GABARITO - AD1 da disciplina Probabilidade e Estatística

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo 01.2005

Conhece-se os resultados de pesquisas aplicadas aos funcionários do setor de contabilidade de duas empresas, apresentados a seguir:

Empresa A

Tabela A-1

	I				1 -
Funcionários	Escolaridade	Idade	Salário	Anos de	Sexo
	(curso)		(em Reais)	Empresa	
1	superior	41	1.210,00	7	F
2	Superior	43	1.480,00	8	М
3	Médio	31	970,00	6	М
4	Médio	37	960,00	6	F
5	Médio	24	600,00	4	F
6	Médio	25	680,00	5	F
7	Médio	27	720,00	5	М
8	Médio	22	450,00	2	М
9	Fundamental	21	570,00	5	F
10	Fundamental	26	500,00	4	М

Empresa B

Tabela B-1

Faixas	Freqüência	Freqüência relativa	Freqüência acumulada
Salariais (em reais)	(ni)	· (fi)	. (fac)
450,00 - 650,00	12	0,32	0,32
650,00 850,00	6	0,16	0,48
850,00 1.050,00	4	0,1	0,58
1.050,00 1.250,00	7	0,18	0,76
1.250,00 1.500,00	9	0,24	1
Total	38	1	

Tabela B-2

Sexo	Freqüência relativa	
	(fi)	
M	0,57	
F	0,43	

Tabela B-3

Idade	Freqüência relativa (fi)
20 -30	0,29
30 -40	0,42
40 -50	0,29

Tabela B-4

Anos de empresa	Freqüência relativa
	(fi)
1 - 4	0,21
4 - 7	0,50
7 - 10	0,29

Tabela B-5

Escolaridade	Freqüência relativa
Fundamental	0,29
Médio	0,42
Superior	0,29

Pergunta-se:

a) (1,0) Comparando as duas empresas o que você pode afirmar em relação à escolaridade dos funcionários?

(Sugestão: utilize tabelas de freqüência para fazer essa comparação)

Observação: Freqüência relativa $f_i = \frac{n_i}{n}$ i = 1, 2, ..., n (número de valores)

Solução:

Passo 1: Construir tabela de freqüência de escolaridade da empresa A, utilizando como base a tabela A-1.

Tabela A-2

•	abola / L			
	Curso	Freqüência (n _i)	Freq. Relativa (f_i)	Freq. Acumulada (f_{ac})
	Superior	2	0,2	0,2
	Médio	6	0,6	0,8
	Fundamental	2	0,2	1
		10	1,0	

Passo 2: Comparando tabela A-2 (empresa A) com a tabela B-5 (empresa B) e observando a freqüência relativa de ambas as empresas podemos comparar a variável *curso* das 2 empresas:

Curso	Empresa A	Empresa B
	Freq. Relativa (f _i)	Freq. Relativa (f _i)
Superior	0,2	0,29
Médio	0,6	0,42
Fundamental	0,2	0,29
Total	1,0	1,0

Passo 3: Comparação -

Quanto a forma que os funcionários estão dsitribuídos nas 2 empresas: verificamos que em ambas as empresas a maioria dos funcionários é de nível médio e que têm a mesma quantidade de funcionários com nível superior e fundamental;

Quanto ao número de funcionários em cada nível: comparando relativamente, a empresa A tem mais funcionários de nível médio que a empresa B, e menos funcionários – igualmente distribuídos – nos níveis superior e fundamental.

