sine basis 04

Statistics: p-values adjusted for search volume

set-leve	el	cluster-level			peak-level					mm mm mm	
р с	p_{FWE}	p _{FWE-corrFDR-corr} k _E p _{uncorr}			p g T FWE-corrEDR-corr			$(Z_{\equiv}) p_{\text{uncorr}}$			
				1.000	0.236 0.331	3.57 3.37	3.54 3.35	0.000	46 38	-58 -20 -68 -24	
	1.000	0.699 62	0.066	0.997 1.000	0.202 0.603	3.71 2.96	3.68 2.94	0.000 0.002	-24 -32	-50 40 -48 36	
	0.909	0.321 111	0.018	0.999 1.000	0.209 0.547	3.66 3.04	3.63 3.02	0.000 0.001	-48 -42	0 40 10 38	
	1.000		0.257	0.999	0.211	3.65	3.62	0.000	60	-58 10	
	0.336	0.071 192	2 0.003	0.999 1.000 1.000	0.211 0.507 0.594	3.65 3.09 2.97	3.62 3.08 2.96	0.000 0.001 0.002	46 36 48	-46 -30 -50 -30 -46 -38	
	0.994	0.561 81	0.039	0.999 1.000	0.211 0.505	3.64 3.10	3.61 3.08	0.000 0.001	38 38	-82 12 -84 24	
	0.998	0.605 75	0.046	1.000 1.000 1.000	0.236 0.331 0.777	3.57 3.37 2.68	3.54 3.35 2.67	0.000 0.000 0.004	50 62 58	-46 -8 -46 -10 -40 -14	
	1.000	0.841 18	0.448 0.304	1.000 1.000	0.266 0.296	3.50 3.43	3.48 3.41	0.000	42 -52	54 22 42 4	
	1.000 1.000 1.000 1.000	0.841 27 0.841 12 0.699 63	0.162 0.210 0.403 0.064 0.157	1.000 1.000 1.000 1.000	0.322 0.375 0.416 0.417 0.417	3.39 3.30 3.23 3.22 3.22	3.36 3.28 3.21 3.21 3.20	0.000 0.001 0.001 0.001	4 34 -2 -50 2	-32 -42 66 -2 18 0 -60 16 -30 -20	

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels FWHM = 8.3 8.2 7.5 mm mm mm; 4.2 4.1 3.7 {voxels}

Expected voxels per cluster, $\langle k \rangle = 18.443$ Volume: 1658320 = 207290 voxels = 3000.0 resels

Expected number of clusters, $\langle c \rangle = 130.69$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 64.09 voxels)

FWEp: 4.984, FDRp: 4.362, FWEc: 344, FDRage 282