الوحدة التعليمية: الدارات الكهربائية في التيار المتناوب

- 1/ التيار المتناوب:

التيار المستمر ثابت ولا يتغير مع الزمن أي اتجاه التيار لا يتغير.

لتكن التجربة التالية:

نقوم بتدوير مغناطيس امام وشيعة متصلة براسم الاهتزازات المهبطي ملاحظة: نلاحظ إشارة كهربائية متناوبة على جهاز راسم الاهتزازات المهبطي

التفسير: تعود هده الاشارة الكهربائية المتناوبة الى توليد قوة كهربائية متحرضة و الناتجة عن تغير التدفق الذي انتجه دوران المغناطيس امام الوشيعة من السهل إنتاج تيار متناوب أكثر من التيار المستمر

النتيجة:

يوجد نوع اخر من التيار وهو التيار المتناوب الذي يتغير مع الزمن ويأخذ على التناوب قيم موجبة وقيم سالبة أي اتجاه التيار يتغير.

- <u>2</u> / المقادير المميزة للتيار المتناوب:

نشاط:

من خلال التجربة السابقة قمنا بقياس التيار الكهربائي المتناوب الناتج، فتحصلنا على القيم الآتية:

						'			_			••									
t (s)	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20
I(A)	0	0.29	0.47	0.5	0.4	0	-0.29	-0.47	-0.5	-0.4	0	0.29	0.47	0.5	0.4	0	-0.29	-0.47	-0.5	-0.4	0

منحنى التيار بدلالة الزمن

ملاحظة: - نلاحظ ان الاشارة المتشكلة خلال 0.10 ثواني الاولى تبقى تتكرر مع مرور الزمن

- هده المدة هي الزمن الدي يدور فيها المغناطيس دورة كاملة

تسمى هذه المدة ب الدور T ووحدته هي الثانية (s)

$$F = \frac{1}{T}$$

التواتر: هو عدد المرات التي تتكرر فيها الإشارة في الثانية الواحدة رمزه F ووحدته الهرتز Hz.

التيار الأعظمي:

من المنحنى نستنتج ان قيمة التيار الأعظمي هي: $I_{max} = 0.5A$ وهي القيمة القصوى للتيار .

النبض: هو السرعة الزاوية للإشارة

 $\alpha = \omega \cdot t$

α [rad] : الزاوية

النبض : T[s] النبض : $\omega[rad/s]$

_ - 3/ مختلف الإشارات:

- إشارة أحادية الاتجاه: هي إشارة كهربائية لا تغير فيها الشحنات الكهربائية جهة تحركها (اما إشارة سالبة او موجبة)
- إشارة ثنائية الاتجاه: هي إشارة كهربائية تغير فيها الشحنات الكهربائية جهة تحركها (إشارة تارة موجبة وتارة سالبة).
 - إشارة متناظرة: هي إشارة كهربائية تكون فيها كمية الكهرباء المتجهة في الاتجاه الموجب مساوية لكمية الكهرباء المتجهة في الاتجاه السالب.
 - f(t+T)=f(t) تسمى الدور حيث f(t+T)=f(t) تسمى الدور حيث f(t+T)=f(t).
 - إشارة متناوبة: هي إشارة ثنائية الاتجاه متناظرة ودورية.
 - إشارة جيبية: هي إشارة متناوبة لها شكل الدالة الجيبية.

تمرين: حدد شكل و نوع الإشارات التالية ثم استنتج الدور و القيمة العظمي و احسب التواتر والنبض.

-6

إشارة جيبية

إشارة مثلثية متناوية

إشارة مربعة متناوية

T = 400 msF=0.0025HzI max=4A $\omega = 0.016 \text{ rd/s}$

T = 12 sF=0.83 Hz $U_{max}=6 V$ $\omega = 0.52 \text{ rd/s}$

T=100ms F=10Hz $I_{max}=80mA$ $\omega = 62.8 \text{ rd/s}$

- 4/ العبارة اللحظية لتوتر أو تيار جيبي:

 $u(t) = U_{max}.Sin(\omega t + \varphi)$

 $i(t) = I_{max}.Sin(\omega t + \varphi)$

 $U_{max}\left[V\right]$ القيمة اللحظية للتوتر: $\left[V\right]\left[V\right]$ القيمة العظمى ω [rad/s] : النبض الطور الابتدائي: [rad] : هي الزاوية الموافقة للحظة t=0

الزمن (بالثانية) : [s]

 $u(t)=10 \; \mathrm{Sin}(\omega t)$ أتمم الجدول وأرسم منحنى التوتر على المعلم الديكارتي:

ωt (rad)	0	π/4	π/2	$3\pi/4$	π	5π/4	$3\pi/2$	7π/4	2π
Sin (ω t)	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
u(t) (v)	0	7	10	7	0	-7	-10	-7	0

- 5/ القيمة المتوسطة:

لتكن الإشارة التالية:

نحسب كمية الكهرباء المنقولة خلال الدور T

q = i.t = 10A.1ms = 10 mC

كمية الكهرباء المنقولة بين 1ms و 5ms معدومة .

