

第五章 紧性

5.1 紧空间

紧空间:

设 X 是拓扑空间, 如果 X 的一个开覆盖有有限子覆盖, 则称 X 是一个紧空间。

明显紧空间是Lindeliof空间 Lindeliof空间不一定是紧的

例: 实数空间 ℝ

紧子空间:

设 X 是拓扑空间, Y 是 X 中的一个子集, 如果 Y 是紧的, 则称 Y 是 X 的紧子空间.

命题5.1.1:

设 X 是拓扑空间, $A \subset X$, 则 Y 是 X 的紧子集 $\iff X$ 开集构成的 Y 的覆盖都有有限子覆盖。

有限交性质:

集族 Ø 的每一个有限子族都有非空的交。

命题5.1.2:

设 X 是拓扑空间,则 X 是紧的 \iff X 中任一有限交性质的闭集族交非空。

命题5.1.3:

设 ${\mathscr B}$ 是拓扑空间 X 的一个拓扑基,且由 ${\mathscr B}$ 的元素构成的开覆盖都有有限子覆盖,则 X 是紧的。

命题5.1.4: 紧性是拓扑不变性。

命题5.1.5: 紧性是闭子空间遗传性。

命题5.1.6: 任何拓扑空间可嵌入拓扑紧空间。

命题5.1.7: 紧性是可积性。

5.2 紧性与分离性公理

命题5.2.1:

设 X 是一个 T_2 空间. 如果 A 是 X 不包含点 $x \in X$ 的紧子集, 则 x 和 A 都有领域 U, V, 使 得 $U \cap V = \varnothing$.

命题5.2.2:

 T_2 空间每一个紧子集是闭集.

命题5.2.3:

紧的 T_2 空间中,一个集合是闭集 \iff 它是紧子集.

命题5.2.3:

紧的 T_2 空间是正则的.

命题5.2.4:

设 X 是一个 T_2 空间. 如果 A,B 是 X 的不交紧子集, 则 A 和 B 都有领域 U,V,使得 $U\cap V=\varnothing$.

命题5.2.5:

紧的 T_2 空间是 T_4 的.

命题5.2.6:

从紧空间到 T_2 空间的连续映射是闭映射。

5.3 n维欧式空间中的紧子集

有界子集:

设 (X,d) 是一个度量空间, $A \subset X$, 如果存在正实数 M, 使得 d(x,y) < M, 对于所有 $x,y \in A$ 成立, 则称 $A \not\in X$ 的一个有界子集.

命题5.3.1: 紧度量空间是有界的.

命题5.3.2: 单位闭区间是紧空间.

命题5.3.3:

设 A 是n维欧式空间的子集, 则 A 是紧子集 \iff A 是有界闭集.

最大最小值定理:

设 X 是一个非空的紧空间, $f:X\to\mathbb{R}$ 连续, 则存在 $x_0,x_1\in X$, 使得对于任意 $x\in X$, 有 $f(x_0)\le f(x)\le f(x_1)$.

命题5.3.4:

单位球面与欧式空间不同胚.

5.4 几种紧性的关系

可数紧空间:

X的每一个可数开覆盖都有有限子覆盖.

命题5.4.1: 紧空间是可数紧的.

命题5.4.2: Lindelington f的可数紧空间是紧的.

列紧空间:

X的无限子集都有聚点.

命题5.4.3: 可数紧空间是列紧的.

命题5.4.4:

设 X 是拓扑空间, 则 X 可数紧 \iff X 中任何一个非空闭集下降序列都有非空的交.

命题5.4.5: 列紧的 T_1 是可数紧空间.

序列紧空间:

X 中每个序列都有收敛子列.

命题5.4.6: 序列紧空间是可数紧的.

命题5.4.7: 第一可数的可数紧空间是序列紧的.

5.5 度量空间的紧性

直径

设 A 是度量空间 (X,d) 中的一个非空子集, 集合 A 的直径 diam(A) 定义为:

$$\operatorname{diam}(A) = egin{cases} \sup\{d(x,y): x,y \in A\}, A$$
是有界的 ∞, A 是无界的

Lebesgue数:

设 (X,d) 是度量空间, $\mathscr A$ 是 X 的一个开覆盖, 实数 $\lambda>0$ 称为开覆盖 $\mathscr A$ 的 Lebesgue数, 如果对于 X 中的任何一个子集 A, 只要 $diam(A)<\lambda$, 则 A 包含于开覆盖 $\mathscr A$ 的某一个元素之中.

Lebesgue数不一定存在.

Lebesgue数定理:

序列紧的度量空间的每一个开覆盖有一个Lebesgue数.

命题5.5.1: 每一个序列紧的度量空间是紧空间.

5.6 局部紧空间

局部紧空间:

每个点都有一个紧的领域.

命题5.6.1: 局部紧的 T_2 空间是正则的.

命题5.6.2: 设X是一个局部紧的正则空间, $x \in X$,则x的所有紧领域构成的集族是领域基.