Khôlles: Semaine 24

- 01 - 05 Avril 2024 -

Sommaire

1	Que	estions de cours - Groupes A, B, C	1
	1.1	Définitions de base : notion de fonction différentiable, de dérivée directionnelle et de dérivée partielle. Lien	
		entre ces notions. (démo des liens)	
	1.2	Expression de la différentielle à l'aide des dérivées partielles (démo)	
	1.3	Théorème de représentation des formes linéaires en dimension finie (démo)	3
	1.4	Définition du gradient.	3
	1.5	Définition et caractérisation d'une fonction de classe \mathscr{C}^1 , de classe \mathscr{C}^k	4
	1.6	Théorème de Schwarz	4
	1.7	Définition d'un vecteur tangent à une partie.	5
	1.8	Définition de la matrice Hessienne et formule de Taylor à l'ordre 2	5
	1.9	Lien entre extrema et caractère positif/défini positif de la matrice Hessienne.	6
2	Que	estions de cours, groupes B et C	7
	2.1	Différentiabilité d'une composée (démo)	7
	2.2	Règle de la chaîne. (démo)	7
	2.3	Caractérisation des fonctions de classe \mathscr{C}^1	8
	2.4	Lien entre espace tangent et noyau de la différentielle. (démo d'une inclusion)	8
	2.5	Le gradient donne la direction de variation maximale d'une fonction scalaire (démo)	8
	2.6	Espace tangent à une partie donnée par l'équation scalaire $g(x) = 0$. (démo d'une inclusion)	
	2.7	Théorème d'optimisation sous une contrainte. (démo)	
	2.8	Sur un ouvert, les extrema d'une fonction scalaire différentiable sont des points critiques (démo)	
	2.9	Exemple d'équation aux dérivées partielles sur un convexe.	
3	Que	estions de cours du groupe C	12
	3.1	Différentielle de $B(f,g)$ où B est bilinéaire en dimension finie. (démo)	12
	3.2	Théorème de Schwarz. (démo)	
	3.3	Caractérisation des fonctions de classe \mathscr{C}^1 sur un ouvert à l'aide des dérivées partielles. (démo)	14
	3.4	Lien entre extrema et caractère positif/défini positif de la matrice Hessienne. (démo)	
	3.5	Formule de Taylor à l'ordre 2. (démo HP)	
	3.6	BONUS : Formule de Taylor Young - ordre n	

1 Questions de cours - Groupes A, B, C

1.1 Définitions de base : notion de fonction différentiable, de dérivée directionnelle et de dérivée partielle. Lien entre ces notions. (démo des liens)

Définition: Dérivée directionnelle

Soient E et F, deux Espaces vectoriels de dimension finie. Soit $U \subset E$ et $f: U \to F$. Soit $\alpha \in U$ et $u \in E$.

On dit que f admet une dérivée directionnelle en a suivant u si $\lim_{t\to 0} \frac{f(a+tu)-f(a)}{t}$ existe et est finie.

Dans ce cas, on note $D_{\mathfrak{u}}(f)(\mathfrak{a})=\lim_{t\to 0}\frac{f(\mathfrak{a}+t\mathfrak{u})-f(\mathfrak{a})}{t}$

Définition: Fonction différentiable

Soient E et F, deux Espaces vectoriels de dimension finie. Soit $U \subset E$ et $f: U \to F$. Soit $\alpha \in U$.

On dit que f est différentiable en a si :

$$\exists \varphi \in \mathscr{L}(E,F), \ \forall h \in E, \ (\alpha+h) \in U \Rightarrow f(\alpha+h) = f(\alpha) + \varphi(h) + \underbrace{o(h)}_{=o(\|h\|)}$$

On pose alors $\varphi = df(a)$. Donc, $df \in \mathcal{L}(E,F)$ et nous avons lorsque $h \to 0$: f(a+h) = f(a) + df(a)(h) + o(h)

Proposition fondamentale

Soit $E = \mathbb{R}^n$. Soit $U \subset E$ et soit F, \mathbb{R} -EVN de dimension finie. Soit $f: U \to F$. Soit $B = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n .

Soit $a = (a_1, ..., a_n) \in U$. Alors, $\forall i \in [1, n]$ et $\forall t \neq 0$:

$$\frac{f(\alpha+te_i)-f(\alpha)}{t}=\frac{f(\alpha_1,\ldots,\alpha_{i-1},\alpha_i+t,\alpha_{i+1},\ldots,\alpha_n)-f(\alpha_1,\ldots,\alpha_n)}{t}$$

Si f admet une dérivée directionnelle selon e_i en a (i.e $\lim_{t\to 0} \frac{f(a+te_i)-f(a)}{t}$ existe et est finie), alors

$$D_{e_{i}}(f)(\alpha) = \frac{\partial f}{\partial x_{i}}(\alpha)$$

 $MPI^* - 228$

Proposition

Soient E et F, deux Espaces vectoriels de dimension finie. Soit $U \subset E$ et $f: U \to F$. Soit $\alpha \in U$.

Si f est différentiable en α , alors $\forall \nu \in E$, f admet une dérivée directionnelle selon ν et $D_{\nu}f(\alpha) = df(\alpha)(\nu)$

Preuve:

 $\forall t \neq 0$, on pose $h = tv \xrightarrow[t \to 0]{} 0$.

$$\begin{split} f(\alpha+t\nu) &= f(\alpha) + df(\alpha)(t\nu) + o(t\nu) \\ &= f(\alpha) + tdf(\alpha)(\nu) + o(t) \\ \frac{f(\alpha+t\nu) - f(\alpha)}{t} &= df(\alpha)(\nu) + o(1) \xrightarrow[t\to 0]{} df(\alpha)(\nu) \end{split}$$

Dès lors, la dérivée directionnelle existe et vaut $D_{\nu}f(\alpha)=df(\alpha)(\nu)$

1.2 Expression de la différentielle à l'aide des dérivées partielles (démo)

Proposition

Soit $E = \mathbb{R}^n$, $U \subset E$ et $F : \mathbb{R}$ —EVN de dimension finie.

Soit $B = (e_1, ..., e_n)$ base canonique de E. Soit $f : U \to F$ application.

Soit $a \in \mathring{U}$ tel que f soit différentiable en a.

