```
import all libraries and filters
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')

In [2]: from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
```

#### LOADING THE DATA:

```
In [3]: # Reading the file :
    housing_df = pd.read_csv('E:\Housing real estate DELHI.csv')
    housing_df.head()
```

| Out[3]: |   | price    | area | bedrooms | bathrooms | stories | mainroad | guestroom | basement | hotwaterhea |
|---------|---|----------|------|----------|-----------|---------|----------|-----------|----------|-------------|
|         | 0 | 13300000 | 7420 | 4        | 2         | 3       | yes      | no        | no       |             |
|         | 1 | 12250000 | 8960 | 4        | 4         | 4       | yes      | no        | no       |             |
|         | 2 | 12250000 | 9960 | 3        | 2         | 2       | yes      | no        | yes      |             |
|         | 3 | 12215000 | 7500 | 4        | 2         | 2       | yes      | no        | yes      |             |
|         | 4 | 11410000 | 7420 | 4        | 1         | 2       | yes      | yes       | yes      |             |
|         |   |          |      |          |           |         |          |           |          |             |

### Shape of the dataframe:

```
In [4]: housing_df.shape
Out[4]: (545, 13)
```

### info of dataframe:

```
In [5]: housing_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
```

| #  | Column           | Non-Null Count | Dtype  |
|----|------------------|----------------|--------|
|    |                  |                |        |
| 0  | price            | 545 non-null   | int64  |
| 1  | area             | 545 non-null   | int64  |
| 2  | bedrooms         | 545 non-null   | int64  |
| 3  | bathrooms        | 545 non-null   | int64  |
| 4  | stories          | 545 non-null   | int64  |
| 5  | mainroad         | 545 non-null   | object |
| 6  | guestroom        | 545 non-null   | object |
| 7  | basement         | 545 non-null   | object |
| 8  | hotwaterheating  | 545 non-null   | object |
| 9  | airconditioning  | 545 non-null   | object |
| 10 | parking          | 545 non-null   | int64  |
| 11 | prefarea         | 545 non-null   | object |
| 12 | furnishingstatus | 545 non-null   | object |
|    |                  |                |        |

dtypes: int64(6), object(7)
memory usage: 55.5+ KB

### describe the dataframe:

```
In [6]: housing_df.describe (percentiles = [0.10,0.25, 0.50, 0.75, 0.90, 0.99])
```

| Out[6]: |       | price        | area         | bedrooms   | bathrooms  | stories    | parking    |
|---------|-------|--------------|--------------|------------|------------|------------|------------|
|         | count | 5.450000e+02 | 545.000000   | 545.000000 | 545.000000 | 545.000000 | 545.000000 |
|         | mean  | 4.766729e+06 | 5150.541284  | 2.965138   | 1.286239   | 1.805505   | 0.693578   |
|         | std   | 1.870440e+06 | 2170.141023  | 0.738064   | 0.502470   | 0.867492   | 0.861586   |
|         | min   | 1.750000e+06 | 1650.000000  | 1.000000   | 1.000000   | 1.000000   | 0.000000   |
|         | 10%   | 2.835000e+06 | 3000.000000  | 2.000000   | 1.000000   | 1.000000   | 0.000000   |
|         | 25%   | 3.430000e+06 | 3600.000000  | 2.000000   | 1.000000   | 1.000000   | 0.000000   |
|         | 50%   | 4.340000e+06 | 4600.000000  | 3.000000   | 1.000000   | 2.000000   | 0.000000   |
|         | 75%   | 5.740000e+06 | 6360.000000  | 3.000000   | 2.000000   | 2.000000   | 1.000000   |
|         | 90%   | 7.350000e+06 | 7980.000000  | 4.000000   | 2.000000   | 3.000000   | 2.000000   |
|         | 99%   | 1.054200e+07 | 12543.600000 | 5.000000   | 3.000000   | 4.000000   | 3.000000   |
|         | max   | 1.330000e+07 | 16200.000000 | 6.000000   | 4.000000   | 4.000000   | 3.000000   |

## Visualizing the data:



```
In [8]: # Categorical varibale:
        plt.figure(figsize = (20,8))
        plt.subplot(2,3,1)
        sns.boxplot(x='mainroad', y = 'price', data = housing_df)
        plt.subplot(2,3,2)
        sns.boxplot(x = 'guestroom' , y = 'price' , data = housing_df)
        plt.subplot(2,3,3)
        sns.boxplot( x= 'basement' , y = 'price' , data = housing_df)
        plt.subplot(2,3,4)
        sns.boxplot(x= 'hotwaterheating', y = 'price' , data = housing_df)
        plt.subplot(2,3,5)
        sns.boxplot(x= 'airconditioning' , y = 'price', data = housing_df)
        plt.subplot(2,3,6)
        sns.boxplot( x= 'prefarea' , y = 'price' , data = housing_df)
        <AxesSubplot:xlabel='prefarea', ylabel='price'>
```

Out[8]:



```
In [9]: sns.boxplot(x = 'furnishingstatus', y = 'price' , data = housing_df)
```

Out[9]: <AxesSubplot:xlabel='furnishingstatus', ylabel='price'>



```
In [10]: plt.figure(figsize=(10,5))
sns.boxplot(x = 'furnishingstatus', y = 'price', data = housing_df)
```

Out[10]: <AxesSubplot:xlabel='furnishingstatus', ylabel='price'>



In [11]: sns.heatmap(housing\_df.corr(), annot= True)

Out[11]: <AxesSubplot:>



here we see high correlation between price, area and bathrooms.

# **Data Prepration**

In [12]: # converting yes to 1 and No to

```
variable_list =['mainroad','guestroom', 'basement', 'hotwaterheating', 'aircondition

          def binary_map(x) :
              return x.map({'yes' :1 , 'no' : 0})
          housing df[variable list] = housing df[variable list].apply(binary map)
In [13]: housing_df.head()
Out[13]:
                price area bedrooms bathrooms stories mainroad guestroom basement hotwaterhea
         0 13300000 7420
                                             2
                                                    3
          1 12250000 8960
                                                                                  0
                                  3
                                             2
                                                    2
          2 12250000 9960
         3 12215000 7500
                                                                                  1
          4 11410000 7420
                                                    2
```

### **Dummy variables:**

```
In [14]: # Lets us create a dummy variable for furnishing status as 3 level values
    status = pd.get_dummies(housing_df['furnishingstatus'], drop_first = True)
    status.head()
```

| Out[14]: |   | semi-furnished | unfurnished |
|----------|---|----------------|-------------|
|          | 0 | 0              | 0           |
|          | 1 | 0              | 0           |
|          | 2 | 1              | 0           |
|          | 3 | 0              | 0           |
|          | 4 | 0              | 0           |

```
In [15]: housing_df = pd.concat([housing_df, status], axis = 1)
In [16]: housing_df.head()
```

| Out[16]: |   | price    | area | bedrooms | bathrooms | stories | mainroad | guestroom | basement | hotwaterhea |
|----------|---|----------|------|----------|-----------|---------|----------|-----------|----------|-------------|
|          | 0 | 13300000 | 7420 | 4        | 2         | 3       | 1        | 0         | 0        |             |
|          | 1 | 12250000 | 8960 | 4        | 4         | 4       | 1        | 0         | 0        |             |
|          | 2 | 12250000 | 9960 | 3        | 2         | 2       | 1        | 0         | 1        |             |
|          | 3 | 12215000 | 7500 | 4        | 2         | 2       | 1        | 0         | 1        |             |
|          | 4 | 11410000 | 7420 | 4        | 1         | 2       | 1        | 1         | 1        |             |

```
In [17]: housing_df.drop(['furnishingstatus'], axis = 1, inplace = True)
In [18]: housing_df.head()
```

| Out[18]: |   | price    | area | bedrooms | bathrooms | stories | mainroad | guestroom | basement | hotwaterhea |
|----------|---|----------|------|----------|-----------|---------|----------|-----------|----------|-------------|
|          | 0 | 13300000 | 7420 | 4        | 2         | 3       | 1        | 0         | 0        |             |
|          | 1 | 12250000 | 8960 | 4        | 4         | 4       | 1        | 0         | 0        |             |
|          | 2 | 12250000 | 9960 | 3        | 2         | 2       | 1        | 0         | 1        |             |
|          | 3 | 12215000 | 7500 | 4        | 2         | 2       | 1        | 0         | 1        |             |
|          | 4 | 11410000 | 7420 | 4        | 1         | 2       | 1        | 1         | 1        |             |
| 4        |   |          |      |          |           |         |          |           |          | <b>•</b>    |

