

EEG/MEG 2:Head and Forward Modelling Olaf Hauk

olaf.hauk@mrc-cbu.cam.ac.uk

Ingredients for Source Estimation

Volume Conductor/ Head Model

Source Space

Coordinate Transformation

MEG data

Noise/Covariance Matrix

Our Goal: Spatio-Temporal Brain Dynamics "Brain Movies"

The EEG/MEG Forward Problem

 $j_1 + j_2 = 1$ under-determined problem, no unique solution

d=Lj

d: data (n_sensors x 1) **L**: "leadfield" (n_sensors x n_dipoles), **j**: dipoles (n_dipoles x 1) Usually n_dipoles >> n_sensors.

Ingredients for a head model

Goldenholz et al., HBM 2009 https://pubmed.ncbi.nlm.nih.gov/18465745/

If you don't have individual MRIs: Standard head models and spherical approximations are available.

Example: Auditorily Evoked Activity

Tone to right ear

Example: Visually Evoked Activity ~100 ms

Checkerboard to left visual field

The Forward Problem and Head Modelling

Source Spaces

Source Space

Where active sources may be located, e.g. grey matter, 3D volume

http://www.cogsci.ucsd.edu/~sereno/movies.html

Sometimes "standard head models" are used, when no individual MRIs available.

SPM uses the same "canonical mesh" as source space for every subjects, but adjusts it individually.

Spatial Sampling of Cortical Surfaces

10.034 vertices, 20.026 triangles of 10 mm² surface area Sufficient for most EEG/MEG applications

79.124 vertices, 158.456 triangles of 1.3 mm² surface area

Baillet, chap. 5 in "MEG", OUP 2010, Hansen/Kringelbach/Salmelin (edts.)

Normalising (Morphing) Cortical Surfaces

Morphing from individual to standard brain

Volumetric Source Spaces Are Possible

https://mne.tools/dev/auto_examples/inverse/morph_volume_stc.html

Pascqual-Marqui, PTRS-A 2011

Mixed Source Spaces

Cortical and Sub-Cortical Sources

Source Orientations

Current sources have a direction and/or orientation.

Constraints on source orientation:

Coregistration of EEG/MEG and MRI Spaces

Coordinate Transformation

Coregistration of EEG/MEG and MRI Spaces

MNE-Python tutorial: https://www.youtube.com/watch?v=ALV5qqMHLIQ

Accurate Coregistration Is Important

Coregistration errors affect the forward model, and therefore everything that follows.

For example, connectivity analysis: 3 levels of coregistration

Head Models

Boundary Element Model (BEM)

Scalp

Heller & Volegov, in Magnetoencephalography by Supek & Aine (edts), Springer 2019

- Volume currents depend on conductivity distribution within the whole head volume.
- EEG measurements on the scalp are the result of volume currents, and are strongly affected by head geometry.
- MEG measurements are the sum of magnetic fields from primary and volume currents, but the magnetic fields of currents close to the source are much stronger than at larger distances.
- ➤ Thus, MEG signals are less affected by head geometry (e.g. skull and scalp). We usually only use one compartment (inner skull) for MEG (unless in combination with EEG).

Finite Element Models (FEMs)

The use of 3-layer (brain, skull, scalp) BEM models based on individual MRI images is state-of-the-art for EEG/MEG source estimation.

For MEG-only, single shell BEMs and local/corrected sphere models can provide reasonable approximations.

But heads are more complex:

White Matter
Gray Matter
CSF
Skull
Compacta
Skull
Spongiosa
Skin

Vorwerk et al., NI 2014

It is not obvious how to translate this into more accurate estimate for conductivity distributions.

Infant Skulls – Fontanelles and Sutures

Relative error between models with and without fontanelles/sutures

Different Sensors and their Sensitivities (Leadfields)

Leadfields are "sensitivity profiles" of individual sensors.

Each sensor is maximally sensitive to sources oriented along the arrows, and insensitive to sources perpendicular to the arrows.

EEG and MEG Are Differentially Sensitive To Radial and Tangential Sources

Sensitivity Maps

Sensor type, coverage and distance to sources strongly affect sensitivity and spatial resolution

MEG Is Less Sensitive To Spatially Extended Sources Than EEG

Distributed source around sulcus

Thank you

