St. Peter's Engineering College (Autonomous) Dullapally (P), Medchal, Hyderabad – 500100. QUESTION BANK Dept. : CSE(AIML) Academic Year 2024-25

Subject Code: AS22-66PC02Subject: AUTOMATA THEORY & COMPILER DESIGNClass/Section: B. Tech.Year: IISemester: II

BLOOMS LEVEL					
Remember	L1	Understand	L2	Apply	L3
Analyze	L4	Evaluate	L5	Create	L6

Q. No	Question (s)	Marks	BL	CO		
	UNIT – I					
1	Define Finite Automata.	1M	L1	C222.1		
	Define Transition Function in FA.	1M	L1	C222.1		
	Define Computation.	1M	L1	C222.1		
	Define NFA-8.	1M	L1	C222.1		
	Define Theory of Computation.	1M	L1	C222.1		
2	Discuss about DFA with example.	3M	L2	C222.1		
	Discuss about NFA with example.	3M	L2	C222.1		
	Design a DFA with Dead States.	3M	L6	C222.1		
	Design a NFA with Dead States.	3M	L6	C222.1		
	Design a NFA-E with example.	3M	L6	C222.1		
3	Design a DFA which accepts set of all strings containing 1100 as a substring with in an alphabet $\Sigma = \{0, 1\}$.	5M	L6	C222.1		
	Design an NFA which accepts strings which ends with $00 11$ within an alphabet $\Sigma = \{0, 1\}$.	5M	L6	C222.1		
	Design an NFA which accepts strings with 1100 or 1010 as a substring with in an alphabet $\Sigma = \{0, 1\}$.	5M	L6	C222.1		
	Design a DFA which accepts set of all strings containing even number 0's and 1's within an alphabet $\Sigma = \{0, 1\}$.	5M	L6	C222.1		
	Design an DFA which accepts strings which ends with $00 11$ within an alphabet $\Sigma = \{0, 1\}$.	5M	L6	C222.1		
	Convert the following NFA-E in to NFA,	10M		C222.1		
4			L5			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
a) Design a DFA which accepts set of all strings that starts with 1 and ends with 0 within an alphabet $\Sigma = \{0, 1\}$.	10M	L6	C222.1
b) Design an NFA with Multiple Final States.			
Convert the following NFA in to DFA,	10M		C222.1
a,b $q0$ a $q1$ b $q2$		L5	

Q. No	Question (s)	Marks	BL	CO		
	UNIT – II					
1	Define Empty Set.	1M	L1	C222.1		
	Define Null String.	1M	L1	C222.1		
	Define Identity Rules for Regular Expressions.	1M	L1	C222.1		
	Define Regular sets.	1M	L1	C222.1		
	Define Parse Tree.	1M	L1	C222.1		
2	Discuss about Regular Sets and Regular Language with examples.	3M	L2	C222.1		
	Discuss about Grammars and Derivation Trees with examples.	3M	L2	C222.1		
	Discuss about Context Free Grammars with examples.	3M	L2	C222.1		
	Discuss about Ambiguous Grammars with example.	3M	L2	C222.1		
	Derive the Regular Expression for the following DFA,	3M	L2	C222.1		
3	State and Prove Arden's Theorem.	5M	L5	C222.1		
	Construct an NFA and NFA-E for the regular expression 11+00.	5M	L6	C222.1		
	Discuss about regular grammar, right linear grammar and left linear with examples.	5M	L2	C222.1		
	Draw a Parse Tree for the Language $L=\{a^nb^n, n>=0\}$ and the CFG with Productions are S-> aSb, S-> ϵ .	5M	L6	C222.1		

	Construct an NFA-E for the regular expression 110(0+1)*.	5M	L6	C222.1
	a) Construct an NFA-E for the regular expression (0+1)*11.	5M	L6	C222.1
4	b) Explain in detail about Parse Trees, Left and Right Most Derivations.	5M	L4	C222.1
	Construct a DFA, NFA and NFA-& for any regular expression	10M	L2	C222.1
	State and Prove Pumping Lemma.	10M	L5	C222.1