OBS: Esta comparação só é possível ser realizada pois estamos trabalhando com a freqüência relativa.

b) (1,0) Faça os histogramas da distribuição dos salários de cada uma das empresas. (Sugestão: utilize para a Empresa A a mesma faixa de salários da Empresa B)

Observação: Frequência relativa
$$f_i = \frac{n_i}{n}$$
 i = 1, 2, ..., n (n ú m ero d e f ai x a s)

Solução:

Passo 1: Inicialmente construir, para a Empresa A, uma tabela com as mesmas faixas salariais que a empresa B (utilizando como modelo a tabela B-1):

Tabela A-3

	Comp. da faixa			Freqüência Acumulada	
Faixa Salarial		Freqüência	(f_i)	(f _{ac})	Densidade
450,00 650,00	200,00	4	0,4	0,4	0,002
650,00 850,00	200,00	2	0,2	0,6	0,001
850,00 1.050,00	200,00	2	0,2	0,8	0,001
1.050,00 1.250,00	200,00	1	0,1	0,9	0,0005
1.250,00 1.500,00	250,00	1	0,1	1	0,0004
Total		10	1		

Observação: Calculando a densidade:

$$Densidade_{(i)} = \frac{f_i}{comp. faixa_{(i)}} \quad i = 1, 2, ..., n \text{ (número de faixas)}$$

- por exemplo, a densidade da primeira faixa (450,00 | 650,00), temos:

Frequência relativa (f_1) = 0,4 Comp.faixa₍₁₎=200,00

Então:

$$Densidade_{(1)} = \frac{0.4}{200.00} = 0.002$$

- a densidade da última faixa (1250,00 - 1500,00), temos:

Freqüência relativa $(f_5) = 0,1$

Comp.faixa₍₅₎=250,00

Então:

$$Densidade_{(5)} = \frac{0.1}{250,00} = 0.0004$$

Passo 2: Montar histograma da empresa A conforme tabela A-3

Histograma da empresa A

Passo 2: Montar histograma da empresa B utilizando a tabela B-1.

		Relativa	Freqüência Acumulada	
Faixa	Freqüência	(f_i)	(f_{ac})	Densidade
450,00 650,00	12	0,3	0,3	0,0016
650,00 850,00	6	0,2	0,5	0,0008
850,00 1.050,00	4	0,1	0,6	0,0005
1.050,00 1.250,00	7	0,2	0,8	0,0009
1.250,00 1.500,00	9	0,2	1,0	0,0009
	38	1		

Histograma da empresa B

c) (0,5) Faça os gráficos para a variável <u>sexo</u> (para as 2 empresas).

Este tipo de variável tem uma melhor representação com gráfico de pizza

Observação: Freqüência relativa $f_i = \frac{n_i}{n}$

Solução:

Passo 1: Montar a tabela de freqüência da empresa A, utilizando a tabela A-1

Tabela A-4

		Freqüência
	Freqüência	relativa
Sexo	(n_i)	(f_i)
Feminino	5	0,5
Masculino	5	0,5
Total	10	1

Passo 2: Gráfico da empresa A.

Passo 3: Gráfico de empresa B (utilizando a tabela B-2)

d) (0,5) Classifique cada uma das variáveis.

Solução:

Curso: qualitativa ordinal. Idade: quantitativa discreta. Salário: quantitativa continua.

Anos de empresa: quantitativa discreta.

Sexo: qualitativa nominal.

e) (1,0) Qual a empresa que tem (relativamente) mais trabalhadores com menos de 30 anos de idade? E qual tem mais trabalhadores com menos de 7 anos de empresa?

(Sugestão: utilize tabelas de freqüência para fazer essa comparação)

Observação: Frequência relativa $f_i = \frac{n_i}{n}$

Solução:

Passo 1: Construir a tabela de fregüência para empresa A utilizando a tabela A-1.

Tabela A-5 – Tabela de freqüência da variável idade - empresa A.

Idade	n _i	f _i
20 30	6	0,6
30 - 40	2	0,2
50 50	2	0,2
	10	1

Passo 2: Compar a tabela A-5 com a tabela B-3, da empresa B.

A empresa A tem 60% dos seus funcionários com menos de 30 anos e a empresa B tem 29% dos funcionários com menos de 30 anos de idade, portanto a empresa A tem, relativamente, mais do dobro de funcionários com menos de 30 anos que a empresa B.

Passo 3: Trabalhadores com menos de 7 anos de casa

Para responder tal questão é necessário calcular a freqüência (n_i) e freqüência acumuldada (f_{ac}) da variável <u>anos de empresa</u> da Empresa A, utilizando como base a tabela A-1.

