Stacks and Moduli Spaces

Songyu Ye

September 7, 2025

Abstract

A detailed exploration of the theory of stacks and moduli spaces. We aim to bridge the abstract formalism of stacks with concrete examples, such as moduli spaces of vector bundles and principal bundles. The interplay between algebraic geometry, category theory, and topology is emphasized, showcasing the power of stacks as a unifying framework. Key results, including the Verlinde formula and the classification of principal bundles via loop groups, are discussed in depth.

Contents

1	Goa	ls	2		
	1.1	Statements from the general theory of stacks	2		
	1.2	Statements from moduli theory of Riemann surfaces			
2	Mot	ivating example $B\mathbb{Z}_2$	3		
	2.1	Category theory	5		
	2.2	The stack $B\mathbb{Z}_2$			
	2.3	Topological interpretation			
	2.4	BG in generality (note we have not defined stacks yet)			
3	Formalities 10				
	3.1	Grothendieck Topologies	10		
	3.2	On morphisms of schemes			
	3.3	Zariski Topology			
	3.4	Étale Topology			
	3.5	fppf Topology			
	3.6	fpqc Topology			
4	Stac	ks	16		
	4.1	k-spaces and k-stacks	17		

	4.2 Descent datum	
	4.3 Effective descent for modules along faithfully flat ring maps	19
	4.4 Extending to quasi-coherent sheaves on schemes	27
	4.5 Morphisms of k -stacks, fiber products, representable morphisms	29
	4.6 Examples of algebraic stacks	30
5	Uniformization	32
	5.1 Topological loop groups	32
	5.2 Algebraic loop groups	
	5.3 As a moduli stack	
	5.4 As a Grassmannian of lattices	
	5.5 The moduli stack $\operatorname{SL}_r(A_X) \setminus \operatorname{SL}_r(K) / \operatorname{SL}_r(\mathcal{O})$	
6	The central extension	39
	6.1 Fredholm group	39
	6.2 Algebraic setting	
	6.3 The determinant bundle	
7	Appendix: Morphisms of Schemes	45
8	Appendix: Associated Bundles	
9	References	49

1 Goals

We should try to understand the following results from various historical papers. Each of them really should merit its own discussion.

1.1 Statements from the general theory of stacks

Proposition 1.1. The stack */G, defined as the sheafification of $(*/G)^{naive}$, represents the following moduli problem:

$$(*/G)(X) = Groupoid of principal G-torsors over X.$$

Proposition 1.2. There is an equivalence of categories:

$$\operatorname{QCoh}(BG) \leftrightarrow \operatorname{QCoh}^G(pt) \leftrightarrow \operatorname{Rep}(G).$$

Theorem 1.3. For any morphism of schemes $X \to Y$, the functor h_X is a sheaf in the fppf topology (and therefore also in the etale topology) on the category of Y-schemes.

1.2 Statements from moduli theory of Riemann surfaces

There is a canonical isomorphism between two vector spaces associated to a Riemann surface X. The first of these spaces is the space of **conformal blocks** $\mathcal{B}_c(r)$ (also called the space of vacua), which plays an important role in conformal field theory.

Definition 1.4. Choose a point $p \in X$, and let A_X be the ring of algebraic functions on X - p. To each integer $c \ge 0$ is associated a representation V_c of the Lie algebra $\mathfrak{sl}_r(\mathbb{C}((z)))$, the **basic representation** of level c (more correctly it is a representation of the universal extension of $\mathfrak{sl}_r(\mathbb{C}((z)))$). The ring A_X embeds into $\mathbb{C}((z))$ by associating to a function its Laurent development at p; then $\mathcal{B}_c(r)$ is the space of linear forms on V_c which vanish on the elements A(z)v for $A(z) \in \mathfrak{sl}_r(A_X)$, $v \in V_c$.

The second space comes from algebraic geometry, and is defined as follows.

Definition 1.5. Let $SU_X(r)$ be the moduli space of semi-stable rank r vector bundles on X with trivial determinant. One can define a theta divisor on $SU_X(r)$ in the same way one does in the rank I case: one chooses a line bundle L on X of degree g-1, and considers the locus of vector bundles $E \in SU_X(r)$ such that $E \otimes L$ has a nonzero section. The associated line bundle L is called the **determinant bundle**; the space we are interested in is $H^0(SU_X(r), \mathcal{L}^c)$.

This space can be considered as a non-Abelian version of the space of c^{th} -order theta functions on the Jacobian of X, and is sometimes called the space of **generalized theta functions**.

We will prove that it is canonically isomorphic to $\mathcal{B}_c(r)$. This implies that $H^0(\mathcal{SU}_X(r),\mathcal{L}^c)$ satisfies the **fusion rules**, which allow to compute its dimension in a purely combinatorial way. A closed expression for this dimension is known as the **Verlinde formula**.

Theorem 1.6 (Verlinde formula). We have

$$\dim H^0(\mathcal{SU}_X(r), \mathcal{L}^c) = \left(\frac{r}{r+c}\right)^g \sum_{\substack{S \subset [1, r+c] \\ |S| = r}} \prod_{\substack{s \in S \\ t \notin S}} \left| 2\sin \pi \frac{s-t}{r+c} \right|^{g-1}$$

2 Motivating example $B\mathbb{Z}_2$

We begin by recalling vector bundles and Cech cohomology. A rank n vector bundle E over a topological space X is a topological space E together with a continuous map $\pi: E \to X$ such that:

1. For each $x \in X$, the fiber $\pi^{-1}(x)$ has the structure of an n-dimensional vector space.

- 2. For each $x \in X$, there is open U of x and a homeomorphism $\varphi : \pi^{-1}(U) \to U \times \mathbb{R}^n$ such that:
 - $\pi = \operatorname{pr}_1 \circ \varphi$ where $\operatorname{pr}_1 : U \times \mathbb{R}^n \to U$ is the projection.
 - For each $y \in U$, the restriction $\varphi|_{\pi^{-1}(y)} : \pi^{-1}(y) \to \{y\} \times \mathbb{R}^n$ is a linear isomorphism.

In particular, vector bundles can be glued together from local data using transition functions. Given an open cover $\{U_i\}_{i\in I}$ of X, a vector bundle can be specified by transition functions $g_{ij}: U_i \cap U_j \to \operatorname{GL}_n(\mathbb{R})$ satisfying the cocycle condition:

$$g_{ij} \cdot g_{jk} = g_{ik}$$
 on $U_i \cap U_j \cap U_k$

This naturally leads us to Čech cohomology, which provides a framework for understanding when local data can be glued to form global structures. For a sheaf \mathcal{F} on X and open cover $\mathcal{U} = \{U_i\}_{i \in I}$, we define the Čech complex:

$$\check{C}^0(\mathcal{U},\mathcal{F}) \to \check{C}^1(\mathcal{U},\mathcal{F}) \to \check{C}^2(\mathcal{U},\mathcal{F}) \to \cdots$$

where

$$\check{C}^k(\mathcal{U},\mathcal{F}) = \prod_{i_0 < i_1 < \dots < i_k} \mathcal{F}(U_{i_0} \cap \dots \cap U_{i_k})$$

and the coboundary map is given by:

$$(\delta s)_{i_0,\dots,i_{k+1}} = \sum_{j=0}^{k+1} (-1)^j s_{i_0,\dots,\hat{i_j},\dots,i_{k+1}} |_{U_{i_0}\cap\dots\cap U_{i_{k+1}}}$$

In particular, a 1-cochain is an arbitrary collection of sections $s_{ij} \in \mathcal{F}(U_i \cap U_j)$, a 1-cocycle is a collection of sections s_{ij} exactly satisfying the cocycle condition, and a 1-coboundary is a collection of sections of the form $s_i - s_j$ for some $s_i \in \mathcal{F}(U_i)$ and $s_j \in \mathcal{F}(U_j)$.

The cohomology of this complex gives the Čech cohomology groups $\check{H}^i(\mathcal{U}, \mathcal{F})$. We obtain the Cech cohomology groups $\check{H}^i(X, \mathcal{F})$ by taking the direct limit over all open covers of X. In particular, $\check{H}^1(X, \mathrm{GL}_n)$ classifies rank n vector bundles on X, where GL_n is the sheaf of functions $X \to \mathrm{GL}_n(\mathbb{R})$.

The key takeaway is that isomorphism classes of vector bundles on X are classified by elements of $\check{H}^1(X, \mathrm{GL}_n)$, and that this cohomology group captures symmetries of the fiber $\mathrm{Aut}(V) = \mathrm{GL}_n(\mathbb{R})$ and how these symmetries can be glued together to form a global object. These concepts will be generalized as we develop the theory of stacks and algebraic spaces.

2.1 Category theory

Definition 2.1. Let C, D be categories and $F, G : C \to D$ be functors. A **natural transformation** $\eta : F \to G$ is a collection of morphisms $\eta_X : F(X) \to G(X)$ for each object $X \in C$ such that for any morphism $f : X \to Y$ in C, the following diagram commutes:

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\eta_X \downarrow \qquad \qquad \downarrow \eta_Y$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

A natural transformation is an **isomorphism** if each η_X is an isomorphism in \mathcal{D} .

Definition 2.2. Let C, D be categories. A functor $F : C \to D$ is an **equivalence** if there exists a functor $G : D \to C$ and natural isomorphisms $\mu : G \circ F \to id_C$ and $\nu : F \circ G \to id_D$.

Proposition 2.3. Let C, D be categories. A functor $F : C \to D$ is an equivalence if and only if it is full, faithful, and essentially surjective. This means that

- Full: For any $X, Y \in \mathcal{C}$, the map $\operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ is surjective.
- Faithful: For any $X, Y \in \mathcal{C}$, the map $\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y))$ is injective.
- Essentially surjective: For any $Z \in \mathcal{D}$, there exists $X \in \mathcal{C}$ such that $F(X) \simeq Z$ where \simeq denotes isomorphism in \mathcal{D} .

Definition 2.4 (Fiber Product of Groupoids). If A, B, and C are groupoids, and $F: A \to C$ and $G: B \to C$ are functors, then the fiber product $A \times_C B$ is the groupoid defined as follows:

- Objects: Triples (a,b,ϕ) where $a \in ob(A)$, $b \in ob(B)$, and $\phi : F(a) \xrightarrow{\sim} G(b)$ is an isomorphism in C
- Morphisms: A morphism $(a,b,\phi) \to (a',b',\phi')$ consists of a pair (φ,ψ) of isomorphisms $\varphi: a \xrightarrow{\sim} a', \psi: b \xrightarrow{\sim} b'$ so that

$$F(a) \xrightarrow{\phi} F(b)$$

$$F(\varphi) \downarrow \qquad \qquad \downarrow G(\psi)$$

$$F(a') \xrightarrow{\phi'} F(b').$$

Example 2.5. The fiber product of $*\times_{(*/G)}*$, where * is the trivial groupoid, is given by:

$$\begin{array}{ccc}
G & \longrightarrow * \\
\downarrow & & \downarrow \\
* & \longrightarrow */G.
\end{array}$$

where G represents the set of elements of the group G thought of as a set in \mathbf{Gpd} . This follows directly from the construction of fiber products described above.

2.2 The stack $B\mathbb{Z}_2$

Consider the group $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ with the discrete topology. We will answer the question: for a topological space T, what are the T-points of $B\mathbb{Z}_2 = */\mathbb{Z}_2$, i.e. a map $T \to B\mathbb{Z}_2$? It turns out that these correspond to principal \mathbb{Z}_2 -torsors on T, i.e. a space P with a free transitive action of \mathbb{Z}_2 with a map $P \to T$ that is \mathbb{Z}_2 -equivariant.

Our first guess to define the functor of points of $B\mathbb{Z}_2$, which we shall call $(*/\mathbb{Z}_2)^{\text{naive}}$: Top \to Gpd, is given by $(*/\mathbb{Z}_2)^{\text{naive}}(T) = \text{Maps}(T,*)/\text{Maps}(T,\mathbb{Z}_2) = */\text{Maps}(\mathbb{Z}_2^{\pi_0(T)})$. This is almost right; however, this functor into groupoids does not actually define a sheaf.

To see this, let $T = S^1$. We see that $(*/\mathbb{Z}_2)^{\text{naive}}(S^1) = */\text{Maps}(S^1, \mathbb{Z}_2) = */\mathbb{Z}_2$, where the latter is thought of as just the groupoid. Now, a sheaf is characterized by the property that compatible local sections patch uniquely into global sections. Cover S^1 by two open arcs U_0 and U_1 such that $U_0 \cup U_1 = S^1$, and such that $U_0 \cap U_1$ consists of two disconnected arcs $A \sqcup B$.

We see that

$$(*/\mathbb{Z}_2)^{\text{naive}}(U_0) = */\mathbb{Z}_2,\tag{1}$$

$$(*/\mathbb{Z}_2)^{\text{naive}}(U_1) = */\mathbb{Z}_2 \tag{2}$$

and

$$(*/\mathbb{Z}_2)^{\text{naive}}(U_0 \cap U_1) = */(\mathbb{Z}_2 \times \mathbb{Z}_2), \tag{3}$$

since $U_0 \cap U_1 = A \sqcup B$ has two disconnected components. The restrictions $\operatorname{res}_{U_0 \cap U_1}^{U_0}$ and $\operatorname{res}_{U_0 \cap U_1}^{U_1}$ both correspond to the diagonal embedding $\Delta : */\mathbb{Z}_2 \to */(\mathbb{Z}_2 \times \mathbb{Z}_2)$. Therefore, if $(*/\mathbb{Z}_2)^{\text{naive}}$ were to be a sheaf, we need that

$$*/\mathbb{Z}_2^{\text{naive}}(S^1) = */\mathbb{Z}_2 \times_{*/(\mathbb{Z}_2 \times \mathbb{Z}_2)} */\mathbb{Z}_2$$

where this fiber product is taken in the category of groupoids.

We can check that the objects of the category $*/\mathbb{Z}_2 \times_{*/(\mathbb{Z}_2 \times \mathbb{Z}_2)} */\mathbb{Z}_2$ are given by triples (*,*,g) where $g \in \mathbb{Z}_2 \times \mathbb{Z}_2$. Morphisms from (*,*,g) to (*,*,g') are pairs of isomorphisms $\phi : *_A \to *_A$ and $\psi : *_B \to *_B$ so that

$$\begin{array}{ccc}
*_{C} & \xrightarrow{g_{C}} & *_{C} \\
F(\varphi) \downarrow & & \downarrow G(\psi) \\
*_{C} & \xrightarrow{g_{C}'} & *_{C}
\end{array}$$

in particular pairs of elements $\phi \in \Delta_{\mathbb{Z}/2}$ and $\psi \in \Delta_{\mathbb{Z}/2}$ so that $\phi g = g'\psi$.

1. Consider the morphisms from (e, e) to (e, e). If $\psi = \phi = \Delta(e)$ then

$$(e, e) * \Delta(e) = (e, e) = (e, e) * \Delta(e)$$

If $\psi = \phi = \Delta(g)$ then similarly

$$(e,e) * \Delta(g) = (g,g) = (e,e) * \Delta(g)$$

However if $\psi = \Delta(e)$ and $\phi = \Delta(g)$ then

$$(e, e) * \Delta(q) = (q, q) \neq (e, e) = (e, e) * \Delta(e)$$

and similarly if $\psi = \Delta(g)$ and $\phi = \Delta(e)$.

- 2. The morphisms from (g, g) to (g, g) are similar.
- 3. The morphisms from (e,e) to (g,g) are $\phi=\Delta(g), \psi=\Delta(e)$ and $\phi=\Delta(e), \psi=\Delta(g)$. Likewise for the morphisms from (g,g) to (e,e).
- 4. There are no morphisms from (e, g) to (e, e).

