Graphen

15. Januar 2019

Graphen

Definition

Ein (ungerichteter, schlichter) Graph ist ein Paar G = (V, W) mit

- ▶ V eine endliche Menge;
- ► E Menge von zweielementigen Teilmengen von V.

Sprechweisen

Ist G = (V, E) eine Graph, dann heißen

- ▶ die Elemente von *V Knoten* von *G* (English: *vertex*),
- ▶ die Elemente von *E Kanten* von *G* (English: *edge*),
- ▶ $n_G := |V|$ die *Knotenzahl* von G,
- ▶ $m_G := |E|$ die Kantenzahl von G.

Für $\{u, v\} \in E$ schreiben wir auch uv oder vu.

Bemerkungen

- ▶ Mathematisches Modell für Kante zwischen $u, v \in V$: zweielementige Teilmenge $\{u, v\} = \{v, u\} \subseteq V$.
- ► Andere verbreitete Definitionen von Graphen erlauben
 - ► gerichtete Kanten,
 - Schlingen,
 - Mehrfachkanten,
 - gewichtete Kanten,
 - ▶ gefärbte Kanten,
 - ▶ unendlich viele Knoten oder Kanten.
 - usw.

Mathematisches Modell für Kanten wird angepasst: Z.B.: gerichtete Kante vom Knoten u zum Knoten v modelliert durch $(u, v) \in V \times V$.

Motivation

Graphen modellieren Netzwerke, z.B.

- ► Straßennetze
 - ► Knoten: Kreuzungen
 - ► Kanten: Straßen
- ► Stromnetze
 - ► Knoten: Umspannstationen
 - ► Kanten: Stromleitungen
- Computernetze
- ► Workflow-Diagramme

Zeichnungen

Oft werden Graphen durch Bilder dargestellt. Beispiel:

$$V = \{1, 2, 3, 4\}$$
,

 $E = \{\{1,4\},\{1,2\},\{1,3\},\{2,4\},\{2,3\}\}.$

Es sei G = (V, E) ein Graph.

Begriffe

- ▶ Es seien $u, v \in V$ mit $u \neq v$ und es sei $uv \in E$.
 - ▶ u und v heißen die Endknoten von uv.
 - ▶ *u* und *v* heißen *adjazent*.
 - ▶ *u* heißt *Nachbar* von *v* und umgekehrt.
- ▶ Für $v \in V$ ist $\Gamma(v) := \Gamma_G(v)$ die Menge der Nachbarn von v.
- ▶ $e \in E$ inzident zu $v \in V$, wenn v ein Endknoten von e ist.
- ► Zwei verschiedene Kanten heißen *inzident*, wenn sie einen gemeinsamen Endknoten haben.
- ► *G* heißt *vollständiger Graph*, falls je zwei verschiedene Knoten von *G* adjazent sind.

Die Adjazenzmatrix

Es sei G = (V, E) ein Graph mit $V = \{1, \dots, n\}$.

Definition

Die Adjazenzmatrix von G ist die Matrix

$$A := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in \{0,1\}^{n \times n}$$

mit

$$a_{ij} := \begin{cases} 1 & \text{falls } ij \in E, \\ 0 & \text{falls } ij \notin E. \end{cases}$$

Die *Adjazenzliste* von *G* ist die Liste

$$\Gamma := (\Gamma(1), \Gamma(2), \ldots, \Gamma(n)).$$

Die Adjazenzmatrix (Forts.)

Beispiel

```
V = \{1, 2, 3, 4\},\

E = \{\{1, 4\}, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{2, 3\}\}.
```

Die Inzidenzmatrix

Es sei G = (V, E) ein Graph mit $V = \{1, ..., n\}$ und $E = \{e_1, ..., e_m\}$.

Definition

Die *Inzidenzmatrix* von *G* ist die Matrix

$$B := \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ \vdots & & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nm} \end{pmatrix} \in \{0, 1\}^{n \times m}$$

mit

$$b_{ij} := egin{cases} 1 & ext{falls } i \in e_j, \ 0 & ext{falls } i
otin e_j. \end{cases}$$

Die j-te Spalte der Inzidenzmatrix enthält genau zwei Einsen, nämlich zu den beiden Endknoten der Kante e_i .

Die Inzidenzmatrix (Forts.)

