REDES NEURAIS

Prof. André Backes | @progdescomplicada

Sistema Nervoso

- O que é?
 - É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos
 - Engloba o cérebro
 - Sua unidade fundamental é o neurônio
 - Se diferencia de outras células por apresentar excitabilidade

Cérebro

- Funciona de forma inteiramente diferente dos computadores convencionais
 - É lento
 - O tempo de propagação de um impulso no axônio é da ordem de milissegundos!
 - A frequência de disparo de um neurônio é da ordem de kHz!
 - Mas sua lentidão é compensada pela maciça conexão entre neurônios
 - Cada neurônio tem cerca de 10.000 sinapses com outros neurônios

Cérebro

- Ainda, apesar de sua lentidão...
 - É mais preciso (e possivelmente mais rápido) que computadores convencionais na execução de tarefas complexas
 - Visão, audição, reconhecimento, ...

Cérebro

- Possui a capacidade de construir suas próprias regras
 - uso da experiência
 - Um milhão de sinapses por segundo são desenvolvidas nos dois primeiros anos de vida
 - Composto por várias regiões especializadas
 - Cada uma com funções específicas

- Motivação
 - Computadores são eficientes em várias áreas, mas a computação convencional não tem obtido desempenho próximo da natureza em vários domínios
 - Vantagens da natureza
 - Seres humanos: reconhecer um rosto familiar em ambiente estranho
 - Morcegos: seu sonar pode reconhecer alvos (distância e velocidade)

- Motivação
 - Seu estudo surgiu com o desejo de entender o cérebro
 - Objetivo principal: reproduzir seu funcionamento em diversas tarefas
 - Paradigma Bio-Inspirado de Aprendizado de Máquina (AM)
 - Paradigma conexionista: o comportamento inteligente esta relacionado com a dinâmica das conexões entre neurônios.
 - Esta dinâmica é capaz de representar o conhecimento

- São modelos de computação inspirados no cérebro humano
 - Compostas por várias unidades de processamento
 - Neurônios
 - Interligadas por um grande número de conexões
 - sinapses
- Como modelo, é apenas uma aproximação do fenômeno ou objeto real que se pretende estudar

- Propriedades particulares:
 - Aprender
 - Adaptar
 - Generalizar
 - Eventualmente organizar
- Eficientes em várias aplicações
 - Regressão, classificação, problemas não lineares, etc

Neurônio

- O neurônio é o bloco construtivo básico de algoritmos de redes neurais
 - Neurônio natural simplificado

Neurônio

- Neurônio natural simplificado
 - Dendritos
 - recebem impulsos nervosos oriundos de outros neurônios
 - Corpo da Célula
 - Processa a informação e gera novos impulsos
 - Axônio
 - Transmite os impulsos gerados para outros neurônios
 - Sinapse
 - Ponto de contato entre os axônios e os dendritos de dois neurônios
 - Controla a transmissão de impulsos, proporcionando a capacidade de adaptação do neurônio

Neurônio Artificial

- Modelo matemático de um neurônio biológico
 - Proposto inicialmente por McCulloch
 & Pitts (1943)
 - É uma aproximação útil de um neurônio real

- Os dendritos são modelados como uma linha ou canal de transmissão por onde flui a informação de entrada
- x_i , i=1, ..., p

- A força das conexões sinápticas dos dendritos é modelada como um fator (peso sináptico), cujo papel é modular o fluxo de sinais passando por eles
- w_i , i=1, ..., p

- O corpo celular realiza o acúmulo energético
 - Somatório das entradas moduladas pelos pesos sinápticos: $u = x_1^* w_1 + x_2^* w_2 + ... + x_p^* w_p \Theta$
 - **\Theta**: limiar (bias)

- O axônio funciona como uma função de ativação (chave ON-OFF)
 - Indica se o neurônio respondeu ao estímulo atual
 - Indica se houve ou não o envio de um potencial de ação
 - y = sinal(u) = +1, se u > 0
 - y = sinal(u) = -1, caso contrário

- Principais aspectos das RNAs
 - Arquitetura
 - Unidades de Processamento
 - Topologia
 - Aprendizado
 - Paradigmas de aprendizado
 - Algoritmos de aprendizado

- Unidades de Processamento
 - Diferentes tipos de neurônios
 - Estáticos ou Dinâmicos
 - Atemporais ou Temporais
 - Lineares ou Não Lineares

- Topologia
 - Diferentes quantidades de camadas
 - Uma camada: Perceptron, Adaline
 - Multi-camadas: Multi Layer Perceptron (MLP), Funções de Base Radial (RBF)

Conceitos Básicos | Topologia

- Diferentes arranjos das conexões
 - Redes feedforward: não existem loops de conexões. É o tipo mais comum

Conceitos Básicos | Topologia

- Diferentes arranjos das conexões
 - Redes recorrentes: conexões apresentam loops, isto é, possuem conexões ligando neurônios de uma camada a neurônios de camada(s) anterior(es)
 - Podem "lembrar" excitações passadas

Conceitos Básicos | Topologia

- Diferentes arranjos das conexões
 - Redes em mapas (ou grades): matriz n-dimensional de neurônios, com relação de vizinhança espacial

- Paradigmas de aprendizado
 - Indicam como a RNA se relaciona com o ambiente externo
 - Principais Paradigmas
 - Supervisionado
 - Não supervisionado
 - Reforço

- Algoritmos de aprendizado
 - Conjunto de regras bem definidas usadas para ensinar a rede a resolver um certo problema
 - Algumas das principais categorias
 - Correção de Erro
 - Competitivo
 - Hebbiano
 - Divergem na maneira como os pesos são ajustados

- É considerada o primeiro algoritmo de NRA
 - Desenvolvida por Rosenblatt em 1958
 - Utiliza modelo de neurônio de McCulloch-Pitts como unidade de processamento com saída em {-1, +1}
 - Perceptron Simples = Neurônio + Regra de Aprendizagem

- É a rede mais simples para classificação de padrões linearmente separáveis
 - Para classificação binária (2 classes), resume-se a um neurônio com pesos ajustáveis
 - A regra de aprendizagem é o mecanismo que torna a rede Perceptron Simples um dispositivo inteligente

- Regra de Aprendizado
 - Fornecem a base para o entendimento dos métodos de treinamento para redes formadas por várias unidades
 - Consiste na modificação dos pesos e do limiar do neurônio
 - Até que ele resolva o problema de interesse
 - Ou até que o período de aprendizagem tenha terminado

- Regra de Aprendizado
 - Pesos são inicializados aleatoriamente
 - Pesos são então ajustados sempre que a rede classifica equivocadamente um exemplo de treinamento
 - Esse processo se repete até que um determinado critério de parada seja alcançado

- Regra de Aprendizado
 - É um classificador linear ótimo
 - Sua regra de aprendizagem conduz à minimização de uma função-custo
 - Tenta encontrar a melhor fronteira linear que separa os dados
 - Possível função-custo
 - Quantificar a probabilidade média de erros de classificação
 - Buscamos minimizar o erro de classificação dos dados de entrada

- Treinamento
 - Treinamento supervisionado
 - Padrões desejados de saída d
 - Dado um padrão de entrada x = [x₁, ... x_p] tem-se a correção de erro para cada peso (w_i, i=1, ..., p)
 - $W_i(t+1) = W_i(t) + \Delta W_i(t)$
 - Onde
 - w_i(t): peso atual
 - Δw_i(t): incremento no peso
 - w_i(t+1): peso modificado

- Treinamento: incremento do peso ∆w_i(t)
 - Gradiente descendente
 - A direção do passo futuro dependerá da direção do passo anterior pois sempre são ortogonais
 - Classificação correta (d = y)
 - $\Delta w_i(t) = 0$
 - Classificação incorreta (d ≠ y)
 - $\Delta w_i(t) = \eta x_i (d y)$
 - Fator η
 - Tornar o processo de ajuste mais estável (também chamado de passo de aprendizagem)
 - $0 < \eta << 1$

- Algoritmo de Treinamento
 - Iniciar todos os pesos w_i
 - Repita
 - Para cada par de treinamento (x, d)
 - Calcular a saída y
 - Se (*d* ≠ *y*) Então
 - Atualizar os pesos dos neurônios
 - Até o erro ser aceitável

- O que fazer se tivermos mais de 2 classes?
 - Um único neurônio nos permite categorizar apenas duas classes de dados
 - Para problemas com múltiplas classes, deve-se utilizar vários neurônios em paralelo

