Lecture VI

Extensions to Complex Matrices, in particular Hermitian Matrices.

Key Notions:

- * Unitary matrices
- * Unitary equivalence
- * Schur's unitary triangularization
- * QR factorization
- * Congruence and simultaneous diagonalization

Orthogonality Between Complex Vectors

Given any pair of (*complex*) vectors $x, y \in \mathbb{C}^n$, the inner product is defined as

$$\langle x, y \rangle \triangleq y^* x$$

= $x_1 \overline{y}_1 + x_2 \overline{y}_2 + \dots + x_n \overline{y}_n$.

They are said to be orthogonal, if

$$\langle x, y \rangle = 0.$$

Facts about the Inner Product

It can be easily checked that the inner product enjoys the following properties:

- $\langle x, y+z\rangle = \langle x, y\rangle + \langle x, z\rangle, \ \forall x, y, z \in \mathbb{C}^n.$
- $\langle x, \alpha y \rangle = \overline{\alpha} \langle x, y \rangle, \ \forall \alpha \in \mathbb{C}, \text{ scalar.}$
- $\langle x, x \rangle = \begin{cases} \geq 0, \ \forall x \in \mathbb{C}^n; \\ = 0, \text{ if and only if } x = 0. \end{cases}$

Orthogonal & Orthonomal Sets of Vectors

• A set of vectors $x^i \in \mathbb{C}^n$ is said to be orthogonal, if $\langle x^i, x^j \rangle = 0, \ \forall 1 \le i, j \le k, i \ne j.$

• A set of vectors $x^i \in \mathbb{C}^n$ is said to be orthonormal if, additionally, $||x^i|| := \sqrt{\langle x^i, x^i \rangle} = 1, \ \forall 1 \le i \le k.$

Remark

Any orthogonal set of nonzero vectors $\{y^i\}_{i=1}^k$ can be made an orthonormal set, by defining

$$x^{i} := \frac{1}{\sqrt{\langle y^{i}, y^{i} \rangle}} y^{i}, \forall 1 \leq i \leq k.$$

Fundamental Results

1) Any orthogonal set of <u>nonzero</u> vectors is linearly independent.

2) Any orthonormal set of vectors is linearly independent.

Unitary Matrix

A matrix $U \in \mathbb{C}^{n \times n}$ is said to be unitary if $U^*U = I$. (Recall that $U^* \triangleq \overline{U}^T$)

Of course, a real orthogonal matrix $O \in \mathbb{R}^{n \times n}$ is unitary, but the converse is not true. Can you find some examples?

Complex Orthogonal Matrix

A matrix $A \in \mathbb{C}^{n \times n}$ is said to be complex orthogonal, if:

$$A^T A = I$$
.

Remark:

A complex orthogonal matrix is unitary <u>if and only if</u> it is real.

Equivalent Characterizations

The following are equivalent:

- *U* is unitary;
- U is nonsingular and $U^* = U^{-1}$;
- $UU^* = I$;
- *U*^{*} is unitary;
- The columns of *U* form an orthonormal set;
- The rows of *U* form an orthonormal set;
- For any $x \in \mathbb{C}^n$, y = Ux satisfies $y^*y = x^*x$.

Exercise

Are the following statements true or false?

- 1) For any given real parameters θ_i , $1 \le i \le n$,
- $U = diag \left\{ e^{j\theta_k} \right\}$ is always unitary.
- 2) Any diagonal unitary matrix can always be put into the above form.
- 3) Any diagonalizable unitary matrix can be transformed to the above form.

Question

How to apply a unitary matrix, instead of a real orthogonal matrix, to transform a Hermitian matrix into a canonical diagonal form?

Review: Canonical Form of a Real Symmetrical Matrix

Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Then, it can be transformed into the diagonal form by using an orthogonal matrix O so that

$$O^T A O = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

where $\{\lambda_i\}_{i=1}^n$ are the eigenvalues of A.

Extension

It is possible to generalize this important result to (possibly complex) Hermitian matrices H, *i.e.*, $H^* = H$.

In this case, we use unitary matrices U, instead of orthogonal matrices, *i.e.*,

$$U^*U=I$$
.

Examples

• The matrix $\begin{pmatrix} 1 & 2+i \\ 2-i & -3 \end{pmatrix}$ is Hermitian.

• The matrix
$$\begin{pmatrix} 1 & 2+i \\ 2+i & -3 \end{pmatrix}$$
 is not Hermitian,

but is a complex symmetrical matrix.

Eigenvalues of Hermitian Matrices

The eigenvalues of a Hermitian matrix are real, and eigenvectors associated with distinct eigenvalues are orthogonal.

Canonical Transformation

If H is a Hermitian matrix, there exists a unitary matrix U such that

$$U^*HU = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}.$$

In particular, U becomes a real orthogonal matrix when H is a real symmetric matrix.

