Data Structures and Algorithms

Lecture 10: AVL Trees II

Department of Computer Science & Technology
United International College

Review of AVL Tree Insertion

- The complete procedure of insertion
 - 1. Insert the new node to a proper position
 - 2. Starting from the new node, search upward for the first unbalanced node
 - Suppose that the height difference of a node's left and right sub-tree is \boldsymbol{d}
 - $d < = 1 \rightarrow$ the node is balanced
 - $d=0 \rightarrow$ the node is perfectly balanced
 - $-d>=2 \rightarrow$ the node is unbalanced
 - 3. Perform rotations on the unbalanced node (U)
 - Case 1: U is left heavy, its left child is left heavy
 - Case 2: U is left heavy, its left child is right heavy
 - Case 3: U is right heavy, its right child is left heavy
 - Case 4: U is right heavy, its right child is right heavy

Single Right Rotation to Fix Case 1 (left-left)

K2 is unbalanced

K1 is perfectly balanced

Single Left Rotation to Fix Case 4 (right-right)

K1 is unbalanced

K2 is perfectly balanced

Double Rotation to Fix Case 2&3

- One single rotation to move the deepest sub-tree to the outer side
- Another single rotation to restore the balance

Case 2 (left-right)

- If the height of sub-tree D is h
 - What is the possible height of A, B and C?

Double Rotation to Fix Case 2

k3 is unbalanced

Single left rotation

Single right rotation

K2 is perfectly balanced

Direct Re-Arrangement

k3 is unbalanced

K2 is perfectly balanced

- Pre-condition: k3-k1-k2 forms a zig-zag shape
- Post-condition: k2 is the parent of k1 and k3

Case 3 (right-left)

k3 is unbalanced

K2 is perfectly balanced

- Case 3 is symmetric to Case 2
- Pre-condition: k1-k3-k2 forms a zig-zag shape
- Post-condition: k2 is the parent of k1 and k3

Example

- Continue our example
 - We've inserted 3, 2, 1, 4, 5, 6, 7, 16
 - We'll insert 15, 14, 13, 12, 11, 10, 8, 9

Insertion Analysis

- Insert the new key as a new leaf: O(log(n))
- Then trace the path from the new leaf towards the root, for each node x encountered: O(log(n))
 - Check height difference: O(1)
 - If satisfies AVL property, proceed to next node: O(1)
 - If not, perform a rotation: O(1)
- The insertion stops when
 - A rotation is performed
 - Or, we've checked all nodes in the path
- Time complexity for insertion: O(log(n))

Check Height Difference

- Cost for checking height difference: O(1)
 - Keep "height" information on every tree node
 - The height of the sub-tree rooted at the node
 - height >= 0
 - Update "height" when a the sub-tree is altered
 - Compare the height of its sub-trees when you check the balance of a node

Node

- key: int
- height: int
- left: Node
- right: Node

Pseudo Code for Insertion

Returns the (updated) root of the subtree after insertion

root's height is: (height of its deeper sub-tree) + 1 INSERT-NODE(root, x)

- 1. root = BST-INSERT-Node(root, x)
- 2. root. UPDATE-HEIGHT()
- 3. root = REBALANCE(root)
- 4 return root

Pseudo Code for Insertion

BST-INSERT-NODE(root, x)

- 1. IF root = Null
- 2. return CREATE-Node(x)
- 3. If x < root.key
- 4. root.left = INSERT-NODE(root.left, x)
- 5. ELSE IF x > root.key
- 6. root.right = INSERT-NODE(root.right, x)
- 7. return root

Returns the (updated) root of the subtree after insertion

Rebalance

Returns the (updated) root of the subtree after rebalance

```
REBALANCE(root)
```

- 1. IF BALANCED(root)
- 2. return root
- 3. IF CASE1(root) // left left
- 4. root = RIGHT-ROTATE(root)
- 5. IF CASE4(root) // right right
- 6. root = LEFT-ROTATE(root)
- 7. IF CASE2(root) // left right
- 8. root.left = LEFT-ROTATE(root.left)
- 9. root = RIGHT-ROTATE(root)
- 10. IF CASE3(root) // right left
- 11. root.right = RIGHT-ROTATE(root.right)
- 12. root = LEFT-ROTATE(root)
- 13. return root

RIGHT-ROTATE(root)

