Отчет по лабораторной работе №6

Дисциплина архитектура компьютера

Ахатов Эмиль Эрнстович

Содержание

1	. Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	8
	4.1 Символьные и численные данные в NASM	8
	4.2 Выполнение арифметических операций в NASM	11
	4.3 Ответы на вопросы по программе	15
5	Выводы	17

Список иллюстраций

4.1	Создание директории	8
4.2	Создание файла	8
4.3	Ввод программы	9
4.4	Запуск исполняемого файла	9
4.5	Редактирование файла	9
4.6	Запуск исполняемого файла	9
4.7	Создание файла	10
4.8	Редактирование файла	10
4.9	Запуск исполняемого файла	10
4.10	Редактирование файла	10
4.11	Запуск исполняемого файла	11
4.12	Редактирование файла	11
4.13	Запуск исполняемого файла	11
4.14	Создание файла	11
	Редактирование файла	12
4.16	Запуск исполняемого файла	12
4.17	Редактирование файла	13
	Запуск исполняемого файла	13
4.19	Создание файла	13
4.20	Редактирование файла	14
	Запуск исполняемого файла	14
	Создание файла	16
4.23	Редактирование файда	16

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Большинство инструкций на языке ассемблера требуют обработки операндов. Адрес операнда предоставляет место, где хранятся данные, подлежащие обработке. Это могут быть данные хранящиеся в регистре или в ячейке памяти. -Регистровая адресация – операнды хранятся в регистрах и в команде используются имена этих регистров, например: mov ax,bx. - Непосредственная адресация - значение операнда задается непосредственно в команде, Например: mov ax,2. - Адресация памяти – операнд задает адрес в памяти. В команде указывается символическое обозначение ячейки памяти, над содержимым которой требуется выполнить операцию. Ввод информации с клавиатуры и вывод её на экран осуществляется в символь- ном виде. Кодирование этой информации производится согласно кодовой табли- це символов ASCII. ASCII – сокращение от American Standard Code for Information Interchange (Американский стандартный код для обмена информацией). Соглас- но стандарту ASCII каждый символ кодируется одним байтом. Среди инструкций NASM нет такой, которая выводит числа (не в символьном виде). Поэтому, на- пример, чтобы вывести число, надо предварительно преобразовать его цифры в ASCII-коды этих цифр и выводить на экран эти коды, а не само число. Если же выводить число на экран непосредственно, то экран воспримет его не как число, а как последовательность ASCII-символов – каждый байт числа будет воспринят как один ASCII-символ – и выведет на экран эти символы. Аналогичная ситу- ация происходит и при вводе данных с клавиатуры. Введенные данные будут представлять собой символы, что сделает невозможным получение корректного результата при выполнении над ними

арифметических операций. Для решения этой проблемы необходимо проводить преобразование ASCII символов в числа и обратно

4 Выполнение лабораторной работы

4.1 Символьные и численные данные в NASM

С помощью утилиты mkdir создаю директорию, в которой буду создавать файлы с программами,перехожу в директорию.

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ mkdir lab06
emil@fedora:~/study_2024-2025_arhpc/lab06$ cd lab06
emil@fedora:~/.local/share/Trash/files/lab06/lab06$
```

Рис. 4.1: Создание директории

С помощью утилиты touch создаю файл lab6-1.asm

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ touch lab6-1.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ ls
lab6-1.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ [
```

Рис. 4.2: Создание файла

Открываю созданный файл lab6-1.asm, вставляю в него программу вывода значения регистра eax

```
%include 'in_out_asm'
SECTION .bss
bufl: RESB 80
SECTION .text
GLOBAL_start
_start:
_mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [bufl].eax
mov eax,bufl
call sprintLF
call quit
```

Рис. 4.3: Ввод программы

Создаю исполняемый файл программы и запускаю его. Вывод программы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6.

```
emil@fedora:-/study_2024-2025_arhpc/lab06$ nasm -f elf lab6-1.asm
emil@fedora:-/study_2024-2025_arhpc/lab06$ ld -m elf_1386 -o lab6-1 lab6-1.o
emil@fedora:-/study_2024-2025_arhpc/lab06$ ./lab6-1

j
```

Рис. 4.4: Запуск исполняемого файла

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4

```
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL_start
_start:
_mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintlF
call quit
```

Рис. 4.5: Редактирование файла

Создаю новый исполняемый файл программы и запускаю его. Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран.

