CS156 (Introduction to AI), Spring 2021

Homework Assignment #5 submission

Student Name: HUY NGUYEN

Student ID: 015207465

Email address: huy.l.nguyen@sjsu.edu

(mailto:huy.l.nguyen@sjsu.edu)

Solution

```
In [1]: import numpy as np
        import pandas as pd
        from sklearn import datasets
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model selection import train test split
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.model selection import cross val score
        from sklearn.metrics import plot confusion matrix
        from sklearn.ensemble import RandomForestClassifier
        from sklearn import tree
        from sklearn.preprocessing import StandardScaler
In [2]: np.random.seed(42)
```

```
In [3]: | dataset = pd.read csv("homework5 input data.csv")
        dataset.head()
```

Out[3]:

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	 stalk- surface- below- ring	sta co abc r
0	р	x	s	n	t	р	f	С	n	k	 s	
1	е	x	s	У	t	а	f	С	b	k	 s	
2	е	b	s	W	t	I	f	С	b	n	 s	
3	р	x	у	W	t	р	f	С	n	n	 s	
4	е	x	s	g	f	n	f	W	b	k	 s	

5 rows × 23 columns

```
In [4]: X = dataset.drop(['class'], axis =1)
X.head()
```

Out[4]:

	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	stalk- shape	 stalk- surface- below- ring	cc ab
() x	s	n	t	р	f	С	n	k	е	 s	
1	x	s	у	t	а	f	С	b	k	е	 s	
2	. b	s	w	t	Į	f	С	b	n	е	 s	
3	x	у	w	t	р	f	С	n	n	е	 s	
4	×	s	g	f	n	f	w	b	k	t	 s	

5 rows × 22 columns

In [5]: X_numeric = pd.get_dummies(X, columns=X.columns, prefix = X.columns)
X_numeric.head()

Out[5]:

	cap- shape_b	cap- shape_c	cap- shape_f		cap- shape_s	cap- shape_x		cap- surface_g	cap- surface_s	surfa
0	0	0	0	0	0	1	0	0	1	
1	0	0	0	0	0	1	0	0	1	
2	1	0	0	0	0	0	0	0	1	
3	0	0	0	0	0	1	0	0	0	
4	0	0	0	0	0	1	0	0	1	

5 rows × 117 columns

```
In [6]: Y = pd.DataFrame(dataset['class'])
Y
```

Out[6]:

class
р
е
е
p
е
е
е
е
р
е

8124 rows × 1 columns

Out[7]:

	class	cap- shape_b	cap- shape_c	cap- shape_f	cap- shape_k	cap- shape_s	cap- shape_x	cap- surface_f	cap- surface_g	surfac
0	1	0	0	0	0	0	1	0	0	
1	0	0	0	0	0	0	1	0	0	
2	0	1	0	0	0	0	0	0	0	
3	1	0	0	0	0	0	1	0	0	
4	0	0	0	0	0	0	1	0	0	
8119	0	0	0	0	1	0	0	0	0	
8120	0	0	0	0	0	0	1	0	0	
8121	0	0	0	1	0	0	0	0	0	
8122	1	0	0	0	1	0	0	0	0	
8123	0	0	0	0	0	0	1	0	0	

8124 rows × 118 columns

```
In [8]: Y_final = FinalData['class']
         Y_final
Out[8]: 0
                 1
         1
                 0
         2
                 0
         3
                 1
         4
                 0
         8119
                 0
         8120
                 0
         8121
                 0
         8122
                 1
        8123
        Name: class, Length: 8124, dtype: int64
```

```
In [9]: X = FinalData.drop(['class'], axis =1).values
scaler = StandardScaler()
X = scaler.fit_transform(X)
```

```
In [10]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y_final, test_size=0.2, rain_test_split(X, Y_fi
                      X_train.shape, Y_train.shape, X_test.shape, Y_test.shape
Out[10]: ((6499, 117), (6499,), (1625, 117), (1625,))
In [11]: | X train
Out[11]: array([[-0.24272523, -0.02219484, -0.79620985, ..., -0.40484176,
                                          -0.21782364, -0.15558197],
                                        [-0.24272523, -0.02219484, -0.79620985, ..., -0.40484176,
                                          -0.21782364, -0.15558197],
                                        [-0.24272523, -0.02219484, -0.79620985, ..., -0.40484176,
                                          -0.21782364, -0.15558197],
                                        . . . ,
                                        [-0.24272523, -0.02219484, -0.79620985, ..., -0.40484176,
                                          -0.21782364, -0.15558197],
                                        [-0.24272523, -0.02219484, 1.2559503, ..., -0.40484176,
                                          -0.21782364, -0.15558197],
                                        [-0.24272523, -0.02219484, -0.79620985, ..., -0.40484176,
                                          -0.21782364, -0.15558197]])
In [12]: Y train
Out[12]: 7434
                                          0
                      7725
                                          0
                      783
                                          0
                       1928
                                          0
                      7466
                                          1
                      4931
                                          0
                      3264
                                          1
                      1653
                                          0
                       2607
                                          0
                      2732
                      Name: class, Length: 6499, dtype: int64
In [13]: X test
Out[13]: array([[-0.24272523, -0.02219484, -0.79620985, ..., -0.40484176,
                                            4.59086996, -0.15558197],
                                        [-0.24272523, -0.02219484, 1.2559503, ..., -0.40484176,
                                          -0.21782364, -0.15558197],
                                        [-0.24272523, -0.02219484, -0.79620985, ..., -0.40484176,
                                          -0.21782364, -0.15558197],
                                        [-0.24272523, -0.02219484, 1.2559503, ..., 2.47010093,
                                         -0.21782364, -0.15558197],
                                        [4.11988487, -0.02219484, -0.79620985, ..., -0.40484176,
                                          -0.21782364, -0.15558197],
                                        [-0.24272523, -0.02219484, -0.79620985, ..., -0.40484176,
                                          -0.21782364, -0.15558197]])
```

```
In [14]: Y test
Out[14]: 380
                  1
          3641
          273
                  0
          1029
                  0
          684
                  0
          3535
                  0
          1643
                  0
          6494
                  1
          6
          3175
          Name: class, Length: 1625, dtype: int64
```

Build a decision tree classifier

```
In [15]: model = DecisionTreeClassifier(random_state=0)
    # we can first score our model through cross validation (applicable to any supervious cross_val_score(model, X_train, Y_train, cv=5)

Out[15]: array([1., 1., 1., 1., 1.])

In [16]: model.fit(X_train, Y_train)
    print('Accuracy of linear SVC on training set: {:.2f}'.format(model.score(X_train print('Accuracy of linear SVC on test set: {:.2f}'.format(model.score(X_test, Y_1) Accuracy of linear SVC on test set: 1.00
    Accuracy of linear SVC on test set: 1.00
```



```
Confusion matrix, without normalization [[852 0] [ 0 773]]

Normalized confusion matrix [[1. 0.] [0. 1.]]
```


In []: