MLHD: Machine Learning for Human Detection — Building an Object Detector from Scratch

Daveed Vodonenko

Lucas Portela

Darius Vulturu

Motivation & Problem Statement

Detecting objects in images is a fundamental task in computer vision, powering applications from self-driving cars to medical imaging. However, most state-of-the-art detectors are trained on curated, high-resolution datasets and often fail under real-world CCTV conditions: low light, occlusions, motion blur, and unusual camera angles. Our project, MLHD (Machine Learning for Human Detection), addresses this gap by focusing specifically on the **detection of humans in noisy surveillance video**. This is a critical first step toward spatio-temporal action recognition, which underpins safety analytics in industrial and urban environments. Our **hypothesis** is that a compact convolutional neural network (which learns visual patterns from images using filters), trained end-to-end on real CCTV frames, can reliably localize people despite these challenges. This provides a strong foundation for downstream tasks that could save lives, such as near-miss detection and accident prevention.

Objectives

We have four objectives. The main goal is to train a human-detection model optimized for real-world CCTV video. On the educational side, we aim to deepen our understanding of convolutional neural networks by manually implementing training loops using PyTorch tensors and low-level operations. From an applied perspective, we seek to achieve reliable Intersection-over-Union (IoU) scores for human detection on CCTV validation footage, ensuring that predicted bounding boxes closely overlap with the ground-truth annotations. Finally, on the research side, we plan to compare the performance of our minimalist detector to published baselines such as YOLOv4 ^[2] in domain-shifted scenarios.

Implementation Overview

We base our approach on the YOLO framework, **You Only Look Once** $^{[1,2]}$, a real-time object detection system that divides an image into a grid and predicts bounding boxes and class probabilities for each cell in a single forward pass. YOLO is fast, end-to-end trainable, and particularly suitable for video surveillance tasks. In our project, a small CNN backbone extracts features, and a detection head predicts objectness and bounding boxes per cell on an $S \times S$ grid. Training uses a composite loss function: binary cross-entropy (for objectness) $^{[3]}$ and coordinate regression loss (for bounding box localization). Full equations and layer specifications are detailed in Annex A: Technical Details (see page 3).

Data & Work Plan

We will collect CCTV footage (obtained from one of our team members' independent projects) from multiple cameras, bootstrap annotations with an existing detector ^[1], and manually clean samples to ensure quality. **Phase 1:** Data prep, grid encoding, baseline model (Weeks 1–3). **Phase 2:** Training and hyperparameter search (Weeks 4–6). **Phase 3:** Evaluation, visualization, and final report (Weeks 7–8).

Impact

This project produces both an educational artifact, a from-scratch PyTorch training pipeline, and a practical humandetection model, which can be extended to temporal action recognition to improve workplace and urban safety.

References

- 1. Redmon, J. et al., "You Only Look Once: Unified, Real-Time Object Detection," CVPR 2016.
- 2. Bochkovskiy, A. et al., "YOLOv4: Optimal Speed and Accuracy of Object Detection," arXiv:2004.10934.
- 3. Lin, T.Y. et al., "Focal Loss for Dense Object Detection," $ICCV\ 2017$.

Annex A: Technical Details

1. Image Representation

We begin with an input image of width W pixels and height H pixels. An image can be represented as a 3D tensor

$$I \in \mathbb{R}^{H \times W \times 3}$$
,

where the last dimension corresponds to the RGB color channels.

2. Grid Division

To detect objects, we divide the image into an $S \times S$ grid. Each grid cell is responsible for predicting whether an object's center falls inside it.

- $S = \text{number of cells along one dimension (e.g., } S = 26 \text{ for a } 416 \times 416 \text{ input)}.$
- Each cell therefore covers $\frac{W}{S} \times \frac{H}{S}$ pixels.

