

Autoregressive DRL with Learned Intrinsic Rewards for Portfolio Optimisation

MAGDALENE HUI QI LIM NIXIE S LESMANA* CHI SENG PUN

Overview

- BACKGROUND
 - ☐ Deep Reinforcement Learning: Policy Gradient (PG) via A2C
 - ☐ Portfolio Optimization as DRL problem.
 - \square Reward Design in (D)RL: motivation + approaches \Rightarrow Learned Intrinsic Reward (LIRPG).
 - \square Multi-Dimensional Action Spaces in (D)RL: motivation + approaches \Rightarrow Autoregressive RL.
- METHOD
 - ☐ Autoregressive A2C via MMDP
 - ☐ Extending LIRPG to Autoregressive A2C.
- EXPERIMENTS
 - ☐ Effects of Intrinsic Reward
 - ☐ Best Strategies (DRL trading x Reward)
- CONCLUSION

Background: Deep Reinforcement Learning (DRL)

- \square Env: States \mathcal{S} , Actions \mathcal{A} , Transition Probabilities $T: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$, Rewards $r: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathbb{R})$
- \square Policy (parameterized) $\pi_{\theta} : \mathcal{S} \to \mathcal{P}(\mathcal{A})$
- ☐ Objective (parameterized)

$$J(\theta) \coloneqq \mathbb{E}_{\theta} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right] = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t \middle| s_t \sim T(\cdot | s_{t-1}, a_{t-1}), a_t \sim \pi_{\theta}(\cdot | s_t) \right]$$

- ☐ Learning Policy
 - Policy Gradient (PG)[S99]

$$\mathcal{F}(s_t, a_t) \coloneqq \sum_{\tau=t}^{\infty} \gamma^{\tau-t} r_{\tau}$$
 return till termination

$$\nabla J(\theta) \propto \mathbb{E}_{\theta}[G(s_t, a_t) \nabla_{\theta} log \pi_{\theta}(a_t | s_t)]$$
 (via Backpropagation)

 \square (this work) A2C: replace return G(.) with Advantage Function A(.) for variance reduction [M16],

$$\nabla J(\theta) \propto \mathbb{E}_{\theta}[A(s_t, a_t) \nabla_{\theta} log \pi_{\theta}(a_t | s_t)]$$

Risk adjusted return $A(s_t, a_t) \coloneqq G(s_t, a_t) - \hat{V}_{\theta_v}(s_t)$; $\hat{V}(.)$ is (parameterized) value estimate.

Background: Portfolio Optimization as DRL Problem

- \square The portfolio optimization Objective: find $\pi_{\theta} : \mathcal{S} \to \mathcal{P}(\mathbb{Z}^d)$ to trade d > 1 stocks daily.
- ☐ SATR matching[Y21]
 - □States s = [b, p, h, m]: portfolio balance $b \in \mathbb{R}_+$, stock prices $p \in \mathbb{R}_+^d$, stock holdings $h \in \mathbb{Z}_+^d$, M market indicators $m \in \mathbb{R}^{Md}$.
 - \square Actions $\mathbf{a} = (a^1, a^2, ..., a^d)$: Sell/Buy/Hold for each stock dimension $k \in \{1, 2, ..., d\}$.
 - \square Transitions: (i) p, m-observed from Market, (ii) b, h-computed as follows,
 - $\square a_t^k < 0$: Sell $-a_t^k \in (0, h_t^k]$ shares $\Rightarrow h_{t+1}^k = h_t^k a_t^k \in \mathbb{Z}_+$.
 - $\square a_t^k \ge 0$: Buy a_t^k (or hold if $a_t^k = 0$) shares $\Rightarrow h_{t+1}^k = h_t^k + a_t^k$.
 - $\square b_{t+1} = b_t p_t^k \times a_t^k 0.1\% \times p_t^k \times |a_t^k|.$
 - Rewards: $\mathbf{r}_{t+1} = U(s_t, a_t, s_{t+1})$ E.g., Profit $U(s_t, a_t, s_{t+1}) = (b_{t+1} + p_{t+1}^T h_{t+1}) (b_t + p_t^T h_t)$ $\log \text{Return} \quad U(s_t, a_t, s_{t+1}) = \log R_t, \text{ Returns } R_t \coloneqq \frac{b_{t+1} + p_{t+1}^T h_{t+1}}{b_t + p_t^T h_t} 1.$

