Prompt generalization across Language Models

Nathanaël Carraz Rakotonirina

Research interests

- Prompt engineering
- Emergent communication in pre-trained language models
- Representation learning

Language models

- A language model (LM) assigns a probability to a sentence.
- A LM can be used to predict words in a sentence:

Prompting for knowledge extraction

We can extract information from existing LMs using only
 Prompts

- The dataset is composed of triples <subj,rel,obj> like
 <France,capital,Paris>
- Prompts can be categorized into manual/automated and discrete/continuous

Automated Prompting

Automated prompting methods learn to generate prompts using a **LM** and a **dataset**

Automated Prompting

Automated prompting methods learn to generate prompts using a **LM** and a **dataset**

Automated Prompting

Examples of prompts induced using Autoprompt

Relation	Manual prompts	Autoprompt (BERT)
Place of birth	[X] was born in [Y].	[X] who flightstial cyclist \u00a1 [Y].
Instrument	[X] plays [Y].	[X] playingdrum concertoative electric [Y].
Capital	The capital of [X] is [Y].	[X] includesiidae geologic countryside near [Y].

Setup

Prompting methods

- Manual
- Semi-manual (LPAQA)
- Discrete (AutoPrompt)
- Continuous (OptiPrompt)

Dataset

LAMA TReX (Slot-filling task)

Metric

Accuracy (P@1)

Language models

- Left-to-right (GPT2)
- Masked (BERT, RoBERTa)
- Sequence-to-sequence (T5, BART)

How do prompting methods perform?

- We induce and evaluate prompts with the same LM
- Trends across LMs

continuous > discrete > semi-manual > manual

Trends across prompting methods

masked > seq-2-seq > left-to-right

Prompt generalization

We induce prompts with a **source** LM and evaluate them with a **target** LM

Do prompts generalize across LM?

- We induce prompts with a source LM and evaluate with a target LM
- We only focus on a discrete prompting method
- Induced prompts do not generalize to LM they were not trained on
- Gap gets bigger as we transfer across different LM types

How to induce prompts that generalize better?

- We use two LMs instead of one during training
- The generator LM proposes candidates that the evaluator LM evaluate
- Induced prompts generalize better
- There are limitations to mixing

What are the properties of general prompts?

Compared to regular prompts, **mixed prompts** are/have:

- Higher semantic overlap with English
- More word-like
- More robust to token shuffling
- More robust to token deletion

What's next?

- Input-specific prompts (instead of relation-specific)
- Machine-to-machine communication

