

ELMO Shortlist 2011

_	Algebra
1	Let n be a positive integer. There are n soldiers stationed on the n th root of unity in the complex plane. Each round, you pick a point, and all the soldiers shoot in a straight line towards that point; if their shot hits another soldier, the hit soldier dies and no longer shoots during the next round. What is the minimum number of rounds, in terms of n , required to eliminate all the soldiers? David Yang.
2	Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that whenever $a > b > c > d > 0$ and $ad = bc$, $f(a+d) + f(b-c) = f(a-d) + f(b+c).$ Calvin Deng.
3	Let N be a positive integer. Define a sequence a_0, a_1, \ldots by $a_0 = 0$, $a_1 = 1$, and $a_{n+1} + a_{n-1} = a_n(2 - 1/N)$ for $n \ge 1$. Prove that $a_n < \sqrt{N+1}$ for all n. Evan O'Dorney.
4	In terms of $n \geq 2$, find the largest constant c such that for all nonnegative a_1, a_2, \ldots, a_n satisfying $a_1 + a_2 + \cdots + a_n = n$, the following inequality holds: $\frac{1}{n + ca_1^2} + \frac{1}{n + ca_2^2} + \cdots + \frac{1}{n + ca_n^2} \leq \frac{n}{n + c}.$
	Calvin Deng.
5	Given positive reals x, y, z such that $xy + yz + zx = 1$, show that
	$\sum_{\text{cyc}} \sqrt{(xy + kx + ky)(xz + kx + kz)} \ge k^2,$
	where $k = 2 + \sqrt{3}$.
	Victor Wang.
6	Let $Q(x)$ be a polynomial with integer coefficients. Prove that there exists a polynomial $P(x)$ with integer coefficients such that for every integer $n \ge \deg Q$,
	$\sum_{i=0}^{n} \frac{!iP(i)}{i!(n-i)!} = Q(n),$

www.artofproblemsolving.com/community/c4349

	where !i denotes the number of derangements (permutations with no fixed points) of $1, 2, \ldots, i$. Calvin Deng.
7	Determine whether there exist two reals x, y and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2} = xa_{n+1} + ya_n$ for all $n \geq 0$ and for every positive real number r , there exist positive integers i, j such that $ a_i < r < a_j $. Alex Zhu.
8	Let $n > 1$ be an integer and a, b, c be three complex numbers such that $a+b+c = 0$ and $a^n + b^n + c^n = 0$. Prove that two of a, b, c have the same magnitude. Evan O'Dorney.
_	Combinatorics
1	Let S be a finite set, and let F be a family of subsets of S such that a) If $A \subseteq S$, then $A \in F$ if and only if $S \setminus A \notin F$; b) If $A \subseteq B \subseteq S$ and $B \in F$, then $A \in F$. Determine if there must exist a function $f: S \to \mathbb{R}$ such that for every $A \subseteq S$, $A \in F$ if and only if $\sum_{s \in A} f(s) < \sum_{s \in S \setminus A} f(s).$ Evan O'Dorney.
2	A directed graph has each vertex with outdegree 2. Prove that it is possible to split the vertices into 3 sets so that for each vertex v , v is not simultaneously in the same set with both of the vertices that it points to. David Yang. See here (http://www.artofproblemsolving.com/Forum/viewtopic.php?f= 42&t=492100).
3	Wanda the Worm likes to eat Pascal's triangle. One day, she starts at the top of the triangle and eats $\binom{0}{0} = 1$. Each move, she travels to an adjacent positive integer and eats it, but she can never return to a spot that she has previously eaten. If Wanda can never eat numbers a, b, c such that $a + b = c$, prove that it is possible for her to eat $100,000$ numbers in the first 2011 rows given that she is not restricted to traveling only in the first 2011 rows.

