

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08051436 A

(43) Date of publication of application: 20.02.96

(51) Int. CI

H04L 12/28 H04L 12/56 H04Q 11/04

(21) Application number: 07101916

(22) Date of filing: 26.04.95

(30) Priority:

15.07.87 JP 62174603 09.10.87 JP 62253661 11.11.87 JP 62283249

(62) Division of application: 63102512

(71) Applicant: **HITACHI LTD**

(72) Inventor:

SAKURAI YOSHITO OTSUKI KANEICHI GOHARA SHINOBU MORI MAKOTO HORIKI AKIRA KATO TAKAO

KUWABARA HIROSHI

(54) SWITCHING SYSTEM

(57) Abstract:

PURPOSE: To provide a switching system consisting of a switch for switching a fixed-length cell consisting of a header part and an information part, having absolutely minimum memory capacity and preventing generation of cell loss due to overwriting of a memory.

CONSTITUTION: The switch for distributing cells read out from a 1st storage means 105 into plural highways no output them is constituted of the 1st storage means 105 for storing fixed-length cells inputted from plural highways, a 2nd storage means 103 for storing the idle addresses of the means 105 and a control means for controlling the writing and reading of the means 105 in accordance with the contents of the means 103. The control means executes priority processing for an input cell in accordance with a handling class included in the cell. Since the loss of a cell is not generated, a large capacity switch appropriate for the switching of a signal with a high burst property can be economically constituted by the small quantity of hardware.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

第2561046号

(45)発行日 平成8年(1996)12月4日

(24) 登録日 平成8年(1996) 9月19日

(51) Int.Cl.⁶

戲別記号

庁内整理番号

FΙ

技術表示箇所

H04L 12/28

9466-5K

H04L 11/20

Н

請求項の数5(全19頁)

(21)出願番号 (62)分割の表示	特願平7-101916 特願昭63-102512の分割	(73)特許権者	000005108 株式会社日立製作所
(22)出廣日	昭和63年(1988) 4月27日	(72)発明者	東京都千代田区神田駿河台四丁目6番地 標井 義人
(65)公開番号 (43)公開日	特開平8-51436 平成8年(1996)2月20日	(12)光明省	神奈川県横浜市戸塚区戸塚町216番地株
(31)優先権主張番号	特顧昭62-174603	(72)発明者	式会社日立製作所戸場工場内 大槻 兼市
(32) 優先日 (33) 優先権主張国	昭62(1987) 7月15日 日本(JP)	·	神奈川県横浜市戸塚区戸塚町216番地株 式会社日立製作所戸塚工場内
(31)優先権主張番号 (32)優先日	特顧昭62-253661 昭62(1987)10月9日	(72)発明者	郵原 忍 神奈川県横浜市戸駅区戸駅町216番地株
(33)優先権主張国	日本 (J P)		式会社日立製作所戸場工場内
(31)優先権主張番号 (32)優先日	特顧昭62-283249 昭62(1987)11月11日	(74)代理人	弁理士 小川 勝男
(33)優先権主張国	日本(JP)	審査官	吉田 隆之
			最終頁に続く

(54) 【発明の名称】 スイッチングシステム

(57)【特許請求の範囲】

【請求項1】ヘッダ部と情報部から成る固定長のセルで 前記セルの取扱条件を区別するクラス情報も付与された セルを前記セルのヘッダ部に含まれる情報に基づき複数 の入力ハイウェイと複数の出力ハイウェイとの間で交換 するスイッチングシステムであって、

前記複数の入力ハイウェイから受信したセルを蓄積して 前記セルを前記複数の出力ハイウェイの宛先出力ハイウ エイに交換する第1の記憶手段と、前記第1の記憶手段 の空きアドレスに対応した情報を蓄積する第2の記憶手 段と、前記第2の記憶手段に蓄積された情報に対応して 前記第1の記憶手段の再き込み及び読み出し制御を行う 制御回路とで構成され、

前記制御回路は、前記第1の記憶手段と第2の記憶手段 とに共通設置され、前記制御回路からの第1の記憶手段 の読み出しアドレスに基づいて前記第1の記憶手段の空きアドレスに対応した情報を前記第2の記憶手段に蓄積し、前記第2の記憶手段からの情報を前記第1の記憶手段の書き込みアドレスとして出力するよう接続すると共に、前記クラス情報に基づき前記セルの前記第1の記憶手段への書き込みと読み出しを制御する優先処理回路を備えたことを特徴とするスイッチングシステム。

【請求項2】 ヘッダ部と情報部から成る固定長のセルで <u>前記セルの取扱条件を区別するクラス情報も付与された</u> セルを前記セルのヘッダ部に含まれる情報に基づき複数 の入力ハイウェイと複数の出力ハイウェイとの間で交換 するスイッチングシステムであって、

前記複数の入力ハイウェイから受信したセルを蓄積して 前記セルを前記複数の出力ハイウェイの宛先出力ハイウ エイに交換する第1の記憶手段と、前記第1の記憶手段 るが、バースト的に発生するデータを送るバースト交換 モードの2つのモードを扱う事が出来るように、スイッ チングのためのメモリと、待ち合わせのためのバッファ メモリが設けられている。回線交換モード用セルは、実 時間性を保証するためにバッファメモリを介さず、優先 して取り扱い、一方バースト交換モード用セルは、バッ ファメモリで待ち合わせ、タイムスロットに空きがある 時に処理される。

【0004】他の例として、特開昭59-135994号公報に示される「TDMスイッチングシステム」が挙げられる。本例では、回線交換モードとバースト交換モードの2種類の性質を持った通信を扱うという概念は明示されていないが、固定長セルを、バッファメモリを用いて時間的に入れ換える機能を有している。その際に、セルの待ち合わせとスイッチングは同一のバッファメモリを用いる。待ち合わせを実現するために、セルのバッファメモリへの書き込みアドレスを、ヘッダによって知ることが出来る。そのセルの宛先別に格納しておく待ち行列手段が設けられている。

【0005】また、回線交換におけるノンブロックの多 段通話路スイッチとしては、クロス形が良く知られてい る。(秋丸著「現代交換工学概論」オーム社 昭和54 年PP、136~137およびシー・クロス:ア スタ ディ オブ ノン ブロッキング ネットワークス、ペ ル システム テクニカル ジャーナル 第32巻第3 号 (1953年) (C.Clos: A Study of Non Blocking N etworks, Bell SystemTechnical Journal vol. 32, No. 3 (1953)) このクロス形多段スイッチは、1次スイッチ の入回線数をm、出回線数をr、2次スイッチの入回線 数、出回線数をともにk、3次スイッッチの入回線数を r、出回線数をmとし、1次スイッチをk個、2次スイ ッチを r 個、3次スイッチを k 個用い、1次スイッチの r本の出回線を各2次スイッチに1本ずつ、2次スイッ チのk本の出回線を各3次スイッチに1本ずつ接続する 多段スイッチ構成において、 r ≥ 2 m − 1 (クロスの 式)を満たすよう構成した3段のスイッチである。尚、 ここで言うノンプロックとは、スイッチの入回線、出回 線双方に空き容量が存在する場合に、その間を接続する パスが必ず存在する、ということである。

[0006]

【発明が解決しようとする課題】固定長セルを用いてスイッチングを行う場合、各セルの宛先が必ずしも平均的に分布していないため、同一宛先へ向けたセルが一時的に集中し、輻輳状態となったり、メモリのオーバフローによりセルが消失してしまう事が起こり得る。上記の、最初に挙げた、本出願人による論文では、輻輳状態回避のため待ち合わせのためのバッファメモリを、各宛先出ハイウェイ別に設けている。このバッファメモリは、セル全体を格納するもので、かつ、オーバーフローしないだけ多数のセルを格納できるものである必要があり、し

