RL for Sports: Cricket

Navin Mordani, M.Sc. student, Computer Science, McGill University

MohammadReza Davari, M.Sc. student, Computer Science, Concordia University

Julyan Keller-Baruch, M.Sc. student, Human Genetics, McGill University

Cricket: A Gentleman's Game

- 2 Teams
- One team bats first and achieves a score, the other tries to beat that score.
- In a batting turn team gets fixed number of opportunities to hit the ball.
- Member can hit the ball with different aggression levels
- More the aggression more the points on success and more the risk of failure.
- Failure results in elimination of the member.
- All members eliminated means turn over.
- Score is the sum of points at each hit.

Environments

	Team (Agent) 1			Team (Agent) 2		
Action Space	<u>Action</u>	1		2	4	6
	P(Success)	0.95	C).88	0.8	0.6
State Variables	Balls hit (time steps elapsed)Members eliminated			 Balls hit (time steps elapsed) Members eliminated Points to the target 		
Reward	Points earned at the hit			 Non-zero at terminal states +1 if target achieved else -1 		

We built agents to play the game with 6 hits and 2 members in each team.

Learning Team 1 Strategy

Double weighted Q-learning update.

$$\begin{aligned} & a^* \leftarrow \arg\max_{a} Q^U(s', a) \\ & a_L \leftarrow \arg\min_{a} Q^U(s', a) \\ & \beta^U \leftarrow \frac{|Q^V(s', a^*) - Q^V(s', a_L)|}{c + |Q^V(s', a^*) - Q^V(s', a_L)|} \\ & \delta \leftarrow r + \gamma [\beta^U Q^U(s', a^*) + (1 - \beta^U) Q^V(s', a^*)] - \\ & Q^U(s, a) \\ & Q^U(s, a) \leftarrow Q^U(s, a) + \alpha^U(s, a) \delta \end{aligned}$$

Credits: Z. Zhang, Z. Pan, and M. J. Kochenderfer, "Weighted Double Q-learning," Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017

Learning Team 2 Strategy

Performance of Agent 2

Policy	Avg. Return	%Winning		
Random	-0.25	~12%		
Learned	-0.075	~46.25%		

Conclusion and Future Work

- Significantly higher performance than random implies learning
- Due to the stochastic nature of the problem learning needs to be carried out for large number of episodes and parameter tuning is tricky
- Finish experiment using kernel-based value function approximation.
 - Euclidean distance kernel
 - Other easily implementable kernels, such as RBF
 - o Domain specific kernel.
 - Maybe we can use our knowledge of the game to define state-similarity in smart way.
- Would like to explore larger state spaces
 - To get a better sense of the limitations of each of our methods.