Lecture 9

Michael Brodskiy

Professor: M. Onabajo

October 2, 2024

• Rectifiers

- Simple Half-Wave Recitifers
 - * Used for AC-to-DC conversion
 - * Circuit representation when the diode is forward biased
 - $V_o = V_i$
 - $\cdot I_D = V_O/R_L$
 - * Average output voltage: $V_{oAVG} = V_{oPK}/\pi$
 - * RMS output voltage: $V_{oRMS} = V_{oPK}/2$
- Half-Wave Rectifier with Smoothing Capacitor
 - * Addition of a capacitor in parallel with the load resistor
 - · Formation of a first-order low-pass filter
 - · Impedance of R_L and C in parallel

$$Z_P = \frac{1}{(1/R_L) + sC} = \frac{R_L}{1 + j(\omega/\omega_B)}, \text{ where } \omega_B = (1/RC)$$

- * The capacitor charges to V_i when the diode is on $(I_D = I_C + I_L)$
 - · $I_C > 0$ when $V_o = V_c < V_i$, $I_C = 0$ when $V_O = V_C = V_i$ (ideal model)
- * The capacitor holds (stores the output voltage when the diode is off)
 - · V_o reduces gradually due to discharge of the capacitor: $I_C = -I_L 0$
- * Average output voltage: $V_{oAVG} \approx V_{iPK} (V_r/2)$
 - · V_r is the ripple voltage (design starting point: only for the half-wave rectifier)
 - · Goal for a given input signal period (T): minimum $V_r \to \text{maximum } V_o$
- Electrostatic Discharge (ESD) Protection
 - ESD event

- * Rapid discharge of charge between two bodies at different potentials
- * High voltage build-up \rightarrow current flow (can destroy internal circuits)
- \ast Occurs during the manufacturing and lifetime of a chip (pins come into contact with equipment and sometimes people)
- Simplified ESD protection concept with diodes