Tabela A-6 – Tabela de freqüência de anos de empresa da empresa A.

Anos de empresa	n _i	f _i	f_{ac}
1 4	1	0,10	0,10
4 7	7	0,70	0,80
7 - 10	2	0,20	1
•	10	1	

Passo 4: Inlcuir na tabela B-4 a coluna da freqüência acumulada.

Tabela B-6 (é a tabela B-4 apenas com a freqüência acumulada).

Anos de empresa	f _i	f _{ac}
1 4	0,21	0,21
4 7	0,50	0,71
7 - 10	0,29	1
	1	

Passo 5: Comparando os resultados:

Observando as tabelas A-6 e B-6 é possível verificar que, relativamente, a empresa A tem um pouco mais de funcionários com até 7 anos de empresa (80%) que a empresa B (71%).

f) (2,0) Calcule a média aritmética, variância e desvio padrão das 2 empresas e a faixa de salário onde se encontra a moda e a mediana. Como a empresa B tem a variável salário apresentada em faixa de valores, não temos os valores efetivamente observados e, portanto, não podemos aplicar as fórmulas da média e da variância. Para contornar esta situação e obter os resultados aproximados para as médias desejadas tomamos, como representante de cada faixa, o seu ponto médio.

Solução:

Passo 1: Cálculo da média aritmética

Média aritmética:
$$x_{obs} = \frac{x_1 + x_2 + x_3 + ... + x_n}{n}$$
 ou $x_{obs} = \frac{\sum_{i=1}^{n} x_i}{n}$

A Empresa A tem duas formas para cáclulo da média justificáveis.

a) Uma é utilizando diretamente os dados da Tabela A-1 (a média é igual ao somatório dos salários dividido por 10)

Tabela A-7

Tabola 11 1				
Funcionários	Salário			
1	1.210,00			
2	1.480,00			
3	970,00			
4	960,00			
5	600,00			
6	680,00			
7	720,00			
8	450,00			
9	570,00			
10	500,00			
Total	8.140,00			

$$x_{obs(emp.A)} = \frac{total}{10} = \frac{8140,00}{10} = 814,00$$

b) A outra forma é, como se quer comparar com a Empresa B e os dados dessa empresa estão por faixa salarial, pode-se admitir que se trabalhe também dessa forma com a Empresa A, embora perca-se informações. Nesse caso, pode-se utilizar a Tabela A-3 e acrescentar a média do salário em cada faixa. A média pode também ser calculada pela fórmula:

$$x_{obs} = \frac{\sum_{i=1}^{k} n_i x_i}{n}$$

Tabela A-8

Faixa Salarial	n _i	f _i	f _{ac}	Sal. médio por faixa	(sal. médio p/faixa) x n _i
450,00 650,00	4	0,40	0,40	550,00	2.200,00
650,00 850,00	2	0,20	0,60	750,00	1.500,00
850,00 1.050,00	2	0,20	0,80	950,00	1.900,00
1.050,00 1.250,00	1	0,10	0,90	1.150,00	1.150,00
1.250,00 1.500,00	1	0,10	1,00	1.375,00	1.375,00
Total	10	1,00			8.125,00

Nesse caso, a média será:

$$x_{obs(emp.A)} = \frac{\sum_{i=1}^{k} n_{i}(sal.medios.por.faixa)_{i}}{n} = \frac{total}{10} = \frac{8125,00}{10} = 812,50$$

O que significa que calculada da primeira forma, média será R\$ 814,00 e da segunda, R\$812,50.

