Bernd Schröder

1. Euler's Method formalizes the idea of tracing curves in a direction field for the differential equation y' = F(x, y).

- 1. Euler's Method formalizes the idea of tracing curves in a direction field for the differential equation y' = F(x, y).
- 2. For a fixed step length  $\Delta x$ , we compute the slope  $F(x_0, y_0)$  of the tangent to the solution curve through  $(x_0, y_0)$ .

- 1. Euler's Method formalizes the idea of tracing curves in a direction field for the differential equation y' = F(x, y).
- 2. For a fixed step length  $\Delta x$ , we compute the slope  $F(x_0, y_0)$  of the tangent to the solution curve through  $(x_0, y_0)$ . Then we follow that tangent line for a distance of  $\Delta x$ .

- 1. Euler's Method formalizes the idea of tracing curves in a direction field for the differential equation y' = F(x, y).
- 2. For a fixed step length  $\Delta x$ , we compute the slope  $F(x_0, y_0)$  of the tangent to the solution curve through  $(x_0, y_0)$ . Then we follow that tangent line for a distance of  $\Delta x$ .
- 3. At the end point  $(x_1, y_1)$  of this line segment we use  $F(x_1, y_1)$  to compute the slope at this new point  $(x_1, y_1)$

- 1. Euler's Method formalizes the idea of tracing curves in a direction field for the differential equation y' = F(x, y).
- 2. For a fixed step length  $\Delta x$ , we compute the slope  $F(x_0, y_0)$  of the tangent to the solution curve through  $(x_0, y_0)$ . Then we follow that tangent line for a distance of  $\Delta x$ .
- 3. At the end point  $(x_1, y_1)$  of this line segment we use  $F(x_1, y_1)$  to compute the slope at this new point  $(x_1, y_1)$  and then we follow this new line segment.

- 1. Euler's Method formalizes the idea of tracing curves in a direction field for the differential equation y' = F(x, y).
- 2. For a fixed step length  $\Delta x$ , we compute the slope  $F(x_0, y_0)$  of the tangent to the solution curve through  $(x_0, y_0)$ . Then we follow that tangent line for a distance of  $\Delta x$ .
- 3. At the end point  $(x_1, y_1)$  of this line segment we use  $F(x_1, y_1)$  to compute the slope at this new point  $(x_1, y_1)$  and then we follow this new line segment.
- 4. This process repeats for as far as we want to go.



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



$$y' = y - x^2$$
,  $y(0) = 0$ 



 $y' = y - x^2$ , y(0) = 0,



400 pts., exact solution:  $y(x) = x^2 + 2x + 2 - 2e^x$ 

# Reminder for Spreadsheet Implementation

# Reminder for Spreadsheet Implementation

Step length:  $\Delta x$ . Initial values:  $(x_0, y_0)$ .

$$x_{n+1} := x_n + \Delta x$$
  
 $y_{n+1} = y_n + F(x_n, y_n) \Delta x.$ 

The value  $y_n$  will be an approximation for the value of the solution y at  $x_n$ .