Research School of Engineering College of Engineering and Computer Science

# **ENGN2228 Signal Processing**

## **PROBLEM SET 2 - SOLUTIONS**

In the following:  $\delta[n]$  and u[n] represent the Dirac and unit step functions for discrete-time (DT). Similarly  $\delta(t)$  and u(t) for continuous-time (CT). Convolution of signals is written  $x[n] \star h[n]$  or  $x(t) \star h(t)$ . Please indicate any identities or formulas used in the simplification of the results.

# Unit Impulse and Unit Step Functions

### Problem Set 2-1

Draw the following signals

(a) 
$$x(t) = 2 \delta(t+1)$$

### Solution:



Notice that you could draw in the fact that the function is zero everywhere except at t = -2.

(b) 
$$-1.5 \delta(t-2)$$

### Solution:



(c) 
$$x(t) = \sum_{k=3}^{7} 2^{k-5} \delta(t-2k)$$

#### Solution:



(d) 
$$x(t) = \int_{-\infty}^{t} \delta(\tau - 2) d\tau$$

**Solution:** From textbook equation (1.71),  $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$ . Hence,

$$\int_{-\infty}^{t} \delta(\tau - 2) d\tau = \int_{-\infty}^{t-2} \delta(s) ds = u(t - 2)$$



Don't worry about what the exact value is a t = 2.

(e) 
$$x(t) = \int_{-\infty}^{t} \delta(t-2) d\tau$$

**Solution:** Well this is a bit weird. Firstly, the integrand is independent of the integration variable  $\tau$ . For all values  $t \neq 2$  we have  $\delta(t-2) = 0$  so x(t) = 0 for  $t \neq 2$ . For t = 2 is best to leave the  $\delta(t-2)$  inside the integral. At t = 2 it has area 1 so x(2) = 1.



Not a delta function at t = 2 just the value of 2 (zero area).

$$(f) \int_{-t}^{t} \delta(t-2) \, d\tau$$

**Solution:** Messing with your head. Same as previous part (e).

### Problem Set 2-2

Draw the following signals

(a) 
$$x[n] = -2\delta[n+2]$$

## Solution:



Notice that you could draw in the fact that the function is zero everywhere except at n = -2.

(b) x[n] = u[n] - u[n-1]

# Solution:



Yep, it's the same as  $\delta[n]$ .

(c) x[n] = -u[-n] + u[-n-1]

#### Solution:



Or  $-u[-n] + u[-n-1] = -\delta[n]$ .

(d) x[n] = 2u[-n] + u[n-3]

#### Solution:



(e)  $x[n] = \sum_{k=-\infty}^{-1} \delta[k] + u[n]$ 

## Solution:



That is, x[n] = u[n].

(f) 
$$x[n] = \sum_{k=-\infty}^{-1} \delta[n-k] + u[n]$$

# Solution:



That is, x[n] = 1 for all n.

## Discrete-time Convolution

### **Problem Set 2-3**

Use the graphical flip/shift method, showing intermediate working to perform the following DT convolutions. Note: solutions can be checked in Matlab.

(a) 
$$x[n] = \delta[n] + 2\delta[n-1] - \delta[n-2]$$
 and  $h[n] = 2\delta[n-4]$ 

Solution:

$$y[n] = 2\delta[n-4] + 4\delta[n-5] - 2\delta[n-6]$$

(b) 
$$x[n] = 2\delta[n] + 4\delta[n-1] - 2\delta[n-2]$$
 and  $h[n] = \delta[n] + 0.5\delta[n-1]$ 

Solution:

$$y[n] = 2\delta[n] + 5\delta[n-1] - \delta[n-3]$$

(c) 
$$x[n] = \delta[n] + 2\delta[n-1] - \delta[n-2]$$
 and  $h[n] = 3\delta[n-2] + 2\delta[n-3] + \delta[n-4]$ 

Solution:

$$y[n] = 3\delta[n-2] + 8\delta[n-3] + 2\delta[n-4] - \delta[n-6]$$

(d) 
$$x[n] = \delta[n+1] + 2\delta[n] + 3\delta[n-1] + 4\delta[n-2]$$
 and  $h[n] = -\delta[n+2] + 5\delta[n+1] + 3\delta[n]$ 

Solution:

$$y[n] = -\delta[n+3] + 3\delta[n+2] + 10\delta[n+1] + 17\delta[n] + 29\delta[n-1] + 12\delta[n-2]$$

### Problem Set 2-4

Compute the DT convolution of x[n] and h[n] as shown below



**Solution:** Using the graphical flip and shift method (easiest to flip x[n] as x[n] is even so x[-n] = x[n]), we obtain  $y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$  is:



## **Problem Set 2-5**

For a DT LTI system with impulse response

$$h[n] = u[n-1].$$

Find the output  $y[n] = x[n] \star h[n]$  for input

$$x[n] = \left(\frac{1}{3}\right)^{-n} u[-n-1].$$

Solution:

$$y[n] = x[n] \star h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$= \sum_{k=-\infty}^{\infty} \left(\frac{1}{3}\right)^{-k} u[-k-1]u[n-k-1]$$

Since u[-k-1] = 0 for k > -1,

$$y[n] = \sum_{k=-\infty}^{-1} \left(\frac{1}{3}\right)^{-k} u[n-k-1]$$
$$= \sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^{k} u[n+k-1].$$

There are two cases:  $1 - n \le 1$  and 1 - n > 1 (or  $n \ge 0$  and n < 0).

For  $n \ge 0$ 

$$y[n] = \sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^k = \frac{1/3}{1 - 1/3} = 1/2.$$

For n < 0

$$y[n] = \sum_{k=1-n}^{\infty} \left(\frac{1}{3}\right)^k = \sum_{\ell=1}^{\infty} \left(\frac{1}{3}\right)^{\ell-n} = \left(\frac{1}{3}\right)^{-n} \frac{1}{2} = \frac{3^n}{2}.$$

Here change of summation is used with  $k + n = \ell$ .

### Problem Set 2-6

Compute the convolution y[n] = x[n] \* h[n] when  $x[n] = 5^n u[-n-1]$  and h[n] = u[n-1].



Here, we have two cases. For  $n-1 \ge -1 \Rightarrow n \ge 0$ :

$$y[n] = \sum_{k=-\infty}^{-1} x[k]h[n-k]$$
$$= \sum_{k=-\infty}^{-1} 5^k = \frac{1}{4}$$

For 
$$n - 1 < -1 \Rightarrow n < 0$$
:

$$y[n] = \sum_{k=-\infty}^{n-1} x[k]h[n-k]$$
$$= \sum_{k=-\infty}^{n-1} 5^k = \frac{5^n}{4}$$

Thus, overall we have

$$y[n] = \begin{cases} \frac{5^n}{4} & n < 0\\ \frac{1}{4} & n \ge 0 \end{cases}$$

# Discrete-time Impulse Response

#### Problem Set 2-7

Find the impulse response of the system, with following input and output relation where x[n] denotes the input and y[n] denotes the output,

$$y[n] + \frac{1}{3}y[n-2] = x[n].$$

Assume initial condition of rest, i.e., x[n] = 0 and y[n] = 0 for all n < 0.

**Solution:** For input  $x[n] = \delta[n]$ , the output is output y[n] = h[n]. Since  $\delta[n] = 0$  for n < 0, then the initial rest condition implies that

$$h[n] = 0$$
 for all  $n < 0$ 

which means it is causal. Next we look at h[n] for  $n \geq 0$ .

Rearranging the system equation for the input  $x[n] = \delta[n]$  and output y[n] = h[n], we have

$$h[n] = \delta[n] - \frac{1}{3}h[n-2]$$

$$= \begin{cases} 0 & n < 0 & \text{(by causality, as established above)} \\ \delta[0] - \frac{1}{3}h[-2] = 1 & n = 0 & \text{(as } \delta[0] = 1 \text{ and } h[-2] = 0 \text{ by causality)} \\ -\frac{1}{3}h[n-2] & n > 0 & \text{(as } \delta[n] = 0 \text{ for all } n > 0) \end{cases}$$

So the sequence  $\{h[0], h[1], h[2], h[3], h[4], \ldots\}$  looks like  $\{1, 0, -\frac{1}{3}, 0, \frac{1}{9}, \ldots\}$ , which can be written

$$h[n] = \begin{cases} \left(-\frac{1}{3}\right)^{n/2} & n = 0, 2, 4, \dots \\ 0 & \text{otherwise} \end{cases}.$$

#### Problem Set 2-8

Consider the LTI system initially at rest and described by the difference equation

$$y[n] + 2y[n-1] = x[n] + 2x[n-2].$$

(a) Find the response of this system to the unit pulse input  $\delta[n]$  by solving the difference equation recursively or otherwise.

