Alibaba Group

高可用HBase的技术实践

沈春辉

2016-3

内容大纲

- HBase特点简介
- HBase在阿里使用状况
- Ali-HBase的高可用实践

HBase的特点简介

- 描述

以表的形式组织数据,提供实时更新、增量导入、随机查询、 条件范围查询能力的分布式NOSQL数据库

- 基因

- 自动分区
- LSM-Tree
- 基于K-V的行组织
- 存储计算分离(base on HDFS)
- 单点服务

HBase的特点简介

数据模型	访问方式	性能与扩展	安全与稳定	数据导入导出
列的名字、数目、 长度无需定义	1. 实时写入/更新/删除,支持批量、异步等方式 2. 后台导入,直接生成存储格式的文件,十分高效 3. 设置数据有效期,过期自动删除 4. 指定主键(Row)的随机查询 5. 有条件(为主键或列设定条件)的范围查询 6. 协处理器(类似于RDB中的触发器与存储过程) 7. 事务:支持单行、同分区跨行的事务 8. 索引:主键索引,不支持列的二级索引 9. 数据强一致性,强持久性 10.程序语言支持:原生客户端仅支持JAVA,C、PHP可以通过代理方式访问(自带Thrift框架) 11.外部扩展支持,SQL引擎(Apache-Phoenix,近SQL-92标准,JDBC驱动)	物理机级规模 2. 扩容无需数据迁移,即扩即用 3. 大表自动分裂,支持分区在线合并 4. 扩展能力依赖表分区,Row设计需要防热点 5. 存储层采用LSM树,相比于B-Tree(读写对等),写能力>读能力	1. 存储层默认三副本,数据可靠性高 2. 支持表快照,方便冷备 3. 系统内部采用M-S架构 4. Master支持热备,Master故障影响DDL,不影响DML 5. Slave故障,影响可用性,部分数据区域的DML不可用,会自动恢复 6. 支持系统级的M-M灾备 7. 支持用户认证与授权	1. 跨系统,支持导入/ 导出CSV格式的数据 2. 同系统,支持distcp 直接拷贝底层存储文 件,快速导入 3. 使用sqoop,在 HBase/mysql/orca le/hive等系统间相 互迁移数据

HBase的特点简介

场景	适用描述
结构化数据 在线存取	用户的前台数据实时读写HBase,如电商交易行为 产生的各种记录
高吞吐 数据写入	日志、消息、监控、聊天等需要高吞吐写入的数据存 取
海量数据 实时写入 与查询	安全风控场景,在线、离线写入大量用户行为数据,实时查询判断行为风险
实时流计算 的底层存储	作为流计算平台(Galaxy、JStorm)的中间计算和结果数据的存储

HBase在阿里的使用状况

HBase在阿里的使用状况

- 2011.5 上线第一个HBase应用
- 到目前

单集群 上干

200+业务

10+IDC

高可用HBase---目标

- SLA

Level of Availability	Percent of Uptime	Downtime per Year	Downtime per Day	
1 Nine	90%	36.5 days	2.4 hrs.	
2 Nines	99%	3.65 days	14 min.	
3 Nines	99.9%	8.76 hrs.	86 sec.	
4 Nines	99.99%	52.6 min.	8.6 sec.	
5 Nines	99.999%	5.25 min.	.86 sec.	
6 Nines	99.9999%	31.5 sec.	8.6 msec	

高可用HBase---目标

- MTTR (Mean Time To Recover)
- 影响因素
 - 集群规模
 - 系统压力
 - 故障范围
 - 故障缘由
- 目标
 - 多集群: 1~5分钟, 大多数 < 2 分钟
 - 单集群: 1~30分钟, 大多数 < 10分钟

高可用HBase---目标

- MTBF (Mean Time Between Failures)
- 影响因素
 - 升级
 - 变更
 - 迁移
 - 容量
 - 用户不规则活动
 - 软件不够健壮
- 目标
 - 变更行为的标准化、程序化
 - 增强软件健壮性

高可用HBase---运行环境

- 运行环境

- 电力
 - RPO 减少数据丢失量
 - Datanode
 - dfs.datanode.synconclose = true
 - Regionserver
 - 引入fsync (FSDataOutputStream #hsync())
 - 定期Flush

