Seminar 4 Введение в классическую механику

Victor Ivanov Yu.*

Аннотация

Physics and Mathematics

Содержание

1	Законы сохранения	1
	1.1 Движение в \mathbb{R}^1	1
	1.2 Движение в \mathbb{R}^n	2
2	Упражнения	2
3	Homework	3

1 Законы сохранения

Конец XIX века стал периодом гордости для физики, которая, казалось, наконец достигла состояния связности и ясности. Физики того времени считали, что мир состоит из двух царств: царства частиц и царства электромагнитных волн. Движение частиц было описано уравнением Исаака Ньютона с его поразительной простотой, универсальностью и красотой. Точно так же электромагнитные волны были точно описаны простыми и красивыми уравнениями Джеймса Клерка Максвелла. "Физика была элегантно упакована в коробку и перевязана бантиком", – Молодой Планк. На этом закончилась классическая физика и началась квантовая.

1.1 Движение в \mathbb{R}^1

Theorem 1 (Закон сохранения энергии). Предположим, что частица удовлетворяет закону Ньютона в виде $m\ddot{x} = F(x)$. Пусть $V(x) = -\int F(x)dx$ и $E(x,v) = \frac{1}{2}mv^2 + V(x)$. Тогда энергия E сохраняется, а это означает, что для каждого решения x(t) закона Ньютона, $E(x(t), \dot{x}(t))$ не зависит от t.

Доказательство. Очевидно

*VI

1.2 Движение в \mathbb{R}^n

Theorem 2 (Закон сохранения энергии). Предположим, что частица удовлетворяет закону Ньютона в виде $m\ddot{\mathbf{x}} = \mathbf{F}(\mathbf{x}(\mathbf{t}), \dot{\mathbf{x}}(\mathbf{t}))$, где $\mathbf{F} : \mathbb{R}^{\mathbf{n}} \times \mathbb{R}^{\mathbf{n}} \to \mathbb{R}^{\mathbf{n}}$ некий силовой закон, который вообще может зависеть как от положения, так и от скорости частицы. Функция энергии $E(\mathbf{x}, \dot{\mathbf{x}}) = \frac{1}{2}\mathbf{m}|\dot{\mathbf{x}}|^2 + \mathbf{V}(\mathbf{x})$ сохраняется тогда и только тогда, когда справедливо равенство $-\nabla V = \mathbf{F}$, где ∇V градиент функции V.

Доказательство. Очевидно

Definition. Предположим, что **F** гладкая, \mathbb{R}^n - значная функция на области $U \subset \mathbb{R}^n$. **F** называется консервативной функцией (силой) тогда и только тогда, когда существует гладкая, вещественнозначная функция V на $U: \mathbf{F} = -\nabla \mathbf{V}$.

Если область определения функции U односвязная, тогда существует более простое условие на существование консервативной функции $(curl \nabla \times F = 0 \text{ на } U)$.

Теперь рассмотрим систему многих частиц.

Theorem 3 (Закон сохранения импульса). Если система, состоящая из нескольких частиц, имеет закон силы, исходящий из потенциала V, то полный импульс системы сохраняется тогда и только тогда, когда $V(\mathbf{x^1} + \mathbf{a}, \mathbf{x^2} + \mathbf{a}, ..., \mathbf{x^N} + \mathbf{a}) = \mathbf{V}(\mathbf{x^1}, \mathbf{x^2}, ..., \mathbf{x^N})$ для всех $\mathbf{x} \in \mathbb{R}^n$

Доказательство. Очевидно

Theorem 4 (Закон сохранения углового момента). Предположим, что частица массы m движется в \mathbb{R}^2 под действием консервативной силы с потенциальной функцией V(x). Если V инвариантно относительно вращений в R^2 , то угловой момент $J = x_1p_2 - x_2p_1$ не зависит от времени вдоль любого решения уравнения Ньютона. Наоборот, если J не зависит от времени на любом решении уравнения Ньютона, то V инвариантно относительно вращений.

Доказательство. Очевидно

2 Упражнения

Задача 2.1. В момент, когда скорость падающего тела составила $v_0 = 4$ м/c, оно разорвалось на три одинаковых осколка. Два осколка разлетелись в горизонтальной плоскости под прямым углом друг к другу со скоростью v = 5 м/c кажедый. Найти скорость третьего осколка сразу после разрыва.

Решение. Elementary

Задача 2.2. Тележка с песком движется по горизонтальной плоскости под действием постоянной силы \mathbf{F} , совпадающей по направлению с ее скоростью. При этом песок высыпается через отверстие в дне с постоянной скоростью μ кг/с. Найти ускорение и скорость тележки в момент t, если в момент t=0 тележка с песком имела массу m_0 и ее скорость была равна нулю.

Peшение. Elementary

Задача 2.3. Частица совершила перемещение по некоторой траектории в плоскости xy из точки 1 с радиус-вектором $r_1 = i + 2j$ в точку 2 с радиус-вектором $r_2 = 2i - 3j$. При этом на нее действовали некоторые силы, одна из которых F = 3i + 4j. Найти работу, которую совершила сила F.

Peweнue. Elementary

Задача 2.4. Локомотив массы m начинает двигаться со станции так, что его скорость меняется по закону $v = \alpha \sqrt{s}$, где α – постоянная, s – пройденный путь. Найти суммарную работу всех сил, действующих на локомотив, за первые t секунд после начала движения.

Peweнue. Elementary

3 Homework

Задача 3.1. Мотоциклист едет по вертикальной цилиндрической стенке радиуса R=5 м. Центр масс человека с мотоциклом расположен на l=0.8 м от стенки. Коэффициент трения между колесами и стенкой k=0.34. С какой минимальной скоростью может ехать мотоциклист по горизонтальной окружности?

Peweнue. Elementary

Задача 3.2. Две небольшие шайбы масс m_1 и m_2 связаны нитью длины l и движутся по гладкой плоскости. В некоторый момент скорость одной шайбы равна нулю, а другой v, причем ее направление перпендикулярно нити. Найти силу натяжения нити.

Peшeнue. Elementary

Задача 3.3. Снаряд, выпущенный со скоростью $v_0 = 100$ м/с под углом $\alpha = 45^\circ$ к горизонту, разорвался в верхней точке O траектории на два одинаковых осколка. Один осколок упал на землю под точкой O со скоростью $v_1 = 97$ м/с. C какой скоростью упал на землю второй осколок?

Peweнue. Elementary

Задача 3.4. Система частиц имеет суммарный импульс p и момент импульса M относительно точки O. Найти ее момент импульса M' относительно точки O', положение которой по отношению κ точке O определяется радиус-вектором r_0 . B каком случае момент импульса системы частиц не будет зависеть от выбора точки O?

Peweнue. Elementary