MECÂNICA QUÂNTICA I

LEFT, 3° Ano -2021/2022

Docentes: Filipe Joaquim, João Penedo, Bernardo Gonçalves

<u>Série 5</u>: Momento angular e spin

Momento angular orbital:

<u>Problema 5.1</u> – Determine os valores próprios de \hat{L}^2 e \hat{L}_z para os estados descritos pelas seguintes funções de onda:

- (a) $Y_{2,1}(\theta,\phi)$.
- (b) $Y_{3,-2}(\theta,\phi)$.
- (c) $\frac{1}{\sqrt{2}}[Y_{3,3}(\theta,\phi)+Y_{3,-3}(\theta,\phi)].$
- (d) $Y_{4.0}(\theta, \phi)$.

Respostas: (a) $6\hbar^2$, \hbar (b) $12\hbar^2$, $-2\hbar$ (c) $12\hbar^2$, não é estado próprio de \hat{L}_z (d) $20\hbar^2$, 0.

<u>Problema 5.2</u> – Considere um sistema inicialmente no estado descrito pela função de onda:

$$\psi(\theta,\phi) = \frac{1}{\sqrt{5}} Y_{1,-1}(\theta,\phi) + \sqrt{\frac{3}{5}} Y_{1,0}(\theta,\phi) + \frac{1}{\sqrt{5}} Y_{1,1}(\theta,\phi)$$

- (a) Determine o valor esperado de \hat{L}_{+} .
- (b) Se $L_{\mathbf{z}}$ for medido, que valores se podem obter e com que probabilidades?
- (c) Se ao medir-se L_z se obtiver $-\hbar$, determine as incertezas $\Delta L_{x,y}$ e o produto $\Delta L_x \Delta L_y$.

Respostas: (a) $2\sqrt{6}\hbar/5$ (b) $P(L_z=-1)=1/5, P(L_z=0)=3/5$, $(L_z=1)=1/5$ (c) $\Delta L_x=\Delta L_y=\hbar/\sqrt{2}$, $\Delta L_x\Delta L_y=\hbar^2/2$.

Problema 5.3 – Considere uma partícula cuja função de onda é dada por:

$$\psi(x,y,z) = \frac{1}{4\sqrt{\pi}} \frac{2z^2 - x^2 - y^2}{r^2} + \sqrt{\frac{3}{\pi}} \frac{xz}{r^2}$$

onde $r = \sqrt{x^2 + y^2 + z^2}$.

- (a) Determine $\hat{L}^2|\psi\rangle$ e $\hat{L}_z|\psi\rangle$. Qual o momento angular total da partícula?
- (b) Determine $\hat{L}_{+}|\psi\rangle$ e $\langle\psi|\hat{L}_{+}|\psi\rangle$.
- (c) Se L_z for medido, qual a probabilidade de o resultado dar $0, \hbar \in -\hbar$?

 $\begin{aligned} & \text{Respostas:} \quad \text{(a)} \quad \hat{L}^{2}|\psi\rangle = 6\hbar^{2}|\psi\rangle, \quad \hat{L}_{z}|\psi\rangle = -\hbar\sqrt{\frac{2}{5}}(|2,-1\rangle + |2,1\rangle), \quad \sqrt{6}\hbar; \quad \text{(b)} \quad \hat{L}_{+}|\psi\rangle = \hbar\sqrt{\frac{6}{5}}|2,1\rangle + \\ & \hbar\sqrt{\frac{2}{5}}(\sqrt{6}\,|2,0\rangle - 2|2,2\rangle), \\ & \langle\psi\,|\hat{L}_{+}|\psi\rangle = 0; \\ & \text{(c)} \ P(L_{z}=0) = 1/5 \ , \\ & \text{($L_{z}=\hbar$)} = 2/5 \ , \\ & \text{($L_{z}=-\hbar$)} = 2/5. \end{aligned}$

Problema 5.4 – Considere uma partícula escalar cuja função de onda é dada por:

$$\psi(x, y, z) = C (2z + y + x)e^{-\alpha r}$$

onde $r = \sqrt{x^2 + y^2 + z^2}$ e C, α são constantes reais.

