Национальный исследовательский университет «МЭИ»

ИНСТИТУТ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ Кафедра Радиотехнических систем

Курсовая работа

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

Разработка модуля расчёта координат спутника Beidou

ФИО студента: Хоанг Д.Д.
Группа: ЭР-15-16
Вариант №: 15
Дата:
Подпись:
ФИО преподавателя: Корогодин И.В.
Оценка:

СОДЕРЖАНИЕ

ВВЕД	ЦЕНИЕ
ГЛАН	ЗА 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ 4
1.	Описание задания
2.	Определение формы орбиты и положения спутника4
3.	Определение формы орбиты и положения спутника на ней с
помощью	о сервиса CelesTrak 6
4.	Расчет графика угла места собственного спутника от времени по
данным Т	Frimble GNSS Planning Online
5.	Расчет диаграммы угла места и азимута спутника (SkyView, он
же SkyPlo	ot) по данным Trimble GNSS Planning Online
6.	Формирование таблицы эфемерид собственного спутника 12
ГЛАН	ВА 2. МОДЕЛИРОВАНИЕ
1.	Задание
2.	Реализация
ПРИ.	ЛОЖЕНИЕ
СПИ	СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 20

ВВЕДЕНИЕ

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ГЛАВА 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ

1. Описание задания

На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах).

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года.

2. Определение формы орбиты и положения спутника.

Используя сервис «Информационно-аналитического центра координатно-временного и навигационного обеспечения» определим номер НОРАД [1] и сравним его с номером из «Википедии» [2]:

C16	43539	IGSO-7	BDS-2	10.07.18	967	Используется по ЦН
C19	43001	MEO-1	BDS-3	05.11.17	1214	Используется по ЦН
C20	43002	MEO-2	BDS-3	05.11.17	1214	Используется по ЦН
C21	43208	MEO-3	BDS-3	12.02.18	1115	Используется по ЦН
C22	43207	MEO-4	BDS-3	12.02.18	1115	Используется по ЦН
C23	43581	MEO-5	BDS-3	29.07.18	948	Используется по ЦН
C24	43582	MEO-6	BDS-3	29.07.18	948	Используется по ЦН
C25	43603	MEO-11	BDS-3	25.08.18	921	Используется по ЦН
C26	43602	ME0-12	BDS-3	25.08.18	921	Используется по ЦН
C27	43107	MEO-7	BDS-3	12.01.18	1146	Используется по ЦН
C28	43108	MEO-8	BDS-3	12.01.18	1146	Используется по ЦН
C29	43245	MEO-9	BDS-3	30.03.18	1069	Используется по ЦН
C30	43246	MEO-10	BDS-3	30.03.18	1069	Используется по ЦН
C32	43622	MEO-13	BDS-3	19.09.18	896	Используется по ЦН
C33	43623	MEO-14	BDS-3	19.09.18	896	Используется по ЦН
C34	43648	MEO-15	BDS-3	15.10.18	870	Используется по ЦН
C35	43647	MEO-16	BDS-3	15.10.18	870	Используется по ЦН
C36	43706	MEO-17	BDS-3	19.11.18	835	Используется по ЦН
C37	43707	MEO-18	BDS-3	19.11.18	835	Используется по ЦН
C38	44204	IGSO-1	BDS-3	20.04.19	683	Используется по ЦН
C39	44337	IGSO-2	BDS-3	25.06.19	617	Используется по ЦН

