III. kolo kategorie Z9

Z9-III-1

Pro tři neznámá přirozená čísla platí, že

- největší společný dělitel prvního a druhého je 8,
- největší společný dělitel druhého a třetího je 2,
- největší společný dělitel prvního a třetího je 6,
- nejmenší společný násobek všech tří čísel je 1680,
- největší z čísel je větší než 100, ale není větší než 200,
- jedno z čísel je čtvrtou mocninou celého čísla.

O která čísla se jedná? Určete všechny možnosti.

(E. Semerádová)

Možné řešení. Z prvních tří podmínek vyplývá, že první číslo je násobkem 24 (aby bylo dělitelné 8 a 6), druhé číslo je násobkem 8 a třetí číslo je násobkem 6. Protože zmiňovaní dělitelé jsou největší možní, musí být neznámá čísla tvaru

$$24a, 8b, 6c,$$
 (1)

kde a, b, c jsou po dvou nesoudělná čísla.

Nejmenší společný násobek takové trojice čísel je $24 \cdot a \cdot b \cdot c$, což má podle zadání být rovno $1680 = 24 \cdot 2 \cdot 5 \cdot 7$. Aby jedno z čísel bylo čtvrtou mocninou celého čísla, musí to být druhé, a to v případě, že b = 2 (první i třetí číslo je dělitelné třemi, ale nejmenší společný násobek všech tří čísel není dělitelný $3^4 = 81$). Tedy neznámá čísla jsou tvaru

$$24a, 16, 6c,$$
 (2)

kde čísla a, c jsou 5, 7, nebo 1, 35 (v libovolném pořadí).

Aby žádné z čísel nebylo větší než 200, nemůže být ani a, ani c rovno 35. Zbývají tak dvě možnosti: buď a=5 a c=7, nebo a=7 a c=5. Oba případy vyhovují poslední požadované podmínce, tj. aby největší z hledaných čísel bylo větší než 100. Neznámá trojice čísel je některá z následujících

Hodnocení. 2 body za odvození (1); 2 body za rozklad čísla 1680 a odvození (2); 2 body za rozbor možností a výsledek.

Z9-III-2

Trojúhelník ACH je určen třemi vrcholy krychle, viz obrázek. Výška tohoto trojúhelníku na stranu CH má velikost $12\,\mathrm{cm}$.

Vypočítejte obsah trojúhelníku ACH a velikost hrany příslušné krychle.

(M. Krejčová)

Možné řešení. Každá ze stran trojúhelníku ACH je úhlopříčkou některé stěny krychle. Stěny krychle jsou navzájem shodné čtverce, tedy trojúhelník ACH je rovnostranný.

Vztah mezi velikostmi výšky v a strany b rovnostranného trojúhelníku je $v=\frac{\sqrt{3}}{2}b$. Velikost strany trojúhelníku ACH je tedy

$$b = \frac{2 \cdot 12}{\sqrt{3}} = 8\sqrt{3} \doteq 13,9 \text{ (cm)}.$$

Obsah trojúhelníku se stranou velikosti ba odpovídající výškou v je $S=\frac{1}{2}b\cdot v.$ Obsah trojúhelníku ACH je tedy

$$S = \frac{12 \cdot 8\sqrt{3}}{2} = 48\sqrt{3} \doteq 83, 1 \text{ (cm}^2).$$

Vztah mezi velikostmi strany a a úhlopříčky b čtverce je $b=a\sqrt{2}$. Velikost hrany krychle je tedy

$$a = \frac{8\sqrt{3}}{\sqrt{2}} = 4\sqrt{6} \doteq 9, 8 \text{ (cm)}.$$

Hodnocení. Po 1 bod za rozpoznání rovnostrannosti trojúhelníku ACH, vyjádření b, S a a; 2 body podle kvality komentáře.

Poznámky. Vztahy $v=\frac{\sqrt{3}}{2}b$ a $b=a\sqrt{2}$ lze nalézt v tabulkách nebo odvodit pomocí Pythagorovy věty.

Podle způsobu vyjádření výrazů s odmocninami se mohou drobně lišit výsledky po zaokrouhlování. Takové rozdíly nemají vliv na hodnocení úlohy.

Z9-III-3

Je dána posloupnost sedmi čísel a, b, c, d, e, f, g. Každé z čísel b, c, d, e, f je aritmetickým průměrem sousedních dvou čísel.

Ukažte, že číslo d je aritmetickým průměrem čísel a a g. (K. Pazourek)

Možné řešení. Pokud je číslo b aritmetickým průměrem a a c, potom rozdíly b-a a c-b jsou stejné:

$$b = \frac{a+c}{2},$$

$$b+b = a+c,$$

$$b-a = c-b.$$

Všechny úpravy jsou ekvivalentní, tudíž platí i opačné tvrzení: pokud jsou rozdíly b-a a c-b stejné, potom je číslo b aritmetickým průměrem a a c.

