

grade 80%

Quiz 7

LATEST SUBMISSION GRADE 80%

1. In order to make the unicycle

0 / 1 point

$$\begin{split} \dot{x} &= v\cos\phi\\ \dot{y} &= v\sin\phi\\ \dot{\phi} &= \omega, \end{split}$$

behave like a point-robot, we, in class, focused on a new point $\tilde{x}=x+\ell\cos\phi,\ \tilde{y}=y+\ell\sin\phi$. But, what if we instead were interested in a different point (\hat{x},\hat{y}) , as shown below?

The idea behind the abstraction layers is that we would like to plan as if we could control the point (\hat{x},\hat{y}) directly through

$$\dot{\hat{x}} = u_1$$

 $\dot{\hat{y}} = u_2$.

But, for this to work we need to be able to relate (u_1,u_2) to the actual control inputs of the unicycle. Which of the following expressions correctly relate (v,ω) to (u_1,u_2) ?

 \bigcirc The point (\hat{x},\hat{y}) is not a good point to chose since there is no way of relating (v,ω) to (u_1,u_2) directly.

$$\bigcirc \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{\ell} \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{t} \end{bmatrix} \begin{bmatrix} \sin \phi & \cos \phi \\ -\cos \phi & \sin \phi \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}.$$

$$\left[\begin{array}{c} v \\ \omega \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & \frac{1}{\ell} \end{array}\right] \left[\begin{array}{cc} \sin \phi & -\cos \phi \\ \cos \phi & \sin \phi \end{array}\right] \left[\begin{array}{c} u_1 \\ u_2 \end{array}\right]$$

Incorrect

- 2. Consider the car-like robot model in Lecture 7.6. Assume it is driving with a constant steering angle ψ . What motion would the car execute, assuming that the translational velocity v is positive but possibly changing over time?
 - lacktriangledown Drive along a circular arc with radius inversely proportional to $\sin(\psi)$.
 - \bigcirc Drive along a circular arc with radius inversely proportional to $\psi.$
 - $\ensuremath{\bigcirc}$ Drive along a circular arc with radius proportional to $\psi.$
 - O Drive along a circular arc with radius proportional to $\sin(\psi)$.
 - igcup We cannot answer this question unless we know more about the translational velocity v.

Refer to some past quiz questions + solutions to gain insight on this question!

```
\begin{split} \dot{x} &= v\cos\phi\\ \dot{y} &= v\sin\phi\\ \dot{\phi} &= \omega\\ v &= 1,\ \omega \in [-1,1], \end{split}
```

i.e., it is a unicycle with speed v=1 and where the angular velocity is bounded. We now know that this means that the Dubins vehicle can only execute maneuvers whose curvature is less than or equal to 1 (max(curvature)= $|\omega/v|=1/1=1$).

When solving the problem of moving in the shortest amount of time between two points, it is possible to show that only three ``modes" are used, namely go straight (S) with $\omega=0$, turn max left (L) with $\omega=1$, and turn max right (R), with $\omega=-1$. An example of a S-L-S maneuver is shown below, with the robot starting from the solid circle:

Which of the following types of maneuvers could (depending on how long each segment is) possibly move a Dubins vehicle from $(x,y,\phi)=(0,0,0)$ to $(x,y,\phi)=(0,0,\pi)$?

R-L-S

✓ Correc

Draw out each of the listed maneuvers on a coordinate grid to see the behavior.

- S-R-S
- R-S
- L-R
- R-L-R

✓ Correct

Draw out each of the listed maneuvers on a coordinate grid to see the behavior.

 ${\it 4.} \quad \hbox{Why do we typically use layered architectures when designing robotic navigation systems?}$

1 / 1 point

- O It makes the navigation problem easier by separating it into a planning phase and a tracking phase.
- They are all good reasons.
- $\begin{tabular}{ll} \hline O & Different robot types can execute the same high-level navigation strategies. \\ \hline \end{tabular}$
- It allows for the details of the robot model to be abstracted away at the higher levels of the architecture.
- $\bigcirc \ \, \text{Al-based planning tools can be more or less directly applied without having to couple them to the robot dynamics.}$

5.	Last question of the entire course Which of the following items did not appear anywhere in this course?	1/1 point
	Teddy bear.	
	O Basket ball.	
	O Banana.	
	O Tortoise.	
	Alien.	
	✓ Correct	
	Review the concepts covered in this course	

Correct

Review the concepts covered in lecture during this course....