গৃণিত

অফ্টম শ্রেণি

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড, ঢাকা

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড কর্তৃক ২০১৩ শিক্ষাবর্ষ থেকে অফ্টম শ্রেণির পাঠ্যপুস্তকরপে নির্ধারিত

MWYZ Aóg †kily

রচনা

সালেহ্ মতিন
ড. অমল হালদার
ড. Agj চন্দ্র মণ্ডল
শেখ কুতুবউদ্দিন
হামিদা বানু বেগম
এ.কে.এম. শহীদুল্লাহ্
মোঃ শাহজাহান সিরাজ

m¤úv`bv ড. মোঃ আবদুল মতিন ড. আব্দুস ছামাদ

RvZxq wk $\Pv\mu g$ I $cvV^{\circ}cy\overline{-}K$ $tevW^{\odot}$

69-70, gwZwSj ewwYwR"K GjvKv, XvKv-1000 KZK cKWwkZ|

[প্রকাশক কর্তৃক সর্বস্বত্ব সংরক্ষিত]

পরীক্ষামলক সংস্করণ

প্রথম প্রকাশ : সেপ্টেম্বর, ২০১২

CW cy **Í K প্রণয়নে সমন্বয়ক**

মোঃ নাসির উদ্দিন

Kw¤úDUvi K‡¤úvR

পারফর্ম কালার গ্রাফিক্স (প্রা:) লি:

c00`

সুদর্শন বাছার সুজাউল আবেদীন

চিত্ৰাঙ্কন

মোঃ কবির হোসেন

ডিজাইন

জাতীয় শিক্ষাক্রম ও পাঠ্যপাঁ –ক বোর্ড

সরকার কর্তৃক বিনামল্যে বিতরণের জন্য

cm·M-K v

শিক্ষা জাতীয় জীবনের সর্বোতমুখী উনুয়নের $CeRZ^{\phi}$ আর দুত পরিবর্তনশীল বিশ্বের চ্যালেঞ্জ মোকাবেলা করে বাংলাদেশকে উনুয়ন ও সমৃন্ধির দিকে নিয়ে যাওয়ার জন্য প্রয়োজন সুশিক্ষিত জনশক্তি। ভাষা আন্দোলন ও মুক্তিযুদ্ধের চেতনায় দেশ গড়ার জন্য শিক্ষার্থীর অন্তর্নিহিত মেধা ও সম্ভাবনার $Cwi \, CY^{\phi}$ বিকাশে সাহায্য করা মাধ্যমিক শিক্ষার অন্যতম লক্ষ্য। এছাড়া প্রাথমিক $^ _+i$ আর্জিত শিক্ষার মৌলিক জ্ঞান ও দক্ষতা সম্প্রসারিত ও সুসংহত করার মাধ্যমে D'PZi শিক্ষার যোগ্য করে তোলাও এ $^ _+ii$ শিক্ষার উদ্দেশ্য। জ্ঞানার্জনের এই প্রক্রিয়ার ভিতর দিয়ে শিক্ষার্থীকে দেশের অর্থনৈতিক, সামাজিক, সাংস্কৃতিক ও পরিবেশগত CUFwgi শ্রেক্ষিতে দক্ষ ও যোগ্য নাগরিক করে তোলাও মাধ্যমিক শিক্ষার অন্যতম বিবেচ্য বিষয়।

জাতীয় শিক্ষানীতি-২০১০ এর লক্ষ্য ও উদ্দেশ্যকে সামনে রেখে পরিমার্জিত হয়েছে মাধ্যমিক ¯—‡ii শিক্ষাক্রম। পরিমার্জিত এই শিক্ষাক্রমে জাতীয় আদর্শ, লক্ষ্য, উদ্দেশ্য ও সমকালীন চাহিদার প্রতিফলন ঘটানো হয়েছে, সেই সাথে শিক্ষার্থীদের বয়স, মেধা ও গ্রহণ ক্ষমতা অনুযায়ী শিখনফল নির্ধারণ করা হয়েছে। এছাড়া শিক্ষার্থীর নৈতিক ও মানবিক gj ‡eva থেকে শুরু করে ইতিহাস ও ঐতিহ্য চেতনা, মহান মুক্তিযুদ্ধের চেতনা, শিল্প-সাহিত্য-সংস্কৃতিবোধ, দেশপ্রেমবোধ, প্রকৃতি-চেতনা এবং ধর্ম-বর্ণ-গোত্র ও নারী-পুরুষ নির্বিশেষে সবার প্রতি সমমর্যাদাবোধ জাগ্রত করার চেষ্টা করা হয়েছে। একটি বিজ্ঞানমনস্ক জাতি গঠনের জন্য জীবনের প্রতিটি ক্ষেত্রে বিজ্ঞানের স্বতঃ Z প্রয়োগ ও ডিজিটাল বাংলাদেশের রূপকল্প-২০২১ এর লক্ষ্য ev —evqtb শিক্ষার্থীদের সক্ষম করে তোলার চেষ্টা করা হয়েছে।

নতুন এই শিক্ষাক্রমের আলোকে প্রণীত হয়েছে মাধ্যমিক ¯—‡ii cliq mKj cW¯cy¯—K। উক্ত cW¯cy¯—K প্রণয়নে শিক্ষার্থীদের সামর্থ্য, প্রবণতা ও ce®অভিজ্ঞতাকে গুরুত্বের সজো বিবেচনা করা হয়েছে। cW¯cy¯—K¸‡jvi বিষয় নির্বাচন ও উপস্থাপনের ক্ষেত্রে শিক্ষার্থীর সৃজনশীল প্রতিভার বিকাশ সাধনের দিকে বিশেষভাবে গুরুত্ব দেওয়া হয়েছে। প্রতিটি অধ্যায়ের শুরুতে শিখনফল যুক্ত করে শিক্ষার্থীর অর্জিতব্য জ্ঞানের ইঞ্জািত প্রদান করা হয়েছে এবং বিচিত্র কাজ, সৃজনশীল প্রশ্ন ও অন্যান্য প্রশ্ন সংযোজন করে gj ¨vqb‡K সৃজনশীল করা হয়েছে।

একবিংশ শতকের এই যুগে জ্ঞান-বিজ্ঞানের বিকাশে গণিতের fwgKu অতীব গুরুতি ্ব শুধু তাই নয়, ব্যক্তিগত জীবন থেকে শুরু করে পারিবারিক ও সামাজিক জীবনে গণিতের প্রয়োগ অনেক বেড়েছে। এই সব বিষয় বিবেচনায় রেখে নিমুমাধ্যমিক পর্যায়ে নতুন গাণিতিক বিষয় শিক্ষার্থী উপযোগী ও আনন্দদায়ক করে তোলার জন্য গণিতকে সহজ ও সুন্দরভাবে উপস্থাপন করা হয়েছে এবং বেশ কিছু নতুন গাণিতিক বিষয় অন্তর্ভুক্ত করা হয়েছে।

একবিংশ শতকের অজ্ঞীকার ও প্রত্যয়কে সামনে রেখে পরিমার্জিত শিক্ষাক্রমের আলোকে cW cy l kw রচিত হয়েছে। কাজেই cw cy l kw আরও সমৃদ্ধিসাধনের জন্য যে কোনো MVbg K ও যুক্তিসজ্ঞাত পরামর্শ গুরুত্বের সজ্ঞো বিবেচিত হবে। cw cy l k প্রণয়নের বিপুল কর্মযজ্ঞের মধ্যে অতি স্বল্প সময়ের মধ্যে cy l kw রচিত হয়েছে। ফলে কিছু ভুলত্রুটি থেকে যেতে পারে। পরবর্তী সংস্করণগুলোতে cw cy l kw আরও সুন্দর, শোভন ও ত্রুটিমুক্ত করার চেফা অব্যাহত থাকবে। বানানের ক্ষেত্রে অনুসৃত হয়েছে বাংলা একাডেমী কর্তৃক প্রণীত বানানরীতি।

CW cy l KwU i Pbv, m m wiv bv, চিত্রাজ্ঞন, নমুনা প্রশ্নাদি প্রণয়ন ও প্রকাশনার কাজে যারা আন্তরিকভাবে মেধা ও শ্রম দিয়েছেন তাঁদের ধন্যবাদ জ্ঞাপন করছি। CW cy l KwU শিক্ষার্থীদের আনন্দিত পাঠ ও প্রত্যাশিত দক্ষতা অর্জন নিশ্চিত করবে বলে আশা করি।

c#dmi tgvt tgv-dv Kvgvj Dwi b tPqvi g`vb RvZxq wk¶vµg I cvV'cy-K tevW°, XvKv

m⊮PcÎ

Aa¨vq	Aa¨v‡qi wk‡ivbvg	CÔV
c <u>Ö</u> g	ChNp _©	1-9
иØZxq	glovdv	10-23
ZZxq	сwi gvc	24-39
PZ <u>ı</u> °	exRMwYZxq m√ivewj I c‡qvM	40-67
cÂg	exRMnYZxq fM ns k	68-88
lô	mij mnmgxKiY	89-102
mßg	†mU	103-109
Aóg	PZ <i>f</i> -R	110-125
beg	wc_v‡Mviv‡mi Dccv`¨	126-131
`kg	еË	132-140
GKv`k	Z_" I DcvË	141-156
	DË i gvj v	157-163

প্রথম অধ্যায়

প্যাটার্ন

বৈচিত্র্যময় প্রকৃতি নানা রকম প্যাটার্নে ভরপুর। প্রকৃতির এই বৈচিত্র্য আমরা গণনা ও সংখ্যার সাহায্যে উপলব্ধি করি। প্যাটার্ন আমাদের জীবনের সজ্জো জুড়ে আছে নানা ভাবে। শিশুর লাল-নীল ব্লক আলাদা করা একটি প্যাটার্ন — লালগুলো এদিকে যাবে, নীলগুলো ঐদিকে যাবে। সে গণনা করতে শেখে — সংখ্যা একটি প্যাটার্ন। আবার ৫-এর গুণিতকগুলোর শেষে ০ বা ৫ থাকে, এটিও একটি প্যাটার্ন। সংখ্যা প্যাটার্ন চিনতে পারা — এটি গাণিতিক সমস্যা সমাধানে দক্ষতা অর্জনের গুরুত্ব শুত্রু শানার আমাদের পোশাকে নানা রকম বাহারি নকশা, বিভিন্ন স্থাপনার গায়ে কারুকার্যময় নকশা ইত্যাদিতে জ্যামিতিক প্যাটার্ন দেখতে পাই। এ অধ্যায়ে সংখ্যা ও জ্যামিতিক প্যাটার্ন বিষয়ে আলোচনা করা হবে।

অধ্যায় শেষে শিক্ষার্থীরা-

- প্যাটার্ন কী তা ব্যাখ্যা করতে পারবে ।
- 🕨 রৈখিক প্যাটার্ন লিখতে ও বর্ণনা করতে পারবে।
- 🗲 বিভিন্ন ধরনের জ্যামিতিক প্যাটার্ন লিখতে ও বর্ণনা করতে পারবে।
- 🗲 আরোপিত শর্তানুযায়ী সহজ রৈখিক প্যাটার্ন লিখতে ও বর্ণনা করতে পারবে।
- 🗲 রৈখিক প্যাটার্নকে চলকের মাধ্যমে বীজগণিতীয় রাশিমালায় প্রকাশ করতে পারবে।
- 🕨 রৈখিক প্যাটার্নের নির্দিষ্টতম সংখ্যা বের করতে পারবে।

১.১ প্যাটার্ন

নিচের চিত্রের টাইলস্গুলো লক্ষ করি। এগুলো একটি প্যাটার্নে সাজানো হয়েছে। এখানে প্রতিটি আড়াআড়ি টাইলসের পাশের টাইলসটি লম্বালম্বিভাবে সাজানো। সাজানোর এই নিয়মটি একটি প্যাটার্ন সৃষ্টি করেছে।

দিতীয় চিত্রে কতগুলো সংখ্যা ত্রিভুজাকারে সাজানো হয়েছে। সংখ্যাগুলো একটি বিশেষ নিয়ম মেনে নির্বাচন করা হয়েছে। নিয়মটি হলো: প্রতি লাইনের শুরুতে ও শেষে ১ থাকবে এবং অন্য সংখ্যাগুলো উপরের সারির দুইটি পাশাপাশি সংখ্যার যোগফলের সমান। যোগফল সাজানোর এই নিয়ম অন্য একটি প্যাটার্ন সৃষ্টি করেছে। আবার, ১, ৪, ৭, ১০, ১৩, সংখ্যাগুলোতে একটি প্যাটার্ন বিদ্যমান। সংখ্যাগুলো ভালোভাবে লক্ষ করে দেখলে একটি নিয়ম খুঁজে পাওয়া যাবে। নিয়মটি হলো, ১ থেকে শুরু করে প্রতিবার ৩ যোগ করতে হবে। অন্য একটি উদাহরণ: ২, ৪, ৮, ১৬, ৩২, প্রতিবার দ্বিগুণ হ‡"0

১.২ স্বাভাবিক সংখ্যার প্যাটার্ন

মৌলিক সংখ্যা নির্ণয়

আমরা জানি যে, ১-এর চেয়ে বড় যে সব সংখ্যার ১ ও সংখ্যাটি ছাড়া অন্য কোনো গুণনীয়ক নেই, সেগুলো মৌলিক সংখ্যা। ইরাটোস্থিনিস (Eratosthenes) ছাঁকনির সাহায্যে সহজেই মৌলিক সংখ্যা নির্ণয় করা যায়। ১ থেকে ১০০ পর্যন্ত স্বাভাবিক সংখ্যাগুলো একটি চার্টে লিখি। এবার সবচেয়ে ছোট মৌলিক সংখ্যা ২ চিহ্নিত করি এবং এর গুণিতকগুলো অর্থাৎ প্রত্যেক দ্বিতীয় সংখ্যা কেটে দেই। এরপর ক্রমান্বয়ে ৩, ৫ এবং ৭ ইত্যাদি মৌলিক সংখ্যার গুণিতকগুলো কেটে দিই। তালিকায় যে সংখ্যাগুলো টিকে রইল সেগুলো মৌলিক সংখ্যা।

۵	ર	9	8	X	×	×	\nearrow	*	%
22	×	20	> 8	×	> ⊌	۵۹	×	> *	×
×	*	২৩	>8	**	> &	*	>	২৯) ⁄⁄
৩১	<u>محر</u>	٥٥	38) v (يعو	৩৭	36	্র	86
83	88	89	88	86	84	89	86	88	% (
X	[65]	৫৩	% 8	% (M	764) (May	৫৯	3 60
৬১	<u>پېر</u>	3 60	38 €	96	يعو	৬৭	96	১ ৯৯	36
٩٥	38	৭৩	38	34	٦٤	34	946	৭৯) V
X	> ×	৮৩	3 ×8	DE	þé	> 4	by	৮৯	36
34	> ×	30	38	> €	346	৯৭	34	38	3 %6

তালিকার নির্দিষ্ট সংখ্যা নির্ণয়

উদাহরণ ১। তালিকার পরবর্তী দুইটি সংখ্যা নির্ণয় কর : ৩, ১০, ১৭, ২৪, ৩১, ...

সমাধান: তালিকার সংখ্যাগুলো ৩, ১০, ১৭, ২৪, ৩১, ...
পার্থক্য ৭ ৭ ৭ ৭

লক্ষ করি, প্রতিবার পার্থক্য ৭ করে বাড়ছে। অতএব, পরবর্তী দুইটি সংখ্যা হবে যথাক্রমে ৩১ + ৭ = ৩৮ ও ৩৮+৭ = ৪৫।

উদাহরণ ২। তালিকার পরবর্তী সংখ্যাটি নির্ণয় কর: ১, ৪, ৯, ১৬, ২৫, ...

সমাধান: তালিকার সংখ্যাগুলো ১, ৪, ৯, ১৬, ২৫, ...

পার্থক্য ৩ ৫ ৭ ৯

লক্ষ করি, প্রতিবার পার্থক্য ২ করে বাড়ছে। অতএব, পরবর্তী সংখ্যা হবে ২৫ + ১১ = ৩৬।

উদাহরণ ৩। তালিকার পরবর্তী সংখ্যাটি নির্ণয় কর : ১, ৫, ৬, ১১, ২৮, ...

সমাধান: তালিকার সংখ্যাগুলো ১, ৫, ৬, ১১, ১৭, ২৮,...

যোগফল ৬ ১১ ১৭ ২৮ ৪৫

তালিকার সংখ্যাগুলো একটি প্যাটার্নে লেখা হয়েছে। পরপর দুইটি সংখ্যার যোগফল পরবর্তী সংখ্যাটির সমান। সংখ্যাগুলোর পার্থক্য লক্ষ করে দেখতে পাই যে, প্রথম পার্থক্য বাদে বাকি পার্থক্যগুলো g_j তালিকার সাথে মিলে যায়। এর অর্থ এই যে, কোনো দুইটি ক্রমিক সংখ্যার পার্থক্য Cর্ববর্তী সংখ্যার সমান। অতএব, পরবর্তী সংখ্যা হবে $\mathbf{5}\mathbf{9} + \mathbf{5}\mathbf{6} = \mathbf{8}\mathbf{6}$ ।

কাজ:

১।: ০, ১, ১, ২, ৩, ৫, ৮, ১৩, ২১, ৩৪, সংখ্যাগুলোকে ফিবোনাক্কি সংখ্যা বলা হয়। সংখ্যাগুলোতে কোনো প্যাটার্ন দেখতে পাও কী ?

লক্ষ কর : ২ পাওয়া যায় এর Cর্ববর্তী ২টি সংখ্যা যোগ করে (১+১)

৩ " " " ২টি " " (১+২)

২১ " " " ২টি " " (৮+১৩)

পরবর্তী দশটি ফিবোনাক্কি সংখ্যা বের কর।

স্বাভাবিক ক্রমিক সংখ্যার যোগফল নির্ণয়

স্বাভাবিক ক্রমিক সংখ্যার যোগফল বের করার একটি চমৎকার m-িরয়েছে। আমরা সহজেই m-ি៧ বের করতে পারি।

মনে করি, ১ থেকে ১০ পর্যন্ত ক্রমিক স্বাভাবিক সংখ্যাগুলোর যোগফল ক।

$$\overline{\Phi} = 2 + 2 + 9 + 8 + 6 + 9 + 9 + 8 + 5 + 50$$

লক্ষ করি, প্রথম ও শেষ পদের যোগফল ১ + ১০ = ১১, দ্বিতীয় ও শেষ পদের আগের পদের যোগফলও ২ + ৯ = ১১ ইত্যাদি। একই যোগফলের প্যাটার্ন অনুসরণ করে ৫ জোড়া সংখ্যা পাওয়া গেল । সুতরাং যোগফল ১১ × ৫ = ৫৫। এ থেকে ষাভাবিক ক্রমিক সংখ্যার যোগফল বের করার একটি কৌশল পাওয়া গেল।

কৌশলটি হলো:

প্রদত্ত যোগফলের সাথে সংখ্যাগুলো বিপরীত ক্রমে লিখে যোগ করে পাই

প্রথম দশটি বিজোড় সংখ্যার যোগফল নির্ণয়

এভাবে প্রথম cÂvkwU বিজোড় সংখ্যার যোগফল বের করতে সহজ হবে না। বরং এ ধরনের যোগফল নির্ণয়ের জন্য কার্যকর গাণিতিক m + 1 তৈরি করি। ১ থেকে ১৯ পর্যন্ত বিজোড় সংখ্যাগুলো লক্ষ করলে দেখা যায়, 3 + 3 = 20, 9 + 3 = 20, 6 + 3 = 20 ইত্যাদি। এরকম ৫ জোড়া সংখ্যা পাওয়া যায় যাদের যোগফল 4 = 20 স্তরাং, সংখ্যা গুলোর যোগফল 4 = 20

প্রতিবার যোগফল একটি CYEM®সংখ্যা CW'O। বিষয়টি জ্যামিতিক প্যাটার্ন হিসেবে সহজেই ব্যাখ্যা করা যায়। ক্ষুদ্রাকৃতির বর্গের সাহায্যে এই যোগফলের প্যাটার্ন লক্ষ করি।

দেখা $hv\sharp^n Q$ যে, ৩টি বিজোড় সংখ্যা যোগের বেলায় প্রত্যেকের পাশে ৩টি ছোট বর্গ বসানো হয়েছে। সুতরাং, ১০টি ক্রমিক বিজোড় সংখ্যা যোগ করলে চিত্রের প্রতি পাশে ১০টি ছোট বর্গ থাকবে। অর্থাৎ, ১০ \times ১০ বা ১০০টি বর্গের প্রয়োজন হবে। সাধারণভাবে বলা যায় যে, 'ক' সংখ্যক ক্রমিক স্বাভাবিক বিজোড় সংখ্যার যোগফল $(ক)^2$ ।

কাজ

১। যোগফল বের কর: ১ + 8 + 9 + ১০ + ১৩ + ১৬ + ১৯ + ২২ + ২৫ + ২৮ + ৩১

১.৩ সংখ্যাকে দুইটি বর্গের সমষ্টি রূপে প্রকাশ

wK01সংখ্যা রয়েছে যেগুলোকে দুইটি বর্গের সমষ্টিরূপে প্রকাশ করা যায়। যেমন,

$$2 = 2^2 + 2^2$$

$$\mathfrak{E}=\mathfrak{z}^2+\mathfrak{z}^2$$

$$b = 2^2 + 2^2$$

এ সংখ্যাগুলোর বর্গের যোগফল সহজেই বের করা যায়। ১ থেকে ১০০-এর মধ্যে ৩৪ টি সংখ্যাকে দুইটি বর্গের যোগফল হিসেবে প্রকাশ করা যায়।

আবার uK 🛈 স্বাভাবিক সংখ্যাকে দুই বা অধিক উপায়ে দুইটি বর্গের সমষ্টিরূপে প্রকাশ করা যায়। যেমন,

$$\mathfrak{C} \circ = \mathfrak{z}^{2} + \mathfrak{q}^{2} = \mathfrak{C}^{2} + \mathfrak{C}^{2}$$

$$\&\& = 3^2 + b^2 = 8^2 + 9^2$$

কাজ

১। ১৩০, ১৭০, ১৮৫ কে দুইভাবে দুইটি বর্গের সমষ্টিরূপে প্রকাশ কর।

২। ৩২৫ সংখ্যাটি তিনটি ভিন্ন উপায়ে দুইটি বর্গের সমষ্টিরূপে প্রকাশ কর।

কোনো স্বাভাবিক সংখ্যাকে তিনটি বিভিন্ন উপায়ে দুইটি বর্গের সমষ্টিরূপে প্রকাশ করা যায় কি ?

১.৪ ম্যাজিক বর্গ নির্মাণ

(ক) ৩ ক্রমের ম্যাজিক বর্গ

একটি বর্গক্ষেত্রকে দৈর্ঘ্য ও প্রস্থ বরাবর তিন ভাগে ভাগ করে নয়টি ছোট বর্গক্ষেত্র করা হলো। প্রতিটি ক্ষুদ্র বর্গক্ষেত্রে ১ থেকে ৯ পর্যন্ত ক্রমিক স্বাভাবিক সংখ্যাগুলো এমন ভাবে সাজাতে হবে যাতে পাশাপাশি, উপরনিচ, কোনাকুনি যোগ করলে যোগফল একই হয়। এ ক্ষেত্রে ৩ ক্রমের ম্যাজিক সংখ্যা হবে ১৫। সংখ্যাগুলো সাজানোর বিভিন্ন কৌশলের একটি কৌশল হলো কেন্দ্রের ছোট বর্গক্ষেত্রে ৫ সংখ্যা বসিয়ে কর্ণের বরাবর বর্গক্ষেত্রে জোড় সংখ্যাগুলো লিখতে হবে যেন কর্ণ দুইটি বরাবর যোগফল ১৫ হয়। কর্ণের সংখ্যাগুলো বাদ দিয়ে বাকি বিজোড় সংখ্যাগুলো এমনভাবে নির্বাচন করতে হবে যেন পাশাপাশি, উপর-নিচ যোগফল ১৫ পাওয়া যায়। পাশাপাশি, উপর-নিচ, কোনাকুনি যোগ করে দেখা যায় ১৫ n‡"০

			٦		8		η	B	8		ર	B	8
	Ŷ	\longrightarrow		Ø		\longrightarrow		¢		\longrightarrow	٩	¢	6
			B	·	ል		ج	2	Ъ		G	4	Ъ

(খ) 8 क्रायत्र ग्राष्ट्रिक वर्ग

একটি বর্গক্ষেত্রকে দৈর্ঘ্য ও প্রস্থ বরাবর চার ভাগে ভাগ করে ষোলটি ছোট বর্গক্ষেত্র করা হলো। প্রতিটি ক্ষুদ্র বর্গক্ষেত্রে ১ থেকে ১৬ পর্যন্ত ক্রমিক স্বাভাবিক সংখ্যাগুলো এমন ভাবে সাজাতে হবে যাতে পাশাপাশি, উপরনিচ, কোনাকুনি যোগ করলে যোগফল একই হয়। এ ক্ষেত্রে যোগফল হবে ৩৪ এবং ৩৪ হলো ৪ ক্রমের ম্যাজিক সংখ্যা। সংখ্যাগুলো সাজানোর বিভিন্ন কৌশল রয়েছে। একটি কৌশল হলো সংখ্যাগুলো যেকোনো কোণ থেকে আরম্ভ করে ক্রমান্বয়ে পাশাপাশি, উপর-নিচ লিখতে হবে। কর্ণের সংখ্যাগুলো বাদ দিয়ে বাকি সংখ্যাগুলো নির্বাচন করতে হবে। এবার কর্ণের সংখ্যাগুলো বিপরীত কোণ থেকে লিখি। পাশাপাশি, উপর-নিচ, কোনাকুনি যোগ করে দেখা যায়, যোগফল ৩৪ n‡"।

কাজ:

- 🕽 । ভিনু কৌশলে ৪ ক্রমের ম্যাজিক বর্গ তৈরি কর।
- ২। দলগতভাবে ৫ ক্রমের ম্যাজিক বর্গ নির্মাণের চেষ্টা কর।

১.৫ সংখ্যা निरः रथना

- ১। দুই অজ্ঞের যে কোনো সংখ্যা নাও। সংখ্যার অজ্ঞ দুইটি স্থান বদল করে bZb সংখ্যাটির সাথে আগের সংখ্যাটি যোগ কর। যোগফল কে ১১ দ্বারা ভাগ কর। ভাগশেষ হবে kb[°]।
- ২। দুই অঙ্কের যে কোনো সংখ্যার অঙ্ক দুইটি স্থান পরিবর্তন কর। বড় সংখ্যাটি থেকে ছোট সংখ্যাটি বিয়োগ করে ৯ দ্বারা ভাগ দাও। ভাগশেষ হবে kb°
- ৩। তিন অজ্ঞের যে কোনো সংখ্যা নাও। সংখ্যার অজ্ঞগুলোকে বিপরীত ক্রমে লিখ। এবার বড় সংখ্যাটি থেকে ছোট সংখ্যাটি বিয়োগ কর। বিয়োগফল ৯৯ দ্বারা ভাগ কর। ভাগশেষ ০ কেন ব্যাখ্যা কর।

১.৬ জ্যামিতিক প্যাটার্ন

চিত্রের বর্ণগুলো সমান দৈর্ঘ্যে রেখাংশের দ্বারা তৈরি করা হয়। এ রকম কয়েকটি অঙ্কের চিত্র লক্ষ করি :

চিত্রগুলো তৈরি করতে কতগুলো রেখাংশ প্রয়োজন তার প্যাটার্ন লক্ষ করি। 'ক' সংখ্যক অজ্ঞ তৈরির জন্য রেখাংশের সংখ্যা প্রতি প্যাটার্নের শেষে বীজগণিতীয় রাশির সাহায্যে দেখানো হয়েছে। বীজগণিতীয় রাশির সাহায্যে সংখ্যা প্যাটার্নের সারণিটি CɨY করি:

ক্রমিক	রাশি		পদ						
নং		১ম	২য়	৩য়	8र्थ	৫ম		১০ম	১০০তম
۵	২ক+১	9	¢	٩	৯	77	:	۲۶	২০১
২	৩ক+১	8	٩	٥٥	20	১৬	4	22	৩০১
•	ক ^২ –১	0	•	ъ	26	২৪	7	১ ৯	বর্বর
8	8ক+৩	٩	77	26	১৯	২৩	8	30	800

অনুশীলনী ১

🕽 । প্রতিটি তালিকার পরবর্তী চারটি সংখ্যা নির্ণয় কর :

(ক) ১, ৩, ৫, ৭, ৯, ...

(খ) ৪, ৮, ১২, ১৬, ২০, ...

(গ) ৫, ১০, ১৫, ২০, ২৫, ... (ঘ) ৭, ১৪, ২১, ২৮, ৩৫, ...

(8) b, 36, 28, 02, 80, ... (5) 6, 32, 3b, 28, 00, ...

২। প্রতিটি তালিকার পাশাপাশি দুইটি পদের পার্থক্য বের কর এবং পরবর্তী দুইটি সংখ্যা নির্ণয় কর:

(ক) ৭, ১২, ১৭, ২২, ২৭, ... (খ) ৬, ১৭, ২৮, ৩৯, ৫০, ...

(গ) ২৪, ২০, ১৬, ১২, ৮, ... (ঘ) ১১, ৮, ৫, ২, -১, ...

(g) - e, -b, -55, -58, ...

(b) 38, b, 8, -3, -6, ...

৩। তালিকার পরবর্তী দুইটি সংখ্যা নির্ণয় কর:

(ক) ২, ২, ৪, ৮, ১৪, ২২ ... (খ) ০, ৩, ৮, ১৫, ২৪, ...

(গ) ১, ৪, ১০, ২২, ৪৬, ...

(ঘ) ৪, -১, -১১, -২৬, - ৪৬, ...

৪। নিচের সংখ্যা প্যাটার্নগুলোর মধ্যে কোনো মিল রয়েছে কি ? প্রতিটি তালিকার পরবর্তী সংখ্যাটি নির্ণয় কর।

(ক) ১, ১, ২, ৩, ৫, ৮, ১৩ ...

(খ) ৪, ৪, ৫, ৬, ৮, ১১, ...

(গ) -১, -১, ০, ১, ৩, ৬, ১১, ...

৫। কোনো এক K⊪¤úDUvi প্রোগ্রাম থেকে নিচের সংখ্যাগুলো পাওয়া গেল:

১ ২ ৪ ৮ ১১ ১৬ ২২

এ সংখ্যাগুলোর একটি সংখ্যা পরিবর্তন করা হলে সংখ্যাগুলো একটি প্যাটার্ন তৈরি করে। সংখ্যাটি চিহ্নিত করে উপযুক্ত সংখ্যা বসাও।

৬। বীজগণিতীয় রাশির সাহায্যে সংখ্যা প্যাটার্নের সারণিটি Cɨ Y কর:

ক্রমিক	রাশি					পদ		
নং		১ম	২য়	৩য়	8র্থ	৫ম	১০ম	১০০তম
٥	২ক-১	۵	9	¢	٩	৯	১৯	
২	৩ক+২	œ	ъ	77	\$8			
•	8ক+১	œ						
8	ক ^২ +১	২	œ					20007

৭। নিচের জ্যামিতিক চিত্রগুলো কাঠি দিয়ে তৈরি করা হয়েছে।

- (ক) কাঠির সংখ্যার তালিকা কর।
- (খ) তালিকার পরবর্তী সংখ্যাটি কীভাবে বের করবে তা ব্যাখ্যা কর।
- (গ) কাঠি দিয়ে পরবর্তী চিত্রটি তৈরি কর এবং তোমার উত্তর যাচাই কর।

৮। দেশলাইয়ের কাঠি দিয়ে নিচের ত্রিভুজগুলোর প্যাটার্ন তৈরি করা হয়েছে।

- (ক) চতুর্থ প্যাটার্নে দেশলাইয়ের কাঠির সংখ্যা বের কর।
- (খ) তালিকার পরবর্তী সংখ্যাটি কীভাবে বের করবে তা ব্যাখ্যা কর।
- (গ) শততম প্যাটার্ন তৈরিতে কতগুলো দেশলাইয়ের কাঠির প্রয়োজন ?

দ্বিতীয় অধ্যায়

মুনাফা

দৈনন্দিন জীবনে সবাই বেচাকেনা ও লেনদেনের সাথে জড়িত। কেউ শিল্প প্রতিষ্ঠানে অর্থ বিনিয়োগ করে পণ্য উৎপাদন করেন ও উৎপাদিত পণ্য বাজারে পাইকারদের নিকট বিক্রয় করেন। আবার পাইকারগণ তাদের ক্রয়কৃত পণ্য বাজারে খুচরা ব্যবসায়ীদের নিকট বিক্রয় করেন। পরিশেষে খুচরা ব্যবসায়ীগণ তাদের ক্রয়কৃত পণ্য সাধারণ ক্রেতাদের নিকট বিক্রয় করেন। প্রত্যেক - İ i সবাই মুনাফা বা লাভ করতে চান। তবে বিভিন্ন কারণে লোকসান বা ক্ষতিও হতে পারে। যেমন, শেয়ারবাজারে লাভ যেমন আছে, তেমন দরপতনের কারণে ক্ষতিও আছে। আবার আমরা নিরাপত্তার স্বার্থে টাকা ব্যাংকে আমানত রাখি। ব্যাংক সেই টাকা বিভিন্ন খাতে বিনিয়োগ করে লাভ বা মুনাফা পায় এবং ব্যাংকও আমানতকারীদের মুনাফা দেয়। তাই সকলেরই বিনিয়োগ ও মুনাফা m¤ú‡K©ধারণা থাকা দরকার। এ অধ্যায়ে লাভ-ক্ষতি এবং বিশেষভাবে মুনাফা m¤ú‡K©আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা –

- 🕨 মুনাফা কী তা বলতে পারবে।
- 🕨 সরল মুনাফার হার ব্যাখ্যা করতে পারবে এবং এ সংক্রান্ত সমস্যা সমাধান করতে পারবে।
- 🕨 চক্রবৃন্ধি মুনাফার হার ব্যাখ্যা করতে পারবে এবং এ সংক্রান্ত সমস্যা সমাধান করতে পারবে।
- 🕨 ব্যাংকের হিসাব বিবরণী বুঝতে ও ব্যাখ্যা করতে পারবে।

২.১ লাভ-ক্ষতি

একজন ব্যবসায়ী দোকান ভাড়া, পরিবহন খরচ ও অন্যান্য আনুষজ্ঞাক খরচ পণ্যের ক্রয় $g \ddagger j$ \ddot{i} সাথে যোগ করে প্রকৃত খরচ নির্ধারণ করেন। এই প্রকৃত খরচকে বিনিয়োগ বলে। এই বিনিয়োগকেই লাভ বা ক্ষতি নির্ণয়ের জন্য ক্রয় $g \ddagger \ddot{j}$ \ddot{i} হিসেবে ধরা হয়। আর যে $g \ddagger \ddot{j}$ \ddot{i} পণ্য বিক্রয় করা হয় তা বিক্রয় $g \ddagger \ddot{j}$ \ddot{i} চেয়ে বিক্রয় $g \ddagger \ddot{j}$ \ddot{i} কেয়ে বিক্রয় $g \ddagger \ddot{j}$ \ddot{i} কেয়ে বিক্রয় $g \ddagger \ddot{j}$ \ddot{i} কে হলে লোভ বা মুনাফা হয়। আর ক্রয় $g \ddagger \ddot{j}$ \ddot{i} চেয়ে বিক্রয় $g \ddagger \ddot{j}$ \ddot{i} কম হলে লোভ বা ক্ষতি হয়। আবার ক্রয় $g \ddagger \ddot{j}$ \ddot{i} ওপর হিসাব করা হয়।

আমরা লিখতে পারি, লাভ = বিক্রয়gj ¨ – ক্রয়gj ¨ ক্ষতি = ক্রয়gj ¨ – বিক্রয়gj ¨

উপরের m¤úK°থেকে ক্রয়gj না বিক্রয়gj নির্ণয় করা যায়।
Zj bvi জন্য লাভ বা ক্ষতিকে শতকরা হিসেবেও প্রকাশ করা হয়।

উদাহরণ ১। একজন দোকানদার প্রতি হালি ডিম ২৫ টাকা দরে ক্রয় করে প্রতি ২ হালি ৫৬ টাকা দরে বিক্রয় করলে তাঁর শতকরা কত লাভ হবে ?

সমাধান: ১ হালি ডিমের ক্রয়g় ২৫টাকা

 $th \pm nZ_1$ ডিমের ক্রয় $g \pm \pi$ থেকে বিক্রয় $g \pm \pi$ বেশি, সুতরাং লাভ হবে। সুতরাং, লাভ = (৫৬ – ৫০) টাকা বা ৬ টাকা।

৫০ টাকায় লাভ ৬ টাকা

∴ লাভ ১২%

উদাহরণ ২। একটি ছাগল ৮% ক্ষতিতে বিক্রয় করা হলো। ছাগলটি আরও ৮০০ টাকা বেশি $g \sharp j$ বিক্রয় করলে ৮% লাভ হতো। ছাগলটির ক্রয় $g \sharp j$ কত ?

সমাধান: ছাগলটির ক্রয়g $\mathbf{j}^{...}$ ১০০ টাকা হলে, ৮% ক্ষতিতে বিক্রয়g $\mathbf{j}^{...}$ (১০০ — ৮) টাকা বা ৯২ টাকা। আবার, ৮% লাভে বিক্রয়g $\mathbf{j}^{...}$ (১০০ + ৮) টাকা বা ১০৮ টাকা।

∴ বিক্রয়gj বিশি হয় (১০৮ – ৯২) টাকা বা ১৬ টাকা।

বিক্রয়gɨ "১৬ টাকা বেশি হলে ক্রয়gɨ "১০০ টাকা

= ৫০০০ টাকা

∴ ছাগলটির ক্রয়gj¨ ৫০০০ টাকা।

কাজ: নিচের খালি ঘর পূরণ কর:								
ক্রয়মূল্য (টাকা)	বিক্রয়মূল্য (টাকা)	লাভ/ক্ষতি	শতকরা লাভ/ক্ষতি					
৬০০	৬৬০	লাভ ৬০ টাকা	লাভ ১০%					
৬০০	৫৫২	ক্ষতি ৪৮ টাকা	ক্ষতি ৮ %					
	৫৮৩	লাভ ৩৩ টাকা						
৮৫৬		ক্ষতি ১০৭ টাকা						
		লাভ ৬৪ টাকা	লাভ ৮%					

২.২ মুনাফা

ফরিদা বেগম তাঁর ঋ(ি জমানো টাকা বাড়িতে রাখা নিরাপদ নয় ভেবে ব্যাংকে রাখার সিন্ধান্ত নিলেন। তিনি ১০,০০০ টাকা ব্যাংকে আমানত রাখলেন। এক বছর পর ব্যাংকের হিসাব নিতে গিয়ে দেখলেন, তাঁর জমা টাকার পরিমাণ ৭০০ টাকা বৃদ্ধি পেয়ে ১০,৭০০ টাকা হয়েছে। এক বছর পর ফরিদা বেগমের টাকা কীভাবে ৭০০ টাকা বৃদ্ধি পেল ?

ব্যাংকে টাকা জমা রাখলে ব্যাংক সেই টাকা ব্যবসা, গৃহনির্মাণ ইত্যাদি বিভিন্ন খাতে ঋণ দিয়ে সেখান থেকে মুনাফা করে। ব্যাংক সেখান থেকে আমানতকারীকে $\mathbf{W}(0)$ টাকা দেয়। এ টাকাই \mathbf{n}^{\sharp} $\mathbf{0}$ আমানতকারীর প্রাপত মুনাফা বা লভ্যাংশ। আর যে টাকা প্রথমে ব্যাংকে জমা রাখা হয়েছিল তা তার \mathbf{g}^{\sharp} ধন বা আসল। কারো কাছে টাকা জমা রাখা বা ঋণ দেওয়া এবং কারো কাছ থেকে টাকা ধার বা ঋণ হিসেবে নেওয়া একটি প্রক্রিয়ার মাধ্যমে \mathbf{m} \mathbf{n} \mathbf{u} \mathbf{u}

লক্ষ করি:

মুনাফার হার: ১০০ টাকার ১ বছরের মুনাফাকে মুনাফার হার বা শতকরা বার্ষিক মুনাফা বলা হয়।

সময়কাল: যে সময়ের জন্য মুনাফা হিসাব করা হয় তা এ সময়কাল।

সরল মুনাফা : প্রতি বছর শুধু প্রারম্ভিক g $_{
m j}$ a $_{
m tot}$ bi l পর যে মুনাফা হিসাব করা হয়, তাকে সরল মুনাফা (Simple Profit) বলে। শুধু মুনাফা বলতে সরল মুনাফা বোঝায়।

এ অধ্যায়ে আমরা নিচের বীজগণিতীয় প্রতীকগুলো ব্যবহার করব।

gɨ ab বা আসল = p (principal)	মুনাফা-আসল
মুনাফার হার = r (rate of interest)	= আসল + মুনাফা
সময় = n (time)	অর্থাৎ, $A = P + I$
মুনাফা = $I(profit)$	এখানে থেকে পাই,
সবৃদ্ধি g $_{\mathbf{j}}$ ab বা মুনাফা-আসল = A ($Total\ amount$)	P = A - I
•	I = A - P

২.৩ মুনাফা সংক্রান্ত সমস্যা

আসল, মুনাফার হার, সময় ও মুনাফা এই চারটি উপাত্তের যেকোনো তিনটি জানা থাকলে বাকি উপাত্তটি বের করা যায়। নিচে এ $m \times ult K^{\oplus}$ আলোচনা করা হলো :

(ক) মুনাফা নির্ণয়:

উদাহরণ ৩। রমিজ সাহেব ব্যাংকে ৫০০০ টাকা জমা রাখলেন এবং ঠিক করলেন যে, আগামী ৬ বছর তিনি ব্যাংক থেকে টাকা উঠাবেন না। ব্যাংকের বার্ষিক মুনাফা ১০% হলে, ৬ বছর পর তিনি মুনাফা কত পাবেন ? মুনাফা-আসল কত হবে ?

সমাধান: ১০০ টাকার ১ বছরের মুনাফা ১০ টাকা

∴ মুনাফা ৩০০০ টাকা এবং মুনাফা-আসল ৮০০০ টাকা ।

লক্ষ করি : ৫০০০ টাকার ৬ বছরের মুনাফা $\left(e^{000} \times \frac{50}{500} \times e^{000} \right)$ টাকা

সূত্র : মুনাফা = আসল
$$imes$$
 মুনাফার হার $imes$ সময়, $I=prn$ মুনাফা–আসল = আসল $+$ মুনাফা, $A=p+I=p+prn=p(1+rn)$

উদাহরণ ৩-এর বিকল্প সমাধান :

আমরা জানি,
$$I=prn$$
, অর্থাৎ, মুনাফা = আসল $imes$ মুনাফার হার $imes$ সময়

∴ মুনাফা ৩০০০ টাকা এবং মুনাফা-আসল ৮০০০ টাকা ।

১৪

(খ) আসল বা gলধন নির্ণয়:

উদাহরণ 8। শতকরা বার্ষিক ৮ $\frac{5}{2}$ টাকা মুনাফায় কত টাকায় ৬ বছরের মুনাফা ২৫৫০ টাকা হবে ? সমাধান : মুনাফার হার ৮ $\frac{5}{2}\%$ বা $\frac{59}{2}\%$

আমরা জানি,
$$I = rn$$

বা,
$$p = \frac{I}{rn}$$

অর্থাৎ, আসল =
$$\frac{\lambda }{\lambda }$$
নাফার হার \times সময়

$$\therefore \text{ আসল} = \frac{\frac{2000}{59} \times 6}{\frac{59}{2 \times 500} \times 6}$$
 টাকা

(গ) মুনাফার হার নির্ণয়:

উদাহরণ ৫। শতকরা বার্ষিক কত মুনাফায় ৩০০০ টাকার ৫ বছরের মুনাফা ১৫০০ টাকা হবে ?

সমাধান: আমরা জানি, I = prn

বা,
$$_{r}=\frac{I}{pn}$$

অর্থাৎ, মুনাফার হার $=\frac{\frac{1}{mn}}{\frac{mnm}{mm}\times mnn}$
 $=\frac{\frac{3600}{0000\times 6}}{\frac{3000}{0000}\times 6}$ টাকা

 $=\frac{\frac{3\sqrt{600}}{20000}\times 6}{\frac{30000}{0000}\times 6}=\frac{5}{300}=\frac{5\times 300\%}{300}=30\%$
 $=30\%$

∴ মুনাফা ১০%

উদাহরণ ৬। কোনো আসল ৩ বছরে মুনাফা-আসলে ৫৫০০ টাকা হয়। মুনাফা, আসলের $\frac{\circ}{b}$ অংশ হলে, আসল ও মুনাফার হার কত ?

সমাধান: আমরা জানি, আসল + মুনাফা = মুনাফা-আসল

বা, আসল
$$+$$
 আসলের $\frac{\mathfrak{S}}{\mathsf{b}}=$ ৫৫০০

বা,
$$\left(\lambda + \frac{\circ}{b}\right) \times$$
 আসল = ৫৫০০

বা,
$$\frac{33}{b}$$
 × আসল = ৫৫০০

∴ মুনাফা = মুনাফা-আসল — আসল

= (৫৫০০ – ৪০০০) টাকা, বা ১৫০০ টাকা

আবার, আমরা জানি, I = prn

বা,
$$r = \frac{I}{pn}$$

অর্থাৎ, মুনাফার হার =
$$\frac{\lambda \circ \circ}{\sin \times \pi \times \pi}$$

$$= \frac{\lambda \circ \circ}{8 \circ \circ \times \circ}$$

$$= \frac{\lambda \circ \circ}{8 \circ \circ \times \times \circ} \% \circ \pi \times \frac{\lambda \circ}{\lambda} \times \frac{\lambda \circ}{\lambda} \% \circ \pi \times \frac{\lambda \circ}{\lambda} \times \frac{\lambda \circ$$

 \therefore আসল ৪০০০ টাকা ও বার্ষিক মুনাফা ১২ $\frac{5}{2}\%$

উদাহরণ ৭। বার্ষিক ১২% মুনাফায় কত বছরে ১০০০০ টাকার মুনাফা ৪৮০০ টাকা হবে ?

সমাধান: আমরা জানি, I = prn

বা,
$$n = \frac{I}{pr}$$

যেখানে মুনাফা I=8৮০০ টাকা, মূলধন p=5০০০০ টাকা, মুনাফার হার r=5২%, সময় n=?

∴ সময় =
$$\frac{\sqrt{1000}}{\sqrt{10000}}$$
 বছর
$$= \frac{8000}{\sqrt{10000}} \sqrt{1000}$$
 বছর
$$= \frac{8000}{\sqrt{10000}} \sqrt{1000}$$
 বছর
$$= 8 \sqrt{10000}$$
 বছর
$$= 8 \sqrt{10000}$$

∴ সময় ৪ বছর

অনুশীলনী ২.১

- ১। একটি পণ্যদ্রব্য বিক্রয় করে পাইকারি বিক্রেতার ২০% এবং খুচরা বিক্রেতার ২০% লাভ হয়। যদি দুব্যটির খুচরা বিক্রয় বু; ৫৭৬ টাকা হয়, তবে পাইকারি বিক্রেতার µqq; কত ?
- ২। একজন দোকানদার wKOz ডাল ২৩৭৫.০০ টাকায় বিক্রয় করায় তার ৫% ক্ষতি হলো। ঐ ডাল কত টাকায় বিক্রয় করলে তার ৬% লাভ হতো ?
- ৩। ৩০ টাকায় ১০টি দরে ও ১৫টি দরে সমান সংখ্যক কলা ক্রয় করে সবগুলো কলা ৩০ টাকায় ১২টি দরে বিক্রয় করলে শতকরা কত লাভ বা ক্ষতি হবে ?
- ৪। বার্ষিক শতকরা মুনাফার হার ১০.৫০ টাকা হলে, ২০০০ টাকার ৫ বছরের মুনাফা কত হবে ?
- ৫। বার্ষিক মুনাফা শতকরা ১০ টাকা থেকে কমে ৮ টাকা হলে, ৩০০০ টাকার ৩ বছরের মুনাফা কত কম হবে ?
- ৬। বার্ষিক শতকরা মুনাফা কত হলে, ১৩০০০ টাকা ৫ বছরে মুনাফা-আসলে ১৮৮৫০ টাকা হবে ?
- ৭। বার্ষিক শতকরা কত মুনাফায় কোনো আসল ৮ বছরে মুনাফা-আসলে দ্বিগুণ হবে ?
- ৮। ৬৫০০ টাকা যে হার মুনাফায় ৪ বছরে মুনাফা-আসলে ৮৮৪০ টাকা হয়, ঐ একই হার মুনাফায় কত টাকা ৪ বছরে মুনাফা-আসলে ১০২০০ টাকা হবে ?

৯। রিয়াজ সাহেব wKQ টাকা ব্যাংকে জমা রেখে ৪ বছর পর ৪৭৬০ টাকা মুনাফা পান। ব্যাংকের বার্ষিক মুনাফার হার ৮.৫০ টাকা হলে, তিনি ব্যাংকে কত টাকা জমা রেখেছিলেন ?

- ১০। শতকরা বার্ষিক যে হারে কোনো gjab ৬ বছরে মুনাফা-gjatb দ্বিগুণ হয়, সেই হারে কত টাকা ৪ বছরে মুনাফা-gjatb ২০৫০ টাকা হবে ?
- ১১। বার্ষিক শতকরা ৬ টাকা মুনাফায় ৫০০ টাকার ৪ বছরের মুনাফা যত হয়, বার্ষিক শতকরা ৫ টাকা মুনাফায় কত টাকার ২ বছর ৬ মাসের মুনাফা তত হবে ?
- ১২। বার্ষিক মুনাফা ৮% থেকে বেড়ে ১০% হওয়ায় তিশা মারমার আয় ৪ বছরে ১২৮ টাকা বেড়ে গেল। তাঁর gɨ ab কত ছিল ?
- ১৩। কোনো আসল ৩ বছরে মুনাফা-আসলে ১৫৭৮ টাকা এবং ৫ বছরে মুনাফা-আসলে ১৮৩০ টাকা হয়। আসল ও মুনাফার হার নির্ণয় কর।
- ১৪। বার্ষিক ১০% মুনাফায় ৩০০০ টাকা এবং ৮% মুনাফায় ২০০০ টাকা বিনিয়োগ করলে মোট gja‡bi ওপর গড়ে শতকরা কত টাকা হারে মুনাফা পাওয়া যাবে ?
- ১৫। রড্রিক গোমেজ ৩ বছরের জন্য ১০০০০ টাকা এবং ৪ বছরের জন্য ১৫০০০ টাকা ব্যাংক থেকে ঋণ নিয়ে ব্যাংককে মোট ৯৯০০ টাকা মুনাফা দেন। উভয়ক্ষেত্রে মুনাফার হার সমান হলে, মুনাফার হার নির্ণয় কর।
- ১৬। একই হার মুনাফায় কোনো আসল ৬ বছরে মুনাফা-আসলে দ্বিগুণ হলে, কত বছরে তা মুনাফা-আসলে তিনগুণ হবে ?
- ১৭। কোনো নির্দিষ্ট সময়ের মুনাফা-আসল ৫৬০০ টাকা এবং মুনাফা, আসলের অংশ। মুনাফা বার্ষিক শতকরা ৮ টাকা হলে, সময় নির্ণয় কর।
- ১৮। জামিল সাহেব পেনশনের টাকা পেয়ে ১০ লাখ টাকার তিন মাস অন্তর মুনাফা ভিত্তিক তিন বছর মেয়াদি পেনশন mÂqcl কিনলেন। বার্ষিক মুনাফা ১২% হলে, তিনি ১ম আKw l‡Z, অর্থাৎ প্রথম তিন মাস পর কত মুনাফা পাবেন ?

২.৪ চক্রবৃদ্ধি মুনাফা : (Compound Profit)

চক্রবৃদ্ধি মুনাফার ক্ষেত্রে প্রত্যেক বছরের শেষে g_j a † bi সাথে মুনাফা যোগ হয়ে bZb g_j ab হয়। যদি কোনো আমানতকারী ব্যাংকে ১০০০ টাকা জমা রাখেন এবং ব্যাংক তাঁকে বার্ষিক ১২% মুনাফা দেয়, তবে আমানতকারী বছরান্তে ১০০০ টাকার ওপর মুনাফা পাবেন।

তখন, ২য় বছরের জন্য তার gɨ ab হবে (১০০০ + ১২০) টাকা, বা ১১২০ টাকা, যা তাঁর চক্রবৃদ্ধি gɨ ab । ২য় বছরান্তে ১১২০ টাকার ওপর ১২% মুনাফা দেওয়া হবে।

∴ ৩য় বছরের জন্য আমানতকারীর চক্রবৃদ্ধি gjaন হবে (১১২০ + ১৩৪.৪০) টাকা = **১২**৫৪.৪০ টাকা।

এভাবে প্রতি বছরান্তে ব্যাংকে আমানতকারীর gɨab বাড়তে থাকবে। এই বৃদ্ধিপ্রাপত gɨab‡K বলা হয় চক্রবৃদ্ধি gɨab বা চক্রবৃদ্ধি gɨ । আর প্রতি বছর বৃদ্ধিপ্রাশ্ত gɨaṭbi ওপর যে মুনাফা হিসাব করা হয়, তাকে বলে চক্রবৃদ্ধি মুনাফা। তবে এ মুনাফা নির্ণয় তিন মাস, ছয় মাস বা এর চেয়ে কম সময়ের জন্যও হতে পারে।

চক্রবৃদ্ধি gj ab ও মুনাফার mɨ গঠন:

ধরা যাক, প্রারম্ভিক $\operatorname{g}_{\!f}$ ab বা আসল p এবং শতকরা বার্ষিক সুদের হার

$$= p + p \times r$$
$$= p (1+r)$$

২য় বছরান্তে চক্রবৃদ্ধি gɨab = ১ম বছরের চক্রবৃদ্ধি gɨab + মুনাফা

$$= p (1+r) + p (1+r) \times r$$

= p (1+r) (1+r)
= p (1+r)²

৩য় বছরান্তে চক্রবৃদ্ধি gj ab = ২য় বছরের চক্রবৃদ্ধি gj ab + মুনাফা

$$= p(1+r)^{2} + p (1+r)^{2} \times r$$

$$= p(1+r)^{2} (1+r)$$

$$= p(1+r)^{3}$$

লক্ষ করি : ১ম বছরান্তে চক্রবৃদ্ধি g $_{
m j}$ $a \ddagger b \ (1+r) \ {
m Gi \ mPK \ 1}$

 \therefore n বছরান্তে চক্রবৃদ্ধি $g_{\overline{f}}$ $a \ddagger b$ হবে (1+r) এর mPK n

 \therefore n বছরান্তে চক্রবৃদ্ধি gj ab C হলে, $C=p(1+r)^n$

আবার, চক্রবৃদ্ধি মুনাফা = চক্রবৃদ্ধি g $\frac{1}{2}$ ab — প্রারম্ভিক g $\frac{1}{2}$ ab = $p(1+r)^n - r$

$$\widehat{\text{mf}} : \widehat{\text{gjab}} \ C = p(1+r)^n$$

$$\widehat{\text{gbvdv}} = p(1+r)^n - p$$

এখন, চক্রবৃদ্ধি মুনাফা m¤ú‡K আলোচনার শুরুতে যে g_j ab ১০০০ টাকা এবং মুনাফা ১২% ধরা হয়েছিল, সেখানে চক্রবৃদ্ধি g_j a‡bi m_l প্রয়োগ করি :

১ম বছরান্তে চক্রবৃদ্ধি gj ab
$$= P(1+r)$$

$$= ১০০০ \times \left(5 + \frac{52}{500} \right)$$
 টাকা
$$= 5000 \times (5 + 0.52)$$
 টাকা
$$= 5000 \times 5.52$$
 টাকা
$$= 5500 \times 5.52$$
 টাকা

২য় বছরান্তে চক্রবৃন্ধি gj ab
$$= p(1+r)^2$$

$$= ১০০০ \times \left(5 + \frac{52}{500} \right)^2$$
 টাকা
$$= 5000 \times (5 + 0.52)^0$$
 টাকা
$$= 5000 \times (5.52)^0$$
 টাকা
$$= 5000 \times 5.2688$$
 টাকা
$$= 5268.80$$
 টাকা

∴ ৩য় বছরান্তে চক্রবৃদ্ধি gj ab
$$= p(1+r)^3$$
 $= ১০০০ \times \left(5 + \frac{55}{500} \right)^3$ টাকা $= 5000 \times (5 + 0.55)^3$ টাকা $= 5000 \times (5.55)^3$ টাকা

উদাহরণ ১। বার্ষিক শতকরা ৮ টাকা মুনাফায় ৬২৫০০ টাকার ৩ বছরের চক্রবৃদ্ধি gɨab নির্ণয় কর।

সমাধান: আমরা জানি,
$$C=p\ (1+r)^n$$
 দেওয়া আছে, প্রারম্ভিক g_j ab $p=$ ৬২৫০০ টাকা বার্ষিক মুনাফার হার, $r=$ ৮% এবং সময় $n=$ ৩ বছর

$$C = ৬২৫০০ \times \left(2 + \frac{2}{200} \right)^{\circ}$$
 টাকা, বা ৬২৫০০ $\times \left(\frac{29}{20} \right)^{\circ}$ টাকা
$$= ৬২৫০০ \times (2.0 \text{ b})^{\circ}$$
 টাকা
$$= ৬২৫০০ \times 2.268922$$
 টাকা

উদাহরণ ২। বার্ষিক ১০.৫০% মুনাফায় ৫০০০ টাকার ২ বছরের চক্রবৃদ্ধি মুনাফা নির্ণয় কর।

সমাধান: চক্রবৃদ্ধি মুনাফা নির্ণয়ের জন্য প্রথমে চক্রবৃদ্ধি gলধন নির্ণয় করি।

আমরা জানি, চক্রবৃদ্ধি gলধন $C = P(1+r)^n$, যেখানে gলধন P = ecoo টাকা,

মুনাফার হার
$$r = $0.60\% = \frac{$$}{00}$$

সময়
$$n=$$
 ২ বছর

$$C = P(1+r)^2$$
 $= cooo \times \left(2 + \frac{25}{200} \right)^2$ টাকা

 $= cooo \times \left(\frac{225}{200} \right)^2$ টাকা

্ৰ চক্ৰবৃদ্ধি মুনাফা =
$$C - P = P(1+r)^2 - P$$

= (৬১০৫.১৩ – ৫০০০) টাকা
= ১১০৫.১৩ টাকা (প্ৰায়)

উদাহরণ ৩। একটি ফ্ল্যাট মালিক কল্যাণ সমিতি আদায়কৃত সার্ভিস চার্জ থেকে উদ্বৃত্ত ২০০০০০ টাকা ব্যাংকে ছয় মাস অন্তর চক্রবৃদ্ধি মুনাফাভিত্তিক স্থায়ী আমানত রাখলেন। মুনাফার হার বার্ষিক ১২ টাকা হলে, ছয় মাস পর ঐ সমিতির হিসাবে কত টাকা মুনাফা জমা হবে ? এক বছর পর চক্রবৃদ্ধি gলধন কত হবে ?

সমাধান: দেওয়া আছে, gলধন P = ২০০০০ টাকা,

মুনাফার হার
$$r = 32\%$$
, সময় $n = 9$ মাস বা $\frac{3}{2}$ বছর $\frac{3}{2}$ বছর

$$\therefore$$
 মুনাফা $I = Prn$

$$=\frac{20000}{2000}\times\frac{200}{25}\times\frac{2}{2}$$

= ১২০০০ টাকা

১ বছর পর চক্রবৃদ্ধি gলধন =
$$P(1+r)^n$$
 = ২০০০০০ $imes \left(\frac{1}{2} + \frac{1}{2$

∴ ৬ মাস পর মুনাফা হবে ১২০০০টাকা,

১ বছর পর চক্রবৃন্ধি gj ab হবে ২২৪৭২০ টাকা।

উদাহরণ ৪। কোনো শহরের বর্তমান জনসংখ্যা ৮০ লক্ষ। ঐ শহরের জনসংখ্যা বৃদ্ধির হার প্রতি হাজারে ৩০ হলে, ৩ বছর পর ঐ শহরের জনসংখ্যা কত হবে?

সমাধান: শহরটির বর্তমান জনসংখ্যা P = ৮০০০০০

জনসংখ্যা বৃদ্ধির হার =
$$\frac{90}{2000} \times 200\% = 9\%$$

সময় $n = \mathfrak{O}$ বছর।

এখানে জনসংখ্যা বৃদ্ধির ক্ষেত্রে চক্রবৃদ্ধি মুনাফার m े প্রযোজ্য।

$$\therefore \Box = C(1+r)^{n}$$

$$= \text{bo,00,000} \times \left(3 + \frac{9}{200}\right)^{9}$$

$$= \text{bo,00,000} \times \frac{209}{200} \times \frac{209}{200} \times \frac{209}{200}$$

$$= \text{by 200 x 200 x 200}$$

$$= \text{by 82b26}$$

∴□= ৩ বছর পর শহরটির জনসংখ্যা হবে ৮৭,৪১,৮১৬

Abykxj bx 2.2

- ১০৫০ টাকার ৮% নিচের কোনটি ?
 ক. ৮০ টাকা খ. ৮২ টাকা গ. ৮৪ টাকা ঘ. ৮৬ টাকা
- ২। বার্ষিক ১০% সরল মুনাফায় ১২০০ টাকার ৪ বছরের সরল মুনাফা কত ?
 ক. ১২০ টাকা খ. ২৪০ টাকা গ. ৩৬০ টাকা ঘ. ৪৮০ টাকা
- ৩। নিচের তথ্যগুলো লক্ষ কর:

i. মুনাফা = মুনাফা-আসল - আসল

$$ii.$$
 মুনাফা = $\frac{\text{আসল} \times \text{মুনাফা} \times \text{সময়}}{2}$

iii. লাভ বা ক্ষতি বিক্রয়g‡ল্যর ওপর হিসাব করা হয়।

উপরের তথ্যের আলোকে নিচের কোনটি সঠিক ?

৪। জামিল সাহেব বার্ষিক ১০% মুনাফায় ব্যাংকে ২০০০ টাকা জমা রাখলেন।

নিচের প্রশ্নগুলোর উত্তর দাও:

(১) ১ম বছরান্তে মুনাফা-আসল কত হবে ?

- (২) সরল মুনাফায় ২য় বছরান্তে মুনাফা-আসল কত হবে ?
 - ক. ২৪০০ টাকা
- খ. ২৪২০ টাকা
- গ. ২৪৪০ টাকা ঘ. ২৪৫০ টাকা

- (৩) ১ম বছরান্তে চক্রবৃদ্ধি gɨ ab কত হবে ?
 - ক. ২০৫০ টাকা
- খ. ২১০০ টাকা
- গ. ২১৫০ টাকা ঘ. ২২০০ টাকা
- ৫। বার্ষিক ১০% মুনাফায় ৮০০০ টাকার ৩ বছরের চক্রবৃদ্ধি gɨab নির্ণয় কর।
- ৬। বার্ষিক শতকরা ১০ টাকা মুনাফায় ৫০০০ টাকার ৩ বছরের সরল মুনাফা ও চক্রবৃদ্ধি মুনাফার পার্থক্য কত হবে ?
- ৭। একই হার মুনাফায় কোনো gɨaṭbi এক বছরান্তে চক্রবৃদ্ধি gɨab ৬৫০০ টাকা ও দুই বছরান্তে চক্রবৃন্ধি gjab ৬৭৬০ টাকা হলে, gjab কত?
- বার্ষিক শতকরা ৮.৫০ টাকা চক্রবৃদ্ধি মুনাফায় ১০০০০ টাকার ২ বছরের সবৃদ্ধিgj ও চক্রবৃদ্ধি মুনাফা b 1 নির্ণয় কর।
- কোনো শহরের বর্তমান জনসংখ্যা ৬৪ লক্ষ। শহরটির জনসংখ্যা বৃদ্ধির হার প্রতি হাজারে ২৫ জন হলে, ২ বছর পর ঐ শহরের জনসংখ্যা কত হবে ?
- ১০। এক ব্যক্তি একটি ঋণদান সংস্থা থেকে বার্ষিক ৮% চক্রবৃদ্ধি মুনাফায় ৫০০০ টাকা ঋণ নিলেন। প্রতিবছর শেষে তিনি ২০০০ টাকা করে পরিশোধ করেন। ২য় ॥Kw l পরিশোধের পর তাঁর আর কত টাকা ঋণ থাকবে ?
- ১১। বিজন বাবু $r\ \%$ মুনাফায় P টাকা n বছরের জন্য ব্যাংকে জমা রাখলেন।
 - ক. সরল মুনাফা (I) ও চক্রবৃন্ধি $\operatorname{g}_{\overline{I}}$ ab (C) এর $\operatorname{m}_{\overline{I}}$ দুইটি লিখ।
 - খ. P=৫০০০, r=৮ এবং n=২ হলে, সরল মুনাফা (I) ও মুনাফা-আসল (A) নির্ণয় কর।
 - গ. চক্রবৃদ্ধি gɨ ab ও চক্রবৃদ্ধি মুনাফা নির্ণয় কর।
- ১২। শিপ্রা eOqu কোনো ব্যাংকে ৩০০০ টাকা জমা রেখে ২ বছর পর মুনাফাসহ ৩৬০০ টাকা প্রয়েছেন।
 - ক. সরল মুনাফার হার নির্ণয় কর।
 - খ. আরও ৩ বছর পর মুনাফা-আসল কত হবে ?
 - গ. ৩০০০ টাকা একই হার চক্রবৃদ্ধি মুনাফায় জমা রাখলে ২ বছর পর চক্রবৃদ্ধি gɨab কত হতো ?

তৃতীয় অধ্যায়

পরিমাপ

প্রাত্যহিক জীবনে ব্যবহৃত বিভিন্ন প্রকার ভোগ্যপণ্য ও অন্যান্য দ্রব্যাদির আকার, আকৃতি ও ধরনের ওপর এ পরিমাপ পদ্ধতি নির্ভর করে। দৈর্ঘ্য মাপার জন্য, ওজন পরিমাপ করার জন্য ও তরল পদার্থের আয়তন বের করার জন্য ভিন্ন ভিন্ন পরিমাপ পদ্ধতি রয়েছে। ক্ষেত্রফল ও ঘনফল নির্ণয়ের জন্য দৈর্ঘ্য পরিমাপ দারা তৈরি পরিমাপ পদ্ধতি ব্যবহৃত হয়। আবার জনসংখ্যা, পশুপাখি, গাছপালা, নদীনালা, ঘরবাড়ি, যানবাহন ইত্যাদির সংখ্যাও আমাদের জানার প্রয়োজন হয়। গণনা করে এগুলো পরিমাপ করা হয়।

অধ্যায় শেষে শিক্ষার্থীরা -

- দেশীয়, ব্রিটিশ ও আন্তর্জাতিক পরিমাপ পদ্ধতি ব্যাখ্যা করতে পারবে এবং সংশ্লিষ্ট পদ্ধতির সাহায্যে দৈর্ঘ্য, ক্ষেত্রফল, ওজন ও তরল পদার্থের আয়তন নির্ণয় সংবলিত সমস্যার সমাধান করতে পারবে।
- দেশীয়, ব্রিটিশ ও আন্তর্জাতিক পদ্ধতিতে দৈনন্দিন জীবনে প্রচলিত পরিমাপকের সাহায়্যে পরিমাপ করতে পারবে।

৩.১ পরিমাপ ও এককের C\Zvi ধারণা

যেকোনো গণনায় বা পরিমাপে একক প্রয়োজন। গণনার জন্য একক n‡"Q প্রথম স্বাভাবিক সংখ্যা ১। দৈর্ঘ্য পরিমাপের জন্য একটি নির্দিষ্ট দৈর্ঘ্যকে ১ একক ধরা হয়। অনুরূপভাবে, ওজন পরিমাপের জন্য নির্দিষ্ট কোনো ওজনকে একক ধরা হয়, যাকে ওজনের একক বলে। আবার তরল পদার্থের আয়তন পরিমাপের এককও অনুরূপভাবে বের করা যায়। ক্ষেত্রফল পরিমাপের ক্ষেত্রে ১ একক দৈর্ঘ্যের বাহুবিশিষ্ট একটি বর্গাকার ক্ষেত্রকে একক ধরা হয়। একে ১ বর্গ একক বলে। তদ্রূপ ১ একক দৈর্ঘ্যের বাহুবিশিষ্ট একটি ঘনকের ঘনফলকে ১ ঘন একক বলে। সকলক্ষেত্রেই এককের মাধ্যমে গণনায় বা পরিমাপে m¤ú¥ পরিমাপের ধারণা লাভ করা যায়। কিন্তু পরিমাপের জন্য বিভিন্ন দেশে বিভিন্ন একক রয়েছে।

৩.২ মেট্রিক পঙ্গতিতে পরিমাপ

বিভিন্ন দেশে পরিমাপের জন্য বিভিন্ন পরিমাপ পন্ধতি প্রচলিত থাকায় আন্তর্জাতিক ব্যবসাবাণিজ্যে ও আদানপ্রদানে অসুবিধা হয়। তাই ব্যবসাবাণিজ্যে ও আদানপ্রদানের ক্ষেত্রে পরিমাপ করার জন্য আন্তর্জাতিক রীতি তথা মেট্রিক পন্ধতি ব্যবহৃত হয়। এ পরিমাপের বৈশিষ্ট্য হলো এটা দশগুণোত্তর। দশমিক ভগ্নাংশের দ্বারা এ পন্ধতিতে পরিমাপ সহজে প্রকাশ করা যায়। অফ্টাদশ শতাব্দীতে ফ্রান্সে প্রথম এ পন্ধতির প্রবর্তন করা হয়।

দৈর্ঘ্য পরিমাপের একক মিটার। পৃথিবীর উত্তর মেরু থেকে ফ্রান্সের রাজধানী প্যারিসের দ্রাঘিমা রেখা বরাবর বিষুবরেখা পর্যন্ত দৈর্ঘ্যের কোটি ভাগের এক ভাগকে এক মিটার হিসেবে গণ্য করা হয়। পরবর্তীতে প্যারিস মিউজিয়ামে রক্ষিত এক খড় 'গ্লাটিনামের রড'-এর দৈর্ঘ্য এক মিটার হিসেবে স্বীকৃত হয়েছে। এ দৈর্ঘ্যকেই একক হিসেবে ধরে রৈখিক পরিমাপ করা হয়। দৈর্ঘ্যের পরিমাপ ছোট হলে সেন্টিমিটারে এবং বড় হলে কিলোমিটারে প্রকাশ করা হয়। দৈর্ঘ্যের একক মিটার থেকে মেট্রিক পম্পতি নামকরণ করা হয়েছে।

ওজন পরিমাপের একক গ্রাম। এটি মেট্রিক পঙ্খতির একক। কম ওজনের e⁻'‡K গ্রামে এবং বেশি ওজনের e⁻'‡K কিলোগ্রাম (কে.জি.)-এ প্রকাশ করা হয়।

তরল পদার্থের আয়তন পরিমাপের একক লিটার । এটি মেট্রিক পদ্ধতির একক। অল্প আয়তনের তরল পদার্থের পরিমাপে লিটার ও বেশি পরিমাপের জন্য কিলোলিটার ব্যবহার করা হয়।

মেট্রিক পদ্ধতিতে কোনো দৈর্ঘ্যকে নিমুতর থেকে D"PZi অথবা D"PZi থেকে নিমুতর এককে পরিবর্তিত করতে হলে, অজ্জগুলো পাশাপাশি লিখে দশমিক বিন্দুটি প্রয়োজনমতো বামে বা ডানে সরাতে হবে। যেমন, ৫ কি. মি. ৪ হে. মি. ৭ ডেকা.মি. ৬ মি. ৯ ডেসি.মি. ২ সে. মি. ৩ মি. মি.

- = (৫০০০০০+৪০০০০০+৭০০০০+৯০০+২০+৩) মি.মি.
- = ৫৪৭৬৯২৩ মি. মি. = ৫৪৭৬৯২.৩ সে. মি. = ৫৪৭৬৯.২৩ ডেসি.মি. = ৫৪৭৬.৯২৩ মি.
- = ৫৪৭.৬৯২৩ ডেকা.মি. = ৫৪.৭৬৯২৩ হে. মি. = ৫.৪৭৬৯২৩ কি. মি. ।

আমরা জানি, কোনো দশমিক সংখ্যার কোনো অজ্কের স্থানীয় মান এ অব্যবহিত ডান অজ্কের স্থানীয় মানের দশ গুণ এবং এ অব্যবহিত বাম অজ্কের স্থানীয় মানের দশ ভাগের এক ভাগ। মেট্রিক পদ্ধতিতে দৈর্ঘ্য, ওজন বা আয়তন মাপার ক্রমিক এককগুলোর মধ্যেও এরূপ m¤úK বিদ্যমান আছে। সুতরাং, মেট্রিক পদ্ধতিতে fbi нc Z কোনো দৈর্ঘ্য, ওজন বা আয়তনের মাপকে দশমিকের সাহায্যে সহজেই যেকোনো এককে প্রকাশ করা যায়। নিচে গ্রিক ও ল্যাটিন ভাষা হতে গৃহীত স্থানীয় মানের একটি ছক দেওয়া হলো:

গ্রিক	ভাষা হতে গু) হীত		ল	্যাটিন ভাষা হতে	গৃহীত
সহস্ৰ	*াতক	দশক	একক	দশমাংশ	শতাংশ	সহস্রাংশ
১ ০০০ কিলো	১ ০০ হেক্টো	১ ০ ডেকা	১ মিটার	\frac{\delta}{\delta 0} = .\delta \text{(6)}	১০. = .০১ ত০ ং	\frac{\range \}{\range \coo} = .00\range \frac{\range \}{\range \range \}
			গ্রাম লিটার		3 11 9	

গ্রিক ভাষা থেকে গুণিতকবোধক এবং ল্যাটিন ভাষা থেকে অংশবোধক শব্দ এককের নামের C‡é উপসর্গ হিসেবে যুক্ত করা হয়েছে।

গ্রিক ভাষায় ডেকা অর্থ ১০ গুণ, হেক্টো অর্থ ১০০ গুণ এবং কিলো অর্থ ১০০০ গুণ। ল্যাটিন ভাষায় ডেসি অর্থ দশমাংশ, সেন্টি অর্থ শতাংশ এবং মিলি অর্থ সহস্রাংশ।

৩.৩ দৈর্ঘ্য পরিমাপের এককাবলি

মেট্রিক পঙ্গতি			্রফিশ পদ্ধতি	î	
১০ মিলিমিটার (মি. মি.)	= 1	১ সেন্টিমিটার (সে. মি.)	۵২ BwÂ	=	১ ফুট
১০ সেন্টিমিটার	= 1	১ ডেসিমিটার (ডেসি.মি.)	৩ ফুট	=	১ গজ
১০ ডেসিমিটার	= 1	১ মিটার (মি.)	১৭৬০ গজ	=	১ মাইল
১০ মিটার	= 1	১ ডেকামিটার (ডেকা.মি.)	৬০৮০ ফুট	=	১ নটিকেল মাইল
১০ ডেকামিটার	=	১ হেক্টোমিটার (হে. মি.)	২২০ গজ	=	১ ফার্লং
১০ হেক্টোমিটার	=	১ কিলোমিটার (কি. মি.)	৮ ফার্লং	=	১ মাইল

দৈর্ঘ্য পরিমাপের একক : মিটার

৩.8 মেট্রিক ও ্রিফিশ পরিমাপের m¤úK®

\$ BwÂ	= ২.৫৪ সে. মি. প্রায়)	১ মিটার = ৩৯.৩৭ Bw (প্রায়)
১ গজ	= ০.৯১৪৪ মি.(প্রায়)	১ কি. মি. 😑 ০.৬২ মাইল (প্রায়)
১ মাইল	= ১.৬১ কি. মি. (প্রায়)	

মেট্রিক ও ব্রিটিশ পরিমাপের m = uK সঠিকভাবে নির্ণয় করা সম্ভব নয়। তাই এ m = uK = uK কয়েক দশমিক স্থান পর্যন্ত মান নিয়ে প্রকাশ করা হয়।

ছোট দৈর্ঘ্য পরিমাপের জন্য স্কেল ব্যবহৃত হয়। বড় দৈর্ঘ্য পরিমাপের জন্য ফিতা ব্যবহার করা হয়। ফিতা ৩০ মিটার বা ১০০ dl লম্বা হয়ে থাকে।

কাজ :

- ১। স্কেল দিয়ে তোমার †eÂฟJi দৈর্ঘ্য BฟA ও সেন্টিমিটারে মাপ। এ হতে ১ মিটার সমান কত BฟA তা নির্ণয় কর।
- ২। উপরের m¤úK[©]হতে ১ মাইল সমান কত কিলোমিটার তা-ও নির্ণয় কর।

উদাহরণ ১। একজন দৌড়বিদ ৪০০ মিটার বিশিষ্ট গোলাকার ট্র্যাকে ২৪ চক্কর দৌড়ালে, সে কত ें Z_i দৌড়াল ? সমাধান : ১ চক্কর দৌড়ালে ৪০০ মিটার হয়।

∴ ২৪ চক্কর দৌড়ালে `‡ত্ব হবে (৪০০ × ২৪) মিটার বা ৯৬০০ মিটার বা ৯ কিলোমিটার ৬০০ মিটার। অতএব, দৌড়বিদ ৯ কিলোমিটার ৬০০ মিটার দৌড়াল।

৩.৫ ওজন পরিমাপ

প্রত্যেক e^{-t} i ওজন আছে। বিভিন্ন দেশে বিভিন্ন এককের সাহায্যে e^{-t} ওজন করা হয়।

ওজন পরিমাপের মেট্রিক এককাবলি

১০ মিলিগ্রাম (মি. গ্রা.)	= ১ সেন্টিগ্রাম (সে. গ্রা.)
১০ সেন্টিগ্রাম	= ১ ডেসিগ্রাম (ডেসিগ্রা.)
১০ ডেসিগ্রাম	= ১ গ্রাম (গ্রা.)
১০ গ্রাম	= ১ ডেকাগ্রাম (ডেকা গ্রা.)
১০ ডেকাগ্রাম	= ১ হেক্টোগ্রাম (হে. গ্রা.)
১০ হেক্টোগ্রাম	= ১ কিলোগ্রাম (কে. জি.)

ওজন পরিমাপের একক : গ্রাম	১ কিলোগ্রাম বা ১ কে.জি. = ১০০০ গ্রাম
--------------------------	--------------------------------------

মেট্রিক পদ্ধতিতে ওজন পরিমাপের জন্য ব্যবহৃত আরও দুইটি একক আছে। অধিক পরিমাণ e^- ' i ওজন পরিমাপের জন্য কুইন্টাল ও মেট্রিক টন একক দুইটি ব্যবহার করা হয়।

১০০ কিলোগ্রাম	= ১ কুইন্টাল
১০০০ কিলোগ্রাম	= ১ মেট্রিক টন

কাজ :

- 🕽 । দাগকাটা ব্যালেন্স দ্বারা তোমরা তোমাদের ৫টি বইয়ের ওজন বের কর।
- ২। ডিজিটাল ব্যালেন্সের সাহায্যে তোমাদের ওজন নির্ণয় কর।

উদাহরণ ২। ১ মেট্রিক টন চাল ৬৪ জন শ্রমিকের মধ্যে সমানভাবে ভাগ করে দিলে প্রত্যেকে কী পরিমাণ চাল পাবে ?

সমাধান: ১ মেট্রিক টন = ১০০০ কেজি

৬৪ জন শ্রমিক পায় ১০০০ কেজি চাল

= ১৫ কেজি ৬২৫ গ্রাম চাল

∴ প্রত্যেক শ্রমিক ১৫ কেজি ৬২৫ গ্রাম চাল পাবে।

৩.৬ তরল পদার্থের আয়তন পরিমাপ

ক্রেতা-বিক্রেতার সুবিধার্থে বর্তমানে ভোজ্যতেল বোতলজাত করে বিক্রি $n\ddagger 0$ । এ ক্ষেত্রে ১, ২, ৫ ও ৮ লিটারের বোতল বেশি ব্যবহৃত হয়। বিভিন্ন প্রকারের পানীয় সাধারণত ২৫০, ৫০০, ১০০০, ২০০০ মিলিলিটারে বোতলজাত করে বিক্রি করা হয়।

তরল পদার্থের আয়তন পরিমাপের মেট্রিক এককাবলি

১০ মিলিলিটার (মি. লি.)	= ১ সেন্টিলিটার (সে. লি.)
১০ সেন্টিলিটার	= ১ ডেসিলিটার (ডেসিলি.)
১০ ডেসিলিটার	= ১ লিটার (লি.)
১০ লিটার	= ১ ডেকালিটার (ডেকালি.)
১০ ডেকালিটার	= ১ হেক্টোলিটার (হে. লি.)
১০ হেক্টোলিটার	= ১ কিলোলিটার (কি. লি.)

তরল পদার্থের আয়তন পরিমাপের একক : লিটার

মন্তব্য : ৪ ডিগ্রি সেলসিয়াস তাপমাত্রায় ১ ঘনসেন্টিমিটার (Cubic Centimetre) বিশুন্ধ পানির ওজন ১ গ্রাম। Cubic Centimetre কে সংক্ষেপে ইংরেজিতে c. c. (সি.সি.) লেখা হয়।

১ লিটার বিশুদ্ধ পানির ওজন ১ কিলোগ্রাম

মেট্রিক এককাবলিতে যেকোনো একটি পরিমাপের এককাবলি জানা থাকলে অপরগুলো সহজে মনে রাখা যায়। দৈর্ঘ্যের এককাবলি জানা থাকলে ওজন ও তরল পদার্থের আয়তন পরিমাপের এককগুলো শুধু মিটারের জায়গায় 'গ্রাম' বা 'লিটার' বসালেই পাওয়া যায়।

কাজ

- ১। তোমার পানীয়জলের পাত্রের ধারণক্ষমতা কত সি. সি. পরিমাপ কর এবং তা ঘনইর্মিতে প্রকাশ কর।
- ২। শিক্ষক কর্তৃক নির্ধারিত অজানা আয়তনের একটি পাত্রের আয়তন অনুমান কর। তারপর এর সঠিক আয়তন বের করে ি‡ji পরিমাণ নির্ণয় কর।

উদাহরণ ৩। একটি চৌবা"Pার দৈর্ঘ্য ৩ মিটার, প্রস্থ ২ মিটার ও উ"Pতা ৪ মিটার। এতে কত লিটার এবং কত কিলোগ্রাম বিশুম্ব পানি ধরবে ?

সমাধান: চৌবা"Pাটির দৈর্ঘ্য = ৩ মিটার, প্রস্থ = ২ মিটার এবং উ"Pতা = ৪ মিটার
∴ চৌবা"Pাটির আয়তন = (৩ × ২ × ৪) ঘন মি. = ২৪ ঘন মি.
= ২৪০০০০০০ ঘন সে. মি
= ২৪০০০ লিটার [১০০০ ঘন সে. মি. = ১ লিটার]

১ লিটার বিশুদ্ধ পানির ওজন ১ কিলোগ্রাম।

∴ ২৪০০০ লিটার বিশৃদ্ধ পানির ওজন ২৪০০০ কিলোগ্রাম।
অতএব, চৌবা"Pাটিতে ২৪০০০ লিটার পানি ধরবে এবং এর ওজন ২৪০০০ কিলোগ্রাম।

৩.৭ ক্ষেত্রফল পরিমাপ

আয়তাকার ক্ষেত্রের ক্ষেত্রফলের পরিমাপ = দৈর্ঘ্যের পরিমাপ \times C^{\dag^-} ' i পরিমাপ বর্গাকার ক্ষেত্রের ক্ষেত্রফলের পরিমাপ = $\left(\text{বাহুর পরিমাপ} \right)^2$

ত্রিভুজাকার ক্ষেত্রের ক্ষেত্রফলের পরিমাপ $= \frac{3}{2} \times \text{fwgi}$ পরিমাপ \times D"PZvi পরিমাপ

ক্ষেত্রফল পরিমাপের একক : বর্গমিটার

ক্ষেত্রফল পরিমাপে মেট্রিক এককাবলি

১০০ বর্গসেন্টিমিটার (ব. সে. মি.) = ১ বর্গডেসিমিটার (ব. ডেসিমি.)

১০০ বর্গডেসিমিটার = ১ বর্গমিটার (ব. মি.)

১০০ বর্গমিটার = ১ এয়র (বর্গডেকামিটার)

১০০ এয়র (বর্গডেকামিটার) = ১ হেক্টর বা ১ বর্গহেক্টোমিটার

১০০ বর্গহেক্টোমিটার = ১ বর্গকিলোমিটার

ক্ষেত্রফল পরিমাপে ্রিফিশ এককাবলি

ক্ষেত্রফল পরিমাপে দেশীয় এককাবলি

১৪৪ বর্গই⊮Â = ১ বর্গফুট

৯ বর্গফুট = ১ বর্গগজ

৪৮৪০ বর্গগজ = ১ একর

১০০ শতক (ডেসিম্ল) = ১ একর

1 eM®vZ = 1 MÊv 20 MÊv = 1 QUvK 16 QUvK = 1 KvVv 20 KvVv = 1 weNv

ক্ষেত্রফল পরিমাপে মেট্রিক ও ্রিফিশ পঙ্গবির $m \pi \text{\'u} K^{\odot}$

১ বর্গসেন্টিমিটার = ০.১৬ বর্গইিA (প্রায়)

১ বর্গমিটার = ১০.৭৬ বগপ্রার্থা (প্রায়)

১ হেক্টর = ২.৪৭ একর (প্রায়)

১ বর্গইAি = ৬.৪৫ বর্গসেন্টিমিটার (প্রায়)

১ বর্গফুট = ৯২৯ বর্গসেন্টিমিটার (প্রায়)

১ বর্গগজ = ০.৮৪ বর্গমিটার (প্রায়)

১ বর্গমাইল = ৬৪০ একর

ক্ষেত্রফল পরিমাপে মেট্রিক, ্রিফিশ ও দেশীয় এককাবলির m¤úK®

১ বৰ্গহাত = ৩২৪ বৰ্গইAি

১ বর্গগজ বা ৪ গড়া 😑 ৯ বর্গফুট = ০.৮৩৬ বর্গমিটার (প্রায়)

১ কাঠা = ৭২০ বর্গফুট = ৮০ বর্গগজ = ৬৬.৮৯ বর্গমিটার (প্রায়)

১ বিঘা = ১৬০০ বর্গগজ = ১৩৩৭.৮ বর্গমিটার (প্রায়)

১ একর = ৩ বিঘা ৮ ছটাক = ৪০৪৬.৮৬ বর্গমিটার (প্রায়)

১ শতক = ৪৩৫.৬ বর্গফুট = ১০০০ বর্গকড়ি (১০০ কড়ি = ৬৬ dll)

১ বর্গমাইল = ১৯৩৬ বিঘা

১ বর্গমিটার = ৪.৭৮ গণ্ডা (প্রায়) = ০.২৩৯ ছটাক (প্রায়)

১ এয়র = ২৩.৯ ছটাক (প্রায়)

কাজ:

১। স্কেল দিয়ে তোমার একটি বইয়ের ও পড়ার টেবিলের দৈর্ঘ্য ইি \hat{A} ও সেন্টিমিটারে মেপে উভয় এককে এদের ক্ষেত্রফল নির্ণয় কর। ইহা হতে ১ বর্গইি \hat{A} ও ১ বর্গসেন্টিমিটারের m μ μ K Q বর কর।

২। দলগতভাবে তোমরা বেÂ, টেবিল, দরজা, জানালা ইত্যাদির দৈর্ঘ্য ও CÜ' স্কেলের সাহায্যে ইিA ও সেন্টিমিটারে মেপে এগুলোর ক্ষেত্রফল বের কর।

উদাহরণ ৪। ১ ইAি = ২.৫৪ সেন্টিমিটার এবং ১ একর = ৪৮৪০ বর্গগজ। ১ একরে কত বর্গমিটার?

সমাধান: ১ ই॥Â = ২.৫৪ সে. মি.

∴ ৩৬ ইÂি বা ১ গজ = ২.৫8 × ৩৬ সে. মি.
 = ৯১.88 সে. মি.
 = ^{৯১.88}/_{১০০} মিটার = ০.৯১৪৪ মিটার

∴ ১ গজ × ১ গজ = ০.৯১৪৪ মিটার × ০.৯১৪৪ মিটার বা, ১ বর্গগজ = ০.৮৩৬১২৭৩৬ বর্গমিটার

∴ ৪৮৪০ বর্গগজ = ০.৮৩৬১২৭৩৬ × ৪৮৪০ বর্গমিটার
 = ৪০৪৬.৮৫৬৪২২৪০ ,,
 = ৪০৪৬.৮৬ ব. মি. (প্রায়)
 ∴ ১ একর = ৪০৪৬.৮৬ ব. মি. (প্রায়)।

উদাহরণ ৫। জাহাজ্ঞীরনগর বিশ্ববিদ্যালয় K ̈v¤úv‡mi এলাকা ৭০০ একর। একে নিকটতম CҰঙ্গিংখ্যক হেক্টরে প্রকাশ কর।

সমাধান: ২.৪৭ একর = ১ হেক্টর

$$\therefore$$
 ১ ,, $=\frac{5}{2.89}$,, $=\frac{5 \times 900 \times 500}{289}$ হেক্টর $=2 \text{ ৮৩.8}$ হেক্টর

অতএব, নির্ণেয় এলাকা ২৮৩ হেক্টর (প্রায়)।

উদাহরণ ৬। একটি আয়তাকার ক্ষেত্রের দৈর্ঘ্য ৪০ মিটার এবং প্রস্থ ৩০ মিটার ৩০ সে. মি.। ক্ষেত্রটির ক্ষেত্ৰফল কত?

সমাধান: ক্ষেত্রটির দৈর্ঘ্য = ৪০ মিটার = (৪০ × ১০০) সে.মি. = ৪০০০ সে. মি.। এবং প্রস্থ = ৩০ মিটার ৩০ সে. মি.

= ৩০৩০ সে. মি.

∴ নির্ণেয় ক্ষেত্রফল = (৪০০০ × ৩০৩০) বর্গ সে. মি. = ১২১২০০০০ বর্গ সে. মি.

= ১২১২ বর্গমিটার = ১২ এয়র ১২ বর্গমিটার।

অতএব, ক্ষেত্রটির ক্ষেত্রফল ১২ এয়র ১২ বর্গমিটার।

৩.৮ আয়তন

Nbe⁻' i ঘনফলই আয়তন

আয়তাকার Nbe $^-$ ' i আয়তনের পরিমাপ = দৈর্ঘ্যের পরিমাপ \times C † পরিমাপ \times D"PZ $_{V}$ পরিমাপ

দৈর্ঘ্যের পরিমাপ, প্রস্থের পরিমাপ ও D"PZvi পরিমাপ একই এককে প্রকাশ করে আয়তনের পরিমাপ ঘন এককে নির্ণয় করা হয়। দৈর্ঘ্য ১ সেন্টিমিটার. প্রস্থ ১ সেন্টিমিটার এবং $D''PZ_V$ ১ সেন্টিমিটারবিশিষ্ট e^{-t} iআয়তন ১ ঘন সেন্টিমিটার ।

আয়তন পরিমাপে মেট্রিক এককাবলি

= ১ ঘন ডেসিমিটার (ঘ. ডেসি.মি.) = ১ লিটার ১০০০ ঘন সেন্টিমিটার (ঘন সে. মি.)

১০০০ ঘন ডেসিমিটার = ১ ঘন মিটার (ঘ.মি.)

১ ঘন মিটার = ১ স্টেয়র

১০ ঘন স্টেয়র = ১ ডেকা স্টেয়র

১ ঘন সে.মি. (সি.সি.) = ১ মিলিলিটার ১ ঘনইি = ১৬.৩৯ মিলিলিটার (প্রায়)

আয়তনের মেট্রিক ও_ফিশ এককের m¤úK©

১ স্টেয়র	=	৩৫.৩ ঘনফুট (প্রায়)
১ ডেকাস্টেয়র	=	১৩.০৮ ঘনগজ (প্রায়)
1 Nbdป	=	২৮.৬৭ লিটার (প্রায়)

কাজ

- ১। তোমার সবচেয়ে মোটা বইটির দৈর্ঘ্য, cÜ'l D"PZv মেপে তার ঘনফল নির্ণয় কর।
- ২। শ্রেণিশিক্ষক কর্তৃক নির্ধারিত অজানা আয়তনের একটি বাক্সের আয়তন অনুমান কর। তারপর এর সঠিক আয়তন বের করে ি‡ji পরিমাণ নির্ণয় কর।

উদাহরণ ৭। একটি বাক্সের দৈর্ঘ্য ২ মিটার, প্রস্থ ১ মিটার ৫০ সে. মি. এবং D"PZv ১ মিটার। বাক্সটির আয়তন কত ?

সমাধান: দৈর্ঘ্য = ২ মিটার = ২০০ সে. মি.
 প্রস্থ = ১ মিটার ৫০ সে. মি. = ১৫০ সে. মি.
 এবং D"PZv = ১ মিটার = ১০০ সে. মি.
 ∴ বাক্সটির আয়তন = দৈর্ঘ্য × প্রস্থ × D"PZv = (২০০ × ১৫০ × ১০০) ঘন সে. মি.
 = ৩০০০০০০ ঘন সে. মি.
 = ৩ ঘনমিটার

বিকল্প পদ্ধতি: দৈর্ঘ্য = ২ মিটার, প্রস্থ = ১ মিটার ৫০ সে. মি. = ১ $\frac{3}{2}$ মিটার এবং D''PZv = 5 মিটার । ∴ বাক্সটির আয়তন = দৈর্ঘ্য × প্রস্থ × D''PZv

$$=\left(2 imesrac{3}{2} imes
ight)$$
 ঘনমিটার

= ৩ ঘনমিটার

় নির্ণেয় আয়তন ৩ ঘনমিটার।

উদাহরণ ৮। একটি †PŠev"Pvq ৮০০০ লিটার পানি ধরে। †PŠev"PvvUi দৈর্ঘ্য ২.৫৬ মিটার এবং প্রস্থ ১.২৫ মিটার হলে. গভীরতা কত ? ৩৪

সমাধান: †Pšev"PwUi তলার ক্ষেত্রফল = ২.৫৬ মিটার ×১.২৫ মিটার = ২৫৬ সে. মি. × ১২৫ সে. মি. = ৩২০০০ বর্গ সে. মি.

†Pšev"Pvq ৮০০০ লিটার বা ৮০০০ x ১০০০ ঘন সে. মি.পানি ধরে। [১০০০ ঘন সে. মি. = ১ লিটার] অতএব, †Pšev"PwUI আয়তন ৮০০০০০০ ঘন সে. মি

অথবা.

†PŠev"PwUi তলার ক্ষেত্রফল = ২.৫৬ মিটার × ১.২৫ মিটার = ৩.২ বর্গ মি.

†PŠev"Pvq ৮০০০ লিটার বা ৮০০০ x ১০০০ ঘন সে. মি.পানি ধরে।

উদাহরণ ৯। একটি ঘরের দৈর্ঘ্য প্রস্থের ৩ গুণ। প্রতি বর্গমিটারে ৭.৫০ টাকা দরে ঘরটি কার্পেট দিয়ে ঢাকতে মোট ১১০২.৫০ টাকা ব্যয় হয়। ঘরটির দৈর্ঘ্য ও প্রস্থা নির্ণয় কর।

সমাধান: ৭.৫০ টাকা খরচ হয় ১ বর্গমিটারে

অর্থাৎ, ঘরের ক্ষেত্রফল ১৪৭ বর্গমিটার। মনে করি, প্রস্থ = ক মিটার

∴ দৈর্ঘ্য = ৩ক মিটার

∴ ক্ষেত্রফল = (দৈর্ঘ্য
$$\times$$
 প্রস্থ) বর্গ একক = (৩ক \times ক) বর্গমিটার = ৩ক 3 বর্গমিটার

শর্তানুসারে

বা, ক^২ =
$$\frac{389}{9}$$

$$\therefore \ \overline{\Phi} = \sqrt{8\delta} = 9$$

অতএব, প্রস্থ = ৭ মিটার,

এবং দৈর্ঘ্য = (৩ × ৭) মিটার বা ২১ মিটার।

উদাহরণ ১০। বায়ু পানির Zj bwq ০.০০১২৯ গুণ ভারী। যে ঘরের দৈর্ঘ্য, প্রস্থ ও D"PZv যথাক্রমে ১৬ মিটার, ১২ মিটার ও ৪ মিটার, তাতে কত কিলোগ্রাম বায়ু আছে?

সমাধান: ঘরের আয়তন = দৈর্ঘ্য \times প্রস্থ \times D"PZ ν

= ১৬ মি. × ১২ মি. × ৪ মি.

= ৭৬৮ ঘনমিটার

= ৭৬৮ × ১০০০০০০ ঘন সে.মি.

= ৭৬৮০০০০০ ঘন সে.মি.

বায়ু পানির Zj bwq ০.০০১২৯ গুণ ভারী।

∴ ১ ঘন সে. মি. বায়ুর ওজন = ০.০০১২৯ গ্রাম

অতএব, ঘরটিতে বায়ুর পরিমাণ = ৭৬৮০০০০০ × ০.০০১২৯ গ্রাম

= ৯৯০৭২০ গ্রাম

= ৯৯০.৭২ কিলোগ্রাম

∴ ঘরটিতে ৯৯০.৭২ কিলোগ্রাম বায়ু আছে।

উদাহরণ ১১। ২১ মিটার দীর্ঘ এবং ১৫ মিটার প্রস্থ একটি বাগানের বাইরে চারদিকে ২ মিটার cੈk र्। একটি পথ আছে। প্রতি বর্গমিটারে ২.৭৫ টাকা দরে পথটিতে ঘাস লাগাতে মোট কত খরচ হবে?

সমাধান:

iv Í vmn বাগানের দৈর্ঘ্য = ২১ মি. + (২ + ২) মি. = ২৫ মিটার
 ,, ,, প্রস্থ = ১৫ মি. + (২ + ২) মি. = ১৯ মিটার

= ৪৭৫ বর্গমিটার

 iv^- Ívev \downarrow ` বাগানের ক্ষেত্রফল = (২১ imes ১৫) বর্গমিটার

= ৩১৫ বর্গমিটার

∴ i y Í yi ক্ষেত্রফল = (৪৭৫ – ৩১৫) বর্গমিটার

= ১৬০ বর্গমিটার

ঘাস লাগানোর মোট খরচ = (১৬০ × ২.৭৫) টাকা

= 880.00 টাকা

অতএব, ঘাস লাগানোর মোট খরচ ৪৪০ টাকা।

২১ মিটার

মিটার

উদাহরণ ১২। ৪০ মিটার দৈর্ঘ্য এবং ৩০ মিটার প্রস্থবিশিষ্ট একটি মাঠের ঠিক মাঝে আড়াআড়িভাবে ১.৫ মিটার CÅ ি দুইটি iv ív আছে। iv ív দুইটির ক্ষেত্রফল কত ?

সমাধান: দৈর্ঘ্য বরাবর i v^- ÍwUi ক্ষেত্রফল $= 80 \times 5.6$ বর্গমিটার

= ৬০ বর্গমিটার

প্রস্থ বরাবর iv^- [wUi ক্ষেত্রফল $= (\mathfrak{O} \circ - \mathfrak{I}.\mathfrak{C}) \times \mathfrak{I}.\mathfrak{C}$ বর্গমিটার

= ২৮.৫ × ১.৫ বর্গমিটার

= ৪২.৭৫ বর্গমিটার

অতএব, i v⁻ ĺ w͡ ˈ q i ক্ষেত্রফল = (৬০ + ৪২.৭৫) বর্গমিটার

= ১০২.৭৫ বর্গমিটার

∴ iv⁻Ív؇qi মোট ক্ষেত্রফল ১০২.৭৫ বর্গমিটার।

উদাহরণ ১৩। ২০ মিটার দীর্ঘ একটি কামরা কার্পেট দিয়ে ঢাকতে ৭৫০০.০০ টাকা খরচ হয়। যদি ঐ কামরাটির প্রস্থ ৪ মিটার কম হতো, তবে ৬০০০.০০ টাকা খরচ হতো। কামরাটির প্রস্থ কত ?

সমাধান: কামরার দৈর্ঘ্য ২০ মিটার । প্রস্থ ৪ মিটার কমলে ক্ষেত্রফল কমে (২০ মিটার × ৪ মিটার)

= ৮০ বর্গমিটার

ক্ষেত্রফল ৮০ বর্গমিটার কমার জন্য খরচ কমে (৭৫০০ – ৬০০০) টাকা = ১৫০০ টাকা

১৫০০ টাকা খরচ হয় ৮০ বর্গমিটারে

$$\Box \qquad \therefore \quad \mathsf{i} \qquad , \qquad , \qquad , \qquad = \frac{\mathsf{bo}}{\mathsf{boo}} \ ,$$

$$\square$$
 : ৭৫০০ ,, ,, $=\frac{bo \times 9600}{3600}$,, বা ৪০০ বর্গমিটারে

অতএব, কামরার ক্ষেত্রফল ৪০০ বর্গমিটার।

= ২০ মিটার

∴ কামরাটির প্রস্থ ২০ মিটার।

উদাহরণ ১৪। একটি ঘরের মেঝের দৈর্ঘ্য ৪ মিটার এবং প্রস্থ ৩.৫ মিটার । ঘরটির D"PZ। ৩ মিটার এবং এর দেওয়ালগুলো ১৫ সে. মি. পুরু হলে, চার দেওয়ালের আয়তন কত ?

সমাধান: দেওয়ালের পুরুত্ব ১৫ সে.মি. = $\frac{১৫}{১০০}$ = ০.১৫ মিটার
চিত্রানুসারে, দৈর্ঘ্যের দিকে ২টি দেওয়ালের ঘনফল =

(৪ + ২ × ০.১৫) × ৩ ×০.১৫ × ২ ঘনমিটার = ৩.৮৭ ঘনমিটার
এবং প্রস্থের দিকে ২টি দেওয়ালের ঘনফল = ৩.৫ × ৩ × ০.১৫ × ২ ঘনমিটার

- ∴ দেওয়ালগুলোর মোট ঘনফল = (৩.৮৭ + ৩.১৫) ঘনমিটার = ৭.০২ ঘনমিটার
- .. নির্ণেয় ঘনফল ৭.০২ ঘনমিটার।

উদাহরণ ১৫। একটি ঘরের তিনটি দরজা এবং ৬টি জানালা আছে। প্রত্যেকটি দরজা ২ মিটার লম্বা এবং ১.২৫ মিটার চওড়া, প্রত্যেক জানালা ১.২৫ মিটার লম্বা এবং ১ মিটার চওড়া। ঐ ঘরের দরজা জানালা তৈরি করতে ৫ মিটার লম্বা ও ০.৬০ মিটার চওড়া কয়টি তক্তার প্রয়োজন ?

সমাধান: ৩টি দরজার ক্ষেত্রফল = (২ × ১.২৫) × ৩ বর্গমিটার
= ৭.৫ বর্গমিটার
৬টি জানালার ক্ষেত্রফল = (১.২৫ × ১) × ৬ বর্গমিটার
= ৭.৫ বর্গমিটার
একটি তক্তার ক্ষেত্রফল = (৫ × ০.৬) বর্গমিটার = ৩ বর্গমিটার

নির্ণেয় তক্তার সংখ্যা = দরজা ও জানালার একত্রে ক্ষেত্রফল ÷ তক্তার ক্ষেত্রফল

অনুশীলনী ৩

- ১। একটি শহরের জনসংখ্যা ১৫০০০০। প্রতিদিন ১০ জনের gZi হয় এবং প্রতিদিন ১৭ জন শিশু জন্মগ্রহণ করে। এক বছর পর ঐ শহরের জনসংখ্যা কত হবে ?
- ২। ২০ টি কৈ মাছের দাম ৩৫০ টাকা হলে, ১ টি কৈ মাছের দাম কত ?
- ৩। একটি গাড়ির চাকার পরিধি ৫.২৫ মিটার। ৪২ কিলোমিটার পথ যেতে চাকাটি কত বার ঘুরবে ?
- ৪। দৌড় প্রতিযোগিতার জন্য ট্র্যাকের পরিধি কত হলে ১০০০০ মিটার দৌড়ে ১৬ চক্কর দিতে হবে ?
- ৫। একটি সিমেন্ট ফ্যাক্টরিতে প্রতিদিন ৫০০০ ব্যাগ সিমেন্ট উৎপন্ন হয়। প্রতি ব্যাগ সিমেন্টের ওজন যদি ৪৫ কিলোগ্রাম ৫০০ গ্রাম হয়, তবে দৈনিক সিমেন্টের উৎপাদন কত ?
- ৬। একটি স্টিল মিলে বার্ষিক ১৫০০০০ মেট্রিক টন রড তৈরি হয়। দৈনিক কী পরিমাণ রড তৈরি হয় ?
- ৭। এক ব্যবসায়ীর গুদামে ৫০০ মেট্রিক টন চাল আছে। তিনি দৈনিক ২ মেট্রিক টন ৫০০ কে.জি. করে চাল গুদাম থেকে দোকানে আনেন। তিনি কত দিনে গুদাম থেকে সব চাল আনতে পারবেন ?
- ৮। একটি মোটরগাড়ি যদি ৯ লিটার পেট্রোলে ১২৮ কিলোমিটার যায়, তবে প্রতি কিলোমিটার যেতে কী পরিমাণ পেট্রোলের প্রয়োজন হবে ?
- ৯। একটি আয়তাকার বাগানের দৈর্ঘ্য ৩২ মিটার এবং প্রস্থ ২৪ মিটার। এর ভিতরে চারদিকে ২ মিটার চওডা একটি iv lv আছে। iv lwli ক্ষেত্রফল নির্ণয় কর।
- ১০। একটি cKtii দৈর্ঘ্য ৬০ মিটার এবং প্রস্থ ৪০ মিটার। cKtii পাড়ের ঋe lvi ৩ মিটার হলে, পাড়ের ক্ষেত্রফল নির্ণয় কর ।
- ১১। আয়তাকার একটি ক্ষেত্রের ক্ষেত্রফল ১০ একর এবং তার দৈর্ঘ্য প্রস্থের ৪ গুণ। ক্ষেত্রটির দৈর্ঘ্য কত মিটার ?
- ১২। একটি আয়তাকার ঘরের দৈর্ঘ্য প্রস্থের দেড় গুণ। এ ক্ষেত্রফল ২১৬ বর্গমিটার হলে, পরিসীমা কত ?

১৩। একটি ত্রিভুজাকৃতি ক্ষেত্রের fাng ২৪ মিটার এবং D"PZ। ১৫ মিটার ৫০ সেন্টিমিটার হলে, এর ক্ষেত্রফল নির্ণয় কর।

- ১৪। একটি আয়তাকার ক্ষেত্রের দৈর্ঘ্য ৪৮ মিটার এবং প্রস্থ ৩২ মিটার ৮০ সে. মি.। ক্ষেত্রটির বাইরে চারদিকে ৩ মিটার We Í Z একটি iv Ív আছে। iv ÍwUi ক্ষেত্রফল কত ?
- ১৫। একটি বর্গাকার ক্ষেত্রের এক বাহুর দৈর্ঘ্য ৩০০ মিটার এবং বাইরে চারদিকে ৪ মিটার চওড়া একটি iv [v আছে। iv [wl] ক্ষেত্রফল কত ?
- ১৬। একটি ত্রিভুজাকৃতি জমির ক্ষেত্রফল ২৬৪ বর্গমিটার। এর TWO ২২ মিটার হলে, D"PZV নির্ণয় কর।
- ১৭। একটি †PŚev"Pvq ১৯২০০ লিটার পানি ধরে। এর গভীরতা ২.৫৬ মিটার এবং প্রস্থ ২.৫ মিটার হলে, দৈর্ঘ্য কত ?
- ১৮। সোনা, পানির Zj buq ১৯.৩ গুণ ভারী। আয়তাকার একটি সোনার বারের দৈর্ঘ্য ৭.৮ সেন্টিমিটার, প্রস্থ ৬.৪ সেন্টিমিটার এবং D"PZu ২.৫ সেন্টিমিটার। সোনার বারটির ওজন কত ?
- ১৯। একটি ছোট বাক্সের দৈর্ঘ্য ১৫ সে. মি. ২.৪ মি. মি., প্রস্থ ৭ সে. মি. ৬.২ মি. মি. এবং D"PZv ৫ সে. মি. ৮ মি. মি.। বাক্সটির আয়তন কত ঘন সেন্টিমিটার ?
- ২০। একটি আয়তাকার †Pઙઁeા"Pvi দৈর্ঘ্য ৫.৫ মিটার, প্রস্থ ৪ মিটার এবং D"PZv ২ মিটার। উক্ত চৌবা"Piটি পানিভর্তি থাকলে পানির আয়তন কত লিটার এবং ওজন কত কিলোগ্রাম হবে ?
- ২১। আয়তাকার একটি ক্ষেত্রের দৈর্ঘ্য প্রস্থের ১.৫ গুণ। প্রতি বর্গমিটার ১.৯০ টাকা দরে ঘাস লাগাতে ১০২৬০.০০ টাকা ব্যয় হয়। প্রতি মিটার ২.৫০ টাকা দরে ঐ মাঠের চারদিকে বেড়া দিতে মোট কত ব্যয় হবে?
- ২২। একটি ঘরের মেঝে কার্পেট দিয়ে ঢাকতে মোট ৭২০০ টাকা খরচ হয়। ঘরটির প্রস্থ ৩ মিটার কম হলে ৫৭৬ টাকা কম খরচ হতো। ঘরটির প্রস্থ কত ?
- ২৩। ৮০ মিটার দৈর্ঘ্য ও ৬০ মিটার প্রস্থবিশিষ্ট একটি আয়তাকার বাগানের ভিতর চারদিকে ৪ মিটার Cੈk । একটি পথ আছে। প্রতি বর্গমিটার ৭.২৫ টাকা দরে ঐ পথ বাঁধানোর খরচ কত ?
- ২৪। ২.৫ মিটার গভীর একটি বর্গাকৃতি খোলা চৌবা"Pায় ২৮,৯০০ লিটার পানি ধরে। এর ভিতরের দিকে সীসার পাত লাগাতে প্রতি বর্গমিটার ১২.৫০ টাকা হিসাবে মোট কত খরচ হবে ?
- ২৫। একটি ঘরের মেঝে ২৬ মি. লম্বা ও ২০ মি. চওড়া । ৪ মি. লম্বা ও ২.৫ মি. চওড়া কয়টি মাদুর দিয়ে মেঝেটি $m = u Y^{\odot}$ ঢাকা যাবে ? প্রতিটি মাদুরের দাম ২৭.৫০ টাকা হলে, মোট খরচ কত হবে ?
- ২৬। একটি বইয়ের দৈর্ঘ্য ২৫ সে. মি. ও প্রস্থ ১৮ সে. মি.। বইটির পৃষ্ঠাসংখ্যা ২০০ এবং প্রতি পাতা কাগজের পুরুত্ব ০.১ মি. মি. হলে, বইটির আয়তন নির্ণয় কর ।
- ২৭। একটি পুকুরের দৈর্ঘ্য ৩২ মিটার, প্রস্থ ২০ মিটার এবং পুকুরের পানির গভীরতা ৩ মিটার । একটি মেশিন দ্বারা cyKi wU cwwbkb করা n‡"Q যা প্রতি সেকেন্ডে ০.১ ঘনমিটার পানি সেচতে পারে । cki wU cwwbkb করতে কত সময় লাগবে ?
- ২৮। ৩ মিটার দৈর্ঘ্য, ২ মিটার প্রস্থ ও ১ মিটার উ"Pতাবিশিষ্ট একটি খালি চৌবা"Pায় ৫০ সে.মি. বাহুবিশিষ্ট একটি নিরেট ধাতব ঘনক রাখা আছে। চৌবা"Pাটি পানি দ্বারা C¥ করার পর ঘনকটি Z‡j আনা হলে, পানির গভীরতা কত হবে ?

PZ<u>y</u>.ºAa¨vq

exRMwYZxq m1vewj I cqqvM

দৈনন্দিন জীবনের বিভিন্ন গাণিতিক সমস্যা সমাধানে বীজগণিতের প্রয়োগ ও ব্যবহার ব্যাপকভাবে হয়ে থাকে । বীজগণিতীয় প্রতীক দ্বারা প্রকাশিত যেকোনো সাধারণ নিয়ম বা সিদ্ধান্তকে বীজগণিতীয় m_1^2 বা সংক্ষেপে m_1^2 বলা হয় । নানাবিধ গাণিতিক সমস্যা বীজগণিতীয় m_2^2 i সাহায্যে সমাধান করা যায় । সপ্তম শ্রেণিতে প্রথম চারটি m_1^2 ও এদের সাথে $m_i = u_i$ অনুসিদ্ধান্তগুলো সম্বন্ধে $u_i = u_i$ আলোচনা করা হয়েছে । এ অধ্যায়ে সেগুলো পুনরুল্লেখ করা হলো এবং এদের প্রয়োগ দেখানোর জন্য u_i উদাহরণ দেওয়া হলো যেন শিক্ষার্থীরা প্রয়োগ u_i সাহায়ে জ্ঞান অর্জন করতে পারে । এ অধ্যায়ে বীজগণিতীয় u_i প্রয়োগ করে দ্বিপদী ও ত্রিপদী রাশির বর্গ ও ঘন নির্ণয়, মধ্যপদ বিশ্লেষণ, উৎপাদক এবং এদের সাহায্যে কীভাবে বীজগণিতীয় রাশির গ.সা.গু. ও ল.সা.গু. নির্ণয় করা যায় তা u_i u_i

অধ্যায় শেষে শিক্ষার্থীরা-

- বীজগণিতীয় mɨ প্রয়োগ করে দ্বিপদী ও ত্রিপদী রাশির বর্গ নিরূপণ, সরলীকরণ ও মান নির্ণয় করতে পারবে।
- বীজগণিতীয় mɨ প্রয়োগ করে দ্বিপদী ও ত্রিপদী রাশির ঘন নির্ণয়, সরলীকরণ ও মান নির্ণয় করতে পারবে।
- 🕨 মধ্যপদ বিশ্লেষণের সাহায্যে রাশিমালার উৎপাদক বিশ্লেষণ করতে পারবে।
- 🕨 বীজগণিতীয় রাশির গ.সা.গু. ও ল.সা.গু. নির্ণয় করতে পারবে।

4.1 exRMwYZxq m1 vewj

সপ্তম শ্রেণিতে বীজগণিতীয় প্রথম চারটি mɨ ও এদের সাথে m¤úæ অনুসিদ্ধান্তগুলো সম্বন্ধে আলোচনা করা হয়েছে। এখানে সেগুলো পুনরুল্লেখ করা হলো।

 $(a+b)^2$ এর জ্যামিতিক ব্যাখ্যাটি নিমুরূপ :

 $\mathbb{M}^{\mathbb{Z}}$ র্থ পূর্তির ক্ষেত্রটির ক্ষেত্রফল $=(a+b)\times(a+b)=(a+b)^2$

$$\therefore (a+b)^2 = a \times (a+b) + b \times (a+b)$$

$$= a^2 + ab + ab + b^2$$

আবার, বর্গক্ষেত্রটির অংশগুলোর ক্ষেত্রফলের সমষ্টি

$$a \times a + a \times b + b \times a + b \times b$$
$$= a^{2} + ab + ab + b^{2}$$

$$=a^2+2ab+b^2$$

লক্ষ করি, m \mathbb{M} র্থ বর্গক্ষেত্রটির ক্ষেত্রফল = বর্গক্ষেত্রটির অংশগুলোর ক্ষেত্রফলের সমষ্টি $\therefore (a+b)^2 = a^2 + 2ab + b^2$

সপ্তম শ্রেণিতে যে mɨ ও অনুসিন্ধান্তগুলো m¤ú‡K জেনেছি তা হলো :

$$\mathbf{m}\hat{\mathbf{l}} > (a+b)^2 = a^2 + 2ab + b^2$$

কথায়, দুইটি রাশির যোগফলের বর্গ = ১ম রাশির বর্গ + ২ \times ১ম রাশি \times ২য় রাশি + ২য় রাশির বর্গ ।

$$\widehat{\mathbf{M}} = (a - b)^2 = a^2 - 2ab + b^2$$

কথায়, দুইটি রাশির বিয়োগফলের বর্গ = ১ম রাশির বর্গ - ২ imes ১ম রাশি imes ২য় রাশি + ২য় রাশির বর্গ ।

$$\widehat{\mathbf{M}_{+}} \circ (a^2 - b^2) = (a + b)(a - b)$$

কথায়, দুইটি রাশির বর্গের বিয়োগফল = রাশি দুইটির যোগফল imes রাশি দুইটির বিয়োগফল

$$\widehat{\mathbf{M}_{1}}$$
 8 | $(x + a)(x + b) = x^{2} + (a + b)x + ab$

কথায়, দুইটি দ্বিপদী রাশির প্রথম পদ একই হলে, তাদের গুণফল হবে প্রথম পদের বর্গ, স্ব-স্ব চিহ্নযুক্ত দ্বিতীয় পদদ্বয়ের সমষ্টির সাথে প্রথম পদের গুণফল ও স্ব-স্ব চিহ্নযুক্ত দ্বিতীয় পদদ্বয়ের গুণফলের সমষ্টির সমান। অর্থাৎ, $(x+a)(x+b)=x^2+(a$ এবং b এর বীজগণিতীয় যোগফল) x+(a এবং b এর গুণফল)

অনুসিদ্ধান্ত ১।
$$a^2 + b^2 = (a+b)^2 - 2ab$$

অনুসিদ্ধান্ত ২।
$$a^2 + b^2 = (a - b)^2 + 2ab$$

অনুসিদ্ধান্ত ৩।
$$(a+b)^2 = (a-b)^2 + 4ab$$

অনুসিদ্ধান্ত 8 ।
$$(a-b)^2 = (a+b)^2 - 4ab$$

অনুসিদ্ধান্ত
$$(a+b)^2 = (a+b)^2 + (a-b)^2$$

অনুসিদ্ধান্ত ৬।
$$4ab = (a+b)^2 - (a-b)^2$$

বা,
$$ab = \left(\frac{a+b}{2}\right)^2 - \left(\frac{a-b}{2}\right)^2$$

উদাহরণ ১। 3x + 5y এর বর্গ নির্ণয় কর।

সমাধান:
$$(3x + 5y)^2 = (3x)^2 + 2 \times 3x \times 5y + (5y)^2$$

$$\Box \qquad \qquad = 9x^2 + 30xy + 25y^2$$

8२

উদাহরণ ২। বর্গের mf প্রয়োগ করে 25-এর বর্গ নির্ণয় কর।

সমাধান:
$$(25)^2 = (20+5)^2 = (20)^2 + 2 \times 20 \times 5 + (5)^2$$

= $400 + 200 + 25$
= 625

উদাহরণ ৩। 4x - 7y এর বর্গ নির্ণয় কর।

সমাধান:
$$(4x - 7y)^2 = (4x)^2 - 2 \times 4x \times 7y + (7y)^2$$

= $16x^2 - 56xy + 49y^2$

উদাহরণ 8। a+b=8 এবং ab=15 হলে, a^2+b^2 এর মান নির্ণয় কর।

সমাধান:
$$a^2 + b^2 = (a+b)^2 - 2ab$$

- $\Box \qquad \qquad \Box = (8)^2 2 \times 15$
- $\square = 64 30$
- \Box = 34

উদাহরণ ৫। a-b=7 এবং ab=60 হলে, a^2+b^2 এর মান নির্ণয় কর।

সমাধান:
$$a^2 + b^2 = (a - b)^2 + 2ab$$

- $\Box \qquad \qquad \Box = (7)^2 + 2 \times 60$
- $\square = 49 + 120$
- □ = 169

উদাহরণ ৬। x-y=3 এবং xy=10 হলে, $(x+y)^2$ এর মান নির্ণয় কর।

সমাধান:
$$(x + y)^2 = (x - y)^2 + 4xy$$

- $\Box = (3)^2 + 4 \times 10$
- $\square = 9 + 40$
- □ = 19

উদাহরণ ৭। a+b=7 এবং ab=10 হলে, $(a-b)^2$ এর মান নির্ণয় কর।

সমাধান
$$(a-b)^2 = (a+b)^2 - 4ab$$

- $\Box = (7)^2 4 \times 10$
- $\square = 49 40$
- □ = 9

উদাহরণ ৮।
$$x - \frac{1}{x} = 5$$
 হলে, $\left(x + \frac{1}{x}\right)^2$ এর মান নির্ণয় কর।

সমাধান:
$$\left(x + \frac{1}{x}\right)^2 = \left(x - \frac{1}{x}\right)^2 + 4 \times x \times \frac{1}{x}$$

$$= (5)^2 + 4$$

$$= 25 + 4$$

$$= 29$$

কাজ:

 $\mathbf{a} + 5b$ এর বর্গ নির্ণয় কর।

২। 4x - 7 এর বর্গ নির্ণয় কর।

৩। a+b=7 এবং ab=9 হলে, a^2+b^2 এর মান নির্ণয় কর।

8। x-y=5 এবং xy=6 হলে, $(x+y)^2$ এর মান নির্ণয় কর।

উদাহরণ ৯। m $\ddagger \hat{\mathbf{l}}$ i mvnv $\ddagger \hat{\mathbf{h}}^{"}$ 3p+4 কে 3p-4 দ্বারা গুণ কর।

সমাধান: (3p+4)(3p-4)

 $\Box \qquad \qquad \Box \qquad = (3p)^2 - (4)^2$

 $\Box \qquad \qquad \Box = 9p^2 - 16$

উদাহরণ ১০। m $\sharp \hat{\mathbf{l}}$ i mvnv $\sharp \hat{\mathbf{h}}$ 5m+8 কে 5m+9 দারা গুণ কর।

সমাধান: আমরা জানি, $(x + a)(x + b) = x^2 + (x + b)x + ab$

 $\therefore \square (5m+8)(5m+9)$

 $\Box = (25m)^2 + (8+9) \times 5m + 8 \times 9$

 $\Box = 25m^2 + 17 \times 5m + 72$

 $\Box = 25m^2 + 85m + 72$

উদাহরণ ১১। mij Ki $(5a-7b)^2+2(5a-7b)(9b-4a)+(9b-4a)^2$ দ্বারা গুণ কর।

সমাধান : ধরি, (5a - 7b) = x এবং 9b - 4a = y

∴ ্র প্রদত্ত রাশি =
$$x^2 + 2xy + y^2$$

$$\Box \qquad \qquad \Box \qquad \qquad = (x+y)^2$$

$$\square$$
 $=(5a-7b+9b-4a)^2$ $[x$ এবং y এর মান বসিয়ে]

$$\Box \qquad \qquad = (a+2b)^2$$

উদাহরণ ১২। mij Ki (x+6)(x+4) কে দুইটি রাশির অন্তর রূপে প্রকাশ কর।

সমাধান: আমরা জানি,
$$ab = \left(\frac{a+b}{2}\right)^2 - \left(\frac{a-b}{2}\right)^2$$

$$\therefore (x+6)(x+4) = \left(\frac{x+6+x+4}{2}\right)^2 - \left(\frac{x+6-x-4}{2}\right)^2$$
$$= \left(\frac{2x+10}{2}\right)^2 - \left(\frac{2}{2}\right)^2$$
$$= (x+5)^2 - 1^2$$

উদাহরণ ১৩। mij Ki x=4, y=-8 এবং z=5 হলে, $25(x+y)^2-20(x+y)(y+z)+4(y+z)^2$ এর মান কত ?

সমাধান : ধরি, x + y = a এবং y + z = b

∴ প্রদত্ত রাশি =
$$25a^2 - 20ab + 4b^2$$

$$\Box$$
 = $(5a)^2 - 2 \times 5a \times 2b + (2b)^2$

$$= (5a - 2b)^2$$

$$\Box$$
 = $\{5(x+y) - 2(y+z)^2\}$ [a ও b এর মান বসিয়ে]

$$= (5x + 5y - 2y - 2z)^2$$

$$= (5 \times 4 + 3 \times - 8 - 2 \times 5)^2$$
 [x, y ও z এর মান বসিয়ে]

$$\Box$$
 = $(20 - 24 - 10)^2$

$$\Box$$
 = $(-14)^2 = 196$

কাজ: ১। শান্তের সাহায্যে (5x+7y) ও (5x-7y) এর গুণফল নির্ণয় কর।

- ২। Mভ্রের সাহায্যে (x+10) ও (x-14) এর গুণফল নির্ণয় কর।
- ৩। (4x-3y) ও (6x+5y) কে দুইটি রাশির বর্গের অন্তর রূপে প্রকাশ কর।

আবার. বর্গক্ষেত্রটির অংশগুলোর ক্ষেত্রফলের সমষ্টি

$$= a^2 + ab + ac + ab + b^2 + bc + ac + bc + c^2$$

$$= a^2 + 2ab + 2ac + b^2 + 2bc + c^2$$

$$= a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$$

লক্ষ করি, সম্পূর্ণ বর্গক্ষেত্রটির ক্ষেত্রফল = বর্গক্ষেত্রটির অংশগুলোর ক্ষেত্রফলের সমষ্টি

$$\therefore (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$$

উদাহরণ ১৪। mij Ki 2x + 3y + 5z এর বর্গ নির্ণয় কর।

সমাধান : ধরি, 2x = a, 3y = b এবং 5z = c

$$\therefore$$
 প্রদত্ত রাশির বর্গ = $(a+b+c)^2$

$$= a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$$

$$\square$$
 = $(2x)^2 + (3y)^2 + (5z)^2 + 2 \times 2x \times 3y + 2 \times 3y \times 5z + 2 \times 2x \times 5z$ [a, b ও c এর = $4x^2 + 9y^2 + 25z^2 + 12xy + 30yz + 20xz$ মান বসিয়ে]

$$\therefore (4x+3y+5z)^2 = 4x^2 + 9y^2 + 25z^2 + 12xy + 30yz + 20xz$$

উদাহরণ ১৫ । 5a-6b-7c এর বর্গ নির্ণয় কর।

সমাধান:
$$(5a - 6b - 7c)^2 = \{5a - (6b + 7c)\}^2$$

$$= (5a)^2 - 2 \times 5a \times (6b + 7c) + (6b + 7c)^2$$

$$= 25a^2 - 10a(6b + 7c) + (6b)^2 + 2 \times 6b \times 7c + (7c)^2$$

$$= 25a^2 - 60ab - 70ac + 36b^2 + 84bc + 49c^2$$

$$= 25a^2 + 36b^2 + 49c^2 - 60ab + 84bc - 70ac$$

বিকল্প সমাধান :

আমরা জানি,
$$(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz$$

এখানে, $5a=x$, $-6b=y$ এবং $-7c=z$ ধরে
 $(5a-6b-7c)^2=(5a)^2+(-6b)^2+(-7c)^2$
 $+2\times(5a)\times(-6b)+2\times(-6b)\times(-7c)+2\times(5a)\times(-7c)$
 $=25a^2+36b^2+49c^2-60ab+84bc-70ac$

কাজ: m‡l i সাহায্যে বর্গ নির্ণয় কর:

$$3 + ax + by + c$$
 $3 + 4x + 5y - 7z$

Abkxj bx 4.1

meত্রর সাহায্যে নিচের রাশিগুলোর বর্গ নির্ণয় কর:

$$(\overline{\Phi}) 5a + 7b$$

(খ)
$$6x + 3$$

(গ)
$$7p - 2q$$

(ঘ)
$$ax - by$$

(8)
$$x^3 + xy$$

(
$$\overline{b}$$
) $11a - 12b$

(ছ)
$$6x^2y - 5xy^2$$

$$(\overline{\mathfrak{S}}) - x - y$$

$$(\mathbb{P}) - xyz - abc$$

(43)
$$a^2x^3 - b^2v^4$$

$$(\overline{b})$$
 $a-b+$

(5)
$$a - b + c$$
 (4) $ax + b + 2$

$$(\overline{\mathfrak{D}}) xy + yz - zx$$

$$(31) 3n + 2a - 5i$$

(a)
$$3p + 2q - 5r$$
 (b) $x^2 - y^2 - z^2$

$$(4) 7a^2 + 8b^2 - 5c^2$$

সরল কর: ١ \$

$$(\overline{\Phi})$$
 $(x+y)^2 + 2(x+y)(x-y) + (x-y)^2$

$$(\forall)$$
 $(2a+3b)^2-2(2a+3b)(3b-a)+(3b-a)^2$

(
5
) $(3x^2 + 7y^2)^2 + 2(3x^2 + 7y^2)(3x^2 - 7y^2) + (3x^2 - 7y^2)^2$

$$(\forall x + y)^2 - (16x + 2y)(5x + y) + (5x + y)^2$$

(8)
$$(5x^2-3x-2)^2+(2+5x^2-3x)^2-2(5x^2-3x+2)(2+5x^2-3x)$$

৩। ma প্রয়োগ করে গুণফল নির্ণয় কর:

$$(\overline{\Phi}) (x+7)(x-7)$$

$$(4)$$
 $(5x+13)(5x-13)$

(গ)
$$(xy+yz)(xy-yz)$$

$$(ax+b)(ax-b)$$

(8)
$$(a+3)(a+4)$$

$$(\overline{b}) (ax + 3)(ax + 4)$$

(
$$\mathfrak{D}$$
) $(6x+17)(6x-13)$

(
$$\mathfrak{F}$$
) $(a^2+b^2)(a^2-b^2)(a^4+b^4)$

(4)
$$(ax - by + cz)(ax + by - cz)$$
 (43) $(3a - 10)(3a - 5)$

$$(43) (3a-10)(3a-5)$$

$$(\vec{b}) (5a+2b-3c)(5a+2b+3c)$$

$$(\overline{b}) (5a+2b-3c)(5a+2b+3c)$$
 $(\overline{b}) (ax+by+5)(ax+by+3)$

8।
$$a=4, b=6$$
 এবং $c=3$ হলে $4a^2b^2-16ab^2c+16b^2c^2$ এর মান নির্ণয় কর।

৫।
$$x - \frac{1}{x} = 3$$
 হলে, $x^2 + \frac{1}{x^2}$ এর মান নির্ণয় কর।

৬।
$$a + \frac{1}{a} = 4$$
 হলে, $a^4 + \frac{1}{a^4}$ এর মান কত ?

৭। m=6, n=7 হলে, $16(m^2+n^2)^2+56(m^2+n^2)(3m^2-2n^2)+49(3m^2-2n^2)$ এর মান নির্ণয় কর।

৮।
$$a-\frac{1}{a}=m$$
 হলে, দেখাও যে, $a^4+\frac{1}{a^4}=m^4+4m^2+2$

৯।
$$x - \frac{1}{x} = 4$$
 হলে, প্রমাণ কর যে, $x^2 + \left(\frac{1}{x}\right)^2 = 18$

১০ ৷
$$m + \frac{1}{m} = 2$$
 হলে, প্রমাণ কর যে, $m^4 + \frac{1}{m^4} = 2$

১১।
$$x+y=12$$
 এবং $xy=27$ হলে, $(x-y)^2$ ও x^2+y^2 এর মান নির্ণয় কর।

১২।
$$a+b=13$$
 এবং $a-b=3$ হলে, $2a^2+2b^2$ ও ab এর মান নির্ণয় কর।

১৩। দুইটি রাশির বর্গের অন্তর রূপে প্রকাশ কর:

$$(\overline{2}) (5p - 3q)(p + 7q)$$

$$(4) (6a + 9b)(7b - 8a)$$

(
$$\mathfrak{I}$$
) $(3x + 5y)(7x - 5y)$

$$(\Im) (5x + 13)(5x - 13)$$

8.২ ঘনফলের maiবলি ও অনুসিদ্ধান্ত

$$\widehat{H} + (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^2$$

$$= a^3 + b^3 + 3ab(a+b)$$

প্রমাণ:
$$(a+b)^3 = (a+b)(a+b)^2$$

$$\Box = (a+b)(a^2+2ab+b^2)$$

$$= a(a^2 + 2ab + b^2) + b(a^2 + 2ab + b^2)$$

$$= a^3 + 2a^2b + ab^2 + (a^2b + 2ab^2 + b^3)$$

$$\Box = a^3 + 3a^2b + 3ab^2 + b^3$$

$$\Box = a^3 + 3ab(a+b) + b^3$$

অনুসিম্পান্ত ৭। $(a^3 + b^3) = (a + b)^3 - 3ab(a + b)$

$$\widehat{\mathbf{mf}} \ \ \, \forall \ \, (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
$$= a^3 - b^3 - 3ab(a-b)$$

প্রমাণ:
$$(a-b)^3 = (a-b)(a-b)^2$$

$$= (a-b)(a^2 - 2ab + b^2)$$

$$\Box$$
 = $a(a^2 - 2ab + b^2) - b(a^2 - 2ab + b^2)$

$$= a^3 - 2a^2b + ab^2 - a^2b + 2ab^2 - b^3$$

$$\Box = a^3 - 3a^2b + 3ab^2 - b^3$$

$$\Box = a^3 - b^3 - 3ab(a - b)$$

অনুসিম্পান্ত ৮।
$$a^3 - b^3 = (a - b)^3 + 3ab(a - b)$$

উদাহরণ ১৬। 3x + 2y এর ঘন নির্ণয় কর।

সমাধান:
$$(3x + 2y)^3 = (3x)^3 + 3 \times (3x)^2 \times (2y) + 3 \times (3x) \times (2y)^2 + (2y)^3$$

= $27x^3 + 3 \times 9x^2 \times 2y + 3 \times 3x \times 4y^2 + 8y^3$
= $27x^3 + 54x^2y + 36xy^2 + 8y^3$

উদাহরণ ১৭। 2a + 5b এর ঘন নির্ণয় কর।

সমাধান:
$$(2a + 5b)^3 = (2a)^3 + 3 \times (2a)^2 \times (5b) + 3 \times (2a) \times (5b)^2 + (5b)^3$$

= $8a^3 + 3 \times 4a^2 \times 5b + 3 \times 2a \times 25b^2 + 125b^3$
= $8a^3 + 60a^2b + 150ab^2 + 125b^3$

উদাহরণ ১৮। m-2n এর ঘন নির্ণয় কর।

সমাধান:
$$(m-2n)^3 = (m)^3 - 3 \times (m)^2 \times (2n) + 3 \times m \times (2n)^2 - (2n)^3$$

= $m^3 - 3m^2 \times 2n + 3m \times 4n^2 - 8n^3$
= $m^3 - 6m^2n + 12mn^2 - 8n^3$

উদাহরণ ১৯। 4x - 5y এর ঘন নির্ণয় কর।

সমাধান:
$$(4x - 5y)^3 = (4x)^3 - 3 \times (4x)^2 \times (5y) + 3 \times (4x) \times (5y)^2 - (5y)^3$$

= $64x^3 - 3 \times 16x^2 \times 5y + 3 \times 4x \times 25y^2 - 125y^3$
= $64x^3 - 240x^2y + 300xy^2 - 125y^3$

উদাহরণ ২০। x + y - z এর ঘন নির্ণয় কর।

সমাধান:
$$(x+y-z)^3 = \{(x+y)-z\}^3$$

$$= (x+y)^3 - 3(x+y)^2 \times z + 3(x+y) \times z^2 - z^3$$

$$= (x^3 + 3x^2y + 3xy^2 + y^3) - 3(x^2 + 2xy + y^2) \times z + 3(x+y) \times z^2 - z^3$$

$$= x^3 + 3x^2y + 3xy^2 + y^3 - 3x^2z - 6xyz - 3y^2z + 3xz^2 + 3yz^2 - z^3$$

$$= x^3 + y^3 - z^3 + 3x^2y + 3xy^2 - 3x^2z - 3y^2z + 3xz^2 + 3yz^2 - 6xyz$$

কাজ: maga সাহায্যে ঘন নির্ণয় কর:

$$\Rightarrow$$
 $ab + bc$ \Rightarrow $2x - 5y$ \Rightarrow $2x - 3y - z$

উদাহরণ ২১। সরল কর:

$$(4m + 2n)^3 + 3(4m + 2n)^2(m - 2n) + 3(4m + 2n)(m - 2n)^2 + (m - 2n)^3$$

সমাধান : ধরি, 4m + 2n = a এবং m - 2n = b

$$\therefore$$
 প্রদত্ত রাশি = $a^3 + 3a^2b + 3ab^2 + b^3$

$$= (a+b)^3$$

$$= \{(4m + 2n) + (m - 2n)\}^3$$

$$= (4m + 2n + m - 2n)^3$$

$$\square = (5m)^3 = 125m^3$$

উদাহরণ ২২। সরল কর:

$$(4a - 8b)^3 - (3a - 9b)^3 - 3(a + b)(4a - 8b)(3a - 9b)$$

সমাধান : ধরি, 4a + 8b = x এবং 3a - 9b = y

$$\therefore x - y = (4a - 8b) - (3a - 9b) = 4a - 8b - 3a + 9b = a + b$$

এখন প্রদত্ত রাশি $= x^3 - y^3 - 3(x - y) \times x \times y$

$$\Box = x^3 - y^3 - 3xy(x - y)$$

$$= (x - y)^3$$

$$= (a+b)^3$$

$$= a^3 + 3a^2b + 3ab^2 + b^3$$

উদাহরণ ২৩। a+b=3 এবং ab=2 হলে, a^3+b^3 এর মান নির্ণয় কর।

সমাধান:
$$a^3 + b^3 = (a+b)^3 - 3ab(a+b)$$

= $(3)^3 - 3 \times 2 \times 3$ [মান বসিয়ে]
= $27 - 18 = 9$

বিকল্প সমাধান দেওয়া আছে, a+b=3 এবং ab=2

এখন,
$$a + b = 3$$

বা, $(a + b)^3 = (3)^3$ [উভয়পক্ষকে ঘন করে]
বা, $a^3 + b^3 + 3ab(a + b) = 27$
বা, $a^3 + b^3 + 3 \times 2 \times 3 = 27$
বা, $a^3 + b^3 + 18 = 27$
বা, $a^3 + b^3 = 27 - 18$
 $\therefore a^3 + b^3 = 9$

উদাহরণ ২৪। x-y=10 এবং xy=30 হলে, x^3-y^3 এর মান নির্ণয় কর।

সমাধান:
$$x^3 - y^3 = (x - y)^3 + 3xy(x - y)$$

= $(10)^3 + 3 \times 30 \times 10$
= $1000 + 900$
= 1900

উদাহরণ ২৫। x + y = 4 হলে, $x^3 + y^3 + 12xy$ এর মান কত ?

সমাধান: $x^3 + y^3 + 12xy = x^3 + y^3 + 3 \times 4 \times xy$

$$= x^3 + y^3 + 3(x+y) \times xy$$

$$= x^3 + y^3 + 3xy(x+y)$$

$$= (x+y)^3$$

$$= (4)^3$$

উদাহরণ ২৬। $a + \frac{1}{a} = 7$ হলে, $a^3 + \frac{1}{a^3}$ এর মান নির্ণয় কর।

সমাধান:
$$a^3 + \frac{1}{a^3} = a^3 + \left(\frac{1}{a}\right)^3$$

$$= \left(a + \frac{1}{a}\right)^3 - 3 \times a \times \frac{1}{a} \left(a + \frac{1}{a}\right)$$
$$= (7)^3 - 3 \times 7$$
$$= 343 - 21$$
$$= 322$$

উদাহরণ ২৭।
$$m=2$$
 হলে, $27m^3+54m^2+36m+3$ এর মান নির্ণয় কর। সমাধান : প্রদন্ত রাশি = $(3m)^3+3\times(3m)^2\times2+3\times(3m)\times(2)^2+(2)^3-5$ = $(3m+2)^3-5$ [m এর মান বসিয়ে] = $(6+2)^3-5=8^3-5$ = $512-5=507$

কাজ : ১ । সরল কর :
$$(7x-6)^3 - (5x-6)^3 - 6x(7x-6)(5x-6)$$
২ । $a+b=10$ এবং $ab=21$ হলে, a^3+b^3 এর মান নির্ণয় কর ।
৩ । $a+\frac{1}{a}=3$ হলে, দেখাও যে, $a^3+\frac{1}{a^3}=18$

8.৩ ঘনফলের সাথে সম্পৃক্ত আরও দুইটি সূত্র

সূত্র ৭ ৷
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$
প্রমাণ : $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$

$$= (a+b)\{(a+b)^2 - 3ab\}$$

$$= (a+b)(a^2 + 2ab + b^2 - 3ab)$$

$$= (a+b)(a^2 - ab + b^2)$$
বিপরীতভাবে, $(a+b)(a^2 - ab + b^2)$

$$= a(a^2 - ab + b^2) + b(a^2 - ab + b^2)$$

$$= a^3 - a^2b + ab^2 + a^2b - ab^2 + b^3$$

$$= a^3 + b^3$$

 $(a+b)(a^2-ab+b^2) = a^3+b^3$

সূত্র ৮ ।
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

প্রমাণ : $a^3 - b^3 = (a - b)^3 + 3ab(a - b)$
$$= (a - b)\{(a - b)^2 + 3ab\}$$

$$= (a - b)(a^2 - 2ab + b^2 + 3ab)$$

$$= (a - b)(a^2 + ab + b^2)$$

বিপরীতভাবে,
$$(a-b)(a^2+ab+b^2)$$

$$= a(a^2+ab+b^2) - b(a^2+ab+b^2)$$

$$= a^3+a^2b+ab^2-a^2b-ab^2-b^3$$

$$= a^3-b^3$$

$$(a-b)(a^2+ab+b^2) = a^3-b^3$$

উদাহরণ ২৮ । $27x^4 + 8xy^3$ কে উৎপাদকে বিশ্লেষণ কর ।

সমাধান:
$$27x^4 + 8xy^3 = x(27x^3 + 8y^3)$$

$$= x\{(3x)^3 + (2y)^3\}$$

$$= x(3x + 2y)\{(3x)^2 - (3x) \times (2y) + (2y)^2\}$$

$$= x(3x + 2y)(9x^2 - 6xy + 4y^2)$$

উদাহরণ ২৯ । $24x^3 - 81y^3$ কে উৎপাদকে বিশ্লেষণ কর ।

সমাধান:
$$24x^3 - 81y^3 = 3(8x^3 - 27y^3)$$

= $3\{(2x)^3 - (3y)^3\}$
= $3(2x - 3y)\{(2x)^2 + (2x) \times (3y) + (3y)^2\}$
= $3(2x - 3y)(4x^2 + 6xy + 9y^2)$

উদাহরণ ৩০ । সূত্রের সাহায্যে (x^2+2) ও (x^4-2x^2+4) এর গুণফল নির্ণয় কর ।

সমাধান:
$$(x^2 + 2)(x^4 - 2x^2 + 4)$$

= $(x^2 + 2)\{(x^2)^2 - x^2 \times 2 + 2^2\}$
= $(x^2)^3 + (2)^3$
= $x^6 + 8$

উদাহরণ ৩১। সূত্রের সাহায্যে (4a-5b) ও $(16a^2+20ab+25b^2)$ এর গুণফল নির্ণয় কর।

সমাধান:
$$(4a-5b)(16a^2+20ab+25b^2)$$

= $(4a-5b)\{(4a)^2+4a\times5b+(5b)^2\}$
= $(4a)^3-(5b)^3$
= $64a^3-125b^3$

কাজ : ১ । সূত্রের সাহায্যে (2a+3b) ও $(4a^2-6ab+9b^2)$ এর গুণফল নির্ণয় কর । ২ । $27a^3-8$ কে উৎপাদকে বিশ্লেষণ কর ।

অনুশীলনী ৪.২

১। সূত্রের সাহায্যে নিচের রাশিগুলোর ঘন নির্ণয় কর:

(
$$\overline{\phi}$$
) $3x + y$ ($\overline{\psi}$) $x^2 + y$ ($\overline{\eta}$) $5p + 2q$ ($\overline{\psi}$) $a^2b + c^2d$ ($\underline{\psi}$) $6p - 7$ ($\overline{\nu}$) $ax - by$

(a)
$$2p^2 - 3r^2$$
 (b) $x^3 + 2$ (c) $2m + 3n - 5p$ (d) $x^2 - y^2 + z^2$ (d) $a^2b^2 - c^2d^2$

(a)
$$a^2b - b^3c$$
 (b) $x^3 - 2y^3$ (c) $11a - 12b$ (d) $x^3 + y^3$

২। সরল কর:

$$(\overline{\Phi}) (3x+y)^3 + 3(3x+y)^2(3x-y) + 3(3x+y)(3x-y)^2 + (3x-y)^3$$

(
$$\forall$$
) $(2p+5q)^2 + 3(2p+5q)^2(5q-2p) + 3(2p+5q)(5q-2p)^2 + (5q-2p)^3$

(
$†$
) $(x+2y)^3 - 3(x+2y)^2(x-2y) + 3(x+2y)(x-2y)^2 - (x-2y)^3$

$$(\forall 1) (6m+2)^3 - 3(6m+2)^2(6m-4) + 3(6m+2)(6m-4)^2 - (6m-4)^3$$

(8)
$$(x-y)^3 + (x+y)^3 + 6x(x^2-y^2)$$

৩।
$$a+b=8$$
 এবং $ab=15$ হলে, a^3+b^3 এর মান কত ?

$$8 + x + y = 2$$
 হলে, দেখাও যে, $x^3 + y^3 + 6xy = 8$

৫।
$$2x + 3y = 13$$
 এবং $xy = 6$ হলে, $8x^3 + 27y^3$ এর মান নির্ণয় কর।

৬।
$$p-q=5, pq=3$$
 হলে, p^3-q^3 এর মান নির্ণয় কর।

গণিত ው የ

৭।
$$x-2y=3$$
 হলে, x^3-8y^3-18xy এর মান নির্ণয় কর।

৮ ।
$$4x-3=5$$
 হলে, প্রমাণ কর যে, $64x^3-27-180x=125$

৯।
$$a=-3$$
 এবং $b=2$ হলে, $8a^3+36a^2b+54ab^2+27b^3$ এর মান নির্ণয় কর।

১০।
$$a = 7$$
 হলে, $a^3 + 6a^2 + 12a + 1$ এর মান নির্ণয় কর।

১১ ৷
$$x = 5$$
 হলে, $x^3 - 12x^2 + 48x - 64$ এর মান কত ?

১২ ৷
$$a^2 + b^2 = c^2$$
 হলে, প্রমাণ কর যে, $a^6 + b^6 + 3a^2b^2c^2 = c^6$

১৩ ৷
$$x + \frac{1}{x} = 4$$
 হলে, প্রমাণ কর যে, $x^3 + \frac{1}{x^3} = 52$

১৪ ৷
$$a - \frac{1}{a} = 5$$
 হলে, $a^3 - \frac{1}{a^3}$ এর মান কত ?

১৫। সূত্রের সাহায্যে গুণফল নির্ণয় কর:

$$(\overline{\Phi}) (a^2 + b^2)(a^4 - a^2b^2 + b^4)$$

(
$$\overline{\Phi}$$
) $(a^2 + b^2)(a^4 - a^2b^2 + b^4)$ ($\overline{\Psi}$) $(ax - by)(a^2x^2 + abxy + b^2y^2)$

(1)
$$(2ab^2 - 1)(4a^2b^4 + 2ab^2 + 1)$$
 (1) $(x^2 + a)(x^4 - ax^2 + a^2)$

$$(\mathfrak{V}) (x^2 + a)(x^4 - ax^2 + a^2)$$

(8)
$$(7a+4b)(49a^2-28ab+16b^2)$$
 (5) $(2a-1)(4a^2+2a+1)(8a^3+1)$

(
$$\overline{b}$$
) $(2a-1)(4a^2+2a+1)(8a^3+1)$

$$(\nabla) (x+a)(x^2-ax+a^2)(x-a)(x^2+ax+a^2)$$

$$(\mathfrak{F}) (5a+3b)(25a^2-15ab+9b^2)(125a^3-27b^3)$$

১৬। উৎপাদকে বিশ্লেষণ কর:

$$(\overline{\Phi}) \ a^3 + 8$$

$$(4) 8x^3 + 343$$

(*)
$$8x^3 + 343$$
 (*) $8a^4 + 27ab^3$

$$(a) 8x^3 + 1$$

(8)
$$64a^3 - 125b^3$$

$$(5) 729a^3 - 64b^3c^6$$

(a)
$$27a^3b^3 + 64b^3c^3$$
 (b) $56x^3 - 189y^3$

(জ)
$$56x^3 - 189y^3$$

8.8 উৎপাদকে বিশ্বেষণ

উৎপাদক: যদি কোনো বীজগণিতীয় রাশি দুই বা ততোধিক রাশির গুণফল হয়. তাহলে শেষোক্ত রাশিগুলোর প্রত্যেকটিকে প্রথম রাশির উৎপাদক বা গুণনীয়ক (Factor) বলা হয়। যেমন, $a^2-b^2=(a+b)(a-b)$, এখানে (a+b) ও (a-b) উৎপাদক।

উৎপাদকে বিশ্লেষণ: যখন কোনো বীজগণিতীয় রাশিকে m $^{\mu}$ e $^{\mu}$ দুই বা ততোধিক সরল রাশির গুণফলরূপে প্রকাশ করা হয়, তখন এ উৎপাদকে বিশ্লেষণ করা বলে এবং ঐ সরল রাশিগুলোর প্রত্যেকটিকে প্রথমোক্ত রাশির উৎপাদক বলা হয়। যেমন, $x^2 + 2x = x(x+2)$ [এখানে $x \in (x+2)$) উৎপাদক]

উৎপাদক নির্ণয় করার নিয়মগুলো নিচে দেওয়া হলো :

(K) $m_{W}eavg^{\dagger}Zv m_{W}R^{\dagger}q$:

$$px-qy+qx-py$$
 কে সাজানো হলো, $px+qx-py-qy$ রূপে।
এখন, $px+qx-py-qy=x(p+q)-y(p+q)=(p+q)(x-y)$.
আবার, $px-qy+qx-py$ কে সাজানো হলো, $px-py+qx-qy$ রূপে।
এখন, $px-py+qx-qy=p(x-y)+q(x-y)=(x-y)(p+q)$.

(L) GKWU iwwk‡K cY@M@AvKv‡i cKVk K‡i :

$$x^{2} + 4xy + 4y^{2} = (x)^{2} + 2 \times x \times 2y + (2y)^{2}$$
$$= (x + 2y)^{2} = (x + 2y)(x + 2y)$$

(গ) একটি রাশিকে দুইটি বর্গের অন্তর রূপে প্রকাশ করে এবং $a^2-b^2\,\mathrm{m}\hat{\mathbf{I}}\,$ প্রয়োগ করে :

$$a^2 + 2ab - 2b - 1$$

 $=a^2+2ab+b^2-b^2-2b-1$ [এখানে b^2 একবার যোগ এবং একবার বিয়োগ করা হয়েছে। এতে রাশির মানের কোনো পরিবর্তন হয় না]

$$= (a^{2} + 2ab + b^{2}) - (b^{2} + 2b + 1)$$

$$= (a + b)^{2} - (b + 1)^{2}$$

$$= (a + b + b + 1)(a + b - b - 1)$$

$$= (a + 2b + 1)(a - 1)$$

বিকল্প নিয়ম:

$$a^{2} + 2ab - 2b - 1$$

$$= (a^{2} - 1) + (2ab - 2b)$$

$$= (a + 1)(a - 1) + 2b(a - 1)$$

$$= (a - 1)(a + 1 + 2b)$$

$$= (a - 1)(a + 2b + 1)$$

(ঘ)
$$x^2 + (a+b)x + ab = (x+a)(x+b)$$
 সূত্রটি ব্যবহার করে:
$$x^2 + 7x + 10 = x^2 + (2+5)x + 2 \times 5$$
$$= (x+2)(x+5)$$

(৬) একটি রাশিকে ঘন আকারে প্রকাশ করে:

$$8x^{3} + 36x^{2} + 54x + 27$$

$$= (2x)^{3} + 3 \times (2x)^{2} \times 3 + 3 \times 2x \times (3)^{2} + (3)^{3}$$

$$= (2x + 3)^{3}$$

$$= (2x + 3)(2x + 3)(2x + 3)$$

(b)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$
 and $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$

সূত্র দুইটি ব্যবহার করে:

$$8x^{3} + 125 = (2x)^{3} + (5)^{3} = (2x+5)\{(2x)^{2} - (2x) \times 5 + (5)^{2}\}\$$

$$= (2x+5)(4x^{2} - 10x + 25)$$

$$27x^{3} - 8 = (3x)^{3} - (2)^{3} = (3x-2)\{(3x)^{2} + (3x) \times 2 + (2)^{2}\}\$$

$$= (3x-2)(9x^{2} + 6x + 4)$$

কাজ: উৎপাদকে বিশ্লেষণ কর:

$$3 + 4x^2 - y^2$$
 $8 + 6ab^2 - 24a$ $9 + x^2 + 2px + p^2 - 4$ $8 + x^3 + 27y^3$

8.৫ $x^2 + px + q$ আকারের রাশির উৎপাদক

আমরা জানি, $x^2 + (a+b)x + ab = (x+a)(x+b)$ । এই madba বামপাশের রাশির সাথে $x^2 + px + q$ এর Z**j** by করলে দেখা যায় যে, উভয় রাশিতেই তিনটি পদ আছে, প্রথম পদটি x^2 ও এর সহগ 1 (এক), দ্বিতীয় বা মধ্য পদটিতে x আছে, যার সহগ যথাক্রমে (a+b) ও p এবং তৃতীয় পদটি x বর্জিত, যেখানে যথাক্রমে ab ও q আছে। $x^2 + (a+b)x + ab$ এর দুইটি উৎপাদক। অতএব, $x^2 + px + q$ এরও দুইটি উৎপাদক হবে।

মনে করি, $x^2 + px + q$ এর উৎপাদক দুইটি (x + a) ও (x + b)

সুতরাং,
$$x^2 + px + q = (x + a)(x + b) = x^2 + (a + b)x + ab$$

তাহলে, p = a + b এবং q = ab

এখন, x^2+px+q এর উৎপাদক নির্ণয় করতে হলে, q কে এমন দুইটি উৎপাদকে প্রকাশ করতে হবে যার বীজগণিতীয় সমষ্টি p হয়। এই প্রক্রিয়াকে মধ্যপদ বিশ্লেষণ $Middle\ term\ breakup\ বলে।$

 $x^2 + 7x + 12$ রাশিটিকে উৎপাদকে বিশ্লেষণ করতে হলে 12 কে এমন দুইটি উৎপাদকে প্রকাশ করতে হবে যার সমষ্টি 7 এবং গুণফল 12 হয়। 12 এর সম্ভাব্য উৎপাদক †Rvowmgn (1,12), (2,6), ও (3,4)। এদের মধ্যে (3,4) জোড়াটির সমষ্টি (3+4)=7 এবং গুণফল $3\times 4=12$

$$\therefore x^2 + 7x + 12 = (x+3) (x+4)$$

মন্তব্য: প্রতিক্ষেত্রে p ও q উভয়ই ধনাত্মক বিবেচনা করে, x^2+px+q , x^2-px+q , x^2+px-q এবং x^2-px-q আকারের রাশির উৎপাদকে বিশ্লেষণ করতে হলে, প্রথম ও দ্বিতীয় রাশিতে q ধনাত্মক হওয়াতে q এর উৎপাদক দুইটি একই চিহ্নযুক্ত রাশি অর্থাৎ, উভয়ই ধনাত্মক অথবা উভয়ই ঋণাত্মক হবে। এক্ষেত্রে, p ধনাত্মক হলে, এর উভয় উৎপাদকই ঋণাত্মক হবে।

তৃতীয় ও চতুর্থ আকারের রাশিতে q ঋণাত্মক অর্থাৎ, (-q) হওয়াতে q এর উৎপাদক দুইটি বিপরীত চিহ্নযুক্ত হবে এবং p ধনাত্মক হলে, উৎপাদক দুইটির ধনাত্মক সংখ্যাটি ঋণাত্মক সংখ্যাটির পরম মান থেকে বড় হবে। আর p ঋণাত্মক হলে, উৎপাদক দুইটির ঋণাত্মক সংখ্যার পরম মান ধনাত্মক সংখ্যা থেকে বড় হবে।

উদাহরণ ১ । $x^2 + 5x + 6$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান: এমন দুইটি ধনাত্মক সংখ্যা নির্ণয় করতে হবে, যাদের সমস্টি 5 এবং গুণফল 6। 6 এর সম্ভাব্য উৎপাদক জোড়াগুলো n‡"Q (1, 6) ও (2, 3)।

এদের মধ্যে (2,3) জোড়াটির সংখ্যাগুলোর সমষ্টি 2+3=5 এর গুণফল $2\times 3=6$

$$\therefore x^2 + 5x + 6 = x^2 + 2x + 3x + 6$$
$$= x(x+2) + 3(x+2)$$
$$= (x+2)(x+3)$$

উদাহরণ ২। $x^2 - 15x + 54$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান : এমন দুইটি সংখ্যা নির্ণয় করতে হবে যাদের সমষ্টি -15 এবং গুণফল 54। এখানে দুইটি সংখ্যার সমষ্টি ঋণাতাক, কিন্তু গুণফল ধনাতাক। কাজেই, সংখ্যা দুইটি উভয়ই ঋণাতাক হবে।

54 এর সম্ভাব্য উৎপাদক জোড়াগুলো $n\sharp 0$ (-1, -54), (-2, -27), (-3, -18), (-6, -9)। এদের মধ্যে (-6, -9) এর সংখ্যাগুলোর সমষ্টি = -6, -9 = -15 এবং এদের গুণফল $(-6) \times (-9) = 54$

$$\therefore x^2 - 15x + 54 = x^2 - 6x - 9x + 54$$
$$= x(x - 6) - 9(x - 6)$$
$$= (x - 6)(x - 9)$$

উদাহরণ ৩। $x^2 + 2x - 15$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান: এমন দুইটি সংখ্যা নির্ণয় করতে হবে যাদের সমষ্টি 2 এবং গুণফল (-15)। এখানে দুইটি সংখ্যার সমষ্টি ধনাত্মক, কিন্তু গুণফল ঋণাত্মক। কাজেই, সংখ্যা দুইটির মধ্যে যে সংখ্যার পরম মান বড় সেই সংখ্যাটি ধনাত্মক, আর যে সংখ্যার পরম মান ছোট সে সংখ্যাটি ঋণাত্মক হবে। (-15) এর সম্ভাব্য জোড়াগুলো $n \sharp 0$ (-1, 15), (-3, 5)।

এদের মধ্যে (-3, 5) এর সংখ্যাগুলোর সমষ্টি = -3 + 5 = 2

$$\therefore x^2 + 2x - 15 = x^2 + 5x - 3x - 15$$
$$= x(x+5) - 3(x+5)$$
$$= (x+5)(x-3)$$

উদাহরণ ৪। $x^2 - 3x - 28$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান: এমন দুইটি সংখ্যা নির্ণয় করতে হবে যাদের সমষ্টি (-3) এবং গুণফল (-28)। এখানে দুইটি সংখ্যার সমষ্টি ঋণাত্মক এবং গুণফল ঋণাত্মক, কাজেই সংখ্যা দুইটির মধ্যে যে সংখ্যার পরম মান বড় সেই সংখ্যাটি ঋণাত্মক, আর যে সংখ্যাটির পরম মান ছোট সেই সংখ্যাটি ধনাত্মক হবে। (-28) এর সম্ভাব্য উৎপাদক জোড়াগুলো n!''0, (+1,28), (2,-14) ও (4,-7)। এদের মধ্যে (4,-7) এর সংখ্যাগুলোর সমষ্টি =-7+4=-3

$$\therefore x^2 - 3x - 28 = x^2 - 7x + 4x - 28$$
$$= x(x - 7) + 4(x - 7)$$
$$= (x - 7)(x + 4)$$

কাজ: উৎপাদকে বিশ্লেষণ কর:

$$3 + x^2 - 18x + 72$$
 $8 + x^2 - 9x - 36$ $9 + x^2 - 23x + 132$

8.৬ $ax^2 + bx + c$ আকারের রাশির উৎপাদক

মনে করি,
$$ax^2 + bx + c = (rx + p)(sx + q)$$
$$= rsx^2 + (rq + sp)x + pq$$

তাহলে, a = rs, b = rq + sp এবং c = pq

সুতরাং, $ac = rspq = rq \times sp$ এবং b = rq + sp

এখন, ax^2+bx+c আকারের রাশিকে উৎপাদকে বিশ্লেষণ করতে হলে, x^2 এর সহগ a এবং ধ্রুবকের গুণফলকে এমন দুইটি উৎপাদকে প্রকাশ করতে হবে, যেন এদের বীজগণিতীয় যোগফল x এর সহগ b এর সমান হয়।

 $2x^2 + 11x + 15$ রাশিটিকে উৎপাদকে বিশ্লেষণ করতে হলে, $(2 \times 15) = 30$ কে এমন দুইটি উৎপাদকে প্রকাশ করতে হবে, যার যোগফল 11 এবং গুণফল 30 হয়।

30 এর উৎপাদক †Rvowmgn (1, 30), (2, 15), (3, 10) ও (5, 6) এর মধ্যে (5, 6) জোড়াটির যোগফল = 5 + 6 = 11 এবং গুণফল $5 \times 6 = 30$.

$$\therefore 2x^2 + 11x + 15 = 2x^2 + 5x + 6x + 15$$
$$= x(2x+5) + 3(2x+5) = (2x+5)(x+3)$$

মন্তব্য : $ax^2 + bx + c$ এর উৎপাদকে বিশ্লেষণের সময় $ax^2 + px + q$ এর p, q এর ধনাত্মক ও ঋণাত্মক বিভিন্ন চিহ্নযুক্ত মানের জন্য যে নিয়ম অনুসরণ করা হয়েছে ; a,b,c এর চিহ্নযুক্ত মানের জন্য একই নিয়ম অনুসরণ করতে হবে। এক্ষেত্রে p এর পরিবর্তে b কে এবং q এর পরিবর্তে $(a \times c)$ কে ধরতে হবে।

উদাহরণ ৫। $2x^2 + 9x + 10$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান : এখানে, $2 \times 10 = 20 \ [x^2$ এর সহগ ও ধ্রুবক পদের গুণফল]

এখন,
$$4 \times 5 = 20$$
 এবং $4 + 5 = 9$

$$\therefore 2x^2 + 9x + 10 = 2x^2 + 4x + 5x + 10$$

উদাহরণ ৬। $3x^2 + x - 10$ কে উৎপাদকে বিশ্লেষণ কর।

এখন,
$$(-5) \times 6 = -30$$
 এবং $(-5) + 6 = 1$

$$3x^{2} + x + 10 = 3x^{2} + 6x - 5x - 10$$
$$= 3x(x+2) - 5(x+2)$$
$$= (x+2)(3x-5)$$

উদাহরণ ৭ । $4x^2 - 23x + 33$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান: এখানে, $4 \times 33 = 132$

এখানে,
$$(-11) \times (-12) = 132$$
 এবং $(-11) + (-12) = -23$

$$\therefore 4x^2 - 23x + 33 = 4x^2 - 11x - 12x + 33$$

$$= x(4x - 11) - 3(4x - 11)$$

$$= (4x-11)(x-3)$$

উদাহরণ ৮। $9x^2 - 9x - 4$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান: এখানে, $9 \times (-4) = -36$

এখানে,
$$3 \times (-12) = -36$$
 এবং $3 + (-12) = -9$

$$\therefore 9x^2 - 9x - 4 = 9x^2 + 3x - 12x - 4$$

$$\Box = 3x(3x+1) - 4(3x+1)$$

$$\Box = (3x+1)(3x-4)$$

কাজ: উৎপাদকে বিশ্রেষণ কর:

$$3 + 8x^2 + 18x + 9$$
 $2 + 27x^2 + 15x + 2$ $9 + 2a^2 - 6a - 20$

অনুশীলনী ৪.৩

উৎপাদকে বিশ্লেষণ কর:

৪.৭ বীজগণিতীয় রাশির গ.সা.গু. ও ল.সা.গু.

 $99 + a^3 - 3a^2b + 3ab^2 - 2b^3$

সপ্তম শ্রেণিতে Aba $\ddot{\gamma}$ তিনটি বীজগণিতীয় রাশির সাংখ্যিক সহগসহ গ.সা.গু. ও ল.সা.গু. নির্ণয় m $\ddot{\mu}$ $\ddot{\mu}$ K সম্যক ধারণা দেওয়া হয়েছে। এখানে সংক্ষেপে এ m $\ddot{\mu}$ $\ddot{\mu}$ K পুনরালোচনা করা হলো।

সাধারণ গুণনীয়ক: যে রাশি দুই বা ততোধিক রাশির প্রত্যেকটির গুণনীয়ক, একে উক্ত রাশিগুলোর সাধারণ গুণনীয়ক (Common factor) বলা হয়। যেমন, x^2y , xy, xy^2 , 5x রাশিগুলোর সাধারণ গুণনীয়ক হলো x। আবার, (a^2-b^2) , $(a+b)^2$, (a^3+b^3) রাশিগুলোর সাধারণ গুণনীয়ক (a+b).

8.৭.১ গরিষ্ঠ সাধারণ গুণনীয়ক (গ.সা.গু.)

দুই বা ততোধিক রাশির ভিতর যতগুলো মৌলিক সাধারণ গুণনীয়ক আছে, এদের সকলের গুণফলকে ঐ রাশিদ্বয় বা

রাশিগুলোর গরিষ্ঠ সাধারণ গুণনীয়ক ($Highest\ Common\ Factor$) বা সংগ্রেপ গ.সা.গু. (H.C.F.) বলা হয়। যেমন, $a^3b^2c^3$, $a^5b^3c^4$ ও $a^4b^3c^2$ এই রাশি তিনটির গ.সা.গু. হবে $a^3b^2c^2$ । আবার, $(x+y)^2$, $(x+y)^3$, (x^2-y^2) এই তিনটি রাশির গ.সা.গু. (x+y) ।

গ.সা.গু. নির্ণয়ের নিয়ম

প্রথমে পাটিগণিতের নিয়মে প্রদত্ত রাশিগুলোর সাংখ্যিক সহগের গ.সা.গু. নির্ণয় করতে হবে। এরপর বীজগণিতীয় রাশিগুলোর মৌলিক উৎপাদক বের করতে হবে। অতঃপর সাংখ্যিক সহগের গ.সা.গু. এবং প্রদত্ত রাশিগুলোর m‡ePP বীজগণিতীয় সাধারণ মৌলিক উৎপাদকগুলোর ধারাবাহিক গুণফলই হবে নির্ণেয় গ.সা.গু.।

উদাহরণ ১। $9a^3b^2c^2$, $12a^2bc$, $15ab^3c^3$ এর গ.সা.গু. নির্ণয় কর।

সমাধান: 9, 12, 15-এর গ.সা.গু. = 3

 a^3 , a^2 , a -এর গ.সা.গু = a

 b^2 , b, b^3 -এর গ.সা.গু = b

 c^2 , c, c^3 -এর গ.সা.গু = c

∴ নির্ণেয় গ.সা.গু. 3abc

উদাহরণ ২। x^2-2y^2 , x^2-4 , xy-2y এর গ.সা.গু. নির্ণয় কর।

সমাধান : এখানে, প্রথম রাশি $= x^3 - 2x^2 = x^2(x-2)$ দ্বিতীয় রাশি $= x^2 - 4 = (x+2)(x-2)$

তৃতীয় রাশি = xy - 2y = y(x - 2)

রাশিগুলোতে সাধারণ উৎপাদক (x-2) এবং এর স \downarrow ePP সাধারণ ঘাতhy 3 উৎপাদক (x-2).

 \therefore গ.সা.গু. = (x-2)

উদাহরণ ৩। $x^2y(x^3-y^3)$, $x^2y^2(x^4+x^2y^2+y^4)$ এবং $x^3y^2+x^2y^3+xy^4$ এর গ.সা.গু. নির্ণয় কর।

সমাধান: এখানে, প্রথম রাশি = $x^2y(x^3 - y^3)$

$$= x^2 y(x - y)(x^2 + xy + y^2)$$

মিতীয় রাশি
$$= x^2 y^2 (x^4 + x^2 y^2 + y^4)$$

$$= x^2 y^2 \{ (x^2)^2 + 2x^2 y^2 + (y^2)^2 - x^2 y^2 \}$$

$$= x^2 y^2 \{ (x^2 + y^2)^2 - (xy)^2 \}$$

$$= x^2 y^2 \{ (x^2 + y^2 + xy)(x^2 + y^2 - xy) \}$$

$$= x^2 y^2 (x^2 + xy + y^2)(x^2 - xy + y^2)$$

তৃতীয় রাশি = $x^3y^2 + x^2y^3 + xy^4 = xy^2(x^2 + xy + y^2)$ এখানে, প্রথম, দ্বিতীয় ও তৃতীয় রাশির সাধারণ উৎপাদক $xy(x^2 + xy + y^2)$

$$\therefore$$
 গ.সা.গু.= $xy(x^2+xy+y^2)$

কাজ: গ.সা.গু. নির্ণয় কর:

 $\mathbf{b} + 15a^3b^2c^4$, $25a^2b^4c^3$ এবং $20a^4b^3c^2$

২ $(x+2)^2$, (x^2+2x) এবং (x^2+5x+6)

৩ । $6a^2 + 3ab$, $2a^2 + 5a - 12$ এবং $a^4 - 8a$

সাধারণ গুণিতক: কোনো একটি রাশি অপর দুই বা ততোধিক রাশি দ্বারা নিঃশেষে বিভাজ্য হলে, ভাজ্যকে ভাজকদ্বয় বা ভাজকণুলোর সাধারণ গুণিতক (Common Multiple) বলে। যেমন, a^2b^2c রাশিটি a, b, c $ab, ac, a^2b, ab^2, a^2c, b^2c$ রাশিগুলোর প্রত্যেকটি দ্বারা বিভাজ্য। সুতরাং, a^2b^2c রাশিটি a, b, c ab, bc, a^2b, a^2c, b^2c রাশিগুলোর সাধারণ গুণিতক। আবার, $(a+b)^2(a-b)$ রাশিটি $(a+b), (a+b)^2$ ও (a^2-b^2) রাশি তিনটির সাধারণ গুণিতক।

8.৭.২ লঘিষ্ঠ সাধারণ গুণিতক (ল.সা.গু.)

দুই বা ততোধিক রাশির সম্ভাব্য সকল উৎপাদকের m‡ePP ঘাতের গুণফলকে রাশিগুলোর লঘিষ্ঠ সাধারণ গুণিতক (Least Common Multiple) বা সংক্ষেপে ল.সা.গু. (L.C.M.) বলা হয়।

যেমন, x^2y^2z রাশিটি x^2yz , xy^2 ও xyz রাশি তিনটির ল.সা.গু.। আবার, $(x+y)^2(x-y)$ রাশিটি (x+y), $(x+y)^2$ ও (x^2-y^2) রাশি তিনটির ল.সা.গু.।

ल.मा. १ . निर्णस्त्रत्र निराम

প্রথমে প্রদত্ত রাশিগুলোর সাংখ্যিক সহগের ল.সা.গু. নির্ণয় করতে হবে।

এরপর সাধারণ উৎপাদকের m‡ePP ঘাত বের করতে হবে। অতঃপর উভয়ের গুণফলই হবে প্রদত্ত রাশিগুলোর ল.সা.গু.।

উদাহরণ 8। $4a^2bc$, $4ab^2c$, $6a^2b^2c$ এর ল.সা.গু. নির্ণয় কর।

সামাধান : এখানে, 4, 8 ও 6 এর ল.সা.গু =24

প্রদত্ত রাশিগুলোর m‡e $^{\mathbb{P}}$ P সাধারণ ঘাতের উৎপাদক যথাক্রমে $a^2,\,b^2,\,c$

 \therefore ল.সা.গু= $24a^2b^2c$.

উদাহরণ ৫। $x^3 + x^2 y$, $x^2 y + x y^2$, $x^3 + y^3$ এবং $(x + y)^3$ এর ল.সা.গু. নির্ণয় কর।

সমাধান: এখানে, প্রথম রাশি
$$= x^3 + x^2y = x^2(x+y)$$
ঘিতীয় রাশি $= x^2y + xy^2 = xy(x+y)$
তৃতীয় রাশি $= x^3 + y^3 = (x+y)(x^2 - xy + y^2)$
চতুর্থ রাশি $= (x+y)^3 = (x+y)(x+y)(x+y)$

.. ল.সা.গু =
$$x^2y(x+y)^3(x^2-xy+y^2) = x^2y(x+y)^2(x^3+y^3)$$

উদাহরণ ৬। $4(x^2+ax)^2$, $6(x^3-a^2x)$ এবং $14x^3(x^3-a^3)$ এর ল.সা.গ. নির্ণয় কর।

সমাধাণ: এখানে, প্রথম রাশি
$$=4(x^2+ax)^2=2\times 2\times x^2(x+a)^2$$
দ্বিতীয় রাশি $=6(x^3-a^2x)=2\times 3\times x(x^2-a^2)=2\times 3\times x(x+a)(x-a)$
তৃতীয় রাশি $=14x^3(x^3-a^3)=2\times 7\times x^3(x-a)(x^2+ax+a^2)$

.. ল.সা.পু =
$$2 \times 2 \times 3 \times 7 \times x^3(x+a)^2(x-a)(x^2+ax+a^2)$$

= $84x^3(x+a)^2(x^3-a^3)$

কাজ: ল.সা.গু. নির্ণয় কর: $3 + 5x^{3}y, 10x^{2}y, 20x^{4}y^{2}$ $2 + x^{2} - y^{2}, 2(x+y), 2x^{2}y + 2xy^{2}$ $\circ + a^3 - 1$, $a^3 + 1$, $a^4 + a^2 + 1$

অনুশীলনী 8.8

- ১। $a + \frac{1}{a} = 2$ হলে, $a^2 + \frac{1}{a^2}$ এর মান নিচের কোনটি ?
 - (ক) 2 (খ) 4 (গ) 6 (ঘ) 8
- ২। 52 -এর বর্গ নিচের কোনটি?
 - (季) 2704 (뉙) 2504
- (গ) 2496
- (ঘ) 2284
- ৩। $a^2 + 2a 15$ এর উৎপাদকে বিশ্লেষণ নিচের কোনটি?
 - ($\overline{\Phi}$) (a+5)(a-3) ($\overline{\Psi}$) (a+3)(a+5) ($\overline{\Psi}$) (a+3)(a+5)

8। x^2-64 এর উৎপাদকে বিশ্লেষণ নিচের কোনটি ?

$$(\overline{\Phi}) (x-8)(x-8)$$

$$(4) (x+8)(x+8)$$

(
$$\overline{\Phi}$$
) $(x-8)(x-8)$ ($\overline{\Psi}$) $(x+8)(x+8)$ ($\overline{\Psi}$) $(x+8)(x-8)$ ($\overline{\Psi}$) $(x+4)(x-4)$

$$(\forall) (x+4)(x-4)$$

 $c + 3a^2b^4c^3$, $12a^3b^2c$, $6a^4bc^2$ এর গ.সা.গু, নিচের কোনটি ?

$$(\overline{\Phi}) 3a^2ba$$

(화)
$$3a^2bc$$
 (회) $3a^2b^2c$ (회) $12abc$

৬। a-b, a^2-ab , a^2-b^2 এর ল.সা.গু. নিচের কোনটি ?

$$(\overline{\Phi}) \ a(a-b)$$

(
$$\Phi$$
) $a(a-b)$ (Ψ) $(a-b)$ (Φ) $a(a^2-b^2)$ (Φ) (Φ)

$$(a^2 - b^2)$$

৭ ৷ (x+8) ও (x-7) এর গুণফল নিচের কোনটি ?

$$(\overline{\Phi}) x^2 + x - 56$$

$$(4) x^2 - 15x + 56$$

(a)
$$x^2 + x - 56$$
 (b) $x^2 - 15x + 56$ (c) $x^2 + 15x - 56$ (d) $x^2 - x + 56$

$$(a) x^2 - x + 56$$

$$b \mid (i) \quad x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

(ii)
$$ab = \left(\frac{a+b}{2}\right)^2 - \left(\frac{a-b}{2}\right)^2$$

(iii)
$$x^3 + y^3 = x^3 + y^3 + 3xy(x + y)$$

উপরের তথ্য অনুযায়ী নিচের কোনটি সঠিক ?

$$\delta$$
 \(\(ab = \left(\frac{a+b}{2}\right)^2 - \left(\frac{a-b}{2}\right)^2\)

(ii)
$$ab = \left(\frac{a+b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2$$

(iii)
$$ab = \frac{(a+b)^2}{4} - \frac{(a-b)^2}{4}$$

উপরের তথ্য অনুযায়ী নিচের কোনটি সঠিক ?

১০ । x + y = 5 এরং x - y = 3 হলে,

(১)
$$x^2 + y^2$$
 এর মান কত ?

৬৬

গণিত

(২) xy এর মান কত ?

(৩) $x^2 - y^2$ এর মান কত ?

১১ ৷ $x + \frac{1}{x} = 2$ হলে,

(১)
$$\left(x-\frac{1}{x}\right)^2$$
 এর মান কত ?

(x) $x^3 + \frac{1}{x^3}$ এর মান কত ?

(৩) $x^4 + \frac{1}{x^4}$ এর মান কত ?

গ.সা.গু. নির্ণয় কর (১২-১৯) :

১২
$$+36a^2b^2c^4d^5$$
, $54a^5c^2d^4$ এবং $90a^4b^3c^2$

১৩ +
$$20x^3y^2a^3b^4$$
, $15x^4y^3a^4b^3$ এবং $35x^2y^4a^3b^2$

$$$8 + 15x^2v^3z^4a^3$$
, $12x^3v^2z^3a^4$ এবং $27x^3v^4z^5a^7$

$$\lambda C + 18a^3b^4c^5$$
, $42a^4c^3d^4$, $60b^3c^4d^5$ as $78a^2b^4d^3$

১৬ +
$$x^2 - 3x$$
, $x^2 - 9$ এবং $x^2 - 4x + 3$

১৭
$$+ 18(x+y)^3$$
, $24(x+y)^2$ এবং $32(x^2-y^2)$

১৮
$$+ a^2b(a^3 - b^3)$$
, $a^2b^2(a^4 + a^2b^2 + b^4)$ এবং $a^3b^2 + a^2b^3 + ab^4$

১৯ +
$$a^3 - 3a^2 - 10a$$
, $a^3 + 6a^2 + 8a$ এবং $a^4 - 5a^3 - 14a^2$

ল.সা.গু. নির্ণয় কর (২০-২৭) :

২০
$$a^5h^2c$$
, ah^3c^2 এবং $a^7h^4c^3$

২১
$$+5a^2b^3c^2$$
, $10ab^2c^3$ এবং $15ab^3c$

২২
$$+3x^3y^2$$
, $4xy^3z$, $5x^4y^2z^2$ এবং $12xy^4z^2$

২৩
$$+3a^2d^3$$
, $9d^2b^2$, $12c^3d^2$, $24a^3b^2$ এবং $36c^3d^2$

২8 +
$$x^2$$
 + 3 x + 2. x^2 - 1 এবং x^2 + x - 2

২৫
$$+ x^2 - 4$$
, $x^2 + 4x + 4$ এবং $x^3 - 8$

২৬ +
$$6x^2 - x - 1$$
, $3x^2 + 7x + 2$ এবং $2x^2 + 3x - 2$

২৭
$$+ a^3 + b^3$$
, $(a+b)^3$, $(a^2 - b^2)^2$ এবং $(a^2 - ab + b^2)^2$

২৮ ।
$$x^2 + \frac{1}{x^2} = 3$$
 হলে,

(ক)
$$\left(x+\frac{1}{x}\right)^2$$
 এর মান নির্ণয় কর।

(খ)
$$\frac{x^6 + 1}{x^3}$$
 এর মান কত ?

(গ)
$$x^2 + \frac{1}{x^2}$$
 এর ঘন নির্ণয় করে মান লেখ।

২৯ ৷ a-b+c একটি বীজগণিতীয় রাশি হলে,

- (ক) প্রদত্ত রাশির ঘন নির্ণয় কর।
- (খ) প্রমাণ কর যে, $(a-b+c)^3 \neq (a-b)^3 + c^3$
- (গ) প্রমাণ কর যে, প্রদত্ত রাশির বর্গ ও $(a+c)^2-b^2$ সমান নয়।

cÂg অধ্যায়

বীজগণিতীয় ভগ্নাংশ

আমরা দৈনন্দিন জীবনে একটি $m = u Y^{m}$ জিনিসের সাথে এর অংশও ব্যবহার করি। এই বিভিন্ন অংশ এক-একটি ভগ্নাংশ। সক্তম শ্রেণিতে আমরা বীজগণিতীয় ভগ্নাংশ কী তা জেনেছি এবং ভগ্নাংশের লঘুকরণ ও সাধারণ হরবিশিস্টকরণ শিখেছি। ভগ্নাংশের যোগ, বিয়োগ ও সরলীকরণ $m = u + W^{m}$ সিদ্ধি জেনেছি। এ অধ্যায়ে ভগ্নাংশের যোগ ও বিয়োগ $m = u + W^{m}$ সিদ্ধি বিশদ আলোচনা এবং ভগ্নাংশের গুণ, ভাগ ও সরলীকরণ $m = u + W^{m}$ বিশদ আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা–

বীজগণিতীয় ভগ্নাংশের যোগ, বিয়োগ, গুণ ও ভাগ করতে পারবে এবং এতদসংক্রান্ত সরল ও সমস্যার সমাধান করতে পারবে।

৫.১ বীজগণিতীয় ভগ্নাংশ

যদি m ও n দুইটি বীজগণিতীয় রাশি হয়, তবে $\frac{m}{n}$ একটি বীজগণিতীয় ভগ্নাংশ, যেখানে $n \neq 0$ । এখানে $\frac{m}{n}$ ভগ্নাংশটির m কে লব ও n কে হর বলা হয় ।

উদাহরণস্বরূপ,
$$\frac{a}{b}, \frac{x+y}{y}, \frac{x^2+a^2}{x+a}$$
 ইত্যাদি বীজগণিতীয় ভগ্নাংশ।

৫.২ ভগ্নাংশের লঘিষ্ঠকরণ

কোনো বীজগণিতীয় ভগ্নাংশের লব ও হরের সাধারণ গুণনীয়ক থাকলে, ভগ্নাংশটির লব ও হরের গ.সা.গু. দিয়ে লব ও হরেক ভাগ করলে, লব ও হরের ভাগফল দ্বারা গঠিত bZb ভগ্নাংশটিই হবে প্রদত্ত ভগ্নাংশটির লঘিষ্ঠকরণ।

যেমন,
$$\frac{a^3b^2 - a^2b^3}{a^3b - ab^3} = \frac{a^2b^2(a - b)}{ab(a^2 - b^2)}$$

$$= \frac{a^2b^2(a - b)}{ab(a + b)(a - b)}$$

$$= \frac{ab}{a + b}$$

এখানে লব ও হরের গ.সা.গু. $ab\ (a+b)$ দ্বারা লব ও হরকে ভাগ করে লঘিষ্ঠকরণ করা হয়েছে।

৫.৩ ভগ্নাংশকে সাধারণ হরবিশিফীকরণ

দুই বা ততোধিক ভগ্নাংশকে সাধারণ হরবিশিষ্ট করতে নিচের ধাপগুলো অনুসরণ করতে হবে :

- ১। হরগুলোর ল.সা.গু. নির্ণয় করতে হবে।
- ২। ভগ্নাংশের হর দিয়ে ল.সা.গু.কে ভাগ করতে হবে।
- ৩। হর দিয়ে ল.সা.গু.কে ভাগ করা হলে যে ভাগফল পাওয়া যাবে, সেই ভাগফল দ্বারা ঐ ভগ্নাংশের লব ও হরকে গুণ করতে হবে।

যেমন,
$$\frac{x}{v}, \frac{a}{b}, \frac{m}{n}$$
 তিনটি ভগ্নাংশ, এদের একই হরবিশিষ্ট করতে হবে।

এখানে তিনটি ভগ্নাংশের হর যথাক্রমে $y,\,b$ ও n এদের ল.সা.গু. =ybn

১ম ভগ্নাংশ $\frac{x}{y}$ এর হর y,y দারা ল.সা.গু. ybn কে ভাগ করলে ভাগফল bn, এখন bn দারা $\frac{x}{y}$ ভগ্নাংশের লব ও হরকে গুণ করতে হবে।

$$\therefore \frac{x}{y} = \frac{x \times bn}{y \times bn} = \frac{xbn}{ybn}$$

একইভাবে, ২য় ভগ্নাংশ $\frac{a}{b}$ এর হর $b,\,b$ দারা ল.সা.গু. ybn কে ভাগ করলে ভাগফল yn ।

$$\therefore \frac{a}{b} = \frac{a \times yn}{b \times yn} = \frac{ayn}{ybn}.$$

তয় ভগ্নাংশ $\frac{m}{n}$ এর হর n, n দারা ল.সা.গু. ybn কে ভাগ করলে ভাগফল yb।

$$\therefore \frac{m}{n} = \frac{m \times yb}{n \times yb} = \frac{myb}{ybn}.$$

অতএব, $\frac{x}{y}$, $\frac{a}{b}$ ও $\frac{m}{n}$ এর সাধারণ হরবিশিষ্ট ভগ্নাংশ যথাক্রমে $\frac{xbn}{ybn}$, $\frac{ayn}{ybn}$ ও $\frac{myb}{ybn}$

উদাহরণ ১। নিচের ভগ্নাংশ দুইটিকে লঘিষ্ঠ আকারে প্রকাশ কর:

সমাধান : (ক) প্রদত্ত ভগ্নাংশ $\dfrac{16a^2b^3c^4y}{8a^3b^2c^5x}$

এখানে,
$$16$$
 ও 8 -এর গ.সা.গু. হলো 8
$$a^2$$
 ও a^3 " " a^2
$$b^3$$
 ও b^2 " " b^2
$$c^4$$
 ও c^5 " " c^4

৭০

 $\therefore 16a^2b^3c^4y$ ও $8a^3b^2c^5x$ এর গ.সা.গু. হলো $8a^2b^2c^4$

$$\frac{16a^2b^3c^4y}{8a^3b^2c^5x}$$
 এর লব ও হরকে $8a^2b^2c^4$ দারা ভাগ করে পাওয়া যায় $\frac{2by}{acx}$ $\therefore \frac{16a^2b^3c^4y}{8a^3b^2c^5x}$ এর লঘিষ্ঠকরণ হলো $\frac{2by}{acx}$.

(খ) প্রদত্ত ভগ্নাংশটি
$$\frac{a(a^2+2ab+b^2)(a^3-b^3)}{(a^3+b^3)(a^4b-b^5)}$$
 এখানে, লব = $a(a^2+2ab+b^2)(a^3-b^3)$ = $a(a+b)^2(a-b)(a^2+ab+b^2)$ হর = $(a^3+b^3)(a^4b-b^5)$ = $(a+b)(a^2-ab+b^2)\{b(a^4-b^4)\}$

$$= b(a+b)(a^2 - ab + b^2)(a^2 - b^2)(a^2 + b^2)$$

$$= b(a+b)(a^2 - ab + b^2)(a+b)(a-b)(a^2 + b^2)$$

$$= b(a+b)^2(a-b)(a^2 + b^2)(a^2 - ab + b^2)$$

$$\therefore$$
 লব ও হরের গ.সা.গু. = $(a+b)^2(a-b)$

প্রদত্ত ভগ্নাংশটির লব ও হরকে $(a+b)^2(a-b)$ দ্বারা ভাগ করে পাওয়া যায় $\frac{a(a^2+ab+b^2)}{b(a^2+b^2)(a^2-ab+b^2)}$

$$\therefore$$
 ভগ্নাংশটির লঘিষ্ঠ i \in $\frac{a(a^2+ab+b^2)}{b(a^2+b^2)(a^2-ab+b^2)}$

উদাহরণ ২। $\frac{x}{x^3y-xy^3}, \frac{a}{xy(a^2-b^2)}, \frac{m}{m^3n-mn^3}$ কে সাধারণ হরবিশিষ্ট ভগ্নাংশে পরিণত কর।

সমাধান : এখানে প্রদত্ত ভগ্নাংশগুলো
$$\frac{x}{x^3y-xy^3}, \frac{a}{xy(a^2-b^2)}, \frac{m}{m^3n-mn^3}$$

এখানে, ১ম ভগ্নাংশের হর
$$= x^3y - xy^3$$
 $= xy(x^2 - y^2)$ হয় ভগ্নাংশের হর $= xy(a^2 - b^2)$ তয় ভগ্নাংশের হর $= m^3n - mn^3$ $= mn(m^2 - n^2)$

 \therefore হরগুলোর ল.সা.গু. = $xy(x^2 - y^2)(a^2 - b^2)(m^2 - n^2)mn$

অতএব,
$$\frac{x}{x^3y - xy^3} = \frac{x(a^2 - b^2)(m^2 - n^2)mn}{xy(x^2 - y^2)(a^2 - b^2)(m^2 - n^2)mn}$$
$$\frac{a}{xy(a^2 - b^2)} = \frac{a(x^2 - y^2)(m^2 - n^2)mn}{xy(x^2 - y^2)(a^2 - b^2)(m^2 - n^2)mn}$$
এবং
$$\frac{m}{m^3n - mn^3} = \frac{xym(x^2 - y^2)(a^2 - b^2)}{xy(x^2 - y^2)(a^2 - b^2)(m^2 - n^2)mn}$$

∴ নির্বেয় ভগ্নাংশগুলো
$$\frac{x(a^2-b^2)(m^2-n^2)mn}{xy(x^2-y^2)(a^2-b^2)(m^2-n^2)mn}$$
, $\frac{a(x^2-y^2)(m^2-n^2)mn}{xy(x^2-y^2)(a^2-b^2)(m^2-n^2)mn}$ ও $\frac{xym(x^2-y^2)(a^2-b^2)}{xy(x^2-y^2)(a^2-b^2)(m^2-n^2)mn}$

কাজ: সমহরবিশিষ্ট ভগ্নাংশে প্রকাশ কর:

$$3 + \frac{x^2 + xy}{x^2y}$$
 এবং $\frac{x^2 - xy}{xy^2}$ $\qquad \qquad 2 + \frac{a - b}{a + 2b}$ এবং $\frac{2a + b}{a^2 - 4b}$

৫.৪ ভগ্নাংশের যোগ

দুই বা ততোধিক ভগ্নাংশের যোগ করতে হলে, ভগ্নাংশগুলো সাধারণ হরবিশিষ্ট করে লবগুলোকে যোগ করলে যোগফল হবে একটি নতুন ভগ্নাংশ, যার লব হবে সাধারণ হরবিশিষ্টকরণকৃত ভগ্নাংশগুলোর লবগুলোর যোগফল এবং হর হলো ভগ্নাংশগুলোর হরের ল.সা.গু.।

যেমন,
$$\frac{a}{x} + \frac{b}{y} + \frac{b}{z}$$

$$= \frac{ayz}{xyz} + \frac{bxz}{xyz} + \frac{bxy}{xyz}$$

$$= \frac{ayz + bxz + bxy}{xyz}$$

উদাহরণ ৩। ভগ্নাংশ তিনটি যোগ কর :
$$\frac{1}{x-y}, \frac{x}{x^2+xy+y^2}, \frac{y^2}{x^3-y^3}$$
 এখানে, ১ম ভগ্নাংশ = $\frac{1}{x-y}$ হয় ভগ্নাংশ = $\frac{x}{x^2+xy+y^2}$ তয় ভগ্নাংশ = $\frac{y^2}{x^3-y^3}$ = $\frac{y^2}{(x-y)(x^2+xy+y^2)}$ হরগুলোর ল.সা.গু. = $(x-y)(x^2+xy+y^2)$ = (x^3-y^3)

গ্ৰহ

মূতরাং,
$$\frac{1}{x-y}, \frac{x}{x^2 + xy + y^2}, \frac{y^2}{x^3 - y^3} \text{ ds যোগফল}$$

$$= \frac{1}{x-y} + \frac{x}{x^2 + xy + y^2} + \frac{y^2}{x^3 - y^3}$$

$$= \frac{x^2 + xy + y^2}{(x-y)(x^2 + xy + y^2)} + \frac{x(x-y)}{(x-y)(x^2 + xy + y^2)} + \frac{y^2}{x^3 - y^3}$$

$$= \frac{x^2 + xy + y^2}{x^3 - y^3} + \frac{x^2 - xy}{x^3 - y^3} + \frac{y^2}{x^3 - y^3}$$

$$= \frac{x^2 + xy + y^2 + x^2 - xy + y^2}{x^3 - y^3}$$

$$= \frac{2(x^2 + y^2)}{x^3 - y^3}$$

নির্ণেয় যোগফল $\frac{2(x^2+y^2)}{x^3-y^3}$.

উদাহরণ 8 ৷ যোগ কর :
$$\frac{3a}{a^2 + 3a - 4} + \frac{2a}{a^2 - 1} + \frac{a}{a^2 + 5a + 4}$$

সমাধান : প্রদন্ত রাশি $\frac{3a}{a^2 + 3a - 4} + \frac{2a}{a^2 - 1} + \frac{a}{a^2 + 5a + 4}$

$$= \frac{3a}{a^2 + 4a - a - 4} + \frac{2a}{(a+1)(a-1)} + \frac{a}{a^2 + a + 4a + 4}$$

$$= \frac{3a}{(a+4)(a-1)} + \frac{2a}{(a+1)(a-1)} + \frac{a}{(a+1)(a+4)}$$

$$= \frac{3a(a+1) + 2a(a+4) + a(a-1)}{(a+4)(a+1)(a-1)}$$

$$= \frac{3a^2 + 3a + 2a^2 + 8a + a^2 - a}{(a+4)(a+1)(a-1)}$$

$$= \frac{6a^2 + 10a}{(a+4)(a+1)(a-1)}$$

$$= \frac{6a^2 + 10a}{(a+4)(a+1)(a-1)}$$

$$= \frac{2a(3a+5)}{(a+4)(a^2+1)}$$

উদাহরণ ৫। যোগফল নির্ণয় কর:

$$(\overline{4}) \frac{a-b}{bc} + \frac{b-c}{ca} + \frac{c-a}{ab}$$

$$(\overline{4}) \frac{1}{a^2 - 5a + 6} + \frac{1}{a^2 - 9} + \frac{1}{a^2 + 4a + 3}$$

$$(\overline{7}) \frac{1}{a-2} + \frac{a+2}{a^2 + 2a + 4}$$

সমাধান : (ক)
$$\frac{a-b}{bc} + \frac{b-c}{ca} + \frac{c-a}{ab}$$

$$= \frac{a^2 - ab + b^2 - bc + c^2 - ca}{abc}$$

$$= \frac{a^2 + b^2 + c^2 - ab - bc - ca}{abc}$$
(খ) $\frac{1}{a^2 - 5a + 6} + \frac{1}{a^2 - 9} + \frac{1}{a^2 + 4a + 3}$

$$= \frac{1}{a^2 - 2a - 3a + 6} + \frac{1}{(a+3)(a-3)} + \frac{1}{a^2 + 3a + a + 3}$$

$$= \frac{1}{a(a-2) - 3(a-2)} + \frac{1}{(a+3)(a-3)} + \frac{1}{a(a+3)(a+1)}$$

$$= \frac{1}{(a-2)(a-3)} + \frac{1}{(a+3)(a-3)} + \frac{1}{(a+3)(a+1)}$$

$$= \frac{(a+1)(a+3) + (a+1)(a-2) + (a-2)(a-3)}{(a+1)(a-2)(a+3)(a-3)}$$

$$= \frac{a^2 + 4a + 3 + a^2 - a - 2 + a^2 - 5a + 6}{(a+1)(a-2)(a+3)(a-3)}$$

$$= \frac{3a^2 - 2a + 7}{(a+1)(a-2)(a^2 - 9)}$$

(
$$\mathfrak{I}$$
) $\frac{1}{a-2} + \frac{a+2}{a^2+2a+4}$
= $\frac{a^2+2a+4+(a-2)(a+2)}{(a-2)(a^2+2a+4)}$

গ্ৰিত

$$= \frac{a^2 + 2a + 4 + a^2 - 4}{(a^3 - 8)}$$
$$= \frac{2a^2 + 2a}{(a^3 - 8)}$$
$$= \frac{2a(a + 1)}{(a^3 - 8)}$$

৫.৫ ভগ্নাংশের বিয়োগ

দুইটি ভগ্নাংশের বিয়োগ করতে হলে, ভগ্নাংশ দুইটিকে সাধারণ হরবিশিষ্ট করে লব দুইটিকে বিয়োগ করলে বিয়োগফল হবে একটি bZb ভগ্নাংশ, যার লব হবে সাধারণ হরবিশিষ্টকরণকৃত ভগ্নাংশ দুইটির লবের বিয়োগফল এবং হর হবে ভগ্নাংশ দুইটির হরের ল.সা.গু.।

যেমন,
$$\frac{a}{xy} - \frac{b}{yz}$$

$$= \frac{az}{xyz} - \frac{bx}{xyz}$$

$$= \frac{az - bx}{xyz}$$

উদাহরণ ৬। বিয়োগফল নির্ণয় কর:

$$(\overline{\Phi}) \frac{x}{4a^2bc^2} - \frac{y}{9ab^2c^3}$$

$$(\forall) \frac{x}{(x-y)^2} - \frac{x+y}{x^2 - y^2}$$

$$(\mathfrak{I}) \ \frac{a^2 + 9y^2}{a^2 - 9y^2} - \frac{a - 3y}{a + 3y}$$

সমাধান : (ক)
$$\frac{x}{4a^2bc^2} - \frac{y}{9ab^2c^3}$$

এখানে, হর $4a^2bc^2$ ও $9ab^2c^3$ এর ল.সা.গু. $36a^2b^2c^3$

$$\therefore \frac{x}{4a^2bc^2} - \frac{y}{9ab^2c^3} \\
= \frac{9xbc - 4ya}{36a^2b^2c^3}$$

(খ)
$$\frac{x}{(x-y)^2} - \frac{x+y}{x^2-y^2}$$
এখানে হর $(x-y)^2$ ও x^2-y^2 এর ল.সা.ও. $(x-y)^2(x+y)$

$$\therefore \frac{x}{(x-y)^2} - \frac{x+y}{x^2-y^2}$$

$$= \frac{x(x+y) - (x+y)(x-y)}{(x-y)^2(x+y)}$$

$$= \frac{x^2 + xy - x^2 + y^2}{(x-y)^2(x+y)}$$

$$= \frac{xy+y^2}{(x-y)^2(x+y)}$$

$$= \frac{y(x+y)}{(x-y)^2(x+y)}$$

$$= \frac{y}{(x-y)^2}$$
(গ) $a^2 + 9y^2 - a - 3by$

$$(9) \quad \frac{a^2 + 9y^2}{a^2 - 9y^2} - \frac{a - 3by}{a + 3y}$$

এখানে হর
$$a^2 - 9y^2$$
 ও $a + 3y$ এর ল.সা.গু. $a^2 - 9y^2$

$$\frac{a^2 + 9y^2}{a^2 - 9y^2} - \frac{a - 3y}{a + 3y}$$

$$= \frac{a^2 + 9y^2 - (a - 3y)(a - 3y)}{a^2 - 9y^2}$$

$$= \frac{a^2 + 9y^2 - (a^2 - 6ay + 9y^2)}{a^2 - 9y^2}$$

$$= \frac{a^2 + 9y^2 - a^2 + 6ay - 9y^2}{a^2 - 9y^2}$$

$$= \frac{6ay}{a^2 - 9y^2}$$

কাজ: বিয়োগ কর:

১ ৷
$$\frac{x}{x^2 + xy + y^2}$$
 থেকে $\frac{xy}{x^3 - y^3}$ ২ ৷ $\frac{1}{1 + a + a^2}$ থেকে $\frac{2a}{1 + a^2 + a^4}$

লক্ষণীয় : বীজগণিতীয় ভগ্নাংশের যোগ ও বিয়োগ করার সময় প্রয়োজন হলে প্রদত্ত ভগ্নাংশগুলোকে লঘিষ্ঠ আকারে প্রকাশ করে নিতে হবে।

যেমন,
$$\frac{a^2bc}{ab^2c} + \frac{ab^2c}{abc^2} + \frac{abc^2}{a^2bc}$$

$$= \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$

$$= \frac{a \times ca}{b \times ca} + \frac{b \times ab}{c \times ab} + \frac{c \times bc}{a \times bc}$$

$$= \frac{ca^2}{abc} + \frac{ab^2}{abc} + \frac{bc^2}{abc}$$

$$= \frac{ca^2 + ab^2 + bc^2}{abc}.$$

উদাহরণ ৭। সরল কর:

$$(\overline{\Phi}) \frac{x-y}{(y+z)(z+x)} + \frac{y-z}{(x+y)(z+x)} + \frac{z-x}{(x+y)(y+z)}$$

$$(\forall) \ \frac{1}{x-2} - \frac{1}{x+2} - \frac{4}{x^2+4}$$

$$(\mathfrak{I}) \ \frac{1}{1-a+a^2} - \frac{1}{1+a+a^2} - \frac{2a}{1+a^2+a^4}$$

সমাধান : (ক)
$$\frac{x-y}{(y+z)(z+x)} + \frac{y-z}{(x+y)(z+x)} + \frac{z-x}{(x+y)(y+z)}$$

এখানে,
$$(y+z)(z+x),(x+y)(z+x)$$
ও $(x+y)(y+z)$ এর ল.সা.গু. $(x+y)(y+z)(z+x)$

$$\frac{x-y}{(y+z)(z+x)} + \frac{y-z}{(x+y)(z+x)} + \frac{z-x}{(x+y)(y+z)}$$

$$= \frac{(x-y)(x+y) + (y-z)(y+z) + (z-x)(z+x)}{(x+y)(y+z)(z+x)}$$

$$= \frac{x^2 - y^2 + y^2 - z^2 + z^2 - x^2}{(x+y)(y+z)(z+x)}$$

$$= \frac{0}{(x+y)(y+z)(z+x)}$$

$$= 0.$$

$$(4) \frac{1}{x-2} - \frac{1}{x+2} - \frac{4}{x^2+4}$$

$$= \frac{x+2-x+2}{(x-2)(x+2)} - \frac{4}{x^2+4}$$

$$= \frac{4}{x^2-4} - \frac{4}{x^2+4}$$

$$= 4\left[\frac{1}{x^2-4} - \frac{1}{x^2+4}\right]$$

$$= 4\left[\frac{x^2+4-x^2+4}{(x^2-4)(x^2+4)}\right]$$

$$= \frac{4\times8}{(x^2-4)(x^2+4)}$$

$$= \frac{32}{x^4-16}$$

(গ)
$$\frac{1}{1-a+a^2} - \frac{1}{1+a+a^2} - \frac{2a}{1+a^2+a^4}$$
এখানে,
$$1+a^2+a^4=1+2a^2+a^4-a^2$$

$$= (1+a^2)^2-a^2$$

$$= (1+a^2+a)(1+a^2-a)$$

হর
$$1-a+a^2, 1+a+a^2, 1+a^2+a^4$$
 এর ল.সা.গু. $=(1+a+a^2)(1-a+a^2)$
 $=1+a^2+a^4$
 $\therefore \frac{1}{1-a+a^2} - \frac{1}{1+a+a^2} - \frac{2a}{1+a^2+a^4}$
 $=\frac{1+a+a^2-1+a-a^2-2a}{1+a^2+a^4}$
 $=\frac{0}{1+a^2+a^4}$
 $=0$

অনুশীলনী ৫.১

লঘিষ্ঠ আকারে প্রকাশ কর:

$$(\overline{\Phi}) \quad \frac{4x^2y^3z^5}{9x^5y^2z^3}$$

$$(\mathfrak{A}) \quad \frac{16(2x)^4(3y)^5}{(3x)^3.(2y)^6}$$

$$(\mathfrak{I}) \quad \frac{x^3y + xy^3}{x^2y^3 + x^3y^2}$$

$$(\mathfrak{A}) \quad \frac{(a-b)(a+b)}{a^3-b^3}$$

(8)
$$\frac{x^2 - 6x + 5}{x^2 - 25}$$

(b)
$$\frac{x^2 - 7x + 12}{x^2 - 9x + 20}$$

(a)
$$\frac{(x^3 - y^3)(x^2 - xy + y^2)}{(x^2 - y^2)(x^3 + y^3)}$$
 (b)
$$\frac{a^2 - b^2 - 2bc - c^2}{a^2 + 2ab + b^2 - c^2}$$

(
$$\mathfrak{F}$$
) $\frac{a^2 - b^2 - 2bc - c^2}{a^2 + 2ab + b^2 - c^2}$

২। সাধারণ হরবিশিষ্ট ভগ্নাংশে প্রকাশ কর:

$$(\overline{\Phi}) \quad \frac{x^2}{xy}, \frac{y^2}{yz}, \frac{z^2}{zx}$$

$$(\forall) \quad \frac{x-y}{xy}, \frac{y-z}{yz}, \frac{z-x}{zx}$$

(i)
$$\frac{x}{x-y}, \frac{y}{x+y}, \frac{z}{x(x+y)}$$

(
$$\eta$$
) $\frac{x}{x-y}, \frac{y}{x+y}, \frac{z}{x(x+y)}$ ($\overline{\eta}$) $\frac{x+y}{(x-y)^2}, \frac{x-y}{x^3+y^3}, \frac{y-z}{x^2-y^2}$

(8)
$$\frac{a}{a^3+b^3}, \frac{b}{(a^2+ab+b^2)}, \frac{c}{a^3-b^3}$$

(b)
$$\frac{1}{x^2 - 5x + 6}$$
, $\frac{1}{x^2 - 7x + 12}$, $\frac{1}{x^2 - 9x + 20}$

$$(\overline{z}) \frac{a-b}{a^2b^2}, \frac{b-c}{b^2c^2}, \frac{c-a}{c^2a^2}$$

$$(\mathfrak{F}) \quad \frac{x-y}{x+y}, \frac{y-z}{y+z}, \frac{z-x}{z+x}$$

যোগ কর: **9** |

$$(\overline{\Phi}) \quad \frac{a-b}{a} + \frac{a+b}{b}$$

$$(\forall)$$
 $\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab}$

$$(\mathfrak{I}) \quad \frac{x-y}{x} + \frac{y-z}{y} + \frac{z-x}{z} \qquad \qquad (\mathfrak{I}) \quad \frac{x+y}{x-y} + \frac{x-y}{x+y}$$

$$(\mathfrak{A}) \quad \frac{x+y}{x-y} + \frac{x-y}{x+y}$$

(8)
$$\frac{1}{x^2 - 3x + 2} + \frac{1}{x^2 - 4x + 3} + \frac{1}{x^2 - 5x + 4}$$

(b)
$$\frac{1}{a^2 - b^2} + \frac{1}{a^2 + ab + b^2} + \frac{1}{a^2 - ab + b^2}$$

$$(\mathfrak{T}) \quad \frac{1}{x-2} - \frac{1}{x+2} + \frac{4}{x^2 - 4} \qquad (\mathfrak{T}) \quad \frac{1}{x^2 - 1} + \frac{1}{x^4 - 1} + \frac{4}{x^8 - 1}$$

৪। বিয়োগ কর:

(
$$\overline{a}$$
) $\frac{a}{x-3} - \frac{a^2}{x^2 - 9}$ (\overline{a}) $\frac{1}{y(x-y)} - \frac{1}{x(x+y)}$

(1)
$$\frac{x+1}{1+x+x^2} - \frac{x-1}{1-x+x^2}$$
 (1)
$$\frac{a^2+16b^2}{a^2-16b^2} - \frac{a-4b}{a+4b}$$

(8)
$$\frac{1}{x-y} - \frac{x^2 - xy + y^2}{x^3 + y^3}$$

৫। সরল কর:

$$(\overline{\Phi})$$
 $\frac{x-y}{xy} + \frac{y-z}{yz} + \frac{z-x}{zx}$

$$(4) \quad \frac{x-y}{(x+y)(y+z)} + \frac{y-z}{(y+z)(z+x)} + \frac{z-x}{(z+x)(x+y)}$$

(1)
$$\frac{y}{(x-y)(y-z)} + \frac{x}{(z-x)(x-y)} + \frac{z}{(y-z)(x-z)}$$

$$(\forall) \quad \frac{1}{x+3v} + \frac{1}{x-3v} - \frac{2x}{x^2-9v^2} \qquad (\&) \quad \frac{1}{x-v} - \frac{2}{2x+v} + \frac{1}{x+v} - \frac{2}{2x-v}$$

(5)
$$\frac{1}{x-2} - \frac{x-2}{x^2+2x+4} + \frac{6x}{x^3+8}$$
 (5) $\frac{1}{x-1} - \frac{1}{x+1} - \frac{2}{x^2+1} + \frac{4}{x^4+1}$

(
$$\mathfrak{F}$$
) $\frac{x-y}{(y-z)(z-x)} + \frac{y-z}{(z-x)(x-y)} + \frac{z-x}{(x-y)(x-z)}$

$$(3) \quad \frac{1}{a-b-c} + \frac{1}{a-b+c} + \frac{a}{a^2+b^2-c^2-2ab}$$

(4s)
$$\frac{1}{a^2 + b^2 - c^2 + 2ab} + \frac{1}{b^2 + c^2 - a^2 + 2bc} + \frac{1}{c^2 + a^2 - b^2 + 2ca}$$

৫.৬ ভগ্নাংশের গুণ

দুই বা ততোধিক ভগ্নাংশ গুণ করেও একটি ভগ্নাংশ পাওয়া যায়। যার লব হলো দুই বা ততোধিক ভগ্নাংশের লবগুলোর গুণফলের সমান এবং হর হলো হরগুলোর গুণফলের সমান। এরূপ ভগ্নাংশকে লঘিষ্ঠ আকারে প্রকাশ করা হলে লব ও হর পরিবর্তিত হয়।

গণিত bo

যেমন,
$$\frac{x}{y}$$
 ও $\frac{a}{b}$ দুইটি ভগ্নাংশ।

এই দুইটি ভগ্নাংশের গুণফল হলো

$$\frac{x}{y} \times \frac{a}{b}$$

$$= \frac{x \times a}{y \times b}$$

$$= \frac{xa}{yb}$$

এখানে xa হলো ভগ্নাংশটির লব যা প্রদত্ত ভগ্নাংশ দুইটির লবের গুণফল এবং হর হলো yb যা প্রদত্ত ভগ্নাংশ দুইটির হরের গুণফল।

আবার,
$$\frac{x}{by}$$
, $\frac{ya}{z}$ ও $\frac{z}{x}$ তিনটি ভগ্নাংশের গুণফল হলো
$$\frac{x}{by} \times \frac{ya}{z} \times \frac{z}{x}$$

$$= \frac{xyza}{xyzb}$$

$$= \frac{a}{b}$$
 [লঘিষ্ঠকরণ করে]

এখানে গুণফল লঘিষ্ঠকরণ করার ফলে লব ও হর পরিবর্তিত হলো।

উদাহরণ ৮। গুণ কর:

(ক)
$$\frac{a^2b^2}{cd}$$
 কে $\frac{ab}{c^2d^2}$ দারা

(খ)
$$\frac{x^2y^3}{xy^2}$$
 কে $\frac{x^3b}{ay^3}$ দারা

(গ)
$$\frac{10x^5b^4z^3}{3x^2b^2z}$$
 কে $\frac{15y^5b^2z^2}{2y^2a^2x}$ দারা

(ঘ)
$$\frac{x^2 - y^2}{x^3 + y^3}$$
 কে $\frac{x^2 - xy + y^2}{x^3 - y^3}$ দারা

(ঙ)
$$\frac{x^2 - 5x + 6}{x^2 - 9x + 20}$$
 কে $\frac{x - 5}{x - 3}$ দারা

ৰ্মাবাৰ:
$$(\Phi) \ \text{নিৰ্ণেয় গুণফল} = \frac{a^2b^2}{cd} \times \frac{ab}{c^2d^2}$$

$$= \frac{a^2b^2 \times ab}{cd \times c^2d^2}$$

$$= \frac{a^3b^3}{c^3d^3}$$

(খ) নির্ণেয় গুণফল =
$$\frac{x^2y^3}{xy^2} \times \frac{x^3b}{ay^3}$$

$$= \frac{x^2y^3 \times x^3b}{xy^2 \times ay^3}$$

$$= \frac{x^5y^3b}{xy^5a}$$

$$= \frac{x^4b}{y^2a}$$

$$(\mathfrak{I}) \quad \frac{10x^5b^4z^3}{3x^2b^2z} \times \frac{15y^5b^2z^2}{2y^2a^2x}$$

$$= \frac{10x^5b^4z^3 \times 15y^5b^2z^2}{3x^2b^2z \times 2y^2a^2x}$$

$$= \frac{25x^5y^5b^6}{x^3y^2z^3a^2b^2}$$

$$= \frac{25b^4x^2y^3z^4}{a^2}$$

$$(\overline{4}) \quad \frac{x^2 - y^2}{x^3 + y^3} \times \frac{x^2 - xy + y^2}{x^3 - y^3}$$

$$= \frac{(x+y)(x-y) \times (x^2 - xy + y^2)}{(x+y)(x^2 - xy + y^2)(x-y)(x^2 + xy + y^2)}$$

$$= \frac{1}{x^2 + xy + y^2}$$

$$(8) \quad \frac{x^2 - 5x + 6}{x^2 - 9x + 20} \times \frac{x - 5}{x - 3}$$

$$= \frac{x^2 - 2x - 3x + 6}{x^2 - 4x - 5x + 20} \times \frac{x - 5}{x - 3}$$

$$= \frac{x(x - 2) - 3(x - 2)}{x(x - 4) - 5(x - 4)} \times \frac{x - 5}{x - 3}$$

$$= \frac{(x - 2)(x - 3)}{(x - 4)(x - 5)} \times \frac{x - 5}{x - 3}$$

$$= \frac{(x - 2)(x - 3)(x - 5)}{(x - 4)(x - 5)(x - 3)}$$

$$= \frac{x - 2}{x - 4}.$$

৮২

কাজ: গুণ কর:

১।
$$\frac{7a^2b}{36a^3b^2}$$
 কে $\frac{24ab^2}{35a^4b^5}$ ছারা ২। $\frac{x^2+3x-4}{x^2-7x+12}$ কে $\frac{x^2-9}{x^2-16}$ ছারা

৫.৭ ভগ্নাংশের ভাগ

একটি ভগ্নাংশকে অপর একটি ভগ্নাংশ দ্বারা ভাগ করা মানে হলো প্রথমটিকে দ্বিতীয়টির গুণাত্মক বিপরীত ভগ্নাংশ দ্বারা গুণ করা।

উদাহরণস্বরূপ, $\frac{x}{y}$ কে $\frac{z}{y}$ দ্বারা ভাগ করতে হবে,

তাহলে
$$\frac{x}{y} \div \frac{z}{y}$$
 [এখানে $\frac{y}{z}$ হলো $\frac{z}{y}$ এর গুণাত্মক বিপরীত ভগ্নাংশ]
$$= \frac{x}{y} \times \frac{y}{z}$$

$$= \frac{x}{z}$$

উদাহরণ **৯**। ভাগ কর:

(ক)
$$\frac{a^3b^2}{c^2d}$$
 কে $\frac{a^2b^3}{cd^3}$ দারা

(খ)
$$\frac{12a^4x^3y^2}{10x^4y^3z^2}$$
 কে $\frac{6a^3b^2c}{5x^2y^2z^2}$ দারা

(গ)
$$\frac{a^2 - b^2}{a^2 + ab + b^2}$$
 কে $\frac{a + b}{a^3 - b^3}$ দারা

(ঘ)
$$\frac{x^3 - 27}{x^2 - 7x + 6}$$
 কে $\frac{x^2 - 9}{x^2 - 36}$ দ্বারা

(ঙ)
$$\frac{x^3 - y^3}{x^3 + y^3}$$
 কে $\frac{x^2 - y^2}{(x + y)^2}$ দারা

সমাধান

(ক) ১ম ভগ্নাংশ
$$= \frac{a^3b^2}{c^2d}$$
.
২য় " $= \frac{a^2b^3}{cd^3}$

২য় ভগ্নাংশের গুণাত্মক বিপরীত হলো $\dfrac{cd^3}{a^2b^3}$

নির্ণেয় ভাগফল =
$$\frac{a^3b^2}{c^2d} \div \frac{a^2b^3}{cd^3}$$

$$= \frac{a^3b^2}{c^2d} \times \frac{cd^3}{a^2b^3}$$

$$= \frac{a^3b^2cd^3}{a^2b^3c^2d} = \frac{ad^2}{bc}$$

(খ) নির্ণেয় ভাগফল =
$$\frac{12a^4x^3y^2}{10x^4y^3z^2} \div \frac{6a^3b^2c}{5x^2y^2z^2}$$
 =
$$\frac{12a^4x^3y^2}{10x^4y^3z^2} \times \frac{5x^2y^2z^2}{6a^3b^2c}$$
 =
$$\frac{axy}{b^2c}$$

(গ) নির্ণেয় ভাগফল =
$$\frac{a^2 - b^2}{a^2 + ab + b^2} \div \frac{a + b}{a^3 - b^3}$$
$$= \frac{(a + b)(a - b)}{(a^2 + ab + b^2)} \times \frac{(a - b)(a^2 + ab + b^2)}{a + b}$$
$$= (a - b)(a - b)$$
$$= (a - b)^2$$

(ঘ) নির্ণেয় ভাগফল =
$$\frac{x^3 - 27}{x^2 - 7x + 6} \div \frac{x^2 - 9}{x^2 - 36}$$

$$= \frac{x^3 - 3^3}{x^2 - 6x - x + 6} \times \frac{x^2 - 6^2}{x^2 - 3^2}$$

$$= \frac{(x - 3)(x^2 + 3x + 3^2)}{(x - 6)(x - 1)} \times \frac{(x + 6)(x - 6)}{(x + 3)(x - 3)}$$

$$= \frac{(x^2 + 3x + 9)(x + 6)}{(x - 1)(x + 3)}$$

(ঙ) নির্ণেয় ভাগফল =
$$\frac{x^3 - y^3}{x^3 + y^3} \div \frac{x^2 - y^2}{(x+y)^2}$$
$$= \frac{(x-y)(x^2 + xy + y^2)}{(x+y)(x^2 - xy + y^2)} \times \frac{(x+y)^2}{(x+y)(x-y)}$$
$$= \frac{x^2 + xy + y^2}{x^2 - xy + y^2}.$$

কাজ: ভাগ কর:

১।
$$\frac{16a^2b^2}{21z^2}$$
 কে $\frac{28ab^4}{35xyz}$ দারা ২। $\frac{x^4-y^4}{x^2-2xy+y^2}$ কে $\frac{x^3+y^3}{x-y}$ দারা

উদাহরণ ১০। সরল কর:

$$(\overline{\Phi}) \left(1 + \frac{1}{x}\right) \div \left(1 - \frac{1}{x^2}\right)$$

$$(\forall) \left(\frac{x}{x+y} + \frac{y}{x-y} \right) \div \left(\frac{x}{x-y} - \frac{y}{x+y} \right)$$

$$(\mathfrak{I}) \frac{a^3 + b^3}{(a-b)^2 + 3ab} \div \frac{(a+b)^2 - 3ab}{a^3 - b^3} \times \frac{a+b}{a-b}$$

$$(\overline{4}) \ \frac{x^2 + 3x - 4}{x^2 - 7x + 12} \div \frac{x^2 - 16}{x^2 - 9} \times \frac{(x - 4)^2}{(x - 1)^2}$$

(8)
$$\frac{x^3 + y^3 + 3xy(x+y)}{(x+y)^2 - 4xy} \div \frac{(x-y)^2 + 4xy}{x^3 - y^3 - 3xy(x-y)}$$

সমাধান : (ক)
$$\left(1+\frac{1}{x}\right) \div \left(1-\frac{1}{x^2}\right)$$

$$= \frac{(x+1)}{x} \div \frac{x^2-1}{x^2}$$

$$= \frac{(x+1)}{x} \times \frac{x^2}{(x+1)(x-1)}$$

$$= \frac{x}{x-1}.$$

$$(\forall) \left(\frac{x}{x+y} + \frac{y}{x-y}\right) \div \left(\frac{x}{x-y} - \frac{y}{x+y}\right)$$

$$= \frac{x^2 - xy + xy + y^2}{(x+y)(x-y)} \div \frac{x^2 + xy - xy + y^2}{(x-y)(x+y)}$$

$$= \frac{x^2 + y^2}{x^2 - y^2} \div \frac{x^2 + y^2}{x^2 - y^2}$$

$$= \frac{x^2 + y^2}{x^2 - y^2} \times \frac{x^2 - y^2}{x^2 + y^2}$$

$$= 1$$

(1)
$$\frac{a^3 + b^3}{(a-b)^2 + 3ab} \div \frac{(a+b)^2 - 3ab}{a^3 - b^3} \times \frac{a+b}{a-b}$$

$$= \frac{(a+b)(a^2 - ab + b^2)}{a^2 - 2ab + b^2 + 3ab} \div \frac{a^2 + 2ab + b^2 - 3ab}{(a-b)(a^2 + ab + b^2)} \times \frac{a+b}{a-b}$$

$$= \frac{(a+b)(a^2 - ab + b^2)}{(a^2 + ab + b^2)} \times \frac{(a-b)(a^2 + ab + b^2)}{(a^2 - ab + b^2)} \times \frac{a+b}{a-b}$$

$$= (a+b)(a+b)$$

$$= (a+b)^2$$

$$(\overline{4}) \quad \frac{x^2 + 3x - 4}{x^2 - 7x + 12} \div \frac{x^2 - 16}{x^2 - 9} \times \frac{(x - 4)^2}{(x - 1)^2}$$

$$= \frac{x^2 + 4x - x - 4}{x^2 - 3x - 4x + 12} \times \frac{x^2 - 3^2}{x^2 - 4^2} \times \frac{(x - 4)^2}{(x - 1)^2}$$

$$= \frac{(x + 4)(x - 1)}{(x - 3)(x - 4)} \times \frac{(x + 3)(x - 3)}{(x + 4)(x - 4)} \times \frac{(x - 4)^2}{(x - 1)^2}$$

$$= \frac{x + 3}{x - 1}$$

(8)
$$\frac{x^3 + y^3 + 3xy(x+y)}{(x+y)^2 - 4xy} \div \frac{(x-y)^2 + 4xy}{x^3 - y^3 - 3xy(x-y)}$$
$$= \frac{(x+y)^3}{(x-y)^2} \div \frac{(x+y)^2}{(x-y)^3}$$
$$= \frac{(x+y)^3}{(x-y)^2} \times \frac{(x-y)^3}{(x+y)^2}$$
$$= (x+y)(x-y)$$
$$= x^2 - y^2$$

অনুশীলনী ৫.২

১। $\frac{a}{x}$, $\frac{b}{y}$, $\frac{c}{z}$, $\frac{p}{q}$ কে সাধারণ হরবিশিষ্ট করলে নিচের কোনটি সঠিক ?

$$\overline{\Phi}. \quad \frac{ayzq}{xyzq}, \frac{bxzq}{xyzq}, \frac{cxyq}{xyzq}, \frac{pxyz}{xyzq} \quad \forall . \quad \frac{axy}{xyzq}, \frac{byz}{xyzq}, \frac{czx}{xyzq}, \frac{pxy}{xyzq}$$

৮৬

$$\mathfrak{N}. \quad \frac{a}{xyzq}, \frac{b}{xyzq}, \frac{c}{xyzq}, \frac{p}{xyzq}$$

গ.
$$\frac{a}{xyzq}$$
, $\frac{b}{xyzq}$, $\frac{c}{xyzq}$, $\frac{p}{xyzq}$ য. $\frac{axyzq}{xyzq}$, $\frac{bxyzq}{xyzq}$, $\frac{cxyzq}{xyzq}$, $\frac{pxyzq}{xyzq}$

২।
$$\frac{x^2y^2}{ab}$$
 ও $\frac{c^3d^2}{x^5y^3}$ এর গুণফল কত হবে ?

