MU5IN075

Network Analysis and Mining 13. Link prediction, a classification problem

Esteban Bautista-Ruiz, Lionel Tabourier

LIP6 - CNRS and Sorbonne Université

first_name.last_name@lip6.fr

January 4, 2022

Introduction - Context Outline Introduction - Context

A few examples

- recommendation on a social network People you may know on Facebook
- recommendation in general papers, news, contents on the web
- not only recommendation high throughput screening in drug discovery

Guessing a potential link from the current structure

The link prediction problem: temporal version

Problem description: temporal version

V is a fixed set of nodes,

- interactions known between t_0 and t'_0
- which links appear(/disappear) between t_1 and t_1' ?

Liben-Nowell, Kleinberg - JASIST, 2007

The link prediction problem: temporal version

Problem description: temporal version

V is a fixed set of nodes.

- interactions known between t_0 and t'_0
- which links appear(/disappear) between t_1 and t'_1 ?

Liben-Nowell, Kleinberg - JASIST, 2007

graph observed during $[t_0,t_0'] o ext{links}$ appearing during $[t_1,t_1']$

use features correlated with appearance of a link

tion – Context

The missing link problem

Principle

- suppose that the data crawling process missed links
- ⇒ detect unseen links

Note for later

We consider large sparse graphs ⇒ few edges for many pairs probably difficult to predict with high accuracy...

Introduction – Contex
A classification probler

The link prediction problem: temporal version

Problem description: temporal version

V is a fixed set of nodes.

- interactions known between t_0 and t'_0
- which links appear(/disappear) between t_1 and t'_1 ?

Liben-Nowell, Kleinberg - JASIST, 2007

graph observed during $[t_0, t'_0] \to \text{links}$ appearing during $[t_1, t'_1]$ use features correlated with appearance of a link

Introduction – Conte

The missing link problem

Principle

- suppose that the data crawling process missed links
- ⇒ detect unseen links

Note for later

We consider large sparse graphs ⇒ few edges for many pairs probably difficult to predict with high accuracy...

- IOTA

Outline

Introduction – Context

2 A classification problem

Resolution examples

A classification problem
Resolution examples

Classification problems

What is statistical classification?

- classification: fixed number of groups, a group for each data point
- statistical: based on comparison of the data point features to a population of already classified points

Classification in supervised learning

Reminder:

- prediction tasks using labeled data → supervised learning
- two main problems:
 - predicting a number (score, rating, measure,...): regression
 - predicting a category among a finite set: classification

Introduction – Contex A classification problen Resolution example:

Classification problems

What is statistical classification?

classification:
 fixed number of groups, a group for each data point

 statistical: based on comparison of the data point features to a population of already classified points

Classification in supervised learning

Reminder

- prediction tasks using labeled data → supervised learning
- two main problems:
 - predicting a number (score, rating, measure,...): regression
 - predicting a category among a finite set: classification

Introduction – Contex A classification probler Resolution example

Some classic classification examples

Task	Classes	Features		
species classification	species	shape, weight,		
character recognition	a,b,c,	shape, pixels		
medical diagnosis	diseases	physical measurements		
spam detection	spam / ham	words		
link prediction	link / no link	network structure		

The link prediction case

Remember our *note for later*...

- ullet classify between two classes o binary
- in large graphs, many more unconnected pairs than edges
 - \Rightarrow a class is much larger than the other \rightarrow imbalanced

-16

Some classic classification examples

Task	Classes	Features		
species classification	species	shape, weight,		
character recognition	a,b,c,	shape, pixels		
medical diagnosis	diseases	physical measurements		
spam detection	spam / ham	words		
link prediction	link / no link	network structure		

The link prediction case

Remember our note for later.

- classify between two classes → binary
- in large graphs, many more unconnected pairs than edges
 ⇒ a class is much larger than the other → imbalanced

Introduction – Context
A classification problem
Resolution examples

How to solve a classification problem

Example: binary classification, two features

- how to draw frontiers?
- how to set parameters of a model?
- how to evaluate results?

Introduction – Conte
A classification proble
Resolution example

Some classic classification examples

Task	Classes	Features		
species classification	species	shape, weight,		
character recognition	a,b,c,	shape, pixels		
medical diagnosis	diseases	physical measurements		
spam detection	spam / ham	words		
link prediction	link / no link	network structure		

The link prediction case

Remember our note for later...

