Übungsblatt 9

Übungsgruppe Metcalfe

Daniel Schubert Anton Lydike

Mittwoch 8.1.2020

Aufgabe 1)

_ /1p.

a) Eine möglich Aufteilung des Subnetzes 100.90.80.0/20 sieht aus wie folgt:

Name des Subnetzes	Anzahl der IP-Adressem	Präfixnotation	Broadcast
A	128	100.90.80.0/25	100.90.80.127
В	1024	100.90.84.0/22	100.90.87.255
\mathbf{C}	2048	100.90.88.0/21	100.90.95.255
D	512	100.90.82.0/23	100.90.83.255
${f E}$	128	100.90.80.128/25	100.90.80.255

b) Das Subnetz 2001:db8:1::/48 in acht gleichgroße Subnetze aufgeteilt. Das erste Subnetz wird notiert mit 2001:db8:1::/51 und das Letzte mit 2001:db8:1:e000/51.

Aufgabe 2)

__ /1p.

- a) ARP wird auf L2 verwendet um Mac-Adressen zu ermitteln
 - DHCP wird auf L3 verwendet um neuen Hosts in einem Netzwerk dynamisch eine IP-Adresse zuzuweisen.
- b) Host $E \to Host A$
 - Host E sendet IP Datengram ermittelt Mac-Adresse von Router R3
 - Router R3 Ermittelt Mac-Adresse von Router R2
 - Router R2 ermittelt Mac-Adresse von Host A
 - Host $C \to Host D$
 - Host C ermittelt Mac-Adresse von Router R2
 - Router 2 Ermittelt Mac-Adresse von Host D
- c) Nach dem SLAAC verfahren, stellt gehört IPv6 Adresse fe80::202:2ff:fe02:123 zur Mac-Adresse 00:02:02:02:01:23
- d) Sende *DHCP-Discover* per IP-Broadcast (Adresse 255.255.255.255)
 - Empfange DHCP-Offer von DHCP-Server mit konfigurationsparametern
 - \bullet Sende DHCP-Requestum IP-Adresse zu beantragen
 - Warte auf DHC-ACK als aknowledgement, dass IP-Vergabe erfolgreich war

Aufgabe 3) ___/1p.

a)

$$\underset{\text{Label SLD}}{\text{www.}} example. \text{ org } \\ \underset{\text{Hostname}}{\text{SLD}} \text{ TLD}$$

- b) Resource Records: grundlegende Informationseinheit im DNS.
 RR-Format: <Name> <Type> <Class> <TTL> <RDLength> <RData>
 - Email bezogene Resource records werden mit
- c) Iterativer DNS-Lookup: Der eingetragene DNS-Server fragt für jede Ebene des Domain-Names selbst den zugehörigen DNS-Server
 - Rekursiver DNS-Lookup: Der DNS-Lookup-Request "läuft" an den entsprechenden DNS-Servern entlang, bis er beim zugehörigen Server landet, dann wird die Antwort auf dem gleichen Weg zurückübertragen.
- d) Um als NAT agieren zu können, muss ein Router:
 - Die IP-Adressen des Absender- und Empfänger-Host kennen, und
 - Das Absender- und Empfänger-Port der einzelnen Requests lesen können.
- e) Pakete an den Messpunkten:

Messpunkt	Absender IP	Absender Port	Empfänger IP	Empfänger Port
1 (req)	192.168.1.10	1234	128.119.40.86	80
2 (req)	126.13.89.67	4567	128.119.40.86	80
3 (resp)	128.119.40.86	80	126.13.89.67	4567
1 (resp)	128.119.40.86	80	192.168.1.10	1234

NAT-Tabelle:

Private IP	Privater Port	Öffentlicher Port
192.168.1.10 (Host A)	1234	4567

Client

Gesamt	nun	kto.
Gesami	pun.	Kte:

___ /3p.