

Summery of ACFlowSensitivity

Kaiwen Jin

HKUST-GZ

2025-07-14

Kaiwen Jin Summery of ACFlowSensitivity 1 / 19

Denotation

Only consider fermionic system.

The real Green's function is: \mathcal{G}

The measure Green's function on the imag axis is: $G = [G_1, ..., G_N]$

Denote the reconstructed Green's function as: $\tilde{\mathcal{G}}$. And denote $\tilde{G}=\left[\tilde{G}_1,..,\tilde{G}_N\right]=$ $[\tilde{\mathcal{G}}(iw_1),..,\tilde{\mathcal{G}}(iw_N)].$

The real spectrum is: A

The date of the spectrum we calculate on the output mesh: $A = [A_1, ..., A_M]$

Denote the reconstructed spectrum as: $\bar{\mathcal{A}}$.

Kaiwen Jin Summery of ACFlowSensitivity 2 / 19 2025-07-14

Methods Summary

- 1. Mathematical method: Barycentric Rational Approximation (AAA + prony denoise), Nevanlinna
- 2. Maximal Entropy Method. According to parameters choosing: Historic Algorithm, Classic Algorithm, Chi2kink Algorithm, Bryan Algorithm (average).
- 3. Stochastic method.

Generate some spectrum with MC(SA) method

$$\begin{split} A(w) &= \sum_j \frac{\gamma_j}{w-p_j} \\ P(C \to C') &= \exp\bigl(-\alpha\bigl(\chi^2(C') - \chi^2(C)\bigr)\bigr) \end{split}$$

And average them.

Kaiwen Jin Summery of ACFlowSensitivity 3 / 19

Methods Summary

- (1) How choose the inverse temperature $(\alpha, \frac{1}{\theta})$ of Simulated Annealing: choose a good α (chi2kink, chi2min), take average
- (2) How average measure spectrum: average all measured spectrums, average good spectrums, average spectrums with weights
- (3) Sample what type of spectrums: A(w) (better for delta type), n(x) (better for smooth type)

Kaiwen Jin Summery of ACFlowSensitivity 2025-07-14

Methods Summary

Method	Inverse temp	Ave Spec	Sample Obj
ssk(Sandvik)	a good	ave all	A(w)
sac(Beach)	ave all	weights	n(x)
som	×	all good	A(w)
spx	a good	ave all	A(w)

Kaiwen Jin Summery of ACFlowSensitivity 5 / 19

Methods Compare

Method	cont	delta	mixed	noise robust	Speed	Accuracy (no noise)
barrat	V	V	(maybe)	weak	fast	high
nac	V	V	(maybe)	weak	fast	high
maxent (chi2kink)		×	×	strong	fast	high
ssk	X	V	X	weak	slow	high
sac	V	V	X (Difficult)	weak	slow	low
spx	▼ (Against)	✓		weak	extremely slow	low
som	V	V	X (difficult)	weak	little slow	low

Kaiwen Jin Summery of ACFlowSensitivity 6 / 19

Methods Compare(show ssk)

Why choose ssk in stochastic methods: It's the most accuracy method in stochastic methods.

Kaiwen Jin Summery of ACFlowSensitivity 7 / 19

Methods Compare(show ssk)

Kaiwen Jin Summery of ACFlowSensitivity 8 / 19

Methods Compare(show ssk)

Kaiwen Jin Summery of ACFlowSensitivity 9 / 19

Methods Compare(sac vs ssk)

Kaiwen Jin Summery of ACFlowSensitivity 10 / 19

Methods Compare(sac vs ssk)

Kaiwen Jin Summery of ACFlowSensitivity 11 / 19

Methods Compare(sac vs ssk)

Kaiwen Jin Summery of ACFlowSensitivity 12 / 19

Methods Compare(som vs ssk)

Kaiwen Jin Summery of ACFlowSensitivity 13 / 19

Methods Compare(som vs ssk)

Kaiwen Jin Summery of ACFlowSensitivity 14 / 19

Methods Compare(spx vs ssk)

Kaiwen Jin Summery of ACFlowSensitivity 15 / 19

Methods Compare(spx vs ssk)

Finally I choose barrat, maxent(chi2kink) and ssk to do sensitivity analysis.

Kaiwen Jin Summery of ACFlowSensitivity 16 / 19

Analysis Results Show

(Show Tests)

Kaiwen Jin Summery of ACFlowSensitivity 17 / 19

Analysis Results Show

Kaiwen Jin 2025-07-14 Summery of ACFlowSensitivity 18 / 19

Analysis Results Show

Method	accuracy	stability
barrat	high	$\overline{\checkmark}$
maxent(chi2kink)	moderate	~
ssk	low	×

Kaiwen Jin Summery of ACFlowSensitivity 19 / 19