Inner Product

Definition: Inner Product

Let E be a vector space over a field \mathbb{F} . An *inner product* on E is a mapping $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{C}$ such that the following axioms are satisfied $\forall \vec{x}, \vec{y}, \vec{z} \in E$ and $\forall \alpha, \beta \in \mathbb{F}$:

- 1). $\langle \vec{x}, \vec{x} \rangle \geq 0$
- 2). $\langle \vec{x}, \vec{x} \rangle = 0 \iff \vec{x} = \vec{0}$
- 3). $\langle \vec{x}, \vec{y} \rangle = \overline{\langle \vec{y}, \vec{x} \rangle}$
- 4). $\langle \alpha \vec{x} + \beta \vec{y}, \vec{z} \rangle = \alpha \langle \vec{x}, \vec{z} \rangle + \beta \langle \vec{y}, \vec{z} \rangle$

A vector space equipped with such an inner product is called an *inner product space* or a *pre-Hilbert space*.

Properties

Let E be a vector space over a field \mathbb{F} . $\forall \vec{x}, \vec{y}, \vec{z} \in E$ and $\forall \alpha, \beta \in \mathbb{F}$:

- 1). $\langle \vec{x}, \vec{x} \rangle \in \mathbb{R}$
- 2). $\left\langle \vec{0}, \vec{y} \right\rangle = \left\langle \vec{x}, \vec{0} \right\rangle = 0$
- 3). $\langle \vec{x}, \alpha \vec{y} + \beta \vec{z} \rangle = \overline{\alpha} \langle \vec{x}, \vec{y} \rangle + \overline{\beta} \langle \vec{x}, \vec{z} \rangle$

Proof

Assume $\vec{x}, \vec{y}, \vec{z} \in E$ and $\alpha, \beta \in \mathbb{F}$.

1). $\langle \vec{x}, \vec{x} \rangle = \overline{\langle \vec{x}, \vec{x} \rangle}$.

$$\therefore \langle \vec{x}, \vec{x} \rangle \in \mathbb{R}$$

2).
$$\langle \vec{0}, \vec{y} \rangle = \langle 0 \cdot \vec{0}, \vec{y} \rangle = 0 \langle \vec{0}, \vec{y} \rangle = 0$$

 $\langle \vec{x}, \vec{0} \rangle = \langle \vec{x}, 0 \cdot \vec{0} \rangle = \overline{0} \langle \vec{x}, \vec{0} \rangle = 0 \langle \vec{x}, \vec{0} \rangle = 0$

3).

 $\langle \vec{x}, \vec{y} \rangle = \overline{\langle \vec{y}, \vec{x} \rangle}$ is referred to as *Hermitian* symmetry.

The inner product is *sesquilinear*, as opposed to *bilinear*.

Examples

1).
$$E=C^N$$
 and $\langle x,y\rangle=\sum_{k=1}^N x_k\overline{y_k}$

$$\langle x, x \rangle = \sum_{k=1}^{N} x_k \overline{x_k} = \sum_{k=1}^{N} |x_k|^2 \ge 0$$

with equality iff x = 0.

$$\langle x, y \rangle = \sum_{k=1}^{N} x_k \overline{y_k} = \overline{\sum_{k=1}^{N} \overline{x_k} y_k} = \overline{\sum_{k=1}^{N} y_k \overline{x_k}} = \overline{\langle y, x \rangle}$$

$$\langle \alpha x + \beta y, z \rangle = \sum_{k=1}^{N} (\alpha x + \beta y) \overline{z} = \alpha \sum_{k=1}^{N} x \overline{z} + \beta \sum_{k=1}^{N} y \overline{z} = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$$

2).
$$E = \ell^2$$
 and $\langle (x_n), (y_n) \rangle = \sum_{k=1}^{\infty} x_k \overline{y_k}$

Recall:
$$\ell^2 = \left\{ (x_n) \left| \sum_{k=1}^n |x_n|^2 < \infty \right. \right\}.$$

Note that $(y_n) \in \ell^2 \iff (\overline{y_n}) \in \ell^2$:

$$\sum_{k=1}^{\infty} |y|^2 = \sum_{k=1}^{\infty} |\overline{y}|^2 < \infty$$

By Hölder's inequality with p = q = 2:

$$\sum_{k=1}^{\infty} |x_k \overline{y_k}| \le \left(\sum_{k=1}^{\infty} |x_k|^2\right)^2 \left(\sum_{k=1}^{\infty} |\overline{y_k}|^2\right)^2 = \left(\sum_{k=1}^{\infty} |x_k|^2\right)^2 \left(\sum_{k=1}^{\infty} |y_k|^2\right)^2 < \infty$$

So the inner product sum converges absolutely, and ℓ^2 is Banach, thus the inner product sum converges.

$$\langle (x_n), (x_n) \rangle = \sum_{k=1}^{\infty} x_k \overline{x_k} = \sum_{k=1}^{\infty} |x_k|^2 \ge 0$$

with equality iff $(x_n) = (0)$.

$$\langle x,y\rangle = \sum_{k=1}^{\infty} x_k \overline{y_k} = \overline{\sum_{k=1}^{\infty} \overline{x_k} y_k} = \overline{\sum_{k=1}^{\infty} y_k \overline{x_k}} = \overline{\langle y,x\rangle}$$

is allowed since the inner product sum converges.

$$\langle \alpha x + \beta y, z \rangle = \sum_{k=1}^{\infty} (\alpha x + \beta y) \overline{z} = \alpha \sum_{k=1}^{\infty} x \overline{z} + \beta \sum_{k=1}^{\infty} y \overline{z} = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$$

is allowed since the inner product sum converges.

3).
$$E = \mathcal{C}[a, b]$$
 and $\langle f, g \rangle = \int_a^b f \bar{g}$.

Note that the integral converges because f and g (and \bar{g}) are continuous over a closed interval, and so $f\bar{g}$, a product of continuous functions, is also continuous over a closed interval.

$$\langle f, f \rangle = \int_a^b f \bar{f} = \int_a^b |f|^2 \ge 0$$

with equality when $f \equiv 0$.

$$\langle f, g \rangle = \int_{a}^{n} f \bar{g} = \overline{\int_{a}^{b} \bar{f}g} = \overline{\int_{a}^{b} g \bar{f}} = \overline{\langle g, f \rangle}$$

$$\langle \alpha f + \beta g, h \rangle = \int_{a}^{b} (\alpha f + \beta g) \bar{h} = \alpha \int_{a}^{b} f \bar{h} + \beta \int_{a}^{b} g \bar{h} = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$$

4).
$$E = L_2(\Omega)$$
 and $\langle f, g \rangle = \int_{\Omega} f \bar{g}$

Note that the integral converges because f and g (and \bar{g}) are square integrable, and so $f\bar{g}$, a product of square integrable functions, is also square integrable.

$$\langle f, f \rangle = \int_{\Omega} f \bar{f} = \int_{\Omega} |f|^2 \ge 0$$

with equality when $f \equiv 0$ (ae).

$$\langle f, g \rangle = \int_{\Omega} f \bar{g} = \overline{\int_{\Omega} \bar{f} g} = \overline{\int_{\Omega} g \bar{f}} = \overline{\langle g, f \rangle}$$
$$\langle \alpha f + \beta g, h \rangle = \int_{\Omega} (\alpha f + \beta g) \bar{h} = \alpha \int_{\Omega} f \bar{h} + \beta \int_{\Omega} g \bar{h} = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$$