Рисунок 1 — Состояние космических аппаратов ВеіDou на 03.03.21

16	Компас G6	C02	25.10.2012 15:33	CZ-3C	2012-059A ₽	38953₺	ГСО, 80° в. д.	действующий	
17	Бэйдоу-3S IGSO-1	C31	30.03.2015 13:52	CZ-3C/YZ-1	2015-019A ₽	40549₽	Геосинхронная, наклонение 55°	на испытании	
18	Бэйдоу-3S M1	C58	25.07.2015 12:29	CZ-3B/YZ-1	2015-037A ₽	40748₺	<u>СОО</u> , ~21 500 км	на испытании	
19	Бэйдоу-3S M2	C57	25.07.2015 12:29	CZ-3B/1Z-1	2015-037B ₽	40749₺	СОО, ~21 500 км	на испытании	Бэйдоу-3S
20	Бэйдоу-3S IGSO-2	C56	29.09.2015 23:13	CZ-3B/E	2015-053A ₽	40938₽	Геосинхронная, наклонение 55°	на испытании	
21	Бэйдоу-3S M3	N/A	01.02.2016 07:29	CZ-3C/YZ-1	2016-006A ₽	41315₺	<u>СОО</u> , ~21 500 км	на испытании	
22	Бэйдоу-2 IGSO-6	C13	29.03.2016 20:11	CZ-3A	2016-021A 🗗	41434₽	Геосинхронная, накл. 55°;	действующий	Бэйдоу-2
23	Бэйдоу-2 G7	C03	12.06.2016 15:30	CZ-3C	2016-037A ₽	41586₺	ГСО, 144° в. д.	действующий	
24	Бэйдоу-3 М1	C19	05.11.2017 11:44	07.200/7.4	2017-069A ₽	43001₺	СОО, ~21 500 км	действующий	
25	Бэйдоу-3 М2	C20	05.11.2017 11:44	CZ-3B/YZ-1	2017-069B ₽	43002₺	СОО, ~21 500 км	действующий	Бэйдоу-3
26	Бэйдоу-3 М3	C27	44.04.2040.22.40	07.200/7.4	2018-003A ₽	43107₺	<u>СОО</u> , ~21 500 км	действующий	
27	Бэйдоу-3 М4	C28	11.01.2018 23:18	CZ-3B/YZ-1	2018-003B ₽	43108₺	СОО, ~21 500 км	действующий	
28	Бэйдоу-3 М5	C22	12.02.2018 05:10 CZ-3B/YZ-	C7 2DV7 1	2018-018A ₽	43207₺	СОО, ~21 500 км	действующий	Бэидоу-э
29	Бэйдоу-3 М6	C21	12.02.2010 05.10	CZ-3B/YZ-1	2018-018B 🗗	43208₺	СОО, ~21 500 км	действующий	
30	Бэйдоу-3 М7	C29	29.03.2018 17:50	CZ-3B/YZ-1	2018-029A ₽	43245₺	<u>СОО</u> , ~21 500 км	действующий	
31	Бэйдоу-3 М8	C30	29.03.2010 17.50	CZ-3B/YZ-1	2018-029B ₽	43246₺	<u>СОО</u> , ~21 500 км	действующий	
32	Бэйдоу-2 IGSO-7	C16	09.07.2018 20:58	CZ-3A	2018-057A ₽	43539₽	Геосинхронная, накл. 55°;	действующий	Бэйдоу-2
33	Бэйдоу-3 М9	C23	29.07.2018 01:48	CZ-3B/YZ-1	2018-062A ₺	43581₺	<u>СОО</u> , ~21 500 км	действующий	
34	Бэйдоу-3 М10	C24	25.07.2010 01.40	CZ-3B/YZ-1	2018-062B ₽	43582₺	<u>СОО</u> , ~21 500 км	действующий	
35	Бэйдоу-3 М11		24.00.2040.22-27	C7 2DN7 1	2018-067A ₺	43602₺	СОО, ~21 500 км	действующий	
36	Бэйдоу-3 М12	C25	24.08.2018, 23:37	CZ-3B/YZ-1	2018-067B ₽	43603₺	СОО, ~21 500 км	действующий	
37	Бэйдоу-3 М13	C32	19.09.2018, 14:07	CZ-3B/YZ-1	2018-072A ₽	43622₺	СОО, ~21 500 км	действующий	
38	Бэйдоу-3 М14	C33	15.05.2010, 14.07		2018-072B ₽	43623₺	СОО, ~21 500 км	действующий	
39	Бэйдоу-3 М15	C35	15 10 2018 04:23	C7 3B/V7 1	2018-078A ₺	43647₺	СОО, ~21 500 км	действующий	Бэйдоу-3

Рисунок 2 — Состояние системы BeiDou с сайта Википедия

Интересующий нас спутник "BEIDOU-3 M7":

Таблица 1 – Сведения о спутнике

Спутник	PRN	ID	SCN
BEIDOU-3 M7	C29	2018-029A	43245

3. Определение формы орбиты и положения спутника на ней с помощью сервиса CelesTrak

Введем название спутника и сверим его по номеру NSSDC ID и НОРАД (SCN).

