بهینهسازی ترکیبیاتی (پاییز ۹۵–۹۴) تمرین دوم

- 1. Let $S \subseteq \{0,1\}^n$, and let P = CH(S). Show that S is the set of vertices of P.
- 2. Let G be a digraph, $c: E(G) \to \mathbb{R}_+$, $E_1, E_2 \subseteq E(G)$, and $s, t \in V(G)$. Consider the following linear program:

$$\begin{array}{ll} \min & \sum_{e \in E(G)} c(e) y_e \\ s.t. & y_e \geq z_w - z_v & (e = (v, w) \in E(G)) \\ & z_t - z_s = 1 \\ & y_e \geq 0 & (e \in E_1) \\ & y_e \leq 0 & (e \in E_2) \end{array}$$

Prove that there is an optimum solution (y, z) and $(s \in X \subseteq V(G) \setminus \{t\})$ with $y_e = 1$ for $e \in \delta^+(X)$, $y_e = -1$ for $e \in \delta^-(X) \setminus E_1$, and $y_e = 0$ for all other edges e.

Hint: Consider the complementary slackness conditions for the edges entering or leaving $\{v \in V(G) : z_v \leq qz_s\}$.

3. Let P be a nonempty polytope. Consider the graph G(P) whose vertices are the vertices of P and whose edges correspond to the 1-dimensional faces of P. Let x be any vertex of P, and c a vector with $c^Tx < \max\{c^Tz : z \in P\}$. Prove that then there is a neighbour y of x in G(P) with $c^Tx < c^Ty$.

Note that, a face F of a polytope P is a set of its points for which there is a vector c such that $F = \{x \in P : c^T x = \max\{c^T y : y \in P\}\}$, for some vector c.

Note that, You can use this exercise to prove that G(P) is n-connected for any n-dimensional polytope P $(n \ge 1)$.

Extra Using a polynomial-time algorithm for linear programming as subroutine, give a polynomial-time algorithm to solve the following problem. Given two systems of linear inequalities $Ax \leq b$, $Cx \leq d$ in n variables, decide whether $\{x \in \mathbb{R}^n : Ax \leq b\} = \{x \in \mathbb{R}^n : Cx \leq d\}$.

موفق باشيد