Background: Reward Design (RD) x Learned Intrinsic Rewards (LIR) Motive

Recall:

- \square RL Objective $J(\theta; r) := \mathbb{E}_{\theta}[\sum_{t=0}^{\infty} \gamma^t r_t]$
- \square Rewards $\mathbf{r}_{t+1} = U(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})$
- \square RD Problem: r_t is commonly hand-designed to match the task domain.
 - \Box Here onward, refer to task-based rewards as external reward $r^{ex} \sim U^{ex}$
 - □In finance: $U^{ex} \in \{\text{Profit, logReturn, CSR}^1, \text{DSR1}^2, \text{DSR2}^{3,[M98]}\}$
- □ LIR Motive: *Optimal Reward* hypotheses^[SSL10, SLB09]
 - \square Setting $r=r^{ex}$ assumes ability to expect everything that happens during the Env-Agent feedback loop \Rightarrow insufficient for "bounded, learning" agents
 - □ Formally: consider the space of *all* reward functions $\mathcal{U} \ni r^{ex}$ and let $\theta^*(r) \coloneqq \underset{\theta}{\operatorname{argmax}} J(\theta; r)$. Then,

$$\exists r \in \mathcal{U}, r \neq r^{ex}, J(\theta^*(r); r^{ex}) > J(\theta^*(r^{ex}); r^{ex})$$

Background: RD Approaches x LIRPG

- Recall $J(\theta; r) \coloneqq \mathbb{E}_{\theta}[\sum_{t=0}^{\infty} \gamma^t r_t]$. Set $r \leftarrow r^{ex+in} \coloneqq (1-\lambda)r^{ex} + \lambda r^{in} \longrightarrow \text{intrinsic rewards}$
 - □ Hand-design r^{in} . E.g. $r^{in} \in \{\text{Entropy}^{[L18]}, \text{Surprise}^{[AS17]}, \text{Novelty/visitation counts}^{[B16]}\}$
 - \square Search for r^{in} . E.g., evolutionary search^[S10], online gradient ascent^[SLS10]
 - \square Compared to hand-design, learned r^{in} is more general: the issue that r^{in} is supposed to resolve \neq the specific issue that the hand-designed r^{in} are expected to resolve, e.g., max Entropy/novelty for balancing exploration and exploitation
- ☐ This work builds on LIRPG[ZOS18] (online gradient ascent x DRL)

since
$$\theta^*(r) \coloneqq \underset{\theta}{\operatorname{argmax}} J(\theta; r) \mid \exists r^{in}, J(\theta^*(r = r^{ex+in}); r^{ex}) > J(\theta^*(r^{ex}); r^{ex})$$

- \square LIRPG framework is readily applicable to A2C, but remains to choose the r_n^{in} structure
 - ⇒ Our contribution: LIRPG for Multi Dimensional Action Spaces (MDAS).

Fig 1: LIRPG Framework [ZOS18]

Background: Multi-Dimensional Action Spaces (MDAS)

- LIRPG allows flexible r_{η}^{in} and π_{θ} structures (e.g. MLP or CNN), up to the forms r_{η}^{in} : $\mathcal{S} \times \mathcal{A} \times \mathcal{S}' \rightarrow \mathbb{R}$ and π_{θ} : $\mathcal{S} \rightarrow \mathcal{P}(\mathcal{A}) \Rightarrow$ Insufficient, especially for portfolio management,
 - \square MDAS: $\mathcal{A} \subset \mathbb{R}^d$, d > 1.
 - ☐ Intricate dependencies across different action dimensions (i.e., *subactions*).
- \square Autoregressive RL for MDAS^[Z18]: allow policies π_{θ} to explicitly model subaction dependencies.
 - ☐ via Modified MDP (MMDP)[M18]

$$\pi_{\theta}(\boldsymbol{a}_{t}|\boldsymbol{s}_{t}) \coloneqq \pi_{\theta}\left(a_{t}^{1}, \dots, a_{t}^{d} \middle| \boldsymbol{s}_{t}\right) = \pi_{\theta}\left(a_{t}^{1} \middle| \boldsymbol{s}_{t}\right) \times \pi_{\theta}\left(a_{t}^{2} \middle| \boldsymbol{s}_{t}, a_{t}^{1}\right) \times \dots \times \pi_{\theta}\left(a_{t}^{d} \middle| \boldsymbol{s}_{t}, a_{t}^{1}, \dots, a_{t}^{d-1}\right)$$

- \Box Just like policy, r_{η}^{in} will need to factor in such dependency, to better distinguish the contribution of one subaction from another
- ⇒ Our contribution: LIRPG for MDAS (via MMDP)

Method: Autoregressive A2C (via MMDP)

- MDP to MMDP
 - \square (s_t, a_t, s_{t+1}) to $(u_0^{s_t}, a_t^1, u_1^{s_t}, a_t^2, ..., u_{d-1}^{s_t}, a_t^d, u_d^{s_t} = u_0^{s_{t+1}})$
 - ☐ Decompose actions. Remodel policies, states.

- ☐ Policies + implement
 - $\square \pi_{\theta}(\boldsymbol{a}_{t}|\boldsymbol{s}_{t}) = \prod_{k=1}^{d} \pi_{\theta}(a_{t}^{k}|\boldsymbol{s}_{t},\boldsymbol{a}_{t}^{1:k-1},\boldsymbol{0}^{k:d-1})$

placeholder

Fig 3: MMDP Architecture^[718]

Method: Learned Intrinsic Reward

Method: Learned Intrinsic Reward

Method: Learned Intrinsic Reward

 $r_{t+1}^{ex} = U^{ex}(s_t, a_t, s_{t+1}),$ \square Trajectory Generation: MDP to MMDP (with r^{in}) $r_{t+1}^{in} = r_{\eta}^{in}(s_t, a_t, s_{t+1})$ $\pmb{a}_{t+1} \in \mathbb{R}^3$ $\boldsymbol{a}_t \in \mathbb{R}^3$ (LIRPG) LIR on MDP: (Ours) LIR on MMDP: $(s_t, a_t^{1:1})$ $(s_t, a_t^{1:2})$ $(s_{t+1}, [])$ $(s_{t+1}, \boldsymbol{a}_{t+1}^{1:1})$ $(s_{t+1}, \boldsymbol{a}_{t+1}^{1:2})$ $(s_{t+2}, [])$ $(s_t, [])$ Updates: A2C→AutoA2C→AugmAutoA2C Fig 4: LIR-MMDP Example (d = 3) Policy $\Delta \theta \propto \nabla J^{ex+in}; J^{ex+in}(\theta) := \mathbb{E}_{\theta}[A^{ex+in}(u_{k-1}^{s_t}, a_t^k, u_k^{s_t})]$ $\square \operatorname{Intrinsic} \Delta \eta \propto \nabla J^{ex}; J^{ex}(\theta(\eta)) \coloneqq \mathbb{E}_{\theta(\eta)}[A^{ex}\left(u_{k-1}^{s_t}, a_t^k\right)]$ $V_{target}^{ex}(u_{k-1}^{s_t})$ n-step bootstrap \square Advantages $A^{ex+in} = (1 - \lambda)A^{ex} + \lambda A^{in}$ $A^{ex}(u_{k-1}^{s_t}, a_t^k) := G^{ex}(u_{k-1}^{s_t}, a_t^k) - \hat{V}_{\eta_v}^{ex}(u_{k-1}^{s_t}) \approx \left(\sum_{i=0}^{n-1} \gamma^i r_{t+i}^{ex}\right) + \gamma^n \hat{V}_{\eta_v}^{ex}(u_0^{s_{t+n}}) - \hat{V}_{\eta_v}^{ex}(u_{k-1}^{s_t}),$ $A^{in}(u_{k-1}^{s_t}, a_t^k, u_k^{s_t}) \coloneqq G^{in}(u_{k-1}^{s_t}, a_t^k, u_k^{s_t}) - \hat{V}_{\theta_v}^{in}(u_{k-1}^{s_t}) \approx \left(\sum_{j=k}^d \gamma^{j-k} r_{t,j-1}^{in} + \sum_{i=1}^{n-1} \sum_{j=1}^d \gamma^{id-k+j} r_{t+i,j-1}^{in}\right) + \gamma^{nd-k+1} \hat{V}_{\theta_v}^{in}(u_0^{s_{t+n}}) - \hat{V}_{\theta_v}^{in}(u_{k-1}^{s_t}) \approx \left(\sum_{j=k}^d \gamma^{j-k} r_{t,j-1}^{in} + \sum_{i=1}^{n-1} \sum_{j=1}^d \gamma^{id-k+j} r_{t+i,j-1}^{in}\right) + \gamma^{nd-k+1} \hat{V}_{\theta_v}^{in}(u_0^{s_{t+n}}) - \hat{V}_{\theta_v}^{in}(u_0^{s_t}) = C_{in}^{in}(u_0^{s_t}) + C_{in}^{in}(u_0^$ ■ Value estimates $V_{target}^{in}(u_{k-1}^{s_t})$, MMDP t-scale $\Delta \eta_v \propto \nabla MSE(\hat{V}_{\eta_v}^{ex}, V_{target}^{ex}), \Delta \theta_v \propto \nabla MSE(\hat{V}_{\theta_v}^{in}, V_{target}^{in})$