1.
$$\forall i \in [1,n]$$
, $df(\alpha)(e_i) = D_{e_i}f(\alpha) = \frac{\partial f}{\partial x_i}(\alpha)$

2.
$$\forall h \in \mathbb{R}^n$$
, $\exists (h_i)_i \in \mathbb{R}^n$, $h = \sum_{i=1}^n h_i e_i$.

$$df(\alpha)(h) = df(\alpha) \left(\sum_{i=1}^{n} h_i e_i \right) = \sum_{i=1}^{n} h_1 df(\alpha)(e_i) = \sum_{i=1}^{n} h_1 \frac{\partial f}{\partial x_i}(\alpha)$$

1.3 Théorème de représentation des formes linéaires en dimension finie (démo)

Théorème de Représentation des formes linéaires en dimension finie

Soit E, espace euclidien.

1.
$$\forall \alpha \in E$$
, $\varphi_{\alpha} : \begin{cases} E \to \mathbb{R} \\ x \mapsto \langle \alpha; x \rangle \end{cases}$ est une forme linéaire (i.e $\varphi_{\alpha} \in E^*$)

2.
$$\forall \psi \in \mathcal{L}(E, \mathbb{R}), \exists ! \alpha \in E, \psi = \phi_{\alpha}$$

Preuve:

- 1. Soit $a \in E$. Le produit scalaire est une forme Bilinéaire par définition. Ainsi, $x \mapsto \langle a; x \rangle$ est une forme linéaire.
- 2. Posons Φ : $\begin{cases} E \to E^* \\ a \mapsto \varphi_a \end{cases}$. Alors :
 - Φ est correctement définie d'après 1)
 - Φ est linéaire : Soient $a, b \in E$ et $\lambda, \mu \in \mathbb{R}$. Soit $x \in E$:

$$\phi_{\lambda a + \mu b}(x) = \langle \lambda a + \mu b; x \rangle = \lambda \langle a; x \rangle + \mu \langle b, x \rangle = (\lambda \phi_a + \mu \phi_b)(x)$$

- Φ est injective : Soit $\alpha \in \text{Ker}(\Phi)$. $\varphi_{\alpha} = 0 \Rightarrow \forall x \in E$, $\varphi_{\alpha}(x) = \langle \alpha; x \rangle = 0$. En particulier, $\phi_{\alpha}(\alpha) = \langle \alpha, \alpha \rangle = 0 \Rightarrow \alpha = 0 \Rightarrow \text{Ker}(\Phi) = \{0\}$
- E est un espace Euclidien, donc $\dim(E) = n \in \mathbb{N}$. Or, $\dim(E^*) = \dim(E) \Rightarrow \Phi$ est bijective.
- $\forall \varphi \in \mathcal{L}(E, \mathbb{R}), \exists ! \alpha \in E, \ \varphi = \Phi(\alpha) = \varphi_{\alpha}. \ i.e : \forall \varphi \in \mathcal{L}(E, \mathbb{R}); \exists ! \alpha \in E, \ \forall x \in E, \ \varphi(x) = \langle \alpha; x \rangle$

1.4 Définition du gradient.

Définition: Gradient

Soit E euclidien, $U \subset E$ et $f: U \to \mathbb{R}$, application.

Soit $a \in U$, On suppose que f est différentiable en a.

$$\text{Alors } df(\alpha) \in E^* \text{, dès lors, } \exists ! \ \nabla_f(\alpha) \in E \text{, } df(\alpha) = \varphi_{\nabla_f(\alpha)}. \text{ i.e., } \forall h \in E, \ df(\alpha)(h) = \langle \nabla_f(\alpha), h \rangle.$$

On appelle $\nabla_f(a)$ le Gradient de f en a.

Si E est muni d'une BON
$$(e_1, ..., e_p)$$
, dans cette base , on note $f: \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \mapsto f(x_1, ..., x_p)$.

$$\begin{aligned} & \text{Alors, } \forall h = \sum_{i=1}^{p} h_{i} e_{i} \in \mathsf{E}, \ df(\alpha)(h) = \sum_{i=1}^{p} h_{i} \frac{\partial f}{\partial x_{i}}(\alpha) = \langle \begin{pmatrix} \frac{\partial f}{\partial x_{1}}(\alpha) \\ \vdots \\ \frac{\partial f}{\partial x_{p}}(\alpha) \end{pmatrix}; \begin{pmatrix} h_{1} \\ \vdots \\ h_{p} \end{pmatrix} \rangle \end{aligned}$$

$$\text{Par unicit\'e de } \nabla_{f}(\alpha), \ \nabla_{f}(\alpha) = \begin{pmatrix} \frac{\partial f}{\partial x_{1}}(\alpha) \\ \vdots \\ \frac{\partial f}{\partial x_{p}}(\alpha) \end{pmatrix}$$

Par unicité de
$$\nabla_f(\alpha)$$
, $\nabla_f(\alpha) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\alpha) \\ \vdots \\ \frac{\partial f}{\partial x_p}(\alpha) \end{pmatrix}$

MPI* - 228 3

1.5 Définition et caractérisation d'une fonction de classe \mathscr{C}^1 , de classe \mathscr{C}^k

Définition: Application de classe C¹

Soient E, F deux \mathbb{R} —espaces vectoriels de dimension finies. Soit $U \subset E$ ouvert. Soit $f: U \to F$.

On dit que f est de classe C^1 sur U si :

- 1. f est différentiable sur U
- $2. \ \, \text{L'application} \left(\alpha \mapsto df(\alpha)\right) = df : \begin{cases} U \to \mathscr{L}(E,F) \\ \alpha \mapsto df(\alpha) \end{cases} \quad \text{est Continue}$

Théorème Caractérisation des applications de classe \mathscr{C}^1

Soient $n, p \in \mathbb{N}^*$. Soit $U \subset \mathbb{R}^n$ ouvert. Soit $f: U \to \mathbb{R}^p$. Alors :

$$\begin{bmatrix} f \text{ est } \mathscr{C}^1 \text{ sur } U \end{bmatrix} \iff \begin{cases} 1. & \forall \alpha \in U, \text{ } f \text{ admet des dérivées partielles par rapport à } x_1, \ldots, x_n \text{ en } \alpha \\ \\ 2. & \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \text{ sont } \mathscr{C}^0 \text{ sur } U \text{ (Comme fonctions de plusieurs variables)} \end{cases}$$

Définition: Application de classe \mathscr{C}^k

Notre programme n'évoquant pas la notion de différentielle d'ordre supérieur, la caractérisation des applications de classe \mathscr{C}^k devient notre définition d'application de classe \mathscr{C}^k :

Soit $U \subset \mathbb{R}^n$. Soit $f: U \to F$ avec U ouvert. Soit $k \in \mathbb{N}$ $(k \ge 2)$.

