Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises Part II Chapters V to VIII

Bernard Carrette

February 11, 2023

Contents

8 Non-Riemannian spaces.			3	
	8.1	p309 - Exercise 10	4	
	8.2	p309 - Exercise 11	6	
	8.3	p310 - Exercise 12	8	
	8.4	p310 - Exercise 13	9	
	8.5	p310 - Exercise 14	10	
	8.6	p310 - Exercise 15	12	

List of Figures

Non-Riemannian spaces.

8.1 p309 - Exercise 10

In a projective space, the coefficients of projective connection P_{mn}^r are defined as follows

$$P_{mn}^{r} = \Gamma_{mn}^{r} - \frac{1}{N+1} \left(\delta_{m}^{r} \Gamma_{pn}^{p} + \delta_{n}^{r} \Gamma_{pm}^{p} \right)$$

Show that P_{mn}^r is invariant under projective transformations of Γ_{mn}^r , verify that $P_{nm}^r = P_{mn}^r$, $P_{rn}^r=0$. Find the transformation properties of P_{mn}^r under changes of coordinate system. (T.Y. Thomas.)

Using (2) from the previous exercise, we have

$$P_{mn}^{'r} = \Gamma_{mn}^{'r} - \frac{1}{N+1} \left(\delta_m^r \Gamma_{pn}^{'p} + \delta_n^r \Gamma_{pm}^{'p} \right) \tag{1}$$

$$= \begin{cases} \Gamma_{mn}^{r} + \delta_{n}^{r} \psi_{m} + \delta_{m}^{r} \psi_{n} \\ -\frac{1}{N+1} \delta_{m}^{r} \left(\Gamma_{pn}^{p} + \delta_{n}^{p} \psi_{p} + \delta_{p}^{p} \psi_{n} \right) \\ -\frac{1}{N+1} \delta_{n}^{r} \left(\Gamma_{pm}^{p} + \delta_{m}^{p} \psi_{p} + \delta_{p}^{p} \psi_{m} \right) \end{cases}$$

$$(2)$$

(3)

$$= \begin{cases}
\Gamma_{mn}^{r} + \delta_{n}^{r} \psi_{m} + \delta_{m}^{r} \psi_{n} \\
-\frac{1}{N+1} \delta_{m}^{r} \Gamma_{pn}^{p} - \frac{1}{N+1} \delta_{m}^{r} \psi_{n} - \frac{N}{N+1} \delta_{m}^{r} \psi_{n} \\
-\frac{1}{N+1} \delta_{n}^{r} \Gamma_{pm}^{p} - \frac{1}{N-1} \delta_{n}^{r} \psi_{m} - \frac{N}{N+1} \delta_{n}^{r} \psi_{m}
\end{cases}$$

$$= \begin{cases}
\Gamma_{mn}^{r} - \frac{1}{N+1} \delta_{n}^{r} \Gamma_{pm}^{p} - \frac{1}{N-1} \delta_{m}^{r} \Gamma_{pn}^{p} \\
+ \delta_{n}^{r} \psi_{m} + \delta_{m}^{r} \psi_{n} - \frac{1}{N+1} \delta_{n}^{r} \psi_{m} - \frac{N}{N+1} \delta_{n}^{r} \psi_{m} \\
-\frac{1}{N+1} \delta_{m}^{r} \psi_{n} - \frac{N}{N+1} \delta_{m}^{r} \psi_{n}
\end{cases}$$

$$(5)$$

$$= \begin{cases} +\delta_{n}^{r}\psi_{m} + \delta_{m}^{r}\psi_{n} - \frac{1}{N+1}\delta_{n}^{r}\psi_{m} - \frac{N}{N+1}\delta_{n}^{r}\psi_{m} \\ -\frac{1}{N+1}\delta_{m}^{r}\psi_{n} - \frac{N}{N+1}\delta_{m}^{r}\psi_{n} \end{cases}$$
(5)

$$= \begin{cases} \underbrace{\Gamma_{mn}^{r} - \frac{1}{N+1} \left(\delta_{m}^{r} \Gamma_{pn}^{p} + \delta_{n}^{r} \Gamma_{pm}^{p} \right)}_{=P_{mn}^{r}} \\ + \underbrace{\frac{1}{N+1} \delta_{n}^{r} \overline{\psi_{m}} + \frac{1}{N+1} \delta_{m}^{r} \overline{\psi_{n}} + \frac{N}{N+1} \delta_{n}^{r} \overline{\psi_{m}} - \frac{1}{N+1} \delta_{n}^{r} \overline{\psi_{m}} - \frac{N}{N+1} \delta_{n}^{r} \overline{$$

$$=P_{mn}^{r} \tag{8}$$

proving the invariance of P_{mn}^r under projective transformations of the linear symmetric connections.

 \Diamond

As we are dealing with linear symmetric connections and $\delta_m^r \Gamma_{pn}^p - \delta_n^r \Gamma_{pm}^p$ also is symmetric, we can conclude that P_{mn}^r is symmetric. Also,

$$P_{rn}^{r} = \Gamma_{rn}^{r} - \frac{1}{N+1} \left(\delta_{r}^{r} \Gamma_{pn}^{p} + \delta_{n}^{r} \Gamma_{pr}^{p} \right) \tag{9}$$

$$=\Gamma_{rn}^{r}-\frac{1}{N+1}\left(N\Gamma_{pn}^{p}+\Gamma_{pn}^{p}\right) \tag{10}$$

$$=\Gamma_{rn}^r - \Gamma_{pn}^p \tag{11}$$

$$=0 (12)$$

 \Diamond

Let's perform a coordinate transformation, and use

(8.112):
$$\Gamma^{\rho}_{\mu\nu} = \Gamma^{r}_{mn} X^{\rho}_{r} X^{m}_{\mu} X^{n}_{\nu} + X^{r}_{\mu\nu} X^{\rho}_{r}$$

from which we obtain

$$= \begin{cases} \Gamma_{mn}^{r} X_{r}^{\rho} X_{\mu}^{m} X_{\nu}^{n} + X_{\mu\nu}^{r} X_{r}^{\rho} \\ -\frac{1}{N+1} \delta_{\mu}^{\rho} \left(\Gamma_{mn}^{r} \underbrace{X_{r}^{\tau} X_{\tau}^{m}}_{=\delta_{r}^{m}} X_{\nu}^{n} + \underbrace{X_{\tau\nu}^{r} X_{\tau}^{\tau}}_{=0} \right) \\ -\frac{1}{N+1} \delta_{\nu}^{\rho} \left(\Gamma_{mn}^{r} \underbrace{X_{\tau}^{\tau} X_{\tau}^{m}}_{=\delta_{r}^{m}} X_{\mu}^{n} + \underbrace{X_{\tau\mu}^{r} X_{\tau}^{\tau}}_{=0} \right) \end{cases}$$

$$(14)$$

$$= \begin{cases} \Gamma_{mn}^{r} X_{r}^{\rho} X_{\mu}^{m} X_{\nu}^{n} + X_{\mu\nu}^{r} X_{r}^{\rho} \\ -\frac{\Gamma_{rn}^{r}}{N+1} \left(\delta_{\mu}^{\rho} X_{\nu}^{n} + \delta_{\nu}^{\rho} X_{\mu}^{n} \right) \end{cases}$$
(15)

(2.542):
$$= \begin{cases} \Gamma_{mn}^{r} X_{r}^{\rho} X_{\mu}^{m} X_{\nu}^{n} + X_{\mu\nu}^{r} X_{r}^{\rho} \\ -\frac{\frac{\partial}{\partial x^{r}} \sqrt{a}}{\sqrt{a}(N+1)} \left(\delta_{\mu}^{\rho} X_{\nu}^{n} + \delta_{\nu}^{\rho} X_{\mu}^{n} \right) \end{cases}$$
 (16)

