Full step feasibility property

- The Nariton Step DXnt has the property that $X^{\dagger} = X+1 \cdot DXNT$ A $(X+DXNT) = b \Rightarrow AX^{\dagger} = b$.

It follows that if a step of largeth the is taken asky the Naviton step DXNT, the following iterate will be feasible and the Newton step becomes a feasible direction.

$$F_{pri}^{\dagger} = A \left(x + t \Delta x_{nt} \right) - b = (x + t) (Ax - b)$$

$$= (x + t) F_{pri}.$$

$$To general, \qquad F_{pri}^{(k)} = \begin{pmatrix} k - 1 \\ T \\ 1 = 0 \end{pmatrix} F_{pri}^{(0)}.$$

Once a full step is taken (t=1), all futher stepostes are primal feasible.

Infansible stert Newton method
given a starting point x + domf, 1,
tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$. $\beta \in (6, 1)$
repeat 1. Compute the Venton Step DXnt, DVnt
2. Backfracking line search on $ r _Z$.
$t := $ while $\int +(x+t\Delta x_{nt}, v+t\Delta v_{nt}) _{Z}$
$\frac{(1-\alpha t)f(x)}{(1-\alpha t)f(x)} > (1-\alpha t) r(x,y) _2$
U:=BU.
3. update x:=x+taxnt. V:= U+ts/n
Until Ax=b and $ r(x,u) _2 \le \epsilon$.
The true search is carried out using. The true search is carried out using. The true search is carried out using.
of the vestidual, instead of

the norm of the restdual, instead of the function value f.

The main advantage of the intensible start Newton method is in the initialization - The (fengible) Newton method has to find a $x^{(0)} \in domf$, st. $Ax^{(0)} = b$ to start with. Example. monimize - 5 lag 8: $S_i t_i$ $Ax = b_i$ Find an intral point $\chi^{(b)} > 0$, $A\chi^{(b)} = b$. => equivalent to solving a feasibility problem of a standard form LP. Alternatively, try the Infersible start Newton method with $x^{(0)} = 1 \in dom f$.

Solving KKT system

$$\begin{bmatrix}
H & AT \\
A & D
\end{bmatrix}
\begin{bmatrix}
V \\
N
\end{bmatrix} = -\begin{bmatrix} 9 \\
h \end{bmatrix}$$

$$H > 0. A full rank.$$

$$H > 0. A is full rank.$$

Ex. fun= = = xTpx + gxfr.

HWIT b, Problem 1 has been updated.