C241 HW11 Mini

Zac Monroe

November 2018

- 1. (a) i. No, R is not reflexive. $\neg R(b, b)$.
 - ii. No, R is not anti-reflexive. R(a, a).
 - iii. No, R is not symmetric. R(a, b) but $\neg R(b, a)$.
 - iv. Yes, R is anti-symmetric. The only $x, y \in \{a, b, c, d\}$ that satisfy R(x, y) and R(y, x) are the cases where x = y (a & d).
 - v. Yes, R is transitive because for all $x, y, z \in \{a, b, c, d\}$, if R(x, y) and R(y, z), R(x, z). Particularly, R(a, b), R(b, d), R(a, d); R(a, c), R(c, d), R(a, d); R(b, d), R(d, d), R(d, d), R(c, d).
 - (b) i. No, S is not reflexive. $\neg S(4,4)$.
 - ii. No, S is not anti-reflexive. S(1,1).
 - iii. No, S is not symmetric. S(2,4) but $\neg S(4,2)$.
 - iv. No, S is not anti-symmetric. S(1,2) and S(2,1); $1 \neq 2$.
 - v. No, S is not transitive. S(3,1) and S(1,2) but $\neg S(3,2)$.
 - (c) i. No, E is not reflexive. $\neg E(1,1)$ because 1+1=2 is even.
 - ii. Yes, E is anti-reflexive. For any $n \in \mathbb{Z}$, n+n=2n, and since $n \in \mathbb{Z}$, 2n is even, so $\neg E(n,n)$, so there is no integer n for which E(n,n) holds.
 - iii. Yes, E is symmetric. For any $m, n \in \mathbb{Z}, \ m+n=n+m$ so E(m,n) iff E(n,m); addition is commutative.
 - iv. No, E is not anti-symmetric. E(1,2) and E(2,1).
 - v. No, E is not transitive. E(1,2) and E(2,3) but $\neg E(1,3)$.