & t_5 \\ p_1 & 1 & -1 & 0 & 0 & 0 \\ p_2 & -1 & 2 & \mathbf{B} & 0 & 0 \\ p_3 & \mathbf{A} & 1 & 2 & 0 & -1 \\ p_4 & 0 & 0 & \mathbf{C} & 1 \\ p_5 & 1 & 0 & -1 & -1 & 1 \\ p_6 & 0 & -1 & 1 & 1 & \mathbf{D} \end{bmatrix}$$

Strukturális tulajdonságok (1) – Megoldás

Adott az ábrán látható Petri-háló és a hozzátartozó W^T szomszédossági mátrix.

Milyen számokat kell a mátrixban a betűvel jelölt kitöltetlen helyekre írni?

- A = -3
- B = -1
- C = -1
- D = 0

$$\mathbf{W^{T}} = \begin{bmatrix} & t_1 & t_2 & t_3 & t_4 & t_5 \\ p_1 & 1 & -1 & 0 & 0 & 0 \\ p_2 & -1 & 2 & \mathbf{B} & 0 & 0 \\ p_3 & \mathbf{A} & 1 & 2 & 0 & -1 \\ p_4 & 0 & 0 & 0 & \mathbf{C} & 1 \\ p_5 & 1 & 0 & -1 & -1 & 1 \\ p_6 & 0 & -1 & 1 & 1 & \mathbf{D} \end{bmatrix}$$

Strukturális tulajdonságok (2): T-invariánsok

Ellenőrizze az állapotegyenlet alapján, hogy az alábbiak közül melyek T-invariánsai a Petri-hálónak!

$$A = -3$$
, $B = -1$, $C = -1$, $D = 0$

- $(2,2,2,0,0)^T$
- $(0,1,0,1,3)^T$

		t_1	t_2	t_3	t_4	t ₅ 0 0 0 -1 1
	p_1	1	-1	0	0	0
	p_2	-1	2	В	0	0
$\mathbf{W}^{\mathbf{T}} =$	$\begin{array}{c} p_1 \\ p_2 \\ p_3 \end{array}$	\mathbf{A}	1	2	0	-1
	p_4	0	0	0	\mathbf{C}	1 1 D
	p_5	1	0	-1	-1	1
	p_6	0	-1	1	1	D

Strukturális tulajdonságok (3): P-invariánsok

Ellenőrizze az állapotegyenlet alapján, hogy az alábbiak közül melyek P-invariánsai a Petri-hálónak!

$$A = -3$$
, $B = -1$, $C = -1$, $D = 0$

- $(4,2,1,0,1,1)^T$
- $(3,1,0,2,0,1)^T$

Strukturális tulajdonságok – Háttér

T-invariánsok:

- Definíció:
 A σ_T tüzelési szám
 vektor T-invariáns, ha az
 általa megadott tüzelések
 végrehajtása nem
 változtatja meg a
 tokeneloszlást.
- Számítás, ellenőrzés alapja:

$$\mathbf{W}^{\mathrm{T}}\boldsymbol{\sigma}_{T}=0$$

P-invariánsok:

- Definíció:

 A μ_P nem-negatív
 súlyvektor P-invariáns,
 ha az által megadott
 súlyozott tokenösszeg
 nem változik a háló
 működése során.
- Számítás, ellenőrzés alapja:

$$\mathbf{W}\mu_P = 0$$

Strukturális tulajdonságok (2) – Megoldás

Ellenőrizze az állapotegyenlet alapján, hogy az alábbiak közül melyek T-invariánsai a Petrihálónak!

$$\begin{bmatrix} & t_1 & t_2 & t_3 & t_4 & t_5 \\ p_1 & 1 & -1 & 0 & 0 & 0 \\ p_2 & -1 & 2 & \textbf{B} & 0 & 0 \\ p_3 & \textbf{A} & 1 & 2 & 0 & -1 \\ p_4 & 0 & 0 & \textbf{C} & 1 \\ p_5 & 1 & 0 & -1 & -1 & 1 \\ p_6 & 0 & -1 & 1 & \textbf{D} \end{bmatrix}$$

$$A = -3$$
, $B = -1$, $C = -1$, $D = 0$

Ellenőrzés az állapotegyenlet alapján: $\mathbf{W}^{\mathrm{T}} \sigma_{T} = 0$

- $(2,2,2,0,0)^T$ T-invariáns
- $(0,1,0,1,3)^T$ Nem T-invariáns

Strukturális tulajdonságok (3) – Megoldás

Ellenőrizze az állapotegyenlet alapján, hogy az alábbiak közül melyek w^T = P-invariánsai a Petrihálónak!

