

(11) Número de publicación:

2 102 322

21 Número de solicitud: 9501411

(51) Int. Cl.⁶: C07K 11/00

(12)

SOLICITUD DE PATENTE

Α1

22 Fecha de presentación: 13.07.95

- 71 Solicitante/s: Pharma Mar, S.A. C/ de la Calera, nº 3 28760 Tres Cantos, Madrid, ES
- 43 Fecha de publicación de la solicitud: 16.07.97
- (2) Inventor/es: Giralt Lledo, Ernest; Albericio Palomera, Fernando; Lloyd-Williams, Paul; González Valcárcel, Isabel; Jou Prat, Gemma; Gómez González, Andrés y Manzanares Secades, Ignacio
- 43 Fecha de publicación del folleto de la solicitud: 16.07.97
- (74) Agente: Ungría López, Javier
- 54 Título: Procedimiento de preparación de didemnina A.
- Procedimiento de preparación de didemnina A. Comprende: (a) acoplar las unidades Z-N(Me)-O(Me)-Tyr-O-[Boc-Thr]-OH y H-Ist-Hip-Leu-Pro-OBzl. HCI en presencia de HBTU y DIEA; (b) desproteger simultáneamente los extremos N- y Cterminal del producto obtenido; (c) ciclar el producto de la etapa (b) empleando el acoplante HBTU y en presencia de HOBT y DIEA, para producir un macrociclo con el N-terminal de la Thr protegido; (d) desproteger dicho grupo y acoplar el macrociclo con Boc-(R)-NMe-Leu-OH para producir la Bocdidemnina A; (e) hacer reaccionar este último producto con ácido trifluoracético para obtener la didemnina A. La didemnina A tiene aplicación como agente antitumoral, antiviral e inmunosupresor.

DESCRIPCION

Procedimiento de preparación de didemnina A.

5 Campo técnico de la invención

La presente invención se encuadra dentro del campo técnico de los ciclodepsipéptidos.

Más concretamente la presente invención se refiere a la obtención de didemninas, que son una clase de ciclodepsipéptidos con actividad antitumoral, antivirial e inmunosupresora.

Estado de la técnica anterior a la invención

Las didemninas son una clase de ciclodepsipéptidos aislados por Rinehart [(1) Rinehart, K.; Gloer, J.; Cook, J.J. Am. Chem. Soc. 1981. 103, 1857-1859. (2) Rinehart, K.L.; Cook, J.C.; Pandey, R.C.; Gaudioso. L.A.; Meng, H.; Moore, M.L.; Gloer, J.B.; Wilson, G.R.; Gutowsky, R.E.; Zierath, P.D.; Shield, L.S. Pure. Appl. Chem. 1982, 54, 2409-2424] en 1981, de un tunicado del Caribe de la familia Didemnidae, que poseen actividad antitumoral, antivirial e inmunosupresora. Esta familia de ciclodepsipéptidos tiene numerosos miembros como son las didemninas A,B,C,D y E y las nordidemninas, aisladas de Trididemnun solidum (1) y de Trididemnum cyanophorum [(1) y (3) Castro, B.; Jouin, P.; Cavé, A.; Dufour, M.; Banaigs, B.; Francisco, C. En "Peptides. Chemistry and Biology. Proceeding of the 10th American Peptides Symposium, (Marshall,G., ed.), ESCOM, Leiden, 1987, pp. 656-657]. Mas recientemente se han aislado las didemninas G, X, Y de Trididemnum solidum [(4) Rinehart, K.; Sakai, R.; Stroh, J.U.S. Patente 4,948,791, 1990. (5) Rinehart, K.; Holt, T.; Fregeau, N.; Keifer, P.A.J. Nat. Prod. 1990, 53, 771-792], la didemnina H de Trididemnum cyanophorum [(6) Boulanger, A.; Abou -Mansour, E.; Badre, A.; Banaigs, B.; Combaut, G.; Francisco, C. Tetrahedron Lett. 1994, 35, 4345-4348] y la dehidrodidemnina B de Aplydium albicans [(7) Schmitz, F.J.; Yasumumoto, T.J.J. Nat. Prod. 1991, 54, 1469-1490].

Las didemninas poseen un macrociclo común que las caracteriza y se diferencian por la cadena lateral unida al esqueleto del mismo por el extremo amino de treonina. Dicho macrociclo es de 23 miembros y posee 10 centros estereogénicos. Está constituido por seis unidades, tres de ellas son aminoácidos usuales: (S)-treonina, (S)-prolina y (S)-leucina. Contiene un α-aminoácido modificado (S)-N(Me)-O(Me)-Tyr, un β-aminoácido el ácido, (3S, 4R, 5S)-3-hidroxi-4-amino-metilheptanóico [isostatina (Ist)] y el ácido (2S, 4S) α-(α-hidroxiisovaleril) propiónico (Hip). El primer aminoácido de la cadena lateral, (R)-N (Me)-Leu, es también común a todas ellas. En la fórmula (1.1) se representan algunos de estos compuestos:

60

40

45

50

55

	Didenmina		R
5	la		Н
	1b	A	H-(R)-N(Me)-Leu-
	1c	В	Lac-(S)-Pro-(R)-N(Me)-Leu-
	1d	C	Lac-(R)-N(Me)-Leu-
10	le	D	(S)-pGlu-(S)-Gln-(S)-Gln-Lac-(S)-Pro-(R)-N(Me)-Leu-
	1 f	\mathbf{E}	(S)-pGlu-(S)-Gln-(S)-Gln-Lac-(S)-Pro-(R)-N(Me)-Leu-
	lg	G	CHO-(R)-N(Me)-Leu-
	1 h	Н	(S)-pGlu-(S)-Gln-(R)-N(Me)-Leu-
15	1i	X	n-C ₇ H ₁₅ CH(OH)-CH ₂ CO-[(S)-PGlu)] ₃ -Lac-(S)-Pro-(R)-N(Me)-Leu-
	1 j	Y	n-C ₇ H ₁₅ CH(OH)-CH ₂ CO-[(S)-pGlu)] ₄ -Lac-(S)-Pro-(R)-N(Me)-Leu-
	1 k	DDB	Piruv-(S)-Pro-(R)-N(Me)-Leu-

Las didemninas A y B, inhiben la replicación de muchos virus DNA así como de RNA in vitro. También muestran una significativa actividad antiviral frente a otros virus, como por ejemplo: varicella, zoster, citomegalovirus, fiebre amarilla, rinovirus equino, coxsakievirus A21, parainfluenza, encefalomielitis equina venezolana. Son también efectivos in vivo contra infecciones causadas en ratones por herpes simplex vaginal del tipo 2. La didemnina B es más efectiva que la didemnina A, ya que se consiguen los mismos efectos con concentraciones de 10 a 100 veces menores. [(8) Chung, H.G.; Davies, B.; Hoth, D.; Suffness, M.; Plowman, J.; Flora, K.; Jones, B. Investigational New Drugs 1986. 4, 279-284]. Mejores resultados se han obtenido con dehidrodidemnina B (DDB), su estructura es muy similar a la de didemnina B, solo se diferencia por contener ácido pirúvico en lugar de ácido láctico. Se ha comprobado [(9) Rinehart, K. L.; Goer, J.B.; Hughes, R.G.; Renis, H.E.; McGovren, J.P.; Swynenberg, E.B. Strringfellow, D.A.; Kwentzel, S.L.; Li, L. H. Science 1981, 212, 933-935; (10) Rinehart, K.L.; Sakai, R.; Holt, T.G.; Fregeau, N.L.; Perun, T. J.; Seigler, D. S.: Wilson, G. R.; Shield, L. S. Pure Appl. Chem. 1990, 62, 1277-1280. (11) Montgomery, D.W.; Zukoski, C.F.; Transplantation 1985, 40, 49-56] que su actividad antivirial en el caso de los virus herpes simplex coxsackievirus es varias veces mayor que en el caso de la didemnina B.

La actividad antitumoral presentada por estos compuestos es especialmente prometedora en el caso de didemnina B y de dehidrodidemnina B. Las pruebas realizadas in vivo indicaron que tanto didemnina B como dehidrodidemnina B muestran una potente actividad antitumoral frente a leucemia P388, melanoma B16, sarcoma M5076. La actividad antitumoral de la didemnina B, se ha probado en células humanas de tumores de mama, ovario, sarcoma, riñón y mesotelioma obteniendo buenos resultados a bajas concentraciones del orden de 0,01 mg/ml para exposiciones continuas [(9), (10) y (11)].

La didemnina B muestra unas potentes propiedades inmunosupresoras, a muy bajas concentraciones (subnano -gramo/ml), inhibe la blastogénesis de linfocitos murina estimulada por concanavalina A, lipopolisacáridos, y aloantígenos [(8)]. Comparada con ciclosporina A y otras drogas, la didemnina B es de 100 a 1000 veces más potente [(11) y Hossai, M.B.; Van der Helm, D.; Antel, J.; Sheldrick, G.M.; Sanduja, S.K.; Weinheimel, A.J. Proc. Natl. Acad. Sci., U.S.A., 1988, 85, 4118-4122]. Por otra parte, también es capaz de suprimir rechazo en transplantes realizados in vivo [(12) Stevens, D.W.; Jensen, R.M.; Stevens, L.E.; Transplant. Proc. 1989, 21, 1139-1140. (13) Yuh, D.D.; Zurcher, R.P.; Carmichael, P.G.; Morris. R.E. Transplant. Proc. 1989, 21, 1141].

Debido a los prometedores resultados tanto in vitro como in vivo, la didemnina B ha sido seleccionada para las pruebas clínicas en las fases I y II como candidata a fármaco para diversos neoplasmas en el National Cancer Institute. [(14) Dorr, T.A.; Kuhn, J.G.; Phillips, J.; von, H.D. Eur. J. Cancer Clin. Oncol. 1988, 24, 1699-1706. (15) Jacobs, A.J.; Blessing, J.A.; Munoz, A. Gynecol. Oncol. 1992, 44, 268-270. (16) Shin, D.H.; Holoye, P.Y.; Murphy, W.K.; Forman, A.; Papasozomenos, S.C.; Hong, W.K.; Raber, M. Cancer Chemother. Pharmacol. 1991, 29, 145-149. (17) Stewart, J.A.; Low, J.B.; Roberts, J.D.; Blow, A. Cancer, 1991, 68, 2550-2554].

⁰ Descripción detallada de la invención

1

1

La presente invención, tal y como se indica en su enunciado se refiere a un procedimiento de prepa-

ración de didemninas, en particular didemnina A.

Concretamente, en esta invención se propone una nueva síntesis de didemnina A y la síntesis de dehidrodidenmina B a partir de ésta. Aunque la síntesis de otros miembros de la familia de las didemninas está descrita [(10), (18) Schmidt, U.; Kroner, M.; Griesser, H.; Tetrahedron Lett. 1988, 29, 3057-3060; (19) Schmidt, U.; Kroner, M.; Griesser, H.; Tetrahedron Lett. 1988, 29, 4407-4408. (20) Schmidt, U.; Kroner, M.; Griesser, H. Synthesis 1989, 832-835. (21) Schmidt, U.; Kroner, M.; Griesser, H. Synthesis 1991, 294-300, (22) Hamada, Y.; Kondo, Y.; Shibata, M.; Shioiri, T.J.; Am.Chem. Soc. 1989, 111, 669-673, (23) Ewing, W.R.; Harris, B.D.; Li, W.R.; Joullié, M.M. Tetrahedron Lett. 1989, 30, 3757-3760, (24) Li, W.R.; Harris, B.D.; Joullié, M.M. J. Am. Chem. Soc. 1990, 112, 7659-7672] la síntesis de la presente invención permite obtener el miembro más activo de las didemninas mediante una ruta nueva y práctica.

Dicha ruta sintética se basa en el acoplamiento de las unidades Z-N(Me)-O(Mc)-Tyr-O-[Boc-Thr]-OH y H-Ist-Hip-Leu-Pro-OBzl.HCl, utilizando HBTU y DIEA, dando lugar a Z-N(Me)-O(Me)-Tyr-[Boc-Thr]-Ist-Hip-Leu-Pro-OBzl, precursor lineal protegido al macrociclo de las didemninas.

La unidad Z-N(Me)-O(Me)-Tyr-O-[Boc-Thr]-OH se sintetiza a partir de Z-N(Me)-O(Me)-Tyr-OH y Boc-Thr-OSEM que se acoplan, por esterificación, con DCC. El tratamiento de éste didepsipeptido con fluorhidrico acuoso, al 12%, da lugar a Z-N(Me)-O(Me)-Tyr-O-[Boc-Thr]-OH.

La unidad H-Ist-Hip-Leu-Pro-OBzl.HCl se sintetiza a partir de Boc-Leu-OH y H-Pro-OBzl que se acoplan con DCC y HOBt proporcionando Boc-Leu-Pro-OBzl. La desprotección del extremo amino de este dipéptido con ácido trifluoroacético seguido por el acoplamiento con TBDMS-Hip-OH mediante tratamiento con HBTU, HOBt y DIEA proporciona TBDMS-Hip -Leu-Pro-OBzl. El tratamiento de esta molécula con fluoruro de tetrabutilamonio libera el grupo hidroxilo y su esterificación con Boc-Ist(OTBDMS)-OH mediado por DCC conduce a BOC-Ist-Hip-Leu-Pro-OBzl. El tratamiento de esta unidad con clorhídrico en dioxano da lugar a H-Ist-Hip -Leu-Pro-OBzl.HCl.

El acoplamiento entre las unidades Z-N(Me)-O(Me)-Tyr -O-[Boc-Thr]-OH e H-Ist-Hip-Leu-Pro-OBzl. HCI dan lugar a Z-N(Me)-O(Me)-Tyr-[Boc-Thr]-Ist-Hip-Leu-Pro-OBzl. La desprotección simultánea de los extremos N- y C-terminal de esta unidad mediante hidrogenólisis conduce a H-N(Mc) -O(Me)-Tyr-[Boc-Thr]-Ist-Hip-Leu-Pro-OH, precursor lineal del macrociclo de las didemninas, con el N-terminal de la Thr protegido con el grupo Boc. La ciclación de este precursor utilizando el agente acoplante HBTU en presencia de HOBt y DIEA conduce al macrociclo de las didemninas, en el que el N-terminal de la Thr está protegido con el grupo Boc. La desprotección del grupo amino de Thr mediante tratamiento con ácido trifluoroacético, seguido por el acoplamiento del macrociclo con Boc-(R)-NMe-Leu-OH conduce a Boc-didemnina A, que después del tratamiento con ácido trifluoroacético, y el acoplamiento con la unidad Pir-Pro-OH da lugar a la dehidrodidemnina B.