- (a) Qual o momento angular total da partícula?
- (b) Qual o valor esperado da componente z do momento angular total?
- (c) Se L_Z fosse medido, qual a probabilidade de o resultado dar \hbar ?

Respostas: (a) $\sqrt{2}\hbar$ (b) 0 (c) 1/6.

Problema 5.5 – Considere os estados próprios do momento angular $|\ell m\rangle$. Mostre que

$$\widehat{\Pi} |\ell m\rangle = (-1)^{\ell} |\ell m\rangle,$$

onde $\widehat{\Pi}$ é o operador paridade. O que conclui sobre a paridade dos estados de uma partícula sujeita a um potencial central?

<u>Problema 5.6</u> (Regras de selecção de paridade) – Suponha que $|\alpha\rangle$ e $|\beta\rangle$ são estados próprios de paridade ε_{α} e ε_{β} , respectivamente:

$$\widehat{\Pi}|\alpha\rangle = \varepsilon_{\alpha} |\alpha\rangle$$
 , $\widehat{\Pi}|\beta\rangle = \varepsilon_{\beta} |\beta\rangle$.

Seja \hat{A} um operador Hermítico. Mostre que:

- (a) Se $[\hat{A}, \widehat{\Pi}] = 0$, então $\langle \alpha | \hat{A} | \beta \rangle \neq 0$ se $\varepsilon_{\alpha} \varepsilon_{\beta} = 1$.
- (b) Se $\{\hat{A}, \hat{\Pi}\} = 0$, então $\langle \alpha | \hat{A} | \beta \rangle \neq 0$ se $\varepsilon_{\alpha} \varepsilon_{\beta} = -1$.

<u>Problema 5.7</u> – Mostre que os elementos de matriz $\langle \ell'm'|z|\ell m\rangle$ só não se anulam entre estados com m'=m e $\ell'+\ell=2k+1,\,k=0,1,...$

<u>Problema 5.8</u> – Considere uma partícula com momento angular j=1. Encontre a representação matricial para a componente de \vec{J} ao longo de uma direção arbitrária \vec{n} .

$$\text{Respostas: } \vec{n}.\vec{J} = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\cos\theta & e^{-i\varphi}\sin\theta & 0 \\ e^{i\varphi}\sin\theta & 0 & e^{-i\varphi}\sin\theta \\ 0 & e^{i\varphi}\sin\theta & -\sqrt{2}\cos\theta \end{pmatrix} .$$

<u>Problema 5.9</u> – Determine os níveis de energia de uma partícula que está constrangida a mover-se numa superfície esférica de raio R.

Respostas:
$$E_l = \frac{\hbar^2}{2l} l(l+1), l = 0,1,2,3,...$$

<u>Problema 5.10</u> – Considere o modelo para uma molécula diatómica em que os dois átomos estão separados de uma distância constante R. Determine os níveis de energia rotacionais desta molécula.

Respostas:
$$E_l = \frac{\hbar^2}{2\mu r^2}l(l+1)$$
.

Spin:

Problema 5.11 – O Hamiltoniano de um sistema com spin 1 é dado por

$$\widehat{H} = A\widehat{S}_z^2 + B \left(\widehat{S}_x^2 - \widehat{S}_y^2 \right),$$

com A e B reais. Determine os estados próprios normalizados deste sistema e os respectivos valores próprios.

Respostas: Valores próprios: $E_1=0, E_2=(A+B)\hbar^2, E_3=(A-B)\hbar^2$; Estados próprios: $|1\rangle=|1,0\rangle,$ $|2\rangle=\frac{1}{\sqrt{2}}[|1,1\rangle+|1,-1\rangle],$ $|3\rangle=\frac{1}{\sqrt{2}}[|1,1\rangle-|1,-1\rangle].$

Problema 5.12

- (a) Encontre os valores próprios e estados próprios do spin de um electrão na direcção de um vector unitário \vec{n} pertencente ao plano xz.
- (b) Supondo que o sistema se encontra no estado correspondente ao maior valor próprio do spin na direcção \vec{n} , determine a probabilidade de se medir $S_z=+\hbar/2$.

Respostas: (a) Valores próprios: $\lambda = \pm \hbar/2$; Estados próprios: $|+\rangle_n = \cos \frac{\theta}{2} |+\rangle + \sin \frac{\theta}{2} |-\rangle$, $|-\rangle_n = -\sin \frac{\theta}{2} |+\rangle + \cos \frac{\theta}{2} |-\rangle$; (b) $P = \cos^2 \frac{\theta}{2}$.

Problema 5.13

- (a) Encontre os valores próprios e estados próprios do spin de um electrão na direcção de um vector unitário \vec{n} arbitrária.
- (b) Determine a probabilidade de se medir $S_z = -\hbar/2$, supondo que o sistema se encontra no estado correspondente ao menor valor próprio do spin na direcção \vec{n} .
- (c) Assumindo que os estados próprios de spin determinados na alínea (a) correspondem a t = 0, determine os estados próprios para qualquer instante de tempo t.

 $\begin{aligned} & \text{Respostas: (a) Valores próprios: } \lambda = \pm \hbar/2 \text{ ; Estados próprios: } |+\rangle_n = \cos\frac{\theta}{2}|+\rangle + e^{i\varphi}\sin\frac{\theta}{2}|-\rangle, \ |-\rangle_n = \\ & -\sin\frac{\theta}{2}|+\rangle + e^{i\varphi}\cos\frac{\theta}{2}|-\rangle; \quad \text{(b)} \quad P = \cos^2\frac{\theta}{2} \quad ; \quad \text{(c)} \quad |+(t)\rangle_n = e^{-\frac{iE_+t}{\hbar}}\cos\frac{\theta}{2}|+\rangle + e^{i(\varphi-\frac{E_-t}{\hbar})}\sin\frac{\theta}{2}|-\rangle, \\ & |-(t)\rangle_n = -e^{-\frac{iE_+t}{\hbar}}\sin\frac{\theta}{2}|+\rangle + e^{i(\varphi-\frac{E_-t}{\hbar})}\cos\frac{\theta}{2}|-\rangle \; . \end{aligned}$

Problema 5.14 – Considere uma partícula de spin s = 3/2.

- (a) Encontre as matrizes que representam os operadores \hat{S}_z , \hat{S}_x , \hat{S}_y , \hat{S}_x^2 e \hat{S}_y^2 na base dos estados próprios de \hat{S}^2 e \hat{S}_z .
- (b) Encontre os níveis de energia desta partícula quando o Hamiltoniano é dado por:

$$\widehat{H} = \frac{\epsilon_0}{\hbar^2} \left(\, \widehat{S}_x^2 - \widehat{S}_y^2 \, \right) - \frac{\epsilon_0}{\hbar} \, \widehat{S}_z \, .$$

(c) Se o sistema estiver inicialmente no estado $|\psi_0\rangle = (1,0,0,0)^T$, descreva o estado do sistema para qualquer instante t.

Respostas: (a)
$$\hat{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
, $\hat{S}_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}$, $\hat{S}_{y} = \frac{\hbar}{2}i \begin{pmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}$; (b) $E_{1} = -\frac{5}{2}\epsilon_{0}$, $E_{2} = -\frac{3}{2}\epsilon_{0}$, $E_{3} = \frac{3}{2}\epsilon_{0}$, $E_{4} = \frac{5}{2}\epsilon_{0}$; $|1\rangle = \frac{1}{2}\left(-\sqrt{3},0,1,0\right)^{T}$, $|2\rangle = \frac{1}{2}\left(0,-\sqrt{3},0,1\right)^{T}$, $|3\rangle = \frac{1}{\sqrt{12}}\left(\sqrt{3},0,3,0\right)^{T}$, $|4\rangle = \frac{1}{2}\left(0,1,0,\sqrt{3}\right)^{T}$ (c) $|\psi(t)\rangle = -\frac{\sqrt{3}}{4}\left(-\sqrt{3},0,1,0\right)^{T} \exp\left(\frac{5i\epsilon_{0}t}{\hbar}\right) + \frac{1}{2\sqrt{12}}\left(\sqrt{3},0,3,0\right)^{T} \exp\left(-\frac{3i\epsilon_{0}t}{\hbar}\right)$.

