Semigroups and monoids

Functional abstractions

Ivan Trepakov

NSU Sys.Pro

Functional abstractions start with algebra

Functional abstractions start with algebra

https://en.wikipedia.org/wiki/Semigroup

Functional abstractions start with algebra

Semigroup $\langle S, \cdot \rangle$

- Set *S*
- Binary operation

$$\cdot : (S \times S) \to S$$

Associativity

$$\forall a,b,c \in S \ : \ (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

https://en.wikipedia.org/wiki/Semigroup

Functional abstractions start with algebra

Semigroup $\langle S, \cdot \rangle$

- Set S
- Binary operation

$$\cdot : (S \times S) \to S$$

Associativity

$$\forall a,b,c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Monoid $\langle S, \cdot, e \rangle$

- Semigroup $\langle S, \cdot \rangle$
- Identity element $e \in S$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

https://en.wikipedia.org/wiki/Semigroup

Semigroup $\langle S, \cdot \rangle$

$$\forall a,b,c \in S \ : \ (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Semigroup $\langle S, \cdot \rangle$

• Associativity $\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$

ullet Integers ${\mathbb Z}$

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$

Semigroup $\langle S, \cdot \rangle$

$$\forall a,b,c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- ullet Power set of S

Semigroup $\langle S, \cdot \rangle$

$$\forall a,b,c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- ullet Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of *S*
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- ullet Any semilattice $\langle L, \wedge
 angle$

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of *S*
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of *S*
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of *S*
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of *S*
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Semigroup $\langle S, \cdot \rangle$

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of *S*
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of *S*
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

• Identity element $e \in S$

 $\forall a \in S : e \cdot a = a \cdot e = a$

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of *S*
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

- Identity element $e \in S$ $\forall a \in S : e \cdot a = a \cdot e = a$
- ullet Integers ${\mathbb Z}$

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

- Identity element $e \in S$
 - $\forall a \in S : e \cdot a = a \cdot e = a$
- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

- Identity element $e \in S$ $\forall a \in S : e \cdot a = a \cdot e = a$
- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

- ullet Integers ${\mathbb Z}$
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$
- Power set of S

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap, \emptyset \text{ or } S \rangle$

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap, \emptyset \text{ or } S \rangle$
- Any semilattice $\langle L, \wedge \rangle$ with \top

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap, \emptyset \text{ or } S \rangle$
- Any semilattice $\langle L, \wedge \rangle$ with \top
- Strings

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap, \emptyset \text{ or } S \rangle$
- Any semilattice $\langle L, \wedge \rangle$ with \top
- Strings
 - (String, (++), "")

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap, \emptyset \text{ or } S \rangle$
- Any semilattice $\langle L, \wedge \rangle$ with \top
- Strings
 - (String, (++), "")
- Lists

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap, \emptyset \text{ or } S \rangle$
- Any semilattice $\langle L, \wedge \rangle$ with \top
- Strings
 - (String, (++), "")
- Lists
- Pairs

Semigroup $\langle S, \cdot \rangle$

Associativity

$$\forall a, b, c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Integers $\mathbb Z$
 - $\langle \mathbb{Z}, + \text{ or } \cdot \rangle$
 - $\langle \mathbb{Z}, min \text{ or } max \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap \rangle$
- Any semilattice $\langle L, \wedge \rangle$
- Strings
 - (String, (++))
- Lists
- Pairs
- Functions

Monoid $\langle S, \cdot, e \rangle$

$$\forall a \in S : e \cdot a = a \cdot e = a$$

- Integers Z
 - $\langle \mathbb{Z}, + \text{ or } \cdot, 0 \text{ or } 1 \rangle$
 - $\langle \mathbb{Z} \cup \{-\infty \text{ or } \infty\}, min \text{ or } max, -\infty \text{ or } \infty \rangle$
- Power set of S
 - $\langle 2^S, \cup \text{ or } \cap, \emptyset \text{ or } S \rangle$
- Any semilattice $\langle L, \wedge \rangle$ with \top
- Strings
 - (String, (++), "")
- Lists
- Pairs
- Functions

Haskell

Data.Semigroup

```
class Semigroup a where
  (<>) :: a -> a -> a
  sconcat :: NonEmpty a -> a
  stimes :: Integral b => b -> a -> a
```

Minimal complete definition (<>) | sconcat

Haskell

Data.Semigroup

class Semigroup a where (<>) :: a -> a -> a sconcat :: NonEmpty a -> a stimes :: Integral b => b -> a -> a

Minimal complete definition
(<>) | sconcat

Data.Monoid

```
class Semigroup a => Monoid a where
  mempty :: a
  mappend :: a -> a -> a
  mconcat :: [a] -> a
```

Minimal complete definition mempty | mconcat

Q&A