Analysis - PMA 8 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 28, 2021

Overview

Continuity

Limits of Functions
Continuous Functions
Continuity and Compactness
Continuity of Connectedness
Monotonic Functions
Infinite Limits and Limits at Infinity

Limits of Functions

Definition

Let X and Y be metric spaces; suppose $E \subset X$, f maps E into Y, and p is a limit point of E. We write $f(x) \to q$ as $x \to p$, or

$$\lim_{x \to p} f(x) = q$$

if there is a point $q \in Y$ with the following property:

▶ For every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$d_Y(f(x),q) < \epsilon$$

for all points $x \in E$ for which

$$0 < d_X(x, p) < \delta$$
.

Limits of Functions

Theorem

Let X, Y, E, f, and p as in the above definition. Then

$$\lim_{x\to p}f(x)=q$$
 if and only if $\lim_{n\to\infty}f(p_n)=q$

for every sequence $\{p_n\}$ in E such that $p_n \neq p$ and $\lim_{n\to\infty} p_n = p$.

Corollary

If f has a limit at p, this limit is unique.

Limits of Functions

Definition

▶ Suppose $f, g : E \to \mathbb{C}$ are functions. Define f + g by

$$(f+g)(x) = f(x) + g(x).$$

Similarly, define f - g, fg. If $g(x) \neq 0$ on E, define f/g.

- ▶ Let $c \in \mathbb{C}$. If f(x) = c for all $x \in E$, we write f = c.
- ▶ Suppose f, g are real valued functions. If $f(x) \ge g(x)$ for all $x \in E$, we write $f \ge g$.
- ▶ If $\mathbf{f}, \mathbf{g} : E \to \mathbb{R}^k$, we can also define $\mathbf{f} + \mathbf{g}$ and $\mathbf{f} \cdot \mathbf{g}$, $\lambda \mathbf{f}$ for real number λ .

Limits of Functions

Suppose $E \subset X$, a metric space, p is a limit point of E, $f,g:E \to \mathbb{C}$, and

$$\lim_{x \to p} f(x) = A, \quad \lim_{x \to p} g(x) = B.$$

Then

- (a) $\lim_{x \to p} (f+g)(x) = A+B;$
- (b) $\lim_{x\to p} (fg)(x) = AB;$
- (c) $\lim_{x\to p} \left(\frac{f}{g}\right)(x) = \frac{A}{B}$, if $B\neq 0$.

If $\mathbf{f}, \mathbf{g}: E \to \mathbb{R}^k$, then (a) remains true, and (b) becomes

(b')
$$\lim_{x \to p} (\mathbf{f} \cdot \mathbf{g})(x) = \mathbf{A} \cdot \mathbf{B}$$
.

Continuous Functions

Definition

▶ Suppose X and Y are metric space, $E \subset X$, $p \in E$, and $f : E \to Y$. Then f is said to be "continuous map at p" if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(x), f(p)) < \epsilon$$

for all points $x \in E$ for which $d_X(x, p) < \delta$.

 \blacktriangleright If f is continuous at every point of E, then f is said to be "continuous on E".

Theorem

In the situation given in the above definition, assume also p is a limit point of E. Then f is continuous at p if and only if $\lim_{x\to p} f(x) = f(p)$.

Continuous Functions

Theorem

Suppose X, Y, Z are metric spaces, $E \subset X$, f maps E into Y, g maps the f(E) into Z, and h is the mapping of E into Z defined by

$$h(x) = g(f(x)).$$

If f is continuous at a point $p \in E$ and if g is continuous at the point f(p), then h is continuous at p.

Continuous Functions

Theorem

A mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.

Corollary

A mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(C)$ is closed in X for every closed set C in Y.

Continuous Functions

Theorem

Let f and g be complex continuous functions on a metric space X. Then f+g, fg, and f/g are continuous on X. (in the case of f/g, we must assume that $g(x) \neq 0$, for all $x \in X$.)

Theorem

(a) Let f_1, \dots, f_k be real functions on a metric space X, and let \mathbf{f} be the mapping of X into \mathbb{R}^k defined by

$$\mathbf{f}(x) = (f_1(x), \cdots, f_k(x)),$$

then f is continuous if and only if each of the functions f_1, \dots, f_k is continuous.