Modos de realización de la invención

La presente invención se ilustra adicionalmente mediante el siguiente Ejemplo, el cual no pretende ser limitativos de su alcance.

Ejemplo

Z-N(Me)-O(Me)-Tyr-OH

Se disolvió Z-Tyr-OH (3.48 g, 11 mmol) en THF (50 ml) a temperatura ambiente y con una fuerte agitación se adicionó en pequeñas porciones, KOH en polvo (6.20 g. 110 mmol) e hidrogenosulfato de tetrabutilamonio (0.35 g, 10% en peso). A continuación, se añadió Me₂SO₄ (7 ml, 73.50 mmol) gota a gota durante 15 minutos. Después de 30 minutos, se enfrió la mezcla de reacción a 0°C y se añadió H₂O (60 ml) manteniéndose la agitación durante 5 horas. Seguidamente, se diluyó la mezcla de reacción con Et₂O (100 ml) y después de 15 minutos, Se separó la fase acuosa de la etérea. Se hicieron extracciones de la fase etérea con disolución saturada de NaHCO₃ (3 x 25 ml), se juntaron las fases acuosas, se llevaron a pH 1.5 con disolución 1 M de KHSO₄ y se extrajeron con AcOEt (3 x 50 ml). Finalmente, se combinaron las fases orgánicas, se secaron sobre Na₂SO₄, se filtraron y se eliminó el disolvente obteniéndose Z-N(Me)-O(Me)-Tyr-OH (3.21 g, 85%) como un aceite que cristalizaba en la nevera. Pf 63°C (lit. ²⁴: aceite): [a]_D-51° (2.23 c, CHCl₃) (lit. ²⁴: [a]_D-48° (c 2.23, CHCl₃)); IR (sólido) 3300-2800, 2700-2500, 1750, 1700, 1650, 1620, 1520, 1480, 1460, 1400, 1330, 1250, 1190, 1150, 1040, 990, 830, 820 cm⁻¹; ¹H RMN (200 MHz, CDCl₃) 2.79 y 2.86 (3H, s, isóm. rot.), 2.90-3.150 (1H, m), 3.20-3.40 (1H, m), 3.79 (3H,

s), 4.80-4.90 (1H, m), 5.00-5.17 (2H, m), 6.75-6.82 (2H, m), 7.07-7.08 (2H, m), 7.27-7.32 (5H, m); ¹³C RMN (50 MHz, CDCl₃) 32.71, 34.26, 34.66, 55.69, 61.08, 67.93, 68.09, 114.47, 128.07, 128.36, 128.47, 128.94, 129.31, 130.29, 159.00, 176.51; m/z (IQ) 121 (100 %), 343 [(M+NH₄)+, 0.4 %].

$_{5}$ BOC-(R)-Leu-OH

Se disolvió (R)-Leu-OH (1 g, 7.63 mmol) en dioxano-H₂O (2:1) (30 ml) se añadió una disolución de NaOH 1N (7.03 ml) y a 0°C se añadió Boc₂O (1.83 g, 8.39 mmol). Después de 24 h a temperatura ambiente se añadió más Boc₂O (0.90 g, 4.19 mmol). Después de 36 horas, se eliminó el disolvente hasta la mitad de su volumen y se enfrió la mezcla de reacción a 0°C se cubrió con AcOEt (30 ml). Seguidamente, se llevó hasta pH 2-3 con disolución de KHSO₄ 1M. A continuación, se hicieron extracciones de la fase acuosa con ACOEt (3 x 30 ml) y lavados de la fase orgánica con disolución saturada de NaCl (2 x 10 ml). Se secó la fase orgánica sobre Na₂SO₄, se filtró y se eliminó el disolvente obteniéndose Boc-(R)-Leu-OH como un aceite (1.79 g, 98%). [a]_D+8.3° (c 1, EtOH); IR (CHCl₃) 3500-3200, 3250-3050, 3000-2800, 2700-2400, 1760, 1720, 1660, 1520, 1400, 1370, 1250, 11670, 1120, 1050, 1030 cm⁻¹; ¹H RMN (200 MHz, CDCl₃) 1.78 (6H, d, J= 6), 1.46 (9H, s), 1.60-1.90 (3 H, m), 4.82-4.88 (1H, m); ¹³ C RMN (50 MHz, CDCl₃) 22.23, 23.32, 25.22, 28.75, 41.99, 52.46, 80.43, 156.00, 177.64; m/z 57 [(C₄H₉)⁺, 100%], 130 [(C₆H₁₂O₂N)⁺, 58%], 186 [(C₁₀H₂₀O₂N)⁺, 14.5%], 231.8 [(M+H)·2⁺, 0.6%].

20 BOC-(R)-N(Me)-Leu-OH

Se disolvió Boc-(R)-Leu-OH (1.50 g, 6.49 mmol) en THF (40 ml) y con una fuerte agitación se añadió en pequeñas porciones KOH en polvo (3.49 g, 64.90 mmol) e hidrogenosulfato de tetrabutilamonio (0.15 g, 10 % en peso). Seguidamente, se inició una fuerte agitación y se añadió gota a gota Me₂SO₄ (3.68 ml, 39.58 mmol) durante 15 min. Después de 5 horas, se enfrió la mezcla de reacción a 0°C y se añadió H₂O (40 ml). Después de 16 h, se añadió Et₂O (90 ml) a la mezcla de reacción. A continuación, se separó la fase acuosa de la etérea y se hicieron lavados de la fase etérea con disolución saturada de NaHCO₃ (3 x 20 ml). Las fases acuosas se llevaron a pH 3.0-3.5 con disolución de KHSO₄ 1N. Seguidamente, se hicieron extracciones de la fase acuosa con AcOEt (3 x 50 ml). Se secaron las fases orgánicas sobre Na₂SO₄, se filtraron y se eliminó el disolvente obteniéndose BOC-(R)-N(Me)-Leu-OH como un aceite que cristaliza rápidamente (1.48 g, 93%) Pf 59-61°C (lit.²⁴: Pf 60.5-61.5°C); [a]_D+22° (c 0.5, EtOH) (lit.²⁴: [a]_D+30.7° (c 0.5, EtOH)); IR (film) 3400-3000, 3000-2860, 1740, 1700, 1650, 1450, 1400, 1370, 1320, 1250, 1150 cm⁻¹: ¹H RMN (200 MHZ, CDCl₃) 0.92-0.97 (6H, m), 1.46 (9H, s), 1.50-1.80 (3H, m), 2.79 y 2.81 (3H, s, isóm. rot.), 4.58-4.68 (1H, m); ¹³C RMN (50 MHz, CDCl₃) 21.11, 21.25, 23.24, 24.64, 24.95, 28.33, 30.55, 37.30, 37.79, 56.05, 56.99, 80.36, 80.63, 159.00, 178.00, 178.20; m/z (IE) 57[(C₄H₉)+, 100%]. 144 [(C₇H₁₄O₂N)+, 96.4%], 200 [(C₁₁H₂₂O₂N)+, 12%], 245 [(M)+, 0.2%].

Boc-D-allo-Ile-OH

Se diSOlvió H-D-allo-Ile-OH (10 g, 76.3 mmol) en una mezcla de dioxano/ agua (2:1) (300 ml) y a 0°C se añadió disolución 1N de NaOH (76.3 ml) y Boc₂O (18.32 g, 83.93 mmol). Después de 20 h se añadió más Boc₂O (3.33 g, 15.26 mmol) y tras 36 h se eliminó el disolvente hasta la mitad del volumen. Seguidamente, se diluyó la mezcla de reacción con AcOEt (40 ml) se enfrió a 0°C y se acidificó hasta pH 3-4 el crudo de reacción con disolución 1M KHSO₄. Seguidamente, se hicieron extracciones de la fase acuosa con AcOEt (3 x 50 ml) y se hicieron lavados de la fase orgánica con solución saturada de NaCl (2 x 20 ml). Finalmente, se secó la fase orgánica sobre Na₂SO₄, se filtró y se eliminó el disolvente, se obtuvo un aceite que cristalizaba en la nevera y que corresponde a a Boc-D -allo-Ile-OH (17.62 g, 100%). Pf 66-68°C; [a]_D-15.66 (c 1.11, CHCl₃); IR (film) 3500, 3000-2840, 1720, 1710, 1650, 1520, 1500, 1450, 1400, 1370, 1250, 1160, 1080, 1040, 1020, 1000, 940, 900 cm⁻¹; ¹H RMN (200 MHz, CDCl₃) 0.88-0.99 (6H, m), 1.15-1.60 (2H, m), 1.45 (9H, s), 1.90-2.04 (1H, m), 4.34-4.46 (1H, M), 5.00 (1H, d, J=9), 9.00-9.20 (1H, sa); m/z (IQ) 232.2 [(M+H)⁺, 22%], 249.2 [(M+NH₄)⁺, 100%]; (encontrado: C, 57.6; H, 9.1; N, 6.0, C₁₁H₂₁NO₄ requiere C, 57.1; H, 9.1; N, 6.0%).

(4R.5S)-4-(tert-butoxicarbonilamino)-5-metil-3 -oxoheptanoato de metilo

Se disolvió CDI seco (5.52 g, 34.6 mmol) en THF anhidro (5 ml) bajo atmósfera de argón, se enfrió a 0°C, y se le añadió Boc-D-alle-OH (4.01 g, 17.3 mmol), previamente secada, disuelta en THF anhidro (5x10 ml). Se dejó que el sistema llegara a temperatura ambiente. A las 4h de reacción se enfrió a -78°C y se añadió vía cánula el enolato de litio de acetato de metil a -78°C (preparación del enolato de litio de acetato de metilo: se añadió AcOMe lentamente durante 1 h 10 min a LDA a -78°C bajo atmósfera de argón; formación de LDA: BuLi 1.6M en hexano (37.8 ml, 60.55 mmol) se añadió con cuidado a una solución de iPr₂NH (10.3 ml, 72.66 mmol) en THF anhidro (12 ml) a -78°C y bajo atmósfera de

argón, antes de añadir el AcOMe se retiró el balón del baño a -78°C durante unos 20 segundos. La temperatura del sistema se dejó aumentar hasta -10°C durante 2 h 15 min, y seguidamente la reacción se paró añadiendo una solución de hidrocloruro amonico sat (100 ml). Se hicieron extracciones con CH₂Cl₂ (4x50 ml) y después de sucesivos lavados con 5% HCl, 5% NaHCO₃ y NaClaq saturado, se secó con MgSO₄ y se eliminó el disolvente. Se obtuvo un crudo (4.4 g) que se purificó por cromatografía sobre sílica (AcOEt-hexano, 2:8) aislando el producto puro (3.32 g, 67%) como un sólido, p.f. 41-43°C; Rf 0.24 (AcOEt: Hexano, 1:4); IR (film, CHCl₃) (max 3480-3200, 3040-2840, 1760, 1730, 1710, 1540-1490, 1470, 1440, 1395, 1370, 1325, 1280-1230, 1170, 790 cm⁻¹; ¹H-RMN (200 MHz, CDCl₃) d 0.79 (3H, d. J=7.7Hz, Me-C₅), 0.97 (3H, t, J=9Hz, Me-C₆), 1.21-1.5 (2H, m. C₆H₂), 1.45 (9H, s, tBuO), 1.85-2.85 (1H, m, C₅H), 3.57 (2H, s. C₂H₂), 3.75 (3H, s, OMe), 4.48 (1H, dd, J=8.8Hz, J=3.6Hz, C₄H), 5.80 (1H, d, J=8.8Hz, NH); ¹³C-RMN (50 MHz, CDCl₃) d 11.86 (CH₃, Me-C₆), 13.87 (CH₃, Me-C₅), 26.79 (CH₂, C₆), 28.27 (3CH₃, tBu), 35.98 (CH, C₅), 46.59 (CH₂, C₂), 52.44 (CH₃, OMe), 62.61 (CH, C₄), 80 (C, tBu), 155.9 (CO, Boc), 167.5 (CO), 202.4 (CO, cetona); m/z 288 [(M+H)⁺, 24%], 305 [(M+NH₄)⁺, 100%]; encontrado N, 4.78; C, 58.4; H, 9.31; C₁₄H₂₅NO₅ requiere N, 4.85; C, 58.53; H, 8.77.

Boc-Ist-OMe

El éster metílico de (4R, SS)-4-(tert -butiloxicarbonilamino)-5-metil-3-oxoheptanoat (1.79 g, 6.24 mmol) se disolvió en MeOH (30 ml), se enfrió a 0°C y se le añadió KBH₄ (1 g, 18.72 mmol). Manteniendo la temperatura a 0°C, después de 13 min se paró la reacción añadiendo 10% HCl gota a gota hasta pH=6. Se hicieron extracciones con Et2O (3x50 ml), la fase orgánica se lavó con 10% NaHCO₃ y NaCl aq saturado, se secó con MgSO₄ y se eliminó el disolvente. Se obtuvo un aceite (1.71 g, 95%). Rf 0.4 (AcOEt: Hexano, 4:6); [a]_D -3.4° (c 1.4, CH₂Cl₂); IR (film, CH₂Cl₂) (max 3600-3300, 2967-2878, 1698, 1518, 1439, 1393, 1368, 1252, 1173, 1074, 989, 887, 777 cm⁻¹; ¹H-RMN (200 MHz, CDCl₃) d 0.86 (3H, d, J=5HZ, Me-C₅), 0.92 (3H, t, J=7.5Hz, Me-C₆), 1.09-1.45 (2H, m, C₆H₂), 1.44 (9H, S, tBuO), 1.83-2.0 (1H, m, C₅H), 2.41 (2H, m, C₂H₂), 2.79 (1H, sa, OH), 3.59-3.73 (1H, m, C₃H), 3.72 (3H, s, Ome), 3.84-3.98 (1H, m, C₄H), 4.45 (1H, d, J=10Hz, NH); ¹³C-RMN (50 MHz, CDCl₃), 12.09 (CH₃, Me-C₆), 13.46 (CH₃, Me-C₅), 27.45 (CH₂, C₆), 28.70 (3CH₃, tBuO), 34.29 (CH, C₅), 39.34 (CH₂, C₂), 52.15 (CH₃, OMe), 57.34 (CH, C₄), 69.40 (CH, C₃), 79.73 (C, tBuO), 156.63 (CO, Boc), 174.06 (CO); m/z (IQ) 307 [(M+H)⁺, 28%], 290 [(M+H)⁺, 100%]; encontrado C, 58.4; H, 9.5; N, 4.8; C₁₄H₂₇O₅N requiere C, 58.1; H, 9.3; N, 4.8.

Boc-Ist-OH

Boc-Ist-OMe (0.5 g, 1.73 mmol) se disolvió en dioxano (4 ml), se le añadió 1M NaOH (4 ml). Se dejó a temperatura ambiente durante 50 min. Después, se añadió 1M HCl hasta pH=7 y seguidamente se eliminó el dioxano. Se acidificó con 1M HCl hasta pH=4, se hicieron extracciones del ácido con AcOEt (5x20 ml), se secó con MgSO₄ y se eliminó el disolvente. Se obtuvo Boc-Ist-OH (442 mg, 93%) en forma de aceite, Rf 0.25 (AcOEt: Hexano, 6: 4); [a]_D -5.2° (c 2.6, CHCl₃) (lit. ²², -8.7°, c 2.4, CHCl₃); IR (film, CH₂Cl₂), (max 3600-3200, 300-2850, 1710, 1690, 1525 (ancho), 1460, 1400, 1370, 1260, 1170, 1080, 900 cm⁻¹; ¹H -RMN (200 MHz, CDCl₃) d 0.85 (3H, d, J=5Hz, Me-C₅), 0.90 (3H, t, J=7.3Hz, Me-C₆), 1.15-2.00 (1H, m, C₆H₂), 1.44 (9H, s, isómeros rotacionales, tBuO), 1.8-2.00 (1H, m, C₅H), 2.4-2.75 (2H, m, C₂H), 3.5-3.72 (1H, m, C₃H), 3.88-4.05 (1H, m, C₄H), 4.57 (1H, d, J=9Hz, isómero rotacional, NH), 5.93 (1H, d, J=9Hz, isómero rotacional, NH); ¹³C-RMN (50 MHz, CDCl₃) d 11.36 (CH₃, Me-C₆), 12.90 (CH₃, Me-C₅), 26.72 (CH₂, C₆H₂), 27.93 (3CH₃, tBuO), 33.54 (CH, C₅H), 38.35 (CH₂, C₂H₂), 56.46 (CH, C₄H), 68.73 (CH, C₃H), 78.1 (C, tBUO), 155.6 (CO, Boc), 173.35 (CO, COOH); m/z (IQ) 293 [(M+NH₄)⁺, 100%], 276 [(M+H)⁺, 95%]; encontrado C, 55.7; H, 9.4; N, 4.8; C₁₃H₂₅NO₃ requiere C, 56.7; H, 9.1; N, 5.1.

Boc-Ist(OTBDMS)-OH

a) Boc-Ist-OH

55

60

(646.5 mg, 2.35 mmol), TBDMS-Cl (1.77 g, 11.75 mmol) e imidazole (2.56 g, 37.6 mmol) se mezclaron con DMF anhidro (0.7 ml), se dejó a temperatura ambiente y con fuerte agitación magnética. A las 18 h de reacción se eliminó la DMF a presión reducida, se añadió AcOEt (30 ml) y se lavó sucesivamente con 10 % KHSO₄ y H₂O, se secó con MgSO₄ y se eliminó el disolvente. Se obtuvo un aceite (1.29 g) correspondiendo al producto bisililado Boc-Ist(TBDMS)-OTBDMS. Rf 0.65 (AcOEthexano, 3:7); 1 H-RMN (200 MHz, CDCl₃) d 0.05-0.1 (9H, 3s, 3MeSi), 0.28 (3H, MeSi),0.82 (9H, s. tBuSi), 0.8-0.95 (6H, m, Me-C₅ y Me-C₅), 0.93 (9H, s. tBuSi), 1.20-1.44 (2H, m, C₆H₂), 1.42 (9H, s. tBuO), 1.65-1.8 (1H, m, C₅H), 2.4-2.65 (2H, m, C₂H₂), 3.55-3.7 (1H, m, C₃H), 4.1-4.2 (1H, m, C₄H), 4.42 (1H, d, J=10Hz, NH); $\underline{m/z}$ (IQ) 504 [(M+H)+, 10%], 522 [(M+NH₄)+, 2%], 448 [(M-C₄H₉) 5%], 404 [(M-C₅H₉O₂), 7%], 389 [(M-C₆H₁₅Si), 5%].

b) El producto bisililado Boc-Ist(TBDMS)-OTBDMS (1.29 g) se disolvió en dioxano (25 ml) y se le añadió NaOH 0.5M gota a gota hasta pH=10-12. Después de agitar la mezcla durante 2 min, se añadió HCl 1N hasta pH=7. Se eliminó el dioxano y la solución se acidificó con HCl 0.5N hasta pH=4, se hicieron extracciones del ácido con AcOEt (4x20 ml), se secó con MgSO₄ y se eliminó el disolvente. El crudo (1.150 g) que se obtuvo se purificó por cromatografía sobre sílica gel (AcOEthexano, 1.25:8.75) aislando Boc-Ist(TBDMS)-OH (538 mg, 79%). p.f. 40-45°C, Rf 0.35 en forma de cola (AcOEt-hexano y 1 gota AcOH, 2:8) [a]_D +1.8° (c 0.8, CH₂Cl₂) (lit.²²: [a]_D +1.74, c 2.64, CHCl₃); IR (film, CH₂Cl₂) (max 3.400-3220, 3160-3080, 3020-2840, 1770, 1665, 1090, 1410, 1170, 1260, 1180, 1090, 1005, 945, 840, 680 cm⁻¹; ¹H-RMN (200 MHz, CDCl₃), 0.1 (6H, sa, Me₂Si), 0.82-0.94 (6H, m, Me-C₅ y Me-C₆), 0.89 (9H, s, tBuSi), 1.20-1.31 (2H, m, C_6H_2), 1.47 (9H, s, isómeros rotacionales, tBuO), 1.72-1.86 (1H, m, C₅H), 2.42-2.65 (2H, m, C₂H₂), 3.45-3.65 (1H, m, C_3H), 4.05-4.20 (1H, m, C_4H), 4.69 (1H, d, J=10Hz, isomero rotacional, NH), 6.75 (1H, d, J=10Hz, isómero rotacional, NH); ¹³C-RMN (50 MHz, CDCl₃) d -4.92 (CH₃, Me-Si), -4.40 (CH₃, Me-Si). 11.94 (CH₃, Me-C₆), 12.80 (CH₃, Me-C₅), 17.75 (C, tBuSi), 25.76 (3CH₃, tBuSi), 26.95 (CH₂, C₆), 28.32 (3CH₃, tBuO), 34.18 (CH, C₅), 41.85 (CH₂, C₂), 60.13 (CH, C₄), 70.12 (CH, C₃), 158.25 (CO, Boc), 174.8 (CO, COOH); m/z (IQ) 408 $[(M+NH_4)^+, 4\%]$, 390 $[(M+H)^+, 100\%]$.

TBDMS-(2RS, 4S)-Hip-OBzl

5

10

15

35

Caracterización: Rf 0.39 (AcOEt-hexano, 1:9); IR (film, CH₂Cl₂) (max 3090-300, 1959-2859, 1750, 1725, 1499, 1456, 1389, 1319, 1254, 1190, 1072, 1007, 958, 839, 779 cm⁻¹; ¹H-RMN (200 MHz, CDCl₃) d 0.01 (3H, s, MeSi), 0.04 (3H, s. MeSi), 0.92 (9H, s, tBuSi), 0.82-0.95 (6H, m, 2 Me-C₅), 1.36 (3H, d, J=7.5Hz, Me-C₂), 1.94-1.12 (1H, m, C₅H), 3.94-4.07 (2H, m, C₄H y C₂H), 5.11 (2H, s, CH₂ benc.), 7.35 (5H, sa, aromat.); ¹³C-RMN (50 MHz, CDCl₃) d -5.17 y -4.92 (CH₃, MeSi, 2 diast.), -4.82 y -4.28 (CH₃., MeSi, 2 diast), 13.68 y 13.71 (CH₃, Me-C₅, 2 diast), 17.08 y 17.24 (CH₃, Me-C₅, 2 diast.), 18.19 (3 CH₃, tBuSi), 18.86 y 18.98 (CH₃, Me-C₂, 2 diast.), 31.51 y 32.38 (CH, C₅, 2 diast.), 47.16 y 47.41 (CH, C₂, 2 diast.), 66.86 y 67.06 (CH₂, benc. 2 diast.), 82.60 y 83.20 (CH, C₄, 2 diast.), 128.19-128.53 (5CH, m, aromat.), 135.28 (C, aromat), 170111 y 170.31 (CO, 2 diast.), 206.89 y 206.37 (CO, cetona, 2 diast.); m/z (FAB) 401 [(M+Na)⁺, 10%], 379.2 [(M+H)⁺, 72%], 321.1 [(M-C₄H₉+H)·2⁺, 100%], 271.1 [(M-C₆H₅CH₂O+H)·2⁺, 93%]; HPLC tr 22.1 min en una columna nucleosil C18 (φ=10 m) (fase reversa) haciendo un gradiente lineal de 10% B hasta 100% B en 20 min, seguido de 10 min de elución isocrática al 100% B, (A: H₂O+0.045% TFA, B: MeCN+0.036% TFA), flujo= 1 ml/min, detección= 220 nm.

Boc-Thr(Bzl)-OSEM

En un sistema anhidro, con tamiz molecular activo y bajo atmósfera de argón, se introdujo Li₂CO₃ (1.08 g, 14.56 mmol), Boc-Thr(Bzl)-OH (3.07 g, 9.93 mmol) disuelta en DMF (10 ml) y se le adicionó SEM-Cl (2.6 ml, 14.56 mmol) a temperatura ambiente. A las 18 h de reacción se filtró sobre celite, se le añadió H2O (20 ml) y se eliminó la DMF a presión reducida. Se hicieron extracciones con AcOEt (5x20 ml) y la fase orgánica se lavó con una solución saturada de NaCl y se secó con MgSO₄ y se eliminó el disolvente. Se obtuvo un crudo (3.5 g) que se purificó por cromatografía sobre sílica gel (ACOEt-hexano, 1:9) obteniendo Boc-Thr(Bzl)-OSEM en forma de aceite (2.4 g, 78%) y recuperando Boc-Thr(Bzl)-OH (0.95 g). Rf 0.51 (AcOEt-hexano, 3:7); [a]_D -1.35° (c 0.67, CH₂Cl₂); IR (film, CH₂Cl₂) (max 3500-3275, 2979-2875, 1721, 1501, 1368, 1250, 1167, 1070 cm⁻¹; 1 H-RMN (200 MHZ, CDCl₃) d 0.02 (9H, s, 3 Me-Si), 45 0.90-0.99 (2H, m, CH₂-Si), 1.31 (3H, d, J=6.3Hz), 1.49 (9H, s, tBu), 3.65-3.72 (2H, m, CH₂-O), 4.12-4.25 (1H, m), C(H), 4.3-4.41 (1H, m), C(H), 4.39-4.63 (2H, m, benc.), 5.28-5.34 (3H, m, O-CH₂-O, NH), 7.29-7.33 (5H, ar.); 13 C-RMN (50 MHz, CDCl₃) d -1.51 (3 CH₃, Me-Si), 16.23 (CH₃, C_g), 17.89 (CH₂, C-Si), 28.26 (3CH₃, tBu), 58.28 (CH, C_b), 68.04 (CH₂, C-O), 70.86 (CH₂, benc.), 74.56 (CH, C_a), 79.81 (C, tBu), 89.83 (CH₂, O-C-O), 127.15-127.31 (5CH, ar), 137.83 (C, ar), 156.09 (CO, Boc), 170.79 (CO); m/z (IQ) 457 [(M+NH₄)+, 100 %], 440 [(M+H)+, 48 %]; HPLC tr 22.3 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B, (A: H₂O+0.045 % TFA, B: MeCN+0.036 % TFA), flujo= 1 ml/min, detección= 220 nm.

5 Boc-Thr-OSEM

Boc-Thr-OSEM (950 mg, 2.16 mmol) disuelto en MeOH (10 ml) se añadió a una suspensión de 10% Pd-C (146 mg) en MeOH (25 ml) bajo atmósfera de N_2 . Se cambió la atmósfera de N_2 por H_2 y después se purgó el sistema. Después de 60 min, se filtró sobre celite, se lavó con MeOH y se eliminó el disolvente. Se obtuvo un aceite (730 mg. 97%) correspondiendo a Boc-Thr-OSEM que no se purificó. Rf 0.30 (AcOEt-hexano, 3:7); [a]_D -8.4° (c 1.03, CH₂Cl₂); IR (film, CH₂Cl₂) (max 3550-3350, 2979-2880, 1719, 1508, 1368, 1250, 1165, 1113 cm⁻¹; 1 H-RMN (200 MHz, CDCl₃) d 0.02 (9H, s, Me₃Si), 0.92-1.01 (2H,

M, CH₂Si), 1.27 (3H, d, J=6.3 Hz, Me-C_b), 1.45 (9H, s, tBu), 3.69-3.77 (2H, m, CH₂-O), 4.22-4.41 (2H, m, C_aH, C_bH), 5.36-5.38 (3H, m, O-CH₂-O, NH); 13 C-RMN (50 MHz, CDCl₃) d -1.46 (3 CH₃, MeSi), 17.98 (CH₂, C-Si), 19.94 (CH₃, C_g), 28.27 (3 CH₃, tBu), 58.47 (CH, C_b), 68.13 (CH, C_a), 68.18 (CH₂, C-O), 80.01 (C, tBu), 89.89 (CH₂, O-C-O), 157.06 (CO, Boc), 171.14 (CO); m/z (IQ) 367 [(M+NH₄)+, 100%], 350 [(M+H)+, 25%]; HPLC tr 19.5 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10% B hasta 100% B en 20 min seguido de 10 min de elución isocrática al 100% B, (A: H₂O+0.045% TFA, B: MeCN+0.036% TFA), flujo= 1 ml/min, detección= 220 nm.

