« Previous (/course/cs357-f15/flow-session/74246/7/)	跳转至最末 »
1 2 3 (/course/cs357-f15/flow-session/74246/0/) (/course/cs357-f15/flow-session/74246/2/) (/course/cs357-f15/flow-session/74246/2/) (/course/cs357-f15/flow-session/74246/3/) (/course/cs357-f15/flow-session/74246/3/) (/course/cs357-f15/flow-session/74246/3/) (/course/cs357-f15/flow-session/74246/3/)	e/cs357-f15/flow- /-session/74246/4/)
7 (/course/cs357-f15/flow-session/7424 8 9 session/74246/6/) (/course/cs	l6/5/) (/course/cs357-f15/flow- s357-f15/flow-session/74246/7/)

Putting it together

Now you have:

- generate_brownian_asset_price to randomly generate a price based on some riks (or volatility)
- call_payout to calculate the payout for this price

Do the following:

- Randomly generate a bunch of payouts
- Calculate the average payout
- Scale this average payout by a *discount factor*, the amount of interest: e^{-rT} .

What is the price we should pay for this option?

Plot the prices over the simulations