Universidade de São Paulo Instituto de Matemática e Estatística Bachalerado em Ciência da Computação

Tiago Madeira

Geração uniforme de k-trees para aprendizado de redes bayesianas

Supervisor: Prof. Dr. Denis Deratani Mauá

São Paulo Novembro de 2016

Resumo

O resumo ainda não foi escrito.

 ${\bf Palavras\text{-}chave:}\ {\rm sem},\ {\rm resumo},\ {\rm por},\ {\rm enquanto}.$

Abstract

The abstract has not been written yet.

 ${\bf Keywords:}\ {\bf no,\ abstract,\ yet.}$

Sumário

1	Inti	rodução	1
2	Fun	adamentos	3
	2.1	Grafos	3
		2.1.1 <i>k-trees</i>	5
	2.2	Probabilidade	6
	2.3	Redes bayesianas	7
3	Ger	ração aleatória de k - $trees$	9
	3.1	Codificando árvores e <i>k-trees</i>	9
	3.2	A solução de Caminiti et al	11
		3.2.1 Codificação	13
		3.2.2 Decodificação	14
	3.3	Experimentos e resultados	14
4	Apı	rendizado de redes bayesianas	15
5	Cor	nclusão	17

Introdução

Em teoria dos grafos, k-trees são consideradas uma generalização de árvores. Há interesse considerável em desenvolver ferramentas eficientes para manipular essa classe de grafos, porque todo grafo com $treewidth\ k$ é um subgrafo de uma k-tree e muitos problemas NP-completos podem ser resolvidos em tempo polinomial quando restritos a grafos com treewidth limitada.

Com efeito, o artigo de Arnborg e Proskurowski[1] apresenta algoritmos para resolver em tempo linear problemas como, dado um grafo com *treewidth* limitada:

- Encontrar o tamanho máximo dos seus conjuntos independentes;
- Computar o tamanho mínimo dos seus conjuntos dominantes;
- Calcular seu número cromático; e
- Determinar se ele tem um ciclo hamiltoniano.

O problema que desperta nosso interesse em k-trees é a inferência em redes bayesianas.

Uma rede bayesiana é um modelo probabilístico em grafo usado para raciocinar e tomar decisões em situações com incerteza através de técnicas de inteligência artificial e aprendizagem computacional. Ela representa uma distribuição de probabilidade multivariada num DAG (grafo acíclico dirigido) no qual os vértices correspondem às variáveis aleatórias do domínio e as arestas correspondem, intuitivamente, a influência de um vértice sobre outro.

Segundo Koller e Friedman[7], a inferência em redes bayesianas em geral é NP-difícil; porém, se seu DAG possui treewidth limitado, a inferência pode ser realizada em tempo polinomial. Daí a importância de aprender redes bayesianas que tenham treewidth limitada.

A partir dessa motivação, este trabalho de conclusão de curso consistiu em estudar os conceitos de teoria dos grafos relacionados a k-trees e implementar um algoritmo para gerar k-trees de forma uniforme que possam ser usadas no aprendizado de redes bayesianas.

A continuar.

Fundamentos

Neste capítulo, apresentamos definições fundamentais de teoria dos grafos, teoria da probabilidade e redes bayesianas que o leitor deve conhecer para compreender o trabalho.

Outras definições mais específicas, como as utilizadas para construir o algoritmo para codificar e decodificar k-trees estão localizadas nos capítulos subsequentes.

Partimos do pressuposto de que o leitor conhece notações básicas de conjuntos.

2.1 Grafos

Nesta seção apresentamos de forma breve apenas os conceitos de teoria dos grafos necessários para a compreensão deste trabalho. Mais detalhes podem ser encontrados no livro de Bondy e Murty[3], que foi utilizado como referência.

Definição 1 (grafo). Um grafo é um par ordenado G = (V, E). Os elementos de V são chamados de vértices de G. Os elementos de E são chamados de

Figura 2.1: K_4 , o grafo completo com 4 vértices.

arestas de G e consistem em pares (não-ordenados) de vértices distintos¹. Dados $u, v \in V$, se $(u, v) \in E$ dizemos que u e v são adjacentes em G.

Definição 2 (grafo dirigido). Um grafo G = (V, E) é dito dirigido se E consiste em pares *ordenados* de vértices.

Definição 3 (grafo completo). Um grafo G = (V, E) é dito completo se $(u, v) \in E$ para todo $u, v \in V, u \neq v$. Um grafo completo com n vértices é geralmente denotado K_n .

Na figura 2.1, o grafo completo com 4 vértices.

Definição 4 (subgrafo). Um grafo $F = (V_F, E_F)$ é chamado de subgrafo de $G = (V_G, E_G)$ se $V_F \subseteq V_G$ e $E_F \subseteq E_G$.

Definição 5 (subgrafo induzido). Dado um grafo G = (V, E) e um subconjunto V' de V, o subgrafo de G induzido por V', G' = (V', E'), é o grafo formado pelos vértices $V' \subseteq V$ e arestas que só contém elementos de V', ou seja, $E' = \{(u, v) \in E \mid u, v \in V'\}$.

Definição 6 (caminho). Dado um grafo G = (V, E), um caminho em G é um subgrafo de G cujos vértices podem ser arranjados numa sequência linear de forma que dois vértices são adjacentes se eles são consecutivos na sequência e não-adjacentes caso contrário. Se $u, v \in V$ pertencem a um caminho P, dizemos que eles estão conectados pelo caminho P.

 $^{^{1}}$ A rigor, por causa da palavra "distintos", essa é a definição do que a literatura costuma chamar de *grafo simples*. Tal definição é utilizada porque neste trabalho não temos interesse em grafos que possuam arestas (u, v) com u = v.

2.1. GRAFOS 5

Definição 7 (distância). Dado um grafo G = (V, E) e dois vértices $(u, v) \in V$, a distância entre u e v é o número de arestas num menor caminho que os conecte.

Definição 8 (ciclo). Dado um grafo G = (V, E), um ciclo em G é um subgrafo de G cujos vértices podem ser arranjados numa sequência cíclica de forma que dois vértices são adjacentes se eles são consecutivos na sequência e não-adjacentes caso contrário.

Definição 9 (DAG). Um grafo G = (V, E) é chamado de DAG (do inglês directed acyclic graph: grafo dirigido acíclico) se ele é dirigido e não possui ciclos.

Definição 10 (árvore). Dado um grafo G = (V, E), dizemos que ele é uma árvore se cada dois vértices $u, v \in V$ são conectados por exatamente um caminho.

Definição 11 (k-clique). Seja G = (V, E) um grafo. Um k-clique é um subconjunto dos vértices, $C \subseteq V$, tal que $(u, v) \in E \ \forall \ u, v \in C, u \neq v$ (ou seja, tal que o subgrafo induzido por C é completo).

2.1.1 *k*-*trees*

Definição 12 (k-tree). [6] Uma k-tree é definida da seguinte forma recursiva:

- 1. Um grafo induzido por um k-clique é uma k-tree.
- 2. Se $T_k'=(V,E)$ é uma k-tree, $K\subseteq V$ é um k-clique e $v\not\in V$, então $T_k=(V\cup\{v\},E\cup\{(v,x)\mid x\in K\})$ é uma k-tree.

Figura 2.2: (a) Uma 1-tree (ou seja, uma árvore comum) com 4 vértices. (b) Uma 2-tree com 5 vértices. (c) Uma 3-tree com 5 vértices.

Na figura ??(a), um exemplo de k-tree com k = 1 (ou seja, uma árvore comum) e n = 4 vértices rotulados com inteiros em [1, 4]; na figura ??(b), um exemplo de k-tree com k = 2 e n = 5 vértices rotulados com inteiros em [1, 5]; na figura ??(c), um exemplo de k-tree com k = 3 e n = 5 vértices rotulados em [1, 5].

Definição 13 (k-tree enraizada). [4] Uma k-tree enraizada é uma k-tree com um k-clique destacado $R = \{r_1, r_2, \dots, r_k\}$ que é chamado de raiz da k-tree enraizada.

Na figura 2.3(a), um exemplo de uma k-tree com k=3 e n=11 vértices rotulados com inteiros em [1,11]. Na figura 2.3(b), a mesma k-tree, dessa vez enraizada no clique $R=\{2,3,9\}$.

Definição 14 ($partial\ k$ -tree). [2] Um subgrafo de uma k-tree é chamado de $partial\ k$ -tree. Um grafo é uma $partial\ k$ -tree se e só se ele tem treewidth menor ou igual a k.

2.2 Probabilidade

A escrever. [7]

Figura 2.3: (a) Uma 3-tree T_3 com 11 vértices. (b) A mesma 3-tree (T_3) enraizada no clique $\{2,3,9\}$.

2.3 Redes bayesianas

A escrever. [7]

Geração aleatória de k-trees

O problema de gerar k-trees está intimamente relacionado ao problema de codificá-las e decodificá-las. De fato, se há uma codificação bijetiva que associa k-trees a strings, basta gerar strings aleatórias para gerar k-trees aleatórias.

Neste capítulo, apresentamos o problema de codificar k-trees, discutimos a solução linear para codificar e decodificar k-trees de forma bijetiva proposta por Caminiti et al[4], explicamos como ela foi implementada neste trabalho para gerar k-trees aleatórias e mostramos os resultados obtidos.

3.1 Codificando árvores e k-trees

O problema de codificar árvores já foi amplamente estudado na literatura. Como destaca Caminiti et al[4]:

Codificar árvores rotuladas por meio de *strings* de rótulos de vértices é uma alternativa interessante à representação usual de estruturas de dados de árvore na memória e tem muitas aplicações práticas (por exemplo, algoritmos evolucionários sobre árvores, geração aleatória de árvores, compressão de dados e computação

Figura 3.1: A árvore rotulada equivalente ao código de Prüfer {4, 4, 4, 5}.

do volume de floresta de grafos). Diversos códigos bijetivos diferentes que realizam associações entre árvores rotuladas e *strings* de rótulos foram introduzidas. De um ponto de vista algorítmico, o problema foi cuidadosamente investigado e algoritmos ótimos de codificação e decodificação desses códigos são conhecidos.

Em 1889, Cayley[5] demonstrou que para um conjunto de n vértices distintos existem n^{n-2} árvores possíveis. Desde lá, foram criados vários códigos para associar strings e árvores.

Um dos mais conhecidos é o código de Prüfer[8], que surgiu em 1918 e é bijetivo, associando cada árvore (rotulada) de n vértices a uma lista distinta de comprimento n-2 no alfabeto dos rótulos da árvore.

Codificar uma árvore usando o código de Prüfer é trivial: basta remover iterativamente as folhas da árvore até que apenas dois vértices sobrem, escolhendo sempre a folha de memor rótulo. Quando uma folha é removida, adiciona-se ao código o rótulo do seu vizinho.

A figura 3.1 exemplifica a codificação de Prüfer mostrando uma árvore cujo o código resultante do algoritmo é {4, 4, 4, 5}.

k-trees[6] são consideradas uma generalização de árvores. Há interesse

considerável em desenvolver ferramentas eficientes para manipular essa classe de grafos, porque todo grafo com $treewidth\ k$ é um subgrafo de uma k-tree e muitos problemas NP-completos podem ser resolvidos em tempo polinomial quando restritos a grafos com treewidth limitada, como destacado na Introdução deste trabalho.

Há estudos sobre a codificação de k-trees há pelo menos quatro décadas. Em 1970, Rényi e Renýi apresentaram uma codificação redundante (ou seja, não bijetiva) para um subconjunto de k-trees rotuladas que chamamos de k-trees de Rényi e que são definidas como segue:

Definição 15 (k-tree de Rényi). [9] Uma k-tree de Rényi R_k é uma k-tree enraizada com n vértices rotulados em [1, n] e raiz $R = \{n - k + 1, n - k + 2, \dots, n\}$.

Entretanto, até onde sabemos, apenas em 2008 surgiu um código bijetivo para k-trees com algoritmos lineares de codificação e decodificação. Foram esses algoritmos, propostos por Caminiti et al[4], que implementamos neste trabalho.

3.2 A solução de Caminiti et al

O artigo "Bijective Linear Time Coding and Decoding for k-Trees" [4] apresenta um código bijetivo para k-trees rotuladas, juntamente a algoritmos lineares para realizar a codificação e a decodificação.

O código é formado por uma permutação de tamanho k e uma generalização do $Dandelion\ Code[10]$, que consiste em n-k-2 pares (onde n é o número de vértices) definidos no conjunto $\{(0,\varepsilon)\}\cup([1,n-k]\times[1,k])$. Portanto, dizemos que a codificação das k-trees associa elementos em \mathcal{T}_k^n (conjunto das k-trees com n vértices) com elementos em:

$$\mathcal{A}_{k}^{n} = {[1, n] \choose k} \times (\{(0, \varepsilon)\} \cup ([1, n - k] \times [1, k]))^{n - k - 2}$$

Os algoritmos consistem em uma série de transformações. Para compreendê-los, é necessário definir esqueleto de uma k-tree enraizada e árvore característica:

Definição 16 (esqueleto de uma k-tree enraizada). [4] O esqueleto de uma k-tree enraizada T_k com raiz R, denotado por $S(T_k, R)$, é definido da seguinte forma recursiva:

- 1. Se T_k é apenas o k-clique R, seu esqueleto é uma árvore com um único vértice R.
- 2. Dada uma k-tree enraizada T_k com raiz R, obtida por T'_k enraizada em R através da adição de um novo vértice v conectado a um k-clique K (ver definição 12), seu esqueleto $S(T_k, R)$ é obtido adicionando a $S(T'_k, R)$ um novo vértice $X = \{v\} \cup K$ e uma nova aresta (X, Y), onde Y é o vértice de $S(T'_k, R)$ que contém K com uma distância mínima da raiz. Chamamos Y de pai de X.

