Basic Combinatorics - Spring, Home Assignment 4

Saar Barak

Problem 1.

Proposition 1. if T(n) = T(n/3) + T(2n/3) + n then $T(n) = O(n \log n)$

Proof. using induction, my induction hypothesis will be

$$T(n) \le Cn \log n, \quad \forall n < N, 0 < C$$

Now we get that

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + n\tag{1}$$

$$\leq C\frac{n}{3}\log\frac{n}{3} + C\frac{2n}{3}\log\frac{2n}{3} + n\tag{2}$$

$$\leq C \frac{n}{3} \log n - C \frac{n}{3} \log 3 + C \frac{n}{3} \log n - C \frac{2n}{3} \log \frac{3}{2} + n$$
(3)

$$\leq Cn\log n - C\frac{n}{3}\log 3 - C\frac{2n}{3}\log \frac{3}{2} + n \tag{4}$$

$$\leq^{(*)} C n \log n \tag{5}$$

(2) imply the induction hypothesis, and (5) will hold by choosing C s.t

$$n \le C\frac{n}{3}\log 3 + C\frac{2n}{3}\log \frac{3}{2}$$

Hence for any $n \geq 1$ we can choose C such that

$$C \ge \frac{1}{\frac{1}{3}\log 3 + \frac{2}{3}\log \frac{3}{2}} \approx 1.578$$

We get that

$$T(n) = O(n \log n)$$

Proposition 2. if $T(n) = 2T(n/2) + n \log n$ then $T(n) = O(n \log^2 n)$.

Proof. using induction, my induction hypothesis will be

$$T(n) \le C n \log^2 n, \quad \forall n < N, 0 < C$$

for n=2

$$T(2) = 2T\left(\frac{2}{2}\right) + 2\log 2\tag{6}$$

$$\leq 2C + n\log n \tag{7}$$

$$= O(n\log^2 n) \tag{8}$$

Hence for any $n \geq 2$

$$T(n) = 2T(n) + n\log n \tag{9}$$

$$\leq 2\log^2(\frac{n}{2})\frac{n}{2} + n\log n\tag{10}$$

$$= O(n\log^2 n) \tag{11}$$

(10) holds since
$$n > \frac{n+1}{2}$$

Proposition 3. Let c_1, \ldots, c_k be k positive reals satisfying $\sum_{i=1}^k c_i < 1$. if $T(n) = \sum_{i=1}^k T(c_i n) + n$ then T(n) = O(n).

Proof. by induction, my induction hypothesis will be

$$T(n) \le Cn, \quad \forall n < N, 0 < C$$

Its immediate that $T(0) \leq 0$ now lets

$$T(n) = \sum_{i=1}^{k} T(c_i n) + n$$
 (12)

$$\leq \sum_{i=1}^{k} C(c_i n) + n \tag{13}$$

$$\leq Cn\left(\sum_{i=1}^{k}c_i + \frac{1}{C}\right)$$
(14)

$$\leq^{(*)} Cn \tag{15}$$

(13) imply the induction hypothesis, and (15) will hold by choosing C s.t

$$C \ge \frac{1}{1 - \sum_{i=1}^{k} c_i}$$

Hence for any $n \ge 1$ (15) holds and we get that

$$T(n) = O(n)$$

Problem 2.

Theorem. Every tournament has a Hamilton path

Proof 1. Let T=(V,E) be tournament graph where |V|=n. using strong induction for $n\leq 2$ its immediate that hamiltonian path exists. now lets assume its hold for any k< n. lets choose some $v\in V$ and define 2 sets such that

$$V_{in} = \{u : \overrightarrow{(u,v)} \in E\}, V_{out} = \{u : \overrightarrow{(v,u)} \in E\}$$

Since $|V_{in}| < n, |V_{out}| < n$ by the induction hypothesis exists paths $P_{in} \in V_{in}, P_{out} \in V_{in}$ such that P_{in} and P_{out} are hamiltonian paths. now the path $P_{in} \to v \to P_{out}$ is hamiltonian path for all vertices $|V_{in}| \cup |v| \cup |V_{out}| = n$

Proof 2. First we can notice that $\chi(T) = {}^{1}n$ since any 2 vertex connected with an edge. Since $\chi(T) \leq |P|$ where P is the longest simple path in T. on the other hand its can be at most n since T have n vertex. we get that |P| = n.

Hence since P is simple path i.e its visit any vertex of the T exactly once, and P visit all the vertex or in other worlds P is Hamilton path in T

 $^{{}^{1}\}mathrm{T}$ is graph on n vertex hence its can be colored by at most n different colours

Problem 3.

claim. Any set X of st + 1 integers contains one of the following:

- A subset $T = \{x_1, \ldots, x_{t+1}\} \subseteq X$ of size t+1 such that x_k divides x_{k+1} for every $1 \le k \le t$.
- A subset $S = \{x_1, \dots, x_{s+1}\} \subseteq X$ of s+1 integers such that x_i does not divides x_j for every $x_i, x_j \in S$.

Proof. Consider the following Poset define by

$$\mathcal{P} = {}^{2}\{X, \langle x_1, x_2 \rangle : x_1 | x_2\}$$

Now lets look at \mathcal{P} over X, first notice that when its have chain size $|t+1| \Rightarrow$ exists sequence of $x_1 \leq \cdots \leq x_{t+1}$ such that $x_1|x_2 \ldots |x_{t+1} \Rightarrow$ exist $T \subseteq X$. on the other hand if \mathcal{P} over X, have anti-chain size $|s+1| \Rightarrow$ exist sequence of $x_1 \nleq \cdots \nleq x_{s+1}$ such that $x_1 \nmid x_2 \nmid \cdots \nmid x_{s+1} \Rightarrow$ exist $S \subseteq X$. Since

$$\omega(X)\alpha(X) \ge \omega(X)\frac{|X|}{\mathcal{X}(X)} \ge {}^{3}|X|$$

its following that splinting X into $\mathcal{X}(X)$ anti-chains, one of them will be at size $\frac{|X|}{\mathcal{X}(X)}$. if $\alpha(X) \geq s+1$ then $S \subseteq X$, else $\alpha(X) \leq s$ and

$$\omega(X) \ge \frac{|X|}{\alpha(X)} \le \frac{st+1}{s} = t + \frac{1}{s}$$

and we get that $\omega(X) \ge t + 1 \Rightarrow T \subseteq X$

Problem 4.

Consider the following Poset define by

$$\mathcal{P} = \{ \mathscr{F}, \langle S_1, S_2 \rangle : S_1 \subseteq S_2 \}$$

where \mathscr{F} is collection $\mathscr{F} = \{S_1, \ldots, S_n\}$ of n sets.

²by inculding $\langle 0, 0 \rangle$ as well

³Mirsky

Proposition 4. both chain and anti-chain of \mathcal{P} are union-free sets

Proof. first by noticing that when its have chain \Rightarrow exists sequence of $S_1 \leq \cdots \leq S_k$ such that $S_1 \subseteq S_2 \cdots \subseteq S_k$ let mark this set of element as \mathcal{S}_{chain} . lets assume that exsit some $S_i, S_j, S_k \in \mathcal{S}_{chain}$ s.t $S_i \cup S_j = S_k$, we can that hold only when $|S_i|, |S_j| \leq |S_k|$ but the Poset yield $S_i \leq S_k$ and $S_j \leq S_k$ hence $S_i = S_k$ or $S_j = S_k$ which lead to contradiction since \mathcal{S}_{chain} is set.

Define $S_{anti-chain}$ such that

$$S_{anti-chain} = \{S_i, S_i : S_i \not\subseteq S_i \land S_i \not\subseteq S_i \quad \text{s.t } S_i, S_i \in \mathscr{F} \quad \forall i, j\}$$

By assuming that exsit some $S_i, S_j, S_k \in \mathcal{S}_{anti-chain}$ s.t $S_i \cup S_j = S_k$. its followed that $S_i \subseteq S_k$ but $S_i \nsubseteq S_j$ and we get an contradiction.

claim. every collection $\mathscr{F} = \{S_1, \ldots, S_n\}$ of n sets contains a sub-collection $S \subseteq \mathscr{F}$ of at least \sqrt{n} sets which is union-free

Proof. let $\alpha(\mathcal{P})$ be the longest anti-chain of \mathcal{P} over \mathscr{F} . If $\alpha(\mathcal{P}) \geq \sqrt{n}$ then exist such $S \in \mathscr{F}$. and if $\alpha(\mathcal{P}) < \sqrt{n}$

$$\frac{n}{\omega(\mathcal{P})} = \frac{|\mathscr{F}|}{\omega(\mathcal{P})} \le \alpha(\mathcal{P}) < \sqrt{n}$$
$$\omega(\mathcal{P}) \ge \sqrt{n}$$

And again by proposition 4 we get that exist such $S \in \mathscr{F}$

Problem 5.

claim. for a finite poset \mathcal{P} and let x, y be two elements of \mathcal{P} that are incomparable under \mathcal{P} . then \mathcal{P} has a linear extension in which x < y.

Proof. Let $\mathcal{P} = (X, \preceq)$ be a finite partial order in which $x, y \in X$ are incomparable. now lets define new post $\hat{\mathcal{P}} = (X, \hat{\preceq})$

$$\hat{\preceq} = \begin{cases} w \hat{\preceq} z & \text{if } w \preceq z \\ w \hat{\preceq} z & \text{if } z \preceq y \land x \preceq w \\ y \hat{\preceq} x & \end{cases}$$

- $\stackrel{\hat{}}{\preceq}$ is reflexive since \preceq is reflexive
- $\stackrel{.}{\preceq}$ is Transitive since \preceq is Transitive , and we apply apply only steps that respect the Transitive property of \preceq
- $\stackrel{\hat{}}{\preceq}$ is Anti-symmetric. consider $w\stackrel{\hat{}}{\preceq}z$ and $z\stackrel{\hat{}}{\preceq}w$ and let assume that $w\neq z$. if x=w or y=w or x=w,y=z its immediate lead to contradiction.

and when $w \hat{\preceq} z \Rightarrow z \preceq y \wedge x \preceq w$ and $z \hat{\preceq} w \Rightarrow w \preceq y \wedge x \preceq z$ then $x \preceq z \preceq y$ contradiction to the fact that x,y are incomparable, hence $w \hat{\preceq} z$ and $z \hat{\preceq} w$ lead to $w = z^4$

Hence $\hat{\mathcal{P}}$ is poset where $x \leq y$ and its contains less incomparable pairs than \leq does. If $\hat{\mathcal{P}}$ is linear then we done. otherwise exists some incomparable w, z and we can extend $\hat{\leq}$ to $\hat{\leq}_1$ and follow the proses until we cover all the chains or get some $\hat{\leq}_k$ linear and respect \mathcal{P} where x < y

Problem 6.

claim. in the setting of Arrow's Theorem, if the individuals have only two options, then they can come up with a non-dictator social choice function.

Proof. Lets proof that the democracy/majority voting system model satisfies the 3 condition of the Arrow's Theorem when N voters choose from $|\{A,B\}| = 2$ choices.

$$F: S_2^N \to \frac{\sum_{i=1}^N \mathbb{1}[S_i \text{ choose } A > B]}{N}$$
 i.e and indicator if S_i prefer A

if $F \ge \frac{1}{2}$ return (A, B) else (B, A)

Monotonicity For two preference profiles $R = (R_1, ..., R_N)$ and $S = (S_1, ..., S_N)$ such that both profiles prefer A > B but

$$0.5 < \frac{\sum_{i=1}^{N} \mathbb{1}[S_i \text{ choose } A > B]}{N} < \frac{\sum_{i=1}^{N} \mathbb{1}[R_i \text{ choose } A > B]}{N}$$

more people support (A, B) and its yield that F is monotone⁵

⁴i actually miss an case but its kind of similar proof

⁵its the same idea for the monotone decrease case B > A

Unanimity If alternative, B < A for all orderings R_1, \ldots, R_N , $R_i = (A, B) \forall i$ then $F(R_1, R_2, \ldots, R_N) = (A, B)$ and A is ranked strictly higher than B by F. its immediate from the way we construct F

$$0.5 < \frac{\sum_{i=1}^{N} \mathbb{1}[R_i \text{ choose } A > B]}{N}$$

Non-dictatorship There is no individual, i whose strict preferences always prevail consider the profile define

$$R = (R_1, R_2, \dots R_N) \quad \forall i R_i = (A, B)$$

And

$$S = (S_1, S_2, \dots S_N) \quad \forall i S_i = (B, A)$$

For the 2 given profiles there is no individual who can change the result.

(*)

thanks for the tips! just saw your notes on assignment 3 and I will apply them from now on :)