Интегрирование тригонометрических функций.

- 1. Интегралы $\int R(\sin x) \cdot \cos^{2k+1} x dx$ (или $\int R(\cos x) \cdot \sin^{2k+1} x dx$), где R рациональная дробь своего аргумента, а k целое число, легко берутся с помощью замены $\sin x = t$ (или $\cos x = t$).
- 2. Интегралы вида $\int R(\sin^2 x, \cos^2 x) dx$, где R рациональная дробь по каждому из аргументов, берутся заменой tgx = t. Действительно, при этой замене $\cos^2 x = \frac{1}{1+t^2}$, $\sin^2 x = \frac{t^2}{1+t^2}$, $dx = \frac{dt}{1+t^2}$, и мы придем к интегралу от рациональной дроби.
- 3. Интегралы вида $\int R(tgx)dx$ берутся заменой tgx = t.
- 4. Интегралы самого общего вида $\int R(\sin x, \cos x) dx$ берутся с помощью универсальной тригонометрической подстановки $\operatorname{tg} \frac{x}{2} = t$.

Действительно, $\cos x = \frac{1-t^2}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$, $dx = \frac{2dt}{1+t^2}$, то есть интеграл приводится к интегралу от рациональной дроби.

Интегрирование степеней синусов и косинусов.

- 1.Выражения вида $\int \frac{dx}{\cos^n x}$, $\int \frac{dx}{\sin^n x}$ в случае, когда n четное, интегрируются заменой tgx = t (или ctgx = t), с использованием того, что $d(tgx) = \frac{dx}{\cos^2 x}$, $\frac{1}{\cos^2 x} = 1 + tg^2 x$ (или $d(ctgx) = -\frac{dx}{\sin^2 x}$, $\frac{1}{\sin^2 x} = 1 + ctg^2 x$). Если n нечетное, домножаем числитель на одну степень и делаем замену: $\int \frac{dx}{\cos^{2k+1} x} = \int \frac{\cos x dx}{\cos^{2k+2} x} = \int \frac{d(\sin x)}{(1-\sin^2 x)^{k+1}} = \int \frac{dt}{(1-t^2)^{k+1}}$.
- 2.Выражения вида $\int \cos^n x dx$, $\int \sin^n x dx$ в случае, когда n четное, интегрируются с помощью понижения степени по формулам $\sin^2 x = \frac{1 \cos 2x}{2}$, $\cos^2 x = \frac{1 + \cos 2x}{2}$.

Если n нечетное, одна степень берется в дифференциал и делается соответствующая замена:

$$\int \cos^{2k+1} x dx = \int \cos^{2k} x d(\sin x) = \int (1 - \sin^2 x)^k d(\sin x) = \int (1 - t^2)^k dt$$

Тригонометрические подстановки в иррациональностях. Часто от корней под интегралами можно избавляться с помощью тригонометрических подстановок.

1.
$$\int \sqrt{1-x^2} dx = [x = \sin t] = \int \cos^2 t dt = ...$$

2.
$$\int \sqrt{x^2 - 1} dx = \left[x = \frac{1}{\sin t} \right] = \int \frac{\cos^2 t}{\sin^3 t} dt = \dots$$

3.
$$\int \sqrt{1+x^2} dx = [x = tgt] = \int \frac{1}{\cos^3 t} dt = \dots$$

Такие подстановки можно применять к интегралам вида $\int R(x, \sqrt{ax^2 + bx + c}) dx$.

Выделим полный квадрат в подкоренном выражении: $\int R(x, \sqrt{ax^2 + bx + c}) dx =$

$$= \int R(x, \sqrt{a(x^2 + 2\frac{1}{2a}bx + \frac{1}{4a^2}b^2) + (c - \frac{1}{4a^2}b^2)}) dx$$
 и сделаем замену $x + \frac{b}{2a} = z$.

Тогда
$$\int R(x, \sqrt{ax^2 + bx + c}) dx = \int R_1(z, \sqrt{az^2 + l}) dz$$
, где $l = (c - \frac{1}{4a^2}b^2)$.

1.
$$a=-\alpha^2<0$$
, $l=\beta^2>0$. Тогда $\int R_1(z,\sqrt{az^2+l})dz=\int R_1(z,\beta\sqrt{1-(\frac{\alpha}{\beta})^2z^2})dz$, и

заменой $z = \frac{\beta}{\alpha} \sin t$ мы приводим исходный интеграл к виду $\int R_2(\sin t, \cos t) dt$

2. $a=\alpha^2>0$, $l=-\beta^2<0$. Тогда $\int R_1(z,\sqrt{az^2+l})dz=\int R_1(z,\beta\sqrt{(\frac{\alpha}{\beta})^2z^2-1})dz$, и

заменой $z = \frac{\beta}{\alpha \sin t}$ мы приводим исходный интеграл к виду $\int R_2(\sin t, \cos t) dt$

3.
$$a=\alpha^2>0$$
, $l=\beta^2>0$. Тогда $\int R_1(z,\sqrt{az^2+l})dz=\int R_1(z,\beta\sqrt{(\frac{\alpha}{\beta})^2z^2+1})dz$, и

заменой $z = \frac{\beta}{\alpha} \operatorname{tg} t$ мы приводим исходный интеграл к виду $\int R_2(\sin t, \cos t) dt$.