Biostat 216 Homework 6+7

Due Dec 3 Friday @ 11:59pm

Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook) to Gracescope on CCLE.

Eigenvalues and eigenvectors

• Q1. Diagonalize (show the steps to find eigenvalues and eigenvectors)

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

and compute $\mathbf{X} \mathbf{\Lambda}^k \mathbf{X}^{-1}$ to prove the formula

$$\mathbf{A}^k = \frac{1}{2} \begin{pmatrix} 1 + 3^k & 1 - 3^k \\ 1 - 3^k & 1 + 3^k \end{pmatrix}.$$

- Q2. Suppose the same X diagonalize both A and B. They have the same eigenvectors in $A = X\Lambda_1X^{-1}$ and $B = X\Lambda_2X^{-1}$. Prove that AB = BA.
- Q3. Suppose the eigenvalues of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ are $\lambda_1, \ldots, \lambda_n$. Show that $\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$. Hint: λ_i s are roots of the characteristic polynomial.
- Q4. Ture of false. For each statement, indicate it is true or false and gives a brief explanation.
 - 1. If the columns of X (eigenvectors of a square matrix A) are linearly independent, then (a) A is invertible; (b) A is diagonalizable; (c) X is invertible; (d) X is diagonalizable.
 - 2. If the eigenvalues of A are 2, 2, 5 then the matrix is certainly (a) invertible; (b) diagonalizable.
 - 3. If the only eigenvectors of \mathbf{A} are multiples of $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$, then the matrix has (a) no inverse; (b) a repeated eigenvalue; (c) no diagonalization $\mathbf{X}\mathbf{\Lambda}\mathbf{X}^{-1}$.
- Q5. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$. Show that \mathbf{AB} and \mathbf{BA} share the same eigenvalues. Hint: examine the eigen-equations.

Positive definite matrices

- Q6. Suppose C is positive definite and A has independent columns. Apply the energy test to show that A'CA is positive definite.
- Q7. Suppose **S** is positive definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ with corresponding orthonormal eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.
 - 1. What are the eigenvalues of the matrix $\lambda_1 \mathbf{I} \mathbf{S}$? Is it positive semidefinite?
 - 2. How does it follow that $\lambda_1 \mathbf{x}' \mathbf{x} \geq \mathbf{x}' \mathbf{S} \mathbf{x}$ for every \mathbf{x} ?
 - 3. Draw the conclusion: The maximum value of the Rayleigh quotient

$$R(\mathbf{x}) = \frac{\mathbf{x}' \mathbf{S} \mathbf{x}}{\mathbf{x}' \mathbf{x}}$$

is λ_1 .

- 4. Show that the maximum value of the Rayleigh quotient subject to the condition $\mathbf{x} \perp \mathbf{u}_1$ is λ_2 . Hint: expand \mathbf{x} in eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.
- 5. Show that the maximum value of the Rayleigh quotient subject to the conditions $\mathbf{x} \perp \mathbf{u}_1$ and $\mathbf{x} \perp \mathbf{u}_2$ is λ_3 .
- 6. What is the maximum value of $\frac{1}{2}\mathbf{x}'\mathbf{S}\mathbf{x}$ subject to the constraint $\mathbf{x}'\mathbf{x}=1$. Hint: write down the Lagrangian and set its derivative to zero.
- 7. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with largest singular value σ_1 . Find the maximum value of $\frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$.
- 8. Let **B** be a submatrix of $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that the largest singular value of **B** is always less than the largest singular value of **A**. Hint: use Q7.7.

SVD

• Q8. Find the closest rank-1 approximation (Frobenius norm or L2 norm) to these matrices

$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- Q9. Moore-Penrose inverse from SVD.
 - 1. With singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}'$, verify that

$$\mathbf{X}^{+} = \mathbf{V} \mathbf{\Sigma}^{+} \mathbf{U}^{T} = \mathbf{V}_{r} \mathbf{\Sigma}_{r}^{-1} \mathbf{U}_{r}' = \sum_{i=1}^{r} \sigma_{i}^{-1} \mathbf{v}_{i} \mathbf{u}_{i}',$$

where $\Sigma^+ = \mathrm{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0)$ and $r = \mathrm{rank}(\mathbf{X})$, satisfies the four properties of the Moore-Penrose inverse (https://ucla-biostat216-2021fall.github.io/slides/06-matinv/06-matinv.html#Generalized-inverse-and-Moore-Penrose-inverse-(optional)).

- 2. Show that $rank(\mathbf{X}^+) = rank(\mathbf{X})$.
- 3. Show that X^+X is the orthogonal projection into C(X') and XX^+ is the orthogonal projection into C(X).
- 4. Show that $\beta^+ = \mathbf{X}^+ \mathbf{y}$ is a minimizer of the least squares criterion $f(\beta) = ||\mathbf{y} \mathbf{X}\beta||^2$. Hint: check β^+ satisfies the normal equation $\mathbf{X}'\mathbf{X}\beta = \mathbf{X}'\mathbf{y}$.
- 5. Show that $\beta^+ \in C(X')$.
- 6. Show that if another β^* minimizes $f(\beta)$, then $\|\beta^*\| \ge \|\beta^+\|$. This says that $\beta^+ = X^+y$ is the least squares solution with smallest L2 norm. Hint: since both β and β^+ satisfy the normal equation, $X'X\beta^* = X'X\beta^+$ and deduce that $\beta^* \beta^+ \in \mathcal{N}(X)$.

Optimization and multivariate calculus

- Q10.
 - 1. Explain why the intersection $K_1 \cap K_2$ of two convex sets is a convex set.
 - 2. Prove that the maximum F_3 of two convex functions F_1 and F_2 is a convex function. Hint: What is the set above the graph of F_3 ?
- Q11. Show that these functions are convex:
 - 1. Entropy $x \log x$.
 - 2. $\log(e^x + e^y)$.
 - 3. ℓ_p norm $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p)^{1/p}, p \ge 1$.
 - 4. $\lambda_{max}(S)$ as a function of the symmetric matrix S. Hint: Q7.6 and Q10.2.
- Q12. Minimize $f(x_1, x_2) = \frac{1}{2} \mathbf{x}' \mathbf{S} \mathbf{x} = \frac{1}{2} x_1^2 + 2x_2^2$ subject to the constraint $\mathbf{A}' \mathbf{x} = x_1 + 3x_2 = b$.
 - 1. What is the Langrangian $L(\mathbf{x}, \lambda)$ for this problem.
 - 2. What are the three equations "derivative of L=zero"?
 - 3. Solve these equations to find $\mathbf{x}^{\star} = (x_1^{\star}, x_2^{\star})$ and the multiplier λ^{\star} .
 - 4. Verify that the derivative of the minimum cost is $\partial f^*/\partial b = -\lambda^*$.