Para a Empresa B:

Tabela B-7

Tabola D 1				
Faixas salariais				(Sal Médio
	n _i	f _i	Sal.médio por faixa	p/faixa) x n _i
450,00 650,00	12	0,32	550,00	6.600,00
650,00 850,00	6	0,16	750,00	4.500,00
850,00 1.050,00	4	0,11	950,00	3.800,00
1.050,00 1.250,00	7	0,18	1.150,00	8.050,00
1.250,00 1.500,00	9	0,24	1.375,00	12.375,00
Total	38	1,00		35.325,00

$$x_{obs(emp.B)} = \frac{\sum_{i=1}^{k} n_i (sal.medios.por.faixa)_i}{n} = \frac{total}{38} = \frac{35325,00}{38} = 929,60$$

Passo 2:Cálculo da moda e da mediana

Moda — valor com maior freqüência de ocorrência Mediana- o valor que está na posição central dos valores colocados em ordem: Se n for ímpar temos:

$$md_{obs} = valorpos.\left(\frac{n+1}{2}\right)$$

Se *n* for par temos:

$$md_{obs} = \frac{valorpos.\left(\frac{n}{2}\right) + valorpos.\left(\frac{n+2}{2}\right)}{2}$$

Empresa A: 10 valores, logo a mediana está entre os valores 5 e 6 (segunda faixa)

Mediana	Faixa 650,00 - 850,00
Moda	Faixa 450,00 - 650,00

Empresa B: 38 valores, logo a mediana está entre os valores 19 e 20 (terceira faixa)

mediana	Faixa	850,00	 1050,00
moda	Faixa	450,00	650,00

Passo 3: Cálculo da Variância e Desvio Padrão:

Variância:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2$$

Desvio Padrão:

$$dp_{obs} = \sqrt{\text{var}_{obs}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2}$$

O cálculo da variância da Empresa A será feito também para as duas possíveis formas:

a) <u>considerando o salário de cada trabalhador</u>: nessa tabela acrescentamos uma coluna com o valor da vairável menos a média e outra com o valor elevado ao quadrado, e na última linha dessa coluna está o somatório, que é o numerador da fórmula da variância.

Funcionários	Salário	média	sal média	(sal média) ²
1	1210,00	814,00	396,00	156.816,00
2	1480,00	814,00	666,00	443.556,00
3	970,00	814,00	156,00	24.336,00
4	960,00	814,00	146,00	21.316,00
5	600,00	814,00	-214,00	45.796,00
6	680,00	814,00	-134,00	17.956,00
7	720,00	814,00	-94,00	8.836,00
8	450,00	814,00	-364,00	132.496,00
9	570,00	814,00	-244,00	59.536,00
10	500,00	814,00	-314,00	98.596,00
Total (Σ=)	8140,00		0,00	1.009.240,00

Podemos observar que o somatório dos valores (salário – média) = 0,00, sendo essa uma possível conferência se os cáculos estão certos.

$$var_{obs(Emp.A)} = \frac{1}{10}(1.009.240,00) = 100.924,00$$

$$dp_{obs(Emp.A)} = \sqrt{var_{obs(Emp.A)}} = \sqrt{100.924,00} = 317,69$$

b) Considerando a Empresa A por faixas salariais

		Sal. médio		(sal.médio	(sal.médio	ni x (sal.médio
Faixa Salarial	n_i	por faixa	média	- média)	p/faixa - média)2	p/faixa - média)2
450,00 650,00	4	550,00	812,50	-262,50	68.906,25	275.625,00
650,00 850,00	2	750,00	812,50	-62,50	3.906,25	7.812,50
850,00 1050,00	2	950,00	812,50	137,50	18.906,25	37.812,50
1050,00 1250,00	1	1150,00	812,50	337,50	113.906,25	113.906,25
1250,00 1500,00	1	1375,00	812,50	562,50	316.406,25	316.406,25
Total (Σ=)	10					751.562,50

Nesse caso, a variância pode ser dada por:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2 = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \overline{x}_{obs})^2$$

A última linha da última coluna fornece o somatório do numerador da fórmula. Assim:

$$var_{obs(Emp.A)} = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - x_{obs})^2 = \frac{1}{10} (751.562, 50) = 75.156, 25$$

E o desvio padrão:

$$dp_{obs(Emp.A)} = \sqrt{var_{obs(Emp.A)}} = \sqrt{75.156,25} = 274,15$$

Para a Empresa B:

Faixas salariais		Sal. médio p/		(Sal. méd p/faixa	(Sal. méd p/faixa	n _i x (Sal. méd
	n _i	faixa	média	` – média)	` – média)²	p/faixa - média)²
450,00 650,00	12	550,00	929,60	-379,60	144.100,16	1.729.201,87
650,00 850,00	6	750,00	929,60	-179,60	32.258,05	193.548,30
850,00 1050,00	4	950,00	929,60	20,40	415,95	1.663,78
1050,00 1250,00	7	1150,00	929,60	220,40	48.573,84	340.016,88
1250,00 1500,00	9	1375,00	929,60	445,40	198.376,47	1.785.388,24
Total (Σ=)	38					4.049.819,08

Logo a variância será:

$$var_{obs(Emp.B)} = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \overline{x}_{obs})^2 = \frac{1}{38} (4.049.819,08) = 106.574,19$$

e o desvio padrão:

$$dp_{obs(Emp.B)} = \sqrt{var_{obs(Emp.B)}} = \sqrt{106.574,19} = 326,46$$

Resumindo:

	E	Empresa A	Empresa B
	por cada salário	por faixa salarial	
Média	R\$ 814,00 R\$ 812,50 R\$ 9		R\$ 929,60
Variância	R\$ 100.924,00	R\$ 75.156,25	R\$ 106.574,19
Desvio padrão	R\$ 317,69	R\$ 264,15	R\$ 326,46
Moda	multimodal	R\$ 650,00 R\$ 850,00	R\$ 850,00 R\$ 1050,00
Mediana	R\$ 640,00	R\$ 450,00 R\$ 650,00	R\$ 450,00 R\$ 650,00

g) (2,0) Mostre o que acontecerá com a média, a variância e o desvio padrão da empresa A se cada funcionário receber um gratificação fixa de "c" reais. Mostre também o que acontecerá se na empresa B essa bonificação for de 20% sobre cada salário. Quanto terá que ser a gratificação "c" da empresa A para que sua média fique igual essa nova média da empresa B?

(Sugestão: reescreva as tabelas salariais das empresas A e B, somando "c" reais a cada valor da tabela da empresa A e multiplicando cada valor da tabela B por 1,2 – ou seja, 20% de aumento. A seguir calcule as medidas solicitadas. Depois disso, calcule "c").

Solução:

Passo 1: O aluno deve concluir para esse caso, somar uma constante "c" aos valores da tabela, que:

- no caso da média, soma-se a constante "c" ao resultado da média da tabela original,
- no caso da variância o resultado não é alterado,
- e nesse caso, é claro que o desvio padrão também não é alterado.

Pode-se chegar a essa conclusão ou analisando as fórmulas ou fazendo os cálculos.

Analisando as fórmulas:

Para a média:

$$\frac{1}{x_{obs(EmpA+c)}} = \frac{\sum_{i=1}^{n} (x_i + c)}{n} = \frac{\sum_{i=1}^{n} x_i + n \times c}{n} = \frac{\sum_{i=1}^{n} x_i}{n} + c = \frac{1}{x_{obs(Emp.A)}} + c$$

Para a variância:

$$var_{obs(Emp.A+c)} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs(Emp.A)})^2 = \frac{1}{n} \sum_{i=1}^{n} [(x_i + c) - (\bar{x}_{obs(Emp.A)} + c)]^2$$

$$var_{obs(Emp.A+c)} = \frac{1}{n} \sum_{i=1}^{n} [x_i + c - \bar{x}_{obs(Emp.A)} - c]^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs(Emp.A)})^2$$

