МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №6 по дисциплине «Вычислительная математика»

Тема: Метод простых итераций

Студент гр. 8383	 Ларин А.
Преподаватель	Сучков А.И

Санкт-Петербург 2019

Цель работы.

Формирование практических навыков нахождения корней алгебраических и трансцендентных уравнений методом простых итераций.

Основные теоретические положения.

Метод простых итераций (метод последовательных приближений) решения уравнения f(x) = 0 состоит в замене исходного уравнения эквивалентным ему уравнением $x = \varphi(x)$ и построении последовательности $x_{n+1} = \varphi(x_n)$, сходящейся при $n \to \infty$ к точному решению. Достаточные условия сходимости метода простых итераций формулируются следующей теоремой.

Теорема. Пусть функция $\varphi(x)$ определена и дифференцируема на [a,b], причём все её значения $\varphi(x) \in [a,b]$. Тогда, если существует число q, такое, что $|\varphi'(x)| \leq q < 1$ на отрезке [a,b], то последовательность $x_{n+1} = \varphi(x_n)$, n = 0,1,2,... сходится к единственному на [a,b] решению уравнения $x = \varphi(x)$ при любом начальном значении $x_0 \in [a,b]$, т.е.

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \varphi(x_n) = \xi; \ f(\xi) = 0; \ \xi \in [a,b].$$

При этом если на отрезке [a,b] производная $\varphi'(x)$ положительна, то

$$|\xi - x_n| < \frac{q}{1-q} |x_n - x_{n-1}|,$$

если $\phi'(x)$ отрицательна, то

$$|\xi - x_n| < |x_n - x_{n-1}|.$$

Рассмотрим один шаг итерационного процесса. Исходя из найденного на предыдущем шаге значения x_{n-1} , вычисляется $y=\varphi(x_{n-1})$. Если $|y-x_{n-1}|>\varepsilon$, то полагается $x_n=y$ и выполняется очередная итерация. Если же $|y-x_{n-1}|<\varepsilon$, то вычисления заканчиваются и за приближенное значение корня принимается величина $x_n=y$. Погрешность результата вычислений зависит от знака производной $\varphi'(x)$: при $\varphi'(x)>0$ погрешность определения корня составляет $\frac{q\varepsilon}{1-q}$, а при $\varphi'(x)<0$ погрешность не превышает ε . Существование числа q является условием сходимости метода в соответствии с отмеченной выше

теоремой. Для применения метода простых итераций определяющее значение имеет выбор функции $\varphi(x)$ в уравнении $x=\varphi(x)$, эквивалентном исходному. Функцию необходимо подбирать так, чтобы $|\varphi'(x)| \leq q < 1$. Это обусловливается тем, что если $\varphi'(x) < 0$ на отрезке [a,b], то последовательные приближения $x_n = \varphi(x_{n-1})$ будут колебаться около корня ξ , если же $\varphi'(x) > 0$, то последовательные приближения будут сходиться к корню ξ монотонно. Следует также помнить, что скорость сходимости последовательности $\{x_n\}$ к корню ξ функции тем выше, чем меньше число q.

Постановка задачи.

Используя программы-функции ITER и Round из файла methods.cpp (файл заголовков metods.h), найти корень уравнения с заданной точностью Eps методом простых итераций, исследовать скорость сходимости и обусловленности метода. Порядок выполнения работы следующий:

- 1. Графически или аналитически отделить корень уравнения f(x) = 0.
- 2. Преобразовать уравнение f(x) = 0.
- 3. к виду $x = \varphi(x)$ так, чтобы в некоторой окрестности [a, b] корня производная $\varphi'(x)$ удовлетворяла условию $|\varphi'(x)| \leqslant q < 1$. При этом следует иметь в виду, что чем меньше величина q, тем быстрее последовательные приближения сходятся к корню.
 - 4. Выбрать начальное приближение, лежащее на отрезке [a, b].
- 5. Составить подпрограмму для вычисления значений $\varphi(x)$, предусмотрев округление вычисленных значений с точностью Delta.
- 6. Составить головную программу, вычисляющую корень уравнения и содержащую обращение к программам РНІ и ITER и индикацию результатов.
- 7. Провести вычисления по программе. Исследовать скорость сходимости и обусловленность метода.

Выполнение работы.

Проанализируем функцию f(x):

$$f(x) = x^{\pi} - \frac{1}{1 + x^4}.$$

Отделим графическим методом корни уравнения, т.е. найдем отрезки [a, b], на которых функция удовлетворяет начальным условиям теоремы о сходимости метода простых итераций. По графику на рис. 1 видно что корень принадлежит отрезку [0.5, 1.25] и первая производная в окрестности корня положительна.

Рисунок 1 — Локализация корня функции f(x)

Метод простых итераций f(x)=0 состоит в замене исходного уравнения эквивалентным ему уравнением $x=\varphi(x)$. Возьмем в качестве $\varphi(x)$ следующую функцию: $\varphi(x)=x-\lambda*f(x)$. Найдем оптимальное значение λ , удовлетворяющее условиям сходимости. По условию требуется существования q, такого, что $|\varphi(x)'| \leq q < 1$. Имеем $|\varphi(x)'| = 1 - \lambda*f'(x)$. Отсюда получаем следующие ограничения: Во-первых $\lambda*f'(x)>0$. По графику видим, что производная исходной функции положительна на всем отрезке, следовательно коэффициент λ должен быть положительным. Во вторых $|1-\lambda*f'(x)| \leq q < 1$

 $1=>\lambda*f'(x)\leq q+1<2$. Для этого проверим, что $\lambda M_1\leq q<2$, где $M_1=\max_x |f'(x)|$, следовательно $\frac{1}{\lambda}>\frac{M_1}{2}$. Для нашей функции $M_1=5.725966$. Отсюда $\lambda<\frac{2}{M_1}=0.349286041$. Примем $\lambda=0.3$. Получаем:

$$\varphi(x) = x - 0.3 * f(x).$$

За произвольное приближение возьмем $x_0 = b$.

Исследуем экспериментально скорость сходимости метода. Согласно неравенству $|\xi-x_n|<|x_n-x_{n-1}|$ метод имеет линейный порядок сходимости. Результаты эксперимента занесены в табл. 1.

Проведем вычисление корня функций f(x) и исследуем скорость сходимости метода при помощи программы, приведенной в приложении А. Программа вычисляет корень уравнения методом Ньютона. На вход ей подаются следующие параметры: X — начальное приближение корня, eps — требуемая точность вычисления корня, delta — погрешность вычисления значений функции, PHI — функция, итеративно приближающая корень. В табл. 1 приведены расчеты корня \overline{x} при различных значениях delta и eps, и представлены значения количества итераций.

Таблица 1 — Расчет корня x методом простой итерации с варьированием значения *eps* и *delta*

Значение	Значение	Значение а	Значение <i>b</i>	Значение х	Значение k
eps	delta	эначение а	Значение <i>в</i>	эначение х	эначение к
0.1	0.00001	0.5	1.25	0.8526	2
0.01	0.00001	0.5	1.25	0.8671	3
0.001	0.00001	0.5	1.25	0.86709	4
0.0001	0.00001	0.5	1.25	0.86709	4
0.1	0.000001	0.5	1.25	0.852598	2
0.01	0.000001	0.5	1.25	0.867099	3
0.001	0.000001	0.5	1.25	0.867084	4

Имея экспериментальное значение скорость сходимости метода видим, что скорость сходимости метода хорд линейна. Действительно, согласно неравенству $|\xi-x_n|<|x_n-x_{n-1}|$ порядок сходимости метода равен 1, т.е. линеен.

Теперь, имея приближение корня, примем $\overline{x} \approx 0.867084$. С помощью данного приближения вычислим $\Delta x = |\overline{x} - x|$, и оценим с его помощью чувствительность метода к ошибкам в исходных данных. При $\Delta x \leq eps$ будем считать, что задача хорошо обусловлена — хор., иначе пл. — плохо. Результаты эксперимента занесены в табл. 2.

Выводы.

Проанализировав результаты применения метода простых итераций, можно сказать, что при расчете данной функции он дает очень хорошие результаты, и сходится за приемлемое число итераций, которое соответствует теоретическому значению порядка.

По результатам эксперимента по определению обусловленности метода простых итераций можно оценить абсолютную обусловленность как значение в диапазоне (0.1;1], что говорит о хорошей обусловленности метода. Из недостатков метода можно выделить дополнительные ограничения на начальные условия, в частности необходимость подбора функции $\varphi(x)$, соответствующую этим ограничениям.

Таблица 2 — Обусловленность метода при различных eps и delta

Значение	Значение		Значение	Значение	Значение
eps	delta	Значение х	k	Δx	$eps \ge \Delta x$
0.1	0.01	0.85	2	0.017084	хор.
0.01	0.01	0.87	3	0.002916	xop.
0.001	0.01	0.87	3	0.002916	пл.
0.0001	0.01	0.87	3	0.002916	пл.
0.00001	0.01	0.87	3	0.002916	пл.
0.000001	0.01	0.87	3	0.002916	пл.
0.1	0.001	0.853	2	0.014084	xop.
0.01	0.001	0.867	3	0.000084	xop.
0.001	0.001	0.867	3	0.000084	xop.
0.0001	0.001	0.867	3	0.000084	xop.
0.00001	0.001	0.867	3	0.000084	пл.
0.000001	0.001	0.867	3	0.000084	пл.
0.1	0.0001	0.8526	2	0.014484	xop.
0.01	0.0001	0.8671	3	0.000016	xop.
0.001	0.0001	0.8671	3	0.000016	xop.
0.0001	0.0001	0.8671	3	0.000016	xop.
0.00001	0.0001	0.8671	3	0.000016	пл.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

```
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <iostream>
#include <conio.h>
double delta;
#ifndef __NEWTON
#define NEWTON
#endif
#ifndef __ITER
#define ITER
#endif
#ifndef M PI
#define M PI 3.14159265358979323846
#endif // !M PI
#ifndef FF(x)
#define FF(x) ( (M_PI * pow(x, M_PI + 7) + 2 * M_PI*pow(x, M_PI + 3) +
M PI * pow(x, M PI - 1) + 4 * pow(x, 3)) / (pow(x, 8) + 2 * pow(x, 4) +
1))
#define FFF(x) ( (PI2*pow(x, M PI + 10) - M PI * pow(x, M PI + 10) + 3 *
PI2*pow(x, M_PI + 6) - 3 * M_PI*pow(x, M_PI + 6) + 3 * PI2*pow(x, M_PI + 6)
2) - 3 * M PI*pow(x, M PI + 2) - 20 * pow(x, 6) + PI2 * pow(x, M PI - 2)
- M PI*pow(x, M PI-2) + 12 * pow(x, 2)) / (pow(x, 12) + 3 * pow(x, 8) + 3
* pow(x, 4) + 1)
#endif
extern double F(double);
Функция F(X) , задаваемая пользователем
#ifdef __NEWTON
extern double F1(double);
Производная функции F(X), задаваемая пользователем
#endif
```

```
#ifdef ITER
extern double PHI(double);
Функция PHI(X) , задаваемая пользователем
                                          */
/*
                                          */
          Данная функция используется в методе
/*
                                          */
               простых итераций
#endif
double Round(double, double);
Функция Round (X, Delta) , предназначена для округления
                                          */
/*
             X с точностью Delta
                                          */
double BISECT(double, double, int&);
/*
   Функция BISECT предназначена для решения уравнения F(X)=0
                                          */
/*
   методом деления отрезка пополам. Использованы обозначения:
                                          */
/*
                                          */
     Left - левый конец промежутка
/*
                                          */
     Right - правый конец промежутка
/*
     Eps - погрешность вычисления корня уравнения;
                                          */
/*
     N - число итераций
                                          */
double ITER(double, double, int&);
/*
                                          */
   Функция ITER предназначена для решения уравнения F(X)=X
/*
                                          */
     методом простой итерации. Использованы обозначения:
/*
     ХО - начальное приближение корня
                                          */
/*
     Eps - погрешность вычисления корня уравнения;
                                          */
/*
     N - число итераций
                                          */
double HORDA(double, double, int&);
/*
   Функция HORDA предназначена для решения уравнения F(x)=0
                                          */
/*
                                          */
     методом хорд. Использованы обозначения:
/*
     Left - левый конец промежутка
                                          */
/*
     Right - правый конец промежутка
                                          */
/*
     Eps - погрешность вычисления корня уравнения;
                                          */
     N - число итераций
                                          */
```

```
double NEWTON(double, double, int&);
Функция NEWTON предназначена для решения уравнения F(X)=0
                                                          */
/*
        методом касательных. Использованы обозначения:
                                                          */
/*
       Х - начальное приближение корня
                                                          */
/*
       Eps - погрешность вычисления корня уравнения;
                                                          */
/*
       N - число итераций
                                                          */
double Round(double X, double Delta) {
 if (Delta <= 1E-9) {
   puts("Неверное задание точности округления\n");
 }
 if (X > 0.0) {
   return Delta * long(X / Delta + 0.5);
 } else {
   return Delta * long(X / Delta - 0.5);
 }
}
double F(double x) {
 // функция f(x)
    extern double delta;
    double s;
    long S;
    s = pow(x, M_PI) - 1/(pow(x,4)+1);
    s = Round(s, delta);
    return s;
}
double F1(double x) {
 // функция f'(x)
    double f = (M PI * pow(x, M PI + 7) + 2 * M PI*pow(x, M PI + 3) +
M_PI * pow(x, M_PI - 1) + 4 * pow(x, 3)) / (pow(x, 8) + 2 * pow(x, 4) +
1);
 return f;
double PHI(double x) {
```

```
// функция \phi(x) - для метода простых итераций
 return x;
}
double lambda = 0.30;
     extern double delta;
 // функция ф(х) - для метода простых итераций
     double Phi = x-lambda*F(x);
     Phi = Round(Phi, delta);
     return Phi;
}
double BISECT(double Left, double Right, double Eps, int &N) {
 double E = fabs(Eps) * 2.0;
 double FLeft = F(Left);
 double FRight = F(Right);
 double X = 0.5 * (Left + Right);
 double Y;
 if (FLeft * FRight > 0.0) {
    puts("Неверное задание интервала\n");
   exit(1);
 }
 if (Eps <= 0.0) {
   puts("Неверное задание точности\n");
   exit(1);
 }
 if (FLeft == 0.0) {
   return Left;
 }
 if (FRight == 0.0) {
   return Right;
 }
 for (N = 0; Right - Left >= E; N++) {
   X = 0.5 * (Right + Left); // вычисление середины отрезка
   Y = F(X);
    if (Y == 0.0) {
     return X;
    }
```

```
if (Y * FLeft < 0.0) {
      Right = X;
    } else {
      Left = X;
      FLeft = Y;
    }
  }
  return X;
}
#ifdef __ITER
double ITER(double X0, double Eps, int &N) {
  extern double PHI(double);
  if (Eps <= 0.0) {
    puts("Неверное задание точности\n");
    exit(1);
  }
  double X1 = PHI(X0);
  double X2 = PHI(X1);
  for (N = 2;
       (X1 - X2) * (X1 - X2) > fabs((2 * X1 - X0 - X2) * Eps);
       N++) {
   X0 = X1;
   X1 = X2;
   X2 = PHI(X1);
 return X2;
}
#endif
#ifdef NEWTON
double NEWTON(double X, double Eps, int &N) {
  extern double F1(double);
  double Y, Y1, DX, Eps0;
  N = 0;
  double m1 = 1.154884, // наименьшее значение модуля 1-ой производной
         М2 = 7.268115; // наибольшее значение модуля 2-ой производной
  Eps0 = sqrt(2 * m1 * Eps / M2);
```

```
do {
   Y = F(X);
    if (Y == 0.0) {
     return X;
    }
    Y1 = F1(X);
    if (Y1 == 0.0) {
      puts("Производная обратилась в ноль\n");
      exit(1);
    }
    DX = Y / Y1;
    X -= DX;
    N++;
  } while (fabs(DX) > Eps0);
  return X;
}#endif
double HORDA(double Left, double Right, double Eps, int &N) {
  double FLeft = F(Left);
  double FRight = F(Right);
  double X, Y;
  if (FLeft * FRight > 0.0) {
    puts("Неверное задание интервала\n");
    exit(1);
  }
  if (Eps <= 0.0) {
    puts("Неверное задание точности\n");
    exit(1);
  }
  N = 0;
  if (FLeft == 0.0) {
    return Left;
  }
  if (FRight == 0.0) {
```

```
return Right;
  }
  do {
    X = Left - (Right - Left) * FLeft / (FRight - FLeft);
   Y = F(X);
    if (Y == 0.0) {
     return X;
    }
    if (Y * FLeft < 0.0) {
      Right = X;
      FRight = Y;
    } else {
      Left = X;
      FLeft = Y;
    }
   N++;
  } while (fabs(Y) >= Eps);
  return X;
}
#define FF(x) ( (M_PI * pow(x, M_PI + 7) + 2 * M_PI*pow(x, M_PI + 3) +
M_PI * pow(x, M_PI - 1) + 4 * pow(x, 3)) / (pow(x, 8) + 2 * pow(x, 4) +
1) )
int main()
{
     int k_B,k_H,k_N;
     long int s;
     float a1, b1, eps1, delta1;
     double a, b, eps, x B, x H, x N;
     a = 0.5;
     b = 1.25;
     double x = 0.867086;
     printf("eps\t\tdelta\t\ta\t\tb\t\tx_I\t\tk_I\tDx\tc\n");
     for (delta = 0.1; delta >= 0.000001; delta /= 10)
     {
           for (eps = 0.1; eps >= 0.000001; eps /= 10)
                                    14
```