

Espnet实践

洪青阳

Espnet介绍

2018年, Espnet团队开源了Espnet(end-to-end speech processing toolkit),可实现端到端ASR和TTS系统。

[Espnet特色]

- (1) 融合了Kaldi的数据处理和特征提取;
- (2) 借助Pytorch跟Chainer, 使用Python实现了端到端(E2E) 模型;

[Espnet模型]

- CTC
- Attention
- RNN-T
- Transformer

Espnet的安装

一、准备工作

- 1. 用git的方法把Espnet和Kaldi的项目保存到本地。
- 2. 安装CUDA和对应版本的CUDADNN。
- 3. 安装Pytorch,要和CUDA版本对应。

二、安装过程

- 1. 设置CUDA的环境变量路径(~/.bashrc),安装指导里有代码,只要修改第一行代码为CUDA实际安装路径就好了,设置完之后要执行source ~/.bashrc让它生效。
- 2. 安装Kaldi(参照第13章)。
- 3. 把Kaldi工具导入到Espnet项目中去。 进入Espnet中的tools文件夹,执行命令: make KALDI=/path_to_kaldi 同样可以执行make check install检查安装。
- 4. 安装完成后,把项目放到Espnet里的egs目录下就可以用了。

Espnet训练和测试步骤

用于训练的数据由两部分组

成:

□ 音频文件

□ 标注文本 (transcriptions) 格式: [id words]

02

语言模型:RNN-LM

声学模型: Transformer的解码器和CTC模型均会根据输入序列 X^{fbank} , 计算目标序列Y的后验概率: $p_{tran}(Y|X)$ 和 $p_{ctc}(Y|X)$ 损失函数为负对数似然的加权

和:

, 5 % , 5 % () %

04

 $L = -\alpha \log p_{tran}(Y|X) - (1 - \alpha) \log p_{ctc}(Y|X)$

数据预处理	<u></u>	E 模型训练	□ 解码
01	工具:Kaldi 特征选择:提取80维的 FBank,加上3维的pitch, 然后进行倒谱均值归一化, 目的是让神经网络更容易 对语音特征进行学习。	03	根据语音特征序列X ^{fbank} 和之前 预测出的tokens,使用剪枝搜索 (Beam Search)算法。 联合Transformer模型、CTC模型 和RNN语言模型进行打分:
			$\widehat{Y} = \underset{Y \in \mathcal{Y}^*}{\operatorname{argmax}} \{ \lambda \log p_{tran}(Y X) + (1 - \lambda) \log p_{tran}(Y X) + (1 - \lambda) \log p_{tran}(Y X) \}$

1. 数据集的整理

数据下载: https://pan.xmu.edu.cn/s/MsUNwn3ASHo 密码: 0o8o

数据集存放在export/data/data_record/wav中,共有62个说话人,每个人大约有350~400句语音,个别的少于350或多于400句。每一个说话人用不同ID(如S005)标识,每个文件夹中存放着对应于标注文本的音频文件。

最终整理后的数据集有2个文件夹:

a) transcript

b) wav

wav数据集的划分:

train: 53人 dev: 6人 test: 3人

2. 映射文件准备

需要准备wav.scp、spk2utt、utt2spk、text这几个映射文件,默认已处理好。如有新的数据,可使用aishell的recipe中提供的aishell_data_prep.sh脚本,新建一个项目,修改data_prep.脚本并执行,便得到了相关的映射文件。

3. 特征提取

调用了Espnet中默认使用的make_fbank_pitch.sh 进行特征提取,该脚本提取了80维的FBank特征,加上3维的pitch特征,总共83维。

特征提取完毕后,使用Kaldi的命令compute-cmvn-stats来进行CMVN(倒谱均值归一化)的计算,使神经网络更容易对语音特征进行学习。

特征提取结束后,得到了feats.scp文件,该文件保存了语音特征及其对应位置,如下图所示:

RECORD2020S004W001 /home/qwq/espnet/egs/record/asr1/fbank/raw_fbank_pitch_train.1.ark:19
RECORD2020S004W002 /home/qwq/espnet/egs/record/asr1/fbank/raw_fbank_pitch_train.1.ark:39401
RECORD2020S004W003 /home/qwq/espnet/egs/record/asr1/fbank/raw_fbank_pitch_train.1.ark:81107

4. 词典生成

这一步是将字符转换为特定的数字,从而将每条语音对应的转录文本映射为不同的数字, 以便送入神经网络中进行相应的训练。

在Espnet中,使用脚本text2token.py来通过映射文件中的text文件来生成词典,得到每个字符的唯一标识数字,词典文件如下图所示:

```
<unk> 1

- 2

丁 3

七 5

5

5

5

5

7

上 7

上 8

下 7

上 9

不 5

11

丑 12

专 13

且 14

世 15
```


5. 数据打包

在Espnet中训练神经网络,不是直接使用feat.scp或者text这些映射文件,而是使用脚本 data2json.sh将这些文件都打包到一个json文件中,整体结构分为两个部分: input 和 output, input 对应于该条语音的特征以及特征的shape(表示维度),output 对应于该条语音的文本及其数字表示。

格式如下图:

模型的训练和解码

通过以上五个步骤,就完成了训练数据的准备工作。 接下来可运行run.sh,进行模型的训练和解码。

1.CTC模型: 声学编码器+CTC损失函数

2.Attention模型: Espnet提供不同的Attention

架构

3.Transformer: 并行计算的特征提取器

4.RNN-T: 适合流识别的语音识别模型

5.Transformer-T:新结构,借助Transformer的优势来改善RNN-T模型的性能

6.CTC+Attention结构: 利用CTC来辅助 Attention模型学习文本到语音的对齐

声学模型


```
# network architecture
# encoder related

etype: vggblstm # encoder architecture type
elayers: 3
eunits: 1024
eprojs: 1024
subsample: "1_2_2_1_1" # skip every n frame from input to nth layers
# decoder related
dlayers: 2
dunits: 1024
```



```
# network architecture
# encoder related
etype: vggblstm # encoder architecture type
elayers: 3
eunits: 1024
eprojs: 1024
subsample: "1_2_2_1_1" # skip every n frame from input to nth
layers
# decoder related
dlayers: 2
dunits: 1024
```

Attention

attention related atype: location adim: 1024 aconv-chans: 10 aconv-filts: 100

hybrid CTC/attention mtlalpha: 0.5


```
# network architecture
# encoder related
elayers: 12
eunits: 2048
# decoder related
dlayers: 6
dunits: 2048

# attention related
adim: 256
aheads: 4

# hybrid CTC/attention
mtlalpha: 0.3
```


图片来源: "Attention Is All you Need"

Transformer-T

network architecture ## encoder related etype: transformer transformer-input-layer: vgg2l elayers: 8 eunits: 320 dropout-rate: 0.4 ## decoder related dtype: transformer/lstm dlayers: 2 dec-embed-dim: 300 dunits: 300 dropout-rate-decoder: 0.1 ## attention related adim: 320 aheads: 4 ## joint network related

joint-dim: 300

1. Espnet配置文件

a) 训练Transformer网络模型的配置文件 train.yaml

network architecture

encoder related

elayers: 4

eunits: 1024

decoder related

dlayers: 4

dunits: 1024

attention related

adim: 128

aheads: 4

hybrid CTC/attention

mtlalpha: 0.3

b) 语言模型的训练配置文件 Im.yaml

```
# rnnlm related
layer: 2
unit: 650
opt: sgd # or adam
batchsize: 32 # batch size in LM training
epoch: 20 # if the data size is large, we can reduce this patience: 3
maxlen: 100
```


c) 解码的配置文件 decode.yaml

batchsize: 0

beam-size: 20

penalty: 0.0

maxlenratio: 0.0 minlenratio: 0.0 ctc-weight: 0.5 lm-weight: 0.7

2. 语言模型训练

使用Im_train.py 进行RNNLM语言模型的训练,会得到每个epoch训练好的模型,并挑选了一个最优的模型,将其命名为rnnlm.model.best。

3. 声学模型训练

这一步通过shell脚本调用Espnet中的声学模型训练脚本asr_train.py实现,在声学模型训练过程中,需要准备4个文件:

- a) 声学模型训练配置文件
- b) 词典文件
- c) 对应于训练集数据的 data.json 文件
- d) 对应于验证集数据的 data.json 文件

测试结果

Espnet 的语音识别解码器使用脚本 asr_recog.py 来实现,默认使用 CPU 进行解码,如果要使用GPU进行解码,需要在decode配置文件中添加api=v2。解码过程需要使用到前面准备和训练得到的几个文件:

- a) cmvn.ark
- b) rnnlm.model.best
- c) model.acc.best

测试结果

在解码文件输出目录中,会生成一个 result.txt 文件,该文件保存了最终在测试集和验证集上的解码结果,如下图所示:

exp/t	exp/train_sp_pytorch_train/decode_test_decode_lm/hyp.trn									
•		# Wrd						S.Err		
s001	350	3833 +	97.5	1.9	0.5	3.0	5.5	20.6		
s002	392	-	96.1	2.5	1.4	1.3	5.2	16.1		
		3813	95.6		1.0	3.4	7.8	27.1		
Sum/Avg	1092	12014	96.4		1.0	2.5	6.1	21.1		
S.D.	24.2	4004.7 314.8 3833.0	96.4 1.0	2.6	1.0	2.6	6.1	21.3 5.6		

测试结果

在result.txt中, 还可以查看一条语音对应的预测句子, 如下图所示:

```
Speaker sentences 0: s001 #utts: 350
id: (s001-record2020s001w001)
Scores: (#C #S #D #I) 11 0 0 0
REF: 会注意起跑时谁更快一些
HYP: 会注意起跑时谁更快一些
Eval:
id: (s001-record2020s001w002)
Scores: (#C #S #D #I) 16 0 0 0
REF: 人这一辈子遇见对你好的人比较容易
HYP: 人 这 一 辈 子 遇 见 对 你 好 的 人 比 较 容 易
Eval:
id: (s001-record2020s001w003)
Scores: (#C #S #D #I) 15 0 0 0
REF: 如果这样的要求都没人能接受的话
HYP: 如果这样的要求都没人能接受的话
Eval:
id: (s001-record2020s001w004)
Scores: (#C #S #D #I) 8 0 0 0
REF: 这根本就是抢钱啊
HYP: 这根本就是抢钱啊
Eval:
```


在不同数据上各种模型的平均性能对比:

1.性能: Transformer+CTC > Transformer >= Attention+CTC > Attention >= (Transformer-T) > RNN-T > CTC

2.实时性: Attention+CTC < Attention < Transformer+CTC < Transformer (Transformer-T) <= RNN-T < CTC

实验结果补充: Transformer/CTC、Attention/CTC模型与Kaldi实验结果在dev和test数据集上的对比。

官方:

dataset	token	error	Kaldi (s5)	ESPnet RNN (ours)	ESPnet Transformer (ours)
AISHELL	char	CER	N/A / 7.4	6.8 / 8.0	6.0 / 6.7
AURORA4	char	WER	(*) 3.6 / 7.7 / 10.0 / 22.3	3.5 / 6.4 / 5.1 / 12.3	3.3 / 6.0 / 4.5 / 10.6
CSJ	char	CER	(*) 7.5 / 6.3 / 6.9	6.6 / 4.8 / 5.0	5.7 / 4.1 / 4.5
CHiME4	char	WER	6.8 / 5.6 / 12.1 / 11.4	9.5 / 8.9 / 18.3 / 16.6	9.6 / 8.2 / 15.7 / 14.5
CHiME5	char	WER	47.9 / 81.3	59.3 / 88.1	60.2 / 87.1
Fisher-CALLHOME Spanish	char	WER	N/A	27.9 / 27.8 / 25.4 / 47.2 / 47.9	27.0 / 26.3 / 24.4 / 45.3 / 46.2
HKUST	char	CER	23.7	27.4	23.5
JSUT	char	CER	N/A	20.6	18.7
LibriSpeech	BPE	WER	3.9 / 10.4 / 4.3 / 10.8	3.1 / 9.9 / 3.3 / 10.8	2.2 / 5.6 / 2.6 / 5.7
REVERB	char	WER	18.2 / 19.9	24.1 / 27.2	15.5 / 19.0
SWITCHBOARD	BPE	WER	18.1 / 8.8	28.5 / 15.6	18.1 / 9.0
TED-LIUM2	BPE	WER	9.0 / 9.0	11.2 / 11.0	9.3 / 8.1
TED-LIUM3	BPE	WER	6.2 / 6.8	14.3 / 15.0	9.7 / 8.0
VoxForge	char	CER	N/A	12.9 / 12.6	9.4 / 9.1
WSJ	char	WER	4.3 / 2.3	7.0 / 4.7	6.8 / 4.4

我们的实验结果(dev/test):

dataset	token	error	kaldi(our)	ESPnet RNN(our)	ESPnet Transformer(our)	ESPnet Transformer+ctc(our)
AISHELL-1	char	CER	N/A / 7.51	6.8/8.1	6. 7/7. 9	6. 0/6. 7

对比结果可以发现,和官方提供的差别不大。同学们可以根据前面所讲的内容,进行其他模型的实践。

致谢

- 感谢李松同学对Espnet实践过程做了深入细致的整理。
- 感谢厦门大学智能语音实验室其他同学的贡献。