On dit que f est de classe \mathscr{C}^k sur U si :

- 1. f admet des dérivées partielles par rapport à tout k-uplet de variables en tout point de U
- 2. Toutes ces dérivées partielles sont \mathscr{C}^0 sur U

1.6 Théorème de Schwarz

Théorème de Schwarz

Soit $U \subset \mathbb{R}^n$ ouvert. Soit $F : \mathbb{R}$ -EVN de dimension finie. Soit $f : U \to F$. Soit $a \in U$. On suppose f de classe \mathscr{C}^2 au voisinage de a.

$$\text{Alors, } \forall i,j \in [\![1,n]\!], \ \frac{\partial^2 f}{\partial x_i \partial x_j}(\alpha) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\alpha)$$

1.7 Définition d'un vecteur tangent à une partie.

Définition: Vecteur tangent à une partie

Soit $E : \mathbb{R}-EVN$ de dimension finie. Soit $X \subset E$ une partie. Soit $\alpha \in X$ et $u \in E$.

On dit que $\mathfrak u$ est un vecteur tangent à X en $\mathfrak a$ si :

$$\exists \epsilon > 0, \ \exists \gamma \colon \begin{cases}]-\epsilon, \epsilon [\to X \\ t \mapsto \gamma(t) \end{cases} \quad \text{Arc } \mathscr{C}^1 \text{ tel que } \gamma(0) = \alpha \text{ et } \gamma'(0) = u$$

On note $T_{\alpha}(X)$ voir $T_{\alpha}X$ l'ensemble des vecteurs tangents à X en $\alpha.$

1.8 Définition de la matrice Hessienne et formule de Taylor à l'ordre 2.

Définition: Matrice Hessienne

Soit $U \subset \mathbb{R}^n$ et $f: U \to \mathbb{R}$ de classe \mathscr{C}^2 . Soit $\alpha \in U$.

On appelle Matrice Hessienne de f en a la matrice :

$$H_f(\alpha) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(\alpha) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\alpha) \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\alpha) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(\alpha) \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_i \partial x_j}(\alpha) \\ \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\alpha) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(\alpha) \end{pmatrix}$$

Proposition Formule de Taylor-Young : Ordre 2

Soit $E = \mathbb{R}^n$, muni de sa structure Euclidienne canonique. Soit $U \subset \mathbb{R}^n$ Ouvert. Soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^2 sur U. Soit $a \in U$.

$$\begin{split} \forall h \in E, \ \alpha + h \in U \Rightarrow \ f(\alpha + h) &= f(\alpha) + df(\alpha)(h) + \frac{1}{2} \langle H_f(\alpha)h; h \rangle + o(h^2) \\ \\ &= f(\alpha) + \langle \nabla_f(\alpha); h \rangle + \frac{1}{2} \langle H_f(\alpha)h; h \rangle + o(h^2) \\ \\ &= f(\alpha) + h^\top \left(\nabla_f(\alpha) + \frac{1}{2} H_f(\alpha)h \right) + o(h^2) \end{split}$$

1.9 Lien entre extrema et caractère positif/défini positif de la matrice Hessienne.

Proposition

Si f admet un Minimum Local ou Global en a, Alors :

1.
$$df(\alpha) = 0$$
, i.e: $\frac{\partial f}{\partial x_1}(\alpha) = \cdots = \frac{\partial f}{\partial x_n}(\alpha) = 0$

2.
$$H_f(\alpha) \in S_n^+(\mathbb{R})$$

Proposition

Si:

1.
$$df(a) = 0$$

2.
$$H_f(\alpha) \in S_n^{++}(\mathbb{R})$$

Alors a est un Minimum Local de f.

Idem, si $df(\alpha)=0$ et $-H_f(\alpha)\in S_n^{++}(\mathbb{R})$, alors α est un Maximum Local de f.

2 Questions de cours, groupes B et C

2.1 Différentiabilité d'une composée (démo)

Proposition

Soient E, F, G trois \mathbb{R} -EVN de dimension finies. Soit $U \subset E$ et $V \subset F$. Soit $f: U \to F$ et $g: V \to G$, deux applications telles que $f(U) \subset V$.

Soit $a \in U$. On pose b = f(a). On suppose f différentiable en a et g différentiable en b.

Alors $g \circ f$ est différentiable en a et $d(g \circ f)(a) = dg(b) \circ df(a)$

Preuve:

 $\forall h \in E \text{ tel que } a + h \in U. \text{ Alors } f(a+h) = f(a) + df(a)(h) + o(h). \text{ Dès lors}:$

$$\begin{split} g(f(\alpha+h)) &= g(b + \underbrace{df(\alpha)(h) + o(h)}_{=h'}) \\ &= g(b) + dg(b)(h') + o(h') \\ &= g(b) + dg(b)(df(\alpha)(h)) + dg(b)(o(h)) + o(h') \\ &= g(b) + (dg(b) \circ df(\alpha)(h) + o(h) \end{split}$$

Or, $dg(b) \circ df(a)$ est Linéaire : $g \circ f$ est alors différentiable en a et $d(g \circ f)(a) = dg(f(a)) \circ df(a)$.

Montrons que $dg(b)(o(h)) = o(h) : dg(b) \in \mathcal{L}(F,G)$, en dimension finie donc est \mathcal{C}^0 . Donc, $\exists K \in \mathbb{R}_+$, $\|dg(b)(o(h))\|_G \le K \times o(\|h\|) \Rightarrow dg(b)(o(h)) = o(h)$

2.2 Règle de la chaîne. (démo)

Proposition Règle de la Chaîne

 $\text{Soient } n,p,q \in \mathbb{N}^*. \text{ Soit } g: U \subset \mathbb{R}^n \to \mathbb{R}^p \text{ et } g: V \subset \mathbb{R}^p \to \mathbb{R}^q.$

On notera
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $y = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix}$. On suppose U et V ouverts.

On suppose $f(U) \subset V$, $g \circ f$ existe. Soit $a \in U$, on pose b = f(a).

On suppose f différentiable en α et g différentiable en b. Donc $g \circ f$ est différentiable en α et $d(g \circ f)(\alpha) = dg(b) \circ df(\alpha)$.

