INSTITUT AGRO RENNES-ANGERS

Détection du mildiou de la pomme de terre par imagerie grâce aux méthodes de Machine Learning

Yasmine BOUCHIBTI
Leslie CIETERS
Meryem GRIMAJ

Sommaire

1 Introduction

1) (2) duction Le jeux de données

4 Modèles de Deep Learning

Limites et perspectives

Modèles de Machine Learning

Conclusion

Introduction

- Alternaria solani (mildiou précoce)
- Phytophthora infestans (mildiou tardif)

Jusqu'à 80% de pertes

Utilisation de produits phytosanitaires

la grande famine 1845-1849

Machine Learning et Deep Learning

Imagerie

Le jeu de données

2152 images réparties en trois classes :

- Mildiou précoce
- Mildiou tardif
- Sain

Le jeu de données

Déséquilibre important des classes

Technique SMOTE pour le suréchantillonnage de la classe minoritaire

• Séparation du jeu de données (80/20) pour l'entraînement et la validation

SVM

Objectifs de la recherche

1

Choix de la méthode

2

Choix des hyperparamètres 3

Résultats

Accuracy: 91.	42% precision	recall	f1-score	support
0 1 2	0.87 0.95 0.95	0.95 0.94 0.57	0.91 0.95 0.71	196 198 37
accuracy macro avg weighted avg	0.93 0.92	0.82	0.91 0.86 0.91	431 431 431

DecisionTreeClassifier

Objectifs de la recherche

1

Choix de la méthode

2

Choix des hyperparamètres 3

Résultats

Decision Tree	Accuracy:	0.73		
	precision	recall	f1-score	support
0	0.73	0.75	0.74	196
1	0.79	0.77	0.78	198
2	0.47	0.46	0.47	37
accuracy			0.73	431
macro avg	0.66	0.66	0.66	431
weighted avg	0.73	0.73	0.73	431

Random Forest

Objectifs de la recherche

1

Choix de la méthode

2

Choix des hyperparamètres 3

--

Résultats

Random Forest	Accuracy:	0.90		
	precision	recall	f1-score	support
0	0.90	0.89	0.90	196
1	0.90	0.96	0.93	198
2	0.92	0.62	0.74	37
accuracy			0.90	431
macro avg	0.91	0.82	0.86	431
weighted avg	0.90	0.90	0.90	431

