II - Récurrences

À Savoir

Le raisonnement par récurrence se déroule en 3 étapes principales.

- * On énonce clairement la propriété à démontrer. Cette propriété doit dépendre d'un entier naturel noté n.
- * L'initialisation. On montre la propriété précédente lorsque n=0 (si la propriété est vraie pour tout entier naturel) ou lorsque n=1 (si la propriété est vraie pour tout entier naturel non nul).
 - Généralement, la propriété est une égalité. On montre alors que les deux membres de l'égalité sont égaux à une même valeur.
- * L'hérédité. On fixe un entier naturel n. On suppose la propriété vraie à l'ordre n (c'est l'hypothèse de récurrence). On montre que la propriété est vraie lorsque n est remplacé par (n + 1) (ne pas oublier le parenthésage).

 Généralement, on part d'un côté de l'égalité et on arrive à l'autre côté. Une des étapes du calcul utilise l'hypothèse de récurrence.
- * Conclusion. On conclut clairement en citant l'initialisation, l'hérédité et le principe de récurrence.

I - Les classiques : Sommes d'entiers

Exercice 1. (Somme des n premiers entiers non nuls) Montrer par récurrence que, pour tout n entier naturel,

$$0+1+2+\cdots+n=\sum_{k=0}^{n}k=\frac{n(n+1)}{2}.$$

Exercice 2. (Somme des n premiers carrés) Montrer par récurrence que,

pour tout n entier naturel,

$$0^{2} + 1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=0}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Exercice 3. (Somme des n premiers cubes) Montrer par récurrence que, pour tout n entier naturel,

$$0^{3} + 1^{3} + 2^{3} + \dots + n^{3} = \sum_{k=0}^{n} k^{3} = \left[\frac{n(n+1)}{2}\right]^{2}.$$

II - Formules de sommes

Exercice 4. (Somme des termes d'une suite géométrique) Soit $q \neq 1$. Montrer par récurrence que, pour tout n entier naturel,

$$q^{0} + q^{1} + q^{2} + \dots + q^{n} = \sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}.$$

Exercice 5. (Formule du binôme de Newton, $(a, b \in \mathbb{R} \text{ et } n \in \mathbb{N}. \text{ Alors},$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Chapitre II - Récurrences ECT 2

III - Inégalités

Exercice 6. (Inégalité de Bernoulli) Soit x > 0. Montrer que, pour tout $n \ge 0$, $(1+x)^n \ge 1 + nx$.

Exercice 7. (Suite & Encadrement) Soit (u_n) définie par $u_0 = 0$ et, pour tout n entier naturel, $u_{n+1} = \sqrt{u_n + 6}$. Montrer que, pour tout n entier naturel, $u_n \leq 3$.

Exercice 8. (Suite & Encadrement) Soit (u_n) définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = \sqrt{u_n + 15}$. Montrer que, pour tout n entier naturel, $0 \le u_n \le 5$.

Exercice 9. (Suite & Encadrement) Soit (u_n) définie par $u_0 = 6$ et, pour tout n entier naturel, $u_{n+1} = \sqrt{u_n + 15}$. Montrer que, pour tout n entier naturel, $4 \le u_n \le 10$.

IV - Suites définies par récurrence

Exercice 10. (Suite & Terme général) Soit (u_n) la suite définie par $u_0 = 5$ et, pour tout n entier naturel, $u_{n+1} = u_n + 3$. Montrer que, pour tout n entier naturel, $u_n = 5 + 3n$.

Exercice 11. (Suite géométrique) Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = 5 \times u_n$. Montrer que, pour tout n entier naturel, $u_n = 3 \times 5^n$.

Exercice 12. (Suite & Terme général) Soit (u_n) la suite définie par $u_0 = 0$ et, pour tout n entier naturel, $u_{n+1} = u_n + n + 1$. Montrer que, pour tout n entier naturel, $u_n = \frac{n(n+1)}{2}$.

Exercice 13. (Suite & Terme général) Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = \sqrt{1 + u_n^2}$. Montrer que, pour tout n entier naturel, $u_n = \sqrt{n+9}$.

Exercice 14. (Suite & Terme général) Soit (u_n) la suite définie par $u_0 = 2$ et, pour tout n entier naturel, $u_{n+1} = \frac{u_n}{u_n+1}$. Montrer que, pour tout n entier naturel non nul, $u_n = \frac{2}{2n+1}$.