Exercise problems, lecture 1

Note. These are just for practice and need not be handed in!

Exercise 1. Using the cellular cochain complex, compute the cohomology groups of spheres $H^*(S^n; A)$ for an arbitrary abelian group A.

Exercise 2. Similarly, compute the cohomology groups of complex projective spaces $H^*(\mathbb{C}P^n;A)$.

Exercise 3 Compute the singular cohomology groups of real projective spaces $H^*(\mathbb{R}P^n; A)$ in the following cases:

- (a) $A = \mathbb{Z}/2$,
- (b) $A = \mathbb{Z}$
- (c) $A = \mathbb{Z}/p$ for an odd prime p.

Using (b), demonstrate that it is *not* the case that $H^*(\mathbb{R}P^n; \mathbb{Z})$ is isomorphic to $\text{Hom}(H_*(\mathbb{R}P^n), \mathbb{Z})$ for all values of n and *. What about the cases (a) and (b)?

Note. The first three exercises are just for practice and need not be handed in!

Exercise 1. For natural numbers m and n, show that

$$\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/m,\mathbb{Z}/n) \cong \mathbb{Z}/\operatorname{gcd}(m,n).$$

Exercise 2. Consider the polynomial ring $R = \mathbb{Z}[x]$. Compute the groups $\operatorname{Ext}_R^n(\mathbb{Z},\mathbb{Z})$, where \mathbb{Z} has the $\mathbb{Z}[x]$ -module structure where x acts by 0.

Exercise 3. Show that for R-modules M_1 , M_2 , and N, there are isomorphisms

$$\operatorname{Ext}_R^n(M_1 \oplus M_2, N) \cong \operatorname{Ext}_R^n(M_1, N) \oplus \operatorname{Ext}_R^n(M_2, N).$$

Similarly, show that

$$\operatorname{Ext}_R^n(M, N_1 \oplus N_2) \cong \operatorname{Ext}_R^n(M, N_1) \oplus \operatorname{Ext}_R^n(M, N_2).$$

Homework problems, to be handed in Feb 21

Exercise 4. (The Mayer-Vietoris sequence.) Consider a topological space X with open subsets $U, V \subseteq X$ such that $U \cup V = X$. Use excision for the pair (X, V) with respect to the subset $W := X \setminus U$ to establish the existence of a long exact sequence (called the Mayer-Vietoris sequence)

$$\cdots \to H^n(X) \xrightarrow{(i_U^*, i_V^*)} H^n(U) \oplus H^n(V) \xrightarrow{j_U^* - j_V^*} H^n(U \cap V) \to H^{n+1}(X) \to \cdots,$$

where $i_U: U \to X$, $i_V: V \to X$, $j_U: U \cap V \to U$, and $j_V: U \cap V \to V$ denote the obvious inclusions. (Hint: you will need the long exact sequences of the two pairs (X, V) and $(U, U \cap V)$. Also note that this exercise uses only the Eilenberg–Steenrod axioms and nothing particular about singular cohomology.)

Exercise 5. Let R be a commutative ring and consider the ring $A = R[x]/(x^2-1)$. We consider R as an A-module where x acts by 1.

(a) Prove that if $R = \mathbb{Z}/2$, then

$$\operatorname{Ext}_A^n(\mathbb{Z}/2,\mathbb{Z}/2) \cong \begin{cases} \mathbb{Z}/2 & \text{if n is even,} \\ 0 & \text{otherwise.} \end{cases}$$

Hint: it might be useful to first prove that $\mathbb{Z}/2[x]/(x^2-1) \cong \mathbb{Z}/2[y]/(y^2)$.

(b) For general R, prove that

$$\operatorname{Ext}\nolimits_A^n(R,R)\cong \begin{cases} R & \text{if } \mathbf{n}=0,\\ \operatorname{tor}\nolimits_2R & \text{if } \mathbf{n} \text{ is odd},\\ R/2 & \text{if } \mathbf{n} \text{ is even and strictly positive}. \end{cases}$$

Hint: in this case it might be useful to first show that $A \cong R[y]/(y(y-2))$.

Note. These exercises are just for practice and need not be handed in!

Exercise 1. Consider the chain complexes

$$C_{\bullet} = (\cdots \to 0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z})$$

and

$$D_{\bullet} = (\cdots \to 0 \to \mathbb{Z} \to 0).$$

There is a unique chain map $f: C_{\bullet} \to D_{\bullet}$ with $f_1 = \mathrm{id}_{\mathbb{Z}}$.

(a) Show that f induces the zero map in homology and a non-trivial map in cohomology

$$f^* \colon H^*(\operatorname{Hom}_{\mathbf{Ab}}(D_{\bullet}, \mathbb{Z})) \to H^*(\operatorname{Hom}_{\mathbf{Ab}}(C_{\bullet}, \mathbb{Z})).$$

(b) Deduce that the splitting of the Algebraic Universal Coefficient Theorem cannot be natural.

Exercise 2. Let $M(\mathbb{Z}/p, n)$ be the mod p Moore space, defined by attaching an n+1-cell to S^n along an attaching map $S^n \to S^n$ of degree p.

- (a) Show that the reduced homology of $M(\mathbb{Z}/p, n)$ with integer coefficients is \mathbb{Z}/p in degree n and nothing else. What is its cohomology with integer coefficients?
- (b) Show that the quotient map $M(\mathbb{Z}/p,n) \to M(\mathbb{Z}/p,n)/S^n \cong S^{n+1}$ induces the trivial map on reduced homology, but a nontrivial map in reduced cohomology.
- (c) Show that the inclusion $S^n \to M(\mathbb{Z}/p, n)$ of the bottom cell induces the trivial map on reduced cohomology, but a nontrivial map in reduced homology.
- (d) Explain why (b) and (c) show that the splitting of the Universal Coefficient Theorem cannot be natural.

Exercise 3. The notation Ext_R^n stands for *extension*. In this exercise we will see what these groups have to do with extensions of modules, explaining the origin of this terminology. Consider a commutative ring R and R-modules M, N. An *extension of* M *by* N is a short exact sequence of R-modules

$$0 \to N \xrightarrow{i} E \xrightarrow{p} M \to 0.$$

We say that such an extension (E, i, p) is equivalent to another extension (E', i', p') if there exists an isomorphism $\varphi : E \to E'$ with $\varphi i = i'$ and $p'\varphi = p$.

(a) Let

$$\cdots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} M \to 0$$

be a free resolution of M. If $f: F_1 \to N$ is an R-module map, consider the sequence E(f) given by

$$0 \to N \xrightarrow{i} (N \oplus F_0)/V \xrightarrow{p} M \to 0,$$

- where V is the submodule of elements $(f(x), -\partial_1 x)$ with $x \in F_1$. The maps i and p are defined by i(n) = [(n,0)] and $p([x,y]) = \partial_0 y$. Check that p is well-defined and that the sequence is exact if and only if $f\partial_2 = 0$.
- (b) Let $f: F_1 \to N$ and $g: F_0 \to N$ be R-module maps with $f\partial_2 = 0$. Show that the extensions E(f) and $E(f+g\partial_1)$ are equivalent.
- (c) By (a) and (b), the assignment $f \mapsto E(f)$ gives a well-defined map from $\operatorname{Ext}^1_R(M,N)$ to the set of equivalence classes of extensions of M by N. Show that this map is a bijection.
- (d) Recall that $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/3,\mathbb{Z}/3) \cong \mathbb{Z}/3$. Explicitly describe an extension corresponding to each of its elements.

Note. The first three exercises are just for practice and need not be handed in!

Exercise 1. Consider pointed spaces X and Y and their wedge $X \vee Y$. Suppose $\alpha \in H^k(X;R)$ and $\beta \in H^l(Y;R)$ with k,l>0. Regard $H^*(X;R)$ and $H^*(Y;R)$ as subrings of $H^*(X \vee Y;R)$ via the collapse maps $X \vee Y \to X$ and $X \vee Y \to Y$. Prove that $\alpha \cup \beta = 0$ in $H^*(X \vee Y;R)$. (Hint: use naturality of the cup product.)

Exercise 2. Use the cohomology ring of $\mathbb{R}P^n$ to show that for $n \geq 2$ this space is not homotopy equivalent to $\mathbb{R}P^{n-1} \vee S^n$. Deduce from this that the attaching map $S^{n-1} \to \mathbb{R}P^{n-1}$ of the top-dimensional cell is not nullhomotopic. (You may use without proof that homotopic attaching maps give homotopy equivalent spaces.)

