NJU 数学分析 A 期中考试

zjc from $TRIVIAL\,GROUP$

2019.11.19

一. 填空觊 (母觊 4 分, 共 24 分)	
(1) 数列极限 $\lim_{n \to \infty} (n - \sqrt{n^2 - n}) = 1$	
$n{ ightarrow}\infty$	
(2) 数列极限 $\lim \sqrt[n]{e^n + \pi^n} = $	•
$n{ ightarrow}\infty$	

- (3) 数列极限 $\lim_{n \to \infty} (\cos \frac{1}{n} + \sin \frac{1}{n})^n = \underline{\hspace{1cm}}$
- (4) 函数极限 $\lim_{x\to 1} \frac{\sqrt{x}-1}{\sqrt[3]{x}-1} =$ ______.
- (5) 函数极限 $\lim_{x\to 0} \frac{e^{\tan x} e^{\sin x}}{x^3} = \underline{\qquad}$.
- (6) 函数极限 $\lim_{x\to 0^+} \frac{\ln \cos x}{\sin^2 x} =$ ______.
- 二. 证明下列结论:(每题 12 分, 共 24 分)
- (1) 设 $a_1 = 1$, $a_{n+1} = \sqrt[3]{4 + a_n^2}$, 则数列 $\{a_n\}$ 收敛.
- (2) 设 $a_{n+1} = \frac{1}{2}(a_n + \sin a_n)$, 则不论 a_1 取什么实数, 数列 $\{a_n\}$ 均收敛于 0.
- 三. 每小题 6 分, 共 12 分:
- 当 n 为正整数时, 记 $a_n = \sin \sqrt{n}$.
- (1) 当 $p \ge 1$ 时, 证明数列 $\{a_{n+p} a_p\}$ 收敛于 0.
- (2) 数列 {a_n} 是否收敛? 请说明理由.
- 四. 每小题 10 分, 共 20 分:
- (1) 设数列 $\{a_n\}$ 收敛, 证明 $\{a_1, a_2, ..., a_n, ...\}$ 中存在最大数或最小数.
- (2) 设函数 f(y) 在 (-1,1) 中连续, $f(y) = o(y)(y \to 0)$. 证明如果函数 g(x) 满足 $g(x) = O(x)(x \to 0)$, 则 $f(g(x)) = o(x)(x \to 0)$.
- 五. 每小题 10 分, 共 20 分:
- 设 $\{f_n(x)\}_{n=1}^\infty$ 为 (0,1) 中的一列连续函数, 且对每一个 $x\in(0,1)$, 均有 $\lim_{n\to+\infty}|f_n(x)|=0$.
- (1) 证明: 存在子区间 $I \subset (0,1)$ 以及 N, 使得在 $I + |f_N| \leq \frac{1}{2}$.
- (2) 证明: 存在子区间 $I \subset (0,1)$ 以及 N, 使得 n > N 时, 在 I 中 $|f_n| \leq \frac{1}{2}$.