Práctica 3

- 1. Probar que los siguientes son espacios métricos. Dibujar, en cada caso, una bola abierta.
 - (a) \mathbb{R} con d(x,y) = |x-y|.
 - (b) $\mathbb{R}^n \text{ con } d_2(x,y) = \left(\sum_{i=1}^n (x_i y_i)^2\right)^{1/2}$.
 - (c) $\mathbb{R}^n \text{ con } d_1(x,y) = \sum_{i=1}^n |x_i y_i|$.
 - (d) $\mathbb{R}^n \operatorname{con} d_{\infty}(x, y) = \max_{1 \le i \le n} |x_i y_i|$.
 - (e) C([0,1]) con $d_{\infty}(f,g) = \max_{0 \le t \le 1} |f(t) g(t)|$.
 - (f) E un conjunto no vacío, con la métrica

$$d(x,y) = \begin{cases} 0, & \text{si } x = y, \\ 1, & \text{si } x \neq y. \end{cases}$$

2. Decidir cuáles de las siguiente funciones definidas en $\mathbb{R} \times \mathbb{R}$ son métricas en \mathbb{R} :

(a)
$$d(x,y) = (x-y)^2$$

(a)
$$d(x,y) = (x-y)^2$$
 (b) $d(x,y) = \sqrt{|x-y|}$ (c) $d(x,y) = |x^2 - y^2|$

(c)
$$d(x,y) = |x^2 - y^2|$$

- **3.** Consideremos en \mathbb{R}^n las distancias d_1, d_2 y d_∞ . Denotemos por $B_1(x,r), B_2(x,r)$ y $B_{\infty}(x,r)$ a la bola de centro x y radio r para cada una distancias, respectivamente.
 - (a) Probar que $d_{\infty}(x,y) \leq d_2(x,y) \leq d_1(x,y) \leq nd_{\infty}(x,y)$
 - (b) Deducir de (a) que $B_1(x,r) \subseteq B_2(x,r) \subseteq B_\infty(x,r) \subseteq B_1(x,nr)$.
- 4. Considerar el conjunto $\mathbb Q$ en el espacio métrico $\mathbb R$. Hallar $\mathbb Q^\circ$ y $\overline{\mathbb Q}$. Concluir que $\mathbb Q$ no es abierto ni cerrado en \mathbb{R} .
- 5. Hallar interior y clausura de cada uno de los siguientes subconjuntos de \mathbb{R} . Determinar cuáles son abiertos o cerrados.
 - (a) [0,1]

- (b) (0,1)

- $\begin{array}{lll} \text{(c)} & \mathbb{Q} & \text{(e)} & \mathbb{Z} & \text{(g)} & \left\{\frac{1}{n}: n \in \mathbb{N}\right\} \\ \text{(d)} & \mathbb{Q} \cap [0,1] & \text{(f)} & [0,1) \cup \{2\} & \text{(h)} & \left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup \{0\} \end{array}$
- **6.** Consideremos en el espacio C([0,1]) las métricas d_{∞} y d_1 dadas por

$$d_{\infty}(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|, \qquad d_{1}(f,g) = \int_{0}^{1} |f(x) - g(x)| dx.$$

(a) Sea $A = \{ f \in C([0,1]) : f(0) > 0 \}$. Probar que A es abierto para d_{∞} pero que no lo es para d_1 .

- (b) Concluir que no existe M>0 tal que $d_{\infty}(f,g)\leq M\cdot d_1(f,g)$ para todas $f,g\in C([0,1]).$
- 7. Sea (E,d) un espacio métrico. Sean $x \in E$ y r > 0.
 - (a) Probar que $\{x\}$ es un conjunto cerrado.
 - (b) Probar que B(x,r) es un conjunto abierto.
 - (c) Probar que si r > r' > 0 entonces $\overline{B(x,r')} \subseteq B(x,r)$.
 - (d) Probar que $\overline{B}(x,r) = \{y \in E : d(x,y) \le r\}$ es un conjunto cerrado.
 - (e) Deducir que $\overline{B(x,r)} \subseteq \overline{B}(x,r)$.
 - (f) Dar un ejemplo en que $\overline{B(x,r)}$ sea un subconjunto propio de $\overline{B}(x,r)$.
 - (g) Probar que $\{y \in E: \ 2 < d(y,x) < 3\}$ es un conjunto abierto.
- 8. Sea (E,d) un espacio métrico y sea $A\subseteq E$. Probar que:
 - (a) $E \setminus A^{\circ} = \overline{E \setminus A}$.
 - (b) $E \setminus \overline{A} = (E \setminus A)^{\circ}$.

