Лекция Л1. Высказывания. Формулы логики высказываний. Равносильность формул. Основные равносильности

Следуя [1], введем следующие необходимые понятия и определения. Под высказыванием принято понимать языковое предложение, о котором имеет смысл говорить, что оно истинно или ложно. «Москва – столица РФ», « $2 \neq 3$ », «2 + 2 = 3» – высказывания. Напротив, предложения: «который час?», « $x \geq 2$ » не являются высказываниями. В логике высказываний интересуются не содержанием, а лишь истинностью или ложностью высказываний. Истинностные значения истина и ложь будем обозначать буквами И и Л соответственно. Множество {И, Л} называется множеством истинностных значений.

Логические операции. Рассмотрим логические операции (связки) над высказываниями. *Отрицанием* высказывания P называется высказывание, истинное тогда и только тогда, когда высказывание P ложно. Отрицание P обозначается через $\neg P$ и читается как «не P». Отрицание высказывания также определяется таблицей истинности (см. табл. 1.1).

Конъюнкцией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинны оба высказывания. Обозначается через P & Q, читается как «P и Q». Дизъюнкцией двух высказываний P и Q называется высказывание, ложное тогда и только тогда, когда ложны оба высказывания. Обозначается через $P \lor Q$, читается как «P или Q». Импликацией двух высказываний P и Q называется высказывание, ложное тогда и только тогда, когда высказывание P истинно, а высказывание Q ложно. Обозначается через $P \supset Q$, читается как «если P, то Q» (или, иначе, «P влечет Q», «из P следует Q», «P достаточно для Q», «Q необходимо для P»). Эквиваленцией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинностные значения высказываний P и Q совпадают. Обозначается через $P \sim Q$, читается как «P эквивалентно Q» (или, иначе, «P необходимо и достаточно для Q», «P выполняется тогда и только тогда, когда выполняется Q»).

Перечисленные двухместные операции определяются также таблицами истинности (см. табл. 1.2).

P	$\neg P$
И	Л
Л	И

Табл. 1.1

P	Q	P & Q	$P \vee Q$	$P\supset Q$	<i>P</i> ~ <i>Q</i>
И	И	И	И	И	И
И	Л	Л	И	Л	Л
Л	И	Л	И	И	Л
Л	Л	Л	Л	И	И

Табл.1.2

Формулы логики высказываний. Дадим определение формулы логики высказываний. Определим ее как слово в некотором алфавите, удовлетворяющее определенным свойствам. Алфавитом называется любое непустое множество. Элементы этого множе-

ства называются *символами* данного алфавита. *Словом* в данном алфавите называется произвольная конечная последовательность символов (возможно, пустая). Слово A называется *подсловом* слова B, если $B = B_1AB_2$ для некоторых слов B_1, B_2 .

Алфавит логики высказываний содержит следующие символы: (A1) высказывательные переменные: $X_1, X_2, X_3, ...$; (A2) логические символы: \neg , &, \lor , \supset , \sim ; (A3) символы скобок (вспомогательные символы): (,) (открывающая и закрывающая скобки).

Слово в алфавите логики высказываний называется формулой, если оно удовлетворяет следующему определению: (Ф1) любая высказывательная переменная — формула; (Ф2) если A и B — формулы, то ($\neg A$), (A & B), ($A \lor B$), ($A \supset B$), ($A \sim B$) — формулы; (Ф3) те и только те слова являются формулами, для которых это следует из (Ф1) и (Ф2).

 $\Pi o \partial \phi o p m y n o \ddot{u}$ формулы A называется любое подслово слова A, само являющееся формулой.

Замечание 1.1. Для упрощения записи будем опускать в формуле внешние скобки, а также считать операцию — самой «сильной» операцией, т.е. выполняемой в первую очередь (аналогично операции возведения в степень в алгебре: мы понимаем выражение $a + b^2$ как $a + (b^2)$, но не как $(a + b)^2$).

Пример 1.1. (а) Слово $A_1 = \neg \neg \lor X_2 \sim \& X_3 \&$ не является формулой логики высказываний (не может быть получена по правилам (Ф1)-(Ф3)). (б) Слово $A_2 = (((\neg X_1) \supset X_2) \supset (X_2 \sim X_3))$ является формулой логики высказываний, полученной по правилам (Ф1)-(Ф3). (б) Слова $((\neg X_1) \supset X_2)$, $(X_2 \sim X_3)$, $(\neg X_1)$ являются подформулами формулы A_2 . (б) После упрощения согласно замечанию 1.1 формула A_2 переходит в формулу $A_3 = (\neg X_1 \supset X_2) \supset (X_2 \sim X_3)$.

Если каждой высказывательной переменной, входящей в формулу придавать истинностные значения И и Л, то формула будет определять истинностную функцию, т.е. функцию, определенную на множестве $\{ И, Л \}$ со значениями в этом множестве. Истинностная функция может быть представлена таблицей истинности.

Пример 1.2. Таблица истинности для истинностной функции, определяемой формулой A_2 из примера 1.1 приведена в табл. 1.3.

из примера 1.1 приведена в таом. 1.3.							
X_1	X_2	X_3	$\neg X_1$	$\neg X_1 \supset X_2$	$X_2 \sim X_3$	$\neg (X_2 \sim X_3)$	A_3
И	И	И	Л	И	И	Л	Л
И	И	Л	Л	И	Л	И	И
И	Л	И	Л	И	Л	И	И
И	Л	Л	Л	И	И	Л	Л
Л	И	И	И	И	И	Л	Л
Л	И	Л	И	И	Л	И	И
Л	Л	И	И	Л	Л	И	И
Л	Л	Л	И	Л	И	Л	И

Табл. 1.3

Упорядоченный набор высказывательных переменных $\langle X_{i_1},...,X_{i_k} \rangle$, где $i_j \neq i_l$ при $j \neq l$, назовем списком переменных формулы A, если все переменные формулы A содержатся в этом наборе. В списке переменных формулы A часть переменных может быть фиктивной, т.е. не входить явно в A. Оценкой списка переменных формулы назовем сопоставление каждой переменной списка некоторого истинностного значения.

Пример 1.3. Списками переменных формулы A_3 из примера 1.1 являются $\langle X_1, X_2, X_3 \rangle$, $\langle X_1, X_2, X_3, X_4 \rangle$ и т.д. Оценкой списка переменных $\langle X_1, X_2, X_3 \rangle$ является, например, $\langle U, \mathcal{I}, \mathcal{I} \rangle$. Все оценки этого списка переменных приведены в первых трех столбцах таблицы 1.3.

Упражнение 1.1. Доказать, что если $\langle X_{i_1},...,X_{i_k} \rangle$ - список переменных некоторой формулы, то имеется 2^k попарно различных оценок этого списка.

Решение. Действительно, каждая из этих оценок есть результат заполнения последовательности из k ячеек. Первая ячейка, соответствующая переменной X_{i_1} , заполняется одним из двух способов (истинностными значениями И или Л). Вторая ячейка, соответствующая переменной X_{i_2} , также заполняется одним из тех же двух способов (независимо от заполнения первой ячейки) и т.д. Последняя ячейка, соответствующая переменной X_{i_k} , также заполняется одним из указанных двух способов (независимо от заполнения предыдущих ячеек). В силу этой независимости для определения общего числа результатов заполнения последовательности из k ячеек указанное количество способов заполнения каждой ячейки, т.е. число 2 перемножается k раз, что и дает нам требуемую формулу.

