MATH311: Homework 11 (due May. 23)

손량(20220323)

Last compiled on: Tuesday 23rd May, 2023, 17:40

1 Section 6 #5

Let $f:[a,b]\to\mathbb{R}$ as

$$f(x) = \begin{cases} 1 & (x \in \mathbb{Q} \cap [a, b]) \\ -1 & (x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [a, b]) \end{cases}$$

Then, $|f(x)| \leq 1$ for all $x \in [a,b]$ so f is bounded and $(f(x))^2 = 1$ for all $x \in [a,b]$, thus $f^2 \in \mathcal{R}$. However, for all partition $P = \{p_0, \ldots, p_n\}$ of [a,b], by Archimedean property there exists some rational number in $[p_{i-1}, p_i]$ for $i = 1, 2, \ldots, n$. Thus, U(P, f) = b - a. On the other hand, by Archimedean property there exists some rational number q_i in $(p_{i-1}/\sqrt{2}, p_i/\sqrt{2})$ for $i = 1, 2, \ldots, n$, so there exists some irrational number q_i of (p_{i-1}, p_i) for $i = 1, 2, \ldots, n$. Thus, L(P, f) = a - b. For all partition P of [a, b], U(P, f) - L(P, f) = 2(b - a) so $f \notin \mathcal{R}$.

Let $\phi : \mathbb{R} \to \mathbb{R}$ as

$$\phi(x) = \begin{cases} \sqrt[3]{x} & (x \ge 0) \\ -\sqrt[3]{-x} & (x < 0) \end{cases}$$

and ϕ is continuous on \mathbb{R} . Then, by theorem 6.11 $f = \phi(f^3)$ is integrable on [a, b].

2 Section 6 #6

Recall the construction of Cantor's set we made earlier. By construction, $P \subset E_n$ where E_n consists of 2^n closed intervals $[u_{n,i},v_{n,i}]$ $(i=1,2,\ldots,2^n)$, and $v_{n,i}-u_{n,i}=3^{-n}$. Also, the definition of E_n implies $u_{n,i+1}-v_{n,i}\geq 3^{-n-1}$ $(i=1,2,\ldots,2^n-1)$ as E_n is created by removing middle thirds of intervals in E_{n-1} . Let $E_n^*=\cup_{i=1}^{2^n}(u_{n,i}^*,v_{n,i}^*)$ where $u_{n,i}^*=u_{n,i}-3^{-n-1}$, $v_{n,i}^*=v_{n,i}+3^{-n-1}$. Then, $u_{n,i+1}^*-v_{n,i}^*=u_{n,i+1}-v_{n,i}-2\cdot 3^{-n-1}\geq 3^{-n-2}$ so $(u_{n,i}^*,v_{n,i}^*)$ are disjoint and $E_n\subset E_n^*$. Let $K=[0,1]-E_k^*$, then K is compact since it is closed and bounded in \mathbb{R} . Fix $\epsilon>0$. Since f is continuous on [0,1]-P, so it is continuous on K, which implies uniform continuity on K. Thus, there exists $\delta>0$ such that $|f(s)-f(t)|<\epsilon$ if $s,t\in K$ and $|s-t|<\delta$. Let $Q=\{x_0,\ldots,x_n\}$ be a partition of [0,1], which satisfies the following conditions:

- 1. Each $u_{k,i}^*$ and $v_{k,i}^*$ which is in [0,1] occurs in Q.
- 2. No point in E_k^* does not occur in Q.
- 3. If x_{i-1} is not one of the $u_{k,j}^*$ and zero, $\Delta x_i < \delta$.

Let $M = \sup |f(x)|$. Let $A = \{i \in \{1, 2, ..., n\}; x_{i-1} \in \{0, u_{k,1}^*, ..., u_{k,2^k}^*\}\}$ and $B = \{1, 2, ..., n\} \setminus A$. For all i = 1, 2, ..., n, $M_i - m_i \leq 2M$. If $i \in A$, $\Delta x_i < \delta$ so $M_i - m_i \leq \epsilon$. If $i \in B$, $x_i \in \{v_{k,1}^*, ..., v_{k,2^k}^*, 1\}$ so $\Delta x_i \leq 3^{-k} + 2 \cdot 3^{-k-1}$. Then we can write

$$U(Q, f) - L(Q, f) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i = \sum_{i \in A} (M_i - m_i) \Delta x_i + \sum_{i \in B} (M_i - m_i) \Delta x_i$$

$$\leq \sum_{i \in A} \epsilon \Delta x_i + \sum_{i \in B} 2M \cdot \frac{5}{3^{k+1}} \leq \epsilon \sum_{i=1}^{n} \Delta x_i + 2^k \cdot 2M \cdot \frac{5}{3^{k+1}} < \epsilon + 5M\epsilon$$

Since the choice of ϵ is arbitrary, U(Q, f) - L(Q, f) can be made small as we like, and $f \in \mathcal{R}$ on [0, 1].

3 Section 6 #7

3.1 Proof for (a)

We can write

$$L(\{0,c\},f) \le \int_0^c f(x)dx \le U(\{0,c\},f) \tag{1}$$

Since $f \in \mathcal{R}$ on [0,1], f is bounded on [0,1] and there exists some M > 0 such that $\sup_{x \in [0,c]} |f(x)| \leq M$. Then we can write (1) as

$$-cM \le c \inf_{x \in [0,c]} f(x) \le \int_0^c f(x) dx \le c \sup_{x \in [0,c]} f(x) \le cM$$

by sandwich theorem, we know that $\lim_{c\to 0} \int_0^c f(x) dx = 0$, so we can write

$$\lim_{c \to 0} \int_{c}^{1} f(x)dx = \lim_{c \to 0} \left(\int_{0}^{1} f(x)dx - \int_{0}^{c} f(x)dx \right) = \int_{0}^{1} f(x)dx - \lim_{c \to 0} \int_{0}^{c} f(x)dx$$
$$= \int_{0}^{1} f(x)dx$$

3.2 Solution for (b)

Let $f(x) = (-1)^n (n+1)$, where n is the maximum integer $n \le 1/x$ then $f \in \mathcal{R}$ on [c, 1] for all c > 0. If $N \le 1/c \le N+1$ for c > 0, we can write

$$\int_{c}^{1} f(x)dx = (-1)^{N}(N+1)\left(\frac{1}{N} - c\right) + \sum_{k=1}^{N-1} (-1)^{k}(k+1)\left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= (-1)^{N}(N+1)\left(\frac{1}{N} - c\right) + \sum_{k=1}^{N-1} \frac{(-1)^{k}}{k}$$

and

$$0 \le (N+1)\left(\frac{1}{N} - c\right) \le \frac{1}{N}$$

since $N \to \infty$ as $c \to 0$, the first term converges to zero and by alternating series theorem $\sum_{k=1}^{N-1} (-1)^k/k$ converges as $N \to \infty$, so the integral converges. However, we can write

$$\int_{c}^{1} |f(x)| dx = (N+1) \left(\frac{1}{N} - c\right) + \sum_{k=1}^{N-1} \frac{1}{k}$$

and

$$\sum_{k=1}^{N-1} \frac{1}{k} \le \int_{c}^{1} |f(x)| dx \le \sum_{k=1}^{N} \frac{1}{k}$$

since harmonic series diverges, the integral also diverges as $c \to 0$.

4 Section 6 #8

Suppose that $\sum_{n=1}^{\infty} f(n)$ converges. Let $P = \{x_0, \dots, x_n\} = \{1, 2, \dots, n+1\}$. Then we can write

$$U(P,f) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} f(x_{i-1}) \Delta x_i = \sum_{i=1}^{n} f(i)$$

$$L(P, f) = \sum_{i=1}^{n} m_i \Delta x_i = \sum_{i=1}^{n} f(x_i) \Delta x_i = \sum_{i=2}^{n+1} f(i)$$

and

$$L(P,f) = \sum_{i=2}^{n+1} f(i) \le \int_{1}^{n+1} f(x)dx \le \sum_{i=1}^{n} f(i) = U(P,f)$$
 (2)

Using sandwich theorem,

$$\lim_{n \to \infty} \sum_{i=2}^{n+1} f(i) \le \lim_{n \to \infty} \int_{1}^{n+1} f(x) dx \le \lim_{n \to \infty} \sum_{i=1}^{n} f(i)$$

implies the existence $\int_1^\infty f(x)dx$.

Suppose that $\int_{1}^{\infty} f(x)dx$ converges. From (2), we obtain

$$\sum_{i=1}^{n} f(i) \le f(1) + \int_{1}^{n} f(x)dx \le f(1) + \int_{1}^{\infty} f(x)dx$$

as f is nonnegative, so $\int_1^n f(x)dx$ is monotonically increasing. Since $\sum_{k=1}^n f(k)$ is a monotonically increasing sequence which is bounded above, it converges by monotone convergence theorem.

5 Section 6 #10

5.1 Proof for (a)

Fix v. Let $\phi(u) = u^p/p + v^q/q - uv$. Then $\phi(u) = u^{p-1} - v$. For $0 \le u < v^{1/(p-1)}$, $\phi'(u) < 0$ so $\phi(u)$ decreases there. For $u > v^{1/(p-1)}$, $\phi'(u) > 0$ so $\phi(u)$ increases there. Thus, $\phi(v^{1/(p-1)})$ is the minimum of $\phi(u)$ and we can write

$$\phi(v^{\frac{1}{p-1}}) = \frac{v^{\frac{p}{p-1}}}{p} + \frac{v^q}{q} - v^{\frac{p}{p-1}} = \left(\frac{1}{p} + \frac{1}{q}\right)v^q - v^q = 0$$

for all $u \ge 0$, $\phi(u) \ge \phi(v^{1/(p-1)}) = 0$ so the inequality holds. If $u^p = v^q$, we can write

$$\frac{u^p}{p} + \frac{v^q}{q} = \frac{u^p}{p} + \frac{u^p}{q} = u^p$$

$$uv = u \cdot u^{p/q} = u^{\frac{p+q}{q}} = u^{1+p/q} = u^{p\left(\frac{1}{p} + \frac{1}{q}\right)} = u^p$$

Thus the equality holds.

5.2 Proof for (b)

From the inequality we proved in (a) and properties of integral,

$$\int_{a}^{b} fg d\alpha \le \int_{a}^{b} \left(\frac{f^{p}}{p} + \frac{g^{q}}{q} \right) d\alpha = \frac{1}{p} \int_{a}^{b} f^{p} d\alpha + \frac{1}{q} \int_{a}^{b} g^{q} d\alpha = \frac{1}{p} + \frac{1}{q} = 1$$

5.3 Proof for (c)

Let $A = \int_a^b |f|^p d\alpha$, $B = \int_a^b |g|^q d\alpha$ and $\hat{f}(x) = f(x)/A^{1/p}$, $\hat{g}(x) = g(x)/B^{1/q}$. Assume that A > 0 and B > 0. Then we can write

$$\int_a^b |\hat{f}|^p d\alpha = \int_a^b \left| \frac{f}{A^{\frac{1}{p}}} \right|^p d\alpha = \frac{1}{A} \int_a^b |f|^p d\alpha = 1$$
$$\int_a^b |\hat{g}|^q d\alpha = \int_a^b \left| \frac{g}{B^{\frac{1}{q}}} \right|^q d\alpha = \frac{1}{B} \int_a^b |g|^q d\alpha = 1$$

