AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOF-ETC F/6 12/1
A COMPARISON OF VARIOUS TECHNIQUES FOR THE PREDICTION OF MASS-L--ETC(U)
AR 81 F B ATKINSON
AR 1176AE/AA/800-1
NL AD-A100 820 UNCLASSIFIED 1 or 2 4D A 100 B 2 O

AFIT/GAE/AA/80D-1

Acception For	
DTIC TAS Viniminaraca	ļ
Jastification	
PV. Dr. No. 1. Harry	
	ł
	·
N	

A COMPARISON OF VARIOUS TECHNIQUES FOR THE PREDICTION OF MASS-LOADED MODE SHAPES AND NATURAL FREQUENCIES

THESIS,

AFIT/GAE/AA/80D-1 Frank B Atkinson Captain USAF

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
1. REPORT NUMBER 2 GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER
AFIT/GAE/AA/80D-1 AD-AICO 820	
4. TITLE (and Subtitle)	5 TYPE OF REPORT & PERIOD COVERED
A COMPARISON OF VARIOUS TECHNIQUES FOR THE	
PREDICTION OF MASS-LOADED MODE SHAPES AND	MS Thesis
NATURAL FREQUENCIES	6 PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(5)
Frank B. Atkinson	
Frank B. Ackinson	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Air Force Institute of Technology (AFIT-EN	
Wright-Patterson AFB, Ohio 45433	
	12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS	March 1981
·	13. NUMBER OF PAGES
	133
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
	The stance of the stance
	Unclassified
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	<u></u>
Approved for public release; distribution u	unlimited
inpproved for public refedee, discribution (and the cou
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)
18. SUPPLEMENTARY NOTES Approved for public red	ease: TAW AFR 190-17
	3000, 2111 1211 230 21
16 JUN 1981 FREDERICK C. LYNCH, Ma	Tow tichin'
16 JUN 1981 FREDERICK C. LYNCH, Ma Director of Information	or, USAF
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Modal Prediction Techniques	
Whaley Algorithm Finite elements	
Mass-loaded mode shape prediction technique	105
Thas rouse mode shape prediction rechilde	
20. ABSTRACT (Continue on reverse side II necessary and identity by block number)	company the constant
The purpose of this investigation was to	
tained from three modal prediction technique was an algorithm developed by Whaley for li	
(Method 1). Results using this algorithm w	
thesis by Glenesk. The second method was t	
using NASTRAN (Method 2). The final method	
loaded mass and stiffness matrices from the	
differential equation of modal analysis usi	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

from an unloaded test item (Method 3). < Once these matrices had been recovered, a quantity of mass was added to the mass matrix to to simulate a mass-loaded case. The generalized eigenvalue problem was solved for mass-loaded frequencies and mode shapes which were compared to experimental results for the same test item. Both square and rectangular modal matrices were considered in Method 3. The same test item and three discrete mass-loaded configurations which Glenesk used were tested. Percentage frequency deviations from the unloaded test item to the mass-loaded predictions ranged from -7.2-% to +7.4-% in Method 1, from -20.3-% to 17.84-% in Method 2, and from -20.6-% to +8.4-% in Method 3. Several discrepancies in each technique prevent a direct comparison of these results. The most noteworthy discrepancy was the fact that the modal measurement procedure generated nonorthogonal modes whereas the first method assumed the mode shapes to be unaltered between the unloaded and mass-loaded cases while the second method generated mutually orthogonal modes. The unloaded nonorthogonal mode vectors were used in Mathod 3 to generated mass-loaded modal quantities. Detailed procedures, results, and conclusions are obtained in the body and appendices of the report.

AFIT/GAE/AA/80D-1

A COMPARISON OF VARIOUS TECHNIQUES FOR
THE PREDICTION OF MASS-LOADED MODE
SHAPES AND NATURAL FREQUENCIES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Frank B. Atkinson, B.S.A.E.

Captain

USAF

Graduate Aeronautical Engineering
March 1981

Approved for public release; distribution unlimited.

Preface

The purpose of this study was to compare several techniques for the prediction of mass-loaded natural frequencies and mode shapes. Of special interest in this study was the recovery of the unloaded mass, stiffness, and damping matrices from measured modal data using a non-square modal matrix and subsequent solution for mass-loaded modal data.

This study was somewhat limited in scope in that only one panel with three discrete mass loadings was experimentally tested and analysed. It is hoped the technique using pseudoinverses will be explored further to determine the general validity of this method. Appendices A, B, and C should be helpful in this endeavour.

I would like to thank my advisor, Capt. H. C. Briggs of the Air Force Institute of Technology, Mr. R. D. Talmadge of the Air Force Flight Dynamics Laboratory, and Dr. P. W. Whaley of the University of Nebraska for their support and guidance in this effort. Additionally, I would like to thank my wife, Janice, for her constant encouragement and inspiration. Finally, and most of all, I would like to thank my Savior, Jesus Christ, for that "Peace which passeth all understanding (Phillipians 4:7)." In keeping with Proverbs 3, versus 5 and 6,

"Trust in the Lord with all thine heart,
And lean not unto thine own understanding;
In all thy ways acknowledge Him,
And He will direct thy paths",

I dedicate this thesis to Him.

Frank B. Atkinson

Contents

																						F	age
Prefa	се			•																•	•		ii
List	of	Fig	jure	es																			vi
List	of	Тab	oles	5															•	•		٠٧.	riii
List	of	Syn	nbo.	ls		•								•	•		•		•		•		ix
Abstr	act			•															•				хi
I.	Ir	ntro	odu	cti	.on	l								•	•			•				•	1
			kgı																			•	1
			pos jec				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5 6
II.	Мо	odal	L Au	na1	ys.	is	a	nd	ı T	`es	ŧ	Pr	·oc	ed	lur	es	5						7
		Mas Str Mod Mod	st iss-issued	Loa tur Ar Ar	di al al al	.ng . M .ys .ys	od is	le1	.s 'es	· st	Pr		cec	lur	· es	•		•		•	•	•	7 7 10 14 16 23
III.	Тł	ne M	Vha.	ley	7 A	.1g	or	·it	hn	n M	íet	hc	od						•	•	•		26
		-	erv sul																	•	•		26 27
IV.	Tl	ne E	in.	it∈	e E	le	me	nt	: N	1et	:hc	od							•				31
		Fir	erv nite sul	e E	16	• eme	nt		100	le1	Is	•			•	•	•	•	•	•	•	•	31 31 33
v.	T	ing	Jse th g M ade	e I atı	Dis Cic	cr ces	et	e ind	Μā	188	5,	St	if	ffr	ies	s,	, â	ano	l f	Dar	np-	- •	41
		Dat	erv ta :	Rec	duc							•		-	•	•					•	•	41 41 42

Contents

1	Page
VI. Discussion of the Methods	49
General	49 50 52
Eigenvalue Problem	58
VII. Recommendations	60
Bibliography	62
Appendix A: Mathematical Considerations and Example Problems in the Calculation and Use of the Pseudoinverse	64
Appendix B: Detailed Modal Analysis and Test Procedures	72
Appendix C: Computer Program, Sample NASTRAN Deck, and HP5451B Fourier Analyser	83
Programs	U.J

List of Figures

Figure	Pa	ge
1	Acoustic Test Panel, USAF Drawing X704933	8
2	Mass-Loading Locations	9
3	Mode Shape Plots from HP5451B Fourier Analyser, Frequency=208 Hz. A.) Unloaded Panel, B.) Mass-Loaded Panel, Configuration 6	11
4	Smeared Stiffener Uniform Model	12
5	Discrete Stiffener Model	13
6	Bay Modes Model	15
7	Sample Modal Assurance Criteria (MAC) Plot .	18
8	Sample Modal Assurance Criteria (MAC) Data .	19
9	Sample Transfer Function Plot	20
10	Sample Transfer Function Data	21
11	Sample Mode Shape Plots for A.) Smeared Stiff- ener Uniform Model (Discrete Stiffener Mode shapes similar) and B.) Bay Modes Model	22
12	Mode Shapes, Bay Modes Finite Element Model, for A.) Clean Panel (206.53 Hz), B.) Configuration 2 (208.14 Hz), C.) Configuration 6 (206.42 Hz), and D.) Configuration 7 (213.84 Hz)	38
13	Nine Point Coarse Grid (unloaded) for A.) Configuration 6, B.) Configuration 2, and C.) Configuration 7 with D.) Cylindrical Coordinate System	43
14	Nine Point Coarse Grid Mode Shapes, Configuration 7, Mode 1, for A.) Unloaded Panel (169.437 Hz), B.) Loaded Panel (139.975 Hz), C.) Square Modal Matrix Prediction (168.847 Hz), and D.) Pseudoinverse Prediction (169.437 Hz). (Deformed Panel denoted by dotted lines)	44
A-1	Three Degree-of-Freedom System	70
B-1	Force Window	76

List of Figures

Figures		Page
B-2	Exponential Decay Window	76
C-1	Program Matrix Listing	83
C-2	Edited Output From Program Matrix	102
C-3	Sample NASTRAN Deck	106
C-4	Data Acquisition Program for HP5451B Fourier Analyser	111
C-5	Sample Y-9 Modal Analysis Set up with A.) General Information, B.) Test Identification, and C.) Grid Points	112
C-6	Sample Y-9 Connectivity Vector	113

List of Tables

Table	F	age
1	Mass-Loading Configuration Data	9
2	Experimental Natural Frequencies Obtained Using Modal Assurance Criteria (MAC) Function	17
3	Experimental Natural Frequencies Obtained Using Modal Analysis Software	24
4	Data Results - Configuration 2	28
5	Data Results - Configuration 6	28
6	Data Results - Configuration 7	29
7	Percentage of Frequency Shift Using Whaley's Algorithm versus Unloaded Measured Data	30
8	NASTRAN Modal Data - Unloaded Panel	34
9	NASTRAN Modal Data - Configuration 2	35
10	NASTRAN Modal Data - Configuration 6	36
11	NASTRAN Model Data - Configuration 7	37
12	Natural Frequency Pairing Obtained Using NASTRAN	39
13	Frequency Predictions - Square and Rectangular Modal Matrix, Configuration 2	46
14	Frequency Predictions - Square and Rectangular Modal Matrix, Configuration 6	46
15	Frequency Predictions - Square and Rectangular Modal Matrix, Configuration 7	46
16	Computer Resources Used to Obtain Modal Results	58
A-1	Analytical Data From Three Degree-of-Freedom	69

<u>List of Symbols</u>

Symbol	Definition
A	Any Matrix, A
A ⁺	Pseudoinverse of Matrix A
[A]	Matrix Consisting of Generalized Mass and Generalized Force Quantities
b	Vector b
[c]	The Damping Matrix
E	An Elementary Matrix
[1]	The Identity Matrix
[K]	The Stiffness Matrix
L	Lower Triangular Matrix
Ī.	Reduced Form of Matrix L
M_{O}	The Added Lumped Mass
[M]	The Mass Matrix
n	The Number of Measurement Points
P	Permutation Matrix
Q _i	Generalized Force
q _i	Generalized Coordinate
$R_{\mathbf{x}}$	Radius of Gyration of Added Lumped Mass About Its x-Axis
$R_{\mathbf{y}}$	Radius of Gyration of Added Lumped Mass About Its y-Axis
S _{rr}	Autocorrelation of Stationary Accelerometer Response
\$ _{yr}	Cross-correlation Between Stationary Accelerometer Response and Move- able Accelerometer Response

Symbol	Definition
. ^{\$} yy	Autocorrelation of Moveable Accelerometer Response
U	Upper Trapezoidal Matrix
ū	Reduced Form of U
[u]	The Modal Matrix
$^{\mathrm{T}}$ [U]	Transpose of the Modal Matrix
x _o	X-Coordinate of the Added Lumped Mass
x	Displacement Vector
x	Velocity Vector
X	Acceleration Vector
У _О	y-Coordinate of the Added Lumped Mass
$\omega_{\mathbf{n}}$	Natural Frequency
ξn	Damping Ratio
$\phi_{\mathtt{i}}$	Mode Shape
9\9x	Partial Derivative With Respect to X
9 \ 9A	Partial Derivative With Respect to y
\$ /&q	First Variation With Respect to q
[] ⁻¹	Inverse of the Given Matrix
[]*	Pseudoinverse of the Given Matrix
[] ^T	Transpose of the Given Matrix
() [*]	Con jugate

Abstract

The purpose of this investigation was to compare the results obtained from three modal prediction techniques. The first technique was an algorithm developed by Whaley for lightly damped structures (Method 1). Results using this algorithm were extracted from a thesis by Glenesk. The second method was the finite element method using NASTRAN (Method 2). The final method was the recovery of unloaded mass and stiffness matrices from the general matrix-vector differential equation of modal analysis using modal data obtained from an unloaded test item (Method 3). Once these matrices had been recovered, a quantity of mass was added to the mass matrix to simulate a mass-loaded The generalized eigenvalue problem was solved for mass-loaded frequencies and mode shapes which were compared to experimental results for the same test item. Both square and rectangular modal matrices were considered in Method 3. The same test item and three discrete mass-loaded configurations which Glenesk used were tested. Percentage frequency deviations from the unloaded test item to the mass-loaded predictions ranged from -7.2-% to +7.4-% in Method 1, from -20.3-% to +17.84-% in Method 2, and from -20.6-% to +8.4-% in Method 3. Several discrepancies in each technique prevent a direct comparison of these results. The most noteworthy discrepancy was

the fact that the modal measurement procedure generated nonorthogonal modes. The first method assumed the mode shapes to be unaltered between the unloaded and mass-loaded cases while the second method generated mutually orthogonal modes. The unloaded nonorthogonal mode vectors were used in Method 3 to generated mass-loaded modal quantities. Detailed procedures, results, and conclusions are obtained in the body and appendices of the report.

A COMPARISON OF VARIOUS TECHNIQUES FOR THE PREDICTION OF MASS-LOADED MODE SHAPES AND NATURAL FREQUENCIES

I <u>Introduction</u>

Background

The ever-expanding performance envelopes of today's highly complex fighter aircraft subjects them to increasingly severe vibration environments. Coupled with these severe vibration environments is a desire to rapidly incorporate newly-developed weapons system technologies into the existing fleet of fighter aircraft. One such example is the application of laser physics technology to vibration-sensitive electro-optical equipment which would subsequently be installed in high-performance fighter aircraft.

The installation of electro-optical equipment in an aircraft presents a complex design problem in that it is necessary to know the post-installation modes of vibration and natural frequencies of the aircraft prior to the actual installation of this hardware. Frequently, the only modal data available to the designer are the pre-installation modal data. Thus, due to the vibration sensitivity of the electro-optical hardware, the designer must consider how to properly utilize the pre-installation vibration

data to correctly predict the post-installation modes of vibration, damping, and natural frequencies. Whaley (Ref 12) summarized three analytical techniques to accomplish this task. Additionally, Glenesk (Ref 3) utilized an algorithm developed by Whaley for lightly damped structures (Ref 13) to predict the influence of added lumped masses on the vibration characteristics of unloaded structures.

According to the research conducted by Glenesk (Ref 3), as the size of the added mass increased relative to the mass of the unloaded structure, the accuracy of Whaley's algorithm was significantly affected. This degradation in algorithm performance might be attributed to the assumption that the unloaded mode shapes are unaffected by the addition of the lumped mass. Another possibility involves the fact that the effect of damping was ignored in this algorithm. Thus, an added mass might have significantly contributed to the overall structural characteristics in such a way as to modify the mode shapes and natural frequencies.

In addition to the various analytical techniques, a numerical technique, finite element analysis, has been widely used to predict mass-loaded natural frequencies, damping ratios, and mode shapes. This technique requires the construction of a computer model in which the continuous

structure is idealized as a combination of a finite number of various structural components (i.e., beams, rods, plates, etc.). Although accurate results can be obtained using the finite element method, one problem with this technique is the significant expenditure of human and computer resources necessary to build, debug, and run the finite element code.

The rapid development of portable modal analysis equipment has made it possible to eliminate the construction of a finite element model entirely. With this equipment one can lay out a suitable grid on the portion of structure to be modified, conduct standard modal analysis tests, and reduce the data so obtained to determine the desired unloaded modal data. The question then becomes how to properly use this data to determine the mass-loaded modal quantities for the modified structure. One approach to this dilemma has been suggested by Briggs and Whaley (Ref I) whereby one uses the general matrix-vector differential equation of structural analysis, its solution using a generalized coordinates approach, and the resulting definitions

$$[U]^{T}[M][U] = [I]$$
 (1)

$$[\mathbf{U}]^{\mathbf{T}}[\mathbf{K}] [\mathbf{U}] = \begin{bmatrix} \mathbf{v}_{n}^{2} & 0 \\ 0 & \mathbf{v}_{n}^{2} \end{bmatrix}$$
 (2)

$$[\mathbf{U}]^{\mathrm{T}}[\mathbf{C}] [\mathbf{U}] = \begin{bmatrix} 2 \xi_{\mathbf{n}} v_{\mathbf{n}} \\ 0 \end{bmatrix}$$
 (3)

to analytically determine the mass-load modal data when only the experimentally determined unloaded modal data are known.

At the present time, the usual solution to equations 1 through 3 requires that the modal matrices, [U] and $\left[\mathtt{U}\right]^{\mathrm{T}}$, be square matrices. If the mass, damping, and stiffness matrices, [M], [C], and [K], are n x n matrices, [U] and [U] must also be n x n matrices (where "n" is the number of measurement points). If one measures fewer than "n" modes in the frequency range of interest, he must either extend this frequency range to accomodate "n" modes, or reduce the grid size to "n" grid points. As either of these approaches may be undesirable, a third approach using the method of pseudoinverses introduced by Panrose (Ref 10) may be used to isolate the mass, stiffness, and damping matrices on the left hand side of equations 1 through 3, respectively. Appendix A contains a sample problem for the reader who is unfamiliar with this technique. The resulting solution will be an approximate solution to the mass, damping, and stiffness matrices for the unloaded structure. Then, to find the corresponding matrices for the mass-loaded structure one would add appropriate mass, damping, and stiffness quantities at the proper locations in their respective matrices to

simulate the structural modification, and resolve equations 1 through 3 for the mass-loaded modal information. If damping is not a factor one wishes to consider in this analysis, one need only consider the solution to the standard eigenvalue problem

$$[K] - \omega^2 [M] = [0] \tag{4}$$

to determine the mass-loaded natural frequencies and mode shapes.

Purpose

The purpose of this investigation is to obtain data, and compare the modal data obtained, using several modal prediction techniques. The techniques chosen for this comparison are those discussed previously, namely: (1) Glenesk's use of Whaley's algorithm (Ref 3); (2) the finite element method; and (3) the method suggested by Briggs and Whaley (Ref 1). Since a basis for comparison is needed, the results obtained from modal prediction software developed by Brown (Ref 2) will be used as a datum in error precentage calculations for methods 2 and 3 presented later in this report. However, it is felt by the author that to recalculate error values for Method 1 which would be based on a different datum would be unfair to both Glenesk and Whaley's algorithm. Thus, all values presented in reference to the use of Whaley's

algorithm will be directly extracted from Reference 3. The same complex, rib-stiffened panel and several of the discrete mass-loading configurations investigated by Glenesk (Ref 3) will be used in this comparison.

Objectives

The objectives of this investigation are:

- (1) Experimentally measure the natural frequencies and mode shapes of a complex test panel in the frequency range from 0-500 hz.
- (2) Construct finite element models of this panel and conduct a modal analysis on both unloaded and mass-loaded configurations.
- (3) Use equations 1, 2, and 4 along with unloaded experimental data to obtain mass-loaded natural frequencies and mode shapes for the test panel.
- (4) Present a comparison of the results of Objectives 1 through 3.

II Modal Analysis and Test Procedures

Test Item

The test item was a panel fabricated using drawings of an upper fuselage panel of a C-140 aircraft (Figure 1). The curved panel consisted of the following components:

- 1. An outer skin
- 2. Five longerons of two different cross sections
- 3. Two curved main frame ring segments
- 4. Four edge doublers, and
- 5. Various attachment hardware and bonding to maintain structural integrity.

Mass-Loading Configurations

Based on the worst case errors presented by Glenesk (Ref 3) for the mass-loaded panel, four test configurations were chosen for comparison of the three methods. These were the unloaded panel and Glenesk's mass-loaded configurations 2, 6, and 7 (Table 1 and Figure 2). The unloaded panel was included as a means of comparing the change in mode shape with natural frequency which occurred between the unloaded case and each mass-loaded configuration. Plots of unloaded versus mass-loaded mode shapes allowed visualization of this

Figure 1. Test Panel, USAF Drawing X704933.

· : F : - a

Table 1. Mass-loading configuration a (after Chema ... Ref 2)

Configuration	Mass (1b)	x _o (ft)	y _o (ft)
2	0.2420	1.168	1.168
6	0.4158	1.667	1.749
7	0.1144	0.499	0.915

Figure 2. Mass-loading locations (after Glenesk, Ref 2)

Notes:

- 1. Dimensions in feet.
- 2. $\bigcap_{i=1}^{7}$ specifies configuration 7 mass-loading location.
- 3. BAY 1 specifies internal unsupported bay.

change in mode shape (Figure 3).

Structural Models

Three grid sets were chosen to model this panel.

The first grid set was utilized in an effort to verify
Glenesk's results by using Glenesk's grid set and
modal analysis procedure. Glenesk's model did not
consider the discrete components as separate members.

Instead, it accounted for the total panel mass and
smeared this mass over the grid which was inset somewhat from the panel edges. The result was a homogeneous, constant thickness flat plate with 25 grid points.

This model will be referred to as the Smeared Stiffener
Uniform Model (Figure 4).

The second grid was chosen to coincide with a finite element model which accurately modelled the discrete structural components by allowing for panel curvature, discrete member cross-sectional geometry, and offsets of component neutral axes. This model also consisted of 25 grid points. It will be referred to as the Discrete Stiffener Model (Figure 5).

The final model was chosen to investigate the modes of vibration of each of the internal bays (Figure 2). This grid was necessary because the previous two models basically ignored the motion of the unsupported

Sigure

Figure 4. Smeared Stiffener Uniform Model. 12

Figure 5.

internal bays. This model, which consisted of 65 grid points, will be referred to as the Bay Modes Model (Figure 6). This model contained the previous two models as subsets.

Modal Analysis Test Procedures

The Smeared Stiffener Uniform Model was tested first. The Modal Assurance Criterion (MAC) developed by Brown (Ref 3) along with discrete Transfer Function data were used as the basis for identifying candidate frequency ranges from which the natural frequencies for each configuration were determined. The MAC function is defined as (Ref 3)

$$MAC = \frac{\left|\bar{s}_{yr}(\omega)\right|^2}{\bar{s}_{rr}(\omega)\bar{s}_{yy}(\omega)}$$

where \overline{S}_{yr} = the stable average of the cross power spectrum between two response measurement points

S_{rr} = the stable average of the auto power spectrum of the stationary accelerometer response

Syy = the stable average of the auto power spectrum of the moveable accelerometer response.

Note that the MAC Function differs from the more commonly used Coherence Function in that the two measurements in question in the former are two responses to an impulse excitation whereas like quantities for the latter

would be an impulse excitation input and the forced response. In both cases, the existence of a mode is indicated by a region of closely spaced frequencies where the MAC or Coherence Function is essentially equal to one.

Since the MAC and Transfer Function data were essentially identical with Glenesk's results, these data were not reduced to obtain natural frequencies and mode shapes. Instead, Glenesk's results (Ref 3) will be used in the techniques comparison. Table 2 contains a summary of the pertinent data. Sample MAC and Transfer Function plots and data are contained in Figures 7, 8, 9, and 10.

The Bay Modes Model was tested next using modal analysis software developed by Brown (Ref 2). This software allowed the user to select any subset of the model being tested and consider only the data relative to that subset. Thus, it was not necessary to repeat this test for either the Smeared Stiffener Uniform Model or the Discrete Stiffener Model. Representative mode shape data obtained for these models are contained in Figure 11.

Modal Analysis Data Reduction

To determine the natural frequencies of a given model and configuration, one grid point was selected which was believed to contain all of the modes in the frequency range from 0-500 hz. That is, it was believed

Experimental Natural Frequencies Obtained Using Modal Assurance Criterion (MAC) Function (Extracted from Ref 3). Table 2.

		Con	Configuration	Ĺ	1	
oaded	7	% Chg	٥	% Chg	7	% Chg
	t !	!	169.71	+ 1.06	143.10	- 14.79
	174.08	- 3,56	180,72	.12	175.09	3,00
	187.62	- 1.88	199,30	+ 4.23	184.83	- 3.34
	204.00	- 1.60	208.27	+ .46	204.30	- 1.45
	225,31	- 5.23	238.22	+ .20	238.22	+ .20
	243,32	- 3.49	252.20	,46	257.50	+ 2.13
	263,80	- 5.79	279,95	.20	279.88	,20
	282,45	- 3.54	292.20	22	292.76	02
	363,08	- ,53	360,20	- 1.32	361.71	06

Figure 7. Sample Modal Assurance Criteria (MAC) Plot.

98	Ç O	100	100		•	-51	1305	10 PO	5.5-	2 (A 4 (4) 1 (4)	-105	4 0 6	-033	7	245	171	, PO	n r	£15.	ন ক ভ	<u>ព</u> ល ក	· ~	1 - 6 U)	. 3.4.3.	E 6	1.53	٠, « ر	605-	9 %		101 101 101	. C.	4	- 5 -	1	 i,
10.45	100 100 110	ອທຸດ () ()	51-2-	7 7 8 7 8 8	E.		: 0 fe	> 🖘	ع. د	. e	<u>ن</u> ا	ນສ	12.	5 6 1 6	: 0	7.7		ا م ت ت	i C	9 5	- 2 2.6	-322	୭ ସ		C 7	2 *2 <u>}</u>	્ર	· · > (7 70	446-	-263	9.00	- S (ر ا ا	7	
, 	9 9 9	966	276	1651 0	2	7 63 II	1000	1	12	-114	•150	S 6	.0	1 U	-113	() () () () () ()	. Æ	٠ a		7 69 13	€ 2000 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	در <u>ا</u> د د	15.01	~ 4		1 4 2 4 1 4	504-	, ,	তৰ	-191	900	,		٠.	
000	100	0 0 1	19 19	# 주 주 주	es e	, c	1272	;		15) T	G .		-249	6 5		ကျင် ကို	-2.3	5 5 7 1	in i	9 9	- 1 S	-27.5	90	. c	្ន	. 5	200		50	96	:6:-	ه د د د د د ا	() () () () () () () () () ()	9 9		
1261 1318-	- 255 5.75		1837 1837 1837	-145	200	ا ا ا	9 C	÷.	1351	্ ক	٠ :	7 - 1	٠.	ni y		T	160	0 C	7:31	69	0 000	1 1	00	ره ز	0 5	99	9 (1)	2	נרע	20	-26:	() () () ()	7.7	シャウルト	•.	2
100 100 100 100 100 100 100 100 100 100	15 C	() () () () () () () () () ()	99	9388 671	63	ე და. ს	ာင	7	، ، ، ز	122		; o	,	5 C	5.5			5 CH 1	525-	 	दूर हा	٠.	ი s წ		e	-31.3	3 C	7.	10	377	100-	7 G	δ.°		•	
, ୨୦୧୭	, es c	1.0	୍ଚ	5000	io s	,	es e	ر س درو آ	(0) (0)	. دن ،	ا د	2017	و ود ا	, , , , , , , , , , , , , , , , , , ,	ره.	7		76.2	() (. v	C & A		ጐ င		4	0	, ,		1 . 1 .	9	e r	7. 6.	, -			. :
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	001	400	5 P	7 0. 1 1 1 1	<u>.</u>	a en Sul	र इ ते ।	5 j	. 4 20 	-	C :	ئ	દ	5	1	1 3 No. 1	, ,	÷ Ç		ر ارز ارز	بر ب زا	: s		. 2	ى د	ه ت	2.00	G :	iu iu	ુ લ પુરુ	.	7 % 7 1	2		÷.	
1000 1000 1000 1000		(62) (50)	G Ja	i i) i e i i		5.		, -	4 1 1	344)	4 ·	3.5 -, r		÷ .	20 j		;	iá.	. 4		9 9	. À.	4			, , , , , , , , , , , , , , , , , , ,	. T.	4 4	4		٠,		•	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00			. 822-	ء د	 	2 :2 V 1	5	. E	6	 5 - LII	. 045-	74.521		C. (: : :		ر دم د	<u>ن</u> د	ن رُ	 	-385°	ن ن ا	Š	1 C	7	. :);(1989	. e-1 =1	7		; ~ !	÷.	•
600	٠	ଜ୍ଞ		90	625. 4	000	5. F.	٠, ٨,	\$ 10	, .Ç. 1	25.	n n	(C)		£ 6 +	r, is	, t.,	ۍ د	0	. es	σ. e.	6-6-	ر. در در	10	er on	~ (•••	୍ କ ଧ	~ 0	1 GC 1	7. ()	•	· ·	•	
0,10	8	00	-150	99	ئ الروا - الروا	i ç	រ ម មួយ មួយ	<u>د</u> :	5 3	-179	၁င	ج در ا		 	9:											-6.1.					3.7	- :		5	2.	
8 T. 4	٥٩	1000	-643	90	(((((((((((((((((((ir Q	ا مرابع	0	* n	5	5 6 5 1		Υ. Τη .:	10 . ·	e :	94	. 5 /	-233	ده. ا ا	1.0	i i	4316	10 O		* :: * :: * ::	77	9 (7)	~ ?	, «	& G		. s	٠,	, 5, 1		
# 1.4 1.6	00	-127	655-	60	e r	-27	ر از	6:5-	္ စ ပ	25CT	ا ن : د	: : 1 - '''		ج د با	: '		2.4) i 🕻	99	-3:9	ငော	-243		٠ ٢٠))	и с	3 -2	0 7	9 9	သာပ	වර			2 * 9 Q	•	
0i 4 0	5 A)	66	0 0 0 0 0 1 0 1	11.	00	(7) () (/	6.0	ن _ا (د		·	, [.): :	•		· .		ر. :	3	1 ···		- (*) - (*)	·	E In	٠,		ti	· •	es es	10 A					:
9 8 4 6	0	000	2010 2010	E 2	ပ ဒ	: 5 : 5 : 6 : 6 : 7	; ; ;	5.		5	ے د م			٠; آ	-;	·			-, c	٠,٥	9 A	3	# % %	: : 'Y		5- <u>.</u>	۰.		. <i>u</i>	≈ 5. 0	s -	: 5	: : :			
• မက္က	34	197		5 			51.			٠ ايا.		16.	5.				· , •	::	4		10		• •	٠		• •		.		 	 		; ·	7		,

Figure 8. Sample Modal Assurance Criteria (MAC) Data.

Sample Transfer Function Plot. Figure 9.

Sample Mode Shape Plots for A.) Smeared Stiffener Uniform Model (Discrete Stiffener Mode Shapes Similar) and B.) Bay Modes Model. Figure 11.

that the point did not lie on or near a node line for any mode. Examination of the real and imaginary parts of the Transfer Function for that grid point revealed the natural frequencies for that particular model and configuration. Detailed modal analysis and test procedures are contained in Appendix B. Data acquisition programs for use in the Hewlett-Packard HP-54518 Fourier Analyser are presented in Appendix C.

Once the natural frequencies for a particular model/configuration had been identified, the Transfer Function data from each point on the grid in question were reduced to yield mode shape vectors for each mode. For purposes of comparison with the finite element method the discrete mode shape vectors were converted to a format identical to NASTRAN output. NASTRAN data were processed using a standard graphics package, GCSNAST (Ref 6), which was used to display plots of the undeformed versus deformed mode shapes in both unloaded and mass-loaded configurations.

Results

Modal Assurance Criteria Function test results are presented in Table 2. Corresponding results from the Modal Analysis testing are shown in Table 3. Comparison of the data in these two tables reveals numerous areas of disagreement in the natural frequencies of each configuration. This apparent discrepancy can be explained

Experimental Natural Frequencies Obtained Using Modal Analysis Software (Ref 2) and Bay Modes Model. Table 3.

2 % Chq 6 % Chq
203.43 - 1.84 209.30
239.65
253,18
280.14
273.25 - 6.64 294.16
300.60
326.04 - 4.29 340.82
363.79 + .91
369.01
383.65
425.26
454.63 + .12

when one considers the test technique from which each set of data were obtained. The MAC testing used response data from a fixed reference accelerometer and a moveable accelerometer, and 15 impulse excitations which were randomly spaced over the entire panel. The spatial randomness of the excitations enhanced the probability that every mode in the structure would be excited in that not every excitation would lie on a node line. In contrast, the Modal Analysis testing used a fixed excitation point in conjunction with a moveable accelerometer to measure the structural forced response. Inherent in the latter technique is the assumption that the chosen excitation point never lies on or near to a node line and thus the mode shapes obtained from this technique represent a unique set of modal data. Therefore, if the chosen excitation point lies on or near to a node line, some modes may be "missed" during examination of Transfer Function data because these modes were never excited to begin with. In this respect it would appear that the MAC function data may be the more accurate data. Since a comparison of modal prediction techniques is the thrust of this report this comparison will be carried out only on those data for which corresponding results in the MAC Function data are available. This comparison method will be used throughout the remainder of this report.

III The Whaley Algorithm Met d

Overview

The algorithm developed by Whaley (Ref 13) and subsequently used by Glenesk (Ref 3) substitutes suitable expressions for the kinetic and potential energy of a flat plate into Lagrange's equations of motion. Then, taking the first variation of the expression for the virtual work of the applied inertial loads with respect to the generalized coordinate, the expression for the generalized force, Q_{i} , is obtained. The final form of this expression is

$$Q_{i} = \frac{\delta P}{\delta q_{i}} = -M_{o} \phi_{i}(x_{o}, y_{o}) \sum_{j=1}^{\infty} \phi_{j}(x_{o}, y_{o}) \frac{d^{2}q_{j}}{dt^{2}}$$

$$-M_{o} R_{x \partial x}^{2 \partial \phi_{i}}(x_{o}, y_{o}) \sum_{j=1}^{\infty} \frac{\partial \phi_{j}}{\partial x}(x_{o}, y_{o}) \frac{d^{2}q_{j}}{dt^{2}}$$

$$-M_{o} R_{y \partial y}^{2 \partial \phi_{i}}(x_{o}, y_{o}) \sum_{j=1}^{\infty} \frac{\partial \phi_{j}}{\partial y}(x_{o}, y_{o}) \frac{d^{2}q_{j}}{dt^{2}}. \quad (5)$$

Equation 5 contains the effects of the inertial forces due to the added lumped mass (Mo, Rx, Ry, xo, and yo) which are proportional to the second derivative of the generalized coordinate, $\frac{d^2q_j}{dt^2}$ or q_j . These effects, in turn, become additions to the mass matrix when the eigenvalue problem is solved for natural frequencies and mode shapes.

Results

The results from Whaley's algorithm are summarized from Glenesk (Ref 3) in Tables 4, 5, and 6. The data generated using the MAC Function were merged with Whaley's algorithm (Ref 13) to yield the Whaley Algorithm results. Glenesk (Ref 3) noted that a comparison of unloaded versus mass-loaded mode shapes was the means of determining the unloaded/predicted mass-loaded frequency pairings.

Examination of the data in Tables 4, 5, and 6 reveals the largest percentage error between actual and predicted values occurred on Configuration 7 (Table 6, Mode 1) whereas the smallest percentage error value occurred on Configuration 2 (Table 4, Mode 9). With the exception of Mode 1, Configuration 7, all predicted frequency values were within ± 7.5% of the experimentally measured values.

Table 7 presents a comparison of the absolute percentage in frequency shift from the unloaded panel to each of the three mass-loaded configurations. The largest percentage frequency shifts occur when the largest mass was located on an unsupported portion of the panel skin. With the exception of modes 8 and 9 for Configuration 6, all frequency shifts were within \pm 3% of the unloaded frequency.

Table 4. Data Results - Configuration : (Extracted from Fef 3).

	Testing To	echniques	Percent
Mode	Modal Assurance Criteria	Whaley Algorithm	error
1	(167.79	()
2	174.08	180.15	3.49
3	187.62	191.13	1.87
4	204.00	206.43	1.19
5	225.31	237.37	5.35
6	243.32	251.86	3.51
7	263.80	279.61	5.99
8	282.45	291.95	3.36
9	363.08	362.76	-0.09

Table 5. Data Results - Configuration 6 (Extracted from Ref 3).

	Testing Te	chniques	Percent
'Mode	Modal Assurance Criteria	Whaley Algorithm	error
1	169.71	166.22	-2.06
2	180.72	175.34	-2.98
3	199.30	191.23	-4.05
4	208.27	205.63	-1.27
5	238.22	235.20	-1.27
6	252.20	251.18	-0.40
7	279.95	278.44	-0.54
8	292.20	271.14	-7.21
9	360.20	338.70	-6.11

Table 6. Data Results - Configuration 7 (Extracted from Ref 3).

	Testing To	echniques	Percent
Mode	Modal Assurance Criteria	Whalev Algorithm	error
1	143.10	167.77	17.24
2	175.09	180.20	2.91
3	184.83	191.16	3.44
4	204.30	206.98	1.31
5	238.22	237.33	-0.37
6	257.50	250.45	-2.73
7	279.88	278.70	-0.42
8	292.76	292.48	-0.09
9	361.71	364.39	0.74

Percentage of Frequency Shift Using Whaley's Algorithm versus Unloaded Measured Data (Extracted from Ref 3). Table 7.

Mode	1	Unloaded	Configuration 2	tion 2	Configuration 6	tion 6	Configuration 7	tion 7
Num	Number	Panel	Predicted	Percent Change	Predicted	Percent Change	Predicted	Percent Change
-		167.93	167.79	0834	165,22	-1,0183	167,77	0953
2		180,50	180.15	1939	175.34	-2.8587	183.20	1662
ε		191.22	191,13	0471	191.23	.0052	191.16	0313
4		207.31	206.43	4245	205.63	8104	206.98	1592
2		237.74	237.37	1556	235.20	-1.0684	237,33	1725
9		252.12	251,86	1031	251.18	3728	250,45	6624
7		280.02	279.61	1464	278.44	5642	278.70	1714
8		292.83	291,95	3005	271.14	7,4070	292.48	1195
6		365,00	362.76	6134	338,70	-7.2055	364.39	1671
	1							

IV The Finite Element Main d

Overview

Several excellent finite element codes for structural analysis are presently in existence. One such widely used program, NASTRAN (NAsa STRuctural ANalysis, Ref 9,11), was selected for use in the finite element modelling and modal analysis of the structure. code includes the general 20 degree-of-freedom quadrilateral elements (CQUAD2) and 12 degree-of-freedom bar elements (CBAR) of which the test structure was constructed. NASTRAN also contains provisions to allow for the offset of the neutral axes of the bar elements from the grid points which were defined at the midsurface of the panel skin. Thus, the cross-sectional and spatial properties of each component stiffener could be included in the analysis. Only the out-of-plane component of the vibration (i.e. - radial component for curved models and z-component for the flat model) was investigated.

Finite Element Models

Three finite models were constructed to coincide with the test grids described in Section II. The Smeared Stiffener Uniform Model considered the panel to be a flat plate (Ref 3). This model did not extend to the panel extremities but was inset somewhat from the panel

edges (Figure 2) to coincide with the grid used by Glenesk (Ref 3). The mass of the entire panel including stiffeners was smeared over this grid to provide a uniform thickness model with homogeneous material properties. Although the mass of this model was identical to the overall structure mass, this model was more dense than had it been extended to the geometric test panel boundaries. It consisted of 25 grid points from which data were obtained and 16 quadrilateral elements.

The Discrete Stiffener Model (Figure 4) was constructed to allow for panel curvature, discrete stiffener geometries (i.e. - different cross-sections), and the offset of the stiffener neutral axes from the panel surface. This model was designed to faithfully represent the panel from a structural standpoint while maintaining the 25 grid points of the Smeared Stiffener Uniform Model. Forty-four bar elements, 25 grid points, and 16 quadrilateral elements were used in this model.

The Bay Modes Model (Figure 5) was included to investigate the motion of each of the four internal bays. This model was an extension of the Discrete Stiffener Model in that two extra sets of five grid points per bay were added to that model to derive this model. This model was constructed of 65 grid points, 48 quadrilateral elements, and 76 bar elements.

Appendix C contains a sample of the Bulk Data Decks

which were used to generate model data for these models.

Results

Only the Bay Modes Model results (Tables 8 through 11) will be discussed since this model yielded the best representation of the overall panel motion. As in the use of the Whaley Algorithm, a pairing of unloaded versus mass-loaded mode shapes (Figure 12) was used to track the change in natural frequency between the unloaded panel and each mass-loaded configuration. Upon observation of Figure 12 it is seen that this process is somewhat subjective in nature in that the mode shapes do not remain completely unaltered. It is left to the discretion of the engineer to properly select the mode pairings, and herein lies a potential source of error. In an attempt to have this mode pairing as unbiased as possible, the author consulted another engineer to independently aid him in this process. Mode pairings which were not in agreement between the author and the other engineer were discussed and a consensus of opinion arrived at. The results from this mode shape pairing exercise are presented in Table 12. Here absolute changes in natural frequency from the unloaded to mass-loaded panel range from essentially zero-% (Mode 20, Configuration 2) to -20.3-% (Mode 16, Configuration 6). Out of 57 such pairings, the frequency shift from the unloaded to the mass-loaded panel in was within ± 7.5-% of the unloaded panel in 79 percent of the pairings

Table 8. NASTRAN Modal Data - Unloaded Panel.

	State of the state
And the state of t	********
	7
170 to 17 1.44	
*** *** *** *** *** *** *** *** *** **	**************************************
* * * * * * * * * * * * * * * * * * * *	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
r	•
** * * * * * * * * * * * * * * * * * *	
	:
	2000
, , , , , , , , , , ,	
	/
4 - 1 - 7 - 1 - 1	
* 1	
	· · · · · · · · · · · · · · · · · · ·
- 1200	
•	
** 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
•	•
*	
•	•
•	-
•	
,•••	, - •
	•
. • 2	;
:-	۲•۱٬
	3.0
	2
:	• >
)
7	

34

Table 9. MASTRAN Modal Data - Configuration 2.

	2		President P			
. i			The state of the state of	** = 1,		
•	-	• • • • • • • • • • • • • • • • • • • •		1	· · · · · · · · · · · · · · · · · · ·	
-	•					•
4						
-			•			
•					;	• • • • • • • • • • • • • • • • • • • •
						•
•	:					
	,		• • • • • • • • • • • • • • • • • • • •			
			•			
	-				•	•
					•	
	•		•	• • • • • • • • • • • • • • • • • • • •		:
						,
:	. 7	•				•
•	•			•		
	. 77			•		
	,					
1			•	•		
٠						•
	•	•				
•						;
		•			•	•
-				• • • • • • • • • • • • • • • • • • • •	. :	•
	:					
:	2					•
,	;					•
						′.
•						
				•	•	
•					•	
,				•		
				•		
: :	-					,
					•	
:					•	
-					• •	
					•	
,						

Table 10. NASTRAN Modal Data - Configuration 6.

			* 6 4 km •	14 - 10		
	,			1. 1. (2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		
٠,						~
	÷	• • • • •	Here	*********	20 11 11 11 11	, , , , , , ,
•	•	,		4 - 1/ - 2.1 - 4		
ŗ.			• • • • • • • • • • • • • • • • • • • •	* * * //***		:
•			/	*****	100000000000000000000000000000000000000	
~			, , ,	77.4.77 24.4.4		
			60.000	*****		
			S . 110 L. 110	7 4 14 14 14 14 14 14 14 14 14 14 14 14 1		
-						•
				4		
.:			**** ****	Contract to the contract	14:4 4 4:41	• * • • • • • • • • • • • • • • • • • •
-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
<u>.</u>	. ,			2.0		
Ţ	;					• • • • • • • • • • • • • • • • • • • •
	,,					
`.					The state of the s	
•						
			•		1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
٠.				, , , , , , , , , , , , , , , , , , ,		
-	-		\$ W		*** ****	
,						
					F	
	-					
					The second secon	
						•
-						
•	_*		*** * * * ***	C	•	•
.					•	2
:	•			1		•
			· · · · · · · · · · · · · · · · · · ·		•	•
		,				•
-		7 . 7		1	•	•
٠				Sefer and the	,	•
•				*** ********		• • •
-						

Table 11. NASTRAN Modal Data - Configuration 7.

မှ ရှိ ရှိ ရှိ	SKTOACTES.	ETGENVALUE	AUNICESS	A STABLE FOR S	0.5.5.6.Kat 173.0. #A\$\$	6FN: MAC 12ED STIFF NE SS
~	24	1-23-100-00-1	1.0973144-02	1.7464111-33	10 - 11 - 12 + 15 - 4	0-1-8-3-36
~	1,	25-202-112-16	10.00 12.661 34.71	3.027+051+39	00+16+222	1.5.5 5.4. 1
_	2	1. 72. 4.27. 4.04	C0+1C10+11+1	2.0 131' (.)!	1.5555525-51	2,001 35 351 093
•	3	7.356,170, +04	2000 10 10 10 40 2	4.72 516 11	4. 44.141.144	(v * · 4 * ' 4 · 4 * /
•	•	\$1.10 0.15	20.000 10.000	10 - 12 -0.1 -0.6	2.177 14-15	
٠	-	3.4100.4110.	6. · · · · · · · · · · · · · · · · ·	1		• •
•	**	20 + 1 1 1 + 4 1 5 + 4	7 · 1 (2.2 / 2.4 / 4.4)	\$1.0 miles 1.00 miles	4	7
ar.	;-		1 7	1.7: (,) ,) ,	Elizabet state	
••	•	1	1.1/1:1.1 3	1	1,440.00	
٠.	;	1.5;1	1.2 411 421-33	11 . 15 15 24 1 17	* - 37	C
=	Ç*	1.55 1. 1. 2.6.1	60 + 20 to 3 4 5 1 1 1	10.40.00.00.00.1	1.00 0000	61 4 344 5 347
-	<i>;</i>	4 * 111 11 11 11 11	2.4215545.3	70 + 5 + 2 + 2 + 2 + 2	The second of	
_	e e e	The state of the state of	1.5 571 6 501	\$C * 1 * 5* 1 * 5* 5	サバー シェニーニュー	
۲.	, , , , , , , , , , , , , , , , , , ,	20 + 0 + 0 + 12	1	40 + 34 22 + 24 7	4 - 1 - 21 + 4	
Ξ.	,	* * * * * * * * * * * * * * * * * * * *			A - 1 - 1 - 1 - 1	
	()	*****	1.447.424.4	*** - 109+ C*	******	
_	;	Washington and the	€ + 12 Pol 20 + 2	3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1. 14 14 14 14 14 14	
÷.,	*,		fr. + 1/2 + 1 * 2	3.4	2 22.2	2
	;		* * * * * * * * * * * * * * * * * * *	3.54.000	#3-32.55 F	* 1 1 2 2 4 4
€ ?			30 * 10 10 10 10 10 10	3.540.000.000	1. 4.3 4	
	۲۶ .		\$ 0 * 42 0 0 m 2 * 2	3.5.5.5.5.5.5.5	# 1 + 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*** * * * * * * * * * * * * * * * * * *
~		A	2.55 1 11.404	3.1 < 0.1 < 0.2 < 1.5	** * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
٠.		** 4 · 1 / 1 · 1 · 1 · 1 · 1	2,527,127,103	C) + 1 (1 (1) 2 (1) 4	10-11-00 mm 1	
	-		10.31 10.21 2	40 440004	1.1.2.2.2.2	
,		1	2.1.24.13 + 31	7	\$ 1 - 1 mg (7 1 1 2 2 4 4	f
` '	7.		10. 21. 12.2	\$0 * 17 1 1 7 1 1 4 4 5 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1. 2000 300 403	* * * / * * * K
~	1	18. * 1. * 1. * 1. * 1. * * * * * * * * *	10 + 18 / 5/4/ 17	\$1.54 Feb. 2 (4.52)	*0 - ir [. i *	F
7,	٠ -	4,7 (***) (**	2. 1117.6 1.3	4.77. CAM 4.12	40-10-10-00-0	• • • • • • • • • • • • • • • • • • • •
~	;	4.4.1.77	F(++2) + + + 1*1	\$0 • 1 · · 30 · · · • • • •	*0-H41104**	た フ・・・・・・・ コ・コ・コ・コ
		1.3 - 1 - 2 - 1 - 2 - 1	3. 7477 2. 403	ecostly.city	ं ६	٠.
=	35	10 + 2 1 + 2 1 + 11	4.4. 1.4. 1.4. 1.4. 4.4. 4.4. 4.4. 4.4.	2.1.1.1.1.1.1.6	1	
2	Ĩ,	1000		1	55.74	
~	ç	1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4. 11.1.	78 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 ·	0.0	2.0
	ž.	7.1.1. 71.1.4		6.11.	٥.0	2
٤	+7	200000000000000000000000000000000000000	E: 4 / 4 H (50 f 4	S	د د	٠ <u>.</u>
*				Zanati chiane	6.0	: · ·
-	€.		4.71117.4	7.41121412	0.40	٠ •
~	ί.	7: * 1 * 1 * 1 * 1 * 1	サーチ 1分をなったのです	7.44.1.2.11.3.2	o•	0.0
-	**	1	11 + 121 2 1 C 1 S	H. 715411643.	6.0	0.0
4	7.	The Strategy	3.2.7.1355.4.13	\$1. * 17.4 * 17.4 * 17.4	٠. د	6.9
•	7.7	3. 544 6 11 6 17	40.40.40.40.40.40	61 01 12 11 11 15	0	: 5

Figure 12. Mode Shapes, Bay Modes Finite Element Model, for A.) Clean Panel (206.76 Hz), B.) Configuration 2 (208.14 Hz), C.) Configuration 6 (206.42 Hz), and D.) Configuration 7 (213.84 Hz).

Natural Frequency Pairings Obtained Using NASTRAN (Ref 11). Table 12.

TOTAL TO SEE THE SECOND

	% Chg			+1.15	37	+ .01	+ • 0.4	09.1	+3.52	00.+	+ .01	+ .29	+17.24	+4.46	+ .19	+8.60	+2,01	}	1	1	20	+1,0.1	-13,81	+ .72	01	
	7		1	103,35	168,64	184.47	190.45	197.47	213.84	239.61	249.81	260.14	307.79	321.28	328.80	362,34	353,48	!	1	!	402.28	422.93	386.61	469.56	472.32	
ion	% Chg		+17.84			+ 2.56	+ .04	-12.82	07	+ 3.59	+ .01	!	-17.14	98. +	- 3,49	+ 2,00	-20.30	08	+ 1,33	ł i	1	00. +	- 1.15	+ .02	.58	05
Configuration	9		118.55	I I	1	179.72	190.45	173.20	206.42	248.20	2.19.70	! !	217.53	310.19	316.72	340.34	276.86	362.51	387.69	l i	1	418.53	443.41	466,30	469.64	478.10
	% Chg				+3.01	22	+ .08	+10.69	92. +	+ .27	+ .02	+10.26	-5.98	+14.95	+ .21	J l	+6.54	20	ļ	92	00• +	00• +	92	-2.18	07	!
	2		[[174.36	184,05	190.53	219.90	208.14	240.24	249.73	285.99	246.84	353.52	328,86		369.17	364.73	i	38.1.98	403.07	418,76	445,15	456.04	472.04	-
	Unloaded		100.60	102,17	169.27	184,45	190.38	198.67	206.56	230,59	249.67	259.38	262.53	307.55	328.18	333,66	346.52	365,45	382,59	388.56	403.10	418.59	4-18,55	466.20	472.36	478.33
Mode	Number	1	2	т	4	S	9	7	8	6	10	11	12	13	14		16	17	18	19	20	21	22	23	2.1	25

and within \pm 3-% of the unloaded panel 70 percent of the time.

V The Use of Pseudoinverses in the Povery of the Discrete Mass, Stiffness, and Damping Matrices and Solution of the Mass-Loaded Problem

Overview

The method suggested by Briggs and Whaley (Ref 1) solves the general matrix-vector differential equation using generalized coordinates to obtain the definitions of equations 1 through 3. Then, using modal data obtained from standard vibration test methods, and suitable matrix manipulations (See Appendix A), equations 1 through 3 are solved for the mass, stiffness, and damping matrices. The usual method of solution requires a square modal matrix which is inverted in the solution for these matrices. However, in general, this matrix may be rectangular with more rows (grid points) than columns (mode vectors). Thus, one would like to have a means to solve equations 1 through 3 when the modal matrix is non-square. The pseudoinverse (Ref 8) presents such a method for inverting rectangular matrices and thus potentially for a more general solution to these equations.

Data Reduction

A computer program was developed to take the experimentally determined unloaded modal data, compute

the unloaded modal matrix and required inverses, and solve for the unloaded mass, stiffness, and damping matrices. Since only the natural frequencies and their resulting mode shapes were of interest in this study, the standard eigenvalue problem posed by equation 4 was solved with suitable additions of mass in the mass matrix for the mass-loaded natural frequencies and mode shapes. Appendix B contains a more detailed explanation of the data reduction process; Appendix C contains a copy of the program used for data reduction.

Results

An extremely simplified experimental set up consisting of nine grid points was used for each mass-loaded configuration (Figure 13) to demonstrate the validity of the computer program before extension to the more general pseudoinverse case was attempted. The structure was tested in both unloaded and three discrete mass-loaded configurations from which nine frequency/mode shape pairs were identified for each unloaded/mass-loaded configuration (Figure 14). The nine modal vectors were used to form a square 9 x 9 modal matrix; the nine natural frequencies were used to form the matrix on the right side of equation 2. Then, using the technique described in Appendix B, the unloaded mass and stiffness matrices were recovered, and a quantity of mass equal to the added mass

Figure 13. Nine point coarse grid (unloaded) for A.)
Configuration 6, B.) Configuration 2, and C.)
Configuration 7 with D.) Cylindrical Coordinate
System.
43

Figure 14. Nine point coarse grid mode shapes, Configuration 7, Mode 1, for A.) Unloaded Panel (169.137 Hz), B.) Loaded Panel (139.975 Hz), C.) Square Modal Matrix Prediction (168.847 Hz) and D.) Pseudoinverse Prediction (169.437 Hz). (Deformed panel denoted by dotted lines) 44

was added to the 5,5 term (i.e., the ass loading point, See Figure 13) of the mass matrix. Finally, equation 4 was solved using a generalized eigenvalue routine, EICZF (Ref. 5), for the mass-loaded natural frequencies and mode shapes. These predicted mode shapes were then compared to the actual measured mode shapes to verify that the program had successfully predicted both the correct natural frequency and its corresponding mode shape. From this mode shape comparison (Tables 13, 14, and 15) it was determined that the program using a square modal matrix had correctly predicted the frequency within \pm 5-% error 24 out of 27 times, and with \pm 10% error 26 out of 27 times. These data are presented in Tables 13, 14, and 15.