8.2 p309 - Exercise 11

Show that the differential equation of a path can be written in the form

$$\lambda^{s} \left(\frac{d\lambda^{r}}{du} + P_{mn}^{r} \lambda^{m} \lambda^{n} \right) = \lambda^{r} \left(\frac{d\lambda^{s}}{du} + P_{mn}^{s} \lambda^{m} \lambda^{n} \right)$$

where P_{mn}^r are the coefficients of projective connection defined in Ex. 10. Deduce that no change in the Γ_{mn}^r other than a projective transformation leaves the P_{mn}^r invariant.

Starting from (8.328) we have the differential equation of a path

$$\lambda^{s} \left(\frac{d\lambda^{r}}{du} + \Gamma^{r}_{mn} \lambda^{m} \lambda^{n} \right) = \lambda^{r} \left(\frac{d\lambda^{s}}{du} + \Gamma^{s}_{mn} \lambda^{m} \lambda^{n} \right)$$
 (1)

and using the definition of \mathcal{P}^r_{mn} we check the following expression

$$\lambda^{s} \left(\frac{d\lambda^{r}}{du} + \left[\Gamma_{mn}^{r} - \frac{1}{N+1} \left(\delta_{m}^{r} \Gamma_{pn}^{p} + \delta_{n}^{r} \Gamma_{pm}^{p} \right) \right] \lambda^{m} \lambda^{n} \right) \stackrel{?}{=} \lambda^{r} \left(\frac{d\lambda^{s}}{du} + \left[\Gamma_{mn}^{s} - \frac{1}{N+1} \left(\delta_{m}^{s} \Gamma_{pn}^{p} + \delta_{n}^{s} \Gamma_{pm}^{p} \right) \right] \lambda^{m} \lambda^{n} \right)$$

$$(2)$$

$$\Rightarrow \qquad \Gamma_{pn}^{p} \lambda^{r} \lambda^{n} \lambda^{s} + \Gamma_{pm}^{p} \lambda^{m} \lambda^{r} \lambda^{s} \stackrel{?}{=} \Gamma_{pn}^{p} \lambda^{s} \lambda^{n} \lambda^{r} + \Gamma_{pm}^{p} \lambda^{m} \lambda^{s} \lambda^{r}$$

$$(3)$$

Obviously the last expression is true, proving the equivalence of the equation of a path.

 \Diamond

As

$$\lambda^{s} \left(\frac{d\lambda^{r}}{du} + P_{mn}^{r} \lambda^{m} \lambda^{n} \right) = \lambda^{r} \left(\frac{d\lambda^{s}}{du} + P_{mn}^{s} \lambda^{m} \lambda^{n} \right)$$

describes a path and is equivalent to (8.328) we can follow the exact same reasoning from (8.328) on, to (8.332) where

$$B_{mn}^r = P_{mn}^{'r} - P_{mn}^r \tag{4}$$

$$=\Gamma_{mn}^{'r} - \frac{1}{N+1} \left(\delta_m^r \Gamma_{pn}^{'p} + \delta_n^r \Gamma_{pm}^{'p} \right) - \Gamma_{mn}^r + \frac{1}{N+1} \left(\delta_m^r \Gamma_{pn}^p + \delta_n^r \Gamma_{pm}^p \right) \tag{5}$$

$$=\underbrace{\Gamma_{mn}^{'r} - \Gamma_{mn}^{r}}_{=A_{mn}^{r}} - \frac{1}{N+1} \left[\delta_{m}^{r} \Gamma_{pn}^{'p} + \delta_{n}^{r} \Gamma_{pm}^{'p} - \delta_{m}^{r} \Gamma_{pn}^{p} - \delta_{n}^{r} \Gamma_{pm}^{p} \right]$$
(6)

$$=A_{mn}^{r}-\frac{1}{N+1}\left[\delta_{m}^{r}\left(\Gamma_{pn}^{'p}-\Gamma_{pn}^{p}\right)+\delta_{n}^{r}\left(\Gamma_{pm}^{'p}-\Gamma_{pm}^{p}\right)\right]\tag{7}$$

As we want P_{mn}^r to be invariant under projective transformations, we have $B_{mn}^r = 0$ and hence (7) can be written as

$$A_{mn}^{r} = \frac{1}{N+1} \left[\delta_{m}^{r} \left(\Gamma_{pn}^{'p} - \Gamma_{pn}^{p} \right) + \delta_{n}^{r} \left(\Gamma_{pm}^{'p} - \Gamma_{pm}^{p} \right) \right] \tag{8}$$

From this we see that ${\cal A}^r_{mn}$ must of the form

$$A_{mn}^r = \delta_n^r \phi_m + \delta_n^r \phi_n$$

with $\phi_k = \frac{1}{N+1} \left(\Gamma_{pk}^{'p} - \Gamma_{pk}^p \right)$, which leads to the type of transformations as defined in (8.337).

•

8.3 p310 - Exercise 12

Defining

$$P^{s}_{.rmn} = P^{s}_{rn,m} - P^{s}_{rm,n} + P^{p}_{rn}P^{s}_{pm} - P^{p}_{rm}P^{s}_{pn}$$

$$P_{rm} = P^s_{.rms}$$

where P_{mn}^{r} are the coefficients of projective connection of Ex. 10, show that

$$P_{.smn}^s = 0, \quad P_{rm} = -P_{rm,s}^s + P_{rs}^p P_{pm}^s$$

Prove that

$$W^s_{.rmn} = P^s_{.rmn} + \frac{1}{N-1} \left(\delta^s_m P_{rn} - \delta^s_n P_{rm} \right)$$

where $W^s_{.rmn}$ is the projective curvature tensor.

$$P_{.smn}^{s} = P_{sn,m}^{s} - P_{sm,n}^{s} + \underbrace{P_{sn}^{p} P_{pm}^{s} - P_{sm}^{p} P_{pn}^{s}}_{=0}$$
 (1)

from which we see that $P^s_{.smn} = -P^s_{.snm}$. From the definition of $P^s_{.rmn}$ it is easy to see that this quantity is symmetric in the last two suffixes. Hence we can conclude from $P^s_{.smn} = -P^s_{.snm}$ and $P^s_{.smn} = P^s_{.snm}$ that $P^s_{.smn} = 0$.

 \Diamond

$$P_{rm} = P_{.rms}^s \tag{2}$$

$$= \underbrace{P_{rs,m}^{s}}_{=0} - P_{rm,s}^{s} + P_{rs}^{p} P_{pm}^{s} - P_{rm}^{p} \underbrace{P_{ps}^{s}}_{=0}$$
(3)

$$= -P_{rm,s}^s + P_{rs}^p P_{pm}^s \tag{4}$$

♦

The last assignment requires about 5 pages of tedious and boring basic algebraic and suffix manipulations. There was no added value to transcript this in Latex.

♦

8.4 p310 - Exercise 13

Show that

$$\begin{split} W^s_{.smn} &= 0, \quad W^s_{.rsn} = 0, \quad W^s_{.rms} = 0, \\ W^s_{.rmn} &= -W^s_{.rnm}, \quad W^s_{.rmn} + W^s_{.mnr} + W^s_{.nrm} = 0, \end{split}$$

$$W_{.smn}^{s} = \underbrace{P_{.smn}^{s}}_{=0} + \frac{1}{N-1} \left(\underbrace{\delta_{m}^{s} P_{sn} - \delta_{n}^{s} P_{sm}}_{=P_{mn} - P_{nm} = 0} \right)$$