Значения совпадают, данный спутник существует проведем моделирование на момент времени 15:00, 16 февраля 2021, так как на данном сервисе отсчет времени происходит по UTC(0):

Рисунок 3 – Моделирование с помощью сервиса CelesTrak

4. Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online

Настроим для моделирования GNSS Planning Online, координаты установим в соответствии с расположеним антенны — и они будут соответствовать значению корпуса Е МЭИ, также начальное время будет соответствовать 18:00, временной пояс будет равен +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online.

Рисунок 4 — Моделирование с помощью сервиса Trimble GNSS Planning Далее ограничим количество отображаемых спутников и оставим в моделирование только нужны нам спутник — C24:

Рисунок 5 – Моделирование с помощью сервиса Trimble GNSS Planning

Получим график расчета угла места собственного спутника от времени:

Рисунок 6 — График угла места собственного спутника от времени По графику видно, что на указанном в задание интервале с 18:00 — 06:00, спутник был в области видимости один раз с 18:00 до 20:30.

5. Расчет диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online

Так как сервис для определения Sky Plot используется тот же - Trimble GNSS Planning Online, то настройки оставим прежние, и проведем моделирование Sky Plot во временном интервале 18:00-06:00 и зафиксируем положение спутника на небосводе в критических точках, то есть когда он находился в области видимости - в 18:00 и 20:30.

Тогда получим 2 графика моделирования:

• 16 февраля 2021 в 18:00:

Рисунок 7 – Моделирование с помощью сервиса Trimble GNSS Planning

• 16 февраля 2021 в 20:30:

Рисунок 8 – Моделирование с помощью сервиса Trimble GNSS Planning

6. Формирование таблицы эфемерид собственного спутника

Таблица 2 – Значения эфемерид спутника

Параметр	Значение	Размерность
SatNum	29	-
toe	219600000.000	мс
Crs	4.84375000000000000e-01	M
Dn	3.38049792152073092e-12	рад/с
M0	-2.04583603053961255e-01	рад
Cuc	7.40401446819305420e-08	рад
e	1.57959060743451118e-04	-
Cus	1.13863497972488403e-05	рад
sqrtA	5.28262396240234375e+03	м^1/2
Cic	3.86498868465423584e-08	рад
Omega0	-2.39429712929735228e+00	рад
Cis	3.07336449623107910e-08	рад
i0	9.65601789007491829e-01	рад
Crc	1.32890625000000000e+02	M
omega	6.54981262210034165e-01	рад
OmegaDot	-6.63384775495807734e-12	рад/мс
iDot	5.14307137242361949e-14	рад/мс
Tgd	1.02200000000000000e+06	мс
toc	2.19600000000000000e+08	мс
af2	0.00000000000000000e+00	мс/мс^2
afl	5.06794606280891458e-12	мс/мс
af0	3.53220045566558838e-01	мс
URA	0	-
IODE	257	-
IODC	1	-
codeL2	0	-
L2P	0	-
WN	789	-

ГЛАВА 2. МОДЕЛИРОВАНИЕ

1. Задание

Необходимо реализовать функцию расчета положения спутника Beidou на заданный момент по шкале времени UTC на языке Matlab или Python. Значения, полученные на предыдущем этапе, нужны нам в качестве эфемерид для моделирования. Построить трехмерные графики множества положений спутника Beidou с системным номером, соответствующим номеру студента по списку. Графики в двух вариантах: в CK ECEF WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать временному интервалу с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал.

2. Реализация

Для выполнения данного этапа воспользуемся пакетом математического моделирования Matlab. Само моделирование проводилось с помощью алгоритма с сайта Navipedia.

Рисунок 9 — Траектория движения спутника Beidou PRN №29

Переход из системы ECEF в систему ECI был осуществлен также согласно алгоритму, из ИКД. По полученному графику видно, что за установленный интервал времени спутник не успевает полностью пройти всю свою траекторию.

Получим траекторию в полярной системе координат и сравним ее с результатом из Trimble GNSS Planning Online, изображенным на рисунках 7 и 8.

Рисунок 10 - SkyView спутника Beidou, полученный в результате моделирования

При сравнении рисунков, полученных на 2 этапе, с рисунками, полученными на 1 этапе, видно, что они практически совпадают. Однако, имеется погрешность, связанная с параметрами эфемерид, которые для простоты приняты за постоянные на промежутке моделирования. Листинг программы в приложении.

