תרגיל בית 3

18: 00 עד שעה 10/4/2014, עד שעה אריך הגשה: יום חמישי,

<u>: שאלה</u>

 $\{c_n\}_{n=1}^\infty$ שתי סדרות המתכנסות לאותו הגבול. הראו כי הסדרה $\{a_n\}_{n=1}^\infty$, $\{b_n\}_{n=1}^\infty$ יהיו יהיו $\{a_n,b_1,a_2,b_2,\cdots\}$ לסירוגין (כלומר: $\{a_n,b_1,a_2,b_2,\cdots\}$) מתכנסת לאותו הגבול כמו שתי הסדרות המקוריות.

 $n>N_1$ נסמן את גבול הסדרות ב- N_1 ואת הסדרה החדשה ב- c_n . יהי c_n מהגדרת הגבול, קיים N כך שלכל $N=\max\{2N_1$, $2N_2\}$ אם נבחר $|b_n-L|<\varepsilon$ (בדקו מדוע זו $|a_n-L|<\varepsilon$ הבחירה הנכונה:), מתקיים לכל $|c_n-L|<\varepsilon$ (ב $|c_n-L|<\varepsilon$).

: 2 שאלה

הוכיחו או הפריכו על פי הגדרה את קיום הגבול:

$$a_n>0$$
 , $\lim_{n o\infty}a_n=\infty$: סדרה המקיימת , $\lim_{n o\infty}\left(\sqrt[3]{a_n+1}-\sqrt[3]{a_n}
ight)$

עייי כפל וחילוק בגורם החיובי $\sqrt[3]{a_n+1}^2+\sqrt[3]{a_n+1}\sqrt[3]{a_n}+\sqrt[3]{a_n}^2$ ושימוש בזהות

$$.\sqrt[3]{a_n+1}-\sqrt[3]{a_n}=\tfrac{1}{\sqrt[3]{a_n+1}^2+\sqrt[3]{a_n+1}\sqrt[3]{a_n}+\sqrt[3]{a_n}^2}<\tfrac{1}{\sqrt[3]{a_n}^2}<\tfrac{1}{\sqrt[3]{a_n}^2},(a-b)(a^2+ab+b^2)=a^3-b^3$$

יהי $a_n>rac{1}{\sqrt{arepsilon^3}}$ מתקיים $a_n>n$ מתקיים אכל עבעי כך סבעי n טבעי קיים אטבעי פון מהחישוב הקודם נקבל .arepsilon>0

.0 -ט אפת הסדרה הסדרה ,
$$\left|\sqrt[3]{a_n+1}-\sqrt[3]{a_n}
ight| כי לכל$$

<u>: 3 שאלה</u>

, $\{n\in\mathbb{N}\mid a_n\leq b_n\}$ סדרות מתכנסות. נתון כי הקבוצות ($\{a_n\}$, $\{b_n\}$ יהיו

 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$ יכיחו אינן חסומות. אינן אינן אינן $\{n\in\mathbb{N}\ \mid\ b_n\le a_n\}$

. $\{n\in\mathbb{N}\mid a_n\leq b_n\}=B$, $\{n\in\mathbb{N}\mid b_n\leq a_n\}=A$, $\lim_{n\to\infty}b_n=b$, $\lim_{n\to\infty}a_n=a$ נסמן

 $,n>N_1$ כך שלכל איים הסד N_1 קיים הפלילה על התכנסות הסדרות, ועבור התכנסות מהנתון על מהנתון אליט האלילה בשלילה הסדרות, ועבור התכנסות הסדרות, ועבור אליט מהנתון אליט התכנסות הסדרות, ועבור א

מתקיים $n>\max\{N_1,N_2\}$ ולכן לכל , $b_n>b-\frac{b-a}{2}=\frac{a+b}{2}$, $n>N_2$ כך שלכל אינם , $a_n< a+\frac{b-a}{2}=\frac{a+b}{2}$

.a=b חסומה, אל יתכן , הכך איתכן דומה איתכן ש- A לא א הסריה לכך הכרח, בסתירה , ה $a_n < \frac{a+b}{2} < b_n$

<u>: 4 שאלה</u>

הוכיחו כי כל מספר ממשי הוא גבול של סדרה של רציונליים וגם של סדרה של אי-רציונליים, רציונליים כי כל מספר ממשי הוא גבול של סדרה של $x\in\mathbb{R}$, כך ש-כלומר : לכל $x\in\mathbb{R}$, כך ש

$$\lim_{n\to\infty}q_n=\lim_{n\to\infty}r_n=x$$

נראה כי כל ממשי הוא גבול של סדרת רציונליים, באופן דומה ניתן להוכיח עבור סדרת אי-רציונליים.

