CMPS 270 Project—Battleship Phoenix

Charbel Dawlabani, Elie Jbara, Crissie Tawk, Mariane Elias

High-level explanation of **Battleship**

Objective

Deliver an immersive, strategically challenging experience with adaptive bot AI, advanced special moves, and seamless handling of gameplay mechanics

Project Highlights Rigorous focus on **non- randomization** with the bot's strategy

Handling of all edge cases through
the class's specifications and test
cases

Implementation of the project bonus with a **clear difficulty system**

AI Features Checkerboard system that aims to find and target ships in the least costly way possible (hunt mode)

Adjacent targeting mode that aims to sink a ship after one coordinate has been located (targeting mode)

Artillery, torpedo, and smoke screen are rationally implemented after checking hits and ships

Difficulty Modes **Easy mode** is the only mode with randomization and limits the use of special moves

Medium uses all Al hunting and targeting features, with probabilistic special moves

Hard is aggressive, uses all special moves ASAP

Bot Implementation

Targeting and Hunt Mode

- Target Cells Where (X + Y) % 2 == 0
 (checkerboard pattern where only alternating cells are considered)
- This method optimizes the search by avoiding unnecessary shots at cells less likely to contain ships.

Visual Representation:

Checkerboard Pattern Grid:

	Α	В	С	D	E	F	G	н	1	J
1	V		√		√		√		√	
2		√								
3	V		√		√		√		√	
4		√		√		√		✓		✓
5	V		√		√		√		√	
6		√		√		√		√		✓
7	V		√		√		√		√	
8		√		√		√		√		✓
9	√									
10		√								

• ✓ Represents Cells Targeted in Checkerboard Mode

Bot Implementation **Probabilistic** Explanation

	Α	В	C	D	E	F	G	Н	Ι	J
1	~	~	~	~	~	~	~	~	~	~
2	~	~	~	~	~	~	~	~	~	~
3	~	~	~	1	~	~	~	~	~	~
4	~	~	~	2	~	~	~	~	~	~
5	~	1	2	66	0 2	2 2	2 1	L ^	۰ ^	~
6	~	~	~	3	~	~	~	~	~	~
7	~	~	~	2	~	~	~	~	~	~
8	~	~	~	1	~	~	~	~	~	~
9	~	~	~	~	~	~	~	~	~	~
10	~	~	~	~	~	~	~	~	~	~

Aspect	Easy	Medium	Hard
Checkerboard Condition	$(x+y) \mod 2 = 0$	$(x+y) \mod 2 = 0$	$(x+y) \mod 2 = 0$ with dynamic adjustments
Probability Increment (ΔP)	1 for all valid cells	$10\mathrm{if}$ overlapping a hit, else 1	15 for multiple overlaps, 10 for single, 5 otherwise
Initial Search Coverage	50% of the grid (checkerboard)	50% of the grid (checkerboard)	50% of the grid with optimized weighting
Post-Hit Targeting	Random adjacent cells	Increased probability for adjacent cells	Directional targeting based on hit patterns

Fire

- When the bot successfully hits a ship, it enters "Targeting Mode," focusing on adjacent tiles to locate and sink the ship.
- The bot prioritizes adjacent cells for subsequent moves, mimicking human intuition.

DIFFICULTY LEVELS

EASY

Fires randomly at untargeted cells with no focus after a hit.

MEDIUM

Switches to
Targeting Mode
after a hit and
targets adjacent
cells. See
explanation below

HARD

Aforementioned probability density function to calculate what's the most likely target

Bot Implementation Radar

 The radar system is used to locate enemy ships within a designated area. It also uses targeting mode to decide which coordinate is best to target

DIFFICULTY LEVELS

EASY

Every 10 turns, Randomized

MEDIUM

Radar is still more frequently usable at 5 turns, still randomized

HARD

Radar is used every 3 turns, uses targeting mode to target near already hit coordinates

KEY TAKEAWAY

The radar system is crucial for identifying enemy ships, enabling targeted follow-up attacks and adapting strategy based on difficulty level to optimize gameplay effectiveness.