Next, the last column of the modal matrix and the last row and column of the matrix of natural frequencies squared were deleted to simulate a case where fewer than "n" modes were measured where "n" is the number of grid points (or rows in the modal matrix). The modified 9 X 8 modal matrix was then inverted, and 9 X 9 mass and stiffness matrices were generated. The mass matrix was perturbed by addition of a quantity of mass equal to the mass loading configuration at the 5,5 location, and the general eigenvalue problem was again solved using EIGZF. Upon examination of the actual unloaded and predicted mass-loaded pseudoinverse frequency data, it was found

Table 13. Frequency Prediction - Sc. re and Rectangular Modal Matrix, Configuration 2.

UNL UADE ()	PREDICTED	ALTUAL	PERCENT	PREDICTED	PERCENT
EXPERIMENTAL.	MASS-LUADED	MASS-Edain ii	tknin	™・SS-LUA JEU	EKKUP
DATA	USING	EXPERIMENTAL	PREDICTE	USING	PREDICTEL
	SUUARE MUDAL	[4140]	AFH2>2	R2CODOINAFR2F	AFK? O?
	MATHIX		ALTUAL	LYKUMS JOCULSI	ALTUAL
137.275	137.261	144.8/2	4.41	137.275	4.41
207.085	205.117	202.598	-1.24	201.005	-2.21
239,182	237.659	238.415		234.182	-, 32
200.553	277.785	276.142	50	200.553	-1.00
244.848	540.841	301.514	3.76	244.848	2.21
327.881	321.649	323.245	-1.30	327.881	-1.43
344.224	394.041	401.578	1.01	344.224	1.53
414.164	414.102	434.504	4.70	414.164	4.60
453.684	45 1.645	450.524	.6.3	.003	100.00

Table 14. Frequency Prediction - Square and Rectangular Modal Matrix, Configuration 6.

UNLUADED	PREDICTO	ALTUAL	PERLEYT	PREUILIEU	2146641
EXPERIMENTAL	MASS-LUAULU	MASS-LUADED	ERMUR	MASS-LUADED	t m m i, m
DATA	47146	EXPERIMENTAL	PKEULCIEU	05146	PREDICTED
	SQUARE MODAL	DATA	AFK 2012	PSEUDOINVERSE	V1 × 5 U 5
	MATRIX		ALTUAL	(4×0#2*9CAF2)	ACTUAL
167.266	158.553	168.285	5./0	167.266	. 61
180.424	140.083	100,741	, 15	150.424	.16
207.288	204.739	∠ù8•343	1.75	207.288	.53
228.543	220.320	200.412	وزيو	220.541	
238.530	230.274	230.022	. 4	238.533	.14
279.684	_275.747	274,764	1.44	214.664	• U š
249.232	295.034	293.175	91	244.535	-2.07
303.621	301.853	300.244	52	303.621	-1.11
328.523	327.UOH	124.014		.005	100.00

Table 15. Frequency Prediction - Square and Rectangular Modal Matrix, Configuration 7.

UNLIJADED	PREDICTED	ALTUAL	PERCUSIT	PREDICTED	PERCENT
EXPERIMENTAL	MASS-LUADED	MASS-EJAMEJ	t x m ij m	MASS-EDADED	EXMUR
DATA	UalNo	EXPERIMENTAL	Pridictro	USING	PREDICTED
	SQUARE MILITAL	() à T A	41×5.15	PSESDUINVERSE	AF 4.2 ft.2
	_MAT+14		ACTIAL	1 0- 185, BEULST	ACTIAL
164.417	150.54/	1 1	-20.63	14.1.41	-21.05
181.251	180.575	179.532	~.4.	131.251	79
206.396	205.147	23445	~.44	7J6.346	-1.05
206.643	206.507	204.655	11	6.643	47
610.014	237.175	234.030		2.18 + 0.39	. 25
238.712	238.150	238.000		238.212	. 19
279.993	279.791	680.64h	. 10	274.443	
451.669	451.473	453.668	·- • +H-	451.663-	. 4 4
484.487	494.44.	466.076	- 1.91	0.000	10,.00

that these data are identical to six decimal places.

Of even more concern is the fact that the predicted mode shapes were quite different from the measured mode shapes. Thus, from this preliminary investigation, it did not appear that the method employing pseudoinverses would yield valid results and further attempts at its use were abandoned.

However, it was demonstrated that the method using square modal matrices will yield valid results. One drawback in the use of square modal matrices in this method is that when one increases the dimension of the modal matrix (i.e. - the number of grid points or rows), a corresponding number of mode shape vectors and natural frequencies must be generated. At the outset of this report it was pointed out that for larger numbers of grid points this may be both undesirable and that it may not be possible to obtain a large number of natural frequencies. Thus, there is a need to limit the number of grid points when one models the structure in question. Unfortunately, there is at present no general method to predict the number of natural frequencies/modes within a given frequency range. The solution to this problem may be to initially begin with a simplified nine point grid, test the unloaded structure and reduce the Transfer Function data to obtain the number of natural frequencies/modes in the specific frequency range of interest. This number of natural frequencies/meas will give an indication of the maximum number of grid points available if one wishes to refine this grid and use the square modal matrices. Since the Transfer Function data theoretically contain the same information for any grid point unless the response accelerometer for a particular grid point was situated on a node line, it is not required to initially increase the number of grid points above nine. During data reduction to determine the maximum number of natural frequencies (or grid points), it will thus be advantageous to reduce the data from more than one grid point to insure that no modes were "missed" due to a given accelerometer being inadvertently placed on a discrete node line.

VI <u>Discussion of the Methods</u>

<u>General</u>

As with any endeavour of this type, a learning curve is associated with one's ability to use unfamiliar equipment, software, and testing/modelling techniques. This was especially true for the author who had no previous experience in modal analysis testing, with the associated data reduction techniques, nor with finite element modelling procedures. Thus, the author was in a unique position to be able to evaluate the three modal analysis techniques which are the subject of this report. Admittedly this assessment of the three methods will be only one person's viewpoint and, as such, is somewhat subjective in nature. However, it represents the viewpoint of one who was previously uninitiated in this area of expertise. The evaluation of each method will be presented separately in the successive paragraphs of this section.

At the outset of this investigation it was cited that the Modal Analysis Software developed by Brown (Ref 2) would be used as a datum for comparing the methods. However, because the mode shapes from Brown's software and NASTRAN were quite different, such a comparison between experimental data and NASTRAN data was not possible. Furthermore, since the method using pseudoinverces was abandoned in favor of square, invertible 9 X 9 modal

matrices, and extension to either 25- or 65- grid points was not possible due to a lack of a sufficient number of natural frequencies in the specific range from 0-500 Hz, a comparison of this method to Brown's software was like-wise not possible. Neither was it possible to tie Glenesk's modal data to corresponding modal data generated by Brown's software due to lack of sufficient modal data in Glenesk's report (Ref 2). Thus, each method will be discussed as fully as possible while keeping these limitations in mind.

The Whaley Algorithm

The results obtained from use of the Whaley Algorithm were extracted directly from Reference 3 and are presented in Tables 4 through 6. Because the author did not directly use this algorithm, the author is unable to present an evaluation of the difficulties encountered in obtaining results from this method. However, when one considers the modes which were predicted by the algorithm when modal testing did not reveal such a mode, one can envision serious limitations to its use. As previously noted, Glenesk reported a degradation in algorithm performance as the size of the added lumped mass increased relative to the overall structure mass. Thus, an as yet undetermined upper bound exists, beyond which the predicted mode snapes and natural frequencies will cease to have an acceptable degree of accuracy.

The use of this algorithm requires one to obtain modal data on the unloaded structure before the massloaded modal quantities can be predicted. This requires modal testing facilities, test hardware, and the necessary software for conducting the required Fourier analysis on the Transfer Function data. This can mean a significant commitment in terms of resources (manpower, money, testing facility, etc). However, with the advent of portable modal analysis equipment, this investment in resources is expected to decline rapidly. One factor not as easily evaluated is the level of expertise required to successfully conduct the required modal testing and subsequent data reduction in order to obtain valid results. It was the author's experience that one must rely heavily upon "experts" in this field to avoid the pitfalls of questionable test procedures or of an invalid data analysis. The knowledge required to successfully conduct the testing and data analysis is one of those intangible factors upon which it is extremely difficult to place an evaluation.

The one serious limitation inherent in the use of this algorithm is that it will not predict mass-loaded mode shapes. Instead, it considers the mode shapes to be unaltered by the addition of mass to the structure. Although unaltered mode shapes were observed, they were randomly scattered throughout the confirmental data.

It is the opinion of the author upon review of the experimental data that even with a frequency shift the mode shapes were altered far more often than not. This is not believed to be a function of experimental methodology or questionable data, but rather an actual occurrence in nature.

The Finite Element Method

Again, as in the case of the modal analysis testing, a learning curve was associated with the use of the finite element method as presented in NASTRAN. Unlike modal analysis testing where the methodology used to obtain and reduce the data is all important, the author found the structural modelling technique, especially modelling of the boundary conditions, to be critical in obtaining good results. Since the structure was supported by bungy cords, the support conditions fell somewhere between the "free-free" case and the "clamped-clamped" case at the panel boundaries. Thus, it was not possible to clamp the finite element model at the edges, nor was it possible to allow the panel to be totally unrestrained. Several methods of modelling the boundary conditions were used to determine the model which most closely approximated the actual boundary conditions. Among the methods tried were the restraint of rigid body modes by

modelling the bungy cords as long slot for rods with small stiffness, the use of the SUPORT card or SPC1 cards to restrain suitable degrees-of-freedom at three non-colinear grid points on the panel edges, and the use of the SUPORT card to restrain all six degree-of-freedom at one selected grid point. In the latter case a CONM2 card was used with small mass and inertia values at the selected grid point to alleviate the singularity in the mass matrix imposed by restraining six degrees-of-freedom at the same grid point. The technique using SPC1 cards was chosen as the best method to model the supports.

In general, each finite element model generated a greater number of natural frequencies (Tables 8 through 12) than the MAC function test results (Tables 2, 4, 5, and 6) indicated were present in the frequency range from 0-500 Hz. However, when the finite element results (Table 12) were compared to Modal Analysis test results (Table 7), approximately the same number of natural frequencies were obtained using these two methods. Although the quanity of frequencies obtained using the finite element method was approximately the same as those obtained from Modal Analysis results and the frequencies were numerically similar, it became apparent upon comparison of the mode shapes from numerically similar frequencies that mere numerical similarity of the natural frequencies was inadequate by itself as a criterion for comparing the

Modal Analysis test results with similar results from NASTRAN. As the desired means of comparison of these two sets of data was a "pairing" of "like" mode shapes, it was unfortunate that this was not possible due to the large discrepancy in mode shape versus natural frequency when the two sets of data were compared. Thus, a better means of comparing analytical to experimental data is needed and should be the subject of further research.

This failure in ability to compare experimental to analytical data presents a perplexing problem for the designer who wishes to minimize the vibrational effects on the hardware to be installed by placing the associated attachment hardware at points of minimum vibration. Which mode shapes does the designer believe? Even more distressing are the "additional" modes which were computed by NASTRAN. Do these modes really exist? Are they heavily damped modes which exist not far from the noise floor? Were these modes missed in the experimental testing due to an inadequate sampling bandwidth? Or are these "additional" modes purely "synthetic" modes generated by the solution software in NASTRAN but not actually existing in nature? These questions remain unanswered and are seen as a severe limitation of the "state-of-the-art" in vibration analysis.

Although a pairing of experimental versus analytical (finite element, NASTRAN-generated) mode shapes was not successful, no such lack of success was encountered when

pairing either NASTRAN-generated unloaded data to NASTRAN-generated mass-loaded data (Table 12 and Figure 12) or when corresponding Modal Analysis Software data (Table 3) were compared. Thus, both methods appear to be internally consistent when data generated by a particular method are compared.

Since the thrust of this investigation has been the comparison of techniques for predicting mass-loaded natural frequencies and mode shapes, and not to argue the validity of the experimental baseline data versus NASTRAN data, one would be inclined to agree that NASTRAN presents the easiest technique for the experienced designer to predict mass-loaded modal data. The basis for this is that if all the NASTRAN-predicted modal quantities really do exist, the designer has at his disposal all such data without the need for testing which might lead to incomplete results.

One area which has not been explored is the fact that the Modal Analysis Software uses a least-squares algorithm to fit the Transfer Functions for residues and phase angles in a given frequency range. In the generation of the Modal Analysis Software mode shapes, any phase angles generated due to a frequency shift between Transfer Functions were ignored. This, by itself, will result in non-orthogonal modal vectors. Since NASTRAN generates a set of mutually orthogonal modal vectors, it may be possible to compare the Modal Analysis data to the NASTRAN data if the effect

of phase angle (i.e. - frequency shift with grid point within a given mode) is included in the display of the Modal Analysis mode shapes. This capability is not presently available on the HP5451B Fourier Analyser used in the experimental phase of this effort. Should this capability be added in the future, the apparent discrepancy between the Modal Analysis and NASTRAN results may be eliminated.

The percentage in absolute frequency shift from the unloaded panel to the mass-loaded data are presented in Table 12. Unlike Whaley's Algorithm where all but two cases were within ± 3% of the unloaded panel results, 17 out of 58 (29.3%) were greater than this ± 3% frequency shift. Even more disturbing is the wide range of frequency shift indicated by mass-loading for some configurations (refer to Table 12, Modes 12, 16, and 22). Thus, it would appear that at least part of the NASTRAN data may be questionable.

A considerable expenditure of the author's time and computer resources was made in obtaining these results. For comparison purposes, the author kept records of the computer resources used to obtain the modal data for each of the three finite element models as well as for designing, debugging, and running the pseudoinverse program. These data are presented in Table 16. It should be emphasized that the author was totally inexperienced in the use of

NASTRAN at the outset of this effort; rus, the expend ture of resources for the finite element data using NASTRAN can be expected to be reduced by up to 75% by an engineer who is more experienced in the use of NASTRAN.

In view of the fact that the finite element method results did not compare favorably with the experimental results, one must answer the question whether the time and effort invested in obtaining these data was commensurate with comparable investments from the other two methods vis-a-vis their respective results. The answer lies in the accuracy required by the structural modification, and by the vibration sensitivity of the hardware to be installed. In the case of electro-optical devices which are known to be inherently vibration sensitive, it would appear that, time permitting, this investment of resources would be justified. However, one must weigh the desired/ required results with the method used in each individual case. Thus, one of the other two methods (Whaley Algorithm or Matrix Recovery) may, with other less vibration sensitive installations, be optimal when all factors are considered.

Table 16. Computer Resources Used to Obtain Modal Result .

Parameter	Finite Element Models ¹		Pseudoinverse Matrix Recovery ²	
	Tota1	Average Per Run	Tota1	Average Per Run
Central Pro- cessor Unit Time (sec)	37590	178.16	3660	19.26
Input/Output Time (sec)	75155	356.18	4640	24.56
Computer Cost	\$4461.46	\$21.14	\$280.92	\$ 1.49

These data include post-processor time using GCSNAST for models up to 158 grid points.

The data are for primarily nine grid point models and include post-processor time using DISSPLA.

The Use of Pseudoinverses In the Recovery of the Discrete Mass, Stiffness, and Damping Matrices, and Solution of the Eigenvalue Problem

The recovery of the mass and stiffness matrices and solution of the eigenvalue problem was considered by Whaley (Ref 16) for a two degree-of-freedom system and the case of a square modal matrix. When one extends this procedure to the case of a non-square modal matrix, the problem becomes more complicated because the mass matrix will in general be fully populated and thus the problem becomes a generalized eigenvalue problem (Ref 8). A simple example for a three degree-of-freedom system is

presented in Appendix A. There it is hown that, when only two mode shapes and corresponding natural frequencies are considered, the resulting mass-loaded natural frequency and mode shape do not closely approximate the analytical solution. Thus, it does not presently appear that this method will yield accurate results for the case of a non-square modal matrix. Further research into this area is needed as an algorithm (technique) for predicting mass-loaded natural frequencies and shapes for the general (non-square modal matrix) case would be extremely useful.

Summary

of Brown's software, Ref 2) was approximately equal.

Although the author does not have such data on Whaley's method, it is assumed since Glenesk completed an independent study effort leading to a Master's degree that the effort expended in the use of Whaley's Algorithm would be comparable to the other methods. Each method has both drawbacks and good points, and the use of any one method over another will have to be seasoned with a great amount of engineering judgment.

VII Recommendations

In retrospect, it appears that the test item selected was much too ambitious for the comparison of the three modal analysis techniques. One suggested test item would be a uniform thickness flat plate. Many experiments have been performed on such an item and analysis of the uniform flat plate is included in many elementary vibrations textbooks (Ref 5). Once the methods have been tied together using this simplified model, modifications to the structure could be added one at a time and the process would be repeated. Thus one would gain faith in the three methods and, at the same time, gain valuable experience concerning the interactions between the various structural components.

Along the same line of the gradual increase in structural complexity is the incremental increase in the added point masses. It is envisioned that this small incremental change in added mass would significantly aid in tracking frequency shifts during the method comparison phase by allowing better visual comparison of the various unloaded and mass-loaded mode shapes.

The fact that phase angles different from zero were present in the experimental data gives rise to the question "Were these real modes?" Specifically, this question is precipitated because a mode shape which can be visually

observed is inherently real-valued with no phase angle between the peaks in the Transfer Functions at a given frequency. If, in fact, a complex mode did exist, a complex display would be necessary to properly observe the behaviour of the structure. Further research on the subject of complex-valued mode shapes is beyond the scope of this report but should be pursued in the future.

One area using the square/rectangular modal matrix which has not as yet been investigated is the addition of a structure such as a tripod which connects three or more grid points. Hence, off-diagonal terms are generated in the mass and stiffness matrices which further complicate the issue because the subject of finite element modelling of the tripod structure (or any other added structure) enters the picture. It is the author's opinion that this would be an interesting problem for one who is interested in furthering the research in this area.

Bibliography

- 1. Briggs, H.C., and Whaley, P.W., "Thesis Topic Proposal," Air Force Institute of Technology, Wright-Patterson AFB, Ohio, January 1980.
- 2. Brown, D. Modal Analysis Software, User Program
 Nine, Hewlett-Packard 5451 Fourier Analysis System,
 Modal Analysis User's Guide, (Rough Draft), Cincinnati, Ohio: University of Cincinatti, September, 1980.
- 3. Glenesk, Larry D. <u>The Prediction of Mass Loaded Natural Frequencies and Forced Response of Complex, Pib-Stiffened Structures</u>. M.S. Thesis. Wright-Patterson AFB, Ohio: School of Engineering, Air Force Institute of Technology, December 1979.
- 4. <u>HP5451B Fourier Analyser, Operating and Service Manuals, Volumes 1-8.</u>, Hewlett-Packard Company, January 1974.
- 5. <u>International Mathematical and Scientific Library</u>, IMSI LIB-0008, Houston, Texas: June 1980.
- 6. Mierovitch, Leonard. <u>Analytical Methods in Vibrations</u>. New York: The MacMillan Company, 1967.
- 7. McVinnie, W. and Verhelle, R. <u>GCSNAST Manual</u>. Graphics manual for NASTRAN output. Wright-Patterson AFB, Onio: Engineering Systems Development Department, Technical Computer and Information Center, November 1978.
- 8. Moler, C.B. and Stewart, G.W. "An Algorithm for Generalized Matrix Eigenvalue Problems," <u>STAM Journal on Numerical Analysis, Volume 10, No. 2</u>, April 1973, 241-256.
- 9. Noble, Ben. Applied Linear Algebra Et & Wood Cliffs, New Jersey: Prentice-Hall, Incorper God, 369, 142-146.
- 10. Penrose, R. "A Generalized Inverse for Matrices," Proceedings of the Gundaidge Philosophical Society, Volume 51, 406-413.
- 11. Schaeffer, Harry 1. MSC/NASTRAN 5t die and Normal Modes Analysis. Millford, New Hampohire: Wallace Press, Incorporated, April 1979.
- 12. Strang, Gilbret. <u>Linear Algebra and Its Applications</u>. New York: Academic Press, Incorporated, 1980.

- 13. The Nastram User's Namual (1900) V.(1). NASA-VP-22 (05). Washington, D.C.: Scient. Is and Technical Information Office, National Aeronautics and Space Administration, December 1978.
- 14. Whaley, P.W. "Calculations of Natural Frequencies and Mode Shapes of Mass Loaded Aircraft Structures,"

 The Shock and Vibration Bulletin, No. 48, Part 3, 13-20.
- 15. Whaley, P.W. "Prediction of the Change in Natural Frequency of a Cantilevered Flat Plate With Added Lumped Mass," <u>Journal of Sound and Vibration, Volume 69</u>, Part 4, 519-529.
 - 16. Whaley, P.W. "On Complex Valued Mode Shapes, Models For Structural Damping, and Mini-Computer Modal Analysis Techniques", Unpublished paper submitted to the 51st Shock and Vibration Symposium, San Diego, CA, June 1980.

APPENDICES

APPENDIX A

APPENDIX A

Mathematical Considerations and Example Problem In the Calculation and Use of the Pseudoinverse

Mathematical Considerations

In the paper by Penrose (Ref 8) it is shown that for any matrix A there is one and only one matrix A^{\dagger} satisfying the four conditions:

$$(1) \quad AA^{\dagger}A = A \qquad (A-1a)$$

(2)
$$A^{+}AA^{+} = A^{+}$$
 (A-1b)

(3)
$$(AA^+)^* = AA^+$$
 (A-1c)

$$(4) \quad (A^{+}A)^{*} = A^{+}A \tag{A-1d}$$

The matrix A^+ , called the pseudoinverse of A, is the matrix such that for the inconsistent set of equations $A \bar{x} = \bar{b}$, the solution $\bar{x} = A^+ \bar{b}$ represents the optimal solution to the least squares problem $A \bar{x} = \bar{b}$.

Now, consider the problem (posed by Noble, Ref 7) A $\bar{x} = \bar{b}$ where A = BC, and A, B, C are, respectively, m x n, m x k, and k x n, and all three matrices are of rank k, then the solution of A $\bar{x} = \bar{b}$ which minimizes

- a) the sum of the squares of the residuals \overline{r} T \overline{r} , where \overline{r} = \overline{b} A \overline{x} , and
- b) the sum of the squares of the unknowns $\bar{x}^T \bar{x}$, is given by $\bar{x} = A^{\dagger} \bar{b}$, where

$$A^{+} = C^{T} (CC^{T})^{-1} (B^{T}B)^{-1} B^{T}.$$
 (A-2)

When one accomplishes a decomposition of the matrix A

in the form A = LU where A is an m x n matrix, L is an m x m matrix, and U is an m x n matrix, B, B^T , C, and C^T in equation A-2 can be replaced by L, L^T , U, and U^T respectively, Equation A-2 then becomes (Ref 10)

$$A^{+} = U^{T} (UU^{T})^{-1} (L^{T}L)^{-1} L^{T}$$
 (A-3)

Example Problem 1. Calculation of Pseudoinverse

Armed with equation A-3, let us consider an example problem. Let the matrix A be represented by

$$A = \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix}.$$

Following the procedure of Strang (Ref 10), the following procedure is used to decompose A into L and U factors. Using an elementary matrix, E, to accomplish multiplication/addition of rows in matrix A, and a permutation matrix, P, to interchange rows to achieve non-zero pivot elements in U as needed,

$$PEA = U_{\bullet}$$
 and $(A-4)$

$$A = (PE)^{-1} U = LU.$$
 (A-5)

The ''' decomposition of the given matrix will now be calculued.

$$\mathbf{A} = \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix} = 12A = \begin{bmatrix} 1.0 & 0.5 \\ 0.0 & 0.0 \\ 0.0 & -1.5 \end{bmatrix}.$$

Noting that the second row of EA contains a non-zero pivot element, a row exchange with the third row of

EA is accomplished using a permutation matrix as

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1.0 & 0.5 \\ 0.0 & 0.0 \\ 0.0 & -1.5 \end{bmatrix} = P (EA) = \begin{bmatrix} 1.0 & 0.5 \\ 0.0 & -1.5 \\ 0.0 & 0.0 \end{bmatrix} = U.$$

To get L, augment the m x m PE matrix with an m x m identity matrix on the right side and perform elementary row operations until an identity matrix is obtained in place of the original position of PE. The matrix now occupying the previous location of the original identity matrix is the inverse, $(PE)^{-1}$.

$$[PE:I] = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ -3 & 0 & 1 & | & 0 & 1 & 0 \\ -2 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 3 & 1 & 0 \\ 0 & 1 & 0 & | & 2 & 0 & 1 \end{bmatrix} \\ \longrightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 0 & 1 \\ 0 & 0 & 1 & | & 3 & 1 & 0 \end{bmatrix} .$$

Thus, A = LU becomes

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1.0 & 0.5 \\ 0.0 & -1.5 \\ 0.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix}.$$

According to Reference 10, if the matrix U contains rows consisting of all zero elements, one can delete those rows in U and the corresponding columns of L to obtain new factors \overline{L} and \overline{U} such that

$$A = \overline{L}\overline{U} \tag{A-6}$$

Thus,

$$A = \overline{L}\overline{U} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1.0 & 0.5 \\ 0.0 & -1.5 \end{bmatrix} = \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix}.$$

The pseudoinverse of A becomes

$$A^{+} = \overline{U}^{T} (\overline{U}\overline{U}^{T})^{-1} (\overline{L}^{T}\overline{L})^{-1} \overline{L}^{T}.$$
Continuing to obtain A^{+} ,

$$A^{+} = \overline{\mathbf{u}}^{T} \begin{pmatrix} \begin{bmatrix} 1.0 & 0.5 \\ 0.0 & -1.5 \end{bmatrix} \begin{bmatrix} 1.0 & 0.0 \\ 0.5 & -1.5 \end{bmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 3 & 1 \end{bmatrix} \end{pmatrix}^{-1} \overline{\mathbf{L}}^{T}$$

$$= \begin{bmatrix} 1.0 & 0.0 \\ 0.5 & -1.5 \end{bmatrix} \begin{bmatrix} 1.25 & -0.75 \\ -0.75 & 2.25 \end{bmatrix} \begin{bmatrix} 1.1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \frac{1}{45} \begin{bmatrix} 0 & 0 & 15 \\ 18 & 36 & -30 \end{bmatrix} .$$

Once the matrix A⁺ has been calculated, one must verify that equations A-la and A-lb hold. Since A and A⁺ contain only real numbers, conditions A-lc and A-ld need not be checked. In general, all four of conditions A-la through A-ld must be checked. Checking,

$$AA^{\dagger}A = \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix} \frac{1}{45} \begin{bmatrix} 0 & 0 & 15 \\ 18 & 36 & -30 \end{bmatrix} \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix} = A.$$

Simularly,

$$A^{\dagger}AA^{\dagger} = \frac{1}{45} \begin{bmatrix} 0 & 0 & 15 \\ 18 & 36 & -30 \end{bmatrix} \begin{bmatrix} 1.0 & 0.5 \\ 2.0 & 1.0 \\ 3.0 & 0.0 \end{bmatrix} \frac{1}{45} \begin{bmatrix} 0 & 0 & 15 \\ 18 & 36 & -30 \end{bmatrix}$$
$$= \frac{1}{45} \begin{bmatrix} 0 & 0 & 15 \\ 18 & 36 & -30 \end{bmatrix} = A^{\dagger}.$$

Thus, the matrix A represents the pseudoinverse of the

original matrix A.

