PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-170568

(43) Date of publication of application: 14.06.2002

(51)Int.Cl.

4/60 HO1M

HO1M 4/02 H01M 10/40

(21)Application number : 2000-367836

(71)Applicant: NEC CORP

(22)Date of filing:

01.12.2000

(72)Inventor: SATO MASAHARU

IWASA SHIGEYUKI MORIOKA YUKIKO NAKAHARA KENTARO SAKAUCHI YUTAKA

(54) BATTERY

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a new battery of high energy density and large capacity while being stable. SOLUTION: The battery is provided wherein, comprising at least a positive pole, a negative pole, and an electrolyte as components, the radical reaction occurs at least one of a charge process and a discharge process. Here, the radical compound generated through the radical reaction is stabilized so that charging/discharging is performed at high energy density, resulting in a battery of large capacity, high stability, and safety.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

特開2002-170568 (P2002-170568A)

(43)公開日 平成14年6月14日(2002.6.14)

(51) Int. C1. 7	識別記号	F I		テーマコート・	(参考)
H01M 4/60		H01M 4/60		5H029	
4/02		4/02	В	5H050	
10/40		10/40	Z		

審査請求 未請求 請求項の数12 OL (全12頁)

(21)出願番号	特願2000-367836(P2000-367836)	(71)出願人	000004237
			日本電気株式会社
(22)出願日	平成12年12月1日(2000.12.1)		東京都港区芝五丁目7番1号
		(72)発明者	佐藤 正春
			東京都港区芝五丁目7番1号 日本電気株
			式会社内
		(72)発明者	岩佐 繁之
			東京都港区芝五丁目7番1号 日本電気株
			式会社内
		(74)代理人	100086759
			弁理士 渡辺 喜平
			最終頁に続く

(54) 【発明の名称】電 池

(57)【要約】

【課題】 エネルギー密度が高く、大容量で安定性に優れた新規な電池を提供する。

【解決手段】 少なくとも正極、負極、および電解質を構成要素とし、充電および放電の少なくとも一方の過程でラジカル反応を伴う電池において、当該ラジカル反応で生成するラジカル化合物が安定化されることにより、充電および放電を高エネルギー密度で行うことができ、大容量で安定性および安全性に優れた電池が得られる。

【特許請求の範囲】

少なくとも正極、負極、および電解質を 【請求項1】 構成要素とし、充電および放電の少なくとも一方の過程 でラジカル反応を伴う電池において、当該ラジカル反応 で生成するラジカル化合物が安定化されたものであるこ とを特徴とする電池。

前記ラジカル化合物が、下記一般式 【請求項2】 (1) および(2) あるいはいずれか一方の一般式で表 される構造単位を含む有機化合物であることを特徴とす る請求項1に記載の電池。

【化1】

[一般式(1)中、置換基R'は、置換もしくは非置換 のアルキレン基、アルケニレン基、またはアリーレン基 であり、Xはオキシラジカル基、ニトロキシルラジカル 20 基、硫黄ラジカル基、ヒドラジルラジカル基、炭素ラジ カル基、またはホウ素ラジカル基である。]

【化2】

$$-\begin{bmatrix} -\mathbf{P}^2 - \mathbf{\dot{Y}} - \mathbf{R}^3 \end{bmatrix}$$
 (2)

[一般式(2)中、R² およびR³ は相互に独立であ り、置換もしくは非置換のアルキレン基、アルケニレン 基、またはアリーレン基であり、Yはニトロキシルラジ 30 ネルギーへと変換して貯蔵するものであり、各種の装置 カル基、硫黄ラジカル基、ヒドラジルラジカル基、また は炭素ラジカル基である。]

【請求項3】 前記ラジカル化合物の安定化が、当該ラ ジカル化合物と相互作用する化合物により行われること を特徴とする請求項1または2に記載の電池。

【請求項4】 前記ラジカル化合物の安定化が、当該ラ ジカル化合物のホスト化合物への埋め込みにより行われ ることを特徴とする請求項1または2に記載の電池。

【請求項5】 前記ラジカル化合物の安定化が、冷却に より行われることを特徴とする請求項1または2に記載 40 の電池。

前記ラジカル化合物と相互作用する化合 【請求項6】 物が、芳香族化合物であることを特徴とする請求項3に 記載の電池。

【請求項7】 前記芳香族化合物上の置換基の、ハメッ ト式における置換基定数が0.2~0.9の範囲内の値 であることを特徴とする請求項6に記載の電池。

【請求項8】 前記ラジカル化合物と相互作用する化合 物が、アクセプター数が10~100の範囲内の値のア クセプター溶媒であることを特徴とする請求項3に記載 50 の電池。

【請求項9】 前記ラジカル化合物と相互作用する化合 物が、当該ラジカル化合物と錯体またはドーマント種を 形成する化合物であることを特徴とする請求項3に記載 の電池。

【請求項10】 前記ラジカル化合物と錯体またはドー マント種を形成する化合物が、ルイス酸化合物、遷移金 属、または遷移金属化合物であることを特徴とする請求 項9に記載の電池。

前記ラジカル化合物の電子スピン共鳴 【請求項11】 10 スペクトルにおけるスピン濃度が、1010~1013スピ ン/gの範囲内の値であることを特徴とする請求項1~ 10のいずれか一項に記載の電池。

前記電池がリチウムイオン二次電池で 【請求項12】 あることを特徴とする請求項1~11のいずれか一項に 記載の電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、少なくとも正極、 負極、および電解質を構成要素とし、充電および放電の 少なくとも一方の過程でラジカル反応を伴う電池に関す る。より詳細には、充電および放電の少なくとも一方の 過程におけるラジカル反応で生成するラジカル化合物が 安定化されたものであって、エネルギー密度が大きく、 かつ安定性および安全性に優れた電池に関する。

[0002]

【従来の技術】電池は、正極および負極で起きる酸化還 元反応を利用して化学エネルギーを電気エネルギーへと 変換して取り出したり、または電気エネルギーを化学工 において電源として利用されている。近年、ノート型パ ソコン、携帯電話などの急速な市場拡大に伴い、これら に用いられるエネルギー密度が大きな小型大容量電池へ の要求が高まっている。そして、この要求に応えるため に、リチウムイオン等のアルカリ金属イオンを荷電担体 として、その電荷授受に伴う電気化学反応を利用した電 池が開発されている。このうち、リチウムイオン電池は 安定性に優れたエネルギー密度の大きな大容量電池とし て種々の電子機器に利用されている。

【0003】このようなリチウムイオン電池では、例え ば、活物質として正極にリチウム含有遷移金属酸化物、 負極に炭素が用いられており、これらの活物質に対する リチウムイオンの挿入反応および脱離反応を利用して充 放電を行っている。

