Exercises 01

1. Consider the flow in a rectangular box of size $(L \times L \times H)$ with periodic boundary conditions along the horizontal directions (x, y) and free slip boundary conditions along the vertical direction (z):

$$\mathbf{u}(x+n_xL,y+n_yL,z)=\mathbf{u}(x,y,z),\qquad \text{and}\quad \partial_z u_x=\partial_z u_y=u_z=0\quad \text{at}\quad z=0\ \&\ z=H$$

Are energy and helicity conserved for the incompressible Euler equations in this domain?

2. Consider the incompressible Navier-Stokes equations in infinite space in a rotating reference frame given by:

$$\partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' + 2\mathbf{\Omega} \times \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f}$$

where Ω is a constant vector indicating the direction and amplitude of the rotation.

Which of the aforementioned symmetries remain

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}, \ \mathbf{x}' = -\mathbf{x}$
- Scaling $\mathbf{x}' = \lambda \mathbf{x}, t' \to \lambda^{\alpha} t, \mathbf{u}' = \lambda^{\beta} \mathbf{u}$
- 3. Consider the equation

$$\partial_t \mathbf{a} + \mathbf{b} \times \mathbf{a} = -\nabla P' + \nu \nabla^2 \mathbf{a} \tag{1}$$

where $\nabla \cdot \mathbf{a} = 0$.

b is related to **a** as $\mathbf{b} = (\nabla \times)^n \mathbf{a}$ for some $n \in \mathbb{N}$ so that

$$(\nabla \times)^1 \mathbf{a} = \nabla \times \mathbf{a},$$

$$(\nabla \times)^2 \mathbf{a} = \nabla \times \nabla \times \mathbf{a},$$

$$(\nabla \times)^3 \mathbf{a} = \nabla \times \nabla \times \nabla \times \mathbf{a}$$
 and so on

For n = 1 the system reduces to the Navier Stokes with $\mathbf{a} = \mathbf{u}$ and $\mathbf{b} = \mathbf{w}$.

For $n \neq 1$:

Are Energy $\langle \frac{1}{2} | \mathbf{a} |^2 \rangle$ & Helicity $\langle \mathbf{a} \cdot \mathbf{b} \rangle$ conserved for $\nu = 0$ for these systems (for smooth \mathbf{a}, \mathbf{b})? What are the scaling symmetries they have for $\nu = 0$ and which one of these survives for $\nu \neq 0$?

4. Consider the map:

$$X_{n+1} = rX_n - (5+3r)X_n^3 + (6+2r)X_n^5$$

- Construct (numerically) the bifurcation diagram for $r \in [0, 5]$.
- Calculate the pdf of X_n for r=5