Analysis and Prediction on Corn Yield in Illinois

Consultants: Shihao Duan, Smruthi Iyengar, Kagen Quiballo, Doris Wang, Lucy Zhao

Client: Mark Schleusener, National Agricultural Statistics Service &

Darren Glosemeyer, University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign

STAT 443

1. INTRODUCTION

1.1 Background & Motivation

Corn is a crop that is widely planted in the Midwest. In Illinois, there are nine agricultural districts, all of which plant a vast amount of corn. However, due to temperature and precipitation disparities, corn yields in different areas and different years may have huge differences. According to the requirements of the client, our goals are to tell if there is a difference between the corn yield in district 20 and district 60 over the past two decades, point out the reasons behind the difference, predict the corn yield by building statistical models, and figure out if innovative technology have an impact on the corn yield. We got the crop yield and progress data from Mark Schleusener from the National Agricultural Statistics Service (NASS). The crop yield data contains the information of the corn yields in different agricultural districts, so we believe this dataset can be used to see if there is a difference in corn yields between the districts 20 and 60. The weather and climate data were provided by the National Oceanic and Atmospheric Administration (NOAA), containing the detailed meteorological data in different weather stations in district 20 and 60 from 2000 to 2018, and we think these data are important because they provide important factors that may contribute to the difference of corn yields in different areas and years.

1.2 Data Preparation

The four datasets given are *Illinois Corn Progress Data*, *Illinois Corn Yield Data*, LaSalle County, District 20, and Pike County, District 60. The Illinois Corn Progress Data includes 13 variables and 2868 observations, recording corn's growth status in 9 districts in Illinois weekly from April to November. The Illinois Corn yield Data has 11 variables and 190 observations. It records the corn grain yields per acre and acres harvested of 9 districts and the state yearly from 2000 to 2018. The LaSalle County, District 20 data has weather information in district 20 including 7 variables and 95949 observations recorded by 45 weather stations. The Pike County, District 60 data has weather information in district 60 including 7 variables and 18405 observations recorded by 3 weather stations. After reading these datasets into R, the primary analytical tool we are using for building predictive models, we performed data examination and cleaning. One of the issues that we noticed was that for the datasets *LaSalle* County, District 20 and Pike County, District 60, there were lots of missing values that were useless for our analysis, so we subsetted these two datasets by removing the rows that contained missing values. For example, in LaSalle County, District 20, there were over 90k observations, after cleaning, only 19603 of them are found useful. The cleaned datasets are used for building regression models. The second problem existing in the datasets is that the variables in the datasets were recorded in different time scale. For example, the variables regarding precipitation and temperature were recorded daily in the datasets LaSalle County, District 20 and Pike County, District 60, however, the data of the percentages of different corn growth stages were measured by week in *Illinois Corn Progress*, and the data of corn yield per acre and acres harvested in Illinois Corn Yield Data were measured by year in Illinois Corn Yield Data. How to utilize and reconcile, if necessary, these different measures when doing analysis is definitely what we should think about. We will address this issue later with the description of the specific analysis performed. Last but not least, to get better analysis, we added several variables that might be helpful in the variable analysis part.

2. VARIABLE ANALYSIS AND VISUALIZATION

2.1 Precipitation

When choosing to clean the precipitation data, we were faced with the issue of predicting annual yield with daily temperature data from multiple stations across districts. Converting the metrics of the two posed a problem as well as missing values on many dates, but the thought process of our methodology is the following. District 20 had 45 stations and District 60 had 3 stations that each recorded data from different days, some of them overlapping. The following is a graph representing which days each station recorded precipitation

The first method of creating a cumulative annual precipitation variable introduces the bias of over-representation from dates that have more data points. For example, if all the stations

happen to record the day of a flood, the year would reflect precipitation that is too high, given that there are missing values from other dates that year from those given stations.

The next method of only choosing stations that have data points for all days from 2000-2018 would also be biased by not representing other areas in the district.

Therefore, the method we chose was to query the data by selecting daily averages across all stations in that district such that each day was equally represented despite missing values. From there, we take the sum of select days each year.

Looking at some simple statistics in relation to NASS standards, we see that dates with over 4 inches of precipitation may affect crop yields. This occurs once in 2013 for district 20 and twice in 2003 and 2014 from district 60. This may be taken note of when looking at the time vs. yield graph. Additionally according to NASS standards, approximately one inch of rain per week is good, and district 20 and 60 have an average weekly precipitation of 0.736 inches and 0.761 inches respectively. According to the Illinois State Water Survey, "Generally, annual rainfall exceeds the water requirement of Illinois crops. The average for southern Illinois is 45 inches, the rest of the state is 37 inches," and is reflected by the average annual rainfall of 38.45 inches and 39.77 inches of district 20 and district 60 respectively.

4 new precipitation variables were created as follows according to quotes from the Illinois State Water Survey. We used these quotes to create the variables because the time periods selected were indicated as critical time periods that may affect crop yield. Querying this data took a lot of time, and we were unable to integrate them into the predictive models. They have the potential to add more accuracy to the models and may be used in future directions. The 4 new queried variables are defined below and are available for viewing with this link: tinyurl.com/STAT443grp6-prcp-data.

"The critical time during the early growth lasts for approximately 30 days, from planting to tassel initiation."

Prec_Planted_30
is the sum of the daily
averages across all
stations in that district
for 30 days after 50% is
planted

"Rainfall of 1 to 2 inches in the 2 weeks following corn pollination will generally result in the highest yield"

Prec_Pollinated_14
is the sum of the daily
averages across all
stations in that district
for 2 weeks after 50% is
silking

"During fallow season, there is usually enough precipitation to recharge the soil profile by January of the year. Otherwise February, March, and April are usually adequate to recharge the soil profile."

Prec_TOTAL
is the sum of the daily
averages across all
stations in that district
for from the time 50% is
planted to 50% is
harvested

Prec_ANNUAL
is the sum of the daily
averages across all
stations in that district
for from Jan 1 to Dec 31
of that year

One last factor to consider is droughts. According to the Palmer Drought Severity Index on isws.illinois.edu, 2005 was considered drought and 2012 was considered extreme drought. The left graph indicates the years of these droughts have significantly lower annual precipitation than adjacent years. The right graph indicates that these droughts also impacted annual yield as shown by the significantly lower yields in 2005 and 2012.

2.2 Temperature

In order to examine the temperature variable, we want to see how temperature changes on average throughout the years. The dataset contains daily minimum and maximum temperatures of each district from the years 2000 to 2018. We created a monthly average of minimum temperature and maximum temperature throughout the years. This monthly average was made by picking the highest temperature value and the lowest temperature value of each month between January 2000 and December 2018 and creating a violin plot to determine if there are any major differences in temperature between the two districts. For both districts, the average temperatures were somewhat similar. But, District 20 had slightly lower averages than district 60 in both maximum temperature and minimum temperature. For both districts, the range in average the

range of the minimum temperature is much more than the range of the maximum temperature. For average maximum temperature, the summer months have the smallest range in both districts.

Although we can visualize that there are some differences in temperature between the two districts, we need to determine if the difference is statistically significant. The overall average maximum temperature in district 60 is 81.71°F and the average maximum temperature in district 20 is 78.72°F. After running a two-sample paired t-test for the maximum temperature variable we can determine that this difference in temperature is statistically different because the p-value is 0.03 and the difference has a 95 percent confidence interval of (-5.62, -0.37). The average minimum temperature in district 60 is 25.33°F and the average minimum temperature in district 20 is 23.24°F. The p-value from the paired two-sample t-test was .30 and the 95 percent confidence interval for the difference in minimum temperatures included 0 (-6.10, 1.91). So, the difference in minimum temperature between the two districts are not statistically significant.

3. DISTRICT VARIANCE ANALYSIS AND VISUALIZATION

As mentioned before, the datasets are given in different time scale, so it is difficult for us to compare the difference in yield using data with different time scales, as we notice that the dataset *Illinois Corn Yield Data* gives corn yield for all regions in Illinois, we made two subsets that contain the data of district 20 and district 60, respectively. We performed a paired t-test to compare the difference in means.

The result shows that when looking at the percentage of crops harvested after each season, there is a significant difference between the harvested percentage in district 20 and district 60. District 60 typically has a higher percentage harvested of about 98.7% compared to district 20's 91.5% average harvested. One may also note that data spans from 2000-2009. Our p-value for the test was 0.00573, so at a 0.05 significance level, we conclude that the average harvest percentage of district 20 is less than the average harvest percentage of district 60.

However, when running the same paired t-test to look at the <u>yield measured in BU/acres</u> for each year, there appears to be no significant difference between district 20 and district 60. They both have similar yields of about 169.8 BU/acre for district 20 and 168.82 BU/acre for district 60, which are relatively similar with large variations throughout each year ranging from 99.1 - 215.0. Our test resulted in a p-value of 0.799, so at a 0.05 significance level, we conclude that there is no significant difference between the average yield of district 20 and district 60 when paired by year.

4. PREDICTIVE MODEL ANALYSIS

4.1 Predictive Model - Yearly Averages

In order to predict future corn yield, we built linear regression models for each district using variables regarding temperature and precipitation from the datasets *LaSalle County*, District 20 and Pike County, District 60 as the predictors, and the corn yield variable measured in bu/acre from the dataset *Illinois Corn Yield Data* as the response variable. Since temperature and precipitation were measured daily while corn yield was measured yearly, we calculated the yearly averages of precipitation, minimum temperature, and maximum temperature variables to make the predictors in the same measurement as the response variable. The summary datasets we used for building the models are in Appendix 7.1.1, and they can also be viewed here. We started from fitting a full linear regression model with three yearly-averaged variables (precipitation, maximum temperature, and minimum temperature) and all their interaction terms, and then selected the variables in both directions based on the Akaike Information Criterion (AIC), which is an estimator of the relative quality of statistical models for a given set of data. The selection procedure showed that the best linear model for District 20 is Yield (BU/ACRE) = 11084.501 -25371.63 * Precipitation - 182.966 * Maximum Temperature - 199.392 * Minimum Temperature + 427.621 * Precipitation * Maximum Temperature + 3.338 * Maximum Temperature * Minimum Temperature, and for District 60 is Yield = 933.316 - 820.936 * Precipitation - 24.251 * Maximum Temperature + 20.646 * Minimum Temperature. We proved that all the variables in

both models are significant under 0.1 significant level (Appendix 7.1.2), so they have significant impacts on corn yield; the values of Multiple R-Squared, which measures how much variability of the respondent variable can be explained by the predictors, are 0.623 and 0.528, respectively, which means that more than half of the variability in corn yield can be predicted by precipitation, temperature, and their interaction effects. The values of Adjusted R-Squared, which adds a penalty for the number of coefficients to prevent using lots of predictors to boost the Multiple R-Squared values, for both models are 0.478 and 0.434, respectively. The actual vs. predicted corn yield graphs of the linear models of the two districts are presented as follows:

As we can see, the points are falling around the red line of the actual equal to the predicted, which means that most of our predictions are pretty close to the actual corn yields. However, there are also some year's corn yields that are obviously over- or under-estimated, such as the years 2001, 2002, 2017, and 2018 of District 20 as well as the years 2017 and 2018 of District 60. The Mean Absolute Errors (MAE), which are the means of the absolute differences between the actual and predicted values, of District 20 and 60 using our models are 10.639 and 13.565, respectively. These discrepancies in actual and predicted values may result from other unconsidered factors that may also affect corn yield, or from the fact that this model using yearly averages is too general to make accurate predictions. Therefore, we decided to move on to build a model based on averages by growth stages to see if the accuracy of predictions can be improved.

4.2 Predictive Model - Growth Stages

As discussed above, if a farmer possessing sufficiently detailed climate data wants to learn more about how each growing stage affects total corn yield of the year and makes more accurate predictions, he/she may want to use our predictive models for corn yield which was developed based on the averages by growth stage. Based on the beginning and ending dates of each growth stage of each year given in the dataset *Illinois Corn Progress Data* and the daily climate data from *LaSalle Country*, *District 20* and *Pike Country*, *District 60*, we calculated the average precipitation, maximum temperature, and minimum temperature by each growth stage. Since the climate daily data contains information from 2000 up to 2018 but *Illinois Corn Progress Data* only gives the dates of each stage up to 2009, so we assumed the time periods for the growth stages in the years 2010 to 2018:

Plant	Emerge	Silk	Dough	Dent	Mature	Harvest
04/20 -	05/01 -	07/01 -	07/15 -	08/10 -	09/01 -	09/10 -
06/01	06/15	08/10	09/01	09/20	10/20	11/15

So we got the summary datasets (Appendix 7.1.3) for <u>District 20</u> and <u>District 60</u> about the average precipitation and temperature by each growth stage for each year from 2000 to 2018, which have 19 observations and 21 climate properties, and built our predictive models based on these datasets. As the averages of maximum temperature and minimum temperature are significantly correlated, we build models using average precipitation and average maximum temperature or average minimum temperature separately for each of the districts. We still use the corn yield (BU/ACRE) for each year as our response variable and implement the technique of AIC selection for both directions, that is, the algorithm can either add or drop variables from the original full model to optimize AIC.

For District 20, the model we built based on precipitation and maximum temperature is: Yield (BU/ACRE) = 495. 053 + 119.327 * Emerge PRCP + 303.12 * Dough PRCP - 7.861 * Dough TMAX + 5.227 * Dent TMAX - 2.125 * Harvest TMAX, in which PRCP stands for the average precipitation, and TMAX stands for maximum temperature of that growth stage. All the coefficients except for that of Harvest TMAX are significant at p = 0.1 significance level (Appendix 7.1.4) with Dough TMAX being the most significant factor with a p-value of 0.001262, and the p-value of the F-test which compares this model with the model that only uses the intercept as its predictor is 0.005981, which means the model is also overall significant. The Multiple R-Squared is 0.681, meaning that 68.1% of the variability in the corn yield can be explained by the predictors, and the Adjusted R-Squared is 0.558, indicating the model is effective. The significant factors that have a positive effect on the corn yield of this district include the precipitation of emerging and dough and the maximum temperature of denting, and those have a negative effect is the maximum temperature of dough. The overall most influential factor that is significant is the precipitation of dough.

For the same district, the model we built based on precipitation and minimum temperature is: Yield (BU/ACRE) = 526.285 - 66.224 * Plant PRCP + 142.258 * Emerge PRCP + 353.579 * Silk PRCP + 504.496 * Dough PRCP - 452.319 * Dent PRCP + 201. 151 * Mature PRCP + 3.515 * Planted TMIN - 5.616 * Emerge TMIN - 6.956 * Silk TMIN + 8.063 * Dented TMIN - 7.359 * Harvest TMIN, in which TMIN stands for the average minimum temperature of that growth stage. The coefficients for Silk PRCP, Dough PRCP, Silk TMIN, Dent TMIN, and Harvest TMIN are significant under p = 0.1 significance level (Appendix 7.1.4) with Silk TMIN being the most significant factor with a p-value of 0.00585, and the p-value of the F-test is 0.08716 which shows that the model is overall significant. The Multiple R-Squared is 0.818, meaning that 81.76% of the variability in the corn yield can be explained by the predictors, and the Adjusted R-Squared is 0.531, from which we can see that although the Multiple R-Squared of this model is greater than that of the model with precipitation and maximum temperature, there is no obvious difference in the values of Adjusted R-Squared of these two models, so the greater Multiple R-Squared may mainly result from the increased predictors and thus we do not recommend one of the models over another. The significant factors that have a positive effect on the corn yield of this district include the precipitation of silking and dough and the minimum

temperature of denting, those have a negative effect include the minimum temperature of silking and harvest. The most influential factor that is significant is the precipitation of dough.

For District 60, the model we built based on precipitation and maximum temperature is: Yield (BU/ACRE) = 490.624 + 65.249 * Emerge PRCP + 252.249 * Dent PRCP - 198.729 * Mature PRCP - 142.653 * Harvest PRCP + 2.325 * Emerge TMAX - 2.487 * Silk TMAX - 7.414 * Dough TMAX + 4.165 * Dent TMAX. The coefficients for Dent PRCP, Mature PRCP, Harvest PRCP, Dough TMAX, and Dent TMAX are significant under p = 0.1 significance level (Appendix 7.1.5) with Dent TMAX being the most significant factor with a p-value of 0.023, and the p-value of the F-test is 0.007641, indicating that the model is overall significant. The Multiple R-Squared is 0.814, meaning that 81.4% of the variability of the response variable can be explained by the predictors, and the Adjusted R-Squared is 0.664. The significant factors that have a positive effect on the corn yield of this district include the precipitation of denting and the maximum temperature of denting, and those have a negative effect include precipitation of mature and harvest, and the maximum temperature of dough. The most influential factor that is significant is the precipitation of denting.

For the same district, the model we built based on precipitation and minimum temperature is: Yield (BU/ACRE) = 600.784 + 151.055 * Emerge PRCP + 383.585 * Dough PRCP - 90.994 * Dent PRCP + 4.38 * Plant TMIN - 2.222 * Emerge TMIN - 5.815 * Silk TMIN - 6.242 * Dent TMIN + 8.747 * Mature TMIN - 6.657 * Harvest TMIN. All coefficients except for that of *Emerge TMIN* are significant under p = 0.1 significance level (Appendix 7.1.5) with Dough PRCP being the most significant factor with a p-value of 0.000473, and the p-value of the F-test is 0.002069, indicating that the model is overall significant. The Multiple R-Squared is 0.893, meaning that 89.3% of the variability of the response variable can be explained by the predictors, and the Adjusted R-Squared is 0.786. Both Multiple R-Squared and Adjusted R-Squared of this model are better than those of the model with precipitation and maximum temperature, so the predictors of this model can better account for the changes in the corn yield. The significant factors that have a positive effect on the corn yield of this district include the precipitation of emerging and dough as well as the minimum temperature of planting and mature, and those have a negative effect include the precipitation of denting and the minimum temperature of planting, silking, and denting. The most influential factor that is significant is the precipitation of dough.

The following graphs show the Actual vs. Predicted corn yields for each of the four models discussed above:

Actual vs Predicted Plot for PRCP & TMAX Stage Model for District 20

Actual vs Predicted Plot for PRCP & TMIN Stage Model for District 20

Actual vs Predicted Plot for PRCP & TMAX Stage Model for District 60

Actual vs Predicted Plot for PRCP & TMIN Stage Model for District 60

We can see that almost all the points are falling around the red line, which is the line of the actual equal to the predicted value, without any obvious outliers. The MAEs of the *PRCP & TMAX* and *PRCP & TMIN* models for District 20 are 10.863 and 7.982, respectively, and those of the *PRCP & TMAX* and *PRCP & TMIN* models for District 60 are 8.890 and 7.460, respectively, so according to the MAE, the models based on the average precipitation and minimum temperature perform better than those based on the average precipitation and maximum temperature. Looking at the values of Adjusted R-Squared and MAEs, the models incorporating growth stage information have higher values of Adjusted R-Squared and lower MAEs than the yearly-averages models, so we can conclude that the growth-stages models perform better.

5. INNOVATIVE TECHNOLOGY ANALYSIS

5.1 Overall Corn Yield Trend Analysis

In order to figure out whether technology affects the yield of corn in general, we assume that technology is growing year by year. From the yield vs. year graph below, we find that corn yield has an increasing trend with respect to time. Based on common sense, we made the assumption that technology has been growing year by year. By looking at the corn yield vs year graph, we find the graph has a general positive trend depending on the year, so that we think that technology has a general positive impact on corn yield. Yet we also find that there are some points on the graph showing a relatively low corn yield, as is analyzed previously, drought is a cause for low corn yield, but other reasons such as floods and frozen weather can also damage corn during different stages.

