Review for Exam I

1. Let *A* and *B* be subsets of **R**. Show that if *A* and *B* are bounded above, then $A \cup B$ is bounded above. You may use the fact that for real numbers *a* and *b*, we have $a \le \max(a, b)$ and $b \le \max(a, b)$.

Solution:

Proof. Let *A* and *B* be subsets of **R** that are bounded above. We'll show that $A \cup B$ is bounded above. Since *A* and *B* are bounded above, there are $p, q \in \mathbf{R}$ such that for all $a \in A$, we have $a \le p$ and for all $b \in A$, we have $b \le q$. Define $M = \max(p, q)$. We'll show that *M* is an upper bound for $A \cup B$. Let $x \in A \cup B$. Either $x \in A$ or $x \in B$. If $x \in A$, we have $x \le p \le M$. Similarly, if If $x \in B$, we have $x \le q \le M$. □

2. Give an example of a subset of **R** that does not have a least upper bound.

Solution: The set **R** is a subset of **R** that does not have a least upper bound.

3. Give an example of a subset A of **R** such that $lub(A) \in A$.

Solution: We have lub((0,1]) = 1 and $1 \in (0,1]$.

4. Give an example of a subset A of **R** such that $lub(A) \notin A$.

Solution: We have lub((0,1)) = 1 and $1 \notin (0,1]$).

5. Show that $lub((-\infty, 2)) = 2$.

Solution: We'll show that 2 is an upper bound for $(-\infty, 2)$ and that for all $r \in \mathbb{R}_{>0}$, there is $a \in (-\infty, 2)$ such that 2 - r < a.

The fact that 2 is an upper bound for $(-\infty, 2)$ is apparent. Let $r \in \mathbb{R}_{>0}$. Choose a = 2 - r/2. Then $a \in (-\infty, 2)$ as required. Further since r > 0, we have 2 - r < 2 - r/2.

6. Show that lub([0,2)) = 2.

Solution: We'll show that 2 is an upper bound for ([0,2) and that for all $r \in \mathbb{R}_{>0}$, there is $a \in ([0,2)$ such that 2-r < a.

The fact that 2 is an upper bound for [0,2) is apparent. Let $r \in \mathbb{R}_{>0}$. Choose $a = \max(1,2-r/2)$. Then $a \in [0,2)$ as required. For r < 2, we have a = 2-r/2. Since r > 0, we have a < 2, For $r \ge 2$, we have a = 1. We have 1 < 2 as required.

7. Let *A* be a subset of **R**. Show that *A* has at most one least upper bound.

Solution: See class notes.

8. Write a proof for

Proposition 1. For all $x, y \in \mathbb{R}$, there is $a \in \mathbb{R}$ such that x < y implies x < a < y.

Solution: See class notes.

9. Write a proof for

Proposition 2. For all $x \in \mathbb{R}_{>0}$ there is $y \in \mathbb{R}_{>0}$ such that y < x.

Solution: See class notes.

10. Without explicitly using negation, write the negation of

Proposition 3. There are $x, y \in \mathbf{R}$ such that $\sin(x) = \sin(y) \implies x = y$.

11. Either write a proof of

Proposition 4. There are $x, y \in \mathbf{R}$ such that $\sin(x) = \sin(y) \implies x = y$.

or write a proof of its negation.

12. Let $(\mathcal{F}, +, \times)$ be a field and let O be the additive identity and I be the multiplicative identity. Given that O = I, show that $\mathcal{F} = \{O\}$.

Solution: See class notes.

13. Let $(\mathcal{F}, +, \times)$ be a field. Show that for all $a, b \in \mathcal{F}$, we have $a \times b = a \times (-b)$.

Solution: See class notes.

14. Let $(\mathcal{F}, +, \times)$ be an ordered field. For all $a, b, c \in \mathcal{F}$, show that a < b and c < 0 implies $a \times c > b \times c$.

Solution: See class notes.

15. Show that

$$(\forall k \in \mathbf{Z}_{>1}) \left(\frac{1}{k^2} \leq \frac{1}{k-1} - \frac{1}{k} \right).$$

Dogo 2

Solution: We'll write our solution as a sequence of logical equivalences. Let $k \in \mathbb{Z}_{>1}$. We have

$$\left[\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}\right] \equiv \left[\frac{1}{k^2} - \frac{1}{k-1} + \frac{1}{k} \le 0\right],$$
 (algebra)
$$\equiv \left[-\frac{1}{(k-1)k^2} \le 0\right],$$
 (factor)
$$\equiv \text{true.}$$
 $(k-1>0 \text{ and } k^2>0)$

16. Show that

$$(\forall x \in (-\infty, 1)) (\exists r \in \mathbf{R}_{>0}) ((x - r, x + r) \subset (-\infty, 1)).$$

Solution: We need to choose a number r such that x + r < 1 and 0 < r. Thus 0 < r < 1 - x. One choice is $r = \frac{1-x}{2}$. Since x < 1, this choice does satisfy the condition r > 0.

Proof Let $x \in (-\infty, 1)$. Choose $r = \frac{1-x}{2}$. Since x < 1, it follows that $r \in \mathbb{R}_{>0}$ as required. Since r > 0, the condition $(x - r, x + r) \subset (-\infty, 1)$ is equivalent to x + r < 1. We have

$$[x+r<1] \equiv \left[x+\frac{1-x}{2}<1\right] \equiv \left[\frac{1+x}{2}<1\right] \equiv [1+x<2] \equiv [x<1] \equiv \text{true.}$$

17. Let A, B be subsets of \mathbf{R} and let A be bounded above. Show that $A \setminus B$ is bounded above.

Solution: Since *A* is bounded above, there is $M \in \mathbf{R}$ such that $(\forall x \in A)(x \leq M)$. We will show that

$$(\exists M' \in \mathbf{R})(\forall x \in A \setminus B)(x \le M').$$

Choose M' = M. Let $x \in A \setminus B$. Then $x \in A$; thus we have

$$[x \le M'] \equiv [x \le M] \equiv \text{true.}$$

18. Give an example of subsets A, B of \mathbf{R} such that $A \setminus B$ is bounded above, but A is not bounded above.

Solution: One (of many) example is $A = \mathbf{R}$ and $B = \mathbf{R}$. Then A is not bounded above, but $A \setminus B = \emptyset$, so $A \setminus B$ is bounded above (because the empty set is bounded above).

19. Define $F = x \in \mathbf{R} \mapsto x^2$. Enumerate the members of the set

$$F(\{-4,-1,0,1,4\}).$$

Solution:

$$F(\{-4,-1,0,1,4\}) = \{F(-4),F(-1),F(0),F(1),F(4)\} = \{0,1,16\}.$$

20. Show that

$$(\forall a \in \mathbf{R}) (\exists m \in \mathbf{R}) (\forall x \in \mathbf{R}) (x^2 - a^2 \ge m(x - a)).$$

Solution: We will write our proof as a sequence of logical equivalences. Let $a \in \mathbb{R}$. Choose m = 2a. Let $x \in \mathbb{R}$. We have

$$[x^{2} - a^{2} \ge m(x - a)] = [x^{2} - a^{2} \ge 2a(x - a)],$$
 (substitution for m)

$$= [x^{2} - 2a(x - a) - a^{2} \ge 0],$$
 (algebra)

$$= [x^{2} - 2a + a^{2} \ge 0],$$
 (factor)

$$= [(x - a)^{2} \ge 0],$$
 (factor)

$$= \text{true}.$$

Daga