Département d'informatique et de génie logiciel Compression de données IFT-4003/IFT-7023

Notes de cours Codage arithmétique

Édition Hiver 2012

Mohamed Haj Taieb

Local: PLT 2113

Courriel: mohamed.haj-taieb.1@ulaval.ca

Faculté des sciences et de génie Département de génie électrique et de génie informatique

Plan de la présentation

□ Codage arithmétique:

- Idée principale
- Génération d'étiquette
- Déchiffrage de l'étiquette
- Génération d'un code binaire
- Unicité et efficacité du code
- Algorithme d'implémentation
- Implémentation entière
- Comparaison avec le codage de Huffman

Rappel sur les codes de Huffman

■ Longueur du code de Huffman

- Le code de Huffman peut garantir un taux de codage (nombre moyen de bits par symbole) proche de l'entropie de 1 bit. $H(S) \le l_{mov} < H(S) + 1$
- Cette borne supérieure peut être plus stricte.
- Si les probabilités des symboles sont bien réparties avec la probabilité du symbole le plus fréquent pmax < 0.5 on obtient: $H(S) \le l_{mov} < H(S) + p_{max} + 0.086$

 Mais que faire si on a peu de symboles de probabilités distancées.

Codes de Huffman étendu (1)

■ Regroupement de symboles

Le regroupement de symboles pour la génération d'un code de Huffman étendu peut améliorer les performances. Mais ce ne fonctionne pas toujours!

Exemple

Considérons une source i.i.d suivante et le code de

Huffman associé:

Lettres	a	b	C
Probabilité	0.95	0.02	0.03
Code	0	11	10

- L'entropie de la source: 0.335 bits/symbole.
- La longueur moyenne de ce code: 1.05 bits/symbole.
- Redondance: 0.715 bits/symbole.
- Efficacité: ξ=31.905%

Code de Huffman étendu (2)

□ Regroupement de symboles

Le regroupement de symboles deux par deux donne le code suivant:

aa	ab	ac	ba	bb	Вс	ca	Cb	СС
0.902	0.019	0.0285	0.019	0.0004	0.0006	0.0285	0.0006	0.0009
0	111	100	1101	110011	110001	101	110010	110000

- Entropie=0.335 bit/symb
- Imoy=1.222/2=0.611bit/symb
- Redondance=0.276
- Efficacité: ξ=54.828%

 Pour une efficacité acceptable il faut regrouper les symboles 8 par 8 → Alphabet de taille 38=6561 → Capacité de stockage du code élevée.

Code de Huffman étendu (3)

□ Inefficacité des codes de Huffman étendu

- La moindre perturbation des statistiques entrainant un changement des probabilité affecte grandement les performances.
- Pour déterminer un mot-code pour une séquence de longueur m, on doit générer des mot-codes pour toutes autres séquences de même longueur possibles.
- Croissance exponentielle de la taille de l'alphabet.
- Il faut un moyen pour générer un mot-code à une séquence donnée sans avoir à générer des mot-codes pour les autres séquences de même longueur.
- Codes arithmétiques

Idée principale des codes arithmétiques

■ Fonctionnement

- Dans le codage arithmétique un identificateur ou une étiquette unique est générée pour la séquence à encoder.
- Cette étiquette correspond à une fraction binaire à partir de la quelle on obtient le code binaire de la séquence.
- En pratique la génération de l'étiquette et du code binaire suivent la même procédure.
- Mais pour mieux comprendre les codes arithmétiques on présente ces deux phases distinctement.
 - Phase 1: Génération d'étiquette (tag) pour la séquence
 - Phase 2: assignation d'un code binaire a ce tag

Codage d'une séquence

□ <u>Distinction entre les séquences de symboles</u>

- A chaque séquence de symboles un tag unique doit être fourni.
- L'intervalle unité [0, 1) est un ensemble possible pour tout les tags.
- En effet le nombre de réel dans cet intervalle sont infini on peut générer autant de tags que l'on veut.
- Il faut alors une fonction f: séquence \rightarrow x \in [0, 1).
- Une parmi ces fonctions on cite la fonction de distribution cumulative (cdf) de variable aléatoire.
- La fonction cdf est utilisé dans le développement des code arithmétique.

