Lab 1: Stock Price Prediction Analytics using Snowflake & Airflow

Abhinita Sanabada (018320874)

October 3, 2025

Abstract

We implemented a secure, reproducible stock analytics workflow using Airflow, yfinance, and Snowflake. An ETL DAG ingests OHLCV data into RAW.STOCK_PRICES. A second DAG trains a Snowflake-native SNOWFLAKE.ML.FORECAST model and writes predictions to MODEL.FORECASTS. A final table, ANALYTICS.FINAL_PRICES_FORECAST, unions actuals and forecasts for downstream visualization. All Snowflake credentials (account, user, password, role, warehouse, database) are stored only in Airflow Connections, and pipeline parameters are managed via Airflow Variables.

1 Problem Statement

Build an end-to-end analytics pipeline that:

- 1. Extracts daily OHLCV for selected tickers via yfinance.
- 2. Forecasts daily close prices using Snowflake's built-in ML forecasting.
- 3. Unifies actuals and forecasts in a single analytics table.
- 4. Uses Airflow for orchestration, SQL/Python transactions for correctness, and Airflow Connections/Variables for secure configuration.
- 5. Produces reproducible runs, screenshots, and a public code repository.

Success criteria: both DAGs succeed; RAW, MODEL, ANALYTICS populated; final table supports plotting Actual vs. Forecast; screenshots and repo links are provided.

2 System Architecture

Overview

We use three schemas inside USER_DB_CATFISH: **RAW** (ingest), **MODEL** (predictions), **ANA-LYTICS** (consumption). Two DAGs orchestrate the flow:

• DAG #1 yfinance_et1: downloads OHLCV for stock_symbols, MERGEs into RAW.STOCK_PRICE

Figure 1: Archtecture diagram

• **DAG #2 ml_forecast**: trains/updates SNOWFLAKE.ML.FORECAST on multi-series history; writes predictions to MODEL.FORECASTS; *unions* actuals + forecasts into ANALYTICS.FINAL_PRI

Architecture Diagram

Screenshots (to be included)

- Figure 2: Airflow DAGs list showing both DAGs present.
- Figure 3: yfinance_etl Grid/Graph view with successful run.
- Figure 4: ml_forecast Grid/Graph view with successful run.

3 Data Model

All objects live in database USER_DB_CATFISH (warehouse: CATFISH_QUERY_WH, both configured via Airflow Connection). Schemas: RAW, MODEL, ANALYTICS.

RAW.STOCK_PRICES

SYMBOL STRING NOT NULL; TS TIMESTAMP_NTZ NOT NULL; OPEN FLOAT; HIGH FLOAT; LOW FLOAT; CLOSE FLOAT; ADJ_CLOSE FLOAT; VOLUME NUMBER(38,0); LOAD_TS TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP(); Primary key: (SYMBOL, TS).

Figure 2: Airflow dags screen shot

Figure 3: yfinance etl Grid/Graph

Figure 4: ml forecast Grid/Graph

MODEL.FORECASTS

SYMBOL STRING NOT NULL; TS DATE NOT NULL; PREDICTED_CLOSE FLOAT NOT NULL; MODEL_NAME STRING NOT NULL; TRAINED_AT TIMESTAMP_NTZ NOT NULL; HORIZON_D NUMBER(5,0) NOT NULL; LOAD_TS TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP_NTZ NOT NULL; LOAD_TS TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP_NTZ NOT NULL; NAME).

ANALYTICS.FINAL PRICES FORECAST

SYMBOL STRING NOT NULL; TS DATE NOT NULL; CLOSE FLOAT; SOURCE STRING NOT NULL; MODEL_NAME STRING; LOAD_TS TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP(

Primary key: (SYMBOL, TS, SOURCE); SOURCE \(\) {ACTUAL, FORECAST \}.