【0004】しかしながら、このリチウムイオン電池 は、正極の活物質として比重の大きな金属酸化物を用い ているため、単位質量当たりの電池容量が充分ではない という問題があった。

【0005】そこで、より軽量の電極材料を用いて大容 **量電池を開発しようとする試みが検討されてきた。例え**

ば、米国特許第4,833,048号公報、および特許第2715778 号公報には、ジスルフィド結合を有する有機化合物を正 極の活物質に用いた電池が開示されている。これはジス ルフィド結合の生成および解離に基づく有機化合物の電 気化学的な酸化還元反応を電池の原理として利用したも のである。

【0006】しかしながら、この電池は、硫黄や炭素といった比重の小さな元素を主成分とする有機化合物を電極材料として用いているので、高エネルギー密度の大容量電池を構成するという点においては一定の効果が得ら 10れるものの、解離したジスルフィド結合の再結合効率が小さく、充電状態または放電状態における安定性が不充分であるという問題があった。

【0007】また、同じく有機化合物を活物質に利用した電池として、導電性高分子を電極材料に用いた電池が提案されている。この電池は、導電性高分子に対する電解質イオンのドープ反応および脱ドープ反応の原理を利用している。なお、ここで述べるドープ反応とは、導電性高分子の電気化学的な酸化反応または還元反応によって生じる荷電ソリトンやボーラロン等のエキシトンを、対イオンによって安定化させる反応と定義される。一方、脱ドープ反応とは、ドープ反応の逆反応、すなわち、対イオンによって安定化されたエキシトンを電気化学的に酸化または還元する反応と定義される。

【0008】米国特許第4,442,187号公報には、このような導電性高分子を正極または負極の活物質とする電池が開示されている。この電池は、炭素や窒素といった比重の小さな元素のみからなる有機化合物を電極材料に用いているため、大容量の電池として開発が期待されていた。

【0009】しかしながら、導電性高分子には、電気化学的な酸化還元反応によって生じるエキシトンが π電子 共役系の広い範囲に亘って非局在化し、それらが相互作 用するという性質があり、発生するエキシトンの濃度に も限界が生じるため、電池の容量が制限されるという問 題があった。

【0010】したがって、このような導電性高分子を電極材料とする電池では、電池の軽量化という点では一定の効果が得られるものの、電池の大容量化という点においては、依然として不充分であった。

【0011】一方、ラジカル反応を用いた高分子化合物等の有機化合物の合成方法が開発されており、様々な材料の開発に利用されている。しかしながら、ラジカル反応は、一般に他の化学反応と比べて反応性が高く、その制御が困難なことから、これまで電池などのエネルギー貯蔵デバイスへの適用は検討されていなかった。

【0012】ここで、ラジカル反応とは、ラジカルが関与する化学反応のことであり、特に本発明においては、 充電および放電の少なくとも一方の過程において、非ラジカル化合物からラジカル化合物を生成する反応および 50

生成したラジカル化合物が非ラジカル化合物へと変換される反応の両者を含むものと定義される。

【0013】以上述べたように、大容量の電池を実現するために、様々な種類の電池が提案されているが、エネルギー密度が高く、大容量で安定性に優れた電池は未だ確立されていない。また、上記のラジカル反応を、電池等のエネルギー貯蔵デバイスに適用する検討についても、ラジカル化合物が不安定であるため積極的に行われていない。

0 [0014]

【発明が解決しようとする課題】上記のとおり、正極の活物質として遷移重金属酸化物を用いるリチウムイオン電池では、元素の比重が大きいため、大容量電池の製造が原理的に困難であった。そこで本発明者らは、鋭意検討した結果、電気化学的な酸化還元反応である充電および放電の少なくとも一方の過程で上記ラジカル反応により生成したラジカル化合物を安定化することにより、当該ラジカル化合物を電池等のエネルギー蓄積装置の活物質として利用できることを見出した。したがって、本発明は、このような安定化されたラジカル化合物を含むことにより、エネルギー密度が高く、大容量で安定性に優れた電池を提供することを目的としている。

[0015]

め、本発明によれば、少なくとも正極、負極、および電解質を構成要素とし、充電反応および放電反応の少なくとも一方の過程でラジカル反応を伴う電池であって、当該ラジカル反応で生成するラジカル化合物が安定化された電池が提供される。このように構成することにより、一般的に反応性が高く、不安定なラジカル化合物を、有効かつ簡便に利用することができるとともに、生成したラジカル化合物の不可逆的な副反応や、電池に含まれる溶媒や電解質等の化学物質の劣化や分解を抑制できるため、エネルギー密度が高く、大容量で安定性に優れた電池を容易に得ることができる。

【課題を解決するための手段】前記目的を達成するた

【0016】なお、本発明において、ラジカル化合物とは、不対電子を有する化学種、すなわちラジカルを有する化合物と定義される。また、このようなラジカルは、スピン核運動量がゼロではないため、常磁性等の磁気的性質を有している。一般に、ラジカルは、熱分解、光分解、放射線分解、および電子の授受等により、分子の化学結合が切断されて生成されるものであり、化学反応性が極めて高く、一般的に不安定であるため、速やかにラジカル同士または他の安定な分子との反応によってその反応性が変化する。そして、このようなラジカルの存在は、電子スピン共鳴スペクトル(以下、ESRスペクトルと称する場合がある。)等の測定によって観察することができる。

【0017】また、本発明において、充電および放電とは、電気化学的な酸化還元反応のことであり、一般的に

5

は電解質溶液中に配置された電極と電気的に接続された活物質に対して、電圧を印加したり負荷を与えて短絡させたときに進行する電子の授受を伴う反応と定義される。したがって、本発明の充電および放電の少なくとも一方の過程でラジカル反応を伴う電池とは、活物質に電圧を印加したり短絡させたりしたときに進行する電子の授受を伴う反応でラジカル化合物を生成する電池と定義される。

【0018】また、本発明の電池を構成するにあたり、 安定化されたラジカル化合物が、下記一般式(1)およ 10 び一般式(2)あるいはいずれか一方の一般式で表され る構造単位を含む有機化合物であることが好ましい。

[0019]

【化3】

【0020】 [一般式(1)中、置換基 R¹ は、置換もしくは非置換のアルキレン基、アルケニレン基、またはアリーレン基であり、 X はオキシラジカル基、ニトロキシルラジカル基、硫黄ラジカル基、ヒドラジルラジカル基、炭素ラジカル基、またはホウ素ラジカル基である。]

[0021]

【化4】

【0022】[一般式(2)中、R² およびR³ は相互に独立であり、置換もしくは非置換のアルキレン基、アルケニレン基、またはアリーレン基であり、Yはニトロキシルラジカル基、硫黄ラジカル基、ヒドラジルラジカル基、または炭素ラジカル基である。]