Definição 17 (árvore característica). [4] A árvore característica $T(T_k, R)$ de uma k-tree enraizada T_k com raiz R é obtida rotulando os vértices e arestas de $S(T_k, R)$ da seguinte forma:

- 1. O vértice R é rotulado 0 e cada vértice $\{v\} \cup K$ é rotulado v;
- 2. Cada aresta do vértice $\{v\} \cup K$ ao seu pai $\{v'\} \cup K'$ é rotulada com o índice do vértice em K' (visualizando-o como um conjunto ordenado) que não aparece em K. Quando o pai é R a aresta é rotulada ε .

Figura 3.2: (a) Uma 3-tree de Rényi R_3 com 11 vértices e raiz $\{9, 10, 11\}$. (b) O esqueleto de R_3 . (c) A árvore característica de R_3 .

Note que a existência de um único vértice em $K' \setminus K$ é garantida pela definição 16. De fato, v' precisa aparecer em K, caso contrário K' = K e o pai de $\{v'\} \cup K'$ contém K. Isso contradiz o fato de que cada vértice em $S(T_k, R)$ é ligado à distância mínima da raiz.

A figura 3.2 mostra uma k-tree de Rényi com 11 vértices, seu esqueleto e sua árvore característica.

3.2.1 Codificação

O algoritmo para codificar uma k-tree rotulada consiste em seis passos. Aqui apresentamos esse algoritmo detalhando nossa implementação.

Algoritmo de codificação

Entrada: uma k-tree T_k com n vértices

Saída: um código em \mathcal{A}_k^n

1. Identificar Q, o k-clique adjacente à folha de maior rótulo l_M de T_k ;

- 2. Através de um processo de re-rotulação ϕ (computado a partir de Q e definido a seguir), transformar T_k numa k-tree de Rényi R_k ;
- 3. Gerar a árvore característica T para R_k ;
- 4. Computar o Dandelion Code generalizado S para T;
- 5. Remover da string obtida S o par correspondente a $\phi(l_M)$;
- 6. Retornar o código $(Q, S) \in \mathcal{A}_k^n$.

Na nossa implementação, uma k-tree (estrutura definida no pacote ktree) é representada através de uma lista de adjacências (Adj) e um inteiro k (K).

O algoritmo de codificação é implementado pela função CodingAlgorithm do pacote codec. A seguir, detalhamos os seis passos.

Passo 1. A escrever.

A escrever.

3.2.2 Decodificação

A escrever.

3.3 Experimentos e resultados

A escrever.

Aprendizado de redes bayesianas

A ser escrito.

Conclusão

Ainda não foi escrita.

Referências Bibliográficas

- [1] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard problems restricted to partial k-trees. *Discrete Applied Mathematics*, 23:11–24, 1989.
- [2] Hans L. Bodlaender. Treewidth: Structure and algorithms. *Structural Information and Communication Complexity*, 4474:11–25, 2007.
- [3] John A. Bondy and Uppaluri S. R. Murty. *Graph Theory*. Springer, 2008.
- [4] Saverio Caminiti, Emanuele G. Fusco, and Rossella Petreschi. Bijective linear time coding and decoding for k-trees. Theory of Computing Systems, 46:284–300, 2010.
- [5] Arthur Cayley. A theorem on trees. Quart J. Math, 23:376–378, 1889.
- [6] Frank Harary and Edgar M. Palmer. On acyclic simplicial complexes. Mathematika, 15:115–122, 1968.
- [7] Daphne Koller and Nir Friedman. *Probabilistic Graphical Models: Principles and Techniques*. The MIT Press, 2009.
- [8] Heinz Prüfer. Neuer beweis eines satzes über permutationen. Archiv der Mat. und Physik, 27:142–144, 1918.

- [9] C. Rényi and A. Rényi. The prüfer code for k-trees. Combinatorial Theory and its Applications, pages 945–971, 1970.
- [10] Ömer Eğecioğlu and J. B. Remmel. Bijections for cayley trees, spanning trees, and their q-analogues. *Journal of Combinatorial Theory*, 42:15–30, 1986.