So one connected component of the fiber product is the following category C. It has two objects (e,e) and (g,g) and

$$\operatorname{Hom}((e, e), (e, e)) = \operatorname{Hom}((g, g), (g, g)) = \{(e, e), (g, g)\}\$$

 $\operatorname{Hom}((e, e), (g, g)) = \operatorname{Hom}((g, g), (e, e)) = \{(e, g), (g, e)\}\$

This category is equivalent to the groupoid $*/\mathbb{Z}_2$. There is a functor $F: \mathcal{C} \to */\mathbb{Z}_2$ which we will

define as follows. We send all objects to * and

$$(e,e) \in \operatorname{Hom}((e,e),(e,e)) \mapsto e \in \operatorname{Hom}(*,*)$$

$$(g,g) \in \operatorname{Hom}((e,e),(e,e)) \mapsto g \in \operatorname{Hom}(*,*)$$

$$(e,e) \in \operatorname{Hom}((g,g),(g,g)) \mapsto e \in \operatorname{Hom}(*,*)$$

$$(g,g) \in \operatorname{Hom}((g,g),(g,g)) \mapsto g \in \operatorname{Hom}(*,*)$$

$$(e,g) \in \operatorname{Hom}((e,e),(g,g)) \mapsto e \in \operatorname{Hom}(*,*)$$

$$(g,e) \in \operatorname{Hom}((e,e),(g,g)) \mapsto g \in \operatorname{Hom}(*,*)$$

$$(e,g) \in \operatorname{Hom}((g,g),(e,e)) \mapsto e \in \operatorname{Hom}(*,*)$$

$$(g,e) \in \operatorname{Hom}((g,g),(e,e)) \mapsto g \in \operatorname{Hom}(*,*)$$

In terms of compatibility, since we have that $(g,g)=(e,g)\circ(g,e)$ as a morphism from (e,e) to (g,g) to (e,e) which maps to g, we must insist that $(e,g)\mapsto e$ and $(g,e)\mapsto g$ or vice versa. The functoriality constraints manifest themselves in this form.

The functor $G: */\mathbb{Z}_2 \to \mathcal{C}$ is defined in the following way.

$$* \mapsto (e, e)$$
$$e \mapsto (e, e)$$
$$q \mapsto (q, q)$$

Finally it remains to check that F and G define an equivalence of categories, in particular that $F \circ G \simeq \mathrm{id}_{*/\mathbb{Z}_2}$ and $G \circ F \simeq \mathrm{id}_{\mathcal{C}}$. Certainly the first equivalence is clear. As for the second equivalence, I will give a natural transformation $\mu: H = GF \to \mathrm{id}_{\mathcal{C}}$ which will in fact be a natural isomorphism. In particular, for the objects (e,e) and (g,g) we define the following morphisms

$$\mu_{(e,e)}: H(e,e) \to \mathrm{id}(e,e)$$

$$\mu_{(g,g)}: H(g,g) \to \mathrm{id}(g,g)$$

by

$$\mu_{(e,e)}: (e,e) \to (e,e) \quad \mu_{(e,e)} = (e,e)$$

 $\mu_{(g,g)}: (e,e) \to (g,g) \quad \mu_{(g,g)} = (e,g)$

These are clearly isomorphisms. The naturality of μ is tedious to check but straightforward. Alternatively, we can verify that $F: \mathcal{C} \to */\mathbb{Z}_{\in}$ is an equivalence by checking that it is full, faithful, and essentially surjective. In fact, after writing this, I realize that this is the easier way to check that F is an equivalence.

This establishes that the fiber product $*/\mathbb{Z}_2 \times_{*/(\mathbb{Z}_2 \times \mathbb{Z}_2)} */\mathbb{Z}_2$ is a disjoint union of two copies of $*/\mathbb{Z}_2$. On the other hand, we have already seen that $(*/\mathbb{Z}_2)^{\text{naive}}(S^1) = */\mathbb{Z}_2$. Therefore, the naive functor $(*/\mathbb{Z}_2)^{\text{naive}}$ is not a sheaf. Thus we need to sheafify/stackify this functor to obtain the correct functor of points of $B\mathbb{Z}_2$. This regards the naive functor as true "only locally", and builds the general functor by gluing these local functors. This is the true definition of the functor of points of $B\mathbb{Z}_2$.

2.3 Topological interpretation

In the topological setting, we can define the stack $*/\mathbb{Z}_2$ directly. Recall that for any space T, we have the corresponding fundamental groupoid $\pi_{\leq 1}(T)$. Then we can define:

$$(*/\mathbb{Z}_2)(T) = \operatorname{Fun}(\pi_{<1}(T), */\mathbb{Z}_2),$$
 (4)

where the isomorphisms are given by natural isomorphisms of functors. This is automatically a sheaf, and it tells us why the naive $*/\mathbb{Z}_2$ did not work for S^1 : the fundamental group of S^1 is nontrivial. On the other hand, for simply connected test spaces T, the naive functor does indeed give the correct groupoid.

Given a general space X, we use a good cover of X; i.e., one for which all the open sets and finite intersections of the open sets in the cover are contractible. (In fact, we can relax this constraint: we need only have all single, double, and triple intersections in our open cover be **simply-connected**.)

Gluing two sections $\pi_{\leq 1}(U_i \cap U_j) \to */\mathbb{Z}_2$ and $\pi_{\leq 1}(U_j \cap U_j) \to */\mathbb{Z}_2$ (which we imagine to be coming from $\pi_{\leq 1}(U_i) \to */\mathbb{Z}_2$ and $\pi_{\leq 1}(U_j) \to */\mathbb{Z}_2$, respectively) is the same as providing a natural transformation between these two functors $\pi_{\leq 1}(U_i \cap U_j) \to */\mathbb{Z}_2$. Since $\pi_{\leq 1}(U_i \cap U_j)$ is equivalent to trivial category *, we see that this is the same as an isomorphism $* \to *$ in $*/\mathbb{Z}_2$; i.e., and element \mathbb{Z}_2 , which we call g_{ji} . We see that the g_{ji} must satisfy a cocycle condition, and that two cocycles correspond to the same family if the usual coboundary equivalence holds. Thus we have that

$$(*/Z_2)(X) =$$
 Groupoid of 2-point families over X

2.4 BG in generality (note we have not defined stacks yet)

Proposition 2.6. The stack */G, defined as the sheafification of $(*/G)^{naive}$, represents the following moduli problem:

$$(*/G)(X) = Groupoid of principal G-torsors over X.$$

Definition 2.7. Let G be an algebraic group. The classifying stack BG = */G is the stack whose S-points are BG(S) = groupoid of principal G-bundles on S.

For exactly the formal reasons outlined above (in the topological setting), this is the sheafification of

$$(*/G)^{\mathrm{naive}}:S\mapsto */G(S).$$

We note that there is a canonical map of stacks $* \to */G$. For an arbitrary test-scheme S, the composition of the map $S \to *$ with the vertical quotient map must provide us with a particular

isomorphism class of G-torsor over S: this is simply the trivial G-torsor. And given a torsor P over S and the bottom map is the corresponding map $S \to */G$, we have a Cartesian diagram:

$$P \longrightarrow * \downarrow \downarrow \downarrow S \stackrel{P}{\longrightarrow} */G.$$

Because any isomorphism class of torsor can thus be "pulled back" from the torsor $*\to */G$ along a map $S\to */G$, we say that $*\to */G$ is the "universal G-torsor."

3 Formalities

We introduce formal framework underlying the theory of stacks, beginning with Grothendieck topologies and their role in defining sheaves on sites. We then explore the foundational concepts of morphisms of schemes, which are essential for understanding the various topologies used in algebraic geometry, such as the Zariski, étale, fppf, and fpqc topologies. These topologies provide the scaffolding for the definition of stacks, which generalize sheaves to categories fibered in groupoids.

3.1 Grothendieck Topologies

Definition 3.1 (Grothendieck Topology). A Grothendieck topology J on a category C assigns to each object U in C a collection J(U) of families of morphisms $\{f_i: U_i \to U\}_{i \in I}$ (called covering families or sieves) satisfying:

- 1. Stability under isomorphism: If $\{f_i: U_i \to U\}_{i \in I} \in J(U)$ and $g: V \to U$ is an isomorphism, then $\{f_i \circ g^{-1}: U_i \to V\}_{i \in I} \in J(V)$.
- 2. Stability under base change: If $\{f_i: U_i \to U\}_{i \in I} \in J(U)$ and $g: V \to U$ is any morphism, then the family of pullbacks $\{V \times_U U_i \to V\}_{i \in I} \in J(V)$.
- 3. **Transitivity**: If $\{f_i: U_i \to U\}_{i \in I} \in J(U)$ and for each $i \in I$, we have

$$\{g_{ij}: V_{ij} \to U_i\}_{j \in J_i} \in J(U_i)$$

then the composite family $\{f_i \circ g_{ij} : V_{ij} \to U\}_{i \in I, j \in J_i} \in J(U)$.

Definition 3.2 (Site). A site is a category C equipped with a Grothendieck topology.

Example 3.3. Let C be the category of open sets in a topological space X, with inclusions as morphisms. We can define a Grothendieck topology by declaring a family $\{U_i \hookrightarrow U\}_{i \in I} \in J(U)$ if

and only if $\bigcup_{i \in I} U_i = U$. This is called the **small classical site**.

If X is a scheme, we can do the same thing with the category of Zariski open sets. This is called the **small Zariski site**.

Example 3.4. Let X be a scheme, and let \mathcal{C} be the category of X-schemes. For $(U \to X) \in \mathcal{C}$ define Cov(U) to be the set of collections of X-morphisms $\{U_i \to U\}_{i \in I}$ for which each $U_i \to U$ is an open embedding and $U = \bigcup_{i \in I} U_i$. Then Cov defines a Grothendieck topology on \mathcal{C} , called the **big Zariski topology** on the category of X-schemes.

Remark 3.5. Recall the small classical site for a topological space X. The key observation is that the notion of a sheaf on X depends only on the underlying category of opens and the distinguished collections of maps $\{U_i \to U\}$ which are coverings. This abstraction allows us to generalize the concept of sheaves beyond topological spaces to any category equipped with a notion of "covering," which is precisely what a Grothendieck topology provides.

In other words, once we have defined a Grothendieck topology on a category, we can define and work with sheaves in exactly the same way as we do for topological spaces, without requiring any underlying topological structure. This allows us to work with sheaves on schemes, algebraic spaces, and stacks using various topologies (Zariski, étale, fppf, etc.).

Definition 3.6 (Sheaf on a Site). Let (C, J) be a site. A presheaf $F : C^{op} \to \mathbf{Sets}$ is a **sheaf** if for every covering family $\{f_i : U_i \to U\}_{i \in I} \in J(U)$, the following sequence is exact:

$$F(U) \to \prod_{i \in I} F(U_i) \Longrightarrow \prod_{i,j \in I} F(U_i \times_U U_j)$$

where the two parallel arrows represent the two natural projections.

3.2 On morphisms of schemes

We include a few definitions and results about morphisms of schemes which are relevant to the Grothendieck topologies we will introduce. For more general details, see the Appendix.

Definition 3.7. If A is a ring and M is an A-module, then M is called of **finite presentation** if there exists an exact sequence

$$A^r \to A^s \to M \to 0$$

for some integers r and s. Note that in the case when A is noetherian, this is equivalent to M being finitely generated (as the kernel of any surjection $A^s \to M$ is automatically finitely generated), but in general M being of finite presentation is a stronger condition than being finitely generated.

If $A \to B$ is a ring homomorphism, then we say that B is of finite presentation over A (or that B is a finitely presented A-algebra) if there exists a surjection

$$\pi: A[X_1,\ldots,X_s] \to B$$

with kernel $Ker(\pi)$ a finitely generated ideal in $A[X_1, \ldots, X_s]$. If A is noetherian this is equivalent to B being a finitely generated A-algebra, but in general B being of finite presentation is a stronger condition than being finitely generated.

Let X be a scheme. A quasi-coherent sheaf \mathcal{F} on X is called **locally finitely presented** if for every affine open subset $\operatorname{Spec}(B) \subset X$ the module $\Gamma(\operatorname{Spec}(B), \mathcal{F})$ is a finitely presented B-module.

Note that if X is locally noetherian then a quasi-coherent sheaf is locally finitely presented if and only if it is coherent.

In the case when Y is noetherian, the morphism f is locally of finite presentation if and only if f is locally of finite type, and finitely presented if and only if of finite type.

Definition 3.8 (Flat Module). Let R be a ring and let M be an R-module. We say that M is **flat** over R if the functor $M \otimes_R - : Mod_R \to Mod_R$ is exact.

Equivalently, M is flat if for every injective homomorphism of R-modules $N_1 \to N_2$, the induced map $M \otimes_R N_1 \to M \otimes_R N_2$ is also injective. This is because the functor $M \otimes_R -$ is right exact, so we only need to check that it preserves injections.

Proposition 3.9 (Characterizations of Flatness). For an R-module M, the following are equivalent:

- 1. M is flat over R.
- 2. For every ideal $I \subseteq R$, the natural map $I \otimes_R M \to IM$ is an isomorphism.
- 3. For every finitely generated ideal $I \subseteq R$, the natural map $I \otimes_R M \to IM$ is an isomorphism.
- 4. $Tor_1^R(M, R/I) = 0$ for every ideal $I \subseteq R$.
- 5. $Tor_1^R(M, N) = 0$ for every R-module N.

Proof. We'll prove the equivalence through a cycle of implications.

 $(5) \Rightarrow (4)$: This is immediate, as we're restricting to the special case where N = R/I.

 $(4) \Rightarrow (3)$: Let $I \subseteq R$ be a finitely generated ideal. Consider the exact sequence

$$0 \to I \to R \to R/I \to 0$$

Applying $- \otimes_R M$, we get the long exact sequence for Tor:

$$\cdots \to \operatorname{Tor}_1^R(R,M) \to \operatorname{Tor}_1^R(R/I,M) \to I \otimes_R M \to R \otimes_R M \to (R/I) \otimes_R M \to 0$$

Since R is free (hence flat), $\operatorname{Tor}_1^R(R,M)=0$. By assumption (4), $\operatorname{Tor}_1^R(R/I,M)=0$. Thus, the sequence becomes

$$0 \to I \otimes_R M \to M \to M/IM \to 0$$

which shows that $I \otimes_R M \cong IM$, as required.

(3) \Rightarrow (2): Let $I \subseteq R$ be any ideal. We can write I as the direct limit of its finitely generated subideals: $I = \varinjlim I_{\alpha}$.

Since tensor products commute with direct limits, we have:

$$I \otimes_{R} M = (\varinjlim I_{\alpha}) \otimes_{R} M$$

$$\cong \varinjlim (I_{\alpha} \otimes_{R} M)$$

$$\cong \varinjlim I_{\alpha} M \quad \text{(by assumption (3))}$$

$$= IM$$

- (2) \Rightarrow (5): The proof of this proposition uses the fact that any module can be built from modules of the form R/I through direct limits and extensions, and Tor preserves these constructions.
- (5) \Rightarrow (1): This is the definition of flatness. If $\operatorname{Tor}_1^R(M,N)=0$ for all R-modules N, then $M\otimes_R-1$ is exact, which means M is flat.
- (1) \Rightarrow (5): If M is flat, then $M \otimes_R -$ is an exact functor, which implies $\operatorname{Tor}_1^R(M,N) = 0$ for all R-modules N. \square

Let Sch denote the category of schemes. Before defining the following Grothendieck topologies (Zariski, étale, fppf, and fpqc), we recall several types of morphisms in algebraic geometry.

Definition 3.10. *Let* $f: X \to Y$ *be a morphism of schemes.*

1. f is **flat** if for every point $x \in X$, the induced map on local rings $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ makes $\mathcal{O}_{X,x}$ into a flat $\mathcal{O}_{Y,f(x)}$ -module.

- 2. f is **locally of finite presentation** if Y can be covered by affine open subsets $V_i = \operatorname{Spec} B_i$ such that for each i, $f^{-1}(V_i)$ can be covered by affine open subsets $U_{ij} = \operatorname{Spec} A_{ij}$ where each A_{ij} is a finitely presented B_i -algebra.
- 3. f is locally of finite type if Y can be covered by affine open subsets $V_i = \operatorname{Spec} B_i$ such that for each i, $f^{-1}(V_i)$ can be covered by affine open subsets $U_{ij} = \operatorname{Spec} A_{ij}$ where each A_{ij} is a finitely generated B_i -algebra.
- 4. f is quasi-compact if for every quasi-compact open subset $V \subseteq Y$, the preimage $f^{-1}(V)$ is quasi-compact.
- 5. f is faithfully flat if f is flat and surjective.
- 6. f is unramified if it is locally of finite presentation and the relative cotangent sheaf $\Omega_{X/Y}$ vanishes.
- 7. *f is* **étale** *if it is flat and unramified, or equivalently, if it is flat, locally of finite presentation, and has relative dimension* 0.
- 8. f is of finite presentation (or a finitely presented morphism) if f is locally of finite presentation and quasi-compact and quasi-separated (recall that by definition a morphism of schemes $f: X \to Y$ is quasi-separated if the diagonal morphism is quasi-compact).

3.3 Zariski Topology

Definition 3.11. The **Zariski topology** J_{Zar} on **Sch** is defined as follows: A family of morphisms $\{f_i: U_i \to U\}_{i \in I}$ is a **Zariski** covering if:

- 1. Each f_i is an open immersion.
- 2. The images of the f_i collectively cover U, i.e., $\bigcup_{i \in I} f_i(U_i) = U$.

Remark 3.12. The Zariski topology corresponds most closely to the classical notion of a topological covering and is the coarsest of the four topologies discussed here. For an affine scheme $\operatorname{Spec}(R)$, a standard Zariski covering arises from a set of elements $\{f_i\}$ generating the unit ideal in R, giving the covering $\{\operatorname{Spec}(R_{f_i}) \to \operatorname{Spec}(R)\}$.

3.4 Étale Topology

Definition 3.13. The **étale topology** $J_{\acute{e}t}$ on **Sch** is defined as follows: A family of morphisms $\{f_i: U_i \to U\}_{i \in I}$ is an étale covering if:

- 1. Each f_i is étale.
- 2. The family is jointly surjective, i.e., $\bigcup_{i \in I} f_i(U_i) = U$.

Proposition 3.14. Let X be a scheme. The following are equivalent for a morphism $f: Y \to X$:

- 1. f is étale.
- 2. f is flat, locally of finite presentation, and for every $y \in Y$, the fiber $Y_{\kappa(f(y))}$ is a disjoint union of spectra of finite separable field extensions of $\kappa(f(y))$.
- 3. f is locally of finite presentation and formally étale, meaning that for every affine X-scheme Z and every nilpotent closed subscheme $Z_0 \subset Z$, the induced map

$$\operatorname{Hom}_X(Z,Y) \to \operatorname{Hom}_X(Z_0,Y)$$

is bijective.

Example 3.15. If L/K is a finite separable field extension, then $\operatorname{Spec}(L) \to \operatorname{Spec}(K)$ is an étale morphism. More generally, if R is a ring and S is a finite étale R-algebra, then $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ is an étale covering.

3.5 fppf Topology

Definition 3.16. The **fppf topology** (fidèlement plat et de présentation finie) J_{fppf} on **Sch** is defined as follows: A family of morphisms $\{f_i: U_i \to U\}_{i \in I}$ is an fppf covering if:

- 1. Each f_i is flat and locally of finite presentation.
- 2. The family is jointly surjective, i.e., $\bigcup_{i \in I} f_i(U_i) = U$.

Example 3.17. If R is a ring and p prime, the morphism $\operatorname{Spec}(R[x]/(x^p - a)) \to \operatorname{Spec}(R)$ for $a \in R$ is flat and of finite presentation, but generally not étale in characteristic p.

Theorem 3.18 (Grothendieck). Let G be an affine group scheme of finite type over a scheme S. Then any G-torsor over S is trivial in the fppf topology.

3.6 fpqc Topology

Provides the most general framework for descent theory.

Definition 3.19. The **fpqc topology** (fidèlement plat et quasi-compact) J_{fpqc} on **Sch** is defined as follows: A family of morphisms $\{f_i: U_i \to U\}_{i \in I}$ is an fpqc covering if:

- 1. Each f_i is flat and quasi-compact.
- 2. The family is jointly surjective, i.e., $\bigcup_{i \in I} f_i(U_i) = U$.

Proposition 3.20. Let G be a quasi-compact and quasi-separated group scheme over a scheme S. If P is a G-torsor over S in the fpqc topology, then P is already a G-torsor in the fppf topology.

The four topologies form a hierarchy of refinements:

Theorem 3.21. For the category Sch of schemes, the following inclusions hold:

$$J_{Zar} \subset J_{\acute{e}t} \subset J_{fppf} \subset J_{fpqc}$$

That is, every Zariski covering is an étale covering, every étale covering is an fppf covering, and every fppf covering is an fpqc covering.

Definition 3.22. Let G be a group scheme over a scheme S, and let X be an S-scheme. A **principal** G-bundle over X is an X-scheme P with a right G-action $P \times_S G \to P$ such that the morphism $P \to X$ is locally trivial with respect to a given G-rothendieck topology G on G-schemes over G-action G-schemes over G-sch

Proposition 3.23. Let G be a group scheme over a scheme S.

- 1. If G is smooth over S, then every principal G-bundle that is fppf-locally trivial is also étale-locally trivial.
- 2. If G is finite and étale over S, then every principal G-bundle that is étale-locally trivial is also Zariski-locally trivial.
- 3. In general, a principal G-bundle that is fpqc-locally trivial is also fppf-locally trivial.

4 Stacks

Definition 4.1 (Category fibered in groupoids). A category fibered in groupoids over a category C is a functor $p : \mathcal{F} \to C$ such that:

1. For every morphism $f: U \to V$ in C and every object $y \in F$ with p(y) = V, there exists an

object $x \in \mathcal{F}$ and a morphism $\phi : x \to y$ in \mathcal{F} such that $p(\phi) = f$.

2. For every pair of morphisms $\phi: x \to z$ and $\psi: y \to z$ in \mathcal{F} and every morphism $f: p(x) \to p(y)$ in \mathcal{C} such that $p(\psi) \circ f = p(\phi)$, there exists a unique morphism $\chi: x \to y$ in \mathcal{F} such that $\psi \circ \chi = \phi$ and $p(\chi) = f$.

4.1 k-spaces and k-stacks.

Definition 4.2 (k-space, k-group). A **k-space** (resp. **k-group**) is a sheaf of sets (resp. groups) over the big site (Aff /k)_{fppf}.

Definition 4.3 (Lax functor). A lax functor \mathcal{X} : Aff $/k^{op} \to \mathbf{Gpd}$ associates to any $U \in \mathrm{ob}(\mathrm{Aff}/k)$ a groupoid $\mathcal{X}(U)$ and to every arrow $f: U' \to U$ in Aff /k a functor $f^*: \mathcal{X}(U) \to \mathcal{X}(U')$ together with isomorphisms of functors $g^* \circ f^* \simeq (f \circ g)^*$ for every arrow $g: U'' \to U'$ in Aff /k. These isomorphisms should satisfy the following compatibility relation: for $h: U''' \to U''$ the following diagram commutes:

$$h^* \circ g^* \circ f^* \xrightarrow{\sim} h^* (f \circ g)^*$$

$$\downarrow^{\sim} \qquad \qquad \downarrow^{\sim}$$

$$(g \circ h)^* f^* \xrightarrow{\sim} (f \circ g \circ h)^*$$

If $x \in ob(\mathcal{X}(U))$ and $f: U' \to U$ it is convenient to denote $f^*x \in ob(\mathcal{X}(U'))$ by $x|_{U'}$.

Definition 4.4. A lax functor is a k-stack if it satisfies the following two topological properties:

(i) For every $U \in \text{ob}(\text{Aff }/k)$ and all $x, y \in \text{ob}(\mathcal{X}(U))$ the presheaf

$$\operatorname{Isom}(x,y):\operatorname{Aff}/U\to\operatorname{\mathbf{Set}},\quad (U'\to U)\mapsto\operatorname{Hom}_{\mathcal{X}(U')}(x|_{U'},y|_{U'})$$

is a sheaf (with respect to the fppf topology on Aff/U).

(ii) Every descent datum is effective.

Remark 4.5. Any **k-space** X may be seen as a **k-stack**, by considering a set as a groupoid (with the identity as the only morphism). Conversely, any **k-stack** X such that X(R) is a discrete groupoid (i.e., has only the identity as automorphisms) for all affine k-schemes U, is a **k-space**.

4.2 Descent datum

Definition 4.6 (Descent datum, effective descent datum). A descent datum for a lax functor \mathcal{X} for a covering family $\{U_i \xrightarrow{\varphi_i} U\}_{i \in I}$ is a system of the form $(x_i, \varphi_{ji})_{i,j \in I}$ with the following properties: each x_i is an object of $\mathcal{X}(U_i)$, and each $\varphi_{ji} : x_i|_{U_{ji}} \to x_j|_{U_{ji}}$ is an arrow in $\mathcal{X}(U_{ji})$. Moreover, we have the co-cycle condition

$$\varphi_{ki}|_{U_{kji}} = \varphi_{kj}|_{U_{kji}} \circ \varphi_{ji}|_{U_{kji}}$$

where $U_{ji} = U_j \times_U U_i$ and $U_{kji} = U_k \times_U U_j \times_U U_i$, for all i, j, k.

A descent datum is **effective** if there exists an object $x \in \mathcal{X}(U)$ and invertible arrows $\varphi_i : x|_{U_i} \xrightarrow{\sim} x_i$ in $\mathcal{X}(U_i)$ for each i such that

$$\varphi_j|_{U_{ji}} = \varphi_{ji} \circ \varphi_i|_{U_{ji}}$$

for all $i, j \in I$.

The most classical form of descent data is faithfully flat descent for quasicoherent sheaves.

Theorem 4.7 (Faithfully flat descent). Let k be a field. Then the following hold:

(i) (Faithfully flat descent for morphisms) For any k-scheme Z the functor of points

$$\operatorname{Hom}_{(\mathbf{Aff}/k)}(-,Z):(\mathbf{Aff}/k)^{\operatorname{op}}\to\mathbf{Set}$$

is a k-space.

(ii) (Faithfully flat descent for flat families of quasi-coherent sheaves) For any scheme Z, the lax functor $(\mathbf{Aff}/k)^{\mathrm{op}} \to \mathbf{Gpd}$ defined by

$$S \mapsto \{quasi\text{-}coherent \ \mathcal{O}_{Z \times_k S}\text{-}modules \ flat \ over \ S\} + \{isomorphisms\}$$

is a k-stack.

More verbosely, we have the following theorem from [4].

Theorem 4.8. Let $f: T' \to T$ be a flat morphism of schemes. Assume, further, that f is surjective and either quasi-compact or locally of finite presentation.

(a) Let \mathcal{E}' be a quasi-coherent sheaf on T' and $\varphi: p_1^*\mathcal{E}' \to p_2^*\mathcal{E}'$ an isomorphism on T'' such that

$$p_{23}^*\varphi\circ p_{12}^*\varphi=p_{13}^*\varphi$$

on T'''. Then there exists a quasi-coherent sheaf \mathcal{E} on T and an isomorphism $\lambda: f^*\mathcal{E} \to \mathcal{E}'$ on T' satisfying

$$p_2^*\lambda = \varphi \circ p_1^*\lambda$$

on T''. Moreover the pair consisting of the sheaf \mathcal{E} and the isomorphism λ is unique up to canonical isomorphism.

(b) With notation as in (a), suppose (\mathcal{F}', ψ) is another descent datum with solution given by \mathcal{F} and μ . Then, for every morphism $h': \mathcal{E}' \to \mathcal{F}'$ on T' satisfying

$$p_2^*h'\circ\varphi=\psi\circ p_1^*h'$$

on T", there is a unique morphism $h: \mathcal{E} \to \mathcal{F}$ on T such that $\mu \circ f^*h = h' \circ \lambda$ on T'.

4.3 Effective descent for modules along faithfully flat ring maps

The general case of Theorem 4.8 will be reduced to the affine case, which amounts to some of the following commutative algebra. No Noetherian or finiteness conditions on either rings or modules are required.

Definition 4.9 (Flat and faithfully flat homomorphisms). A homomorphism $A \to A'$ of commutative rings with unit is **flat** if, for any exact sequence $M_1 \to M_2 \to M_3$ of A-modules, the induced sequence $A' \otimes_A M_1 \to A' \otimes_A M_2 \to A' \otimes_A M_3$ (of A'-modules) is exact. The homomorphism is called **faithfully flat** if it is flat and the corresponding map $\operatorname{Spec}(A') \to \operatorname{Spec}(A)$ is surjective.

Exercise 4.10. 1. Show that a flat homomorphism $A \to A'$ is faithfully flat if and only if, for any nonzero A-module M, $A' \otimes_A M \neq 0$.

- 2. Show that a homomorphism $A \to A'$ is faithfully flat if and only if the following condition is satisfied: a sequence $M' \to M \to M''$ of A-modules is exact if and only if the sequence $A' \otimes_A M' \to A' \otimes_A M \to A' \otimes_A M''$ is exact.
- 1. Suppose that $A \to A'$ is faithfully flat. We can consider a cyclic submodule of M, and it is enough to show that this will be nonzero upon tensoring with A'. But every cyclic submodule looks like A/I for some ideal $I = \operatorname{Ann}_A(m)$. Pick a prime containing I. Such a prime exists by Zorn's lemma, in particular the set of ideals $\{J \subseteq A \mid I \subseteq J, J \neq A\}$ has a maximal element, and such a maximal element must be a prime ideal. Let $\mathfrak p$ be such a prime ideal containing I, and let $\mathfrak q$ be the prime ideal of A' lying over $\mathfrak p$. Then

$$IA' \subseteq \mathfrak{p}A' \subseteq \mathfrak{q} \neq A',$$

so A'/IA' is nonzero. Conversely, we can let $M=k(\mathfrak{p})$ be the residue field at a prime \mathfrak{p} in A. Then we see that $M\otimes_A A'\cong A'/\mathfrak{p}A'\neq 0$.

Recall that $\mathfrak p$ is in the image of $f:\operatorname{Spec} A'\to\operatorname{Spec} A$ if and only if the fiber $f^{-1}(\mathfrak p)$ is nonempty if and only if $\operatorname{Spec}(A'\otimes_A\kappa(\mathfrak p))\neq\varnothing$ if and only if $A'\otimes_A\kappa(\mathfrak p)$ is not the zero ring. This is because

$$\operatorname{Spec}(A' \otimes_A \kappa(\mathfrak{p})) \cong \operatorname{Spec}(A'_{\mathfrak{p}}/\mathfrak{p}A'_{\mathfrak{p}}) \cong \{ \text{primes of } A'_{\mathfrak{p}} \text{ lying over } \mathfrak{p}A_{\mathfrak{p}} \} \cong f^{-1}(\mathfrak{p})$$

Recall that the points of Spec $A_{\mathfrak{p}}$ are in bijection with the primes of A contained in \mathfrak{p} . Therefore, the primes of $A'_{\mathfrak{p}}$ correspond to primes of A' lying inside \mathfrak{p} after contraction.

Therefore, the map $\operatorname{Spec} A' \to \operatorname{Spec} A$ is surjective.

2. Suppose $A \to A'$ is faithfully flat. Then we need that $A' \otimes_A M' \to A' \otimes_A M \to A' \otimes_A M''$ is exact implies that $M' \to M \to M''$ is exact. Let $S: N' \to N \to N''$ be a sequence of A-modules, and suppose that

$$S \otimes A' : M' \otimes A' \xrightarrow{f_M} M \otimes A' \xrightarrow{g_M} M'' \otimes A'$$

is exact. As A' is flat, the exact functor $\otimes A'$ transforms kernel into kernel and image into image. Thus $\mathrm{Im}(g \circ f) \otimes A' = \mathrm{Im}(g_M \circ f_M) = 0$, and by the assumption we get $\mathrm{Im}(g \circ f) = 0$, i.e. $g \circ f = 0$. Hence S is a complex, and if H(S) denotes its homology (at N), we have $H(S) \otimes A' = H(S \otimes A') = 0$. Using again the assumption we obtain H(S) = 0, which implies that S is exact.

Conversely, suppose that $M' \to M \to M''$ is exact iff $M' \otimes A' \to M \otimes A' \to M'' \otimes A'$ is exact. By definition, A' is flat. We need to see that $\operatorname{Spec} A' \to \operatorname{Spec} A$ is surjective. By the above reasoning, it is enough to show that the localization $A' \otimes_A \kappa(\mathfrak{p})$ is nonzero for every prime \mathfrak{p} of A. This follows from tensoring the three term sequence $0 \to \kappa(\mathfrak{p}) \to 0$. Since $A' \otimes_A \kappa(\mathfrak{p}) \cong \kappa(\mathfrak{p}) \otimes_A A' \neq 0$, we conclude that the localization is indeed nonzero.