$$\begin{bmatrix} & t_1 & t_2 & t_3 & t_4 & t_5 \\ p_1 & 1 & -1 & 0 & 0 & 0 \\ p_2 & -1 & 2 & \textbf{B} & 0 & 0 \\ p_3 & \textbf{A} & 1 & 2 & 0 & -1 \\ p_4 & 0 & 0 & \textbf{C} & 1 \\ p_5 & 1 & 0 & -1 & -1 & 1 \\ p_6 & 0 & -1 & 1 & \textbf{D} \end{bmatrix}$$

$$A = -3$$
, $B = -1$, $C = -1$, $D = 0$

Ellenőrzés az állapotegyenlet alapján: $\mathbf{W}\mu_P = 0$

- $(4,2,1,0,1,1)^T$ P-invariáns
- $(3,1,0,2,0,1)^T$ Nem P-invariáns

Temporális tulajdonságok

A jobb oldali Petri-hálóra az M(1,1,0,1,0,0) kezdőállapotból igazak-e a következő, CTL temporális logikával megadott állítások:

AG
$$(4*m(p1) + 2*m(p2) + m(p3) + m(p5) + m(p6) = 6)$$

EF
$$(4*m(p1) + 2*m(p2) + m(p3) + m(p5) + m(p6) = 3)$$

Temporális tulajdonságok – Megoldás (1)

A jobb oldali Petri-hálóra az M(1,1,0,1,0,0) kezdőállapotból igazak-e a következő, CTL temporális logikával megadott állítások:

AG (4*m(p1) + 2*m(p2) + m(p3) + m(p5) + m(p6) = 6)

- A kezdőállapotra teljesül: a tokenösszeg 6
- A tokenösszeg súlyai alapján felvett $(4,2,1,0,1,1)^T$ egy P-invariáns, ez $\mathbf{W} \cdot \mu_p = 0$ alapján ellenőrizhető
- Tehát a fenti tokenösszeg állandó az állapottérben (AG)

Temporális tulajdonságok – Megoldás (2)

A jobb oldali Petri-hálóra az M(1,1,0,1,0,0) kezdőállapotból igazak-e a következő, CTL temporális logikával megadott állítások:

EF
$$(4*m(p1) + 2*m(p2) + m(p3) + m(p5) + m(p6) = 3)$$

- A kezdőállapotra nem teljesül: a tokenösszeg 6 és nem 3
- Később sem teljesülhet, mivel a tokenösszeg súlyai alapján felvett $(4,2,1,0,1,1)^T$ egy P-invariáns (ez $\mathbf{W} \cdot \mu_p = 0$ alapján ellenőrizhető), így állandó a 6 tokenösszegként.

Modellezés színezetlen Petri-hálókkal (1/2)

Készítse el a következő folyamat színezetlen Petri-háló modelljét!

- A Formális módszerek ZH 6 feladatból áll. A ZH előkészítésén az előadó,
 1 segítő és 5 demonstrátor dolgozik.
- 2. Az 6 feladat mindegyikéhez az előadó vagy maga állítja össze a feladat vázlatot, vagy kiosztja egy demonstrátornak. Egy demonstrátor, ha feladatot kap, elfoglalt lesz, és nem kaphat több feladatot.
- 3. Az elkészült feladat vázlatokat a segítő egyenként átnézi. Az átnézés után a feladat kész.
- 4. Ha az összes feladat kész, az előadó összeállítja a ZH-t.
- 5. A tanszéken 7 túrórudi és 8 madeleine-sütemény van.
- 6. Az elfoglalt demonstrátorok néha megéheznek, és elkezdenek túrórudit enni (ha van túrórudi). Ekkor nem tudnak a feladatok összeállításán dolgozni, amíg be nem fejezik az evést.
- 7. A segítő inkább a madeleine-süteményt szereti, tehát időnként ezt eszi. A sütemény hatására elkezd visszaemlékezni saját diákkorára, és amíg be nem fejezi, nem néz át feladatot.

Modellezés színezetlen Petri-hálókkal (2/2)

Az előző leírás szerinti modellt a lenti a lenti modell-részletet kiegészítve készítse el!

