Examenul național de bacalaureat 2021 Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(0,25\cdot10-\frac{1}{2}\right)\left(0,25\cdot10+\frac{1}{2}\right)=\left(2,5-0,5\right)\left(2,5+0,5\right)=$	2p
	$=2\cdot 3=6$	3 p
2.	$f(2)=1 \Rightarrow 4-2a+1=1$	3 p
	a=2	2 p
3.	$3^x \left(3^2 + 1\right) = 30 \Leftrightarrow 3^x = 3$	3 p
	x=1	2p
4.	$\frac{20}{100} \cdot 500 = 100$ de lei	3 p
	Prețul după scumpire este 500+100=600 de lei	2 p
5.	Mijlocul segmentului AB este punctul $M(4,3)$	2p
	$OM = \sqrt{(4-0)^2 + (3-0)^2} = 5$	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} =$	2 p
	$=\frac{5\cdot 10}{2}=25$	3 p

SUBIECTUL al II-lea

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - 1 \cdot 3 =$	3p
	=2-3=-1	2p
b)	$A \cdot A = \begin{pmatrix} 4 & 9 \\ 3 & 7 \end{pmatrix}$	3 p
	$A \cdot A - 3A = \begin{pmatrix} 4 & 9 \\ 3 & 7 \end{pmatrix} - \begin{pmatrix} 3 & 9 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2 p
c)	$A \cdot X = \begin{pmatrix} 1+3y & x+3 \\ 1+2y & x+2 \end{pmatrix}, X \cdot A = \begin{pmatrix} 1+x & 3+2x \\ y+1 & 3y+2 \end{pmatrix}, \text{ unde } x \text{ si } y \text{ sunt numere reale}$	2 p
		3 p
2.a)	$3 \circ 2 = 4 \cdot 3 \cdot 2 + 3 + 2 =$	3p
	=24+5=29	2 p

Probă scrisă la matematică *M_tehnologic*

Model

(30 de puncte)

b)	$x \circ y = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$	3р
	$= \frac{4x(4y+1)+(4y+1)-1}{4} = \frac{(4x+1)(4y+1)-1}{4}, \text{ pentru orice numere reale } x \text{ și } y$	2 p
c)	$x \circ x = \frac{(4x+1)^2 - 1}{4}$, pentru orice număr real x	2p
	$\frac{\left(4x+1\right)^{2}-1}{4} \le 2 \Leftrightarrow \left(4x+1\right)^{2} \le 9 \Leftrightarrow -3 \le 4x+1 \le 3, \text{ de unde obţinem } x \in \left[-1, \frac{1}{2}\right]$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = e^{x} + \frac{1 \cdot (x^{2} + 1) - x \cdot 2x}{(x^{2} + 1)^{2}} =$	3p
	$= e^{x} + \frac{x^{2} + 1 - 2x^{2}}{\left(x^{2} + 1\right)^{2}} = e^{x} + \frac{1 - x^{2}}{\left(x^{2} + 1\right)^{2}}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(e^x + \frac{x}{x^2 + 1} \right) = \lim_{x \to -\infty} \left(e^x + \frac{1}{x + \frac{1}{x}} \right) = 0$	3р
	Dreapta de ecuație $y = 0$ este asimptota orizontală spre $-\infty$ la graficul funcției f	2p
c)	$x \in [-1,1] \Rightarrow 1-x^2 \ge 0 \Rightarrow f'(x) \ge 0 \Rightarrow f$ este crescătoare pe $[-1,1] \Rightarrow f(-1) \le f(x) \le f(1)$, pentru orice $x \in [-1,1]$	3p
	Cum $f(-1) = \frac{2-e}{2e}$ și $f(1) = \frac{2e+1}{2}$, obținem $\frac{2-e}{2e} \le f(x) \le \frac{2e+1}{2}$, pentru orice $x \in [-1,1]$	2p
2.a)	$\left \int_{1}^{2} \frac{f(x)}{\sqrt{x}} dx = \int_{1}^{2} (x+1) dx = \left(\frac{x^{2}}{2} + x \right) \right _{1}^{2} =$	3р
	$=(2+2)-(\frac{1}{2}+1)=\frac{5}{2}$	2p
b)	$= (2+2) - \left(\frac{1}{2} + 1\right) = \frac{5}{2}$ $V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} x(x+1)^{2} dx = \pi \int_{0}^{1} \left(x^{3} + 2x^{2} + x\right) dx = \pi \left(\frac{x^{4}}{4} + \frac{2x^{3}}{3} + \frac{x^{2}}{2}\right) \Big _{0}^{1} =$	3p
	$=\pi\left(\frac{1}{4} + \frac{2}{3} + \frac{1}{2}\right) = \frac{17\pi}{12}$	2p
c)	$\int_{1}^{e} \frac{f(x)\sqrt{x}\ln x}{x+1} dx = \int_{1}^{e} x\ln x dx = \int_{1}^{e} \left(\frac{x^{2}}{2}\right) \ln x dx = \frac{x^{2}}{2} \ln x \Big _{1}^{e} - \int_{1}^{e} \frac{x^{2}}{2} \cdot \frac{1}{x} dx = \frac{e^{2}}{2} - \frac{1}{2} \int_{1}^{e} x dx = \frac{e^{2}}{2} - $	3 p
	$= \frac{e^2}{2} - \frac{1}{2} \cdot \frac{x^2}{2} \Big _{1}^{e} = \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}, \text{ deci } a = 1$	2 p