CS251: Homework #6

Due on December 3, 2019 at 2:00pm $Steven\ Libby\ Section\ A$

Austen Nelson

Problem 1

The table provides a function that defines an isomorphism between the graphs.

Problem 2

The table provides a 3 coloring of the graph using the colors a, b, and c. The chromatic number cannot be 2 because C_5 is a subgraph.

Problem 3

Graph	Edge List	Adjacency List	Adjacency Matrix			
left	$\begin{bmatrix} 1 \leftrightarrow 2 \\ 1 \leftrightarrow 3 \\ 2 \leftrightarrow 3 \\ 2 \leftrightarrow 4 \\ 3 \leftrightarrow 5 \\ 4 \leftrightarrow 5 \end{bmatrix}$	$\begin{bmatrix} 1 & \to & 2, 3 \\ 2 & \to & 1, 3, 4 \\ 3 & \to & 1, 2, 5 \\ 4 & \to & 2, 5 \\ 5 & \to & 3, 4 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$			
middle	$\begin{bmatrix} 1 \leftrightarrow 2 \\ 1 \leftrightarrow 4 \\ 1 \leftrightarrow 5 \\ 2 \leftrightarrow 3 \\ 2 \leftrightarrow 6 \\ 3 \leftrightarrow 4 \\ 3 \leftrightarrow 7 \\ 4 \leftrightarrow 8 \\ 5 \leftrightarrow 6 \\ 5 \leftrightarrow 8 \\ 6 \leftrightarrow 7 \\ 7 \leftrightarrow 8 \end{bmatrix}$	$\begin{bmatrix} 1 & \to & 2, 4, 5 \\ 2 & \to & 1, 3, 6 \\ 3 & \to & 2, 4, 7 \\ 4 & \to & 1, 3, 8 \\ 5 & \to & 1, 6, 8 \\ 6 & \to & 2, 5, 7 \\ 7 & \to & 3, 6, 8 \\ 8 & \to & 4, 5, 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$			
right	$\begin{bmatrix} 1 \leftrightarrow 3 \\ 1 \leftrightarrow 4 \\ 1 \leftrightarrow 6 \\ 2 \leftrightarrow 4 \\ 2 \leftrightarrow 5 \\ 2 \leftrightarrow 7 \\ 3 \leftrightarrow 5 \\ 3 \leftrightarrow 8 \\ 4 \leftrightarrow 9 \\ 5 \leftrightarrow 10 \\ 6 \leftrightarrow 7 \\ 6 \leftrightarrow 10 \\ 7 \leftrightarrow 8 \\ 8 \leftrightarrow 9 \\ 9 \leftrightarrow 10 \end{bmatrix}$	$\begin{bmatrix} 1 & \to & 3,4,6 \\ 2 & \to & 4,5,7 \\ 3 & \to & 1,5,8 \\ 4 & \to & 1,2,9 \\ 5 & \to & 2,3,10 \\ 6 & \to & 1,7,10 \\ 7 & \to & 2,6,8 \\ 8 & \to & 3,7,9 \\ 9 & \to & 4,8,10 \\ 10 & \to & 5,6,9 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 &$			

Problem 4

	Step 0	Step 1	Step 2	Step 3	Step 4
Operation	Start	$\operatorname{Push}(5)$	Pop	$\operatorname{Push}(3)$	Pop
Heap	4	4	5	3	5
	$ \begin{array}{c cccc} & 7 & 8 \\ \hline & 10 & 9 & 11 \end{array} $	7 5 10 9 11 8	$ \begin{array}{c cccc} & 7 & 8 \\ \hline & 10 & 9 & 11 \end{array} $	7 5 10 9 11 8	7 8 10 9 11
Array	$\begin{bmatrix} 4 \\ 7 \\ 8 \\ 10 \\ 9 \\ 11 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 7 \\ 5 \\ 10 \\ 9 \\ 11 \\ 8 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 7 \\ 8 \\ 10 \\ 9 \\ 11 \end{bmatrix}$	[3] 7 5 10 9 11 8]	$\begin{bmatrix} 5 \\ 7 \\ 8 \\ 10 \\ 9 \\ 11 \end{bmatrix}$