Partition regularity of Diophantine equations VUW Discrete Mathematics Seminar

Jordan Mitchell Barrett

Victoria University of Wellington

math@jmbarrett.nz
https://jmbarrett.nz/

29th April 2021

Ramsey theory

- Studies what kinds of regular configurations can be found in (finite partitions/colourings of) infinite/sufficiently large finite structures.
- ► First Ramsey-type result was proven by Hilbert in 1892¹
 - Used this to prove Hilbert's irreducibility theorem
- ▶ Named after Ramsey's seminal 1930 theorem
 - Used it to prove decidability of an instance of SAT
 - Many different flavours (finite, infinite, sets, graphs, etc...)

Theorem (Ramsey, 1930, infinite combinatorial version)²

Fix $m, r \in \mathbb{N}$. Then, for every r-colouring of $\mathcal{P}(\mathbb{N})$, there exists some infinite $A \subseteq \mathbb{N}$ such that the family $\{B \subseteq A : |B| = m\}$ is monochromatic.

²F. P. Ramsey. On a problem of formal logic. *Proceedings of the London Mathematical Society* **s2-30.1** (1930), pp. 264–286

¹D. Hilbert. Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten. *J. Reine Angew. Math.* **110** (1892), pp. 104–129

Partition regularity

Notation

Let $\mathbf{x}=(x_1,\ldots,x_n)$ be a tuple, and $P(\mathbf{x})\in\mathbb{Z}[\mathbf{x}]$ be a (multivariate) polynomial over \mathbb{Z} . We say that $P(\mathbf{x})=0$ is a Diophantine equation.

Definition (partition regularity)

We say that a Diophantine equation $P(\mathbf{x}) = 0$ is partition regular (abbreviated p.r.) if for any finite partition $\mathbb{N} = C_0 \sqcup \cdots \sqcup C_{k-1}$, there exists $i \in k$ and $\mathbf{m} = (m_1, \ldots, m_n) \in C_i^n$ such that $P(\mathbf{m}) = 0$.

Alternative definition

 $P(\mathbf{x})=0$ is partition regular if for any finite colouring $c:\mathbb{N}\to k$, there exists $m_1,\ldots,m_n\in\mathbb{N}$ such that $c(m_1)=\cdots=c(m_n)$ and $P(\mathbf{m})=0$.

These two definitions are equivalent under $c(n) = j \iff n \in C_j$.

Early results

Example (Schur, 1917)³

The equation x + y = z is partition regular.

Example (van der Waerden, 1927)⁴

Fix $m, r \in \mathbb{N}$. Then, for every r-colouring $c : \mathbb{N} \to r$, there exists a c-monochromatic arithmetic progression of length m.

Example (Rado, 1933)⁵

A linear Diophantine equation $\sum_{k=1}^{n} a_k x_k = 0$ is partition regular iff there exists a nonempty subset $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} a_i = 0$.

⁵R. Rado. Studien zur Kombinatorik. *Math. Z.* **36.1** (1933), pp. 424–470

³I. Schur. Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$. Jahresbericht der Deutschen Mathematiker-Vereinigung 25 (1917), pp. 114–117

⁴B. L. van der Waerden. Beweis einer Baudetschen Vermutung. *Nieuw Archief voor Wiskunde* **15** (1927), pp. 212–216

Nonlinear equations

- Linear homogeneous case totally settled by Rado
- Nonlinear case has proved much harder progress has been sporadic

Example (multiplicative Rado's theorem)

The equation $\prod_{k=1}^n x_k^{a_k} = 1$ is p.r. iff "Rado's condition" holds: there exists a nonempty subset $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} a_i = 0$.

Example (Lefmann, 1991)⁶

The equation $\sum_{j=1}^{n} a_j x_j^{1/k} = 0$ is p.r. iff Rado's condition holds.

Example (Bergelson, 1996)⁷

If $P(z) \in \mathbb{Z}[z]$ has no constant term, then x - y = P(z) is p.r..

 \mathbb{Z}^d -actions, London Math. Soc. Lecture Note Series **228** (1996), pp. 1–61

⁶H. Lefmann. On p.r. systems of equations. *JCTA* **58.1** (1991), pp. 35–53 ⁷V. Bergelson. Ergodic Ramsey theory – an update. *Ergodic Theory of*

Nonstandard analysis

- Developed by Abraham Robinson in the 60s to rigorously formalise calculus/analysis in terms of infinitesimal numbers
- ► Recently has been used successfully in Ramsey theory⁸
- ► Assign to every object of discourse *M* a "nonstandard extension" **M*, satisfying nice properties
 - \triangleright $A \subseteq B \implies *A \subseteq *B$
 - $f: A \to B \implies {}^*f: {}^*A \to {}^*B$ and *f extends f
 - $ightharpoonup *n = n \text{ for all } n \in \mathbb{N}.$
- ightharpoonup *N is the "hypernaturals": add "infinite elements" to N
- ▶ Transfer: for "elementary properties" $^9 \varphi(x_1, \ldots, x_n)$,

$$\varphi(M_1,\ldots,M_n) \iff \varphi(^*M_1,\ldots,^*M_n)$$

⁸M. Di Nasso, I. Goldbring & M. Lupini. *Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory*. 1st ed. Springer, Cham (2019)
⁹All quantifiers are \in -bounded, i.e. of the form $Q \times \in \mathcal{Y}$.

Ultrafilters

- ▶ Recall: an *ultrafilter on* $\mathbb N$ is a family of subsets $\mathcal U \subseteq \mathcal P(\mathbb N)$ such that:
 - Ø ∉ U
 - $ightharpoonup \mathbb{N} \in \mathcal{U}$
 - \triangleright $A \in \mathcal{U}, B \supseteq A \implies B \in \mathcal{U}$
 - \triangleright $A, B \in \mathcal{U} \implies A \cap B \in \mathcal{U}$
 - ▶ For every $A \subseteq \mathbb{N}$, either $A \in \mathcal{U}$ or $A^{\complement} \in \mathcal{U}$
- ▶ Ultrafilters define a notion of *largeness* for subsets of \mathbb{N} : $A \in \mathcal{U}$ means A is large according to \mathcal{U} .
 - ► Can also be characterised as finitely additive {0,1}-valued measures
- ▶ Each hypernatural number $\alpha \in {}^*\mathbb{N}$ generates an ultrafilter on \mathbb{N} in a natural way:

$$\alpha \mapsto \mathcal{U}_{\alpha} = \{ A \subseteq \mathbb{N} : \alpha \in {}^*A \}$$

u-equivalence

▶ Each hypernatural number $\alpha \in {}^*\mathbb{N}$ generates an ultrafilter on \mathbb{N} in a natural way:

$$\alpha \mapsto \mathcal{U}_{\alpha} = \{ A \subseteq \mathbb{N} : \alpha \in {}^*A \}$$

► This map is surjective but **not** injective, thus:

Definition (u-equivalence)

We say two hypernatural numbers $\zeta, \xi \in {}^*\mathbb{N}$ are *u-equivalent*, sometimes denoted $\zeta \sim \xi$, if they generate the same ultrafilter $\mathcal{U}_{\zeta} = \mathcal{U}_{\xi}$.

Polynomial Bridge Theorem (Luperi Baglini, 2012)¹⁰

The equation $f(\mathbf{x}) = 0$ is partition regular if and only if there exist u-equivalent $\xi_1 \sim \cdots \sim \xi_n \in {}^*\mathbb{N}$ such that $f(\xi_1, \dots, \xi_n) = 0$.

¹⁰L. Luperi Baglini. Hyperintegers and nonstandard techniques in combinatorics of numbers. *PhD thesis, University of Siena* (2012). https://arxiv.org/abs/1212.2049

Applications of *u*-equivalence

- *u*-equivalence is quite a strong property: $\zeta \sim \xi$ implies:
 - ▶ For any first-order formula $\varphi(x)$, $\varphi(\zeta)$ holds iff $\varphi(\xi)$ holds.
 - ▶ For any $A \subseteq \mathbb{N}$, $\zeta \in {}^*A$ if and only if $\xi \in {}^*A$.

