Chapitre 17

Structures algébriques.

Sommaire.

1	Loi de composition interne sur un ensemble.	1
	1.1 Définitions et propriétés	
	1.2 Éléments symétrisables	
	1.3 Itérés	
	1.4 Notations multiplicatives et additives	٠
2	Structure de groupe.	4
	2.1 Définition et exemples	4
	2.2 Sous-groupes	
	2.3 Morphismes de groupes	(
3	Structure d'anneau.	8
	3.1 Définitions et règles de calcul	8
	3.2 Groupe des inversibles dans un anneau.	8
	3.3 Nilpotents dans un anneau	8
	3.4 Sous-anneaux, morphismes d'anneaux	8
	3.5 Anneaux intègres	8
4	Structure de corps.	8
	4.1 Définitions et exemples	8
	4.2 Notation fractionnaire dans un corps	
	4.3 Corps des fractions d'un anneau intègre	
5	Exercices	9

Les propositions marquées de \star sont au programme de colles.

1 Loi de composition interne sur un ensemble.

1.1 Définitions et propriétés.

Définition 1: et 2

On appelle loi de composition interne sur un ensemble E (on écrire l.c.i.) une application

$$\star: \begin{cases} E \times E & \to & E \\ (x,y) & \mapsto & x \star y \end{cases}$$

On notera que l'image de (x,y) par \star est notée $x\star y$ plutôt que $\star(x,y)$.

Soit E un ensemble et \star une l.c.i. sur E.

- La loi \star est dite associative si $\forall (x, y, z) \in E^3, (x \star y) \star z = x \star (y \star z).$
- De deux éléments x et y de E, on dit qu'ils **commutent** pour \star lorsque $x \star y = y \star x$. On dit que la loi \star est **commutative** si $\forall (x,y) \in E^2, \ x \star y = y \star x$.
- On appelle **élément neutre** pour \star tout élément $e \in E$ tel que $\forall x \in E, \ x \star e = x$ et $e \star x = x$.

Définition 2: Vocabulaire hors-programme.

Un couple (E, \star) , où E est un ensemble et \star une l.c.i. sur E est appelé **magma**.

On dit que ce magma est associatif si \star est associative, commutatif si \star est commutative, et **unifère** s'il existe dans E un élément neutre pour \star .

Proposition 3

Dans un magma unifère, il y a unicité du neutre.

Preuve

Soient e et e' des éléments neutres d'un magma unifère (E, \star) .

On a $e \star e' = e = e'$ car e et e' sont neutres pour \star donc e = e'.

Définition 4: Partie stable.

Soit (E, \star) un magma et $A \in \mathcal{P}(E)$. On dit que A est **stable** par \star si

$$\forall (x,y) \in A^2, \ x \star y \in A.$$

Définition 5: Loi induite.

Soit (E, \star) un magma et $A \in \mathcal{P}(E)$ stable par \star . La restriction de \star à A^2 :

$$\star: \begin{cases} A\times A & \to & A \\ (x,y) & \mapsto & x\star y \end{cases}$$

est une l.c.i. sur A: on l'appelle loi induite par \star sur A.

Exemple 6: Ensembles de nombres.

- + est une l.c.i. associative, commutative avec 0 comme neutre sur $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- \times est une l.c.i. associative, commutative, de neutre 1 sur $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- – est une l.c.i. non associative, non commutative et sans neutre sur \mathbb{Z} . \mathbb{N} n'est pas stable par –.

Exemple 7: Ensemble des parties

Soit E un ensemble. L'intersection \cap et la réunion \cup définissent des l.c.i. sur $\mathcal{P}(E)$.

- Le magma $(\mathcal{P}(E), \cap)$ est associatif, commutatif et unifère, avec E pour neutre.
- Le magma $(\mathcal{P}(E), \cup)$ est associatif, commutatif et unifère, avec \varnothing pour neutre.

Exemple 8: Ensembles de fonctions et composition.