- Classificação em múltiplas classes
 - O funcionamento de cada neurônio é o mesmo individualmente
 - Todos possuem
 - Seu próprio vetor de pesos
 - Ajuste de pesos
 - Sinal de saída
 - Numa rede com Q neurônios teremos Q regras de aprendizagem

- Classificação em múltiplas classes
 - Como especificar o número de neurônios Q?
 - Método 1: Codificação binária simples
 - Se tenho \boldsymbol{C} classes, então \boldsymbol{Q} é o maior inteiro igual a ou menor que $\sqrt{\boldsymbol{C}}$.
 - Exemplo: Se C = 6 classes, então Q > 2,45 = 3

- Classificação em múltiplas classes
 - Método 1: Codificação binária simples
 - Exemplo: Se C = 6 classes, então Q > 2,45 = 3
 - Classe 1: $d = [0 \ 0 \ 1]^T$
 - Classe 2: $d = [0 \ 1 \ 0]^T$
 - Classe 3: $d = [0 \ 1 \ 1]^T$
 - Classe 4: $d = [1 \ 0 \ 0]^T$
 - Classe 5: $d = [1 \ 0 \ 1]^T$
 - Classe 6: $d = [1 \ 1 \ 0]^T$

Rede Perceptron Simples

- Classificação em múltiplas classes
 - Como especificar o número de neurônios Q?
 - Método 2: Codificação 1-out-of-Q
 - Se tenho C classes, então Q = C
 - Exemplo: Se C = 4 classes, então Q = 4
 - Apenas uma das componentes do vetor tem valor igual a 1
 - Os vetores são ortogonais, isto é, produto escalar entre eles é nulo

Rede Perceptron Simples

- Classificação em múltiplas classes
 - Método 1: Codificação 1-out-of-Q
 - Exemplo: Se C = 4 classes, então Q = 4
 - Classe 1: d = [0 0 0 1]^T
 - Classe 2: $d = [0 \ 0 \ 1 \ 0]^T$
 - Classe 3: $d = [0 \ 1 \ 0 \ 0]^T$
 - Classe 4: $d = [1 \ 0 \ 0 \ 0]^T$

Rede Perceptron Simples

- O que fazer se as classes n\u00e3o puderem ser separadas por uma reta?
 - Perceptron Simples resolve apenas problemas linearmente separáveis
 - Grande número de aplicações importantes não são linearmente separáveis

- Podemos modificar a rede Perceptron
 - Solução: utilizar mais de uma camada de neurônios dentro da rede
- Rede Perceptron de Múltiplas Camadas
 - Multilayer Perceptron MLP

- Estrutura básica de uma MLP
 - Conjunto de unidades de entrada
 - Recebem os sinais (ou dados)
 - Uma ou mais camadas ocultas
 - Não possuem acesso direto a saída da rede
 - Neurônios não se conectam dentro de uma mesma camada
 - Uma camada de saída:
 - combina as saídas produzindo a classificação final

- Qual a função das camadas ocultas?
 - Elas realização uma transformação não linear nos dados
 - Cada camada é uma rede Perceptron para cada grupo de entradas linearmente separáveis
 - Facilitam a tarefa de classificação

- Notação de uma MLP
 - Uma rede MLP com 1 camada oculta é representada por
 - *MLP*(*p*, *q*₁, *m*)
 - Onde
 - p é o número de variáveis de entrada
 - q₁ é o número de neurônios ocultos
 - m é o número de neurônios de saída
 - Com 2 camadas
 - $MLP(p, q_1, q_2, m)$, onde q_2 é o número de neurônios ocultos na segunda camada

- Notação de uma MLP
 - Desse modo, uma rede MLP com
 - 4 variáveis de entrada, 10 neurônios ocultos e 2 neurônios de saída é representada como MLP(4,10,2)
 - 15 variáveis de entrada, 20 neurônios na 1º camada oculta, 10 neurônios na 2º camada oculta e 4 neurônios de saída é representada como MLP(15,20,10,4)

- Quantos camadas ocultas usar?
- E quantos neurônios por camada oculta?
 - Não há regras determinadas para isso
 - Podemos ter qualquer número de camadas e neurônios
 - Em geral, depende da natureza do problema
 - Muitas camadas e/ou neurônios podem comprometer o desempenho da rede

- De modo geral, uma ou duas camadas ocultas são suficientes
 - Uma camada oculta: regiões de decisão convexas
 - Duas camadas oculta: regiões de decisão não convexas

- Como treinar uma rede MLP?
 - Neurônios em camadas ocultas não tem acesso a saída da rede
 - Não é possível calcular o erro associado a esse neurônio
 - O que fazer então?
 - Uma solução foi "inventar" uma espécie de erro para os neurônios ocultos
 - Propagar os erros dos neurônios de saída em direção a todos os neurônios das camadas ocultas (caminho inverso ao do fluxo da informação)

- Algoritmo de backpropagation
 - Uma das mais populares técnicas de aprendizado para redes MLP
 - Envolve dois sentidos de propagação de sinais na rede
 - Sentido direto (forward)
 - Sentido inverso (backward)

- Algoritmo de backpropagation
 - Sentido direto (forward):
 - Cálculo da saída e do erro
 - Sentido inverso (backward)
 - Propagação do erro
 - Envolve o cálculo de derivadas

- Propagação do erro
 - A idéia básica é propagar o sinal de erro calculado na etapa de treinamento de volta para todos os neurônios
 - Coeficientes dos pesos utilizados para propagar os erros para trás são iguais aos utilizados durante o cálculo de valor de saída
 - Apenas a direção do fluxo de dados é alterado
 - Esta técnica é aplicada em todas as camadas de rede

- Propagação do erro
 - Sinal de erro é calculado para cada neurônio
 - Seus coeficientes de peso podem ser modificados
 - Esse cálculo envolve a derivada da função de ativação do neurônio

- Problema
 - Derivadas demandam funções diferenciáveis
 - Funções de ativação dos neurônios intermediários são descontínuas
- Solução
 - Funções de ativação contínuas
 - Utilizar aproximações das funções de ativação

- Função de ativação
 - A função de ativação do neurônio artificial é do tipo Degrau
 - Não-linearidade dura ou hard
 - A saída é uma variável do tipo ON-OFF (binária [0,1] ou bipolar [-1,+1])
 - Substituímos ela por uma função de ativação do tipo Sigmoidal
 - Não-linearidade suave ou soft
 - A sáida passa a ser uma variável do tipo Real ou Analógica (qualquer valor entre [0,1] ou [-1,+1])

- Função de ativação do tipo Sigmoidal
 - Vantagens
 - Derivadas fáceis de calcular
 - Não-linearidade fraca (trecho central é quase linear)
 - Interpretação da saída como taxa média de disparo (mean firing rate), em vez de simplesmente indicar se o neurônio está ou não ativado (ON-OFF)
 - Desvantagens
 - Elevado custo computacional para implementação em sistemas embarcados devido à presença da função exponencial

- Função de ativação
 - Sigmóide Logística

$$y_i(t) = \frac{1}{1 + \exp(-u_i(t))}$$
$$y_i(t) \in (0,1)$$

- Função de ativação
 - Tangente Hiperbólica

$$y_i(t) = \frac{1 - \exp(-u_i(t))}{1 + \exp(-u_i(t))}$$

$$y_i(t) \in (-1,1)$$

- Existem muitas variações do Backpropagation
 - Momentum
 - Quickprop
 - Newton
 - Gradiente Conjugado
 - Levenberg-Marquardt
 - Super Self-Adjusting Backpropagation

- Ocorrência de mínimos locais
 - A solução estável que não é a melhor
 - Incidência desse problema pode ser reduzida
 - Uso de backpropagation seqüencial (estocástico)
 - Múltiplas inicializações dos pesos
- Lentidão da rede em superfícies complexas
 - Podemos amenizar o problema
 - Uso de variantes do backpropagation

- Overfitting (sobreajustamento)
 - A partir de um certo ponto do treinamento, o desempenho da rede piora ao invés de melhorar
 - A rede se especializa nos padrões de treinamento, incluindo suas peculiaridades
 - Piora a sua capacidade de generalização
 - Incapacita a rede de reconhecer dados diferentes dos usados no seu treinamento

- Overfitting (sobreajustamento)
 - O que fazer nesse caso?
 - Podemos encerrar treinamento mais cedo (early stop)
 - Fazer a poda de conexões e neurônios irrelevantes (pruning)
 - Penalizar os valores dos pesos (weight decay)

- Underfitting (subajustamento)
 - Arquitetura da rede tem poucos parâmetros
 - O modelo é muito simples
 - Falta de representatividade das classes
 - É possível que a rede sequer aprenda o padrão
 - Baixa capacidade de generalização
- Pode-se resolver esse tipo de problema com um conjunto de treinamento de bom tamanho
 - Técnicas de amostragem ajudam

Atualização dos pesos da rede

- Existem diversas abordagens para a atualização dos pesos da rede
 - Por ciclo (batelada ou batch)
 - Por padrão (sequencial ou on-line)
- A escolha da melhor abordagem depende da aplicação

Atualização dos pesos da rede

- Atualização por ciclo (batelada ou batch)
 - Atualiza os pesos depois que todos os padrões de treinamento forem apresentados
 - Vantagens
 - Estimativa mais precisa do vetor gradiente
 - Mais estável
 - Desvantagem
 - Mais lento

Atualização dos pesos da rede

- Por padrão (sequencial ou on-line)
 - Atualiza os pesos após apresentação de cada padrão em ordem aleatória
 - Vantagens
 - Requer menos memória
 - Mais rápido
 - Menos susceptível a mínimos locais
 - Desvantagens
 - Pode se tornar instável
 - Requer controle da taxa de aprendizado

- Redes RBF (Radial Basis Functions)
 - Redes com função de base radial
 - Classe de redes com arquitetura feedforward
 - Os valores das entradas se propagam na rede em um único sentido
 - Possui camada oculta como as redes MLPs
 - Apenas 1 camada oculta
 - Podem resolver problemas n\u00e3o linearmente separ\u00e1veis

- Redes RBF (Radial Basis Functions)
 - Utilizam um modelo de neurônio diferente das MLPs
 - Neurônios da camada oculta com resposta radial a excitações
 - Esse tipo de neurônio modela o conceito biológico de campo receptivo (local receptive fields)
 - Os neurônios de saída são neurônios comuns

- Redes RBF (Radial Basis Functions)
 - Neurônios com resposta radial
 - Respondem seletivamente a um intervalo finito do espaço de sinais de entrada
 - Aprendizagem
 - Busca uma superfície em um espaço de dimensão qualquer que produza o melhor ajuste os dados de treinamento
 - Treinamento, em geral, muito mais rápido que as MLP

- Resposta Radial
 - Presentes em alguns tipos de células nervosas
 - Células auditivas possuem maior sensibilidade a frequências próximas a um determinado tom
 - Células da retina maior sensibilidade a excitações luminosas próximas ao centro do seu campo receptivo
 - Modelo matemático
 - Função de Base Radial

- Existem diferentes modelos matemáticos possíveis para uma função de base radial
 - Gaussiana

•
$$h(x) = \exp(-\frac{(x-\mu)^2}{\sigma^2})$$

Multi-Quadrática Inversa

•
$$h(x) = \frac{1}{\sqrt{(x-\mu)^2 + \sigma^2}}$$

Chapéu Mexicano

•
$$h(x) = \begin{cases} \frac{\sin((x-\mu)/\sigma)}{((x-\mu)/\sigma)}, se \ x \neq \mu \\ 1, caso \ contrário \end{cases}$$

Gaussiana

•
$$h(x) = \exp(-\frac{(x-\mu)^2}{\sigma^2})$$

Multi-Quadrática Inversa

$$h(x) = \frac{1}{\sqrt{(x-\mu)^2 + \sigma^2}}$$

Chapéu Mexicano

•
$$h(x) = \begin{cases} \frac{\sin((x-\mu)/\sigma)}{((x-\mu)/\sigma)}, se \ x \neq \mu \\ 1, caso \ contrário \end{cases}$$

Modelo do neurônio RBF

Modelo básico do neurônio

- Podemos construir uma função complexa a partir de funções simples
 - Série de Fourier
 - Transformada de Fourier
 - Transformada Wavelet
 - Redes RBF
- Redes RBF utilizam funções de base radial para aproximar outras funções

- Sua origem vem de técnicas para realizar interpolação exata de funções
 - Ex.: utilize um conjunto de N funções de base,
 não-lineares, para calcular a função dada função

 A rede RBF pode aproximar qualquer função contínua através da combinação linear de funções gaussianas com centros em diferentes posições do espaço de entrada.

