Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Υ	N	Р	N	N	A
Mary	F	Υ	N	P	Α	P	N
Jim	M	Υ	P	N	N	N	A

First we have to covnert the dependent variables to binary so we will change Y & P to 1 and N & A to 0

Na	me Gende	r Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	1	0	1	0	0	0
Mary	F	1	0	1	0	1	0
Jim	M	1	1	0	0	0	0

This can be done in python using numpy as seen below The results show that there is:

```
import numpy as np
 def jaccard_binary(x,y):
     intersection = np.logical_and(x, y)
     union = np.logical_or(x, y)
     similarity = intersection.sum() / float(union.sum())
     return similarity
x = [1,0,1,0,0,0]
y = [1,0,1,0,1,0]
z = [1,1,0,0,0,0]
 # Find similarity among the vectors
 simxy = jaccard_binary(x,y)
 simxz = jaccard_binary(x,z)
 simyz = jaccard_binary(z,y)
 print(' Similarity between x and y is', simxy, '\n Similarity between x and z is ', simxz, '\n Similarity between y and z is ', simyz)
 Similarity between x and y is 0.6666666666666666
  Similarity between x and z is 0.3333333333333333
  Similarity between y and z is 0.25
```