Soit E un ensemble. La composition \circ est une l.c.i. sur E^E , l'ensemble des fonctions de E vers E. Le magma (E^E, \circ) est associatif et unifère : il admet id_E pour neutre. Si $|E| \geq 2$, il n'est pas commutatif. L'ensemble des fonctions injectives est stable par \circ , de même pour l'ensemble des fonctions surjectives, bijectives.

Définition 9: Distributivité d'une loi par rapport à une autre.

Soit E un ensemble muni de deux l.c.i. \oplus et \otimes .

On dit que \otimes est distributive par rapport à \oplus si

$$\forall (x, y, z) \in E^3 : \begin{cases} x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) \\ (y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x) \end{cases}$$

(Si la loi ⊕ n'est pas commutative, il est primordial de vérifier les deux égalités.)

Exemple 10

- Dans $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, la multiplication \times est distributive par rapport à l'addition +.
- Dans $\mathcal{P}(E)$, \cap est distributive par rapport à \cup .
- Dans $\mathcal{P}(E)$, \cup est distributive par rapport à \cap .

1.2 Éléments symétrisables.

Définition 11: Élément symétrisable.

Soit (E, \star) un magma unifère de neutre e, et $x \in E$.

On dit que x est **symétrisable** (ou **inversible**) s'il existe un élément x' dans E tel que

$$x \star x' = e$$
 et $x' \star x = e$.

Proposition 12: Unicité du symétrique / de l'inverse.

Soit (E,\star) un magma associatif et unifère de neutre e.

Si x est un élément de E symétrisable, il existe un unique x' dans E tel que $x\star x'=x'\star x=e$

On appelle cet élément le **symétrique** de x (ou son inverse), et on le note x^{-1} .

Preuve :

Soit $x \in E$ et $x', x'' \in E$ tels que :

$$\begin{cases} x \star x' = x' \star x = e, \\ x \star x'' = x'' \star x = e \end{cases}$$

On a alors $x' \star x \star x'' = (x' \star x) \star x'' = x'' = x' \star (x \star x'') = x' \text{ donc } x' = x''.$

Exemple 13

- Les inversibles de (\mathbb{Z}, \times) sont -1 et 1.
- Les inversibles de (\mathbb{R}, \times) sont les réels non nuls. (admis)

Solution:

On vérifie facilement que -1 et 1 sont inversibles.

Soit $p \in \mathbb{Z} \setminus \{-1, 0, 1\}$. Supposons par l'absurde qu'il existe $q \in \mathbb{Z}$ tel que pq = qp = 1.

Alors $|p| \ge 2$ et $|q| \ge 1$ donc $|p||q| \ge 2 \cdot 1$ donc $|pq| \ge 2$ donc $1 \ge 2$, absurde.

Exemple 14

Les inversibles du magma (E^E, \circ) sont les bijections $f: E \to E$, d'inverse f^{-1} .

Proposition 15

Soit (E, \star) un magma associatif et unifère, et $x, y \in E$.

- 1. Si x est symétrisable, x^{-1} l'est aussi et $(x^{-1})^{-1} = x$.
- 2. Si x et y sont symétrisables, $x \star y$ l'est aussi et

$$(x \star y)^{-1} = y^{-1} \star x^{-1}.$$

Preuve:

- 1. Supposons que x est symétrisable, alors $x \star x^{-1} = x^{-1} \star x = e : (x^{-1})^{-1} = x$.
- $\overline{2}$. Supposons x et y symétrisables. Alors :

$$\begin{cases} (x\star y)\star (y^{-1}\star x^{-1})=x\star (y\star y^{-1})\star x^{-1}=x\star x^{-1}=e,\\ (y^{-1}\star x^{-1})\star (x\star y)=y^{-1}\star (x^{-1}\star x)\star y=y^{-1}\star y=e. \end{cases}$$

Donc $x \star y$ est inversible, d'inverse $y^{-1} \star x^{-1}$.

1.3 Itérés.

On fixe pour tout ce paragraphe un magma (E, \star) associatif et unifère de neutre e.

Définition 16: Itérés d'un élément.

Soit $x \in E$

- 1. Pour $n \in \mathbb{N}$, on définit x^n par récurrence sur n. On pose $x^0 = e$.
 - Pour tout $n \in \mathbb{N}$: $x^{n+1} = x^n \star x$.
- 2. Si x est inversible et $n \in \mathbb{N}^*$, on pose $x^{-n} = (x^{-1})^n$.

Proposition 17: Propriétés des itérés.

$$\forall x \in E, \ \forall (m,n) \in \mathbb{N}^2, \ x^m \star x^n = x^{m+n} \quad \text{ et } \quad (x^m)^n = x^{mn}.$$

Si x est inversible, les identités ci-dessus sont vraies pour $(m, n) \in \mathbb{Z}^2$.

Preuve:

Soit un élément x de E.

Soit $m \in \mathbb{N}$ fixé. Pour $n \in \mathbb{N}$, on note $\mathcal{P}(n)$: « $x^m \star x^n = x^{m+n}$ ».

Initialisation. On a $x^m \star x^0 = x^l \star e = x^{m+0}$.

Hérédité. Soit $n \in \mathbb{N} \mid \mathcal{P}(n)$. Alors $x^m \star x^{n+1} = x^m \star x^n \star x = x^{m+n} \star x = x^{m+n+1}$.

Conclusion. Par récurrence, $\forall n \in \mathbb{N}, \ \mathcal{P}(n)$.

Soit $m \in \mathbb{N}$ fixé. Pour $n \in \mathbb{N}$, on note $\mathcal{Q}(n)$:« $(x^m)^n = x^{m \cdot n}$ ».

Initialisation. On a $(x^m)^0 = e = x^{m \cdot 0}$.

Hérédité. Soit $n \in \mathbb{N} \mid \mathcal{Q}(n)$. Alors $(x^m)^{n+1} = (x^m)^n \star x^m = x^{mn} \star x^m = x^{mn+m} = x^{m(n+1)}$.

Conclusion. Par récurrence, $\forall n \in \mathbb{N}, \ \mathcal{Q}(n)$.

Exemple 18: Itérés d'éléments qui commutent.

Soient x et y deux éléments deux E qui commutent. Alors

$$\forall (m,n) \in \mathbb{N}^2, \ x^m \star y^n = y^n \star x^m \quad \text{ et } \quad (x \star y)^n = x^n \star y^n.$$

 \bigwedge Les identités ci-dessus sont FAUSSES en général lorsque x et y ne commutent pas.

1.4 Notations multiplicatives et additives.

Utiliser la **notation multiplicative**, lorsqu'on travaille avec un magma (E, \star) consiste à ne pas écrire \star lorsqu'on calcule l'image d'un couple $(x, y) \in E^2$. Concrètement, on note alors xy à la place de $x \star y$.

Lorsqu'on travaille avec un magma associatif, commutatif et unifère, on pourra utiliser la notation + pour la l.c.i. Le vocabulaire sur les notations introduits plus haut est alors adapté à cette **notation additive**, comme explicité dans le tableau ci-dessous.

*	cot	+
$x \star y$	xy	x + y
e	e	0
symétrisable	inversible	symétrisable
symétrique	inverse	opposé
x^{-1}	x^{-1}	-x
x^n	x^n	nx
	e symétrisable symétrique x^{-1}	$\begin{array}{c cc} x \star y & xy \\ \hline e & e \\ \\ \text{symétrisable inversible} \\ \\ \text{symétrique inverse} \\ \hline x^{-1} & x^{-1} \\ \hline \end{array}$

2 Structure de groupe.

2.1 Définition et exemples.

Définition 19

On appelle groupe un magma associatif et unifère dans lequel tout élément est symétrisable.

Plus précisément, un groupe est la donnée d'un couple (G,\star) où G est un ensemble et \star une l.c.i. tels que

- 1. \star est associative.
- 2. il existe dans G un élément e neute pour \star .
- 3. tout élément de G est symétrisable.

Si de surcroît \star est commutative, on dit que le groupe (G, \star) est **abélien** (ou commutatif).

Remarque. Un groupe n'est jamais vide car il contient au moins son élément neutre.

Proposition 20: Ensembles de nombres.

