

Plano de Ensino para o Ano Letivo de 2020

rga horária semana	Código da Disciplina: ETC316
ga horária semana	
ga horária semana	al: 00 - 00 - 02
ga horária semana	al: 00 - 00 - 02
ga horária semana	al: 00 - 00 - 02
ga horária semana	al: 00 - 00 - 02
ga horária semana	al: 00 - 00 - 02
Série:	Período:
5	Noturno
4	Diurno
4	Noturno
	Pós-Graduação
	Especialista
	Pós-Graduação
	Mestre
	Especialista
	5 4

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- C1 Compreensão do processo para se elaborar um projeto em estrutura de madeira, aço e alumínio;
- C2 Verificação do Estado Limite Último: Dimensionamento de barras à tração, compressão, flexão, cisalhamento, e o efeito combinado destas forças;
- C3 Dimensionamento de Ligações;
- C4 Verificação do Estado Limite de Serviço: Deslocamento excessivo, vibrações excessivas;

Habilidades:

- H1 Projetar estruturas de madeira, aço e alumínio provisórias e definitivas;
- H2 Participar de reuniões multidisciplinares para dar subsídios sobre a matéria;

Atitudes:

- Al Projetar estruturas com domínio dos conceitos de segurança estrutural;
- A2 Projetar estruturas com domínio dos conceitos de economia.

EMENTA

Histórico dos tipos de estruturas; Propriedades dos materiais e suas várias resistências; Vantagens e inconvenientes; Tipos de perfis e de resistências; Sistemas estruturais; Estruturas típicas; Elementos componentes; Contraventamentos e travamentos; Critérios de dimensionamento pelo Método dos Estados Limites; Ações Externas; Ações Permanentes, Ações Variáveis Temporárias; Ações Variáveis devidas ao Vento: Coeficientes de pressão e de forma, externos e internos. Resistência de cálculo: Conceitos; Dimensionamento à tração; Dimensionamento à compressão; Flambagem; Perfis simples; Perfis compostos; Dimensionamento à Flexão; Vigas não esbeltas; Dimensionamento ao

2020-ETC316 página 1 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

cisalhamento na Flexão; Ligações Parafusadas: Critérios de cálculo; Ligações com cavilhas; Ligações com pregos; Ligações soldadas; Ligações com conectores metálicos; Encaixes; Ligações coladas; Bases de colunas articuladas e engastadas; Dimensionamento à Flexão composta oblíqua. Projeto: Lançamento estrutural em um programa de elementos finitos. Interoperabilidade da modelagem estrutural com um aplicativo BIM.

SYLLABUS

Historical notes; Structures: Material Types Properties and their resistances; Advantages of using structural steel; Types of shapes and resistances; Structural Systems; Typical Structures; Structural Components; Bracings; Limit States Design Criteria (Load and Resistance Factor Design); Loads; Dead Loads; Live Loads; Wind Loads: Pressure and Shape Coefficients, External and Internal; Design Resistance: Concepts; Tension Design; Compression Design; Column Buckling; Single Shapes; Combined Shapes; Bending Design; Compact and Semi-compact Beams; Shear Design in Bending; Bolted Connections: Design Criteria; Dowell Design; Nailed Connections; Welded Connections; Plate Connectors Design; Notched Connections; Glued Connections; Column Bases: Pinned and Fixed; Design of Beam-Columns submitted to both Compression and Bending. Project: Structural modeling in a finite element program. Interoperability of structural modeling with a BIM application.

TEMARIO

de estructuras: notas históricas; Propiedades Tipos materiales resistencias; Ventajas de utilizar acero estructural; Tipos de formas y Sistemas estructurales; Estructuras típicas; Componentes estructurales; Brazaletes; Criterios de diseño de estados límite (diseño de factor de carga y resistencia); Cargas; Cargas muertas; Cargas vivas; Cargas de viento: coeficientes de presión y forma, externos e internos; Resistencia de diseño: conceptos; Diseño de tensión; Diseño de compresión; Columna de pandeo; Formas individuales; Formas combinadas; Diseño de flexión; Vigas compactas y semi-compactas; Diseño de cizallamiento en flexión; Conexiones atornilladas: Criterios de diseño; Diseño Dowell; Conexiones Clavadas; Conexiones soldadas; Diseño de conectores de placa; Conexiones con muescas; Conexiones encoladas; Bases de columnas: fijadas y fijas; Diseño de columnas de viga sometidas tanto a compresión como a flexión. Proyecto: Modelización estructural en un programa de elementos finitos. Interoperabilidad del modelado estructural con una aplicación BIM.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Não

2020-ETC316 página 2 de 11

METODOLOGIA DIDÁTICA

Tanto nas aulas de Teoria como nas aulas de Laboratório é utilizado o recurso de aulas expositivas com apoio de material áudio visual (projeção em tela da matéria ou de parte dela) bem como do quadro negro.

A matéria é previamente fornecida aos alunos, na forma de apostilas, para permitir o acompanhamento das aulas.

Em cada aula são dadas explicações básicas sobre a matéria em pauta, tomando-se o cuidado de vincular os novos assuntos com as disciplinas já oferecidas aos alunos em anos anteriores. Assim o aluno poderá compreender a devida concatenação entre o que ele aprendeu antes com o que ele está aprendendo com a nova disciplina.

Após a apresentação dos conceitos teóricos são resolvidos exercícios em classe para o melhor entendimento da matéria.

Outros exercícios são propostos para que os alunos possam praticar e melhorar suas habilidades.

Também são propostos trabalhos práticos mais extensos e de maior amplitude para que o aluno possa ter uma visão do conjunto do trabalho profissional.

Os exercícios e trabalhos devem ser realizados utilizando-se cálculo manual, mas é dado o incentivo para que os alunos aprendam a utilizar, em paralelo, as ferramentas computacionais disponíveis na ocasião.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

São requisitos básicos conhecimentos adequados sobre:

- a) Resistência dos Materiais;
- b) Teoria das Estruturas;
- c) Fenômeno de Transportes (Mecânica dos Fluidos);
- d) Materiais de Construção;
- e) Desenho Geométrico e Geometria Descritiva.

CONTRIBUIÇÃO DA DISCIPLINA

Estruturas Metálicas e de Madeira I é uma disciplina que visa permitir que o futuro engenheiro possa projetar, detalhar, fabricar e montar estruturas em madeira, aço e alumínio, tanto para obras definitivas como provisórias. A participação do profissional abrange, também, uma contribuição durante a fase inicial de implantação de um empreendimento, onde o mesmo deverá fornecer subsídios preliminares às demais disciplinas participantes, em particular aos arquitetos.

Permite, inclusive, que o profissional emita laudos e pareceres sobre estruturas existentes, propondo formas de reforma e/ou recuperação, conforme o caso.

2020-ETC316 página 3 de 11

BIBLIOGRAFIA

Bibliografia Básica:

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14762: Dimensionamento de Estruturas de Aço Constituídas por Perfis Formados a Frio - Procedimento. Rio de Janeiro, 2010. 87p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16239: Projeto de Estrutura de Aço e de Estruturas Mistas de Aço e Concreto de Edificações com Perfis Tubulares. Rio de Janeiro, 2008. 85p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6120: Cargas para o Cálculo de Estruturas de Edificações - Procedimento. Rio de Janeiro, 1980. 6 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6123: Forças Devidas ao Vento em Edificações - Procedimento. Rio de Janeiro, 1988. 80 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7190: Projeto de Estruturas de Madeira. Rio de Janeiro, 1997. 107 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8800: Projeto de Estrutura de Aço e Estrutura Mista de Aço e Concreto de Edifícios. Rio de Janeiro, 2008. 237 p.

BELLEI, Ildony Hélio. Edifícios industriais em aço: projeto e cálculo. 6. ed. rev e atual. São Paulo, SP: Pini, 2010. 501 p.

BELLEI, Ildony Hélio; PINHO, Fernando O; PINHO, Mauro O. Edifícios de múltiplos andares em aço. 2. ed. São Paulo, SP: Pini, 2008. 556 p.

CALIL JR., Carlito; LAHR, Francisco Antonio Rocco; DIAS, Antonio Alves. Dimensionamento de elementos estruturais de madeira. Barueri, SP: Manole, 2003. 152 p.

CARVALHO, Paulo Roberto Marcondes de; GRIGOLETTI, Gladimir; BARBOSA, Giovanna Daltrozo. Curso básico de perfis de aço formados a frio. 3. ed. Porto Alegre: [Evangraf], c2014. 370 p.

CHAMBERLAIN, Zacarias; FICANHA, Ricardo; FABEANE, Ricardo. Projeto e cálculo de estruturas de aço: edifício industrial detalhado. Rio de Janeiro: Elseiver, c2013. 237 p.

Bibliografia Complementar:

AMERICAN Institute of Steel Construction. Steeel construction manual. 40. ed. Danvers, MA: American Welding Society, c2011.

2020-ETC316 página 4 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

ANDRIOLO, Dorival Frederico. Efeito do vento nas edificações. [s.l.]: [s.n.], 1984.

ANDRIOLO, Dorival Frederico. Estruturas metálicas: projetos e exercícios. São Caetano do Sul: CEUN-EEM, 1998. v. 2 / pt. A. 232 p.

ANDRIOLO, Dorival Frederico; CANDELARIA, Ricardo Azeredo Passos. Estruturas de madeira. São Caetano do Sul, SP: CEUN-EEM, 2006. 243 p.

ANDRIOLO, Dorival Frederico; CANDELÁRIA, Ricardo Azeredo Passos. Estruturas metálicas. São Caetano do Sul, SP: CEUN-EEM, 2006. 249 p.

BRESLER, Boris; LIN, T. Y; SCALZI, John B. Diseno de estructuras de acero. Mexico: Limusa-Wiley, 1970. 976 p.

CALIL JUNIOR, Carlito et al. Manual de projeto e construção de passarelas com estruturas de madeira. São Paulo: Pini, 2012. 123 p.

CALIL Júnior, Carlito; Brito, Leandro Dussarrat. Manual de Projeto e Construção de Estruturas com peças Roliças de Madeira de Reflorestamento. São Carlos-SP. EESC-USP. 2010. 332 p

CANDELARIA, Ricardo Azeredo Passos. As estruturas de aço na construção de edifícios. São Caetano do Sul, SP: CEUN-EEM, 2010. 68 p.

CANDELÁRIA, Ricardo Azeredo Passos. Estruturas metálicas: projetos e exercícios. São Caetano do Sul, SP: CEUN-EEM, 2006. 284 p.

CANDELÁRIA, Ricardo Azeredo Passos. Formulário e tabelas auxiliares ao projeto de estruturas de aço utilizando perfis de chapas finas sobradas a frio (parcial). São Caetano do Sul: CEUN-EEM, 2015. 91 p.

CANDELÁRIA, Ricardo Azeredo Passos. Projeto para uma plataforma em estrutura de aço para suportar um painel de divulgação. São Caetano do Sul, SP: CEUN-EEM, 2017. 110 p.

CANDELÁRIA, Ricardo Azeredo Passos. Tabelas de produtos siderúrgicos. São Caetano do Sul: CEUN-EEM, 2006. 83 p.

FAHERTY, Keith F; WILLIAMSON, Thomas G. Wood engineering and construction handbook. 3. ed. New York, NY: McGraw Hill, c1997.

GIORDANO, Guglielmo. La moderna tecnica delle costruzioni in legno. 3. ed. Milano: Hoepli, 1964. v. 1.

GIORDANO, Guglielmo. La moderna tecnica delle costruzioni in legno. 3. ed. Milano: Hoepli, 1964. v. 2.

2020-ETC316 página 5 de 11

MOLITERNO, Antonio. Caderno de projetos de telhados em estruturas de madeira. Rev. téc. Reyolando M.L.R.F. Brasil. 3. ed. São Paulo, SP: Blucher, 2009. 268 p.

MOLITERNO, Antonio. Elementos para projetos em perfis leves de aço. São Paulo, SP: Edgard Blücher, 1989. 209 p.

PFEIL, Walter; PFEIL, Michèle. Estruturas de aço: dimensionamento prático. 8. ed. Rio de Janeiro: LTC, 2009. 357 p.

PFEIL, Walter; PFEIL, Michèle. Estruturas de madeira: dimensionamento segundo a norma brasileira NBR 7190/97 e critérios das normas norte-americana NDS e européia EUROCODE 5. 6. ed. Rio de Janeiro, RJ: LTC, 2003. 224 p.

PINHEIRO, Antonio Carlos da Fonseca Bragança. Estruturas metálicas: cálculos, detalhes, exercícios e projetos. 2. ed. São Paulo, SP: Edgard Blücher, 2005. 301 p.

The Aluminum Association. Aluminum design manual 2010. Paris, 2010. 423 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

Peso de $MP(k_p)$: 8,0 Peso de $MT(k_m)$: 2,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas). Pesos dos trabalhos:

k1: 1,0 k2: 1,0 k3: 1,0 k4: 1,0

Peso de MP(kP): 0,8 Peso de MT(kT): 0,2

Os trabalhos são propostos em aula para serem desenvolvidos pelo aluno em outro horário. Os esclarecimentos de dúvidas são prestados durante as aulas.

2020-ETC316 página 6 de 11

OUTRAS INFORMAÇÕES

A disciplina será ministrada tanto no curso diurno como no curso noturno pelo
Prof. Candelaria e pela Profa. Débora, sendo que as atividades - trabalhos e
projetos, e as provas - serão desenvolvidas pelos dois professores.

