

C Structures

arrays allow you to define type of variables that can hold several data items of the same

kind but structure is another user defined data type available in C programming, which allows you to combine data items of different kinds.

Structures are used to represent a record, suppose you want to keep track of your books in a library. You might want to track the following attributes about each book:

- Title
- Author
- Subject
- Book ID

Defining a Structure

To define a structure, you must use the **struct** statement. The **struct statement** defines a new data type, with more than one member for your program. The format of the **struct statement** is this:

```
struct [structure tag]
{
   member definition;
   member definition;
   ...
   member definition;
} [one or more structure variables];
```

The structure tag is optional and each member definition is a normal variable definition, such as int i; or float f; or any other valid variable definition. At the end of the structure's definition, before the final semicolon, you can specify one or more structure variables but it is optional. Here is the way you would declare the Book structure:

```
struct Books {
```

```
char title[50];
char author[50];
char subject[100];
int book_id;
} book;
```

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The member access operator is coded as a period between the structure variable name and the structure member that we wish to access. You would use **struct** keyword to define variables of structure type. Following is the example to explain usage of structure:

```
#include <stdio.h>
#include <string.h>
struct Books
  char title[50];
  char author[50];
  char subject[100];
  int book id;
};
int main()
  /* book 1 specification */
  strcpy( Book1.title, "C Programming");
  strcpy( Book1.author, "Nuha Ali");
  strcpy( Book1.subject, "C Programming Tutorial");
  Book1.book id = 6495407;
  /* book 2 specification */
  strcpy( Book2.title, "Telecom Billing");
  strcpy( Book2.author, "Zara Ali");
  strcpy( Book2.subject, "Telecom Billing Tutorial");
  Book2.book id = 6495700;
  /* print Book1 info */
  printf( "Book 1 title : %s\n", Book1.title);
  printf( "Book 1 author : %s\n", Book1.author);
  printf( "Book 1 subject : %s\n", Book1.subject);
  printf( "Book 1 book id : %d\n", Book1.book id);
  /* print Book2 info */
  printf( "Book 2 title : %s\n", Book2.title);
  printf( "Book 2 author : %s\n", Book2.author);
  printf( "Book 2 subject : %s\n", Book2.subject);
  printf( "Book 2 book id : %d\n", Book2.book id);
  return 0;
```

When the above code is compiled and executed, it produces the following result:

```
Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700
```

Structures as Function Arguments

You can pass a structure as a function argument in very similar way as you pass any other variable or pointer. You would access structure variables in the similar way as you have accessed in the above example:

```
#include <stdio.h>
#include <string.h>
struct Books
  char title[50];
char author[50];
char subject[100];
int book_id;
};
/* function declaration */
void printBook( struct Books book );
int main()
  struct Books Book1;
struct Books Book2;
                             /* Declare Book1 of type Book */
                              /* Declare Book2 of type Book */
   /* book 1 specification */
   strcpy( Book1.title, "C Programming");
   strcpy( Book1.author, "Nuha Ali");
   strcpy( Book1.subject, "C Programming Tutorial");
   Book1.book_id = 6495407;
   /* book 2 specification */
   strcpy( Book2.title, "Telecom Billing");
   strcpy( Book2.author, "Zara Ali");
   strcpy( Book2.subject, "Telecom Billing Tutorial");
   Book2.book id = 6495700;
   /* print Book1 info */
   printBook( Book1 );
   /* Print Book2 info */
```

```
printBook( Book2 );

return 0;
}
void printBook( struct Books book )
{
  printf( "Book title : %s\n", book.title);
  printf( "Book author : %s\n", book.author);
  printf( "Book subject : %s\n", book.subject);
  printf( "Book book_id : %d\n", book.book_id);
}
```

When the above code is compiled and executed, it produces the following result:

```
Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700
```

Pointers to Structures

You can define pointers to structures in very similar way as you define pointer to any other variable as follows:

```
struct Books *struct_pointer;
```

Now, you can store the address of a structure variable in the above defined pointer variable. To find the address of a structure variable, place the & operator before the structure's name as follows:

```
struct_pointer = &Book1;
```

To access the members of a structure using a **pointer** to that **structure**, you must use the -> operator as follows:

```
struct_pointer->title;
```

Let us re-write above example using structure pointer, hope this will be easy for you to understand the concept:

```
#include <stdio.h>
```

```
#include <string.h>
struct Books
  char title[50];
  char author[50];
char subject[100];
  int book id;
/* function declaration */
void printBook( struct Books *book );
int main()
  struct Books Book1;
                            /* Declare Book1 of type Book */
                             /* Declare Book2 of type Book */
  struct Books Book2;
  /* book 1 specification */
  strcpy( Book1.title, "C Programming");
strcpy( Book1.author, "Nuha Ali");
  strcpy( Book1.subject, "C Programming Tutorial");
  Book1.book id = 6495407;
  /* book 2 specification */
  strcpy( Book2.title, "Telecom Billing");
  strcpy( Book2.author, "Zara Ali");
  strcpy( Book2.subject, "Telecom Billing Tutorial");
  Book2.book id = 6495700;
  /* print Book1 info by passing address of Book1 */
  printBook( &Book1 );
  /* print Book2 info by passing address of Book2 */
  printBook( &Book2 );
  return 0;
void printBook( struct Books *book )
  printf( "Book title : %s\n", book->title);
  printf( "Book author : %s\n", book->author);
  printf( "Book subject : %s\n", book->subject);
  printf( "Book book id : %d\n", book->book id);
```

When the above code is compiled and executed, it produces the following result:

```
Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali
```

Book subject : Telecom Billing Tutorial

Book book_id : 6495700