

Figure 1

Figure 3

Figure 2

Figure 4

B

FWGRKN-CAILITENDOSISRNHAVLT-ANFSV p95
HSIGRSSKNPLIIKNDKSISRQHITFKWEINNS xrs2

TNLISODDEIPVLEKDNNSYGVFVNE-EKMONG p95
SDIKHSS---CIVNKGLTSLNKKFMKVGET xrs2

SRTIJKSCCGTFGVFG---SKFRIEYE p95
G-TINASQVVKSTIELGTTPRIEFFE xrs2

C 1 2 3 4 5 6 7 8 9

23.9
9.4
6.7
4.4

FIGURE 6

FIGURE 5

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

Figure 12

<u>Amino Acid</u>	<u>Codon</u>
Phe	UUU, UUC
Ser	UCU, UCC, UCA, UCG, AGU, AGC
Tyr	UAU, UAC
Cys	UGU, UGC
Leu	UUA, UUG, CUU, CUC, CUA, CUG
Trp	UGG
Pro	CCU, CCC, CCA, CCG
His	CAU, CAC
Arg	CGU, CGC, CGA, CGG, AGA, AGG
Gln	CAA, CAG
Ile	AUU, AUC, AUA
Thr	ACU, ACC, ACA, ACG
Asn	AAU, AAC
Lys	AAA, AAG
Met	AUG
Val	GUU, GUC, GUA, GUG
Ala	GCU, GCC, GCA, GCG
Asp	GAU, GAC
Gly	GGU, GGC, GGA, GGG
Glu	GAA, GAG

FIGURE 13

Original Residue	Exemplary Substitutions	Preferred Substitutions
Ala (A)	val; leu; ile	val
Arg (R)	lys; gln; asn	lys
Asn (N)	gln; his; lys; arg	gln
Asp (D)	glu	glu
Cys (C)	ser	ser
Gln (Q)	asn	asn
Glu (E)	asp	asp
Gly (G)	pro	pro
His (H)	asn; gln; lys; arg	arg
Ile (I)	leu; val; met; ala; phe norleucine	leu
Leu (L)	norleucine; ile; val; met; ala; phe	ile
Lys (K)	arg; gln; asn	arg
Met (M)	leu; phe; ile	leu
Phe (F)	leu; val; ile; ala	leu
Pro (P)	gly	gly
Ser (S)	thr	thr
Thr (T)	ser	ser
Trp (W)	tyr	tyr
Tyr (Y)	trp; phe; thr; ser	phe
Val (V)	ile; leu; met; phe; ala; norleucine	leu