Exercise 3. Pick a generator $z \in H^{4n}(\mathbb{C}P^{2n}) \cong \mathbb{Z}$. Show that there can be no 'orientation-reversing' maps $f: \mathbb{C}P^{2n} \to \mathbb{C}P^{2n}$, i.e., maps satisfying $f^*z = -z$. What about $\mathbb{C}P^n$ for n odd? (Hint: first consider the case n = 1 and use the ring homomorphism $H^*(\mathbb{C}P^n) \to H^*(\mathbb{C}P^1)$ induced by the inclusion $\mathbb{C}P^1 \to \mathbb{C}P^n$.)

Homework problems, to be handed in Mar 7

Exercise 4. Consider a space X and its suspension SX. Let R be a commutative ring.

(a) Show that for any two classes $x \in H^k(SX;R)$ and $y \in H^l(SX;R)$ with k,l>0, the cup product $x \cup y$ is zero. Hint: write SX as the union of two cones C_+X and C_-X and consider the relative cup product

$$H^{k}(SX, C_{+}X; R) \times H^{l}(SX, C_{-}X; R) \to H^{k+l}(SX, C_{+}X \cup C_{-}X; R).$$

(b) More generally, show that if Y is a space which can be covered by n contractible open sets U_1, \ldots, U_n , then any n-fold cup product $x_1 \cup \cdots \cup x_n$ of elements of positive degree in $H^*(Y; R)$ is zero.

Exercise 5. The goal of this exercise is to compute the cohomology ring of Σ_g , an orientable surface of genus g. Note that the torus T is precisely Σ_1 .

- (a) Prove that $H^0(\Sigma_q) \cong H^2(\Sigma_q) \cong \mathbb{Z}$, whereas $H^1(\Sigma_q) \cong \mathbb{Z}^{2g}$.
- (b) Construct a quotient map $f: \Sigma_g \to \bigvee_g \Sigma_1$ to a wedge of g tori such that

$$f^*: H^1(\bigvee_g \Sigma_1) \cong \bigoplus_g H^1(\Sigma_1) \to H^1(\Sigma_g)$$

is an isomorphism.

Fix generators $\alpha, \beta \in H^1(\Sigma_1) \cong \mathbb{Z}^2$ and write $\alpha_i, \beta_i \in H^1(\Sigma_g)$ for the elements corresponding under f^* to α and β in the *i*th summand of $\bigoplus_g H^1(\Sigma_1)$. Write σ for a generator of $H^2(\Sigma_g)$.

(c) Show that (up to sign) the product structure of $H^*(\Sigma_g)$ is described by

$$\alpha_i \alpha_j = 0,
\beta_i \beta_j = 0,
\alpha_i \beta_j = \delta_{ij} \sigma.$$

Here δ_{ij} is the Kronecker delta, taking the value 1 if i=j and 0 if $i\neq j$. The signs you get will of course depend on your precise choice of generators α_i, β_i , and σ .

Lennart Meier

March 8, 2019

Exercise 1. Prove the Yoneda lemma.

Exercise 2. For two pointed spaces (X, x_0) and (Y, y_0) define their *smash* product $X \wedge Y$ as $X \times Y / (X \times \{y_0\} \cup \{x_0\} \times Y)$.

- (a) Show that $S^1 \wedge X \cong \Sigma X$.
- (b) Show that two pointed maps $f_0, f_1 \colon X \to Y$ are pointedly homotopic iff there is a pointed map $X \land I_+ \to Y$ that restricts on $X \times \{i\}$ to f_i for i = 0, 1, where I_+ denotes the interval with one disjoint base point adjoint.

Exercise 3. Construct a cohomology operation $H^n(-;\mathbb{Z}/2) \to H^{n+1}(-;\mathbb{Z})$ by contemplating the short exact sequence

$$0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$

and the fact that short exact sequences of chain complexes define long exact sequence of cohomology groups. Compute this operation for \mathbb{RP}^2 in the case n=1. (This is called a *Bockstein operation*.)

Exercise 4. This exercise is about basic properties of closed cofibrations.¹

- (a) Let $i: A \to B$ and $j: B \to C$ be closed cofibrations. Show that ji is also a closed cofibration.
- (b) Let $i: A \to X$ be a closed cofibrations and $f: A \to Y$ be arbitrary. Show that the induced map $Y \to Y \cup_A X$ to the pushout is a closed cofibration as well.

