

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

ANÁLISIS NUMÉRICO	1433	4	8
Asignatura	Clave	Semestre	Créditos
CIENCIAS BÁSICAS	COORDINACIÓN DE CIENCIAS APLICADAS	INGENIERÍA INDUSTRIAL	
División	Departamento	Licenciatura	
Asignatura: Obligatoria X	Horas/semana: Teóricas 4.0	Horas/seme Teóricas	estre: 64.0
Optativa	Prácticas 0.0	Prácticas	0.0
	Total 4.0	Total	64.0

Modalidad: Curso teórico

Seriación obligatoria antecedente: Ecuaciones Diferenciales

Seriación obligatoria consecuente: Ninguna

Objetivo(s) del curso:

El alumno utilizará métodos numéricos para obtener soluciones aproximadas de modelos matemáticos. Elegirá el método que le proporcione mínimo error y utilizará equipo de cómputo como herramienta para desarrollar programas.

Temario

NÚM.	NOMBRE	HORAS
1.	Aproximación numérica y errores	5.0
2.	Solución numérica de ecuaciones algebraicas y trascendentes	10.0
3.	Solución numérica de sistemas de ecuaciones lineales	12.0
4.	Interpolación, derivación e integración numéricas	
5.	Solución numérica de ecuaciones y sistemas de ecuaciones diferenciales	13.0
6.	Solución numérica de ecuaciones en derivadas parciales	10.0
		64.0
	Actividades prácticas	0.0
	Total	64.0

1 Aproximación numérica y errores

Objetivo: El estudiante describirá los diferentes tipos de errores que se presentan y las limitaciones de exactitud cuando se utiliza equipo de cómputo. Aplicará el concepto de polinomios de Taylor para aproximar funciones y medirá el error de la aproximación.

Contenido:

- 1.1 Introducción histórica de los métodos numéricos.
- 1.2 Necesidad de la aplicación de los métodos numéricos en la ingeniería.
- 1.3 Conceptos de aproximación numérica y error.
- **1.4** Tipos de error: Inherentes, de redondeo y por truncamiento. Errores absoluto y relativo.
- 1.5 Conceptos de estabilidad y convergencia de un método numérico.
- 1.6 Aproximación de funciones por medio de polinomios.

2 Solución numérica de ecuaciones algebraicas y trascendentes

Objetivo: El estudiante aplicará algunos métodos para la resolución aproximada de una ecuación algebraica o trascendente, tomando en cuenta el error y la convergencia.

Contenido:

- **2.1** Métodos cerrados. Método de bisección y de interpolación lineal (regla falsa). Interpretaciones geométricas de los métodos.
- **2.2** Métodos abiertos. Método de aproximaciones sucesivas y método de Newton-Raphson. Interpretaciones geométricas de los métodos y criterios de convergencia.
- 2.3 Método de factores cuadráticos.

3 Solución numérica de sistemas de ecuaciones lineales

Objetivo: El estudiante aplicará algunos de los métodos para obtener soluciones aproximadas de sistemas de ecuaciones lineales y determinará los valores y vectores característicos de una matriz.

Contenido:

- 3.1 Reducción de los errores que se presentan en el método de Gauss-Jordan. Estrategias de pivoteo.
- 3.2 Métodos de descomposición LU. Crout y Doolittle.
- **3.3** Métodos iterativos de Jacobi y Gauss-Seidel. Criterio de convergencia.
- **3.4** Método de Krylov para obtener los valores y vectores característicos de una matriz y método de las potencias.

4 Interpolación, derivación e integración numéricas

Objetivo: El estudiante aplicará algunos de los métodos numéricos para interpolar, derivar e integrar funciones.

Contenido:

- 4.1 Interpolación con incrementos variables (polinomio de Lagrange).
- **4.2** Tablas de diferencias finitas. Interpolación con incrementos constantes (polinomios interpolantes). Diagrama de rombos.
- 4.3 Derivación numérica. Deducción de esquemas de derivación. Extrapolación de Richardson.
- **4.4** Integración numérica. Fórmulas de integración trapecial y de Simpson. Cuadratura gaussiana.

5 Solución numérica de ecuaciones y sistemas de ecuaciones diferenciales

Objetivo: El estudiante comparará algunos métodos de aproximación para la solución de ecuaciones y sistemas de ecuaciones diferenciales, sujetas a condiciones iniciales o de frontera.

Contenido:

- 5.1 Método de la serie de Taylor.
- **5.2** Método de Euler modificado.

- **5.3** Método de Runge-Kuta de 2° y 4° orden.
- **5.4** Solución aproximada de sistemas de ecuaciones diferenciales.
- 5.5 Solución de ecuaciones diferenciales de orden superior por el método de diferencias finitas.
- **5.6** El problema de valores en la frontera.

6 Solución numérica de ecuaciones en derivadas parciales

Objetivo: El estudiante aplicará el método de diferencias finitas para obtener la solución aproximada de ecuaciones en derivadas parciales.

Contenido:

- **6.1** Clasificación de las ecuaciones en derivadas parciales.
- **6.2** Aproximación de derivadas parciales a través de diferencias finitas.
- 6.3 Solución de ecuaciones en derivadas parciales utilizando el método de diferencias finitas.

Bibliografía básica

Temas para los que se recomienda:

BURDEN, Richard L., FAIRES, J. Douglas

Análisis numérico Todos

9a. edición

México

Cengage Learning, 2011

CHAPRA, Steven C., CANALE, Raymond P.

Métodos numéricos para ingenieros Todos

6a. edición

México

McGraw-Hill, 2011

GERALD, Curtis F., WHEATLEY, Patrick O.

Análisis numérico con aplicaciones Todos

6a. edición

México

Prentice Hall / Pearson Educación, 2000

Bibliografía complementaria

Temas para los que se recomienda:

CHENEY, Ward, KINCAID, David

Métodos numéricos y computación Todos

6a. edición

México

Cengage Learning, 2011

MATHEWS, John H., FINK, Kurtis D.

Métodos numéricos con MATLAB Todos

3a. edición

Madrid

Prentice Hall, 2000

Perfil profesiográfico de quienes pueden impartir la asignatura

Licenciatura en Ingeniería, Física o carreras afines. Deseable experiencia profesional y recomendable con experiencia docente o con preparación en los programas de formación docente de la Facultad en la disciplina y en didáctica.