UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB CENTRO DE INFORMÁTICA - CI DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA - DCC DISCIPLINA: Métodos Matemáticos I

Aluno(a):

Lista de Exercícios - Mudanaa de Base. Produto Interno e Norma.

01. Dado o espaço vetorial \mathbb{V} e o conjunto \mathbf{B} de \mathbb{V} , verifique se \mathbf{B} é uma base de \mathbb{V} e, caso positivo, determine a matriz mudança da base canônica do espaço \mathbb{V} para a base \mathbf{B} e, usando a matriz mudança de base, expresse o vetor \mathbf{v} (dado na base canônica) porém agora na base \mathbf{B} .

Sugestão. Use algum *software* para resolver os sistemas lineares envolvidos.

(a)
$$\mathbb{V} = \mathbb{P}_3$$
, $\mathbf{B} = \{1 - x, 1 + x, x + x^2, x^2 + x^3\}$, $\mathbf{v} = 1 + x + x^2 + x^3$.

(b)
$$V = \mathbb{P}_3$$
, $\mathbf{B} = \{1, 1+x, 1+2x^2, 1+3x^3\}$, $\mathbf{v} = x - 2x^2 + 5x^3$.

(c)
$$\mathbb{V} = \mathbb{M}_{2\times 2}, \mathbf{B} = \{M_1, M_2, M_3, M_4\}, \text{ com } M_1 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, M_2 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, M_3 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, M_4 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

(d)
$$\mathbb{V} = \mathbb{M}_{2 \times 2}, \mathbf{B} = \{M_1, M_2, M_3, M_4\}, \text{ com } M_1 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, M_2 \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, M_3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, M_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$

(e)
$$\mathbb{V} = \mathbb{R}^4$$
, $\mathbf{B} = \{(1, 2, 1, 0), (2, 0, 1, 1), (0, 1, 1, 2), (1, 2, 0, 1)\}$, $\mathbf{v} = (0, 1, 0, 0)$

(f)
$$\mathbb{V} = \mathbb{R}^4$$
, $\mathbf{B} = \{(1, 0, 1, 1), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1)\}$, $\mathbf{v} = (0, 0, 1, 0)$.

02. Sejam $v_1 = (x_1, y_1), v_2 = (x_2, y_2)$ vetores arbitrários de \mathbb{R}^2 . Verifique se a função $\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ define um produto interno. **Se não definir**, diga porque.

(a)
$$\varphi(v_1, v_2) = 2x_1x_2 - x_1y_2 - x_2y_1 + 2y_1y_2$$
.

- (b) $\varphi(v_1, v_2) = 2x_1x_2 + x_1y_2 + x_2y_1 + 2y_1y_2$.
- (c) $\varphi(v_1, v_2) = x_1x_2 y_1y_2 + x_1y_2 + x_2y_1$.
- (d) $\varphi(v_1, v_2) = x_1 x_2 + y_1 y_2 + x_1 y_2 + x_2 y_1$.
- 03. Considere o espaço vetorial \mathbb{V} , o PI, a norma induzida pelo PI e o vetores v_1 e v_2 de \mathbb{V} dados.
- (i) **Determine** se v_1 e v_2 são ortogonais entre si.
- (ii) Verifique a designaldade triangular da norma para os vetores v_1 e v_2 .
- (iii) Caso v_1 e v_2 não sejam ortogonais, **verifique** a desigualdade de Cauchy-Schwarz para os vetores v_1 e v_2 .
- (iv) Caso v_1 e v_2 não sejam ortogonais, **determine** o ângulo entre os vetores v_1 e v_2 .

Sugestão. Use o Wolfram Alpha para calcular as integrais e somas.

- (a) $\mathbb{V} = \mathcal{L}^2(\mathbb{R}) = \{a = (a_1, a_2, \dots) \text{ tal que } \sum_{n=1}^{\infty} a_n^2 \text{ seja convergente } \}$ com o PI dado por $\langle a, b \rangle = \sum_{i=1}^{\infty} a_n b_n$, para $v_1 = \{\frac{1}{2^n}\}$ e $v_2 = \{(\frac{2}{3})^n\}$.
- (b) $\mathbb{V} = \mathbb{P}_2[0,1]$ com o PI dado por $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$, para $v_1 = 1 3x + x^2$ e $v_2 = 2 x^2$.
- (c) $\mathbb{V} = \mathbb{M}_{2\times 3}$ com o PI dado por $\langle A, B \rangle = tr(B^t A)$, para $v_1 = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$ e $v_2 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.
- (d) $\mathbb{V} = \mathcal{C}^0[0,1]$ com o PI dado por $\langle f,g \rangle = \int_0^1 e^{-x} f(x) g(x) dx$, para $v_1 = \frac{1}{1+x^2}$ e $v_2 = \ln(1+x)$.

Referências.

- [1] J. L. Boldrini, S. R. Costa, V. L. Figueiredo, H. G. Wetzler; Álgebra Linear, 3a edição, editora HARBRA, 1986.
- [2] E. L. Lima; Álgebra Linear, Coleção Matemática Universitária, 6a edição, 2003.
- [3] S. Lipschutz, M. Lipson; Álgebra Linear, tradução da 4a edição norte americana "Schaum's outline of theory and problems of linear algebra", Bookman, 2011.
- [4] G. Strang; Álgebra Linear e suas aplicações, tradução da 4a edição norteamericana "Linear algebra and its application", Cengage Learning, 2014.