牛顿环仿真实验报告

实验器材

凸透镜,测微显微镜

实验目的

- 1.观察牛顿环和劈尖产生的干涉现象条纹特征;
- 2.学习用光的干涉做微小长度的测量
- 3.通过实验掌握移测显微镜的使用方法。

实验原理:

测出多组圆环的直径, 依据公式:

$$R = \frac{D_m^2 - D_n^2}{4(m-n)\lambda}$$

可以得到透镜曲率半径(公式推导过程略)。

数据记录以及计算:

调整并确定牛顿环在显微镜载物台的位置,然后开始测量实验数据。注意在以后的数据测量过程中,请勿再 次调整牛顿环在载物台的位置。

实验测量结果记录下表:

环数	第5环	第10环	第15环	第20环	第25环	第30环	第35环	第40环
左(读数mm)	25.036	25.412	25.940	26.510	27.012	27.547	27.868	28.252
右(读数mm)	19.547	19.238	18.708	18.128	18.514	17.112	16.791	16.410

根据以上测量的值来计算得出如下数据:

牛顿环的曲率半径值R(m) ___0.1494