Hex Buffer

The MC74LVX50 is an advanced high speed CMOS buffer fabricated with silicon gate CMOS technology.

The internal circuit is composed of three stages, including a buffered output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems.

Features

- High Speed: $t_{PD} = 4.1 \text{ ns (Typ)}$ at $V_{CC} = 3.3 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2 \mu A \text{ (Max)}$ at $T_A = 25 \text{°C}$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% \ V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2.0 V to 3.6 V Operating Range
- Low Noise: $V_{OLP} = 0.5 \text{ V (Max)}$
- These Devices are Pb-Free and are RoHS Compliant

Figure 1. Logic Diagram

Figure 2. Logic Symbol

FUNCTION TABLE

Y Output
L
Н

ON Semiconductor®

http://onsemi.com

SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

14-Lead (Top View)

MARKING DIAGRAMS

TSSOP-14

LVX50 = Specific Device Code A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

MAXIMUM RATINGS

Symbol	Pa	rameter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to $V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current	V _I < GND	-20	mA
I _{OK}	DC Output Diode Current	V _O < GND	±20	mA
lout	DC Output Sink Current		±25	mA
I _{CC}	DC Supply Current per Supply Pin		±50	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C	
TL	Lead Temperature, 1 mm from Case for	10 Seconds	260	°C
TJ	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance	(Note 1) SOIC TSSOP	125 170	°C/W
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94-V0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 2000 > 200 2000	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 5)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	2.0	3.6	V
V _I	Input Voltage (Note 6)	0	5.5	V
V _O	Output Voltage (HIGH or LOW State)	0	V _{CC}	V
T _A	Operating Free–Air Temperature	-40	+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate $V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

NOTE: The θ_{JA} of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below.

^{6.} Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	V _{CC} T _A = 25°C		;	T _A ≤	85°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		2.0 3.0 3.6	1.5 2.0 2.4			1.5 2.0 2.4		V
V _{IL}	Low-Level Input Voltage		2.0 3.0 3.6			0.5 0.8 0.8		0.5 0.8 0.8	V
V _{OH}	High-Level Output Voltage (V _{IN} = V _{IH} or V _{IL})	$I_{OH} = -50 \mu A$ $I_{OH} = -50 \mu A$ $I_{OH} = -4 \text{ mA}$	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0		1.9 2.9 2.48		V
V _{OL}	Low-Level Output Voltage (V _{IN} = V _{IH} or V _{IL})	I_{OL} = 50 μA I_{OL} = 50 μA I_{OL} = 4 mA	2.0 3.0 3.0		0.0 0.0	0.1 0.1 0.36		0.1 0.1 0.44	V
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 3.6			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	3.6			2.0		20.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS Input $t_r = t_f = 3.0 \text{ ns}$

		T _A = 25°C		:	T _A ≤ 85°C				
Symbol	Parameter	Test Cond	ditions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay, Input A to Y	V _{CC} = 2.7 V	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		5.4 7.9	10.1 13.6	1.0 1.0	12.5 16.0	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		4.1 6.6	6.2 9.7	1.0 1.0	7.5 11.5	
toshl	Output-to-Output Skew	V _{CC} = 2.7 V	C _L = 50 pF			1.5		1.5	ns
toslh	(Note 7)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{V}$	C _L = 50 pF			1.5		1.5	
C _{IN}	Input Capacitance				4	10		10	pF
				Ty	pical @	25°C, V	_{CC} = 3.3	٧	
C _{PD}	Power Dissipation Capacitano	ce (Note 8)				15			pF

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

NOISE CHARACTERISTICS Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 3.3$ V

		T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.3	-0.5	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		2.0	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		0.8	V

^{8.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

*Includes all probe and jig capacitance Figure 4. Test Circuit

Figure 3. Switching Waveforms

Figure 5. Input Equivalent Circuit

EMBOSSED CARRIER DIMENSIONS (See Notes 9 and 10)

Tape Size	B ₁ Max	D	D ₁	E	F	К	Р	P ₀	P ₂	R	Т	w
8 mm	4.35 mm (0.179")	1.5 mm + 0.1 -0.0 (0.059"	1.0 mm Min (0.179")	1.75 mm ±0.1 (0.069 ±0.004")	3.5 mm ±0.5 (1.38 ±0.002")	2.4 mm Max (0.094")	4.0 mm ±0.10 (0.157 ±0.004")	4.0 mm ±0.1 (0.157 ±0.004")	2.0 mm ±0.1 (0.079 ±0.004")	25 mm (0.98")	0.6 mm (0.024)	8.3 mm (0.327)
12 mm	8.2 mm (0.323")	+0.004 -0.0)	1.5 mm Min (0.060)		5.5 mm ±0.5 (0.217 ±0.002")	6.4 mm Max (0.252")	4.0 mm ±0.10 (0.157 ±0.004") 8.0 mm ±0.10 (0.315 ±0.004")			30 mm (1.18")		12.0 mm ±0.3 (0.470 ±0.012")
16 mm	12.1 mm (0.476")				7.5 mm ±0.10 (0.295 ±0.004")	7.9 mm Max (0.311")	4.0 mm ±0.10 (0.157 ±0.004") 8.0 mm ±0.10 (0.315 ±0.004") 12.0 mm ±0.10 (0.472 ±0.004")					16.3 mm (0.642)
24 mm	20.1 mm (0.791")				11.5 mm ±0.10 (0.453 ±0.004")	11.9 mm Max (0.468")	16.0 mm ±0.10 (0.63 ±0.004")					24.3 mm (0.957)

^{9.} Metric Dimensions Govern–English are in parentheses for reference only.

10. A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

11. A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

Figure 6. Carrier Tape Specifications

Figure 7. Reel Dimensions

REEL DIMENSIONS

Tape Size	T&R Suffix	A Max	G	t Max
8 mm	T1, T2	178 mm (7")	8.4 mm, +1.5 mm, -0.0 (0.33" + 0.059", -0.00)	14.4 mm (0.56")
8 mm	T3, T4	330 mm (13")	8.4 mm, +1.5 mm, -0.0 (0.33" + 0.059", -0.00)	14.4 mm (0.56")
12 mm	R2	330 mm (13")	12.4 mm, +2.0 mm, -0.0 (0.49" + 0.079", -0.00)	18.4 mm (0.72")
16 mm	R2	360 mm (14.173")	16.4 mm, +2.0 mm, -0.0 (0.646" + 0.078", -0.00)	22.4 mm (0.882")
24 mm	R2	360 mm (14.173")	24.4 mm, +2.0 mm, -0.0 (0.961" + 0.078", -0.00)	30.4 mm (1.197")

Figure 8. Reel Winding Direction

Figure 9. Tape Ends for Finished Goods

Figure 10. TSSOP and SOIC R2 Reel Configuration/Orientation

TAPE UTILIZATION BY PACKAGE

Tape Size	SOIC	TSSOP	QFN	SC88A / SOT-353 SC88/SOT-363
8 mm				5-, 6-Lead
12 mm	8-Lead	8-, 14-, 16-Lead	8-, 14-, 16-Lead	
16 mm	14-, 16-Lead	20-, 24-Lead	20-, 24-Lead	
24 mm	18-, 20-, 24-, 28-Lead	48-, 56-Lead	48-, 56-Lead	

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVX50DG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74LVX50DR2G	SOIC-14 NB (Pb-Free)	2500 Tape & Reel
MC74LVX50DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74LVX50DTR2G	TSSOP-14 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TSSOP-14 CASE 948G **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER

 - 1. DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD
 FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT
 EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
 NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
 EXCESS OF THE K DIMENSION AT MAXIMUM
 MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE
 DETERMINED AT DATUM PLANE -W-.

 MILLIMETERS INCHES

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252	BSC	
М	0 °	8 °	0 °	8 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOIC-14 NB CASE 751A-03 ISSUE K

0.25 M C A S B S

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7°

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, a customer application is extended in surface in involved for a content of the respective product is extended for a content of the respective products are not designed, intended, and the purport of customer's technical experts. or authorized for use as components in systems intended for surgical implant into body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative