Laboratório de Sistemas de Controle

Djonathan Luiz de Oliveira Quadras

2020-06-06

Contents

A	presentação	5		
1	Simulação de Sistemas	7		
2	Efeitos de Pólos e Zeros na Dinâmica	9		
	2.1 Apresentação do Laboratório	9		
	2.2 Procedimentos	10		
3	Identificação de Sistemas	35		
	3.1 Apresentação do Laboratório	35		
	3.2 Procedimentos	39		
4	Rastreamento de Referências e Rejeição de Perturbações - Erro em Regime Permanente	47		
	4.1 Apresentação do Laboratório	47		
	4.2 Procedimentos	50		
5	Projeto de Controladores por Métodos Algébricos	55		
6	Linearização de Sistemas Não-Lineares	57		
7	Controle de Sistemas Não-Lineares	59		
8	Análise pelo Lugar das Raízes			
9	Projeto de Controladores pelo Lugar das Raízes	63		

4	CONTENTS
10 Projeto do controlador atraso de fase	65
11 Análise pelos Diagramas de Bode e Nyquist	67
12 Projeto de Controladores pelo Diagrama de Bode	69
13 Digitalização de Controladores Analógicos	71

Apresentação

Working on it:)

6 CONTENTS

Chapter 1

Simulação de Sistemas

Este laboratório consistiu apenas na apresentação da disciplina, da ferramenta e do método que será aplicado. Não teve nehuma atividade desenvolvida.

Chapter 2

Efeitos de Pólos e Zeros na Dinâmica

2.1 Apresentação do Laboratório

2.1.1 Objetivo

Nesta experiência, verificaremos a influência dos pólos e zeros de uma Função de Transferência na resposta dinâmica para entradas do tipo degrau e também para entradas senoidais. Utilizaremos o Matlab para realizar as simulações.

2.1.2 Pólos e Zeros

Considere uma função de Trasnferência da forma

$$G(s) = \frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_m s + b_{m+1}}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

onde Y(s) é a saída, U(s) é a entrada, $n \ge m$ e todos os coeficientes são reais. Temos as seguintes definições:

- 1. Os pólos G(s) são as raízes de D(s) (D(s) = 0);
- 2. Os zeros de G(s) são as raízes de N(s) (N(s) = 0);
- 3. G(s) é estável quando todos os pólos possuem parte real negativa, ou seja, estão no semi-plano esquerdo (SPE) do plano s;
- 4. G(s) é *instável* quando existe ao menos um pólo com parte real positiva, ou seja, no semi-plano (SPD);
- 5. G(s) é de fase não-mínima quando há pólos ou zeros no SPE.

Considere que G(s) é estável, ou seja, todos os pólos estão no SPE. Em geral, para entradas do tipo degrau, temos:

- 1. A componente da resposta dinâmica referente a um pólo afastado da origem (do plano s) é relativamente rápida;
- 2. A componente da resposta dinâmica referente a um pólo próximo da origem é relativamente lenta;
- 3. Um zero tende a fazer com que a resposta dinâmica apresente sobressinal. Quanto mais próximo da origem estiver o zero, maior o sobressinal. E, quanto mais longe da origem, menor se torna o sobressinal, podendo o mesmo não existir. Assim, um sistema de segunda ordem com pólos reais e um zero poderá apresentar um sobressinal dependendo do posicionamento do zero no plano s;
- 4. Um zero bem próximo de um pólo tende a anular os efeitos dos mesmos na resposta dinâmica.

2.2 Procedimentos

Problema 1

Considere o sistema de primeira ordem

$$G(s) = \frac{1}{\tau s + 1},$$

onde $\tau=1,\,\tau=0.5$. Para cada valor de τ , determine o pólo e sua posição no plano s (use os comandos zpk e pzmap no Matlab), e conclua sobre a estabilidade e a rapidez da resposta do sistema. Simule para uma entrada do tipo degrau unitário. Analise e compare os resultados. Agora, repita o procedimento para o sistema

$$G(s) = \frac{1}{s-1}.$$

Resolução

A resolução será feita em quatro partes: (1) a resolução para $\tau=1$ usando pzmap, (2) a resolução para $\tau=0.5$ usando pzmap, (3) a simulação e comparação dos resultados e, por fim, (4) a resolução para $G(s)=\frac{1}{s-1}$.

Parte 1 Para $\tau = 1$, temos a função de transferência dada por

$$G(S) = \frac{1}{s+1}.$$

O código implementado no Matlab foi o apresentado abaixo.

```
g = tf([1], [1 1])
[p, z] = pzmap(g)
pzmap(g)
```

Tendo como resultados de pólos e zeros:

p = -1 z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu pólo em s=-1. A sua posição no plano é apresentada na figura abaixo.

Como o pólo da função de transferência se encontra na SPE, conclui-se que o sistema se compartará de uma forma estável.

Parte 2 Para $\tau = 0.5$, temos a função de transferência dada por

$$G(S) = \frac{1}{0.5s + 1}.$$

O código implementado no Matlab foi o apresentado abaixo.

```
g = tf([1], [0.5 1])
[p, z] = pzmap(g)
pzmap(g)
```

Tendo como resultados de pólos e zeros:

p = -2

z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu pólo em s=-2. A sua posição no plano é apresentada na figura abaixo

Como o pólo da função de transferência se encontra na SPE, conclui-se que o sistema se compartará de uma forma estável. Também é possível concluir que o sistema alcanraça a estabilidade mais rápido para $\tau=0.5$.