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ nasm -f elf lab6-1.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o
emil@fedora:~/study_2024-2025_arhpc/lab06$ ./lab6-1
```

Рис. 4.6: Запуск исполняемого файла

Создаю новый файл lab6-2.asm с помощью утилиты touch.

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ touch lab6-2.asm
.emil@fedora:~/study_2024-2025_arhpc/lab06$ ls
in_out.asm lab6-1 lab6-1.asm lab6-1.o lab6-2.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ []
```

Рис. 4.7: Создание файла

Ввожу в файл текст другой программы для вывода значения регистра еах

```
%include 'in out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintlF
```

Рис. 4.8: Редактирование файла

Создаю и запускаю исполняемый файл lab6-2. Теперь вывод числа 106,программа позволяет вывести именно число, а не символ, хотя все еще происходит именно сложение кодов символов "6" и "4".

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ nasm -f elf lab6-2.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
emil@fedora:~/study_2024-2025_arhpc/lab06$ ./lab6-2
106
emil@fedora:~/study_2024-2025_arhpc/lab06$
```

Рис. 4.9: Запуск исполняемого файла

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4

```
%include 'in_out_asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintlF
call quit
```

Рис. 4.10: Редактирование файла

Создаю и запускаю новый исполняемый файл. Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10.

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ nasm -f elf lab6-2.asm
'emil@fedora:~/study_2024-2025_arhpc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
emil@fedora:~/study_2024-2025_arhpc/lab06$ ./lab6-2
106
```

Рис. 4.11: Запуск исполняемого файла

Заменяю в тексте программы функцию iprintLF на iprint

```
%include 'in_out.asm'
SECTION .text
GLOBAL_start
__start:
mov eax.6
mov ebx.4
add eax.ebx
call iprint
call quit
```

Рис. 4.12: Редактирование файла

Создаю и запускаю новый исполняемый файл. Вывод не изменился,потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF.

```
.emil@fedora:~/study_2024-2025_arhpc/lab06$ nasm -f elf lab6-2.asm
  emil@fedora:~/study_2024-2025_arhpc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
  emil@fedora:~/study_2024-2025_arhpc/lab06$ ./lab6-2
10emil@fedora:~/study_2024-2025_arhpc/lab06$
```

Рис. 4.13: Запуск исполняемого файла

4.2 Выполнение арифметических операций в NASM

Создаю файл lab6-3.asm с помощью утилиты touch

```
10emil@fedora:~/study_2024-2025_arhpc/lab06$ touch lab6-3.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ ls
in_out.asm lab6-1.asm lab6-2 lab6-2.o
lab6-1 lab6-1.o lab6-2.asm lab6-3.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$
```

Рис. 4.14: Создание файла

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5*2+3)/3

```
Xinclude 'An out.asm'; подключение внешнего файла
SECTION .data
div: DB 'Peaynbrat: ',0

SECTION .text
GLOBAL _start
__start:
; Въмисление выражения
mov eax,5;
mov ebx,2;
mul ebx;
add eax,3;
xor edx,edx;
mov ebx,3;
div ebx;
mov edx,a;
pov edi,eax; запись результата вычисления в 'edi';
; Въвод результата върчисления в 'edi';
; Въвод результата върчисления в 'edi';
; том edi,eax; запись результата върчисления в 'edi';
; вывод результата на правня поч еах, di'; вызов подпрограммы печати
call sprint; ообщения 'Результат: '
mov eax,edi; вызов подпрограммы печати
call sprint; из 'edi', в виде символов
mov eax,rem; вызов подпрограммы печати
call sprint; из 'edi', в виде символов
mov eax,rem; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
mov eax,ed; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
mov eax,ed; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
mov eax,ed; вызов подпрограммы печати значения
call iprintlf; из 'edi', (остаток) в виде символов
call quit; вызов подпрограммы завершения
```

Рис. 4.15: Редактирование файла

Создаю исполняемый файл и запускаю его

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ nasm -f elf lab6-3.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o
emil@fedora:~/study_2024-2025_arhpc/lab06$ ./lab6-3
Результат: 4
Остаток от деления: 1
```

Рис. 4.16: Запуск исполняемого файла

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4*6+2)/5

```
Winclude 'in_out.asm'; подключение внешнего файла

SECTION .data
div: Da 'Pesymbara: ',0

SECTION .text
GLOBAL_start
_start:
_start:
; Вычисление выражения
пом еах,4; EAX=4

mov ebx,6; EBX=6

mul ebx; EAX=EAX=EBX
add eax,2; EAX=EAX=2

vor edx,edx; oбнулем EDX для корректной работы div
mov ebx,5; EBX=5

div ebx; EAX=EAX=7, EDX=0ctatok от деления
mov edi,eax; запись результата вычисления в 'edi'
; Вывод разультата на экран
mov eax,div; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
mov eax,ed; вызов подпрограммы печати
call sprint ; из 'edi' в виде символов
mov eax,edx; вызов подпрограммы печати
call sprint; из 'edi' па изнанняя
call iprintt; из 'edi' (остаток) в виде символов
call iprintt; из 'edy' (остаток) в виде символов
call iprintt; вызов подпрограммы печати значения
```

Рис. 4.17: Редактирование файла

Создаю и запускаю новый исполняемый файл,программа выполняется верно

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ nasm -f elf lab6-3.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o
emil@fedora:~/study_2024-2025_arhpc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
emil@fedora:~/study_2024-2025_arhpc/lab06$ []
```

Рис. 4.18: Запуск исполняемого файла

Создаю файл variant.asm с помощью утилиты touch.

```
emil@fedora:~/study_2024-2025_arhpc/lab06$ touch variant.asm
emil@fedora:~/study_2024-2025_arhpc/lab06$ ls
in_out.asm lab6-1.asm lab6-2 lab6-2.o lab6-3.asm variant.asm
lab6-1 lab6-1.o lab6-2.asm lab6-3 lab6-3.o
emil@fedora:~/study_2024-2025_arhpc/lab06$
```

Рис. 4.19: Создание файла

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета

```
SECTION .data
msg: DB 'Введите № студенческого билета: ',0
rem: DB 'Ваш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msq
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax, rem
call sprint
mov eax,edx
call iprintLF
```

Рис. 4.20: Редактирование файла

Создаю и запускаю исполняемый файл. Ввожу номер своего студ. билета с клавиатуры, программа вывела, что мой вариант - 12

```
emil@fedora:-/study_2024-2025_arhpc/lab06$ nasm -f elf variant.asm emil@fedora:-/study_2024-2025_arhpc/lab06$ ld -m elf_i386 -o variant variant.o emil@fedora:-/study_2024-2025_arhpc/lab06$ ./variant
Введите № студенческого билета:
1132242471
Ваш вариант: 12
```

Рис. 4.21: Запуск исполняемого файла

4.3 Ответы на вопросы по программе

1. За вывод сообщения "Ваш вариант" отвечают строки кода:

```
mov eax,rem
call sprint
```

- 2. Инструкция mov ecx, х используется, чтобы положить адрес вводимой строки ки х в регистр ecx mov edx, 80 запись в регистр edx длины вводимой строки call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры
- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax
- 4. За вычисления варианта отвечают строки:

```
xor edx, edx ; обнуление edx для корректной работы div mov ebx, 20 ; ebx = 20 div ebx ; eax = eax/20, edx - остаток от деления inc edx ; edx = edx + 1
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx
call iprintLF
```

#Выполнение заданий для самостоятельной работы Создаю файл lab6-4.asm с помощью утилиты touch

```
in_out.asm lab6-1.o lab6-2.o lab6-3.o variant.asm

lab6-1 lab6-2 lab6-3 lab6-4.asm variant.o

lab6-1.asm lab6-2.asm lab6-3.asm variant
```

Рис. 4.22: Создание файла

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения (8 \square – 6)/2

Рис. 4.23: Редактирование файла

Создаю и запускаю исполняемый файл, при вводе значения 1, вывод 1.При вводе значения 5, вывод 17.Программа отработала верно.

5 Выводы

При выполнении данной лабораторной работы я освоил арифметические инструкции языка ассемблера NASM.