- 网络

• 异常: 快速感知

• 中断:区域可用,快速恢复

- 依赖部署避免跨机房

- Zookeeper
 - Zk层面
 - 提高 jute.maxbuffer
 - 降低 maxClientCnxns
 - HBase服务端与客户端争抢zk资源
 - 临时保护 iptables
 - TODO on ZK
 - » 请求Quota
 - » 服务隔离
 - Regionserver层面
 - 提高zookeeper.recovery.retry
 - 容忍zk不可用 (Replication)

- HDFS

- Namenode
 - 提高 dfs.qjournal.start-segment.timeout.ms
 - 提高 dfs.qjournal.write-txns.timeout.ms
 - 屏蔽stale node
 - » dfs.namenode.avoid.read.stale.datanode = true
 - » dfs.namenode.avoid.write.stale.datanode = true
- Datanode
 - 坏盘容忍 dfs.datanode.failed.volumes.tolerated
 - 提高 dfs.datanode.max.xcievers
- Regionserver
 - 容忍HDFS不可用(Flush、Roll HLog)

HBase - MBTF 提高健壮,力求不跪

- HBase

- 监视(WEBUI、监控、报警、脚本)
 - 系统、GC
 - 全局: Region大小、文件数目、完整性(hbck)
 - Memstore : blocking update
 - Hlog: .logs数目、.oldlogs数目、
 - Flush: delaying flush
 - Compaction: 文件选择的合理性(BulkLoad下建议使用 ExploringCompaction)
 - RPC: Queue、Handler
 - Replication:积压Log

- HBase
 - 监视
 - 服务端Trace
 - » 跟踪满足匹配条件的请求在服务端的执行情况,包括来源、处理时间、资源开销等

Call Tracker Current State 清屏

Enabled	l Log Oper	Proce	ssingTime(π	s) Respo	onseSize(byte	e) Table		RegionEnco	deName	MethodNam	е	关键字过	滤
false	false	1		0		null		null		null		null	
Open	Open	1	重设		重设		重设		 便		重设		重设

- HBase

- 监视
 - 全链路调试
 - » 服务端可以通过主动的方式获取客户端的配置,调用方式,运行开销 ,运行统计等信息,从而获得请求的全链路执行信息

Client Communication Interface

- HBase
- 控制
 - 隔离-资源分组 (HBASE-6721) (多租户)

Group	ServerNum	TableNum	RegionNum	RequestsPerSecond	StoreFileSize	GroupAttributes
buffer	0	0	0	0	0 B	N/A
emen	44	141	32,461	20,531	61.26 TB	BALANCE_SWITCH => 'true'
طلعهمل	2	4	35	47	95.05 GB	N/A
no milino	24	40	4,634	278	8.19 TB	BALANCE_SWITCH => 'true'
<u>ettimos</u>	30	10	3,202	211,770	13.07 TB	BALANCE_SWITCH => 'true'
Total:5	100	195	40,332	232,626	82.62 TB	

- HBase

- 控制
 - 隔离
 - » 关Balance + Move Region
 - » Meta表打爆 (用户与系统隔离)
 - 拒绝访问
 - » Iptables
 - » ACL
 - » 读写开关
 - » 黑白名单机制,拒绝 HOST+ Method条件的RPC
 - 限制资源使用
 - » 针对大Scan的资源保护
 - » Compaction/Flush限速,控制线程数

- HBase
 - 热点问题
 - 预防
 - » Salted Table
 - » MD5
 - 发现
 - » Region Load 排序

Region Load Data in Recent One Minute

- HBase
 - 热点问题
 - 发现
 - » 通过Trace发现行热点
 - 处理
 - » 分裂
 - » 隔离
 - » 业务改造

- HBase

- 在线解决
 - 配置热调整

» 表: hbase.online.schema.update.enable true

» RS : update_all_config

» RS: update_config 'servername'

- 热补丁
 - » JSP + 反射
- 滚动升级

- HBase
 - 业务迁移
 - 平滑切流
 - » 地址虚拟化 (不直接使用zk1,zk2,zk3:2181:/hbase-znode)
 - » VZNODE
 - » 第三方地址服务
 - » 查询强一致业务,需要停写开关
 - 不停服,移动数据
 - » SNAPSHOT + Replication (推荐)
 - » 建空表 -> 切流量 -> Bulk Load (适合迁移期间只写)
 - » Distcp + HLog Replay (无snapshot依赖)

