Chris Hayduk Math B4900 Homework 1 9/11/2020

1. Recall that $\mathbb{Z}/n\mathbb{Z} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z}\}$ is the set of congruence classes modulo n. Define $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to be the subset of $\mathbb{Z}/n\mathbb{Z}$ that have multiplicative inverses, i.e.

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} \mid \text{ there is some } \bar{c} \in \mathbb{Z}/n\mathbb{Z} \text{ such that } \bar{c}\bar{a} = 1 \}.$$

(a) Compute $(\mathbb{Z}/n\mathbb{Z})^{\times}$ for n = 1, 2, 3, 4, 5, and 6.

Answer. Case 1 ($\mathbb{Z}/1\mathbb{Z}$): note that every integer is divisible by 1. This is true because, for any integer $x \in \mathbb{Z}$, we have that $x = 1 \cdot x$. Hence, every integer belongs to $\overline{0}$ when n = 1.

By the definition of modular multiplication on p. 9 of the text, if we have $\overline{a}, \overline{b} \in (\mathbb{Z}/1\mathbb{Z})$, we can take $\overline{a} \cdot \overline{b} = \overline{ab}$.

Since we just showed that every integer in $(\mathbb{Z}/1\mathbb{Z})$ belongs to the congruence class $\overline{0}$, we have $\overline{0} \cdot \overline{0} = \overline{0} \cdot \overline{0} = \overline{0} \ \forall \ z \in \mathbb{Z}$.

Hence, there are no elements $\overline{a} \in \mathbb{Z}/1\mathbb{Z}$ such that $\exists \overline{c} \in \mathbb{Z}/1\mathbb{Z}$ with the property that $\overline{ca} = 1$.

Thus,
$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \emptyset$$

Case 2 ($\mathbb{Z}/2\mathbb{Z}$): note that there are two congruence classes, $\overline{0}$ and $\overline{1}$.

We have
$$\overline{0} \cdot \overline{0} = \overline{0} \cdot \overline{1} = \overline{1} \cdot \overline{0} = \overline{0}$$
.

However, we have $\overline{1} \cdot \overline{1} = \overline{1}$. Hence, for $\overline{1} \in (\mathbb{Z}/2\mathbb{Z})$, $\exists \overline{c} \in (\mathbb{Z}/2\mathbb{Z})$ such that $\overline{c} \cdot \overline{1} = \overline{1}$. In this case, $\overline{c} = \overline{1}$.

Hence,
$$(\mathbb{Z}/2\mathbb{Z})^{\times} = \{\overline{1}\}$$

Case 3 ($\mathbb{Z}/3\mathbb{Z}$): note that there are three congruence classes, $\overline{0}$, $\overline{1}$, $\overline{2}$.

We know that $\overline{0} \cdot \overline{c} = \overline{0} \ \forall \ \overline{c} \in (\mathbb{Z}/3\mathbb{Z})$, so we don't need to consider it.

For the other two congruence classes, we have $\overline{1} \cdot \overline{1} = \overline{1}$, $\overline{1} \cdot \overline{2} = \overline{2} = \overline{2} \cdot \overline{1}$, and $\overline{2} \cdot \overline{2} = \overline{4} = \overline{1}$.

So we have that $(\mathbb{Z}/3\mathbb{Z})^{\times} = {\overline{1}, \overline{2}}$

Case 4 ($\mathbb{Z}/4\mathbb{Z}$): note that there are four congruence classes, $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$.

From here I will assume the commutativity of multiplication of congruence classes and as such will only show one direction.

Once again, we do not need to consider $\overline{0}$ since multiplying it by any other congruence class yields $\overline{0}$.

We have,

$$\begin{aligned} \overline{1} \cdot \overline{1} &= \overline{1} \\ \overline{1} \cdot \overline{2} &= \overline{2} \\ \overline{2} \cdot \overline{2} &= \overline{4} = \overline{0} \\ \overline{1} \cdot \overline{3} &= \overline{3} \\ \overline{2} \cdot \overline{3} &= \overline{6} = \overline{2} \\ \overline{3} \cdot \overline{3} &= \overline{9} = \overline{1} \end{aligned}$$

So we have that $(\mathbb{Z}/4\mathbb{Z})^{\times} = \{\overline{1}, \overline{3}\}$

Case 5 ($\mathbb{Z}/5\mathbb{Z}$): note that there are five congruence classes, $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$.

