

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу

«Data Science»

Слушатель: Голынцев С. О.

Начало работы:

План работы:

- 1. Загружаем и обрабатываем входящие датасеты.
- 2. Проводим разведочный анализ данных.
- 3. Визуализируем анализ сырых данных.
- 4. Проведём предобработку, нормализацию и стандартизацию данных.
- 5. Разработаем и обучим нескольких моделей прогноза прочности при растяжении (с 30% тестовой выборки).
- 6. Разработаем и обучим нескольких моделей прогноза модуля упругости при растяжении (с 30% тестовой выборки).
- 7. Нейронная сеть для рекомендации соотношения матрица-наполнитель.
- 8. Создание удалённого репозитория и загрузка результатов работы на него.

Объединение файлов и разведочный анализ:

- ✓ Объединение по индексу:
- Импортируем необходимые библиотеки;
- Загружаем файлы;
- Посмотрим размерность;
- Объединим оба файла по индексу по типу объединения INNER
- ✓ Разведочный анализ данных:
- Посмотрим на начальные и конечные строки нашего датасета;
- Изучим информацию о датасете;
- Проверим типы данных в каждом столбце;
- Проверим пропуски;

Объединяем по индексу, тип объединения INNER, смотрим итоговый датасет In [9]: # Понимаем, что эти два датасета имеют разный объем строк. # Но наша задачи собрать исходные фальи в один, единый набор данных. # По условию задачи объединяем их по типу INNER. df = df_pp.merge(df_nup, left_index = True, right_index = True, how = 'inner') Out[9]: 0 1 2 3 4 Cоотношение матрица-наполнитель (плотность, кг/мз дозологом) 1.857143 1.857143 1.857143 1.857143 1.857143 2.771331 Модуль упругости, ГПа дозологом (Количество отвердителя, м.% дологом (Количество отвердителя, м.% дологом) 738.736842

4.000000

300.000000

5.000000

	<class 'pandas.core.frame.dataframe'=""></class>									
	Int64Index: 1023 entries, 0 to 1022									
	columns (total 13 columns):	11								
#	Column	Non-Null Count	Dtype							
0	Соотношение матрица-наполнитель	1023 non-null	float64							
1	Плотность, кг/м3	1023 non-null	float64							
2	модуль упругости, ГПа	1023 non-null	float64							
3	Количество отвердителя, м.%	1023 non-null	float64							
4	Содержание эпоксидных групп,%_2	1023 non-null	float64							
5	Температура вспышки, С_2	1023 non-null	float64							
6	Поверхностная плотность, г/м2	1023 non-null	float64							
7	Модуль упругости при растяжении, ГПа	1023 non-null	float64							
8	Прочность при растяжении, МПа	1023 non-null	float64							
9	Потребление смолы, г/м2	1023 non-null	float64							
10	Угол нашивки, град	1023 non-null	float64							
11	Шаг нашивки	1023 non-null	float64							
12	Плотность нашивки	1023 non-null	float64							
dtypes: float64(13)										
memory usage: 111.9 KB										

Соотношение матрица-наполнитель	1014
Плотность, кг/м3	1013
модуль упругости, ГПа	1020
Количество отвердителя, м.%	1005
Содержание эпоксидных групп,%_2	1004
Температура вспышки, С_2	1003
Поверхностная плотность, г/м2	1004
Модуль упругости при растяжении, ГПа	1004
Прочность при растяжении, МПа	1004
Потребление смолы, г/м2	1003
Угол нашивки, град	2
Шаг нашивки	989
Плотность нашивки	988
dtype: int64	

47.0 57.0

Проверим размерность второго файла

(1040, 3)

«Угол нашивки» и описательная статистика:

- ✓ Работа со столбцом "Угол нашивки":
- Проверим количество элементов со значением 0 градусов;
- Приведём к значениям 0 и 1;
- Убедимся в неизменном количестве элементов
 - **✓** Описательная статистика:

a = df.describe()

