

Unit - 1 An Overview of Business Intelligence, Analytics, and Decision Support

Dr. Bapuji RaoAssistant Professor
Computer Applications

Course Contents

- Information Systems Support for Decision Making
- Levels of Decision Support
- An Early Framework for Computerized Decision Support
- The Concept of Decision Support Systems
- A Framework for Business Intelligence (BI)
- Business Analytics Overview
- Brief Introduction to Big Data Analytics

Information System (IS)

Definition-1:

It helps organizations collect, process, store, and disseminate (**spread**) information to support decision-making across various levels i.e., **strategic**, **tactical**, and **operational**.

Definition-2:

It refers to any organized system for the collection, organization, storage, processing, and distribution of information. It involves **hardware**, **software**, **data**, **people**, and **processes**.

Example-1: Transaction Processing Systems (TPS)

- ATM (Automated Teller Machine): Processes cash withdrawals, deposits, and balance inquiries.
- Payroll Systems: Automates the calculation of wages, deductions, and generation of paychecks/direct deposits.

Example-2: Management Information Systems (MIS)

- Sales Performance Tracking Systems: Generates monthly or quarterly reports on sales figures by product, region, or salesperson.
- Inventory Control Systems: Provides reports on stock levels, reorder points, and slow-moving items for operational managers.

Levels of Decision Support

- Operational Level DSS
- Tactical(Managerial) Level DSS
- Strategic Level DSS

Operational Level DSS

- Focus: Routine, day-to-day decisions; highly structured or semistructured problems. Often involve specific, short-term actions.
- Users: Front-line managers, supervisors, operational staff.
- Data Source: Primarily internal, detailed, real-time data from Transaction Processing Systems (TPS).
- Output: Specific recommendations for immediate action.

Tactical (Managerial) Level DSS

- Focus: Medium-term decisions; semi-structured problems; allocating resources, monitoring performance, and improving efficiency. Often involve analysis of trends and exceptions(does not follow a rule).
- Users: Middle managers, department heads, functional managers.
- Data Source: Summarized data from TPS, internal databases, some external data (e.g., competitor pricing).
- Output: Performance reports, analyses of deviations, "what-if" scenarios, and recommendations for policy adjustments or resource allocation.

Strategic Level DSS

- Focus:Long-term, unstructured decisions; defining organizational goals, policies, and broad strategies. Often involve high uncertainty and external factors.
- Users: Senior executives, top management, board members.
- Data Source: Highly aggregated internal data, extensive external data (economic forecasts, market research, competitor intelligence, regulatory changes).
- Output: Trend analysis, forecasts, simulations of long-term impacts, insights into market opportunities or threats.

An Early Framework for Computerized Decision Support

- A key early framework often cited is the Gorry and Scott Morton Framework (1971).
- This framework classified managerial decisions based on two dimensions:
 - Problem Structure
 - Managerial Activity Level (from Robert Anthony's framework)

Problem Structure

- Structured Decisions: Repetitive, routine problems for which a definite procedure exists.
- Semi-structured Decisions: Problems where only part of the problem has a clear-cut solution, and judgment is still required.
- Unstructured Decisions: No predefined procedure; rely on experience.

Gorry and Scott-Morton Framework (1971)

By combining these, Gorry and Scott Morton created a 3x3 matrix, and then described the type of computer support suitable for each cell.

Decision Type	Structured	Semi-Structured	Unstructured
Strategic	Budget Forecasts	New Product Planning	M&A (Mergers and Acquisitions) Decisions
Tactical	Production Schedules	Credit Analysis	Advertising Plans
Operational	Payroll, Inventory	Sales Forecasts	Exception Handling

Managerial Activity Level

- Operational Control: Day-to-day operations.
- Managerial Control: Acquiring and using resources efficiently.
- Strategic Planning: Defining goals and long-term objectives.

Operational Control Example: Inventory Reordering in a Retail Store

 Scenario: A retail store manager uses inventory reports to monitor stock levels and ensure that products do not run out or become overstocked.

Managerial Control Example: Quarterly Sales Performance Review by Regional Sales Manager

 Scenario: A regional sales manager in a consumer electronics company conducts a quarterly performance review to ensure that sales targets across various districts are being met.

Strategic Planning Example: Launching a New Product Line by the Executive Team

Scenario: The executive leadership of a smart phone manufacturing company decides to enter the wearable tech market by launching a new line of smart watches over the next 2 years.

The Concept of Decision Support Systems

Definition:

A **Decision Support System (DSS)** is an interactive software system designed to support decision-makers in solving complex, non-routine problems.

Characteristics & Components

Characteristics:

- Interactive and user-friendly.
- Supports decision-making under uncertainty.
- Combines data, analytical models, and user input.

Components:

- Database: Internal and external data sources.
- Model Base: Financial, statistical, or optimization models.
- User Interface: To interact with the system.

Example-1:Revenue Management DSS

An airline uses a **Revenue Management DSS** to set ticket prices based on real-time demand, weather conditions, and competitor pricing.

Example-2:A Retail Inventory Management DSS

- Imagine a large retail chain with hundreds of stores and a vast catalog of products.
- Managing inventory efficiently is crucial for profitability.
- A DSS could be implemented to help store managers and regional managers make better inventory decisions.

Evoluation of Business Intelligence (BI)

The MIS(Management Information System) reporting systems of the 1970s were static, two dimensional, and had no analytical capabilities.

Evoluation of Business Intelligence (BI)

- In the early 1980s, the concept of Executive Information Systems (EIS) / Employee Self-Service (ESS) emerged and was expanded the computerized support to top-level managers and executives.
- The features were dynamic multidimensional (ad hoc or on-demand) reporting, forecasting and prediction, trend analysis, drill-down to details, status access, and critical success factors. These features appeared in dozens of commercial products until the mid-1990s.
- The term BI was coined by the Gartner Group in the mid-1990s. Then the same capabilities and some new ones appeared under the name BI. Finally, the original concept of EIS was transformed into BI.

Evoluation of Business Intelligence (BI)

- By 2005, BI systems started to include Artificial Intelligence capabilities as well as powerful Analytical capabilities.
- The above Figure illustrates the various tools and techniques that may be included in a BI system.
- The above Figure illustrates the evolution of Bl.
- The tools shown in the above Figure provide the capabilities of BI.

Architecture of Business Intelligence (BI)

Architecture of Business Intelligence (BI)

- The architecture of BI depends on its applications.
- MicroStrategy Corporation distinguishes five styles of BI and offers special tools for each.
- The five styles are:
 - Report Delivery and Alerting
 - Enterprise Reporting (using dashboards and scorecards)
 - Cube Analysis (also known as slice-and-dice analysis)
 - Ad hoc (on demand) queries
 - Statistics and Data Mining

8/9/2025 Course Name Faculty Name, Designation, Dept.

A Framework for Business Intelligence (BI)

Definition:

Business Intelligence(BI) refers to technologies, applications, and practices for the collection, integration, analysis, and presentation of business information to support better decision-making.

BI Process Framework

- Data Sources: Gather data from multiple sources (e.g., databases, CRMs, ERPs, web logs)
- 2) Data Integration: Clean, transform, and combine data (ETL process)
- 3) Data Storage: Store data in data warehouses or data lakes
- 4) Data Analysis: Use analytics tools (SQL, dashboards, ML) to analyze data
- 5) Reporting & Visualization (Information Delivery): Generate dashboards, KPIs(Key Performer Indicators), and reports.
- 6) Decision-Making: Business users act on insights to optimize performance.

Real-World Example: Retail Chain BI Process

BI Stage	Description		
Data Sourcing	Collects sales, customer, and inventory data from POS, online,		
	CRM systems.		
Data	Uses ETL tools to clean and consolidate data into a central		
Integration	warehouse.		
Data Storage	Loads data into a Snowflake data warehouse.		
Data Analysis	Analysts use Power BI and Python for customer segmentation.		
Reporting	Dashboards show real-time sales and low-stock alerts.		
Decision	Management uses insights to plan stock replenishment and		
Support	personalized offers.		

TOOLS COMMONLY USED IN BI PROCESS

- ETL: Talend, Apache Nifi, Informatica
- Storage: SQL Server, Snowflake, Google BigQuery
- Analytics: Excel, Power BI, Tableau, Python, R
- Visualization: Power BI, Tableau
- Decision Support: CRM Tools, ERP Dashboards

8/9/2025 Course Name Faculty Name, Designation, Dept.

Business Analytics Overview

Definition:

Business Analytics (BA) is the practice of iterative, systematic exploration of data with emphasis on statistical analysis.

Types of Analytics

- Descriptive / Reporting Analytics
- Predictive Analytics
- Prescriptive Analytics

Descriptive / Reporting Analytics

- Definition:
- It refers to the interpretation of historical data to better understand changes that have occurred in a business or system.
- It answers the question: "What happened?" (e.g., Sales reports).

Predictive Analytics

- Definition:
- It uses historical data, statistical algorithms, and machine learning techniques to identify the likelihood of future outcomes.
- It answers the question: "What is likely to happen?" (e.g.,
 Forecasting demand using ML).

Prescriptive Analytics

- Definition:
- It recommends actions you can take to affect desired outcomes.
- It answers the question: "What should we do?" or "What should be done?" (e.g., Optimization models for logistics).

Brief Introduction to Big Data Analytics

What is Big Data?

Big Data refers to extremely large datasets that may be analyzed computationally to reveal patterns, trends, and associations.

5 V's of Big Data

- 1) Volume Size of data
- 2) Velocity Speed of generation
- 3) Variety Structured, semi-structured, unstructured
- 4) Veracity Quality or trustworthiness
- 5) Value Insights gained from analysis

VOLUME

- Definition:
- It refers to the amount of data generated and stored.
- It represents the size of the data, which is usually massive in big data environments—ranging from Terabytes to Zettabytes.
- Example:
- Facebook generates over 4 petabytes of data per day from user interactions, posts, images, and videos.

VELOCITY

- Definition:
- It is the speed at which data is generated, collected, and analyzed.
- It emphasizes real-time or near-real-time data processing.
- Example:
- Stock Trading Platforms analyze millions of transactions per second to make instant trading decisions.

VARIETY

- Definition:
- It refers to the different types and sources of data—structured, semi-structured, and unstructured.

- Example:
- E-Commerce Websites process structured data (transaction records), semi-structured data (XML/JSON files), and unstructured data (customer reviews, images).

VERACITY

- Definition:
- It refers to the quality, accuracy, and trustworthiness of data.
- It deals with uncertainty or inconsistencies in data.

- Example:
- Social Media Sentiment Data may be biased or contain fake news, affecting business analytics or brand perception.

VALUE

- Definition:
- It is the usefulness or benefit derived from data.
- Big data is only valuable if it can be transformed into actionable insights.
- Example:
- Netflix uses data analytics to recommend shows to users, improving user experience and retention.

TOOLS & TECHNOLOGIES

- Hadoop: Distributed storage and processing
- Spark: Fast data processing engine
- NoSQL Databases: MongoDB, Cassandra
- Real-Time Analytics: Kafka, Storm
- Example:
- Social Media Platforms use Big Data Analytics to track user sentiment in real time during major events (e.g., elections or product launches).

Thank You