4.1 Wokół prawa Zero-Jedynkowego dla FO

- ▶ Zadanie 4.1. Pokaż, że obecność stałych w sygnaturze psuje prawo 0—1 dla FO.
- ▶ Zadanie 4.2. Wyjaśnij, w jaki sposób aksjomaty rozszerzenia mogą zostać uogólnione, aby udowodnić prawo 0—1 dla FO w dowolnych czysto relacyjnych sygnaturach (tj. bez stałych, tylko predykaty).
- ▶ Zadanie 4.3. Libkin w swojej książce definiuje k-ty aksjomat rozszerzenia następująco: "dla wszystkich parami różnych elementów x_1, x_2, \ldots, x_{2k} istnieje inny element y taki, że y jest połączony przez E ze wszystkimi x_i dla $i \leq k$ oraz niepołączony przez E ze wszystkimi x_i dla i > k." Dlaczego nasza teoria aksjomatów rozszerzenia $\mathbb{E}\mathbb{A}$ oraz teoria Libkina \mathbb{LIB} są "takie same", tzn. udowodnij, że $\mathbb{E}\mathbb{A} \models \mathbb{LIB}$ oraz $\mathbb{LIB} \models \mathbb{E}\mathbb{A}$.
- ▶ Zadanie 4.4. Udowodnij, że każdy aksjomat rozszerzenia jest prawie na pewno spełniony. Jeśli nie potrafisz liczyć, możesz też zreferować dowód tego faktu z notatek Grädela.
- ▶ Zadanie 4.5. Pokaż, że logika drugiego rzędu nie spełnia prawa 0–1.

4.2 Alternatywne definicje grafu Rado

- ▶ Zadanie 4.6. Rozważ przeliczalny graf G, którego uniwersum to \mathbb{N} i istnieje krawędź nieskierowana między dowolnymi (i,j), dla których j < i i $\mathsf{BIT}(i,j)$ jest true $(tj.\ j\text{-ty}\ bit\ binarnej\ reprezentacji\ i\ wynosi\ 1)$. Udowodnij, że G jest izomorficzny z grafem losowym.
- ▶ Zadanie 4.7. Definiujemy zbiór HF dziedzicznie skończonych zbiorów w następujący sposób. Zbiór pusty \emptyset należy do HF, a jeśli a_1, \ldots, a_k należą do HF (dla jakiegoś $k \in \mathbb{N}$), to $\{a_1, \ldots, a_k\} \in \text{HF}$. Rozważ przeliczalny graf G, którego dziedziną jest HF, a krawędź łączymy między dwoma wierzchołkami u, v wtedy i tylko wtedy, gdy $u \in v$ lub $v \in u$. Udowodnij, że G jest izomorficzny z grafem losowym.
- ▶ Zadanie 4.8. Rozważ przeliczalny graf G, którego uniwersum stanowi zbiór liczb pierwszych przystających do 1 modulo 4. Połącz krawędzią p i q, jeśli p jest resztą kwadratową modulo q. Udowodnij, że G jest izomorficzny z grafem losowym. [Rozwiazanie].

4.3 Obliczalność

▶ Zadanie 4.9 ((2pkt)). Niech $\mathcal{T} \subseteq \mathsf{FO}$ będzie zupełną oraz rekurencyjną teorią, tj. istnieje program, który dla dowolnego $n \in \mathbb{N}$ zwraca pierwsze n elementów \mathcal{T} . Pokaż, że następujący problem wynikania jest rozstrzygalny: "dla danej formuły pierwszego rzędu φ , czy zachodzi $\mathcal{T} \models \varphi$?". Nie przejmuj się złożonością :)

¹ Liczba p jest resztą kwadratową modulo q, jeśli istnieje liczba x taka, że $x^2 \equiv p \pmod{q}$.