2 ب ع رياضية فرض مراقب رقم 16 ذ: الرشيد

 $\arctan \theta = \sqrt{b^2 - 4ac} \quad \sum_{i=1}^{n} X_i \quad \overrightarrow{AB} \quad \cos^{-1} \theta \quad e^{i\theta} \quad C_n^p \quad \sqrt{a^2 + b^2} \quad \int_b^a f(x) dx \quad \sqrt{x}$

www.sites.google.com/site/errachidmaths

$$I_3 = egin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 و $A = egin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$: نعتبر المصفوفتين

- $(\forall k \in IN)$ $A^{2k} = 2^k I$: ثم بين أن A^2
 - بين أن A يقبل مقلوبا A^{-1} المطلوب تحديده .

$$xTy = Arc \tan(\tan x + \tan y - 1)$$
 : $I = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ نضع لكل x و y من المجال

- I بين أن T قانون تركيب داخلي في ا
- T T قانون تبادلي و تجميعي . T قانون عنصرا محايدا المطلوب تحديده . T
 - بين أن (I;T) زمرة تبادلية.
- $(\forall x \in I) f(x) = -1 + \tan x$: بحيث IR بحيف من I المعرف من I المعرف من Iبين أن f تشاكل تقابلي من (I;T) نحو (I;T) و حدد تقابله العكسى.
- $x^{(n)} = x \ T \ x \ T \dots T \ x : (\forall n \in IN^*) \ x^{(n)} = Arc \tan(1 n + n \tan x) : نین آن -6$

$$(\forall n \in IN^*)(\forall x \in I)(\exists!\alpha_n \in I)(\alpha_n)^{(n)} = -(\alpha_n)^{(3)}:$$
ا- بین أن

$$\left(orall n \in IN^*
ight) 0 \le lpha_n \le rac{\pi}{4} :$$
ب- بین أن

$$\left(orall n \in IN^*
ight) \;\; lpha_n \leq \; lpha_{n+1} \;\; :$$
ج- بین أن

$$\lim_{n\to +\infty} lpha_n = rac{\pi}{4}$$
: دـ استنتج أن $(lpha_n)$ متقاربة و أن

الجزءان I و II مستقلان.

11x - 7y = 1 : المعادلة Z^2 المجموعة ألم المجموعة المعادلة :

$$\left\{ egin{aligned} a \equiv 1 \, [11] \\ a \equiv 2 \, [7] \end{aligned}
ight.$$
 : بحيث a بحيث : $a \equiv 2 \, [7]$

- $q \land a = 1$ و $p \land a = 1$: من IN^* من a و p عددان أوليان وليكن $q \land a = 1$
 - $\left(E\right):\ ax\equiv 1\left[\ pq\ \right]$: المعادلة Z المجموعة نعتبر في المجموعة
 - $a^{\left(p-1
 ight)\left(q-1
 ight)}\equiv 1\left[q
 ight]$. بين أن $a^{\left(p-1
 ight)\left(q-1
 ight)}\equiv 1\left[p
 ight]$. بين أن
 - (E) حل للمعادلة $x_0 = a^{(p-1)(q-1)-1}$: -2
 - $(E) \iff ax \equiv ax_0 [pq] : يين أن -3$
 - (E) استنتج مجموعة حلول المعادلة
 - $10x \equiv 1[33]$: المعادلة Z المجموعة حل في المجموعة المعادلة :