【0023】このように構成することにより、ラジカル化合物を炭素、水素、および酸素等のような質量の小さい元素のみから構成することができるため、単位質量当 40たりのエネルギー密度が大きな電池を容易に得ることができる。また、安定化されたラジカル化合物が、高分子ラジカル化合物の場合であっても、反応する不対電子をラジカル原子に局在化させることにより、反応部位の濃度を増大させることが可能となるため、高エネルギー密度、かつ大容量の電池を得ることができる。

【0024】また、本発明の電池を構成するにあたり、 ラジカル化合物の安定化が、当該ラジカル化合物と相互 作用する化合物により行われることが好ましい。このよ うに安定化すると、充電および放電の少なくとも一方の 50 過程で進行するラジカル反応において、副反応が抑制されてラジカル反応が円滑に進むため、簡便に安定性に優れた大容量の電池を得ることができる。

【0025】また、本発明の電池を構成するにあたり、ラジカル化合物の安定化が、当該ラジカル化合物のホスト化合物への埋め込みにより行われることが好ましい。このように安定化すると、充電および放電の少なくとも一方の過程で生成するラジカル化合物が、ホスト化合物によって、ラジカル化合物全体としては不活性化されるものの、そのラジカル自体はホスト化合物に移行し、その活性が依然として保持されるため、簡便に安定性に優れた大容量の電池を得ることができる。

【0026】また、本発明の電池を構成するにあたり、ラジカル化合物の安定化が、冷却により行われることが好ましい。このように安定化すると、充電および放電の少なくとも一方の過程で生成するラジカル化合物の反応性を、特に電池の組成を変更することなく制御できるため、簡便に安定性に優れた大容量の電池を得ることができる。

【0027】また、本発明の電池を構成するにあたり、 ラジカルと相互作用する化合物が芳香族化合物であるこ とが好ましい。このような化合物であれば、安定性に優 れた大容量の電池を容易に得ることができる。この場 合、上記芳香族化合物は、ハメットの置換基定数が0. 2~0.9の範囲内の値であることが好ましい。

【0028】また、本発明の電池を構成するにあたり、 ラジカル化合物と相互作用する化合物が、アクセプター 数が10~100の範囲内の値のアクセプター溶媒であ ることが好ましい。このような化合物の場合も、安定性 30 に優れた大容量の電池を容易に得ることができる。

【0029】また、本発明の電池を構成するにあたり、 ラジカル化合物と相互作用する化合物が、ラジカル化合 物と錯体またはドーマント種を形成する化合物であるこ とが好ましい。

【0030】また、本発明の電池を構成するにあたり、 ラジカル化合物と錯体またはドーマント種を形成する化 合物が、ルイス酸化合物、遷移金属、または遷移金属化 合物であることが好ましい。このような化合物の場合 も、安定性に優れた大容量の電池をさらに容易に得るこ とができる。

【0031】また、本発明の電池を構成するにあたり、ラジカル化合物の電子スピン共鳴スペクトルにおけるスピン濃度が10¹⁰~10¹¹スピン/gの範囲内の値であることが好ましい。このように構成することにより、エネルギー密度が高く、大容量で安定性に優れた電池を容易に得ることができる。

【0032】また、本発明の電池を構成するにあたり、 かかる電池がリチウムイオン二次電池であることが好ま しい。このように構成することにより、安定性に優れた 大容量の電池を得ることができる。 [0033]

【発明の実施の形態】本発明の電池の実施形態は、例え ば、図1に示すように、負極層1と正極層2とを、電解 質を含んだセパレーター5を介して重ね合わせた構成を 有している。本発明では、負極層1または正極層2に用 いられる活物質が、ラジカル反応によりラジカル化合物 を生成する材料であり、生成したラジカル化合物は安定 化されている。なお、生成したラジカルを安定化させる と電池の活物質となる理由は、安定化されたラジカル が、さらに電気化学的な酸化還元を行うことが可能とな るためと考えられる。また、図2に積層型電池の断面図 を示すが、その構造は負極集電体3、負極層1、電解質 を含んだセパレーター5、正極層2、および正極集電体 4を順に重ね合わせた構造を有している。

【0034】なお、本発明では、正極層および負極層の 積層方法は特に限定されず、多層積層したものや集電体 の両面に積層したものを組み合わせたもの、巻回したも の等が利用できる。

【0035】(1)活物質

【0039】[一般式(3)~(6)中、R'~R*は、 相互に独立であり、水素原子、置換もしくは非置換の脂 肪族あるいは芳香族炭化水素基、ハロゲン原子、ヒドロ シ基、アリールオキシ基、またはアシル基である。]

【0040】また、上記ニトロキシルラジカル化合物の 具体例としては、下記一般式(7)のようなピペリジノ

【0042】[一般式(7)~(10)中、R'~R'' は、上記R'~R'の内容と同様である。]

【0043】また、上記窒素ラジカル化合物の具体例と しては、下記一般式(11)のような三価のヒドラジル 基を有するラジカル化合物、下記一般式(12)のよう な三価のフェルダジル基を有するラジカル化合物、下記

①材料1 (ラジカル化合物)

本発明において、ラジカル化合物の種類は特に限定され るものではないが、発明の効果の観点および電極活物質 層を形成する場合の加工性に優れることから、特に上記 一般式(1)および一般式(2)あるいはいずれか一方 の一般式で表される構造単位を含む有機化合物が好まし 170

【0036】このようなラジカル化合物としては、例え ば、オキシラジカル化合物、ニトロキシルラジカル化合 物、窒素ラジカル化合物、炭素ラジカル化合物、ホウ素 ラジカル化合物、および硫黄ラジカル化合物等の有機化 合物が挙げられる。

【0037】上記オキシラジカル化合物の具体例として は、例えば、下記一般式(3)~(5)のようなアリー ルオキシラジカル化合物や下記一般式(6)のようなセ ミキノンラジカル化合物等が挙げられる。

[0038]

【化5】

キシ環を有するラジカル化合物、下記一般式(8)のよ うなピロリジノキシ環を有するラジカル化合物、下記一 般式(9)のようなピロリノキシ環を有するラジカル化 キシル基、ニトロ基、ニトロソ基、シアノ基、アルコキ 30 合物、および下記一般式(10)のようなニトロニルニ トロキシド構造を有するラジカル化合物が挙げられる。 [0041]

【化6】

40 一般式(13)のような四価のフェルダジル基を有する ラジカル化合物、および下記一般式(14)のようなア ミノトリアジン構造を有するラジカル化合物等が挙げら れる。

[0044]

【化7】

【0045】[一般式(11)~(14)中、R'2~R 11は、上記R'~R'の内容と同様である。]

【0046】なお、本発明では、上記のようなラジカル 10 化合物をそのまま電極の活物質に使用して電池を製造す ることも、充電反応および放電反応のいずれかの過程 で、上記ラジカル化合物へと変換される非ラジカル化合 物を使用して電池を製造することもできる。

【0047】②材料2

本発明では、充放電反応の過程でラジカル化合物を生成 する材料を、正極および負極またはいずれか一方の電極 の活物質として使用することができるが、エネルギー密 度の観点からすると、特に正極の活物質として使用する ことが好ましい。

【0048】なお、これらの材料を正極および負極のど ちらか一方の電極の活物質として用いる場合には、以下 に挙げる材料を他の電極の活物質として用いることがで きる。すなわち、負極層の活物質としてラジカル化合物 を生成する材料を用いる場合には、正極層の活物質とし て金属酸化物粒子、ジスルフィド化合物、および導電性 高分子等が用いられる。ここで、金属酸化物としては、 例えば、LiMnO2、Lix Mn2 O4 (0 < x < 2) 等のマンガン酸リチウムもしくはスピネル構造を有 iNiO₂、またはLi_x V₂ O₅ (0 < x < 2)等が、 ジスルフィド化合物としては、ジチオグリコール、2, 5 ージメルカプトー1, 3, 4 ーチアジアゾール、S ー トリアジン-2,4,6-トリチオール等が、また、導 電性高分子としては、ポリアセチレン、ポリフェニレ ン、ポリアニリン、ポリピロール等がそれぞれ挙げられ る。本発明では、これらの正極層材料を一種単独または 二種以上を組み合わせて使用することができ、さらに、 従来公知の活物質とこれらの材料とを混合して複合活物 質として用いることも好ましい。

【0049】一方、正極層の活物質としてラジカル化合 物を生成する材料を用いる場合には、負極層の活物質と して、グラファイト、非晶質カーボン、リチウム金属、 リチウム合金、リチウムイオン吸蔵炭素、および導電性 高分子等の一種単独または二種以上の組み合わせが用い られる。これらの形状としては特に限定されず、例え ば、リチウム金属では薄膜状のもの以外に、バルク状の もの、粉末を固めたもの、繊維状のもの、フレーク状の もの等を使用することができる。

【0050】(2)ラジカル化合物の安定化

本発明において、ラジカル化合物を安定化する方法は特 に限定されるものではなく、従来公知の方法が用いられ るが、実施の容易さから、特にラジカルと相互作用する 化合物を用いる方法、ホスト化合物へラジカル化合物を 埋め込む方法、および冷却する方法等が用いられる。

10

【0051】本発明において、ラジカル化合物と相互作 用する化合物とは、ラジカル化合物と共有結合、水素結 合、配位結合、疎水結合、ファンデルワールス結合等の 各種の化学結合を形成する化合物、すなわち、反応の自 由エネルギーΔGが負となる化合物である。このような 化合物としては、ラジカル化合物を安定化する化合物で あれば特に制限されるものではないが、発明の実施の容 易さから、特に芳香族化合物、アクセプター溶媒、およ び、ラジカル化合物と錯体もしくはドーマント種を形成 する化合物が好ましい。

【0052】このうち、芳香族化合物としては、下記に 示すハメット式における置換基定数が0.2~0.9の 範囲内の値の置換基を有することが好ましい。この理由 は、置換基定数が0.2未満となると、生成したラジカ ル化合物の安定化が不十分となり、不必要な副反応が進 行する場合があるためであり、一方、置換基定数が 0. 9を超えると、ラジカル化合物が過度の安定化を受ける するマンガン酸リチウム、 MnO_2 、 $LiCoO_2$ 、LiSO0 ため、可逆的な充放電反応が妨げられる場合があるため である。

> 【0053】ここで、ハメットの置換基定数とは、芳香 族化合物のメタ、またはパラ置換体において置換基を持 たない化合物と置換基を持つ化合物の反応速度定数をそ れぞれは。およびはとしたときに成立する下記に示すハ メット式

 $\log(k/k_0) = \rho \sigma$

におけるσと定義される。なお、上記ハメット式では、 安息香酸およびその誘導体の25℃の水溶液中における 40 解離反応を $\rho=1$ としている。

【0054】また、このような置換基としては、例え ば、-OC。H₅、-NHCOCH₃、-SH、-OC OCH_3 , -F, -CI, -Br, -CHO, -OCF $_3$, $-CONH_2$, $-SCOCH_3$, -COOH, -COCH₃、-CF₃、-CN、および-NO₂等の一種 単独または二種以上の組み合わせが挙げられる。なお、 これらの置換基としては、一下、一〇1、一日rおよび - C Nが特に好ましい。

【0055】また、アクセプター溶媒としては、アクセ 50 プター数が 10~100 の範囲内の値の溶媒が好まし

い。この理由は、アクセプター数が10未満となると、生成したラジカル化合物の安定化が不十分となり、不必要な副反応が進行する場合があるためであり、一方、アクセプター数が100を超えると、ラジカル化合物が過度の安定化を受けるため、可逆的な充放電反応が妨げられる場合があるためである。ここで、アクセプター数とは、ヘキサンを一方の標準溶媒として、そのアクセプター数を0と定義し、トリエチルホスフィンオキシド・五塩化アンチモンの1、2ージクロロエタン溶液をもう一方の標準溶媒として、そのアクセプター数を100と定式の標準容媒として、そのアクセプター数を100と定式の標準容媒として、そのアクセプター数を100と定式の標準容媒として、そのアクセプター数を100と定式の標準容はして、そのアクセプター数を100と定義した場合における、対象容媒中におけるトリエチルホスフィンオキシドのプロートのMRの相対的な化学シフトとして与えられる無次元の数として定義される。

【0056】このようなアクセプター溶媒としては、例えば、ジオキサン、アセトン、N-メチルピロリドン、ジメチルアセトアミド、ピリジン、ニトロベンゼン、ベンゾニトリル、ジメチルホルムアミド、炭酸エチレン、炭酸ジクロロエチレン、炭酸プロピレン、炭酸1,2-ブチレン、アセトニトリル、ジメチルスルホキシド、ジクロロメタン、ニトロメタン、2-プロパノール、エタ 20ノール、メタノール等の一種単独または二種以上の組み合わせが挙げられる。

【0057】本発明において、ラジカル化合物と錯体を 形成する化合物としては、金属、もしくは金属類似元素 の原子またはイオンを中心にしてその回りに配位子を結 合してラジカル化合物と一つの集団を形成する化合物が 挙げられる。また、ドーマント種とは、ラジカル反応に おいて休眠種とも呼ばれる安定な化学種である。すなわ ち、本発明でドーマント種を形成する化合物とは、ラジ カル化合物と共有結合を形成して一時的に安定な化合物 30 に変換されるとともに、適当な条件の下でラジカル化合 物を再生し得る化合物と定義される。

【0058】このようなラジカル化合物と錯体またはドーマント種を形成する化合物としては、上記の定義に含まれる化合物であれば特に限定されないが、発明の実施の容易さから特にルイス酸化合物、遷移金属、または遷移金属化合物が好ましい。本発明では、ラジカルを安定化する各種化合物の存在量は特に限定されないが、安定化の効果の点から少なくとも生成するラジカルの数以上の安定化剤を存在させることが望ましい。

【0059】また、本発明では生成するラジカルの濃度は特に限定されないが、好ましい値としては、10¹⁰~10¹¹スピン/gの範囲内の値であることが好ましい。この理由は、ラジカルの濃度が10¹⁰スピン/g未満になると、電池の容量が小さくなり、電池の大容量化という本発明の効果が得られなくなる場合があるためである。一方、ラジカルの濃度が10¹¹スピン/gを超えると、安定な電池を構成することが困難となる場合があるためである。

【0060】(3)結着剤

本発明では、各構成材料間の結びつきを強めるために、 結着剤を用いることもできる。このような結着剤として は、ポリフッ化ピニリデン、ピニリデンフロライドーへ キサフルオロプロピレン共重合体、ピニリデンフロライ ドーテトラフルオロエチレン共重合体、スチレン・ブタ ジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポ リイミド、各種ポリウレタン等の樹脂バインダーが挙げ られる。

【0061】(4)触媒

本発明では、電極反応をより潤滑に行うために、酸化還元反応を促進させる触媒を用いることもできる。このような触媒としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子、ピリジン誘導体、ピロリドン誘導体、ベンズイミダゾール誘導体、ベンゾチアゾール誘導体、アクリジン誘導体等の塩基性化合物、および金属イオン錯体等が挙げられる。

【0062】(5)集電体

本発明における集電体とは、導電体で形成されており、 電池の電極から発生する電荷が集められるものである。 本発明では、負極集電体3、正極集電体4として、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、 およびステンレス等の金属箔、金属平板、メッシュ状電 極、および炭素電極等を用いることができる。また、このような集電体に触媒効果を持たせたり、活物質と集電 体とを化学結合させたりしてもよい。

【0063】(6)セパレーターおよび封止剤本発明におけるセパレーター5は、正極層と負極層が接触しないようにするものであり、多孔質フィルム、不織布などの材料を用いることができる。さらにこのようなセパレーターは、電解質を含ませて構成することも好ましい。ただし、上記の電解質として、イオン伝導性高分子を用いる場合には、セパレーターそのものを省略することもできる。また、本発明における封止材6について

も、特に制限されるものではなく、電池の外装に用いら

【0064】(7)電解質

れる従来公知の材料が用いられる。

本発明において、電解質は、負極層 1 と正極層 2 の両極間の荷電担体輸送を行うものであり、一般には室温で 1 $0^{-5} \sim 10^{-1}$ S/c mのイオン伝導性を有している。本発明では、電解質として、例えば、電解質塩を溶剤に溶解した電解液を利用することができる。このような電解質塩としては、例えば、LiPF。、LiClO 4、LiBF4、LiCF3 SO3、Li(CF3 SO2)2 N、Li(CF3 SO2)2 N、Li(CF3 SO2)3 C、Li(C2 F5 SO2)3 C等の従来公知の材料を用いることができる。

【0065】また、電解質塩の溶剤としては、例えば、 エチレンカーボネート、プロピレンカーボネート、ジメ 50 チルカーボネート、ジエチルカーボネート、メチルエチ

ルカーボネート、ィーブチロラクトン、テトラヒドロフ ラン、ジオキソラン、スルホラン、ジメチルホルムアミ ド、ジメチルアセトアミド、N-メチル-2-ピロリド ン等の有機溶媒を用いることができる。なお、本発明で は、これらの溶剤を一種単独または二種以上の混合溶剤 として用いることもできる。

【0066】さらに、本発明では、電解質として固体電 解質を用いることもできる。このような固体電解質に用 いられる髙分子化合物としては、ポリフッ化ビニリデ ン、フッ化ピニリデンーヘキサフルオロプロピレン共重 10 合体、フッ化ピニリデンーエチレン共重合体、フッ化ビ ニリデンーモノフルオロエチレン共重合体、フッ化ビニ リデンートリフルオロエチレン共重合体、フッ化ビニリ デンーテトラフルオロエチレン共重合体、フッ化ピニリ デンーヘキサフルオロブロピレンーテトラフルオロエチ レン三元共重合体等のフッ化ビニリデン系重合体や、ア クリロニトリルーメチルメタクリレート共重合体、アク リロニトリルーメチルアクリレート共重合体、アクリロ ニトリルーエチルメタクリレート共重合体、アクリロニ トリルーエチルアクリレート共重合体、アクリロニトリ 20 ルーメタクリル酸共重合体、アクリロニトリルーアクリ ル酸共重合体、アクリロニトリルーピニルアセテート共 重合体等のアクリルニトリル系重合体、さらにポリエチ レンオキサイド、エチレンオキサイドープロピレンオキ サイド共重合体、これらのアクリレート体やメタクリレ ート体の重合体などが挙げられる。なお、固体電解質 は、これらの高分子化合物に電解液を含ませてゲル状に したものを用いても、高分子化合物のみでそのまま用い てもよい。

【0067】(8)形状

また、電池の形状についても、特に限定されず、円筒型 電池、コイン型電池、角型電池、フィルム型電池、ボタ ン型電池等の形状に適用することができる。

[0068]

【実施例】以下、本発明について、より具体的に説明す るが、本発明はこれらの実施例に限定されるものではな 67°

【0069】 (実施例1)

(1) 電池の作製

ガス精製装置を備えたドライボックス中で、アルゴンガ 40 として動作していることが確認された。さらに、この電 ス雰囲気下、ガラス製容器に下記式(15)で表される ガルビノキシルラジカル50mgと、補助導電材として グラファイト粉末60mgとを混合し、これに、フッ化 ピニリデンーヘキサフルオロプロピレン共重合体 20m gとテトラヒドロフラン1gとをさらに加えて、全体が 均一になるまでさらに数分間混合したところ、黒色のス ラリーが得られた。次に、このガルピノキシルラジカル (15)を含むスラリーのESRスペクトルを測定した ところ、そのスピン濃度は10² スピン/g以上であっ た。

[0070]

【化8】

【0071】続いて、得られたスラリー200mgを、 リード線を備えたアルミニウム箔(面積:1.5cm× 1. 5 cm、厚さ: 100 µm) の表面に滴下し、ワイ ヤーバーで全体が均一な厚さとなるように展開し、室温 で60分間放置したところ、溶剤のテトラヒドロフラン が蒸発し、アルミニウム箔上にガルピノキシルラジカル を含む電極層が形成された。

【0072】次に、フッ化ビニリデンーへキサフルオロ プロピレン共重合体 600 mgと、1 mol/lのLi PF。を電解質塩として含んだアクセプター数18.9 の炭酸プロピレン溶液からなる電解液 1, 400 mgと を混合し、これにテトラヒドロフラン11.3gをさら、 に加えて室温で攪拌した。フッ化ビニリデンーヘキサフ ルオロプロピレン共重合体が溶解した後、段差をつけた ガラス板上にこの溶液を塗布し、室温で一時間放置して テトラヒドロフランを自然乾燥させ、厚さが1mmのゲ ル電解質膜のキャストフィルムを得た。

【0073】次に、ガルビノキシルラジカルを含む電極 層を形成したアルミニウム箔に、2.0cm×2.0c 30 mに切り出したゲル電解質膜を積層し、さらに、リード 線を備えたリチウム張り合わせ銅箔(リチウム膜厚30 μm、銅箔の膜厚20μm)を重ね合わせた後、全体を 厚さ5mmのポリテトラフルオロエチレン製シートで挟 み、圧力を加えて電池を作製した。

【0074】(2)電池の評価

以上のように作製した電池を試料として、ガルビノキシ ルラジカルを含む電極層を正極、リチウム張り合わせ銅 箔を負極として、0.1mAの定電流で放電を行った。 その結果、2.3 V付近に電圧平坦部が認められ、電池 池を繰り返し充放電したところ、10サイクル以上にわ たって充放電が可能であり、二次電池として動作するこ とが確認された。

【0075】(実施例2)

(1) 電池の作製

実施例1のガルビノキシルラジカル(15)に代えて、 ソー2, 5-シクロヘキサジエン-1-イリデン)-p ートリロキシラジカル(16)を用いる以外は、実施例 50 1と同様の方法で黒色のスラリーを得た。このスラリー

のESRスペクトルを測定したところ、そのスピン濃度 は、10¹¹スピン/g以上であった。

[0076]

【化9】

【0077】続いて、得られたスラリー200mgを、 リード線を備えたアルミニウム箔(面積:1.5cm× 1. 5 cm、厚さ:100 μm) の表面に滴下し、実施 例1と同様の方法で展開、乾燥させてアルミニウム箔上 に 2 , $6 - ジメチル - \alpha - (3, 5 - ジメチル - 4 - オ$ キソー2,5-シクロヘキサジエンー1-イリデン)pートリロキシラジカルを含む電極層を形成した。

【0078】次に、電極層を形成したアルミニウム箔 に、2.0cm×2.0cmに切り出した実施例1で用 いたゲル電解質膜を積層し、実施例1と同様の方法でリ チウム張り合わせ銅箔を重ね合わせ、ポリテトラフルオ ロエチレン製シートで挟んで圧力を加え、電池を作製し た。

【0079】(2)電池の評価

以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、2.1V付近に電圧 平坦部が認められ、電池として動作していることが確認 された。さらに、この電池を繰り返し充放電したとこ ろ、10 サイクル以上にわたって充放電が可能な二次電 30 であるベンゾニトリルと1 mol/lのLiBF。を含 池として動作することが確認された。

【0080】(比較例1)

(1) 電池の作製

フッ化ピニリデンーヘキサフルオロプロピレン共重合体 600mgと、1mol/lのLiPF。を電解質塩と して含んだアクセプター数2.6の炭酸ジエチル溶液か らなる電解液1,500mgとを混合し、さらにテトラ ヒドロフラン500mgを加えて室温で攪拌した。フッ 化ビニリデンーヘキサフルオロプロピレン共重合体が溶 解した後、段差をつけたガラス板上に塗布し、室温で一 40 時間放置してテトラヒドロフランを自然乾燥させ、厚さ が1mmのゲル電解質膜のキャストフィルムを得た。

【0081】次に、実施例2と同様の電極層を形成した アルミニウム箔に、2.0cm×2.0cmに切り出し たゲル電解質膜を積層し、実施例1と同様の方法でリチ ウム張り合わせ銅箔を重ね合わせ、ポリテトラフルオロ エチレン製シートで挟んで圧力を加え、電池を作製し た。

【0082】(2)電池の評価

以上のように作製した電池を試料として、実施例1と同 50 以上のように作製した電池を試料として、実施例1と同

様にして放電を行った。その結果、電圧は平坦部を示す ことなく低下し、電池として動作しないことがわかっ た。

16

【0083】(実施例3)

(1) ラジカル化合物の調製

真空容器に 1, 3, 5 ートリスジアゾーシクロヘキサンー 2,4,6-トリオンの粉末を入れ、真空下で600℃ま で昇温し、同温度で20時間保持した後、室温まで冷却 し、生成物を得た。次に、この生成物のNMRスペクト 10 ルおよびIRスペクトルを測定したところ、その分子構 造は網目状のポリオキシラジカルであると推定された。 さらに、ESRスペクトルを測定したところ、得られた 生成物のスピン濃度は、8×10¹スピン/gであっ た。

【0084】(2)電池の作製

実施例1のガルビノキシルラジカルに代えて、上記

(1)で調製した網目状ポリオキシラジカルを用いる以 外は、実施例1と同様の方法で黒色のスラリーを得た。 続いて、得られたスラリー200mgを、リード線を備 えたアルミニウム箔(面積:1.5cm×1.5cm、 厚さ:100μm)の表面に滴下し、実施例1と同様の 方法で展開、乾燥させてアルミニウム箔上に網目状ポリ オキシラジカルを含む電極層を形成した。

【0085】次に、電極層を形成したアルミニウム箔 に、2.0cm×2.0cmに切り出した厚さ25 μ m の多孔質ポリエチレンフィルムを積層し、実施例1と同 様の方法でリチウム張り合わせ銅箔を重ね合わせ、リー ドを接続した後、ハメットの置換基定数0. 65のニト リル基を有し、かつ、アクセプター数が15.5の溶媒 む電解液を加えて全体をラミネートフィルムで外装し、 電池を作製した。

【0086】(3)電池の評価

以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、2.0V付近に電圧 平坦部が認められ、電池として動作していることが確認 された。さらに、この電池を繰り返し充放電したところ 10サイクル以上にわたって充放電が可能な二次電池と して動作することが確認された。

【0087】(比較例2)

(1) 電池の作製

実施例3と同様にして電極層を形成したアルミニウム箔 に、実施例3で用いた多孔質ポリエチレンフィルムを積 層し、実施例1と同様の方法でリチウム張り合わせ銅箔 を重ね合わせ、リードを接続した後、アクセプター数が 3. 6の溶媒である炭酸ジメチルと1mol/lのLi BF4を含む電解液を加えて全体をラミネートフィルム で外装し、電池を作製した。

【0088】(2)電池の評価

様にして放電を行った。その結果、電圧は平坦部を示す ことなく低下し、電池として動作しないことがわかっ た。

【0089】 (実施例4)

(1) 電池の作製

実施例3と同様にして電極層を形成したアルミニウム箔 に、実施例3で用いた多孔質ポリエチレンフィルムを積 層し、実施例1と同様の方法でリチウム張り合わせ銅箔 を重ね合わせ、リードを接続した。続いて、ハメットの 置換基定数3.7のクロロ基を有する塩化ベンゼンと1 10 製した。 mol/lのLiCl₄とを含む電解液を加えて全体を ラミネートフィルムで外装し、電池を作製した。

【0090】(2)電池の評価

以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、2.0 V付近に電圧 平坦部が認められ、電池として動作していることが確認 された。さらに、この電池を繰り返し充放電したとこ ろ、10サイクル以上にわたって充放電が可能な二次電 池として動作することが確認された。

【0091】 (実施例5)

(1) ラジカル化合物の調製

テトラヒドロフランにポリビニルジメチルフェノールを 溶解し、フェリシアン化カリウムを作用させた。次に、 この反応溶液を蒸発乾固し、昇華精製して得られた生成 物のNMRスペクトルおよびIRスペクトルを測定した ところ、その分子構造は、網目状ポリビニルジメチルフ ェノキシラジカル(17)であると推定された。また、 得られた(17)のESRスペクトルを測定したとこ ろ、そのスピン濃度は8.5×10²¹スピン/gであっ た。

[0092] 【化10】

【0093】(2) 電池の作製

実施例1のガルビノキシルラジカルに代えて上記(1) で得られた網目状ポリビニルジメチルフェノキシラジカ ルを用いる以外は、実施例1と同様の方法で黒色のスラ リーを得た。続いて、得られたスラリー200mgをリ ード線を備えたアルミニウム箔(面積:1.5cm× 1. 5 cm、厚さ: 100 µm) の表面に滴下し、実施 例1と同様の方法で展開、乾燥させてアルミニウム箔上 に網目状ポリビニルジメチルフェノキシラジカルを含む 電極層を形成した。

【0094】次に、ポリビニルジメチルフェノキシラジ カルを含む電極層を形成したアルミニウム箔に、2.0 cm×2.0cmに切り出した厚さ25μmの多孔質ボ リエチレンフィルムを積層し、実施例1の方法でリチウ ム張り合わせ銅箔を重ね合わせ、リードを接続した後、 アクセプター数が5.3の溶媒である炭酸メチルイソプ ロピルと1mol/lのLiBF4を含む電解液を加え て、さらにルイス酸として0.25molのヨウ素粉末 を加えて全体をラミネートフィルムで外装し、電池を作

【0095】(3)電池の評価

以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、2.5 V付近に電圧 平坦部が認められ、電池として動作していることが確認 された。さらに、この電池を繰り返し充放電したとこ ろ、10サイクル以上にわたって充放電が可能な二次電 池として動作することが確認された。

【0096】 (実施例6)

(1) 電池の作製

20 実施例5と同様の電極層を形成したアルミニウム箔に、 実施例3で用いた多孔質ポリエチレンフィルムを積層 し、実施例1と同様の方法でリチウム張り合わせ銅箔を 重ね合わせ、リードを接続した。続いて、アクセプター 数が5.3の溶媒である炭酸メチルイソプロピルと1m ol/lのLiBF₄を含む電解液を加えて、さらに 0. 05molのテトラメシチルポルフィリンコパルト (III) 錯体を加えて全体をラミネートフィルムで外装 し、電池を作製した。

【0097】(2)電池の評価

30 以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、2.0 V付近に電圧 平坦部が認められ、電池として動作していることが確認 された。さらに、この電池を繰り返し充放電したとこ ろ、10サイクル以上にわたって充放電が可能な二次電 池として動作することが確認された。

【0098】 (比較例3) 実施例5と同様の電極層を形 成したアルミニウム箔に、実施例3で用いた多孔質ポリ エチレンフィルムを積層し、実施例1と同様の方法でリ チウム張り合わせ銅箔を重ね合わせ、リードを接続し

40 た。続いて、アクセプター数が 5. 3 の溶媒である炭酸 メチルイソプロピルと1mol/lのLiBF。を含む 電解液を加えて、ルイス酸や錯体を加えることなく全体 をラミネートフィルムで外装し、電池を作製した。

【0099】(2)電池の評価

以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、電圧は平坦部を示す ことなく低下し、電池として動作しないことがわかっ た。

【0100】 (実施例7)

(1) 電池の作製 50

実施例5と同様の電極層を形成したアルミニウム箔に、 実施例3で用いた多孔質ポリエチレンフィルムを積層 し、実施例1と同様の方法でリチウム張り合わせ銅箔を 重ね合わせ、リードを接続した。続いて、アクセプター 数が5.3の溶媒である炭酸メチルイソプロピルと1m ol/lのLiBF』を含む電解液を加えて、ルイス酸 や錯体を加えることなく全体をラミネートフィルムで外 装し、電池を作製した。

【0101】(2)電池の評価

て-50℃に冷却した後、実施例1と同様にして放電を 行った。その結果、2.0 V付近に電圧平坦部が認めら れ、電池として動作していることが確認された。さら に、この電池を繰り返し充放電したところ、10サイク ル以上にわたって充放電が可能な二次電池として動作す ることが確認された。

【0102】(実施例8)

(1)電池の作製

ポリアクリロニトリル600mgに、1mol/lのL iPF。を電解質塩として含んだアクセプター数3.8 20 池として動作することが確認された。 の炭酸ジブチル溶液からなる電解液 1,500mgを混 合し、110℃まで昇温して溶解した後、この溶液を段 差をつけたガラス板上に展開し、室温に冷却して電解質 膜のキャストフィルムを得た。

【0103】次に、実施例5と同様の電極層を形成した **アルミニウム箔に、2.0cm×2.0cmに切り出し** たゲル電解質膜を積層し、実施例1と同様の方法でリチ ウム張り合わせ銅箔を重ね合わせ、ポリテトラフルオロ エチレン製シートで挟んで圧力を加え、電池を作製し た。

