# 物理实验绪论考试模拟试题

### 一、单项选择题(共2分)

- 1. 按有效数字运算法则,将 154°3′化作 "°"时有 <u>(</u>) 位有效数字。
  - a. 7位
- b. 6位

- d. 4位
- 2. 已知常数 e =2.718281828···,测量量 *L*=0.0023,*N*=2.73,则 (e-*L*)/N= <u>(</u>\_\_\_\_
  - a. 1.000
- b. 0.994
- c. 0.9949

- 3.  $\frac{\sin 15^{\circ}18'}{4.65} = ( )$ 
  - a. 0.0567
- b. 0.05674
- c. 0.056747
- d. 0.05675

- 4.  $\frac{200 + (100 80)}{1010 \times (0.010 + 0.000251)} = \underline{\hspace{1cm}}$ 
  - a. 22

- b. 21
- c. 21.2

- d. 21.25
- 5. 若  $f = \frac{E}{V} 1$ ,且  $E \pm u(E) = (3.000\pm0.002)$ V, $V \pm u(V) = (2.750\pm0.002)$ V,则  $f \pm u(f) = \underline{\hspace{1cm}}$  。
  - a.  $(9.09\pm0.15)\times10^{-2}$  b.  $(9.09\pm0.10)\times10^{-2}$  c.  $(9.1\pm0.2)\times10^{-2}$  d.  $(9.1\pm0.1)\times10^{-2}$

- 6. 物理量  $A = \frac{x + y}{x y}$  , 则其相对不确定度是 \_\_\_(\_\_\_\_) 。
  - a.  $\frac{2}{x^2-y^2}\sqrt{x^2u^2(y)+y^2u^2(x)}$
- b.  $\frac{2}{x^2-v^2}\sqrt{x^2u^2(y)-y^2u^2(x)}$
- c.  $\sqrt{\frac{u^2(x) + u^2(y)}{(x+y)^2} + \frac{u^2(x) + u^2(y)}{(x-y)^2}}$
- d.  $\sqrt{\frac{u^2(x)+u^2(y)}{(x+y)^2}-\frac{u^2(x)-u^2(y)}{(x-y)^2}}$
- 7. 样本标准(偏)差(单次测量标准偏差)S(x)的计算公式是  $(\underline{)}$  。

- a.  $\sqrt{\frac{\sum (x_i \bar{x})^2}{k(k-1)}}$  b.  $\sqrt{\frac{\sum (x_i \bar{x})^2}{k}}$  c.  $\sqrt{\frac{\sum (x_i \bar{x})^2}{k(k-1)}}$  d.  $\sqrt{\frac{\sum (x_i \bar{x})^2}{k-1}}$
- 8. 用作图法处理数据时,为保证精度,至少应使坐标纸的最小分格和测量值的 ( ) 相对应。
  - a. 第一位有效数字

b. 第二位有效数字

c. 最后一位有效数字

- d. 最后一位准确数字
- 9. 利用自由落体运动,由公式  $h=\frac{1}{2}gt^2$  我们可测出重力加速度 g 的值。设测量环境的温度为 25  $\mathbb C$  ,现用 一把在 20°C 时校准的钢尺测量高度 h,又知测时间 t 的秒表比标准表走得稍快,若忽略其它误差,则 g 的测量值 有 \_(\_\_\_\_\_\_\_。
  - a. 负误差
- b. 正误差
- c. 正、负误差部分抵偿
- d. 误差的正、负不定
- 10. 某人用最小分度为 1mm 的米尺测得物体甲的长度为 75.00cm, 用精度为 0.02mm 的游标卡尺测得物体乙 的长度为 7.50mm,用千分尺测得物体丙的长度为 0.750mm。对这三个测量结果的准确度,下列所述 (是正确的。
  - a. 甲<乙<丙
- b. 甲>乙>丙
- c. 甲<Z=丙
- d. 甲>Z=丙

#### 二、填空题(共2分)

- 11. 用计算器算出圆柱体的转动惯量 J=645.0126 g·cm²,平均值的不确定度 u(J)=25.23875 g·cm²,则  $J\pm u(J)$ = ( \_\_\_\_\_\_  $\pm$  \_\_\_\_\_ )×10² g·cm²。
- 12. 测得 10 个条纹间距的结果是 10d=2.2276mm,平均值的不确定度 u(10d)=9.52μm,则 d±u(d)= ( \_\_\_\_\_\_ ± \_\_\_\_\_\_ )mm。
- 14. 如第 14 题图所示游标卡尺的读数为 \_\_\_\_\_\_(cm),该游标的仪器误差 $\Delta_{\emptyset}$ 为 \_\_\_\_\_(cm) (按物理实验课的简化要求)。



15. 用千分尺 (精度 0.01mm) 测某金属片厚度 d 的结果为

| i               | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-----------------|-------|-------|-------|-------|-------|-------|-------|
| $d_i/\text{mm}$ | 1.516 | 1.519 | 1.514 | 1.522 | 1.523 | 1.513 | 1.517 |

则测量结果应表述为  $d\pm u(d)=$   $\pm$  mm。

- 17. 某数字三用表测量电压的准确度可表示为 $\Delta V$ =0.05% $N_x$ +3 字。若电压表的读数为 31.72V,则其不确定度 u(V)= \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_(电压表的满度值为 99.99V)。
- 18. 一根钢丝,温度每升高 1℃,长度相对伸长  $\frac{\Delta L}{L}$  = 0.001%。用这根钢丝构成一个单摆,其周期 T =  $2\pi\sqrt{\frac{L}{g}}$  (g 为重力加速度,忽略摆球直径的影响),则温度升高 10℃对周期产生的影响  $\frac{\Delta T}{T}$  = \_\_\_\_\_%。
- 20. 如图所示电路在接通电源开关之前,各电阻应置于所谓"安全位置",即电阻  $R_1$  应置于 \_\_\_\_\_ 端,电阻  $R_2$  应置于 \_\_\_\_\_ 端。



## 三、多项选择题(共2分)

- 21. 指出下列关于仪器误差的叙述哪些是错误的(按物理实验课的简化要求)? ( )
  - a. 游标卡尺的仪器误差等于游标精度的一半
  - b. 千分尺的仪器误差等于最小分度的一半
  - c. 磁电式仪表的仪器误差= 等级%×测量值
  - d. 箱式电桥  $\Delta_{\alpha}$  = 等级%(测量值 +  $\frac{基准值}{10}$ )

|     | a.<br>b.<br>c. | 对满足止念分布的物理量,下面的叙述哪些是止确的? ( ) 做任何一次测量,其结果将有 $68.3\%$ 的可能落在区间 $[A-\sigma,A+\sigma]$ 内设某次测量结果为 $x_i$ ,则最终结果表述 $x_i\pm\sigma(x)$ 表示真值落在区间 $[x_i-\sigma(x),x_i+\sigma(x)]$ 的概率为 $0.683$ 用 $x_i\pm\sigma(x)$ 报道测量结果与用 $\bar{x}\pm\sigma(\bar{x})$ 报道结果的置信概率是相同的用 $\bar{x}\pm\sigma(\bar{x})$ 报道测量结果比用 $x_i\pm\sigma(x)$ 报道结果的置信概率高 |
|-----|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | a.             | 用一元线性回归法处理数据时,下列哪些条件是必须满足的?()<br>自变量等间隔测量 b. 测量量之间必须满足线性关系<br>自变量的误差可略 d. 因变量的的标准差大致相等                                                                                                                                                                                                                                       |
|     | a.             | 下列用逐差法处理数据的基本条件与主要优点中,你认为哪些是正确的? <u>(  )</u> 测量次数必须是偶数     b. 自变量必须等间隔测量<br>只能处理线性函数或多项式函数    d. 计算比较简便,且计算时有某种平均效果                                                                                                                                                                                                          |
|     | a.<br>b.<br>c. | 下列哪些说法是准确的?()<br>精密度高,表示在规定条件下多次测量时,所得结果重复性较好<br>实验条件改变时,系统误差和随机误差可相互转化<br>A 类不确定度反映随机误差的大小,B 类不确定度则反映系统误差的大小<br>如果被测量 <i>X</i> 服从正态分布, <i>X</i> ± <i>u</i> ( <i>X</i> )=6.33±0.02nm 表示 <i>X</i> 的真值出现在(6.31, 6.35)nm 范围内                                                                                                    |
|     | 26.            | 欲测直径约 4.5mm 钢球的体积 $V$ ,要求单次测量的相对不确定度 $\frac{u(V)}{V}$ <1%,可选用下列哪些量具?                                                                                                                                                                                                                                                         |
| _(_ | a.             | <u>)</u><br>千分尺     b. 0.05mm 卡尺    c. 0.02mm 卡尺    d. 米尺                                                                                                                                                                                                                                                                    |
|     | a.<br>b.<br>c. | 下列哪些操作属于电学实验操作规程? <u>(</u> <u></u><br>按回路接线法连接线路,一般将黑色导线连接到电源正极,红色导线连接到电源负极<br>由于需要经常调节滑线变阻器,所以应将其放在手边<br>接通电源之前,滑线变阻器的滑动端应放到使接入电路的电阻最大的一端,亦即安全位置<br>实验结束拆线时,仍要按接线的回路逐根拆除导线                                                                                                                                                  |
|     | a.<br>b.<br>c. | 下列哪些情况下可以只做一次测量?                                                                                                                                                                                                                                                                                                             |
| 这种  |                | 某些系统误差,当改变测量状态时,误差的大小和正负会随机改变,取平均值便可抵偿部分系统误差,称为系统误差随机化。试判断下面的操作哪些属于系统误差随机化? ()                                                                                                                                                                                                                                               |
|     | a.             | 用伏安法测电阻 $R = \frac{V}{I}$ 时,分别选取不同电压和电流进行测量。                                                                                                                                                                                                                                                                                 |
|     | c.             | 测正方体体积时,分别测量正方体不同方位的边长 $a$ ,取其平均值 $\overline{a}$ ,由公式 $V=\overline{a}^3$ 计算体积。 测正方体体积时,分别测量三个方位的边长 $a$ 、 $b$ 、 $c$ ,用公式 $V=abc$ 计算体积。 当太平两臂不等长时,测得质量会存在系统误差(设偏大),将待测物体与砝码交换位置再测一次,测得结果将出现反向误差(偏小),取两次测量结果的平均值便可消除此误差。                                                                                                        |
|     | a.<br>b.<br>c. | 下面关于误差的叙述哪些是正确的? <u>(</u><br>误差是测量值对真值的绝对偏离,它既有大小又有方向(正负)<br>误差可以用统计方法计算出来<br>误差表示真值可能出现的范围<br>误差随实验次数的增加而减小,因此若测量次数为无穷大,便可从理论上得到真值                                                                                                                                                                                          |

#### 四、计算题(共4分)

- 31. 动态法测弹性模量的计算公式为  $E=1.6067 \frac{l^3 m}{d^4} f^2$ ,测量后算得  $f=(897.5\pm1.04)$ Hz, $l=(150.1\pm0.16)$ mm, $m=(37.87\pm0.029)$ g, $d=(5.998\pm0.0048)$ mm,试给出 E 测量结果的正确表述,要求写出完整的数据处理过程。(为避免计算过程的误差累积,不确定度按中间结果提供,其有效数字均多保留了  $1\sim2$  位)
- 32. 弹簧振子的周期 T 与振子质量 m 的关系为  $T = 2\pi \sqrt{\frac{m + m_0}{k}}$  , 其中  $m_0$  是所谓弹簧的等效质量(未知)。 实验测得 T 与 m 的关系列于下表:( $\Delta m = 0.0001$ kg, $\Delta T = 0.0001$ s)

| i    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| m/kg | 0.1240 | 0.1440 | 0.1640 | 0.1840 | 0.2040 | 0.2240 | 0.2440 | 0.2640 | 0.2840 | 0.3040 |
| T/s  | 1.2446 | 1.2824 | 1.3222 | 1.3601 | 1.3959 | 1.4315 | 1.4647 | 1.4992 | 1.5323 | 1.5643 |

试用一元线性回归法计算倔强系数 k。要求写出完整的数据处理过程,并给出最终结果表述。

33. 弹簧振子的周期 T 与振子质量 m 的关系为  $T = 2\pi \sqrt{\frac{m+m_0}{k}}$  ,其中  $m_0$  是所谓弹簧的等效质量(未知)。 实验测得 T 与 m 的关系列于下表:( $\Delta m = 0.0001$ kg, $\Delta T = 0.0001$ s)

| i    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| m/kg | 0.1240 | 0.1440 | 0.1640 | 0.1840 | 0.2040 | 0.2240 | 0.2440 | 0.2640 | 0.2840 | 0.3040 |
| T/s  | 1.2446 | 1.2824 | 1.3222 | 1.3601 | 1.3959 | 1.4315 | 1.4647 | 1.4992 | 1.5323 | 1.5643 |

试用逐差法计算倔强系数 k。要求写出完整的数据处理过程,并给出最终结果表述。

34. 弹簧振子的周期 T 与振子质量 m 的关系为  $T = 2\pi \sqrt{\frac{m+m_0}{k}}$  ,其中  $m_0$  是所谓弹簧的等效质量(未知)。 实验测得 T 与 m 的关系,且算出  $T^2$  值一并列于下表:

| i                  | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| m/kg               | 0.1240 | 0.1440 | 0.1640 | 0.1840 | 0.2040 | 0.2240 | 0.2440 | 0.2640 |
| T/s                | 1.244  | 1.286  | 1.323  | 1.361  | 1.395  | 1.430  | 1.467  | 1.500  |
| $T^2/\mathrm{s}^2$ | 1.548  | 1.654  | 1.750  | 1.852  | 1.946  | 2.045  | 2.152  | 2.250  |

试用作图法计算倔强系数 k。要求写出完整的数据处理过程,不要求计算不确定度。