Technical University of Denmark

Written examination, date: 10. December 2013 Page 1 of 16 pages Enclosure: 17 pages Course number: 02409

Course name: Multivariate Statistics

Aids allowed: All Exam duration: 4 hours

Weighting: The questions are given equal weight

This exam is answered by:		
(name)	(signature)	(study no.)

There is a total of 30 questions for the 6 problems. The answers to the 30 questions must be written into the table below.

Problem	1	1	1	1	1	2	2	2	2	2
Question	1.1	1.2	1.3	1.4	1.5	2.1	2.2	2.3	2.4	2.5
Answer										
D 11	2	2	2	2	2	4	4	4	4	4
Problem	3	3	3	3	3	4	4	4	4	4
Question	3.1	3.2	3.3	3.4	3.5	4.1	4.2	4.3	4.4	4.5
Answer										
		1								
Problem	5	5	5	5	6	6	6	6	6	6
Question	5.1	5.2	5.3	5.4	6.1	6.2	6.3	6.4	6.5	6.6
Answer										

The possible answers for each question are numbered from 1 to 6. If you enter a wrong number, you may correct it by crossing the wrong number in the table and writing the correct answer immediately below. If there is any doubt about the meaning of a correction then the question will be considered not answered.

Only the front page must be returned. The front page must be returned even if you do not answer any of the questions or if you leave the exam prematurely. Drafts and/or comments are not considered, only the numbers entered above are registered.

A correct answer gives 5 points, a wrong answer gives – 1 point. Unanswered questions or a 6 (corresponding to "don't know") give 0 points. The total number of points needed for a satisfactorily answered exam is determined at the final evaluation of the exam. Especially note that the grade 10 may be given even if only one answer is wrong or unanswered.

Remember to write your name, signature, and study number on the front page.

Please note, that there is one and only one correct answer to each question. Furthermore, some of the possible alternative answers may not make sense. When the text refers to SAS-output the values may be rounded to fewer decimal places than in the output itself. The enclosures do not necessarily contain all the output generated by the given SAS programs. Please check that all pages of the exam paper and the enclosures are present.

Problem 1

Enclosure A with SAS program and SAS output belongs to this problem. The measurements are estimated correlations between 109 observed values of sulphur dioxide (SO_2) at 7 measurement stations in Southern Zealand with code names: ager, holt, gerd, hosk, kokk, veds, and nyru. The measurement stations are placed on a line parallel to the dominating wind direction and going through a power plant emitting large amounts of sulphur dioxide. The distance between the two stations furthest apart (ager and nyru) is 20 kms. The situation is depicted below.

We are interested in analyzing the correlation structure between the measurements at the different sites.

Question 1.1.

We call the estimated eigenvalues of the correlation matrix $\hat{\lambda}_1 \ge \cdots \ge \hat{\lambda}_7$. The arithmetic and the geometric average of the smallest 6 eigenvalues are respectively

$$\frac{1}{6}\sum_{i=2}^{7}\hat{\lambda}_i = 0.22461$$

$$\left\{\prod_{i=2}^{7} \hat{\lambda}_i\right\}^{\frac{1}{6}} = 0.10749$$

The usual test statistic for testing the hypothesis that the smallest 6 eigenvalues are equal against all alternatives is

- $1 \ \Box \ \frac{(0.22461 0.10749)^2}{0.10749}$
- $2 \ \Box \ \left[\frac{5.65231}{0.22461}\right]^2$
- $3 \Box -109 \times 6 \times \{\ln (0.10749) \ln (0.22461)\}$
- 4 \Box -109 × {ln (0.10749) ln (0.22461)}
- $5 \ \Box \ \left[\frac{0.22461}{0.10749} \right]^{109}$
- 6 □ Don't know

Question 1.2.

The degrees of freedom in the test statistic considered above is:

- 1 🗆 10
- 2 🗆 20
- 3 🗆 30
- 4 🗆 40
- 5 🗆 50
- 6 □ Don't know.

Question 1.3.

We now consider a factor analysis with two factors of the data considered above. Consider the following statements on interpretation of an arbitrary factor

- A. The factor basically represents the mean level of all stations.
- B. The factor basically represents the mean level of all stations east of the power plant.
- C. The factor basically represents a contrast between the measurements west and east of the power plant.
- D. The factor basically represents the mean level of all stations except the one closest to the power plant.
- E. The factor basically represents the mean level at the station closest to the power plant.

For (VARIMAX rotated factor 1 VARIMAX rotated factors 2) the following character
--

1	(E, B)
2	(D, C)
3	(A, C)
4	(D, C)
5	(D, E)
6	Don't know.

Question 1.4.

What fraction of the total variance will be explained by the two VARIMAX rotated factors?

1	Ш	0.9044
2		0.9053
3		0.9044^2
4		$(4.9643^2 + 1.3730^2)/7$
5		$0.8075^2 + 0.0979^2$
6		Don't know.

Question 1.5.

What fraction of the variation at the station closest to the power plant (holt) is explained by the first VARIMAX rotated factor?

- $1 \square 1 0.96125$
- 2 🗆 0.9970
- $3 \square 0.9970^2$
- $4 \square 0.27020^{2}$
- $5 \square 0.6851^2$
- 6 □ Don't know.

Problem 2

We consider a random variable

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

with mean value and dispersion matrix respectively equal to

$$\mu = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\Sigma = \begin{bmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{bmatrix}$.

Furthermore we consider the random variables

$$U = X + Y + Z$$

$$V = 2X - Y - Z$$

Question 2.1.

The mean value of the two-dimensional random variable $\begin{bmatrix} U \\ V \end{bmatrix}$ is

- $1 \square \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- $2 \square \begin{bmatrix} 3 \\ 0 \end{bmatrix}$
- $3 \square \begin{bmatrix} 1 \\ 3 \end{bmatrix}$
- $4 \square \begin{bmatrix} 0 \\ 3 \end{bmatrix}$
- $\Box \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
- 6 □ Don't know

Question 2.2.

The variance of U is:

- 1 🗆 3
- 2 \Box 3 + 3 ρ
- 3 □ 6
- $4 \square 6\rho^2$
- 5 \Box 3 + 6 ρ
- 6 □ Don't know.

Question 2.3.

The variance of V is:

- 1 \Box 3 + 6 ρ
- $2 \square 2\rho^2$
- $3 \square 6\rho$
- $4 \Box 6-6\rho$
- $5 \square 3 + 3\rho$
- 6 □ Don't know.

Question 2.4.

The covariance between U and V is:

- 1 🗆 1
- 2 🗆 0
- 3 🗆 -1
- 4 □ ρ
- 5 □ −*ρ*
- 6 □ Don't know.

Question 2.5.

The conditional mean $E\left(\begin{bmatrix}X\\Y\end{bmatrix}\Big|Z=z\right)$ is equal to:

- 1 \Box 1 + $\rho(z-1)$
- $2 \square \begin{bmatrix} 1 + \rho(z-1) \\ 1 + \rho(z-1) \end{bmatrix}$
- $3 \square \begin{bmatrix} \rho(z-1) \\ \rho(z-1) \end{bmatrix}$
- $4 \square \begin{bmatrix} 0 \\ 3 \end{bmatrix}$
- $5 \Box 3 + (1 + 2\rho)z$
- 6 □ Don't know.

Problem 3

Enclosure B belongs to this problem. The data are color measurements of different meat samples including raw meat from cattle, pork, and turkey, and processed meat as sausages, coocked ham, forcemeat etc. Color parameters have been assessed by means of a Minolta CR-300 colorimeter (M1) and a VideometerLab multispectral imaging device (M2). The color components measured are based on the definition of the CIELAB space – the lightness L* varying from black (zero) to white (100), a* varying from green (negative values) to red (positive values), and b* varying from yellow (positive values) to blue (negative values). In the sequel we omit the asterisk (*). The L, a, b measurements obtained using the two methods are called LMi, aMi, and bMi, i=1, 2.We are now interested in comparing the results obtained by using the two different instruments. Understanding the nature of these measurements is not crucial for solving the present problem.

Question 3.1.

At first we consider how well bM1 is predicted from bM2.

Below (,) corresponds to an open ended interval, [,] to a closed interval The fraction of the variation in bM1 that is explained by bM2 lies in the interval:

- 1 [0, 0.2]
- 3 \(\text{(0.4, 0.6)} \)
- 4 \(\begin{align*} \text{(0.6, 0.8)} \end{align*}
- 5 🗆 (0.8, 1]
- 6 □ Don't know.

Question 3.2.

The test statistic for testing whether the correlation between bM1 and bM2 is equal to 0 is:

- $1 \ \Box \ \frac{0.4876}{\sqrt{1 0.4876^2}}$
- $2 \Box \frac{0.4876}{0.9953 + 0.8824}$
- $3 \ \square \ \frac{0.4876^2}{1-0.4876^2}$
- $4 \ \square \ \frac{0.4876^2}{0.9953^2 + 0.8824^2}$
- $5 \Box \frac{0.4876}{\sqrt{1-0.4876^2}}\sqrt{58}$
- 6 □ Don't know.

Question 3.3.

Under the null hypothesis the test statistic related to the test described in Question 3.2 is distributed as:

- $1 \square t(58)$
- 2 \Box t(59)
- $3 \square F(1,59)$
- 4 \Box F(2,58)
- $5 \square \chi^{2}(59)$
- 6 □ Don't know.

Question 3.4.

The canonical variables for the L, a, b values obtained by the two methods M1 and M2 have very similar structures. Which of the following statements describes the structure of canonical variable number 1 best:

1 🗆	The variable is basically equal to a.
2 🗆	The variable is basically a contrast between the a and the b values.
3 🗆	The variable is basically a contrast between the L and the a value.
4 🗆	The variable is basically a contrast between the L and the b values.
5 🗆	The variable is basically the overall average of the L, a, b values
6 🗆	Don't know.

Question 3.5.

The largest correlation between the b-value measured by method M2 (bM2) and the canonical variables based on method M1 lies in the interval:

1	[0, 0.2]
2	(0.2, 0.4]
3	(0.4, 0.6]
4	(0.6, 0.8]
5	(0.8, 1]
6	Don't know.

Problem 4

Enclosure C belongs to this problem. The data are measurements on the relation between the level of prostate-specific antigen and a number of clinical measures. The 97 males investigated were operated for prostate cancer. The data were originally published in Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E. and Yang, N (1989): Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate II. Radical prostatectomy treated patients, Journal of Urology 16: 1076–1083.

The variables are:

- Lcavol = logarithm of cancer volume
- Lweight = logarithm of prostate weight
- age in years
- lbph = logarithm of the amount of benign prostatic hyperplasia
- svi = seminal vesicle invasion
- Lcp = logarithm of capsular penetration
- gleason = a numeric vector
- pgg45 = percent of Gleason score 4 or 5
- lpsa = response, the logarithm of the level of prostate-specific antigen (PSA)

As mentioned, we are now interested in predicting the logarithm of the level of prostate-specific antigen (PSA) that is elevated in men with prostate cancer. We first run a regression analysis with the 8 clinical variables as independent variables

Question 4.1.

The 95% confidence interval for the expected value of the first observation is:

- 1 \square [0.8229 $t(96)_{0.975} \times 0.1991$, 0.8229 + $t(96)_{0.975} \times 0.1991$]
- 2 \square [0.8229 $t(88)_{0.975} \times \sqrt{0.48930}$, 0.8229 + $t(88)_{0.975} \times \sqrt{0.48930}$]
- 3 \square [-0.4308 $t(88)_{0.975} \times 0.1991$, -0.4308 + $t(88)_{0.975} \times 0.1991$]
- 4 \square [0.8229 $t(88)_{0.975} \times 0.1991$, 0.8229 + $t(88)_{0.975} \times 0.1991$]
- $5 \square [-0.4308 1.96 \times 0.1991, -0.4308 + 1.96 \times 0.1991]$
- 6 □ Don't know.

Ouestion 4.2.

The 95% prediction interval for the first observation is:

- 1 \square [0.8229 $t(88)_{0.975} \times \sqrt{0.48930}$, 0.8229 + $t(88)_{0.975} \times \sqrt{0.48930}$]
- $2 \ \square \ \left[0.8229 t(88)_{0.975} \times \sqrt{0.1991^2 + 0.48930}, \ 0.8229 + t(88)_{0.975} \times \sqrt{0.1991^2 + 0.48930} \ \right]$
- 3 \square [0.8229 $t(88)_{0.975} \times (1 + 0.1991)$, 0.8229 + $t(88)_{0.975} \times (1 + 0.1991)$]
- 4 \Box $\left[-0.4308 t(88)_{0.975} \times \sqrt{0.1991^2 + 0.48930}, -0.4308 + t(88)_{0.975} \times \sqrt{0.1991^2 + 0.48930}\right]$
- 5 \square $[0.8229 t(88)_{0.975} \times \sqrt{1 + 0.1991}, 0.8229 + t(88)_{0.975} \times \sqrt{1 + 0.1991}]$
- 6 □ Don't know.

On	estion	4.3
VΨ	CSUUII	T.J.

substantial change in its predicted value is number:
1 □ 47
2 □ 38
3 🗆 39
4 🗆 69
5 🗆 95
6 □ Don't know.
Question 4.4. The number of observations that have as well an extreme RStudent residual as an extreme (i.e. large) leverage is:
1 □ 0
2 □ 2
3 🗆 4
4 □ 6
5 □ 8
6 □ Don't know.
Question 4.5. We now consider the stepwise selection of variables. In steps one and two the variables leavol and lweight were included. The next variable to be included is:
1 □ age
2 □ lbph
3 □ svi
4 □ gleason
5 □ pgg45
6 □ Don't know.

We now remove the observations one at a time. The observation that - when removed- will cause the most

The problem continues on the next page

Problem 5

We consider the model

$$\begin{bmatrix} Y_1 & Z_1 \\ Y_2 & Z_2 \\ Y_3 & Z_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} + \begin{bmatrix} \varepsilon_1 & \varphi_1 \\ \varepsilon_2 & \varphi_2 \\ \varepsilon_3 & \varphi_3 \end{bmatrix}$$

where the error terms $\begin{bmatrix} \varepsilon_i \\ \varphi_i \end{bmatrix}$, i = 1,2,3, are independent and normally distributed $N_2(\mathbf{0}, \mathbf{\Sigma})$, where $\mathbf{\Sigma}$ is the unknown dispersion matrix. We assume that we obtained the following observations

$$\begin{bmatrix} 2 & 2 \\ 1 & 3 \\ 3 & 1 \end{bmatrix}$$

Question 5.1.

The maximum likehood estimator for $\left[egin{matrix} lpha & \gamma \\ eta & \delta \end{array} \right]$ becomes

$$\mathbf{1} \ \Box \quad \begin{bmatrix} 2 & 0.5 \\ 2 & -0.5 \end{bmatrix}$$

$$2 \ \Box \ \begin{bmatrix} 2 & 2 \\ 0.5 & -0.5 \end{bmatrix}$$

$$\Box \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$$

$$4 \ \Box \quad \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$

$$5 \ \Box \ \begin{bmatrix} -1 & -1 \\ 0.3 & 0.3 \end{bmatrix}$$

6 □ Don't know

Question 5.2.

We now want to test the hypothesis

$$H_0: (\alpha, \gamma) = (2,2)$$

against all alternatives. This hypothesis may also be written

$$H_0$$
: $A\begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} B' = C$ against H_1 : $A\begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} B' \neq C$

Here the matrix A is:

- $\mathbf{1} \ \Box \ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- $2 \ \Box \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- 3 🗆 [0 1]
- 4 🗆 [1 0]
- $5 \ \Box \quad \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$
- 6 □ Don't know.

Question 5.3.

The matrix **B** is:

- $\mathbf{1} \ \Box \ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $2 \square \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- 3 🗆 [0 1]
- $4 \ \Box \ \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- $5 \square \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- 6 □ Don't know.

Question 5.4.

If the hypothesis H_0 is true then the distribution of the usual test statistic is:

- 1 \Box U(2, 2, 2)
- 2 \Box U(1, 1, 2)
- 3 \square U(2, 1, 1)
- 4 \Box U(2, 2, 1)
- 5 \square U(1, 1, 1)
- 6 □ Don't know.

Problem 6

Enclosure D belongs to this problem. The data are the same as described in Problem 3 and Enclosure B. However, here we only consider measurements taken with the VideometerLab multispectral imaging device (M2). Our primary interest is to see whether we may distinguish between raw meat (pr=0) and processed meat (pr=1) by means of the color variables LM2, aM2, and bM2.

Question 6.1.

Hotellings T^2 statistic for testing whether the mean values of the color measurements for raw and for processed meat are the same is:

- 1 🗆 62.79699
- $2 \square \frac{35 \times 25}{35 + 25} 13.37960$
- 3 🗆 -142.78879+135.31413
- $4 \Box \frac{35}{60} 13.37960$
- $5 \square \frac{35}{60}62.79699$
- 6 □ Don't know.

Question 6.2. The constant in the

formula on p 261 in the lecture notes) is:
1 □ -10.0
2 □ −7.5
3 □ -5.0
4 □ −2.5
5 □ 0.0
6 □ Don't know.
Question 6.3. We now assume that the prior probability for raw meat (pr=0) is twice as large as the probability for processed meat (pr=1). If we still want to use a Bayes classifier then the constant in Question 6.2 should be decreased by
1 □ 0.6931
2 □ 0.3010
3 □ 1.0986
4 □ 1.7918
5 □ 1.3956
6 □ Don't know.
Question 6.4. The number of misclassified samples if we use cross validation is:
1 🗆 1
2 🗆 2
3 🗆 3
4 🗆 4
5 🗆 0
6 □ Don't know.

Question 6.5.

The test statistic for testing whether LM2 provides additional information in discriminating between raw and processed meat compared to just using aM2 and bM2 is:

Question 6.6.

The distribution of the above test statistic is under the null hypothesis:

- 1 \square U(2,2,58)
- 2 🗆 t(58)
- 3 □ t(56)
- 4 \Box F(2,58)
- 5 □ F(1,56)
- 6 □ Don't know.

Page 2 of 7

Enclosure A – SAS program

data stigsnaes (type=corr);
infile cards missover;
input _type__ \$ _name__ \$ ager holt gerd hosk kokk veds nyru;

ods graphics on;

proc princomp data=stigsnaes;

run;

proc factor data=stigsnaes

score

rotate=varimax plots=all

2

nfactors=2;

ods graphics off;

Enclosure A – SAS output

The PRINCOMP Procedure

Observations	109
Variables	7

	Eigenva	ilues or me co	Eigenvalues of the Correlation Matrix	X
	Eigenvalue	Difference	Proportion	Proportion Cumulative
1	5.65231177 4.96724774	4.96724774	0.8075	0.8075
7	0.68506403 0.33305053	0.33305053	0.0979	0.9053
3	0.35201350 0.16261735	0.16261735	0.0503	0.9556
4	0.18939615 0.11855387	0.11855387	0.0271	0.9827
5	0.07084227 0.03310281	0.03310281	0.0101	0.9928
9	0.03773947 0.02510667	0.02510667	0.0054	0.9982
7	0.01263280		0.0018	1.0000

			Eiger	Eigenvectors			
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7
ager	ager 0.399796 037747 041095 550362 0.728201 000003 0.062242	037747	041095	550362	0.728201	000003	0.062242
holt	holt 0.255957 0.956464 0.006752 0.121149 0.001097 0.070265 001158	0.956464	0.006752	0.121149	0.001097	0.070265	001158
gerd	gerd 0.350684 131117 0.895955 0.234814 0.031046 0.015457 027429	131117	0.895955	0.234814	0.031046	0.015457	027429
hosk	hosk 0.410819 040349 049428 288180 496142 428667 0.560532	040349	049428	288180	-,496142	428667	0.560532
kokk	kokk 0.414107 076497 150489 130252 269114 237280 808905	076497	150489	130252	269114	237280	808905
veds	veds 0.407158 169269 188282 0.004673 247584 0.836443 0.095732	169269	188282	0.004673	247584	0.836443	0.095732
nyru	nyru 0.381622 174436 367410 0.726121 0.298129 234798 0.132983	174436	367410	0.726121	0.298129	234798	0.132983

The FACTOR Procedure

Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eige	envalues of the	Eigenvalues of the Correlation Matrix: Total= 7 Average = 1	latrix: Total= 7	Average = 1
	Eigenvalue	Difference	Proportion	Proportion Cumulative
1	5.65231177	5.65231177 4.96724774	5208.0	0.8075
2	0.68506403	0.68506403 0.33305053	6260.0	0.9053
3	0.35201350	0.35201350 0.16261735	0.0503	0.9556
4	0.18939615 0.11855387	0.11855387	0.0271	0.9827
5	0.07084227 0.03310281	0.03310281	0.0101	0.9928
9	0.03773947 0.02510667	0.02510667	0.0054	0.9982
7	0.01263280		0.0018	1.0000

Enclosure A – SAS output

Page **3** of **7**

	Factor Pattern	ern
	Factor1	Factor2
ager	05056.0	-0.03124
holt	0.60853	0.79165
gerd	0.83374	-0.10852
hosk	0.97671	-0.03340
kokk	0.98452	-0.06332
veds	00896.0	-0.14010
nyru	0.90729	-0.14438

ained by Each tor	Factor2	0.6850640
Variance Explained Factor	Factor1	5.6523118

				0.001010	
ager holt	gerd	hosk	kokk	veds	nyru
0.90442272 0.99701777 0.7	.70689647	0.95506869	0.97329344	0.95665485	0.84402187

The FACTOR Procedure Initial Factor Method: Principal Components

Enclosure A – SAS output

Page **6** of **7**

The FACTOR Procedure

Rotation Method: Varimax

8	Rotated Factor Pattern	Pattern
	Factor1	Factor2
ager	0.89385	0.32474
holt	0.27020	0.96125
gerd	0.81424	0.20955
hosk	0.91898	0.33249
kokk	0.93737	0.30763
veds	0.95061	0.23021
nyru	0.89585	0.20365

Variance Explained by Each Factor	Factor2	1.3730299
Variance Expl Fac	Factor1	4.9643460

The FACTOR Procedure

Rotation Method: Varimax

Scoring Coefficients Estimated by Regression

quared Multiple Correlation of the Variables with Each Factor	Factor2	1.0000000
Squared Multiple Correlation of the Variables with Each Factor	Factor1	1.0000000

Stan	Standardized Scoring Coefficients) Coefficients
	Factor1	Factor2
ager	0.17305439	0.02025237
holt	-0.330133	1.11264877
gerd	0.19586344	-0.0921405
hosk	0.17852768	0.01906044
kokk	0.19606475	-0.0209614
veds	0.23506545	-0.1260844
nvru	0.22741921	-0.1358754

Factor 2 (21.67%)

First 10 Observations in LabM1M2

Obs	LM1	aM1	bM1	LM2	aM2	bM2
	54.3450	5.9700	6.3700	59.4775	14.9929	15.4351
	56.6825	6.6200	00/9.9	6891.09	14.9891	14.9946
	57.5375	6.9525	7.0225	61.3140	14.4471	14.3082
	58.0600	6.5875	6.9850	61.2555	13.7060	14.6464
	58.4475	6.6950	7.1275	61.2011	14.5520	14.5022
	44.5500	12.7400	7.2650	45.2058	16.7109	13.2196
	44.8900	12.7975	7.8075	45.5458	19.4897	15.4711
	44.5625	10.7575	6.7650	44.8497	18.3109	13.9600
	47.8600	8.3300	6.3350	49.5087	17.7987	15.3426
10	50.7450	8.6075	7.1875	53.0712	15.7536	15.2295

Canonical Correlation Analysis on LabM1M2

The CANCORR Procedure

VAR Variables	3
WITH Variables	3
Observations	09

Σ	Means and Standard Deviations	Deviations
Variable	Mean	Standard Deviation
LM1	54.145375	14.017547
aM1	11.938750	7.210135
bM1	9.295125	3.034791
LM2	55.323785	15.391321
aM2	15.085795	8.185637
bM2	14.220339	2.628269

Enclosure B – SAS output

Page **2** of **6**

Canonical Correlation Analysis on LabM1M2

The CANCORR Procedure

Correlations Among the Original Variables

Variables	bM1	0.2039	0.2035	1.0000
ng the VAR	aM1	5262.0-	1.0000	0.2035
Correlations Among the VAR Variables	LM1	1.0000	-0.7975	0.2039
Corre		LM1	aM1	bM1

/ariables	ZWQ	-0.5042	0.4376	1.0000
ig the WITH \	aM2	-0.9208	1.0000	0.4376
Correlations Among the WITH Variables	LM2	1.0000	-0.9208	-0.5042
Corre		LM2	aM2	bM2

ပိ	orrelati	Correlations Between the VAR Variables and the WITH Variables	ween the VAR Varis WITH Variables	ables and the
		LM2	aM2	bM2
I	LM1	0.9953	-0.9249	-0.5061
ري	aM1	-0.8226	0.8824	0.4813
_	hM1	0 1555	0.2166	97810

Page **4** of **6**

Canonical Correlation Analysis on LabM1M2

The CANCORR Procedure

Canonical Correlation Analysis

	Canonical	Adjusted	Adjusted Approximate Squared	Squared	ш	igenvalue: = CanRsq/	Eigenvalues of Inv(E)*H = CanRsq/(1-CanRsq)	Ŧ
	Correlation	Correlation	Error	CorrelationEigenvalueDifferer	Eigenvalue	Difference	nce Proportion Cumulative	Cumulative
1	0.998139	0.998035	0.998139 0.998035 0.000484 0.996280 267.8523 236.1000 0.8932 0.8932	0.996280	267.8523	236.1000	0.8932	0.8932
2	0.984616	0.984411	0.984616 0.984411 0.003975 0.969468 31.7524 31.4776 0.1059	0.969468	31.7524	31.4776	0.1059	1666'0
3	0.464315		0.102122 0.215588 0.2748	0.215588	0.2748		0.0009	1.0000

	Test of H0: The canor	Test of H0: The canonical correlations in the current row and all that follow are zero	rrent row and	all that follov	w are zero
	Likelihood Ratio	ApproximateF Value	Num DF	Den DF	Pr > F
	0.00008908	60'099	6	131.57	<.0001
~1	0.02394975	150.20	4	110	<.0001
~	0.78441179	15.39	1	99	0.0002

Multiva	Multivariate Statistics and F Approximations	nd F Appro	ximation	S	
	S=3 M=-0.5 N=26	5 N=26			
Statistic	Value	F Value	Num DF	F Value Num DF Den DF	Pr > F
Wilks' Lambda	8068000000	60.099	6	131.57	<.0001
Pillai's Trace	2.18133657	49.74	6	168	<.0001
Hotelling-Lawley Trace 299.87958514 1776.10	299.87958514	1776.10	6	81.733	<.0001
Roy's Greatest Root	267.85234967 4999.91	4999.91	3	99	<.0001
NOTE: F Statis	NOTE: F Statistic for Roy's Greatest Root is an upper bound.	test Root i	s an uppe	er bound.	

Enclosure B – SAS output

Canonical Correlation Analysis on LabM1M2

The CANCORR Procedure

Canonical Correlation Analysis

Rav	Raw Canonical Coefficients for the VAR Variables	ficients for the V/	AR Variables
	N	V2	٤٨
LM1	LM1 0.0529120838 -0.122766458 0.0694656593	-0.122766458	0.0694656593
aM1	-0.039505401	-0.236177729 0.1686194591	0.1686194591
bM1	bM1 0.0355850852 0.4098960971 0.1209124579	0.4098960971	0.1209124579

Raw	Raw Canonical Coefficients for the WITH Variables	icients for the WI	ITH Variables
	LW1	W2	£W
LM2	LM2 0.0465305326 -0.091000828 0.1407859243	-0.091000828	0.1407859243
aM2	-0.039221557	-0.220045512 0.2207753858	0.2207753858
bM2	bM2 0.0155767032 0.2854238639 0.3371007214	0.2854238639	0.3371007214

Standard fo	Standardized Canonical Coefficients for the VAR Variables	nical Coe	fficients
	V1	V2	V3
LM1	0.7417	-1.7209 0.9737	0.9737
aM1	-0.2848	-1.7029 1.2158	1.2158
bM1	0.1080	1.2439 0.3669	0.3669

Standard fo	Standardized Canonical Coefficients for the WITH Variables	nical Coe I Variable	fficients s
	LW1	W2	W3
LM2	0.7162	-1.4006 2.1669	2.1669
aM2	-0.3211	-0.3211 -1.8012 1.8072	1.8072
5M4	hM2 0.0409 0.7502 0.8860	0.7502	0.8860

Page **6** of **6**

Canonical Correlation Analysis on LabM1M2

Enclosure B – SAS output

The CANCORR Procedure

Canonical Structure

Variables bles	£A	06200	0.5139	0.8128
en the VAR onical Varia	V2	-0.1093	-0.0774	0.5467
Correlations Between the VAR Variables and Their Canonical Variables	N	6066.0	-0.8543	0.2012
Correla		LM1	aM1	bM1

