第四章 组合逻辑电路

分析与设计

4.2 组合逻辑电路的 分析和设计方法

编码器,译码器,比较器,选通器,

4.3 若干常用的组合逻辑电路

加法器

4.4 组合电路中的竞争与冒险

4.1 概述

一、组合逻辑电路的特点

- ▶任意时刻的输出仅取决于该时刻的输入, 与电路原来状态无关。
- ▶ 不含记忆(存储)元件;
- > 输出无反馈到输入的回路;

输出是输入的 逻辑函数表达式

二、功能的描述

$$\begin{cases} y_1 = f_1(a_1 a_2 \cdots a_n) \\ y_2 = f_2(a_1 a_2 \cdots a_n) \\ \vdots \\ y_m = f_m(a_1 a_2 \cdots a_n) \end{cases} Y = F(A)$$

4.2 组合逻辑电路的分析和设计方法

一、组合逻辑电路的分析方法

分析已知逻辑电路功能

步骤:

例1: 试分析右图所示逻辑电路的功能。A

解: (1) 由电路图得逻辑表达式

Y=((AB)'·(BC)' ·(AC)')' =AB+BC+AC

- (2) 由逻辑表达式得真值表
- (3) 功能分析:

输入变量多数为1,输出Y为1; 输入变量多数为0,输出Y为0。

\overline{A}	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

例: 试分析下图所示逻辑电路的功能。

解: (1) 由电路图得 表达式

$$\begin{cases}
G_3 = B_3 \\
G_2 = B_3 \oplus B_2
\end{cases}$$

$$G_1 = B_2 \oplus B_1$$

$$G_0 = B_1 \oplus B_0$$

- (2) 列出 真值表
- (3) 分析功能

是自然二进制码至格雷码的转换电路。

自然二进制码			格	雷码	马		
B_3	B_2	B_1	B_0	G_3	$\overline{G_2}$	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
_1	1	1	1	1	0	0	0

二、组合逻辑电路的设计方法

- 4.5 表决电路
- 4.6水泵控制

例1: 半加器的设计

分析:两个输入(加数与被加数) 两个输出("和"与"进位")

解: (1) 半加器真值表

输入		输出		
\overline{A}	\boldsymbol{B}	S	CO	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

(2) 输出函数

$$\begin{cases} S = A'B + AB' = A \oplus B \\ CO = AB \end{cases}$$

(2) 输出函数

$$\begin{cases} S = A'B + AB' = A \oplus B \\ CO = AB \end{cases}$$

(4) 逻辑符号

例2:设计1bit 全加器

S = A'B'C+A'BC'+AB'C'+ABC

$$Co = AC + AB + BC$$

_	, <u> </u>		
-1	AB <i>Ci</i>	S	Co
	000	0	0
	001	1	0
	010	1	0
	011	0	1
	100	1	0
	101	0	1
	110	0	1
	111	1	1

- 2)画K图
- 3)写最简逻辑式
- 4)画逻辑电路图

练习1 试将8421BCD码转换成余3码。

- (1) 真值表
- (2) 卡诺图

	8	842	1码	+3	3	余3	码	
	B_3	$\overline{B_2}$	$\overline{B_1}I$	B_0	E_3	$\overline{E_2}$	\boldsymbol{E}	$\overline{E_0}$
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0
10	1	0	1	0	×	X	X	×
11	1	0	1	1	×	X	×	X
12	1	1	0	0	×	X	×	X
13	1	1	0	1	X	X	×	X
14	1	1	1	0	X	X	×	X
15	1	1	1	1	X	X	X	X

(2)卡诺图图标识证实证。

(3) 表达式

$$\begin{cases} E_3 = B_3 + B_2 B_0 + B_2 B_1 \\ E_2 = B_2' B_0 + B_2' B_1 + B_2 B_1' B_0' \\ E_1 = B_1' B_0' + B_1 B_0 \\ E_0 = B_0' \end{cases}$$

(3) 表达式

$$\begin{cases} E_3 = B_3 + B_2 B_0 + B_2 B_1 \\ E_2 = B_2' B_0' + B_2' B_1 + B_2 B_1' B_0' \\ E_1 = B_1' B_0' + B_1 B_0 \\ E_0 = B_0' \end{cases}$$

(4)w电路图

4.3 若干常用的组合逻辑电路

 $A_3A_2A_1A_0$ $B_3B_2B_1B_0$ $C_0S_3S_2S_1S_0$

一、加法器

1. 串行进位加法器(用全加器实现4位二进制数相加)