Bot Implementation Artillery

- The bot also targets near already hit coordinates
- Targeting mode is also activated when a hit is confirmed

DIFFICULTY LEVELS

EASY

Fires randomly at unmarked cells with no specific focus after a hit, NO targeting mode

MEDIUM

Activates Targeting Mode after a hit and targets adjacent cells systematically.

HARD

Probability density function to calculate what's the most likely target (targeting mode)

KEY TAKEAWAY

As in the case with fire and radar, artillery coordinates are chosen according to a probabilistic model, simulating intelligent decision making

Bot Implementation **Smoke**

- Defensive Maneuver:
 The smoke screen is a defensive ability used to obscure a specific area on the board, making it difficult for the opponent to accurately target ships.
- Frequency varies depending on difficulty

DIFFICULTY LEVELS

EASY

Very rarely used, every 20 turns based on availability, RANDOMIZED

MEDIUM

More frequently used, with a focus on areas with ships there

HARD

Used ASAP with same functionality as MEDIUM mode

KEY TAKEAWAY

The smoke screen is an effective defensive tool that obscures vulnerable areas, protecting ships and disrupting the opponent's targeting strategy.

Bot Implementation **Torpedo**

- The bot uses torpedoes when a high concentration of ships is detected or when there is a high probability of hitting an enemy ship.
- Targets an entire row or column, increasing the chances of hitting a ship.

DIFFICULTY LEVELS

EASY

Not allowed in easy mode

MEDIUM

Used once every 10 turns

Randomized torpedo function

HARD

Used ASAP

Probability based targeting

KEY TAKEAWAY

Torpedo is not allowed in easy mode to not overwhelm the player and used aggressively to do as much damage to the player in hard mode

Issues and Resolutions

Limitations	<u>o</u> ፴፴ Severity	Resolutions
Handling Edge Cases in Special Moves	High	Introduced boundary checks and a function (handleEdgeCoordinates) to adjust indices, ensuring all special moves operate within grid limits without errors
Bot's Intelligent Behavior	High	Developed adaptive algorithms for targeting, including probability-based strategies and random elements, to balance between predictability and challenge
Bot's Smoke Screen Deployment	Moderate	Improved strategy for deploying smoke screens by monitoring ship status and adding randomness to avoid predictability
Interdependent Function Conflicts	Low	Modularized code, defined interfaces, and implemented comprehensive unit tests, minimizing conflicts between functions like smoke screen and radar sweep.
Late-Game Pacing and Engagement	Low	Introduced additional mechanics, incluindg hunting mode, to maintain player interest and accelerate bot hits

Limitations

ডি <u></u> Limitations	Description				
Predictability at Lower Difficulties	Players seeking a more challenging experience are encouraged to opt for Medium or Hard difficulties, which feature more strategic bot behavior				
Late-Game Pacing	Introducing additional late-game mechanics, such as hints or strategic options, could keep players engaged after all special moves are exhausted				
Balance of Special Moves	Providing adjustable settings for the frequency and impact of special move would help balance gameplay and make it more enjoyable for inexperience players				
Inconsistent Challenge Between Rounds	Develop a system to scale bot difficulty dynamically based on player performance in previous rounds, ensuring a consistent level of challenge and reducing frustration or boredom				

Assumptions

Assumption	Description			
Smoke Screen Duration	Smoke screens remain active until they block a radar sweep, after which they deactivate, ensuring a balance between tactical use and game progression			
Turn Loss on Invalid Input	Players lose a turn for invalid inputs, emphasizing careful command entry, enhancing skill-based gameplay			
Special Moves at Edge	Special moves can be used on edge coordinates, with proper handling for out-of-bounds cases, maintaining strategic flexibility across the entire game map			
Bot's Priority System	The bot adjusts special move priorities based on difficulty levels, creating variability in gameplay and accommodating different player skills			
Map Visibility	Players see their grid and the opponent's tracking grid, with visibility affected by the "hardMode" setting for added challenge			

Conclusion!