Exercise 4.11. Suppose $A \to A'$ is faithfully flat.

- 1. Show that a homomorphism $M \to N$ of A-modules is a monomorphism (resp. epimorphism, resp. isomorphism) if and only if the homomorphism $A' \otimes_A M \to A' \otimes_A N$ is a monomorphism (resp. epimorphism, resp. isomorphism).
- 2. Show that an A-module M is finitely generated (resp. finitely presented, resp. flat, resp. locally free of finite rank n) if and only if the A'-module $A' \otimes_A M$ is finitely generated (resp. finitely presented, resp. flat, resp. locally free of finite rank n).

Recall the two following facts about faithfully flat morphisms:

L1 If $0 \to K \to M \xrightarrow{f} N$ is exact, then $0 \to B \otimes_A K \to B \otimes_A M \xrightarrow{B \otimes f} B \otimes_A N$ is exact (flatness). Dually for cokernels.

- L2 If $B \otimes_A X = 0$ then X = 0 (faithfulness). More generally, for submodules $N_1, N_2 \subseteq M$, $B \otimes_A N_1 = B \otimes_A N_2 \subseteq B \otimes_A M \Rightarrow N_1 = N_2$. In particular, one has submodule detection under faithful flatness. This is because if $A' \otimes N_1 = A' \otimes N_2$, then $A' \otimes (N_1/N_2) = 0$. Faithfulness will force $N_1/N_2 = 0$, i.e. $N_1 = N_2$.
- 1. Let $f: M \to N$ be an A-linear map. If f is mono, then $0 \to M \xrightarrow{f} N$ is exact, hence by (L1) $0 \to B \otimes M \xrightarrow{B \otimes f} B \otimes N$ is exact, so $B \otimes f$ is mono. Conversely, if $B \otimes f$ is mono, then $\ker(B \otimes f) = B \otimes \ker f = 0$ by (L1), hence $\ker f = 0$ by (L2), so f is mono. Let $C = \operatorname{coker}(f)$. If f is epi then C = 0, hence $B \otimes C = 0$, so $B \otimes f$ is epi. Conversely, if $B \otimes f$ is epi then $B \otimes C = 0$, hence C = 0 by (L2), so f is epi. f is an iso iff it is both mono and epi; equivalently iff f is both mono and epi (by the two bullets), hence an iso.

2. • Finitely generated

Ascent. If M is generated by m_1, \ldots, m_r , then $1 \otimes m_i$ generate $B \otimes M$ as a B-module.

Descent. Suppose $B \otimes M$ is generated by y_1, \ldots, y_s . Write each $y_j = \sum_k b_{jk} \otimes n_{jk}$ with $b_{jk} \in B, n_{jk} \in M$. Let $S = \{n_{jk}\}$ (finite). The map $\phi : A^{|S|} \to M$ sending basis vectors to the elements of S becomes surjective after tensoring with B (its image contains the y_j , hence all of $B \otimes M$). Thus $B \otimes \operatorname{coker} \phi = 0$, socoker $\phi = 0$ by (L2). Hence ϕ is surjective and M is finitely generated.

• Finitely presented.

Ascent. If $A^r \xrightarrow{\alpha} A^s \to M \to 0$ is exact with $r, s < \infty$, then tensoring gives $B^r \xrightarrow{B \otimes \alpha} B^s \to B \otimes M \to 0$: finite presentation ascends by flatness.

Descent. Assume $B \otimes M$ is finitely presented. By (a), pick a surjection $\pi: A^s \to M$ whose base change $B^s \to B \otimes M$ is surjective. Let $K = \ker(\pi)$. Then

$$K' = \ker(B^s \to B \otimes M) = B \otimes K$$

by flatness. Since $B \otimes M$ is finitely presented, K' is finitely generated over B. By (a, descent) applied to the A-module K, from $B \otimes K$ f.g. we conclude K is f.g. Hence $A^s \to M$ has finitely generated kernel, i.e. M is finitely presented.

• Flat.

Ascent. If M is flat over A, then $B \otimes M$ is flat over B (tensoring with a flat B preserves exactness).

Descent. Assume $B \otimes M$ is flat over B. For any A-module N and $i \geq 1$,

$$\operatorname{Tor}_{i}^{A}(N, M) \otimes_{A} B \cong \operatorname{Tor}_{i}^{B}(N \otimes_{A} B, M \otimes_{A} B)$$

(because B is flat). The RHS is 0 when i = 1 by flatness of $B \otimes M$. Hence $\operatorname{Tor}_1^A(N, M) \otimes_A B = 0$, and by (L2) we get $\operatorname{Tor}_1^A(N, M) = 0$ for all N. Thus M is flat.

• Locally free of finite rank n.

Ascent. If M is locally free of rank n, then $B \otimes M$ is locally free of rank n (localization commutes with tensor).

Descent. Assume $B \otimes M$ is locally free of rank n over B. From (b) and (c), M is finitely presented and flat. Let $\mathfrak{p} \in \operatorname{Spec} A$ and pick $\mathfrak{q} \in \operatorname{Spec} B$ over \mathfrak{p} . Then

$$(B \otimes M) \otimes_B \kappa(\mathfrak{q}) \cong M \otimes_A \kappa(\mathfrak{q}) \cong (M \otimes_A \kappa(\mathfrak{p})) \otimes_{\kappa(\mathfrak{p})} \kappa(\mathfrak{q}).$$

The LHS is an n-dimensional $\kappa(\mathfrak{q})$ -vector space, hence $\dim_{\kappa(\mathfrak{p})}(M \otimes_A \kappa(\mathfrak{p})) = n$. Thus the fiber-rank function $p \mapsto \dim_{\kappa(p)}(M \otimes_A \kappa(p))$ is constantly n.

Over the local ring $A_{\mathfrak{p}}$, a finitely presented flat module is free; hence $M_{\mathfrak{p}} \cong A_{\mathfrak{p}}^n$ for all \mathfrak{p} . Therefore M is locally free of rank n.

Lemma 4.12. Let M be an A-module. If $A \to A'$ is faithfully flat, then

$$M \xrightarrow{\gamma} A' \otimes_A M \rightrightarrows A' \otimes_A A' \otimes_A M$$

is exact, that is, the canonical homomorphism γ maps M isomorphically to the set of elements in $A' \otimes_A M$ that have the same image in $A' \otimes_A A' \otimes_A M$ by the two projection homomorphisms. Equivalently, if one defines a homomorphism δ from $A' \otimes_A M$ to $A' \otimes_A A' \otimes_A M$ by the formula $\delta(x \otimes u) = 1 \otimes x \otimes u - x \otimes 1 \otimes u$, then the sequence

$$0 \to M \xrightarrow{\gamma} A' \otimes_{A} M \xrightarrow{\delta} A' \otimes_{A} A' \otimes_{A} M$$

of A-modules is exact.

Proof. By the previous exercise, it suffices to show that the sequence becomes exact after tensoring it (on the left) over A by A', i.e., that the sequence

$$0 \longrightarrow A' \otimes_{A} M \xrightarrow{A' \otimes \gamma} A' \otimes_{A} A' \otimes_{A} M \xrightarrow{A' \otimes \delta} A' \otimes_{A} A' \otimes_{A} A' \otimes_{A} M$$

is exact. Let $\mu: A'\otimes_A A'\to A'$ be the multiplication map, $\mu(x\otimes y)=xy$. The injectivity of the first map $A'\otimes\gamma$ is now immediate, since the mapping $\mu\otimes M:A'\otimes_A A'\otimes_A M\to A'\otimes_A M$ gives a left inverse to it. Suppose an element $\sum x_i\otimes y_i\otimes u_i$ is in the kernel of $A'\otimes\delta$, i.e.

$$\sum x_i \otimes 1 \otimes y_i \otimes u_i = \sum x_i \otimes y_i \otimes 1 \otimes u_i.$$

Applying μ to the first two factors yields

$$\sum x_i \otimes y_i \otimes u_i = \sum x_i y_i \otimes 1 \otimes u_i,$$

and $\sum x_i y_i \otimes 1 \otimes u_i$ is the image of $\sum x_i y_i \otimes u_i$ in $A' \otimes_A A' \otimes_A M$, as required. \square

Remark 4.13. The proof of this lemma is a common one in descent theory: one makes a faithfully flat base extension to achieve the situation where the covering map $T' \to T$ has a section, in which case the assertion proves itself.

Lemma 4.14. If $A \to A'$ is faithfully flat, and M and N are A-modules, then the sequence

$$\operatorname{Hom}_{A}(M,N) \to \operatorname{Hom}_{A'}(A' \otimes_{A} M, A' \otimes_{A} N) \implies \operatorname{Hom}_{A' \otimes_{A} A'}(A' \otimes_{A} A' \otimes_{A} M, A' \otimes_{A} A' \otimes_{A} N)$$

is exact.

Proof. The exactness of Lemma A.4, applied to N, together with the left exactness of Hom, gives the exactness of

$$\operatorname{Hom}_A(M, N) \to \operatorname{Hom}_A(M, A' \otimes_A N) \Longrightarrow \operatorname{Hom}_A(M, A' \otimes_A A' \otimes_A N).$$

Using the identifications

$$\operatorname{Hom}_A(M, P) = \operatorname{Hom}_B(B \otimes_A M, P)$$

for any homomorphism $A \to B$ and any B-module P, first for B = A' and then for $B = A' \otimes_A A'$, translates this exact sequence into the exact sequence of the lemma. \square

Now let M' be an A'-module. We have, as we recall, projection maps p_1 and p_2 from $\operatorname{Spec}(A'')$ to $\operatorname{Spec}(A')$, where $A'' = A' \otimes_A A'$. Hence we have pullbacks

$$p_1^*(M') = A'' \otimes_{p_1,A'} M', \qquad p_2^*(M') = A'' \otimes_{p_2,A'} M'.$$

The two pullbacks $p_1^*(M')$ and $p_2^*(M')$ can be identified with $M' \otimes_A A'$ and $A' \otimes_A M'$ respectively, where the actions of A'' on these modules are given by

$$(x \otimes y) \cdot (u \otimes z) = xu \otimes yz, \qquad (x \otimes y) \cdot (z \otimes u) = xz \otimes yu,$$

with $x, y, z \in A'$ and $u \in M'$.

Similarly, the three pullbacks of M' by q_1, q_2 , and q_3 to A''' can be identified with

$$M' \otimes_A A' \otimes_A A', \qquad A' \otimes_A M' \otimes_A A', \qquad A' \otimes_A A' \otimes_A M',$$

respectively, again with the diagonal actions of $A''' = A' \otimes_A A' \otimes_A A'$.

Suppose

$$\varphi: M' \otimes_A A' = p_1^*(M') \longrightarrow p_2^*(M') = A' \otimes_A M'$$

is an isomorphism of A''-modules. This determines, by the three pullbacks p_{ij} , isomorphisms

$$\varphi_{ij} = p_{ij}^*(\varphi) : q_i^*(M') = p_{ij}^*(p_1^*(M')) \longrightarrow p_{ij}^*(p_2^*(M')) = q_j^*(M').$$

For example, φ_{12} is the map

$$M' \otimes_A A' \otimes_A A' \longrightarrow A' \otimes_A M' \otimes_A A'$$

that takes $u \otimes x \otimes y$ to $\varphi(u \otimes x) \otimes y$. That is, if

$$\varphi(u\otimes x)=\sum x_i\otimes u_i,$$

then

$$\varphi_{12}(u \otimes x \otimes y) = \sum x_i \otimes u_i \otimes y.$$

Similarly,

$$\varphi_{13}(u \otimes y \otimes x) = \sum x_i \otimes y \otimes u_i, \qquad \varphi_{23}(y \otimes u \otimes x) = \sum y \otimes x_i \otimes u_i.$$

Descent for modules amounts to the following assertion:

Lemma 4.15 (Descent for modules). Suppose $A \to A'$ is faithfully flat, M' is an A'-module, and $\varphi: M' \otimes_A A' \to A' \otimes_A M'$ is an isomorphism of A''-modules such that $\varphi_{13} = \varphi_{23} \circ \varphi_{12}$ from $q_1^*(M')$ to $q_3^*(M')$. Define the A-module M by

$$M = \{ u \in M' \mid \varphi(u \otimes 1) = 1 \otimes u \}.$$

Then the canonical homomorphism

$$\lambda: A' \otimes_A M \longrightarrow M', \qquad x \otimes u \longmapsto x \cdot u,$$

is an isomorphism.

Proof. Let $\tau: M' \to A' \otimes_A M'$ be defined by

$$\tau(u) = 1 \otimes u - \varphi(u \otimes 1).$$

We have an exact sequence

$$0 \longrightarrow M \longrightarrow M' \xrightarrow{\tau} A' \otimes_A M'.$$

Tensoring this on the right with A' over A gives the top row of the following diagram:

$$0 \longrightarrow M \otimes_A A' \longrightarrow M' \otimes_A A' \xrightarrow{\tau \otimes 1} A' \otimes_A M' \otimes_A A'$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\varphi} \qquad \qquad \downarrow^{A' \otimes \varphi}$$

$$0 \longrightarrow M' \longrightarrow A' \otimes_A M' \longrightarrow A' \otimes_A A' \otimes_A M'$$

The bottom row is the exact sequence from Lemma 4.12, applied to the A-module M'. The map ψ is defined by $\psi(u \otimes x) = x \cdot u$, and we want to show ψ is an isomorphism. Since the rows are exact, and the right two vertical maps are isomorphisms, this conclusion will follow if we verify that the diagram is commutative.

The left square commutes since, for $u \in M$ and $x \in A'$,

$$\varphi(u \otimes x) = (1 \otimes x)\varphi(u \otimes 1) = (1 \otimes x)(1 \otimes u) = 1 \otimes xu.$$

To prove that the right diagram commutes, we must show that, for any $u \in M'$ and $x \in A'$, the element $u \otimes x \in M' \otimes_A A'$ has the same image by either route around the square.

Let $\varphi(u \otimes 1) = \sum y_i \otimes v_i$, with $y_i \in A'$ and $v_i \in M'$. Then

$$\varphi(u \otimes x) = (1 \otimes x)\varphi(u \otimes 1) = \sum y_i \otimes xv_i,$$

so the image of $u \otimes x$ by the lower route is

$$\sum 1 \otimes y_i \otimes xv_i - \sum y_i \otimes 1 \otimes xv_i.$$

On the upper route, $u \otimes x$ maps to the right to

$$1 \otimes u \otimes x - \varphi(u \otimes 1) \otimes x = 1 \otimes u \otimes x - \sum y_i \otimes v_i \otimes x,$$

which maps down to

$$1 \otimes \varphi(u \otimes x) - \sum y_i \otimes \varphi(v_i \otimes x) = \sum 1 \otimes y_i \otimes xv_i - \sum y_i \otimes \varphi(v_i \otimes x).$$

We are therefore reduced to verifying that

$$\sum y_i \otimes \varphi(v_i \otimes x) = \sum y_i \otimes 1 \otimes xv_i.$$

But this is exactly the assertion that $\varphi_{23}(\varphi_{12}(u \otimes 1 \otimes x)) = \varphi_{13}(u \otimes 1 \otimes x)$.

This shows that the module M that we constructed satisfies an isomorphism $\lambda: A' \otimes_A M \to M'$. In order to complete the proof of faithfully flat descent for modules, we must show that the isomorphism λ is compatible with the given isomorphism $\varphi: p_1^*(M') \to p_2^*(M')$. That is, we need to know that the descent data for M induced by λ is the same as the given descent data φ . Formally:

$$\varphi \circ p_1^* \lambda = p_2^* \lambda.$$

This amounts to verifying that the diagram

$$A' \otimes_A M \otimes_A A' \xrightarrow{p_1^* \lambda} M' \otimes_A A'$$

$$\downarrow^{\varphi}$$

$$A' \otimes_A A' \otimes_A M \xrightarrow{p_2^* \lambda} A' \otimes_A M'$$

commutes, where

$$\kappa(x \otimes u \otimes y) = x \otimes y \otimes u.$$

This is because κ is the canonical isomorphism from $p_1^*(A' \otimes_A M)$ to $p_2^*(A' \otimes_A M)$, which we have when we know that $M' \cong A' \otimes_A M$.

This amounts to the identity

$$x \otimes \lambda(y \otimes u) = \varphi(\lambda(x \otimes u) \otimes y),$$

i.e.

$$x \otimes yu = \varphi(xu \otimes y),$$

or equivalently

$$(x \otimes y)(1 \otimes u) = (x \otimes y)\varphi(u \otimes 1),$$

which follows from the fact that $u \in M$.

Finally, we need to check that a morphism of descent data $h':M'\to N'$ "descends" uniquely to a morphism $h:M\to N$ of A-modules. This means that we have A'-modules M' and N', with isomorphisms

$$\varphi: M' \otimes_A A' \to A' \otimes_A M'$$
 and $\psi: N' \otimes_A A' \to A' \otimes_A N'$,

and we have A-modules M and N, with isomorphisms

$$\lambda: A' \otimes_A M \to M', \qquad \mu: A' \otimes_A N \to N',$$

satisfying $\varphi \circ p_1^*(\lambda) = p_2^*(\lambda)$ and $\psi \circ p_1^*(\mu) = p_2^*(\mu)$.

We are given a homomorphism

$$h': M' \to N'$$

of A'-modules, satisfying the identity

$$p_2^*(h') \circ \varphi = \psi \circ p_1^*(h').$$

We must show that there is a unique homomorphism $h: M \to N$ of A-modules such that

$$\mu \circ (A' \otimes h) = h' \circ \lambda.$$

The trick is to package h' into $g' = \mu^{-1}h'\lambda$, show $p_1^*(g') = p_2^*(g')$, and then invoke Lemma 4.14 to conclude that g' comes from a unique A-linear map h.

Set

$$g' = \mu^{-1} \circ h' \circ \lambda : A' \otimes_A M \to A' \otimes_A N.$$

If we show that $p_1^*(g') = p_2^*(g')$, then Lemma A.5 will produce a unique homomorphism $h: M \to N$ such that $g' = A' \otimes h$. This says that

$$h' \circ \lambda = \mu \circ (A' \otimes h),$$

as required.

To conclude the proof, we calculate:

$$\begin{split} p_1^*(g') &= p_1^*(\mu^{-1} \circ h' \circ \lambda) \\ &= p_1^*(\mu)^{-1} \circ p_1^*(h') \circ p_1^*(\lambda) \\ &= p_2^*(\mu)^{-1} \circ \psi \circ p_1^*(h') \circ p_1^*(\lambda) \\ &= p_2^*(\mu)^{-1} \circ p_2^*(h') \circ \varphi \circ p_1^*(\lambda) \\ &= p_2^*(\mu)^{-1} \circ p_2^*(h') \circ p_2^*(\lambda) \\ &= p_2^*(g'), \end{split}$$

as required.

Remark 4.16. The overall structure of the proofs in this section is worth noting. First, we proved descent for morphisms in the case of objects pulled back from the base (4.14). Then we showed that every descent datum is effective (4.15). We saw as a formal consequence that descent for morphisms holds in the case of an arbitrary pair of descent data, each admitting a solution, and from this that the solution to any descent problem is unique up to canonical isomorphism.

4.4 Extending to quasi-coherent sheaves on schemes

In this section, we complete the proof of Theorem 4.8. Recall that a morphism $f: T' \to T$ of schemes is *faithfully flat* if it is flat and surjective. It is not enough to assume f is faithfully flat for the conclusions of the theorem to hold, as we'll see below. To pass from the affine case to the case of general schemes we'll need some additional hypothesis on the morphism f. In fact, there are two additional hypotheses that we may impose, and either one will suffice to establish descent for objects and morphisms, in the context of quasi-coherent sheaves:

- (i) f is **fpqc**, that is, faithfully flat and *quasi-compact*. We recall this means that the pre-image, under f, of any affine open subset of the base is covered by finitely many affine open subsets.
- (ii) f is **fppf**, that is, faithfully flat and *locally of finite presentation*. The important fact needed here is that every morphism that is flat and locally of finite presentation is open [5] IV.2.4.6.

The notations **fpqc** and **fppf** come from the French terminology for the conditions on f (*fidèlement plat, quasi-compact* and *fidèlement plat, de présentation finie*).

As described at the end of the previous section, to prove Theorem 4.8, it suffices to prove descent for morphisms of objects pulled back from the base and to show that every descent datum is effective. In other words, Theorem 4.8 follows from the following pair of assertions.

Lemma 4.17 (Descent for morphisms). Assume $f: T' \to T$ is (i) fpqc or (ii) fppf. Let \mathcal{E} and \mathcal{F} be quasi-coherent sheaves on T. Then, for every morphism

$$h': f^*\mathcal{E} \to f^*\mathcal{F}$$

on T' such that $p_1^*h' = p_2^*h'$ on T", there is a unique morphism

$$h: \mathcal{E} \to \mathcal{F}$$

on T such that $f^*h = h'$.

Lemma 4.18 (Effective descent). Assume $f: T' \to T$ is (i) fpqc or (ii) fppf. Let \mathcal{E}' be a quasi-coherent sheaf on T' and

$$\varphi: p_1^* \mathcal{E}' \longrightarrow p_2^* \mathcal{E}'$$

an isomorphism on T'' such that

$$p_{23}^* \varphi \circ p_{12}^* \varphi = p_{13}^* \varphi$$

on T'''. Then there exists a quasi-coherent sheaf $\mathcal E$ on T and an isomorphism

$$\lambda: f^*\mathcal{E} \longrightarrow \mathcal{E}'$$

on T' such that

$$p_2^*\lambda = \varphi \circ p_1^*\lambda$$

on T''.

We will say that a morphism $f: T' \to T$ of schemes has **descent for morphisms** if it satisfies the conclusion of Lemma 4.17, and that it has **effective descent** if it satisfies the conclusions of both Lemma 4.17 and Lemma 4.18.

Recall the sheaf gluing theorem for honest open covers of a topological space. If you have sheaves \mathcal{F}_{λ} on each piece of an open cover, and isomorphisms $\theta_{\lambda\mu}$ on overlaps satisfying the cocycle condition, then there exists a unique sheaf \mathcal{F} on X which restricts to the given sheaves, compatible with the θ . In our setting, this theorem reads that quasi-coherent sheaves satisfy effective descent for Zariski open covers.

We have proved in the previous section that every faithfully flat morphism of affine schemes satisfies effective descent. Moreover, every Zariski open covering satisfies effective descent.

4.5 Morphisms of k-stacks, fiber products, representable morphisms

Definition 4.19 (Morphism of k-stacks). A *1-morphism* $F: \mathcal{X} \to \mathcal{Y}$ will associate, for every $U \in \text{ob}(\text{Aff }/k)$, a functor

$$F(U): \mathcal{X}(U) \to \mathcal{Y}(U)$$

and for every arrow $U' \xrightarrow{f} U$ an isomorphism of functors

$$\alpha(f): f_{\mathcal{X}}^* \circ F(U') \xrightarrow{\sim} F(U) \circ f_{\mathcal{Y}}^*$$

satisfying the obvious compatibility conditions:

- (i) If $f = 1_U$ is an identity, then $\alpha(1_U) = 1_{F(U)}$ is an identity.
- (ii) If f and g are composable, then F(gf) is the composite of the squares $\alpha(f)$ and $\alpha(g)$, further composed with the composition of pullback isomorphisms $g^* \circ f^* \simeq (f \circ g)^*$ for $\mathcal X$ and $\mathcal Y$ (we will not draw the diagram here).

The structure of this morphism can be visualized in the following commutative diagram:

$$\begin{array}{c|c} \mathcal{X}(U) & \xrightarrow{F(U)} \mathcal{Y}(U) \\ f_{\mathcal{X}}^* \downarrow & & \downarrow f_{\mathcal{Y}}^* \\ \mathcal{X}(U') & \xrightarrow{F(U')} \mathcal{Y}(U') \end{array}$$

A 2-morphism between 1-morphisms $\phi: F \to G$ associates for every $U \in \text{ob}(\text{Aff }/k)$, an isomorphism of functors

$$\phi(U): F(U) \to G(U)$$

represented by the following diagram:

$$\mathfrak{X}(U) \overbrace{\phi(U) \parallel \mathfrak{Y}(U)}^{F(U)}$$

subject to some compatibility conditions.

Definition 4.20 (Fiber product, representable morphisms). Let $F: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-stacks. The fiber product \mathfrak{X}_{η} of \mathfrak{X} over \mathfrak{Y} at an object $\eta \in \mathfrak{Y}(U)$ is the k-stack defined by the

rule

$$\mathfrak{X}_{\eta}(V) = \mathfrak{X}(V) \times_{\mathfrak{Y}(V)} \{ \eta |_{V} \}$$

In particular, such an object η can be thought of as a morphism $\eta: U \to \mathfrak{Y}$. Then the fiber of the morphism F over η is precisely the stack $\mathfrak{X} \times_{\mathfrak{Y}} U$.

The morphism $F: \mathfrak{X} \to \mathfrak{Y}$ is representable if \mathfrak{X}_{η} is representable as a scheme for all $U \in ob(\mathbf{Aff}/k)$ and all $\eta \in ob \mathfrak{Y}(U)$.

We say F has property P if for every $U \in ob(\mathbf{Aff}/k)$ and every $\eta \in ob(Y(\eta))$ the canonical morphism (coming from forming the fiber stack as a pullback) of schemes $\mathfrak{X}_{\eta} \to U$ has P. Examples of such properties are flat, smooth, surjective, étale, etc.

Definition 4.21. A k-stack \mathfrak{X} is algebraic if

- (i) the diagonal morphism $\mathfrak{X} \to \mathfrak{X} \times \mathfrak{X}$ is representable, separated and quasi-compact
- (ii) there is a k-scheme P and a smooth, surjective morphism $P \stackrel{p}{\to} \mathfrak{X}$.

Remark 4.22. Given any scheme T with two maps $f, g: T \to \mathfrak{X}$ (representing two families of objects parameterized by T), the fiber product:

$$T \times_{(\mathfrak{X} \times \mathfrak{X})} \mathfrak{X} \cong \mathit{Isom}_T(f,g)$$

represents the "scheme of isomorphisms" between the objects corresponding to f and g. The condition that $\Delta: \mathfrak{X} \to \mathfrak{X} \times \mathfrak{X}$ is representable means that for any scheme T with a morphism $T \to \mathfrak{X} \times \mathfrak{X}$, the fiber product $T \times_{\mathfrak{X} \times \mathfrak{X}} \mathfrak{X}$ is (represented by) an algebraic space. This controls the "size" of automorphism groups.

4.6 Examples of algebraic stacks

Definition 4.23. Let G be an algebraic group acting on a scheme X. The action groupoid X/G is the category whose objects are the points of X and morphisms from x to y are the elements of G such that gx = y.

Note that the isomorphism classes of the action groupoid are in bijection with the orbits of G on X. There is a canonical map $X/G \to */G$ which is obvious on the level of groupoids.

Definition 4.24. We define the quotient stack $X/G : \operatorname{Sch} \to \operatorname{Gpd} by$

$$(X/G)(S) = sheafification of the presheaf $S \mapsto X(S)/G(S)$$$

From the moduli perspective, we have to ask: what family over S is parameterized by (X/G)(S) for a test scheme S? We can answer this question as follows.

The first thing we notice is that the map $X \to *$ should induce a canonical map $X/G \to */G$. Thus an S-point of $S \to X/G$ induces by composition an S-point $S \to */G$; i.e., a G-torsor P over S.

Now, say we have a G-torsor P over S. We can form the fiber product:

$$\begin{array}{ccc} X \times^G P & \longrightarrow & X/G \\ \downarrow & & \downarrow \\ S & \stackrel{P}{\longrightarrow} & */G \end{array}$$

We call the stack $X \times^G P$ the X-bundle associated to P, or the associated bundle of P with fiber X. In particular, there is the following correspondence:

Proposition 4.25. *There is a canonical bijection between:*

- 1. Maps from a scheme S to the quotient stack X/G
- 2. Sections of the associated bundle $S \to X \times^G P$
- 3. G-equivariant maps from P to X

where P is the principal G-bundle on S corresponding to $S \to X/G \to */G$.

Proof. A map $f: S \to X/G$ of stacks corresponds to a principal G-bundle P on S together with a G-equivariant map $\phi: P \to X$. Given a G-equivariant map $\phi: P \to X$, we can construct a section $\sigma: S \to X \times^G P$ of the associated bundle as follows:

For each point $s \in S$, define $\sigma(s) = [\phi(p), p]$ where p is any point in the fiber P_s and $[\phi(p), p]$ denotes the equivalence class in $X \times^G P$. The G-equivariance of ϕ ensures this is well-defined regardless of which $p \in P_s$ we choose.

Conversely, given a section $\sigma: S \to X \times^G P$ where $\sigma(s) = [x_s, p_s]$ for each $s \in S$, we can define a G-equivariant map $\phi: P \to X$ as follows:

For any $p \in P$ with $p \in P_s$ for some $s \in S$, we have $p = p_s \cdot g$ for some $g \in G$. We define $\phi(p) = g^{-1} \cdot x_s$. The properties of the associated bundle ensure this is well-defined and G-equivariant. \square

This motivates the following definition:

Definition 4.26. Let an algebraic group G act on a scheme X. Then the **quotient stack** X/G is the functor $Sch \to Gpd$ given by

```
(X/G)(S) = Groupoid of principal G-torsors P over S with a G-equivariant map P \to X.
```

Example 4.27. If Z is a k-scheme and H is a linear algebraic group over k acting on Z, then the quotient stack [Z/H] is an algebraic stack. A presentation is given by the trivial H-bundle $p:Z\to [Z/H]$.

Example 4.28. Let X be a projective connected smooth curve over k. The moduli problem $\mathcal{M}_{G,X}$ which associated to a scheme S the groupoid of principal G-bundles over $X \times S$ is an algebraic stack.

$$\mathcal{M}_{G,X}(S): \operatorname{Sch}/k^{op} \to \operatorname{Gpd}$$

 $S \mapsto \{principal \ G\text{-bundles over } X \times S\} + isomorphisms$

Proposition 4.29. *If* G *is reductive, the algebraic stack* $\mathcal{M}_{G,X}$ *is smooth, dimension* dim G(g-1).

5 Uniformization

The theory of uniformization relates these moduli spaces to loop groups and associated Grassmannians. We introduce the uniformization of moduli stacks of principal G-bundles, beginning with the topological perspective and transitioning to the algebraic setting.

5.1 Topological loop groups

Let X be a smooth projective curve over k. Let G connected reductive. Then isomorphism classes of topological principal G-bundles over X are in bijection with elements of $\pi_1(G)$.

To see this, consider a basepoint $x \in X$ and a disk D around x. Then the restriction of a principal G-bundle P to D is trivial because D is contractible. Let $X^* = X \setminus \{x\}$. Then U is homotopy equivalent to a wedge of circles and therefore any topological principal G-bundle over U is also trivial. This is because of the general theory of obstruction theory for CW complexes.

In general, given a CW complex X and a map from the i-skeleton $X^i \to Y$, the obstruction to extending this map to the (i+1)-skeleton lies in the cellular cohomology group $H^{i+1}(X,\pi_i(Y))$. We also make use of the fact that a topological principal G-bundle P over a space X is trivial if and only if it admits a global section. In particular, to trivialize a principal G-bundle over X

is precisely to specify a map $X \to G$. Therefore, the obstruction to lifting a map $X^{*0} \to G$ to $X^{*1} \to G$ lies in the group $H^1(U, \pi_0(G))$ but $\pi_0(G) = e$ so this group is trivial. Therefore, all topological principal G-bundle over U are trivial.

Another way to see this is using the theory of classifying spaces. Prinicipal G-bundles over X^* are classified by homotopy classes of maps $X^* \to BG$. By the cellular approximation theorem, any map $X^* \to BG$ can be homotoped to a map $X^* \to BG^1$ where BG^1 is the 1-skeleton of BG. But BG carries a cell structure with cells in only even dimensions, so such homotopy classes of maps amount to picking a connected component of BG. But BG is connected because G is connected. Therefore, all principal G-bundles over G are trivial.

