Esame di Calcolo delle Probabilità e Statistica (per studenti di

Informatica)

Università degli studi di Bari Aldo Moro

Docenti: Simone del Vecchio, Stefano Rossi Appello del 05–07–2023

Esercizio 1.

Si hanno a disposizione due monete a due facce (testa e croce). Una è equa e l'altra truccata. La moneta truccata fa uscire testa con probabilità $\frac{2}{3}$. Si sceglie una moneta a caso e la si lancia 1000 volte.

- (1) Calcolare la probabilità di ottenere più di 580 teste.
- (2) Calcolare la probabilità di aver lanciato la moneta truccata sapendo di aver ottenuto più di 580 teste.
- (3) Calcolare la probabilità di aver lanciato la moneta truccata sapendo di aver ottenuto meno di 580 teste.

Esercizio 2.

Per ogni valore del parametro $\lambda > 0$, considerare la funzione reale di variabile reale

$$f(x) = \frac{e^{-\lambda x} \lambda^{\frac{1}{2}}}{x^{\frac{1}{2}} \Gamma(\frac{1}{2})} \chi_{[0,\infty)}(x), \quad x \in \mathbb{R},$$

dove $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ è il valore della funzione gamma in $\frac{1}{2}$.

- (1) Dire di quale distribuzione notevole si tratta.
- (2) Determinare lo stimatore di massima verosimiglianza del parametro λ relativo a un campione $\{X_1, \ldots, X_n\}$ di rango n distribuito come sopra.
- (3) Enunciare il teorema di fattorizzazione di Fisher.
- (4) Sfruttare il teorema di fattorizzazione di Fisher per esibire una statistica sufficiente per il modello statistico in questione.

Esercizio 3.

Si conduce un test di verifica delle ipotesi sull'affermazione "la spesa media per le vacanze degli italiani è superiore a 1100 euro a persona". A tal scopo, si intervista un campione di 100 italiani e si trova che la spesa media per le vacanze di questo campione è stata di 1050 euro a persona con una varianza *campionaria* pari a $S^2=1600$ euro.

- (1) Dire se bisogna condurre un test unilaterale o bilaterale, specificando di quale test si tratta
- (2) Effettuare il test con un livello di significatività del 5% e dell' 1%.