

Rendering Participating Media

Data Visualization Seminar

Barnabás Börcsök

Chair of Computer Graphics and Visualization
Department of Informatics
Technical University of Munich

Winter Semester, 2021/2022

Motivation

Motivation

Propagation of light in a medium

Change of radiance in a differential volume

Possible interactions

between the volume and the light traveling through the medium

Summing up the losses

 σ_a : Absorption coefficient σ_s : Scattering coefficient

 $\sigma_a + \sigma_s = \sigma_t$: Extinction coefficient

 $\sigma_t \Longrightarrow \mathsf{Homogeneous}$

We lose $\sigma_t(x)L(x,\omega)$ radiance due to absorption and out-scattering.

 $\sigma_t(\boldsymbol{x}) \implies \mathsf{Heterogeneous}$

In-scattered radiance

$$L_s(oldsymbol{x},oldsymbol{\omega}) = \int_{S^2} f_p(oldsymbol{x},oldsymbol{\omega},oldsymbol{\omega}') L_i(oldsymbol{x},oldsymbol{\omega}') doldsymbol{\omega}'$$

Phase function

$$f_p(\boldsymbol{x}, \boldsymbol{\omega}, \boldsymbol{\omega}')$$

 $\approx BSDF$

(in surface rendering)

- scattering at point x, given incident (ω) and outgoing (ω') directions
- $| f_p(\theta) |_{\theta = \angle(\omega, \omega')}$
- $f_p(x, \omega, \omega') = 1/(4\pi)$, if the medium is *isotropic*

(otherwise, anisotropic)

Emission

$$L_e(\boldsymbol{x}, \boldsymbol{\omega})$$

$$\sigma_a(\boldsymbol{x})L_e(\boldsymbol{x},\boldsymbol{\omega})$$

Assembling all the parts

- Loses $\sigma_a L(x,\omega)$ due to absorption
- Loses $\sigma_s L(x,\omega)$ due to out-scattering
- Gains $\sigma_s L_i(x,\omega)$ due to in-scattering
- Gains $\sigma_a L_e(x,\omega)$ due to emission

RTE - Radiative Transfer Equation

The change in radiance L traveling along direction ω through a differential volume element at point x.

$$(\boldsymbol{\omega}\nabla)L(\boldsymbol{x},\boldsymbol{\omega}) = -\sigma_t(\boldsymbol{x})L(\boldsymbol{x},\boldsymbol{\omega}) + \sigma_s(\boldsymbol{x})L_s(\boldsymbol{x},\boldsymbol{\omega}) + \sigma_a(\boldsymbol{x})L_e(\boldsymbol{x},\boldsymbol{\omega})$$
(1)

RTE - Radiative Transfer Equation

The change in radiance L traveling along direction ω through a differential volume element at point x.

$$(\omega \nabla) L(x, \omega) = -\sigma_t(x) L(x, \omega) + \sigma_s(x) L_s(x, \omega) + \sigma_a(x) L_e(x, \omega)$$
 (2)

Let's integrate it!

Integrating the loss of radiance

$$\frac{1}{dx} = \frac{1}{dx} = -L(x)\sigma_t(x) \quad \text{("exponential extinction")}$$

$$\int_{L(x)}^{L(x+S)} \frac{1}{L} dL = -\int_0^S \sigma_t(x) dx$$

$$ln(L(x+S)) - ln(L(x)) = -\int_0^S \sigma_t(x) dx$$

(3)

Transmittance The Beer-Lambert Law

$$\implies L(\boldsymbol{x} + S) = L(\boldsymbol{x})e^{-\int_0^S \sigma_t(\boldsymbol{x} + s)ds}$$

Usually written as:

$$e^{-\int_0^y \sigma_t(x-s\omega)ds} = T(x,y)$$
"transmittance coefficient" $T(x,y)$
net reduction factor between x and y
due to absorption and out-scattering

$$\int_0^y \sigma_t(\boldsymbol{x} - s\boldsymbol{\omega}) ds = au(\boldsymbol{x}, \boldsymbol{y})$$
 "optical thickness" au

$$T(t) = e^{-\tau(t)} = e^{-\int_0^t \sigma_t(x - s\omega)ds}$$

over distance t

RTE – Radiative Transfer Equation The integral version

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{0}^{\infty} e^{-\int_{0}^{y} \sigma_{t}(\boldsymbol{x} - s\boldsymbol{\omega}) ds} \left[\underbrace{\sigma_{s}(\boldsymbol{y}) L_{s}(\boldsymbol{y}, \boldsymbol{\omega})}_{\text{in-scatter}} + \underbrace{\sigma_{a}(\boldsymbol{y}) L_{e}(\boldsymbol{y}, \boldsymbol{\omega})}_{\text{emission}} \right] d\boldsymbol{y}$$
(4)

VRE – Volume Rendering Equation

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = \int_0^z T(\boldsymbol{x}, \boldsymbol{y}) \left[\sigma_a(\boldsymbol{y}) L_e(\boldsymbol{y}, \boldsymbol{\omega}) + \sigma_s(\boldsymbol{y}) L_s(\boldsymbol{y}, \boldsymbol{\omega}) \right] dy + T(\boldsymbol{x}, \boldsymbol{z}) L(\boldsymbol{z}, \boldsymbol{\omega})$$
(5)

