苏州大学实验报告

院、系	计算机学院	年级专业	19 计算机类	姓名	张昊	学号	1927405160
课程名称		数据组	结构课程实践			成绩	
指导教师	孔芳	同组实员	验者 无		实验日期	2021	年1月3日

实验名称 排序

一、问题描述

Mr. and Mrs. Smith are going to the seaside for their holiday. Before they start off, they need to choose a hotel. They got a list of hotels from the Internet, and want to choose some candidate hotels which are cheap and close to the seashore. A candidate hotel M meets two requirements:

- 1. Any hotel which is closer to the seashore than M will be more expensive than M.
- 2. Any hotel which is cheaper than M will be farther away from the seashore than M.

Input

There are several test cases. The first line of each test case is an integer N ($1 \le N \le 10000$), which is the number of hotels. Each of the following N lines describes a hotel, containing two integers D and C ($1 \le D$, $C \le 10000$). D means the distance from the hotel to the seashore, and C means the cost of staying in the hotel. You can assume that there are no two hotels with the same D and C. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, you should output one line containing an integer, which is the number of all the candidate hotels.

Sample Input

Sample Output

2

问题简析

问题大意大致是:选择一家选择一些便宜且靠近海边的候选酒店。候选酒店 M 具备

以下两个条件——任何比 M 更靠近海岸的酒店都比 M 贵;任何比 M 便宜的酒店都比 M 离海岸更远。

输入:有多组测试用例。每个测试用例的第一行是一个整数 N(1 \leq N \leq 10000)为酒店的数量,接下来 N 行为酒店信息,用两个整数 D 和 C 表示(1 \leq D,C \leq 10000),其中 D 表示从酒店到海边的距离,C 表示酒店的费用。不存在两个具有相同 D 和 C 的酒店。N = 0 代表测试用例结束输入。

输出:对于每个测试用例,输出一行,其中包含一个整数为所有候选酒店的数量。

二、问题解决

对于每个酒店,有两个关键字,价格 C 和举例 D,可在程序中将其定义为结构体。分析问题中关键的一句话:任何比 M 更靠近海岸的酒店都比 M 贵;任何比 M 便宜的酒店都比 M 离海岸更远。可以得到结论,对于候选旅馆 M,价格占有优先地位,其次是距离。可以以价格为主关键字,举例为次关键字进行排序,即先按照价格从小到大排序,价格相同按照距离从小到大排序。这是类似于计数排序的思想。但实际实现中,程序复用了 C++标准库提供的 sort 函数,并为酒店结构体重载比较运算符(<),来实现先按照价格从小到大排序,价格相同按照距离从小到大排序。由于使用了系统提供的排序算法,保证了时间复杂度为 $O(nlog_2n)$ 。

排序后的各个酒店中,可以从左到右遍历各个酒店信息,当发现一个酒店的距离 D 比前面出现过的酒店中距离 D 最小的还小,那么它一定是候选酒店之一。这一部分的时间复杂度为O(n)。

上述算法总的时间复杂度为 $O(nlog_2n)$,考虑到数据规模为 1e4,算法可行。具体实现为:

```
    #include <iostream>

2. #include <algorithm>
3. const int MAX = 10005;
using namespace std;
5.
6. struct Hotel {
      int d, c;
7.
    bool operator<(const Hotel &hotel) const {</pre>
        if (c == hotel.c) return d < hotel.d;</pre>
9.
10.
      return c < hotel.c;</pre>
11.
      }
12. } hotels[MAX];
13.
14. int main() {
15.
      int n;
16. while (cin >> n && n != 0) {
       for (int i = 0; i < n; ++i) {</pre>
17.
```

```
18.
        cin >> hotels[i].d >> hotels[i].c;
19.
20.
        sort(hotels, hotels + n);
        int ans = 0, min_d = MAX;
21.
22.
        for (int i = 0; i < n; ++i) {</pre>
23.
          if (hotels[i].d < min_d) {</pre>
24.
            ans++;
25.
             min_d = hotels[i].d;
26.
27.
        }
28.
        cout << ans << endl;</pre>
29.
30.
      return 0;
31.}
```

三、实验结果测试

使用题目给定的数据进行测试,运行结果为:

```
5
300 100
100 300
400 200
200 400
100 500
0
```

四、小结

通过这次实验,我复习了基数排序算法思想以及算法时间复杂度的分析方法,基于已 有知识完成了一个算法题目。

五、附录

- 1. 源代码路径: C++源代码位于附件中。
- 2. 文件编码: UTF-8; 行分隔符: CRLF。
- 3. **实验环境:** Windows 操作系统;在 CLion 集成开发环境中调试运行通过。直接编译运行源代码 main.cpp 即可。