かも、宛先毎に個別に設けなければならない。従って、 この構成では、大量のメモリを必要とするという問題が ある。

【0007】一方、2番目の例に挙げたスイッチングシステム(特開昭59-135994号公報)では、バッファメモリは全入ハイウェイに対し1つであり、バッファメモリのアドレスだけを記憶する待ち行列手段がセルの宛先別に複数設けられている。この構成では、比較的少ないメモリ量で各セルの宛先の偏りは吸収され得る。しかしながら、バッファメモリの書き込みアドレスは周期的に用いられるため、論理的にはバッファメモリは各宛先対応に固定的に分割されているのと同等であり、ある待ち行列の待ちが一定量を越えると、読み出されていないセルがまだ残っているにもかかわらず、同一の書込みアドレスが使われ、バッファメモリの上書きが起こる。このとき上書きされたセルは消失してしまうという問題がある。

【0008】また、上記クロス形スイッチは、単一の速度を持つ複数の呼を扱う場合にはノンブロックであるが、それぞれの呼が任意の速度を持つ場合には、単位スイッチ間を結ぶリンクの使用効率が落ちるため、ノンブロックとはならない。それぞれの呼の速度が異なると、例えば、低速の呼がリンク容量の一部を占有しているために、そのリンクにはまだ容量に空きがあるにもかかわらず、高速の呼はそこへは入れないという、いわゆる虫喰い現象が起こる。このため、リンクの使用効率が落ち、上記のクロスの式を満たしていても、ブロックが起きてしまう。

【0009】本発明の目的は、上記従来例の問題点を解決し、メモリの大量使用をなくし、かつバッファメモリの上書きによってブロックが消失しないスイッチングシステムを提供することにある。

【0010】また、それぞれの呼が任意の速度を持つ場合でも、プロックが起きないノンプロックの多段通話路スイッチを簡単かつ経済的な構成で提供することにある。

[0011]

【課題を解決するための手段】上記目的を達成するために、複数の入ハイウェイ(以下では単に入線と称する)を時分割多重し、到着したセルをパッファメモリ(以下メインパッファと称する)に哲込み、これを適当な順序で読み出し、多重分離し、複数の出ハイウェイ(以下では単に出線と称する)に振り分けることによって交換動作を行うスイッチングシステムにおいて、メインパッファの空きアドレスを格納しておくFIFO(First In First Out)パッファ(アイドルアドレスFIFOと称する)と、使用中アドレスを出線対応に管理する手段を設け、メインパッファへのセルの費込み時には、上記アイドルアドレスFIFOバッファのデータ出力から空アドレスを取り出し、メインパッファからのセルの読出し時

得られる。該普込みアドレスは、アイドルアドレスFIFOI03から予め入力されたものである。該普込みアドレスを用いてセルはメインバッファ105へ普込まれる。尚、セルが空きセルである場合、もしくはアイドルアドレスFIFOが空きである場合(即ちメインバッファに空きが無い場合)は、ANDゲート109の出力がしとなるためメインバッファ105には普込みは行れず、また、アイドルアドレスFIFOの読出しクロック(RCK)もしとなり、空アドレスの出力も行われない。

【0019】次に読出し動作を説明する。セルの読出しは、制御カウンタ107が発生する数に応じてアドレスポインタ104から読出しアドレスを得て、これをメインバッファの読出しアドレスとすることでセルを読出す。制御カウンタの値は、出線番号に対応する。即ち各出線毎に順番に1つずつセルが読出されるわけである。読出しアドレスとして使用したアドレスは、アイドルアドレスFIFO103のデータ入力(DI)へ送られ、再度書込みアドレスとして用いられる。尚、ある出線に宛てたセルが、メインバッファ内に1つも存在しないときは、キュー状態表示出力(STS)が出力され、セレクタ110によって、メインバッファ105の読出しアドレスとして、空セルアドレスレジスタ111に格納されているアドレスが選択される。該アドレスに相当るメインバッファの内容は常に空きセルとしてある。

