Cloud Computing

Introducción amena 1er. Cuatrimestre 2023

Cloud Computing

Agenda

- Brevísima historia
- Definición
- Características
- Arquitecturas ejemplo
- Business Drivers
- Tecnologías
- Delivery Models
- Deployment Models
- Beneficios y Riesgos
- Hasta luego

¿De dónde viene? ¿Qué es?

¡Decime ya mismo!

Brevísima historia

Concepto de Utility Computing

"Computing may someday be organized as a public utility just as the telephone system is a public utility"

Internet-based utilities

Search engines (Google, Yahoo!), e-mail (GMail, Hotmail), publishing (MySpace, Facebook, YouTube), etc.

Amazon Web Services (AWS)

S3, SQS, EC2

Google App Engine

Framework y plataforma para desarrollar y hostear aplicaciones web

Más proveedores

Microsoft Azure, OpenStack (Rackspace y NASA), IBM, Oracle

~290 proveedores

Según Wikipedia

Cloud Computing

Modelo para permitir el acceso ubicuo,
conveniente, y bajo demanda a un
conjunto compartido de recursos
computacionales configurables (redes,
servers, almacenamiento, aplicaciones, y
servicios) a través de la red, que pueden
ser rápidamente provistos y desplegados
con un esfuerzo mínimo de administración
o de interacción con el proveedor del
servicio

Características esenciales

- On-demand self-service
- 2. Broad network access
- 3. Resource pooling
- 4. Rapid elasticity
- 5. Measured service

Service Models: SaaS, PaaS, laaS

Deployment Models: Private, Community,

Public, Hybrid

Cloud Computing Definición complementaria

Forma especializada de **computación distribuída**,
que introduce **modelos de utilización**para la **provisión remota**de **recursos escalables y medibles**

Y la Arquitectura...

¿más o menos qué onda?

Arquitectura ejemplo: Web App en AWS

Arquitectura ejemplo: Web App Multi-Region en Azure

Características

6 Características - 3 por aquí...

On-Demand usage

- Consumidor accede unilateralmente
- Self-provision
- El uso puede automatizarse

Ubiquitous Access

- Ampliamente accesible
- Dispositivos, protocolos, interfaces, seguridad

Multitenancy

- Una instancia del software sirve a múltiples consumidores
- Cada consumidor está aislado de los otros
- Resource pooling

Single-tenant

Multitenant

6 Características - ...y otras 3 por acá

Elasticity

- Escalar recursos automáticamente
- Trigger: condiciones en runtime ó predeterminadas

Measured Usage

- Mantener registro del uso de los recursos
- Pay-as-you-go. Sólo por los recursos utilizados
- Monitoreo de recursos para reportes

Resiliency

 Distribución de recursos redundantes a lo largo de distintas ubicaciones físicas

¿Para qué?

Planificación de la capacidad

¿Cuándo agregar capacidad?

- Lead strategy: anticiparse a la demanda
- Lag strategy: cuando el recurso alcanza su máximo uso

Over-provisioning vs. under-provisioning

3. Match strategy: pequeños incrementos / decrementos acompañando a la demanda

Elasticity favorece Match Strategy

Reducción de Costos

- 1) Adquisición nueva infraestructura
- 2) Costo de su mantenimiento
 - a) Personal
 - b) Upgrades/patches → testing
 - c) Electricidad
 - d) Refrigeración
 - e) Seguridad sobre recursos físicos
 - f) Licencias y personal que las administre

Recursos on-demand, pay-as-you-go, corto plazo (\$/h CPU)

Liberar recursos inmediatamente

No se necesitan grandes inversiones up-front

Recursos ofrecidos como multi-tenant

Agilidad organizacional

Ajá... ¿Y cómo es posible construir esas nubes?

Tecnologías que inspiraron la nube

Clustering

Grid Computing

Virtualización

Tecnologías que posibilitan la nube

- Redes interconectadas
- ISPs
- Mejora de calidad en conectividad
- TCP/IP
- Web browsers
- HTTP, URI, HTML, XML, js
- Recursos físicos y virtuales
- Agrupados en estrecha proximidad
- Commodity hardware
- Alta redundancia
- Operación remota
- Ubicaciones custom-designed
- Múltiples tenants acceden a la misma aplicación simultáneamente
- La aplicación asegura que un tenant sólo pueda acceder a sus datos
- Tenants pueden customizar la aplicación
- Web Services (SOAP)
- HTTP/Web APIs
- REST APIs

Internet

Acceso ubicuo

Web

Administración remota Implementación de servicios cloud

Data Centers

Power sharing Compartir recursos Accesibilidad del personal Alta Disponibilidad

Multitenancy

Compartir recursos físicos y virtuales

Services

Exponer/Encapsular funcionalidad Comunicación entre máquinas

¿Y de qué maneras se puede usar?

Delivery Models

Combinación de recursos específica y pre-empaquetada por el proveedor cloud

laaS	PaaS	SaaS
Infraestructura (hardware, network, OSs, etc.)	Ambiente predefinido listo para usar	Software expuesto como servicio
Alto nivel de control	Control limitado	Control sólo sobre configuración de uso
AWS, Azure, Google Compute Engine, Rackspace, OpenStack, Apache CloudStack	Azure (.NET), Google App Engine (Java/Python)	Google Apps, Salesforce

Delivery Models

Delivery Models: se pueden combinar

Deployment Models

Tipo específico de ambiente Cloud, distinguible por quién lo posee, su tamaño y el tipo de acceso

Bueno, sí, ya quiero que esto termine, Guille...

Tradeoffs - Beneficios y Riesgos

- + Reducción de inversiones up-front
- + Costos proporcionales (consumo medible)
- + Percepción de infinitos recursos
- + Agregar/quitar recursos fácilmente
- + Abstracción de la infraestructura
- + Scalability
- + Elasticity
- + Availability

- Security
 - La seguridad de los datos es responsabilidad conjunta del consumidor y del proveedor cloud
 - El proveedor cloud tiene acceso privilegiado a los datos del consumidor
- Menor control que on-premise
 - Uso de SLAs
- Portabilidad baja entre proveedores cloud
- Cuestiones legales
 - Ubicación geográfica de los datos
 - Revelación de datos por leyes de los países donde están los data centers

¿Consultas?

Feedback

http://bit.ly/arq-soft-feedback-clases

Guillermo Rugilo

¡Gracias!