ক.
$$\frac{x^2y^2c^3d^2}{abx^3y^2}$$
 খ. $\frac{c^3d^2}{abx^3y}$ গ. $\frac{x^2y^2c^3}{x^3y}$ ঘ. $\frac{xyd^2}{ab}$

$$\forall. \frac{c^3d^2}{abx^3y}$$

গ.
$$\frac{x^2y^2c^3}{x^3y}$$

ঘ.
$$\frac{xyd^2}{ab}$$

৩।
$$\frac{x^2-2x+1}{a^2-2a+1}$$
 কে $\frac{x-1}{a-1}$ দারা ভাগ করলে ভাগফল কত হবে ?

ক.
$$\frac{x+1}{a-1}$$
 খ. $\frac{x-1}{a-1}$ গ. $\frac{x-1}{a+1}$ ঘ. $\frac{a-1}{x-1}$

$$\forall . \frac{x-1}{a-1}$$

গ.
$$\frac{x-1}{a+1}$$

ঘ.
$$\frac{a-1}{x-1}$$

$$8 + \frac{a^2 - b^2}{(a+b)^2} \div \frac{(a+b)^2 - 4ab}{a^3 + b^3} \times \frac{a+b}{a^2 - ab + b^2}$$
 এর সরলকৃত মান কত হবে ?

$$\overline{a}. \frac{a-b}{a+b} \qquad \qquad \forall. \frac{a+b}{a-b}$$

$$\forall . \frac{a+b}{a-b}$$

ঘ.
$$(a+b)$$

ে। নিচের বাম দিকের তথ্যের সাথে ডানদিকের তথ্যের মিল কর:

- (ক) সাধারণ হরবিশিষ্ট ভগ্নাংশের হর

(\forall) $\frac{(x+y)^2}{x^2-y^2} \times \frac{(x-y)^2}{(x+y)}$

- $(\mathfrak{I}) \quad \frac{x^2 y^2}{x + y} \div \frac{x y}{(x + y)} \times \frac{1}{x + y}$
- $(\overline{4}) \quad \frac{(x+y)^2}{x-y} \div \frac{x-y}{x+y} \times \frac{(x-y)^3}{x^2-y^2}$
- $(\triangledown) \quad (x+y)^2$

৬। গুণ কর:

(ক)
$$\frac{9x^2y^2}{7y^2z^2}$$
, $\frac{5b^2c^2}{3z^2x^2}$ এবং $\frac{7c^2a^2}{x^2y^2}$ (খ) $\frac{16a^2b^2}{21z^2}$, $\frac{28z^4}{9x^3y^4}$ এবং $\frac{3y^7z}{10x}$

(খ)
$$\frac{16a^2b^2}{21z^2}$$
, $\frac{28z^4}{9x^3v^4}$ এবং $\frac{3y^7z}{10x}$

$$(\mathfrak{I})$$
 $\frac{yz}{x^2}$, $\frac{zx}{y^2}$ এবং $\frac{xy}{z^2}$

$$(\overline{4})$$
 $\frac{x-1}{x+1}$, $\frac{(x-1)^2}{x^2+x}$ and $\frac{x^2}{x^2-4x+5}$

(ঙ)
$$\frac{x^4 - y^4}{x^2 - 2xy + y^2}$$
, $\frac{x - y}{x^3 + y^3}$ এবং $\frac{x + y}{x^3 + y^3}$

(চ)
$$\frac{1-b^2}{1+x}$$
, $\frac{1-x^2}{b+b^2}$ এবং $\left(1+\frac{1-x}{x}\right)$

(a)
$$\frac{x^2 - 3x + 2}{x^2 - 4x + 3}$$
, $\frac{x^2 - 5x + 6}{x^2 - 7x + 12}$ and $\frac{x^2 - 16}{x^2 - 9}$

(জ)
$$\frac{x^3 + y^3}{a^2b + ab^2 + b^3}$$
, $\frac{a^3 - b^3}{x^2 - xy + y^2}$ এবং $\frac{ab}{x + y}$

(ৰ)
$$\frac{x^3 + y^3 + 3xy(x+y)}{(a+b)^3}$$
, $\frac{a^3 + b^3 + 3ab(a+b)}{x^2 - y^2}$ এবং $\frac{(x-y)^2}{(x+y)^2}$

৭। ভাগ কর: (১ম রাশিকে ২য় রাশি দারা)

$$(\overline{\Phi}) \ \frac{3x^2}{2a}, \ \frac{4y^2}{15zx}$$

$$(\forall) \quad \frac{9a^2b^2}{4c^2}, \ \frac{16a^3b}{3c^3}$$

(
$$\Rightarrow$$
) $\frac{3x^2}{2a}$, $\frac{4y^2}{15zx}$ (\forall) $\frac{9a^2b^2}{4c^2}$, $\frac{16a^3b}{3c^3}$ (\forall) $\frac{21a^4b^4c^4}{4x^3y^3z^3}$, $\frac{7a^2b^2c^2}{12xyz}$

$$(\mathfrak{A}) \frac{x}{y}, \frac{x+y}{y}$$

(8)
$$\frac{(a+b)^2}{(a-b)^2}$$
, $\frac{a^2-b^2}{a+b}$

$$(\mathfrak{F}) \frac{x}{y}, \frac{x+y}{y} \qquad (\mathfrak{F}) \frac{(a+b)^2}{(a-b)^2}, \frac{a^2-b^2}{a+b} \qquad (\mathfrak{F}) \frac{x^3-y^3}{x+y}, \frac{x^2+xy+y^2}{x^2-y^2}$$

$$(\mathfrak{P}) \frac{a^3+b^3}{a-b}, \frac{a^2-ab+b^2}{a^2-b^2}$$

$$(\mathfrak{F}) \frac{x^2 - 7x + 12}{x^2 - 4}, \frac{x^2 - 16}{x^2 - 3x + 2}$$

$$(3)$$
 $\frac{x^2 - x - 30}{x^2 - 36}$, $\frac{x^2 + 13x + 40}{x^2 + x - 56}$

$$(\Phi)$$
 $\left(\frac{1}{x} + \frac{1}{y}\right) \times \left(\frac{1}{y} - \frac{1}{x}\right)$

$$(\forall) \quad \left(\frac{1}{1+x} + \frac{2x}{1-x^2}\right) \left(\frac{1}{x} - \frac{1}{x^2}\right)$$

(
$$\eta$$
) $\left(1-\frac{c}{a+b}\right)\left(\frac{a}{a+b+c}-\frac{a}{a+b-c}\right)$

$$(\overline{4})$$
 $\left(\frac{1}{1+a} + \frac{a}{1-a}\right) \left(\frac{1}{1+a^2} - \frac{1}{1+a+a^2}\right)$

(8)
$$\left(\frac{x}{2x-y} + \frac{x}{2x+y}\right) \left(4 + \frac{3y^2}{x^2 - y^2}\right)$$

$$(5) \quad \left(\frac{2x+y}{x+y}-1\right) \div \left(1-\frac{y}{x+y}\right)$$

$$(\overline{a})$$
 $\left(\frac{a}{a+b} + \frac{b}{a-b}\right) \div \left(\frac{a}{a-b} - \frac{b}{a+b}\right)$

$$(\mathfrak{F}) \quad \left(\frac{a^2+b^2}{2ab}-1\right) \div \left(\frac{a^3-b^3}{a-b}-3ab\right)$$

$$(4) \quad \frac{(x+y)^2 - 4xy}{(a+b)^2 - 4ab} \div \frac{x^3 - y^3 - 3xy(x-y)}{a^3 - b^3 - 3ab(a-b)}$$

$$(\mathfrak{GS}) \quad \left(\frac{a}{b} + \frac{b}{a} + 1\right) \div \left(\frac{a^2}{b^2} + \frac{a}{b} + 1\right)$$

১ । সরল কর।

$$(\overline{\Phi}) \ \frac{x^2 + 2x - 15}{x^2 + x - 12} \div \frac{x^2 - 25}{x^2 - x - 20} \times \frac{x - 2}{x^2 - 5x + 6}$$

$$(\stackrel{\triangleleft}{\forall}) \left(\frac{x}{x-y} - \frac{x}{x+y} \right) \div \left(\frac{y}{x-y} - \frac{y}{x+y} \right) + \left(\frac{x+y}{x-y} + \frac{x-y}{x+y} \right) \div \left(\frac{x+y}{x-y} - \frac{x-y}{x+y} \right)$$

$$(\mathfrak{I}) \frac{x^2 + 2x - 3}{x^2 + x - 2} \div \frac{x^2 + x - 6}{x^2 - 4}$$

$$(\overline{4}) \ \frac{a^4 - b^4}{a^2 + b^2 - 2ab} \times \frac{(a+b)^2 - 4ab}{a^3 - b^3} \div \frac{a+b}{a^2 + ab + b^2}$$

ষষ্ঠ অধ্যায় সরল সহসমীকরণ

গাণিতিক সমস্যা সমাধানে সমীকরণের ভূমিকা গুরুত্বপূর্ণ। আমরা ষষ্ঠ ও সপ্তম শ্রেণিতে এক চলকবিশিষ্ট সরল সমীকরণ ও এ-সংক্রান্ত বাস্তব সমস্যার সমীকরণ গঠন করে তা সমাধান করতে শিখেছি। সপ্তম শ্রেণিতে সমীকরণের পক্ষান্তর বিধি, বর্জন বিধি, আড়গুণন বিধি ও প্রতিসাম্য বিধি সম্পর্কে জেনেছি। এ ছাড়াও লেখচিত্রের সাহায্যে কীভাবে সমীকরণের সমাধান করতে হয় তা জেনেছি। এ অধ্যায়ে দুই চলকবিশিষ্ট সরল সহসমীকরণের বিভিন্ন পদ্ধতিতে সমাধান ও লেখচিত্রের সাহায্যে সমাধান সম্পর্কে বিস্তারিত আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা–

- 🕨 সমীকরণের প্রতিস্থাপন পদ্ধতি ও অপনয়ন পদ্ধতি ব্যাখ্যা করতে পারবে।
- 🕨 দুই চলকবিশিষ্ট সরল সহসমীকরণের সমাধান করতে পারবে ।
- 🕨 গাণিতিক সমস্যার সরল সহসমীকরণ গঠন করে সমাধান করতে পারবে ।
- 🕨 সরল সহসমীকরণের সমাধান লেখচিত্রে দেখাতে পারবে ।
- লেখচিত্রের সাহায্যে সরল সহসমীকরণের সমাধান করতে পারবে ।

৬.১ সরল সহসমীকরণ

x+y=5 একটি সমীকরণ। এখানে $x \circ y$ দুইটি অজানা রাশি বা চলক। এই চলক দুইটি একঘাতবিশিষ্ট। এরূপ সমীকরণ সরল সমীকরণ।

এখানে যে সংখ্যাদ্বয়ের যোগফল 5 সেই সংখ্যা দ্বারাই সমীকরণটি সিদ্ধ হবে। যেমন x=4,y=1; বা, x=3,y=2; বা, x=2,y=3; বা, x=1,y=4, ইত্যাদি, এরূপ অসংখ্য সংখ্যাযুগল দ্বারা সমীকরণটি সিদ্ধ হবে।

আবার, x-y=3 এই সমীকরণটি বিবেচনা করলে দেখতে পাই, সমীকরণটি x=4, y=1 বা x=5, y=2 বা x=6, y=3 বা x=7, y=4 বা x=8, y=5 বা x=2, y=-1 বা x=1, y=-2, x=0, y=-3... ইত্যাদি অসংখ্য সংখ্যাযুগল দ্বারা সমীকরণটি সিদ্ধ হয়।

এখানে, x+y=5 এবং x-y=3 সমীকরণ দুইটি একত্রে বিবেচনা করলে উভয় সমীকরণ হতে প্রাপ্ত সংখ্যাযুগলের মধ্যে $x=4,\,y=1$ দ্বারা উভয় সমীকরণ যুগপৎ সিদ্ধ হয় ।

চলকের মান দ্বারা একাধিক সমীকরণ সিদ্ধ হলে, সমীকরণসমূহকে একত্রে সহসমীকরণ বলা হয় এবং চলক একঘাত-বিশিষ্ট হলে সহসমীকরণকে সরল সহসমীকরণ বলে।

চলকদ্বয়ের যে মান দ্বারা সহসমীকরণ যুগপৎ সিদ্ধ হয়, এদেরকে সহসমীকরণের মূল বা সমাধান বলা হয়। এখানে x+y=5 এবং x-y=3 সমীকরণ দুইটি সহসমীকরণ। এদের একমাত্র সমাধান $x=4,\,y=1$ যা $(x,y)=(4,\,1)$ দ্বারা প্রকাশ করা যায়।

৬.২ দুই চলকবিশিষ্ট সরল সহসমীকরণের সমাধান

দুই চলকবিশিষ্ট দুইটি সরল সমীকরণের সমাধানের পদ্ধতিগুলোর মধ্যে নিচের পদ্ধতি দুইটির আলোচনা করা হলো:

- (১) প্রতিস্থাপন পদ্ধতি (Method of Substitution)
- (২) অপনয়ন পদ্ধতি (Method of Elimination)

(১) প্রতিস্থাপন পদ্ধতি

এই পদ্ধতিতে আমরা নিচের ধাপগুলো অনুসরণ করে সমাধান করতে পারি :

- (ক) যেকোনো সমীকরণ থেকে চলক দুইটির একটির মান অপরটির মাধ্যমে প্রকাশ করা।
- (খ) অপর সমীকরণে প্রাপ্ত চলকের মানটি স্থাপন করে এক চলকবিশিষ্ট সমীকরণ সমাধান করা।
- (গ) নির্ণীত সমাধান প্রদত্ত সমীকরণ দুইটির যেকোনো একটিতে বসিয়ে অপর চলকের মান নির্ণয় করা।

উদাহরণ ১। সমাধান কর:

$$x + y = 7$$

$$x - y = 3$$

সমাধান: প্রদত্ত সমীকরণ

$$x + y = 7$$
....(1)

$$x - y = 3$$
....(2)

সমীকরণ (2) হতে পক্ষান্তর করে পাই,

$$x = y + 3....(3)$$

সমীকরণ (3) হতে x এর মানটি সমীকরণ (1) -এ বসিয়ে পাই,

$$y + 3 + y = 7$$

বা,
$$2v = 7 - 3$$

বা,
$$2y = 4$$

$$\therefore y = 2$$

এখন সমীকরণ (3) এ v=2 বসিয়ে পাই,

$$x = 2 + 3$$

$$\therefore x = 5$$

নির্ণেয় সমাধান (x, y) = (5, 2)

শ্বিদ্ধি পরীক্ষা: সমীকরণ দুইটিতে x=5 ও y=2 বসালে সমীকরণ (1)-এর বামপক্ষ =5+2=7= ডানপক্ষ এবং সমীকরণ (2)-এর বামপক্ষ =5-2=3= ডানপক্ষ।

উদাহরণ ২। সমাধান কর:

$$x + 2y = 9$$

$$2x - y = 3$$

সমাধান: প্রদত্ত সমীকরণ

$$x + 2y = 9$$

$$2x - y = 3$$

সমীকরণ (2) হতে পাই, y = 2x - 3....... (3)

সমীকরণ (1) এ y -এর মান বসিয়ে পাই, x + 2(2x - 3) = 9

$$4x + 4x - 6 = 9$$

বা,
$$5x = 6 + 9$$

বা,
$$5x = 15$$

ৰা,
$$x = \frac{15}{5}$$

$$\therefore x = 3$$

এখন x -এর মান সমীকরণ (3) -এ বসিয়ে পাই,

$$y = 2 \times 3 - 3$$

$$=6-3$$

$$=3$$

নির্ণেয় সমাধান (x, y) = (3, 3)

উদাহরণ ৩। সমাধান কর:

$$2y + 5z = 16$$

$$y - 2z = -1$$

সমাধান: প্রদত্ত সমীকরণ

$$2y + 5z = 16....(1)$$

$$y - 2z = -1$$
....(2)

সমীকরণ (2) হতে পাই, y = 2z - 1....(3)

সমীকরণ (1) -এ \mathcal{Y} -এর মান বসিয়ে পাই,

$$2(2z-1) + 5z = 16$$

$$4z - 2 + 5z = 16$$

বা,
$$9z = 16 + 2$$

বা,
$$9z = 18$$

বা,
$$z = \frac{18}{9}$$

$$\therefore z = 2$$

এখন z -এর মান সমীকরণ (3) -এ বসিয়ে পাই,

$$y = 2 \times 2 - 1$$

$$=4-1$$

$$\therefore y = 3$$

নির্ণেয় সমাধান (y, z) = (3, 2).

(২) অপনয়ন পদ্ধতি

এই পদ্ধতিতে নিচের ধাপগুলো অনুসরণ করে সমাধান করা যায়:

- (ক) প্রদত্ত উভয় সমীকরণকে এমন দুইটি সংখ্যা বা রাশি দ্বারা পৃথকভাবে গুণ করতে হবে যেন যেকোনো একটি চলকের সহগ সমান হয়।
- (খ) একটি চলকের সহগ সমান ও একই চিহ্নবিশিষ্ট হলে সমীকরণ পরস্পর বিয়োগ, অন্যথায় যোগ করতে হবে। বিয়োগফলকৃত (বা যোগফলকৃত) সমীকরণটি একটি এক চলকবিশিষ্ট সরল সমীকরণ হবে।
- (ঘ) সরল সমীকরণ সমাধানের নিয়মে চলকটির মান নির্ণয় করা।
- (৬) প্রাপ্ত চলকের মান প্রদত্ত যেকোনো একটি সমীকরণে বসিয়ে অপর চলকের মান নির্ণয় করা।

উদাহরণ 8। সমাধান কর:

$$5x - 4y = 6$$

$$x + 2y = 4$$

সমাধান: প্রদত্ত সমীকরণ

$$5x - 4y = 6$$
....(1)

$$x + 2y = 4$$
....(2)

এখানে সমীকরণ (1) কে 1 দারা এবং সমীকরণ (2) কে 2 দারা গুণ করে পাই,

$$5x - 4y = 6....(3)$$

$$2x + 4y = 8$$
....(4)

৯৩

(3) ও (4) সমীকরণ যোগ করে পাই,

$$7x = 14$$

$$\overline{1}$$
, $x = \frac{14}{7}$(4)

$$\therefore x = 2$$

সমীকরণ (2) -এ x -এর মান বসিয়ে পাই,

$$2 + 2y = 4$$

বা,
$$2y = 4 - 2$$

বা,
$$y = \frac{2}{2}$$

$$\therefore y = 1$$

নির্ণেয় সমাধান (x, y) = (2,1).

উদাহরণ ৫। সমাধান কর:

$$x + 4y = 14$$

$$7x - 3y = 5$$

সমাধান: প্রদত্ত সমীকরণ

$$x + 4y = 14....(1)$$

$$7x - 3y = 5$$
....(2)

সমীকরণ (1) কে 3 দ্বারা এবং সমীকরণ (2) কে 4 দ্বারা গুণ করে পাই,

$$3x + 12y = 42....(3)$$

$$28x - 12y = 20....(4)$$

$$31x = 62$$
 [যোগ করে]

$$a$$
1, $x = \frac{62}{31}$

$$\therefore x = 2$$

এখন x -এর মান সমীকরণ (1) -এ বসিয়ে পাই,

$$2 + 4y = 14$$

বা,
$$4y = 14 - 2$$

বা,
$$4y = 12$$

বা,
$$y = \frac{12}{4}$$

$$\therefore$$
 $y = 3$.

$$(x, y) = (2, 3)$$

উদাহরণ ৬। সমাধান কর:

$$5x - 3y = 9$$

$$3x - 5y = -1$$

সমাধান: প্রদত্ত সমীকরণ

$$5x - 3y = 9$$
....(1)

$$3x - 5y = -1$$
....(2)

সমীকরণ (1) কে 5 দারা এবং সমীকরণ (2) কে 3 দারা গুণ করে পাই

$$25x - 15y = 45...$$
(3)

$$9x - 15y = -3....(4)$$

$$(-)$$
 $(+)$ $(+)$

$$16x = 48$$
 [বিয়োগ করে]

$$a = \frac{48}{16}$$

$$\therefore x = 3$$

সমীকরণ (1) -এ x -এর মান বসিয়ে পাই,

$$5 \times 3 - 3y = 9$$

বা,
$$15 - 3 v = 9$$

বা,
$$-3 v = 9 - 15$$

বা,
$$-3y = -6$$

বা,
$$y = \frac{-6}{-3}$$

$$\therefore$$
 $y = 2$.

$$(x, y) = (3, 2)$$
.

৬.৩ লেখচিত্রের সাহায্যে সরল সহসমীকরণের সমাধান

দুই চলকবিশিষ্ট সরল সহসমীকরণে দুইটি সরল সমীকরণ থাকে। দুইটি সরল সমীকরণের জন্য লেখ অঙ্কন করলে দুইটি সরলরেখা পাওয়া যায়। এদের ছেদবিন্দুর স্থানাঙ্ক উভয় সরলরেখায় অবস্থিত। এই ছেদবিন্দুর স্থানাঙ্ক অর্থাৎ (x, y) প্রদত্ত সরল সহসমীকরণের মূল হবে। x ও y-এর প্রাপ্ত মান দ্বারা সমীকরণ দুইটি যুগপৎ সিদ্ধ হবে। অতএব, সরল সহসমীকরণ যুগলের একমাত্র সমাধান যা, ছেদবিন্দুটির ভুজ ও কোটি।

মন্তব্য: সরলরেখা দুইটি সমান্তরাল হলে, প্রদত্ত সহসমীকরণের কোনো সমাধান নেই।

উদাহরণ ৭। লেখের সাহায্যে সমাধান কর:

$$(\Phi) \ x + y = 7....(i)$$

$$x - y = 1$$
....(*ii*)

সমাধান: (ক) প্রদত্ত সমীকরণ(i) হতে পাই,

$$y = 7 - x$$
....(*iii*)

x -এর বিভিন্ন মানের জন্য y -এর মান বের করে নিচের ছকটি তৈরি করি :

х	-2	-1	0	1	2	3	4
у	9	8	7	6	5	4	3

আবার, সমীকরণ (ii) হতে পাই,

$$y = x - 1$$
....(*iv*)

x -এর বিভিন্ন মানের জন্য y -এর মান বের করে নিচের ছকটি তৈরি করি :

x	- 2	-1	0	1	2	3	4
y	-3	-2	-1	0	1	2	3

মনে করি, XOX' ও YOY' যথাক্রমে x-অক্ষ ও y-অক্ষ এবং 0 মূলবিন্দু ।

উভয় অক্ষের ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরি। (-2, 9), (-1, 8), (0, 7), (1, 6), (2, 5), (3, 4) ও (4, 3) বিন্দুগুলোকে ছক কাগজে স্থাপন করি। এই বিন্দুগুলো যোগ করে উভয় দিকে বর্ধিত করে সমীকরণ (i) দ্বারা নির্দেশিত সরলরেখাটির লেখ পাই,

আবার, (-2, -3), (-1, -2), (0, -1), (1, 0), (2, 1), (3, 2) ও (4, 3) বিন্দুগুলো ছক কাগজে স্থাপন করি । এই বিন্দুগুলো যোগ করে (ii) নং সমীকরণ দ্বারা নির্দেশিত সরলরেখাটির লেখ পাই । এই সরলরেখাটি পূর্বোক্ত সরলরেখাকে A বিন্দুতে ছেদ করে । A বিন্দু উভয় সরলরেখার সাধারণ বিন্দু । এর স্থানাঙ্ক উভয় সমীকরণকে সিদ্ধ করে । লেখ থেকে দেখা যায় । A বিন্দুর ভুজ A এবং কোটি A ।

নির্ণেয় সমাধান (x, y) = (4, 3)

উদাহরণ ৮। লেখের সাহায্যে সমাধান কর:

$$3x + 4y = 10....(i)$$

 $x - y = 1...(ii)$

সমীকরণ (i) হতে পাই,

$$4v = 10 - 3x$$

$$y = \frac{10 - 3x}{4}$$

x এর বিভিন্ন মানের জন্য y -এর মান বের করে নিচের ছকটি তৈরি করি :

х	-2	0	2	4	6
У	4	5_	1	<u>-1</u>	-2
		2		2	

(ii) -এর সমীকরণ হতে পাই,

$$y = x - 1$$

x -এর বিভিন্ন মানের জন্য y -এর মান বের করে নিচের ছকটি তৈরি করি :

х	-2	0	2	4	6
У	-3	-1	1	3	5

মনে করি, XOX' ও YOY' যথাক্রমে x-অক্ষ ও y-অক্ষ এবং 0 মূলবিন্দু ।

উভয় অক্ষের ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরি । $(-2,\ 4), \left(0,\ \frac{5}{2}\right), (2,\ 1), \left(4,\ \frac{-1}{2}\right),$ ও $(6,\ -2)$

বিন্দুগুলোকে লেখ কাগজে স্থাপন করি । এই বিন্দুগুলো যোগ করে উভয় দিকে বর্ধিত করে একটি সরলরেখা পাওয়া গেল । যা (i) নং সমীকরণ দ্বারা নির্দেশিত সরলরেখার লেখচিত্র ।

আবার, (-2, -3), (0, -1), (2, 1), (4, 3) ও (6, 5) বিন্দুগুলো লেখ কাগজে স্থাপন করি। এই বিন্দুগুলো যোগ করে উভয় দিকে বর্ধিত করে একটি সরলরেখা পাওয়া গেল। যা, (ii) নং সমীকরণ দ্বারা নির্দেশিত সরলরেখার লেখচিত্র।

এই সরলরেখাটি পূর্বোক্ত সরলরেখাকে A বিন্দুতে ছেদ করে । A বিন্দু উভয় সরলরেখার সাধারণ বিন্দু । এর স্থানাঙ্ক উভয় সমীকরণকে সিদ্ধ করে । লেখ থেকে দেখা যায় যে, A বিন্দুর ভুজ 2 এবং কোটি 1 । নির্ণেয় সমাধান (x,y)=(2,1)

অনুশীলনী ৬.১

(ক) প্রতিস্থাপন পদ্ধতিতে সমাধান কর (১–১২):

$$\begin{array}{cc} 3 & x + y = 4 \\ x - y = 2 \end{array}$$

$$3 + 2x + y = 5$$
$$x - y = 1$$

$$0 + 3x + 2y = 10$$
$$x - y = 0$$

$$8 + \frac{x}{a} + \frac{y}{b} = \frac{1}{a} + \frac{1}{b}$$
$$\frac{x}{a} - \frac{y}{b} = \frac{1}{a} - \frac{1}{b}$$

$$9 \mid ax + by = ab$$
$$bx + ay = ab$$

$$bx - ax - by = ab$$
$$bx - ay = ab$$

$$\delta + ax - by = a - b$$
$$ax + by = a + b$$

$$30 + \frac{1}{x} + \frac{1}{y} = \frac{5}{6}$$
$$\frac{1}{x} - \frac{1}{y} = \frac{1}{6}$$

$$33 + \frac{x}{a} + \frac{y}{b} = \frac{2}{a} + \frac{1}{b}$$
$$\frac{x}{b} - \frac{y}{a} = \frac{2}{b} - \frac{1}{a}$$

$$32 + \frac{a}{x} + \frac{b}{y} = \frac{a}{2} + \frac{b}{3}$$
$$x - y = -1$$

(খ) অপনয়ন পদ্ধতিতে সমাধান কর (১৩-২৬):

$$\begin{array}{c}
\mathsf{SO} + x - y = 4 \\
x + y = 6
\end{array}$$

$$38 + 2x + 3y = 7$$
$$6x - 7y = 5$$

$$3@ + 4x + 3y = 15$$
$$5x + 4y = 19$$

$$39 + 4x - 3y = -1
2x + 3y = 12$$

$$39 + 4x - 3y = -1
3x - 2y = 0$$

$$50 + x + ay = b
ax - by = c$$

$$\frac{x}{2} - \frac{y}{2} = 1$$

$$29 + \frac{x}{4} + \frac{y}{b} = \frac{2}{a} + \frac{1}{b}$$

$$\frac{x}{4} - \frac{3}{y} = 3$$

$$29 + \frac{x}{4} + \frac{y}{b} = \frac{2}{a} + \frac{1}{b}$$

$$\frac{x}{b} - \frac{y}{a} = \frac{2}{b} - \frac{1}{a}$$

$$29 + x + y = a - b
ax - by = a^2 + b^2$$

$$\frac{x}{4} - \frac{1}{y} = 1$$

$$3b + 3x - 5y = -9
5x - 3y = 1$$

$$25 + \frac{x}{2} + \frac{y}{3} = 3$$

$$28 + \frac{a}{x} + \frac{b}{y} = \frac{a}{2} + \frac{b}{3}$$

$$x - y = -1$$

৬.২ বাস্তবভিত্তিক সমস্যার সহসমীকরণ গঠন ও সমাধান

সরল সহসমীকরণের ধারণা ব্যবহার করে বাস্তব জীবনের বহু সমস্যা সমাধান করা যায়। অনেক সমস্যায় একাধিক চলক আসে। প্রত্যেক চলকের জন্য আলাদা প্রতীক ব্যবহার করে সমীকরণ গঠন করা যায়। এরপ ক্ষেত্রে যতগুলো প্রতীক ব্যবহার করা হয়, ততগুলো সমীকরণ গঠন করতে হবে। অতঃপর সমীকরণগুলো সমাধান করে চলকের মান নির্ণয় করা যায়।

উদাহরণ ১। দুইটি সংখ্যার যোগফল 60 এবং বিয়োগফল 20 হলে, সংখ্যা দুইটি নির্ণয় কর। সমাধান : মনে করি, সংখ্যা দুইটি যথাক্রমে $x \otimes v$ ।

১ম শর্তানুসারে, x + y = 60....(1)

২য় শর্তানুসারে, x - y = 20....(2)

সমীকরণ (1) ও (2) যোগ করে পাই,

$$2x = 80$$
 $\Rightarrow x = \frac{80}{2} = 40$

আবার, সমীকরণ (1) হতে সমীকরণ (2) বিয়োগ করে পাই,

$$2y = 40$$

$$\therefore y = \frac{40}{2} = 20$$

নির্ণেয় সংখ্যা দুইটি 40 ও 20 ।

উদাহরণ ২। ফাইয়াজ ও আয়াজের কতকগুলো আপেল কুল ছিল। ফাইয়াজের আপেল কুল থেকে আয়াজকে 10টি আপেল কুল দিলে আয়াজের আপেল কুলের সংখ্যা ফাইয়াজের আপেল কুলের সংখ্যার তিনগুণ হতো। আর আয়াজের আপেল কুল থেকে ফাইয়াজেকে 20টি দিলে ফাইয়াজের আপেল কুলের সংখ্যা আয়াজের সংখ্যার দ্বিগুণ হতো। কার কতগুলো আপেল কুল ছিল ?

সমাধান : মনে করি, ফাইয়াজের আপেল কুল সংখ্যা xটি এবং আয়াজের আপেল কুল সংখ্যা yটি

১ম শর্তানুসারে,
$$y + 10 = 3(x - 10)$$

বা, $y + 10 = 3x - 30$
বা, $3x - y = 10 + 30$
বা, $3x - y = 40$(1)

২য় শর্তানুসারে,
$$x + 20 = 2(y - 20)$$

বা, $x + 20 = 2y - 40$
বা, $x - 2y = -40 - 20$
বা, $x - 2y = -60$(2)

সমীকরণ (1) কে 2 দারা গুণ করে তা থেকে সমীকরণ (2) বিয়োগ করে পাই,

$$5x = 140$$

$$\therefore x = \frac{140}{5} = 28$$

x -এর মান সমীকরণ (1) -এ বসিয়ে পাই,

$$3 \times 28 - y = 40$$

বা,
$$-y = 40 - 84$$

বা,
$$-y = -44$$

∴
$$y = 44$$

∴ ফাইয়াজের আপেল কুলের সংখ্যা 28টি

আয়াজের আপেল কুলের সংখ্যা 44 টি।

উদাহরণ ৩। 10 বছর পূর্বে পিতা ও পুত্রের বয়সের অনুপাত ছিল 4:1:10 বছর পরে পিতা ও পুত্রের বয়সের অনুপাত হবে 2:1:1 পিতা ও পুত্রের বর্তমান বয়স নির্ণয় কর।

সমাধান : মনে করি, বর্তমানে পিতার বয়স χ বছর

এবং পুত্রের বয়স v বছর

১ম শর্তানুসারে, (x-10):(y-10)=4:1

১০০

বা,
$$\frac{x-10}{y-10} = \frac{4}{1}$$
বা, $x-10 = 4y-40$
বা, $x-4y = 10-40$

$$\therefore x-4y = -30......(1)$$
২য় শর্তানুসারে, $(x+10): (y+10) = 2:1$
বা, $\frac{x+10}{y+10} = \frac{2}{1}$
বা, $x+10 = 2y+20$
বা $x-2y = 20-10$

$$\therefore x-2y = 10.....(2)$$

সমীকরণ (1) ও (2) হতে পাই,

$$x - 4y = -30$$

$$x - 2y = 10$$

$$- + -$$

$$-2y = -40$$

$$\therefore y = \frac{-40}{-2} = 20$$

y -এর মান সমীকরণ (2)-এ বসিয়ে পাই,

$$x-2 \times 20 = 10$$

বা $x = 10 + 40$
∴ $x = 50$

∴ বর্তমানে পিতার বয়স 50 বছর এবং পুত্রের বয়স 20 বছর।

 $\overline{1}$, x + 10y - y - 10x = 18

উদাহরণ ৪। দুই অঙ্কবিশিষ্ট কোনো সংখ্যার অঙ্কদ্বয়ের সমষ্টির সাথে 7 যোগ করলে যোগফল দশক স্থানীয় অঙ্কটির তিনগুণ হয়। কিন্তু সংখ্যাটি থেকে 18 বাদ দিলে অঙ্কদ্বয় স্থান পরিবর্তন করে। সংখ্যাটি নির্ণয় কর।

সমাধান: মনে করি, দুই অঙ্কবিশিষ্ট সংখ্যাটির একক স্থানীয় অঙ্কটি $\,x\,$ এবং দশক স্থানীয় অঙ্কটি $\,y\,$ ।

∴ সংখ্যাটি =
$$x + 10y$$
.

১ম শর্তানুসারে,
$$x+y+7=3y$$
 বা, $x+y-3y=-7$ বা, $x-2y=-7$(1) ২য় শর্তানুসারে, $x+10y-18=y+10x$

বা,
$$9y - 9x = 18$$

বা, $9(y - x) = 18$
বা, $y - x = \frac{18}{9} = 2$
∴ $y - x = 2$(2)

(1) ও (2) নং যোগ করে পাই,
$$-y = -5$$

 $\therefore y = 5$

y -এর মান (1) নং-এ বসিয়ে পাই,

$$x - 2 \times 5 = -7$$

$$\therefore x = 3$$

নির্ণেয় সংখ্যাটি $= 3 + 10 \times 5 = 3 + 50 = 53$

উদাহরণ ϵ । কোনো ভগ্নাংশের লবের সাথে 7 যোগ করলে ভগ্নাংশটির মান 2 হয় এবং হর থেকে 2 বাদ দিলে ভগ্নাংশটির মান 1 হয়। ভগ্নাংশটি নির্ণয় কর।

সমাধান : মনে করি, ভগ্নাংশটি $\frac{x}{y},\ y \neq 0.$

১ম শর্তানুসারে,
$$\frac{x+7}{y} = 2$$

$$x+7 = 2y$$

$$x-2y = -7....(1)$$

২য় শর্তানুসারে,
$$\frac{x}{y-2} = 1$$
 $x = y - 2$
 $x - y = -2$(2)

আবার, y = 5 সমীকরণ (2) -এ বসিয়ে পাই,

$$x - 5 = -2$$

$$x = 5 - 2 = 3$$

নির্ণেয় ভগ্নাংশটি $\frac{3}{5}$.

অনুশীলনী ৬.২

- ১। দুইটি সংখ্যার যোগফল 100 এবং বিয়োগফল 20 হলে, সংখ্যা দুইটি নির্ণয় কর।
- ২। দুইটি সংখ্যার যোগফল 160 এবং একটি অপরটির তিনগুণ হলে, সংখ্যা দুইটি নির্ণয় কর।
- ৩। দুইটি সংখ্যার প্রথমটির তিনগুণের সাথে দ্বিতীয়টির দুইগুণ যোগ করলে 59 হয়। আবার, প্রথমটির দুইগুণ থেকে দ্বিতীয়টি বিয়োগ করলে 9 হয়। সংখ্যাদ্বয় নির্ণয় কর।
- 8। 5 বছর পূর্বে পিতা ও পুত্রের বয়সের অনুপাত ছিল 3:1 এবং 15 বছর পর পিতা-পুত্রের বয়সের অনুপাত হবে 2:1।পিতা ও পুত্রের বর্তমান বয়স নির্ণয় কর।
- ৫। কোনো ভগ্নাংশের লবের সাথে 5 যোগ করলে এর মান 2 হয়। আবার, হর থেকে 1 বিয়োগ করলে এর মান 1 হয়। ভগ্নাংশটি নির্ণয় কর।
- ৬। কোনো প্রকৃত ভগ্নাংশের লব ও হরের যোগফল 14 এবং বিয়োগফল 8 হলে, ভগ্নাংশটি নির্ণয় কর।
- ৭। দুই অঙ্কবিশিষ্ট কোনো সংখ্যার অঙ্কদ্বয়ের যোগফল 10 এবং বিয়োগফল 4 হলে, সংখ্যাটি নির্ণয় কর।
- ৮। একটি আয়তাকার ক্ষেত্রের দৈর্ঘ্য প্রস্থ অপেক্ষা 25 মিটার বেশি। আয়তাকার ক্ষেত্রটির পরিসীমা 150 মিটার হলে, ক্ষেত্রটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
- ৯। একজন বালক দোকান থেকে 15টি খাতা ও 10টি পেঙ্গিল 300 টাকা দিয়ে ক্রয় করলো। আবার অন্য একজন বালক একই দোকান থেকে 10টি খাতা ও 15টি পেঙ্গিল 250 টাকায় ক্রয় করলো। খাতা ও পেঙ্গিলের মূল্য নির্ণয় কর।
- ১০। একজন লোকের নিকট 5000 টাকা আছে। তিনি উক্ত টাকা দুই জনের মধ্যে এমনভাবে ভাগ করে দিলেন, যেন, প্রথম জনের টাকা দ্বিতীয় জনের 4 গুণ হয়। আবার প্রথম জন থেকে 1500 টাকা দ্বিতীয় জনকে দিলে উভয়ের টাকার পরিমাণ সমান হয়। প্রত্যেকের টাকার পরিমাণ নির্ণয় কর।
- ১১। লেখের সাহায্যে সমাধান কর:

ক.
$$x + y = 6$$

 $x - y = 2$
গ. $x + 4y = 11$
 $4x - y = 10$
গ. $3x + 2y = 21$
 $2x - 3y = 1$
v. $x + 2y = 1$
 $x - y = 7$

S.
$$x - y = 0$$
 T. $4x - 3y = 11$ $x + 2y = -15$ **T.** $3x - 4y = -2$

- ১২। 2x y = 5 এবং 4x 2y = 7 সরল সমীকরণ।
 - (ক) লেখচিত্র অঙ্কনের জন্য সংক্ষিপ্ত বর্ণনা দাও।
 - (খ) লেখচিত্র থেকে সমাধান নির্ণয় কর।
 - (গ) নির্ণেয় সমাধান-এর ব্যাখ্যা দাও।

সপ্তম অধ্যায়

সেট

সেট শব্দটি আমাদের সুপরিচিত। যেমন: টিসেট, সোফাসেট, থ্রি-পিচ সেট, এক সেট বই ইত্যাদি। জার্মান গণিতবিদ জর্জ ক্যান্টর (১৮৪৫–১৯১৮) সেট সম্পর্কে প্রথম ধারণা ব্যাখ্যা করেন। সেট সংক্রান্ত তাঁর ব্যাখ্যা গণিত শাস্ত্রে সেটতত্ত্ব (Set Theory) হিসেবে পরিচিত। সেটের প্রাথমিক ধারণা থেকে প্রতীক ও চিত্রের মাধ্যমে সেট সম্পর্কে জ্ঞান অর্জন করা আবশ্যক। এ অধ্যায়ে বিভিন্ন ধরনের সেট, সেট প্রক্রিয়া ও সেটের ধর্মাবলি সম্পর্কে আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা–

- 🗲 সেট ও সেট গঠন প্রক্রিয়া ব্যাখ্যা করতে পারবে ।
- > সসীম সেট, সার্বিক সেট, পূরক সেট, ফাঁকা সেট, নিশ্ছেদ সেট বর্ণনা করতে পারবে এবং এদের গঠন প্রতীকের সাহায্যে প্রকাশ করতে পারবে।
- 🕨 একাধিক সেটের সংযোগ সেট, ছেদ সেট গঠন ও ব্যাখ্যা করতে পারবে।
- 🗲 ভেনচিত্র ও উদাহরণের সাহায্যে সেট প্রক্রিয়ার সহজ ধর্মাবলি যাচাই ও প্রমাণ করতে পারবে।
- সেটের ধর্মাবলি প্রয়োগ করে সমস্যা সমাধান করতে পারবে ।

৭.১ সেট (Set)

বাস্তব বা চিন্তাজগতের সু-সংজ্ঞায়িত বস্তুর সমাবেশ বা সংগ্রহকে সেট বলে। ইংরেজি বর্ণমালার প্রথম পাঁচটি বর্ণ, এশিয়া মহাদেশের দেশসমূহ, স্বাভাবিক সংখ্যা ইত্যাদির সেট সু-সংজ্ঞায়িত সেটের উদাহরণ। কোন সদস্য বিবেচনাধীন সেটের অন্তর্ভুক্ত আর কোনটি নয় তা সুনির্দিষ্টভাবে নির্ধারিত হতে হবে। সেটের সদস্যদের কোনো পুনরাবৃত্তি ও ক্রম নেই।

সেটের প্রত্যেক সদস্যকে সেটের উপাদান (element) বলা হয়। সেটকে সাধারণত ইংরেজি বর্ণমালার বড় হাতের অক্ষর A,B,C,.....X,Y,Z দ্বারা এবং উপাদানকে ছোট হাতের অক্ষর a,b,c,.......x,y,z দ্বারা প্রকাশ করা হয়।

সেটের সদস্যগুলোকে $\{\ \}$ এই প্রতীকের মধ্যে অন্তর্ভুক্ত করে সেট হিসেবে ব্যবহার করা হয়। যেমন: a,b,c-এর সেট $\{a,b,c\}$ তিস্তা, মেঘনা, যমুনা ও ব্রহ্মপুত্র নদ-নদীর সেট $\{$ তিস্তা, মেঘনা, যমুনা, ব্রহ্মপুত্র $\}$, প্রথম দুইটি জোড় স্বাভাবিক সংখ্যার সেট $\{2,4\}$; 6-এর গুণনীয়কসমূহের সেট $\{1,2,3,6\}$ ইত্যাদি।

মনে করি, সেট A এর একটি উপাদান x । একে গাণিতিকভাবে $x \in A$ প্রতীক দ্বারা প্রকাশ করা হয় । $x \in A$ কে পড়তে হয়, x় A সেটের উপাদান $(x \ belongs \ to \ A)$ । যেমন, $B = \{m,n\}$ হলে, $m \in B$ এবং $n \in B$.

উদাহরণ $\mathbf{\lambda}$: প্রথম পাঁচটি বিজোড় সংখ্যার সেট A হলে, $A = \{1, 3, 5, 7, 9\}$

কাজ:

- সার্কভুক্ত দেশগুলোর নামের সেট লেখ।
- ২. 1 থেকে 20 পর্যন্ত মৌলিক সংখ্যাসমূহের সেট লেখ ।
- ৩. 300 ও 400 -এর মধ্যে অবস্থিত 3 দ্বারা বিভাজ্য যেকোনো চারটি সংখ্যার সেট লেখ।

৭.২ সেট প্রকাশের পদ্ধতি

প্রধানত সেট দুই পদ্ধতিতে প্রকাশ করা হয়। যথা: (১) তালিকা পদ্ধতি (Tabular Method) (২) সেট গঠন পদ্ধতি (Set Builder Method)

- (১) তালিকা পদ্ধতি : এ পদ্ধতিতে সেটের সকল উপাদান সুনির্দিষ্টভাবে উল্লেখ করে দ্বিতীয় বন্ধনী $\{\ \}$ এর মধ্যে আবদ্ধ করা হয় এবং একাধিক উপাদান থাকলে 'কমা' ব্যবহার করে উপাদানগুলোকে পৃথক করা হয়। যেমন : $A=\{1,2,3),\ B=\{x,y,z\},\ C=\{100\},\ D=\{$ গোলাপ, রজনীগন্ধা $\},\ E=\{$ রহিম, সুমন, শুল্র, চাংপাই $\}$ ইত্যাদি।

এখানে , ':' দ্বারা 'এরূপ যেন' বা সংক্ষেপে 'যেন' বোঝায়।

সেট গঠন পদ্ধতিতে $\{\ \}$ এর ভেতরে ' : ' চিহ্নের আগে একটি অজানা রাশি বা চলক ধরে নিতে হয় এবং পরে চলকের ওপর প্রয়োজনীয় শর্ত আরোপ করতে হয়। যেমনः $\{3,6,9,12\}$ সেটটিকে সেট গঠন পদ্ধতিতে প্রকাশ করতে চাই। লক্ষ করি, 3,6,9,12, সংখ্যাগুলো স্বাভাবিক সংখ্যা, 3 দ্বারা বিভাজ্য এবং 12-এর বড় নয়। এক্ষেত্রে সেটের উপাদানকে 'y' চলক বিবেচনা করলে 'y'-এর ওপর শর্ত হবে y স্বাভাবিক সংখ্যা, 3-এর গুণিতক এবং 12-এর চেয়ে বড় নয় ($y \le 12$)।

উদাহরণ ২ । $P = \{4, 8, 12, 16, 20\}$ সেটটিকে সেট গঠন পদ্ধতিতে প্রকাশ কর ।

সমাধান : P সেটের উপাদানসমূহ 4,8,12,16,20। এখানে, প্রত্যেকটি উপাদান জোড় সংখ্যা, 4-এর গুণিতক এবং 20-এর বড় নয়।

 \therefore $P = \{x : x$ জোড় সংখ্যা, 4 এর গুণিতক এবং $x \le 20$ $\}$

উদাহরণ ৩। $Q = \{x: x, 42$ -এর সকল গুণনীয়ক $\}$ সেটটিকে তালিকা পদ্ধতিতে প্রকাশ কর।

সমাধান : *Q* সেটটি 42 -এর গুণনীয়কসমূহের সেট।

এখানে, $42 = 1 \times 42 = 2 \times 21 = 3 \times 14 = 6 \times 7$

∴ 42 -এর গুণনীয়কসমূহ 1, 2, 3, 6,7, 14, 21, 42.

নির্ণেয় সেট $Q = \{1, 2, 3, 6, 7, 14, 21, 42\}$

কাজ:

১ । $A = \{3, 6, 9, 12, 15, 18\}$ সেটটিকে সেট গঠন পদ্ধতিতে প্রকাশ কর।

২ । $B = \{x: x, 24$ -এর গুণনীয়ক $\}$ সেটটিকে তালিকা পদ্ধতিতে প্রকাশ কর।

৭.৩ সেটের প্রকারভেদ

সসীম সেট (Finite set)

যে সেটের উপাদান সংখ্যা গণনা করে নির্ধারণ করা যায়, একে সসীম সেট বলে। যেমন : $A=\{a,b,c,d\},\,B=\{5,10,15,\ldots,100\}$ ইত্যাদি সসীম সেট। এখানে A সেটে 4টি উপাদান এবং B সেটে 20টি উপাদান আছে।

অসীম সেট (Infinite set)

যে সেটের উপাদান সংখ্যা গণনা করে নির্ধারণ করা যায় না, একে অসীম সেট বলে । অসীম সেটের একটি উদাহরণ হলো স্বাভাবিক সংখ্যার সেট, $N=\{1,2,3,4.....\}$ । এখানে N সেটের উপাদান সংখ্যা অসংখ্য যা গণনা করে নির্ধারণ করা যায় না । এই শ্রেণিতে শুধু সসীম সেট নিয়ে আলোচনা করা হবে ।

ফাঁকা সেট (Empty set)

যে সেটের কোনো উপাদান নেই একে ফাঁকা সেট বলে । ফাঁকা সেটকে $\{\}$ বা ϕ প্রতীক দারা প্রকাশ করা হয় ।

৭.৪ ভেনচিত্র (Venn-diagram)

জন ভেন (১৮৩৪–১৮৮৩) চিত্রের সাহায্যে সেট প্রকাশ করার রীতি প্রবর্তন করেন। এই চিত্রগুলো তাঁর নামানুসারে ভেনচিত্র নামে পরিচিত। ভেনচিত্রে সাধারণত আয়তাকার ও বৃত্তাকার ক্ষেত্র ব্যবহার করা হয়। নিচে কয়েকটি সেটের ভেনচিত্র প্রদর্শন করা হলো:

ভেনচিত্র ব্যবহার করে অতি সহজে সেট ও সেট প্রক্রিয়ার বিভিন্ন বৈশিষ্ট্য যাচাই করা যায়।

৭.৫ উপসেট (Subset)

মনে করি, $A = \{a,b\}$ একটি সেট । A সেটের উপাদান নিয়ে আমরা $\{a,b\},\{a\},\{b\}$ সেটগুলো গঠন করতে পারি । গঠিত $\{a,b\},\{a\},\{b\}$ সেটগুলো A সেটের উপসেট ।

কোনো সেটের উপাদান থেকে যতগুলো সেট গঠন করা যায় এদের প্রত্যেকটি প্রদন্ত সেটের উপসেট। ফাঁকা সেট যেকোনো সেটের উপসেট।

যেমন : $P = \{2, 3, 4, 5\}$ এবং $Q = \{3, 5\}$ হলে, Q সেটটি P সেটের উপসেট । অর্থাৎ $Q \subset P$. কারণ Q সেটের 3 এবং 5 উপাদানসমূহ P সেটে বিদ্যমান । ' \subset 'প্রতীক দ্বারা উপসেটকে সূচিত করা হয় ।

উদাহরণ 8 । $A=\{1,2,3\}$ এর উপসেটসমূহ লেখ। সমাধান : A সেটের উপসেটসমূহ নিম্নরূপ : $\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\},\phi$

সার্বিক সেট (Universal Set)

আলোচনায় সংশ্রিষ্ট সকল সেট যদি একটি নির্দিষ্ট সেটের উপসেট হয় তবে ঐ নির্দিষ্ট সেটকে এর উপসেটগুলোর সাপেক্ষে সার্বিক সেট বলে । সার্বিক সেটকে U প্রতীক দ্বারা সূচিত করা হয় । যেমনং কোনো বিদ্যালয়ের সকল শিক্ষার্থীর সেট হলো সার্বিক সেট এবং অষ্টম শ্রেণির শিক্ষার্থীদের সেট উক্ত সার্বিক সেটের উপসেট ।

সকল সেট সার্বিক সেটের উপসেট।

উদাহরণ ৫ । $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{1, 3, 5\}$, $C = \{3, 4, 5, 6\}$ হলে, সার্বিক সেট নির্ণয় কর । সমাধান : দেওয়া আছে, $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{1, 3, 5\}$, $C = \{3, 4, 5, 6\}$ এখানে, B সেটের উপাদান B সেটের উপাদান B সেটের সাপেক্ষে সার্বিক সেট A.

