1 Sequences and Recurrence Relations

Definitions:

An (infinite) ordered list is called a **Sequence**. Individual items in such a list are called **terms** of the sequence.

An equation relating a general term to terms that precede it is called a MCUrrence relation. The assignment of values for a set of terms in the sequence, usually the beginning terms, is called the set of initial conditions.

Note:

When describing sequences we often use notation of the form s_n . The n subscript specifies which term we are talking about whereas s_n refers to the value of the nth term.

Example: Suppose sequence s is $\{2, 4, 6, 8, 10, ...\}$. Determine $s_1, s_2,$ and s_6 .

Example: The sequence of Fibonacci numbers (Fibonacci sequence) is defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$ and $F_1 = F_2 = 1$. What are the first 7 terms of the Fibonacci sequence?

Example: Suppose the recurrence relation $s_n = s_{n-1} + s_{n-2}$ is maintained but with initial conditions $s_1 = 1$ and $s_2 = 2$. What are the first 7 terms of this sequence?

Example: Suppose the recurrence relation $s_n = s_{n-1} + s_{n-2}$ is maintained but with initial conditions $s_1 = 1$ and $s_2 = 3$. What are the first 7 terms of this sequence?

Example: Suppose the recurrence relation is $t_n = 2t_{n-1}$ with initial condition $t_1 = 3$. What are the first 6 terms of this sequence?

Example: Suppose the recurrence relation is $t_n = 4t_{n-2} - 3t_{n-1}$ with initial conditions $t_0 = 3$ and $t_1 = 2$. What are the first 7 terms of this sequence?

Example: Annual student parking permits at NIU are \$92 this academic year fall 2023 – Spring Suppose parking permits increase \$2 per year. Write a recurrence relation and initial conditions for p_n , the parking permit cost n years after the Fall 23 – Spring 2 academic year.

Example: Factorials, which are defined as $n! = n(n-1)(n-2)\cdots(2)(1)$ for n a positive integer and 0! = 1 can be defined recursively. Write a recurrence relation and initial condition to characterize factorials on the nonnegative integers.

Example: Write a recurrence relation requiring at least three initial conditions to be given. Determine the first 7 terms for your sequence.