ALGORITHMIC THINKING WITH PYTHON

MODULE - 1

Part II

THE PROBLEM-SOLVING PROCESS: -

Computer as a model of computation, Understanding the problem, Formulating a model, Developing an algorithm, Writing the program, Testing the program, and Evaluating the solution.

Computer as a model of computation

Problem solving can be done by models like

- Conceptual model
- Mathematical model
- Computational model

Conceptual model

- A conceptual model is a representation of a realworld system or concept that helps people understand it better.
- It is a psychological representations of how tasks should be carried out.

Example: Designing software

Conceptual models can help designers create interfaces and apps that match users' mental models, making it easier for users to learn how to use the product

Mathematical Model

 It uses mathematical expressions to represent the relation between different components of a problem.

Mathematical model: by using the relationship

$$i = C \frac{dy}{dt}$$

we have

$$RC \frac{dy}{dt} + y = u$$

which is a first-order differential equation.

Computational model

- It is used to simulate the behavior of the solution using algorithm
- In programming, a computer is viewed as a model of computation

Fig: Basic components of a computer system

1. Understand the problem

- Effective problem-solving demands a thorough knowledge of the problem domain.
- Once you have identified the problem, its exact nature must be sought and defined.
- The problem context, objectives, and constraints if any are to be understood properly.
- Several techniques can be used to gather information about a problem.
- Some of these include conducting interviews and sending questionnaires to the stakeholders

2. Formulate a model

- After the problem is understood, the next step is to devise a solution
- Brainstorming session for ideas
- Develop the models to ensure that it accurately reflects the conceived ideas.
- The model should serve as the blueprint for the algorithm

3. Develop an algorithm

- Models have to be translated into formal representations – algorithms.
- Assess the pros and cons of each algorithm to select the best one.
- The assessment is based on considering various factors such as memory, time, and lines of code.

4. Writing the program

- Implement the algorithm as an executable program by writing the codes.
- The program or the code is a set of instructions that is more or less, a concrete representation of the algorithm in some programming language.

5. Testing the program

- Inspect the code to verify its correctness. This is called testing.
- During testing, the program is evaluated as to whether it produces the desired output.
- Any unexpected output is an error.
- The program should be executed with different sets of inputs to detect errors.
- Debugging of errors is done

6. Evaluating the solution

- This final step is crucial to ensure that the program effectively addresses the problem and attains the desired objectives.
- Define the evaluation criteria. These could include metrics like efficiency, feasibility, and scalability, a few to mention.