- Изучим описательную статистику данных (максимальное, минимальное, квартили, медиана, стандартное отклонение, среднее значение и т.д.),
- Посмотрим на основные параметры анализа данных;
- Проверим датасет на пропущенные и дублирующие данные;
- Вычислим коэффициенты ранговой корреляции Кендалла и Пирсона


```
#Поработаем со столбцом "Угол нашивки"

df['Угол нашивки, град'].nunique()
#Так как кол-во уникальных значений в колонке Угол нашивки равно 2

#Посчитаем количество элем df['Угол нашивки'][df['Угол нашивки'][df['Угол нашивки']][df['Угол нашивки']][df['Угол нашивки, град'] == 0.0].count()

520

#Переведем столбец "Угол нашивки" к значениям в и 1 и integer df = df.replace({'Угол нашивки, град': {0.0 : 0, 90.0 : 1}})

df['Угол нашивки, град'] = df['Угол нашивки, град': 3 stype(int)

#Перешменуем столбец "Угол нашивки, град': 'Угол нашивки'})

df = df.rename(columns={'Угол нашивки, град': 'Угол нашивки'})
```

```
#Посчитаем количество элементов, где угол нашивки раве df['Угол нашивки'][df['Угол нашивки'] == 0.0].count() #После преобразования колонки Угол нашивки к значениям 520

# Переведем столбец с нумерацией в integer df.index = df.index.astype('int')

# Сохраним итоговый датасет в отдельную папку с данным df.to_excel("Itog\itog.xlsx")
```

```
25%
                                                                                                                      75%
                                        count
                                                                                                                                   max
                                                  2.930366
                                                              0.913222
                                                                           0.389403
                                                                                        2.317887
                                                                                                     2.906878
                                                                                                                  3.552660
                                                                                                                               5.591742
   Соотношение матрица-наполнитель
                                               1975.734888
                                                             73.729231
                                                                        1731.764635
                                                                                     1924.155467
                                                                                                  1977.621657
                                                                                                              2021.374375
                                                739.923233
                                                            330.231581
                                                                           2.436909
                                                                                      500.047452
                                                                                                   739.664328
                                                                                                                961.812526
                модуль упругости, ГПа 1023.0
         Количество отвердителя, м.% 1023.0
                                                110.570769
                                                             28.295911
                                                                          17.740275
                                                                                       92.443497
                                                                                                   110.564840
                                                                                                                129.730366
                                                                                                                             198.953207
                                                              2.406301
                                                                          14.254985
                                                                                       20.608034
                                                                                                                 23.961934
                                                                                                                              33.000000
   Содержание эпоксидных групп, %_2 1023.0
                                                 22.244390
                                                                                                    22.230744
                                                             40.943260
                                                                         100.000000
                                                                                     259.066528
                                                                                                   285.896812
                                                                                                               313.002106
                                                                                                                             413.273418
            Температура вспышки, С_2 1023.0
                                                285.882151
       Поверхностная плотность, г/м2 1023.0
                                                                           0.603740
                                                                                      266.816645
                                                                                                   451.864365
                                                                                                                693.225017
                                                                                                                            1399.542362
                                                                          64.054061
                                                                                                                 75.356612
Модуль упругости при растяжении, ГПа 1023.0
                                                  73.328571
                                                                                       71.245018
                                                                                                    73.268805
      Прочность при растяжении, МПа 1023.0
                                                                         1036.856605
                                                                                     2135.850448
                                                                                                              2767.193119
                                                             59.735931
                                                                          33.803026
                                                                                                               257.481724
             Потребление смолы, г/м2 1023.0
                                               218.423144
                                                                                      179.627520
                                                                                                  219.198882
                        Угол нашивки 1023.0
                                                  0.491691
                                                              0.500175
                                                                           0.000000
                                                                                        0.000000
                                                                                                     0.000000
                                                                                                                  1.000000
                                                                                                                               1.000000
                                                  6.899222
                                                              2.563467
                                                                           0.000000
                                                                                        5.080033
                                                                                                     6.916144
                                                                                                                              14.440522
                  Плотность нашивки 1023.0
                                                 57.153929
                                                             12.350969
                                                                                       49.799212
                                                                                                                             103.988901
```

# Пропуски оанных	
# Проверим на пропущенные данные df.isnull().sum() # Пропущенных данных нет = нулевых зна	чений
Соотношение матрица-наполнитель	0
Плотность, кг/м3	0
модуль упругости, ГПа	0
Количество отвердителя, м.%	0
Содержание эпоксидных групп,%_2	0
Температура вспышки, С_2	0
Поверхностная плотность, г/м2	0
Модуль упругости при растяжении, ГПа	0
Прочность при растяжении, МПа	0
Потребление смолы, г/м2	0
Угол нашивки	0
Шаг нашивки	0
Плотность нашивки	0
dtype: int64	

