Quantum Computing - QTM

Based off of the QTM proposed by STEFANO GUERRINI, SIMONE MARTINI, AND ANDREA MASINI

Daniella Pombo

Church-Turing Thesis

"Every 'function which would naturally be regarded as computable' can be computed by the universal Turing machine" (D. Deutsch 3).

"Naturally regarded"

= ROOM for interpretation within physics and math

Many outliers within physics = quantum physics

ASSERTION of computability based off classical physics "Finitely realizable physical systems" (D. Deutsch 3) (discrete physics)

NOT for CONTINUOUS physical systems (quantum)

= UTM canNOT model/simulate physical systems in nature

Does not address quantum physics

Church-Turing "Principle":

"Every finitely realizable physical system can be perfectly simulated by a universal model computing machine operating by finite means" (D. Deutsch 3). By stating "Finitely realizable physical system", Dr. Deutsch refers directly to a classical physical object that can be tested, measured and observed.

Qubit

- Orthonormal basis states:
 - \circ $|0\rangle$, $|1\rangle$
- Superposition:

Born Rule:

$$\circ$$
 $\sum |a_i|^2 = 1$

- Entanglement:
 - $_{\circ} |x\rangle \otimes |y\rangle = |xy\rangle$
- Readability, accessibility & measurability

Qubit states:

Orthonormal basis states
Span infinite dimensional Hilbert Space

Qubit:

Prob distribution of possible outputs

Reped: Block Sphere

Linear combo of quantum states

Defined by superposition equation

Outputs in classical bit form

Superposition:

- = is simultaneously in BOTH states
- = Quantum Parallelism

Disjointed computations running @ same time til all reach final result (like NDTM)

= less time

Born Rule:

Indicates taking norm of ai yielding probability

Entanglement

- = do NOT have to physically & operationally measure qubits entangled partner's qubit value
 - = Save Time and operational complexities

Readability:

Collapsing of qubits

- = + operational and time complexities
- = limitation on QTM capabilities and functionalities

QTM M = $(\Sigma, Q, Q \square, Q \square, \delta, q_i, qf)$

- Quantum tape & qubits
- Quantum Computation Functions:

f: superpositions \rightarrow probability distributions of $\mathbb N$

- Final result = limit of QTM computations
- Domain : Complex Hilbert Space
 - Unitary norm and denumerable
- Unitary, reversible, invertible, infinite
- Computations are the limit of classical UTM computations' that reach the final result
 - Quantum Parallelism

QTM:

Finite controller (\sum , and Q finite) Infinite memory Quantum tape

Computations:

Function: mapping of superpositions of N to probability distributions of N

Each func is limit of infinite computation of QTM

Domain is hilbert space w/ unitary norm

Interable, untiray, invertible, infinite

Configurations are Superpositions of classical UTM

Final result: limit of parallel infinite computations of a UTM

Final result

limit of computations of parallel UTM computations that reach the final result

- Advantages:
 - Polynomial Time
 - Quantum tape
 - Superposition
 - Entanglement
 - Quantum parallelism

- Limitations:
 - Evolution operator:
 - No initial & final states
 - "Final result"?
 - Measurability
 - o "Black Box"

How to address Evolution Operator?

Solution!

- Extra Symbols Alphabet!
 - a. "Trap" the configuration in source/target states!
 - i. Transition function rules:
 - If read & write marked symbol → No transitions entering/exiting non-source and non-target states.
 - 2. In final state: if read symbol $\subseteq \Sigma \rightarrow$ write extra symbol & move right
 - 3. In initial state: if read symbol $\subseteq \Sigma$ to left of head \Rightarrow write extra symbol & move left
 - a. If read extra symbol under head → replace with symbol
 ∈ Σ, move right

Extra Symbs

= manipulate initial and final configuration to "TRAP" them into source/target states

Still maintain unitarity

Read marked symb

= No transitions out of a final state when reading a marked symbol

Writing marked symb

= No transition entering initial state

Read/write marked symb

= NO transition entering nor exiting the NON-Source & NON-TARGET states