**Solution:** Let h[n] denote the response of a system to the unit pulse input.

At time n, we have output h[n] = x[n] + 2x[n-2] - 2h[n-1].

Since the system is initially at rest, h[n] = 0 for n < 0. The pulse response h[n] at time n due to the input  $x[n] = \delta[n]$  can be determined recursively as:

$$h[n] = \begin{cases} 0 & n < 0, \\ 1 & n = 0, \\ -2 & n = 1, \\ (-2)^{n-2} 6 & n \ge 2. \end{cases}$$

Just run the difference equation by hand and watch the output pattern emerge.

(b) Find the response of this system to the input depicted in Fig. 1 by solving the difference equation recursively or otherwise.

**Solution:** The output y[n] can be computed using the pulse response h[n] computed in part (a). The input x[n] can be written as

$$x[n] = \delta[n+2] + 2\delta[n+1] + 3\delta[n] + 2\delta[n-1] + 2\delta[n-2] + \delta[n-3].$$



Figure 1: Input signal x[n].

Using the convolution definition, we find output y[n] as

$$y[n] = x[n] \star h[n]$$

$$= \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$

$$= h[n+2] + 2h[n+1] + 3h[n] + 2h[n-1] + 2h[n-2] + h[n-3]$$
(1)

Alternatively, the output can also be determined recursively using the difference equation that describes the system.

Using the result from part (a), the output y[n] in (1) is given by

Note that once the finite duration/support input x[n] is flushed out the difference equation becomes equivalent to

$$y[n] = -2y[n-1]$$

which gives the long term  $(-2)^n$  behaviour.

# Discrete-time System Properties

### Problem Set 2-9

The equation

$$y[n] - ay[n-1] = x[n]$$

describes a DT system, with input x[n] and output y[n], assumed to be initially at rest, that is,

$$x[n] = 0$$
 and  $y[n] = 0$  for all  $n < 0$ .

(a) Show that the impulse response h[n] for this system is

$$h[n] = a^n u[n],$$

where  $y[n] = x[n] \star h[n]$ .

**Solution:** We want to show that when the input is an impulse, x[n] set to  $\delta[n]$ , then the response y[n] is given by h[n], that is, the following is satisfied

$$h[n] - a h[n-1] = \delta[n]$$

with  $h[n] = a^n u[n]$ . Substituting we have

$$\begin{split} a^n u[n] - a \, a^{n-1} u[n-1] &= a^n \left( u[n] - u[n-1] \right) \\ &= a^n \, \delta[n] & \text{since } \delta[n] = u[n] - u[n-1] \\ &= a^0 \, \delta[n] = \delta[n] & \text{since } g[n] \delta[n] = g[0] \delta[n], \text{ for any } g[n] \end{split}$$

which shows  $h[n] = a^n u[n]$ .

- (b) Is this system (provide reasoning for each of your answer)
  - i) linear?

**Solution:** Yes, it is evident by inspection since the system output is given by a linear combination of the present input and a past output. If you are still not convinced you can plug in, for example,  $x[n] = \alpha_1 x_1[n] + \alpha_2 x_2[n]$  and see that the only possible solution will involve  $y[n] = \alpha_1 y_1[n] + \alpha_2 y_2[n]$ .

ii) time-invariant?

**Solution:** Yes, given it is linear, then this is also clear by inspection since the coefficients of x[n-k] or y[n-k] are not a function of time n, for any k.

iii) memoryless?

**Solution:** No, output y[n] depends on the old input y[n-1], which only depends on old inputs  $x[n-1], x[n-2], x[n-3], \ldots$ 

iv) causal?

**Solution:** Yes, output y[n] depends on the current into x[n] and old inputs  $x[n-1], x[n-2], \ldots$ , but not future inputs  $x[n+1], x[n+2], \ldots$  Alternatively, u[n] = 0 for all n < 0 and so h[n] = 0 for all n < 0, which is necessary and sufficient condition for causality.

v) stable?

**Solution:** The answer depends on the value of a. If |a| < 1

$$\sum_{n=0}^{\infty} |a|^n = \frac{1}{1 - |a|} < \infty$$

and it is stable. Otherwise, if  $|a| \ge 1$ , it is unstable.

#### Problem Set 2-10

Suppose we have an unknown linear system, for which the superposition principle applies. Further, suppose we have knowledge of three outputs  $y_1[n]$ ,  $y_2[n]$ ,  $y_3[n]$ , generated by inputs  $x_1[n]$ ,  $x_2[n]$ ,  $x_3[n]$ , as shown below:



(a) Determine the response of the system  $y_4[n]$  when the input is  $x_4[n]$  as shown below.