On munit \mathbb{R}^n , \mathbb{R}^p , \mathbb{R}^q de leur base canonique.

Dans ces bases : $Jac(g \circ f)(a) = Jac(g)(b) \times Jac(f)(a)$. Or :

$$\begin{split} Jac(f)(\alpha) &= \left(\frac{\partial f_i}{\partial x_j}(\alpha)\right)_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant n}} \quad \text{et} \quad Jac(g)(b) = \left(\frac{\partial g_i}{\partial y_j}(b)\right)_{\substack{1 \leqslant i \leqslant q \\ 1 \leqslant j \leqslant p}} \\ Jac(g \circ f)(\alpha) &= \left(\sum_{k=1}^p Jac(g)(b)_{i,k} \times Jac(f)(\alpha)_{k,j}\right)_{\substack{1 \leqslant i \leqslant q \\ 1 \leqslant j \leqslant n}} = \left(\sum_{k=1}^p \frac{\partial g_i}{\partial y_k}(b) \times \frac{\partial f_k}{\partial x_j}(\alpha)\right)_{\substack{1 \leqslant i \leqslant q \\ 1 \leqslant j \leqslant n}} \end{split}$$

2.3 Caractérisation des fonctions de classe \mathscr{C}^1 .

Théorème Caractérisation des applications de classe \mathscr{C}^1

Soient $n, p \in \mathbb{N}^*$. Soit $U \subset \mathbb{R}^n$ ouvert. Soit $f: U \to \mathbb{R}^p$. Alors :

$$\begin{bmatrix} f \ \text{est} \ \mathscr{C}^1 \ \text{sur} \ U \end{bmatrix} \iff \begin{cases} 1. & \forall \alpha \in U, \ f \ \text{admet} \ \text{des} \ \text{d\'eriv\'ees} \ \text{partielles} \ \text{par rapport} \ \grave{a} \ x_1, \dots, x_n \ \text{en} \ \alpha \\ \\ 2. & \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \ \text{sont} \ \mathscr{C}^0 \ \text{sur} \ U \ \text{(Comme fonctions de plusieurs variables)} \end{cases}$$

2.4 Lien entre espace tangent et noyau de la différentielle. (démo d'une inclusion)

Proposition

Soit E : \mathbb{R} —EVN et $g : \mathbb{E} \to \mathbb{R}$ de classe \mathscr{C}^1 . On note $X = \{x \in \mathbb{E} \mid g(x) = 0\}$.

Alors $\forall x_0 \in X$, $[dg(x_0) \neq 0 \Rightarrow T_{x_0}(X) = ker(dg(x_0))]$

Preuve Inclusion directe Uniquement:

$$\begin{aligned} &\text{Soit } \alpha \in X, \ u_0 \in T_\alpha(X). \ \text{Alors, } \exists \epsilon > 0 \ \text{et } \exists \gamma : \begin{cases}]-\epsilon; \epsilon[\to X \\ t \mapsto \gamma(t) \end{cases} \quad \text{, Arc } \mathscr{C}^1 \ \text{tel que } \gamma(0) = \alpha \ \text{et } \gamma'(0) = u_0. \end{aligned}$$

$$&\text{Alors, } \forall t \in]-\epsilon, \epsilon[, \ \gamma(t) \in X \Rightarrow \ g(\gamma(t)) = 0. \ \text{Dès lors}:$$

$$&\forall t \in]-\epsilon, \epsilon[, \ d(g \circ \gamma)(t) = dg(\gamma(t))(\gamma'(t)) = 0$$

$$\Rightarrow$$
 pour $t = 0$: $dg(a)(u_0) = 0 \Rightarrow u_0 \in ker(dg(a))$

2.5 Le gradient donne la direction de variation maximale d'une fonction scalaire (démo)

Preuve :

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Soit $a \in \mathring{U}$ tel que f soit différentiable en a.

On cherche $\mathfrak u$, unitaire de direction correspondant à "l'augmentation maximale de f" : Tel que $D_{\mathfrak u}f(\mathfrak a)$ soit maximale.

 $\forall h \in E \text{ tel que } a + h \in U, \text{ nous avons :}$

$$f(\alpha + h) = f(\alpha) + df(\alpha)(h) + o(h)$$

= $f(\alpha) + D_h f(\alpha) + o(h)$
= $f(\alpha) + \langle \nabla_f (\alpha); h \rangle + o(h)$

Afin de maximiser la quantité $\langle \nabla_f(\mathfrak{a}); h \rangle$, il faut que h soit colinéaire à $\nabla_f(\mathfrak{a})$ et de même sens par le cas d'égalité de Cauchy-Schwartz :

 $|\langle \nabla_f(a); h \rangle| \leq ||\nabla_f(a)|| ||h||$ avec égalité si et seulement si h est colinéaire à $\nabla_f(a)$.

Si h est anticolinéaire à $\nabla_f(a)$, alors le produit scalaire devient négatif. Ainsi, il faut h de même direction et sens que $\nabla_f(a)$ pour maximiser $\langle \nabla_f(a); h \rangle$. La contrainte de h unitaire donne l'unicité du vecteur recherché.

2.6 Espace tangent à une partie donnée par l'équation scalaire q(x) = 0. (démo d'une inclusion)

C.F la démo "Lien entre espace tangent et noyau de la différentielle"

2.7 Théorème d'optimisation sous une contrainte. (démo)

Théorème d'optimisation sous Contrainte

Soit $U \subset \mathbb{R}^n$ un ouvert. Soient f et $g: U \to \mathbb{R}$ de classe \mathscr{C}^1 . On note $X = \{x \in E \mid g(x) = 0\}$. Soit $\alpha \in X$, $dg(\alpha) \neq 0$. On note $\tilde{f} = f|_X$.

Si \tilde{f} admet un extrémum local en α , alors $df(\alpha)$ est colinéaire à $dg(\alpha)$ et $\nabla_f(\alpha)$ est colinéaire à $\nabla_g(\alpha)$

Preuve:

Nous savons que si \tilde{f} admet un extrémum en α , alors $\forall \alpha \in T_{\alpha}(X)$, $df(\alpha)(\alpha) = 0$. Donc $T_{\alpha}(X) \subset Ker(df(\alpha))$.

Or,
$$T_{\alpha}(X) = \text{Ker}(dg(\alpha)) \Rightarrow \text{Ker}(dg(\alpha)) \subset \text{Ker}(df(\alpha))$$
.

