

Decoupled Neural Interfaces using Synthetic Gradients

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, Koray Kavukcuoglu

MACHINE INTELLIGENCE COMMUNITY

Justin Chen Nov. 6, 2017

Locking

- Locking Wait for all dependent computations before parameter update at current module
- Forward Locking Wait for entire forward pass
- Update Locking Wait for forward pass and compute cost function
- Backwards Locking Wait for forward pass and dependent backwards pass

Backpropagation Expanded

$$\frac{\partial L}{\partial \theta_i} = f_{BProp}((h_i, x_i, y_i, \theta_i), (h_{i+1}, x_{i+1}, y_{i+1}, \theta_{i+1}), \dots) \frac{\partial h_i}{\partial \theta_i} \simeq \hat{f}_{BProp}(h_i) \frac{\partial h_i}{\partial \theta_i}$$

- Goal: Remove all locking
- Main contribution: Backward unlocking for infinite time with RNNs
- Expanding BP exposes dependencies
- Approximate gradient of activations w.r.t. parameters of adjacent layers (modules depending on how you divide up the computation graph)
- Update Synthetic Gradient Model with True Gradients

Synthetic Gradient Model

$$\hat{\delta}_A = M_B(h_A, s_B, c)$$

 $\hat{\delta}_A$ Synthetic gradient for previous layer/module

 s_B Activation of **next layer/module**, which we refer to as module B

 M_B - Synthetic Gradient Model

Context information - additional information such as label information if it's available

 h_A Activation of **previous layer/module**, which we refer to as module A

True gradient from backpropagation

Decoupled Neural Interface (DNI)

Updating DNI

- DNI are update locked
- ullet Trained to minimize L_2
- Can incorporate context information if available

$$L_{\delta_i} = d(\hat{\delta_i}, \delta_i)$$

$$\hat{\delta_i} = M_{i+1}(h_i, c)$$

Unlocked Subnetworks

Expanding Backpropagation

Multiple DNI Feedforward Network

Multiple DNI Update Rule

Updating Multiple DNI Feedforward Networks

Expanding BP for RNN

Expanding BP for RNN

$$= \theta - \alpha \left(\sum_{\tau=t}^{t+T} \frac{\partial L_{\tau}}{\partial \theta} + \left(\sum_{\tau=T+1}^{\infty} \frac{\partial L_{\tau}}{\partial h_{T}} \right) \frac{\partial h_{T}}{\partial \theta} \right)$$

Unroll for only T timesteps

Timesteps after T (future timesteps)

Expanding BP for RNN

$$= \theta - \alpha \left(\sum_{\tau=t}^{t+T} \frac{\partial L_{\tau}}{\partial \theta} + \delta_{T} \frac{\partial h_{T}}{\partial \theta} \right)$$

- Calculating infinite timesteps is intractable
- Typically ignore timesteps after T by multiplying future gradients by 0

Summation of true gradients over infinite timesteps after timestep T

Breaking RNN Time Boundaries

$$\theta - \alpha \left(\sum_{\tau=t}^{t+T} \frac{\partial L_{\tau}}{\partial \theta} + \hat{\delta}_{T} \frac{\partial h_{T}}{\partial \theta} \right)$$

- Equivalent to unrolling for infinite timesteps with infinite subnetworks
- DNI allows RNN to asynchronously communicate with future self

Approximate with DNI

Breaking RNN Time Boundaries

Short-term & Long-term Synthetic Gradients

Updating Multiple DNI Recurrent Networks

DNI between every layer in FCN

DNI between every layer in FCN and CNN

		MNIST (% Error)				CIFAR-10 (% Error)			
Layers		No Bprop	Bprop	DNI	cDNI	No Bprop	Bprop	DNI	cDNI
FCN	3	9.3	2.0	1.9	2.2	54.9	43.5	42.5	48.5
	4	12.6	1.8	2.2	1.9	57.2	43.0	45.0	45.1
	5	16.2	1.8	3.4	1.7	59.6	41.7	46.9	43.5
	6	21.4	1.8	4.3	1.6	61.9	42.0	49.7	46.8
NN	3	0.9	0.8	0.9	1.0	28.7	17.9	19.5	19.0
S	4	2.8	0.6	0.7	0.8	38.1	15.7	19.5	16.4

20% Chance Backwards Unlocking

Completely Unlocked Network

Gradient Model

Forwards Unlocking

Dynamic Computation Graphs and Ensembles

Two RNNs communicating with DNI

- One RNN trained to count number of 3s seen
- Second RNN trained to count number odd numbers seen

References and Further Reading

- 1. Jaderberg, Max, et al. "Decoupled neural interfaces using synthetic gradients." arXiv preprint arXiv:1608.05343 (2016).
- 2. Czarnecki, Wojciech Marian, et al. "Understanding Synthetic Gradients and Decoupled Neural Interfaces." arXiv preprint arXiv:1703.00522 (2017).
- 3. Miyato, Takeru, et al. "Synthetic Gradient Methods with Virtual Forward-Backward Networks." (2017).
- 4. Czarnecki, Wojciech Marian, et al. "Sobolev Training for Neural Networks." arXiv preprint arXiv:1706.04859 (2017).

