

AD-A104 410

TECHNICAL
LIBRARY

AD A-104410

MEMORANDUM REPORT ARBRL-MR-03109

AN IMPROVED EXPEDIENT PROPELLANT CHARGE
TO OBTAIN HIGH MUZZLE VELOCITY IN A 20-MM
EXPERIMENTAL GUN

Thomas R. Trafton
Antonio Ricchiazzi
Eugene Roecker
John Riedener

June 1981

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report
does not constitute indorsement of any commercial product.*

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER MEMORANDUM REPORT ARBRL-MR-03109	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) AN IMPROVED EXPEDIENT PROPELLANT CHARGE TO OBTAIN HIGH MUZZLE VELOCITY IN A 20-MM EXPERIMENTAL GUN		5. TYPE OF REPORT & PERIOD COVERED Final
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Thomas R. Trafton, IBD, BRL Antonio Ricchiazzi and Eugene Roecker, TBD, BRL John Riedener, Test Svcs Div, TSD-SCTB-SCDTS		8. CONTRACT OR GRANT NUMBER(s) RDT&E 1L162618AH80
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Ballistic Research Laboratory ATTN: DRDAR-BLT Aberdeen Proving Ground, MD 21005		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command US Army Ballistic Research Laboratory ATTN: DRDAR-BL Aberdeen Proving Ground, MD 21005		12. REPORT DATE JUNE 1981
		13. NUMBER OF PAGES 40
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Terminal ballistics Propelling charge DU long rod penetrator High velocity (1520 m/s)		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (mph) The Ballistic Research Laboratory funded the TSD-SCTB-SCDTS, ARRADCOM to conduct terminal ballistic test at velocities of 1520 m/s (5000 ft/s). The gun system, a 20-mm smooth bore/30-mm breech and IMR 4996 propellant, launched tungsten alloy penetrators successfully. However, the depleted uranium rods experienced severe deformation and fracture during launch.		
This report describes a suitable propelling charge that can be used to successfully launch DU long rod penetrators at 1520 m/s.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

	Page
1. INTRODUCTION	9
1.1 Background	9
1.2 Initial Experiment	9
1.2.1 Projectile	9
1.2.2 Launcher	9
1.2.3 Sabot	10
1.2.4 Instrumentation	10
1.2.5 Firings with IMR 4996 Propellant	10
2. OBJECTIVE	11
3. APPROACH	11
4. RESULTS	11
4.1 Sabot Modification	11
4.2 Propellant Charge	12
4.2.1 Measuring Pressure During Launch	12
4.2.2 Interior Ballistic Computer Simulations and Exploratory Firings	12
4.3 Summary of Results	25
5. RECOMMENDATIONS	33
REFERENCES	34
DISTRIBUTION LIST	35

LIST OF ILLUSTRATIONS

Figure		Page
1	Sabot Assembly	10
2	Pressure vs Time-IMR 4996	13
3	Pressure vs Travel-IMR 4996	14
4	Velocity-Travel-Acceleration vs Time-IMR 4996	15
5	Propellant Description Sheet - RAD-E-12-72	17
6	Propellant Description Sheet - CIL-67338	18
7	Propellant Description Sheet - BAJ-67782	19
8	Propellant Description Sheet - RAD-69315	20
9	Pressure vs Time - M30	22
10	Pressure vs Travel - M30	23
11	Velocity-Travel-Acceleration vs Time - M30	24
12	Propellant Description Sheet - RAD-E-30	26
13	Radiograph of a Penetrator Launched at 1534 m/s using IMR 4996 Propellant	27
14	Radiograph of a Penetrator Launched at 1530 m/s using Improved Propellant Charge	28

LIST OF TABLES

Table	Page
1 Selected Thermochemical Characteristics (LD = 0.2) . . .	16
2 Sequence of Events and Test Results 	29

1. INTRODUCTION

1.1 Background

The use of in-house Terminal Ballistic Range facilities for testing depleted uranium (DU) penetrators has been curtailed because of necessary clean-up and range modifications to comply with Nuclear Regulatory Commission requirements. Meanwhile targets designed and fabricated by Aeronautical Research Associates of Princeton (ARAP) were ready to be tested. The Ballistic Research Laboratory was tasked with the responsibility to obtain the terminal ballistic data.

The Test and Instrumentation Division, Technical Support Directorate, ARRADCOM, had operative at Dover, NJ, a facility for testing DU, and had demonstrated the capability of launching 65-gram tungsten alloy long rod penetrators at muzzle velocities of 1524 m/s (5000 ft/s).

The Ballistic Research Laboratory funded the Dover test site to conduct the necessary firings to provide terminal ballistic data from DU long rod penetrators attacking the ARAP targets at velocities to 1524 m/s.

However, unlike tungsten alloy penetrators, the DU rods experienced severe plastic deformation during launch.

1.2 Initial Experiment

1.2.1 Projectile. The projectile was fabricated from DU alloyed with 0.75 weight % of titanium. The yield strength of the penetrator was approximately 0.776×10^9 Pa (112,500 psi). The hardness of the penetrator was Rockwell "C" 40. The DU billets were purchased from Dow Chemical Company, Rocky Flats Division, Golden, CO.

The projectiles were fabricated from 3.56-cm diameter rods that were extruded from 10.16-cm billets. The billets were alpha phase extruded at 600°C . The 3.56-cm diameter rods were then gamma phase solution treated at 800°C in a static vacuum. After directional quenching, the bars were aged for 16 hours at 350°C in molten lead. The rods were cut longitudinally into quadrants, and the penetrators were machined from these quadrants. The penetrators were 0.762 cm in diameter, 7.62 cm in length, and 65 grams in weight. The projectiles were fabricated at Battelle Pacific Northwest Laboratories, Richland, Washington.

1.2.2 Launcher. The launcher consisted of a 4.27-m (14-ft), 20-mm smooth bore barrel, and a 30-mm breech, having a length of 18. cm (7 in.). Straight wall cases of the 30-mm Frankford Arsenal type 15-E1 variety were used. The rounds were separately loaded. Electric Primers, M52A3B1, were used.

1.2.3. Sabot. The sabot design consisted of a molded, rag filled phenolic fiber with a square milled hole, followed by a thin, 0.2 cm (.08 in.) steel disc. An aluminum "hat" followed the steel disc which was followed by a plastic polypropelex obturator. Figure 1 shows the steel disc and schematic of the sabot assembly. The total weight of the sabot assembly was 35 grams.

Figure 1. Sabot Assembly

1.2.4. Instrumentation. X-ray instrumentation¹ was used to record the event. The x-ray film images were used to determine the striking velocity and striking yaw.

1.2.5. Firings with IMR 4996 Propellant. The use of IMR 4996 propellant caused rapid acceleration of the launch package resulting in a setback force that exceeded the yield strength of the penetrator material. These conditions caused deformation and fracture of the penetrator material.

¹C. Grabarek and L. Herr, "X-Ray Multi-Flash System for Measurement of Projectile Performance at the Target". Ballistic Research Laboratories Technical Note No. 1634, September 1966 (AD No. 807619).

2. OBJECTIVE

The objective was to find a launcher/sabot/propellant combination for launching the specified DU projectiles at the desired velocity, 1524 m/s, without permanent projectile deformation due to setback forces.

3. APPROACH

The following approach was taken to achieve this objective:

1. Modify sabot design but use the same propellant and launcher.

If (1) proves unsuccessful, request the Interior Ballistics Division (IBD) of BRL to assist in providing a suitable propelling charge.

2. Change propelling charge but use same chamber.

3. Change propelling charge and increase size of chamber.

4. RESULTS

4.1. Sabot Modification

The sabot was modified to provide "cushioning" and to prevent the penetrator from penetrating or perforating the steel pusher disc during setback. The modification included the following:

- a. Increased the number of steel pusher plates to two.
- b. Increased the length of the aluminum "hat" from 0.76 cm to 1.86 cm.
- c. Increased the length of plastic obturator from 1.02 cm to 1.84 cm.

Even with these sabot modifications, permanent deformation of the penetrator owing to setback forces still occurred. The rapid acceleration of the launch package produced by the propellant IMR 4996 was more than could be handled by state-of-the-art sabot modifications; and, consequently, a search for a different propelling charge was in order.

4.2 Propellant Charge

4.2.1. Measuring Pressure During Launch. A copper crusher gage was used to measure the maximum pressure during launch. The copper crusher gage was placed midway into the cartridge. The distance between the gage and the base of the sabot was 24.8 cm. Table 2 lists the chamber pressures and resulting muzzle velocities. Preliminary tests indicate that to achieve a muzzle velocity of 1524 m/s, a chamber pressure of about 454.4 MPa (66,000 psi) is required (test number 5). Maximum pressures may be up to 10% higher than those calculated from the deformation of the copper gages. A 5% increase in pressure would result in chamber pressure of about 482.7 MPa (70,000 psi). Using the estimated value, the pressure on the base of the penetrator, due to setback forces, was estimated to be 1358 MPa, which obviously exceeds the yield strength of DU-3/4 Ti, which is 776. MPa. It was decided to proceed to Step 2 of the approach, namely, search for an improved propelling charge.

4.2.2. Interior Ballistic Computer Simulations and Exploratory Firings. The procedure to obtain the proper propellant charge was handicapped by lack of continuous pressure-time history measurements of the interior ballistic trajectory, such as would be obtained from piezo-electric or resistive type gages and recording equipment. Instead, copper crusher gages were used throughout, and the maximum pressures these devices recorded were coupled with the muzzle velocities to serve as input to the BRL Small Arms Interior Ballistic computer program (SAIB)². The output from this program simulated the interior ballistic trajectories (IBT).

The first simulation computed was that using the IMR 4996 propellant. The maximum gage pressure attained during the simulated high velocity launch was 524 MPa (76,000 psi). The simulation took into account the deterrent coating on the surface of the IMR 4996 propellant. Plots of the simulation are shown in Figures 2, 3, and 4: pressure vs time, pressure vs travel, and velocity-travel-acceleration vs time. The simulation indicated that the peak acceleration exceeded $1.04 \times 10^6 \text{ m/s}^2$, and the average acceleration with time was about $0.37 \times 10^6 \text{ m/s}^2$.

The obvious solution to the problem was to substitute for the IMR 4996 a different propellant which would reduce the peak acceleration, but still deliver the desired velocity. The reduction in the peak acceleration would produce a lower setback force which should not exceed the yield strength of the penetrator. Because the test-firing

² T. R. Trafton, "An Improved Interior Ballistic Model for Small Arms using Deterred Propellants", Ballistic Research Laboratory Report No. 1624, November 1972 (AD 907962L).

Figure 2. Pressure vs Time - IMR 4996

PRESSURE, MP A

Figure 3. Pressure vs Travel - IMR 4996

Figure 4. Velocity-Travel-Acceleration vs Time - IMR 4996

program was already in progress with the test equipment in place, the substitute propellant had to be readily available for immediate use. A Hercules propellant, HC-25-FS, had already been tried as a substitute, and had yielded similarly unsatisfactory results. Examination of a list of IMR-type propellants disclosed two possible candidate propellants, each with a lower relative quickness than IMR 4996. These are compared with IMR 4996 and the reference propellant IMR 4350 as follows:

<u>Propellant</u>	<u>Relative Quickness</u>
IMR 4350 (reference)	100
IMR 4996	51
IMR 8446M	45
IMR 8486M	44

Attempts to locate a quickly available source for these two propellants were unproductive. Therefore, although these two propellants appeared to be promising, further effort for their immediate application was discontinued.

An alternate approach to the choice of a substitute propellant was to examine large caliber propellant compositions and depend on the granulation to deliver the desired performance. Two alternate compositions, M-1 and M-30, were evaluated with the IMR 4996 for their thermochemical characteristics as shown in Table 1. Three readily available lots of the M-1 composition and one lot of M-30 composition were simulated as charges substituting for the IMR 4996 to obtain their predicted interior ballistic performances. Propellant description sheets for these lots were given in Figure 5, 6, 7, and 8. The simulations for the M-1 composition lots gave discouraging results.

Table 1. Selected Thermochemical Characteristics
(Loading Density = 0.2)

Composition Type	Flame Temp (K)	Specific Force (joules/gram)	Ratio of Specific Heats (γ)	Pressure* (MPA)
IMR 4996	2843	994.	1.2452	250.8
M-1	2448	920.	1.2669	236.4
M-30	3007	1075.	1.2414	272.3

*Pressure obtained in a closed bomb determination of a loading density of 0.2.

U.S. Army Lot No.: RAD-E-12-72 Date 10-73 Composition No. M1, MP for 155mm XM164

Manufactured at RADFORD ARMY AMMUNITION PLANT, RADFORD, VA. Packed Amount 122,194 pounds
Contract No. DAAAQ9-71-C-0329 Date 6-30-71 Specification No. MIL-STD-652B and RAMPPD 2010

ACCEPTED BLEND NUMBERS

NITROCELLULOSE

B-14, 431Y, 14,435Y, 14,436Y, 14,453Y, 14,454Y,
and 14,455Y

Nitrogen Content	K1 Starch (65.5°C)	Stability (134.5°C)
Maximum 13.17 %	Mins.	Mins.
Minimum 13.12 %	Mins.	Mins.
Average 13.15 %	45+	30+

Y designates wood sulfite cellulose.