(b) If f and g are continuous mappings of X into \mathbb{R}^k , then f + g and $f \cdot g$ are continuous on X.

Continuous Functions

Example

▶ If x_1, \dots, x_k are the coordinates of the point $\mathbf{x} \in \mathbb{R}^k$, the functions ϕ_i defined by

$$\phi_i(\mathbf{x}) = x_i$$

are continuous on \mathbb{R}^k .

- lacktriangle Every monomial $x_1^{n_1}x_2^{n_2}\cdots x_k^{n_k}$ is continuous on \mathbb{R}^k when n_1,\cdots,n_k are nonnegative integers.
- \triangleright Every polynomial P, given by

$$P(\mathbf{x}) = \sum c_{n_1 \cdots n_k} x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}$$

is continuous on \mathbb{R}^k .

- ightharpoonup Every rational function in x_1, \dots, x_k , that is, every quotient of two polynomials, is continuous on \mathbb{R}^k whenever the denominator is different from zero.
- ightharpoonup Recall that a norm $|\cdot|$ is a function from \mathbb{R}^k into \mathbb{R} . $|\cdot|$ is continuous on \mathbb{R}^k .
- ▶ If \mathbf{f} is a continuous mapping from a metric space X into \mathbb{R}^k , and if ϕ is defined on X by setting $\phi(p) = |\mathbf{f}(p)|$, then ϕ is continuous.

Exercises

Ex 4.1

Suppose f is a real function defined on $\mathbb R$ which satisfies

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0$$

for every $x \in \mathbb{R}$. Does this imply that f is continuous?

Exercises

Ex 4.2

If f is a continuous mapping of a metric space X into a metric space Y, prove that

$$f(\overline{E})\subset \overline{f(E)}$$

for every set $E\subset X.$ Show that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}.$

Continuity

Limits of Functions
Continuous Functions
Continuity and Compactness
Continuity of Connectedness
Monotonic Functions
Infinite Limits and Limits at Infinity

Exercises

Ex 4.3

Let f be a continuous real function on a metric space X. Let Z(f) (the zero set of f) be the set of all $p \in X$ at which f(p) = 0. Prove that Z(f) is closed.

Exercises

Ex 4.4

Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p)=f(p) for all $p\in E$, prove that g(p)=f(p) for all $p\in X$.

Continuity

Limits of Functions
Continuous Functions
Continuity and Compactness
Continuity of Connectedness
Monotonic Functions
Infinite Limits and Limits at Infinity

Exercises

Ex 4.5

If f is a real continuous function defined on a closed set $E \subset \mathbb{R}$, prove that there exist continuous real functions g on \mathbb{R} such that g(x) = f(x) for all $x \in E$. Such g is called continuous extension of f from E to \mathbb{R} . Show that the result becomes false if the word "closed" is omitted. Extend the result to vector valued functions.

Exercises

Ex 4.7

If $E \subset X$ and if f is a function defined on X, the restriction of f to E is the function g whose domain of definition is E, such that g(p) = f(p) for $p \in E$.

Define f and g on \mathbb{R}^2 by

$$f(0,0)=g(0,0)=0, \quad f(x,y)=\frac{xy^2}{x^2+y^4}, \quad g(x,y)=\frac{xy^2}{x^2+y^6} \text{ if } (x,y)\neq (0,0).$$

Prove that f is bounded on \mathbb{R}^2 and g is unbounded in every neighborhood of (0,0), and f is not continuous at (0,0); nevertheless, the restrictions of both f and g to every straight line in \mathbb{R}^2 are continuous.

Continuity and Compactness

Definition

A mapping v of a set E into \mathbb{R}^k is said to be bounded if there is a real number M such that $|\mathbf{f}(x)| \leq M$ for all $x \in E$.

Theorem

Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

Theorem

If f is a continuous mapping of a compact metric space X into \mathbb{R}^k , then f(X) is closed and bounded. Thus, f is bounded.

Continuity and Compactness

Theorem

Suppose f is a continuous real function on a compact metric space X, and

$$M = \sup_{p \in X} f(p), \quad m = \inf_{p \in X} f(p).$$

Then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.

Continuity and Compactness

Theorem

Suppose f is a continuous 1-1 mapping of a compact metric space X onto a metric space Y. Then the inverse mapping f^{-1} defined on Y by

$$f^{-1}(f(x)) = x$$

is a continuous mapping of Y onto Y.