2020-ETC316 página 7 de 11

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

- 1) Tekla Structures Trimble Group
- 2) SCIA Engineer Nemetschek Group
- 3) SAP2000 CSI Computers & Structures Inc.
- 4) STRAP ATIR Engineering Software Development Ltd.
- 5) MS Office, da Microsoft
- 6) AutoCAD da Autodesk.
- 7) Adobe Reader

2020-ETC316 página 8 de 11

APROVAÇÕES

Prof.(a) Ricardo Azeredo Passos Candelaria Responsável pela Disciplina

Prof.(a) Cassia Silveira de Assis Coordenador(a) do Curso de Engenharia Civil

Data de Aprovação:

2020-ETC316 página 9 de 11

	PROGRAMA DA DISCIPLINA
Nº da	Conteúdo
semana	
1 L	Palestra de Recepção aos Calouros
2 L	01(A&M) Introdução. Critérios da Disciplina. Estruturas de Madeira e de Aço.
	Materiais. Vantagens e Inconvenientes. Método dos Estados Limites. ELU e ELS.
	Resistências de Cálculo. Exemplos.
3 L	CARNAVAL.
4 L	02(A&M) Exercícios e Trabalhos Práticos. Sistemas Estruturais. Produtos
	Siderúrgicos: Perfis. Produtos da Indústria Madeireira.
5 L	03(A&M) Resistências de Cálculo. Exemplos. Estabilidade e Análise Estrutural.
	(Aço) Estruturas de Aço: Relações Largura-Espessura.
6 L	04(A&M) Exemplos. Ações Externas: Cargas Permanentes, Variáveis e Excepcionais.
	Ações Permanentes e Ações Variáveis Temporárias devidas ao uso. Exemplos.
7 L	05 (Aço) Tração. ELS e ELU. Resistência de Cálculo. Exemplos.
8 L	06(A&M) Ações Variáveis: Ação do Vento (W). Pressão Dinâmica.Coeficientes
	Aerodinâmicos. Exercícios.
9 L	Provas P1.
10 L	07(Madeira) Tração. ELS e ELU. Resistência de Cálculo. Exemplos.
11 L	08(A&M) Terças e Longarinas: Introdução - Sistema Estrutural e Travamentos
	complementares.
12 L	09 (Aço) Compressão. ELS e ELU. Critérios de Norma.
13 L	10(A&M) Terças e Longarinas: Introdução - Cargas Atuantes e Solicitações
	Internas: Flexão Oblíqua.
14 L	11 (Aço) Compressão. ELS e ELU. Resistência de Cálculo. Exemplos.
15 L	Semana de Inovação
16 L	12(A&M) Terças e Longarinas: Ações e Combinações. Exercício: Esforços e
	Pré-dimensionamento. Métodos de Dimensionamento.
17 L	13 (Madeira) Compressão. ELS e ELU. Resistência de Cálculo. Exemplos.
18 L	14(A&M) Exercício sobre Terças de Cobertura em Chapa Dobrada: Verificação
10 7	conforme NBR 14.762. Método da Seção Efetiva (MSE).
19 L	Prova P2.
20 L	Prova P2.
21 L	15(A&M) Esclarecimento de dúvidas.
22 L	Férias de Julho Prova Substitutiva PS1.
23 L	
24 L	16(Aço) Ligações Parafusadas. Introdução. Resistência dos Parafusos. Exercícios.
25 L	17 (Aço) Flexão. ELS e ELU. Critérios de Norma.
25 L 26 L	18(Aço) Ligação Parafusada - Tração e Cisalhamento Combinados Tipo Atrito.
26 L 27 L	19 (Aço) Flexão. ELS e ELU. Resistência de Cálculo. Exemplos.
28 L	20(Aço) Base de Coluna Articulada. Base de Coluna Engastada
29 L	21 (Madeira) Flexão. ELS e ELU. Resistência de Cálculo. Exemplos.
30 L	Prova P3.
31 L	22(Aço) Ligação Soldada - Notação.
32 L	23 (Aço) Força Cortante. ELS e ELU. Resistência de Cálculo. Exemplos.
-	. ,,,, : , : ::::::::::::::::::::::::::

2020-ETC316 página 10 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

33 L	24(Aço) Ligação Soldada - Notação. Ligação Soldada - Resistência de Cálculo e		
33 1			
	Exercícios.		
34 L	25 (Madeira) Força Cortante. ELS e ELU. Resistência de Cálculo. Exemplos.		
35 L	26(Aço) Ligação Soldada - Exercícios Complementares - Elementos deLigação.		
36 L	27(A&M) - Resolução de Exercícios - Esclarecimento de Dúvidas. EUREKA.		
37 L	28(A&M) - Resolução de Exercícios - Esclarecimento de Dúvidas		
38 L	Prova P4.		
39 L	Prova P4.		
40 L	Atendimento aos alunos.		
41 L	Atendimento aos alunos Prova PS2. FIM DO PERÍODO LETIVO.		
Legend	Legenda: T = Teoria, E = Exercício, L = Laboratório		

2020-ETC316 página 11 de 11