في نفس الزمن المكافئ إلى الدور T تيار مستمر Y ينعدم أبدا، ينقل نفس الكمية Q حيث:

I moy = q / T = 10 mC / 5 ms = 2A.

I moy هي القيمة المتوسطة لهذا التيار الدوري.

- استنتج القيمة المتوسطة للإشارات التالية:

القيمة المتوسطة لإشارة متناوبة أو جيبية معدومة

<u>-5/ القيمة الفعالة:</u> نحسب كمية الحرارة خلال الدور T

$$W = R.I^2.t = R.10^2.1 = 100R$$

بالنسبة للتيار المستمر الذي ينتج نفس كمية الحرارة

$$W = R.I_{eff}^{2}$$
. $T = R.I_{eff}^{2}$. 5
 $I_{eff}^{2} = 100.R / 5.R = 20$

Ieff = 4.472 A

Ueff = Umax $/\sqrt{2}$

Ieff = Imax $/\sqrt{2}$

القيمة الفعالة لتيار او توتر جيبي هي نشاط

القيمة الفعالة للشبكة سو نلغاز هي 220V

اوجد القيم العظمى للتوتر الشبكة ثم اكتب العبارة اللحظية للتوتر.

شعاع فرينل

-6/ التمثيل الشعاعي (تمثيل فرينل): هو عبارة عن تمثيل شعاعي

لدوال جيبية بحيث يسمح باستبدال دالة جيبية بشعاع هدفه مقارنة دالتين جبيبتين بنفس التر دد f

شعاع فرينل: لكل مقدار جيبي u(t)= Umax Sin(ωt+φ) شعاعا OM حيث:

- $|\overrightarrow{OM}| = Umax$ صويلة الشعاع $|\overrightarrow{OM}|$ تساوي القيمة العظمى طويلة الشعاع
 - الزاوية $(\overrightarrow{OX}, \overrightarrow{OM0})$ المثل فرق الطور $(\overrightarrow{OX}, \overrightarrow{OM0})$ اللحظة 0=t
 - الزاوية ($\overrightarrow{OM0}$, $\overrightarrow{OM0}$) تمثل الطور اللحظى \mathbf{ot} أي الزاوية في اللحظة t

دوران الشعاع: نقطة M فوق الدائرة، النقطة

'M فوق مستوي

الشعاع OM يدور دورة كاملة خلال دور T

النشاط

بواسطة تمثيل فرينل مثل الأزواج التوتر والتيار

I(A)	$4 \sin(\omega t - \pi/3)$	6 Sin(ωt)	8 Sin($\omega t + \pi/4$)	$7 \sin(\omega t - \pi/12)$
U(V)	220 Sin(ωt)	150 Sin(ω t- π /6)	380 Sin($\omega t + \pi/2$)	310 Sin($\omega t + \pi/4$)

 $i(A) = 4 Sin(\omega t - \pi/3)$

 $U(V) = 220 \operatorname{Sin}(\omega t)$

-7/ ممانعة ثنائى القطب غير فعال وخطى:

ثنائي قطب غير فعال و خطي هو عبارة عن دارة كهربائية لا تحتوي على قوة محركة كهربائية، ووسائطها لها قيم ثابتة مثل المكثفة C – وشيعة C – مقاومة C

 $I(t)=Imax(\omega t)$ يجتازها تيار $U(t)=Umax(\omega t+\phi)$ فان القيم الفعالة $U(t)=Umax(\omega t+\phi)$ فان القيم الفعالة $U(t)=Umax(\omega t+\phi)$

 Ω حيث Z يمثل ممانعة الحقيقية ثنائي القطب، وحدتها أوم

 $U{=}Z.I$ متناسبان طردیا و نضع

-8/ قانون اوم لمختلف الدارات الكهربائية:

 $I(t)=I_{\max}(\omega t)$ ، $U(t)=U_{\max}(\omega t+\varphi)$ - حالة مقاومة:

التيار I و التوتر U على توافق في الطور الابتدائي

 $\phi=0$, Z=R

تمثيل فرينل

- حالة وشيعة L:

I التوتر U متقدم بالنسبة للتيار $\phi = \pi/2$, ZL=L ω

تمثيل فرينل

- حالة مكتفة <u>C</u>:

I التوتر U متأخر بالنسبة للتيار $\phi = -\pi/2$, $Zc = 1/C\omega$

تمثيل فرينل

စ္တီ Lယ

- حالة مقاومة R و وشيعة L على التسلسل: $Z = \sqrt{R^2 + (L\omega)^2}$

$$Z = \sqrt{R^2 + (L\omega)^2}$$

 $\tan \varphi = \frac{L\omega}{R}$

تمثيل فرينل

تمثيل فرينل

تمثيل فرينل

- دارة RLC على التسلسل:

 $Z_L
angle Z_C$ حالة الاولى: • فعل الوشيعة يغلب على فعل المكثفة (دارة حثية)

$$arphi
angle 0$$
تمثیل فرینل

 $Z_L \langle Z_C \rangle$ حالة الثانية: فعل المكثفة يغلب على فعل الوشيعة (دارة سعوية) $\varphi\langle 0$

$$Z_L=Z_C$$
 حالة الثالثة: $Z_L=Z_C$ فعل المكثفة يساوي فعل الوشيعة (حالة تجاوب) $Z=R$

ممانعة التركيب و فرق الطور:

$$\tan \varphi = \frac{L\omega - \frac{1}{C\omega}}{R}$$

$$\tan \varphi = \frac{L\omega - \frac{1}{C\omega}}{R} \qquad Z = \sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}$$

- دارة RL على التوازي (التفرع):

$$Z = \frac{1}{\sqrt{(1/R)^2 + (1/L\omega)^2}}$$

$$\tan \varphi = \frac{1}{RL\omega}$$
فرق الطور تمثیل فرینل

- دارة RLC على التوازي (التفرع):

$$I = I_R + I_L + I_C$$

 $|Z_L\rangle Z_C|$ حالة الاولى: فعل الوشيعة يغلب على فعل المكثفة (دارة حثية)

تمثيل فرينل

 $Z_L\langle Z_C$ حالة الثانية: فعل المكثفة يغلب على فعل الوشيعة (دارة سعوية) $\varphi\langle 0$

تمثيل فرينل

 $Z_L = Z_C$ حالة الثالثة: فعل المكثفة يساوي فعل الوشيعة (حالة تجاوب)

$$\varphi = 0$$

ممانعة التركيب و فرق الطور

$$\tan \varphi = R(C\omega - \frac{1}{L\omega})$$
 $Z = \frac{1}{\sqrt{\frac{1}{R}^2 + (C\omega - \omega)^2}}$

-9/ الاستطاعة في التيار المتناوب الجيبي: 9-1- الاستطاعة اللحظية:

نعرف الاستطاعة اللحظية بالجداء P=U.I وحداتها الواط (W)

$$i(t) = I\sqrt{2}.\sin(\omega t)$$
 ($\sqrt{\ }$)night $\phi(t)$:

$$P(t) = \mathbf{u}(t) \cdot i(t) = U\sqrt{2}\sin(\omega t + \varphi).I\sqrt{2}\sin(\omega t) = 2.U.I.\sin(\omega t + \varphi).\sin(\omega t)$$

$$P(t) = U.I.\cos(\varphi - U.I.\cos(2\omega t + \varphi))$$

 $P = U.I.\cos \varphi$ الاستطاعة الفعالة: هي القيمة المتوسطة للاستطاعة اللحظية وحدتها الواط -2-9ملاحظة: cos φ يمثل عامل الاستطاعة.

منال: دارة تحتوي على مقاومة R : لدينا $Q=\phi$ اذا $\cos\phi=1$ اذا $\cos\phi=1$ اذا المقاومة تستهاك الطاقة الكهربائية

S = U.I وحدتها فولط امبير (VA) وحدتها فولط امبير

VAR وحدتها فولط أمبير رادي والردية: تعرف ب $Q = U.I.\sin \phi$ وحدتها فولط أمبير رادي $Q = U.I.\sin \phi$

9-5- العلاقة ما بين الاستطاعات:

التمثيل الشعاعي التالي يمثل مثلث الاستطاعات

$$S = \sqrt{P^2 + Q^2} = U .I$$

$$\cos \varphi = \frac{P}{S}$$

$$\sin \varphi = \frac{Q}{S}$$

$$\tan \varphi = \frac{Q}{P}$$

10- نظرية بوشرو:Boucherot

في دارة كهربائية تحتوي على عدة مستقبلات (أجهزة) تجتازها تيارت جيبية.

- الاستطاعة الفعالة الكلية المستهلكة تساوي مجموع الاستطاعات الفعالة المستهلكة من طرف كل جهاز
- الاستطاعة الرادية الكلية المستهلكة تساوي المجموع الاستطاعات الردية المستهلكة من طرف كل جهاز نقول اذا ان هناك انحفاظ للاستطاعات الفعلية و الردية

$$P = P1 + P2 + P3$$

$$Q = Q1 + Q2 + Q3$$

11- تحسين عامل الاستطاعة (رفعه):

لتحسين عامل الاستطاعة $\phi^{\cos \varphi}$ و الذي حددتها سونلغاز ما بين 0.8 و 0.99 يجب وضع مكثفات داخل الشبكة ، وتحسب قبمة المكثفة المضافة حسب العلاقة التالية

$$C = \frac{P_t(tg\varphi_1 - tg\varphi_2)}{U^2.\omega}$$

12- التيار المتناوب ثلاثى الطور:

التيار المتناوب ثلاثي الطور هو نظام يحتوي على ثلاثة توترات جيبية لها نفس التردد (التواتر)، ونفس القيمة الفعالة، حيث فرق الطور بين توترين متتابعين هو $2\pi/3$ ($^{\circ}$

يعتبر هذا النظام متوازنا، وإذا فقد إحدى هذه الخصائص فقد النظام صفة التوازن. ينقل هذا النظام بواسطة 4 نواقل (ناقل حيادي وثلاثة نواقل للأطوار).

♦ التوترات البسيطة: هي التوترات المأخوذة بين المحايد وأحد الأطوار الثلاثة. في النمط المتوازن لدينا:

$$\overrightarrow{V}_1 + \overrightarrow{V}_1 + \overrightarrow{V}_3 = \overrightarrow{0}$$

$$\overrightarrow{V}_1 = \overrightarrow{V}_2 = \overrightarrow{V}_3 = \overrightarrow{V}$$

 $\overline{V=220}$ v :في النظام الشائع الاستعمال

♦ التوترات المركبة: هي التوترات المأخوذة بين طورين من الأطوار الثلاثة. في النمط المتوازن لدينا:

$$\overrightarrow{U}_{12} + \overrightarrow{U}_{23} + \overrightarrow{U}_{31} = \overrightarrow{0}$$

$$\overrightarrow{U}_{12} = U_{23} = U_{31} = U$$

 $\begin{bmatrix} U_{12} = U_{23} = U_{31} = U \end{bmatrix}$ في النظام الشائع الاستعمال: U = 380 v

1-12- العلاقة بين التوترات البسيطة والمركبة:

$$\overrightarrow{U}_{12} = \overrightarrow{V}_1 - \overrightarrow{V}_2$$

$$\overrightarrow{U}_{23} = \overrightarrow{V}_2 - \overrightarrow{V}_3$$

$$\overrightarrow{U}_{31} = \overrightarrow{V}_3 - \overrightarrow{V}_1$$

العلاقة بالأشعة
$$\frac{380}{220} = \sqrt{3}$$

$$\overrightarrow{U}_{12}=\overrightarrow{V}_1-\overrightarrow{V}_2$$
 $\overrightarrow{U}_{23}=\overrightarrow{V}_2-\overrightarrow{V}_3$: العلاقة بين القيم الفعالة: $\boxed{\frac{380}{220}=\sqrt{3}}$ $\boxed{U=V\sqrt{3}}$ \Rightarrow $\boxed{U=V\sqrt{3}}$ \Rightarrow $\boxed{U=V\sqrt{3}}$ \Rightarrow $\boxed{U=V\sqrt{3}}$

<u>2-12</u> تمثیل فرینل:

$$v_1(t)=V\sqrt{2}sin(\omega t)$$
 $v_2(t)=V\sqrt{2}sin(\omega t-\frac{2\pi}{3})$: الدينا العبارات اللحظية للتوترات البسيطة $v_3(t)=V\sqrt{2}sin(\omega t-\frac{4\pi}{3})$

$$u_{12}(t) = U\sqrt{2}\sin(\omega t + \frac{\pi}{6})$$

$$u_{23}(t) = U\sqrt{2}\sin(\omega t - \frac{\pi}{2})$$

$$u_{31}(t) = U\sqrt{2}\sin(\omega t - \frac{7\pi}{6})$$

من البيان نستنتج العبارات اللحظية للتوترات والمركبة:

3-12 المنحنيات البيانية للتوترات اللحظية البسيطة والمركبة