Les fonctions de distribution de probabilités

Définition de la fonction cumulative

- Soit X une variable aléatoire résultant d'une expérience donnée.
- La fonction de distribution cumulative (cdf) dénotée par F_x(x) est définie par: F_x(x) =Pr(X≤x).

Quelques Propriétés

- $0 \le F_x(x) \le 1$: une probabilité est toujours entre 0 et 1.
- La cdf est une fonction croissante: $x_1 \le x_2 \to F_X(x_1) \le F_X(x_2)$

En effet
$$F_X(x_2) = Pr(X \le x_2) = Pr(X \le x_1 \text{ ou } x_1 < X \le x_2)$$

$$= Pr(X \le x_1) + Pr(x_1 < X \le x_2)$$

$$= F_X(x_1) + Pr(x_1 < X \le x_2)$$

$$\geq F_X(x_1)$$

Quelques notations

□ Fonction cumulative

- Soit l'alphabet d'éléments discrets: A={ a₁, a₂, ..., a_m}.
- Soit une expérience qui résulte en un des éléments de A.
- Soit la variable aléatoire X prenant des valeurs dans l'ensemble {1,...,m}.
- La fonction de densité de probabilité pour cette variable aléatoire: P(X=i)=P(a_i).
- La fonction de densité cumulative:

$$F_X$$
 $i = \Pr(X \le i) = \Pr(X = 1 \text{ ou } \dots \text{ ou } X = i) = \Pr(X = 1) + \dots + \Pr(X = i) = \sum_{k=1}^{l} P(X = k)$

■ Pour chaque symbole a_i de probabilité non nulle on associe une valeur distincte de $F_X(i) \rightarrow$ on peut alors utiliser $F_X(i)$ comme un tag dans les codes arithmétiques.

Génération de tag

□ Procédure

- Réduction de la taille de l'intervalle contenant le tag à chaque lecture d'un symbole de la séquence.
- On commence par subdiviser l'intervalle [0, 1] en sousintervalles de la forme [F_x(i-1), F_x(i)) avec i=1, ..., m.
- On associe à chaque sous-intervalles $[F_X(i-1), F_X(i))$ le symbole a_i .
- La lecture du premier symbole, soit a_k, permet de restreindre l'intervalle du tag au sous-intervalle associé à a_k: [F_X(k-1), F_X(k)).
- Ce sous-intervalle est subdiviser à son tour en sousintervalles suivant la même partition de que l'intervalle initiale.

Partitionnement des sous-intervalles

Procédure

- Chaque symbole lu partitionne le sous-intervalle résultant de la lecture des symboles précédents et la position du tag devient de plus en plus restreinte.
- Premier symbole $a_k \rightarrow [F_X(k-1), F_X(k))$.
- Deuxième symbole a_i →

$$[F_X(k-1) + F_X(j-1) \times F_X(k) - F_X(k-1), F_X(k-1) + F_X(j) \times (F_X(k) - F_X(k-1)))$$

Exemple

- Soit un alphabet formé de trois lettre $A = \{a_1, a_2, a_3\}$ avec $P(a_1)=0.7$, $P(a_2)=0.1$ et $P(a_3)=0.2$.
- \rightarrow $F_X(1)=0.7$, $F_X(2)=0.8$ et $F_X(3)=1$.

Exemple de partitionnement des sousintervalles (1)

$$a_{k=1} \rightarrow [F_X(k-1), F_X(k)) = [F_X(0), F_X(1)) = [F_X(0), F_X(1)) = [0, 0.7)$$

Exemple de partitionnement des sousintervalles (2)

$$\begin{aligned} & [F_X(0) + F_X(1) \times (F_X(1) - F_X(0)), \ F_X(0) + F_X(2) \times (F_X(1) - F_X(0))) \\ & = [0 + 0.7 \times (0.7 - 0), \ 0 + 0.8 \times (0.7 - 0)) \\ & = [0.7 \times 0.7, \ 0.8 \times 0.7) \\ & = [0.49, \ 0.56) \end{aligned}$$

