数字逻辑设计

秦阳

School of Computer Science csyqin@hit.edu.cn

异步时序逻辑电路设计

- 异步脉冲序列检测器设计
- □ 异步计数器设计

利用触发器设计异步时序逻辑

异步时序逻辑设计的特点

- 异步时序电路中,没有统一的时钟脉冲
- 异步时序电路中要求每次输入信号发生变化后,必须等电路 进入稳定状态,才允许输入信号再次发生改变
- 时钟脉冲作为一个输入变量考虑
- 为避免电路中出现竞争冒险,异步时序电路中每一时刻仅允许一个输入信号发生变化,不允许两个脉冲同时输入。n 个额入端有n+1个输入组合

如:异步时序中, $X_1X_2X_3$ 是三个输入端,有四种输入组合:000、001、010、100。

000——表示没有脉冲输入。

011、101、110、111是不允许出现的组合

例1:用D触发器设计一个 $X_1 - X_2 - X_2$ 脉冲序列检测器,其中 $X_1 \cdot$ X。为不同时出现的脉冲。

1. 建立原始状态表

①设状态

S₀:初始状态, X₁X₂=00

S₁: 收到X₁, X₁X₂=10

S₂: 收到X₁-X₂, 即10 →01

S₃: 收到X₁-X₂-X₂, 即10→01→01, 且Z=1。

只标记感兴趣的子序列

② 状态转换情况

③ Mealy 状态图

④ 状态表

现态	Q n+1/ Z			
Qn	$X_1X_2=00$	$X_1X_2=01$	$X_1X_2=10$	
S ₀	S ₀ / 0	S ₀ / 0	S ₁ / 0	
S ₁	S ₁ / 0	$S_2/0$	S ₁ / 0	
S ₂	S ₂ / 0	S ₃ / 1	S ₁ / 0	
S ₃	S ₃ / 0	S ₀ / 0	S ₁ / 0	

2. 状态表化简

现态	Q ⁿ⁺¹ / Z				
Qn	$X_1X_2 = 00$	X ₁ X ₂ =01	X ₁ X ₂ =10		
S ₀	S ₀ / 0	S ₀ / 0	S ₁ / 0	1	
S ₁	S ₁ / 0	S ₂ / 0	S ₁ / 0		
S ₂	S ₂ / 0	S ₃ / 1	S ₁ / 0		
S_3	S ₃ / 0	S ₀ / 0	S ₁ / 0	V	

现态		Qn+1/Z	
Qn	X ₁ X ₂ =00	X ₁ X ₂ =01	X ₁ X ₂ =10
S ₀	S ₀ / 0	S ₀ / 0	S ₁ / 0
S ₁	S ₁ / 0	S ₂ / 0	S ₁ / 0
S ₂	S ₂ / 0	S ₀ / 1	S ₁ / 0

3. 状态编码

原则1: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

原则2: S₀S₁ 、 S₁S₂ 、 S₀S₂ 应取相邻编码 ➡

原则3: S₀S₂、S₀S₁、S₁S₂应取相邻编码

\	0	1
0	S ₀	S ₁
1	S ₂	

S₀: 00 S₁: 01 S₂: 10

4、 D触发器的激励表

将CP看作控制函数,D触发器的特质法式为。

征表达式为:

 $Q^{n+1} = D.CP+Q^n.\overline{CP}$

 $CP=1, Q^{n+1}=D$ $CP=0, Q^{n+1}=Q$

驱动表

Q _n	\rightarrow	Q_{n+1}	СР	D
0	\rightarrow	0	0	X
0	\rightarrow	1	1	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	X

\	0	1
0	S ₀	S ₁
1	S ₂	

S₀: 00 S₁: 01 S₂: 10

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2=00$	$X_1X_2=01$	$X_1X_2=10$	
S ₀	S ₀ / 0	S ₀ / 0	S ₁ / 0	
S₁	S ₁ / 0	S ₂ / 0	S ₁ / 0	
S ₂	S ₂ / 0	S ₀ / 1	S ₁ / 0	

