TIPE 2017-2018

ETUDE ET MODELISATION INFORMATIQUE DE LA DIFFUSION DE PARTICULES DANS UN MILIEU

DARGAUD LAURINE [MP]

<u>SOMMAIRE</u>

OBJECTIF: CONCEVOIR UN OUTIL INFORMATIQUE POUR SIMULER LA DIFFUSION PARTICULAIRE

I – Une particule, des obstacles fixes

- A. Simulation informatique
- B. Visualisation

II – Un système de particules

- A. Simulation informatique
- B. Optimisation de l'algorithme

III - Application

- A. Homogénéisation
- B. Mouvement brownien
- C. Coefficient de diffusion

<u>INTRO</u>

PHENOMENE DE DIFFUSION

Naturel & Spontané

Forte densité

Faible densité <u>INTRO</u>

« Continuum top-down approach »

VS

« Atomistic bottom-up approach »

Forte densité

Faible densité <u>INTRO</u>

« Continuum top-down approach »

VS

« Atomistic bottom-up approach »

Modèle du GAZ PARFAIT

- Sphères dures
- Aucune force : chocs uniquement
- \triangleright Chocs élastiques : E_c se conserve

Approche déterministe

Méthode : Pas de temps de référence

Complexité : O(n)

Densité: 30%; 16 rebonds

Densité: 30%; 76 rebonds

Visualisation

Visualisation

$$t_1 = 1,322 s$$

20 -

10 -

$$t_2 = 0,619 s$$

$$v=500$$
 ; $r=1$; $r_{ob}=2$; $\#ob=36$

Système de particules en interaction dans une enceinte fermée

t = 25 s

Méthode : Pas de temps variable

Boucle:

calcul du temps t_{min} de collision, déplacement des particules puis traitement du choc

lci:

- > 2 particules / espèce
- $> m_2 = 4 * m_1$
- $\triangleright v_{norme} = 4 \text{ m. s}^{-1}$

Boucle:

calcul du temps t_{min} de collision, déplacement des particules puis traitement du choc

$$t_{min} = \min_{\substack{i \in [0, n-1]\\ j \in [i+1, n-1]}} (t_i, t_{ij})$$

$$t_{ij} \ tel \ que :$$

$$\parallel \overrightarrow{M_i(t)M_j(t)} \parallel = (r_i + r_j)$$

$$et: t_i = \frac{\Delta d}{v_{x\parallel y}}$$

Boucle:

calcul du temps t_{min} de collision, déplacement des particules puis traitement du choc

lci:
$$t_{min} = t_{02} = 0.0367 s$$

Initialisation \downarrow Boucle:
calcul du temps t_{min} de collision, déplacement des particules puis traitement du

choc

Boucle:

calcul du temps t_{min} de collision, déplacement des particules puis traitement du choc

Théorie des chocs
$$\begin{vmatrix} \overrightarrow{v_i'} = \overrightarrow{v_i} - \frac{a}{m_i} \overrightarrow{k} \\ \overrightarrow{v_j'} = \overrightarrow{v_j} + \frac{a}{m_j} \overrightarrow{k} \end{vmatrix}$$

avec
$$a = \frac{2}{m_i^{-1} + m_j^{-1}} \vec{k} \cdot (\overrightarrow{v_i} - \overrightarrow{v_j})$$

$$et \vec{k} = \frac{\overrightarrow{C_i} \cdot \overrightarrow{C_j}}{\parallel \overrightarrow{C_i} \cdot \overrightarrow{C_j} \parallel}$$

Boucle:

calcul du temps t_{min} de collision, déplacement des particules puis traitement du choc

3 avec le bord haut

Boucle:

calcul du temps t_{min} de collision, déplacement des particules puis traitement du choc

3 avec le bord haut o avec le bord bas

Boucle:

calcul du temps t_{min} de collision, déplacement des particules puis traitement du choc

3 avec le bord hauto avec le bord bas2 avec le bord gauche

Boucle:

calcul du temps t_{min} de collision, déplacement des particules puis traitement du choc

3 avec le bord hauto avec le bord bas2 avec le bord gaucheChoc entre 2 et o

< Fin de la démo >

Première optimisation : Mettre à jour une liste de chocs triée

Première optimisation:

Mettre à jour une liste de chocs triée

Première optimisation:

Mettre à jour une liste de chocs triée

$$\text{L_chocs} = [[tps, i, j]]$$

$$avec j \in \begin{cases} \llbracket -4, -1 \rrbracket, & si \ bord \\ \llbracket 0, N \rrbracket, & sinon \end{cases}$$

Première optimisation:

Mettre à jour une liste de chocs triée

 \Rightarrow Màj en O(n. log n)

MAIS: initialisation en $O(n^2)$

Point théorique :

Point théorique :

Première loi de Fick (1855):

$$ec{j} = -D \ \overrightarrow{grad}(n)$$
Flux Coefficient de Densité diffusion particulaire

Forte densité

Faible densité

Paramétrage : 40x40, interface au milieu ; densité 50/50 ; même espèce ; subdivision de 4

Paramétrage : 40x40, interface au milieu ; densité 50/50 ; même espèce ; subdivision de 4

Paramétrage : 40x40, interface au milieu ; densité 50/50 ; même espèce ; subdivision de 4

50 t=o s 150 50

Diffusion dans le vide

Diffusion dans le vide

Diffusion dans le vide 50 t=5 s t=o s t=10 s 150 50

Macro : Migration collective <u>Homogénéisation</u>

VS

Micro:
Collisions
Mouvement brownien

Mouvement brownien

Marche aléatoire implémentée

Marche aléatoire

1200

Simulation DM:

Paramétrage:

1 274 particules

$$r = 1$$
; $v = 1$; domaine 200x200

Mouvement brownien:

$$\langle \overrightarrow{OM}^2 \rangle = 2dDt$$

Mouvement brownien : $\langle \overrightarrow{OM}^2 \rangle = 2dDt$

<u>Calculer le coefficient D de diffusion</u> <u>via la dynamique moléculaire</u>

$$D = \frac{1}{2d} \lim_{t \to \infty} \frac{d}{dt} \langle \Delta r^2(t) \rangle$$

avec

$$\langle \Delta r^2(t) \rangle = \frac{1}{N} \sum_{i=0}^{N-1} (r_i(t) - r_i(t=0))^2$$

Position de la particule i à l'instant t

Position initiale de la particule i

AUTODIFFUSION		Helium He	Argon Ar	
Rayon atomique (pm)		128	71	
Masse volumique (g, mol^{-1})		0,178	1,78	
D	exp.	$1,396.10^{-4}$	1, 57, 10 ⁻⁵	
$(m^2.s^{-1})$	sim.	$1,218.10^{-5}$	$2,0798.10^{-5}$	
	r^2	0,99798	0,99816	

Pour l'autodiffusion : CNTP

T=273 K

P = 1,013 bar

Volume Molaire : 22,414.10 $^{-3}$ mol^{-1}

Espèce 1 : diffusante		Argon Ar		
Espèce 2 : milieu de diffusion		Helium He		
Température T (K)		298		
D	exp.	$7,03.10^{-5}$		
$(m^2.s^{-1})$	sim.	$4,491.10^{-6}$		
	r^2	0,996896		

CONCLUSION

Simulation fidèle à la théorie de la diffusion particulaire

Homogénéisation effective du milieu

Relation linéaire du mouvement brownien

CONCLUSION

- Simulation fidèle à la théorie de la diffusion particulaire
 - Homogénéisation effective du milieu
 - Relation linéaire du mouvement brownien

- Limite du modèle à l'application au cas « réel » :
 - ⇔ Optimiser davantage ⇒ gestion de systèmes plus conséquents
 - Passage en 3D ⇒ plus fidèle à la réalité physique de la diffusion de la matière
 - > Implémentation de forces (Van Der Waals, viscosité)

II — Un système de particules : optimisation 2

Deuxième optimisation : Neighbour lists and cell structures

Restreindre la zone de recherche en découpant l'espace

 dt_{max} et v_{max} définis

21 22 23 24 25 16 17 18 19 20 11 12 13 14 15 6 7 8 9 10

Fig. 5.5 The cell method in two dimensions. (a) The central box is divided into $M \times M$ cells (M = 5). (b) A close-up of cells 1 and 2, showing the molecules and the link-list structure.

Source: <u>Computer Simulation</u> <u>of Liquids</u> (1987), Allen & Tildesley, p150

I – Une particule, des obstacles fixes : résultats

Temps d'extraction

ETUDE STATISTIQUE

Echantillon: 200 simulations

$$ar{t}=1,070$$
 $\sigma=1,039$ Erreur-type $=0,166$

$$v = 500$$
 ; $r = 1$; $r_{ob} = 2$; $\#ob = 36$

I – Une particule, des obstacles fixes : résultats

Longueur moyenne de vol

$$\overline{L} = \frac{1}{n \pi d^2}$$
Densité particulaire Diamètre particulaire

Temps de vol t