Notes on Section 2.9: Group actions

Karan Chauhan

2025-06-18

1 Review

We what the notation $\operatorname{End}_{\mathcal{C}}(A)$ and $\operatorname{Aut}_{\mathcal{C}}(A)$ denote for a given category \mathcal{C} and object A in the category.

We know that given a category \mathcal{C} and objects $A, B \in \text{obj}(\mathcal{C})$, then

- $\operatorname{Hom}_{\mathcal{C}}(A,B)$ is the set of all morphisms from $A \to B$.
- $\operatorname{End}_{\mathcal{C}}(A) = \operatorname{Hom}_{\mathcal{C}}(A, A).$
- $\operatorname{Aut}_{\mathcal{C}}(A)$ is the set of all isomorphisms $f:A\to A$, hence $\operatorname{Aut}_{\mathcal{C}}(A)\subseteq\operatorname{End}_{\mathcal{C}}(A)$.
- note that $\operatorname{Aut}_{\mathcal{C}}(A)$ is a group with the operation being composition of groups and the identity being the identity map

2 Action of a group

Defination 2.1: Action of a group G on an object A of a category C is a (group) homomorphism

$$\sigma: G \to \operatorname{Aut}_C(A)$$

 σ is the action of G on A. For the rest of notes, σ denotes an action homomorphism

Defination 2.2: $\sigma: G \to \operatorname{Aut}_{\mathcal{C}}(A)$ is faithful if σ is injective.

3 Actions on sets

We fix a group G.

 $\forall A \in \text{obj}(SET)$, we consider functions of the form

$$\rho: G \times A \to A$$

such that

1. $(\forall a \in A) \ \rho(e_G, a) = a$

2.
$$(\forall a \in A) (\forall g, h \in G) \rho(gh, a) = \rho(g, \rho(h, a))$$

and we claim that given such a function ρ , we canonically define an action of G on A and every action $\sigma: G \to \operatorname{Aut}_{SET}(A)$ defines such a function ρ . Thus we prove the claim

Claim 3.1: Given a set A and a group G, any function $\rho: G \times A \to A$ such that $\forall a \in A$) $\rho(e_G, a) = a$ and $(\forall a \in A)$ $(\forall g, h \in G)$ $\rho(gh, a) = \rho(g, \rho(h, a))$, defines an action of G on A. Thus we prove it as follows

Defination 3.2: Given $\rho: G \times A \to A$, we define $\sigma: G \to \operatorname{End}_{SET}(A)$ as $\forall g \in G$

$$\sigma:g\to\sigma_g$$

where σ_g is a set function such that $\forall a \in A$

$$\sigma_q: a \to \rho(g, a)$$

It is clear that $\sigma_g \in \operatorname{End}_{SET}(A)$. Now we show that σ is a group homomorphism.

Lemma 3.3: σ as defined above is a group homomorphism.

Proof: $\forall g, h \in G \text{ and } \forall a \in A, \text{ we consider}$

$$\sigma_{gh}(a) = \rho(gh, a) = \rho(g, \rho(h, a)) = \rho(g, \sigma_h(a)) = \sigma_g \circ \sigma_h(a)$$

Since this is true for any $a \in A$, we get that for any $g, h \in G$,

$$\sigma_{gh} = \sigma_g \circ \sigma_h$$

Hence $\sigma(gh) = \sigma(g) \circ \sigma(h)$, therefore, we have shown that σ is a group homomorphism. \square

Lemma 3.4: $\forall g \in G, \, \sigma_g \in \operatorname{Aut}_{SET}(A)$

Proof: We will show that $\forall g \in G, (\sigma_g)^{-1} = \sigma_{g^{-1}}$, hence

$$\sigma_g \circ \sigma_{q^{-1}} = \sigma_{qq^{-1}} = \sigma_{e_G} = I$$

$$\sigma_{g^{-1}}\circ\sigma_g=\sigma_{g^{-1}g}=\sigma_{e_G}=I$$

Therefore, $\forall g \in G, \sigma_g \in \operatorname{Aut}_{SET}(A) \square$

Thus we have shown that σ (Defination-3.2), is a group homomorphism from $G \to \operatorname{Aut}_{SET}(A)$. Thus showing that σ is an action, hence proving the claim (Claim-3.1) \square

