

Rishabh Iyer University of Texas at Dallas

SVMs with Slack (Remove Linear Separability)

- Allow misclassification
 - Penalize misclassification linearly (just like in the perceptron algorithm)
 - Again, easier to work with than counting misclassifications
 - Objective stays convex
 - Will let us handle data that isn't linearly separable!
 - Idea: Take the constraints into the main objective
 - The objective function then becomes exactly like what we have seen in Perceptron/Linear Regression

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + c \sum_i \xi_i$$

$$\text{for for for for for the point is } t$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

Potentially allows some points to be misclassified/inside the margin

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + c \sum_{i} \xi_i$$

such that

Constant c determines degree to which slack is penalized

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

How does this objective change with c?

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- How does this objective change with c?
 - As $c \to \infty$, requires a perfect classifier
 - As $c \to 0$, allows arbitrary classifiers (i.e., ignores the data)

SVMs with Slack: Illustration

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$\int_{\mathcal{C}} \psi(w^T x^{(i)} + b) \ge 1 - \xi_i, \text{ for all } i$$

$$\xi_i \ge 0, \text{ for all } i$$

How should we pick c?

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- How should we pick c?
 - Divide the data into three pieces training, testing, and validation
 - Use the validation set to tune the value of the hyperparameter c

Camin Enor E (183, 162, 18-1, 18-1, 180) 0,000 18-3/18-2/18 bc/= Train SVM (anor c - Error (Vol) COM MICHAN GEORGE

Evaluation Methodology

- General learning strategy
 - Build a classifier using the training data
 - Select hyperparameters using validation data
 - Evaluate the chosen model with the selected hyperparameters on the test data

How can we tell if we overfit the training data?

ML in Practice

- Gather Data + Labels
- Select feature vectors
- Randomly split into three groups
 - Training set
 - Validation set
 - Test set
- Experimentation cycle
 - Select a "good" hypothesis from the hypothesis space
 - Tune hyper-parameters using validation set
 - Compute accuracy on test set (fraction of correctly classified instances)

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

• What is the optimal value of ξ for fixed w and b?

N7/

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i

$$\xi_{i} \geq 0, \text{ for all } i$$

$$\xi_{i} > 1 - \xi_{i} \left(\text{with } t_{i} \right) + b$$

- What is the optimal value of ξ for fixed w and b?
 - If $y_i(w^T x^{(i)} + b) \ge 1$, then $\xi_i = 0$
 - If $y_i(w^T x^{(i)} + b) < 1$, then $\xi_i = 1 y_i(w^T x^{(i)} + b)$

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- We can formulate this slightly differently
 - $\xi_i = \max\{0, 1 y_i(w^T x^{(i)} + b)\}$
 - Does this look familiar?
 - Hinge loss provides an upper bound on Hamming loss

Hinge Loss Formulation

• Obtain a new objective by substituting in for ξ

$$\min_{w,b} \frac{1}{2} \|w\|^2 + c \sum_{i} \max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$

$$\max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$

$$\max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$

$$perception loss$$

Can minimize with gradient descent!

Hinge Loss Formulation

• Obtain a new objective by substituting in for ξ

$$\min_{w,b} \frac{1}{2} \|w\|^2 + c \sum_{i} \max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$

Penalty to prevent overfitting

Hinge loss

17

Hegularization.

REGULARIZATION

Until now, we have seen the following optimization problems:

$$\min_{w,b} \sum_{i} L(f(x^{(i)}, w, b), y_i)$$

- In the case of Linear regression, L was the squared loss
- In Perceptron, L was Perceptron Loss
- The regularized version of this is:

$$\min_{w,b} \frac{1}{2} ||w||^2 + c \sum_{i} L(f(x^{(i)}, w, b), y_i)$$

c is a hyper-parameter (again, to be tunes on validation set)

(1) \mathcal{W}_{l} m10 45 model tale 00 When Overst be

Perceptron vs Hinge vs Square vs Zero-One Loss

Imbalanced Data

 If the data is imbalanced (i.e., more positive examples than negative examples), may want to evenly distribute the error between the two classes

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + \frac{c}{N_+} \sum_{i:y_i=1}^{\infty} \xi_i + \frac{c}{N_-} \sum_{i:y_i=-1}^{\infty} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

Generalization

- We argued, intuitively, that SVMs generalize better than the perceptron algorithm
 - How can we make this precise?

Roadmap

- Where are we headed?
 - Other simple hypothesis spaces for supervised learning
 - k nearest neighbor
 - Decision trees
 - Probabilistic Methods
 - Bayesian Methods
 - Naïve Bayes
 - Logistic Regression