SAMPLE DE1 EXAM Solution

: <u>DIGITAL MODULE ELECTRONICS 1</u>

No	SOLUTION						
A	SECTION – A (2 marks each)						
	1) (c) 2) (b) 3) (c) 4) (c) 5) (d)						
	6) (a) 7) (a) 8) (c) 9) (c) 10) (a)						
	SECTION – B (10 marks each)						
B1							
a)	Decimal 7788_{10} to Binary and Hexadecimal. As number is quite large, it is better to convert to hex first & then to binary.						
	16 7788 Remainder						
	16 486 C						
	30 6 1 E						
	Thus $7788_{10} = 1 E 6 C_H = 1 1110 0110 1100_2$						
	1.1.ds 7.7 dd 10 1 2 d d _H 1 2220 2220 2						
<i>a</i> >							
(b)	Binary 10110011 ₂ to Decimal or base 10.						
	101100112 = (1*128) + 0 + (1*32) + 1*16 + 0 + 0 + (1*2) + 1 $= 128 + 32 + 16 + 2 + 1 = 17910$						
	$-120 \pm 32 \pm 10 \pm 2 \pm 1 - 17710$						
	Octal 56271 to decimal						
	$= 5*8^4 + 6*8^3 + 2*8^2 + 7*8^1 + 1$						
	= 23737 ₁₀						
	Hex 3FAD to decimal						
	$= 3 *16^{3} + 15*16^{2} + 10*16 + 13$						
	$= 16301_{10}$						

SAMPLE DE1 EXAM Solution

: <u>DIGITAL</u> MODULE <u>ELECTRONICS 1</u>

No	SOLUTION
B2 (a)	Boolean Equation from truth table is $Y = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C}$
(b)	$Y = \overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C}$ $= \overline{C} (\overline{A} \overline{B} + \underline{A} B + A \overline{B} + A B) + A \overline{B} C$ $= \overline{C} + A \overline{B} C$ $= \overline{C} + A \overline{B}$
(C)	Or $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

SAMPLE DE1 EXAM Solution

: <u>DIGITAL</u> MODULE <u>ELECTRONICS 1</u>

No	SOLUTION						
В3		CLK	J	K	Q1	Q2	
		L	L	L	Н	Н	
		↓	L	L	Н	н	
		†	L	Н	L	н	
		↑	Н	L	н	н	
		+	Н	Н	н	н	
		†	Н	Н	L	н	
B4 (a)	Boolean Equation is $Z = \overline{(A+B)}.C.C\overline{D}$ $Simplifying$ $Z = \overline{(A+B+C)}.C\overline{D}$ $Z = (A+B+\overline{C}).C\overline{D}$ $Z = AC\overline{D} + BC\overline{D} + \overline{C}CD$ $Z = AC\overline{D} + BC\overline{D}$						

/SAMPLE_DE1 EXAM

SAMPLE DE1 EXAM Solution

: <u>DIGITAL</u> MODULE <u>ELECTRONICS 1</u>

Therefore $R = 0.8/(80000 * 10^{-7}) = 100 \text{ Ohms}$

SAMPLE DE1 EXAM Solution

: <u>DIGITAL</u> MODULE <u>ELECTRONICS</u> 1

B6 Signal as shown В D PRE Q J Q J \prod CLK / CLK CLK + CLK <u>clr</u> Q Q Q Κ Κ CLKPRE Α В С

SAMPLE DE1 EXAM Solution

: <u>DIGITAL</u> MODULE <u>ELECTRONICS 1</u>

SOLUTION							
Required Truth-table is as shown:							
		Inp	uts		Output		
	D	С	В	Α	Z		
	0	0	0	0	1		
	0	0	0	1	0		
	0	0	1	0	1		
	0	0	1	1	0		
	0	1	0	0	0		
	0	1	0	1	1		
	0	1	1	0	0		
	0	1	1	1	1		
	1	0	0	0	1		
	1	0	0	1	0		
	1	0	1	0	1		
	1	0	1	1	0		
	1	1	0	0	0		
	1	1	0	1	1		
	1	1	1	0	0		
	1	1	1	1	1		
			Table C1				
	sion for outp $\overline{\overline{D}}\overline{\overline{C}}\overline{\overline{B}}\overline{\overline{A}}+$ D $\overline{\overline{C}}\overline{B}\overline{\overline{A}}+$	DCBA -	+ DCBA	_			

SAMPLE DE1 EXAM Solution

: <u>DIGITAL</u> MODULE <u>ELECTRONICS 1</u>

SAMPLE DE1 EXAM Solution

: <u>DIGITAL</u> MODULE <u>ELECTRONICS 1</u>

MOD. CODE: ET1003

No	SOLUTION
	Double complementing the expression and applying DeMorgan's theorems, the NAND gate implementation is: $Z = \frac{\overline{\overline{\mathbb{C}} \ \overline{\mathbb{A}} + \mathbb{C} \ A}}{\overline{\overline{\mathbb{C}} \ \overline{\mathbb{A}}} \cdot \overline{\mathbb{C} \ A}}.$
	Hence the circuit is as shown: