

System-On-Chip **Technologies**

1. General

10 [±]	21	18	15	12	9	6	3	2	1
+	Z zetta	$\mathop{\mathrm{E}}_{exa}$	P peta	$\operatorname*{T}_{tera}$	$_{ m giga}$	$\mathop{\mathrm{M}}_{mega}$	k kilo	h hecto	da deca
-	Z zepto	a atto	f femto	P pico	n nano	μ micro	m milli	C centi	d deci

2. SoC Paradigm

2.1. Moore's Law

Chip capacity (transistors, performance) doubles every 18-24 month

2.2. Challenges

Optimization: Time-To-Market, Price, Performance, Power Cons. Productivity: reuse components, shorter development cycles, higher chances for (first time) fault-free design

2.3. Chip Platforms

Computation Density (CD) vs Functional Diversity (FD)

Compa	tation Density	(CD) vs runci	donar Diversity (1 D)			
Platfor	mCD	FC	units	costs		
CPU	40 - 80	256 – 16k	ALU			
DSP			Multiplier	very few		
ASIP			special exec units	few		
FPGA	400	1	LUTs	thousands		
ASIC	4000	10	standard cells	millions		
Cust. I	C> 10 000	≈ 0	transistors	10 millions		
	. 1					

Instructions per cycle IPC, structure size λ , area AFrequency f, Wordsize w (e.g 32 Bit)

2.4. CMOS

Complementary Metal (Poly-Si) Oxide (SiO2) Semiconductor Why? Low power dissipation, Noise immunity, Clean logic levels, One supply voltage, Cascadable, Easy to design, Fabrication well understood

2.5. MOSFET

 $W_{\mathsf{n}/\mathsf{p}}$ channel width channel length $L_{n/p}$ gate oxide thickness $\mu_{\rm n} \approx 250 \times 10^{-4} \, \frac{{\rm m}^2}{{\rm V}_{\rm o}}$ electron mobility $\mu_{\rm p} \approx 200 \times 10^{-4} \, \frac{{\rm m}^2}{{\rm V}_{\rm p}}$ rel. permittivity of gate oxide $\epsilon_0 = 8.8541878 \times 10^{-12} \frac{As}{Vm}$ dielectric constant specific oxide capacity $\mathit{C}_{\mathsf{ox}} = \mathit{C}'_{\mathsf{ox}} \cdot \mathit{WL}$ oxide capacity $K_n = \mu_n C'_{ox} \frac{W_n}{L_n}$ gain (also β) $K_p = (-1)\mu_p C'_{ox} \frac{W_p}{L}$ propagation delay

2.6. Inverter

3. SoC Components

3.2. Karnaugh-Maps

z^{xy}	00	01	11	10	Combine equal cells:
0	1	0	0	0	e.g. $\overline{xy} + y \cdot z$
1	X	1	1	0	Use don't care values!

3.3. Finite State Machines

Synchronous System Design paradigm: Essentially all control functions in state-of-art digital IC's consist of "communicating FSMs" Avoid combinatorial logic through paths! Stick to one FSM design style across SoC!

3.4. Adder

3.4.1 Ripple-Carry

Worst-Case(G, P = 1): $t_{\mathsf{add}} = (N-1)t_{\mathsf{carry}} + t_{\mathsf{sum}}$ Number of input Bits/Full Adders N

3.4.2 Carry-Bypass

Fast carry propagation (useful if N > 4)

 $t_{\mathrm{CBA}} = t_{\mathrm{setup}} + Bt_{\mathrm{carry}} + (\frac{N}{B} - 1)t_{\mathrm{skip}} + (B - 1)t_{\mathrm{carry}} + t_{\mathrm{sum}}$ witch group size in bits B. t_{CBA} still O(N), but with more graduate slope

3.4.3 Carry-Select

Precompute C_{out} for $C_{\text{in}}=0$ and $C_{\text{in}}=1$ for all blocks in parallel. Then select the correct one. $t_{\text{CSA}} = t_{\text{setup}} + Bt_{\text{carry}} + \frac{N}{B}t_{\text{mux}} + t_{\text{sum}}$ Square Root Carry-Select Adder:

 $t_{SCS} = t_{setup} + Mt_{carry} + \sqrt{2N}t_{mux} + t_{sum}$

3.5. Multiplier (Addition of partial products)

$$x \cdot y = \sum\limits_{j=0}^{M-1} \sum\limits_{i=0}^{N-1} x_i y_j \cdot 2^{i+j} \quad \text{Result requires } N+M \text{ bit}$$

3.5.1 Repeated Addition

3.5.2 Sequential: Right Shift and Add

3.5.3 Array Multiplier

All partial products generated in parallel and organized in adder array with

 $t_{\text{mul}} = [(M-1)(N-2)]t_{\text{carry}} + (N-1)t_{\text{sum}} + t_{\text{and}}$

3.6. Shifter

Single-bit left/ right shift operations through individual pass transistors Barrel Shifter: Words pass through maximum one transmission gate

3.7. Multiplexer

Mux: $Z = \overline{S}A_1 + SA_1$ DeMux: $Z_1 = \overline{S}A$, $Z_2 = SA$

4. Processor Structure

4.1. Processor Classification Type Application Embedded control

Instruction complexity Instruction-level parallelism (ILP)

for memory access CISC Intel x86-hased Personal Computer Complex variable-Servers lenath instructions Personal Computer/ Instruction parallelism Intel, ARM on compile-time pixel processing Application-specific Embedded Tensilica Application-HW multiply for digital Signal Processing

Characteristic

Load/store instructions

Remark

MIPS, ARM,

4.2. Software Levels

4.3. Multi Cycle Core

- 1. Instruction Fetch (IF): increase PC
- 2. Instruction Decode (ID): read OP and register
- 3. Execution (EX): ALU executes command
- 4. Memory Stage (M): read/write to memory
- 5. Write Back (WB): load from memory to register?

4.4. Hazards (problems due to pipelining)

Structural Hazard: same resource is needed multiple times in the same cycle

Data Hazard: data dependencies (read-after write, write-after-write, write-after-read).

Stalling is required

With register forwarding: Only 1 stall below EX.

Control Hazard: next executed instruction is not the next specified instruction due to jump, branch, exception.

	inst.addr	m	nemonics									
	0x400258: 0x400260:	lw slti	r2, 24(r30) r3, r2, 15	bne	r3	, r0, 40	00280					
1	0x400268:	bne	r3, r0, 400280	IF	ID	EX	M	WB				
1	0x400270: 0x400278:	addiu sw	r2, r0, 6 r2, 20(r30)		IF	stall	IF	ID	EX	М	WB	
\	0x400280:	addiu	r2. r0. 1			Stail		IF	ID	EX	М	WB
	0x400288:	j	400290									

4.5. Processor Performance

5. Memory

Туре	Used	Speed	Density
Register	CPU Registers 32 · 64 bit	< ns	
On-Chip SRAM	Cache 32 kByte	ns	
DDR3 SDRAM	$\begin{array}{l} {\sf Main\ Memory} \\ \approx {\rm GByte} \end{array}$	$2\cdot 800\mathrm{MHz}$	
HDD	$\begin{array}{l} {\sf Mass\ Storage} \\ {>\ {\rm TB}} \end{array}$	$150 \frac{\mathrm{MB}}{\mathrm{s}}$	
ROM	Sys. Config few kByte	$\approx kB/s$	

5.1. CMOS Memory

Register: 2 Inverters (Q, \overline{Q}) Latch: 4 NANDS (e,D,Q,\overline{Q}) Flip-Flop: (Q,\overline{Q}, clk)

5.2. Cache

Caches store only small share of main memory. The Cache maps RAM-Addresses to Cache-Entries. One Cache-Entry can contain several Data Bytes. The Tag verifies the mapping, the Valid-Flag verifies the actuality of the cached data.