4.3 若干常用的组合逻辑电路

 $A_3A_2A_1A_0$ $B_3B_2B_1B_0$ $C_0S_3S_2S_1S_0$

注意:

一、加法器

1. 串行进位加法器(用全加器实现4位二进制数相加)

优点:简单

缺点:慢

4位串行进位加法器

2. 超前进位加法器

进位位直接由加数、被加数和最低进位位*C/*形成。

4位超前进位加法器 74LS283

优点: 快,每一位的和及最后

的进位基本同时产生。

缺点: 电路复杂

加法器的应用可实现N位加法运算、代码转换、减法器、十进制加法。

例3: 试用四位加法器实现8421BCD码至余3BCD码的转换。

解:余3码比8421码多3,因此可用四位二进制加法器实

现代码的转换。 $Y_3Y_2Y_1Y_0 = A_3A_2A_1A_0 + 0011$

例4: 用74LS283设计四位减法器。

练习2(4. 25) 用74LS283实现加法和减法,M=0时, 加法;M=1时, 减法

 $\mathbf{0}, \ \mathbf{A}_3 \, \mathbf{A}_2 \, \mathbf{A}_1 \, \mathbf{A}_0$

1, $b_3 b_2 b_1 b_0$

Sign **S**₃ **S**₂ **S**₁ **S**₀

M=1时

4.27用两个74LS283和 门电路设计BCD加法器 1001 1001 0000 0000 B₃B₂B₁B₀ A₃A₂ A₁ A₀

 $S_3 S_2 S_1 S_0$

1000

0000

两数之和	二进制结果	期望的BCD结果
		$C_O S_3 S_2 S_1 S_0$
0		0 0000
1		0 0001
2		0 0010
3		0 0011
4		0 0100
5		0 0101
6		0 0110
7		0 0111
8		0 1000
9		0 1001
10		1 0000
11		1 0001
12		1 0010
13		1 0011
14		1 0100
15		1 0101
16		1 0110
17		1 0111
18		1 1000

4.27用两个74LS283和 门电路设计BCD加法器 1001 1001 0000 0000 $B_3B_2B_1B_0$ $A_3A_2A_1A_0$ $\overline{B_3}$ $\overline{B_2}$ $\overline{B_1}$ $\overline{B_0}$ $\overline{A_3}$ $\overline{A_2}$ $\overline{A_1}$ $\overline{A_0}$ 74LS283 C_{l} Co $S_3 S_2 S_1 S_0$ C₀₁ S₁₃ S₁₂ S₁₁ S₁₀ $B_3 \ B_2 \ B_1 \ B_0 \ A_3 \ A_2 \ A_1 \ A_0$ 74LS283 $S_3 S_2 S_1 S_0$ Co Co $S_3 S_2 S_1 S_0$ $C_0 = C_{01} + S_{13}S_{12} + S_{13}S_{11}$

两数之和	二进制结果	期望的BCD结果
	$C_{O1} S_{13} S_{12} S_{11} S_{10}$	$C_O S_3 S_2 S_1 S_0$
0	0 0000	0 0000
1	0 0001	0 0001
2	0 0010	0 0010
3	0 0011	0 0011
4	0 0100	0 0100
5	0 0101	0 0101
6	0 0110	0 0110
7	0 0111	0 0111
8	0 1000	0 1000
9	0 1001	0 1001
10	0 1010 +6	0000
11	0 1011 +6	1 0001
12	0 1100 +6	1 0010
13	0 1101 +6	1 0011
14	0 1110 +6	1 0100
15	0 1111 +6	1 0101
16	1 0000 +6	1 0110
17	1 0001 +6	1 0111
18	1 0010 +6	1 1000

例5 用基本逻辑门设计一个交通灯错误报警器。

最简与或式 Z = R'A'G'+AG+RG+RA

(4) 逻辑电路图

与门,或门实现 ■

• 若要求用与非门实现

Z=(Z-')'=((R'A'G')'·(RA)'·(RG)'·(AG)')'

• 若要求用与或非门实现

$$Z = (RA'G' + R'A'G + R'AG')'$$

<mark>练习4</mark> 已知Y(A,B,C)=∑m(1,3,6,7),1)要求用最少的与非门实现逻辑电路

2) 要求用最少的或非门实现逻辑电路

注:可以用非门

作业

- 4.1 电路图-> 分析功能
- 4.5 逻辑问题->设计电路(表决电路)
- 4.6 逻辑问题->设计电路(水泵控制)
- 4.25 用74LS283设计可控加减法器
- 4.26 用74LS283将余3码转换成8421BCD码
- 4.27 用74LS283设计BCD码十进制加法器