

Task-level Collaborative Ad-hoc AGVs for Efficient Warehouse Logistics

Luzi Schöb, Christoph Zweifel

Prof. Dr. Bruno Rodrigues

Motivation

Automated Guided Vehicles

Autonomous task coordination

Related work

	Task Assignment	Collaboration Efforts
MARTCO	Centralized with priority based queuing	Conflict resolution, path optimization
Multi Agend RL	Centralized scheduling based on requests	Path planning
ARC5	Centralized Servus Manager	Swarm intelligence
Exotec / Galaxus	Centralized with priority based queuing	Collision avoidance, path adaptation
Frauenfelder	Semi-distributed scheduling by coordinators	Collaborative task sharing

Designing our Warehouse (I/II)

Example task

Pick up two packages at waypoint 1 and deliver them to waypoint 4

Designing our Warehouse (II/II)

One Robot on its own

Two Robots working together

Design for Premium

One Robot

Two Robots

Premium

What are our next steps?

Baseline

- Robot is able to follow the edges and can identify vertices
- Entity "Task Master" can assign tasks to robot

Milestone 2

- Robots share their current edge and preferred pathway
- Tasks can be subdivided and be assigned to other robots or TM

Milestone 3

- Explore more complex and connected pathways
- Introduce more robots into the system

Q & A