确定CP₂: 看Q₂ⁿ→Q₂ⁿ⁺¹

确定 CP_1 : 看 $Q_1^n \rightarrow Q_1^{n+1}$

确定D₂: 看CP₂和Q₂ⁿ⁺¹ 确定D₁: 看CP₁和Q₁ⁿ⁺¹

									٦ .	
输	入辽	又现	态	次	态	1		输入	1	输出
X ₁	X ₂	Q ₂ n	Q_1^n	Q_2^{n+1}	Q ₁ ⁿ⁺¹	CP ₂	D_2	CP ₁	D_1	Z
0	0	0	0	0	0	0	X	0	X	0
0	0	0	1	0	1	0	X	0	X	0
0	0	1	0	1	0	0	X	0	X	0
0	0	1	1	Х	X	X	X	X	X	X
0	1	0	0_	0	0	0	X	0	X	0
0	1	0	1	1	0	1	1	1	0	0
0	1	1	0	0	0	1	0	0	X	1
0	1	1	1	X	X	X	X	X	X	Х
1	0	0	0	0	_ ነ	0	X	1	1	0
1	0	0	1_	0	1	0	X	0	X	0
1	0	1,	Ó	Q	1	1	0	1	1	0
1	0	1	1	X	X	X	X	X	X	Х
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X

5. 卡诺图化简

$$CP_2 = X_2Q_1^n + Q_2^n X_2 + X_1Q_2^n$$

$$D_2 = Q_1^n$$

$$CP_1 = \overline{Q}_1^n X_1 + Q_1^n X_2$$

X_1X_2	ⁿ Q ₁ ⁿ 00	01	11	10
00	0	0	X	0
01	0	0	X	1
11	X	X	X	X
10	0	0	X	0

$$Z = X_2Q_2^n$$

X_1X_2 Q_2	ⁿ Q ₁ ⁿ _00	01	11	10_
00	X	X	X	X
01	X	0	X	X
11	X	X	X	X
10	1	X	X	1

$$D_1 = \overline{Q}_1^n$$

6. 逻辑图

7. 检查无关项

无关状态: $Q_2^nQ_1^n=11$

X₁X₂分别为 00, 01,10时,带入计算

$$\begin{cases} \mathbf{Q}_{2}^{n+1} = \mathbf{D}_{2} = \mathbf{Q}_{1}^{n} \; ; \quad \mathbf{CP}_{2} = \mathbf{X}_{2} \mathbf{Q}_{1}^{n} + \mathbf{Q}_{2}^{n} \, \mathbf{X}_{2} + \, \mathbf{X}_{1} \mathbf{Q}_{2}^{n} \\ \mathbf{Q}_{1}^{n+1} = \mathbf{D}_{1} = \overline{\mathbf{Q}}_{1}^{n} \; ; \quad \mathbf{CP}_{1} = \overline{\mathbf{Q}}_{1}^{n} \mathbf{X}_{1} + \, \mathbf{Q}_{1}^{n} \mathbf{X}_{2} \\ \mathbf{Z} = \mathbf{X}_{2} \mathbf{Q}_{2}^{n} \end{cases}$$

例2: 用D触发器设计一个 $X_1 - X_2 - X_3$ 异步脉冲序列检测器,其中 $X_1 \times X_2 \times X_3$ 为不同时出现的脉冲

1. 建立原始状态表

① 设状态

S₀: 初始状态, X₁X₂X₃=000

S₁: 收到X₁, X₁X₂X₃=100

S₂: 收到X₁-X₂, 即100 →010

S₃: 收到X₁-X₂-X₃, 即100→010→001, 且Z=1。

③ Mealy 状态图

状态表

现态		Q ⁿ⁺¹ / Z					
Qn	$X_1X_2X_3=000$	$X_1X_2X_3=100$	$X_1X_2X_3=010$	$X_1X_2X_3=001$			
S ₀	S ₀ / 0	S ₁ / 0	S ₀ / 0	S ₀ / 0			
S ₁	S ₁ / 0	S ₁ / 0	S ₂ / 0	S ₀ / 0			
S ₂	S ₂ / 0	S ₁ / 0	S ₀ / 0	S ₃ / 1			
S_3	S ₃ / 0	S ₁ / 0	S ₀ / 0	S ₀ / 0			

2. 状态表化简

现态	Q ⁿ⁺¹ / Z					
Qn	$X_1X_2X_3=000$	$X_1X_2X_3=100$	$X_1X_2X_3 = 010$	$X_1X_2X_3=001$		
S ₀	S ₀ / 0	S ₁ / 0	S ₀ / 0	S ₀ / 0		
S ₁	S ₁ / 0	S ₁ / 0	S ₂ / 0	S ₀ / 0		
S ₂	S ₂ / 0	S ₁ / 0	S ₀ / 0	S ₃ / 1		
S ₃	S ₃ / 0	S ₁ / 0	S ₀ / 0	S ₀ / 0		

