

<u>Gameboard</u>

Maths

Complex Numbers

# **Complex Numbers**



#### Part A De Moivre

The complex number  $2+i\sqrt{5}$  can be expressed in the form  $r\left(\cos\theta+i\sin\theta\right)$  where  $-180^\circ<\theta<180^\circ.$ 

Find r.

The following symbols may be useful: r

Find an expression for  $\tan \theta$ .

The following symbols may be useful: tan(), theta

#### Part B Square roots

Use an algebraic method to find the square roots of the complex number  $2+i\sqrt{5}$  in the form x+iy.

Give an expression for the solution with positive x and positive y.

The following symbols may be useful: i

Give an expression for the solution with negative x and negative y.

The following symbols may be useful:  ${\tt i}$ 

## Part C A complex quartic

Using your answer from the previous part, find the roots of the equation  $z^4-4z^2+9=0$  in the form x+iy.

Give an expression for the root with both  $\boldsymbol{x}$  and  $\boldsymbol{y}$  positive.

The following symbols may be useful: i, z

Give an expression for the root with positive  $\boldsymbol{x}$  and negative  $\boldsymbol{y}$ .

The following symbols may be useful: i, z

Give an expression for the root with negative x and positive y.

The following symbols may be useful: i, z

Give an expression for the root with negative x and negative y.

The following symbols may be useful: i, z

#### Part D Argand diagram

Sketch the roots of the equation from the previous part on an Argand diagram.

Easier question?

## Part E Complex locus

Given that  $\alpha$  is the root of the equation in part C) such that  $0<\arg\alpha<\frac{1}{2}\pi$ , sketch on the same Argand diagram the locus given by  $|z-\alpha|=|z|$ .

#### Easier question?

Adapted with permission from UCLES, A Level, June 2009, Paper 4725, Question 10.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.



<u>Gameboard</u>

Maths

Roots of Polynomials

## **Roots of Polynomials**



This question is about manipulation of the roots of two polynomials.

$$x^2 + kx + 2k = 0$$

has the roots  $\alpha$  and  $\beta$ , while

$$x^3 + 4x + 3 = 0$$

has the roots lpha', eta' and  $\gamma'$ . Take k 
eq 0.

### Part A Roots of the quadratic

Find a quadratic equation with roots  $\frac{\alpha}{\beta}$  and  $\frac{\beta}{\alpha}$ .

The following symbols may be useful: k, x

#### Part B Substitution

Starting from the cubic equation above, use the substitution  $x = \sqrt{u}$  to obtain a cubic equation in u.

The following symbols may be useful: u

#### Part C Roots of the cubic

Find an expression for  ${\alpha'}^4 + {\beta'}^4 + {\gamma'}^4 + {\alpha'}{\beta'}{\gamma'}$ .

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 8 and June 2015, Paper 4725, Question 10.

Gameboard:

STEM SMART Double Maths 14 - AS Pure Further Maths Revision (non-calculus)

All materials on this site are licensed under the  $\underline{\textbf{Creative Commons license}}$ , unless stated otherwise.



<u>Gameboard</u>

Maths

Vectors

## **Vectors**



The vector  $\mathbf{u} = \frac{3}{13}\mathbf{i} + b\mathbf{j} + c\mathbf{k}$  is perpendicular to the vector  $\mathbf{v} = 4\mathbf{i} + \mathbf{k}$  and to the vector  $\mathbf{w} = 4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ .

#### Part A

Find c as a single rational fraction.

The following symbols may be useful: c

## Part B b

Find b in exact form.

The following symbols may be useful: b

#### Part C |u|

Find  $|\mathbf{u}|$ .

#### 

Calculate, to the nearest degree, the angle between  ${\bf v}$  and  ${\bf w}$ .

#### Part E n

Find a unit vector  ${\bf n}$  in the direction of the common perpendicular to the vectors  $(3{\bf i}-2{\bf j}+2{\bf k})$  and  $(-{\bf i}+3{\bf j}-5{\bf k})$ . Take  ${\bf n}$  to have positive x,y and z.

Find the x component of  $\mathbf{n}$  as a single fraction.

The following symbols may be useful: x

Find the y component of  $\mathbf{n}$  as a single fraction.

The following symbols may be useful: y

Find the z component of  ${\bf n}$  as a single fraction.

The following symbols may be useful: z

### Part F Two lines

Determine whether the lines described by

$$\mathbf{r}_1 = (1+2\lambda)\mathbf{i} - \lambda\mathbf{j} + (3+5\lambda)\mathbf{k}$$

and

$$\mathbf{r}_2 = (\mu - 1)\mathbf{i} - (5 - \mu)\mathbf{j} + (2 - 5\mu)\mathbf{k}$$

are parallel, intersect or are skew.

( ) Intersect

Skew

( ) Parallel

Adapted with permission from UCLES, A Level, June 2009, Paper 4724, Question 7, UCLES, A Level, Jan 2012, Paper 4724, Question 3 and Sally Waugh.

Gameboard:

STEM SMART Double Maths 14 - AS Pure Further Maths Revision (non-calculus)

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.



<u>Gameboard</u>

Maths

Sequences

# **Sequences**



The sequence  $u_1$ ,  $u_2$ ,  $u_3$  . . . is defined by  $u_1=3$  and  $u_{n+1}=3u_n-2$  for  $n\geq 1$ .

Part A  $u_2$  and  $u_3$ 

Find  $u_2$ .

The following symbols may be useful: u\_2

Find  $u_3$ .

The following symbols may be useful: u\_3

Part B  $rac{1}{2}(u_4-1)$ 

Find  $\frac{1}{2}(u_4-1)$ .

Part C  $u_n$ 

Hence, find an expression for  $u_n$  and prove it with induction.

The following symbols may be useful: n,  $u_n$ 

## Part D Divisibility

Prove by induction that  $5^n-2^n$  is divisible by 3 for all integers  $n\geq 1$ .



Adapted with permission from UCLES, A Level, June 2009, Paper 4725, Question 10.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.