Wprowadzenie teoretyczne:

Co to jest Maszyna Turinga?

Odpowiedź:

Maszyną Turinga nazywamy siódemkę uporządkowaną $MT = (Q, \Sigma, \Gamma, \delta, q_0, q_{ACC}, q_{REJ}),$ gdzie:

- *Q* jest skończonym zbiorem stanów
- Σ jest alfabetem wejściowym (nie zawierającym symbolu pustego \square)
- Γ jest alfabetem taśmy ($\square \in \Gamma$ oraz $\Sigma \subset \Gamma$)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ jest funkcją przejścia
- q_0 jest wyróżnionym stanem początkowym
- q_{ACC} jest wyróżnionym stanem akceptującym
- q_{REJ} jest wyróżnionym stanem odrzucającym ($q_{ACC} \neq q_{REJ}$)

Zadanie 1

Skonstruować maszynę Turinga, która prawidłowo oblicza funkcję f(x) = x + 1.

Zadanie 2

Skonstruować maszynę Turinga, która prawidłowo oblicza funkcję f(x) = 2x + 1.

Zadanie 3

Skonstruować maszynę Turinga, która prawidłowo oblicza poniższe funkcje (kod $argumentów - unarny; alfabet = \{1\}$).

- a) f(x) = 0
- b) f(x) = x+1
- c) f(x,y) = x
- d) f(x,y) = x+y

Zadanie 4

Skonstruować maszynę Turinga, która prawidłowo oblicza następującą funkcję (kod argumentów – binarny; alfabet = $\{0,1\}$) f(x) = 0.

Zadanie domowe

- 1. Skonstruować maszynę Turinga, która prawidłowo oblicza funkcje (zapis liczb binarny):
 - a) $f(x) = x \mod 4$ (reszta z dzielenia x przez 4)
 - b) g(x) = x div 4 (część całkowita z dzielenia x przez 4).
- 2. Skonstruować maszynę Turinga, która prawidłowo oblicza poniższe funkcje (kod $argumentów - unarny; alfabet = \{1\}):$

a)
$$f(x,y) = x \div y = \begin{cases} x - y & x \ge y \\ 0 & x < y \end{cases}$$

b) $f(x) = \operatorname{sg} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$

b)
$$f(x) = \operatorname{sg} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$$

Wprowadzenie teoretyczne:

Co to jest Maszyna Turinga?

Odpowiedź:

Maszyną Turinga nazywamy siódemkę uporządkowaną $MT = (Q, \Sigma, \Gamma, \delta, q_0, q_{ACC}, q_{REJ}),$ gdzie:

- *Q* jest skończonym zbiorem stanów
- Σ jest alfabetem wejściowym (nie zawierającym symbolu pustego \square)
- Γ jest alfabetem taśmy ($\square \in \Gamma$ oraz $\Sigma \subset \Gamma$)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ jest funkcją przejścia
- q_0 jest wyróżnionym stanem początkowym
- q_{ACC} jest wyróżnionym stanem akceptującym
- q_{REJ} jest wyróżnionym stanem odrzucającym ($q_{ACC} \neq q_{REJ}$)

Zadanie 1

Skonstruować maszynę Turinga, która prawidłowo oblicza funkcję f(x) = x + 1.

Zadanie 2

Skonstruować maszynę Turinga, która prawidłowo oblicza funkcję f(x) = 2x + 1.

Zadanie 3

Skonstruować maszynę Turinga, która prawidłowo oblicza poniższe funkcje (kod $argumentów - unarny; alfabet = \{1\}$).

- a) f(x) = 0
- b) f(x) = x+1
- c) f(x,y) = x
- d) f(x,y) = x+y

Zadanie 4

Skonstruować maszynę Turinga, która prawidłowo oblicza następującą funkcję (kod argumentów – binarny; alfabet = $\{0,1\}$) f(x) = 0.

Zadanie domowe

- 1. Skonstruować maszynę Turinga, która prawidłowo oblicza funkcje (zapis liczb binarny):
 - a) $f(x) = x \mod 4$ (reszta z dzielenia x przez 4)
 - b) g(x) = x div 4 (część całkowita z dzielenia x przez 4).
- 2. Skonstruować maszynę Turinga, która prawidłowo oblicza poniższe funkcje (kod $argumentów - unarny; alfabet = \{1\}):$

a)
$$f(x,y) = x \div y = \begin{cases} x - y & x \ge y \\ 0 & x < y \end{cases}$$

b) $f(x) = \operatorname{sg} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$

b)
$$f(x) = \operatorname{sg} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$$