WB XAI-2 PD1

Jakub Szypuła

22/03/2021

Cel zadania

Zadanie polega na przeanalizowaniu tego w jaki sposób zmienne wpływają na decyzje podjęte przez model ML i próbie wyjaśnienia tego. Na potrzeby zadania wykorzystałem las losowy zaimplementowany w pakiecie ranger na podstawie zbioru danych german credit data.

Pojedyncza predykcja

Zobaczmy jak model przewiduje wartości dla wybranej obserwacji, powiedzmy pierwszej.

```
predict(model, gcd[1,])$predictions

## [,1] [,2]
## [1,] 0.9193429 0.08065714
```

A teraz zobaczmy jak wygląda faktycznie ta wartość dla tej obserwacji.

```
gcd[1, "customer_type"]
```

```
## [1] 1
```

Jak możemy więc zaobserwować, mówimy tutaj o prawdopodobieństwach zakwalifikowania danej obserwacji do danej klasy, gdzie 1 oznacza klase "good", a 2 klase "bad".

Dekompozycja

Zobaczmy, dlaczego model uznał, że taka, a nie inna wartość, pasuje w tym miejscu.

```
pp_ranger_gcd_1 <- predict_parts(explainer, new_observation = gcd[1,])
plot(pp_ranger_gcd_1)</pre>
```


pp_ranger_shap_gcd_1 <- predict_parts(explainer, new_observation = gcd[1,], type = "shap", B = 10)
plot(pp_ranger_shap_gcd_1)</pre>

"Prediction" na grafice oznacza prawdopodobieństwo zakwalifikowania obserwacji do klasy drugiej ("bad").

Dla modelu najważniejszą zmienną (poza interceptem, który wynosi 0.304) jest checking_account_status o wartości A11. Następnie jest savings o wartości A65, duration równe 6 oraz credit_history równe A34 i property równe A121. Po sprawdzeniu dokumentacji zbioru¹, te enigmatyczne wartości stają się mniej enigmatyczne, w nawiasach wpływ na predykcje modelu:

- A11 w checking_account oznacza mniej niż 0 Marek niemieckich na rachunku bieżącym (+0.108)
- 6 w duration oznacza liczbę miesięcy (-0.074)
- A34 w credit_history oznacza, że jest to "critical account" lub ma kredyty w innych bankach (-0.039)
- A121 w property oznacza, że osoba posiada nieruchomość (-0.032)

Można zauważyć, że są to sensowne wpływy, spodziewalibyśmy się pozytywnych i negatywnych wpływów po tych wartościach. Wydają się "osadzone" w świecie rzeczywistym.

Ważność zmiennych

Czy jednak bycie pod kreską i długość trwania kredytu są zawsze najważniejszymi zasadami, którymi model się posługuje?

```
pp_ranger_gcd_1_oth <- predict_parts(explainer, new_observation = gcd[94,])
plot(pp_ranger_gcd_1_oth)</pre>
```

 $^{^{1}}$ https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

O ile wcześniej najważniejszymi zmiennymi były checking_account i duration, to teraz jest to age równe 20 (+0.075) oraz savings równe A65 (-0.069), czyli brak konta oszczędnościowego (bądź nieznane konto oszczędnościowe). Ponownie, wydaje się to sensowne biorąc pod uwagę fakt, że młodzi dorośli, świeży na rynku pracy, mogą być gorszymi kredytobiorcami. Informacja o rachunku oszczędnościowym mogła zostac uznana za ważniejszą np. dlatego, że osoba bez takiego rachunku będzie mieć do dyspozyjci większą część swojej pensji.

Przeciwne wpływy

Czasami zdarza się, że przy różnych wartościach innych zmiennych, ta sama wartość ma negatywny, bądź pozytywny wpływ na predykcję. Zobaczmy:

Obserwacja nr 60

```
pp_ranger_gcd_inv_1 <- predict_parts(explainer, new_observation = gcd[60,])
plot(pp_ranger_gcd_inv_1)</pre>
```


Obserwacja nr 230

```
pp_ranger_gcd_inv_2 <- predict_parts(explainer, new_observation = gcd[230,])
plot(pp_ranger_gcd_inv_2)</pre>
```


Na początku tego nie widać, ale zagłębmy się do wszystkich wartości:

credit_history -0.0372598066

customer_type 0.000000000

4

5

```
gcd_inv_1 <- data.frame(</pre>
 pp_ranger_gcd_inv_1$variable_name,
  pp_ranger_gcd_inv_1$contribution,
 pp_ranger_gcd_inv_1$variable_value)
gcd_inv_2 <- data.frame(</pre>
  pp_ranger_gcd_inv_2$variable_name,
 pp_ranger_gcd_inv_2$contribution,
 pp_ranger_gcd_inv_2$variable_value)
gcd_inv_1 <- gcd_inv_1[1:22,]
gcd_inv_2 <- gcd_inv_2[1:22,]
colnames(gcd_inv_1) <- c("Variable_name", "Contribution1", "Value1")</pre>
colnames(gcd_inv_2) <- c("Variable_name", "Contribution2", "Value2")</pre>
comp <- merge(gcd_inv_1, gcd_inv_2, by = "Variable_name")</pre>
comp
##
                Variable_name Contribution1 Value1 Contribution2 Value2
## 1
                           age 0.0596210533
                                                  23 0.0430442815
      checking_account_status 0.1101013026
## 2
                                                 A11 0.1101013026
                                                                       A11
## 3
                credit_amount   0.0213310881
                                                6229 -0.0424657155
                                                                      3149
                                                                       A32
```

