

Моделирование динамических свойств движущихся объектов с пересекающимися траекториями

Кшенин Александр Дмитриевич СУиР, группа R3496 Ksh_sa@mail.ru 207965@corp.ifmo.ru

Задачи

Моделирование движения автомобилей на нерегулируемом перекрёстке с главной дорогой

Построение распределённой системы управления трафиком

Модели трафика

- Макроскопические общий поток автомобилей
 - Поток жидкости (LWR модель)
 - Системы массового обслуживания
- Микроскопические движение отдельных автомобилей
 - Клеточные автоматы
 - Непрерывные модели

Теория очередей. Постановка

- Перекрёсток двух однополосных дорог. Индекс i=1,2
- Моменты включения зелёного сигнала светофора $\left\{t_n^{(i)}
 ight\}_{n=1}^\infty$
- Последовательности интервалов между переключениями $au_n^{(1)}=t_n^{(2)}-t_n^{(1)}$, $au_n^{(2)}=t_{n+1}^{(1)}-t_n^{(2)}$ с функциями распределения $G_1(x)$ и $G_2(x)$, средними ${\gamma_1}^{-1}$ и ${\gamma_2}^{-1}$

Теория очередей

- Потоки автомобилей $A_i(t)$ являются независимыми пуассоновскими с интенсивностями λ_i
- Автомобили останавливаются на красном сигнале или при наличии очереди
- Поток $X(t) = (X_1(t), X_2(t))$, не марковский. $X_i(t)$ число ожидающих в момент t на направлении i

Теория очередей

- Наличие у X(t) стационарных распределений равносильно условию $ho_i = \frac{\lambda_i \gamma_i \theta}{v} < 1$, где v параметр показательного распределения времени проезда перекрёстка
- Часто рассматривается модель с проскакиванием, т.е. когда время проезда равно нулю при отсутствии очереди.

Теория очередей

- Пусть $G_i(x) = 1 e^{-\gamma_i x}$ и есть проскакивание
- Рассмотрим цепь Маркова $\{X_1(t), e(t)\}$, где e(t) = 1, если горит зелёный, (t) = 0, если красный. Предполагается, что условия стационарности выполнены
- Результаты применимы к перекрёстку без светофора, но с главной дорогой.

Основные результаты

• Средние длины очередей в направлениях

•
$$m_1(x) = \frac{c_1(1-x)(1+d(1-c_1)x(1-x))}{(1-c_1)(x-c_1)}$$

•
$$m_2(x) = \frac{c_2 x (1 + d(1 - c_2) x (1 - x))}{(1 - c_2)(1 - x - c_2)}$$

•
$$c_i = \lambda_i v^{-1}$$
, $x = (\gamma_1 \theta)^{-1}$, $d = v\theta$, $\theta = \gamma_1^{-1} + \gamma_2^{-1}$

Компьютерная модель. Постановка

- Нерегулируемый перекрёсток:
 - 4 полосы (по 2 в каждую сторону)
 - главная дорога не меняет направление
- Автомобили динамические объекты
- Параметры: потоков (плотности, направления), автомобилей (габариты, динамика, поведение)

Кинематика с разными скоростями

- Автомобиль генерируется со случайной начальной скоростью
- Если он догоняет автомобиль, движущийся с меньшей скоростью, то уменьшает свою скорость
- Изменение скорости, остановка происходят мгновенно

Intelligent Driver Model (IDM)

$$\begin{cases} \dot{x}_{\alpha} = \frac{dx_{\alpha}}{dt} = v_{\alpha} \\ \dot{v}_{\alpha} = \frac{dv_{\alpha}}{dt} = a \left(1 - \left(\frac{v_{\alpha}}{v_{0}} \right)^{\delta} - \left(\frac{s^{*}(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}} \right)^{2} \right) \end{cases}$$

$$s^*(v_{\alpha}, \Delta v_{\alpha}) = s_0 + v_{\alpha}T + \frac{v_{\alpha}\Delta v_{\alpha}}{2\sqrt{ab}};$$

v_0	Желаемая скорость
s_0	Минимальная дистанция
T	Минимальное время манёвра
а	Максимальное ускорение
b	Комфортное торможение
l_{α}	Длина автомобиля

TEMOre than a UNIVERSITY
$$\Delta v_{\alpha} = v_{\alpha} - v_{\alpha-1}; \quad s_{\alpha} = x_{\alpha-1} - x_{\alpha} - \frac{1}{2}(l_{\alpha} + l_{\alpha-1})$$

Реализация

• $s_0 = 2 \text{ m},$ T = 1.5 c, $a = 0.73 \text{ m/c}^2,$ $b = 1.67 \text{ m/c}^2,$ $\delta = 4,$ $3 \le l_\alpha \le 5,$ $v_0 = 20 \text{ m/c}$

ITSMOre than a UNIVERSITY

Результаты

- Генерация автомобилей со случайными параметрами
- Кинематика движения с различными скоростями, поворота на перекрёстке
- Динамика движения, модель IDM
- Приложения с визуализацией модели
- Пользовательский интерфейс

Видео. Кинематика

Видео. Динамика

Система управления. AIM

- AIM Autonomous Intersection Management
- Фреймворк для контроля и централизованного управления движением автономных транспортных средств на перекрёстках
- University of Texas at Austin
- https://www.cs.utexas.edu/~aim/

Спасибо за внимание!

www.ifmo.ru

ITSMOre than a UNIVERSITY