Chapter 6 Dynamic Programming

Joe Song

November 18, 2019

The notes are based on Chapter 6 of Dasgupta, Papadimitriou and Vazirani. Algorithms. 2008. McGraw-Hill. New York.

Contents

1 Shortest paths in dags (revisiting)

initialize all dist() values to ∞ dist(s)=0 for each $v \in V - \{s\}$, in linearized order: dist(v) = $\min_{(u,v) \in E} dist(u) + l(u,v)$

Features of dynamic programming:

Subproblems: What are the distances at each node $\{dist(v) : v \in V\}$?

Recurrence equation: $dist(v) = \min_{(u,v) \in E} dist(u) + l(u,v)$

Optimality: shortest path to ν requires evaluating shortest path to u.

Dynamic programming (DP): store the subproblem solutions and reuse them in larger problems.

Difference from divide-and-conquer:

- DP "stores" all solutions to sub-problems; but divide-and-conquer does not
- DP uses iterative solutions (for-loops); but divide-and-conquer uses recursive calls

The term 'dynamic programming'

- was invented by Richard Bellman in 1953.
- 'programming' meant planning, not coding.

2 Longest increasing subsequences

In the following sequence of numbers, a longest increasing subsequence is 2, 3, 6, 9:

Let x be a sequence of n numbers.

The number of subsequences is exponential:

 2^n

Build a graph G = (V, E) that contains n nodes which are the values in x. In G, there is a directed edge (x[i], x[j]) if and only if i < j and $x[i] \le x[j]$. Graph for the above sequence of eight numbers:

 $\begin{aligned} & \text{Longest-increasing-subsequence-1}(E) \\ & \text{for } j=1,2,...,n \\ & L(j)=1+\max\{L(i):(i,j)\in E\} \\ & \text{return } \max_{j}L(j) \end{aligned}$

The following is a graph free solution:

 $\begin{aligned} & \text{Longest-increasing-subsequence-2}(x) \\ & \text{n} = \text{length}(\mathbf{x}) \\ & \text{for } j = 1, ..., n \\ & \text{L}[\mathbf{j}] = 1 \\ & \text{for } i = 1, ..., j \end{aligned}$

$$\begin{aligned} &\text{if } x_i < x_j \text{ and } L[j] < L[i] + 1 \\ &L[j] = L[i] + 1 \\ &\text{return } \max_j L[j] \end{aligned}$$

- There is an ordering on the subproblems
- A relation shows how to solve a subproblem given the answers to "smaller" subproblems, that is, subproblems that appear earlier in the ordering.

Running time: O(|E|), or $O(n^2)$.

Features of dynamic programming:

- 1. Optimality of subproblems: A longest-increase-subsequence requires smaller longest-increase-subsequence
- 2. Overlapping subproblems: A longest-increase-subsequence can be reused in longer such sequences.

3 Edit distance

What is edit distance? The smallest number of editing operations needed to convert one string to another.

Allowed editing operations: insertion, deletion, substitution.

No swapping of characters is allowed.

Alignment: The way to align two possible strings

$$\begin{array}{l} {\tt S - N \ O \ W \ Y} \\ {\tt S \ U \ N \ N - Y} \\ \\ {\tt Editing \ cost} = 3 \\ {\tt - S \ N \ O \ W - Y} \end{array}$$

Editing cost = 5

SUN--NY

Cost: number of columns in which the letters differ

Edit distance: is the cost of the best possible alignment

A dynamic programming solution

Transforming the edit distance problem to the shortest path problem in a directed acyclic graph (dag):

- All black edges have a weight of one, indicating a insertion/deletion/substitution.
- All red edges have a weight of zero, indicating sharing a same symbol from the two strings.
- The goal is to find a shortest path from top left to bottom right in this dag.

5

4

3

3

3

	S	U	N	N	Υ ~~			S	U	J	N		N		Y
S							0	1	1	2		3		4	
N						N	1	()	1		2		3	
0						О	2]	1	1		1		2	
W						W	3	4	2	2		2		2	
Υ	*		*	***		Y	4	ę	3	3		3		3	
,	<u>&</u>			<u> </u>	₩ ₩		5	4	4	4		4		4	

Subproblem: Align prefixes x[1...i] and y[1...j]. Let the lowest cost be E(i,j).

