Problem Set 8

1. (#5 in 6.2) Prove Theorem 6.2.4: Let A_{τ_A} be a connected subspace of a space X_{τ} , and let B be a subset of X with $A \subseteq B \subseteq \operatorname{Cl}(A)$. Then B is also connected in the subspace topology.

Proof: Let A_{τ_A} be a connected subspace of a space X_{τ} and B be a subset of X with $A \subseteq B \subseteq \operatorname{Cl}(A)$. By theorem 6.2.3, we also know that $\operatorname{Cl}(A)$ is connected.

Assume by way of contradiction that B is disconnected. That is, there exist non-empty subsets of B, β_1 , β_2 open in τ_B such that $\beta_1 \cup \beta_2 = B$ and $\beta_1 \cap \beta_2 = \emptyset$.

Since β_1 and β_2 are τ_B -open, there exist τ -open sets U_1, U_2 such that

$$\beta_1 = U_1 \cap B$$

$$\beta_2 = U_2 \cap B$$

And since $A \subseteq B$, we have that $A = A \cap B$. So

$$A = A \cap [(U_1 \cap B) \cup (U_2 \cap B)]$$

$$= (A \cap (U_1 \cap B)) \cup (A \cap (U_2 \cap B))$$

$$= (A \cap B \cap U_1) \cup (A \cap B \cap U_2)$$

$$= (A \cap U_1) \cup (A \cap U_2)$$

$$= A \cap (U_1 \cup U_2)$$

Let $V_1 = A \cap U_1$ and $V_2 = A \cap U_2$; which are open in τ_A since U_1 and U_2 are τ -open. So we have

$$A = V_1 \cup V_2$$

Now we will show that V_1, V_2 are non-empty. Recall that $Cl(A) = A \cup A'$.

Since $\beta_1 \neq \emptyset$ and $\beta_1 = U_1 \cap B$, we have that U_1 is nonempty. Let $x_0 \in B$. Then $x_0 \in \beta_1 \cup \beta_2$, and since $\beta_1 \cap \beta_2 = \emptyset$, x_0 is either exclusively in β_1 or β_2 . Suppose without loss of generality that $x_0 \in \beta_1$. Then $x_0 \in U_1 \cap B$, and so $x_0 \in U_1$. Additionally, since $B \subseteq Cl(A)$, $x_0 \in Cl(A)$. Then every neighborhood N_{x_0} of x_0 intersects A nontrivially, so $x_0 \in A$. Then we have $x_0 \in A$ and $x_0 \in U_1$, so $x_0 \in A \cap U_1 = V_1$.

So we have that $V_1 = A \cap U_1$ is non-empty. A similar argument holds for V_2 .

Recall that $\beta_1 \cap \beta_2 = \emptyset$ and that $\beta_1 = U_1 \cap B$ and $\beta_2 = U_2 \cap B$, so

$$\beta_1 \cap \beta_2 = (U_1 \cap B) \cap (U_2 \cap B)$$
$$= U_1 \cap B \cap U_2 \cap B$$

$$= B \cap B \cap (U_1 \cap U_2)$$
$$= B \cap (U_1 \cap U_2)$$
$$= \emptyset$$

and since $B \neq \emptyset$, we have that $U_1 \cap U_2 = \emptyset$.

Notice that

$$V_1 \cap V_2 = (A \cap U_1) \cap (A \cap U_2)$$

$$= A \cap A \cap U_1 \cap U_2$$

$$= A \cap (U_1 \cap U_2)$$

$$= A \cap \emptyset$$

$$= \emptyset$$

So we have two τ_A -open sets V_1, V_2 such that $V_1 \cup V_2 = A$ and $V_1 \cap V_2 = \emptyset$. So by definition, we have that A is disconnected, which contradicts the hypothesis that A is connected, and thus, B must be a connected space of X_{τ} .

- 2. Let X_{τ} be a space with the property that given any $x \in X$ and any neighborhood U of x, there is a neighborhood V of x such that Cl(V) is a proper subset of U.
 - (a) Give an example that shows that X need not be connected.

Consider a set X equipped with the discrete topology and let $x \in X$. Then any subset $U \subseteq X$ that contains x is a neighborhood of x. Then for any proper subset V of U, Cl(V) = V in the discrete topology, and so we have $Cl(V) \subset U$. So $X_{\mathcal{D}}$ satisfies these conditions. Additionally, as long as $Card(X) \geq 2$, we have that $X_{\mathcal{D}}$ is disconnected.

(b) If we add the condition that for every $x \in X$ and every neighborhood U of x there is a connected neighborhood V_x of x such that $x \in V_x \subseteq \text{Cl}(V_x) \subseteq U$, is this sufficient to make X connected? Explain.

No. Let X be a space equipped with the discrete topology where $\operatorname{Card}(X) > 2$. Let $x \in X$ and U be a neighborhood of x. Let $V_x = \{x\}$ be the neighborhood of x that contains only x. Since X is equipped with the discrete topology, $\operatorname{Cl}(V_x) = V_x$ and notice that V_x is trivially connected and $x \in \{x\} \subseteq U$. However, since X is a discrete topological space, we have that X is disconnected.

3. (#6 in 6.4) Prove that if X_{τ} is path-connected and $\tau' \subseteq \tau$, then $X_{\tau'}$ is also path-connected.

Proof: Let X_{τ} and $X_{\tau'}$ be topological spaces where $\tau' \subseteq \tau$ and X_{τ} is path-connected. Since $\tau' \subseteq \tau$, we have that the identity map $i_x : X_{\tau} \to X_{\tau'}$ is continuous. And since X_{τ} is path-connected, we have that $X_{\tau'}$ is also path-connected since $X_{\tau'}$ is the continuous image of a path-connected space.

4. Prove that any quotient space of a path-connected space is path-connected. That is, if X_{τ} is a path-connected space and \sim is an equivalence relation on X, then the quotient space X/\sim is path-connected.

Proof: Let X_{τ} be a path-connected space, \sim be an equivalence relation of X and let X/\sim be the quotient space. Let $\nu:X_{\tau}\to X_{/\sim}$ be the natural map. We have that ν is continuous, and we wish to show that ν is surjective. Suppose by way of contradiction that ν is not surjective. That is, there exists some element $[x] \in X_{/\sim}$ such that $\nu^{-1}([x]) = \emptyset$. But from the definition of the natural map, $\nu^{-1}([x]) = x \in X$. So ν is surjective. Since path-connectedness is a strong topological property and ν is continuous, we have that $X_{/\sim}$ is also path-connected.

Bonus Show that if U is an open connected subset of \mathbb{R}^2 , then U is path-connected. (Hint: Show that given a point $x_0 \in U$, the set of points in U that can be joined to x_0 by a path in U is both open and closed.)