The Matrix Eigenvalue Problem

The Matrix Eigenvalue Problem

Let $A \in \mathbb{C}^{n \times n}$. The eigenvalue problem for A consists of finding all $x \in \mathbb{C}^n \setminus \{0\}$ and $\lambda \in \mathbb{C}$ such that

$$Ax = \lambda x$$
.

The scalars $\lambda \in \mathbb{C}$ are called the eigenvalues of A and the corresponding non zero vector x is called an eigenvector of A.

- ▶ The eigenvalues of *A* are the roots of det(A sI).
- ▶ $A \in \mathbb{C}^{n \times n}$ can have at most n distinct eigenvalues.
- ▶ Any set of eigenvectors of *A* corresponding to distinct eigenvalues is a linearly independent set.
- Matrices A and B are said to be similar if there exists a nonsingular matrix S such that $B = S^{-1}AS$. If S is a unitary matrix, then A and B are said to be unitarily similar.
- Similar matrices have the same eigenvalues.

The Matrix Eigenvalue Problem

- ▶ If $Av = \lambda v$ for some $v \neq 0$, and $B = S^{-1}AS$, then $BS^{-1}v = \lambda S^{-1}v$.
- ► A matrix A is said to be (unitarily) diagonalizable is it is (unitarily) similar to a diagonal matrix.
- ▶ (Unitary) diagonalizability of an $n \times n$ matrix A is equivalent to the existence of a (orthonormal) basis of \mathbb{C}^n consisting of eigenvectors of A.
- Not every matrix is diagonalizable.
- ▶ Given any matrix $A \in \mathbb{C}^{n \times n}$, there exists an invertible matrix X and a block diagonal matrix $J = \text{diag}(J_{\lambda_1}, \dots, J_{\lambda_n})$, with

such that $A = XJX^{-1}$. J is the called the *Jordan Canonical form* of A.

Schur's Theorem

Issai Schur (1875-1941)

Schur's Theorem

Issai Schur (1875-1941)

Schur's Theorem: Given any matrix $A \in \mathbb{C}^{n \times n}$, there exists a unitary matrix Q and an upper triangular matrix T such that $Q^*AQ = T$. T is called a Schur form of A.

Spectral Theorem for Hermitian Matrices $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if there exists a unitary matrix Q and a real diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Hermitian Matrices $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if there exists a unitary matrix Q and a real diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Normal Matrices $A \in \mathbb{C}^{n \times n}$ is normal if and only if there exists a unitary matrix Q and a diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Hermitian Matrices $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if there exists a unitary matrix Q and a real diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Normal Matrices $A \in \mathbb{C}^{n \times n}$ is normal if and only if there exists a unitary matrix Q and a diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Symmetric Matrices $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if there exists a real orthogonal matrix Q and a real diagonal matrix D such that $Q^TAQ = D$.

Spectral Theorem for Hermitian Matrices $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if there exists a unitary matrix Q and a real diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Normal Matrices $A \in \mathbb{C}^{n \times n}$ is normal if and only if there exists a unitary matrix Q and a diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Symmetric Matrices $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if there exists a real orthogonal matrix Q and a real diagonal matrix D such that $Q^T A Q = D$.

Real Schur's Theorem [Wintner-Murnaghan] Given any $A \in \mathbb{R}^{n \times n}$. there exists a real orthogonal matrix Q and a quasi-upper triangular matrix T such that $Q^TAQ = U$.

Spectral Theorem for Hermitian Matrices $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if there exists a unitary matrix Q and a real diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Normal Matrices $A \in \mathbb{C}^{n \times n}$ is normal if and only if there exists a unitary matrix Q and a diagonal matrix D such that $Q^*AQ = D$.

Spectral Theorem for Symmetric Matrices $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if there exists a real orthogonal matrix Q and a real diagonal matrix D such that $Q^T A Q = D$.

Real Schur's Theorem [Wintner-Murnaghan] Given any $A \in \mathbb{R}^{n \times n}$. there exists a real orthogonal matrix Q and a quasi-upper triangular matrix T such that $Q^TAQ = U$.

Solve all exercises on pages 342-348 in the second edition of *Fundamentals of Matrix Computations*!

(The solution of Exercise 5.4.47 on page 346 is the proof of Real Schur's Theorem)