Variables bles	E/M	0.0561	0.1997	0.5842
en the WITH nonical Varia	W2	-0.1204	-0.1833	0.6682
Correlations Between the WITH Variables and Their Canonical Variables	W1	0.9911	-0.9626	-0.4607
Correla		LM2	aM2	bM2

riables and FH Variables	W3	0.0367	0.2386	1000
n the VAR Ves of the W	W2	-0.1076	-0.0762	0000
Correlations Between the VAR Variables and the Canonical Variables	W1	0.9890	-0.8527	0000
Correlat the Cano		LMI	aM1	13.61

Correlati the Can	ions Between onical Variab	Correlations Between the WITH Variables and the Canonical Variables	riables and R Variables
	L/A	۸5	V3
LM2	0.9893	-0.1185	0.0261
aM2	-0.9608	-0.1805	0.0927
bM2	-0.4598	6259.0	0.2712

Enclosure C – SAS program

Page 1 of 10

proc print data=sasuser.prostate (obs=20); Title 'Prostate Data. First 20 observations'; run;

ods graphics on;

Title 'Regression with Influence and Residuals Diagnostics'; model lpsa = Icavol Iweight age Ibph svi Icp gleason pgg45 / proc reg data=sasuser.prostate; influence r;

run;

Title 'Stepwise Regression with at most 2 steps';

proc reg data=sasuser.prostate;

model lpsa = lcavol lweight age lbph svi lcp gleason pgg45 / selection=stepwise maxstep=2;

Title 'Partial Correlation Analysis'; proc corr data=sasuser.prostate;

partial Icavol Iweight;

ods graphics off;

Prostate Data. First 20 observations

lpsa	-0.43078	-0.16252	-0.16252	-0.16252	0.37156	0.76547	0.76547	0.85442	1.04732	1.04732	1.26695	1.26695	1.26695	1.34807	1.39872	1.44692	1.47018	1.49290	1.55814	1.59939
pgg45	0	0	20	0	0	0	0	0	0	0	0	0	30	5	5	0	30	0	0	0
gleason pgg45	9	9	7	9	9	9	9	9	9	9	9	9	7	7	7	9	7	9	9	9
lcp	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-0.59784	-1.38629	-0.43078	-1.38629	-0.59784	0.37156	-1.38629	-1.38629
svi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lbph	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	-1.38629	0.61519	1.53687	-1.38629	-1.38629	-1.38629	1.26695	-1.38629	-1.38629	-1.38629	-1.38629	1.24415	-1.38629	-1.38629	1.65823
age	50	58	74	58	62	50	64	28	47	63	65	63	63	29	57	99	20	99	41	70
lweight	2.76946	3.31963	2.69124	3.28279	3.43237	3.22883	3.47352	3.53951	3.53951	3.24454	3.60414	3.59868	3.02286	2.99823	3.44202	3.06105	3.51601	3.64936	3.26767	3.82538
Icavol	-0.57982	-0.99425 3.31963	-0.51083 2.69124	-1.20397	0.75142	-1.04982	0.73716	0.69315	-0.77653	0.22314	0.25464	-1.34707	1.61343	1.47705	1.20597	1.54116	-0.41552 3.51601	2.28849	-0.56212	0.18232 3.82538
Obs patno	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
obs	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	61	20

Enclosure C – SAS output

Page **3** of **10**

Regression with Influence and Residuals Diagnostics

The REG Procedure

Model: MODEL1

Dependent Variable: Ipsa

Number of Observations Read 97 Number of Observations Used 97

,	Analysis of Variance	riance		
Source DF	Sum of Squares	Mean Square	F Value	Pr > F
Model 8	84.85924 10.60741 21.68	10.60741	21.68	<.0001
Error 88	43.05842	0.48930		
Corrected Total 96	127.91766			

Root MSE	09669.0	R-Square	0.6634
Dependent Mean	2.47839	Adj R-Sq	0.6328
Coeff Var	28.22400		

		Paramet	Parameter Estimates	s	
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	0.18156	1.32057	0.14	0.8910
lcavol	1	0.56434	0.08783	6.43	<.0001
lweight	1	0.62202	0.20090	3.10	0.0026
age	T	-0.02125	0.01108	-1.92	0.0585
lbph	1	0.09671	0.05791	1.67	0.0985
svi	T	0.76167	0.24118	3.16	0.0022
lcp	1	-0.10605	0.08987	-1.18	0.2412
gleason	1	0.04923	0.15534	0.32	0.7521
pgg45	1	0.00446	0.00437	1.02	0.3100

Regression with Influence and Residuals Diagnostics

The REG Procedure

Model: MODEL1 Dependent Variable: Ipsa

DFFITS	-0.5633	-0.3718	-0.3850	-0.3397	-0.3832	-0.0350	-0.2885	-0.4280	-0.1036	-0.0737	-0.0721	0.1777	-0.2593	-0.2128	-0.2268	-0.1737	0.0631	-0.4389	0.1279	-0.0592	-0.1087	-0.4689	0.1919	-0.3388	-0.0249	-0.0832	-0.1202	0.0488	-0.0955	-0.2283	-0.0534	0.0395	0.0835	0.1976	0.3296	-0.3147	0.1876	0.6940	-0.7349	0.2223
RStudent Hat Diag H	0.0810	0.0681	0.1454	0.0780	0.0350	0.0839	0.0292	0.0482	0.1000	0.0402	0.0453	0.0891	0.0494	0.0792	0.0503	0.0743	0.0659	0.0832	0.1236	0.0485	0.0390	0.0850	0.0443	0.0730	0.0443	0.0723	0.1235	0.0674	0.1320	0.1480	0.0552	0.0411	0.1059	0.0427	0.0510	0.0719	0.2185	0.1209	0.0685	0.0858
RStudent	-1.8970	-1.3749	-0.9335	-1.1675	-2.0132	-0.1157	-1.6628	-1.9012	-0.3108	-0.3601	-0.3309	0.5683	-1.1374	-0.7254	-0.9853	-0.6135	0.2375	-1.4569	0.3405	-0.2623	-0.5398	-1.5387	0.8911	-1.2073	-0.1155	-0.2979	-0.3201	0.1816	-0.2448	-0.5478	-0.2211	0.1905	0.2426	0.9358	1.4221	-1.1309	0.3547	1.8713	-2.7092	0.7257
Cook's D	0.034	0.015	0.016	0.013	0.016	0.000	0.009	0.020	0.001	0.001	0.001	0.004	0.007	0.005	0.006	0.003	0.000	0.021	0.002	0.000	0.001	0.024	0.004	0.013	0.000	0.001	0.002	0.000	0.001	0.006	0.000	0.000	0.001	0.004	0.012	0.011	0.004	0.052	0.056	0.006
Student Residual	-1.870	-1.368	-0.934	-1.165	-1.979	-0.116	-1.646	-1.874	-0.312	-0.362	-0.333	0.570	-1.136	-0.727	-0.985	-0.616	0.239	-1.448	0.342	-0.264	-0.542	-1.527	0.892	-1.204	-0.116	-0.299	-0.322	0.183	-0.246	-0.550	-0.222	0.192	0.244	0.936	1.414	-1.129	0.356	1.845	-2.617	0.728
Residual	-1.2537	-0.9238	-0.6041	-0.7825	-1.3600	-0.0779	-1.1347	-1.2786	-0.2073	-0.2480	-0.2273	0.3809	-0.7744	-0.4882	-0.6718	-0.4143	0.1614	-0.9696	0.2241	-0.1799	-0.3717	-1.0217	0.6101	-0.8110	-0.0795	-0.2017	-0.2107	0.1234	-0.1604	-0.3551	-0.1512	0.1312	0.1613	0.6409	0.9635	-0.7609	0.2204	1.2102	-1.7664	0.4867
Std Error Residual Residual	0.1991	0.1826	0.2667	0.1954	0.1308	0.2026	0.1196	0.1536	0.2212	0.1402	0.1489	0.2088	0.1555	0.1969	0.1569	0.1906	0.1795	0.2018	0.2459	0.1540	0.1381	0.2039	0.1473	0.1890	0.1473	0.1881	0.2458	0.1816	0.2542	0.2691	0.1643	0.1419	0.2276	0.1446	0.1579	0.1876	0.3270	0.2432	0.1831	0.2049
Predicted Value	0.8229	0.7613	0.4416	0.6200	1.7315	0.8434	1.9002	2.1330	1.2546	1.2953	1.4943	0.8861	2.0414	1.8363	2.0705	1.8613	1.3088	2.4625	1.3340	1.7793	2.0107	2.6799	1.0855	2.5248	1.8111	1.9682	2.0108	1.6931	2.0089	2.2497	2.0754	1.8770	1.8469	1.3806	1.0842	2.8465	1.9371	0.9815	3.9802	1.7906
DependentPredicted Variable Value	-0.4308	-0.1625	-0.1625	-0.1625	0.3716	0.7655	0.7655	0.8544	1.0473	1.0473	1.2669	1.2669	1.2669	1.3481	1.3987	1.4469	1.4702	1.4929	1.5581	1.5994	1.6390	1.6582	1.6956	1.7138	1.7317	1.7664	1.8001	1.8165	1.8485	1.8946	1.9242	2.0082	2.0082	2.0215	2.0477	2.0857	2.1576	2.1917	2.2138	2.2773
sqo	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

