Module 4.6: Backpropagation: Computing Gradients w.r.t. Hidden Units

Quantities of interest (roadmap for the remaining part):

- Gradient w.r.t. output units
- Gradient w.r.t. hidden units
- Gradient w.r.t. weights and biases

$$\frac{\partial \mathcal{L}(\theta)}{\partial W_{111}} = \underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a_3}}_{\text{Talk to the weight directly}} \underbrace{\frac{\partial a_3}{\partial h_2} \frac{\partial h_2}{\partial a_2}}_{\text{Talk to the output layer}} \underbrace{\frac{\partial a_2}{\partial h_2} \frac{\partial h_1}{\partial a_1}}_{\text{Talk to the output layer}} \underbrace{\frac{\partial a_3}{\partial h_2} \frac{\partial h_2}{\partial a_2}}_{\text{Talk to the output layer}} \underbrace{\frac{\partial a_2}{\partial h_1} \frac{\partial h_1}{\partial a_1}}_{\text{Talk to the and now previous hidden layer}}$$

• Our focus is on *Cross entropy loss* and *Softmax* output.

$$\frac{\partial p(z)}{\partial z} = \sum_{m} \frac{\partial p(z)}{\partial q_m(z)} \frac{\partial q_m(z)}{\partial z}$$

$$\frac{\partial p(z)}{\partial z} = \sum_{m} \frac{\partial p(z)}{\partial q_m(z)} \frac{\partial q_m(z)}{\partial z}$$

In our case:

• p(z) is the loss function $\mathscr{L}(\theta)$

$$\frac{\partial p(z)}{\partial z} = \sum_{m} \frac{\partial p(z)}{\partial q_m(z)} \frac{\partial q_m(z)}{\partial z}$$

In our case:

- p(z) is the loss function $\mathcal{L}(\theta)$
- $z = h_{ij}$

$$\frac{\partial p(z)}{\partial z} = \sum_{m} \frac{\partial p(z)}{\partial q_m(z)} \frac{\partial q_m(z)}{\partial z}$$

In our case:

- p(z) is the loss function $\mathcal{L}(\theta)$
- $z = h_{ij}$
- $q_m(z) = a_{Lm}$

 $\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}}$

$$a_{i+1} = W_{i+1} h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$

$$a_{i+1} = W_{i+1} h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1} = 0$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1} = 0$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathscr{L}(\theta) = \left[\quad ; W_{i+1, \cdot, j} = \right]$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathscr{L}(\theta) = \begin{bmatrix} \frac{\partial \mathscr{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} \vdots \\ \vdots \\ \end{bmatrix}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ W_{i+1,\cdot,j} \end{bmatrix} ; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ M_1 \end{bmatrix}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \vdots \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ \vdots \end{bmatrix}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,k}} \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ \vdots \end{bmatrix}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,k}} \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ W_{i+1,k,j} \end{bmatrix} \qquad a_{2}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,k}} \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ W_{i+1,k,j} \end{bmatrix} \qquad a_{2}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,k}} \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ W_{i+1,k,j} \end{bmatrix} \qquad a_{2}$$

 $W_{i+1,\cdot,j}$ is the j-th column of W_{i+1} ;

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,k}} \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ W_{i+1,k,j} \end{bmatrix}$$

 $W_{i+1,\cdot,j}$ is the j-th column of W_{i+1} ; see that,

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,k}} \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ W_{i+1,k,j} \end{bmatrix}$$

 $W_{i+1,\cdot,j}$ is the j-th column of W_{i+1} ; see that,

$$(W_{i+1,\cdot,j})^T \nabla_{a_{i+1}} \mathscr{L}(\theta) =$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} \frac{\partial a_{i+1,m}}{\partial h_{ij}}$$
$$= \sum_{m=1}^{k} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$\nabla_{a_{i+1}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,k}} \end{bmatrix}; W_{i+1,\cdot,j} = \begin{bmatrix} W_{i+1,1,j} \\ \vdots \\ W_{i+1,k,j} \end{bmatrix}$$

 $W_{i+1,\cdot,j}$ is the j-th column of W_{i+1} ; see that,

$$(W_{i+1,\cdot,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) = \sum_{m=1}^k \frac{\partial \mathcal{L}(\theta)}{\partial a_{i+1,m}} W_{i+1,m,j}$$