# Splitting the data into Test Train Split

```
In [19]: df_train, df_test = train_test_split(housing_df, train_size =0.7, test_size =0.3,
In [20]: df_train.shape
Out[20]: (381, 14)
```

# Rescaling the features:

```
In [21]:
          scaler = MinMaxScaler()
          # applying the scaler only to below variable
          num_var = ['price', 'area', 'bedrooms', 'bathrooms', 'stories', 'parking']
          df_train[num_var] = scaler.fit_transform(df_train[num_var])
          df_train.head()
In [22]:
Out[22]:
                                 bedrooms bathrooms
                                                        stories
                                                               mainroad guestroom basement hotw
          359 0.169697 0.155227
                                       0.4
                                                  0.0 0.000000
                                                                                 0
                                                                                            0
              0.615152 0.403379
                                       0.4
                                                  0.5 0.333333
          159 0.321212 0.115628
                                                  0.5 0.000000
                                                                                            1
                                       0.4
              0.548133 0.454417
                                       0.4
                                                  0.5 1.000000
           28 0.575758 0.538015
                                       0.8
                                                  0.5 0.333333
In [23]: df_train.describe()
```

Out[23]:

|       | price      | area       | bedrooms   | bathrooms  | stories    | mainroad   | guestroom  | baseı  |
|-------|------------|------------|------------|------------|------------|------------|------------|--------|
| count | 381.000000 | 381.000000 | 381.000000 | 381.000000 | 381.000000 | 381.000000 | 381.000000 | 381.00 |
| mean  | 0.260333   | 0.288710   | 0.386352   | 0.136483   | 0.268591   | 0.855643   | 0.170604   | 0.35   |
| std   | 0.157607   | 0.181420   | 0.147336   | 0.237325   | 0.295001   | 0.351913   | 0.376657   | 0.47   |
| min   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.00   |
| 25%   | 0.151515   | 0.155227   | 0.200000   | 0.000000   | 0.000000   | 1.000000   | 0.000000   | 0.00   |
| 50%   | 0.221212   | 0.234424   | 0.400000   | 0.000000   | 0.333333   | 1.000000   | 0.000000   | 0.00   |
| 75%   | 0.345455   | 0.398099   | 0.400000   | 0.500000   | 0.333333   | 1.000000   | 0.000000   | 1.00   |
| max   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.00   |
|       |            |            |            |            |            |            |            |        |

All the values are in the range o and 1.

```
In [24]:
             # Lets us check the correlation of train data :
             plt.figure(figsize = (10,8))
             sns.heatmap(df_train.corr(), annot = True, cmap= 'YlGnBu')
             <AxesSubplot:>
Out[24]:
                                     0.53 0.35 0.52 0.41 0.32 0.27 0.2
                                                                             0.14 0.43 0.35 0.34 0.079 -0.27
                        price
                                          0.097 0.16 0.069 0.31 0.16 0.11 0.038 0.22 0.37 0.28 -0.041 -0.13
                        area
                                                                                                                         - 0.8
                                                      0.42 0.013 0.089 0.12 0.086 0.16 0.12 0.077 0.049 -0.13
                               0.35 0.097
                   bedrooms -
                                    0.16 0.35
                                                       0.3 0.032 0.15 0.12 0.11 0.23 0.14 0.062 0.066 -0.13
                   bathrooms - 0.52
                                                                                                                         - 0.6
                               0.41 0.069 0.42
                                                            0.13  0.068  -0.16-0.0015  0.28  0.0097  0.072-0.00190.088
                      stories -
                                    0.31 0.013 0.032 0.13
                                                                  0.11 0.068-0.00380.056 0.2
                    mainroad -
                                    0.16 0.089 0.15 0.068 0.11
                                                                        0.37 0.018 0.13 -0.01 0.160.000630.017
                   auestroom -
                                                                                                                          0.2
                                    0.11 0.12 0.12 -0.16 0.068 0.37
                                                                             0.024 0.083 0.042 0.2 0.049 -0.078
             hotwaterheating - 0.14 0.038 0.086 0.11-0.00150.00380.018 0.024
                                                                                   -0.15 0.075 -0.074 0.065 -0.063
                                                                                                                          0.0
                                    0.22 0.16 0.23 0.28 0.056 0.13 0.083 -0.15
                                                                                               0.1 -0.026 -0.12
               airconditioning - 0.43
                     parking - 0.35 0.37 0.12 0.14 0.0097 0.2 -0.01 0.042 0.075 0.19
                                                                                               0.082 0.044 -0.14
                                                                                                                          -0.2
                     prefarea - 0.34 0.28 0.077 0.062 0.072 0.19 0.16 0.2 -0.074 0.1 0.082
                                                                                                    0.0012-0.079
                                                                                                                         -0.4
               semi-furnished - 0.079 -0.041 0.049 0.066-0.00190.0120.000630.049 0.065 -0.026 0.0440.0012
                 unfurnished - -0.27 -0.13 -0.13 -0.13 -0.088 -0.13 -0.017-0.078-0.063 -0.12 -0.14 -0.079 -0.58
                                                                                                prefarea
                                                                                                      semi-furnished
                                                 oathrooms
                                                                                    airconditioning
                                                                  guestroom
                                                                        basement
                                                                              notwaterheating
```

we see high correlation between price and area, price and bathrooms, bedrooms and stories and many more.

## Dividing X and Y for model building:

```
In [25]: y_train = df_train.pop('price')
x_train = df_train
```

## **Building a linear model:**

We will be using two methods: 1. using statsmodels.api 2. using RFE

## Method 1: Using statsmodels.api

```
import statsmodels.api as sm
In [27]: # area
        x_train_sm = sm.add_constant(x_train[['area']])
        lr_1 = sm.OLS(y_train, x_train_sm).fit()
In [28]: | lr_1.params
        const 0.126894
Out[28]:
        area 0.462192
        dtype: float64
        print(lr_1.summary())
In [29]:
                          OLS Regression Results
        ______
        Dep. Variable:
                                   price R-squared:
                                                                        0.283
                                    OLS Adj. R-squared:
                                                                        0.281
        Model:

      Model:
      025 /037.00 = 1.00

      Method:
      Least Squares
      F-statistic:
      149.6

      Date:
      Tue, 04 Jul 2023
      Prob (F-statistic):
      3.15e-29

      Time:
      12:47:42
      Log-Likelihood:
      227.23

      -450.5

                                      381 AIC:
        No. Observations:
                                                                        -450.5
        Df Residuals:
                                      379 BIC:
                                                                         -442.6
        Df Model:
                         nonrobust
        Covariance Type:
        ______
                    coef std err t P>|t| [0.025 0.975]
        ______

    const
    0.1269
    0.013
    9.853
    0.000
    0.102
    0.152

    area
    0.4622
    0.038
    12.232
    0.000
    0.388
    0.536

                                    67.313 Durbin-Watson:
0.000 Jarque-Bera (JB):
Prob(JB):
        ______
        Omnibus:
                                  67.313 Durbin-Watson:
        Prob(Omnibus):
                                                                      143.063
                                                                     8.59e-32
        Skew:
                                    5.365 Cond. No.
        Kurtosis:
                                                                         5.99
        _____
```

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

#### Variable Area just explains 28% variance

```
In [30]: plt.scatter(x_train_sm.iloc[:,1], y_train)
   plt.plot(x_train_sm.iloc[:,1], 0.126894 + 0.462192*x_train_sm.iloc[:,1], 'r')
   plt.show()
```



Through the line is passing through the data, we see that area could explain only 28% variance. so let us add another variable

```
# Area and bathjrooms
In [31]:
          x_train_sm = sm.add_constant(x_train[['area', 'bathrooms']])
          lr_2 = sm.OLS(y_train, x_train_sm).fit()
In [32]:
         lr_2.params
         const
                       0.104589
Out[32]:
                       0.398396
          area
         bathrooms
                       0.298374
         dtype: float64
         print(lr_2.summary())
In [33]:
```

| Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty | ons:                       | Least Squ<br>Tue, 04 Jul | 2023<br>47:43<br>381<br>378<br>2 | Adj.<br>F-sta<br>Prob | uared:<br>R-squared:<br>atistic:<br>(F-statistic):<br>.ikelihood: |                         | 0.480<br>0.477<br>174.1<br>2.51e-54<br>288.24<br>-570.5<br>-558.6 |
|----------------------------------------------------------------------------------------------|----------------------------|--------------------------|----------------------------------|-----------------------|-------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------|
| ========                                                                                     | coef                       | std err                  | =====                            | =====<br>t            | P> t                                                              | [0.025                  | 0.975]                                                            |
| const<br>area<br>bathrooms                                                                   | 0.1046<br>0.3984<br>0.2984 | 0.033                    |                                  | .384<br>.192<br>.945  | 0.000<br>0.000<br>0.000                                           | 0.083<br>0.334<br>0.249 | 0.127<br>0.463<br>0.347                                           |
| Omnibus:<br>Prob(Omnibus)                                                                    | :                          | -                        | .839<br>.000                     |                       | in-Watson:<br>ue-Bera (JB):                                       |                         | 2.157<br>168.790                                                  |

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

0.784 Prob(JB):

5.859 Cond. No.

Adjusted R-squared increased from 28.1% to 47.7% . let us add one more variable and check:

```
In [34]: # Area , bathrooms, and bedrooms
    x_trains_sm = sm.add_constant(x_train[['area', 'bedrooms', 'bathrooms']])
    lr_3 = sm.OLS(y_train, x_train_sm).fit()

In [35]: lr_3.params

Out[35]: const     0.104589
    area     0.398396
    bathrooms     0.298374
    dtype: float64

In [36]: print(lr_3.summary())
```

2.23e-37

6.17

```
______
Dep. Variable:
                           price R-squared:
Model:
                            OLS Adj. R-squared:
                                                             0.477
               Least Squares F-statistic: 174.1
Tue, 04 Jul 2023 Prob (F-statistic): 2.51e-54
Method:
Date:
Time:
                       12:47:43 Log-Likelihood:
                                                           288.24
No. Observations:
                            381 AIC:
                                                            -570.5
Df Residuals:
                            378 BIC:
                                                            -558.6
Df Model:
                             2
Covariance Type:
                nonrobust
______
             coef std err t P>|t| [0.025 0.975]
______

      const
      0.1046
      0.011
      9.384
      0.000
      0.083
      0.127

      area
      0.3984
      0.033
      12.192
      0.000
      0.334
      0.463

      bathrooms
      0.2984
      0.025
      11.945
      0.000
      0.249
      0.347

_____
                        62.839 Durbin-Watson:
Omnibus:
                         0.000 Jarque-Bera (JB):
Prob(Omnibus):
                                                           168.790
                          0.784 Prob(JB):
Skew:
                                                         2.23e-37
                          5.859 Cond. No.
Kurtosis:
                                                             6.17
```

#### Notes.

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

### Lets us do the other way - Let us build the model by adding all the variables to the model and drop those which are insignificant:

```
In [37]: x_train.columns
        Index(['area', 'bedrooms', 'bathrooms', 'stories', 'mainroad', 'guestroom',
                'basement', 'hotwaterheating', 'airconditioning', 'parking', 'prefarea',
                'semi-furnished', 'unfurnished'],
               dtype='object')
         x train sm = sm.add constant(x train)
In [38]:
         lr 4 = sm.OLS(y train, x train sm).fit()
In [39]: lr_4.params
                           0.020033
         const
Out[39]:
         area
                           0.234664
         bedrooms
                           0.046735
         bathrooms
                           0.190823
                           0.108516
         stories
         mainroad
                          0.050441
         guestroom
                           0.030428
         basement
                           0.021595
         hotwaterheating 0.084863
         airconditioning 0.066881
         parking
                          0.060735
         prefarea
                           0.059428
         semi-furnished
                          0.000921
                          -0.031006
         unfurnished
         dtype: float64
In [40]:
         print(lr 4.summary())
```

| Dep. Variable:                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method:       Least Squares       F-statistic:       60.40         Date:       Tue, 04 Jul 2023       Prob (F-statistic):       8.83e-83         Time:       12:47:43       Log-Likelihood:       381.79         No. Observations:       381       AIC:       -735.6         Df Residuals:       367       BIC:       -680.4         Df Model:       13       -680.4         Covariance Type:       nonrobust |
| Date: Tue, 04 Jul 2023 Prob (F-statistic): 8.83e-83  Time: 12:47:43 Log-Likelihood: 381.79  No. Observations: 381 AIC: -735.6  Df Residuals: 367 BIC: -680.4  Df Model: 13  Covariance Type: nonrobust                                                                                                                                                                                                        |
| Time: 12:47:43 Log-Likelihood: 381.79  No. Observations: 381 AIC: -735.6  Df Residuals: 367 BIC: -680.4  Df Model: 13  Covariance Type: nonrobust                                                                                                                                                                                                                                                             |
| No. Observations: 381 AIC: -735.6  Df Residuals: 367 BIC: -680.4  Df Model: 13  Covariance Type: nonrobust                                                                                                                                                                                                                                                                                                    |
| Df Residuals: 13 Covariance Type: nonrobust                                                                                                                                                                                                                                                                                                                                                                   |
| Df Model: 13 Covariance Type: nonrobust                                                                                                                                                                                                                                                                                                                                                                       |
| Covariance Type: nonrobust                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         |
| coef         std err         t         P> t          [0.025]         0.97           5]                                                                                                                                                                                                                                                                                                                        |
| 5]                                                                                                                                                                                                                                                                                                                                                                                                            |
| const 0.0200 0.021 0.955 0.340 -0.021 0.06 1 area 0.2347 0.030 7.795 0.000 0.175 0.29 4 bedrooms 0.0467 0.037 1.267 0.206 -0.026 0.11                                                                                                                                                                                                                                                                         |
| 1 area 0.2347 0.030 7.795 0.000 0.175 0.29 4 bedrooms 0.0467 0.037 1.267 0.206 -0.026 0.11 9                                                                                                                                                                                                                                                                                                                  |
| 1 area 0.2347 0.030 7.795 0.000 0.175 0.29 4 bedrooms 0.0467 0.037 1.267 0.206 -0.026 0.11 9                                                                                                                                                                                                                                                                                                                  |
| area 0.2347 0.030 7.795 0.000 0.175 0.29 4 bedrooms 0.0467 0.037 1.267 0.206 -0.026 0.11 9                                                                                                                                                                                                                                                                                                                    |
| 4<br>bedrooms 0.0467 0.037 1.267 0.206 -0.026 0.11<br>9                                                                                                                                                                                                                                                                                                                                                       |
| bedrooms 0.0467 0.037 1.267 0.206 -0.026 0.11                                                                                                                                                                                                                                                                                                                                                                 |
| 9                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4                                                                                                                                                                                                                                                                                                                                                                                                             |
| stories 0.1085 0.019 5.661 0.000 0.071 0.14                                                                                                                                                                                                                                                                                                                                                                   |
| 6                                                                                                                                                                                                                                                                                                                                                                                                             |
| mainroad 0.0504 0.014 3.520 0.000 0.022 0.07                                                                                                                                                                                                                                                                                                                                                                  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                             |
| guestroom 0.0304 0.014 2.233 0.026 0.004 0.05                                                                                                                                                                                                                                                                                                                                                                 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                             |
| basement 0.0216 0.011 1.943 0.053 -0.000 0.04                                                                                                                                                                                                                                                                                                                                                                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                             |
| hotwaterheating 0.0849 0.022 3.934 0.000 0.042 0.12                                                                                                                                                                                                                                                                                                                                                           |
| 7                                                                                                                                                                                                                                                                                                                                                                                                             |
| airconditioning 0.0669 0.011 5.899 0.000 0.045 0.08                                                                                                                                                                                                                                                                                                                                                           |
| parking 0.0607 0.018 3.365 0.001 0.025 0.09                                                                                                                                                                                                                                                                                                                                                                   |
| 6                                                                                                                                                                                                                                                                                                                                                                                                             |
| prefarea 0.0594 0.012 5.040 0.000 0.036 0.08                                                                                                                                                                                                                                                                                                                                                                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                             |
| semi-furnished 0.0009 0.012 0.078 0.938 -0.022 0.02                                                                                                                                                                                                                                                                                                                                                           |
| 4                                                                                                                                                                                                                                                                                                                                                                                                             |
| unfurnished -0.0310 0.013 -2.440 0.015 -0.056 -0.00                                                                                                                                                                                                                                                                                                                                                           |
| 6                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                               |
| Omnibus:       93.687       Durbin-Watson:       2.093         Prob(Omnibus):       0.000       Jarque-Bera (JB):       304.917                                                                                                                                                                                                                                                                               |
| Skew: 1.091 Prob(JB): 6.14e-67                                                                                                                                                                                                                                                                                                                                                                                |
| Kurtosis: 6.801 Cond. No. 14.6                                                                                                                                                                                                                                                                                                                                                                                |
| =======================================                                                                                                                                                                                                                                                                                                                                                                       |

#### Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We see that , certain variables have p-values > 0.05. Before dropping any variables, lets us check VIF as well :

## VIF:

In [41]:

```
In [42]: vif = pd.DataFrame()
  vif["Features"] = x_train.columns
  vif["VIF"] = [variance_inflation_factor(x_train.values, i) for i in range (x_train.vif["VIF"] = round(vif["VIF"], 2)
  vif = vif.sort_values(by = 'VIF', ascending = False)
  vif
```

from statsmodels.stats.outliers\_influence import variance\_inflation\_factor

| Out[42]: |    | Features        | VIF  |
|----------|----|-----------------|------|
|          | 1  | bedrooms        | 7.33 |
|          | 4  | mainroad        | 6.02 |
|          | 0  | area            | 4.67 |
|          | 3  | stories         | 2.70 |
|          | 11 | semi-furnished  | 2.19 |
|          | 9  | parking         | 2.12 |
|          | 6  | basement        | 2.02 |
|          | 12 | unfurnished     | 1.82 |
|          | 8  | airconditioning | 1.77 |
|          | 2  | bathrooms       | 1.67 |
|          | 10 | prefarea        | 1.51 |
|          | 5  | guestroom       | 1.47 |
|          | 7  | hotwaterheating | 1.14 |

Lets us drop variable semi-furnished as p-value of semi-furnished is 0.938

| Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type: | Leas<br>Tue, 04 | price<br>OLS<br>t Squares<br>Jul 2023<br>12:47:43<br>381<br>368<br>12<br>nonrobust | R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC: | ered:<br>::<br>etistic):<br>nood: | 0.681<br>0.671<br>65.61 |                              |  |
|------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|-------------------------|------------------------------|--|
| 5]                                                                                                   | coef            | std err                                                                            | t                                                                    | P> t                              | [0.025                  | 0.97                         |  |
| -<br>const                                                                                           | 0.0207          | 0.019                                                                              | 1.098                                                                | 0.273                             | -0.016                  | 0.05                         |  |
| 8<br>area<br>3                                                                                       | 0.2344          | 0.030                                                                              | 7.845                                                                | 0.000                             | 0.176                   | 0.29                         |  |
| bedrooms                                                                                             | 0.0467          | 0.037                                                                              | 1.268                                                                | 0.206                             | -0.026                  | 0.11                         |  |
| bathrooms<br>4                                                                                       | 0.1909          | 0.022                                                                              | 8.697                                                                | 0.000                             | 0.148                   | 0.23                         |  |
| stories<br>6                                                                                         | 0.1085          | 0.019                                                                              | 5.669                                                                | 0.000                             | 0.071                   | 0.14                         |  |
| mainroad<br>9                                                                                        | 0.0504          | 0.014                                                                              | 3.524                                                                | 0.000                             | 0.022                   | 0.07                         |  |
| guestroom<br>7                                                                                       | 0.0304          | 0.014                                                                              | 2.238                                                                | 0.026                             | 0.004                   | 0.05                         |  |
| basement<br>3                                                                                        | 0.0216          | 0.011                                                                              | 1.946                                                                | 0.052                             | -0.000                  | 0.04                         |  |
| hotwaterheating<br>7                                                                                 | 0.0849          | 0.022                                                                              | 3.941                                                                | 0.000                             | 0.043                   | 0.12                         |  |
| airconditioning<br>9                                                                                 | 0.0668          | 0.011                                                                              | 5.923                                                                | 0.000                             | 0.045                   | 0.08                         |  |
| parking<br>6                                                                                         | 0.0608          | 0.018                                                                              | 3.372                                                                | 0.001                             | 0.025                   | 0.09                         |  |
| prefarea<br>3                                                                                        | 0.0594          | 0.012                                                                              | 5.046                                                                | 0.000                             | 0.036                   | 0.08                         |  |
| unfurnished<br>2                                                                                     | -0.0316         | 0.010                                                                              | -3.096                                                               | 0.002                             | -0.052                  | -0.01                        |  |
| Omnibus: Prob(Omnibus): Skew: Kurtosis:                                                              | =======         | 93.538<br>0.000                                                                    | Durbin-Wats<br>Jarque-Bera<br>Prob(JB):                              | son:                              | 2<br>303<br>1.05        | .092<br>.844<br>e-66<br>14.1 |  |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Now Bedrooms and Basement looks insignificant . lets us check VIF

```
In [47]: vif = pd. DataFrame()
    vif["Fetaures"] = x.columns
    vif["VIF"] = [variance_inflation_factor(x.values, i) for i in range(x.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = 'VIF', ascending = False)
    vif
```

```
Out[47]:
                     Fetaures VIF
            1
                    bedrooms 6.59
                     mainroad 5.68
            0
                         area 4.67
            3
                       stories 2.69
            9
                      parking 2.12
                     basement 2.01
            6
            8
                airconditioning 1.77
            2
                    bathrooms 1.67
           10
                      prefarea 1.51
            5
                    guestroom 1.47
           11
                   unfurnished 1.40
            7 hotwaterheating 1.14
```

```
In [48]: # Lets us drop bedrooms
    x = x.drop('bedrooms', axis = 1)
In [49]: x_sm = sm.add_constant(x)
    lr_6 = sm.OLS(y_train, x_sm).fit()
In [50]: print(lr_6.summary())
```

