Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	$y \to \left(\frac{y_T}{y_B}\right), A \to \left(A_L \mid A_R\right)$
2	where y_B has 0 rows, A_R has 0 columns $\left\{ \left(\begin{array}{c c} A_L & xy_B^T + \widehat{A}_R \end{array} \right) \right.$
3	while $m(y_B) < m(y)$ do
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \wedge m(y_B) < m(y) \right\}$
5a	$\left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right), \left(A_L \mid A_R\right) \to \left(A_0 \mid a_1 \mid A_2\right)$
6	where ψ_1 has 1 row, a_1 has 1 column
	$\left\{ \left(\begin{array}{ccc} A_0 & a_1 & A_2 \end{array} \right) = \left(\begin{array}{ccc} \widehat{A}_0 & \widehat{a}_1 & xy_2^T + \widehat{A}_2 \end{array} \right) $
8	$a_1 := \psi_1 x + a_1$
7	$\left\{ \left(\begin{array}{ccc} A_0 & a_1 & A_2 \end{array} \right) = \left(\begin{array}{ccc} \widehat{A}_0 & \psi_1 x + \widehat{a}_1 & x y_2^T + \widehat{A}_2 \end{array} \right) \right.$
5b	$\left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right), A \to \left(A_L \mid A_R\right) \leftarrow \left(A_0 \mid a_1 \mid A_2\right)$
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \land \neg (m(y_B) < m(y)) \right\}$
1b	$\left\{A := xy^T + \widehat{A}\right\}$

Step	Algorithm: $A := xy^T + A$
1a	{
4	
	where
2	
3	while do
2,3	$\left\{ \begin{array}{c} \wedge \end{array} \right\}$
5a	where
6	}
8	
7	{
5b	
2	
	endwhile
2,3	$\left\{ \begin{array}{ccc} & & & & \\ & & & \\ & & & \\ \end{array} \right.$
1b	{

Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	where
2	{
3	while do
2,3	\ \ \
5a	where
6	
8	
7	{
5b	
2	
	endwhile
2,3	$\left\{ \begin{array}{ccc} & & & & \\ & & & \\ & & & \\ \end{array} \right.$
1b	$A := xy^T + \widehat{A}$

Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	
	where
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
3	while do
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \wedge \right. $
5a	
	where
6	}
8	
7	$\Big \Big\{$
5b	
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \land \neg () \right\}$
1b	$\left\{A := xy^T + \widehat{A}\right\}$

Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	
	where
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
3	while $m(y_B) < m(y)$ do
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \wedge m(y_B) < m(y) \right\}$
5a	
	where
6	}
8	
7	$\Big \Big\{$
5b	
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \land \neg (m(y_B) < m(y)) \right\}$
1b	$\left\{A := xy^T + \widehat{A}\right\}$

Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	$y \to \left(\frac{y_T}{y_B}\right), A \to \left(A_L \middle A_R\right)$ where y_B has 0 rows, A_R has 0 columns
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
3	while $m(y_B) < m(y)$ do
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \wedge m(y_B) < m(y) \right\}$
5a	where
6	\[\{ \]
8	
7	\
5b	
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \land \neg (m(y_B) < m(y)) \right\}$
1b	$\left\{ A := xy^T + \widehat{A} \right\}$

Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	$y \to \left(\frac{y_T}{y_B}\right), A \to \left(A_L \mid A_R\right)$
9	where y_B has 0 rows, A_R has 0 columns
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
3	while $m(y_B) < m(y)$ do
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \land m(y_B) < m(y) \right\}$
5a	$ \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right), \left(A_L \mid A_R\right) \to \left(A_0 \mid a_1 \mid A_2\right) $ where ψ_1 has 1 row, a_1 has 1 column
6	
8	
7	{
5b	$\left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right), A \rightarrow \left(A_L \mid A_R\right) \leftarrow \left(A_0 \mid a_1 \mid A_2\right)$
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \land \neg (m(y_B) < m(y)) \right\}$
1b	$\left\{A := xy^T + \widehat{A}\right\}$

Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	$y \to \left(\frac{y_T}{y_B}\right), A \to \left(A_L \mid A_R\right)$
2	where y_B has 0 rows, A_R has 0 columns
	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
3	while $m(y_B) < m(y)$ do
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \land m(y_B) < m(y) \right\}$
5a	$ \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right), \left(A_L \mid A_R\right) \to \left(A_0 \mid a_1 \mid A_2\right) $ where ψ_1 has 1 row, a_1 has 1 column
6	$\left\{ \begin{array}{ccc} \left(A_0 & a_1 & A_2 \right) = \left(\widehat{A}_0 & \widehat{a}_1 & xy_2^T + \widehat{A}_2 \right) \end{array} \right\}$
8	
7	{
5b	$\left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right), A \to \left(A_L \mid A_R\right) \leftarrow \left(A_0 \mid a_1 \mid A_2\right)$
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \land \neg (m(y_B) < m(y)) \right\}$
1b	$\left\{A := xy^T + \widehat{A}\right\}$

Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	$y \to \left(\frac{y_T}{y_B}\right), A \to \left(A_L \mid A_R\right)$
2	where y_B has 0 rows, A_R has 0 columns
	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
3	while $m(y_B) < m(y)$ do
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \land m(y_B) < m(y) \right\}$
5a	$\left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right), \left(A_L \mid A_R\right) \to \left(A_0 \mid a_1 \mid A_2\right)$
6	where ψ_1 has 1 row, a_1 has 1 column $\left\{ \begin{array}{ccc} \left(A_0 \ a_1 \ A_2 \right) = \left(\widehat{A}_0 \ \widehat{a}_1 \ xy_2^T + \widehat{A}_2 \right) \end{array} \right\}$
	$\left(\frac{110}{10} \frac{u_1}{u_1} \frac{112}{12}\right) \left(\frac{110}{10} \frac{u_1}{u_1} \frac{u_2}{u_2} + \frac{112}{12}\right)$
8	
7	$\left\{ \left(\begin{array}{cc} A_0 & a_1 & A_2 \end{array} \right) = \left(\begin{array}{cc} \widehat{A}_0 & \psi_1 x + \widehat{a}_1 & x y_2^T + \widehat{A}_2 \end{array} \right) $
5b	$\left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right), A \to \left(A_L \mid A_R\right) \leftarrow \left(A_0 \mid a_1 \mid A_2\right)$
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \land \neg (m(y_B) < m(y)) \right\}$
1b	$\left\{A := xy^T + \widehat{A}\right\}$

Step	Algorithm: $A := xy^T + A$
1a	$\{A = \widehat{A}\}$
4	$y \to \left(\frac{y_T}{y_B}\right), A \to \left(A_L \mid A_R\right)$
2	where y_B has 0 rows, A_R has 0 columns $\left\{ \left(\begin{array}{c c} A_L & xy_B^T + \widehat{A}_R \end{array} \right) \right.$
3	while $m(y_B) < m(y)$ do
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \wedge m(y_B) < m(y) \right\}$
5a	$\left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right), \left(A_L \mid A_R\right) \to \left(A_0 \mid a_1 \mid A_2\right)$
6	$ \begin{array}{c} \text{where } \psi_1 \text{ has 1 row, } a_1 \text{ has 1 column} \\ \left\{ \left(A_0 \ a_1 \ A_2 \right) = \left(\widehat{A}_0 \ \widehat{a}_1 \ xy_2^T + \widehat{A}_2 \right) \\ \end{array} \right\} $
8	$a_1 := \psi_1 x + a_1$
7	$\left\{ \left(A_0 \ a_1 \ A_2 \right) = \left(\widehat{A}_0 \ \psi_1 x + \widehat{a}_1 \ x y_2^T + \widehat{A}_2 \right) \right\}$
5b	$\left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right), A \to \left(A_L \mid A_R\right) \leftarrow \left(A_0 \mid a_1 \mid A_2\right)$
2	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle x y_B^T + \widehat{A}_R \right) \right\}$
	endwhile
2,3	$\left\{ \left(A_L \middle A_R \right) = \left(\widehat{A}_L \middle xy_B^T + \widehat{A}_R \right) \land \neg (m(y_B) < m(y)) \right\}$
1b	$\left\{A := xy^T + \widehat{A}\right\}$

Algorithm: $A := xy^T + A$
$y \to \left(\frac{y_T}{y_B}\right), A \to \left(A_L \mid A_R\right)$ where y_B has 0 rows, A_R has 0 columns
where g _B has a rows, r _R has a coramins
while $m(y_B) < m(y)$ do
$ \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right), \left(A_L \mid A_R\right) \to \left(A_0 \mid a_1 \mid A_2\right) $ where ψ_1 has 1 row, a_1 has 1 column
$a_1 := \psi_1 x + a_1$
$\left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right), A \to \left(A_L \mid A_R\right) \leftarrow \left(A_0 \mid a_1 \mid A_2\right)$
endwhile

Algorithm: $A := xy^T + A$

$$y \to \left(\frac{y_T}{y_B}\right), A \to \left(A_L \mid A_R\right)$$

where y_B has 0 rows, A_R has 0 columns

while $m(y_B) < m(y)$ do

$$\left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right), \left(A_L \mid A_R\right) \to \left(A_0 \mid a_1 \mid A_2\right)$$

where ψ_1 has 1 row, a_1 has 1 column

 $a_1 := \psi_1 x + a_1$

$$\left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right), A \to \left(A_L \mid A_R\right) \leftarrow \left(A_0 \mid a_1 \mid A_2\right)$$

endwhile