· Goal: aualitatively draw the graph of f(x) using Knowledge of f(x) and f'(x).

· Typical picture of a minimum:

Note: f'(x) = 0 f'(x) < 0 when $X < x_0$; f is decreasing to left of x_0 f'(x) > 0 when $x > x_0$; f is increasing to right of x_0

- · Curve Sketching recipe
 - · Plot discontinuities (and watch out for ± 00)
 - · Find the critical pts, i.e., the pts. X with fix=0.
 - · @ Plot critical points (+ critical value of possible)

 @ Decide on the sign in between critical points
 - . Plot the pts. X with f(x) = O (i.e, the zeros of fe)
 - · Determine how I behaves at the endpoints (which may be $x=\pm\infty$).

- · No discontinuities
- $y^2 = 3 3x^2 = 3(1-x^2)$. Thus, $y^2 = 0$ when $x = \pm 1$.
- · @ f (1)=2, f(-1)=-2. Plot thex paints.
 - X>1 + -1<X<1 D 1, 12 - X<-1
- Zeros of f: $3x x^3 = x(3 x^2) = 0$. $x = 0, \pm \sqrt{3}$
- As $X \to \infty$, $Y \to -\infty$ $X \to -\infty$, $Y \to \infty$.

Ex:	Y =	$\frac{x}{1} = t(x)$	Y)=	_
			1	×2

RnK: Even though y' <0, the graph of f

· Redson: discontinuity of X=0

Correct Picture:

"
$$y^{2} = 3x^{2} - 6x + 3 = 3(x^{2} - 2x + 1) = 3(x - 1)^{2}$$

· Critical point: y) = when x=1.

=> y is always increasing

Set
$$X = 2^{-n}$$
. Then $y = \frac{\ln 2^n}{2^{-n}} = -n \ln 2 \cdot 2^n$

 $as n \to \infty$.

• Critical pts:
$$y = \frac{x^{\frac{1}{2}} - x^{\frac{1}{2}}}{x^{2}} = \frac{1 - \ln x}{x^{2}}$$

•
$$f(e) = \frac{\ln e}{e} = \frac{1}{e}$$
 = Critical value.

Teros:
$$Y = 0 = 7$$
 In $x=0$ = 7 Critical value.
• Y' XO when $0 < x < 1$
• Y' XO when $0 < x < 1$
• Y' XO when $0 < x < 1$
• Y' XO when $0 < x < 1$
• Y' XO when $0 < x < 1$

$$\frac{V=\frac{\ln(2^n)}{2^n}=\frac{n\ln 2}{2^n}\approx \frac{.693n}{2^n}\xrightarrow{38n\to\infty}$$
Thus $y\to 0$ as $x\to \infty$

. In total:

1) Second derivative test for flas

Let Xo be 2 critical pt. Then:

f(x)	f"(x ₀)	Critical pt. is
0		m JX
0	0	Need more info: Could be a min/max/neither

2) Graphing

. The points where f" = 0

are Called inflection points.

up to down, or vice versz.

· Y= 3x - x3

· Y)= 3 (1-x2)

. 411 = - 6X

· Y11=0 when x=0

. y" >0 when & <0

· 4" (0 when x >0