[CSED233-01] Data Structure Intermediate Summary

Jaesik Park

Office Hour

- Not actively used thesedays
 - 6,4,2,1,0,0,0,0,0,...
- Tuesday & Thursday 1~2PM regularly
 - → By appointment, available at Tuesday & Thursday 1~2PM, via online

Midterm Exam

- When: April 11, <u>8~10AM (Not 9~11AM)</u>
- Where: Elec Bldg (LG동)
 - 1. #101 Auditorium (Here)
 - 2. #102 Classroom
 - 3. The classroom and your seat will be RANDOMLY assigned
- Instructions
 - Bring your pencils and erasers
 - Closed book exam no electric devices allowed
 - Bring your student ID card
 - Turn off your smart phone

Elec Bldg (LG동)

Topics we have covered

- (++
- Algorithm
- List, stack, queue
- Tree
- Priority queue, heap
- Sorting
- You have taken 13 lectures and finished two PAs 13

C++ Review

- Remind yourself about C++
- Play with C++ and get ready to do assignments

How C++ Works

- 1. Create a C++ source file and save it
- 2. Compile,
 - Using a compiler
 - creates a machine-code interpretation of your program
 - Using a *linker*
 - includes any required library functions needed
- 3. Execute program and see results

Algorithm Analysis

• Which algorithm is better regardless of the computer spec. you are using?

Asymptotic Analysis

- Asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.
 - If $f(n) = n^2 + 3n$, then as n becomes very large, the term 3n becomes insignificant compared to n^2 .
 - The function f(n) is said to be "asymptotically equivalent to n^2 , as $n \to \infty$ ".
- Let T(n) the running-time function that maps an input size N to a running time R
- To capture the growth rate behavior of T(n) in the long run
 - Worst case → upper bound: Big-Oh
 - Average case → Equal: Big-Theta
 - Best case → Lower bound: Big-Omega

Asymptotic Algorithm Analysis: Example

program segment

```
for i:=1 to n do
    for j:=1 to n do begin
        C[i,j]:=0;
        for k:=1 to n do
        C[i,j]:=C[i,j]+A[i,k]*B[k,j]
    end
```


$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} (c_1 + \sum_{k=1}^{n} c_2) = \sum_{i=1}^{n} \sum_{j=1}^{n} (c_1 + c_2 \cdot n)$$

$$= \sum_{i=1}^{n} (c_1 \cdot n + c_2 \cdot n^2) = c_1 \cdot n^2 + c_2 \cdot n^3$$

$$\Rightarrow T(n) \in O(n^3)$$

Limitations of Analysis

- Not account for *constant factors*, but constant factor may dominate
 - 1000*n vs. n^2 (when interested only in n < 1000)
- Not account for different memory access times at different levels of memory hierarchy
 - Cache Memory << MM << HDD

- Programs that do more computation may take less time than those that do less computation
 - Cost (fetch from MM) >> Cost (operation in CPU)
 - Memory access could take more than computation

List, Stack, Queue

• List, stack, queue "something" as the names suggest ©

(Linear) Lists

- List $L = \langle a_1, a_2, ..., a_n \rangle$
 - a finite, *ordered* collection of elements
 - n: length (size) of the list
 - empty list <> : n = 0 (no elements)
- Position of a_i is i
 - head (front) ↔ tail (rear)
 - "current" position
 - <20, 23, 12, 15> : separated by *fence*
 - <20, 23, 10, 12, 15> after insertion of 10 (at "current" position)

head tail

- Don't be confused, ordered and sorted mean different things

Stacks

- All insertions & deletions take place at one end (called *Top*)
- Special type of list
 - LIFO (Last-In, First-Out)
 - Pushdown list
- You can implement stacks using any type of list implementation (pointer, array, cursor, ...)

•
$$S = \langle a_1, a_2, ..., a_n \rangle$$

Top

- Push(x, S)
- Pop(S)
- Top(S)
- MakeNull(S)
- IsEmpty(S)

$$S = \langle x, a_1, a_2, ..., a_n \rangle$$

 $S = \langle a_2, ..., a_n \rangle$
 a_1
 $S = \langle \rangle$
true if $S = \langle \rangle$

Queues

- FIFO (First-In First-Out) list
- Similar to top in the stack, here we have front and rear

•
$$Q = \langle a_1, a_2, ..., a_n \rangle$$

↑ ↑ ↑
Front Rear

- Enqueue(x, Q)
- Dequeue(Q)
- Front(Q)
- MakeNull(Q)
- IsEmpty(Q)

$$Q = \langle a_1, a_2, ..., a_n, x \rangle$$

$$Q = \langle a_2, a_3, ..., a_n \rangle$$

$$a_1$$

true if
$$Q = \langle \rangle$$

Tree

- Tree data structure looks like a (upside-down) tree
 - Family tree, academic tree, ...

Parenthood Relations

- Parent/child: A is the parent of C, C is the child of A
- Ancestor/descendant: A is the ancestor of G, G is the descendant of A
- Siblings: B,C,D are siblings
- Path $< n_1, n_2, ..., n_k >$
 - n_i is the parent of n_{i+1} $(1 \le i < k)$
 - length = k-1
 - Number of edges connecting the path
- Terminal (leaf, external) ↔ Non-terminal (internal)
 - Whether the node has any child nodes
 - E,F,C,H,I → leaf
 - B,A,D,G → Non-terminal

Path from A to H (length = 3)

Binary Trees

- Binary tree
 - Every node has at most two children
 - Each child is designated as a left child or a right child

• Examples:

Proper, Full Binary Trees

- Proper
 - if each node has either zero or two children
- Full
 - If it has a maximum # of nodes at each level
 - A full binary tree of height h has $(2^{h+1} 1)$ nodes

- Caution: different definitions in some texts
 - In our text, proper binary trees are also known as full binary trees

Recap: Tree Traversal

Types of traversals

- Preorder(T) = < n, Preorder(T_1), ..., Preorder(T_k)>
- Postorder(T_1) = < Postorder(T_1), ..., Postorder(T_k), n > 1
- Inorder(T_1) = < Inorder(T_2), n_1 , Inorder(T_2), ..., Inorder(T_k)>
 - No natural definition of *Inorder*

Unique Binary Tree (by Two Traversals)

- We can identify the binary tree uniquely by two traversal sequences like:
 - (postorder & inorder), (preorder & inorder), (level-order & inorder)
 - *inorder*. to find Left & Right child/subtrees
 - postorder. to find the Root (the last in postorder)
 - preorder. to find the Root (the first/ in preorder)
 - level-order. to find the Root
- However, the other combinations leaves some ambiguity in the tree structure

General Tree Implementations

- General k-ary tree is a tree in which each node has no more than k children
- Implementations
 - Simple array implementation
 - List-of-Children implementation
 - Left-Child/Right-Sibling implementation

•

- Again, there would be other implementations as well
- No rules here, they have their own pros/cons
- Let's analyze them now

Priority Queue, Heap

Priority does matter in our life

Priority Queue

- We learned queue
 - FIFO (First-In First-Out) list
 - Similar to top in the stack, here we have front and rear
 - $Q = \langle a_1, a_2, ..., a_n \rangle$
 - Enqueue, Dequeue, ...
- How to incorporate priority for queue?
- Priority queue consists of a set of elements (organized by priority)
 - Each element x has a *priority p(x)* (also called *importance* or *key*)
 - Not necessarily unique
 - Supports the following operations:
 - *Insert(x, H)* arbitrary element insertion
 - DeleteMin(H) = Min(H) + Delete
 - Delete elements in the order of priority

Heap

- Tree-based data structure that satisfies the heap property
 - if B is a child node of A, then $p(A) \le p(B)$
 - Implies that an element with the lowest priority is always in the root node (*min-heap*) ↔ *max-heap*
- To efficiently implement a priority queue
 - Insert & DeleteMin: O(log n)
- There are different types of heaps
 - Binary heap
 - Binominal heap
 - Supports quickly merging two heaps
 - Fibonacci heap, 2-3 heap, etc.
- We will learn binary heap as an example ☺

Sorting

• How to computationally make things ordered?

Types of Sorting: Memory Usage

- Internal (In-memory) sort
 - Appropriate for sorting a collection of elements that fit in main memory
 - Simple, but relatively slow $O(n^2)$
 - bubble sort, selection sort, insertion sort
 - Considerably better O(n log n) on average
 - heap sort, quick sort, merge sort
- External sort
 - Too large collection of elements to fit in main memory, so the records must reside in external memory
 - Based on *merge sort*

Comparing Quick & Heap Sorts

	Quick sort		Heap sort		Insertion sort	
n	Compare	Exchange	Compare	Exchange	Compare	Exchange
100	712	148	2,842	581	2,596	899
200	1,682	328	9,736	1,366	10,307	3,503
500	5,102	919	53,113	4,042	62,746	21,083

- Heap sort? (heapify!)
- Empirically, quick sort is considerably faster than heap sort
- However, quick sort should never be used in applications which require a guarantee of response time unless it is treated as an $O(n^2)$ algorithm

Remaining topics

- Binary Search Tree
- AVL tree
- B-tree
- Dictionary
- Hashing
- Graph representation
- Graph traversal
- Shortest path finding
- Minimum spanning tree

• Two more PAs and the Final Exam left

Remark

- Thanks for your all the hard work!
- Data structure is essential for many fields in computer science
 - Concept
 - Programming
 - Applications
 - https://ecse.postech.ac.kr/research-activities/research-field/
- Professors
 - https://ecse.postech.ac.kr/member/professor/