- 1. $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ et $(\mathbb{C},+)$ sont des groupes abéliens.
- 2. (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) sont des groupes abéliens.

Exemple 21: Ce ne sont pas des groupes.

- 1. $(\mathbb{N},+)$ n'est pas un groupe car 1 n'est pas symétrisable.
- 2. (\mathbb{Z}^*, \times) n'est pas un groupe car 2 n'est pas inversible dans \mathbb{Z} .
- 3. $(\mathbb{C}, +)$ n'est pas un groupe car 0 n'a pas d'inverse dans \mathbb{C} .

Exemple 22: Vérifier les axiomes de groupe sur une loi artificielle.

On pose $G = \mathbb{R}^* \times \mathbb{R}$. Pour $(a, b) \in G$ et $(a', b') \in G$ on définit

$$(a,b) \star (a',b') = (aa',ab'+b).$$

Montrer que (G, \star) est un groupe.

Solution:

On vérifie chacun des points de la définition de groupe...

 \star est-elle une l.c.i. dans G ? Gest-il associatif ? Unifère ? Symétrisable ?

Définition 23

Soit E un ensemble non-vide. On appelle **permutation** de E une bijection $\sigma: E \to F$.

On note S_E l'ensemble des permutations de E.

Proposition 24: 🛨

 (S_E, \circ) est un groupe, appelé **groupe des permutations** de E, ou groupe symétrique de E.

Dès que E contient au moins 3 éléments, le groupe S_E n'est pas abélien.

Preuve:

Soient $\sigma, \sigma' \in S_E$. On a $\sigma \circ \sigma' : E \to E$ une bijection comme composée.

- \circ est une l.c.i. sur E.
- **Associativité.** On sait déjà que $(\mathcal{F}(E, E), \circ)$ est associatif.
- Unifère. $\mathrm{id}_E \in S_E$ est neutre pour \circ .
- Symétrie. Si $f \in S_E$, c'est une bijection alors $f^{-1} \in S_E$ et est le symétrique de f.

Supposons que $|E| \ge 3$. Soient $a, b, c \in E$ différents.

On définit σ telle que $\sigma(a) = b$, $\sigma(b) = c$, $\sigma(c) = a$ et $\sigma(x) = x$ pour $x \in E \setminus \{a, b, c\}$.

On définit σ' telle que $\sigma'(a) = b$, $\sigma'(b) = a$ et $\sigma'(x) = x$ pour $x \in E \setminus \{a, b\}$.

On a $\sigma' \circ \sigma(a) = a$ et $\sigma \circ \sigma'(a) = c$ donc $\sigma' \circ \sigma \neq \sigma \circ \sigma'$: pas commutatif.

Proposition 25: Produit de deux groupes.

Soient (G, \star) et (G', \top) deux groupes. On note e le neutre de G et e' celui de G'.

Pour (x, x') et (y, y') deux éléments de $G \times G'$, on pose

$$(x, x') \heartsuit (y, y') = (x \star y, x' \top y').$$

Muni de la l.c.i. \heartsuit , le produit cartésien $G \times G'$ est un groupe, de neutre (e, e').

Preuve:

On vérifie chacun des points de la définition de groupe...

Proposition 26: Produit de n groupes.

Soient $G_1,...,G_n$ n groupes (les l.c.i. étant sous-jacentes et notées multiplicativement).

Pour $(x_1,...,x_n)$ et $(y_1,...,y_n)$ deux éléments $G_1 \times ... \times G_n$, on pose

$$(x_1,...,x_n) \heartsuit (y_1,...,y_n) = (x_1y_1,...,x_ny_n).$$

Muni de la l.c.i. \heartsuit , le produit cartésien $G_1 \times ... \times G_n$ est un groupe, de neutre $(e_1, ..., e_n)$.

2.2 Sous-groupes.

Définition 27

Soit (G, \star) un groupe et H une partie de G.

On dit que H est un sous-groupe de G si H est stable par \star et si (H, \star) est un groupe.

Proposition 28: Élément neutre et inverses dans un sous-groupe.

Soit (G, \star) un groupe et H un sous-groupe de G.

