Модель OSI

Open System interaction.

Взаимодействие открытых систем.

7. Прикладной уровень

представляет набор интерфейсов, позволяющий получить доступ к сетевым службам

6. Уровень представления

преобразует данные в общий формат для передачи по сети

5. Сеансовый уровень

поддерживает взаимодействие (сеанс) между удаленными процессами

4. Транспортный уровень

управляет передачей данных по сети, обеспечивает подтверждение передачи

3. Сетевой уровень

маршрутизация, управление потоками данных, адресация сообщений для доставки; преобразование логические сетевые адреса и имена в

преобразование логические сетевые адреса и имена в соответствующие им физические

2. Канальный уровень

- Контроль логической связи (LLC): формирование кадров
- 2.2. Контроль доступа к среде (MAC): управление доступом к среде

1. Физический уровень

обеспечивает битовые протоколы передачи информации

Модель OSI	IBM/Microsoft	TCP/IP	Novell	CTOK OSI
Прикладной	SMB	Teinet, FTP, SNMP, SMTP, WWW	NCP, SAP	X.400 X.500 FTAM
Представительный	50			Представительный протокол OSI
Свансовый		тср		Севнсовый протокол OSI
Транспортный	NetBIOS		SPX	Транспортный протокол OSI
Сетевой		IP, RIP, OSPF	IPX, RIP, NLSP	ES-ES IS-IS
Канальный	802.3 (Ethernet), 802.5 (Token Ring), FDDI, Fast Ethernet, SLIP, 100VG-AnyLAN, X.25, ATM, LAP-B, LAP-D, PPP			
Физический	Коаксиал, экранированная и неэкранированная витая пара, оптоволокно, радиоволны			

Уровни модели OSI

Уровни стека ТСР/IР

Цели физического уровня

Предоставление вышестоящему канальному уровню сервиса побитовой передачи информации в какой-либо среде между устройствами.

Обеспечение максимальной скорости, надежности передачи (иногда защищенности) по физическим каналам связи.

Проводные и беспроводные линии связи.

Основные топологии физического соединения, шина, звезда, кольцо, полносвязное соединение (затраты на кабельные соединения).

Физический уровень модели OSI. Физические аспекты взаимодействия в сетях

Характеристики линий связи.

надежность и скорость передачи данных

Любой сигнал может быть представлен набором гармоник. (функций синусов и косинусов от частоты и фазы)

Данные характеристики между собой связаны и на них оказывает влияние

Амплитудно-частотная характеристика, полоса пропускания, затухание

Затухание показывает ослабление сигнала на данной частоте и обычно измеряется в децибелах

A = 10*log10(Pвых/Pвх)

Например, кабель витой пары пятой категории имеет затухание не ниже -23.6 Дб для частоты сигнал 100 МГц и длине кабеля 100 м.

Способ представления дискретной информации в виде сигналов подаваемых в линию связи называется линейным кодированием

от способа кодирования зависит скорость передачи данных

Энтропия!!!

мера неопределённости или непредсказуемости информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

$$H(x) = -\sum_{i=1}^{n} p(i) \log_2 p(i).$$

получение сообщений имеющих меньшую вероятность появления от источника сообщений оцениваются как получение большего количества информации и значительно больше уменьшают такую характеристику как энтропия источника сообщений (неопределенность).

Большинство методов кодирования используют изменение одной из характеристик гармонического сигнала (несущего сигнала или несущей частоты) — амплитуды, фазы или частоты или нескольких, при этом сигнал может квантоваться по данным характеристикам на несколько уровней, количество состояний которые можно передать в единицу времени при таком кодировании измеряется в бодах.

S(t) информационный сигнал

 $U_c(t)$ несущее колебание.

 $U_{
m am}(t)$ амплитудно-модулированный сигнал

Амплитудная модуляция, математический аспект

$$U_{\rm am}(t) = U_c(t)[1 + mS(t)].$$
 (1)

$$|S(t)| < 1, \quad 0 < m \le 1.$$
 (2)

Амплитудная манипуляция

Двоичная частотная манипуляция

Напомним, что мгновенная частота любого узкополосного колебания

$$s(t) = A(t)\cos[2\pi f_0 t + \varphi(t)]$$

может быть определена как производная по времени полной мгновенной фазы;

$$\frac{d}{dt}[2\pi f_0 t + \varphi(t)] = 2\pi f_0 + \frac{d}{dt}\varphi(t) = \varpi(t) = \varpi_0 + \Omega(t)$$

Поэтому фазовую модуляцию с непрерывным гладким изменением фазы можно рассматривать как частотную модуляцию.

При двоичной частотной манипуляции частота несущего колебания с постоянной амплитудой может иметь два возможных значения и изменяется скачками в соответствии со значениями модулирующего сигнала.

$$s(t) = A\cos[(2\pi f_0 + 2\pi\Delta f)]t$$
, $0 < t \le T_c$ (при передаче 1)

$$s(t) = A\cos[(2\pi f_0 - 2\pi\Delta f)t], \quad 0 < t \le T_c$$
 (при передаче 0)

$$s[t; u(t)] = A\cos[2\pi f_0 t + \varphi(t)] = A\cos[2\pi f_0 t + k_f \int_{-\infty}^{t} u(\tau) d\tau]$$

(ГУН - генератор, управляемый напряжением).

Функциональная схема формирования ЧМ сигнала с непрерывной фазой

При квадратурной амплитудной модуляции (КАМ) изменяются значения амплитуды и начальной фазы каждого канального символа. Если число возможных значений этих параметров дискретно и конечно, то этот тип модуляции также является цифровым. Один канальный символ сигнала при таком способе модуляции можно представить следующим равенством:

$$s_m(t) = A_m \cos(2\pi f_0 t + \Phi_m) = \operatorname{Re} \left[A_m \exp \left\{ j \Phi_m \right\} \exp \left\{ 2\pi f_0 t \right\} \right],$$

$$(i-1)T_c < t \le iT_c,$$

в котором Am является комплексной амплитудой этого канального символа, m = 1,2,...,M. При построении *сигнального созвездия* этого сигнала удобнее использовать вещественную и мнимую части комплексной амплитуды:

$$s_m(t) = A_{mi} \cos(2\pi f_0 t + \Phi_m) = A_m \cos(\Phi_m) \cos(2\pi f_0 t) + A_m \sin(\Phi_m) \times \sin(2\pi f_0 t) = a_m \cos(2\pi f_0 t) + b_m \sin(2\pi f_0 t), \quad (i - 1) < t \le iT_c.$$

где am и bm - координаты m-й точки сигнального созвездия **КАМ** сигнала.

Функциональная схема устройства формирования КАМ сигнала.

Созвездие QAM и QPSK (QAM-4)

Пропускная способность

Формула Найквиста

$$C = B \bullet \log_2(K)$$

Формула Шеннона

$$C = B \bullet \log_2\left(1 + \frac{S}{N}\right)$$