Ejercicio 1.- Para la red de Hopfield ilustrada a continuación, dibuje el diagrama de transiciones síncronas posibles y luego determine los puntos fijos, o estados estables de la red.

Solución.-

Para la unidad elegida, se calcula la suma de los pesos de las conexiones sólo a los vecinos activos, si los hay. Si la suma es > 0, entonces la unidad elegida se convierte en activa, de lo contrario, se vuelve inactiva. Si suponemos que los tres nodos están activos tenemos de inicio $X = [1 \ 1 \ 1]$, para los nodos 1, 2 y 3. La suma de las conexiones para x_1 es -2+(-1)=-3, por lo que se hace inactiva. la suma de las conexiones para x_2 tiene ahora como -2+1=-1, luego se hace inactiva. La suma de las conexiones para x_3 es -1+1 luego sigue activa. De esta forma el estado estable es $X = [-1 \ -1 \ 1]$.

La matriz de transición de estados es $W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$ y matricialmente tenemos

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

 $luego\ se\ deduce\ que\ (1,1,1) \Leftrightarrow (-1,-1,1)$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

luego se deduce que $(1,1,-1) \Leftrightarrow (-1,-1,-1)$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

luego se deduce que $(-1,1,-1) \Rightarrow (-1,1,1)$ y que (-1,1,1) es un estado estable

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ -2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

luego se deduce que $(1,-1,1) \Rightarrow (1,-1,-1)$ y que (1,-1,-1) es un estado estable

Ejercicio 2.- Considere los siguientes patrones

- a)¿Cómo se codifican para que puedan ser almacenados en una red de Hopfiel?
- b) Calcule la correspondiente matriz de pesos de la red de Hopfield usando la regla de Hebb.
- c)¿Que es un punto fijo de una red? Calcule al menos un punto fijo de la red anterior.
- **Sol.-** a) La codificación se puede hacer por ejemplo en la forma

b) Usando la regla de Hebb los pesos de la red se calculan como $\mathbf{W} = \sum_{i=1}^{3} \mathbf{x}_{i} \mathbf{x}_{i}^{T} - 3\mathbf{I}$, de esta forma

c) Para confirmar que x_1 es un estado estable activamos la red en la forma

como podemos ver se mantiene el signo por lo que no cambian los estados de \mathbf{x}_1 y de esta forma \mathbf{x}_1 es estable.

Ejercicio 3.- Considere los siguientes patrones

- a) Calcule la correspondiente matriz de pesos de la red de Hopfield usando la regla de Hebb.
- b) Calcule al menos un estado estable de la red anterior e indique
- c)¿Cómo se calcula su función de energía?

(blancos) y -1 para los estados no activos (negros)

b) Usando la regla de Hebb los pesos de la red se calculan como $\mathbf{W} = \sum_{i=1}^{3} \mathbf{x_i} \mathbf{x_i}^{\mathrm{T}} - 3\mathbf{I}$, de esta forma

luego no cambia de signo y es un estado estable al no cambiar de signo las componentes del vector

$$E(t) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j + \sum_i s_i \Theta_i$$

El vector x está caracterizado por todos blancos, esto es todas las unidades están activadas. Así, s_i es +1 para todo i y siempre será en este caso $\sum_j w_{ij} s_j > \Theta_i$ entonces s_i sigue siendo +1, para todo i. Si suponemos que Θ =0, entonces

$$E(t) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j = -\frac{1}{2} \sum_{i=1}^9 \sum_{j=1}^9 w_{ij} = -\frac{1}{2} (w_{11} + \dots + w_{99}) =$$

$$= -\frac{1}{2} (4 + 18 + 18 + 18 + 18 + 18 + 18 + 18 + 4) = -60$$

Ejercicio 4.- Se han obtenido los siguientes resultados mediante un ADL sobre la base de datos Pima.

a) Que significa la siguiente tabla de probabilidades?

Probabilidades previas para grupos

		Casos utilizados en análisis			
clase	Previa	No ponderados	Ponderados		
nodiabetes	,646	372	372,000		
diabetes	,354	204	204,000		
Total	1,000	576	576,000		

Solución.- Significa que en el conjunto de entrenamiento hay 372 patrones sin diabetes un 0.646% y 204 con diabetes un 0.354%. Si pasamos los porcentajes a probabilidades, tendremos las probabilidades a priori de que un paciente tenga o no diabetes.

b) Analice las siguientes tablas, indicando el modelo con el que se han obtenido estos resultados.

				Pertenencia a grupos pronosticada		
			clase	nodiabetes	diabetes	Total
Casos seleccionados	Original	Recuento	nodiabetes	320	52	372
			diabetes	85	119	204
		%	nodiabetes	86,0	14,0	100,0
			diabetes	41,7	58,3	100,0
Casos no seleccionados	Original	Recuento	nodiabetes	113	15	128
			diabetes	24	40	64
		%	nodiabetes	88,3	11,7	100,0
			diabetes	37,5	62,5	100,0

Solución.- En las tablas tenemos las matrices de confusión de entrenamiento y de test, asociadas a los patrones que se clasifican tanto bien como mal, así en la matriz de test: TP=113, TN=40, FP=24 y FN=15. Precisión= 113/(113+24)= 0.8248 y la Sensibilidad o Recall= 113/(113+15)= 0.8828.

A partir de estos valores se calculan los % y también el CCR de entrenamiento = (320+119)/576=0.7621 y de test (113+40)/192=0.7969

La función de entropía bajo las hipótesis de normalidad de las clases es

$$H(\mathbf{x}) = (1/2)(\mathbf{x} - \mathbf{m}_1)^T \mathbf{\Sigma}_1^{-1}(\mathbf{x} - \mathbf{m}_1) - (1/2)(\mathbf{x} - \mathbf{m}_2)^T \mathbf{\Sigma}_2^{-1}(\mathbf{x} - \mathbf{m}_2) + \frac{1}{2} \ln \frac{|\mathbf{\Sigma}_1|}{|\mathbf{\Sigma}_2|}$$

La regla de decisión será entonces

Si
$$H(\mathbf{x}) < \ln \frac{P(C_1)}{P(C_2)}$$
, Entonces $\mathbf{x} \in C_1$

Si
$$H(\mathbf{x}) > \ln \frac{P(C_1)}{P(C_2)}$$
, Entonces $\mathbf{x} \in C_2$

c) Que tipo de diseño se ha hecho sobre la base de datos total

Solución.- Es un diseño de tipo holdout estratificado, donde el número de patrones de entrenamiento es 576 (un 75%) y el de test 192 (un 25%).

Ejercicio 5.- En un modelo de análisis discriminante lineal tenemos la siguiente regla de decisión.

Si
$$(\mathbf{m}_2 - \mathbf{m}_1)^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{x} + 1/2 (\mathbf{m}_1^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{m}_1 - \mathbf{m}_2^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{m}_2) - \ln \frac{P(C_1)}{P(C_2)} > 0$$

entonces $\mathbf{x} \in C_1$

Indique brevemente como hemos llegado a esta regla de decisión. ¿Qué significado tienen $P(C_1)$ y $P(C_2)$? Cuál sería la decisión en el caso de que el vector asociado a un patrón sea

$$\mathbf{x}^{T} = (-1, -1), \ \mathbf{m}_{1}^{T} = (2,2) \ \mathbf{m}_{2}^{T} = (-2, -2) \ \Sigma^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
, sabiendo además que tenemos 50

patrones de la clase 1 y 50 de la clase 2 de la muestra de entrenamiento.

Solución.- Por una parte

$$((-2,-2)-(2,2))\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} -1 \\ -1 \end{pmatrix} = 20$$

y por otra

$$(2,2) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 20$$

$$(-2,-2)\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} -2 \\ -2 \end{pmatrix} = 20$$

como además

$$-\ln\frac{P(C_1)}{P(C_2)} = -\ln\frac{0.5}{0.5} = 0$$

Tenemos que el valor de la función discriminante es 20 y por tanto ${\bf x}$ pertenece a la clase cuyo vector de medias es ${\bf m}_1$