3. Model Architecture

The network has two main components:

- Backbone: A sequence of convolutional layers with increasing channel depth (16, 32, 64, 128, 256, 512) and stride-2 downsampling. For an input image of size 416 × 416, this produces a feature map of size (512, 26, 26). The backbone's role is to extract spatial features from the raw pixels.
- Detection Head: A 1 × 1 convolution maps each cell's 512-dimensional feature vector to five outputs:

$$(\hat{t}_x, \hat{t}_y, \hat{t}_w, \hat{t}_h, \hat{t}_{obj}).$$

Here:

- $-\hat{t}_x,\hat{t}_y$ = predicted offset of the object center inside the grid cell,
- $-\hat{t}_w, \hat{t}_h = \text{predicted normalized width and height},$
- $-\hat{t}_{obj}$ = predicted objectness score (probability an object is present).

Activation Functions: All outputs pass through a sigmoid activation, constraining values to [0,1].

- Offsets (\hat{t}_x, \hat{t}_y) must remain within a cell.
- Width and height (\hat{t}_w, \hat{t}_h) are expressed as fractions of the image size.
- Objectness \hat{t}_{obj} is a probability.

4. Bounding Box Definition

A ground-truth bounding box is defined by its pixel coordinates:

$$(x_1, y_1)$$
 (top-left), (x_2, y_2) (bottom-right).

We then compute normalized parameters:

$$c_x = \frac{x_1 + x_2}{2W}, \quad c_y = \frac{y_1 + y_2}{2H}, \quad w = \frac{x_2 - x_1}{W}, \quad h = \frac{y_2 - y_1}{H}.$$

Here (c_x, c_y) is the box center relative to the image size, and (w, h) are normalized width and height.

5. Assigning to Grid Cells

We determine the grid cell responsible for predicting the object:

$$i = |c_x S|, \quad j = |c_y S|,$$

where i is the column index and j is the row index.

6. Target Tensor Construction

The training target is a tensor $Y \in \mathbb{R}^{S \times S \times 5}$. Each cell (j, i) stores:

$$Y[j, i] = (t_x^*, t_y^*, t_w^*, t_h^*, t_{obj}^*),$$

where

$$t_x^* = c_x S - i$$
, $t_y^* = c_y S - j$, $t_w^* = w$, $t_h^* = h$, $t_{obj}^* = 1$.

All other cells store zeros.

Interpretation:

- (t_x^*, t_y^*) = offset of the object center inside the cell, in [0, 1],
- (t_w^*, t_h^*) = normalized width and height,
- $t_{obj}^* = 1$ if the cell contains an object center, else 0.

7. Loss Function

The total training loss is a weighted sum of localization and objectness losses:

$$L = \lambda_{coord} L_{coord} + L_{obj}.$$

(a) Localization loss: Applied only to cells with $t_{obj}^* = 1$:

$$L_{coord} = (\hat{t}_x - t_x^*)^2 + (\hat{t}_y - t_y^*)^2 + (\hat{t}_w^2 - (t_w^*)^2)^2 + (\hat{t}_h^2 - (t_h^*)^2)^2.$$

(b) Objectness loss: For each cell (i, j):

$$L_{obj} = \sum_{i,j} \left[M_{ij}^{pos} BCE(\hat{t}_{ij}^{obj}, 1) + \lambda_{noobj} M_{ij}^{neg} BCE(\hat{t}_{ij}^{obj}, 0) \right],$$

where:

- $M_{ij}^{pos} = 1$ if an object center lies in cell (i, j), else 0,
- $\bullet \ M_{ij}^{neg} = 1 M_{ij}^{pos},$
- BCE = binary cross-entropy,
- λ_{coord} , λ_{noobj} are hyperparameters controlling the relative weight of localization and negative objectness terms. Intuitively:
 - $-\lambda_{coord}$ increases the emphasis on precise box regression. A higher value is useful if the model predicts object locations but with poor accuracy.
 - $-\lambda_{noobj}$ reduces the impact of the many background (no-object) cells. Lowering it prevents the model from being overwhelmed by negatives, while raising it makes the detector stricter about false positives.

PyTorch Implementation Notes

We use torch.nn.functional.conv2d, F.interpolate for bilinear upsampling, and custom-written loss functions leveraging torch.tensor broadcasting. Backprop and parameter updates are handled by torch.autograd and torch.optim.SGD.