

Problema

- Dados do Banknote Authentication Data Set (UCI)
 - Identificar cédulas entre genuínas e forjadas.
 - Atributos obtidos automaticamente de imagens:
 - Variância (x_1), Assimetria (x_2), Curtose (x_3), Entropia da imagem (x_4).
 - Duas abordagens para o reconhecimento: Supervisionada e não-supervisionada.

Experimento 1

Descrição

- Algoritmo de agrupamento fuzzy VKFCM.
 - Kernelização da métrica.
 - Pesos automaticamente definidos para os atributos.
 - Distância adaptativa local.
- Executamos 100 vezes para 3 diferentes valores de m.
- Selecionamos o melhor para cada m.
- Calculamos métricas para agrupamento hard e fuzzy.

Protótipos dos dois grupos para os diferentes valores de *m*.

\overline{m}	Grupo	x_1	x_2	x_3	x_4
1.1	0	0.5828148	0.7767222	0.1575695	0.5476241
	1	0.5149677	0.4500529	0.3588664	0.7892637
1.6	0	0.5905118	0.7698198	0.1589473	0.5563664
	1	0.5068148	0.4444541	0.3662078	0.7894565
2.0	0	0.5961270	0.7627088	0.1632641	0.5748662
	1	0.5013098	0.4497731	0.3610325	0.7869952

- Variação em $m \to Pouca alteração$ nos protótipos
- → Pouca alteração nas partições
 crisp
- Alterações significativas nos graus de pertinência (a seguir).
- Análise segmentada:
 - Fuzzy
 - Hard

Análise do ponto de vista de agrupamento fuzzy

\overline{m}	J
1.1	1548.297973916541
1.6	1374.3780335872975
2.0	1127.7134873957498

$$J = \sum_{i=1}^{c} \sum_{k=1}^{n} (u_{ik})^{m} \varphi^{2}(x_{k}, v_{i})$$

\overline{m}	MPC	PE
1.1	0.9553	0.0379
1.6	0.5737	0.3503
2.0	0.3145	0.5198

Figura 4: Histogramas para os graus de pertinência dos objetos do grupo 0 para os diferentes valores de m.

Figura 5: Gráficos de dispersão das instâncias do conjunto de dados, para os diferentes valores de m, com o grau de pertinência ao grupo 0 representado pela escala de cores.

Análise do ponto de vista de agrupamento hard

\overline{m}	Grupo	Núm. de objetos
1.1	0	618
1.1	1	754
1.6	0	633
1.0	1	739
2.0	0	648
2.0	1	724

\overline{m}	F-measure	Erro de classificação	Índice de Rand Corrigido
1.1	0.5833	0.4169	0.0268
1.6	0.5816	0.4191	0.0254
2.0	0.5797	0.4213	0.0240

Figura 9: Gráfico de dispersão das instâncias em que as cores representam em (a): os grupos resultantes (com m = 1.1) e em (b): os rótulos das classes originais dos dados.

Experimento 2

Descrição

- Comparar performance de classificação (10-fold cv):
 - Bayesiano Gaussiano
 - Bayesiano k-vizinhos
 - Bayesiano janela de Parzen
 - Regressão Logística
 - Regressão Logística c/ acréscimo de atributos;
 - Ensemble
- Analisar com métricas e teste de Friedman e Nemenyi.

Curvas de aprendizagem

Métricas de performance de classificação

Teste de Hipótese de Friedman

 H_0 - Não há diferença significativa no desempenho dos classificadores.

 H_1 - Há diferença significativa no desempenho dos classificadores.

Resultado: Estatística = 46.108, p-valor = 0.000 **Rejeita** H_0

Figura: Teste de Nemenyi para métrica F-measure

- 1. Bayesiano Gaussiano (GBC)
- 2. Bayesiano baseado em *k*-vizinhos (KNN)
- 3. Bayesiano baseado em janela de Parzen (NBParzen)
- 4. Regressão logística (LR_v1)
- 5. Reg. logística c/ atributos adicionais (LR_v2)
- 6. Ensemble com voto majoritário

Conclusão

- Experimento 1: Realizamos com sucesso o experimento de agrupamento fuzzy aplicando uma técnica avançada (VKFCM-LP)
 - Destacamos a importância do parâmetro m para a distribuição de frequência de u_{ik} e suas implicações.
 - Baixa performance do agrupamento hard como abordagem para classificação. Potencial uso como atributo adicional para classificação.
- Experimento 2: Realizamos com **sucesso** o experimento envolvendo 6 modelos, sendo um ensemble.
 - Classificador Bayesiano baseado em k-vizinhos apresentou melhor desempenho.
 - Os diferentes classificadores tiveram performance significativamente diferentes.
 - Em especial: GBC vs. KNN e GBC vs. LR_v1.