One-time Bootstrap DDL

Listing 1: Bootstrap DDL (run once).

```
BEGIN;
CREATE SCHEMA IF NOT EXISTS RAW;
CREATE SCHEMA IF NOT EXISTS MODEL;
CREATE SCHEMA IF NOT EXISTS ANALYTICS;

CREATE TABLE IF NOT EXISTS RAW.STOCK_PRICES (
SYMBOL STRING NOT NULL, TS TIMESTAMP_NTZ NOT NULL,
OPEN FLOAT, HIGH FLOAT, LOW FLOAT, CLOSE FLOAT, ADJ_CLOSE FLOAT,
VOLUME NUMBER(38,0),
```

```
LOAD_TS TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP(),
    CONSTRAINT PK_STOCK_PRICES PRIMARY KEY (SYMBOL, TS)
11 );
13 CREATE TABLE IF NOT EXISTS MODEL.FORECASTS (
    SYMBOL STRING NOT NULL, TS DATE NOT NULL, PREDICTED_CLOSE FLOAT
       NOT NULL,
    MODEL_NAME STRING NOT NULL, TRAINED_AT TIMESTAMP_NTZ NOT NULL,
       HORIZON_D NUMBER (5,0) NOT NULL,
    LOAD_TS TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP(),
    CONSTRAINT PK_FORECASTS PRIMARY KEY (SYMBOL, TS, MODEL_NAME)
 );
18
19
20 CREATE TABLE IF NOT EXISTS ANALYTICS.FINAL_PRICES_FORECAST (
    SYMBOL STRING NOT NULL, TS DATE NOT NULL, CLOSE FLOAT,
    SOURCE STRING NOT NULL, MODEL_NAME STRING, LOAD_TS TIMESTAMP_NTZ
       DEFAULT CURRENT_TIMESTAMP(),
    CONSTRAINT PK_FINAL PRIMARY KEY (SYMBOL, TS, SOURCE)
24 );
25 COMMIT:
```

4 Implementation

4.1 Airflow Connections & Variables

We created a Snowflake Connection **snowflake_catfish** with account, user, password, role, default warehouse CATFISH_QUERY_WH, and database USER_DB_CATFISH. **No secrets in code.** Variables:

- stock_symbols: JSON list, e.g., ["AAPL", "MSFT", "TSLA"].
- lookback_days: e.g., 365.
- forecast_horizon_days: e.g., 14.
- target_schema_raw=RAW, target_schema_model=MODEL, target_schema_analytics=ANA

4.2 DAG #1: yfinance_etl(ETL)

Python downloads OHLCV for stock_symbols over the last lookback_days and MERGEs into RAW.STOCK_PRICES. Credentials/DB/WH/role come from the Airflow Connection at runtime (via snowflake.connector). We use a transactional pattern (commit/rollback).

4.3 Create Snowflake Connection in Airflow UI

Step 1: Open the Airflow web UI (e.g., http://localhost:8080).

Step 2: Navigate to **Admin** \rightarrow **Connections**.

Step 3: Click + (*Add a new record*).

Step 4: Fill the form:

- Conn Id: snowflake_catfish
- Conn Type: Snowflake
- **Login**: your Snowflake *username*
- Password: your Snowflake password
- Extra (JSON): paste the following and adjust values:

```
{
    "account": "abcd-xy123",
    "warehouse": "COMPUTE_WH",
    "database": "YOUR_DB",
    "schema": "RAW",
    "role": "SYSADMIN"
}
```

Step 5: Click **Test** (top-right). If successful, click **Save**.

Notes.

- The DAGs access this via BaseHook.get_connection("snowflake_catfish") and read fields from c.extra_dejson.
- If your ML pipeline expects a different default schema (e.g., MODEL), either change it here or pass a schema argument in code.

4.4 Create Airflow Variables

Step 1: Go to **Admin** \rightarrow **Variables**.

Step 2: Click + to add each key/value below (use exact keys):

Runtime DML (executed by the DAG after staging rows):

SQL

Listing 2: ETL MERGE (executed each run).

```
BEGIN;
CREATE TEMP TABLE TMP_LOAD (
SYMBOL STRING, TS TIMESTAMP_NTZ, OPEN FLOAT, HIGH FLOAT, LOW FLOAT

CLOSE FLOAT, ADJ_CLOSE FLOAT, VOLUME NUMBER(38,0)
```

```
6);
7 -- Python inserts many rows into TMP LOAD via executemany(...)
9 MERGE INTO RAW.STOCK_PRICES AS t
10 USING TMP LOAD AS s
    ON t.SYMBOL = s.SYMBOL
    AND t.TS
                = s.TS
13 WHEN MATCHED THEN UPDATE SET
    OPEN=s.OPEN, HIGH=s.HIGH, LOW=s.LOW, CLOSE=s.CLOSE,
    ADJ_CLOSE=s.ADJ_CLOSE, VOLUME=s.VOLUME, LOAD_TS=CURRENT_TIMESTAMP
       ()
16 WHEN NOT MATCHED THEN INSERT (
    SYMBOL, TS, OPEN, HIGH, LOW, CLOSE, ADJ_CLOSE, VOLUME
18 ) VALUES (
    s.SYMBOL, s.TS, s.OPEN, s.HIGH, s.LOW, s.CLOSE, s.ADJ CLOSE, s.
       VOLUME
20 );
21 COMMIT;
```

