Assignment Date	3october 2022
Name	Swetha.s
Rollnumber	820319205036
Maximum Marks	2Marks

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import numpy as np

sns.set_style('darkgrid')

sns.set(font_scale=1.3)

In [25]:

df=pd.read_csv("/content/drive/MyDrive/IBM/Assignment - 2 /Churn_Modelling.csv")

In [26]:

df.head ()

Out [26]:

	Row Num ber	Cust ome rld	Sur na me	Cred itSc ore	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumO fProd ucts	Has CrC ard	IsActiv eMem ber	Estima tedSal ary	Ex it ed
0	1	156 346 02	Har gra ve	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	10134 8.88	1
1	2	156 473 11	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	11254 2.58	0

	Row Num ber	Cust ome rld	Sur na me	Cred itSc ore	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumO fProd ucts	Has CrC ard	IsActiv eMem ber	Estima tedSal ary	Ex it ed
2	3	156 193 04	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	11393 1.57	1
3	4	157 013 54	Bo ni	699	Fran ce	Fe ma le	3	1	0.00	2	0	0	93826. 63	0
4	5	157 378 88	Mit che II	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084. 10	0

In [29]:

df.drop (["RowNumber","CustomerId","Surname"], axis=1, inplace=True)

In [30]:

df.info ()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10000 entries, 0 to 9999

Data columns (total 11 columns):

Column Non-Null Count Dtype

--- -----

0 CreditScore 10000 non-null int64

1 Geography 10000 non-null object

2 Gender 10000 non-null object

3 Age 10000 non-null int64

4 Tenure 10000 non-null int64

5 Balance 10000 non-null float64

6 NumOfProducts 10000 non-null int64

7 HasCrCard 10000 non-null int64

```
8 IsActiveMember 10000 non-null int64
```

9 EstimatedSalary 10000 non-null float64

```
10 Exited 10000 non-null int64
```

dtypes: float64(2), int64(7), object(2)

memory usage: 859.5+ KB

In [28]:

#Perform Univariate Analysis

plt.figure(figsize=(8,8))

sns.countplot(x='Tenure',data=df)

plt.xlabel('0:Customers with Bank, 1: exited from bank')

plt.ylabel('No.of.Customers')

plt.title("Bank Customers viz")

plt.show()

In[9]#Perform Univariate Analysis

plt.figure(figsize=(8,8))

sns.kdeplot(x=df['Balance'])

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa0c03906d0>

In[10]#Perform Bivariate Analysis

plt.scatter(df.Age,df.Balance)

Out[10]:

<matplotlib.collections.PathCollection at 0x7fa0d35a7dd0>

#Perform Bivariate Analysis

df.corr()

Out[54]:

	Credit Score	Gen der	Age	Tenu re	Bala nce	NumOfP roducts	HasC rCard	IsActive Member	Estimate dSalary	Exite d
CreditSc ore	1.000 000	0.00 7888	- 0.00 3965	0.00 0842	0.00 6268	0.01223 8	- 0.005 458	0.02565 1	- 0.00138 4	- 0.02 7094
Gender	0.007 888	1.00 0000	0.02 2812	0.00 3739	0.06 9408	0.00397	- 0.008 523	0.00672 4	- 0.00136 9	0.03 5943
Age	- 0.003 965	0.02 2812	1.00 0000	- 0.00 9997	0.02 8308	- 0.03068 0	- 0.011 721	0.08547	- 0.00720 1	0.28 5323
Tenure	0.000 842	0.00 3739	- 0.00 9997	1.00 0000	- 0.01 2254	0.01344 4	0.022 583	- 0.02836 2	0.00778 4	- 0.01 4001
Balance	0.006 268	0.06 9408	0.02 8308	- 0.01 2254	1.00 0000	- 0.30418 0	- 0.014 858	- 0.01008 4	0.01279 7	0.11 8533

	Credit Score	Gen der	Age	Tenu re	Bala nce	NumOfP roducts	HasC rCard	IsActive Member	Estimate dSalary	Exite d
NumOfP roducts	0.012 238	0.00 3972	- 0.03 0680	0.01 3444	- 0.30 4180	1.00000 0	0.003 183	0.00961 2	0.01420 4	- 0.04 7820
HasCrCa rd	- 0.005 458	- 0.00 8523	- 0.01 1721	0.02 2583	- 0.01 4858	0.00318 3	1.000 000	- 0.01186 6	- 0.00993 3	- 0.00 7138
IsActive Member	0.025 651	0.00 6724	0.08 5472	- 0.02 8362	- 0.01 0084	0.00961 2	- 0.011 866	1.00000 0	- 0.01142 1	- 0.15 6128
Estimate dSalary	- 0.001 384	- 0.00 1369	- 0.00 7201	0.00 7784	0.01 2797	0.01420 4	- 0.009 933	- 0.01142 1	1.00000 0	0.01 2097
Exited	- 0.027 094	0.03 5943	0.28 5323	- 0.01 4001	0.11 8533	- 0.04782 0	- 0.007 138	- 0.15612 8	0.01209 7	1.00 0000

