

CS/B.TECH(ECE)/SEM-3/EC-301/06

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2006 SOLID STATE DEVICES

SEMESTER - 3

Time: 3 Hours]

[Full Marks

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Questions No. 1 and any four from the rest.

1.	Select the correct answer of the following:				10 × 1 =	
	i)	Intrinsic carrier concentration of a given semiconductor depends on				
		a)	bandgap	'b)	temperature	
		, c)	bandgap and temperature	d)	none of these.	
	ii)	GaAs is preferred to Si in high frequency devices because of				
		a)	higher bandgap	b)	lower effective mass	
`		, c)	direct energy bandgap	d)	none of these.	
	iii)	Diff	usion current exists in			
		, a)	semiconductor	b)	insulator	
		c)	metal	d)	metal and insulator.	
	iv) Concentration of minority carriers in any extrinsic se equilibrium is				y extrinsic semiconductor unde	
		a)	directly proportional to the dop	oing conce	entration	
		, b)	inversely proportional to the doping concentration			
		c)	directly proportional to intrinsic carrier concentration			
		d)	inversely proportional to intrin	sic carrie	r concentration.	
	v)	c) Gunn effect is observed in				
		a)	Si p-n junction diode	(b)	GaAs p-n junction diode	
		c)	Ge p-n-p transistor	d)	Si JFET.	
	vi) Majority carriers of any type semiconductor are				re	
		a)	protons	b)	electrons	
	•	. c)	holes	d)	neutrons http://www.makaut.com	

CS/B.TECH(ECE)/SEM-3/EC-301/06

4

- vii) If the barrier potential is increased in any p-n junction then the width of the junction will
 - a) remain unaltered
 - (b) increase proportional to square root of the potential
 - c) increase linearly
 - d) decrease proportional to square of the potential.
- viii) Varactor diode act as
 - a) variable resistor

variable capacitor

c) switching device

- d) none of these.
- ix) In n-channel MOSFET, source and drain are doped with
 - •a) n-type impurity
 - b) p-type impurity
 - c) source with p-type and drain with n-type impurity
 - d) none of these.
- x) BJT is
 - a) a voltage controlled device
 - b) a current controlled device
 - c) a temperature controlled device
 - d) none of these.
- a) Draw the E K diagrams for Si and GaAs and comment on specific applications from the nature of the diagram.
 - b) Write an expression for conductivity in terms of carrier concentration, mobility etc. What is understood by carrier relaxation time and how mobility is related with temperature and carrier relaxation time? 2+2+1
 - c) Draw the I V characteristics of a p n junction diode under reverse and forward bias. What is understood by ideality factor and reverse voltage breakdown? 2 + 3
- 3. a) Sketch the cross-sectional view of a p-channel MOSFET with proper labels. 5
 - b) Define
 - i) flatband voltage and
 - capacitance of MOS devices.

- 3 + 2
- c) Derive and expression for the threshold voltage of an ideal MOSFET.

CS/B.TECH(ECE)/SEM-3/EC-301/06

5

- 4. a) Derive expression for the current flowing across a p-n junction due to drift and diffusion.
 - b) What is punch through breakdown in BJT? Derive a relationship between I_{CO} and I_{CBO} and discuss their effects on temperature. 4+4
- 5. a) Explain the physical mechanism of current conduction in BJT. Draw the characteristics for common base operation. Derive a relationship between α , β and γ . 5 + 3 + 2
 - b) Why h-parameters are not used for transistor model at high frequency? Comment on the doping level and dimensions of Emitter, Base and Collector of BJT. 2+3
- 6. What is understood by depletion mode and enhancement mode MOSFET? For a switch operation how these devices are connected? Draw the $I_D V_{DS}$ characteristics for each of them and explain for saturation in the nature of the characteristics.

3 + 4 + (4 + 4)

- 7. a) What are the basic conditions of tunneling in a p-n junction diode?
 - b) Draw the complete V-I characteristics of a tunnel diode and explain.
 - c) Show the negative differential resistance region.
 - d) Mention two applications where tunnel diode may be used. 2 + (2 + 7) + 2 + 2
- 8. Write short notes on any three of the following:

 3×5

- a) Schottky Barrier Diode
- b) PIN photo detector
- c) Light emitting diode
- d) Photolithography
- e) Miller indices.