Topcat introduction + examples of classification algorithms Hands-on session

Felipe Almeida-Fernandes

Post Doc at IAG/USP, São Paulo

For this you will need:

- Topcat
- Python, to run a python.py script
 - scikit-learn
 - numpy
 - pandas
 - (optional) matplotlib
 - o (optional) scipy

We will use topcat to crossmatch S-PLUS and SSPP samples. And we will apply some selections to (kind off) reproduce this plot:

Then, we will use the data we produced, together with a python script, to test different classification algorithm and compare their results:

| Getting the data

Option 1

.../your-directory\$ git clone https://github.com/falmeidafernandes/LaPIS.git

Option 2 - from github page

https://github.com/falmeidafernandes/LaPIS

Option 3 - google drive

http://tiny.cc/zmr9jz

1) Open Topcat


```
On unix systems:
```

```
.../Hands-on$ chmod +x topcat
.../Hands-on$ topcat
```

On non-unix systems:

```
.../Hands-on$ java -jar topcat-*.jar
```

- 1) Open Topcat
- 2) Load the SSPP sample

- 1) Open Topcat
- 2) Load the SSPP sample

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1
- 8) Crossmatch both catalogs

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1
- 8) Save the table

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1
- 8) Save the table

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1
- 8) Save the table

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1
- 8) Save the table

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1
- 8) Save the table

select only dwarf – and giant. Change their order.

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1
- 8) Save the table

- 1) Open Topcat
- 2) Load the SSPP sample
- 3) Plot spec data
- 4) Let's get rid of hot and cold dwarfs
- 5) Select the giants
- 6) Create a flag column
- 7) Load S-PLUS DR1
- 8) Save the table

Activity

Use the LaPIS_classifier_example.py script to find out which classifier algorithm works better in this case.