পূরক সেট (Complement of a set)

যদি U সার্বিক সেট এবং A সেটটি U -এর উপসেট হয় তবে, A সেটের বহির্ভূত সকল উপাদান নিয়ে যে সেট গঠন করা হয়, একে A সেটের পূরক সেট বলে । A -এর পূরক সেটকে A^c বা A' দ্বারা প্রকাশ করা হয় ।

মনে করি, অষ্টম শ্রেণির 60 জন শিক্ষার্থীর মধ্যে 9 জন অনুপস্থিত। অষ্টম শ্রেণির সকল শিক্ষার্থীদের সেট সার্বিক সেট বিবেচনা করলে উপস্থিত (60-9) বা 51 জনের সেটের পূরক সেট হবে অনুপস্থিত 9 জনের সেট।

উদাহরণ ৬। $U=\{1,2,3,4,5,6\}$ এবং $A=\{2,4,6\}$ হলে A^c নির্ণয় কর। সমাধান: দেওয়া আছে, $U=\{1,2,3,4,5,6\}$ এবং $A=\{2,4,6\}$

$$\therefore A^c = A$$
 -এর পূরক সেট
$$= A$$
 -এর বহির্ভূত উপাদানসমূহের সেট
$$= \{1,3,5\}$$

 $\begin{bmatrix} 1 & A & 3 \\ 2 & 4 & 6 \\ A^c & 5 & 5 \end{bmatrix}$

নির্ণেয় সেট $A^c = \{1, 3, 5\}$

কাজ :

 $A=\{a,b,c\}$ হলে, A -এর উপসেটসমূহ নির্ণয় কর এবং যেকোনো তিনটি উপসেট লিখে এদের $\,$ পূরক সেট নির্ণয় কর ।

৭.৬ সেট প্রক্রিয়া

সংযোগ সেট (Union of sets)

মনে করি, $P=\{2,3,4\}$ এবং $Q=\{4,5,6\}$. এখানে P এবং Q সেটের অন্তর্ভুক্ত উপাদানসমূহ 2,3,4,5,6. P ও Q সেটের সকল উপাদান নিয়ে গঠিত সেট $\{2,3,4,5,6\}$ যা P ও Q সেটদ্বয়ের সংযোগ সেট ।

দুই বা ততোধিক সেটের সকল উপাদান নিয়ে গঠিত সেটকে সংযোগ সেট বলা হয়।

ধরি, A ও B দুইটি সেট। A ও B-এর সংযোগ সেটকে $A \cup B$ দ্বারা প্রকাশ করা হয় এবং পড়া হয় A সংযোগ B অথবা 'A union B'.

উদাহরণ ৭। $C=\{$ রাজ্জাক, সাকিব, অলোক $\}$ এবং $D=\{$ অলোক, মুশফিক $\}$ হলে, $C\cup D$ নির্ণয় কর। সমাধান: দেওয়া আছে, $C=\{$ রাজ্জাক, সাকিব, অলোক $\}$ এবং $D=\{$ অলোক, মুশফিক $\}$

$$C \cup D = \{$$
রাজ্জাক, সাকিব, অলোক $\} \cup \{$ অলোক, মুশফিক $\}$
$$= \{রাজ্জাক, সাকিব, অলোক, মুশফিক $\}$$$

উদাহরণ ৮। $R=\{x:x,6$ -এর গুণনীয়কসমূহ $\}$ এবং $S=\{x:x,8$ -এর গুণনীয়কসমূহ $\}$ হলে, $R\cup S$ নির্ণয় কর।

সমাধান : দেওয়া আছে,
$$R = \{x: x, 6$$
-এর গুণনীয়কসমূহ $\}$

$$= \{1, 2, 3, 6\}$$
এবং $S = \{x: x, 8$ -এর গুণনীয়কসমূহ $\}$

$$= \{1, 2, 4, 8\}$$

$$\therefore R \cup S = \{1, 2, 3, 6\} \cup \{1, 2, 4, 8\}$$

ছেদ সেট (Intersection of sets)

 $= \{1, 2, 3, 4, 6, 8\}$

মনে করি, রিনা বাংলা ও আরবি ভাষা পড়তে ও লিখতে পারে এবং জয়া বাংলা ও হিন্দি ভাষা পড়তে ও লিখতে পারে । রিনা যে ভাষা পড়তে ও লিখতে পারে এদের সেট {বাংলা, আরবি} এবং জয়া যে ভাষা পড়তে ও লিখতে পারে এদের সেট {বাংলা, হিন্দি} । লক্ষ করি, রিনা ও জয়া প্রত্যেকে যে ভাষা পড়তে ও লিখতে পারে তা হচ্ছে বাংলা এবং এর সেট {বাংলা} । এখানে {বাংলা} সেটটি ছেদ সেট ।

১০৮

দুই বা ততোধিক সেটের সাধারণ (Common) উপাদান নিয়ে গঠিত সেটকে ছেদ সেট বলা হয়।

ধরি, A ও B দুইটি সেট । A ও B -এর ছেদ সেটকে $A \cap B$ দারা প্রকাশ করা হয় এবং পড়া হয় A ছেদ B . সেট গঠন পদ্ধতিতে $A \cap B = \{x : x \in A \text{ এবং } x \in B\}$

উদাহরণ ৯ । $A = \{1, 3, 5\}$ এবং $B = \{5, 7\}$ হলে, $A \cap B$ নির্ণয় কর । সমাধান : দেওয়া আছে, $A = \{1, 3, 5\}$ এবং $B = \{5, 7\}$ \therefore $A \cap B = \{1, 3, 5\} \cap \{5, 7\} = \{5\}$

উদাহরণ ১০ । $P=\{x:x,2$ -এর গুণিতক এবং $x\leq 8\}$ এবং $Q=\{x:x,4$ -এর গুণিতক এবং $x\leq 12\}$ হলে, $P\cap Q$ নির্ণয় কর ।

সমাধান : দেওয়া আছে,
$$P=\{x:x,2$$
-এর গুণিতক এবং $x\leq 8\}$
$$=\{2,4,6,8\}$$
 এবং $Q=\{x:x,4$ -এর গুণিতক $x\leq 12\}$
$$=\{4,8,12\}$$

$$P \cap Q = \{2, 4, 6, 8\} \cap \{4, 8, 12\} = \{4, 8\}$$

কাজ :
$$U = \{1, 2, 3, 4\}$$
, $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$, $C = \{1, 3\}$ $U \cap A$, $C \cap A$, এবং $B \cup C$ সেটগুলোকে ভেনচিত্রে প্রদর্শন কর।

নিম্ছেদ সেট (Disjointsets)

মনে করি, বাংলাদেশের পাশাপাশি দুইটি গ্রাম। একটি গ্রামের কৃষকগণ জমিতে ধান ও পাট চাষ করেন এবং অপর গ্রামের কৃষকগণ জমিতে আলু ও সবজি চাষ করেন। চাষকৃত ফসলের সেট দুইটি বিবেচনা করলে পাই {ধান, পাট} এবং {আলু, সবজি}। উক্ত সেট দুইটিতে ফসলের কোনো মিল নেই। অর্থাৎ, দুই গ্রামের কৃষকগণ একই-জাতীয় ফসল চাষ করেন না। এখানে সেট দুইটি পরস্পর নিশ্ছেদ সেট।

যদি দুইটি সেটের উপাদানগুলোর মধ্যে কোনো সাধারণ উপাদান না থাকে, তবে সেট দুইটি পরস্পর নিম্ছেদ সেট । ধরি, $A \odot B$ দুইটি সেট । $A \odot B$ পরস্পর নিম্ছেদ সেট হবে যদি $A \cap B = \phi$ হয় ।

∴ দুইটি সেটের ছেদ সেট ফাঁকা সেট হলে সেটদ্বয় পরস্পর নিশ্ছেদ সেট।

উদাহরণ ১১। $A = \{x: x, \text{ বিজোড় স্বাভাবিক সংখ্যা এবং } 1 < x < 7\}$ এবং $B = \{x, : x, 8$ -এর গুণনীয়কসমূহ $\}$ হলে, দেখাও যে, A ও B সেটদ্বয় পরস্পর নিশ্ছেদ সেট।

সমাধান: দেওয়া আছে,
$$A=\{x:x,$$
 বিজোড় স্বাভাবিক সংখ্যা এবং $1< x<7\}$
$$=\{3,5\}$$
 এবং $B=\{x:x,8$ -এর গুণনীয়কসমূহ $\}$
$$=\{1,2,4,8\}$$

$$\therefore A\cap B=\{3,5\}\cap\{1,2,4,8\}$$

$$=\phi$$

∴ A ও B সেটদ্বয় পরস্পর নিশ্ছেদ সেট।

উদাহরণ ১২। $C=\{3,4,5\}$ এবং $D=\{4,5,6\}$ হলে, $C\cup D$ এবং $C\cap D$ নির্ণয় কর। সমাধান : দেওয়া আছে, $C=\{3,4,5\}$ এবং $D=\{4,5,6\}$

$$C \cup D = \{3, 4, 5\} \cup \{4, 5, 6\} = \{3, 4, 5, 6\}$$

$$C \cap D = \{3, 4, 5\} \cap \{4, 5, 6\} = \{4, 5\}$$

কাজ :

 $P = \{2, 3, 4, 5, 6, 7\}$ এবং $Q = \{4, 6, 8\}$ হলে,

১. $P \cup Q$ এবং $P \cap Q$ নির্ণয় কর।

২. $P \cup Q$ এবং $P \cap Q$ কে সেট গঠন পদ্ধতিতে প্রকাশ কর।

উদাহরণ ১৩। $E=\{x:x, \text{ মৌলিক সংখ্যা এবং }x<30\}$ সেটটি তালিকা পদ্ধতিতে প্রকাশ কর। সমাধান: নির্ণেয় সেটটি হবে 30 অপেক্ষা ছোট মৌলিক সংখ্যাসমূহের সেট। এখানে, 30 অপেক্ষা ছোট মৌলিক সংখ্যাসমূহ 2,3,5,7,11,13,17,19,23,29 নির্ণেয় সেট $=\{2,3,5,7,11,13,17,19,23,29\}$

উদাহরণ ১৪ । $A \circ B$ যথাক্রমে $42 \circ 70$ -এর সকল গুণনীয়কের সেট হলে, $A \cap B$ নির্ণয় কর । সমাধান :

এখানে, $42 = 1 \times 42 = 2 \times 21 = 3 \times 14 = 6 \times 7$ 42-এর গুণনীয়কসমূহ 1, 2, 3, 6, 7, 14, 21, 42 $\therefore A = \{1, 2, 3, 6, 7, 14, 21, 42\}$ আবার, $70 = 1 \times 70 = 2 \times 35 = 5 \times 14 = 7 \times 10$ 70-এর গুণনীয়কসমূহ 1, 2, 5, 7, 10, 14, 35, 70

$$\therefore$$
 B = {1, 2, 5, 7, 10, 14, 35, 70}

$$A \cap B = \{1, 2, 7, 14\}$$

অনুশীলনী ৮

- ১। নিচের সেটগুলোকে তালিকা পদ্ধতিতে প্রকাশ কর
 - (ক) {x:x, বিজোড় সংখ্যা এবং 3 < x < 15}
 - (খ) $\{x : x, 48$ -এর মৌলিক গুণনীয়কসমূহ $\}$
 - (গ) $\{x: x, 3$ -এর গুণিতক এবং $x < 36\}$
 - (ঘ) $\{x: x, \text{ পূর্ণ সংখ্যা এবং } x^2 < 10\}$
- ২। নিচের সেটগুলোকে সেট গঠন পদ্ধতিতে প্রকাশ কর:
 - (ক) {3, 4, 5, 6, 7, 8} (খ) {4, 8, 12, 16, 20, 24} (গ) {7, 11, 13, 17}
- ৩। নিচের সেট দুইটির উপসেট ও উপসেটের সংখ্যা নির্ণয় কর:
 - $(\overline{\Phi})$ $C = \{m, n\}$ $(\overline{\forall})$ $D = \{5, 10, 15\}$
- 8। $A = \{1, 2, 3\}, B = \{2, a\}$ এবং $C = \{a, b\}$ হলে, নিচের সেটগুলো নির্ণয় কর:
 - (ক) $A \cup B$ (খ) $B \cup C$
 - (\mathfrak{I}) $A \cap (B \cup C)$ (\mathfrak{I}) $(A \cup B) \cup C$
 - (ঙ) $(A\cap B)\cup (B\cap C)$ সেটগুলো নির্ণয় কর।
- ৫ ৷ যদি $U = \{1, 2, 3, 4, 5, 6, 7\}, A = \{1, 2, 5\}, B = \{2, 4, 7\}$ এবং

 $C = \{4, 5, 6\}$ হয়, তবে নিমুলিখিত সম্পর্কগুলোর সত্যতা যাচাই কর:

- $(\overline{\Phi})$ $A \cap B = B \cap A$
- (₹) $(A \cap B)' = A' \cup B'$
- (গ) $(A \cup C)' = A' \cap C'$
- ৬। P এবং Q যথাক্রমে 21 ও 35 -এর সকল গুণনীয়কের সেট হলে, $P \cup Q$ নির্ণয় কর।
- ৭। যে সকল স্বাভাবিক সংখ্যা দ্বারা 171 এবং 396 কে ভাগ করলে প্রতিক্ষেত্রে 21 অবশিষ্ট থাকে তাদের সেট নির্ণয় কর।
- ৮। কোনো ছাত্রাবাসের 65% ছাত্র মাছ পছন্দ করে, 55% ছাত্র মাংস পছন্দ করে এবং 40% ছাত্র উভয়টি পছন্দ করে।
 - (ক) সংক্ষিপ্ত বিবরণসহ উপরের তথ্যগুলো ভেনচিত্রে প্রকাশ কর।
 - (খ) উভয় খাদ্য পছন্দ করে না তাদের সংখ্যা নির্ণয় কর।
 - (গ) যারা শুধু একটি খাদ্য পছন্দ করে তাদের সংখ্যার গুণনীয়ক সেটের ছেদ সেট নির্ণয় কর।
- ১। $A = \{x : x ,$ জোড় সংখ্যা এবং $4 < x < 6\}$ এর তালিকা পদ্ধতি কোনটি?
 - (ক) {5} (খ) {4,6} (গ) {4,5,6} (ঘ) ϕ

১০ ৷ $P = \{x, y, z\}$ হলে, নিচের কোনটি P -এর উপসেট নয়? $(ক) \ \{x, y\} \ (rak v) \ \{x, w, z\} \ (rak v) \ \{x, y, z\} \ (rak v)$

১১ ৷ 10-এর গুণনীয়কসমূহের সেট কোনটি?

(ক) $\{1,2,5,10\}$ (খ) $\{1,10\}$ (গ) $\{10\}$ (ঘ) $\{10,20,30\}$ পাশের ভেনচিত্রটির আলোকে ১২ থেকে ১৫ নং প্রশ্নের উত্তর দাও:

777

১২। সার্বিক সেট কোনটি ?

(ক) A (খ) B (গ) $A \cup B$ (ঘ) U

১৩। কোনটি B^c সেট?

(학) {5,6,7,8} (박) {2,3,5,6} (গ) {1,4,8} (박) {3,6}

১৪। কোনটি $A \cap B$ সেট ?

(화) {3,6} (학) {2,3,5,6} (গ) {3,4,6,7} (되) {2,3,4,5,6,7}

১৫। কোনটি $A \cup B$ সেট ?

(ক) {1, 2, 3, 4, 5, 6, 7} (খ) {5, 6, 7} (গ) {8} (ঘ) {3}

Aóg Aaïvq PZIFR

পূর্ববর্তী শ্রেণিতে ত্রিভুজ ও চতুর্ভুজ সম্পর্কে আলোচনা হয়েছে। আমরা ত্রিভুজ অঙ্কন করতে যেয়ে দেখেছি যে, একটি সুনির্দিষ্ট ত্রিভুজ আঁকতে তিনটি পরিমাপের প্রয়োজন। স্বাভাবিকভাবেই প্রশ্ন জাগে একটি চতুর্ভুজ আঁকতে চারটি পরিমাপ যথেষ্ট কি না। বর্তমান অধ্যায়ে এ বিষয়ে আলোচনা করা হবে। তাছাড়া বিভিন্ন প্রকার চতুর্ভুজ যেমন সামান্তরিক, আয়ত, বর্গ, রম্বস এর বিভিন্ন বৈশিষ্ট্য রয়েছে। এ অধ্যায়ে বিভিন্ন প্রকার চতুর্ভুজের এ সকল বৈশিষ্ট্য ও চতুর্ভুজ অঙ্কন বিষয়ে আলোচনা থাকবে।

অধ্যায় শেষে শিক্ষার্থীরা –

- 🕨 চতুর্ভুজের ধর্মাবলি যাচাই ও যুক্তিমূলক প্রমাণ করতে পারবে।
- 😕 প্রদত্ত উপাত্ত হতে চতুর্ভুজ আঁকতে পারবে।
- আয়তাকার ঘনবস্তুর চিত্র আঁকতে পারবে ।
- 🕨 ত্রিভুজ সূত্রের সাহায্যে চতুর্ভুজ ক্ষেত্রের ক্ষেত্রফল পরিমাপ করতে পারবে।
- 🕨 আয়তাকার ঘনবস্তু ও ঘনকের পৃষ্ঠতলের ক্ষেত্রফল পরিমাপ করতে পারবে।

৮.১ চতুর্জ

চারটি রেখাংশ দ্বারা আবদ্ধ চিত্র একটি চতুর্ভুজ। চিত্র দ্বারা আবদ্ধ ক্ষেত্রটি একটি চতুর্ভুজক্ষেত্র। চতুর্ভুজের চারটি বাহু আছে। যে চারটি রেখাংশ দ্বারা ক্ষেত্রটি আবদ্ধ হয়, এ চারটি রেখাংশই চতুর্ভুজের বাহু।

A, B, C ও D বিন্দু চারটির যেকোনো তিনটি সমরেখা নয় । AB, BC, CD ও DA রেখাংশ চারটি সংযোগে ABCD চতুর্ভুজ গঠিত হয়েছে । AB, BC, CD ও DA চতুর্ভুজটির চারটি বাহু । A, B, C ও D চারটি কৌণিক বিন্দু বা শীর্ষবিন্দু । $\angle ABC$, $\angle BCD$, $\angle CDA$ ও $\angle DAB$ চতুর্ভুজের চারটি কোণ । A ও B শীর্ষবিন্দু যথাক্রমে C ও D শীর্ষের বিপরীত শীর্ষবিন্দু । AB ও CD বাহু পরস্পর বিপরীত বাহু এবং AD ও BC বাহু পরস্পর বিপরীত বাহু । এক শীর্ষবিন্দুতে যে দুইটি বাহু মিলিত হয়, এরা সন্নিহিত বাহু । যেমন, AB ও BC বাহু দুইটি সন্নিহিত বাহু । AC ও BD রেখাংশদ্বয় ABCD চতুর্ভুজের দুইটি কর্ণ । চতুর্ভুজের বাহুগুলোর দৈর্ঘ্যের সমানি । চতুর্ভুজেকে অনেক সময় ' \Box ' প্রতীক দ্বারা নির্দেশ করা হয় ।

৮.২ চতুর্ভুজের প্রকারভেদ

সামান্তরিক: যে চতুর্ভুজের বিপরীত বাহুগুলো পরস্পর সমান্তরাল, তা সামান্তরিক। সামান্তরিকের সীমাবদ্ধ ক্ষেত্রকে সামান্তরিকক্ষেত্র বলে।

আয়ত: যে সামান্তরিকের একটি কোণ সমকোণ, তাই আয়ত। আয়তের চারটি কোণ সমকোণ। আয়তের সীমাবদ্ধ ক্ষেত্রকে আয়তক্ষেত্র বলে।

রম্বস : রম্বস এমন একটি সামান্তরিক যার সন্নিহিত বাহুগুলোর দৈর্ঘ্য সমান। অর্থাৎ, রম্বসের বিপরীত বাহুগুলো সমান্তরাল এবং চারটি বাহু সমান। রম্বসের সীমাবদ্ধ ক্ষেত্রকে রম্বসক্ষেত্র বলে।

বর্গ : বর্গ এমন একটি আয়ত যার সন্নিহিত বাহুগুলো সমান। অর্থাৎ, বর্গ এমন একটি সামান্তরিক যার প্রত্যেকটি কোণ সমকোণ এবং বাহুগুলো সমান। বর্গের সীমাবদ্ধ ক্ষেত্রকে বর্গক্ষেত্র বলে।

ট্রাপিজিয়াম : যে চতুর্ভুজের এক জোড়া বিপরীত বাহু সমান্তরাল, একে ট্রাপিজিয়াম বলা হয়। ট্রাপিজিয়ামের সীমাবদ্ধ ক্ষেত্রকে ট্রাপিজিয়ামক্ষেত্র বলে।

মুড়ি: যে চতুর্ভুজের দুই জোড়া সন্নিহিত বাহু সমান, একে ঘুড়ি বলা হয়।

কাজ

- ১। তোমার আশেপাশের বিভিন্ন বস্তুর ধারকে সরলরেখা ধরে সামান্তরিক, আয়ত, বর্গ ও রম্বস চিহ্নিত কর।
- ২। উক্তিগুলো সঠিক কিনা যাচাই কর:
 - (ক) বর্গ একটি আয়ত, আবার বর্গ একটি রম্বসও।
 - (খ) ট্রাপিজিয়াম একটি সামান্তরিক।
 - (গ) সামান্তরিক একটি ট্রাপিজিয়াম।
 - (ঘ) আয়ত বা রম্বস বর্গ নয়।
- ৩। বর্গের সংজ্ঞায় বলা হয়েছে বর্গ এমন একটি আয়ত যার বাহুগুলো সমান। রম্বসের মাধ্যমে বর্গের সংজ্ঞা দেওয়া যায় কি ?

৮.৩ চতুর্ভুজ সংক্রান্ত উপপাদ্য

বিভিন্ন প্রকারের চতুর্ভুজের কিছু সাধারণ ধর্ম রয়েছে। এ ধর্মগুলো উপপাদ্য আকারে প্রমাণ করা হলো।

উপপাদ্য ১

চতুর্ভুজের চারটি কোণের সমষ্টি চার সমকোণ।

বিশেষ নির্বচন : মনে করি, ABCD একটি চতুর্ভুজ এবং AC এর একটি কর্ণ ।

প্রমাণ করতে হবে যে, $\angle A + \angle B + \angle C + \angle D = 4$ সমকোণ।

অঙ্কন: A ও C যোগ করি ।AC কর্ণটি চতুর্ভুজটিকে ΔABC ও ΔADC দুইটি ত্রিভুজে বিভক্ত করেছে ।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) $\triangle ABC$ এ $\angle BAC + \angle ACB + \angle B = 2$ সমকোণ।	[ত্রিভুজের তিন কোণের সমষ্টি 2 সমকোণ]
(২) অনুরূপভাবে, ΔDAC এ $\angle DAC + \angle ACD + \angle D = 2$ সমকোণ।	[ত্রিভুজের তিন কোণের সমষ্টি 2 সমকোণ]
(৩) অতএব, $\angle DAC + \angle ACD + \angle D +$ $\angle BAC + \angle ACB + \angle B =$ (2+2) সমকোণ।	[(১)ও(২) থেকে]
(8) $\angle DAC + \angle BAC = \angle A$ এবং	[সন্নিহিত কোণের যোগফল]
$\angle ACD + \angle ACB = \angle C$.	[সন্নিহিত কোণের যোগফল]
সুতরাং, $\angle A + \angle B + \angle C + \angle D = 4$ সমকোণ (প্রমাণিত)	[(৩) থেকে]

উপপাদ্য ২

সামান্তরিকের বিপরীত বাহু ও কোণগুলো পরস্পর সমান।

বিশেষ নির্বচন : মনে করি, ABCD একটি সামান্তরিক এবং $AC ext{ ଓ } BD$ তার দুইটি কর্ণ। প্রমাণ করতে হবে যে,

- (Φ) AB বাহু =CD বাহু, AD বাহু =BC বাহু
- $(\forall) \angle BAD = \angle BCD, \angle ABC = \angle ADC.$

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) $AB \parallel DC$ এবং AC তাদের ছেদক, সুতরাং $\angle BAC = \angle ACD$.	[একান্তর কোণ সমান]
(২) আবার, $BC \parallel AD$ এবং AC তাদের ছেদক, সুতরাং $\angle ACB = \angle DAC$.	[একান্তর কোণ সমান]
(৩) এখন $\triangle ABC$ ও $\triangle ADC$ এ $\angle BAC = \angle ACD$, $\angle ACB = \angle DAC$ এবং AC বাহু সাধারণ। $\therefore \triangle ABC \cong \triangle ADC$.	[ত্রিভূজের কোণ-বাহু-কোণ উপপাদ্য]
অতএব, $AB = CD, BC = AD$ ও $\angle ABC = \angle ADC$.	
অনুরূপভাবে, প্রমাণ করা যায় যে, $\Delta BAD\cong\Delta BCD$. সুতরাং, $\angle BAD=\angle BCD$. [প্রমাণিত]	

কাজ

১। প্রমাণ কর যে, চতুর্ভুজের এক জোড়া বিপরীত বাহু পরস্পর সমান ও সমান্তরাল হলে, তা একটি সামান্তরিক।

২। দেওয়া আছে, ABCD চতুর্ভুজে AB=CD এবং $\angle ABD=\angle BDC$. প্রমাণ কর যে, ABCD একটি সামান্তরিক।

উপপাদ্য ৩

সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে।

বিশেষ নির্বচন : মনে করি, ABCD সামান্তরিকের AC ও BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, $AO=CO,\ BO=DO$.

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) AB ও DC রেখাদ্বয় সমান্তরাল এবং AC তাদের ছেদক।	[একান্তর কোণ সমান]
অতএব, $\angle BAC=$ একান্তর $\angle ACD$.	
(২) AB ও DC রেখা সমান্তরাল এবং BD তাদের ছেদক। সুতরাং, $\angle BDC =$ একান্তর $\angle ABD$.	[একান্তর কোণ সমান]
(৩) এখন, ΔAOB ও ΔCOD এ	
$\angle OAB = \angle OCD$, $\angle OBA = \angle ODC$ এবং	[ত্রিভুজের কোণ-বাহু-কোণ উপপাদ্য]
AB = DC.	[[[[]] [] [] [] [] [] [] []
সুতরাং, $\triangle AOB \cong \triangle COD$.	
অতএব, $AO = CO$ এবং $BO = DO$. (প্রমাণিত)	

কাজ: ১। প্রমাণ কর যে, চতুর্ভুজের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করলে তা একটি সামান্তরিক।

উপপাদ্য ৪

আয়তের কর্ণদ্বয় সমান ও পরস্পরকে সমদ্বিখণ্ডিত করে।

বিশেষ নির্বচন : মনে করি, ABCD আয়তের $AC ext{ }

- (i) AC = BD
- (ii) AO = CO, BO = DO.

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) আয়ত একটি সামান্তরিক। সুতরাং,	[সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত
AO = CO, BO = DO.	করে]
(২) এখন ΔABD ও ΔACD এ	
$\angle DAB = \angle ADC$	[প্রত্যেকে সমকোণ]
AB = DC	[সামান্তরিকের বিপরীত বাহু পরস্পর সমান
এবং $AD = AD$.	[সাধারণ বাহু]
সুতরাং, $\triangle ABD\cong \triangle ACD$.	[ত্রিভুজের কোণ-বাহু-কোণ উপপাদ্য]
অতএব, $AC = BD$, (প্রমাণিত)	

কাজ

🔰 । প্রমাণ কর যে, আয়তের প্রত্যেকটি কোণ সমকোণ ।

উপপাদ্য ৫

রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করে।

বিশেষ নির্বচন : মনে করি, ABCD রম্বসের $AC \otimes BD$ কর্ণদ্বয় পরস্পরকে O বিন্দুতে ছেদ করে । প্রমাণ করতে হবে যে.

প্রমাণ :

धनाग •	
ধাপসমূহ	যথাৰ্থতা
(১) রম্বস একটি সামান্তরিক। সুতরাং,	[সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে]
AO = CO, BO = DO.	
(২) এখন <i>ΔΑΟΒ</i> ও <i>ΔΒΟС</i> এ	
AB = BC	[রম্বসের বাহুগুলো সমান]
AO = CO	[(১) থেকে]
এবং $OB = OB$.	[সাধারণ বাহু]
অতএব, $\triangle AOB \cong \triangle BOC$.	[ত্রিভুজের বাহু-বাহু-বাহু উপপাদ্য]

সুতরাং $\angle AOB = \angle BOC$.

 $\angle AOB + \angle BOC = 1$ সরলকোণ = 2 সমকোণ ।

∠AOB = ∠BOC = 1 সমকোণ ।

অনুরূপভাবে, প্রমাণ করা যায় যে,

 $\angle COD = \angle DOA = 1$ সমকোণ । (প্রমাণিত)

কাজ

- 🕽 । দেখাও যে, বর্গের কর্ণদ্বয় পরস্পর সমান ও সমদ্বিখণ্ডিত করে।
- ২। একজন রাজমিস্ত্রী একটি আয়তাকার কংক্রিট স্ল্যাব তৈরি করেছেন। তিনি কত বিভিন্ন ভাবে নিশ্চিত হতে পারেন যে তাঁর তৈরি স্ল্যাবটি সত্যিই আয়তাকার ?

৮.৪ চতুর্ভুজক্ষেত্রের ক্ষেত্রফল

একটি চতুর্ভুজের কর্ণ দ্বারা চতুর্ভুজক্ষেত্রটি দুইটি ত্রিভুজক্ষেত্রে বিভক্ত হয়। অতএব, চতুর্ভুজক্ষেত্রের ক্ষেত্রফল ত্রিভুজক্ষেত্রের ক্ষেত্রফলদ্বরের যোগফলের সমান। পূর্ববর্তী শ্রেণিতে আমরা বর্গক্ষেত্র ও আয়তক্ষেত্রের ক্ষেত্রফল নির্ণয় করতে শিখেছি। আবার আয়ত ও সামান্তরিকের ভূমি ও উচ্চতা একই হলেও উল্লিখিত ক্ষেত্রদ্বরের ক্ষেত্রফল সমান। নিচে রম্বস ও ট্রাপিজিয়ামক্ষেত্রের ক্ষেত্রফল নির্ণয়কৌশল নিয়ে আলোচনা করা হবে।

(ক) ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল

C বিন্দু দিয়ে $DA \sqcup CE$ আঁকি ।

∴ AECD একটি সামান্তরিক। চিত্র থেকে

ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল = AECD সামান্তরিক ক্ষেত্রের ক্ষেত্রফল + CEB ত্রিভুজক্ষেত্রের ক্ষেত্রফল

$$= a \times h + \frac{1}{2}(b-a) \times h$$
$$= \frac{1}{2}(a+b) \times h$$

ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল = সমান্তরাল বাহুদ্বয়ের সমস্টির গড় × উচ্চতা

কাজ:

🕽 । বিকল্প পদ্ধতিতে ট্রাপিজিয়ামক্ষেত্রের ক্ষেত্রফল নির্ণয় কর ।

(খ) রম্বসক্ষেত্রের ক্ষেত্রফল

রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখটিত করে। তাই রম্বসের কর্ণদ্বয়ের দৈর্ঘ্য জানা থাকলে সহজেই রম্বসক্ষেত্রের ক্ষেত্রফল নির্ণয় করা যায়।

মনে করি, ABCD রম্বসের AC ও BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে ছেদ করে। কর্ণদ্বয়ের দৈর্ঘ্যকে যথাক্রমে a ও b দ্বারা নির্দেশ করি।

রম্বসক্ষেত্রের ক্ষেত্রফল = DAC ত্রিভুজক্ষেত্রের ক্ষেত্রফল + BAC ত্রিভুজক্ষেত্রের ক্ষেত্রফল

$$= \frac{1}{2} \cdot a \times \frac{1}{2}b + \frac{1}{2}a \times \frac{1}{2}b$$
$$= \frac{1}{2}a \times b$$

রম্বসক্ষেত্রের ক্ষেত্রফল = কর্ণদ্বয়ের গুণফলের অর্ধেক

উদাহরণ ১ ।' a ' দৈর্ঘ্যবিশিষ্ট এককের পৃষ্ঠের ক্ষেত্রফল নির্ণয় কর । $\,^{
m B}$

সমাধান :ঘনকের ছয়টি পৃষ্ঠের প্রতিটির ক্ষেত্রফল $a \times a = a^2$

∴ ঘনকের পৃষ্ঠের ক্ষেত্রফল = $6a^2$

উদাহরণ ২ । a দৈর্ঘ্য b প্রস্থ ও c উচ্চতাবিশিষ্ট একটি আয়তাকার ঘনকের পৃষ্ঠের ক্ষেত্রফল নির্ণয় কর । সমাধান :

6		b	6	
$\begin{bmatrix} 2 & 3 & 4 & c \\ 1 & 5 & b & c \end{bmatrix}$	1	2	3 c a	4 c
a	а	b	b 5	b

লক্ষ করি, আয়তাকার ঘনকের প্রতিটি পৃষ্ঠের ক্ষেত্রফল এর বিপরীত পৃষ্ঠের ক্ষেত্রফলের সমান। সুতরাং, আয়তাকার ঘনকের পৃষ্ঠের ক্ষেত্রফল = 2(ab+bc+ac)

অনুশীলনী ৮.১

১। সামান্তরিকের জন্য নিচের কোনটি সঠিক ?

ক. বিপরীত বাহুগুলো অসমান্তরাল

খ. একটি কোণ সমকোণ হলে, তা আয়ত

গ. বিপরীত বাহুদ্বয় অসমান

ঘ. কর্ণদ্বয় পরস্পর সমান

২। নিচের কোনটি রম্বসের বৈশিষ্ট্য ?

ক. কর্ণদ্বয় পরস্পর সমান

খ. প্রত্যেক কোণই সমকোণ

গ. বিপরীত কোণদ্বয় অসমান

ঘ. প্রত্যেকটি বাহুই সমান

৩। i. চতুর্ভুজের চার কোণের সমষ্টি চার সমকোণ।

ii আয়তের দুইটি সন্নিহিত বাহু সমান হলে তা একটি বর্গ।

iii প্রত্যেকটি রম্বস একটি সামান্তরিক।

উপরের তথ্য অনুসারে নিচের কোনটি সঠিক?

ক. i ও ii

খ. i ও iii

গ. ii ও iii

ঘ. i, ii ও iii

 $B \mid PAQC$ চতুর্ভুজের PA = CQ এবং $PA \mid CQ$. $\angle A$ ও $\angle C$ সমদ্বিখণ্ডক যথাক্রমে AB ও CD হলে ABCD ক্ষেত্রটির নাম কী ?

খ. রম্বস

গ.আয়ত

ঘ. বর্গ

৫। দেওয়া আছে, ΔABC এর মধ্যমা BO কে D পর্যন্ত এমনভাবে বর্ধিত করি যেন BO = OD হয়। প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক।

- ৬। প্রমাণ কর যে, সামান্তরিকের একটি কর্ণ একে দুইটি সর্বসম ত্রিভুজে বিভক্ত করে।
- ৭। প্রমাণ কর যে, চতুর্ভুজের বিপরীত বাহুগুলো পরস্পর সমান ও সমান্তরাল হলে, তা একটি সামান্তরিক।
- ৮। প্রমাণ কর যে, সামান্তরিকের কর্ণদ্বয় পরস্পর সমান হলে, তা একটি আয়ত।
- ৯। প্রমাণ কর যে, চতুর্ভুজের কর্ণদ্বয় পরস্পর সমান হলে এবং পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করলে, তা একটি বর্গ।
- ১০। প্রমাণ কর যে, আয়তের সন্নিহিত বাহুর মধ্যবিন্দুসমূহের যোগে যে চতুর্ভুজ হয়, তা একটি রম্বস।
- ১১। প্রমাণ কর যে, সামান্তরিকের যেকোনো দুইটি বিপরীত কোণের সমদ্বিখণ্ডক পরস্পর সমান্তরাল।
- ১২। প্রমাণ কর যে, সামান্তরিকের যেকোনো দুইটি সন্নিহিত কোণের সমদ্বিখণ্ডক পরস্পর লম।
- ১৩। চিত্রে, ABC একটি সমবাহু ত্রিভুজ। D, Eও F যথাক্রমে AB,BCও AC এর মধ্যবিন্দু। ক. প্রমাণ কর যে, ∠BDF + ∠DFE + ∠FEB + ∠EBD = চার সমকোণ।
 - খ. প্রমাণ কর যে, $DF \parallel BC$ এবং $DF = \frac{1}{2}BC$.

১৪। দেওয়া আছে, *ABCD* সামান্তরিকের *AM* ও *CN*, DB এর উপর লম্ব । প্রমাণ কর যে, ANCM একটি সামান্তরিক ।

- ১৫ ৷ চিত্রে, AB = CD এবং $AB \parallel CD$ ক. AB ভূমিবিশিষ্ট দুইটি ত্রিভুজের নাম লেখ। খ. প্রমাণ কর যে, AD ও BC পরস্পর সমান ও সমান্তরাল।
 - গ. দেখাও যে, OA = OC এবং OB = OD.

সম্পাদ্য

৮.৫ চতুর্ভুজ অঙ্কন

পূর্ববর্তী শ্রেণিতে আমরা জেনেছি, ত্রিভুজের তিনটি বাহু দেওয়া থাকলে নির্দিষ্ট ত্রিভুজ আঁকা যায়। কিন্তু চতুর্ভুজের চারটি বাহু দেওয়া থাকলে নির্দিষ্ট কোনো চতুর্ভুজ আঁকা যায় না। চতুর্ভুজ অঙ্কনের জন্য আরও উপাত্তের প্রয়োজন। চতুর্ভুজের চারটি বাহু, চারটি কোণ ও দুইটি কর্ণ আছে। একটি চতুর্ভুজ আঁকতে পাঁচটি অনন্য নিরপেক্ষ উপাত্তের প্রয়োজন। যেমন, কোনো চতুর্ভুজের চারটি বাহু ও একটি নির্দিষ্ট কোণ দেওয়া থাকলে, চতুর্ভুজটি আঁকা যাবে। নিম্নোক্ত পাঁচটি উপাত্ত জানা থাকলে, নির্দিষ্ট চতুর্ভুজটি আঁকা যায়।

- (ক) চারটি বাহু ও একটি কোণ
- (খ) চারটি বাহু ও একটি কর্ণ
- (গ) তিনটি বাহু ও দুইটি কর্ণ
- (ঘ) তিনটি বাহু ও তাদের অন্তর্ভুক্ত দুইটি কোণ
- (ঙ) দুইটি বাহু ও তিনটি কোণ।

অনেক সময় কম উপাত্ত দেওয়া থাকলেও বিশেষ চতুর্ভুজ আঁকা যায়। এক্ষেত্রে যুক্তি দ্বারা পাঁচটি উপাত্ত পাওয়া যায়।

- একটি বাহু দেওয়া থাকলে, বর্গ আঁকা যায়। এখানে চারটি বাহুই সমান এবং একটি কোণ সমকোণ।
- দুইটি সন্নিহিত বাহু দেওয়া থাকলে, আয়ত আঁকা যায়। এখানে বিপরীত বাহু দুইটি পরস্পর সমান এবং একটি কোণ সমকোণ।
- একটি বাহু এবং একটি কোণ দেওয়া থাকলে, রম্বস আঁকা যায়। এখানে চারটি বাহুই সমান।
- দুইটি সন্নিহিত বাহু এবং এদের অন্তর্ভুক্ত কোণ দেওয়া থাকলে, সামান্তরিক আঁকা যায়। এখানে বিপরীত বাহু দুইটি পরস্পর সমান ও সমান্তরাল।

সম্পাদ্য ১

কোনো চতুর্ভুজের চারটি বাহুর দৈর্ঘ্য ও একটি কোণ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

মনে	করি,	একটি	চতুর্জ	র চার	বাহুর	দৈর্ঘ্য	a,b,c	, <i>d</i> এবং	a \mathfrak{G}	b
বাহুদ	য়ের ত	মন্তর্ভু ক্ত	কোণ χ	দেও	য়া আ	ছ। চড়	চূর্ভুজটি	আঁকতে	হবে	١

· -	
-	

অঙ্কনের বিবরণ :

(১) যে কোনো রশা BE থেকে BC=a নিই । B বিন্দুতে $\angle EBF=\angle x$ আঁকি ।

(২) BF থেকে BA = b নিই। $A \otimes C$ কে কেন্দ্র করে যথাক্রমে $c \otimes d$ এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। এরা পরস্পর D বিন্দুতে ছেদ করে। (৩) $A \otimes D$ এবং $C \otimes D$ যোগ করি। তাহলে, ABCDই উদ্দিষ্ট চতুর্ভুজ।

প্রমাণ : অঙ্কন অনুসারে, $AB=b, BC=a, AD=c, DC=d \text{ এবং } \angle ABC=\angle x$ $\therefore ABCD$ -ই নির্ণেয় চতুর্ভুজ।

কাজ

১। একটি চতুর্ভুজ আঁকতে চারটি বাহু ও একটি কোণের পরিমাপের প্রয়োজন। এই পাঁচটি যেকোনো পরিমাপের হলে কি চতুর্ভুজটি আঁকা যাবে?

সম্পাদ্য ২

কোনো চতুর্ভুজের চারটি বাহু ও একটি কর্ণের দৈর্ঘ্য দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

মনে করি, একটি চতুর্ভুজের চারটি বাহুর দৈর্ঘ্য a,b,c,d এবং একটি কর্ণের দৈর্ঘ্য e দেওয়া আছে, যেখানে a+b>c এবং c+d>e . চতুর্ভুজটি আঁকতে হবে ।

অঙ্কনের বিবরণ:

- (১) যেকোনো রশ্মি BE থেকে BD=e নিই । $B \otimes D$ কে কেন্দ্র করে যথাক্রমে $a \otimes b$ এর সমান ব্যাসার্ধ নিয়ে BD এর একই পাশে দুইটি বৃত্তচাপ আঁকি । বৃত্তচাপদ্বয় A বিন্দুতে ছেদ করে ।
- (২) আবার, $B ext{ ଓ } D$ কে কেন্দ্র করে যথাক্রমে $d ext{ ଓ } c$ এর সমান ব্যাসার্ধ নিয়ে BD এর যেদিকে A আছে তার বিপরীত দিকে আরও দুইটি বৃত্তচাপ আঁকি । এই বৃত্তচাপদ্বয় পরস্পর C বিন্দুতে ছেদ করে ।
- (৩) $A ext{ \in } B, A ext{ \in } D, B ext{ \in } C ext{ \in } A ext{ \in } C ext{ \in } D$ যোগ করি। তাহলে, ABCD -ই উদ্দিষ্ট চতুর্ভুজ।

প্রমাণ : অঙ্কন অনুসারে, AB=a, AD=b, BC=d, CD=c এবং কর্ণ BD=e . সুতরাং, ABCD -ই নির্ণেয় চতুর্ভুজ ।

কাজ

১। একটি চতুর্ভুজ আঁকতে চারটি বাহু ও একটি কর্ণের দৈর্ঘ্য পরিমাপের প্রয়োজন। এই পাঁচটি যেকোনো পরিমাপের হলে কি চতুর্ভুজটি আঁকা যাবে? তোমার উত্তরের পক্ষে যুক্তি দাও।

২। একজন শিক্ষার্থী একটি চতুর্ভুজ PLAY আঁকতে চেষ্টা করল, যার PL=3 সে.মি., LA=4 সে.মি., AY=4.5 সে.মি., PY=2 সে.মি., LY=6 সে.মি.। সে চতুর্ভুজটি আঁকতে পারলো না। কেন?

সম্পাদ্য ৩

কোনো চতুর্ভুজের তিনটি বাহু ও দুইটি কর্ণের দৈর্ঘ্য দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

মনে করি, একটি চতুর্ভুজের তিনটি বাহুর দৈর্ঘ্য a,b,c এবং দুইটি কর্ণের দৈর্ঘ্য d,e দেওয়া আছে, যেখানে a+b>c । চতুর্ভুজটি আঁকতে হবে ।

অঙ্কনের বিবরণ:

- (১) যেকোনো রশ্মি BE থেকে BD=e নিই । $B \otimes D$ কে কেন্দ্র করে যথাক্রমে $a \otimes b$ এর সমান ব্যাসার্ধ নিয়ে BD এর একই পাশে দুইটি বৃত্তচাপ আঁকি । বৃত্তচাপদ্বয় A বিন্দুতে ছেদ করে ।
- (২) আবার, D ও A কে কেন্দ্র করে যথাক্রমে c ও d এর সমান ব্যাসার্ধ নিয়ে BD এর যেদিকে A রয়েছে এর বিপরীত দিকে আ রও দুইটি বৃত্তচাপ আঁকি । এই বৃত্তচাপদ্বয় পরস্পরকে C বিন্দুতে ছেদ করে ।
- (৩) A G B, A G D, B G C এবং C G D যোগ করি। তাহলে, ABCD ই উদ্দিষ্ট চতুর্ভুজ।

প্রমাণ : অঙ্কন অনুসারে, AB=a, AD=b, AC=d, CD=c এবং কর্ণ BD=e ও AC=d সুতরাং, ABCD -ই নির্ণেয় চতুর্ভুজ ।

সম্পাদ্য 8

কোনো চতুর্ভুজের তিনটি বাহুর দৈর্ঘ্য ও দুইটি অন্তর্ভুক্ত কোণ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

মনে করি, একটি চতুর্ভুজের তিনটি বাহু a,b,c এবং a ও b বাহুর অন্তর্ভুক্ত কোণ $\angle x$ এবং a ও c বাহুর অন্তর্ভুক্ত কোণ $\angle y$ দেওয়া আছে । চতুর্ভুজটি আঁকতে হবে ।

অঙ্কনের বিবরণ: যেকোনো রশ্মি BE থেকে BC=a নিই। $B ext{ ଓ } C$ বিন্দুতে $\angle x ext{ ଓ } \angle y$ এর সমান করে যথাক্রমে $\angle CBF ext{ ଓ } \angle BCG$ অঙ্কন করি। BF থেকে BA=b এবং CG থেকে CD=c নিই। A,D যোগ করি। তাহলে, ABCD-ই উদ্দিষ্ট চতুর্ভুজ। প্রমাণ: অঙ্কন অনুসারে, AB=b, BC=a, CD=c, $\angle ABC=\angle x ext{ ଓ } \angle DCB=\angle y$. সুতরাং ABCD-ই নির্ণেয় চতুর্ভুজ।

সম্পাদ্য ৫

কোনো চতুর্ভুজের দুইটি সন্নিহিত বাহুর দৈর্ঘ্য ও তিনটি কোণ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

মনে করি, একটি চতুর্ভুজের দুইটি সন্নিহিত বাহু a,b এবং তিনটি কোণ $\angle x$, $\angle y$, $\angle z$ দেওয়া আছে । চতুর্ভুজটি আঁকতে হবে ।

অঙ্কনের বিবরণ: যেকোনো রশ্মি BE থেকে BC = a নিই। $B \otimes C$ বিন্দুতে $\angle x \otimes \angle y$ এর সমান করে যথাক্রমে $\angle CBF \otimes \angle BCG$ অঙ্কন করি। BF থেকে BA = b নিই। A বিন্দুতে $\angle z$ এর সমান করে $\angle BAH$ অঙ্কন করি। $AH \otimes CG$ পরস্পরকে D বিন্দুকে ছেদ করে। তাহলে, ABCD-ই উদ্দিষ্ট চুতর্ভুজ।

প্রমাণ : অস্কন অনুসারে, AB=b, BC=a, $\angle ABC=\angle x$ $\angle DCB=\angle y$ ও $\angle BAD=\angle z$. সুতরাং ABCD -ই নির্ণেয় চতুর্ভুজ।

কাজ

১। একটি চতুর্ভুজের সন্নিহিত নয় এর্প দুই বাহুর দৈর্ঘ্য ও তিনটি কোণ দেওয়া আছে। চতুর্ভুজটি কি আঁকা যাবে ? ২। একজন শিক্ষার্থী একটি চতুর্ভুজ STOP আঁকতে চাইলো যার ST=5 সে.মি., TO=4 সে.মি., $\angle S=20^\circ$, $\angle T=30^\circ$, $\angle O=40^\circ$ । সে চতুর্ভুজটি কেন আঁকতে পারলো না?

সম্পাদ্য ৬

কোনো সামান্তরিকের সন্নিহিত দুইটি বাহুর দৈর্ঘ্য এবং বাহুদ্বয়ের অন্তর্ভুক্ত কোণ দেওয়া আছে। সামান্তরিকটি

আঁকতে হবে।

মনে করি, একটি সামান্তরিকের দুইটি সন্নিহিত বাহু $a \circ b$ এবং a এদের অন্তর্ভুক্ত কোণ $\angle x$ দেওয়া আছে । সামান্তরিকটি আঁকতে হবে । b

গ্ৰিত

অঙ্কনের বিবরণ: যেকোনো রশ্মি BE থেকে BC=a নিই। B বিন্দুতে $\angle EBF=\angle x$ অঙ্কন করি। BF থেকে b এর সমান BA নিই। A ও C বিন্দুকে কেন্দ্র করে যথাক্রমে a ও b এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ এর অভ্যন্তরে দুইটি বৃওচাপ আঁকি। এরা পরস্পরকে D বিন্দুতে ছেদ করে। A,D ও C,D যোগ করি। তাহলে, ABCD-ই উদ্দিষ্ট সামান্তরিক।

প্রমাণ : A,C যোগ করি । $\triangle ABC$ ও $\triangle ADC$ এ AB=CD=b, AD=BC=a এবং AC বাহু সাধারণ । $\therefore \triangle ABC\cong \triangle DCA$. অতএব, $\angle BAC=\angle DCA$ কিন্তু, কোন দুইটি একান্তর কোণ । $\therefore AB \mid \mid CD$. অনুরূপভাবে, প্রমাণ করা যায় যে, $BC \mid \mid AD$. সুতরাং ABCD একটি সামান্তরিক । আবার অঙ্কন অনুসারে $\angle ABC=\angle x$. অতএব, $\triangle ABCD$ -ই নির্ণেয় সামান্তরিক ।

লক্ষকরি: শুধুমাত্র একটি বাহুর দৈর্ঘ্য দেওয়া থাকলেই বর্গ আঁকা সম্ভব। বর্গের বাহুগুলো সমান আর কোণগুলো প্রত্যেকটি সমকোণ। তাই বর্গ অঙ্কনের জন্য প্রয়োজনীয় পাঁচটি শর্ত সহজেই পূরণ করা যায়।

সম্পাদ্য ৭

কোনো বর্গের একটি বাহুর দৈর্ঘ্য দেওয়া আছে, বর্গটি আঁকতে হবে।

মনে করি, a কোনো বর্গের একটি বাহুর দৈর্ঘ্য। বর্গটি আঁকতে হবে।

অঙ্কনের বিবরণ : যেকোনো রশা BE থেকে BC=a নিই। B বিন্দুতে $BF\perp BC$ আঁকি।

BF থেকে BA=a নিই । A ও C কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি । বৃত্তচাপদ্বয় পরস্পরকে D বিন্দুতে ছেদ করে । A ও D এবং C ও D যোগ করি ।

তাহলে, ABCD -ই উদ্দিষ্ট বর্গ।

প্রমাণ : ABCD চতুর্ভুজের AB = BC = CD = DA = a এবং ∠ABC = এক সমকোণ।
সূতরাং, এটি একটি বর্গ।
অতএব, ABCD-ই নির্ণেয় বর্গ।

অনুশীলনী ৮.২

১। একটি চতুর্ভুজ আঁকতে কয়টি অনন্য নিরপেক্ষ উপাত্তের প্রয়োজন?

ক. 3টি

খ. 4টি

গ. 5টি

ঘ. 6টি

২। i. দুইটি সন্নিহিত বাহু দেওয়া থাকলে আয়ত আঁকা যায়।

ii. চারটি কোণ দেওয়া থাকলে একটি চতুর্ভুজ আঁকা যায়।

iii. বর্গের একটি বাহু দেওয়া থাকলে বর্গ আঁকা যায়।

উপরের তথ্যের আলোকে নিচের কোনটি সঠিক ?

ক. i ও ii

খ. i ও iii

গ. ii ও iii

ঘ. i, ii ও iii

৩। নিম্নে প্রদত্ত উপাত্ত নিয়ে চতুর্ভুজ অঙ্কন কর:

ক. চারটি বাহুর দৈর্ঘ্য 3 সে.মি., 3·5 সে.মি., 2·8 সে.মি. ও 3 সে,মি. এবং কোণ 45°।

- খ. চারটি বাহুর দৈর্ঘ্য 4 সে.মি.. 3 সে.মি.. 3·5 সে.মি.. 4·5 সে.মি. এবং কোণ 60°।
- গ. চারটি বাহুর দৈর্ঘ্য 3.2 সে.মি, 3.5 সে.মি., 2.5 সে.মি. ও 2.8 সে.মি. এবং কর্ণ 5 সে.মি. ।
- ঘ. চারটি বাহুর দৈর্ঘ্য 3.2 সে.মি., 3 সে.মি., 3.5 সে.মি. ও 2.8 সে.মি. এবং কর্ণ 5 সে.মি. ।
- ঙ. তিনটি বাহুর দৈর্ঘ্য 3 সে.মি., 3·5 সে.মি., 2·5 সে.মি. এবং কোণ 60° ও 45°।
- চ. তিনটি বাহুর দৈর্ঘ্য 3 সে.মি.. 4 সে.মি.. 4.5 সে.মি. এবং দুইটি কর্ণ 5.2 সে.মি. ও 6 সে.মি. ।
- 8। একটি বর্গের বাহুর দৈর্ঘ্য 4 সে.মি.; বর্গটি আঁক।
- ৫। রম্বসের একটি বাহুর দৈর্ঘ্য 3.5 সে.মি. ও একটি কোণ 75°; রম্বসটি আঁক।
- ৬। আয়তের দুইটি সন্নিহিত বাহুর দৈর্ঘ্য যথাক্রমে 3 সে.মি. ও 4 সে.মি.; আয়তটি আঁক।
- ৭। চতুর্ভুজের কর্ণ দুইটির ছেদবিন্দুতে কর্ণ দুইটির চারটি খণ্ডিত অংশ এবং এদের অন্তর্ভুক্ত একটি কোণ দেওয়া আছে। চতুর্ভুজটি আঁক। OA=4.2 সে.মি., OB=5.8 সে.মি., OC=3.7 সে.মি., OD=4.5 সে.মি. ও $\angle AOB=100^\circ$.
- ৮। দুইটি সন্নিহিত বাহুর দৈর্ঘ্য দেওয়া আছে। আয়তটি আঁক।
- ৯। কর্ণ এবং একটি বাহুর দৈর্ঘ্য দেওয়া আছে। আয়তটি আঁকতে হবে।
- ১০। একটি বাহু এবং দুইটি কর্ণের দৈর্ঘ্য দেওয়া আছে। সামান্তরিকটি আঁকতে হবে।
- ১১। একটি বাহু এবং একটি কর্ণের দৈর্ঘ্য দেওয়া আছে। রম্বসটি আঁক।
- ১২। দুইটি কর্ণের দৈর্ঘ্য দেওয়া আছে। রম্বসটি আঁক।
- ১৩। একটি সামান্তরিকের দুইটি সন্নিহিত বাহু 4 সে.মি. ও 3 সে.মি. এবং এদের অন্তর্ভুক্ত কোণ 60°
- ক. প্রদত্ত তথ্যগলো চিত্রের মাধ্যমে প্রকাশ কর।
- খ্ অজ্জনের বিবরণসহ সামন্তরিকটি আঁক।
- গ. অজ্জনের বিবরণসহ সামন্তরিকটির বৃহত্তম কর্ণের সমান কর্ণবিশিষ্ট একটি বর্গ আঁক।

নবম অধ্যায়

পিথাগোরাসের উপপাদ্য

খ্রিস্টপূর্ব ষষ্ঠ শতাব্দীর গ্রিক দার্শনিক পিথাগোরাস সমকোণী ত্রিভুজের একটি প্রয়োজনীয় বৈশিষ্ট্য নির্পণ করেন। সমকোণী ত্রিভুজের এ বৈশিষ্ট্য পিথাগোরাসের বৈশিষ্ট্য বলে পরিচিত। বলা হয় পিথাগোরাসের জন্মের আগে মিসরীয় ও ব্যবিলনীয় যুগেও সমকোণী ত্রিভুজের এ বৈশিষ্ট্যের ব্যবহার ছিল। এ অধ্যায়ে আমরা সমকোণী ত্রিভুজের এ বৈশিষ্ট্যের নামে পরিচিত। সমকোণের বিপরীত বাহু অতিভুজ এবং সমকোণ সংলগ্ন বাহুদ্বয় যথাক্রমে ভূমি ও উন্নতি। বর্তমান অধ্যায়ে এ তিনটি বাহুর দৈর্ঘ্যের মধ্যে যে সম্পর্ক রয়েছে সে বিষয়ে আলোচনা করা হবে।

অধ্যায় শেষে শিক্ষার্থীরা Ñ

- 🗲 পিথাগোরাসের উপপাদ্য যাচাই ও প্রমাণ করতে পারবে ।
- 🕨 ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য দেওয়া থাকলে ত্রিভুজটি সমকোণী কিনা যাচাই করতে পারবে।
- 🕨 পিথাগোরাসের সূত্র ব্যবহার করে সমস্যা সমাধান করতে পারবে।

৯.১ সমকোণী ত্রিভুজ

চিত্রে, ABC একটি সমকোণী ত্রিভুজ, এর $\angle ACB$ কোণটি সমকোণ। সুতরাং AB ত্রিভুজটির অতিভুজ। চিত্রে ত্রিভুজটির বাহুগুলো a,b,c দ্বারা নির্দেশ করি।

কাজ

সমান।

১। একটি সমকোণ আঁক এবং এর বাহু দুইটির উপর যথাক্রমে 3 সে.মি. ও 4 সে.মি. দূরত্বে দুইটি বিন্দু চিহ্নিত কর। বিন্দু দুইটি যোগ করে একটি সমকোণী ত্রিভুজ আঁক। ত্রিভুজটির অতিভুজের দৈর্ঘ্য পরিমাপ কর। দৈর্ঘ্য 5 সে.মি. হয়েছে কি ?

