Problems

Solve the following problems.

- 1. A rigid body consists of three masses fastened as follows: m at (a, 0, 0), 2m at (0, a, a), and 3m at (0, a, -a).
 - Using $I_{ii} = m_{\alpha} (\delta_{ii} r_{\alpha}^2 x_{\alpha i} x_{\alpha i})$ find the moment of inertia tensor I.
 - Find the principal moments and a set of orthogonal principal axes.
- 2. Consider a particle of mass m with two degrees of freedom (x_1, x_2) that obeys the Lagrangian given by $L = \frac{1}{2}m(\dot{x}_i\dot{x}_i) \frac{1}{2}V_{ij}x_ix_j$ where the V_{ij} are constants satisfying $V_{11} > V_{22} > 0$ and $V_{12} = V_{21} = 0$.
 - Find the normal frequencies and eigenvectors. Make sure the eigenvectors satisfy the corresponding orthogonality condition.
 - Starting from $\eta_i = C_k a_{ik} e^{-i\omega_k t}$ where $\eta = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ derive the explicit solutions (real part of η_i) given initial conditions $x_1(0) = x_2(0) = a$ and $\dot{x_1}(0) = \dot{x_2}(0) = v$.
- 3. Consider a particle of mass m constrained to move on a frictionless cylinder of radius R, given by the equation $\rho = R$ in cylindrical coordinates (ρ, ϕ, z) . The mass is subjected to an external force $F = -kr\hat{r}$, where k is a positive constant, r is its distance from the origin, and \hat{r} is the radial unit vector pointing away from the origin.
 - Find the generalized momenta and Hamiltonian.
 - Write down Hamilton's equations of motion.
 - Find general solutions to all the generalized coordinates and describe the motion of each one as a function of time.
- 4. A particle of mass m can move in one dimension under the influence of two springs connected to fixed points a distance a apart, as shown in the figure. The springs obey Hooke's law and have zero unstretched lengths and force constants k_1 and k_2 , respectively. Using the position of the particle from one fixed point as the generalized coordinate, answer the

• Calculate the equilibrium position of the particle by using the extrema of the potential energy.

• Find the Lagrangian.

following questions.

- Find the conjugate momenta and Hamiltonian.
- Is the Hamiltonian conserved? Is the total energy conserved? Justify your answers.