Synergies of Large-Scale Structure and Cosmic Microwave Background Data in the 2020s

Accepted . Received ; in original form

ABSTRACT

Key words: cosmological parameters – theory –large-scale structure of the Universe

Table 1. Fiducial parameters, flat priors (min, max) for cosmology and galaxy bias, and Gaussian priors (μ, σ) for observational systematics. We consider optimistic and pessimistic scenarios in this paper, which is indicated in the corresponding sections of the table.

Parameter	Fiducial	Prior		
Survey				
$\Omega_{ m s}$	$18,000 \text{ deg}^2$	fixed		
$n_{ m source}$	51 gal/arcmin ²	fixed		
n_{lens}	66 gal/arcmin ²	fixed		
σ_{ϵ}	0.26	fixed		
Cosmology				
$\Omega_{ m m}$	0.3156	flat (0.1, 0.6)		
σ_8	0.831	flat (0.6, 0.95)		
n_s	0.9645	flat (0.85, 1.06)		
w_0	-1.0	flat (-2.0, 0.0)		
w_a	0.0	flat (-2.5, 2.5)		
$\Omega_{ m b}$	0.0492	flat (0.04, 0.055)		
h_0	0.6727	flat (0.6, 0.76)		

Table 3. Fiducial parameters, flat priors (min, max) for cosmology and galaxy bias, and Gaussian priors (μ, σ) for observational systematics. We consider optimistic and pessimistic scenarios in this paper, which is indicated in the corresponding sections of the table.

Lens Sample = Redmagic				
Galaxy bias (tomographic bins)				
$b_{ m g}^i$	$1.3 + i \times 0.1$	flat (0.8, 3.0)		
Lens photo-z (optimistic)				
$\Delta_{ m z,lens}^i$	0.0	Gauss (0.0, 0.002)		
$\sigma_{ m z,lens}$	0.01	Gauss (0.01, 0.002)		
Source photo-z (optimistic)				
$\Delta_{z, \text{source}}^{i}$	0.0	Gauss (0.0, 0.002)		
$\sigma_{ m z, source}$	0.01	Gauss (0.01, 0.002)		
Shear calibration (optimistic)				
m_i	0.0	Gauss (0.0, 0.002)		

- 1 INTRODUCTION
- 2 MODELING AND ANALYSIS CHOICES
- 3 CONSTRAINING POWER AS A FUNCTION OF TIME
- 4 VARYING THE GALAXY SAMPLE
- 5 MODIFIED GRAVITY
- 6 PHOTO-Z OUTLIERS
- 7 CONCLUSIONS
- * E-mail:

Table 2. Fiducial parameters, flat priors (min, max) for cosmology and galaxy bias, and Gaussian priors (μ, σ) for observational systematics. We consider optimistic and pessimistic scenarios in this paper, which is indicated in the corresponding sections of the table.

2014 The Authors Lens Sample = Source Sample Galaxy bias (tomographic bins)					
					$b_{ m g}^i$
Lens photo-z (optimistic)					
$\Delta_{\mathrm{z,lens}}^{i}$	0.0	Gauss (0.0, 0.002)			
$\sigma_{ m z,lens}$	0.01	Gauss (0.01, 0.002)			
	Source photo-z (opt	imistic)			

Table 4. Fiducial parameters, flat priors (min, max) for cosmology and galaxy bias, and Gaussian priors (μ, σ) for observational systematics. We consider optimistic and pessimistic scenarios in this paper, which is indicated in the corresponding sections of the table.

Lens Sample = Gold Sample				
Galaxy bias (tomographic bins)				
$b_{ m g}^i$	$1.3 + i \times 0.1$	flat (0.8, 3.0)		
Lens photo-z (optimistic)				
$\Delta_{ m z,lens}^i$	0.0	Gauss (0.0, 0.002)		
$\sigma_{ m z,lens}$	0.01	Gauss (0.01, 0.002)		
Source photo-z (optimistic)				
$\Delta_{\mathrm{z,source}}^{i}$	0.0	Gauss (0.0, 0.002)		
$\sigma_{ m z, source}$	0.01	Gauss (0.01, 0.002)		
Shear calibration (optimistic)				
m_i	0.0	Gauss (0.0, 0.002)		