5G (IMT-2020) vs. 4G (IMT-Advanced)

62705 GUO Xiaofan

1. Peak Data Rate

5G: 20Gbps.

4G: 1Gbps.

- 1) <u>High-definition video(4K/8K), VR or AR</u>: these application scenarios require very high bandwidth and extremely fast transmission speeds, so 5G is more suitable.
- 2) <u>Daily mobile phone using, social media</u>: 4G is sufficient to meet the needs. The peak rate of 5G will not significantly improve the user experience in this low-bandwidth demand scenario.

2. User Experienced Data Rate

5G: Up to 100 Mbps in urban areas.

4G: Typically, 10-30 Mbps.

- 1) <u>High-density places</u> (stadiums, concerts, commercial areas): A large number of users using the network at the same time will cause congestion. 5G provides a higher experience rate. In a high-density user environment, the rate of 4G drops significantly.
- 2) <u>Daily use with low user density</u>, the 4G experience can meet most needs.

3. Latency

5G: As low as 1 ms.

4G: Typically, 10 ms or higher.

- High real-time requirements (autonomous driving, industrial automation, remote surgery):
 5G's ultra-low latency ensures that information is transmitted with almost no delay, meeting the needs of these applications with high real-time requirements.
- 2) <u>General real-time applications</u> (video calls, online games): 4G can provide a good user experience. But 5G can further enhance the experience.

4. Connection Density

5G: supports 1 million devices per square kilometer.

4G: usually around tens of thousands of devices per square kilometer.

- 1) <u>Internet of Things (IoT), Smart Cities:</u> The high connection density provided by 5G can support a large number of sensor devices and IoT terminals in smart cities.
- 2) In common user scenarios: 4G can meet the connection needs of most devices.

5. Spectrum Efficiency

5G: 3 times higher than 4G.

- 1) <u>Urban core areas with limited spectrum resources and high user density</u>: The higher spectrum efficiency provided by 5G means that more data traffic can be provided with the same spectrum resources.
- 2) <u>In areas with low density and sufficient spectrum resources</u>: 4G can provide a good network experience.

6. Mobility

5G: supports mobile speeds of 500 km/h.

4G: usually supports speeds of around 350 km/h.

- 1) <u>High-speed mobile scenarios</u> (high-speed trains, airplanes): 5G can provide a more stable connection, ensuring that passengers can continue to use the network while moving at high speeds.
- 2) Daily travel (driving, cycling, walking), 4G is sufficient to support stable connection of devices.

7. Energy Efficiency (Energy consumed per bit transmitted)

5G: Energy efficiency is 100 times that of 4G

1) <u>IoT devices and low-power applications</u>: 5G has outstanding energy efficiency and can support more low-power devices to work for a long time.

2) <u>Daily mobile phone use</u>: 4G's energy efficiency can already meet the needs.

8. Cost

- 1) 5G: For application scenarios that require high bandwidth and low latency, 5G is a better choice; although the initial cost is high, the long-term profit potential is great.
- 2) 4G: For everyday mobile phone users, low bandwidth requirements and mature markets, 4G is a better choice, with relatively small cost burdens for operators and consumers.

Cost	5G (IMT-2020)	4G (IMT-Advanced)
Infrastructure	High: Requires more base stations	Low: Already mature and
	and fiber upgrades due to higher	widespread, minimal
	frequency and density demands.	expansion needed.
Operational	High: Increased energy	Low: Established technology,
	consumption and more frequent	fewer maintenance needs, and
	maintenance due to a larger	relatively lower power
	number of smaller, complex base	consumption.
	stations.	
End-User Device	High: Early 5G-enabled devices are	Low: 4G devices are mass-
	expensive due to advanced	produced and affordable, with
	components, but prices may	a mature supply chain.
	decrease over time.	
Spectrum	High: Spectrum auctions for 5G,	Low: 4G spectrum has already
	particularly in high-frequency	been allocated and usage
	bands, can be very costly for	costs are stable and
	operators.	predictable.
Long-Term	High: Potential for large-scale	Stable: Well-established in the
	industrial applications, providing	consumer market, generating
	strong long-term revenue growth.	continuous but limited growth
		potential.