We have,

$$\begin{split} \overline{1} \cdot \overline{1} &= \overline{1} \\ \overline{1} \cdot \overline{2} &= \overline{2} \\ \overline{1} \cdot \overline{3} &= \overline{3} \\ \overline{1} \cdot \overline{4} &= \overline{4} \\ \overline{2} \cdot \overline{2} &= \overline{4} \\ \overline{2} \cdot \overline{3} &= \overline{6} &= \overline{1} \\ \overline{2} \cdot \overline{4} &= \overline{8} &= \overline{3} \\ \overline{3} \cdot \overline{3} &= \overline{9} &= \overline{4} \\ \overline{3} \cdot \overline{4} &= \overline{12} &= \overline{2} \\ \overline{4} \cdot \overline{4} &= \overline{16} &= \overline{1} \end{split}$$

So we have that $(\mathbb{Z}/5\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Case 6 ($\mathbb{Z}/6\mathbb{Z}$): note that there are six congruence classes, $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$.

We have,

$$\begin{array}{l}
\overline{1} \cdot \overline{1} = \overline{1} \\
\overline{1} \cdot \overline{2} = \overline{2} \\
\overline{1} \cdot \overline{3} = \overline{3} \\
\overline{1} \cdot \overline{4} = \overline{4} \\
\overline{1} \cdot \overline{5} = \overline{5} \\
\overline{2} \cdot \overline{2} = \overline{4} \\
\overline{2} \cdot \overline{3} = \overline{6} = \overline{0} \\
\overline{2} \cdot \overline{4} = \overline{8} = \overline{2} \\
\overline{2} \cdot \overline{5} = \overline{10} = \overline{4} \\
\overline{3} \cdot \overline{3} = \overline{9} = \overline{3} \\
\overline{3} \cdot \overline{4} = \overline{12} = \overline{0} \\
\overline{3} \cdot \overline{5} = \overline{15} = \overline{3} \\
\overline{4} \cdot \overline{4} = \overline{16} = \overline{4} \\
\overline{4} \cdot \overline{5} = \overline{20} = \overline{2}
\end{array}$$

So we have that $(\mathbb{Z}/6\mathbb{Z})^{\times} = \{\overline{1}\}\$

.....

(b) Prove that if $\bar{a}, \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $\bar{a} \cdot \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof. Suppose $\bar{a}, \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then $\exists \overline{c_1}, \overline{c_2} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that

$$\bar{a} \cdot \overline{c_1} = \bar{1}$$
$$\bar{b} \cdot \overline{c_2} = \bar{1}$$

Thus we have that,

$$\overline{ab} \cdot \overline{c_1 c_2} = \overline{(a \cdot b) \cdot (c_1 \cdot c_2)}
= \overline{a \cdot c_1 \cdot b \cdot c_2}
= (\overline{a} \cdot \overline{c_1}) \cdot (\overline{b} \cdot \overline{c_2})
= \overline{1} \cdot \overline{1}
= \overline{1}$$
(1)

The first three equalities come from the properties of modular multiplication described on p. 9 in the text.

Since multiplication in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is well-defined and both $\overline{c_1}, \overline{c_2} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, we have that $\overline{c_3} = \overline{c_1c_2} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Similarly, $\overline{ab} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$

Hence by (1) and the above statements, we have that $\bar{a} \cdot \bar{b} = \overline{ab} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

(c) Let $a \in \mathbb{Z}$. Show that if $(a, n) \neq 1$, then there is some $1 \leq b \leq n - 1$ for which $n \mid ab$. Conclude that if $(a, n) \neq 1$, there is some $1 \leq b \leq n - 1$ for which $\bar{a} \cdot \bar{b} = \bar{0}$.

Proof. Let $a \in \mathbb{Z}$ and suppose $(a, n) \neq 1$. Since the gcd is a positive integer, we know that (a, n) > 1.

Hence, $\exists d \in \mathbb{Z}$ such that d > 1, d|a, and d|n.

Let b = n/d and c = a/d. We know that d|n and d|a, so $b, c \in \mathbb{Z}$.

Then we have,

$$ab = a \cdot \frac{n}{d}$$

$$= \frac{a}{d} \cdot n$$

$$= cn \tag{2}$$

Thus, we clearly have that n|ab.

We know that d > 1 and also that $n \ge 1$. Hence, it is clear that $b \ge 1$.

Now suppose that $b \ge n$. Since d > 1, it is clear that,

However, we defined b = n/d. Hence, the above statement is a contradiction and thus b < n.

We already established that $b \ge 1$, so we have $1 \le b < n$, or equivalently since $b, n \in \mathbb{Z}$, $1 \le b \le n-1$.

Now note that $\overline{0} = \{0 + kn | k \in \mathbb{Z}\}$. We have from (2) that ab = cn.

Since $c \in \mathbb{Z}$, cn satisfies the condition defined for the set $\bar{0}$ and so $cn = ab \in \bar{0}$.

Hence, we have

$$\overline{ab} = \overline{0} = \overline{a} \cdot \overline{b}$$

(d) Let $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$. Show that if there is some non-zero $\bar{b} \in \mathbb{Z}/n\mathbb{Z}$ such that $\bar{a} \cdot \bar{b} = \bar{0}$, then $\bar{a} \notin (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof. Let $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ and suppose there is some non-zero $\bar{b} \in \mathbb{Z}/n\mathbb{Z}$ such that $\bar{a} \cdot \bar{b} = \bar{0}$.

We have that,

$$\bar{a} \cdot \bar{b} = \bar{0} \implies ab = 0 + kn$$

for some $k \in \mathbb{Z}$

Now assume $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Then there exists $\bar{c} \in \mathbb{Z}/n\mathbb{Z}$ such that $\bar{a} \cdot \bar{c} = \bar{1}$. That is,

$$ac = 1 + mn$$

for some $m \in \mathbb{Z}$.

- (e) Prove that if a and n are relatively prime then there is an integer c such that $ac \equiv_n 1$. [Hint: use the fact that the g.c.d. of two integers is a \mathbb{Z} -linear combination of the integers]
- (f) Conclude from the previous exercises that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the set of elements \bar{a} of $\mathbb{Z}/n\mathbb{Z}$ with (a, n) = 1 and hence prove Proposition 0.3.4. Verify this directly in the case n = 6.
- 2. Determine (prove positive, or give a reason why not) which of the following sets are groups under addition:
 - (a) the set of polynomials $\mathbb{Z}[x]$;

Answer. Yes, this is a group. Firstly, we have the identity element 0. For any polynomial $p \in \mathbb{Z}[x]$, we have that p + 0 = p = 0 + p.

Now for the additive inverse of p, we must take -p. That is, for

$$p = p_0 + p_1 X + p_2 X^2 + \dots + p_{m-1} X^{m-1} + p_m X^m$$

with $p_k \in \mathbb{Z}$, we will take -p to be:

$$-p = -(p_0 + p_1X + p_2X^2 + \dots + p_{m-1}X^{m-1} + p_mX^m)$$

= $-p_0 - p_1X - p_2X^2 - \dots - p_{m-1}X^{m-1} - p_mX^m$

Note that if we take p + (-p), we get,

$$p + (-p) = p_0 + p_1 X + p_2 X^2 + \dots + p_{m-1} X^{m-1} + p_m X^m + (-p_0 - p_1 X - p_2 X^2 - \dots - p_{m-1} X^{m-1} - p_m X^m)$$

$$= (p_0 - p_0) + (p_1 X - p_1 X) + (p_2 X^2 - p_2 X^2) + \dots + (p_{m-1} X^{m-1} - p_{m-1} X^{m-1}) + (p_m X^m - p_m X^m)$$

$$= 0 + 0 + 0 + \dots + 0 + 0$$

$$= 0$$

The same is true for (-p) + p.

.....

