

EBSL1-ID18

Heat-load management

Notes on comparison between SRW and SRCALC

Juan Reyes Herrera

Advanced Analysis & Precision Unit, MEG/ISDD ESRF

juan.reyes-herrera@esrf.fr

05/05/2021

Configuration to simulate

Up view:

The point of using 0.59 mm of horizontal slit aperture is to spread the heat-load over the complete mirror length. For **SRW** and **SRCAL** algorithms, this configuration can be simulated by calculating the undulator emission through a slit at **30 m** with an horizontal aperture of **0.8 mm** (which covers the mirror length @ 2.0 mrad).

Total absorbed power density in mirror (H: 0.8 mm)

^{*} Notice that in the SRCAL figure the mirror length is in the vertical axis

Exploring the absorbed power density in mirror:

Seems like there is a trend:

- Odd harmonics contribute to mirror center
- Even harmonics contribute to mirror edges

SRCALC

But that changes from 7th harmonic.

Length (along the beam) [mm] (101 pixels)

4th

Length (along the beam) [mm] (101 pixels)

0.14

0.12

0.10

0.08

0.06 ع 0.04 0.02

0.00

Exploring the absorbed power density mirror:

Power load of higher odd harmonics contributes to mirror center and edges.

SRCALC

Power density distribution of 9th harmonic:

SRW 9th harmonic

SRW (correct window) and SRCAL

