Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Artem Gorodilov Naměřeno: 11. března 2024

Obor: Astrofyzika **Skupina:** Po 14:00 **Testováno:**

Úloha č. A: Pohyb nábojů v elektrickém a magnetickém poli

1. Zadání

- 1. Ověřit platnost vztahu (2) pro ohniskovou vzdálenost krátké magnetické čočky. Sestrojit graf závislosti $U_a = f(I_f^2)$ a pomocí směrnice určit ohniskovou vzdálenost f.
- 2. Ověřit platnost vztahu (3) pro magnetické vychylování elektronového paprsku. Sestrojte grafy ukazující, zda závislost výchylky y a Y na hodnotách I_v a U_a resp. splňuje vztah (3).

2. Teorie

2.1. Magnetická čočka

Magnetická čočka je zařízení, které se používá k fokusaci elektronového paprsku. Elektrony jsou urychlovány anodovým napětím U_a a vychylovány magnetickým polem.

Pro krátkou magnetickou čočku platí vztah:

$$f = 98 \frac{r}{n^2} \frac{U_a}{I_f^2} \tag{1}$$

kde f je ohnisková vzdálenost, r je poloměr cívky, n je počet závitů cívky, U_a je anodové napětí a I_f je fokusovací proud.

Pro určení ohniskové vzdálenosti f musíme upravit vztah (1):

$$U_a = \frac{f}{98} \frac{n^2}{r} I_f^2 \tag{2}$$

2.2. Magnetické vychylování

Magnetické vychylování je jev, kdy je elektronový paprsek vychylován magnetickým polem. K tomuto jevu dochází působením Lorentzovy síly na elektrony v magnetickém poli.

$$y = \sqrt{\frac{e}{2m}} L_1 L_2 \frac{B}{\sqrt{U_a}} \sim I_v \cdot U_a^{-\frac{1}{2}}$$
 (3)

kde y je výchylka elektronového paprsku, e je náboj elektronu, m je hmotnost elektronu, L_1 a L_2 jsou drahy elektronů v magnetickém poli (vysvětlení je uvedeno na obrázku (1)), B je intenzita magnetického pole, U_a je anodové napětí a I_v je vychylovací proud.

Figure (1) Silové pusobení magnetického pole na elektronovy svazek. Elektrony vstupují do vychylovacího pole B v case $t_0=0$ a servávají v ném po dobu t_1 na dráze L_1 . Na dráze L_2 po dobu t_2 jiz nedocházi k vychylování. Lorentzova síla je nulová, dráha elektronu je prímková.

3. Měření

Abyho bylo možné ověřit platnost vztahu (2), je třeba sestrojit graf závislosti $U_a = \mathrm{f}(I_f^2)$. Lineárním fitováním určíme směrnice α a vynásobením získané hodnoty konstantou $\frac{98r}{n^2}$ zjistíme ohniskovou vzdálenost čočky f. Výsledky jsou uvedeny na obrázku (2).

Figure (2) Určení ohniskové vzdálenosti krátké magnetické čočky pomocí závislosti $U_a=\mathrm{f}(I_f^2).$

Odtud zjistíme hodnotu f:

$$f = 36(2) \text{ cm}$$

Pro ověření platnosti vztahu (3) sestrojíme grafy závislosti výchylky y a Y na hodnotách I_v a U_a resp. Výsledky jsou uvedeny na obrázkech (3) a (4).

Figure (3) Závislost výchylky y na urychlovacím napětí $U_a^{-1/2}.$

Figure (4) Závislost výchylky Y na vychylovacím proudu

Při určování závislosti výchylky y na urychlovacím napětí $U_a^{-1/2}$ jsme použili dvě hodnoty výchylkového proudu:

$$I_{v,1} = 48.6 \text{ mA a } I_{v,2} = 77.3 \text{ mA}$$

Z grafu je patrné, že získaná data skutečně odrážejí spravedlnost vztahu (3). To je patrné z linearity dat. Zejména je vidět, že sklon grafu pro větší hodnotu vychylovacího proudu je větší než pro menší hodnotu.

$$\alpha_1 = 16.3(6)~{\rm cm}~{\rm kV}^{1/2} < \alpha_2 = 29(1)~{\rm cm}~{\rm kV}^{1/2}$$

Při určování závislosti výchylky Y na vychylovacím proudu I_v jsme použili dvě hodnoty urychlovacího napětí:

$$U_{a,1} = 1.6 \text{ kV a } U_{a,2} = 2 \text{ kV}$$

Z grafu je patrné, že získaná data skutečně odrážejí spravedlnost vztahu (3). To je patrné z linearity dat. Zejména je vidět, že sklon grafu pro větší hodnotu urychlovacího napětí je menší než pro větší hodnotu.

Tabulkové hodnoty použité při výpočtu:

$$r = 2 \text{ cm a } n = 1000$$

Výsledky měření jsou v tabulce (1).

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python[1]. Chyby byly rozšířeny o Studentův koeficient (2-Tail Confidence Level) s ohledem na stupně volnosti pro každou hodnotu, pro interval spolehlivosti 68.27%.

4. Závěr

Získaná hodnota ohniskové vzdálenosti krátké magnetické čočky f=36(2) cm pravděpodobně neodpovídá skutečnosti v plném smyslu. To je patrné z fyzických rozměrů zařízení, které jsou menší než získaná ohnisková vzdálenost.

Dále jsme potvrdili platnost vztahu (3). To jsme udělali pomocí sestrojení grafů závislosti výchylky y a Y na hodnotách I_v a U_a resp. Linearity dat a sklon grafů potvrzují spravedlnost vztahu (3).

Odkazy

[1] Uncertainties, Dostupné online: https://pypi.org/project/uncertainties

5.1. Tabulka naměřených hodnot

5. Přílohy

$I_f[mA]$	$U_a[kV]$	$\bigcup_{a,1,2} [kV]^{[1]}$	$\mathbf{y}_1[cm]^{[1]}$	$\mathbf{y}_{2}[cm]^{[1]}$	$ I_{v,1}[mA]^{[2]}$	$\mathbf{Y}_{1}[cm]^{[2]}$	$ I_{v,2}[mA]^{[2]}$	$\mathbf{Y}_{2}[cm]^{[2]}$
72.1	1.5	1.5	14.5	19	83.3	20	81.9	16.8
73.3	1.55	1.6	14	18.4	73.4	17	70.8	14.4
74.5	1.6	1.7	13.7	17.7	64.6	14.7	64	12.9
75.9	1.65	1.8	13.3	17	57.3	13	58.5	11.7
76.3	1.7	1.9	13	16.4	48.2	10.2	48.4	9.2
78.1	1.75	2	12.5	16	36.9	8.2	36	7
81.3	1.8				27.5	6	27	5.2
83.2	1.85				18	3.9	18.1	13.4
85.5	1.9							
86.3	1.95							
87.6	2							

- 1. Hodnoty y_1 a y_2 byly změřeny pro hodnoty $I_{v,1}=48.6$ mA a $I_{v,2}=77.3$ mA resp. Pro oba meřené hodnoty napětí bylo stejné $U_{a,1,2}$.
- 2. Hodnoty Y_1 a Y_2 byly změřeny pro hodnoty $U_{a,1}=1.6~\mathrm{kV}$ a $U_{a,2}=2~\mathrm{kV}$ resp.