CN-Advanced L46

Broadcast and Multicast

Dr. Ram P Rustagi rprustagi@ksit.edu.in http://www.rprustagi.comhttps://www.youtube.com/rprustagi

Chapter 4 Wireless and Mobile Networks

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Broadcast routing

- deliver packets from source to all other (N) nodes
- source duplication is inefficient:
- source duplication: how does source determine recipient addresses?

Broadcast routing: N-Way Unicast issues

- Src needs to know all (unicast) addresses of recipients
 - how?
 - run some protocols to discover
 - other overheads
- to know all recipients require some kind of broadcast
 - which is used for discovering unicasts
 - broadcast is being implemented as unicasts
 - A fine subtle anomaly?
- Approaches:
 - Flooding, Controlled Flooding, Spanning Tree

In-network duplication

- flooding: when node receives broadcast packet, sends copy to all neighbors
- problem 1 cycles
 - R2 ->R3 ->R4
 - R2 ->R4->R3
- Problem 2 broadcast storm
 - assume each R2,R3,R4 is connected to more than 2 nodes
 - each node will create multiple copies of packets
 - result: endless multiplication

In-network duplication

- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
- Node keeps track of packet ids already broadcasted
 - Using source address and pkt seq number
 - Gnutella protocol uses this algorithm
- Reverse path forwarding (RPF):
 - forward packet if it arrived on shortest path
 - between node and source
 - else discards the packet
 - Will looping, or broadcast storms occur?
- Issues with RPF
 - a node still receives multiple packets

Spanning tree

- No redundant packet received by any node
- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A

(b) broadcast initiated at D

Spanning tree: creation

- center node
- each node sends unicast join message to center node as per its forwarding table
 - message forwarded until it arrives at a node already belonging to spanning tree

(a)stepwise construction of spanning tree (center: E)

(b) constructed spanning tree

Broadcast Routing - in Practice

- OSPF Link State Advertisements
 - uses 32 bit sequence numbers
 - uses 16 bit age field (like TTL)
 - starts from 0, increases with time and hop
- Looks Simple but complex
 - Incorrect handling of LSA by two routers brought down ARPANet (RFC 789)

Multicast

- Delivery to only a subset of network nodes
- Applications
 - bulk data transfer, software upgrade
 - stream continuous media
 - shared data applications e.g. whiteboard
- Two challenges to deal with
 - identify receivers which are part of multicast group
 - how to address a packet sent to these receivers
- Options
 - have unicast address of each receiver node
 - not scalable

Multicast Group (226.17.30.197)

Multicast

- Implementation in Internet
 - Using address redirection
 - a single identifier is used for group of receivers
 - IP Addressing uses Class D (multicast group)
- Questions that arises from this abstraction
 - how does a group start/terminate?
 - how is the group address chosen?
 - how are hosts added to group as senders/receivers?
 - Is group membership open or restricted?
 - How does network routers work to deliver multicast?
- Answer: IGMP Internet Group Management Protocol
 - RFC 3376

IGMP and MultiCast Routing

3 First hop connected multicast routers

Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local mcast group members

- tree: not all paths between routers used
- shared-tree: same tree used by all group members
- source-based: different tree from each sender to rcvrs

shared tree

source-based trees

CN-Adv4.46/Bcast and Mcast

legend

group member

not group member

router with a group member

router without group member

Approaches for building meast trees

approaches:

- source-based tree: one tree per source
 - shortest path trees
 - reverse path forwarding
- group-shared tree: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees
- ...we first look at basic approaches, then specific protocols adopting these approaches

Shortest path tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra's algorithm

LEGEND

- router with attached group member
- router with no attached group member
- link used for forwarding, i indicates order link added by algorithm

Reverse path forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

if (mcast datagram received on incoming link on shortest path back to center)then flood datagram onto all outgoing links else ignore datagram

Reverse path forwarding: example

Ram P Rustagi/CSE/KSIT

LEGEND

- router with attached group member
- router with no attached group member
- datagram will be forwarded
- datagram will not be forwarded
- result is a source-specific reverse SPT
- may be a bad choice with asymmetric links

Reverse path forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - "prune" msgs sent upstream by router with no downstream group members

Center-based trees

- single delivery tree shared by all
- one router identified as "center" of tree
- to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg "processed" by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by join-msg becomes new branch of tree for this router

Center-based trees: example

suppose R6 chosen as center:

Multicast Routing in Internet

- DVMRP (Distance Vector multicast routing)
 - First multicast routing protocol
 - Implements Source Based Tree with
 - Reverse Path Forwarding and Pruning
- PIM (Protocol Independent Multicast routing)
 - Dense mode
 - Most of the routers in an area are involved
 - Uses Flood and Prune Reverse Path Forwarding
 - Sparse mode
 - Very few routers are involved
 - Only a single sender is allowed to send traffic to Mcast Tree

Summary

- Broadcast and Multicast routing
 - Reverse Path Forwarding
 - Spanning Tree
 - Shared tree and Source based Tree
- DVMRP and PIM

Summary: Network Layer

- Forwarding and Routing
- Router architecture
- IP addressing
- IP packet structure
- IPv6
- Routing algorithm
 - Distance vector, Link State and Path Vector
- Routing
 - RIP, OSPF, BGP
- Broadcast and Multicast routing
 - Reverse Path Forwarding
 - Spanning Tree
 - Shared tree and Source based Tree
- DVMRP and PIM