Assignment_3_RutgerGeelen_WashantvanDam

Rutger Geelen (13510517) and Washant van Dam (13510053)

December 8th, 2020

Preparation

Clear workspace and load the required packages:

```
rm(list=ls())
suppressMessages(library("lmtest"))
suppressMessages(library("car"))
library("sandwich")
suppressMessages(library("ggplot2"))
library("rmarkdown")
library ("survival")
suppressMessages (library ("stargazer"))
library ("rbibutils")
library ("plm")
library ("ivreg")
library("urca")
```

$\mathbf{Q}\mathbf{1}$

We analyse annual data on the S&P 500 stock market index and related time series, with observations over the period 1871–2015. The data are given in SP500.csv, and the variables are defined as follows:

- P S&P 500 index (value-weighted average of stock prices of 500 important US companies)
- D DAnnual (value-weighted average) dividend per share on the stocks in the index
- Rs Short-term (one-year) US interest rate
- Rl Long-term (10-year) US interest rate
- CPI Consumper price index
- lrp = ln(P/CPI), logarithm of "real" index, i.e., corrected for changes in consumer prices
- lrd = ln(D/CPI), logarithm of real dividends
- lpd = ln(P/D), logarithm of price-dividend ratio
- ret = (Pt + Dt Pt-1)/Pt-1, annual return on the index, including dividends
- TSpr = Rl-Rs, difference between long- and short-term interest rate (term spread) The file also contains up to 3 lags of the (lower case) variables, indicated by the extension "j", j = 1, 2, 3.

Read data:

```
MyQ1Data <- read.csv("https://raw.githubusercontent.com/rutgerg/econometrics_assigment_3/master/SP500.c
```

Q1A

Test for a unit root in lrp, lrd, Rs and Rl. Motivate your choice between either a constant only, or a constant and a linear trend in the test regression. Report and interpret the outcome of the test.

If all roots are greater than 1 in absolute value, the AR(p) series is stationary. If at least one root equals 1, the AR(p) is said to have a unit root and thus has a stochastic trend.

We use The ADF test for a unit autoregressive root tests the hypothesis H0:d=0 (stochastic trend) against the one-sided alternative H1:d<0 (stationarity) using the usual OLS t-statistic.

General special special deltaPt = b0 + (a * t) + d * Pt-1 + g1 * deltaPt-1 + + gp-1 * deltaPt-p+1 + ut b0 is intercept (a * t) is linear time trend

$$d = B1 + ... + Bp - 1$$

H0: d = 0 (unit root) H1: d < 1 (stationarity)

Intercept only specification only if there is not long term growth in the series (eg interest, inflation, unemployment). Since this is index data we expect intrecept and linear time trend. To check we first plot the data:

S&P 500 stock market index

Since the trend is upward we

choose the intercept and time trend specification.

Let's test:

```
##
## # Augmented Dickey-Fuller Test Unit Root Test #
##
##
  Test regression trend
##
##
## Call:
## lm(formula = z.diff \sim z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
##
      Min
              1Q
                 Median
                            3Q
                                   Max
  -452.28
          -12.47
                  -3.01
                           5.83
                                264.43
##
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.75905
                        14.69235
                                 -1.005
                                        0.31696
## z.lag.1
                         0.02377
                                  2.164
                                        0.03230 *
               0.05142
## tt
               0.33912
                         0.21312
                                  1.591
                                        0.11395
                                  0.975
                                        0.33119
## z.diff.lag1
               0.08549
                         0.08766
## z.diff.lag2
              -0.28121
                         0.08698
                                 -3.233
                                        0.00155 **
## z.diff.lag3
              -0.10970
                         0.09092
                                 -1.207
                                        0.22977
## z.diff.lag4
             -0.14675
                         0.08857
                                -1.657 0.09993 .
```

```
## z.diff.lag5 -0.42762
                           0.08959 -4.773 4.75e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 72.76 on 132 degrees of freedom
## Multiple R-squared: 0.266, Adjusted R-squared: 0.227
## F-statistic: 6.833 on 7 and 132 DF, p-value: 6.311e-07
##
##
## Value of test-statistic is: 2.1635 8.3667 9.3897
## Critical values for test statistics:
        1pct 5pct 10pct
##
## tau3 -3.99 -3.43 -3.13
       6.22
              4.75 4.07
## phi2
## phi3
       8.43
              6.49
                    5.47
```

We need to recalculate the p-value since we can not use the p-value from the linear regression above which assumes normal distribution and 2 sided test.

```
## p-value of ADF test: 0.9999997
```

Since Padf-value is 0.99 we do not reject H0 so there is non stationary data and have unit root.

Q₁B

Particular financial theories imply that log (real) stock prices and log (real) dividends should be cointegrated, with a coefficient of 1. Explain that, under the assumption that both prices and dividends have a unit root, this hypothesis can be tested with a unit root test on the variable lpd, and report and interpret the outcome of this test. (The assumption of a unit root in both series may not be supported by your answer to (a); this would have to be included in your discussion.)

Q₁C

We now wish to investigate if the annual returns on the S&P 500 index can be forecasted. First, plot the autocorrelation function of ret, and interpret the outcome. Next, estimate an AR(2) model for ret and test if the lagged returns have zero coefficients (jointly).

Q₁D

Estimate an ADL model with ret as the dependent variable, and with three lags of ret an dthe term spread TSpr as explanatory variables. You may assume that TSpr is stationary). Carry out a Granger-causality test to see if the term spread Granger-causes returns. Interpret the outcome.

Q₁E

Select an appropriate lag order $p(motivate\ your\ choice)$, and estimate the resulting VAR(p)model for ret and $TSpr\ jointly$. Report and interpret the outcomes, focusing in particular on the difference in predictability of the two time series.