Sea $\{a_n\}_{n\in\mathbb{N}}$ la sucesión definida recursivamente por

$$\begin{cases} a_1=1,\\ a_2=2,\\ a_n=(n-2)a_{n-1}+2(n-1)a_{n-2}, \text{ para } n\geq 3. \end{cases}$$
 y a_4 usando recursión. (30 pts)

- 1. Calcule a_3 y a_4 usando recursión. (30 pts)
- 2. Pruebe por inducción que $a_n = n!$ para todo $n \in \mathbb{N}$. (70 pts)

1.
$$\partial_3 = (3-2)\partial_{3-1} + 2(3-1)\partial_{3-2}$$

$$\partial_3 = 1. \ \partial_2 + 2(2) \ \partial_4$$
 $\partial_3 = 1. \ 2 + 4.1$

lor def. 21=1, 22=2

$$\partial_{4} = (4-2)_{\partial_{4-1}} + 2(4-1)_{\partial_{4-2}}$$

$$\partial_4 = 2. \partial_3 + 2(3) \partial_2$$

 $\partial_4 = 2.6 + 6.2$

2. Casos base: Veamos si la propiedad se comple cuando n=1 ó n=2.

		1	
$\partial_1 = 1!$	lor def.	$\partial_2 = 2!$	Por def.
1 = 1!	Pordef. fadorial	2 = 2!	Def. rov. de Coctorial
1 = 1		2 - 2 · (2-1)!	
		2 = 2. 1!	1!=1
		2 = 2.1	elem. Neutro
		2 = 2	

Hipoteris inductive:

Supongamos que para cierto K e IN se cumple la propredad

$$\partial_K = K!$$

.. si se comple para n = k \Rightarrow se comple para n = k+1

 $\partial_{K+1} = (K+1)!$

$$a_{k+1} = (k+1-2) a_{k+1-1} + 2(k+1-1) a_{k+1-2}$$
 for def. rec.
 $= (k-1) \cdot a_k + 2 \cdot k \cdot a_{k-1}$ hipteris inductive
 $= (k-1) \cdot k! + 2 \cdot k \cdot (k-1)!$ def. rec. factorial
 $= (k-1) \cdot k! + 2 \cdot k!$ Distributtividad
 $= (k+1) \cdot k!$ def. rec. factorial
 $= (k+1) \cdot k!$

·· por principio de inducción queda demostrado que la propiedad se comple para todo K & IN.