MANUFACTURE OF PROPELLANT

0.62

Pounds Solvent per Pound XDR/Dry Weight Ingredients Consisting of 35 Pounds Alcohol and 65 Pounds Ether per 100 Pounds Solvent

Percentages Refer to Whole 10

ITEM	TEMPERATURES °C	PROCESS-SOLVENT RECOVERY AND DRYING	TIME
	From To		Days Hours
	35	Load Solvent Recovery Tank	
35	55	Increase Solvent Recovery Temperature	6
	55	Hold Solvent Recovery Temperature	30
	65	Water Dry Cycle	24 to 40
	55	Air Dry Cycle	3 to 4

PROPELLANT COMPOSITION * TESTS OF FINISHED PROPELLANT

STABILITY AND PHYSICAL TESTS

Constituent	Percent Formula	Percent Tolerance	Percent Measured	Formula	Actual
Nitrocellulose	85.00	+2.00	84.95	Heat Test, SP, 134.5°C	No CC 40' 60'
Dinitrotoluene	10.00	+2.00	10.27	No Explosion	5 Hrs. Min. 5 Hrs.
Dibutylphthalate	5.00	+1.00	4.78	Form of Propellant	Grain Type I
Total	100.00		100.00	No. of Perforations	7
Diphenylamine (Added)	1.00	+0.20, -0.10	1.04		
Potassium Sulfate (Added)	1.00	+0.30	1.08	Compressibility,	30 Min. 47
Total Volatiles			1.63	percent	
Moisture	0.60	+0.20	0.65		
Residual Solvents	1.05	Max.	0.98		

CLOSED BOMB

PROPELLANT DIMENSIONS (inches)

Type	Lot Number	Temp °F	Relative Quickness, %	Relative Force, %	Specification	Mean Variation in % of Mean Dimensions		
						Length (L)	Dia.	Finished
Test	RAD-E-12-72	+90	101	100	0.330	0.3209	3.25 Max; 1.16	
Standard	RAD-E-4-72	+90	100	100	0.207	0.1428	5.25 Max; 2.39	
Remarks					Perf. Dia. (d)	0.021	0.0149	DATES
FIRE IN ACCORDANCE WITH MIL-STD-286B, METHOD 801.1, IN A NOMINAL SIZE 200CC					WEB:			
CLOSED BOMB.					INNER	0.0385	0.0235	Packed 1/26/73
					OUTER	0.0335	0.0254	Some 1/26/73
					AVERAGE	0.036	0.0245	Test Finished 2/6/73
					Web Difference/ Std. Dev. in % of Web Average	15 Max.	7.4	Offered 2/14/73
					L.D.	2.10 to 2.50	2.25	Description Sheets
					D.	5.0 to 15	9.6	Forwarded 2/22/73

Type of Packing Container Fiber Drums per MIL-STD-652B.

Remarks *Computed on total volatiles, diphenylamine, and potassium sulfate free basis.

This lot meets all requirements of the applicable specification.

Contractor's Representative

P. W. STEELE

P. W. Steele 2-14-73

Government Quality Assurance Representative
JAMES E. BLAND

JAN 19 1973 MARCH 1973

Figure 5. Propellant Description Sheet - RAD-E-12-72

AMC PROPELLANT DESCRIPTION SHEET

(MCP 715-500)

30000X LOT NO. CIL-67338 or COMPOSITION NO. M1 .034 MP (SULF.) FOR M1A2 Propelling Charge for 155 MM Howitzer Cannon V-3 30623)

MANUFACTURED AT: Canadian Industries Limited, Valleyfield, P.Q., Canada
PACKED WEIGHT 441,000 lbs
CONTRACT NO. DAAA-09-69 DATE Dec. 27, 1968 SPECIFICATION NO. MIL-STD-652A Revision G 15 Sept. 1965
C-0313 (MU)

NITROCELLULOSE ACCEPTED BLENDS (Wt.%) C(1) 186 to 221 incl. 223 to 233 incl. 235 to 247 inclusive

NITROGEN CONTENT		R.L. STARCH TEST (135°C)			STABILITY TEST (135°C)		
MAXIMUM	MINIMUM	MAXIMUM	MINIMUM	MINS.	MAXIMUM	MINIMUM	MIN.
13.19	13.10	--	36+	MINS.	30	15	MIN.
AVERAGE	AVERAGE	13.14	36+	MINS.	24	14	MIN.

MANUFACTURER OF PROPELLANT

TOTAL WEIGHT OF SOLVENT PER POUND NO. 0.65 CONSISTING OF 35 POUNDS ALCOHOL AND 65 POUNDS OTHER PER 100 POUND SOLVENT. PERCENTAGE OF REMIX TO WHOLE

TEMPS. °C. FROM	TO	PROCESS-SOLVENT RECOVERY AND DRYING	TIME	
			DAYS	HOURS
25	65	Solvent Recovery		80 Hrs. & Cool
65	65	Water Dry		108 Hours
55	55	G.C.		10 Hours

TESTS OF FINISHED PROPELLANT

COMPOSITION		STABILITY AND PHYSICAL TESTS			
CONSTITUENT	Formula	MFR.	INSPR.	MFR.	INSPR.
Nitrocellulose	85.00 ± 2.00	84.40		135°C HEAT TEST, S.P.	55 50
Uninitrotoluene	10.00 ± 2.00	9.91		(EXPLOSION)	5+ 5+
Dibutylphthalate	5.00 ± 1.00	5.69		FORM OF GRAIN	M.P.
Diphenylamine(Added)	1.00 ± 0.10	0.98		NO. OF PERFORATIONS	7
Pot. Sulfate(Added)	1.00 ± 0.30	1.04		NO. OF GRAINS PER POUND	1576
Residual Solvent	1.26 (Max.)	0.37		BURNING SURFACE PER POUND (sq. inches)	753
TOTAL VOLATILE	2.06 (Max.)	1.07		GRAV. DENSITY, OR POUNDS PER CU. FT.	--
MOISTURE	0.60 ± 0.20	0.70		SPECIFIC GRAVITY	--
ASH	N/A	—		HYGROSCOPICITY (1.35 Max.)	1.13
				COMPRESSION TEST (30% Min.)	32.8

GRAIN DIMENSIONS	DIE (Inches)	FINISHED GRAIN (Inches)		STD. DEVIATION IN PER CENT OF MEAN DIMENSIONS	
		MANUFACTURER	INSPECTOR	MANUFACTURER	INSPECTOR
LENGTH (L)	0.480	0.4341		2.05	
DIAMETER (D)	0.264	0.1886		1.80	
DIAMETER OF PERFORATIONS (P)	0.025	0.0176			
INNER	0.0490	0.0338			
OUTER	0.0455	0.0340			
WEB	AVERAGE	0.0339			
CALCULATED		—			
DIFFERENCE BETWEEN INNER AND OUTER		—			
WEB IN PER CENT OF WEB AVERAGE		+0.59			
L:D (Y)		2.30			
D:d (X)		10.72			

DATE PACKED May 21, 1969 DATE OFFERED May 23, 1969 DATE SAMPLED May 23, 1969

TEST FINISHED June 2, 1969 DATE DESCRIPTION SHEETS FORWARDED June 2, 1969

TYPE OF PACKING BOX Fibre drums ICC Specification 21C

REMARKS: This lot meets the chemical and physical requirements of Specification MIL-STD-652A (MU) dated 15 September 1965. Accepted subject to gun proof.

SUPERINTENDENT *D.M. MacLean* QU. REF. *G. Laramée* CHEMIST *G.E. Hallette*
(D.M. MacLean) (G. Laramée) (G.E. Hallette)

Figure 6. Propellant Description Sheet - CIL-67338

U S ARMY LOT NO BAJ-67782 or Cannon Propellant Charge M-3A1(GB) for use in 155 mm, M3A1 Howitzer Cannon (V3-30619)		M-1	FOR 155 mm Howitzer
MANUFACTURED AT:	Badger Army Ammunition Plant		
CONTRACT NO.	DAAA09- 69-C-0014	DATE 1 Sept. 1968	SPECIFICATION NO. MIL-P- 60416 (MU)
		PACKED WEIGHT 300,090 lbs REVISION OF EOPA 47035-S	
ACCEPTED BY	(PULP) B10, 301, 310, C10, 639, 640, 641-42A&B, 643-44A&B, 645-649, 652- 657, 659, 660, 663, 664, 666-670, 672, 674, 676		
NITROGEN CONTENT		65.5% KI TEST	STABILITY TEST 134.5°C.
MAXIMUM	x 13.18	MAXIMUM 45 MINS.	MAXIMUM 35 MINS.
MINIMUM	x 13.12	MINIMUM 45 MINS.	MINIMUM 30 MINS.
AVERAGE	x 13.14	AVERAGE 45 MINS.	AVERAGE 30 MINS.

MANUFACTURER OF PROPELLANT		0.55 - 0.65	CONSISTING OF	36	POUNDS ALCOHOL AND	64
TOTAL WEIGHT OF SOLVENT PER POUND NC POUNDS OTHER PER 100 POUND SOLVENT. PERCENTAGE OF REMIX TO WHOLE						
TEMPS. °C.		PROCESS-SOLVENT RECOVERY AND DRYING		TIME		
FROM	TO			DAYS	HOURS	
40	55	Solvent Recovery		1	8	
	60	Water Dry		1/2 - 1		
	55	Air Dry			0-5	

TESTS OF FINISHED PROPELLANT						
COMPOSITION	FORMULA	INSPR.	STABILITY AND PHYSICAL TESTS			
CONSTITUENT *	FORMULA XXX	INSPR.	Minutes (Min.)	MFR.	INSPR.	
Nitrocellulose	85.00 ± 2.00	84.86	HEAT TEST / 120°C <input type="checkbox"/> 134.5°C <input checked="" type="checkbox"/>	40	50	
Dinitrotoluene	10.00 ± 2.00	10.12	No EXPLOSION Hours (Min.)	5	5+	
ibutylphthalate	5.00 ± 1.00	5.02	FORM OF GRAIN TYPE II	Cyl.	Cyl.	
TOTAL		100.00	NO. OF PERFORATIONS	1	1	
Diphenylamine (Added)	1.00 ± 0.10	1.00	NO. OF GRAINS PER POUND			
Potassium Sulfate (Added)	1.00 ± 0.30	0.94	BURNING SURFACE PER POUND (sq. inches)			
TOTAL VOLATILES			GRAV. DENSITY, OR POUNDS PER CU. FT.			
MOISTURE	0.60 ± 0.20	0.68	SPECIFIC GRAVITY			
ASH			HYGROSCOPICITY			
Residual Solvent	0.88	Max.	COMPRESSION TEST			

GRAIN DIMENSIONS	DIE (Inches)	FINISHED GRAIN (Inches)		MEAN VARIATION IN PER CENT SPEC'S. OF MEAN DIMENSIONS	
		XXXXXX	XXXXXX	XXXXXX	XXXXXX
LENGTH (L)	0.2220			0.2226	6.25
DIAMETER (D)	0.0700			0.0518	6.25
DIAMETER OF PERFORATIONS (d)	0.0300			0.0169	
INNER					
WEB {					
OUTER					
AVERAGE	0.0200			0.0175	
CALCULATED Web Standard Deviation					
WEB IN PER CENT OF WEB AVERAGE		20% Max.	12.12		
L:D (Y)		3.0 - 6.0	4.30		
D:d (x)		Approx. 3	3.07		

DATE PACKED	7/1/70	DATE OFFERED		DATE SAMPLED	7/17/70
DATE TEST FINISHED	7/8/70	DATE DESCRIPTION SHEETS FORWARDED			7/8/70
TYPE OF PACKING BOX	Fiber Drums				
REMARKS: *Computed on T.V., Diphenylamine and Potassium Sulfate free basis. This lot meets all the chemical and physical requirements of the applicable specifications					
ON:	FSN				
LABORATORY SUPERINTENDENT	XXXXXXXXXXXXXX	TECHNICAL DIRECTOR (ACTING)	XXXXXXXXXXXXXX	U.S. CHEMIST	
R. J. Thiel / P. Conroy	R. D. Burchard			Ronald E. Wahlgren	

SMU FORM 1047 MAR 1968 REPLACES AMC FORM 1047, WHICH IS TO BE USED UNTIL SUPPLIES ARE EXHAUSTED

Figure 7. Propellant Description Sheet - BAJ-67782

PROPELLANT DESCRIPTION SHEET

U.S. Army Lot No. RAD-69315 Lot 10 75 Composition No. M30, f/Ctg., TPDS-T, M724E1 f/105MM, M68

Manufactured at RADFORD ARMY AMMUNITION PLANT, RADFORD, VA. Packed Amount 310.545 Pounds
Contract No. DAAA09-71-C-0329 Date 6-30-71 Specification No. MIL-P-48154

ACCEPTED BLEND NUMBERS

NITROCELLULOSE

A-35,475; 35,476, 35,477, 35,478, 35,482

	Nitrogen Content	KI Starch (65.5°C)	Stability (134.5°C)
Maximum	12.61%	Min.	Min.
Minimum	12.51%	Min.	Min.
Average	12.54%	45+	30

Explosion Min.

