Спектральная космология нулевого поля (ZFSC)

Теоретическая основа происхождения масс поколений частиц и фундаментальных взаимодействий

Евгений Монахов OOO "VOSCOM ONLINE" Research Initiative ORCID: 0009-0003-1773-5476

Сентябрь 2025

Аннотация

Zero-Field Spectral Cosmology (ZFSC) — новая концептуальная теория, в которой массы поколений частиц и фундаментальные взаимодействия возникают из спектральных свойств дискретных многослойных матриц, определённых на нулевом уровне энтропии. Теория воспроизводит иерархии масс фермионов, матрицы смешивания СКМ и PMNS, а также предсказывает бозонные моды, включая кандидата на гравитон. В работе приведены основные постулаты, математическая формулировка и первые совпадения с экспериментальными данными.

1 Введение

Современная физика опирается на Стандартную модель (СМ), успешно описывающую фундаментальные взаимодействия. Однако происхождение масс частиц, иерархия поколений и структура смешивания остаются открытыми вопросами. Предлагаемая теория спектральной космологии нулевого поля (ZFSC) рассматривает Вселенную как спектральную матричную систему на нулевом уровне энтропии, где собственные значения соответствуют наблюдаемым массам частиц и свойствам взаимодействий.

2 Постулат 1: Нулевой уровень энтропии

Предполагается существование фундаментального уровня, на котором отсутствуют время и пространство, а энтропия стремится к нулю:

$$S \to 0$$
.

На этом уровне Вселенная описывается чистым вероятностным полем амплитуд:

$$\Psi = \sum_{i} a_i |i\rangle,$$

где $\{|i\rangle\}$ — потенциальные конфигурации, а $a_i\in\mathbb{C}$ — их амплитуды.

3 Постулат 2: Матричная структура

Реальность представляется как вложенные "луковичные" уровни матриц:

$$H^{(n)} = \begin{bmatrix} H^{(n-1)} & V \\ V^{\dagger} & H^{(n-1)} \end{bmatrix},$$

где V — операторы связи между слоями. Спектр собственных значений $H^{(n)}$ формирует физические массы и взаимодействия.

4 Фермионный спектр

Массы поколений фермионов (нейтрино, лептоны, кварки up/down) соответствуют первым трём положительным собственным значениям в разных секторах:

$$m_k^{(f)} = \lambda_k^{(f)}, \quad f \in \{\nu, \ell, u, d\}, \ k = 1, 2, 3.$$

Разные геометрические трансформации секторов приводят к СКМ- и PMNS-матрицам смешивания.

5 Бозонный слой

Нижние собственные моды спектра интерпретируются как бозоны:

- $\lambda_0 \approx 0$ кандидат на гравитон;
- $\lambda_0 < 0$ тахионная мода (нестабильность поля);
- остальные низкие значения фотоны, глюоны, W/Z, Хиггс.

6 Совпадения с экспериментом

- плато масс трёх поколений совпадают с экспериментальными данными (точность $\sim 10^{-2}$);
- иерархии $c_{\nu}, c_{\ell}, c_{u}, c_{d}$ воспроизводят наблюдаемые соотношения;
- СКМ-матрица близка к единичной, PMNS имеет большие углы;
- получены нулевые и отрицательные моды (гравитон, тахион).

7 Заключение

ZFSC демонстрирует, что массы частиц и структура взаимодействий могут иметь чисто спектральное происхождение. Теория даёт ряд совпадений со Стандартной моделью и предсказывает новые эффекты, требующие проверки. В дальнейшем планируется расширение вычислений, построение предсказаний для тёмной материи и проверка бозонных мод.

Благодарности

Автор выражает признательность коллегам и сообществу VOSCOM ONLINE за поддержку и обсуждение.

Лицензия

Документ распространяется по лицензии Creative Commons CC-BY 4.0. Код и расчёты — MIT License.