第二节 正态总体均值的假设检验

- 一、单个总体均值µ的检验
- 二、两个总体均值差的检验(t 检验)

四、小结

一、单个总体 $N(\mu,\sigma^2)$ 均值 μ 的检验

1. σ^2 为已知, 关于 μ 的检验(Z检验)

在上节中讨论过正态总体 $N(\mu,\sigma^2)$

当 σ^2 为已知时,关于 $\mu = \mu_0$ 的检验问题:

- (1) 假设检验 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$;
- (2) 假设检验 $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$;
- (3) 假设检验 $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$.

讨论中都是利用 H_0 为真时服从 N(0,1) 分布的统计量 $Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$ 来确定拒绝域的,这种检验法称为 Z 检验法.

一个有用的结论

当显著性水平均为 α 时,

检验问题 $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$ 和检验问题

 $H_0: \mu = \mu_0, H_1: \mu > \mu_0$ 有相同的拒绝域.

检验问题 $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$ 的拒绝域为

$$\overline{x} - \mu_0 \ge (\sigma / \sqrt{n}) z_{\alpha}, \quad \mathbb{P} \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha}.$$

比较正态总体 $N(\mu, \sigma^2)$ 在方差 σ^2 已知时,对均值 μ 的两种检验问题

 $H_0: \mu = \mu_0, H_1: \mu > \mu_0$ $\exists H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$,

尽管原假设 H_0 的形式不同,实际意义也不同,但对于相同的显著性水平 α ,它们的拒绝域相同.

第二类形式的检验问题可归结为第一类形式讨论.

例1 某切割机在正常工作时,切割每段金属棒的平均长度为10.5cm,标准差是0.15cm,今从一批产品中随机的抽取15段进行测量,其结果如下: 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7

假定切割的长度服从正态分布,且标准差没有变化,试问该机工作是否正常? $(\alpha = 0.05)$

解 因为 $X \sim N(\mu, \sigma^2)$, $\sigma = 0.15$, 要检验假设

$$n = 15$$
, $\bar{x} = 10.48$, $\alpha = 0.05$,

$$\iiint \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{10.48 - 10.5}{0.15 / \sqrt{15}} = -0.516,$$

查表得 $z_{0.05} = 1.645$,

于是
$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = -0.516 < z_{0.05} = 1.645$$
,

故接受 H_0 ,认为该机工作正常.

2. σ^2 为未知, 关于 μ 的检验(t检验)

设总体 $X \sim N(\mu, \sigma^2)$,其中 μ, σ^2 未知,显著性水平为 α .

求检验问题 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ 的拒绝域.

设 X_1, X_2, \cdots, X_n 为来自总体X的样本,

因为 σ^2 未知,不能利用 $\frac{X-\mu_0}{\sigma/\sqrt{n}}$ 来确定拒绝域.

因为 S^2 是 σ^2 的无偏估计,故用S来取代 σ ,

即采用 $t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$ 来作为检验统计量.

当观察值
$$|t| = \frac{|\overline{x} - \mu_0|}{s/\sqrt{n}}$$
 过分大时就拒绝 H_0 ,

拒绝域的形式为
$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge k$$
.

根据第六章 § 2定理三知,

定理三

当
$$H_0$$
为真时, $\frac{X-\mu_0}{S/\sqrt{n}}\sim t(n-1)$,

$$P\{$$
 当 H_0 为真, 拒绝 $H_0 \} = P_{\mu_0} \left\{ \left| \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \right| \ge k \right\} = \alpha$,

得
$$k=t_{\alpha/2}(n-1)$$
,

拒绝域为
$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge t_{\alpha/2}(n-1)$$
.

上述利用 t 统计量得出的检验法称为t 检验法.

对于正态总体 $N(\mu, \sigma^2)$, 当 σ^2 未知时, 关于 μ 的单边检验的拒绝域在表 8.1 中给出.

在实际中,正态总体的方差常为未知,所以 我们常用 t 检验法来检验关于正态总体均值的检 验问题.

例2 如果在例1中只假定切割的长度服从正态分布,问该机切割的金属棒的平均长度有无显著变化? ($\alpha = 0.05$)

解 依题意 $X \sim N(\mu, \sigma^2)$, μ, σ^2 均为未知,

要检验假设 $H_0: \mu = 10.5$, $H_1: \mu \neq 10.5$,

n = 15, $\bar{x} = 10.48$, $\alpha = 0.05$, s = 0.237,

$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| = \left| \frac{10.48 - 10.5}{0.237 / \sqrt{15}} \right| = 0.327,$$

查表得 $t_{\alpha/2}(n-1) = t_{0.025}(14) = 2.1448 > |t| = 0.327$,

故接受 H₀,认为金属棒的平均长度 无显著变化.

例3 某种电子元件的寿命X(以小时计)服从正态分布, μ , σ^2 均为未知. 现测得16只元件的寿命如下:

159 280 101 212 224 379 179 264

222 362 168 250 149 260 485 170

问是否有理由认为元件的平均寿命大于225(小时)?

解 依题意需检验假设

$$H_0: \mu \le \mu_0 = 225, \ H_1: \mu > 225,$$

取 $\alpha = 0.05$, n = 16, $\bar{x} = 241.5$, s = 98.7259,

查表得

t分布表

$$|t_{0.05}(15) = 1.7531 > |t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| = 0.6685$$

故接受 H_0 ,认为元件的平均寿命不大于225小时.

二、两个总体 $N(\mu_1,\sigma_1^2), N(\mu_2,\sigma_2^2)$ 的情况

利用t检验法检验具有相同方差的两正态总 体均值差的假设.

设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu_1, \sigma^2)$ 的样本, Y_1,Y_2,\dots,Y_n 为来自正态总体 $N(\mu_2,\sigma^2)$ 的 样本,且设两样本独立.注意两总体的方差相等.

又设 \overline{X} , \overline{Y} 分别是总体的样本均值, S_1^2 , S_2^2 是样本 方差, μ_1, μ_2, σ^2 均为未知,

求检验问题 $H_0: \mu_1 - \mu_2 = \delta$, $H_1: \mu_1 - \mu_2 > \delta$ (δ 为已知常数)的拒绝域.

取显著性水平为 α .

引入 t 统计量作为检验统计量:

$$t = \frac{(\overline{X} - \overline{Y}) - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \ \ \sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

当H₀为真时,根据第六章§2定理四知,

定理四

$$t \sim t(n_1 + n_2 - 2).$$

其拒绝域的形式为
$$\frac{(\bar{x} - \bar{y}) - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge k,$$

$$P\{H_0$$
 为真,拒绝 $H_0\} = P_{\mu_1 - \mu_2 = \delta} \left\{ \frac{(\overline{X} - \overline{Y}) - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge k \right\} = \alpha$

得
$$k = t_{\alpha/2}(n_1 + n_2 - 2)$$
.

故拒绝域为
$$t = \frac{|(\overline{x} - \overline{y}) - \delta|}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge t_{\alpha/2} (n_1 + n_2 - 2).$$

关于均值差的其它两个检验问题的拒绝域见表8.1, 常用 $\delta = 0$ 的情况.

当两个正态总体的方差均为已知(不一定相等)时,我们可用 Z 检验法来检验两正态总体均值差的假设问题, 见表8.1.

例4 在平炉上进行一项试验以确定改变操作方法 的建议是否会增加钢的得率,试验是在同一只平 炉上进行的. 每炼一炉钢时除操作方法外, 其它条 件都尽可能做到相同.先采用标准方法炼一炉,然 后用建议的新方法炼一炉,以后交替进行,各炼了 10炉, 其得率分别为(1)标准方法: 78.1, 72.4, 76.2, 74.3, 77.4, 78.4, 76.0, 75.5, 76.7, 77.3; (2)新方法: 79.1, 81.0, 77.3, 79.1, 80.0, 78.1, 79.1, 77.3, 80.2, 82.1; 设这两个样本相互独立, 且分别来自正态总 体 $N(\mu_1,\sigma^2)$ 和 $N(\mu_2,\sigma^2)$, μ_1,μ_2,σ^2 均为未知, 问建议的新操作方法能否提高得率?(取α=0.05) 解 需要检验假设 $H_0: \mu_1 - \mu_2 > 0$, $H_1: \mu_1 - \mu_2 < 0$. 分别求出标准方法和新方法下的样本均值和样本方差:

$$n_1 = 10, \quad \overline{x} = 76.23, \quad s_1^2 = 3.325,$$
 $n_2 = 10, \quad \overline{y} = 79.43, \quad s_2^2 = 2.225,$

$$\exists |s_w|^2 = \frac{(10-1)s_1^2 + (10-1)s_2^2}{10+10-2} = 2.775,$$

查表可知 $t_{0.05}(18) = 1.7341$,

查表8.1知其拒绝域为 $t \le -t_{\alpha}(n_1 + n_2 - 2)$.

因为
$$t = \frac{\overline{x} - \overline{y}}{s_w \sqrt{\frac{1}{10} + \frac{1}{10}}} = -4.295,$$

$$\leq -t_{0.05}(18) = -1.7341,$$

所以拒绝 H_0 ,

即认为建议的新操作方法较原来的方法为优.

附表8.1

例5 有甲、乙两台机床加工相同的产品,从这两台机床加工的产品中随机地抽取若干件,测得产品直径(单位:mm)为

机床甲: 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9 机床乙: 19.7, 20.8, 20.5, 19.8, 19.4, 20.6, 19.2, 试比较甲、乙两台机床加工的产品直径有无显著差异? 假定两台机床加工的产品直径都服从正态分布, 且总体方差相等. ($\alpha = 0.05$)

解 依题意,两总体 X 和 Y 分别服从正态分布 $N(\mu_1,\sigma^2)$ 和 $N(\mu_2,\sigma^2)$, μ_1,μ_2,σ^2 均为未知,

需要检验假设
$$H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$$
.

$$n_1 = 8$$
, $\overline{x} = 19.925$, $s_1^2 = 0.216$,

$$n_2 = 7$$
, $\bar{y} = 20.000$, $s_2^2 = 0.397$,

$$\mathbb{E} |s_w|^2 = \frac{(8-1)s_1^2 + (7-1)s_2^2}{8+7-2} = 0.547,$$

查表可知 $t_{0.05}(13) = 2.160$,

$$t = \frac{\overline{x} - \overline{y}}{s_w \sqrt{\frac{1}{8} + \frac{1}{7}}} = -0.265 < 2.160$$
,所以接受 H_0 ,

即甲、乙两台机床加工的产品直径无显著差异.

四、小结

本节学习的正态总体均值的假设检验有:

- 1. 单个总体均值 μ 的检验 -Z 检验;
- 2. 两个总体均值差 $\mu_1 \mu_2$ 的检验 — t 检验;

正态总体均值、方差的检验法见下表 (显著性水平为α)

概率论与数理统计

	原假设H ₀	检验统计量	备择假设H1	拒绝域
1	$\mu \le \mu_0$ $\mu \ge \mu_0$ $\mu = \mu_0$ $(\sigma^2 知)$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$z \ge z_{\alpha}$ $z \le -z_{\alpha}$ $ z \ge z_{\alpha/2}$
2	$\mu \le \mu_0$ $\mu \ge \mu_0$ $\mu = \mu_0$ $(\sigma^2 未知)$	$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t \ge t_{\alpha/2}(n-1)$
3	$\mu_1 - \mu_2 \le \delta$ $\mu_1 - \mu_2 \ge \delta$ $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2 知)$	$Z = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\mu - \mu_0 > \delta$ $\mu - \mu_0 < \delta$ $\mu - \mu_0 \neq \delta$	$z \ge z_{\alpha}$ $z \le -z_{\alpha}$ $ z \ge z_{\alpha/2}$
4	$\mu_1 - \mu_2 \le \delta$ $\mu_1 - \mu_2 \ge \delta$ $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2 = \sigma_2^2 = \sigma^2 未知)$	$t = \frac{\overline{X} - \overline{Y} - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 2)S_2^2}{n_1 + n_2 - 2}$	$\mu - \mu_0 > \delta$ $\mu - \mu_0 < \delta$ $\mu - \mu_0 \neq \delta$	$t \ge t_{\alpha}(n_1 + n_2 - 2)$ $t \le -t_{\alpha}(n_1 + n_2 - 2)$ $ t \ge t_{\alpha/2}(n_1 + n_2 - 1)$