ПРИЛОЖЕНИЕ

```
Файл: "Code.m"
close all;
clear ALL;
clc;
format long
%% Эфемериды
SatNum = 29;
toe = 219600000.000 * 10^{-3};
Crs = 4.843750000000000000e-01;
Dn = 3.38049792152073092e-12;
M0 = -2.04583603053961255e-01;
Cuc = 7.40401446819305420e-08;
e = 1.57959060743451118e-04;
Cus = 1.13863497972488403e-05;
sqrtA = 5.28262396240234375e+03;
Cic = 3.86498868465423584e-08;
Omega0 = -2.39429712929735228e+00;
Cis = 3.07336449623107910e-08;
i0 = 9.65601789007491829e-01;
Crc = 1.3289062500000000000e + 02;
omega = 6.54981262210034165e-01;
OmegaDot = -6.63384775495807734e-12;
iDot = 5.14307137242361949e-14;
af1 = 5.06794606280891458e-12;
af0 = 3.53220045566558838e-01;
URA = 0;
IODE = 257;
IODC = 1;
codeL2 = 0;
L2P = 0;
WN = 789;
%% Константы
mu = 3.986004418e14; % гравитационная постоянная
omega_e = 7.2921151467e-5; % скорость вращения
%% Временной промежуток
b_time = (24*2+18-3)*60*60; % время начала 18:00 по МСК 16 февраля
```

```
e_{time} = (24*3+6-3)*60*60; % время окончания 6:00 по МСК 17 февраля
% Длина временного промежутка
t_Ar = b_time:1:e_time;
% Большая полуось
A = sqrtA^2;
% Среднее движение
n0 = sqrt(mu/A^3);
n = n0 + Dn;
for k = 1:length(t_Ar)
  t(k) = t_Ar(k)-toe;
  if t(k) > 302400
    t(k) = t(k)-604800;
  end
  if t(k) < -302400
    t(k) = t(k) + 604800;
  end
  % Средняя аномалия
  M(k) = M0 + n*t(k);
  % Решение уравнения Кеплера
  E(k) = M(k);
  E_{old}(k) = M(k)+1;
  eps = 1e-6;
  while abs(E(k)-E_old(k)) > eps
    E_{old}(k) = E(k);
    E(k) = M(k) + e*\sin(E(k));
  end
  % Истинная аномалия
  nu(k) = atan2(sqrt(1-e^2)*sin(E(k)),cos(E(k))-e);
  % Коэффициент коррекции
  cos\_corr(k) = cos(2*(omega+nu(k)));
  \sin_{\operatorname{corr}}(k) = \sin(2*(\operatorname{omega+nu}(k)));
  % Аргумент широты
  u(k) = omega + nu(k) + Cuc*cos\_corr(k) + Cus*sin\_corr(k);
  % Радиус
  r(k) = A*(1-e*cos(E(k)))+Crc*cos\_corr(k)+Crs*sin\_corr(k);
  % Наклон
  i(k) = i0+iDot*t(k)+Cic*cos\_corr(k)+Cis*sin\_corr(k);
  % Долгота восходящего угла
  lambd(k) = Omega0 + (OmegaDot-omega_e)*t(k)-omega_e*toe;
  % Положение на орбите
```

```
x = r(k)*cos(u(k));
  y = r(k) * sin(u(k));
  % Координаты
  X0(k) = x*\cos(lambd(k))-y*\cos(i(k))*\sin(lambd(k));
  Y0(k) = x*\sin(lambd(k)) + y*\cos(i(k))*\cos(lambd(k));
  Z0(k) = y*\sin(i(k));
  X(k) = X0(k)*cos(lambd(k))+Y0(k)*sin(lambd(k));
  Y(k) = -X0(k)*\sin(lambd(k)) + Y0(k)*\cos(lambd(k));
  Z(k) = Z0(k);
end
%% Из НКА в WGS84
prb = 1e-9;
mos = 1e-3/206264.8;
WGS_84_m = [-3*prb -353*mos -4*mos;]
  353*mos - 3*prb 19*mos;
  4*mos -19*mos -3*prb];
crd_WGS_84 = [X0; Y0; Z0];
for i = 1:length(crd_WGS_84(1,:))
  crd_WGS_84(:,i) = crd_WGS_84(:,i) + WGS_84_m * crd_WGS_84(:,i) +
[0.07; -0; -0.77];
end