Enclosure C – SAS output

Page **4** of **10**

Obs	DependentPredicted Variable Value	Predicted Value	Std Error Mean Predict	Residual	Student Residual	Cook's D	RStudent	RStudent Hat Diag H	DFFITS
41	2.2976	2.0239	0.3431	0.2737	0.449	0.007	0.4470	0.2406	0.2516
42	2.3076	2.2434	0.1741	0.0642	0.0948	0.000	0.0943	0.0620	0.0242
43	2.3273	2.1043	0.1523	0.2230	0.327	0.001	0.3250	0.0474	0.0725
44	2.3749	2.4604	0.2152	-0.0855	-0.128	0.000	-0.1277	0.0946	-0.0413
45	2.5217	2.3872	0.1475	0.1345	0.197	0.000	0.1956	0.0445	0.0422
46	2.5533	2.5528	0.1585	0.000521	0.00076	0.000	0.000760	0.0514	0.0002
47	2.5688	4.0781	0.2715	-1.5093	-2.341	0.108	-2.4040	0.1506	-1.0124
48	2.5688	2.6374	0.1337	-0.0686	-0.0999	0.000	-0.0993	0.0365	-0.0193
49	2.5915	2.7372	0.2578	-0.1457	-0.224	0.001	-0.2229	0.1359	-0.0884
50	2.5915	2.1155	0.1569	0.4760	869.0	0.003	0.6963	0.0503	0.1603
51	2.6568	2.4174	0.2279	0.2393	0.362	0.002	0.3601	0.1061	0.1241
52	2.6776	3.0356	0.1833	-0.3580	-0.530	0.002	-0.5281	9890'0	-0.1434
53	2.6844	2.1671	0.2136	0.5173	0.777	0.007	0.7749	0.0932	0.2485
54	2.6912	3.0410	0.1902	-0.3497	-0.520	0.002	-0.5174	0.0739	-0.1461
55	2.7047	3.2745	0.2567	-0.5698	-0.876	0.013	-0.8745	0.1347	-0.3450
99	2.7180	2.9202	0.1819	-0.2022	-0.299	0.001	-0.2978	9/90.0	-0.0802
57	2.7881	1.6902	0.2424	1.0978	1.673	0.042	1.6907	0.1200	0.6244
58	2.7942	2.3238	0.2111	0.4704	0.705	900.0	0.7033	0.0911	0.2226
59	2.8064	2.2223	0.1730	0.5841	0.862	0.005	0.8605	0.0612	0.2197
09	2.8124	2.6750	0.1708	0.1374	0.203	0.000	0.2015	0.0596	0.0507
61	2.8420	2.3703	0.2112	0.4717	0.707	0.006	0.7053	0.0912	0.2234
62	2.8536	3.5225	0.2015	-0.6689	-0.999	0.010	-0.9986	0.0830	-0.3003
63	2.8536	2.9779	0.2995	-0.1243	-0.197	0.001	-0.1956	0.1833	-0.0927
64	2.8820	3.7081	0.2096	-0.8261	-1.238	0.017	-1.2416	0.0898	-0.3900
65	2.8820	2.5535	0.1842	0.3285	0.487	0.002	0.4846	0.0694	0.1323
99	2.8876	2.7020	0.1265	0.1855	0.270	0.000	0.2683	0.0327	0.0493
67	2.9205	2.9797	0.2242	-0.0592	-0.0894	0.000	-0.0889	0.1027	-0.0301
89	2.9627	3.0701	0.1782	-0.1074	-0.159	0.000	-0.1579	0.0649	-0.0416
69	2.9627	1.5141	0.2789	1.4486		0.107	2.3133	0.1589	1.0056
70	2.9730	2.9755	0.2475	-0.002537	-0.0039	0.000	-0.003855	0.1252	-0.0015
71	3.0131	3.2932	0.1900	-0.2801	-0.416	0.002	-0.4141	0.0737	-0.1168
72	3.0374	2.0505	0.2057	0.9868	1.476	0.023	1.4861	0.0865	0.4573
73	3.0564	2.8182	0.2339	0.2382	0.361	0.002	0.3595	0.1118	0.1275
74	3.0750	3.4811	0.3083	-0.4061	-0.647	0.011	-0.6446	0.1943	-0.3165
75	3.2753	3.6611	0.2173	-0.3858	-0.580	0.004	-0.5781	0.0965	-0.1890
92	3.3375	3.6070	0.2118	-0.2695	-0.404	0.002	-0.4023	0.0917	-0.1278
77	3.3928	3.3086	0.2135	0.0842	0.126	0.000	0.1257	0.0932	0.0403
78	3.4356	3.4262	0.2377	0.009359		0.000	0.0141	0.1155	0.0051
79	3.4579	3.4483	0.2174	0.009569	0.0144	0.000	0.0143	0.0966	0.0047
80	3.5130	3.1836	0.2085	0.3295	0.493	0.003	0.4913	8880.0	0.1534

