MSRI Soergel bimodule workshop

June/July 2017

Week 1 Day 2 Afternoon: Supplementary/Advanced Exercises

Diagrammatics for monoidal categories

- 1. In class, we fixed a biadjunction between E and E^{\vee} , and a biadjunction between F and F^{\vee} . We demonstrated two ways to take a 2-morphism $\beta \colon E \to F$ and return a 2-morphism $F^{\vee} \to E^{\vee}$, known as the right mate β^{\vee} and the left mate β^{\vee} . One can think about these as "twisting" or "rotating" β by 180 degrees to the right or to the left. Visualize what it would mean to twist β by 360 degrees to the right, yielding another 2-morphism $\beta^{\vee\vee} \colon E \to F$. Verify that β is cyclic, i.e. $\beta^{\vee} = {}^{\vee}\beta$, if and only if $\beta = \beta^{\vee\vee}$.
- **2.** Suppose that B is an object in a monoidal category with biadjoints, and $\phi: B \otimes B \otimes B \to \mathbb{I}$ is a cyclic morphism. What should it mean to "rotate" ϕ by 120 degrees? Suppose that $\text{Hom}(B \otimes B \otimes B, \mathbb{I})$ is one-dimensional over \mathbb{C} . What can you say about the 120 degree rotation of ϕ , vis a vis ϕ ?