Indian Institute of Technology, Patna MA102, B.Tech -I year Spring Semester: 2013-2014 (Mid Semester Examination)

Maximum Marks: 30

Time: 2 Hours

Note:

- (i) Please check all pages and report the discrepancy, if any.
- (ii) Attempt all questions.
- 1. Determine whether the following system of linear equations is consistent? Find the solutions in case the system is consistent.

$$x_2 - 4x_3 = 8$$

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$5x_1 - 8x_2 + 7x_3 = 1$$

[2.5]

2. Find the inverse of the matrix A using the elementary row operations, where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 2 \end{bmatrix}.$$

[2.5]

- 3. Let V(C) be the vector space of all polynomials in x with complex coefficients. Let $p(x) \in V(C)$. Then p(x) is called an even (odd) polynomial if p(-x) = p(x) (p(-x) = -p(x)). Then prove that
 - (a) The set W_1 of even polynomials in V(C) and the set W_2 of odd polynomials in V(C) are subspaces of V(C). [3]

(b)
$$V(C) = W_1 + W_2$$
 and $W_1 \cap W_2 = \{0\}.$ [2]

4. Write the vector $x = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix}$, in the vector space of 2×2 real matrices, as a linear combination of

$$x_1 = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

[2]

5. Let W be the subspace generated by the polynomials

$$p_1 = x^3 + 2x^2 - 2x + 1$$
, $p_2 = x^3 + 3x^2 - x + 4$, $p_3 = 2x^3 + x^2 - 7x - 7$.

Find a basis and dimension of W.

[3]

- 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(a,b,c) = (a-b,a+2b,b+3c), (a,b,c) \in \mathbb{R}^3$. Then show that T is invertible and determine T^{-1} .
- 7. Let P_n denotes the vector space of all real polynomials in t of degree < n. Differentiation is a linear transformation from P_n to P_{n-1} over R. Also integration defined by

$$\int (a_0 + a_1 t + \dots + a_{n-2} t^{n-2}) = a_0 t + \frac{a_1}{2} t^2 + \dots + \frac{a_{n-2}}{n-1} t^{n-1}$$

is a linear transformation from P_{n-1} to P_n over R. consider the differentiation transformation $f: P_4 \to P_3$ and the integration transformation $g: P_3 \to P_4$. Let X be the basis $\{1, t, t^2, t^3\}$ of P_4 and Y be the basis $\{1, t, t^2\}$ of P_3 .

- (a) Find the matrix of f with respect to X and Y. [1.5]
- (b) Find the matrix of g with respect to Y and X. [1.5]
- 8. Let A be a square matrix of order n and P be a non-singular matrix of order n. Then eigen values of A and PAP^{-1} are same. [1]
- 9. For the matrix $A = \begin{bmatrix} a & 1 & -2 \\ -1 & 2 & b \\ 0 & c & -1 \end{bmatrix}$, one of the eigen value is 1 corresponding eigen vector is $(3,2,1)^T$. Also, given trace(A)=2.
 - (a) Find the values of a,b and c.
 - (b) If the matrix A is diagonalizable, then find a matrix P such that $P^{-1}AP$ is a diagonal matrix. [3]
- 10. Which one of the following statement is correct? Justify your answer. $[5 \times 1 = 5]$
 - (i) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(a, b, c) = (0, a, b). Then $KerT^2$ is equal to

- (a) $\{(x, y, z) : x = 0\}.$
- (b) $\{(x, y, z) : x = y = z\}.$
- (c) $\{(x, y, z) : y = z = 0\}.$
- (d) $\{(x, y, z) : y \neq z\}.$
- (ii) Consider the basis $B = \{v_1, v_2, v_3\}$ of R^3 where $v_1 = (1, 1, 1), v_2 = (1, 1, 0), v_3 = (1, 0, 0)$ and $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that $T(v_1) = (1, 0), T(v_2) = (2, -1), T(v_3) = (4, 3)$. Then T(2, -3, 5) is equal to
 - (a) (-1,5)
- (b) (0,0)
- (c)(3,4)
- (d) (9,23)
- (iii) Let A be an orthogonal matrix of order 2 having two distinct eigen values λ_1 and λ_2 . Then the eigen values of A^{-1} are (a) $\lambda_1^{-1}, \lambda_2^{-1}$ (b) λ_1, λ_2 (c) λ_1^2, λ_2^2 (d) $\lambda_1 + \lambda_2, \lambda_1 \lambda_2$
- (iv) If $A_{3\times3}$ be a matrix with α and β be only two eigen values ($\alpha \neq \beta$) then the characteristic polynomial of A is
 - (a) $(x-\alpha)^2(x-\beta)$ or $(x-\alpha)(x-\beta)^2$.
 - (b) $(x-\alpha)(x-\beta)$.
 - (c) $(x \alpha)^3 (x \beta)$.
 - (d) $(x \alpha)^2 (x \beta)^3$.
- (v) If $B = P^{-1}AP$ for some invertible matrix P and $X \neq 0$ be an eigen vector of the matrix A with respect to the eigen value λ . Then which one of the following is an eigen vector of the matrix B?
 - (a) *PX*
- (b) $P^{-1}X$
- (c) X
- (d) $P^{-1}XP$