Continuity and Compactness

Definition

Let f be a mapping of a metric space X into a metric space Y. We say that f is uniformly continuous on X if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$d_Y(f(p), f(q)) < \epsilon$$

for all $p, q \in X$ for which $d_X(p, q) < \delta$.

Theorem

Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X.

Continuity and Compactness

Theorem

Let E be a nonempty set in \mathbb{R} . Then

- (a) there exists a continuous function on E which is not bounded;
- (b) there exists a continuous and bounded function on E which has no maximum.

If, in addition, E is bounded, then

(c) there exists a continuous function on E which is not uniformly continuous.

Continuity and Compactness

Example

For a bijective continuous map $f: X \to Y$, f^{-1} may not be continuous. Let d_1 and d_2 be metrics on \mathbb{R} by

$$d_1(p,q) = |p-q|, \quad d_2(p,q) = \begin{cases} 1 & p \neq q \\ 0 & p = q \end{cases}.$$

Define $f:(\mathbb{R},d_2)\to(\mathbb{R},d_1)$ by f(x)=x and define $g:(\mathbb{R},d_1)\to(\mathbb{R},d_2)$ by g(x)=x. Clearly, $f^{-1}=g$ and $g^{-1}=f$. f is continuous but g is not continuous.

Exercises

Definition

If f is defined on E, the graph of f is the set of points (x, f(x)), for $x \in E$. In particular, if E is a set of real numbers, and f is real valued, the graph of f is a subset of the plane.

Ex 4.6

Suppose E is compact, and prove that f is continuous on E if and only if its graph is compact.

Continuity

Limits of Functions Continuous Functions Continuity and Compactness Continuity of Connectedness Monotonic Functions Infinite Limits and Limits at Infinity

Exercises

Ex 4.8

Let f be a real uniformly continuous function on the bounded set E in \mathbb{R} . Prove that f is bounded on E. Show that the conclusion is false if boundedness of E is omitted from the hypothesis.

Continuity

Limits of Functions Continuous Functions Continuity and Compactness Continuity of Connectedness Monotonic Functions Infinite Limits and Limits at Infinity

Exercises

Ex 4.12

A uniformly continuous function of a uniformly continuous function is uniformly continuous.

Exercises

Ex 4.13

Let E be a dense subset of a metric space X, and let f be a uniformly continuous real function defined on E. Prove that f has a continuous extension from E to X.

Continuity of Connectedness

Theorem

If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of Y, then f(E) is connected.

Continuity of Connectedness

Theorem

Let f be a continuous real functions on the interval [a,b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then there exists a point $x \in (a,b)$ such that f(x) = c.

Exercises

Ex 4.14

Let I = [0,1] be the closed unit interval. Suppose f is continuous mapping of I into I. Prove that f(x) = x for at least one $x \in I$.

Discontinuities

Definition

Let E be a subset of a metric space X and let Y be a metric space. Suppose $f: E \to Y$ is a function. Let $x \in E$.

ightharpoonup f is discontinuous at x if f is not continuous at x.

Definition

Let f be defined on (a,b). Consider any point x such that $a \le x < b$.

► We write

$$f(x+) = q$$

if $f(t_n) \to q$ as $n \to \infty$, for all sequences $\{t_n\}$ in (x,b) such that $t_n \to x$.

- ▶ Similarly, define f(x-) for $a < x \le b$.
- ▶ If f is discontinuous at x and if f(x+) and f(x-) exist, then f is said to have a discontinuity of the first kind, or simple discontinuity, at x.
- Otherwise the discontinuity is said to be of the second kind.

Remark

 $\lim_{t\to x} f(t)$ exists if and only if $f(x+) = f(x-) = \lim_{t\to x} f(t)$.

Discontinuities

Example

- (a) Define
- (b) Define
- (c) Define

(d) Define

$$f(x) = \begin{cases} 1 & x \text{ rational} \\ 0 & x \text{ irrational} \end{cases}$$

$$f(x) = \begin{cases} x & x \text{ rational} \\ 0 & x \text{ irrational} \end{cases}$$

$$f(x) = \begin{cases} x+2 & -3 < x < -2 \\ -x-2 & -2 \le x < 0 \\ x+2 & 0 \le x < 1 \end{cases}.$$

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Continuity

Limits of Functions Continuous Functions Continuity and Compactness Continuity of Connectedness Monotonic Functions Infinite Limits and Limits at Infinity

Exercises

Ex 4.17

Let f be a real function defined on (a,b). Prove that the set of points at which f has a simple discontinuity is at most countable.