4.5 DAG #2: ml_forecast (Snowflake ML) + Final Union

This DAG uses only SnowflakeOperator. It trains/updates a multi-series model via SNOWFLAKE.ML.FORE stages horizon-wide predictions, MERGEs them into MODEL.FORECASTS, and rebuilds ANALYTICS.FINALL by unioning ACTUAL and FORECAST rows.

Model Training, Forecasting & Upsert

Listing 3: Snowflake ML model + forecast + upsert.

```
1 BEGIN;
2 USE SCHEMA MODEL;
4 WITH symbols AS (
   SELECT value::string AS symbol
   } }')))
7),
8 training_data AS (
   SELECT
     TO_VARIANT(sp.SYMBOL) AS SERIES,
    sp.TS,
    sp.CLOSE
12
   FROM RAW.STOCK_PRICES sp
13
   JOIN symbols s ON s.symbol = sp.SYMBOL
```

```
WHERE sp.TS >= DATEADD('day', -{{ var.value.lookback_days |
       default('365', true) }}, CURRENT_TIMESTAMP())
16
17
18 CREATE OR REPLACE SNOWFLAKE.ML.FORECAST PRICE FORECASTER (
                     => SYSTEM$QUERY_REFERENCE($$ SELECT SERIES, TS,
   INPUT_DATA
       CLOSE FROM training_data $$),
                    => 'SERIES',
  SERIES_COLNAME
   TIMESTAMP_COLNAME => 'TS',
  TARGET_COLNAME
                     => 'CLOSE',
22
   CONFIG_OBJECT => {{ '{{\' }}} 'method':'fast','on_error':'skip'
      {{ '}}}' }}
24 );
26 CREATE OR REPLACE TEMP TABLE TMP FC AS
27 SELECT
                                   AS SYMBOL,
   SERIES::STRING
   CAST (TS AS DATE)
                                   AS TS,
29
30 FORECAST
                                  AS PREDICTED CLOSE,
   'SNOWFLAKE ML'
                                   AS MODEL NAME,
31
CURRENT_TIMESTAMP()
                                   AS TRAINED_AT,
33 {{ var.value.forecast_horizon_days | default('14', true) }}::
       NUMBER AS HORIZON_D
34 FROM TABLE (PRICE FORECASTER! FORECAST (
    FORECASTING_PERIODS => {{ var.value.forecast_horizon_days |
       default('14', true) }}
36 ));
38 MERGE INTO MODEL.FORECASTS AS t
39 USING TMP_FC AS s
  ON t.SYMBOL
                   = s.SYMBOL
   AND t.TS
                    = s.TS
   AND t.MODEL NAME = s.MODEL NAME
43 WHEN MATCHED THEN UPDATE SET
  PREDICTED CLOSE = s.PREDICTED CLOSE,
  TRAINED AT
                   = s.TRAINED_AT,
45
  HORIZON_D
                   = s.HORIZON_D
   LOAD_TS
                   = CURRENT_TIMESTAMP()
48 WHEN NOT MATCHED THEN INSERT (
   SYMBOL, TS, PREDICTED_CLOSE, MODEL_NAME, TRAINED_AT, HORIZON_D
50 ) VALUES (
  s.SYMBOL, s.TS, s.PREDICTED_CLOSE, s.MODEL_NAME, s.TRAINED_AT, s.
       HORIZON D
52 );
53 COMMIT;
```

Final Union Build (ACTUAL FORECAST)

Listing 4: Rebuild ANALYTICS final table.

```
1 BEGIN;
2 USE SCHEMA ANALYTICS;
4 WITH symbols AS (
    SELECT value::string AS symbol
    FROM TABLE (FLATTEN (input => PARSE_JSON (' { { var.value.stock_symbols
        7 )
9 TRUNCATE TABLE ANALYTICS.FINAL_PRICES_FORECAST;
11 -- ACTUALS from RAW
12 INSERT INTO ANALYTICS.FINAL_PRICES_FORECAST (SYMBOL, TS, CLOSE,
     SOURCE, MODEL_NAME)
13 SELECT
   sp.SYMBOL,
14
   CAST (sp.TS AS DATE) AS TS,
    sp.CLOSE,
    'ACTUAL' AS SOURCE,
    NULL
             AS MODEL_NAME
19 FROM RAW.STOCK PRICES sp
20 JOIN symbols s ON s.symbol = sp.SYMBOL;
22 -- FORECASTS from MODEL
23 INSERT INTO ANALYTICS.FINAL_PRICES_FORECAST (SYMBOL, TS, CLOSE,
     SOURCE, MODEL_NAME)
24 SELECT
f.SYMBOL,
   f.TS,
  f.PREDICTED_CLOSE AS CLOSE,
    'FORECAST'
                      AS SOURCE,
   f.MODEL_NAME
30 FROM MODEL.FORECASTS f
JOIN symbols s ON s.symbol = f.SYMBOL;
33 COMMIT;
```

4.6 Transactions & Error Handling

- DAG #1: snowflake.connector uses conn.autocommit (False) and wraps DDL/DML in try/except with commit () on success and rollback () on failure.
- DAG #2: Each SnowflakeOperator task uses BEGIN; ...COMMIT; so the entire step is atomic.

5 Results

After triggering yfinance_etl and then ml_forecast, we validated:

- RAW.STOCK_PRICES contains daily OHLCV for each ticker.
- MODEL.FORECASTS contains forecast_horizon_days predictions per ticker with MODEL_NAME='SNOWFLAKE_ML'.
- ANALYTICS.FINAL_PRICES_FORECAST holds both ACTUAL and FORECAST rows.

Validation Queries

```
SELECT 'RAW' AS t, COUNT(*) c FROM RAW.STOCK_PRICES
UNION ALL SELECT 'MODEL', COUNT(*) FROM MODEL.FORECASTS
UNION ALL SELECT 'ANALYTICS', COUNT(*) FROM ANALYTICS.
FINAL_PRICES_FORECAST;

SELECT SYMBOL, MIN(TS) AS min_ts, MAX(TS) AS max_ts, COUNT(*) AS n
FROM ANALYTICS.FINAL_PRICES_FORECAST
GROUP BY SYMBOL
ORDER BY SYMBOL, min_ts;
```

6 Discussion

Pros. Snowflake-side training avoids heavy Python deps and simplifies daily orchestration. Airflow manages schedule, retries, and secret handling via Connections/Variables. Transactions ensure atomic loads and clear failure modes.

create the Airflow Connection and Variables

SYMBOL STRING NOT NULL; TS DATE NOT NULL; CLOSE FLOAT; SOURCE STRING NOT NULL; MODEL_NAME STRING; LOAD_TS TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP(

Primary key: (SYMBOL, TS, SOURCE); SOURCE \(\) {ACTUAL, FORECAST \}.

Airflow Setup: Snowflake Connection & Variables

Required

```
stock_symbols (JSON):
["AAPL", "MSFT", "TSLA"]lookback_days: 365
```

• target_schema_raw: RAW

Optional (recommended)

- forecast_horizon_days: 14
- target_schema_model: MODEL
- target_schema_analytics: ANALYTICS

Tips.

- Ensure JSON variables are valid (double quotes, no trailing commas).
- Access in code with Variable.get ("stock_symbols"); parse JSON if needed.
- UI changes to Connections/Variables take effect immediately; new DAG code may need a short scheduler refresh window.

7 Quick Checklist

- snowflake_catfish exists and Test passes.
- stock_symbols, lookback_days, and target_schema_raw are present.
- DAG code references the same Conn Id and variable names.

8 Common Issues & Fixes

- "The conn_id isn't defined": the Connection ID in UI doesn't match the DAG.
- Auth failures: wrong account/role/warehouse in Extra.
- **JSON** errors in Variables: re-save with valid JSON (use the code blocks above).

9 Conclusion

The pipeline meets the lab goals: $ETL \rightarrow Snowflake \ ML \ Forecast \rightarrow union \ table; \ clean \ Airflow orchestration with transactions; secure configuration using Connections/Variables.$

References

- yfinance (PyPI): https://pypi.org/project/yfinance/
- Apache Airflow: https://airflow.apache.org/
- Snowflake Documentation: https://docs.snowflake.com/