STANISLAS Exercices

Algèbre linéaire Chapitre III

PSI

2021-2022

I. Familles de vecteurs

Exercice 1. [Mines] Calculer la dimension de l'espace vectoriel $F = \text{Vect } \{f_1, f_2, f_3, f_4\}$, où $f_1: x \mapsto \sqrt{\frac{1-x}{1+x}}, f_2: x \mapsto \sqrt{\frac{1+x}{1-x}}, f_3: x \mapsto \frac{1}{\sqrt{1-x^2}}$ et $f_4: x \mapsto \frac{x}{\sqrt{1-x^2}}$.

Exercice 2. (\mathbb{Z}_0) Soient $E = \mathbb{R}^{\mathbb{N}}$ et, pour tout réel x, $S_x = (x^n)_{n \in \mathbb{N}}$. Montrer que la famille $(S_x)_{x>0}$ est une famille libre de E.

Exercice 3. [Mines] Soient, pour $n \in \mathbb{N}$, $f_n : x \mapsto \cos(nx)$ et pour $n \in \mathbb{N}^*$, $g_n : x \mapsto \sin(nx)$. Soit $n \in \mathbb{N}^*$. Montrer que la famille $(f_0, f_1, g_1, \ldots, f_n, g_n)$ est libre.

Exercice 4. [Mines] Soit $(a_1, a_2, a_3) \in \mathbb{R}^3$. Déterminer le rang de la famille (f_1, f_2, f_3) de $\mathbb{R}^{\mathbb{R}}$, où f_i est la fonction $x \mapsto \cos(x + a_i)$.

II. Matrices & Applications linéaires

Exercice 5. (🖾) Soient $n \ge 2$ et $A = (a_{i,j}) \in \mathscr{M}_n(\mathbb{R})$ telle que $a_{i,j} = 1 - \delta_{i,j}$, où $\delta_{i,j}$ est le symbole de Kronecker. Calculer A^{-1} .

Exercice 6. [Centrale 1] Soient n un entier naturel non nul, $E = \mathbb{R}^n$.

- 1. Déterminer les endomorphismes de E tels que, pour tout $x \in E$, la famille (u(x), x) soit liée.
- **2.** Déterminer les endomorphismes de E tels que, pour tout $x \in E$, la famille $(u^2(x),x)$ soit liée.
- **3.** Soit $y \in E \setminus \{0\}$. Déterminer les endomorphismes de E tels que, pour tout $x \in E$, la famille (u(x), x, y) soit liée.

Exercice 7. [Mines] Soit $k \in [1, n-2]$. Soit $u \in \mathcal{L}(\mathbb{C}^n)$ qui laisse stable tout sous-espace vectoriel de dimension k.

- **1.** Montrer que u laisse stable tout sous-espace vectoriel de dimension k+1.
- **2.** En déduire que u laisse stable tout hyperplan de E.
- **3.** En déduire u.

Exercice 8. [Mines] Soient E, F deux espaces vectoriels de dimensions finies et $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, E)$ telles que $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

- **1.** Déterminer Im $g \cap \operatorname{Ker} f$.
- **2.** Montrer que $E = \operatorname{Im} g \oplus \operatorname{Ker} f$.
- **3.** Comparer Rg(f) et Rg(g).
- **4.** On suppose que dim $E = \dim F = \operatorname{Rg}(f) = n$. Que dire de f et g?
- **5.** On suppose que E = F. Déterminer f et g telles que $f \circ g \neq \mathrm{Id}_E$.

Exercice 9. [Mines] Soient E et F deux espaces vectoriels de dimension finie et $f \in \mathcal{L}(E, F)$. On note $\mathcal{H} = \{g \in \mathcal{L}(F, E) : f \circ g \circ f = 0\}$. Déterminer la dimension de \mathcal{H} en fonction de dim E, dim F et dim Im f.

Exercice 10. [Mines] Soit E un \mathbb{R} -espace vectoriel de dimension 3 et $f \in \mathcal{L}(E)$ telle $f^3 = 0$ et $f^2 \neq 0$. Trouver l'ensemble des endomorphismes qui commutent avec f.

III. Géométrie

Exercice 11. (🖾) On considère l'espace vectoriel \mathbb{R}^3 muni de la base canonique \mathscr{B} . On note P le plan d'équation x+y+z=0, D la droite d'équations $x=\frac{y}{3}=\frac{z}{2}$ et p la projection sur P parallèlement à D.

- **1.** Montrer que $P \oplus D = \mathbb{R}^3$.
- **2.** Soit u un vecteur de \mathbb{R}^3 de coordonnées (x, y, z) dans \mathscr{B} . Calculer p(u) et déterminer la matrice de p dans \mathscr{B} .

Exercice 12. ($oldsymbol{\mathbb{Z}}_{0}$) [IMT] Soient E un espace vectoriel de dimension finie, p et q des projecteurs de E. Montrer que $\operatorname{Ker} p = \operatorname{Ker} q$ si et seulement si $(p \circ q = p)$ et $q \circ p = q$.

Exercices III PSI

Exercice 13. (**) Soient $n, N \in \mathbb{N}^*$ et $u \in \mathcal{L}(\mathbb{C}^N)$ tels que $u^n = \mathrm{Id}$. Soit E un sous-espace vectoriel de \mathbb{C}^N stable par u et p une projection sur E. On définit l'endomorphisme

$$q = \frac{1}{n+1} \sum_{k=0}^{n} u^k \circ p \circ u^{n-k}.$$

- 1. Montrer que q est un projecteur.
- **2.** En déduire que $\mathbb{C}^N = E \oplus \operatorname{Ker} q$.

Exercice 14. (**) Soient E un espace vectoriel de dimension finie et p_1, \ldots, p_k des projecteurs de E. On suppose que $q = \sum_{i=1}^k p_i$ est un projecteur.

- **1.** Montrer que $\operatorname{Rg}(q) = \sum_{i=1}^{k} \operatorname{Rg}(p_i)$ et en déduire que $\operatorname{Im} q = \bigoplus_{i=1}^{k} \operatorname{Im} p_i$.
- **2.** En déduire que pour tout couple (i,j) tel que $i \neq j$, $p_j \circ p_i^{i=1} = 0_{\mathscr{L}(E)}$.

IV. Formes linéaires & Hyperplans

Exercice 15. (2) Pour tout $k \in [0, n]$, on note $\varphi_k : \mathbb{R}_n[X] \to \mathbb{R}$, $P \mapsto P^{(k)}(0)$. Montrer que $(\varphi_0, \dots, \varphi_n)$ est une base de $\mathcal{L}(\mathbb{R}_n[X], \mathbb{R})$.

Exercice 16. (🖾) Soient a < b et $c \in]a,b[$. Discuter, en fonction des valeurs de c, l'indépendance des formes linéaires définies sur $\mathbb{R}_3[X]$ par

$$f_a: P \mapsto P(a), f_b: P \mapsto P(b), f_c: P \mapsto P(c) \text{ et } f_4: P \mapsto \int_a^b P(t) dt.$$

Exercice 17. Soient $\varphi_1, \ldots, \varphi_n$ des formes linéaires sur l'espace vectoriel E de dimension n. On suppose qu'il existe un vecteur $v \neq 0_E$ tel que pour tout $i \in [\![1,n]\!], \varphi_i(v) = 0$. Montrer que la famille de formes linéaires $(\varphi_1, \ldots, \varphi_n)$ est liée.

Exercice 18. (Polynômes de HILBERT) Soit Δ l'application linéaire définie pour tout polynôme de $\mathbb{C}_n[X]$ par $\Delta(P) = P(X+1) - P(X)$. Pour tout entier naturel $k \in [0,n]$, on pose φ_k la forme linéaire qui, à un polynôme P de $\mathbb{C}_n[X]$ associe le nombre complexe $\Delta^k(P)(0)$ et $H_k = \frac{X(X-1)\cdots(X-k+1)}{k!}$, $H_0 = 1$.

- **1.** Déterminer $\Delta(H_k)$ pour tout $k \in [1, n]$.
- **2.** En déduire que $(\varphi_0, \ldots, \varphi_n)$ est une base de $\mathbb{C}_n[X]^*$.

V. Avec Python

Exercice 19. [Centrale] À tout polynôme P, on associe $S(P) = \sum_{k=0}^{+\infty} \frac{P(k)}{k!}$.

- 1. Justifier l'existence de S(P) et montrer que S(P) est une forme linéaire.
- **2.** Avec Python, calculer $\sum_{k=0}^{50} \frac{P(k)}{k!}$ pour $P = X^d$ avec $d \in [0, 10]$; puis pour un polynôme de degré 9 de votre choix. Que remarque-t-on?
- **3.** On pose $H_0 = 1$, puis pour tout entier n, $H_{n+1} = (X n)H_n$. Montrer que $(H_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.
- **4.** Calculer $S(H_n)$ pour tout n entier naturel. En déduire une méthode pour calculer S(P) pour P quelconque.
- **5.** Avec Python, écrire un programme permettant de calculer les coefficients de H_n .

Mathématiciens

KRONECKER Leopold (7 déc. 1823 à Liegnitz-29 déc. 1891 à Berlin). HILBERT David (23 jan. 1862 à Wehlau-14 fév. 1943 à Göttingen).