Parte 3 A simulação do sistema implementada em Matlab está apresentado na figura abaixo.

O resultado apresentado pelo scope é apresentado na figura abaixo.

Percebe-se que, assim como esperado, o sistema se comporta de forma estável e tem uma convergência mais rápida para $\tau=0.5$.

Parte 4 Para a última etapa temos a função de transferência dada por

$$G(S) = \frac{1}{s-1}.$$

O código implementado no Matlab foi o apresentado abaixo.

```
g = tf([1], [1 -1])
[p, z] = pzmap(g)
pzmap(g)
```

Tendo como resultados de pólos e zeros:

p =

1

z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu pólo em s=1. A sua posição no plano é apresentada na figura abaixo

Como o pólo da função de transferência se encontra na SPD, conclui-se que o sistema se compartará de uma forma instável. A simulação em Matlab está apresentada na figura abaixo.

O resultado apresentado pelo scope é apresentado na figura abaixo.

O resultado comprova o esperado. O sistema se comporta de forma instável para a função de transferência dada por $G(s)=\frac{1}{s-1}$.

Problema 2

Considere o sistema de primeira ordem (integrador)

$$G(s) = \frac{1}{s}.$$

Determine o pólo e a sua posição no plano s e simule para uma entrada do tipo degrau unitário e também para $\sin(t)$ (para $\sin(t)$, escolha **Max Step Size** = **0.1** em **Simulation** \Longrightarrow **Configurarion Parameters**). Note que a saída é a integral da entrada. Tais resultados eram esperados? Dica: relembre que Y(s) = G(s)U(s), e que se $x(t) \iff X(S)$, então $\int_0^t x(\tau) d\tau \iff X(s)/s$.

Resolução

O código utilizado no Matlab é apresentado abaixo.

```
g = tf([1], [1 0])
[p,z] = pzmap(g)
pzmap(g)
```

Obtendo como resultado:

p =

0

z =

0×1 empty double column vector

Conclue-se então que a função de transferência $G(s)=\frac{1}{s}$ não tem zeros e tem pólo em s=0. O mapa da posição no plano é mostrado na figura abaixo.

Isso mostra que o sistema é um caso crítico. Neste caso a resposta em regime permanente do sistema a uma entrada de amplitude limitada será uma senóide.

A simulação feita em Matlab está apresentada na figura abaixo.

O resultado da simulação é apresentado na figura abaixo.

O resultados eram esperados, uma vez que em um estado crítico a função de transferência pode estar em um estado permanente senoidal caso a entrada seja senoidal ou pode divergir caso a entrada seja um sinal constante.

Problema 3

Considere o sistema de segunda ordem

$$G(s) = \frac{1}{s^2 + 25}.$$

Determine os pólos e suas posições no plano s. Simule para as seguintes entradas: degrau unitário, $\sin(4t)$, $\sin(6t)$. Observe que a saída é limitada. Agora, semule para a entrada $\sin(5t)$. Note que a amplitude de saída cresce indefinidamente. Tal fenômeno é denominado de ressonância. De moro mais geral, para

$$G(s) = \frac{1}{s^2 + \omega_0^2},$$

teremos ressonância quando aplicamos uma entrada senoidal da forma $\sin(\omega_0 t + \phi)$. Note que a frequência de ressonância ω_0 é igual a parte imaginária dos pólos de G(s).

Resolução

O código utilizado no Matlab é apresentado abaixo.

```
g = tf([1], [1 0 25])
[p,z] = pzmap(g)
pzmap(g)
```

Obtendo como resultado:

```
p =
    0.0000 + 5.0000i
    0.0000 - 5.0000i

z =
    0×1 empty double column vector
```

Conclue-se então que a função de transferência $G(s)=\frac{1}{s^2+25}$ não tem zeros e tem pólo em $s=\pm 5i$. O mapa da posição no plano é mostrado na figura abaixo.

De acordo com o mapa de posição, pode-se concluir que a função de transferência é classificada como um caso crítico. A figura abaixo apresenta o modelo de simulação criado no Simulink.

O resultado da simulação é apresentado abaixo.

É fácil perceber que o modelo se comporta de maneira instável com a entrada $u(t) = \sin(5t)$, se mostrando estável nas demais situações.

Problema 4

Considere o sistema de segunda orde

$$G(s) = \frac{1.6}{(s+1)(s+2)} = \frac{0.8}{0.5s^2 + 1.5s + 1}.$$

Determine os pólos e suas posições no plano s e simule para uma entrada do tipo degrau unitário. Note que não há sobressinal. Tal resultado era esperado? Justifique.

Agora, adicionando um zero, temos

$$G(s) = \frac{1.6(\beta s + 1)}{(s+1)(s+2)} = \frac{0.8(\beta s + 1)}{0.5s^2 + 1.5s + 1},$$

onde $\beta=0.1,\ \beta=0.6,\ \beta=0.99,\ \beta=1.2,\ \beta=2,\ \beta=10.$ Para cada valor de β , determine os pólos e zeros, suas posições no plano s e simule para uma entrada do tipo degrau unitário. Analise e compare os resultados. Note que dependendo da posição do zero o sobressinal será maior ou menor, podendo também não estar presente.