$$= 0$$

$$\begin{split} W^s_{.rsn} &= P^s_{.rsn} + \frac{1}{N-1} \left(\delta^s_s P_{rn} - \delta^s_n P_{rs} \right) \\ &= P^s_{.rsn} + \underbrace{P_{rn}}_{=P^s_{.rns}} \end{split}$$

but $P_{.rmn}^{s}$ is skew-symmetric in the last two suffixes, so

$$W^s_{.rsn} = 0$$

The same reasoning holds for

$$W^s_{.rms} = 0$$

$$\Diamond$$

$$W_{.rmn}^{s} + W_{.mnr}^{s} + W_{.nrm}^{s} = \begin{cases} \frac{1}{N-1} \left(\delta_{m}^{s} P_{rn} - \delta_{n}^{s} P_{rm} + \delta_{n}^{s} P_{mr} - \delta_{r}^{s} P_{mn} + \delta_{r}^{s} P_{nm} - \delta_{m}^{s} P_{nr} \right) \\ + P_{.rn,m}^{s} - P_{.rm,n}^{s} + P_{.rn}^{p} P_{.pm}^{s} - P_{.rm}^{p} P_{.pn}^{s} \\ + P_{.mr,n}^{s} - P_{.mn,r}^{s} + P_{.mr}^{p} P_{.pm}^{s} - P_{.mr}^{p} P_{.pr}^{s} \\ + P_{.nm,r}^{s} - P_{.nr,m}^{s} + P_{.nm}^{p} P_{.pr}^{s} - P_{.nr}^{p} P_{.pm}^{s} \end{cases}$$

$$= 0$$

♦

8.5 p310 - Exercise 14

In a space with linear connection, we say that the directions of two vectors, X^r at a point A and Y^r at a point B, are parallel with respect to a curve C which joins A and B if the vector obtained by parallel propagation of X^r along C from A to B is a multiple of Y^r . prove that the most general change of linear connection which preserves parallelism of directions (with respect to all curves) is given by

$$\Gamma_{mn}^{r} = \Gamma_{mn}^{r} + \delta_{m}^{r} \psi_{n}$$

where ψ_n is an arbitrary vector. If Γ_{mn}^r are the coefficients of a symmetric connection, show that $\Gamma_{mn}^{'r}$ are semi-symmetric (cf. Exercise 4).

Let's propagate parallely the vector X^r along the same curve C but with two different linear connections Γ^r_{mn} and $\Gamma^{'r}_{mn}$. So we have

$$\begin{cases} X_{,n}^r + \Gamma_{mn}^r X^m = 0 \\ X_{,mn}^r + \Gamma_{mn}^{'r} X^m = 0 \end{cases}$$

$$\tag{1}$$

(2)

Let's evaluate these expressions at the point B, requiring in both cases that at this point $X^r = \lambda_{(1)}Y^r$ for Γ^r_{mn} and $X^r = \lambda_{(2)}Y^r$ for Γ^r_{mn} where Y^r is a single valued vector at this point. We get,

$$\begin{cases} (\lambda_{(1)}Y^r)_{,n} + \Gamma^r_{mn}\lambda_{(1)}Y^m = 0\\ (\lambda_{(2)}Y^r)_{,n} + \Gamma^{'r}_{mn}\lambda_{(2)}Y^m = 0 \end{cases}$$
(3)