- Primeiros trabalhos com funções de base radial
 - Interpolação
 - Estimação de densidade
 - Aproximação de funções multivariadas suaves
- Atualmente
 - Os modelos são de natureza adaptativa
 - Utilização de um número relativamente menor de unidades de processamento localmente sintonizadas

Desempenho da rede RBF

- De modo geral, redes RBF precisam de ao menos 10 vezes mais dados de treinamento para atingir a mesma precisão das redes MLP-BP
- Em tarefas difíceis de classificação, redes RBF podem ser melhores que MLP
 - Necessidade de número suficiente de
 - Padrões de treinamento
 - Neurônios ocultos

Desempenho da rede RBF

- Apesar da necessidade de maior conjunto de treinamento, o tempo de treinamento é muito menor
 - Apenas uma pequena fração de neurônios ocultos responde a um dado padrão de entrada
 - São unidades localmente sintonizáveis
 - Sensíveis a padrões próximos de seus campos receptivos
 - Numa MLP
 - Todos os neurônios são avaliadas e têm seus pesos ajustados

Comparação entre as redes

- Redes RBF versus Redes MLP
 - RBF só tem uma camada oculta
 - MLP-BP pode ter mais
 - RBF usualmente tem mais neurônios na oculta que a MLP
 - MLP usa funções sigmoidais de ativação
 - RBF usa função de base radial e linear nas camadas oculta e de saída, respectivamente
 - RBF é usualmente menos sensível a inserção de dados novos
 - RBF pode necessitar de maior número de parâmetros ajustáveis

Comparação entre as redes

- Redes RBF versus Redes MLP
 - MLP gera regiões globais de decisão
 - Maior capacidade de generalização (extrapolação) que a RBF. Logo, lida melhor com outliers que a RBF (ajuste local)
 - Quando usar qual?
 - Rede MLP: padrões de entrada são custosos (ou difíceis de se gerar) e/ou quando a velocidade de recuperação é crítica
 - Rede RBF: os dados são baratos e abundantes, necessidade de treinamento online

Comparação entre as redes

- Redes RBF versus Redes MLP
 - RBF separa classes por hiperelipsoides e a MLP-BP por hiperplanos

Redes Hopfield

- Modelo de redes neurais auto-associativas
 - Desenvolvidas por J. Hopfield em 1982
- Similar a um modelo de memória auto-associativa
 - Capaz de armazenar e depois recuperar um certo conjunto de padrões

Redes Hopfield | Motivação

- Sistemas físicos com um grande nº de elementos
 - Interações entre estes geram fenômenos coletivos estáveis
- Redes que possuem neurônios que interagem entre si podem levar a fenômenos coletivos equivalentes?
 - Sistemas de neurônios conectados possuem estados estáveis que são atingidos quando a rede é estimulada por estados similares

Redes Hopfield | Características

- Possui uma única camada de neurônios totalmente conectada
- Utiliza neurônios do tipo MCP (McCulloch-Pitts)
 - Unidade de processamento com saída em {-1, +1}
- Estrutura recorrente
 - Com feedback

Redes Hopfield | Características

- Unidades são ao mesmo tempo de entrada e de saída
- Conjunto de saídas define o "estado" da rede
- Funcionamento assíncrono

Redes Hopfield

- Funcionamento assíncrono
 - Em um determinado instante de tempo apenas uma unidade da rede é escolhida para mudar de estado
 - Esse processo se repete até que a rede encontre um ponto de equilíbrio estável
 - A saída de cada unidade da rede se mantém constante

Redes Hopfield | Funcionamento básico

- Etapa de treinamento
 - A rede memoriza os padrões
- Etapa de uso
 - A rede irá passar por uma sequência de ativações intermediárias até se estabilizar em um padrão previamente treinado

Redes Hopfield | Funcionamento básico

Etapa de treinamento

Etapa de uso

Redes Hopfield | Aplicações

Regeneração de padrões

Redes Hopfield | Aplicações

 Completar um padrão conhecido

Agradecimentos

- Agradeço aos professores
 - Guilherme de Alencar Barreto Universidade Federal do Ceará (UFC)
 - Prof. Ricardo J. G. B. Campello ICMC/USP
 - Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco (UFPE)
 - Germano C. Vasconcelos Universidade Federal de Pernambuco (UFPE)
 - Paulo J.L. Adeodato Universidade Federal de Pernambuco (UFPE)
- pelo material disponibilizado