Three possibilities for aligning the last pair of elements

- 1. x[i] : y[j]
- 2. : y[j]
- 3. x[i] : -

Example: Align EXPONENTIAL and POLYNOMIAL

		Р	О	L	Y	N	О	M	I	A	L
	0	←1	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$	\leftarrow 6	$\leftarrow 7$	←8	←9	←10
E	<u></u> †1	$\nwarrow 1$	$\leftarrow \nwarrow 2$	$\leftarrow \nwarrow 3$	$\leftarrow \nwarrow 4$	$\leftarrow \nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$	$\leftarrow \nwarrow 10$
X	$\uparrow 2$	$\nwarrow \uparrow 2$	$\nwarrow 2$	$\leftarrow \nwarrow 3$	$\leftarrow \nwarrow 4$	$\leftarrow \nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$	$\leftarrow \nwarrow 10$
P	†3	$\nwarrow 2$	$\leftarrow \nwarrow \uparrow 3$	$\nwarrow 3$	$\leftarrow \nwarrow 4$	$\leftarrow \nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$	$\leftarrow \nwarrow 10$
О	 	† 3	$\nwarrow 2$	$\leftarrow 3$	$\leftarrow \nwarrow 4$	$\leftarrow \nwarrow 5$	$\nwarrow 5$	\leftarrow 6	$\leftarrow 7$	$\leftarrow 8$	←9
N	† 5	$\uparrow 4$	† 3	$\nwarrow 3$	$\leftarrow \nwarrow 4$	$\nwarrow 4$	$\leftarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$
$\mid E \mid$	† 6	$\uparrow 5$	$\uparrow 4$	$\uparrow 4$	$\nwarrow 4$	$\nwarrow \uparrow 5$	$\nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$
N	<u>↑</u> 7	$\uparrow 6$	$\uparrow 5$	$\uparrow 5$	$\nwarrow \uparrow 5$	$\nwarrow 4$	$\leftarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$
T	<u>↑</u> 8	$\uparrow 7$	$\uparrow 6$	$\uparrow \uparrow 6$	$\uparrow \uparrow 6$	$\uparrow 5$	$\nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$
I	↑9	† 8	$\uparrow 7$	$\nwarrow \uparrow 7$	$\nwarrow \uparrow 7$	$\uparrow 6$	$\nwarrow \uparrow 6$	$\nwarrow 6$	$\nwarrow 6$	$\leftarrow 7$	←8
A	† 10	† 9	† 8	₹	<u>\</u> †8	$\uparrow 7$	$\nwarrow \uparrow 7$	$\nwarrow \uparrow 7$	$\nwarrow \uparrow 7$	$\nwarrow 6$	← 7
L	†11	† 10	† 9	₹8	$\leftarrow \nwarrow \uparrow 9$	† 8	† 8	† 8	† 8	† 7	$\nwarrow 6$

		Р	О	L	Y	N	О	M	I	A	L
	0*	←1	←2	←3	←4	$\leftarrow 5$	←6	←7	←8	←9	←10
E	<u></u> ↑1*	$\nwarrow 1$	$\leftarrow \nwarrow 2$	$\leftarrow \nwarrow 3$	$\leftarrow \nwarrow 4$	$\leftarrow \nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$	$\leftarrow \nwarrow 10$
X	↑2*	$\nwarrow \uparrow 2$	$\nwarrow 2$	$\leftarrow \nwarrow 3$	$\leftarrow \nwarrow 4$	$\leftarrow \nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$	$\leftarrow \nwarrow 10$
P	† 3	$\nwarrow 2^*$	$\leftarrow \nwarrow \uparrow 3$	$\nwarrow 3$	$\leftarrow \nwarrow 4$	$\leftarrow \nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$	$\leftarrow \nwarrow 10$
О	↑4	† 3	$\nwarrow 2^*$	$\leftarrow 3$	$\leftarrow \nwarrow 4$	$\leftarrow \nwarrow 5$	$\nwarrow 5$	\leftarrow 6	$\leftarrow 7$	$\leftarrow 8$	$\leftarrow 9$
N	† 5	$\uparrow 4$	† 3	₹ 3*	$\nwarrow 4$	$\nwarrow 4$	$\leftarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$
E	† 6	$\uparrow 5$	$\uparrow 4$	$\uparrow 4$	$\nwarrow 4^*$	$\nwarrow \uparrow 5$	$\nwarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$
N	↑7	$\uparrow 6$	$\uparrow 5$	$\uparrow 5$	$\nwarrow \uparrow 5$	$\nwarrow 4^*$	$\leftarrow 5$	$\leftarrow \nwarrow 6$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$
T	<u>↑</u> 8	$\uparrow 7$	† 6	$\uparrow \uparrow 6$	$\nwarrow \uparrow 6$	$\uparrow 5$	$\nwarrow 5^*$	$\leftarrow \nwarrow 6^*$	$\leftarrow \nwarrow 7$	$\leftarrow \nwarrow 8$	$\leftarrow \nwarrow 9$
I	† 9	↑ 8	$\uparrow 7$	$\nwarrow \uparrow 7$	$\nwarrow \uparrow 7$	$\uparrow 6$	$\uparrow \uparrow 6$	$\nwarrow 6$	$\nwarrow 6^*$	$\leftarrow 7$	←8
A	↑10	† 9	† 8	₹	₹	$\uparrow 7$	$\nwarrow \uparrow 7$	$\nwarrow \uparrow 7$	$\nwarrow \uparrow 7$	₹ 6*	$\leftarrow 7$
L	†11	† 10	† 9	$\sqrt{8}$	$\leftarrow \nwarrow \uparrow 9$	† 8	† 8	† 8	† 8	$\uparrow 7$	₹ 6*

Algorithms:

```
diff(u, v)
if(u == v) return 0
else return 1
```

```
\begin{split} & \text{Edit-Distance}(x[1..m], \, y[1..n]) \\ & \text{for } i = 0, 1, 2, ..., m: \\ & E(i, 0) = i \\ & \text{for } j = 0, 1, 2, ..., n: \\ & E(0, j) = j \\ & \text{for } i = 1, 2, ..., m: \\ & \text{for } j = 1, 2, ..., n: \\ & E(i, j) = \min \begin{cases} E(i - 1, j) + 1 \\ E(i, j - 1) + 1 \\ E(i - 1, j - 1) + \text{diff}(x[i], y[j]) \end{cases} \\ & \text{return } E(m, n) \end{split}
```

Running time: O(mn).

4 Of mice and men

Deoxyribonucleic acid (DNA) molecules:

- Each is a large molecule of a double-helix shape
- Each composed of A, C, G, T
- Exists in the nucleus of a cell
- DNA molecules in a human nucleus are 3 billion letter long
- DNA carries a complex program for the human machine
- DNA differs at $\approx 1\%$ between two persons

Computational problems:

- 1. By comparative studies, one can find similar genes between mouse and human. Functions of genes studied on the mouse can be transferred to human.
- 2. Sequencing DNA requires assembly of short pieces. Huge problems arise by sequence data of hundreds of giga bytes with the Next-Generation Sequencing technology.
- 3. Sequence similarity among different species can offer a clue for evolutionary history of species.
- 4. Measurements on number of RNA and proteins (all derived from genomic DNA sequences by transcription and translation) can help build a virtual machine (mathematical model) that operates like a cell

5 Knapsack

The Knapsack (bagging) problem

Input:

- Knapsack can hold at most W pounds. W is an integer
- n items
- The *i*-th item weighs w_i pounds. w_i is an integer
- The *i*-th item has a value of v_i (can be any real number)

Output: Most valuable combination of items the thief can fit into the knapsack.

Total weight limit is W.

5.1 Knapsack with repetition

Repetition: each item has unlimited quantities

Dynamic programming:

Subproblem: K(w) the maximum total value with a total weight no more than w pounds.

Recurrence:

$$K(w) = \max_{i:w_i \le w} (\{0\} \cup \{K(w - w_i) + v_i\}) \quad 0 < w \le W$$

Initialization: K(w) = 0 for $0 \le w < \min w_i$.

Example 1: Select among the four items (repetition allowed) such that the total value is maximized and the total weight W is no more than 10.

Item	We	eigh	t	Value	е						
1	6			\$30							
2	3			\$14							
3	4			\$16							
4	2			\$9							
W	0	1	2	3	4	5	6	7	8	9	10
K(w)	0	0	9	14	18	23	30	32	39	44	48

Algorithm:

Knapsack-with-repeat(v, w, W)

$$K(0) = 0$$

for w = 1 to W

$$K(w) = \max(\{0\} \cup \{K(w - w_i) + v_i : w_i \le w\})$$
return $K(W)$

Runtime complexity: O(nW).

