

Interpolation, Curves, Surfaces

CS 355: Interactive Graphics and Image Processing

Interpolation

- Used to estimate a function between known sampled values
- Digital signals to analog
 - Audio playback
 - Image display
- Spatial image manipulation
 - Changing size
 - Rotation
 - Warping
- Smooth geometric models between defined points

Interpolation

Nearest Neighbor

Linear Interpolation

Cubic Interpolation

3rd order

Cubic Interpolation

$$f(x) = ax^3 + bx^2 + cx + d$$
$$(x_1 \le x \le x_2)$$

$$f(x_0) = a x_0^3 + b x_0^2 + c x_0 + d$$

$$f(x_1) = a x_1^3 + b x_1^2 + c x_1 + d$$

$$f(x_2) = a x_2^3 + b x_2^2 + c x_2 + d$$

$$f(x_3) = a x_3^3 + b x_3^2 + c x_3 + d$$

$$\begin{bmatrix} x_0^0 & x_0^1 & x_0^2 & x_0^3 \\ x_1^0 & x_1^1 & x_1^2 & x_1^3 \\ x_2^0 & x_1^2 & x_2^2 & x_2^3 \\ x_3^0 & x_3^1 & x_3^2 & x_3^3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \\ f(x_3) \end{bmatrix}$$

Solve for a, b, c, d and plug into function

Longer Sequences

Oth - nearest neighbor 1st - use one sample on both sides 3rd - use two samples on both sides

Continuity

Oth order: function is continuous

1st order: slope is continuous

nth order: nth derivative is continuous

2D Curves

- Parametric curves
 - Parameter *t* traces the curve
 - One function for each dimension

Cubic Curves

- Lots of types
 - Exact-fit curves (splines, etc.)
 - Bezier
 - B-splines
 - •

Bezier Curves

- Specify end points and a set of control points in between
- Curve doesn't (usually) pass through control points
- Control points determine slopes at certain points
- Common in 2D drawing programs

Complicated Curves

- Piecewise cubic segments
 - Can get 0th-order continuity by sharing endpoints
 - Can get 1st-order continuity by aligning control points
- Use higher-degree polynomials
 - Can make an nth-order Bezier curve out of two end points and n-1 control points
 - Cumbersome and slow for long curves
 - Non-local control!

B-Splines

- More common to use basis splines (B-splines)
- Each local portion of the curve is a weighted blend of nth-order basis functions (usually cubic)

2D Images

- Extend ideas of single-value interpolation
 - Nearest neighbor
 - Linear
 - Cubic
 - •

Nearest Neighbor

- Same idea as in 1-d:
 Round off to nearest pixel
- Also called "pixel replication"
- Big "blocky" pixels

Bilinear

- Very common approach:
 - Interpolate vertically
 - Interpolate horizontally

(or vice versa)

• For linear interpolation, this is called *bilinear*

Bicubic

- Same idea as bilinear but using a 4 x 4 grid of neighbors
- Tends to produce sharper results
- More computationally intensive

Generalizing Bilinear

- Corner points don't have to lie on a square or rectangle
- Can be any quadrilateral

Generalized Bilinear

General form:

$$f(x) = ax + by + cxy + d \quad \longleftarrow$$

Use similar strategy as with curve fitting:

$$f(x_1) = ax_1 + by_1 + cx_1y_1 + d$$

$$f(x_2) = ax_2 + by_2 + cx_2y_2 + d$$

$$f(x_3) = ax_3 + by_3 + cx_3y_3 + d$$

$$f(x_4) = ax_4 + by_4 + cx_4y_4 + d$$

Solve for a, b, c, d and plug into function

3D Surfaces

- Extend idea of Bezier or B-spline curves to a mesh or grid of control points
- Two parameters across surface: s, t
- Similar in principle to bicubic interpolation

3D Surfaces

- Bezier
- B-spline
- Non-Uniform Rational B-splines (NURBs)
- Catmull-Rom and other spline variations
- Subdivision surfaces

Summary

Functions	f(x)
Images	I(x,y) or I(x,y,z)
Parametric Curves	x(t), y(t), z(t)
Parametric Surfaces	x(s,t), y(s,t), z(s,t)

Coming up...

- Geometric operations:
 - Resizing
 - Rotating
 - Warping