AIM: Adapting Image Models for Efficient Video Action Recognition

Taojiannan Yang¹, Yi Zhu², Yusheng Xie², Aston Zhang², Chen Chen¹, Mu Li²

¹University of Central Florida

²Amazon Web Services

ICLR 2023

TA: Geonhee Han (rtrt505@korea.ac.kr), Sehwan Park (shp216@korea.ac.kr) 2025. 8. 8.

Overview

Overview

- Training video models is drastically more expensive in both computation resource and time than image models.
- This paper introduces a new efficient image-to-video transfer method, dubbed AIM.
- AIM is effective and efficient in terms of #parameter, #data, time, and memory footprint.
- This paper might be useful for researchers who:
 - want to train large-scale video models in Lab.
 - trying to use CLIP-pretrained ViT backbone and finetune it on downstream tasks efficiently.

Introduction & Related work

Transferring image models to video models

Video models heavily rely on image-pretrained models due to lack of training video data and large model capacity.

Image-to-video transfer often requires to modify the image models and full-finetune the models on

video dataset.

(a) spatial ViT [1]

 $-\mathcal{O}(H^2W^2)$

(b) joint attention [2, 3]

- $-\mathcal{O}(T^2H^2W^2)$
- Full spatio-temporal Attn.
- Expensive

(c) factorized attention [3]

- $-\mathcal{O}(TH^2W^2 + T^2HW)$
- More efficient than (c).
- Additional parameters.
- Limited temporal modeling.

(d) token shift [4]

- $-\mathcal{O}(TH^2W^2)$
- Approximation of (c).
- More efficient than (c) and (d).
- Limited temporal modeling.

- [1] Dosovitskiy et al.. "An image is worth 16x16 words: Transformers for image recognition at scale." ICLR. 2021.
- [2] Arnab et al.. "ViViT: A video video transformer." ICCV. 2021.
- [3] Bertasius et al.. "Is space-time attention all you need for video understanding?" ICML. 2021 [4] Bulat et al.. "Space-time mixing attention for video transformer." NeurIPS. 2021.

Introduction & Related work

Expensive image-to-video transfer hinders the use of foundation models

- Most of video model should be fully finetuned on downstream video benchmarks using imagepretrained weights.
- However, full-finetuning is expensive.
- Given a generalizable image encoder, it would be more efficient to preserve such good representations. [9, 10, 11].

method	pretrain	machine	training time	top-1
Timesformer-B [2]	IN21K	8 V100	~3 days	80.7
ViViT-L [3]	JFT300M	32 TPUv3	N/A	82.8
VideoSwin-L [5]	IN21K	8 V100	~ 7days	83.1
Uniformer-B [6]	IN1K	32 V100	~14 days	82.9
TokenLearner [7]	JFT300M	32 TPUv3	N/A	85.4
MViTv2-L [8]	IN21K	128 V100	N/A	86.1

<Comparison of SOTA models on Kinetics-400>

<CLIP [9]>

- [2] Arnab et al.. "ViViT: A video video transformer." ICCV. 2021.
- [3] Bertasius et al.. "Is space-time attention all you need for video understanding?" ICML. 2021.
- [5] Liu et al.. "Video swin transformer." CVPR. 2022.
- [6] Li et al.. "Uniformer: Unified transformer for efficient spatiotemporal representation learning." ICLR. 2022.
- [7] Ryoo et al.. "TokenLearner: Adaptive space-time tokenization for videos." NeurIPS. 2021.
- [8] Li et al.. "MViTv2: Improved multiscale vision transformers for classification and detection." CVPR. 2022.
- [9] Radford et al.. "Learning transferable visual models from natural language supervision." ICML. 2021.
- [10] Singh *et al.*. "Revisiting weakly supervised pre-training of visual perception models." *CVPR*. 2022.
- [11] Yu et al.. "CoCa: Contrastive captioners are image-text foundation models." TMLR. 2022.

Introduction & Related work

Efficient transfer of large language models (LLMs)

- Since LLMs [12, 13] are too large to be fully finetuned on downstream datasets, there exist lines of research streams, e.g., adapter tuning [14, 15] or prompt learning [16], try to transfer LLMs to downstream tasks efficiently.
- Adapter [14], which is the most relevant to this paper, proposes to insert lightweight neural blocks into transformer blocks and train the newly added blocks only freezing the original LLM weights.

<# trainable parameters vs. performance on GLUE>

- [12] Devlin et al.. "BERT: Pre-training of deep bidirectional transformers for language understanding." *ACL*. 2019.
- [13] Brown et al.. "Language models are few-shot learners." *NeurIPS*. 2020.
- [14] Houlsby *et al.*. "Parameter-efficient transfer learning for NLP." *PMLR*. 2021.
- [15] Li et al.. "Prefix-tuning: Optimizing continuous prompts for generation." ACL. 2021.
- [16] Hu et al.. "LoRA: Low-rank adaptation of large language models." ICLR. 2022.

(b) ViT Block

(c) Spatial Adaptation

$$egin{aligned} oldsymbol{z}_l^T &= oldsymbol{z}_{l-1} + \operatorname{Adapter}(\operatorname{T-MSA}(\operatorname{LN}(oldsymbol{z}_{l-1}))) \ & oldsymbol{z}_l^S &= oldsymbol{z}_l^T + \operatorname{Adapter}(\operatorname{S-MSA}(\operatorname{LN}(oldsymbol{z}_l^T))) \ & oldsymbol{z}_l &= oldsymbol{z}_l^S + \operatorname{MLP}(\operatorname{LN}(oldsymbol{z}_l^S)) + s \cdot \operatorname{Adapter}(\operatorname{LN}(oldsymbol{z}_l^S)) \end{aligned}$$

Experimental setup: datasets & pretrained models

- Datasets:
 - 1. Kinetics-400

400 classes, 300k videos, 25fps. 10s per video. Appearance-oriented.

2. Something-Something V2

174 classes, 220k videos. 12fps. 4s per video. Motion-oriented.

- Pretrained models:
 - CLIP-pretrained ViT-B or ViT-L

label: pull ups

label: removing sth., revealing sth. behind

Effects of parameter-efficient transfer learning

Methods	Pretrain	Param (M)	Tunable Param (M)	Top-1	Top-5	Views
Frozen space-only	IN-21K	86	0.1	15.1	36.9	$8 \times 1 \times 3$
Finetuned space-only	IN-21K	86	86	36.2	68.1	$8 \times 1 \times 3$
Finetuned space-time (Bertasius et al., 2021)	IN-21K	121	121	59.5	85.6	$8 \times 1 \times 3$
Frozen space-only + spatial adaptation	IN-21K	89	3.7	36.7	68.3	$8 \times 1 \times 3$
+ temporal adaptation	IN-21K	97	10.8	61.2	87.7	$8 \times 1 \times 3$
+ joint adaptation (AIM)	IN-21K	100	14.3	62.0	87.9	$8 \times 1 \times 3$
AIM	CLIP	100	14.3	66.4	90.5	$8 \times 1 \times 3$

Ablation studies on Something-Something V2

SOTA comparison on Kinetics-400 and Something-Something V2,

• ViTs trained with AIM achieve strong performances on both benchmarks only training ~15% of the parameters of the original ViT.

Results on Kinetics-400

Methods	Pretrain	GFLOPs	Param (M)	Tunable Param (M)	Top-1	Top-5	Views
MViT-B (Fan et al., 2021)	-	4095	37	37	81.2	95.1	64×3×3
UniFormer-B (Li et al., 2021)	IN-1K	3108	50	50	83.0	95.4	$32\times4\times3$
TimeSformer-L (Bertasius et al., 2021)	IN-21K	7140	121	121	80.7	94.7	$64 \times 1 \times 3$
ViViT-L/16×2 FE (Arnab et al., 2021)	IN-21K	3980	311	311	80.6	92.7	$32\times1\times1$
VideoSwin-L (Liu et al., 2022)	IN-21K	7248	197	197	83.1	95.9	$32\times4\times3$
MViTv2-L (312 \uparrow) (Li et al., 2022)	IN-21K	42420	218	218	86.1	97.0	$32\times3\times5$
MTV-L (Yan et al., 2022)	JFT	18050	876	876	84.3	96.3	$32\times4\times3$
TokenLearner-L/10 (Ryoo et al., 2021)	JFT	48912	450	450	85.4	96.3	$64 \times 4 \times 3$
PromptCLIP A7 (Ju et al., 2021)	CLIP	-	-	-	76.8	93.5	$16 \times 5 \times 1$
ActionCLIP (Wang et al., 2021a)	CLIP	16890	142	142	83.8	97.1	$32\times10\times3$
X-CLIP-L/14 (Ni et al., 2022)	CLIP	7890	420	420	87.1	97.6	$8\times4\times3$
EVL ViT-L/14 (Lin et al., 2022)	CLIP	8088	368	59	87.3	-	$32\times3\times1$
AIM ViT-B/16	CLIP	606	97	11	83.9	96.3	$8 \times 3 \times 1$
AIM ViT-B/16	CLIP	1214	97	11	84.5	96.6	$16\times3\times1$
AIM ViT-B/16	CLIP	2428	97	11	84.7	96.7	$32\times3\times1$
AIM ViT-L/14	CLIP	2802	341	38	86.8	97.2	$8\times3\times1$
AIM ViT-L/14	CLIP	5604	341	38	87.3	97.6	$16 \times 3 \times 1$
AIM ViT-L/14	CLIP	11208	341	38	87.5	97.7	$32\times3\times1$