- 1. k1=root.left, Y=k1.right
- 2. k1.right=root
- 3. root.left=Y
- 4. UPDATE-HEIGHT(root)
- 5. UPDATE-HEIGHT(k1)
- 6. return k1

Rotation

Returns the (updated) root of the subtree after rotation

RIGHT-ROTATE(root)

- 1. k1=root.left, Y=k1.right
- 2. k1.right=root
- 3. root.left=Y
- 4. UPDATE-HEIGHT(root)
- 5. UPDATE-HEIGHT(k1)
- 6. return k1

Rotation

Notes on Rotations

- Two pointers are modified in a rotation
 - The method returns the (updated) root of the subtree after rotation
- Sub-tree heights should be updated after a rotation
 - Always update the deeper node first!
- Left rotation and right rotation are symmetric

Deletion

- 1. Delete a node x as in an ordinary binary search tree
 - Note that the last (deepest) node in a tree deleted is a leaf or a node with one child

Deletion

- 1. Delete a node x as in an ordinary binary search tree
- 2. Then trace the path from the parent towards the root
- 3. For each node x encountered, check if it is balanced
 - Unbalanced: Perform appropriate rotations

Continue to trace the path

UNTIL WE REACH THE ROOT

Delete Example

Delete 2, Node 4 is unbalanced CASE 4: right-right

Single Left Rotation

Delete Example

For deletion, after rotation, we need to CONTINUE tracing upward to see if AVL-tree property is violated at other nodes.

Rotation in Deletion

- The rotation strategies (single or double) we learned for insertion can be reused
- Except for one new case: the heavy child is perfectly balanced
 - What kind of delete will cause this case?
 - A single rotation solves the problem

New Case Example

- Delete Node 4, Node 9 is unbalanced
- Node 9 is right heavy, and Node 16 is perfectly balanced
- Can treat it as Case 4 (right-right) or Case 3 (right-left)

Treat it as Case 4 since it's easier

Review of the Delete Procedure

- 1. Delete Node from BST (recursive!)
- 2. Update Heights
- 3. Check Balance
 - 3.1 Violation?
 - 3.1.1 Determine Case
 - 3.1.2 Perform Rotations
- 4. Return Deleted Node

Delete Node 16

Replace root with node 18 Node 21's height is recomputed

3.1Node 21 is unbalanced

3.1.1Case 3 Violation: right left

Perform a double rotation Sub-tree height is updated

Node 18's height is updated

3.1

Node 18 is unbalanced

3.1.1

Case 1 Violation: left left

3.1.2

Perform a single right rotation Sub-tree height is updated

4 Return Node 16.

Complete!

Pseudo Code for Deletion

Returns the (updated) root of the subtree after deletion

DELETE-NODE(root, x)

- 1. root = BST-DELETE-NODE(root, x)
- 2. IF root != Null
- 3. root.UPDATE-HEIGHT()
- 4. root = REBALANCE(root)
- 5. return root

Pseudo Code for Deletion

Returns the (updated) root of the subtree after deletion

BST-DELETE-NODE(root, x)

- 1. If root=Null
- 2. return Null
- 3. IF x<root.key
- 4. root.left=DELETE-NODE(root.left, x)
- 5. ELSE IF x>root.key
- 6. root.right=DELETE-NODE(root.right, x)
- 7. ELSE
- 8. root=BST-DELETE-ROOT(root)
- 9. Return root

DeleteRoot

```
BST-DELETE-ROOT(root)
```

// removes the root and returns the updated root
// of the subtree

- 1. IF root.left=Null
- 2. return=root.right
- 3. IF root.right=Null
- 4. return root.left
- 5. // root has two children
- 6. root.key=MIN-KEY(root.right)
- 7. root.right = BST-DELETE-NODE(root.right, root.key)
- 8. return root

Task

- Given Node.java, BinaryTreePrinter.java, BST.java and the skeleton of AVLTree.java, complete AVLTree.java
 - Node.java: implements the class for an AVL tree node
 - BinaryTreePrinter.java: implements a method to print out a binary tree
 - BST.java: implements the class for a binary search tree
 - AVLTree.java: implements the class for an AVL Tree
 - The class AVLTree is implemented as a subclass of BST
 - Read the skeleton and complete all the methods
 - This is the only file that you are going to modify
 - You may add (a lot of) auxiliary functions if there is a need
 - a main function is provided for testing purpose
- Submit AVLTree.java to iSpace.