Визуализация данных:

✓ Графики без нормализации и исключения шумов:

- Построим гистограммы распределения каждой из переменных;
- диаграммы "ящиков с усами";
- попарные графики рассеяния точек;
- графики квантиль-квантиль;
- тепловые карты/

Предобработка данных:

✓ Исключение выбросов:

- Посчитаем количество значений методом 3 сигм и методом межквартильных расстояний;
- Исключим выбросы методом межквартильного расстояния;
- Проверим результат;
- Построим графики;
- Убедимся, что выбросы ещё остались;
- Повторим удаление выбросов ещё 4 раза до полного удаления;
- Проверим чистоту датасета от выбросов;
- Построим все возможные графики «чистого» датасета.

Предобработка данных:

✓ Нормализация данных:

- Нормализуем данные MinMaxScaler();
- Построим график плотности ядра;
- Проверим результат MinMaxScaler();
- Построим графики MinMaxScaler();
- Нормализуем данные с помощью Normalizer();
- Проверим результат Normalizer();
- Построим графики Normalizer();

✓ Стандартизация данных:

- Стандартизируем данные с помощью StandardScaler();
- Проверим результат StandardScaler();
- Построим графики StandardScaler();

		0	1	2	3	4	5	6	7	8	9	10	11	12
	-1.196	467	0.787037	0.007992	-2.286425	0.647585	-0.039740	-0.971971	-1.092335	1.187925	0.034181	-1.021932	-1.166792	0.219240
	-1.196	467	0.787037	0.007992	0.668092	-0.397291	0.350738	-0.971971	-1.092335	1.187925	0.034181	-1.021932	-0.768833	-0.950227
	-0.175	012	0.787037	0.051553	0.027074	0.028123	-0.039740	-0.971971	-1.092335	1.187925	0.034181	-1.021932	-0.768833	-0.050637
:	-0.178	825	0.364514	0.036283	0.027074	0.028123	-0.039740	-0.971971	-1.092335	1.187925	0.034181	-1.021932	-0.768833	0.219240
	-0.400	390	-0.903054	0.216474	0.027074	0.028123	-0.039740	-0.971971	-1.092335	1.187925	0.034181	-1.021932	-0.768833	1.118831

Разработка и обучение моделей для прогноза прочности при растяжении:

✓ Метод К ближайших соседей:

- Разбиваем данные на тестовую и тренировочную выборки;
- Обучаем модель;
- Вычисляем коэффициент детерминации;
- Считаем MAE, MAPE, MSE, RMSE, test score train и test score test;
- Сравниваем с результатами модели, выдающей среднее значение;
- Построим графики для тестовых и прогнозных значений;
- Построим гистограмму распределения оппибки/

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР мгту им. Н. Э. Баумана

- метод опорных векторов;
- случайный лес;
- линейная регрессия;
- градиентный бустинг;
- К-ближайших соседей;
- дерево решений;
- стохастический градиентный спуск;
- многослойный перцептрон;
- Лассо.

K Neighbors Regressor Results Train:

Test score: 0.94

K Neighbors Regressor Results:

KNN_MAE: 102 KNN_MAPE: 0.04 KNN_MSE: 16723.93 KNN_RMSE:129.32 Test score: 0.92

Поиск гиперпараметров:

- ✓ Для метода «Деревья решений»:
- Поиск гиперпараметров методом GridSearchCV с перекрёстной проверкой с количеством блоков 10;
- Выводим гиперпараметры для оптимальной модели;
- Подставляем оптимальные гиперпараметры в модель случайного леса;
- Обучаем модель;
- Оцениваем точность на тестовом наборе;
- Выводим наилучшее значение правильности перекрёстной проверки , наилучшие параметры, наилучшую модель по всем 9 методам;
- Проверяем правильность на тестовом наборе


```
pipe = Pipeline([('preprocessing', StandardScaler()), ('regressor', SVR())])
param grid = [
{'regressor': [SVR()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None],
 'regressor gamma': [0.001, 0.01, 0.1, 1, 10, 100],
'regressor_C': [0.001, 0.01, 0.1, 1, 10, 100]},
{'regressor': [RandomForestRegressor(n_estimators = 100)],
'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [LinearRegression()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [GradientBoostingRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [KNeighborsRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [DecisionTreeRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [SGDRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [MLPRegressor(random_state = 1, max_iter = 500)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [linear_model.Lasso(alpha = 0.1)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},]
grid = GridSearchCV(pipe, param grid, cv = 10)
grid.fit(x train 1, np.ravel(y train 1))
print("Наилучшие параметры:\n{}\n".format(grid.best_params_))
print("Наилучшее значение правильности перекрестной проверки: {:.2f}".format(grid.best score ))
print("Правильность на тестовом наборе: {:.2f}".format(grid.score(x_test_1, y_test_1)))
Наилучшие параметры:
{'preprocessing': StandardScaler(), 'regressor': SGDRegressor()}
Наилучшее значение правильности перекрестной проверки: 0.97
Правильность на тестовом наборе: 0.97
 # Проведем поиск по сетке гиперпараметров с перекрестной проверкой, количество блоков равно 10 (cv = 10), для
 #Деревья решений - Decision Tree Regressor - 6
 criterion = ['squared_error', 'friedman_mse', 'absolute_error', 'poisson']
                                                                    #Выводим гиперпараметры для оптимальной модели
 splitter = ['best', 'random']
                                                                    print(gs4.best estimator )
 max_depth = [3,5,7,9,11]
                                                                    gs1 = gs4.best_estimator_
 min_samples_leaf = [100,150,200]
                                                                    print(f'R2-score DTR для прочности при растяжении, MПa: {gs4.score(x_test_1, y_test_1).round(3)}')
 min_samples_split = [200,250,300]
 max_features = ['auto', 'sqrt', 'log2']
                                                                    DecisionTreeRegressor(criterion='poisson', max depth=5, max features='auto',
 param_grid = {'criterion': criterion,
                                                                                      min_samples_leaf=100, min_samples_split=250)
             'splitter': splitter,
                                                                    R2-score DTR для прочности при растяжении, МПа: 0.779
             'max_depth': max_depth,
             'min_samples_split': min_samples_split,
             'min_samples_leaf': min_samples_leaf,
             'max features': max features}
                                                                    #подставим оптимальные гиперпараметры в нашу модель метода деревья решений
 #Запустим обучение модели. В качестве оценки модели будем использовать коэффициент д
                                                                    dtr_grid = DecisionTreeRegressor(criterion = 'poisson', max_depth = 7, max_features = 'auto',
 # Если R2<0, это значит, что разработанная модель даёт прогноз даже хуже, чем просто
                                                                                       min_samples_leaf = 100, min_samples_split = 250)
 gs4 = GridSearchCV(dtr, param grid, cv = 10, verbose = 1, n_jobs =-1, scoring = 'r2'
                                                                    #Обучаем модель
 gs4.fit(x_train_1, y_train_1)
                                                                    dtr grid.fit(x train 1, y train 1)
 dtr 3 = gs4.best estimator
 gs.best params
                                                                    predictions_dtr_grid = dtr_grid.predict(x_test_1)
 Fitting 10 folds for each of 1080 candidates, totalling 10800 fits
                                                                    #Оиениваем точность на тестовом наборе
 {'algorithm': 'brute', 'n_neighbors': 7, 'weights': 'distance'}
                                                                    mae dtr grid = mean absolute error(predictions dtr grid, y test 1)
                                                                    mae_dtr_grid
                                                                    168.6249974156563
```

Разработка и обучение моделей для прогноза модуль упругости при растяжении:

- ✓ Графики тестовых и прогнозных значений для разных методов:
- Метод опорных векторов;
- Линейная регрессия;
- Стохастический градиентный спуск;
- Многослойный перцептрон;
- К-ближайших соседей;
- Градиентный бустинг;
- «Случайный лес»;
- Дерево принятия решений;
- Лассо.

