Na slici je prikazano nekoliko primjera svakodnevnih fluidičkih sustava. Zadatak ove laboratorijske vježbe je analizirati ponašanje dvaju povezanih spremnika vode (spojeni u seriju ili paralelno). **Obavezno sačuvajte modele iz ove vježbe, jer će se koristiti i u idućoj vježbi!**

Spremnik vode je prikazan na donjoj slici, njegovi parametri su **površina** dna spremnika A_1 , **razina** fluida u spremniku h i **površina** (presjek) izlazne cijevi A_{02} . Neki spremnici imaju dodatno ulazni protok, gdje tekućina ulazi u spremnik kroz cijev **površine** (presjeka) ulazne cijevi A_{01} .

Obratite pozornost da ulazni protok može biti zadan u m³/s, ili može biti zadana brzina fluida, gdje se protok računa uz poznavanje presjeka cijevi (d) / površine cijevi (A01).

$$q_{ul} = A_{01} v_{fluid} = \left(\frac{d_{cijev}}{2}\right)^2 \cdot \pi \cdot v_{fluid}$$

Dok je izlazni tok ${\bf q}_{iz}$ izražen u funkciji razine ${\bf h}$, i iznosi $q_{iz}=A_{02}\sqrt{2gh}$ Prirast fluida u procesnom prostoru = Ulazni tok fluida - Izlazni tok fluida odnosno

$$rac{dV}{dt} = q_{ul} - q_{iz}$$
 , pri čemu se volumen ${f V}$ računa kao $V = A_{
m l} \cdot h$

Zadatak sa spremnike u seriji:

Podaci o fluidičkom sustavu:

- Otvaranjem ventila u spremnik 1 dotječe tekućina iz cijevi presjeka d= _____ mm,
 brzine v= 10 m/s
- površina presjeka spremnika 1 je A1 = m²,
- površina presjeka spremnika 2 je A2 = _____ m²,
- površina presjeka cijevi istjecanja A01= _____ m²,
- površina presjeka cijevi istjecanja **A02** = _____ m²,
- otvaranjem ventila nastaje dodatni dotok fluida u spremnik 2 sa q_d = _____ m³/s

Zadatak 1: Matematički modelirati zadani sustav pomću dvije diferencijalne jednadžbe (po jedna za svaki spremnik)

Zadatak 2: Simulirati izvedeni nelinearni matematički model pomoću SIMULINK-a i analizirati kretanje razine tekućine u oba spremnika.

Zadatak 3: Linearizirati matematički model oko ravnotežne točke (ustaljeno stanje) i simulirati linearizirani oblik matematičkog modela.

Zadatak 4: Usporedite odzive linearnog i nelinearnog sustava na istom prikazu.

Zadatak 5: Zapisati ustaljene vrijednosti razina dobivene pomoću nelinearnih modela i lineariziranih. Izračunati apsolutni iznos pogreške sa kojom bi se suočili ako u analizi i sintezi koristimo linearizirane modele. Općenito pogreška:

$$|e| = \frac{h_{ust}(nelin) - h_{ust}(lin)}{h_{ust}(nelin)} 100[\%]$$

Zadatak sa spremnike u paraleli:

Podaci o fluidičkom sustavu:

- Otvaranjem ventila u spremnik 1 dotječe tekućina iz cijevi presjeka d= _____ mm,
 brzine v= 10 m/s
- površina presjeka spremnika 1 je A1 = _____ m²,
- površina presjeka spremnika 2 je **A2 =** _____ m²,
- površina presjeka cijevi istjecanja A01= _____ m²,
- površina presjeka cijevi istjecanja A02 = _____ m²,
- otvaranjem ventila nastaje dodatni dotok fluida u spremnik 2 sa qd = _____ m³/s.

Zadatak 1: Matematički modelirati zadani sustav pomću dvije diferencijalne jednadžbe (po jedna za svaki spremnik)

Zadatak 2: Simulirati izvedeni nelinearni matematički model pomoću SIMULINK-a i analizirati kretanje razine tekućine u oba spremnika.

Zadatak 3: Linearizirati matematički model oko ravnotežne točke (ustaljeno stanje) i simulirati linearizirani oblik matematičkog modela.

Zadatak 4: Usporedite odzive linearnog i nelinearnog sustava na istom prikazu.

Zadatak 5: Zapisati ustaljene vrijednosti razina dobivene pomoću nelinearnih modela i lineariziranih. Izračunati apsolutni iznos pogreške sa kojom bi se suočili ako u analizi i sintezi koristimo linearizirane modele. Općenito pogreška:

$$|e| = \frac{h_{ust}(nelin) - h_{ust}(lin)}{h_{ust}(nelin)} 100[\%]$$

Tablica za upis rezultata

Zadatak 1: Opis sustava sa dvije diferencijalne jednadžbe	
Zadatak 2: Shema sustava u SIMULINK-u	
Zadatak 3: linearizirani oblik matematičkog modela.	
Zadatak 5: Usporedba odziva linearnog i nelinearnog sustava.	
Zauatak 5. Osporeuba ouziva iiriearriog i rieniriearriog sustava.	
Zadatak 5: Ustaljena stanja linearnog i	Zadatak 5: Pogreška ustaljenog stanja za linearne
nelinearnog modela	spremnike
h _{1ust} =	
h _{2ust} =	e ₁ =
$h_{1_{lin}ust} =$	e ₂ =
h _{2_lin_ust} =	

Komentar: