Theorem. Let $\mathbb{F} = \{a + i\sqrt{3}b \mid a, b \in \mathbb{Q}\}$ with the addition and multiplication defined as for \mathbb{C} . Then \mathbb{F} is a field.

Proof. Suppose $a, b, c, d \in \mathbb{Q}$.

Denote the element $a + i\sqrt{3}b$ of \mathbb{F} as $\mathbb{F}(a,b)$.

Define sm(a,b) as $a^2 + 3b^2$.

- 1. Since $a + c \in \mathbb{Q}$ and $b + d \in \mathbb{Q}$ by Multiplicative Closure of \mathbb{Q} , as well as a + c = c + a and b + d = d + b by Commutative Law for \mathbb{Q} , then $\mathbb{F}(a, b) + \mathbb{F}(c, d) = \mathbb{F}(c, d) + \mathbb{F}(a, b)$. Moreover, since $\mathbb{F} \subset \mathbb{C}$ by definition, $\mathbb{F}(a, b)\mathbb{F}(c, d) = \mathbb{F}(c, d)\mathbb{F}(a, b)$.
- 2. Since $\mathbb{F} \subset \mathbb{C}$, and \mathbb{C} has an associative property, \mathbb{F} obeys the Associative Law both for + and \cdot .
- 3. Consider $\mathbb{F}(0,0)$. Then $\forall a,b \in \mathbb{Q}$, since $\sqrt{3} \cdot 0 = 0$, then $\mathbb{F}(a,b) + \mathbb{F}(0,0) = \mathbb{F}(a,b)$. Therefore, $\mathbb{F}(0,0)$ is an additive neutral element. Similarly, since $\mathbb{F} \subset \mathbb{C}$ and $0+i \cdot 0$ is a multiplicative neutral element for \mathbb{C} , $\mathbb{F}(0,0)$ is also a multiplicative neutral element.
- 4. Consider $\mathbb{F}(a,b)$ and $\mathbb{F}(-a,-b)$. Since a-a=0 and b-b=0, $\mathbb{F}(a,b)+\mathbb{F}(-a,-b)=\mathbb{F}(0,0)$. Therefore, there exists an additive inverse $\forall a,b$.
 - Consider also $\mathbb{F}(a,b)$ and $\frac{\mathbb{F}(a,-b)}{sm(a,b)}$. Since sm(a,b) is a sum of two rational numbers, then $sm(a,b)\in\mathbb{Q}$. Therefore, $\frac{\mathbb{F}(a,-b)}{sm(a,b)}=\mathbb{F}(\frac{a}{sm(a,b)},-\frac{b}{sm(a,b)})\in\mathbb{F}$. Since $\mathbb{F}(a,-b)$ is the complex conjugate of $\mathbb{F}(a,b)$ in \mathbb{C} , then $\mathbb{F}(a,b)\mathbb{F}(\frac{a}{sm(a,b)},-\frac{b}{sm(a,b)})=1$ and $(\mathbb{F}(a,b))^{-1}=\frac{\mathbb{F}(a,-b)}{sm(a,b)}$.
- 5. Since $\mathbb{F} \subset \mathbb{C}$, elements of \mathbb{F} obey the Distributive Law.