NFA to DFA Conversion (Subset Construction Method)

Course Code: CSC3220 Course Title: Compiler Design

Dept. of Computer Science Faculty of Science and Technology

Lecturer No:	8	Week No:	8	Semester:	
Lecturer:	Md Masum Bi Masum-billah.		asumcu@aiub.ed	<u>du</u>	

Lecture Outline

- 1. NFA TO DFA (Subset Construction Method)
- 2. Subset Construction Algorithm
- 3. DFA Designing
- 4. Example
- 5. Exercise
- 6. References

Objective and Outcome

Objective:

- To explain the subset construction algorithm/method for converting a Nondeterministic machine to deterministic machine.
- Provide necessary example and explanation of NFA to DFA conversion method using subset construction method.
- To explain and practice Deterministic Finite Automata (DFA) Machine Design for a given Grammar.

Outcome:

- After this lecture the students will be capable of demonstrating the subset construction algorithm
- After this lecture the student will be able to convert an NFA to relevant DFA by following subset construction method.
- After this class student will be able to design and demonstrate DFA construction from a given Grammar.

Subset Construction Algorithm

Input: An NFA N

Output: A DFA D accepting the same language

Method: Constructs a transition table Dtran for D. Each DFA state is a set of NFA states and construct Dtran so that D will simulate "in parallel" all possible moves N can make on a given input string

OPERATION	Description
e-closure(s)	Set of NFA states reachable from NFA state s on e-transitions alone.
€-closure(T)	Set of NFA states reachable from some NFA state s in T on ϵ -transitions alone.
	On California Monte.

Subset Construction Algorithm

```
initially, \(\epsilon\cdot{closure}(s_0)\) is the only state in \(D\)states and it is unmarked; while there is an unmarked state \(T\) in \(D\)states do begin mark \(T\);

for each input symbol \(a\) do begin

\(U:=\epsilon\cdot{closure}(move(T, a));\)

if \(U\) is not in \(D\)states then

\(a\) and \(U\) as an unmarked state to \(D\)states;

\(D\)tran\(T, a\) := \(U\)

end

end
```


ε-closure and move Examples

 ε -closure({0}) = {0,1,3,7} move({0,1,3,7},**a**) = {2,4,7} ε -closure({2,4,7}) = {2,4,7} move({2,4,7},**a**) = {7} ε -closure({7}) = {7} move({7},**b**) = {8} ε -closure({8}) = {8} move({8},**a**) = \emptyset

Alphabet / Symbol = {a, b}

Subset Construction Algorithm

Subset Construction Algorithm

The subset construction algorithm converts an NFA into a DFA using:

$$\varepsilon$$
-closure(s) = {s} \cup {t | $s \rightarrow_{\varepsilon} ... \rightarrow_{\varepsilon} t$ }
 ε -closure(T) = $\bigcup_{s \in T} \varepsilon$ -closure(s)
 $move(T,a) = \{t \mid s \rightarrow_{a} t \text{ and } s \in T\}$

The algorithm produces:

- D_{states} is the set of states of the new DFA consisting of sets of states of the NFA
- D_{tran} is the transition table of the new DFA

Subset Construction Algorithm

Algorithm Explained

- 1. Create the start state of the DFA by taking the ε -closure of the start state of the NFA
- 2. Perform the following for the DFA state:
 - Apply move to the newly-created state and the input symbol; this will return a set of states.
 - Apply the ϵ -closure to this set of states, possibly resulting in a new set. This set of NFA states will be a single state in the DFA.
- 3. Each time we generate a new DFA state, we must apply step 2 to it. The process is complete when applying step 2 does not yield any new states.
- 4. The finish states of the DFA are those which contain any of the finish states of the NFA

Subset Construction Algorithm

Algorithm with while Loop

```
fun nfa2dfa start edges =
 let val chars = nodup(sigma edges)
   val s0 = eclosure edges [start]
   val worklist = ref [s0]
   val work = ref []
   val old = ref []
   val newEdges = ref []
 in while (not (null (!worklist))) do
   ( work:= hd(!worklist)
    old := (!work) :: (!old)
   ; worklist := tl(!worklist)
   ; let fun nextOn c = (Char.toString c
               ,eclosure edges (nodesOnFromMany (Char c) (!work) edges))
       val possible = map nextOn chars
      fun add ((c,[])::xs) es = add xs es
         add ((c,ss)::xs) es = add xs ((!work,c,ss)::es)
         add [] es = es
      fun ok ∏ = false
         ok xs = not(exists (fn ys => xs=ys) (!old)) and also
              not(exists (fn ys => xs=ys) (!worklist))
       val new = filter ok (map snd possible)
    in worklist := new @ (!worklist);
      newEdges := add possible (!newEdges)
    end
   ($0,!old,!newEdges)
 end;
```


Subset Construction Method (Example-1)

NFA:

Regular Expression: (a | b)* abb

Subset Construction Method (Example-1)

DFA State	E-closure of	E-closure outcome states
A	E-closure ({0})	0,1,2,4,7
В	E-closure ({3,8})	1,2,3,4,6,7,8
C	E-closure ({5})	1,2,4,5,6,7
D	E-closure({5,9})	1,2,4,5,6,7,9
Е	E-closure({5,10})	1,2,4,5,6,7,10

NFA States	DFA State	a	b
0,1,2,4,7	A	В	C
1,2,3,4,6,7,8	В	В	D
1,2,4,5,6,7	C	В	C
1,2,4,5,6,7,9	D	В	Ε
1,2,4,5,6,7,10	E	В	C

Subset Construction Method (Example-1 Cont.)

NFA State	DFA State	a	b
0,1,2,4,7	A	В	С
1,2,3,4,6,7,8	В	В	D
1,2,4,5,6,7	C	В	С
1,2,4,5,6,7,9	D	В	E
1.2.4.5.6.7.10	Е	В	С

Subset Construction Method (Exercise 1)

Converted DFA in the next Slide

Subset Construction Method (Exercise 1)

DFA

Dstates

$$A = \{0,1,3,7\}$$

$$B = \{2,4,7\}$$

$$C = \{8\}$$

$$D = \{7\}$$

$$E = \{5,8\}$$

$$F = \{6,8\}$$

NFA to DFA / Subset Construction Method (Exercise 2)

Deterministic Finite Machine

DFA DESIGN

- A finite automaton is a 5-tuple (Q, Σ , δ , q_0 , F), where
 - Q is a finite set called the states,
 - Σ is a finite set called the *alphabet*,
 - $\delta: Q \times \Sigma \to Q$ is the *transition function*,
 - $q_0 \in Q$ is the *start state*,
 - $F \subseteq Q$ is the set of **accept** (final) **states**.
- If A is the set of all strings that a machine M accepts, we say that A is the *language of machine M* and write L(M)=A, M recognizes A or M accepts A.

Deterministic Finite Machine

DFA Example 1

$$\not\equiv M_1 = (Q, \Sigma, \delta, q_0, F), \text{ where } -$$

$$\square$$
 Q = { q_1, q_2, q_3 },

$$\Sigma = \{0, 1\},\$$

 \blacksquare δ is describe as –

$$\mathbf{H} \ q_0 = q_1,$$

$$H F = \{q_2\}.$$

δ	0	1	
q_1	q_1	q_2	
q_2	q_3	q_2	(
\ _{Cl}	n _a	O-	

or
$$\delta(q_1,0) = q_1, \ \delta(q_1,1) = q_2,$$
$$\delta(q_2,0) = q_3, \ \delta(q_2,1) = q_2,$$
$$\delta(q_3,0) = q_2, \ \delta(q_3,1) = q_2.$$

Figure: Finite Automaton M_1

DFA Design Example

- Input example: 01120101

Input symbol: Input symbol:

Accepted

- \blacksquare Alphabet $\Sigma = \{0,1,2\}$.
- Language $A_1 = \{w : \text{ the sum of all the symbols in } w \text{ is multiple of 3} \}.$
 - ☐ Can be represented as follows
 - \equiv S= the sum of all the symbols in w.
 - If S modulo 3 = 0 then the sum is multiple of 3.
 - \blacksquare So the sum of all the symbols in w is 0 modulo 3.
 - \blacksquare Here, a_i is modeled as S modulo 3 = i.
- **#** The finite state machine $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, where –

$$\square Q_1 = \{a_0, a_1, a_2\},\$$

$$\mathbf{q}_1 = a_0$$

$$\mathbf{H} \quad F_1 = \{a_0\},\$$

$$\Box$$
 δ_1

	0	1	2
a ₀ a ₁ a ₂	a ₀ a ₁	a_1	a ₂ a ₀
a_1	a_1	a_2	a_{c}
a_2	a_2	a_0	a_1

DFA Design Example

■ Alphabet Σ ={0,1,2}.

Language $A_1 = \{w : \text{the sum of all the symbols in } w \text{ is an even number } \}$.

- ☐ Can be represented as follows
 - \equiv S= the sum of all the symbols in w.
 - \blacksquare If S modulo 2 = 0 then the sum is even.
 - \blacksquare Here, b_i is modeled as S modulo 2 = i.
- The finite state machine $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, where
 - \square $Q_2 = \{b_0, b_1\},$

 - $\mathbf{H} \quad F_2 = \{b_0\},\$
 - \Box δ_2

- □ Present State:

■ Input symbol:

Accepted

DFA Design Example (Type 1)

The construction of DFA for languages consisting of strings ending with a particular substring.

- Determine the minimum number of states required in the DFA.
 - Calculate the length of substring.
 - All strings ending with 'n' length substring will always require minimum (n+1) states in the DFA.
- Draw those states.
- Decide the strings for which DFA will be constructed.
- Construct a DFA for the decided strings
 - While constructing a DFA, Always prefer to use the existing path. Create a new path only when there exists no path to go with.
- Send all the left possible combinations to the starting state.
- Do not send the left possible combinations over the dead state.

DFA Design Example and Exercise

- Draw a DFA for the language accepting strings ending with 'abb' over input alphabets $\Sigma = \{a, b\}$
- Draw a DFA for the language accepting strings starting with 'ab' over input alphabets $\Sigma = \{a, b\}$
- Draw a DFA for the language accepting strings 'ab' in the middle (sub string) over input alphabets $\Sigma = \{a, b\}$

Lecture References

- Portland State University Lectures (<u>Link</u>)
- Power set Construction Wikipedia (<u>Link</u>)
- Maynooth University Lectures (Link)

References/Books

- 1. Compilers-Principles, techniques and tools (2nd Edition) V. Aho, Sethi and D.
 Ullman
- 2. Principles of Compiler Design (2nd Revised Edition 2009) A. A. Puntambekar
- 3. Basics of Compiler Design Torben Mogensen