Seminar on Moduli Theory Lecture 2

Neeraj Deshmukh

September 4, 2020

Last Week

- Affine Communication Lemma.
- 2 Two ways of gluing \mathbb{A}^1 outside the origin.
- 3 DVR with a double origin, and sheaves on it.
- **1** Line bundles on \mathbb{P}^1 .

A slightly more involved scheme: \mathbb{P}^n

Let $D(x_i) := \operatorname{Spec} k[x_{0/i}, x_{1/i}, \dots, x_{n/i}]/(x_{i/i} - 1)$. If we invert one of the variables, say $x_{j/i}$, we can write an isomorphism $D(x_i)_{x_{j/i}} \cong D(x_j)_{x_{i/j}}$ given by the maps

$$\phi_{ij}: x_{k/i} \mapsto x_{k/j}/x_{i/j} \& \phi_{ji}: x_{k/j} \mapsto x_{k/i}/x_{j/i}$$

A classical interlude

Let k be a field. Consider $k^{n+1} \setminus (0,0,\ldots,0)$. We define \mathbb{P}^n to be:

$$\mathbb{P}^n := \{(x_i) \mid (x_i) \simeq (y_i) \text{ if there is a } \lambda \in k^{\times} \text{ such that } x_i = \lambda y_i\}$$

Motivating \mathbb{P} *roj*

Consider $k[x_0, x_1, ..., x_n]$, now thought of as a graded ring with the grading given by degrees of monomials.

 $\mathbb{P}roj(k[x_0,x_1,\ldots,x_n])$ is the set of those homogeneous prime ideals which do not contain the ideal (x_0,x_1,\ldots,x_n) . The resulting scheme is \mathbb{P}^n .

Here's an alternative description of \mathbb{P}^1 using degree 2 hypersurfaces

Relation to our original construction of \mathbb{P}^1

Note that if you just invert x^2 and xy, then this does not give a cover \mathbb{P}^1 , since the radical of (x^2, xy) does not contain the irrelevant ideal. Geometrically speaking, this is because inverting xy corresponds to the affine open of \mathbb{P}^1 obtained by knocking off 0 and ∞ .

More Examples

$$V_+(x^2+y^2+z^2)$$
 over $\mathbb R$ and $\mathbb C$.

More Examples

Blow-up of \mathbb{A}^2 at the origin.

More Examples

An example of a scheme without a closed point.

Morphisms

Definition

Let \mathcal{P} be a property of morphisms of schemes. Let $f: X \to Y$ be a morphism which satisfies \mathcal{P} . Then,

- **1** We say that \mathcal{P} is affine-local on the target if given any affine open cover $\{V_i\}$ of Y, $f: X \to Y$ has \mathcal{P} if and only if the restriction $f: f^{-1}(V_i) \to V_i$ has \mathcal{P} for each i.
- ② We say that \mathcal{P} is affine-local on the source if given any affine open cover $\{U_i\}$ of X, $X \to Y$ has \mathcal{P} if and only if the composite $U_i \to Y$ has \mathcal{P} for each i.

Using affine communication lemma one can then show that it suffices to check the above statements on single affine open cover.

Something flat, something finitely presented/finite type, something finite.

Not all properties are like this. For example, separatedness, properness, quasi-compactness, etc.

Something ramified, something smooth, something singular.