

ELEVADOR 3 PISOS

Programação Ladder

Relatório Versão Simplificada

Projeto Final de Curso — Técnico de Eletrónica Automação e Computadores [2017]

Índice

PLC	2
Relés	2
Base de relés	3
Sensores Fim de Curso	3
Botão de Pressão	4
Leds	4
Fonte de Alimentação	5
Disjuntor	5
Borne	6
Estrutura do elevador	6
Esquema elétrico	7
Programação	8
Software utilizados	8
Primeira versão da programação	8
Segunda versão da programação	8
Como estabelecer comunicação entre o autómato e o computador	10

PLC

O autómato utilizado no projeto é um Siemens S7 1200 que utiliza a linguagem de programação diagrama de ladder, como mostra a figura.

Relés

Utilizamos relés de 24Vdc.

Base de relés

É um componente auxiliar do relé. A sua função é fixar o relé e disponibiliza as ligações elétricas para que este cumpra as suas funções.

Sensores Fim de Curso

A sua função é indicar que um determinado equipamento (neste caso a cabine do elevador) chegou ao fim do seu campo de movimento.

Botão de Pressão

Botão ON-OFF, para selecionar o piso no elevador

Leds

Sinalização do piso atual do elevador.

Fonte de Alimentação

Fonte de alimentação de 24V DC

Disjuntor

Proteção elétrica.

Borne

Dispositivo de ligação mecânica de fios

Estrutura do elevador

Estrutura metálica com rodas para auxílio de deslocação

Esquema elétrico

O esquema elétrico pode ser encontrado nos arquivos do projeto.

- 1ª página – Circuito de potência.

O circuito de potência disponibiliza os vários valores de tensão (AC e DC) e é constituído pela fonte de alimentação e proteções (disjuntores).

 - 2ª página – Esquema de eletrificação da instalação (circuitos de comando e sinalização).

É disponibilizada uma tensão de comando (D4 - 24 VDC) em dispositivos elétricos (fins de curso e botões de pressão), quando atuados manualmente ou mecanicamente dão comandos / sinalização à instalação, iniciando/concluindo circuitos elétricos.

- 3ª página – Esquema de entradas do autómato.

O autómato disponibiliza a tensão (24 VDC) que são introduzidos em contactos livres de potencial em relés da instalação, quando estes operam introduzem uma polaridade / informação da instalação no autómato.

- 4ª página – Esquema de saídas do autómato.

O autómato disponibiliza a tensão (24 VDC), em função da programação do mesmo e da instalação (localização do piso, chamada, etc.), este ativa uma saída. Esta saída alimenta um relé, que vai dar ordem à instalação.

- 5^a página – Esquema de sinalizações.

É disponibilizada uma tensão de comando (D4 - 24 VDC) em contactos livres de potencial nos relés da instalação, que quando operam, introduzem uma polaridade nos sinalizadores, dando informação/sinalização do estado da instalação.

- 6^a página – Esquema de potência do motor.

É disponibilizada uma tensão (D5 - 24 VDC) em contactos livres de potencial nos dois relés (KS e KD) da instalação. NOTA: nos relés KS (subida) e KD (descida) inverteu-se as polaridades para inverter a rotação do motor.

Programação

Software utilizados

Inicialmente, comecei a desenvolver a programação no LogixPro, um software de linguagem de programação Ladder, porque era o software com que me encontrava mais familiarizado. Enquanto fui desenvolvendo a programação, fui aprendendo a trabalhar no software Portal TIA V14, que é o software da Siemens para programar muitos dos seus autómatos, nomeadamente o que utilizei, o Siemens S7 1200. Quando me familiarizei com o Portal TIA V14, continuei o desenvolvimento da programação nesta plataforma.

Primeira versão da programação

A primeira versão foi desenvolvida no LogixPro, utilizando conceitos básicos aprendidos nas aulas de Automação e Computadores. Esta versão consistia em ter uma linha para cada saída, e em criar vários "and" e "or" em cada uma dessas linhas. O erro desta versão aparecia quando era feito um pedido de deslocamento para o piso 1, o piso central, pois os sistemas de encravamento crashavam e o motor nunca parava.

Segunda versão da programação

Esta versão tem 8 estados, sendo eles: início; reset do sistema; seleção de piso; chamada piso RC; chamada piso 1; chamada piso 2; motor down/up; e sinalização de piso. Passo agora a explicar cada uma delas:

- 1º estado (Início), este estado é ativado assim que recebe o elevador recebe energia e a sua função é criar um bit na memória para que possa ativar o próximo estado.
- 2º estado (reset do sistema), este estado é o responsável para o elevador ter sempre um piso de referência. Quando inicia vai avaliar se o elevador se encontra no piso rés do chão ou não (através do sensor fim de curso do piso rés do chão), caso o elevador não se encontre nesse piso ele vai dar ordem ao motor para descer, esta ordem vai ser interrompida quando o elevador atingir o piso rés do chão. Caso o elevador já esteja no rés do chão ou já tenha descido até lá, vai ativar o terceiro estado, seleção de piso. Este estado é muito importante, pois caso haja um corte na energia enquanto ele está em movimento ele vai parar num sítio, para o autómato, desconhecido (uma vez que ele só reconhece os lugares onde estão os sensores fim de curso), e quando regressasse a energia ele não saberia para que

direção teria de se deslocar, assim este estado faz com que mal a energia regresse ele se desloque para o piso rés do chão, fazendo assim com que haja sempre um piso de referência.

- 3º estado (seleção de piso), este estado é o responsável por atender os pedidos de chamada do elevador. Quando inicia reseta imediatamente o primeiro estado, início, e os Move RC/Chamada piso RC, Move P1/Chamada piso 1 e Move P2/Chamada piso 2. Após todos os resets, vai esperar pelo sinal de um dos botões de chamada (rés do chão, piso 1 ou piso 2). Quando um dos botões é ativado ele avalia se o elevador não está nesse piso e caso não esteja ativa o estado correspondente ao piso chamado, caso o elevador já estiver no piso selecionado pelo botão ele não faz nada.
- 4º estado (chamada piso RC), este estado é ativado pelo terceiro quando alguém clicar no botão de chamada do piso rés do chão e ele não esteja lá. Quando ativado vai resetar o terceiro estado. Após isso vai avaliar se o elevador se encontra no piso 1 ou no piso 2 e caso esteja num desses pisos vai ativar o estado 7 na memória descer, que vai ativar o motor na rotação de descida até atingir o sensor fim de curso do rés do chão. Quando o elevador chega ao piso rés do chão, vai resetar o estado descer e o subir, e ativar o terceiro estado, o de seleção de piso.
- 5° estado (chamada piso 1), este estado também é ativado pelo terceiro, mas quando alguém clica no do piso 1 e o elevador não se encontra nesse mesmo piso. Quando ativa vai resetar o terceiro estado e vai avaliar a posição onde se encontra, ou no piso rés do chão ou no piso 2. Caso esteja no piso rés do chão, vai ativar o estado 7 na memória subir, que vai ativar o motor na rotação subida até atingir o sensor fim de curso do piso 1. Caso esteja no piso 2, vai ativar o estado 7 na memória descer, que vai ativar o motor na rotação descida até atingir o sensor fim de curso do piso 1. Quando o elevador chega ao piso 1, vai resetar o estado descer e o subir, e ativar o terceiro estado, o de seleção de piso.
- 6° estado (chamada piso 2), este estado é ativado pelo terceiro quando alguém clicar no botão de chamada do piso 2 e o elevador não se encontre nesse mesmo piso. Quando ativado vai resetar o terceiro estado. Após isso vai avaliar se o elevador se encontra no piso 1 ou no piso rés do chão e caso esteja num desses pisos vai ativar o estado 7 na memória subir, que vai ativar o motor na rotação de subida até atingir o sensor fim de curso do piso 2. Quando o elevador chega ao piso 2, vai resetar o estado descer e o subir, e ativar o terceiro estado, o de seleção de piso.
- 7° estado (motor down/up), este estado é o responsável pelo movimento do motor. É ativado pelos estados 4, 5 e 6, quando ativam as variáveis de memória subir ou descer. Este estado apresenta também um sistema de segurança, o sistema denominado de "porta aberta", que faz com que o elevador só se mova quando a porta estiver fechada.

- 8º estado (sinalização de piso), este estado é o responsável por sinalizar o piso em que o elevador de encontra. Por exemplo quando o sensor fim de curso do rés do chão estiver ativo, vai ativar a variável de memória Posição RC e resetar as variáveis de memória Posição P1 e Posição P2. Por sua vez a variável de memória Posição RC vai ativar a saída física Sinalização RC. O funcionamento é o mesmo para os três pisos, quando o sensor fim de curso do piso 1 estiver ativo, vai ativar a variável de memória Posição P1 e resetar as variáveis de memória Posição RC e Posição P2, por sua vez essa variável de memória Posição P1 vai ativar a saída física Sinalização P1. E quando o sensor fim de curso do piso 2 estiver ativo, vai ativar a variável de memória Posição P2 e resetar as variáveis de memória Posição RC e Posição P1, por sua vez essa variável de memória Posição P2 vai ativar a saída física Sinalização P2.

Como estabelecer comunicação entre o autómato e o computador

O primeiro passo é alterar o IPv4 da placa de rede do computador para um IP fixo. Neste caso alterei para 192.168.0.50.

De seguida abri o software TIA Portal v14 (software de programação do autómato) e abri o bloco de programação que queria descarregar para o autómato. Cliquei em "add new device" (adicionar um novo dispositivo) escolhi a versão do meu autómato, neste caso foi CPU 1214C AC/DC, 6ES7 214-1BG40-0XB0, v. 4.0.

O terceiro passo foi alterar o IP do autómato para um diferente do computador, neste caso utilizei 192.168.0.25.

O próximo passo foi ir à barra do menu e entrar em Online/Go Online. Escolhi o modelo da minha placa de rede e cliquei em começar procura (isto com o autómato ligado ao computador). Após esperar cerca de 30 segundos a comunicação já estava feita. (figura 37)

O último passo foi descarregar as linhas de código para o autómato, para isso fui ao menu Online/Download to Device e automaticamente começou a transferência.