מספר קיים או כי בין כל בין כי בין לרציונליות בהתאם אי-רציונליים, שניהם אי-רציונליים או שניהם עניהם אי-רציונליים, בהתאם אי-רציונליים או שעניהם אי

רהיות a_n את בחר את לבחר ($x-\frac{1}{2},x+\frac{1}{2}$), ובאופן להיות רציונלי כלשהו בקטע הפתוח להיות להיות להיות להיות להיות להיות רציונלי כלשהו בקטע הפתוח ($x-\frac{1}{2},x+\frac{1}{2}$)

רציונלי בקטע הפתוח $x-\frac{1}{n}< a_n < x+\frac{1}{n}$. אז a_n היא בבירור סדרת רציונליים, ומקיימת a_n אז a_n לכל a_n לכל a_n לכל a_n מסנדוויץי (או ישירות מהגדרת הגבול) נקבל כי $a_n \to x$

<u>שאלה 5:</u>

 $a_{n+1}=rac{1}{2}\Big(eta a_n^2+rac{1}{eta}\Big)$, $a_1=1$: א. יהי eta<eta , ותהי $\{a_n\}$ הסדרה המוגדרת עייי

הוכיחו כי הסדרה מתכנסת (לגבול סופי או במובן הרחב) ומצאו את גבולה.

 $\beta>0$. $\beta^2+1\geq 2\beta \in \beta^2-2\beta+1\geq 0\in (\beta-1)^2\geq 0$, לכן: נראה מונוטוניות עולה באינדוקציה: ט

: אז , $a_n \geq a_{n-1}$ והצבה פשוטה מראה כי זה אומר $a_2 \geq a_1$ ל- $a_2 \geq a_1$ והצבה פשוטה מראה כי זה אומר, והצבה פשוטה מראה כי זה אומר

גם גיתן להראות ניתן להראות מונוטוניות מונוטוניות ($a_{n+1}=rac{1}{2}\Big(eta a_n^2+rac{1}{eta}\Big)\geq rac{1}{2}\Big(eta a_{n-1}^2+rac{1}{eta}\Big)=a_n$

 $a_{n+1} o L \Leftarrow$ כי זו סדרה מתכנסת, ונסמן את הגבול ב- מיחידות הגבול והעובדה כי זו סדרה מתכנסת, ונסמן את הגבול ב-

 $L=rac{1}{eta}$ נקבל כי L מקיים מקיים . $L=rac{1}{2}\Big(eta L^2+rac{1}{eta}\Big)$: פתרון המשוואה הזו נותן $a_n o L$

ב. יהי $\beta>0$, ותהי $\{a_n\}$ הסדרה המוגדרת עייי: $\alpha_n=\beta$ הסדרה המוגדרת לגבול הסדרה המוגדרת עייי: $\alpha_n=\alpha_n+\frac{1}{2a_n}$ הסדרה מתכנסת (לגבול סופי או במובן הרחב) ומצאו את גבולה.

ראשית נשים לב כי מכיוון ש- $a_n>0$, מתקיים כי $a_n>0$ לכל $a_n>0$. לכן הסדרה ברור כי $a_{n+1}>0$, מתקיים לב כי מתקיים לב כי מתכנסת עולה ולכן מתכנסת במובן הרחב. נניח כי מתכנסת לגבול סופי a_n , אז מיחידות הגבול נקבל כי הוא מקיים $L \geq a_1=\beta>0$ בהכרח מקיים $L \geq a_1=\beta>0$ לכן זו סתירה, ולכן $L \geq a_1=0$

:6 שאלה

חשבו את הגבולות הבאים:

$$. \lim_{n\to\infty} \frac{(2n)!}{n!(2n)^n} . \aleph$$

.0 -ט אפת הסדרה לכן , $\frac{a_{n+1}}{a_n} o \frac{2}{e} < 1$ שימוש בקריטריון המנה נותן

د.
$$\lim_{n\to\infty} \frac{n^3}{\big((3n)!\big)^{1/n}}$$
 . ع

נסמן $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ ונקבל $\frac{e^3}{\sqrt{a_n}}$ ולכן זה גם הגבול ונקבל $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ נסמן ונקבל $\frac{e^3}{\sqrt{a_n}}$ ולכן זה גם הגבול המבוקש.

.
$$\lim_{n\to\infty} \frac{2^{(\cos(n))^{n^2}}}{\sqrt{n}}$$
 .

.0 - איברי הסדרה לכן לכן איברי מקיימים מקיימים מקיימים מקוימים איברי איברי מקיימים מקיימים מ

.
$$\lim_{n\to\infty} \frac{(n+1)^n - (n-1)^n}{n^n + 2}$$
 .7

$$e-rac{1}{e}$$
- נוכל לרשום: $rac{(n+1)^n-(n-1)^n}{n^n+2}=\left(\left(rac{n+1}{n}
ight)^n-\left(rac{n-1}{n}
ight)^n
ight)\left(rac{n^n}{n^n+2}
ight)$ נוכל לרשום: