Linear Systems

The Harmonic Oscillator

A model for a mass on a spring

$$egin{aligned} -ky-brac{dy}{dt}&=mrac{d^2y}{dt^2}\ \Longrightarrow & egin{cases} rac{dy}{dt}&=v\ rac{dv}{dt}&=-rac{k}{m}y-rac{b}{m}v \end{cases} \end{aligned}$$

Constant coefficient

$$\left\{ egin{aligned} rac{dx}{dt} &= ax + by \ rac{dy}{dt} &= cx + dy \end{aligned}
ight.$$

Where a, b, c, d are constants

Matrix form

$$\mathbf{Y} = egin{bmatrix} x(t) \ y(t) \end{bmatrix} \ \mathbf{A} = egin{bmatrix} a & b \ c & d \end{bmatrix}$$

$$\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$$

Where the dimension of the system may be arbitrary

Equilibrium Points

$$\mathbf{Y} = \vec{0}$$

Will always be a solution to constant coefficient equations.

If the determinant $\det \mathbf{A} = 0$ there may be other equilibrium points

If $\mathbf{A} = \mathbf{0}$ then every point is an equilibrium point

Linearity Principle

- 1. If $\mathbf{Y}(t)$ is a solution, then for any arbitrary constant k, $k\mathbf{Y}(t)$ is also a solution
- 2. If $\mathbf{Y}_1(t)$ and $\mathbf{Y}_2(t)$ are solutions, then their sum is also a solution

Proof

This is because if

$$\begin{cases} \frac{d\mathbf{Y}_1}{dt} = \mathbf{A}\mathbf{Y}_1 \\ \frac{d\mathbf{Y}_2}{dt} = \mathbf{A}\mathbf{Y}_2 \end{cases}$$

then

$$k rac{d\mathbf{Y}_1}{dt} = k \mathbf{A} \mathbf{Y}_1 \ \Longrightarrow rac{d\mathbf{k} \mathbf{Y}_1}{dt} = \mathbf{A}(k \mathbf{Y}_1)$$

and

$$\frac{\frac{d\mathbf{Y}_1}{dt} + \frac{d\mathbf{Y}_2}{dt} = \mathbf{A}\mathbf{Y}_1 + \mathbf{A}\mathbf{Y}_1}{\Longrightarrow \frac{d(\mathbf{Y}_1 + \mathbf{Y}_2)}{dt} = \mathbf{A}(\mathbf{Y}_1 + \mathbf{Y}_2)}$$

General Solution given two independent solutions

Given two solutions \mathbf{Y}_1 and \mathbf{Y}_2 to the problem $\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$ with the initial value $\mathbf{Y}(0) = \vec{y}_0$

We will denote the initial values of \mathbf{Y}_1 and \mathbf{Y}_2 with \vec{y}_1 and \vec{y}_2 respectively

Via the linearity principle, we know k_1 and k_2 exist such that

$$egin{cases} k_1 ec{y}_1 + k_2 ec{y}_2 = ec{y}_0 \ k_1 \mathbf{Y}_1 + k_2 \mathbf{Y}_2 = \mathbf{Y} \end{cases}$$

Let
$$\mathbf{K} = egin{bmatrix} k_1 \ k_2 \end{bmatrix}$$
Let $\mathbf{Y}_0 = egin{bmatrix} ec{y}_1 & ec{y}_2 \ dots & dots \end{bmatrix}$
Let $ec{\mathbf{Y}} = [\mathbf{Y}_1 & \mathbf{Y}_2]$

$$\implies egin{cases} \mathbf{Y}_0 \mathbf{K} = ec{y}_0 \ ec{\mathbf{Y}} \mathbf{K} = \mathbf{Y} \ \implies egin{cases} \mathbf{K} = \mathbf{Y}_0^{-1} ec{y}_0 \ ec{\mathbf{Y}} \mathbf{K} = \mathbf{Y} \end{cases}$$

Straight Line Solutions

There may exist straight line solutions to a linear system.

If a straight line solution exists, the following equation must be satisfied:

Given
$$rac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$$
 $\mathbf{A}ec{V} = \lambdaec{V}$

Where λ is a constant

Finding eigenvalues and eigenvectors

We may rearrange this equation to be of the form

$$(\mathbf{A} - \lambda \mathbf{I})\vec{V} = \vec{0}$$

If $\vec{V} \neq \vec{0}$ then the first matrix must be degenerate, therefore

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

From this equation, we are able to solve for valid λ s. These λ s are called **eigenvalues**. This equation will be a quadratic called the characteristic polynomial.

The coefficients for this polynomial may be shortcutted with a=1, b=T, c=D where T is the trace of the matrix and D is the determinant.

