Inele, corpuri si formulele lui Viète

A. Gica

Definiție: $(R, +, \cdot)$ se numeste inel daca + si \cdot sunt operatii pe multimea R si

- 1) (R, +) este grup comutativ (elementul neutru pentru aceasta operatie se noteaza conventional cu 0).
- 2) A doua operatie · este asociativa si admite element neutru (notat conventional cu 1). Prin definitie, $0 \neq 1$. De obicei, semnul · se omite. Prin ab se intelege $a \cdot b$.
- 3) $a \cdot (b+c) = a \cdot b + a \cdot c$ si $(a+b) \cdot c = a \cdot c + b \cdot c$, pentru orice elemente a, b, c din multimea R.

Proprietate: $a \cdot 0 = 0 \cdot a = 0$, pentru orice $a \in R$ (daca $(R, +, \cdot)$ este inel).

Definitie: Daca $(R, +, \cdot)$ este inel, se noteaza cu U(R) submultimea elementelor din R care admit invers fata de cea de a doua operatie. U(R) se numeste multimea elementelor inversabile ale inelului R.

Definitie: $(R, +, \cdot)$ se numeste corp daca este inel si, in plus, orice element din R, diferit de 0, admite invers fata de a doua operatie. Cu alte cuvinte: inelul R este corp daca $U(R) = R - \{0\}$.

Proprietate: Daca $(K, +, \cdot)$ este corp si $x \cdot y = 0$ (unde $x, y \in K$), atunci x = 0 sau y = 0.

Formulele lui Viète: Fie corpul comutativ K si polinomul $f(X) = a_k X^k + a_{k-1} X^{k-1} + ... a_1 X + a_0$ cu coeficienti din corpul K; $a_k \neq 0$. Presupunem ca polinomul f are k radacini in corpul f. Le notam cu $x_1, x_2, ..., x_k$. Au loc urmatoarele egalitati (valabile pentru orice n numar natural $1 \leq n \leq k$):

$$\sum_{1 \le i_1 < i_2 < \dots < i_n \le k} x_{i_1} x_{i_2} \dots x_{i_n} = (-1)^n \frac{a_{k-n}}{a_k}.$$

Pentru n=1, formula se scrie

$$\sum_{i=1}^{n} x_i = -\frac{a_{k-1}}{a_k},$$

iar pentru n = k formula se scrie:

$$x_1 \cdot x_2 \cdot \dots \cdot x_n = (-1)^k \frac{a_0}{a_k}.$$