第四周周末作业 2020-03-13

一。 1.	选择题 正方体 ABC	$D-A_1B_1C_1D_1$	中, <i>BB</i> 1与3	平面 ACD ₁ 所	成角的余弦值	直为())	
		$B.\frac{\sqrt{3}}{3}$		10 <u>000</u>			
2.	, E	CD 沿对角线	- AC 折起,当	当以 A、B、C、	D 四点为顶	上的三棱锥体	积最大时,
		平面 ABC 所成					
	A. 90°	B. 60°	C. 45°		30°		
3. 不共线的三点 A、B、C 到平面α的距离相等,是平面 ABC//α的(β)							
	A. 充分非必	必要条件			必要非充分条		
	C. 充要条件	‡		D. 訓	卡充分非必要	条件	
4.	某四棱锥的三	视图如图所示	,该四棱锥	是长棱的棱士	(为(
	A. 1	B. $\sqrt{2}$		c. $\sqrt{3}$		D. 2	
			F-7: 1	REED .	到 (方) 视图		
			前视	图			
5.设 M,N 是球 O 的半径 OP 上的两点,且 NP=MN=OM,分别过 N,M,O 作垂直于 OP 的平面,							
	截球面得三个	个圆,则这三个	圆的面积之	比为(🔎)		
	(A)3:5:6	(B)3	3:6:8	(C)5:	7:9	(D)5:8:	
6.	直线 AB 与平	下面α成 60° 角	,直线 CD	在平面α内,	AB 和 CD 不	相交,那么直	线 AB 和
	CD 所成角中	最大角是(B)				
	A. 60°	B. 9	0°	C. 120	0°	D. 不确定	Ĕ
7.	正方体 ABC	$D - A_1B_1C_1D_1$	中, 点 P	在侧面 BCC	ıBı 及其边界	上运动,并且	总是保持
		动点 P 的轨迹					
	A. 线段 B ₁ C		1		段 BC ₁		

C. BB₁中点与 CC₁中点连成的线段 D. BC 中点与 B₁C₁ 中点连成的线段

8. 在三棱锥 P—ABC 中, PC⊥底面 ABC, ∠ACB=90°, AC>BC, D、E 分别是 AB、BC 的 中点. 设 PA 与 DE 所成角为α, PD 与平面 ABC 所成角为β, 二面角 P—AB—C 大小为 γ ,则 α 、 β 、 γ 的大小关系是(\triangle)

Α. α<β<γ

B. $\alpha < \gamma < \beta$

C. $\beta < \alpha < \gamma$

D. $\gamma < \beta < \alpha$

- 9. 如图:体积为 V 的大球内有 4 个小球,每个小球的球面过大球球心且与大 球球面有且只有一个交点,4 个小球的球心是以大球球心为中心的正方形置
- 4 个顶点.设 V₁ 为小球相交部分(图中阴影部分)的体积,V₂ 为大球内 不球外 的图中黑色部分的体积,则下列关系中正确的是())

(A) $V_1 > \frac{V}{2}$ (B) $V_2 < \frac{V}{2}$ (C) $V_1 > V_2$

 $(D)V_1 < V_2$

- 二. 填空题
- 10. 表面积为 $2\sqrt{3}$ 的正八面体的各个顶点都在同一个球面上,则此球的体积
- 11. 设地球半径为 R,若甲地位于北纬 45°东径 120°,乙地位于南纬 75°东径 120°,则甲 的球面距离为 するべ
- 12. 若一条直线与一个正四棱柱各个面所成的角都为 α, 则 cosα=
- 13. 在△ABC中,AB=2,BC=15,∠ABC=120°(如图).若将△ABC绕直线BC旋轴—周,则所形成的 旋转体的体积是 \5~
- 14. 某几何体的三视图如图所示, 则其体积为

- 15. 正方体被平面截成等积的二个部分,则截面形状可以是(1)正三角形; (2)菱形; (3)长方 形;(4)正方形;(5)正六边形. 其中正确的结论是 じょうじゅしょ
- 16. 在三棱锥中, PAL平面 ABC, ABLBC, AELPB 于 E, AFLPC 于 F, 连接 EF, 则图中 共有直角三角形 (4/10个.
- 17. 在直二面角 α —l— β 中, $A \in \alpha$, $B \in \beta$, $A \times B$ 不在 l 上,AB 与 $\alpha \beta$ 成角为 θ_1 ,AB 与 β 所

成角为 θ_2 , AB与 l 所成角为 θ_3 ,则 $\cos^2\theta_1 + \cos^2\theta_2 - \cos^2\theta_3 =$

三. 解答题

- 18. 如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点。
 - (I)求证:平面PAC 上平面PBC:
 - (II) 若AB=2, AC=1, PA=1, 求证: 二面角C-PB-A的余弦值.

