BERT

Pre-training of Deep Bidirectional Transformers for language understanding

Outline

- Introduction of 2 new pre-training tasks
- Switches from Transformer-Decoder to Transformer-Encoder

Figure 1: The Transformer - model architecture.

Input of BERT

Input of BERT

Introduces separators at unsupervised training time (GPT introduced it only at fine-tuning)

Architecture v.s. Others

Architecture v.s. Others

Unsupervised task #1: Masked LM

- Mask 15% of the input tokens in each sequence at random by introducing as [MASK] token
- The [MASK] token is never seen during fine-tuning
 - 80% of the time, replace [MASK] token with the [MASK] token
 - 10% of the time, replace [MASK] token with a random word
 - 10% of the time, keep the word unchanged
- The T-E does not know in advance which token it will need to predict (15% of the masked ones)
- Converges slower than traditional T-D which predicts every tokens on each batch

Unsupervised task #2: Next Sentence Prediction

- Capture the relation between 2 sentences (good for QA)
- Binarized next sentence prediction (different from Skip-Thought that we saw)

Pre-training dataset

- BookCorpus as in GPT (800M words
- and English Wikipedia (2,500M words)

Fine-tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Results

Too many, see the paper!

Ablation study

Trained w/o next sentence prediction

Trained left-to-right language model

		Dev Set				
	Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)
×	BERT _{BASE}	84.4	88.4	86.7	92.7	88.5
	No NSP	83.9	84.9	86.5	92.6	87.9
	LTR & No NSP	82.1	84.3	77.5	92.1	77.8
	+ BiLSTM	82.1	84.1	75.7	91.6	84.9

Table 5: Ablation over the pre-training tasks using the BERT_{BASE} architecture. "No NSP" is trained without the next sentence prediction task. "LTR & No NSP" is trained as a left-to-right LM without the next sentence prediction, like OpenAI GPT. "+ BiLSTM" adds a randomly initialized BiLSTM on top of the "LTR + No NSP" model during fine-tuning.

Conclusion

- Uses a bidirectional LM (compared to unidirectional LM of GPT) which is the single most important contribution
- They assume that for **sentence level tasks** the model should attend not only to previous words but also to futur words
- First fine-tuning based representation to achieve state-of-the art results on both sentence-level *and token-level* tasks