Лекция № 1

Основни конструкторски документи в електрониката, автоматиката и компютърната техника. Видове и комплектност на конструкторските документи. Условни графични и буквеноцифрови означения в електрическите схеми.

I. Основни понятия

1.1. Означения и състав на стандартите на ЕСКД

1.1.1. Определение и предназначение

Единната система за конструкторска документация (ЕСКД) е комплекс от държавни стандарти, определящи взаимосвързаните правила и приложения по реда за разработването, оформянето и движението на конструкторската документация.

Основното предназначение на стандартите за ЕСКД е чрез внедряването в организациите и фирмите на единни правила за разработване, оформяне и движение на конструкторската документация да се осигури:

- възможност за взаимен обмен на конструкторските документи между организациите и фирмите без тяхното преработване;
- стабилизиране на комплектността, изключваща дублиране и разработване на документи които не са необходими за производството;
- възможност за разширяване на унификацията при конструкторските разработки на проекти за промишлени изделия;
- опростяване на формите на конструкторските документи и графичните изображения, снижаващи трудопоглъщаемостта на проектно-конструкторските разработки;
- механизация и автоматизация на обработката на техническите документи и съдържащата се в тях информация;
 - подобряване на условията за подготовка на производството;
- подобряване на условията за експлоатация на промишлените изделия;
- оперативна подготовка на документацията с оглед бързото пренастройване на действуващото производство.

1.1.2. Област на приложение на стандартите за ЕСКД

Определените със стандартите за ЕСКД правила и положения за разработване, оформяне и движение на документацията се отнасят за:

- всички видове конструкторски документи;
- регистрационна документация и документация за внасяне на изделия в конструкторските документи;
- нормативно-техническа и технологична документация, а също така за научно-техническа и учебна литература, в която те могат да бъдат използувани и които не са регламентирани със специални стандарти и нормативи, определящи правилата за изпълнение на тези документи и литература.

Данните по стандартите за ЕСКД трябва да служат като основа за изработване и издаване на организационно-методична и инструкторско-производствена документация, определяща и регулираща дейността, свързана със съставяне, движение и обработване на конструкторските документи.

1.2. Видове изделия

Изделието е предмет или съвкупност от предмети на производството, изработени във фирмите.

В зависимост от наличието или липсата на съставни части изделията биват:

неспецифицирани – изделия, които не съдържат съставни части (детайли);

специфицирани — изделия, които съдържат съставни части (сглобени единици, комплекси и комплекти).

В зависимост от тяхното предназначение, изделията биват:

на основното производство – изделия, включени в номенклатурата на фирмата-производител;

на спомагателното производство – изделия, предназначени само за собствени нужди на фирмата-производител.

Определени са следните видове изделия: детайли; сглобени единици; комплекси (уредби, системи, централи и др.); комплекти. В сглобените единици, комплексите и комплектите могат да влизат детайли, сглобени единици, комплекси и комплекти, които за тези видове изделия са като съставни части.

Детайл – изделие, изработено от еднороден по наименование и марка материал, без операция сглобяване, например вал от едно парче метал, лято тяло, пластина от биметален лист, парче кабел, отрязано на определена дължина.

Селобена единица — изделие, съставните части на което подлежат на съединяване във фирмата производител, чрез операции сглобяване (занитване, завиване, заваряване, спояване и др.), например телефонен апарат, редуктор и др.

Комплекси (уредби, системи, централи и др.) – две или повече специфицирани изделия, несглобени по между си във фирмата производител, но предназначени да изпълняват взаимно свързани експлоатационни функции. Всяко от влизащите в комплекса специфицирани изделия служи за изпълнение на една или няколко функции, определени целия ОСНОВНИ за комплекс, например телефонна автоматична централа, автоматична линия за металорежещи машини и др.

Комплект – две или повече изделия, несглобени по между си във фирмата производител и представляващи комплект от изделия, с общо експлоатационно предназначение със спомагателен характер, например комплект резервни части, комплект инструменти и т.н.

1.3. Видове и комплектност на конструкторските документи

Конструкторските документи, текстови и графични, поотделно или заедно с други документи, определят цялостната информация за изделието и за неговите съставни части. Конструкторските документи съдържат всички необходими данни за свойствата на изделието и на съставните му части, които осигуряват нормалната му работа и поддържане в определен експлоатационен период от време.

1.3.1. Видове конструкторски документи

Видове конструкторски документи в зависимост от тяхното съдържание и предназначение:

Чертеж на детайл – документ съдържащ изображението на детайла и други данни, определящи еднозначно неговите функционални свойства при поставянето му за сглобяване или за самостоятелно използуване.

Чертеж сборен – документ, съдържащ пълно или опростено изображение на сглобената единица и други данни, определящи

еднозначно функционалните и свойства, получени в резултат на сглобяването.

Чертеж габаритен – документ, съдържащ контурно опростено изображение на изделието и неговите габаритни размери.

Чертеж монтажен – документ, съдържащ опростено контурно изображение на изделието и данни, необходими за неговия монтаж на мястото за експлоатация.