Or, $dg(\alpha) \neq 0$, i.e: $dg(\alpha) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$ et est non-nulle: Donc $Ker(dg(\alpha))$ est un Hyperplan de \mathbb{R}^n : $\exists \nu_0 \in \mathbb{R}^n$, $\mathbb{R}^n = Ker(dg(\alpha)) \oplus Vect(\{\nu_0\})$ et $g(\nu_0) \neq 0$.

$$\forall x \in \mathbb{R}^n, \exists ! (x_0, \lambda) \in \text{Ker}(dg(\alpha)) \times \mathbb{R}, \ x = x_0 + \lambda v_0. \text{ Alors } dg(\alpha)(x) = \lambda dg(\alpha)(v_0).$$

$$df(a)(x) = \lambda df(a)(v_0) \operatorname{car} x_0 \in \operatorname{Ker}(dg(a)) \subset \operatorname{Ker}(df(a)).$$

Or,
$$\lambda df(\alpha)(\nu_0) = df(\alpha)(\nu_0) \times \frac{dg(\alpha)(x)}{dg(\alpha)(\nu_0)} = \alpha dg(\alpha)(x)$$
 avec $\alpha = \frac{df(\alpha)(\nu_0)}{dg(\nu_0)}$.

Ainsi,
$$\exists \alpha \in \mathbb{R}$$
, $\forall x \in E$, $df(\alpha)(x) = \alpha dg(\alpha)(x)$, $donc df(\alpha) = \alpha dg(\alpha)$.

Si on munit \mathbb{R}^n de sa structure Euclidienne canonique :

$$\begin{split} \forall x \in \mathbb{R}^n, \ dg(\alpha)(x) &= \langle \nabla_g(\alpha); x \rangle \\ df(\alpha)(x) &= \langle \nabla_f(\alpha); x \rangle \\ &= \alpha \langle \nabla_g(\alpha); x \rangle \end{split}$$

Donc,
$$\forall x \in \mathbb{R}^n$$
, $\langle \nabla_f(\alpha) - \alpha \nabla_g(\alpha); x \rangle = 0 \Rightarrow \nabla_f(\alpha) - \alpha \nabla_g(\alpha) = 0 \Rightarrow \nabla_f(\alpha) = \alpha \nabla_g(\alpha)$

2.8 Sur un ouvert, les extrema d'une fonction scalaire différentiable sont des points critiques (démo)

Définition

Soient E, F deux EVN de dimension finie. Soit $U \subset E$ ouvert. Soit $f: U \to F$ différentiable. Soit $\alpha \in U$.

On dit que a est un point critique de f si df(a) = 0.

En particulier, si
$$E = \mathbb{R}^n : \left[df(\alpha) = 0 \iff \frac{\partial f}{\partial x_1}(\alpha) = \dots = \frac{\partial f}{\partial x_n}(\alpha) = 0 \right]$$

Théorème

Soit $E: \mathbb{R}$ —EVN de dimension finie. Soit $U \subset E$ ouvert. Soit $f: U \to \mathbb{R}$ application différentiable. Soit $a \in U$.

1. On dit que f admet un Minimum local en $\mathfrak a$ si :

$$\exists r > 0, \ \forall x \in B_f(\alpha, r), \ f(\alpha) \leq f(x)$$

Idem, on dit que f admet un Maximum local en a si:

$$\exists r > 0, \ \forall x \in B_f(\alpha, r), \ f(\alpha) \geqslant f(x)$$

2. On dit que f admet un Minimum Global en α si :

$$\forall x \in U, f(x) \geqslant f(a)$$

Idem, On dit que f admet un Maximum Global en a si:

$$\forall x \in U, f(x) \leq f(a)$$

Si f admet un Extremum Local ou Global en α , alors $df(\alpha) = 0$. i.e α est un point critique de f

Preuve :

Soit $a \in U$. On suppose que f admet un Minimum local en a.

Alors
$$\exists r > 0$$
, $B_f(a, r) \subset U$ et tel que $\forall x \in B_f(a, r)$, $f(a) \leq f(x)$.

Soit $u_0 \in E$. Alors pour t assez petit : $||tu_0|| \le r$. Donc $a + tu_0 \in B_f(a, r)$.

Or,
$$0 \le f(a + tu_0) - f(a) = df(a)(tu_0) + o(t) = tdf(a) + o(t)$$
 (car a est un Min local).

Si $df(a)(u_0) \neq 0$, alors $f(a+tu_0)-f(a) \sim tdf(a)(u_0)$. Donc $f(a+tu_0)-f(a)$ change de signe au voisinage de 0. Or, $0 \leq f(a+tu_0)-f(a) \Rightarrow$ Absurde. Donc $df(a)(u_0)=0$

Ainsi, a est un point critique de f: df(a) = 0

2.9 Exemple d'équation aux dérivées partielles sur un convexe.

Exemple

Soit $U = \mathbb{R}^2$ (convexe). Résolvons l'équation différentielle $2\frac{\partial f}{\partial x} - 7\frac{\partial f}{\partial y} = 0$.

On pose u et v, autre système de coordonées tel que x(u,v)=2u+v et y(u,v)=-7u.

Ce changement de variables est bien bijectif. On pose alors g(u,v)=f(x(u,v),y(u,v)).

Alors
$$\frac{\partial g}{\partial u} = \frac{\partial x}{\partial u} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial u} \frac{\partial f}{\partial y} = 2 \frac{\partial f}{\partial x} - 7 \frac{\partial f}{\partial y}$$
.

Ainsi, notre équation différentielle se ramène à $\frac{\partial g}{\partial u} = 0$, Puisque \mathbb{R}^2 est Convexe : $\exists h : \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^1 telle que g(u,v) = h(v) pour tout $(u,v) \in \mathbb{R}^2$.

Dès lors,
$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x,y) = h\left(x + \frac{2}{7}y\right)$

3 Questions de cours du groupe C

3.1 Différentielle de B(f, q) où B est bilinéaire en dimension finie. (démo)

Proposition

Soient E, F, G, trois \mathbb{R} —EVN de dimension finie. Soit $U \subset E$. Soient $f: U \to F$ et $g: U \to G$, deux applications. Soit $B: F \times G \to H$, une application Bilinéaire (Continue car en dimension finie).

On considère
$$B(f,g)$$
 :
$$\begin{cases} U \to H \\ x \mapsto B(f(x),g(x)) \end{cases}$$
 . Soit $\alpha \in U$.

Si f et g sont différentiables en a, alors B(f,g) est différentiable en a et dB(f,g)(a) = B(df(a),g(a)) + B(f(a),dg(a))

Preuve:

$$B(f(a+h), g(a+h)) = B(f(a) + df(a)(h) + o(h), g(a) + dg(a)(h) + o(h))$$

= $B(f(a), g(a)) + B(f(a), dg(a)(h)) + B(df(a)(h), g(a)) + o(h)$

Or, B(f(a), dg(a)(h)) + B(df(a)(h), g(a)) est linéaire en h.

Justifions les o(h): B est Continue et Bilinéaire, donc $\exists K \in \mathbb{R}, \ \forall x,y \in F \times G, \ \|B(x,y)\|_H \leqslant K \times \|x\|_F \times \|y\|_G$.

Ainsi,
$$\|B(df(a)(h), dg(a)(h))\|_{H} \le K \times \|df(a)(h)\|_{F} dg(a)(h)_{G}$$
.

Or, df(a) et dg(a) sont linéaires continues : $\exists K_1, K_2 \in \mathbb{R}^2$ tels que $\|df(a)(h)\|_F \leqslant K_1 \times \|h\|_E$ et Idem pour dg(a)(h).

$$\text{Ainsi, } \|B(df(a)(h),dg(a)(h))\|_H\leqslant K\times K_1\times \|h\|\times K_2\times \|h\|=\mathfrak{O}(\|h^2\|)=o(h).$$

Donc, B(df(a)(h), dg(a)(h)) = o(h). Idem, B(X, o(h)) = o(h) pour les mêmes raisons.

MPI* - **228**

3.2 Théorème de Schwarz. (démo)

Preuve La démo n'est pas dans le cours (Admise) :

Ramenons nous au cas où f est une fonction de deux variables. La démonstration est analogue pour plus de variables. Ainsi, soit $f: U \subset \mathbb{R}^2 \to F$.

Soit $a \in U$ et f de classe \mathscr{C}^2 au voisinage de a = (x, y).

Considérons Δ : $t \mapsto [f(x+t,y+t)-f(x+t,y)] - [f(x,y+t)-f(x,y)]$. Cette application correspond à une variation selon l'axe des y (Remarquez le carré de sommets f(a,b), f(a+t,b), f(a,b+t), f(a+t,b+t)).

Alors, pour t assez petit, f(x+t,y+t), f(x+t,y) et $f(x,y+t) \in U$. Ainsi, Δ est une fonction d'une variable dérivable par hypothèse sur f.

Posons donc t assez petit, et considérons donc δ_t : $s \mapsto [f(a+t,b+s)-f(a+t,b)]-[f(a,b+s)-f(a,b)]$ Ainsi, nous pouvons appliquer l'égalité des accroissements finis à δ_t . (Cette fonction est continue, et sa dérivée correspond à une dérivée partielle de f, ici selon y). Ainsi, $\exists \eta \in]0,t[$ tel que :

$$\begin{split} \Delta(t) &= \frac{\partial f}{\partial y}(a+t,b+\eta) \times t - \frac{\partial f}{\partial y}(a,b+\eta) \times t \\ &= t \times \left[\frac{\partial f}{\partial y}(a,b) + \frac{\partial^2 f}{\partial x \partial y}(a,b)t + \frac{\partial^2 f}{\partial y^2}(a,b)\eta + o(t) - \frac{\partial f}{\partial y}(a,b) - \frac{\partial^2 f}{\partial y^2}(a,b)\eta + o(t) \right] \end{split} \\ &= \frac{\partial^2 f}{\partial x \partial y}(a,b) \times t^2 + o(t^2) \end{split}$$
 Formule de Taylor (Hyp

$$\text{Ainsi, } \frac{\Delta(t)}{t^2} = \frac{\partial^2 f}{\partial x \partial y}(\alpha, b) + o(1) \rightarrow \frac{\partial^2 f}{\partial x \partial y}(\alpha, b)$$

Nous pouvons effectuer le même calcul en considérant cette fois une variation selon l'axe des x: On considèrera $\tilde{\Delta}$: $t \mapsto [f(a+t,b+t)-f(a,b+t)]-[f(a+t,b)-f(a,b)]$.

Le calcul est identique à l'exception de l'ordre des dérivées partielles : Nous obtenons $\frac{\Delta(t)}{t^2} \to \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

Nous pouvons remarquer (en développant) que $\Delta = \tilde{\Delta}$, d'où finalement :

$$\frac{\partial^2 f}{\partial y \partial x}(a, b) = \frac{\partial^2 f}{\partial x \partial y}(a, b)$$

3.3 Caractérisation des fonctions de classe \mathscr{C}^1 sur un ouvert à l'aide des dérivées partielles. (démo)

Théorème Caractérisation des applications de classe \mathscr{C}^1

Soient $n, p \in \mathbb{N}^*$. Soit $U \subset \mathbb{R}^n$ ouvert. Soit $f: U \to \mathbb{R}^p$. Alors :

$$\begin{bmatrix} f \ \text{est} \ \mathscr{C}^1 \ \text{sur} \ U \end{bmatrix} \iff \begin{cases} 1. & \forall \alpha \in U, \ f \ \text{admet} \ \text{des} \ \text{d\'eriv\'ees} \ \text{partielles} \ \text{par rapport} \ \grave{a} \ x_1, \dots, x_n \ \text{en} \ \alpha \\ \\ 2. & \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \ \text{sont} \ \mathscr{C}^0 \ \text{sur} \ U \ \text{(Comme fonctions de plusieurs variables)} \end{cases}$$

Preuve :

 \Rightarrow : Si f est différentiable sur U et que $a \mapsto df(a)$ est \mathscr{C}^0 :

- 1. $\forall \alpha \in U$, (f est différentiable en $\alpha \Rightarrow f$ admet des dérivées partielles en α) et $\frac{\partial f}{\partial x_i} = df(\alpha)(e_i)$ où e_i est le i-ème vecteur de la Base canonique.
- 2. $a \mapsto df(a)$ est \mathscr{C}^0 par hypothèse:

 $\forall i \in [\![1,n]\!], \ \begin{cases} \mathscr{L}(E,F) \xrightarrow{\to} F \\ \phi \mapsto \phi(e_i) \end{cases} \text{ est Continue car linéaire en dimension finie. Par composition : } \alpha \mapsto df(\alpha)(e_i) \text{ est } Af$

Continue sur U. Donc $a \mapsto \frac{\partial f}{\partial x_i}(a)$ est Continue sur U.

