National Taiwan Normal University Department of Computer Science and Information Engineering CSU0029, Homework 3

1 Information

- 1. The assignment is worth 100 points.
- 2. Individual work.
- 3. Due at 12:00 on 4/20, i.e., Thursday noon.
- 4. When asked, use a scientific notation, i.e., show a value in the form $m \times 10^n$, where $1 \le |m| < 10$ and n is an integer.
- 5. If any fractional part, round to the second decimal place.
- 6. Submit the assignment to the course website.
- 7. Write the assignment in English or Chinese MS Word or PDF format.

2 Contents

1. (20 points) For signed addition (\$t0 = \$t1 + \$t2), the following sequence of MIPS codes can detect two special conditions. The sequence codes are shown as follows:

```
addu
        $t0, $t1, $t2
        $t3, $t1, $t2
xor
        $t3, $t3, $zero
slt
        $t3, $zero, T1
bne
        $t0, $t1, $t2
addu
        $t3, $t0, $t1
xor
        $t3, $t3, $zero
slt
        $t3, $zero, T2
bne
```

Please describe which conditions can T1 and T2 indices discover for signed addition?

2. (20 points) Figure 4.1 is a basic multiplication hardware and Figure 4.2 is an improved version of the basic one.

Figure 4.1: Basic multiplication hardware

Figure 4.2: Improved multiplication hardware

The following statements are possible observations for the improvement:

- S1: The multiplicand register, ALU, Multiplier register and the Product register are all 32 bits wide;
- S2: The Product register always shifts right two bits in each iteration;
- S3: The original Multiplier register disappears and is now placed in the right half of the Product register initially;
- S4: The left side of the Product register is initially set to zero.
- S5: The Multiplicand register is initially set to zero.

Please Determine if these statements are true or false.

3. (20 points) Given the 4-bit restoring division block diagram below. Please divide 7_{10} by 2_{10} and show the value of each register for each of the steps.

Iteration	Quotient	Divisor	Remainder
0 (initial values)	0000	0010 0000	0000 0111
1			
2			
3			
4			
5			

- 4. Consider the representations of the floating-point numbers.
 - (a) (10 points) A number is often denoted as $(-1)^S \times F \times 2^E$. What are the English names and meanings of F, and E, respectively?
 - (b) (10 points) In the IEEE 754 standard format, a number is denoted as $(-1)^S \times F \times 2^{E-Bias}$. For single and double precision numbers, what are the values of Bias, respectively?
- 5. (20 points) Which of the following statements is (are) true for IEEE 754 floating point representation?
 - (1) IEEE 754 standard defines the double precision number to be a 128-bit format.
 - (2) If a floating point number is shown in the form of $(-1)^S \times (1+F) \times 2^E$ where S defines the sign of the number, F the fraction field, and E the exponent, this means the leading 1-bit of normalized binary numbers is implicit.

 - (4) The floating point number represented in a biased exponent is actually this value: $(-1)^S \times (1+F) \times 2^{E-Bias}$
 - (5) Since there is no way to get 0.0 from this form: $(-1)^S \times (1+F) \times 2^E$, we will not be able to represent 0.0 in floating point format.