【0104】(2)電池の評価

以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、2.0V付近に電圧 平坦部が認められ、電池として動作していることが確認 された。さらに、この電池を繰り返し充放電したとこ ろ、10サイクル以上にわたって充放電が可能な二次電 池として動作することが確認された。また、ゲル電解質 のESRスペクトルを充放電の前後で測定したところ、 そのスピン濃度は放電後に大きく、充電後には小さかっ た。この結果から、ボリアクリロニトリルからなるゲル 40 が、発生したラジカルを埋め込むホスト化合物となるこ とが示唆された。

【0105】(実施例9)

(1) 電池の作製

実施例1のガルビノキシルラジカルに代えて2,2, 6,6-テトラメチルピペリジン-1-オキシルを使う 以外は、実施例1と同様の方法で黒色のスラリーを得 た。なお、使用した2,2,6,6-テトラメチルピペ リジン-1-オキシルラジカルを含むスラリーのESR スペクトルを測定したところ、そのスピン濃度は10'' スピン/g以上であった。

【0106】続いて、得られたスラリー200mgを、 リード線を備えたアルミニウム箔(面積:1.5cm× 1. 5 cm、厚さ:100 µm) の表面に滴下し、実施 例1と同様の方法で展開、乾燥させてアルミニウム箔上 に2, 2, 6, 6-テトラメチルピペリジン-1-オキ シルを含む電極層を形成した。次に、2, 2, 6, 6-テトラメチルピペリジンー1ーオキシルラジカルを含む 電極層を形成したアルミニウム箔に、2.0cm×2. 次に、得られた電池をドライアイス/アセトン浴を用い 10 0 c mに切り出した実施例 1 で用いたゲル電解質膜を積 層し、実施例1と同様の方法でリチウム張り合わせ銅箔 を重ね合わせ、ポリテトラフルオロエチレン製シートで 挟んで圧力を加え、電池を作製した。

【0107】(2)電池の評価

以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、3.1 V付近に電圧 平坦部が認められ、電池として動作していることが確認 された。さらに、この電池を繰り返し充放電したとこ ろ、10サイクル以上にわたって充放電が可能な二次電

【0108】(実施例10)

(1) 電池の作製

実施例1のガルビノキシルラジカルに代えて、2,2-ジフェニルー1-ピクリルヒドラジルラジカルを用いる 以外は、実施例1と同様の方法で黒色のスラリーを得 た。なお、使用した2,2-ジフェニルー1-ピクリル ヒドラジルラジカルを試料としてESRスペクトルを測 定したところ、そのスピン濃度は、101スピン/g以 上であった。

【0109】続いて、得られたスラリー200mgをリ ード線を備えたアルミニウム箔(面積:1.5cm× 1. 5 cm、厚さ:100 µm) の表面に滴下し、実施 例1と同様の方法で展開、乾燥させてアルミニウム箔上 に2, 2-ジフェニルー1-ピクリルヒドラジルラジカ ルを含む電極層を形成した。次に、2,2-ジフェニル -1-ピクリルヒドラジルラジカルを含む電極層を形成 したアルミニウム箔に、2.0cm×2.0cmに切り 出した実施例1で用いたゲル電解質膜を積層し、実施例 1と同様の方法でリチウム張り合わせ銅箔を重ね合わ せ、ポリテトラフルオロエチレン製シートで挟んで圧力 を加え、電池を作製した。

【0110】(2)電池の評価

以上のように作製した電池を試料として、実施例1と同 様にして放電を行った。その結果、2.2 V付近に電圧 平坦部が認められ、電池として動作していることが確認 された。さらに、この電池を繰り返し充放電したとこ ろ、10サイクル以上にわたって充放電が可能な二次電 池として動作することが確認された。

【0111】(実施例11)

(1) 電池の作製

実施例1のガルビノキシルラジカルに代えてテトラエチ ルチウラムジスルフィドを使う以外は、実施例Iと同様 の方法で黒色のスラリーを得た。なお、ここで使用する テトラエチルチウラムジスルフィドを80℃に昇温後、 ESRスペクトルを測定したところ、そのスピン濃度は 10²¹スピン/g以上であった。このことから、テトラ エチルチウラムジスルフィドは、80℃でラジカルを生 成することが推定された。

【0112】続いて、得られたスラリー200mgをリ ード線を備えたアルミニウム箔(面積:1.5cm× 10 いても向上させることができる。 1. 5 c m、厚さ: 100 µ m) の表面に滴下し、実施 例1と同様の方法で展開し、乾燥させてアルミニウム箔 上にテトラエチルチウラムジスルフィドを含む電極層を 形成した。次に、テトラエチルチウラムジスルフィドを 含む電極層を形成したアルミニウム箔に、2.0cm× 2.0cmに切り出した実施例1で用いたゲル電解質膜 を積層し、実施例1と同様の方法でリチウム張り合わせ 銅箔を重ね合わせ、ポリテトラフルオロエチレン製シー トで挟んで圧力を加え、電池を作製した。

【0113】(2)電池の評価

以上のように作製した電池を試料として80℃に昇温し た後、実施例1と同様にして放電を行った。その結果、 2. 3 V付近に電圧平坦部が認められ、電池として動作

していることが確認された。さらに、この電池を繰り返 し充放電したところ、10サイクル以上にわたって充放 電が可能な二次電池として動作することが確認された。 [0114]

22

【発明の効果】本発明によれば、少なくとも正極、負 極、電解質を構成要素とし、充電および放電の少なくと も一方の過程で生成したラジカル化合物が安定化される ことにより、電池の充放電時のエネルギー密度や大容量 化が可能となるとともに、その安定性および安全性につ

【図面の簡単な説明】

【図1】本発明の二次電池の一実施形態を示す正面断面 図である。

【図2】本発明の二次電池の一実施形態を示す中央縦断 面図である。

【符号の説明】

- 1 負極層
- 2 正極層
- 3 負極集電体
- 20 4 正極集電体
 - 5 電解質層を含むセパレーター
 - 6 封止材

【図1】

【図2】

フロントページの続き

(72)発明者 森岡 由紀子

東京都港区芝五丁目7番1号 日本電気株

式会社内

中原 謙太郎 (72)発明者

東京都港区芝五丁目7番1号 日本電気株

式会社内

(72)発明者 坂内 裕

東京都港区芝五丁目7番1号 日本電気株

式会社内

Fターム(参考) 5H029 AJ03 AJ12 AK02 AK03 AK15

AK16 AK18 AL06 AL07 AL08

AL12 AL15 AL16 AL18 AM00

AMO2 AMO3 AMO4 AMO5 AMO7

AM16 CJ02 EJ03 EJ11 EJ12

HJ00

5H050 AA08 AA15 BA17 CA05 CA08

CA09 CA19 CA21 CA22 CA25

CA26 CA29 CB07 CB08 CB09

CB12 CB19 CB20 CB29 DA17

DA18 EA26 GA02 GA15 HA00