The matrix $({\bf A}-\lambda {\bf I})$ being degenerate, will have an entire line of valid solutions for $\vec V$ in the equation

$$(\mathbf{A} - \lambda \mathbf{I}) \vec{V} = \vec{0}$$

All solutions for \vec{V} for a particular λ will be multiples of itself. Any valid \vec{V} for its associated λ is called an **eigenvector**

Specific solutions for distinct real non-zero eigenvalues

The solution associated with an eigenvalue and its associated eigenvector must satisfy the equation

$$\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$$

If we let the initial condition be \vec{V} , \mathbf{Y} must always lie on a multiple of \vec{V} as $\mathbf{A}\vec{V}=\lambda\vec{V}$ and $\frac{d\mathbf{Y}}{dt}=\mathbf{A}\mathbf{Y}$

Therefore, for initial conditions of multiples of \vec{V} ,

$$\frac{d\mathbf{Y}}{dt} = \lambda \mathbf{Y}$$

Where λ is the associated eigenvalue for the eigenvector \vec{V}

This differential equation can be easily solved for Y with an exponential

$$\mathbf{Y}(t) = e^{\lambda t} ec{V}$$

For positive λ s, the solution points away from the origin, while the opposite is true for negative λ s. If both λ s are positive, then the origin is a source; a sink if both are negative; or a saddle if they are of different signs.

If the eigenvectors are distinct and real, then there will be two distinct solutions for \mathbf{Y} which may be combined with the linearity principle.

As such, the general solution will be:

$$\mathbf{Y}(t) = k_1 e^{\lambda_1 t} ec{V}_1 + k_2 e^{\lambda_2 t} ec{V}_2$$

Specific solutions for imaginary eigenvalues

Assuming the matrix $\bf A$ being real, the only time solutions for λ will be imaginary is when both solutions for λ are imaginary, due to $\det({\bf A}-\lambda{\bf I})=0$ producing a quadratic of λ with real coefficients. Additionally, the solutions for λ will be conjugates of each other. This may be proved trivially.

However, due to λ being imaginary, the associated eigenvectors will also be imaginary, making the solution of $e^{\lambda t} \vec{V}$ not make sense. This $\mathbf{Y}(t)$ does satisfy the conditions however, just not on the real plane.

Using Euler's formula:

$$e^{a+ib} = e^a(\cos b + i\sin b)$$

We are able to split the solution into real and imaginary parts.

Let $a + ib = \lambda$, where a and b are real.

$$e^{\lambda t} ec{V} = ec{V} e^{at} (\cos(bt) + i \sin(bt))$$

After multiplying through with \vec{V} , the solution may be separated into its real and imaginary parts \mathbf{Y}_{re} and $i\mathbf{Y}_{im}$

$$\mathbf{Y}(t) = \mathbf{Y}_{re}(t) + i\mathbf{Y}_{im}(t)$$

Since $\mathbf{Y}(t)$ is a valid solution,

$$egin{aligned} rac{d\mathbf{Y}}{dt} &= \mathbf{A}\mathbf{Y} \ rac{d\mathbf{Y}_{re} + i\mathbf{Y}_{im}}{dt} &= \mathbf{A}(\mathbf{Y}_{re} + i\mathbf{Y}_{im}) \ rac{d\mathbf{Y}_{re}}{dt} + irac{d\mathbf{Y}_{im}}{dt} &= \mathbf{A}\mathbf{Y}_{re} + i\mathbf{A}\mathbf{Y}_{im} \end{aligned}$$
 $\Longrightarrow egin{cases} rac{d\mathbf{Y}_{re}}{dt} &= \mathbf{A}\mathbf{Y}_{re} \ rac{d\mathbf{Y}_{im}}{dt} &= \mathbf{A}\mathbf{Y}_{im} \end{aligned}$

As such, \mathbf{Y}_{re} and \mathbf{Y}_{im} are valid solutions for \mathbf{Y}

These solutions may be combined similarly to the real case to form a general solution:

$$\mathbf{Y}(t) = k_1 \mathbf{Y}_{re} + k_2 \mathbf{Y}_{im}$$

As \sin and \cos are periodic and non-increasing nor decreasing, if a is positive, then the origin is a spiral source; a spiral sink if it were negative, and a center if a=0, where all solutions are periodic ellipses.

Repeated Eigenvalues

Systems that have a non-zero repeated eigenvalue have solutions similar to other linear systems.

Similar to the other systems, a solution would be the particular solution given by the singular eigenvalue:

$$\mathbf{Y}_{p}(t) = ke^{\lambda t} \vec{V}$$

However, this solution only gives one dimension of freedom in the initial condition plane.

Assume that one of the non-diagonal attributes of the matrix $\bf A$ is 0. This implies that one of the differential equations within the system is decoupled from the rest of the system.

It can also be easily shown that the solution for a decoupled linear differential equation is of the form k_2e^{bt} where b is the coefficient of the linear equation. Additionally, k_2 is the initial condition of the decoupled equation.

Lastly, the other differential equation can also be easily shown to be of the form $k_1e^{at}+k_2te^{bt}$. This can easily be vectorized as $e^{\lambda t}\vec{V}_0+te^{\lambda t}\vec{V}_1$. Where \vec{V}_0 is the initial condition. λ is the coefficient of the decoupled equation, or a calculated eigenvalue, it can be easily shown that these are equivalent. In the case of a decoupled equation.

 $ec{V}_1$ can be solved for like such:

$$egin{aligned} rac{d\mathbf{Y}}{dt} &= \mathbf{A}\mathbf{Y} \ \mathbf{Y} &= e^{\lambda t} ec{V}_0 + t e^{\lambda t} ec{V}_1 \ \lambda e^{\lambda t} ec{V}_0 + (1 + \lambda t) e^{\lambda t} ec{V}_1 &= e^{\lambda t} \mathbf{A} ec{V}_0 + t e^{\lambda t} \mathbf{A} ec{V}_1 \ &\Longrightarrow egin{cases} \lambda ec{V}_1 &= \mathbf{A} ec{V}_1 \ \lambda ec{V}_0 + ec{V}_1 &= \mathbf{A} ec{V}_0 \ &\Longrightarrow egin{cases} \lambda ec{V}_1 &= \mathbf{A} ec{V}_1 \ ec{V}_1 &= (\mathbf{A} - \mathbf{I} \lambda) ec{V}_0 \end{aligned}$$

 $\vec{l} \cdot \vec{l} \cdot \vec{l} \cdot \vec{l} \cdot \vec{l}$ is either an eigenvector or $\vec{l} \cdot \vec{l} \cdot \vec{l}$

If
$$ec{V}_1=ec{0}$$
, $\lambdaec{V}_0=\mathbf{A}ec{V}_0$

Thus, if \vec{V}_0 is an eigenvector, \vec{V}_1 is $\vec{0}$, else \vec{V}_1 will be an eigenvector.

As such, the general solution will be

$$egin{cases} \mathbf{Y} = e^{\lambda t} ec{V}_0 + t e^{\lambda t} ec{V}_1 \ ec{V}_1 = (\mathbf{A} - \mathbf{I} \lambda) ec{V}_0 \end{cases}$$

With \vec{V}_0 as the initial condition.

This turns out to be the general solution for any repeated eigenvalue differential system. I am unsure why and could not find a proof for this at the moment.

Repeated diagonal Matrices

A repeated diagonal matrix means that both equations are independent and as such all vectors are also eigenvectors.

The matrix takes the form of

$$\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

In this system, $\lambda = a$

The solution is $\mathbf{Y}=e^{\lambda t}\vec{V}_0$

Zero as an eigenvalue

Having zero as an eigenvalue immediate implies that the system is degenerate.

All associated eigenvectors for a zero eigenvalue are all equilibrium points.

All other points will approach the zero-eigenvector line

Damping

In the mass-spring harmonic oscillator equation:

$$mrac{d^2y}{dt^2}+brac{dy}{dt}+ky=0$$

The oscillator may be categorized based on different characteristics:

• Undamped: b=0

• Underdamped: $b^2 - 4km < 0$

• Critically damped: $b^2 - 4km = 0$

• Overdamped: $b^2 - 4km > 0$

An underdamped system will oscillate / orbit the origin.

Categorizing systems

Systems may be categorized via their eigenvalues or their determinant and traces.

Let
$$R = T^2 - 4D$$

Where T is the trace and D is the determinant

	T < 0	T = 0	T > 0
D > R	Spiral Sink	Center	Spiral Source
D = R	One line sink	\	One line source
R > D > 0	Two line sink	All equilibrium	Two line sourrce
D = 0	Equilibrium line sink	↑	Equilibrium line source
D < 0	\rightarrow	Saddle	←

Examples

1 - Undampened Harmonic Oscillator

$$rac{d^2y}{dt^2}=-y$$

$$\checkmark$$
 Answer \checkmark

$$egin{cases} rac{dy}{dt} &= v \ rac{dv}{dt} &= -y \ \mathbf{Y}(t) &= egin{bmatrix} y(t) \ v(t) \end{bmatrix} \ rac{d\mathbf{Y}}{dt} &= egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix} \mathbf{Y} \end{cases}$$

We can verify our guess of $y(t) = \sin(x)$

$$egin{aligned} rac{d\mathbf{Y}}{dt} &= egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix} \mathbf{Y} \ egin{bmatrix} \cos(t) \ -\sin(t) \end{bmatrix} &= egin{bmatrix} \cos(t) \ -\sin(t) \end{bmatrix} \end{aligned}$$

We can verify another guess of $y(t) = \cos(x)$

$$egin{aligned} rac{d\mathbf{Y}}{dt} &= egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix} \mathbf{Y} \ egin{bmatrix} -\sin(t) \ -\cos(t) \end{bmatrix} &= egin{bmatrix} -\sin(t) \ -\cos(t) \end{bmatrix} \end{aligned}$$

And thus we have our general solution of

$$\mathbf{Y} = egin{bmatrix} \sin(t) \ \cos(t) \end{bmatrix} \mathbf{K}$$

 $\mathbf{Y} = egin{bmatrix} \sin(t) \ \cos(t) \end{bmatrix} \mathbf{K}$ Where \mathbf{K} is any two-dimensional vector