(b) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are even;

Answer. Yes, this is a group. Firstly, we have the identity element $0 = \frac{0}{2}$. For any rational number q in the described set, we have that

$$q + \frac{0}{2} = q + 0 = q$$

 $\frac{0}{2} + q = 0 + q = q$

Now let q in this set. Then $\exists n, m \in \mathbb{Z}$ such that q = n/m. Note that m is even and n is odd, since if n were even this fraction would not be in lowest terms.

Now consider the fraction -q = -n/m. Observe that, since n is odd, we can take n = 2k + 1 for some $k \in \mathbb{Z}$. When we take -n, we have -n = -2k - 1. Since -2k is even, we have that -n is still odd. Hence, even if we needed to reduce -q to lowest terms, it would still be in the described set since m would still be even.

Now that we have established that -q is in our set, we can show that q + -q = 0.

Observe that

$$q + -q = \frac{n}{m} + \frac{-n}{m}$$
$$= \frac{n + -n}{m}$$
$$= \frac{0}{m} = 0$$

The same is true for -q + q.

.....

(c) the set of rational numbers of absolute value < 1;

Answer. Yes, this is a group.

We have that $0 \in \mathbb{Q}$ and |0| < 1, so 0 is in our set. For any $q \in \mathbb{Q}$ with |q| < 1, we have that

$$0 + q = 0 = q + 0$$

So 0 is the identity element.

Now observe that if $q \in \mathbb{Q}$, then $-q \in \mathbb{Q}$. In addition, note that if |q| < 1, then we have that $|-q| = |-1| \cdot |q| = |q| < 1$. Hence, -q is in our set as well. Thus, we have that,

$$q + (-q) = 0 = (-q) + q$$

Hence, every element in our set has an additive inverse within the set, as required.

3. Let $x, y \in G$. Prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.

Proof. Suppose that x = yx. Then we have that,

$$xy = yx$$

$$\Rightarrow y^{-1}(xy) = y^{-1}(yx)$$

$$\Rightarrow y^{-1}xy = (y^{-1}y)x$$

$$\Rightarrow y^{-1}xy = x$$

Now suppose that $y^{-1}xy = x$. Then we have that,

$$y^{-1}xy = x$$

$$\implies y(y^{-1}xy) = yx$$

$$\implies (yy^{-1})xy = yx$$

$$\implies xy = yx$$

In addition, we have that

$$y^{-1}xy = x$$

$$\implies x^{-1}(y^{-1}xy) = x^{-1}x$$

$$\implies x^{-1}y^{-1}xy = 1$$

Now suppose that $x^{-1}y^{-1}xy = 1$. Then we have that

$$x^{-1}y^{-1}xy = 1$$

$$\Rightarrow x(x^{-1}y^{-1}xy) = x \cdot 1$$

$$\Rightarrow (xx^{-1})y^{-1}xy = x$$

$$\Rightarrow y^{-1}xy = x$$

Hence we have that $xy = yx \iff y^{-1}xy = x \iff x^{-1}y^{-1}xy = 1$

- 4. Let G be a group and let $x \in G$.
 - (a) If $g \in G$, show $|g^{-1}xg| = |x|$.

Proof. We know that $|x| \in \mathbb{Z}$ and $|x| \ge 1$. Suppose |x| = 1. Then x = e. Hence we have that,

$$|g^{-1}xg| = |g^{-1}eg|$$

= $|g^{-1}g|$
= $|e| = 1$

So we have $|g^{-1}xg| = |x|$ in this case.

Now suppose |x| = n > 1. Then we can show that,

$$(g^{-1}xg)^n = g^{-1}xg \cdot g^{-1}xg \cdots g^{-1}xg \cdot g^{-1}xg$$

$$= g^{-1}x(gg^{-1})x(gg^{-1}) \cdots (gg^{-1})x(gg^{-1})xg$$

$$= g^{-1}x \cdot x \cdots x \cdot x \cdot g$$

$$= g^{-1}x^ng$$

$$= g^{-1}eg$$

$$= g^{-1}q = e$$

So $(g^{-1}xg)^n = e$.

Now suppose we select an m such that $1 \leq m < n$. Then we have that,

$$(g^{-1}xg)^m = g^{-1}x^mg$$

Since |x| = n and $1 \le m < n$, we have that $x^m \ne e$, and thus $(g^{-1}xg)^m \ne e$.

