классы: 10,11

В городе живут n юношей $\{B_1, B_2, \ldots, B_n\}$ и n девушек $\{G_1, G_2, \ldots, G_n\}$. Каждый юноша составил список девушек, упорядоченный по убыванию их привлекательности для него. Аналогично поступила каждая девушка. Например, списки могут быть такими:

Юноши	Порядок предпочтений	Девушки	Порядок предпочтений
B_1	$G_3 \succ_1 G_1 \succ_1 G_2$	G_1	$B_2 \succ_1 B_1 \succ_1 B_3$
B_2	$G_1 \succ_2 G_2 \succ_2 G_3$	G_2	$B_1 \succ_2 B_2 \succ_2 B_3$
B_3	$G_2 \succ_3 G_1 \succ_3 G_3$	G_3	$B_1 \succ_3 B_3 \succ_3 B_2$

Паросочетанием называется любое разбиение юношей и девушек на пары, т.е. биекция $\sigma \colon \{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$. Пара $(B_i,G_{\sigma(j)}), i \neq j$, называется пеустойчивой для паросочетания σ , если $G_{\sigma(j)} \succ_i G_{\sigma(i)}$ и $B_i \succ_{\sigma(j)} B_j$, т.е. B_i и $G_{\sigma(j)}$ предпочитают друг друга своим партнёрам. Паросочетание без неустойчивых пар называется устойчивым.

1. Для каждого $n \in \mathbb{N}$ приведите пример предпочтений, в котором количество устойчивых паросочетаний а) равно 1; б) не меньше $2^{[n/2]}$.

Рассмотрим алгоритм Гейла-Шепли построения устойчивого паросочетания:

- Каждый юноша делает предложение той девушке, которая ему больше всего нравится.
- Каждая девушка оставляет на рассмотрение самое лучшее предложение, а остальные отвергает.
- Каждый отвергнутый юноша делает предложение следующей девушке (по своему списку предпочтений).
- По щиклу повторять шаги 2) и 3), пока есть юноши без пар.
- 2. Докажите, что алгоритм Гейла-Шепли завершает работу за конечное число шагов и паросочетания, получаемые при помощи его, устойчивы.

Устойчивое паросочетание σ называется *оптимальным* для юноши B_i , если не существует устойчивого паросочетания τ , в котором юноша B_i образует пару с более желанной для него девушкой.

3. Докажите, что с помощью алгоритма Гейла-Шепли получаются паросочетания, которые является одновременно оптимальным для всех юношей.

Устойчивое паросочетание σ называется $xy\partial uum$ для девушке G_j , если не существует устойчивого паросочетания τ , в котором девушка G_j образует пару с менее желанным для неё юношей.

4. Докажите, что с помощью алгоритма Гейла-Шепли получаются паросочетания, которые является одновременно худшими для всех девушек.

Домашнее задание

Пусть списки предпочтений юношей и девушек могут быть неполными, но каждый человек может образовать пару только с теми, кто находится в его (её) списке предпочтений. Очевидно, что в этом случае устойчивого паросочетания может и не быть. Полные списки предпочтений можно получить из неполных списков, добавив нового юношу B_0 и новую девушку G_0 , которые будут худшими вариантами друг для друга. Поставим юношу B_0 на последнее место в списке каждой девушки, а затем добавим других отсутствующих юношей в произвольном порядке. Аналогично, мы поставим девушку G_0 на последнее место в списке каждого юноши, а затем добавим других отсутствующих отсувенеем в произвольном порядке.

- 5. Докажите, что полная система имеет устойчивое паросочетание с парой (B_0, G_0) , если и только если существует устойчивое паросочетание для неполной системы.
- 6. Докажите, что если полная система имеет устойчивое паросочетание с парой (B_0, G_0) , то эта пара входит во все устойчивые паросочетания этой системы.