In order to show the pure effect of technology on corn yield, we want to pull out other factors that we already know to have an effect on corn yield. The yield vs. year graph shows that yield valleys occur in the years 2002, 2005, 2012 and 2015. So we decide to take a closer look at the temperature and precipitation for different stages in these four years.

We use the same dataset as we used to fit the growth stage predictive model to plot the precipitation vs stage histogram graph for district 20 and district 60. In order to decide if the temperature or precipitation at a particular stage can be considered as abnormal, we made comparisons between the actual temperature/precipitation variable in each stage to its 19-year average. The following shows the unusual precipitation we have detected:

5.2 Pointing Out Climate Factors for Abnormal Years

Looking at the two histograms for 2002's precipitation, we believe that unusual high precipitation in the plant stage is the main attribution for low corn yield in 2002. For District 20, the average precipitation in the plating stage is 0.1516mm, however, in 2002, the precipitation in the plating stage is 0.5122 mm, which is more than 3 times higher than usual, from the stage predictive model, the coefficient for *Plant PRCP* is -66.224, which means precipitation at plant stage is negatively correlated with yield. For District 60, we noticed that floods occurred during both the plant stage and the emerging stage, for the plating stage the average daily precipitation is 0.4550 mm, and 0.3075 mm for the emerging stage, which is much higher than the average precipitation in this region, thou the predictive model does not include the planting stage precipitation, we still think that a three times higher precipitation would be harmful to corn yield according to NASS's recommendation.

Just as we mentioned previously, droughts occurred during the year 2005, we find droughts happened in multiple stages during the year 2005. By looking at the two histograms below, we find that low precipitation during multiple stages is the main cause of droughts in 2005.

Another severe drought happened in 2012, however, from the analysis, we find that precipitation is actually normal if we compare the rainfall in 2012 to the average precipitation. However, comparing to the 19-year average, temperatures were higher overall during the first half of 2012 and colder during the second half of 2012. During the plant, emerge, silk and dough stage, maximum and minimum temperature is 4~8 degrees higher, especially in the silk stage, the maximum temperature is 8.36 degrees Fahrenheit higher than the average and min temperature is 4.34 degrees Fahrenheit higher than the average.

District 60 has just the same situation as district 20, by looking at the two histograms for district 60, for the silking stage, district 60's maximum temperature is 8.3615 degrees higher than usual, and the minimum temperature is 4.3635 degrees higher than the average.

The two histograms below show the precipitation in different stages during the year 2015. 2015's corn yield is a low for the period 2013-2018. We find that unusual high precipitation is the main reason for relatively low corn yield. For District 20, daily precipitation is 0.2432mm, which is 1.7 times more than the average precipitation. Floods seem to be more severe during the silking stage, daily precipitation for the silking stage is 0.2674mm, which is 3 times more than the average precipitation.

6. CONCLUSION

According to the requirements of the client, our goals are to tell if there is a difference between the corn yield in district 20 and district 60 over the past two decades, point out the reasons behind the difference, predict the corn yield by building statistical models, and figure out if innovative technology have an impact on the corn yield.

From the 'District Variance Analysis' section, although there is no significant difference between the yield between the districts, we see a statistically and significantly higher harvested percentage in district 60 than district 20.

From the analysis of the precipitation variable, we see that district 60 also has a higher average weekly precipitation and higher annual precipitation which may be the reason for the higher harvested percentage.

From the analysis of the temperature variable, we can determine that the difference in temperatures between the two districts is only significant for the average maximum temperature. The average maximum temperature is higher in district 60 which can explain why district 60 usually has a higher yield. Higher temperatures lead to higher yields.

From the analysis of the predictive models, we define the most significant factor of a model as the one with the smallest p-value and the most influential factor as the one with the largest absolute coefficient. We summarized the most significant and influential factors given by each of the growth-stage models into the following table:

		Most Significant Factor	Most Influential Factor being Significant
District 20	Model with PRCP & TMAX	The average maximum temperature during dough	The average precipitation during dough
	Model with PRCP & TMIN	The average minimum temperature during silking	The average precipitation during dough
District 60	Model with PRCP & TMAX	The average maximum temperature during denting	The average precipitation during denting
District 60	Model with PRCP & TMIN	The average precipitation during dough	The average precipitation during dough

We can see that the precipitation is highly influential in the corn growth as it is the most influential factor of all the models. For the growth stages, we believe that the stages of dough, silking, and denting play a relatively significant role in the growing processes which the farmers should pay special attention to.

From the analysis of the innovative technology, we found that the corn yield has a general increasing trend over the years except for several valleys at the years 2002, 2005, 2012,

and 2015. We found that all of these yield valleys were caused by the abnormal climate of those years, so it is reasonable to believe that increasingly innovative technology is the push behind the ascending yield.

Because higher corn yield is linked with a lower selling price according to the economic supply and demand curve as the demand for corn yield is relatively stable across the years. We recommend farmers to pay attention to weather conditions, especially in the dough stage. We can also advise farmers to be sensitive to any abnormal rainfall because we find droughts or floods can be destructive. If we notice that a flood or drought happens in an early growth stage, we would recommend farmers to plan ahead for expected low corn yield.

APPENDIX

7.1 Relevant Tables

7.1.1 Datasets for Building the Yearly Averages Models District 20

	0392 61.2872 1786 62.30703 0157 61.22169 0.09 60.61443 6374 60.58510	5 41.56224 9 40.54765 8 38.8131	46.31466 45.28039	ACRES 1062000 1048000 1064000	DISTRICT 20 20 20	YIELD 148 143 127
2001 0.104 2002 0.079 2003 (786 62.30703 0157 61.22169 0.09 60.61449 5374 60.58510	5 41.56224 9 40.54765 8 38.8131	46.31466 45.28039	1048000 1064000	20	143
2002 0.079 2003 0	0157 61.22169 0.09 60.61449 6374 60.58510	40.54765 38.8131	45.28039	1064000		
2003	0.09 60.61448 5374 60.5851	38.8131			20	127
	60.5851		43.34276	1034000		
2004 0 006		39 98901		1034000	20	163
2004 0.096		37.70701	44.60714	1100000	20	174
2005 0.067	61.232	39.87654	44.31217	1112000	20	129
2006 0.111	304 61.7254	41.74747	46.08907	1028000	20	176
2007 0.127	906 60.74832	2 40.19404	44.71758	1229000	20	185
2008 0.125	5291 58.6142	37.98982	42.83349	1167000	20	183
2009 0.139	0088 58.2709	38.92831	43.37337	1114000	20	166
2010 0.097	173 61.301	40.09116	44.59392	1137000	20	169
2011 0.136	5569 58.70793	39.51792	43.99891	1185000	20	173.6
2012 0.073	65.0409	42.80508	47.5226	1153000	20	131.4
2013 0.111	.001 59.4949	38.47783	43.97282	1135000	20	182.2
2014 0.111	.975 57.3794	37.1763	42.50917	1038000	20	192.9
2015 0.129	711 59.45593	39.25836	44.11702	1034000	20	178.1
2016 0.113	62.57143	42.94	47.61143	1020000	20	205.8
2017 0.105	62.1596	41.16546	46.13788	974000	20	200.2
2018 0.091	452 59.96593	40.05926	44.90519	996000	20	199

District 60

YEAR	PRCP	TMAX	TMIN	TOBS	ACRES	DISTRICT	YIELD
2000	0.098405	64.94018	43.99233	49.98926	1486000	60	168
2001	0.116181	62.94137	42.04523	47.64992	1525000	60	154
2002	0.127988	64.51085	43.6657	49.233	1524000	60	136
2003	0.110388	59.66262	38.79369	45.05825	1573000	60	174
2004	0.104993	62.69896	42.18927	48.65723	1602000	60	186
2005	0.082523	64.99719	43.29081	49.89493	1681000	60	151
2006	0.091429	64.99804	43.60274	49.65851	1597000	60	153
2007	0.08493	65.16465	43.16186	48.70419	1835000	60	170
2008	0.150201	60.96463	40.44073	46.03537	1679000	60	174
2009	0.128167	62.61444	42.26778	47.94889	1717000	60	176
2010	0.135775	64.51176	43.58824	48.91765	1758000	60	152.7
2011	0.18321	62.35152	42.89567	47.70787	1754000	60	148.4
2012	0.093333	69.21348	45.55306	51.45443	1727000	60	99.1
2013	0.112337	61.56903	40.54043	46.62032	1600000	60	181
2014	0.10775	61.37255	40.63674	46.72136	1654000	60	207.4
2015	0.134626	62.13273	41.7384	48.16366	1627000	60	167.1
2016	0.070717	66.43759	45.40029	52.52224	1638000	60	196
2017	0.09867	66.66524	44.79399	51.91845	1508000	60	198.6
2018	0.088129	63.88602	42.50323	49.28602	1457000	60	215.3

7.1.2 R Outputs of the Yearly Averages Models District 20

```
lm(formula = YIELD ~ PRCP + TMAX + TMIN + PRCP:TMAX + TMAX:TMIN,
    data = factor year20)
Residuals:
    Min
            1Q Median
                          3Q
                                 Max
-32.648 -7.271 1.606 6.716 29.548
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                      4370.104 2.536 0.02482 *
(Intercept) 11084.501
PRCP
           -25371.630
                       8351.492 -3.038 0.00952 **
TMAX
             -182.966
                         72.098 -2.538 0.02476 *
             -199.392
                         94.513 -2.110 0.05484 .
TMTN
              427.621
                        138.251 3.093 0.00856 **
PRCP:TMAX
                         1.550 2.154 0.05060 .
TMAX:TMIN
                3.338
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17.48 on 13 degrees of freedom
Multiple R-squared: 0.6226, Adjusted R-squared: 0.4775
F-statistic: 4.29 on 5 and 13 DF, p-value: 0.0159
District 60
lm(formula = YIELD ~ PRCP + TMAX + TMIN, data = factor year
60)
Residuals:
    Min
             1Q Median 3Q
                                     Max
-24.212 -13.479 -0.228 3.437 46.335
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 933.316
                        191.340 4.878 0.000201 ***
PRCP
            -820.936
                        237.999 -3.449 0.003577 **
TMAX
             -24.251
                          8.055 -3.011 0.008782 **
TMIN
              20.464
                          9.656 2.119 0.051171 .
Signif. codes:
0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Residual standard error: 20.4 on 15 degrees of freedom
Multiple R-squared: 0.528, Adjusted R-squared: 0.4336
F-statistic: 5.592 on 3 and 15 DF, p-value: 0.008876
```

7.1.3 Datasets for Building the Growth Stage Models District 20

YEAR	PRCP_P	lanted	PRCP_Eme	rged	PRCP_Sill	cing	PRCP_Doug	gh	PRCP_	Dented	PRCP_Mat	ture	PRCP_Harvested
2000		0.0085	0.16267	0455	0.	0625	0.0542857	714		0.0475	0.05678	5714	0.05
2001		0.0175	0.14090	9091	0	.021	0.1489285	571	0.	1465625	0.151:	5625	0.218181818
2002	0.51	121875	0.15193	31818	0.0	4625	0.0267857	714	0.03	5357143	0.042142	2857	0.032
2003	0.0608	333333	0.06	51875	0.02708	3333	0.0)15	0.03	2916667	0.03821	4286	0.108863636
2004	0.1491	166667	0.08291	6667	0.0	0525	0.03	325	0.	0321875		0	
2005		0	0.03571	4286	0.00416	5667	0.0638888	889	0.07	3333333	0.012222	2222	0.1
2006		0.22	0.16055	55556	0.00583	3333	0.061	125	0.12	8666667	0.10666	6667	0.100740741
2007	0.2	205625		0.22		0	0.0705555	556	0.06	2857143	0	.035	0.005357143
2008		0.179		0.225	0	.182	0.0090476	519	0.26	7619048	0	.364	
2009	0.0304	116667			0.01933)75	0.09	8148148	0.02041	6667	0.013428571
2010	0.1539	02439	0.22613	36364	0.09794	8718	0.0780714	129		0.07225	0.04666	6667	0.043538462
2011	0.2356	660377	0.2104	6729	0.11340	9091	0.1606542	206	0.14	5505618	0.13305	5556	0.152222222
2012	0.1	169125	0.15360)4651	0.03934	2105	0.0745652	217		.114875		4444	0.081967213
2013	0.1578	366667	0.16494	2529	0.03315	7895	(0.1	0.10	0632911	0.053789	9474	0.101574803
2014	0.1736	570886	0.16576	54706	0.06597	4026	0.1396808	351	0	.223625	0.116382	2979	0.056269841
2015	0	.15975	0.24317	76471	0.1098	7013	0.0672222	222	0.11	444444	0.05242	8571	0.085943396
2016	0.1507	769231	0.15047	70588	0.18373	3333	0.2250549	945	0.20	1558442	0.06351	0638	0.056434109
2017	0.2002	253165	0.07383	37209	0.	1348	0.1323404	126		0.0575	0.12147	7273	0.113495935
2018	0.0954	179452		0.146	0.06207	7922	0.0812903	323	0.14	2467532	0.12443	1818	0.084237288
TMAX	Planted	TMAX	K Emerged	TMA	X Silking	TM	AX Dough	TN	AX D	ented T	MAX Matı	ire '	TMAX Harvested
	71.5		6.35227273		0.45833333		31.03571429			96875	79.10714		68.91666667
	75.6875		74.625		87.25		33.71428571			46875		73	67.36363636
	67.125		1.50568182		89.4375		88.14285714		85.821		79.85714	286	63.275
71.2	2222222		72.75	83	3.83333333		83.5625		8	31.625	74.03571	429	62.56818182
67.3	3333333		73.125		77.8		77		78	3.9375	76	5.55	65.41666667
66.9	4444444	6	9.28571429		88	8	35.7777778		83.533	33333	84.05555	556	70.73333333
	64.2	7	0.0555556	86	5.91666667	8	34.20833333			79.6	75.83333	333	61
	75.5625	7	6.13333333	81	.91666667	7	9.7222222		78.238	09524	7	6.5	69.82142857
	70.25		76.8125		81.4	8	80.47619048		80.190	47619	7	77.4	58.33333333
73.9	5833333	7	7.44444444	78	3.46666667	7	78.20833333		69.925	92593	58.54166	667	50.71428571
72.0	9756098	7	5.46969697	85	.90598291	8	86.13571429		8	33.325	75.86111	111	69.7025641
67.5	8490566	7	4.95327103		87.875	8	35.60747664		78.505	61798	70.94444	444	64.20261438
	73.2125		78.1744186		92.25	8	37.60869565		81	1.7625	71.31111	111	63.03278689
	72.68	7	4.86206897	81	.80263158		32.07608696		81.54	43038		76	65.96062992
70.8	39873418	7	4.49411765	79	7.77922078	8	31.27659574		78	3.8375	69.96808	511	62.57936508
	69.85		5.48235294	81	.85714286	8	32.68055556		80.755		73.41428	571	66.90566038
70.5	7692308		5.24705882	83	3.37333333	8	33.69230769		81.922	07792	76.59574	468	70.28682171
68.4	13037975	7	4.58139535	82	2.49333333	8	30.67021277		78.605	26316	77.28409	091	66.53658537
76.0	9589041		79.7125	83	3.06493506	8	32.52688172		83.10	38961	74.18181	818	63.59322034

TMIN_Planted	TMIN_Emerged	TMIN_Silking	TMIN_Dough	TMIN_Dented	TMIN_Mature	TMIN_Harvested	YIELD
44.2	54.63636364	61.625	61.89285714	61	57.42857143	46	148
49.5625	53.17613636	67.15	63.78571429	59.9375	52.625	44.27272727	143
43.75	49.11931818	64.0625	62.60714286	57.78571429	50.39285714	39.55	127
43.80555556	45.96875	61.45833333	59.625	57.58333333	50.32142857	42.18181818	163
42.20833333	49.66666667	57.8	55.6875	55	50.8	40.08333333	174
41.33333333	45.38095238	62.33333333	63.83333333	59.33333333	57.4444444	46.2666667	129
43.93333333	48.2222222	64.33333333	63.91666667	59.6	51.66666667	39.48148148	176
49.3125	52.86666667	57.5	61.2777778	58.71428571	52.4375	43.67857143	185
46.35	51.3125	60.06666667	56.14285714	55.52380952	52.13333333	38.40740741	183
47.33333333	52.9444444	59.66666667	58.54166667	50.85185185	39.95833333	32.25714286	166
48.69105691	53.78030303	65.7777778	65.05	59.05	48.09027778	42.70769231	169
46.69811321	52.68224299	67.97727273	65.12149533	56.50561798	48.4537037	42.49019608	173.6
49.05	53.38372093	66.73684211	62.15217391	56.5625	46.6	40.00819672	131.4
49.6	51.5862069	60.31578947	58.98913043	57.34177215	51.02105263	42.18897638	182.2
47.92405063	51.42352941	59.46753247	61.72340426	59.2625	48.42553191	40.5952381	192.9
47.4875	53.84705882	61.66233766	62.66666667	60.26666667	50.81428571	44.85849057	178.1
47.64102564	51.44705882	64.98666667	65.62637363	62.67532468	56.18085106	48.84496124	205.8
45.44303797	50.69767442	60.77333333	58.78723404	54.59210526	52.72727273	45.67479675	200.2
50.89041096	56.45	61.77922078	61.92473118	61.83116883	51.93181818	42.88135593	199

District 60

YEAR	PRCP_Planted	PRCP_Emerged	PRCP_Silking	PRCP_Dough	PRCP_Dented	PRCP_Mature	PRCP_Harvested
2000	0.069	0.145609756	0.000833333	0.022857143	0.02	0.137142857	0.139444444
2001	0.07375	0.204651163	0	0.006363636	0.020833333	0.03	0.069090909
2002	0.455	0.3075	0	0.012857143	0.102142857	0.108571429	0.101764706
2003	0.107777778	0.0925	0.125	0.105	0.133333333	0.135714286	0.082727273
2004	0.318571429	0.06	0.09	0.030833333	0.004	0	0.173
2005	0	0.038	0	0.098888889	0.128888889	0.038333333	0.098
2006	0.146666667	0.135384615	0	0.065	0.058666667	0	0.018181818
2007	0.145	0.176666667	0.001666667	0.004444444	0.0025	0.002857143	0.01
2008	0.2	0.228888889	0.019285714	0.07	0.762941176	1.06	0.00047619
2009	0.01	0.02125	0.010714286	0.056666667	0.0905	0.055	0.006315789
2010	0.20159292	0.224344262	0.280769231	0.240526316	0.131320755	0.076911765	0.139444444
2011	0.249875	0.39244186	0.116595745	0.043421053	0.042368421	0.095735294	0.069090909
2012	0.113977273	0.061684211	0.043243243	0.036616541	0.134150943	0.156511628	0.101764706
2013	0.232136752	0.228671875	0.092242991	0.074016393	0.069439252	0.106615385	0.082727273
2014	0.093055556	0.151858407	0.121111111	0.125887097	0.205740741	0.206376812	0.173
2015	0.143	0.192413793	0.26739726	0.151555556	0.051486486	0.022209302	0.098
2016	0.137974684	0.08	0.208730159	0.122597403	0.116538462	0.0575	0.018181818
2017	0.307866667	0.147804878	0.103421053	0.124782609	0.075769231	0.073666667	0.01
2018	0.077162162	0.07691358	0.076	0.09725	0.130333333	0.107272727	0.00047619

TMAX Planted	TMAX Emerged	TMAX Silking	TMAX Do	nıoh	TMAX D	ented	TMAX N	Mature.	TMAX Ha	rvested
75.6		82.333333333	_	_	_	3.0625	_	142857	_	2222222
76.375		90.8					00.07	78.1		2727273
69.8125		89.75					79.85	714286		8235294
72.11111111	73.875	85.6666666		35.25			77.03	74		1818182
66		78.6			82.266			80.1	02.0	68.2
70.41176471	73.45	90.1666666						85.5	72.8	3333333
69.33333333		88						79.25		1818182
78.11111111	77.6	83					81.57	142857		6666667
73.71428571		85.42857143				80		090909	, , , ,	59
75.18181818		82.21428571				70.85		142857	54.5	2631579
72.86725664		88.35897436						911765		222222
67.375		88.80851064	87.4605	2632			72.36	764706	68.7	2727273
77		94.95495495	90.8045	1128			71.43	410853		8235294
70.05128205	74.0390625	83.8411215		3934	84.747	66355		77.7	62.8	1818182
73.7777778	76.32743363	81.28703704	82.6532	2581	80.29	62963	71.84	782609		68.2
72.55	77.1954023	84.23287671	84.4111	1111	84.040	54054	77.62	790698	72.8	3333333
73.69620253	78.54117647	85.93650794	86.7792	2078	85.012	82051	80.69	791667	64.3	1818182
72.21333333	78.29268293	87.86842105	85.2391	3043	82.410	25641	79.67	777778	73.9	6666667
81.22972973	86.60493827	88.05714286	5 85	5.825	85.966	66667	80.84	848485		59
TMIN Planted	TMIN Emerged Ti	MIN Silking TN	MIN Dough	TMI	N Dented	TMIN	Mature	TMIN	Harvested	YIELD
47.8			54.92857143		63.5625		61	_	7.66666667	168
53	55.94186047	68	52.45454545		61		54.6	4	3.54545455	154
49.375	53.79545455	69.875	58.85714286	61	.64285714	53.	35714286	4	2.76470588	136
48.5555556	50.625	62.83333333	61.125		56		49	4	3.63636364	174
50	57.83333333	58.8	55.75	53	3.86666667		50		40.9	186
43	48.4	64.5	55.7777778	61	1.38888889	58.	94444444	4	8.03333333	151
46.33333333	51.84615385	64.5	55.91666667	63	3.26666667		53.25		9.63636364	153
54.0555556	56.8666667	59.66666667	53.11111111	59	9.79166667	54.	33333333	4	7.56666667	170
51.47619048			59.68421053		57		27272727		8.57142857	174
53.72727273	56.75		50.47619048		51.95		64285714		4.31578947	176
52.11504425		67.8888889	66.69924812		0.21698113		38235294	4	7.66666667	152.7
49.2			63.80263158		7.19736842		61764706		3.54545455	148.4
52.89772727			61.63909774		5.90566038		86821705		2.76470588	99.1
49.99145299			51.85245902		0.43925234		93076923	4	3.63636364	181
51.97222222			52.60483871).33333333		43478261		40.9	207.4
52.0125			54.07777778		51.2027027		74418605		8.03333333	167.1
53.11392405	56.98823529		67.49350649		3.92307692		85416667		9.63636364	196
51.34666667			51.92391304		5.42307692		72222222		7.56666667	198.6
57	63.56790123	66.17142857	64.425	65	5.66666667	59.	24242424	3	8.57142857	215.3

7.1.4 R Outputs of the Growth Stage Models - District 20 The Model with PRCP & TMAX

```
lm(formula = YIELD ~ PRCP Emerged + PRCP Dough + TMAX Dough +
   TMAX Dented + TMAX Harvested, data = phase 20)
Residuals:
   Min
            10 Median
                          3Q
                                  Max
-28.112 -6.920 -1.645 9.956 20.944
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                         113.199 4.373 0.000754 ***
(Intercept)
              495.053
PRCP Emerged
               119.327
                          60.076 1.986 0.068504 .
                          87.865 3.450 0.004309 **
PRCP Dough
               303.120
TMAX Dough
                           1.919 -4.096 0.001262 **
               -7.861
TMAX_Dented
               5.227
                           2.425 2.156 0.050422 .
TMAX Harvested -2.125
                           1.205 -1.764 0.101147
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (), 1
Residual standard error: 16.08 on 13 degrees of freedom
Multiple R-squared: 0.6807, Adjusted R-squared: 0.5578
```

F-statistic: 5.542 on 5 and 13 DF, p-value: 0.005981

The Model with PRCP & TMIN

```
lm(formula = YIELD ~ PRCP_Planted + PRCP_Emerged + PRCP_Silking +
    PRCP Dough + PRCP Dented + PRCP Mature + TMIN Planted + TMIN Emerged +
    TMIN_Silking + TMIN_Dented + TMIN_Harvested, data = phase_20)
Residuals:
   Min
             10 Median
                            3Q
                                   Max
-16.566 -6.303 -1.576
                         6.122 19.565
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
               526.285
                          199.239
                                    2.641 0.03335 *
PRCP Planted
                -66.224
                           57.256
                                   -1.157
                                           0.28537
PRCP Emerged
               142.258
                          122.252
                                    1.164
                                          0.28269
PRCP Silking
                          137.181
                                    2.577
               353.579
                                          0.03661 *
PRCP_Dough
                          204.909
                                    2.462 0.04334 *
               504.496
PRCP_Dented
               -452.319
                          247.677
                                   -1.826
                                           0.11055
PRCP Mature
                                   1.495 0.17848
               201.151
                          134.518
TMIN Planted
                 3.515
                            2.811
                                   1.250 0.25136
                            3.175 -1.769 0.12025
TMIN Emerged
                -5.616
TMIN_Silking
                -6.956
                            1.780 -3.907 0.00585 **
TMIN Dented
                8.063
                            4.106
                                   1.964 0.09031 .
TMIN Harvested
                -7.359
                            3.838 -1.917 0.09670 .
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (), 1
Residual standard error: 16.56 on 7 degrees of freedom
Multiple R-squared: 0.8176,
                              Adjusted R-squared: 0.5311
F-statistic: 2.853 on 11 and 7 DF, p-value: 0.08716
```

7.1.5 R Outputs of the Growth Stage Models - District 60 The Model with PRCP & TMAX

```
lm(formula = YIELD ~ PRCP Emerged + PRCP_Dented + PRCP_Mature +
   PRCP Harvested + TMAX Emerged + TMAX Silking + TMAX Dough +
   TMAX Dented, data = phase 60)
Residuals:
   Min
            10 Median
                           30
                                 Max
-24.848 -6.468 -1.798
                        4.644 23.716
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
              490.624
                         160.296
                                  3.061
(Intercept)
                                          0.0120 *
               65.249
PRCP Emerged
                         50.377 1.295
                                          0.2243
PRCP Dented
               252.402
                         107.972 2.338 0.0415 *
PRCP Mature
                          80.107 -2.481 0.0325 *
              -198.729
PRCP Harvested -142.653
                          72.223 -1.975 0.0765.
TMAX Emerged
                          1.324 1.755 0.1097
               2.325
                           1.846 -1.347 0.2076
TMAX Silking
               -2.487
TMAX Dough
                           3.081 -2.406 0.0369 *
               -7.414
TMAX Dented
               4.165
                           1.555 2.679 0.0231 *
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.71 on 10 degrees of freedom
Multiple R-squared: 0.8135, Adjusted R-squared: 0.6642
F-statistic: 5.451 on 8 and 10 DF, p-value: 0.007641
```

The Model with PRCP & TMIN

```
lm(formula = YIELD ~ PRCP Emerged + PRCP Dough + PRCP Dented +
    TMIN Planted + TMIN Emerged + TMIN Silking + TMIN Dented +
    TMIN Mature + TMIN Harvested, data = phase 60)
Residuals:
    Min
               10
                    Median
                                 30
                                         Max
-14.8660 -7.7912
                    0.2557
                             8.1261
                                     14.3492
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                600.784
                           118.988
                                     5.049 0.000691 ***
PRCP Emerged
                151.055
                            44.697
                                     3.380 0.008133 **
PRCP Dough
                383.585
                            71.941
                                     5.332 0.000473 ***
PRCP Dented
                -90.994
                            26.840
                                    -3.390 0.007996 **
TMIN Planted
                  4.380
                             2.001
                                    2.189 0.056318 .
TMIN Emerged
                 -2.222
                             1.950
                                    -1.140 0.283816
TMIN_Silking
                 -5.815
                                    -5.088 0.000656 ***
                             1.143
TMIN Dented
                 -6.242
                             2.017
                                    -3.095 0.012829 *
                 8.747
                             1.834
                                    4.769 0.001016 **
TMIN Mature
TMIN Harvested
                 -6.647
                             1.356
                                    -4.903 0.000844 ***
                0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Signif. codes:
Residual standard error: 12.55 on 9 degrees of freedom
Multiple R-squared: 0.8929, Adjusted R-squared:
F-statistic: 8.339 on 9 and 9 DF, p-value: 0.002069
```

7.2 Code

The code for this report will be submitted in the zip file. Each file has commented explanation in the code, a description in the title of the file, and/or an indication of what it is used for in the report. Important data files will also be included in the zip file containing this report.

7.3 Future Directions

From the analysis of the precipitation variable section, incorporating some of the 4 created variables may help improve the accuracy of predictive models because it is less biased and focuses on critical times indicated by the Illinois State Water Survey

We realized that many variables are highly correlated in this study, which means that the multicollinearity problem occurs in our predictive model. In a regression model, we hope that we can learn how a one-unit change of independent variables can cause variability in the dependent variable. However, in our case, due to multicollinearity, the coefficient estimates can swing wildly based on which variables to include in the model. This is why we find that the value of coefficient for a variable varies greatly in two different models we estimated to predict the same corn yield (For example, in the model that uses stage precipitation and maximum temperatures to estimate district 20's corn yield, the coefficient for emerge PRCP is 119.327 and the

coefficient for Dough PRCP is 303.12, but in the model that uses stage precipitation and minimum temperature to estimate district 20's corn yield, the coefficient for *Emerge PRCP* is 142.258 and the coefficient for Dough PRCP is 504.496), so that it is difficult for us to know the real effect of each attribute on corn yield. Some of the estimated coefficients we got from the variable are contradicted with the point-out analysis for abnormal corn yields. Even if a temperature variable has a positive coefficient, this does not mean that higher temperature is always the better. In the pull-out factor analysis, we realize that high temperature shall cause drought, which is actually detrimental towards corn yield.

Another limitation we had with the model is that we only had 19 years' observations, which is too few for us to predict a good model, if we want to better understand how temperature and precipitation are impact corn yield, more observations are needed in order to predict a more accurate model.

Moreover, for the innovative technology, though we already find that innovative technology plays a role in the increasing corn yields throughout the years, figuring out how to quantify the technology factor and putting it into the predictive models to further explore its impact on corn yield still require future relevant analyses.

7.4 References

Hollinger and Angel - 'Weather and Crops'

http://extension.cropsciences.illinois.edu/handbook/pdfs/chapter01.pdf

This source was used to indicate critical stages of corn growth to focus on for the precipitation variable.

State Climatologist Office for Illinois - 'Drought Trends in Illinois' https://www.isws.illinois.edu/statecli/climate-change/ildrought.htm

This source was used to indicate that 2005 and 2012 were droughts using the Palmer Severity Index.

7.5 Group Member Contributions

Shihao Duan worked on the Introduction part, which includes Background & Motivation and Data Preparation.

Smruthi Iyengar worked comparing the temperatures in both district 60 and district 20. She created four violin plots in R to visualize the differences in temperature. She also conducted the T-test to determine if there were any statistical differences in temperature. She worked on section 2.2 and the code in the temperature data file.

Kagen Quiballo worked on the analysis of the precipitation variable under the 'Variable Analysis and Visualization' section which discusses methods for creating 4 different precipitation variables at the following website (tinyurl.com/STAT443grp6-prcp-data) in parallel with Illinois State Water Survey article, as well as visualizing 2005 and 2012 drought effects on annual corn yield. He also worked on the 'District Variance Analysis and Visualization' section which uses 2 sample t-tests to compare the average yield and average harvested percentage differences across districts 20 and 60. Lastly, he wrote the majority of all sections in the appendix.

Doris Wang worked on processing and cleaning datasets, calculating averages, and creating summary tables to prepare the variables used in the predictive models. Building, analyzing, and evaluating all the predictive models using R (the code file about predictive models), and making the slides and writing the report for the predictive model part. In addition, she wrote the majority of the Data Preparation part, formatted, and created a title page for the report. She created the visualization of Corn Yield with respect to Year used in the section of Innovative Technology Analysis. She also prepared and presented all the tables in the Appendix.

Lucy Zhao worked on analyzing "How technology has affected corn yield" and abnormal precipitation and temperatures each year to figure out the cause of low yield in specific years. She created 10 histograms to examine the effects of the abnormal temperature and precipitation on corn yield. She is also responsible for the future direction part.