| ======================================= |         | =======   | ========        | ======== |          | ====                |  |  |
|-----------------------------------------|---------|-----------|-----------------|----------|----------|---------------------|--|--|
| Dep. Variable:                          |         | price     | R-squared:      |          | 0.680    |                     |  |  |
| Model:                                  |         | OLS       | Adj. R-squa     | red:     | 0.671    |                     |  |  |
| Method:                                 | Leas    | t Squares | F-statistic     | :        | 71.31    |                     |  |  |
| Date:                                   | Tue, 04 | Jul 2023  | Prob (F-sta     | tistic): | 2.73e-84 |                     |  |  |
| Time:                                   |         | 12:47:44  | Log-Likelih     | ood:     | 38       | 0.96                |  |  |
| No. Observations:                       |         | 381       | AIC:            |          | -7       | 37.9                |  |  |
| Df Residuals:                           |         | 369       | BIC:            |          | -690.6   |                     |  |  |
| Df Model:                               |         | 11        |                 |          |          |                     |  |  |
| Covariance Type:                        |         | nonrobust |                 |          |          |                     |  |  |
| ======================================= |         | =======   |                 |          |          | ======              |  |  |
| =                                       | _       | _         |                 |          |          |                     |  |  |
|                                         | coef    | std err   | t               | P> t     | [0.025   | 0.97                |  |  |
| 5]                                      |         |           |                 |          |          |                     |  |  |
|                                         |         |           |                 |          |          |                     |  |  |
| -<br>const                              | 0.0357  | 0.015     | 2.421           | 0.016    | 0.007    | 0.06                |  |  |
| 5                                       | 0.0557  | 0.015     | 2.421           | 0.010    | 0.007    | 0.00                |  |  |
| area                                    | 0.2347  | 0.030     | 7.851           | 0.000    | 0.176    | 0.29                |  |  |
| 4                                       | 0.2347  | 0.030     | 7.831           | 0.000    | 0.170    | 0.23                |  |  |
| bathrooms                               | 0.1965  | 0.022     | 9.132           | 0.000    | 0.154    | 0.23                |  |  |
| 9                                       | 0.1505  | 0.022     | 3.132           | 0.000    | 0.154    | 0.23                |  |  |
| stories                                 | 0.1178  | 0.018     | 6.654           | 0.000    | 0.083    | 0.15                |  |  |
| 3                                       | 0,127,0 | 0.020     | 0.000.          | 0.000    | 0.000    | 0.12                |  |  |
| mainroad                                | 0.0488  | 0.014     | 3.423           | 0.001    | 0.021    | 0.07                |  |  |
| 7                                       |         |           |                 |          |          |                     |  |  |
| guestroom                               | 0.0301  | 0.014     | 2.211           | 0.028    | 0.003    | 0.05                |  |  |
| 7                                       |         |           |                 |          |          |                     |  |  |
| basement                                | 0.0239  | 0.011     | 2.183           | 0.030    | 0.002    | 0.04                |  |  |
| 5                                       |         |           |                 |          |          |                     |  |  |
| •                                       | 0.0864  | 0.022     | 4.014           | 0.000    | 0.044    | 0.12                |  |  |
| 9                                       |         |           |                 |          |          |                     |  |  |
| •                                       | 0.0665  | 0.011     | 5.895           | 0.000    | 0.044    | 0.08                |  |  |
| 9                                       | 0.0620  | 0.010     | 2 504           | 0.004    | 0.000    | 0.00                |  |  |
| parking                                 | 0.0629  | 0.018     | 3.501           | 0.001    | 0.028    | 0.09                |  |  |
| 8                                       | 0.0596  | 0 012     | Г 061           | 0.000    | 0.026    | 0.00                |  |  |
| prefarea                                | 0.0596  | 0.012     | 5.061           | 0.000    | 0.036    | 0.08                |  |  |
| 3<br>unfurnished                        | 0 0222  | 0.010     | 2 160           | 0.002    | 0 052    | 0 01                |  |  |
| 2                                       | -0.0323 | 0.010     | -3.169          | 0.002    | -0.052   | -0.01               |  |  |
| _                                       |         |           |                 |          |          |                     |  |  |
| Omnibus:                                |         | 97.661    | <br>Durbin-Wats |          |          | .097                |  |  |
| Prob(Omnibus):                          |         |           | Jarque-Bera     |          |          |                     |  |  |
| Skew:                                   |         |           | Prob(JB):       | (30).    |          | 325.388<br>2.20e-71 |  |  |
| Kurtosis:                               |         | 6.923     | Cond. No.       |          |          | 10.6                |  |  |
| ======================================= | ======= | =======   | =========       | ======== | :======= | ====                |  |  |

#### Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

P-values of all variables looks fine . let us check VIF.

```
In [51]: vif= pd.DataFrame()
  vif['Features'] = x.columns
  vif['VIF']= [variance_inflation_factor(x.values, i) for i in range(x.shape[1])]
  vif['VIF'] = round(vif['VIF'],2)
  vif = vif.sort_values(by = 'VIF', ascending = False)
  vif
```

| Out[51]: |    | Features        | VIF  |
|----------|----|-----------------|------|
|          | 3  | mainroad        | 4.79 |
|          | 0  | area            | 4.55 |
|          | 2  | stories         | 2.23 |
|          | 8  | parking         | 2.10 |
|          | 5  | basement        | 1.87 |
|          | 7  | airconditioning | 1.76 |
|          | 1  | bathrooms       | 1.61 |
|          | 9  | prefarea        | 1.50 |
|          | 4  | guestroom       | 1.46 |
|          | 10 | unfurnished     | 1.33 |
|          | 6  | hotwaterheating | 1.12 |

# **Residual Analysis Of Train Data**

```
In [52]: y_train_pred = lr_6.predict(x_sm)
In [53]: residual = y_train- y_train_pred
In [54]: sns.distplot(residual, bins = 20)
Out[54]: <AxesSubplot:ylabel='Density'>
```



Error terms are normally distributed.

### Making Prediction Using The Final Model:

```
In [55]: # these variables we scalled in Train data ... so let us scale the same variables
          num_var =['price', 'area', 'bedrooms', 'bathrooms', 'stories', 'parking']
          df_test[num_var]= scaler.transform(df_test[num_var])
In [56]: df_test.describe()
Out[56]:
                                         bedrooms bathrooms
                      price
                                                                   stories
                                                                            mainroad
                                                                                      guestroom
                                  area
                                                                                                   basei
          count 164.000000
                             164.000000
                                        164.000000 164.000000 164.000000
                                                                           164.000000
                                                                                      164.000000
                                                                                                  164.00
                   0.263176
                               0.298548
                                          0.408537
                                                      0.158537
                                                                 0.268293
                                                                             0.865854
                                                                                        0.195122
           mean
                                                                                                    0.34
                   0.172077
                               0.211922
                                          0.147537
                                                      0.281081
                                                                 0.276007
             std
                                                                             0.341853
                                                                                        0.397508
                                                                                                    0.47
                   0.006061
                              -0.016367
                                          0.200000
                                                      0.000000
                                                                 0.000000
                                                                             0.000000
                                                                                        0.000000
                                                                                                    0.00
            min
            25%
                   0.142424
                               0.148011
                                          0.400000
                                                      0.000000
                                                                 0.000000
                                                                             1.000000
                                                                                        0.000000
                                                                                                    0.00
            50%
                   0.226061
                               0.259724
                                          0.400000
                                                      0.000000
                                                                 0.333333
                                                                             1.000000
                                                                                        0.000000
                                                                                                    0.00
            75%
                   0.346970
                               0.397439
                                          0.400000
                                                      0.500000
                                                                 0.333333
                                                                             1.000000
                                                                                         0.000000
                                                                                                    1.00
                                          0.800000
                                                                 1.000000
                                                                             1.000000
                                                                                         1.000000
            max
                   0.909091
                               1.263992
                                                      1.500000
                                                                                                    1.00
          y_test = df_test.pop('price')
In [57]:
          x_{test} = df_{test}
          x_test_sm = sm.add_constant(x_test)
In [58]:
In [59]: x_test_sm = x_test_sm.drop(['semi-furnished', 'bedrooms'], axis = 1)
In [60]:
          y_pred = lr_6.predict(x_test_sm)
```

## **Model Evaluation:**

```
In [61]: plt.scatter(y_test, y_pred)
Out[61]: 
Out[61]:
cmatplotlib.collections.PathCollection at 0x275ef1d8430>
```



In [62]: lr\_6.summary()

Out[62]:

| OLS | Regression | on Results |
|-----|------------|------------|
|-----|------------|------------|

|                   | _                |                     |          |
|-------------------|------------------|---------------------|----------|
| Dep. Variable:    | price            | R-squared:          | 0.680    |
| Model:            | OLS              | Adj. R-squared:     | 0.671    |
| Method:           | Least Squares    | F-statistic:        | 71.31    |
| Date:             | Tue, 04 Jul 2023 | Prob (F-statistic): | 2.73e-84 |
| Time:             | 12:47:44         | Log-Likelihood:     | 380.96   |
| No. Observations: | 381              | AIC:                | -737.9   |
| Df Residuals:     | 369              | BIC:                | -690.6   |
| Df Model:         | 11               |                     |          |
| Covariance Type:  | nonrobust        |                     |          |

|                 | coef    | std err | t      | P> t  | [0.025 | 0.975] |
|-----------------|---------|---------|--------|-------|--------|--------|
| const           | 0.0357  | 0.015   | 2.421  | 0.016 | 0.007  | 0.065  |
| area            | 0.2347  | 0.030   | 7.851  | 0.000 | 0.176  | 0.294  |
| bathrooms       | 0.1965  | 0.022   | 9.132  | 0.000 | 0.154  | 0.239  |
| stories         | 0.1178  | 0.018   | 6.654  | 0.000 | 0.083  | 0.153  |
| mainroad        | 0.0488  | 0.014   | 3.423  | 0.001 | 0.021  | 0.077  |
| guestroom       | 0.0301  | 0.014   | 2.211  | 0.028 | 0.003  | 0.057  |
| basement        | 0.0239  | 0.011   | 2.183  | 0.030 | 0.002  | 0.045  |
| hotwaterheating | 0.0864  | 0.022   | 4.014  | 0.000 | 0.044  | 0.129  |
| airconditioning | 0.0665  | 0.011   | 5.895  | 0.000 | 0.044  | 0.089  |
| parking         | 0.0629  | 0.018   | 3.501  | 0.001 | 0.028  | 0.098  |
| prefarea        | 0.0596  | 0.012   | 5.061  | 0.000 | 0.036  | 0.083  |
| unfurnished     | -0.0323 | 0.010   | -3.169 | 0.002 | -0.052 | -0.012 |

| 2.097    | Durbin-watson:    | 97.001 | Ommbus:        |
|----------|-------------------|--------|----------------|
| 325.388  | Jarque-Bera (JB): | 0.000  | Prob(Omnibus): |
| 2.20e-71 | Prob(JB):         | 1.130  | Skew:          |
| 10.6     | Cond. No.         | 6.923  | Kurtosis:      |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

# Method 2 : Using RFE:

### **Splitting The Data Into Train Split**

```
In [63]: df_train, df_test = train_test_split(housing_df, train_size = 0.7, test_size = 0.3
```

```
In [64]: df_train.shape
Out[64]: (381, 14)

In [65]: df_test.shape
Out[65]: (164, 14)
```

### Scaling Of The Data:

```
In [66]:
           var_list =['price','area','bedrooms','bathrooms','stories','parking']
           scaler = MinMaxScaler()
           df_train[var_list] = scaler.fit_transform(df_train[var_list])
           df_train.describe()
In [67]:
Out[67]:
                        price
                                           bedrooms bathrooms
                                                                       stories
                                                                                mainroad
                                                                                          guestroom
                                                                                                        baseı
           count 381.000000
                              381.000000
                                          381.000000
                                                       381.000000
                                                                  381.000000
                                                                               381.000000
                                                                                           381.000000
                                                                                                       381.00
                    0.260333
                                0.288710
                                             0.386352
                                                         0.136483
                                                                     0.268591
                                                                                 0.855643
                                                                                             0.170604
                                                                                                         0.35
           mean
                    0.157607
                                0.181420
                                             0.147336
                                                         0.237325
                                                                     0.295001
                                                                                 0.351913
                                                                                             0.376657
             std
                                                                                                         0.47
                    0.000000
                                0.000000
                                             0.000000
                                                         0.000000
                                                                     0.000000
                                                                                             0.000000
             min
                                                                                 0.000000
                                                                                                         0.00
            25%
                    0.151515
                                0.155227
                                             0.200000
                                                         0.000000
                                                                     0.000000
                                                                                 1.000000
                                                                                             0.000000
                                                                                                         0.00
            50%
                    0.221212
                                0.234424
                                             0.400000
                                                         0.000000
                                                                     0.333333
                                                                                             0.000000
                                                                                 1.000000
                                                                                                         0.00
            75%
                    0.345455
                                0.398099
                                             0.400000
                                                         0.500000
                                                                     0.333333
                                                                                 1.000000
                                                                                             0.000000
                                                                                                         1.00
            max
                     1.000000
                                 1.000000
                                             1.000000
                                                         1.000000
                                                                     1.000000
                                                                                 1.000000
                                                                                             1.000000
                                                                                                         1.00
```

