සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

දකුණු පළාත් අධනාපන දෙපාර්තමේන්තුව

தென் மாகாணக் கல்வித் திணைக்களம்

Southern Provincial Department of Education

අධෳයන පොදු සහතික පතු (උසස් පෙළ) 12 ශේුණිය, අවසාන වාර පරීක්ෂණය, 2019 ජූලි

General Certificate of Education (Adv. Level), Grade 12, Year End Test, July 2019

සංයුක්ත ගණිතය - I Combined Mathematics I

පැය 02 මිනිත්තු 30 යි. **02 hours 30 minitus**

විභාග	අංකය:
-------	-------

උපදෙස්ඃ

V මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

A කොටස (පුශ්න 1 - 8) සහ **B කොටස** (පුශ්න 9 - 14)

✓ A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. ඒක චක් පුශ්නය සඳහා ඔබේ පිළිතුරු සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැකි ය.

∨ B කොටස:

පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු සපයා ඇති කඩදාසිවල ලියන්න.

- \lor නියමිත කාලය අවසන් වූ පසු A **කොටසෙනි** පිළිතුරු පතුය, B **කොටසෙනි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- $ec{\mathsf{V}}$ පුශ්න පතුයෙහි \mathbf{B} **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙ යාමට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

	(10) සංයුක්ත ගණිතය I						
කොටස	පුශ්න අංකය	ලකුණු					
	1						
	2						
	3						
	4						
A	5						
	7						
	8						
	9						
	10						
	11						
D	12						
В	13						
	14						
	එකතුව						
	පුතිශතය						

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

	අවසාන ලකුණු
ඉලක්කමෙන්	
අකුරින්	

ස	ක්ත අංක
උත්තර පතු පරීකෂක	
පරික්ෂා කලේ	1.
	2.
අධීක්ෂණය කළේ	

A කොටස
$f: x o \sqrt{x-3} - 8$ ශිුතය $[3, \infty)$ මත අර්ථ දැක්වේ. f හි පරාසය සොයන්න. f එකට එක ශිුතයක් බව පෙන්වා
f^{-1} (f ශිුතයේ පුතිලෝමය) සොයන්න.
$A \equiv (2, 3)$, $B \equiv (7, 5)$ සහ $C \equiv (6, -2)$ ABC තිකෝණයේ ශීර්ෂ තුන වේ. D හා E යනු පිළිවෙලින් BC හා AD
පාදවල මධා ලක්ෂාවේ. BACE චතුරසුයේ වගීඵලය සොයන්න.

		•••••				
••••••	•••••	••••••••	••••••		•••••	•••••••
•••••	•••••	•••••	•••••		•••••	•••••
		•	•••••			
•••••	•••••	•••••	•••••		•••••	•••••
•••••	•••••	•••••	•••••		•••••	•••••
•••••	•••••	•••••			•••••	
$\frac{1}{(x-1)(x+1)}$	1) හි භින්න භාග	ෙසොයන්න.				
	$\frac{1}{1}$ හි හින්න භාග $\frac{1}{(r+1)^2}$ හි $^{\frac{1}{2}}$		පෝහනය කරන්	න.		
	$\overline{1)}$ හි හින්න භාග $\frac{1}{(x+1)^2}$ හි $^{\frac{1}{2}}$		පෝහනය කරන්:	න.		
			පා්හනය කරන්:	ກ.		
			පෝහනය කරන්:	ລ.		
			පෝහනය කරන්:	ກ.		
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				
ඒනයින් <u>(</u> x -	$\frac{1}{(x+1)^2(x+1)^2} \otimes \epsilon$	හින්න භාග අෙ				

	$(1+kx)^3 - (1-kx)^3 - (1-kx)^$	$-k^2r$		100 400 G	සායනන.			
	$V_1 + V_1 - V_1$	$-\kappa \lambda$						
•••••	•••••		•••••					
•••••	•••••		•••••		•••••		•••••	
•••••	•••••		•••••		•••••		•••••	
	•••••							
•••••	•••••	••••••••	••••••	••••••	•••••		•••••	••••••••••
•••••			•••••		•••••		•••••	••••••••
					•••••		•••••	
•••••	•••••		•••••		•••••		•••••	
$\cos 8\theta$	+ sin12 <i>θ</i> = 0 ≅	sමීකරණයේ -	සාධාරණ විච	_{වද} ුම $ heta$ = $(4n$	$-1)rac{\pi}{40}$ ඉහර්	$\theta = (4n - 1)$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	⁷ බව පෙන්ව
$\cos 8\theta$ -	+ sin12 <i>θ</i> = 0 ≈	මීකරණයේ	සාධාරණ විච	රුදුම $\theta = (4n)$	$-1)rac{\pi}{40}$ ඉහර්	$\theta = (4n - 1)$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	⁷ බව පෙන්ව
cos 8θ -	+ sin12 <i>θ</i> = 0 ≅	sමීකරණයේ -	සාධාරණ විභ	ම θ=(4 <i>n</i>	$-1)\frac{\pi}{40}$ such	$\theta = (4n -$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	⁷ බව පෙන්ව
cos 8θ -	+ sin 12 <i>θ</i> = 0 ≈	3මීකරණයේ	සාධාරණ වීච	$\theta = (4n)$	$-1)rac{\pi}{40}$ ඉහර්	$\theta = (4n -$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	⁷ බව පෙන්ව
cos 8θ -	⊢ sin 12θ = 0 €	වමිකරණයේ	සාධාරණ විච	ි θ = (4n	$-1)\frac{\pi}{40}$ ඉහර	$\theta = (4n - 1)$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	⁷ බව පෙන්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	3මීකරණයේ	සාධාරණ විච	$\theta = (4n)$	$-1)rac{\pi}{40}$ ඉහර්	$\theta = (4n - 1)$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	⁷ බව පෙත්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	ාමීකරණයේ	සාධාරණ විභ	නඳුම θ = (4n	$-1)rac{\pi}{40}$ ඉහර	$\theta = (4n - 1)$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	² බව පෙන්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	3මීකරණයේ	සාධාරණ විච	$\theta = (4n)$	$-1)rac{\pi}{40}$ ඉහර්	$\theta = (4n -$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	7 බව පෙත්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	ාමීකරණයේ	සාධාරණ විස	නඳුම $\theta = (4n)$	$-1)\frac{\pi}{40}$ soci	$\theta = (4n -$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	7 බව පෙන්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	3මීකරණයේ	සාධාරණ විච	$\theta = (4n)$	$-1)rac{\pi}{40}$ ගෝ	$\theta = (4n - 1)$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	7 බව පෙන්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	ාමීකරණයේ	සාධාරණ විස	නඳුම $\theta = (4n)$	$-1)rac{\pi}{40}$ ඉහර	$\theta = (4n -$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	7 බව පෙන්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	වීකරණයේ	සාධාරණ විච	$\theta = (4n)$	$-1)rac{\pi}{40}$ ගෝ	$\theta = (4n - 1)$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	7 බව පෙන්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	ාමීකරණයේ	සාධාරණ විස	$\theta = (4n)$	$-1)rac{\pi}{40}$ ඉහර	$\theta = (4n - 1)^{-1}$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	7 බව ලපත්ව
cos 8θ -	$+\sin 12\theta = 0 \approx$	වමිකරණයේ 	සාධාරණ විච	$\theta = (4n)$	$-1)rac{\pi}{40}$ ගෝ	$\theta = (4n - 1)$	$1)\frac{\pi}{8} \; ; \; n \in \mathbb{Z}$	7 බව පෙන්ව
	$+\sin 12\theta = 0 \approx$							

			γ බව පෙත්වත්ප		
	•••••				
		•••••	•••••	•••••	
•••••••			••••••	••••••	••••••
	•••••				•••••
••••			••••	••••	••••
		•••••	•••••	•••••	
		•••••			•••••
$d \int \operatorname{Tan}^3 x - 3\operatorname{Tan}$	x) 3				
$\frac{d}{dx} \left\{ \frac{\text{Tan}^3 x - 3\text{Tan}}{1 + 3\text{Tan}^2 x} \right\}$	$\left. \frac{x}{\text{Sin}^3 3x - 1} \right\} = \frac{3}{\text{Sin}^3 3x - 1}$	බව පෙත්වත්?	ກ.		
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$	$\left. \frac{x}{\sin^3 3x - 1} \right\} = \frac{3}{\sin^3 3x - 1}$	බව පෙන්වන්	ກ.		
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$	$\left. \frac{x}{\text{Sin}^3 3x - 1} \right\} = \frac{3}{\text{Sin}^3 3x - 1}$	බව පෙන්වන්?	ກ.		
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$	$\left \frac{x}{\sin^3 3x - 1} \right $	බව පෙත්වත්ඃ	ກ.		
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$	$\left \frac{x}{\sin^3 3x - 1} \right = \frac{3}{\sin^3 3x - 1}$	බව පෙන්වන්ද	ົກ.		
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$	$\left \frac{x}{\sin^3 3x - 1} \right $	බව පෙත්වත්ව	ົ້ວ.		
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$	$\left \frac{x}{\sin^3 3x - 1} \right $	බව පෙන්වන්ද	o.		
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$	$\left \frac{x}{\sin^3 3x - 1} \right $	බව පෙන්වන්			
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$	$\left \frac{x}{\sin^3 3x - 1} \right = \frac{3}{\sin^3 3x - 1}$	බව පෙන්වන්			
$\frac{d}{dx} \left\{ \frac{\operatorname{Tan}^3 x - 3\operatorname{Tan}}{1 + 3\operatorname{Tan}^2 x} \right\}$					

B කොටස

පුශ්න හතරකට පමණක් පිලිතුරු සපයන්න.