 \leq : Prenons le cas particulier n = 2. La démo est analogue pour $n \geqslant 2$ quelconque.

Soit donc $U \subset \mathbb{R}^2$, soit $\mathfrak{a} = (x_\mathfrak{a}, y_\mathfrak{a}) \in U$. Montrons que f est différentiable en \mathfrak{a} :

Soit $h = (\alpha, \beta)$. Posons $||h|| = ||h||_{\infty} = max(|\alpha|, |\beta|)$. Alors, pour ||h|| assez petit, $a + h \in U$ car U est un ouvert.

On pose $B = a + \alpha e_1$ et $C = a + \alpha e_1 + \beta e_2 = a + h$.

Alors
$$f(B) - f(a) = f(a + \alpha e_1) - f(a) = \int_{x_a}^{x_a + \alpha} \frac{\partial f}{\partial x}(t, y_a) dt$$
.

Donc:
$$f(B) - f(a) - \alpha \frac{\partial f}{\partial x}(a) = \int_{x_a}^{x_a + \alpha} \left(\frac{\partial f}{\partial x}(t, y_a) - \frac{\partial f}{\partial x}(x_a, y_a) \right) dt$$

Or,
$$\frac{\partial f}{\partial x}$$
 est Continue en α . Ainsi, $\lim_{t \to x_{\alpha}} \frac{\partial f}{\partial x}(t, y_{\alpha}) = \frac{\partial f}{\partial x}(x_{\alpha}, y_{\alpha})$.

 $\text{Ainsi, pour } \|h\| \text{ assez petit : } \|\frac{\partial f}{\partial x}(t,y_\alpha) - \frac{\partial f}{\partial x}(x_\alpha,y_\alpha)\| \leqslant \epsilon \text{ pour } t \in [x_\alpha,x_\alpha+\alpha].$

$$\text{D\`es lors, } \| \int_{x_\alpha}^{x_\alpha + \alpha} \frac{\partial f}{\partial x}(t, y_\alpha) dt - \int_{x_\alpha}^{x_\alpha + \alpha} \frac{\partial f}{\partial x}(x_\alpha, y_\alpha) dt \| = \| \int_{x_\alpha}^{x_\alpha + \alpha} \frac{\partial f}{\partial x}(t, y_\alpha) - \frac{\partial f}{\partial x}(x_\alpha, y_\alpha) dt \| \leqslant \epsilon |\alpha| \leqslant \epsilon \|h\|$$

$$\text{Or, ceci est vrai pour tout } \epsilon > 0. \text{ Donc } \int_{x_\alpha}^{x_\alpha + \alpha} \left(\frac{\partial f}{\partial x}(t,y_\alpha) - \frac{\partial f}{\partial x}(x_\alpha,y_\alpha) \right) dt = o(h).$$

Donc,
$$f(B) - f(\alpha) = \alpha \frac{\partial f}{\partial x}(\alpha) + o(h)$$
. De même, $f(C) - f(B) = \beta \frac{\partial f}{\partial y} + o(h)$.

$$Par \ somme: f(C) - f(B) + f(B) - f(\alpha) = f(C) - f(\alpha) = f(\alpha + h) - f(\alpha) = \alpha \frac{\partial f}{\partial x}(\alpha) + \beta \frac{\partial f}{\partial y}(\alpha) + o(h).$$

Ainsi, f est différentiable en α et $df(\alpha)=(\alpha,\beta)\mapsto \alpha\frac{\partial f}{\partial x}(\alpha)+\beta\frac{\partial f}{\partial y}(\alpha)$. Or, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues, donc $\alpha\mapsto df(\alpha)$ est Continue par continuité des coefficients.

3.4 Lien entre extrema et caractère positif/défini positif de la matrice Hessienne. (démo)

Proposition

Si f admet un Minimum Local ou Global en a, Alors:

1.
$$df(\alpha) = 0$$
, i.e: $\frac{\partial f}{\partial x_1}(\alpha) = \dots = \frac{\partial f}{\partial x_n}(\alpha) = 0$

2.
$$H_f(\alpha) \in S_n^+(\mathbb{R})$$

Preuve :

- 1. Déjà fait
- 2. $\forall h \in E$ tel que $a + h \in U$ (avec a extrémal):

$$f(a+h) = f(a) + 0 + \frac{1}{2} \langle H_f(a)h; h \rangle + o(h^2)$$

Donc, pour h assez petit : f(a+h) - f(a) est du signe de $\langle H_f(a)h; h \rangle$ (si $\neq 0$).

S'il existe h assez petit tel que $\langle H_f(a)h;h\rangle < 0$, alors a n'est pas un minimum, ce qui est absurde.

Si $\exists \lambda \in Sp(H_f(\alpha))$ tel que $\lambda < 0$, alors $\exists h_0 \in \mathbb{R}^n$ tel que $H_f(\alpha)h_0 = \lambda h_0$.

Posons alors $h=th_0$. Pour t assez petit : $a+h\in U$ car U est un ouvert et f(a+h)-f(a) est du signe de $\langle H_f(a)h;h\rangle=t^2\lambda\|h_0\|^2<0$.

Ainsi, pour t assez petit, f(a+h) - f(a) < 0: Ce qui est absurde car a est un Min.

Ainsi, $Sp(H_f(a)) \subset \mathbb{R}_+$. Or, $H_f(a) \in S_n(\mathbb{R})$, donc $H_f(a) \in S_n^+(\mathbb{R})$

Proposition

Si:

1.
$$df(a) = 0$$

2.
$$H_f(\alpha) \in S_n^{++}(\mathbb{R})$$

Alors a est un Minimum Local de f.

Idem, si df(a) = 0 et $-H_f(a) \in S_n^{++}(\mathbb{R})$, alors a est un Maximum Local de f.