Remark on runtime: This seemingly is a polynomial algorithm as it is linear in n and W. However, if we consider the number of bits used for W, which is $\log W$, then the algorithm is exponential.

5.2 Knapsack without repetition

Without repetition: there is one of each item

Dynamic programming:

Subproblem: K(w, j) the maximum total value with a total weight no more than w pounds, that one can do for item 1 to j.

Recurrence:

$$K(w,j) = \begin{cases} \max\{K(w-w_j,j-1) + v_j, K(w,j-1)\} & w \ge w_j, 0 < j \le n \\ K(w,j-1) & w < w_j, 0 < j \le n \end{cases}$$

Initialization:

$$K(0,j) = 0$$
 $(j = 0,...,n)$
 $K(w,0) = 0$ $(w = 0,...,W)$

Example 2: Select among the four items without repetition such that the total value is maximized and the total weight W is no more than 10.

Item	Weight	Value
1	6	\$30
2	3	\$14
3	4	\$16
4	2	\$9

Directed acyclic graph corresponding to the dynamic programming solution:

Dynamic programming K(w, j):

$\mathbf{A}(w, J)$.											
			j								
W	0	1	2	3	4						
0	0	0	0	0	0						
1	0	0	0	0	0						
2	0	0	0	0	9						
3	0	0	14	14	14						
4	0	0	14	16	16						
5	0	0	14	16	23						
6	0	30	30	30	30						
7	0	30	30	30	30						
8	0	30	30	30	39						
9	0	30	44	44	44						
10	0	30	44	46	46						

Algorithm:

```
Knapsack-without-repeat(v, w, W)

Initialize all K(0, j) = 0 and K(w, 0) = 0

for j = 1 to n:

for w = 1 to W:

if w_j > w: K(w, j) = K(w, j - 1)

else K(w, j) = \max\{K(w - w_j, j - 1) + v_j, K(w, j - 1)\}

return K(W, n)
```

Runtime complexity: O(nW).

Remark on runtime: This seemingly is a polynomial algorithm as it is linear in n and W. However, if we consider the number of bits used for W, which is $\log W$, then the algorithm is exponential in the number of bits used for W.

6 More on shortest paths in graphs

6.1 Shortest reliable paths

Problem statement:

Input: A weighted graph G, a source node s, an integer k for the maximum number of edges allowed on a path.

Output: The distance to s using at most k edges.

Subproblem: dist(v,i): the length of the shortest path from s to v via at most i edges.

Recurrence:

$$dist(v,i) = \min_{(u,v) \in E} \{ dist(u,i-1) + l(u,v) \}$$

Algorithm:

```
procedure Shortest-Reliable-Paths (G, s)
for v = 1, 2, ..., n:
dist(v, 0) = \infty
dist(s, 0) = 0
for i = 1, 2, ..., k:
for each v \in V:
```

```
\begin{aligned} dist(v,i) &= dist(v,i-1) \\ \text{for each } (u,v) &\in E: \\ \text{if } dist(v,i) &> dist(u,i-1) + l(u,v) \\ dist(v,i) &= dist(u,i-1) + l(u,v) \end{aligned} return dist
```

Running time: O(k(|V| + |E|)).

6.2 All-pair shortest paths—Floyd-Warshall algorithm

Problem statement:

Input: A graph G with possibly negative weights, but no negative cycles.

Output: Distance between all pairs of nodes in the graph.

Subproblem:

 $\operatorname{dist}(i,j,k)$: distance between i and j whose intermediate nodes can only be $1,\ldots,k$.

Recurrence:

$$\operatorname{dist}(i,j,k) = \min \ \left\{ \operatorname{dist}(i,k,k-1) \ + \ \operatorname{dist}(k,j,k-1), \ \operatorname{dist}(i,j,k-1) \right\}$$

Algorithm:

```
procedure Floyd-Warshall(G) for i = 1, 2, ..., n:
    for j = 1, 2, ..., n:
        dist(i, j, 0) = \infty
for all (i, j) \in E:
    dist(i, j, 0) = l(i, j)
for k = 1, 2, ..., n:
    for i = 1, 2, ..., n:
    for j = 1, 2, ..., n:
    dist(i, j, k) = \min \{ \text{dist}(i, k, k - 1) + \text{dist}(k, j, k - 1), \, \text{dist}(i, j, k - 1) \}
return dist
```

Running time: $O(|V|^3)$.