

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Lecture 5 — Part 2 Feature Engineering

Feature engineering

 "Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data." – Jason Brownlee

Feature engineering

 "Coming up with features is difficult, time-consuming, requires expert knowledge. 'Applied machine learning' is basically feature engineering." – Andrew Ng

The dream ...

... The Reality

Raw data

Feature engineering toolbox

• Just kidding:)

Variable data types

Number variables

Binarization

- Counts can quickly accumulate without bound
- convert them into binary values (0, 1) to indicate presence

Figure 2-3. Histogram of listen counts in the Taste Profile subset of the Million Song Dataset—note that the y-axis is on a log scale

Quantization or Binning

- Group the counts into bins
- Maps a continuous number to a discrete one
- Bin size
 - Fixed-width binning
 - Eg.
 - 0-12 years old
 - 12–17 years old
 - 18–24 years old
 - 25-34 years old
 - Adaptive-width binning

Equal Width Binning

 divides the continuous variable into several categories having bins or range of the same width

Categories:
$$[min, min + w - 1], [min + w, min + 2 * w - 1], [min + 2 * w, min + 3 * w - 1] \cdot \cdot \cdot [min + (x - 1) * w, max]$$

$$w = \left\lfloor \frac{max - min}{x} \right\rfloor$$

- Pros
 - easy to compute
- Cons
 - large gaps in the counts
 - many empty bins with no data

AGE	AGE_bins
10	[10, 21]
15	[10, 21]
16	[10, 21]
18	[10, 21]
20	[10, 21]
30	[22, 33]
35	[34, 45]
42	[34, 45]
48	[46, 55]
50	[46, 55]
52	[46, 55]
55	[46, 55]

Adaptive-width binning

- Equal frequency binning
 - Quantiles: values that divide the data into equal portions (continuous intervals with equal probabilities)
 - Some q-quantiles have special names
 - The only 2-quantile is called the median
 - The 4-quantiles are called quartiles → Q
 - The 6-quantiles are called sextiles → S
 - The 8-quantiles are called octiles
 - The 10-quantiles are called deciles → D

AGE	AGE_bins
10	[10, 16]
15	[10, 16]
16	[10, 16]
18	[17, 30]
20	[17, 30]
30	[17, 30]
35	[31, 48]
42	[31, 48]
48	[31, 48]
50	[49, 55]
52	[49, 55]
55	[49, 55]

Example: quartiles


```
>>> import pandas as pd
```


Log Transformation

- Original number = x
- Transformed number x'=log₁₀(x)
- Backtransformed number = 10^x

Box-Cox transformation

$$ilde{x} = \left\{ egin{array}{ll} rac{x^{\lambda}-1}{\lambda} & ext{if } \lambda
eq 0, \ \ln{(x)} & ext{if } \lambda = 0. \end{array}
ight.$$

Figure 2-13. Box-Cox transformation of Yelp business review counts (bottom), compared to original (top) and log transformed (middle) histograms

Feature Scaling (Normalization)

- Models that are smooth functions of the input, such as linear regression, logistic regression are affected by the scale of the input
- Feature scaling or normalization changes the scale of the features

Min-max scaling

• Squeezes (or stretches) all values within the range of [0, 1] to add robustness to very small standard deviations and preserving zeros for sparse data.


```
    >>> from sklearn import preprocessing

>>> X_train = np.array([[ 1., -1., 2.],
          [2., 0., 0.],
                      [0., 1., -1.]
>>> min max scaler =
 preprocessing.MinMaxScaler()
>>> X train minmax =
 min_max_scaler.fit_transform(X_train)
 array([0.5, 0., 1.])
       [ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]])
```

Standard (Z) Scaling

After Standardization, a feature has mean of 0 and variance of 1 (assumption of many learning algorithms)

Standardization with scikit-learn

12 Normalization

- also known as the Euclidean norm
- measures the length of the vector in coordinate space
- scale the values so that if they were all squared and summed, the value would be 1

$$ilde{x} = rac{x}{\|x\|_2} \qquad \|x\|_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_m^2}$$

from pandas import read_csv
from numpy import set_printoptions
from sklearn.preprocessing import Normalizer
path = r'./pima-indians-diabetes.csv'
names = ['preg', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv (path, names=names)
array = dataframe.values
Data_normalizer = Normalizer(norm='l2').fit(array)
Data_normalized = Data_normalizer.transform(array)

L2 NORMALIZATION

Categorical Variables

Categorical Features

- Nearly always need some treatment to be suitable for models
- High cardinality can create very sparse data
- Difficult to impute missing
- Examples
 - Platform: ["desktop", "tablet", "mobile"]
 - Document ID or User ID: [121545, 64845, 121545]