### Dividing X and Y Model Building:

```
In [68]: y_train = df_train.pop('price')
x_train = df_train
```

### **RFE**

```
In [69]: from sklearn.feature_selection import RFE
In [70]: from sklearn.linear_model import LinearRegression
In [71]: lm = LinearRegression()
lm.fit(x_train, y_train)

rfe = RFE(lm,n_features_to_select=10)
rfe = rfe.fit(x_train, y_train)
In [72]: list(zip(x_train.columns,rfe.support_, rfe.ranking_))
```

```
Out[72]: [('area', True, 1),
           ('bedrooms', True, 1),
           ('bathrooms', True, 1),
           ('stories', True, 1),
           ('mainroad', True, 1),
           ('guestroom', True, 1),
           ('basement', False, 3),
           ('hotwaterheating', True, 1),
           ('airconditioning', True, 1),
           ('parking', True, 1),
           ('prefarea', True, 1),
           ('semi-furnished', False, 4),
           ('unfurnished', False, 2)]
          support_col = x_train.columns[rfe.support_]
In [73]:
          support_col
         Index(['area', 'bedrooms', 'bathrooms', 'stories', 'mainroad', 'guestroom',
Out[73]:
                 'hotwaterheating', 'airconditioning', 'parking', 'prefarea'],
                dtype='object')
          discarded_col = x_train.columns[~rfe.support_]
In [74]:
          discarded_col
          Index(['basement', 'semi-furnished', 'unfurnished'], dtype='object')
Out[74]:
```

### **Building The Model Using Supported Columns:**

```
x_train_rfe = x_train[support_col]
In [75]:
In [76]:
         x_train_rfe_sm = sm.add_constant(x_train_rfe)
In [77]: lr_rfe = sm.OLS(y_train, x_train_rfe_sm).fit()
In [78]:
         lr_rfe.params
                             0.002721
         const
Out[78]:
                             0.236257
         area
         bedrooms
                             0.066102
         bathrooms
                             0.198169
         stories
                             0.097722
         mainroad
                             0.055649
         guestroom
                             0.038136
         hotwaterheating
                             0.089673
                             0.071079
         airconditioning
                             0.063739
         parking
         prefarea
                             0.064326
         dtype: float64
 In [ ]:
In [79]: print(lr_rfe.summary())
```

| ============                            |          | :=======        |                        |                 | .======= | ====    |  |  |
|-----------------------------------------|----------|-----------------|------------------------|-----------------|----------|---------|--|--|
| Dep. Variable:                          |          | price           | R-squared:             |                 | 0        | .669    |  |  |
| Model:                                  | OLS      |                 | Adj. R-squa            | Adj. R-squared: |          | .660    |  |  |
| Method:                                 | •        |                 | F-statistic            |                 | 7        | 74.89   |  |  |
| Date:                                   | Tue, 04  |                 | Prob (F-sta            | •               |          | e-82    |  |  |
| Time:                                   |          |                 | Log-Likelih            | nood:           |          | 4.65    |  |  |
| No. Observations:                       |          | 381             | AIC:                   |                 |          | 27.3    |  |  |
| <pre>Df Residuals: Df Model:</pre>      |          | 370             | BIC:                   |                 | -6       | 83.9    |  |  |
| Covariance Type:                        |          | 10<br>nonrobust |                        |                 |          |         |  |  |
| ======================================  |          |                 |                        | .=======        | .======= | ======= |  |  |
| =                                       |          |                 |                        |                 |          |         |  |  |
|                                         | coef     | std err         | t                      | P> t            | [0.025   | 0.97    |  |  |
| 5]                                      |          |                 |                        |                 |          |         |  |  |
|                                         |          |                 |                        |                 |          |         |  |  |
| -<br>const                              | 0.0027   | 0.018           | 0.151                  | 0.880           | -0.033   | 0.03    |  |  |
| 8                                       | 0.0027   | 0.010           | 0.131                  | 0.000           | -0.055   | 0.03    |  |  |
| area                                    | 0.2363   | 0.030           | 7.787                  | 0.000           | 0.177    | 0.29    |  |  |
| 6                                       |          |                 |                        |                 |          |         |  |  |
| bedrooms                                | 0.0661   | 0.037           | 1.794                  | 0.074           | -0.006   | 0.13    |  |  |
| 9                                       |          |                 |                        |                 |          |         |  |  |
| bathrooms                               | 0.1982   | 0.022           | 8.927                  | 0.000           | 0.155    | 0.24    |  |  |
| 2<br>stories                            | 0.0977   | 0.019           | 5.251                  | 0.000           | 0.061    | 0.13    |  |  |
| 4                                       | 0.0377   | 0.013           | 3.232                  | 0.000           | 0.001    | 0.13    |  |  |
| mainroad                                | 0.0556   | 0.014           | 3.848                  | 0.000           | 0.027    | 0.08    |  |  |
| 4                                       |          |                 |                        |                 |          |         |  |  |
| guestroom                               | 0.0381   | 0.013           | 2.934                  | 0.004           | 0.013    | 0.06    |  |  |
| 4                                       | 0 0007   | 0 000           | 4 404                  | 0.000           | 0.047    | 0.43    |  |  |
| hotwaterheating<br>3                    | 0.0897   | 0.022           | 4.104                  | 0.000           | 0.047    | 0.13    |  |  |
| airconditioning                         | 0.0711   | 0.011           | 6.235                  | 0.000           | 0.049    | 0.09    |  |  |
| 3                                       | 010/ ==  | 0.022           | 01200                  | 0.000           | 0.0.2    | 0,02    |  |  |
| parking                                 | 0.0637   | 0.018           | 3.488                  | 0.001           | 0.028    | 0.10    |  |  |
| 0                                       |          |                 |                        |                 |          |         |  |  |
| prefarea                                | 0.0643   | 0.012           | 5.445                  | 0.000           | 0.041    | 0.08    |  |  |
| 8                                       |          |                 |                        |                 |          |         |  |  |
| Omnibus:                                | :======= | 86.105          | =======<br>Durbin-Wats |                 |          | .098    |  |  |
| Prob(Omnibus):                          |          |                 | Jarque-Bera            |                 |          | .069    |  |  |
| Skew:                                   |          |                 | Prob(JB):              |                 | 7.60     |         |  |  |
| Kurtosis:                               |          | 6.753           | Cond. No.              |                 |          | 13.2    |  |  |
| ======================================= | =======  | :=======        | ========               |                 | ======== | ====    |  |  |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Variable bedrooms is significant

```
In [80]: x_train_rfe_1 = x_train_rfe.drop(['bedrooms'], axis = 1)
In [81]: x_train_rfe_new = sm.add_constant(x_train_rfe_1)
In [82]: lr_rfe_1 = sm.OLS(y_train, x_train_rfe_new).fit()
In [83]: print(lr_rfe_1.summary())
```

