Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

> Факультет інформатики та обчислювальної техніки Кафедра автоматизованих систем обробки інформації і управління

> > Звіт

з лабораторної роботи №5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Організація циклічних процесів складних циклів» Варіант 8

Виконав ІП-13, Гончаров Євген Олександрович студент (шифр, прізвище, ім'я, по батькові)

Перевірив Наталія Вечерковська Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 5

Організація циклічних процесів складних циклів

Мета – вивчити особливості організації складних циклів.

Індивідуальне завдання

Варіант 8

Завдання

Цифровий корінь натурального числа - це одноцифрове значення, яке отримується із цифр числа шляхом ітераційного процесу знаходження спочатку суми цифр даного числа, а потім, якщо потрібно, суми цифр значень, отриманих на попередній ітерації знаходження відповідних сум (якщо значення суми не є цифрою). Цей процес триває до тих пір, поки не буде отримано однорозрядне число. Наприклад, цифровим коренем числа $65536 \ \epsilon \ 7$, так як 6+5+5+3+6=25, 2+5=7. Знайти цифрові корені всіх простих чисел з інтервалу [100, 200].

1. Постановка задачі

Оскільки всі значення — константи, введення не потрібне. В ході обчислень, використавши алгоритми для перевірки числа на те чи ϵ воно простим і обчислення цифрового кореня числа, визнача ϵ мо та виводимо цифрові корені усіх простих чисел від 100 до 200.

2. Побудова математичної моделі.

Складемо таблицю імен змінних.

Змінна	Tun	Ім'я	Призначення
Змінна Ү	Цілочисельний	Υ	Проміжні данні, результат
Змінна В	Логічний	В	Проміжні данні
Змінна С	Цілочисельний	С	Проміжні данні

Реалізуємо перевірку числа на те чи є воно цифрою через порівняння його з його остачею від ділення на 10.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначемо основні дії.

Крок 2. Проведемо обчислення та виводимо значення.

Основна програма:

Крок 1

Початок

Визначемо основні дії

Проведемо обчислення та виводимо значення кінець

Крок 2

Початок

Визначемо основні дії

Крок 3

Початок

Визначемо основні дії

повторити для і від 100 до 200:

Y = 0

B = true

C = i

<u>Перевірка на просте число, якщо це так - то вивести цифровий</u> код цього числа

все повторити

кінець

```
Основи алгоритмізації
Крок 4
Початок
Визначемо основні дії
повторити для і від 100 до 200:
    Y = 0
    B = true
    C = i
    Повторити для ј від і-1 до 2:
        якщо i % j == 0:
             mo B = false
        все якщо
    все повторити
    якщо В:
        то повторити поки С != 0:
             Y += C % 10
             C /= 10
        все повторити
        якщо Y % 10 != Y:
             mo C = Y
             Y = 0
             повторити поки:
                 Y += C % 10
                 C /= 10
             все повторити
        все якщо
        вивести Ү
    все якщо
все повторити
```

кінець

Основи алгоритмізації Підпрограми:

Основи алгоритмізації

Блок-схема

Основна програма:

Крок 1, 2

Основи алгоритмізації

Підпрограми:

Основи алгоритмізації Тестування

Блок	Дія
	Початок
1	i = 100
2	Y = 0
3	B = true
4	C = 100
5	J = 99
•••	•••
6	B = false
7	i = 101
8	Y = 0
9	B = true
10	C = 101
11	j = 100
•••	•••
12	B = true
13	Y = 1
14	C = 10
15	Y = 1
16	C = 1
17	Y = 2
18	C = 0

Основи	алгори:	тмізації

19	Вивести Ү	
20	i = 103	
•••	•••	
21	i = 200	
22	Y = 0	
23	B = true	
24	C = 200	
25	j = 199	
•••	•••	
26	B = false	
	Кінець	

Висновки

Ми вивчили вивчили особливості організації складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

В результаті виконання лабораторної роботи ми отримали алгоритм для знаходження цифрових кореней всіх простих чисел від 100 до 200, декомпозували задачу на 4 кроки: визначили основні дії, провели обчислення та вивели результат.