

Our Project Goals

- Using machine learning models on a high frequency trading (HFT) crypto order book to predict price direction and price levels.
- Develop a strategy trading bot to place mock trades on predicted outcomes from ML models and compare actual versus realized strategy returns.

Agenda

- 1. Order Book (OB) Overview
- 2. The Selected ML Models
- 3. Data Prep and Feature Selection
- 4. Our Approach
- 5. Results and Conclusions
- 6. Next Steps

1. Understanding Order Book Overview

What is an Order Book?

- A Limit order is an order you place on the order book with a specific limit price
- Top of Book represents the highest bid and the lowest ask that time.
- A bid-ask spread is the amount by which the ask price exceeds the bid price for an asset in the market.
- Market orders let you purchase instantly at best price currently available.
- Mid-price is the price between the best price of the sellers offer price and best price of the buyers bid price.
- Liquidity refers to how rapidly shares of a stock can be bought or sold without substantially impacting the stock stock price.

Order Book Data Source (Kaggle):

Crypto Assets:

- Bitcoin (BTC)
- Ethereum (ETH)
- Cardano (ADA)

Content:

- 12 days of limit order book data
- 15 best bid / ask price **levels**
- 5 min data / 1 min data / 1 sec data

https://www.kaggle.com/datasets/martinsn/high-frequency-crypto-limit-order-book-data

High Frequency Crypto Limit Order Book Data

Crypto PROVIDED order book features/columns (_x represent order book level)

- * midpoint = the midpoint between the best bid and the best ask
- * spread = the difference between the best bid and the best ask
- * bids/asks_distance_x = the distance of bid/ask level x from the midprice in %
- * bids/asks_limit_x = volume (= price * quantity) of orders at bid/ask level_x
- * bids/asks_notional_x = (asks_limit_notional_x asks_market_notional_x asks_cancel_notional_x)

Bitcoin, Ethereum and Cardano

Order Book Feature Engineering:

	midpoint	bids_distance_0	bids_price_0	bids_limit_quantity_0	bids_limit_cum_quantity_0	bids_limit_notional_0	bids_limit_cum_notional_0	asks_distance_0	asks_price_0	asks_limit_quantity_0	asks_limit_cum_quantity_0	asks_limit_notion:
system_time												
2021-04-07 11:37:59.055697+00:00	1.17255	-0.000384	1.1721	2099.999925	2099.999925	2461.409912	2461.409912	0.000384	1.1730	8007.340453	8007.340453	9392.610
2021-04-07 11:42:59.055697+00:00	1.18390	-0.000591	1.1832	4633.062748	4633.062748	5481.839844	5481.839844	0.000591	1.1846	20004.229078	20004.229078	23697.009
2021-04-07 11:47:59.055697+00:00	1.17830	-0.000594	1.1776	2798.998045	2798.998045	3296.100098	3296.100098	0.000594	1.1790	500.000000	500.000000	589.500
2021-04-07 11:52:59.055697+00:00	1.1 New	DERIVED O	order book	k features/co	lumns developed i	n this notebo	ok/python script					069
2021-04-07 11:57:59.055697+00:00	1.1	* bids/ask_price_x = the price at bid/ask level_x = midpoint * (1 + distance) (wehere distance is represented as %)										
2021-04-07 12:02:59.055697+00:00	1.1	* bids/asks_limit_quantity_x = quantity (= bids/asks_limit/market/cancel_notional_x / bids/ask_price_x) of orders at bid/ask level_x										
2021-04-07 12:07:59.055697+00:00	1.1	* bids/asks_cum_quantity_x = Cululative sum of quantities - i.e. bids/asks_limit/market/cancel_quantity_x										
2021-04-07 12:12:59.055697+00:00	1.1	Example. cum_quantity_0 = quantity_0 cum_quantity_1 = quantity_0 + quantity_1 cum quantity 2 = quantity 0 + quantity 1 + quantity 2										
2021-04-07 12:17:59.055697+00:00	1.1						cum_qua	ntity_2 = 0	quantity_	_θ + quantity_	_1 + quantity_2	570
2021-04-07 12:22:59.055697+00:00	1.1	* bids/asks_cum_notional_x = Cululative sum of notionals - i.e. bids/asks_limit/market/cancel_notional_x										
	<pre>* bid_ask_imbalance_limit_x = Bid Ask Imbalance = (bid notional / (bid notional + ask notional))</pre>											

Order Book Perspectives

- BID LEVELS
- ASK LEVELS

5min Snapshots

CumQty

Order Book Perspectives

- BID LEVELS
- ASK LEVELS

2. The Selected ML Models

ML Supervised Learning: Models

Logistic Regression

<u>Decision Trees</u>

KNN

SVM

Random Forest

ML Neural Networks: Models

Gradient Boosting*

LSTM

ML Supervised Learning: Classification

ML Supervised Learning: Regression

3. Data Prep and Feature Selection

Data Preparation: Generate Target Signal

Data Preparation: Training/Test Data Set

- Training Set: Complete training set that will be applied to the ML models to train and fit the data.
- Validation Set: Divide training set into a train set and validation set. Based on validation test results, the model can be trained (e.g. changing parameter classifiers). This will help us get the most optimized model.
- Testing Set: Data set used to perform blind predictions and evaluations on the ML model.