Proposition (Di Nasso, 2015)¹¹

- 1. If $\zeta \in {}^*\mathbb{N}$, $k \in \mathbb{N}$, then $\zeta \sim k \iff \zeta = k$.
- 2. For every $f: \mathbb{N} \to \mathbb{N}$, if $\zeta \sim \xi$, then $f(\zeta) \sim f(\xi)$.
- 3. For every $f: \mathbb{N} \to \mathbb{N}$, $\zeta \in {}^*\mathbb{N}$, ${}^*f(\zeta) \sim \zeta \implies {}^*f(\zeta) = \zeta$.
- ▶ In particular, $\zeta \sim \xi$ implies that:

 - Fixing prime p and writing $\zeta = p^{\alpha}\zeta_0$, $\xi = p^{\beta}\xi_0$, we have that $\alpha \sim \beta$ and $\zeta_0 \sim \xi_0$:
 - ▶ If $\sigma, \tau \in {}^*\mathbb{N}$ are the largest s.t. $p^{\sigma} < \zeta$, $p^{\tau} < \xi$, then $\sigma \sim \tau$.

¹¹M. Di Nasso. *Hypernatural numbers as ultrafilters*. *Nonstandard Analysis for the Working Mathematician*. *Springer, Dordrecht* (2015), pp. 443–474

A nonstandard proof of non-p.r.

Example (Di Nasso & Riggio, 2018)¹²

The equation $x^2 + y^2 = z$ is not partition regular.

Proof (Di Nasso, Goldbring & Lupini, 2019)¹³

Suppose, by contradiction, that it is partition regular, and fix $\alpha \sim \beta \sim \gamma \in {}^*\mathbb{N}$ such that $\alpha^2 + \beta^2 = \gamma$. Since $x^2 + y^2 = z$ doesn't admit constant solutions, we must have $\alpha, \beta, \gamma \in {}^*\mathbb{N} \setminus \mathbb{N}$. We can't have α, β, γ all odd, so they must all be even. Write

$$\alpha = 2^a \alpha_0, \quad \beta = 2^b \beta_0, \quad \gamma = 2^c \gamma_0$$

for **positive** $a \sim b \sim c$, and **odd** $\alpha_0 \sim \beta_0 \sim \gamma_0$.

¹²M. Di Nasso & M. Riggio. Fermat-like equations that are not partition regular. *Combinatorica* **38.5** (2018), pp. 1067–1078

¹³M. Di Nasso, I. Goldbring & M. Lupini. *Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory*. 1st ed. Springer, Cham (2019)

A nonstandard proof of non-p.r. (cont.)

Example

The equation $x^2 + y^2 = z$ is not partition regular.

Proof (cont.)

We have **positive** $a \sim b \sim c$, **odd** $\alpha_0 \sim \beta_0 \sim \gamma_0$, and

$$2^{2a}\alpha_0^2 + 2^{2b}\beta_0^2 = 2^c\gamma_0$$

- Case 1: a < b: then $2^{2a}(\alpha_0^2 + 2^{2b-2a}\beta_0^2) = 2^c\gamma_0$. Since γ_0 and $(\alpha_0^2 + 2^{2b-2a}\beta_0^2)$ are both odd, we must have $2a = c \sim a$, so $2a = a \implies a = 0 \implies$ contradiction.
- Case 2: a = b: then $2^{2a}(\alpha_0^2 + \beta_0^2) = 2^c \gamma_0$. We have $\alpha_0^2 + \beta_0^2 \equiv 2 \mod 4$, so $2^{2a+1}\zeta = 2^c \gamma_0$ for odd ζ . Then $2a + 1 = c \sim a$, so $2a + 1 = a \Longrightarrow$ contradiction.
- ▶ This kind of argument only works for inhom. equations.

Results obtained

Nonstandard approach useful for proving non-p.r. of equations

Example (Di Nasso & Riggio, 2018)¹⁴

Fix odd $m \in \mathbb{N}$. If $a_1, \ldots, a_m \in \mathbb{N}$ are all odd, and $n_1, \ldots, n_m \in \mathbb{N}$ are all distinct, then the equation $\sum_{i=1}^m a_i x_i^{n_i} = 0$ is not partition regular.

Example (Di Nasso & Riggio, 2018)¹⁴

If $k \notin \{n, m\}$, then the equation $x^n + y^m = z^k$ is not partition regular.