(9) (a) $a \neq 0$, $ax^2 + bx + c = 0$ සමීකරණයේ මූල α හා β නම්, $\alpha + \beta = \frac{-b}{a}$ හා $\alpha\beta = \frac{c}{a}$ බව ඔප්පු කරන්න.

 $\frac{\alpha}{\beta} = \frac{\lambda}{\mu}$ නම් $\lambda \mu b^2 = (\lambda + \mu)^2 ac$ බව පෙන්වන්න.

- (i) $ax^2 + bx + c = 0$ සමීකරණයට සම්පාත මූල තිබීමේ අවශාතාව
- (ii) $ax^2 + bx + c = 0$ හා $a^1x^2 + b^1x + c = 0$ සමීකරණ වල මූල අතර අනුපාත සමාන වීමේ අවශාතාව a, b, c, a^1, b^1, c^1 පදවලින් අපෝහනය කරන්න.
- (b) $f(x) = x^4 + 2x^3 3x^2 2x + 3$ යැයි ගතිමු.

f(x) ශිතය $\left(x-2
ight)^2\left(x-3
ight)$ න් බෙදූ විට ලබ්ධිය $\mathbf{Q}(x)$ වන අතර ශේෂය,

 $R(x) = \lambda(x-2)^2 + \mu(x-3) + \gamma$ ආකාරයේ වේ. මෙහි λ , μ , γ නීර්ණය කළ යුතු නියත වේ.

 $x \in \mathbb{R}$ සඳහා බෙදීම් ඇල්ගොරිතමය සඳහා පුකාශනය ඇසුරෙන් $\mathrm{f}\left(\mathrm{x}\right)$ ලබාගන්න.

මෙම බෙදීම් ඇල්ගොරිතම පුකාශනයේ x විෂයයෙන් වහුත්පන්නය වන $f^{-1}(x)$ සඳහා $\left\{x\in\mathbb{R}\right\}$ පුකාශනය ලබාගන්න.

 $f^1(2)=42$ බව පෙන්වා ඒ නයින් $\mu=42$ බව අපෝහනය කරන්න.

 λ හා γ හි අගයන් සොයා $R(x)=44x^2-134x+111$ බව අපෝහනය කරන්න.

- (10) (a) (i) $f(x) = 2\lambda x^2 + 2(\lambda + 4)x + 9$ $\lambda \neq 0$ ශිතය x හි සියළු ම තාත්වික අගයන්ට ධන වීම සඳහා λ ට ගත හැකි අගයන් සොයන්න.
 - (ii) $F(x, y) = x^2 + 8xy 5y^2 k(x^2 + y^2)$ පුකාශණය $\alpha \{x + \beta y\}^2$ ආකාරයට පුකාශ කළ විට, k ට ගත හැකි අගයන් සොයන්න.

 ${
m k}$ හි මෙම අගයන්ට අනුරූපව lpha හා $oldsymbol{eta}$ හි අගයන් සොයන්න.

- (b) $\frac{3}{x-1}$ ≥ (4x-5) සපුරාලන x හි අගය කුලකය සොයන්න.
- (c) y = x(x-2) ශිතයේ දළ පුස්ාරය අඳින්න.

 $y = |x^2 - 2x|$ හා y = |2x - 1| ශිුතවල දළ පුස්ථාර එකම සටහනක අඳින්න.

ඒ නයින් $\left|x^2-2x\right| \leq \left|2x-1\right|$ අසමානතාව තෘප්ත කරන x හි තාත්වික අගය කුලකය පුස්ථාර සටහන මත ලකුණු කරන්න.

(11)
$$(a)$$
 $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}$ බව පෙන්වන්න

(b)
$$\sin 2\theta + \sin 2\phi = \frac{1}{2}$$
 $\cos 2\theta + \cos 2\phi = \frac{3}{2}$ නම්, $\cos^2(\theta - \phi)$ හි අගය සොයන්න.

$$(c)$$
 $Tan^{-1} \left(\frac{1-x}{1+x} \right) = \frac{1}{2} Tan^{-1} x$ සමීකරණය විසඳන්න.

(d)
$$4 \sin\left\{x + \frac{\pi}{3}\right\} \cos\left\{x - \frac{\pi}{6}\right\} = \lambda^2 + \sqrt{3} \sin 2x - \cos 2x$$
 $\cos 2x = \frac{\lambda^2 - 2}{2}$ බව පෙන්වන්න. ඒ නයින් λ හි අගය පරාසය සොයන්න.

ඉහත සමීකරණය $\operatorname{Tan} heta$ පදවලින් පුකාශ කරන්න.

 $\operatorname{Tan} 3\theta = 1$ සමීකරණයේ සාධාරණ විසඳුම ලබා ගන්න.

ඒ නයින්
$$x^3-3x^2-3x+1=0$$
 සමීකරණයේ මූල $\tan\frac{\pi}{12}$, $\tan\frac{5\pi}{12}$ හා $\tan\frac{3\pi}{4}$ බව පෙන්වන්න.

ඒනයින් $anrac{\pi}{12}$ හි අගය සොයන්න.

$$\operatorname{Tan} \frac{\pi}{12}$$
 . $\operatorname{Tan} \frac{5\pi}{12} = 1$ බව අපෝහනය කරන්න.

(i)
$$(a-b)^2 \cos^2 \frac{C}{2} + (a+b)^2 \sin^2 \frac{C}{2} = c^2$$
 බව පෙන්වන්න.

(ii)
$$\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$$
 නම් A, B, C කෝණවල අගයන් සොයන්න.

(13) (a)
$$y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$
 50,

$$(1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + xy \iff 60$$

$$(1=x^2)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 3x\frac{dy}{dx} - y = 0$$
 බව ලෙපන්වන්න.

(b) සුදුසු ආදේශයක් යෙදීමෙන් හෝ අන් අයුරකින් හෝ,

$$\frac{\mathrm{d}}{\mathrm{d}x} \mathrm{Tan}^{-1} \left\{ \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1+x^2} + \sqrt{1=x^2}} \right\} = \frac{-x}{\sqrt{1-x^4}}$$
 බව ලෙන්වන්න.

(c) $x = a \sin 2\theta \left(1 + \cos 2\theta\right)$ හා $y = a \cos 2\theta \left(1 - \cos 2\theta\right)$ නම් $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{Tan}\,\theta$ බව ලෙන්වන්න.

(14)
$$(a)$$
 $f(x) = \frac{1}{16}(-x^3 + 12x^2)$ $x \in \mathbb{R}$ ලෙස ගනිමු.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f^{1}(x)$$
 හා $\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} = f^{11}(x)$ ඉසායන්න.

 $f^1(x)$ හා $f^{11}(x)$ සඳහා වන පුකාශන භාවිතයෙන් $\mathbf{y}=f(x)$ ශිුතයේ හැරුම් ලස්ෂා හා නතිවර්තන ලස්ෂා සොයන්න.

හෑරුම් ලක්ෂා, නතිවර්තන ලක්ෂා පැහැදිලිව දක්වමින් $\mathbf{y}=f\left(x
ight)$ ශිුතයේ දළ පුස්තාරය අඳින්න.

(b) විවෘත ටැංකියක්, සමචතුරසුාකාර පතුළකින් හා සිරස් පැතිවලින් සමන්විත වේ. දී ඇති ජල ධාරිතාවක් රඳවා ගැනීම පිණිස මෙම ටැංකිය ලෝහතහඩුවලින් නිපදවනු ලබයි.

මෙම ටැංකියේ නිෂ්පාදන දුවාෘවලට යන වියදම අවම වන්නේ ටැංකියේ උස, එහි පතුලේ පැත්තක දිගෙන් අඩක් වන විට බව පෙන්වන්න. සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

දකුණු පළාත් අධනාපන දෙපාර්තමේන්තුව

தென் மாகாணக் கல்வித் திணைக்களம்

Southern Provincial Department of Education

අධ්යයන පොදු සහතික පතු (උසස් පෙළ) 12 ශේණිය, අවසාන වාර පරීක්ෂණය, 2019 ජූලි

General Certificate of Education (Adv. Level), Grade 12, Year End Test, July 2019

සංයුක්ත ගණිතය - II Combined Mathematics II

පැය 02 මිනිත්තු 30 යි. **02 hours 30 minitus**

විභාග	අංකය:
-------	-------

උපදෙස්ඃ

V මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

A කොටස (පුශ්න 1 - 8) සහ **B කොටස** (පුශ්න 9 - 14)

✓ A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. ඒක එක් පුශ්නය සඳහා ඔබේ පිළිතුරු සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශ_් වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැකි ය.

∨ B කොටස:

පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු සපයා ඇති කඩදාසිවල ලියන්න.

- m V නියමිත කාලය අවසන් වූ පසු m A කොටසෙහි පිළිතුරු පතුය, m B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- ee පුශ්න පතුයෙහි \mathbf{B} **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙ යාමට අවසර ඇත.
- m V මෙම පුශ්න පතුයෙහි m g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි. ($m g = 10 ms^{-2}$)

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය II							
කොටස	පුශ්න අංකය	ලකුණු					
	1						
	2						
	3						
	4						
A	5						
	7						
	8						
	9						
	10						
	11						
D	12						
В	13						
	14						
	එකතුව පුතිශතය						
	පුතිශතය						

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු		
ඉලක්කමෙන්		
අකුරින්		

ස	ක්ත අංක
උත්තර පතු පරීකෂක	
පරීක්ෂා කලේ	1.
	2.
අධීක්ෂණය කළේ	

A කොටස
ස්කන්ධය W වන ඒකාකාර AB දණ්ඩක් A හිදී සුමට ලෙස අසව් කර සමතුලිතතාවේ පවත්වා ගන්නේ B කෙළවරදී
යෙදෙන P තිරස් බලයකිනි. A ට පහළින් B පිහිටන අතර AB තිරසට $Tan^{-1} rac{3}{4}$ කොණයකින් ආනතව තිබේ.
P හි අගය හා අසව්වේ පුතිකිුයාවේ විශාලත්වය සොයන්න.
පැත්තක දිග a වන \overline{ABC} සමපාද තිුකෝණයේ \overline{AB} , \overline{BC} හා \overline{CA} , ඔස්සේ \overline{P} , \overline{P} හා \overline{SP} බල පිළිවෙලින් කිුයා කරයි. මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) \overline{AC} හමුවන
පැත්තක දිග a වන ABC සමපාද තිකෝණයේ \overline{AB} , \overline{BC} හා \overline{CA} , ඔස්සේ P , $2P$ හා $3P$ බල පිළිවෙලින් කිුයා කරයි. මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.
මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාවත්, එහි කිුයා රේඛාව (අවශා නම් දික්කල) AC හමුවන ලක්ෂායට A හි සිට දුර ද සොයන්න.

(3)	a හා b ඉදෙශික a + b හා a ඉදෙශික ලම්බක වන සේත් $ \mathbf{b} = \sqrt{2} \mathbf{a} $ ලෙසත් පවතී.
	a හා b දෙශික අතර කෝණය සොයන්න. 2a + b හා b දෙශික ලම්බක බව පෙන්වන්න.
(4)	දිග 4ℓ හා බර W වන ඒකාකාර AB දණ්ඩක් $AC=\ell$ වන සේ දණ්ඩ මත පිහිටි C ලක්ෂායක ඇති රළු හා දැත්තක
	ගැටෙමින් ද A කෙළවරට පහළින් B කෙළවර පිහිටන සේත් A හිදී දණ්ඩට ලම්බකව යොදන ලද $\overset{\cdot}{\mathbb{W}}_2$ බලයකින් ද
	සමතුලිතතාවේ තබා තිබේ. දණ්ඩේ තිරසට ආනත කෝණය $lpha$ සොයන්න. දණ්ඩ ලිස්සා යාමට ආසන්න බව දී ඇත.
	නාදත්ත හා දණ්ඩ අතර ඝර්ෂණ සංගුණකය සොයන්න.

	_{වු} කර යයි.			
A ලක්ෂායේදී අංශුවේ පුවේගය සොයන්න.	0	Ä	В	
A සිට C දක්වා චලිතයට අංශුව ගත් කාලය සොයන්න	ກ. ບ	Α	Б	
			·····	
				•••••
				,
බෝලයක් $\frac{a}{2}$ උසැති සිරස් බිත්තියක පාමුල සිට a දුරා කෝණය $\mathrm{Tan}^{-1}\frac{3}{4}$ වන සේ පුක්ෂේපණය කරයි.	කින් බිමක පිහිටි (ුඎායකින් පුම	ව්ගය $2\sqrt{a}$ g අ	ගා පුක්මෑ
කොණය 1 all	d 28 execution			
ශ්තතයට කොටුමණ Cසතාවා ඇහැයිය හිතවා කාරවාතේ) දැය මතාගථාථා.			
	••••••			

$rac{1}{5}$ ක් වේ. පද්ධතියේ ත්වරණයත් තන්තුවේ ආතතියත් සොයන්න.	5 kg
7///	
,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	•••••
	•••••
නැවක් උතුරට 20 kmh ⁻¹ වේගයෙන් ගමන් කරන විට එම නැවේ නිරිෘ 10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සඃ සොයන්න.	
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සඃ	
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෑ සොයන්න.	නා දිශාව හා [*] එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෑ සොයන්න.	
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෑ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෑ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෑ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි
10 kmh ⁻¹ වේගයෙන් ගමන් කරන බව දකී. දෙවන නැව ගමන් කරන සෘ සොයන්න.	තා දිශාව හා එහි පුවේගයේ දි

B කොටස

පුශ්න හතරකට පමණක් පිලිතුරු සපයන්න.

- (09) (a) දුම්රියක් ඒකාකාර ත්වරණයෙන් අනුයාත කිලෝ මීටර කණු දෙකක් පිළිවෙලින් 10 kmh⁻¹ හා 20 kmh⁻¹ පුවේගවලින් පසු කර යයි. චලිත සමීකරණ යොදා ගනිමින් දුම්රියේ ඒකාකාර ත්වරණය සොයන්න. ඊලඟ කිලෝමීටර කණුව පසුකරන විට දුම්රියේ පුවේගයෙත්, මෙම 1 km පරතරයන් දෙක පසු කිරීමට දුම්රිය ගන්නා කාලයන් ද සොයන්න.
 - (b) PQR සමද්විපාද තිකෝණයක $QPR = 90^\circ$ වන පරිදි හා P, R ගඟක එකම ඉවුරේ ද Q අනෙක් ඉවුරේ P ට කෙළින් ම පුතිවිරුද්ධව පිහිටන සේ පවතී. නිශ්චල ජලයේ u පුවේගයෙන් පිහිතිය හැකි මිනිසෙක් P සිට Q ට හා Q සිට නැවත P වෙත පැමිණීමට t_1 කාලයක් ගනී. ඔහු P සිට R ට පිහිනා නැවත P කරා පැමිණීමට t_2 කාලයක් ගනී. ගඟ v u0 වේගයෙන් ගලා බසී නම්, u1 u2 බව පෙන්වන්න.
- (10) (a) දුම්රියක නිශ්චලතාවේ සිට ඒකාකාර ලෙස ත්වරණය වෙමින් චලිතයේ පළමු 0.5 km දුර ගමන්කර,අනතුරුව ඊළඟ 1.5 km දුර, ලබාගත් ඒකාකාරවේගයෙන් ගමන් කර එතැන් සිට 0.25 km දුරකදී නිශ්චලතාවයට පත්වන සේ ඒකාකාරව මන්දනය කරයි.දුම්රියේ චලිතයට පුවේග කාල පුස්ථාරය අදින්න. දුම්රියේ මුළු ගමනට ගත වූ කාලය 5 min වේ. දුම්රියේ ඒකාකාර ත්වරණයත්, ඒකාකාර මන්දනයත් සොයන්න.
 - (b) X නැව උතුරු දිශාවට $48~kmh^{-1}$ වේගයෙන් ගමන් කරයි. දෙවන Y නැව බටහිර දිශාවට $32~kmh^{-1}$ වේගයෙන් ගමන් කරයයි. X නැවේ නැවියනට තුන්වැනි Z නැව නිරිත දිශාවට ගමන් කරන සේත්, Y නැවේ නැවියනට Z නැව උතුරින් 30° නැගෙනහිරට ගමන් කරන සේත් දකී. Z නැවේ ගමන් මාර්ගයේ සතා දිශාවත්, එහි පුවේගයත් සොයන්න. $(Tan15^\circ = 2 \sqrt{3}~cml 3^\circ$ තිබේ.)
- (11) (a) α ආරෝහණයෙන් හා U පුවේගයෙන් පුක්ෂේපනය කරන ලද අංශුවක, චලිතයේ ළඟාවෙන වැඩිතම උසත්, තිරස් පරාසයත් සොයන්න.

U පුවේගයෙන් පුක්ෂේපනය කරන අංශුවක උපරිම තිරස් පරිසය R වේ.

U පුවේගයෙන් පුක්ෂේපණය කරන ලද අංශුවක තිරස පරාසය $rac{3}{5}\,R$ වේ. මේ අවස්ථාවේ පුක්ෂේපණ කෝණයට තිබිය හැකි අගයන් දෙක සොයන්න.

 $\sin 36^{\circ}52' = \frac{3}{5}$ බව දී තිබේ.

(b) දී ඇති රූපය, ඒකාකාර, සුමට, ස්කන්ධය $9 \ m$ වූ කුඤ්ඤයක ගුරුත්ව කේන්දුය හරහා යන සිරස් හරස්කට ABCතිුකෝණයෙන් දක්වයි.

මෙහි AB වැඩිතම බැවුම් සහිත මුහුණතේ, පිහිටන රේඛාවක්

නිරූපණය කරයි.
$$\stackrel{\circ}{ABC} = Tan^{-1} \frac{3}{4}$$
 හා $\stackrel{\circ}{ACB} = \frac{\pi}{2}$ වේ.

BC මඟින් දක්වෙන තලය සුමට තිරස් මේසයක් මත පිහිටන සේ කුඤ්ඤය නිසලව තබා තිබේ. ස්කන්ධය m වූ අංශුවක් B හි සිට BA ඔස්සේ U පුවේගයෙන් පුක්ෂේපණය කරන්නේ අංශුව යන්තමින් A ශීර්ෂය කරා ලඟාවන පරිදි ය. h යනු BC හි සිට A ට ඇති උස බව දී තිබේ.

$$v^2 = \frac{250}{117}$$
gh බව පෙන්වන්න..

(12) (a) ABCD නිපීසියමේ $\overrightarrow{DC} = \frac{1}{3}$ \overrightarrow{AB} හා $\overrightarrow{AB} = \mathbf{b}$ හා $\overrightarrow{AD} = \mathbf{d}$ වේ. E ලක්ෂා BC මත $\overrightarrow{BE} = \frac{2}{3}$ \overrightarrow{BC} වනසේ පිහිටයි.

$$\overrightarrow{AE} = \frac{2}{3}\mathbf{d} + \frac{5}{9}\mathbf{b}$$
 බව ලෙන්වන්න.

AC හා DE රේඛාවල ඡේදන ලක්ෂාය X, $\overrightarrow{AX} = \lambda \overrightarrow{AC}$ හා $\overrightarrow{DX} = \mu \overrightarrow{DE}$ වන පරිදි පවතී මෙහි λ හා μ $1>\lambda>0$ හා $1>\mu>0$ වනසේ නියත දෙකකි.

$$\overrightarrow{AX} = \lambda \left(\mathbf{d} + \frac{1}{3} \mathbf{b} \right)$$
 සහ $\overrightarrow{AX} = \left(1 - \frac{\mu}{3} \right) \mathbf{d} + \frac{5\mu}{9} \mathbf{b}$ බව පෙන්වන්න.

ඒනයින් λ හා μ හි අගයන් සොයන්න.

$$\overrightarrow{AX} = \frac{5}{6}\mathbf{d} + \frac{5}{18}\mathbf{b}$$
 බව අපෝහනය කරන්න.

(b) ABCD සෘජුකෝණාසුයේ $AB=\ell$ හා $AD=2\ell$ වේ. M යනු \overrightarrow{AD} හි මධා ලක්ෂාය වේ.

 $F, 2F, 4F, 6F, 3\sqrt{2}F, \sqrt{5}F$ බල පිළිවෙලින් $\overrightarrow{CB}, \overrightarrow{DA}, \overrightarrow{BA}, \overrightarrow{CD}, \overrightarrow{MB}, \overrightarrow{DB}$ ඔස්සේ කිුයාකරයි.

මෙම බල පද්ධතිය A හරහා R තනි බලයන්ටත් G යුගමයකටත් ඌනනය කරන්න. R බලයේ විශාලත්වයත් දිශාවත් සොයන්න. G යුග්මයට $6\ell F$ ඝූර්ණයක් තිබෙන බව පෙන්වන්න.

මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ කිුිියා රේඛාව AD පාදය කවර ස්ථානයකදී ඡේදනය කරයි ද? මෙම බල පද්ධතිය B හා D ලක්ෂාවලදී කිුිිියාකරන සමාන්තර බල දෙකකට තුලා වේ නම්, මෙම සමාන්තර බල දෙක සොයන්න.

(13) (a) අරය a වන සුමට අර්ධ ගෝලීය පාතුයක වෘත්ත දාරය තිරස්ව, ඉහළින් ම තිබෙන පරිදි අචලව තබා තිබේ. දිග 2ℓ $(\ell > a)$ වන ඒකාකාර දණ්ඩක කෙළවරක් පාතුය තුළද අනෙක් කෙළවර පාතුයෙන් ඉවතට නෙරා තිබෙන්නේ දණ්ඩේ ලක්ෂායක් වෘත්ත දාරය මත පිහිටන පරිදි ය. දණ්ඩ තිරසට heta කෝණයක් සාදයි.

 $2a\cos 2\theta = \ell\cos \theta$ බව සොයන්න.

ඒනයින්
$$\cos\theta = \frac{\ell + \sqrt{\ell^2 + 32a^2}}{8a}$$
 බව අපෝහනය කරන්න.

දණ්ඩේ පාතුයෙන් ඉවතට නෙරා ඇති කොටසේ දිග $\frac{1}{4} \Big(7\ell - \sqrt{\ell^2 + 32a^2} \, \Big)$ බව පෙන්වන්න.

(b) රූපයේ දිග 4a හා බර W වූ ඒකාකාර දණ්ඩක් අවල රඑ X නාදක්තක් මත සමතුලිතව පවතින ආකාරය දක්වේ. AX=3a වේ. $\dfrac{W}{2}$ භාරයක් BO කෙළවරින් එල්ලා ඇති අතර දණ්ඩේ A කෙළවර, සැහැල්ලු තන්තුවක එක් කෙළවරකට අමුණා තන්තුවේ අනෙක් කෙළවර C අවල ලක්ෂායකට අමුණා තිබේ. දණ්ඩත්, තන්තුවත් එකම සිරස් තලයක තිබේ. දණ්ඩ හා තන්තුව පිළිවෙලින් සිරසට 60° ක් හා 30° ක් ආනත වේ.

- (i) තන්තුවේ ආතතිය $\dfrac{\sqrt{3}w}{6}$ බව පෙන්වන්න.
- (ii) සමතුලිතතාව සීමාකාරී අවස්ථාවේ බව දී තිබේ නම් නාදත්ත හා දණ්ඩ අතර සර්ෂණ සංගුණකය

$$\frac{\sqrt{3}}{4}$$
 බව පෙන්වන්න

- (14) (a) Ox හා Oy අස ඔස්සේ ඒකක දෛශික පිළිවෙලින් i හා j වලින් නිරූපනය කරයි. A හා B ලසා වල පිහිටුම් දෛශික පිළිවෙලින් 8i+6j හා 5i-12j වේ. AB රේඛාව x අසපා C ලසායේදී ඡේදනය කරයි.
 - (i) C ලක්ෂායේ පිහිටුම් දෙශිකය සොයන්න.
 - (ii) OADB සමාන්තරාසුයක් වනසේ එහි හතර වැනි ශීර්ෂය වන D හි පිහිටුම් දෛශිකය සොයන්න.
 - $\mathbf{F}_{\mathbf{i}}$ බලයේ විශාලත්වය $40\mathrm{N}$ වන අතර එය 0 හිදී \overrightarrow{OA} ඔස්සේ කිුයා කරයි.
 - ${f F},$ බලයේ විශාලත්වය $26{
 m N}$ වන අතර එය ${f O}$ හිදී $\overline{{f OB}}$ ඔස්සේ කිුයා කරයි.
 - $\mathbf{F}_{\mathbf{i}}$ හා $\mathbf{F}_{\mathbf{i}}$ හා \mathbf{j} ඇසුරෙන් පුකාශ කරන්න.
 - ${f F}_1$ හා ${f F}_2$ බලවල සම්පුයුක්ත බලය සොයන්න. එම සම්පුයුක්ත බලයේ කිුිිියා රේඛාව ${f C}$ ලක්ෂාය හරහා යන බව සාධනය කරන්න.
 - $\mathbf{F_1}$ බලය වෙනත් $\mathbf{F_3}$ බලයකින් පුතිස්ථාපනය කරන්නේ, $\mathbf{F_3}$ බලය \mathbf{O} හිදී \mathbf{OA} හරහා යන පරිදි ය.
 - $\mathbf{F_2}$ හා $\mathbf{F_3}$ බලදෙකේ සම්පුයුක්ත බලයේ කිුයා රේඛාව \mathbf{D} හරහා යයි නම් $\mathbf{F_3}$ \mathbf{i} හා \mathbf{j} ඇසුරෙන් සොයන්න.

(b)	අරය $40~\mathrm{cm}$ හා බර $30\mathrm{N}$ වූ ඒකාකාර ගෝලයක්, තිරසට $lpha$ කෝණයකින් ආනත සුමට තලයක් මත සමතුලිතව තබා ඇත්තේ, තිරස් අවිතනා තන්තුවක කෙළවරක් ගෝලය මත අචල ලක්ෂායකද අනෙක් කෙළවර ආනත තලය මත ලක්ෂායට ද ගැට ගැසීමෙනි.
	මෙහි $\operatorname{Tan} \alpha = \frac{8}{15}$
	තන්තුවේ දිගත්, තන්තුවේ ආතතියත් සොයන්න.

විභාග ඉලක්ක පහසුවෙන් ජයගන්න

පසුගිය විභාග පුශ්න පතු

 Past Papers
 Model Papers
 Resource Books for G.C.E O/L and A/L Exams

ົ້ວສາທ ໑ලສ່ສ ປ໌ຜທສ່ສ Knowledge Bank

WWW.LOL.LK

Website WWW.IOI.IK

071 777 4440