Exemple de partitionnement des sousintervalles (3)

Exemple de partitionnement des sousintervalles (4)

$$\begin{split} &[l^{(2)} + F_X(1) \times (u^{(2)} - l^{(2)}), \ l^{(2)} + F_X(2) \times (u^{(2)} - l^{(2)})) \\ &= [0.546 + 0.7 \times 0.014, \ 0.546 + 0.8 \times 0.014) \\ &= [0.546 + 0.0098, \ 0.546 + 0.0112) \\ &= [0.5558, \ 0.5572) \end{split}$$

Partitionnement en sous-intervalles

□ Remarques importantes suite à l'exemple

- L'apparition de chaque nouveau symbole donne naissance à un sous-intervalle disjoint [disjoint: Π = Ø] avec tout autre sous-intervalle qui aurait pu être généré par une autre séquence.
- Ainsi tout entier appartement à l'intervalle obtenu, peut être associé comme tag à la séquence de symboles.
- i.e. la limite inférieure de l'intervalle ou encore le point central de l'intervalle.
- Dans ce qui suit on va considérer le point centrale comme tag de la séquence.

Génération d'un tag pour symbole unique

Procédure mathématique

- Pour comprendre la procédure mathématique de la génération d'un tag on commence par une séquence de longueur un.
- Un tag est associé à chaque symbole de l'alphabet.
- Soit une source qui génère une séquence à partir d'un alphabet A={a₁, a₂, ..., a_m}. On définit pour un symbole a_i le tag suivant: i-1 1

$$|\overline{T}_X(a_i)| = \sum_{k=1}^{i-1} P(x=k) + \frac{1}{2} P(x=i)$$

$$= F_X(i-1) + \frac{1}{2} P(x=i)$$

Donc pour chaque symbole a_i, on va avoir un tag unique.

Exemple de génération d'un tag pour un symbole unique

■ Exemple

- Considérons l'expérience de lancement d'un dé juste.
- Le résultat de cette expérience peut être associé à l'ensemble {1, 2, 3, 4, 5, 6}.
- Pour un dé juste on a: P(X=k)=1/6 pour k=1,...,6

$$\overline{T}_{X}(1) = F_{X}(0) + \frac{1}{2}P(x=1) = 0 + \frac{1}{2} \times \frac{1}{6} = 0.083\overline{3}$$

$$\overline{T}_{X}(2) = F_{X}(1) + \frac{1}{2}P(x=2) = \frac{1}{6} + \frac{1}{2} \times \frac{1}{6} = 0.25$$

$$\overline{T}_{X}(3) = 0.416\overline{6}; \quad \overline{T}_{X}(4) = 0.583\overline{3}$$

$$\overline{T}_{X}(5) = 0.75; \quad \overline{T}_{X}(4) = 0.916\overline{6}$$

Génération d'un pour une séquence de symboles

Procédure mathématique

- L'approche d'assignation de tag pour une séquence de longueur un d'une source prenant des valeur de alphabet A={a₁, a₂, ..., a_m}, peut s'étendre pour traiter des séquences plus longueur n>1.
- Il faut établir un ordre pour différencier entre les mⁿ combinaisons possibles des n symboles.
- La séquence numéro i parmi les m^n combinaisons possibles est dénoté x_i , à laquelle on associe le tag suivant: $\overline{T}_x^{(m)}(x_i) = \sum_{k=1}^{i-1} P(X = x_k) + \frac{1}{2} P(X = x_i)$
- X est une variable aléatoire de longueur m.
- $\mathbf{x}_{i} = \{x_{i}^{1}, x_{i}^{2}, ..., x_{i}^{m}\},$

Exemple de génération d'un pour une séquence de symboles

□ Procédure mathématique

- Considérons l'expérience de 2 lancements d'un dé juste.
- Il y a 6²=36 combinaisons possibles qu'on ordonne comme suit: 11,12,...,16, 21,22,...,26, ..., ...,51,52,...,56, 61,62,...,66.
- Calculons par exemple le tag de la séquence 13:

$$\overline{T}_{x}^{(2)}(13) = \sum_{\substack{k < 13 \\ k \in 11, 12, \dots, 66}} P(X = x_{k}) + \frac{1}{2}P(X = 13)$$

$$= P(X = 11) + P(X = 12) + \frac{1}{2}P(X = 13)$$

$$= \frac{1}{36} + \frac{1}{36} + \frac{1}{2} \times \frac{1}{36} = \frac{5}{72}$$

Génération d'un pour une séquence de symboles

□ Remarques suite à l'exemple:

- Pour générer le tag de la séquence numéro 13, on n'a pas besoin de générer le tag des autres séquences de me même longueur n=2.
- Il faut par contre calculer les probabilités de toutes les séquences dont l'ordre est inférieur a 13: 11 et 12.
- Le calcul des probabilité des séquences précédentes peut entraîner une complexité de même ordre que la génération de mot-codes pour les autres séquences de même longueur.
- Nous allons voir par la suite qu'on a besoin juste de la probabilité des symboles individuels pour le calcul d'un tag d'une séquence de symboles.

Délimitation de l'intervalle du tag

- ☐ Calcul des bornes inférieure et supérieure de l'intervalle du tag:
 - Lors de la génération du tag on constate que l'intervalle obtenu est disjoint des autres intervalles contenant les tags des autres séquences.
 - Ainsi la détermination d'un tag pour une séquence donnée revient à délimiter l'intervalle en question et ce par le calcul des bornes inférieure et supérieure.
 - Ces deux bornes peuvent être calculées récursivement.

■ Exemple:

- Reprenons l'exemple de lancement du dé non truqué.
- Déterminons l'intervalle du tag de la séquence 322.

Exemple: bornes de l'intervalle du tag par récursion (1)

- ☐ Tag de la séquence 322
 - Observation séquentielle de 3 ensuite 2 et enfin 2.
 - Après chaque observation on calcule les bornes de l'intervalle du tag à ce stade là.
 - Notation: limite supérieure → u⁽ⁿ⁾ [upper limit]
 limite inférieure → l⁽ⁿ⁾ [lower limit]
 n le nombre d'observations à ce moment là.
- Observation 1: 3 $u^{(1)} = F_X(3) = \Pr(X \le 3) = \Pr(X = 1 \text{ ou } X = 2 \text{ ou } X = 3) = \frac{3}{6}$

$$l^{(1)} = F_X(2) = \Pr(X \le 3) = \frac{2}{6}$$

Exemple: bornes de l'intervalle du tag par récursion (2)

☐ Observation 2: 3 2

$$u^{(2)} = F_X^{(2)}(32) = \Pr(X \le 32)$$

$$= \Pr(X = 11) + \Pr(X = 12) + \dots + \Pr(X = 16)$$

$$+ \Pr(X = 21) + \Pr(X = 22) + \dots + \Pr(X = 26)$$

$$+ \Pr(X = 31) + \Pr(X = 32)$$

[Rappel] Théorème de Bayes: loi de la probabilité totale

$$\sum_{i=1}^{6} \Pr(X = ki) = \sum_{i=1}^{6} \Pr(X = k, X = i) = \Pr(X = k)$$

$$\Rightarrow$$

$$u^{(2)} = \Pr(X = 1) + \Pr(X = 2) + \Pr(X = 31) + \Pr(X = 32)$$

$$u^{(2)} = F_{Y}(2) + \Pr(X = 31) + \Pr(X = 32)$$

Exemple: bornes de l'intervalle du tag par récursion (3)

Observation 2: 3 2

$$Pr(X = 31) + Pr(X = 32) = Pr(3) Pr(1) + Pr(3) Pr(2)$$

$$= Pr(3)(Pr(1) + Pr(2)) = Pr(3)F_X(2)$$

$$= (F_X(3) - F_X(2))F_X(2)$$

$$\Rightarrow$$

$$u^{(2)} = F_X(2) + (F_X(3) - F_X(2))F_X(2)$$

$$u^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)})F_X(2)$$

de la même façon on trouve:

$$l^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)})F_X(1)$$

Exemple: bornes de l'intervalle du tag par récursion (4)

