課題: MR君来期継続受注に向けた提案作成

課題概要

MR君来期継続受注に向けた提案作成

- 1今期MR君実施による製薬企業からみた投資対効果 (ROI)
- 2来期PJに向けた改善点に関してファクト・施策案 を示すこと

課題内容

来期継続提案に向けた分析を行い、最終報告をする

- 背景)薬剤Aに関するMR君を6ヶ月間実施したクライアントから、継続判断材料として、定量的なファクトを 示すことを求められている
- 条件) 今期PJ期間2021/11~2022/04で、PJ費用合計8000万円 ※既読課金費用上記PJ費用に含まれるとしてください
- <u>前提)CL報告に先駆け、まずエムスリー社内営業担当・及びデータ分析グループ向けに分析結果を報告する想</u> 定である
 - o 営業担当クライアントに直接コミュニケーションをとる立場である
 - 営業担当データ分析専門家でない※インターンでデータ分析グループメンバーに対して報告する

目次

- \$ROI\$の導出方法
- データの詳細
- \$ATT\$と\$ROI\$を計算
- 適切に共変量を選択した上での\$ATT\$と\$ROI\$
- 来期PJに向けた改善点の検討
- 北海道に絞って改善施策を考える

\$ROI\$の導出方法

今回はMR君を利用する際の\$ROI\$を出すことが目的の一つであるので,まず**処置群における平均処置効果**: \$ATT\$を推定する.

そして\$ATT\$×**病院数**によって\$Return\$を出す. \$Investment\$は80,000,000であるので, この値でReturnを除することでROIを求める.

インディケータ変数を\$Z\$, 共変量を\$X\$として, 傾向スコア\$e(xi)\$を以下のように定義して, ロジスティック回帰で導出する

 $e(x_i) = Pr(Z_i = 1 | X_i = x_i)$

この傾向スコアを用いて、逆確率重み付け法(\$IPW\$)を用いることで、結果変数を\$Y\$として、以下の式によって \$ATT\$を求めることができる.

 $$ATT = E(Y_1|Z=1)-E(Y_0|Z=1) = \bar{y_1} -\dfrac{\sum_{i=1}^N\frac{(1-z_i)e_i}{1-e_i}y_i} $$ {\sum_{j=1}^N\frac{(1-z_j)e_j}{1-e_j}} $$ $ROI = \dfrac{Return}{Investment} = \dfrac{ATT \times 病院数}{80000000} $$$

データの詳細

特徴量	説明
hospital id	<u>病院のID</u>
~202004_ave	2020年4月までの半年間の平均売り上げ
~202010_ave	2020年10月までの半年間の平均売り上げ
~202104_ave	2021年4月までの半年間の平均売り上げ
~202110_ave	2021年10月までの半年間の平均売り上げ
~202204_ave	2022年4月までの半年間の平均売り上げ
dr_count	病院に所属する医師の数
send_count	送ったメッセージの数
read_count	既読メッセージの数
has_mrkun	メッセージの既読有無
has_kahun	アレルギーに関わる診療科に所属している医師の有無
has_visit	MRの訪問有無
region_id	病院の所在地

今回はこれらの特徴量に注目しており、\$Z\$をメッセージの既読有無:has_mrkun、\$Y\$を2022年4月までの半年間の平均売り上げ:~202204_ave とした.

その上で以下では 「強く無視できる割り当て」条件 が成り立つように共変量を選択しながら\$ATT\$を導出した.

\$ATT\$と\$ROI\$を計算

まずは、メッセージの既読有無の上流にあるメッセージの数や医師の数を取り除いて\$ATT\$と\$ROI\$を求めた.結果は以下の通りである.

\$ATT\$ = 18872

ROI = 11.8

その結果、地域(region_id)と花粉アレルギーの診療科(has_kahun)の有無の\$SMD\$が増加しているため、共変量として使用すること見直す必要があることがわかった。

また決定係数について、結果変数とインディケータ変数と各共変量についてそれぞれ回帰分析を行い調べたところ以下のようになった。

2022年4月までの半年間の各月売り上げ平均~202204_aveと各共変量

Name	R_squared		
region_id	0.001335		
<u>has_kahun</u>	0.001829		
has_visit	0.072365		
~202010_ave	0.948677		
~202110_ave	0.949943		

Name	R_squared
~202004_ave	0.953954
~202104_ave	0.954522

メッセージの既読有無has_mrkunと各共変量

Name	R_squared
has_kahun	0.06344
has_visit	0.07603
~202010_ave	0.08687
~202110_ave	0.08693
~202004_ave	0.08726
~202104_ave	0.08740
region_id	0.09915

この結果と\$SMD\$の結果を踏まえ、has_kahunとregion_idを切り分けることで、「強く無視できる割り当て」 条件において\$ATT\$を求めることができると考えた。

