Introduction to vector and matrix norms

Department of Mathematics

Boise State University

March 9, 2018

Vector norms

- A vector norm is a scalar quantity that reflects the "size" of a vector x.
- The norm of a vector **x** is denoted as $\|\mathbf{x}\|$.
- There are many ways to define the size of a vector. If $\mathbf{x} \in \mathbb{R}^n$, the three most popular are

one-norm :
$$\|\mathbf{x}\|_1 = \sum_{k=1}^n |x_k|,$$

$$\text{two-norm}: \quad \|\mathbf{x}\|_2 = \sqrt{\sum_{k=1}^n |x_k|^2},$$

$$\infty\text{-norm}: \quad \|\mathbf{x}\|_\infty = \max_{1 < k < n} |x_k|$$

Vector norms

However a vector norm is defined, it must satisfy the following three properties to be called a norm:

- ① $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$ (i.e. \mathbf{x} contains all zeros as its entries).
- $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$, for any constant α .
- ③ $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$, where $\mathbf{y} \in \mathbb{R}^n$. This is called the *triangle inequality*.

3/9

Unit vectors

- A vector **x** is called a unit vector if its norm is one, i.e. $||\mathbf{x}|| = 1$.
- Unit vectors will be different depending on the norm applied.
- Below are several unit vectors in the one, two, and ∞ norms for $\mathbf{x} \in \mathbb{R}^2$.

Matrix norms

- A matrix norm is a scalar quantity that reflects the "size" of a matrix $A \in \mathbb{R}^{m \times n}$.
- The norm of A is denoted as ||A||.
- Any matrix norm must satisfy the following four properties:
 - **1** $||A|| \ge 0$ and ||A|| = 0 if and only if A = 0 (i.e. A contains all zeros as its entries).
 - $\|\alpha A\| = |\alpha| \|A\|$, for any constant α .
 - **3** $||A + B|| \le ||A|| + ||B||$, where $B \in \mathbb{R}^{m \times n}$.
 - **(4)** ||AB|| ≤ ||A|| ||B||, where $B ∈ \mathbb{R}^{n \times p}$. This is called the submultiplicative inequality.

Matrix norms

Each vector norm induces a matrix norm according to the following definition:

$$\|A\|_{\rho} = \max_{\|\mathbf{x}\|_{\rho} \neq 0} \frac{\|A\mathbf{x}\|_{\rho}}{\|\mathbf{x}\|_{\rho}} = \max_{\|\mathbf{x}\|_{\rho} = 1} \|A\mathbf{x}\|_{\rho},$$

where $\mathbf{x} \in \mathbb{R}^n$ and $p = 1, 2, \dots$

Induced norms describe how the matrix stretches unit vectors with respect to that norm.

Induced matrix norms

Two popular and easy to define induced matrix norms are

One-norm :
$$\|A\|_1 = \max_{1 \le k \le n} \sum_{j=1}^m |a_{jk}|,$$

 ∞ -norm : $\|A\|_{\infty} = \max_{1 \le j \le m} \sum_{k=1}^n |a_{jk}|.$

- The one-norm corresponds to the maximum of the one norm of every column.
- The ∞-norm corresponds to the maximum of the one norm of every row.

The two-norm of A is defined as the *largest eigenvalue* of the matrix A^TA . This is computationally expensive to compute.

Math 365 Vector and Matrix Norms March 9, 2018

Non-induced matrix norms

The most popular matrix norm that is not an induced norm is the *Frobenius* norm:

$$||A||_{\mathrm{F}} = \sqrt{\sum_{j=1}^{m} \sum_{k=1}^{n} |a_{jk}|^2}.$$

Important results on matrix norms

The following are some useful inequalities involving matrix norms. Here $A \in \mathbb{R}^{m \times n}$:

- $||Ax|| \le ||A|| ||x||$
- $\bullet \ \frac{1}{\sqrt{n}} \|A\|_{\infty} \leq \|A\|_2 \leq \sqrt{m} \|A\|_{\infty}$
- $\bullet \ \|A\|_2 \leq \sqrt{\|A\|_1 \|A\|_\infty}$