Label Encoding

 transform categorical variables into numerical variables by assigning a numerical value to each of the categories

[0, 1, 2, 3]
[0, 1, 2, 3]

LabelCount encoding

- Rank categorical variables by count in train set
- Useful for both linear and non-linear algorithms (eg: decision trees)
- Not sensitive to outliers
- Won't give same encoding to different variables

ad_id	clicks	ad_rank
54345	35387	1
423654	18339	2
98799	12352	3
68655	9430	4
123646	8232	5

Ordinal encoding

 transform an original categorical variable to a numerical variable by ensuring the ordinal nature of the variables is sustained

[male, female]	[0, 1]
[10, 21], [22, 33], [34, 45], [46, 55]	[0, 1, 2, 3]
[cold, warm, hot]	[0, 1, 2]
[poor, fair, good, very good, excellent]	[0, 1, 2, 3, 4]

Frequency encoding

 transform an original categorical variable to a numerical variable by considering the frequency distribution of the data

Column	Freq_Encoding
red	5
green	3
red	5
green	3
blue	4
red	5
red	5
blue	4
red	5
blue	4
blue	4
green	3

One hot encoding

 creates k different columns each for a category and replaces one column with 1 rest of the columns is 0

Column	red	green	blue
red	1	0	0
green	0	1	0
red	1	0	0
green	0	1	0
blue	0	0	1
red	1	0	0
red	1	0	0
blue	0	0	1
red	1	0	0
blue	0	0	1
blue	0	0	1
green	0	1	0

Target Mean encoding

- one of the best techniques
- replace the categorical variable with the mean of its corresponding target variable
- Steps for mean encoding
 - For each category
 - Calculate aggregated sum (= a)
 - Calculate aggregated total count (= b)
 - Numerical value for that category = a/b

Column	Target	Target Mean	Target Mean (numerical value)
red	1	3/5	0.6
green	1	2/3	0.67
red	0	3/5	0.6
green	0	2/3	0.67
blue	1	2/4	0.5
red	0	3/5	0.6
red	1	3/5	0.6
blue	0	2/4	0.5
red	1	3/5	0.6
blue	0	2/4	0.5
blue	1	2/4	0.5
green	1	2/3	0.67

Feature Hashing

Dealing with Large Categorical Variables

categorical_feature	unique_values
landing_page_document_id	636482
ad_id	418295
ad_document_id	143856
content_entities	52439
advertiser	2052
publisher	830
country_state	1892

Some large categorical features from Outbrain Click Prediction competition

Feature hashing [2]

- Hashes categorical values into vectors with fixed-length.
- Lower sparsity and higher compression compared to one hot encoding
- Deals with new and rare categorical values (eg: new user-agents)
- May introduce collisions

100 hashed columns

country
brazil
chile
venezuela
colombia
222 countries

country_hashed_1	country_hashed_2	country_hashed_3	country_hashed_4	
1	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	0	
	3444		····	

Bin-counting

- Instead of using the value of the categorical variable as the feature, we compute the association statistics between that value and the target that we wish to predict
- Useful for both linear and non-linear algorithms
- May give collisions (same encoding for different categories)
- Be careful about leakage
- Strategies
 - Count
 - Average CTR

Text Data

Natural Language Processing

- Cleaning
- Lowercasing
- Convert accented characters
- Removing non-alphanumeric
- Repairing
- Tokenizing
- Encode punctuation marks
- Tokenize
- N-Grams
- Skip-grams
- Char-grams
- Affixes

- Removing
- Stopwords
- Rare words
- Common words
- Roots
- Spelling correction
- Chop
- Stem
- Lemmatize
- Enrich
- Entity Insertion / Extraction
- Parse Trees
- Reading Level

Text vectorization

- Represent each document as a feature vector in the vector space, where each position represents a word (token) and the contained value is its relevance in the document.
 - BoW (Bag of words)
 - TF-IDF (Term Frequency Inverse Document Frequency)
 - Embeddings (eg. Word2Vec, Glove)
 - Topic models (e.g LDA)

	linux	modern	the	system	steering	petrol
D1	3	4	3	0	2	0
D2	4	3	4	1	0	1
D3	1	0	4	1	0	1
D4	0	1	3	3	3	4

Document Term Matrix - Bag of Words

Bag-of-Words

Input

 "Customer reviews build something known as social proof, a phenomenon that states people are influenced by those around them. This might include friends and family, industry experts and influencers, or even internet strangers."

Output

- a text document is converted into a "flat" vector of counts
- doesn't contain any of the original textual structures
- John is quicker than Mary and Mary is quicker than John have the same vectors

Bag-of-n-Grams

- a natural extension of bag-of-words (a word is essentially an unigram)
- bag-of-n-grams representation can be more informative
 - n-grams retain more of the original sequence structure
- Cons
 - bag-of-n-grams is a much bigger and sparser feature space

From Words to n-Grams to Phrases

- Tokenization is the process of tokenizing or splitting a string, text into a list of tokens.
- Chunking a sentences refers to breaking/dividing a sentence into parts of words such as word groups and verb groups.