- 1. L'élément neutre du groupe H n'est autre que celui de G.
- 2. Soit $x \in H$. L'inverse de x dans le groupe (H, \star) et celui dans le groupe (G, \star) sont égaux.

Drougo

1. Soit e le neutre de G. On a $\forall x \in G$, $e \star x = x \star e = x$ donc $\forall x \in H$, $e \star x = x \star e = x$ car $H \subset G$.

Par unicité du neutre dans H, on a e neutre de H.

2. Soit $x \in H$. On note x' l'inverse de x dans H et x'' dans G.

 $\overline{\text{Alors}}\ x'\star x=x\star x'=e\ \text{et}\ x''\star x=x\star x''=e,\ \text{donc par unicit\'e}\ \text{du neutre dans}\ G,\ x'=x''.$

Théorème 29: Caractérisation des sous-groupes.

Soit (G,\star) un groupe de neutre e et $H\subset G$. On équivalence entre :

- 1. H est un sous-groupe de G.
- $\underbrace{}_{2.} \left\{ \bullet \ e \in H, \right.$
 - $\left\{ \bullet \ \forall (x,y) \in H^2, \ x \star y^{-1} \in H \right.$
 - $\oint \bullet \ e \in H$
- 3. $\begin{cases} \bullet \ \forall (x,y) \in H^2, \ x \star y \in H \end{cases}$
 - $\bullet \ \forall x \in H, \ x^{-1} \in H$

Remarque. On utilisera presque toujours cette caractérisation.

Preuve:

- $(1) \Longrightarrow (2)$ Supposons H sous-groupe de G. Alors H est stable par \star et (H, \star) est un groupe.
- $\overline{-\bullet e}$ est le neutre de G, c'est aussi celui de H donc $e \in H$.
- • Soit $(x,y) \in H^2$. y^{-1} est l'inverse de y et $y^{-1} \in H$, alors $x \star y^{-1} \in H$ par stabilité de H par \star .
- $(2) \Longrightarrow (3)$ Supposons $e \in H$ et $\forall (x,y) \in H^2, \ x \star y^{-1} \in H$.
- $-\bullet e \in H \text{ donc } e \in H.$
- • Soient $(x,y) \in H^2: x \star y = x \star (y^{-1})^{-1} \in H$ par hypothèse.
- Soit $x \in H$, on a $x^{-1} = e \star x^{-1} \in H$ car $e, x \in H$.
- $(3) \Longrightarrow (1)$ Supposons $e \in H$, $\forall (x,y) \in H^2$, $x \star y \in H$ et $\forall x \in H$, $x^{-1} \in H$.
- $\bullet H$ est stable par \star car $\forall (x,y) \in H^2$, $x \star y \in H$ et \star est l.c.i. sur H par déf.
- $-\bullet \star \text{ est associative sur } H \text{ car elle l'est sur } G.$
- • H est unifère car e est neutre et $e \in H$.
- • tout élément de H est symétrisable car $\forall x \in H, x^{-1} \in H$.

Proposition 30: Sous-groupes usuels.

- 1. $(\mathbb{Q},+)$ est un sous-groupe de $(\mathbb{R},+)$, qui est lui-même un sous-groupe de $(\mathbb{C},+)$.
- 2. \mathbb{R}_+^* est un sous-groupe de (\mathbb{R}^*, \times) .
- 3. \mathbb{U} et \mathbb{U}_n sont des sous-groupes de (\mathbb{C}^*, \times) .

Exemple 31: Une intersection de sous-groupes est un sous-groupe. \star

Soient H et H' deux sous-groupes d'un groupe (G, \star) . Montrer que $H \cap H'$ est sous-groupe de G.

Solution:

- Soit e le neutre de G, on a alors $e \in H$ et $e \in H'$ car sous-groupes donc $e \in H \cap H'$.
- Soient $x, y \in H \cap H'$.
- On a $x \in H$ et $y \in H$ donc $x \star y^{-1} \in H$ car H est un groupe.
- On a $x \in H'$ et $y \in H'$ donc $x \star y^{-1} \in H'$ car H' est un groupe.
- Alors $x \star y^{-1} \in H \cap H'$.

