

Lowpass Filter Design: The Window Method FILLY IMPULSE RESPONSE (FIL

- ♦ Build the impulse response for a lowpass filter with cutoff freq f_c
 - Construct the ideal impulse response for the lowpass filter

$$h_I(t) = 2f_c \operatorname{sinc}(2f_c t)$$

Construct a time window to time-limit h₁(t)

$$w(t) = \prod \left(\frac{t}{2\tau}\right)$$

where τ is chosen to be large enough to capture the structure of $h_I(t)$

Use multiplication and time delay to construct the impulse response

$$h(t) = h_I(t-\tau)w(t-\tau) = 2f_c \text{sine}[2f_c(t-\tau)] \left[\prod \left(\frac{t-\tau}{2\tau} \right) \right]$$

The time delay is required to make the filter causal

- The bandwidth is determined by $h_I(t)$
- The rolloff is determined by $\boldsymbol{w}(t)$

$$h(t) = 200 \text{sinc}[200(t-1/20)] \left[\prod_{t=0}^{\infty} \left(\frac{t-1/20}{1/10} \right) \right]$$

myfilter. P

Bandpass Filter Design: The Window Method

lacktriangle Build a bandpass filter with center frequency f_0 and bandwidth $2f_c$

Use the window method to build the impulse response for a lowpass filter with cutoff frequency f_c without the time delay

$$h_{\rm L}(t) = 2f_c {\rm sinc}(2f_c t) \Pi \bigg[\frac{t}{2\tau}\bigg]$$

- Build a signal to frequency-shift $h_{\rm L}(t)$ to center frequency f_0 $m(t) = 2\cos(2\pi f_0 t)$
- Build the impulse response of the bandpass filter using multiplication and time delay

$$h(t) = h_{\mathrm{L}}(t-\tau)m(t-\tau) = 2f_{c}\mathrm{sine}[2f_{c}(t-\tau)]\Pi\left[\frac{t-\tau}{2\tau}\right]2\cos\left[2\pi f_{0}(t-\tau)\right]$$

where τ is chosen to be large enough to capture the structure of the impulse response

- Highpass filter
- Bandreject (notch) filter

The Practical 1st Order LPF: Rise Time

Copyright 2015 by William J. Ebel

❖ The 1st order LPF

• Transfer Function: $H(f) = \frac{1}{(j2\pi f)/\alpha + 1} = \frac{\alpha}{j2\pi f + \alpha}$

CONTROL

- Impulse Response: $h(t) = \alpha e^{-\alpha t} u(t)$
- Step Response: $h_s(t) = \int_{-\infty}^t h(\lambda) d\lambda \implies h_s(t) = [1 e^{-\alpha t}] u(t)$

Dr= SMALL X

♦ Pass wanted frequencies, eliminate unwanted frequencies

"Operate in the Passband"

Characteristics:

- Flat passband
- Narrow (low frequency range) transition band
- Significant attenuation in the stop band

Shape the input signal frequencies

"Operate in the transition or stop band"

Applications:

- Differentiate the input signal (approximately)
- Integrate the input signal (approximately)
- Eliminate the signal mean (DC) without otherwise affecting the signal
- Hilbert Transform the input signal (see Communications)
- Build a Vestigial Sideband Filter (see Communications)