Boc-Thr/Z-N(Me)-O(Me)-TYr]-OSEM

Z-N(Me)-O(Me)-Tyr-OH (191.7 mg, 0.56 mmol), Boc-Thr-OSEM (150 mg, 0.43 mmol) y DMAP (15.3 mg, 0.12 mmol) se disolvió en CH₂Cl₂ (250 mml), se enfrió el sistema a -10°C y se le añadió DCC (120.5 mg, 0.559 mmol) en CH₂Cl₂ (250 mml). Se dejó a temperatura ambiente durante 15 h. A continuación se enfrió el sistema, se le añadió CH₂Cl₂ (5 ml) y se filtró en frío, se lavó con CH₂Cl₂ frío (10 ml) y la 15 fase orgánica se lavó sucesivamente con soluciones de 5 % KHSO₄, 5 % NaHCO₃ y solución saturada de NaCl. Se secó con MgSO₄ y se eliminó el disolvente y el crudo que se obtuvo (310 mg) se purificó por cromatografía sobre sílica gel (AcOEt-hexano, 1.7:8.3) aislando Boc-Thr[Z-N(Me) -O(Me)-Tyr]-OSEM (186 mg, 65%) en forma de aceite. Rf 0.36 (AcOEt-hexano, 2:8); [a]_D -1.3° (c 1.16, CH₂Cl₂); IR (film, CH₂Cl₂) (max 3450-3050, 2957-2838, 1742, 1705, 1613, 1586, 1514, 1454, 1402, 1308, 1248, 1180, 1142, 1109, 1034 cm⁻¹; ¹H-RMN-(200 MHz, CDCl₃) d 0.03 (9H, s, Me₃Si), 0.91-1.00 (2H, m, CH₂-Si), 1.31 (3H, d, J=6.3 Hz, Me-C_b Thr), 1.46 (9H, s, tBu), 2.73 y 2.81 (3H, NMe, isómeros rotacionales), 2.85-3.04 (1H, m, C_b Tyr), 3.10-3.30 (1H, m, C_b Tyr), 3.65-3.79 (2H, m, C_b CH₂O), 3.78 (3H, s, MeO), 4.43-4.51 (1H, m, C_a H Thr), 4.69-4.88 (1H, m, C_a H Tyr), 5.06-5.40 (5H, m, 2H benc., O-CH₂-O, NH), 5.40-5.52 (1H, m, C_b H Tyr), 6.75-6.81 (2H, m, ar. Tyr), 6.99-7.71 (2H, m, ar. Tyr), 7.31-7.32 (5H, ar.); ^{13}C -RMN (50 MHz, CDCl₃) d -1.46 (3 CH₃, Me-Si), 16.74 y 17.01 (CH₃, Me Thr, 3.86-2.17 (CH₂). C-Si), 28.24 (3 CH₃, tBu), 31.64 y 32.19 (CH₃, NMe, isómeros rot.), 33.86 y 34.17 (CH₂), C (Tyr, isómeros rot.), 55.14 (CH₃, OMe), 56.88 y 57.05 (CH, C_g Thr, isómeros rot.), 67.28 y 68.24 (2 CH₂, benc., C-O), 71.52 y 71.74 (CH, C_a Thr, isómeros rot.), 80.21 (C, tBu), 90.40 (CH₂, O-C-O), 113.88 (2 CH, CArH Tyr orto al OMe), 127.62-128.79 (5CH, CArH Bzl), 129.40-129.80 (2 CH, CArH Tyr meta al OMe), 138.67 (C, CAr Bzl), 137.84 (C, CAr Tyr), 138.53 (CO, Boc), 158.31 (CO, Z), 169.59 y 169.72 (2 CO); m/z (FAB) 697 [(M+Na)+, 17%], 675 [(M+H)+, 5%], 561 [(M-C₆H₅CH₂+Na)·2+, 22%], 545 [(M-Me3SiCH₂CH₂OCH₂+H)·+, 13%], 517 [(M-C₆H₅CH₂OCO+Na)·+, 65%]; HPLC tr 21.4 min en una columna nucleosil C18 (φ= 10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100% B, (A: H₂O+0.045% TFA, B: MeCN+0.036% TFA), flujo= 1 ml/min, detección= 220 nm.

Boc-Thr[Z-N(Me)-O(Me)-Tyr]-OH

Boc-Thr[Z-N(Me)-O(Me)-Tyr]-OSEM (358 mg, 0.519 mmol) se disolvió en MeCN (2.767 ml) y se enfrió a -25°C. Se le añadió gota a gota una solución de 15% HFaq en MeCN (1.383 ml) previamente enfriada a -25°C y la temperatura del sistema se mantuvo a -15°C durante 7 h. Después se le añadió una solución previamente enfriada de 10% KHSO4 (18 ml) y AcOEt (15 ml), y antes de extraer con más AcOEt se neutralizó la fase aquosa con una solución saturada de NaHCO3 hasta pH 4. Se hicieron extracciones con AcOEt (4x20 ml), se secó con MgSO₄ y se eliminó el disolvente, obteniendo un crudo (313 mg) que se purificó por cromatografía sobre sílica (MeOH-CH₂Cl₂, 0.3:9.7) obteniendo Boc-Thr[Z-N(Me)-O(Me)-Tyr]-OH (203.6 mg, 72%) en forma de un sólido blanco. Rf 0.21 (AcOEt-hexano, 6:4); [a]_D -20.5° (c 2, CH₂Cl₂); IR (film, CH₂Cl₂) (max 3450-3350, 3075-3020, 2979-2825, 1715, 1613, 1514, 1456, 1402, 1368, 1248, 1165, 1061, 1036 cm⁻¹; ¹H-RMN (200 MHz, CDCl₃) d 1.29 (3H, d, J=6.5 Hz, Me Thr), 1.45 (9H, s, tBu), 2.74 y 2.75 (3H, s, NMe, isómeros rot.), 2.76-3.31 (2H, m, C_bH₂ Tyr), 3.77 (3H, s, OMe), 4.42-4.52 (1H, M, CaH Thr), 4.66-4.83 (1H, m, CaH Tyr), 5.01-5.16 (2H, m, benc.), 5.30-5.53 (2H, m. NH Boc, C_bH Thr) 6.72-6.81 (2H, m, CArH Tyr), 6.95-7.09 (2H, m, CArH Tyr), 7.35 (5H, CArH); ¹³C-RMN (75 MHZ, CDCl₃) d 16.44 y 16.82 (CH₃, Me Thr), 28.23 (CH₃, tBu), 31.71 y 31.97 (CH₃, NMe), 33.82 y 33.68 (CH₂, C_bH_2 Tyr), 55.14 (CH₃, OMe), 56.87 y 56.75 (CH, C_b Tyr), 60.58 y 60.39 (CH, C_aH Tyr), 67.51 y 67.76 (CH₂, benc.), 71.83 y 72.47 (CH, C_a Thr), 80.40 (C, Boc), 113.91 (2 CH, CArH Tyr orto al OMe), 127.59-128.69 (5 CH, CArH Bzl), 129.77 (2 CH, CArH Tyr meta al OMe), 236.42 (C, CAr Bzl). 156.00 y 156.19 (2 C, CAr Tyr), 156.71 (CO, Boc), 158.31 (CO, Z), 159.47 (CO), 169.78 (CO); m/z (FAB) 567.1 [(M+Na)⁺, 46%], 545.1 [(M+H)⁺, 7%]. 445.1 [(M-C₅H₉O₂+H)⁻⁺, 100%]. HPLC tr FALTA, min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B, (A: H₂O+0.045 % TFA, B: MeCN+0.036 % TFA), flujo= 1 ml/min, detección= 220 nm.

Boc-Leu-Pro-OBzl

Pro-OBzl.HCl (7.3 g. 0.030 mol) se disolvió en CH₂Cl₂ (25 ml) y se le añadió NMM (4.63 ml, 0.0620 mol) a 0°C. Después de 10 minutos y con fuerte agitación magnética se añadió Boc-Leu-OH (3 g. 0.012 mol), DCC (3.22 g. 0.0156 mol) y HOBt (1.82 g. 0.0132 mol). Se dejó que la temperatura del sistema subiera de 0°C a temperatura ambiente y a las 18 h de reacción se enfrió el crudo a -10°C, se filtró, se eliminó el CH₂Cl₂ y se redisolvió en AcOEt (80 ml). Después de sucesivos lavados con soluciones de 10% KHSO₄, 10% NaHCO₃ y NaCl saturado, la fase orgánica se secó con MgSO₄ y se eliminó el disolvente. Se obtuvo un crudo (9.65 g) que se purificó por cromatografía sobre silica (AcOEt-hexano, 1.5:8.5), aislándose Boc-Leu-Pro-OBzl (3.64 g. 72%) en forma de aceite. Rf 0.41 (ACOEt-hexano, 3:7) [a]_D -64.7° (c 2, CH₂Cl₂); IR (film, CH₂Cl₂) (max 3450-3305, 2957, 2871, 1746, 1709, 1651, 1501, 1429, 1391, 1366, 1250, 1169, 1045, 1022 cm⁻¹; ¹H-RMN (200 MHz, CDCl₃) d 0.90 (3H, d, J=6.6 Hz, Me Leu), 0.96 (3H, d, J=6.5 Hz, Me Leu), 1.42 (9H, s., tBu), 1.65-1.92 (3H, M, C_gH Leu, C_bH₂ Leu), 1.92-2.28 (4H, m, C_bH₂ Pro, C_gH₂ Pro), 3.50-3-80 (2H, m, C_dH₂ Pro), 4.32-4.54 (1H, m, C_aH Leu), 4.54-4.75 (1H, m, C_aH Pro), 5.05-5.23 (3H, CH₂ benc., NH Boc), 7.34 (5H, Ar); ¹³C-RMN (50 MHZ, CDCl₃) d 22.19 (CH₃, C_d Leu), 23.89 (CH₃, Cd Leu), 24.99 (CH, C_g Leu), 25.38 (CH₂, C_g Pro), 28.83 (3 CH₃, tBu), 29.45 (CH₂, C_b Pro), 42.46 (CH₂, C_b Leu), 47.18 (CH₂, C_d Pro), 50.72 (CH, C_a Leu), 59.31 (CH, C_a Pro), 67.39 (CH₂, benc.), 79.99 (C, tBu), 128.66-129.04 (5 CH, 3 s, 2 CArH orto, 2 CArH meta, CArH para), 136.1 (C, CAr), 156.2 (CO, BOC), 172.32 (2 CO); m/z (FAB) 453.3 [(M+Cl)⁻, 3%], 419.3 [(M+H)⁺, 39%], 363.3 [(M-C₄H₉+H)⁺, 45%] 319.1 [(M-C₅H₉O₂)·⁺, 72%].

H-Leu-Pro-OBzl. CF3OOH

Boc-Leu-Pro-OBzl (2.253 g, 5.39 mmol) se trató con 60% TFA en CH2Cl2 durante 2 h 15 min a temperatura ambiente. Se evaporó a sequedad y se hicieron coevaporaciones con éter anhidro. Se obtuvo H-Leu-Pro-OBzl. CF₃OOH (2. 265 g, 99%.) en forma de aceite. m/z 319 (M⁺, 100%)

TBDMS-Hip-Leu-Pro-OBzl

30 TBDMS-Hip-OBzl (1.399 g, 3.696 mmol) se disolvió en THF (9 ml) y se añadió a una suspensión de 10% Pd-C (235 mg) en THF (5 ml) bajo N2. Se cambió la atmósfera inerte por H2 y se purgó el sistema. Después de 2 horas a temperatura ambiente, el sistema se enfrió a -20°C y el crudo de hidrogenolisis se filtró a través de celite, y se lavó con THF (20 ml). Las aguas de filtración se recogieron directamente sobre HBTU (1.467 g, 3.881 mmol) y HOBt (0.509 g, 3.696 mmol) a -10°C, y a continuación se le añadió DIEA (628 ml, 3.696 mmol). Después de 3 minutos se le añadió H-Leu-Pro-OBzl.CF₃COOH (2.15 g, 4.989 mmol) disuelto en THF (6.5 ml) y DIEA (1.487 ml, 8.685 mmol). El sistema se mantuvo a -5°C durante 3h, Después se dejó a temperatura ambiente 16 h. Se eliminó el THF y el residuo se disolvió en AcOEt (50 ml), se lavó con soluciones de 5% KHSO₄, 5% NaHCO₃ y NaCl saturado, se secó con MgSO₄ y se evaporó a sequedad. El crudo que se obtuvo (2.52 g) se purificó por cromatografía sobre sílica (AcOEt-hexano, 3:7) aislando TBDMS-Hip-Leu-Pro-OBzl como mezcla diastereoisomérica (diast. A: diast. B, 1:1) (1.793 g, 83 %) en forma de aceite que posteriormente solidificó. Rf 0.35 y 0.29 (AcOEthexano, 4:6); IR (film, CH₂Cl₂) (max 3295 (ancho), 3060 y 3040 (débiles), 2957, 2934, 2880, 2858, 1736, 1634, 1528, 1454, 1387, 1252, 1171, 1070 cm⁻¹; ¹H-RMN (300 MHz, CDCl₃) d 0.01-0.03 (6H, 2 sa, 2 Me-Si), 0.85-0.97 (12H, md, 2 Me Leu, 2 Me Me-C₅ Hip), 0.92 y 0.93 (9H, s, tBu), 1.33 (3H, J=7Hz, Me-C₂ Hip, diast. A), 1.37 (3H, J=7Hz, Me-C₂ Hip, diast. B), 2.40-2.65 (3H, m, C_bH₂ Leu, C_qH Leu), 1.92-2.28 (4H, C_bH_2 Pro, C_gH_2 Pro), 3.64-3.76 (1H, m, C_aH Pro), 4.69-4.82 (1H, m, C_aH Leu), 5.05-5.24 (2H, sist. AB, benc.), 6.73 (1H, d, J=9 Hz, NH Leu, diast A), 6.98 (1H, d, J=9 Hz, NH Leu, diast B), 7.34 (5H, sa, Ar.); ¹³C-RMN (75 MHz, CDCl₃) d -5.24 (CH₃, MeSi), -4.81 (CH₃, Me-Si), 15.70 (CH₃, Me-C₅ Hip), 17.43 y 17.57 (CH₃, Me-C₅ Hip), 18.84 (CH₃, Me-C₂ Hip), 21.48 y 21.61 (CH₃, Me Leu), 18.053 (C, tBu-Si), 23.28 (CH₃, Me Leu), 24.43 y 24.55 (CH, C_g Leu), 24.76 (CH₂, C_g Pro), 25.68 (S CH₃, tBu), 28.87 (CH₂, C_b Pro), 31.36 y 31.77 (CH, C₅ Hip), 41.27 y 41.67 (CH₂, C_g Pro), 48.68 y 40.87 (CH₂, C_g Pro), 48.68 $48.55 \text{ (CH, C}_2 \text{ Hip)}, \ 48.89 \text{ (CH, C}_a \text{ Leu)}, \ 58.71 \text{ (CH, C}_a \text{ Pro)}, \ 66.84 \text{ (CH}_2, \text{ benc.)}, \ 83.84 \text{ y} \ 83.29 \text{ (CH, C}_4 \text{ Hip)}. \ 128.09-128.47 \text{ (5 CH CAr)}, \ 135.40 \text{ (C, CAr)}, \ 169.24 \text{ (CO)}; \ 170.67 \text{ y} \ 170.89 \text{ (CO)}, \ 171.16 \text{ y} \ 171.20 \text{ (CO)}, \ 170.89 \text{ (CO)}, \ 170.$ (CO), 209.11 y 211.62 (CO, cetona); m/z (IQ) 589 [(M+H)+, 100%]; HPLC tr 22.7 min en una columna nucleosil C18 (ϕ =10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B, (A: H₂O+0.045 % TFA, B: MeCN+0.036 % TFA), flujo= 1 ml/min, detección= 220 nm.

H-Hip-Leu-Pro-OBzl

TBDMS-Hip-Leu-Pro-OBzl (0.908 g, 1.544 mmol) y TBAF (1.027 g, 3.242 mmol) previamente secados, se disolvieron en THF anhidro (17 ml) a temperatura ambiente. Después de 30 minutos se paró la

reacción añadiendo H2O (30 ml). Se hicieron extracciones con AcOEt (4x40 ml) y se lavó la fase orgánica con una solución saturada de NaCl, se secó y se eliminó el disolvente. El crudo que se obtuvo se purificó por cromatografía sobre sílica (AcOEt-hexano, 4:6) aislando la mezcla diastereoisomérica (A:B, 1:1) de H-Hip-Leu-Pro-OBzl (708.4 mg, 97%) en forma de un sólido blanco. Rf 0.37 y 0.20 (AcOEt-hexano, 1:1); IR (film, CH₂Cl₂) (max 3450-3293, 3060 y 3040 (débiles), 2961, 2946, 2883, 2852, 1746, 1632, 1533, 1454, 1357, 1387, 1265, 1173, 1095, 1045, 1018 cm $^{-1}$; ¹H-RMN (500 MHz, CDCl₃) d 0.71 (3H, d, J=7 Hz, Me-C₅ Hip, diast. B), 0.81 (3H, d, J=6.5 Hz, Me-C₅ Hip, diast. A), 0.88 (3H, d, -J=6.5 Hz, Me Leu, diast. A), 0.91 (3H, d, J=6.5 Hz, Me Leu, diast. A), 0.94 (3H, d, J=6.5 Hz, Me Leu, diast. B), 0.99 (3H, d, J=7 Hz, Me-C₅ Hip, diast. A), 1.07 (3H, d, J=6.5 Hz, Me-C₅ Hip, diast. B), 1.43-1.52 (2H, m, C_bH₂ Leu), 1.60-1.66 (1H, m, C_gH Leu), 1.93-1.20 (3H, m, C_gH_2 Pro, 1H de C_bH_2 Pro), 2.12-2.23 (2H, m, 1H Leu), 1.60-1.66 (1H, m, C_gH Leu), 1.93-1.20 (3H, m, C_gH_2 Pro, 1H de C_bH_2 Pro), 2.12-2.23 (2H, m, 1H Leu), 1.60-1.66 (1H, m, C_gH Leu), 1.93-1.20 (3H, m, C_gH_2 Pro, 1H de C_bH_2 Pro), 2.12-2.23 (2H, m, 1H Leu), 1.60-1.66 (1H, m, C_gH Leu), 1.93-1.20 (3H, m, C_gH_2 Pro, 1H de C_bH_2 Pro), 2.12-2.23 (2H, m, 1H Leu), 1.93-1.20 (3H, m, C_gH_2 Pro, 1H de C_bH_2 Pro), 2.12-2.23 (2H, m, C_gH_2 Pro, 1H de C_bH_2 Pro), 2.12-2.23 (2H, m, C_gH_2 Pro), 2.12 de C_bH_2 Pro, C_5H Hip), 3.53-3.58 (1H, M, 1H de C_dH_2 Pro), 3.65 (1H, q, J=7 Hz, C_2H Hip, diast. B), 3.67-3.73 (1H, m, 1H C_dH_2 Pro), 3.89 (1H, q, J=7 Hz, C_2H Hip, diast. A), 3.96 (1H, d, J=4 Hz, C_4H Hz, C_4H Hz, C_5H Hz, CHip, diast. A). 4.22 (1H, d, J=4 Hz, C_4 H Hip, diast. B). 4.54-4.56 (1H, m, C_a H Pro), 4.58-4.62 (1H, m, C_aH Leu, diast. A), 4.69-4.73 (1H, m, C_aH Leu, diast. B), 5.05-5.18 (2H, 4sa, sist. AB, benc.), 6.57 (1H, 15 d, J=8.5 Hz, NH Leu, diast. A), 6.63 (1H, d, J=8.5 Hz, NH Leu, diast. B) ¹³C-RMN (75 MHz, CDCl₃) d 14.06 y 14.26 (CH₃, Me-C₅ Hip), 15.85 y 16.48 (CH₃, Me-C₅ Hip), 20.07 y 20.53 (CH₃ Me Leu), 22.02 y 22.25 (CH₃ Me Leu), 25.37 (CH, C_g Leu), 25.46 (CH₂ C_g Pro), 29.45 y 29.53 (CH₂ C_b Pro), 31.59 y 32.09 (CH, C₅ Hip), 41.13 y 42.29 (CH₂ C_d Pro), 49.93 (CH, C_a Pro), 50.91 y 51.02 (CH, C₂ Hip), 59.52(CH, C_a Leu), 67.60 (CH₂, benc.), 81.02 (CH, C₄ Hip), 128.78-1.29.2 (5 CH, CAr), 169.48 (CO), 171.58 (CO), 172.17 (CO), 209.76 (CO, cetona); $\frac{m}{2}$ (IQ) 492 [(M+NH₄)+, 100%], 475 [(M+H)+, 61%]; HPLC tr 17.5 y 16.5 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B, (A: H₂O+0.045 % TFA, B: MeCN+0.036 % TFA), flujo= 1 ml/min, detección= 220 nm.

25 Boc-Ist(TBDMS)-Hip-Leu-Pro-OBzl

Método I

En un micro reactor se disolvió Boc-Ist(TBDMS)-Hip-Leu-OH (10 mg, 15.69 mmol) en DMF anhidro (20 ml), se enfrió a -20°C y bajo atmósfera de argón se le añadió HOBt (2 mg, 15.69 mmol), HBTU (6 mg, 15.69 mmol) en DMF (40 ml) y DIEA (2.7 ml, 15.69 mmol) en DMF (12 ml) Después de 3 minutos a -15°C se añadió ProOBzl.HCl (8 mg, 29.81 mmol) en DMF (18 ml) y DIEA (6.7 ml, 47.07 mmol) en DMF (36 ml). La temperatura del sistema se dejó subir hasta temperatura ambiente y a las 4 horas se paró la reacción. Se añadió AcOEt (10 ml) y se hicieron sucesivos lavados con 5% KHSO₄, 5% NaHCO₃ y solución saturada de NaCl, la fase orgánica se secó y se eliminó el disolvente. Se obtuvo un crudo (15 mg) que se purificó por cromatografía sobre sílica (MeOH-CH₂Cl₂, 0.5:9.5) aislando la mezcla diastereoisomérica de BOC-Ist(TBDMS)-Hip-Leu -Pro-OBzl (11 mg, 84%).

Método II

40 H-Hip-Leu-Pro-OBzl (194.6 mg, 0.410 mmol), Boc-Ist(TBDMS)-OH (149 mg, 0.384 mmol) y DMAP (16 mg, 0.134 mmol) se disolvió en en CH2Cl2 anhidro (746 ml) bajo atmósfera inerte. Se enfrió entre -5°C y -10°C y se le adicionó gota a gota DCC (95 mg, 0.461 mmol) en CH₂Cl₂ (154 ml) durante 15 minutos. La temperatura del sistema se mantuvo entre -10°C y -5°C durante 5 horas y a 2°C durante 45 12 horas. El crudo se enfrió y se filtró, se lavó con disolución saturada de NaCl y se eliminó el disolvente; el residuo obtenido se volvió a disolver en AcOEt (40 ml) y se hicieron sucesivos lavados con soluciones de 5 % KHSO₄, 5 % NaHCO₃ y NaCl saturado. Se secó la fase orgánica y se eliminó el disolvente obteniéndose un crudo (412 mg) que se purificó por cromatografía sobre sílica (AcOEt-hexano. 3:7) aislándose la mezcla diastereoisomérica de Boc-Ist(TBDMS)-Hip-Leu-Pro-OBzl (220 mg, 78%). Rf 50 0.44 y 0.14 (AcOET-hexano, 3.5:6.5); IR (film, CH₂Cl₂) (max 3365-3200, 3069 y 3038 (débiles), 2959. 2930, 2882, 2857, 1746, 1688, 1640, 1533, 1456, 1389, 1258, 1171, 1086, 995 cm $^{-1}$; $^{1}\text{H-RMN}$ (500 MHz. CDCl₃)d 0.01 y 0.03 (3H, s, Me-Si, diast. A y B), 0.05 y 0.07 (3H, s, Me-Si, diast. A y B), 0.77-1.03 (18H. m, 2 Me-C₅ Hip. Me-C₆ Ist, Me-C₅ Ist, 2 Me Leu), 0.84 y 0.85 (9H, s, tBu, diast. A y B), 1.32-1.36 (2H. m, C_6H_2 Ist), 1.49 (3H, d, J=7.5 Hz, Me- C_2 Hip, diast. A), 1.33 (3H, d, J=7 Hz, Me- C_2 Hip, diast.B),1.38-1.62 (3H, m, C_bH_2 Leu, C_gH Leu), 1.42 y 1.44 (9H, s, tBu, diast. A y B), 1.51-1.77 (1H, m, C₅H Ist), 1.88-2.37 (m, 3H, C_gH₂ Pro, 1H de C_bH₂ Pro), 2.17-2.33 (2H, m, C₅H Hip, 1H de C_bH₂ Pro), 2.47-2.74 (2H, m, C₂H₂ Ist), 3.34-3.72 (H, m, C₄H Ist, C₂H Hip, 1H de C_dH₂ Pro, diast. A y B), 3.72-3.82 (1H, m, 1H de C_dH₂ Pro, diast. B), 3.99-4.40 (1H, m, 1H de C_dH₂ Pro, diast. A), 4.93-4.16 (1H, m. C_3H Ist), 4.49 (1H, d, J=10.5 Hz, NH Ist, diast. B), 4.54-4. 59 (1H, m, C_aH Pro, diast. B), 4.63-4.70 (2H, m, C_aH Leu del diast. B, C_aH Pro del diast.A), 4.75 (1H, d, J=4.5 Hz, C₄H Hip, diast. A), 4.77-4.81 (1H, m, C_aH Leu, diast. A), 4.95-5.19 (2H, m, benc.), 5.22 (1H, d, J=5 Hz, C_4H Hip, diast. B), 5.32 (1H. d, J=10.5 Hz, NH lst, diast. A), 6.38 (1H. d, J=11Hz, NH lst, diast. A), 6.71 (1H, d, J=7.5

Hz, NH Leu, diast. A), 6.76 (1H. d. J=8.5 Hz. NH Leu, diast. B), 8.60 (1H. d, J=9.5Hz, NH Leu, diast. A); 13 C-RMN (75 MHz, CDCl₃) d -5.05 y -4.49 (2 CH₃, Me-Si), 11.83 y 12.03 (CH₃, Me-C₆ Ist), 13.01 y 13.51 (CH₃, Me-C₅ Ist), 13.83 y 14.08 (CH₃, Me-C₂ Hip), 16.92 y 17.10 (CH₃, Me-C₅ Hip), 17.85 (C, tBu-Si), 19.14 y 19.65 (CH₃, Me-C₅ Hip) 21.57 y 22.09 (CH₃, Me Leu). 22.96 y 23.28 (CH₃, me Leu), 24.36 y 24.60 (CH, C_g Leu). 24.85 (CH₂, C_g Pro), 25.73 (3 CH₃, tBu-Si), 26.97 y 27.33 (CH₂, C₆ Ist), 28.35 y 28.46 (3 CH₃, tBu), 28.93 y 29.09 (CH, C₅ Hip). 29.65 (CH₂, C_b Pro), 34.12 y 34.16 (CH, C₅ Ist). 40.45 (CH₂, C₂ Ist, 1 diast.), 40.85 y 41.18 (CH₂, C_b Leu), 42.20 (CH₂, C₂ Ist, 1 diast), 46.74 y 46.16 (CH₂, C_d Pro), 47.99 (CH, C₂ Hip, 1 diast.), 48.34 y 48.90 (CH, C_d Leu); 49.42 (CH, C₂ Hip, 1 diast.), 57.62 (CH, C₄ Ist, 1 diast), 58.81 y 58.96 (CH, C₄ Pro), 60.46 (CH, C₄ Ist, 1 diast), 66.62 y 66.88 (CH₂, benc.), 68.18 y 69.69 (CH, C₃ Ist), 78. 98 (CH, C₄ Hip, 1 diast.), 79.24 y 79.84 (C, tBu), 82.95 (CH, C₄ Hip, 1 diast.), 128.08-128.49 (CH, CAr), 135.48 y 135.61 (C, CAr), 155.85 y 158.27 (CO, BOC), 157.44 (CO, Bzl), 168.40 y 169.07 (CO, ester), 170.65 y 170.86 (CO), 171.42 y 171.79 (CO), 203.09 y 205.97 (CO); $\underline{m/z}$ (FAB) 846.6 [(M+H)+, 5%], 746.6 [(M-C₅H₉O₂+H)+, 72%]; HPLC tr 26 y 25 min en una columna nucleosil C18 (ϕ =10 m) (fase reversa) haciendo un gradiente lincal de 10% B hasta 100% B en 20 min seguido de 10 min de elución isocrática al 100% B, (A: H₂O+0.045% TFA, B: MeCN+0.036% TFA), flujo= 1ml/min, detección= 220 nm.

H-ISt-Hip-Leu-Pro-OBzl. HCl

Boc-Ist(TBDMS)-Hip-Leu-Pro-OBzl (141.2 mg, 0.167 mmol) se disolvió en dioxano (1 ml), se le añadió una solución deHCl en dioxano (5.7 N) a temperatura ambiente. A las 3 h 30 min se eliminó el disolvente a presión reducida. Después de varias coevaporaciones con CH₂Cl₂ y éter se obtuvo H-Ist-Hip-Leu-Pro-OBzl.HCl (105 mg, 99%.) en forma de un sólido blanco que se utilizó en la siguiente etapa sin purificar. HPLC tr 153 y 15.7 min en una columna nucleosil C18 (φ= 10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B, (A: H₂O+0.045 % TFA, B: MeCN+0.036 % TFA), flujo= 1 ml/min, detección=220 nm; m/z (FAB) 632.6 (M⁺, 100 %).

Boc-Thr[Z-N(Me)-O(Me)-Tyr]Ist-Hip-Leu-Pro-OBzl

30 Boc-Thr[Z-N(Me)-O(Me)-Tyr]-OH (119 mg, 0.217 mmol), HBTU (83 mg, 0.217 mmol) y HOBt (30 mg, 0.217 mmol) mg, 0.217 mmol) se disolvieron en THF anhidro (1.2 ml) bajo atmósfera de N2 a un temperatura de -15°C y seguidamente se le añadió DIEA (37 ml, 0.217 mmol). Después de 2 minutos se le añadió Hlst-Hip-Leu-Pro-OBzl.HCl (0.167 mmol) disuelto en THF (2 ml) y se añadió gota a gota DIEA (57 ml, 0.334 mmol) en 15 minutos. La temperatura del sistema se mantuvo entre -10°C y -5°C durante 4 h 30 min. Se eliminó el disolvente, se volvió a disolver en AcOEt (30 ml) y se hicieron Sucesivos lavados de la fase orgánica con soluciones de 5% KHSO₄, 5% NaHCO₃ y NaCl saturado. Después se secó con ${
m MgSO_4}$ y se eliminó el disolvente obteniéndose un crudo (329 mg) que se purificó por cromatografía sobre sílica (AcOEt-hexano, 1:1) aislándose la mezcla diastereoisomérica de Boc-Thr[Z -N(Me)-O(Me)-Tyr]Ist-Hip-Leu-Pro-OBzl (159 mg, 82%) en forma de un sólido blanco. Rf 0.29 y 0.1 (AcOEt-hexano, 1:1); IR $(\text{film, CH}_2\text{Cl}_2) \ (\text{max } 3450\text{-}3260, \ 2961, \ 2927, \ 2893, \ 1744, \ 1688, \ 1638, \ 1514, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1368, \ 1304, \ 1368, \ 1304, \ 1248, \ 1171, \ 1454, \ 1368, \ 1304, \ 1368, \ 1304, \ 1368, \ 1304, \ 1368, \ 1304, \ 1368, \ 1304, \ 1368, \ 13$ 1067, 1036 cm $^{-1}$; 1 H-RMN (500 MHZ, CDCl $_{3}$) d 0.74-0.9 (18H, md, 2 Me-C $_{5}$ Hip, Me-C $_{5}$ Ist, me-C $_{6}$ Ist, 2 Me Leu), 1.05-1.15 y 1.18-1.20 (2H, m, C_6H_2 Ist), 1.23 y 1.25 (3H, d, J=7 Hz y J=7Hz, Me- C_b Thr), 1.29 y 1.29 (3H, d, J=7 Hz y J=7Hz, Me-C₂ Hip), 1.42 (9H, s, tBu, diast. A), 1.45 (9H, s, tBu, diast. B), 1.50-1.66 (3H, m, C_gH Leu, C_gH Leu), 1.89-2.02 (4H, m, C_gH Ist, 1 H de C_gH Pro, C_gH Pro), 2.17-2.25 (2H, m, 1 H de C_gH Pro, C_gH Hip), 2.37-2.42 (1H, m, C_gH Ist), 2.81 y 2.88 (3H, Nme Tyr, isomeros rotacionales del diast. A), 2.91 y 2.95 (3H, NMe Tyr, isomeros rotacionales del diast. B), 2.84-2.93 (2H, m, 1 H de C_gH Ist, 2 H let C_gH Ist, 3 H let C_gH Ist, 3 H let C_gH Ist, 3 H let C_gH Ist, 4 H let C_gH Ist, (1H, m, C_dH_2 Pro), 3.75 (3H, s, OMe), 3.88-3.98 (4H, m, 1 H C_dH_2 Pro, C_3H Ist, C_2H Hip, C_4H Ist). 50 4.49 y 4.51 (1H, d, J=3 Hz y J=3 Hz, C_aH Thr), 4.53-4.57 (1H, m, C_aH Pro), 4.68-4.72 (1H, m, C_aH Leu), 4.96-4.99 (1H, m, C_aH Tyr), 5.02-5.33 (4H, m, 2 CH_2 benc.), 5.02 (1H, d, J=3 Hz, C_4H Hip, diast. A), 5.23 (1H, d, J=3 Hz, C₄H Hip, diast. B), 5.26-5.33 (1H, m, C_b H Thr), 5.47 (1H, d, J=9.5 Hz), 6.74 y 7.00 (4H, CArH Tyr orto y meta al OMe respectivamente, sistema AB, diastereoisómero B), 6.77 y 7.08 (4H, CArH Tyr orto y meta al OMe respectivamente, sistema AB, diastereoisómero A), 7.17 y 7.21 (1H, d, J=7.5 Hz y J=9.5 Hz, NH Ist), 7.23-7.36 (10H, m, CArH), 7.75 (1H, d, J=8 Hz, NH Leu, diast. A), 7.79 (1H, d, J=8 Hz, NH Leu, diast. B); ¹³C-RMN (75 MHz, CDCl₃) d 11.95 (CH₃, Me-C₆ Ist), 13.27 (CH₃, Me-C₅ lst), 15.16 (CH₃, Me-C₂ Hip), 16.47 (CH₃, Me-C₅ Hip), 17.33 (CH₃, Me Thr), 18.79 (CH₃, Me-C₅ Hip), 21.28 (CH₃, Me Leu), 23.65 (CH₃, Me Leu), 24.65 (CH, C_g Leu), 24.72 (CH₂, C_g Pro), 27.09 (CH₂, C₆ Ist), 28.08 (3 CH₃, tBu), 28.93 (CH₂, C_b Pro), 31.20 (CH, C₅ Hip), 31.32 (CH₃, Nme), 33.62 (CH, C₅ Ist), 33.98 (CH₂, C_b Tyr), 38.38 (CH₂, C₂ Ist), 41.01 (CH₂, C_b Leu), 47.12 (CH₂, Cd Pro), 49.38 (2 CH, C₂ Hip, Ca Leu), 54.96 (CH, C₄ Ist), 55.17 (CH₃, OMe), 57.89 (CH, Ca Thr), 58.83 (CH, C_a Pro), 60.01 y 60.16 (CH, C_a Tyr), 67.18 (CH y CH₂, C₃ Ist, 2 CH₂ benc.), 71.05 y 71.32 (CH, C_b Thr), 80.34 (C, tBU), 81.24 (CH, C_4 Hip). 113.89 (2 CH, CArH Tyr orto al OMe), 127.51-128.59 (10CH, CAr), 129.69 i 129.77 (2 CH, CARH Tyr meta al OMe), 135.52 y 136.77 (2 C, CAr), 156.93 (2 CO), 158.27 (CO), 169.87 (CO), 170.62 (CO); 171.15 (CO), 171.85 (CO), 172.39 (CO), 204.88 (CO); m/z (FAB), 1180 [(M+Na)+, 100%], 1158 [(M+H)+, 8%], 1058 [(M- C_5 H9 O_2 +H)+, 19%]; HPLC tr 21 y 22 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10% B hasta 100% B en 20 min seguido de 10 min de elución isocrática al 100% B, (A: H₂O+0.045% TFA, B: MeCN+0.036% TFA), flujo=1 ml/min, detección=220 mm.

Boc-Thr[H-N(Me)-O(Me)-Tyr]Ist-Hip-Leu-Pro-OH

Boc-Thr[Z-N(Me)-O(Me)-Tyr]Ist-Hip-Leu-Pro-OBzl (45 mg, 39.12 mmol) se añadió a una suspensión de 10 % Pd-C (39 mg, 86 % en peso) en THF (1.7 ml) bajo atmósfera de N_2 , se cambió el N_2 por H_2 y se purgó el sistema. El sistema se mantuvo 2 h 45 min con fuerte agitación magnética. Después se filtró sobre celite lavando varias veces con THF. Se eliminó el disolvente y se obtuvo BOC-Thr[H-N(Me)-O(Me) -Tyr]Ist-Hip-Leu-Pro-OH (37 mg, 99 %.) en forma de aceite. H-RMN (500 MHz, CDCl₃) d 0.79-1.08 (18H, md, 2 Me Leu, 2 Me Ist, 2 Me-C₅ Hip), 1.80-1.38 (3H, m, C_6H_2 Ist, C_5H Ist), 1.26 (3H, sa, Me Thr), 1.29 (3H, d, J=7 Hz, Me-C₂ Hip), 1.50-1.66 (3H, m, C_6H_2 Ist, C_5H Leu), 1.84-1.94 (1H, m, C_5H Ist), 1.90-2.28 y 2.35-2.50 (4H, 2m, C_6H_2 Pro, C_gH_2 Pro), 2.30-2.35 (1H, m, C_5H Hip), 2.44-3.18 (4H, mm, C_6H_2 Ist, C_6H_2 Tyr), 2.60 (3H, NMe, Tyr), 3.53-3.61 (1H, m, 1H de C_dH_2 Pro), 3.77 (3H, OMe), 3.88-4.07 (4H, 4m, 1H de C_dH_2 Pro, C_3H Ist, C_2H Hip, C_4H Ist), 4.12-4.72 (4H, 4m, C_aH Thr, C_aH Pro, C_aH Leu, C_aH Tyr), 5.18-5.2 4 (1H, m, C_6H Thr), 5.24 (1H, sa, C_4H Hip), 6.84 (2H, d, J=8 Hz, CArH Tyr orto al OMe), 7.08 (2H, d, J=8 Hz, CArH Tyr meta al OMe), 7.13 y 7.18 (1H, 2d, J=8 Hz, NH Thr, 2 diast.), 7.62-7.68 (1H, NH Leu); m/z (FAB) 972.7 [(M+K)+, 33 %], 934.9 [(M)+, 88 %]. HPLC tr 14.7, 15.2 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B, (A: $H_2O+0.045$ % TFA, B: MeCN+0.036 % TFA), flujo= 1 ml/min, detección= 220 nm.