$$a_{i+1} = W_{i+1}h_{ij} + b_{i+1}$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h_i}} \mathscr{L}(\theta)$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$abla_{\mathbf{h_i}}\mathscr{L}(heta) = \left[egin{array}{c} & & & \\ & & &$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$abla_{\mathbf{h_i}}\mathscr{L}(heta) = egin{bmatrix} rac{\partial \mathscr{L}(heta)}{\partial h_{i1}} \\ & = egin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix} = egin{bmatrix} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{pmatrix}$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,..,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} \\ \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ \end{bmatrix}$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h}_{i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i2}} \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^{T} \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ \end{bmatrix}$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i2}} \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ (W_{i+1,\cdot,2})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \end{bmatrix}$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i2}} \\ \vdots \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ (W_{i+1,\cdot,2})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ \vdots \end{bmatrix}$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i2}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{in}} \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ (W_{i+1,\cdot,2})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ \vdots \\ \vdots \end{bmatrix}$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_1}} \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_2}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_n}} \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ (W_{i+1,\cdot,2})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ \vdots \\ (W_{i+1,\cdot,n})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \end{bmatrix}$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h}_{i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_{1}}} \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_{2}}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_{n}}} \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^{T} \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ (W_{i+1,\cdot,2})^{T} \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ \vdots \\ (W_{i+1,\cdot,n})^{T} \nabla_{a_{i+1}} \mathcal{L}(\theta) \end{bmatrix}$$
$$= (W_{i+1})^{T} (\nabla_{a_{i+1}} \mathcal{L}(\theta))$$

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h_{i}}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_{1}}} \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_{2}}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i_{n}}} \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^{T} \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ (W_{i+1,\cdot,2})^{T} \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ \vdots \\ (W_{i+1,\cdot,n})^{T} \nabla_{a_{i+1}} \mathcal{L}(\theta) \end{bmatrix}$$
$$= (W_{i+1})^{T} (\nabla_{a_{i+1}} \mathcal{L}(\theta))$$

• We are almost done except that we do not know how to calculate $\nabla_{a_{i+1}} \mathcal{L}(\theta)$ for i < L-1

We have,
$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} = (W_{i+1,.,j})^T \nabla_{a_{i+1}} \mathcal{L}(\theta)$$

$$\nabla_{\mathbf{h_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{i2}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{in}} \end{bmatrix} = \begin{bmatrix} (W_{i+1,\cdot,1})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ (W_{i+1,\cdot,2})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \\ \vdots \\ (W_{i+1,\cdot,n})^T \nabla_{a_{i+1}} \mathcal{L}(\theta) \end{bmatrix}$$
$$= (W_{i+1})^T (\nabla_{a_{i+1}} \mathcal{L}(\theta))$$

- We are almost done except that we do not know how to calculate $\nabla_{a_{i+1}} \mathcal{L}(\theta)$ for i < L-1
- We will see how to compute that

 $\nabla_{\mathbf{a_i}}\mathscr{L}(\theta)$

$$\nabla_{\mathbf{a_i}}\mathscr{L}(\theta) =$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \end{bmatrix}$$

$$\nabla_{\mathbf{a_i}} \mathscr{L}(\theta) = \begin{bmatrix} \frac{\partial \mathscr{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \vdots \end{bmatrix}$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix}$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix}$$
$$\frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}}$$

$$\begin{split} \nabla_{\mathbf{a_i}} \mathcal{L}(\theta) &= \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix} \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} &= \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} \frac{\partial h_{ij}}{\partial a_{ij}} \end{split}$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} = \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} \frac{\partial h_{ij}}{\partial a_{ij}}$$

$$= \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} g'(a_{ij}) \quad [\because h_{ij} = g(a_{ij})]$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} = \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} \frac{\partial h_{ij}}{\partial a_{ij}}$$

$$= \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} g'(a_{ij}) \quad [\because h_{ij} = g(a_{ij})]$$

$$\nabla_{\mathbf{a_i}} \mathscr{L}(\theta)$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} \end{bmatrix}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} = \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} \frac{\partial h_{ij}}{\partial a_{ij}}$$

$$= \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} g'(a_{ij}) \quad [\because h_{ij} = g(a_{ij})]$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} = \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} \frac{\partial h_{ij}}{\partial a_{ij}}$$

$$= \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} g'(a_{ij}) \quad [\because h_{ij} = g(a_{ij})]$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} g'(a_{i1}) \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} g'(a_{i1}) \end{bmatrix}$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} = \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} \frac{\partial h_{ij}}{\partial a_{ij}}$$

$$= \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} g'(a_{ij}) \quad [\because h_{ij} = g(a_{ij})]$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} g'(a_{i1}) \\ \vdots \\ \vdots \end{bmatrix}$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} = \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} \frac{\partial h_{ij}}{\partial a_{ij}}$$

$$= \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} g'(a_{ij}) \quad [\because h_{ij} = g(a_{ij})]$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} g'(a_{i1}) \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{in}} g'(a_{in}) \end{bmatrix}$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial a_{i1}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial a_{in}} \end{bmatrix}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial a_{ij}} = \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} \frac{\partial h_{ij}}{\partial a_{ij}}$$

$$= \frac{\partial \mathcal{L}(\theta)}{\partial h_{ij}} g'(a_{ij}) \quad [\because h_{ij} = g(a_{ij})]$$

$$\nabla_{\mathbf{a_i}} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial \mathcal{L}(\theta)}{\partial h_{i1}} g'(a_{i1}) \\ \vdots \\ \frac{\partial \mathcal{L}(\theta)}{\partial h_{in}} g'(a_{in}) \end{bmatrix}$$

$$= \nabla_{h_i} \mathcal{L}(\theta) \odot [\dots, g'(a_{ik}), \dots]$$

