第一讲:图的基本概念

方聪

2024 年秋季

- 1 图的基本概念
- 2 图论基本定理,可图化的条件
- 3 图同构
- 4 图族

- 1 图的基本概念
- 2 图论基本定理,可图化的条件
- 3 图同构
- 4 图族

起源

图论最早的起源是 1736 年 Euler 考虑的

哥尼斯堡七桥问题:有四块被河流分隔开的陆地,它们间有下面 左图的七座桥相连。问:能否从某一块陆地出发通过每座桥恰好 一次最后又回到原来的那块陆地

将上面四块陆地分别如图标号为 A.B.C.D. 如果两块陆地间有座 桥相连,就在相应两点间连条边(表示那桥),如此得上面右图。 问题化为能否从某个顶点出发,经过每条边各一次又回到那个顶 点

图 1: 起源

无序积

图的基本概念

无序积: 设 A, B 为任意的两个集合,称 $\{(a, b)|a \in A \land b \in B\}$ 为 $A \subseteq B$ 的无序积,记为 A & B

- 无序积允许 a = b
- 对任意的 a 和 b: (a,b) = (b,a)

无向图

无向图:无向图是一个有序的二元组(V, E),记作G

- V≠∅, 称为顶点集, 其元素为顶点或结点
- E 称为边集, 是无序积 V&V 的多重子集, 其元素称为无向 边, 简称边

多重集:允许元素重复出现的集合,其中某元素出现次数称为重 复度

无向图例:
$$D = \langle V, E \rangle, V = \{a, b, c, d\},$$

 $E = \{(a, a), (a, b), (b, c), (b, c), (b, c)\}$

图 2: 无向图

有向图

有向图: 有向图是一个有序二元组 (V, E), 记作 D

- 顶点集 V≠∅,其元素称为结点/顶点
- 边集 E 是卡氏积 V×V 的多重子集,其元素称为边

卡氏积 (笛卡尔积): $A \times B = \{\langle x, y \rangle | x \in A \land y \in B\}, \langle x, y \rangle$ 有序 有向图例:

$$D = \langle V, E \rangle, V = \{a, b, c\}, E = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, a \rangle, \langle c, b \rangle\}$$

图 3: 有向图

- 对于无向图 G: 用 V(G), E(G) 分别表示图 G 的顶点集和边 集,用 $e_k = (v_i, v_i)$ 表示边
- 对于有向图 D: 用 V(D), E(D) 表示其顶点集和边集, 用 $e_k = \langle v_i, v_i \rangle$ 表示边
- |V(G)|, |E(G)|, |V(D)|, |E(D)| 分别表示 G 和 D 的顶点数和 边数

- n 阶图: |V(G)| = n 或 |V(D)| = n
- 有限图: |V(G)| 和 |E(G)| 均为有限数
- 零图: E = ∅
- n 阶零图:

特殊的图定义

- n 阶图: |V(G)| = n 或 |V(D)| = n
- 有限图: |V(G)| 和 |E(G)| 均为有限数
- n 阶零图: |V(G)| = n 的零图,记为 N_n
- 平凡图: 1 阶零图, N₁
- 空图: V = E = ∅

点与边的关联

- 关联: 在无向图 *G* 中, 边 *e_k* = (*vi*, *vj*), 则称 *e_k* 与 *v_i* (*e_k* 与 v;) 彼此关联
- 关联次数: v_i ≠ v_i, 称 e_k 与 v_i (e_k 与 v_i) 关联次数为 1; 若 $v_i = v_i$, 关联次数为 2

点与边的关联

- 关联: 在无向图 G 中, 边 e_k = (vi, vi), 则称 e_k 与 v_i (e_k 与 v;) 彼此关联
- 关联次数: v_i ≠ v_i, 称 e_k 与 v_i (e_k 与 v_i) 关联次数为 1; 若 $v_i = v_i$,关联次数为 2
- 环: 只与一个顶点关联的边
- 孤立点: 无边关联的点

对于有向图 G, 边 $e_k = \langle v_i, v_i \rangle$, 称 v_i, v_i 为 e_k 的端点, 其中 v_i 为始点, v; 为终点

边 (a, a) 和顶点 a 的关联次数为 2, 边 (a, b) 和顶点 a 的关联次 数为 1。a 有环, d 是孤立点。

相邻

- 相邻: 对于无向图 G, 任意两顶点 v_i, v_i 之间存在边 e_k, $e_k = (v_i, v_i)$, 称 v_i, v_i 彼此相邻 (点与点)
- 边相邻:任意两边 ek, el, 至少存在一个公共端点、称 ek, el 彼此相邻(边与边)
- 邻接: 对于有向图 D 任意两顶点 v_i, v_i 之间存在边 e_k, $e_k = \langle v_i, v_i \rangle$, 称 v_i 邻接到 v_i , v_i 邻接于 v_i
- 平行边:
 - 端点相同的两条无向边是平行边
 - 起点与终点相同的两条有向边是平行边

b c 有平行边

- 邻域: 称 $N_G(v) = \{u | u \in V(G) \land (u, v) \in E(G) \land u \neq v\}$ 为 v 的邻域(v 在图 G 中的相邻顶点)
- 闭邻域: N_G(v) ∪ v
- 关联集: $I_G(v) = \{e | e \mathrel{\vdash} v \mathrel{\neq} \mathtt{K}\}$
- 后继: $\Gamma_D^+(v) = \{u | u \in V(D) \land \langle v, u \rangle \in E(D) \land u \neq v\}$
- 前驱: $\Gamma_D^-(v) = \{u | u \in V(D) \land \langle u, v \rangle \in E(D) \land u \neq v\}$
- 邻域: $N_D(v) = \Gamma_D^+(v) \cup \Gamma_D^-(v)$
- 闭邻域: N_D(v)∪v

- 在无向图2中, a 的邻域为 N_G(a) = {b}, 闭邻域为 {a,b}, 关联集为 $I_{G}(a) = \{(a, a), (a, b)\}$ 。b 的邻域为 $N_G(b) = \{a, c\}$, 闭邻域为 $\{a, b, c\}$, 关联集为 $I_G(b) = \{(a,b), (b,b), (b,c), (b,c), (b,c)\}$ 。 c 的邻域为 $N_G(c) = \{b\}$, 闭邻域为 $\{b,c\}$, 关联集为 $I_G(c) = \{(b,c), (b,c), (b,c)\}$ 。 d 的邻域为 $N_G(d) = \emptyset$,闭邻 域为 $\{d\}$, 关联集为 $I_G(d) = \emptyset$ 。
- 在有向图3中, a 的后继为 Γ_D(a) = {b}, 前驱为 $\Gamma_D^-(a) = \{b\}$, 邻域为 $N_D(a) = \{b\}$, 闭邻域为 $\{a,b\}$ 。 b 的 后继为 $\Gamma_D^+(b) = \{a\}$,前驱为 $\Gamma_D^-(b) = \{a,c\}$,邻域为 $N_D(a) = \{a, c\}$, 闭邻域为 $\{a, b, c\}$ 。 c 的后继为 $\Gamma_D^+(c) = \{b\}$, 前驱为 $\Gamma_D^-(c) = \emptyset$, 邻域为 $N_D(a) = \{b\}$, 闭 邻域为 {b, c}。

顶点的度数

- 度 $d_G(v)$: v 作为 G 中边的端点的次数之和
- 出度 $d_D^+(v)$: v 作为 D 中边的始点的次数之和
- 入度 $d_D^-(v)$: v 作为 D 中边的终点的次数之和
- $\not \in d_D(v) = d_D^+(v) + d_D^-(v)$

- 最大度: $\Delta(G) = \max\{d_G(v)|v \in V(G)\}$
- 最小度: $\delta(G) = \min\{d_G(v)|v \in V(G)\}$
- 最大出度: $\Delta^+(D) = \max\{d_D^+(v)|v \in V(D)\}$
- 最小出度: $\delta^+(D) = \min\{d_D^+(v)|v \in V(D)\}$
- 最大入度: $\Delta^{-}(D) = \max\{d_{D}^{-}(v)|v \in V(D)\}$
- 最小入度: $\delta^{-}(D) = \min\{d_{D}^{-}(v)|v \in V(D)\}$

简记为 Δ , δ , Δ^+ , δ^+ , Δ^- , δ^-

- 在无向图2中, 度 $d_G(a) = 3, d_G(b) = 6, d_G(c) = 3, d_G(d) = 0, \text{ 最大度 } \Delta = 6,$ 最小度 $\delta = 0$ 。
- 在有向图3中, 出度 $d_D^+(a) = 2$, $d_D^+(b) = 2$, $d_D^+(c) = 1$, 入度 $d_D^-(a) = 3, d_D^-(b) = 2, d_D^-(c) = 0, \notin$ $d_G(a) = 5$, $d_G(b) = 4$, $d_G(c) = 1$, 最大 (出/入) 度, 最小 (出/入) 度分别为 $\Delta = 5, \delta = 1, \Delta^{+} = 2, \delta^{+} = 1, \Delta^{-} = 3, \delta^{-} = 0$

- 1 图的基本概念
- 2 图论基本定理,可图化的条件
- 3 图同构

定理

设
$$G=\langle V,E \rangle$$
 是无向图, $V=\{v_1,v_2,\cdots,v_n\}$, $|E|=m$,则
$$d(v_1)+d(v_2)+\cdots+d(v_n)=2m$$

证明.

每一条边均有两个端点,提供2度,m条边一共提供2m度

图论基本定理

定理

设
$$D = \langle V, E \rangle$$
 是有向图, $V = \{v_1, v_2, \dots, v_n\}, |E| = m, 则$

$$d^+(v_1)+d^+(v_2)+\cdots+d^+(v_n)=d^-(v_1)+d^-(v_2)+\cdots+d^-(v_n)=m$$

推论

任何图中, 奇数度顶点的个数是偶数

简单图: 无环, 无平行边的图, 若 G 是简单图, 则 $0 < \Delta(G) < n-1$ 度数列: 设 $G = \langle V, E \rangle$, $V = \{v_1, v_2, \dots, v_n\}$, 称 $d = (d(v_1), d(v_2), \cdots, d(v_n))$ 为 G 的度数列

可图化:设非负整数列 $d = (d_1, d_2, \dots, d_n)$, 若存在图 G, 使得 G 的度数列是 d,则称 d 为可图化的

定理(可图化的充要条件)

非负整数列 $d = (d_1, d_2, \dots, d_n)$ 是可图化的, 当且仅当 $d_1 + d_2 + \cdots + d_n = 0 \pmod{2}$

证明.

- (⇒) 握手定理
- (⇐) 奇数度点两两之间连一边,剩余度用环来实现

例:下面给出的两个整数列,哪个是可图化的?

1. d = (5, 4, 4, 3, 3, 2); 2. d = (5, 3, 3, 2, 1).

例:下面给出的两个整数列,哪个是可图化的? 1. d = (5, 4, 4, 3, 3, 2); 2. d = (5, 3, 3, 2, 1).

- ① $\sum_{i=1}^{6} d_i = 1 \pmod{2}$, d 不可图化。
- ② $\sum_{i=1}^{5} d_{i} = 0 \pmod{2}$, d 是可图化的。以 d 为度数列的图可 以有多个。

图 4:

图同构

- 2 图论基本定理,可图化的条件
- 3 图同构
- 4 图族

图同构: 设图 $G_1 = \langle V_1, E_1 \rangle$, $G_2 = \langle V_2, E_2 \rangle$, 若存在双射 $f: V_1 \rightarrow V_2$, 满足

$$\forall u \in V_1, v \in V_1, (u, v) \in E_1, \exists (f(u), f(v)) \in E_2$$

图同构

且 $\langle u,v\rangle$ 与 $\langle f(u),f(v)\rangle$ 重数相同,则称 G_1 与 G_2 同构,记作 $G_1 \cong G_2$

图同构

同构关系

同构关系是全体图集合上的二元关系

- 自反的
- 对称的
- 传递的

同构关系是等价关系

$$G_1=G_3,\quad G_1\neq G_2$$

图 5: 同构示例

彼得森(Peterson)图

$$G_1 = G_2 = G_3$$

图 6: 同构示例

- 2 图论基本定理,可图化的条件
- 3 图同构
- 4 图族

- 完全图,有向完全图,竞赛图
- 正则图: 柏拉图图, 彼德森图, 库拉图斯基图
- r 部图, 二部图 (偶图), 完全 r 部图
- 路径, 圈

 K_3

完全图

图的基本概念

每个顶点均与其余的 n-1 个顶点相邻,记作 K_n

图 7: 完全图

 K_5

图 8: 有向完全图

竞赛图

N 阶有向简单图,任意两节点之间只有一条有向边

图 9: 竞赛图

正则图

- k 正则图: $v = V(G), d(v) = k, k = 0, 1, 2, \cdots$
- 完全图 K_n 是 n-1 正则图 (n=1,2,3,...)

图 10: 正则图

34 / 44

柏拉图图

正十二面体图

正八面体图

正二十体图

图 11: 柏拉图图

图 12: 彼得森图

由 10 个顶点和 15 条边构成的无向图

图 13: 库拉图斯基图

r 部图: $G = \langle V, E \rangle$, 若 V 分成 r 个互不相交的子集, 使得 G中任何一条边的两个端点都不在同一个 V; 中, 即 $V = V_1 \cup V_2 \cdots \cup V_r, V_i \cap V_i = \emptyset (i \neq j), E \subseteq \bigcup (V_i \& V_i),$ 也记作 $G = \langle V_1, V_2, \cdots, V_r; E \rangle$

图 14: r 部图

二部图

图的基本概念

二部图: $G = \langle V_1, V_2; E \rangle$, 也称为偶图

图 15: 二部图

完全r部图

 $K_{n_1,n_2,...,n_r}$: V_i 中任一个顶点均与 $V_i(i \neq j)$ 所有顶点相邻

图 16: 完全 r 部图

子图,生成子图

- 子图: 设 $G = \langle V, E \rangle, G' = \langle V', E' \rangle,$ 若 $V' \subseteq V$ 且 $E' \subseteq E$, 则称 G' 是 G 的子图,记为 $G' \subset G$
- 真子图: V' ⊂ V 或 E' ⊂ E
- 生成子图: V' = V

导出子图: 设 $G = \langle V, E \rangle$,

- 若 $V_1 \subset V$, 以 G 中两个端点都在 V_1 中的边组成边集 E_1 的图, 即 $E_1 = E \cap (V_1 \& V_1)$, $G[V_1] = \langle V_1, E_1 \rangle$ 为由 V_1 导 出的子图
- 若 ∅ ≠ E₁ ⊂ E, 以 E₁ 中的边关联的点为顶点集 V₁.则称 $G[E_1] = \langle V_1, E_1 \rangle$ 为由 E_1 导出的子图

 $G[V_1]$

 $G[E_1]$

图 17: 导出子图

补图: 以V为顶点集,以使G成为n阶完全图的所有添加边组 成的集合为边集的图,为 G 的补图,即

$$G = \langle V, E \rangle, \overline{G} = \langle V, E(K_n) - E \rangle$$

自补图: $G \cong \overline{G}$

例: 五边形的补图是五角星, 五边形是自补图

图 18: 补图

对于无向图, 若它是自补图, 则阶 n 满足什么性质?

$$2m = n(n-1)/2$$

$$n = 4k$$
 or $4k + 1$