In [36]:

#Perform Bivariate Analysis

import statsmodels.api as sm

#define response variable

y = df['CreditScore']

#define explanatory variable

x = df[['EstimatedSalary']]

#add constant to predictor variables

 $x = sm.add_constant(x)$

#fit linear regression model

model = sm.OLS(y, x).fit()

#view model summary

print(model.summary())

OLS Regression Results

Dep. Variable: CreditScore R-squared: 0.000

Model: OLS Adj. R-squared: -0.000

Method: Least Squares F-statistic: 0.01916

Date: Sat, 24 Sep 2022 Prob (F-statistic): 0.890

Time: 05:06:19 Log-Likelihood: -59900.

No. Observations: 10000 AIC: 1.198e+05

Df Residuals: 9998 BIC: 1.198e+05

Df Model: 1

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const 650.7617 1.940 335.407 0.000 646.958 654.565

Omnibus: 132.939 Durbin-Watson: 2.014

Prob(Omnibus): 0.000 Jarque-Bera (JB): 84.242

Skew: -0.072 Prob(JB): 5.10e-19

Kurtosis: 2.574 Cond. No. 2.32e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.32e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

<Figure size 288x288 with 0 Axes>

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only

```
x = pd.concat(x[::order], 1)
In [35]:
#Perform Multivariate Analysis
plt.figure(figsize=(4,4))
sns.pairplot(data=df[["Balance","CreditScore","EstimatedSalary","NumOfProducts","Tenure","Exited"]],
hue="Exited")
Out[35]:
<seaborn.axisgrid.PairGrid at 0x7fa0b00a1b10>
```


#Perform Descriptive Statistics

df=pd.DataFrame(df)

print(df.sum())

CreditScore 6505288

Geography FranceSpainFranceFranceSpainSpainFranceGermany...

Gender FemaleFemaleFemaleFemaleFemaleMaleFemaleMa...

Age 389218

Tenure 50128

Balance 764858892.88

NumOfProducts	15302
HasCrCard	7055
IsActiveMember	5151
EstimatedSalary	1000902398.81
Exited	2037
dtype: object	
In [39]:	
#Perform Descriptive Statistics	
print("Sum Value")	
print(df.sum(1))	
print("")	
print("Product Value")	
print(df.prod())	
print("")	
Sum Value	
0 102015.88	
1 197002.44	
2 274149.37	
3 94567.63	
4 205492.92	
9995 97088.64	
9996 159633.38	
9997 42840.58	
9998 168784.83	
9999 169159.57	
Length: 10000, dtype: float64	

----Product Value-----

```
CreditScore
               0.0
            0.0
Age
Tenure
             0.0
Balance
             0.0
NumOfProducts
                  0.0
HasCrCard
               0.0
IsActiveMember
EstimatedSalary inf
Exited
            0.0
dtype: float64
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

This is separate from the ipykernel package so we can avoid doing imports until

/usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:52: RuntimeWarning: overflow encountered in reduce

return umr_prod(a, axis, dtype, out, keepdims, initial, where)

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

```
In [38]:

#Perform Descriptive Statistics

print("------")

print(df.mean())

print("------")

print(df.median())

print(df.median())

print("-----")
```

print("I	Mode Value")
print(df.mode(())
print("	·")
Mean \	/alue
CreditScore	650.528800
Age	38.921800
Tenure	5.012800
Balance	76485.889288
NumOfProduct	ts 1.530200
HasCrCard	0.705500
IsActiveMemb	er 0.515100
EstimatedSalar	у 100090.239881
Exited	0.203700
dtype: float64	
Mediar	n Value
CreditScore	652.000
Age	37.000
Tenure	5.000
Balance	97198.540
NumOfProduct	ts 1.000
HasCrCard	1.000
IsActiveMemb	er 1.000
EstimatedSalar	y 100193.915
Exited	0.000
dtype: float64	
Mode \	/alue
CreditScore (Geography Gender Age Tenure Balance NumOfProducts \

HasCrCard IsActiveMember EstimatedSalary Exited

0 1 1 24924.92 0

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

This is separate from the ipykernel package so we can avoid doing imports until

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

In [41]:
#Handling with missing Values
df.isnull()#Checking values are null
Out[41]:

	Credit Score	Geogr aphy	Gen der	Ag e	Ten ure	Bala nce	NumOfPr oducts	HasCr Card	IsActive Member	Estimate dSalary	Exi ted
0	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se
1	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se
2	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se
3	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se
4	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se

	Credit Score	Geogr aphy	Gen der	Ag e	Ten ure	Bala nce	NumOfPr oducts	HasCr Card	IsActive Member	Estimate dSalary	Exi ted
99 95	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se
99 96	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se
99 97	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se
99 98	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se
99 99	False	False	Fals e	Fal se	Fals e	Fals e	False	False	False	False	Fal se

10000 rows × 11 columns

In [42]:

#Handling with missing Values

df.notnull()#Checking values are not null

Out[42]:

	Credit Score	Geogr aphy	Gen der	Ag e	Ten ure	Bala nce	_	HasCr Card	IsActive Member	Estimate dSalary	Exi ted
0	True	True	Tru e	Tr ue		True	True	True	True	True	Tru e
1	True	True	Tru e	Tr ue		True	True	True	True	True	Tru e
2	True	True	Tru e	Tr ue		True	True	True	True	True	Tru e

	Credit Score	Geogr aphy	Gen der	Ag e	Ten ure	Bala nce	NumOfPr oducts	HasCr Card	IsActive Member	Estimate dSalary	Exi ted
3	True	True	Tru e	Tr ue	Tru e	True	True	True	True	True	Tru e
4	True	True	Tru e	Tr ue	Tru e	True	True	True	True	True	Tru e
99 95	True	True	Tru e	Tr ue	Tru e	True	True	True	True	True	Tru e
99 96	True	True	Tru e	Tr ue	Tru e	True	True	True	True	True	Tru e
99 97	True	True	Tru e	Tr ue	Tru e	True	True	True	True	True	Tru e
99 98	True	True	Tru e	Tr ue	Tru e	True	True	True	True	True	Tru e
99 99	True	True	Tru e	Tr ue	Tru e	True	True	True	True	True	Tru e

10000 rows × 11 columns

In [43]:

#Find outliers & replace the outliers

sns.boxplot(df['Balance'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[43]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa0af6dcf90>

#Find outliers & replace the outliers

print(np.where(df['Balance']>100000))

(array([2, 4, 5, ..., 9987, 9993, 9999]),)

9995	771	France	0	39	5	0.00	2	1	0	96270.64	0
9996	516	France	0	35	10	57369.61	1	1	1	101699.77	0
9997	709	France	0	36	7	0.00	1	0	1	42085.58	1
9998	772	Germany	1	42	3	75075.31	2	1	0	92888.52	1
9999	792	France	0	28	4	130142.79	1	1	0	38190.78	0

10000 rows × 11 columns

- 3 39 1 0.00
- 4 43 2 125510.82

...

9995 39 5 0.00

9996 35 10 57369.61

9997 36 7 0.00

9998 42 3 75075.31

9999 28 4 130142.79

[10000 rows x 3 columns]

-----Independent Variables-----

- 0 1
- 1 1
- 2 3
- 3 2
- 4 1

```
9995 2
9996 1
9997 1
9998 2
9999 1
Name: NumOfProducts, Length: 10000, dtype: int64
In []:
#Scale the independent Variables
from sklearn.preprocessing import StandardScaler
object= StandardScaler()
# standardization
scale = object.fit_transform(df)
print(scale)
[[-0.32622142\ 0.29351742\ -1.04175968\ ...\ 0.97024255\ 0.02188649
 1.97716468]
[-0.44003595 \ 0.19816383 \ -1.38753759 \ ... \ 0.97024255 \ 0.21653375
-0.50577476]
[-1.53679418 0.29351742 1.03290776 ... -1.03067011 0.2406869
 1.97716468]
[\ 0.60498839\ -0.27860412\ \ 0.68712986\ ...\ \ 0.97024255\ -1.00864308
 1.97716468]
[ 1.25683526  0.29351742 -0.69598177 ... -1.03067011 -0.12523071
 1.97716468]
[ 1.46377078 -1.04143285 -0.35020386 ... -1.03067011 -1.07636976
-0.50577476]]
In [ ]:
```

..

```
#Split the data into training & testing
```

from sklearn.model_selection import train_test_split

In []:

#Split the data into training & testing

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=4,random_state=4)

x_train

Out[]:

	const	EstimatedSalary
2558	1.0	137903.54
7642	1.0	121765.00
8912	1.0	109470.34
3319	1.0	2923.61
6852	1.0	7312.25
•••		
456	1.0	7666.73
6017	1.0	9085.00
709	1.0	147794.63
8366	1.0	102515.42
1146	1.0	54776.64

9996 rows × 2 columns

In []:

#Split the data into training & testing

```
x_test
Out[]:
        const EstimatedSalary
 1603 1.0
               23305.85
 8713 1.0
               41248.80
 4561 1.0
               143317.42
 6600 1.0
               174123.16
In [ ]:
#Split the data into training & testing
y_train
Out[]:
2558 727
7642 811
8912 623
3319 430
6852 600
   ...
456 733
6017 487
709 686
8366 637
1146 614
Name: CreditScore, Length: 9996, dtype: int64
In [ ]:
#Split the data into training & testing
y_test
```

Out[]:

1603 576

8713 786

4561 562

6600 505

Name: CreditScore, dtype: int64