## 2020 Short Course on Error-Correcting Codes

## Introduction to Linear Block Codes

February 10, 2020

# **Kyeongcheol Yang**

Department of Electrical Engineering

Pohang University of Science and Technology (POSTECH)

# Introduction to Error-Correcting Codes

## ☐ Digital Communication Systems



# ☐ Concept of Channel Coding



## ☐ Limitations in Communication Systems

- Bandwidth limitations
- Power limitations
- Channel impairments (attenuation, distortion, interference, noise and fading)
- ⇒ *Error control techniques* are employed in digital communication systems for reliable transmission under these limitations

## ☐ Physical Channels

- Communication channels: here to there
- Storage channels: *now to then*

## ☐ Advantages of Error Control Coding

• In principle:

Every channel has a capacity C. If you transmit information at a rate R < C, then *error-free transmission* is possible.

- In practice:
  - Increase the operational range of a communication system
  - Reduce the error rates
  - Reduce the transmitted power requirements

## ☐ Error Control Techniques

• Forward Error Correction (FEC)



#### • Error Detection

- Cyclic Redundancy Check (CRC)
- Syndrome checking
- Applications: Automatic Repeat reQuest (ARQ)

# $\square$ Encoding of an [n,k] Block Code



- Redundancy r = n k
- Code rate R = k/n

## $\square$ Decoding of an [n,k] Block Code

- Decide what the transmitted information was
- Optimum decoding rule: Minimum distance decoding in a memoryless channel





Correct errors and remove (n-k) redundant symbols

# $\square$ Example of Decoding: [6,3] code

comparing with 101101

| message                                              | codeword                                                                     | distance | transmit the information: 100                                                                                     |
|------------------------------------------------------|------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------|
| 000<br>100<br>010<br>110<br>001<br>101<br>011<br>111 | 000000<br>100101<br>010011<br>110110<br>001111<br>101010<br>011100<br>111001 | 4<br>1   | choose the codeword: 100101  101101 is received  W  the closest codeword: 100101  W  extract the information: 100 |
|                                                      |                                                                              |          |                                                                                                                   |

#### ☐ Measure of Distance

• Hamming distance = the number of positions at which symbols are different in the two vectors

Example: 
$$\mathbf{u} = (101000), \ \mathbf{v} = (111010) \implies d(\mathbf{u}, \mathbf{v}) = 2$$

• *Hamming weight* = the number of nonzero elements in a vector

Example: 
$$w(\mathbf{u}) = 2$$
,  $w(\mathbf{v}) = 4$ 

• Binary case :  $d(\mathbf{u}, \mathbf{v}) = w(\mathbf{u} \oplus \mathbf{v})$  ( $\oplus$  means (bitwise) exclusive OR)

Example: 
$$\mathbf{u} \oplus \mathbf{v} = (010010)$$
  $d(\mathbf{u}, \mathbf{v}) = w((010010)) = 2$ 

## ☐ Maximum-Likelihood Decoding (MLD)



- $\bullet~\hat{\mathbf{u}}=\mathbf{u}~\Leftrightarrow~\hat{\mathbf{v}}=\mathbf{v}$   $\hat{\mathbf{v}}=\text{an estimate of the codeword }\mathbf{v}\text{, given }\mathbf{r}$
- Assume the codeword v was transmitted.

A decoding error occurs  $\Leftrightarrow \hat{\mathbf{v}} \neq \mathbf{v}$ .

#### □ Optimum Receiver: MAP decoder

- The conditional error prob. of the decoder given  $\mathbf{r}$ :  $P\left(E|\mathbf{r}\right) = P\left(\hat{\mathbf{v}} \neq \mathbf{v}|\mathbf{r}\right)$
- The error probability of the decoder

$$P(E) = \sum_{\mathbf{r}} P(E|\mathbf{r}) P(\mathbf{r})$$

Note that  $P(\mathbf{r})$  is independent of decoding rule.

• Criterion: minimize P(E)

$$\Leftrightarrow$$
 minimize  $P(E|\mathbf{r}) = P(\hat{\mathbf{v}} \neq \mathbf{v}|\mathbf{r})$  for each  $\mathbf{r}$ 

$$\Leftrightarrow$$
 maximize  $P(\hat{\mathbf{v}} = \mathbf{v} | \mathbf{r})$  for each  $\mathbf{r}$ 

Optimum decoding rule:

$$\hat{\mathbf{v}} = \mathbf{v} \Leftrightarrow P(\mathbf{v}|\mathbf{r}) = \max_{\mathbf{s}} P(\mathbf{s}|\mathbf{r})$$

⇒ MAP (maximum a posteriori probability) decoder

## ☐ Maximum-Likelihood Decoding (MLD)

- ullet Assume that  $P(\mathbf{v})$  is constant, i.e.,  $\mathbf{v}$  is equally likely.
- Bayes' Rule:

$$P(\mathbf{v}|\mathbf{r}) = \frac{P(\mathbf{r}|\mathbf{v})P(\mathbf{v})}{P(\mathbf{r})}$$

• The MAP decoder is equivalent to the following rule:

$$\hat{\mathbf{v}} = \mathbf{v} \Leftrightarrow P(\mathbf{r}|\mathbf{v}) = \max_{\mathbf{s}} P(\mathbf{r}|\mathbf{s})$$

⇒ ML (maximum-likelihood) decoder

## □ DMC (Discrete Memoryless Channel)

ullet Given that  ${f v}$  was transmitted, the conditional probability of  ${f r}$  is

$$P(\mathbf{r}|\mathbf{v}) = \prod_{i} P(r_i|v_i)$$
$$\log P(\mathbf{r}|\mathbf{v}) = \sum_{i} \log P(r_i|v_i)$$

• ML decoder for a DMC:

$$\hat{\mathbf{v}} = \mathbf{v} \iff \log P(\mathbf{r}|\mathbf{v}) = \max_{\mathbf{s}} \log P(\mathbf{r}|\mathbf{s})$$

• Example: BSC (binary symmetric channel)



#### ☐ ML Decoding for BSC

The conditional probability is

$$\log P(\mathbf{r}|\mathbf{v}) = d(\mathbf{r}, \mathbf{v}) \log \epsilon + (n - d(\mathbf{r}, \mathbf{v})) \log(1 - \epsilon)$$
$$= d(\mathbf{r}, \mathbf{v}) \log \frac{\epsilon}{1 - \epsilon} + n \log(1 - \epsilon)$$

where  $\log \frac{\epsilon}{1-\epsilon} < 0$  for  $\epsilon < \frac{1}{2}$  and  $n \log (1-\epsilon)$  is constant for all  $\mathbf{v}$ .

• ML decoding: maximize  $P(\mathbf{r}|\mathbf{v}) \Leftrightarrow \text{minimize } d(\mathbf{r},\mathbf{v})$ 

$$\hat{\mathbf{v}} = \mathbf{v} \Leftrightarrow d(\mathbf{r}, \mathbf{v}) = \min_{\mathbf{s}} d(\mathbf{r}, \mathbf{s})$$

• The optimum decoding rule over the BSC is the *Minimum Distance Decoding*.

#### ☐ Communication Channels

- *Physical Channels*: Memoryless channel, Symmetric channel, Additive white Gaussian noise (AWGN) channel, Bursty channel, Compound (or diffuse) channel
- Random error channels: Memoryless channels such as deep-space channels,
   satellite channels
  - ⇒ Use random-error-correcting codes
- Burst error channels: Channels with Memory
  - Radio channels: signal fading due to multipath transmission
  - Wire and cable transmission: impulse switching noise, crosstalk
  - Magnetic recording: tape dropouts due to surface defects and dust particles
  - ⇒ Use burst-error-correcting codes

## ☐ Code Performance and Coding Gain

- Performance measure
  - Bit error rate (BER) in the information after decoding
  - Signal-to-noise power ratio (SNR):  $E_b/N_0$  [dB]

 $E_b = \text{signal energy per bit}$ 

 $N_0 =$  one sided noise power spectral density in the channel

 $\bullet$  For a given BER in the communication system, the *coding gain* G is defined by

$$G = \frac{E_b}{N_0}\Big|_{\text{w/o FEC}} - \frac{E_b}{N_0}\Big|_{\text{with FEC}}$$
 [dB].

At a given BER, we can save the transmission power by  ${\it G}$  over the uncoded system.

#### **□** BER Performance Curve



## □ Basic Problems in Coding Theory

- To find a good code (e.g., capacity-achieving or capacity-approaching)
- To find its decoding algorithm with low complexity
- To find a way of implementing the decoding algorithm

#### Note:

If we use an [n, k] code, the transmission rate increases by n/k.

- $\Rightarrow$  The required channel bandwidth increases by n/k or the message transmission rate decreases by k/n.
- $\Rightarrow$  Cost for FEC

#### ☐ Classification of FEC

Block codes: Hamming, BCH, RS, Golay, Algebraic geometric codes
 Low-density parity-check (LDPC) codes

Tree codes: Convolutional codes, turbo codes, repeat-accumulate (RA) codes

Linear codes

Nonlinear codes: Nordstrom-Robinson code (1967), Preparata codes (1968), Kerdock(1972), etc.

Systematic codes

Nonsystematic codes

#### ☐ History of Coding Theory

• Shannon (1948) proved by the random coding arguments:

If R < C, it is possible to transfer information at error rates that can be reduced to any desired level.

Here, R is the transmission rate of data and C is the channel capacity.

• The *channel capacity* C of the AWGN channel is given by

$$C = B \log_2(1 + S/N)$$

where B is the bandwidth, S is the signal power, and N is the noise power.

It is required that  $S/N = E_b/N_0 \ge -1.6$  dB.

# Major Developments of Codes

- Hamming codes (1950)
- Convolutional codes (Elias, 1955)
- BCH (1960), RS codes (1960)
- Low-density parity-check (LDPC) codes (Gallager, 1962)
- Goppa codes (1970)
- Algebraic-geometric codes (early 1980's)
- Turbo codes (1993)
- Turbo-like codes: LDPC codes (rediscovered in 1995),

RA (repeat-accumulate) codes (1998)

## ☐ Major Approaches to Coding Theory



## ☐ How Close to the Channel Capacity? (AWGN, BPSK)



#### **Linear Block Codes**

#### ☐ Main Topics on Linear Block Codes

- Linear codes and vector spaces
- Description of linear codes: generator and parity-check matrices
- Standard array and decoding
- Bounds on the parameters of codes

#### □ Block Codes

- An (n, M) block code  $\mathcal C$  of size M and length n over the alphabet  $\mathcal A$  is a set of M vectors of length n with components in  $\mathcal A$ .
- A vector in the code is called a *code vector* or a *codeword*.

• The rate (or code rate) of an (n, M) block code is defined by  $\log_q M/n$ , where q is the size of  $\mathcal{A}$ . It is the number of information symbols per channel symbol.

**Example:** 
$$\mathcal{A} = \{0, 1\}, \ n = 3, \ M = 4.$$
  $\mathcal{C} = \{(000), (011), (101), (110)\}.$  rate  $= (\log_2 4)/3 = \frac{2}{3}.$ 

**Example:** 
$$\mathcal{A} = \{0, 1, 2\}, \ n = 4, \ M = 3.$$
  $\mathcal{C}_1 = \{(0000), (1111), (2222)\}, \ \mathcal{C}_2 = \{(0112), (2011), (0221)\}.$  rate  $= (\log_3 3)/4 = \frac{1}{4}.$ 

#### ☐ Linear Block Codes

ullet An [n,k] linear block code over  ${f F}_q={
m GF}(q)$  is a k-dimensional subspace of the n-dimensional vector space

$$V_n(\mathbf{F}_q) = \mathbf{F}_q^n \triangleq \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbf{F}_q\}.$$

- -n is called the *length* (or *code length*) of the code;
- -k is called the *dimension* of the code;
- The *rate* (or *code rate*) of an [n, k] linear code is given by

$$\frac{\log_q q^k}{n} = \frac{k}{n} .$$

## ullet Necessary and sufficient conditions for a code ${\mathcal C}$ to be linear

- If  $\mathbf{u} \in \mathcal{C}$  and  $\mathbf{v} \in \mathcal{C}$ , then  $\mathbf{u} + \mathbf{v} \in \mathcal{C}$ . (vector addition)

 $-\text{ If }\mathbf{u}\in\mathcal{C}\text{ and }a\in\mathbf{F}_q\text{, then }a\mathbf{u}\in\mathcal{C}. \tag{scalar multiplication}$ 

#### • Major concepts for a vector space

- Linear Independence
- -Span
- Basis
- Dimension
- Subspace
- Linear transformation, etc.

# $\square$ Generator Matrix G for an [n,k] Code $\mathcal C$

ullet Let  $\{{f g}_1,{f g}_2,\ldots,{f g}_k\}$  be a basis for  ${\cal C}$ , where

$$\mathbf{g}_i = (g_{i1}, g_{i2}, \dots, g_{in}) \quad i = 1, 2, \dots, k,$$

and  $g_{ij} \in \mathbf{F}_q$  for all i, j.

• Then any codeword  $\mathbf{c}=(c_1,c_2,\ldots,c_n)$  can be expressed as a linear combination of  $\mathbf{g}_1,\mathbf{g}_2,\ldots,\mathbf{g}_k$ , i.e.,

$$\mathbf{c} = m_1 \mathbf{g}_1 + m_2 \mathbf{g}_2 + \ldots + m_k \mathbf{g}_k.$$

• In matrix notation,

$$\mathbf{c} = \begin{bmatrix} m_1 & m_2 & \cdots & m_k \end{bmatrix} \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_k \end{bmatrix} = \begin{bmatrix} m_1 & m_2 & \cdots & m_k \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ g_{k1} & g_{k2} & \cdots & g_{kn} \end{bmatrix}$$

That is,

$$c = m G$$

where c:  $1 \times n$ , m:  $1 \times k$ , and G:  $k \times n$ .

- The  $k \times n$  matrix G has k basis vectors for C as its rows and is called a *generator* matrix of the code.
- $\mathbf{m} \in \mathbf{F}_q^k$  is called a message to be encoded.

# $\Box$ Idea of a [7,4] Hamming code (1950)

ullet Let  $m_1, m_2, m_3, m_4$  be the 4 information bits produced by source and parity bits be constructed

as follows:



• The 7 bits to be transmitted are:

$$c_1 = m_1$$

$$c_2 = m_2$$

$$c_3 = m_3$$

$$c_4 = m_4$$

information symbols

$$c_5 = m_2 + m_3 + m_4 \pmod{2}$$

$$c_6 = m_1 + m_3 + m_4 \pmod{2}$$

$$c_7 = m_1 + m_2 + m_4 \pmod{2}$$

redundant symbols

"parity-check" symbols)

• The codeword to be transmitted is

$$\mathbf{c} = (c_1, c_2, c_3, \dots, c_7) = \underbrace{\begin{bmatrix} m_1 & m_2 & m_3 & m_4 \end{bmatrix}}_{\mathbf{m}} \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 & : & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & : & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & : & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & : & 1 & 1 & 1 \end{bmatrix}}_{\mathbf{G}}$$

- Systematic code:  $G = [I_k \ P]$ 
  - Elementary row operations on G do not change a code  $\mathcal C$  because  $\mathcal C$  is the row space of G.
  - Any generator matrix can be reduced to a "row-reduced echelon form",
  - Every linear block code can always be considered to be equivalent to a systematic code by applying elementary column operations, if necessary.

## $\square$ Parity-Check Matrix for a [7,4] Hamming code (continued)

• Conditions for  $\mathbf{c} = (c_1, c_2, \dots, c_7)$  to be a codeword:

$$c_{i} = m_{i}$$
,  $i = 1, 2, 3, 4$   $c_{2} + c_{3} + c_{4} + c_{5} = 0$   
 $c_{5} = m_{2} + m_{3} + m_{4} \pmod{2}$   $\Rightarrow$   $c_{1} + c_{3} + c_{4} + c_{6} = 0$   
 $c_{6} = m_{1} + m_{3} + m_{4} \pmod{2}$   $c_{1} + c_{2} + c_{4} + c_{7} = 0$   
 $c_{7} = m_{1} + m_{2} + m_{4} \pmod{2}$ 

$$\Rightarrow \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

ullet The parity-check matrix  ${f H}$  has size (n-k) imes n and

$$\mathbf{H} \mathbf{c}^t = \mathbf{0}.$$

## $\square$ Parity-Check Matrix of an [n,k] Linear Block code

• Let C be an [n, k] linear code over  $\mathbf{F}_q$ . A matrix  $\mathbf{H}$  with the property that  $\mathbf{H}\mathbf{x^t} = 0$  iff  $\mathbf{x} \in C$  is called a *parity-check matrix* for C.

In general, **H** has size  $(n-k) \times n$ .

The code C is the null space of H, denoted by  $C = \mathcal{N}(H)$ .

• If C is an [n, k] systematic code,

$$\mathbf{G} = egin{bmatrix} \mathbf{I}_k & : \mathbf{P} \end{bmatrix} & \longleftrightarrow & \mathbf{H} = egin{bmatrix} -\mathbf{P}^t & : & \mathbf{I}_{n-k} \end{bmatrix}$$

ullet For any linear code over  ${f F}_q$ ,

$$\mathbf{G}\mathbf{H}^t = \mathbf{0}.$$

#### ☐ Syndrome and Error Detection

ullet Assume that a codeword  ${f c}$  is transmitted and an error vector  ${f e}$  is added to  ${f c}$  (The channel is assumed to be an *additive* BSC.) Then the received vector  ${f r}$  is given by

$$\mathbf{r} = \mathbf{c} + \mathbf{e}.$$

$$\mathbf{c} = (c_1, c_2, \dots, c_n) \xrightarrow{\text{Channel}} \mathbf{r} = (r_1, r_2, \dots, r_n)$$

$$\mathbf{e} = (e_1, e_2, \dots, e_n)$$

ullet The decoder gets the information on the unknown  ${f e}$  from the observation  ${f r}$ : The decoder computes the so-called *syndrome*, defined by

$$\mathbf{s} = (s_1, s_2, \dots, s_{n-k}) \triangleq \mathbf{r} \mathbf{H}^{\mathbf{t}}.$$

• The syndrome value depends only on the errors, but not on the transmitted codeword, since

$$\mathbf{s} = \mathbf{r}\mathbf{H}^{\mathbf{t}} = (\mathbf{c} + \mathbf{e})\mathbf{H}^{\mathbf{t}} = \underbrace{\mathbf{c}\mathbf{H}^{\mathbf{t}}}_{=0} + \mathbf{e}\mathbf{H}^{\mathbf{t}} = \mathbf{e}\mathbf{H}^{\mathbf{t}}.$$

• Error Detection by Syndrome:

- If s=0, e=0 (No error) or Undetectable.
  - ⇒ Decide that no error occured.
- If  $s \neq 0$ ,  $e \neq 0$ : Errors are detected.

# **☐** Syndrome for Systematic Codes

• In a systematic code, *the syndrome is the difference* between the received parity bits and the parity bits calculated from the received information bits:

Codeword to be transmitted: 
$$\mathbf{c} = (\underbrace{c_1, c_2, \dots, c_k}_{\text{information}}, \underbrace{c_{k+1}, \dots, c_n}_{\text{parity}})$$

Received vector: 
$$\mathbf{r} = (\underbrace{r_1, r_2, \dots, r_k}_{\text{received information received parity bits}}, \underbrace{r_{k+1}, \dots, r_n}_{\text{received parity bits}}) = (\mathbf{r}_1 \ \mathbf{r}_2)$$

• Generator and parity-check matrices for a systematic code:

$$\mathbf{G} = [\mathbf{I}_k \mathbf{P}], \quad \mathbf{H} = [-\mathbf{P}^t \ \mathbf{I}_{n-k}]$$

• The syndrome is

$$\mathbf{s} = \mathbf{r} \, \mathbf{H}^t = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix} \begin{bmatrix} -\mathbf{P} \, \mathbf{I}_{n-k} \end{bmatrix} = \underbrace{\mathbf{r}_2} - \underbrace{\mathbf{r}_1 \mathbf{P}}$$
received parity bits parity bits recalculated

the received information

# ☐ Example for Syndrome Computation

 $\bullet$  Consider the [7, 4] Hamming code with parity-check matrix given by

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

ullet If  ${f r}=egin{bmatrix}1&1&0&0&1&1&1\end{bmatrix}$  is received, the corresponding syndrome is

$$\mathbf{s} = \mathbf{r}\mathbf{H}^t = (0\ 1\ 0).$$

• Decide that *the sixth position is in error*.

## ☐ Hamming Distance and Hamming Weight

- The Hamming weight  $w_H(\mathbf{x})$  (or  $w(\mathbf{x})$ ) of a vector  $\mathbf{x} = (x_1, x_2, \dots, x_n)$  is the number of nonzero symbols in  $\mathbf{x}$ .
- The *Hamming distance*  $d_H(\mathbf{x}, \mathbf{y})$  between two vectors  $\mathbf{x}$  and  $\mathbf{y}$  is the Hamming weight of their difference vectors  $\mathbf{x} \mathbf{y}$ , i.e.,

$$d_H(\mathbf{x}, \ \mathbf{y}) = w_H(\mathbf{x} - \mathbf{y}).$$

- ullet The Hamming distance  $d_H(\mathbf{x},\ \mathbf{y})$  is a metric. That is,
  - (a)  $d_H(\mathbf{x}, \mathbf{y}) \ge 0$  for all  $\mathbf{x}, \mathbf{y}$  with equality iff  $\mathbf{x} = \mathbf{y}$
  - (b)  $d_H(\mathbf{x}, \mathbf{y}) = d_H(\mathbf{y}, \mathbf{x})$  (symmetric)
  - (c)  $d_H(\mathbf{x}, \mathbf{y}) \le d_H(\mathbf{x}, \mathbf{z}) + d_H(\mathbf{z}, \mathbf{y})$  (triangle inequality)

### ☐ Minimum Distance of a Linear Block Code

• The minimum (Hamming) distance  $d_{min}$  of a linear code  $C \subset \mathbf{F}_q^n$  is the minimum (Hamming) distance between any two distinct codewords, i.e.,

$$d_{\min}(\mathcal{C}) = \min \{d_H(\mathbf{x}_1, \ \mathbf{x}_2) \mid \mathbf{x}_1 \in \mathcal{C}, \ \mathbf{x}_2 \in \mathcal{C}, \ \mathbf{x}_1 \neq \mathbf{x}_2\}$$
$$= \min \{w_H(\mathbf{x}) \mid \mathbf{x} \in \mathcal{C}, \ \mathbf{x} \neq \mathbf{0}\}$$

- A  $t_c$ -error-correcting and  $t_d$ -error-detecting code with  $t_d \ge t_c$  is a code that can correct all combinations of  $\nu$  errors ( $\nu \le t_c$ ) and detect all combinations of  $\mu$  errors ( $\mu \le t_d$ ).
- ullet The code  ${\cal C}$  has  $(t_c,\ t_d)$ -error-correction/detection capability iff

$$t_c + t_d + 1 \le d_{\min}.$$



ullet A code with minimum distance  $d_{\min}$  can correct any patterns of u errors  $u \leq t_c
u$  iff

$$2t_c + 1 \le d_{min}.$$

The number  $t_c = \lfloor \frac{d_{min}-1}{2} \rfloor$  is called the *error-correction capability*.

**Theorem**: Let C be an [n, k] code with parity check matrix H. There is a codeword of weight w if and only if there are w linearly dependent column of H.

**Example:** Consider the [7,4] Hamming code with p.c.m.  $\mathbf H$  given by

$$\mathbf{H} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

Determine its minimum distance analytically.

(Solution) Apply Theorem.

- No zero columns  $\Rightarrow d_{\min} \geq 2$ .
- All columns are distinct.
  - $\Rightarrow$  No linear combination of 2 columns is zero.
  - $\Rightarrow d_{\min} \geq 3.$
- But, column  $1 + \text{column } 6 + \text{column } 7 = 0 \implies d_{\min} \le 3$ .

Therefore,  $d_{\min} = 3$ .

# ☐ Minimum Distance of Simple Linear Codes

 $\bullet$  [n, n-1] single-parity check code

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

$$d_{\min} = 2 \quad \Rightarrow \quad (t_c, t_d) = (0, 1)$$

 $\bullet$  [7, 4] Hamming code.

$$d_{\min} = 3 = t_c + t_d + 1, \ t_c \le t_d$$
  
 $\Rightarrow (t_c, t_d) = (0, 2) \text{ or } (1, 1)$ 

• [7, 1] repetition code

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$d_{\min} = 7 \implies (t_c, t_d) = (0, 6), (1, 5), (2, 4), (3, 3)$$

# ☐ Standard Array and Decoding.

- Known results
  - Optimum decoding rule: minimum distance decoding
  - Available information on the error pattern from the given  ${f r}$ : syndrome

# Decision region



• Let z + C be the coset of C containing z, defined by

$$\mathbf{z} + \mathcal{C} = \{\mathbf{x} \in \mathbf{F}_q^n \mid \mathbf{x} = \mathbf{z} + \mathbf{c}, \mathbf{c} \in \mathcal{C}\}.$$

- Each vector in  $\mathbf{z} + \mathcal{C}$  has the same syndrome as  $\mathbf{z}$ , since  $\mathbf{x}\mathbf{H}^t = (\mathbf{z} + \mathbf{c})\mathbf{H}^t = \mathbf{z}\mathbf{H}^t$  for any  $\mathbf{x} \in \mathbf{z} + \mathcal{C}$ .
- The most likely error pattern in a coset z + C (i.e., the minimum weight error vector in z + C) is called the *coset leader* of z + C.
- If  $\mathbf{z}_0$  is the coset leader of  $\mathbf{z} + \mathcal{C}$ , then  $\mathbf{z}_0 + \mathcal{C} = \mathbf{z} + \mathcal{C}$ .

# • Syndrome Decoding Algorithm

- 1) Compute the syndrome  $\mathbf{s} = \mathbf{r}\mathbf{H}^t$ .
- 2) Find a minimum-weight vector in the coset corresponding to s. Call it  $z_0$ .
- 3) Output the codeword  $\hat{\mathbf{c}} = \mathbf{r} \mathbf{z}_0$ .

# ☐ Construction of Standard Array

- ullet List all codewords in the top row with  ${\bf 0}$  being the first. Set  ${\bf e}_1={\bf 0}$ . The vectors in the top row form the coset  ${\bf e}_1+{\cal C}$ .
- Choose a minimum weight vector  $e_2$  which is not a codeword. List all vectors of  $e_2 + C$  in the second row so that  $e_2 + c$  lies below c for any  $c \in C$ .
- Choose a minimum weight vector  $\mathbf{e}_3 \notin \bigcup_{i=1}^2 (\mathbf{e}_i + \mathcal{C})$  and list  $\mathbf{e}_3 + \mathcal{C}$  as before, and repeat the process until no vectors are left.

:

# $\square$ Standard Array for an [n,k] Code $\mathcal C$ over $\mathbf F_q$

Number of 
$$n$$
-tuples  $= q^n$ 

Number of codewords 
$$= q^k \triangleq M$$

Number of cosets 
$$= q^n / q^k = q^{n-k} \triangleq L$$

# □ Properties of Standard Array

- 1) The coset leader  $e_i$  has minimum weight in the corresponding coset (row).
- 2) Any two vectors in a coset have the same syndrome.
- 3) No two n-tuples in the same row are identical. Each n-tuple appears only once in the array.

(Proof) Suppose  $\mathbf{e}_i + \mathbf{c}_j = \mathbf{e}_i + \mathbf{e}_m$ . Then  $\mathbf{c}_j = \mathbf{c}_m$ , so j = m. Now, suppose that  $\mathbf{e}_i + \mathbf{c}_j = \mathbf{e}_l + \mathbf{c}_m$ , where i < l. Then

$$\mathbf{e}_l = \mathbf{e}_i + \mathbf{c}_j - \mathbf{c}_m \in \mathbf{e}_i + \mathcal{C}.$$

This is a contradiction to our choice of  $e_l$ .

4) Every [n, k] linear block code is capable of correcting  $2^{n-k}$  error patterns

(Proof) Assume  $\mathbf{r} = \mathbf{c}_i + \mathbf{e}_j$  is received. Then what codeword is the closest to  $\mathbf{r}$ ? If  $d(\mathbf{r}, \mathbf{c}_l) < d(\mathbf{r}, \mathbf{c}_i)$  for some  $l \neq i$ , then  $w(\mathbf{r} - \mathbf{c}_l) < w(\mathbf{r} - \mathbf{c}_i)$ .

$$\Rightarrow w(\underbrace{\mathbf{c}_i - \mathbf{c}_l}_{\in \mathcal{C}} + \mathbf{e}_j) < w(\mathbf{e}_j)$$

 $\Rightarrow$  Contradiction to our choice of  $w(\mathbf{e}_j)$ 

Hence,  $c_i$  is the closest to r in terms of Hamming distance and r is decoded into  $c_i$ .

 $\Rightarrow$  Number of correctable error patterns  $= L = 2^{n-k}$ .

5) Each column contains just one codeword that should be the decoder output for any sequence in the column.

# □ Decoding by Standard Array

Step 1: Calculate a syndrome s by

$$\mathbf{s} = \mathbf{r}\mathbf{H}^t$$

Step 2: Find the coset leader of the corresponding coset e to s.

Step 3: Compute  $\hat{\mathbf{c}} = \mathbf{r} - \mathbf{e}$ 

#### **Remark:**

- 1) Standard array decoding: syndrome decoding or table look-up decoding.

  This achieves ML decoding or minimum distance decoding.
- 2) For large n-k, this method may be impossible!

# ☐ Example of Standard Array

Consider the [5,2] binary code with generator matrix given by

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

A standard array for the code is constructed as follows:

| 00000 | 10101 | 01011     | 11110 |
|-------|-------|-----------|-------|
| 10000 | 00101 | 11011     | 01110 |
| 01000 | 11101 | 00011     | 10110 |
| 00100 | 10001 | 0 1 1 1 1 | 11010 |
| 00010 | 10111 | 01001     | 11100 |
| 00001 | 10100 | 01010     | 11111 |
| 11000 | 01101 | 10011     | 00110 |
| 10010 | 00111 | 11001     | 01100 |

# **☐** Bounded Distance Decoder and Complete Decoder

- Given a  $(t_c, t_d)$ -code, a decoder that corrects all patterns of  $t_c$  or less errors and detects all patterns of  $t_d$  or less errors is called a *bounded distance decoder*. Example: BCH/RS decoder using Euclidean algorithm
- A decoder that performs minimum distance decoding is a complete decoder.
   Example: Decoder using the standard array.

### ☐ The Dual Code of a Linear Block Code

• Let C be an [n,k] linear code over  $\mathbf{F}_q$ . Then the set

$$\mathcal{C}^{\perp} = \{ \mathbf{y} \in \mathbf{F}_q^n \, | \, \mathbf{x}^t \mathbf{y} = 0, \, \forall \mathbf{x} \in \mathcal{C} \}$$

is called the *dual code* of C.

ullet Let  ${f G},{f H}$  be a generator matrix and a parity check matrix of  ${\cal C},$  respectively. Then

 $\mathbf{H} = \mathsf{a}$  generator matrix for  $\mathcal{C}^\perp$ 

 $\mathbf{G} = \mathsf{a}$  parity-check matrix for  $\mathcal{C}^\perp$ 

Therefor,  $\mathcal{C}^{\perp}$  is an [n, n-k] linear code.

### ☐ Simple Codes and Their Dual Codes

• The [n,1] repetition code has the following generator matrix G:

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

The dual code has G as its p.c.m., so it is the single parity check matrix of an even parity check code.

- Let  ${\bf H}$  be an  $m \times (2^m-1)$  binary matrix with distinct nonzero columns. Then the  $[2^m-1,2^m-1-m]$  linear code with p.c.m.  ${\bf H}$  is called a *binary Hamming code* and has  $d_{\min}=3$ .
  - The Hamming code has high rate:

$$\mathsf{rate} = \frac{2^m - 1 - m}{2^m - 1} \longrightarrow 1 \quad \mathsf{(high)}$$

- The dual code of a binary Hamming code is a *simplex code*.

# ☐ Weight Enumerator

• Let  $\mathcal{C}$  be an [n, k] linear code and let  $A_i$  be the number of codewords of weight i. The weight enumerator A of  $\mathcal{C}$  is defined by

$$A(z) = A_0 + A_1 z + \dots + A_n z^n.$$

- $A(1) = A_0 + A_1 + \cdots + A_n = q^k = |\mathcal{C}|$  = Number of codewords.  $A_0 = 1$
- MacWilliams Identity: Let A(z) be the weight enumerator of an [n,k] linear code  $\mathcal C$  and B(z) be the weight enumerator of the dual code  $\mathcal C^\perp$  of  $\mathcal C$ . Then

$$q^k B(z) = [1 + (q-1)z]^n A\left(\frac{1-z}{1+(q-1)z}\right)$$

**Example:** Consider the [7,4] binary Hamming code C defined by

$$\mathbf{H} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

It is easily shown that  $A_0=1, A_3=A_4=7, A_7=1; \quad A_i=0,$  elsewhere. Thus,

$$A(z) = 1 + 7z^3 + 7z^4 + z^8.$$

On the other hand, its dual code  $\mathcal{C}^{\perp}$  has  $B_0=1, B_4=7; \ B_i=0,$  elsewhere. This leads to  $B(z)=1+7z^4.$ 

Check:

$$2^4 B(z) = (1+z)^7 A\left(\frac{1-z}{1+z}\right)$$

# □ Probability of Error in Linear Codes

• Because of linearity, the performance of a linear code (with respect to the error probability) is the same regardless of the particular codeword transmitted, i.e.,

$$P(E \mid \mathbf{c}) = P(E \mid \mathbf{0})$$

for any  $\mathbf{c} \in \mathcal{C}$ .

- Therefore, we will assume that  $\mathbf{0} = (00 \cdots 0)$  is the transmitted codeword.
- The average error probability is given by

$$P(E) = \sum_{\mathbf{c} \in \mathcal{C}} P(E \mid \mathbf{c}) \cdot P(\mathbf{c}) = P(E \mid \mathbf{0})$$
  $\hookrightarrow$  linear

# □ Probability of Undetected Error (over BSC)

• Assume that the code is used only for error detection. The decoding algorithm at the receiver declares:

 $\mathbf{r} \in \mathcal{C} \Rightarrow \mathsf{No} \; \mathsf{errors} \; \mathsf{have} \; \mathsf{occurred}.$ 

 $\mathbf{r} \not\in \mathcal{C} \Rightarrow \mathsf{Errors} \mathsf{\ have\ occurred}.$ 

- Let  $P_u$  be the *probability of undetected error*, that is, the probability of failing to detect an error when an error has taken place. In other words,  $P_u$  is the probability that the error pattern is one of the non-zero codewords.
- Let  $A(z) = \sum_{i=0}^{n} A_i z^i$  be the weight enumerator of the code C. Then

$$P_u = \sum_{i=1}^n A_i \epsilon^i (1 - \epsilon)^{n-i} = (1 - \epsilon)^n \cdot \sum_{i=1}^n A_i \left( \frac{\epsilon}{1 - \epsilon} \right)^i = (1 - \epsilon)^n \cdot \left( A(z) \Big|_{z = \rho} - 1 \right).$$

**Example:** Consider the [6,3,3] code  $\mathcal{C}$  generated by

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

The code C has weight enumerator given by

$$A(z) = 1 + 4z^3 + 3z^4$$

Therefore, the undetected error probability  $P_u$  is given by

$$P_u = (1 - \epsilon)^6 \left(4\rho^3 + 3\rho^4\right)$$
$$= \epsilon^3 \left(1 - \epsilon\right)^2 \left(4 - \epsilon\right)$$

where  $\rho = \epsilon/(1-\epsilon)$ .

# □ Probability of Incorrectly Decoding

- Assume that minimum distance decoding is employed and that the code is used only for error-correction.
- Let  $P_w$  be the *probability of incorrectly decoding*, in other words, the probability that the error pattern is not a coset leader. Then

$$P_w = 1 - \text{Prob}\{\text{the error pattern is a coset leader}\}.$$

 $P_w$  is also called the *probability of word error* (or *probability of block error*)

Example: For the [5,2] code over the BSC with  $\rho=\epsilon/(1-\epsilon)$ ,

$$1 - P_w = (1 - \epsilon)^5 + 5(1 - \epsilon)^4 \rho + 2(1 - \epsilon)^3 \rho^2$$
$$= (1 - \epsilon)^5 (1 + 5\rho + 2\rho^2).$$

BER analysis is more complicated.

### ☐ Modification of Linear Block Codes

### Extension

- Parameters:  $[n, k, d] \longrightarrow [n+1, k, \geq d]$
- Extending procedure:  $\mathbf{c}=(c_1,c_2,\ldots,c_n)$   $\longrightarrow$   $(c_1,c_2,\ldots,c_n,c_{n+1})$  where  $c_{n+1}=c_1+c_2+\cdots+c_n$ . (overall parity-check bit)
- If d is odd, we get an [n+1,k,d+1] code.

Example: [7,4,3] Hamming code  $\longrightarrow$  [8,4,4] extended Hamming code

Parity-check matrix for an extended code

$$H_E = \begin{bmatrix} & & & 0 \\ & H & & \vdots \\ & & & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

# Shortening

- Parameters:  $[n, k, d] \longrightarrow [n s, k s, \ge d]$
- Structure of codewords



Shortening procedure

1) Assume 
$$G=\begin{bmatrix}I_k&P\end{bmatrix}$$
 and  $H=\begin{bmatrix}-P^t&I_{n-k}\end{bmatrix}$ .

- 2) Set the first s bits of the information part to zero.
- 3) Generate a codeword and then remove the first s bits from it.

- Generator matrix and parity-check matrix for a shortened code



## Puncturing

- Parameters:  $[n, k, d] \longrightarrow [n-1, k, \geq d-1]$
- Puncturing procedure
  - 1) Delete any fixed coordinate from each codeword.
  - 2) If d>p , then any s coordinates can be deleted without changing the dimension of the code in general. In that case the code has the following parameters:

$$[n, k, d] \longrightarrow [n-p, k, \geq d-p]$$

#### **☐** Bounds on Block Codes

# Singleton bound

- Key idea: Let  $\mathbf{G} = [\mathbf{I}_k \ \mathbf{P}]$  be a generator matrix of an  $[n,k,d_{\min}]$  linear block code over  $\mathbf{F}_q$ . Every row in  $\mathbf{G}$  is a codeword and has at most (n-k)+1 nonzero components.
- For any  $[n,k,d_{\min}]$  linear block code over  $\mathbf{F}_q$ , we have

$$d_{\min} \le n - k + 1.$$

– If C is a linear code satisfying the Singleton bound with equality, then C is called an MDS (maximum distance separable) code.

Example: [n,1,n] repetition code, [n,n-1,2] single parity check code, Reed-Solomon codes.

# Hamming bound

- If an (n, M) code over  $\mathbf{F}_q$  can correct any pattern of t or less errors, then the spheres of radius t centered at codewords must be disjoint.
- In a sphere of radius t centered at each codeword, there are

$$\binom{n}{0}(q-1)^0 + \binom{n}{1}(q-1)^1 + \binom{n}{2}(q-1)^2 + \dots + \binom{n}{t}(q-1)^t$$

vectors. Since the total number of vectors in the space  $\mathbf{F}_q^n$  is  $q^n$ , we have

$$\left[\sum_{i=0}^{t} \binom{n}{i} (q-1)^i\right] \cdot M \leq q^n$$

- In an [n,k,d] linear code over  $\mathbf{F}_q$ ,

$$\sum_{i=0}^{t} \binom{n}{i} (q-1)^i \leq q^{n-k} \quad (= \text{number of correctable error patterns})$$

#### • Perfect codes:

An (n, M, d) code is said to be *perfect* if the parameters n, M, d satisfy the Hamming bound with equality.

## **Examples of perfect codes**

- The  $[2^r-1, 2^r-1-r, 3]$  binary Hamming code is perfect.
- The [23, 12, 7] binary Golay code is perfect.
- The [11, 6, 5] ternary Golay Code is perfect.
- Trivial binary perfect codes
  - 1) [n, 1, n] repetition code with odd length;
  - 2) a code with only one codeword (can correct n errors); for example,  $\mathcal{C} = \{\mathbf{0}\}$  is assumed to have minimum distance  $\infty$ .
  - 3) the code with all vectors, that is, the entire space  $\mathcal{C} = \mathbf{F}_2^n$ .

### Plotkin Bound

- Key idea: Minimum distance  $\leq$  average weight of all nonzero codewords. This implies that

$$d_{\min} \leq \frac{1}{|\mathcal{C}| - 1} \sum_{\mathbf{x} \in \mathcal{C}} w(\mathbf{x}).$$

- <u>Key fact</u>: Let  $\mathcal{C}$  be an [n,k] code over  $\mathbf{F}_q$ . For  $a \in \mathbf{F}_q$  and any  $i=1,2,\cdots,n$ , let  $\mathcal{C}_i(a)=\{\mathbf{c}=(c_1,\cdots,c_n)\in\mathcal{C}\,|\,c_i=a\}$ . Then either  $|\mathcal{C}_i(0)|=|\mathcal{C}|$  or  $|\mathcal{C}_i(a)|=\frac{1}{q}|\mathcal{C}|$ .
- For a binary linear [n, k, d] code,  $d \leq n(2^k 2^{k-1})/(2^k 1)$ .
- Plotkin bound for a binary (n, M, d) code: If n < 2d, then

$$M \le 2 \left\lfloor \frac{d}{2d-n} \right\rfloor.$$

#### Griesmer bound

Let N(k,d) be the smallest n for a linear code  $\mathcal C$  of dimension k and minimum distance d. Then

$$N(k,d) \geq \sum_{i=0}^{k-1} \left\lceil \frac{d}{2^i} \right\rceil.$$

(Sketch of proof)

— WLOG, we can assume that a generator matrix for an [N(k,d),k,d] code  ${\cal C}$  is

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & \cdots & 1 & \vdots & 0 & 0 & \cdots & 0 \\ & \mathbf{G}_1 & \vdots & \mathbf{G}_2 & & \end{bmatrix} \\ \leftarrow d & \longrightarrow \leftarrow N(k, d) - d \rightarrow$$

where  $G_2$  generates an [N(k,d)-d,k-1] code  $\mathcal{C}_2$  of minimum distance  $d_2$ .

- Let  $\mathbf{u} \in \mathcal{C}_2$  be such that  $w(\mathbf{u}) = d_2$  and choose  $\mathbf{v}$  such that  $(\mathbf{v} : \mathbf{u}) \in \mathcal{C}$ . Then

$$w(\mathbf{v} : \mathbf{u}) = w(\mathbf{v}) + w(\mathbf{u}) = w(\mathbf{v}) + d_2 \ge d. \tag{1}$$

Also, we have  $(1 + \mathbf{v} \cdot \mathbf{u}) \in \mathcal{C}$  by linearity. Therefore,

$$d - w(\mathbf{v}) + d_2 \ge d. \tag{2}$$

From (1) and (2), we have  $2d_2 \ge d$ , i.e.,  $d_2 \ge \lceil d/2 \rceil$ .

- From the existence of  $C_2$ , we have

$$N(k,d) - d \ge N(k-1, d_2)$$
$$\ge N(k-1, \lceil d/2 \rceil)$$

Therefore, we have a recursion:  $N(k,d) \ge d + N(k-1,\lceil d/2 \rceil)$ ).

- By applying the process iteratively, we get the bound.

#### Gilbert-Varshamov bound

- Best packing of radius d-1 in volume  $\mathbf{F}_q^n$ :

$$M \cdot \sum_{i=0}^{d-1} \binom{n}{i} (q-1)^i \ge q^n$$

- Key idea for construction: Let  $\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \cdots & \mathbf{h}_n \end{bmatrix}$  be a parity check matrix. Then there exists s linearly dependent columns iff there is a codeword of weight s.
- Constructive bound: An [n, k, d] code exists if

$$\sum_{i=0}^{d-2} \binom{n-1}{i} (q-1)^i < q^{n-k} \le \sum_{i=0}^{d-1} \binom{n-1}{i} (q-1)^i.$$

# ☐ Asymptotic Bounds

• Let A(n,d) be the *maximum number of codewords* in any binary code (linear or nonlinear) of length n and minimum distance d between codewords.

The *relative minimum distance*  $\delta$  is defined as  $\delta = \lim_{n \to \infty} \frac{d}{n}$ .

The rates  $\bar{R}(\delta)$  and  $\underline{R}(\delta)$  are given by

$$\bar{R}(\delta) = \lim_{n \to \infty} \sup \frac{1}{n} \log_2 A(n, d),$$
  
 $\underline{R}(\delta) = \lim_{n \to \infty} \inf \frac{1}{n} \log_2 A(n, d).$ 

- Asymptotic bounds
  - Hamming bound:  $\bar{R}(\delta) \leq 1 H_2(\delta/2), \quad 0 \leq \delta \leq 1$
  - Plotkin bound:  $\bar{R}(\delta) \leq 1 2\delta, \quad 0 \leq \delta \leq 1/2$
  - G-V bound:  $\underline{R}(\delta) \geq 1 H_2(\delta), \quad 0 \leq \delta \leq 1/2$

where 
$$H_2(\lambda) = -\lambda \log_2 \lambda - (1 - \lambda) \log_2 (1 - \lambda)$$
.

Remark:  $\underline{R}(\delta) \leq \bar{R}(\delta)$ 

$$\delta = 0: \quad \bar{R} \le 1, \quad \underline{R} \ge 1 \implies \bar{R} = \underline{R} = 1$$

$$\delta = 1/2: \quad \bar{R} \le 0, \quad \underline{R} \ge 0 \implies \bar{R} = \underline{R} = 0$$

| δ  | Hamming | Plotkin | G-V  |
|----|---------|---------|------|
| 0  | 1       | 1       | 1    |
| .1 | .714    | .8      | .531 |
| .2 | .531    | .6      | .278 |
| .3 | .390    | .4      | .119 |
| .4 | .278    | .2      | .029 |
| .5 | .189    | 0       | 0    |



# ☐ Summary of Linear Block Codes

- ullet A linear block code over a finite field F is a subspace of the vector space  $F^n$
- A linear block code is the row space of a generator matrix.
- A linear block code is the null space of a parity-check matrix.
- A linear block code can be decoded using the standard array.
   (But, the complexity is too high.)
- There is a trade-off among the parameters of a code.