As Y^r is fixed, the partial derivatives can be reduced to $(\lambda_{(.)})_{,n}Y^r + 2^{nd}$ order terms and we rewrite (3) as

$$\begin{cases}
\left(\Gamma_{mn}^{r} \lambda_{(1)} + \delta_{m}^{r} \left(\lambda_{(1)}\right)_{,n}\right) Y^{m} = 0 \\
\left(\Gamma_{mn}^{\prime r} \lambda_{(2)} + \delta_{m}^{r} \left(\lambda_{(2)}\right)_{,n}\right) Y^{m} = 0
\end{cases}$$
(4)

$$\begin{cases}
\left(\Gamma_{mn}^{r} + \delta_{m}^{r} \frac{\left(\lambda_{(1)}\right)_{,n}}{\lambda_{(1)}}\right) Y^{m} = 0 \\
\left(\Gamma_{mn}^{'r} + \delta_{m}^{r} \frac{\left(\lambda_{(2)}\right)_{,n}}{\lambda_{(2)}}\right) Y^{m} = 0
\end{cases}$$
(5)

$$\Rightarrow \qquad \Gamma_{mn}^{'r} = \Gamma_{mn}^{r} + \delta_{m}^{r} \left[\frac{\left(\lambda_{(1)}\right)_{,n}}{\lambda_{(1)}} - \frac{\left(\lambda_{(2)}\right)_{,n}}{\lambda_{(2)}} \right] \tag{6}$$

Put
$$\psi_n = \frac{1}{2} \left(\frac{\left(\lambda_{(1)}\right)_{,n}}{\lambda_{(1)}} - \frac{\left(\lambda_{(2)}\right)_{,n}}{\lambda_{(2)}} \right)$$
 and we get

$$\Gamma_{mn}^{'r} = \Gamma_{mn}^r + 2\delta_m^r \psi_n$$

 $\langle \rangle$

If Γ^r_{mn} is symmetric then,

$$\Gamma_{mn}^{'r} - \Gamma_{nm}^{'r} = \delta_m^r \left[\frac{\left(\lambda_{(1)}\right)_{,n}}{\lambda_{(1)}} - \frac{\left(\lambda_{(2)}\right)_{,n}}{\lambda_{(2)}} \right] - \delta_n^r \left[\frac{\left(\lambda_{(1)}\right)_{,m}}{\lambda_{(1)}} - \frac{\left(\lambda_{(2)}\right)_{,m}}{\lambda_{(2)}} \right]$$

which is of the form $\Gamma^r_{mn} - \Gamma^r_{nm} = \delta^r_m A_n - \delta^r_n A_m$ as required by Exercise 4.

8.6 p310 - Exercise 15

In a space with symmetric connection, show that

$$T^r_{|mn} - T^r_{|nm} = -T^s R^r_{.smn}$$

We have

$$\begin{cases} T^r_{\mid mn} = \frac{\partial}{\partial x^n} T^r_{\mid m} + \Gamma^r_{qn} T^q_{\mid m} - \Gamma^q_{mn} T^r_{\mid q} \\ \\ T^r_{\mid nm} = \frac{\partial}{\partial x^m} T^r_{\mid n} + \Gamma^r_{qm} T^q_{\mid n} - \Gamma^q_{nm} T^r_{\mid q} \end{cases}$$

giving with $T^q_{~|m}=T^q_{,m}+\Gamma^q_{km}T^k$ and $T^q_{~|n}=T^q_{,n}+\Gamma^q_{kn}T^k$

$$T^{r}_{|mn} - T^{r}_{|nm} = \begin{cases} T^{s} \left(\frac{\partial}{\partial x^{n}} \Gamma^{r}_{ms} - \frac{\partial}{\partial x^{m}} \Gamma^{r}_{ns} \right) \\ + \underline{\Gamma^{r}_{mq} T^{q}_{,n}} - \underline{\Gamma^{r}_{nq} T^{q}_{,m}} \\ + \underline{\Gamma^{r}_{qn} T^{q}_{,m}} + \underline{\Gamma^{r}_{pn} \Gamma^{p}_{sm} T^{s}} \\ + \Gamma^{r}_{pn} \Gamma^{p}_{sm} T^{s} - \Gamma^{r}_{pm} \Gamma^{p}_{sn} T^{s} \end{cases}$$

$$(8.214) = -T^{s} R^{r}_{,smn}$$

♦