Ou fazendo as contas:

$$x_{obs(emp.A)} = \frac{total}{10} = \frac{8140,00 + 10c}{10} = 814,00 + c$$

Funcionários	Salário	média	sal média	(sal média) ²
1	1210,00+c	814,00+c	396,00	156.816,00
2	1480,00+c	814,00+c	666,00	443.556,00
3	970,00+c	814,00+c	156,00	24.336,00
4	960,00+c	814,00+c	146,00	21.316,00
5	600,00+c	814,00+c	-214,00	45.796,00
6	680,00+c	814,00+c	-134,00	17.956,00
7	720,00+c	814,00+c	-94,00	8.836,00
8	450,00+c	814,00+c	-364,00	132.496,00
9	570,00+c	814,00+c	-244,00	59.536,00
10	500,00+c	814,00+c	-314,00	98.596,00
Total (Σ=)	8140,00 + 10c		0,00	1.009.240,00

Variância igual a tabela original

A mesma coisa pode ser mostrada para a Empresa A com cálculo de salários em faixas (caso o alunos tenham preferido essa alternativa) assim:

$$x_{obs(Emp.A+c)} = \frac{\sum_{i=1}^{k} n_i(x_i + c)}{n} = \frac{\sum_{i=1}^{k} n_i x_i + (n_1 + n_2 + \dots + n_k) \times c}{n} = \frac{\sum_{i=1}^{k} n_i x_i + n \times c}{n} = \frac{\sum_{i=1}^{k} n_i x_i}{n} + c$$

E a média sendo alterada somente do valor de "c" a variância e desvio padrão também não mudam.

		Sal. médio		(sal.médio	(sal.médio	ni x (sal.médio
Faixa Salarial	ni		média	- média)	p/faixa - média) ²	`
	111	por faixa	IIIeula	- Illeula)	p/laixa - lileula)-	p/raixa - media)-
450,00+c 650,00+c	4	550,00+c	812,50+c	-262,50	68.906,25	275.625,00
650,00+c 850,00+c	2	750,00+c	812,50+c	-62,50	3.906,25	7.812,50
850,00+c 1050,00+c	2	950,00+c	812,50+c	137,50	18.906,25	37.812,50
1050,00+c 1250,00+c	1	1150,00+c	812,50+c	337,50	113.906,25	113.906,25
1250,00+c 1500,00+c	1	1375,00+c	812,50+c	562,50	316.406,25	316.406,25
Total (Σ=)	10					751.562,50

Passo 4: Acrescentar 20% nas faixas salariais da empresa B, significa multiplicar cada valor do salário por 1,2 e pode ser vistoa também pela fórmula ou fazendo os cálculos. Pela fórmula:

$$\overline{x}_{obs(Emp.B)} = \frac{\sum_{i=1}^{n} 1, 2x_i}{n} = \frac{1, 2\sum_{i=1}^{n} x_i}{n} = 1, 2\overline{x}_{obs(Emp.B)}$$

$$var_{obs(Emp.B*1,2)} = \frac{1}{n} \sum_{i=1}^{n} (1, 2x_i - 1, 2x_{obs(Emp.B)})^2 = \frac{1}{n} \sum_{i=1}^{n} [1, 2(x_i - x_{obs(Emp.B)})]^2 = \frac{1}{n} \sum_{i=1}^{n} [1, 2(x_i - x_{obs(Emp.B)})^2 = \frac{1}{n$$

$$var_{obs(Emp.B*1,2)} = \frac{1}{n} \sum_{i=1}^{k} 1, 2^{2} (x_{i} - x_{obs(Emp.B)})^{2} = \frac{1, 2^{2}}{n} \sum_{i=1}^{k} (x_{i} - x_{obs(Emp.B)})^{2} = 1, 2^{2} var_{obs(Emp.B)}$$

Ou seja, a média fica multiplicada pela constante (1,2), a variância, pela constante ao quadrado e o desvio padrão também será multiplicado pela constante, isto é, será igual a 1,2 X (desvio padrão original), ou seja, R\$391,75