If we take $B = A^{T}$ and compute B^{+} , we find

$$B^{+} = \frac{1}{45} \begin{bmatrix} 0 & 18 \\ 0 & 36 \\ 15 & -30 \end{bmatrix} = (A^{+})^{T}.$$

If we let A = U, $B = U^{T}$, equation 3-a becomes

$$\mathbf{U}^{\mathrm{T}}\mathbf{M}\mathbf{U} = \mathbf{B}\mathbf{M}\mathbf{A} = \mathbf{I}. \tag{A-8}$$

Premultiplication of equation A-8 by B^{\dagger} and postmultiplication by A^{\dagger} yields

$$B^{+}BMAA^{+} = B^{+}IA^{+} = B^{+}A^{+}.$$
 (A-9)

The solution to equation A-9 is

$$M = B^{\dagger}IA^{\dagger} \tag{A-10}$$

provided the consistency condition

$$BB^{\dagger}IA^{\dagger}A = I \tag{A-11}$$

holds. The reader can verify equation A-11 is valid. Thus, the mass matrix becomes

$$M = B^{\dagger}IA^{\dagger} = B^{\dagger}A^{\dagger} = \frac{1}{45} \begin{bmatrix} 0 & 18 \\ 0 & 36 \\ 15 & -30 \end{bmatrix} \frac{1}{45} \begin{bmatrix} 0 & 0 & 15 \\ 18 & 36 & -30 \end{bmatrix}$$

$$= \frac{1}{45} 2 \begin{bmatrix} 324 & 648 & -540 \\ 648 & 1296 & -1080 \\ -540 & -1080 & 1125 \end{bmatrix}$$

$$= \begin{bmatrix} 0.16 & 0.32 & -0.267 \\ 0.32 & 0.64 & -0.533 \\ -0.267 & -0.533 & 0.556 \end{bmatrix} . \tag{A-12}$$

Before one can be sure equation A-12 represents the least squares solution to the mass matrix, one final check must

be made;

$$B M A \stackrel{?}{=} I.$$
 (A-13)

The reader can verify that equation A-13 holds. A similar procedure is followed to calculate the unloaded stiffness and damping matrices using equations 2 and 3, respectively.

Example Problem 2. Calculation of Mass-Loaded Mass and Stiffness Matrices

Following the procedure of Example Problem A-1, consider the three degree-of-freedom system of Figure A-1. Let M_1 = M_2 = M_3 = 1 and K_1 = K_2 = K_3 = 100. Neglecting damping and the forcing functions, the equations of motion become:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \\ \ddot{x}_3 \end{pmatrix} + \begin{bmatrix} 200 & -100 & 0 \\ -100 & 200 & -100 \\ 0 & -100 & 100 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} . \quad (A-14)$$

These equations are the three degree-of-freedom eigenvalue problem for this system. Upon solving equation A-14 for its eigenvalues (natural frequencies) and eigenvectors (mode shapes), the results in column two of Table A-1 are obtained.

Table A-1. Analytical Data From Three Degree-of-Freedom Spring-Mass-Damper-System

Parameter	M ₁ =M ₂ =M ₃ =1 K ₁ =K ₂ =K ₃ =100	M ₁ =M ₃ =1, M ₂ =2 K ₁ =K ₂ =K ₃ =100	
Unnormalized Modal Matrix	.445 1802	$\begin{bmatrix} 1. &675 & .461 \\452 &403 & .855 \\ .311 & 1. & 1. \end{bmatrix}$	
Natural Frequencies	$ \omega_1 = 4.45 $ $ \omega_2 = 12.47 $ $ \omega_3 = 18.019 $	0.1 = 3.813 0.2 = 11.845 0.3 = 15.648	

Figure A-1. Three Degree of Freedom System

Next, let a mass of magnitude one be added to mass M_2 such that M_2 is now equal to two. This will simulate a mass-loaded configuration. Data for this configuration are listed in column three of Table A-1. Note that the mass addition lowered the natural frequencies and modified the mode shapes.

Now, consider the first two natural frequencies and corresponding mode shapes (Table A-1, column 2) to be the measured modal data in the frequency range of interest. Using the procedure of Example Problem A-1 to recover the mass and stiffness matrices, the "generalized inverse" equations of motion become:

$$\begin{bmatrix} .485 & -.105 & -.131 \\ -.105 & .353 & -.237 \\ -.131 & -.237 & .249 \end{bmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \\ \ddot{x}_3 \end{pmatrix} + \begin{bmatrix} .35.359 & -....12 & 11.719 \\ -34.212 & .47.009 & -22.523 \\ 11.719 & -22.523 & 12.871 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$
(A-15)

After adding a unit of mass to the M_{22} term, and resolving the eigenvalue problem, the following results were obtained:

$$\omega_1 = 0.02$$
 $\omega_2 = 4.45$
 $\omega_3 = 12.46$

Comparison of these results with column two of Table A-1 reveals that, with the exception of ω_1 , the values are nearly identical with the unloaded results, and that the magnitude of the frequency shift was nowhere near that

which was encountered in column three of Table A-1.

APPENDIX B

APPENDIX B

Detailed Modal Analysis and Test Procedures

Modal Assurance Criteria (MAC) Function Testing

The test panel was suspended from a ceiling-mounted conduit in the Structural Vibrations Branch (Bldg 24C) of the Air Force Wright Aeronautical Laboratories (FBG/AFWAL) by bungy cords which were approximately four feet in length. These bungy cords were attached to the panel through holes in the skin located near each of the four edges. The test grid used by Glenesk (Ref 3) was marked on the upper surface, and a reference accelerometer was mounted on the skin (see "x" on Fig 2) using double-backed tape. The reference accelerometer and moveable accelerometer responses were individually amplified and filtered through a pair of matched filters before their signals were input to the HP-5451B Fourier Analyser (Ref 4). The reference accelerometer was used to provide the trigger signal for data sampling.

With the panel configured as described, the moveable accelerometer was mounted at grid point number one. The panel was then excited (tapped) 15 times at randomly selected locations. Following each tap, and prior to computations using these data in the Fourier Analyser, each data sample was viewed separately on a refresh-trace

oscilloscope to insure the tapping is direct overloaded the internal electronics, or that multiple excitations had not occurred during the data sample. Assuming an acceptable data sample had been obtained, these data were stored in the Fourier Analyser. Each time a good data sample was processed, the response data for that sample was averaged with the previous sample(s) such that after 15 iterations the stable average for each channel was computed. Using these average response data with the reference accelerometer as the input and the moveable accelerometer as the system forced response, the Fourier Analyser calculated both the MAC and Transfer Functions for that grid point and displayed the Transfer Function on the oscilloscope. At this point the user had the option to either accept the data, or reject the data and reaccomplish this process for that grid point. If accepted, hard copies, including plots and digitial information, were made of Transfer Function and MAC Function data. The Transfer Function data were stored for later use.

The next step was to successively mount the moveable accelerometer at each of the remaining grid points and repeat this procedure. Once the entire grid had been surveyed, the MAC Function data were examined to determine candidate frequencies for which a curve fit of the Transfer Function data would be race. Prior to curve-fitting the Transfer Function data, each discrete Transfer Function was examined at the given frequency range to determine the data with the "cleanest" spike. This spike was fit first using a least-squares algorithm to determine the natural frequency and damping ratio to be used in each of remaining Transfer Functions to determine the mode shape at that frequency. This process was repeated for each candidate frequency range identified by by the MAC Function data in the range of 9-500 Hz.

Modal Analysis Test Procedure

Several grid sets were used in this testing: the

25 grid point scheme of Glenesk (Ref 3, Figure 2), a 25 grid

point scheme (Figure 5) to coincide with the addition of

structural components, and a 65 grid point model with fine

meshes superimposed on each of the four internal bays (Figure

6) to investigate the modes of vibration of each of these

bays. Since the test procedure is identical for each grid

set, it will only be discussed for the 25 grid point scheme.

This testing used a moveable accelerometer to survey the grid. However, unlike the MAC function testing, a second stationary accelerometer was not used. Instead, one grid point was selected (number one for this grid) at which the structure would be excited by an impact hammer configured with a load cell to measure the amplitude.

the trigger source with the moveable accelerometer measuring the forced system response. Again, unlike the MAC function testing, the structure was excited only five times at each grid point. The number five was chosen for two reasons: first, it was noticed during the MAC function testing that more than five data samples had no significant impact on increasing the accuracy of the average PSD; and second, due to the large number of grid points used in the larger models, including more than five iterations per grid point would cause excessively long testing while providing little, if any, improvement in the quality of the data.

The process began by mounting the accelerometer at grid point number one and exciting the structure using the impact hammer five times at the selected excitation point. As in the MAC function testing, the data were examined following each discrete sample to determine if an overload of the internal electronics or a multiple excitation had occurred. Assuming acceptable data were obtained, the discrete force input was multiplied a force window (Figure B-1) to artificially force it to die out rapidly as would be the case for an impulse excitation. Similarly, the structural forced response was multiplied by an exponentially decaying window (Figure B-2) to simulate the effect of damping on the structural

Figure B-1. Force Window.

Figure R-2. Exponential Decay Window

response. The average of each sample with proceeding samples was computed after each of the five discrete data samples was accepted. As before, a Transfer Function was computed for each point. Upon completion of the fifth iteration, the average Transfer Function and a Coherence Function were computed and individually displayed. A decision whether to accept the data was based on a Coherence Function with many of its values at or near one in the 0-500 Hz range. This process was repeated until the entire grid had been surveyed.

Once the survey was complete, a grid point was selected which was believed to contain all the modes of the structure. Several methods for examining the Transfer Function data at that grid point were available in the software. Among these methods were a Kennedy-Plancu Circle fit, a least-squares algorithm, and an option which merely computed the magnitude of the Transfer Function at selected frequencies where the real and imaginary parts of the Transfer Function were 90 degrees out of phase with each other. Initially the author selected the magnitude option as it ignores damping. However, the least-squares algorithm was eventually used to analyse the data.

Mathematical-Experimental Procedure

This procedure uses the experimentally determined modal data for the unloaded panel gathered in the Modal

Analysis Section presented earlier in this Appendix. The mathematical portion of this procedure begins with the general matrix-vector differential equation used in modal analysis,

[M]
$$\ddot{x} + [C] \dot{x} + [K] x = f(t),$$
 (B-1)

where [M] is the mass matrix, [C] is the damping matrix, and [K] is the stiffness matrix, all of which are square and symmetric matrices. A generalized coordinates solution to this equation results in "n" uncoupled equations. Assuming the solution to equation 1 can be written in the form

$$x(t) = [U] q(t), \qquad (B-2)$$

where [U] is a square matrix consisting of mode shape vectors as its columns (i.e.-the modal matrix), then it follows that q(t) is the generalized coordinate. Following the derivation of Meirovich (Ref 5) after substitution of equation B-2 into equation B-1 and premultiplication of equation B-1 by $[U]^T$, the following definitions are made:

$$[U]^{T}[M][U] = [I]$$
 (B-3a)

$$[\mathbf{U}]^{\mathrm{T}}[\mathbf{K}] \quad [\mathbf{U}] = \begin{bmatrix} 2 & 0 \\ \omega_{\mathrm{n}} & 1 \end{bmatrix}$$
 (B-3b)

$$[\mathbf{U}]^{\mathbf{T}}[\mathbf{C}] \quad [\mathbf{U}] = \begin{bmatrix} 2\xi_{\mathbf{n}}\omega_{\mathbf{n}} & 0 \\ 0 & 1 \end{bmatrix} . \tag{B-3c}$$

With these definitions equation B-1 becomes

$$\ddot{q}_r + 2 f_r \omega_r q_r + \omega_r^2 q_r = f_r$$
, $r = 1, 2, 3, ...$ (B-4)
where $f_r(t) = [U]^T$ $f(t)$ is the generalized force.

Equation B-4 can be solved for at most "n" natural frequencies. However, there are often less than "n" natural frequencies in the frequency range of interest such that the modal matrix contains fewer columns than it contains rows. It is proposed to premultiply each of the equations B-3 by $([U]^T)^{-1}$ and postmultiply each of these equations by $[U]^{-1}$ in such a way as to isolate the mass, damping, and stiffness matrices on the left side of equations B-3 which involve these respective matrices. In general, $[U]^T$ and [U] will be non-square (rectangular) matrices necessitating the use of the pseudoinverse developed by Penrose (Ref 8) to find their inverses. Using a superscript "+" to indicate a pseudoinverse and after the previously mentioned pre- and post-multiplications, equations B-3 become

Equations B-5 can be further reduced using standard linear algebra matrix manipulations (Noble, Ref 7) to yield the mass, stiffness, and damping matrices respectively as

$$[M] = \left([U]^{T} \right)^{+} [I] [U]^{+}$$
 (B-6a)

$$[K] = \left(\begin{bmatrix} \mathbf{U} \end{bmatrix}^{\mathsf{T}} \right)^{+} \left(\mathbf{w}_{n}^{2} \right) \begin{bmatrix} \mathbf{U} \end{bmatrix}^{+}$$
 (B-6b)

$$[\mathbf{C}] = \left([\mathbf{U}]^{\mathrm{T}} \right)^{+} \left(\begin{bmatrix} -2 \mathbf{\xi}_{\mathrm{n}} \omega_{\mathrm{n}} \end{bmatrix} [\mathbf{U}]^{+}$$
 (B-6c).

Reference 8 (Penrose) contains the basic theory of the pseudoinverse.

With these definitions for the mass, damping, and stiffness matrices, and the experimentally determined modal data for the unloaded panel gathered in the Modal Analysis Section presented earlier in this report, one can calculate the mass, damping, and stiffness matrices. Appendix A contains a simple example of the technique.

Since the thrust of this procedure is to accurately predict the mass-loaded natural frequencies and mode shapes of a complex structure when only the unloaded modal data are known, the procedure must be continued to recover mass-loaded modal data (ω_n, ξ_n, U_n) . For example, consider the mass matrix. When the designer has made his decision regarding the placement of the additional mass (hardware) in the structure in question, he need only add an appropriate

mass in the mass matrix at the proper grid location to obtain the modified mass matrix. A similar procedure is followed to obtain the modified stiffness and damping matrices. Assuming one is only interested in mode shapes and natural frequencies, the modified mass and stiffness matrices are substituted into equation 4. Equation 4 is then solved for the mass-loaded natural frequencies and mode shapes.

Finite Element Modelling Procedure

Finite Element Models. The three finite element models used in this analysis were described in Section II. Because the development of a finite element model is described in Reference 11, the main question became how to add a quantity of mass to the mass matrix which would be used to solve for the modified natural frequencies and mode shapes.

NASTRAN provides this capability in the form of a CONM2 card which adds a finite-valued point mass, including its inertia properties and neutral axes offset, to a particular location in the mass matrix. Another card, the ASET1 card, was used to discard all but the out-of-plane translation from the analysis set in the solution for mode shapes and natural frequencies. Appendix C contains listings of a sample NASTRAN deck used in the modal analysis of each configuration.

Analytical Procedures. NASTRAN (Ref 11) uses several

rigid formats to provide flexibility to the user in the analysis at hand. Rigid Format 3 was chosen for the modal analysis of the test panel. This format neglects damping and solves equation B-1 with the forcing function and damping matrices set equal to zero. The output from this Format is a table of the "n" natural frequencies and tables of the "n" eigenvectors (mode shapes). These data were then post-processed using GCSNAST to be displayed on a standard computer terminal.

APPENDIX C

```
FB7.T100.E0100.C4150000.T790334.ATKINSCN.54942
 ATTACH.IMSL.ID=LIRRARY.SN=ASD.
ATTACH.DISSPLA.ID=LIBRARY.SN=ASD.
 LIBRARY.THSL.DISSPLA.
  FTN.PL=10000.
 LGO.
 ATTACH.PL T1038.ID-A780283.SN-ASD.
 PLT1038.
REWIND.TAPE99.
PROUTE, TAPESO, TID-AF, FID=FR1, ST=CSA, DC=PR.

END OF RECORD

PROGRAM PATRIX(INPUT, NUTPUT, PLFILE=0, TAPE5=INPUT, TAPE5=NUTPUT)
C+
 .
 CO THIS IS A TEST VERSION OF MATRIX USING THE NINE GRID POINT MODEL AND THE
 CO RESULTING MODE SHAPES AND NATURAL FREQUENCIES TO VERIFY THE VALIDITY OF THE
CO PROGRAM TO CALCULATE MASS-LOADED NATURAL FREQUENCIES AND MODE SHAPES. NINE
CO SEPARATE MASS-LOADED CASES ARE CONSIDERED IN ACCORDANCE WITH THE CASES
CO TESTED BY GLEMESK. SEVERAL CASES FOR EACH CONFIGURATION ARE CONSIDERED:
CO THAT IS. SEVERAL MSTARTING POINTSM ARE CONSIDERED FOR THE RANGE OF NATUR—
CO AL FREQUENCIES TO SIMULATE A REAL-HORLD CASE WHERE ONE IS ONLY INTERESTED
CO IN A SPECIFIC FREQUENCY RANGE.
COTHIS PROGRAM SOLVES THE GENERAL MATRIX-VECTOR DIFFERENTIAL EQUATION
COFOR THE MASS. DAMPING. AND STIFFNESS MATRICES USING GENERALIZED COCOORDINATES. THE FOLLOWING DEFINITIONS ARE MADE:
                        UT * AM * U = AT
UT * AC * U = ZETA
UT * AK * U = OMEGA
¢.
C+
C.
                                                                          - THE MODAL MATRIX - THE TRANSPOSE OF THE MODAL MATRIX
                                  WHERE U
C.
                                                                          . THE MASS MATRIX. THE IDENTITY MATRIX
                                                     AT
                                                                          . THE DAMPING MATRIX
                                                     AC
                                                                           . THE STIFFNESS MATRIX
                                                    ZETA - A DIAGONAL MATRIX WITH THE PRODUCT OF THE NATURAL FREQUENCY AND THE DAMPING RATIO FOR EACH MODE GROERED IN INCREASING MODE NUMBER ALONG THE MAIN DIAGONAL AND FERCES ELSEWHERE OMEGA - A DIAGONAL MATRIX WITH THE SOURCE OF THE NATURAL FREQUENCY FOR EACH MODE ALONG THE
C.
C. C.
                                                                                 MAIN DIAGONAL ORDERED IN INCREASING MODE
                                                                                 NUMBER AND ZERDES ELSEWHERE.
COSOLVING THESE FOUNTIONS USING STANDARD MATRIX MANIPULATIONS YIELDS:
 Č+
                         AM . UGITH . AL . UGIN
 C+
                         AC - UGITH + ZETA + UGIN
AK - UGITH + DMEGA + UGIN
.
                                  WHERE UGIN - THE GENERALIZED INVERSE OF THE NORMALIZED
                                                    MODAL MATRIX
UGITH • THE TRANSPOSE OF UGIN
 C+
 CONDTE TO THE USER: IF J IS THE NUMBER OF GRID POINTS AND L IS THE CONTROL OF THE
                                                              THE MATRICES DEFINED ABOVE SHOULD BE DIMENSIONED
                                                              AS FOLLOWS:
C+
                                                                       AM+AC+AK+AI+ZETA+ AND OMEGA: DIMENSION J X J
                                                                       UGIN
                                                                                                                                                           : DIMENSION L X J
                                                                                                                                                           : DIMENSION J X L
: DIMENSION J X L
C+
                                                                       UGITN
.
                                                                       ZETAS.OMEGAS.AL
                                                                                                                                                           : DIMENSION L
```

Figure C-1. Program Matrix Listing.

```
CONRD - NUMERICAL ROW DIMENSION
CONR - NUMBER OF ROWS
CONC - NUMBER OF COLUMNS
COINTITIALIZE THE MATRICES:
                     DIMENSION UUT9,91,DIF191,DIFF191,DIF1191,DIF2191
                     DIMENSION XA(31, YA(31, ZA(3), X(9), Y(9), ZO(9), XX(3), YY(3), ZZ(3)
                     CIMENSION XXX(91,YYY191.77719)
DIMENSION AALP(9)
                     DIMENSION U519.91.0619.91.0719.91.0819.91
                    DIMENSION MMBDA(9), MALPT9) .UA(9,9).ERRORT9)
DIMENSION AAT(9,9).F19,9).G19,9).H19,9).OMEGA(9,9).U(9,9).UT(9,9)
                  DIMENSION ACLOSS, ALLOSS, ACLOSS, ACLO
                  REAL AMMIGGOLUGIN(9,91,53(M),MK3(16),U3(9,M),METAZ(9),MK4(16Z)

REAL A(9,91,UGIN(9,91,TNL,5(9),MK(16Z),AM(9,9),AK(9,9),BETA(9),UZ(
19,9),MKZ(16Z),AAM(9,9),AAK(9,9),BETA(9),MK1(16Z),UL(9,9),MMEGA(9)
                     COMPLEX ALFATOS, 719,93, ALFATTOS, 7119,93, OMEGAGGS, RLAMBDA193
COMPLEX ALFAZ(9), 7319,93, ALP193
                      DIMENSION OMEGI(8+81+0MEGALL81+A1(8+8)+CC(9+81+U3TP(9+81+AMA(9+9)+
                  10019.81
                     NR = 9
                     ND-R
                     CALL CHMPRS
                      NCASES=3
                     DO 6 KK=1.NCASES
CO READ STRUCTURAL GRID POINTS
C+++
                    DO 202 T=1.NR
READ+,X(1),X(1),ZO(1)
TE(EOF(5LINPUT).NE.O) STOP
PRINT+,X(1),Y(1),ZO(1)
   202
C.
CO INITIALIZE THE MATRICES
                      DO 111 T-1.NR
                      00 111 J-1.NC
                      A(1, J) -0.0
                     U(1.J)=0.0
U2(1.J)=0.0
                      U4(1.J)=0.0
                     UT ( ). [ ] - 0. 0
UGIN( J. [ ] - 0. 0
                      UGITN([, J)=0.0
                      ZETASCIT-0.0
                     AL ( ))=1.0
OMEGAS( ))=0.0
                      DO S 1-1.NC
                     DO 2 J-1.NC
0.0-111.J)-C.0
                      OMEGAT[. 11=0.0
                     ZETA([+J]=0.0

00 333 J=1.NR

00 333 J=1.NR

AM([+J]=0.0
   2
                      AK (1. J)=0.0
                    AC(1, J)=0.0
00 70 1=1.ND
00 70 J=1.ND
   333
                      A111.J)-0.0
                     OFFGITI-J1=0.0

PRINTO-THE INITIALIZED MATRICES ARE:

PRINTO- THE MODAL MATRIX:

DO 61 1-1-NR
    61
                      PRINTO, FUEL, J). J-1.NC)
```

Figure C-1. Program Matrix Listing (Continued).

```
THE MODAL MATRIX TRANSPOSE:
                    NO 62 J=1.NC
PRINT+.EUTEJ.11.1=1.NR*
62
                     PRINTO." THE GENERALIZED INVERSE:"
CO 63 J=1.NC
PRINTO.LUGINIJ.II.INRI
 41
                      PRINTO. THE GENERALIZED INVERSE TRANSPOSE:
                     DO 64 I=1.NR
PRINTO, (UGITN(I.J).J=1.NC)
PRINTO. THE ZETA MATRI)
                     PRINTO. THE ZETA MATRIX: MON 65 I-1.NC
PRINTO. (ZETA(I, JI. J-1.NC)
                                                                    THE OMEGA MATRIXIM
                      PRINT+,"
                      00 66 1-1.NC
                     PRINTO TO THE THE THE STATE OF 
                     DO 131 T-1.NC
PRINT - ALTI
  131
 131 PRINTO, AL(!)

PRINTO, THE MASS MATRIX: DO 132 !=1.NR

132 PRINTO, (AM(!, J), J=1.NR!

PRINTO, THE DAMPING MATPIX: DO 133 !=1.NR

133 PRINTO, (AC(!, J), J=1.NR!

PRINTO, THE STIFFNESS MATRIX: DO 134 !=1.NR

134 PRINTO-(AK(!, L), J=1.NR!
                       PRINTS, CAKET, SP. J-1. NRP
PRINTS, THE IDENTITY "ATRIX:"
DD 135 1-1.NC
č•
C+ READ ZETA AND OMEGA VALUES FOR UNLOADED PANEL
CO OPTIONS: LLL=1; THIS OPTION WILL ALLOW THE PREDICTED MODE SHAFES FROM THE CO SQUARE MODAL MATRIX TO BE PLOTTED.
                                                 LLL-2: THIS OPTION REQUIRES THAT THE USER RUBER THE ACTUAL MASS-
LOADED FREQUENCIES AND MODE SHAPES WITH THEIR CORRESPON-
DING UNLOADED DATA TO PLOT THE ACTUAL DATA.
C+
                                                  LLL-3; THIS OPTION ALLOWS PLOTS FOR THE PSEUDOINVERSE MODE SHAPES. 4
                        111-1
                        1F(LLL.E0.2) CO TO 258
DO 1016 1-1.NC
  ON 1016 I=1.NC

1016 READ(5,1017) (MEGAS(1),7ETAS(1)

1017 FORMAT(27X,FR.3,FB.3)

ON 80 I=1.ND

80 OM=GAL(1)=0MEGAS(1)/100.

PRINTO,*THESE ARE THE VALUES OF OMEGAL:**

PRINTO,*OMEGAL(1),1=1.NO)
CO READ MODE SHAPE VECTORS AND NORMALIZE
                       00 1018 J-1.NC
00 1018 I-1.NR
     1018 READES.10197 ACT. 17
    1019 FIRMATICI 3X, FIG. 21

DO 411 I-1.NR

DO 411 J-1.NR

411 AIT. JI-AIT. J/100.
                          00 218 J-1-NC
                          5U#111-0.0
    00 219 1-1.00
2+011.110+111+112-013
```

