

Holistic, Distributed Stream Processing in IoT Environments

Peter Michalák
CDT Cloud Computing
for Big Data

Prof. Paul WatsonSchool of Computing

Dr. Sarah Heaps
School of Maths
and Stats

Prof. Mike Trenell
Medical School

Stream Processing in IoT

Holistic Stream Processing in IoT

Newcastle University Digital Institute

Healthcare use case

Behavioural Prompts & Feedback

Challenges

- Pebble Watch battery life ~7 days
- Streaming raw accelerometer data reduces battery life ~18 hours

Definition of data stream processing

ESPer/Spark/Storm sky is the limit

Objective C / Swift Java / Kotlin ..

- Programming for Heterogeneous Platforms
 - Multitude of devices, APIs and programming languages

C / JavaScript

- PATHfinder
 - Automated Computational Decisions
 - Non-functional requirements
 - Device-specific compilation
- PATHdeployer
 - A deployment tool delivers configuration to enable computation
- PATHmonitor
 - Future work for PATH2iot

nput

Description of the Computation

Resource Catalogue Non-functional Requirements

Step count algorithm^[1] in EPL

- INSERT INTO AccelEvent SELECT getAccelData(25, 60) FROM AccelEventSource
- 2. INSERT INTO EdEvent SELECT Math.pow(x*x+y*y+z*z, 0.5) AS ed, ts FROM AccelEvent WHERE vibe=0
- INSERT INTO StepEvent SELECT ed1('ts') as ts FROM EdEvent MATCH RECOGNIZE (MEASURES A AS ed1, B AS ed2 PATTERN (A B) DEFINE A AS (A.ed > THR), B AS (B.ed ≤ THR))
- INSERT INTO StepCount SELECT count(*) as steps FROM StepEvent.win:time batch(120 sec)
- 5. SELECT persistResult(steps, "time_series", "step_sum") FROM StepCount

- Event Processing Language (EPL) from Esper
 - High Level Declarative
 Description of Computation
 - SQL based with extended grammar to support CEP operations
 - Decomposable into directed graph of stream operators

PATHfinder: High-Level Declarative Description of Computation

nput Description of the Computation

Resource Catalogue Non-functional Requirements

Step count algorithm^[1] in EPL

- **INSERT INTO AccelEvent** SELECT getAccelData(25, 60) FROM AccelEventSource
- INSERT INTO EdEvent SELECT Math.pow(x*x+y*y+z*z, 0.5) AS ed, ts FROM AccelEvent WHERE vibe=0
- **INSERT INTO StepEvent** SELECT ed1('ts') as ts FROM EdEvent MATCH RECOGNIZE (MEASURES A AS ed1, B AS ed2 PATTERN (A B) DEFINE A AS (A.ed > THR), B AS (B.ed \leq THR))
- INSERT INTO StepCount SELECT count(*) as steps FROM StepEvent.win:time batch(120 sec)
- SELECT persistResult(steps, "time series", "step sum") FROM StepCount

Newcastle

Digital Institute

PATHfinder: Optimisation

PP_0	\mathbf{PP}_1	P <mark>№</mark> 2	PP_3	P_4	№ ₅
PP_6	PP ₇	PP ₈	№ 9	PP_{10}	P № ₁₁
PP_{12}	PP ₁₃	PP 14	PP ₁₅	№ 16	PP ₁₇
₽P ₁₈	№ 19	PP_{20}	₽ ₂₁		PP ₂₂₅

- Logical Optimisation^[2]
 - Pushing Selects & Windows closer to the data source
- Physical Optimisation
 - Enumerating Physical Plans
 - Placement of the physical plans on available infrastructure
 - 225 Physical Plans
- Physical Plan Pruning
 - Removing non-deployable plans based on infrastructure capabilities
 - 18 Physical Plans

- Cost Models
 - Energy cost model^[3]
 - Power coefficients with confidence Intervals
 - Estimated Battery Life

$$EI = OS_{idle} + \sum_{i}^{n} comp_cost_{i} + \\ \frac{msg_count * net_cost + BLE_{active} * BLE_{duration}}{cycle_length}$$

$$EI = \boxed{OS_{idle} + \sum_{i}^{n} comp_cost_{i} + \\ \frac{msg_count * net_cost + BLE_{active} * BLE_{duration}}{cycle_length}}$$

Cost Models

- Energy cost model
- Power coefficients with confidence Intervals
- Estimated Battery Life

TABLE I: Power Consumption Coefficients.