Example (Di Nasso & Luperi Baglini, 2018)¹⁵

Fix $d \neq k$. If P(y) is a polynomial of degree d with no constant term, and Rado's condition is not satisfied, then $\sum_{i=1}^{n} c_i x_i^k = P(y)$ is not p.r..

¹⁴M. Di Nasso & M. Riggio. Fermat-like equations that are not partition regular. *Combinatorica* **38.5** (2018), pp. 1067–1078

¹⁵M. Di Nasso & L. Luperi Baglini. Ramsey properties of nonlinear Diophantine equations. Advances in Mathematics 324 (2018), pp. 84–117

Our idea

Notation

A multi-index is a tuple $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}_0^n$. We then define $\mathbf{x}^\alpha:=x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$. e.g. $\alpha=(3,0,2)\implies \mathbf{x}^\alpha=x^3y^0z^2=x^3z^2$.

Remark

Any polynomial $P(\mathbf{x}) \in \mathbb{Z}[\mathbf{x}]$ can be written as $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$.

Idea

Fix $\xi_1 \sim \cdots \sim \xi_n$ such that $P(\xi_1, \ldots, \xi_n) = 0$. Consider $\tau_i := \operatorname{Lg}_p(\xi_i)$, i.e. $\xi_i = p^{\tau_i} \sigma_i$, with $1 \leq \sigma_i < p$. As before, we have $\tau_1 \sim \cdots \sim \tau_n$ and $\sigma_1 \sim \cdots \sim \sigma_n$. Then:

$$P(\xi) = \sum_{\alpha} c_{\alpha} \sigma^{\alpha} p^{\tau \cdot \alpha} \approx \sum_{\alpha} c_{\alpha} w^{|\alpha|} p^{\tau \cdot \alpha}$$

Then we can partition the indices $\{\alpha\}$ based on their size $p^{\tau \cdot \alpha}$.

Our contributions

Theorem (Barrett, Lupini & Moreira, 2019)¹⁶

If $P(\mathbf{x}) = 0$ is p.r., then it admits such a partition $J_0 > \cdots > J_\ell$. Furthermore, we can show that the polynomial

$$w \mapsto \sum_{i=0}^{m} p^{d_i} \sum_{\alpha \in J_i} c_{\alpha} w^{|\alpha|}$$

has a root in [1, p], where $d_i = (\tau \cdot J_i) - (\tau \cdot J_0)$.

Example

The equations $x^2 - xy + ax + by + cz$ and $x^2 - y^2 + ax + by + cz$ both satisfy the above ("maximal Rado condition") if abc = 0, or if a + b + c = 0.

¹⁶J. M. Barrett, M. Lupini & J. Moreira. On Rado conditions for nonlinear Diophantine equations. *European Journal of Combinatorics* **94C** (2021)

Our contributions II

▶ Write $\xi_i = p^{\nu_i}\zeta_i$ where $p \nmid \zeta_i$, partition indices $\{\alpha\}$ by $p^{\nu \cdot \alpha}$.

Theorem (Barrett, Lupini & Moreira, 2019)¹⁷

If $P(\mathbf{x})=0$ is p.r.¹⁸, then for every prime $p\in\mathbb{N}$, it admits such a partition $J_0>\cdots>J_\ell$, and there exists $a\in\mathbb{Z}$ such that $P(a,\ldots,a)=0$ and

$$w \mapsto \sum_{i=0}^{m} p^{d_i} \sum_{\alpha \in J_i} c_{\alpha}^{a} w^{|\alpha|}$$

has a solution $w \in {}^*\mathbb{N}$ with $w \not\equiv 0 \mod p$. Here, c_{α}^a are the coefficients of $P^a(\mathbf{x}) = P(\mathbf{x} + a)$.

Example

$$(x-y)^2 + (x-a)(y-b) = 0$$
 is not p.r. for any constants $a, b \in \mathbb{Z}$.

¹⁸Also need $\tilde{P}(x) = P(x, ..., x) \neq 0$ and reducible to linear factors over \mathbb{Z} .