A34 -0.0050261063

2 0.000000000

```
## 6
                    dependents
                                0.0023436651
                                                    1 -0.0038740746
                                                                          1
## 7
                                                                         24
                      duration
                                0.0968444589
                                                  36
                                                      0.0090565663
                                0.0122134016
                                                    2 -0.0170014127
## 8
             existing credits
                                                                          1
## 9
               foreign_worker
                                0.0023186960
                                                      0.0014514897
                                                A201
                                                                       A201
## 10
                       housing
                                0.0161248627
                                                A151 -0.0419372003
                                                                       A153
             installment rate
                                                      0.0181231624
                                                                          4
## 11
                                0.0457783690
                                0.3033881592
## 12
                     intercept
                                                    1
                                                       0.3033881592
                                                                          1
## 13
                           job
                                0.0327269984
                                                A172 -0.0099358238
                                                                       A173
##
  14
                 other_debtors
                                0.0043824640
                                                A102
                                                       0.0010833730
                                                                       A101
##
  15
      other_installment_plans
                                0.0006592325
                                                A143
                                                      0.0243627571
                                                                       A141
## 16
                      personal
                                0.0170666381
                                                 A92 -0.0201569952
                                                                        A93
           present_employment
                                                 A72 -0.0001446966
                                                                        A72
##
   17
                                0.0162878463
##
  18
            present_residence
                                0.0205984484
                                                    4 -0.0934100881
                                                                          1
## 19
                      property
                                                      0.0244236972
                                0.0204770865
                                                                       A124
## 20
                                0.0015399865
                                                 A42 -0.0267517603
                                                                        A42
                       purpose
## 21
                       savings
                                0.0447340024
                                                 A61
                                                      0.0375987496
                                                                        A61
## 22
                                0.0160990310
                     telephone
                                                A192 -0.0082153794
                                                                       A191
```

Część zmiennych ma różny wpływ przy różnych wartościach (np. job), natomiast wyróżnia się jedna - purpose, która ma w obu obserwacjach wartość A42 (meble/wyposażenie) która dla obserwacji 60-tej zwiększa ryzyko bycia w złej kategorii o 0.07%, a dla obsweracji 230-tej zmniejsza je o 2.2%!

Nie jest to takie nieoczywiste. Weźmy za przykład przewidywanie cen mieszkań. Jeżeli zachowamy taki sam metraż, ale zwiększymy liczbę przedpokoi o jeden, to cena naturalnie spadnie, co samo w sobie wydaje się nieintuicyjne (jak dodanie pokoju miałoby obniżyć cenę?). Uwzględnienie tej zmiany w kontekście danych jest ważne dla zrozumienia wpływu na predykcję.

W tym konkretnym przypadku mówimy o osobach, które mają wiele wspólnego, więc skupię się na różnicach. 60-tka ma już 2 kredyty w tym banku, wynajmuje mieszkanie w którym mieszka od 4 lat i jest niewyszkolonym pracownikiem 230-tka tylko jeden kredyt, mieszka za darmo, mieszka tam od roku i jest wyszkolonym pracownikiem. Z perspektywy banku ma to sens, że osoba, która nie jest wyszkolonym pracownikiem, ma już dwa kredyty i mieszka w wynajmowanym mieszkaniu od 4 lat jest bardziej ryzykowna jeśli chce zakupić nowy mebel bądź wyposażenie. Natomiast osoba, która mieszka w obecnym miejscu zamieszkania od niedawna, jest wyszkolonym pracownikiem i ma tylko jeden kredyt może potrzebować tych mebli, więc szansa na spłacenie kredytu będzie nieznacznie wyższa, niż gdyby celem było coś innego. Oddaje to też ogólne prawdobieństwo zakwalifikowania do "złej" klasy - 60-tka ma aż 80%, zaś 230-tka tylko 28%

Podsumowanie

Jak widać, wpływy zmiennych i ich wartości na predykcję nie są takie oczywiste jak mogłyby się wydawać. Jak pokazuje ostatni przykład, wpływy te nie mogą być rozważane osobno, także jak pokazuje pierwsze porównanie, nie można z góry zakładać jakie zmienne są "najważniejsze". Przydatne w tym wypadku okazało się osadzenie danych w łatwym do zrozumienia i dosyć intuicyjnym kontekście, co pozwoliło na wysnucie wniosków i hipotez, które mogą pomóc wytłumaczyć przyczyny takiego, a nie innego zachowania modelu.