Operation	Energy Impact (mJ)	Conf Int	
OS_{idle}	1.78	± 0.0370	
25 Hz sampling	0.06	± 0.0153	
SELECT	0.09	± 0.0416	
ED	0.34	± 0.0665	
POW	0.03	± 0.1039	
WIN	0.06	± 0.0605	
net_cost	5.06	± 0.2747	
BLE_{active}	12.12	1 0.274	

PATHdeployer : Architecture Overview

- Cloud Deployment
 - ZooKeeper: configuration delivery
 - ActiveMQ: event propagation
 - **D2ESPer**: in-house built dynamic ESPer based stream processing tool
 - InfluxDB: time series database
- IoT Deployment
 - Flask REST API: configuration delivery for IoT devices
 - MariaDB: storage endpoint
 - IoT agents iPhone, Pebble Watch

Results

Plan	watch	phone	cloud	Energy Impact (mJ)
pp00	$\Omega_1 \sigma_1 \Omega_2 \Omega_3$	sxfer	$\Omega_4 \omega_1 \Omega_6 \Omega_5$	27.08
pp01	$\Omega_1 \sigma_1 \Omega_2$	sxfer	$\Omega_3 \Omega_4 \omega_1 \Omega_6 \Omega_5$	
pp02	$\Omega_1 \sigma_1$	sxfer	$\Omega_2\Omega_3\Omega_4\omega_1\Omega_6\Omega_5$	
pp03	Ω_1	sxfer	$\sigma_1 \Omega_2 \Omega_3 \Omega_4 \omega_1 \Omega_6 \Omega_5$	baseline 26.62
pp04	$\Omega_1 \sigma_1 \Omega_2 \Omega_3 \omega_1$	sxfer	$\Omega_4 \Omega_6 \Omega_5$	5.91
pp05	$\Omega_1 \sigma_1 \Omega_2 \Omega_3$	sxfer	$\omega_1 \Omega_4 \Omega_6 \Omega_5$	
pp06	$\Omega_1 \sigma_1 \Omega_2$	sxfer	$\Omega_3 \omega_1 \Omega_4 \Omega_6 \Omega_5$	
рр07	$\Omega_1 \sigma_1$	sxfer	$\Omega_2\Omega_3\omega_1\Omega_4\Omega_6\Omega_5$	
pp08	Ω_1	sxfer	$\sigma_1 \Omega_2 \Omega_3 \omega_1 \Omega_4 \Omega_6 \Omega_5$	
pp09	$\Omega_1 \sigma_1 \Omega_2 \omega_1$	sxfer	$\Omega_3 \Omega_4 \Omega_6 \Omega_5$	best plan 5.87
pp10	$\Omega_1 \sigma_1 \Omega_2$	sxfer	$\omega_1 \Omega_3 \Omega_4 \Omega_6 \Omega_5$	
pp11	$\Omega_1 \sigma_1$	sxfer	$\Omega_2\omega_1\Omega_3\Omega_4\Omega_6\Omega_5$	
pp12	Ω_1	sxfer	$\sigma_1 \Omega_2 \omega_1 \Omega_3 \Omega_4 \Omega_6 \Omega_5$	
pp13	$\Omega_1 \sigma_1 \omega_1$	sxfer	$\Omega_2 \Omega_3 \Omega_4 \Omega_6 \Omega_5$	
pp14	$\Omega_1 \sigma_1$	sxfer	$\omega_1\Omega_2\Omega_3\Omega_4\Omega_6\Omega_5$	
pp15	Ω_1	sxfer	$\sigma_1 \omega_1 \Omega_2 \Omega_3 \Omega_4 \Omega_6 \Omega_5$	
pp16	$\Omega_1 \omega_1$	sxfer	$\sigma_1 \Omega_2 \Omega_3 \Omega_4 \Omega_6 \Omega_5$	
pp17	Ω_1	sxfer	$\omega_1 \sigma_1 \Omega_2 \Omega_3 \Omega_4 \Omega_6 \Omega_5$	

Plan	watch	phone	cloud	El (mJ)	95 % conf int	Power (mW)	Bat Life (h)
pp03	Ω_1	sxfer	$\sigma_1 \Omega_2 \Omega_3 \Omega_4 \omega_1 \Omega_6 \Omega_5$	5.87	5.70 - 6.05	5.88	18.0-18.2
pp09	$\Omega_1 \sigma_1 \Omega_2 \omega_1$	sxfer	$\Omega_3 \Omega_4 \Omega_6 \Omega_5$	26.62	26.48 - 26.76	26.69	79.5-84.4

- **453** % battery life improvement^[5]
- 3x data reduction between wearable and cloud
- Non-functional requirement satisfied

Holistic Distributed Stream Processing in IoT Environments

- Holistic, Distributed Stream Processing System
 - Design and open-source implementation^[6]
 - EPL decomposition
 - Logical and Physical Optimisation
- Energy Impact coefficients for Pebble Watch
 - Battery life increased dramatically
- PoC Deployment Architecture
- Future work on Multi-objective optimisation
 - e.g. Bandwidth, Performance, Accuracy

