MIT 6.7230 - Algebraic techniques and semidefinite optimization	May 3, 2024
Lecture 19	
Lecturer: Pablo A. Parrilo	Scribe: ???

In this lecture we study techniques to exploit symmetries that may be present in semidefinite programming problems, particularly those arising from sum of squares decompositions [GP04]. For this, we present the basic elements of the representation theory of finite groups. There are many possible applications of these ideas in different fields; for the case of Markov chains, see [BDPX05]. The celebrated Delsarte linear programming upper bound for codes (and generalizations by Levenshtein, McEliece, etc., [DL98]) can be understood as a natural symmetry reduction of the SDP relaxations based on the Lovász theta function; see e.g. [Sch79].

1 Groups and their representations

The representation theory of finite groups is a classical topic; good descriptions are given in [FS92, Ser77]. We concentrate here on the case of finite groups; extensions to compact groups are relatively straightforward.

Definition 1. A group consists of a set G and a binary operation "·" defined on G, for which the following conditions are satisfied:

- 1. Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, for all $a, b, c \in G$.
- 2. Identity: There exist $1 \in G$ such that $a \cdot 1 = 1 \cdot a = a$, for all $a \in G$.
- 3. Inverse: Given $a \in G$, there exists $b \in G$ such that $a \cdot b = b \cdot a = 1$.

We consider a finite group G, and an n-dimensional vector space V. We also consider the associated (infinite) group GL(V) of nonsingular linear transformations of V, which we can interpret as the set of invertible $n \times n$ matrices. A linear representation of the group G is a homomorphism $\rho: G \to GL(V)$. In other words, we have a mapping from the group into linear transformations of V, that respects the group structure, i.e.

$$\rho(st) = \rho(s)\rho(t) \quad \forall s, t \in G.$$

The dimension of the representation ρ is the dimension of V.

Example 2. Let $\rho(g) = 1$ for all $g \in G$. This is the trivial representation of the group. It is a one-dimensional representation.

Example 3. For a more interesting example, consider the symmetric group S_n , and the "natural" representation $\rho: S_n \to GL(\mathbb{C}^n)$, where $\rho(g)$ is a permutation matrix. For instance, for the group of permutations of two elements, $S_2 = \{e, g\}$, where $g^2 = e$, we have

$$\rho(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \rho(g) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The representation given in Example 3 has an interesting property. The set of matrices $\{\rho(e), \rho(g)\}$ have common invariant subspaces (other than the trivial ones, namely $\{\mathbf{0}\}$ and \mathbb{C}^2). Indeed, we can easily verify that the (orthogonal) one-dimensional subspaces given by (t,t) and (t,-t) are invariant under the action of these matrices. Therefore, the restriction of ρ to those subspaces also gives representations of the group G. In this case, the one corresponding to the subspace (t,t) is "equivalent" (in a well-defined sense) to the trivial representation described in Example 2. The other subspace (t,-t) gives the one-dimensional alternating representation of S_2 , namely $\rho_A(e) = 1$, $\rho_A(g) = -1$. Thus, the representation ρ decomposes as $\rho = \rho_T \oplus \rho_A$, a direct sum of the trivial and the alternating representations.

As we will see, the same ideas extend to arbitrary finite groups.

Definition 4. An irreducible representation of a group is a linear representation with no nontrivial invariant subspaces.

Definition 5. Two representations $\rho_1: G \to GL(V_1)$ and $\rho_2: G \to GL(V_2)$ are equivalent if there exists a vector space isomorphism $T: V_1 \to V_2$ such that

$$\rho_1(g) = T^{-1}\rho_2(g)T \qquad \forall g \in G.$$

Theorem 6. Every finite group G has a finite number of nonequivalent complex irreducible representations ρ_i , of dimension d_i . The relation $\sum_i d_i^2 = |G|$ holds.

Example 7. Consider the group S_3 (permutations in three elements). This group is generated by the two permutations $s: 123 \rightarrow 213$ and $c: 123 \rightarrow 312$ ("swap" and "cycle"), and has six elements $\{e, s, c, c^2, cs, sc\}$. Notice that $c^3 = e, s^2 = e$, and s = csc.