Return to X. The only data that is important, since the bundle is trivial over X^* and D, is the transition function $g_{X^*D} \in G$. This amounts to a map $D^* = D \setminus \{x\} \to G$. But D^* is homotopy equivalent to a circle, so this map is classified by an element of $\pi_1(G)$. Therefore, the isomorphism classes of principal G-bundles over X are in bijection with $\pi_1(G)$.

We recast the argument given above:

Definition 5.1. We have the following groups:

$$L^{top}G = \{continuous\ maps\ D^* \to G\}$$

 $L^{top}_+G = \{continuous\ maps\ D \to G\}$

$$L_X^{top}G = \{ continuous \ maps \ X^* \to G \}$$

and natural inclusions $L^{top}_+G \to L^{top}G$ and $L^{top}_XG \to L^{top}G$.

Proposition 5.2. There is a canonical bijection

$$L_X^{top}G\backslash L^{top}G/L_+^{top}G\cong \mathcal{M}_{G,X}^{top}\cong \pi_1(G)$$

Proof. One thinks of the space

$$L^{top}G = \{E, \sigma, \tau\}$$

of triples where $E \to X$ is a principal G bundle and $\sigma: E|_D \cong D \times G$ and $\tau: E|_{X^*} \cong X^* \times G$ are choices of trivializations. \square

5.2 Algebraic loop groups

The algebraic analogoue of a neighborhood homeomorphic to x is given by looking at the completion of the local ring $\mathcal{O}_{X,x}$.

$$D_x = \operatorname{Spec} \hat{\mathcal{O}_{X,x}}$$

Choosing a local coordinate z near x gives the idenitication

$$D_x = \operatorname{Spec} k[[z]]$$

The punctured disk is the field of fractions K_x of the completion of the local ring

$$D_x^* = \operatorname{Spec} K_x \cong \operatorname{Spec} k((z))$$

Introduce the notation $U = \operatorname{Spec} R$, $D_U^* = \operatorname{Spec} R((z))$ and $D_U = \operatorname{Spec} R[[z]]$ and $X_U^* = X^* \times U$.

The algebraic analogue of the topological loop group $L^{top}G$ is the group scheme

$$LG = \underline{\operatorname{Hom}}_{alg}(D^*, G)$$

the points of G with values in D^* , i.e. G(k((z))).

Definition 5.3. We have the functor of points for algebraic loop groups

$$LG : Aff /k \to Grp$$

 $LG(U) = Hom_{alg}(D_U^*, G) = G(R((z)))$

and the analagous k-groups

$$L_+G(U) = \operatorname{Hom}_{alg}(D_U, G) = G(R[[z]])$$

$$L_XG(U) = \operatorname{Hom}_{alg}(X_U^*, G) = G(\mathcal{O}_{X_U^*})$$

The quotient space $Q_G = LG/L_+G$ is the sheafification of the presheaf

$$U \mapsto LG(U)/L_+G(U)$$

carries an action of L_XG .

Consider the quotient stack $[L_XG\backslash Q_G]$.

Theorem 5.4 (Uniformization). Let G semisimple. Then there is a canonical isomorphism of stacks

$$[L_XG\backslash \mathcal{Q}_G]\cong \mathcal{M}_{G,X}$$

Moreover the L_XG -bundle $\mathcal{Q}_G \to \mathcal{M}_{G,X}$ is even locally trivial for the etale topology if the characteristic of k does not divide the order of $\pi_1(G(\mathbb{C}))$.

We consider triples (E, ρ, σ) where E is a vector bundle on X_R , $\rho: \mathcal{O}^r_{X_R^*} \longrightarrow E|_{X_R^*}$ a trivialization of E over X_R^* , $\sigma: \mathcal{O}^r_{D_R} \longrightarrow E|_{D_R}$ a trivialization of E over D_R . We let T(R) be the set of isomorphism classes of triples (E, ρ, σ) (with the obvious notion of isomorphism).

Proposition 5.5. The ind-group $GL_r(K)$ represents the functor T.

Proposition 5.6. The ind-group $\mathbf{SL}_r(K)$ represents the subfunctor T_0 of T which associates to a k-algebra R the set of isomorphism classes of triples (E, ρ, σ) where E is a vector bundle on X_R , $\rho: \mathcal{O}^r_{X_R^*} \longrightarrow E|_{X_R^*}$ and $\sigma: \mathcal{O}^r_{D_R} \longrightarrow E|_{D_R}$ are isomorphisms such that $\wedge^r \rho$ and $\wedge^r \sigma$ coincide over D_R^* .

Remark 5.7. The condition that the trivializations $\wedge^r \rho$ and $\wedge^r \sigma$ coincide over D_R^* means that they come from a global trivialization of $\wedge^r E$. So we can rephrase by saying that $T_0(R)$ is the set of isomorphism classes of data $(E, \rho, \sigma, \delta)$ where δ is a trivialization of $\wedge^r E$, ρ and σ are trivializations of $E|_{X_R^*}$ and $E|_{D_R}$, respectively, such that $\wedge^r \rho$ coincide with $\delta|_{X_R^*}$ and $\wedge^r \sigma$ with $\delta|_{D_R}$.

Corollary 5.8. Let us denote by A_X the affine algebra $\Gamma(X-p,\mathcal{O}_X)$. There is a canonical bijective correspondence between the set of isomorphism classes of rank r vector bundles on X with trivial determinant (resp. with determinant of the form $\mathcal{O}_X(np)$ for some integer n) and the double coset space $SL_r(A_X)\backslash SL_r(K)/SL_r(\mathcal{O})$ (resp. $GL_r(A_X)\backslash GL_r(K)/GL_r(\mathcal{O})$).

Proof. Since two trivializations of $E|_{D}$ differ by an element of $GL_{r}(\mathcal{O})$, and two trivializations of $E|_{X^*}$ by an element of $GL_{r}(A_X)$, bijection between $GL_{r}(A_X)\backslash GL_{r}(K)/GL_{r}(\mathcal{O})$ and the set of isomorphism classes of rank r vector bundles on X which are trivial on X^* . But a projective module over a Dedekind ring is free if and only if its determinant is free, hence our assertion for GL_{r} . The same proof applies for SL_{r} . \square

Remark 5.9. Note that saying that a line bundle is trivial on the open complement $X^* = X - p$ is equivalent to saying that it is of the form $\mathcal{O}_X(np)$ for some integer n. This follows from the exact sequence

$$\mathbb{Z} \to \operatorname{Pic}(X) \to \operatorname{Pic}(X^*) \to 0$$

where the first map sends $1 \mapsto \mathcal{O}_X(p)$.

Lemma 5.10. Let G be any semisimple group. Given a principal G-bundle \mathcal{E} , and any representation $\rho: G \to GL(V)$, the contracted product $E = \mathcal{E} \times_G V$ has trivial determinant.

Proof. To see that $\det(E)$ is trivial, we note that since G is semisimple, [G,G]=G, and so the image $\rho(G)$ is contained in the kernel of the determinant map which is $\mathrm{SL}(V)$. This is because ρ preserves commutator subgroups and $[\mathrm{GL}_n,\mathrm{GL}_n]\subset\mathrm{SL}_n$.

In particular, E has transition functions given by matrices with trivial determinant. These are the transition functions of the line bundle det(E), and so det(E) is necessarily trivial.

5.3 As a moduli stack

In the last section, we described a bijection between the set of isomorphism classes of rnak r vector bundles on X with trivial determinant and the double coset space $\operatorname{SL}_r(A_X) \setminus \operatorname{SL}_r(K) / \operatorname{SL}_r(\mathcal{O})$ by considering triples (E, σ, τ) corresponding to vector bundles E along with choices of trivializations over the open complement of a point, and the unit disk respectively. This in fact gives a description of the moduli stack. This section is about understanding the algebraic structure of the stack $\operatorname{SL}_r(A_X) \setminus \operatorname{SL}_r(K) / \operatorname{SL}_r(\mathcal{O})$.

We begin with result about the infinite Grassmannian.

Proposition 5.11. The k-space $Q := \mathbf{SL}_r(K)/\mathbf{SL}_r(\mathcal{O})$ represents the functor which associates to a k-algebra R the set of isomorphism classes of pairs (E, ρ) , where E is a vector bundle over X_R and ρ a trivialization of E over X_R^* such that $\wedge^r \rho$ extends to a trivialization of $\wedge^r E$.

Proof. A standard proof using descent. Let R be a k-algebra and q an element of Q(R). By definition there exists a faithfully flat homomorphism $R \to R'$ and an element γ of $\mathrm{SL}_r(R'(z))$ such that the image of q in Q(R') is the class of γ . Effective, we are checking that the proposition holds for an fppf covering of R, and then it will necessarily hold for R by descent.

To γ corresponds a triple (E', ρ', σ') over $X_{R'}$. Let $R'' = R' \otimes_R R'$, and let $(E_1'', \rho_1''), (E_2'', \rho_2'')$ denote the pull-backs of (E', ρ') by the two projections of $X_{R''}$ onto $X_{R'}$. Since the two images of γ in $\mathrm{SL}_r(R''(z))$ differ by an element of $\mathrm{SL}_r(R''[z])$, these pairs are isomorphic; this means that the isomorphism $\rho_2'' \rho_1''^{-1}$ over $X_{R''}^*$ extends to an isomorphism $u: E_1'' \to E_2''$ over $X_{R''}$. This isomorphism satisfies the usual cocycle condition, because it is enough to check it over X^* , where it is obvious. Therefore (E', ρ') descends to a pair (E, ρ) on X_R as in the statement of the proposition.

Conversely, given a pair (E, ρ) as above over X_R , we can find a faithfully flat homomorphism $R \to R'$ and a trivialization σ' of the pull back of E over $D_{R'}$ such that $\wedge^r \sigma'$ coincides with $\wedge^r \rho$ over $D_{R'}^*$ (in fact $\operatorname{Spec}(R)$ is covered by open subsets $\operatorname{Spec}(R_\alpha)$ such that E is trivial over D_{R_α} , and we can take $R' = \prod R_\alpha$). By prop. 1.5 we get an element γ' of $\operatorname{SL}_r(R'(z))$ such that the two images of γ' in $\operatorname{SL}_r(R''(z))$ (with $R'' = R' \otimes_R R'$) differ by an element of $\operatorname{SL}_r(R''[[z]])$; this gives an element of Q(R). The two constructions are clearly inverse one of each other.

5.4 As a Grassmannian of lattices

For any k-algebra R define **lattice** in $R((z))^r$ as a sub-R[[z]] module W of R((z)) which is projective of rank R and so that $\bigcup z^{-n}W = R((z))^r$. In particular this implies that

$$z^{-N}R[[z]] \subset W \subset z^NR[[z]]$$

for some integer N, and so that the R-module $W/z^NR[[z]]^r$ is projective. Moreover we say that the lattice W is **special** if the projective R-module $W/z^NR[[z]]$ is of rank Nr. This is equivalent to saying that the determinant Λ^rW is trivial =R[[z]].

Proposition 5.12. The k-space Q (resp. $\mathbf{GL}_r(K)/\mathbf{GL}_r(\mathcal{O})$) represents the functor which associates to a k-algebra R the set of special lattices (resp. of lattices) $W \subset R((z))^r$. The group $\mathbf{SL}_r(K)$ acts on Q by $(\gamma, W) \mapsto \gamma W$ (for $\gamma \in \mathbf{GL}_r(R((z)))$, $W \subset R((z))^r$).

$$\begin{array}{ccc}
D^* & \longrightarrow & D \\
\downarrow & & \downarrow \\
X^* & \longrightarrow & X
\end{array}$$

Proof. Consider the diagram where for simplicity we have dropped the suffix R. Let us start with a pair (E, ρ) over X. The trivialization ρ gives an isomorphism $R((z))^r \longrightarrow H^0(D^*, E|_{D^*})$; the inverse image W of $H^0(D, E|_D)$ is a lattice in $R((z))^r$, and it is a special lattice if $\wedge^r \rho$ extends to a trivialization of $\wedge^r E$ over X.

Conversely, given a lattice W in $R((z))^r$, we define a vector bundle E_W on X by gluing the trivial bundle over X^* with the bundle on D associated to the R[[z]]-module W; the gluing isomorphism is the map $W \otimes_{R[[z]]} R((z)) \longrightarrow R((z))^r$ induced by the embedding $W \hookrightarrow R((z))^r$. By definition E_W has a natural trivialization ρ_W over X^* , and if W is a special lattice $\wedge^r \rho$ extends to a trivialization of $\wedge^r E$ over X. It is easy to check that these two constructions are inverse one of each other.

Let γ be an element of $\mathbf{GL}_r(R((z)))$, corresponding to a triple (E, ρ, σ) . By construction the corresponding lattice is $\rho^{-1}\sigma(R[[z]]^r) = \gamma(R[[z]]^r)$. \square

Recall that we have denoted by $S^{(N)}$ the subscheme of $\mathrm{SL}_r(K)$ parametrizing matrices A(z) such that A(z) and $A(z)^{-1}$ have a pole of order $\leq N$; it is stable under right multiplication by $S^{(0)} = \mathrm{SL}_r(\mathcal{O})$. We will denote by $\mathcal{Q}^{(N)}$ its image in \mathcal{Q} , i.e. the quotient k-space $S^{(N)}/S^{(0)}$.

Corollary 5.13. Let \mathbb{F}_N be a free module of rank r over the ring $k[z]/(z^{2N})$ (so that \mathbb{F}_N is a k-vector space of dimension 2rN). The k-space $\mathcal{Q}^{(N)} = S^{(N)}/S^{(0)}$ is isomorphic to the (projective) variety of rN-dimensional subspaces G of \mathbb{F}_N such that $zG \subset G$.

Recall that we have denoted by $SL_r(\mathcal{O}_-)$ the subgroup of $SL_r(k[z^{-1}])$ parametrizing matrices $\sum_{n>0} A_n z^{-n}$ with $A_0 = I$. It is an ind-variety.

Theorem 5.14. The k-space $Q = \operatorname{SL}_r(K)/\operatorname{SL}_r(\mathcal{O})$ is an ind-variety, direct limit of the system of projective varieties $(Q^{(N)})_{N>0}$. It is covered by open subsets which are isomorphic to $\operatorname{SL}_r(\mathcal{O}_-)$,

and over which the fibration $p: SL_r(K) \longrightarrow \mathcal{Q}$ is trivial.

Proposition 5.15. Let ω be the class of the identity I in Q.

- 1. The orbits of $SL_r(\mathcal{O})$ in \mathcal{Q} are the orbits of the points $z^d\omega$ where d runs through the sequences $d_1 \leq d_2 \leq \cdots \leq d_r$ and $\sum d_i = 0$.
- 2. The orbit of $z^{d'}\omega$ is in the closure of $z^{d}\omega$ if and only if $d' \geq d$ in dominance order, i.e. the pth partial sum of d' is greater than or equal to the pth partial sum of d for all p.

Proof. We have the formula

$$\begin{pmatrix} t^{-1}z & t^{-1} \\ -t & 0 \end{pmatrix} \begin{pmatrix} z^{d_1} & 0 \\ 0 & z^{d_2} \end{pmatrix} \begin{pmatrix} t & -t^{-1}z^{d_2-d_1-1} \\ 0 & t^{-1} \end{pmatrix} = \begin{pmatrix} z^{d_1+1} & 0 \\ -t^2z^{d_2} & z^{d_2-1} \end{pmatrix}$$

and take the limit as $t \to 0$.

5.5 The moduli stack $\operatorname{SL}_r(A_X) \setminus \operatorname{SL}_r(K) / \operatorname{SL}_r(\mathcal{O})$

Recall that a stack over k associates to any k-algebra R a groupoid F(R), and to any morphism of k-algebras $u:R\to R'$ a functor $F(u):F(R)\to F(R')$. This data should satisfy some compatibility conditions and as well as some localization properties.