<u>Problema 5.15</u> – Considere um electrão sujeito a um campo magnético uniforme orientado segundo o eixo dos z. Encontre as equações de Heisenberg para S_x , S_y e S_z e resolva-as para obter $S_x(t)$, $S_y(t)$ e $S_z(t)$. Determine os valores esperados destes operadores sabendo que para t=0 o electrão se encontra no estado correspondente a $S_n=\hbar/2$, onde \hat{S}_n é a projecção do spin numa direcção arbitrária \vec{n} .

Respostas: $S_x(t) = \frac{\hbar}{2} \sin \theta \cos(\varphi + \omega t)$, $S_y(t) = \frac{\hbar}{2} \sin \theta \sin(\varphi + \omega t)$, $S_z(t) = \frac{\hbar}{2} \cos \theta$, onde $\omega = eB_0/m_ec$.

<u>Problema 5.16</u> – Uma partícula de spin ½ com momento magnético $\vec{\mu} = \mu_0 \vec{S}$ é sujeita a um campo magnético uniforme $\vec{B} = B_0 \ \vec{e}_x \ (B_0 > 0)$. Em t = 0, tem-se $s_z = 1/2$. Determine a probabilidade de se ter $s_y = \pm 1/2$ para t > 0.

Respostas: $P(s_y = +1/2) = \frac{1}{2}(1 + \sin 2\omega t)$, $P(s_y = -1/2) = \frac{1}{2}(1 - \sin 2\omega t)$, onde $\omega = \mu_0 B_0/2$.

Adição do momento angular:

<u>Problema 5.17</u> — Determine os coeficientes de Clebsch-Gordan correspondentes à adição de dois momentos angulares com j_1 =1 e j_2 =1. Este é um exercício para os mais curiosos. Pode usar como referência o livro *Modern Quantum Mechanics*, de J. J. Sakurai, assim como notas e exemplos que pode encontrar em qualquer pesquisa pela internet.

$$\text{Respostas: } C_{1,1,1,1}^{2,2} = 1, \ C_{1,1,0,1}^{2,1} = C_{1,1,0,0}^{2,1} = \frac{1}{\sqrt{2}}, C_{1,1,-1,1}^{2,0} = C_{1,1,1,-1}^{2,0} = \frac{1}{\sqrt{6}}, C_{1,1,0,0}^{2,0} = \frac{2}{\sqrt{6}}, \ C_{1,1,-1,0}^{2,-1} = C_{1,1,0,-1}^{2,-1} = \frac{1}{\sqrt{2}}, C_{1,1,-1,1}^{2,0} = \frac{1}{\sqrt{2}}, C_{1,1,0,0}^{2,0} = \frac{2}{\sqrt{6}}, C_{1,1,0,0}^{2,0} = \frac{2}{\sqrt{6}}, C_{1,1,-1,0}^{2,-1} = C_{1,1,0,0}^{2,-1} = C_{1,1,0,0}^{2,0} = \frac{1}{\sqrt{3}}, C_{1,1,1,0,0}^{2,0} = \frac{1}{\sqrt{3}}, C_{1,1,1,1,0}^{2,0} = \frac{1}{\sqrt{3}}, C_{1,1,1,1,1,0}^{2,0} = \frac{1}{\sqrt{3}}, C_{1,1,1,1,1,1,1}^{2,0} = \frac{1}{\sqrt{3}}, C_{1,1,1,1,1,1}^{2,0} = \frac{1}{\sqrt{3}}, C_{1,1,1,1,1,1}^$$

<u>Problema 5.18</u> – Use as propriedades dos operadores de subida e descida do momento angular para obter a decomposição dos estados $|j, m_j = \ell - 1/2\rangle$ (onde j é o momento angular total) em função dos estados $|\ell m_\ell; s, m_s\rangle$ onde s = 1/2.

