# In-line prediction of drug release profile for pH-sensitive coated pellets

A.L. Pomerantsev, O.Ye. Rodionova

M. Melichar, A.J. Wigmore,

A. Bogomolov



Institute of Chemical Physics



GEA Pharma Systems



J&M Analytik

**Objects: Pellets** Sugar +API **Coating: Acryl EZE** 

# Fluid bed coating



21.10.2010 CAC 2010

# **Experiment**

#### **NIR Spectra**

#### **Dissolution Profiles**

t = 105





# **Our goal**



## **Data overview**

|         |           | Samples |    |     |     |     |     |     |            |     |
|---------|-----------|---------|----|-----|-----|-----|-----|-----|------------|-----|
|         |           | 1       | 2  | 3   | 4   | 5   | 6   | 7   | 8          | 9   |
| Batches | W1        | 25      | 44 | 62  | 82  | 99  | 117 | 136 | 154        | 171 |
|         | W2        | 22      | 37 | 52  | 67  | 81  | 98  | 110 | 124        | 142 |
|         | W3        | 18      | 30 | 41  | 52  | 62  | 73  | 85  | 97         | 114 |
|         | W4        | 19      | 36 | 52  | 67  | 83  | 98  | 114 | 129        | 137 |
|         | W5        | Q       | ro | ces | 361 | tim | 100 | m   | <b>1</b> 9 | 105 |
|         | W6        | 39      | 70 | 98  | 127 | 156 |     | 215 | 246        | 260 |
|         | W7        | 19      | 34 | 48  | 64  | 79  | 95  | 111 | 125        | 140 |
|         | Y1        | 21      | 40 | 59  | 77  | 96  | 115 | 133 | 152        | 168 |
|         | Y2        | 20      | 30 | 43  | 55  | 67  | 82  | 92  | 105        | 121 |
|         | <b>Y3</b> | 24      | 46 | 70  | 89  | 111 | 133 | 155 | 176        | 191 |
|         | Y4        | 26      | 50 | 74  | 98  | 122 | 150 | 171 | 194        | 209 |
|         | Y5        | 18      | 31 | 42  | 52  | 63  | 73  | 83  | 94         | 110 |
|         | Y6        | 19      | 34 | 49  | 64  | 79  | 94  | 109 | 124        | 140 |

# Conventional approach



#### **PLS2** results



21.10.2010

8

# Kinetic approach



# **Autocatalysis**

$$\varphi(t, m, k) = 100k \frac{\exp[(m+k)t] - 1}{m + k \exp[(m+k)t]}$$

$$A + B \xrightarrow{m} 2B$$

$$A \xrightarrow{k} B$$

$$[A] + [B] = 100$$

$$[B](0) = 0$$

$$\varphi = [B]$$



### Parameter m is common within a batch





## Parameter m and the layer grade



# Parameter k and the layer thickness







21.10.2010 CAC 2010 13

#### Intermediate conclusions

parameter *m* reflects the material grade

parameter *k* depends on the layer thickness

parameter *k* keeps track of batch variations

**CAC 2010** 

# Prediction of k: NLR – NIR (White subset)





# Prediction of k: NLR – NIR (Yellow subset)





## **Prediction technique**



# Test set validation: W2 and Y5 prediction





#### **Conclusions**

• PAT solution for the in-line release profile prediction

• novel "curve to curve" calibration approach via NLR

autocatalytic model for the drug release

# Project PANOPOD-II (25304/02) sponsor

