

Primer Examen parcial

MAT-I, MA-1111, ENE-MAR 2013 Primer Examen parcial

DEBE JUSTIFICAR TODAS SUS RESPUESTAS SOLUCION

1. Dadas las funciones:

$$\mathbf{g}(\mathbf{x}) = \begin{cases} (\mathbf{x} - \mathbf{1})^2 & , si & \mathbf{x} \le \mathbf{0} \\ \mathbf{1} + |\mathbf{1} - \mathbf{x}| & , si & \mathbf{1} < \mathbf{x} \le \mathbf{2} \end{cases} \qquad \mathbf{h}(\mathbf{x}) = \sqrt{\mathbf{3} - \mathbf{x}}$$

a) Encuentre el dominio de g y h.

(1 pts)

RESPUESTA:

Dada la definición de g , se tienen que : $DOM(g) = (-\infty, o] \cup (1, 2]$ Por otro lado, para poder evaluar h(x), x debe satisfacer la condición:

$$3 - x \geqslant 0$$

$$\iff 3 \geqslant x$$

Luego, DOM(h)=
$$(-\infty, 3]$$

b) Encuentre $\mathbf{g} + \mathbf{h}$ y determine su dominio. (1 pts)

RESPUESTA:

$$DOM(g+h) = DOM(g) \cap DOM(h)$$
$$= [(-\infty, o] \cup (1, 2]] \cap (-\infty, 3]$$
$$= (-\infty, o] \cup (1, 2]$$

Luego se puede escribir:

$$(g+h)(x) = g(x) + h(x) = \begin{cases} (x-1)^2 + \sqrt{3-x} & , si & x \le 0\\ 1 + |1-x| + \sqrt{3-x} & , si & 1 < x \le 2 \end{cases}$$

Departamento de Matemáticas Puras y Aplicadas

Primer Examen parcial

c) Encuentre $\mathbf{g} \circ \mathbf{h}$ y su dominio.

(2 pts)

RESPUESTA:

$$(g \circ h)(x) = g(h(x)) = \begin{cases} (h(x) - 1)^2 &, si & h(x) \le 0 \\ 1 + |1 - h(x)| &, si & 1 < h(x) \le 2 \end{cases}$$

$$= \begin{cases} (\sqrt{3 - x} - 1)^2 &, si & \sqrt{3 - x} \le 0 & y & x \le 3 \\ 1 + |1 - \sqrt{3 - x}| &, si & 1 < \sqrt{3 - x} \le 2 & y & x \le 3 \end{cases}$$

Y como:

i)
$$\sqrt{3-x} \le 0$$
 y $x \le 3 \iff x=3$ y $3 \geqslant x \iff x=3$

$$ii) \quad 1 < \sqrt{3-x} \le 2 \quad \text{y} \quad x \le 3 \iff 1 < 3-x \le 4 \qquad \text{y} \qquad x \le 3 \\ \iff -2 < -x \le 1 \qquad \text{y} \qquad x \le 3 \\ \iff -1 \le x < 2 \qquad \text{y} \qquad x \le 3 \\ \iff -1 \le x < 2$$

Se obtiene:

$$(g \circ h)(x) = g(h(x)) = \begin{cases} (\sqrt{3-x}-1)^2 & , si & x=3\\ 1+|1-\sqrt{3-x}| & , si & -1 \le x < 2 \end{cases}$$
$$= \begin{cases} 1+|1-\sqrt{3-x}| & , si & -1 \le x < 2\\ 1 & , si & x=3 \end{cases}$$

Y DOM
$$(g \circ h) = [-1, 2) \cup \{3\}$$

d) Encuentre, si existe, el valor de
$$\frac{1}{\mathbf{g}(\mathbf{0})}$$
. (1 pts)

RESPUESTA:

$$g(0)=1$$
, entonces: $\frac{1}{g(0)}$ existe y $\frac{1}{g(0)}=1$

2. Resolver la desigualdad siguiente:

$$|\mathbf{x} - \mathbf{2}| < \mathbf{1} + |\mathbf{x}| \tag{5 pts}$$

Departamento de Matemáticas Puras y Aplicadas

Primer Examen parcial

RESPUESTA:

Aplicando la definición de valor absoluto se puede construir, la tabla siguiente:

$-\infty$			0		2	2		+0	∞
x	(-x)		[x]		[x)	
x-2	(-x+2]		$ [\qquad -x+2 \qquad) $		[$x-2$)	
x-2 <1+ x	(-x + 2 < 1 - x)	[)	[x-2 < 1+x)	
		CASO 1			CASO 2		CASO 3		

Se procede a buscar el conjunto solución para cada caso:

CASO 1:
$$x \in (-\infty, 0)$$
 y satisface: $-x + 2 < 1 - x$.
 $-x + 2 < 1 - x \iff 2 < 1 \iff x \in \emptyset$
El conjunto solución del CASO 1 es: $S_1 = \emptyset \cap (-\infty, 0) = \emptyset$.

CASO 2:
$$x \in [0,2)$$
 y satisface: $-x + 2 < 1 + x$.
 $-x + 2 < 1 + x \iff 1 < 2x \iff \frac{1}{2} < x \iff x \in \left(\frac{1}{2}, +\infty\right)$
El conjunto solución del CASO 2 es: $S_2 = \left(\frac{1}{2}, +\infty\right) \cap [0,2) = (\frac{1}{2},2)$.

CASO 3:
$$x \in [2, +\infty)$$
 y satisface: $x - 2 < 1 + x$.
 $x - 2 < 1 + x \iff -2 < 1 \iff x \in \mathbb{R}$
El conjunto solución del CASO 3 es: $S_3 = \mathbb{R} \cap [2, +\infty) = [2, +\infty)$.

Luego el conjunto solución de la inecuación: |x-2| < 1 + |x|, es:

$$S = S_1 \cup S_2 \cup S_3 = \emptyset \cup (\frac{1}{2}, 2) \cup [2, +\infty) = (\frac{1}{2}, +\infty)$$

3. Sea ${\bf T}$ el triángulo de vértices: ${\bf A(1,1)}, \quad {\bf B(2,0)} \quad {\bf y} \quad {\bf C(3,1)}.$

a) Verifique analíticamente que T es un triángulo rectángulo. (3 pts)

RESPUESTA: Para ello, se debe mostrar que dos segmentos del triángulo T están sobre dos rectas perpendiculares.

Primer Examen parcial

Con la finalidad de mostrar lo anteriormente señalado, se grafica la información del problema.

Se considera las rectas siguientes:

 L_1 la recta que pasa por los puntos A y B.

 L_2 la recta que pasa por los puntos B y C.

Luego las pendientes respectivas de cada recta son:

$$L_1$$
: $m_1 = \frac{1-0}{1-2} = -1$.
 L_2 : $m_2 = \frac{1-0}{3-2} = 1$.

Por lo tanto, $m_1 * m_2 = -1$, es decir: $L_1 \perp L_2$, y en consecuencia T es un triángulo rectángulo.

b) Diga si es cierto que el punto medio de la hipotenusa del triángulo ${f T}$ equidista de los tres vértices del triángulo ${f T}$ (2 pts)

RESPUESTA: La hipotenusa del triángulo es el lado \overline{AC} y su punto medio es

$$P(\frac{1+3}{2}, \frac{1+1}{2}) = P(2,1)$$

Por lo tanto se tiene:

$$d(A, P) = \sqrt{(2-1)^2 + (1-1)^2} = 1$$

$$d(B, P) = \sqrt{(2-2)^2 + (1-0)^2} = 1$$

Puras y Aplicadas

Primer Examen parcial

$$d(C, P) = \sqrt{(2-3)^2 + (1-1)^2} = 1$$

y en consecuencia, P equidista de los tres vértices del triángulo T.

4. Diga si es verdadero o falso que:

La función inversa de
$$\mathbf{f}(\mathbf{x}) = \frac{-\mathbf{x}}{\mathbf{x} + \mathbf{1}}$$
 es ella misma. (5 pts)

RESPUESTA:

• Primeramente, se estudia la inyectividad de la función.

$$DOM(f) = \mathbb{R} \setminus \{-1\}$$

Sean x_1 y x_2 , con $x_1, x_2 \in DOM(f)$, entonces:

$$f(x_1) = f(x_2) \iff \frac{-x_1}{x_1 + 1} = \frac{-x_2}{x_2 + 1} \iff -x_1 x_2 - x_1 = -x_2 x_1 - x_2$$
$$\iff -x_1 = -x_2 \iff x_1 = x_2$$

Por lo tanto f es inyectiva y su función inversa asociada existe.

 \bullet Cálculo de f $^{-1}{:}\mathrm{RAN}(f){\to}\mathrm{DOM}(f)$

Sea $y \in RAN(f)$,

$$y = \frac{-x}{x+1} \Longleftrightarrow yx + y = -x \Longleftrightarrow yx + x = -y \Longleftrightarrow x = \frac{-y}{y+1}$$

Luego se puede afirmar que $f^{-1}=f$.