

Deep Generative Models

Qinliang Su (苏勤亮)

Sun Yat-sen University

suqliang@mail.sysu.edu.cn

Outline

- Deep Generative Model
- Learning under the VB-EM Framework
- Estimating the Gradient using Re-parameterization Trick
- Amortizing the Inference

Generative Models

Describing the data generation process by a joint pdf

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z})$$

Obviously, generative model is a kind of latent-variable models

- p(z) and p(x|z) are chosen by taking following factors into account
 - 1) Data compatibility 2) Modeling flexibilities 3) Training easiness
- Examples

PCA:
$$p(z) = \mathcal{N}(z; 0, I)$$
 and $p(x|z) = \mathcal{N}(x; Wz + \mu, \sigma^2 I)$

GMM:
$$p(\mathbf{z}) = Cat(\mathbf{z}; \boldsymbol{\pi})$$
 and $p(\mathbf{x}|\mathbf{z}) = \prod_{m=1}^{M} [\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)]^{z_m}$

Deep Generative Models

To increase modeling ability, a deep neural network is introduced between z and x. Then, the joint pdf becomes

$$p(\mathbf{x}, \mathbf{z}) = \underbrace{p(\mathbf{x}|\mathbf{T}(\mathbf{z}))}_{p(\mathbf{x}|\mathbf{z})} p(\mathbf{z})$$

where $T(\cdot)$ represents a neural network

Comparing to generative models (GM), deep GMs (DGM) let the conditional pdf rely on a neural-network-transformed variable T(z)

Example: To model images, we can specify the joint pdf as

$$p(\mathbf{x}, \mathbf{z}) = \underbrace{\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}(\mathbf{z}), \boldsymbol{I})}_{p(\mathbf{x}|\mathbf{z})} \underbrace{\mathcal{N}(\mathbf{z}; \mathbf{0}, \boldsymbol{I})}_{p(\mathbf{z})}$$

where $\mu(z)$ denotes the output of a neural network, *e.g.*,

$$\mu(z) = W_3 a(W_2 a(W_1 z + b_1) + b_2) + b_3$$
In PCA, $\mu(z) = Wz + b$

Denote the parameters in NNs as θ , *i.e.*, $\theta \triangleq \{W_{\ell}, b_{\ell}\}_{\ell=1}^{3}$

Outline

- Deep Generative Model
- Learning under the VB-EM Framework
- Estimating the Gradient using Re-parameterization Trick
- Amortizing the Inference

Learning under VB-EM Framework

DGM is a latent-variable model, hence can be trained with the EM algorithms

Key steps in EM

- 1) The posteriori distribution $p(z|x; \theta^{(t)})$
- 2) Deriving the expectation $\mathbb{E}_{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})}[\log p(\mathbf{x},\mathbf{z};\boldsymbol{\theta})]$
- 3) Maximization

- But due to the existence of neural networks, the exact posterior $p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})$ and expectation $\mathbb{E}[\cdot]$ are difficult to obtain
- Thus, we resort to VB-EM algorithm by using a simple distribution to approximate the true posterior $p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})$

VB-EM seeks to maximize the lower bound of log-likelihood

$$\mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) = \int q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

where $q(\mathbf{z}|\mathbf{x}; \boldsymbol{\phi})$ denotes the approximate posterior

• Substituting $p(x, z; \theta) = p_{\theta}(x|z)p(z)$ into $\mathcal{L}(x; \theta, \phi)$ gives

$$\mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) = \int_{\mathbf{z}} q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) \ln p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \int_{\mathbf{z}} q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) \ln \frac{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} d\mathbf{z}$$
$$= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} [\ln p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - KL(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

In the subsequent, we consider a concrete example, in which $p_{\theta}(x|z)$ and $q_{\phi}(z|x)$ are set as diagonal Gaussian form

$$p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu_{\theta}}(\boldsymbol{z}), \boldsymbol{I}) \qquad q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{z}; \boldsymbol{\lambda}, diag(\boldsymbol{\eta}^2))$$

where $\mu_{\theta}(\cdot)$ represents a neural network function with parameter denoted as θ ; and $\phi = \{\lambda, \eta\}$ denotes the posterior parameter

• To train the model, we can maximize the lower bound $\mathcal{L}(x; \theta, \phi)$ w.r.t. the model and posterior parameter θ and ϕ . To this end, what we need is the gradient

$$\frac{\partial \mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}}$$
 and $\frac{\partial \mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\phi}}$

$$\mathcal{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})}[\ln p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - \frac{KL(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}{KL(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}$$

- How to obtain the gradient of $\mathcal{L}(x; \theta, \phi)$ w.r.t. θ and ϕ ?
 - 1) Since $q_{\phi}(z|x)$ and p(z) are both Gaussian, the close-form expression of $KL(q_{\phi}||p)$ can be easily obtained, and so does its its gradient
 - Due to the existence of neural networks, the close-form expression of $\mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)]$ cannot be obtained. So, its gradient expression cannot be obtained directly
- Now, the only problem left is how to estimate the derivatives of $\mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)] \text{ w.r.t. } \theta \text{ and } \phi, \text{ i.e.},$

$$\frac{\partial \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})]}{\partial \boldsymbol{\theta}} \qquad \frac{\partial \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})]}{\partial \boldsymbol{\phi}}$$

Question: Can we first use the samples $\{z^{(k)}\}_{k=1}^K$ drawn from the posterior $q_{\phi}(z|x) = \mathcal{N}\left(z; \lambda_t, diag(\eta_t^2)\right)$ to estimate the expression of $\mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)]$ w.r.t. θ and ϕ , and then use the expression to derive the gradient?

Then answer is

- \triangleright Yes, for the parameter θ
- \triangleright No, for the parameter ϕ

Outline

- Deep Generative Model
- Learning under the VB-EM Framework
- Estimating the Gradient using Re-parameterization Trick
- Amortizing the Inference

Re-parameterization Trick

Re-parameterization Trick: For any sample $\mathbf{z}^{(i)}$ drawn from the distribution $q_{\phi}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \lambda, diag(\eta^2))$, it can be represented as

$$\mathbf{z}^{(i)} = \boldsymbol{\lambda} + \boldsymbol{\eta} \cdot \boldsymbol{\epsilon}^{(i)}$$

where $\lambda = [\lambda_1, \cdots, \lambda_M]$, $\eta = [\eta_1, \cdots, \eta_M]$ and $\epsilon^{(i)} \sim \mathcal{N}(\epsilon; 0, I)$ (i.e., standard Gaussian noise)

To see this, we can prove that if $\epsilon^{(i)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, then the sample $\mathbf{z}^{(i)} = \lambda + \boldsymbol{\eta} \cdot \boldsymbol{\epsilon}^{(i)}$ follows the distribution $\mathcal{N}(\mathbf{z}; \lambda, diag(\boldsymbol{\eta}^2))$, that is,

$$\mathbf{z}^{(i)} \sim q_{\boldsymbol{\phi}}(\mathbf{z})$$

 What is the key differences between Re-parameterization trick and traditional sampling methods?

Remark: We can also use MCMC to draw samples from $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \lambda, diag(\eta^2))$

Samples drawn with the re-parameterized method include the unknown parameters λ and η explicitly, while the traditional sampling methods cannot

It can be seen that the re-parameterized sample

$$\mathbf{z}^{(i)} = \boldsymbol{\lambda} + \boldsymbol{\eta} \cdot \boldsymbol{\epsilon}^{(i)}$$

can separate the parameters from the model randomness

Estimating Derivatives with the Re-parameterization Trick

• Using the re-parameterization trick, the expectation $\mathbb{E}_{q_{\theta}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})]$ can be estimated as

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{K} \sum_{i=1}^{K} \ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(i)})$$

where

$$\mathbf{z}^{(i)} = \boldsymbol{\lambda} + \boldsymbol{\eta} \cdot \boldsymbol{\epsilon}^{(i)}$$