Схема – документ, съдържащ символи на съставните елементи и частите на изделието и връзките им.

Спецификация – документ, определящ състава на изделие и/или разработената за него конструкторска документация.

1.3.2. Схеми електрически

Типът на схемите и техните наименования са:

Схеми от група 1 – схеми, предназначени за общо запознаване с електрическите съставни части на обекта и изучаване на общите принципи на тяхната работа и взаимни връзки.

Структурна схема – схема, определяща основните части на обекта, тяхното предназначение и взаимни връзки.

Функционална схема – схема, разясняваща отделни процеси, които възникват в отделни функционални части на обекта или в обекта като цяло.

Схеми от група 2 – схеми, предназначени за определяне пълния съставна обекта, подробно изучаване принципите на работа на обекта като цяло и неговото изчисляване.

Принципна схема – схема, определяща пълния състав на елементите и връзките между тях и даваща детайлна представа за принципа на работа обекта.

Еквивалентна схема – схема, предназначена за анализ и пресмятане на параметрите (характеристиките) на функционалните части на обекта или на обекта като цяло.

Схеми от група 3 – схеми, даващи сведения за електрическите съединения на съставните части на обекта или на обекта като цяло.

Схема на съединенията – схема, показваща електрическите обекта съединения на съставните части на И определяща кабелите, проводниците, кабелните снопове И С които осъществяват тези съединения, както и местата ОТОНХЯТ на присъединяване и въвеждане (клейми, съединители, проходни изолатори).

Обща схема на съединенията – схема определяща съставните части на комплекса и електрическите съединения между тях на мястото на експлоатация.

Схема на включванията – схема показваща външното свързване на обекта.

Схеми от група 4 — схеми, предназначени за определяне относителното разположение на обектите или съставните части на обект, а при необходимост и на електрическите съединения.

Схема на разположението – схема, определяща относителното разположение на съставните части на обекта, а при необходимост и на електрическите съединения (проводници, кабели и кабелни снопове).

1.3.3. Определения и термини

Електрическа схема – графичен конструкторски документ, на който с помощта графични означения са изобразени електрическите съставни части на обекта и връзките между тях.

Елемент – съставна част на обекта, която има самостоятелно графично означение и определено функционално предназначение.

Устройство – съвкупност от елементи, които представляват единна конструкция. Устройството може да има в обекта строго определено функционално предназначение.

Функционална група — съвкупност от елементи, изпълняващи определена функция в обекта и необединени в единна конструкция.

Функционална част – елемент, функционална група или устройство, което има строго определено функционално предназначение в обекта.

Пиния за електрическа връзка – линията на схемата, която показва пътя на преминаване на ток, сигнал и т.н.

Обект – условно наименование на изделие, устройство, уредба, съоръжение, мрежа и т.н., използувано в качеството на общо понятие.

II. Условни буквено-цифрови и графични означения

2.1. Условни буквено-цифрови означения в електрическите схеми съгласно БДС 2.737-82 и IEC 750

Условните буквено-цифрови означения в електрическите схеми са предназначени:

- за записване в съкратена форма на елементите, устройства и функционални групи в електрически схеми;
- за цитиране на съответните елементи, устройства и функционални групи в конструкторски текстови документи;
- за нанасяне непосредствено на елемента или устройството (ако това е предвидено в неговата конструкция) и на печатните платки.

В най-общия случай условното буквено-цифрово означение на елементите в електрическите схеми се състои от три части, които показват съответно вида на елемента, неговия номер в електрическата схема и функцията, която той изпълнява.

В първата част на означението се записват една или две главни латински букви (буквен код). Първата буква е задължителна част от буквения код. С нея се посочва групата елементи, към която спада означеният елемент (например групата на полупроводниковите елементи, групата на интегралните схеми и т.н.). Втората буква не е задължителна. Тя се препоръчва когато конструкторът желае да уточни вида на означение елемент от дадената група (например, че полупроводниковият елемент е транзистор или диод, че интегралната схема е аналогова или цифрова и т.н.).

В таблица 1.1.1. са посочени примери на еднобуквените кодове на най-разпространените групи елементи.

Таблица 1.1.1. Еднобуквени кодове на различни видове елементи

	11 2	
първа буква от кода	група на видовете елементи	примери за видове елементи
1	2	3
Α	устройства	усилватели,устройства за телеуправление, лазери
С	кондензатори	,p,

	2	
1	2	3
D	схеми интегрални	схеми интегрални аналогови, цифрови, логически елементи, запомнящи устройства
E	елементи разни	осветителни устройства, нагревателни елементи
F	разрядници, предпазители, устройства защитни	Дискретни елементи за защита по ток и напрежение, стопяеми предпазители, разрядници
G	генератори, източници на захранване, кварцови осцилатори	Батерии,акумулатори, електрохимични и електротермични източници
Н	устройства индикаторни и сигнални	уреди за звукова и светлинна сигнализация, индикатори
К	релета, контактори, пускатели	релета токови и за напрежение, релета за време, контактори, магнитни пускатели
L	бобини, дросели	Дросели за луминесцентно осветление
M	двигатели	Двигатели за постоянен и променлив ток
Р	уреди, измервателни съоръжения	Показващи, регистриращи и и измервателни уреди, броячи, часовници
Q	изключватели и прекъсвачи в силови вериги	прекъсвачи, късосъединители, автоматични изключватели (силови)
R	резистори	резистори постоянни, регулируеми, шунтове, термистори
S	устройства комутационни във вериги за управление, вериги за сигнализация и измервателни вериги	изключватели, превключватели, изключватели, задействуващи се от различни въздействия
Т	трансформатори	трансформатори за ток и напрежение

1	2	3
U	преобразуватели на електрически величини в електрически, устройства за връзка	модулатори, демодулатори, дискриминатори, инвертори, честотни преобразуватели
V	елементи полупроводникови, електровакуумни	диоди, транзистори, тиристори, стабилитрони, електронни лампи
W	линии и елементи за свръхвисоки честоти, антени	вълноводи, диполи, антени
Х	съединения контактни	щифтове, фасунги, разглобяеми съединения, токоприемници
Υ	устройства механични с електромагнитно задвижване	електромагнитни съединители, спирачки, патрони

В таблица 1.1.2. са посочени примери на двубуквените кодове на видове елементи, спадащи към различни групи.

Таблица 1.1.2. Двубуквени кодове на различни видове елементи

Първа буква от кода (задъл- жителна)	група на видовете елементи	Примери за видове елементи	Двубук- вен код
D	Схеми интегрални	схема интегрална аналогови схема интегрална цифрова, логически елементи	DA DD
		запомнящи устройства	DS
K	Релета, контактори	реле токово контактор реле за време	KA KM KT
Р	измервателни уреди	Амперметър Брояч на импулси Честотомер Омметър Волтметър	PA PC PF PR PV
Т	Трансформатори	Трансформатор токов Трансформатор на напрежение	TA TV
V	елементи полупроводникови, електровакуумни – 1	Диод, стабилитрон Транзистори 1 –	VD VT

Учебно пособие по дисциплината "Учебна практика"

		Тиристори	VS
R	Резистори	постоянен потенциометър термистор шунт измервателен	R RP RK RS

Във втората част на буквено-цифровите означения на елементите се записва една или няколко арабски цифри, с които се посочва номера на елемента от дадения вид в електрическата схема. *Тази част от маркировката е задължителна*.

```
Пример
```

R1, R2, R3, ... - резистор № 1, 2, 3, ... C1, C2, C3, ... - кондензатор № 1, 2, 3, ...

Забележка: При условните буквено-цифровите означения на контактите на релета се допускат две цифрови части, отделени с двуеточие. Първата цифрова част посочва номера на релето в електрическата схема, а втората – номера на контакта на същото реле.

Пример

К1:2- втори контакт на реле К1

К2:4 – четвърти контакт на реле К2

В третата част на буквено-цифровите означения на елементите се записва една главна латинска буква. С нея се посочва функцията, която изпълнява означеният елемент. *Тази част на означенията не е задължителна.*

2.2. Условни графични означения на елементите

2.2.1. Резистори

фиг. 1.1.1. Условни графичния означения на резистори.

- а) резистор с постоянно съпротивление (общо означение);
- б) резистор с променливо съпротивление (общо означение);
- в) резистор донастройващ; г) резистор нелинеен (общо означение);
 - д) резистор с подвижен контакт; e) резистор общо означение с означение на размерите, размер 'a' = 4 (или 3) mm.

2.2.2. Кондензатор

фиг. 1.1.2. Условни графичния означения на кондензатори.

- а) кондензатор с постоянен капацитет (общо означение);
- б) кондензатор с променлив капацитет (общо означение);
- в) кондензатор електролитен; г) кондензатор електролитен;
- д) кондензатор донастройващ; е) кондензатор общо означение с означение на размерите.

2.2.2. Полупроводникови елементи:

а) Диод

фиг. 1.1.3. Условни графичния означения на диоди. а) диод (общо означение); б) лавинен изправителен диод с едностранен ефект на лавинен пробив (ценеров диод, стабилитрон); в) светодиод.

б) Транзистор

фиг. 1.1.4. Условни графичния означения на транзистори, съответно pnp и npn.

в) Тиристор

фиг. 1.1.5. Условно графично означение на тиристор.

2.2.3. Комутационни и контактни съединения:

фиг. 1.1.6. Условни графичния означения на: а)бобина на реле; б)контакт включващ, в) контакт изключващ; д) контакти превключващи, превключвател.

фиг. 1.1.7. Принципна схема

III. Контролни въпроси:

- 3.1. Какво представлява ЕСКД?
- 3.2. Какво е детайл?
- 3.3. Какво съдържа чертежа на детайл?
- 3.4. Видове електрически схеми?
- 3.5. Начертайте условно графично и буквено-цифрови означение на: резистор, кондензатор, диод, транзистор p-n-p и n-p-n, контактори и т.н.