Ejercicios de Análisis Matemático II

20 de abril de 2016

$\mathbf{\acute{I}ndice}$

1.	Sucesiones de funciones
	1.1. Sucesiones de funciones
	1.2. Series de potencias
2.	Integral de Lebesgue
	2.1. Medida de Lebesgue en \mathbb{R}^N
	2.2. Integral de Lebesgue en \mathbb{R}^N
	2.3. Teoremas de convergencia
3.	Técnicas de integración
	3.1. Técnicas de integración en una variable
	3.2. Técnicas de integración en varias variables

- 1. Sucesiones de funciones
- 1.1. Sucesiones de funciones
- 1.2. Series de potencias

2. Integral de Lebesgue

2.1. Medida de Lebesgue en \mathbb{R}^N

5. Probar que M es la mayor σ -álgebra que contiene los intervalos acotados y sobre la que λ^* es aditiva.

Supongamos que existe otra σ -álgebra N que contiene los intervalos acotados y sobre la que λ^* es aditiva. Terminaremos demostrando que en ese caso $N \subseteq M$.

Recordemos que $M = \{B \cup Z : B \in \mathfrak{B}, \lambda^*(Z) = 0\} \subseteq C_{\mathbb{R}.\lambda}$

La σ -subaditividad nos decía:

$$\lambda^*(A \cup B) < \lambda^*(A) + \lambda^*(B)$$

Llamaremos $\lambda' = \lambda^*/N$

Por ser una σ -álgebra $\Omega \in N$, al estar hablando de intervalos $\Omega = \mathbb{R}$

Sea $E \subseteq \mathbb{R}$, cogemos un conjunto arbitrario $A \subseteq \mathbb{R}$. Sabemos, en virtud de la propiedad de regularidad de la medida exterior (Prop. 2.1.10), que existe un boreliano B

$$B: A \subseteq B, \lambda'(A) = \lambda'(B)$$

 $\lambda'(A) = \lambda'(B)$, usando la propiedad de que N contiene los intervalos acotados podemos usar la σ -aditividad. $B \cap E, B \cap E^c \in N$

$$\lambda'(B) = \lambda'\left((B \cap E) \cup (B \cap E^c)\right) \geqslant \lambda'(A \cap E) + \lambda'(A \cap E^c) \geqslant \lambda'(A)$$

Por tanto $E \in C_{\mathbb{R},\lambda'}$ lo que es equivalente a $E \in M \implies N \subseteq M$

7. Existencia de conjuntos no medibles

a) Probar que la familia $\{x + \mathbb{Q} : x \in \mathbb{R}\}$ es una partición de \mathbb{R} .

Sea
$$x \in \mathbb{R}$$
. Entonces $x \in x + \mathbb{Q}$ dado que $x = x + 0$. Por ello, $\bigcup_{x \in \mathbb{R}} \{x + \mathbb{Q}\} = \mathbb{R}$.

Sean
$$x, y, t \in \mathbb{R}$$
: $t \in x + \mathbb{Q}$ y $t \in y + \mathbb{Q}$. Entonces $\exists q_1, q_2 \in \mathbb{Q}$: $t = x + q_1 = y + q_2$. Así, $x = y + q_2 - q_1$, y, como $q_2 - q_1 \in \mathbb{Q}$, $x \in y + \mathbb{Q}$ y $x + \mathbb{Q} = y + \mathbb{Q}$.

Así, esta familia está formada por conjuntos disjuntos (si un elemento está en dos elementos de la familia, estos son el mismo) cuya unión es \mathbb{R} : es una partición de \mathbb{R} .

b) Pongamos $\{x + \mathbb{Q} : x \in \mathbb{R}\} = \{A_i : i \in I\} \ (A_i \neq A_j \text{ para } i \neq j) \text{ y, para cada } i \in I, \text{ sea } x_i \in A_i \cap]0,1]$. Probar que el conjunto $E = \{x_i : i \in I\}$ no es medible.

Sea $\{q_n : n \in \mathbb{N}\}$ una numeración de $]-1,1] \cap \mathbb{Q}$.

Supongamos que E es medible. En tal caso, $\lambda(E) = \lambda(E+k) \ \forall k \in \mathbb{R}$ dado que λ es invariante por traslación. Debido a la σ -aditividad de λ y a que los conjuntos $q_n + E$ son disjuntos entre sí [proof needed], resulta que:

$$\lambda(\bigcup_{n=1}^{+\infty}(q_n+E)) = \sum_{n=1}^{+\infty}\lambda(q_n+E) = \sum_{n=1}^{+\infty}\lambda(E)$$

Como $]0,1] \subseteq \bigcup_{n=1}^{+\infty} (q_n + E) \subseteq]-1,2]$ [proof needed], también tendremos que $\lambda(]0,1]) = 1 \le$

$$\lambda(\bigcup_{n=1}^{+\infty}(q_n+E))=\sum_{n=1}^{+\infty}\lambda(E)\leq \lambda(]-1,2])=3.$$
 Como esto es imposible tanto si $\lambda(E)=0$ (en cuyo

3

caso $\sum_{n=1}^{+\infty} \lambda(E) = 0 \ngeq 1$) como si $\lambda(E) \in \mathbb{R}^+$ (en cuyo caso $\sum_{n=1}^{+\infty} \lambda(E) = +\infty \nleq 3$), la suposición de que E es medible resulta haber sido incorrecta, y E no es medible.

c) Probar que cualquier subconjunto medible de E tiene medida cero.

Los conjuntos $q_n + A$ son, de nuevo, disjuntos. Por ello, vuelve a ocurrir que $\lambda(\bigcup_{n=1}^{+\infty}(q_n + A)) = \sum_{n=1}^{+\infty}\lambda(A)$. De nuevo, $\bigcup_{n=1}^{+\infty}(q_n + A) \subseteq]-1,2]$ y por ello $\sum_{n=1}^{+\infty}\lambda(A) \le \lambda(]-1,2]) = 3$. La única posibilidad es que $\lambda(A) = 0$.

d) Sea $M \subseteq \mathbb{R}$ con $\lambda^*(M) > 0$. Probar que M contiene un subconjunto no medible. Si M no es medible, el enunciado es trivial (M sería un subconjunto no medible de M). Sea M medible, es decir, $\lambda(M) = \lambda^*(M)$. Se observa que $M = \bigcup_{q \in \mathbb{Q}} M \cap (q + E)$ [proof needed].

Supongamos que $M \cap (q + E)$ es medible para todo $q \in \mathbb{Q}$. En ese caso: (aparece un \leq porque la unión no es disjunta)

$$\lambda(M) = \lambda(\bigcup_{q \in \mathbb{Q}} M \cap (q+E)) \leq \sum_{q \in \mathbb{Q}} \lambda(M \cap (q+E)) = \sum_{q \in \mathbb{Q}} \lambda((M-q) \cap E)$$

Que es igual a 0 por ser la suma de las medidas de subconjuntos de E medibles (porque suponemos que todos son medibles), las cuales son 0 por lo probado en c). Contradicción (hemos obtenido que $\lambda(M) \leq 0$), por lo cual alguno de los $M \cap (q+E)$ no será medible.

- 2.2. Integral de Lebesgue en \mathbb{R}^N
- 2.3. Teoremas de convergencia

- 3. Técnicas de integración
- 3.1. Técnicas de integración en una variable
- 3.2. Técnicas de integración en varias variables