Oscillator

Venkata Tejaswini Anangani*

CONTENTS

For the circuit shown in Fig. 1.1, find the loop gain L(s) = G(s)H(s), $L(j\omega)$, the frequency for zero loop phase, and R_2/R_1 for oscillation.

1. Draw the equivalent control system representation for the circuit in Fig. 1.1 as well as the small signal model.

Solution: See Figs. 1.2 and

Solution: See Fig. 1.2. Oscillators do not include input signal.

2. Find the open loop gain G.

Solution: Let the closed loop gain, open-loop gain of op-amp connected in non-inverting

Fig. 1.2

Fig. 1.3

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

Table ??

$$T_1 = \frac{G_1 (R_1 + R_2)}{(R_1 + R_2) + G_1 R_1}$$
 (2.1)

$$T_1 = \frac{(R_1 + R_2)}{(R_1 + R_2)/G_1 + R_1} \tag{2.2}$$

Assuming $G_1 \to \infty$

$$T_1 = 1 + \frac{R_2}{R_1} \tag{2.3}$$

The open loop gain of the circuit shown in Fig. 1.1 is equal to the closed loop gain of an opamp connected in non-inverting configuration.

$$G = T_1 \tag{2.4}$$

$$\implies G = 1 + \frac{R_2}{R_1} \tag{2.5}$$

3. Find the feedback factor *H*.

Solution: The small signal model is shown in Fig. 3 Applying KCL at node V_f

$$\frac{V_f - 0}{\frac{1}{sC}} + \frac{V_f - V_a}{R} = 0 \tag{3.1}$$

$$V_f\left(sC + \frac{1}{R}\right) = \frac{V_a}{R} \tag{3.2}$$

$$V_a = V_f (sRC + 1) \tag{3.3}$$

Applying KCL at node V_a

$$\frac{V_a - V_f}{R} + \frac{V_a - 0}{R} + \frac{V_a - V_o}{\frac{1}{e^C}} = 0$$
 (3.4)

$$V_a\left(\frac{2}{R} + sC\right) = \frac{V_f}{R} + V_o sC \tag{3.5}$$

Substitute V_a value from equation(3.3)

$$V_f(sRC+1)\left(\frac{2}{R}+sC\right) = \frac{V_f}{R} + V_o sC \qquad (3.6)$$

$$V_f\left(3 + sRC + \frac{1}{sRC}\right) = V_o \tag{3.7}$$

The feedback factor H is given by

$$H = \frac{V_f}{V_o} \tag{3.8}$$

$$\implies H = \frac{1}{\left(3 + sRC + \frac{1}{sRC}\right)} \tag{3.9}$$

4. Find the loop gain L(s).

Solution: The transfer function of the equivalent positive feedback circuit in Fig. 1.2 is

$$T = \frac{G}{1 - GH} \tag{4.1}$$

Therefore, loop gain is given by

$$L = GH \tag{4.2}$$

From equations (2.5) and (3.9)

$$L(s) = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{1}{3 + sRC + \frac{1}{sRC}}\right)$$
(4.3)

$$\implies L(s) = \left(\frac{1 + \frac{R_2}{R_1}}{3 + sRC + \frac{1}{sRC}}\right) \tag{4.4}$$

5. Find the loop gain in terms of $j\omega$.

Solution: Substitute $s = j\omega$ in equation (4.4)

$$L(j\omega) = \left(\frac{1 + \frac{R_2}{R_1}}{3 + j\omega RC + \frac{1}{j\omega RC}}\right)$$
 (5.1)

$$\implies L(j\omega) = \left(\frac{1 + \frac{R_2}{R_1}}{3 + j\left(\omega RC - \frac{1}{\omega RC}\right)}\right) \quad (5.2)$$

6. Find the frequency for zero loop phase.

Solution: The frequency at which loop phase will be zero (i.e. loop gain will be a real number). To obtain the required frequency, equate the imaginary part of the loop gain $L(j\omega)$ to zero.

$$j\left(\omega RC - \frac{1}{\omega RC}\right) = 0 \tag{6.1}$$

$$\omega^2 = \frac{1}{(RC)^2} \tag{6.2}$$

$$\implies \omega = \frac{1}{RC} \tag{6.3}$$

7. Find R_2/R_1 for oscillation.

Solution: For oscillations to start,

- the imaginary part of the loop gain should become zero.
- the loop gain must be at least equal to unity.

From equation (5.2)

$$\left(\frac{1 + \frac{R_2}{R_1}}{3 + j(0)}\right) \ge 1$$
(7.1)

$$1 + \frac{R_2}{R_1} \ge 3 \tag{7.2}$$

$$\implies \frac{R_2}{R_1} \ge 2 \tag{7.3}$$

8. Draw the block diagram and circuit diagram for *H*.

Solution: See figs 8.4 and 8.5 .From Fig.

Fig. 8.4: Feedback block diagram

Fig. 8.5: Feedback circuit

8.5,the analysis is same as problem 3

$$\frac{V_f}{V_o} = \frac{1}{\left(3 + sRC + \frac{1}{sRC}\right)} \tag{8.1}$$

$$\implies H = \frac{1}{\left(3 + sRC + \frac{1}{sRC}\right)} \tag{8.2}$$

9. Find the input and output resistances of the feedback network.

Solution: To find the input resistance R_{11} short the output node V_o to ground.

$$R_{11} = Z||(R + (R||Z))$$
 (9.1)

where $Z = \frac{1}{sC}$ is the impedance of the capacitor.

$$\implies R_{11} = \left(\frac{1}{sC} \| \left(R + R \| \frac{1}{sC} \right) \right) \tag{9.2}$$

To find the output resistance R_{22} short the input node V_f to ground.

$$R_{22} = Z + (R||R) \tag{9.3}$$

$$\implies R_{22} = \frac{1}{sC} + \frac{R}{2} \tag{9.4}$$

10. Draw the block diagram and circuit diagram for *G*.

Solution: See figs 10.6 and 10.7.From Fig.

Fig. 10.6: Open loop block diagram

10.7 using same analysis as problem 2

$$G = \frac{V_o}{V_i} \tag{10.1}$$

$$G = \frac{R_1 + R_2}{R_1} \tag{10.2}$$

$$\implies G = 1 + \frac{R_2}{R_1} \tag{10.3}$$

Hence verified with equation (2.5).

11. Find the amplitude and frequency for some arbitrary values given in Table 11.

Solution: From equation (2.5)

Parameter	Value
R	250Ω
C	1mF
R_2	$2k\Omega$
R_1	$1k\Omega$

TABLE 11

Fig. 10.7: Open loop circuit diagram

$$G = 1 + \frac{R_2}{R_1} = 3 \tag{11.1}$$

From equation (3.9)

$$H = \frac{1}{3 + 0.25s + \frac{1}{0.25s}} \tag{11.2}$$

From equation (4.1)

$$T = \frac{3\left(0.0625s^2 + 0.75s + 1\right)}{0.0625s^2 + 1} \tag{11.3}$$

The following code plots the oscillating response of the system.

codes/ee18btech11047/ee18btech11047.py

Amplitude: From Fig. 11 V(peak-peak) is

$$V_{p-p} = 18.12 \tag{11.4}$$

$$V_{max} = \frac{V_{p-p}}{2} = 9.06 \tag{11.5}$$

Frequency: From equation (6.3)

$$\omega = \frac{1}{RC} = 4rad/sec \tag{11.6}$$

Fig. 11

$$f = \frac{\omega}{2\pi} = 0.636Hz \tag{11.7}$$