

Machine Learning (PM chap 2, chap 3)

Classification

• From $x \rightarrow predict y (class)$

Classification

- Predicting class y
 - From x (input value) → predict y (class/category, discrete value)
 - Logistic Regression: constructing a model y = f(x), using training data

Classification

- Example
 - Relationship between Age and signs of coronary heart disease (CD)

Age	CD	Age	CD	Age	CD
22	0	40	0	54	0
23	0	41	1	55	1
24	0	46	0	58	1
27	0	47	0	60	1
28	0	48	0	60	0
30	0	49	1	62	1
30	0	49	0	65	1
32	0	50	1	67	1
33	0	51	0	71	1
35	1	51	1	77	1
38	0	52	0	81	1

linear regression is not appropriate

- The model
 - Build a model that predicts the probability of y
 - Logit(p) = f(x) is modeled as a linear function

$$logit(p) = f_{\theta}(x) = w \cdot x + b$$
parameters
(w, b)

- w and b are estimated using the training data $(x^{(i)}, y^{(i)})$
 - w: weight (coefficient)b: bias (intercept)
- $ightharpoonup \theta$: parameters
- Minimize prediction error \rightarrow find w and b
 - Gradient descent

- Predicting probability of y
 - y is usually coded as 1 (true) or 0 (false)
 - Predict prob. of y = 1 $p[0, 1] = wx + b[-\infty, \infty]$ \rightarrow not appropriate
- Odds ratio and Logit
 - The odds: the ratio of the probability of success to the probability of failure

$$Odds = \frac{p(y=1|x)}{p(y=0|x)}$$
 [0, \infty]

Logit : log odds

$$Logit(p) = \ln(Odds) = \ln\left(\frac{p}{1-p}\right)$$

 $[-\infty,\infty]$

- Logistic function
 - Solving for P

$$\ln\left(\frac{p}{1-p}\right) = wx + b$$

$$\frac{p}{1-p} = e^{wx+b}$$

$$p = \frac{1}{1 + e^{-(wx+b)}}$$
$$= \frac{1}{1 + e^{-z}}$$

- The model
 - Output function to predict y : sigmoid

$$z = w_0 x_0 + w_1 x_1 + \dots + b$$

$$\hat{y} = \phi(z) = \frac{1}{1 + e^{-z}} \qquad class = \begin{cases} 1 & if \ \hat{y} \ge 0.5 \\ 0 & otherwise \end{cases}$$

Example

$$\mathbf{x} = (x_0, x_1)$$
 $\mathbf{w} = (0.1, 0.2)$ $b = -1.4$

Decision boundary

class = 1 if
$$\hat{y} = \frac{1}{1 + e^{-(0.1x_1 + 0.2x_2 - 1.4)}} \ge 0.5$$

$$class = 1$$
 if $z = (0.1x_1 + 0.2x_2 - 1.4) \ge 0$

Estimating Parameters

Maximum Likelihood

- For observed data D, model parameter θ , the likelihood $L(\theta) = p(D \mid \theta)$
- Maximum likelihood estimation (MLE) :

$$\hat{\theta} = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} p(D \mid \theta)$$

For i.i.d (independent and identical distributed) data $D=\{d^{(1)},d^{(2)},\dots\}$

$$\hat{\theta} = \arg \max_{\theta} p(D \mid \theta) = \arg \max_{\theta} \prod_{\theta} p(d^{(i)} \mid \theta)$$

Estimating Parameters

- Maximum likelihood for logistic regression
 - The model : $\theta = (w_0, w_1, b)$

$$z = w_0 x_0 + w_1 x_1 + b$$
 $p = \hat{y} = \frac{1}{1 + e^{-z}} (P(y = 1|x))$

For n sample data

$$p(D \mid \theta) = \prod (p^{(i)})^{y^{(i)}} (1 - p^{(i)})^{1 - y^{(i)}} = \prod (\hat{y}^{(i)})^{y^{(i)}} (1 - \hat{y}^{(i)})^{1 - y^{(i)}}$$

Ex> y = (1, 0, 1, 1, 0) \rightarrow p·(1-p)·p·p·(1-p)