Hence, n is the least positive integer k such that $(g^{-1}xg)^k = e$ and we have that $|g^{-1}xg| = n$

(b) Prove that if $|x| \leq 2$ for all $x \in G$ then G is abelian.

Proof. Suppose that $|x| \leq 2$ for all $x \in G$. Now let $x, y \in G$.

Note that, since the order of an element is a positive integer, the only two possibilities for |x| are 1, 2.

If |x|=1, then x=e and we have,

$$xy = ey = y = ye = yx$$

for any $y \in G$.

Now suppose |x| = 2. If |y| = 1, y is the identity and is commutative (as shown above), so we will assume |y| = 2 as well.

Since $x^2 = xx = e$ and $y^2 = yy = e$, we have that $x = x^{-1}$ and $y = y^{-1}$. If |xy| = 1 or |xy| = 2, then $xy = (xy)^{-1}$ and

$$xy = (xy)^{-1} = y^{-1}x^{-1} = yx$$

as required

(c) If $|x|=n<\infty$, prove that the elements e,x,x^2,\ldots,x^{n-1} are all distinct. Deduce that $|x|\leqslant |G|$.

Proof. Let $|x| = n < \infty$. Now suppose that there are numbers $m, k \in \mathbb{Z}$ with $0 \le m, k \le n-1$ and k < m such that $x^m = x^k$.

Then we clearly have that,

$$x^{k} \cdot x = x^{m} \cdot x$$

$$x^{k} \cdot x^{2} = x^{m} \cdot x^{2}$$

$$x^{k} \cdot x^{3} = x^{m} \cdot x^{3}$$

$$\vdots$$

$$x^{k} \cdot x^{n-m} = x^{m} \cdot x^{n-m}$$

However, on the right side of the equality, we have

$$x^m \cdot x^{n-m} = x^{m+n-m}$$
$$= x^n$$
$$= e$$

This implies that,

$$x^k \cdot x^{n-m} = x^{k+n-m}$$
$$= e$$

where $k + n - m \in \mathbb{Z}$ and 0 < k + n - m < m + n - m = n.

However, we know that the order of x is n, which is defined to be the smallest positive integer of x that yields the identity element. Hence, $e, x, x^2, \ldots, x^{n-1}$ are all distinct.

Suppose $x \in G$ where G is a group. Then, $\{e, x, x^2, \dots, x^{n-1}\} \subset G$. Thus |x| = n and there are at least n elements in G. Hence, we have that $|x| \leq |G|$.

5. The dihedral group. The dihedral group D_{2n} has the usual presentation

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle.$$

(a) Compute the order of each of the elements in D_8 .

Answer. Suppose |r|=k<4. Then, since $r^4=1$, we must have that 4=mk for some $m\in\mathbb{Z}^+$.

Since k > 1 and k must be a factor of 4, we also have that k = 2.

However, if |r| = 2, then $r = r^{-1}$. Thus, the second relation becomes

$$rs = sr$$

This implies one of two cases: either $r = s^{-1}$ or r = 1. We know that $r \neq 1$ by the geometric properties of rotation of a square, so we can ignore this case.

Thus, we will only consider the case where $r=s^{-1}$. Note that $s^{-1}=s$ since $s^2=1$, so we have that r=s. However, by the geometric properties of clockwise rotation (which r represents) and reflection over the line y=x (which s represents) of the square, we know that $r\neq s$.

Hence, |r| cannot be less than 4. Since we know that $r^4 = 1$ from the list of generators, we have that |r| = 4.

From the list of generators we also have that $s^2 = 1$. If $s^1 = 1$, then we have that s = 1. However, by the properties of reflection over the line y = x of the square, we know that $s \neq 1$.

Thus, |s| = 2.

Now take rs. We have that

$$(rs)^{2} = rsrs$$

$$= rssr^{-1}$$

$$= rs^{2}r - 1$$

$$= rr^{-1}$$

$$= 1$$

Hence |rs| = 2

Similarly, for sr^{-1} , we have

$$(sr^{-1})^2 = sr^{-1}sr^{-1}$$

= $rssr^{-1}$
= rs^2r^{-1}
= rr^{-1}
= 1

so $|sr^{-1}| = 2$ as well.

.....

(b) Use the generators and relations above to show that if x is any element of D_{2n} which is not a power of r, then

$$rx = xr^{-1}$$
 and $|x| = 2$.

Proof. Suppose $x \in D_{2n}$ and $x \neq r^k$ for any $k \in \mathbb{Z}^+$.

Hence x must be some product of r and s.

Note that, since $s^2 = 1$, we have that $s^{2m+1} = s^2m \cdot s^1 = s$ for any $m \in \mathbb{Z}^+$. So the s term in x must be s^1 .

Thus, we have

$$x = sr^k (3)$$

or

$$x = r^k s \tag{4}$$

So for the case of (3) we get,

$$rx = r(sr^{k})$$

$$= (rs)r^{k}$$

$$= (sr^{-1})r^{k}$$

$$= sr^{k-1}$$

$$= sr^{k}(r^{-1})$$

$$= xr^{-1}$$

and for (4) we get

$$rx = r(r^k s)$$

$$= r^k (rs)$$

$$= r^k (sr^{-1})$$

$$= (r^k s)r^{-1}$$

$$= xr^{-1}$$

as required.

Now we will compute the order of (3):

$$x^{2} = sr^{k}sr^{k}$$

$$= sr^{k}r^{-k}s$$

$$= s(r^{k}r^{-k})s$$

$$= ss$$

$$= 1$$

and of (4):

$$x^{2} = r^{k} s r^{k} s$$

$$= r^{k} r^{-k} s s$$

$$= (r^{k} r^{-k})(s s)$$

$$= 1$$

So in either case, |x| = 2.

Note that the second line of both of the above equations was derived by repeatedly applying the relation $sr=r^{-1}s$

(c) Show that if $s_1 = s$ and $s_2 = sr$, then those together with the relations

$$s_1^2 = s_2^2 = (s_1 s_2)^n = 1$$

forms and alternative presentation of D_{2n} (you have to show that $S = \{s_1, s_2\}$ generates the whole group and that you can derive these relations from the old ones and vice versa).

Proof. By the relations given above we have that,

$$s_1^2 = 1 = s^2$$

Moreover, we have that

$$s_2^2 = 1 = srsr$$

This implies that $sr = (sr)^{-1} = r^{-1}s^{-1}$.

However, we know that $s^{-1} = s$ since $s^2 = 1$, so we have

$$sr = (sr)^{-1} = r^{-1}s^{-1}$$

= $r^{-1}s$

We are also given that $(s_1s_2)^n = 1$. That is,

$$(s_1 s_2)^n = (ssr)^n$$
$$= r^n$$
$$= 1$$

Hence, the elements s_1 and s_2 together with the relations shown above fully describe the initial presentation of D_{2n} .

6. The symmetric group.

(a) Let

$$\alpha = (1\ 2\ 3\ 4\ 5\ 6\ 7), \quad \beta = (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12), \quad \text{and} \quad \gamma = (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8).$$

(i) Compute α^2 , β^2 , and γ^2 .

Answer. We have,

$$\alpha^2 = (1\ 2\ 3\ 4\ 5\ 6\ 7) \circ (1\ 2\ 3\ 4\ 5\ 6\ 7)$$
$$= (1\ 3\ 5\ 7\ 2\ 4\ 6)$$

and,

$$\beta^2 = (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12) \circ (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12)$$

= (1\ 3\ 5\ 7\ 9\ 11)(2\ 4\ 6\ 8\ 10\ 12)

finally,

$$\gamma^2 = (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8) \circ (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8)$$

= $(1\ 3\ 5\ 7)(2\ 4\ 6\ 8)$

.....

(ii) For which i between 1 and 7 is α^i still a 7-cycle? ... between 1 and 12 is β^i still a 12-cycle? ... between 1 and 8 is γ^i still an 8-cycle?

Answer. For the case of α :

We already have that α and α^2 are 7-cycles. We will now check the other powers.

$$\alpha^{3} = \alpha \circ \alpha^{2}$$
= (1 2 3 4 5 6 7) \circ (1 3 5 7 2 4 6)
= (1 4 7 3 6 2 5)

$$\alpha^4 = \alpha \circ \alpha^3$$
= (1 2 3 4 5 6 7) \circ (1 4 7 3 6 2 5)
= (1 5 2 6 3 7 4)

$$\alpha^5 = \alpha \circ \alpha^4$$
= (1 2 3 4 5 6 7) \circ (1 5 2 6 3 7 4)
= (1 6 4 2 7 5 3)

$$\alpha^6 = \alpha \circ \alpha^5$$
= (1 2 3 4 5 6 7) \circ (1 6 4 2 7 5 3)
= (1 7 6 5 4 3 2)

$$\alpha^7 = \alpha \circ \alpha^6$$
= (1 2 3 4 5 6 7) \circ (1 7 6 5 4 3 2)
= 1

So we have that α^i is a 7-cycle if $i \in \{1, 2, 3, 4, 5, 6\}$.

Now for the case of γ :

We already have that γ is an 8-cycle and γ^2 is not. We will now check the other powers.

$$\gamma^{3} = \gamma \circ \gamma^{2}$$
= (1 2 3 4 5 6 7 8) \circ (1 3 5 7)(2 4 6 8)
= (1 4 7 2 5 8 3 6)

$$\gamma^4 = \gamma \circ \gamma^3$$
= (1 2 3 4 5 6 7 8) \circ (1 4 7 2 5 8 3 6)
= (1 5)(4 8)(7 3)(2 6)

$$\gamma^5 = \gamma \circ \gamma^4$$
= (1 2 3 4 5 6 7 8) \circ (1 5)(4 8)(7 3)(2 6)
= (1 6 3 8 5 2 7 4)

$$\begin{split} \gamma^6 &= \gamma \circ \gamma^5 \\ &= (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8) \circ (1\ 6\ 3\ 8\ 5\ 2\ 7\ 4) \\ &= (1\ 7\ 5\ 3)(2\ 8\ 6\ 4) \end{split}$$

$$\gamma^7 = \gamma \circ \gamma^6$$
= (1 2 3 4 5 6 7 8) \circ (1 7 5 3)(2 8 6 4)
= (1 8 7 6 5 4 3 2 1)

$$\gamma^8 = \gamma \circ \gamma^7$$
= (1 2 3 4 5 6 7 8) \circ (1 8 7 6 5 4 3 2 1)
= 1

So we have that γ^i is an 8-cycle if $i \in \{1, 3, 5, 7\}$.

......

(iii) What's the theorem in general?

If σ is an m-cycle, then σ^i is also an m-cycle if and only if . . . (Just state, don't prove it.)

Answer. If σ is an m-cycle, then σ^i is also an m-cycle if and only if $i \equiv r \mod m$ with r and m relatively prime.

(b) Prove that if σ is the *m*-cycle $(a_1 \ a_2 \ \dots \ a_m)$, then for all $i = 1, \dots, m$,

$$\sigma^i(a_k) = a_{\overline{k+i}}$$
 where $\overline{k+i}$ is the least residue mod m .

Deduce that $|\sigma| = m$.

Proof. Fix $i, k \in \{1, \dots, m\}$.

Now consider $\sigma^i(a_k)$. Then we have,

$$\sigma^i(a_k) = (\sigma \circ \sigma \circ \cdots \circ \sigma)(a_k)$$

Note that we have,

$$\sigma(a_k) = a_{k+1}$$

$$\sigma^2(a_k) = a_{k+2}$$
:

If for some j we have k + j = m + 1, then $a_{k+j} = a_1$

(c) Use the last part to prove that the order of an element in S_n equals the least common multiple of the lengths of the cycles in its cycle decomposition (cycle decomposition means writing it as the product of disjoint cycles; you may assume such a decomposition exists, and that disjoint cycles commute).

[You may use previous problems in your solution.]

Proof.

(d) Which values appear as orders of elements of S_5 (for which i is there some element of S_5 that has order i)? For each value, give an example of an element that has that order.