Замечание 1.2. Пусть A,B - некоторые формулы логики высказываний. Тогда, добавляя в списки переменных этих формул необходимые фиктивные переменные, входящие в объединение списков переменных формул A и B, можно добиться того, что списки переменных этих формул будут совпадать. Например, $\langle X_1, X_2, X_3 \rangle$ - общий список переменных для формул $A = (X_1 \& X_2) \lor (\neg X_1 \& X_2)$, $B = (X_3 \& X_2) \lor (\neg X_3 \& X_2)$. Совершенно аналогично можно составить общий список переменных для произвольного конечного набора формул A, B, \dots, C .

Равносильность формул. Основные равносильности. Пусть A и B - формулы логики высказываний, имеющие одинаковый список переменных (см. замечание 1.2). Будем называть их *равносильными*, если на любой оценке этого списка значения формул A и B совпадают. Равносильность формул A и B будем кратко обозначать через $A \equiv B$.

Для любых формул логики высказываний A, B, C справедливы равносильности:

```
1. A \& B \equiv B \& A
                                                         1'. A \lor B \equiv B \lor A
(коммутативность конъюнкции);
                                                      (коммутативность дизъюнкции);
                                                         2'. A \lor (B \lor C) \equiv (A \lor B) \lor C
  2. A \& (B \& C) \equiv (A \& B) \& C
(ассоциативность конъюнкции);
                                                      (ассоциативность дизъюнкции);
                                                         3'. A \lor (B \& C) \equiv (A \lor B) \& (A \lor C)
  3. A \& (B \lor C) \equiv (A \& B) \lor (A \& C)
(дистрибутивность & относительно ∨);
                                                      (дистрибутивность ∨ относительно &);
                                                         4'. A \lor A \equiv A (идемпотентность \lor);
  4. A \& A \equiv A (идемпотентность &);
  5. A \& (A \lor B) \equiv A
                                                         5'. A \lor (A \& B) \equiv A
(первый закон поглощения);
                                                      (второй закон поглощения);
  6. \neg (A \& B) \equiv \neg A \lor \neg B
                                                         6'. \neg (A \lor B) \equiv \neg A \& \neg B
(первый закон де Моргана);
                                                      (второй закон де Моргана);
```

$7. (A \& B) \lor (A \& \neg B) \equiv A$	7'. $(A \lor B) & (A \lor \neg B) \equiv A$
(первая формула расщепления);	(вторая формула расщепления);

8.
$$\neg \neg A \equiv A$$
 (снятие двойного отрицания);
9. $A \supset B \equiv \neg A \lor B$;
10. $A \sim B \equiv (A \supset B) \& (B \supset A) \equiv (\neg A \lor B) \& (A \lor \neg B)$;
11. $A \sim B \equiv (A \& B) \lor (\neg A \& \neg B)$.

Любая из этих равносильностей легко может быть доказана с помощью таблиц истинности. Рассмотрим, например, равносильность 6. Пусть $\left\langle X_{i_1},...,X_{i_k}\right\rangle$ - список переменных формул A,B (см. замечание 1.2). Тогда для значений формул A,B на какой-нибудь оценке этого списка переменных имеются четыре варианта, перечисленные в первых двух столбцах табл. 1.4. Для каждого варианта, используя таблицы истинности логических операций $\neg, \&, \lor$, нетрудно определить значения левой и правой частей равносильности 6 и убедиться в том, что в любом из возможных вариантов эти значения совпадают (см. табл. 1.4).

A	В	A & B	$\neg (A \& B)$	$\neg A$	$\neg B$	$\neg A \lor \neg B$
И	И	И	Л	Л	Л	Л
И	Л	Л	И	Л	И	И
Л	И	Л	И	И	Л	И
Л	Л	Л	И	И	И	И

Табл.1.4

Будем в дальнейшем использовать следующее (см. [1, стр. 31])

Утверждение 1.1 (правило равносильных преобразований). Пусть C_A - формула, содержащая A в качестве своей подформулы. Пусть C_B получается из C_A заменой A в этом вхождении на B. Тогда, если $A \equiv B$, то $C_A \equiv C_B$.

