1. Dana je matrika

$$A = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 2 & 2 & 3 & 1 \\ -2 & -3 & -4 & -1 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

- (a) Poišči lastne vrednosti in pripadajoče lastne vektorje matrike A.
- (b) Če obstaja, poišči matriko P, da bo $P^{-1}AP$ diagonalna matrika.
- (c) Izračunaj A^{1000} .

$$\text{Rešitev: (a) $\lambda_{1,2} = -1$, $\lambda_3 = 0$, $\lambda_4 = 1$. (b) $P = \begin{bmatrix} 0 & 1 & 0 & -1 \\ -1 & -1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$. (c) $A^{1000} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & -1 & -1 & 0 \end{bmatrix}$.}$$

- 2. Naj bo $\mathbf{x} \in \mathbb{R}^n$ poljuben neničeln vektor in $H = I 2\mathbf{x}\mathbf{x}^T$.
 - (a) Preveri, da je x lastni vektor matrike H. Kateri lastni vrednosti pripada?
 - (b) Poišči/opiši lastne podprostore za ostale lastne vrednosti matrike *H*.
 - (c) Kaj mora dodatno veljati za x, da bo H matrika zrcaljenja?

Rešitev: (a) $H\mathbf{x} = (I - 2\mathbf{x}\mathbf{x}^{\mathsf{T}})\mathbf{x} = \mathbf{x} - 2\mathbf{x}\mathbf{x}^{\mathsf{T}}\mathbf{x} = (1 - 2\mathbf{x}^{\mathsf{T}}\mathbf{x})\mathbf{x}$, tj. \mathbf{x} pripada lastna vrednost $1 - 2\mathbf{x}^{\mathsf{T}}\mathbf{x}$. (c) $||\mathbf{x}|| = 1$.

3. Na nanospletu so štiri (!) spletne strani, S_1 , S_2 , S_3 in S_4 . Ko se naključni obiskovalec znajde na tem nanospletu na strani S_i , bo z verjetnostjo p_{ij} kliknil na povezavo do strani S_j . Za naš nanosplet *verjetnosti prehodov* ponazorimo s spodnjim diagramom.

(Če med dvema stranema ni puščice, to pomeni, da ni spletne povezave s strani S_i na stran S_j in zato $p_{ij}=0$.) Verjetnosti p_{ij} zložimo v matriko

$$P = \begin{bmatrix} 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 \end{bmatrix}.$$

Pokaži, da ima matrika P (in zato tudi matrika P^{T}) vsaj eno lastno vrednost, ki je enaka 1. Nato poišči tisti lastni vektor \mathbf{v} matrike P^{T} za lastno vrednost 1, ki ima vsoto komponent enako 1. (Temu lastnemu vektorju pravimo *invariantna porazdelitev* pripadajoče markovske verige.)

4. Vztrajnostni tenzor nekega togega telesa je dan z matriko

$$J = \frac{1}{2} \begin{bmatrix} 3 & 1 & -2 \\ 1 & 3 & -2 \\ -2 & -2 & 6 \end{bmatrix}.$$

- (a) Poišči lastne osi matrike *J*.
- (b) Ali obstaja baza za \mathbb{R}^3 iz paroma pravokotnih vektorjev, ki so vsi lastni vektorji matrike J?
- (c) Okrog katere osi naj vpnemo naše togo telo, da bo energija zaradi vrtenja okrog te osi najmanjša možna?

Namig: Kinetična energija zaradi vrtenja togega telesa je $E = \frac{1}{2}\omega^T J \omega$, kjer je ω vektor kotne hitrosti.

5. Za kvadratno matriko A z $\Delta_A(\lambda) := \det(A - \lambda I)$ označimo *karakteristični polinom* matrike A. Po *Cayley–Hamiltonovem izreku* velja $\Delta_A(A) = 0$. Z uporabo tega izreka izračunaj inverza matrik

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \text{ in } B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & -1 \end{bmatrix}.$$

6. Ajda je velika poznavalka kave in vsako jutro spije skodelico v eni od treh kavarn. Verjetnost, da bo na neko jutro obiskala neko kavarno, je odvisna od tega, za katero kavarno se je odločila prejšnji dan, in je podana s prehodno matriko

$$P = \begin{bmatrix} 0.1 & 0.7 & 0.2 \\ 0.5 & 0.1 & 0.4 \\ 0.4 & 0.5 & 0.1 \end{bmatrix}$$

- Ajdina cimra Lana nekega jutra opazi, da je Ajda doma pozabila telefon. Želi ji ga odnesti v kavarno, vendar se spomni samo, da je bila Ajda včeraj v prvi ali tretji kavarni, ne ve pa, v kateri od njiju in kje je danes. Pomagaj ji ugotoviti, kje se bo najbolj verjetno danes zjutraj nahajala Ajda.
- Pokaži, da so 1, $-\frac{1}{2}$ in $-\frac{1}{5}$ lastne vrednosti matrike P^{T} .
- Naj bo $\{\mathbf v_1, \mathbf v_2, \mathbf v_3\}$ baza iz pripadajočih lastnih vektorjev matrike P^T (ni jih treba računati). Ajda ima danes rojstni dan. Lani si je privoščila kavo v prvi kavarni. Izrazimo

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \mathbf{v} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3$$

Izrazi v tej bazi vektor verjetnosti, da bo Ajda v vsaki od teh kavarn na letošnji rojstni dan. Kaj opaziš?

- Določi invariantno porazdelitev te markovske verige in jo normaliziraj. Katero kavarno Ajda obišče najbolj pogosto?
- 7. Bor vsak večer gleda TV. Rad ima drame, komedije, znanstveno fantastiko in dokumentarce. Ko začne gledati ZF, le s težavo preklopi drugam. Verjetnosti, da zamenja program, so podane v prehodni matriki

$$P = \begin{bmatrix} 0.4 & 0.3 & 0.3 & 0 \\ 0.3 & 0.4 & 0.3 & 0 \\ 0.1 & 0.1 & 0.8 & 0 \\ 0.2 & 0.2 & 0.3 & 0.3 \end{bmatrix}.$$

- Pokaži, da so 1, $\frac{1}{2}$, $\frac{3}{10}$ in $\frac{1}{10}$ lastne vrednosti matrike P^{T} .
- Pokaži, da je $\mathbf{v} = \begin{bmatrix} 1 & 1 & 3 & 0 \end{bmatrix}^\mathsf{T}$ lastni vektor za P^T za lastno vrednost 1.
- Kaj lahko zaključiš o Borovih navadah?