Степень бинома не обязательно должна быть натуральным числом:

$$(1+x)^{\alpha} = \sum_{k=0}^{\alpha} C_{\alpha}^{k} x^{k} 1^{\alpha-k} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \dots + \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-k+1)}{k!} x^{k} + \dots + 0 + 0 + \dots;$$

$$\alpha = -1 \quad \Rightarrow \frac{1}{1+x} = \frac{1}{1-(-x)}, \frac{1}{1-q} = 1 + q + q^{2} + q^{3} + \dots;$$

$$\alpha = \frac{1}{2} \quad \Rightarrow \sqrt{1+x} = 1 + c_{1}x + c_{2}x^{2} + \dots; c_{i} = ? \Rightarrow$$

$$(1+x) = (1+c_{1}x+c_{2}x^{2}+\dots)(1+c_{1}x+c_{2}x^{2}+\dots) = 1+2c_{1}x+(c_{1}^{2}+2c_{2})x^{2}+\dots \Rightarrow c_{1} = \frac{1}{2}, c_{2} = \frac{1}{2} \cdot (-c_{1}^{2}) = -\frac{1}{8}$$

Коэффициент при биноме: $\frac{1}{2}$, $\frac{\frac{1}{2}(\frac{1}{2}-1)}{2}=-\frac{1}{8}$ дальше то же будут совпадения (см. ряд Тейлора).

Функции

Опр: 1. Функцией f из множества X в множество $Y, f: X \to Y$, называется правило/соответствие/сопоставление, сопоставляющиее $\forall x \in X$ ровно один $y \in Y: y = f(x)$.

$$\begin{cases} x \to y &: y^2 = x \text{ - не функция, так как } 1 \to \{-1,1\}; \\ x \to x^2 &: y = x^2 \text{ - функция;} \end{cases}$$

Опр: 2. Множество $\{x,y\}$ - называется неупорядоченной парой элементов x и y.

Опр: 3. Множество $\{x, \{x, y\}\}$ - называется упорядоченной парой элементов, x - 1-ый элемент пары, а саму пару обозначают (x, y).

Опр: 4. Декартовым произведением двух множеств $X \times Y$ называется множество упорядоченных пар (x, y), где $x \in X$ и $y \in Y$.

Обозначение $X \times Y = \{ (x, y) \mid x \in X, y \in Y \}$

`	X		y	
	÷	٠.	÷	٠.
	x	•••	(x,y)	
	÷	٠.	÷	٠.

Рис. 1: Декартово произведение

Примеры:

(с) 1: Эллипс на эллипс, 2: Полноторие, 3: Тор

2

Рис. 2: Примеры Декартовых произведений

3

(d) Выворачивая наизнанку снова получим тор

Опр: 5. Если задана $f: X \to Y$, то в $X \times Y$ определим подмножество $\Gamma_f = \{ (x, y) \mid y = f(x) \}$ - график функции:

- (1) $\forall x \in X, \exists (x,y) \in \Gamma_f$ каждому x соотносится y;
- (2) Если $(x,y) \in \Gamma_f$ и $(x,z) \in \Gamma_f$, то y=z;

На языке теории множеств говорят, что задана функция из X в Y, если задано подмножество $\Gamma \subset X \times Y$, удовлетворяющее свойствам (1)-(2).

Рис. 3: График функции

X - область определения функции f Y - область значения функции f

Опр: 6. Говорят, что на множестве X задана операция \circ , если задана функция из $X \times X$ в X, $\circ \colon X \times X \to X$.

$$(x_1, x_2) \mapsto x_1 \circ x_2$$

Операция \circ на множестве X:

- 1) коммутативна, если $x_1 \circ x_2 = x_2 \circ x_1, \forall x_1, x_2 \in X;$
- 2) ассоциативна, если $(x_1 \circ x_2) \circ x_3 = x_1 \circ (x_2 \circ x_3), \forall x_1, x_2, x_3 \in X;$

Опр: 7. На множестве функций определена операция композиций $(f \circ g)(x) = f(g(x))$.

 $F(X) = \{f \mid f \colon X \to X\}, \circ$ - операция на F.

Сама операция определена для любых функций: $g\colon X\to Y,\ f\colon Y\to Z\Rightarrow f\circ g\colon X\to Z\Rightarrow$ каждому элементу из X сопоставили какой-то элемент из Z.

 \mathbf{Rm} : 1. Если рассмотрим функции из множества в себя, то эта операция будет на множестве F.

Утв. 1. Операция композиции ассоциативна: $(f \circ g) \circ h = f \circ (g \circ h)$.

$$\Box (f \circ g) \circ h(x) = (f \circ g)(h(x)) = f(g(h(x))) = f((g \circ h)(x)) = f \circ (g \circ h)(x)$$

При этом, $f \circ g \neq g \circ f$, например f(x) = 3, g(x) = -3.

Индуктивные определения на №

Сначала необходимо определить $n+m, \forall n, m \in \mathbb{N}$ - это можно посмотреть в Э. Ландау: Основы/Основания математического анализа.

n+1= след $(n)\Rightarrow \forall m\in\mathbb{N},$ зная n+m имеем следующее: n+(m+1)=(n+m)+1.

Утв. 2. $\forall n \in \mathbb{N}, \exists !$ функция $f_n \colon \mathbb{N} \to \mathbb{N},$ такая что:

- (1) $f_n(1) = n + 1;$
- (2) $f_n(m+1) = f_n(m) + 1;$

Опр: 8. $n + m = f_n(m)$

 \square (единственность) пусть таких функций 2: f_n и g, $f_n(1) = g(1) = n+1$, $f_n(m+1) = f_n(m)+1$, g(m+1) = g(m)+1. Докажем по индукции, что $f_n = g$: $f_n(m) = g(m)$, $\forall m$.

База: $m = 1 \Rightarrow \text{ok}$.

Шаг: пусть $g(m) = f_n(m)$, то $f_n(m+1) = f_n(m) + 1 = g(m) + 1 = g(m+1) \Rightarrow \text{ok}$.

(существование) по индукции относительно n:

<u>База</u>: $n=1 \Rightarrow$ возьмем $f_1(m)=m+1 \Rightarrow f_1(1)=1+1=2, f_1(m+1)=m+1+1=f_1(m)+1,$ отсюда вместе с этим получим и m+1=1+m, поскольку $1+m=f_1(m)$ - по определению, а также по

единственности фукнции.

Шаг: пусть для n такая функция f_n уже есть, построим ее для n+1:

 $\overline{\text{Возьмем }}f_{n+1}(m)=f_n(m)+1\Rightarrow f_{n+1}(1)=f_n(1)+1=(n+1)+1$ - следующий за $n+1\Rightarrow \text{ok}.$

$$f_{n+1}(m+1) = f_n(m+1) + 1 = (f_n(m)+1) + 1 \stackrel{\text{по опр.}}{=} f_{n+1}(m) + 1 \Rightarrow f_n$$
 - существует для любого n .

Упр. 1. Доказать, что

- (1) n + (m + k) = (n + m) + k индукцией по k;
- (2) n + m = m + n индукцией по m;

Утв. 3. $\forall n, m, k \in \mathbb{N}$ справедливо:

- (1) (n+m)+k=n+(m+k);
- (2) n + m = m + n;
- \square (1) индукцией по k:

База: $(n+m)+1=f_n(m)+1=f_n(m+1)=n+(m+1)\Rightarrow$ ok.

Шаг: Пусть верно для k, то есть $(n+m)+k=n+(m+k) \Rightarrow (n+m)+(k+1)=f_{n+m}(k+1)=f_{n+m}(k)+1=\left((n+m)+k\right)+1=\left(n+(m+k)\right)+1=f_n\left((m+k)\right)+1=f_n\left((m+k)+1\right)=n+\left((m+k)+1\right)=n+\left(f_m(k)+1\right)\stackrel{\text{по }}{=} n+\left(f_m(k+1)\right)=n+\left(m+(k+1)\right)\Rightarrow \text{ ok.}$

(2) индукцией по m:

База: $n+1=f_n(1)$, вместе с этим $1+n=f_1(n)=n+1 \Rightarrow 1+n=n+1 \Rightarrow \text{ ok}$.

<u>Шаг</u>: Пусть верно для m: $n+m=m+n \Rightarrow n+(m+1)=f_n(m+1)=f_n(m)+1=(n+m)+1 \stackrel{\text{по инд.}}{=} (m+n)+1=f_m(n)+1=f_{m+1}(n)=(m+1)+n \Rightarrow \text{ok.}$

Аналогично вводится умножение (используя индукцию).

```
\begin{cases} n\cdot 1=n\\ n\cdot (m+1)=n\cdot m+n \end{cases}, \Rightarrow далее проверяется ассоциативность и коммутативность.
```

Опр: 9. Множество <u>целых чисел</u> $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n \mid n \in \mathbb{N}\}.$

Rm: 2. Операция "+" и "·" переносятся с множества \mathbb{N} , как в школе.

Опр: 10. Подмножество $R \subset X \times X$ называется отношением эквивалентности, если выполняются следующие свойства:

- (1) $\forall x \in X, (x, x) \in R$ (рефлексивность);
- (2) Если $(x, y) \in R$, то $(y, x) \in R$ (симметричность);
- (3) Если $(x, y) \in R$, $(y, z) \in R$, то $(x, z) \in R$ (транзитивность);

Примеры: (1) подобие треугольников; (2) $m > 1, n \sim k; n, k \in \mathbb{Z} \Leftrightarrow n - k \vdots m$.

Классы эквивалентностей

Опр: 11. $R(a) = \{x \mid x \sim a\}$ - называется классом эквивалентностей с представителем a.

Утв. 4. Если $R(a) \cap R(b) \neq \emptyset \Rightarrow R(a) = R(b)$.

Пусть
$$c \in R(a) \cap R(b) \Rightarrow a \sim c \wedge b \sim c \Leftrightarrow a \sim c \wedge c \sim b \Rightarrow a \sim b \Rightarrow \forall x \sim b \Rightarrow x \sim a$$
 $\forall x \sim a \Rightarrow x \sim b \Rightarrow R(a) = R(b).$

Опр: 12. <u>Разбиение множества A</u> - набор непустых подмножеств множества A, таких что объединение этих подмножеств дает A, причем подмножества попарно не пересекаются.

Теорема 1. Пусть R - отношение эквивалентности на множестве X. Множество $\{R(x) \mid x \in X\}$ - классов эквивалентности формируют разбиение множества X.

$$\Box R(x) \neq R(y) \Rightarrow R(x) \cap R(y) = \varnothing \Leftrightarrow \left(R(x) \cap R(y) \neq \varnothing \Rightarrow R(x) = R(y) \right).$$
 Пусть $\tilde{x} \in \bigcup_{x \in X} R(x) \Rightarrow \exists y \in X \colon \tilde{x} \in R(y); R(y) \subseteq X \Rightarrow \tilde{x} \in X \Rightarrow \bigcup_{x \in X} R(x) \subseteq X.$ Пусть $z \in X, z \in R(z) \Rightarrow z \in R(y),$ для некоторых $y \in X \Rightarrow z \in \bigcup_{x \in X} R(x) \Rightarrow X \subseteq \bigcup_{x \in X} R(x).$
$$\Rightarrow X = \bigcup_{x \in X} R(x).$$

Таким образом $\{R(x) \mid x \in X\}$ - разбиение множества X.

Опр: 13. Набор классов эквивалентности называется фактор-множеством X/\sim .

Рассмотрим $\mathbb{Z} \times \mathbb{N} : (m,n) \sim (p,q) \Leftrightarrow mq = pn, m \in \mathbb{Z}, n \in \mathbb{N}$. В данном контексте (m,n) и (p,q) можно рассматривать, как $\frac{m}{n}$ и $\frac{p}{q}$.

Опр: 14. Множество классов эквивалентностей, заданных таким образом, называется множеством рациональных чисел или дробей и обозначается \mathbb{Q} .