4.4 EXERCISES

1-15 odel

In Exercises 1–4, find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ and the given basis \mathcal{B} .

$$\mathbf{A.} \ \mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \end{bmatrix} \right\}, \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

2.
$$\mathcal{B} = \left\{ \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 6 \\ 7 \end{bmatrix} \right\}, \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$$

3.
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \\ -2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 0 \end{bmatrix} \right\}, \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$$

4.
$$\mathcal{B} = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-5\\2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\3 \end{bmatrix} \right\}, \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -4\\8\\-7 \end{bmatrix}$$

In Exercises 5–8, find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of \mathbf{x} relative to the given basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$.

$$\mathbf{5.} \ \mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

6.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 5 \\ -6 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

7.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -3 \\ 4 \\ 9 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 8 \\ -9 \\ 6 \end{bmatrix}$

8.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$$

$$\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -9 \end{bmatrix}, \begin{bmatrix} 1 \\ 8 \end{bmatrix} \right\}$$

$$\mathbf{10.} \ \mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -5 \end{bmatrix}, \begin{bmatrix} 8 \\ -2 \\ 7 \end{bmatrix} \right\}$$

In Exercises 11 and 12, use an inverse matrix to find $[x]_{\mathcal{B}}$ for the given x and \mathcal{B} .

12.
$$\mathcal{B} = \left\{ \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 6 \\ 7 \end{bmatrix} \right\}, \mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

- Find the coordinate vector of $\mathbf{p}(t) = 1 + 4t + 7t^2$ is a basis for \mathbb{P}_2 .
 - 14. The set $\mathcal{B} = \{1 t^2, t t^2, 2 2t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 3 + t 6t^2$ relative to \mathcal{B} .

In Exercises 15 and 16, mark each statement True or False. Justify each answer. Unless stated otherwise, \mathcal{B} is a basis for a vector space V.

- 15. a. If x is in V and if B contains n vectors, then the Bcoordinate vector of x is in \mathbb{R}^n .
 - b. If P_B is the change-of-coordinates matrix, then $[\mathbf{x}]_B = P_B \mathbf{x}$, for \mathbf{x} in V.
 - c. The vector spaces \mathbb{P}_3 and \mathbb{R}^3 are isomorphic.
 - 16. a. If \mathcal{B} is the standard basis for \mathbb{R}^n , then the \mathcal{B} -coordinate vector of an \mathbf{x} in \mathbb{R}^n is \mathbf{x} itself.
 - b. The correspondence $[x]_{\mathcal{B}} \mapsto x$ is called the coordinate mapping.
 - c. In some cases, a plane in \mathbb{R}^3 can be isomorphic to \mathbb{R}^2 .
 - 17. The vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$ span \mathbb{R}^2 but do not form a basis. Find two different ways to express $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
 - 18. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Explain why the \mathcal{B} -coordinate vectors of $\mathbf{b}_1, \dots, \mathbf{b}_n$ are the columns $\mathbf{e}_1, \dots, \mathbf{e}_n$ of the $n \times n$ identity matrix.
 - **19.** Let S be a finite set in a vector space V with the property that every \mathbf{x} in V has a unique representation as a linear combination of elements of S. Show that S is a basis of V.
 - **20.** Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_4\}$ is a linearly dependent spanning set for a vector space V. Show that each \mathbf{w} in V can be expressed in more than one way as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_4$. [*Hint*: Let $\mathbf{w} = k_1 \mathbf{v}_1 + \dots + k_4 \mathbf{v}_4$ be an arbitrary vector in V.

Use the linear dependence of $\{v_1, \ldots, v_4\}$ to produce another representation of \mathbf{w} as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_4$.

- 21. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \begin{bmatrix} -2 \\ 9 \end{bmatrix} \right\}$. Since the coordinate mapping determined by \mathcal{B} is a linear transformation from \mathbb{R}^2 into \mathbb{R}^2 , this mapping must be implemented by some 2×2 matrix A. Find it. [Hint: Multiplication by A should transform a vector \mathbf{x} into its coordinate vector $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}}$.]
- 22. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for \mathbb{R}^n . Produce a description of an $n \times n$ matrix A that implements the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$. (See Exercise 21.)

Exercises 23–26 concern a vector space V, a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, and the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$.

- **23.** Show that the coordinate mapping is one-to-one. [*Hint:* Suppose $[\mathbf{u}]_{\mathcal{B}} = [\mathbf{w}]_{\mathcal{B}}$ for some \mathbf{u} and \mathbf{w} in V, and show that $\mathbf{u} = \mathbf{w}$.]
- **24.** Show that the coordinate mapping is *onto* \mathbb{R}^n . That is, given any \mathbf{y} in \mathbb{R}^n , with entries y_1, \ldots, y_n , produce \mathbf{u} in V such that $[\mathbf{u}]_{\mathcal{B}} = \mathbf{y}$.
- **25.** Show that a subset $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in V is linearly independent if and only if the set of coordinate vectors $\{[\mathbf{u}_1]_{\mathcal{B}}, \dots, [\mathbf{u}_p]_{\mathcal{B}}\}$ is linearly independent in \mathbb{R}^n . [Hint: Since the coordinate mapping is one-to-one, the following equations have the same solutions, c_1, \dots, c_p .]

$$c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p = \mathbf{0}$$
 The zero vector in V
 $\begin{bmatrix} c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}}$ The zero vector in \mathbb{R}^n

26. Given vectors $\mathbf{u}_1, \dots, \mathbf{u}_p$, and \mathbf{w} in V, show that \mathbf{w} is a linear combination of $\mathbf{u}_1, \dots, \mathbf{u}_p$ if and only if $[\mathbf{w}]_{\mathcal{B}}$ is a linear combination of the coordinate vectors $[\mathbf{u}_1]_{\mathcal{B}}, \dots, [\mathbf{u}_p]_{\mathcal{B}}$.

In Exercises 27–30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

27.
$$1 + 2t^3$$
, $2 + t - 3t^2$, $-t + 2t^2 - t^3$

28.
$$1 - 2t^2 - t^3$$
, $t + 2t^3$, $1 + t - 2t^2$

29.
$$(1-t)^2$$
, $t-2t^2+t^3$, $(1-t)^3$

30.
$$(2-t)^3$$
, $(3-t)^2$, $1+6t-5t^2+t^3$

31. Use coordinate vectors to test whether the following sets of polynomials span \mathbb{P}_2 . Justify your conclusions.

a.
$$1 - 3t + 5t^2$$
, $-3 + 5t - 7t^2$, $-4 + 5t - 6t^2$, $1 - t^2$

b.
$$5t + t^2$$
, $1 - 8t - 2t^2$, $-3 + 4t + 2t^2$, $2 - 3t$

- **32.** Let $\mathbf{p}_1(t) = 1 + t^2$, $\mathbf{p}_2(t) = t 3t^2$, $\mathbf{p}_3(t) = 1 + t 3t^2$.
 - a. Use coordinate vectors to show that these polynomials form a basis for \mathbb{P}_2 .

b. Consider the basis
$$\mathcal{B} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$$
 for \mathbb{P}_2 . Find \mathbf{q} in \mathbb{P}_2 , given that $[\mathbf{q}]_{\mathcal{B}} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}$.

226 CHAPTER 4 Vector Spaces

In Exercises 33 and 34, determine whether the sets of polynomials form a basis for \mathbb{P}_3 . Justify your conclusions.

33. [M]
$$3 + 7t$$
, $5 + t - 2t^3$, $t - 2t^2$, $1 + 16t - 6t^2 + 2t^3$

34. [M]
$$5 - 3t + 4t^2 + 2t^3$$
, $9 + t + 8t^2 - 6t^3$, $6 - 2t + 5t^2$, t^3

35. [M] Let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Show that \mathbf{x} is in H and find the \mathcal{B} -coordinate vector of \mathbf{x} , for

$$\mathbf{v}_{1} = \begin{bmatrix} 11 \\ -5 \\ 10 \\ 7 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 14 \\ -8 \\ 13 \\ 10 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 19 \\ -13 \\ 18 \\ 15 \end{bmatrix}$$

36. [M] Let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Show that \mathcal{B} is a basis for H and \mathbf{x} is in H, and find the \mathcal{B} -coordinate vector of \mathbf{x} , for

$$\mathbf{v}_1 = \begin{bmatrix} -6\\4\\-9\\4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 8\\-3\\7\\-3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -9\\5\\-8\\3 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4\\7\\-8\\3 \end{bmatrix}$$

[M] Exercises 37 and 38 concern the crystal lattice for titanium, which has the hexagonal structure shown on the left in the ac-

companying figure. The vectors
$$\begin{bmatrix} 2.6 \\ -1.5 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 4.8 \end{bmatrix}$ in \mathbb{R}^3

form a basis for the unit cell shown on the right. The numbers here are Ångstrom units (1 Å = 10^{-8} cm). In alloys of titanium,

some additional atoms may be in the unit cell at the octahedral and tetrahedral sites (so named because of the geometric objects formed by atoms at these locations).

The hexagonal close-packed lattice and its unit cell.

37. One of the octahedral sites is $\begin{bmatrix} 1/2 \\ 1/4 \\ 1/6 \end{bmatrix}$, relative to the lattice

basis. Determine the coordinates of this site relative to the standard basis of \mathbb{R}^3 .

38. One of the tetrahedral sites is $\begin{bmatrix} 1/2 \\ 1/2 \\ 1/3 \end{bmatrix}$. Determine the coordinates of this site relative to the standard basis of \mathbb{R}^3 .