Двойственность. Закон двойственности. Будем рассматривать в этом разделе формулы, содержащие только логические символы $\&,\lor,\neg$. Символы $\&,\lor$ называются $\verb"dboйственными"$. Формула A^* называется $\verb"dboйственной"$ к формуле A, если она получена из A одновременной заменой всех символов $\&,\lor$ на двойственные.

Пример 1.4. Пусть

$$F = (\neg X_1 \& \neg X_2) \& (X_3 \lor \neg X_2)$$
.

Тогда

$$F^* = (\neg X_1 \lor \neg X_2) \lor (X_3 \& \neg X_2).$$

Очевидно, что $(A^*)^* = A$. Сформулируем теперь закон двойственности.

Теорема 1.1 (принцип двойственности). Если $A \equiv B$, то $A^* \equiv B^*$.

Принцип двойственности можно использовать для нахождения новых равносильностей. Например,

$$A \& (B \lor C) \equiv (A \& B) \lor (A \& C) \Longrightarrow A \lor (B \& C) \equiv (A \lor B) \& (A \lor C).$$

Для доказательства принципа двойственности потребуется

Определение 1.1. Пусть $\left\langle X_{i_1},...,X_{i_k} \right\rangle$ - некоторый список переменных, $\left\langle \varepsilon_1,...,\varepsilon_k \right\rangle$ - оценка этого списка переменных. Назовем оценку $\left\langle \overline{\varepsilon}_1,...,\overline{\varepsilon}_k \right\rangle$ - *двойственной* к оценке $\left\langle \varepsilon_1,...,\varepsilon_k \right\rangle$.

Пример 1.5. Пусть $\langle X_1, X_2, X_3 \rangle$ - список переменных, $\langle \mathcal{I}, \mathcal{U}, \mathcal{I} \rangle$ - его оценка. Тогда $\langle \mathcal{U}, \mathcal{I}, \mathcal{U} \rangle$ - двойственная к ней оценка.

Пусть A - формула со списком переменных $\left\langle X_{i_1},...,X_{i_k}\right\rangle$. Будем обозначать $A|_{\left\langle \varepsilon_1,...,\varepsilon_k\right\rangle}$ - значение формулы A на оценке $\left\langle \varepsilon_1,...,\varepsilon_k\right\rangle$.

Лемма 1.1. Пусть A - формула со списком переменных $\left\langle X_{i_1},...,X_{i_k} \right\rangle$. Тогда

$$A|_{\langle \varepsilon_1,\ldots,\varepsilon_k\rangle} = \mathcal{U}(=\mathcal{J}) \Leftrightarrow A^*|_{\langle \overline{\varepsilon}_1,\ldots,\overline{\varepsilon}_k\rangle} = \mathcal{J}(=\mathcal{U}).$$

Доказательство будем проводить индукцией по числу n логических знаков. Если n=0 , то A совпадает с одной из переменных X_{i_j} , где $1 \leq j \leq k$, т.е. $A=X_{i_j}$. В этом случае $A^*=X_{i_j} \Rightarrow A |_{\langle \varepsilon_1,\dots,\varepsilon_k \rangle} = \mathcal{U} \Leftrightarrow \varepsilon_j = \mathcal{U} \Leftrightarrow \overline{\varepsilon}_j = \mathcal{J} \Leftrightarrow A^* |_{\langle \overline{\varepsilon}_1,\dots,\overline{\varepsilon}_k \rangle} = \mathcal{J}$.

Пусть утверждение леммы 1.1 справедливо при числе логических символов, меньшем n, где $n \ge 1$. Докажем, что оно справедливо при числе символов, равном n. Формула A может иметь вид: (a) $A = \neg B$, (б) A = B & C, (в) $A = B \lor C$.

