Applicare il metodo di iterazione del punto fisso $x_{k+1}=g(x_k)$ per determinare lo zero dell'equazione $f(x)=x^3+4x^2-10=0$ quando $x_0=1$. 5, tolx=1e-7 ed nmax=1000, proponendo diverse scelta della funzione di iterazione g per garantire:

- Convergenza lineare con costante asintotica di convergenza prossima a 0.
- Convergenza lineare con costante asintotica di convergenza prossima a 0.5.
- Convergenza lineare con costante asintotica di convergenza prossima a 1.

Utilizziamo il teorema di esistenza degli zeri di una funzione continua:

individuiamo un intervallo in cui la funzione assuma agli estremi valori discordi.

$$f(0)=-10;$$

$$f(2)=14$$

Nell'intervallo I=[0,2] la funzione assume agli estremi valori discordi. Inoltre in questo intervallo la funzione è monotona crescente, ciò si deduce dal segno della derivata prima $f'(x) = 3x^2 + 8x$

$$f'(x) = 3x^2 + 8x > 0$$

$$x(3x + 8) > 0$$
 per $x > 0$ ed $x > -\frac{8}{3}$

Quindi nell'intervallo [1,2] la funzione è monotona crescente, assume valori discordi agli estremi e quindi esiste un unico punto in cui si annulla, α =1.3652.

Ricaviamo una funzione x=g(x) a partire da f(x)

Non è unica e ce ne sono diverse, e si ricavano raccogliendo diversamente x dall'equazione f(x)=0

1)
$$x^3 + 4x^2 - 10 = 0$$
 $\Rightarrow 4x^2 = 10 - x^3 \Rightarrow$

$$\Rightarrow x = \frac{1}{2}\sqrt{10 - x^3} \Rightarrow g_1(x) = \frac{1}{2}\sqrt{10 - x^3}$$

Sommando x ad entrambi i termini di f(x)=0

2)
$$x^3 + 4x^2 - 10 + x = x \rightarrow x(x^2 + 4x + 1) = 10 + x \rightarrow$$

$$x = \frac{10 + x}{(x^2 + 4x + 1)} \rightarrow g_2(x) = \frac{10 + x}{(x^2 + 4x + 1)}$$

3)
$$x^3 + 4x^2 - 10 = 0 \rightarrow x^2(x+4) = 10 \rightarrow x = \sqrt{\frac{10}{x+4}} \rightarrow g_3(x) = \sqrt{\frac{10}{x+4}}$$

4) Dividiamo entrambi i membri di f(x)=0 per $x \neq 0$

$$\frac{x^{3} + 4x^{2} - 10}{x} = 0 \rightarrow x^{2} + 4x - \frac{10}{x} = 0 \rightarrow x$$

$$= \sqrt{\frac{10}{x} - 4x}$$

$$\to g_{4}(x) = \sqrt{\frac{10}{x} - 4x}$$

La funzione di iterazione g non è unica e può essere costruita nei modi più diversi, ma non tutti daranno luogo a strumenti efficienti.

Bisogna studiare sotto quali condizioni la successione delle iterate appartenga sempre al dominio di f e sia convergente ad α .

TEOREMA DI CONVERGENZA LOCALE (di Ostrowski)

Sia α un punto fisso di $g \in C^1[\alpha - \rho, \alpha + \rho]$, $\rho > 0$. Se

$$|g'(x)| < 1, \quad \forall x \in [\alpha - \rho, \alpha + \rho]$$

allora $\forall x_0 \in [\alpha - \rho, \alpha + \rho]$ la successione delle iterate $\{x_i\}_{i \geq 1}$ generata da g è tale che

- 1. $x_i \in [\alpha \rho, \alpha + \rho] \ \forall i \ge 1$,
- 2. $\lim_{i\to+\infty} x_i = \alpha$ unico punto fisso di g.

Studiamo quindi $g'_1(x)$, $g'_2(x)$, $g'_3(x)$, $g'_4(x)$ e vediamo se soddisfano le ipotesi del teorema di convergenza locale.

$$g_1(x) = \frac{1}{2}\sqrt{10 - x^3}$$

$$g'_{1}(x) = \frac{1}{2} \frac{1}{2\sqrt{10 - x^{3}}} (-3x^{2}) = \frac{-3x^{2}}{4\sqrt{10 - x^{3}}}$$

 $g'_{1}(x) < 0$ per $x < 10^{\frac{1}{3}}$

$$g'_{1}(x) < 0$$
 per $x < 10^{\frac{1}{3}} \approx 2.1544$

Si verifica che $-1 < g'_{1}(x) < 0$ in (0,1.71].

 $|g'_1(x)| \neq 0$ in (0,1.71] quindi il metodo iterativo generato da $g_1(x)$ ha convergenza lineare.

La costante asintotica di convergenza è data $\left|g'_{1}(\alpha)\right|$

$$g_2(x) = \frac{10 + x}{(x^2 + 4x + 1)}$$

Campo di esistenza

$$x \neq -2 - \sqrt{3} \approx -3.73$$

 $x \neq -2 + \sqrt{3} \approx -0.26$

$$g'_{2}(x) = \frac{-x^{2} - 20x - 39}{(x^{2} + 4x + 1)^{2}}$$

Si verifica che $-1 < {g'}_2(x) < 0$ in [1.3,2], il metodo converge.

 $|g'_2(x)| \neq 0$ in [1.3,2] quindi il metodo iterativo generato da $g_2(x)$ ha convergenza lineare.

La costante asintotica di convergenza è data $\left|g'_{2}(lpha)\right|$

Campo di esistenza:

$$g_3(x) = \sqrt{\frac{10}{x+4}}$$

$$x > -4$$

Calcolo la derivata prima

$$g'_{3}(x) = \frac{1}{2\sqrt{\frac{10}{x+4}}} \left(\frac{-10}{(x+4)^{2}}\right) = -\frac{\sqrt{10}}{2} \frac{1}{\sqrt{\frac{1}{x+4}}} \frac{1}{(x+4)^{2}}$$

Campo di esistenza:

$$x > -4$$

Segno $g'_3(x) < 0$ sul suo campo di esistenza e quindi anche in I=[0,2]

Si verifica che $-1 < {g'}_3(x) < 0$ in I, il metodo converge.

 $|g'_3(x)| \neq 0$ in I quindi il metodo iterativo generato da $g_3(x)$ ha convergenza lineare.

La costante asintotica di convergenza è data $|g'_{3}(\alpha)|$

$$g_4(x) = \sqrt{\frac{10}{x} - 4x}$$

Campo di esistenza di
$$g_4(x)$$
 $\left(-\infty, -\frac{\sqrt{10}}{2}\right) \cup \left(0, \frac{\sqrt{10}}{2}\right)$

La visualizziamo in $\left(0,\frac{\sqrt{10}}{2}\right)$ Calcoliamo la derivata prima di $g_4(x)$

$$g'_{4}(x) = \frac{1}{2\sqrt{\frac{10}{x} - 4x}} \left(-\frac{10}{x^{2}} - 4\right)$$

Campo di esistenza di $g_4(x)$ $\left(-\infty,-\frac{\sqrt{10}}{2}\right) \cup \left(0,\frac{\sqrt{10}}{2}\right)$ Si osserva facilmente che ${g'}_4(x) < 0$ sul suo dominio ed anche su I.

 $g_4(x)$ non soddisfa le ipotesi del teorema, il metodo non converge.

N.B. A parità di ordine di convergenza, è più veloce il metodo di iterazione funzionale, con coefficiente di convergenza asintotica più bassa.