Data Partition Permutations:

- Training Set: $50\% \rightarrow 90\%$, 10% increments
- Validation Set: 0% → 30%, 5% increments
 - Testing Set: $10\% \rightarrow 50\%$, 10% increments

Data Preparation: Feature Selection / Cleanup

Select number of orderbook levels to include in feature set (max = 15)

Level selection

```
MAX ORDER BOOK LEVELS = 15 # Do not modify
                                                                                   INCLUDE ETH = True
NUM ORDER BOOK LEVELS = 15
                                                                                   INCLUDE ADA = True
                                                                                    # Select the orderbook timeframe's interested in
                                                                                   INCLUDE 5MIN DATA = True
                                                                                   INCLUDE 1MIN DATA = True
 # Optional removing of feature/columns from provided crypto order book
                                                                                   INCLUDE 1SEC DATA = False
 # Remove cancel features/columns
 REMOVE CANCEL FEATURES = True
  # Remove market features/columns
                                                   # Select which "derived" features to include in ML Model feature set
 REMOVE MARKET FEATURES = True
 # Remove price distance feature/column
                                                   # Optional NEW derived feature/columns that can be added to dataframe order book
 REMOVE PRICE DISTANCES = False
                                                   # Option to add aboslute price levels to feature set
                                                   # (default dataframe shows delta price with mid price = distance)
 # Remove notional feature/column
                                                   ADD ABSOLUTE PRICE LEVELS = True
 REMOVE FINAL NOTIONAL = True
                                                   ADD QUANTITY FEATURE = True
                                                   # Option to add CUMULATIVE quantity "across" levels
                                                   ADD CUM QUANTITY FEATURE = True
                                                   ADD CUM NOTIONAL FEATURE = True
                                                   Option to add bid and ask IMBALANCE
                                                   ADD_BID_ASK_IMBALANCE = True
                                                    ToDo: ADD MORE FEATURES (e.g. Logarithmic returns)
```

Select crypto assets interested in evaluating

INCLUDE BTEC = True

4. Our Approach

Framework for ML Limit Order Strategy Submission

ML Model Training / Validation Steps

ML Neural Network Model Validation

```
ML Parameter Permutations:

\rightarrow activation function = {relu, sigmoid, exp, swish}

\rightarrow \rightarrow # hidden layers = {1, 2, 3}

\rightarrow \rightarrow \rightarrow # nodes, hidden layer 1 = {32 : 32 : 128}

\rightarrow \rightarrow \rightarrow \rightarrow # nodes, hidden layer 2 = {16 : 16 : 64}

\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow # nodes, hidden layer 3 = {4 : 4 : 16}

\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow # of epochs = {50 : 50 : 200}
```

Total Permutations = 4096 runs

Keeping track of model parameters that provides the best accuracy performance

```
JULIUS I CI MULULIANIS / TT/ DECUIUCY
Running Permuation #27
        # Input Features = 199
         Use Model Activation Function = relu
        # Hidden Layers = 3
        # Layer 1 Nodes = 96
        # Laver 2 Nodes = 48
        # Layer 3 Nodes = 8
        # of Output Nuerons = 1
        # Epochs = 150
                                                  Permutation:27 ==> Accuracy: 0.5231316685676575
                        *** Best Running Results: Permutation:7 ==> Accuracy: 0.5338078141212463 ***
Running Permuation #28
        # Input Features = 199
         Use Model Activation Function = relu
        # Hidden Layers = 3
        # Layer 1 Nodes = 96
        # Layer 2 Nodes = 48
        # Layer 3 Nodes = 8
        # of Output Nuerons = 1
        # Epochs = 200
                                                  Permutation:28 ==> Accuracy: 0.5397390127182007
                        *** Best Running Results: Permutation:28 ==> Accuracy: 0.5397390127182007
Running Permuation #29
        # Input reatures = 199
         Use Model Activation Function = relu
        # Hidden Layers = 3
        # Layer 1 Nodes = 96
        # Layer 2 Nodes = 48
        # Layer 3 Nodes = 13
        # of Output Nuerons = 1
        # Epochs = 50
                                                  Permutation:29 ==> Accuracy: 0.4922894537448883
                        *** Best Running Results: Permutation:28 ==> Accuracy: 0.5397390127182007
```

Strategy Trading Bot Flowchart (Classification Model)

5. Results and Conclusions

ML Supervised Learning Model Results

ML Supervised Learning Model Results

Precision-1

50%

Precision-0

ML Supervised Learning Model Results

Recall-1

Recall-0

50%

ML Supervised Learning Strategy Bot Results

ML Neural Network Dense Strategy Bot Results

*** Final Best Results: Permutation:20 ==> Accuracy: 0.5397390127182007 ***

ML Neural Network LSTM Strategy Bot Results

6. Next Steps

Hurdles

- Data acquisition
- Model accuracy
- Binary +/-1 target signals ----- binary 1/0 target signals.

Further Analysis

- Complete neural networks "price prediction" for project submission.

- Additional ML models

- Additional feature engineering.

Thank you

https://github.com/lisetlopez/project2