Fahim Tajwar

Website: https://tajwarfahim.github.io/ Email: ftajwar@cs.cmu.edu

EDUCATION

Carnegie Mellon University Doctor of Philosophy (PhD), Machine Learning Pittsburgh, PA 2023 -- Current

Stanford UniversityStanford, CAMaster of Science (MS), Computer Science (AI/ML)2022 -- 2023Bachelor of Science (BS) with Distinction, Mathematics2017 -- 2022

PUBLICATIONS (* Equal Contribution)

Conservative Prediction via Data-Driven Confidence Minimization	2023
Caroline Choi*, Fahim Tajwar*, Yoonho Lee*, Huaxiu Yao, Ananya Kumar, Chelsea Finn	
Preprint, 2023	

Surgical Fine-Tuning Improves Adaptation to Distribution Shifts Yoonho Lee*, Annie S Chen*, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, Chelsea Finn International Conference on Learning Representations (ICLR), 2023

When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning Annie Xie*, Fahim Tajwar*, Archit Sharma*, Chelsea Finn

Neural Information Processing Systems (NeurIPS), 2022

Do Deep Networks Transfer Invariances Across Classes?

Allan Zhou*, <u>Fahim Tajwar</u>*, Alexander Robey, Tom Knowles, George J. Pappas, Hamed Hassani, Chelsea Finn International Conference on Learning Representations (ICLR), 2022

No True State-of-the-Art? OOD Detection Methods are Inconsistent across Datasets

<u>Fahim Tajwar</u>, Ananya Kumar*, Sang Michael Xie*, Percy Liang ICML Workshop on Uncertainty & Robustness in Deep Learning (UDL), 2021

Scalable deep learning to identify brick kilns and aid regulatory capacity

Jihyeon Lee*, Nina R. Brooks*, <u>Fahim Tajwar</u>, Marshall Burke, Stefano Ermon, David B. Lobell, Debashish Biswas, Stephen P. Luby Proceedings of the National Academy of Sciences, Apr 2021, 118 (17)

RESEARCH EXPERIENCE

Research Intern, Stanford Artificial Intelligence Laboratory

March 2020 - Current

2021

- (Prof. Chelsea Finn and Percy Liang) Relationship between distribution shifts and the layer of a neural network that should be fine-tuned (surgical fine-tuning) on the unsupervised (test-time) adaptation setting, specifically adapting earlier layers outperform adapting later/all layers for corruption datasets like CIFAR-10-C and ImageNet-C (*Under review in ICLR*, 2023)
- (Prof. Chelsea Finn) Deep reinforcement learning for irreversible environments with applications to episodic, autonomous, and continuous learning setups (*NeurIPS, 2022*)
- (Prof. Chelsea Finn) Generative model-based algorithm that produces performance boost of 1-2% when combined with other stateof-the-art methods on long-tailed versions of datasets like CIFAR, GTSRB, etc. (<u>ICLR</u>, <u>2022</u>)
- (Prof. Percy Liang) Demonstration of out-of-distribution (OOD) detection problem being too broad by showing that many well-known methods don't perform consistently on a comprehensive suite of benchmark datasets (<u>ICML UDL Workshop</u>, <u>2021</u>)

Computer Vision Research Intern, Stanford University

March 2019 - June 2020

- (Prof. Steve Luby and Stefano Ermon) Built a system using convolutional neural networks (CNNs), that detects environmental regulation violations in the form of brick kilns and produces their co-ordinates from satellite imagery in South Asia (<u>PNAS, 2021</u>)
- Detected nearly 10,000 brick kilns in Bangladesh which directly affect the lives of at least 1 million people using the trained CNN in *TensorFlow*, with the possibility of extending the project over to India (with 100,000 kilns) and other developing countries
- Created a classifier to distinguish between environment-friendly (Zigzag) and unfriendly (FCK) type of brick kilns

Research Intern, SLAC National Accelerator Laboratory

June 2018 – September 2018

- (Johanna Nelson Weker and Prof. Piero Pianetta) Using *Python ("Tomopy")*, generated 3D X-ray images of Lithium-Ion batteries from 2D projections and used the *Dragonfly* software to segment them
- Quantified the relationship between the morphological change near Anode (e.g., Lithium plating) and various accelerated ageing conditions --- recorded a 40% increase in Lithium plating in batteries cycled at 55° C compared to those cycled at 25° C.

TEACHING EXPERIENCE

Teaching Assistant, CS 330 (Deep Multi-Task and Meta Learning), Stanford University	Sept 2022 – Dec 2022
Academic Tutor, Athletic Academic Resource Center (AARC), Stanford University	Sept 2021 – June 2022
Academic Tutor, Stanford University Mathematical Organization (SUMO)	Sept 2019 – June 2020
Trainer, National Physics Olympiad Team, Bangladesh (BdPhO)	Feb 2017 – June 2018

INDUSTRY EXPERIENCE

Software Engineer Intern, Meta Platforms (formerly Facebook)

June 2022 – September 2022

- · As part of the Ads Core ML Eng team, designed and implemented components for state-of-the-art ML recommendation systems in Python
- Experimented with various knowledge distillation techniques to improve performance of computationally cheaper ML networks
- · Designed new modules with scalability in mind to make sure they work well with extremely large datasets and can also be trained efficiently

Software Engineering Intern, Cadence Design Systems

June 2020 – September 2020

- Using C++, designed efficient data storage systems for graph neural networks (GNN), which reduced memory usage by 86%
- Using Python (NumPy), designed and implemented efficient data pre-processing modules
- Designed time and memory efficient data-loader classes in Keras and TensorFlow; researched memory-time tradeoff to find the optimal design

SKILLS

Programming Languages: C, C++, Python, Java, Matlab Frameworks: Unix, PyTorch, Caffe2, TensorFlow

TALKS & PRESENTATION

• Neural Information Processing Systems (NeurIPS)	November 2022
• International Conference on Learning Representations (ICLR)	April 2022
• ICML Workshop on Uncertainty & Robustness in Deep Learning (UDL)	July 2021
• Stanford Earth Summer Undergraduate Research (SESUR)	August 2019
Stanford EE Research Experience for Undergraduates (REU)	August 2018

AWARDS

University Distinction, top 15% of the graduating class, Stanford University	June 2022
Tau Beta Pi Engineering Honor Society	May 2020
Bronze Medal, 48th International Physics Olympiad, Indonesia	July 2017
Bronze Medal, 47th International Physics Olympiad, Switzerland Liechtenstein	July 2016

SERVICE

• Reviewer, Neural Information Processing Systems (NeurIPS)

2023

SELECTED COURSEWORK

Mathematics: Real Analysis, Functional Analysis, Differential Topology, Measure Theory, Probability Theory, Graph Theory, Abstract Algebra, Linear Algebra & Matrix Theory, Statistical Inference, Numerical Computing

Computer Science: Machine Learning, Reinforcement Learning, Convex Optimization, Deep Learning for Computer Vision, Artificial Intelligence: Principles and Techniques