What is claimed is:

1. A compound of formula

$$R_{10}$$
 R_{11}
 R_{10}
 R_{11}
 R_{10}
 R_{11}
 R_{10}
 R_{11}
 R_{11}
 R_{12}
 R_{12}
 R_{11}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

wherein

 A_1 and A_2 are each independently of the other a bond or a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C_3 - C_8 cycloalkyl;

A₃ is a C₁-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C₃-C₈cycloalkyl;

Y is O, NR7, S, SO or SO2;

X₁ and X₂ are each independently of the other fluorine, chlorine or bromine;

 R_1 , R_2 and R_3 are each independently of the others H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, C_3 - C_6 alkenyloxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkylyloxy, C_3 - C_6 alkyl, -(SO)₂- C_1 - C_6 alkyl or C_1 - C_6 alkoxycarbonyl; the substituents R_3 being independent of one another when m is 2;

Q is O, NR₅, S, SO or SO₂; W is O, NR₅, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₅- or -NR₅-C(=O)-; T is a bond, O, NR₅, S, SO, SO₂, -C(=O)-O-, -O-C(= \dot{O})-, -C(=O)-NR₅- or -NR₅-C(=O)-; D is CH or N;

 R_4 is H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, -(S=O)- C_1 - C_6 alkyl, -(SO)₂- C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyl or $N(R_6)_2$ wherein the two substituents R_6 are independent of one another; the substituents R_4 being independent of one another when k is greater than 1;

 R_5 , R_6 and R_7 are each independently of the others H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkoxyalkyl, C_1 - C_6 alkoxyalkyl, C_1 - C_6 alkoxyalkyl, C_1 - C_6 alkoxyalkyl, C_3 - C_6 cycloalkyl, C_3 -

k is 1, 2 or 3 when D is nitrogen; or is 1, 2, 3 or 4 when D is CH; m is 1 or 2;

R₁₀ is any radical which comprises from one to three hetero atoms selected from O, N and S; and which may be connected to R₁₂ via a C₁-C₆alkylene bridge;

R₁₁ is H, C₁-C₁₂alkyl, halogen or any radical which comprises from one to three hetero atoms selected from O, N and S; or R₁₁ together with R₁₂ is a bond;

or R_{10} and R_{11} , together with the carbon atom to which they are bonded, are a five- to seven-membered ring which optionally contains from one to three hetero atoms selected from O, N and S and which is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, OH, =O, SH, =S, =N-OH, =N-O-C₁-C₆alkyl, CN, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy and C₁-C₆haloalkoxy;

 R_{12} is H, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenoxy- C_1 - C_6 alkyl, CN, -C(=O) C_1 - C_{12} alkyl, unsubstituted heterocyclyl, heterocyclyl which is substituted by one to three substituents selected form the group consisting of OH, =O, SH, =S, halogen, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_1 - C_6 alkoxy and C_1 - C_6 haloalkoxy; or R_{12} together with R_{11} a bond; or is a C_2 - C_6 alkylene bridge which is connected to R_{10} ;

and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.

- 2. A compound of formula (I) according to claim 1 in free form.
- 3. A compound of formula (I) according claim 2, wherein X_1 and X_2 are chlorine or bromine.
- 4. A compound of formula (I) according to claim 3, wherein D is CH.
- 5. A compound of formula (I) according claim 4, wherein A₃ is propylene.
- 6. A compound of formula (I) according to claim 1, wherein R_{11} and R_{12} together are a bond.

70194A

- 7. A pesticidal composition which comprises as active ingredient at least one compound of formula (I) according to claim 1 in free form or in agrochemically acceptable salt form, and at least one adjuvant.
- 8. A method of controlling pests, which comprises applying a pesticidal composition as described in claim 7 to the pests or to the locus thereof.