【0020】アイドルアドレスFIFOのデータ出力は、セルと一緒にメインバッファ内に格納する。これはそのセルの宛先出線と同じ宛先の、次のセルの格納アドレスを示すためである。詳しい動作は図3を用いて次に述べる。尚、メインバッファ内のセル構造を図2(c)に示す。

【0021】次に図3を用いて、アドレスポインタ10 4の構成と動作を説明する。出線番号入力 (DEST) は、出線番号デコーダ301の入力と書き込みアドレス セレクタ308の選択入力に接続される。出線番号デコ ーダ301のm本のデコード出力は、それぞれm個の書 込みレジスタ (WR1~m) 302~303のクロック 入力に接続される。外部のアイドルアドレスFIFOか ら入力される次鸖込みアドレス (NWAD) は各鸖込み レジスタの入力に接続され、各售込みレジスタの出力は **書込みアドレスセレクタ308を介して、書込みアドレ** ス出力(WAD)となる。一方、制御カウンタ入力(R ACNT) はデコーダ311と読出しアドレスセレクタ 309の選択入力に接続され、デコーダ311のm本の デコード出力は、それぞれm個の読出しレジスタ (RR 1~m) 304~305のクロック入力として、ゲート を介して接続される。外部からの次読出アドレス入力 (NRAD) は、各読出しレジスタの入力に接続され、 各読出しレジスタ出力は読出しアドレスセレクタ309 を介して読出しアドレス(RAD)となる。不一致検出 器306~307はそれぞれ対応する書込みレジスタと 読出しレジスタの出力を入力とし、そのそれぞれの出力 は不一致情報セレクタ310を介して、キュー状態表示 出力(STS)となる。また、不一致検出器の出力は上 記ゲートの一方の入力にも接続される。

【0022】出線番号入力(DEST)によりm個の書 込みレジスタの出力のうち、その出線番号に相当するも のを曹込みアドレスセレクタ308で選択し、曹込みア ドレス出力(WAD)とする。このとき、同時に出線番 号デコーダ301のデコード出力により、上記に相当す る書込みレジスタの保持する値を、アイドルアドレスF IFOから入力される(NWAD)値に更新する。従っ て、更新直前でのNWADの値は、この時售込みを行お うとしているセルの宛先出線番号と同じ宛先のセルが次 に入ってきた時の曹込みアドレスに相当する。そのた め、このNWADの値をこの時費込みを行おうとしてい るセルと一緒にメインバッファに格納しておけば、この セルを読み出した時に、同じ出線へ宛てたセルを次に読 み出す時は、どのアドレスから読み出せば良いのかを知 ることができる。セルの読み出し時は、制御カウンタの 値を選択入力とする読出しアドレスセレクタにより読出 しレジスタ出力を選択し、そのレジスタの保持値を読出 しアドレス出力 (RAD) として出力し、これを読出し アドレスとして用いる。同時にデコーダ311の出力に よって、この時選択された読出しレジスタの保持値を更 新する。このときの読出しレジスタの入力は、メインバ ッファから読出される、上記書込み時にセルーと緒に格 納した次読出しアドレスであるので、同じ出線へ宛てた 次のセルのアドレスを読出しレジスタに保持させる事が

【0023】図5はアイドルアドレスFIFO103の 構成を示す。アイドルアドレスFIFO103は、メモ リ501、**沓込**みカウンタ (WCNT) 502、読出し カウンタ (RCNT) 503、一致検出器504から成 る。曹込みカウンタ502は、曹込みアドレス(WA) を出力するカウンタで、メモリ501のアドレスの数だ けカウントするリングカウンタである。読出しカウンタ 503は、読出しアドレス (RA) を出力するカウンタ で、メモリ501のアドレスの数だけカウントするリン グカウンタである。両カウンタの値が同一になった時は メモリが空になった状態であるから、これを一致検出器 504で検出して空き出力(EPTY)を出す。以上の ように、全体としてはFIFO機能を持つものである。 【0024】次に図6を用いて他の実施例を説明する。 図6に示すスイッチングシステムは、基本的には図1に 示すものと同じ原理によるものであるが、図1のものに 更に優先制御機構を付加してある。図6において図1に 示す構成要素と同一のものは同一の符号を付与してあ り、説明は省略する。図1との最も大きな相違は、アド レスポインタが複数ある点である。ここでは優先クラス チのk本の出回線を各3次スイッチに1本ずつ接続する 多段スイッチ構成において、r≥2m-1 (クロスの 式)を満たすよう構成した3段のスイッチである。尚、 ここで言うノンブロックとは、スイッチの入回線、出回 線双方に空き容量が存在する場合に、その間を接続する パスが必ず存在する、ということである。

【0031】上記クロス形スイッチは、単一の速度を持つ複数の呼を扱う場合にはノンブロックである。ところが、それぞれの呼が任意の速度を持つ場合には、単位スイッチ間を結ぶリンクの使用効率が落ちるため、ノンブロックとはならない。それぞれの呼の速度が異なると、例えば、低速の呼がリンク容量の一部を占有しているために、そのリンクにはまだ容量に空きがあるにもかかわらず、高速の呼はそこへは入れないという、いわゆる虫喰い現象が起こる。このため、リンクの使用効率が落ち、上記のクロスの式を満たしていても、ブロックが起きてしまう。

【0032】この問題は、多段スイッチのリンクを、空間的に増やす、つまりリンク本数を増やすだけでなく、時間的に増やす、つまりリンク速度を上げることにより解決される。具体的には、出入回線数とリンク数は、それぞれ前記と同じくm、rとするが、出入回線の速度を1としたとき、リンクの速度はx倍とし、r≥2×|(m-1) / (x-1) | -1を満たすようなスイッチ構成とする。

【0033】上式で、右辺の(m-1)は、m本の入回 線のうちの(m-1) 本が使用中である状態を示す。-方、(x-1)は、リンク速度比xから、入回線速度比 である1を引いたものであり、あるリンクがその速度の うちあと入回線1回線分に微小量△だけ足りない容量を 残して使われている状態 (x-1+Δ) のΔ→0の極限 値を示す。従って、「(m-1)/(x-1)」は、リ ンクに空き容量はあるのに、入回線1回線分は収容でき ないという状態、即ち、各リンクが最も効率の悪い状態 で使用されている状態でのリンクの本数を表わしてい る。尚、記号「a」はa以上の最小の整数を表わす。こ こから1本のリンクを除いた 丨「(m-1) / (x-1) 」 - 1 本のリンクがこのような状態であり、出回 線側も入回線側と全く同様であるから、リンク本数が上 記の2倍、即ち、2× | 「(m-1) / (x-1)] -11 本である時、新たに入回線1回線分はリンクに収容 できず、更にもう1本の収容可能リンクがあれば、即 $5, 2 \times |\lceil (m-1) / (x-1) \rceil - 1| + 1$ \forall \uparrow れば、入回線側(1次リンク)、出回線側(2次リン ク) 双方で、入回線 1 回線分以上の空き容量を共通に持 つリンクが必ず存在する。

