CS 70 Discrete Mathematics and Probability Theory Summer 2020 Course Notes

DIS 3A

1 Modular Practice

Solve the following modular arithmetic equations for x and y.

- (a) $9x + 5 \equiv 7 \pmod{11}$.
- (b) Show that $3x + 15 \equiv 4 \pmod{21}$ does not have a solution.

(c) The system of simultaneous equations $3x + 2y \equiv 0 \pmod{7}$ and $2x + y \equiv 4 \pmod{7}$.

(d) $13^{2019} \equiv x \pmod{12}$.

(e)
$$7^{21} \equiv x \pmod{11}$$
.

2 When/Why can we use CRT?

Let $a_1, \ldots, a_n, m_1, \ldots, m_n \in \mathbb{Z}$ where $m_i > 1$ and pairwise relatively prime. In lecture, you've constructed a solution to

$$x'\equiv a_1\pmod{m_1}$$
 \vdots
 $x'\equiv a_n\pmod{m_n}$.

 $\chi \equiv 2\pmod{5}$
 $\chi \equiv 2\pmod{5}$

Let $m = m_1 \cdot m_2 \cdots m_n$.

1. Show the solution is unique modulo m. (Recall that a solution is unique modulo m means given two solutions $x, x' \in \mathbb{Z}$, we must have $x \equiv x' \pmod{m}$.)

Assume
$$\exists x' : x \neq x' \pmod{m}$$
 $m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, m_3 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, \dots, m_4 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, \dots, m_4 \mid x, \dots, m_4 \mid x, \dots, m_4 \mid x$
 $= m_1 \mid x, m_2 \mid x, \dots, m_4 \mid x, \dots,$

2. Suppose m_i 's are not pairwise relatively prime. Is it guaranteed that a solution exists? Prove or give a counterexample.

CS 70, Summer 2020, DIS 3A

$$x = 5 \pmod{3}$$
 $x = 2 \pmod{5}$
 $x = 3 \pmod{9}$
 $x = 3 \pmod{3}$
 $x = 3 \pmod{3}$

$$M_1 = 2$$

M2 = 5

M3 = 9

2/180

5 | 180

9/180

90/180

3. Suppose m_i 's are not pairwise relatively prime and a solution exists. Is it guaranteed that the solution is unique modulo m? Prove or give a counterexample.

$$\chi \equiv 0 \mod 2$$
 $\chi \equiv 2 \mod 4$
 $2, 6 \mod 8$

3 Mechanical Chinese Remainder Theorem (practice)

Solve for $x \in \mathbb{Z}$ where:

$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 4 \pmod{7}$

- (a) Find the multiplicative inverse of 5×7 modulo 3.
- (b) What is the smallest $a \in \mathbb{Z}^+$ such that $5 \mid a, 7 \mid a$, and $a \equiv 2 \pmod{3}$?
- (c) Find the multiplicative inverse of 3×7 modulo 5.
- (d) What is the smallest $b \in \mathbb{Z}^+$ such that $3 \mid b, 7 \mid b$, and $b \equiv 3 \pmod{5}$?
- (e) Find the multiplicative inverse of 3×5 modulo 7.
- (f) What is the smallest $c \in \mathbb{Z}^+$ such that $3 \mid c, 5 \mid c$, and $c \equiv 4 \pmod{7}$?
- (g) Write down the set of solutions for the system of equations.