Data Visualization With Stata

Andy Grogan-Kaylor

10 May 2024

Introduction

Stata is a powerful and intuitive data analysis program. Learning how to graph in Stata is an important part of learning how to use Stata. Yet, until recently, the default graphs in Stata have been less than optimal. However, recent versions of Stata have a very professional looking and aesthetically appealing default graph scheme.

This document is an introduction to (a) basic graphing ideas in Stata; and (b) a quick note on the use of schemes to customize your Stata graphs.

When this document is presented in *slide show format*, some slides may be long, and you may need to *scroll down* to see the full slide.

What are Variables?

- By variables, I simply mean the columns of data that you have.
- For our purposes, you may think of variables as synonymous with questionnaire items, or columns of data.

	Column 1	Column 2	Column 3
Row	1		
Row	2		
Row	3		

Variable Types

- Categorical variables represent unordered categories like race, ethnicity, neighborhood, religious affiliation, or place of residence.
- Continuous variables represent a continuous scale like income, a mental health scale, or a measure of life expectancy.

A Data Visualization Strategy

Once we have discerned the type of variable that have, there are two followup questions we may ask before deciding upon a graphing strategy:

- Is our graph about **one thing at a time**?
 - How much of x is there?
 - What is the distribution of x?
- Is our graph about **two things at a time**?
 - What is the relationship of x and y?

- How are x and y associated?

Data Source

Figure 1: Norway Spruce and Larch Forest in Austrian Alps

Image Source: https://ec.europa.eu/jrc/en/research-topic/forestry/qr-tree-project/norway-spruce

The data used in this example are derived from the R package Functions and Datasets for "Forest Analytics with R".

According to the documentation, the source of these data are: "von Guttenberg's Norway spruce (Picea abies [L.] Karst) tree measurement data."

Figure 2: Old Tjikko, a 9,550 Year Old Norway Spruce in Sweden

The documentation goes on to further note that:

"The data are measures from 107 trees. The trees were selected as being of average size from healthy and well stocked stands in the Alps."

. use "https://github.com/agrogan1/Stata/raw/main/data-visualization-with-Stata/gutten.dta" > , clear

Variables

site Growth quality class of the tree's habitat. 5 levels.

location Distinguishes tree location. 7 levels.

tree An identifier for the tree within location.

age_base The tree age taken at ground level.

For some purposes, it might be best to use a centered age variable, centered at the grand mean of tree age:

```
. egen ageMEAN = mean(age_base)
```

. generate ageCENTERED = age_base - ageMEAN

height Tree height, m.

dbh_cm Tree diameter, cm.

volume Tree volume.

age bh Tree age taken at 1.3 m.

tree. ID A factor uniquely identifying the tree.

Graphs

One Continuous Thing At A Time (histogram x)

```
. histogram height, title("Tree Height")
(bin=30, start=1.5, width=1.4)
```

. graph export myhistogram.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/myhistogram.png saved as PNG format

Figure 3: Histogram Of Tree Height

One Categorical Thing At A Time (graph bar, over(x))

```
. graph bar, over(location) title("Tree Location")
```

. graph export mybargraph.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/mybargraph.png saved as PNG format

Continuous by Continuous (twoway scatter y x)

```
. twoway scatter height age_base, title("Tree Height by Age")
```

. graph export myscatter.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/myscatter.png saved as PNG format

Categorical by Categorical (graph bar, over(x) over(y))

. graph bar, over(site) over(location) title("Tree Site Growth Quality by Location")

Figure 4: Bar Graph Of Tree Location

Figure 5: Scatterplot Of Tree Height By Age

. graph export mybargraph2.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/mybargraph2.png saved as PNG format

Figure 6: Bar Graph Of Tree Site By Location

Continuous by Categorical (graph bar y, over(x))

- . graph bar height, over(location) title("Tree Height by Location")
- . graph export mybargraph3.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/mybargraph3.png saved as PNG format

Figure 7: Bar Graph Of Mean Tree Height By Location

Schemes (,scheme(...))

Stata graph schemes can substantially change the look of a graph. Built in graph schemes include s1color, the new default scheme stcolor, the older default scheme s2color, sj, economist and s1rcolor.

lean2 (type findit lean2 in the Stata Command Window) is a user written scheme that is very helpful when preparing graphics for publication. I have written a Stata Michigan graph scheme that can be installed. cleanplots and modern are excellent graph schemes that can be installed directly into Stata from GitHub. burd is another user written graph scheme that *somewhat* replicates the look of ggplot. Asjad Naqvi has written an excellent and comprehensive set of Stata graph schemes.

Continuous by Continuous (twoway scatter y x, scheme(...))

. twoway scatter height age_base, title("Tree Height by Age") scheme(michigan)

. graph export myscatterM.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/myscatterM.png saved as PNG format

Figure 8: Scatterplot Of Tree Height By Age With Michigan Graph Scheme

- . twoway scatter height age_base, title("Tree Height by Age") scheme(lean2) msymbol(o)
- . graph export myscatterL.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/myscatterL.png saved as PNG format

Figure 9: Scatterplot Of Tree Height By Age With lean 2 Graph Scheme

- . twoway scatter height age_base, title("Tree Height by Age") scheme(s1color)
- . graph export myscatterS.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/myscatterS.png saved as PNG format
- . twoway scatter height age_base, title("Tree Height by Age") scheme(burd) msymbol(o) graph
 > region(lcolor(none))
- . graph export myscatterB.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/myscatterB.png saved as PNG format

Continuous by Categorical (graph bar y, over(x) scheme(...))

Note that in the graph below, I have used the asyvars option to give different colors to the different bars.

Figure 10: Scatterplot Of Tree Height By Age With s1color Graph Scheme

Figure 11: Scatterplot Of Tree Height By Age With burd Graph Scheme

. graph bar height, over(location) asyvars title("Tree Height by Location") scheme(michigan >)

. graph export mybarM.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/mybarM.png saved as PNG format

Figure 12: Bar Graph Of Mean Tree Height By Location With Michigan Graph Scheme

. graph bar height, over(location) asyvars title("Tree Height by Location") scheme(lean2)

. graph export mybarL.png, width(1000) replace file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/mybarL.png saved as PNG format

Figure 13: Bar Graph Of Mean Tree Height By Location With lean 2 Graph Scheme

. graph bar height, over(location) asyvars title("Tree Height by Location") scheme(s1color)

. graph export mybarS.png, width(1000) replace

 ${\tt file\ /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/mybarS.png\ saved\ as\ {\tt PNG\ format}}$

. graph bar height, over(location) asyvars title("Tree Height by Location") scheme(burd) gr > aphregion(lcolor(none))

. graph export mybarB.png, width(1000) replace

file /Users/agrogan/Desktop/GitHub/Stata/data-visualization-with-Stata/mybarB.png saved as PNG format

Figure 14: Bar Graph Of Mean Tree Height By Location With s1color Graph Scheme

Figure 15: Bar Graph Of Mean Tree Height By Location With burd Graph Scheme