(a) $A = \neg B \Rightarrow A^* = \neg B^*$. Тогда $A \mid_{\langle \varepsilon_1, \dots, \varepsilon_k \rangle} = \mathcal{U} \Leftrightarrow B \mid_{\langle \varepsilon_1, \dots, \varepsilon_k \rangle} = \mathcal{J}$. В формуле B^* число логических символов меньше n. Так как $(B^*)^* = B$, то

$$B\mid_{(\varepsilon_1,\ldots,\varepsilon_k)}=\mathcal{I}\Leftrightarrow (B^*)^*\mid_{(\varepsilon_1,\ldots,\varepsilon_k)}=\mathcal{I}\Leftrightarrow ext{(в силу индуктивного предположения)}$$

$$\Leftrightarrow B^*\mid_{\langle \bar{\varepsilon}_1,\dots,\bar{\varepsilon}_k\rangle} = \mathcal{U} \Leftrightarrow A^*\mid_{\langle \bar{\varepsilon}_1,\dots,\bar{\varepsilon}_k\rangle} = \neg B^*\mid_{\langle \bar{\varepsilon}_1,\dots,\bar{\varepsilon}_k\rangle} = \mathcal{I}.$$

(б)
$$A = B \& C \Longrightarrow A^* = B^* \lor C^*$$
. Тогда

$$A\mid_{\langle\varepsilon_{1},\dots,\varepsilon_{k}\rangle}=H \Longleftrightarrow B\mid_{\langle\varepsilon_{1},\dots,\varepsilon_{k}\rangle}=H,C\mid_{\langle\varepsilon_{1},\dots,\varepsilon_{k}\rangle}=H \Longleftrightarrow$$

⇔ (в силу индуктивного предположения)

$$\Leftrightarrow B^*\mid_{\langle \overline{\varepsilon}_1,\dots,\overline{\varepsilon}_k\rangle} = \mathcal{I}, C^*\mid_{\langle \overline{\varepsilon}_1,\dots,\overline{\varepsilon}_k\rangle} = \mathcal{I} \Leftrightarrow (B^* \vee C^*)\mid_{\langle \overline{\varepsilon}_1,\dots,\overline{\varepsilon}_k\rangle} = \mathcal{I}.$$

(в)
$$A = B \lor C \Rightarrow A^* = B^* \& C^*$$
. Тогда

$$A\mid_{\langle\varepsilon_{1},\dots,\varepsilon_{k}\rangle}=\mathcal{I}\Leftrightarrow B\mid_{\langle\varepsilon_{1},\dots,\varepsilon_{k}\rangle}=\mathcal{I},C\mid_{\langle\varepsilon_{1},\dots,\varepsilon_{k}\rangle}=\mathcal{I}\Leftrightarrow$$

⇔ (в силу индуктивного предположения)

$$\Leftrightarrow B^*|_{\langle \bar{\varepsilon}_1,\dots,\bar{\varepsilon}_k\rangle} = H, C^*|_{\langle \bar{\varepsilon}_1,\dots,\bar{\varepsilon}_k\rangle} = H \Leftrightarrow (B^* \vee C^*)|_{\langle \bar{\varepsilon}_1,\dots,\bar{\varepsilon}_k\rangle} = H.$$

Докажем теперь теорему 1.1. Пусть $\left\langle X_{i_1},...,X_{i_k} \right\rangle$ - список переменных формул A и B . Тогда в силу леммы 1.1

$$A^* \mid_{\langle \varepsilon_1, \dots, \varepsilon_k \rangle} = H \Leftrightarrow A(=(A^*)^*) \mid_{\langle \overline{\varepsilon}_1, \dots, \overline{\varepsilon}_k \rangle} = \mathcal{I} \Leftrightarrow (A \equiv B) \Leftrightarrow$$
$$\Leftrightarrow B \mid_{\langle \overline{\varepsilon}_1, \dots, \overline{\varepsilon}_k \rangle} = \mathcal{I} \Leftrightarrow B^* \mid_{\langle \varepsilon_1, \dots, \varepsilon_k \rangle} = H.$$