• Substituting it into $\ln p_{\theta}(x|z) = C - \frac{1}{2} ||x - \mu_{\theta}(z)||^2$ gives

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{K} \sum_{i=1}^{K} \left(C - \frac{1}{2} \left\| \mathbf{x} - \mu_{\theta} (\boldsymbol{\lambda} + \boldsymbol{\eta} \cdot \boldsymbol{\epsilon}^{(i)}) \right\|^{2} \right)$$

where $\epsilon^{(i)}$ is a random noise from standard Gaussian $\mathcal{N}(\epsilon; \mathbf{0}, \mathbf{I})$

• Therefore, the derivatives $\frac{\partial \mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)]}{\partial \theta}$ and $\frac{\partial \mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)]}{\partial \phi}$ can be estimated from the approximate function

$$\tilde{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{K} \sum_{i=1}^{K} \left(C - \frac{1}{2} \left\| \boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{\theta}} (\boldsymbol{\lambda} + \boldsymbol{\eta} \cdot \boldsymbol{\epsilon}^{(i)}) \right\|^{2} \right)$$

That is,

$$\frac{\partial \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})]}{\partial \boldsymbol{\theta}} \approx \frac{\partial \tilde{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}}$$

$$\frac{\partial \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\ln p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})]}{\partial \boldsymbol{\phi}} \approx \frac{\partial \tilde{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\phi}}$$

• $\frac{\partial \tilde{\mathcal{L}}(\theta,\phi)}{\partial \theta}$ and $\frac{\partial \tilde{\mathcal{L}}(\theta,\phi)}{\partial \phi}$ can be evaluated with BP algorithm with the automatic tools

Outline

- Deep Generative Model
- Learning under the VB-EM Framework
- Estimating the Gradient using Re-parameterization Trick
- Amortizing the Inference

Extending to Large Datasets

- So far, only one training example is considered
- When a training set containing N examples $\mathcal{X} = \{x_n\}_{n=1}^{N}$ is considered, the training objective becomes

$$\mathcal{L}(\mathcal{X}; \boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{N} \sum_{n=1}^{N} \left(\mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}_{n})} [\ln p_{\boldsymbol{\theta}}(\mathbf{x}_{n}|\mathbf{z})] - KL(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}_{n})||p(\mathbf{z})) \right)$$

To optimize the objective, it is better to let each x_n has its own $\phi_n = \{\lambda_n, \eta_n\}$, that is,

$$q_{\phi}(\mathbf{z_n}|\mathbf{x_n}) = \mathcal{N}(\mathbf{z_n}; \lambda_n, diag(\eta_n^2))$$

• With the re-parameterization trick, a sample $\mathbf{z}_n^{(k)}$ from $q_{\phi}(\mathbf{z}_n|\mathbf{x}_n)$ can be represented as

$$\mathbf{z}_n^{(k)} = \boldsymbol{\lambda}_n + \boldsymbol{\eta}_n \cdot \boldsymbol{\epsilon}_n^{(k)}$$

• Then, the objective $\mathcal{L}(\mathcal{X}; \boldsymbol{\theta}, \boldsymbol{\phi})$ can be approximated as

$$\mathcal{L} \approx \frac{1}{NK} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(C - \frac{1}{2} \left\| \boldsymbol{x}_{n} - \boldsymbol{\mu}_{\boldsymbol{\theta}} \left(\boldsymbol{\lambda}_{n} + \boldsymbol{\eta}_{n} \cdot \boldsymbol{\epsilon}_{n}^{(k)} \right) \right\|^{2} \right) - \frac{1}{N} \sum_{n=1}^{N} KL \left(q_{\boldsymbol{\phi}}(\boldsymbol{z}_{n} | \boldsymbol{x}_{n}) || p(\boldsymbol{z}_{n}) \right)$$

- Training complexity
 - $ightharpoonup \phi_n$ is only updated *on* the data sample $x^{(n)}$, while θ will be updated on all samples
 - Because ϕ_n is updated much less frequent than θ , to ensure $q_{\phi}(\mathbf{z}_n|\mathbf{x}_n)$ is a good approximate to true posterior $p_{\theta_t}(\mathbf{z}_n|\mathbf{x}_n)$, the parameter ϕ_n has to be updated much more times than θ

