ЗАДАЧА КЛАСТЕРИЗАЦИИ

PAHEE: ОБУЧЕНИЕ НА РАЗМЕЧЕННЫХ ДАННЫХ (SUPERVISED LEARNING)

Обучающая выборка:

$$x_1,...,x_\ell$$
 — объекты $y_1,...,y_\ell$ — ответы

PAHEE: ОБУЧЕНИЕ НА РАЗМЕЧЕННЫХ ДАННЫХ (SUPERVISED LEARNING)

Обучающая выборка:

Тестовая выборка:

$$x_{\ell+1},...,x_{\ell+u}$$

PAHEE: ОБУЧЕНИЕ НА РАЗМЕЧЕННЫХ ДАННЫХ (SUPERVISED LEARNING)

Обучающая выборка:

Тестовая выборка:

$$x_{\ell+1},...,x_{\ell+u}$$

 $m{y}_i$ — прогнозируемая величина В классификации: $m{y}_i$ — метка класса

КЛАСТЕРИЗАЦИЯ

- $x_1, ..., x_\ell$ объекты
- Она же и тестовая
- > Нужно поставить метки $y_1, ..., y_\ell$ так, чтобы объекты с одной и той же меткой были похожи, а с разными метками не очень похожи

КАК ЭТО ВЫГЛЯДИТ

СРЕДНЕЕ ВНУТРИКЛАСТЕРНОЕ РАССТОЯНИЕ

$$F_0 = rac{\sum\limits_{i < j} [y_i = y_j]
ho(x_i, x_j)}{\sum\limits_{i < j} [y_i = y_j]}
ightarrow ext{min}$$

СРЕДНЕЕ МЕЖКЛАСТЕРНОЕ РАССТОЯНИЕ

$$F_1 = rac{\sum\limits_{i < j} [y_i
eq y_j]
ho(x_i, x_j)}{\sum\limits_{i < j} [y_i
eq y_j]}
ightarrow ext{max}$$

ПРИДУМЫВАЕМ МЕТРИКУ КАЧЕСТВА

$$F_0 = rac{\sum\limits_{i < j} [y_i = y_j]
ho(x_i, x_j)}{\sum\limits_{i < j} [y_i = y_j]} \quad F_1 = rac{\sum\limits_{i < j} [y_i
eq y_j]
ho(x_i, x_j)}{\sum\limits_{i < j} [y_i
eq y_j]}$$

$$\frac{F_0}{F_1} \rightarrow \min$$

ПРИМЕРЫ ЗАДАЧ КЛАСТЕРИЗАЦИИ

ЗАЧЕМ НУЖНЫ РАЗНЫЕ АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ

- Каждые данные в чём-то «особенные»
- Каждая задача кластеризации тоже
- В разных задачах кластеризации могут быть отличия:
 - Форма кластеров
 - Необходимость делать кластеры вложенными друг в друга
 - Размер кластеров
 - Кластеризация основная задача или побочная
 - «Жёсткая» или «мягкая» кластеризация

РАЗЛИЧИЯ В РЕЗУЛЬТАТАХ РАБОТЫ

МЕТОД К СРЕДНИХ (K MEANS)

ПРИМЕР: КВАНТИЗАЦИЯ ИЗОБРАЖЕНИЙ

Original image (96,615 colors)

ПРИМЕР: КВАНТИЗАЦИЯ ИЗОБРАЖЕНИЙ

Quantized image (64 colors, Random)

ПРИМЕР: КВАНТИЗАЦИЯ ИЗОБРАЖЕНИЙ

Quantized image (64 colors, K-Means)

ЧТО ОПТИМИЗИРУЕТ K MEANS

Среднее внутрикластерное расстояние:

$$F_0 = rac{\sum_{i < j} [y_i = y_j]
ho(x_i, x_j)}{\sum_{i < j} [y_i = y_j]} o \min$$

ЧТО ОПТИМИЗИРУЕТ K MEANS

Среднее внутрикластерное расстояние:

$$F_0 = rac{\sum_{i < j} [y_i = y_j]
ho(x_i, x_j)}{\sum_{i < j} [y_i = y_j]} o \min$$

Альтернативный вариант, если есть центры кластеров:

$$\Phi_0 = \sum_{y \in Y} rac{1}{|K_y|} \sum_{i:y_i=y}
ho^2(x_i, \mu_y)
ightarrow \min$$

