Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Teodor Duraković Naměřeno: 13. března 2024

Obor: F Skupina: St 8:00 Testováno:

Úloha č. 6: Tepelné vlastnosti kapalin - elektrický

 $T=20.6~^{\circ}\mathrm{C}$ k

kalorimetr

p = 98741 Pa $\varphi = 45.1 \text{ \%}$

1. Zadání

Zadání č. 4 - Navrhněte takové uspořádání experimentu, při kterém principiálně nedojde ke zkreslení výsledku vlivem tepelných ztrát. Řešením tohoto úkolu se nemyslí maximální tepelná izolace nádoby kalorimetru.

2. Postup

Elektrický kalorimetr je zařízení, které dovoluje měřit tepelnou kapacitu kapalin i pevných látek. Na rozdíl od kalorimetru směšovacího dovoluje jednoduše určit měrnou tepelnou kapacitu absolutně a nikoliv jen relativně vzhledem ke kapacitě nějaké jiné látky. Elektrický kalorimetr je tepelně izolovaná nádoba s elektrickou topnou spirálou, teploměrem a míchačkou. Energie, kterou topná spirála dodá do kalorimetru, se určí jednoduše z proudu, napětí a času, po který spirála pracovala. Pokud neuvažujeme tepelné ztráty, můžeme pro energetickou výměnu mezi spirálou a kalorimetrem s náplní psát:

$$(mc + K)(t - t_p) = UI\tau \tag{1}$$

Kde m je hmotnost látky v kalorimetru, c její měrná tepelná kapacita, K kapacita kalorimetru, t a t_p teplota koncová, resp. počáteční, U, I napětí a proud a τ je čas, po který je spirála daným výkonem ohřívána. Při uvážení tepelných ztrát se formule (1) změní následovně:

$$(mc + K)dt + dQ_s = UId\tau (2)$$

Přičemž tepelné ztráty dQ_s jsou (uvažujeme-li Newtonův zákon ochlazování) přímo úměrné rozdílu teplot objektu a okolí:

$$dQ_s = \beta(t - t_o)d\tau \tag{3}$$

kde β je koeficient chladnutí.

2.1. Minimalizace tepelných ztrát

Z formule (3) vidíme, že celkové tepelné ztráty získáme integrací pravé strany rovnice přes čas:

$$Q_s = \int_{\tau} \beta(t - t_0) d\tau \tag{4}$$

Pro nulové tepelné ztráty se tento integrál musí rovnat nule, čehož přibližně dosáhneme tím, že počáteční rozdíl teplot kalorimetru a okolí bude roven záporně vzatému koncovému rozdílu teplot:

$$(t_p - t_o) = -(t_k - t_o) (5)$$

Hlavní částí experimentu bude tedy ohřátí vody o $2(t_o - t_p)$ °C.

K experimentální kalkulaci tepelné kapacity vody budeme ještě potřebovat kapacitu kalorimetru K

$$K = kc, (6)$$

kterou získáme z redukované kapacity kalorimetru k, kterou zjistíme experimentálně použitím vztahu

$$k = \frac{m_2(t_2 - t)}{(t - t_1)} - m_1 \tag{7}$$

V kalorimetru je tedy třeba provést směšovací měření vody.

3. Údaje použitých přístrojů

Název přístroje	typ přístroje	krajní nejistota
KPZ 2-05-4	váha	1g
CEM DT-613	teploměr	$\pm 0.15 + 1$
Sensit T63-135	snímač teploty - voda	$\pm 0,01+0,6$
Sensit T63-25	snímač teploty - vzduch	$\pm 0,01+0,6$

3.1. Měření

Nejdříve získáme redukovanou kapacitu kalorimetru. Smísíme v něm studenou a teplou vodu o přibližně stejných hmotnostech a teplotu po ustálení odečteme. Získáme následující údaje:

	m[g]	t[°C]
Studená voda	199,1	18,224
Teplá voda	200,3	42,115
Výsledek		28,733

$$k = \frac{m_2(t_2 - t)}{(t - t_1)} - m_1 = \frac{0.1991(42.115 - 28.807)}{(28.733 - 18.224)} - 0.2003 = 0.0560 \pm 0.0019 \,\mathrm{kg}$$
$$K = kc = 234 \pm 8 \,\mathrm{J.K^{-1}.kg^{-1}}$$

Následně do kalorimetru vložíme studenou vodu a ohříváme ji tepelnou spirálou s výkonem $P=30\,\mathrm{W}$. Zapíšeme rozdíl teplot na počátku a měříme, dokud není splněna formule (5), přidáme nějakou rezervu. Následně vyhodnotíme data:

Proložíme-li graf hodnot polynomem, můžeme tuto spojitou funkci integrovat a následně získat tepelné ztráty podělené chladící konstantou (jelikož její hodnotu neznáme):

$$\frac{Q_s}{\beta} = \int a_0 + a_1 \tau + a_2 \tau^2 + a_3 \tau^3 d\tau \tag{8}$$

Při zafixování spodní meze a proměnné horní mezi hledáme hodnotu τ_2 , při které bude integrál velice blízko nule. Při $\tau=890\,\mathrm{s}$ získáváme hodnotu $\frac{Q_s}{\beta}=0\pm50$. (Od výše zmíněného předpokladu (5) se tento výsledek liší pouze o cca. deset sekund - předpoklad by byl splněn po 931.7 s experimentu.)

3.2. Tepelné ztráty pomocí kalorimetrické rovnice

m=0.4006 kg vody je ohřáto z počáteční teploty $t_p=13.83\,^{\circ}\mathrm{C}$ na teplotu $t_k=27.74\,^{\circ}\mathrm{C}$ výkonem $P=30.2\,\mathrm{W}$ za dobu $\tau=888.8\,$ s. Získaná kapacita kalorimetru je $K=234\,\mathrm{J.K^{-1}.kg^{-1}}$ Po dosazení do vzorce uvažujícího tepelné ztráty (při použití tabulkové hodnoty tepelné kapacity vody) získáme:

$$Q_s = P\tau - (mc + K)(t_k - t_p) = 260 \pm 150 \,\mathrm{J} \tag{9}$$

Což je v porovnání s cca 30 kJ dodaného tepla velmi uspokojivá hodnota

4. Tepelná kapacita vody

Se získanými veličinami můžeme spočítat dle rovnice (2) tepelnou kapacitu vody:

$$c = \frac{\frac{P\tau - Q_s}{t_k - t_p} - K}{m} = 4231 \pm 28 \,\mathrm{J}.^{\circ}\mathrm{C}^{-1}.\mathrm{kg}^{-1}$$
(10)

5. Závěr

Z experimentu vyplývá, že při správném uspořádání pokusu elektrického kalorimetru s cílem minimalizace tepelných ztrát lze dosáhnout výsledku, který bude mít přijatelnou hodnotu i bez zohlednění tepelných ztrát.