Experiments: Best Strategies (Algorithm x Extrinsic Reward)

AugmAutoA2C

- Best Sharpe statistics;
 robustness to r^{ex} choices.
- Ease r^{ex} design.

Experiments: Best Strategies (Algorithm x Extrinsic Reward)

AutoA2C x DSR2

- If willing to design r^{ex} , AutoA2C can gain highest Sharpe.
- Note: DSR2 is the most complicated r^{ex} out of 5 considered; has additional tuning parameter.
- Compare with AugmAutoA2C's max Sharpe: r^{ex} is simply Profit.

DSR2: LIR degrades AutoA2C

- DSR2 is close to optimal r for Sharpe under the agent bounds / bounds are minimal given Auto
- $ullet r^{in}$ has no meaningful improve direction
- rⁱⁿ incurs training cost (hyperparameter, accuracy)

Conclusion

SUMMARY CONTRIBUTION

- ☐ adapted the idea of learned intrinsic rewards, paired with autoregressive RL, to portfolio optimization
- empirically studied the effect of learned intrinsic rewards under different
 - \Box training objectives: Sharpe-motivated U^{ex}
 - $\Rightarrow r^{in}$ improves Sharpe + robustness across U^{ex}
 - \Box r^{in} structure: standard vs autoregressive
 - ⇒ autoregressive > standard

FUTURE WORKS

- \Box formalize cost-benefit analysis of r^{in} learning frameworks
 - \square Improvement direction given r^{ex} + DRL structure
 - $\Box r^{in}$ cost of learning given accuracy, hyperparameters
- explore alternative
 - $\square r^{in}$ learning architectures (e.g., hybrid [vS17])
 - $\square \pi$ structures (e.g., taking into account the order of subaction executions)
- generalize and scale up
 - beyond Portfolio Optimization task
 - ☐ higher dimensions (e.g., > 30 action-dims)

Thank You

ACM Paper Link: https://doi.org/10.1145/3677052.3698670

Full codes: https://github.com/cspun/ADRLwIntReward/

Correspondence: Nixie S Lesmana

Research Fellow, National University of Singapore, Singapore

nixiesap@nus.edu.sg | nixiesap001@e.ntu.edu.sg

Acknowledgement:

Chi Seng Pun gratefully acknowledges Ministry of Education (MOE) Singapore, AcRF Tier 2 grant (Reference No.: MOE-T2EP20220-0013) for the funding of this research. **Nixie S Lesmana** acknowledges the financial support from MoE AcRF grant R-144-000-457-733(A-0004550-00-00

Appendix: AutoA2C via MMDP vs RNN

- (a) The RNN architecture. To generate a_i , we input s_t and a_{i-1} into the RNN and then pass the resulting hidden state h_i through a linear layer and a softmax to generate a distribution, from which we sample a_i .
- Softmax Softmax FFN $S_{t} \underbrace{[0,...,0]}_{\text{length }d-1}$ $S_{t} \underbrace{[0,...,0]}_{\text{length }d-2}$ $S_{t} \underbrace{[0,...,0]}_{\text{length }d-2}$
- (b) The MMDP architecture. To generate a_i , we input s_t and $a_1, a_2, \ldots, a_{i-1}$ into a FFN. The output is passed through a softmax layer, providing a distribution from which we sample a_i . Since the input size of the FFN is fixed, when generating a_i , constants 0 serve as placeholders for a_{i+1}, \ldots, a_{d-1} in the input to the FFN.

- RNN suffers from exploding gradients ⇒ inconsistent performance.
- When gradients do not explode, attains similar performance as MMDP.
- ☐ RNN takes longer to train.

Fig 5: Implementation of Autoregressive Policies. (a) RNN (b) MMDP. [718]

Appendix: When LIR and AutoReg Does Not Improve

- \square No improve direction in both Auto and LIR. However, $\exists r^{ex}$ (e.g., Profit) where improve direction appears.
- $\square r^{ex} := logReturn$ is not yet optimal; instead, it seems to be some stationary point in r-space.
- \square No improvement maybe related to r^{ex} (logged) scale too.

- ☐ A2C Agent's bound is policy structure; LIR repairs this.
- After Auto, there is less (or none) to repair: harder to find improve direction for r^{in} (esp. as r^{in} needs to be learned).

Appendix: Other Financial Metrics

Reward function	Algorithm	Mean				Median			
		Sharpe	Vol	CAGR	Max DD	Sharpe	Vol	CAGR	Max DD
Profit	Augmented AutoA2C	1.32	6.51	8.69	-6.92	1.32	6.73	8.72	-6.76
	AutoA2C	1.29	7.03	9.33	-7.70	1.20	6.96	9.24	-7.73
	Augmented A2C	1.26	7.28	9.21	-6.65	1.28	7.15	8.87	-6.27
	A2C	1.24	7.16	9.03	-7.36	1.28	7.21	9.42	-7.43
Log(return)	Augmented AutoA2C	1.23	7.23	8.76	-8.90	1.30	6.99	9.72	-7.25
	AutoA2C	1.17	7.46	8.55	-9.15	1.26	7.04	9.15	-7.92
	Augmented A2C	1.15	7.39	8.55	-6.95	1.12	7.26	8.73	-6.41
	A2C	1.28	7.22	9.35	-6.40	1.27	7.34	9.40	-6.12
CSR	Augmented AutoA2C	1.26	6.61	8.47	-7.36	1.29	6.62	8.16	-7.63
	AutoA2C	1.26	7.84	10.08	-7.93	1.28	7.81	10.09	-7.70
	Augmented A2C	1.25	7.36	9.32	-7.13	1.34	7.36	10.11	-7.36
	A2C	1.21	7.34	8.92	-6.75	1.24	7.12	9.27	-6.62
DSR1	Augmented AutoA2C	1.30	6.91	9.17	-6.99	1.35	6.85	9.46	-7.30
	AutoA2C	1.29	7.70	10.11	-7.84	1.30	7.80	9.91	-7.48
	Augmented A2C	1.03	7.32	7.48	-7.19	1.08	7.22	7.79	-6.98
	A2C	1.02	7.42	7.55	<u>-6.83</u>	1.01	7.42	7.59	<u>-6.64</u>
DSR2	Augmented AutoA2C	1.32	7.20	9.76	-7.47	1.29	7.01	9.57	-7.77
	AutoA2C	1.36	7.11	10.02	-7.45	1.35	7.27	10.02	-7.61
	Augmented A2C	1.16	7.44	8.69	-7.33	1.14	7.30	8.55	-7.37
	A2C	1.14	7.22	8.28	<u>-7.18</u>	1.15	7.17	8.41	-6.86
	Mean-Var	0.77	23.30	16.30	-35.20	0.77	23.30	16.30	-35.20
	DJI	0.55	20.50	9.54	-37.10	0.55	20.50	9.54	-37.10

- (1) Annualized volatility ("AVOL") is a measure of the average annualized risk of a strategy: AVOL $_T = \sigma_T \times \sqrt{252}$, where σ_T is the standard deviation of inter-day portfolio returns over T time periods.
- (2) Maximum drawdown ("max DD") is the maximum loss between the portfolio value peak and the lowest point until next peak. It is an alternative way of measuring the risk of a strategy.
- (3) Compound annual growth rate ("CAGR") is the annualized growth rate of return of a portfolio over a period of more than one year, given by CAGR = (W_T/W₀)^{1/T} − 1. CAGR smooths out the actual volatile growth rate each year by assuming this value is constant for each year.
- (4) Sharpe ratio ("Sharpe") is the annualized average inter-day return in excess of the risk-free return per unit of volatility:

$$Sharpe_t = \frac{\mu_t - r_f}{\sigma_t},$$
 (15)

where μ_t and σ_T are the mean and standard deviation of inter-day portfolio returns and r_f is a risk-free rate. The Sharpe ratio evaluates the risk-adjusted returns of a strategy, requiring a good strategy to balance both profit and risk. This metric favours a far-sighted steady investment strategy, over a short-sighted strategy with short-term high profits.