Programación Funcional (parte 2)

Paradigmas de (lenguajes de) programación

3 de septiembre de 2024

Recursión sobre listas

Implementar las siguientes funciones utilizando esquemas de recursión

- elem :: Eq a => a -> [a] -> Bool que indica si un elemento pertence o no a la lista.
- sumaAlt, que realiza la suma alternada de los elementos de una lista. Es decir, da como resultado: el primer elemento, menos el segundo, más el tercero, menos el cuarto, etc.
- take :: Int -> [a] -> [a] utilizando foldr.
- sacarUna:: Eq a => a -> [a] -> [a] que elimina la primera aparición de un elemento en la lista.

Recursión sobre listas

Implementar las siguientes funciones utilizando esquemas de recursión

- elem :: Eq a => a -> [a] -> Bool que indica si un elemento pertence o no a la lista.
- sumaAlt, que realiza la suma alternada de los elementos de una lista. Es decir, da como resultado: el primer elemento, menos el segundo, más el tercero, menos el cuarto, etc.
- **3** take :: Int -> [a] -> [a] utilizando foldr.
- sacarUna:: Eq a => a -> [a] -> [a] que elimina la primera aparición de un elemento en la lista.

¿Qué otros esquemas de recursión conocen?

Un breve repaso

```
¿Qué tipo de recursión tiene cada una de las siguientes funciones? (Estructural, primitiva, global).

take' :: [a] -> Int -> [a]
```

```
take' [] _ = []
take' (x:xs) n = if n==0 then [] else x:take'xs (n-1)
listasQueSuman :: Int -> [[a]]
listasQueSuman 0 = [[]]
listasQueSuman n \mid n > 0 =
                  [x : xs | x \leftarrow [1..], xs \leftarrow listasQueSuman (n-x)]
fact :: Int -> Int
fact. 0 = 1
fact n \mid n > 0 = n * fact (n-1)
fibonacci :: Int -> Int
fibonacci 0 = 1
fibonacci 1 = 1
fibonacci n \mid n > 1 = fibonacci (n-1) + fibonacci (n-2)
```

Generación Infinita

Definir:

pares :: [(Int, Int)], una lista (infinita) que contenga todos los pares de números naturales (sin repetir).

Folds sobre estructuras nuevas

```
Sea el siguiente tipo:
data AEB a = Hoja a | Bin (AEB a) a (AEB a)
Ejemplo: miÁrbol = Bin (Hoja 3) 5 (Bin (Hoja 7) 8 (Hoja 1))
```

Definir el esquema de recursión estructural (fold) para árboles estrictamente binarios, y dar su tipo.

El esquema debe permitir definir las funciones altura, ramas, cantNodos, cantHojas, espejo, etc.

¿Cómo hacemos?

Recordemos el tipo de foldr, el esquema de recursión estructural para listas.

foldr ::
$$(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$$

¿Por qué tiene ese tipo?

(Pista: pensar en cuáles son los constructores del tipo [a]).

¿Cómo hacemos?

Recordemos el tipo de foldr, el esquema de recursión estructural para listas.

¿Por qué tiene ese tipo?

(Pista: pensar en cuáles son los constructores del tipo [a]).

Un esquema de recursión estructural espera recibir un argumento por cada constructor (para saber qué devolver en cada caso), y además la estructura que va a recorrer.

El tipo de cada argumento va a depender de lo que reciba el constructor correspondiente. (¡Y todos van a devolver lo mismo!)

Si el constructor es recursivo, el argumento correspondiente del fold va a recibir el resultado de cada llamada recursiva.

¿Cómo hacemos? (Continúa)

Miremos bien la estructura del tipo.

Estamos ante un tipo inductivo con un constructor *no recursivo* y un constructor *recursivo*.

¿Cómo hacemos? (Continúa)

Miremos bien la estructura del tipo.

Estamos ante un tipo inductivo con un constructor *no recursivo* y un constructor *recursivo*.

¿Cuál va a ser el tipo de nuestro fold?

¿Cómo hacemos? (Continúa)

Miremos bien la estructura del tipo.

Estamos ante un tipo inductivo con un constructor *no recursivo* y un constructor *recursivo*.

¿Cuál va a ser el tipo de nuestro fold?

¿Y la implementación?

Solución

```
foldAEB :: (a -> b) -> (b -> a -> b -> b) -> AEB a -> b

foldAEB fHoja fBin t = case t of

Hoja n -> fHoja n

Bin t1 n t2 -> fBin (rec t1) n (rec t2)

where rec = foldAEB fHoja fBin
```

Ejercicio para ustedes: definir las funciones altura, ramas, cantNodos, cantHojas y espejo usando foldAEB.

Si quieren podemos hacer alguna en el pizarrón.

Funciones sobre árboles

```
Dado el tipo de datos:
data AB a = Nil | Bin (AB a) a (AB a)
```

¿Qué tipo de recursión tiene cada una de las siguientes funciones? (Estructural, primitiva, global).

Tarea: prueben escribir estas funciones con los esquemas de recursión

Folds sobre otras estructuras

Dado el siguiente tipo que representa polinomios:

```
data Polinomio a = X

| Cte a

| Suma (Polinomio a) (Polinomio a)

| Prod (Polinomio a) (Polinomio a)
```

• Definir la función evaluar :: Num a => a -> Polinomio a -> a

Folds sobre otras estructuras

Dado el siguiente tipo que representa polinomios:

- Definir la función
 evaluar :: Num a => a -> Polinomio a -> a
- Definir el esquema de recursión estructural foldPoli para polinomios (y dar su tipo).

Folds sobre otras estructuras

Dado el siguiente tipo que representa polinomios:

- Definir la función
 evaluar :: Num a => a -> Polinomio a -> a
- Definir el esquema de recursión estructural foldPoli para polinomios (y dar su tipo).
- Redefinir evaluar usando foldPoli.

Una estructura más compleja

Dado el tipo de datos data RoseTree a = Rose a [RoseTree a] de árboles donde cada nodo tiene una cantidad indeterminada de hijos.

- Escribir el esquema de recursión estructural para RoseTree.
- Usando el esquema definido, escribir las siguientes funciones:
 - hojas, que dado un RoseTree, devuelva una lista con sus hojas ordenadas de izquierda a derecha, según su aparición en el RoseTree.
 - ramas, que dado un RoseTree, devuelva los caminos de su raíz a cada una de sus hojas.
 - tamaño, que devuelve la cantidad de nodos de un RoseTree.
 - altura, que devuelve la altura de un RoseTree (la cantidad de nodos de la rama más larga). Si el RoseTree es una hoja, se considera que su altura es 1.

Funciones como estructuras de datos

Representando conjuntos con funciones

Se cuenta con la siguiente representación de conjuntos type Conj a = (a->Bool) caracterizados por su función de pertenencia. De este modo, si c es un conjunto y e un elemento, la expresión c e devuelve True si e pertenece a e y False en caso contrario.

Definir la constante vacío :: Conj a, y la función agregar :: Eq a => a -> Conj a -> Conj a.

Funciones como estructuras de datos

Representando conjuntos con funciones

Se cuenta con la siguiente representación de conjuntos type Conj a = (a->Bool) caracterizados por su función de pertenencia. De este modo, si c es un conjunto y e un elemento, la expresión c e devuelve True si e pertenece a e y False en caso contrario.

- Definir la constante vacío :: Conj a, y la función agregar :: Eq a => a -> Conj a -> Conj a.
- Escribir las funciones intersección, unión y diferencia (todas de tipo Conj a -> Conj a-> Conj a).