Illustrative healthy-sick-dead 3-state model

Appendix of 'Krijkamp EM, Alarid-Escudero F, Enns EA, Hunink MGM, Pechlivanoglou P, Jalal HJ.' A multidimensional array representation of state-transition model dynamics. (revised, September 2019)

2019-09-26

Illustrative 3-state cohort model

In this illustrative example, we follow a cohort of healthy 70-year-old individuals over their remaining lifetime, using 30 annual cycles. The healthy individuals can get sick, they can die or stay healthy. Sick individuals can fully recover, transitioning back to healthy, remain sick or die. The state-transition diagram is shown in Figure 1. Remaining in each of these health states is associated with some utilities and costs (the state rewards). In addition to these state rewards, transition dis-utilities and costs apply. Getting sick is associated with a sudden decrease of quality of life of 0.1. In addition, transitioning to dead incurs a one-time cost of \$4,000. Both the state and transition rewards are constant over time. All parameters of this model are fictitious, not based on a specific disease and described in the table below. We use some prefixed to name our variables and we try to use a <x>_<y>_<varName> structure as consistent as possible, with x being the data type prefix, e.g. a_ for arrays, m_ for matrix, df_ for data frames etc. and y being the variable type prefix, e.g. c_ for costs, p_ for probabilities, u_ for utilities etc. This coding convention is recommended by our published coding framework (Alarid-Escudero et al., 2019).

Parameter	R name	Value
Time horizon (n_t)	n_t	30 years
Names of health states (n)	v_n	H, S, D
Annual transition probabilities		
- Disease onset (H to S)	p_HS	0.30
- Recovery (S to H)	p_SH	0.15
Annual mortality		
- All-cause (H to D)	p_HD	0.05
- Disease specific (S to D)	p_SD	0.20
Annual costs		
- Healthy individuals	c_H	\$1,000
- Sick individuals	c_S	\$3,000
- Dead individuals	c_D	\$0
Utility weights		
- Healthy individuals	u_H	1.00
- Sick individuals	u_S	0.60
- Dead individuals	u_D	0.00
Transition rewards		
- Utility decrement of healthy individuals	du_HS	0.10
when transitioning to S		
- Cost of dying	ic_D	\$4,000

01 Initial setup

We start by loading the packages and functions needed.

Figure 1: State-transition diagram of the 3-state model

```
#### 01.1 Load packages and functions ####
library(reshape2) # load reshape2 to transform data
library(ggplot2) # load ggplot2 for nice looking plots
```

01.2 External parameters

In this section, we specify the staring age of the cohort, the number of cycles, the names of the health states and model parameters.

Next, we store the base-case parameters.

```
#### 01.2.3 Generate initial set of base-case external parameters ####
# Costs
c_H <- 1000  # cost of remaining one cycle healthy
c_S <- 3000  # cost of remaining one cycle sick
c_D <- 0  # cost of being dead (per cycle)
# State utilities
u_H <- 1  # utility when healthy
u_S <- 0.60  # utility when sick
u_D <- 0  # utility when healthy</pre>
```

```
# Transition probabilities (per cycle)
p_HS <- 0.30  # probability to become sick when healthy
p_HD <- 0.05  # probability to die when healthy
p_SH <- 0.15  # probability to become healthy when sick
p_SD <- 0.20  # probability to die when sick
# Transition rewards
du_HS <- 0.10  # one-time utility decrement when becoming sick
ic_D <- 4000  # one-time cost of dying</pre>
```

02 Define and initialize matrices and vectors

 $m_P["S", "S"] <- 1 - (p_SH + p_SD)$

m_P["S", "D"] <- p_SD

From Death

In this section, we initialize the matrices and vectors used for storing the data. The transition probability matrix, m_P , is initialized. The next step is to initialize the state vector v_m0 . All individuals start healthy. This state vector is used to inform the first row of the cohort trace matrix m_M .

Equation 1-2

```
#### 02.1 Initial state vector ####
# the cohort start in the Healthy health state
v_m0 \leftarrow c(H = 1, S = 0, D = 0)
v_m0
## H S D
## 1 0 0
#### 02.2 Cohort trace
## Create the Markov cohort trace matrix m_M capturing the proportion of the cohort
# in each state at each cycle
m_M <- matrix(0, # initialize cohort trace</pre>
              nrow = (n_t + 1), ncol = n_states,
              dimnames = list(0:n_t, v_n))
m_M[1, ] <- v_m0 # store the initial state vector
#### 02.3 Transition probability matrix ####
# matrix m_P at the first cycle
m_P <- matrix(NA,</pre>
              nrow = n_states, ncol = n_states,
              dimnames = list(v_n, v_n))
# Fill in matrix
# From Healthy
m_P["H", "H"] <-1 - (p_HS + p_HD)
m_P["H", "S"] <- p_HS
m_P["H", "D"] <- p_HD
# From Sick
m_P["S", "H"] <- p_SH
```

```
m_P["D", "H"] <- 0
m_P["D", "S"] <- 0
m_P["D", "D"] <- 1

m_P # print the transition probability matrix</pre>
```

```
## H S D
## H 0.65 0.30 0.05
## S 0.15 0.65 0.20
## D 0.00 0.00 1.00
```

We have determined all parameters for the general set up, we specified our input parameters, initialized all structures and filled the transition probability matrix m_P and the first row of our cohort trace m_M. The next step is running the Markov model.

03 Traditional cohort trace approach

In this section, we run the Markov model for the entire time horizon. The calculation shown in Equation 3 needs to be performed for all cycles. Therefore, we create a loop starting at t = 1 until $t = n_t$. The transition probability matrix, m_P is multiplied with the cohort trace $m_M[t,]$, using matrix multiplication, specified in R with %*%, to fill the next row of the $m_M[t + 1,]$.

Equation 3

```
for(t in 1:n_t){  # loop through the number of cycles
    # estimate the state vector for the next cycle (t + 1)
    m_M[t + 1, ] <- m_M[t, ] %*% m_P
}</pre>
```

Equation 4

When printing the first six rows of m_M we see that everyone starts healthy and over time the cohort transitions towards sick and dead.

```
head(round(m_M, 3)) # show the first six lines of the cohort trace
```

```
## H S D
## 0 1.000 0.000 0.000
## 1 0.650 0.300 0.050
## 2 0.468 0.390 0.143
## 3 0.362 0.394 0.244
## 4 0.295 0.365 0.341
## 5 0.246 0.325 0.428
```

Running the model using equation 3, results in the traditional cohort trace. This gives information about state occupation at each cycle and allows us to apply state rewards (e.g. c_H, u_H, etc.), but it is not possible to include the transition rewards (e.g. du_HS and ic_D). In order to include these rewards, we need to know when individuals made the transition. The dynamics-array approach facilitates this and will be explained in the next section.

04 Dynamics-array approach

The dynamics-array approach starts similar as the traditional cohort trace approach, meaning that the first two sections are identical for the two approaches. The biggest difference is the additional array structure of dimensions $n_states \times n_states \times n_t$ to store the transition dynamics. In R indexing start at 1, therefore, we initialize the array a_A using $n_state + 1$. This allows us to store the results from cycle 0 until cycle n_t . The initial state vectors v_m 0 is used to inform the initial cycle of the array. #### Equation 5

Equation 6

H 1 O O ## S O O O ## D O O O

Now we run the model using the dynamics-array approach. In this approach, iteratively over time, we multiply the transition probability matrix m_P with array a_A using element-wise multiplication, indicated with the * in R. The information about all transitions is stored in the t + 1-th "slice" of a A.

Equation 7 and 8

Printing the first thee cycles of the dynamics-array a_A gives an impression of the results. Like in the transition probability matrix m_P, the rows specify in which health state the individual started at the beginning of the cycle, while the columns inform you about where individuals transitioned to. In cycle 0 everyone started in the healthy states. At cycle 1 we can see that the values look very similar to the transition probabilities. From cycle 2 and onwards the information in a_A becomes more interesting. In cycle 2, we see that 0.65 of the cohort stayed healthy, 0.3 transitioned from healthy towards sick and 0.05 of the population died. In addition, we see that 0 of the cohort recovered, 0 stayed Sick and 0.05 died from Sick. All these values sum to 1 since we are still describing what happens to the full cohort over time.

```
a_A[, , 1:3] # shown for two cycles
```

```
## H 0.65 0.3 0.05

## S 0.00 0.0 0.00

## D 0.00 0.0 0.00

##

## , , 2

##

## H S D

## H 0.4225 0.195 0.0325

## S 0.0450 0.195 0.0600

## D 0.0000 0.000 0.0500

sum(a_A[, , 3]) # sum for t = 3
```

[1] 1

When you sum the values in each column of a_A, the health states towards which the individuals transition to, you get which proportion of the cohort was in each health state for that cycle. The code below shows this for the health state sick.

```
sum(a_A[, "S", 3]) # sum the column of S at t = 3
## [1] 0.39
```

Equation 9

We can obtain m_M from a_A by summing the values in each column of a_A for all points in time. By transposing this in turn, we get the traditional cohort trace m_M. I order to compare this matrix with the directly generated m_M via equation 3 we name it, m_M_A.

```
# recovering M from A
m_MViaA <- t(colSums(a_A))  # sum over the columns of a_A and transpose</pre>
```

Since a Markov model is stochastic, the cohort trace obtained from a_A should be identical to m_M. We check this using the == function. We use rounding on 10 decimals, to avoid wrong FALSE results that have to do with floating point comparison issues.

05 Apply state and transition rewards

By now you know how to run a state-transition cohort model using the dynamics-array approach and how to interpret or summarize the results. In this section, we demonstrate how to apply state and transition rewards. We start by initiating and filling two matrices for both costs and effects. On the diagonal are the costs for staying one cycle in that state (state rewards), while the costs off the diagonal are the costs for staying one cycle in that state plus the transition cost associated with that transition (transition rewards).