¿Son ciertas las igualdades $\overline{A} = \overline{A^{\circ}}$ y $A^{\circ} = (\overline{A})^{\circ}$?

- 9. Sea (E,d) un espacio métrico y sean $A,B\subseteq E$. Probar que:
 - (a) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
 - (b) $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$.
 - (c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (d) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

Dar ejemplos en que no valga la igualdad en (b) y (d).

- **10.** Sean (E, d) un espacio métrico y $A, B \subseteq E$ subconjuntos acotados de E.
 - (a) Probar que si $A \subseteq B$ entonces $diam(A) \le diam(B)$.
 - (b) Probar que $diam(A) = diam(\overline{A})$.
- 11. Hallar frontera y puntos de acumulación de cada uno de los subconjuntos de \mathbb{R} del Ejercicio 5.
- **12.** Sea (E,d) un espacio métrico y sea $A \subseteq E$.
 - (a) Probar que $\partial A = \overline{A} \setminus A^{\circ}$, y concluir que ∂A es cerrado.
 - (b) Probar que $\partial A = \overline{A} \cap \overline{E \setminus A}$, y concluir que $\partial A = \partial (E \setminus A)$.
- 13. Sea (E,d) un espacio métrico. Dados $A\subseteq E$ no vacío y $x\in E$, se define la distancia de x a A como

$$d_A(x) = \inf\{d(x, a) : a \in A\}.$$

Probar que para todos $x, y \in E$ y r > 0:

- (a) $|d_A(x) d_A(y)| \le d(x, y)$.
- (b) $x \in A \implies d_A(x) = 0$.
- (c) $d_A(x) = 0 \iff x \in \overline{A}$.
- (d) $B_A(r) = \{x \in E : d_A(x) < r\}$ es abierto.
- (e) $\overline{B}_A(r) = \{x \in E : d_A(x) \le r\}$ es cerrado.
- **14.** Sea (E,d) un espacio métrico. Consideremos el conjunto $\mathcal{X} = \{A \subseteq E : A \neq \emptyset\}$. Definimos la función $\widehat{d} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ como

$$\widehat{d}(A,B) = \inf\{d(a,b) : a \in A , b \in B\}.$$

Determinar si las siguientes afirmaciones son verdaderas o falsas:

- (a) $\widehat{d}(A, B) = \widehat{d}(\overline{A}, B)$.
- (b) $\widehat{d}(A, B) = 0 \iff A \cap B \neq \emptyset$.
- (c) $\widehat{d}(A, B) = 0 \Longleftrightarrow \overline{A} \cap \overline{B} \neq \emptyset$.
- (d) $\widehat{d}(A, B) \le \widehat{d}(A, C) + \widehat{d}(C, B)$.

Concluir que \hat{d} no es una distancia.

- **15.** Sea (E,d) un espacio métrico y sean $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ sucesiones en E.
 - (a) Si $\lim_{n\to\infty} x_n = x$ y $\lim_{n\to\infty} y_n = y$, probar que $\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$.
 - (b) Si $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ son dos sucesiones de Cauchy en E, probar que la sucesión de números reales $(d(x_n,y_n))_{n\in\mathbb{N}}$ es convergente.
- **16.** Probar que (\mathbb{R}^n, d_1) , (\mathbb{R}^n, d_2) y (\mathbb{R}^n, d_∞) son completos.
- 17. Sea (E, d) un espacio métrico completo y $A \subseteq E$ un subconjunto de E. Probar que si A es cerrado entonces el espacio métrico (A, d) es completo.
- 18. Teorema de la intersección (Cantor). Sea (E,d) un espacio métrico completo. Sea $(A_n)_{n\in\mathbb{N}}$ una sucesión de subconjuntos cerrados, acotados y no vacíos de E tales que
 - $A_{n+1} \subseteq A_n$ para todo $n \ge 1$.
 - $\lim_{n\to\infty} \operatorname{diam}(A_n) = 0$.

Probar que existe un único elemento $x \in \bigcap_{n \in \mathbb{N}} A_n$.