Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе №7

по дисциплине «Математическая статистика»

Выполнила студентка группы 5030101/20202 Чинь Тхи Тху Хоай

Проверил

Преподаватель

Баженов Александр Николаевич

Санкт-Петербург 2025

Содержание

1	Постановка задачи	3
2	Теория	3
	2.1 Квартиль и интервальные оценки	3
	2.2 Индекс Жаккара	3
	2.3 Метод решения	4
3	Программная реализация	5
4	Результаты	5
	4.1 Построение графиков $J_{Inn}(a)$ и $J_{Out}(a)$	5
	4.2 Оценка оптимальных параметров сдвига	5
5	Обсуждение	6
6	Приложение	6

1 Постановка задачи

Сгенерировать 2 выборки X_1 и X_2 мощностью n=1000. Средние и ширины выборок должны отличаться, например:

$$X_1 = N(0, 0.95), \quad X_2 = N(1, 1.05)$$
 (1)

где $N(m,\sigma)$ — нормальное распределение

Для выборок X_1 и X_2 найти внутренние и внешние оценки.

$$Inn X_i = [Q_{1/4}, Q_{3/4}], (2)$$

$$Out X_i = [\min X_i, \max X_i]. \tag{3}$$

Здесь $Q_{1/4},\,Q_{3/4}$ — первый и третий квартили. Определить параметр сдвига a

$$X_1 + a = X_2$$

2 Теория

2.1 Квартиль и интервальные оценки

Kвартиль — это значение, разделяющее упорядоченные данные на четыре равные части.

- Первый квартиль $(Q_{1/4})$ значение, ниже которого находится 25% данных.
- Третий квартиль $(Q_{3/4})$ значение, ниже которого находится 75% данных.

Внутренняя оценка выборки $(Inn\ X)$ определяется как интервал между первым и третьим квартилем:

$$Inn \ X = [Q_{1/4}, Q_{3/4}]$$

Этот интервал отражает «основную массу» данных и устойчив к выбросам.

Внешняя оценка выборки $(Out\ X)$ определяется через минимальное и максимальное значения выборки:

$$Out X = [\min(X), \max(X)]$$

что охватывает всю вариацию данных, включая возможные выбросы.

2.2 Индекс Жаккара

Индекс Жаккара широко используется для оценки степени схожести двух множеств. В случае работы с интервалами он определяется как отношение длины пересечения интервалов к длине их объединения:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|},$$

где:

- $|A \cap B|$ длина пересечения интервалов A и B,
- $|A \cup B|$ длина объединения интервалов A и B.

Пересечение двух интервалов $[a_1,a_2]$ и $[b_1,b_2]$ вычисляется по формулам:

левая граница пересечения = $\max(a_1, b_1)$,

правая граница пересечения = $\min(a_2, b_2)$.

Если левая граница пересечения больше или равна правой, пересечение считается пустым. Объединение интервалов определяется так:

левая граница объединения = $\min(a_1, b_1)$,

правая граница объединения = $\max(a_2, b_2)$.

Таким образом:

$$|A \cap B| = \max(0, \min(a_2, b_2) - \max(a_1, b_1)),$$

 $|A \cup B| = \max(a_2, b_2) - \min(a_1, b_1).$

Индекс Жаккара принимает значение от 0 (полное отсутствие пересечения) до 1 (полное совпадение интервалов).

Использование индекса Жаккара позволяет количественно оценить степень перекрытия интервалов между выборками при различных значениях сдвига.

2.3 Метод решения

Варьировать параметр сдвига a и вычислять 2 меры совместности

$$J_{Inn} = \frac{Inn \ X_1 \wedge Inn \ X_2}{Inn \ X_1 \vee Inn X_2},\tag{4}$$

$$J_{Out} = \frac{Out \ X_1 \wedge Out \ X_2}{Out \ X_1 \vee Out X_2},\tag{5}$$

Здесь J - индекс Жаккара, \land, \lor — минимум и максимум по включению

Поскольку выборки X_1 и X_2 имеют разные средние значения, предполагается существование параметра a, такого что:

$$X_1 + a \approx X_2$$
.

В реальных условиях a не известен заранее. Чтобы найти его, мы варьируем a в некотором диапазоне значений и для каждого a рассчитываем индексы $J_{Inn}(a)$ и $J_{Out}(a)$, которые отражают степень совпадения соответствующих интервалов. Наилучшее значение a выбирается как то, при котором индекс Жаккара достигает максимума:

$$a_{Inn} = \arg\max_{a} J_{Inn}(a),$$

$$a_{Out} = \arg\max_{a} J_{Out}(a).$$

Таким образом, задача сводится к оптимизации функции схожести между интервалами двух выборок относительно параметра сдвига a.

3 Программная реализация

Лабораторная работа выполнена на языке Python 3.12.6 в среде разработки Visual Studio Code. Использовались дополнительные библиотеки:

- 1. matplotlib
- 2. math
- 3. numpy

В приложении находится ссылка на GitHub репозиторий с исходным кодом.

4 Результаты

4.1 Построение графиков $J_{Inn}(a)$ и $J_{Out}(a)$

Рис. 1: Графики $J_{Inn}(a)$ и $J_{Out}(a)$ в зависимости от сдвига a.

4.2 Оценка оптимальных параметров сдвига

Из анализа графиков были определены значения сдвига, максимизирующие индексы Жаккара:

• Оптимальный сдвиг по внутренней оценке:

$$a_{Inn} = \arg\max_{a} J_{Inn}(a) \approx 0.99$$

• Оптимальный сдвиг по внешней оценке:

$$a_{Out} = \arg\max_{a} J_{Out}(a) \approx 0.71$$

Это свидетельствует о том, что выборки X_1 и X_2 действительно связаны с систематическим сдвигом около 1, что соответствует исходным условиям генерации данных.

5 Обсуждение

В работе показано, что индекс Жаккара позволяет эффективно количественно оценивать степень перекрытия интервалов между выборками при варьировании сдвига. Максимальные значения индексов соответствуют сдвигам, близким к реальной разнице средних значений.

Оптимальный сдвиг по внутренним оценкам (a_{Inn}) оказался более точным по сравнению с внешними (a_{Out}) , что связано с меньшей чувствительностью внутренних оценок к выбросам. Внешние оценки, охватывая всю выборку, подвержены влиянию экстремальных значений.

Таким образом, метод на основе внутренних интервалов более надёжен для оценки сдвига между распределениями. Индекс Жаккара показал высокую эффективность и может быть рекомендован для практического применения в задачах анализа данных.

6 Приложение

Код программы GitHub URL:

https://github.com/Akira1707/Math-Statistic/tree/main/Lab7