Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №5 з дисципліни: «Твердотільна електроніки-1»

ДОСЛІДЖЕННЯ ВИПРЯМЛЯЮЧИХ НАПІВПРОВІДНИКОВИХ ДІОДІВ

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Превірив:	(підпис)	Л. М. Королевич

1. МЕТА РОБОТИ

Теоретичне вивчення будови, фізичних принципів роботи та експериментальне дослідження вольт-амперних характеристик тунельних діодів. Практичне визначення їх основних технічних та фізичних параметрів із вольт-амперних характеристик.

2. ЗАВДАННЯ

1. Вивчити фізичні основи роботи і структуру параметрів (паспортних даних) тунельного діода.

Ознайомитися із вимірювальним стендом та використовуваними приладами.

- 2. Зібрати схему для вимірювання вольт-амперної характеристики тунельних діодів.
- 3. Виміряти вольт-амперну характеристику 1...2 діодів на постійному струмі по точках.
- 4. Зібрати схему для дослідження вольт-амперних характеристик тунельних діодів методом характериографа.
- 5. Перемалювати на кальку чи міліметровку вольт-амперні характеристики з екрана характериографа, вказавши при цьому масштаби на осях напруги та струму.
- 6. * Дослідити вплив температури на вольт-амперні характеристики тунельних діодів. Якісно оцінити температурну залежність параметрів.
- 7. Із одержаних вольт-амперних характеристик знайти параметри досліджуваних діодів:

$$U_D$$
, U_R , $\triangle U_D$, $\triangle U_R$, R , $\triangle R$, I , $\triangle I$, r^- , $\frac{I_p}{I_V}$

2.1. СХЕМА ВИМІРЮВАННЯ

Рис. 1: Вимірювання ВАХ на постійному струмі..

В схему лабораторної установки входять наступні компоненти: E_1 – джерело живлення постійного струму на 10...30 В

 R_1, R_2 – резистори дільника напруги

 R_i — вимірювальний резистор для визначення струму I_d , $R_i=10~{
m Om}$ mV_1 — мілівольтметр зі шкалами 20 та 100 мВ для вимірювання U_R mV_2 — мілівольтметр для вимірювання напруги на діоді U_d D — досліджуваний діод.

3.РЕЗУЛЬТАТИ ВИМІРЮВАНЬ

3.1. Таблиці вимірювань

Табл. 1: BAX діода D1 за прямого зміщення

U_D , B	U_R , мВ	$\triangle U_D$, B	$\triangle U_R$, мВ	R, Om	$\triangle R$, Om	<i>I</i> , мА	$\triangle I$, мА
0.953	2.5	0.015	1.5	10.0	0.05	0.25	0.1500
1.009	5	0.075	1.5	10.0	0.05	0.50	0.1500
1.019	7.5	0.075	1.5	10.0	0.05	0.75	0.1500
1.04	10	0.075	1.5	10.0	0.05	1.00	0.1501
1.058	12.5	0.075	1.5	10.0	0.05	1.25	0.1501
1.058	15	0.075	1.5	10.0	0.05	1.50	0.1502
1.089	20	0.075	1.5	10.0	0.05	2.00	0.1503
1.103	25	0.075	1.5	10.0	0.05	2.50	0.1505
1.109	27.5	0.075	1.5	10.0	0.05	2.75	0.1506
1.114	30	0.075	1.5	10.0	0.05	3.00	0.1507
1.125	35	0.075	1.5	10.0	0.05	3.50	0.1510
1.134	40	0.075	1.5	10.0	0.05	4.00	0.1513
1.143	45	0.075	1.5	10.0	0.05	4.50	0.1517
1.147	50	0.075	1.5	10.0	0.05	5.00	0.1521
1.155	55	0.075	1.5	10.0	0.05	5.50	0.1525
1.17	70	0.075	1.5	10.0	0.05	7.00	0.1540
1.177	80	0.075	1.5	10.0	0.05	8.00	0.1552
1.185	90	0.075	1.5	10.0	0.05	9.00	0.1566

Табл. 2: BAX діода D2 за прямого зміщення

U_D , B	U_R , мВ	$\triangle U_D$, B	$\triangle U_R$, мВ	R, Om	$\triangle R$, Om	<i>I</i> , мА	$\triangle I$, мА
0.066	2.5	1.125	1.5	10.0	0.05	0.25	0.1500
0.103	5	7.5	1.5	10.0	0.05	0.50	0.1500
0.118	7.5	7.5	1.5	10.0	0.05	0.75	0.1500
0.127	10	7.5	1.5	10.0	0.05	1.00	0.1501
0.139	12.5	7.5	1.5	10.0	0.05	1.25	0.1501
0.149	15	7.5	1.5	10.0	0.05	1.50	0.1502
0.177	20	7.5	1.5	10.0	0.05	2.00	0.1503
0.191	24	7.5	1.5	10.0	0.05	2.40	0.1505
0.217	30	7.5	1.5	10.0	0.05	3.00	0.1507
0.234	35	7.5	1.5	10.0	0.05	3.50	0.1510
0.242	40	7.5	1.5	10.0	0.05	4.00	0.1513
0.265	48	7.5	1.5	10.0	0.05	4.80	0.1519
0.286	55	7.5	1.5	10.0	0.05	5.50	0.1525
0.304	63	7.5	1.5	10.0	0.05	6.30	0.1533
0.323	72	7.5	1.5	10.0	0.05	7.20	0.1543
0.334	80	7.5	1.5	10.0	0.05	8.00	0.1552
0.354	90	7.5	1.5	10.0	0.05	9.00	0.1566
0.373	100	7.5	1.5	10.0	0.05	10.00	0.1581

Табл. 3: BAX діода D1 за зворотного зміщення

U_D , B	U_R , мВ	$\triangle U_D$, B	$\triangle U_R$, мВ	$R, O_{\rm M}$	$\triangle R$, Om	<i>I</i> , мА	$\triangle I$, мА
0.006	2.5	1.125	1.5	10.0	0.05	0.25	0.1500
0.014	10	1.125	1.5	10.0	0.05	1.00	0.1501
0.019	15	1.125	1.5	10.0	0.05	1.50	0.1502
0.021	20	1.125	1.5	10.0	0.05	2.00	0.1503
0.026	23	1.125	1.5	10.0	0.05	2.30	0.1504
0.027	25	1.125	1.5	10.0	0.05	2.50	0.1505
0.033	28	1.125	1.5	10.0	0.05	2.80	0.1507
0.041	33	1.125	1.5	10.0	0.05	3.30	0.1509
0.052	40	1.125	1.5	10.0	0.05	4.00	0.1513
0.063	45	1.125	1.5	10.0	0.05	4.50	0.1517
0.075	46	1.125	1.5	10.0	0.05	4.60	0.1518
0.102	48	7.5	1.5	10.0	0.05	4.80	0.1519
0.133	27	7.5	1.5	10.0	0.05	2.70	0.1506
0.162	25	7.5	1.5	10.0	0.05	2.50	0.1505
0.176	22.5	7.5	1.5	10.0	0.05	2.25	0.1504
0.202	17	7.5	1.5	10.0	0.05	1.70	0.1502
0.232	15	7.5	1.5	10.0	0.05	1.50	0.1502
0.321	12.5	7.5	1.5	10.0	0.05	1.25	0.1501
0.349	10	7.5	1.5	10.0	0.05	1.00	0.1501
0.554	9.75	15	1.5	10.0	0.05	0.98	0.1501
0.555	2	15	1.5	10.0	0.05	0.20	0.1500
0.68	2	15	1.5	10.0	0.05	0.20	0.1500
0.775	2.5	15	1.5	10.0	0.05	0.25	0.1500
0.851	5	15	1.5	10.0	0.05	0.50	0.1500
0.885	7.5	15	1.5	10.0	0.05	0.75	0.1500
0.907	10	15	1.5	10.0	0.05	1.00	0.1501
0.926	13	15	1.5	10.0	0.05	1.30	0.1501
0.962	20	15	1.5	10.0	0.05	2.00	0.1503
0.978	25	15	1.5	10.0	0.05	2.50	0.1505
1	30	15	1.5	10.0	0.05	3.00	0.1507
1.012	35	7.5	1.5	10.0	0.05	3.50	0.1510
1.026	40	7.5	1.5	10.0	0.05	4.00	0.1513
1.034	45	7.5	1.5	10.0	0.05	4.50	0.1517
1.044	50	7.5	1.5	10.0	0.05	5.00	0.1521
1.063	60	7.5	1.5	10.0	0.05	6.00	0.1530
1.077	70	7.5	1.5	10.0	0.05	7.00	0.1540
1.091	80	7.5	1.5	10.0	0.05	8.00	0.1552
1.1	90	7.5	1.5	10.0	0.05	9.00	0.1566
1.109	100	7.5	1.5	10.0	0.05	10.00	0.1581

Табл. 4: ВАХ діода D2 за зворотного зміщення

U_D , B	U_R , MB	$\triangle U_D$, B	$\triangle U_R$, мВ	R, Om	$\triangle R$, Om	I, мА	$\triangle I$, мА
6	5	0.015	1.5	10.0	0.05	0.50	0.1500
11.25	10	0.75	1.5	10.0	0.05	1.00	0.1501
16.5	18	0.75	1.5	10.0	0.05	1.80	0.1503
17.25	20	0.75	1.5	10.0	0.05	2.00	0.1503
22.5	26	0.75	1.5	10.0	0.05	2.60	0.1506
27	33	0.75	1.5	10.0	0.05	3.30	0.1509
32.25	40.5	0.75	1.5	10.0	0.05	4.05	0.1514
39.75	52	0.75	1.5	10.0	0.05	5.20	0.1522
45	60	0.75	1.5	10.0	0.05	6.00	0.1530
52.5	73	1.5	1.5	10.0	0.05	7.30	0.1544
52.5	75	1.5	1.5	10.0	0.05	7.50	0.1546
58.5	85	1.5	1.5	10.0	0.05	8.50	0.1559
61.5	91	1.5	1.5	10.0	0.05	9.10	0.1567
67.5	100	1.5	1.5	10.0	0.05	10.00	0.1581

Всі значення та їх похибкибки обраховувались за наступними формулами:

Струм на діоді:

$$I_D = \frac{U_R}{R},\tag{1}$$

де U_R – напруга на резисторі; R – опір резистора.

Похибки значень струму і напруги знаходив за формулами:

$$\Delta U_D = \sqrt{\Delta U^2 + \Delta U_R^2},\tag{2}$$

де $\triangle U$ – похибка напруги; $\triangle U_R$ – похибка напруги на резисторі.

$$\Delta I_D = \frac{1}{R^2} \cdot \sqrt{(R\Delta U_R)^2 + (U_R \Delta R)^2},\tag{3}$$

де R – похибка значень на резисторі.

3.1. ГРАФІКИ

За прямого зміщення обернені діоди (в моєму вимадку D1 і це видно з його BAX) не мають максимуму тунельного струму (пунктирна крива). Повернута на 180° відносно початку координат BAX оберненого діода нагадує характеристику звичайного діода, але внаслідок різкої залежності зворотного тунельного струму від напруги має вищу нелінійність. Прямий спад напруги обернених діодів значно менший порівняно зі звичайними та становить соті частки вольта. Допустима зворотна напруга також мала та відповідає U_V .

Рис. 2: ВАХ діода D1.

Рис. 3: Вольт-амперна характеристика оберненого діода (пунктиром).

Рис. 4: ВАХ діода D2 .

Для більш наочного зоображення та точнішого визначення основних параметрів параметрів D2 (тунельного діода) я вирішив розглядати тільки пряму гілку ВАХ.

Рис. 5: ВАХ діода D2 за прямого зміщення .

Рис. 6: Порівняння масштабів гілок ВАХ між собою.

3.1. РОЗРАХУНКИ

 $I_p,\ U_p,\ I_V,\ U_F,\ U_F$ можна легко знайти з рис.5 опустивши перпендикуляри на вісі струму та напруги, а от напруга «стрибка» знаходиться наступним чином:

$$\Delta U = U_F - U_p = 1,05 - 0,1 = 0,95 \text{ B},$$
 (4)

де U_F — напруга на діоді; U_p — напруга «піка» Важливим параметром є також відношення

$$\frac{I_p}{I_V} = \frac{5}{0.65} = 7,692 \text{ A},\tag{5}$$

де I_p – струм «піка»; I_V – струм «впадини». Це відношення характеризує нахил спадного відрізка ВАХ діодів на основі одного й того самого матеріалу.

Від'ємний диференційний опір можна знайти за формулою (опір на спадаючому відрізку ВАХ):

$$r^{-} = \frac{U_V - U_p}{I_V - I_p} = \frac{0,65 - 0,1}{0,65 - 5} = -0,1264 \text{ KOM},$$
 (6)

де U_p – напруга на діоді, яка відповідає струму «піка»; U_V – напруга на діоді, яка відповідає струму I_V (напруга «впадини»).

4. АНАЛІЗ РЕЗУЛЬТАТІВ ДОСЛІДЖЕНЬ ТА ВИСНОВКИ З ВИКОНАНОЇ РОБОТИ.

Таблиця значень для звичайного тунельного діода D2

Основні параметри:	I_p , MA	U_p , B	I_V , мА	U_V , B	U_F , B	$\triangle U_p$, B	$\frac{I_p}{I_V}$, MA	r^- , кОм
Значення:	5	0,1	0,65	0,65	1,05	0,95	7,692	-0,1264

В даній лабораторній роботі я на основі отриманих значень побудував вольт-амперні характеристики двох тунельних діодів, також за побудованими характеристиками зміж знайти основні параметри даних діодів. Дивлячись на графіки можна сказати, що перший діод — це обернений тунельний діод (виходячи з власних міркувань та малюнків в кніжці), а другий — звичайний тунельний діод. Також можна зазначити, що особливістю звичайного тунельного є наявність від'ємного диференційного опору r^- . А що стросується параметрів першого діода, то ні графічно (оскільки немає ні піку, ні западини), ні якимось іншим чином я не зміг їх знайти.