MANUFACTURE OF PROPELLANT

0.22 Pounds Solvent per Pound Dry Weight Consisting of 60 Pounds Alcohol and 40 Pounds Acetone per 100 Pounds Solvent

10 Percentages Refer to Whole

TEMPERATURES °F	From	To	PROCESS-SOLVENT RECOVERY AND DRYING	TIME
Ambient	140		Load Forced Air Dry at ambient temperature	
140	140		Increase temperature 5°F per hour	
			Hold at temperature	36

PROPELLANT COMPOSITION			TESTS OF FINISHED PROPELLANT STABILITY AND PHYSICAL TESTS		
Constituent	Percent Formula	Percent Tolerance	Percent Measured	Formula	Actual
Nitrocellulose	28.00	+1.30	28.77	Heat Test, SP, 120°C	No CC 40'
Nitroglycerin	22.50	+1.00	22.26	No Fumes	NF 60'
Nitroguanidine	47.70	+1.00	47.15	Form of Propellant	Cyl'd.
Ethyl Centralite	1.50	+0.10	1.48	No. of Perforations	7
Cryolite	0.30	+0.10	0.34		
TOTAL	100.00		100.00		
Total Volatiles	0.50	Max.	0.19		
Graphite Glaze	0.2	Max.	0.16		

CLOSED BOMB

PROPELLANT DIMENSIONS (inches)

Type	Lot Number	Temp °F	Height Gauge	Height Force	Specification	Dia.	Finished	Mean Variation in % of Mean Dimensions	
								Spec.	Size
					L-10-111	0.395	0.3977	±25 Max.	2.40
	RAD-69315	+90	96.08	100.00	Diameter (D)	0.192	0.1709	±25 Max.	1.83
Standard	E-32	+90	100.00%	100.00%	Perf Dia. (d)	0.020	0.0153		
Remarks					Web			DATES	
FIRED IN ACCORDANCE WITH MIL-STD-286B,					Inner	0.0355	0.0294	Packed	2/1/75
METHOD 801.1.1 IN A NOMINAL SIZE 200CC					Outer	0.0305	0.0340	Sampled	2/1/75
CLOSED BOMB. TEST FOR INFORMATIONAL PURPOSES ONLY.					Average	0.033 Nom.	0.0330	Test Finished	27/2/75
					1/2 Difference/ 10% Dev. in % of Test Average	15 Max.	14.7	Offered	2/18/75
					L.D.	2.10 to 2.50	2.33	Description Sheets Forwarded	2-21-75
					d	5.0 to 15	11.2		

Fiber Drums per MIL-STD-652C, with Notice 1.

Type of Packing Container This lot meets all requirements of the applicable specifications.

Remarks

Contractor's Representative

J. K. MULLER

011 7/11/75 *[Signature]* Government Quality Assurance Representative *[Signature]*

Figure 8. Propellant Description Sheet - RAD-69315

However, the simulations for the M-30 composition lot were more promising. Purposefully the smallest readily available web for an M-30 lot was chosen; this was lot RAD 69315 which was produced for the M724E1 round to be fired from the 105mm, M68, tank gun. The propellant description sheet is given in Figure 8. The average web was 0.805 mm (0.0317 inch) with a seven-perforation cylindrical geometry. The initial propellant gas production, pressure, and projectile acceleration were less than those of the IMR 4996 because the initial total surface area of the charge was less than that of the IMR propellant. The desired velocity level of 1524 m/s was expected at a maximum pressure of about 400 MPa (58,000 psi). The simulation predicted a maximum acceleration of $0.747 \times 10^6 \text{ m/s}^2$, with an average acceleration of about $0.312 \times 10^6 \text{ m/s}^2$. This performance was to be expected from the progressive burning resulting from the multi-perforated geometry instead of from a deterrent coating on a single-perforated geometry. In addition, the M-30 propellant is a more energetic composition. As an ignition aid for the M-30 propellant charge, 1.3 - 2.0 grams of Class V black powder was selected. Plots of the M-30 simulation are shown in Figures 9, 10, and 11: pressure vs time, pressure vs travel, and velocity-travel-acceleration vs time. Further calculations by Terminal Ballistics Division personnel indicated that the penetrators should withstand these launch conditions.

A quantity of this M-30 composition, lot RAD-69315, was obtained and tested. The results were encouraging, but not completely successful. The desired velocity was not attained; however, for similar charge weights, the M-30 propellant showed a higher velocity/pressure ratio than the IMR 4996 or the HC-25-FS. The calculated ballistic efficiencies of the M-30 tests were much lower than that of the simulation, 0.17 as opposed to 0.23. In order to improve the ignition and combustion of the charge in the real system and thereby obtain a higher efficiency, a reduction in the web size of the propellant was required. Three small lots of experimental multi-perforated M-30 propellant were readily available. They had been manufactured for a reduced scale gun and had webs respectively of 0.33 mm (0.0128 in.), 0.37 mm (0.0147 in.), and 0.40 mm (0.0156 in.)². If any of these lots were used alone as the substitute charge, it would result in extremely high pressure and acceleration. However, if one were mixed in suitable proportions with the larger web M-30, the resulting charge should result in improved ignition, combustion, and ballistic efficiency. Mr. Grollman and Mr. Baer³ of the Ballistic Research Laboratory recommended that a single propellant with a single web size be used for efficient burning. This type of propellant was not available, however, the desired results could be achieved but with less efficiency with propellant mixtures having different web sizes.

²G. Samos, B. Grollman, and J. Schmidt, "Initial Firing Test Results of the 35mm Scaled Model of the 105mm M68 Tank Gun", Ballistic Research Laboratory Memorandum Report No. ARBRL-MR-02804, January 1978 (ADA051050).

³B. Grollman and P. Baer, "Theoretical Studies of the Use of Multi-Propellants in High Velocity Guns", Ballistic Research Laboratories Report No. 1411, August 1968 (AD839855).

Figure 9. Pressure vs Time - M30

Figure 10. Pressure vs Travel - M30

Figure 11. Velocity-Travel-Acceleration vs Time - M30

A quantity of the 0.37-mm (0.0147-in.) web M-30 propellant, lot RAD-E-30, was obtained for this purpose. The propellant description sheet is attached as Figure 12.

A charge establishment firing series was conducted with increasing charges of increasing ratios of small to large web propellants. This resulted in a charge establishment of M-30 composition with multi-perforated granulation which gives the desired velocity levels without penetrator damage.

A charge weight of 129.7 grams (0.286 lb) with the following proportions produced a muzzle velocity of 1525 m/s (5003 ft/s) with a maximum copper-crusher gage pressure of 433 MPa (62,800 psi).

	<u>Percent</u>
M-30, Lot RAD-E-30, 0.37-mm web	38.
M-30, Lot RAD-E-69315, 0.81-mm web	61.
Black Powder Class V	1.

Figures 13 and 14 are radiographs of the launchings resulting from using propellant IMR 4996 and the improved propellant charge, respectively. The latter charge does no damage to the penetrator. Additional test firings of similar charges have produced satisfactory results.

