import pandas as pd

Load your dataset (replace 'train.csv' with your file name if different)
df = pd.read_csv('train.csv')

Display the first few rows of the dataset
df.head()

<u>-</u>	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	=
	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	11.
	1 2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
2	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
;	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
	4 5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	

Next steps: (

Generate code with df

View recommended plots

New interactive sheet

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 891 entries, 0 to 890
 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float6

6	SibSp	891	non-null	int64
7	Parch	891	non-null	int64
8	Ticket	891	non-null	object
9	Fare	891	non-null	float64
10	Cabin	204	non-null	object
11	Embarked	889	non-null	object
dtyp	es: float64(2	?), in	nt64(5), obj	ject(5)

memory usage: 83.7+ KB

df.describe()

•	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

df.isnull().sum()


```
0
Passengerld
              0
 Survived
              0
  Pclass
              0
  Name
              0
   Sex
              0
   Age
            177
  SibSp
              0
  Parch
              0
  Ticket
              0
   Fare
              0
  Cabin
            687
Embarked
              2
```

dtunat int64

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt # Make sure you have this line to import pyplot
```

```
df['Age'].hist(bins=30)
plt.title("Age Distribution")
plt.xlabel("Age")
plt.ylabel("Count")
plt.show()
```


Observations on Age Distribution:

- The **age distribution** of passengers is **right-skewed**, with most passengers being relatively younger.
- There is a noticeable peak in the 20-30 age range, indicating that this is the most common age group among passengers.
- A few **outliers** (older passengers) are visible, with ages over 70 years old.
- Most passengers are between the ages of 20 and 40, and the number of very young passengers (children) is relatively low.

```
sns.boxplot(x='Pclass', y='Age', data=df)
plt.title("Boxplot of Age by Passenger Class")
plt.show()
```


Observations on Age by Passenger Class:

- The median age of passengers in 1st class is higher than in 2nd and 3rd classes.
- The interquartile range (IQR) for age in 3rd class is wider, meaning passengers in 3rd class span a broader age range.
- There are several **outliers** in **3rd class**, particularly among younger passengers, with ages below 10.
- 1st class passengers are generally older, and 3rd class passengers have a larger spread of ages, including more younger passengers.

```
df['Sex'].value_counts().plot(kind='bar')
plt.title("Count of Passengers by Gender")
plt.show()
```



```
sns.countplot(x='Survived', hue='Sex', data=df)
plt.title("Survival Rate by Gender")
plt.show()
```


Observations on Survival by Gender:

- **Females** had a significantly higher survival rate than **males**. The number of females who survived is clearly larger than the number of males who survived.
- The survival rate for males is much lower, with a large proportion of male passengers not surviving.
- This suggests that gender may have played a role in the survival chances of passengers, with women being prioritized for survival.

sns.countplot(x='Survived', hue='Pclass', data=df)
plt.title("Survival Rate by Passenger Class")
plt.show()

Observations on Survival by Passenger Class:

- 1st-class passengers had the highest survival rate, with a much larger proportion of them surviving compared to 2nd and 3rd-class passengers.
- 3rd-class passengers had the lowest survival rate, which may suggest the lack of resources or being located in lower decks.
- 2nd-class passengers had a survival rate between the other two classes, though lower than 1st-class.

• This indicates that passenger class strongly influenced survival chances, with higher-class passengers being more likely to survive.

```
# Select only numeric columns
numeric_cols = df.select_dtypes(include=[np.number])
# Calculate the correlation matrix only for numeric columns
sns.heatmap(numeric_cols.corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
```


Observations on Correlation Heatmap:

- There is a **strong negative correlation** between Pclass and Fare (r = -0.55). This suggests that passengers in **lower classes** (3rd class) paid **lower fares**, while passengers in **higher classes** (1st class) paid significantly more for their tickets.
- Survived is negatively correlated with Pclass (r = -0.34), indicating that passengers in higher classes had a better chance of survival.
- The correlation between Age and Fare is very **weak** (r = 0.09), suggesting that there is no strong relationship between passengers' ages and the fare they paid.
- Fare has a slightly positive correlation with Age (r = 0.1), meaning that older passengers tend to have slightly higher fares, but the correlation is not very strong.
- The correlation between Age and Survived is almost non-existent, indicating **age** had a weaker effect on **survival** compared to **class** and **gender**.

```
sns.pairplot(df[['Survived', 'Age', 'Fare', 'Pclass']], hue='Survived')
plt.show()
```


Observations on Pairplot (Survival, Age, Fare, Pclass):

• There is a clear separation between **survived and not survived** passengers. Those who survived (marked in blue) tend to be in **higher classes** (Pclass 1) and **tend to be younger** compared to those who did not survive.