লক্ষ কর, $3^2+4^2=5^2$ অর্থাৎ দুই বাহুর দৈর্ঘ্য পরিমাপের বর্গের যোগফল অতিভুজের পরিমাপের বর্গের সমান। সুতরাং a,b,c বাহু দ্বারা নির্দেশিত ত্রিভুজের ক্ষেত্রে $c^2=a^2+b^2$ হবে। এটা পিথাগোরাসের উপপাদ্যের মূল প্রতিপাদ্য। এই উপপাদ্যটি বিভিন্নভাবে প্রমাণ করা হয়েছে। এখানে কয়েকটি সহজ প্রমাণ দেওয়া হলো।

৯.২ পিথাগোরাসের উপপাদ্য

একটি সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির

(দুইটি সমকোণী ত্রিভূজের সাহায্যে)

বিশেষ নির্বচন : মনে করি, ABC সমকোণী ত্রিভুজের $\angle B=90^\circ$ অতিভুজ AC=b, AB=c ও BC=a. প্রমাণ করতে হবে যে, $AC^2=AB^2+BC^2$, অর্থাৎ $b^2=c^2+a^2$

আঙ্কন : BC কে D পর্যন্ত বর্ধিত করি যেন CD = AB = c হয় । D বিন্দুতে বর্ধিত BC এর উপর DE লম্ব আঁকি, যেন DE = BC = a হয় । C, E ও A, E যোগ করি ।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) $\triangle ABC$ ও $\triangle CDE$ এ $AB = CD = c$, $BC = DE = a$ এবং অন্তর্ভুক্ত $\angle ABC =$ অন্তর্ভুক্ত $\angle CDE$ [প্রত্যেকে সমকোণ]।	[বাহু-কোণ-বাহু উপপাদ্য]
সূতরাং, $\triangle ABC \cong \triangle CDE$. $\therefore AC = CE = b$ এবং $\angle BAC = \angle ECD$. (২) আবার, $AB \perp BD$ এবং $ED \perp BD$ বলে $AB \parallel ED$.	[ছেদকের দুই অন্তঃস্থ কোণের সমষ্টি 2 সমকোণ]
সুতরাং, $ABDE$ একটি ট্রাপিজিয়াম। (৩) তদুপরি, $\angle ACB + \angle BAC = \angle ACB + \angle ECD = $ এক সমকোণ।	
\therefore $\angle ACE =$ এক সমকোণ। ΔACE সমকোণী ত্রিভুজ। এখন $ABDE$ ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল = $(\Delta$ ক্ষেত্র $ABC + \Delta$ ক্ষেত্র $CDE + \Delta$ ক্ষেত্র ACE)	
বা, $\frac{1}{2}BD(AB+DE) = \frac{1}{2}ac + \frac{1}{2}ac + \frac{1}{2}b^2$ বা, $\frac{1}{2}(BC+CD)(AB+DE) = \frac{1}{2}[2ac+b^2]$ বা, $(a+c)(a+c) = 2ac+b^2[2$ দ্বারা গুণ করে]	[ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল = $\frac{1}{2}$ সমান্তরাল বাহুদ্বয়ের যোগফল $ imes$ ক্ষেত্রফল সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী দূরত্ব]
বা, $a^2 + 2ac + c^2 = 2ac + b^2$ বা, $a^2 + c^2 = b^2$ (প্রমাণিত)	

পিথাগোরাসের উপপাদ্যের বিকল্প প্রমাণ

(সদৃশকোণী ত্রিভুজের সাহায্যে)

বিশেষ নির্বচন : মনে করি, ABC সমকোণী ত্রিভুজের

 $\angle C=90^\circ$ এবং অতিভুজ AB=c , BC=a , AC=b .প্রমাণ করতে হবে যে, $AB^2=AC^2+BC^2$, অর্থাৎ $c^2=a^2+b^2$.

আঙ্কন : C বিন্দু থেকে অতিভুজ AB এর উপর লম্ব CH অঙ্কন করি । AB অতিভুজ H বিন্দুতে d ও e অংশে বিভক্ত হলো ।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) ΔCBH ও ΔABC সদৃশ।	[(i) উভয় ত্রিভুজ সমকোণী
$\therefore \frac{a}{c} = \frac{e}{a} \dots \dots (1)$	(ii) ∠A কোণ সাধারণ]
(২) ΔACH ও ΔABC সদৃশ।	[(i) উভয় ত্রিভুজ সমকোণী
$\therefore \frac{b}{c} = \frac{d}{b} \dots \dots (2)$	(ii) ∠B কোণ সাধারণ]
(৩) অনুপাত দুইটি থেকে পাই,	
$a^2 = c \times e, b^2 = c \times d$	
অতএব, $a^2 + b^2 = c \times e + c \times d$	
$= c(e+d) = c^2$	
$\therefore c^2 = a^2 + b^2$ [প্রমাণিত]	

পিথাগোরাসের উপপাদ্যের বিকল্প প্রমাণ

(বীজগণিতের সাহায্যে)

পিথাগোরাসের উপপাদ্য বীজগণিতের সাহায্যে সহজেই প্রমাণ করা যায়।

বিশেষ নির্বচন : মনে করি, একটি সমকোণী ত্রিভুজের অতিভুজ c এবং a , b যথাক্রমে অন্য দুই বাহু । প্রমাণ করতে হবে, $c^2 = a^2 + b^2$.

অঙ্কন: প্রদত্ত ত্রিভুজটির সমান করে চারটি ত্রিভুজ চিত্রে প্রদর্শিত উপায়ে আঁকি।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) অঙ্কিত বড় ক্ষেত্রটি বর্গক্ষেত্র।	[বাহুগুলোর প্রত্যেকটির দৈর্ঘ্য $a+b$ এবং কোণগুলো সমকোণ]
এর ক্ষেত্রফল $(a+b)^2$	
(২) ছোট চতুর্ভুজ ক্ষেত্রটি বর্গক্ষেত্র।	[বাহুগুলোর প্রত্যেকটির দৈর্ঘ্য $_{\mathcal{C}}$]
এর ক্ষেত্রফল c^2	
(৩) অঙ্কনানুসারে, বড় বর্গক্ষেত্রের ক্ষেত্রফল চারটি ত্রিভুজক্ষেত্র ও ছোট বর্গক্ষেত্রের ক্ষেত্রফলের সমান।	
অর্থাৎ, $(a+b)^2 = 4 \times \frac{1}{2} \times a \times b + c^2$	
বা, $a^2 + 2ab + b^2 = 2ab + c^2$	
বা, $a^2 + b^2 = c^2$ (প্রমাণিত)	

কাজ : ১ । $(a-b)^2$ এর বিস্তৃতির সাহায্যে পিথাগোরাসের উপপাদ্যটি প্রমাণ কর ।

৯.৩ পিথাগোরাসের উপপাদ্যের বিপরীত উপপাদ্য

যদি কোনো ত্রিভুজের একটি বাহুর উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান হয়, তবে শেষোক্ত বাহুদ্বয়ের অন্তর্ভুক্ত কোণটি সমকোণ হবে ।

বিশেষ নির্বচন : মনে করি, $\triangle ABC$ এর $AB^2 = AC^2 + BC^2$ প্রমাণ করতে হবে যে, $\angle C =$ এক সমকোণ ।

অঙ্কন : এমন একটি ত্রিভুজ DEF আঁকি, যেন $\angle F$ এক সমকোণ, EF=BC এবং DF=AC হয় ।

প্রমাণ:

ধাপ	যথাৰ্থতা
$(3) DE^2 = EF^2 + DF^2$	[কারণ ΔDEF -এ $\angle F$ এক
$=BC^2 + AC^2 = AB^2$	সমকোণ]
$\therefore DE = AB$	[
এখন $\triangle ABC$ ও $\triangle DEF$ এ $BC=EF$, $AC=DF$ এবং	[কল্পনা]
AB = DE.	
$\therefore \Delta ABC \cong \Delta DEF \therefore \ \angle C = \angle F$	
∴ ∠F = এক সমকোণ ∴ ∠C = এক সমকোণ।[প্রমাণিত]	[বাহু-বাহু-বাহু সর্বসমতা]

অনুশীলনী ৯

- ১। ABCD সামান্তরিকের অভ্যন্তরে O যেকোনো একটি বিন্দু । প্রমাণ করতে হবে যে, Δ ক্ষেত্র $AOB+\Delta$ ক্ষেত্র $COD=rac{1}{2}$ (সামান্তরিকক্ষেত্র ABCD)
- ২। প্রমাণ কর যে, ত্রিভুজের যেকোনো মধ্যমা ত্রিভুজক্ষেত্রটিকে সমান ক্ষেত্রফল বিশিষ্ট দুইটি ত্রিভুজক্ষেত্রে বিভক্ত করে।
- ৩। ΔABC এ AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E প্রমাণ কর যে, Δ ক্ষেত্র $CDE=rac{1}{4}$ (Δ ক্ষেত্র ABC).
- 8। ΔABC এ BC ভূমির সমান্তরাল যেকোনো সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে। প্রমাণ কর যে, Δ ক্ষেত্র $DBC = \Delta$ ক্ষেত্র EBC এবং Δ ক্ষেত্র $BDE = \Delta$ ক্ষেত্র CDE.
- ৫। ΔABC এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E প্রমাণ কর যে, Δ ক্ষেত্র $ADE=\frac{1}{4}$ (Δ ক্ষেত্র ABC).
- ৬। প্রমাণ কর যে, সামান্তরিকের কর্ণদ্বয় সামান্তরিকক্ষেত্রটিকে চারটি সমান ত্রিভুজক্ষেত্রে বিভক্ত করে।
- ৭। প্রমাণ কর যে, কোনো বর্গক্ষেত্র তার কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের অর্ধেক।
- ৮। ABC ত্রিভুজের $\angle A=$ এক সমকোণ। $D,\ AC$ এর উপরস্থ একটি বিন্দু। প্রমাণ কর যে, $BC^2+AD^2=BD^2+AC^2$.
- ৯। ABC ত্রিভুজের $\angle A=$ এক সমকোণ D ও E যথাক্রমে AB ও AC এর মধ্যবিন্দু হলে, প্রমাণ কর যে, $DE^2=CE^2+BD^2$.
- ১০। $\triangle ABC$ এ BC এর উপর লম্ব AD এবং AB > AC. প্রমাণ কর যে, $AB^2 AC^2 = BD^2 CD^2$.
- ১১। $\triangle ABC$ এ BC এর উপর AD লম্ব এবং AD এর উপর P যে কোনো বিন্দু ও AB > AC. প্রমাণ কর যে, $PB^2 PC^2 = AB^2 AC^2$.

১২। ABCDE বহুভুজে $AE \parallel BC$, $CF \perp AE$ এবং $DQ \perp CF$. ED=10 মি.মি. , EF=2 মি.মি. BC=8 মি.মি. AB=12 মি.মি.

উপরের তথ্যের ভিত্তিতে নিচের (১-৪) নম্বর প্রশ্নের উত্তর দাও:

১। ABCF চতুর্জের ক্ষেত্রফল কত বর্গ মি.মি. ?

ক. 64

খ. 96

গ. 100

ঘ. 144

২। নিচের কোনটি FPC ত্রিভুজের ক্ষেত্রফল নির্দেশ করে ?

ক. 32

খ. 48

গ. 72

ঘ. 60

৩। *CD* -এর দৈর্ঘ্য নিচের কোনটিতে প্রকাশ পায়?

ক. $2\sqrt{2}$

খ. 4

গ. $4\sqrt{2}$

ঘ. 8

8। নিচের কোনটিতে ΔFPC ও ΔDQC এর ক্ষেত্রফলের অন্তর নির্দেশ করে ?

ক. 46 বৰ্গ একক

খ. 48 বৰ্গ একক

গ. 50বৰ্গ একক

ঘ. 52 বর্গ একক

७०।

ক. PQST কী ধরনের চতুর্ভুজ ? স্বপক্ষে যুক্তি দাও।

খ. দেখাও যে, ΔPRT সমকোণী।

গ. প্রমাণ কর যে, $PR^2 = PQ^2 + QR^2$

দশম অধ্যায়

বৃত্ত

প্রতিদিন আমরা কিছু জিনিস দেখি ও ব্যবহার করি যা বৃত্তাকার: যেমন, গাড়ির চাকা, চুড়ি, ঘড়ি, বোতাম, থালা, মুদ্রা ইত্যাদি। আমরা দেখি যে, ঘড়ির সেকেন্ডের কাঁটার অগ্রভাগ গোলাকার পথে ঘুরতে থাকে।সেকেন্ডের কাঁটার অগ্রভাগ যে পথ চিহ্নিত করে একে বৃত্ত বলে। বৃত্তাকার বস্তুকে আমরা নানাভাবে ব্যবহার করি।

অধ্যায় শেষে শিক্ষার্থীরা–

- 🕨 বৃত্তের ধারণা লাভ করবে।
- পাই (π)এর ধারণা ব্যাখ্যা করতে পারবে।
- 🕨 বৃত্তাকার ক্ষেত্রের ক্ষেত্রফল ও পরিসীমা নির্ণয় করে সমস্যা সমাধান করতে পারবে ।
- বৃত্ত সংক্রান্ত উপপাদ্য প্রয়োগ করে সমস্যা সমাধান করতে পারবে এবং পরিমাপক ফিতা ব্যবহার করে বৃত্তাকার ক্ষেত্রের পরিসীমা ও ক্ষেত্রফল পরিমাপ করতে পারবে।
- 🕨 চতুর্ভুজ ও বৃত্তের ক্ষেত্রফলের সাহায্যে বেলনের পৃষ্ঠের ক্ষেত্রফল পরিমাপ করতে পারবে।

১০.১ বৃত্ত

এক টাকার একটি বাংলাদেশি মুদ্রা নিয়ে সাদা কাগজের উপর রেখে মুদ্রাটির মাঝ বরাবর বাঁ হাতের তর্জনি দিয়ে চেপে ধরি। এই অবস্থায় ডান হাতে সরু পেন্সিল নিয়ে মুদ্রাটির গাঁ ঘেষে চারদিকে ঘুরিয়ে আনি। মুদ্রাটি সরিয়ে নিলে কাগজে একটি গোলাকার আবদ্ধ বক্ররেখা দেখা যাবে। এটি একটি বৃত্ত।

নিখুঁতভাবে বৃত্ত আঁকার জন্য পেন্সিল কম্পাস ব্যবহার করা হয়। কম্পাসের কাঁটাটি কাগজের উপর চেপে ধরে অপর প্রান্তে সংযুক্ত পেন্সিলটি কাগজের উপর চারদিকে ঘুরিয়ে আনলেই একটি বৃত্ত আঁকা হয়ে থাকে, যেমনটি চিত্রে দেখানো হয়েছে। তাহলে বৃত্ত আঁকার সময় নির্দিষ্ট একটি বিন্দু থেকে সমদূরবর্তী বিন্দুগুলোকে আঁকা হয়। এই নির্দিষ্ট বিন্দুটি বৃত্তের কেন্দ্র। কেন্দ্র থেকে সমদূরবর্তী যেকোনো বিন্দুর দূরত্বকে ব্যাসার্ধ বলা হয়।

কাজ:

১। পেন্সিল কম্পাসের সাহায্যে O কেন্দ্রবিশিষ্ট 4 সে.মি. ব্যাসার্ধের একটি বৃত্ত আঁক। বৃত্তের উপরে বিভিন্ন জায়গায় কয়েকটি বিন্দু A,B,C,D নিয়ে কেন্দ্র থেকে বিন্দুগুলো পর্যন্ত রেখাংশগুলো আঁক। রেখাংশগুলোর দৈর্ঘ্য পরিমাপ কর। কী লক্ষ কর?

১০.২ বৃত্তের জ্যা ও চাপ

পাশের চিত্রে, একটি বৃত্ত দেখানো হয়েছে, যার কেন্দ্র O । বৃত্তের উপর যেকোনো বিন্দু P , Q নিয়ে এদের সংযোজক রেখাংশ PQ টানি । PQ রেখাংশ বৃত্তটির একটি জ্যা । জ্যা দ্বারা বৃত্তটি দুইটি অংশে বিভক্ত হয়েছে । জ্যাটির দুই পাশের দুই অংশে বৃত্তটির উপর দুইটি বিন্দু Y , Z নিলে ঐ দুইটি অংশের নাম PYQ ও PZQ অংশ । জ্যা দ্বারা বিভক্ত বৃত্তের প্রত্যেক অংশকে বৃত্তচাপ , বা সংক্ষেপে চাপ বলে । চিত্রে , PQ জ্যা দ্বারা সৃষ্ট চাপ দুইটি হচ্ছে PYQ ও PZQ চাপ ।

বৃত্তের যেকোনো দুইটি বিন্দুর সংযোজক রেখাংশ বৃত্তটির একটি জ্যা। প্রত্যেক জ্যা বৃত্তকে দুইটি চাপে বিভক্ত করে।

১০.৩ ব্যাস ও পরিধি

পাশের চিত্রে, AB এমন একটি জ্যা, যা বৃত্তের কেন্দ্র O দিয়ে গেছে। এরূপ ক্ষেত্রে আমরা বলি, জ্যাটি বৃত্তের একটি ব্যাস। ব্যাসের দৈর্ঘ্যকেও ব্যাস বলা হয়। AB ব্যাসটি দ্বারা সৃষ্ট চাপ দুইটি সমান; এরা প্রত্যেকে একটি অর্ধবৃত্ত। বৃত্তের কেন্দ্রগামী যেকোনো জ্যা, বৃত্তের একটি ব্যাস। ব্যাস বৃত্তের বৃহত্তম জ্যা। বৃত্তের প্রত্যেক ব্যাস বৃত্তকে দুইটি অর্ধবৃত্তে বিভক্ত করে। ব্যাসের অর্ধেক দৈর্ঘ্যকে ব্যাসার্ধ বলে। ব্যাস ব্যাসার্ধের দ্বিগুণ।

বৃত্তের সম্পূর্ণ দৈর্ঘ্যকে পরিধি বলে। অর্থাৎ বৃত্তস্থিত যেকোনো বিন্দু P থেকে বৃত্ত বরাবর ঘুরে পুনরায় P বিন্দু পর্যন্ত পথের দূরত্বই পরিধি।

বৃত্ত সরলরেখা নয় বলে রুলারের সাহায্যে বৃত্তের পরিধির দৈর্ঘ্য পরিমাপ করা যায় না। পরিধি মাপার একটি সহজ উপায় আছে। ছবি আকার কাগজে একটি বৃত্ত এঁকে বৃত্ত বরাবর কেটে নাও। পরিধির উপর একটি বিন্দু চিহ্নিত কর। এবার কাগজে একটি রেখাংশ আঁক এবং বৃত্তাকার কার্ডটি কাগজের উপর খাড়াভাবে রাখ যেন পরিধির চিহ্নিত বিন্দুটি রেখাংশের এক প্রান্তের সাথে মিলে যায়। এখন কার্ডটি রেখাংশ বরাবর গড়িয়ে নাও যতক্ষণ-না পরিধির চিহ্নিত বিন্দুটি রেখাংশকে পুনরায় স্পর্শ করে। স্পর্শবিন্দুটি চিহ্নিত কর এবং রেখাংশের প্রান্তবিন্দু থেকে এর দৈর্ঘ্য পরিমাপ কর। এই পরিমাপই পরিধির দৈর্ঘ্য। লক্ষ কর, ছোট বৃত্তের ব্যাস ছোট, পরিধিও ছোট; অন্যদিকে বড় বৃত্তের ব্যাস বড়, পরিধিও বড়।

১৩৪

১০.৪ বৃত্ত সম্পর্কিত উপপাদ্য

কাজ

১। ট্রেসিং কাগজে যেকোনো ব্যাসার্ধের একটি বৃত্ত আঁক। O, বৃত্তের কেন্দ্র। ব্যাস ভিন্ন একটি জ্যা AB আঁক। O বিন্দুর মধ্য দিয়ে কাগজটি এমনভাবে ভাঁজ কর যেন জ্যা-এর প্রান্তবিন্দুগুলো AB মিলে যায়। ভাঁজ বরাবর রেখাংশ OM আঁক যা জ্যাকে M বিন্দুতে ছেদ করে। তা হলে M জ্যা-এর মধ্যবিন্দু। $\angle OMA$ ও $\angle OMB$ কোণগুলো পরিমাপ কর। তারা প্রত্যেকে কি এক সমকোণের সমান?

উপপাদ্য 🕽 ।

বৃত্তের কেন্দ্র ও ব্যাস ভিনু কোনো জ্যা-এর মধ্যবিন্দুর সংযোজক রেখাংশ ঐ জ্যা-এর উপর লম।

মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB ব্যাস নয় এমন একটি জ্যা এবং M এই জ্যা-এর মধ্যবিন্দু । O,M যোগ করি । প্রমাণ করতে হবে যে, OM রেখাংশ AB জ্যা-এর উপর লম্ব ।

অঙ্কন : O, A এবং O, B যোগ করি।

প্রমাণ:

ধাপ	যথাৰ্থতা		
(১) Δ <i>OAM</i> এবং Δ <i>OBM</i> এ			
AM = BM	[M,AB এর মধ্যবিন্দু $]$		
OA = OB	[উভয়ে একই বৃত্তের ব্যাসার্ধ]		
এবং $OM = OM$	[সাধারণ বাহু]		
সুতরাং $\Delta OAM\cong \Delta OBM$	[বাহু-বাহু-বাহু উপপাদ্য]		
$\therefore \qquad \angle OMA = \angle OMB$			
(২) যেহেতু কোণদ্বয় রৈখিক যুগল কোণ এবং এদের পরিমাপ সমান,			
সুতরাং, $\angle OMA = \angle OMB = $ ১ সমকোণ।			
অতএব, $OM \perp AB$. (প্রমাণিত)			

কাজ: প্রমাণ কর যে, বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন অন্য কোনো জ্যা-এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে। [ইঙ্গিত: সমকোণী ত্রিভুজের সর্বসমতা ব্যবহার কর]

অনুসিদ্ধান্ত ১। বৃত্তের যেকোনো জ্যা-এর লম্ব-দ্বিখণ্ডক কেন্দ্রগামী।
অনুসিদ্ধান্ত ২। যেকোনো সরলরেখা একটি বৃত্তকে দুইয়ের অধিক বিন্দুতে ছেদ করতে পারে না।

অনুশীলনী ১০.১

- ১। প্রামণ কর যে, কোনো বৃত্তের দুইটি জ্যা পরস্পরকে সমদ্বিখণ্ডিত করলে তাদের ছেদবিন্দু বৃত্তটির কেন্দ্র হবে।
- ২। প্রমাণ কর যে, দুইটি সমান্তরাল জ্যা-এর মধ্যবিন্দুর সংযোজক সরলরেখা কেন্দ্রগামী এবং জ্যাদ্বয়ের উপর লম্ব।
- ৩। কোনো বৃত্তের AB ও AC জ্যা দুইটি A বিন্দুগামী ব্যাসার্ধের সাথে সমান কোণ উৎপন্ন করে। প্রমাণ কর যে, AB=AC.
- 8। চিত্রে, O বৃত্তের কেন্দ্র এবং জ্যা AB = জ্যা AC. প্রমাণ কর যে, $\angle BAO = \angle CAO$.

- ৫। কোনো বৃত্ত একটি সমকোণী ত্রিভুজের শীর্ষবিন্দুগুলো দিয়ে যায়। দেখাও যে, বৃত্তটির কেন্দ্র অতিভুজের মধ্যবিন্দু।
- ৬। দুইটি সমকেন্দ্রিক বৃত্তের একটির AB জ্যা অপর বৃত্তকে C ও D বিন্দুতে ছেদ করে। প্রমাণ কর যে, AC=BD.

উপপাদ্য ২।

বৃত্তের সকল সমান জ্যা কেন্দ্র থেকে সমদূরবর্তী।

মনে করি, O বৃত্তের কেন্দ্র এবং AB ও CD বৃত্তের দুইটি সমান জ্যা। প্রমাণ করতে হবে যে, O থেকে AB এবং CD জ্যাদ্বয় সমদূরবর্তী।

অঙ্কন : O থেকে AB এবং CD জ্যা-এর উপর যথাক্রমে OE এবং OF লম্ব রেখাংশ আঁকি । O,A এবং O,C যোগ করি ।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) <i>OE</i> ⊥ <i>AB</i>	[কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা-এর
\circ OF \perp CD.	উপর অঙ্কিত লম্ব জ্যাকে সমদ্বিখণ্ডিত করে]
সুতরাং, $AE = BE$ এবং $CF = DF$.	
$\therefore AE = \frac{1}{2}AB$ এবং $CF = \frac{1}{2}CD$.	
(২) কিন্তু $AB = CD$	[কল্পনা]
$\therefore AE = CF.$	
(৩) এখন $\triangle OAE$ এবং $\triangle OCF$ সমকোণী ত্রিভুজদ্বয়ের মধ্যে	

অতিভুজ $OA =$ অতিভুজ OC এবং $AE = CF$. $\therefore \Delta OAE \cong \Delta OCF$ $\therefore OE = OF$.	[উভয়ে একই বৃত্তের ব্যাসাধ´] [ধাপ ২] [সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্মসমতা উপপাদ্য]		
(8) কিন্তু OE এবং OF কেন্দ্র O থেকে যথাক্রমে			
AB জ্যা এবং CD জ্যা-এর দূরত্ব।			
সুতরাং, AB এবং CD জ্যাদ্বয় বৃত্তের কেন্দ্র থেকে			
সমদূরবর্তী । (প্রমাণিত)			

উপপাদ্য ৩

বৃত্তের কেন্দ্র থেকে সমদূরবর্তী সকল জ্যা পরস্পর সমান।

মনে করি, O বৃত্তের কেন্দ্র এবং $AB \circ CD$ দুইটি জ্যা। O থেকে AB CD এর উপর যথাক্রমে OE OF লম্ম। তাহলে $OE \circ OF$ কেন্দ্র থেকে যথাক্রমে $AB \circ CD$ জ্যা-এর দূরত্ব নির্দেশ করে। OE = OF হলে প্রমাণ করতে হবে যে, AB = CD.

অঙ্কন : O, A এবং O, C যোগ করি ।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) যেহেতু $\mathit{OE} \perp \mathit{AB}$ এবং $\mathit{OF} \perp \mathit{CD}$.	[সমকোণ]
সুতরাং, $\angle OEA = \angle OFC = $ এক সমকোণ	
(২) এখন, ΔOAE এবং ΔOCF সমকোণী	
ত্রিভুজদ্বয়ের মধ্যে	
অতিভুজ $\mathit{OA}=$ অতিভুজ OC এবং	[উভয়ে একই বৃত্তের ব্যাসার্ধ]
OE = OF	[কল্পনা]
$\therefore \Delta OAE \cong \Delta OCF$	[সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্মসমতা উপপাদ্য]
$\therefore AE = CF.$	
(৩) $AE = \frac{1}{2}AB$ এবং $CF = \frac{1}{2}CD$	[কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা-এর উপর
(৪) সুতরাং $\frac{1}{2}AB = \frac{1}{2}CD$	অঙ্কিত লম্ব জ্যাকে সমদ্বিখণ্ডিত করে]
2 2 অর্থাৎ, $AB = CD$	
AD - CD	

উদাহরণ 8। প্রমাণ কর যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা। মনে করি, O কেন্দ্রবিশিষ্ট ABDC একটি বৃত্ত। AB ব্যাস এবং CD ব্যাস ভিন্ন যেকোনো একটি জ্যা। প্রমাণ করতে হবে যে, AB>CD

অঙ্কন : O, C এবং O, D যোগ করি।

প্রমাণ : OA = OB = OC = OD [একই বৃত্তের ব্যাসার্ধ]

এখন , ΔOCD এ

OC + OD > CD

বা, OA + OB > CD

অর্থাৎ, AB > CD.

वनुगीलनी ३०.२

- ১। বৃত্তের দুইটি সমান জ্যা পরস্পরকে ছেদ করলে দেখাও যে, তাদের একটির অংশদ্বয় অপরটির অংশদ্বয়ের সমান।
- ২। প্রমাণ কর যে, বৃত্তের সমান জ্যা-এর মধ্যবিন্দুগুলো সমবৃত্ত।
- ৩। দেখাও যে, ব্যাসের দুই প্রান্ত থেকে এর বিপরীত দিকে দুইটি সমান জ্যা অঙ্কন করলে তারা সমান্তরাল হয়।
- ৪। দেখাও যে, ব্যাসের দুই প্রান্ত থেকে এর বিপরীত দিকে দুইটি সমান্তরাল জ্যা আঁকলে তারা সমান হয়।
- ৫। দেখাও যে, বৃত্তের দুইটি জ্যা-এর মধ্যে বৃহত্তর জ্যা-টি ক্ষুদ্রতর জ্যা অপেক্ষা কেন্দ্রের নিকটতর।

১০ ৫ বৃত্তের পরিধি ও ব্যাসের অনুপাত (π)

বৃত্তের পরিধি ও ব্যাসের মধ্যে কোনো সম্পর্ক রয়েছে কিনা বের করার জন্য দলগতভাবে নিচের কাজটি কর:

কাজ

১। তোমরা প্রত্যেকে পছন্দমতো ভিন্ন ভিন্ন ব্যাসার্ধের তিনটি করে বৃত্ত আঁক এবং ব্যাসার্ধ ও পরিধি পরিমাপ করে নিচের সারণিটি পূরণ কর। পরিধি ও ব্যাসের অনুপাত কি ধ্রুবক বলে মনে হয়?

বৃত্ত	ব্যাসার্ধ	পরিধি	ব্যাস	পরিধি / ব্যাস
1	3.5 সে.মি.	22 সে.মি.	7.0 সে.মি.	22/7 =3.142

কোনো বৃত্তের পরিধি ও ব্যাসের অনুপাত ধ্রুবক । একে গ্রিক অক্ষর π (পাই) দ্বারা নির্দেশ করা হয় । অর্থাৎ, বৃত্তের পরিধি c ও ব্যাস d হলে অনুপাত $\frac{c}{d}=\pi$ বা $c=\pi d$. আবার বৃত্তের ব্যাস ব্যাসার্ধের দ্বিগুণ ; অর্থাৎ, d=2r অতএব, $c=2\pi r$

প্রাচীন কাল থেকে গণিতবিদগণ π -এর আসন্ন মান নির্ণয়ের চেষ্টা করেছেন। ভারতীয় গণিতবিদ আর্যভট্ট (৪৭৬ — ৫৫০ খ্রিফীন্দ) π -এর আসন্ন মান নির্ণয় করেছেন $\frac{62832}{20000}$ যা প্রায় $3\cdot 1416$. গণিতবিদ শ্রীনিবাস রামানুজন (১৮৮৭—১৯২০) π -এর আসন্ন মান বের করেছেন যা দশমিকের পর মিলিয়ন ঘর পর্যন্ত সঠিক। প্রকৃতপক্ষে, π একটি অমূলদ সংখ্যা। আমাদের দৈনন্দিন হিসাবের প্রয়োজনে ধ্রুবক π এর আসন্ন মান $\frac{22}{7}$ ধরা হয়।

উদাহরণ ১। 10 সে.মি. ব্যাসের বৃত্তের পরিধি কত? ($\pi \cong 3 \cdot 14$ ধর)

সমাধান : বৃত্তের ব্যাস d=10 সে.মি

বৃত্তের পরিধি $=\pi d$

≅ 3.14 × 10 সে.মি. = 31·4 সে.মি.

অতএব, 10 সে.মি. ব্যাসের বৃত্তের পরিধি 31.4 সে.মি.।

উদাহরণ ২। 14 সে.মি. ব্যাসার্ধের বৃত্তের পরিধি কত? $(\pi\cong \frac{22}{7}$ ধর)

সমাধান: বৃ

বৃত্তের ব্যাসার্ধ (r) = 14 সে.মি বৃত্তের পরিধি = $2\pi r$

 $\simeq 2 \times \frac{22}{7} \times 14$ সে.মি. = 88 সে.মি.

অতএব, 14 সে.মি. ব্যাসার্ধের বৃত্তের পরিধি 88 সে.মি.।

১০.৬ বৃত্তক্ষেত্রের ক্ষেত্রফল

বৃত্ত দ্বারা আবদ্ধ সমতলীয় ক্ষেত্র বৃত্তক্ষেত্র। বৃত্তক্ষেত্রের ক্ষেত্রফল বের করার জন্য নিচের কাজটি করি।

কাজ :

(ক) কাগজে চিত্রের ন্যায় একটি বৃত্ত এঁকে এর অর্ধাংশ রং কর। এবার বৃত্তটি মাঝ বরাবর তিন বার ভাঁজ কর এবং ভাঁজ বরাবর কেটে নাও। বৃত্তটি সমান আটটি অংশে বিভক্ত হলো। বৃত্তের টুকরোগুলোকে চিত্রের ন্যায় সাজালে কী পাওয়া যায় ? একটি সামান্তরিকের মতো নয় কি ?

(খ) বৃত্তটি সমান ষোলোটি অংশে বিভক্ত করে একইভাবে সাজাও। সাজানোর ফলে কী পেয়েছো ?

্গি) বৃত্তটি সমান চৌষট্টি অংশে বিভক্ত করে একইভাবে সাজাও। সাজানোর ফলে কী পেয়েছো? প্রায় একটি আয়তক্ষেত্র কি ?

(ঘ) আয়তক্ষেত্রটির দৈর্ঘ্য ও প্রস্থ কত ? ক্ষেত্রফল কত ?

বৃত্তক্ষেত্রের ক্ষেত্রফল= আয়তক্ষেত্রটির ক্ষেত্রফল= দৈর্ঘ্য imes প্রস্থ

= পরিধির অর্ধেক × ব্যাসার্ধ

$$= \frac{1}{2} \times 2\pi \, r \times r = \pi^2$$

বৃত্তক্ষেত্রের ক্ষেত্রফল $=\pi r^2$ ।

কাজ :

- ১। (ক) গ্রাফ কাগজে 5 সে.মি. ব্যাসার্ধের একটি বৃত্ত অঙ্কন কর। ছোট ঘরগুলো গণনা করে বর্গক্ষেত্রের আনুমানিক ক্ষেত্রফল বের কর।
 - (খ) একই বৃত্তক্ষেত্রের ক্ষেত্রফল সূত্রের সাহায্যে নির্ণয় কর। নির্ণীত ক্ষেত্রফল ও আনুমানিক ক্ষেত্রফলের পার্থক্য বের কর।

উদাহরণ ৩। 9.৪ মি. ব্যাসের বৃত্তাকার একটি বাগানের ক্ষেত্রফল কত?

সমাধান : বৃত্তের ব্যাস, d = 9.8 মি.

বৃত্তের ব্যাসার্ধ
$$r = \frac{9 \cdot 8}{2}$$
 মি. = 4.9 মি.

বৃত্তক্ষেত্রের ক্ষেত্রফল = πr²

$$\cong 3.14 \times 4.9^2$$
 বর্গমিটার = 75.46 বর্গমিটার

গণিত \$80

উদাহরণ ৪। পাশের চিত্রে দুইটি সমকেন্দ্রিক বৃত্ত প্রদর্শিত হয়েছে। বৃত্ত দুইটির ব্যাসার্ধ যথাক্রমে 9 সে.মি. ও 4 সে.মি.। বৃত্তদ্বয়ের পরিধির মধ্যবর্তী এলাকার ক্ষেত্ৰফল কত ?

সমাধান:

বৃহত্তর বৃত্তের ব্যাসার্ধ r=9 সে.মি.

বৃহত্তর বৃত্তক্ষেত্রটির ক্ষেত্রফল $=\pi r^2$ বর্গ সেন্টিমিটার

 $\cong 3.14 \times 9^2$ বর্গ সেন্টিমিটার = 254.34 বর্গ সেন্টিমিটার

ক্ষুদ্রতর বৃত্তের ব্যাসার্ধ r=4 সে.মি.

ক্ষুদ্রতর বৃত্তক্ষেত্রটির ক্ষেত্রফল = πr² বর্গ সেন্টিমিটার

 $\cong 3.14 \times 4^2$ বর্গ সেন্টিমিটার = 50.24 বর্গ সেন্টিমিটার

বৃত্তদ্বয়ের অন্তর্গত এলাকার ক্ষেত্রফল = (254.34 - 50.24) বর্গ সেন্টিমিটার

= 204.10 বর্গ সেন্টিমিটার

অনুশীলনী ১০.৩

- ১। পছন্দমতো কেন্দ্র ও ব্যাসার্ধ নিয়ে পেন্সিল কম্পাস ব্যবহার করে একটি বৃত্ত আঁক। বৃত্তের উপর কয়েকটি व्याসार्थ याँक । (মপে দেখ সবগুলো व्याসार्थत हेर्मण स्थान कि-ना ।
- ২। নিম্নবর্ণিত ব্যাসার্ধবিশিষ্ট বৃত্তের পরিধি নির্ণয় কর:
 - (ক) 10 সে.মি.
- (খ) 14 সে.মি.
- (গ) 21 সে.মি.
- ৩। নিমুবর্ণিত বৃত্তের ক্ষেত্রফল নির্ণয় কর:
 - (ক) ব্যাসার্ধ = 12 সে.মি. (খ) ব্যাস = 34 সে.মি.
- (গ) ব্যাসার্ধ = 21 সে.মি.
- ৪। একটি বৃত্তাকার শিটের পরিধি 154 সে.মি. হলে, এর ব্যাসার্ধ কত? শিটের ক্ষেত্রফল নির্ণয় কর।
- ে। একজন মালী 21 মি. ব্যাসার্ধের বৃত্তাকার বাগানের চারদিকে দুইবার ঘুরিয়ে দড়ির বেড়া দিতে চায়। প্রতি মিটার দড়ির মূল্য 18 টাকা হলে, তাকে কত টাকার দড়ি কিনতে হবে ?
- ৬। পাশের চিত্রের ক্ষেত্রটির পরিসীমা নির্ণয় কর।
- १। 14 সে.মি. ব্যাসার্ধের একটি বৃত্তাকার বোর্ড থেকে 1.5 সে.মি. ব্যাসার্ধের দুইটি বৃত্তাকার অংশ এবং 3 সে.মি. দৈর্ঘ্য ও 1 সে.মি. প্রস্তের একটি আয়তাকার অংশ কেটে নেওয়া হলো। বোর্ডের বাকি অংশের ক্ষেত্রফল বের কর।

একাদশ অধ্যায় তথ্য ও উপাত্ত

জ্ঞান-বিজ্ঞানের ব্যাপক প্রসার ও দ্রুত উন্নয়নে তথ্য ও উপাত্ত গুরুত্বপূর্ণ ভূমিকা ও অবদান রেখে চলেছে। তথ্য ও উপাত্তের ওপর ভিত্তি করে পরিচালিত হয় গবেষণা এবং অব্যাহত গবেষণার ফল হচ্ছে জ্ঞান-বিজ্ঞানের অভাবনীয় উন্নয়ন। তথ্য ও উপাত্ত উপস্থাপনে ব্যাপকতা লাভ করেছে সংখ্যার ব্যবহার। আর সংখ্যাসূচক তথ্য হচ্ছে পরিসংখ্যান। তাই পরিসংখ্যানের মৌলিক ধারণা ও সংশ্লিষ্ট বিষয়বস্তুসমূহ জানা আবশ্যক। পূর্ববর্তী শ্রেণিতে পরিসংখ্যানের মৌলিক বিষয়গুলো ক্রমান্বয়ে উপস্থাপন করা হয়েছে। এরই ধারাবাহিকতায় এ অধ্যায়ে কেন্দ্রীয় প্রবণতা, এর পরিমাপক গড়, মধ্যক ও প্রচুরক সম্বন্ধে বিস্তারিত আলোচনা করা হলো।

অধ্যায় শেষে শিক্ষার্থীরা

- 🕨 কেন্দ্রীয় প্রবণতা ব্যাখ্যা করতে পারবে ।
- 🕨 গাণিতিক সূত্রের সাহায্যে গড়, মধ্যক ও প্রচুরক নির্ণয় করে সমস্যা সমাধান করতে পারবে ।
- 🕨 আয়তলেখ ও পাইচিত্র অঙ্কন করতে পারবে।

১১.১ তথ্য ও উপাত্ত

আগের শ্রেণিতে আমরা এ সম্বন্ধে মৌলিক ধারণা লাভ করেছি এবং বিস্তারিত জেনেছি। এখানে আমরা স্কল্প পরিসরে এ সম্বন্ধে আলোচনা করব। আমরা জানি, সংখ্যাভিত্তিক কোনো তথ্য বা ঘটনা হচ্ছে একটি পরিসংখ্যান। আর তথ্য বা ঘটনা-নির্দেশক সংখ্যাগুলো হচ্ছে পরিসংখ্যানের একটি উপান্ত। ধরা যাক, ৫০ নম্বরের মধ্যে অনুষ্ঠিত কোনো প্রতিযোগিতামূলক পরীক্ষায় অংশগ্রহণকারী ২০ জন প্রার্থীর গণিতের প্রাপ্ত নম্বর হলো ২৫, ৪৫, ৪০, ২০, ৩৫, ৩০, ৩৫, ৩০, ৪০, ৪১, ৪৬, ২০, ২৫, ৩০, ৪৫, ৪২, ৪৫, ৪৭, ৫০, ৩০। এখানে, গণিতে প্রাপ্ত সংখ্যা-নির্দেশিত নম্বরসমূহ একটি পরিসংখ্যান। আর নম্বরগুলো হলো এ পরিসংখ্যানের উপাত্ত। এ উপাত্তগুলো সহজে সরাসরি উৎস থেকে সংগৃহীত হয় এমন উপাত্ত হলো প্রাথমিক উপাত্ত। মাধ্যমিক উপাত্ত পরোক্ষ উৎস থেকে সংগৃহীত হয় বিধায় এর নির্ভরযোগ্যতা অনেক কম। উপরে বর্ণিত উপাত্তের নম্বরগুলো এলোমেলোভাবে আছে। নম্বরগুলো মানের কোনো ক্রমে সাজালো নেই। এ ধরনের উপাত্ত হলো অবিন্যস্ত উপাত্ত। এ উপাত্তের নম্বরগুলো মানের যেকোনো ক্রমে সাজালে হবে বিন্যস্ত উপাত্ত। নম্বরগুলো মানের উর্ধক্রমে সাজালে হয় ২০, ২০, ২৫, ২৫, ৩০, ৩০, ৩০, ৩৫, ৩৫, ৪০, ৪০, ৪১, ৪২, ৪৫, ৪৫, ৪৫, ৪৬, ৪৭, ৫০ যা একটি বিন্যস্ত উপাত্ত। অবিন্যস্ত উপাত্ত এভাবে বিন্যস্ত করা বেশ জটিল এবং ভুল হওয়ার সম্ভাবনা থেকে যায়। শ্রেণিবিন্যাসের মাধ্যমে অবিন্যস্ত উপাত্তসমূহ অতিসহজে বিন্যস্ত উপাত্তর করা যায় এবং গণসংখ্যা সারণির সাহায়ে উপস্থাপন করা হয়।

১১.২ গণসংখ্যা নিবেশন সারণি (Frequency Distribution Table)

উপাত্তের গণসংখ্যা সারণি তৈরি করার জন্য যে কয়েকটি ধাপ ব্যবহার করতে হয় তা হলো:

(১) পরিসর নির্ণয়, (২) শ্রেণিসংখ্যা নির্ণয়, (৩) শ্রেণিব্যাপ্তি নির্ণয়, (৪) ট্যালি চিহ্নের সাহায্যে গণসংখ্যা নির্ণয়। অনুসন্ধানাধীন উপাত্তের পরিসর = (সর্বোচ্চ সংখ্যা – সর্বনিম্ন সংখ্যা) + ১

শ্রেণিব্যাপ্তি: যেকোনো অনুসন্ধানলব্ধ উপাত্তের পরিসর নির্ধারণের পর প্রয়োজন হয় শ্রেণিব্যাপ্তি নির্ধারণ। উপাত্তগুলোকে সুবিধাজনক ব্যবধান নিয়ে কতকগুলো শ্রেণিতে ভাগ করা হয়। উপাত্তের সংখ্যার উপর ভিত্তি করে এগুলো সাধারণত শ্রেণিতে ভাগ করা হয়। শ্রেণিতে ভাগ করার নির্ধারিত কোনো নিয়ম নেই। তবে সচরাচর প্রত্যেক শ্রেণিব্যবধান সর্বনিম্ন ৫ ও সর্বোচ্চ ১৫-এর মধ্যে সীমাবদ্ধ রাখা হয়। সুতরাং প্রত্যেক শ্রেণির একটি সর্বোচ্চ ও সর্বনিম্ন মান থাকে। যেকোনো শ্রেণির সর্বনিম্ন মানকে এর নিম্নসীমা এবং সর্বোচ্চ মানকে এর উর্ধ্বসীমা বলা হয়। আর যেকোনো শ্রেণির উর্ধ্বসীমা ও নিম্নসীমার ব্যবধান হলো সেই শ্রেণির শ্রেণিব্যাপ্তি। উদাহরণস্বরূপ, মনে করি, ১০, ২০ হলো একটি শ্রেণি, এর সর্বনিম্ন মান ১০ ও সর্বোচ্চ মান ২০ এবং (২০–১০) = ১০ হলো শ্রেণি ব্যাপ্তি। শ্রেণি ব্যাপ্তি। ব্যাপ্তি। ব্যাপ্তি।

শ্রেণিসংখ্যা : শ্রেণিসংখ্যা হচ্ছে পরিসরকে যতগুলো শ্রেণিতে ভাগ করা হয় এর সংখ্যা।

ট্যালি চিহ্ন: উপাত্তের সংখ্যাসূচক তথ্যরাশির মান কোনো না কোনো শ্রেণিতে পড়ে। শ্রেণির বিপরীতে সাংখ্যিক মানের জন্য ট্যালি '∰' চিহ্ন দিতে হয়। কোনো শ্রেণিতে পাঁচটি ট্যালি চিহ্ন দিতে হলে চারটি দেওয়ার পর পঞ্চমটি আড়াআড়িভাবে দিতে হয়।

গণসংখ্যা : শ্রেণিসমূহের মধ্যে সংখ্যাসূচক তথ্যরাশির মানগুলো ট্যালি চিহ্ন দিয়ে প্রকাশ করা হয় এবং এর মাধ্যমে গণসংখ্যা বা ঘটনসংখ্যা নির্ধারণ করা হয়। যে শ্রেণিতে যতগুলো ট্যালি চিহ্ন পড়বে তত হবে ঐ শ্রেণির গণসংখ্যা বা ঘটনসংখ্যা, যা ট্যালি চিহ্নের বিপরীতে গণসংখ্যা কলামে লেখা হয়।

উপরে বর্ণিত বিবেচনাধীন উপাত্তের পরিসর, শ্রেণিব্যাপ্তি ও শ্রেণিসংখ্যা নিচে দেওয়া হলো :

শ্রেণিব্যাপ্তি/ব্যবধান ধরা যায় ৫। তাহলে শ্রেণিসংখ্যা হবে তুঁ = ৬.২ যা পূর্ণ সংখ্যায় রূপান্তর করলে হবে ৭। অতএব শ্রেণিসংখ্যা ৭। উপরের আলোচনার প্রেক্ষিতে বর্ণিত উপাত্তের গণসংখ্যা নিবেশন সারণি প্রস্তুত করা হলো :

শ্রেণি ব্যাপ্তি	ট্যালি চিহ্ন	ঘটনসংখ্যা বা গণসংখ্যা
२०-२8		2
২৫-২৯		২
೨ ೦- ೨ 8	1111	8
৩৫-৩৯		২
80-88	1111	8
৪৫-৪৯	M	Č
89-09	1	7
মোট	২০	২০

কাজ :

তোমরা নিজেদের মধ্য থেকে ২০ জনের দল গঠন কর এবং দলের সদস্যদের উচ্চতার গণসংখ্যা সারণি তৈরি কর।

১১.৩ লেখচিত্র (Diagram)

তথ্য ও উপাত্ত লেখচিত্রের মাধ্যমে উপস্থাপন একটি বহুলপ্রচলিত পদ্ধতি। কোনো পরিসংখ্যানে ব্যবহৃত উপাত্ত লেখচিত্রের মাধ্যমে উপস্থাপিত হলে তা বোঝা ও সিদ্ধান্ত গ্রহণের জন্য খুব সুবিধান্তনক হয়। অধিকন্তু চিত্রের মাধ্যমে উপস্থাপিত উপাত্ত চিত্তাকর্ষকও হয়। তাই বুঝা ও সিদ্ধান্ত গ্রহণের সুবিধার্থে উপাত্তসমূহের গণসংখ্যা নিবেশনের চিত্র লেখচিত্রের মাধ্যমে উপস্থাপন করা হয়। গণসংখ্যা নিবেশন উপস্থাপনে বিভিন্ন রকম লেখচিত্রের ব্যবহার থাকলেও এখানে কেবলমাত্র আয়তলেখ ও পাইচিত্র নিয়ে আলোচনা করা হবে।

আয়তলেখ (Histogram) : গণসংখ্যা নিবেশনের একটি লেখচিত্র হচ্ছে আয়তলেখ । আয়তলেখ অঙ্কনের জন্য ছক কাগজে x ও y-অক্ষ আঁকা হয়। x-অক্ষ বরাবর শ্রেণিব্যাপ্তি এবং y-অক্ষ বরাবর গণসংখ্যা নিয়ে আয়তলেখ আঁকা হয়। আয়তের ভূমি হয় শ্রেণিব্যাপ্তি এবং উচ্চতা হয় গণসংখ্যা।

উদাহরণ 🕽 । নিচে ৫০ জন শিক্ষার্থীর উচ্চতার গণসংখ্যা নিবেশন দেওয়া হলো । একটি আয়তলেখ আঁক ।

উচ্চতার শ্রেণিব্যাপ্তি (সেমিতে)	>>8->50	১২৪-১৩৩	\$08-\$80	\$88-\$৫৩	১৫৪-১৬৩	১৬৪-১৭৩
গণসংখ্যা (শিক্ষার্থীরসংখ্যা)	9	¢	30	২০	ъ	8

ছক কাগজের ১ ঘর সমান শ্রেণিব্যাপ্তির ২ একক ধরে x-অক্ষে শ্রেণিব্যাপ্তি এবং ছক কাগজের ১ ঘর সমান গণসংখ্যার ১ একক ধরে y-অক্ষে গণসংখ্যা নিবেশনের স্থাপন করে গণসংখ্যা নিবেশনের আয়তলেখ আঁকা হলো। x-অক্ষের মূলবিন্দু থেকে ১১৪ ঘর পর্যন্ত ভাঙা চিহ্ন দিয়ে আগের ঘরগুলো বিদ্যমান বোঝানো হয়েছে।

কাজ: (ক) ৩০ জন নিয়ে দল গঠন কর। দলের সদস্যদের গণিতে প্রাপ্ত নম্বরের গণসংখ্যা নিবেশন সারণি তৈরি কর। (খ) গণসংখ্যা নিবেশনের আয়তলেখ আঁক।

পাইচিত্র: পাইচিত্রও একটি লেখচিত্র। অনেক সময় সংগৃহীত পরিসংখ্যান কয়েকটি উপাদানের সমষ্টি দ্বারা গঠিত হয় অথবা একে কয়েকটি শ্রেণিতে ভাগ করা হয়। এ সকল ভাগকে একটি বৃত্তের অভ্যন্তরে বিভিন্ন অংশে প্রকাশ করলে যে লেখচিত্র পাওয়া যায় তাই পাইচিত্র। পাইচিত্রকে বৃত্তলেখও বলা হয়। আমরা জানি, বৃত্তের কেন্দ্রে সৃষ্ট কোণের পরিমাণ ৩৬০°। কোনো পরিসংখ্যান ৩৬০° এর অংশ হিসেবে উপস্থাপিত হলে তা হবে পাইচিত্র।

আমরা জানি, ক্রিকেটখেলায় ১, ২, ৩, ৪, ও ৬ করে রান সংগৃহীত হয়। তাছাড়া নো-বল ও ওয়াইড বলের জন্য অতিরিক্ত রান সংগৃহীত হয়। কোনো-এক খেলায় বাংলাদেশ ক্রিকেট দলের সংগৃহীত রান নিচের সারণিতে দেওয়া হলো:

রান সংগ্রহ	১ করে	২ করে	৩ করে	৪ করে	৬ করে	অতিরিক্ত রান	মোট
বিভিন্ন প্রকারের	<u>ა</u>	(0	9	8৮	೨೦	20	২ 80
সংগৃহীত রান							

ক্রিকেটখেলার উপাত্ত পাইচিত্রের মাধ্যমে দেখানো হলে, বোঝার জন্য যেমন সহজ হয় তেমনি চিত্তাকর্ষকও হয়। কোনো উপাত্তের লেখচিত্র যখন বৃত্তের মাধ্যমে উপস্থাপন করা হয়, তখন সেই লেখচিত্রকে পাইচিত্র বলে। সুতরাং পাইচিত্র হচ্ছে, বৃত্তাকার লেখচিত্র। আমরা জানি, বৃত্তের কেন্দ্রে সৃষ্ট কোণ ৩৬০°। উপরে বর্ণিত উপাত্ত ৩৬০°-এর অংশ হিসেবে উপস্থাপন করা হলে, উপাত্তের পাইচিত্র পাওয়া যাবে।

এখন, প্রাপ্ত কোণগুলো ৩৬০° -এর অংশ হিসাবে আঁকা হলো। যা বর্ণিত উপাত্তের পাইচিত্র।
উদাহরণ ২। কোনো এক বছরে দুর্ঘটনাজনিত কারণে সংঘটিত মৃত্যুর সারণি নিচে দেয়া হলো। একটি পাইচিত্র
আঁক।

দুৰ্ঘটনা	বাস	ট্রাক	কার	নৌযান	মোট
মৃতের সংখ্যা	860	৩৫০	২৫০	\$60	১২০০

সমাধান: বাস দুর্ঘটনায় মৃত ৪৫০ জনের জন্য কোণ =
$$\frac{8\ell\circ}{52\circ\circ} \times 500^\circ = 500^\circ$$
ট্রাক দুর্ঘটনায় মৃত ৩৫০ জনের জন্য কোণ = $\frac{5\ell\circ}{52\circ\circ} \times 500^\circ = 500^\circ$
কার দুর্ঘটনায় মৃত ২৫০ জনের জন্য কোণ = $\frac{5\ell\circ}{52\circ\circ} \times 500^\circ = 500^\circ$
নৌযান দুর্ঘটনায় মৃত ১৫০ জনের জন্য কোণ = $\frac{5\ell\circ}{52\circ\circ} \times 500^\circ = 500^\circ$

এখন, কোণগুলো ৩৬০° -এর অংশ হিসাবে আঁকা হলো, যা নির্ণেয় পাইচিত্র।

উদাহরণ ৩। দুর্ঘটনায় মৃত ৪৫০ জনের মধ্যে কতজন নারী, পুরুষ ও শিশু তা পাইচিত্রে দেখানো হয়েছে। নারীর জন্য নির্দেশিত কোণ ৮০°। নারীর সংখ্যা কত ?