Exercise 5. Show that every manifold is well-pointed² for every choice of basepoint. (One way to do this is first to show that there is a retraction of $D^n \times I$ to $D^n \times \{0\} \cup \{0\} \times I$ that is on $S^{n-1} \times I$ just the projection onto the first coordinate; for this contemplate first the one-dimensional situation.)

¹These are inclusions of closed subspaces with the homotopy extension property.

²This means that the inclusion of the base point is a closed cofibration.

Lennart Meier

March 15, 2019

Exercise 1. Go through the proof of Theorem 1.11 to show that for two reduced cohomology theories \tilde{h} and \tilde{k} a natural transformation φ between them (i.e. a collection of natural transformations $\varphi_n \colon \tilde{h}^n \to \tilde{k}^n$ that are compatible with the suspension isomorphisms) is a natural isomorphism if and only if $\varphi_n(S^0)$ is an isomorphism for all n.

Exercise 2 (Homework). Show that for a pointed map $f: A \to X$, the inclusion $i: X \hookrightarrow Cf$ is a based cofibration in the following sense: Let $h: X \times I \to Y$ be a *pointed* homotopy (i.e. $h(\{x_0\} \times I) = \{y_0\}$ if $x_0 \in X$ and $y_0 \in Y$ are the basepoints) and $f: Cf \times \{0\} \to Y$ be another pointed map agreeing with h on the overlap. Then there exists a pointed map $H: Cf \times I \to Y$ extending h and f.

Exercise 3. Show that if *X* is compact and *Y* a metric space, then the compact-open topology on Map(X, Y) coincides with that induces by the metric $d(f,g) = \sup_{x \in X} d(f(x),g(x))$.

Exercise 4. Let X and Y be locally compact and Z be arbitrary. Then there is a homeomorphism between Map(X, Map(Y, Z)) and $Map(X \times Y, Z)$.

- **Exercise 5** (Homework). (a) Let $f: X \to Y$ be a continuous map and Z be a space. Show that the induced map $f^*: \operatorname{Map}(Y, Z) \to \operatorname{Map}(X, Z)$ is continuous. Repeat this with the pointed mapping spaces for pointed spaces and maps.
 - (b) Conclude that the multiplication map $\Omega Z \times \Omega Z \to \Omega Z$ is continuous. Similarly show that the "inverse of loop" map $\Omega Z \to \Omega Z$ is continuous as well.
 - (c) If X is an H-space, the usual product on $\pi_n(X)$ (for $n \ge 1$) agrees with that induced by X and this is abelian, even for n = 1.

Lennart Meier

March 18, 2019

Let $p: E \to B$ be a Serre fibration and $b_0 \in B$ a base point. Set $F = p^{-1}(b_0)$ with inclusion map $i: F \to E$ and let $f_0 \in F$ be a base point. We will show today that there is a long exact sequence

$$\cdots \to \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \to \pi_{n-1}(F, f_0) \xrightarrow{i_*} \pi_{n-1}(E, f_0) \xrightarrow{p_*} \cdots$$

Exercise 1. Show that there are fiber bundles $S^n \to \mathbb{RP}^n$ and $S^{2n+1} \to \mathbb{CP}^n$ for $1 \le n \le \infty$, either by use of the Ehresman fibration theorem or by explicit trivialializing neighborhoods.

Exercise 2. Let $p: E \to B$ be a covering space, i.e. a fiber bundle with discrete fibers. Show that $p_*: \pi_k(E, x) \to \pi_k(B, p(x))$ is an isomorphism for $k \ge 2$.

Exercise 3. (a) Show that \mathbb{CP}^{∞} is a $K(\mathbb{Z}, 2)$.

- (b) Show that $\pi_2(S^2) \cong \mathbb{Z}$.
- (c) Show that $\pi_n(S^2) \cong \pi_n(S^3)$ for $n \geq 3$.

Lennart Meier

March 27, 2019

Below you are already allowed to use the main result of this lecture, namely that the morphism

$$[X,Y]^{\bullet} \to \widetilde{H}^n(X;Z), \qquad f \mapsto f^* \iota_n$$

is an isomorphism for X a CW-complex, Y a $K(\mathbb{Z}, n)$ and ι_n a generator of $\widetilde{H}^n(K(\mathbb{Z}, n); \mathbb{Z}) \cong \mathbb{Z}$.

Exercise 1. Show the existence of a map $\mathbb{RP}^{\infty} \to \mathbb{CP}^{\infty} = K(\mathbb{Z}, 2)$, which induces the trivial map on $\widetilde{H}_*(-;\mathbb{Z})$, but a non-trivial map on $\widetilde{H}^*(-;\mathbb{Z})$. How is this compatible with the universal coefficient sequence?

- **Exercise 2.** (a) Let *Y* be a path-connected H-group and *X* be an arbitrary pointed space. Show that the map $[X,Y]^{\bullet} \rightarrow [X,Y]$ is a bijection.
 - (b) Let X be a CW-complex and Y be a K(A, n) for an abelian group A. Deduce that [X, Y] is naturally isomorphic to $H^n(X; A)$.

Exercise 3 (Homework). Let *X* be an *n*-dimensional CW-complex. Show that $H^n(X; \mathbb{Z}) \cong [X, S^n]$ for $n \geq 1$.

Exercise 4 (Homework). Let $p: E \to B$ be a Serre fibration. Denote for $b \in B$ by F_b the fiber $p^{-1}(b)$.

(a) Define for every path γ : $e_0 \rightsquigarrow e_1$ in E a natural map

$$\pi_n(F_{p(e_0)}, e_0) \to \pi_n(F_{p(e_1)}, e_1).$$

Show how this behaves with respect to composition of paths.

- (b) Assume that B is path connected and that the fibers F_{b_0} and F_{b_1} are path-connected for $b_0, b_1 \in B$. Then the homotopy groups of F_{b_0} and F_{b_1} are isomorphic.
- (c) Choose $b_0 \in B$ and specialize to $E = W(\{b_0\} \hookrightarrow E)$ so that $F_{b_0} = \Omega B$. Show that this gives rise to an action of $\pi_1(B, b_0)$ on $\pi_n(B, b_0)$. Identify this action for n = 1.

Exercise 1. Consider the topological group U(n) of n by n unitary matrices. It acts on the unit sphere $S^{2n-1} \subseteq \mathbb{C}^n$. Pick the basepoint $(1,0,\ldots,0) =: x_0 \in S^{2n-1}$ and define a map $U(n) \to S^{2n-1}$ by sending A to $A \cdot x_0$. You may use without proof that this is a fibration (even a fiber bundle) with fiber U(n-1):

$$U(n-1) \to U(n) \to S^{2n-1}$$
.

Use the Serre spectral sequence and induction on n to prove that the cohomology ring of U(n) is an exterior algebra on generators in odd degrees up to 2n-1:

$$H^*U(n) \cong \Lambda[x_1, x_3, \dots, x_{2n-1}], \qquad |x_{2i-1}| = 2i - 1.$$

Homework problem, to be handed in Apr 25

Exercise 2. Imitating the computation of $H^*(\Omega S^3)$ from last week's lecture, show the following:

- (a) For $n \geq 1$, the cohomology ring $H^*(\Omega S^{2n+1})$ is isomorphic to $\Gamma[x]$, the divided power algebra on a generator x of degree 2n.
- (b) For $n \geq 1$, the cohomology ring of ΩS^{2n} is described by

$$H^*(\Omega S^{2n}) \cong \Gamma[y] \otimes \mathbb{Z}[x]/(x^2),$$

where x is a generator of $H^{2n-1}(\Omega S^{2n}) \cong \mathbb{Z}$ and y is a generator of $H^{4n-2}(\Omega S^{2n}) \cong \mathbb{Z}$.

Note. These exercises are just for practice and need not be handed in!

 $\mathbf{Exercise}$ 1. Use the cohomological Serre spectral sequence associated with the path space fibration

$$K(\mathbb{Q}, n-1) \to PK(\mathbb{Q}, n) \to K(\mathbb{Q}, n)$$

and induction on n to compute the cohomology ring $H^*(K(\mathbb{Q}, n); \mathbb{Q})$. As the base of your induction you may use that

$$H^*(K(\mathbb{Q},1);\mathbb{Q}) \cong H^*(S^1;\mathbb{Q}) \cong \mathbb{Q}[x_1]/(x_1^2).$$

You should find that for odd n,

$$H^*(K(\mathbb{Q}, n); \mathbb{Q}) \cong \mathbb{Q}[x_n]/(x_n^2),$$

whereas for even n

$$H^*(K(\mathbb{Q}, n); \mathbb{Q}) \cong \mathbb{Q}[x_n].$$

In both cases x_n denotes a class of degree n.

Exercise 2. Using the path space fibration

$$K(\mathbb{Z},2) \to PK(\mathbb{Z},3) \to K(\mathbb{Z},3)$$

and the fact that $\mathbb{C}P^{\infty} \simeq K(\mathbb{Z},2)$, compute as much of the cohomology of $K(\mathbb{Z},3)$ as you can. First do this with \mathbb{Q} coefficients (in which case you should be able to find a complete answer as in the previous exercise), then try it with coefficients \mathbb{Z} (see if you can make it to H^8 at least) and \mathbb{Z}/p for a prime p. We will return to this calculation later; it plays in important role in the calculation of the homotopy groups of S^3 .

Exercise 1. Here is an alternative way to compute $\pi_4 S^3$. Start with the fibration sequence

$$S^3\langle 3\rangle \to S^3 \to K(\mathbb{Z},3).$$

You computed part of the homology of $K(\mathbb{Z},3)$ last week. The resulting groups $H_n(K(\mathbb{Z},3))$ should look as follows:

Now apply the homological Serre spectral sequence to the fibration sequence above to prove

$$H_4(S^3\langle 3\rangle) \cong H_5(K(\mathbb{Z},3)) \cong \mathbb{Z}/2.$$

Homework problem, to be handed in May 9

Exercise 2. Use the Serre spectral sequence and the fact that $K(\mathbb{Z}/2,1) \cong \mathbb{R}P^{\infty}$ to compute the cohomology ring $H^*(K(\mathbb{Z}/2,2);\mathbb{Z}/2)$ up to degree 6. Note that the coefficients for cohomology are $\mathbb{Z}/2$. Your answer should list not only the groups but include the cup product structure! Below is a description of the answer to guide your calculation, where n is the degree and the bottom row lists generators of copies of $\mathbb{Z}/2$.

Lennart Meier

May 9, 2019

Exercise 1. Compute $\mathbb{Z}/k \otimes \mathbb{Z}/m$ and $\text{Tor}(\mathbb{Z}/k,\mathbb{Z}/m)$ for all natural numbers k, m.

Exercise 2 (Homework). In Theorem 11.6 we proved that $\pi_n X \cong H_n X$ for any (n-1)-connected space and $n \geq 2$. On the other hand, we claimed in the previous statement Theorem 8.7 that a *specific* homomorphism (called the *Hurewicz map* h_X) between these groups is an isomorphism. We will rectify the situation by the technique of *universal example*.

- 1. Show without recourse to a Hurewicz theorem that $h_{S^n} : \pi_n S^n \to H_n S^n$ is a surjection.
- 2. Convince yourself that the proof of Theorem 11.6 provides a *natural* isomorphism $g_X \colon \pi_n X \cong H_n X$ on the category of (n-1)-connected pointed topological spaces. (You are allowed to use without proof that the Serre spectral sequence is natural in a suitable sense.)
- 3. Show that h_{S^n} and g_{S^n} agree up to sign and deduce the analogous statement for h_X and g_X for every (n-1)-connected space X. Deduce the statement of Theorem 8.7 from Theorem 11.6.

Exercise 3 (Homework). Let $n \ge 2$ and X be the space obtain from S^n by attaching an (n+1)-cell along a degree-k map $S^n \to S^n$ for a nonzero integer k. Compute $\pi_*X \otimes \mathbb{Q}$.

Lennart Meier

May 16, 2019

Exercise 1. Compute the group homology of $\mathbb{Z}/2 \times \mathbb{Z}/2$.

Exercise 2. Let \mathcal{C} be a Serre class. Recall that a morphism f is an isomorphism mod \mathcal{C} if its kernel and cokernel are in \mathcal{C} . Show that the composition of two isomorphisms mod \mathcal{C} is again an isomorphism mod \mathcal{C} .

Exercise 3. If you know covering space theory, fill in the details of the proof that $H_n(G) \cong H_n(K(G,1))$.

Exercise 4. Let $E \to B$ a fibration with fiber F such that all the spaces are path-connected and $\pi_1 B$ acts trivially on the homology of F (e.g. if B is simply-connected). Then if $H_*(E)$ and $H_*(B)$ are in $\mathcal C$ for all *>0, then so $H_*(F)$.