- classify between two classes → binary
- in large graphs, many more unconnected pairs than edges
 ⇒ a class is much larger than the other → imbalanced

Introduction – Contex A classification problem Resolution example

How to solve a classification problem

Example: binary classification, two features

- how to draw frontiers?
- how to set parameters of a model?
- how to evaluate results?

How to evaluate results? (1)

Confusion matrix

	prediction: +	prediction -
reality: +	true positive	false negative
reality: -	false positive	true negative

How to evaluate results? (1)

Confusion matrix

What do you think for link prediction?

How to evaluate results? (2)

Standard metrics

- precision, $\mathbf{Pr} = \frac{\#tp}{\#tp + \#tp}$
- recall, $\mathbf{Rc} = \frac{\#tp}{\#tp + \#fn}$ also called sensitivity (fr: rappel, sensibilité)

nb: normalized metrics, think of extreme cases

• F-score = $\frac{2.\text{Pr.Rc}}{\text{Pr+Rc}}$ balance between precision and recall

specificity (fr: spécificité), ROC curve,...

A classification problem

How to evaluate results? (2)

Standard metrics

- precision, $\mathbf{Pr} = \frac{\#tp}{\#tp + \#tp}$
- recall, $\mathbf{Rc} = \frac{\#tp}{\#tp + \#fn}$ also called sensitivity (fr: rappel, sensibilité)

nb: normalized metrics, think of extreme cases

Among many others...

• F-score = $\frac{2.\text{Pr.Rc}}{\text{Pr+Rc}}$

balance between precision and recall

• specificity (fr: spécificité), ROC curve,...

How to evaluate results? (3)

Misclassification importance depends on context

Spam detection: important not to class ham as spam

- ⇒ false positive ≫ false negative

Cancer diagnosis: capital not to miss a positive diagnosis

- ⇒ false negative ≫ false positive

A classification problem

How to evaluate results? (3)

Misclassification importance depends on context

Spam detection: important not to class ham as spam

- ⇒ false positive ≫ false negative
 - ⇒ favors precision over recall

Cancer diagnosis: capital not to miss a positive diagnosis

- ⇒ false negative ≫ false positive

How to evaluate results? (3)

Misclassification importance depends on context

Spam detection: important not to class ham as spam

- ⇒ false positive ≫ false negative
- ⇒ favors precision over recall

Cancer diagnosis: capital not to miss a positive diagnosis

- ⇒ false negative ≫ false positive
- ⇒ favors recall over precision

Resolution examples

Outline

- A classification problem
- Resolution examples

K-nearest neighbors

Context

- Each data point is located in a space of features
- Each data point has a class (ex: red triangles, blue squares)

Principle

- For a new unlabeled data point (ex: green circle): compute its distance to all labeled data points
- Prediction = dominant class among its *k* nearest neighbors

Introduction – Contex A classification problen Resolution examples

K-nearest neighbors

Context

- Each data point is located in a space of features
- Each data point has a class (ex: red triangles, blue squares)

Principle

- For a new unlabeled data point (ex: green circle): compute its distance to all labeled data points
- Prediction = dominant class among its *k* nearest neighbors

16/26

Introduction – Context A classification problem Resolution examples

K-nearest neighbors: application to link prediction

A classification – Gor A classification prob Resolution exam

Prediction features

Structural characteristics

With $\mathcal{N}(i)$ the set of neighbors of node i

• number of common neighbors (CN)

 $|\mathcal{N}(i) \cap \mathcal{N}(j)|$

• preferential attachment index (PA)

 $|\mathcal{N}(i)|.|\mathcal{N}(j)|$

pair	CN	PA	edge or not
(A,B)	2	12	yes
(C,D)	3	20	yes
(C,F)	1	12	no
(B,F)	1	9	no
(H,A)	0	8	no
(H,G)	2	4	no
(I,G)	0	4	yes
(I,B)	0	6	no
(E,B)	3	9	?
(H,D)	1	10	?

18/26

Classification using ranking

Principle

- Choose a feature, rank pairs with this feature
- Predict top T pairs according to this ranking

Advantages and drawbacks

- fast as we don't need to compute for all pairs in general ex: CN, ignore pairs of nodes at distance > 2
- only possible if higher score ≡ more probable edge

Introduction – Contex A classification problen Resolution examples

Classification using ranking

Principle

- Choose a feature, rank pairs with this feature
- Predict top T pairs according to this ranking

Advantages and drawbacks

- fast as we don't need to compute for all pairs in general ex: CN, ignore pairs of nodes at distance > 2
- ullet only possible if higher score \equiv more probable edge