Exercises

Ex 4.18

Every rational x can be written in the form x=m/n where n>0 and m and n are integers without any common divisors. When x=0, we take n=1. Consider the function f defined on $\mathbb R$ by

$$f(x) = \begin{cases} 0 & x \text{ irrational} \\ \frac{1}{n} & x = \frac{m}{n}. \end{cases}$$

Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every point.

Monotonic Functions

Definition

Let f be real on (a, b).

- lack f is said to be monotonically increasing on (a,b) if a < x < y < b implies $f(x) \le f(y)$.
- ▶ f is said to be monotonically decreasing on (a,b) if a < x < y < b implies $f(x) \ge f(y)$.

Theorem

Let f be monotonically increasing on (a,b). Then f(x+) and f(x-) exist at every point of x of (a,b). More precisely,

$$\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t).$$

Furthermore, if a < x < y < b, then $f(x+) \le f(y-)$.

Corollary

Monotonic functions have no discontinuity of the second kind.

Monotonic Functions

Theorem

Let f be monotonic on (a,b). Then the set of points of (a,b) at which f is discontinuous is at most countable.

Monotonic Functions

Remark

Given any countable subset E of (a,b), we can construct a function f, monotonic on (a,b), discontinuous at every point of E, and at no other point of (a,b).

Exercises

Definition

A map $f: X \to Y$ is called an open map if f(V) is open in Y whenever V is open in X.

Ex 4.15

Prove that every continuous open mapping of $\mathbb R$ into $\mathbb R$ is monotonic.

Infinite Limits and Limits at Infinity

Definition

For any real c, the set of real numbers x such that x>c is called a neighborhood of $+\infty$ and is written $(c,+\infty)$. Similarly, the set $(-\infty,c)$ is a neighborhood of $-\infty$.

Definition

Let f be a real function defined on $E \subset \mathbb{R}$. We say that

$$f(t) \to A \text{ as } t \to x,$$

where A and x are in the extended real number system, if for every neighborhood U of A there is a neighborhood V of x such that $V \cap E$ is not empty, and such that $f(t) \in U$ for all $t \in V \cap E$, $t \neq x$.

Infinite Limits and Limits at Infinity

Theorem

Let f and g be defined on $E \subset \mathbb{R}$. Suppose

$$f(t) \to A, \quad g(t) \to B \quad \text{as } t \to x.$$

Then

- (a) $f(t) \to A'$ implies A' = A.
- (b) $(f+g)(t) \rightarrow A+B$,
- (c) $(fg)(t) \to AB$,
- (d) $(f/g)(t) \rightarrow A/B$.

where the right members are defined. Note that $\infty - \infty$, $0 \cdot \infty$, ∞ / ∞ , A/0 are not defined.

Exercises

Ex 4.20

If E is a nonempty subset of a metric space X, defined the distance from $x \in X$ to E by

$$\rho_E(x) = \inf_{z \in E} d(x, z).$$

- (a) Prove that $\rho_E(x) = 0$ if and only if $x \in \overline{E}$.
- (b) Prove that ρ_E is a uniformly continuous function ox X, by showing that

$$|\rho_E(x) - \rho_E(y)| \le d(x, y)$$

for all $x \in X$, $y \in Y$.

Exercises

Ex 4.21

Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed. Prove that there exists $\delta>0$ such that $d(p,q)>\delta$ if $p\in K$, $q\in F$.

Exercises

Ex 4.22

Let A and B be disjoint nonempty closed sets in a metric space X, and define

$$f(p) = \frac{\rho_A(p)}{\rho_A(p) + \rho_B(p)}.$$

Show that f is a continuous function on X whose range lies in [0,1], that f(p)=0 precisely on A and f(p)=1 precisely on B.

Continuity

Limits of Functions Continuous Functions Continuity and Compactness Continuity of Connectedness Monotonic Functions Infinite Limits and Limits at Infinity

The End