复变函数单元测验试题 2005.10

1. 级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{1+i}{n}$$

- A. 条件收敛; B. 绝对收敛; C. 发散; D. 敛散不定。
- 2. 函数 $f(z) = \frac{z}{(9-z^2)(z+i)}$ 在复平面内以原点为中心最少可分为几个解析环?
 - A. 三个; B. 两个; C. 四个; D. 五个。
- 3. 若将函数 $f(z) = \frac{1}{z^2 + z 6}$ 在 i 点展开为 Taylor 级数,则收敛半径是
 - A. $\sqrt{5}$; B. -3; C. 2; D. $\sqrt{3}$.
- 4. 函数 $f(z) = \frac{1}{2z^2 z 1}$ 在区域 $0 < |z + \frac{1}{2}| < 1$ 内的 Laurent 级数为

A.
$$\frac{1}{2z^2-z-1} = -\frac{1}{3} \sum_{n=0}^{+\infty} \left(\frac{2}{3}\right)^n \left(z+\frac{1}{2}\right)^{n-1};$$

B.
$$-\frac{1}{3}\sum_{n=0}^{+\infty}z^n-\frac{2}{3}\sum_{n=0}^{+\infty}(-2)^nz^n$$
;

C.
$$-\frac{1}{3}\sum_{n=0}^{+\infty} \left(z + \frac{1}{2}\right)^n - \frac{2}{3}\sum_{n=0}^{+\infty} \left(-\frac{1}{2}\right)^n \left(z + \frac{1}{2}\right)^{-n-1};$$

D.
$$\frac{1}{3z} \sum_{n=0}^{+\infty} z^{-n} - \frac{2}{3z} \sum_{n=0}^{+\infty} \left(-\frac{1}{2}\right)^n z^{-n}$$
 •

5.
$$z=0$$
是 $\frac{z\sin z}{\left(1-e^z\right)^3}$ 的

- A. 1 阶极点; B. 3 阶极点; C. 2 阶极点; D. 4 阶极点。
- 6. 扩充复平面上 $\sin \frac{1}{1-z}$ 有

- A. 本性奇点 z=1 , 可去奇点 $z=\infty$;
- B. 一阶奇点 z=1, 可去奇点 $z=\infty$;
- C. 本性奇点 $z = \infty$, 一阶奇点 z = 1;
- D. 一阶奇点 $z = \infty$,可去奇点 z = 1.
- 7. 设 C 为圆周 |z| = 2 的左半周且为逆时针方向,则积分 $\int_{c} \frac{1}{z-i} dz =$ A. $\pi i + \ln 3$; B. $\frac{4}{3}i$; C. $-\frac{4}{3}i$; D. 0。
- 8. 积分 $\int_{|z-i|=1} \frac{2\cos z}{(z-i)^3} dz =$
 - A. $-2\pi i \cos i$; B. $-4\pi i \cos i$; C. $-\cos i$; D. $-2\cos i$
- 9. 积分 $\int_0^{+\infty} \frac{x \sin x}{x^2 + 1} dx =$
 - A. $\frac{\pi}{2e}$; B. $\frac{\pi}{e}$; C. $\frac{\pi}{2}(e^{-1}+e)$; D. $\frac{i\pi}{2e}$.
- 10. 积分 $\int_0^{2\pi} \frac{4}{5 + 4\sin\theta} d\theta =$
 - A. $\frac{8\pi}{3}$; B. $\frac{16\pi}{3}$; C. 0; D. $\frac{4}{3i}$ o

答案:均为 A。