Equation 10

```
# Fill in matrix for costs
# From Healthy
m_R_costs["H", "H"] <- c_H</pre>
m_R_costs["H", "S"] <- c_H
m_R_costs["H", "D"] <- c_H + ic_D</pre>
# From Sick
m_R_costs["S", "H"]
                      <- c_S
m_R_costs["S", "S"] <- c_S</pre>
m_R_costs["S", "D"] <- c_S + ic_D</pre>
# From Death
m_R_costs["D", "H"]
                      <- c_D
m_R_costs["D", "S"]
                      <- c_D
m_R_costs["D", "D"] <- c_D</pre>
# Fill in matrix for effects
# From Healthy
m_R_effects["H", "H"] <- u_H</pre>
m_R_effects["H", "S"] <- u_H - du_HS</pre>
m_R_effects["H", "D"] <- u_H</pre>
# From Sick
m_R_effects["S", "H"] <- u_S
m_R_effects["S", "S"] <- u_S</pre>
m_R_effects["S", "D"]
# From Death
m_R_effects["D", "H"]
                         <- u D
m_R_effects["D", "S"]
                         <- u_D
m_R_effects["D", "D"] <- u_D</pre>
```

These rewards matrices look as follow. We see that staying healthy costs \$1000, while someone that transitions from healthy towards dead makes costs of \$5000. In the effects matrix we see that an individual gets a utility of 1 assign for staying healthy, while when the individual transitions towards Sick the decrement of ic_HS is included, resulting in a utility of 0.90.

```
m_R_costs
             # show the reward matrix for costs
##
                  D
        Η
             S
## H 1000 1000 5000
## S 3000 3000 7000
## D
        0
             0
m_R_effects # show the reward matrix for effects
##
       Η
           S
               D
## H 1.0 0.9 1.0
## S 0.6 0.6 0.6
## D 0.0 0.0 0.0
```

Equation 12

In this section we create outcome arrays, a_Y, one for costs, a_Y_costs, and one for effects,a_Y_effects. These arrays show the costs and QALYs generated with each transition at each cycle. By iteratively element-wise multiplication of the reward matrices, m_R_costs and m_R_effects, with array a_A we can fill the outcome arrays.

Please note that we are now showing all these calculations in a step-wise approach, resulting in having a couple of loops for time. All iterative process, creating m_M, a_A and the m_R and a_Y, can be combined within the same loop for time.

Equation 12

The final step is to calculate the total costs and QALYs. We first calculate the expected cost and QALYs per cycle and store them in the vectors v_{costs} and v_{QALYs} . Then, we sum the values within each vector to compute the total expected cost (TC) and QALYs (TE).

```
# calculate the expected costs per cycle
v_costs <- rowSums(t(colSums(a_Y_costs)))
# calculate the expected QALYs per cycle
v_QALYs <- rowSums(t(colSums(a_Y_effects)))

TC <- sum(v_costs) # calculate the total expected costs
TE <- sum(v_QALYs) # calculate the total expected QALYS

v_results <- c(TC, TE) # combine the total expected costs and QALYs
names(v_results) <- c("Costs", "Effect") # name the vector
v_results # print the results</pre>
```

```
## Costs Effect
## 20850.708 1006.626
```

06 Plot cohort trace

The results of a cohort trace are much easier to interpret via a graph. Using the function ggplot we show the proportion of the cohort in each state (y-axis) at each cycle (x-axis) in Figure 2.

At the end of the model we save the important objects so they can be used without the need to run the model again.

```
save(m_M, file = "../output/cohort_trace.RData") # save the object
save(a_A, file = "../output/array.RData") # save the object
```

07 Estimation of epidemiological measures

As mentioned in the brief report, full exposition of computing epidemiological measures from array A is case-specific and is beyond the scope of this brief report. We do however, like to illustrate the concept using

Cohort trace of the stylistic 3-state model

Figure 2: Cohort trace of the model

a very simple example. For our illustrative 3-state model we can calculate the ratio of those than transitioned from sick to dead at each cycle to those that transitioned to dead from healthy and sick. To calculate this, we initiate a vector of length n_t to store the data and since all individuals start out healthy the initial value of this vector is 0. Next, we iteratively calculate the ratio.

Next, we prepare the data to get a nice plot.

```
df_e <- as.data.frame(cbind(0:n_t, v_e)) # create a dataframe with cycles and proportion that dies each colnames(df_e) <- c("cycle", "proportion") # name the columns of the dataframe
```

Our final step is to save the figure in the figs folder.

```
ggsave("../figs/Proportion_death_from_sick.png", width = 8, height = 6) # save the plot
```

Ratio deaths from sick to all deaths

Figure 3: Ratio of those dying from sick to those dying from both healthy and sick

References

Alarid-Escudero, Fernando et al. 2019. "A Need for Change! A Coding Framework for Improving Transparency in Decision Modeling." PharmacoEconomics. https://doi.org/10.1007/s40273-019-00837-x.