Edge-magic labellings

Atilio Luiz

MO804 - Tópicos em Teoria de Grafos UNICAMP, Brasil

September 28, 2017

Magic Square

▶ A *magic square* is a $n \times n$ square grid filled with distinct positive integers in the range $1, \dots, n^2$ such that each cell of the grid contains a different integer and the sum of the integers in each row, column and diagonal is equal.

Figure: (Lo Shu square) The smallest (and unique up to rotation and reflection) magic square of dimension 3×3 .

Magic Square in Art

Figure: (Melencolia I, Albert Durer, 1514) The sum 34 can be found in the rows, columns, diagonals, each of the quadrants, the center four squares, and the corner squares (of the 4×4 as well as the four contained 3×3 grids).

Srinivasa Ramanujan's magic square

The Indian mathematician Srinivasa Ramanujan created a square where the first row shows his date of birth, 22nd Dec. 1887.

Figure: This magic square has 24 groups of four fields with the sum of 139 and in the first row - shown at bottom-right - Ramanujan's date of birth.

Origins of magic graphs

Smolenice 1963

J. Sedlácek

Figure: Smolenice Symposium in Graph Theory, Czechoslovakia, 1963.

Two famous problems of the Smolenice Symposium

19. Except the trivial case of a graph with two vertices and five edges no regular plane Hamilton3) graph of degree 5 is known. Do there exist such graphs?

A. Kotzig

20. Does there exist an integer n > 1 such that the complete 2n-gon is not Hamiltonian?3) A. Kotzig

21. To construct all regular Hamilton3) graphs of degree 3.

A. Kotzig

22. Let K be a given Hamilton3) circuit of a complete 2n-gon G_{2n}. Denote by A. (and $\Lambda_{\bullet}^{\bullet}$, Λ_{\bullet}^{0} , respectively) the number of distinct linear factors of $G_{2\bullet}$ such that the composition of K with any of these factors yields a Hamilton (or bipartite Hamilton or plane Hamilton, respectively) graph of degree 3. Determine the functions A. A. A. A. Kotzig

23. Find the number $\Omega(2n+1)$ of all non-isomorphic orientations of edges of the complete (2n + 1)-gon G_{2n+1} with the property that in each of these orientations there are precisely n edges ending in any vertex of G_{2n+1} . A KOTZIG

24. Let G be a non-directed graph without loops and multiple edges, with the set V of vertices. Characterize those subsets X (respectively Y) of V which arise from an orientation of G as the set of those vertices at which there is no incoming (respec-

tively outgoing) edge. A. KOTZIG 25. It is conjectured that the complete (2n + 1)-gon can be decomposed into

G. RINGEL

26. Graphs assigned to groups. Let H be a finite group with elements a, b, c, ... and the identity element e. If $a, b \in H$, an element $c \in H$ is uniquely determined so that abc = e; then also bca = cab = e.

2n + 1 subgraphs which are all isomorphic to a given tree with n edges.

A triple x, y, z of elements from H with xyz = e will be termed an e-triple; two e-triples are equal if one arises from the other by a cyclic permutation. An e-triple (x, y, z) is called regular if x + y + z + x, otherwise it is singular. Analogously, a pair $\{x, y\}$ of elements in H is regular if it determines a regular e-triple, otherwise it is singular (especially $\{x, x\}$ is singular for $x \in H$).

³⁾ Hamiltonian in sense of Korzzo. See p. 63.

Problem 27

- ▶ [Jiri Sedlácek, 1963] A simple connected graph G is called magic if there is a real-valued labelling of the edges of G such that:
 - (i) distinct edges have distinct values;
 - (ii) the sum of values assigned to all edges incident to a given vertex $v \in V(G)$ is the same for all vertices of G.
- Find necessary and sufficient conditions for a graph to be magic.

Edge-magic labellings

- ▶ [Kotzig and Rosa, 1970] Let G be an (n,m)-graph. An edge-magic labelling of G is a bijection $f\colon V(G)\cup E(G)\to [1,m+n]$ such that f(u)+f(uv)+f(v)=k, for all $uv\in E(G)$.
- ▶ If G has an edge-magic labelling, then G is called edge-magic.
- ▶ The constant *k* is called the valence of the labelling *f*.

Complementary labelling

- ▶ The complementary labelling of an edge-magic labelling f, denoted \overline{f} , is defined by $\overline{f}(x) = n + m + 1 f(x)$, for all $x \in V(G) \cup E(G)$.
- ▶ \overline{f} is also an edge-magic labelling and its valence is $\overline{k} = 3(n+m+1) k$.

Warm up

Theorem

Let G be a (n,m)-graph. If G has m even and $n+m\equiv 2\pmod 4$, and every vertex of G has odd degree, then G has no edge-magic labelling.

Warm up

Theorem

Let G be a (n,m)-graph. If G has m even and $n+m\equiv 2\pmod 4$, and every vertex of G has odd degree, then G has no edge-magic labelling.

Corollary

The complete graph K_n is not edge-magic when $n \equiv 4 \pmod 8$. The wheel W_n with n+1 vertices is not edge-magic when $n \equiv 3 \pmod 4$.

Stars

Theorem

Every star is edge-magic.

Stars

Theorem 1

Every star is edge-magic.

Corollary

In any edge-magic labelling of a star $K_{1,n}$, the center receives label 1, n+1, or 2n+1.

Stars

Theorem

Every star is edge-magic.

Corollary

In any edge-magic labelling of a star $K_{1,n}$, the center receives label 1, n+1, or 2n+1.

Theorem

There are $3 \cdot 2^n$ edge-magic labellings of $K_{1,n}$ up to equivalence.

Trees

Conjecture [Kotzig and Rosa, 1970]

Every tree is edge-magic.

Theorem [Kotzig and Rosa, 1970]

Every caterpillar is edge-magic.

Linear forests

Theorem

The one-factor F_{2n} is edge-magic if and only if n is odd.

Cycles

Theorem

All cycles C_n with $n \geq 3$ are edge-magic.

References I

J. A. Gallian.
A dynamic survey of graph labeling.
The Electronic Journal of Combinatorics, 2016.