Ciclo-BOC-Thr[N(Me)-O(Me)-Tyr]Ist-Hip-Leu-Pro

Boc-Thr[H-N(Me)-O(Me)-Tyr]ISt-Hip-Leu-OH (36 mg, 39-12 mmol) se disolvió en THF (34 ml) y a 0°C se le anadió HATU (18.2 mg, 46.94 mmol), HOAt (6.5 mg, 47.73 mmol) y DIEA (13.3 ml, 78.24 mmol). Se dejó que el sistema llegara a temperatura ambiente y a las 17 h de reacción se eliminó el disolvente. Se volvió a disolver en AcOEt (10 ml) y se hicieron sucesivos lavados con soluciones de 5 % KHSO₄, 5% NaHCO₃ y NaCl saturado; se secó con MgSO₄ y se eliminó el disolvente obteniéndose un crudo (49 mg) que se purificó por cromatografía sobre sílica (AcOEt-hexano, 1:1), aislando ciclo-Boc-Thr(N(Me)-O(Me)-Tyr(Ist-(4S)-Hip-Leu (27 mg, 76%) en forma de aceite que posteriormente solidificó. P f 164-168°C; [a]_D -209.4 (c 0.32, CHCl₃); Rf 0.21 (AcOEt-hexano, 1:1); IR (film, CH₂Cl₂) (max 3343 (ancho), 2961, 2927, 2893, 1734, 1640, 1514, 1454, 1368, 1302, 1248, 1167, 1018 cm⁻¹; ¹H-RMN (500 MHz, CDCl₃) 0.8 (3H, d, J=7 Hz, Me-C₅ Hip), 0.85 (3H, d, J=7 Hz, Me-C₅ Hip), 0.87 (3H, d, J=7 Hz, Me-C₅ Ist), 0.89-0.93 (9H, md, 2 Me Leu, Me-C₆ Ist), 1.10-1.20 (1H, m, C₅H Ist), 1.20 (3H, d, J=6 Hz, me Thr), 1.30 (3H, d, J=7 Hz, Me-C₂ Hip), 1.36.1.44 (2H, m, C_6H_2 Ist), 1.44 (9H, s, tBu), 1.48-1.72 (2H, m, C_bH_2 Leu), 1.72-1.78 (1H, m, C_bH_2 Pro), 1.83-1.88 (1H, m, C_gH Leu), 2.01-2.17 (3H, 2m, 1 H de C_bH_2 Pro, C_gH_2 Pro), 2.27-2.29 (1H, m, C_5H Hip), 2.47-2.53 (1H, m, C_2H_2 Ist), 2.53 (3H, s, NMe), 2.93 (1H, sa, OH), 3.14-3.19 (2H, m, C_2H_2 Ist, 1H C_bH_2 Tyr), 3.34-3.37 (1H, dd, J=15 Hz, J=4 Hz, 1H C_bH_2 Tyr), 3.54-3.56 (1H, dd, J=10.5 Hz, J=4 Hz, C_aH Tyr), 3.58-3.63 (1H, m, 1 H C_dH_2 Pro), 3.68-3.72 (1H, m, 1 H C_dH₂ Pro), 3.78 (3H, s. OMe), 3.94-3.98 (1H, m, C₃H Ist), 3.98 (1H, q, J=7.5 Hz, $C_{2}H \text{ Hip}$, 4.07-4.11 (1H, 3d, J=4 Hz, $C_{4}H$ Ist), 4.57-4.61 (2H, m, $C_{a}H$ Thr, $C_{a}H$ Pro), 4.77-4.81 (1H. m, C_aH Leu), 4.97-4.98 (1H, qa, J=3.5 Hz, C_aH Thr), 5.02 (1H, d, J=10.5 Hz), 5.18 (1H, d, J=4Hz, C_4H Hip), 6.81 (2H, d, J=8.5 Hz, CArH Tyr orto al OMe), 7.05 (2H, d, J=8.5 Hz, CArH Tyr meta al 50 OMe), 7.19 (1H, d, J=10 Hz, NH Ist), 7.64 (1H, d, J=10 Hz, NH Leu); ¹³C-RMN (75 MHz, CDCl₃) d 11.56 (CH₃, Me-C₆ Ist), 14.68 (CH₃, Me-C₅ Ist), 14.97 (CH₃, Me Thr), 15.27 (CH₃, Me-C₂ Hip), 16.61 (CH₃, Me-C₅ Hip), 18.45 (CH₃, Me-C₅ Hip), 20.64 (CH₃, Me Leu), 23.50 (CH₃, Me Leu), 24.71 (CH, C_g Leu), 24.78 (CH_g, C_g Pro), 26.92 (CH₂, C_b Pro), 27.73 (CH₂, C₆ Ist), 27.94 (3 CH₃, tBU), 31.55 (CH. C₅ Hip), 33.94 (CH₂, C_b Tyr), 33.94 (CH, C₅ Ist), 38.27 (CH₂, C₂ Ist), 38.52 (CH₃, NMe Tyr), 40.64 (CH₂, C_b Leu), 46.86 (CH₂, C_a Pro), 49.54 (CH, C₂ Hip), 49.65 (CH, C_a Leu), 55.16 (CH₃, OMe), 55.19 (CH, C₄ Ist), 55.84 (CH, C_a Thr), 57.12 (CH, C_a Pro), 65.96 (CH, C_a Tyr), 67.30 (CH, C₃ Ist), 71.00 (CH, C_b Tyr), 80.27 (C, tBu), 81.41 (CH, C₄ Hip), 114.02 (2 CH, CArH Tyr orto al Ome), 130.22 (2 CH, CArH Tyr meta al OMe), 158.53 (2 C, CAr Tyr), 168.30 (CO), 169.31 (CO), 170.12 (CO), 170.29 171.20 (CO), 172.38 (CO), 204.51 (CO); m/z (FAB) 938.6 [(M+Na)+, 12%], 916.2 [(M+H)+, 31%], 816.8[(M-C₅H₉O₂+H).+, 68%]: HPLC tr 20.4 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B, (A: H₂O+0.045 % TFA, B: MeCN+0.036 % TFA), flujo= 1 ml/min, detección= 220 nm.

Ciclo-H-Thr[N(Me)-O(Me)-Tyr]Ist-Hip-Leu Pro. HCl

El macrociclo ciclo-BOC-Thr(N(Me)-O(Me)-Tyr(Ist-Hip Leu-Pro (9 mg, 9.93 mmol) se disolvió en dioxano (50 ml), y posteriormente se trató con 5.7 N HCl-dioxano (700 ml) a temperatura ambiente. Después de 1 h se eliminó el disolvente a presión reducida y se hicieron coevaporaciones con CH₂Cl₂ y éter anhidro. Se obtuvo ciclo-H-Thr[N(Me)-O(Me)-Tyr]Ist-Hip-Leu. HCl (8.5 mg, 99%). HPLC tr 15.0 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10% B hasta 100% B en 20 min seguido de 10 min de elución isocrática al 100% B, (A: H₂O+ 0.045% TFA, B: MeCN+ 0.036% TFA), flujo= 1 ml/min, detección= 220 nm, m/z (FAB) 8.38.3 [(M+Na)+, 28%], 816.3 [(M+H)+, 100%], 798.3 [(M-H₂O+H)·+, 36%].

BOC-didemnina A

En un microreactor se disolvieron Boc-(R)-N(Me)-Leu-OH (6 mg, 24.82 mmol), BOP (12 mg, 27.31 mmol) y HOBt (4 mg, 27.31 mmol) en CH₂Cl₂ anhidro (65 ml) a 0°C y se añadió DIEA (4.2 ml, 24.82 mmol). A continuación se añadió ciclo-H-Thr[N(Me)-O(Me)-Tyr]Ist-Hip-Leu-Pro. HCl (9 mg, 9.93 mmol) disuelto en CH₂Cl₂ anh. (120 ml) y se dejó que el sistema llegara a temperatura ambiente. Después de 40 minutos se evaporó el CH₂Cl₂ y el residuo se volvió a disolver en AcOEt (5 ml), se hicieron sucesivos lavados con 5 % KHSO4, 5 % na HSO4 y NaCl saturado, se secó con MgSO4 y se eliminó el disolvente. Se obtuvo un crudo (19 mg) que se purificó por cromatografía líquida sobre sílica (AcOEt-hexano, 1:1) y se aisló Boc-didemnina A (9.5 Mg, 92%) en forma de aceite que posteriormente solidificó. p f 121-124°C; Rf 0.16 (AcoEt-hexano, 1:1); [a]_D -84.19 (c 0.37, CHCl₃); IR (film, CH₂C12) (max 3338 (ancho), 2959, 2930, 2875, 1734, 1667, 1640, 1539, 1514, 1454, 1389, 1368, 1321, 1248, 1157, 1076 cm⁻¹; H-RMN (500) MHz, CDCl₃) d 0.82-0.92 (24H, md, 2 Me Hip, 2 Me Ist, 2 Me Leu, 2 Me MeLeu), 1.11-1.19 (1II, m, C_6H_2 Ist), 1.22 (3H, d, J=6 Hz, Me Thr), 1.32 (3H, d, J=6.5 Hz, Me- C_2 Hip), 1.30-1.35 (1H, m, C_6H_2 Ist), 1.35-1.63 (6H, m, C_bH_2 Leu, C_bH_2 MeLeu, C_gH Leu, C_gH MeLeu), 1.71-1.81 (2H, m, C_5H Ist, 1 H de C_bH_2 Pro), 1.93-2.07 (1H, m, C_bH_2 Pro), 2.07-2.18 (2H, m, C_gH_2 Pro), 2.28-2.34 (1H, m, C_5H Hip), 2.49-2.52 (1H, dd, J=10.5 Hz, J=11 Hz, 1 H de C_2H_2 Ist), 2.54 (3H, s, NMe Tyr), 2.72 y 2.79 (3H, sa, NMe MeLeu, isomeros rotacionales), 2.86-2.94 (1H, sa, OH), 2.72-2.79 (1H, da, J=10.5 Hz, 1 H de C_2H_2 Ist), 3.15-3.18 (1H, dd, J=14.5 Hz, J=10.5 Hz, 1H de C_bH_2 Tyr), 3.33-3.36 (1H, dd, J=14.5 Hz, J=4.5~Hz, 1H de $C_bH_2~Tyr$), 3.54-3.57 (1H, dd, J=10.5~Hz, J=4.5~Hz, $C_aH~Tyr$), 3.56-3.61 (1H, m, 1) H de C_dH_2 Pro), 3.78 (3H, s, OMe), 3.96-4.00 (1H, m, C_3H Ist), 4.03-4.08 (1H, m, C_4H Ist), 4.11-4.80 (1H, sa, C_2H Hip), 4.56-4.62 (1H, m, C_aH Pro), 4.68-4.81 (3H, m, C_aH Thr, C_aH MeLeu, C_aH Leu), 4.99-5.01 (1H, qa, J=3.5 Hz, C_bH Thr), 5.16 (1H, sa, C_4H Hip), 6.83 (2H, d, J=8.5 Hz, CArH Tyr orto al OMe), 6.95 (1H, sa, NH Thr), 7.07 (2H, d, J=8.5 Hz, CArH Tyr meta al OMe), 7.2-7.25 (1H, sa, NH Ist), 7.95 (1H, sa, NH Leu); ¹³C-RMN (75 MHz, CDCl₃) d 11.55 (CH₃, Me-C₆ Ist), 14.95 (CH₃, Me-C₅ Ist), 15.26 (2 CH₃, Me Thr, Me-C₂ Hip), 16.82 (CH₃, Me-C₅ Hip), 18.56 (CH₃, Me-C₅ Hip), 20.89 (CH₃, me Leu), 22.00 (CH₃, Me Leu), 23.08 (CH₃, Me MeLeu), 23.76 (CH₃, Me MeLeu), 24.58 (CH, C_gH Leu), 24.85 (CH, C_gH MeLeu), 25.10 (CH₂, C_g Pro), 27.12 (CH₂, C_b Pro), 29.35 (3 CH₃, tBu), 29.35 (CH₂, C_6 Ist), 29.65 y 29.69 (CH₃, NMe MeLeu, isómeros rotacionales), 31.36 (CH C_5 Hip), 33.96 (CH₂, C_b Tyr), 34.14 (CH, C_5 Ist), 38.51 (CH₂, C_2 Ist) 38.64 (CH₃, NMe Tyr), 40.14 (2 CH₂, C_b Leu, C_b MeLeu), 55.38 (CH, C_a Thr), 55.56 (CH, C_4 Ist), 57.31 (CH, C_a Pro), 66.17 (CH, C_a Tyr), 67.85 (CH, C_3 Ist), 70.58 (CH, Cb Thr), 80.96 y 80.98 (C, tBu, isómeros rotacionales), 81.57 (CH, C4 Hip), 114.12 (2 CH, 45 CArH Tyr orto al OMe), 130.33 (2 CH, CArH Tyr meta al OMe), 158.63 (CO), 168.41 (CO), 169.33 (CO), 169.70 (CO), 170.38 (CO), 171.24 (CO), 172.28 (CO), 172.28 (CO), 172.93 (CO), 204.83 (CO); m/z (FAB) 1065.8 [(M+Na)⁺, 31%], 1043.8 [(M+H)⁺, 100%], 943.7 [(M-C₅H₉O₂+H)⁺, 84%]; HPLC tr 21.2 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10% B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B, (A: H₂O+0.045 % TFA, B: 50 MeCN+0.036% TFA), flujo= 1 ml/min, detección=220 nm.

Didemnina A.HCl.

Boc-didemnina A (4 mg, 3.88 mmol) se disolvió en dioxano (50 ml) y posteriormente se trató con 6N HCl en dioxano durante 30 minutos. Se eliminó el disolvente a presión reducida y se hicieron varias coevaporaciones con CH₂Cl₂ y después con éter anhidro hasta obtenir didemnina A.HCl como un sólido blanco (3.9 mg, 99 %). HPLC tr 17.4 min en una columna nucleosil C18 (φ= 10 m) (fase reversa) haciendo un gradiente lineal de 10 % B hasta 100 % B en 20 min seguido de 10 min de elución isocrática al 100 % B. (A: H₂O+0.045 % TFA, B: MeCN+0.036 % TFA), flujo= 1 ml/min, detección= 220 nm, m/z (ES) 944 (M⁺, 100 %).

Pir-Pro-OBzl

Pro-OBzl.HCl (6.26 g, 0.0259 mmol) se disolvió en CH₂Cl₂ (14 ml), se enfrió a 0°C y se le añadió DIEA (4.4 ml. 0.0259 mmol). Después de 5 minutos, a 0°C se añadió ácido piruvico (1.58 ml, 0.0216 mmol), DCC (5.35 g, 0.0259 mmol), HOBt (3.27 g, 0.0238 mmol) y DIEA (3.67 ml, 0.0216 mmol). Después de 32 horas a temperatura ambiente, el crudo se filtró en frío y se eliminó el disolvente. El residuo se volvió a disolver en AcOEt, se lavó con soluciones de 5% KHSO₄, 5% NaHCO₃ y NaCl saturado, se secó con MgSO₄ y se eliminó el disolvente. Se obtuvo un crudo que se purificó por cromatografía sobre sílica (AcOEt-hexano, 3:7) aislándose Pir-Pro-OBzl (2.04 g, 36%). Rf 0.32 (AcOEt-hexano, 3:7); [a]_D.-66.8° (c 0.144, CHCl₃); IR (film, CH₂Cl₂) (max 3035, 2956, 2884, 1744, 1717, 1645, 1499, 1443, 1383, 1352, 1273, 1175, 1092 cm⁻¹; ¹H-RMN (200 MHz, CDCl₃) d 1.75-2.40 (4H, m, C_bH₂ Pro, C_gH₂ Pro), 2.37 y 3.44 (3H, s. Me Pir, isómeros rotacionales), 3.45-3.82 (2H, C_dH₂ Pro), 4.52-4.61 y 4.88-4.97 (1H, dd, C_aH Pro, isómeros rotacionales), 5.14-5.15 y 5.17-5.20 (2H, dd, benc, isómeros rotacionales), 7.34 y 7.36 (5H, ar, isómeros rotacionales); ¹³C-RMN (50 MHz, CDCl₃) d 22.11 y 25.22 (CH₂, C_g Pro), 26.5 y 27.10 (CH₃, Me Pir), 28.53 y 31.48 (CH₂, C_b Pro), 47.53 y 44.81 (CH₂, C_d Pro), 59.76 (CH, C_a Pro), 67.02 y 67.31 (CH₂, benc.) 128.11-128.64 (5CH, CAr), 135.24 (C, CAr), 170.1 y 170.2 (CO), 198 (CO); m/z 298 [(M+Na)⁺, 19%], 276 [(M+H)⁺, 100%].