By the result proved in (b),

$$\int_{a}^{b} |\hat{f}\hat{g}| d\alpha \le 1 \tag{3}$$

Suppose that the following holds:

$$\int_{a}^{b} \hat{f}\hat{g}d\alpha = r_0 e^{i\theta_0}$$

then we can write

$$\int_{a}^{b} e^{-i\theta_0} \hat{f} \hat{g} d\alpha = \operatorname{Re} \int_{a}^{b} e^{-i\theta_0} \hat{f} \hat{g} d\alpha = \int_{a}^{b} \operatorname{Re}(e^{-i\theta_0} \hat{f} \hat{g}) d\alpha = r_0$$

and $\text{Re}(e^{-i\theta_0}\hat{f}\hat{g}) \leq |e^{-i\theta_0}\hat{f}\hat{g}| = |\hat{f}\hat{g}|$, so we can write

$$\left| \int_{a}^{b} \hat{f} \hat{g} d\alpha \right| \leq \int_{a}^{b} |\hat{f} \hat{g}| d\alpha$$

By (3),

$$\left| \int_{a}^{b} \hat{f} \hat{g} d\alpha \right| \leq \int_{a}^{b} |\hat{f} \hat{g}| d\alpha \leq 1 = \left(\int_{a}^{b} |\hat{f}|^{p} d\alpha \right)^{\frac{1}{p}} \left(\int_{a}^{b} |\hat{g}|^{q} d\alpha \right)^{\frac{1}{q}}$$
$$= \frac{1}{A^{1/p} B^{1/q}} \left(\int_{a}^{b} |f|^{p} d\alpha \right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{q} d\alpha \right)^{\frac{1}{q}}$$

Multiplying both sides with $A^{1/p}B^{1/q}$ gives

$$\left| \int_{a}^{b} fg d\alpha \right| \le \left(\int_{a}^{b} |f|^{p} d\alpha \right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{q} d\alpha \right)^{\frac{1}{q}}$$

and we get the desired result.

5.4 Proof for (d)

Suppose that $f, g \in \mathcal{R}$ on [c, 1] for every c > 0. Then we have

$$\left| \int_{c}^{1} f g dx \right| \leq \left(\int_{c}^{1} |f|^{p} dx \right)^{\frac{1}{p}} \left(\int_{c}^{1} |g|^{q} dx \right)^{\frac{1}{q}}$$

Since $|f| \ge 0$ and $|g| \ge 0$, the right hand side increases as $c \to 0$ and we can write

$$\left| \int_{c}^{1} fg dx \right| \leq \left(\int_{0}^{1} |f|^{p} dx \right)^{\frac{1}{p}} \left(\int_{0}^{1} |g|^{q} dx \right)^{\frac{1}{q}}$$

Since |z| is continuous for all $z \in \mathbb{C}$ and by properties of limits, we can write

$$\lim_{c \to 0} \left| \int_{c}^{1} f g dx \right| = \left| \lim_{c \to 0} \int_{c}^{1} f g dx \right| = \left| \int_{0}^{1} f g dx \right| \le \left(\int_{0}^{1} |f|^{p} dx \right)^{\frac{1}{p}} \left(\int_{0}^{1} |g|^{q} dx \right)^{\frac{1}{q}}$$

Now, suppose that $f, g \in \mathcal{R}$ on [a, b] for every b > a where a is fixed. Then we have

$$\left| \int_{a}^{b} f g dx \right| \leq \left(\int_{a}^{b} |f|^{p} dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{q} dx \right)^{\frac{1}{q}}$$

Since $|f| \geq 0$ and $|g| \geq 0$, the right hand side increases as $b \to \infty$ and we can write

$$\left| \int_{a}^{b} f g dx \right| \leq \left(\int_{a}^{\infty} |f|^{p} dx \right)^{\frac{1}{p}} \left(\int_{a}^{\infty} |g|^{q} dx \right)^{\frac{1}{q}}$$

Since |z| is continuous for all $z \in \mathbb{C}$ and by properties of limits, we can write

$$\lim_{b \to \infty} \left| \int_a^b fg dx \right| = \left| \lim_{b \to \infty} \int_a^b fg dx \right| = \left| \int_a^\infty fg dx \right| \le \left(\int_a^\infty |f|^p dx \right)^{\frac{1}{p}} \left(\int_a^\infty |g|^q dx \right)^{\frac{1}{q}}$$

and we get the desired result.

6 Section 6 #11

By Schwarz inequality,

$$\left| \int_{a}^{b} |f - g| |g - h| d\alpha \right| \le \left(\int_{a}^{b} |f - g|^{2} d\alpha \right)^{\frac{1}{2}} \left(\int_{a}^{b} |g - h|^{2} d\alpha \right)^{\frac{1}{2}}$$

$$\int_{a}^{b} (|f - g|^{2} + 2|f - g| |g - h| + |g - h|^{2}) d\alpha \le \left[\left(\int_{a}^{b} |f - g|^{2} d\alpha \right)^{\frac{1}{2}} + \left(\int_{a}^{b} |g - h|^{2} d\alpha \right)^{\frac{1}{2}} \right]^{2}$$

$$\int_{a}^{b} (|f - g| + |g - h|)^{2} d\alpha \le \left[\left(\int_{a}^{b} |f - g|^{2} d\alpha \right)^{\frac{1}{2}} + \left(\int_{a}^{b} |g - h|^{2} d\alpha \right)^{\frac{1}{2}} \right]^{2}$$

By triangular inequality, $|f - h| \le |f - g| + |g - h|$ and since |f - g|, |g - h|, |f - h| are all nonnegative,

$$\int_{a}^{b} |f - h|^{2} d\alpha \le \left[\left(\int_{a}^{b} |f - g|^{2} d\alpha \right)^{\frac{1}{2}} + \left(\int_{a}^{b} |g - h|^{2} d\alpha \right)^{\frac{1}{2}} \right]^{2}$$

$$\left(\int_{a}^{b} |f - h|^{2} d\alpha \right)^{\frac{1}{2}} \le \left(\int_{a}^{b} |f - g|^{2} d\alpha \right)^{\frac{1}{2}} + \left(\int_{a}^{b} |g - h|^{2} d\alpha \right)^{\frac{1}{2}}$$

$$\|f - h\|_{2} \le \|f - g\|_{2} + \|g - h\|_{2}$$

and we obtain the desired result.

7 Extra Problem

Fix $\epsilon > 0$. There exists an integer N > 0 such that $1/(N+1) < \epsilon/2$. Let $A = \{1, 1/2, 1/3, 2/3, \dots, 1/N, \dots, (N-1)/N\}$. For all $x \in [0, 1]$ such that $x \notin A$, $f(x) \leq 1/(N+1) < \epsilon/2$. Let m be the number of elements of A, $P = \{p_0, p_1, \dots, p_n\}$ which is a partition of [0, 1] where n > m, $\Delta x_i < \epsilon/4m$, and $I_1 = \{i = \{1, \dots, n\}; A \cap [p_{i-1}, p_i] \neq \varnothing\}$ and $I_2 = \{1, \dots, n\} \setminus I_1$. Then we can write

$$U(P,f) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i \in I_1} M_i \Delta x_i + \sum_{i \in I_2} M_i \Delta x_i$$
$$\leq \frac{k\epsilon}{4m} + \frac{\epsilon}{2} \sum_{i \in I_2} \Delta x_i \leq \frac{k\epsilon}{4m} + \frac{\epsilon}{2}$$

where k is the number of elements in I_1 , and there are at most 2m intervals $[p_{i-1}, p_i]$ such that $[p_{i-1}, p_i] \cap A$ is nonempty. Thus $k \leq 2m$ so $U(P, f) \leq \epsilon$. As stated in the solution for #5, for all (p_{i-1}, p_i) there exists at least one irrational number in the open interval, so $L(P, f) = \sum_{i=1}^{n} m_i \Delta x_i = 0$. Then, $U(P, f) - L(P, f) \leq \epsilon$ and since our choice of ϵ is arbitrary, $f \in \mathcal{R}$ on [0, 1].