SageMath Toolbox for Rank Error-Correcting Codes

Research Internship with Dr. Simona Samardjiska

Maaike van Leuken BSc

M.vanLeuken@student.ru.nl

Institute for Computing and Information Sciences – Digital Security Radboud University Nijmegen

March 5th 2021

Introduction

- Quantum computing breaks
 - Integer factorization problem $\rightarrow RSA$
 - Discrete logarithm problem \rightarrow ElGamal, ECC
- (General) Syndrome Decoding Problem (NP-hard)
- Rank Syndrome Decoding Problem!

Background

Error-Correcting Codes

An [n, k]-code $C \subseteq \mathbb{F}_{q^m}$ has

- Generator matrix $G \in \mathbb{F}_{a^m}^{k \times n}$
- ullet Parity check matrix $H \in \mathbb{F}_{a^m}^{(n-k) imes n}$
- Messages $m \in \mathbb{F}_{q^m}^k$
- Codewords $c \in \mathbb{F}_{q^m}^n$

Properties: $GH^T = 0$, $Hc^T = 0$

Encoding: c = mG

Syndrome decoding: $s(y) = Hy^T = H(c + e)^T = He^T$

Background

Rank

$$c=(z_2,z_2+1)$$
 in $[2,1]$ -code $C\subseteq \mathbb{F}_{2^2}$ in matrix form: $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ $ightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
ightarrow |c|_R=2$

Support

$$Supp(c) = \langle z_2, z_2 + 1 \rangle_2$$
 is the subspace with basis $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Syndrome Decoding Problems

Rank Syndrome Decoding (RSD) Problem

$$\begin{cases} He^T = s^T \\ |e|_R = w \end{cases}$$

Knowing s and E = Supp(e) gives e!

bit security	128	192	256	
RSA	3072	7680	15360	
Goppa-McEliece	$2 \cdot 10^{6}$	$4 \cdot 10^{6}$	$6 \cdot 10^{6}$	
Gabidulin (DRANKULA)	62000	118 160	216000	l
QC LRPC (LOCKER)	5893	8 383	9523	5

Toolbox

- In SageMath
- Basics:
 - Support
 - Finding codewords
 - Rewriting elements in certain basis
- Attack: GRS algorithm
- Family of codes: LRPC codes

GRS Algorithm

- **1** Pick $F \subseteq \mathbb{F}_{q^m}$ of dimension r
- **2** Rewrite $He^T = s$, where e is rewritten in F via $e_i = \sum_{j=0}^{r-1} \lambda_{ij} F_j$, nr unknowns
- 3 Rewrite system, where H, F and s are rewritten in basis, gives (n-k)m equations
- 4 Find solution, check rank

n Name of the second

Low Rank Parity Check (LRPC) Codes

- Construction: pick d random vectors for F, find H
- Encoding: generator matrix
- Decoding:
 - \bigcirc Find the support of s
 - **2** Recover $E = S_1 \cap ... \cap S_d$, where $S_i = F_i^{-1}S$
 - **3** Rewrite $He^T = s$ in terms of $P = \langle E.F \rangle$
 - 4 Solve system, then c = y e and $m = \frac{c}{G}$

Future Research

- More attacks: adaptation of GRS attack, polynomial annulator attack
- More family of codes: simple codes, cyclic codes, QC-LRPC, DC-LRPC
- Application of codes to cryptography: GPT and LRPC cryptosystem, authentication