概率论与数理统计

	原假设H ₀	检验统计量	备择假设H ₁	拒绝域
5	$\sigma^2 \le \sigma_0^2$ $\sigma^2 \ge \sigma_0^2$ $\sigma^2 = \sigma_0^2$ $(\mu$ 未知)	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 \neq \sigma_0^2$	$\chi^{2} \ge \chi_{\alpha}^{2}(n-1)$ $\chi^{2} \le \chi_{1-\alpha}^{2}(n-1)$ $\chi^{2} \ge \chi_{\alpha/2}^{2}(n-1)$ $\chi^{2} \le \chi_{1-\alpha/2}^{2}(n-1)$
6	$\sigma_1^2 \le \sigma_2^2$ $\sigma_1^2 \ge \sigma_2^2$ $\sigma_1^2 = \sigma_2^2$ $(\mu_1, \mu_2 未知)$	$F = \frac{S_1^2}{S_2^2}$	$\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 \neq \sigma_2^2$	$F \ge F_{\alpha}(n_1 - 1, n_2 - 1)$ $F \le F_{1-\alpha}(n_1 - 1, n_2 - 1)$ $F \ge F_{\alpha/2}(n_1 - 1, n_2 - 1)$ $F \ge F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$
7	$ \mu_D \leq 0 $ $ \mu_D \geq 0 $ $ \mu_D = 0 $ (成对数据)	$t = \frac{\overline{D} - 0}{S_D / \sqrt{n}}$	$\mu_D > 0$ $\mu_D < 0$ $\mu_D \neq 0$	$t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t \ge t_{\alpha/2}(n-1)$

附表8.1

	原假设 H_0	检验统计量	备择假设H1	拒绝域
1	$\mu \leq \mu_0$ $\mu \geq \mu_0$ $\mu = \mu_0$ $(\sigma^2$ 已知)	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$z \ge z_{\alpha}$ $z \le -z_{\alpha}$ $ z \ge z_{\alpha/2}$
2	$\mu \leq \mu_0$ $\mu \geq \mu_0$ $\mu = \mu_0$ $(\sigma^2 未知)$	\overline{Y}_{-H}	$\mu > \mu_0$	$t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t \ge t_{\alpha/2}(n-1)$
3	$\mu_1 - \mu_2 \le \delta$ $\mu_1 - \mu_2 \ge \delta$ $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2 已知)$	$t \leq -t_{\alpha}(n_{1})$	$z \ge z_{lpha}$ $z \le -z_{lpha}$ $ z \ge z_{lpha/2}$	
4	$\mu_1 - \mu_2 \le \delta$ $\mu_1 - \mu_2 \ge \delta$ $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2 = \sigma_2^2 = \sigma^2 未知)$	$t = \frac{\overline{X} - \overline{Y} - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 2)S_2^2}{n_1 + n_2 - 2}$	$\mu - \mu_0 > \delta$ $\mu - \mu_0 < \delta$ $\mu - \mu_0 \neq \delta$	$t \ge t_{\alpha}(n_1 + n_2 - 2)$ $t \le -t_{\alpha}(n_1 + n_2 - 2)$ $ t \ge t_{\alpha/2}(n_1 + n_2 - 1)$

第六章§2定理三

设 X_1, X_2, \dots, X_n 是总体 $N(\mu, \sigma^2)$ 的样本, \overline{X}, S^2 分别是样本均值和样本 方差,则有 $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$.

第六章 § 2定理四

设 $X_1, X_2, \cdots, X_{n_1}$ 与 $Y_1, Y_2, \cdots, Y_{n_2}$ 分别是具有相同方差的两正态总体 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$ 的样本,且这两个样本互相独立,设 $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$,

 $\overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$ 分别是这两个样本的均值,

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2, \quad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$$

分别是这两个样本的方差,则有

(1)
$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1, n_2-1);$$

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中
$$S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}$$
, $S_w = \sqrt{S_w^2}$.

t分布表a

$$P\{t(n) > t_{\alpha}(n)\} = \alpha$$

n	α=0.25	0.10	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1 4149	1 8946	2.3646	2.9980	3.4995
8	0.7064	A 4 4	40	2.3060	2.8965	3.3554
9	0.7027	2.14	48	2.2622	2.8214	3.2498
10	0.6998			2.2281	2.7638	3.1693
11	0.6974	1.3634	9	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7825	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208

t分布表b

$$P\{t(n) > t_{\alpha}(n)\} = \alpha$$

n	α =0.25	0.10	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.7064	1 3068	1.8595	2.3060	2.8965	3.3554
9	1 75	71	1.8331	2.2622	2.8214	3.2498
10	1.75		1.8125	2.2281	2.7638	3.1693
11			1.7959	2.2010	2.7181	3.1058
12	0.6955		1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208

