

基于FLINK+HOLOGRES的实时多维在降本提效的实践

石强 欢聚时代\大数据架构师

公司介绍

欢聚时代于2005年4月成立,是一家全球领先的社交媒体企业。

欢聚旗下运营多款社交娱乐产品,包括Bigo Live直播、Likee短视频、Hago休闲小游戏社交、即时通讯,电商业务等。

广告

电商

游戏

社交

短视频

1 为什么要实时多维化?

02 多维化的设计与思考

目录

03 落地的效益

04 未来与展望

01 为什么要实时多维化?

现存的问题

成本的构成

数据团队目标

新方案应该具备的能力

架构上存算分离

计算资源 弹缩方便快捷

运维难度低 使用门槛低

查询速度快

多维分析3W

02 多维化的设计与思考

市面上的多维化方案

OLAP技术选型

分类	clickhouse	starrocks	hologres	
协议	非标准协议	兼容mysql协议	兼容pg协议	
是否开源	是	是	否	
存算分离	否	否是		
读写分离	否	否	是	
关联hive	否	是	是	
分布式	否	是	是	
实时更新	支持一般	支持一定程度更新	支持完善	
场景匹配度	20%	70%	90%	

Hologres测试环境

配置项	配置信息
计算资源	CPU: 128 Core,内存: 512 GB
存储资源	500 GB(逻辑存储)
Hologres版本	v1.1.68
网络环境	vpc
主要测试表	yy_mbsdkdo_original

测试-单线程场景

场景	子场景	测试表数据量		
		5000万	5亿	10亿
点查		2.6	5.1	3.6
count(*)	无where 条件	51	67	75
	Where +主键与非主键+and/or 自由组合	27	53	70
uniq(column)	无 where 条件	23	21	25
	Where +主键与非主键+and/or 自由组合	46	57	87
分页查询		44	55	61
(维度表)小表 join 大表		208	1417	2445
大表 join 大表		\	\	\

单位:毫秒(平均耗时)

Uniq语义: 等同于性能更好的 count(distinct column)

测试-多线程场景

场景	子场景	并发数			
		10	100	1000	5000
点查		45	46	304	/
count(*)	Where +主键与非主键+and/or	95	301	349	/
uniq(column)	Where +主键与非主键+and/or	1200	2700	19475	/
分页查询		299	1913	18943	/
(维度表)小表 join 大表		12228	123249	2107169	/

说明: 1. 对数据量为5亿的测试表做并发压测

2. 时间单位为毫秒(平均耗时)

3. holo 最大连接数为128*8(work 节点)=1024

测试结论

- 1. 大部分场景性能表现不错,点查耗时平均在[2.6ms,300ms]区间内
- 2. 聚合统计查询在提高并发度下性能会有所下降
- 3. 大表之间关联的场景:查询的条件覆盖主键的前提下,10s内出结果, 大量的shuffle对CPU和内存压力都很大
- 4. 数据的实时导入QPS可以达到 400w,符合预期

原有技术架构

架构上的优化

技术难点1-双流join

解决方案:

大量的历史维度关联场景: 将流Join转化为点查

大流join大流:

维度最近数据存在state,形成缓存层,

缓存层查询不到, 进入点查

技术难点2

> QPS 10w 存明细,数据量大,存储成本高

背景:在移动端统计分析场景,需要进行大量埋点数据的存储,如果存放在hologres,会占用大量的存储容量。

解决方案:

在统计分析场景下,大部分统计指标是UV,PV类型,分析同学更关心的是数据指标的时效性;维度的上卷,下钻;整体的指标趋势,对明细数据相对不太关注,可以使用bitmap方案,将uid,设备id进行bitmap化。

效果: 1000w条心跳数据可以压缩为15w条。

03 落地的效益

成本效益

存储成本降低: 80%

计算成本降低: 80%

带宽成本降低: 50%

人力成本降低: 75%

技术效益

旧统计分析系统

- 1. 资源扩缩时长(1小时)
- 2. 新增统计指标(1天)
- 3. 计算引擎(实时,离线2套)
- 4. 可维护性(2个人力)
- 5. 指标统计(T+1, 部分小时级别)

实时多维分析方案

- 1. 存算分离, 扩缩时长(5分钟)
- 2. 新增统计指标(5分钟)
- 3. 计算引擎(flink 1套)
- 4. 可维护性(半个人力)
- 5. 指标统计(分钟级别)

新架构的产品形态

05 未来与展望

未来的方向

非常感谢您的观看

Joyy | DataFun.

