Digital Image Processing: Assignment 3

Vaibhav Sharma: T23156

September 17, 2024

1 Distance Metrics between RGB Images

Given two same-sized RGB images $\mathbf{I_1}$ and $\mathbf{I_2}$, we calculate the following distances:

1.1 Manhattan Distance

The Manhattan distance (or L1 norm) between the images is calculated as:

$$D_{\mathrm{Manhattan}} = \sum_{i,j,k} |I_{1,i,j,k} - I_{2,i,j,k}|$$

where i, j are the spatial coordinates and k represent the colour channels (R, G, B).

1.2 Euclidean Distance

The Euclidean distance (or L2 norm) between the images is calculated as:

$$D_{\text{Euclidean}} = \sqrt{\sum_{i,j,k} (I_{1,i,j,k} - I_{2,i,j,k})^2}$$

where i, j are the spatial coordinates and k represents the color channels (R, G, B).

1.3 L-infinity Norm

The L-infinity norm (or maximum norm) between the images is:

$$D_{\text{L-infinity}} = \max_{i,j,k} |I_{1,i,j,k} - I_{2,i,j,k}|$$

where i, j are the spatial coordinates and k represents the color channels (R, G, B).

Figure 2: Image 2

Distance Metric	Value
Manhattan Distance	672477.3
Euclidean Distance	508.8
L-infinity Norm	1.0

Figure 3: Images and distance metrics between them

Figure 4: Image 1

Figure 5: Image 2

Distance Metric	Value
Manhattan Distance	905635.0
Euclidean Distance	657.3
L-infinity Norm	1.0

Figure 6: Images and distance metrics between them

2 Binarization and Logical Operations

Consider two same-sized grayscale images G_1 and G_2 that have been binarized using a threshold T. The binarization operation is defined as:

$$B_{i,j} = \begin{cases} 1 & \text{if } G_{i,j} \ge T \\ 0 & \text{if } G_{i,j} < T \end{cases}$$

where B is the binarized image, G is the grayscale image, i, j are the spatial coordinates, and T is the threshold.

Logical operations between the binarized images are:

2.1 Logical AND

$$AND_{i,j} = B_{1,i,j} \wedge B_{2,i,j}$$

2.2 Logical OR

$$OR_{i,j} = B_{1,i,j} \vee B_{2,i,j}$$

2.3 Logical XOR

$$XOR_{i,j} = B_{1,i,j} \oplus B_{2,i,j}$$

where \land denotes logical AND, \lor denotes logical OR, and \oplus denotes logical XOR.

Figure 7: Various Images

Figure 8: Various logical operations between img1, img2 of Figure 7 $\,$

(a) img1 and img3

(b) img1 or img3

(c) img1 xor img3

Figure 9: Various logical operations between img1, img3 of Figure 7 $\,$

3 Conclusion

We calculated various distance metrics between two RGB image samples, it is worth noting that we overserved a higher value of Manhattan distance than Euclidean distance and small L-infinity Norm as the distance metric, which also scales up as we take larger images. Also, we perform logical operations which are pixel-wise operations between two images to generate a new image, not, or, and, xor are some of these. Note that "img1 or img2" is img1, "img1 and img2" is img2 in Figure 8.

Code Availability

All the code used in this project is available in a public GitHub repository. You can access it at: https://github.com/Computer-Science-Practicum/DIP-Lab-Assignment.