Idea of Proof

As in the case of real symmetric matrices, we use the Gram-Schmidt Orthogonalization Process, noting the following:

For complex vectors $x, y \in \mathbb{C}^n$, the inner product is defined as follows:

$$\langle x, y \rangle \triangleq \overline{y}^T x \triangleq \sum_{i=1}^n x_i \overline{y}_i.$$

Exercise

Compute the eigenvalues λ_1 , λ_2 of

$$H = \begin{pmatrix} 1 & 2+i \\ 2-i & -3 \end{pmatrix}$$

and find a unitary matrix U that

reduces
$$H$$
 to the diagonal form $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

(Hint: use
$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y}_i$$
 for *complex* vectors

x, y in the orthogonalization process.)

Schur's Unitary Triangularization

For any square, not necessarily Hermitian, $n \times n$ matrix A, there is a unitary matrix U for which

$$U^*AU = egin{pmatrix} \lambda_1 & * & \cdots & * \ 0 & \ddots & dots \ dots & \ddots & * \ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

with * being zero or nonzero scalars.

Step 1: Take a normalized eigenvector x^1 of A associated with an eigenvalue λ_1 , and find (n-1) vectors $\{y^2, \dots, y^n\}$ so that x^1, y^2, \dots, y^n are linearly independent.

Step 2: Apply the Gram-Schimidt orthonormalization procedure to x^1, y^2, \dots, y^n to produce an orthonormal set x^1, z^2, \dots, z^n .

Define $U_1 = \begin{bmatrix} x^1, z^2, \dots, z^n \end{bmatrix}$ which, clearly, is a unitary matrix.

Step 2 (cont'd): Under $U_1 = [x^1, z^2, \dots, z^n],$

$$U_1^*AU_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_1 \end{pmatrix}$$
, with $A_1 \in \mathbb{C}^{(n-1)\times(n-1)}$.

Of course, A_1 has eigenvalues $\lambda_2, \dots, \lambda_n$.

Step 3: For $A_1 \in \mathbb{C}^{(n-1)\times (n-1)}$, apply Steps 1-2 to arrive at an orthonormal set x^2 , z_1^3 , ..., z_1^n $\in \mathbb{C}^{n-1}$ and a unitary matrix

$$U_2 = [x^2, z_1^3, ..., z_1^n] \in \mathbb{C}^{(n-1)\times(n-1)}$$

so that

$$U_2^* A_1 U_2 = \begin{pmatrix} \lambda_2 & * \\ 0 & A_2 \end{pmatrix}$$
, with $A_2 \in \mathbb{C}^{(n-2) \times (n-2)}$

Step 4: It is easy to check that,

$$V_2 = \begin{pmatrix} 1 & 0 \\ 0 & U_2 \end{pmatrix} \text{ and } U_1 V_2 \in \mathbb{C}^{n \times n}$$

are both unitary. In addition,

$$\left(U_{1}V_{2}\right)^{*}A\left(U_{1}V_{2}\right) = egin{pmatrix} \lambda_{1} & * & * & * \ 0 & \lambda_{2} & * & * \ ------ & O_{(n-2) imes 2} & A_{2} \end{pmatrix}$$

Last Step: Continuing these steps to arrive at the last step, where we have produced unitary matrices $U_i \in \mathbb{C}^{(n-i+1)(n-i+1)}$, and $V_i \in \mathbb{C}^{n \times n}, \ i=2,3,...,n-1$ so that

• $U = U_1 V_2 \cdots V_{n-1}$, and

•
$$U^*AU = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$
.

Prof.Jiang@ECE NYU

Some Applications of Schur's Theorem

 Useful for solving algebraic, differential or difference linear equations.

Do you know why?

Applications of Schur's Theorem

Cayley-Hamilton Theorem

Let $p_A(\lambda)$ be the characteristic polynomial of A, that is, $p_A(\lambda) = \det(\lambda I - A) = \lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_n$. Then, $p_A(A) := A^n + \alpha_1 A^{n-1} + \dots + \alpha_n I = 0$.

See the textbook of Horn & Johnson (2nd ed., 2013), pp. 109~110.

Comment

Cayley-Hamilton Theorem is extremely important in linear systems theory.

Technical Remark

For any square $n \times n$ matrix A, for any integer $i \ge n$, there exist constants c_{i1}, \ldots, c_{in} such that

$$A^{i} = c_{i1}A^{n-1} + \dots + c_{in-1}A + c_{in}I, \ \forall i \geq n.$$

Exercise

Consider the matrix
$$A = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$$
.

- Use Cayley-Hamilton Theorem to
 express A², A³, A⁴ as linear combinations
 of A, I.
- Use Cayley-Hamilton Theorem to find the inverse A^{-1} .

QR Factorization

For any (possibly nonsquare) matrix $A \in \mathbb{C}^{n \times m}$, with $n \geq m$, $\exists Q \in \mathbb{C}^{n \times m}$, $R \in \mathbb{C}^{m \times m}$ such that

- The columns of *Q* form an orthonormal set, and *R* is an upper triangular matrix;
- $\bullet \ \ A=QR.$

If, in addition, A is nonsingular, then the diagonal entries of R are positive. Moreover, in this case, Q and R are unique.

Remark

The factors Q and R may be taken real, if A is a real matrix.

Proof: See the textbook, pp.89~90, for the constructive procedure closely tied to the Gram-Schmidt (G-S) algorithm.

An Example

What is the *QR* factorization of

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$$

Solution

For simplicity, denote
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} := (a^1 \ a^2).$$

Then, let
$$q^1 = a^1 / ||a^1|| = \left(\frac{1}{\sqrt{5}} \frac{2}{\sqrt{5}}\right)^1$$
 and,

like in the G-S process, compute

$$y^{2} = a^{2} - (q^{1*}a^{2})q^{1} = \left(-\frac{6}{5} \quad \frac{3}{5}\right)^{1}$$

Solution (cont'd)

Now, let
$$q^2 = y^2 / ||y^2|| = \left(\frac{-2}{\sqrt{5}} \frac{1}{\sqrt{5}}\right)^T$$
.

Set $Q = (q^1 \ q^2)$ which, by construction,

is orthonormal. Then, $R = (r_{ij})$, (with $r_{kj} = 0 \forall k > j$)

can be determined according to the general formula:

$$a^{j} = \sum_{k=1}^{j} r_{kj} q^{k}, j = 1, 2, ..., m$$

m = 2, here

Solution (end)

So,
$$r_{11} = \sqrt{5}$$
, $r_{21} = 0$, $r_{12} = \frac{6}{\sqrt{5}}$, $r_{22} = \frac{3}{\sqrt{5}}$.

That is:
$$R = \begin{pmatrix} \sqrt{5} & \frac{6}{\sqrt{5}} \\ 0 & \frac{3}{\sqrt{5}} \end{pmatrix}$$

It is directly verified that A = QR.

Application to Cholesky factorization

By means of QR factorization, any matrix $B \in \mathbb{C}^{n \times n}$ taking the form $B = A^*A$, with $A \in \mathbb{C}^{n \times n}$, can be written as:

 $B = LL^*$, with $L \in \mathbb{C}^{n \times n}$ lower triangular.

Moreover, this factorization is unique, if *A* is nonsingular.

Indeed, it suffices to write A = QR to obtain $L = R^*$.

QR Numerical Algorithm

This is a powerful tool for computing the eigenvalues of a matrix.

QR Numerical Algorithm

Step 1: For any given $A_0 \in \mathbb{C}^{n \times n}$, factorize $A_0 = Q_0 R_0$

Step 2: Define $A_1 = R_0 Q_0$, and factorize

$$A_1 = Q_1 R_1$$

Continuing this process, we have

$$\forall k \ge 1, \begin{cases} A_k = Q_k R_k \\ A_{k+1} = R_k Q_k \end{cases}$$

Proposition

• Each A_k is unitarily equivalent to A_0 , and thus they have the same eigenvalues.

• If A_0 has distinct eigenvalues, then A_k converges to an upper triangular matrix.

A Numerical Exercise

Use MATLAB simulation to validate the *QR* algorithm for the matrix

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}.$$

Congruence

Consider two matrices $A, B \in \mathbb{C}^{n \times n}$.

- (1) B is said to be *congruent to A, if $B = SAS^*$ for some nonsingular matrix S.
- (2) B is said to be congruent, or T congruent to A, if $B = SAS^{T}$ for some nonsingular matrix S.

Notice that both congruence are equivalence relations. (Horn-Johnson, 2nd ed., 2013; p. 281)

Inertia

Consider a Hermitian matrix $A \in \mathbb{C}^{n \times n}$.

Its inertia is defined as the ordered triple:

$$i(A) = (i_{+}(A), i_{-}(A), i_{0}(A))$$

where

 $i_{+}(A)$ = the number of positive eigenvalues of A;

 $i_{-}(A)$ = the number of negative eigenvalues of A;

 $i_0(A)$ = the number of zero eigenvalues of A.

Sylvester's Law of Inertia

Hermitian matrices $A, B \in \mathbb{C}^{n \times n}$ are *congruent if and only if they have the same inertia, i.e., the same number of positive eigenvalues and the same number of negative eigenvalues.

For the proof, see (Horn-Johnson, 2nd Ed., 2013, p. 282)

Simultaneous Diagonalization

Consider two Hermitian matrices $A, B \in \mathbb{C}^{n \times n}$. There is a unitary matrix $U \in \mathbb{C}^{n \times n}$ and real diagonal matrices Λ , M such that $A = U\Lambda U^*$, $B = UMU^*$ iff AB is Hermitian, that is, AB = BA.

See (Horn-Johnson, 2nd Edition, 2013, page 286.)

Homework VI

1. Transform the following Hermitian matrix

$$H = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 5 & -6 \\ -1 & -6 & 8 \end{pmatrix}$$

into a diagonal form.

2. If a (real) Hermitian matrix H is positive definite, prove that $H = P^2$, for a positive definite matrix P.