Preuve :

Pour $h \neq 0$ assez petit :

 $f(\alpha+h)-f(\alpha) \text{ est du signe de } \langle H_f(\alpha)h;h\rangle (\neq 0) \text{ car } H_f(\alpha) \in S_n^{++}(\mathbb{R}) \Rightarrow \text{ α est un Minimum local de f.}$

3.5 Formule de Taylor à l'ordre 2. (démo HP)

Proposition Formule de Taylor-Young : Ordre 2

Soit $E = \mathbb{R}^n$, muni de sa structure Euclidienne canonique. Soit $U \subset \mathbb{R}^n$ Ouvert. Soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^2 sur U. Soit $a \in U$.

$$\begin{split} \forall h \in E, \ \alpha + h \in U &\Rightarrow f(\alpha + h) = f(\alpha) + df(\alpha)(h) + \frac{1}{2} \langle H_f(\alpha)h; h \rangle + o(h^2) \\ &= f(\alpha) + \langle \nabla_f(\alpha); h \rangle + \frac{1}{2} \langle H_f(\alpha)h; h \rangle + o(h^2) \\ &= f(\alpha) + h^\top \left(\nabla_f(\alpha) + \frac{1}{2} H_f(\alpha)h \right) + o(h^2) \end{split}$$

Preuve:

Soit $a \in U$ et h tel que $a + h \in U$.

Posons $g: x \mapsto f(\alpha + x) - f(\alpha) - df_{\alpha}(x) - \frac{1}{2}d^2f_{\alpha}(x,x)$. Alors cette application est différentiable.

De plus, $d_x g(h) = df_{\alpha+x}(h) - df_{\alpha}(h) - d^2f_{\alpha}(x,h)$ (le terme en $f(\alpha)$ saute et le terme en $d^2f_{\alpha}(x,x)$ se différentie en $d^2f_{\alpha}(x,h)$ et le théorème de Schwarz permet d'intervertir).

Or, nous pouvons appliquer la formule de Taylor Young (Ordre 1) à df, car f est en particulier \mathscr{C}^1 , donc différentiable au point \mathfrak{a} . Ainsi, $df_{\mathfrak{a}+\mathfrak{h}}-df_{\mathfrak{a}}=d^2f_{\mathfrak{a}}(\mathfrak{h},\bullet)+o(\mathfrak{h})$. En norme : $\|dg_{\mathfrak{h}}\|\leqslant \epsilon\|\mathfrak{h}\|$ pour $\epsilon\xrightarrow[\mathfrak{h}\to 0]{}0$

Nous pouvons donc appliquer l'inégalité des accroissements finis :

$$\begin{split} \|f(\alpha+h) - f(\alpha) - df_{\alpha}(h) - \frac{d^{2}f_{\alpha}(h,h)}{2} \| &= \|g(h) - g(0)\| \\ &\leqslant \sup_{x \in B_{f}(0,h)} \|dg_{x}\| \times \|h\| \\ &\leqslant \varepsilon \|h\|^{2} \end{split}$$

D'où l'inégalité souhaitée, et la formule de Taylor-Young à l'ordre deux. (Voir ci-dessous pour généraliser cette démonstration à tout ordre).

3.6 BONUS: Formule de Taylor Young - ordre n

Théorème

Soit $E=\mathbb{R}^n$, muni de sa structure Euclidienne canonique. Soit $p\in\mathbb{N}$. Soit $U\subset\mathbb{R}^n$ Ouvert. Soit $f:U\to\mathbb{R}$ de classe \mathscr{C}^p sur U. Soit $a\in U$

$$\begin{split} \forall x \, tq \, \alpha + x \in U, \ f(\alpha + x) &= \sum_{k=0}^{p} \sum_{\substack{\alpha \in \mathbb{N}^{k} \\ |\alpha| = k}} \frac{1}{\alpha!} D_{\alpha}^{p} f_{\alpha}(\underbrace{x, \cdots, x}_{k \, \text{fois}}) + o(\|h\|^{p}) \\ &= \sum_{k=0}^{p} \frac{1}{k!} D^{k} f_{\alpha}(x, \cdots, x) + o(\|h\|^{p}) \end{split}$$

Preuve (BONUS) Formule Générale, à tout ordre :

Procédons par récurrence sur l'ordre de la formule de taylor : Nous avons déjà démontré la formule à l'ordre 1.

Posons premièrement la notion de multi-indice pour commodité de calcul : On appelle multi-indice d'ordre p tout n-uplet $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ tel que $\sum_i \alpha_i = p$. On note $p = |\alpha|$.

Ceci nous permet de noter $D^p_{\alpha}f$, les dérivées partielles successives $D^p_{x_1^{\alpha_1}\cdots x_n^{\alpha_n}}f$.

Ceci nous permet également de noter plus aisément les polynômes à n variables de degré p: On note $X^{\alpha}:=X_1^{\alpha_1}\times\cdots\times X_n^{\alpha_n}$

Par hypothèse, nous supposons f de classe \mathscr{C}^p , donc df est de classe \mathscr{C}^{p-1} , nous pouvons donc appliquer l'hypothèse de récurrence afin de déduire un DL de df en $\mathfrak a$:

$$df_{a+h}(\bullet) = \sum_{k=0}^{p-1} c_k(\underbrace{h, \dots, h}_{k \text{ fois}}, \underbrace{\bullet, \dots, \bullet}_{p-k \text{ fois}}) + o(\|h\|^{p-1})$$

où c_k désigne l'application multilinéaire obtenue en sommant toutes les applications dérivées partielles d'ordre k. D'après le théorème de schwarz, nous pouvons intervertir l'ordre de dérivation partielle, et les applications c_k sont alors symétriques (nous pouvons échanger deux paramètres sans modifier le résultat, d'où l'écriture avec k en premier).

Alors, en posant $g: h \mapsto f(\alpha + h) - \sum_{k=0}^{p-1} \frac{1}{k+1} c_k(\underbrace{h, \dots, h}_{k+1 \text{ fois}}, \underbrace{\bullet, \dots, \bullet}_{p-k-1 \text{ fois}})$, g est différentiable et :

$$dg_h = df_{a+h} - \sum_{k=0}^{p-1} c_k(\underbrace{h, \dots, h}_{k \text{ fois}}, \underbrace{\bullet, \dots, \bullet}_{p-k \text{ fois}}) = o(\|h\|^{p-1})$$

Il nous suffit alors d'appliquer le corollaire de l'IAF : Du fait que dg est linéaire en dimension finie, nous avons $dg_h \leq \|h\|^{p-1} \times \epsilon(h) \Rightarrow g(h) \leq \|h\|^p \times \epsilon'(h)$.

Finalement,
$$f(a+h) = \sum_{k=0}^{p} \frac{1}{k!} D^k f_a(h,...,h) + o(\|h\|^p)$$

MPI* - **228**

