

Kontest 3 – PreOM 2025

Zadanie 1. Dodanie liczby rzeczywiste a i b spełniają następujące warunki:

- funkcja $f(x) = x^3 + ax^2 + 2bx 1$ ma trzy różne pierwiastki rzeczywiste,
- funkcja $g(x) = 2x^2 + 2bx + a$ nie ma pierwiastków rzeczywistych.

Udowodnij, że a - b > 1.

Zadanie 2. Rozważ układ żetonów na płaszczyźnie, niekoniecznie umieszczonych w różnych punktach. Dozwolone jest wykonanie sekwencji ruchów następującego rodzaju: wybierz parę żetonów znajdujących się w punktach A i B i przesuń oba do punktu będącego środkiem odcinka AB.

Mówimy, że układ n żetonów jest **scalalny**, jeśli możliwe jest, po skończonej liczbie ruchów, sprowadzenie wszystkich n żetonów do jednego punktu. Udowodnij, że każdy układ n żetonów jest scalalny wtedy i tylko wtedy, gdy n jest potęgą dwójki.

Zadanie 3. Znajdź wszystkkie dodatnie liczby całkowite n spełniające równość:

$$\phi(n) + \sigma(n) = 2n + 8.$$

Gdzie $\phi(n)$ oznacza liczbę liczb całkowitych ze zbioru $\{1,2,\ldots,n\}$ względnie pierwszych z n, a $\sigma(n)$ oznacza sumę dzielników liczby n.

Zadanie 4. Dany jest trójkąt ABC oraz punkt P wewnątrz tego trójkąta. Niech P_a , P_b , P_c będą rzutami P na BC, AC, AB odpowiednio. Dodatkowo zakładamy, że AP_a , BP_b , CP_c przecinają się w punkcie R. Udowodnij, że punkty P, R i środek okręgu opisanego na $P_aP_bP_c$ leżą na jednej prostej.