ttcggccacgggcgcgggttgcacgtcgccccccagccctgaggagccggaccgatgtggaaactgtgcgcgcggcc
cggcaggaggagaaccatacagactttgactggcgtttagtgcgtttaactgctaactttctgttaaccacactgcaaaacatgaa
aatgatcagtgcgtatcagccaaatcatgtgtttaactgctaactttctgttaaccacactgcaaaacatgaa
ccctgtattgacattaaagataattctaaatgttatggtaccttgcgttaatgaggaaaaatgcagaatggctttcccaa
cttgaagtcggggatggattactttggagtggttggaaagtaattcagaatagagatgtgacgccttgggttgc
tcttcttgcgttagatgtctctggaaaactgccttaatcaagctatattgcaacttggaggattactgttaaacaatt
gacagaagaatgcactcacctgtcatggtacgtgaaagttaccataaaacaatatgtgcactcattgtggacgc
caattgtaaagccagaatatttactgaaattcctgaaagcagttcagtcagaagcagcgcctccacaattgaaagttt
tacccaccttgcgtatcaccatcttggaaagtaattgttatctgtcaggacggcaggaaagaaaacaatcttcaa
agggaaaacatttatattttgaatgccaacacgcataagaaaattgagttccgcagttgtcttggaggtggggagcta
ggttgataacagaagagaatgaagaacataattctttggctccggaaacgtgtttgttgcatacaggaaataaca
aactcacagacctaattcctgactgtcagaagaaaatggattcagtcataatggatatgtccaaaggcaaggcttag
acctattcctgaaagcagaaattggattggcgttgcattttcatgactacaaagaattactgttatctcaggccatcc
gtacaggattaaagacaacaactccaggaccaaggcccccacaaggcgttgcattttgcataaactatgccaaggc
ccagtgaaacactacaacatacgttagctgacacagaatcagagcaagcagatacatgggatttgcattttgaaaggcc
aatcaaaatgtctccaaatggaaacaaaattcagaatgcttcacaagacgcaccactgttaaaggagtctgc
gctctaataataatgtatggatcaaaatcttggctaaatgagaatcccaaactatcagttcaccactaaatt
ccaagtataataaaaatggatcaaaatgagaataggcatttcagcagcagcagacactccatcagaaactactt
caaaaaaggaaagggatgaagaaaatcaagaaaatgtcttgcataatcagcaagaatagaaaacgtcttgc
tagaacaacacaacacctgctacaccctcattgtggaaaataaggagcagcatctatctgagaatgagc
aactcagacaataacttacagatacagattaaaatcttgcattttgcattttgcattttgc
aaagctaagatcaaataaaaaaggaaatggatgtgtttgcattttgcattttgcattttgc
caaaaccagatgttagaaattgtgtttgcattttgcattttgcattttgcattttgc
atagaaacaaatgacactttcattttgcattttgcattttgcattttgcattttgc
acgtgaactcaaggaagactcactatggcattttgcattttgcattttgcattttgc
ttccaaaaaaggcttatttgcattttgcattttgcattttgcattttgcattttgc
gatgattatggtcaactaaaaatttgcattttgcattttgcattttgcattttgc
tggaggatcagatctaatacgtcatgcattttgcattttgcattttgcattttgc
aaaatcaacatgcaaaaggatcttgcattttgcattttgcattttgcattttgc
aggattttaaaaggatcttgcattttgcattttgcattttgcattttgcattttgc
tatagaagcatttaagttacaatgtttatggcttaattttgcattttgcattttgc
taacaattgtttgtctgtttcaggcattttgcattttgcattttgcattttgc
taatataatgtcacagttcaaaattctaaatrtacgtaaaggactaaatgt
tggttccctcagaaaaattcatggataactcattttgcattttgcattttgc
tatattttaaataatttgcattttgcattttgcattttgcattttgcattttgc
aaaattataggaaatataatgttttaatattttgcattttgcattttgcattttgc
atccaaacaaaatggcttgcattttgcattttgcattttgcattttgcattttgc
ttcatcaacatggtttagtttgcattttgcattttgcattttgcattttgcattttgc
gtctgttttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc
aaaggagatggtaagaaacatgatgtttttgcattttgcattttgcattttgcattttgc
tattcatgtacctgtatccagcaagaaggagttccaggatcaagact
aatggaaacatgtgaggatggaggccatatttgcattttgcattttgcattttgc
ctctacatcacttcacccatgcattttgcattttgcattttgcattttgcattttgc
gctgctgcagggttgcattttgcattttgcattttgcattttgcattttgcattttgc
ggaacagaaaattgggtgaggccatgcattttgcattttgcattttgcattttgc
gttatgaacacttattatgtatgtttgcattttgcattttgcattttgcattttgc
attagttgtatgtttgcattttgcattttgcattttgcattttgcattttgcattttgc
gtctccatatttgcattttgcattttgcattttgcattttgcattttgcattttgc
actgcctactatagcattttgcattttgcattttgcattttgcattttgcattttgc
aaatattgggttgcattttgcattttgcattttgcattttgcattttgcattttgc
ttaatttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc
atacgatattgtatgtttgcattttgcattttgcattttgcattttgcattttgc
gacaaggatcaattttgcattttgcattttgcattttgcattttgcattttgcattttgc
caatttagtaaaaaatcaattaaccatrmrmmrrrgatccactagttc
gct

FIGURE 14

D
E
S
C
R
I
P
T
I
O
N

MWKLLPAAGPAGGEPYRLLTGVEYVVGRKNCAILIELENDQSISRNHAVLTANFSVTNLSQTDEIPVLTLDNSKYGTFVNE
EKMQNQFSRTLKGDGITFGVFGSKFRIEYEPLVACSSCLDVSGKTALNQAILQLGGFTVNNWTEECTHLMVSVKVTIK
TICALICGRPIVKPEYFTEFLKAVQSKKQPPQIESFYPPLEPSIGSKNVDSLGRQERKQIFKGKTFIFLNAKQHKKLSS
AVVFGGGEARLITEENEEHNFLAPGTCVVDTGITNSQTLIPDCQKKWIQSIMDMLQRQGLRPIPEAEIGLAVIFMTTK
NYCDPQGHGSTGLKTTTPGPSLSQGVSVDEKLMPMAPVNNTTYVADTESEQADTWDLSERPKEIKVSKMEQKFRMLSQDA
PTVIKESCKTSSNNNSMVSNTLAKMRIPNYQLSPTKLPSINKSKDRASQQQQTNSIRNYFQPSTKKRERDEENQEMSSCKS
ARIETSCSLLEQTQPATPSLWKNKEQHLSENEVPDTNSDNNLFTDTDLKSIVKNSASKSHAAEKLRSNKKREMDVAIED
EVLEQLFKDTKPELEIDVKVQKQEDVNVRKRPRMDIETNDTFSDEAVPESSKISQENEIGKKRELKEDSLWSAKEISNN
DKLQDDSEMLPKKLLLTEFRSLVINKNSTRNPMSGINDDYGQLKNFKKKVTPGAGKLPHIIGGSDLIAHHARKNTELE
EWLRQEMEVQNQHAKESLADDLFRYNPYLKRR.

FIGURE 15