Concept questions

Discussion Week 7

What is the mathematical relationship between the neutron reproduction factor, η , and the various macroscopic cross sections?

a)
$$\eta(E)=rac{
u\Sigma_f(E)}{\Sigma_a(E)}$$
 c) $\eta(E)=rac{
u\Sigma_f(E)}{\Sigma_t(E)}$

b)
$$\eta(E)=rac{\Sigma_f(E)}{\Sigma_t(E)}$$
 d) $\eta(E)=rac{\Sigma_a(E)}{\nu\Sigma_f(E)}$

What is the mathematical relationship between the neutron reproduction factor, η , and the various macroscopic cross sections?

a)
$$\eta(E)=rac{
u\Sigma_f(E)}{\Sigma_a(E)}$$
 c) $\eta(E)=rac{
u\Sigma_f(E)}{\Sigma_t(E)}$

b)
$$\eta(E)=rac{\Sigma_f(E)}{\Sigma_t(E)}$$
 d) $\eta(E)=rac{\Sigma_a(E)}{\nu\Sigma_f(E)}$

What assumption allows us to simplify the 6-factor formula into the 4-factor formula?

What assumption allows us to simplify the 6-factor formula into the 4-factor formula?

We have an infinite reactor.

$$k = \varepsilon p f \eta P_{FNL} P_{TNL}$$

$$k_{\infty} = \varepsilon p f \eta \qquad P_{FNL} P_{TNL} = 1$$

By increasing the moderator-to-fuel ratio in a reactor, which factor in the four-factor formula also increases? Which factor decreases?

a)
$$\eta, f$$
 c) p, f

b)
$$f, \eta$$
 d) f, ε

By increasing the moderator-to-fuel ratio in a reactor, which factor in the four-factor formula also increases? Which factor decreases?

b) f, η

Figure 6.8. Dependence of k_{∞} on the moderator-to-fuel ratio