Observation 2: 3 2

$$u^{(1)} = F_X(3) = \frac{3}{6}$$
$$l^{(1)} = F_X(2) = \frac{2}{6}$$

$$u^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)}) F_X(2)$$
$$l^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)}) F_X(1)$$

■ Observation 3: 3 2 2

$$u^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(2)$$
$$l^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(1)$$

Exemple: bornes de l'intervalle du tag par récursion (5)

☐ Observation 1: 3

$$u^{(1)} = F_X(3) = \frac{3}{6}, \quad l^{(1)} = F_X(2) = \frac{2}{6}$$

Exemple: bornes de l'intervalle du tag par récursion (6)

Observation 1: 3

$$u^{(1)} = F_X(3) = \frac{3}{6}, \quad l^{(1)} = F_X(2) = \frac{2}{6}$$

Exemple: bornes de l'intervalle du tag par récursion (7)

Observation 2: 3 2

$$u^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)})F_X(2), \quad l^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)})F_X(1)$$

 $\times (\mathbf{u}^{(1)}-\mathbf{l}^{(1)})$

Exemple: bornes de l'intervalle du tag par récursion (8)

□ Observation 2: 3 2

$$u^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)})F_X(2), \quad l^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)})F_X(1)$$

Exemple: bornes de l'intervalle du tag par récursion (9)

□ Observation 3: 3 2 2

$$u^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(2), \quad l^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(1)$$

Intervalle du tag par récursion

Règle générale

Pour une séquence de symbole x on a:

$$\begin{vmatrix} x = (x_1 x_2 ... x_n) \\ u^{(n)} = l^{(n-1)} + (u^{(n-1)} - l^{(n-1)}) F_X(x_n) \\ l^{(n)} = l^{(n-1)} + (u^{(n-1)} - l^{(n-1)}) F_X(x_n - 1) \end{vmatrix}$$

- Avec cette procédure de récursion, on a pas eu besoin de calculer la probabilité conjointe d'une séquence donnée.
- On a juste besoin des probabilités individuelle.

☐ Génération du tag:

Pour un tag milieu d'intervalle on a:

$$\overline{T}_X \quad x = \frac{u^{(n)} + l^{(n)}}{2}$$

Exemple génération du tag par récursion (1)

- □ Exemple: génération du tag de la séquence: 1 3 2 1
 - Considérons la source suivante:

Lettres	a	b	С
Probabilité	0.8	0.02	0.18

- A partir du modèle de probabilité on a: $F_X(k<0)=0$, $F_X(0)=0$, $F_X(1)=0.8$, $F_X(2)=0.82$, $F_X(3)=1$, $F_X(k>3)=1$.
- □ Observation 1: 1

$$u^{(1)} = l^{(0)} + (u^{(0)} - l^{(0)})F_X(x_1) = 0 + 1 \times F_X(1) = 0.8$$

$$l^{(1)} = l^{(0)} + (u^{(0)} - l^{(0)})F_X(x_1 - 1) = 0 + 1 \times F_X(0) = 0$$

[Rappel]

$$u^{(n)} = l^{(n-1)} + (u^{(n-1)} - l^{(n-1)})F_X(x_n)$$

$$l^{(n)} = l^{(n-1)} + (u^{(n-1)} - l^{(n-1)})F_X(x_n - 1)$$

Exemple génération du tag par récursion (2)

Observation 1: 1

$$u^{(1)} = l^{(0)} + (u^{(0)} - l^{(0)})F_X(x_1) = 0 + 1 \times F_X(1) = 0.8$$

$$l^{(1)} = l^{(0)} + (u^{(0)} - l^{(0)})F_X(x_1 - 1) = 0 + 1 \times F_X(0) = 0$$

[Rappel] $u^{(n)} = l^{(n-1)} + (u^{(n-1)} - l^{(n-1)}) F_X(x_n)$ $l^{(n)} = l^{(n-1)} + (u^{(n-1)} - l^{(n-1)}) F_X(x_n - 1)$