**Solution:** A possible linear combination is  $x_4[n] = 2x_1[n] - 2x_2[n] + x_3[n]$ . Using superposition, the resulting output  $y_4[n] = 2y_1[n] - 2y_2[n] + y_3[n]$  is shown below:



(b) Do we need the system to also be time-invariant?

**Solution:** The system is NOT time-invariant (that is, it is time-varying) because an input  $x_1[n] + x_1[n-1]$  does not produce an output  $y_1[n] + y_1[n-1]$ . Note that while  $x_1[n] + x_1[n-1] = x_2[n]$ ,  $y_1[n] + y_1[n-1] \neq y_2[n]$ . This proves the time-varying nature of the system.

### Problem Set 2-11



Consider the DT system, S, with input signal x[n] and output signal given by

$$S: \quad y[n] = x[3-n]. \tag{2}$$

(a) Write signal  $x_0[n]$ , shown below, in terms of linear combinations of shifted  $\delta[n]$ .



Solution:

$$x_0[n] = -2\delta[n+1] + 3\delta[n] + 2\delta[n-1] + \delta[n-2] + \delta[n-4]$$

(b) Draw the output  $y_0[n]$  when the input is given by  $x_0[n]$  shown above.

#### Solution:



(c) Write this signal  $y_0[n]$  in terms of linear combinations of shifted  $\delta[n]$ .

#### Solution:

$$y_0[n] = \delta[n+1] + \delta[n-1] + 2\delta[n-2] + 3\delta[n-3] + -2\delta[n-4]$$

(d) Shown that the system is linear.

**Solution:** Suppose  $x_1[n] \longrightarrow y_1[n]$  and  $x_2[n] \longrightarrow y_2[n]$ . Then, by (2),  $y_1[n] = x_1[3-n]$  and  $y_2[n] = x_2[3-n]$ . Create a third input signal from the linear combination

$$x_3[n] = \alpha_1 x_1[n] + \alpha_2 x_2[n].$$

Then, by (2),  $x_3[n] \longrightarrow y_3[n] = x_3[3-n]$ . But

$$x_3[3-n] = \alpha_1 x_1[3-n] + \alpha_2 x_2[3-n]$$
  
=  $\alpha_1 y_1[n] + \alpha_2 y_2[n]$ .

In summary

$$\alpha_1 x_1[n] + \alpha_2 x_2[n] \longrightarrow \alpha_1 y_1[n] + \alpha_2 y_2[n],$$

and this holds for every  $\alpha_1$ ,  $x_1[n]$ ,  $\alpha_2$ ,  $x_2[n]$ , meaning it is linear.

(e) Shown that the system (2) is non-causal.

Solution: See the following solution.

(f) Shown that the system (2) is time-varying.

**Solution:** We could memorise that a time reversal destroys causality and is time-varying. But it is better to provide a sound demonstration.

Consider the behavior of the system to three different input and corresponding output signals.

1) Input signal  $x_1[n] = \delta[n]$  which yields output signal  $y_1[n] = \delta[n-3]$ .





2) Input signal  $x_2[n] = \delta[n-1]$  which yields output signal  $y_2[n] = \delta[n-2]$ .





3) Input signal  $x_3[n] = \delta[n-2]$  which yields output signal  $y_3[n] = \delta[n-1]$ .





**Non-causal:** Firstly, the case  $x_3[n] \longrightarrow y_3[n]$  shows it is non-causal because the output appears before the input.

**Time-varying:** Given  $x_1[n] \longrightarrow y_1[n]$  then time shifting the input  $x_1[n]$  to the right yields  $x_2[n]$  (which also equals  $x_1[n-1]$  or  $\delta[n-1]$ ). However, time shifting the output  $y_1[n]$  to the right, which is  $y_1[n-1]$  or  $\delta[n-4]$ , does not equal  $y_2[n]$ .

(g) Suppose we have the same system but we don't know its defining relationship (2).
Let h[n] be the output when δ[n] is applied. We observe h[n] = δ[n-3].
Can the system be fully characterised by this h[n], that is, if we only know h[n] can we determine the output for any input signal x[n] for such an unknown system?

**Solution:** No. Firstly it is not LTI so we cannot rely only on the unit pulse response h[n] to tell us everything. If it were a LTI system with unit pulse response  $h[n] = \delta[n-3]$  then it must be a delay of 3 system. This is quite different from our system.