Respostas:
$$\left|\ell + \frac{1}{2}, \ell - \frac{1}{2}\right\rangle = \frac{1}{\sqrt{2l+1}} \left[\sqrt{2l} \left|\ell, \frac{1}{2}; \ell - 1, \frac{1}{2}\right\rangle + \left|\ell, \frac{1}{2}; \ell, -\frac{1}{2}\right\rangle\right];$$

$$\left| \ell - \frac{1}{2}, \ell - \frac{1}{2} \right\rangle = \frac{1}{\sqrt{2l+1}} \left[\sqrt{2l} \left| \ell, \frac{1}{2}; \ell, -\frac{1}{2} \right\rangle - \left| \ell, \frac{1}{2}; \ell - 1, \frac{1}{2} \right\rangle \right].$$

<u>Problema 5.19</u> — Duas partículas A (spin 1) e B (spin 2) estão em repouso num estado de spin total igual 3 e componente em z igual a 1. Se medirmos S_z para a partícula B, quais os valores que poderemos obter e quais as respectivas probabilidades?

Respostas:
$$P(S_{B_Z}=2\hbar)=\frac{1}{15}, P(S_{B_Z}=\hbar)=\frac{8}{15}, P(S_{B_Z}=0)=\frac{6}{15}$$
.

<u>Problema 5.20</u> – Um electrão $|\uparrow\rangle$ encontra-se no estado ψ_{510} do átomo de hidrogénio. Se fizermos uma medida de J^2 do electrão, quais os valores que poderemos obter e com que probabilidades?

Respostas:
$$P(j = 3/2) = \frac{2}{3}$$
, $J^2 = \frac{15}{4}\hbar^2$; $P(j = 1/2) = \frac{1}{3}$, $J^2 = \frac{3}{4}\hbar^2$.

Problema 5.21

- (a) Determine o spin total de um sistema de três partículas de spin 1/2 e determine os coeficientes de Clebsch-Gordan correspondentes.
- (b) Considere um sistema de 3 partículas de spin ½ descrito pelo Hamiltoniano:

$$\widehat{H} = E_0 \; (\; \hat{\vec{S}}_1.\hat{\vec{S}}_3 + \hat{\vec{S}}_2.\hat{\vec{S}}_3 \;)/\hbar^2.$$

Determine os níveis de energia do sistema e as respectivas degenerescências.

Respostas: (a) Com $S_{12} = 0$ e $S_3 = 1/2$: $\left|\frac{1}{2}, \frac{1}{2}\right\rangle = \frac{1}{\sqrt{2}}[|\uparrow\downarrow\uparrow\rangle - |\downarrow\uparrow\uparrow\rangle]$, $\left|\frac{1}{2}, -\frac{1}{2}\right\rangle = \frac{1}{\sqrt{2}}[|\uparrow\downarrow\downarrow\rangle - |\downarrow\uparrow\downarrow\rangle]$; com $S_{12} = 1$ e $S_3 = 1/2$: $\left|\frac{3}{2}, \frac{3}{2}\right\rangle = |\uparrow\uparrow\uparrow\rangle$, $\left|\frac{3}{2}, \frac{1}{2}\right\rangle = \frac{1}{\sqrt{3}}|\uparrow\uparrow\downarrow\rangle + \frac{1}{\sqrt{3}}[|\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle]$, $\left|\frac{3}{2}, -\frac{1}{2}\right\rangle = \frac{1}{\sqrt{3}}|\downarrow\downarrow\uparrow\rangle + \frac{1}{\sqrt{3}}[|\downarrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle]$, $\left|\frac{3}{2}, -\frac{3}{2}\right\rangle = |\downarrow\downarrow\downarrow\rangle$, $\left|\frac{1}{2}, \frac{1}{2}\right\rangle = \frac{1}{\sqrt{3}}|\uparrow\uparrow\downarrow\rangle - \frac{1}{\sqrt{3}}[|\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle]$, $\left|\frac{1}{2}, -\frac{1}{2}\right\rangle = -\sqrt{\frac{2}{3}}|\downarrow\downarrow\uparrow\rangle + \frac{1}{\sqrt{6}}[|\downarrow\uparrow\downarrow\rangle + |\uparrow\downarrow\downarrow\rangle]$.

(b) Com
$$E_{S_{12},S}$$
, $E_{0,1/2}=0$ $(d=2)$, $E_{1,3/2}=\frac{E_0}{2}$ $(d=4)$, $E_{1,1/2}=-\frac{3}{2}E_0$ $(d=2)$.

<u>Problema 5.22</u> — Uma partícula sujeita a um potencial central tem momento angular orbital $\ell=2$ e spin s=1. Determine os níveis de energia e degenerescências associados à interação spin-órbita do tipo $\hat{H}_{SO}=A\,\hat{\vec{L}}.\,\hat{\vec{S}},$ onde A é uma constante.