Exemple 32: Une union de sous-groupes n'est pas toujours un sous-groupe.

Montrer que $\mathbb{U}_2 \cup \mathbb{U}_3$ n'est pas un sous-groupe de (\mathbb{C}^*, \times) .

On note $H = \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$. Montrer que H est un sous-groupe de (\mathbb{C}^*, \times) .

Solution:

- 1. On a $\mathbb{U}_2 \cup \mathbb{U}_3 = \{-1, 1, j, j^2\}$ et $-1 \times j = -j \notin \mathbb{U}_2 \cup \mathbb{U}_3$: pas stable par \times .
- $\boxed{2}$. On a $1 \in H$ car $1 \in \mathbb{U}_1$.
- Soient $z, \widetilde{z} \in H : \exists k, \widetilde{k} \in N^* \mid z \in \mathbb{U}_k \text{ et } \widetilde{z} \in \mathbb{U}_{\widetilde{k}} \text{ donc } (z \cdot \widetilde{z})^{k\widetilde{k}} = (z^k)^{\widetilde{k}} (\widetilde{z}^{\widetilde{k}})^k = 1 \text{ donc } z\widetilde{z} \in \mathbb{U}_{k\widetilde{k}} \subset H.$
- Soit $z \in H : \exists p \in \mathbb{N}^* \mid z \in \mathbb{U}_p$, or \mathbb{U}_p est un groupe donc $z^{-1} \in \mathbb{U}_p \subset H$.

Exemple 33: Centre d'un groupe. 🛨

Soit (G, \star) un groupe. On note

$$Z(G) = \{ x \in G \mid \forall a \in G, \ x \star a = a \star x \}.$$

Montrer que Z(G) est un sous-groupe de G.

Solution:

- Soit e le neutre de G. On a $\forall a \in G, e \star a = a \star e = a \text{ donc } e \in Z(G)$.
- Soient $a, b \in Z(G)$ et $x \in G$. On a $(a \star b) \star x = a \star x \star b = x \star (a \star b)$ donc $a \star b \in Z(G)$.
- Soient $x \in Z(G)$ et $a \in G$. On a $x^{-1} \star a = (a^{-1} \star x)^{-1} = (x \star a^{-1})^{-1} = a \star x^{-1}$ donc $x^{-1} \in Z(G)$.

Par caractérisation, le centre d'un groupe est un sous-groupe.

Proposition 34: Sous-groupes de $(\mathbb{Z},+)$ (programme de spé). $\star\star$

Pour $n \in \mathbb{N}$, on note $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}.$

Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$, avec $n \in \mathbb{N}$.

Preuve:

Soit $n \in \mathbb{N}$. Montrons que $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} :

- $\bullet 0 \in n\mathbb{Z} \text{ car } 0 = n0.$
- • Soient $p, p' \in n\mathbb{Z}$: $\exists k, k' \in \mathbb{Z} \mid p = kn$ et p' = k'n, alors $p + p' = (k + k')n \in n\mathbb{Z}$.
- • Soit $p \in \mathbb{Z}$: $\exists k \in \mathbb{Z} \mid p = kn \text{ donc } p^{-1} = -p = (-k)n \in n\mathbb{Z}$.

Par caractérisation, c'est bien un sous-groupe de \mathbb{Z} .

Soit H un sous-groupe de \mathbb{Z} . Montrons qu'il existe $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$.

 \to Cas particulier : $H = \{0\}$, alors $H = 0\mathbb{Z}$. Supposons $H \neq \{0\}$ pour la suite.

On a alors $H \cap \mathbb{N}^*$ une partie non-vide de \mathbb{N}^* . Notons n son plus petit élément. Montrons que $H = n\mathbb{Z}$.

- \bigcirc Soit $p \in n\mathbb{Z}$: $\exists k \in \mathbb{Z} \mid p = nk$: p est itéré de n avec $n \in H$ donc $p \in H$.
- Alors r = p nq avec $p \in H$ et $nq \in H$ donc $r \in H$.
- Supposons $r \neq 0$, alors $r \in H \cap \mathbb{N}^*$, or $n = \min(H \cap \mathbb{N}^*)$ et r < n: absurde!
- Donc r = 0 et p = nq donc $p \in n\mathbb{Z}$.

Par double-inclusion, $H = n\mathbb{Z}$.

Exemple 35: (*) Sous-groupes de $(\mathbb{R}, +)$.

Pour $a \in \mathbb{R}_+$, on note $a\mathbb{Z} = \{ak \mid k \in \mathbb{Z}\}.$

Soit H un sous-groupe de $(\mathbb{R}, +)$. Ou bien il existe $a \in \mathbb{R}_+$ tel que $H = a\mathbb{Z}$, ou bien H est dense dans \mathbb{R} .

2.3 Morphismes de groupes.

Définition 36

Soient (G, \star) et (G', \top) deux groupes.

On appelle morphisme de groupe de G dans G' toute application $f:G\to G'$ telle que

$$\forall (x,y) \in G^2, \ f(x \star y) = f(x) \top f(y).$$

Si de surcroît f est bijective, on dit qu'une telle application f est un **isomorphisme** de groupes.

Un morphisme d'un groupe G vers lui même est appelé **endomorphisme** de G.

Si un tel endomorphisme est bijectif, on parle d'automorphisme de G.

Définition 37

On dit que deux groupes sont **isomorphes** s'il existe un isomorphisme de l'un vers l'autre.

Exemple 38

- L'exponentielle réelle est un isomorphisme de $(\mathbb{R},+)$ dans (\mathbb{R}^*,\times) .
- L'exponentielle complexe est un morphisme de groupes de $(\mathbb{C},+)$ dans (\mathbb{C}^*,\times) .
- $t \mapsto e^{it}$ est un morphisme de groupes de $(\mathbb{R}, +)$ dans (\mathbb{U}, \times) .
- Le logarithme népérien est un isomorphisme de groupes de (\mathbb{R}^*, \times) dans $(\mathbb{R}, +)$.

Exemple 39

Justifier que les groupes $(\mathbb{R}^2, +)$ et $(\mathbb{C}, +)$ sont isomorphes.

Solution:

On pose $f:(a,b)\mapsto a+ib$. Soient (a,b) et (a',b') dans \mathbb{R}^2 .

$$f((a,b) + (a',b')) = f((a+a',b+b')) = (a+a') + i(b+b') = a+ib+a'+ib'$$
$$= f(a,b) + f(a',b').$$

La fonction f est un morphisme de groupes de $(\mathbb{R}^2, +)$ dans $(\mathbb{C}, +)$.

Elle est bijective par unicité de la forme algébrique : c'est un isomorphisme. Les groupes sont donc isomorphes.

Proposition 40: *

Soient G et G' deux groupes de neutres respectifs e et e', et $f: G \to G'$ un morphisme de groupes.

- 1. f(e) = e'.
- 2. $\forall x \in G, \ f(x^{-1}) = f(x)^{-1}.$
- 3. $\forall x \in G, \ \forall p \in \mathbb{Z}, \ f(x^p) = f(x)^p$.
- 4. Si H est un sous-groupe de G, alors f(H) est un sous-groupe de G'.
- 5. Si H' est un sous-groupe de G', alors $f^{-1}(H')$ est un sous-groupe de G.
- 6. Si f est un isomorphisme de G vers G', alors f^{-1} est un isomorphisme de G' vers G.

Preuve:

- 1. On a $f(e) = f(e \cdot e) = f(e) \cdot f(e) = f(e)^{-1} \cdot f(e) \cdot f(e) = f(e)^{-1} \cdot f(e) = e'$.
- $\overline{2}$. Soit $x \in G$. On a $f(x \cdot x^{-1}) = f(x)f(x^{-1}) = f(e) = e'$ donc par unicité de l'inverse $f(x)^{-1} = f(x^{-1})$.
- 3. Soit $x \in G$. Par récurrence sur $p \in \mathbb{N}$.
- Initialisation. $f(x^0) = f(e) = e' = f(x)^0$.
- **Hérédité.** Soit $p \in \mathbb{N} \mid f(x^p) = f(x)^p$. Alors $f(x^{p+1}) = f(x^p \cdot x) = f(x)^p f(x) = f(x)^{p+1}$.
- 4. Soit H un sous-groupe de G.
- $-\bullet e' \in f(H) \text{ car } e \in H.$
- • Soient $y, \widetilde{y} \in f(H)$, d'antécédents $x, \widetilde{x} : y\widetilde{y}^{-1} = f(x)f(\widetilde{x})^{-1} = f(x \cdot \widetilde{x}^{-1}) \in f(H)$.

Par caractérisation, f(H) est un sous-groupe de G'.

- 5. Soit H' un sous-groupe de G'.
- $\overline{-\bullet e} \in f^{-1}(H) \text{ car } e' \in H'.$
- • Soient $x, \widetilde{x} \in f^{-1}(H)$: $f(x\widetilde{x}^{-1}) = f(x)f(\widetilde{x})^{-1} \in H$ par stabilité puisque f(x) et $f(\widetilde{x})^{-1}$ dans H.

Par caractérisation, $f^{-1}(H')$ est un sous-groupe de G.

- 6. Soit f un isomorphisme de G vers G'. Sa réciproque f^{-1} existe.
- Soient $y, y' \in G'$: $f^{-1}(yy') = f^{-1}(f(f^{-1}(y)))f(f^{-1}(f(y'))) = f^{-1}(f(f^{-1}(y)f^{-1}(y'))) = f^{-1}(y)f^{-1}(y')$.

Définition 41

Soient G et G' deux groupes de neutres respectifs e et e', et $f:G\to G'$ un morphisme de groupes.

1. On appelle **noyau** de f et on note $\operatorname{Ker} f$ l'ensemble

$$Ker f = \{ x \in G \mid f(x) = e' \}.$$

2. On appelle **image** de f et on note $\mathrm{Im} f$ l'ensemble

$$\text{Im} f = \{ y \in G' \mid \exists x \in G : y = f(x) \}.$$

Proposition 42: ★★

Soient G et G' deux groupes de neutres respectifs e et e', et $f:G\to G'$ un morphisme de groupes.

- 1. Ker f est un sous-groupe de G et
- f est injective \iff Ker $f = \{e\}$.
- 2. Im f est un sous-groupe de G' et

f est surjective \iff Im f = G'

Preuve:

- 1. On a $\operatorname{Ker} f = f^{-1}(\{e'\})$ donc $\operatorname{Ker} f$ est un sous-groupe de G comme image réciproque du sous-groupe $\{e'\}$. Supposons f injective.
- • Soit $x \in \text{Ker } f$. Alors f(x) = f(e) = e' et par injectivité de f, x = e.

Par double inclusion, $\operatorname{Ker} f = \{e\}.$

Supposons $\operatorname{Ker} f = \{e\}$. Soient $x, x' \in G$ tels que f(x) = f(x').

On a $f(x)f(x)^{-1} = f(x')f(x)^{-1}$ donc $e' = f(x')f(x)^{-1} = f(x'x^{-1})$.

Alors $x'x^{-1} \in \text{Ker } f: x'x^{-1} = e$, on multiplie par x à droite : x' = x.

2. Im f = f(G) est l'image d'un sous-groupe de G par un morphisme, c'est un sous-groupe de G'. On a déjà l'équivalence, vraie pour n'importe quelle application de $\mathcal{F}(G, G')$.

- 3 Structure d'anneau.
- 3.1 Définitions et règles de calcul.

Définition 43

On appelle **anneau** tout triplet $(A, +, \times)$

- 3.2 Groupe des inversibles dans un anneau.
- 3.3 Nilpotents dans un anneau.
- 3.4 Sous-anneaux, morphismes d'anneaux.
- 3.5 Anneaux intègres.
- 4 Structure de corps.
- 4.1 Définitions et exemples.
- 4.2 Notation fractionnaire dans un corps.
- 4.3 Corps des fractions d'un anneau intègre.
- 5 Exercices.