Contributions to the structure theory of ω -languages

Albert Zeyer

10. Februar 2011

Inhaltsverzeichnis

1	Inti	roduction		
2	Aut	tomat		
	2.1	Pfad		
	2.2	Akzeptanz von endlichen Wörtern		
3	*-S]	prachklassen		
	3.1	reguläre Sprachen		
	3.2	piece-wise testable		
	3.3	k-locally testable		
	3.4	dot-depth- n		
	3.5	starfree		
	3.6	locally modulo testable		
	3.7	<i>R</i> -trivial		
	3.8	endlich / co-endlich		
	3.9	endwise testable		
4	ω -S	prachklassen		
	4.1	Büchi Automat		
	4.2	Muller Automat		
	4.3	Rabin Automat		
	4.4	Staiger Wagner Klasse zu \mathcal{K}		
5	Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$			
	_	······································		
6	*-S1	prachklassen		
	6.1	regular		
	6.2	piece-wise testable		
	6.3	k-locally testable		
	6.4	$\operatorname{dot-depth}$ - n		
	6.5	starfree		
	6.6	locally modulo testable		
	6.7	<i>R</i> -trivial		
	6.8	endlich / co-endlich		
	6.9	endwise testable		

7	ω-Sprachklassen 7.1 Staiger Wagner Klasse zu K	7 7	
	Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$ 8.1		
	Lemmas 9.1 piece-wise testable	8	

1 Introduction

...

2 Automat

Ein **Automat** \mathcal{A} auf dem Alphabet Σ ist gegeben durch eine Menge Q von Zuständen und einer Teilmenge $E \subset Q \times A \times Q$ von Transitionen. Außerdem ist in der Regel eine Teilmenge $I \subset Q$ von Startzuständen und eine Teilmenge $F \subset Q$ von Endzuständen gegeben.

Wir schreiben dafür: $\mathcal{A} = (Q, \Sigma, E, I, F)$.

Der Automat ist endlich genau dann, wenn Q und Σ endlich sind.

Der Automat ist deterministisch, wenn E eine Menge von Funktionen $Q \times A \to \mathcal{Q}$ und wenn |I| = 1 sind.

2.1 Pfad

Zwei Transitionen $(p, a, q), (p', a', q') \in E$ sind aufeinanderfolgend, wenn q = p'.

Ein Pfad in dem Automat \mathcal{A} ist eine Folge von aufeinanderfolgenden Transitionen, geschrieben als: $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \dots$

2.2 Akzeptanz von endlichen Wörtern

Ein Automat $\mathcal{A}=(Q,\Sigma,E,I,F)$ akzeptiert ein endliches Wort $w=(a_0,a_1,...,a_n)\in\Sigma^*$ genau dann, wenn es einen Pfad $q_0\to^{a_0}q_1\to^{a_1}q_2\cdots\to^{a_n}q_{n+1}$ gibt mit $q_0\in I$ und $q_{n+1}\in F$.

Die Sprache $L^*(\mathcal{A})$ ist definiert als die Menge aller Wörter, die von \mathcal{A} akzeptiert werden.

3 *-Sprachklassen

Die *-Sprachklasse ist die Menge aller Sprachen von Wörtern $w \in \Sigma^*$, also die Menge von Sprachen von endlichen Wörtern.

3.1 reguläre Sprachen

Eine Sprache ist genau dann regulär, wenn sie von einem endlichen Automat erkannt wird.

- 3.2 piece-wise testable
- 3.3 k-locally testable
- 3.4 dot-depth-n
- 3.5 starfree
- 3.6 locally modulo testable
- 3.7 R-trivial
- 3.8 endlich / co-endlich
- 3.9 endwise testable

4 ω -Sprachklassen

4.1 Büchi Automat

Ein Automat $\mathcal{A} = (Q, \Sigma, E, I, F)$ **Büchi-akzeptiert** ein Wort $w = (a_0, a_1, a_2, ...) \in \Sigma^{\omega}$ genau dann, wenn es einen unendlichen Pfad $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \to^{a_2} q_3...$ gibt mit $q_0 \in I$ und $\{q_i | q_i \in F\}$ unendlich, also der unendlich oft einen Zustand F erreicht.

Die Sprache $L^{\omega}(\mathcal{A})$ ist definiert als die Menge aller unendlichen Wörter, die von \mathcal{A} Büchiakzeptiert werden.

Man bezeichnet einen Automaten $\mathcal A$ als Büchi Automat, wenn man von der Büchi-Akzeptanz ausgeht.

4.2 Muller Automat

Ein Muller Automat \mathcal{A} ist ein endlicher, deterministischer Automat mit Muller Akzeptanzbedingung und einer Menge $\mathcal{T} \in 2^Q$, genannt die Tabelle des Automaten (anstatt der Menge F). Dabei wird ein Wort $w \in \Sigma^{\omega}$ akzeptiert genau dann, wenn es einen entsprechenden Pfad p gibt mit $\mathrm{Inf}(p) \in \mathcal{T}$, wobei $\mathrm{Inf}(p)$ die Menge der unendlich oft besuchten Zustände ist.

Wir schreiben $\mathcal{A} = (Q, \Sigma, E, i, \mathcal{T}).$

4.3 Rabin Automat

Ein Rabin Automat ist ein Tuple $\mathcal{A} = (Q, \Sigma, E, i, \mathcal{R})$, wobei (Q, Σ, E) ein deterministischer Automat ist, i ist der Startzustand und $\mathcal{R} = \{(L_j, U_j) | j \in J\}$ ist eine Familie von Paren von Zustandsmengen. Ein Pfad p ist erfolgreich, wenn er in i beginnt und wenn es einen Index j inJ gibt, so dass p unendlich oft U_j besucht und nur endlich oft L_j . Ist der Automat endlich, so ist dies äquivalent mit

 $\operatorname{Inf}(p) \cap L_j = \emptyset \text{ und } \operatorname{Inf}(p) \cap U_j \neq \emptyset.$

4.4 Staiger Wagner Klasse zu K

5 Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$

5.1 ...

- a) * alle Sprachen $K\dot{\Sigma}^{\omega} = \text{ext}(K), K \in \mathcal{K}$
 - * offene G
- * Staiger Wagner Klasse http://de.wikipedia.org/wiki/Staiger-Wagner-Automat Erich Grädel, Wolfgang Thomas und Thomas Wilke (Herausgeber), Automata, Logics, and Infinite Games, LNCS 2500, 2002, Seite 20 (auf englisch) http://www.automata.rwth-aachen.de/material/skripte/areasenglish.pdf s.53
 - a') dual $\overline{K} = \omega$ -Wörter, deren alle Präfixe in K sind
 - b) Sprachen $\lim \mathcal{K}$ BC Muller-erkennbare (BC: boolean closure ?)
 - b') von einer Stelle an alle Prefixe in K
 - c) Kleene-Closure

alle der Form $\bigcup_{i=1}^n U_i \dot{V}_i^{\omega}, U_i, V_i \in \mathcal{K}$

d) K nicht suffix sensitiv

 $K \in \mathcal{K} \Rightarrow K\dot{\Sigma}^* \in \mathcal{K}$

Hauptfrage: Für welche \mathcal{K} ergibt sich eine andere Sprache als bei $\mathcal{K} = \text{Reg.}$

6 *-Sprachklassen

- 6.1 regular
- 6.2 piece-wise testable
- 6.3 k-locally testable
- 6.4 dot-depth-n
- 6.5 starfree
- 6.6 locally modulo testable
- 6.7 R-trivial
- 6.8 endlich / co-endlich
- 6.9 endwise testable
- 7 ω -Sprachklassen
- 7.1 Staiger Wagner Klasse zu K
- 8 Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$
- 8.1 ...
- a) * alle Sprachen $K\dot{\Sigma}^{\omega} = \text{ext}(K), K \in \mathcal{K}$
 - * offene G
- * Staiger Wagner Klasse http://de.wikipedia.org/wiki/Staiger-Wagner-Automat Erich Grädel, Wolfgang Thomas und Thomas Wilke (Herausgeber), Automata, Logics, and Infinite Games, LNCS 2500, 2002, Seite 20 (auf englisch) http://www.automata.rwth-aachen.de/material/skripte/areasenglish.pdf s.53
 - a') dual $\overline{K} = \omega$ -Wörter, deren alle Präfixe in K sind
 - b) Sprachen $\lim \mathcal{K}$ BC Muller-erkennbare (BC: boolean closure?)
 - b') von einer Stelle an alle Prefixe in K
 - c) Kleene-Closure
 - alle der Form $\bigcup_{i=1}^{n} U_i \dot{V}_i^{\omega}, U_i, V_i \in \mathcal{K}$
 - d) \mathcal{K} nicht suffix sensitiv
 - $K \in \mathcal{K} \Rightarrow K\dot{\Sigma}^* \in \mathcal{K}$

9 Lemmas

9.1 piece-wise testable

Theorem 9.1.

 $BC \operatorname{ext} \mathcal{L}^*(\text{piece-wise testable}) = BC \lim \mathcal{L}^*(\text{piece-wise testable})$

Proof. L piece-wise testable $\Leftrightarrow L$ is a boolean algebra of $\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*$

 \subseteq : It is sufficient to show $\operatorname{ext}(\mathcal{L}^*(\operatorname{piece-wise testable})) \subseteq \operatorname{BC} \lim \mathcal{L}^*(\operatorname{piece-wise testable})$. By complete induction:

$$\operatorname{ext}(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) = \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^{\omega} = \lim(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)$$

$$\operatorname{ext}(\neg(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)) = \Sigma^{\omega} = \lim(\Sigma^*)$$

$$\operatorname{ext}(\emptyset) = \emptyset = \lim(\emptyset)$$

It is sufficient to show negation only for such ground terms because we can always push the negation down.

$$\operatorname{ext}(A \cup B) = \operatorname{ext}(A) \cup \operatorname{ext}(B)$$

 $\operatorname{ext}(A \cap B) = \operatorname{ext}(A) \cap \operatorname{ext}(B)$

This makes the induction complete.

 \supseteq : It is sufficient to show $\lim(\mathcal{L}^*(\text{piece-wise testable})) \subseteq \mathrm{BC}\,\mathrm{ext}\,\mathcal{L}^*(\text{piece-wise testable})$.

$$\begin{split} \lim(\emptyset) &= \text{ext}(\emptyset), \ \lim(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) = \text{ext}(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) \ \ (\text{see above}) \\ \lim(\neg(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)) &= \left\{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \notin \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*\right\} \\ &= \left\{\alpha \in \Sigma^\omega \mid \forall n \colon \alpha[0, n] \notin \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*\right\} \\ &= \neg \exp(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) \\ \lim(A \cup B) &= \left\{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \in A \cup B\right\} = \lim(A) \cup \lim(B) \\ \lim(A \cap B) &= \left\{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \in A \cap B\right\} \end{split}$$

and because A, B are piece-wise testable

$$= \left\{\alpha \in \Sigma^\omega \ \big| \ \exists n : \forall m > n \colon \alpha[0,m] \in A \cap B \right\} = \lim(A) \cap \lim(B)$$

9.2 extension of FO[+1]

Theorem 9.2.

$$\mathcal{L}^{\omega}(FO[+1]) = BC \operatorname{ext} \mathcal{L}^{*}(FO[+1])$$

Proof. The statement "sphere $\sigma \in \Sigma^+$ occurs $\geq n$ times" can be expressed by a sentence of the form

$$\psi := \exists \overline{x_1} \cdots \exists \overline{x_n} \phi(\overline{x_1}, \cdots, \overline{x_n})$$

where each $\overline{x_i}$ is a $|\sigma|$ -tuple of variables and the formula ϕ states: ...

Literatur