Ejemplo 2: Otros métodos para hacer el test

• Método 2 (intervalos de confianza para t_{exp}):

Calculo $t_{\frac{\alpha}{2},n-1}$, que es el valor que hace que $Prob(|t| > t_{\frac{\alpha}{2},n-1}) = \alpha$ para una distribución t de

Student con n-1 grados de libertad.

En nuestro caso: $\alpha = 0.05$, df = n-1 = 4: $Prob(|t| > t_{0.025, 4}) = 0.05$

Mirando la tabla: $t_{0.025, 4} = 2,78$

df	0.20	0.10	0.05	0.02	0.01	0.001
1	3.0777	6.3138	12.7062	31.8205	63.6567	636.6192
2	1.8856	2.9200	4.3027	6.9646	9.9248	31.5991
3	1.6377	2.3534	3.1824	4.5407	5.8409	12.9240
4	1.5332	2.1318	2.7764	3.7469	4.6041	8.6103
5	1.4759	2.0150	2.5706	3.3649	4.0321	6.8688

- Como $t_{exp} = 1,16 \in [-2,78, 2,78]$ no podemos rechazar la hipótesis Ho al 95% de nivel de confianza (los parámetros A y B sí podrían tener rendimientos equivalentes).
- Método 3 (intervalos de confianza para \bar{d}_{real}):

$$\left[\bar{d} - \frac{s}{\sqrt{n}} \times t_{\frac{\alpha}{2}, n-1}, \bar{d} + \frac{s}{\sqrt{n}} \times t_{\frac{\alpha}{2}, n-1}\right] = [2, 4 - 2, 06 \times 2, 78] = [-3, 3, 8, 1] \text{ pág/s}.$$

Como 0 ∈ [-3,3, 8,1] no podemos rechazar la hipótesis Ho al 95% de nivel de confianza (los parámetros A y B sí podrían tener rendimientos equivalentes).