Maximizing Likelihood = Minimizing [– log(Likelihood)]

$$\begin{aligned} & \therefore \arg\max_{\theta} p(D \mid \theta) \\ &= \arg\min_{\theta} \sum \left[-y^{(i)} \log(\hat{y}^{(i)}) - \left(1 - y^{(i)}\right) \log(1 - \hat{y}^{(i)}) \right] \end{aligned}$$

Cost Function

Data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Prediction model

$$\hat{y} = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + \dots + b)}}$$

Cost function (binary cross entropy)

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(\hat{y}^{(i)}) - \left(1 - y^{(i)}\right) \log(1 - \hat{y}^{(i)}) \right]$$

If
$$y = 1$$
 \longrightarrow $-\log(\hat{y})$ $y = 0$ \longrightarrow $-\log(1 - \hat{y})$

$$y = 0$$

$$\rightarrow$$
 $-\log(1-\hat{y})$

Gradient of BCE

For 1 example data

$$J(\theta) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$
$$\hat{y} = \frac{1}{1 + e^{-z}}$$
$$z = w_0 x_0 + w_1 x_1 + \dots + b$$

Gradient of binary cross entropy

of binary cross entropy
$$\frac{\partial J(\theta)}{\partial w_j} = \frac{\partial J(\theta)}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w_j} \\
= \left(-y \frac{1}{\hat{y}} + (1 - y) \frac{1}{(1 - \hat{y})} \right) \cdot \hat{y} (1 - \hat{y}) \cdot x_j \\
= (\hat{y} - y) \cdot x_j$$

 $\frac{\partial \hat{y}}{\partial z} = \frac{-(-e^{-z})}{(1+e^{-z})^2} = \frac{(1+e^{-z})-1}{(1+e^{-z})^2}$

Data
$$(x_0^{(1)}, x_1^{(1)}, \dots, y^{(1)}), (x_0^{(2)}, x_1^{(2)}, \dots, y^{(2)}), \dots, (x_0^{(m)}, x_1^{(m)}, \dots, y^{(m)})$$

• Model
$$\hat{y} = \frac{1}{1 + e^{-z}}$$
 $z = w_0 x_0 + w_1 x_1 + \dots + b$

Cost
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(\hat{y}^{(i)}) - \left(1 - y^{(i)}\right) \log(1 - \hat{y}^{(i)}) \right]$$

Gradients

$$\frac{\partial J}{\partial w_0} = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)}) x_0^{(i)}$$
$$\frac{\partial J}{\partial w_1} = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)}) x_1^{(i)}$$
...

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum (\hat{y}^{(i)} - y^{(i)})$$

Vector form - Data (N features, M data)

$$\mathbf{X} = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & \dots \\ x_0^{(2)} & x_1^{(2)} & \dots \\ x_0^{(3)} & x_1^{(3)} & \dots \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \dots \end{bmatrix}$$

$$(N \times 1) \begin{bmatrix} w_0 \\ w_1 \\ \dots \end{bmatrix}$$

Model

$$\begin{split} z^{(1)} &= w_0 x_0^{(1)} + w_1 x_1^{(1)} \dots + b \\ z^{(2)} &= w_0 x_0^{(2)} + w_1 x_1^{(2)} \dots + b \\ z^{(3)} &= w_0 x_0^{(3)} + w_1 x_1^{(3)} \dots + b \\ \dots \\ \hat{y}^{(i)} &= sigmoid \ (z^{(i)}) \end{split}$$

Cost

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(\hat{y}^{(i)}) - (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

$$\begin{bmatrix} z^{(1)} \\ z^{(2)} \\ z^{(3)} \end{bmatrix} = \begin{bmatrix} x_0^{(1)} & x_1^{(1)}, \dots \\ x_0^{(2)} & x_1^{(2)}, \dots \\ x_0^{(3)} & x_1^{(3)}, \dots \end{bmatrix} \cdot \begin{bmatrix} w_0 \\ w_1 \\ \dots \end{bmatrix} + \mathbf{b}$$