Ou, fazendo os cálculos:

			n _i x (sal.	média			
Fatana antautata		Sal. médio p/	médio p/		(Sal. méd p/faixa –	(Sal. méd p/faixa	n _i x (Sal. méd
Faixas salariais	ni	faixa	faixa)		média)	– média)²	p/faixa - média) ²
540,00 780,00	12	660,00	7.920,00	1.115,53	-455,53	207.504,22	2.490.050,69
780,00 1020,00	6	900,00	5.400,00	1.115,53	-215,53	46.451,59	278.709,56
1020,00 1260,00	4	1.140,00	4.560,00	1.115,53	24,47	598,96	2.395,84
1260,00 1500,00	7	1.380,00	9.660,00	1.115,53	264,47	69.946,33	489.624,31
1500,00 1800,00	9	1.650,00	14.850,00	1.115,53	534,47	285.662,12	2.570.959,07
Total ($\Sigma =$)	38		42.390,00		·	610.163,23	5.831.739,47

$$\frac{-}{x_{obs(EmpB*I,2)}} = \frac{42.390,00}{38} = 1.153,53$$

$$var_{obs(Emp.B*1,2)} = \frac{5.831.739,47}{38} = 153.466,83$$

$$dp_{obs(Emp.B^*1,2)} = \sqrt{var_{obs(Emp.B)}} = 391,75$$

Finalmente, vamos responder a pergunta:

que valor deve ter a constante "C" para que a média da Empresa A seja igual a média da Empresa B, com acréscimo de 20%?

Média da Empresa A (Emp. A + c) = R\$ (814,00+c) Média da Empresa B (Emp.B * 1,2)= R\$1.153,53

$$1153,53 = 814,00 + c$$

 $c = 1153,53 - 814,00$
 $c = 339,53$

Ou, considerando a Empresa A pela faixa salarial veremos que dará uma diferença de menos de R\$2,00. Média da Empresa A (Emp. A + c) = R\$ (812,50+c) Média da Empresa B (Emp.B *1,2)= R\$1.153,53

$$1153,53 = 812,50 + c$$

 $c = 1153,53 - 812,50$
 $c = 341,03$

h) (1,0) Numa certa população, a probabilidade de gostar de teatro é de 1/3, enquanto que a de gostar de cinema é de 1/2 Determine a probabilidade de gostar de teatro e não de cinema, nos seguintes casos:

Dados do problema: Vamos definir os eventos. Evento A o evento de gostar de teatro e evento B de gostar de cinema, A probabilidade de gostar de teatro e não gostar de cinema é:

$$P(A \cap B^c)$$

οu

$$P(A \cap B^c) = P(A) - P(A \cap B)$$

1) Gostar de teatro e gostar de cinema são eventos disjuntos.

Solução: Eventos disjuntos quer dizer $P(A \cap B) = 0$ portanto:

$$P(A \cap B^{C}) = P(A) - P(A \cap B)$$

$$P(A \cap B^{C}) = \frac{1}{3} - 0$$

$$P(A \cap B^{C}) = \frac{1}{3}$$

2) Gostar de teatro e gostar de cinema são eventos independentes.

Solução: Se os eventos são independes que dizer que temos:

$$P(A) \times P(B^c)$$

portanto:

$$P(B^C) = 1 - P(B)$$

$$P(B^C) = 1 - \frac{1}{2}$$

$$P(B^C) = \frac{1}{2}$$

$$P(A) \times P(B^C) = \frac{1}{3} \times \frac{1}{2}$$

$$P(A) \times P(B^C) = \frac{1}{6}$$

3) Todos que gostam de teatro gostam de cinema.

Solução: Se todos os que gostam de teatro gostam também de cinema, isto quer dizer que:

$$P(A \cap B) = P(A)$$

portanto:

$$P(A \cap B^{c}) = P(A) - P(A \cap B)$$
$$P(A \cap B^{c}) = P(A) - P(A)$$
$$P(A \cap B^{c}) = 0$$

4) A probabilidade de gostar de teatro e de cinema é 1/8.

Solução: A probabilidade de gostar de teatro **e** cinema é de 1/8, isto quer dizer que:

$$P(A \cap B) = \frac{1}{8}$$

portanto:

$$P(A \cap B^c) = P(A) - P(A \cap B)$$

$$P(A \cap B^c) = \frac{1}{3} - \frac{1}{8} \to \frac{8 - 3}{24}$$

$$P(A \cap B^c) = \frac{5}{24}$$

5) Dentre os que não gostam de cinema, a probabilidade de não gostar de teatro é de 3/4.