সমাধান : কেন্দ্রে সৃষ্ট কোণ ৩৬০°।

সুতরাং ৩৬০° -এর জন্য ৪৫০ জন

$$\therefore$$
 ৮০° -এর জন্য $\dfrac{8 e^{\circ}}{9 e^{\circ}} \times$ ৮০ জন = ১০০ জন

- কাজ : ১। তোমাদের শ্রেণিতে অধ্যয়নরত শিক্ষার্থীদের ৬ জন করে নিয়ে দল গঠন কর। দলের সদস্যরা নিজেদের উচ্চতা মাপ এবং প্রাপ্ত উপাত্ত পাইচিত্রের মাধ্যমে দেখাও।
 - ২। তোমরা তোমাদের পরিবারের সকলের বয়সের উপাত্ত নিয়ে পাইচিত্র আঁক। প্রত্যেকের বয়সের নির্ধারিত কোণের জন্য কার বয়স কত তা নির্ণয়ের জন্য পাশের শিক্ষার্থীর সাথে খাতা বদল কর।

১১.৪ কেন্দ্রীয় প্রবণতা

ধরা যাক, কোনো-একটি সমস্যা সমাধানে ২৫ জন ছাত্রীর যে সময় (সেকেন্ডে) লাগে তা হলো ২২, ১৬, ২০, ৩০, ২৫, ৩৬, ৩৫, ৩৭, ৪০, ৪৩, ৪৩, ৪৪, ৪৩, ৪৪, ৪৬, ৪৫, ৪৮, ৫০, ৬৪, ৫০, ৬০, ৫৫, ৬২, ৬০। সংখ্যাগুলো মানের উর্ধ্বক্রমে সাজালে হয়:

১৬, ২০, ২২, ২৫, ৩০, ৩৫, ৩৬, ৩৭, ৪০, ৪০, ৪৩, ৪৩, ৪৩, ৪৪, ৪৪, ৪৫, ৪৮, ৫০, ৫০, ৫৫, ৬০, ৬০, ৬২, ৬৪। বর্ণিত উপাত্তসমূহ মাঝামাঝি মান ৪৩ বা ৪৪ এ পুঞ্জিভূত। গণসংখ্যা সারণিতে এই প্রবণতা পরিলক্ষিত হয়। বর্ণিত উপাত্তের গণসংখ্যা নিবেশন সারণি তৈরি করলে হয়

ব্যাপ্তি	১৬-২৫	২৬-৩৫	৩৬-৪৫	8৬-৫৫	৫৬-৬৫
গণসংখ্যা	8	٤	20	Œ	8

এই গণসংখ্যা নিবেশন সারণিতে দেখা যাচ্ছে ৩৬-৪৫ শ্রেণিতে গণসংখ্যা সর্বাধিক। সুতরাং উপরের আলোচনা থেকে এটা স্পষ্ট যে, উপাত্তসমূহ মাঝামাঝি বা কেন্দ্রের মানের দিকে পুঞ্জভূত হয়। মাঝামাঝি বা কেন্দ্রে মানের দিকে উপাত্তসমূহের পুঞ্জভূত হওয়ার প্রবণতাকে কেন্দ্রীয় প্রবণতা বলে। কেন্দ্রীয় মান উপাত্তসমূহের প্রতিনিধিত্বকারী একটি সংখ্যা যার দ্বারা কেন্দ্রীয় প্রবণতা পরিমাপ করা হয়। সাধারণভাবে, কেন্দ্রীয় প্রবণতার পরিমাপ হলো (১) গাণিতিক গড় বা গড়,(২) মধ্যক, (৩) প্রচুরক।

১১.৫ গাণিতিক গড়

আমরা জানি, উপাত্তসমূহের সংখ্যাসূচক মানের সমষ্টিকে যদি উপাত্তসমূহের সংখ্যা দিয়ে ভাগ করা হয়, তবে গাণিতিক গড় পাওয়া যায়। মনে করি, উপাত্তসমূহের সংখ্যা হলো $\mathbf n$ এবং এদের সংখ্যাসূচক মান $x_1,x_2,x_3....x_n$ । যদি

উপাত্তসমূহের গাণিতিক গড় মান
$$\overset{--}{x}$$
 হয়, তবে $\overset{--}{x}=\overset{x_1+x_2+3_3+.....x_n}{n}=\sum_{i=1}^n \frac{x_i}{n}$

উদাহরণ ৪। ৫০ নম্বরের মধ্যে অনুষ্ঠিত পরীক্ষায় কোনো শ্রেণির ২০ জন শিক্ষার্থীর গণিতের প্রাপ্ত নম্বর হলো ৪০, ৪১, ৪৫, ১৮, ৪১, ২০, ৪৫, ৪১, ৪৫, ২৫, ২০, ৪০, ১৮, ২০, ৪৫, ৪৭, ৪৮, ৪৮, ৪৯, ১৯। প্রাপ্ত নম্বরের গাণিতিক গড় নির্ণয় কর।

সমাধান : এখানে
$$n=$$
২০, $x_1=$ 8০, $x_2=$ 8১, $x_3=$ 8৫ ইত্যাদি

গাণিতিক গড় যদি
$$\bar{x}$$
 হয় তবে $\bar{x} = \frac{-1}{-1}$ নম্বগুলোর সমষ্টি নম্বগুলোর সংখ্যা

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{80 + 85 + 86 + \dots + 58}{20}$$

অর্থাৎ,

∴ গাণিতিক গড় ৩৫.৭৫

অবিন্যস্ত উপাত্তের গাণিতিক গড় নির্ণয় (সংক্ষিপ্ত পদ্ধতি):

উপাত্তের সংখ্যা যদি বেশি হয় তবে আগের পদ্ধতিতে গড় নির্ণয় করা বেশ জটিল হয় এবং বেশি সংখ্যক উপাত্তের সংখ্যাসূচক মানের সমষ্টি নির্ণয় করতে ভুল হওয়ার সম্ভাবনা থাকে। এক্ষেত্রে সংক্ষিপ্ত পদ্ধতি ব্যবহার করা বেশ সুবিধাজনক।

সংক্ষিপ্ত পদ্ধতিতে উপান্তসমূহের কেন্দ্রীয় প্রবণতা ভালোভাবে পর্যবেক্ষণ করে তাদের সম্ভাব্য গড় অনুমান করা হয়। উপরের উদাহরণে প্রদন্ত উপান্তের কেন্দ্রীয় প্রবণতা ভালোভাবে লক্ষ করলে বোঝা যায় যে, গাণিতিক গড় ৩০ থেকে ৪৬-এর মধ্যে একটি সংখ্যা। মনে করি, গাণিতিক গড় ৩০। এখন প্রত্যেক সংখ্যা থেকে অনুমিত গড় ৩০ বিয়োগ করে বিয়োগফল নির্ণয় করতে হবে। সংখ্যাটি ৩০ থেকে বড় হলে বিয়োগফল ধনাত্মক এবং ছোট হলে বিয়োগফল খাণাত্মক হবে। এরপরে সকল বিয়োগফলের বীজগাণিতিক সমষ্টি নির্ণয় করতে হয়। পরপর দুইটি বিয়োগফল যোগ করে ক্রমযোজিত সমষ্টি নির্ণয়ের মাধ্যমে সকল বিয়োগফলের সমষ্টি অতি সহজে নির্ণয় করা যায়। অর্থাৎ, বিয়োগফলের সমষ্টি ক্রমযোজিত সমষ্টির সমান হবে। উপরের উদাহরণে ব্যবহৃত উপাত্তের গাণিতিক গড় কীভাবে সংক্ষিপ্তি পদ্ধতিতে করা হয় তা নিচের সারণিতে উপস্থাপন করা হলো। মনে করি, উপাত্তসমূহ x_i (i=1,2,......,n) এর অনুমিত গড় a (=00)।

উপাত্ত	$x_i - a$	ক্রমযোজিত সমষ্টি	উপাত্ত	$x_i - a$	ক্রমযোজিত সমষ্টি
x_i			x_i		
80	80-00=50	٥٥	২০	₹0 - ৩ 0 = - ১ 0	<i>७</i> ১ − ১० = <i>৫</i> ১
8\$	82-00=22	?o + = <?</td <td>80</td> <td>80-00=50</td> <td>&\$ + \$0 = \$\$</td>	80	80-00=50	&\$ + \$0 = \$\$
8&	8¢ − oo = 5¢	২১ + ১৫ = ৩৬	72	26 − 20 = − 25	<i>७</i> 5 − 5 <i>२</i> = 8 <i>5</i>
26	>> - 20 =−>>	৩৬ – ১২ = ২৪	২০	₹0 - ७ 0 =- ১ 0	8 ८ = ०८-८8
8\$	82-00=22	30 = \$\cap 4 + 8\$	8¢	% - 00 = 3€	৩৯ + ১৫ = ৫৪
२०	20-00 = -30	৩৫-১০ = ২৫	89	94 – oo = 39	68 + ۶۹ = ۹۶
8&	8¢-00=5¢	२৫ + ३৫ = 8०	85	8৮-৩০ = ১৮	۹۵ + ۶۶ = ۶۶
8\$	82-00=22	80 + 22 = 62	8b	8b-20 = 2p	৮৯ + ১৮ = ১০৭
8&	8¢ − ⊙o = ১ ¢	€5 + 5€ = €€	8৯	88-00=38	১০৭ + ১৯ = ১২৬
2&	₹¢ - ७० =-¢	৬৬ – ৫ = ৬১	79	22 - 20 = - 22	<i>>></i> >>> = >>&

উপরে উপস্থাপিত সারণি থেকে বিয়োগফলের সমষ্টি সমান ১১৫

∴ বিয়োগফলের গড়
$$=$$
 $\frac{55\%}{20} = @ \cdot 9@$

সুতরাং প্রকৃত গড় $=$ অনুমিত গড় $+$ বিয়োগফলের গড় $=$ $00 + @ \cdot 9@$
 $=$ $00.9@$

মন্তব্য : সুবিধার্থে এবং সময় সাশ্রয়ের জন্য কলামের মধ্যকার যোগ-বিয়োগ মনে মনে করে সরাসরি ফলাফল লেখা যায়।

বিন্যস্ত উপাত্তের গাণিতিক গড়

উদাহরণ ৪-এর ২০ জন শিক্ষার্থীর গণিতে প্রাপ্ত নম্বরের মধ্যে একই নম্বর একাধিক শিক্ষার্থী পেয়েছে। প্রাপ্ত নম্বরের গণসংখ্যা নিবেশন সারণি নিচে দেওয়া হলো:

প্রাপ্ত নম্বর	গণসংখ্যা	$f_i x_i$
x_i	f_i	
i = 1,, k	i = 1,, k	
72	2	৩৬
29	2	79
২০	9	৬০
२৫	2	20
80	2	ро
82	9	১২৩
8¢	8	720
89	۶	89
8৮	2	৯৬
8৯	2	8৯
k = >0	k = \$0, $n = $ \$0	মোট =৭১৫

প্রাপ্ত নম্বরের গড় =
$$\frac{f_i \chi_i}{ ext{NIট}}$$
 গণসংখ্যা = $\frac{93 e}{20}$ = ৩৫.৭ e

উদাহরণ ৫। নিচে কোনো-একটি শ্রেণির শিক্ষার্থীদের গণিতে প্রাপ্ত নম্বরের গণসংখ্যা নিবেশন সারণি দেওয়া হলো। প্রাপ্ত নম্বরের গাণিতিক গড় নির্ণয় কর।

শ্রেণিব্যাপ্তি	২৫-৩৪	৩৫-88	80-08	<i>৫</i> ৫-৬8	৬৫-৭৪	৭ ৫-৮8	৮৫- ৯8
গণসংখ্যা	Œ	20	36	২০	೨೦	১৬	8

সমাধান : এখানে শ্রেণিব্যাপ্তি দেওয়া আছে বিধায় শিক্ষার্থীদের ব্যক্তিগত নম্বর কত তা জানা যায় না। এ ক্ষেত্রে প্রত্যেক শ্রেণির শ্রেণিমধ্যমান নির্ণয় করার প্রয়োজন হয়।

শ্ৰেণি ব্যাপ্তি	শ্রেণি মধ্যমান (x_i)	গণসংখ্যা (f_i)	$(f_i x_i)$
২৫ – ৩৪	₹2.€	¢	\$09.€
৩৫ – ৪৪	· −88 % % % % % % % % % % % % % % % % % %		৩১৫.০
8¢ – ¢8	8৯∙৫	3 @	98 २.৫
¢¢ –	∌∙ኖ୬	২০	\$\$\$0.0
৬৫ – ৭৪	৬৯∙৫	೨೦	२०४७-०
৭৫ – ৮৪	৭৯∙৫	১৬	১ ২৭২.०
৮৫ – ৯৪	∌∙৫খ	8	৩৫৮.০
	মোট	\$00	७ \$৫०.००

নির্ণেয় গাণিতিক গড়
$$=\frac{1}{n}\sum_{i=1}^k f_i x_i = \frac{3}{300} \times 300$$

১১.৬ মধ্যক

আমরা ৭ম শ্রেণিতে পরিসংখ্যানে অনুসন্ধানাধীন উপাত্তসমূহের মধ্যক সম্বন্ধে জেনেছি। ধরা যাক, ৫, ৩, ৪, ৮, ৬, ৭, ৯, ১১, ১০ কতকগুলো সংখ্যা। এ সংখ্যাগুলোকে মানের ক্রমানুসারে সাজালে হয়, ৩, ৪, ৫, ৬, ৭, ৮, ৯, ১০, ১১। ক্রমবিন্যস্ত সংখ্যাগুলোকে সমান দুই ভাগ করলে হয়

এখানে দেখা যাচ্ছে যে, ৭ সংখ্যাগুলোকে সমান দুই ভাগে ভাগ করেছে এবং এর অবস্থান মাঝে। সুতরাং এখানে মধ্যপদ হলো ৫ম পদ। এই ৫ম পদ বা মধ্যপদের মান হলো ৭। অতএব, সংখ্যাগুলোর মধ্যক হলো ৭। এখানে প্রদত্ত উপাত্তগুলো বা সংখ্যাগুলো হলো বিজোড় সংখ্যক। আর যদি সংখ্যাগুলো জোড় সংখ্যক যেমন ৮, ৯, ১০, ১১, ১২, ১৩, ১৫, ১৬, ১৮, ১৯, ২১, ২২ এর মধ্যক কী হবে ? সংখ্যাগুলোকে সমান দুই ভাগ করলে হবে

দেখা যাচ্ছে যে, ১৩ ও ১৫ সংখ্যাগুলোকে সমান দুই ভাগে ভাগ করেছে এবং এদের অবস্থান মাঝামাঝি। এখানে মধ্যপদ হলো ৬ষ্ঠ ও ৭ম পদ। সুতরাং মধ্যক হবে ৬ষ্ঠ ও ৭ম পদের সংখ্যা দুইটির গড় মান। ৬ষ্ঠ ও ৭ম পদের

সংখ্যার গড় মান
$$\frac{50+50}{5}$$
 বা ১৪। অর্থাৎ, এখানে মধ্যক হলো ১৪।

উপরের আলোচনা থেকে আমরা বলতে পারি যে, যদি n সংখ্যক উপাত্ত থাকে এবং n যদি বিজোড় সংখ্যা হয় তবে উপাত্তগুলোর মধ্যক হবে $\frac{n+\lambda}{\lambda}$ তম পদের মান। আর n যদি জোড় সংখ্যা হয় তবে মধ্যক হবে $\frac{n}{\lambda}$ তম ও

$$rac{n}{-}$$
 + ১ তম পদ দুইটির সাংখ্যিক মানের গড়। ২

উপাত্তগুলোকে মানের ক্রমানুসারে সাজালে যে মান উপাত্তগুলোকে সমান দুইভাগে ভাগ করে সেই মানই হবে উপাত্তগুলোর মধ্যক।

উদাহরণ ৬। নিচের সংখ্যাগুলোর মধ্যক নির্ণয় কর: ২৩, ১১, ২৫, ১৫, ২১, ১৭, ১৮, ২২, ২৭, ২৯, ৩০, ১৬, ১৯। সমাধান: সংখ্যাগুলোকে মানের ক্রমানুসারে উর্ধ্বক্রমে সাজানো হলো-

এখানে সংখ্যাগুলো জোড় সংখ্যক n=38

$$∴ মধ্যক = \frac{\frac{38}{2} \, \text{তম ও} \left(\frac{38}{2} + 3\right) \, \text{তম পদ দুইটির মানের যোগফল}}{2}$$

$$= \frac{\frac{9 \, \text{N M ও b x M F দুইটির মানের যোগফল}}{2}}{2}$$

$$∴ মধ্যক = \frac{38 + 23}{2} = \frac{80}{2} = 20$$

$$\text{অতএব, মধ্যক ২০ ।}$$

কাজ: ১। তোমাদের শ্রেণিতে অধ্যয়নরত শিক্ষার্থীদের থেকে ১৯ জন, ২০ জন ও ২১ জন নিয়ে ৩টি দল গঠন কর।প্রত্যেক দল তার সদস্যদের রোলনম্বরগুলো নিয়ে দলে মধ্যক নির্ণয় কর।

উদাহরণ ৭। নিচে ৫০ জন ছাত্রীর গণিতে প্রাপ্ত নম্বরের গণসংখ্যা নিবেশন সারণি দেওয়া হলো। মধ্যক নির্ণয় কর।

প্রাপ্ত নম্বর	8&	৫০	৬০	৬৫	90	૧ ૯	ро	৯০	৯৫	200
গণসংখ্যা	9	২	Œ	8	20	3 ¢	¢	9	২	۵

(5)4 5)6)34921(1 3	กลเด
	যের গণসংখ্যা স

প্রাপ্ত নম্বর	গণসংখ্যা	যোজিত গণসংখ্যা
8&	٠	٥
60	2	¢
৬০	¢	>0
৬৫	8	78
90	>0	২৪
૧ ૯	26	৩৯
ьо	¢	88
৯০	٠	89
৯৫	২	৪৯
3 00	٥	(0

এখানে, n = ৫০ যা জোড় সংখ্যা

$$\frac{\frac{@}{2} \circ x \circ \left(\frac{@}{2} + x\right) \circ x \circ y \circ \pi}{2} \circ x \circ \left(\frac{@}{2} + x\right) \circ x \circ \pi}$$

$$\Rightarrow \frac{2}{2} \circ x \circ x \circ \pi}{2} \circ \pi}{2} \circ \pi}{2} \circ \pi}{2} \circ \pi}{2} \circ \pi}{2} \circ \pi}$$

$$= \frac{2@ 2 \circ x \circ \pi}{2} {2} \circ \pi}{2}$$

∴ ছাত্রীদের প্রাপ্ত নম্বরের মধ্যক ৭৫।

লক্ষ করি: এখানে ২৫তম থেকে ২৯ তম পদের মান ৭৫।

কাজ: তোমাদের শ্রেণির সকল শিক্ষার্থীকে নিয়ে ২টি দল গঠন কর। একটি সমস্যা সমাধানে প্রত্যেকের কত সময় লাগে (ক) তার গণসংখ্যা নিবেশন সারণি তৈরি কর, (খ) সারণি হতে মধ্যক নির্ণয় কর।

১১.৭ প্রচুরক (Mode)

মনে করি, ১১, ৯, ১০, ১২, ১১, ১২, ১৪, ১১, ১০, ২০, ২১, ১১, ৯ ও ১৮ একটি উপাত্ত। উপাত্তটি মানের উর্ধ্বক্রমে সাজালে হয়—

বিন্যাসকৃত উপাত্তটি লক্ষ করলে দেখা যায় যে, ১১ সংখ্যাটি ৪ বার উপস্থাপিত হয়েছে যা উপস্থাপনায় সর্বাধিক বার। যেহেতু উপাত্তে ১১ সংখ্যাটি সবচেয়ে বেশি বার আছে তাই এখানে ১১ হলো উপাত্তগুলোর প্রচুরক:

কোনো উপাত্তে যে সংখ্যাটি সবচেয়ে বেশিবার থাকে তাকে প্রচুরক বলে।

উদাহরণ ৮। নিচে ৩০ জন ছাত্রীর বার্ষিক পরীক্ষায় সমাজবিজ্ঞানে প্রাপ্ত নম্বর দেওয়া হলো। উপাত্তগুলোর প্রচুরক নির্ণয় কর।

96, 96, 80, 50, 46, 50, 50, 50, 56, 50, 46, 50, 96, 50, 96, 50, 80, 49, 90, 92, 45, 96, 50, 50, 46, 96, 96, 50, 50, 96, 46, 1

উদাহরণ ৯। নিচের উপাত্তসমূহের প্রচুরক নির্ণয় কর:

৪, ৬, ৯, ২০, ১০, ৮, ১৮, ১৯, ২১, ২৪, ২৩, ৩০।

সমাধান: উপাত্তসমূহকে মানের উর্ধ্বক্রমে সাজানো হলো:

৪, ৬, ৮, ৯, ১০, ১৮, ১৯, ২০, ২১, ২৩, ২৪, ৩০।

এখানে লক্ষণীয় যে, কোনো সংখ্যা একাধিকবার ব্যবহৃত হয়নি। তাই উপাত্তগুলোর প্রচুরক নেই।

অনুশীলনী ১১

- ১। নিচের কোনটি দ্বারা শ্রেণিব্যাপ্তি বোঝায় ?
 - (ক) উপাত্তগুলোর মধ্যে প্রথম ও শেষ উপাত্তের ব্যবধান
 - (খ) উপাত্তগুলোর মধ্যে শেষ ও প্রথম উপাত্তের সমষ্টি
 - (গ) প্রত্যেক শ্রেণির বৃহত্তম ও ক্ষুদ্রতম উপাত্তের সমষ্টি
 - (ঘ) প্রতিটি শ্রেণির অন্তর্ভুক্ত ক্ষুদ্রতম ও বৃহত্তম সংখ্যার ব্যবধান।
- ২। একটি শ্রেণিতে যতগুলো উপাত্ত অন্তর্ভুক্ত হয় তার নির্দেশক নিচের কোনটি ?
 - (ক) শ্রেণির গণসংখ্যা

(খ) শ্রেণির মধ্যবিন্দু

(গ) শ্রেণিসীমা

- (ঘ) ক্রমযোজিত গণসংখ্যা
- ৩। ৮, ১২, ১৬, ১৭, ২০ সংখ্যাগুলোর গড় কত ?
 - (क) ১০⋅৫

(খ) ১২.৫

(গ) ১৩.৬

(ঘ) ১৪.৬

(খ) ৬৩

(ঘ) ৯৩

(খ) ৫৬

(ঘ) ৮৬

৭২, ৮৫, ৭৮, ৮৪, ৭৮, ৭৫, ৬৯, ৬৭, ৮৮, ৮০, ৭৪, ৭৭, ৭৯, ৬৯, ৭৪, ৭৩, ৮৩, ৬৫, ৭৫, ৬৯, ৬৩,

(খ) শ্রেণিব্যাপ্তি ৫ নিয়ে গণসংখ্যা নিবেশন সারণি তৈরি কর এবং সারণি থেকে গড় নির্ণয় কর।

8	১০, ১২, ১৪, ১৮,	১৯, ২৫ সংখ্যাগুলোর	মধ্যক কত ?	ক কত ?				
	(ক) ১১ ∙৫		(খ) ১৪.৬					
	(গ) ১৬		(ঘ) ১৮∙৬					
Œ	৫। ৬, ১২, ৭, ১২, ১১, ১২, ১১, ৭, ১১, এর প্রচুরক কোনটি ?							
	(ক) ১১ ও ৭		(খ) ১১ ও ১২	2				
	(গ) ৭ ও ১২		(ঘ) ৬ ও ৭					
নিচে (তোমাদের শ্রেণির ৪০	জন শিক্ষার্থীর গণিতে	চ প্রাপ্ত নম্বরের গণসংখ	ধ্যা নিবেশন সারণি দে	ওয়া হলো :			
শ্ৰেণি	ব্যাপ্তি	83 - ৫৫	<i>৫</i> ৬ – ৭০	9 ১ – ৮৫	৮৬ – ১০০			
গণস	ংখ্যা	৬	70	২০	8			
এই সারণির আলোকে (৬-৮) নম্বর পর্যন্ত প্রশ্নের উত্তর দাও : ৬। উপাত্তগুলোর শ্রেণিব্যাপ্তি কোনটি ?								
9 1	•)						
	(ক) ৫		(খ) ১০	(뉙) ১০				
	(গ) ১২		(ঘ) ১৫	(ঘ) ১৫				

৭। দ্বিতীয় শ্রেণির শ্রেণিমধ্যমান কোনটি?

৮। প্রদত্ত সারণিতে প্রচুরক শ্রেণির নিমুসীমা কোনটি ?

(ক) প্রাপ্ত নম্বরের সরাসরি গড় নির্ণয় কর।

(গ) সরাসরিভাবে প্রাপ্ত গড়ের সাথে পার্থক্য দেখাও

৯। ২৫ জন শিক্ষার্থীর বার্ষিক পরীক্ষায় প্রাপ্ত নম্বর নিচে দেওয়া হলো:

(ক) ৪৮

(গ) ৭৮

(ক) ৪১

(গ) ৭১

৭৫, ৮৬, ৬৬, ৭১।

১০। নিচের একটি সারণি দেওয়া হলো। এর গড় মান নির্ণয় কর। উপাত্তগুলোর আয়তলেখ আঁক:

প্রাপ্ত নম্বর	৬–১০	22-2¢	১৬–২০	২১–২৫	২৬–৩০	୬ ୬-୭୯	৩৬–৪০	83-86
গণসংখ্যা	Č	٥٩	೨೦	৩৮	৩৫	20	٩	9

১১। নিচের সারণি থেকে গড নির্ণয় কর:

দৈনিক আয় (টাকায়)	২২১০	২২১৫	২২২০	২২২৫	২২৩০	২২৩৫	২২৪০	২২৪৫	২২৫০
গণসংখ্যা	২	9	¢	٩	৬	¢	¢	8	9

১২। নিচে ৪০ জন গৃহিণীর সাপ্তাহিক সঞ্চয় (টাকায়) নিচে দেওয়া হলো:

১৫৫, ১৭৩, ১৬৬, ১৪৩, ১৬৮, ১৬০, ১৫৬, ১৪৬, ১৬২, ১৫৮, ১৫৯, ১৪৮, ১৫০, ১৪৭, ১৩২, ১৩৬, ১৫৬, ১৪০, ১৫৫, ১৪৫, ১৩৫, ১৫১, ১৪১, ১৪৯, ১৬৯, ১৪০, ১২৫, ১২২, ১৪০, ১৩৭, ১৭৫, ১৪৫, ১৫০, ১৬৪, ১৪২, ১৫৬, ১৫২, ১৪৮, ১৫৭ ও ১৬৭।
সাপ্তাহিক জমানোর গড়, মধ্যক ও প্রচুরক নির্ণয় কর।

১৩। নিচের উপাত্তসমূহের গড় এবং উপাত্তের আয়তলেখ আঁক:

বয়স (বছর)	& − ₽	৭ — ৮	৯ – ১০	22 – 25	20 – 28	১৫ – ১৬	১৭ – ১৮
গণসংখ্যা	২৫	২৭	২৮	৩১	২৯	২৮	২২

১৪। একটি কারখানার ১০০ শ্রমিকের মাসিক মজুরির গণসংখ্যা নিবেশন সারণি দেওয়া হলো। শ্রমিকদের মাসিক মজুরির গড় কত ? উপাত্তগুলোর আয়তলেখ আঁক।

দৈনিক মজুরি (শত টাকায়)	<i>የ</i> ኔ–¢¢	<i>৬</i> ৬ <i>–</i> ৬০	৬১–৬৫	৬৬–৭০	9 \-9&	৭৬–৮০	b \$- b @	৮৬–৯০
গণসংখ্যা	৬	২০	೨೦	\$ &	77	Ъ	৬	8

১৫। ৮ম শ্রেণির ৩০ জন শিক্ষার্থীর ইংরেজি বিষয়ে প্রাপ্ত নম্বর হলো :

৪৫, ৪২, ৬০, ৬১, ৫৮, ৫৩, ৪৮, ৫২, ৫১, ৪৯, ৭৩, ৫২, ৫৭, ৭১, ৬৪, ৪৯, ৫৬, ৪৮, ৬৭, ৬৩, ৭০, ৫৯, ৫৪, ৪৬, ৪৩, ৫৬, ৫৯, ৪৩, ৬৮, ৫২।

- (ক) শ্রেণিব্যবধান ৫ ধরে শ্রেণিসংখ্যা কত ?
- (খ) শ্রেণিব্যবধান ৫ ধরে গণসংখ্যা নিবেশণ সারণি তৈরি কর।
- (গ) সারণি থেকে গড় নির্ণয় কর।

১৬। ৫০ জন শিক্ষার্থীর দৈনিক সঞ্চয় নিচে দেওয়া হলো :

সঞ্চয় (টাকায়)	83–60	<i>৫১–</i> ৬০	৬১–৭০	9 ১ –৮০	৮১–৯০	\$ >-> 00
গণসংখ্যা	৬	ъ	১৩	20	b	œ

- (ক) ক্রমযোজিত গণসংখ্যার সারণি তৈরি কর।
- (খ) সারণি থেকে গড় নির্ণয় কর।

১৭। নিচের সারণিতে ২০০ জন শিক্ষার্থীর পছন্দের ফল দেখানো হলো। প্রদত্ত উপাত্তের পাইচিত্র আঁক।

ফল	আম	কাঁঠাল	লিচু	জামরুল
সারণি	90	೨೦	ЪО	২০

১৮। ৭২০ জন শিক্ষার্থীর পছন্দের বিষয় পাইচিত্রে উপস্থাপন করা হলো। সংখ্যায় প্রকাশ কর।

ব্যাংলা - ৯০°

ইংরেজি - ৩০°

গণিত - ৫০°

বিজ্ঞান - ৬০°

ধৰ্ম - ৮০°

সঙ্গীত - ৫০°

৩৬০°

উত্তরমালা

ञनुगीलनी २.১

١	৪০০ টাকা	২। ২৬৫০ টাকা	৩। লাভ বা ক্ষতি কিছুই	ই হবে না
8	১০৫০ টাকা	৫। ১৮০ টাকা	৬ ৷ ৯%	१। ३२ %
b ا	৭৫০০ টাকা	৯। ১৪০০০ টাকা	১০। ১২৩০ টাকা	১১। ৯৬০ টাকা
১ २ ।	১৬০০ টাকা	১৩। আসল ১২০০ টাকা	, মুনাফা ১০.৫%	১৪ ৷ ৯.২%
१७ ।	۵۵ %	১৬। ১২ বছর	১৭। ৫ বছর	১৮। ৩০,০০০ টাকা

অনুশীলনী ২.২

১।গ ২।ঘ ৩।ক ৪।(১)গ, (২)ক, (৩) ঘ ৫।১০৬৪৮ টাকা ৬।১৫৫ টাকা ৭।৬২৫০ টাকা ৮।১১৭৭২.২৫ টাকা, ১৭৭২.২৫ টাকা ৯।৬৭,২৪,০০০ জন ১০।১৬৭২ টাকা ১১। ৮০০ টাকা, ৫৮০০ টাকা, গ. ৫৮৩২ টাকা, ৮৩২ টাকা

অনুশীলনী ৩

১।১৫২৫৫৫ জন ২।১৭.৫০ টাকা।৩।৮০০০ বার ৪।৬২৫ মিটার। ৫।২৭৭.৫ মে.টন ৬।৪১০.৯৬ মে.টন (প্রায়) ৭।২০০ দিন ৮।০.০৭ লিটার (প্রায়) ৯।২০৮ বর্গমিটার ১০।৬৩৬ বর্গমিটার ১১।৪০২.৩৪ মিটার (প্রায়)১২।৬০ মিটার ১৩।১৮৬ বর্গমিটার ১৪।৫২০.৮ বর্গমিটার ।১৫।৪৮৬৪ বর্গমিটার ১৬।২৪ মিটার ১৭।৩ মিটার ১৮।২৪০৮.৬৪ গ্রাম ১৯।৬৭৩.৫৪৭ ঘন সে. মি.২০।৪৪০০০ লিটার, ৪৪০০০ কিলোগ্রাম ২১। ৭৫০ টাকা ২২।৩৭.৫ মিটার ২৩।৭৬৫৬ টাকা ২৪।৫৬৯.৫০ টাকা ২৫।৫২টি,১৪৩০ টাকা।২৬।৪৫০ ঘন সে.মি.।২৭।৫ ঘণ্টা ২০ মিনিট ২৮।৯৭.৯২ সে.মি. (প্রায়)

অনুশীলনী 8.১

$$3 + (\overline{4}) 25a^2 + 70ab + 49b^2$$

$$(4) 36x^2 + 36x + 9$$

১
$$(\overline{\Phi}) \ 25a^2 + 70ab + 49b^2$$
 খে) $36x^2 + 36x + 9$ গে) $49p^2 - 28pq + 4q^2$

(a)
$$a^2x^2 - 2abxy + b^2y^2$$
 (b) $x^6 + 2x^4y + x^2y^2$ (c) $121a^2 - 264ab + 144b^2$

(8)
$$x^6 + 2x^4y + x^2y^2$$

(5)
$$121a^2 - 264ab + 144b^2$$

$$(8) 36x^4y^2 - 60x^3y^3 + 25x^2y$$

(জ)
$$x^2 + 2xy + y^2$$

(a)
$$36x^4v^2 - 60x^3v^3 + 25x^2v^4$$
 (b) $x^2 + 2xy + y^2$ (d) $x^2v^2z^2 + 2abcxyz + a^2b^2c^2$

(48)
$$a^4x^6 - 2a^2b^2x^3y^4 + b^4y^8$$
 (\overline{b}) 11664 (\overline{b}) 367236 (\overline{b}) 356409

(5)
$$a^2 + b^2 + c^2 - 2ab - 2bc + 2ca$$

(b)
$$a^2 + b^2 + c^2 - 2ab - 2bc + 2ca$$
 (c) $a^2x^2 + b^2 + 2abx + 4b + 4ax + 4$

$$(\overline{9}) x^2 y^2 + y^2 z^2 + z^2 x^2 + 2xy^2 z - 2xyz^2 - 2x^2 yz$$

$$(9)9p^2 + 4q^2 + 25r^2 + 12pq - 20qr - 30pr$$

$$(\overline{y}) x^4 + y^4 + z^4 - 2x^2y^2 + 2y^2z^2 - 2z^2x^2$$

(4)
$$49a^4 + 64b^4 + 25c^4 + 112a^2b^2 - 80b^2c^2 - 70c^2a^2$$

২।(ক)
$$4x^2$$
 (খ) $9a^2$ (গ) $36x^4$ (ঘ) $9x^2$ (ঙ) 16

(খ)
$$9a^2$$

(গ)
$$36x^4$$

য)
$$9x^2$$

$$(4) 25x^2 - 169$$

(4)
$$25x^2 - 169$$
 (7) $x^2y^2 - y^2z^2$

$$(a) a^2 x^2 - b^2$$

(8)
$$a^2 + 7a + 12$$

(a)
$$a^2x^2 - b^2$$
 (b) $a^2 + 7a + 12$ (d) $a^2x^2 + 7ax + 12$

$$(\nabla) 36x^2 + 24x - 221$$

(a)
$$36x^2 + 24x - 221$$
 (b) $a^8 - b^8$ (c) $a^2x^2 - b^2y^2 - c^2z^2 + 2bcyz$

(43)
$$9a^2 - 45a + 50$$

(43)
$$9a^2 - 45a + 50$$
 (\overline{b}) $25a^2 + 4b^2 - 9c^2 - 20ab$

$$(5)$$
 $a^2x^2 + b^2y^2 + 8ax + 8by + 2abxy + 15$

$$8 + 576$$

৫ | 11 ७ | 194 9 | 168100 ১১ | 36, 90 ১২ | 178, 40

১৩
$$|(\Phi)(3p+2q)^2-(2p-5q)^2$$
 (খ) $(8b-a)^2-(b+7a)^2$

$$(4) (8b-a)^2 - (b+7a)^2$$

(গ)
$$(5x)^2 - (2x - 5y)^2$$
 (ঘ) $(5x)^2 - (13)^2$

$$(\Im) (5x)^2 - (13)^2$$

অনুশীলনী ৪.২

$$3 + (\overline{\Phi}) 27x^3 + 27x^2y + 9xy^2 + y^3$$
 (4) $x^6 + 3x^4y + 3x^2y^2 + y^3$

$$(4)$$
 $x^6 + 3x^4y + 3x^2y^2 + y^3$

(1)
$$125p^3 + 150p^2q + 60pq^2 + 8q^3$$
 (1) $a^6b^3 + 3a^4b^2c^2d + 3a^2bc^4d^2 + c^6d^3$

$$(\mathfrak{T}) \ a^6b^3 + 3a^4b^2c^2d + 3a^2bc^4d^2 + c^6d^3$$

(8)
$$216p^3 - 756p^2 + 882p - 343$$

(
$$\overline{b}$$
) $a^3x^3 - 3a^2x^2by + 3axb^2y^2 - b^3y^3$

(a)
$$8p^6 - 36p^4r^2 + 54p^2r^4 - 27r^6$$
 (b) $x^9 + 6x^6 + 12x^3 + 8$

$$(\mathfrak{F}) x^9 + 6x^6 + 12x^3 + 8$$

$$(\stackrel{\triangleleft}{\neg}) \ 8m^3 + 27n^3 + 125p^3 + 36m^2n - 60m^2p + 54mn^2 + 150mp^2 - 135n^2p + 225p^2n - 180mnp$$

$$(\mathfrak{S}) \ \ x^6 - y^6 + z^6 - 3x^4y^2 + 3x^2y^4 + 3x^4z^2 + 3y^4z^2 + 3x^2z^4 - 3y^2z^4 - 6x^2y^2z^2$$

$$(\overline{b}) \ a^6b^6 - 3a^4b^4c^2d^2 + 3a^2b^2c^4d^4 - c^6d^6 \ (\overline{b}) \ a^6b^3 - 3a^4b^5c + 3a^2b^7c^2 - b^9c^3$$

(
$$\nabla$$
) $x^9 - 6x^6y^3 + 12x^3y^6 - 8y^9$

(a)
$$x^9 - 6x^6y^3 + 12x^3y^6 - 8y^9$$
 (b) $1331a^3 - 4356a^2b + 4752ab^2 - 1728b^3$

(9)
$$x^9 + 3x^6y^3 + 3x^3y^6 + y^9$$

২।(ক)
$$216x^3$$
 (খ) $1000q^3$ (গ) $64y^3$ (ঘ) 216 (ঙ) $8x^3$

গ)
$$64y^3$$
 (ঘ) 21

(8)
$$8x^3$$

১৪ + 140 ১৫ + (ক)
$$a^6 + b^6$$
 (খ) $a^3 x^3 - b^3 y^3$ (গ) $8a^3 b^6 - 1$ (ঘ) $x^6 + a^3$

$$a^3x^3 - b^3y^3$$

(at)
$$8a^3b^6$$
 1

$$(a) x^6 + a^3$$

(8)
$$343a^3 + 64b^3$$
 (7) $64a^6 - 1$ (8) $x^6 - a^6$ (8) $15625a^6 - 729b^6$

$$(\nabla) x^6 - a^6$$

১৬
$$+(\overline{\Phi})(a+2)(a^2-2a+4)$$

১৬
$$+$$
 (ক) $(a+2)(a^2-2a+4)$ (খ) $(2x+7)(4x^2-14x+49)$

(a)
$$a(2a+3b)(4a^2-6ab+9b^2)$$
 (b) $(2x+1)(4x^2-2x+1)$

(
$$\forall$$
) $(2x+1)(4x^2-2x+1)$

(8)
$$(4a-5b)(16a^2+20ab+25b^2)$$

(8)
$$(4a-5b)(16a^2+20ab+25b^2)$$
 (5) $(9a-4bc^2)(81a^2+36abc^2+16b^2c^4)$

$$(\nabla) b^3 (3a+4c)(9a^2-12ac+16c^2)$$

(
$$\mathfrak{F}$$
) $7(2x-3y)(4x^2+6xy+9y^2)$

অনুশীলনী ৪.৩

$$3 + 3x(1+5x)(1-5x)$$

$$(2x + y)(2x - y)$$
 $0 + 3a(y + 4)(y - 4)$

$$3 + 3a(y+4)(y-4)$$

$$8 + (a-b+p)(a-b-p)$$
 $& (4y+a+3)(4y-a-3)$ $& (a+b+p)(4-2p+p^2)$

$$9 + a(2+p)(4-2p+p^2)$$

$$9 + 2(a+2b)(a^2-2ab+4b^2)$$
 $b + (x-y+1)(x-y-1)$ $b + (a-1)(a-2b+1)$

$$b + (x-y+1)(x-y-1)$$

$$\delta + (a-1)(a-2b+1)$$

$$\Rightarrow 0 + (x^2 + 2x + 1)(x^2 - 2x + 1)$$
 $\Rightarrow \Rightarrow + (x - 6)^2$

$$33 + (x - 6)$$

$$2x + (x+y)(x-y)(x^2-xy+y^2)(x^2+xy+y^2)$$

$$2x + (x+y)(x-y)(x^2-xy+y^2)(x^2+xy+y^2)$$

$$2x + (x-y+z)(x^2+y^2-2xy-xz+yz+z^2)$$

$$2x + (x+4)(x+10)$$

$$2x + (x+15)(x-8)$$

$$2x + (x-26)(x-25)$$

$$2x + (x+3b)(x+4b)$$

$$2x + (x+15)(x-8)$$

$$2x + (x+15)(x-8)$$

$$2x + (x+3b)(x+4b)$$

$$2x + (x+10q)(x+8q)$$

$$2x + (x+26)(x-25)$$

$$2x + (x+2)(x+2q)$$

$$2x + (x+2)(x+2q)$$

$$2x + (x+2q)(x+2q)$$

$$2x + ($$

অনুশীলনী 8.8

অনুশীলনী ৫.১

$$(3) \frac{3a-2b}{a^2+b^2-c^2-2ab} \qquad (43) \frac{2ab+2bc+2ca-a^2-b^2-c^2}{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}$$

(8)
$$\frac{6xy^2}{(x^2-y^2)(4x^2-y^2)}$$
 (5) $\frac{12x^4}{x^6-64}$ (5) $\frac{8x^4}{x^8-1}$ (6) $\frac{2(y^2-xy-yz+zx)}{(x-y)(y-z)(z-x)}$

(§)
$$\frac{6xy^2}{(x^2-y^2)(4x^2-y^2)}$$
 (F) $\frac{12x^4}{x^6-64}$ (F) $\frac{8x^4}{x^8-1}$ (F) $\frac{2(y^2-xy-yz+zx)}{(x-y)(y-z)(z-x)}$

$$\mathfrak{E}$$
 + (ক) 0 (খ) $\frac{y}{(y+z)(x+y)(z+x)}$ (গ) ০ (খ) ০

$$\mathfrak{E}$$
 । (Φ) 0 (\mathfrak{A}) $\frac{x^2 + y^2 + z^2 - xy - yz - zx}{(y+z)(x+y)(z+x)}$ (\mathfrak{A}) \circ (\mathfrak{A}) \circ

$$8 + (\overline{\phi}) \frac{ax + 3a - a}{x^2 - 9} \quad (\overline{\forall}) \frac{x + y}{xy(x^2 - y^2)} \quad (\overline{\eta}) \frac{2}{x^4 + x^2 + 1} \quad (\overline{\forall}) \frac{8ab}{a^2 - 16b^2} \quad (\underline{\xi}) \frac{2y}{x^2 + y^2}$$

$$8 + (\overline{\Phi}) \frac{ax + 3a - a^2}{x^2 - 9} \quad (\overline{\Psi}) \frac{x^2 + y^2}{xy(x^2 - y^2)} \quad (\overline{\Psi}) \frac{2}{x^4 + x^2 + 1} \quad (\overline{\Psi}) \frac{8ab}{a^2 - 16b^2} \quad (\underline{\Psi}) \frac{2y}{x^2 + y^2}$$

(§)
$$\frac{8x^2}{x^4 - 16}$$
 (§) $\frac{x^6 + x^4 + x^2 + 5}{x^8 - 1}$

$$(\overline{4}) \ \frac{2(x^2 + y^2)}{x^2 - y^2} \qquad (\underline{8}) \ \frac{3x^2 - 18x + 26}{(x - 1)(x - 2)(x - 3)(x - 4)} \qquad (\overline{5}) \ \frac{3a^4 + a^2b^2 - b^4}{(a^3 + b^3)(a^3 - b^3)}$$

৩। (ক)
$$\frac{a^2 + 2ab - b^2}{ab}$$
 (খ) $\frac{a^2 + b^2 + c^2}{abc}$ (গ) $\frac{3xyz - x^2y - y^2z - z^2x}{xyz}$

$$(\mathfrak{F}) \frac{(x-y)(y+z)(z+x)}{(x+y)(y+z)(z+x)}, \frac{(y-z)(x+y)(z+x)}{(x+y)(y+z)(z+x)}, \frac{(z-x)(x+y)(y+z)}{(x+y)(y+z)(z+x)}$$

$$(\mathfrak{F}) \frac{(x-y)(y+z)(z+x)}{(x+y)(y+z)(z+x)}, \frac{(y-z)(x+y)(z+x)}{(x+y)(y+z)(z+x)}, \frac{(z-x)(x+y)(y+z)}{(x+y)(y+z)(z+x)}$$

$$(\mathfrak{P}) \quad \frac{c^2(a-b)}{a^2b^2c^2}, \frac{a^2(b-c)}{a^2b^2c^2}, \frac{b^2(c-a)}{a^2b^2c^2}$$

$$(\overline{b}) \frac{(x-4)(x-5)}{(x-2)(x-3)(x-4)(x-5)}, \frac{(x-2)(x-5)}{(x-2)(x-3)(x-4)(x-5)}, \frac{(x-2)(x-3)}{(x-2)(x-3)(x-4)(x-5)}$$

$$(\overline{b}) \frac{(x-4)(x-5)}{(x-2)(x-3)(x-4)(x-5)}, \frac{(x-2)(x-5)}{(x-2)(x-3)(x-4)(x-5)}, \frac{(x-2)(x-3)}{(x-2)(x-3)(x-4)(x-5)}$$

(8)
$$\frac{a(a^3-b^3)}{(a^3+b^3)(a^3-b^3)}, \frac{b((a-b)(a^3+b^3)}{(a^3+b^3)(a^3-b^3)}, \frac{c(a^3+b^3)}{(a^3+b^3)(a^3-b^3)}$$

$$a(a^3-b^3)$$
 $b((a-b)(a^3+b^3)$ $c(a^3+b^3)$

$$(\vec{\eta}) \frac{x(x+y)}{x(x^2-y^2)}, \frac{xy(x-y)}{x(x^2-y^2)}, \frac{x(x^2-y^2)}{x(x^2-y^2)}$$

$$(\vec{\eta}) \frac{(x+y)(x^3+y^3)}{(x-y)^2(x^3+y^3)}, \frac{(x-y)^3}{(x-y)^2(x^3+y^3)}, \frac{(y-z)(x-y)(x^2-xy+y^2)}{(x-y)^2(x^3+y^3)}$$

$$(\mathfrak{I}) \frac{x^2(x+y)}{x(x^2-y^2)}, \frac{xy(x-y)}{x(x^2-y^2)}, \frac{z(x-y)}{x(x^2-y^2)}$$

অনুশীলনী ৫.২

৬ + (雨)
$$\frac{15a^2b^2c^4}{x^2y^2z^4}$$
 (킥) $\frac{32a^2b^2y^3z^3}{45x^4}$ (킥) 1 (틱) $\frac{x(x-1)^3}{(x+1)^2(x^2-4x+5)}$ (૬) $\frac{x^2+y^2}{(x^2-xy+y^2)^2}$

(5)
$$\frac{(1-b)(1-x)}{bx}$$
 (5) $\frac{(x-2)^2(x+4)}{(x-3)^2(x+3)}$ (5) $a(a-b)$ (7) $(x-y)$

$$9 + (5) \frac{45zx^3}{8ay^2}$$
 (*) $\frac{27bc}{64a}$ (*) $\frac{9a^2b^2c^2}{x^2y^2z^2}$ (*) $\frac{x}{x+y}$ (*) $\frac{(a+b)^2}{(a-b)^3}$ (5) $(x-y)^2$

(a)
$$(a+b)^2$$
 (a) $\frac{(x-1)(x-3)}{(x+2)(x+4)}$ (b) $\frac{(x-7)}{(x+6)}$

$$\forall + (\overline{\Phi}) \frac{x^2 - y^2}{x^2 y^2} \qquad (\overline{\Psi}) - \frac{1}{x^2} (\overline{\Psi}) \frac{-2ca}{(a+b)(a+b+c)} (\overline{\Psi}) \frac{a}{(1-a^2)(1+a+a^2)}$$

(ঙ)
$$\frac{4x^2}{x^2 - y^2}$$
 (চ) 1 (ছ) 1 (জ) $\frac{1}{2ab}$ (ঝ) $\frac{a - b}{x - y}$ (এঃ) $\frac{b}{a}$

৯ \ (ক)
$$\frac{1}{x-3}$$
 (খ) $\frac{3x^2 + y^2}{2xy}$ (গ) 1 (ঘ) $(a^2 + b^2)$

উত্তরমালা ৬.১

$$(\overline{\Phi})$$
 $> (3,1)$ $> (2,1)$ $0 + (2,2)$ $8 + (1,1)$ $0 + (2,3)$ $9 + (a+b,b-a)$

$$9 + \left(\frac{ab}{a+b}, \frac{ab}{a+b}\right) + \left(\frac{ab}{a+b}, \frac{-ab}{a+b}\right) + (1, 1) + (2, 3) + (2, 1) + (2, 3)$$

$$(\forall) \quad \ \ \, \mathbf{30} + (5, \ 1) \quad \ \ \, \mathbf{38} + (2, \ 1) \quad \ \ \, \mathbf{30} + (3, \ 1) \quad \ \ \, \mathbf{30} + (3, \ 2) \quad \ \ \, \mathbf{39} + (2, \ 3) \quad \ \ \, \mathbf{30} + (2, \ 3)$$

১৯ + (4, 2) ২০ +
$$\left(\frac{b^2 + ca}{a^2 + b^2}, \frac{a^2 - bc}{a^2 + b^2}\right)$$
 ২১ + (4, 3) ২২ + (6,2) ২৩ + (2, 1)

$$8 + (2, 3)$$
 $8 + (6, 2)$ $8 + (a, -b)$

অনুশীলনী ৬.২

১। $60,\ 40$ ২। $120,\ 40$ ৩। $11,\ 13$ ৪। পিতার 65 বছর ও পুত্রের বয়স 25 বছর ও । ভগ্নাংশটি $\frac{3}{4}$ ৬। প্রকৃত ভগ্নাংশটি $\frac{3}{11}$ ৭। 37 ৮। প্রস্থ 25 মিটার এবং দৈর্ঘ্য 50 মিটার

৯।খাতার মূল্য 16 টাকা ও পেন্সিলের মূল্য 6 টাকা ১০। 4000 টাকা ও 1000 টাকা।

১১ ৷ (ক) (4,2) খে) (3,2) গে) (5,3) খে) (5,-2) ঙে) (-5,-5) চে) (2,1)

वनुशीलनी १

১ ৷ (ক) {5, 7, 9, 11, 13} (খ) {2, 3}

(\mathfrak{I}) {3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33} (\mathfrak{I}) -3, -2, -1, 0, 1, 2, 3

২ ৷ (ক) $\{x : x \$ সাভাবিক সংখ্যা এবং $2 < x < 9\}$

(খ) $\{x: x, 4$ -এর গুণিতক এবং $x < 20\}$

(গ) $\{x : x$ মৌলিক সংখ্যা এবং $5 < x < 19\}$

৩ ৷ (ক) $\{m, n\}, \{m\}, \{n\}, , 4$ টি

(খ) {5,10,15}, {5,10}, {5,15}, {10,15}, {5}, {10}, {15}, ; ৪টি

 $8 + (\overline{\Phi}) \{1, 2, 3, a\} (\overline{\Psi}) \{a\} (\overline{\Psi}) \{2\} (\overline{\Psi}) \{2, a, b\} (\overline{\Psi}) \{2, a\}$

 $9 + \{1, 3, 5, 7, 21, 35\}$ $b + \{25, 75\}$

অনুশীলনী ১১

 $\mathbf{S} + (\mathbf{P})$ $\mathbf{S} + (\mathbf{P})$ $\mathbf{S} + (\mathbf{P})$ $\mathbf{S} + (\mathbf{P})$ $\mathbf{S} + (\mathbf{P})$

৭।(খ) ৮।(গ) ৯।(ক) ৭৫ (খ) ৭৫.০২ (গ) ০.০২ ১১।২২৩০.৩৩ টাকা

১২। গড় ১৫০.৪৩ টাকা, মধ্যক ১৫০ টাকা, প্রচুরক ১৪০ ও ১৫৬ টাকা ১৩। গড় ১১.৪৪ বছর

১৪। গড় ৬৬.৬৫ টাকা ১৫। (ক) ৭ (গ) ৪৮.৪ ১৬। (ঘ) ৬৯.৭।

সমৃদ্ধ বাংলাদেশ গড়ে তোলার জন্য যোগ্যতা অর্জন কর

– মাননীয় প্রধানমন্ত্রী শেখ হাসিনা

বিদ্যা পরম ধন

২০১০ শিক্ষাবর্ষ থেকে সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য

মুদ্রণে: