Emergent Formal Structures of Factor Oracle-Driven Musical Improvisations

Isaac Schankler, Jordan B. L. Smith, Alexandre R. J. François, Elaine Chew

17 June 2011

International Conference on Mathematics and Computation in Music

The Mimi Project: Multimodal Interaction in Musical Improvisation

- * Inspired by the **OMax** project at IRCAM a little sister of the OMax brothers
- * Implemented by Alexandre François using his Software Architecture for Immersipresence (SAI)
- * Mimi 1.0: by François, Chew, Thurmond [ACMCIE], premiered at 1st MCM meeting, Berlin 2007, on a Seiler piano
- * Mimi4x: by François, Schankler, Chew [IMIDA, IJART], installation for high-level structural improvisation
- * Mimi 1.5: by François, Schankler, Chew, featured in concerts: PiE, etc.

The Mimi Project: Multimodal Interaction in Musical Improvisation

- * Inspired by the **OMax** project at IRCAM a little sister of the OMax brothers
- * Implemented by Alexandre François using his Software Architecture for Immersipresence (SAI)
- * Mimi 1.0: by François, Chew, Thurmond [ACMCIE], premiered at 1st MCM meeting, Berlin 2007, on a Seiler piano
- * Mimi4x: by François, Schankler, Chew [IMIDA, IJART], installation for high-level structural improvisation
- * Mimi 1.5: by François, Schankler, Chew, featured in concerts: PiE, etc.

Mimi demonstration

Question

* When a human improviser interacts with Mimi, what kinds of structures emerge?

Question

- * When a human improviser interacts with Mimi, what kinds of structures emerge?
- * Do the performer and a listener perceive the structures differently?

Experiment

- * Isaac performed three improvisations with Mimi
- + The sessions were recorded
- * The recordings were analyzed by (1) the performer, Isaac, and (2) a skilled listener, Jordan
- * The annotations were compared

- * Boundaries in small-scale analyses tend to be closely aligned
 - Interpretation of boundaries was similar
- * Labels in large-scall analyses tend to coincide
 - Large-scale organization is similar

Evaluation

- * Visual comparison reveals many similarities, but these judgements are subjective.
- * Four empirical evaluation metrics were considered:
 - * Boundary precision and recall
 - * Pairwise precision and recall
 - * Average cluster and speaker clarity
 - + Rand index

Boundary precision and recall

Annotation

Estimate

= 37.5%

= 60%

Precision: 3/8 Recall: 3/5 f-measure: 2pr/(p+r)

=46%

Pairwise precision and recall

Precision: 1/2 Recall: 1/4 f-measure: 2pr/(p+r) = 50% = 25% = 33%

Baselines

- * Empirical comparisons more or less meaningless without some baseline for comparison
- * Many baseline strategies were used; the bestperforming one placed 10 boundaries randomly throughout the piece and assigned segment labels randomly

Boundary f-measure	Performance 1		Performance 2		Performance 3	
\pm 1 second						
Scale:	Small	Large	Small	Large	Small	Large
Ann1 - Ann2	0.27	0.29	0.28	0.40	0.39	0.53
baseline - Ann1	0.02	0.01	0.02	0.00	0.05	0.03
baseline - Ann2	0.02	0.01	0.02	0.01	0.04	0.04
Boundary f-measure ± 6 second	Performance 1		Performance 2		Performance 3	
Scale:	Small	Large	Small	Large	Small	Large
Ann1 - Ann2	0.74	0.50	0.65	0.40	0.82	0.85
baseline - Ann1	0.18	0.10	0.14	0.09	0.25	0.17
baseline - Ann2	0.24	0.15	0.13	0.10	0.29	0.17
Pairwise f-measure,	Performance 1		Performance 2		Performance 3	
Scale:	Small	Large	Small	Large	Small	Large
Ann1 - Ann2	0.47	0.85	0.66	0.62	0.68	0.90
baseline - Ann1	0.50	0.51	0.50	0.52	0.41	0.48
baseline - Ann2	0.34	0.50	0.40	0.43	0.36	0.48
K-measure	Performance 1		Performance 2		Performance 3	
Scale:	Small	Large	Small	Large	Small	Large
Ann1 - Ann2	0.60	0.84	0.70	0.70	0.68	0.87
baseline - Ann1	0.56	0.53	0.55	0.56	0.44	0.51
baseline - Ann2	0.43	0.54	0.50	0.50	0.42	0.52
Rand index	Performance 1		Performance 2		Performance 3	
Scale:	Small	Large	Small	Large	Small	Large
Ann1 - Ann2	0.70	0.90	0.88	0.71	0.87	0.93
baseline - Ann1	0.67	0.63	0.76	0.59	0.68	0.58
baseline - Ann2	0.58	0.61	0.72	0.52	0.63	0.58

Question

* When a human improviser interacts with Mimi, how do structures emerge?

The Canon

- * Mimi's actions are delayed by 10 seconds
- * If no recombination occurs, together Mimi and the human performer create a canon at the 10-second level

Canon-like forms

The Rondo

- * Mimi may revisit pieces of musical material, creating a sense of return
- * If Mimi is continuously learning, material learned earlier is more likely to be heard again than material learned later

Rondo-like forms

Large-scale formal divisions

* Mimi's memory can be cleared, allowing the creation of large-scale formal divisions

More large-scale formal divisions

- * On a smaller scale, Mimi's performances exhibit similar structural tendencies
- * Similar to personnages rhythmiques found in the music of Stravinsky and Messiaen, but always immobile

Summary

- + Questions:
 - * When a human improviser interacts with Mimi, what kinds of structures emerge, and how do they emerge?
- * Answers:
 - * Familiar structures (canon, rondo, etc.)
 - * By virtue of Mimi's programming...

Thanks for your attention!