$$\mathbf{z} = \mathbf{X} \cdot \mathbf{w} + \mathbf{b}$$

$$\hat{\mathbf{y}} = sigmoid(\mathbf{z})$$

$$cost = \frac{1}{m} sum(-\mathbf{y} \log(\hat{\mathbf{y}}))$$

$$-(1 - \mathbf{v}) \log(1 - \hat{\mathbf{v}}))$$

Gradient

$$\frac{\partial J}{\partial w_0} = \frac{1}{m} \left((\hat{y}^{(1)} - y^{(1)}) x_0^{(1)} + (\hat{y}^{(2)} - y^{(2)}) x_0^{(2)} + \cdots \right)
\frac{\partial J}{\partial w_1} = \frac{1}{m} \left((\hat{y}^{(1)} - y^{(1)}) x_0^{(1)} + (\hat{y}^{(2)} - y^{(2)}) x_0^{(2)} + \cdots \right)
\dots$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \left((\hat{y}^{(1)} - y^{(1)}) + (\hat{y}^{(2)} - y^{(2)}) + \cdots \right)$$

$$\frac{\partial J}{\partial w_0} = \frac{1}{m} \left((\hat{y}^{(1)} - y^{(1)}) x_0^{(1)} + (\hat{y}^{(2)} - y^{(2)}) x_0^{(2)} + \cdots \right) \qquad \left[\frac{\partial J}{\partial w_0} \right] = \frac{1}{m} \left[x_0^{(1)}, x_0^{(2)}, x_0^{(3)}, \dots \right] \cdot \begin{bmatrix} \hat{y}^{(1)} - y^{(1)} \\ \hat{y}^{(2)} - y^{(2)} \\ \hat{y}^{(3)} - y^{(3)} \end{bmatrix} = \frac{1}{m} \begin{bmatrix} x_0^{(1)}, x_0^{(2)}, x_0^{(3)}, \dots \\ x_1^{(1)}, x_1^{(2)}, x_1^{(3)}, \dots \end{bmatrix} \cdot \begin{bmatrix} \hat{y}^{(1)} - y^{(1)} \\ \hat{y}^{(2)} - y^{(2)} \\ \hat{y}^{(3)} - y^{(3)} \end{bmatrix} = \frac{1}{m} \begin{bmatrix} x_0^{(1)}, x_0^{(2)}, x_0^{(3)}, \dots \\ x_1^{(1)}, x_1^{(2)}, x_1^{(3)}, \dots \end{bmatrix} \cdot \begin{bmatrix} \hat{y}^{(1)} - y^{(1)} \\ \hat{y}^{(2)} - y^{(2)} \\ \hat{y}^{(3)} - y^{(3)} \end{bmatrix}$$

$$\nabla J(\mathbf{w}) = \frac{1}{m} \mathbf{X}^{\mathsf{T}} (\hat{\mathbf{y}} - \mathbf{y})$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \hat{y}^{(1)} - y^{(1)} \\ \hat{y}^{(2)} - y^{(2)} \\ \hat{y}^{(3)} - y^{(3)} \end{bmatrix}$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} sum(\hat{\mathbf{y}} - \mathbf{y})$$

Learning (gradient descent)

Given
$$\mathbf{X} = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & \dots \\ x_0^{(2)} & x_1^{(2)} & \dots \\ x_0^{(3)} & x_1^{(3)} & \dots \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \end{bmatrix}$$
Initialize
$$\mathbf{w} = \begin{bmatrix} w_1 & w_2 & \dots \end{bmatrix}, \qquad b$$
repeat
$$\mathbf{z} = \mathbf{X} \cdot \mathbf{w} + b$$

$$\hat{\mathbf{y}} = sigmoid(\mathbf{z})$$

$$\mathbf{w} = \mathbf{w} - \alpha \frac{1}{m} (\mathbf{X}^T (\hat{\mathbf{y}} - \mathbf{y}))$$

$$\mathbf{w} = \mathbf{w} - \alpha \nabla J(\mathbf{w})$$

$$b = b - \alpha \frac{1}{m} (sum(\hat{\mathbf{y}} - \mathbf{y}))$$

$$b = b - \alpha \frac{\partial J}{\partial b}$$

$$cost = \frac{1}{m}sum(-\mathbf{y}\log(\hat{\mathbf{y}}) - (1 - \mathbf{y})\log(1 - \hat{\mathbf{y}}))$$

Data

• Compute \hat{y} and cost

Compute gradients

 $-(1 - y) \log(1 - \hat{y})$

$$\mathbf{z} = \mathbf{X} \cdot \mathbf{w} + b$$

$$\hat{\mathbf{y}} = sigmoid(\mathbf{z})$$

$$cost = \frac{1}{m} sum(-\mathbf{y} \log(\hat{\mathbf{y}}))$$

$$\frac{\partial J}{\partial \mathbf{w}} = \frac{1}{m} \mathbf{X}^{\mathbf{T}} (\hat{\mathbf{y}} - \mathbf{y})$$

$$\partial J = 1$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} sum(\hat{\mathbf{y}} - \mathbf{y})$$

Learning (gradient descent)

```
def gradient_descent(X, y, w, b, alpha, num_iters):
    J_history = []
    for i in range(num_iters):
        dj_db, dj_dw = compute_gradient(X, y, w, b)

        w = w - alpha * dj_dw
        b = b - alpha * dj_db

        J_history.append(compute_cost(X, y, w, b))
        w = w - \alpha \nabla J(w) 
        b = b - \alpha \frac{\partial J}{\partial b}
```

Cost change

```
plt.plot(J_hist[:10000])
```


Learned model

```
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter(X_train[:3,0], X_train[:3,1], y_train[:3], marker='o', c='r
ax.scatter(X_train[3:,0], X_train[3:,1], y_train[3:], marker='x', c='b'
x0 = np.arange(0, 3, 0.1)
x1 = np.arange(0, 3, 0.1)
x0, x1 = np.meshgrid(x0, x1)

y_hat = sigmoid(x0 * w_final[0] + x1 * w_final[1] + b_final)
ax.plot_surface(x0, x1, y_hat, cmap=cm.coolwarm, alpha=0.5)
```


Learned decision boundary

$\mathbf{z} = \mathbf{x} \cdot \mathbf{w} + b = 0$ $w_0 x_0 + w_1 x_1 + b = 0$

Accuracy of the model

- Preventing overflow
 - Prevent $exp(\infty)$ in sigmoid or softmax

```
# sigmoid function
def sigmoid(z):
    1. / (1. + np.exp(-np.clip(z, -250, 250))) # np.clip to prevent overflow
```

Prevent log(0) in computing cross entropy

```
# cross entropy
def compute_cost(y, o):
    np.sum(-y*(np.log(o+1e-7))) # +1e-7 to prevent overflow
```

■ Load iris dataset from scikit learn → return dictionary with attributes:

```
from sklearn import datasets
iris = datasets.load_iris()
```

- data
- feature_names
- target
- target_names
- Get X, y data
 - Select only features 2, 3
 - Select only class 0 and 1

```
X = iris.data[0:100, [2, 3]]
y = iris.target[0:100]
```


■ Load iris dataset from scikit learn → return dictionary with attributes:

```
from sklearn import datasets
iris = datasets.load_iris()
```

- data
- feature_names
- target
- target_names

Read into a DataFrame

0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target

- Get X, y array
 - Select only features 2, 3
 - Select only class 0 and 1

```
X = iris.data[0:100, [2, 3]]
y = iris.target[0:100]
```


- Split data into training / test dataset
 - sklearn.model_selection.train_test_split

Use LogisticRegression. Training the model - .fit()

```
lr = LogisticRegression(C=100.0)
lr.fit(X_train, y_train)

print('w = ', lr.coef_)
print('b = ', lr.intercept_)

w = [[5.52734478 2.26785607]]
b = [-16.33236067]
```

- Plotting the decision boundary
 - Use np.meshgrid, plt.contour

Accuracy of the learned model - .score()

```
print('Training accuracy: %.2f' % lr.score(X_train, y_train))
print('Test accuracy: %.2f' % lr.score(X_test, y_test))
Training accuracy: 1.00
Test accuracy: 1.00
```

Computing class probability - . predict_proba()

```
print(lr.predict_proba(X_test[:5]))
[[2.70296563e-06 9.99997297e-01]
[6.04085017e-02 9.39591498e-01]
[9.99767710e-01 2.32289833e-04]
[9.99596350e-01 4.03650310e-04]
[9.99767710e-01 2.32289833e-04]]
```

Predicting class labels - .predict()

```
print('True test labels :', y_test[:5])
print('Predicted labels :', lr.predict(X_test[:5]))

True test labels : [1 1 0 0 0]
Predicted labels : [1 1 0 0 0]
```


Multinomial Logistic Regression

- Multiple class case
 - Classes {0, 1}: binary classification
 - Classes $\{A, B, C\}$: multinomial classification $\rightarrow \{ (1, 0, 0), (0, 1, 0), (0, 0, 1) \}$
- OvR (One vs. Rest)

Multinomial Logistic Regression

- OvR (One vs. Rest)
 - Decision boundary combining 3 classifier

Multinomial Logistic Regression

Multinomial

Output function to predict y : softmax

$$z = w_0 x_1 + w_1 x_1 + w_2 x_2 + \dots + b$$

$$\hat{y}_k = \frac{e^{z_k}}{\sum_i e^{z_i}} \qquad Class_k = \begin{cases} 1 & if \ \hat{y}_k \ is \ max \\ 0 & otherwise \end{cases}$$

Cost Function

Cost function (cross entropy)

$$J(\theta) = \sum J^{(i)}(\theta)$$

$$J^{(i)}(\theta) = -\sum_{k} y_k \log \hat{y}_k$$

Example

$$y_1 = 1$$
 $\hat{y}_1 = 0.63$
 $y_2 = 0$ $\hat{y}_2 = 0.25$ \rightarrow $-\Sigma y \log \hat{y} = -(1 x \log 0.63 + 0 x \log 0.25 + 0 x \log 0.12)$
 $y_3 = 0$ $\hat{y}_3 = 0.12$

X For binary classification

$$y = 1$$
 $\hat{y} = 0.63$ \longrightarrow $-\Sigma y \log \hat{y} = -(1 \times \log 0.63 + 0 \times \log 0.37)$

Multinomial Logistic Regression using Scikit Learn

- Load dataset from scikit learn
 - Select only features 2, 3
 - Select all class 0, 1, 2
- Split data into training test dataset

Training the model

```
lr = LogisticRegression(C=100.0, random_state=1, multi_class='ovr')
lr.fit(X_train, y_train)

print('w = ', lr.coef_)
print('b = ', lr.intercept_)

w = [[-5.52741894 -2.26767352]
  [ 1.34492291 -2.71926866]
  [ 6.95808994   7.36736804]]
b = [ 16.33234585   -2.59905851 -46.45251225]
```


Multinomial Logistic Regression using Scikit Learn

The decision boundary

Computing class probability

```
print(lr.predict_proba(X_test[:5]))

[[6.27006745e-09 1.44806162e-01 8.55193832e-01]
  [8.34564702e-01 1.65435298e-01 1.46365975e-14]
  [8.49059341e-01 1.50940659e-01 8.82090981e-16]
  [1.35565353e-05 7.76776434e-01 2.23210009e-01]
  [3.69241060e-05 9.89606981e-01 1.03560948e-02]]
```

Predicting class labels

```
print('True test labels :', y_test[:5])
print('Predicted labels :', lr.predict(X_test[:5]))

True test labels : [2 0 0 2 1]
Predicted labels : [2 0 0 1 1]
```


Regularization

- Regularization
 - Add regularization term(penalty) to a cost function to prevent overfitting
- L2 regularization (ridge)
 - Add

$$\lambda \|\mathbf{w}\|_{2}^{2} = \lambda \sum_{j=1}^{n} w_{j}^{2} = \lambda (w_{1}^{2} + w_{2}^{2} + \dots + w_{n}^{2})$$

- Makes weights small, but not to 0. Less computationally expensive
- Gradient descent

$$w_j = w_j - \alpha \frac{\partial J}{\partial w_i} - \alpha \lambda w_j$$

Regularization

- L1 regularization (lasso)
 - Add

$$\lambda \|\mathbf{w}\|_1 = \lambda \sum_{j=1}^n |w_j| = \lambda (|w_1| + |w_2| + \dots + |w_n|)$$

- Makes some weights to 0 → feature selection. Robust to outliers
- Gradient descent

$$w_j = w_j - \alpha \frac{\partial J}{\partial w_j} - \alpha \lambda \operatorname{sign}(w_j)$$

Regularization

Lasso vs Ridge

L2 Regularization in Scikit Learn

Scikit learn LogisticRegression parameter C

$$C = \frac{1}{\lambda}$$

$$J(\theta) = C \left[\sum_{i=1}^{n} [-y^{(i)} \log(\hat{y}^{(i)}) - (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})] \right] + \frac{1}{2} ||\mathbf{w}||_{2}^{2}$$

- Effect of C
 - Small C \rightarrow large $\lambda \rightarrow$ small w

L2 Regularization in Scikit Learn

Training the model with various C values

Plot the parameter change