HBase - MTTR 争分夺秒,满血复活

- HBase

- MTTR
 - 防止局部影响的连锁反应
 - 常规提速
 - » Distributed-Log-Replay(HBASE-7006):先恢复写服务,再恢复数据,最后恢复读服务
 - » Meta-Log优先Split/Replay
 - » 设置合理的Recover Lease超时时间
 - » 持久化Region的最近Flush Sequence Id
 - » 支持脏读
 - » Assign Region提速 (Bulk Assign、并行ZK操作、提高RS中openregion线程数、减少对NN的重复访问)

- HBase
 - MTTR
 - 非常规提速
 - » 设置恢复优先级
 - » 移除splitting-logs, 灾后重建 (适合脏读业务)

容灾,跑路

- 多集群冗余

- 使用HBase-Replication,构建数据复制链路
 - 同城服务容灾,异地数据容灾

- 多集群冗余

- 多集群链路下, 支持数据的任意流动
- 支持表复制只选择个别peer(s)(数据链路)
- 循环链路下的数据去重
 - 无环 A<->B<->C √
 - 单向环 A->B->C->A √
 - 避免双向环 A<->B<->C<->A ×(或者进行去重优化)

- 多集群冗余

- 降低异步复制的弊端
 - 明确同步时间点

Replication Topology:

Master -> Slave	ReplSyncedTime	M-View Delay	LogQueue	RS-LEVEL-LOAD	M-REPL-STATUS	
hbase-ag-cell -> hbase-gg-cell	2015-10-07 13:39:27	MAX: 18.00 ms	MAX: 0	Detail	hbase- E cell	
IIDase IIDase	(1444196367751)	AVG: 11.00 ms	AVG: 0	Detail	nbase- cen	
hbase-212-cell -> hbase-222-111-cloud	2015-10-07 13:39:25	MAX: 186.00 ms	MAX: 0	Deteil	hbase cell	
IIDase-11 1-cell -> IIDase-1111-cioud	(1444196365600)	AVG: 70.00 ms	AVG: 0	<u>Detail</u>		
hbase-mia-cell ->	2015-10-07 13:39:27	MAX: 102.00 ms	MAX: 0	<u>Detail</u>	hbase	
ilbase	(1444196367765)	AVG: 8.00 ms	AVG: 0	Detail		
hbase-113-cell ->	2015-10-07 13:39:28	MAX: 0.00 ms	MAX: 0	Detail	hbase	
ilbase	(1444196368543)	AVG: 0.00 ms	AVG: 0	Detail		
hbase-cell -> hbase-mate-h5	2015-10-07 13:39:27	MAX: 199.00 ms	MAX: 0	Detail	hbase	
IIDase IIDase IIDase- III	(1444196367716)	AVG: 66.00 ms	AVG: 0	Detail	iibase-	
hbase-cell -> hbase-cell	2015-10-07 13:39:25	MAX: 0.00 ms	MAX: 0	Detail	hbase	
ilbase ilbase Cell	(1444196365067)	AVG: 0.00 ms	AVG: 0	Detail	nbase-ems-cen	
hbase-tage-h5 -> hbase-tagecell	2015-10-07 13:39:33	MAX: 54.00 ms	MAX: 0	Dotail	hhasa br	
IIDase-	(1444196373825)	AVG: 20.00 ms	AVG: 0	<u>Detail</u>	hbase	

- 多集群切换

- 不同集群的部署保持独立性
- 平滑切流
 - 地址虚拟化 (客户端不直接使用服务端的ZK地址)
 - » VZNODE
 - » 第三方地址服务

- 异步复制下,针对强一致业务,会先打开禁写开关,等到数据在主备完全同步后,再进行切换

- 强一致与持续可用
 - 自动切换
 - 分布式数据库与单机数据库的故障区别
 - » 前者可以自我恢复
 - 可用性量化
 - 切换的容错性
 - 主备集群的强同步复制

Thank you! Join US!

邮箱: zjusch@163.com