DFFITS	0.5226	0.3504	-0.0016	0.1343	0.3329	-0.1018	0.3001	0.2994	-0.2206	0.4649	0.4058	0.0631	0.2360	-0.0474	1.0060	0.7504	0.8418
RStudent Hat Diag H	0.0548	0.1365	0.0999	0.1646	0.0548	0.0780	0.0833	0.0761	0.1688	0.1252	0.1582	0.2093	0.0793	0.1859	0.1420	0.1188	0.1169
RStudent	2.1695	0.8813	-0.004913	0.3026	1.3825	-0.3501	0.9951	1.0435	-0.4896	1.2289	0.9362	0.1226	0.8038	-0.0992	2.4730	2.0436	2.3136
Cook's D	0.029	0.014	0.000	0.002	0.012	0.001	0.010	0.010	0.005	0.024	0.018	0.000	900.0	0.000	0.106	090.0	0.075
Student Residual	2.125	0.882	-0.0049	0.304	1.375	-0.352	0.995	1.043	-0.492	1.225	0.937	0.123	0.805	-0.0998	2.404	2.008	2.258
Residual	1.4453	0.5736	-0.003279 -0.0049	0.1945	0.9354	-0.2363	0.6665	0.7012	-0.3136	0.8017	0.6013	0.0767	0.5406	-0.0630	1.5577	1.3183	1.4845
Std Error Mean Predict	0.1638	0.2585	0.2211	0.2838	0.1637	0.1954	0.2019	0.1929	0.2874	0.2475	0.2782	0.3200	0.1970	0.3016	0.2636	0.2411	0.2392
Predicted Value	2.0708	2.9572	3.5686	3.3765	2.6523	3.8673	3.0136	3.0111	4.2979	3.1919	3.4285	4.0529	3.8446	4.7474	3.5854	4.1592	4.0984
Obs Variable Value	3.5160	3.5308	3.5653	3.5709	3.5877	3.6310	3.6801	3.7124	3.9843	3.9936	4.0298	4.1296	4.3851	4.6844	5.1431	5.4775	5.5829
sqo	81	82	83	84	85	98	87	88	68	06	91	92	63	94	95	96	6

Sum of Residuals	0
Sum of Squared Residuals	43.05842
Predicted Residual SS (PRESS)	52.50892

	FStudent Co.	0.05 0.10 0.15 0.20 0.25 Leverage	Cooks D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Observation Observation Parameters 9 Error DF 88 MSE 0.4893 R-Square 0.6328 Adj R-Square 0.6328
Fit Diagnostics for Ipsa	R Student 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1 2 3 4 5 Predicted Value	1 psa 4	Fit-Mean Residual 1
	Residual 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 2 3 4 5 Predicted Value	Residual 1 - 1 - 1 - 2 - 1 - 1 - 2 - 1 - 2 - 1 - 2 - 2	30 Ouantile 20 Ouantile 20 Ouantile 20 Ouantile 20 Ouantile 225 Ou75 Ou75 225

Stepwise Regression with at most 2 steps

The REG Procedure

Model: MODEL1

Dependent Variable: Ipsa

Stepwise Selection: Step 1

Variable Icavol Entered: R-Square = 0.5394 and C(p) = 27.4062

		Alianysis of Validities		
Source	Sum of Squares	Mean Square	F Value	Pr > F
Model 1	69.00287	69.00287	111.27 <.0001	<.0001
Error 95	95 58.91478	0.62016		
Corrected Total 96 127.91766	127.91766			

Variable	Parameter Standard Estimate Error	Standard Error	Type II SS F Value	F Value	Pr > F
Intercept	1.50730	0.12194	1.50730 0.12194 94.76079 152.80	152.80	<.0001
lcavol	0.71932 0.06819 69.00287 111.27	0.06819	69.00287	111.27	<.0001

Bounds on condition number: 1, 1

Enclosure C – SAS output

Page **9** of **10**

Stepwise Selection: Step 2

Variable Iweight Entered: R-Square = 0.5955 and C(p) = 14.7473

	Pr > F	<.0001		
	FValue	61.69		
Valiance	Mean Square	38.08774	0.55045	
Allalysis of Vallalice	Sum of Squares	2 76.17548 38.08774	94 51.74218 0.55045	96 127.91766
	DF	7	94	96
	Source	Model	Error	Corrected Total

Pr > F	0.2160	<.0001	0.0005
F Value	1.55	94.75	13.03
Type II SS	0.85393	52.15694	7.17261
Standard Error	-0.81344 0.65309	0.06693	0.18414
Parameter Estimate	-0.81344	0.65154	0.66472
Variable	Intercept	lcavol	lweight

Bounds on condition number: 1.0854, 4.3417

The stepwise method terminated because the maximum number of steps have been executed.

			Summary	of Stepwi	Summary of Stepwise Selection	uc			
Step		Variable Variable Number Partial Model Entered Removed Vars In R-Square R-Square	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value Pr > F	Pr > F	
1	lcavol		1	0.5394	0.5394 0.5394 27.4062 111.27 <.0001	27.4062	111.27	<.0001	
2	lweight		2	0.0561	0.0561 0.5955 14.7473 13.03 0.0005	14.7473	13.03	0.0005	

Page **10** of **10**

Enclosure C – SAS output

Partial Correlation Analysis

The CORR Procedure

2 Partial Variables:	lcavol lweight
8 Variables:	patno age 1bph svi 1cp gleason pgg45 1psa

				Simple Statistics	atistics			
Variable N	Ν	Mean	Std Dev	uns	Minimum	Minimum Maximum	Partial Variance	Partial Std Dev
lcavol	26	lcavol 97 1.35001	1.17862	1.17862 130.95093 -1.34707 3.82100	-1.34707	3.82100		
lweight	26	3.62894	0.42841	weight 97 3.62894 0.42841 352.00744 2.37491	2.37491	4.78038		
patno	26	patno 97 49.00000 28.14546	28.14546	4753	1.00000	00000.76	1.00000 97.00000 349.06133 18.68318	18.68318
age	26	97 63.86598	7.44512	5619	41.00000	79.00000	41.00000 79.00000 48.75766	6.98267
lbph	26	0.10036	1.45081	9.73449	-1.38629	-1.38629 2.32630	1.70734	1.30665
svi	26	0.21649 0.41399 21.00000	0.41399	21.00000	0	1.00000	1.00000 0.12421 0.35244	0.35244
lcp	26	-0.17937	1.39825	97 -0.17937 1.39825 -17.39846 -1.38629	-1.38629	2.90417	1.08477	1.04152
gleason	26	6.75258	0.72213	gleason 97 6.75258 0.72213 655.00000 6.00000 9.00000 0.43059 0.65619	0000009	00000.6	0.43059	0.65619
pgg45	26	pgg45 97 24.38144 28.20403	28.20403	2365	0	100.00000	100.00000659.43836 25.67953	25.67953
lpsa	26	2.47839	1.15433	lpsa 97 2.47839 1.15433 240.40353 -0.43078 5.58293 0.55045 0.74192	-0.43078	5.58293	0.55045	0.74192

Enclosure D – SAS program

Title 'Meatcolor data. First 40 observations'; proc print data=sasuser.LabM2 (obs=40);

run;

Title 'Discriminating between Unprocessed and Processed Meat Products, 3 variables';

proc discrim data=sasuser.LabM2 method=normal pool=yes distance crossvalidate list crosslist;

class pr; var LM2 aM2 bM2;

run;

Title 'Discriminating between Unprocessed and Processed Meat Products, 2 variables';

proc discrim data=sasuser.LabM2 method=normal pool=yes

distance; class pr;

var aM2 bM2;

Page 1 of 10

Meatcolor data. First 40 observations

bM2	15.4351	14.9946	14.3082	14.6464	14.5022	13.2196	15.4711	13.9600	15.3426	15.2295	12.3302	13.7257	14.7705	12.2997	13.5786	17.7811	18.5128	17.8593	17.2595	18.0836	17.3420	17.2176	16.5106	17.9072	16.5803	16.2892	14.9070	15.8314	16.5587	16.6212	14.1820	14.1163	14.4895	13.0373	13.3447	10.4036	10.2625	10.7644	10.1346	10.5672
aM2	14.9929	14.9891	14.4471	13.7060	14.5520	16.7109	19.4897	18.3109	17.7987	15.7536	21.0710	21.7498	23.3476	21.1010	22.4689	25.7215	25.4414	25.2091	24.7617	25.0321	26.5550	26.0395	26.1196	26.7337	25.5879	26.0475	24.4444	25.1339	26.4634	25.3456	15.6569	16.1582	15.6528	15.8317	15.3322	9.5632	9.6144	9.9379	9.6124	9.2178
LM2	59.4775	60.1689	61.3140	61.2555	61.2011	45.2058	45.5458	44.8497	49.5087	53.0712	33.0189	32.7802	31.7667	32.5476	32.2941	44.3855	46.6934	46.0370	43.2264	42.6608	35.4062	35.7442	34.6227	37.3099	35.2981	32.8172	33.1742	34.5928	33.9748	32.0530	57.1911	55.6153	60.6763	56.4277	54.1861	68.4445	8000.69	67.3075	67.7341	68.3540
pr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
sqo	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

Enclosure D – SAS output

Page 2 of 10

Discriminating between Unprocessed and Processed Meat Products, 3 variables

The DISCRIM Procedure

59	Classes 58	n Classes 1
DF Total	DF Within (DF Between (
09	3	2
Total Sample Size	Variables	Classes

Number of Observations Read	09
Number of Observations Used	09

	Prior Probability	0.500000	0.500000	ſ
	Prob	0.50	0.50	
5	Proportion	0.583333	0.416667	
	Weight	35.0000	25.0000	
	Frequency	32	25	
	Variable Name	0	1	
	pr	0	1	

Pooled Covariance Matrix Information	Natural Log of the Determinant of the Covariance Matrix	8 00043
Pooled (Covariance Matrix Rank	τ

Discriminating between Unprocessed and Processed Meat Products, 3 variables

The DISCRIM Procedure

ce to pr	1	13.37960	0
Squared Distance to pr	0	0	13.37960
Squa	rom pr	0	1

DDF=56 for ce to pr	1	65.79699	0
F Statistics, NDF=3, DDF=56 for Squared Distance to pr	0	0	62.79699
F Statis Sq	From pr	0	1

Prob > Mahalanobis Distance for Squared Distance to pr	1	<.0001	1.0000
lahalanol ared Dist	0	1.0000	<.0001
Prob > N Squ	From pr	0	1

Generalized Squared Distance to pr	1	13.37960	0
d Squared D	0	0	13.37960
Generalize	From pr	0	1

Linear Disc	Linear Discriminant Function for pr	tion for pr
Variable	0	1
Constant	-142.78879	-135.31413
LM2	2.56181	2.69962
aM2	4.83832	4.24537
bM2	4.56789	4.05674

Enclosure D – SAS output

Page **5** of **10**

Discriminating between Unprocessed and Processed Meat Products, 3 variables

The DISCRIM Procedure

Classification Results for Calibration Data: SASUSER.LABM2 Resubstitution Results using Linear Discriminant Function

Table continues

dir	1	0.2357	0.1601	0.2992	0.3099	0.2748	0.9973	0.9976	0.9953	0.9973	0.9976	0.9998	0.9996	0.9963	0.9971	0.9967	0.9989	0.9985	0.9993	0.9989	0.9982	0.9955	0.9954	0.9953	0.9955	0.9955	0.9998	0.9998	0.9998	0.9999	0.9999
Membership	0	0.7643	0.8399	0.7008	0.6901	0.7252	0.0027	0.0024	0.0047	0.0027	0.0024	0.0002	0.0004	0.0037	0.0029	0.0033	0.0011	0.0015	0.0007	0.0011	0.0018	0.0045	0.0046	0.0047	0.0045	0.0045	0.0002	0.0002	0.0002	0.0001	0.0001
of	into pr																														
Posterior Probability in pr	Classified	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Posterio	From pr	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Obs	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	99	57	58	59	09

* Misclassified observation

Enclosure D – SAS output

Page **6** of **10**

Discriminating between Unprocessed and Processed Meat Products, 3 variables

The DISCRIM Procedure

Classification Results for Calibration Data: SASUSER.LABM2

Cross-validation Results using Linear Discriminant Function

ip	7	0.2823	0.3549	0.5672	0.6276	0.5225	0.0624	0.0036	0.0146	0.0172	0.0912	0.0016	0.0004	0.0001	0.0015	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
of Membership	0	0.7177	0.6451	0.4328	0.3724	0.4775	0.9376	0.9964	0.9854	0.9828	0.9088	0.9984	0.9996	0.9999	0.9985	0.9997	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	d into pr			*	*	*																									
Posterior Probability in pr	Classified	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Posterio	From pr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ops	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Table continues

d	-	0.2489	0.1664	0.3498	0.3331	0.2902	8966.0	0.9971	0.9945	8966.0	0.9972	0.9997	0.9995	0.9943	0.9954	0.9946	9866.0	0.9979	0.9991	0.9986	0.9974	0.9948	0.9947	0.9946	0.9949	0.9949	0.9998	0.9998	0.9998	8666.0	8666.0
of Membership	0	0.7511	0.8336	0.6502	0.6669	0.7098	0.0032	0.0029	0.0055	0.0032	0.0028	0.0003	0.0005	0.0057	0.0046	0.0054	0.0014	0.0021	0.0009	0.0014	0.0026	0.0052	0.0053	0.0054	0.0051	0.0051	0.0002	0.0002	0.0002	0.0002	0.0002
	sified into pr																														
Posterior Probability in pr	Classifie	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Posterio	From pr	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	ops	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	99	57	28	59	09

* Misclassified observation

Enclosure D – SAS output

Page **9** of **10**

Discriminating between Unprocessed and Processed Meat Products, 2 variables

The DISCRIM Procedure

Total Sample Size	Size	09	DF Total	59
Variables		2	DF Within Classes	58
Classes		2	DF Between Classes	-

Number of Observations Read	09	
Number of Observations Used	09	

_		_	
	Prior Probability	0.500000	0.500000
IIIation	Variable Frequency Weight Proportion	35.0000 0.583333	25.0000 0.416667
Glass Level IIIIOIIIIatioii	Weight	35.0000	25.0000
Class	Frequency	35	25
	Variable Name	0	1
	pr	0	1

Pooled Covariance Matrix Information	Natural Log of the Determinant of the Covariance Matrix	4.52175
Pooled Co Infe	Covariance Matrix Rank	2

Squ	Squared Distance to pr	se to pr
From pr	0	1
0	0	12.76396
1	12.76396	0

DDF=57 for se to pr	1	91.46590	0
F Statistics, NDF=2, DDF=57 for Squared Distance to pr	0	0	91.46590
F Statis Sq	From pr	0	1

Prob > Mahalanobis Distance for Squared Distance to pr	> Mahalanobis Distanc Squared Distance to pr	istance for to pr
From pr	0	1
0	1.0000	<.0001
1	<.0001	1.0000

Generalized	d Squared D	Seneralized Squared Distance to pr
From pr	0	-
0	0	12.76396
1	12.76396	0

Linear L	inear Discriminant Function for pr	nction for pr
Variable	0	1
Constant	-36.41494	-17.18799
aM2	1.20604	0.41770
bM2	3.09173	2.50118