Example 5.16. The moduli stack $\mathcal{GL}_X(r)$ of rank r vector bundles on X is defined by associating to a k-algebra R the groupoid of rank r vector bundles over X_R . Similarly, one defines a stack $\mathcal{SL}_X(r)$ by associating to R the groupoid of pairs (E, δ) , where E is a vector bundle over X_R and $\delta: \mathcal{O}_{X_R} \to \bigwedge^r E$ an isomorphism; this is the fibre over the trivial bundle of the morphism of stacks $\det: \mathcal{GL}_X(r) \to \mathcal{GL}_X(1)$.

Definition 5.17. A Γ -torsor over R (in the fppf site) is a k-space P over R with an action of Γ_R which after a faithfully flat extension $R \to R'$ becomes isomorphic to $\Gamma_{R'}$ acting on itself by multiplication.

Example 5.18. Let Q be a k-space, and Γ a k-group acting on Q. The quotient stack $\Gamma \backslash Q$ is defined in the following way: an object of F(R) is a Γ -torsor P over $\operatorname{Spec} R$ together with a Γ -equivariant morphism $\alpha: P \to Q$; arrows in F(R) are defined in the obvious way, and so are the functors F(u). The stack $\Gamma \backslash Q$ is indeed the quotient of Q by Γ in the category of stacks, in the sense that any Γ -invariant morphism from Q into a stack F factors through $\Gamma \backslash Q$ in a unique way. If Γ acts freely on Q (i.e. $\Gamma(R)$ acts freely on Q(R) for each k-algebra R), then the stack $\Gamma \backslash Q$ is a k-space.

When $Q = \operatorname{Spec}(k)$ (with the trivial action), $\Gamma \setminus Q$ is the *classifying stack* $B\Gamma$: for each k-algebra R, $B\Gamma(R)$ is the groupoid of Γ -torsors over $\operatorname{Spec}(R)$.

Proposition 5.19. The quotient stack $\operatorname{SL}_r(A_X) \setminus \operatorname{SL}_r(K) / \operatorname{SL}_r(\mathcal{O})$ is canonically isomorphic to the algebraic stack $\mathcal{SL}_X(r)$ of vector bundles on X with trivial determinant. The projection map $\pi: \operatorname{SL}_r(K) / \operatorname{SL}_r(\mathcal{O}) \longrightarrow \mathcal{SL}_r(X)$ is locally trivial for the Zariski topology.

Example 5.20 (Determinant line bundle). Let T be a scheme, and E a vector bundle on $X \times T$. The derived direct image $R(pr_T)_*(E)$ is given by a complex of vector bundles $L^0 \to L^1$.

This is a complex which represents the higher direct image sheaves in the derived category, i.e. pass to a resolution of E and take the pushforward. Since X has dimension I, we can represent this complex by a two term complex of vector bundles $L^0 \to L^1$.

The line bundle $\det(L^1) \otimes \det(L^0)^{-1}$ is independent of the choice of this complex, hence canonically defined on T; this is the "determinant of the cohomology" $\det R\Gamma_T(E)$. The important thing to note here is that in the derived category, quasi-isomorphisms need not induce the same isomorphisms on cohomology. But they do induce the same isomorphism on determinants of cohomology. This is precisely the compatibility we need to define the determinant line bundle for stacks, in particular we need to know that given quasi-isomorphic three complexes K^* , L^* , M^* , the composition of isomorphisms $\det K^* \to \det L^* \to \det M^*$ is the same as the isomorphism $\det K^* \to \det M^*$.

Associating to each bundle E on $X \times T$ the line bundle $\det R\Gamma_T(E)$ defines a line bundle \mathcal{L} on the stack $\mathcal{SL}_X(r)$ (or $\mathcal{GL}_X(r)$), the determinant line bundle.

6 The central extension

Recall that there is a canonical map of stacks $\pi: \mathcal{Q} = \operatorname{SL}_r(K)/\operatorname{SL}_r(\mathcal{O}) \to \mathcal{SL}_X(r)$. Let \mathcal{L} be the determinant line bundle on $\mathcal{SL}_X(r)$. We are interested in relating the following central extension construction to the determinant bundle on the moduli stack.

6.1 Fredholm group

Let V be an infinite dimensional vector space over k. Let $\operatorname{End}^f(V)$ denote the two sided ideal generated by the finite rank endomorphisms of V, and let $\mathcal{F}(V) = (\operatorname{End}(V)/\operatorname{End}^f(V))^*$ be the equivalence classes of endomorphisms with finite dimensional kernel and cokernel. Let $\mathcal{F}(V)^0$ denote the subgroup of index 0 endomorphisms.

The map $\operatorname{Aut}(V) \hookrightarrow \operatorname{End}(V) \to \mathcal{F}(V)$ has image precisely $\mathcal{F}(V)^0$, and its kernel is those automorphisms $u \in \operatorname{Aut}(V)$ so that $u - I \in \operatorname{End}^f(V)$. The determinant of such u is well defined by

the formula

$$\det(u) = \det(I + v) = \sum_{n \ge 0} \operatorname{tr} \Lambda^n v$$

so there is a short exact sequence

$$0 \to I + \operatorname{End}^f(V) \to \operatorname{Aut}(V) \to \mathcal{F}(V)^0 \to 0$$

Let $(I + \operatorname{End}^f(V))_1$ denote those automorphisms u such that $\det(u) = 1$. We get a short exact sequence

$$0 \to k^* \to \operatorname{Aut}(V)/(I + \operatorname{End}^f(V))_1 \to \mathcal{F}(V)^0 \to 0$$

For $v \in \operatorname{End}^f(V)$, $u \in \operatorname{Aut}(V)$, we have

$$\det(I + uvu^{-1}) = \det(I + v)$$

so $\det(I+v)$ is invariant under conjugation and I+v is in the center of $\operatorname{Aut}(V)/(I+\operatorname{End}^f(V))_1$. Thus we have defined a caonical central extension of the group $\mathcal{F}(V)^0$ by k^* .

6.2 Algebraic setting

Consider the k-space $\operatorname{End}(V)(R) = \operatorname{End}_R(V \otimes_k R)$, and has the k-group $\operatorname{Aut}(V)$ as its group of units. An endomorphism of $V \otimes R$ has finite rank if its image is contained in a finitely generated submodule, denote these endomorphisms $\operatorname{End}^f(V)$ and take $\mathcal{F}(V) = (\operatorname{End}(V)/\operatorname{End}^f(V))^*$. The group $\mathcal{F}(V)^0$ is defined as the image of $\operatorname{Aut}(V)$ in $\mathcal{F}(V)$. Then again there is a central extension

$$0 \to \mathfrak{G}_m \to \operatorname{Aut}(V)/(I + \operatorname{End}^f(V))_1 \to \mathcal{F}(V)^0 \to 0$$

Now consider the ind-group $\mathrm{GL}_r(K)$. Choose a supplement $K^r = V \oplus \mathcal{O}^r$ giving rise to a direct sum decomposition

$$R((z))^r = V \oplus R[[z]]^r$$

Let $\gamma \in \mathrm{GL}_r(R((z)))$ be a matrix with entries in R((z)) and decompose

$$\gamma = \begin{pmatrix} a(\gamma) & b(\gamma) \\ c(\gamma) & d(\gamma) \end{pmatrix}$$

so $a(\gamma): V_R \to V_R$ and consider the class $\bar{a}(\gamma) \in \operatorname{End}(V_R) / \operatorname{End}^f(V_R)$.

Proposition 6.1. The map

$$\gamma \mapsto \bar{a}(\gamma)$$

is a group homomorphism

$$\operatorname{GL}_r(R((z))) \to \mathcal{F}(V_R)$$

Another choice of supplement V' gives rise to $\bar{a}': \mathrm{GL}_r(R((z))) \to \mathcal{F}(V_R')$. Let $\phi: V \to V'$ be the map $V \to R((z))^r \to V'$. Then $\bar{a}'(\gamma) = \phi \circ \bar{a}(\gamma) \circ \phi^{-1}$.

Proposition 6.2. Let R be a k-algebra and γ an element of $SL_r(R((z)))$; locally on Spec(R) (for the Zariski topology), the endomorphism $a(\gamma)$ of V_R is equivalent modulo $\operatorname{End}^f(V_R)$ to an automorphism.

It is enough to prove the result for one particular choice of V; we'll take $V=(z^{-1}k[z^{-1}])^r$. The assertion is clear when γ belongs to $\mathrm{SL}_r(R[[z]])$ or to $\mathrm{SL}_r(R[z^{-1}])$: in those cases the matrix (4.2) is triangular, so that $a(\gamma)$ itself is an isomorphism. The result then follows when R is a field, since any matrix $\gamma \in \mathrm{SL}_r(R((z)))$ can be written as a product of elementary matrices $I+\lambda E_{ij}$, where λ can be taken either in R[[z]] or in $R[z^{-1}]$. The general case is a consequence of the following lemma:

Lemma 6.3. Locally over Spec(R), any element γ of $SL_r(R((z)))$ can be written $\gamma_0 \gamma^- \gamma^+$, with $\gamma_0 \in SL_r(K)$, $\gamma^- \in SL_r(R[z^{-1}])$, $\gamma^+ \in SL_r(R[[z]])$.

Let us assume first that the k-algebra R is finitely generated. Let t be a closed point of $\operatorname{Spec}(R)$; put $\gamma_0 = \gamma(t)$. By (1.12) $\gamma_0^{-1}\gamma$ can be written in a neighborhood of t as $\gamma^-\gamma^+$, hence the result in this case.

In the general case, R is the union of its finitely generated subalgebras R_{α} . Let

$$p: SL_r(K) \longrightarrow \mathcal{Q} = SL_r(K)/SL_r(\mathcal{O})$$

be the quotient map. Since $\mathcal Q$ is an ind-variety, the morphism $p \circ \gamma : \operatorname{Spec}(R) \to \mathcal Q$ factors through $\operatorname{Spec}(R_\alpha)$ for some α . Locally over $\operatorname{Spec}(R_\alpha)$, this morphism can be written $p \circ \gamma_\alpha$ for some element γ_α of $\operatorname{SL}_r(R_\alpha((z)))$, which differs from γ by an element of $\operatorname{SL}_r(R[[z]])$ (thm. 2.5). Since R_α is of finite type, the lemma holds for γ_α , hence also for γ .

Corollary 6.4. The image of $SL_r(K)$ by \bar{a} is contained in the subgroup $\mathcal{F}(V)^0$.

Take the pullback of the central extension

$$0 \to \mathfrak{G}_m \to \operatorname{Aut}(V)/(I + \operatorname{End}^f(V))_1 \to \mathcal{F}(V)^0 \to 0$$

by \bar{a} so that we get

$$0 \to \mathfrak{G}_m \to \hat{\mathrm{SL}}_r(K) \to \mathrm{SL}_r(K) \to 0$$

where $\hat{\operatorname{SL}}_r(K)$ is the central extension of $\operatorname{SL}_r(K)$ by \mathfrak{G}_m . It is also an ind-group.

Explicitly, an element of $\operatorname{SL}_r(K)(R)$ is given, locally on $\operatorname{Spec} R$, by a pair (γ, u) with γ in $\operatorname{SL}_r(R((z)))$, u in $\operatorname{Aut}(V_R)$, and $u \equiv a(\gamma) \mod \operatorname{End}^f(V_R)$. Two pairs (γ, u) and (γ', u') give the same element of $\operatorname{SL}_r(K)(R)$ if $u^{-1}u'$ (which is in $I + \operatorname{End}^f(V_R)$) has determinant 1. The map

$$\psi: \hat{\operatorname{SL}}_r(K)(R) \longrightarrow \operatorname{SL}_r(K)(R)$$

is given by $\psi(\gamma, u) = \gamma$. The kernel of ψ consists of the pairs (I, u) with $u \in \operatorname{Aut}(V_R)$, modulo the pairs (I, u) with $\det u = 1$; the map $u \mapsto \det u$ provides an isomorphism from $\ker \psi$ onto $\mathfrak{G}_m(R)$.

Remark 6.5. The interpretation of the central extension is as follows. Consider what happens when $\gamma \in \mathrm{SL}_r(R((z)))$ acts on V_R . The action $a(\gamma)$ is given by embedding V_R into $R((z))^r$, and then applying the matrix γ and projecting back to V_R . This map determined by γ fails to be an automorphism, but we showed that if we perturb it by a finite rank endomorphism, we can get an automorphism. However we can get different automorphisms, and the central extension carries around the data of the particular automorphism we choose to represent the element γ . Two automorphisms are equivalent precisely when $\det(u^{-1}u') = 1$ which makes a \mathfrak{G}_m -torsor.

Remark 6.6. Let H be a sub-k-group of $\operatorname{SL}_r(K)$ such that \mathcal{O}^r (resp. V) is stable under H. Then the extension (\mathcal{E}) is canonically split over H. For any element $\gamma \in H(R)$, we have $b(\gamma) = 0$ (resp. $c(\gamma) = 0$), so that the map $\gamma \mapsto a(\gamma)$ is a homomorphism from H(R) into $\operatorname{Aut}(V_R)$. The map $\gamma \mapsto (\gamma, a(\gamma))$ defines a section of ψ over H. In particular, the pullback $\widehat{\operatorname{SL}}_r(\mathcal{O})$ of $\operatorname{SL}_r(\mathcal{O})$ is canonically isomorphic to $\operatorname{SL}_r(\mathcal{O}) \times \mathfrak{G}_m$.

We denote by $\chi_0: \widehat{\operatorname{SL}}_r(\mathcal{O}) \to \mathfrak{G}_m$ the second projection. If an element $\tilde{\delta} \in \widehat{\operatorname{SL}}_r(\mathcal{O})(R)$ is represented by a pair (δ, v) , then

$$\chi_0(\tilde{\delta}) = \det(a(\delta)^{-1}v).$$

More generally, suppose there exists an element $\lambda \in \operatorname{SL}_r(K)$ such that the subgroup H preserves the subspace $\lambda(\mathcal{O}^r)$ (resp. $\lambda(V)$). Choose an automorphism u of V such that $u \equiv a(\lambda)$ (mod $\operatorname{End}^f(V)$), and define a section of ψ over H by

$$\gamma \mapsto (\gamma, ua(\lambda^{-1}\gamma\lambda)u^{-1}).$$

This section is independent of the choice of u, so once again the group H embeds canonically into $\widehat{\operatorname{SL}}_r(K)$.

Let $\tilde{\gamma}$ an element of $\widehat{\operatorname{SL}}_r(K)(R)$. Locally on $\operatorname{Spec}(R)$ write $\tilde{\gamma}=(\gamma,u)$ with γ in $\operatorname{SL}_r(R((z)))$, $u\in\operatorname{Aut}(V_R)$, and $u\equiv a(\gamma)\pmod{\operatorname{End}^f(V_R)}$. We associate to this pair the element

$$\tau_V(\gamma, u) := \det(ua(\gamma^{-1}))$$

of R. This is clearly well-defined, so we get an algebraic function τ_V on $\widehat{\mathrm{SL}}_r(K)$.

Proposition 6.7. Let R be a k-algebra, $\tilde{\gamma}$ an element of $\widehat{SL}_r(K)(R)$, γ its image in $SL_r(R((z)))$. One has

$$\tau_V(\tilde{\gamma}\tilde{\delta}) = \chi_0(\tilde{\delta})\tau_V(\tilde{\gamma})$$

for all $\tilde{\delta}$ in $\widehat{\operatorname{SL}}_r(\mathcal{O})(R)$.

Proof. Let us choose representatives (γ, u) of $\tilde{\gamma}$ and (δ, v) of $\tilde{\delta}$. Since $b(\delta^{-1}) = 0$, one has

$$a(\delta^{-1}\gamma\gamma^{-1}) = a(\delta^{-1})a(\gamma^{-1}),$$

and

$$\tau_V(\tilde{\gamma}\tilde{\delta}) = \det(uva(\delta^{-1})a(\gamma^{-1})) = \det(va(\delta^{-1}))\det(ua(\gamma^{-1})) = \chi_0(\tilde{\delta})\tau_V(\tilde{\gamma}).$$

as claimed. \Box

Let us denote by χ the character χ_0^{-1} of $\widehat{\operatorname{SL}}_r(\mathcal{O})$. The function τ_V thus defines a section of the line bundle \mathcal{L}_{χ} on the ind-variety

$$Q = \widehat{\operatorname{SL}}_r(K)/\widehat{\operatorname{SL}}_r(\mathcal{O})$$

More generally, let $\delta \in \mathrm{SL}_r(K)$, and let $\widetilde{\delta}$ be a lift of δ in $\widehat{\mathrm{SL}}_r(K)$; the function

$$\tilde{\gamma} \mapsto \tau_V(\tilde{\delta}^{-1}\tilde{\gamma})$$

still defines an element of $H^0(\mathcal{Q}, \mathcal{L}_\chi)$, whose divisor is $\delta(\operatorname{div}(\tau_V))$.

