The tables below show my results for the various algorithms and representations (where RR = repeated random, HC = hill climbing, P.P. = pre-partitioning, etc.). All values are the average over 100 randomly generated instances.

iterations = 25,000

	KK	RR stan.	RR p.p.	HC stan.	HC p.p.	SA stan.	SA p.p.
residue (avg.)	254,357	297,810,699	135	372,424,438	1,134	342,312,788	186
time [s] (avg.)	0.002	3.273	60.236	1.214	57.607	4.412	45.795

iterations = 2,500

	KK	RR stan.	RR p.p.	HC stan.	HC	SA stan.	SA p.p.
					p.p.		
residue (avg.)	209,967	23,621,629,689	17,796	9,163,891,569	26,016	8,994,478,430	20,490
time [s]	0.002	0.032	0.573	0.0116	0.543	0.041	0.577
(avg.)							

From these results we can make the following observations.

- 1. Pre-partitioning led to solutions with dramatically lower residues, when compared to standard representation.
- 2. In no case did a randomized heuristic with standard representation return results lower than, or even comparable to, those returned by Karmarkar-Karp.
- 3. Using pre-partitioning, all three randomized heuristics gave substantially better solutions than did Karmarkar-Karp.
- 4. Pre-partitioning led to substantially longer runtimes for all three randomized heuristics.
- 5. In the pre-partitioned representation, increasing the number of iterations improved results from repeated-random and simulated annealing more than it did for hill-climbing.

The single best performance in both cases, in terms of residue, was repeated-random with prepartitioning. In the case of 25,000 iterations, however, this method also took the longest. Meanwhile, simulated annealing with pre-partitioning gave results within 50% of repeated-random, while taking about 25% less runtime. At lower iterations, however, repeated-random did not take significantly longer

than the other two randomized heuristics, and still gave the best results. Karmarkar-Karp, meanwhile, was in both cases the fastest method – by one to several orders of magnitude.

These results illustrate some interesting trade-offs among the various heuristics and representations. If one wants a solution very quickly and only requires that it be a *fairly* good one, Karmarkar-Karp may be the best choice. If better solutions are needed and there is more time to trade off, a randomized heuristic with pre-partitioning may be more useful. If one needs *very* good solutions and does not mind waiting a long time for them, a high iteration implementation of either repeated-random or simulated annealing (both with pre-partitioning) may be the best tool to use.