Kap. 8:

Kompressibilität, Schall und thermische Ausdehnung in 1D

8. Kompressibilität, Schall u. thermische Ausdehnung in 1D (1)

Fig. 8.1 Potential between neighboring atoms (thin black). The thick light gray curve is a quadratic approximation to the minimum (it may look crooked but in fact the thick gray curve is symmetric and the thin black curve is asymmetric). The equilibrium position is x_{eq} . At finite temperature T, the system can oscillate between x_{max} and x_{min} which are not symmetric around the minimum. Thus as T increases the av-erage position moves out to larger distance and the system expands.

Rechnung: Taylorentwicklung

Kompressibilität

(1) \rightarrow Taylorent wicklung les interatomaren Potentials um Gleichgewichtsabstan1 x₀ $V(x) \approx V(x_0) + 0 + \frac{D_2}{2}(x-x_0)^2 + \frac{D_3}{3!}(x-x_0)^3 + \dots$ anharmonische Terme Entwicklung
um Minimum harmonische
Näherung

lineares Kraftgesetz (Hooke)

Kompressibilität $B := \frac{-\Delta V/V}{\Delta P}$ (Response funktion)

 \Rightarrow thermodyn. Definition $\beta := -\frac{1}{V} \frac{\partial V}{\partial P} |_{T=const.}$

isotherme adiabatische

Hier vereinfacht: 1D, T=0, S=0:

$$\beta_{10} = -\frac{1}{x} \frac{\partial x}{\partial F} \Big|_{x=x_{0q}}$$

$$= +\frac{1}{x} \frac{1}{x} \Big|_{x=x_{0q}}$$

$$= + \frac{1}{x} \frac{1}{D} \Big|_{x = x_{og}} = \frac{1}{Da}$$

Kompressibilität Housesches Geset F(x) = - Dx $x(F) = -\frac{1}{2}F$

8. Schallgeschwindigkeit (2)

Die Ausbreitung von mechanischen Wellen (Schallwellen) benötigt eine Trägheitseigenschaft ("Masse", zur Speicherung von kinetischer Energie) und eine elastische Eigenschaft ("Rückstellkraft", Speicherung von potentieller Energie).

Die Schallgeschwindigkeit v ist in verschiedenen Materialien grundsätzlich von der Form

$$v = \sqrt{\frac{\text{elastische Eigenschaft}}{\text{Trägheitseigenschaft}}}$$

Bsp.: Schallwellen auf einer gespannten Saite

Spannkraft zur Spannung der Saite

Lineare Massendichte der Saite (kg/m) ρ_{lin} :

$$v = \sqrt{\frac{F}{\rho_{\rm lin}}}$$

$$v = \sqrt{\frac{F}{\rho_{lin}}} \qquad 1 \frac{m}{s} = 1 \sqrt{\frac{kg \frac{m}{s^2}}{kg/m}}$$

Ohne Spannkraft kann sich keine Seilwelle ausbreiten. Auslenkung bewirkt eine elastische Dehnung, wobei benachbarte Seilstücke aufgrund der Spannkraft aneinander ziehen.

v hängt nicht von der Frequenz f ab, nur von F und ρ_{lin} .

Vgl.: Stimmen einer Geige Wellenlänge: $\lambda = v / f$

8. Kompressibilität und Schallgeschwindigkeit (3)

Schallwellen in Fluiden:

Hier steckt die potentielle Energie in der

Druckänderung in kleinen Volumenelementen.

Ein Maß für die Volumenänderung unter Druck

liefert der Kompressionsmodul K:

$$v = \sqrt{\frac{\text{elastische Eigenschaft}}{\text{Trägheitseigenschaft}}}$$

⊓ Minus:

∆p und ∆V haben immer verschiedene Vorzeichen.

$$K = -\frac{\Delta p}{\Delta V / V}$$

Ausbreitungsgeschwindigkeit v:

ρ: Massendichte (kg/m³)

$$v = \sqrt{\frac{K}{\rho}}$$

Sonderfall ideales Gas:

$$v = \sqrt{\frac{\gamma k_{\rm B} T}{m}}$$

In Festkörpern ist der Ausdruck im Allgemeinen komplizierter ... (Scherspannungen).

Für Dehnungswellen auf einem elastischen Stab

muss K durch den

Elastizitätsmodul E ersetzt werden ($E \approx K$).

$$E = \frac{\Delta F / A}{\Delta 1 / 1}$$

$$v = \sqrt{\frac{E}{\rho}}$$

Rechnungen:

- Ideales Gas
- 1D-Kristall

Kompressibilität und Schallgeschwindigkeit

$$V = \sqrt{\frac{K}{g}} = \frac{1}{\sqrt{Bg'}}$$

Sonderfälle:

Sonderfalle.

a) ideales Gas:
$$K = -V \frac{\partial P}{\partial V} = P = nRT IV$$

$$= +W \frac{nRT}{VZ} = P \quad (isothermin K-Midal)$$

$$K = g P f$$
 a diabat. V .
 $g = N \frac{m}{V}$
 $g = CplCV$
(Adiabaten-Kueff.)

b) 1 D - Kristall ("lineare Kette"):
$$w$$

$$V = \frac{1}{\sqrt{Bg}} = \sqrt{\frac{1}{p_a} \frac{1}{a}} = \sqrt{\frac{Da^2}{m}}$$

8. Thermische Ausdehnung (4)

Signifikante Temperaturabhängigkeit von Responsefunktionen und zugehörigen Materialkonstanten:

- Thermische Ausdehnung
- Elastische Moduli
- Bruchfestigkeit

Film: **08-09 Elasticity at Low Temperatures**

Rechnung: Thermische Ausdehnung

Thermische Ausdehnung Vorauss: Anharmonizität D3 +0 Quantenmechanik

(x(T)) = $\frac{Z(n|x|n)e}{Z(n|x|n)}$ (x(T)) = $\frac{Z(n|x|n)e}{Z(n|x|n)}$ (x(T)) = $\frac{Z(n|x|n)e}{Z(n|x|n)}$ $= e^{-\frac{1}{K_BT}} \left(V(x_{eq}) + \frac{D_2(x_{eq})^2 + \frac{D_3}{6} (x_{eq})^3 + \dots } \right)$ $= e^{-\frac{1}{\kappa_{B}T}} \left(\frac{1}{\kappa_{B}T} + \frac{D_{2}}{2} \left(\frac{1}{\kappa_{B}T} + \frac{D_{3}}{2} \left(\frac{1}{\kappa_{B}T$ Normierung des Pot. nicht von Belang, da Kunst. Fahtor sowohl im Zähler als auch Nenner vor das Integral gezogen werden hann. 2 [1- Dz (x-xag)] = 1 7:el: l(T)=lo(1+a 1T) S. Übung! a = 0 (10 5 K-1)