4.3 Summary of Results

- a. Sabot modification alone was incapable of protecting the penetrator from plastic deformation during launch.
- b. The search for a propelling charge to solve this problem was successful.
- c. The third step in the APPROACH, a modified launcher, was not undertaken because other gun systems were not readily available. The acquisition time would have severely delayed ARAP in its contractual effort. However, the 26-mm smooth bore barrel and 37-mm breech gun system at BRL's Terminal Ballistics Division regularly launches these DU penetrators successfully at 1524 m/s. Thus, had time permitted, the launch problem could have been solved by installation of such a gun system.
- d. Table 2 gives the sequence of events and the test results. Firings 1 thru 26 failed to provide a solution, that is, the penetrator was: (1) not deformed but too low a muzzle velocity, (2) slightly deformed at higher muzzle velocities, or (3) grossly deformed at muzzle velocities approaching 1524 m/s. Figure 13 shows a grossly deformed and fractured penetrator launched at a velocity of 1534 m/s (5032 ft/s), Figure 14 shows an undeformed penetrator launched at a velocity of 1530 m/s (5020 ft/s). Firings 27 thru 31 are successful launches.
- e. The 20 firings for record for ARAP were all successful launches.

PROPELLANT DESCRIPTION SHEET

Lot No. RAD-E-30 of 10 73 Composition No. M30, MP f/105mm M68, 35mm Scaled

Manufactured at RADFORD ARMY AMMUNITION PLANT, RADFORD, VA. Packed Amount 269 Pounds
Contract No. DAAAQ9-71-C-0329 Date 6-30-71 Specification No. COR Letter SMURO-IE dated
2 March 1973

ACCEPTED BLEND NUMBERS

NITROCELLULOSE

A-35,332	Nitrogen Content	Et. Strength (122°C)	Stability (124.5°C)
	Maximum	Max.	Max.
	Average	45+	30+

MANUFACTURE OF PROPELLANT

0.22 Pounds Solvent per Pound Avg./Dry Weight Ingredients Consisting of 60 Pounds Alcohol and 40 Pounds Acetone per 100 Pounds Solids

Percentage Basis to Vehicle

10

TEMPERATURES °F	PROCESS-SOLVENT RECOVERY AND DRYING	TIME
From	To	
	Load Forced Air Dry at Ambient Temperature	
Ambient	Increase Temperature 5°F Per Hour	
140	Hold at Temperature	24

TESTS OF FINISHED PROPELLANT

STABILITY AND PHYSICAL TESTS

PROPELLANT COMPOSITION	Percent Formula *	Percent Resistance *	Percent Measured	Formula *	Actual
Constituent					
Nitrocellulose	28.00	±1.30	28.48	Imp. Test, SP, 120°C	No CC 40' 60'
Triglycerin	22.50	±1.00	22.81	No Fumes	60'
Croquandine	47.70	±1.00	46.90	Form of Propellant	Cyl'd,
Ethyl Centralite	1.50	±0.10	1.53	No. of Perforations	7
Cryolite	0.30	±0.10	0.28		
TOTAL			100.00		
Total Volatiles	0.50	Max.	0.27		
Graphite Glaze	0.2	Max.	0.08		

CLOSED BOMB

PROPELLANT DIMENSIONS (inches)

Lot Number	Temp °F	Relative Ounces/gram	Relative Force		Specification	DIA	Length	More Variation in % of Mean Dimension	
								Spec.	Max.
Test					Length(L)	0.2070	0.2065	6.25 Max.	1.74
					Diameter(D)	0.0990	0.0943	6.25 Max.	2.60
Bomberd	100.00%	100.00%			Part DIA (d)	0.0160	0.0123		
					Web Inner	0.0205	0.0096		
					Web Outer	0.0085	0.0198	Machined	10/5/73
					Web Avg.	0.0142	0.0147	Sampled	10/5/73
					Nom. Avg. Web	0.0152		Test Sampled	10/17/73
					Web Difference/ Std Dev in % of Web Average	15 Max.*	70	Discarded	10/18/73
					L.D	2.10 to 2.50*	2.19	Description Sheet For Forwarding	
					D.G	5.0 to 15*	7.6		10/25/73

Type of Packing Container Fiber Drums per MIL-STD-652B.

P-marks

limits from MIL-STD-652B w/EO PA-56070-2 and EO PA-57189-2 shown for information only. Propellant produced on a best effort basis in accordance with referenced COR letter.

20

Contractor's Representative

H. E. BISHOP *10/22/73* TAMEC 6712 AND 071-1

Figure 12. Propellant Description Sheet - RAD-E-30

Figure 13. Radiograph Of A Penetrator Launched At
1534 m/s using IMR 4996 Propellant.

TOP VIEW

SIDE VIEW

Figure 14. Radiograph Of A Penetrator Launched At
1530 m/s using Improved Propellant Charge

Table 2. Sequence of Events and Test Results

Shot Number	Launch Weight g	Propellant Type		Chamber Length cm		Muzzle Velocity m/s		Sabot Type	Remarks
		Weight g	g	Pressure MPa	MPA	-	-		
1	99.5	IMR 4996	74.5	17.78	142.0	-	-	Original	WA Rod - ND
2	99.7	IMR 4996	81.0	17.78	232.4	-	-	Original	WA Rod-VSDAE
3	99.8	IMR 4996	90.7	17.78	399.2	1386	Original	WA Rod	- ND
4	99.6	IMR 4996	97.2	17.78	488.2	-	-	Original	WA Rod - ND
5	99.2	IMR 4996	106.9	20.32	454.4	1534	Original	DU Rod	- RF
6	99.4	IMR 4996	113.4	20.32	524.7	1366	Original	DU Rod	- RF
7	99.8	IMR 4996	100.4	20.32	439.9	1443	Original	DU Rod	- RF
8	99.5	HC-25-FS	107.6	20.32	456.4	1496	Original	DU Rod	- RF
9	99.6	HC-25-FS	90.7	20.32	180.6	1224	Original	DU Rod	- RF
10	99.8	HC-25 FS	103.7	22.86	-	1264	Original	DU Rod	- ND
11	99.4	HC-25-FS	116.6	22.86	279.2	1408	Original	DU Rod	- ND
12	100.7	HC-25-FS	123.1	22.86	367.5	1450	Original	DU Rod	- ND
13	108.1	HC-25-FS	132.8	22.86	482.7	1479	Original 2 plastic discs	DU Rod	- VSDAE

D - Deformation

ND - No Deformation

VSDAE - Very Slight Deformation - AFT End

R.F. - Rod Fractured

Table 2. Sequence of Events and Test Results (Cont'd)

