Machine Learning Assignment

Logistic Regression

Analysis

• In this Assignment we used dataset of League of Legends to predict winner based on Tower Kills, Inhibitor Kills, Dragon Kills, Baron Kills:

Import

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
```

Dataset

```
In [2]:

data = pd.read_csv('games.csv')

In [3]:

data.head()
```

Out[3]:

	gameld	creationTime	gameDuration	seasonId	winner	firstBlood	firstTower	firstInhil
0	3326086514	1504279457970	1949	9	1	2	1	_
1	3229566029	1497848803862	1851	9	1	1	1	
2	3327363504	1504360103310	1493	9	1	2	1	
3	3326856598	1504348503996	1758	9	1	1	1	
4	3330080762	1504554410899	2094	9	1	2	1	

5 rows × 61 columns

Since in our data winner 1 is for team 1 and 2 is for team 2. So we will make it to 0 and 1 for logistic regression.

```
In [4]:

data['winner'] = data['winner'].replace(1, 0)
data['winner'] = data['winner'].replace(2, 1)
data['winner'].unique()
```

Out[4]:

array([0, 1], dtype=int64)

In [5]: H data Out[5]: seasonld winner firstBlood firstTower firstInhibitor first gameld creationTime gameDuration 0 3326086514 1 3229566029 2 3327363504 3326856598 3330080762 1504554410899 3308904636 3215685759 3322765040 1504029863961

Why features selection?

- As we know in LoL Towerkill and Inhibitorkill can best predict which team is doing well then Baronkill and Dragonkill
- So we will analyze how different features give us prediction

```
In [6]:

X = data[['t1_baronKills', 't1_dragonKills', 't2_baronKills', 't2_dragonKills']]
y = data['winner']

In [7]:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=101)
logmodel = LogisticRegression()
logmodel.fit(X_train, y_train)
predictions = logmodel.predict(X_test)
```

```
In [8]:

print(classification_report(y_test, predictions))
```

```
precision
                             recall f1-score
                                                 support
                                          0.84
           0
                    0.80
                               0.88
                                                     7733
            1
                    0.87
                               0.78
                                          0.82
                                                     7714
                                          0.83
                                                   15447
    accuracy
   macro avg
                    0.83
                               0.83
                                          0.83
                                                   15447
                                          0.83
                                                   15447
weighted avg
                    0.83
                               0.83
```

```
In [9]:

X = data[['t1_towerKills','t1_inhibitorKills','t2_towerKills','t2_inhibitorKills']]
y = data['winner']
```

```
In [10]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=101)
logmodel = LogisticRegression()
logmodel.fit(X_train, y_train)
predictions = logmodel.predict(X_test)
```

```
In [11]: ▶
```

```
print(classification_report(y_test, predictions))
```

support	f1-score	recall	precision	
8484	0.96	0.97	0.95	0
8508	0.96	0.95	0.97	1
16992	0.96	2.05	0.05	accuracy
16992	0.96	0.96	0.96	macro avg
16992	0.96	0.96	0.96	weighted avg

Combining

- · We saw we got accuracy of 83% for Baronkill and Dragonkill
- We got accuracy og 96% forTowerkill and Inhibitorkill
- We got accuracy of 96% by combining them. As our system already performing well of 96% so not much change by adding baron and dragon kill

```
In [13]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=101)
logmodel = LogisticRegression()
logmodel.fit(X_train, y_train)
predictions = logmodel.predict(X_test)
```

```
In [14]: ▶
```

print(classification_report(y_test, predictions))

	precision	recall	f1-score	support
0	0.95	0.97	0.96	8484
1	0.97	0.95	0.96	8508
accuracy			0.96	16992
macro avg	0.96	0.96	0.96	16992
weighted avg	0.96	0.96	0.96	16992

PCA

- · Making new data set for ease
- · Reducing it to two dimension
- · Since in our data values of features vary so we will import standardscalar

```
In [15]:
```

```
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
```

```
In [16]:
```

In [17]: ▶

new_data

Out[17]:

	winner	t1_baronKills	t1_dragonKills	t2_baronKills	t2_dragonKills	t1_towerKills	t1_inhi
0	0	2	3	0	1	11	
1	0	0	2	0	0	10	
2	0	1	1	0	1	8	
3	0	1	2	0	0	9	
4	0	1	3	0	1	9	
51485	1	0	0	0	4	2	
51486	1	0	2	4	4	5	
51487	1	0	1	0	2	0	
51488	1	0	0	0	1	0	
51489	0	1	2	0	1	11	

51490 rows × 9 columns

```
In [18]: ▶
```

```
scaler=StandardScaler()
scaler.fit(new_data)
scaled_data=scaler.transform(new_data)
```

```
In [19]:
```

```
scaled_data[0]
```

Out[19]:

```
array([-0.98718638, 2.78752472, 1.33643434, -0.67541854, -0.33023792, 1.39498948, -0.01387537, -0.14231362, -0.78413297])
```

```
In [20]: ▶
```

```
pca=PCA(n_components=2)
pca.fit(scaled_data)
x_pca=pca.transform(scaled_data)
```

```
In [21]:

scaled_data.shape

Out[21]:
(51490, 9)

In [22]:

x_pca.shape

Out[22]:
(51490, 2)

In [23]:

plt.figure(figsize=(8,6))
plt.scatter(x_pca[:,0],x_pca[:,1],c=new_data['winner'])
plt.xlabel('First principle component')
plt.ylabel('Second principle component')
```

Out[23]:

Text(0, 0.5, 'Second principle component')

Applying Logistic Regression

• We saw that we now got accuracy of 98%.

```
In [24]:

X_train_pca, X_test_pca, y_train, y_test = train_test_split(x_pca, y, test_size=0.33, rando

logmodel = LogisticRegression()
logmodel.fit(X_train_pca, y_train)
predictions = logmodel.predict(X_test_pca)
```

```
In [25]:
```

print(classification_report(y_test, predictions))

	precision	recall	f1-score	support
0	0.98	0.98	0.98	8484
1	0.98	0.98	0.98	8508
accuracy			0.98	16992
macro avg	0.98	0.98	0.98	16992
weighted avg	0.98	0.98	0.98	16992

End