Pir-Pro-OH

20

Pir-Pro-OBzl (174 mg, 0.632 mmol) se disolvió en THF (2 ml) y se añadió a una suspensión de 10 % Pd-C (50 % H₂O) (105 mg, 60 % en peso) en THF (2 ml) bajo N₂. Se cambió la atmósfera inerte por H₂ y se purgó el sistema. Después de 3 h a temperatura ambiente, se filtró sobre celite y se eliminó el disolvente, obteniéndose un crudo (120 mg) que se purificó por cromatografía sobre sílica (AcOEt-hexano, 6:4) aislándose Pir-Pro-OH (85 mg, 72 %) en forma de sólido blanco; [a]_D.-112° (c 0.12, CHCl₃); IR (film, CH₂Cl₂) (max 3450-3000, 2961-2870, 1719, 1643, 1615, 1452, 1354, 1205, 1175, 1094, 1018 cm⁻¹; ¹H-RMN (200 MHz, CDCl₃) d 1.85-2.45 (4H, M, C_bH₂ Pro, C_gH₂ Pro), 2.43 y 2.47 (3H, s, Me Pir), 3.42-3.85 (2H, m, C_dH₂ Pro), 4.52-4.61 y 4.88-4.97 (1H, dd, C_aH Pro), 7.21-7.40 (1H, sa, COOH); ¹³C-RMN (75 MHz, CDCl₃) d 22.031 y 25.23 (CH₂, C_g Pro), 26.48 y 27.00 (CH₃, Pir), 28.23 y 31.44 (CH₂, C_b Pro), 47.57 y 48.37 (CH₂, C_d Pro), 59.61 y 59.395 (CH, C_a Pro), 162.47 y 162.52 (CO), 175.04 y 176.29 (CO), 197.18 (CO); m/z (IQ) 220 [(M+Cl)⁻, 7 %], 203 [(M+NH₄)⁺, 100 %]. 186 [(M+H)⁺, 16 %].

Dehidrodidemnina B

En un microreactor se introdujo didemnina A. HCl (8 mg, 8.53 mmol), el sistema se enfrió a -5°C y bajo atmósfera inerte se le añadió: Pir-Pro-OH (6 mg, 34.7 mmol) en CH₂Cl₂ anhidro (35 ml), PyBroP (16 mg, 34.7 mmol) en CH₂Cl₂ (40 ml), DIEA (8.7 ml, 51.2 mmol). La temperatura del sistema se dejó subir lentamente hasta temperatura ambiente y después de 4 horas se eliminó el CH₂Cl₂. Se volvió a disolver en AcOEt (10 ml) y se lavó con soluciones de 5% KHSO₄, 5% NaHCO₃ y NaCl saturado, se secó con MgSO₄ y se eliminó el disolvente. El crudo (20 mg) que se obtuvo se purificó por cromatografía sobre sílica (AcOEt:CH₂Cl₂, 1:1) y se aisló dehidrodidemnina B (6 mg, 62%) en forma de aceite que posteriormente solidificó. p f 141-145°C; Rf 0.40 y 0.28 (CH₂Cl₂:AcOEt, 2:3), 0.52 y 0.45 (CHCl₃:MeOH, 9.5:0.5); ¹H-RMN (500 MHz, CDCl₃) d 0.84-0.93 (24H, md, 2 Me MeLeu, 2 Me Hip, 2 me Ist), 1.16-1.70 (9H, mm, C_6H_2 Ist, C_bH_2 Leu, C_gH_2 Leu, C_bH_2 MeLeu, C_5H Ist, C_gH MeLeu), 1.72-1.81 (1H, m, 1H de $C_bH_2Pro^2$), 1.81-1.90 (1H, m, C_bH_2Pro), 1.90-2.24 (6H, mm, 1H de C_bH_2Pro , C_aH_2Pro , C_aH_2Pro Pro², 1H de C_bH₂Pro²), 2.30-2.39 (1H, m, C₅H Hip), 2.49 y 2.51 (3H, Me Pir, isómeros conformacionales), 2.55 (3H. Nme Tyr), 2.52-2.64 (1H, m, 1H de C₂H₂ Ist), 2.85 y 2.94 (1H, sa, OH, isómeros conf), 3.09 y 3.13 (3H, s, NMe MeLeu, isómeros conf.), 3.15-3.18 (1H, m, 1H de C_bH₂ Tyr), 3.21-3.26 (1H, dd, J=16 Hz, J=6 Hz, 1H C_2H_2 Ist), 3.32-3.36 (1H, dd, J=14.5 Hz, J=4 Hz, 1H de C_bH_2 Tyr), 3.54-3.60 (1H, m. 1H de C_dH_2 Pro), 3.66-3.72 (1H, m, 1H de C_dH_2 Pro), 3.78 (3H, s, OMe), 3.80-3.87 (1H, m, 1H de C_dH_2 Pro²), 3.96-3.99 (1H, m. 1H de C_dH_2 Pro²), 4.03-4.11 (2H, M, C_4H Ist, C_3H Ist), 4.15-4.23 (1H, 2q, J=7.5 Hz, C_2H Hip, isomeros conf.), 4.55-4.57 (1H, 2d, J=5.5 Hz, J=2 Hz, C(H) Thr, 1 conformer), 4.59-4.62 (1H, ta, C_aH Pro), 4.56-4.64 (1H, dd, J=6.5 Hz, J=2.5 Hz, C_aH Thr 1 conformer), 4.68-4.71 (1H, ta, C_aH Pro²), 4.76-4.81 (1H, ta, C_aH Leu 2 conformers), 5.10-5.18 (1H, m, C_bH Thr 1 conformer), 5.17 y 5.18 (1H, d, J=3.5 Hz, C₄H Hip 2 conformers). 5.27-5.31 (2H, m, C_bH Thr 1 conformer, C_aH MeLeu 1 conformer), 6.82 y 6.83 (2H, d, J=8.5 Hz, CArH Tyr orto al OMe, 2 conformers), 7.05 y 7.06 (2H, d, J=8. 5 Hz, CArH Tyr meta al OMe, 2 conformers), 7.02 (1H, d, J=7Hz, NH Thr 1 conformer), 7.16 y 7.17 (1H, d, J=9.5 NH Ist, 2 conformers), 7.59 (1H, d, J=5.5 Hz, NH Thr 1 conformer) 7.77 (1H, d, J=9. 5 Hz, NH Leu, 1 conformer), 7.83 (1H, d, J=9 Hz, NH Leu, 1 conformer); ¹³C (75 MHz, CDCl₃) d 11.63 y 11.68 (CH₃, Me-C₆ Ist), 14.11 y 14.70 (CH₃, Me-C₅ Ist), 15.26 y 15.30 (CH₃, Me-C₂ Hip), 16.00 y 16.20 (CH₃, Me Thr), 16.88 y 16.93 (CH₃, Me-C₅ Hip), 18.62 y 18.85 (CH₃, Me-C₅ Hip), 20.89

y 20.94 (CH₃, Me MeLeu), 21.62 y 21.36 (CH₃, Me MeLeu), 23.44 y 23.57 (CH₃, Me Leu), 23.84 y 23.93 (CH₃, Me Leu), 24.66 y 24.77 (CH, C_g Leu), 24.85 y 25. 02 (CH₂, C_g Pro) 26.22 y 26.34 (CH₂, C_g Pro²), 27.09 y 27.6 (CH₃, Pir), 27.06 y 27.30 (CH, C_g MeLeu), 27.95 y 27.99 (CH₂, C_b Pro C_b Pro²), 29.33 y 29.69 (CH₂, C₆ Ist), 31.31-31.37 (CH₃, CH, NMe MeLeu, C₅ Hip), 33.97-34.06 (CH₂ CH, C_b Tyr, C₅ Ist), 36.02 y 36.45 (CH₂, C_b MeLeu), 38.68-38.76 (CH₂, CH₃, C₂ Ist, NMe Tyr), 41.01-41.15 (CH₂, C_b Leu), 47.00 (CH₂, C_d Pro), 48.42 y 48.48 (CH₂, Cd Pro²), 48.86 (CH, C_a Tyr), 49.20-49.51 (2 CH, C_a Hip, C_a Leu), 54.65 y 54.75 (CH, C_a MeLeu), 55.26 (CH₃ OMe), 55.58 y 55.61 (CH, C₄ Ist), 57.14 y 57.27 (2 CH, C_a Pro, C_a H Pro²), 57.47 y 57.79 (CH, C_a Thr), 66.24 y 33.39 (CH, C_a Tyr), 67.80 y 67.99 (CH, C₃ Ist), 70.34 y 70.67 (CH, C_b Thr), 81.0 y 81.52 (CH, C₄ Hip), 114.10 (2 CH, CArH Tyr orto al OMe), 130.31 (2 CH, CArH Tyr meta al OMe), 156.0 (2 C, CAr Tyr), 158.65 (CO), 161.11 y 161.60 (CO), 168.20 (CO), 169.53 y 169.59 (CO), 170.452 (CO), 171.25 (CO), 171.80 (CO), 171.95 (CO), 172.26 y 172.33 (CO), 197.5 (CO), 204.80 y 204.85 (CO); m/z (FAB) 1132.6 [(M+Na)⁺, 42%], 1110.8 [(M+H)⁺, 100%]; HPLC tr 19.0 y 19.8 min en una columna nucleosil C18 (ϕ = 10 m) (fase reversa) haciendo un gradiente lineal de 10% B hasta 100% B en 20 min seguido de 10 min de elución isocrática al 100% B, (A: H₂O+0.045% TFA, B: MeCN+0.036% TFA), flujo= 1 ml/min, detección= 220 nm.

REIVINDICACIONES

- 1. Procedimiento de preparación de didemnina A, caracterizado porque comprende:
- a) someter a acoplamiento las unidades

10

15

25

35

45

Z-N(Me)-O(Me)-Tyr-O-[Boc-Thr]-OH

v

H-Ist-Hip-Leu-Pro-OBzl.HCl

en presencia de HBTU y DIEA, para producir Z-N(Me)-O(Me) -Tyr-[Boc-Thr]-Ist-Hip-Leu-Pro-OBzl:

b) desproteger simultáneamente los extremos N- y C- terminal del producto de la etapa anterior mediante hidrogenólisis, para producir:

H-N(Me)-O(Me)-Tyr-[Boc-Thr]-Ist-Hip-Leu-Pro-OH

- c) ciclar el producto de la etapa anterior utilizando el acoplante HBTU en presencia de HOBT y DIEA.
 para producir el correspondiente producto macrocíclico con el N-terminal de la Thr protegido;
 - d) desproteger el grupo amino de la Thr por tratamiento con ácido trifluoracético y acoplar el macrólido obtenido con

Boc-(R)-NMe-Leu-OH

para producir la Boc-didemnina A;

- e) someter la Boc-didemnina A obtenida en la etapa anterior a reacción con ácido trifluoracético, para producir la didemnina A.
 - 2. Procedimiento según la reivindicación 1, caracterizado porque la unidad Z-N(Me)-O(Me)-Tyr-O-[Boc -Thr]-OH se sintetiza a partir de

Z-N(Me)-O(Me)-Tyr-OH

У

Boc-Thr-OSEM

- que se acoplan por esterificación en presencia de DCC para obtener un didepsipéptido, el cual se trata con ácido fluorhídrico acuoso para producir la mencionada unidad.
 - 3. Procedimiento según la reivindicación 1, caracterizado porque la unidad H-Ist-Hip-Leu-Pro-OBzl.HCl se sintetiza a partir de

Boc-Leu-OH

У

H-Pro-OBzl

que se acoplan con DCC y HOBt para producir Boc-Leu-Pro-OBzl, que tras desprotección con ácido trifluoracético y acoplamiento con TBDMS-Hip-OH en presencia de HBTU. HOBt y DIEA proporciona

TBDMS-Hip-Leu-Pro-OBzl

el cual por tratamiento con fluoruro de tetrabutilamonio y posterior esterificación con

Boc-Ist(OTBDMS)-OII

en presencia de DCC, produce

Boc-Ist-Hip-Leu-Pro-OBzl

que finalmente por tratamiento con clorhídrico en dioxano da lugar a la unidad deseada.

① ES 2 102 322

②1) N.° solicitud: 9501411

22) Fecha de presentación de la solicitud: 13.07.95

32) Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤1) Int. Ci	. ⁶ : C07K 11/00						
DOCUMENTOS RELEVANTES							
Categoría		Reivindicaciones afectadas					
Α	WO-9300362-A (BASF A.G.)	7.06.92					
Α	WO-9104985-A (PHARMA M						
	goría de los documentos citad		<u> </u>				
Y: de	: particular relevancia : particular relevancia combinado co isma categoría	O: referido a divulgación no escrita n otro/s de la P: publicado entre la fecha de prioridad y la de de la solicitud	P: publicado entre la fecha de prioridad y la de presentación				
A: re	fleja el estado de la técnica	E: documento anterior, pero publicado despu de presentación de la solicitud	és de la fecha				
	esente informe ha sido realiza para todas las reivindicaciones	do para las reivindicaciones nº:					
Fecha d	e realización del informe 30.05.97	Examinador M. Novoa Sanjurjo	Página 1/1				