Claim 3.5: Given an action $\sigma: G \to \operatorname{Aut}_{SET}(A)$, it defines a function $\rho: G \times A \to A$ such that $\forall a \in A)$ $\rho(e_G, a) = a$ and $(\forall a \in A)$ $(\forall g, h \in G)$ $\rho(gh, a) = \rho(g, \rho(h, a))$

Defination 3.6: Given an action $\sigma: G \to \operatorname{Aut}_{SET}(A)$, we define $\rho: G \times A \to A$ as $\forall a \in A$ and $\forall g \in G$

$$\rho(g, a) := \sigma_g(a)$$

Claim 3.7: ρ as defined (Defination-3.6) follows that $\forall a \in A$) $\rho(e_G, a) = a$ and $(\forall a \in A)$ $(\forall g, h \in G)$ $\rho(gh, a) = \rho(g, \rho(h, a))$

Proof: Consider $a \in A$

$$\rho(e_G, a) = \sigma_{e_G}(a)$$

Since σ is a group homomorphism, it must map the identity e_G in G to the identity in $\operatorname{Aut}_{SET}(A)$, which is the identity map hence

$$\rho(e_G, a) = \sigma_{e_G}(a) = a$$

Thus $\forall a \in A$) $\rho(e_G, a) = a$. Now consider $(\forall a \in A) (\forall g, h \in G)$, then

$$\rho(gh, a) = \sigma_{gh}(a) = \sigma_g \circ \sigma_h(a) = \rho(g, \sigma_h(a)) = \rho(g, \rho(h, a))$$

Thus we have proved that ρ as defined (Defination-3.6) follows that $\forall a \in$

A) $\rho(e_G, a) = a$ and $(\forall a \in A) (\forall g, h \in G) \rho(gh, a) = \rho(g, \rho(h, a)) \square$

Therefore we have proved the claim (Claim-3.5:)

Defination 3.8: $\sigma:G\to \operatorname{Aut}_{SET}(A)$ is transitive if $\forall a,b\in G.\exists g\in G$ such that

$$\sigma_q(a) = b$$

Defination 3.9: Orbit of $a \in A$ under $\sigma : G \to \operatorname{Aut}_{SET}(A)$ is the set

$$O_G(a) = \{ ga | g \in G \}$$

where ga is the same as $\rho(g,a)$ where ρ is teh function defined using σ (Claim-3.1)

Defination 3.10: Given $\sigma: G \to \operatorname{Aut}_{SET}(A)$, then we define the stabelizer for any $a \in A$ as

$$\operatorname{Stab}_{G}(a) = \{ g \in G | \sigma_{g}(a) = a \}$$

4 Category G-set

Defination 3.11: Fixing a group G, we define a category as

Objects: (ρ, A) where $A \in \text{obj}(SET)$ and $\rho: G \times A \to A$ as defined in Defination-3.6.

Morphisms: Set functions which are compatible with the actions i.e. functions $f:A\to A'$ such that

$$\rho'(q, f(a)) = f(\rho(q, a))$$

This category is called G-set.

A commutative diagram to explain the concept is (the description follows the diagram)

Description: Since $G \times A$ is a product in teh category SET, we know there exists projections π_G and ρ . Simillarly, since $G \times A'$ is a product in teh category SET, we know there exists projections π'_G and ρ' . We consider f to be any set function from A to A'. then we trivially there exists $f \circ \pi_A : G \times A \to A'$, thus by the universal property of products in set, we get that there exists a unique set function ϕ such that

$$\rho' \circ \phi = f \circ \rho$$

It is to be noted that given any $(g,a) \in G \times a$, then it's map becomes as follows

and by the commutative diagram we get that $f(\rho(g,a)) = \rho' \circ \phi(g,a)$. Thus intuitively it makes sense for ϕ to be the function id $\times f$ i.e. the function that maps $(g,a) \to (g,f(a))$. Thus we get that $f(\rho(g,a)) = \rho'(g,f(a))$. It is to be recalled that ρ and ρ' are actions of G on A. thus it makes complete sense and solid motivation to consider morphisms between objects (ρ,A) and (ρ',A') to be the set function $f:A\to A'$ such that $\rho'(g,f(a))=f(\rho(g,a))$.