Q. No	Question (s)	Marks	BL	CO	
UNIT – III					
1	Define Empty Symbol in Stack in the perspective of PDA.	1M	L1	C222.2	
	Define NOOP operation in PDA.	1M	L1	C222.2	
	Define Blank Symbol in TM.	1M	L1	C222.3	
	Define Γ in PDA.	1M	L1	C222.3	
	Define Turing Machine.	1M	L1	C222.3	
2	Discuss about Push Down Automata.	3M	L2	C222.2	
	Discuss about Turing Machine.	3M	L2	C222.3	
	Discuss about Language of PDA.	3M	L2	C222.2	
	Discuss about Decidable Problem with examples.	3M	L2	C222.3	
	Discuss about Undecidable Problem with examples.	3M	L2	C222.3	
3	Design a PDA for Language $L = \{WCW^r \mid W \in (a + b)^*\}.$	5M	L4	C222.2	
	Explain about Instantaneous Description of PDA.	5M	L4	C222.2	
	Design a PDA for the Language $L = \{a^nb^{2n} n>0\}.$	5M	L4	C222.2	
	Explain in detail about Universal Turing Machine.	5M	L4	C222.3	
	Design a PDA for the Language $L = \{WW^r \mid W \in (a,b)^*\}.$	5M	L4	C222.2	
4	Explain about Turing Machine as an Adder and Language of a Turing Machine.	10M	L4	C222.3	
	Explain about Recursive Language and Recursively Enumerable Languages with examples.	10M	L4	C222.3	
	Explain about Turing Machine as a Comparator and as a Substractor.	10M	L4	C222.3	

Q. No	Question (s)	Marks	BL	CO
1	Define Compiler.	1M	L1	C224.4
	Define Pre-Processor.	1M	L1	C224.4
	Define an Assembler.	1M	L1	C224.4
	Define First Symbol.	1M	L1	C224.4
	Define Follow Symbol.	1M	L1	C224.4
2	Discuss about First & Follow Symbols with examples.	3M	L2	C224.4
	Discuss about Token and Lexemes.	3M	L2	C224.4
	Discuss about Input Buffering.	3M	L2	C224.4
	Discuss about CFG, Derivation of a Grammar.	3M	L2	C224.4
	Discuss about of Parsing and Types of Parsing.	3M	L2	C224.4
3	Explain in detail about Complier Process.	5M	L4	C224.4
	Explain in detail about the role of Lexical Analyzer.	5M	L4	C224.4
	Explain in detail about Recursive Descent Parsing with Backtracking.	5M	L4	C224.4
	Explain in detail about any one Bottom-up Parsing.	5M	L4	C224.4
	Explain in detail about Phases of Compilation.	5M	L4	C224.4
4	a) Explain in detail about the role of Syntax Analyzer.b) Explain in detail about Predictive Parsing.	10M	L4	C224.4
	a) Explain in detail about LR (0) Parsing.b) Explain in detail about Lexical-Analyzer Generator Lex.	10M	L4	C224.4
	a) Explain in detail Scanning & Parsing.b) Explain in detail about LL(1) Parsing.	10M	L4	C224.4

Q. No	Question (s)	Marks	BL	CO		
	UNIT – V					
1	Define Semantics.	1M	L1	C224.6		
	Define Semantic Rules.	1M	L1	C224.6		
	Define Attribute.	1M	L1	C224.6		
	Define Actual Parameters.	1M	L1	C224.6		
	Define Formal Parameters.	1M	L1	C224.6		
2	Discuss about Syntax Directed Translation.	3M	L2	C224.6		
	Discuss about Syntax Directed Definition.	3M	L2	C224.6		
	Explain in detail about Types of Attributes.	3M	L4	C224.6		
	Discuss about Symbol Table.	3M	L2	C224.6		
	Explain in detail about Intermediate Code Generation.	3M	L4	C224.6		
3	Discuss about Activation Record.	5M	L2	C224.6		
	Distinguish between S-attributes and L-attributes.	5M	L2	C224.6		
	Explain in detail about Dependency Graph.	5M	L4	C224.6		
	Explain in detail about 3 Address Code Representation.	5M	L4	C224.6		
	Explain in detail about Run-Time Environment.	5M	L4	C224.6		
4	Explain in detail about Representation and Operations on Symbol Table	10M	L4	C224.6		
	Explain in detail about Intermediate Code Generation and 3 Representations of Intermediate Code Generator.	10M	L4	C224.6		
	Explain in detail about Storage Allocation.	10M	L4	C224.6		