6.3 The determinant bundle

We will now compare the pullback over Q of the determinant line bundle \mathcal{L} on the moduli stack with the line bundle \mathcal{L}_{χ} .

Proposition 6.8. Let R be a k-algebra, γ an element of $\mathrm{GL}_r(R((z)))$, and (E, ρ, σ) the corresponding triple over X_R . There is a canonical exact sequence

$$0 \to H^0(X_R, E) \to A_X^r \otimes_k R \to (R((z))/R[[z]])^r \to H^1(X_R, E) \to 0$$

where $\gamma: A_X^r \otimes_k R \to (R((z))/R[[z]])^r$ is the composition of the injection $A_X^r \otimes_k R \to R((z))^r$, the automorphism γ^{-1} of $R((z))^r$, and the projection $R((z))^r \to (R((z))/R[[z]])^r$.

Proof. Recall that there is a short exact sequence

$$0 \to \mathcal{O}_X \to j_*\mathcal{O}_{X^*} \to f_*(\mathcal{K}_D/\mathcal{O}_D) \to 0$$

where $j: X^* \to X$ and $f: D \to X$ is the inclusion. The term $j_*O_{X^*}$ represents those sections of O_X which are regular on X^* . The term K_D/\mathcal{O}_D represents the quotient of Laurent series by regular functions, and then we push it forward to X. The exact sequence says that a function on X^* comes from a function on X precisely when it has no poles along D. Tensoring with E and using our trivializations ρ, σ we get an exact sequence (tensoring with E is exact because E is locally free)

$$0 \to E \to j_* O_{X^*} \to f_* (\mathcal{K}_D / \mathcal{O}_D) \to 0$$

Now take the long exact sequence in cohomology. \Box

Choose an element $\gamma_0 \in \operatorname{GL}_r(K)$ so that $\bar{\gamma}_0 : A_X^r \to (K/\mathcal{O})^r$ is an isomorphism, i.e. so that E has no cohomology, i.e. so that $V = \gamma_0^{-1}(A_X^r)$ is a supplement of \mathcal{O}^r in K^r . Identifying A_X^r with V and the quotient map $K^r \to K^r/\mathcal{O}^r$ with the projection of K^r onto V, we obtain that $\bar{\gamma}$ is the composition of the mappings

$$V \to K^r \xrightarrow{\gamma^{-1}\gamma_0} K^r \to V$$

so that $\bar{\gamma}$ is the coefficient $a(\gamma^{-1}\gamma_0)$ of the matrix $\gamma^{-1}\gamma_0$ in the decomposition $K^r = V \oplus \mathcal{O}^r$.

Therefore we have shown the following.

Proposition 6.9. Let $\gamma \in GL_r(R((z)))$, and let E be the associated vector bundle over X_R . There is a canonical exact sequence:

$$0 \to H^0(X_R, E) \to V_R \xrightarrow{a(\gamma^{-1}\gamma_0)} V_R \to H^1(X_R, E) \to 0.$$

Corollary 6.10. Assume that there exists an automorphism u of V_R such that $u \equiv a(\gamma_0^{-1}\gamma)$ (mod End^f (V_R)). Then there is an exact sequence:

$$0 \to H^0(X_R, E) \to V_0 \xrightarrow{v_0} V_0 \to H^1(X_R, E) \to 0,$$

where V_0 is a free finitely generated R-module, and $det(v_0) = \tau_V(\gamma_0^{-1}\gamma, u)$.

Proof. Let $v = u \cdot a(\gamma^{-1}\gamma_0) \in I + \operatorname{End}^f(V_R)$, and let V_0 be a free finitely generated direct factor of V_R containing $\operatorname{Im}(v-I)$. Denote by v_0 the restriction of v to V_0 . The matrix of v relative to a direct sum decomposition $V_R = V_0 \oplus V_1$ is of the form:

$$\begin{pmatrix} v_0 & * \\ 0 & I \end{pmatrix},$$

from which it follows that $\det v_0 = \det v = \tau_V(\gamma_0^{-1}\gamma, u)$. It also follows that $\ker v_0 = \ker v$, and the inclusion $V_0 \hookrightarrow V_R$ induces an isomorphism $\operatorname{Coker} v_0 \cong \operatorname{Coker} v$. \square

Remark 6.11. One can think of the map $\tau_V(\gamma_0^{-1}\gamma,u)$ as a determinant associated with the difference between two ways of representing the action of $\gamma_0^{-1}\gamma$ on V_R . Specfically, when we have $u \equiv a(\gamma_0^{-1}\gamma) \pmod{\operatorname{End}^f(V_R)}$, the difference $u - a(\gamma_0^{-1}\gamma)$ is a finite rank endomorphism of V_R , and the determinant $\det(u - a(\gamma_0^{-1}\gamma))$ is well defined. The map τ_V is a way of encoding this information in a more algebraic form, and it allows us to compare different representations of the same action.

The corollary says that we can "finitize" the cohomology computation to a finite-dimensional submodule V_0 , and this localized computation preserves the key determinant information.

7 Appendix: Morphisms of Schemes

Other notions for morphisms of schemes that we will not need, but still worth mentioning and defining.

Definition 7.1. Let $f: X \to Y$ be a morphism of schemes.

- 1. f is **affine** if for every affine open subset $V = \operatorname{Spec}(B) \subset Y$, the preimage $f^{-1}(V)$ is affine. Equivalently, there exists an affine open cover $\{V_i\}$ of Y such that $f^{-1}(V_i)$ is affine for each i.
- 2. $f: X \to Y$ is **finite** if for every affine open subset $V = \operatorname{Spec}(B) \subset Y$, the preimage $f^{-1}(V) = \operatorname{Spec}(A)$ where A is a finite B-algebra (i.e., A is finitely generated as a B-module).
- 3. f is **of finite type** if it is locally of finite type and quasi-compact.
- 4. f is quasi-compact if for every quasi-compact open subset $V \subset Y$, the preimage $f^{-1}(V)$ is quasi-compact.
- 5. $f: X \to Y$ is **separated** if the diagonal morphism $\Delta_f: X \to X \times_Y X$ is a closed immersion.
- 6. $f: X \to Y$ is quasi-separated if the diagonal morphism $\Delta_f: X \to X \times_Y X$ is quasi-compact.
- 7. $f: X \to Y$ is **proper** if it is separated, of finite type, and universally closed (the image of a closed subset remains closed after any base change).
- 8. $f: X \to Y$ is unramified at a point $x \in X$ if:
 - (a) The extension of residue fields $\kappa(x)/\kappa(f(x))$ is finite and separable.
 - (b) The cotangent space of the fiber at x, $\mathfrak{m}_{f(x)}\mathcal{O}_{X,x}/\mathfrak{m}_{f(x)}^2\mathcal{O}_{X,x}$, vanishes.

It is unramified if it is unramified at every point of X.

9. A morphism $f: X \to Y$ is formally smooth (resp. formally unramified, formally étale) if for every affine Y-scheme $Y' \to Y$ and every closed immersion $Y'_0 \to Y'$ defined by a nilpotent ideal, the map

$$\operatorname{Hom}_Y(Y',X) \to \operatorname{Hom}_Y(Y_0',X)$$

is surjective (resp. injective, bijective).

- 10. A morphism $f: X \to Y$ is **smooth** (resp. **unramified**, **étale**) if it is formally smooth (resp. formally unramified, formally étale) and locally of finite presentation.
- 11. A morphism $f: X \to Y$ is **smooth** of relative dimension n if it is flat, locally of finite presentation, and for each point $x \in X$, the fiber $X_{f(x)}$ is a smooth variety of dimension n over $\kappa(f(x))$.
- 12. A morphism $f: X \to Y$ is an **open immersion** if it induces a homeomorphism of X onto an open subset of Y and the induced map $f^{\sharp}: \mathcal{O}_{Y}|_{f(X)} \to f_{*}\mathcal{O}_{X}$ is an isomorphism.
- 13. A morphism $f: X \to Y$ is a **closed immersion** if it induces a homeomorphism of X onto a closed subset of Y and the induced map $f^{\sharp}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ is surjective.
- 14. A morphism $f: X \to Y$ is quasi-finite at a point $x \in X$ if there exist open neighborhoods U of x and Y of f(x) such that $f|_{U}: U \to V$ has finite fibers. It is quasi-finite if it is quasi-finite at every point of X.

Theorem 7.2. For a morphism of schemes $f: X \to Y$, the following are equivalent:

- 1. f is formally smooth and locally of finite presentation.
- 2. f is flat, locally of finite presentation, and has geometrically regular fibers.

Proof. We will prove both implications to establish the equivalence.

(1) \Rightarrow (2): Assume f is formally smooth and locally of finite presentation.

We need to establish that f is flat and has geometrically regular fibers.

Step 1: Proving flatness.

Let $x \in X$ be a point and $y = f(x) \in Y$. We need to show that $\mathcal{O}_{X,x}$ is flat as an $\mathcal{O}_{Y,y}$ -module. By standard criteria for flatness, it suffices to show that for every finitely generated ideal $I \subset \mathcal{O}_{Y,y}$, the natural map

$$\varphi: I \otimes_{\mathcal{O}_{Y,y}} \mathcal{O}_{X,x} \to I\mathcal{O}_{X,x} \tag{5}$$

is an isomorphism, or equivalently, that $\operatorname{Tor}_1^{\mathcal{O}_{Y,y}}(\mathcal{O}_{Y,y}/I,\mathcal{O}_{X,x})=0.$

Since f is formally smooth, by definition, for every affine Y-scheme Y', every closed subscheme $Y'_0 \subset Y'$ defined by a nilpotent ideal J, and every Y-morphism $g_0: Y'_0 \to X$, there exists a Y-morphism $g: Y' \to X$ extending g_0 .

For our purposes, we consider the specific case where:

$$Y' = \operatorname{Spec}(\mathcal{O}_{Y,y}/I^2) \tag{6}$$

$$Y_0' = \operatorname{Spec}(\mathcal{O}_{Y,y}/I) \tag{7}$$

The ideal $J = I/I^2$ is nilpotent in $\mathcal{O}_{Y,y}/I^2$ with $J^2 = 0$.

The obstruction to lifting $g_0: Y_0' \to X$ to $g: Y' \to X$ lies in

$$\operatorname{Ext}^{1}_{\mathcal{O}_{Y'_{0}}}(g_{0}^{*}L_{X/Y}, I/I^{2}) \tag{8}$$

where $L_{X/Y}$ is the cotangent complex of f.

Since f is formally smooth, this obstruction vanishes for all possible g_0 . Moreover, as f is locally of finite presentation, the cotangent complex $L_{X/Y}$ is perfect and concentrated in degrees [-1,0].

By deformation theory, there is a connection between these Ext groups and the Tor groups relevant to flatness. Specifically, the vanishing of the obstruction for all g_0 implies that

$$\operatorname{Tor}_{1}^{\mathcal{O}_{Y,y}}(\mathcal{O}_{Y,y}/I,\mathcal{O}_{X,x}) = 0 \tag{9}$$

This connection is established through the local-to-global spectral sequence relating Ext groups of the cotangent complex to appropriate Tor groups. For a formally smooth morphism, the cotangent complex is quasi-isomorphic to the module of differentials placed in degree 0, which simplifies these relationships.

As this holds for all finitely generated ideals $I \subset \mathcal{O}_{Y,y}$, we conclude that $\mathcal{O}_{X,x}$ is flat over $\mathcal{O}_{Y,y}$. Since this applies to all points $x \in X$, the morphism f is flat.

I am not confident in the truth of what is written here. It is also not complete. \Box

Remark 7.3 (Properties of morphisms). The following properties of morphisms of schemes are related in the following way:

- 1. finite \Rightarrow proper \Rightarrow separated
- 2. $finite \Rightarrow affine \Rightarrow quasi-affine$
- 3. finite \Rightarrow quasi-finite
- *4.* $\acute{e}tale \Rightarrow smooth \Rightarrow flat$
- 5. $\acute{e}tale \Rightarrow unramified$
- 6. locally of finite presentation \Rightarrow locally of finite type
- 7. $proper + flat + finite type + locally of finite presentation <math>\Rightarrow$ cohomologically flat

Properties preserved under composition include: affine, finite, (locally) of finite type, (locally) of finite presentation, quasi-compact, separated, proper, closed immersion, and flat.

Properties preserved under base change include: affine, finite, (locally) of finite type, (locally) of finite presentation, flat, unramified, étale, smooth, open immersion, closed immersion, and proper.

8 Appendix: Associated Bundles

Let G be a group scheme and let $P \to X$ be a principal G-bundle over a scheme X. Suppose we have a scheme F equipped with a (left) G-action. We can construct the associated bundle with fiber F, denoted $P \times^G F$, as follows.

Consider the product $P \times F$ with the diagonal G-action given by $g \cdot (p, f) = (p \cdot g^{-1}, g \cdot f)$ for $g \in G$, $p \in P$, and $f \in F$. The associated bundle $P \times^G F$ is defined as the quotient of $P \times F$ by this G-action:

$$P \times^G F = (P \times F)/G$$

More precisely, $P \times^G F$ can be constructed as the sheafification of the presheaf quotient $(P \times F)/G$ in the appropriate topology (étale, fppf, etc.). This construction yields a bundle $\pi: P \times^G F \to X$ where the fiber over each point $x \in X$ is isomorphic to F.

We can also go in the other direction - starting from a bundle with fiber F and constructing a principal bundle.

Definition 8.1 (Frame Bundle). Let $\pi: E \to X$ be a bundle whose fibers are isomorphic to a scheme F on which G acts. The **frame bundle** of E, denoted $Fr_G(E)$, is the X-scheme representing the functor that assigns to each X-scheme T the set of G-equivariant isomorphisms:

$$Fr_G(E)(T) = \{ \phi : T \times F \xrightarrow{\sim} E \times_X T \text{ (as T-schemes)} \mid \phi \text{ is G-equivariant} \}$$

Proposition 8.2. Let $\pi: E \to X$ be a bundle with fiber F.

- 1. The frame bundle $Fr_G(E)$ is a principal G-bundle over X.
- 2. If $E = P \times^G F$ is an associated bundle for some principal G-bundle P, then $Fr_G(E) \cong P$.
- 3. For any bundle E with fiber F, we have $E \cong Fr_G(E) \times^G F$.

This establishes a correspondence between principal G-bundles and bundles with fiber F (with G-action), showing that these two perspectives are equivalent.

Example 8.3. Let $E \to X$ be a vector bundle of rank n. Then the frame bundle $Fr_{GL_n}(E)$ is the principal GL_n -bundle whose fiber at $x \in X$ consists of all bases of the vector space E_x . Conversely, given a principal GL_n -bundle P, the associated bundle $P \times^{GL_n} \mathbb{A}^n$ is a vector bundle of rank n.

9 References

- 1. Beauville, A., and Laszlo, Y., "Conformal blocks and generalized theta functions," *Communications in Mathematical Physics*, vol. 164, no. 2, pp. 385–419, 1994.
- 2. Olsson, M. C., *Algebraic Spaces and Stacks*, American Mathematical Society Colloquium Publications, vol. 62, American Mathematical Society, Providence, RI, 2016.
- 3. Sorger, C., "Lectures on moduli of principal *G*-bundles over algebraic curves," in *School on Algebraic Geometry (Trieste, 1999)*, pp. 1–57, ICTP Lecture Notes, vol. 1, Abdus Salam International Centre for Theoretical Physics, Trieste, 1999.
- 4. https://math.colorado.edu/~casa/seminars/reading/stack_of_curves_ 21/papers/fultonetalstacks/6AfultonAppDescent.pdf
- 5. Grothendieck, A., *Éléments de géométrie algébrique (EGA)*, Publications Mathématiques de l'IHÉS, vol. 4, 1960.