Amortizing the Burden of Inference

• Instead of learning λ_n and η_n directly, we set λ_n and η_n as the outputs of neural networks, that is,

$$\lambda_n = g_{\phi_1}(x_n) \qquad \qquad \eta_n = g_{\phi_2}(x_n)$$

where $g_{oldsymbol{\phi}_\ell}\left(\cdot\right)$ represents neural networks parameterized by $oldsymbol{\phi}_\ell$

• Then, the objective $\mathcal{L}(\mathcal{X}; \boldsymbol{\theta}, \boldsymbol{\phi})$ can be written as

$$\mathcal{L} \approx \frac{1}{NK} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(C - \frac{1}{2} \left\| \mathbf{x}_n - \boldsymbol{\mu}_{\boldsymbol{\theta}} \left(g_{\boldsymbol{\phi}_1}(\mathbf{x}_n) + g_{\boldsymbol{\phi}_2}(\mathbf{x}_n) \cdot \boldsymbol{\epsilon}_n^{(k)} \right) \right\|^2 \right)$$

$$- \frac{1}{N} \sum_{n=1}^{N} KL(q_{\boldsymbol{\phi}}(\mathbf{z}_n | \mathbf{x}_n) || p(\mathbf{z}))$$

$$\lambda_n + \eta_n \cdot \boldsymbol{\epsilon}_n^{(k)}$$

• Here, the parameters to be optimized are $\{\theta, \phi_1, \phi_2\}$

- Differences between the non-amortized and amortized methods
 - For the non-amortized method, a separate parameter $\{\lambda_n, \eta_n\}$ is learned for each data example x_n
 - For the amortized method, common deep neural networks are learned for all data examples $\{x_n\}_{i=1}^N$
- Question: Learning a DNN is much more expensive than learning one $\{\lambda_i, \eta_i\}$. Then, why we choose to learn DNNs for inference?
 - The computation burden of learning a DNN is shouldered by all examples, while the complexity of learning $\{\lambda_n, \eta_n\}$ is undertaken only by the n-th example x_n
 - The training complexity amortized on each data sample is low

Examining the Training Process

By looking at the training objective

$$\mathcal{L} \approx \frac{1}{NK} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(C - \frac{1}{2} \left\| \mathbf{x}_{n} - \boldsymbol{\mu}_{\boldsymbol{\theta}} \left(g_{\boldsymbol{\phi}_{1}}(\mathbf{x}_{n}) + g_{\boldsymbol{\phi}_{2}}(\mathbf{x}_{n}) \cdot \boldsymbol{\epsilon}_{n}^{(k)} \right) \right\|^{2} \right)$$

$$- \frac{1}{N} \sum_{n=1}^{N} KL \left(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}_{n}) || p(\mathbf{z}) \right)$$
encoder

we see that the proposed model is learning an encoder $g_{\phi_{\ell}}(\cdot)$ and a decoder $\mu_{\theta}(\cdot)$ for reconstruction, with two additional features

- 1) An additional KL regularizer
- 2) Imposing noise on the latent code $g_{\phi_1}(x_n)$

 The auto-encoder (AE) is to build an encoder and decoder such that the reconstruction loss is minimized

- Comparing to AE, VAE differs in that
 - \triangleright it includes a regularization term KL(q||p)
 - it adds some Gaussian noise in the latent code

Performance

Samples drawn from VAE trained on MNIST

Samples from training dataset

Samples generated by VAE

12/3/24

Improving the Quality of Generated Samples

- Improve the inference accuracy
 - Importance weighted auto-encoder (IWAE)
 - Normalizing flow
 - Inverse autoregressive flow
 - Implicit model

- Adversarial training
 - Various GANs...
- Energy-based models
- Diffusion models

12/3/24 31

Generated Examples

Samples from training dataset

Samples generated by models

