1. Herr Gardner's radio show is on 91.7 MHz every Saturday night. What is the wavelength of these waves?

$$v = f\lambda$$

 $3 \times 10^8 \text{ m/s} = (91.7 \times 10^6 \text{Hz})(\lambda)$
 $\lambda = \frac{300,000,000}{91,700,000} \text{ meters} = \boxed{3.27 \, meters}$

2. A guitar string has a length of 1.20 meters with a fundamental frequency of 250 Hz and a linear density of 5.5×10^{-4} kg/m. What is the tension of the string?

$$v_{string} = \sqrt{\frac{tension(N)}{linear\ density(kg/m)}}$$

$$v_{string} = f\lambda$$
 therefore
$$\sqrt{\frac{tension(N)}{linear\ density(kg/m)}} = f\lambda$$

$$\sqrt{\frac{tension}{5.5 \times 10^{-4}kg/m}} = 250 \text{Hz } (\lambda)$$

$$\sqrt{\frac{tension}{5.5 \times 10^{-4}}} = 250(\lambda)$$

$$\sqrt{tension} = \sqrt{5.5 \times 10^{-4}}(250)(\lambda)$$

$$\sqrt{tension} = \sqrt{5.5 \times 10^{-4}}(250)(\lambda)$$

$$\sqrt{tension} = 34.375\lambda^2$$
 We know that $\ell_{string} = \frac{1}{2}\lambda$. We can rearrange to get $\lambda = 2\ell_{string}$, so $\lambda = 2.4m$ Plugging that back in we get $tension = 34.375(2.4)^2$, and $tension = \boxed{198N}$

3. What is the length of a tube open at both ends with the same fundamental frequency as the guitar string from the previous problem? Assume the speed of sound is 340 m/s.

$$v=f\lambda$$

$$340m/s=250\text{Hz}(\lambda)$$

$$\ell=\frac{1}{2}\lambda\text{, so }\lambda=2\ell$$
 Plugging in $\lambda\text{, we get }340=250(2\ell)\text{, so }\boxed{\ell=0.68m}$

4. A tuning fork of an unknown frequency produces 6 beats per second when sounded with a 440Hz tuning fork. The beat frequency is greater when the unknown fork is sounded with a 430 Hz tuning fork. What is the frequency of the unknown fork?

Remember that beats per second is calculated with the expression $|f_1 - f_2|$, where f_1 and f_2 are the two frequencies vibrating simultaneously.

We know $|f_{unknown} - 440\text{Hz}| = 6\text{Hz}$, so $f_{unknown} = 434\text{Hz}$ or 446Hz.

But since the beat frequency is greater with the 430Hz fork, then $f_{unknown}$ must be $\boxed{446Hz}$

FORMULAS:

The Wave Equation:

$$v = f\lambda$$

Velocity of Sound travelling through a string under tension(T):

$$v = \sqrt{\frac{T}{linear\ density}}$$

Frequency of any harmonic in a closed tube of length ℓ :

$$v=f\lambda$$

$$\ell=\frac{n}{4}\lambda, \text{ so }\lambda=\frac{4\ell}{n}$$

$$v=f\frac{4\ell}{n}, \text{ therefore }\boxed{f=\frac{nv}{4\ell}}$$

Frequency of any harmonic in an open tube of length ℓ :

$$v=f\lambda$$

$$\ell=\frac{n}{2}\lambda, \text{ so } \lambda=\frac{2\ell}{n}$$

$$v=f\frac{2\ell}{n}, \text{ therefore } \boxed{f=\frac{nv}{2\ell}}$$

Length of a string vibration at the third overtone:

$$\ell = \frac{n}{2}\lambda$$
, so $\ell = \frac{3}{2}\lambda$

5. The tension on the 1.6 meter long wire is 135.0 N. The wire has a total mass of 0.008kg. What is the frequency of the THIRD OVERTONE produced by the wire?

Linear Density:
$$\frac{0.008kg}{1.6m}=0.005$$
kg/m
$$\sqrt{\frac{tension}{linear\ density}}=f\lambda$$

$$\sqrt{\frac{135N}{0.005kq/m}} = f\lambda$$

$$\ell = \frac{n}{2}\lambda$$
, so for the third harmonic, $\ell = \frac{3}{2}\lambda$, so $\lambda = \frac{2}{3}\ell$

Plugging this in, we get
$$\sqrt{\frac{135N}{0.005kg/m}} = f(\frac{2}{3})(1.6m)$$
.

$$164.317 = 1.067f$$
, therefore, $f = 154.05Hz$

6. What is the wavelength of the next harmonic produced by the 1.6 meter wire shown above?

We know that $\ell = \frac{n}{2}\lambda$. Knowing that this is the fourth harmonic, the equation becomes $\ell = 2\lambda$.

$$\ell = 1.6m$$
, so $\lambda = 0.8m$

7. What is the fundamental frequency of a 0.8 meter closed pipe?

We know that for a closed pipe, $\ell = \frac{n}{4}\lambda$, so for the fundamental frequency, $\ell = \frac{1}{4}\lambda$.

Plugging in ℓ as 0.8m, we get $\lambda = 3.2m$.

$$v = f\lambda$$

$$340m/s = f(3.2m)$$
, so $f = 106.25Hz$

8.

9. What is the fundamental frequency of a 0.8 meter open pipe?

$$\ell = \frac{n}{2}\lambda$$
, so $\lambda = 2\ell$. Substituting, we get $\lambda = 2(0.8m) = 1.6m$

$$v = f\lambda$$

$$340m/s = f(1.6m)$$

$$f = 212.5Hz$$

10.

11. Write the electromagnetic spectrum starting from the longest wavelength.

Radio Waves \longrightarrow Microwaves \longrightarrow Infared \longrightarrow Visible Light \longrightarrow UV \longrightarrow X-Rays \longrightarrow Gamma Rays

Visible light: Red \longrightarrow Orange \longrightarrow Yellow \longrightarrow Green \longrightarrow Blue \longrightarrow Violet