CORRIGÉ DU DEVOIR À LA MAISON 14

Exercice 1 – Alternateur de bicyclette

1. Règle de la main droite pour trouver le sens de \vec{B} à partir du sens du courant. Les lignes de champ sortent par un pôle Nord et entrent par un pôle Sud.

- 2. Si on augmente l'intensité du courant, seule l'intensité du champ magnétique augmente : l'allure des lignes de champ n'est pas modifiée.
- > Si on change le sens du courant, l'orientation des lignes de champ change.
- 3. L'aimant tourne et le solénoïde est fixe :
 - le solénoïde Σ est un <u>circuit fixe dans un champ magnétique variable</u> créé par l'aimant,
 - une fem e_{ext} et un courant i_{Σ} sont induits dans le solénoïde Σ
 - le champ magnétique $\overline{B_{\scriptscriptstyle \Sigma}}$, créé par le courant $i_{\scriptscriptstyle \Sigma}$ circulant dans le solénoïde, exerce un couple électromagnétique $\vec{\Gamma}$ sur l'aimant de moment magnétique $\overline{\mathcal{M}}$ qui tend à le freiner (loi de modération de Lenz)
 - l'opérateur doit compenser ce couple de freinage en appliquant un couple $\overrightarrow{\Gamma}_{op}$ afin de maintenir la vitesse de l'aimant constante
- 4. Avec la condition initiale : $\theta = \omega_0 t$
- 5. Champ magnétique créé par le solénoïde : $|\overrightarrow{B_{\Sigma}} = \mu_0 n i_{\Sigma} \overrightarrow{u_x}|$

Flux de $\overrightarrow{B_{\scriptscriptstyle \Sigma}}$ à travers la spire fictive : $\phi_{\scriptscriptstyle \Sigma \to spire} = \overrightarrow{B_{\scriptscriptstyle \Sigma}} \cdot \overrightarrow{S} = \mu_0 n i_{\scriptscriptstyle \Sigma} \overrightarrow{u_{\scriptscriptstyle x}} S \overrightarrow{n}$ soit :

$$\phi_{\Sigma \to spire}(t) = \mu_0 n i_{\Sigma} S \cos(\omega_0 t)$$

 $\boxed{\phi_{\Sigma \to spire} \left(t \right) = \mu_0 n i_{\Sigma} S \cos \left(\omega_0 t \right)}$ Flux mutuel tel que $\phi_{\Sigma \to spire} \left(t \right) = M i_{\Sigma} \, \operatorname{soit} \left[M = \mu_0 n S \cos \left(\omega_0 t \right) \right]$

6. Flux mutuel du champ magnétique de l'aimant dans le solénoïde :

$$\phi_{spire o \Sigma} = Mi_S = \mu_0 n i_S S \cos(\omega_0 t)$$

Moment magnétique de l'aimant : $\overrightarrow{\mathcal{M}} = \mathcal{M} \vec{n} = i_S \vec{S} \vec{n}$

Flux mutuel :
$$\phi_{spire o \Sigma}(t) = \mu_0 n \mathscr{R} \cos(\omega_0 t)$$

- 7. Schéma électrique équivalent :

OU

Attention : auto-induction à prendre en compte avec l'inductance propre L OU avec la fem auto-induite $e_P = Li_\Sigma$; r négligeable devant R donc $R+r \simeq R$

- $\geq \underline{\text{Loi des mailles}} : e_{ext}(t) = L \frac{di_{\Sigma}}{dt} + Ri_{\Sigma} \quad (EE)$
- $\geq \underline{\text{\'equation diff\'erentielle}} : \boxed{\tau \frac{di_{\scriptscriptstyle \Sigma}(t)}{dt} + i_{\scriptscriptstyle \Sigma}(t) = \frac{\mu_0 n \mathcal{M} \omega_0}{R} \sin(\omega_0 t)} \text{avec} \boxed{\tau = \frac{L}{R}}$
- 8. Passage en complexe en associant à $\sin \left(\omega_0 t \right)$ la grandeur complexe $e^{j\omega_0 t}$.

$$\begin{split} \tau \, \frac{d i_{\underline{\Sigma}} \big(t \big)}{dt} + i_{\underline{\Sigma}} \big(t \big) &= \frac{\mu_0 n \mathcal{M} \omega_0}{R} \, e^{j \omega_0 t} \\ & \Leftrightarrow \big(1 + j \tau \omega_0 \big) \underline{i}_{\underline{\Sigma}} \big(t \big) = \frac{\mu_0 n \mathcal{M} \omega_0}{R} \, e^{j \omega_0 t} \\ & \qquad \qquad \big(1 + j \tau \omega_0 \big) \underline{I} = \frac{\mu_0 n \mathcal{M} \omega_0}{R} \\ & \Leftrightarrow \underline{I} = \frac{\mu_0 n \mathcal{M} \omega_0}{R \big(1 + j \tau \omega_0 \big)} = I_m e^{j \varphi} \end{split}$$

- $\geq \underline{\text{Amplitude}} : \overline{I_m = \left| \underline{I} \right| = \frac{\mu_0 n \mathcal{M} \omega_0}{R \sqrt{1 + \left(\tau \omega_0\right)^2}} = \frac{\mu_0 n \mathcal{M} \omega_0}{R \sqrt{1 + \alpha^2}} \text{ avec } \overline{\alpha = \tau \omega_0} }$
- 9. Système : aimant (solide) étudié dans le référentiel terrestre supposé galiléen
- ➤ Bilan des forces :
 - Poids \overrightarrow{P} colinéaire à (Oz) ou passant par $O: \Gamma_{Oz}(\overrightarrow{P}) = 0$
 - Liaison pivot idéale : $\Gamma_{Oz}(pivot) = 0$
 - Couple exercé par l'opérateur : $\vec{\Gamma}_{op} = \Gamma_{op} \overrightarrow{u_z}$
 - Couple électromagnétique exercé par le solénoïde sur l'aimant :

$$\overrightarrow{\Gamma} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B_{\Sigma}} = -\mathcal{M}B_{\Sigma}\sin(\theta)\overrightarrow{u_{z}} = -\mathcal{M}\mu_{0}ni_{\Sigma}\sin(\omega_{0}t)\overrightarrow{u_{z}}$$

> Théorème du moment cinétique :

$$J\frac{d\omega}{dt} = \Gamma_{Oz}(\overrightarrow{P}) + \Gamma_{Oz}(pivot) + \Gamma_{op} - \mathcal{M}\mu_0 ni_{\Sigma}\sin(\omega_0 t)$$

$$J\frac{d\omega}{dt} = \Gamma_{op} - \mathcal{M}\mu_0 ni_{\Sigma}\sin(\omega_0 t) \quad (EM) \quad \text{avec} \quad i_{\Sigma}(t) = I_m\sin(\omega_0 t + \varphi)$$

10. Vitesse angulaire de l'aimant constante : $\frac{d\omega}{dt}$ = 0 et Γ_{op} = $\mathcal{M}\mu_0 n i_{\Sigma} \sin\left(\omega_0 t\right)$

$$\Gamma_{op}(t) = \mathcal{M}\mu_0 n I_m \sin(\omega_0 t + \varphi) \sin(\omega_0 t)$$

Couple moyen exercé par l'opérateur :

$$\begin{split} \left\langle \Gamma_{op}\left(t\right)\right\rangle &= \mathcal{M}\mu_{0}nI_{m}\left\langle \sin\left(\omega_{0}t+\varphi\right)\sin\left(\omega_{0}t\right)\right\rangle = \frac{\mathcal{M}\mu_{0}nI_{m}}{2}\cos\left(\varphi\right) \\ \left\langle \Gamma_{op}\left(t\right)\right\rangle &= \frac{\left(\mathcal{M}\mu_{0}n\right)^{2}}{2R\sqrt{1+\alpha^{2}}}\omega_{0}\cos\left(-\arctan\left(\alpha\right)\right) = \frac{\left(\mathcal{M}\mu_{0}n\right)^{2}}{2R\sqrt{1+\alpha^{2}}}\omega_{0}\cos\left(\arctan\left(\alpha\right)\right) \end{split}$$

$$\left\langle \Gamma_{op}\left(t\right)\right\rangle = \frac{\left(\mathcal{M}\mu_{0}n\right)^{2}\omega_{0}}{2R\left(1+\alpha^{2}\right)} > 0 \text{ pour } \omega_{0} > 0$$

 $\left|\left\langle \overrightarrow{\Gamma}_{op}\left(t\right)\right\rangle = \left\langle \Gamma_{op}\left(t\right)\right\rangle \overrightarrow{u_{z}}\right|$: le couple est orienté selon l'axe (*Oz*) pour $\omega_{0} > 0$:

l'opérateur doit <u>compenser les effets inductifs</u> qui s'opposent au mouvement de l'aimant.

11. Bilan de puissance pour une vitesse angulaire ω quelconque :

$$\begin{cases} EE \cdot i_{\Sigma} \\ EM \cdot \omega \end{cases} \Leftrightarrow \begin{cases} e_{ext}i_{\Sigma} = Li_{\Sigma}\frac{di_{\Sigma}}{dt} + Ri_{\Sigma}^{2} \\ J\frac{d\omega}{dt}\omega = \Gamma_{op}\omega - \mathcal{M}\mu_{0}ni_{\Sigma}\omega\sin\left(\omega t\right) \end{cases} \Leftrightarrow \begin{cases} \mu_{0}n\mathcal{M}\omega i_{\Sigma}\sin\left(\omega t\right) = \frac{d}{dt}\left(\frac{1}{2}Li_{\Sigma}^{2}\right) + Ri_{\Sigma}^{2} \\ \frac{d}{dt}\left(\frac{1}{2}J\omega^{2}\right) = \Gamma_{op}\omega - \mathcal{M}\mu_{0}ni_{\Sigma}\omega\sin\left(\omega t\right) \end{cases}$$

- > Après élimination du terme de couplage :

$$\boxed{\Gamma_{op}\omega = \frac{d}{dt}\left(\frac{1}{2}J\omega^{2}\right) + \frac{d}{dt}\left(\frac{1}{2}Li_{\Sigma}^{2}\right) + Ri_{\Sigma}^{2} \Leftrightarrow \mathcal{P}_{op} = \frac{dE_{C}}{dt} + \frac{dE_{m}}{dt} + \mathcal{P}_{J}}$$

L'opérateur fournit une <u>puissance mécanique</u> qui sert à augmenter <u>l'énergie</u> <u>cinétique</u> de l'aimant, <u>l'énergie magnétique</u> du solénoïde, et compense <u>les pertes par effet Joule</u> dans l'ampoule.

ightharpoonup Dans le cas où $\omega = \omega_0 = cste$, la <u>puissance mécanique</u> apportée par l'opérateur est convertie en <u>puissance électrique utile</u> (puissance Joule dans l'ampoule) et en variation de l'énergie magnétique :

$$\boxed{\Gamma_{op}\omega_0 = \frac{d}{dt}\bigg(\frac{1}{2}L{i_\Sigma}^2\bigg) + R{i_\Sigma}^2 \Longleftrightarrow \mathcal{P}_{op} = \frac{dE_m}{dt} + \mathcal{P}_{J}}$$

12. À partir de $t=t_1$: $\vec{\Gamma}_{op}=\vec{0}$: l'opérateur ne compense plus le couple de freinage :

l'aimant ralentit et s'arrête. Le bilan de puissance s'écrit :

$$\boxed{\frac{d}{dt} \left(\frac{1}{2} J \omega^2\right) + \frac{d}{dt} \left(\frac{1}{2} L i_{\Sigma}^{\ 2}\right) = -R i_{\Sigma}^{\ 2} < 0} : \text{l'énergie cinétique de l'aimant et l'énergie}}$$

magnétique du solénoï
de diminuent jusqu'à $\omega = 0$ et $i_{\Sigma} = 0$.

Exercice 2 - Couplage inductif résonnant (CCINP PSI 2019)

1. Moment magnétique de l'émetteur comportant N_1 spires de norme $\mathcal{M}_1 = N_1 S_1 i_1$

2. Mutuelle inductance M telle que les flux mutuels sont : $\Phi_{1/2} = Mi_1$ et $\Phi_{2/1} = Mi_2$

3. Vecteur surface du récepteur : $\overrightarrow{S_2} = S_2 \overrightarrow{u_z}$

Flux mutuel de l'émetteur sur le récepteur, à travers les N_2 spires :

$$\begin{split} \Phi_{_{1/2}} &= N_{_{2}} \overrightarrow{B_{1}} \left(r_{_{0}}, \theta_{_{0}}\right) \cdot \overrightarrow{S_{_{2}}} = N_{_{2}} \frac{\mu_{_{0}} \mathcal{M}_{_{1}}}{4\pi r_{_{0}}^{3}} \Big(2\cos\left(\theta_{_{0}}\right) \overrightarrow{u_{_{r}}} + \sin\left(\theta_{_{0}}\right) \overrightarrow{u_{_{\theta}}} \Big) S_{_{2}} \overrightarrow{u_{_{z}}} \\ \Phi_{_{1/2}} &= N_{_{2}} \frac{\mu_{_{0}} N_{_{1}} S_{_{1}} i_{_{1}} S_{_{2}}}{4\pi r_{_{0}}^{3}} \Big(2\cos\left(\theta_{_{0}}\right) \overrightarrow{u_{_{r}}} \cdot \overrightarrow{u_{_{z}}} + \sin\left(\theta_{_{0}}\right) \overrightarrow{u_{_{\theta}}} \cdot \overrightarrow{u_{_{z}}} \Big) \\ \Phi_{_{1/2}} &= i_{_{1}} \frac{\mu_{_{0}} N_{_{1}} N_{_{2}} S_{_{1}} S_{_{2}}}{4\pi r_{_{0}}^{3}} \Big(2\cos^{2}\left(\theta_{_{0}}\right) - \sin^{2}\left(\theta_{_{0}}\right) \Big) = M i_{_{1}} \\ \overline{M} &= \frac{\mu_{_{0}} N_{_{1}} N_{_{2}} S_{_{1}} S_{_{2}}}{4\pi r_{_{0}}^{3}} \Big(2\cos^{2}\left(\theta_{_{0}}\right) - \sin^{2}\left(\theta_{_{0}}\right) \Big) \end{split}$$

4. Loi des mailles en complexes : <u>attention</u> aux signes « - » devant les termes mutuels, du fait des orientations respectives de i_2 (qui sort par le point) et de i_1 (qui entre par le point)!

$$\begin{cases} \underline{e} = R_1 \underline{i_1} + \frac{1}{jC_1\omega} \underline{i_1} + jL_1\omega \underline{i_1} - jM\omega \underline{i_2} \\ 0 = \left(R_2 + R_c\right)\underline{i_2} + \frac{1}{jC_2\omega} \underline{i_2} + jL_2\omega \underline{i_2} - jM\omega \underline{i_1} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_1} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_1} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_1} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_1} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_1} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(\left(R_2 + R_c\right) + j\left(L_2\omega - \frac{1}{C_2\omega}\right)\right)\underline{i_2} - jM\omega \underline{i_2} \\ 0 = \left(R_2 + R_c\right)\underline{i_2} - jM\omega \underline{i_2} - jM$$

5. Pour
$$\omega = \omega_0 = \frac{1}{\sqrt{L_1 C_1}} = \frac{1}{\sqrt{L_2 C_2}} : \underbrace{i_2 = \frac{jM\omega_0 \underline{e}}{M^2 \omega_0^2 + R_1 (R_2 + R_c)}}$$

6. En régime sinusoïdal, puissance moyenne reçue par une résistance R:

$$P = \left\langle p(t) \right\rangle = \frac{1}{T} \int_0^T u(t)i(t)dt = \frac{1}{T} \int_0^T Ri^2(t)dt = R\left(\frac{1}{T} \int_0^T i^2(t)dt\right) \text{ soit } \boxed{P = RI_{eff}^2}$$

7. Puissance moyenne transmise à la charge R_c : $P = R_c I_{2,eff}^2$

$$P = R_c \left(rac{M \omega_0 E_{eff}}{M^2 \omega_0^2 + R_1 \left(R_2 + R_c
ight)}
ight)^2$$

8.

d (m)	1	3	10
$P_{max}\left(\mathbf{W}\right)$	$1,3.10^3$	25	$2,5.10^{-3}$

L'alimentation du drone n'est suffisante que pour des distances inférieures à 2 m, i.e. pour un vol à très basse altitude, ce qui n'est pas adapté à l'utilisation d'un drone. Ce système n'est donc pas pertinent pour alimenter un drone.