NAME:	STUDENT #	

University of Toronto Faculty of Applied Science and Engineering

Final Exam, December 10 2001

ECE 512F - ANALOG FILTERS

Exam Type: A

Examiner - K.A.L. Kozma

ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- Grading indicated by []. Maximum #marks=60.
- Attempt all questions since a blank will certainly get zero.
- · Closed book.
- Calculator type unrestricted.
- If you feel you are missing any information, make a reasonable assumption and state it clearly.
- Good Luck!

1	
2	
3	
4	
5	
TOTAL	

NAME: STUDENT #

Question #1 [12 marks]

(a) Find a Butterworth transfer function to realize the following specifications, with no more than 5 dB of excess stopband attenuation.

$$\omega_p = 2\pi 10^6 \text{rad/s}$$

$$\omega_s = 20\pi 10^6 \text{ rad/s}$$

$$A_{max} = 3 dB$$

$$A_{min} = 45 \, \mathrm{dB}$$

NAME:	STUDENT #	

(b) Find the system poles and zeros of the transfer function.

Question #2

(a)[4 marks]

For the pole-zero locations shown, write H(z) if the dc gain is unity.

Sketch the magnitude transfer function on the axes given.

NAME:	STUDENT#	

(b)[4marks] Write the discrete time transfer function for the following circuit.

NAME:	STUDENT #	· · · · · · · · · · · · · · · · · · ·
-------	-----------	---------------------------------------

(c)[4 marks]

Find H(z) for a first-order lowpass filter with a zero at z=0; a dc gain of unity and the 3 dB frequency at 1/10 the sampling frequency. Sketch |H(z)| on the axes provided.

Question #3 [12 marks]

(a) For the Tow Thomas biquad shown find the transfer function $\frac{V_3}{V_I}(s)$.

NAME:	STUDENT#	

(b) Use the circuit to design a bandpass filter with centre frequency of 10 kHz, a quality factor of 20 and unity gain at the centre frequency.

NAME:	STUDENT #		
· · · · · · · · · · · · · · · · · · ·		 	

(c) Design a switched capacitor equivalent circuit if a clock frequency of 200 kHz is used. (hint: you may use the fact that $f_s \gg f_o$)

NAME:	STUDENT #	
Question #4 (a) [4 marks]		

Given a sixth order Chebyshev filter with a passband edge of 100 kHz and a passband ripple of 0.5, find A_{max} and the frequencies at which the attenuation is equal to A_{max} .

	NAME:	STUDENT#	
--	-------	----------	--

(b) [4 marks]

Write K(s) for a third order filter with all attenuation poles at dc and reflection zeros at $s = \pm j\omega_1$ and at ∞ . Sketch K(s).

NAME:	STUDENT #		 <u> </u>	

(c) [4 marks]

Write and sketch the voltage transfer function (indicating all important characteristics) for the circuit below. What type of transfer function is it? Realize with an active RC circuit.

Question #5 [12 marks]

Consider a continuous time signal, X(s), with the following spectrum:

which is fed into the following system:

If the signal that is being sampled at $f_{s1} = 50$ kHz is upsampled by 2, design a first order digital filter H(z) to remove any aliased signals and the original clock. Let the maximum attenuation of the baseband signal be 3 dB. What is the minimum attenuation achieved for the aliased signal(s)?

Draw the spectrum at points A, B, C, D on the axes provided.

-	NAME:	STUDENT #
•		
•		
-		
=		
_		
-		
<u>.</u>		
•		
:		
•		