

Mechanisms and Sensors for Robotic Fingers

Shant Gananian, Pascal Weiner and Tamim Asfour

Seminar: Humanoide Roboter, WS 2018/19

Institute for Anthropomatics and Robotics (IAR), High Performance Humanoid Technologies (H2T)

Contents

- Introduction
- Key issues
 - 1. Number of Fingers
 - 2. Shape of the Fingertips
 - 3. Compliant Joints
 - 2. Built-in or Remote Actuation
 - 3. Transmission
 - 4. Sensors
 - 5. Materials and Manufacturing
- Future Trends
- Conclusion
- References

Introduction

- The human hand as an inspiration
- Goals and application
 - Making a anthropomorphic hand (anthropomorphic approach)
 - Making an efficient manipulator (minimalistic approach)
- Key issues discussed here
 - Number of Fingers
 - Shape of the Fingertips
 - Compliant Joints
 - Built-in or Remote Actuation
 - Transmission System (in case of remote actuation)
 - Sensors
 - Materials and Manufacturing

Number of Fingers

Shape of the Fingertips

Flat

SDM Hand

Barrett Hand

Anthropomorphic

Robonaut Hand

Shadow Dextrous Hand

Cylindrical

CyberHand

Compliant Joints

The finger is obtained in a single teflon piece

joint compliance is achieved with metallic springs

Rapid prototyping allows for different compliant mechanisms as joints

- reduce overall complexity
- withstanding large impacts without damage
- Rapid Prototyping
- Limited range of motion
- Axis Drif
- Stress Concentration

Built-in or Remote Actuation

Built-in Actuation:

- Simplifying mechanical configuration of the joint
- Reducing the transmission chain complexity
- Joint motion is kinematically independent with respect to other joints
- Motors occupy a large room inside the finger structure

Transmission

Flexible Link Transmission

- pulley-routed flexible elements (tendons, chains, belts)
- sheath-routed flexible elements (mainly tendon-like elements)
- Actuators located remotely from joints
- Achieving two-way control requires a pair (increased complexity)

Rigid Link Transmission

- best stiffness proprieties to the transmission
- low maintenance
- bidirectional control of the joint

Transmission

Transmission

Sensors

Proprioceptive Sensors

Measures physical information related to the state of the device itself (e.g., position, velocity, and so on)

Exteroceptive Sensors

Measures the data related to the interaction with objects/environment (e.g., applied forces/torques, friction, shape, and so on)

Tactile Sensors

- It provides information about forces of interaction and surface properties at points of contact between the robot fingers and the objects.
- The types of information that may be obtained from a tactile sensor are: Contact, force, simple geometrical information, main geometrical features of the object, mechanical properties and slip condition

Materials and Manufacturing

- Traditional machinery techniques is a rather long and expensive process
- Rapid prototyping techniques provides several advantages
 - The chance to develop parts with complex geometry

Selective Laser Sintering (SLS)

high-strength, nickel-coated thermoplastic

polymer-based Shape Deposition Manufacturing (SDM)

Future Trends

- Development of artificial skins with denser spatial resolution and a multitude of sensor modalities.
- Using soft and compliant materials like when the hand is used to interact with humans

Robotic finger with both high and low friction surfaces

Bio-inspired sensor skin

Future Trends

- Sensors employed in smartphones will be employed by the artificial hands driving costs down and increasing reliability
- Biohybrid robotics
- Standardization

Integrating living muscle tissue into robots

Conclusion

- The human hand as an inspiration
- The crucial role of robot fingers
- Key Issues in choosing suitable configurations
- Standarization

References

- 1. Saudabayev, A. and Varol, H.A., 2015. Sensors for robotic hands: A survey of state of the art. IEEE Access, 3, pp.1765-1782.
- 2. Balasubramanian, R. and Santos, V.J. eds., 2014. The human hand as an inspiration for robot hand development (Vol. 95). Springer.
- 3. Daniel R. Ramírez Rebollo, Pedro Ponce & Arturo Molina (2017) From 3 fingers to 5 fingers dexterous hands, Advanced Robotics, 31:19-20, 1051-1070
- 4. Gama Melo, E.N., Aviles Sanchez, O.F. and Amaya Hurtado, D., 2014. Anthropomorphic robotic hands: a review. Ingeniería y Desarrollo, 32(2), pp.279-313.
- 5. Bos, H.D. and Wassink, M., 2010. Evolution of robotic hand. University of Twente.
- 6. Alba, D., Armada, M. and Ponticelli, R., 2005. An introductory revision to humanoid robot hands. In Climbing and walking robots (pp. 701-712). Springer, Berlin, Heidelberg.
- 7. Belter, J.T., Segil, J.L., Dollar, A.M. and Weir, R.F., 2013. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. Journal of Rehabilitation Research & Development, 50(5), pp.599-618.
- 8. Siciliano, B. and Khatib, O. eds., 2016. Springer handbook of robotics. Springer.
- 9. Spiers, A.J., Calli, B. and Dollar, A.M., 2018. Variable-Friction Finger Surfaces to Enable Within-Hand Manipulation via Gripping and Sliding. IEEE Robotics and Automation Letters, 3(4), pp.4116-4123.
- 10. Morimoto, Y., Onoe, H. and Takeuchi, S., 2018. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Science Robotics, 3(18), p.eaat4440.
- 11. Yin, J., Santos, V.J. and Posner, J.D., 2017. Bioinspired flexible microfluidic shear force sensor skin. Sensors and Actuators A: Physical, 264, pp.289-297.