Figure C-1. Program Matrix Listing (Continued).

```
PRINTO.SUM(1)
        SUMEJI-SORTESUMEJII
OO ZIM EHI-NR
        ACT, JI-ACT, JI/SUMCJI
 218
        00 221 E=1.NR
PRINT+.EA(1.J).J=1.NC)
 221
        DO 220 1=1.NR
DO 220 J=1.NC
 UTT. 31-411. 31
220 UTTJ. 11-411. 31
CO DELETE THE LAST COLUMN FROM THE MODAL MATRIX U TO FORM THE RECTANGULAR
00 81 I-1.NR
00 81 J-1.ND
        UTIT+JT+A(T+J)
PRINT++THIS IS THE U MATRIX:"
 81
        DO 91 1=1+NR
PRINT++(U(1+J)+J=1+NR)
PRINT++"HIS IS THE A MATRIX:"
DO 91 1=1+NR
 911
        PRINTO, (A1T, J1, J+1, NR)
PRINTO, "THIS IS THE UT MATRIX:"
 91
        PRINTO-THIS IS THE UT MATRIX:"
PRINTO-CUT(1,J), J-1,NR)
PRINTO-THIS IS THE UT MATRIX:"
DO 82 T-1,NR
 92
        PRINT*.(U3(1.J).J=1.NO)
DO 71 1=1.NR
ALP(1)-0.0
 82
 71
        00 83 I=1.ND
0MEG111.11=0MEGA1111++2
        PRINTO-THIS IS THE DMEGI MATRIX: DO 84 I-1-ND PRINTO-THIS IS THE DMEGI MATRIX: PRINTO-THIS IS THE AL MATRIX: PRINTO-THIS IS THE AL
 63
 84
        00 85 T-1.40
        PRINT+,1ALII.JI.J-1.NDI
C......
C+
C+
C+COMPUTE THE GENERALIZED INVERSE OF THE MODAL MATRIX AND ITS TRANSPOSE
C+
C+++
        NR11-9
        NRD-9
        NC-9
        NR -9
         TOL -0.0
        CALL EGINFTA.NRD.NR.NC.TOL.UGIN.NRDI.S.MK.TER)
PRINTO.THIS IS THE MATRIX UGIN:#
DO 77 I=1.NC
 77
        PRINT*. (UGINII.J).J-1.NR)
        00 1235 [=1.NP
00 1235 J=1.NC
 DU 1215 J=1, NC

1235 UGITN(1, J)=UGIN(J, I)

PPINT*, "THIS IS THE MATRIX UGITN:"

DD 414 I=1,NR

414 PRINT*, (UGITN(1, J), J=1,NC)
        PRINTS, THE VALUES OF ZETA AND OMEGA ARE, RESPECTIVELY: TO 15 E-1,NC OMEGAS(1)-OMEGAS(1)/100.
 15
         PRINTO, ZETASELL, CHI GASELL
....
c•
CO COMPUTE THE GENERALIZED INVERSE OF THE MATRIX US. THIS IS THE MATRIX USP.
C.
COO
         NR () 1 = 9
```

Figure C-1. Program Matrix Listing (Continued).

```
NR 3=9
       NC 3 = 8
       TOL -0.0
       NR D4 -8
       CALL LGINF (U3,NRO3,NR3,NC3,IDL,U3P,NPDA,S3,WK3,IER3)
PRINT*,"THIS IS THE MATRIX U3P:"
DO 30 I=1,ND
PRINT*,IU3P(I,J),J=1,NC)
 30
C+ TRANSPOSE US TO FORM UST. ALSO TRANSPOSE USP TO FORM USTP.
00 31 1-1.NR
00 31 1-1.NO
U3TP([.J]=U3P(J,[]
       PRINTO, "THIS IS THE MATRIX USTP:"
DD 32 I=1,NR
PRINTO, EUSTPEI, JI, J=1,ND
C+
COFORM THE ZETA, OMEGA, AND AT MATRICES:
       PRINTO, THE ACTUAL MATRICES ARE: ** DO 5 1=1.NC
        *FTA(1.11=2+ZETAS(1)+0#FGAS(1)
#EGA(1.1)+0#EGAS(1)++2
       ATTT.TT-1.0
      PRINTO, THE ZETA MATRIX: DO 25 1-1, NC
PRINTO, (ZETA(1, (1), (1-1, NC)
PRINTO, THE OMEGA MATRIX: DO 26 1-1, NC
 25
       PRINTO, IOMEGATI, III, II-I, NC)
PRINTO, THE IDENTITY MAT
 26
                     THE IDENTITY MATRIX:"
       00 27 1-1.NC
       PRINT*.(A1(1, J), J=1,NC)
00 41 1=1,NR
00 41 TT=1,NC
 27
       C(1.11)-0.0
DD 41 K-1,NC
       CIT-ITI-CIT-III+UGITNII-KI+AIIK-III
       CONTINUE
       00 42 I=1.NR
00 42 II=1.NR
       A411-111-0-0
       DO 42 K-1+NC
AMET+111-AMET+111+CET,K1+UGINEK, [1]
       AAM(1, [1] - AM(1, [1])
       CONTINUE
DO 43 I=1.NR
DO 43 II=1.NC
       DII-II)-0.0
00 43 K-1-NC
       DET. 111-PET. 111+UGITNET, K1+7FTACK, 111
       CONTINUE

00 44 1=1.NR

00 44 II=1.NR
        AC11,111-0.0
       DO 44 K-1,NC
       OU 49 K=1+NC

AC(1+11) = AC(1+11+11+D(1+K)+UG1N(K+11+

CONTINUE

DO 45 1=1+NC

E(1+11+0+0+0+1+NC)
        DO 45 K-1.NC
       ETT-TT1-ETT-TT1-UGTTNET-K1+OMEGAEK-T11
       DO 46 1-1.NR
DO 46 11-1.NR
        AKET-111-0-0
```

Figure C-1. Program Matrix Listing (Continued).

```
00 46 K+1.4C
        AKII.III-AKEI.III+EEI.KI+UGINEK.III
        CONTINUE
46
        00 1 1=1.NR
00 1 J=1.NC
        TF188514M(T,J)1.LE.10.E-81 44(1,J)-0.0
       TF1ABS1AM(I,J)).LE.10.E-81 AM(I,J)=0.0
IF1ABS(AK(I,J)).LE.10.E-81 AK(I,J)=0.0
IF1ABS(AK(I,J)).LE.10.E-81 AK(I,J)=0.0
PRINTO. THE DAMPING MATRIX:

DO 48 I=1.NR
PRINTO. THE STIFFNESS MATRIX:

DO 49 I=1.NR

DO 49 I=1.NR
        DO 49 1=1.0NP
PRINTO.TCHECK CONSISTENCY CONDITION FOR THE LOENTLY MATRIX:"
DD 990 I=1.0NP
DD 990 J=1.0NP
        F(1, 1)=0.0
         DO 990 K-1.NC
        DO 990 K=1.NC
FIT; J1=FIT; J1 + UGITNIT, K1+UGINIK, J1
DO 992 I=1.NR
DO 992 J=1.NC
H(I,J)=0.0
990
        HEI.JP-U.O

00 992 K-1.NR

H(I.J)-H(I.J) + F(I.KI*U(K.J)

00 993 I-1.NC

00 993 J-1.NC
992
         AA111.31=0.0
DO 993 K=1.NR
         AATCI, J) = AATCI, J) + UTCI, K) * H(K, J)
 993
         DO 9993 1=1.NC
9993 [F(ARS(AAFI(1,J)).EE.10.E-8) AAF(1,J)=0.0

00 994 1=1.NC

994 PRINT*,(AAFI(1,J),J=1,NC)
         PRINT+, (AAI(1, J)+, J=1, NC)
PRINT+, "CHECK CONSISTENCY CONDITION FOR THE ZETA MATRIX:"
DO 995 I=1+MC
DO 995 J=1+NC
FFII, JJ=0.0
DO 995 K=1+NR
FFII, JJ=FFII, JJ + UTII, KI+UGITNIK, JJ
  995
          DO 996 I=1.NC
          GG11.J1=0.0
DC 996 K=1.NC
          GG11.11-GG11.31 + FF11.KI+ZETA1K.JI
          DO 997 I=1.NC
DG 997 J=1.NC
HHII.J)=0.0
          DB 997 K-1+NR
          00 998 J=1,NC
  997
          HATT. JI-0.0
DO 998 K-1.NC
  998
          HATT, JI -HATT, JI + GGTT, KI +HHEK, JI
          DO 9994 1=1.NC
DO 9994 J=1.NC
  9994 IF (ARS(HAIT+J)).LE-10.E-8) HAIT+J)=0.0
          DD 999 I=1.NC
PRINT*, (HA(I, J), J=1.NC)
          PRINTO-"CHECK CONSISTENCY CONDITION FOR THE OMEGA MATRIX:"
DO 1003 T=1-NC
DO 1003 J=1-NC
          FFF(1.J)=0.0
 DO 1003 K-1.NC
1003 FFFff, JI-FFFFT, JI + FFFT, KIPOMEGA(K, JI
          00 1001 I-1-NC
00 1001 J-1-NC
GGG(1-J)-0-0
 00 1001 K=1.NC
1001 GGG(1,3)=GGG(1,3) + FFF(1,K)+HH(K,3)
          DO 9995 I=1.NC
 9995 IF (ARS (GGG ! 1.) | 1. LE. 10. E-R1 GGG ! 1. J1-0.0
```

Figure C-1. Program Matrix Listing (Continued).

```
00 1002 1-1-NC
 1002 PRINTO, (GGG(1, J), J-1, NC)
         PRINTO, THE HASS MATRIX:"
         00 1004 I-1.NR
 1004 PRINTO-CAMEL-11-1-1-NC1
C+
C.
CO SINCE THE MASS WAS ADDED TO GRID POINT NUMBER FIVE ON THE ACTUAL PANEL. THE
CO MASS MATRIX WILL BE PERTURAED IN THE 5.5 POSITION BY ADDING A QUANTITY OF COMES FOURLY ON THE MASS HOLD THE MASS LOADING ON THE ACTUAL PARTL. THIS WILL SIMULATE THE CO MREAL WORLD CASE. NOTE THAT THE MASS WAS PLACED ON ONLY ONE GRID POINT. IF CO THE MASS WAS A STRUCTURE SUCH AS A TRIPOU WHICH CONNECTED TO THREE GRID CO POINTS, THE ADDED STRUCTURE WOULD HAVE TO BE MODELLED IN THAT IT WOULD ADD CO BOTH MASS AND STIFFNESS TO THE PARTL. THIS ADDED MASS AND STIFFNESS WOULD COMEST.
CO GENERATE ADDITIONS TO REF DIAGRAL TERMS OF LIKE SUMMER TO THE TWO CONNECT—
CO ED CRID PRINTS. AS PREVIOUSLY NOTED, THIS PROGRAM SULVES THE GENERALIZED
CO EIGENVALUE PROBLEM, THUS, THERE IS NO NEED TO CREATE A SIMULAR MODEL FOR
CO ANY ADDITIONAL DAMPING INCURRED BY THE ADDITIONAL STRUCTURE.
C------
         PRINT . "FNTER THE LOOP TO PERTURB THE MASS MATRIX:"
         TF(KK.EQ.11 AM(5,5)=AAM(5,5)+0.1144
TF(KK.EQ.2) AM(5,5)=AAM(5,5)+0.2420
         IF (KK. EG. 3) AM(5,51+AAM(5,51+0.4158)
PRINT+,* THE MASS MATRIX:*
         00 50 I+1.NR
         PRINTO-CAAMCT, 33 . J=1.4C3
PRINTO-THE MODIFIED MASS MATRIX:
 50
         DO 47 I=1.NR
PRINT+, (AMII, JE, J=1.NR)
  47
         PRINTO, "THE STIFFNESS MATRIX:"
         DO 58 1-1.4R
         PRINT+, (AK(I,J),J=1.NC)
C......................
CO SOLVE THE GENERALIZED EIGENVALUE PROBLEM FOR THE MASS-LOADED NATURAL FRE-
C. QUENCIES AND MODE SHAPES WITH THE SQUARE MODAL MATRIX U.
        TAM=9
         NAMAK=9
         1 JOR - 2
         CALL EIGZFIAK.IAK.AM.IAM.NAMAK.I JOB.ALFA.BETA.Z.IZ.WKZ.IERZ)
         PRINTO. THESE ARE THE VALUES OF RLAMBDA:
         DO 1234 T=1.N
RLAMBDA(I)=CSORT(ALFA(I)/BETA(I))
         PRINT* . RLAMBDA(I)
 1234 CONTINUE
PRINTO- THESE ARE THE VALUES OF THE Z MAIRIX:
         DO 1009 1-1.N
 1009 PRINT+,(7(1,J),J=1,N)
PRINT+, THE PREDICTED MODE SHAPES AND NATURAL FREQUENCIES FOR AM15
       1,51=",A4(5,51,"ARE:"
         00 21 T=1.NC
         WAMBDALIS-CSQRTERLAMBDALIS++25
         PRINTO.(WAMBDA(I).1-1.NC)
         CALL VSRTA(WAMPDA,LA)
         PRINT*.(HAMBOA(1), [-1.NC)
DO 22 1-1.NC
DO 22 J-1.NC
         IF(ABS(WAMBDALL)-REALIRLAMBDALJ))).LE.10.E-8) GO TO 23
         IFCABSCHAMBDACTI-REAL (REAMBDACTI).GT.10.E-81 GO TO 22
 23
         DG 24 K=1.NR
         U21K.11-0.0
         U21K.11=U2(K.1)+REAL(Z(K.3))
         CONTINUE
         00 152 J=1.NC
SUM41J1=0.0
         DO 153 1-1.NR
         $U#4(J)+5U#4(J)+U2(I+J)+#2
```

Figure C-1. Program Matrix Listing (Continued).

```
SUM4(JI-SORT(SUM4(J))
               DO 152 1-1.NR
U2(1.J)=U2(1.J)=V2(1.J)=V2(1.J)=V2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=U2(1.J)=
  CO READ MASS-LOADED MODAL VECTORS
  ....
                                                    DD 250 J=1.NC
DD 250 I=1.NR
UU(1,J)=0.0
READ(5,251) UU(1,J)
                   FORMATTIOX, E15.41
                  PRINT+.UUII.JI
00 252 1=1.NR
00 252 J=1.NC
                   UUTT. 31 - UUTT. 33 + UUTT. 31/100.
                   00 263 J=1.NC
SUM1(J)=0.0
                   00 264 [=1.NR
SUM1(J1=SUM1(J1+UU(T.J1++2
SUM1(J1=SORT(SUM1(J1)
 263 UU([-,1)*UU([-,1)/5U*1[1)
 C^{ullet} COMPUTE THE SUM OF THE SQUARES OF THE DIFFERENCES BETWEEN ACTUAL AND PRECODICTED LOADED MODAL VECTORS
                   DD 253 J-1.NC
                   DIF(J)=0.0
                  DO 253 T=1+NR
DIF(J)=DIF(J)+TUU(T+J)-U2(T+J)++2
                   00 259 1=1.NC
                   DIF1(11-0.0
                  DIFICIDEDIFCED CONTINUE
                   DO 261 T-1.NR
    261 DIFL(1)=SQRT(DIFL(1))
PRINTO-"THESE ARE THE VALUES OF THE MODE SHAPE VECTORS:"
DO 245 1=1.NR
245 PRINTO-LUZGI, J1.J-1.NCP
                   DO 86 I-1.NR
DO 86 J-1.ND
                   CC11.J1-0.0
                  DO 86 K=1.ND
CC11.J1=CC11.J1+U3TP11.K1+A11K.J1
    86
                   DO 87 1=1.NR
DO 87 J=1.NC
AMATI.JI=0.0
                   AMMII.JI-0.0
00 67 K-1,ND
                   AMMET. JE = AMMET. JE + CCCT + KI +U3P (K. JE
                   AMAET, JE-AMMET, J)
                   DO 88 1-1.NR
DO 88 J-1.ND
                   DD([.J)-0.0
                   DR 88 K-1.ND
                  DDEL+33-DDEL+31+U3TPEL+K1+OMEG1EK+31
    58
                   DO 89 I-1.NR
DO 89 J-1.NC
                  AAK([.]|-0.0
DO 89 K-1.NO
AAK([.]|-AAK([,])+DD([.K)+U3P(K.])
CO THIS IS THE LEAST-SQUARES SOLUTION TO THE MASS MATRIX BEFORE THE MASS HAS
  CO BEEN ADDED TO THE 5.5 TERM.
```

Figure C-1. Program Matrix Listing (Continued).

```
PRINTO. "THIS IS THE MATRIX ANN:"
       00 73 I-1.NR
       PRINTE, CAMMCT, JI, J-1, NC1
PRINTO THIS IS THE MATRIX AAK:"
       00 74 T=1.NR
 74
       PRINTO. LAAKLI. JI. J-1.NCT
C.................
CO SOLVE THE GENERALIZED EIGENVALUE PROBLEM FOR THE MASS-LOADED NATURAL FRE-
C+ QUENCIES AND MODE SHAPES USING THE RECTANGULAR MODAL MATRIX U3.
      IF (KK.EQ.1) AMM(5,5)=AMA(5,5)+0.1144
IF (KK.EQ.2) AMM(5,5)=AMA(5,5)+0.242
       IF(KK.EQ.3) AMM(5,5)-AMA(5,5)+0.4158
       17-9
       1 JOR-2
14-9
       18-9
       N = 9
       PRINTO, "THE HODIFIED MASS MATRIX ANN:"
       DO 67 1-1.NR
      PRINTO, [AMMEI, J1, J=1,NC1
      CALL EIGZFTAAK, TA, AMM, TM.N.I JOR. ALFAZ, BETAZ, Z3. IZ. WK4. IER4)
CO THESE ARE THE LEAST-SQUARES SOLUTIONS FOR THE NATURAL FREQUENCIES WITH THE
C+ THE ADDED MASS IN THE 5.5 POSITION OF THE MASS MATRIX.
      PRINTO, "THESE ARE THE VALUES OF THE 23 MATRIX:"
DO 246 I=1.NR
     PRENTO, (2311, J), J=1, NC)
PRENTO, "THESE ARE THE VALUES OF ALP:"
       00 33 I-1.NR
       ALPCII-CSORT(ALFAZ(II/RETAZ(II)
       MALPETI-CSORTEALPETI++21
      PRINTO.ALPIII.WALPIII
       CALL VSRTATHALP.LAT
      PRINTE . THESE ARE THE VALUES OF WALP : "
      PRINT+, [WALP(II, I=1, NC) DO 265 I=1, NC
       IFII.FO.11 AALP(9)-WALP(1)
      IF(1.GT.1) GO TO 266
GO TO 265
      K-1-1
      AALPEKT-WALPETT
     PRINT+, AALP(K)
      DO 198 I=1. R
      00 198 J-1.NC
       IFIARSIAALPIII-PEAL (ALPIJIII.LE.10.E-8) GO TO 197
       TF (ARS (AALPIII-REAL (ALPIJIII.GT.10.E-8) GO TO 198
 197 DO 196 K-1.NR
      U41K-11-0.0
      U4 (K. [] + U4 (K. [] + REAL (73 (K. 3))
 196
      PRINT*.U411.33
      00 150 J-1-NC
SUM3(J)-C.0
      00 151 1-1.NR
       SUM3(3)=SUM3(3)+U4(1,3)++2
      SUM3(1)-SORT(SUM3(1))
      00 150 1-1-NR
 150 U4IT, J1+U4II, J1/SUM3IJ1
PRINT+, **COMPUTE THE SUM OF SQS OF D1FFERENCES BETWEEN LOADED ACTUA
     IL AND PREDICTED LOADED MODAL VECTORS USING THE GENERALIZED INVERSE 2:**
      00 255 Jel.NC
      01Ff1J)-0.0
00 255 1-1.NR
 255 OFFE 11-DIFF ( )1- ( UU( ) , 1) - U4( ) , 111+42
     DO 256 T=1.NC
DIF2(T)=DIFF(T)
      CONTINUE
 00 262 [=1,NR
262 DIF2(11)=SGRT(DIF2(1))
```

11

Figure C-1. Program Matrix Listing (Continued).

```
PRINTO. "THE FIGENVECTORS ARE:"
        DO 28 1-1.NR
PRINT+.(U2(1.J).J-1.NC)
PRINT+.THE GENERALIZED INVERSE EIGENVECTORS ARF:
 28
        DO 79 1-1.NR
  79
         PRINT+, (U4(I, J1, J=1,NC)
        DD 54 I=1.NC
AALPEI3-AALPEI1+100.
         WAMBOATTI-WAMBDATTI-100.
        00 52 LR+1+NC
READ(5+53) WH8DA(LB)
        FORMATI27X,F8.31
  52
        PRINT . W BDAILB
        DO 55 1-1.NC
        ERROR(I)=((WMBDA(I)-WAMSDA(I))/WMBDA(I))+100.
 55
        DD 231 1=1,40
 231
        ERRORITIE-COMMBDACTI-AALPCITE/WMBDACTITE-100.
CO-COMPUTE THE DOT PRODUCT OF THE ACTUAL MASS-LOADED VERSUS PREDICTED MASS-
CO-LOADED MODAL VECTORS FOR THE SQUARE MODAL MATRIX (U7) AND FOR THE RECTAN-
CO-ULAR MODAL MATRIX (U8)
                              ••••••••••••••••••••••••
        DO 145 I=1,NR
DO 145 J=1,NC
U5([,J]=0.0
U6([,J]=0.0
        U5(1,J)=U5(1,J)+U2(J,[)
        06(1, J) = u6(1, J) * uu(J, f)

00 146 f = 1, NR

00 146 J = 1, NC

07(1, J) = 0.0

U8(1, J) = 0.0
         DO 146 K=1.NC
        U761,31-0761,31+0061,K1+056K,31
U861,31-0861,31+0061,K1+066K,31
        DO 147 T-1.NR
 147 PRINT(6,1448) (U7(1,1),1=1,NC)
UU 1449 1=1,NR
1449 PRINT(6,1448) (U8(1,1),1=1,NC)
  1448 FORMATTEX, 9(2X, F7.31)
        PRINTO THE EIGENVALUES ARE:

PRINTO THE EIGENVALUES ARE:

PRINTO THE COMPARISON OF FIGENVALUES:

PRINTO UNLOADED PREDICTED

IRE PREDICTED PERCENT SOUAPE
                                                                                PERCENT
                                                                                             SQUA
                                                SOUAPE"
       186
        PRINTO. EXPERIMENTAL
LT MASS-LOADED E
                                        MASS-LOADED MASS-LOADED
                                                                                 ERROR
                                                                                               R 00
                                     ERROR
       1 T
                                                   EXPERIMENTAL DET
        PRINT* ."
                                          USING
                         DATA
                                                                              PREDICTED
                                                                                                OF
       1 USING PRINT*, TO PSEUDOINVERSE
                                  PREDICTED DET
                                                                                VERSUS
                                                                                             DIFF
                                   VERSUS DI
                                                DIFF'S"
        PRINT+,"
                                                                                ACTUAL
                                                                                               50.
             (9ROWS, 8COLS)
                                   ACTUAL
                                                  50.0
        DO 29 T=1+NC
OMEGASTI1+OMEGASTI1+100.
      PRINT(6.51) OMEGASTIT, WAMBOATTI, WMBDATTI, ERPORTIT, DIFTITT, AALPTIT, TERRORITT, DIFTITT, AALPTIT,
 29
        FORMAT (4x,F7.3.7x,F7.3.7x,F7.3.6x,F6.2.4x,F5.2.5x,F7.3.7x,F6.2.4x,
       1F5.21
        IFILLL.FQ.1) GO TO 269
IF(LLL.EQ.3) GO TO 269
                                     *******************************
CO IF LLL EQUALS TIME. THIS STEP WILL BE IGNORED AND THE PROGRAM WILL GO TO CO STATEMENT 269. HOWEVER, IF LLL EQUALS 2. THE MASS-LOADED MODAL VECTORS
CO SACTUALS WILL BE READ IN AND THEIR MODE SHAPES PLOTTED.
C.
                             258 DO 268 J-1.NC
       DO 268 1-1.NR
       READES+2671 U201+J1
FORMATCL3X+E:0.21
 268
      U211. JI-U211. JI/100.
```

Figure C-1. Program Matrix Listing (Continued).

```
DO 140 J-1.NC
       SU#2111=0.0
       DO 141 1-1.NR
       SUM2(1)=SUM2(1)+U2(1,1)++2
SUM2(1)=SORT(SUM2(1))
141
       DO 140 1-1.NR
140
       UZ ET + J1 = UZ ET + J1/SUMZEJE
CONTINUE
269
       DO 211 LL=1.NR
       00 21 LL-19 NR
CALL BONPL(1)
CALL TITL3D1 "MODE .CONFIGURATION $".100.8.0.8.0)
CALL AXES 301 "THE TAS ".100." 75".100. "RADIALS".100.15..15..15..)
CALL VUARS (-20...70...50.)
       CALL GPAF3D1-20..10..50..-1.,10..50.,-0.5.10..50.1
       LK-LL
       CALL NEWPEN(1)
       00 212 KL=1.2
IF(KL.FQ.11 GO TO 204
IF(KL.GT.1) GO TO 201
204
       DO 206 I-1.3
       K-3+(1-1)+1
       CALL CURVEDIX (K) . Y(K) . ZO(K) . 3 . 1 !
       00 207 J=1,3
       K = J
       **(1)=*(K)
       YYELLSYCKS
       $$(1)=20(K)
       XX(2)=X(K+3)
       YY(2)=Y(K+3)
ZZ(2)=ZO(K+3)
       XX(3)=X(K+6)
       YY131=Y1K+61
       22(3)=20(K+6)
       PRINT+.XX(1),YY(1),Z7(1).XX(2),YY(2).ZZ(2),XX(3),YY(3),ZZ(3)
       CALL CURVENTIXX, YY, ZZ, 3, 11
TYY(L)-Y(L)
       IF(LLL.EO.1) CO TO 199
IF(LLL.EO.2) GO TO 199
IF(LLL.EO.3) ZZZ(L)=ZO(L)+U4(L+LL)+5.
GO TO 203
ZZZ(L)=ZO(L)+UZ(L+LL)+5.
199
203
       PRINT*.XXXILI.YYYYLI.ZZZILI
       DO 209 I=1.3
K=3+[I-11+1
205
       CALL CURVODIXXXIKI, YYYIKI, ZZZIKI, 3,11
       DO 210 J-1.3
       XACL)=XXXCK)
       YA(1)=YYY(K)
ZA(1)=ZZZ(K)
XA(2)=XXX(K+3)
       YA (21-YYY (K+3)
ZA (21-272 (K+3)
       X4 (3) = XXX (K+6)
       YA133-YYY1K+61
       ZA(3)=727(K+6)
       PRINTO-XATID, YATID, ZATID, XATZD, YATZD, ZATZD, XATZD, YATZD, ZATZD
CALL CURVODIXA, YA, ZA, ZA, ZB,
       IFIKL, GT. 1) GO TO 216 CALL NUMBER (1)
208
       TECKL.EG.11 GG TO 217
CALL NEWPENTLI
CONTINUE
217
       CALL DASH
CONTINUE
       CALL FNDPLILL
211
       CONTINUE
       CALL DONEPL
215
       END
       END OF PECDED
```

Figure C-1. Frogram Matrix Listing (Continued).

-19. 24.375 1	2.5						
-5.5 24.375 1	.2.5						
19. 24.375 10	.5					•	
-19. 6. 12.5							
-5.5 6. 12.5							
19. 6. 10.5							
-19. 0. 12.5							
-5.5 0. 12.5							
19. 0. 10.5		140 432	2.1589694	5	1		
1 12	ĭ	169.437	2.2807813	Ś	2		
2 90	2	191.251 206.396	.7570244	5	ī		
1 103	0	206.643	.7313859	5	Ä		
4 103	0	234.039	.6190009	5	2		
2 119	ŏ	238.212	.7678094	5	5		
5 119	ĭ	279.993	.7539196	5	4		
2 225	i	451.669	.7763402	5	2		
3 242	ī	484.457	.7087252	5	3		
1 1 1	168.	.000F +00	.000F+00	30.5	• 0	• 0	
l i ż	7.69	.000E+00	.000E+00	72.6	•0	.0	
1 1 3	-24.6	.000E+00	.000E+00	94.5	•0	•0	
i i	53.3	.000E+00	.000E+00	63.1	•0	•0	
1 5	-44.2	.000E+00	.000E+00	69.5	•0	•0	
1 6	-31.2	.000E+00	.000E+00	22.7	•0	•0	
1 7	10.5	.000F +00	000000	55.l	.0	•0	
1 0	5.30	.000E+00	.000E+00	90.7	•0	•0	
1 9	-11.3	.000E+00	.000E+00		•0	.0	
2 1	132.	.000F+00	.000E+00	.3	.0	. 0	
2 2	2.41	.000E+00	.000F +00		•0	•0	
2 3	-27.6	.000€+00	.000E+00		• 0	.0	
2 4 5	127. -48.9	.0006+00	.000E •00		•0	.0	
2 5	-23.5	.000F+00	.000F+00	28.1	•0	• 0	
2 7	5.41	.000F+00		172.1	•0	•0	
2 0	8.39	.0001+00	.000E+00	4.3	• 0	• 0	
2 9	-19.5	.000E +00	.000E+00		•0	•0	
i i	80.8	.000F +00	.000E+00		• 0	.0	
1 1 2	-14.6	.000F +00	.000E+C0		.0	•0	
1 3	153.	.000F+00	•000E •00		•0	•0	
1 4	790.	.0006+00	.000E+00		•0	•0	
1 5	202.	.0006+00			•0	.0	
1 6	-280.	.000€+00			•0	.0	
1 7	-142.	.0006+00			.0	.0	
1 8	-24.1 143.	.000£+00			•0	. 0	
1 9	48.9	.000E •00		45.2	.0	•0	
	-11.0	.000€+00		110.5	.0	• 0	
4 3	145.	.000E+00		108.5	.0	.0	
	737.	.000F+00	.000E+00	134.5	• 0	• 0	
1 3	228.	.000F+00	*000E+00		•0	•0	
1 6	-275.	.000£+00	.000E+00		• 0	•0	
4 7	-121.	.000F+00			•0	•0	
	-25.4	.000E+00			•0	.0	
1 9	140.	.000E+00			.0	.0 .0	
2 1	264.	.000E + 00			•0	•0	
1 2 2	-14.0	.000E+00			.5	.0	
2 3	142. 77.2	.000€+00		98.5	.0	•0	
	-131.	•000E+00			•0	•0	
2 5	-502.	.000E+00			.0	•0	
1 2 7	-96.4	.000E+00	•000E+00	148.7	•0	•0	
2 6	-30.8	.000E+00	.000F+00		• 0	•0	
1 2 9	117.	.000E+01	.000E+00		•0	•0	
5 i	346.	.000E+00			.0	•0	
5 2	8.51	.000F+00			•0	•0	
5 3	P7.7	.000F + 01			•0	.0	
5 •	33.6	.0008 + 00			• 0	•0	
5 5	-101.	.000F +01			•0	.0	
9 6	-437.	.0001 •00			•0	•0	
5 7	61.6	.000F+04			•0	•0	
1 2 2	-29.6	.000F+00			.0	.0	
1 2 3	#3.3 427.	.000F+0			•0	.0	
1 1	-13.9	.000F • 00			.0	.0	
1 ; ;	125.	.000F +01	00001.00	174.4	• 0	• 0	
1	PO. P	.000F + 00		21.1	• 0	.0	

Figure C-1. Program Matrix Listing (Continued).

	-4.0	2005 - 20	(1/10)			
4 5	-60.8	.000f +00	.000E + 0 / 64.9	•0	• 0	
4 6	232.	•0006 •00	.000F+++A 169.8	•0	• 0	
4 7	RZ.R	.000F+00	.000F+00 11.4	.0	•0	
4 8	-64.0	.000E+00	.000F+00 175.8	.0	•0	
	107.	•000F •00	.000E +00 174.7	•0	• 0	
2 1	-724.	*000E +00	.000F+00 177.7	•0	•0	
2 2	-27.7	.000F+00	.000F +00 88.0	.0	.0	
2 3	201.	.000F +00	.000F+U0 36.3	.0	• 0	
2 4	33.7	.000E+00	.000E+00 116.8	• 0	•0	
2 5	68.0	*000E *00	.000E+00 155.6	.0	•0	
[7 6	-50.6	.000E+00	.000E+00 2.9	.0	.0	
2 7	-89.3	.000E+00	.000E+00 94.7	.0	.0	
2 6	-18.0	.000F+00	.000E+00 6.5	.0	• 0	
2 9	16.0	.000E+00	.000E • 00 14.6	• 0	•0	
3 1	979.	.000E+00	.0006+00 11.1	.0	•0	
3 2	-16.9	.000E+00	.000E+00 57.6	• 0	•0	
3 3	185.	.000F +00	.000E+00 42.8	• 0	•0	
3 4	-81.6	.000F +00	.000E+00 91.8	• 0	.0	
3 5	64.5	.000E+00	.000E+00 53.9	•0	•0	
3 6	-68.2	.0006+00	.000E+00 44.9	•0	•0	
3 7	119.	.000E+00	.000E+00 60.8	.0	.0	
3 6	-61.5	.000F+00		•0	•0	
3 9	124.	.000E+00	.000E+00 47.6	• 0	•0	
1 1	156.	.000E+00	.000E+00 118.6	•0	•0	
i i	5.86	.000F +00	.000E+00 112.0	• 0	• 0	
1 1 5		.000F+00	.000E+00 118.9	.ŏ	.0	
B · · · · · · · · · · · · · · · · · · ·	-25.0					
1 4	47.8	.000E •00	.000E+00 111.8	•0	•0	
1 1 5	-115.	.000E+00	.000E+00 82.5	•0	.0	
1 6	-13.2	.000E+00	.000E+00 125.1	• 0	•0	
l i ř	22.9	.000E+00	.000E+00 125.7	.0	•0	
MI CONTRACTOR OF THE CONTRACTO						
1 8	16.6	.000E+00	.000E +00 109.9	.0	• 0	
1 9	-14.9	.000F • 00	.000E+00 125.8	•0	.0	
2 1	167.	.000E+90	.000E+00 99.0	.0	• 0	
1 2	-9.11	.0006+00	.000E+00 88.4	•0	•0	
2 3	-44.0	.000E+00	.000E+00 92.3	•0	•0	i
1 2 4	146.	.000F+00	.000E+00 62.7	•0	•0	
] 2 5	-20.9	.000+000	.000E+00 147.0	.0	•0	
\$ 6	-26.0	.000F+00	.000E+00 122.7	.0	• 0	į
2 7	37.6	.0001.000	.000E+00 151.4	.0	.0	
5 8	-5.06	•000E •00	.000E+00 32.9	•0	•0	
1 2 9	-46.0	*000£+00	.000E+00 85.9	• 0	•0	
l • 1	67.1	.000E+00	.000E+00 47.3	.0	.0	
1 4 2	34.1	.000E+00	.000E+00 114.8	.0	.0	
						1
1 4 3	118.	.000F+00	.000E+00 93.9	•0	•0	1
) • •	576.	.000F+00	.000E+30 125.4	• 0	•0	
4 5	186.	.000E+00	.000F+00 123.7	.0	•0	
4 6	-23A.	.000E+00	.000E+00 118.6	• 0	•0	
1 7	-140.	.000€ +00	.000E • 00 119.9	•0	•0	
) • •	-9.84	.000F+00	.000E +00 145.6	•0	• 0	
4 9	136.	.000E+00	.00JE+U0 122.2	.0	•0	
1 1	97.7	.000F +00	.0JOF+00 [10.0	.0	•0	
l î ż	32.4	.000F +00	.GOUE +00 104.1	.0	•0	
1 3	136.	.0005+00	.000E+00 PO.3	.0	•0	
1 4	664.	.000F+00	#000E+00 116.5	• 0	•0	
1 5	215.	*000£ *00	.000F+00 114.7	• 0	• 0	
16	-275.	.000F +00	.000E .00 113.6	.0	.0	
l i 7	-151.	.000E+00	.000E+00 103.3	• 0	•0	
			.000E+09 101.7			
1 8	-8.25	.000E+00		.0	•0	
1 9	155.	.000E+00	.000E +00 IIZ.Z	.0	• 0	1
3 1	505.	.000E+00	.000E+00 71.6	.0	.0	
3 2	-1.11	.000E+00	.000E+00 91.2	.0	.0	
j 5 3	116.	.000F+00	.000F+00 145.6	.0	•0	
		.000£+00	.000E+00 105.2		•0	1
	103.			•0		1
3 5	34.8	.000F • 00	.000E+00 154.7	•0	•0	
3 6	-449.	•000F • 70	.000F+00 134.0	• 0	. 0	
3 7	-65.2	.000F+00	.000E+00 159.0	.0	•0	1
1 3 8	-27.6	.000F .00	.000E+00 152.1	.0	.0	1
1 3 9			.000E+00 149.0			
	92.4	•000E •00		•0	.0	
6 1	296.	.000F+00	.000E+00 55.5	.0	• 0	i
6 2	R.29	.000E+00	.000E+00 83.7	.0	.0	1
6 3	115.	.000F +00	.000E+00 174.4	• 0	•0	ļ
}	45.4	.000E +00	.000E+00 85.1	.0	.0	
	37.9	•000E • 00	.000F+00 180.0	.0	•0	
, 66	-395.	.000E+00	.000F+00 132.5	•0	•0	1
6 7	73.6	•000F •00	.000F + 00 13.9	.0	•0	ì
	-31.3	.000E+00	.000F+00 167.9	.0	.0	•

Figure C-1. Program Matrix Listing (Continued).

6 9 84.9	•000F •00	.0006 *** 175.4	.0	•0
5 1 360.	.000F+00	.000F+6U 44.0	.0	•0
5 2 15.1	.000E+00	.000E+U0 83.3	.0	.0
5 3 -90.1	.000E+00	.000E+00 14.1	.ŏ	.0
5 4 121.	.000E+00	.000E+00 69.0	.0	.0
5 5 -21.2	.000E+00	.000E+00 168.6	.0	ŏ
5 6 148.	.000F+00	.000E+00 179.9	.0	.0
5 7 63.3	.000E+00	.000E+00 50.4	.0	.0
5 8 ~35.5	.000E+00	.000E+00 177.6	•0	•0
5 9 -82.1	.000E+00	.000E+00 13.3	.0	•0
2 1 -393.	.000E+01	.000E+00 135.0	.0	.0
2 2 -22.8	.000E+00	.000E+00 20.8	.0	.0
2 3 -197.	*000E+00	.000E+00 130.4	.0	.0
2 4 57.9	.000F+00	.000E+00 118.0	.0	.0
2 5 -11.8	.000E+00	.000E+00 174.9	•0	.0
2 6 29.7	.000E+00	.000E+00 177.9	.ŏ	ŏ
2 7 -98.1	.000E+00	.QODE+00 90.6	•0	•0
2 8 17.8	.000E+00	.000E+00 152.1	.0	.0
2 9 -34.8	.000F+00	.000E+00 165.8	.0	.0
3 1 483.	.000E+00	.000E+00 3.4	.0	•0
3 2 -33.6	.000E+00	.000E+00 104.3		.0
3 3 -258.	•000£+00	.000E+00 177.2	.0	
3 4 -42.2	•000F+00	.000E+00 177.2	•0	•0
3 5 29.4	•000€+00	.000E+00 107.8	•0	•0
3 6 27.8	•000E •00		•0	•0
3 7 20.8	•000€ •00	.000F+00 41.8	•0	•0
3 8 ~44.6	•0006+00	.000E+00 25.7	•0	• 0
3 9 31.9		.000E+00 129.0	•0	•0
1 69 1	.000F+00 139.975	.000E+00 85.2	.0	•0
2 89 2		2.0175486 5	l,	
102 0	179.832	3.0957055 5	2	
1 102 0	204.245	.7355951 5		
3 119 0	204.655	.6540350 5	1	
6 119 0	238.630	.6101121 5	3	
	238.660	•6657898 5	6	
5 140 0 2 226 2	280.646	.7067019 5	5	
	453.668	1.0136778 5	2	
3 233 2	466.076	1.1651139 5	3	1
-19. 24.375 12.5				
-1. 24.375 12.5				
19. 24.375 10.5				
-19. 14. 12.5				
-1. 14. 12.5				
19. 14. 10.5				
-19. 0. 12.5				
-1. 0. 12.5				1
19. 0. 10.5				i
1 66 3	137.275	4.7611160 5	1	
5 103 0	207.085	•7830667 5	5	1
3 119 0	239.182	.7887224 5	3	j
5 140 1	280.553	.9846845 5	5	t
6 147 4	294.848	2.7664447 5	6	·
3 163 2	327.8R1	1.2368145 5	3	
7 197 4	394.224	2.2474298 5	7	ł
207 2	414.164	1.0396776 5	4	ļ
6 226 2	453.688	1.2814689 5	6	1
1 1 214.	*000£ +00	.000E+00 97.4	.0	•0
1 2 1.49	*000E+00	.000E+00 22.1	.0	.0
1 3 -37.9	.000E+00	.000F+00 103.5	.0	.0
1 4 -37.5	*000£ *00	.000E+00 56.9	• 0	.0
1 5 -6.65	•000£ •00	.000E.00 133.3	• 0	.0
1 6 45.1	*000£+00	.000E+00 132.1	• 0	.0
1 7 41.5	•000E • 00	.000E+00 111.7	.0	.0
1 0 2.71	•000E • 00	.000F +00 78.2	•0	·ŏ
1 9 -24.5	.000F+00	.000E+00 110.8	.0	.0
5 1 -61.8	•000F •00	000E+00 96.6	.0	
5 2 -17.7	•000£ •00	.000F+00 117.4	.0	
5 3 150.	•000E+00	.000E+00 100.8	.0	
5 4 R10.	•900E •00	.000E+00 86.1	.0	.ŏ
5 5 276.	•000E •00	.000E .00 120.4	•0	
. 5 6 -487.	.000F+00	.000E+00 111.0	.ŏ	iš l
5 7 -143.	*000F *00	.0005+00 116.0	•0	
5 8 -39.9	.000F+00	.000E+00 118.3	.0	
5 9 172.	.00nE+00	.0001+00 108.2	•0	:0
3 6 61.9	•000F •00	.000f +00 159.6	•0	.0
	• • • • • • • •			
3 2 -24.4	•000F •00			
		.000[+00 117.3 .000F+00 116.5	.0	.0

Figure C-1. Program Matrix Listing (Continued).

							
3	4	82.1	.000€+00	.000: +6 - 91.9	.0	.0	
3	5	153.	. 200F + 00	.000: +C '20.1	.0	.0	
] 3	6	-611.	.000E+00	.000E+GO 88.2	.0	• 0	
]	7	-112.	.000E+00	.000E • 00 132.8	•0	.0	
3	0	-31.1	.000E+00	.000E+00 127.7	.0	•0	
]	9	128.	.000F+00	.000F+00 118.3	•0	•0	
5 5	1	-266.	.000F+00	.000F+00 176.7	•0	.0	
5	2	-11.8	•000E •00	.0006+00 62.6	•0	•0	
5	,	117. 107.	*000E+00	.000F+00 137.7 .000E+00 .3	.0	•0	
j ś	5	124.	.000F+00	.000E+00 .3	•0	•0	
5	6	310.	•000E • 00	.000E+00 148.8	•0	.0	
1 5	7	-103.	•000E+00	.000E+00 110.0		.0	
5	Ŕ	-103. -42.8	.000E+00	.000E+00 148.6	.0	.0	
1 5	9	109.	.000E+00	.000E+00 134.0	.0	.0	
6	1	509	.000F+00	.000E+00 41.3	.0	.0	
	Ž	-41.0	.000F +00	.000E+00 166.0	•0	•0	
6	3	-160.	.000F +00	.000E+00 16.6	.0	.0	
6	4	145.	.000E+00	.000E+00 162.7	.0	•0	
6	5	279.	•000E • 00	.000E+00 169.8	.0	.0	
6	6	-72.9	.000F +00	.000E+00 24.7	.0	_	
6	7	321.	.000E+00	.000E • 00 2.3	.0	:0	
6	8	26.8	.000F+00	.000E+00 .8	•0	.0	
6	9	-163.	• 200E • 00	.000E+00 9.7	.0	.0	
3	1	320.	.000E+00	.000E+00 118.1	.0	.0	
3	2	-15.5	.000E+00	.000E+00 50.2	.0	.0	
3	3	-4.53	•000€ •00	.000E+00 137.2	.0	•0	
3	4	48.5	.000E+00	.000E+00 32.7	. 0	.0	
3	5	-28.7	.000E+00	.000E+00 94.7	.0	•0	
3	6	20.9	.000F+00	.000E+00 97.9	.0	.0	
3	7	32.3	.000E+00	.000E+00 104.4	.0	•0	
1 3	8	20.0	.000E+00	.000F+00 29.4	.0	.0	
3	9	27.8	.000E+00	.000E+00 179.A	.0	• 0	
7	1	432.	.000E+00	.000E • 00 67.9	.0	.0	
7	3	-9.72	.000F+00	.000E+00 98.1	•0	• 0	
'	4	41.9	*000£ +00	.000E+00 42.7	•0	.0	
;	5	28.5 -29.2	.000E+00	.000E+00 82.3	•0	•0	
1 7	6	-22.1	*000E+00	.000E+00 26.4 .000E+00 50.3	•0	•0	
j ,	7	18.4	•000E+00	.000E+00 50.3	•0	•0	
7	8	-9.62	.000E+00	.000E+00 143.7	•0	•0	
7	9	-24.5	.000E +00	.000E+00 147.0	•0	.0	
1	ı	437.	.000E+00	.000E+00 25.4	.0	.0	
•	2	-12.3	.000E+00	.000E+00 Z4.2	.0	•0	
•	3	114.	.000E+00	.000E+00 63.0	.0	.0	
•	4	43.1	.000E+00	.000E+00 40.2	.0	• 0	
1	5	-17.4	•000E +00	.000E+00 145.9	.0	.0	
1 *	6	-51.0	*000E+00	.000E+00 68.5	.0	.0	
•	7	15.7	.000E+00	.000E+00 157.5	.0	• 0	
1	8	13.0	•000E+00	.000E+00 128.2	.0	•0	
1 :	9	28.6	.000E+00	.000E • 00 64.0	.0	• 0	
6	1	-390. -34.3	•000F+00	.000E+00 169.3	•0	•0	
6	3	-24.3	•000E •00	.000E+00 7.7	• 0	•0	
	4	87.3 42.0	•000€ •00	.0006+00 64.2	•0	•0	
	3	16.1	.000F+00 .000E+00	.000E+00 3.5 .000E+00 3.6	• 0	•0	
6	6	350.	•000€+00	.000E+00 3.6	•0	•0	
1 6	7	-85.2	.000E+00	.000E+00 84.4	•0	.0	
6		33.9	.000E+00	.000E+00 131.9	•0	•0	
6	9	-23.1	.000F+00	.000E+00 166.9	.0	.ŏ	
1	1	155.	•000E •00	.000E+00 98.2	.0	•0	
1	2	-2.83	.000F+00	.000F+00 151.2	.0	.0	
1	3	-9.09	.000E+00	.000E+00 67.7	.0	• 0	
1	•	-27.2	.000F + 00	.000E+00 R6.1	.0	•0	
1	5	18.9	.000F +00	.0008+00 64.2	.0	.0	
1	6	-19.7	•000E+00	.000E+00 132.2	.0	.0	
1	7	5.23	•000€•00	.000E+00 88.4	• 0	• 0	
1 1	9	578 -4.20	•000€+00	.000E+00 136.4	•0	• 0	
1	ì	-6.20 -113	•000E+00	.000F+00 86.Z	• 0	• 0	
	5	-112. -41.4	•000E+00	.000E+00 160.9	.0	• 0	
}	í	161.	.000E+00	.0008+00 139.2	.0	•0	
1	4	1030.	•000E+00	.0005+00 [33.8	•0	•0	
1	5	163.	•000E •00	.000F+00 103.8 .000F+00 117.1	•0	•0	
	6	-#2A.	.000F+00	.0001+00 117.1	.0	•0	
•	7	-187.	*000E+00	.000E+00 134.2	•0	• 0	
			\$1.00(¥00	10000-10 134.7	• 0	•0	

Figure C-1. Program Matrix Listing (Continued).

•	8 -56.1	.0001-00	• Our • 7	25.0		
•	9 191.				• 0	.0
5		•000E+00		11.4	• 0	•0
	1 282.	.000F +00		34.5	•0	• 0
5	2 16.3	.000E+00	•0001+00	175.5	• 0	• 0
5	3 169.	.000F • 00	.000E+00	174.2	• 0	• 0
5	4 226.	.0075+00	.000E+00	160.2	.0	.0
5	5 -84.4	.0008+90			.ŏ	•0
5	6 -714.	.000E+00		141.3		
5					•0	•0
3		.000F+00		2.6	• 0	• 0
	8 31.9	.000F+00			•0	•0
5	9 175.	.000F+90	•000E+00	158.5	• 0	• 0
] 1	1 -485.	.000E +00		172.8	.0	•0
1	2 -38.1	.000F + 00	.000F+00	144.4	• 0	.0
1	3 284.	.000E + 90	•000E+00	176.8	.0	•0
j 1	4 365.	.000E+00	.000E+00		_	
i	5 197.	.000F+00			•0	• 0
l i			•000E •00		•0	•0
	6 518.	•000E •00	•000€ •00		.0	•0
1	7 -410.	.000F+00	•000E •00	162.9	• 0	• 0
] 1	8 -99.5	•000E +00	•000E+00	159.6	.0	• 0
1	9 307.	.000E • 00	.00uE+00		.0	•0
3	1 294.	.000E+00	•000E •00	70.7	.0	.0
1 3	2 -17.7	.0016+00	•000E+00			
1 3	3 96.5	.000E+00			• 0	•0
1 3		=	•000E+00		•0	.0
		.000E+00	.000E+00	34.2	•0	.0
3	5 -7.66	.000E+00	.000E+00		.0	. 0
3	6 68.3	•000E+00	•000E •00	14.9	•0	•0
3	7 140.	•000E+00	.000E+00	4.6	.0	•0
}	5 4.84	.000E+00	.000E+00		•0	•0
3	9 162.	.000E+00	.000E+00		.0	.0
i	1 305.	.000E+00	.000E+00	71.2		
l i	2 -23.1	•000€ •00			•0	•0
1			•000E+00	68.3	•0	•0
4		.000E+00	•000E •00		• 0	• 0
1	136.	.000E+00	•000E+00	22.7	.0	• 0
•	5 -32.3	.000E+00	.000E+00	165.1	.0	•0
•	6 -123.	.000F+00	.000E+00	18.4	.0	•0
1 4	7 -72.4	.000E+00	.000E+00		•0	•0
i •	8 9.92	.000E+00	.000E+00		.0	.0
•	9 107.	.000F+00	.000E+00			
1	1 560.	.000E+00			•0	•0
i š			•000E+00	53.7	•0	• 0
1 7		.000E+00	•000E+00	78.8	• 0	•0
•	3 29.5	*000E+00	*000E+00	72.3	-0	• 0
•	54.4	.000E+00	-000E+00	58.1	.0	•0
1 4	5 6.63	.000E+00	.000E+00	75.7	•0	•0
1 •	6 5.37	.000F+00	.000E+00		•0	•0
1 4	7 -27.5	.000E+00	.000E+00	34.1		
1	8 -9.25	.000E+00			•0	•0
i .	9 18.1			144.2	•0	•0
3	- · · · -	•000E+00	•000E•00	52.5	•0	•0
6		•000F+00	•000E •00	75.5	• 0	•0
6	2 -11.9	.000F+00	•000F+00		•0	• 0
6	3 98.0	.000F+30	•000E+00	31.4	.0	• 0
6	4 50.2	.000E+00	•000E+00	103.1	• 0	• C
6	5 4.46	•000E •00	.000F +00	92.4	.0	•0
6	6 -115.	.000F+00	.000F+00	56.4	•0	•0
6	7 -29.0	.000E+00	•000E+00	89.8		
آ آ	8 -16.1	.000€+00			•0	•0
١	9 41.9		•000E •00		•0	•0
		.010E+0	•000E •00	-	.0	• 0
1 ?	1 -305.	.000F +00	.000F+00		.0	•0
?	2 43.7	.000F+00	•000F •00	170.9	. 0	• 0
?	3 107.	.0006.00	•000E •00	7.0	• 0	•0
, ,	4 36.9	.000F+0	.000E+00		•0	•0
ļ 7	5 -11.6	.000E+00	.000E+00		•0	•0
1 7	6 130.	.000€+00	•000F •00	15.9		
7	7 -50.0	•000F •00	•000F •00		• 0	•0
,	R 17.1	.000F+00		24.2	•0	•0
,	• • • •		•0006 •00	64.8	• 0	•0
		.0006+00	0004 3000	37.3	• 0	• 0
1	74 1	147.872	1.7321522	5	1	
•	101 0	202.598	.6890111	5	4	
5	119 1	239.415	1.2039478	5	5	
1	136 1	276.142	.7430311	5	í	
3	150 0	301.519	.5816044	Ś	3	
ĺ	161 2	323.245	1.7030649	5		
•					•	
		401.57R	.9915557	5	4	
	217 2	434.504	1.0381837	5	6	
7	229 1	456.524	.5899760	5	7	
	24.375 12.5					
	24.375 12.5					
11.						

