

Fig. 1

Fig.2

Fig.3

$$V_D(K, T, H) = (V_C - V_{LIM}) \cdot \exp(-K \cdot T \cdot H) + V_{LIM} \quad [1]$$

$$K(V_D, T, H) = \frac{1}{T \cdot H} \cdot \ln \left(\frac{V_C - V_{LIM}}{V_D - V_{LIM}} \right) \quad [2]$$

$$H(V_D, K, T) = \frac{1}{T \cdot K} \cdot \ln \left(\frac{V_C - V_{LIM}}{V_D - V_{LIM}} \right) \quad [3]$$

with:

V_C : photoconductor charge potential in V

V_D : photoconductor discharge potential in V

V_{LIM} : lowest obtainable discharge potential in V

H: illumination in $\mu\text{Ws}/\text{cm}^2$

T: photoconductor temperature in $^\circ\text{C}$

K: photoconductor sensitivity factor in $\text{cm}^2 / (\mu\text{Ws } ^\circ\text{C})$

Fig.4

Multi-level control – adaptation of the charge height

Fig.5

09/868827

PCT/EP99/10247

WO 00/38406