Introduction – Context A classification problem Resolution examples

An example from the literature

Liben-Nowell, Kleinberg - JASIST, 2007

Datasets: scientific collaboration networks

- node = authors, link = co-publication
- publications in DBLP, arXiv, Medline...
- number of articles: a few thousands per year
- number of authors: a few thousands

Protocol

Year A to predict new collaborations in year A + 1

Introduction – Contex
A classification problem
Resolution examples

Prediction features (part 1)

A closer look on local structure

• Number of common neighbors:

 $|\mathcal{N}(i) \cap \mathcal{N}(j)|$

Jaccard index:

 $\frac{|\mathcal{N}(i) \cap \mathcal{N}(j)|}{|\mathcal{N}(i) \cup \mathcal{N}(j)|}$

Adamic-Adar index:

 $\sum_{\in \mathcal{N}(i)\cap \mathcal{N}(j)} \frac{1}{\log(\delta(k))}$

Prediction features (part 1)

A closer look on local structure

• Number of common neighbors:

$$|\mathcal{N}(i) \cap \mathcal{N}(j)|$$

Jaccard index:

$$\frac{|\mathcal{N}(i) \cap \mathcal{N}(j)|}{|\mathcal{N}(i) \cup \mathcal{N}(j)|}$$

Adamic-Adar index:

$$\sum_{\mathcal{N}(i)\cap\mathcal{N}(j)} \frac{1}{\log(\delta(k))}$$

Introduction – Context
A classification problem
Resolution examples

Prediction features (part 1)

A closer look on local structure

• Number of common neighbors:

$$|\mathcal{N}(i) \cap \mathcal{N}(j)|$$

Jaccard index:

$$\frac{|\mathcal{N}(i) \cap \mathcal{N}(j)|}{|\mathcal{N}(i) \cup \mathcal{N}(j)|}$$

Adamic-Adar index:

$$\sum_{k \in \mathcal{N}(i) \cap \mathcal{N}(j)} \frac{1}{\log(\delta(k))}$$

Introduction – Contex A classification problen Resolution example

Prediction features (part 2)

About other kinds of index

- preferential attachment index: $|\mathcal{N}(i)|.|\mathcal{N}(j)|$ rely on the fact that high degree nodes tend to connect
- large-scale structure indices
 - hitting time from i to j: expected number of steps required for a random walk starting at i to reach j
 - → rank by inverse hitting time

Introduction – Contex A classification problen Resolution example:

Prediction features (part 3)

Non-structural characteristics

- similarity indices between nodes *i* and *j*:
 - age
 - gender
 - for scientists: field of expertise
- and many other features → classification in general

23/26

24/2

Prediction features (part 3)

Non-structural characteristics

- similarity indices between nodes *i* and *j*:
 - age
 - gender
 - for scientists: field of expertise
- ullet and many other features o classification in general

Introduction – Contex A classification problem Resolution examples

Quality assessment for link prediction

Prediction in large networks, **class imbalance problem**:

high risk of FP ⇒ precision often low we need a benchmark for comparison

A basic protocol

iben-Nowell, Kleinberg - JASIST, 2007

- set N_{new} , the number of new links that appear
- keep the N_{new} top scoring items according to each feature
- compare to a random prediction

4/26

A classification problem

Resolution examples

Quality assessment for link prediction

Prediction in large networks, class imbalance problem:

high risk of FP ⇒ precision often low we need a benchmark for comparison

A basic protocol

Liben-Nowell, Kleinberg - JASIST, 2007

- set N_{new} , the number of new links that appear
- keep the N_{new} top scoring items according to each feature
- compare to a random prediction

Introduction – Contex A classification problem Resolution example

Results

Predictor		astro-ph	cond-mat	gr-qc	hep-ph	hep-th
probability that a random prediction is correct		0.475%	0.147%	0.341%	0.207%	0.153%
graph distance (all distance-2 pairs)		9.4	25.1	21.3	12.0	29.0
common neighbors		18.0	40.8	27.1	26.9	46.9
preferential attachment		4.7	6.0	7.5	15.2	7.4
Adamic/Adar		16.8	54.4	30.1	33.2	50.2
Jaccard		16.4	42.0	19.8	27.6	41.5
SimRank	$\gamma = 0.8$	14.5	39.0	22.7	26.0	41.5
hitting time		6.4	23.7	24.9	3.8	13.3
hitting time-normed by stationary distribution		5.3	23.7	11.0	11.3	21.2

- probability that random prediction is correct is very low
- performance = factor improvement over random prediction

25/26

26/2