□ Observation 1: 1 3

$$u^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)})F_X(x_3) = 0 + 0.8 \times F_X(3) = 0.8 \times 1 = 0.8$$

$$l^{(2)} = l^{(1)} + (u^{(1)} - l^{(1)})F_X(x_3 - 1) = 0 + 0.8 \times F_X(3 - 1) = 0.8 \times 0.82 = 0.656$$

□ Observation 1: 1 3 2

$$u^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(x_2) = 0.656 + 0.144 \times 0.82 = 0.77408$$
$$l^{(3)} = l^{(2)} + (u^{(2)} - l^{(2)})F_X(x_2 - 1) = 0.656 + 0.144 \times 0.8 = 0.7712$$

■ Observation 1: 1 3 2 1

$$u^{(4)} = l^{(3)} + (u^{(3)} - l^{(3)})F_X(x_1) = 0.7712 + 0.00288 \times 0.8 = 0.773504$$
$$l^{(4)} = l^{(3)} + (u^{(3)} - l^{(3)})F_X(x_1 - 1) = 0.7712 + 0.00288 \times 0 = 0.7712$$

Exemple génération du tag par récursion (3)

□ Séquence: 1 3 2 1

$$u^{(4)} = l^{(3)} + (u^{(3)} - l^{(3)})F_X(x_1) = 0.7712 + 0.00288 \times 0.8 = 0.773504$$
$$l^{(4)} = l^{(3)} + (u^{(3)} - l^{(3)})F_X(x_1 - 1) = 0.7712 + 0.00288 \times 0 = 0.7712$$

☐ Génération du tag:

$$\overline{T}_X(1321) = \frac{0.7712 + 0.773504}{2} = 0.772352$$

- □ Remarques:
 - L'intervalle suivant est toujours contenu dans l'intervalle précédent.
 - Cette propriété va servir pour le déchiffrage du tag.
 - L'intervalle du Tag devient de plus en plus petit.
 - Pour remédier à ça on va utiliser une approche de remise à l'échelle.

Déchiffrage du tag

■ <u>Déchiffrage</u>:

- La procédure de génération du tag est relativement simple.
- Il faut aussi pouvoir déchiffrer le tag avec un coût de calcul minimal.
- Effectivement lé déchiffrage du tag est aussi simple que sa génération.
- \square Exemple de déchiffrage du tag: $\overline{T}_X = 0.772352$
 - On reconsidère l'exemple précédent et on va essayer de déchiffrer le tag obtenu, et ce, par imiter l'encodeur.
 - L'intervalle contenant ce tag est un sous-intervalle de tout les intervalles rencontrés dans le processus d'encodage.

Exemple déchiffrage du tag (1)

□ Exemple de déchiffrage du tag: $\bar{T}_X = 0.772352$

 La stratégie consiste à décoder les éléments de la séquence en s'assurant que l(k) et u(k) contiennent toujours le tag.

□ Étape 0:

• $I^{(0)} = 0$ et $u^{(0)} = 1$ contiennent bien le tag 0.772352.

□ Étape 1:

Après le décodage du premier élément de la séquence x₁
 les limites inférieures et supérieures deviennent.

Exemple déchiffrage du tag (2)

☐ Suite étape 1:

$$u^{(1)} = F_X(x_1), \quad l^{(1)} = F_X(x_1 - 1)$$

 $\overline{T}_X = 0.772352$

Le tag suite à l'observation du premier élément se trouve dans l'intervalle $[F_X(x_1-1), F_X(x_1))=[0,0.8)$.

$$\overline{T}_X = 0.772352 \in [0, 0.8)$$
 $\overline{T}_X = 0.772352 \notin [0.8, 0.82)$
 $\Rightarrow x_1 = 1$
 $\overline{T}_X = 0.772352 \notin [0.82, 1)$

■ Séquence décodée: 1

Exemple déchiffrage du tag (3)

☐ Remise à l'échelle:

$$\overline{T}_X = 0.772352$$

 Préparation des nouveaux intervalles pour le second élément.

Remise en échelle des intervalles

$$l^{(1)} + (u^{(1)} - l^{(1)})0.8 = 0 + 0.8 \times 0.8 = 0.64$$

$$l^{(1)} + (u^{(1)} - l^{(1)})0.82 = 0 + 0.8 \times 0.82 = 0.656$$

□ Séquence décodée: 1

Exemple déchiffrage du tag (4)

☐ Étape 2:

 $\overline{T}_X = 0.772352$

Le tag suite à l'observation du premier élément se trouve dans l'intervalle $[F_X(x_2-1), F_X(x_2))=[0.656,0.8)$.

$$\overline{T}_X = 0.772352 \notin [0, 0.64)$$
 $\overline{T}_X = 0.772352 \notin [0.64, 0.656)$
 $\Rightarrow x_2 = 3$
 $\overline{T}_X = 0.772352 \in [0.656, 0.8)$

Séquence décodée: 1 3

Exemple déchiffrage du tag (5)

☐ Remise à l'échelle:

$$|\overline{T}_X| = 0.772352$$

Le tag suite à l'observation du premier élément se trouve dans l'intervalle $[F_X(x_2-1), F_X(x_2))=[0.656,0.8)$.

Remise en échelle des intervalles $l^{(2)} + (u^{(2)} - l^{(2)})0.8$ = $0.656 + 0.144 \times 0.8 = 0.7712$ $l^{(2)} + (u^{(2)} - l^{(2)})0.8$ = $0.656 + 0.144 \times 0.82 = 0.77408$

Séquence décodée: 1 3

Exemple déchiffrage du tag (6)

□ Étape 3:

$$|\bar{T}_X| = 0.772352 \notin [0.656, 0.7712|$$

$$|\overline{T}_X = 0.772352 \in [0.7712, 0.77408)| \Rightarrow x_3 = 2$$

$$|\overline{T}_X| = 0.772352 \notin [0.77408, 0.8)$$

$$\overline{T}_X = 0.772352$$

Séquence décodée: 1 3 2

Exemple déchiffrage du tag (7)

Etape 3: Remise en échelle des intervalles

$$l^{(3)} + (u^{(3)} - l^{(3)})0.8 = 0.7712 + 0.0288 \times 0.8 = 0.773504$$

$$\left| l^{(3)} + (u^{(3)} - l^{(3)}) 0.8 = 0.7712 + 0.0288 \times 0.82 = 0.7735616 \right|$$

Séquence décodée: 1 3 2

 $|\bar{T}_x| = 0.772352$

Exemple déchiffrage du tag (8)

Séquence décodée: 1 3 2 1

Exemple déchiffrage du tag (Simplification)[1]

□ On ramène l'intervalle [0.656, 0.8) à [0,1)

$$0.656 - 0.656 / 0.144 = 0$$
, $0.7712 - 0.656 / 0.144 = 0.8$ $(\overline{T}_X - 0.652) / 0.144 = 0.808$ $0.77408 - 0.656 / 0.144 = 0.82$, $0.8 - 0.656 / 0.144 = 1$

 $\overline{T}_X = 0.772352$ $(\overline{T}_X - 0.652) / 0.144 = 0.808$

Séquence décodée: 1 3

Exemple déchiffrage du tag (Simplification)[2]

☐ Remise à l'échelle

$$\overline{T}_X = 0.808$$

$$l^{(3)} + (u^{(3)} - l^{(3)})0.8 = 0.8 + 0.02 \times 0.8 = 0.816$$

$$l^{(3)} + (u^{(3)} - l^{(3)})0.8 = 0.8 + 0.02 \times 0.82 = 0.8164$$

Séquence décodée: 1 3 2

Exemple déchiffrage du tag (Simplification)[2]

□ Remise à l'échelle

$$|\overline{T}_X| = 0.808$$

$$\begin{vmatrix} l^{(3)} + (u^{(3)} - l^{(3)})0.8 = 0.8 + 0.02 \times 0.8 = 0.816 \\ l^{(3)} + (u^{(3)} - l^{(3)})0.8 = 0.8 + 0.02 \times 0.82 = 0.8164 \end{vmatrix}$$

Séquence décodée: 1 3 2 1

Génération du code binaire