Respostas:
$$E_{SO} = \begin{cases} 2A\hbar^2 & (j=3) \\ -A\hbar^2 & (j=2) , \ d=2j+1. \\ -3A\hbar^2 & (j=1) \end{cases}$$

<u>Problema 5.23</u> – Duas partículas A e B de spin 1/2 formam um sistema composto. Sabese que $S_{A,z} = 1/2$ e $S_{B,x} = 1/2$. Qual a probabilidade de uma medida do spin total do sistema dar zero?

Respostas: $P(S=0) = \frac{1}{4}$.

Problema 5.24 – Um sistema de duas partículas de spin $s_1 = 3/2$ e $s_2 = 1/2$ é descrito pelo Hamiltoniano $\widehat{H} = A\hat{\vec{S}}_1.\hat{\vec{S}}_2$, com A constante. Em t=0, o sistema encontra-se no estado $|s_1, m_{s1}\rangle |s_2, m_{s2}\rangle = \left|\frac{3}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle$. Qual o estado do sistema para t>0? Qual a probabilidade de encontrar o sistema no estado $\left|\frac{3}{2}, \frac{3}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle$ para t>0?

$$\text{Respostas: } t > 0 : \frac{\sqrt{3}}{2} e^{-i\frac{3}{4}\hbar At} |2,1\rangle - \frac{1}{2} e^{i\frac{5}{4}\hbar At} |1,1\rangle, \ P\left(\left|\frac{3}{2},\frac{3}{2}\right\rangle \left|\frac{1}{2},-\frac{1}{2}\right\rangle,t\right) = \frac{3}{4} \sin^2(A\hbar t) \ .$$

<u>Problema 5.25</u> — Um átomo de Hidrogénio encontra-se no estado ${}^2P_{1/2}$ com momento angular total orientado para cima segundo o eixo dos zz.

- (a) Qual a probabilidade de encontrar o electrão com spin para baixo?
- (b) Determine a função de onda do electrão sabendo que se encontra no estado com n=2.

Respostas: (a)
$$P = \frac{2}{3}$$
; (b) $\psi(r, \theta, \varphi) = \frac{R_{2,1}}{\sqrt{3}} \begin{pmatrix} -Y_1^0 \\ \sqrt{2}Y_1^1 \end{pmatrix}$.

<u>Problema 5.26</u> – Dados dois momentos angulares $\hat{\vec{J}}_1$ e $\hat{\vec{J}}_2$ com $j_1=1$ e $j_2=1/2$, calcule os coeficientes de Clebsh-Gordan para os estados $|j,m\rangle = |\frac{3}{2},\frac{3}{2}\rangle$ e $|j,m\rangle = |\frac{3}{2},\frac{1}{2}\rangle$.

Respostas:
$$C_{1,1/2;1,1/2}^{3/2,3/2}=1,\ C_{1,1/2;0,1/2}^{3/2,1/2}=\sqrt{2/3}$$
 , $C_{1,1/2;1,-1/2}^{3/2,1/2}=1/\sqrt{3}$.

<u>Problema 5.27</u> — As partículas elementares (e também as compostas) são, por vezes, classificadas por um número quântico denominado isospin I, cujas propriedades são as mesmas do spin. Considere as reacções:

$$K^-p o \Sigma^-\pi^+$$
 , $\Sigma^+\pi^-$, $\Sigma^0\pi^0$

que ocorrem através de ressonâncias com isospin total bem definido. Tendo em conta que o isospin se conserva e que as partículas acima descritas estão distribuídas pelos estados próprios de isospin da seguinte forma:

$$\binom{p}{n}$$
, $\binom{\pi^+}{\pi^0}$, $\binom{\Sigma^+}{\Sigma^0}$, $\binom{K^0}{K^-}$,

determine as probabilidades relativas associadas a estes processos quando ocorrem através de uma ressonância com I=1.

Respostas: $P(\Sigma^-\pi^+)$: $P(\Sigma^+\pi^-)$: $P(\Sigma^0\pi^0)=1$: 1: 0