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
 - → We want a high weight for rare terms like arachnocentric.

Tf-idf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by $idf_t = log_{10} (N/df_t)$
 - We use log (N/df_t) instead of N/df_t to "dampen" the effect of idf.

Tf-idf

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N/d\mathbf{f}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Filtering for Cleaner Features

Stopwords

weeding out common words that make for vacuous features

Frequency-Based Filtering

 filtering out corpus-specific common words as well as generalpurpose stopwords

Rare words

- Depending on the task, one might also need to filter out rare words.
- These might be truly obscure words, or misspellings of common words.

Stemming

 An NLP task that tries to chop each word down to its basic linguistic word stem form

Word representation: embedding the context

- Attempt to encode similarity inside the word vectors
- Built ontop of the following great idea
 - "You shall know a word by the company it keeps" (J. R. Firth 1957)

During his presidency, **Trump** ordered a travel ban on citizens controversial or false. **Trump** was elected president in a surprise victory over 1971, renamed it to The **Trump** Organization, and expanded it into Manhattan. coordination between the **Trump** campaign and the Russian government in its election interference.

These words describe the meaning of Trump

Word embedding

- Each word is encoded in a dense vector (Low dimension)
- Able to capture the semantics
 - Similar words ~ Similar vectors

0.13 0.67 walked 0.34 University 0.76 king walking 0.21 swimming -0.11Country-Capital Male-Female Verb tense 0.45 0.87 0.44

How to learn word embeddings

- The famous approach: Word2vec (Mikolov et. al. 2013)
- Unsupervised learning
- Large-scale dataset
- Lower computation cost
- High quality word vectors

BERT sentence embedding

• Feng, Fangxiaoyu, et al. "Language-agnostic BERT Sentence Embedding." *arXiv preprint arXiv:2007.01852* (2020).

Feature selection

Interaction Features

- A simple pairwise interaction feature is the product of two features
- A simple linear model
 - $y=w_1x_1+w_2x_2+...+w_nx_n$
- An easy way to extend the linear model is to include combinations of pairs of input features
 - $y = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + w_{1,1} x_1 x_1 + w_{1,2} x_1 x_2 + w_{1,3} x_1 x_3 + \dots$

Polynomial Features

$$(X_1, X_2) \Longrightarrow (1, X_1, X_2, X_1^2, X_1X_2, X_2^2)$$

Polynomial features with scikit-learn

Feature Selection

- Objective
 - prune away nonuseful features in order to reduce the complexity of the resulting model
- Advantages
 - Training a machine learning algorithm faster.
 - Reducing the complexity of a model and making it easier to interpret.
 - Building a sensible model with better prediction power.
 - Reducing overfitting by selecting the right set of features.

Wrapper methods

- The *feature selection* process is based on a specific machine learning algorithm
- Exhaustive search follows a greedy search
 approach by evaluating all the possible combinations
 of features against the evaluation criterion
- Random search methods randomly generate a subset of features
- Computationally intensive since for each subset a new model needs to be trained

Embedded Methods

- Perform feature selection during the model training
- Decision tree
 - select a feature in each recursive step of the tree growth process and divide the sample set into smaller subsets
 - The more child nodes in a subset are in the same class, the more informative the features are

Method comparision

Filter methods	Wrapper methods	Embedded methods
Generic set of methods which do	Evaluates on a specific machine	Embeds (fix) features during
not incorporate a specific	learning algorithm to find	model building process. Feature
machine learning algorithm.	optimal features.	selection is done by observing
		each iteration of model training
		phase.
Much faster compared to	High computation time for a	Sits between Filter methods and
Wrapper methods in terms of	dataset with many features	Wrapper methods in terms of
time complexity		time complexity
Less prone to over-fitting	High chances of over-fitting	Generally used to reduce over-
	because it involves training of	fitting by penalizing the
	machine learning models with	coefficients of a model being too
	different combination of	large.
	features	
Examples – Correlation, Chi-	Examples - Forward Selection,	Examples - LASSO, Elastic Net,
Square test, ANOVA,	Backward elimination, Stepwise	Ridge Regression etc.
Information gain etc.	selection etc.	

"More data beats cleveralgorithms, but better data beats more data."

Peter Norvig

Diverse set of features and models leads to different results!

Outbrain Click Prediction

Towards Automated Feature Engineering Deep Learning....

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attention!!!

References

- Scikit-learn Preprocessing data
- Spark ML Feature extraction