Airbnb Business Analysis

Loading libraries

```
In [639]: # Loading libraries for data analysis.
    import pandas as pd
    import numpy as np
    import matplotlib
    import matplotlib.pyplot as plt
    import datetime as dt
    from sklearn.preprocessing import normalize
```

Loading Files

Data preview

```
In [643]: # Preview sessions Table
sessions.head(2)
```

Out[643]:

		user_id	action	action_type	action_detail	device_type	secs_elapsed
,	0	d1mm9tcy42	lookup	NaN	NaN	Windows Desktop	319.0
	1	d1mm9tcy42	search results	click	view search results	Windows Desktop	67753.0

```
In [644]:
            # Preview train Table
            train.head(5)
Out[644]:
                         id date_account_created timestamp_first_active date_first_booking
                                                                                              gender
                                                                                                       age
                                                                                                            signup_
                 gxn3p5htnn
                                       2010-06-28
                                                      2009-03-19 04:32:55
                                                                                                                  f
                                                                                                      NaN
                                                                                            unknown-
                                                      2009-05-23 17:48:09
             1
                  820tgsjxq7
                                       2011-05-25
                                                                                      NaT
                                                                                               MALE
                                                                                                      38.0
                                                                                                                  f
                                                      2009-06-09 23:12:47
                                                                                             FEMALE
             2
                 4ft3gnwmtx
                                       2010-09-28
                                                                                 2010-08-02
                                                                                                      56.0
             3
                   bjjt8pjhuk
                                       2011-12-05
                                                      2009-10-31 06:01:29
                                                                                 2012-09-08
                                                                                             FEMALE 42.0
                87mebub9p4
                                       2010-09-14
                                                      2009-12-08 06:11:05
                                                                                 2010-02-18
                                                                                                      41.0
                                                                                            unknown-
            # Preview age Table
In [645]:
            age.head(2)
Out[645]:
                age_bucket country_destination gender population_in_thousands
                                                                                   year
             0
                      100+
                                            ΑU
                                                                             1.0 2015.0
```

Data Information

1

95-99

Data type information of sessions Table In [646]: print(sessions.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 10567737 entries, 0 to 10567736 Data columns (total 6 columns):

9.0 2015.0

male

male

ΑU

user id object action object object action_type action_detail object device_type object float64 secs_elapsed dtypes: float64(1), object(5) memory usage: 483.8+ MB

None

```
In [647]: # Data type information of train Table
          print(train.info())
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 213451 entries, 0 to 213450
          Data columns (total 16 columns):
                                      213451 non-null object
          date_account_created
                                     213451 non-null datetime64[ns]
          timestamp_first_active
                                     213451 non-null datetime64[ns]
          date_first_booking
                                     88908 non-null datetime64[ns]
                                     213451 non-null object
          gender
                                     125461 non-null float64
          age
          signup_method
                                     213451 non-null object
          signup_flow
                                     213451 non-null int64
          language
                                     213451 non-null object
          affiliate channel
                                     213451 non-null object
          affiliate_provider
                                     213451 non-null object
          first_affiliate_tracked
                                     207386 non-null object
          signup_app
                                     213451 non-null object
          first_device_type
                                     213451 non-null object
          first browser
                                     213451 non-null object
          country_destination
                                     213451 non-null object
          dtypes: datetime64[ns](3), float64(1), int64(1), object(11)
          memory usage: 26.1+ MB
          None
In [648]: # Data type information of age Table
          print(age.info())
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 420 entries, 0 to 419
          Data columns (total 5 columns):
          age bucket
                                     420 non-null object
          country_destination
                                     420 non-null object
                                     420 non-null object
          gender
          population_in_thousands
                                     420 non-null float64
                                      420 non-null float64
          year
          dtypes: float64(2), object(3)
          memory usage: 16.5+ KB
          None
```

Analysis by age groups

```
In [649]: ## Calculate % of never booking users
    never_booking=(len(train)-train['date_first_booking'].count())/len(train)*100
    print(f'The percent of users that never booking is {round(never_booking,2)}% from tot
    al new users')
```

The percent of users that never booking is 58.35% from total new users

Next step we check this rate according age group

```
In [650]:
          # Creating groups by age group
          train['age_group']=train['age'].apply(lambda x: '15-24' if 15<=x<25</pre>
                                                                                 # group age co
          lumn creating
                                                      else '25-34' if 25<=x<35
                                                      else '35-44' if 35<=x<45
                                                      else '45-54' if 45<=x<55
                                                      else '55-64' if 55<=x<65
                                                      else '65+' if 65<=x<=85
                                                      else 'n/a')
          ##Note: According to Airbnb practices, only an 18-year-old person can open an accoun
              #In contrast, a company does not require age pre-registration and it is possible
           that 15 to 18 year olds
               #can also place an order on their own. Therefore, for research:
                  #all customers who did not specify their age or age below 15 are defined as
           N/A.
                  #all customers who did not specify their age or age more 85 are defined as N/
          Α.
```

In [651]: i=len(train['age_group']=='n/a'])
 print(f'The number new users without age is {i}') #number users without age setting
 print(f'The percent new users without age is {round(i/len(train),3)*100}%') #percent
 users without age setting

The number new users without age is 90691 The percent new users without age is 42.5%

In [652]: ## Create users table with age group only
 train_with_age=train[~(train['age_group']=='n/a')]
 train_with_age.head(1)

Out[652]:

 Id	date_account_created	timestamp_first_active	date_first_booking	gender	age	signup_meti
1 820tgsjxq7	2011-05-25	2009-05-23 17:48:09	NaT	MALE	38.0	faceb

•

```
In [653]:
          # Grouping by age groups
          count_booking_by_age=train_with_age.groupby('age_group')[['id','date_first_booking']]
          .rename(columns={'id':'total_users','date_first_booking':'number_booked_users'})
          # Adding users rate from total users by each age group column
          count_booking_by_age['users_rate_from_total_users']=round(count_booking_by_age['total
          _users']/len(train_with_age),2)
          # Adding percentege orders from total orders by each age group column
          count_booking_by_age['booked_rate_from_total_users']=\
                                    round(count_booking_by_age['number_booked_users']/train_wit
          h age['date_first_booking'].count(),2)
          count_booking_by_age
```

Out[653]:

total_users number_booked_users users_rate_from_total_users booked_rate_from_total_users

age_group				
15-24	10778	5428	0.09	0.08
25-34	55694	32054	0.45	0.48
35-44	30759	16834	0.25	0.25
45-54	14521	7149	0.12	0.11
55-64	7599	3904	0.06	0.06
65+	3409	1743	0.03	0.03
4				

In [654]: # calculate booked rate by age groups

age_booking_rate=count_booking_by_age.assign(booked_rate_in_age_group=round(count_boo king by age['number booked users']\ /count_booking_by_age['total_users'],2)) age_booking_rate=age_booking_rate[['users_rate_from_total_users','booked_rate_from_to

tal_users','booked_rate_in_age_group']] age_booking_rate

age group

#users rate from total users--> show the percent age group users from total users. #booked rate from total users--> show how many orders booked certain age group from the total orders.

#booked_rate--> show percentage who make a first booking within an age group.

Out[654]:

users_rate_from_total_users booked_rate_from_total_users booked_rate_in_age_group

ugo_g.oup			
15-24	0.09	0.08	0.50
25-34	0.45	0.48	0.58
35-44	0.25	0.25	0.55
45-54	0.12	0.11	0.49
55-64	0.06	0.06	0.51
65+	0.03	0.03	0.51

Out[655]:

	age_bucket	country_destination	gender	population_in_thousands	year	age_group
378	90-94	US	female	1193.0	2015.0	65+
379	75-79	US	male	3641.0	2015.0	65+
380	70-74	US	male	5278.0	2015.0	65+
381	65-69	US	male	7561.0	2015.0	65+
382	60-64	US	male	9217.0	2015.0	55-64

Out[656]:

rate_of_total_study_population

age_group	
15-24	0.17
25-34	0.17
35-44	0.16
45-54	0.17
55-64	0.16
65+	0.18

Out[657]:

users_rate_from_total_users booked_rate_from_total_users booked_rate_in_age_group rate_of_

age_group			
15-24	0.09	0.08	0.50
25-34	0.45	0.48	0.58
35-44	0.25	0.25	0.55
45-54	0.12	0.11	0.49
55-64	0.06	0.06	0.51
65+	0.03	0.03	0.51

In [658]: # Pie chart Percentage of Total orders by Age group p_size = age_summary_tbl['booked_rate_from_total_users'] p_labels = age_summary_tbl.index plt.pie(p_size, startangle=70, explode = (0.1, 0.1, 0.1, 0.1, 0.1), autopct='%1.1f%% ', shadow=True) plt.title('Percentage of Total orders by Age group') plt.axis('equal') plt.legend(p_labels) plt.show()

Percentage of Total orders by Age group


```
In [659]:
          # Bar chart Age Groupes Rate from Total users and in Total USA Population
          labels = age_summary_tbl.index
          Users = age summary tbl['users rate from total users']
          Population = age_summary_tbl['rate_of_total_study_population']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.35 # the width of the bars
          fig, ax = plt.subplots()
          rects1 = ax.bar(x-width/2, Users, width, label='Users Rate')
          rects2 = ax.bar(x+width/2, Population, width, label='Total Population Rate')
          # Add some text for labels, title and custom x-axis tick labels, etc.
          ax.set ylabel('Rate')
          ax.set_xlabel('Age Group')
          ax.set title('Age Groupes Rate from Total users and in Total USA Population')
          ax.set_xticks(x)
          ax.set_xticklabels(labels)
          ax.legend(loc=1)
          def autolabel(rects):
              """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          autolabel(rects2)
          fig.tight_layout()
          plt.show()
```



```
In [660]:
          # Bar chart Booking Rate in each Age Group
          labels = age_summary_tbl.index
          Booking_rate=age_summary_tbl['booked_rate_in_age_group']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.25 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,5))
          rects1 = ax.bar(x , Booking_rate, width, label='Booking Rate')
          # Add some text for labels, title and custom x-axis tick labels, etc.
          ax.set_ylabel('Booking Rate')
          ax.set_xlabel('Age Group')
          ax.set_title('Booking Rate by each Age Group')
          ax.set_xticks(x)
          ax.set_xticklabels(labels)
          ax.legend(loc=1)
          def autolabel(rects):
              """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```


Country destination by age

2 55-64 US 4ft3gnwmtx 3 35-44 other bjjt8pjhuk

In [662]: # Total

Total orders by each age group
age_group_total_orders=age_country.groupby('age_group')['country_destination'].count
().to_frame()\
.rename(columns={'country_destination':'total_orders'})
age_group_total_orders

Out[662]:

total_orders

age_group	
15-24	5428
25-34	32054
35-44	16834
45-54	7149
55-64	3904
65+	1743

Out[663]:

country_destination	AU	CA	DE	ES	FR	GB	IT	NL	PT	US	other
age_group											
15-24	25	73	82	238	364	173	238	77	16	3527	615
25-34	187	467	371	766	1503	678	829	256	78	23444	3475
35-44	124	292	207	384	932	427	475	147	32	11895	1919
45-54	54	133	86	162	474	229	233	51	13	4968	746
55-64	27	62	57	83	243	154	131	38	13	2657	439
65+	11	27	30	40	134	73	77	20	4	1123	204

```
In [664]:
            #Join tables total orders by age group and orders to each country by age group.
            age_country_total_pvt=age_country_pvt.merge(age_group_total_orders,how='inner',left_o
            n='age_group',right_on='age_group')
            age_country_total_pvt
Out[664]:
                        ΑU
                             CA
                                  DE
                                       ES
                                             FR
                                                 GB
                                                       IT
                                                           NL PT
                                                                      US other total_orders
             age_group
                                                                     3527
                                                                                       5428
                        25
                             73
                                  82
                                      238
                                            364
                                                 173
                                                      238
                                                            77
                                                                16
                                                                            615
                 15-24
                        187
                            467
                                           1503
                                                      829
                                                           256
                                                                    23444
                                                                                      32054
                 25-34
                                 371
                                      766
                                                 678
                                                                78
                                                                           3475
                                                           147
                        124
                            292
                                 207
                                      384
                                            932
                                                 427
                                                                    11895
                                                                                      16834
                 35-44
                                                      475
                                                                32
                                                                           1919
                 45-54
                         54
                            133
                                  86
                                      162
                                            474
                                                 229
                                                      233
                                                            51
                                                                13
                                                                     4968
                                                                            746
                                                                                       7149
                 55-64
                        27
                             62
                                  57
                                       83
                                            243
                                                 154
                                                      131
                                                            38
                                                                13
                                                                     2657
                                                                            439
                                                                                       3904
                   65+
                         11
                             27
                                  30
                                       40
                                            134
                                                  73
                                                       77
                                                            20
                                                                 4
                                                                     1123
                                                                            204
                                                                                       1743
In [665]:
            # Find percent orders to each country from total orders by each age group
            age_country_total_pvt[['AU','CA','DE','ES','FR','GB','IT','NL','PT','US','other']]\
            =normalize(age_country_total_pvt[['AU','CA','DE','ES','FR','GB','IT','NL','PT','US',
            'other']], axis=1, norm="l1")
In [666]:
            # Preferences can now be clearly seen
            age_country_rates=age_country_total_pvt[['AU','CA','DE','ES','FR','GB','IT','NL','PT'
            ,'US','other']]
            age_country_rates
Out[666]:
                            ΑU
                                      CA
                                               DE
                                                         ES
                                                                  FR
                                                                           GB
                                                                                      IT
                                                                                              NL
                                                                                                        PT
             age_group
                 15-24 0.004606
                                 0.013449
                                          0.015107
                                                   0.043847
                                                             0.067060
                                                                      0.031872
                                                                                0.043847
                                                                                         0.014186
                                                                                                   0.002948
                                                                                                            0.
                 25-34
                       0.005834
                                 0.014569
                                          0.011574
                                                    0.023897
                                                             0.046890
                                                                      0.021152
                                                                                0.025863
                                                                                         0.007987
                                                                                                   0.002433
                                                                                                            0.
                       0.007366
                                                                                                   0.001901
                 35-44
                                 0.017346
                                          0.012297
                                                    0.022811
                                                             0.055364
                                                                      0.025365
                                                                                0.028217
                                                                                         0.008732
                                                                                                            0.
                 45-54
                       0.007554
                                 0.018604
                                          0.012030
                                                    0.022661
                                                                      0.032032
                                                                                                   0.001818
                                                             0.066303
                                                                                0.032592
                                                                                         0.007134
                                                                                                            0
                       0.006916
                                 0.015881
                                          0.014600
                                                    0.021260
                                                             0.062244
                                                                      0.039447
                                                                                0.033555
                                                                                         0.009734
                                                                                                   0.003330
                                                                                                            0.
                 55-64
                   65+
                        0.006311
                                 0.015491
                                          0.017212
                                                   0.022949
                                                             0.076879
                                                                      0.041882
                                                                                0.044177
                                                                                         0.011474
                                                                                                   0.002295
                                                                                                            0.
           4
In [667]:
            # Before rank results will make unpivot table
```

age_country_rates_upvt.head(2)

Out[667]:

	age_group	country	rate
0	15-24	AU	0.004606
1	25-34	AU	0.005834

Out[668]:

```
        age_group
        country
        rate
        rate_rank

        54
        15-24
        US 0.649779
        1.0
```

```
In [669]: # Round rate column.
    age_country_rates_upvt_rnk['rate']=round(age_country_rates_upvt_rnk['rate'],2)
```

In [670]: age_country_rates_upvt_rnk.head(1)

Out[670]:

	age_group	country	rate	rate_rank
54	15-24	US	0.65	1.0

Out[671]:

country rate

age_group		
15-24	US	0.65
25-34	US	0.73
35-44	US	0.71
45-54	US	0.69
55-64	US	0.68
65+	US	0.64

In [672]: # Because in each group the USA is more than 60% of total booking rate, will check ot
 her destinations without US.
 # Top 2 country destination by booking rate in each Age group.
 top_countries_2=age_country_rates_upvt_rnk[age_country_rates_upvt_rnk['rate_rank']==2
][['age_group','country','rate']]\
 .set_index('age_group')
 top_countries_2

Out[672]:

country rate

age_group		
15-24	other	0.11
25-34	other	0.11
35-44	other	0.11
45-54	other	0.10
55-64	other	0.11
65+	other	0.12

age_group				
15-24	FR	0.07		
25-34	FR	0.05		
35-44	FR	0.06		
45-54	FR	0.07		
55-64	FR	0.06		
65+	FR	0.08		

Analysis by gender

```
In [674]: # Calculate percentage of users without sex definition
    mask=(train['gender']=='-unknown-')|(train['gender']=='OTHER')
    i=train[mask]['gender'].count()/len(train)
    print(f'Percentage of users without sex definition is {round((i),4)*100}%')
```

Percentage of users without sex definition is 44.96%

```
In [675]: # Filtering to create users table with gender settings only.
    mask=(train['gender']=='-unknown-')|(train['gender']=='OTHER')
    male_female_users=len(train[~mask])
    train_male_female=train[~mask].groupby('gender')['id'].count().to_frame()\
    .rename(columns={'id':'Number users'})
    train_male_female
```

Out[675]:

Number users

 gender

 FEMALE
 63041

 MALE
 54440

```
In [676]: # Percentage of women and men.(only users with gender settings)
    train_male_female_pct=(train_male_female['Number users']/male_female_users).to_frame
    ()
    train_male_female_pct
```

Out[676]:

Number users

gender	
FEMALE	0.536606
MALE	0.463394

```
In [677]: # Pie chart percentage of women and men.
p_size = train_male_female_pct['Number users']
p_labels = train_male_female_pct.index

plt.pie(p_size, startangle=70, explode = (0.1, 0.1),autopct='%1.1f%%', shadow=True)
plt.title('Percentage of women and men.')
plt.axis('equal')
plt.legend(p_labels)
plt.show()
```

Percentage of women and men.


```
In [678]: # create table with total users and ordered users by gender.
mask=(train['gender']=='-unknown-')|(train['gender']=='OTHER')
train_gender_only=train[~mask]
gender_orders=train_gender_only.groupby('gender')[['id','date_first_booking']].count
()\
.rename(columns={'id':'total','date_first_booking':'ordered'})
gender_orders
```

Out[678]:

total ordered

gender

FEMALE 63041 31993

MALE 54440 27721

```
In [679]: # Calculate booking rate by gender.
gender_orders['pct_booking']=gender_orders['ordered']/gender_orders['total']
```

In [680]: gender_orders

Out[680]:

total ordered pct_booking

gender

EMALE	63041	31993	0.507495
MALE	54440	27721	0 500203

```
In [681]: # Pie chart booking rate by gender.
          p_size = gender_orders['pct_booking']
          p_labels = gender_orders.index
          plt.pie(p_size, startangle=70, explode = (0.1, 0.1),autopct='%1.1f%%', shadow=True)
          plt.title('Booking rate')
          plt.axis('equal')
          plt.legend(p_labels)
          plt.show()
```


In [682]: # Total orders by age and country destination. train gender only=train gender only[~(train gender only['country destination']=='NDF' train_gender_only_pvt=train_gender_only.pivot_table(index='gender',columns='country_d estination',values='id',aggfunc='count') train_gender_only_pvt

Out[682]:

country_destination ΑU CA DE ES FR GB IT NL PT US other gender FEMALE 207 455 358 3160 853 1962 881 1091 254 78 22694

MALE 188 477 416 677 1335

In [683]: # Join to add 'total' column train_gender_only_pvt=train_gender_only_pvt.merge(gender_orders['ordered'],how='inne r',left_on='gender',right_on='gender')\ .rename(columns={'ordered':'total'}) # join to make table with 'total' column train gender only pvt

682

699

278

69

19457

3443

Out[683]:

ΑU CA DE ES GB NL PT US other total gender FEMALE 207 455 358 853 1962 881 1091 254 78 22694 3160 31993 MALE 188 477 416 677 1335 682 699 278 69 19457 3443 27721

FR

Find percent orders to each country from total orders by each age group In [684]: train_gender_only_pvt[['AU','CA','DE','ES','FR','GB','IT','NL','PT','US','other']]\ =normalize(train_gender_only_pvt[['AU','CA','DE','ES','FR','GB','IT','NL','PT','US', 'other']], axis=1, norm="l1")

Out[685]:

gender	FEMALE	MALE
AU	0.006470	0.006782
CA	0.014222	0.017207
DE	0.011190	0.015007
ES	0.026662	0.024422
FR	0.061326	0.048158
GB	0.027537	0.024602
IT	0.034101	0.025216
NL	0.007939	0.010028
PT	0.002438	0.002489
US	0.709343	0.701887
other	0.098772	0.124202

```
In [686]:
          # Bar chart booking rate to each country by gender.
          fig, ax = plt.subplots()
          bar_width = 0.35
          x_axis_labels = gender_country_rates.index
          x_axis_1 = np.arange(len(x_axis_labels))
          y_axis_1 = gender_country_rates['MALE']
          y_axis_2 = gender_country_rates['FEMALE']
          ax.bar(x_axis_1, y_axis_1,bar_width,label='Male')
          ax.bar(x_axis_1+bar_width, y_axis_2,bar_width,label='Female')
          ax.set_xticks(np.arange(len(x_axis_labels))+bar_width/2)
          ax.set_xticklabels(x_axis_labels)
          ax.set_ylabel('Rate')
          ax.set_xlabel('Country')
          ax.set_title('Booking countries by gender')
          ax.legend()
          plt.show()
```



```
In [687]: # Filtering to create users table with age and gender settings only.
    mask1=~(train['age_group']=='n/a')
    mask2=~((train['gender']=='-unknown-')|(train['gender']=='OTHER'))
    train_age_gender=train[mask1&mask2]
    train_age_gender.head(2)
```

Out[687]:

	id	date_account_created	timestamp_first_active	date_first_booking	gender	age	signup_me
1	820tgsjxq7	2011-05-25	2009-05-23 17:48:09	NaT	MALE	38.0	face
2	4ft3gnwmtx	2010-09-28	2009-06-09 23:12:47	2010-08-02	FEMALE	56.0	
4							•

values='id',aggfunc='count')
train_age_gender_pvt

Out[688]:

age_group				
15-24	5622	3578		
25-34	26300	22492		
35-44	13073	13515		
45-54	6306	6178		
55-64	3742	2744		

1549

1337

65+

gender FEMALE MALE

In [690]: # Calculate percent and round from total.
train_age_gender_pvt['FEMALE']=round((train_age_gender_pvt['FEMALE']/train_age_gender
_pvt['Total']),2)
train_age_gender_pvt['MALE']=round((train_age_gender_pvt['MALE']/train_age_gender_pvt
['Total']),2)
train_age_gender_pvt

Out[690]:

gender	FEMALE	MALE	Total
age_group			
15-24	0.61	0.39	9200
25-34	0.54	0.46	48792
35-44	0.49	0.51	26588
45-54	0.51	0.49	12484
55-64	0.58	0.42	6486
65+	0.54	0.46	2886

```
In [691]: # Create table with gender rate by age group
    train_age_gender_pvt=train_age_gender_pvt[['FEMALE','MALE']]
    train_age_gender_pvt
```

Out[691]:

gender	FEMALE	MALE
age_group		
15-24	0.61	0.39
25-34	0.54	0.46
35-44	0.49	0.51
45-54	0.51	0.49
55-64	0.58	0.42
65+	0.54	0.46

```
In [692]:
          # Bar chart Users Rate in each Age Group by gender.
          labels = train_age_gender_pvt.index
          Female= train_age_gender_pvt['FEMALE']
          Male = train_age_gender_pvt['MALE']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.35 # the width of the bars
          fig, ax = plt.subplots(figsize=(9,6))
          rects1 = ax.bar(x - width/2, Female, width, label='Female')
          rects2 = ax.bar(x + width/2, Male, width, label='Male')
          ax.set_ylabel('Rate')
          ax.set_xlabel('Age group')
          ax.set_title('Gender rate by age group')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          ax.legend()
          def autolabel(rects):
               """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          autolabel(rects2)
          fig.tight_layout()
          plt.show()
```


Out[693]:

9		
age_group		
15-24	2766	1655
25-34	14663	12240
35-44	6730	7082
45-54	2824	2949
55-64	1783	1346
65+	722	670

gender Female orders Male orders

```
In [694]: # Create pivot table with total users by gender in each age group.
    train_age_gender_pvt_1=train_age_gender.pivot_table(index='age_group',columns='gende
    r',values='id',aggfunc='count')\
    .rename(columns={'FEMALE':'Females_total','MALE':'Male_total'})
    train_age_gender_pvt_1
```

Out[694]:

age_group		
15-24	5622	3578
25-34	26300	22492
35-44	13073	13515
45-54	6306	6178
55-64	3742	2744
65+	1549	1337

gender Females_total Male_total

```
In [695]: # Join tables with total users and users with booking by gender and age group.
    train_age_gender_pvt_3=train_age_gender_pvt_2.merge(train_age_gender_pvt_1,how='inne
    r',left_on='age_group',right_on='age_group')
    train_age_gender_pvt_3
```

Out[695]:

genaer	remaie_orders	waie_orders	remaies_total	waie_totai
age_group				
15-24	2766	1655	5622	3578
25-34	14663	12240	26300	22492
35-44	6730	7082	13073	13515
45-54	2824	2949	6306	6178
55-64	1783	1346	3742	2744
65+	722	670	1549	1337

```
In [697]: train_age_gender_rate
```

Out[697]:

gender		Female_booking_rate	Male_booking_rate
	age_group		
	15-24	0.49	0.46
	25-34	0.56	0.54
	35-44	0.51	0.52
	45-54	0.45	0.48
	55-64	0.48	0.49
	65+	0.47	0.50

```
In [698]: #train_rates=train_age_gender_rate.merge(train_age_gender_pvt,how='inner',left_on='ag
e_group',right_on='age_group')\
#.rename(columns={'FEMALE':'Female_total_rate','MALE':'Male_total_rate'})
#train_rates # join two tables to get booking and total rates
```

```
In [699]:
          # Bar chart Booking Rate in each Age Group by gender.
          labels = train_age_gender_rate.index
          Female_booking=train_age_gender_rate['Female_booking rate']
          Male_booking=train_age_gender_rate['Male_booking_rate']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.35 # the width of the bars
          fig, ax = plt.subplots(figsize=(9,6))
          rects1 = ax.bar(x-width/2,Female_booking, width, label='Female_booking')
          rects2 = ax.bar(x +width/2, Male_booking, width, label='Male_booking')
          ax.set_ylabel('Rate')
          ax.set xlabel('Age group')
          ax.set_title('Booking rate by gender and age group')
          ax.set_xticks(x)
          ax.set_xticklabels(labels)
          ax.legend()
          def autolabel(rects):
               """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          autolabel(rects2)
          fig.tight_layout()
          plt.show()
```



```
In [700]:
           # Users without age
           train_no_age=train[train['age'].isnull()]
           train_no_age.head(2)
Out[700]:
                         date_account_created timestamp_first_active date_first_booking
                                                                                     gender
                                                                                             age
                                                                                                  signup_n
                                   2010-06-28
                                                2009-03-19 04:32:55
            0 gxn3p5htnn
                                                                              NaT
                                                                                             NaN
                                                                                                        fac
                                                                                   unknown-
                                   2010-01-01
                                                2010-01-01 21:56:19
                                                                         2010-01-02
                osr2jwljor
                                                                                             NaN
                                                                                   unknown-
In [701]:
           # Bookings by users without age.
           countries_no_age=train_no_age.groupby('country_destination')['id'].count().to_frame()
           .rename(columns={'id':'number_users'})
           countries_no_age
Out[701]:
                              number_users
            country_destination
                          ΑU
                                       103
                          CA
                                       351
                          DE
                                       210
                          ES
                                       543
                          FR
                                      1310
                          GB
                                       550
                           IT
                                       799
                         NDF
                                     67614
                          NL
                                       160
                          PT
                                        59
                          US
                                     13773
                                      2518
                        other
In [702]:
           # Percent from total users without age
           countries_no_age['number_users_pct']=countries_no_age['number_users'].apply(lambda x:
           round((x/len(train_no_age))*100,2 ))
           countries_no_age.head(2)
Out[702]:
                              number_users number_users_pct
            country_destination
                          ΑU
                                       103
                                                        0.12
                          CA
                                       351
                                                        0.40
           i=countries_no_age.loc['NDF']['number_users_pct']
In [703]:
           print(f'{i}% of total users without age no makes any order.')
```

76.84% of total users without age no makes any order.

```
In [704]:
            # Users without gender
           mask=((train['gender']=='-unknown-')|(train['gender']=='OTHER'))
           train_no_gender=train[mask]
           train_no_gender.head(2)
Out[704]:
                       id date_account_created timestamp_first_active date_first_booking
                                                                                       gender
                                                                                               age
                                                                                                    signup_
                                    2010-06-28
                                                  2009-03-19 04:32:55
                gxn3p5htnn
                                                                                              NaN
                                                                                     unknown-
                                    2010-09-14
                                                  2009-12-08 06:11:05
                                                                          2010-02-18
                                                                                               41.0
               87mebub9p4
                                                                                     unknown-
In [705]:
            # Bookings by users without gender
           countries_no_gender=train_no_gender.groupby('country_destination')['id'].count().to_f
           rame()\
            .rename(columns={'id':'number_users'})
           countries_no_gender.head(2)
Out[705]:
                              number_users
            country_destination
                          ΑU
                                        144
                          CA
                                       496
In [706]:
            # Percent from total users without gender
           countries_no_gender['number_users_pct']=countries_no_gender['number_users']\
            .apply(lambda x: round((x/len(train_no_gender))*100,2 ))
           countries_no_gender
Out[706]:
                               number_users number_users_pct
            country_destination
                          ΑU
                                       144
                                                        0.15
                          CA
                                       496
                                                        0.52
                          DE
                                       287
                                                        0.30
                          ES
                                       719
                                                        0.75
                          FR
                                       1726
                                                        1.80
                          GB
                                       761
                                                        0.79
                           IT
                                       1045
                                                         1.09
                         NDF
                                      66776
                                                       69.58
                                       230
                          NL
                                                        0.24
                          PT
                                        70
                                                        0.07
```

```
In [707]: i=countries_no_gender.loc['NDF']['number_users_pct']
    print(f'{i}% of total users without gender no makes any order.')
```

21.07

3.64

69.58% of total users without gender no makes any order.

20225

3491

US

other

User Environment Analysis

For analysis, users are divided into two groups: Those who placed a first order and those who ultimately did not make their first order.

```
In [708]:
           # Adding auxiliary 'booked' column.
           train['booked']=train['date_first_booking'].apply(lambda x: 'No' if pd.isnull(x) else
            'Yes')
In [709]:
           # Table users that place an order
           train_booked=train[train['booked']=='Yes']
           train_booked.head(1)
Out[709]:
                      id date_account_created timestamp_first_active
                                                                 date_first_booking
                                                                                     gender
                                                                                                 signup_me
                                                                                             age
            2 4ft3gnwmtx
                                   2010-09-28
                                                2009-06-09 23:12:47
                                                                         2010-08-02
                                                                                   FEMALE
In [710]:
           # Table users that not place an orde
           train_non_booked=train[~(train['booked']=='Yes')]
           train_non_booked.head(1)
Out[710]:
                         date_account_created timestamp_first_active date_first_booking
                                                                                     gender
                                                                                             age
                                                                                                  signup_n
            0 gxn3p5htnn
                                   2010-06-28
                                                2009-03-19 04:32:55
                                                                              NaT
                                                                                             NaN
                                                                                                        fac
                                                                                    unknown-
```

Paid marketing

```
In [711]: # Create table with number users by each affilate channel.
    train_affiliate_total=train.groupby('affiliate_channel')['id'].count().to_frame().sor
    t_values('id',ascending=False)\
    .rename(columns={'id':'num_users'})
    train_affiliate_total # most popular affiliate channels
```

Out[711]:

affiliate_channel direct 137727 sem-brand 26045 sem-non-brand 18844 other 8961 8663 seo 8167 api 3948 content 1096 remarketing

num_users

```
In [712]: # Table with most popular affiliate chanels by rate
    train_affiliate_total=train_affiliate_total\
    .assign(users_rate=round(train_affiliate_total['num_users']/len(train),2))['users_rate'].to_frame()
    train_affiliate_total
```

Out[712]:

users_rate

affi	liate	cha	ann	el

direct	0.65
sem-brand	0.12
sem-non-brand	0.09
other	0.04
seo	0.04
api	0.04
content	0.02
remarketing	0.01

```
In [713]: # Grouping by affiliate channel and booked
    affiliate_chanel_users=train.groupby(['affiliate_channel','booked'])['id'].count().to
    _frame()\
    .rename(columns={'id':'num_users'})
    affiliate_chanel_users
```

Out[713]:

num_users

affiliate_channel	booked	
api	No	5382
	Yes	2785
content	No	3390
	Yes	558
direct	No	78329
	Yes	59398
other	No	5361
	Yes	3600
remarketing	No	728
	Yes	368
sem-brand	No	14951
	Yes	11094
sem-non-brand	No	11694
	Yes	7150
seo	No	4708
	Yes	3955

```
# Creating pivot table by affiliate channel and booked
In [714]:
           affiliate_chanel_users_pvt=affiliate_chanel_users.pivot_table(index='affiliate_channe
                                                                            ,columns='booked',value
           s='num_users',aggfunc='sum')
           affiliate_chanel_users_pvt
Out[714]:
                  booked
                                  Yes
                            No
           affiliate_channel
                           5382
                                 2785
                      api
                           3390
                                  558
                  content
                    direct 78329 59398
                    other
                           5361
                                 3600
               remarketing
                            728
                                  368
                sem-brand 14951
                                11094
            sem-non-brand 11694
                                 7150
                           4708
                                 3955
                     seo
In [715]:
           # Calculate rate from total
           affiliate_chanel_users_pvt[['Yes','No']]\
           =normalize(affiliate_chanel_users_pvt[['Yes','No']], axis=1, norm="l1")
           # Round result
In [716]:
           affiliate_chanel_users_pvt['Yes']=round(affiliate_chanel_users_pvt['Yes'],2)
           affiliate_chanel_users_pvt=affiliate_chanel_users_pvt['Yes'].to_frame()\
In [717]:
           .rename(columns={'Yes':'Booked_rate'}) # rename column
           # Channel efficiency by booking rate.
In [718]:
           affiliate_chanel_users_pvt
```

Out[718]:

Booked_rate

affiliate_channel

api	0.34
content	0.14
direct	0.43
other	0.40
remarketing	0.34
sem-brand	0.43
sem-non-brand	0.38
seo	0.46

Out[719]:

users_rate Booked_rate

affiliate_channel

seo	0.04	0.46
direct	0.65	0.43
sem-brand	0.12	0.43
other	0.04	0.40
sem-non-brand	0.09	0.38
api	0.04	0.34
remarketing	0.01	0.34
content	0.02	0.14

```
In [720]:
          # Bar chart Channel effectivity vs total users rate
          labels = channel effect.index
          Total users rate=channel effect['users rate']
          Booking_rate=channel_effect['Booked_rate']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.35 # the width of the bars
          fig, ax = plt.subplots(figsize=(10,5))
          rects1 = ax.bar(x-width/2,Total_users_rate, width, label='Total Rate')
          rects2 = ax.bar(x +width/2, Booking_rate, width, label='Booking Rate')
          ax.set_ylabel('Rate')
          ax.set xlabel('Affiliate Channel')
          ax.set_title('Channel effectivity vs total users rate')
          ax.set_xticks(x)
          ax.set_xticklabels(labels)
          ax.legend()
          def autolabel(rects):
               """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          autolabel(rects2)
          fig.tight_layout()
          plt.show()
```



```
In [721]:
           # Users who came through SEO only.
           mask=train['affiliate_channel']=='seo'
           train_seo=train[mask]
           train_seo.head(1)
Out[721]:
                      id date_account_created timestamp_first_active date_first_booking gender
                                                                                           age
                                                                                                signup_metl
               820tgsjxq7
                                   2011-05-25
                                                2009-05-23 17:48:09
                                                                              NaT
                                                                                    MALE
                                                                                           38.0
                                                                                                      faceb
In [722]:
           # Grouping by SEO affiliate providers and booked.
           train_seo_users=train_seo.groupby(['affiliate_provider','booked'])['id'].count().to_f
           rame()\
            .rename(columns={'id':'num_users'})
           train_seo_users
Out[722]:
                                    num_users
            affiliate_provider booked
                     baidu
                                No
                                            4
                      bing
                                          327
                                No
                                          162
                               Yes
                  facebook
                                No
                                          953
                               Yes
                                          724
                    google
                                No
                                         2952
                               Yes
                                         2739
                      other
                                No
                                          150
                               Yes
                                          156
                                          322
                     yahoo
                                No
                               Yes
                                          174
In [723]:
            # Pivot table number users by SEO affiliate providers and booked.
           train_seo_users_pvt=train_seo_users.pivot_table(index='affiliate_provider',columns='b
           ooked',values='num_users',aggfunc='sum')\
            .fillna(0)
           train_seo_users_pvt
Out[723]:
                    booked
                               No
                                     Yes
            affiliate_provider
                                      0.0
                     baidu
                               4.0
                             327.0
                                    162.0
                      bing
                  facebook
                             953.0
                                    724.0
                            2952.0
                                   2739.0
                    google
                             150.0
                                    156.0
                      other
                             322.0
                                    174.0
                     yahoo
In [724]:
           train_seo_users_pvt['Total']=train_seo_users_pvt['Yes']+train_seo_users_pvt['No'] # a
           uxiliary 'Total' column
```

Out[725]:

booked	No	Yes
affiliate_provider		
bing	327.0	162.0
facebook	953.0	724.0
google	2952.0	2739.0
yahoo	322.0	174.0

```
In [726]: # Calculate rate from total
    train_seo_users_pvt[['Yes','No']]\
    =normalize(train_seo_users_pvt[['Yes','No']], axis=1, norm="l1")
```

```
In [727]: seo_providers=train_seo_users_pvt['Yes'].to_frame().rename(columns={'Yes':'Booked_rate'}) #rename column
    seo_providers['Booked_rate']=round(seo_providers['Booked_rate'],2)
    seo_providers
```

Out[727]:

Booked_rate

affiliate	provider
aiiiiatc	PICVIGCI

bing	0.33
facebook	0.43
google	0.48
yahoo	0.35

```
In [728]:
          # Bar Chart SEO affiliate provider effectivity
          labels = seo_providers.index
          Booked_rate=seo_providers['Booked_rate']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.15 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,5))
          rects1 = ax.bar(x,Booked_rate, width, label='Booked Rate')
          ax.set_ylabel('Booking Rate')
          ax.set_xlabel('Affiliate provider')
          ax.set_title('SEO affiliate provider effectivity')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          #ax.Legend()
          def autolabel(rects):
               """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```



```
In [729]: # Table with users who came through SEM-brand only
mask=train['affiliate_channel']=='sem-brand'
train_sem_brand=train[mask]
train_sem_brand.head(1)
```

Out[729]:

		Id	date_account_created	timestamp_first_active	date_first_booking	gender	age	signup_
_	1025	dlg3a9x97v	2014-04-03	2010-07-12 21:29:24	NaT	MALE	47.0	
4								•

Out[730]:

num_users

affiliate_provider	booked	
baidu	No	2
	Yes	5
bing	No	575
	Yes	375
google	No	14364
	Yes	10705
naver	No	4
	Yes	3
other	No	2
	Yes	3
yandex	No	4
	Yes	3

Out[731]:

booked	No	Yes
affiliate_provider		
baidu	2	5
bing	575	375
google	14364	10705
naver	4	3
other	2	3
yandex	4	3

```
In [732]: train_sem_brand_users_pvt['Total']=train_sem_brand_users_pvt['Yes']+train_sem_brand_u
sers_pvt['No'] # auxiliary 'Total' column
```

```
In [733]: # In order to neutralize accidental providers,
            ##let's filter out that we will only review providers that have expressed at least
           mask=train_sem_brand_users_pvt['Total']>(train_sem_brand_users_pvt['Total']).sum()*0.
           train_sem_brand_users_pvt=train_sem_brand_users_pvt[mask][['No','Yes']]
           train_sem_brand_users_pvt
Out[733]:
                   booked
                                  Yes
                             No
           affiliate provider
                   google 14364 10705
In [734]:
           # Calculate rate from total
           train_sem_brand_users_pvt[['Yes','No']]\
           =normalize(train_sem_brand_users_pvt[['Yes','No']], axis=1, norm="l1")
In [735]:
           sem brand providers=train sem brand users pvt['Yes'].to frame().rename(columns={'Yes'
           :'Booked rate'}) #rename column
           sem_brand_providers['Booked_rate']=round(sem_brand_providers['Booked_rate'],2)
           sem_brand_providers
Out[735]:
                          Booked_rate
           affiliate_provider
                   google
                                 0.43
In [736]:
           # Table with users who came through SEM-non-brand only
           mask=train['affiliate channel']=='sem-non-brand'
           train_sem__non_brand=train[mask]
           train sem non brand.head(1)
Out[736]:
                      id date_account_created timestamp_first_active date_first_booking
                                                                                  gender
                                                                                          age signup
            35 ugy4obax11
                                   2010-01-15
                                               2010-01-15 08:27:11
                                                                                          49.0
                                                                            NaT
                                                                                 unknown-
```

Out[737]:

num_users

booked	
No	13
Yes	5
No	593
Yes	296
Yes	1
No	5
No	10431
Yes	6516
No	30
Yes	15
No	58
Yes	45
No	558
Yes	271
No	6
Yes	1
	No Yes No Yes No Yes No Yes No Yes No Yes No

Out[738]:

booked	No	Yes
affiliate_provider		
baidu	13.0	5.0
bing	593.0	296.0
daum	0.0	1.0
facebook	5.0	0.0
google	10431.0	6516.0
naver	30.0	15.0
other	58.0	45.0
vast	558.0	271.0
yandex	6.0	1.0

```
In [740]: # In order to neutralize accidental providers,
            ##let's filter out that we will only review providers that have expressed at least
           mask=train_sem_non_brand_users_pvt['Total']>(train_sem_non_brand_users_pvt['Total']).
           sum()*0.05
           train_sem_non_brand_users_pvt=train_sem_non_brand_users_pvt[mask][['No','Yes']]
           train_sem_non_brand_users_pvt
Out[740]:
                   booked
                              No
                                    Yes
           affiliate provider
                   google 10431.0 6516.0
In [741]:
           # Calculate rate from total
           train_sem_non_brand_users_pvt[['Yes','No']]\
           =normalize(train_sem_non_brand_users_pvt[['Yes','No']], axis=1, norm="l1")
In [742]:
          sem non brand providers=train sem non brand users pvt['Yes'].to frame().rename(column
           s={'Yes':'Booked_rate'}) #rename column
           sem_non_brand_providers['Booked_rate']=round(sem_non_brand_providers['Booked_rate'],2
           sem_non_brand_providers
Out[742]:
                          Booked_rate
           affiliate_provider
                                 0.38
                   google
In [743]:
          # Join to make table by affiliate provider rateof all SEM chanels.
           sem_all=\
           sem brand providers.merge(sem non brand providers,how='inner',left on='affiliate prov
           ider',right on='affiliate provider')\
           .rename(columns={'Booked_rate_x':'sem_brand','Booked_rate_y':'sem_non_brand'})
           sem all
Out[743]:
                          sem_brand sem_non_brand
           affiliate_provider
                                              0.38
                   google
                                0.43
```

```
In [744]: | # Bar chart SEM affiliate provider effectivity.
          labels = sem_all.transpose().index
          Booked_rate=sem_all.transpose()['google']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.1 # the width of the bars
          fig, ax = plt.subplots(figsize=(3,4))
          rects1 = ax.bar(x,Booked_rate, width, label='Google provider Booked Rate')
          ax.set_ylabel('Booking Rate')
          ax.set_xlabel('SEO channel')
          ax.set_title('SEM Google affiliate provider effectivity')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          #ax.Legend()
          def autolabel(rects):
               """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                   ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```


User's Apps and Devices

Out[745]:

num_users

signup_app	
Web	182717
iOS	19019
Moweb	6261
Android	5454

```
In [746]: # Pie chart Percentage of Total Users by Apps
    p_size = train_app['num_users']
    p_labels = train_app.index
    p_explode=[0.3 for i in range(len(train_app.index))]
    plt.pie(p_size, startangle=70, explode = p_explode,autopct='%1.1f%%', shadow=True)
    plt.title('Percentage of Total Users')
    plt.axis('equal')
    plt.legend(p_labels)
    plt.show()
```

Percentage of Total Users

Out[747]:

num_users

	booked	signup_app
4221	No	Android
1233	Yes	
4118	No	Moweb
2143	Yes	
102696	No	Web
80021	Yes	
13508	No	iOS
5511	Yes	

```
In [748]: # Create pivot table by App and booked.
           train_app_booked_pvt=train_app_booked.pivot_table(index='signup_app',columns='booked'
           ,values='num_users',aggfunc='sum')
           train_app_booked_pvt
Out[748]:
               booked
                          No
                               Yes
            signup_app
              Android
                        4221
                               1233
               Moweb
                        4118
                               2143
                      102696 80021
                 Web
                  iOS
                       13508
                               5511
In [749]:
           # Calculate rate from total.
           train app booked pvt[['Yes','No']]\
           =normalize(train_app_booked_pvt[['Yes','No']], axis=1, norm="l1")
In [750]:
          train_app_booked_pvt
Out[750]:
               booked
                           No
                                   Yes
            signup_app
              Android
                      0.773927 0.226073
               Moweb
                      0.657722 0.342278
                 Web
                      0.562050 0.437950
                  iOS 0.710237 0.289763
In [751]:
           # Round results.
           train_app_booked_pvt['Yes']=round(train_app_booked_pvt['Yes'],2)
           train_app_booked_pvt['No']=round(train_app_booked_pvt['No'],2)
In [752]:
           train_app_booked_pvt
Out[752]:
               booked
                       No Yes
            signup_app
              Android
                      0.77 0.23
               Moweb
                      0.66 0.34
                 Web
                      0.56 0.44
```

iOS 0.71 0.29

```
In [753]:
          # Bar chart Percent of Total New Users by first devices.
          labels = train_app_booked_pvt.index
          Booked_rate=train_app_booked_pvt['Yes']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.15 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,5))
          rects1 = ax.bar(x,Booked_rate, width)
          ax.set_ylabel('Booking Rate')
          ax.set_xlabel('First App')
          ax.set_title('Booking Rate by First App')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          plt.xticks(rotation=90)
          #ax.Legend()
          def autolabel(rects):
              """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                              xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```


Out[754]:

num_users

first_device_type

Mac Desktop	89600
Windows Desktop	72716
iPhone	20759
iPad	14339
Other/Unknown	10667
Android Phone	2803
Android Tablet	1292
Desktop (Other)	1199
SmartPhone (Other)	76

```
In [755]: # Calculate pct of total users
    train_devices['pct_users']=round(train_devices['num_users']/len(train),2)
```

In [756]: train_devices

Out[756]:

num_users pct_users

first_device_type

Mac Desktop	89600	0.42
Windows Desktop	72716	0.34
iPhone	20759	0.10
iPad	14339	0.07
Other/Unknown	10667	0.05
Android Phone	2803	0.01
Android Tablet	1292	0.01
Desktop (Other)	1199	0.01
SmartPhone (Other)	76	0.00

```
In [757]:
          # Bar chart Percent of Total New Users by first devices.
          labels = train_devices.index
          Booked_rate=train_devices['pct_users']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.15 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,5))
          rects1 = ax.bar(x,Booked_rate, width, label='Percent of Total New Users')
          ax.set_ylabel('Rate')
          ax.set_xlabel('First Device')
          ax.set_title('New users rate by first devices')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          plt.xticks(rotation=90)
          ax.legend()
          def autolabel(rects):
              """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```


Apps drilldown.

```
In [758]:
           # Grouping by Singup App and first devices
           train_app_device=train.groupby(['signup_app','first_device_type','booked'])['id'].cou
           nt().to frame()\
           .rename(columns={'id':'num_users'})
           train_app_device.head(2)
Out[758]:
                                              num users
            signup_app first_device_type booked
               Android
                         Android Phone
                                          No
                                                    962
                                         Yes
                                                    271
In [759]:
           # Create pivot table Singup App and first devices.
           train_app_device_pvt=train_app_device\
           .pivot_table(index=('signup_app','first_device_type'),columns='booked',values='num_us
           ers',aggfunc='sum').fillna(0)
           train_app_device_pvt.head(2)
Out[759]:
                              booked
                                        No
                                             Yes
            signup_app
                       first_device_type
               Android
                         Android Phone
                                      962.0
                                            271.0
                         Android Tablet
                                       75.0
                                             29.0
In [760]:
           train_app_device_pvt['Total']=train_app_device_pvt['Yes']+train_app_device_pvt['No']
           # auxiliary 'Total' column
In [761]:
           train_app_device_pvt.head()
Out[761]:
                              booked
                                         No
                                              Yes
                                                    Total
                      first_device_type
            signup_app
               Android
                        Android Phone
                                             271.0
                                                   1233.0
                                       962.0
                         Android Tablet
                                        75.0
                                              29.0
                                                    104.0
                        Desktop (Other)
                                         4.0
                                               4.0
                                                      8.0
                          Mac Desktop
                                        39.0
                                              40.0
                                                     79.0
                        Other/Unknown 3061.0 787.0 3848.0
In [762]:
           #In order to neutralize accidental devices,
            ##let's filter out that we will only review devices that have expressed at least 5%
            of users
           app_totals=train_app_device_pvt.reset_index().groupby('signup_app')['Total'].sum().to
           _frame()
           app_totals['5%_app_Total']=app_totals['Total']*0.05
In [763]:
          # Create chek table with minimum users to analysis
```

app_total_rate=app_totals['5%_app_Total'].to_frame()

```
In [764]: | app_total_rate
Out[764]:
                       5%_app_Total
            signup_app
                             272.70
               Android
                             313.05
                Moweb
                  Web
                            9135.85
                  iOS
                             950.95
           # Join App and Devices table with chek table
In [765]:
           train_app_device_chek=\
           train_app_device_pvt.reset_index().merge(app_total_rate,how='inner',left_on='signup_a
           pp',right_on='signup_app')
           train_app_device_chek.head(2)
Out[765]:
                                                 Yes
               signup_app first_device_type
                                           No
                                                       Total 5%_app_Total
            0
                  Android
                            Android Phone
                                         962.0
                                               271.0
                                                     1233.0
                                                                   272.7
            1
                                                                   272.7
                  Android
                             Android Tablet
                                          75.0
                                                29.0
                                                      104.0
In [766]:
           # Filtering to 5% rate
           mask=train_app_device_chek['Total']>train_app_device_chek['5%_app_Total']
           train_app_device_filter_chek=train_app_device_chek[mask]
           train_app_device_filter_chek.head(2)
Out[766]:
                                                       Total 5%_app_Total
               signup_app first_device_type
                                            No
                                                 Yes
            0
                                                271.0
                                                      1233.0
                                                                    272.7
                  Android
                            Android Phone
                                          962.0
                  Android
                            Other/Unknown 3061.0 787.0 3848.0
                                                                    272.7
In [767]:
           # Set two indexes
           app_device_filter=train_app_device_filter_chek.set_index(['signup_app','first_device_
           type'])[['No','Yes']]
           app_device_filter.head(2)
Out[767]:
                                         No
                                               Yes
            signup_app first_device_type
               Android
                         Android Phone
                                       962.0
                                             271.0
                        Other/Unknown 3061.0 787.0
In [768]:
           # Calculate rate from total
           app_device_filter[['Yes','No']]\
           =normalize(app_device_filter[['Yes','No']], axis=1, norm="l1")
In [769]:
           app_device_filter['Yes']=round(app_device_filter['Yes'],2) #round result
In [770]:
           app_device_rates=app_device_filter['Yes'].to_frame().rename(columns={'Yes':'Booked_ra
           .sort_values(['signup_app','Booked_rate'],ascending=[True,False]) # rename column and
           sorting values
```

In [771]: | app_device_rates

Out[771]:

Booked_rate

signup_app	first_device_type	
Android	Android Phone	0.22
	Other/Unknown	0.20
Moweb	Mac Desktop	0.48
	Windows Desktop	0.44
	iPhone	0.33
	Android Phone	0.27
	Other/Unknown	0.13
Web	Mac Desktop	0.47
	Windows Desktop	0.41
	iPad	0.38
iOS	Mac Desktop	0.45
	iPad	0.36
	iPhone	0.28
	Other/Unknown	0.04

```
In [772]:
          # Bar Chart Booking Rate by Android Devices.
          labels = app_device_rates.loc['Android'].index
          Booked_rate=app_device_rates.loc['Android']['Booked_rate']
          x = np.arange(len(labels)) # the label locations
          width = 0.15 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,4))
          rects1 = ax.bar(x,Booked rate, width, label='Booking Rate')
          ax.set_ylabel('Booking Rate')
          ax.set_xlabel('Android App First Device')
          ax.set_title('Booking rate by Android App first devices')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          ##plt.xticks(rotation=90)
          ##ax.Legend()
          def autolabel(rects):
              """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                              xy=(rect.get_x() + rect.get_width() / 2, height),
                              xytext=(0, 3), # 3 points vertical offset
                              textcoords="offset points",
                              ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```



```
In [773]: # Bar Chart Booking Rate by Moweb Devices.
          labels = app_device_rates.loc['Moweb'].index
          Booked_rate=app_device_rates.loc['Moweb']['Booked_rate']
          x = np.arange(len(labels)) # the label locations
          width = 0.15 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,5))
          rects1 = ax.bar(x,Booked rate, width, label='Booking Rate')
          ax.set_ylabel('Booking Rate')
          ax.set_xlabel('Moweb App First Device')
          ax.set_title('Booking rate by Moweb App first devices')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          plt.xticks(rotation=45)
          #ax.Legend()
          def autolabel(rects):
              """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                              xy=(rect.get_x() + rect.get_width() / 2, height),
                              xytext=(0, 3), # 3 points vertical offset
                              textcoords="offset points",
                              ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```



```
In [774]: # Bar Chart Booking Rate by iOS Devices.
          labels = app_device_rates.loc['iOS'].index
          Booked_rate=app_device_rates.loc['iOS']['Booked_rate']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.15 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,5))
          rects1 = ax.bar(x,Booked rate, width, label='Booked Rate')
          ax.set_ylabel('Booking Rate')
          ax.set_xlabel('iOS App First Device')
          ax.set_title('Booking rate by iOS App first devices')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          ##plt.xticks(rotation=90)
          ##ax.Legend()
          def autolabel(rects):
              """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                              xy=(rect.get_x() + rect.get_width() / 2, height),
                              xytext=(0, 3), # 3 points vertical offset
                              textcoords="offset points",
                              ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```



```
In [775]: # Bar Chart Booking Rate by Web Devices.
          labels = app_device_rates.loc['Web'].index
          Booked_rate=app_device_rates.loc['Web']['Booked_rate']
          x = np.arange(len(labels)) # the label locations
          width = 0.15 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,5))
          rects1 = ax.bar(x,Booked_rate, width, label='Booked Rate')
          ax.set_ylabel('Rate')
          ax.set_xlabel('Web App First Device')
          ax.set_title('Booking rate by Web App first devices')
          ax.set xticks(x)
          ax.set_xticklabels(labels)
          ##plt.xticks(rotation=90)
          #ax.Legend()
          def autolabel(rects):
              """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          fig.tight_layout()
          plt.show()
```


Site Analysis

```
In [776]: # Create table gruped by site language
          train_language=train.groupby('language')['id'].count().to_frame()\
           .rename(columns={'id':'num_users'}).sort_values('num_users',ascending=False)
          train_language.head(2)
Out[776]:
                    num_users
           language
                       206314
                en
                         1632
                zh
In [777]:
          train language=train language.reset index() ## reset index to get group by language
          # Divided into two groups of English version users or another.
In [778]:
          train_language['English_site']=train_language.reset_index()['language'].apply(lambda
          x: 'Yes' if x=='en' else 'No')
In [779]:
          # Grouping by english and non-english site version
          train_site=train_language.groupby('English_site')['num_users'].sum().to_frame()
          train_site
Out[779]:
                      num_users
           English_site
                  No
                           7137
                         206314
                  Yes
In [780]:
           # Calculate rate of total
          train_site['rate']=round(train_site['num_users']/len(train),2)
In [781]:
          Y=train site['rate']['Yes']*100
          N=train_site['rate']['No']*100
          print(f'The percent of users using english site version is {Y}%')
          The percent of users using english site version is 97.0%
In [782]:
          # Divided into two groups of English version users or another.
          train['English_site']=train['language'].apply(lambda x: 'English' if x=='en' else 'Ot
          her')
In [783]:
          # Grouping by site version and booked
          train_english_booked=train.groupby(['English_site','booked'])['id'].count().to_frame
           ()\
           .rename(columns={'id':'num_users'})
          train_english_booked
```

Out[783]:

num_users

	booked	English_site	
119650	No	English	
86664	Yes		
4893	No	Other	
2244	Yes		

```
In [784]:
          # Create pivot table by site version and booked
           train_english_booked_pvt=\
           train_english_booked.pivot_table(index='English_site',columns='booked',values='num_us
           ers',aggfunc='sum')
           train_english_booked_pvt
Out[784]:
               booked
                         No
                               Yes
           English_site
               English 119650
                             86664
                Other
                        4893
                              2244
In [785]:
          # Calculate rate from total
           train_english_booked_pvt[['Yes','No']]\
           =normalize(train_english_booked_pvt[['Yes','No']], axis=1, norm="l1")
In [786]:
          train_english_booked_pvt['No']=round(train_english_booked_pvt['No'],2)
           train_english_booked_pvt['Yes']=round(train_english_booked_pvt['Yes'],2)
In [787]:
          train_english_booked_pvt
Out[787]:
               booked
                       No Yes
           English_site
               English 0.58 0.42
```

Other 0.69 0.31

```
In [788]:
          # Bar chart Boking Rate by Site Version.
          labels = train_english_booked_pvt.index
          y_1=train_english_booked_pvt['Yes']
          y_2=train_english_booked_pvt['No']
          x = np.arange(len(labels)) # the Label Locations
          width = 0.15 # the width of the bars
          fig, ax = plt.subplots(figsize=(5,5))
          rects1 = ax.bar(x-width/2,y_1, width, label='Made a booking')
          rects2 = ax.bar(x +width/2, y_2, width, label='No Made a booking')
          ax.set_ylabel('Rate')
          ax.set xlabel('Site Version')
          ax.set_title('Booking rate by site version')
          ax.set_xticks(x)
          ax.set_xticklabels(labels)
          ax.legend()
          def autolabel(rects):
               """Attach a text label above each bar in *rects*, displaying its height."""
              for rect in rects:
                  height = rect.get_height()
                  ax.annotate('{}'.format(height),
                               xy=(rect.get_x() + rect.get_width() / 2, height),
                               xytext=(0, 3), # 3 points vertical offset
                               textcoords="offset points",
                               ha='center', va='bottom')
          autolabel(rects1)
          autolabel(rects2)
          fig.tight_layout()
          plt.show()
```


Session

```
In [789]:
           # Create with specific columns
           v_sessions=sessions[['user_id','device_type','secs_elapsed']]
           v_sessions.head(2) # sample users sessions table
Out[789]:
                  user_id
                              device_type secs_elapsed
            0 d1mm9tcy42
                          Windows Desktop
                                                 319.0
                                               67753.0
            1 d1mm9tcy42 Windows Desktop
In [790]:
           # Grouping by sum seconds by each user.
           sessions_elapsed=v_sessions.groupby('user_id')['secs_elapsed'].sum().to_frame()
           sessions_elapsed.head(2) # group by seconds elapsed
Out[790]:
                        secs_elapsed
                user_id
             00023iyk9l
                            867896.0
            0010k6l0om
                            586543.0
In [791]:
           # Create train table with specific columns.
           v_train=train[['id','date_account_created','timestamp_first_active','date_first_booki
           ng','country_destination']]
           v_train.head(2)
Out[791]:
                         date_account_created timestamp_first_active date_first_booking country_destination
            gxn3p5htnn
                                   2010-06-28
                                                2009-03-19 04:32:55
                                                                              NaT
                                                                                                NDF
               820tgsjxq7
                                   2011-05-25
                                                2009-05-23 17:48:09
                                                                              NaT
                                                                                                NDF
In [792]:
           # Join train and sessions tables
           times_tbl=v_train.merge(sessions_elapsed,how='inner',left_on='id',right_on='user_id')
           times_tbl.head(2) # join train and sessions tables
Out[792]:
                       id date_account_created timestamp_first_active date_first_booking country_destination sec:
              d1mm9tcy42
                                   2014-01-01
                                                 2014-01-01 00:09:36
                                                                         2014-01-04
                                                                                                other
                                    2014-01-01
                                                 2014-01-01 00:15:58
               yo8nz8bqcq
                                                                               NaT
                                                                                                NDF
In [793]:
           times_tbl['hours_elapsed']=round(times_tbl['secs_elapsed']/3600) #Adding hours spend
            column
In [794]:
           times_tbl.head(2)
Out[794]:
                       id date_account_created
                                             timestamp_first_active date_first_booking country_destination
                                                 2014-01-01 00:09:36
                                                                         2014-01-04
              d1mm9tcy42
                                   2014-01-01
                                                                                                other
                                   2014-01-01
                                                 2014-01-01 00:15:58
                                                                               NaT
                                                                                                NDF
               yo8nz8bqcq
In [795]:
           times_tbl_country=times_tbl.groupby('country_destination') # Grouping by countries
In [796]:
           # Aggrigation by number of users and average hours spend
           times_tbl_country_agg=times_tbl_country.agg({'id':'count','hours_elapsed':'mean'})
```

```
In [797]: times_tbl_country_agg=times_tbl_country_agg.rename(columns={'id':'num_users','hours_e
lapsed':'avg_hours_spend'})
times_tbl_country_agg # rename columns
```

Out[797]:

num_users avg_hours_spend

country_destination		
AU	152	473.519737
CA	440	481.920455
DE	250	564.140000
ES	707	548.768034
FR	1435	550.543554
GB	731	554.900137
IT	979	599.502554
NDF	45041	356.541951
NL	247	542.222672
PT	83	461.590361
US	20095	512.557353
other	3655	525.592066

```
In [798]: # Chart show Web Sessions Data of Users by country destination.
for i, row in times_tbl_country_agg.iterrows():
    plt.scatter(x=row.num_users, y=row.avg_hours_spend, label=i, s=200)

plt.title('Web Sessions Data of Users')
plt.xlabel('No.Of.Users')
plt.ylabel('No.Of.Users')
plt.ylabel('Mean Hours Users Spends on the Website')
plt.legend()
plt.show()
```


The relationship between the likelihood of booking and time spent on the site.

```
In [799]:
           # Create train table with specific columns
           v_train_2=train[['id','booked']]
           v_train_2.head(2) # train table with specific columns
Out[799]:
                        booked
              gxn3p5htnn
                            No
               820tgsjxq7
                            No
           # Join sessions table to add secs_elapsed column
In [800]:
           times_tbl_2=v_train_2.merge(sessions_elapsed,how='inner',left_on='id',right_on='user_
           id')
In [801]:
           times_tbl_2['hours_elapsed']=round(times_tbl_2['secs_elapsed']/3600) # Adding hours s
           pend column
           times_tbl_2.head(2)
Out[801]:
                      id booked
                                 secs_elapsed hours_elapsed
            0 d1mm9tcy42
                                    3427529.0
                                                     952.0
                             Yes
                                     207842.0
                                                      58.0
              yo8nz8bqcq
                             No
           # Using 'ntile' method to divide to 10 groups by hours spend. We get 10 groups by ran
In [802]:
           times_tbl_2['ntile']=pd.qcut(times_tbl_2['hours_elapsed'],10)
In [803]:
           times_tbl_2.head(2)
Out[803]:
                         booked
                                 secs_elapsed hours_elapsed
                                                                   ntile
            0 d1mm9tcy42
                                    3427529.0
                                                     952.0
                                                           (679.0, 1048.0]
                             Yes
               yo8nz8bqcq
                             No
                                     207842.0
                                                      58.0
                                                              (47.0, 98.0]
In [804]:
           # Extract midpoint of each group range.
           times_tbl_2['mean_ntile'] = times_tbl_2['ntile'].apply(lambda x: x.mid)
In [805]:
           times_tbl_2['mean_ntile']=round(times_tbl_2['mean_ntile']) # Round result
In [806]:
           times_tbl_2 .head(2)
```

Out[806]:

booked

Yes

No

d1mm9tcy42

yo8nz8bqcq

secs_elapsed hours_elapsed

952.0

58.0

(679.0, 1048.0]

(47.0, 98.0]

3427529.0

207842.0

ntile mean_ntile

864.0

72.0

Out[807]:

num_users

mean_ntile	booked	
4.0	No	5572
	Yes	2022
28.0	No	5430
	Yes	1781
72.0	No	5163
	Yes	2308
130.0	No	4587
	Yes	2672
202.0	No	4459
	Yes	2917
294.0	No	4300
	Yes	3115
415.0	No	4307
	Yes	3083
581.0	No	3999
	Yes	3346
864.0	No	3854
	Yes	3528
5832.0	No	3370
	Yes	4002

```
In [808]:
           # Create pivot table by mean hours and booked
           times_tbl_2_group_pvt=times_tbl_2_group.pivot_table(index='mean_ntile',columns='booke
           d',values='num_users',aggfunc='sum')
           times_tbl_2_group_pvt
Out[808]:
              booked
                       No
                            Yes
           mean_ntile
                  4.0 5572 2022
                 28.0 5430 1781
                 72.0 5163 2308
                130.0 4587 2672
                202.0 4459 2917
                294.0 4300 3115
                415.0 4307
                           3083
                      3999
                581.0
                          3346
                864.0
                      3854
                           3528
               5832.0 3370 4002
In [809]:
           # Calculate rate from total
           times_tbl_2_group_pvt[['Yes','No']]\
           =normalize(times_tbl_2_group_pvt[['Yes','No']], axis=1, norm="l1")
           times_tbl_2_group_pvt['Yes']=round(times_tbl_2_group_pvt['Yes'],2)
In [810]:
           times_tbl_2_group_pvt['No']=round(times_tbl_2_group_pvt['No'],2)
                                                                                     #round result
           times_tbl_2_group_pvt
Out[810]:
              booked
                       No Yes
           mean_ntile
                  4.0
                      0.73 0.27
                 28.0
                      0.75
                          0.25
                 72.0
                      0.69 0.31
                130.0
                      0.63 0.37
                202.0
                      0.60 0.40
                294.0
                      0.58 0.42
                415.0 0.58 0.42
                581.0 0.54 0.46
```

864.0 0.52 0.48

5832.0 0.46 0.54

```
In [811]: # Line chart show relationship between the likelihood of booking and time spent on th
    e site.
    x_axis =times_tbl_2_group_pvt.index
    y_axis = times_tbl_2_group_pvt["Yes"]
    plt.plot(x_axis, y_axis)

plt.title('Booking Rate by Hours Spend')
    plt.grid(True, linewidth=1)
    plt.ylabel('Booking Rate', color='red')
    plt.xlabel('Hours Users Spends on the Website' , color='red')
    #for i,j in zip(x_axis,y_axis):
    # plt.annotate(str(j),xy=(i,j))
    plt.show()
```


Date and Time

To get reliable data and test trends it is necessary to check trends in common range from 01-01-2010 to 30-06-2014.

```
In [812]: # Users train table with specific columns.
    train_dates=train[['id','date_account_created','timestamp_first_active','date_first_b
    ooking','booked','age_group']]
    train_dates.head(2)
```

Out[812]:

	id	date_account_created	timestamp_first_active	date_first_booking	booked	age_group
0	gxn3p5htnn	2010-06-28	2009-03-19 04:32:55	NaT	No	n/a
1	820tasixa7	2011-05-25	2009-05-23 17:48:09	NaT	No	35-44

```
In [813]:
          # Adding new colums: year, month and weekday
          train_dates=train_dates.assign(year_account_created=train_dates['date_account_create
          d'].dt.year,
                            month_account_created=train_dates['date_account_created'].dt.month,
                            weekday_account_created=train_dates['date_account_created'].dt.week
          day_name,
                            year_first_active=train_dates['timestamp_first_active'].dt.year,
                            month_first_active=train_dates['timestamp_first_active'].dt.month,
                            weekday_first_active=train_dates['timestamp_first_active'].dt.weekd
          ay_name,
                            year_first_booking=train_dates['date_first_booking'].dt.year,
                            month_first_booking=train_dates['date_first_booking'].dt.month,
                            weekday_first_booking=train_dates['date_first_booking'].dt.weekday_
          name)
          train_dates.head(2)
```

Out[813]:

	id	date_account_created	timestamp_first_active	date_first_booking	booked	age_group	year _.
0	gxn3p5htnn	2010-06-28	2009-03-19 04:32:55	NaT	No	n/a	
1	820tgsjxq7	2011-05-25	2009-05-23 17:48:09	NaT	No	35-44	
4							•

Years

Out[814]:

id year_first_booking month_first_booking 0 gxn3p5htnn NaN NaN 1 820tgsjxq7 NaN NaN

```
In [815]: # Grouping by year and month first booking
    train_dates_first_booking_group=train_dates_first_booking\
    .groupby(['year_first_booking','month_first_booking'])['id'].count().to_frame()
# Reset index before join
    train_dates_first_booking_group=train_dates_first_booking_group.reset_index()
```

In [816]: # Change type from float to str and create a common column with month and year combin
ation before join.
train_dates_first_booking_group['y_m_first_booking']=\
train_dates_first_booking_group['month_first_booking'].astype(int).astype(str)+\
'-'+train_dates_first_booking_group['year_first_booking'].astype(int).astype(str)

In [817]: # Grouping by Year+month combination.
 train_dates_first_booking_clear=train_dates_first_booking_group[['y_m_first_booking',
 'id']]\
 .rename(columns={'id':'booking_num_users','y_m_first_booking':'y_m'})

```
In [819]:
          train_dates_first_booking_clear.head(2)
           # y_m --> common column for join
           # booking_nub_users --> number users with booking
           # Year --> booking year
Out[819]:
                y_m booking_num_users
                                      Year
              1-2010
                                      2010
           1 2-2010
                                   40 2010
In [820]:
          # Filter dates to get common range from 01-01-2010 to 30-06-2014.
           mask1=train_dates['timestamp_first_active'].between('2010-01-01','2014-06-30')
           mask2=train_dates['date_account_created'].between('2010-01-01','2014-06-30')
           train_dates_clear=train_dates[mask1&mask2][['id','year_account_created','month_accoun
           t created']]
           train_dates_clear.head(2)
Out[820]:
                     id year_account_created month_account_created
               osr2jwljor
                                      2010
                                                             1
           6 Isw9q7uk0j
                                     2010
                                                             1
In [821]:
           # Grouping by year and month creared account
           train_dates_account_group=train_dates_clear\
           .groupby(['year_account_created','month_account_created'])['id'].count().to_frame()
           train_dates_account_group=train_dates_account_group.reset_index()
In [822]:
           train_dates_account_group.head(2)
Out[822]:
              year_account_created month_account_created
                                                       id
           0
                                                       61
                            2010
           1
                            2010
                                                     102
                                                   2
In [823]:
           # Adding common column befor join with change to str type
           train_dates_account_group['y_m_account']=\
           train_dates_account_group['month_account_created'].astype(str)+\
           '-'+train_dates_account_group['year_account_created'].astype(str)
In [824]:
           train_dates_account_group.head(2)
Out[824]:
              year_account_created month_account_created
                                                       id y_m_account
           0
                            2010
                                                       61
                                                               1-2010
```

2 102

train_dates_account_clear=train_dates_account_group.rename(columns={'id':'account_num

2-2010

1

Rename columns

In [825]:

2010

_users','y_m_account':'y_m'})

```
In [826]: | train_dates_account_clear.head(2)
           # y_m --> common column before join
           # account_num_users --> nimber users with account
           # year_account_created --> account year
           # month_account_created --> account month
Out[826]:
              year_account_created month_account_created account_num_users
                                                                          y_m
            0
                            2010
                                                    1
                                                                        1-2010
                            2010
                                                    2
                                                                    102 2-2010
            1
In [827]:
           # Join with first booking and accounts created tables
           account_booking_users=train_dates_account_clear.merge(train_dates_first_booking_clear
           ,how='left',left_on='y_m',right_on='y_m')
           account_booking_users=account_booking_users.set_index('y_m')
In [828]:
           account_booking_users.head(2)
Out[828]:
                   year_account_created month_account_created account_num_users booking_num_users Year
             y_m
                                                                                               2010
            1-2010
                                 2010
                                                        1
                                                                         61
            2-2010
                                                                         102
                                 2010
                                                        2
                                                                                           40 2010
           # Grouping by Year
In [829]:
           account_booking_users_year=account_booking_users.groupby('Year')[['account_num_users']
           ,'booking_num_users']].sum()
           account_booking_users_year
Out[829]:
                 account_num_users booking_num_users
            Year
            2010
                              2785
                                                1479
            2011
                             11773
                                                5738
            2012
                             39462
                                               16241
            2013
                             82960
                                               31259
            2014
                             75876
                                               27048
```

In [830]: # Adding and round bookin rate column.
 account_booking_users_year['booking_rate']=\
 round(account_booking_users_year['booking_num_users']/account_booking_users_year['account_num_users'],2)

In [831]: account_booking_users_year

Out[831]:

account_num_users booking_num_users booking_rate

Year			
2010	2785	1479	0.53
2011	11773	5738	0.49
2012	39462	16241	0.41
2013	82960	31259	0.38
2014	75876	27048	0.36

```
In [832]:
          # Line chart with total user with account and booking rate by Year.
          x_axis =account_booking_users_year.index
          y_axis_1 = account_booking_users_year["account_num_users"]
          y_axis_2 = account_booking_users_year["booking_rate"]
          #y_axis_3=time_to_booking['days_to_first_booking']
          fig, ax1 = plt.subplots(figsize=(10, 5))
          ax2 = ax1.twinx()
          #ax3=ax1.twinx()
          #ax3.spines['right'].set_position(('axes', 1.1))
          ax1.plot(x_axis, y_axis_1,label='Users Created Account',color='b')
          ax2.plot(x_axis, y_axis_2,label='First Booking Rate',color='g')
          #ax3.plot(x_axis, y_axis_3,label='Days to First Booking',color='r')
          ax1.set_xlabel('Year')
          ax1.set_ylabel('Num. of New Users', color='blue')
          ax2.set_ylabel('Booking Rate', color='green')
          #ax3.set ylabel('Mean Days to First Booking', color='red')
          ax1.grid(True, linewidth=1)
          ax2.grid(True, linewidth=1)
          #ax3.grid(True, linewidth=1)
          plt.title('New Users Account Created, Booking Rate and Mean Days to First Booking by Y
          ear')
          ax1.set_xticklabels( x_axis,rotation = 45)
          plt.tight_layout()
          ax1.legend(loc=9)
          ax2.legend(loc=1)
          #ax3.legend(loc=2)
          for i,j,z in zip(x_axis,y_axis_1,y_axis_2):
              ax1.annotate(str(j),xy=(i,j),color='b')
              ax2.annotate(str(z),xy=(i,z),color='g')
              \#ax3.annotate(str(f),xy=(i,f),color='r')
          plt.show()
```



```
In [833]: # Filter dates to get common range from 01-01-2010 to 30-06-2014.
    mask1=train_dates['timestamp_first_active'].between('2010-01-01','2014-06-30')
    mask2=train_dates['date_account_created'].between('2010-01-01','2014-06-30')
    mask3=train_dates['booked']=='Yes'
    train_time_clear=train_dates[mask1&mask2&mask3][['id','timestamp_first_active','date_first_booking','year_first_active']]
    train_time_clear.head(2)
Out[833]:
```

	Id	timestamp_first_active	date_first_booking	year_tirst_active
,	osr2jwljor	2010-01-01 21:56:19	2010-01-02	2010
(S Isw9q7uk0j	2010-01-02 01:25:58	2010-01-05	2010

In [835]: train_times_diif.head(2)
 # first_active_to_booking --> How many days from user first activity and first bookin
 g

Out[835]:

	Ia	timestamp_first_active	date_first_booking	year_tirst_active	tirst_active_to_booking
5	osr2jwljor	2010-01-01 21:56:19	2010-01-02	2010	1
6	lsw9q7uk0j	2010-01-02 01:25:58	2010-01-05	2010	3

In [836]: # Group mean days by year active_bookin_days=train_times_diif.groupby('year_first_active')['first_active_to_booking'].mean().to_frame() # Round result active_bookin_days['first_active_to_booking']=round(active_bookin_days['first_active_to_booking']).astype(int) active_bookin_days

Out[836]:

first_active_to_booking

46

2010	27
2011	37
2012	43
2013	47

2014

year_first_active

```
In [837]: # Line chart with total user with account and booking rate by Year.
          x_axis =account_booking_users_year.index
          y_axis_1 = account_booking_users_year["account num users"]
          y_axis_2 = account_booking_users_year["booking_rate"]
          y_axis_3 = active_bookin_days['first_active_to_booking']
          fig, ax1 = plt.subplots(figsize=(12, 8))
          ax2 = ax1.twinx()
          ax3=ax1.twinx()
          ax3.spines['right'].set_position(('axes', 1.1))
          ax1.plot(x axis, y axis 1,label='Users Created Account',color='b')
          ax2.plot(x_axis, y_axis_2,label='First Booking Rate',color='g')
          ax3.plot(x_axis, y_axis_3,label='Days to First Booking',color='r')
          ax1.set xlabel('Year')
          ax1.set_ylabel('Num. of New Users', color='blue')
          ax2.set_ylabel('Booking Rate', color='green')
          ax3.set ylabel('Mean Days to First Booking', color='red')
          ax1.grid(True, linewidth=1)
          ax2.grid(True, linewidth=1)
          ax3.grid(True, linewidth=1)
          plt.title('New Users Account Created, Booking Rate and Mean Days to First Booking by Y
          ax1.set_xticklabels( x_axis,rotation = 45)
          plt.tight_layout()
          ax1.legend(loc=2)
          ax2.legend(loc=9)
          ax3.legend(loc=1)
          for i,j,z,f in zip(x_axis,y_axis_1,y_axis_2,y_axis_3):
              ax1.annotate(str(j),xy=(i,j),color='b')
              ax2.annotate(str(z),xy=(i,z),color='g')
              ax3.annotate(str(f),xy=(i,f),color='r')
          plt.show()
```


New User quality by Year

```
In [838]: # Filter dates to get common range from 01-01-2010 to 30-06-2014.
mask=train_dates['date_account_created'].between('2010-01-01','2014-06-30')
age_dates_clear=train_dates[mask][['id','year_account_created','month_account_create
d','booked','age_group']]
age_dates_clear.head(2)
```

Out[838]:

	Ia	year_account_created	montn_account_created	роокеа	age_group
0	gxn3p5htnn	2010	6	No	n/a
1	820tgsjxq7	2011	5	No	35-44

Out[839]:

num_users

	booked	age_group	year_account_created	
13	No	15-24	2010	
38	Yes			

```
In [840]:
          # Create first pivot table year, age group and booking.
           train_dates_age_year_pvt=train_dates_age_year.pivot_table(index=['year_account_create
           d', 'age_group'],
                                                                   columns='booked',
                                                                   values='num_users',
                                                                   aggfunc='sum')
           train_dates_age_year_pvt.head(2)
Out[840]:
                                 booked
                                         No Yes
           year_account_created age_group
                         2010
                                   15-24
                                         13
                                              38
                                   25-34 245 400
In [841]:
           # Calculate rate from total
           train_dates_age_year_pvt[['Yes','No']]\
           =normalize(train_dates_age_year_pvt[['Yes','No']], axis=1, norm="l1")
In [842]:
          # Round column values
           train_dates_age_year_pvt['Yes']=round(train_dates_age_year_pvt['Yes'],2)
In [843]: # Create second pivot table for make multi line chatrt
           train_dates_age_year_pvt_2=\
           train_dates_age_year_pvt\
           .reset_index()\
           .pivot_table(index=train_dates_age_year_pvt.reset_index()['year_account_created'],
                        columns='age_group',
                        values='Yes',
                        aggfunc='sum')
           train_dates_age_year_pvt_2
Out[843]:
                    age_group 15-24 25-34 35-44 45-54 55-64
                                                            65+
                                                                  n/a
           year_account_created
                         2010
                               0.75
                                     0.62
                                           0.63
                                                 0.62
                                                       0.62 0.69
                                                                0.50
                         2011
                               0.53
                                     0.61
                                           0.58
                                                 0.54
                                                       0.55 0.58 0.49
```

2012

2013

2014

0.46

0.50

0.51

0.56

0.58

0.57

0.54

0.55

0.53

0.46

0.48

0.51

0.47 0.47

0.49 0.50 0.23

0.56 0.53 0.19

0.31

```
In [844]: | # Chart booking rate by year in each age group
          x_axis =['2010','2011','2012','2013','2014']
          y_axis_1 = train_dates_age_year_pvt_2["15-24"]
          y_axis_2 = train_dates_age_year_pvt_2["25-34"]
          y_axis_3 = train_dates_age_year_pvt_2["35-44"]
          y_axis_4 = train_dates_age_year_pvt_2["45-54"]
          y_axis_5 = train_dates_age_year_pvt_2["55-64"]
          y_axis_6 = train_dates_age_year_pvt_2["65+"]
          y_axis_7 = train_dates_age_year_pvt_2["n/a"]
          fig, ax1 = plt.subplots(figsize=(5, 10))
          ax1.plot(x_axis, y_axis_1,label='15-24',color='b')
          ax1.plot(x axis, y axis 2,label='25-34',color='r')
          ax1.plot(x_axis, y_axis_3,label='35-44',color='g')
          ax1.plot(x_axis, y_axis_4,label='45-54',color='c'
          ax1.plot(x_axis, y_axis_5,label='55-64',color='m')
          ax1.plot(x_axis, y_axis_6,label='65+',color='y')
          ax1.plot(x_axis, y_axis_7,label='n/a',color='k')
          ax1.set_xlabel('Year' , color='red')
          ax1.set_ylabel('Booking Rate', color='red')
          ax1.grid(True, linewidth=1)
          plt.title('Booking Rate in each Age group by Year')
          plt.tight layout()
          ax1.legend()
          for i,a,b,c,d,f,g,e in zip(x_axis,y_axis_1,y_axis_2,y_axis_3,y_axis_4,y_axis_5,y_axis
          _6,y_axis_7):
              ax1.annotate(str(a),xy=(i,a),color='b')
              ax1.annotate(str(b),xy=(i,b),color='r')
              ax1.annotate(str(c),xy=(i,c),color='g')
              ax1.annotate(str(d),xy=(i,d),color='c')
              ax1.annotate(str(f),xy=(i,f),color='m')
              ax1.annotate(str(g),xy=(i,g),color='y')
              ax1.annotate(str(e),xy=(i,e),color='k')
          plt.show()
```


Out[845]:

num_users

	age_group	year_account_created
51	15-24	2010
645	25-34	

Out[846]:

age_group	15-24	25-34	35-44	45-54	55-64	65+	n/a
year_account_created							
2010	51	645	542	224	109	55	1162
2011	328	3191	2350	933	484	211	4278
2012	1384	10957	7174	3248	1624	773	14302
2013	3699	21334	11804	5718	2998	1381	36026
2014	5316	19567	8889	4398	2384	989	34923

```
In [847]: # Chart number of new users by year in each age group
          x_axis =['2010','2011','2012','2013','2014']
          y_axis_1 = train_dates_age_year_total_pvt["15-24"]
          y_axis_2 = train_dates_age_year_total_pvt["25-34"]
          y_axis_3 = train_dates_age_year_total_pvt["35-44"]
          y_axis_4 = train_dates_age_year_total_pvt["45-54"]
          y_axis_5 = train_dates_age_year_total_pvt["55-64"]
          y_axis_6 = train_dates_age_year_total_pvt["65+"]
          y_axis_7 = train_dates_age_year_total_pvt["n/a"]
          fig, ax1 = plt.subplots(figsize=(5, 10))
          ax1.plot(x_axis, y_axis_1,label='15-24',color='b')
          ax1.plot(x axis, y axis 2,label='25-34',color='r')
          ax1.plot(x_axis, y_axis_3,label='35-44',color='g')
          ax1.plot(x_axis, y_axis_4,label='45-54',color='c'
          ax1.plot(x_axis, y_axis_5,label='55-64',color='m')
          ax1.plot(x_axis, y_axis_6,label='65+' ,color='y')
          ax1.plot(x_axis, y_axis_7,label='n/a' ,color='k')
          ax1.set_xlabel('Year' , color='red')
          ax1.set_ylabel('Num. of Users', color='red')
          ax1.grid(True, linewidth=1)
          plt.title('New Users in each Age group by Year')
          plt.tight layout()
          ax1.legend()
          for i,a,b,c,d,f,g,e in zip(x_axis,y_axis_1,y_axis_2,y_axis_3,y_axis_4,y_axis_5,y_axis
          _6,y_axis_7):
              ax1.annotate(str(a),xy=(i,a),color='b')
              ax1.annotate(str(b),xy=(i,b),color='r')
              ax1.annotate(str(c),xy=(i,c),color='g')
              ax1.annotate(str(d),xy=(i,d),color='c')
              ax1.annotate(str(f),xy=(i,f),color='m')
              ax1.annotate(str(g),xy=(i,g),color='y')
              ax1.annotate(str(e),xy=(i,e),color='k')
          plt.show()
```


Month

In [848]: account_booking_users.head(2)

Out[848]:

	year_account_created	month_account_created	account_num_users	booking_num_users	Year
y_m					
1-2010	2010	1	61	29	2010
2-2010	2010	2	102	40	2010

Out[849]:

account_num_users be	ooking num users
----------------------	------------------

17495	5997
16582	6408
20325	8024
21867	8534
25911	10287
26831	10450
13832	5485
14611	5952
15393	5760
13476	5478
13129	4737
13404	4653
	16582 20325 21867 25911 26831 13832 14611 15393 13476 13129

In [851]: account_booking_users_month

Out[851]:

	account_num_users	booking_num_users	booking_rate
month_account_created			
1	17495	5997	0.34
2	16582	6408	0.39
3	20325	8024	0.39
4	21867	8534	0.39
5	25911	10287	0.40
6	26831	10450	0.39
7	13832	5485	0.40
8	14611	5952	0.41
9	15393	5760	0.37
10	13476	5478	0.41
11	13129	4737	0.36
12	13404	4653	0.35

```
In [852]:
          # Line chart Trend new accounts created and booking rate by months
          names = ['January', 'February', 'March',
                    'April', 'May', 'June', 'July',
                    'August', 'September', 'October',
                    'November', 'December']
          x_axis =names
          y_axis_1 = account_booking_users_month["account_num_users"]
          y_axis_2 = account_booking_users_month["booking_rate"]
          fig, ax1 = plt.subplots(figsize=(10, 5))
          ax2 = ax1.twinx()
          ax1.plot(x_axis, y_axis_1,label='Created Account',color='b')
          ax2.plot(x_axis, y_axis_2,label='First Booking Rate',color='g')
          ax1.set_xlabel('Month' , color='red')
          ax1.set_ylabel('Num. of New Users', color='blue')
          ax2.set_ylabel('Booking Rate', color='green')
          ax1.grid(True, linewidth=1.25)
          ax2.grid(True, linewidth=1.25)
          plt.title('New Users Account Created and Booking Rate by Month')
          plt.tight_layout()
          ax1.legend(loc=2)
          ax2.legend(loc=1)
          ax1.set xticklabels( names,rotation = 45)
          for i,j,z in zip(x_axis,y_axis_1,y_axis_2):
              ax1.annotate(str(j),xy=(i,j))
              ax2.annotate(str(z),xy=(i,z))
          plt.show()
```



```
In [853]:
          # Grouping by month and age group
           train_dates_age_month=age_dates_clear.groupby(['month_account_created','age_group','b
           ooked'])['id'].count().to_frame()\
           .rename(columns={'id':'num_users'})
           train_dates_age_month.head(2)
Out[853]:
                                                 num_users
           month_account_created age_group booked
                                    15-24
                                                       437
                                             No
                                             Yes
                                                       435
In [854]:
          # Create first pivot table month, age group and booking
           train_dates_age_month_pvt=train_dates_age_month.pivot_table(index=['month_account_cre
           ated','age_group'],
                                                                  columns='booked',
                                                                  values='num_users',
                                                                  aggfunc='sum')
           train_dates_age_month_pvt.head(2)
Out[854]:
                                           No
                                  booked
                                                Yes
           month_account_created
                               age_group
                                    15-24
                                           437
                                                435
                                    25-34 2029 2675
In [855]:
           # Calculate rate from total
           train_dates_age_month_pvt[['Yes','No']]\
           =normalize(train_dates_age_month_pvt[['Yes','No']], axis=1, norm="11")
In [856]:
          # Round column values
           train_dates_age_month_pvt['Yes']=round(train_dates_age_month_pvt['Yes'],2)
In [857]:
           train_dates_age_month_pvt.head(2)
Out[857]:
                                               No
                                                 Yes
                                  booked
           month_account_created age_group
                                    15-24 0.501147 0.50
```

25-34 0.431335 0.57

Out[858]:

age_group	15-24	25-34	35-44	45-54	55-64	65+	n/a
month_account_created							
1	0.50	0.57	0.52	0.46	0.49	0.59	0.22
2	0.53	0.57	0.56	0.51	0.50	0.52	0.25
3	0.51	0.59	0.55	0.51	0.55	0.54	0.25
4	0.52	0.57	0.55	0.51	0.54	0.53	0.24
5	0.50	0.58	0.56	0.51	0.56	0.54	0.24
6	0.51	0.57	0.54	0.50	0.53	0.48	0.22
7	0.53	0.60	0.53	0.49	0.50	0.53	0.27
8	0.50	0.60	0.57	0.49	0.53	0.48	0.27
9	0.47	0.57	0.55	0.48	0.48	0.52	0.24
10	0.51	0.58	0.58	0.50	0.50	0.49	0.25
11	0.49	0.55	0.53	0.48	0.45	0.44	0.23
12	0.46	0.56	0.52	0.43	0.46	0.42	0.21

```
In [859]:
          # Chart booking rate by month in each age group
          names = ['January', 'February', 'March',
                    'April', 'May', 'June', 'July',
                    'August', 'September', 'October',
                    'November', 'December']
          x_axis =names
          y_axis_1 = train_dates_age_month_pvt_2["15-24"]
          y_axis_2 = train_dates_age_month_pvt_2["25-34"]
          y_axis_3 = train_dates_age_month_pvt_2["35-44"]
          y_axis_4 = train_dates_age_month_pvt_2["45-54"]
          y_axis_5 = train_dates_age_month_pvt_2["55-64"]
          y_axis_6 = train_dates_age_month_pvt_2["65+"]
          y_axis_7 = train_dates_age_month_pvt_2["n/a"]
          fig, ax1 = plt.subplots(figsize=(7, 7))
          ax1.plot(x_axis, y_axis_1,label='15-24',color='b')
          ax1.plot(x_axis, y_axis_2,label='25-34',color='r')
          ax1.plot(x_axis, y_axis_3,label='35-44',color='g')
          ax1.plot(x axis, y axis 4,label='45-54',color='c')
          ax1.plot(x_axis, y_axis_5,label='55-64',color='m')
          ax1.plot(x_axis, y_axis_6,label='65+',color='y')
          ax1.plot(x_axis, y_axis_7,label='n/a',color='k')
          ax1.set_xlabel('Month' , color='red')
          ax1.set_ylabel('Booking Rate', color='red')
          ax1.grid(True, linewidth=1)
          plt.title('Booking Rate in each Age group by Month')
          ax1.set_xticklabels( names,rotation = 45)
          plt.tight layout()
          ax1.legend(loc=6)
          for i,a,b,c,d,f,g,e in zip(x_axis,y_axis_1,y_axis_2,y_axis_3,y_axis_4,y_axis_5,y_axis
          _6,y_axis_7):
              ax1.annotate(str(a),xy=(i,a),color='b')
              ax1.annotate(str(b),xy=(i,b),color='r')
              ax1.annotate(str(c),xy=(i,c),color='g')
              ax1.annotate(str(d),xy=(i,d),color='c')
              ax1.annotate(str(f),xy=(i,f),color='m')
              ax1.annotate(str(g),xy=(i,g),color='y')
              ax1.annotate(str(e),xy=(i,e),color='k')
          plt.show()
```


Weekday

In [860]: # Filter dates to get common range from 01-01-2010 to 30-06-2014.
mask1=train_dates['timestamp_first_active'].between('2010-01-01','2014-06-30')
mask2=train_dates['date_account_created'].between('2010-01-01','2014-06-30')
train_dates_clear_weekday_account=train_dates[mask1&mask2]
train_dates_clear_weekday_account.head(2)

Out[860]:

	id	date_account_created	timestamp_first_active	date_first_booking	booked	age_group	year_
5	osr2jwljor	2010-01-01	2010-01-01 21:56:19	2010-01-02	Yes	n/a	
6	lsw9q7uk0j	2010-01-02	2010-01-02 01:25:58	2010-01-05	Yes	45-54	
4							

In [861]: # Create table by weekday account created

weekday_account=train_dates_clear_weekday_account[['id','weekday_account_created']]
weekday_account.head(2)

Out[861]:

id weekday_account_created

5 osr2jwljor Friday

6 Isw9q7uk0j Saturday

Out[862]:

	weekday	account_num_users
0	Friday	29741
1	Monday	32270
2	Saturday	24538
3	Sunday	24568
4	Thursday	32570
5	Tuesday	35083
6	Wednesday	34086

In [863]: # Create table by weekday booking weekday_booking=train_dates[['id','weekday_first_booking','age_group']] weekday_booking.head(2)

Out[863]:

	id	weekday_first_booking	age_group
0	gxn3p5htnn	NaN	n/a
1	820tgsjxq7	NaN	35-44

Out[864]:

	weekday	booking_num_users
0	Friday	13299
1	Monday	12734
2	Saturday	10420
3	Sunday	9845
4	Thursday	13939
5	Tuesday	14297
6	Wednesday	14374

```
In [865]: # Join tables total users and booking users
          weekday_account_booking=weekday_account_group.merge(weekday_booking_group,how='inner'
          ,left_on='weekday',right_on='weekday')
          weekday_account_booking
```

Out[865]:

	weekday	account_num_users	booking_num_users
0	Friday	29741	13299
1	Monday	32270	12734
2	Saturday	24538	10420
3	Sunday	24568	9845
4	Thursday	32570	13939
5	Tuesday	35083	14297
6	Wednesday	34086	14374

```
In [866]: # Adding booking rate column
          weekday_account_booking['booking_rate']=\
          round(weekday_account_booking['booking_num_users']/weekday_account_booking['account_n
          um_users'],2)
          weekday_account_booking
```

Out[866]:

	weekday	account_num_users	booking_num_users	booking_rate
0	Friday	29741	13299	0.45
1	Monday	32270	12734	0.39
2	Saturday	24538	10420	0.42
3	Sunday	24568	9845	0.40
4	Thursday	32570	13939	0.43
5	Tuesday	35083	14297	0.41
6	Wednesday	34086	14374	0.42

```
In [867]: # Sort weekday names by weekday numbers
          names = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'
          weekday_account_booking['weekday'] =\
          pd.Categorical(weekday_account_booking['weekday'], categories=names, ordered=True)
          weekday_account_booking = weekday_account_booking.sort_values('weekday')
          weekday_account_booking.set_index('weekday',inplace=True)
```

In [868]: | weekday_account_booking

Out[868]:

account_num_users booking_num_users booking_rate

weekday			
Monday	32270	12734	0.39
Tuesday	35083	14297	0.41
Wednesday	34086	14374	0.42
Thursday	32570	13939	0.43
Friday	29741	13299	0.45
Saturday	24538	10420	0.42
Sunday	24568	9845	0.40

```
In [869]:
          # Line chart Trend new accounts created and booking rate by weekdays
          x_axis =weekday_account_booking.index
          y_axis_1 = weekday_account_booking["account_num_users"]
          y_axis_2 = weekday_account_booking["booking_rate"]
          fig, ax1 = plt.subplots(figsize=(10,8))
          ax2 = ax1.twinx()
          ax1.plot(x_axis, y_axis_1,label='Created Account',color='b')
          ax2.plot(x_axis, y_axis_2,label='First Booking Rate',color='g')
          ax1.set_xlabel('WeekDay' , color='red')
          ax1.set_ylabel('Num. of New Users', color='blue')
          ax2.set ylabel('Booking Rate', color='green')
          ax1.grid(True, linewidth=1.25)
          ax2.grid(True, linewidth=1.25)
          plt.title('New Users Account Created and Booking Rate by Weekday')
          plt.tight_layout()
          ax1.legend(loc=3)
          ax2.legend(loc=8)
          ax1.set_xticklabels( names,rotation = 45)
          for i,j,z in zip(x_axis,y_axis_1,y_axis_2):
              ax1.annotate(str(j),xy=(i,j))
              ax2.annotate(str(z),xy=(i,z))
          plt.show()
```


End