Results on Something V2

Methods	Pretrain	GFLOPs	Param (M)	Tunable Param (M)	Top-1	Top-5	Views
TimeSformer-L (Bertasius et al., 2021)	IN-21K	7140	121	121	62.4	-	$64 \times 1 \times 3$
MTV-B (Yan et al., 2022)	IN-21K	4790	310	310	67.6	90.4	$32\times4\times3$
MViT-B (Fan et al., 2021)	K400	510	37	37	67.1	90.8	$32\times1\times3$
MViTv2-B (Li et al., 2022)	K400	675	51	51	70.5	92.7	$40\times1\times3$
ViViT-L/ 16×2 (Arnab et al., 2021)	$K400^{\dagger}$	11892	311	311	65.4	89.8	$16\times4\times3$
VideoSwin-B (Liu et al., 2022)	$K400^{\dagger}$	963	89	89	69.6	92.7	$32\times1\times1$
Omnivore (Girdhar et al., 2022)	$K400^{\dagger}$	_	-	-	71.4	93.5	$32\times1\times3$
MViTv2-L (312 ↑) (Li et al., 2022)	$K400^{\dagger}$	8484	213	213	73.3	94.1	$32\times1\times3$
UniFomer-B (Li et al., 2021)	$K600^{\dagger}$	777	50	50	71.2	92.8	$32\times1\times3$
CoVeR (Zhang et al., 2021a)	JFT-3B	-	-	-	70.9	-	_
EVL ViT-B/16 (Lin et al., 2022)	CLIP	2047	182	86	62.4	-	$32\times1\times3$
EVL ViT-L/14 Lin et al. (2022)	CLIP	9641	484	_175	66.7		$32\times1\times3$
AIM ViT-B/16	CLIP	624	100	14	66.4	90.5	$8 \times 1 \times 3$
AIM ViT-B/16	CLIP	1248	100	14	68.1	91.8	$16 \times 1 \times 3$
AIM ViT-B/16	CLIP	2496	100	14	69.1	92.2	$32\times1\times3$
AIM ViT-L/14	CLIP	2877	354	50	67.6	91.6	$8\times1\times3$
AIM ViT-L/14	CLIP	5754	354	50	69.4	92.3	$16\times1\times3$
AIM ViT-L/14	CLIP	11508	354	50	70.6	92.7	$32\times1\times3$

Efficiency comparison

• AIM is efficient in terms of # parameters, training time, # data, and memory.

Model	Backbone	Mem (G)
TimeSformer Bertasius et al. (2021)	ViT-L	21.2
AIM	ViT-L	14.3
VideoSwin Liu et al. (2022)	Swin-L	Out of Memory
AIM	Swin-L	13.7

Model	Backbone	Pretrain	Tunable Param (M)	Mem (G)	Time (H)	Top-1
EVL Lin et al. (2022)	ViT-B	IN-21K	36.3	4.2	29	75.4
AIM	ViT-B	IN-21K	11	7	15	78.8
EVL Lin et al. (2022)	ViT-B	CLIP	36.3	4.2	29	82.9
AIM	ViT-B	CLIP	11	7	15	83.9

Practice

Practice

Let's practice!!!

<u>https://colab.research.google.com/drive/1-nUSyGfRGyBYIWx04AATDQqRt82mixHy?usp=sharing</u>