Поиск гиперпараметров: для прогноза модуль упругости при растяжении:

- ✓ Для метода «Случайный лес»:
- Поиск гиперпараметров методом GridSearchCV с перекрёстной проверкой с количеством блоков 10;
- Выводим гиперпараметры для оптимальной модели;
- Подставляем оптимальные гиперпараметры в модель случайного леса;
- Обучаем модель;
- Оцениваем точность на тестовом наборе;
- Выводим наилучшее значение правильности перекрёстной проверки , наилучшие параметры, наилучшую модель по всем 9 методам;
- Проверяем правильность на тестовом наборе


```
'regressor_gamma': [0.001, 0.01, 0.1, 1, 10, 100],
'regressor C': [0.001, 0.01, 0.1, 1, 10, 100]},
{'regressor': [RandomForestRegressor(n_estimators=100)],
'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
('regressor': [LinearRegression()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [GradientBoostingRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [KNeighborsRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [DecisionTreeRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [SGDRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [MLPRegressor(random_state=1, max_iter=500)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [linear_model.Lasso(alpha=0.1)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},]
grid2 = GridSearchCV(pipe2, param_grid2, cv=10)
grid2.fit(x_train_1, np.ravel(y_train_2))
print("Наилучшие параметры:\n{}\n".format(grid2.best_params_))
print("Наилучшее значение правильности перекрестной проверки: {:.2f}".format(grid2.best_score_))
print("Правильность на тестовом наборе: {:.2f}".format(grid.score(x_test_2, y_test_2)))
                                                                                                                                                                  MAE
                                                                                                                                               Perpeccop
Наилучшие параметры:
{'preprocessing': MinMaxScaler(), 'regressor': SVR(C=100, gamma=1), 'regressor_C': 100, 'regressor_gamma': 1}
                                                                                                                                           Support Vector
                                                                                                                                                             78,477914
Наилучшее значение правильности перекрестной проверки: 0.68
Правильность на тестовом наборе: -79805487.66
                                                                                                                                            RandomForest
                                                                                                                                                             76.589025
print("Наилучшая модель:\n{}".format(grid.best_estimator_))
                                                                                                                                         Linear Regression
                                                                                                                                                             61.986894
Наилучшая модель:
Pipeline(steps=[('preprocessing', StandardScaler()),
                                                                                                                                         GradientBoosting
                                                                                                                                                             64.728717
              ('regressor', SGDRegressor())])
                                                                                                                                              KNeighbors
                                                                                                                                                            102.030259
# Проведем поиск по сетке гиперпараметров с перекрестной проверкой, количество блоков равно
# модели случайного леса - Random Forest Regressor - 2
                                                                                                                                                            107.158013
                                                                                                                                             DecisionTree
                                                                                                                                                            181.624450
parametrs = { 'n_estimators': [200, 300],
                  'max_depth': [9, 15],
                                                                                                                                                          1808.547264
                  'max features': ['auto'],
                                                                                                                                                             69.474334
                  'criterion': ['mse'] }
                                                                                                                                                    Lasso
grid21 = GridSearchCV(estimator = rfr2, param_grid = parametrs, cv=10)
                                                                                                                             RandomForest_GridSearchCV
                                                                                                                                                             67.603567
grid21.fit(x_train_2, y_train_2)
                                                                                                                                KNeighbors GridSearchCV
                                                                                                                                                             99.281694
GridSearchCV(cv=10,
                estimator=RandomForestRegressor(max_depth=7, n_estimators=15,
                                                                                                                                DecisionTree GridSearchCV
                                                                                                                                                            168.624997
                                                          random_state=33),
                                                                                                                         12 RandomForest1_GridSearchCV
                                                                                                                                                              2.627032
                param_grid={'criterion': ['mse'], 'max_depth': [9, 15],
                                'max_features': ['auto'], 'n_estimators': [200, 300]})
```

pipe2 = Pipeline([('preprocessing', StandardScaler()), ('regressor', SVR())])

{'regressor': [SVR()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None],

param_grid2 = [

Нейронная сеть для соотношения «матрицанаполнитель»:

Первая модель:

- Сформируем входы и выход для модели.
- Разобьём выборки на обучающую и тестовую.
- Нормализуем данные.
- Создадим функцию для поиска наилучших параметров и слоёв.
- Построим модель, определим параметры, найдем оптимальные параметры посмотрим на результаты;
- Повторим все эти этапы до построения окончательной модели;
- Обучим нейросеть;
- Посмотрим на потери модели;
- Построим график потерь на тренировочной и тестовой выборках.
- Построим график результата работы модели.


```
Model: "sequential 405"
def create model(lyrs=[32], act='softmax', opt='SGD', dr=0.1):
    seed = 7
    np.random.seed(seed)
    tf.random.set seed(seed)
    model = Sequential()
    model.add(Dense(lyrs[0], input_dim=x_train.shape[1], activation=act))
    for i in range(1,len(lyrs)):
       model.add(Dense(lyrs[i], activation=act))
    model.add(Dropout(dr))
    model.add(Dense(3, activation='tanh')) # выходной слой
    model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['mae', 'accuracy'])
    return model
# построение окончательной модели
model = create model(lyrs=[128, 64, 16, 3], dr=0.05)
```

```
print(model.summary())
```



```
Layer (type)
                        Output Shape
                                             Param #
 dense_1077 (Dense)
 dense 1078 (Dense)
                        (None, 64)
 dense 1079 (Dense)
                        (None, 16)
 dense_1080 (Dense)
                        (None, 3)
 dropout_405 (Dropout)
                        (None, 3)
 dense 1081 (Dense)
                        (None, 3)
 Total narams: 11.023
Trainable params: 11,023
Non-trainable params: 0
Best: 0.001538 using {'batch_size': 4, 'epochs': 10}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 10}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 50}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 100}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 200}
0.001538 (0.004615) with: {'batch size': 4, 'epochs': 300}
Best: 0.004639 using {'lyrs': [128, 64, 16, 3]}
0.001538 (0.004615) with: {'lyrs': [8]}
0.001538 (0.004615) with: {'lyrs': [16, 4]}
0.001538 (0.004615) with: {'lyrs': [32, 8, 3]}
0.001538 (0.004615) with: {'lyrs': [12, 6, 3]}
0.001538 (0.004615) with: {'lyrs': [64, 64, 3]}
0.004639 (0.009877) with: {'lyrs': [128, 64, 16, 3]}
Best: 0.001538 using {'act': 'softmax'}
0.001538 (0.004615) with: {'act': 'softmax'}
0.001538 (0.004615) with: {'act': 'softplus'}
0.001538 (0.004615) with: {'act': 'softsign'}
0.001538 (0.004615) with: {'act': 'relu'}
0.001538 (0.004615) with: {'act': 'tanh'}
0.001538 (0.004615) with: {'act': 'sigmoid'}
0.001538 (0.004615) with: {'act': 'hard_sigmoid'}
0.001538 (0.004615) with: {'act': 'linear'}
```

```
Best: 0.001538 using {'dr': 0.0}
0.001538 (0.004615) with: {'dr': 0.0}
0.001538 (0.004615) with: {'dr': 0.01}
0.001538 (0.004615) with: {'dr': 0.05}
0.001538 (0.004615) with: {'dr': 0.1}
0.001538 (0.004615) with: {'dr': 0.2}
0.001538 (0.004615) with: {'dr': 0.3}
0.001538 (0.004615) with: {'dr': 0.5}
```

Нейронная сеть для соотношения «матрица- наполнитель»:

Вторая модель:

- Сформируем входы и выход для модели.
- Разобьём выборки на обучающую и тестовую.
- Нормализуем данные.
- Сконфигурируем модель, зададим слои,
- посмотрим на архитектуру модели.
- Обучим модель.
- Посмотрим на MAE, MAPE, Test score и на
- потери модели.
- Построим график потерь на тренировочной и
- тестовой выборках.
- Построим график результата работы модели.
- Оценим модель по MSE.

Model: "sequential" Output Shape Param # normalization (Normalizatio (None, 12) 25 (None, 128) 1664 dense (Dense) dense_1 (Dense) (None, 128) 16512 dropout (Dropout (None, 128) dense_2 (Dense) (None, 128) (None, 64) 8256 2080 dense_4 (Dense) (None, 32) dense_5 (Dense) (None, 16) 528 17 (None, 1)

Total params: 45,594 Trainable params: 45,569 Non-trainable params: 25

```
# Обучим модель

model_hist = model.fit(
    x_train,
    y_train,
    epochs = 100,
    verbose = 1,
    validation_split = 0.3)
```

Model Results:
Model_MAE: 1
Model_MAPE: 0.37
Test score: 1.25

Заключение

В ходе выполнения ВКР были изучены способы анализа и предобработки данных.

Невозможно определить из свойств материалов соотношение «матрица – наполнитель».

Текущим набором алгоритмов задача эффективно не решается

