Probabilistic Graphical Modeling of Gene Expression Modulation by CRISPR Perturbation

Jason Mohabir & Edward Moseley

26th November 2024 BIOSTAT914

EEGGO:

Estimation of Enhancer-Gene Guide Outcomes

Jason Mohabir & Edward Moseley

26th November 2024 BIOSTAT914

Model Intuition & Formulation

We rely on empirically-derived statistics from **Control Samples**, to predict gene expression and beta coefficients proportional to the gene's level of inhibition by CRISPR.

Goal: Estimate gene expression values, and infer beta coefficients for each gene-enhancer pair given the following model:

$$X_{ ext{experiment}} \sim eta_{ ext{gene-enhancer}} imes \mu_{ ext{control}}$$

$$eta_{ ext{gene-enhancer}} = rac{\mu_{ ext{experiment}}}{\mu_{ ext{control}}}$$

With this formulation, expression is only modulated with a beta coefficient if it is an experimental sample.

We did not scale or otherwise transform the input data.

Baseline: Control-Aware Normally Distributed Expression

- This control-aware model infers the beta value only in cases where the the observation is not a control.
- Expression values, X_i , and $\mu_{control}$, $\sigma_{control}$ are observed, and control statistics are defined **globally** across all 1,000 genes
- This model ignores guideIDs.

Performance (Beta Coefficients):

Mean Squared Error (MSE): 0.16402

Final Model: Control-Aware Mixture Model for Guide Potency

$$X_{ijk} \sim (r_{jk}) N(\beta_j \mu_{j control}, \sigma_{j experimental}) + (1 - r_{jk}) N(\mu_{control}, \sigma_{j control})$$

We introduce the latent mixture proportion, $r_{\rm d}$, with a β (0.5, 0.5) prior to our formulation, which is meant to account for GuidelD functionality

Assumption: Not all GuideIDs are functional

Performance (Beta Coefficients):

Mean Squared Error (MSE): 0.02228