现态		Q ⁿ⁺¹ / Z										
Q ⁿ	$X_1X_2X_3=000$	$X_1X_2X_3=100$	$X_1X_2X_3 = 010$	$X_1X_2X_3=001$								
S ₀	S ₀ / 0	S ₁ / 0	S ₁ / 0 S ₀ / 0									
S ₁	S ₁ / 0	S ₁ / 0	S ₂ / 0	S ₀ / 0								
S ₂	S ₂ / 0	S ₁ / 0	S ₀ / 0	S ₀ / 1								

3. 状态编码

原则1: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

原则2: S₀S₁、S₁S₂、S₀S₂应取相邻编码

原则3: S₀S₂、S₀S₁、S₁S₂应取相邻编码

\	0	1
0	So	S ₁
1	S ₂	

S₀: 00 S₁: 01 S₂: 10

4、 状态转换真值表

D触发器驱动表

Q _n	\rightarrow	Q_{n+1}	СР	D
0	\rightarrow	0	0	X
0	\rightarrow	1	1	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	Х

S₀: 00 S₁: 01 S₂: 10

状态转换真值表?

异步时序逻辑电路设计

- □ 异步脉冲序列检测器设计
- □ 异步计数器设计

利用触发器设计异步时序逻辑

异步时序逻辑设计的特点

- 异步时序电路中,没有统一的时钟脉冲
- 异步时序电路中要求每次输入信号发生变化后,必须等电路 进入稳定状态,才允许输入信号再次发生改变
- 时钟脉冲作为一个输入变量考虑
- 为避免电路中出现竞争冒险,异步时序电路中每一时刻仅允许一个输入信号发生变化,不允许两个脉冲同时输入。n 个输入端有n+1个输入组合

模5加法计数器

例1: 试用JK触发器设计异步模5加法计数器

- ① 确定触发器个数:需要3个JK触发器,↓触发
- ② 画状态转换图
- ③ 确定触发器CP的接法

CP	Q ₃	Q_2	Q₁ 0	
↓	0	0 0		
→	0	0	1 \	
+	0	1	0 1	
+	0	1	1)	
↓	1	01	0 1	
\	0	0	0	

设计原则

- 时序图中,凡是触发器状态翻转的地方,都必须为其提供时钟脉冲。
- 在满足翻转的前提下, 时钟脉冲越少越好

Q₁——由CP提供下降沿, CP₁=CP

 Q_2 ——翻转两次,需两个下降沿,恰好此时 Q_1 有两个下降沿, $CP_2 = Q_1 \downarrow$

 Q_3 ——翻转两次,需两个下降沿,此时 Q_2 、 Q_1 都不能提供, CP_3 只能接CP

对触发器而言:只要提供时钟, 状态的保持就必须依靠输入端 (如J、K)的控制来实现。

模5加法计数器

④ 状态转换真值表

 $CP_1 = CP_3 = CP \downarrow$, $CP_2 = Q_1 \downarrow$

确定 J_3K_3 : 看 $Q_3^n \rightarrow Q_3^{n+1}$ 确定 J_1K_1 : 看 $Q_1^n \rightarrow Q_1^{n+1}$

现态				输入						输出		
Q_3^{l}	$^{1}\mathbf{Q}_{2}^{\mathrm{n}}$	$\mathbf{Q_1}^n$	Q_3^{n+1}	\mathbf{Q}_2^{n+1}	$\mathbf{Q_1}^{n+1}$	J ₃	K ₃	J ₂	K ₂	J₁	K ₁	Z
0	0	0	0	0	1	0	X	X	X)	1	X	0
0	0	1	0	1	0	0	X(1	X	X	1	0
0	1	0	0	1	1	0	$ \mathbf{x} $	X	X	1	X	0
0	1	1	1	0	0	1	X (X	1	X	1	0
1	0	0	0	0	0	X	1	X	X	0	X	1

此时Q₁无下降沿, J₂ K₂为任意

确定J₂K₂: 看Q₁ⁿ→Q₁ⁿ⁺¹

⑤ 卡诺图化简

$$\mathbf{J_3} = \mathbf{Q_2}^{\mathsf{n}} \mathbf{Q_1}^{\mathsf{n}}$$

$$J_1 = \overline{Q}_3^n$$

$$\begin{cases} J_3 = Q_2^n Q_1^n, K_3 = 1 \\ J_2 = 1, K_2 = 1 \end{cases}$$

$$J_1 = \overline{Q}_3^n, K_1 = 1$$

$$Z = Q_3^n, CP_2 = Q_1 \downarrow, CP_3 = CP_1 = CP$$

⑥ 逻辑图

模5加法计数器

⑦检查无关项

	现态 次态						输出		
\mathbf{Q}_3 r	${}^{1}\mathbf{Q}_{2}^{}$	$\mathbf{Q_1}^n$	Q_3^{n+1}	\mathbf{Q}_{2}^{n+1}	Q ₁ n+1	Q ₁ ⁿ⁺¹ CP ₃ CP ₂ C			Z
1	0	1	0	1	0	+	↓	+	1
1	1	0	0	1	0	↓	0	↓	1
1	1	1	0	0	0	↓	↓	↓	1

