Теория и реализация языков программирования.

Задание 4: Замкнутость регулярных языков, теорема Майхилла-Нероуда и минимальные автоматы

Сергей Володин, 272 гр.

задано 2013.09.25

Упражнение 1

Задача 1

Будем «искать» представителей классов. Сначала найден $\varepsilon \in C_1$. Если $\varepsilon \sigma \equiv \sigma \notin C(\varepsilon) \Leftrightarrow f(\sigma, \varepsilon) = 0$, найден представитель нового класса. Данную процедуру повторяем для всех найденных классов $\sim n^2$ операций, для них же на каждом шаге определяем $\delta(C_i, \sigma) = C_j$, где $x_i \in C_i$ — найден, $j \colon x_i \sigma \in C_j$. Так будут найдены все классы, потому что на каждом шаге определяются переходы для какого-то состояния ДКА. Состояний конечное число, а когда автомат будет полным, алгоритм можно считать законченным. Корректность следует из построения: $\delta(C_i, \sigma) = C_j \Leftrightarrow x_i \sigma \in C_j$ — см. доказательство теоремы Майхилла-Нероуда.

Более формально: $L \subset \Sigma^* \in \mathsf{REG}, \Sigma^* / \sim_L = \{C_i\} \equiv \{C_1, ..., C_n\}$ (n неизвестно, C_i попарно различны). $f \colon \Sigma^* \times \Sigma^* \longrightarrow \{0, 1\} - 3$ адана, $f(x, y) = 1 \Leftrightarrow x \sim_L y$. Построим ДКА $\mathcal{A} \colon L(\mathcal{A}) = L$.

 $Q \stackrel{\text{def}}{=} \{C_i\}, q_0 \stackrel{\text{def}}{=} C(\varepsilon)$. Докажем, что на n-м шаге нижеописанного алгоритма выполняется

 $P(n) = [\forall i \in \overline{1, n} \hookrightarrow \text{найдены } x_i \in C_i, \forall \sigma \in \Sigma \hookrightarrow \text{ определены } \delta(C_i, \sigma) = C_j \Leftrightarrow C_i \sigma \in C_j].$

1. (n=1). $\Sigma^* \ni \varepsilon$ принадлежит какому-то классу. Без ограничения общности $\varepsilon \in C_1$. Рассмотрим все $\sigma_k \in \Sigma$. Если $f(\varepsilon, \sigma_k) = 1$, то x

Задача 2

Задача 3

Задача 4

1. $\Sigma = \{0,1\}$. Докажем, что $L(\mathcal{A}) = L, \ L = \{w \ | \ |w|_1 = 2t, t \in \mathbb{Z}\}$, ДКА \mathcal{A} :

Докажем утверждение $P(n) = [\forall w \in \Sigma^* : |w| = n \hookrightarrow (q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2)].$

- (a) Докажем P(0). Поскольку $|w|=0 \Rightarrow w=\varepsilon, P(0)=\left[q_0 \stackrel{\varepsilon}{\longrightarrow} q_i \Rightarrow i=|\varepsilon|_1 \mod 2\right]$. Поскольку $\delta(q_0,\varepsilon)=q_{\underline{0}},$ и $\underline{0}=|\varepsilon|_1,$ получаем P(0)
- (b) Пусть доказано P(n), докажем P(n+1). $P(n) = [\forall w \in \Sigma^* \colon |w| = n \hookrightarrow (q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2)]$. Фиксируем $w \in \Sigma^*, |w| = n+1, w = w_0 \sigma, |w_0| = n, |\sigma| = 1$. \mathcal{A} полный $\Rightarrow (q_0, w) \equiv (q_0, w_0 \sigma) \vdash^* (q_i, \sigma) \vdash (q_j, \varepsilon)$. $|w_0| = n \xrightarrow{P(n)} i = |w_0|_1 \mod 2$. $i \in \{0, 1\}, \sigma \in \{0, 1\} \Rightarrow$ рассмотрим четыре случая:
 - a. $(i = 0, \sigma = 0)$. $(q_0, w_0 0) \vdash^* (q_0, 0) \vdash (q_0, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_0 \Rightarrow j = 0$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |0|_1 \mod 2 = 0 + 0 = 0$ a. $(i = 0, \sigma = 0)$. $|w|_1 \mod 2 = |w|_1 \mod 2 = 0$.
 - b. $(i = 0, \sigma = 1)$. $(q_0, w_0 1) \vdash^* (q_0, 1) \vdash (q_1, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_1 \Rightarrow j = 1$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |1|_1 \mod 2 = 0 + 1 = 1 \Rightarrow 1 = j = |w|_1 \mod 2 = 1$.
 - c. $(i = 1, \sigma = 0)$. $(q_0, w_0 0) \vdash^* (q_1, 0) \vdash (q_1, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_1 \Rightarrow j = 1$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |0|_1 \mod 2 = 1 + 0 = 1 \Rightarrow 1 = j = |w|_1 \mod 2 = 1$.
 - d. $(i = 1, \sigma = 1)$. $(q_0, w_0 1) \vdash^* (q_1, 1) \vdash (q_0, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_0 \Rightarrow j = 0$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |1|_1 \mod 2 = (1+1) \mod 2 = 0$.

Таким образом, $\forall n \in \mathbb{N} \cup \{0\} \hookrightarrow P(n) \Rightarrow \forall n \in \mathbb{N} \cup \{0\} \hookrightarrow \left[\forall w \in \Sigma^* : |w| = n \hookrightarrow \left(q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2\right)\right] \Rightarrow \forall w \in \Sigma^* \hookrightarrow q_0 \xrightarrow{w} q_{|w|_1 \mod 2}.$ Пусть $w \in L \Leftrightarrow |w|_1 \mod 2 = 0 \Leftrightarrow q_0 \xrightarrow{w} q_0 \Leftrightarrow w \in L(\mathcal{A})$

Задача 5

Исходный автомат \mathcal{A} :

Пополним автомат \mathcal{A} до \mathcal{A}' и удалим недостижимые из q_0 состояния: добавим $q_4 \in Q', q_4 \notin F'$, в него направим недостающие переходы:

 $L(\mathcal{A}') = L(\mathcal{A})$, так как $x \in L(\mathcal{A}) \Rightarrow x \in L(\mathcal{A}')$, потому что $Q \subset Q'$, F = F', $\delta \subset \delta'$. $x \notin L(\mathcal{A}) \Rightarrow$ либо $q_0 \xrightarrow{x} q \notin F$, но тогда $q_0 \xrightarrow{x} q \notin F' \Rightarrow x \notin L(\mathcal{A}')$, либо $\delta(q_0, x) = \emptyset$, тогда $\delta'(q_0, x) = q_4$, потому что был выполнен переход в q_4 , которого не было в \mathcal{A} (по построению, добавлены переходы только в q_4), и при обработке последующих символов \mathcal{A}' остается в q_4 .

Построим $A''\colon L(\mathcal{A}'')=\overline{L(\mathcal{A}')}\equiv\overline{L(\mathcal{A})}$ по полному автомату \mathcal{A}' , определив $F''\stackrel{\mathrm{def}}{=} Q'\setminus F'$:

Задача 6