Diskrete Mathematik HS2025 — Prof. Dennis HOFHEINZ

Marian DIETZ — Milan GONZALEZ-THAUVIN — Zoé REINKE

Exercise sheet 3

This is the exercise sheet number 3. The difficulty of the questions and exercises are rated from very easy (\star) to hard $(\star \star \star \star)$. The graded exercises are Exercise 3.2 and 3.7 and your solution has to be uploaded on the Moodle page of the course by 09/10/2025, 23:59. The solution to these exercises must be your own work, you may not share your solutions with anyone else. See also the note on dishonest behavior on the Moodle page.

1 Predicate Logic

Exercise 3.1 Expressing Relationship of Humans in Predicate Logic (*)

Consider, as in the lecture, the universe of all humans (including those who died) and the following predicate:

$$par(x, y) = 1 \iff "x \text{ is parent of } y."$$

Express the following statements as a formula in predicate logic, using only the above predicates (in particular, do **not** use the predicate equals, often also written as =).

- 1. x is great-grandparent of y.
- 2. *x* and *y* are (first) cousins.

Exercise 3.2 From Natural Language to a Formula (*) — **GRADED** (4 points) Please upload your solution by 09/10/2025

Consider the universe $U = \mathbb{N} \setminus \{0\}$. Express each of the following statements with a formula in predicate logic, in which the only predicates appearing are $\mathtt{smallerthan}(x,y)$, $\mathtt{divides}(x,y)$, $\mathtt{equals}(x,y)$ and $\mathtt{prime}(x)$ (instead of $\mathtt{smallerthan}(x,y)$, $\mathtt{divides}(x,y)$ and $\mathtt{equals}(x,y)$ you can write x < y, $x \mid y$ and x = y accordingly). You can also use the symbols + and \cdot to denote the addition and multiplication functions, and you can use constants (e.g., $0,1,\ldots$). You can also use \longrightarrow and \longleftrightarrow . No justification is required.

- 1. (\star) There does not exist a largest natural number.
- 2. (\star) The only divisors of a prime number are 1 and the number itself.
- 3. (\star) 1 is the only natural number which has an inverse.
- 4. (*) A prime number divides the product of two natural numbers if and only if it divides at least one of them.

Exercise 3.3 Winning Strategy ($\star \star$)

Alice and Bob play a game in which the stake is a chocolate bar. Rules of the game are the following: Alice chooses two integers a_1 , a_2 and Bob chooses two integers b_1 , b_2 . Alice wins whenever $a_1 + (a_2 + b_1)^{|b_2|+1} = 1$ and Bob wins otherwise.

- 1. First, consider the case when Alice and Bob announce all their numbers at the same time. Give a formula that describes the statement "Alice has a winning strategy." Is this statement true?
- 2. In the second case, Alice and Bob announce their numbers one by one. That is, first Alice announces a_1 , then Bob announces b_1 , then Alice announces a_2 , and at the end Bob replies with b_2 . Once again, give a formula that describes the statement "Alice has a winning strategy." Is this statement true in this case?

2 Proof Patterns

Exercise 3.4 Indirect Proof of an Implication

Prove indirectly that for all natural numbers n > 0, we have:

- 1. (*) If n^2 is odd, then n is also odd.
- 2. $(\star \star)$ If $42^n 1$ is a prime, then n is odd.

Exercise 3.5 Case Distinction

Prove by case distinction that:

- 1. (*) $n^3 + 2n + 6$ is divisible by 3 for all natural numbers $n \ge 0$.
- 2. $(\star \star)$ If p and $p^2 + 2$ are primes, then $p^3 + 2$ is also a prime.

Exercise 3.6 Proof by Contradiction

1. $(\star \star)$ Show by contradiction that the sum of a rational number and an irrational number is irrational.

Hint: Use the fact that the difference of two rational numbers is rational.

2. $(\star \star \star)$ Show that the number $2^{\frac{1}{n}}$ is irrational for n > 2, by reaching a contradiction with Fermat's Last Theorem.

Hint: Fermat's Last Theorem states that no positive integers a,b,c satisfy the equation $a^n+b^n=c^n$ for n>2.

Exercise 3.7 New Proof Patterns (*) — GRADED

(4 points)

Please upload your solution by 09/10/2025

For each of the following proof patterns, **prove** or **disprove** that it is sound. Do so by first writing it as a statement involving logical consequence on formulas and then proving that the resulting statement is either true or false.

- 1. (*) To prove a statement S, find two appropriate statements T_1 and T_2 . Assume that S is false and show (from this assumption) that at least one of the statements T_1 and T_2 is true. Then show that at least one of the statements T_1 and T_2 is false.
- 2. (*) To prove an implication $S \Rightarrow T$, find an appropriate statement R. First, show that R is false. Then, assume that S is true and T is false, and prove that (from these assumptions) R is true.

Due by 09/10/2025, 23:59. Exercise 3.2 and 3.7 will be graded.