Monte Carlo Integration

- Applied to the Volume Rendering Equation:

$$\langle L(oldsymbol{x},oldsymbol{\omega})
angle = rac{T(oldsymbol{x},oldsymbol{y})}{p(y)}ig[\sigma_a(oldsymbol{y})L_e(oldsymbol{y},oldsymbol{\omega}) + \sigma_s(oldsymbol{y})L_s(oldsymbol{y},oldsymbol{\omega})ig] + T(oldsymbol{x},oldsymbol{z})L(oldsymbol{z},oldsymbol{\omega})$$

lacksquare p(y) is the PDF of sampling point y

$$\implies \sum_{i=1}^N \Big(\frac{T(\boldsymbol{x},\boldsymbol{y}_i)}{p(y_i)} \big[\sigma_a(\boldsymbol{y}_i) L_e(\boldsymbol{y}_i,\boldsymbol{\omega}) + \sigma_s(\boldsymbol{y}_i) L_s(\boldsymbol{y}_i,\boldsymbol{\omega}) \big] \Big) + T(\boldsymbol{x},\boldsymbol{z}) L(\boldsymbol{z},\boldsymbol{\omega})$$

- We need:
 - Sampling distances
 - \square Estimating the transmittance T along a ray

Tracking In homogeneous volumes

- Simulate how a photon bounces around inside a volume
- Explicitly modeling absorption and scattering effects

$$T(t) = e^{-\int_0^t \sigma_t(x - s\omega)ds} = e^{-\int_0^t \sigma_t ds} = e^{-\sigma_t t} = T(t)$$
 (6)

PDF $p(t) = \sigma_t e^{-\sigma_t t}$ (by normalizing)

Perfectly importance sample with $t'=-ln(1-\zeta)/\sigma_t$

$$\zeta \in [0,1)$$

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{t=0}^{d} p(t) \left[\frac{\sigma_a}{\sigma_t} L_e(\boldsymbol{x_t}, \boldsymbol{\omega}) + \frac{\sigma_s}{\sigma_t} L_s(\boldsymbol{x_t}, \boldsymbol{\omega}) \right] dt + L_d(\boldsymbol{x_d}, \boldsymbol{\omega})$$
(7)

$$\sigma_a + \sigma_s = 1; P_a = \frac{\sigma_a}{\sigma_t}; P_s = \frac{\sigma_a}{\sigma_t}$$
 (8)

Closed-Form tracking In homogeneous volumes

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{t=0}^{d} p(t) \Big[P_a L_e(\boldsymbol{x}_t, \boldsymbol{\omega}) + P_s L_s(\boldsymbol{x}_t, \boldsymbol{\omega}) \Big] dt + L_d(\boldsymbol{x}_d, \boldsymbol{\omega})$$
(9)

Regular tracking In heterogeneous volumes

What happens if the volume is **not homogeneous**?

 $\Longrightarrow \sigma_t(\boldsymbol{x})$ ⇒ apply closed-form tracking to homogeneous sub-parts

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{t=0}^{d} p(t) \left[\frac{\sigma_a}{\sigma_t} L_e(\boldsymbol{x_t}, \boldsymbol{\omega}) + \frac{\sigma_s}{\sigma_t} L_s(\boldsymbol{x_t}, \boldsymbol{\omega}) \right] dt + L_d(\boldsymbol{x_d}, \boldsymbol{\omega})$$
(10)

Delta tracking Introducing null-collisions

- 1. Problem: the volume is heterogeneous
- Idea: Increase the number of interactions to make it homogeneous, but reject some of the interactions

 null-collisions

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{0}^{\infty} T_{\bar{\sigma}}(\boldsymbol{x}, \boldsymbol{y}) \Big[\underbrace{\sigma_{s}(\boldsymbol{y}) L_{s}(\boldsymbol{y}, \boldsymbol{\omega})}_{\text{in-scatter}} + \underbrace{\sigma_{a}(\boldsymbol{y}) L_{e}(\boldsymbol{y}, \boldsymbol{\omega})}_{\text{emission}} + \underbrace{\sigma_{n}(\boldsymbol{y}) L(\boldsymbol{y}, \boldsymbol{\omega})}_{\text{null-collision}} \Big] d\boldsymbol{y}$$
 (11)

$$T_{\bar{\sigma}}(\boldsymbol{x}, \boldsymbol{y}) = e^{-\int_0^y \sigma_s(s) + \sigma_a(s) + \sigma_n(s) ds}$$
(12)

$$\sigma_n(\boldsymbol{x}) = \bar{\sigma} - \sigma_t(\boldsymbol{x}) \tag{13}$$

$$\bar{\sigma} = \sigma_s(x) + \sigma_a(x) + \sigma_n(x)$$
 (14)

Transmittance EstimationRay Marching

Acceleration Data Structures

- Spatially-varying properties
- Data access usually dominates the render time
 - ⇒ data structures are key for achieving good performance
- Volume data can quickly grow into hundreds of gigabytes for production

Rendering Participating Media

Data Visualization Seminar

Barnabás Börcsök

Chair of Computer Graphics and Visualization
Department of Informatics
Technical University of Munich

Winter Semester, 2021/2022