Modellezés színezetlen Petri-hálókkal – Megoldás

A megadott modell-részlet kiegészítése:

Modellezés színezetlen Petri-hálókkal – Megoldás

- Az 6 feladat mindegyikéhez az előadó vagy maga állítja össze a feladat vázlatot, vagy kiosztja egy demonstrátornak. Egy demonstrátor, ha feladatot kap, elfoglalt lesz, és nem kaphat több feladatot.
- Az elkészült feladat vázlatokat a segítő egyenként átnézi. Az átnézés után a feladat kész.
- Ha az összes feladat kész, az előadó összeállítja a ZH-t.
- Az elfoglalt demonstrátorok néha megéheznek, és elkezdenek túrórudit enni (ha van túrórudi). Ekkor nem tudnak a feladatok összeállításán dolgozni, amíg be nem fejezik az evést.
- A segítő inkább a madeleinesüteményt szereti, tehát időnként ezt eszi. A sütemény hatására elkezd visszaemlékezni saját diákkorára, és amíg be nem fejezi, nem néz át feladatot.

Modellezés színezett Petri-hálókkal

Adott az ábrán látható színezett Petri-háló modell és a hozzá tartozó definíciós mező.

- 1. Mely tranzíciók és milyen lekötéssel engedélyezettek az adott állapotban?
- 2. Tüzelés után mik lehetnek a háló következő jelölései? Válasszon ki egyet ezek közül és adja meg az ezután következő lehetséges lekötéseket!
- 3. Korlátos-e a háló az adott kezdőállapottal?
- 4. Holtpontmentes-e a háló az adott kezdőállapottal?
- 5. Van-e a hálóban T-invariáns?

```
colset SUIT = with S | H;
colset NUM = int with 0..12;
colset CARD = product SUIT * NUM;
var s : SUIT;
var n, m : NUM;
var c : CARD;
```


Modellezés színezett Petri-hálókkal – Megoldás

1. Engedélyezett:

- **Straight**, s=S, n=1 lekötéssel
- Pair, n=1, m=1 lekötéssel

2. Következő jelölések, majd lekötések:

Straight tüzel: Hand lesz 1'(H,1),
 Straights lesz 1'(S,1)++1'(S,2).

Ezután engedélyezett:

Back1, c=(S,1) vagy c=(S,2) lekötéssel.

• Pair tüzel: Hand lesz 1′(S,2),

Pairs lesz 1'(S,1)++1'(H,1).

Ezután engedélyezett:

Back2, c=(S,1) vagy c=(H,1) lekötéssel.

3. Korlátos-e:

Korlátos: Tranzíciók nem "termelhetnek" tokeneket; a tokenek száma a hálóban nem változik.

4. Holtpontmentes-e:

Igen: A **Back1** illetve **Back2** mindig vissza tudja (egyenként) rakni, amit a **Straight** illetve a **Pair** elvett, tehát mindig ciklikus a működés.

- 5. T-invariánsok "kézzel" is megkereshetők:
 - Straight, Back1, Back1
 - Pair, Back2, Back2

```
colset SUIT = with S | H;
colset NUM = int with 0..12;
colset CARD = product SUIT * NUM;
var s : SUIT;
var n, m : NUM;
var c : CARD;
```


Színezett Petri-hálók széthajtogatása

Adott az ábrán látható színezett Petri-háló modell és a hozzá tartozó definíciós mező:

Az őrfeltétel: guard =

$$(\neg x \land \neg y \land x' \land \neg y') \lor (x \land \neg y \land \neg x' \land y') \lor (\neg x \land y \land x' \land y')$$

- Készítse el a színezett Petri-háló struktúrával ekvivalens működésű színezetlen Petri-háló struktúrát, azaz a színezett Petri-háló széthajtogatását!
- Élő-e és/vagy korlátos-e a fenti színezett háló és az ekvivalens működésű széthajtogatott színezetlen háló az adott (vagy bármilyen korlátos) kezdőállapottal?

Színezett Petri-hálók széthajtogatása – Megoldás

Adott az ábrán látható színezett Petri-háló modell és a hozzá tartozó definíciós mező:

Az őrfeltétel: guard =

$$(\neg x \land \neg y \land x' \land \neg y') \lor (x \land \neg y \land \neg x' \land y') \lor (\neg x \land y \land x' \land y')$$

- Petri-háló széthajtogatása:
- Élő-e és/vagy korlátos-e a fenti színezett háló?
 - Nem élő (t1 t2 t3 után holtpont)
 - Korlátos: Egyik tranzíció sem szaporíthatja a tokeneket.

1'(false)

Boolean

1'(false)

Boolean