crd_WGS_84 = crd_WGS_84.';
%% Построение графиков
Radius_Z = 6371e3;
[XE,YE,ZE] = sphere(10);
figure
surf(XE*Radius_Z,YE*Radius_Z,ZE*Radius_Z)
hold on
grid on
plot3(crd_WGS_84(:,1), crd_WGS_84(:,2), crd_WGS_84(:,3))
plot3(X, Y, Z)
title('Траектория СП', 'FontName', 'Times New Roman', 'FontSize',14)
xlabel('X, m', 'FontName', 'Times New Roman', 'FontSize',14)
ylabel('Y, m', 'FontName', 'Times New Roman', 'FontSize',14)
zlabel('Z, m', 'FontName', 'Times New Roman', 'FontSize',14)
hold off
```

```
lgd = legend('Земля', 'СК ECEF WGS84', 'Инерциальная система координат');
lgd.FontName = 'Times New Roman';
%% Координаты в системе WGS84
N_gr = 55;
N_{min} = 45;
N_{sec} = 23.8178;
N = N_gr*pi/180+N_min/3437.747+N_sec/206264.8;
E_gr = 37;
E_{min} = 42;
E sec = 12.2608;
E = E_gr*pi/180+E_min/3437.747+E_sec/206264.8;
Н = 500; % Приблизительное значение высоты расположения антенны на
башне
llh = [N E H];
crd_PRM = llh2xyz(llh)';
%% Построение SkyPlot
for i = 1:length(crd_WGS_84(:,1))
  [X(i) Y(i) Z(i)] =
ecef2enu(crd_WGS_84(i,1),crd_WGS_84(i,2),crd_WGS_84(i,3),N,E,H,wgs84Elli
psoid, 'radians');
  if Z(i) > 0
    r(i) = sqrt(X(i)^2 + Y(i)^2 + Z(i)^2);
    teta(i) = acos(Z(i)/r(i));
    if X(i) > 0
       phi(i) = -atan(Y(i)/X(i)) + pi/2;
    elseif (X(i)<0)&&(Y(i)>0)
       phi(i) = -atan(Y(i)/X(i)) + 3*pi/2;
    elseif (X(i)<0)&&(Y(i)<0)
       phi(i) = -atan(Y(i)/X(i))-pi/2;
    end
  else teta(i) = NaN;
    r(i) = NaN;
    phi(i) = NaN;
  end
end
%% График
%skyplot
figure
ax = polaraxes;
polarplot(ax,phi,teta*180/pi)
```

```
ax.ThetaDir = 'clockwise';
ax.ThetaZeroLocation = 'top';
title('SkyView', 'FontName', 'Times New Roman', 'FontSize',14)
%% Преобразование координат из WGS84 в ECEF
function xyz = llh2xyz(llh)
phi = llh(1); % широта в радианах
lambda = llh(2);% долгота в радианах
h = llh(3); % высота над уровнем моря в метрах
a = 6378137.0000; % полуось земли в метрах
b = 6356752.3142; % полуось земли в метрах
e = sqrt (1-(b/a).^2);
sinphi = sin(phi);
cosphi = cos(phi);
coslam = cos(lambda);
sinlam = sin(lambda);
tan2phi = (tan(phi))^2;
tmp = 1-e*e;
tmpden = sqrt(1+tmp*tan2phi);
x = (a*coslam)/tmpden+h*coslam*cosphi;
y = (a*sinlam)/tmpden+h*sinlam*cosphi;
tmp2 = sqrt(1-e*e*sinphi*sinphi);
z = (a*tmp*sinphi)/tmp2+h*sinphi;
xyz(1) = x;
xyz(2) = y;
xyz(3) = z;
end
```

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1]. «Инфомационно-аналитечкского центра коррдинатновременного и навигационного обеспечения «www.glonass-iac.ru»»
- [2]. «Википедия. Свободная энциклопедия «https://ru.wikipedia.org/wiki/Бэйдоу»»
- [3]. «Определение формы орбиты и положения спутника на ней «https://www.celestrak.com»»
- [4]. «https://www.gnssplanningonline.com/»