$$\begin{cases} J_3 = Q_2^n Q_1^n, K_3 = 1 \\ J_2 = 1, K_2 = 1 \end{cases}$$

$$J_1 = \overline{Q}_3^n, K_1 = 1$$

$$Z = Q_3^n, CP_2 = Q_1 \downarrow, CP_3 = CP_1 = CP$$

十进制异步加法计数器

例2: 用D触发器设计实现十进制异步加法计数器

- ① 确定触发器个数:需要4个D触发器, 1 触发
- ② 画状态转换图

输出方程: $C = Q_3^n Q_0^n$

③ 确定触发器CP的接法

选择时钟脉冲的基本原则:在满足翻转要求的条件下,触发沿越少越好。

十进制异步加法计数器

可太

④ 状态转换真值表

$$\begin{cases} CP_0 = CP \\ CP_1 = \overline{Q}_0 \\ CP_2 = \overline{Q}_1 \\ CP_3 = \overline{Q}_0 \end{cases}$$

⑤ 卡诺图化简

		现在	<u>27</u>		八心				111八							
	Q ₃ ⁿ	$\mathbf{Q_2}^{n}$	Q ₁ ⁿ	Q ₀ ⁿ	Q_3^{n+2}	Q ₂ n+1	Q ₁ n+1	Q_0^{n+1}	CP ₃	CP ₂	CP₁	CP ₀	D_3	D_2	D ₁	D_0
	0	0	0	0	0	0	0	1	0	0	0	1	Х	Х	Х	1
	0	0	0	1	0	0	1	0	†	0	†	†	0	X	1	0
	0	0	1	0	0	0	1	1	0	0	0	†	X	X	X	1
	0	0	1	1	0	1	0	0	↑	†	†	↑	0	1	0	0
	0	1	0	0	0	1	0	1	0	0	0	†	X	X	X	1
	0	1	0	1	0	1	1	0	†	0	†	†	0	X	1	0
	0	1	1	0	0	1	1	1	0	0	0	†	X	X	X	1
	0	1	1	1	1	0	0	0	†	†	†	†	1	0	0	0
	1	0	0	0	1	0	0	1	0	0	0	↑	X	X	X	1
	1	0	0	1	0	0	0	0	↑	0	†	†	0	X	0	0
յ Ծո	n					√O₁ ⁿ C	n					$\sqrt{O_1}^n$) _n n			

る大

$Q_3^n Q_2^n$	1 ⁿ Q ₀ ⁿ	01	11	10								
00	X	1	0	X								
01	X	1	0	X								
11	X	X	X	X								
10	X	0	X	X								
·	$D_1 = \overline{Q_3}^n \overline{Q_1}^n$											

$Q_3^nQ_2^n$	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	X
!		-		

ねる

十进制异步加法计数器

⑦检查无关项

将无效状态1010~1111分 别代入状态方程,可以验证 该电路能够自启动。

		现点	忿		次态				输入				
	Q_3^n	$\mathbf{Q_2}^{n}$	Q ₁ ⁿ	Q_0^n	Q_3^{n+1}	Q ₂ n+1	Q ₁ ⁿ⁺¹	Q_0^{n+1}	CP ₃	CP ₂	CP₁	CP ₀	
١	1	0	1	0	0	0	0	1	0	0	0	†	
ı	1	0	1	1	0	1	0	0	†	†	†	†	
	1	1	0	0	1	1	0	1	0	0	0	†	
'	° 1	1	0	1	0	1	0	0	†	0	†	†	
ı	1	1	1	0	1	1	1	1	0	0	0	†	
ı	1	1	1	1	0	0	0	0	†	†	†	†	

利用触发器设计异步时序逻辑

异步时序逻辑设计的特点

- 异步时序电路中,没有统一的时钟脉冲
- 异步时序电路中要求每次输入信号发生变化后,必须等电路 进入稳定状态,才允许输入信号再次发生改变
- 时钟脉冲作为一个输入变量考虑
- 为避免电路中出现竞争冒险,异步时序电路中每一时刻仅允许一个输入信号发生变化,不允许两个脉冲同时输入。n 个输入端有n+1个输入组合