明する。図10に示すように、出入回線数nに対し、n =mkである。初段スイッチとして、入端子数m、出端 子数2m-3の単位スイッチをk個並べた。また、中間 段スイッチとして、出入端子数kの単位スイッチを2m -3個、終段スイッチとして、入端子数2m-3、出端 子数mの単位スイッチをk個、それぞれ並べた。それぞ れの単位スイッチ間の接続は、図10に示すように、初 段スイッチを構成するある単位スイッチは、中間段スイ ッチを構成する全ての単位スイッチと、中間段スイッチ を構成するある単位スイッチは、終段スイッチを構成す る全ての単位スイッチと接続されるようになっている。 先に述べたノンブロック条件の式、r≥2× }「(m-1) /(x-1)]-1 |+1 において、x=2、r=2m-3に相当するもので、等号が成立する。尚、各段 の単位スイッチとしては、既に図1、図6、図8で説明 したものや、図12、図16で説明するものが適用でき る。

【0037】以上の実施例によれば、任意の通信速度を持つ呼を、ノンブロックで交換できる多段スイッチが必要最小限の構成にて実現できる。

【0038】次に図12にて、単位スイッチに関する他の実施例を説明する。図12では、構成要素はアドレスFIFO群1201を除いては図1と同じであり、接続関係が若干異なる。図12では、アイドルアドレスFIFO103のデータ出力(DO)は、そのままメインバッファ105の普込みアドレス(WA)に接続される。また、メインバッファ105にはセル本体のみを書込み、次アドレス情報は書き込まない。図13を用いて本構成のポイントであるアドレスFIFO群1201について説明する。

【0039】出線番号入力 (DEST) は出線番号デコーダ (WDEC) 1301に接続され、そのm本のデコード出力はそれぞれm個のFIFOバッファ1303~1304の費込み信号 (WCK) 入力に接続される。FIFOバッファ1303~1304のデータ入力は、図12のアイドルアドレスFIFOのデータ出力である。FIFOバッファ1303~1304のデータ出力は読出しアドレスセレクタ1305を介して読出しアドレスとカ(RAD)となる。読出しアドレスセレクタ1305は制御カウンタ入力 (RACNT) を選択入力とする。制御カウンタ入力 (RACNT) は更に読出順序デ

102…ヘッダ

【図11】本発明の一実施例の説明図。

【図12】本発明の一実施例の機能ブロック図。

【図13】図12のアドレスFIFO酢の詳細機能プロック図。

【図14】本発明の一実施例の説明図。

【図15】図14の空間スイッチの機能ブロック図。

【図16】本発明の一実施例の機能ブロック図。

【図17】図16のアドレスFIFO酢の詳細機能プロック図。

【符号の説明】

104…アドレスポインタ、105…メインバッファ、 106…並直列変換多重分離器、107… 制御カウンタ、 302…曹込みレジス タ、304…読出しレジスタ、 306…不 一致検出器、308…曹込みアドレスセレクタ、 3 09…読出しアドレスセレクタ、604…読出しアクセ ス制御、 1201…アドレスFIFO群、13 03…FIFOバッファ。

変換テーブル、103…アイドルアドレスFIFO、

【図9】

2 9

[図2]

101…直並列変換多重器、

九八百五

【図4】

【図7】

図 7

入 <i>カ</i> ー]				
21	22	ΩЭ	出力	(運式が2)
1	×	×	00	(C1)
0.	1	X	01	(C2)
0	0	1	10	(C3)
0	0	0	11	(71FL)

【図5】

【図10】

【図11】

図 10

1011 -- 単位スペチ (1次スペチ)

1021 --- 単位スイッチ (2次スイッチ)
1031 --- 単位スイッチ (3次スイッチ)

【図15】

22 15

1501

【図6】

図 6

【图12】

図 12

(国16)

図 16

(72)発明者 加藤 孝雄

神奈川県横浜市戸塚区戸塚町216番地株

式会社日立製作所戸塚工場内

(72) 発明者 桑原 弘

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所中央研究所内

(56)参考文献 特開 昭59-135994 (JP, A)

特開 昭58-97944 (JP, A)

特開 昭61-202546 (JP, A)

特開 昭61-232744 (JP, A)

特開 平2-1655 (JP, A)

昭和61年度電子通信学会総合全国大会

1765