Soluții și bareme, clasa a V-a

Problema 1.5 Două numere naturale x și y au proprietatea că $\frac{2010}{2011}<\frac{x}{y}<\frac{2011}{2012}$. Determinați cea mai mică valoare a sumei x+y.

Soluţie Fracţia $\frac{x}{y}$ este subunitară, prin urmare x < y sau x = y - d,

Din (1) deducem 2011d < y < 2012d (2).

Pentru d = 1 relația (2) este imposibilă.

Pentru d=2 obținem 4022 < y < 4024, de unde y=4023. Obținem x = 4021 și x + y = 8044.

Pentru $d \geq 3$ avem $4021d \geq 12063$.

Avem x + y = 2y - d. Din y > 2011d obţinem $2y - d > 4021d \ge 12063$.

Prin urmare valoarea minimă a sumei se obține când d=2 și x+y=

Problema 2.5 Determinați numerele naturale a, b, c cu proprietatea că a+b+c=abc.

Soluție Observăm că dacă unul dintre numere este 0, atunci toate

Dacă ab=2, atunci a=1 și b=2, de unde obținem $\frac{1}{2c}+\frac{1}{c}=\frac{1}{2}$ și atunci c=3.

i c=3.
Dacă ab=3, atunci a=1 și b=3, de unde obținem $\frac{1}{3c}+\frac{1}{c}=\frac{2}{3}$ și atunci c = 2, care nu convine pentru că am presupus b < c.

Problema 3.5 O multime $X \subset \mathbb{N}^*$ are proprietatea (\mathcal{P}) dacă oricare submulțime nevidă a sa are suma elementelor număr compus.

Arătați că mulțimea $Y = \{113! + 2, 113! + 3, ..., 113! + 15\}$ are proprietatea (\mathcal{P}) . (Dacă n este număr natural nenul, notația n! reprezintă produsul $1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$

Soluție O submulțime nevidă a lui Y are suma elementelor egală cu $S = \mathcal{M}113! + s$, unde $2 \le s \le 2 + 3 + \dots + 15$, de unde $2 \le s \le 119$ 2p

Pentru $s \in \{114, 116, 118\}$ avem Snum
ăr par, prin urmare S este număr compus.

Dacă s=115, atunci $S=\mathcal{M}5$

Dacă s = 117, atunci $S = \mathcal{M}3$

Problema 4.5 Pe un cerc se scriu la întâmplare elementele mulțimii $\{1, 2, ..., 21\}$ în ordinea $a_1, a_2, ..., a_{21}$ (vezi figura alăturată). Se consideră sumele

$$S_1 = a_1 + a_2 + a_3 + a_4 + a_5,$$

 $S_2 = a_2 + a_3 + a_4 + a_5 + a_6,$
...
 $S_{17} = a_{17} + a_{18} + a_{19} + a_{20} + a_{21},$
 $S_{18} = a_{18} + a_{19} + a_{20} + a_{21} + a_1.$

 a_{20} a_{3} a_{4}

Arătați că cel puțin două dintre cele 18 sume dau resturi diferite la împărțirea cu 5.

Soluţie Presupunem că S_1 , S_2 , ..., S_{18} dau acelaşi rest la împărţirea cu 5. Deoarece $S_1=a_1+(a_2+a_3+a_4+a_5)$ şi $S_2=(a_2+a_3+a_4+a_5)+a_6$, dacă S_1 şi S_2 dau acelaşi rest la împărţirea cu 5, deducem că a_1 şi a_6 dau acelaşi rest la împărţirea cu 5. În acelaşi fel deducem

- 1. a_1, a_6, a_{11}, a_{16} și a_{21} dau același rest, x, la împărțirea cu 5.
- 2. a_2, a_7, a_{12}, a_{17} dau acelaşi rest, a_7 la împărțirea cu 5.
- 3. a_3, a_8, a_{13}, a_{18} dau același rest, b, la împărțirea cu 5.
- 4. a_4, a_9, a_{14}, a_{19} dau acelaşi rest, c, la împărțirea cu 5.
- 5. $a_5, a_{10}, a_{15}, a_{20}$ dau acelaşi rest, d, la împărțirea cu 5. 2p

Cum $\{a_1, a_2, ..., a_{21}\} = \{1, 2, ..., 21\}$ avem 5 resturi egale cu 1 și câte 4 resturi egale cu 2, 3, 4 sau 0.

Rezultă x = 1 şi $\{a, b, c, d\} = \{0, 2, 3, 4\} \dots 1$ p Avem $S_1 = \mathcal{M}5 + 1 + 0 + 2 + 3 + 4 = \mathcal{M}5$ şi $S_{18} = \mathcal{M}5 + b + \mathcal{M}5 + c + \mathcal{M}5 + d + \mathcal{M}5 + 1 + \mathcal{M}5 + 1 = \mathcal{M}5 + 2 + (a + b + c + d) - a = \mathcal{M}5 + 11 - a$ Cum S_1 şi S_{18} dau acelaşi rest la împărțirea cu 5 deducem că $11 - a = \mathcal{M}5$, de unde a = 1; contradicție. Rezultă că cel puțin două sume dau resturi

diferite la împărțirea cu 5.4p