適切に共変量を選択した上での\$ATT\$と\$ROI\$

地域・アレルギーに関わる診療科に所属している医師の有無で分けてそれぞれ\$ATT\$を導出後,\$ROI\$を計算した上記の条件でATTを導出し地域毎にまとめたものが以下の通りである

region	return	hos_count	\$ATT\$	effect_%
北海道	-45128844	1960	-23024	-18.94
東北	129962649	3662	35489	34.61
関東	136412072	16147	8448	7.30
中部	360341812	8059	44712	42.35
近畿	273553174	8808	31057	32.09
中国	-4549752	3546	-1283	-1.73
四国	17952308	1734	10353	8.88
九州	452217	6456	70	0.12

この結果を元にしてROI\$を求めた結果以下のようになった ROI\$ = 10.8

また標準化平均差 (SMD) によって共変量を確認したところ、いずれの共変量も下がっていた

以上を踏まえて、MR君を用いることによる\$\color{red}ROI\$は10.8となると考えられる.

来期PJに向けた改善点の検討

北海道、中国、九州でのMR君の効果が薄いことがわかった特に北海道での効果が負の方向に大きくなっていることから改善に取り組む必要があるものと考えられる.

region	kahun	return	hos_count	\$ATT\$	effect_%
北海道	0	-89,516	687	-130	-0.13
	1	-45,039,327	1,273	-35,380	-26.47
東北	0	22,359,288	1,373	16,284	20.18
	1	107,603,361	2,289	47,008	40.65
	1	107,603,361	2,289	47,008	40.65

region	kahun	return	hos_count	\$ATT\$	effect_%
関東	0	59,458,346	5,709	10,414	12.71
	1	76,953,725	10,438	7,372	5.49
中部	0	64,613,256	2,969	21,762	33.93
	1	295,728,556	5,090	58,099	44.78
近畿	0	129,894,472	3,156	41,157	62.88
	1	143,658,702	5,652	25,417	22.24
中国	0	14,055,987	1,235	11,381	19.64
	1	-18,605,739	2,311	-8,050	-9.75
四国	0	348,534	518	672	0.48
	1	17,603,774	1,216	14,476	13.56
九州	0	8,441,700	2,316	3,644	7.57
	1	-7,989,482	4,140	-1,929	-3.22

北海道に絞って改善施策を考える

まずは北海道と他の地域との違いを平均値によって確認する. それをまとめたものが以下の通りである.

region	has_kahun	dr_count	send_count	read_count	has_mrkun	has_visit
北海道	0.0	1.07	23.69	10.48	0.27	0.22
	1.0	11.70	136.77	57.10	0.50	0.24
東北	0.0	1.05	19.16	7.92	0.20	0.17
	1.0	7.07	85.90	34.39	0.36	0.21
関東	0.0	1.03	19.97	7.71	0.21	0.21
	1.0	14.15	160.28	65.15	0.43	0.26
中部	0.0	1.01	20.12	8.36	0.22	0.20
	1.0	8.68	103.65	42.32	0.39	0.24
近畿	0.0	1.05	21.01	8.63	0.23	0.16
	1.0	7.39	91.07	38.11	0.39	0.21
中国	0.0	1.06	22.61	8.95	0.24	0.16
	1.0	9.91	116.98	47.02	0.41	0.18
四国	0.0	1.29	25.37	9.91	0.27	0.20
			·			

region	has_kahun	dr_count	send_count	read_count	has_mrkun	has_visit
	1.0	12.03	135.88	55.85	0.43	0.19
九州	0.0	1.034	20.67	7.93	0.21	0.13
	1.0	8.82	105.11	43.55	0.41	0.17

北海道の特徴

- 既読メッセージの数は変わらない
- メッセージの既読有無の割合は他の地域よりも高い
- →MR君は他の地域と同じかそれ以上に浸透している
- →それなのに\$ATT\$が低い

なぜ\$ATT\$が低いのか

- →そもそも北海道に花粉症患者が少なく、花粉症用の薬剤の需要が少ない
- →既読の課金だけが増えていくが売上にはつながらない
- →\$ATT\$が下がる

施策

薬剤の売上につながり辛い医師にメッセージを送るのを控える

→募集をかける医師群を絞る

募集をかける医師群を絞った際の\$ROI\$の向上を確認するために、北海道における\$ATU\$を求めた、 \$ATU\$は以下のようにして求めることができる

 $ATU = E(Y_1|Z=0) - E(Y_0|Z=0) = \frac{z_i(1-e_i)}{e_i}y_i }{\sum_{j=1}^N\frac{z_j(1-e_j)}{e_j}} - \frac{y_0}{\sum_{j=1}^N\frac{z_j(1-e_j)}{e_j}} - \frac{z_j(1-e_j)}{e_j} - \frac{z_j(1-$

これに基づいて、北海道の\$ATU\$を求めたところ以下のようになった

\$ATU\$ = 11971

したがって、これに基づいて\$ROI\$を新たに求めると以下のようになった

ROI = 11.6

これは\$ROI\$が10%改善されたことを示しており、

募集をかける医師群を絞ることでメッセージの既読課金の費用を減らすことができ、ROIが上がることが示唆された。