Resolução

Utilizando a função pzmap() do Matlab para encontrar os pólos da função de transferência $G(s) = \frac{0.8}{0.5s^2 + 1.5s + 1}$ temos que a função não possui zeros e possui pólos para s=-2 e s=-1. O mapa de posições é apresentado na figura abaixo.

O resultado da função de transferência é apresentado na figura abaixo.

Table 2.1: Valores de Pólo e Zero variando β

	Pólos	Zeros
$\beta = 0.1$	-2, -1	-10.0
$\beta = 0.6$	-2, -1	-1.67
$\beta = 0.99$	-2, -1	-1.01
$\beta = 1.2$	-2, -1	-0.83
$\beta = 2$	-2, -1	-0.50
$\beta = 10$	-2, -1	-0.10

O resultado não era esperado pois, para uma Função de Transferência de segundo grau é esperado que a resposta tenha sobressinal. Agora, considerando a função de transferência

$$G(s) = \frac{0.8(\beta s + 1)}{0.5s^2 + 1.5s + 1},$$

e substituindo os valores de β pelos valores propostos temos os valores de zero e pólo apresentados na tabela abaixo.

Os gráficos de posição estão apresentados abaixo.

O resultado da simulação está apresentado na figura abaixo.

É possível perceber que quanto mais alto o valor de β maior o sobressinal. Também é possível perceber que há um intervalo no qual o tempo de reação aumenta, encontrando seu tempo de reação mínimo, voltando então a aumentar.

Problema 5

Considere o sistema de segunda ordem

$$G(s) = \frac{0.9}{s^2 + s + 1}.$$

Determine os pólos e suas posições no plano s e simule para uma entrada do tipo degrau unitário. Note que há sobressinal. Tal resultado era esperado? Justifique.

Agora, adicionando um zero, temos

$$G_z(s) = \frac{0.9(\beta s+1)}{s^2+s+1}, \label{eq:Gz}$$

onde $\beta=0.05,\ \beta=0.5,\ \beta=1$ e $\beta=2.5.$ Para cada valor de β determine os pólos e zeros, suas posições no plano s e simule para uma entrada do tipo degrau unitário. Analise e compare os resultados.

Resolução

Utilizando a função p
zmap() do Matlab para encontrar os pólos da função de transferência
 $G(s)=\frac{0.9}{s^2+s+1}$ temos que a função não possui zeros e possui pólos

para s=-0.5+0.86i e s=-0.5-0.86i. O mapa de posições é apresentado na figura abaixo.

O resultado da função de transferência é apresentado na figura abaixo.

	Pólos	Zeros
$\beta = 0.05$	$-0.5 \pm 0.86i$	-20.0
$\beta = 0.5$	$-0.5\pm0.86i$	-2.0
$\beta = 1$	$-0.5\pm0.86i$	-1.0
$\beta - 25$	$-0.5 \pm 0.86i$	0.4

Table 2.2: Valores de Pólo e Zero variando β

É possível perceber que há sobressinal.

Agora, considerando a função de transferência $G_z(s)=\frac{0.9(\beta s+1)}{s^2+s+1}$, e substituindo os valores de β pelos valores propostos temos os valores de zero e pólo apresentados na tabela abaixo.

Os gráficos de posição estão apresentados abaixo.

A simulação feita em Matlab está apresentada na figura abaixo.

O resultado da simulação está apresentado na figura abaixo.

É possível perceber que quanto mais alto o valor de β maior o sobressinal e o tempo de resposta do sistema.

Problema 6

Considere o sistema de segunda ordem de fase não-mínima

$$G(s) = \frac{-s+1}{0.5s^2 + 1.5s + 1}.$$

Determine os pólos e o zero, suas posições no plano s e simule para uma entrada do tipo degrau unitário. Note que a resposta é negativa nos instantes iniciais. Justificaremos tal comportamento no que se segue.

Escrevemos

$$G(s) = \frac{-s+1}{0.5s^2+1.5s+1} = \underbrace{\frac{G_1(s)}{1}}_{0.5s^2+1.5s+1} - \underbrace{\frac{G_2(s) = sG_1(S)}{s}}_{0.5s^2+1.5s+1} \, .$$

Assim,

$$Y(s) = G(s)U(s) = G_1(s)U(s) - G_2(s)U(s) = \underbrace{G_1(s)U(s)}_{Y_1(s)} - \underbrace{sG_1(s)U(s)}_{Y_2(s) = sY_1(s)}.$$

Relembre-se que se $x(t) \iff X(S)$ com x(0) = 0, então $dx(t)/dt \iff sX(s)$. Portanto,

$$y(t) = y_1(t) - y_2(t) = y_1(t) - \frac{dy_1(t)}{dt}.$$

Verifique a validade da equação acima no Simulink (utilize o bloco **Derivative** no Simulink) para uma entrada do tipo degrau unitário. Analise o motivo da resposta ser negativa nos instantes iniciais.

Resolução

Utilizando a função p
zmap() do Matlab para encontrar os pólos da função de transferência
 $G(s)=\frac{-s+1}{0.5s^2+1.5s+1}$ temos que a função possui zeros para
 s=1e possui pólos para s=-2
es=-1. O mapa de posições é apresentado na figura abaixo.

A resposta de G(s) a uma função degrau unitário é apresentada na figura abaixo.

A validade da equação proposta pelo programa é apresentada na figura abaixo. Pode-se perceber que a equação é valida pois as curvas são satisfatoriamente similares.

O motivo da resposta ser negativa se deve ao fato de o zero da função G(s) se encontrar no SPD.

Chapter 3

Identificação de Sistemas

3.1 Apresentação do Laboratório

3.1.1 Objetivo

Nesta experiência, veremos como modelar matematicamente um sistema linear por uma Função de Transferência. Identificaremos os parâmetros de uma Função de Transferência de primeira e de segunda ordem. Compararemos a dinâmica do sistema com a do modelo matemático.

3.1.2 Modelagem de Sistemas Lineares

Encontrar um modelo matemático que capture as características dinâmicas relevantes de um sistema real é de fundamental importância para a análise e controle do sistema. No Laboratório 1 estudamos um modelo linear com motor CC. Tal modelo pode ser obtido a partir das leis da física (mecânica e eletromagnetismo) e os valores dos parâmetros dependem de constantes e coeficientes físicos (indutância do enrolamento, resistência do enrolamento, constante de torque do motor, coeficiente de atrito ciscoso). Em situações reais, não conheceremos uma estimativa para os mesmos. Por exemplo, todo resistor possui um valor normal e uma faixa de tolerância percentual (e.g. $R=100\Omega\pm5\%$). Além disso, muitas vezes a determinação de um modelo matemático para um sistema a partir de leis naturais é extremamente difícil e, mesmo no caso em que isso é possível, o modelo obtido pode ser demasiadamente complexo para ser estudado matematicamente.

Devido às dificuldades que acabamos de expor, em geral buscamos um modelo matemático relativamente simples mas que capture, ao menos aproximadamente, as características dinâmicas relevantes do sistema. Assim, primeiramente

fixamos um modelo (modelagem do sistema) e em seguida determinamos de maneira aproximada o valor de seus parâmetros (identificação dos parâmetros).

Nesta experiência, consideraremos apenas sistemas lineares que possam ser modelados por uma função de Transferência G(s) de primeira ordem ou de segunda ordem. Veremos então como identificar os parâmetros de G(s).

3.1.3 Identificação de sistemas de primeira ordem

Toda Função de Transferência ${\cal G}(s)$ de primeira ordem pode ser escrita na forma padrão como

$$G(s) = \frac{K}{\tau s + 1}. ag{3.1}$$

Supunha que G(s) é estável, ou seja, $\tau>0$. considere uma entrada u(t)=A do tipo degrau de magnitude A. Temos que a saída correspondente é

$$y(t) = AK(1 - e^{\frac{-t}{\tau}}).$$

O valor da saída em regime permanente é

$$y(\infty) = AK$$

e o tempo de acomodação de 5% é dado por

$$0.95KA = KA(1 - e^{\frac{-t_s(5\%)}{\tau}}) \implies t_s(5\%) = 3\tau.$$

Isto é ilustrado na figura 1.

Figure 3.1: Figura 1: Resposta de um sistema de primeira ordem ao degrau.

Logo,

$$K = \frac{y(\infty)}{A}, \tau = \frac{t_s(5\%)}{3}.$$
 (3.2)

3.1.4 Identificação de Sistemas de Segunda Ordem

Toda Função de Transferência G(s) de segunda ordem com pólos não-nulos pode ser escrita como

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n + \omega_n^2},\tag{3.3}$$

onde $\omega_n > 0$. Os pólos de G(s) são:

$$p_{1,2} = -\xi \omega_n \pm \sqrt{\xi^2 - 1}.$$

Temos as seguintes situações:

- 1. Sistema não-amortecido ($\xi=0$): os pólos são complexos com $p_{1,2}=\pm j\omega_n$, e a resposta a uma entrada do tipo degrau é senoidal.
- 2. Sistema sub-amortecido (0 < ξ < 1): os pólos são complexos com $p_{1,2}=-\xi\omega_n\pm j\omega_n\sqrt{1-\xi^2}$ e a resposta ao degrau apresenta oscilação e sobressinal.
- 3. Sistema criticamente amortecido ($\xi=1$): os pólos são reais e iguais com $p_{1,2}=-\xi\omega_n$ e a resposta ao degrau não apresenta oscilação nem sobressinal.
- 4. Sistema super-amortecido ($\xi > 1$): os pólos são reais, negativos e diferentes e a resposta ao degrau não apresenta oscilação nem sobressinal.
- 5. Sistema instável ($\xi < 0$): os pólos possuem parte real positiva.

3.1.4.1 Sistemas sub-amortecidos

Suponha que G(s) é estável com $0 < \xi < 1$ (sub-amortecido). Considere uma entrada u(t) = A do tipo degrau de magnitude A. A resposta correspondente y(t) é ilustrada na figura 2.

Temos que

$$y(\infty)=KA, \quad M_p=\frac{y_p-y(\infty)}{y(\infty)}=e^{\frac{-(\xi\pi)}{\sqrt{1-\xi^2}}}, \quad t_p=\frac{\pi}{\omega_n\sqrt{1-\xi^2}}.$$

Logo,

$$K = \frac{y(\infty)}{A}, \quad M_p = \frac{y_p - y(\infty)}{y(\infty)}, \quad \xi = \sqrt{\frac{(\ln M_p)^2}{(\ln M_p)^2 + \pi^2}}, \quad \omega_n = \frac{\pi}{t_p \sqrt{1 - \xi^2}}. \tag{3.4}$$

Figure 3.2: Figura 2: Resposta de um sistema de segunda ordem sub-amortecido ao degrau.

3.1.4.2 Sistemas criticamente amortecidos e super-amortecidos

Suponha que G(s) é estável com $\xi \geq 1$ (criticamente amortecido ou superamortecido). Neste caso, os dois pólos de G(s) são reais e a resposta ao degrau se assemelha ao de um sistema de primeira ordem (não apresenta oscilação nem sobressinal). Podemos identificar G(s) indiretamente através da identificação da Função de Transferência F(s) em malha-fechada. Considere o diagrama de blocos em malha-fechada mostrando na Figura 3, onde $K_c > 0$ é o ganho de um controlador proporcional e r é a referência.

Figure 3.3: Figura 3: Diagrama de blocos em malha-fechada.

Relembre que

$$F(s) = \frac{Y(s)}{R(s)} = \frac{K_c G(s)}{1 + K_c G(s)}. \label{eq:force}$$

Para qualquer $K_c > 0$, temos que F(s) é um sistema de segunda ordem estável. E, quando $K_c > 0$ for suficientemente grade, temos que F(s) será um sistema de segunda ordem sub-amortecido. Assim, escolhemos K_c de modo que F(s) seja sub-amortecido e então identificamos F(s) conforme descrito na seção anterior aplicando uma referência r(t) = A do tipo degrau de magnitude A. Desta maneira, identificaremos G(s) indiretamente pois

$$F(s) = \frac{K_cG(s)}{1 + K_cG(s)} \implies G(s) = \frac{F(s)}{K_c - K_cF(s)}. \tag{3.5} \label{eq:3.5}$$

3.2 Procedimentos

Problema 1

Aplique um degrau u(t)=2 no Sistema 1 do arquivo MatLab3.mdl do Simulink. Pelas características da resposta, modele o Sistema 1 como uma Função de Transferência $G_1(s)$ de primeira ou segunda ordem. Em seguida, identifique os parâmetros do modelo utilizando a equação (3.2) ou (3.4). Compare a resposta do modelo identificado com a do Sistema 1.

Resolução

Simulando o sistema do modelo 1 obtemos o resultado abaixo.

Pela curva feita espera-se que a Função de Transferência seja de primeira ordem. Utilizando as ferramentas fornecidas pelo Simulink foi estimado que

$$y(\infty) = 1.60.95y(\infty) = 1.52 \implies t_s(5\%) = 9.97s \implies \tau = 3.33$$

Assim,

$$G_1(s) = \frac{0.8}{3.33s + 1}.$$

Simulando ${\cal G}_1(s),$ temos o resultado apresentado abaixo.

Percebe-se, assim, que a Função de Transferência $G_1(s)$ se aproxima satisfatoriamente bem do Sistema 1.

Problema 2

Aplique um degrau u(t)=4 no Sistema 2. Pelas características da resposta modele o Sistema 2 como uma Função de Transferência $G_2(s)$ de primeira ou segunda ordem. Em seguida, identifique os parâmetros do modelo utilizando a equação (3.2) ou (3.4). Realize os cálculos na linha de comando do Matlab $(\ln(x) \implies \log(x) \ e \ \sqrt{x} \implies \operatorname{sqrt}(x))$. Compare a resposta do modelo identificando com a do Sistema 2.

Resolução

Simulando o sistema do modelo 1 obtemos o resultado abaixo.

Pela curva feita espera-se que a Função de Transferência seja de segunda ordem. Utilizando as ferramentas fornecidas pelo Simulink foi estimado que

$$y_p = 5.588 y(\infty) = 4.805 t_p = 5s$$

Dessa forma, aplicando as equações 3.4, temos que

$$K=1.2, \quad M_p=0.163, \quad \xi=0.5 \quad {\rm e} \quad \omega_n=0.7255.$$

Dessa forma, a Função de Transferência ${\cal G}_2(s)$ será

$$G_2(s) = \frac{0.6316}{s^2 + 0.7255s + 0.5264}.$$

Simulando $G_2(s)$, temos o resultado apresentado abaixo.

Percebe-se, assim, que a Função de Transferência $G_2(s)$ se assemelha ao Sistema 2, porém, com menor precisão que a função $G_1(s)$ se aproximou do Sistema 2.

Problema 3

Parte A

Aplique um degrau u(t)=3 no Sistema 3. Obtenha um modelo aproximado para o Sistema 3 como uma Função de Transferência G(s) de primeira ordem. Agora implemente o diagrama de blocos em malha fechada da Figura 3 para o Sistema 3 com r(t)=1 do tipo degrau e $K_c=3$ Observamos que, na Figura 3, se G(s) é de primeira ordem, então a Função de Transferência em malha fechada F(s) também será de primeira ordem para qualquer valor de $K_c>0$. A resposta do Sistema 3 em malha-fechada está de acordo com tal propriedade? O que pode estar errado?

Resolução Simulando o sistema do modelo 1 obtemos o resultado abaixo.

Pela curva feita espera-se que a Função de Transferência seja de primeira ordem. Utilizando as ferramentas fornecidas pelo Simulink foi estimado que

$$y(\infty) = 3.90.95y(\infty) = 3.8415 \implies t_s(5\%) = 3.22s \implies \tau = 1.072$$

Assim,

$$G_3(s) = \frac{1.3}{1.072s + 1}.$$

Simulando $G_1(s)$, temos o resultado apresentado abaixo.

Percebe-se, assim, que a Função de Transferência $G_B(s)$ não se aproxima satisfatoriamente bem ao Sistema 3. Aplicando a malha fechada vista na figura 3, temos o resultado apresentado abaixo.

Como $K_c=3>0$ e a Função de Transferência em malha fechada retornou um sistema de segunda ordem, percebe-se a resposta não está de acordo com a propriedade estabelecida. Desta forma, presume-se que G(s) não é de primeira ordem e sim de segunda.

Parte B

Identifique F(s). Em seguida, identifique G(s) indiretamente através da equação (??). Para isto, utilize os seguintes comandos no Matlab:

```
F = tf([K*wn^2], [1 2*ksi*wn wn^2])
G = F/(Kc-Kc*F)
G = zpk(minreal(G)) % minreal simplifica e zpk fatora
```

Note que G(s) é de segunda ordem com pólos reais. Neste momento, temos condições de responderm o que estava errado em nossa modelagem inicial do Sistema 3 como um sistema de primeira ordem. Compare a resposta em malha-aberta de G(s) (identificando indiretamente) com a do Sistema 3 para u(t)=3 do tipo degrau.

Resolução Simulando o sistema do Sistema 3 em malha fechada e utilizando as ferramentas fornecidas pelo Simulink foi estimado que

$$y_p = 0.868y(\infty) = 0.796t_p = 0.4s$$

Assim, tem-se que:

$$K = 0.796, \quad M_p = 0.09, \quad \xi = 0.61 \quad \text{e} \quad \omega_n = 9.888.$$

Dessa forma, tem-se que

$$F(s) = \frac{77.83}{s^2 + 12.01s + 97.77}$$

que gera a curva abaixo.

Assim, é possível calcular G(s) a partir de F(s), tendo como resultado

$$G(s) = \frac{25.94}{s^2 + 12.025s + 19.96}.$$

Agora é possível comprar G(s) com sua curva anterior, gerando o resultado abaixo.

Percebe-se que, considerando o modelo como uma Função de Transferência de segundo grau obtida através de F(s) é possível encontrar a curva exata correspondente ao Sistema 3.

Rastreamento de Referências e Rejeição de Perturbações - Erro em Regime Permanente

4.1 Apresentação do Laboratório

4.1.1 Objetivos

Nesta experiência analisaremos o erro em regime permanente de sistemas em malha-fechada para o rastreamento de referências e a rejeição de perturbações. Consideraremos referências e perturbações do tipo degrau, rampa e parábola. Comprovaremos os resultados teóricos através de simulações no Simulink/Matlab.

4.1.2 Tipos de Sistemas

Considere a Função de Transferência

$$G(s) = \frac{N(s)}{D(s)}$$

onde N(s) e D(s) são polinômios em s sem raízes em comum e com grau $(N) \le \text{grau}(D)$. Temos a seguinte classificação para G(s):

48CHAPTER 4. RASTREAMENTO DE REFERÊNCIAS E REJEIÇÃO DE PERTURBAÇÕES - ERR

- Tipo 0: G(s) não possui pólos em s=0. Denominamos $K_p=G(0)$ de constante de posição. Note que $K_p=\lim_{s\to 0}G(s)$.
- Tipo 1: G(s) tem um (e apenas um) pólo em s=0. Podemos então escrever

$$G(s) = \frac{1}{s}G_0(s),$$

onde $G_0(s)=\frac{N(s)}{D_0(s)}$ não possui pólos em s=0. Chamamos $K_v=G_0(0)\neq 0$ de constante de velocidade. Note que $K_v=\lim_{s\to 0}sG(s)$.

• Tipo 2: G(s) tem dois (e apenas dois) pólos em s=0. Podemos escrever

$$G(s) = \frac{1}{s^2}G_0(s),$$

onde $G_0(s)=\frac{N(s)}{D_0(s)}$ não possui pólos em s=0. Denominamos $K_a=G_0(0)\neq 0$ de constante de aceleração. Note que $K_a=\lim_{s\to 0}s^2G(s)$.

4.1.3 Erro em regime permanente

Considere o sistema em malha-fechada com realimentação unitária mostrado na Figura @ref{fig:fig41}, onde:

 $\begin{cases} y(t) & : \text{ saída} \\ r(t) & : \text{ referência} \\ e(t) = r(t) - y(t) & : \text{ erro de rastreamento} \\ w(t) & : \text{ perturbação externa que não é possível de ser medida} \end{cases}$

Figure 4.1: Sistema em malha-fechada com perturbação na saída.

Desejamos analisar o erro em regime permanente $(t \to \infty)$ quando existem perturbações externas. Temos que

$$E(s) = R(s) - Y(s) = R(s) - [G(s)E(s) + W(s)] \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}W(s) \implies E(s) = \underbrace{\frac{D(s)}{D(s) + N(s)}}_{E_R(s)} + \underbrace{\frac{D(s)}{D(s)}}_{E_R(s)} + \underbrace{\frac{D(s)}{D(s)}}_{E_R($$

Note que $E=E_R$ quando W=0 e que $Y=Y_W$ quando R=0. Podemos então analisar Eatravés de E_R e $Y_R.$ O erro em regime permanente é dado por

$$e(\infty) = \lim_{t \to \infty} e(t) = e_r(\infty) - y_w(\infty), \tag{4.1}$$

desde que os limites $e_r(\infty)=\lim_{t\to\infty}e_r(t)$ e $y_w(\infty)=\lim_{t\to\infty}y_w(t)$ existam. Dizemos que há rastreamento de referência quando $e_r(\infty)=0$. De maneira semelhante, dizemos que há rejeição de perturbação quando $y_w(\infty) = 0$. Portanto, quando há rastreamento de referência e rejeição de perturbação teremos que $e(\infty) = 0$.

Iremos agora analisar $e_r(\infty)$ e $y_w(\infty)$ através de $E_R(s)$ e $Y_W(s)$, respectivamente, considerando que a referência r e a perturbação externa w são do tipo degrau, rampa ou parábola. Relembramos que:

- 1. Degrau: $x(t) = A \iff X(s) = \frac{A}{s}$ 2. Rampa: $x(t) = Bt \iff X(s) = \frac{B}{s^2}$ 3. Parábola: $x(t) = Ct^2 \iff X(s) = \frac{2C}{s^3}$

Suponha que D(s) + N(s) = 0 possui todas as raízes no SPE (Semi-Plano Esquerdo do plano s) e que D(s)R(s) e D(s)W(s) possuem no máximo um pólo em s=0. Isto garante que $e_r(\infty)$ e $y_w(\infty)$ existem e, assim, o Teorema do Valor Final pode ser aplicado. Ressaltamos que as raízes de D(s) + N(s) = 0nada mais são do que os pólos da Função de Transferência de malha-fechada quando não há perturbação (w=0)

$$F(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{N(s)}{D(s) + N(s)},$$
 (para $w = 0$).

Desse modo, estamos assumindo que F(s) é estável para w=0. Com base no Teorema do Valor Final, podemos construir a tabela 4.1 e a tabela 4.2 mostradas abaixo. Note que os valores de $e_r(\infty)$ e de $y_w(\infty)$ (regime permanente) dependem apenas da constante de posição $K_p,$ da constante de velocidade K_v e da cos
ntante de aceleração ${\cal K}_a.$ Tl
 nomenclatura tem origem em sistemas mecânicos de controle. Por exemplo, para um sistema Tipo 0 e r(t) = A (degrau) temos que (Teorema do Valor Final)

$$e_r(\infty) = \lim_{s \to 0} s E_R(s) = \lim_{s \to 0} \frac{D(s)}{D(s) + N(s)} \frac{A}{s} = \lim_{s \to 0} \frac{AD(s)}{D(s) + N(s)} = \frac{AD(0)}{D(0) + N(0)} = \frac{A}{1 + N(0)/D(0)} = \frac{A}{1 + G(0)} = \frac{A}{1$$

Table 4.1: Valores de $e_r(\infty)$ (w=0)

Sistema $G(s)$ / Referência	r(t) = A	r(t) = Bt	$r(t) = Ct^2$
Tipo 0	$\frac{A}{1+K_p}$	∞	∞
Tipo 1	0	$\frac{B}{K_v}$	∞
Tipo 2	0	0	$\frac{2C}{K_a}$

Table 4.2: Valores de $y_r(\infty)$ (r = 0 e w na saída de G(s))

Sistema $G(s)$ / Perturbação	w(t) = A	w(t) = Bt	$w(t) = Ct^2$
Tipo 0	$\frac{A}{1+K_p}$	∞	∞
Tipo 1	0	$\frac{B}{K_v}$	∞
Tipo 2	0	0 "	$\frac{2C}{K_a}$

pois como $D(0)+N(0)\neq 0$ (F(s) é estável) e $D(0)\neq 0$ (G(0) é de Tipo 0) não há divisão por zero!

E, para um sistema Tipo 2 e r(t)=Bt (rampa), temos $G(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{s^2D_0(s)}$ e

$$e_r(\infty) = \lim_{s \to 0} s E_r(s) = \lim_{s \to 0} s \frac{D(s)}{D(s) + N(s)} \frac{B}{s^2} = \lim_{s \to 0} s \frac{s^2 D_0(s)}{D(s) + N(s)} \frac{B}{s^2} = \lim_{s \to 0} \frac{s B D_0(s)}{D(s) + N(s)} = \frac{0 B D(0)}{N(0) + D(0)} = \frac{1}{N(0)} \frac{B}{S} = \frac{1}$$

pois $D(0) + N(0) \neq 0$ (F(s) é estável) e não há divisão por zero!

Observamos que a tabela 4.1 e a tabela 4.2 são válidas apenas para sistemas com realimentação unitária com perturbação na saída (veja a Figura 4.1) e tais que a Função de Transferência em malha-fechada é estável para w=0.

Agora, considere o sistema mostrado na Figura 4.2 e assuma que $G_2(s)$ não possui zeros em s=0. Para tal sistema, a Tabela 4.1 continua válida para $G(s)=G_1(s)G_2(s)$. No entanto, a Tabela 4.2 deve ser substituída pela Tabela 4.3. Ressaltamos que os valores $\neq 0$ na Tabela 4.3 podem ser calculados analiticamente a partir de $G_1(s)$ e $G_2(s)$. Entretanto, isso não é o objeto de estudo desta experiência.

4.2 Procedimentos

Em todos os itens abaixo consideramos o sistema em malha-fechada mostrado na Figura 4.3 onde C(s) é o controlador, G(s) é a planta (processo) e u(t) é o sinal de controle.

Figure 4.2: Sistema em malha-fechada com perturbação na entrada de $G_s(s)$ e $G_2(s)$ não possui *zeros* em s=0.

Table 4.3: Valores de $y_r(\infty)$ (r=0e wna saída de $G_2(s))$

Sistema $G(s)$ / Perturbação	w(t) = A	w(t) = Bt	$w(t) = Ct^2$
Tipo 0	$\neq 0$	∞	∞
Tipo 1	0	$\neq 0$	∞
Tipo 2	0	0	$\neq 0$

Figure 4.3: Sistema em malha-fechada.

Problema 1

Considere que

$$G(s) = \frac{1}{0.5s+1}$$
, $C(s) = K_c$ (proporcional), $w = 0$ (sem perturbação).

- a. Simule para r(t)=1 (degrau unitário) e $K_c=1$ Determine $e(\infty)=e_r(\infty)$ por simulação e compare com a Tabela 4.1 (note que $K_p=Kc$). Repita para $K_c=10$ e $K_c=100$, analisando também o regime transitório de saída y(t).
- b. Percebemos que $e(\infty)$ diminui a medida que aumentamos o ganho K_c do controlador. Poderíamos então escolher $K_c=\infty$ para que $e(\infty)=0$? Justifique sua resposta (dica: observe o sinal de controle u(t)).
- c. Com $K_c=1$ simule para r(t)=t (rampa) e $r(t)=0.5t^2$ (parábola). Determine o erro em regime permanente e verifique se os resultados estão de acordo com o esperado.

Resolução

Parte A

Por meio da simulação foi encontrado o valor de $e(\infty)=e_r(\infty)=0.5$ conforme apresenta a Figura 4.4.

Figure 4.4: Valor de e(r).

Utilizando a Tabela 4.1 temos que $e_r(\infty)=\frac{A}{1+K_p}$. Assim, tendo A=1 e $K_c=1$, temos que $e_r(\infty)=\frac{1}{2}=0.5$, o que está de acordo com o resultado encontrado na simulação. A figura 4.5 apresenta os valores de $e(s)=e_r(s)$ e Y(s) para $K_c=10$ e $K_c=100$.

Figure 4.5: Valores para $K_c=10$ e $K_c=100.\,$

Parte B

Dúvida

Parte C

A Figura 4.6 apresenta os valores de y(s) e e(s) para uma entrada r(t)=t (rampa).

Figure 4.6: Valores para entrada do tipo rampa.

A Figura 4.7 apresenta os valores de y(s) e e(s) para uma entrada $r(t) = 0.5t^2$ (parábola).

É possível perceber que, como o esperado, $e(\infty)=e_r(\infty)=\infty$ para ambos os casos.

Figure 4.7: Valores para entrada do tipo parábola.

Problema 2

Considere que

$$G(s) = \frac{1}{0.5s+1}, \quad C(s) = \frac{K_c}{s} \text{ (integral)}, \quad w = 0 \text{ (sem perturbação)}.$$

- a. Simule para r(t)=1 (degrau unitário) e $K_c=1$. Determine $e(\infty)=e_r(\infty)$ por simulação e compare com a Tabela 4.1. Analise também o regime transitório da saída para y(t) (sobressinal, por exemplo). Repita para $K_c=10$. Observe o aumento no sobressinal.
- b. Simule para $K_c=2$ e r(t)=t (rampa). Determine $e(\infty)$ por simulação e compare com a Tabela 4.1 (note que $K_v=K_c$). Encontre analiticamente K_c de modo que o erro à rampa r(t)=t em regime permanente seja igual a 0.1. Agora verifique se as simulações estão de acordo com o valor calculado de K_c .
- c. Simule para $K_c=2$ e $r(t)=0.5t^2$ (parábola). Determine o erro em regime permanente por simulação e analise os resultados.
- d. Agora suponha que

$$G(s) = \frac{-s+2}{0.5s+1}, \quad C(s) = \frac{2}{s}, \quad r(t) = 1 \text{ (degrau)}.$$

Determine $e(\infty)$ por simulação. Note que o erro não converge para zero. O resultado está de acordo com o esperado? Relembre que a Tabela 4.1 e a Tabela 4.2 são validas apenas quando o sistema em malha-fechada para w=0 é estável (os pólos estão no SPE).

Resulução

Projeto de Controladores por Métodos Algébricos

56CHAPTER 5. PROJETO DE CONTROLADORES POR MÉTODOS ALGÉBRICOS

Linearização de Sistemas Não-Lineares

Controle de Sistemas Não-Lineares

Análise pelo Lugar das Raízes

Projeto de Controladores pelo Lugar das Raízes

64CHAPTER 9. PROJETO DE CONTROLADORES PELO LUGAR DAS RAÍZES

Projeto do controlador atraso de fase

Análise pelos Diagramas de Bode e Nyquist

Projeto de Controladores pelo Diagrama de Bode

70CHAPTER 12. PROJETO DE CONTROLADORES PELO DIAGRAMA DE BODE

Digitalização de Controladores Analógicos