¹⁸J. M. Barrett, M. Lupini & J. Moreira. On Rado conditions for nonlinear Diophantine equations. *European Journal of Combinatorics* **94C** (2021)

Partition regularity of configurations

▶ Instead of Diophantine equations, we will now look at configurations, i.e. collections of functions $\{f_i : \mathbb{N}^d \to \mathbb{N}\}$

Definition (p.r. of configurations)

A configuration $\{f_1, \ldots, f_k\}$ is partition regular if for any finite partition $\mathbb{N} = C_1 \sqcup \cdots \sqcup C_r$, there exists $\mathbf{m} \in \mathbb{N}^d$ such that $\{f_1(\mathbf{m}), \ldots, f_k(\mathbf{m})\} \subseteq C_i$.

lacktriangle Configurations o equations by parametrising solutions

Example

The equation x + y = z can be parametrised by

$$\begin{cases} x = r \\ y = s \\ z = r + s \end{cases}$$

So, **Schur's theorem** says the *configuration* $\{r, s, r + s\}$ is p.r..

Topological dynamics and Moreira's work

- ► Furstenberg and Weiss¹⁹ first developed a correspondence between *multiple recurrence of a topological dynamical system* and van der Waerden's theorem
- ▶ Moreira used a similar, but more general principle:
 - ightharpoonup
 igh
 - ▶ Semigroup of affine maps $\mathbb{N} \to \mathbb{N}$, $x \mapsto ax + b$ acts on X
 - Partition of $\mathbb{N} = C_1 \sqcup \cdots \sqcup C_r \iff$ open cover of $X = \bigcup_{i=1}^r U_i$

Theorem (Moreira, 2017)²⁰

Let $f_1, \ldots, f_n \in \mathbb{Z}[x]$ have $f_i(0) = 0$. Then $\{x, xy, x + f_i(y)\}$ is p.r..

Corollary $(n = 1, f_1 = id)$

The configuration $\{x, xy, x + y\}$ is partition regular.

¹⁹H. Furstenberg & B. Weiss. Topological dynamics and combinatorial number theory. *Journal d'Analyse Mathématique* **34** (1978), pp. 61–85 ²⁰J. Moreira. Monochromatic sums and products in ℕ. *Annals of Mathematics* **185.3** (2017), pp. 1069–1090

Our contributions III

With a slight modification to Moreira's original argument:

Let
$$f_1, \ldots, f_n \in \mathbb{Z}[x]$$
 have $f_i(\mathbf{1}) = 0$. Then $\{x, xy, x + f_i(y)\}$ is p.r..

Corollary

Let
$$p(x,z) = \sum_{i=0}^{d} a_i x^{d-i} z^i$$
 be homogeneous of degree d in x and z . Then, $x^d(x-y) + p(x,z) = 0$ is p.r. if $a_0 = 0$, or if $\sum_{i=0}^{d} a_i = 0$.

Proof.

It is parametrised by $\{x = r; y = r + p(1, s); z = rs\}$. Note $p(1,0) = a_0$, so if $a_0 = 0$, the result follows by [JM17]. Note $p(1,1) = \sum_{i=0}^{d} a_i$, so if $\sum_{i=0}^{d} a_i = 0$, apply [BLM19].

²¹J. M. Barrett, M. Lupini & J. Moreira. On Rado conditions for nonlinear Diophantine equations. *European Journal of Combinatorics* **94C** (2021)

Further questions

- What other equations are p.r. / not p.r.?
- ▶ Density results for which equations can we find a solution in any set of positive density?
- ▶ In light of Hilbert's tenth problem²², is there a general algorithm to decide whether a given Diophantine equation is p.r.?
- What about equations in other structures (e.g. \mathbb{Q} , \mathbb{R} , \mathbb{F}_p , general semigroups, etc...)?
 - Plenty of work has been done in finite fields \mathbb{F}_{ρ} : Csikvári, Gyarmati & Sárközy²³; Green & Sanders²⁴

²²Y. Matiyasevich. c.e. sets are Diophantine. *Doklady Akademii Nauk* 191.2 (1970)

²³P. Csikvári, K. Gyarmati & A. Sárközy. Density and Ramsey-type results on algebraic equations with restricted solution sets. *Combinatorica* **32.4** (2012), p. 425

²⁴B. Green & T. Sanders. Monochromatic sums and products. *Discr. Analysis* (2016)