www.artofproblemsolving.com/community/c4349

	(Here, the $n+1$ st row of Pascal's triangle consists of entries of the form $\binom{n}{k}$ for integers $0 \le k \le n$. Thus, the entry $\binom{n}{k}$ is considered adjacent to the entries $\binom{n-1}{k-1}$, $\binom{n-1}{k}$, $\binom{n}{k-1}$, $\binom{n}{k-1}$, $\binom{n+1}{k}$, $\binom{n+1}{k+1}$.) Linus Hamilton.
4	Consider the infinite grid of lattice points in \mathbb{Z}^3 . Little D and Big Z play a game, where Little D first loses a shoe on an unmunched point in the grid. Then, Big Z munches a shoe-free plane perpendicular to one of the coordinate axes. They continue to alternate turns in this fashion, with Little D's goal to lose a shoe on each of n consecutive lattice points on a line parallel to one of the coordinate axes. Determine all n for which Little D can accomplish his goal. David Yang.
5	Prove there exists a constant c (independent of n) such that for any graph G with $n > 2$ vertices, we can split G into a forest and at most $cf(n)$ disjoint cycles, where a) $f(n) = n \ln n$; b) $f(n) = n$. David Yang.
6	Do there exist positive integers k and n such that for any finite graph G with diameter $k+1$ there exists a set S of at most n vertices such that for any $v \in V(G) \setminus S$, there exists a vertex $u \in S$ of distance at most k from v ? David Yang.
7	Let T be a tree. Prove that there is a constant $c > 0$ (independent of n) such that every graph with n vertices that does not contain a subgraph isomorphic to T has at most cn edges. David Yang.
_	Geometry
1	Let $ABCD$ be a convex quadrilateral. Let E, F, G, H be points on segments AB, BC, CD, DA , respectively, and let P be the intersection of EG and FH . Given that quadrilaterals $HAEP, EBFP, FCGP, GDHP$ all have inscribed circles, prove that $ABCD$ also has an inscribed circle. $Evan\ O'Dorney$.

www.artofproblemsolving.com/community/c4349

2	Let $\omega, \omega_1, \omega_2$ be three mutually tangent circles such that ω_1, ω_2 are externally tangent at P, ω_1, ω are internally tangent at A , and ω, ω_2 are internally tangent at B . Let O, O_1, O_2 be the centers of $\omega, \omega_1, \omega_2$, respectively. Given that X is the foot of the perpendicular from P to AB , prove that $\angle O_1XP = \angle O_2XP$. David Yang.
3	Let ABC be a triangle. Draw circles ω_A , ω_B , and ω_C such that ω_A is tangent to AB and AC , and ω_B and ω_C are defined similarly. Let P_A be the insimilar of ω_B and ω_C . Define P_B and P_C similarly. Prove that AP_A , BP_B , and CP_C are concurrent. Tom Lu .
4	Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\angle PA_iA_{i-1} = \angle A_{i+1}A_iQ$ for $1 \le i \le 5$, where indices are taken (mod 5) and angles are directed (mod π). Calvin Deng.
_	Number Theory
1	Prove that $n^3 - n - 3$ is not a perfect square for any integer n . Calvin Deng.
2	Let $p \ge 5$ be a prime. Show that $\sum_{k=0}^{(p-1)/2} \binom{p}{k} 3^k \equiv 2^p - 1 \pmod{p^2}.$ Victor Wang.
3	Let $n > 1$ be a fixed positive integer, and call an n -tuple (a_1, a_2, \ldots, a_n) of integers greater than 1 $good$ if and only if $a_i \Big \Big(\frac{a_1 a_2 \cdots a_n}{a_i} - 1 \Big)$ for $i = 1, 2, \ldots, n$. Prove that there are finitely many good n -tuples. Mitchell Lee.
4	Let $p > 13$ be a prime of the form $2q + 1$, where q is prime. Find the number of ordered pairs of integers (m, n) such that $0 \le m < n < p - 1$ and
	$3^m + (-12)^m \equiv 3^n + (-12)^n \pmod{p}.$

www.artofproblemsolving.com/community/c4349

Alex Zhu.

The original version asked for the number of solutions to $2^m + 3^n \equiv 2^n + 3^n \pmod{p}$ (still $0 \le m < n < p - 1$), where p is a Fermat prime.

www.artofproblemsolving.com/community/c4349 Contributors: math154