证用 AB为国的面目 U) 由作即CHUAR341

PALFOAUS BC手干面ACIS

=>BCIPA

PAMACZA => BCJFBPAC

BC等平面PBC 音面PRIL 子面PAC EHFHT LPBIT! APJAM ABC.

AP与王面APB》至西州出土中面的C CHYM ABS CHYTO APB CT在平面 APB上朝设计T

-) CT 1 PB

くりてある面面C-PB-A子面南。

PC=」「OB=JS. PB=JS.

CT= 15. HB= 3 HT= 3.

19. 在棱长为 a 的正方体 ABCD—A₁B₁C₁D₁ 中, E、F 分别为 D₁C₁ 与 AB 的中点, 求: (1)A₁B₁

与截面 A₁ECF 所成角的大小; (2)点 B 到截面 A₁ECF 的距离.

了. 《范内在预测ECF上控制》

LRAM为 AIB,与截面AiBCF所成的

$$V_{B_1-EA_1F} = \frac{1}{3} C_{0A_1EF} \cdot h$$

$$= \frac{1}{3} \cdot S_{2A_1B_1F} \cdot \alpha .$$

AIE-AIT= SAA,EF = 18 a2.

SMZ BIAIH = RYCSIN 3.

A, B, 1/FB

コテB獨与截面AIEP所為有大小Orcsing. 1後:B到截面銀 的= 至·至·元

20. 已知正方体 ABCD-A'B'C'D'的梭长为 1, 点 M 是棱 AA'的中点, 点 O 是对角线 BD'的 中点:

- (2) 水二面角 M-BC'-B'的大小;
- (3)求三棱锥 M-OBC 的体积.

(王州 MB=MD 0 of 80'47. TOMIBO! 94 XA'B'BATA TAMIBER WARE TOBIEST TOWN => BO'L OM AA'LOM MEAN' + - O FAD' + 1个W.om为异面面(3.44.5.80 心里以 い 子面&では、大内里方にしのの。 BC'= CO. 1. 1). Em = (-1.0. 1) 设于面的个的一个体情况

M あM-10-B'的子が発 on Brances Plats

Frone But MOBC. & Soone hm.

ALD, 0, 0, A'CO, 0, 1) BC1, 0,0)

M: EX 430 图、冷尔与农美南公、

二面前M-RC-R'和独外性南户。 (cos \$1 = 1 cosac) =.

21. 如图:在斜三棱柱 ABC-AiBiCi中, ZAiAB=ZAiAC, AB=AC, AiA=AiB=a, 侧面 BiBCCi与

底面 ABC 所成的二面角为 120°,E,F 分别是棱 B₁C₁, A₁A 的中点.

- (1)求 A₁A 与底面 ABC 所成角;
- (2)证明 A₁E//平面 B₁FC;
- (3)求经过 A₁,A,B,C 四点的球的体积.

ABTAC => AMUBC. CAIAB=AIAC. AB= AC. AA, =AA, =7 A AI AB & AAIAL =7 A.B=A.C

= 7A, MIBC AIMPAMM -> A CUZAMIM 的几块 27 ALEIBICI BICINBLAHRIK

T在面 AAIEM内.

=> EMLISC .

BAMLAC. EMIBL

27 LEMA 对个目面的死公与存面ABC

の斤成×両市、 CEMA=124? AIE!AMO DUASAEMADAS DURS

27 CHIAM= 60%.

过AI作AIH物ABCJH. BC新面ABC

=> AIHIBC. => H任平面A AIEM内. ZA,AM为AIA与美丽ARC 6介的有

イ AIA与内面 BBC所成的为600

121 BICHER

E.M为好和 BCRCHI

DEMRYING TO PROPE FRIIAIE .

AIE在手面的Cop FR年子南B.Fc.

コ AIE 11年面内FC.

ALA= AIB=AIC = a. Attern HAGANODIA

极过的的(的球球心)和上光体。

DA: t.

のせるのもいって

m= oBtop

