Aim:Stop and wait protocol/sliding window(selective repeat/GO BACK N).ns2/netsim.

Theory:

1. Background

"stop-n-wait" (sometimes known as "positive acknowledgement with retransmission") is the fundamental technique to provide reliable transfer under unreliable packet delivery system.

2. How this protocol works...

1) Normal operation

After transmitting one packet, the sender waits for an *acknowledgment (ACK)* from the receiver before transmitting the next one. In this way, the sender can recognize that the previous packet is transmitted successfuly and we could say "stop-n-wait" guarantees reliable transfer between nodes.

To support this feature, the sender keeps a record of each packet it sends.

Also, to avoid confusion caused by delayed or duplicated ACKs, "stop-n-wait" sends each packets with unique sequence numbers and receives that numbers in each ACKs.

2) Timeout

If the sender doesn't receive ACK for previous sent packet after a certain period of time, the sender *times out* and *retransmits* that packet again. There are two cases when the sender doesn't receive ACK; One is when the ACK is lost and the other is when the frame itself is not transmitted

3. How it is shown in nam (network animator)..

"stop-n-wait" protocol can be shown as below in nam.

4. Shortcoming

The main shortcoming of the stop-and-wait algorithm is that it allows the sender to have only one outstanding frame on the link at a time. The sender should wait till it gets an ACK of previous frame before it sends next frame. As a result, it wastes a substantial amount of network bandwidth. To improve efficiency while providing reliability, "sliding window" protocol is appeared.

CODE:

```
set ns [new Simulator]
#$ns color 1 Blue
#$ns color 2 Red
set namfile [open out.nam w]
$ns namtrace-all $namfile
proc finish {} {
global ns namfile
$ns flush-trace
close $namfile
exec nam out.nam &
exit 0
}
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
$ns duplex-link $n0 $n1 2Mb 200ms DropTail
$ns duplex-link $n1 $n2 2Mb 10ms DropTail
$ns duplex-link $n2 $n3 2Mb 10ms DropTail
$ns queue-limit $n0 $n1 15
Agent/TCP set nam_tracevar_ true
set tcp [new Agent/TCP]
$tcp set window_ 1
$tcp set maxcwnd_ 1
$ns attach-agent $n0 $tcp
set sink [new Agent/TCPSink]
$ns attach-agent $n1 $sink
$ns connect $tcp $sink
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ns add-agent-trace $tcp tcp
#$ns monitor-agent-trace $tcp
```

```
$tcp tracevar cwnd_
```

\$ns at 0.1 "\$ftp start"

\$ns at 3.0 "\$ns detach-agent \$n0 \$tcp; \$ns detach-agent \$n1 \$sink"

\$ns at 3.5 "finish"

\$ns at 0.0 "\$ns trace-annotate \"Stop and Wait with normal operation\""

\$ns at 0.05 "\$ns trace-annotate \"FTP starts at 0.1\""

\$ns at 0.11 "\$ns trace-annotate \"Send Packet_0\""

\$ns at 0.35 "\$ns trace-annotate \"Receive Ack_0\""

\$ns at 0.56 "\$ns trace-annotate \"Send Packet_1\""

\$ns at 0.79 "\$ns trace-annotate \"Receive Ack_1\""

\$ns at 0.99 "\$ns trace-annotate \"Send Packet_2\""

\$ns at 1.23 "\$ns trace-annotate \"Receive Ack_2 \""

\$ns at 1.43 "\$ns trace-annotate \"Send Packet_3\""

\$ns at 1.67 "\$ns trace-annotate \"Receive Ack_3\""

\$ns at 1.88 "\$ns trace-annotate \"Send Packet_4\""

\$ns at 2.11 "\$ns trace-annotate \"Receive Ack_4\""

\$ns at 2.32 "\$ns trace-annotate \"Send Packet_5\""

\$ns at 2.55 "\$ns trace-annotate \"Receive Ack_5 \""

\$ns at 2.75 "\$ns trace-annotate \"Send Packet_6\""

\$ns at 2.99 "\$ns trace-annotate \"Receive Ack_6\""

\$ns at 3.1 "\$ns trace-annotate \"FTP stops\""

\$ns at 0.0 "\$n0 label Sender"

\$ns at 0.0 "\$n1 label Receiver"

#\$ns at 0.00 "\$cbr start"

#\$ns at 3.5 "\$cbr stop"

#\$ns at 4.0 "finish"

\$ns run