T.D. de Méthodes de Monté-Carlo Série n° 4

Exercice 1:

- 1. Donner l'approximation \hat{I}_n de l'intégrale $I=\int_0^2 e^{-x^2}dx$ par une méthode de Monte-Carlo.
- 2. Donner une estimation de la précision de \hat{I}_n
- 3. Montrer que cette approximation est sans biais.
- 4. Montrer que l'estimateur \hat{I}_n est convergent.
- 5. Vérifier sa normalité asymptotique.
- 6. Donner un intervalle de confiance de I à 95%.
- 7. Quelle est la vitesse de convergence de cet estimateur.

Exercice 2:

Donner deux méthodes de Monte-Carlo différentes d'approximation des intégrales suivantes à l'aide d'une moyenne empirique impliquant des v.a. de loi connue :

1.
$$I = \int_0^1 \cos(x^3) \exp(-x) dx$$

2.
$$J = \int_0^{+\infty} \sin(x^4) \exp(-2x) \exp(-\frac{x^2}{2}) dx$$

3.
$$K = \int_0^1 \ln(1+x^2) \exp(-x^2) dx$$

4.
$$L = \int_0^{+\infty} \frac{\sin(x)}{\sqrt{x}} e^{-x} dx$$

$$5. \ M = \int_0^{+\infty} \sqrt{x} e^{-x} dx$$

6.
$$N = \int_0^1 \sin(\sqrt{x}) dx$$

Exercice 3:

Soient X, X_1, X_2, \cdots des variables i.i.d. uniformes dans $C = [-1, 1] \times [-1, 1]$ (sous-endentu : $X = (U_1, U_2)$ avec U_1 et U_2 indépendantes et de loi uniforme sur [-1, 1] toutes les deux). Soit D le disque (dans \mathbb{R}^2) de centre (0, 0) et de rayon 1.

- 1. Calculer par une méthode de Monte-Carlo la valeur de $E(\mathbb{I}_{X \in D})$.
- 2. Estimer la variance de la méthode.

Exercice 4:

Appliquer différentes méthodes de réduction de la variance pour estimer P(X > 3), où X est une variable aléatoire de loi $\mathcal{N}(0,1)$.

Exercice 5:

Estimer la valeur de $I = \int_0^1 \cos \frac{\pi x}{2} dx$ par la méthode de Monte-Carlo et appliquer une amélioration de cette valeur à l'aide de la méthode de l'échantiollonnage préférentiel.

Exercice 6:

Calculer $I = \int_0^1 \exp(x^2) dx$ par une méthode de Monte-Carlo puis appliquer la méthode de variable de contrôle.

Exercice 7:

On veut calculer $I = E\left(\mathbb{I}_{\{X>0\}}e^{\beta x}\right)$ où $X \sim \mathcal{N}(0,1)$ et $\beta = 5$. On estimera la variance à chaque étape de l'exercice.

- 1. Calculer (par Monte-Carlo) la variance par la méthode initiale (naive) (quand on tire des X_1, X_2, \dots, X_n i.i.d. de loi N(0,1) et que l'on approche I par $\frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i\}} e^{\beta X_i}$).
- 2. Proposerune méthode d'échantillonnage préférentiel.
- 3. Proposer une méthode de variable de contrôle.
- 4. Améliorer la méthode à l'aide d'une technique de variable antithétique.

Exercice 8:

Nous définissons des fonctions de \mathbb{R} dans \mathbb{R} par :

$$f(x) = \frac{\sqrt{2}e^{-\frac{x^2}{2}}}{\sqrt{\pi}} \mathbb{I}_{[0,+\infty[}(x)$$
$$g(x) = x^2$$

On s'intéresse à l'intégrale $I = \int_{\mathbb{R}} g(x) f(x) dx$.

- 1. Comment simuler une variable de densité f?
- 2. Proposer une méthode de Monte-Carlo pour calculer de manière approchée, en utilisant la simulation de la v.a. de la question précédente.
- 3. Proposer une méthode de réduction de la variance par échantillonnage préférentiel (appellée aussi "fonction d'importance").

Exercice 9:

On s'intéresse à l'estimation de l'intégrale $I = \int_0^1 e^u du$.

- 1. Rappeler la formule de l'estimation Monte-Carlo standard \hat{I}_n . Rappeler le Théorème Central Limite auquel il obéit et calculer la variance σ^2 qu'il faut intervenir. Donner un estimateur $\hat{\sigma}_n^2$ de σ^2 .
- 2. Donner un estimateur \hat{I}_n de I à base de variables antithétiques. Quelle est sa variance théorique S^2 ? Par rapport au Monte-Carlo standard, par combien (environ) a-t-on divisé le temps de calcul pour atteindre la même précision?
- 3. Soit c une constante et $X_c = \exp(U) + c(U \frac{1}{2})$, où $U \sim \mathcal{U}([0,1])$. Quelle est la moyenne de la variable X_c ? Exprimer la variance de X_c en fonction de c et des variances et covariance de U et $\exp(U)$. En déduire la valeur c^* de c rendant cette variance minimale et préciser $Var(X_{c^*})$. Comparer à S^2 .