APRENDIZAJE AUTOMÁTICO CON PYTHON

TERCERA SESIÓN

TOULOUSE LAUTREC

TOULOUSE LAUTREC
EDUCACIÓN CONTINUA

ALEXANDER VALDEZ PORTOCARRERO

CONTENIDO

Introducción al Machine Learning

SESIÓN - 1

Introducción al Machine Learning

- Fundamentos de Machine Learning
- Tipos de Aprendizaje
- Librerías de Python para Machine Learning
- Algoritmos de Regresión
- Evaluación de Modelos de Regresión

Introducción al Machine Learning

SESIÓN - 2

Clasificación

- Algoritmos de Clasificación
- Balanceo de Datos
- Regresión Logística
- Evaluación de Modelos de Clasificación
- Árboles de Decisión

CONTENIDO

Introducción al Machine Learning

SESIÓN - 3

Clustering

- Algoritmos de Agrupación
- Clustering No Jerárquico: Kmeans, PAM, CLARA
- Clustering Jerárquico: AGNES, DIANA
- Clustering Basado en Densidad: DBSCAN

Introducción al Machine Learning

SESIÓN - 4

Reducción de Dimensionalidad

- Análisis de Componentes Principales
- Análisis Factorial
- Selección de Variables

Normas de clase online:

- Habrá un break de 10 min después de la parte teórica y antes de la parte práctica en Google Collaboratory.
- La evaluación se realizará durante la sesión 4 como trabajo final y obtendrás puntos adicionales en función de las tareas resueltas y enviadas al correo del profesor:

TAREAS PRESENTADAS	PUNTOS ADICIONALES
Ninguna	0
1	+2
2	+4
3	+6

ALGORITMOS DE CLASIFICACION

- 1. Regresión Logística
- 2. K-vecino más cercano
- 3. Clasificador Naive Bayes
- 4. Perceptron
- 5. Máquinas de Vectores de Soporte (SVM)
- 6. Árboles de Decisiones

BALANCEO DE DATOS

- ¿Qué son los problemas de clasificación de Clases desequilibradas?
 - Requerimiento de balanceo de datos.

¿Cómo nos afectan los datos desbalanceados?

EVALUACIÓN DE MÉTRICAS Y MATRIZ DE CONFUSIÓN

EJEMPLO: MÉTRICAS Y MATRIZ DE CONFUSIÓN

CASO PRÁCTICO:

- Utilizaremos el dataset <u>Credit Card Fraut Detection de la web de Kaggle</u>.
- El dataset consta de 285.000 filas con 31 columnas (features).
- La información es privada, no sabemos realmente qué significan los features y están nombradas como V1, V2, V3, etc, excepto por las columnas Time y Amount
- Y nuestras clases son 0 y 1 correspondiendo con "transacción Normal" ó "Hubo Fraude". Como podrán imaginar, el set de datos está muy desequi

ESTRATEGIAS PARA EL MANEJO DE DATOS BALANCEADOS

- 1. Ajuste de Parámetros del modelo.
 - a. Penalización para compensar
- 2. Modificar el Dataset.
 - a. Subsampling en la clase mayoritaria
- 3. Muestras artificiales.
 - a. Oversampling de la clase minoritaria

Estrategia: Combinamos resampling con Smote-Tomek

- Balanced Ensemble Methods.
 - a. Ensamble de Modelos con Balanceo

NOTEBOOK DE BALANCEO DE DATOS

NOTEBOOK DE REGRESIÓN LINEAL

NOTEBOOK DE BAYES

NOTEBOOK DE ARBOL DE DECISION

NOTEBOOK DE RANDOM FOREST

NOTEBOOK DE k-NEAREST NEIGHBOR

APRENDIZAJE AUTOMÁTICO CON PYTHON

Gracias por su atencion.