2020中国火星计划

根据叶培健院士讲座整理而成

BY 航天爱好者网

www.spaceflightfans.cn

任务概述-探测器组成

任务概述-飞行剖面

航天爱好者

长征五号运载火箭 2020年7月-8月

环绕探测

任务寿命:1个火星年(687地球日)

环绕轨道: 265×11943km, 倾角86.9°

载荷配置:7类探测设备

进入下降与着陆(EDL)

进入质量:~1285kg,其中火星车240kg

进入速度:~4.8km/s

着陆区域:北纬5°~北纬30°

表面巡视

考核寿命:90个火星日

载荷配置:6类探测设备

移动方式:主动悬架,轮式移动通讯方式:器间通讯+对地通讯

任务概述—关键事件点

	飞行事件	时间点	器地距离(公里)	传输时间延迟(单程)
	器箭分离	2020-7-23	548	
	地火转移	7个月	变远	
	火星捕获制动	2021-02-11	1.95亿	10.8min
	进入停泊轨道	2021-02-11	2.10亿	11.7min
	两器分离	2021-04-23	2.95亿	16.5min
7	火面着陆	2021-04-23	2.95亿	16.5min
曼好會	驶离至火面	2021-04-30	2.95亿	16.5min

任务概述—各飞行阶段

任务概述—着陆区初选

任务概述—探测器结构示意图

任务概述—探测器结构示意图

任务概述—探测器结构示意图

任务描述--环火星捕获过程

任务概述——EDL过程

任务概述——EDL过程

任务概述——火星车释放分离

任务概述——火星车工作模式

工作模式:

晴朗天气(光深<0.5),火星车正常工作,工作模式包括待机/充电、环境感知、移动、探测、 通信、火夜6种

沙尘天气(光深0.5~0.8),进入最小工作模式重度沙尘天气(光深>0.8),火星车自主断电休眠

任务周期

第一个火星日:环境感知、数据下传

第二个火星日:移动、数据下传

第三个火星日:科学探测、数据下传

考虑到太阳发电能力衰减,寿命默契,以6个火星日作为一个任务周期

任务概述——有效载荷(环绕器)

环绕探测科学任务	载荷配置(7类)
火星地形地貌特征及其变化探 测器	中分辨率相机(100m@400km) 高分辨率相机(全色分辨率2m) 环绕器次表层探测雷达
火星表面和地下水冰的探测	环绕器次标层探测雷达 火星矿物光谱分析仪
火星土壤类型分部和结构探测	环绕器表层探测雷达 火星矿物光谱分析仪 中分辨率相机
火星大气电离层分析及行星际 环境探测	火星磁强计 火星离子与中性粒子分析仪 中分辨率相机
火星表面物质成分的调查	火星矿物光谱分析仪 中分辨率相机 航天 爱好音

任务概述——有效载荷(火星车)

任务概述——测控通信与数据传输

直接对地链路(X频段)

环绕器:深空应答器、低/中/高增益天线组合

火星车: 低增益接收和定向收发天线, 完成对地

测控

器间通信链路(UHF+X频段)

UHF频段(双向): CCSDS邻近链路协议,自

适应调整

X频段(单向):复用火星车对地下行链路,两

者分时工作

任务概述——测控通信与数据传输

任务概述——信息系统体系

任务概述——工程展示及测量

任务概述——工程展示与测量

任务概述—与国外同类探测器比较

项目	海盗号	探路者	MER(勇气 机遇)	凤凰号	MSL	着陆巡视器
进入重量	981kg	570kg	840kg	573kg	3353kg	1285kg
进入方式	• 弹道升力式	• 弹道式	• 弹道式	• 弹道式	弹道-升力式Apollo制导	弹道升力式配平翼
伞系 直径	16.2m	12.7m	14.1m	11.8m	21.5m	15.96m
着陆 前制 动	发动机	固体火箭	固体火箭	发动机	发动机	发动机
着陆 缓冲 方式	腿式缓冲	气囊缓冲	气囊缓冲	腿式缓冲	空中吊车	腿式缓冲
着陆精度	280km×100km	200km×100km	150km×25km	100km×20km	20km×10km	100km×20km
着陆速度	<2.4m/s(垂直) 1m/s(水平)	<12.5m/s(垂直) 20m/s(水平)	<8.5m/s(垂直) 11.5m/s(水平)	<2m/s(垂直) 0.7m/s(水平)	<0.75m/s(垂直) 0.5m/s(水平)	<3.6m/s(垂直) 1m/s(水平)

任务概述——与国外同类探测器比较

比较项目	MER(勇气、机遇)	Curiosity (好奇)	兔子的
重量	174kg	899kg	240kg
悬架方式	被动悬架	被动悬架	主动悬架
移动方式	直线行驶/原地转向/行进间转向	直线行驶/原地转向/行进间转向	直线行驶/原地转向/行进间转向/蟹行/蠕动
最大速度	180m/h	200m/h	200m/h
导航速度	30m/h	40m/h	40m/h
越障高度	25cm	65cm	30cm
爬坡角度	20°	30°	30°
能源形式	蓄电池/太阳能电池/RHU	蓄电池/RTG	蓄电池/太阳能电池
通信能力	对地码速率:1850bps 对环绕器码速率:8k~256kbps	对地码速率:15bps~800bps 对环绕器码速率:2kbp~256kbps	X频段码速率:32bps~4Mps UHF码速率:1kbps~2048kbps
设计工作 时间	90火星日	1火星年	90火星日

关注的技术问题——任务顶层特点

The second of th		
任务需求	月球探测	火星探测
飞行距离更远	40万km	4/Zkm
自主需求更高	通信单程1.35秒	日凌:最远单程22分钟
任务环境复杂	真空环境 光照强 月面地形 1/6重力	稀薄大气、多尘、风光照弱 火面复杂地形 3/8重力
減速要求更高 	12分钟 15km→月面 减速 1.7km/s	7~8分钟 125km→火面 减速4.8km/s

关注的技术问题——任务顶层难点

任务起点高 技术跨度大

- ◆ 以此实现"绕着巡",多任务耦合设计,难以兼顾
- ◆ 任务固有风险大,国际火星任务成功率仅为52%
- ◆ 发射规模最大,有效着陆质量仅次于好奇号,环火探测能力与国际相当

任务环境新 不确定性大

- ◆ 火面诸多新环境,不确定性大
- ◆ 目前设计没有准确一手设计

关键环节多 攻关难度大

- ◆ 关键性、唯一性环节多:捕获制动、器箭分离、 EDL过程开伞、动力减速等
- ◆ 全新气动外形、新型盘缝带伞、新式主动悬架、 行星际测控等7类18项关键技术

研制周期短 试验难度大

- ◆ 专项试验项目多、试验规模大:气动验证、降落 山火箭弹飞行验证试验等
- ◆ 火星环境困难,试验难度大,存在部分火星环境 不负综合模拟问题