Beispiel

```
V = \{1, 2, 3, 4\},\ E = \{\{1, 4\}, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{2, 3\}\}.
```

Grad

Es sei G = (V, E) ein Graph.

Definition

- ▶ Für $v \in V$ heißt $deg(v) := |\Gamma(v)| der Grad von v$.
- ► Knoten vom Grad 0 heißen isoliert.

Bemerkung

Es gilt

$$\sum_{v \in V} \deg(v) = 2m_G.$$

Folgerung

Die Anzahl der Knoten von G mit ungeradem Grad ist gerade.

Teilgraphen

Es sei G = (V, E) ein Graph.

Definition

Ein Graph G'=(V',E') heißt Teilgraph von G, geschrieben $G' \leq G$, wenn $V' \subseteq V$ und $E' \subseteq E$ ist.

Beispiel

Ist $V' \subseteq V$, so wird durch

$$E' := \{uv \in E \mid u, v \in V'\}$$

ein Teilgraph (V', E') von G definiert, der auf V' induzierte Teilgraph von G, geschrieben $G|_{V'}$.

Teilgraphen (Forts.)

Beispiele

Kantenzüge, Kreise und Pfade

Es sei G = (V, E) ein Graph und $I \in \mathbb{N}_0$.

Definition

- ▶ Ein Kantenzug der Länge I in G ist ein Tupel $(v_0, v_1, ..., v_l)$ von Knoten mit $v_i v_{i+1} \in E$ für alle i = 0, ..., l-1 (heißt auch v_0 - v_l -Kantenzug).
- ▶ Der Kantenzug heißt geschlossen falls $v_0 = v_I$ ist.
- ▶ Ein Kantenzug $(v_0, ..., v_l)$ heißt *Pfad der Länge I in G*, falls die Knoten $v_0, ..., v_l$ paarweise verschieden sind. (heißt auch v_0 - v_l -Pfad).
- ▶ Ein Kreis der Länge I in G ist ein geschlossener Kantenzug (v_0, \ldots, v_I) , für den $I \ge 3$ und (v_0, \ldots, v_{I-1}) ein Pfad ist.
- ► Eine *Tour der Länge I in G* ist ein geschlossener Kantenzug (v_0, \ldots, v_l) , für den die Kanten $v_0v_1, v_1v_2, \ldots, v_{l-1}v_l$ paarweise verschieden sind.

Kantenzüge, Kreise und Pfade (Forts.)

Beispiele

Zusammenhang

Es sei G = (V, E) ein Graph.

Definition

ightharpoonup Die Zusammenhangsrelation \sim auf V wird definiert durch

$$u \sim v :\Leftrightarrow$$
 es gibt einen u - v -Kantenzug in G .

- ▶ G heißt zusammenhängend, falls $u \sim v$ für alle $u, v \in V$, anderenfalls unzusammenhängend.
- ▶ Zusammenhangskomponenten von G; die induzierten Teilgraphen $G|_U$, wobei U die Äquivalenzklassen von V bzgl. \sim durchläuft.
- $ightharpoonup r_G$: Anzahl der Zusammenhangskomponenten von G

Zusammenhang (Forts.)

Beispiele

Zusammenhang (Forts.)

Es sei G = (V, E) ein Graph.

Lemma

Für alle $u \neq v \in V$ gilt:

$$r_G - 1 \le r_{(V,E \cup \{uv\})} \le r_G.$$

$$r_{(V,E\setminus\{uv\})} - 1 \le r_G \le r_{(V,E\setminus\{uv\})}.$$

Satz

- ▶ Untere Schranke für m_G : $m_G \ge n_G r_G$.
- ▶ Obere Schranke für m_G : $m_G \leq \binom{n_G+1-r_G}{2}$.

Zusammenhang (Forts.)

Es sei G = (V, E) ein Graph.

Folgerung

- ▶ Ist *G* zusammenhängend, dann ist $m_G \ge n_G 1$.
- ▶ Ist G unzusammenhängend, so gilt $m_G \leq \binom{n_G-1}{2}$.

Brücken

Es sei G = (V, E) ein Graph, $u, v \in V$ mit $e = uv \in E$.

Bemerkung

Es sei $G' := (V, E \setminus \{e\})$. Dann sind äquivalent:

- ▶ $u \not\sim v$ in G'.
- $ightharpoonup r_{G'} > r_G.$

Definition

e heißt $Brücke\ von\ G$, wenn eine der beiden Bedingungen aus der Bemerkung erfüllt ist.

Brücken (Forts.)

Es sei G = (V, E) ein Graph, $u, v \in V$ mit $e = uv \in E$.

Bemerkung

Es sei $G' := (V, E \setminus \{e\})$.

Dann sind die folgenden Aussagen äquivalent.

- ► *e* ist keine Brücke von *G*.
- ▶ $u \sim v$ in G'.
- $ightharpoonup r_{G'} = r_G.$
- ightharpoonup es gibt einen u-v-Kantenzug in G, der nicht über e führt.
- ightharpoonup es gibt einen u-v-Pfad in G, der nicht über e führt.
- ► *e* ist Teil eines Kreises in *G*.

Brücken (Forts.)

Es sei G = (V, E) ein Graph und $I \in \mathbb{N}$.

Satz

Ist $u \in V$ zu I Brücken inzident, so besitzt G mindestens I von u verschiedene Knoten von ungeradem Grad.

Folgerung

Haben in einem Graphen alle Knoten geraden Grad, so besitzt er keine Brücken.

Distanz

Es sei G = (V, E) ein Graph.

Definition

Es seien $v, w \in V$.

► Ist $v \sim w$, dann sei

$$d(v,w) := \min\{l \in \mathbb{N}_0 \mid \text{in } G \text{ ex. } v\text{-}w\text{-Pfad der Länge } l\} \in \mathbb{N}_0.$$

- ▶ Ist $v, w \in V$ mit $v \not\sim w$, dann sei $d(v, w) := \infty$.
- ▶ Wir nennen d(v, w) die *Distanz* zwischen v und w.

Distanz

Es sei G = (V, E) ein Graph.

Bemerkung

Für alle $v, w \in V$ gelten:

- $b d(v,w) = 0 \Leftrightarrow v = w,$
- $d(v,w) < \infty \Leftrightarrow v \sim w.$

G ist genau dann zusammenhängend, wenn gilt: $d(v, w) < \infty$ für alle $v, w \in V$.

Breitensuche

Es sei G = (V, E) ein Graph und $w \in V$.

Die Breitensuche ist ein Algorithmus, der, beginnend mit $w \in V$, alle Knoten der Zusammenhangskomponente von w mit aufsteigender Distanz zu w durchläuft.

Anwendungen

- ▶ Berechnung der Zusammenhangskomponenten von *G*.
- Berechnung der Distanzen d(v, w) für v in der Zusammenhangskomponente von w.
- ▶ Berechnung kürzester Pfade von jedem v zu w.

Breitensuche (Forts.)

```
BREITENSUCHE(\Gamma, w)

1 initialisiere array d[1, \ldots, n] mit allen Einträgen gleich \infty

2 initialisiere array p[1, \ldots, n] mit allen Einträgen gleich NIL

3 initialisiere leere queue Q (FIFO)

4 d[w] \leftarrow 0

5 INSERT(Q, w)
```

4
$$d[w] \leftarrow 0$$

5 INSERT (Q, w)
6 while Q ist nicht leer
7 do $v \leftarrow \text{EXTRACT}(Q)$
8 for $u \in \Gamma(v)$
9 do if $d[u] = \infty$
10 then INSERT (Q, u)
11 $d[u] \leftarrow d[v] + 1$
12 $p[u] \leftarrow v$
13 return d, p

Breitensuche (Forts.)

Kommentare zum Algorithmus)

- ► Eingabe:
 - Γ: Adjazenzliste des Graphen G = (V, E) mit $V = \underline{n}$
 - ▶ w: Knoten $w \in V$
- ▶ Der array d[1,...,n] enthält nach der Terminierung an Position v den Wert d(w,v).
- Der array p[1,..., n] enthält nach der Terminierung an Position v einen Knoten u, der auf einem w-v-Pfad der Länge d(w, v) unmittelbar vor v kommt.
- ► queue ist eine Warteschlange im "First-in-first-out"-Modus
- ▶ Der Aufruf INSERT(Q, x) hängt das Element x an das Ende der Warteschlange.
- ► Der Aufruf Extract(Q) entnimmt das Element, das am Anfang der Warteschlange steht.