Shot Number	Launch Weight g	Propellant Type	Weight g	Chamber		Muzzle Velocity m/s	Sabot Type	Remarks
				Length cm	Pressure MPa			
14	109.1	HC-25-FS	132.8	22.86	483.3	1470	Original + DU Rod - VSDAE 2 steel discs	
15	109.2	HC-25-FS	139.3	22.86	-	1390	Long hat 2 steel discs	RF, DU Rod
16	108.2	Blk pwdr 1.3g, lot CIL-7-5, MP 30, .805mm web lot RAD 69315	110.2	22.86	180.0	1205	Long hat + 2 steel discs	ND, DU Rod
17	107.8	same as 16, blk pwdr wgt held constant	114.0	22.86	174.4	1259	Long hat 2 steel discs	Du Rod - ND
18	107.9	Same as 16, blk pwdr wgt held constant	119.2	22.86	242.7	1308	Long hat 2 steel discs	ND, DU Rod
19	107.5	Same as 16, blk pwdr wgt held constant	117.9	22.86	192.4	1289	Long hat 2 steel discs	ND, DU Rod
20	107.8	1.94g blk pwdr, same M30 wgt as #19	118.7	22.86	182.0	1303	Long hat 2 steel discs	ND, DU Rod

Table 2. Sequence of Events and Test Results (Cont'd)

Shot Number	Launch Weight <u>g</u>	Propellant Type	Weight <u>g</u>	Chamber		Muzzle Velocity <u>m/s</u>	Sabot Type	Remarks
				Length <u>cm</u>	Pressure <u>MPA</u>			
21	107.9	64.8g IMR 4996	123.1 58.3g	22.86	428.9	1484	Long Hat 2 steel discs	ND, DU Rod
22	107.9	1.3g Blk Pwdr M30, Web, M30, Web	114.7 102.1g .805mm .34g .386mm Web	22.86	153.1	1220	Long Hat 2 steel discs	ND, DU Rod
23	108.0	1.3g Blk Pwdr 105g M30, .805mm web 11.66g M30, .386mm	117.9	22.86	217.9	1217	Long Hat 2 steel discs	ND, DU Rod
24	107.8	1.3g Blk Pwdr 103.7g M30, .806mm web 14.6g M30 .386mm web	119.6	22.86	227.5	1366	Long Hat 2 steel discs	ND, DU Rod
25	107.0	1.3g Blk Pwdr 93.3g M30 .806mm web 23.3g M30	117.9	22.86	237.2	1370	Long Hat 2 steel discs	ND, DU Rod
26	108.2	1.3g Blk Pwdr 86.2g M30 .386mm web	124.4	22.86	337.9	1470	Long Hat 2 steel discs	ND, DU Rod

Table 2. Sequence of Events and Test Results (Cont'd)

Shot Number	Launch Weight g	Propellant Type	Weight g	Chamber Length cm		Pressure MPa	Muzzle Velocity m/s	Sabot Type	Remarks
				cm	MPa				
27	107.6	1.3g Blk Pwdr	128.9	22.86	444.7	1527	Long Hat 2 steel discs	ND	
		.806mm web	49.2g						
		M30, .286mm web							
28	107.6	1.3g Blk Pwdr	133.5	22.86	474.4	1559	Long Hat 2 steel discs	ND	
		.829g M30, .806mm web	49.3g						
		M30, .386mm web							
29	108.1	1.3g Blk Pwdr	128.9	22.86	404.0	1509	Long Hat 2 steel discs	ND	
		.806mm web, 49.2g							
		M30, .386mm web							
30	107.7	1.3g Blk Pwdr	129.6	22.86	443.3	1525	Long Hat 2 steel discs	ND	
		.791g M30, .806mm web, 49.2g							
		M30, .386mm web							
31	100.8	Same as 30	129.6	22.86	433.0	1530	Original	ND	

5. RECOMMENDATIONS

1. A single propellant with a uniform grain size and web should be designed and produced for future firing tests of an extended nature.
2. The propellant search undertaken here should be extended to the TBD 26-mm barrel/37-mm breech gun system to provide even higher launch velocities at tolerable pressure levels.
3. The Test and Instrumentation Division, Technical Support Directorate, ARRADCOM range with its new capability should be employed by BRL to reduce backlogged firing programs.

REFERENCES

1. C. Grabarek and L. Herr, "X-Ray Multi-Flash System for Measurement of Projectile Performance at the Target", Ballistic Research Laboratories Technical Note No. 1634, September 1966 (AD No. 807619).
2. T. R. Trafton, "An Improved Interior Ballistic Model for Small Arms Using Deterred Propellants", Ballistic Research Laboratory Report No. 1624, November 1972 (AD No. 907962L).
3. G. Samos, B. Grollman, and J. Schmidt, "Initial Firing Test Results of the 35-mm Scaled Model of the 105-mm M68 Tank Gun", Ballistic Research Laboratory Memorandum Report No. ARBRL-MR-02804, January 1978 (AD No. A051050).
4. B. Grollman and P. Baer, "Theoretical Studies of the use of Multi-Propellants in High Velocity Guns", Ballistic Research Laboratory Report No. 1411, August 1968 (AD No. 839855).

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	2	Commander US Army Materiel Development and Readiness Command ATTN: DRCRD-W, J. Corrigan 5001 Eisenhower Avenue Alexandria, VA 22333
1	Director Defense Advanced Research Projects Agency ATTN: Tech Info 1400 Wilson Boulevard Arlington, VA 22209	3	Commander US Army Armament Research and Development Command ATTN: DRDAR-LC, Dr. J. Frasier DRDAR-LCF, G. Demitack DRDAR-LCA, G. Randers-Pehrson Dover, NJ 07801
1	Deputy Assistant Secretary of the Army (R&D) Department of the Army Washington, DC 20310	2	Commander US Army Armament Research and Development Command ATTN: DRDAR-SC Dr. D. A. Gyorog Dr. E. Bloore Dover, NJ 07801
1	HQDA (DAMA-ARP) Washington, DC 20310	6	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSD-TS COL D. F. Wright Mr. R. Vecchio Mr. C. Fulton Mr. D. Boyle DRDAR-TSS (2 cys) Dover, NJ 07801
1	HQDA (DAMA-MS) Washington, DC 20310	1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299
1	Commander US Army BMD Advanced Technology Center ATTN: BMDATC-M, P. Boyd P. O. Box 1500 Huntsville, AL 35807	1	Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189
2	Commander US Army Engineer Waterways Experiment Station ATTN: Dr. P. Hadala Dr. B. Rohani P. O. Box 631 Vicksburg, MS 39180		
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E P. O. Box 209 St. Louis, MO 63166	5	Commander US Army Materials and Mechanics Research Center ATTN: DRXMR-T Dr. A. F. Wilde Dr. J. Mescall DRXMR-ATL Watertown, MA 02172
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Commander US Army Research Office ATTN: Dr. E. Saibel P. O. Box 12211 Research Triangle Park NC 27709
1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002
1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703	1	Office of Naval Research ATTN: Code ONR-439, N. Perrone Department of the Navy 800 North Quincy Street Arlington, VA 22217
1	Commander US Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35809	3	Commander Naval Air Systems Command ATTN: AIR-604 Washington, DC 20360
1	Commander US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35809	3	Commander Naval Ordnance Systems Command ATTN: ORD-9132 Washington, DC 20360
1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-UL Warren, MI 48090	2	Commander Naval Air Development Center, Johnsville Warminster, PA 18974