| ======================================= | =======          | =======       |                 |              | ========  | ====   |  |
|-----------------------------------------|------------------|---------------|-----------------|--------------|-----------|--------|--|
| Dep. Variable:                          | price            |               | R-squared:      |              | 0         | 0.666  |  |
| Model:                                  | OLS              |               | Adj. R-squared: |              | 0.658     |        |  |
| Method:                                 | Leas             | Least Squares |                 | F-statistic: |           | 82.37  |  |
| Date:                                   | Tue, 04 Jul 2023 |               | Prob (F-sta     | ntistic):    | 6.67      | e-83   |  |
| Time:                                   |                  | 12:47:46      | Log-Likelih     | nood:        | 37        | 3.00   |  |
| No. Observations:                       |                  | 381           | •               |              | -7        | 26.0   |  |
| Df Residuals:                           |                  | 371           | BIC:            |              | -6        | 86.6   |  |
| Df Model:                               |                  | 9             |                 |              |           |        |  |
| Covariance Type:                        |                  | nonrobust     |                 |              |           |        |  |
| ======================================= | =======          | =======       | ========        | ========     | :======== | ====== |  |
| =                                       |                  |               |                 |              |           |        |  |
|                                         | coef             | std err       | t               | P> t         | [0.025    | 0.97   |  |
| 5]                                      |                  |               |                 |              | _         |        |  |
| -                                       |                  |               |                 |              |           |        |  |
| -                                       |                  |               |                 |              |           |        |  |
| const                                   | 0.0242           | 0.013         | 1.794           | 0.074        | -0.002    | 0.05   |  |
| 1                                       |                  |               |                 |              |           |        |  |
| area                                    | 0.2367           | 0.030         | 7.779           | 0.000        | 0.177     | 0.29   |  |
| 7                                       |                  |               |                 |              |           |        |  |
| bathrooms                               | 0.2070           | 0.022         | 9.537           | 0.000        | 0.164     | 0.25   |  |
| 0                                       |                  |               |                 |              |           |        |  |
| stories                                 | 0.1096           | 0.017         | 6.280           | 0.000        | 0.075     | 0.14   |  |
| 4                                       |                  |               |                 |              |           |        |  |
| mainroad                                | 0.0536           | 0.014         | 3.710           | 0.000        | 0.025     | 0.08   |  |
| 2                                       |                  |               |                 |              |           |        |  |
| guestroom                               | 0.0390           | 0.013         | 2.991           | 0.003        | 0.013     | 0.06   |  |
| 5                                       |                  |               |                 |              |           |        |  |
| hotwaterheating                         | 0.0921           | 0.022         | 4.213           | 0.000        | 0.049     | 0.13   |  |
| 5                                       |                  |               |                 |              |           |        |  |
| airconditioning                         | 0.0710           | 0.011         | 6.212           | 0.000        | 0.049     | 0.09   |  |
| 4                                       |                  |               |                 |              |           |        |  |
| parking                                 | 0.0669           | 0.018         | 3.665           | 0.000        | 0.031     | 0.10   |  |
| 3                                       |                  |               |                 |              |           |        |  |
| prefarea                                | 0.0653           | 0.012         | 5.513           | 0.000        | 0.042     | 0.08   |  |
| 9                                       |                  |               |                 |              |           |        |  |
| ======================================= |                  |               |                 |              |           | ====   |  |
| Omnibus:                                |                  | 91.542        | Durbin-Wats     | son:         | 2         | .107   |  |
| Prob(Omnibus):                          |                  | 0.000         | Jarque-Bera     | ı (JB):      | 315       | .402   |  |
| Skew:                                   |                  | 1.044         | Prob(JB):       |              | 3.25      | e-69   |  |
| Kurtosis:                               |                  | 6.938         | Cond. No.       |              |           | 10.0   |  |
| ==========                              | =======          | =======       |                 |              |           | ====   |  |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

All the P -values looks significant. let us check VIF

```
In [84]: vif = pd.DataFrame()
  vif['Feature']= x_train_rfe_1.columns
  vif['VIF'] = [variance_inflation_factor(x_train_rfe_1.values,i) for i in range (x_vif = vif.sort_values(by = 'VIF', ascending = False)
  vif
```

Out[84]:

|   | Feature         | VIF      |
|---|-----------------|----------|
| 0 | area            | 4.516773 |
| 3 | mainroad        | 4.263472 |
| 2 | stories         | 2.120356 |
| 7 | parking         | 2.096114 |
| 6 | airconditioning | 1.748100 |
| 1 | bathrooms       | 1.578669 |
| 8 | prefarea        | 1.466057 |
| 4 | guestroom       | 1.300287 |
| 5 | hotwaterheating | 1.121364 |

## **Residual Analysis**



Error terms are normally distributed.

## **Making Predictions Using The Final Model**

```
var_list =['price', 'area','bedrooms','bathrooms','stories','parking']
In [87]:
        df_test[var_list] = scaler.transform(df_test[var_list])
        y_test = df_test.pop('price')
In [88]:
        x_{test} = df_{test}
        col = x_train_rfe_1.columns
In [89]:
        x_{\text{test_new}} = x_{\text{test[col]}}
In [90]:
In [91]:
        x_test_new.columns
        Out[91]:
              dtype='object')
        x_test_rfe = sm.add_constant(x_test_new)
In [92]:
        y_pred = lr_rfe_1.predict(x_test_rfe)
In [93]:
```

### **Model Evaluation**

```
In [94]: plt.scatter(y_test, y_pred)
```

Out[94]: <matplotlib.collections.PathCollection at 0x275efc005e0>



```
In [95]: print(lr_rfe_1.summary())
```

| Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type: | Leas<br>Tue, 04 | price<br>OLS<br>t Squares<br>Jul 2023<br>12:47:47<br>381<br>371<br>9 | Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: |             | 0.666<br>0.658<br>82.37<br>6.67e-83<br>373.00<br>-726.0<br>-686.6 |          |  |
|------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|-------------------------------------------------------------------|----------|--|
| =<br>5]                                                                                              | coef            | std err                                                              | t                                                                     | P> t        | [0.025                                                            | 0.97     |  |
| -<br>const<br>1                                                                                      | 0.0242          | 0.013                                                                | 1.794                                                                 | 0.074       | -0.002                                                            | 0.05     |  |
| area<br>7                                                                                            | 0.2367          | 0.030                                                                | 7.779                                                                 | 0.000       | 0.177                                                             | 0.29     |  |
| bathrooms<br>0                                                                                       | 0.2070          | 0.022                                                                | 9.537                                                                 | 0.000       | 0.164                                                             | 0.25     |  |
| stories<br>4                                                                                         | 0.1096          | 0.017                                                                | 6.280                                                                 | 0.000       | 0.075                                                             | 0.14     |  |
| mainroad<br>2                                                                                        | 0.0536          | 0.014                                                                | 3.710                                                                 | 0.000       | 0.025                                                             | 0.08     |  |
| guestroom<br>5                                                                                       | 0.0390          | 0.013                                                                | 2.991                                                                 | 0.003       | 0.013                                                             | 0.06     |  |
| hotwaterheating<br>5                                                                                 | 0.0921          | 0.022                                                                | 4.213                                                                 | 0.000       | 0.049                                                             | 0.13     |  |
| airconditioning<br>4                                                                                 | 0.0710          | 0.011                                                                | 6.212                                                                 | 0.000       | 0.049                                                             | 0.09     |  |
| parking<br>3                                                                                         | 0.0669          | 0.018                                                                | 3.665                                                                 | 0.000       | 0.031                                                             | 0.10     |  |
| prefarea<br>9                                                                                        | 0.0653          | 0.012                                                                | 5.513                                                                 | 0.000       | 0.042                                                             | 0.08     |  |
| Omnibus: Prob(Omnibus): Skew: Kurtosis:                                                              |                 | 91.542<br>0.000<br>1.044<br>6.938                                    | Jarque-Bera<br>Prob(JB):<br>Cond. No.                                 | (JB):       | 315<br>3.25                                                       | 10.0     |  |
| Notes:<br>[1] Standard Erro<br>pecified.                                                             | rs assume t     | hat the co                                                           | variance matr                                                         | ix of the e | rrors is cor                                                      | rectly s |  |
| ]:                                                                                                   |                 |                                                                      |                                                                       |             |                                                                   |          |  |
| 1:                                                                                                   |                 |                                                                      |                                                                       |             |                                                                   |          |  |
| :                                                                                                    |                 |                                                                      |                                                                       |             |                                                                   |          |  |
|                                                                                                      |                 |                                                                      |                                                                       |             |                                                                   |          |  |
| ]:                                                                                                   |                 |                                                                      |                                                                       |             |                                                                   |          |  |