A2020

Es sei $f:(0,\infty)\to\mathbb{R}$ eine Funktion mit der Eigenschaft

- (*) $f(x \cdot y) = f(x) + f(y) \text{ für alle } x, y > 0.$
- a) Beweisen Sie mit vollständiger Induktion, dass $f(2^n) = n \cdot f(2)$ für $n \in \mathbb{N}$ gilt.
- b) Beweisen Sie, dass f(1) = 0 gilt.
- c) Beweisen Sie, dass $f(\frac{1}{x}) = -f(x)$ für alle x > 0 gilt.

Hinweise: Setzen Sie geeignete Werte für x, y in (*) ein. Im Aufgabenteil c) darf das Ergebnis aus b) verwendet werden, auch wenn Teil b) nicht gelöst wurde.

a) I.A:
$$f(2^4) = 1 \cdot f(2)$$

I.C: $f(2^{h+4}) = f(2^h \cdot 2) = f(2^h) + f(2) = n \cdot f(2) + f(2)$

$$= (n+4) f(2)$$
b) $f(2) = f(2 \cdot 4) = f(2) + f(4) \Rightarrow f(4) = 0$
c) $0 = f(4) = f(x \cdot 4) = f(x) + f(4) \Rightarrow f(4) = -f(x)$