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander Naval Missile Center Point Mugu, CA 93041	1	ASD (XROT, Gerald Bennett; ENFTV, Martin Lentz) Wright-Patterson AFB, OH 45433
1	Commander and Director David W. Taylor Naval Ship Research & Development Ctr Bethesda, MD 20084	3	Director Lawrence Livermore Laboratory ATTN: Dr. R.H. Toland, L-424 Dr. M. L. Wilkins Dr. R. Werne Livermore, CA 94550
1	Commander Naval Surface Weapons Center ATTN: Code TX, Dr. W.G.Soper Dahlgren, VA 22448	1	Headquarters National Aeronautics and Space Administration Washington, DC 20545
2	Commander Naval Surface Weapons Center Silver Spring, MD 20910	1	Director Jet Propulsion Laboratory ATTN: Lib (TD) 4800 Oak Grove Drive Pasadena, CA 91103
3	Commander Naval Weapons Center ATTN: Code 3835 Code 5114, Dr. E. Lundstrom Code 3813, Mr. M. Backman China Lake, CA 93555	4	Director National Aeronautics and Space Administration Langley Research Center Langley Station Hampton, VA 23365
3	Commander Naval Research Laboratory ATTN: Mr. W. J. Ferguson Dr. C. Sanday Dr. H. Pusey Washington, DC 20375	1	Director National Aeronautics and Space Administration Manned Spacecraft Center ATTN: Lib Houston, TX 77058
1	Superintendent Naval Postgraduate School ATTN: Dir of Lib Monterey, CA 93940	1	Aeronautical Research Assoc. of Princeton, Inc. 50 Washington Road Princeton, NJ 08540
2	ADTC/DLJW (Mr. W. Cook; Ms. C. Westmoreland) Eglin AFB, FL 32542		
1	AFML/LLN (Dr. T. Nicholas) Wright-Patterson AFB, OH 45433		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
2	Aerospace Corporation ATTN: Mr. L. Rubin Mr. L. G. King 2350 E. El Segundo Blvd. El Segundo, CA 90009	3	Honeywell, Inc. Government & Aerospace Products Division ATTN: Mr. J. Blackburn Dr. G. Johnson Mr. R. Simpson 600 Second Street, NE Hopkins, MN 55343
1	Boeing Aerospace Company ATTN: Mr. R. G. Blaisdell (M.S. 40-25) Seattle, WA 98124	1	Kaman Sciences Corporation ATTN: Dr. P. Snow 1500 Garden of the Gods Rd Colorado Springs, CO 80933
1	Effects Technology Inc. 5383 Hollister Avenue P. O. Box 30400 Santa Barbara, CA 93105	1	Lockheed Corporation ATTN: Dr. C.E. Vivian Department 8114 Sunnyvale, CA 94087
1	Falcon R&D ATTN: Mr. R. Miller 109 Inverness Drive, E. Englewood, CO 80112	1	Materials Research Lab, Inc. 1 Science Road Glenwood, IL 60427
1	FMC Corporation Ordnance Engineering Div. San Jose, CA 95114	1	McDonnell-Douglas Astronautics Co. ATTN: Mail Station 21-2 Dr. J. Wall 5301 Bolsa Avenue Huntington Beach, CA 92647
1	General Electric Company Armament Systems Dept. Burlington, VT 05401	1	Pacific Technical Corp. ATTN: Dr. F.K. Feldmann 460 Ward Drive Santa Barbara, CA 93105
1	President General Research Corporation ATTN: Lib McLean, VA 22101	2	Physics International Company ATTN: Dr. D. Orphal Dr. E. T. Moore San Leandro, CA 94577
1	Goodyear Aerospace Corporation 1210 Massillon Road Akron, OH 44315		
1	H. P. White Laboratory Bel Air, MD 21014		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Rockwell International Autonetics Missile Sys Div ATTN: Dr. W.T. Armburst 4300 E. 5th Avenue Columbus, OH 43216	1	Forrestal Research Center Aeronautical Engineering Lab Princeton University ATTN: Dr. A. Eringen Princeton, NJ 08540
3	Sandia Laboratories ATTN: Dr. W. Herrmann Dr. L. Bertholf Dr. J.W. Nunziato Albuquerque, NM 87115	3	Southwest Research Institute Dept of Mechanical Sciences ATTN: Dr. U. Lindholm Dr. W. Baker Dr. P. H. Francis 8500 Culebra Road San Antonio, TX 78228
1	Science Applications, Inc. 101 Continental Boulevard Suite 310 El Segundo, CA 90245	3	SRI International ATTN: Dr. L. Seaman Dr. D. Curran Dr. D. Shockey 333 Ravenswood Avenue Menlo Park, CA 94025
1	Science Applications, Inc. ATTN: G. Burghart 201 W. Dyer Road (Unit B) Santa Ana, CA 92707	2	University of Arizona Civil Engineering Dept. ATTN: Dr. D. A. DaDepo Dr. R. Richard Tucson, AZ 85721
2	Systems, Science, and Software, Inc. ATTN: Dr. R. Sedgwick Ms. L. Hageman P. O. Box 1620 La Jolla, CA 90238	4	University of California ATTN: Dr. R. Karpp Dr. J. Dienes Dr. L. Germain Dr. B. Germain Los Alamos, NM 87545
1	US Steel Corporation Research Center 125 Jamison Lane Monroeville, PA 15146	1	University of Dayton Dayton Research Institute ATTN: Mr. H. F. Swift Dayton, OH 45405
1	Drexel University Dept of Mech Engineering ATTN: Dr. P. C. Chou 32nd and Chestnut Streets Philadelphia, PA 19104	2	University of Delaware Dept of Mechanical Engineering ATTN: Prof. J. Vinson Dean I. Greenfield Newark, DE 19711
1	New Mexico Institute of Mining and Technology ATTN: TERA Group Socorro, NM 87801		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>
1	University of Denver Denver Research Institute ATTN: Mr. R. F. Recht 2390 S. University Boulevard Denver, CO 80210

Aberdeen Proving Ground

Dir, USAMSA
ATTN: DRXSY-D
DRXSY-MP, H. Cohen
Cdr, USATECOM
ATTN: DRSTE-TO-F
Mr. S. Keithley
Dir, USACSL, Bldg. E3516, EA
ATTN: DRDAR-CLB-PA

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number _____

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: _____

Telephone Number: _____

Organization Address:

