Genome Editing and Engineering

Course No: BT-637

LECTURE-12

Dr. Kusum K. Singh
Department of Biosciences and Bioengineering
Indian Institute of Technology Guwahati

Synergy between adjacent zinc fingers in sequence-specific DNA recognition

MARK ISALAN, YEN CHOO*, AND AARON KLUG

ZF for each codon

Second Letter

		U	С	Α	G	
1st letter	U	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	C	CUU CUC CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC GIn CAG	CGU CGC Arg CGA CGG	U C A G
	A	AUU IIe AUA Met	ACU Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg	U letter C A G
	G	GUU Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA GIU GAG	GGU GGC GGA GGG	U C A G

Designing of Seq. Spec. Recog. of DNA

fused together using an extended canonical linker (2 \times 3F scheme). (b) Three two-finger peptides linked using canonical linkers extended by an insertion of either a glycine residue or a glycine-serine-glycine sequence in the canonical linkers between fingers 2 and 3 and fingers 4 and 5, respectively.

Chimeric restriction endonuclease

Artificial Nucleases

(Flavobacterium okeanokoites/chimeric restriction endonuclease/protein engineering/recognition and cleavage domains)

Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains

Jeff Smith^{1,2}, Marina Bibikova³, Frank G. Whitby³, A. R. Reddy^{1,4}, Srinivasan Chandrasegaran¹ and Dana Carroll^{3,*}

Limitations

- Targeted Genome editing in various organisms
- Two major limitations:
- 1. Zinc finger domains have limited modularity.
- 2. Lack of specificity of some ZF domains = off target cleavage.
- 3. Tedious, elaborate and time consuming process.

Conclusions of Lecture-12

- Today we saw the First Zinc finger Nuclease (ZNFs).
- Use of hybrid nuclease by various lab. groups.
- The foundation of Sangamo Therapeutic company.
- Limitations: a) Limited modularity
 - b) off-targets
 - c) Lengthy process

Questions?