Ze zadání vyplývá, že rozdíly dvojic sousedních čísel jsou stejné:

$$b-a = c - b = d - c = e - d = f - e = g - f.$$

Rozdíly d-a a g-d jsou proto také stejné (a jsou rovny trojnásobku rozdílu sousedních čísel). Číslo d je tedy aritmetickým průměrem čísel a a g.

Hodnocení. 3 body za rozpoznání vztahu mezi aritmetickým průměrem a rozdíly sousedních čísel; 3 body za vlastní uplatnění a kvalitu komentáře.

Poznámky. Úlohu lze řešit formálně manipulací se vztahy $b = \frac{a+c}{2}$, $c = \frac{b+d}{2}$ apod. nebo také názorně s číselnou osou. Taková řešení hodnoťte podle úplnosti a kvality provedení.

Posloupnosti s uvedenými vlastnostmi se nazývají aritmetické.

Z9-III-4

Jsou dány rovnoběžníky ABGH a DEGH, jejichž vrcholy A, B, D a E leží na jedné přímce. Bod C je průsečíkem úseček BG a DH, bod I leží na úsečce AH a bod F leží na úsečce EG. Mnohoúhelník ABCDEGH sestává ze sedmi trojúhelníků, přičemž mezi trojúhelníky ABI, BCI, CHI, DEF, CDF a CFG je jeden s obsahem $3 \, \mathrm{cm}^2$, jeden s obsahem $5 \, \mathrm{cm}^2$, dva s obsahem $7 \, \mathrm{cm}^2$ a jeden s obsahem $10 \, \mathrm{cm}^2$. Kromě trojúhelníků s obsahy $7 \, \mathrm{cm}^2$ nemá žádná další dvojice z uvedených sedmi trojúhelníků stejný obsah.

Rozhodněte, zda lze s jistotou určit trojúhelníky s obsahy $7 \, \mathrm{cm}^2$. Dále určete obsah mnohoúhelníku ABCDEGH; najděte všechny možnosti.

Poznámka: obrázek je pouze ilustrativní.

(E. Semerádová)

Možné řešení. Rovnoběžníky ABGH a DEGH mají společnou stranu a stejnou výšku, mají tedy stejný obsah. To znamená, že pro obsahy příslušných trojúhelníků platí:

$$S_{ABI} + S_{BCI} + S_{CHI} + S_{CGH} = S_{DEF} + S_{CDF} + S_{CFG} + S_{CGH}.$$
 (1)

Nezávisle na poloze bodu I na úsečce AH je obsah trojúhelníku BCI stále stejný. Pokud by bod I splynul s bodem A, tvořil by tento trojúhelník společně s trojúhelníkem CGH polovinu rovnoběžníku ABGH. Z obdobného důvodu tvoří také trojúhelníky CDF a CGH polovinu obsahu rovnoběžníku DEGH. Celkem tedy pro obsahy trojúhelníků platí:

$$S_{BCI} + S_{CGH} = S_{ABI} + S_{CHI} = S_{DEF} + S_{CFG} = S_{CDF} + S_{CGH}.$$
 (2)

Zejména trojúhelníky BCI a CDF mají stejný obsah, a to právě $7 \, \text{cm}^2$.

Tři ze čtyř trojúhelníků ABI, CHI, DEF a CFG mají obsahy $3\,\mathrm{cm}^2$, $5\,\mathrm{cm}^2$ a $10\,\mathrm{cm}^2$. Probereme všechny možné součty (2), odtud určíme obsah zbylého trojúhelníku z uvedené čtveřice, obsah trojúhelníku CGH a obsah mnohoúhelníku ABCDEGH:

součet (2)	3 + 5 = 8	3 + 10 = 13	5 + 10 = 15
obsah zbylého	8 - 10 = -2	13 - 5 = 8	15 - 3 = 12
obsah CGH		13 - 7 = 6	15 - 7 = 8
obsah celého	_	14 + 26 + 6 = 46	14 + 30 + 8 = 52

V obou případech je splněna podmínka, že kromě trojúhelníků s obsahy $7\,\mathrm{cm}^2$ nemá žádná další dvojice trojúhelníků stejný obsah. MnohoúhelníkABCDEGH má obsah buď $46\,\mathrm{cm}^2,$ nebo $52\,\mathrm{cm}^2.$

Hodnocení. 1 bod za odvození vztahu (1); 2 body za vztahy (2) a rozpoznání trojúhelníků s obsahy $7\,\mathrm{cm}^2$; 3 body za rozbor možností, ověření podmínek a určení možných obsahů mnohoúhelníku ABCDEGH.