Dynamic cloud resource allocation for optimized container deployment and distribution

Then...

- Dedicated servers
- Big
- Immutable
- Expensive
- Monthly/Annual contracts

Recently...

- Cloud computing
- Small Virtual Machines
- Hourly payments
- Microservices

Additionally...

Controlling your cloud resources through REST APIs

Allocating resources programmatically

• /containers/create

```
"name": "example.com",
"region": "nyc3",
"size": "s-1vcpu-1gb",
"image": "ubuntu-16-04-x64",
"ssh_keys": [ ... ],
"tags": [
 "web-server"
```


Docker

- Packing services into images
- Dependency-free
- Portability
- Isolation

Master/Slave model

Node Initialization

Now what?

Cloud resources and service deployment can now be programmatically controlled and automated.

High-level optimization

Resource Utilization

Bin packing problem

Given a set of bins $S_1,S_2\dots$ with the same size V and a list of n items with sizes a_1,\dots,a_n to pack, find an integer number of bins B and a B-partition $S_1\cup\dots\cup S_B$ of the set $\{1,\dots,n\}$ such that $\sum_{i\in S_k}a_i\leq V$ for all $k=1,\dots,B.$ A solution is *optimal* if it has

minimal B. The B-value for an optimal solution is denoted **OPT** below. A possible Integer Linear Programming formulation of the problem is:

minimize
$$B=\sum_{i=1}^n y_i$$
 subject to $B\geq 1,$
$$\sum_{j=1}^n a_j x_{ij} \leq V y_i, \, \forall i\in\{1,\dots,n\}$$

$$\sum_{i=1}^n x_{ij}=1, \qquad \forall j\in\{1,\dots,n\}$$

$$y_i\in\{0,1\}, \qquad \forall i\in\{1,\dots,n\}$$

$$x_{ij}\in\{0,1\}, \qquad \forall i\in\{1,\dots,n\} \, \forall j\in\{1,\dots,n\}$$

where $y_i=1$ if bin i is used and $x_{ij}=1$ if item j is put into bin i. [5]

Optimizing Allocation

Allocating new reosurces

=> size?

 We should predict what we'll need space for in the immediate future

=> linear regression