Figure C-1. Program Matrix Listing (Continued).

```
24.375 10.5
-19. 20. 12.5
11. 20. 12.5
19. 20. 10.5
-19. 0. 12.5
     0. 12.5
     0. 10.5
83
90
19.
                                            1.3821552
                                167.266
                                190.424
                                              .6090055
         103
                      0
                                207.288
                                              .6091039
                                229.543
         114
                      0
                                            3.7508655
                                              .5621488
         139
149
                      0
                                279.684
                                              .5192603
                      1
                                299.232
                                              46977379
                                                                       1
         151
                                303.621
                                            1.7963026
                      0
                                328.523
                                             .5889673
                                 .000E+00
                                                  .000F+00
                12.2
                                                             128.9
                                                   .000E+00
                                  .000E+00
                                                                        • 0
                -33.8
                                  .000F+00
                                                  .000E+00
                                                             132.5
                                                                        .0
                                  .000F+00
                                                   .000E+00
                                                              47.1
                34.5
                                  .000E+00
                                                                               .0
1
                                                   .000E+00
                                                                        .0
               -8.16
                                  .000F+00
                                                  .000E+00
                                                                        .0
                7.55
                                  .000F +00
                                                  .000E +00
                                                                               .0
                                                             125.5
                                                                        .0
               -10.5
                                 .000E +00
                                                              99.6
                                                                        .0
               -13.4
                                                  .000E+00
                                                             139.7
                                                                        .0
                24.2
                                                  .000F+00
                                  .000E+00
                                                             163.0
                                                                        .0
                62.8
                                  .000E +00
                                                   .000E+00
                                                             150.9
                                                                        .0
                                                                               .0
                                  .000F +00
                                                             124.9
                                                                        .0
               -30.4
                                                   .000E+00
                                                                               .0
                34.6
                                  .000F +00
                                                   .000E+00
                                                                               .0
                                                             147.0
               -10.9
                                  .000E+00
                                                   .000E+00
                                                                        .0
                                                                               .0
                29.0
                                  .000F +00
                                                   .000E+00
                                                              39.4
                                                                        • 0
                                                                                • 0
               -19.6
-7.19
                                  -000E+00
                                                   .000E+00
                                                                        .0
                                                                               .0
                                                              35.5
                                  .000E +00
                                                   .000E+00
               -14.2
                                  .000E+00
                                                   .000E+00
                                                             165.5
                                                                        .0
                60.4
                                  •000E •00
                                                  .000F+00
                                                              59.9
                                                                        • 0
                                                                               .0
                                  .00CF + 00
                                                             123.6
                60.7
                                                                         .0
               -79.3
                                                   .000E+00
                                                              60.3
                                                                         .0
                                                                                .0
                                  .000E+00
               -102.
-54.9
                                                  .000E+00
                                  .000E+00
                                                              44.9
                                                                         • 0
                                  -000E+00
                                                              62.8
49.9
                                                                        . 0
                                                                                .0
                42.5
                                                                        .0
                                                                                .0
                                  .000E+00
                                                   .000E+00
                66.0
                                  .000F +00
                                                   .000E+00
                                                               62.4
                                                                        ٠,٥
               -24.9
-83.0
                                                              51.4
39.1
                                                                        .0
                                                                               .0
                                  .000E+00
                                                   -000E+00
                                  .000F+00
                                                   .000E +00
                                  .000F+00
                                                   .000E+00
                                                               92.0
                                                                        .0
                                                                               .0
               107.
-17.7
                                  - 100E + 00
                                                   . 000E +00
                                                             103.0
                                                                         • 0
                                                                                . 0
                                  .0006 +00
                                                   .000F+00
                                                              98.4
                                                                        .0
                                                                                .0
               -.769
-8.47
                                  .000E +00
                                                   .000E+00
                                                              22.4
                                                                                .0
                                                                        . 0
                                  .000E+00
                                                   .000F • 00
                                                             105.1
                                                                         .0
                                                                                .0
               -14.0
                                  .000F+00
                                                   .000E+00
                                                              90.9
                                                                        • 0
                                  .000E + 90
                2.35
8.65
                                                   .000F +00
                                                              97.7
                                                                         •0
                                                                                .0
                                  .000E+00
                                                   .000E+00
                                                             112.4
                                                                        • 0
                                                                                - 0
       q
                9.09
                                  .0005 + 00
                                                   .0001+00
                                                             120.9
                                                                        .0
                                                                                .0
               65.5
-110.
                                  .000E+00
                                                  .000E +00
                                                              65.4
                                                                        . 0
                                                                                .0
                                  .0001 +00
                                                                        .0
                                  .000F+00
               -104.
                                                   .000F+00
                                                              67.9
                                                                        .0
                                                                                .0
                23.1
                                                              63.1
                                  -000F+0
                                                   .000E+00
                                                                        •0
                                                                                .0
                                  .000F+00
                                                   .000F +00
               -21.1
                                                                               .0
                                                                        .0
                137.
                                  .000F+00
                                                   .000E+00
                                                              56.4
                                                                        .0
               42.7
-57.9
                                  .000E+00
                                                   .000E+00
                                                              62.3
                                                                        .0
                                                                                . 0
                                  .000F +00
                                                  .000E+00
                                                              59.2
                                                                        .0
                                                                               .0
               -112.
                                  .0006+00
                                                  .000E+00
                89.6
55.8
                                  .000F + 00
                                                   .0001+00
                                                             100.7
                                                                        .0
                                  .000E+00
                                                  .000E+00
                                                              65.7
                                                                        .0
                                                                               • 0
               -107.
                                 .000E+00
                                                  .000F +00
                                                             101.1
                                                                        .0
                                                                               .0
                                 .00 F+00
                                                  .000E+00
                                                                               .0
                                                                        . 0
               -64.5
                                                              80.0
88.5
                                                                        .0
                                                  .000f +00
                                                                               .0
                                                  .000F+00
               -144.
                                 .000F +00
                                                                               . 0
                48.4
                                  .000E+00
                                                  .000E+00
                                                             106.1
                                                                        .0
                                                                               .0
               -50.4
                                                  .000E+00
                                  -200E+00
                                                             110.2
                                                                        .0
               -62.B
                                 .000F +00
                                                                               .0
                                                             106.2
                                                                        .0
                                  .000E+00
                                                  .000E .00
                                                                        . 0
                                                   .000E+00
                85.9
                                  .000E+00
                                                              13.8
                                                   .000E+10
               -290.
                                  .000E ≠ 00
                                                                        .0
                                                                               . 0
                                  .000E+00
                                                   .000F+00
                66.4
                                                             100.9
                                                                        .0
                                                                                .0
                 toe.
                                  .001E+00
                                                  .000E+00
                                                                        .0
               -3F.6
                                  .000E+00
                                                   .000F+00
                                                             125.7
```

Figure C-1. Program Matrix Listing (Continued).

1	7 185.	.000F +00	.0051++ 1 144	.7 .0	.0	
l i	6 -79.0	.0001+00	.0001 •05 88		•0	
l î	9 -100.	.000E+00	.000F+110 84		.0	
2	1 103.	.000E+00	.000E+00 24		.0	
2	2 141.	•070F+00	.000E+00 163		.0	
2	3 -85.6	.000E +00	.000E+00 119		.0	
2	4 109.	.000€+00	.000F+00 38	.1 .0	-0	
2	5 64.0	.000f+00	.000E+00 7	. 3 . 0	-0	
2	6 -24.1	•000E+no	.000E+00 63		• 0	
2	7 98.0	•000E •00	*000E+00 42		.0	
2	8 8.73	.000€+00	.000E+09 117		• 0	
2	9 24.1	.000E+00	.UDOF+00 168	.1 .0	.0	
3	1 33.2	.000F + 00	.000E+00 70		.0	
1 3	2 26.8	.000€ • 00	.000E+00 112		.0	
,	3 -111.	.000F+00	.OUUE+00 94	.7 .0	• 0	
)	4 368.	.000E+00	.000E+00 67	.2 .0	.0	
) 3	5 -89.0	.000E+00	.000F+00 91		• 0	
3	6 155.	.000E+30	.000E+00 104		.0	
1 3	7 -92.7	.000F + 00	.000E+00 81	.5 .0	- 0	
,	e -27.6	.000E+00	.000F+00 90	.1 .0	.0	
] 3	9 -155.	.000 + 000	.000E+00 84		• 0	
3	1 98.8	.000E+00	.000F+00 164		•0	
3	2 5.22	.0005+00	.000E+00 11		• 0	
1 3	3 -24.3	.000E+00	.000E+00 175		•0	
1 5	4 12.1	.000E+00	.000E+00 13A		•0	
1 3	5 6.46	.0078 +00	.000F+00 106		.0	
1 1	6 -9.28	.010E+00	.000E+00 151		• 0	
1 3	7 13.3	.000F+00	.000E+00 126		•0	
1 3	8 9.55	.000E+00	.000F+0G 35		•0	
1 5	9 13.9	.000F+00		. 6		
•	1 -151.	•000E+00	.000F+00 41			
1	2 -101.	.0C0F+00	.000F+00 111		• 0	
	3 -68.6	.0005+00	.000F+00 144		.0	
4	4 195.	.0008 •00	.000E+60 98		.0	
	5 12.9	.000F +00	.000E+00 74			
1	6 185.	•0001+00	.000E+00 BA		.0	
	7 -104.	.000E+00	.000E+00 59		•0	
	6 -90.2	.000+3000	.000E+00 90		•0	
1	9 -52.4	.000€+00	.000F+00 105		.0	!
3	1 -223.	•000€+00	.000E+00 139		.0	
5	2 66.6	.000+100	.000E+00 131		.0	
5	3 207.	.000f+00	.0005+00 114		.0	
5	4 285.	.000€+00	.000E+00 117		.0	
3	5 +35.7	•000€ •00	.000E+00 117			
5	6 -121.	.000€+00	.000E+00 120		•0	
Ś	7 -121.	.00+3000	.000E+00 117		.0	
5	8 51.0	.000€+00	.000E+00 128		•0	
3	9 176.	.000€+00	.000E+00 115			
6	1 188.	.000F+00	.000E+00 93		•0	
i	2 -15.8	00+3000	•000E+00 115		.0	
, i	3 -45.6	.000F+00	.000E+00 114			
, š	4 -19.5	•000€•00	.000E+00 58		.0	
	5 1.62	.000€+00	.000E+00 16	_		
i	6 -13.6	.000E+00	*000E+00 59		.0	
i	7 40.4	000+3000	.000F+00 116		•0	
	8 -21.6	.000+000	.000E+00 126		.0	
	9 -39.6	.000 +00	.000E+00 117		.0	
ļ ,	1 129.	.000F+00	.000E+00 74			
,	2 31.9	.000F+00	•000E+00 168		.0	
,	3 63.1	000+3000	.000E+00 136			
j	4 -37.5	.000€+00	.000E+00 156			
, ;	5 7.96	.000€+00	.000E+00 121			
,	6 -133.	•000E+00	.000E+00 121		•0	
;	7 -21.4	.000+3000	.000E+00 158		.0	
,	6 41.5	•000€•00	•000E •00 151		.0	
,	9 55.4	•000€•00	.0008+00 138		.0	
5	1 246.	•000€•00	.000E+00 138			
3	2 -64.0	.000+400		.6 .0	.0	
5	3 -96.8	•010F •00		.7 .0	•0	
3	4 -103.	•000f •00	.000F+00 16A		.0	
Ś	5 -19.4	•00000	.000E+00 157		.0	i
3	6 144.	•000 • 000	.U00E+00 177		.0	
5	7 -84.5	•000 • 000	.000E+00 174		.0	
1 .	8 -72.3	00+1000		.8 .0	.0	
3'	9 -96.2	•0000 •000		.1 .0	.0	
3	1 577.	•000E •00	.000F+00 51		.0	
L		• 000 € • 00	•000-400 31	• • • • •	.0	

Figure C-1. Program Matrix Listing (Continued).

	DRAW-	END OF	RECORD						1
	3	162	4	324.819	2.8444567	5	3		
	7	150	ö	300.294	.5929505	ś	7		
	6	145	ĭ	293.175	1.0753403	5	6		
	5	139	ò	279.764	.5510013	5	5		
	7	119	í	238.822	1.0497084	5	7		
	6	110	5	220.972	4.8140106	, 5	6		
	5	104	ŏ	209.393	.7893097	5	5		
	,	90	0	180.711	.6866900	5	3		
	3	84	20.1	164.285	.000E+00 2.8288817	73.2 5	`•0	•0	
	3	9	26.1	*000E *00	•000€+00	50.0	• 0	•0	
	3	8	20.6	.000E+00	•000E +00	21.4	•0	•0	
	3	6 7	14.4 -55.0	.000E +00	•000E •00	34.9	.0	•0	
l	3	5	-3.97	.000E+00	.0001+00	35.5	• 0	•0	
1	3	•	-88.3	•000F •00	•000E •00		• 0	•0	
	3	3	53.8	.000F+00	·000£ +00	98.3	• 0	• 0	
	3	2	7.72	.000E+00	.000E+00	18.3	• 0	• 0	
	3	1	364.	.000F + 00	.000E+00		.0	.0	
İ	7	9	520.	.000F+00	.000F+00		• 0	• 0	
	7	8	-223.	•0005 •00	.0001+00	1.1	.0	•0	
	7	?	562.	.000F • 0	.000E+00	27.3	.0	• 0	
İ	7	6	-130.	.000E • CO	• UDOF • ÚO	15.3	.0	.0	
l	7	5	-15.4	•00 E •00	.000F +00	15.8	.0	• 0	
l	7	4	448.	.009F +00	.000F+0V	15.5	.0	•0	
l	7	3	-564.	.000F +00	.000F +00	. 7	.0	.0	
ļ	7	2	-274.	.000E+00	•009E+00	28.1	•0	•0	
ĺ	7	1	432.	.000E +00	.000E +00	6.6	.0	•0	
Î	6	9	-76.0	.000E+00	.000E+00	72.2	.0	.0	
1	6	8	-25.2	.000F +00	•000E •00	52.6	•0	.0	
ļ	6	7	-188.	*000E+00	•000E •00		•0	•0	
i	6	6	-51-1	•000E •00	•000€ •00	29.1	•0	•0	
1	ĕ	5	5.72	*000E +00		29.5	• 0	• 0	
1	6	4	-42.2	*000E *00			•0	•0	
I .	6	3	-33.8	.000E +00			.0	• 0	

Figure C-1. Program Matrix Listing (Concluded).

```
280.646
  453.668
  466.076
      -2.619
                   -.202
                               1.000
                                          1.407
                                                      -.+ 13
                                                                  . 340
                   -.012
                                                                             . ( 5 )
                                                                                        -.251
                                                                                                    -.114
                               .144
                                          - 393
                                                      .059
                                                                 -.357
-.143
                                                                            -.200
                                                                                        -.022
                                                                                                    -.021
      -4.310
                               -.471
       2.562
-.793
                   -.014
                                          2.815
                                                      -.152
.462
                                                                 .231
                                                                            .127
                                                                                        .106
-.038
                                                                                                    -.208
.152
       .407
-.732
                   -.181
                               . 504
                                                     -.219
                                                                -1.397
                                                                           -1.124
                                                                                        -.185
                                                                                                     .655
                   -.C39
                                          -. 058
                                                                             .157
                                                                 -.351
                                                                                        -.081
       .162
~.851
                                                                                                     .032
                              -.099
                                         -.007
                                                                 -.136
                                                                            -- 491
                                                                                         . 426
                                                                                                    -.015
                    .026
                               .120
                                                      .409
                                                                             .049
                                                                                         .001
                                                                                                     . 608
      52.106
                   2.665
                             22.903
                                         -4.431
                                                      .404
                                                               -6.920
                                                                                       -2.448
                                                                                                    4.353
                             1.435
12.534
-2.957
       2.665
                    .173
                                          -.100
                                                      .090
                                                                           .580
4.842
-1.821
                                                                -.253
                                                                                                     .265
      22.903
-4.431
                   1.605
                                        +2.957
4.262
                                                     1.105
                                                               -3.789
                                                                                       -1.107
                                                                                                   2.625
                                                               -1.681
      -6.920
                  .090
-.253
                             1.108
                                        -1.681
                                                     .863
                                                                -.865
7.531
                                                                            -.110
                                                                                        -. 134
                                                                                                  -512
-1-941
      10.783
                   .580
-.117
                             4.842
                                        -1.821
                                                     -.010
-.184
                                                                -.173
                                                                            2.697
                                                                                        -.456
.155
                                                                                                   -.270
 4.353 .265
THE ETGENVALUES ARE:
                             2.625
                                          -.207
                                                      .212
                                                               -1.941
                                                                            . .614
                                                                                        -.270
                                                                                                     .904
 THE COMPARISON OF EIGENVALUES:
    UNLOADED
                     PREDICTED
                                        ACTUAL
                                                         PERCENT
                                                                     SOUARE
                                                                                  PREDICTED
                                                                                                    PERCENT
                                                                                                                 SQUARE
  EXPERIMENTAL
                                     MASS-LOADED
EXPERTMENTAL
                    MASS-LUADED
                                                          ERROR
                                                                       ROOT
                                                                                 MASS-LOADED
                                                                                                     EKROR
                                                                                                                  KODT
       DATA
                       USING
                                                        PREDICTED
                                                                        ŊΕ
                                                                                    USING
                                                                                                   PREDICTED
                    SQUARE MODAL .. DATA
                                                                     DIFF'S
                                                                                                                   OF
       PSEUDOINVERSE
19ROHS. BCOLS)
                                                        YERSUS
ACTUAL
                                                                                                    VERSUS
ACTUAL
                                                                                                                 DIFF *
                      159.454
176.554
    169.437
                                        139.975
                                                         -13.92
                                                                       .39
.85
                                                                                  169.437
181.251
                                                                                                     -21.05
-.79
                                                                                                                   2,59
                                                           1.82
                                                                                                                  2.65
    206-396
                      197.687
                                        204.245
                                                           3.21
                                                                        .39
                                                                                                     -1.05
-.97
                                                                                  206.396
    206.643
                                                                                                                  1.44
                                        204.655
                                                                                  200.643
    238.039
                     .233.101
                                        238.630
                                                           2.32
                                                                       3.87
                                                                                  238.039
                                                                                                                  3.80
    238.212
                                        238.660
                                                           .22
                                                                       1.31
                                                                                                        .19
                                                                                                                  3.27
                                        280.646
453.668
                      278.872
                                                                      8.65
                                                            . 63
                                                                                  279.993
                                                                                                       . 23
    451.669
                      450.286
                                                                                                                  1.26
                                                            .75
                                                                                  451.669
                                                                                                                  8.71
    484.487
                      483.779
                                        466.076
                                                          -3.80
                                                                       .72
                                                                                     0.000
                                                                                                    100.00
*03935263276104
--175363006526
.2073197095769
-.3763924572951
--1670133486116
-09739424924915
.03701173773741
 .1063298400954
.62419007754RA
-. 0457048674635a
-.3585833139561
-.8188571713678
-02468098086104
.1414912860327
.1121340266862
-.3764636974975
.2970937382057
-.002409682497266
.06594301379127
•1533587683547
-.2440583475722
-.1182601321393
-.000614233A6562R7
```

Figure C-2. Edited Output From Program Matrix.

```
Sample output from DISSNIA graphics , Fage:
  .........
       MUGRBUA-DIMENTINE
         Y3DAXIS+ 15.00
Y3DAXIS+ 15.00
Z3DAXIS+ 15.00
IN ABS+ 3-0 UNITS
  ......
       VIEWPOINT
          XVU=-2.000E+41
YVU= 7.000F+01
          ZVU# 5.000E+01
IN ABS. 3-D UNITS
       GRAPH SEY-UP L GRAF30 1
       ._ DRIGIN_.
         X3DOR[GIN=-2.000E+01
Y3DOR[GIN=-1.000E+00
Z3DOR[GIN=-5.000E-01
        _____ . .___ . .___
          X305TP= 1.000E+C1
Y305TP= 1.000E+01
          Z305TP= 1.000E+01
          HUPIKAP
          X3D44X= 5.000E+01
Y3D44X= 5.000E+01
Z3D4AX= 5.000E+01
     LOCATION OF CURRENT PHYSICAL ORIGIN .
     . X* .50 Y* 1.12 INCHES . FROM LOWER LEFT CORNER OF PAGE .
```

Figure C-2. Edited Output From Program Matrix (Continued).

```
276.142
 301.519
 323.245
 401.578
 456.524
                             .167
-.071
-.442
-.343
       2.404
                  -.151
.036
                                         1.012
                                                               1.874
-.278
.083
.162
                                                     -. 674
                                                                             .200
                                                                                        .479
                                                                                                  -.618
        .137
                                         -.036
.562
1.605
                                                                            .024
                                                                                       -.033
                                                                                                  -.163
-.169
       1.409
1.098
                  -.015
                                                     -.687
       -.005
                  -.041
                                                                            .571
                              .055
                                         --116
                                                      .282
                                                                 .082
                                                                                       -.032
                                                                                                  .00s
       1.213
                  -.128
                              -.151
                                        -2.930
                                                               -2.317
                                                     .861
                                                                                       -.217
       -.282
                   .044
                             --152
                                                     -.374
                                         .081
                                                               -.139
                                                                             .047
       .109
                                          .029
                                                     -.115
                                                                -.164
                                                                            .005
                                                                                        .004
                                                                                                   .001
        +432 .
                  -.001 -- -.369
                                          .652
                                                     -.042
                                                                .879
                                                                            . 454
                                                                                        .118
                                                                                                  -.320
                  -. 843
132
     12.391
                            -1.041
                                                    -.450
                                                              -6.227
.175
-.358
                                         -.453
                                                                           2.236
                                                                                       -.010
                                                                                                  1.229
      -1.041
                   .222
                             1.611
                                         1.639
                                                     -.067
                                                                           -.473
                                                                                        .073
                                                                                                   .962
       .453
-.450
                  -.013
                             1.639
                                         2.862
                                                     .u78
                                                              -1.879
                                                                           -. 349
                                                                                       -.040
                                                                                                  1.594
                                                    .294
.943
-.400
                  ~.U75
                             -.067
                                          .076
                                                              .943
9.367
-1.835
                                                                           -. 400
                                                                                       -.132
                                                                                                   .022
      -6-227
                             .. = . 353
                                        -1.879
                                                                          -1.835
1.257
                                                                                       -.307
                                                                                                 -1.247
                             -.473
       2.236
                  -.041
                                                                                       .159
                                                                                                  -.047
       -.010
                                                              -.307
-1.247
                  -065
                                         -.U4U
1.594
                              .073
                                                    -.132
                                                                           -.047
                                                                                       .072
-.048
                                                                                                  -.048
      1.229
                  -.098
                              .962
                                                      .022
                                                                                                  1.214
THE EIGENVALUES ARE: THE COMPARISON OF EIGENVALUES:
   UNLOADED
                   PREDICTED
                                       ACTUAL
                                                        PERCENT
                                                                    SQUARE
                                                                                 PREDICTED
                                                                                                   PERCENT
                                                                                                                SOUARE
                                    MASS-LOADED
EXPERIMENTAL
 EXPERIMENTAL DATA
                   MASS-LOADED
USING
SOUARE MODAL
                                                      ERROR
PREDICTED
                                                                      1008
                                                                                MASS-LOADED
USING
                                                                                                    ERROR
                                                                                                                 ROOT
                                                                       QF
                                                                                                  PREDICTED
                                                                                                                  űř
                                        DATA
                                                                     DIFFIS
                                                        VERSUS
                                                                               PSEUDOINVERSE
                                                                                                   VFRSUS
                                                                                                                DIFF .
                      MATRIX
                                                        ACTUAL
                                                                      9.05
                                                                               19ROWS.8COLS1
                                                                                                   ACTUAL
                                                                                                                 59.0
    137.275
                      137.085
                                       149.872
                                                         8.53
10.56
                                                                      . 45
                                                                                                     8.41
                                                                                                                  . 4 3
    207.085
                     181.200
227.943
                                       202.598
                                                                     3.96
                                                                               .. 207.085
                                                                                                    -2.21
-.32
                                                                                                                 2.57
                                                          4.39
                                                                                 239.182
    260.553
                     260.788
                                       276.142
                                                          5-56
                                                                     1.85
                                                                                 280.553
                                                                                                    -1.60
                                                                                                                 3.04
    294.848
                     286.278
                                       301.519
                                                          5.05
                                                                                 294.848
                                                                                                    2.21
    327.881
                     327.150
                                       323.245
401.578
                                                                      .77
                                                                                 327.881
394.224
                                                                                                    -1.43
1.83
                                                                                                                 .89
.35
                                                          2.03
   414-164
                                       434-504 ....
                     413.894
                                                          4.74
                                                                      -16
                                                                                 414.164
                                                                                                     4.68
                                                                                                                  .24
   453.685
                     453.491
                                       456.524
                                                           . 66
                                                                     4.08
                                                                                     .001
                                                                                                   100.00
.008457103552768
--1817037949291
-.1973675842913
--04608525837128
.2268198035452
•1959742337667
•01445647102925
-.1195120692267
.03897282643439
--0513527429702
.2057643600871
.5553119430HA3
-.7256695747028
-.1291540476511
-.07121916674548
.2303775737547
-.3241635842931
.0926504487194
--2005212367521
-7396044772757
--4413285948472
```

Figure C-2. Edited Output From Program Matrix (Continued).

```
279.764
 293.175
 300.294
                 -1.052
       -.62M
                               . 737
                                         1.065
                                                               .240
-.554
                                                                          .100
-.326
                                                                                       .969
                                                                                                 1.043
                               . 454
                                                                                       .001
                                                                                                  .156
       -.749
-.131
                 -1.814
                                                    --227
                                                               -.695
-.278
                              .722
                                        -.117
                                                                          -.455
-.751
                                                                                      -.U21
                                                                                                  .261
        .053
                   .236
                             -.149
                                         -.453
                                                     .039
                                                               -.107
                                                                           .022
                                                                                      -.054
                                                                                                 -.(-)9
       1.167
.333
~.397
                            -1.853
-.019
.351
                                        -.0 ;4
-.179
-.176
                  .021
1.024
                                                    -.115
                                                               1.204
                                                                           .707
                                                                                      -.764
                                                               -.929
                                                                                                 .298
                  -. 729
                                                     .082
                                                               -.699
                                                                          -.255
                                                                                       .003
                                                                                                  .181
      7.803
                   .352
                                        1.142
                                                     .216
                                                              -1.229
                                                                          -.422
                                                                                       .747
                                                                                                 1.544
                  -.130
                            -1.371
                                       -1.950
                                                     .081
                                                              -1.241
                                                                                      -.064
                                                                                                  .458
     -.13C
-1.371
                  .702
                             1.072
                                        -.624
                                                    -.011
                                                              -.887
                                                                         -.292
                                                                                                  .142
                                                                                      .645
      -1.950
                  -.629
                             -.437
                                        2.985
                                                    -.056
                                                               .347
                                                                           .086
                                                                                      -.557
                                                                                                 1.010
        .041
                                                     -036
                                                                           .017
                                                                                      .005
                                                                                                  .057
                            -1.093
-1.159
                                         387
     -1.241
                  -.887
-.292
                                                               2.563
                                                     .004
                                                                          -.592
1.903
                                                                                     -. 121
-. 184
                                                                                                -1.535
.754
                                                     .017
      -.064
                              .979
                   .645
                                         -.557
                                                     .005
                                                               -.921
                                                                          -.184
                                                                                      .621
                                                                                                  .241
.458 .142
THE ETGENVALUES ARE:
                              .072
                                        1.010
                                                    -.069
                                                             -1.535
                                                                           .454
 THE COMPARISON
                   DE ETGENVALUES:
    UNLOADED
                    PREDICTED
                                       AC TUAL
                                                       PERCENT
                                                                    SQUARE
                                                                                PREDICTED
                                                                                                  PERCENT
                                                                                                              SOUARF
 EXPERIMENTAL
                   MASS-LOADED
                                     MASS-LOADED
                                                        FRRITE
                                                                     POOT
                                                                             MASS-LUADED
USING
PSEUDDINVERSE
                                                                                                   FPRNR
                                                                                                                9701
                   USING
SOUAPE MODAL
    DATA
                                    EXPERIMENTAL DATA
                                                      PREDICTED
VERSUS
                                                                   DIFF'S
                                                                                                PREDICTED
                                                                                                              DIFF'S
                      MATRIX
                                                       ACTUAL
                                                                     50*0
                                                                              19ROWS.BCDLS)
                                                                                                  ACTUAL
                                                                                                                50.0
    167.266
                     105.091
                                       169.285
                                                         37.55
                                                                     1.47
                                                                                                                1.53
                                                                                                     .61
    180.424
                     179.656
                                       180.711
208.393
                                                         •58
4•34
                                                                     2.14
                                                                                180.424
                                                                                                     .16
                                                                                                               2.21
    228.543
                     227.743
                                      220.972
                                                         -3.06
                                                                     1.51
                                                                                228.543
                                                                                                   -3.43
                                                                                                               1.60
    238.530
                     237.442
                                      218.822
279.764
                                                                    1.64
                                                         .58
6.26
                                                                                238.530
279.684
                                                                                                    .12
                                                                                                               2.17
    299.232
                                      293.175
                     290.583
                                                          . 49
                                                                     2.44
                                                                                299.232
                                                                                                   -2.07
                                                                                                               1.58
    303.621
                     301.309
                                       300.294
                                                         -.34
                                                                                303.621
                                                                                                   -1-11
                                                                                                               2.66
    328.523
                                       324.819
                                                         -.15
                                                                     1.68
                                                                                                  100.00
-07756035591113
-5693760096262
                                                                                                               1.60
-- 4194138685215
.3240403302942
1. -. 3249435654984
A1551939140795
-.1024288017242
.03645737474271
.3779360199224
-.5596484577106
4464778417743
--0185464680145
.3441549996034
-.1972417112941
-.147847635276
-.2729614359009
-.5673664094602
-.8309580742906
.787559900419
+1147430736756
-.1441759022772
--6845007627244
```

Figure C-2. Edited Output From Program Matrix (Concluded).

```
FRA.T1500.IN1500.CM165000.T700134.41F15505,54342
FRA.T1500.IN1500.CM165070.T700334.47F15504.54442
REQUEST. DEFORM . . PF.
ATTACH.NASTPAN.NASTRAN.ID=NASTPAN.SN=AFFDL.MR=1.
LIMIT.7000.
ATTACH.NASI.NASI.ID=TRAN.SN=ASPAD.
ATTACH+NAS2+NAS2+ID=TRAN+SN=ASDAD+
L18RARY+NASL+NAS2+
RFL . 165000.
NASTRANE . . PUNE ATTACH
RETURN.NASTRAN.
ATTACH.NASTPP.NASTPP.1D=GCSNAST.SN=AFFDL.MR#l.
REMIND.PUN.
RFL . 165000.
NASTPP.PUN.
CATALOG.DEFORM, CLEAN, RP=999.
ID ATKINSON. MOCEL
          DISPLACEMENT
SOL
TIME
          50
CEND
TITLE - CLEAN
SUBTITLE - SIMPLIFIED PANEL
LABEL - 2 FER 81
METHOD - 1
SPC - 1
OUTPUT
DISPLACEMENTS (PRINT , PUNCH) + ALL
BEGIN BULK
ASET1
                               THRU
                                         52
ASET1
                               THRU
                                         64
                               42.5
42.5
42.5
                                         -18.0
-14.67
-11.33
                                                   23.5
23.5
23.5
GRID
                    1
GRID
                                                              1
GRID
GR 1D
GR 1D
                               42.5
                                         -8.0
-5.67
                                                   23.5
GR 1D
                               42.5
                                         -3.33
                                                   23.5
GRID
                               42.5
                                         -1.0
                                                   23.5
GR I D
                               42.5
                                         1.33
GRID
                               42.5
42.5
                                         3.67
                                                   23.5
GR ID
          10
                                         6.0
                                                    23.5
GRID
GRID
                               42.5
          11
                                         10.0
                                                    23.5
                                         14.0
                                                   23.5
                               42.5
GRID
          13
                                         18.0
                                                    23.5
GRID
                                         -18.0
                               42.5
42.5
42.5
GRID
          15
                                         -14.67
                                                   17.7
GRID
                                         -11.33
          16
17
                                                   17.7
GRID
                                         -6.0
                                                    17.7
GRID
          18
                               42.5
                                         -5.67
                                                    17.7
          19
20
                               42.5
42.5
GRID
                                         -3.33
                                                   17.7
                                         -1.0
GRID
                                                   17.7
GRID
                               42.5
                                         1.33
                                                   17.7
                               42.5
42.5
42.5
GRID
GRID
          22
                                         3.67
                                         6.0
                                                    17.7
GRID
                                         10.0
                                                   17.7
GRID
GRID
          25
26
                               42.5
                                         14.0
                                                    17.7
GRID
          27
                               42.5
                                         -18.0
                                                    12.0
                                         -14.67
-11.33
GRID
GRID
          28
29
                               42.5
                                                   12.0
GRID
          30
                               42.5
                                         -8.0
                                                    12.0
GRID
          31
                               42.5
                                         -5.67
                                                    12.0
GRID
          32
                    1
                               42.5
                                         -3.33
          33
CR 10
                                         -1.0
                                                    12.0
GRID
          34
35
                               42.5
                                         1.33
                                                    12.0
                     1
GRID
          36
37
GR ID
                               42.5
                                         6.0
                                                    12.0
GRID
                               42.5
                                         10.0
                                                    12.0
GRID
          36
                               42.5
                                         14.0
                                                    12.0
GRID
          39
                               42.5
                                         18.0
                                                    12.0
GRID
          40
                               42.5
                                         -14.0
-14.67
                                                   6.25
GRID
                               42.5
                                         -11.33
                                                    6.25
CR 10
           43
                               42.5
                                         -8.0
-5.67
GRIO
                               42.5
          44
                                                    6.25
```

Figure C-2. Sample NASTRAN Deck.

GRID	45	1	42.5	-3,33	6.25	1		
CRID	46	i	42.5	-1.0	6.25			
GRID	47	i	42.5	1.33	6.25	i		
GRID	48	i	42.5	3.67	6.25	i		
GRID	49	i	42.5	6.0	6.25	i		
GRID	50	ī	42.5	10.0	6.25	1		
GRID	51	i	42.5	14.0	6.25	ì		
GRID	52	i	42.5	18.0	6.25	i		
GRID	53	i	42.5	-18.0	0.5	ı		
GRID	54	i	42.5	-14.67	0.5	i		
CRIO	55	ī	42.5	-11.33	0.5	ì		
CRID	56	ī	42.5	-6.0	0.5	i		
CRID	57	i	42.5	-5.67	0.5	i		
CRIO	58	i	42.5	-3.33	0.5	i		
GRID	59	ī	42.5	-1.0	0.5	i		
GRID	60	ī	42.5	1.33	0.5	i		
GRIO	61	i	42.5	3.67	0.5	i		
GR 10	62	ī	42.5	6.0	0.5			
GRID	63	i	42.5	10.0	0.5	1		
GRID	64	ī	42.5	14.0				
GRID	65	í	42.5	15.0	0.5	1		
GRID	66	i	0.0	0.0	0.5 22.175	1	127454	
GRID	67	i	0.0	0.0			123456	
GRID	68	i	0.0		2.3	1	123456	
GRID	69	0	0.0	0.0	0.0	1	123456	
CR 1D	70	ŏ	0.0	0.0	0.0		123456	
GRIO	71	ŏ	30.0	0.0	23.0 23.0		123456	
GRID	72	ĭ	0.0	0.0	23.5	•	123456	
GRID	73	i	0.0	0.0	0.5	1	123456	
CBAR	i	i	1	2		٠	123456	ACBAC:
CBAR	ż	i	ž	3	66 66		2	+CBAR1
CBAR	3	i	3	4	66		2	+CBAR2
CBAR	4	i	4	5	66		2	+CBAR3
CBAR	5	i	ś	6	66		2	+CBAR4
CBAR	6	1	6	7	66			+CBAR5
CBAR	7	ī	7	6	66		2	+CBAR6
CBAR	8	1	8	9	66		2	+CBAR7
CBAR	9	ī	9	10	66			+CBARB
CHAR	10	i	io	11	66		2 2	+CRAR9 +CBAR10
COAR	11	i	11	12	66		2	+CBARIL
CBAR	12	i	12	13	66		2	
CBAR	13	i	53	54	67		2	+CBAR12 +CBAR13
CBAR	14	ī	54	55	67		2	+CBAR14
CBAR	15	ĭ	55	56	67		2	+CBAR15
CBAR	16	1	56	57	67		2	+CBAR16
CBAR	17	1	57	58	67		2	+CRAR17
CBAR	18	1	58	59	67		2	+CBAR18
CBAR	19	1	59	60	67		5	+CBAR19
CBAR	20	1	60	61	67		5	+CBAR20
GRAR	21	1	61	62	67		ž	+CBAR21
CHAR	2.2	1	62	6.3	67		2	+CBAR22
CBAR	23	1	63	64	67		2 2	+CBAR23
CBAR	24	1	64	65	67		ž	+CBAR24
CBAR	25	2	1	14	68		2	+CBAR25
CBAR	26	2	14	2.7	68		2	+CBAR26
CBAR	27	2	27	• 0	68		2	+C84927
CBAR	28	2	40	53	68		2	+CBARZR
CBAR	59	2	13	56	68		2	+CRAR29
CBAR	30	2	26	39	68		2	+CBAR30
CBAR	31	2	39	52	68		2	+CBAR31
CBAR	32	2	52	65	68		2	+CBAR32
CBAR	33	3	•	17	68		Ž	+CBAR33
CBAR	34	3	17	30	68		2	+CBAR34
CBAR	35	3	30	43	68		Ž	+CBAR35
CBAR	36	3	43	56	6.6		2	+CBAR36
CBAR	37	3	7	50	68		2	+CRAR37
CBAR	38	3	50	31	6.8		2	+CBAR3A
CBAR	39	3	33	46	68		2	+CBAR39
CBAR CBAR	40	3	46	59	66		2	+CBAR40
	41	3	10	23	68		2	+CBAR41
CBAR	42	3	23	36	68		2	+CBAR42
CBAR	43	3	36	49	68		2	+CBAR43
CBAR	44	3	49	6.5	6.6		2	+CBAR44
CBAR	45	•	ļ	2	69		2	+CRAR45
CPAR CBAR	46	:	3	3	69		2	+CBAR46
LBAK	47	.		•	69		. 2	+CRAR47

Figure C-2. Sample NASTRAN Deck (Continued).

									
CRAR	4.6	4	•	5	69			5	+CRAH 44
CRAR	49	4	5	٥	69			₹.	*CBAR+*
CBAR	50	4	6	7	75			2	• C 4 A R 5 O
CRAR	51	•	7	R	72			₹	+CBAP51
CRAR	52	•	8	9	72			2	+CBAR52
CBAR	53	•	9	10	72			2	+CRAR53
CBAR	54	•	10	11	12			2	+CBAR54
CRAR	55	4	11	12	72			2	+CBAR55
CBAR	56	4	15	13	72			2	+C8AK56
CRAR	57	5	53	54	73			₹	+CBAR57
CRAR	5.6	5	54	55	73			₹	+CBAR+3
CBAR	59	5	55	56	73			?	+CBA#59
CBAR	60	5	56	57	7 3			2	+CRAR5U
CBAR	61	5	57	58	73			2	+CBAR61
{ CBAR	62	5	76	59	73			2	+CBARbZ
CRAR	63	5	59	60	73			2	+CHAR63
CBAR	6.	5	60	61	73			2	+CBAR64
CBAR	65	8	61	62	73			2	+CRAR65
CRAR	b b	5	62	63	73			2	+CBAR66
CHAR	67	5	63	64	73			2	+CBAR67
CHAR	69	ь	1	14	68			2	• CB AR 69
CBAR	70	6	14	2.7	6.6			5	+C8AR70
CRAR	71	6	57	40	68			Š	+CBAR71
CBAR	72	6	40	53	66			5	+CRAR72
CBAR	73	6	7.3	26	6.8			5	+CBAR73
CBAR	34	6	36	39	68			S	+CRAR74
CBAR	75	6	39	52	68			2	+CBAR75
CHAR	76	ħ	52	65	68		Δ	2 226	+CBAR76
+CRARI			-1.25	1.0	-1.325	~1.25	0.0	~1.325	
+CBAR2			-1.25	0.0	-1.325	-1.25	0.0	~1.325	
			-1.25	0.0	-1.325	-1.25	0.0	-1.325	
+CBAR4			-1.25	0.0	-1.125	-1.25	0.3	-1.325	
+CBARS			-1.25	0.0	-1.325	-1.25	0.0	-1.325	
+CdA96			-1.25	0.0	-1.325	-1.25	0.0	-1.325	
+CBAR?			-1.25	0.0	~1.325	-1.25	0.0	~1.325	
•CBARR			-1.25	0.0	~1.325	-1.25	0.0	-1.325	
+CBAR9			-1.25	0.0	~1.325	-1.25	0.0	-1.325	
+CBAR1			-1.25	0.0	~1.325	-1.25	0.0	-1.325	
+CBAR1			-1.25	0.0	~1.325	-1.25	0.ù	-1.325	
+CBARL			-1.25	0.0	~1.325	-1.25	-1.0	-1.325	
+CBAR1			-1.25	1.0	1.8	-1.25	0.0	1.8	
+CBAR1			-1.25	0.0	1.8	-1.25	0.0	1.8	
+CBAR1			-1.25	0.0) - B	-1.25	0.0	1.8	
+CBAR1			-1.25	0.0	1.8	-1.25	0.0	1.8	
• CBARI			-1.25	0.0	1.6	-1.25	0.0	1.8	
+Charl	-		-1.25	0.0	1.0	-1.25	0.0	1.8	
I PART.			-1.25	0.0	1.8	-1.25	0.0	1.8	
+CBARZI			-1.25	0.0	1.8	-1.25	0.0	1.8	
+CBARZ			-1.25	0.0	1.8	-1.25	0.0	1.8	
+CBARZ			-1.25	0.0	1.8	-1.25	0.0	1.0	
+CRARZ			-1.25	0.0	1.8	-1.25	0.0	1.6	
+CBARZ			~1.25	0.0	1.6	-1.25	-1.0	1.8	
+CBARZ			-0.246	3.0	-0.815	-0.246	3.0	0.0	
+CBAR2			-0.246	3.0	0.0	-0.246	3.0	0.0	
+CBARZ			-0.246	3.0	0.0	-0.246*		0.0	
+CBARZ			-0.246	3.0	0.0	-0,246	3.0	0.5	
+CBAR3			-0.246	-3.0	~0.815	-0.246	-3.0	0.0	
+CBAR3			-0.246	-3.0	0.0	-0.256	-3.0	0.0	
+CBAR3			-0.246	-3.	0.0	-0.246	-3.0	0.0	
+CBAR3					0.0	-0.246	-3.0	0.0	
+CBAR3	-		-0.25 -0.25	0.0	-0.815	-0.25	0.0	0.0	
+C84R3					0.0	~0.25	0.0	0.0	
+C84R3			-0.25 -0.25	0.0	0.0	~0.25 ~0.25	0.0	0.0	
+CBAR3			-0.25	0.0	0.0 -0.815	-0.25	0.0	0.5	
+CBAR3			-0.25	0.0	0.0	-0.25	0.0	0.0	
+CBAR 3			-0.25	0.0	0.0	-0.25		0.0	
+CBAR40			-0.25	0.0	0.0	-0.25	0.0	0.U 0.5	
+CBAR4			-0.25	0.0	-0.815	-0.25	0.0		i
+EBAR4			-0.25	0.0	0.0	-0.25	0.0	0.0	
+CBAR4			-0.25	0.0	0.0	-0.25	0.0	0.0	
+CBAR4			-0.25	0.0	0.0	-0.25	0.0	0.5	
+CBAR4			-0.02	0.0	0.0	-0.02	0.0	0.9	
+CBAR4			-0.32	0.0	0.0	-0.02	0.0		
+CBAR4			-0.02	0.0				0.0	
+C8484			-0.02	0.0	0.0	~0.02	0.0	0.0	
L					~~~~	~0.02	0.0	0.0	

Figure C-2. Sample NASTRAN Deck (Continued).

+CRAR49		-0.02	0.0	0.0	-0.02	0.0	0.0		1
+CRAR50		-0.02	0.0	0.0	-0.02	0.0	0.0		- 1
+CBAR51		-0.02	0.0	0.0	-0.02	0.0	0.0		1
+CBAR52		-0.02	0.0	0.0	-0.02	0.0	0.0		1
+CBAR53		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR54		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR55		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR56		-0.02	0.0	0.0	-0.02	0.0	0.0		- 1
+CBAR57		-0.02	0.0	0.0	-0.02	0.0	0.0		- 1
+CBAR58		-0.02	0.0	0.0	-0.02	0.0	0.0		1
+CBAR59		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR60		-0.02	0.0	0.0	-0.02	0.0	0.0		1
+CBAR61		-0.02	0.0	0.0	-0.03	0.0	0.0		
+CBAR62		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR63		-0.02	0.0	0.0	-0.02	0.0	0.0		- 1
+CBAR64		-0.02	0.0	0.0	-0.02	0.0	0.0		- 1
+CBAR65		-0.02	0.0	0.0	-0.02	0.0	0.0		- 1
+CHAR66		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR67		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR68		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR69		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR70		-0.02	0.0	0.0	-0.02	0.0	0.0		ļ
+C8AR71		-0.02	0.0	0.0	-0.02	0.0	0.0		Ì
+CBAR72		-0.02	0.0	0.0	-0.02	0.0	0.0		- 1
+CBAR73		-0.02	0.0	0.0	-0.02	0.0	0.0		ļ
+CBAR74		-0.02	0.0	0.0	-0.02	0.0	0.0		i
+CBAR75		-0.02	0.0	0.0	-0.02	0.0	0.0		
+CBAR76		-0.02	0.0	0.0	-0.02	0.0	0.0		
2	8 5	63	64	73	V•02	0.0	2	+CBAR68	
CORDIC		70	71				•	*CD#*C0	1
CQUADZ		i	14	15	2				
COUAD2 2		ž	15	16	3				
CQUAD2 3		3	16	17	4				
COUADZ		4	17	iė	Š				
COUADZ 5		5	18	19	6				- 1
1									
	_				7				
COUAD2 7	1	6	19	20	7 A				-
CQUAD2 7	1 1	6 7	19 20	20 21	8				
COUAD2 7	1 1 1 1 1	6 7 8	19 20 21	20 21 22	8				
CQUAD2 7 CQUAD2 8 CQUAD2 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9	19 20 21 22	20 21 22 23	8 9 10	•			
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10	19 20 21 22 23	20 21 22 23 24	8 9 10 11				
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11	19 20 21 22 23 24	20 21 22 23 24 25	8 9 10 11 12				
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1	5 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11	19 20 21 22 23 24 25	20 21 22 23 24 25 26	8 9 10 11 12 13	•			
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14	19 20 21 22 23 24 25 27	20 21 22 23 24 25 26 28	8 9 10 11 12 13				
COUAD2 7 COUAD2 6 COUAD2 7 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1	5 1 1 7 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14	19 20 21 22 23 24 25 27 28	20 21 22 23 24 25 26 28 29	8 9 10 11 12 13 15				
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15	19 20 21 22 23 24 25 27 28 29	20 21 22 23 24 25 26 28 29	8 9 10 11 12 13 15 16				
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17	19 20 21 22 23 24 25 27 28 29 30	20 21 22 23 24 25 26 28 29 30 31	8 9 10 11 12 13 15 16 17				
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17	19 20 21 22 23 24 25 27 28 29 30 31	20 21 22 23 24 25 26 28 29 30 31	8 9 10 11 12 13 15 16 17 18	•			
COUAD2 7 COUAD2 6 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18	19 20 21 22 23 24 25 27 28 29 30 31	20 21 22 23 24 25 26 28 29 30 31	8 9 10 11 12 13 15 16 17 18 19 20	•			
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20	19 20 21 22 23 24 25 27 28 29 30 31 32 33	20 21 22 23 24 25 26 28 29 30 31 32 33	8 9 10 11 12 13 15 16 17 18 19 20 21	•			
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21	19 20 21 22 23 24 25 27 28 29 30 31 32 33	20 21 22 23 24 25 26 28 29 30 31 32 33 34	8 9 10 11 L2 13 15 L6 17 18 19 20 21 22	•			
COUAD2 7 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35	20 21 22 23 24 25 26 28 29 30 31 32 33 34 35	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23	٠			
COUAD2 1 COUAD2 2 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36	20 21 22 23 24 25 26 28 29 30 31 32 34 35 36 37	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24	٠			
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35	20 21 22 23 24 25 26 28 29 30 31 32 33 34 35	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25	٠			
COUAD2 7 COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37	20 21 22 23 24 25 28 29 30 31 32 34 35 36 37	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24	•			
COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37	20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26	٠			
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38	20 21 23 24 25 26 28 29 30 31 32 34 35 36 37 38	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28	٠			
COUAD2 7 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36	20 21 22 23 24 25 26 28 29 30 31 32 33 35 36 37 38	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29	•			
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42	20 21 22 23 24 25 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30	٠			
COUAD2 7 COUAD2 8 COUAD2 9 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42 43	20 21 23 24 25 26 28 29 31 32 33 34 35 36 37 38 39 41 42 44	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31	٠			
COUAD2 2 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42 43	20 21 23 24 25 26 28 29 30 31 32 33 35 36 37 38 39 42 43 43	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32	•			
COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42 43 44 45	20 21 23 24 25 28 29 31 32 33 35 36 37 38 49 42 43 44 45 46	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33	٠			
COUAD2 1 COUAD2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 40 41 42 43 44 45 46	20 21 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 41 42 45 45 46 47	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34	٠			
COUAD2 2 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 33	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42 43 44 45 46 47	20 21 23 24 25 26 28 29 31 32 33 35 37 38 37 38 42 43 45 46 46 47 48	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35	٠			
COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3	1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48	20 21 22 23 24 25 28 29 31 32 33 35 36 37 38 45 46 47 48	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 29 30 31 32 33 34 35 36	•			
COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 41 42 43 44 45 46 47 48 49 50	20 21 23 24 25 26 27 31 32 33 35 37 38 37 38 42 43 45 46 46 47 48 49 51	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37	٠			
COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3 COUAD2 3	1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48	20 21 23 24 25 28 29 30 31 32 33 34 35 36 37 38 44 45 45 46 47 48 49 50	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38	٠			
COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31 32 33 34 35 36 37 36	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 41 42 43 44 45 46 47 48 49 50	20 21 23 24 25 28 20 31 32 33 34 35 37 38 44 45 45 46 47 48 49 50 51 54	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 41	•			
COUAD2 2 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42 43 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	20 21 23 24 25 28 29 31 32 34 35 36 43 45 46 48 49 50 51	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 41 42	٠			
COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 37 36 40 41	19 20 21 22 23 24 25 27 28 29 30 31 33 34 35 36 37 36 41 42 43 44 45 46 47 48 49 50 51 51 55	20 21 23 24 26 26 27 31 32 34 35 37 38 37 48 49 49 49 51 52 55 55	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 41	٠			
COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42	19 20 21 22 23 24 25 27 28 29 30 31 33 34 35 36 37 36 41 42 43 44 45 46 47 48 49 50 51 53 55 55 57	201223 2426 26222 273123 3743 37423 4744 4751 4751 4751 4751 4751 4751 4751	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43				
COUAD2 2 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42 43	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 50 51 53 55 56	20 21 23 24 26 28 20 31 33 34 35 37 38 44 45 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45	٠			
COUAD2 1 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 2 COUAD2 3 COUAD2 4 COUAD2 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 37 36 40 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 36 37 36 41 42 43 44 45 46 47 48 49 50 51 55 55 57	201223456890123345678912245667890512456678995124566789951245678899123456788951245555555558	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44				
COUAD2 2 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 3 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4 COUAD2 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 40 41 42 43 44 45	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 41 42 43 44 45 46 47 48 49 51 51 53 55 56 57 58	20122345689031233456789912345678956789	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46				
COUAD2 2 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 1 COUAD2 2 COUAD2 3 COUAD2 4 COU	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 36 40 41 42 43 44 45 46	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 40 41 42 43 44 45 46 47 48 49 50 51 53 55 56 57 57 57 58	20 21 23 24 26 28 20 31 33 34 35 37 38 44 45 47 48 49 51 55 57 58 50	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 44 45 46 47				
COUAD2 1 COU	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47	19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51 51 55 57 58 57 58 58 58 58 58 58 58 58 58 58 58 58 58	20122345288931233456788912345678995124556789061	8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48				

Figure C-2. Sample NASTRAN Deck (Continued).

```
64
65
                                                                                                                                            51
52
 COUADS
COUADZ
EIGR
+EIGR1
MAT1
PARAM
                       48
1
MAX
                                               914
                                                                      51
0.0
                                                                                              64
500.0
                                                                                                                                                                                           1.-10 +E 1GR1
                        1
GROPNT
                                                                                              0.33
                                                                                                                      2.588-4
                                                                                            0.0835 0.0371 0.0019 0.0
0.00955 0.01576 .00015760.0
0.00664 0.0891 .00007470.0
.00007210.03218 .00028140.0
.00004270.06667 .00017070.0
0.0004270.06667 .00017070.0
PARAM
PBAR
PBAR
PBAR
PBAR
PBAR
POUAD2
SPC1
SPC1
SPC1
EMDDATA
                                                                     0.375
0.121
0.14
0.1352
0.08
0.08
                                                                       1
53
65
 ENDOATA . END OF RECORD
```

Figure C-2. Sample NASTRAN Deck (Concluded).

 1	×					
\vdash	>	88	Н	, ,	0	630
124	Ω					
2	Ŋ	0				
2	MS	38	13			
3	MS	-	5			-
\sim	⊁	5821	9			
4	ļ	20				
4	*	9				
4	×	-				
کا '	*	7				
٦ (;	٠,				
٦,	×	-₁				
വ	Ω					
S	Ω	7				
9	þ	5				
9						
)						
_						

Data Acquisition Program for HP5451B Fourier Analyser Figure C-3.

0

16 2

0 0 7

Figure C-3. (Concluded).

610

611

			сомромент	
CODE	•		COM	
110M	,		73	88 00000000000000000000000000000000000
ORIENTATION	•		3	######################################
9		S.A.Y.S		
ISBGP BAVE 1,7,2 URIGIN		a		ႜႋၣၛၛၛၜၛႝၛႜၛၛၛၛႜၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛၛ
TION 15		TEST 1.	LN.	533344444444444444444444444444444444444
HI	8		COMPONENT	***************************************
TEST ILEN COMPONENT	•		11	######################################
	æ	2	>	80004-0008-00-00-00-00-00-00-00-00-00-00-00-0
		153GP BAYE	~	ୣୣୣୣ୰୰ୣୣୣ୰ୣ୰ୣ୰ୣ୰ୣ୰ୣ୰ୣ୰ୣ୰ ୰ୣ୰୰ୣ୰୰ୣ୰ୣ୰ୣ୰ୣ
20 BAYA	25 11 80	TEST 1.b.	Filli	######################################
5	X.		COMPONENT	######################################
	175 15		2	######################################
: : :	DATE IS MUMBER OF POINT		>	######################################
3 E	ă Ī	SEAP BH/2	:	ୣଌଌୖଡ଼ୡ୕ ଢ଼ଢ଼ୣଌୖ୰ୣ୷ୠ୕ୠୠ୕ୠୠୠୠୠଌ୕ୠଢ଼୕ୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠ
	Α.	163T I.O.	PuliiT	

Sample Y-9 Modal Analysis Set Up with A.) General Information, B.) Identification, and C.) Grid Points. Figure C-4.

Sample Y-9

Frank Broderick Atkinson was born on 13 November 1947 in Nashville, Tennessee to Robert T. and Ruth B. Atkinson. After graduation from Irving Senior High School in 1965 he attended Arlington State College (now the University of Texas at Arlington). During his studies there he participated in the cooperative education program as a Weight Control Engineer at Bell Helicopter Company in Hurst, Texas. Following graduation in 1970 with a Bachelor of Science degree in Aerospace Engineering, he enlisted in the U. S. Air Force as a Ground Radio Communications Equipment Repairman. He subsequently attained the rank of Sergeant whereupon he was selected to attend Officer's Training School (OTS) at Lackland AFB, Texas. Upon graduation from OTS in January, 1975, he was assigned to the 3246 Test Wing, Guns and Fuzes Division, Eglin AFB, Florida as a Wing Munitions Test Engineer. During his tenure at Eglin AFB, he was selected three times as his division's nominee for the Directorate of Test Engineering Test Engineer of the Quarter Award. He also represented the Directorate of Test Engineering as the nominee for the Lt. Robert L. Sullivan Award for the most outstanding junior officer. Capt. Atkinson was assigned to the School of Engineering of the Air Force Institute of Technology in June 1979 in the Graduate Aeronautical Engineering Program.

Permanent address: 50 Mr. and Mrs. R.T. Atkinson
5012 Shannon Drive, Box 84904
Lewisville, Texas 75056

