International IR Rectifier

PRELIMINARY

IRL540N

Logic-Level Gate Drive

- Advanced Process Technology
- Isolated Package
- High Voltage Isolation = 2.5KVRMS ⑤
- Sink to Lead Creepage Dist. = 4.8mm
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	30	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	21	Α
I _{DM}	Pulsed Drain Current ①	120	
P _D @T _C = 25°C	Power Dissipation	94	W
	Linear Derating Factor	0.63	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy②	310	mJ
I _{AR}	Avalanche Current①	18	Α
E _{AR}	Repetitive Avalanche Energy ①	9.4	mJ
dv/dt	Peak Diode Recovery dv/dt ③	4.3	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.6	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA
				0.044		V _{GS} = 10V, I _D = 18A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.053	Ω	V _{GS} = 5.0V, I _D = 18A ④
				0.063		V _{GS} = 4.0V, I _D = 15A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9 _{fs}	Forward Transconductance	14			S	$V_{DS} = 25V, I_{D} = 18A$
	Dunin to Course Lealings Courset			25		V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} = 80V, V _{GS} = 0V, T _J = 150°C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -16V$
Q_g	Total Gate Charge			74		I _D = 18A
Q _{gs}	Gate-to-Source Charge			9.4	nC	$V_{DS} = 5.0V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			38		V_{GS} = 5.0V, See Fig. 6 and 13 @
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 50V$
t _r	Rise Time		81		200	I _D = 18A
t _{d(off)}	Turn-Off Delay Time		39		ns	$R_G = 5.0\Omega$, $V_{GS} = 5.0V$
tf	Fall Time		62			$R_D = 2.7\Omega$, See Fig. 10 $\textcircled{4}$
L _D	Internal Drain Inductance		4.5		– nH	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance		7.5	_	-	from package
						and center of die contact
C _{iss}	Input Capacitance		1800			$V_{GS} = 0V$
Coss	Output Capacitance		350		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		170			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			20		MOSFET symbol	
	(Body Diode)		 30	A	showing the		
I _{SM}	Pulsed Source Current				400		integral reverse
	(Body Diode) ①⑥	1	120		p-n junction diode.		
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 18A, V _{GS} = 0V ④	
t _{rr}	Reverse Recovery Time		190	290	ns	$T_J = 25$ °C, $I_F = 18A$	
Q _{rr}	Reverse RecoveryCharge		1.1	1.7	μC	di/dt = 100A/µs ④	
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25$ °C, L = 1.9mH $R_G = 25\Omega$, $I_{AS} = 18$ A. (See Figure 12)

- $\label{eq:loss_def} \begin{tabular}{ll} \Im & I_{SD} \leq 18A, \ di/dt \leq 180A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ & T_{J} \leq 175^{\circ}C \end{tabular}$
- ④ Pulse width \leq 300µs; duty cycle \leq 2%

Fig 1. Typical Output Characteristics, $T_J = 25^{\circ}C$

Fig 2. Typical Output Characteristics, $T_J = 175^{\circ}C$

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 8/96