The group S_3 has three irreducible representations, two one-dimensional, and one two-dimensional (so $1^2 + 1^2 + 2^2 = |S_3| = 6$). These are:

$$\begin{split} \rho_T(s) &= 1, & \rho_T(c) &= 1 \\ \rho_A(s) &= -1, & \rho_A(c) &= 1 \\ \rho_S(s) &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, & \rho_S(c) &= \begin{bmatrix} \omega & 0 \\ 0 & \omega^2 \end{bmatrix} \end{split}$$

where $\omega = e^{\frac{2\pi}{3}i}$ is a cube root of 1. Notice that it is enough to specify a representation on the generators of the group.

Example 8. Consider the cyclic group C_n (cyclic permutations of n elements). This group has a single generator c, which satisfies $c^n = e$. Explicitly, the group elements are $\{e, c, c^2, \ldots, c^{n-1}\}$.

The group C_n has n (complex) irreducible representations $\rho_0, \ldots, \rho_{n-1}$, given by $\rho_k(c) = \omega_k$, where $\omega_k = e^{k\frac{2\pi}{n}j}$ for $k = 0, \ldots, n-1$. All representations are one-dimensional, satisfying $1^2 + \cdots + 1^2 = |C_n| = n$.

2 Symmetry and convexity

Optimization problems that invariant under the action of a symmetry group appear quite often in applications. Whenever these problems are convex, many simplifications are possible (in fact, even for nonconvex problems it is possible to exploit symmetry).

A key property of symmetric *convex* sets is the fact that the "group average" $\frac{1}{|G|} \sum_{g \in G} \sigma(g) x$ always belongs to the set.

Figure 1: Two symmetric optimization problems, one non-convex and the other convex. For the latter, optimal solutions always lie on the fixed-point subspace.

Therefore, in convex optimization we can always restrict the solution to the fixed-point subspace

$$\mathcal{F} := \{ x | \sigma(g)x = x, \quad \forall g \in G \}.$$

In other words, for convex problems, no "symmetry-breaking" is ever necessary.

As another interpretation, that will prove useful later, the "natural" decision variables of a symmetric optimization problem are the *orbits*, not the points themselves. Thus, we may look for solutions in the quotient space.

2.1 Invariant SDPs

We consider a general SDP, described in geometric form. If \mathcal{L} is an affine subspace of \mathcal{S}^n , and $C, X \in \mathcal{S}^n$, an SDP is given by:

$$\min\langle C, X \rangle$$
 s.t. $X \in \mathcal{X} := \mathcal{L} \cap \mathcal{S}^n_+$.

Definition 9. Given a finite group G, and associated representation $\sigma: G \to GL(\mathcal{S}^n)$, a σ -invariant SDP is one where both the feasible set and the cost function are invariant under the group action, i.e.,

$$\langle C, X \rangle = \langle C, \sigma(g)X \rangle, \qquad \forall g \in G, \qquad \qquad X \in \mathcal{X} \Rightarrow \sigma(g)X \in \mathcal{X} \qquad \forall g \in G$$

Example 10. Consider the SDP given by

$$\min a + c, \qquad s.t. \quad \left[egin{array}{cc} a & b \\ b & c \end{array} \right] \succeq 0,$$

which is invariant under the Z_2 action:

$$\left[\begin{array}{cc} X_{11} & X_{12} \\ X_{12} & X_{22} \end{array}\right] \to \left[\begin{array}{cc} X_{22} & -X_{12} \\ -X_{12} & X_{11} \end{array}\right].$$

Usually in SDP, the group acts on S^n through a congruence transformation, i.e., $\sigma(g)M = \rho(g)^T M \rho(g)$, where ρ is a representation of G on \mathbb{C}^n . In this case, the restriction to the fixed-point subspace takes the form:

$$\sigma(g)M = M \implies \rho(g)M - M\rho(g) = 0, \quad \forall g \in G.$$
 (1)

Figure 2: The cyclic graph C_n in n vertices (here, n = 9).

The Schur lemma of representation theory exactly characterizes the matrices that commute with a group action.

As a consequence of an important structural result (Schur's lemma), it turns out that every representation can be written in terms of a finite number of primitive blocks, the *irreducible representations* of a group.

Theorem 11. Every group representation ρ decomposes as a direct sum of irreducible representations:

$$\rho = m_1 \vartheta_1 \oplus m_2 \vartheta_2 \oplus \cdots \oplus m_N \vartheta_N$$

where m_1, \ldots, m_N are the multiplicities.

This decomposition induces an isotypic decomposition of the space

$$\mathbb{C}^n = V_1 \oplus \cdots \oplus V_N, \quad V_i = V_{i1} \oplus \cdots \oplus V_{in_i}.$$

In the symmetry-adapted basis, the matrices in the SDP have a block diagonal form:

$$(I_{m_1} \otimes M_1) \oplus \ldots \oplus (I_{m_N} \otimes M_N)$$

In terms of our symmetry-reduced SDPs, this means that not only the SDP block-diagonalizes, but there is also the possibility that many blocks are identical.

2.2 Example: symmetric graphs

Consider the MAXCUT problem on the cycle graph C_n with n vertices (see Figure 2). It is easy to see that the optimal cut has cost equal to n or n-1, depending on whether n is even or odd, respectively. What would the SDP relaxation yield in this case? If A is the adjacency matrix of the graph, then the SDP relaxations have essentially the form

minimize
$$\operatorname{Tr} AX$$
 maximize $\operatorname{Tr} \Lambda$
s.t. $X_{ii} = 1$ s.t. $A \succeq \Lambda$ (2)
 $X \succeq 0$ Λ diagonal

By the symmetry of the graph, the matrix A is circulant, i.e., $A_{ij} = a_{i-j \mod n}$.

We focus now on the dual form. It should be clear that the cyclic symmetry of the graph induces a cyclic symmetry in the SDP, i.e., if $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ is a feasible solution, then $\tilde{\Lambda} = \operatorname{diag}(\lambda_n, \lambda_1, \lambda_2, \dots, \lambda_{n-1})$ is also feasible and achieves the same objective value. Thus, by averaging over the cyclic group, we can always restrict D to be a multiple of the identity matrix,

i.e., $\Lambda = \lambda I$. Furthermore, the constraint $A \succeq \lambda I$ can be block-diagonalized via the Fourier matrix (i.e., the irreducible representations of the cyclic group), yielding:

$$A \succeq \lambda I \qquad \Leftrightarrow \qquad 2\cos\frac{k\pi}{n} \ge \lambda \qquad k = 0, \dots, n-1.$$

From this, the optimal solution of the relaxation can be directly computed, yielding the exact expressions for the upper bound on the size of the cut

$$mc(C_n) \le SDP(C_n) = \begin{cases} n & n \text{ even} \\ n\cos^2\frac{\pi}{2n} & n \text{ odd.} \end{cases}$$

Although this example is extremely simple, exactly the same techniques can be applied to much more complicated problems; see for instance [PP04, dKMP+06, Sch05, BV08] for some recent examples.

2.3 Example: even polynomials

Another (but illustrative) example of symmetry reduction is the case of SOS decompositions of even polynomials. Consider a polynomial p(x) that is *even*, i.e., it satisfies p(x) = p(-x). Does this symmetry help in making the computations more efficient?

2.4 Benefits

In the case of semidefinite programming, there are many benefits to exploiting symmetry:

- Replace one big SDP with smaller, coupled problems.
- Instead of checking if a big matrix is PSD, we use one copy of each repeated block (constraint aggregation).
- Eliminates multiple eigenvalues (numerical difficulties).
- For groups, the coordinate change depends only on the group, and not on the problem data.
- Can be used as a general preprocessing scheme. The coordinate change T is unitary, so well-conditioned.

As we will see in the next section, this approach can be extended to more general algebras that do not necessarily arise from groups.

2.5 Sum of squares

In the case of SDPs arising from sum of squares decompositions, a parallel theory can be developed by considering the symmetry-induced decomposition of the full polynomial ring $\mathbb{R}[x]$. Since a complete explanation involves some elements of invariant theory, we omit the details here; see [GP04] for the full story.

Example 12. Consider the (non-convex) quartic trivariate polynomial:

$$p(x, y, z) = x^{4} + y^{4} + z^{4} - 4xyz + x + y + z.$$

This polynomial is invariant under all permutations of $\{x, y, z\}$ (the full symmetric group S_3). The global minimum of p is $p_{\star} \approx -2.1129$, and is achieved at the orbit of global minimizers:

$$(0.988, -1.102, -1.102), (-1.102, 0.988, -1.102), (-1.102, -1.102, 0.988).$$

For this polynomial, it holds that $p_{sos} = p_{\star}$.

We show now how to compute p_{sos} by exploiting symmetry. Since p(x, y, z) has n = 3 variables, degree 2d = 4, and a full Newton polytope, its standard sos formulation is indexed by all $\binom{n+d}{d} = \binom{5}{2} = 10$ monomials of degree 2, i.e.,

$$p(x,y,z) - \gamma = \begin{bmatrix} 1 \\ x \\ y \\ z \\ y^2 \\ z^2 \\ yz \\ xz \\ xy \end{bmatrix}^T \begin{bmatrix} q_{00} & q_{01} & q_{02} & q_{03} & q_{04} & q_{05} & q_{06} & q_{07} & q_{08} & q_{09} \\ q_{01} & q_{11} & q_{12} & q_{13} & q_{14} & q_{15} & q_{16} & q_{17} & q_{18} & q_{19} \\ q_{02} & q_{12} & q_{22} & q_{23} & q_{24} & q_{25} & q_{26} & q_{27} & q_{28} & q_{29} \\ q_{03} & q_{13} & q_{23} & q_{33} & q_{34} & q_{35} & q_{36} & q_{37} & q_{38} & q_{39} \\ q_{04} & q_{14} & q_{24} & q_{34} & q_{44} & q_{45} & q_{46} & q_{47} & q_{48} & q_{49} \\ q_{05} & q_{15} & q_{25} & q_{35} & q_{45} & q_{55} & q_{56} & q_{57} & q_{58} & q_{59} \\ q_{06} & q_{16} & q_{26} & q_{36} & q_{46} & q_{56} & q_{66} & q_{67} & q_{68} & q_{69} \\ q_{07} & q_{17} & q_{27} & q_{37} & q_{47} & q_{57} & q_{67} & q_{77} & q_{78} & q_{79} \\ xz \\ xy \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ z \\ y^2 \\ y^2 \\ y^2 \\ yz \\ xz \\ xy \end{bmatrix}$$

where the matrix Q above will be constrained to be positive semidefinite. Recall that p is invariant under all permutation of the variables (the full symmetric group S_3). Thus, we can constrain the matrix Q to be in the fixed-point subspace, i.e., it should satisfy $Q = \rho(g)^T Q \rho(g)$, where $g \in G$ and $\rho: G \to GL(\mathbb{R}^{10})$ is the induced representation on the vector of monomials that arises from permuting the variables (x, y, z). Solving the equations that define the fixed-point subspace, we find that the Gram matrix must have the structure

$$\widehat{Q} = \begin{bmatrix} r_0 & r_1 & r_1 & r_1 & r_2 & r_2 & r_2 & r_3 & r_3 & r_3 \\ r_1 & r_4 & r_5 & r_5 & r_6 & r_7 & r_7 & r_8 & r_9 & r_9 \\ r_1 & r_5 & r_4 & r_5 & r_7 & r_6 & r_7 & r_9 & r_8 & r_9 \\ r_1 & r_5 & r_5 & r_4 & r_7 & r_7 & r_6 & r_9 & r_9 & r_8 \\ r_2 & r_6 & r_7 & r_7 & r_{10} & r_{11} & r_{11} & r_{12} & r_{13} & r_{13} \\ r_2 & r_7 & r_6 & r_7 & r_{11} & r_{10} & r_{11} & r_{13} & r_{12} & r_{13} \\ r_2 & r_7 & r_7 & r_6 & r_{11} & r_{11} & r_{10} & r_{13} & r_{13} & r_{12} \\ r_3 & r_8 & r_9 & r_9 & r_{12} & r_{13} & r_{13} & r_{14} & r_{15} & r_{15} \\ r_3 & r_9 & r_8 & r_9 & r_{13} & r_{12} & r_{13} & r_{15} & r_{14} & r_{15} \\ r_3 & r_9 & r_9 & r_8 & r_{13} & r_{13} & r_{12} & r_{15} & r_{15} & r_{14} \end{bmatrix}.$$

$$(3)$$

Notice that the fixed-point subspace is 16-dimensional, as opposed to the $\binom{11}{2} = 55$ degrees of freedom in the original matrix.

We can now, however, give a nicer description of this subspace. Consider the coordinate transformation (a symmetry-adapted basis) of the form $X \mapsto T^T X T$, where the orthogonal matrix T is given by

$$T = BlockDiag(1, R, R, R) \cdot \Pi, \qquad R = \begin{bmatrix} \alpha & \alpha & \alpha \\ \alpha & \beta & \gamma \\ \alpha & \gamma & \beta \end{bmatrix},$$

where $\alpha = 1/\sqrt{3}$, $\beta = (3-\sqrt{3})/6$, $\gamma = -(3+\sqrt{3})/6$, and Π is the permutation matrix satisfying $\Pi^T[x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9] = [x_0, x_1, x_4, x_7, x_2, x_5, x_8, x_3, x_6, x_9]$. It can be verified that

under this tranformation, the matrix in (3) takes now the form

$$T^T \widehat{Q} T = BlockDiag(Q_1, Q_2, Q_2),$$

where

$$Q_{1} = \begin{bmatrix} r_{0} & \sqrt{3}r_{1} & \sqrt{3}r_{2} & \sqrt{3}r_{3} \\ \sqrt{3}r_{1} & r_{4} + 2r_{5} & r_{6} + 2r_{7} & r_{8} + 2r_{9} \\ \sqrt{3}r_{2} & r_{6} + 2r_{7} & r_{10} + 2r_{11} & r_{12} + 2r_{13} \\ \sqrt{3}r_{3} & r_{8} + 2r_{9} & r_{12} + 2r_{13} & r_{14} + 2r_{15} \end{bmatrix},$$

$$Q_{2} = \begin{bmatrix} r_{4} - r_{5} & r_{6} - r_{7} & r_{8} - r_{9} \\ r_{6} - r_{7} & r_{10} - r_{11} & r_{12} - r_{13} \\ r_{8} - r_{9} & r_{12} - r_{13} & r_{14} - r_{15} \end{bmatrix}.$$

Notice that the 10×10 matrix has split in three blocks, one of size 4×4 , and two identical blocks of size 3×3 . Also, all entries are otherwise linearly independent (in fact, we have the dimension count $\binom{5}{2} + \binom{4}{2} = 10 + 6 = 16$, the number of free parameters in (3)).

Since $\widehat{Q} \succeq 0$ if and only if $T^T \widehat{Q} T \succeq 0$, this implies that instead of solving a semidefinite

Since $\widehat{Q} \succeq 0$ if and only if $T^T \widehat{Q} T \succeq 0$, this implies that instead of solving a semidefinite programming problem with a positivity constraint on a 10×10 matrix, we have now a 4×4 and a 3×3 matrix instead (clearly, we only need one copy of the two identical 3×3 blocks), which is a lot simpler.

3 Algebra decomposition

An alternative (and somewhat more general) approach can be obtained by focusing instead on the associative algebra generated by the matrices in a semidefinite program.

Definition 13. An associative algebra \mathcal{A} over \mathbb{C} is a vector space with a \mathbb{C} -bilinear operation $\cdot : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ that satisfies

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z, \quad \forall x, y, z \in \mathcal{A}.$$

In general, associative algebras do not need to be commutative (i.e., $x \cdot y = y \cdot x$). However, that is an important special case, with many interesting properties. Important examples of finite dimensional associative algebras are:

- Full matrix algebra $\mathbb{C}^{n\times n}$, standard product.
- The subalgebra of square matrices with equal row and column sums.
- The *n*-dimensional algebra generated by a single $n \times n$ matrix.
- The group algebra: formal C-linear combination of group elements.
- Polynomial multiplication modulo a zero dimensional ideal.
- The Bose-Mesner algebra of an association scheme.

We have already encountered some of these, when studying the companion matrix and its generalizations to the multivariate case. A particularly interesting class of algebras (for a variety of reasons) are the *semisimple* algebras.

Definition 14. The radical of an associative algebra A, denoted rad(A), is the intersection of all maximal left ideals of A.

Definition 15. An associative algebra A is semisimple if Rad(A) = 0.

For a semidefinite programming problem in standard (dual) form

$$\max b^T y$$
 s.t. $A_0 - \sum_{i=1}^m A_i y_i \succeq 0$,

we consider the algebra generated by the A_i .

Theorem 16. Let $\{A_0, \ldots, A_m\}$ be given symmetric matrices, and \mathcal{A} the generated associative algebra. Then, \mathcal{A} is a semisimple algebra.

Semisimple algebras have a very nice structure, since they are essentially the direct sum of much simpler algebras.

Theorem 17 (Wedderburn). Every finite dimensional semisimple associative algebra over \mathbb{C} can be decomposed as a direct sum

$$\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2 \oplus \ldots \oplus \mathcal{A}_k.$$

Each A_i is isomorphic to a simple full matrix algebra.

Example 18. A well-known example is the (commutative) algebra of circulant matrices, i.e., those of the form

$$A = \left[\begin{array}{ccccc} a_1 & a_2 & a_3 & a_4 \\ a_4 & a_1 & a_2 & a_3 \\ a_3 & a_4 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_1 \end{array} \right].$$

Circulant matrices are ubiquitous in many applications, such as signal processing. It is well-known that there exists a fixed unitary coordinate change (the $n \times n$ discrete Fourier transform matrix with entries $F_{jk} = \frac{1}{\sqrt{n}}\omega^{jk}$ where ω is an n-root of unity) under which all matrices A are diagonal (with distinct scalar blocks). For instance, for the example above with n = 4, we have

$$F = \frac{1}{\sqrt{4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}, \qquad F^*AF = \operatorname{diag} \left(\begin{bmatrix} a_1 + a_2 + a_3 + a_4 \\ a_1 - ia_2 - a_3 + ia_4 \\ a_1 - a_2 + a_3 - a_4 \\ a_1 + ia_2 - a_3 - ia_4 \end{bmatrix} \right).$$

Remark 19. In general, any associative algebra is the direct sum of its radical and a semisimple algebra. For the n-dimensional algebra generated by a single matrix $A \in \mathbb{C}^{n \times n}$, we have that A = S + N, where S is diagonalizable, N is nilpotent, and SN = NS. Thus, this statement is essentially equivalent to the existence of the Jordan decomposition.

References

[BDPX05] S. Boyd, P. Diaconis, P. A. Parrilo, and L. Xiao. Symmetry analysis of reversible Markov chains. *Internet Math.*, 2(1):31–71, 2005.

[BV08] C. Bachoc and F. Vallentin. New upper bounds for kissing numbers from semidefinite programming. J. Amer. Math. Soc, 21(3):909–924, 2008.

- [dKMP⁺06] E. de Klerk, J. Maharry, D.V. Pasechnik, R.B. Richter, and G. Salazar. Improved bounds for the crossing numbers of $K_{m,n}$ and K_n . SIAM Journal on Discrete Mathematics, 20:189, 2006.
- [DL98] P. Delsarte and VI Levenshtein. Association schemes and coding theory. *IEEE Transactions on Information Theory*, 44(6):2477–2504, 1998.
- [FS92] A. Fässler and E. Stiefel. Group Theoretical Methods and Their Applications. Birkhäuser, 1992.
- [GP04] K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. *Journal of Pure and Applied Algebra*, 192(1-3):95–128, 2004.
- [PP04] P. A. Parrilo and R. Peretz. An inequality for circle packings proved by semidefinite programming. *Discrete and Computational Geometry*, 31(3):357–367, 2004.
- [Sch79] A. Schrijver. A comparison of the Delsarte and Lovász bounds. *IEEE Transactions on Information Theory*, 25(4), 1979.
- [Sch05] A. Schrijver. New code upper bounds from the Terwilliger algebra and semidefinite programming. *IEEE Transactions on Information Theory*, 51(8):2859–2866, 2005.
- [Ser77] J.-P. Serre. Linear Representations of Finite Groups. Springer-Verlag, 1977.