Solução: Quer dizer que ¾ dos que não gostam de cinema não gostam de teatro. Temos:

P(B^c) =
$$1 - P(B)$$

$$P(B^{c}) = 1 - \frac{1}{2}$$

$$P(B^{c}) = \frac{1}{2}$$

$$P(A^{c} \cap B^{c}) = P(B^{c}) \times \frac{3}{4} \to \frac{1}{2} \times \frac{3}{4} \to \frac{3}{8}$$
portanto:

$$P(A^{c} \cap B^{c}) = 1 - P(A \cup B)$$

$$P(A \cup B) = 1 - P(A^{c} \cap B^{c}) \rightarrow 1 - \frac{3}{8}$$

$$P(A \cup B) = \frac{5}{8}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\frac{5}{8} = \frac{1}{3} + \frac{1}{2} - P(A \cap B)$$

$$P(A \cap B) = \frac{5}{24}$$

$$P(A \cap B^{c}) = P(A) - P(A \cap B)$$

$$P(A \cap B^{c}) = \frac{1}{3} - \frac{5}{24} \rightarrow \frac{8 - 5}{24}$$

$$P(A \cap B^{c}) = \frac{1}{8}$$

i) (1,0) A probabilidade de encontrar gás numa certa região é de 1/10. Três sondas idênticas estão perfurando de modo independente.

1) Sabendo-se que uma delas (qualquer) não achou gás, qual a probabilidade das outras duas encontrarem?

Solução:

Evento A^{C} . Uma sonda não encontra gás.

$$P(A^c) = 1 - P(A) \rightarrow 1 - \frac{1}{10}$$

$$P(A^{C}) = \frac{9}{10}$$

Evento B. Duas sondas encontram gás.

$$P(B) = \frac{1}{10} + \frac{1}{10} \rightarrow \frac{2}{10}$$

portanto:

$$P(B/A^{c}) = \frac{P(A^{c} \cap B)}{P(A^{c})} \rightarrow \frac{\frac{2}{10}}{\frac{9}{10}} \rightarrow \frac{2}{9}$$

2) Sabendo-se que uma delas (qualquer) não achou gás, qual a probabilidade de encontrar gás na região através dessas perfurações?

Solução:

Evento $\boldsymbol{A}^{\mathcal{C}}$. Uma sonda não encontra gás (sem reposição).

$$P(A^c) = 1 - P(A) \to 1 - \frac{1}{10}$$

$$P(A^{C}) = \frac{9}{10}$$

Evento B . Três sondas encontram gás (com reposição).

$$P(B) = \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \to \frac{3}{10}$$

portanto:

$$P(B/A^{c}) = \frac{P(A^{c} \cap B)}{P(A^{c})} \rightarrow \frac{\frac{3}{10}}{\frac{9}{10}} \rightarrow \frac{3}{9}$$

3) Sabendo-se que não mais de uma delas (qualquer) achou gás, qual a probabilidade de nenhuma encontrar gás?

Solução:

Evento $A^{\mathcal{C}}$. Uma sonda não encontra gás (sem reposição).

$$P(A^c) = 1 - P(A) \rightarrow 1 - \frac{1}{10}$$

$$P(A^C) = \frac{9}{10}$$

Evento \boldsymbol{B} . Três sondas encontram gás (com reposição).

$$P(B) = \frac{1}{10} + \frac{1}{10} \rightarrow \frac{2}{10}$$

$$P(B^{c}) = 1 - \frac{2}{10} \rightarrow \frac{8}{10}$$

portanto:

$$P(B^{c}/A) = \frac{P(A \cap B^{c})}{P(A)} \to \frac{\frac{1}{10}}{\frac{8}{10}} \to \frac{1}{8}$$

Boa Prova!