```
Let R be an integral domain.
```

$$\underline{eq}$$
. Let $R = \mathbb{Z}\{\overline{f}\overline{f}\} = \{a+b\overline{f}\} | ab \in \mathbb{Z}\}.$

Let d ∈ R, invertible or non-invertible.

let R= {an invertible elts of R}.

In integral domain R.

/b|a.

Def. Let a=bc bis a factor of a and a is a multiple of b

If c is invertible, then $b=ac^{-1}$, say $a\sim b$. associate. (eg. In Z, $z=(-2)\cdot (-1)$. $z\sim -2$).

Det. DAn eft de R is called irreducible if d= ab then a or b is invertible.

DAn ett der is called a prime if dab, then da or db.

Rmk. irreducible \(\pm\) prime. (in general.)

Lemma. In an ID, a prime is irreducible.

Proof: Let R be an ID and let dER be a prime.

Suppose d=ab. Then d|ab and so d|a or d|b because d is a prime.

If d|a, then a=d-c for some $c \in R$. a=dc=abc.

Then, $a-abc=0=a(1-bc)\Rightarrow 1-bc=0$, bc=1. $\Rightarrow b$ is invertible.

Thus, by def. d is irreducible.

 \Box .

· An irreducible eft is not neccessarily a prime.

Eq. let R= fa+bFs a.b \(Z).

Claim: (i) 2 is irreducible

(i) 2 is not a prime.

Proof: (i): Suppose 2=(A+bJ-J)(C+dJ+) for some a.b.c. d \(Z \).

Thun, taking complex conjugation, 2 = (a - bJ-5)(c - dJ-5)

Then, $4 = (a^2 + 5b^2)(c^2 + 5d^2)$ in Z. Thus b = d = 0 and $4 = a^2c^2$

So either $\alpha^2 = 4$ and $C^2 = 1$ i.e. either $\alpha = \pm 2$ and $C = \pm 1$

or $a^2 = |$ and $c^2 = 4$.

 0^{μ} a=±1 and c=±2.

Then $2 = (a + b F_5)(c + d F_5) = ac = (\pm 2)(\pm 1)$ or $(\pm 1)(\pm 2)$. So 2 is irreducible.

(ii): 2|b and b=(1+J5)(1-J5)If 2 is a prime. Hen 2|1+J5 or 2|1-J5. Suppose 2|(1+J5). Then 1+J5=2(a+bJ5) for some $a.b \in \mathbb{Z}$.

Eg. b=2.3=(1+J5)(1-J5). The factorization is not unique. However, in \mathbb{Z} , \mathbb{C} , $\mathbb{Z}[x]$, $\mathbb{R}(x)$, factorization is unique.

- let. (UFD). Let D be an ID. Then D is comed a unique factorization domain (UFD)

 non-zero

 if 11) each/non-invertible elt of D can be written as a product of finitely many

 irreducibles of D. (factor chain condition).
 - (2) for any $a \in D$, $a \neq o$, $Q = p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t \quad \text{with} \quad p_i, q_i \quad \text{irreducible}$ $\Rightarrow S = t$, $p_i \land q_i \quad \text{after} \quad \text{renumbering} \quad \text{the indices}.$

Thm. Let D be an ID. Then D is a UFD iff

(i) Condition (1) in def:

non-zero
each/non-invertible elt of D can be written as a product of finitely many
irreducibles of D.

(ii) each irreducible is a prime.

Proof: First, assume (i) (ii).

Let a= p, p, ... p_s = 9, 9, ... 9t where p_i, q_j irreduccible. (by (ii), p_i, q_j prime).

Then, $p_1 = q_1(q_2 - q_t)$ So $p_1 = q_1$ or $p_1 = q_2 - q_t$.

If $p_i | q_i$, then $p_i \stackrel{\wedge}{\sim} q_i$ (both irr.)

If P1 92 (93... 9t), then P1 92 or P1 92... 9t.

Reporting the process to an end, we have p, 29; for some i. Similarly. P2 2 9 (i+j),

So D is a UFD.

Conversely, let D be a UFD. Then we need to prove each irreducible is a prime. Let irreducible $d \in D$ be s.t. $d \mid ab$. where a,b not invertible (otherwise $d \mid a$ or $d \mid b$). Then $ab = d \cdot c$ for some $c \in D$.

If c is invertible. Hen $d = abc^{-1} = a(bc^{-1})$ not possible.

So c is not invertible. Since D is a UFD, we have

a= p,...pr, b= 9,... 95, c= u,... Ut.

Then $p_1 \cdots p_r \cdot q_1 \cdots q_s = d \cdot u_1 \cdots u_t$ and $d \sim p_i \cdot o_r d \sim q_j$ as $d \cdot i_s \cdot i_r \cdot a_r d \rightarrow UFD$. So $d|a \circ r d|b$. i.e. $d \cdot i_s = a \cdot p_r i_r me$.

Rmk: fa+bJs|ab & Z} is not a UFD.

UFD = "irreducible" and "prime" are the same.

Dut: An ID is called a principle ideal domain (PID) if each of its ideals is a principle ideal, i.e. generated by a single elt.

Thm: A PID is a UFD. but a UFD 15 not necessarily a PID.

Eq. Z[X] is a UFD, but (2, x) is a principle ideal. So Z[x] is not a PID.

Prop. Let D be a PID, and PED\fof.

Then (1) p is a prime of p is irreducible.

(2) (p) is a prime ideal of (p) is a maximal ideal.

Proof: Let p be irreducible. Then (p) is maximal. (Otherwise P) < I < D).

So D/(p) is a field, so is ID, and (p) is a prime ideal, and p is a prime.

Conversely,

Proof of "PID is UFD":

Since irr. = prime by the prop. we only need to prove that

"each non-invertible elt. is a prod. of finitely many irr.".