$$\label{eq:RAMAddressBits} \begin{split} &\# \mathsf{RAMAddressBits} = \# \mathsf{TagBits} + \# \mathsf{IndexBits} \\ &\# \mathsf{CacheEntries} = 2^{\mathsf{Indexbits}} \\ &\# \mathsf{CacheDataBytes} = 2^{\mathsf{Offsetbits}} \\ &\mathsf{CacheEntries} + \# \mathsf{CacheDataBytes} \end{split} \tag{Byte accurate Cache access)}$$

5.2.1 Direct Mapped Cache

Replace Strategy: Replace old with new

5.2.2 Set-Associative-Cache

Blocks with equal Index can be stored in $\,n$ cache entries. Tag needed to distinguish. Replace Strategy: Replace if all sets are full. Random, FIFO or LRU (least recently used)

 $\frac{\# Zugriffe}{Z_{eit}} = Hit-Rate \cdot Hit-Time + Miss-Rate \cdot Miss-Time$

5.2.3 Fully Associative Cache

A memory block can be stored in any cache entry.

5.3. Branch Prediction

5.4. Main Memory

5.5. Memory Block

5.6. Memory cell types

Word line Word line Cs Cypp

Access Times:

DRAM Timings: $t_{\mathrm{CAS}} - t_{\mathrm{RCD}} - t_{\mathrm{RP}} - t_{\mathrm{RAS}}$ Access Latency: $t_{\mathrm{Lat}} = t_{\mathrm{CAS}} + t_{\mathrm{RCD}}$ Min. row cycle: $t_{\mathrm{RC}} = t_{\mathrm{RP}} + t_{\mathrm{RAS}}$

 $\begin{array}{lll} \mathsf{DRAM:} & \mathsf{Single:} & (\mathsf{cLatency} + \mathsf{1c(amp)}) \cdot \#\mathsf{reads} \\ \mathsf{Burst:} & \mathsf{cLatency} + (\#\mathsf{reads} - 1) + \mathsf{1c(amp)} \\ \mathsf{SRAM} & \mathsf{Single:} & \mathsf{cLatency} \cdot \#\mathsf{reads} \\ \mathsf{Burst:} & \mathsf{cLatency} + (\#\mathsf{reads} - 1) \\ \end{array}$

6. Interconnect

6.1. Interconnection

6.1.1 Processor Local Bus (PLB)

Bus-Transaction: Request \rightarrow Addr. Trans. \rightarrow Data Trans. \rightarrow Data Ack Burst Transfer: Reduction of Req./Addr. signaling overhead for read/write transactions to consecutive addresses. Burst transfers with implicit address increment

Bus Standard: AMBA (ARM), CoreConnect (IBM), OCP (Sonics), VSIA

6.2. AMBA AHB

Advanced Microcontroller Bus Architecture Advanced eXtensible Interface

6.3. FIFOs

Are use for decoupling clock domains or word widths. Pointer: Read (RP) and Write (WP) Control Flags: Almost Full (AF) and almost empty (AE)

6.4. Network-on-Chips (NoC)

Benefits: Scalability, Synchronization, short point-to-point links Drawbacks: Latency, Area

7. Low Power Design

7.1. Motivation – Why?

- Reliability: Plus 10°C doubles failure rate
- High currents destroy on-chip wires
- Cooling: higher costs and power consumption

Leakage current: $I_{\mathsf{leak}} \propto \exp(V_{\mathsf{GS}} - V_{\mathsf{th}})$

Gate Delay: $t_{\rm d} \propto \frac{C_L}{V_{\rm DD} - V_{\rm th}}$

7.2. Techniques and Hierarchy

Trade in Power with Performance, Area, Cost

Frequency Scaling and Voltage Scaling (DFS, DVS) Algorithmic Optimization: $x^2 + ax = x(x+a)$

Power Gating: Switch components off if not needed.

Clock Gating: toggle registers only when outputs can change

Clock Gating: toggle registers only when outputs can chang Threshold Control: bias threshold voltage V_{th}