$Exp \ 3 - Viscosidade$

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA

Professor	Professor	

4323201 FÍSICA EXPERIMENTAL A

Equipe:	1	Fun:	Turma:
	2	Fun:	Data:
	3	Fun:	Mesa no:

EXP 3 - VISCOSIDADE

Guia de trabalho

Prazo: Fim da aula
VISTO
nos dados

1 Introdução

Como fundamentos teóricos, vocês deverão estar a par do conteúdo da Apostila de Experimentos relacionado com este experimento. Vocês poderão encontrar material adicional nas referências daquele capítulo e em seu livro texto. Os conceitos físicos envolvidos aqui são: tensão de cisalhamento, fluidos reais, viscosidade absoluta (dinâmica), viscosidade cinemática, número de Reynolds e regimes laminar e turbulento de escoamento de fluidos. A equação diferencial (5) da sua apostila de experimentos resulta da aplicação da $2^{\underline{a}}$ lei de Newton a uma esfera de aço em queda em um fluido real, sob a ação da gravidade, sobre a qual agem então a força peso da esfera $P_{\rm esf} = \rho_{\rm esf} V g$, o empuxo $E = -\rho_{\rm flu} V g$, e a força de atrito viscoso que, no regime laminar, segundo a lei de Stokes, vale $F_{\rm visc} = -6\pi\eta rv$. Nestas expressões, escrevemos os termos de massa como $m = \rho V$, onde V é o volume da esfera e ρ uma densidade ($\rho_{\rm flu} =$ densidade do fluido e $\rho_{\rm esf} =$ densidade das esferas de aço), g = 9,7864 m/s² é a aceleração gravitacional local, η a viscosidade absoluta do fluido na temperatura do experimento, r o raio da esfera, e v sua velocidade em relação ao fluido (que será a velocidade em relação ao laboratório ao considerarmos o fluido em repouso em relação a este). Assim, temos

$$\rho_{\rm esf} V \frac{dv}{dt} = \rho_{\rm esf} V g - \rho_{\rm flu} V g - 6\pi \eta r v , \qquad (1.1)$$

que é uma equação diferencial linear, de primeira ordem para a função v(t), do tipo

$$\frac{dv}{dt} + av = b \tag{1.2}$$

onde a e b são constantes positivas (pois $|P_{\rm esf}| > |E|$). Para o que nos interessa, não é necessário resolver a equação acima. Basta observar que, para a condição inicial v(t=0)=0 (partida do repouso), v cresce a partir de zero até chegar assintoticamente a um valor máximo $v_{\rm lim}$ (valor limite) para o qual a aceleração dv/dt se anula. Temos então

$$v_{\lim \infty} = \frac{b}{a} = \left[\frac{2g}{9\eta} \left(\rho_{\text{esf}} - \rho_{\text{flu}}\right)\right] r^2 = kr^2$$
(1.3)

onde o termo entre colchetes é uma constante k, mostrando que a velocidade limite é proporcional a r^2 no regime laminar. Vocês deverão determinar k graficamente para, em seguida, calcular a viscosidade absoluta η :

$$\eta = \frac{2g}{9k} (\rho_{\text{esf}} - \rho_{\text{flu}}) \tag{1.4}$$

A proximidade das paredes do tubo onde está o óleo exige que as camadas de fluido junto a elas sejam perfeitamente cilíndricas, uma condição que só seria atingida muito longe da esfera, se esta estivesse em um meio infinito. Assim, a presença das paredes faz surgir uma força de arraste extra, cujo efeito é diminuir a velocidade $v_{\lim \infty}$ até um valor que chamaremos de $v_{\lim D}$, onde D é o diâmetro do tubo. Essa velocidade será corrigida mais adiante.

Q1) Utilizem a lei de Stokes e determinem as unidades de η no sistema CGS. Essa unidade é denominada poise, p. Viscosidades absolutas típicas são medidas em centipoises, 10^{-2} p (ou cp).

Por razões práticas, define-se a **viscosidade cinemática** ν como a viscosidade absoluta dividida pela densidade do fluido,

$$\nu = \frac{\eta}{\rho_{\text{flu}}}.\tag{1.5}$$

Q2) Utilizem a resposta à questão anterior e determinem as unidades de ν no **sistema CGS**. Essa unidade é denominada Stokes, St. Viscosidades cinemáticas típicas são medidas em centistokes, 10^{-2} St (ou cSt).

2 Preparação

Observem o arranjo experimental. Utilizarão um lubrificante de automóvel como fluido viscoso. Ajustem o prumo do tubo de óleo e discutam com o professor em qual trecho as esferas estarão em MRU (façam um teste se necessário). Ajustem dois marcadores (anéis de plástico) em alturas convenientes, determinando assim o início e o término do trecho de MRU que estudarão. EXISTE UM COMPROMISSO ENTRE NÃO TOMAR ESSE TRECHO MUITO NO INÍCIO (POIS AINDA NÃO SERÁ EM MRU) E NEM MUITO NO FIM (ONDE PODERÁ FICAR MUITO CURTO).

Exp 3 - Viscosidade

3 Medida da distância percorrida e dos diâmetros das esferas

Meçam o intervalo de queda escolhido, Δh , com uma trena. Vocês receberam uma caixa de plástico contendo esferas de mesmo tamanho, identificadas por um número de 1 a 8. CADA GRUPO RECEBEU UM CONJUNTO DIFERENTE DE ESFERAS E SERÁ RESPONSÁVEL POR TODAS AS MEDIDAS E OS CÁLCULOS RELACIONADOS COM AQUELE TIPO DE ESFERA. No final da aula, vocês compartilharão seus resultados com os outros grupos de maneira a obter um grande conjunto de dados sem a necessidade de cada grupo fazer todas as medidas e cálculos. Portanto, realizem tudo seriamente, já que cada grupo dependerá dos outros. TOMEM QUATRO ESFERAS DAQUELE TIPO QUE RECEBERAM, meçam seus diâmetros d com um micrômetro, e registrem os resultados na coluna correspondente. MANTENHAM SEPARADAS AS ESFERAS MEDIDAS num outro compartimento, pois elas serão lançadas no tubo com óleo. Em seguida, calculem a média dos 4 valores, o desvio padrão das medidas, o desvio padrão do valo! r médio, e a incerteza combinada que leva em conta as outras fontes de erro (instrumento, estatístico, método de medida, ...), conforme deverá ser discutido com o professor. A partir daí, calculem as outras grandezas $(r=\frac{d}{2} \text{ e } r^2)$ e **comuniquem os dados ao professor** que os colocará numa planilha.

cm

#7

#8

					-		
Tabela dos diâmetros d das esferas (em mm)							
$\operatorname{Esfera} \rightarrow$	#1	#2	#3	#4	#5	#6	
1							
2							

 $\Delta h =$

1				
2				
3				
4				
\overline{d} (mm)				
$\sigma_d \; (\mathrm{mm})$				
$\sigma_{\overline{d}} \; (\mathrm{mm})$				
$\sigma_{\overline{d}_c}$ (mm)				
\overline{r} (mm)				
$\sigma_{\overline{r}_c} \; (\mathrm{mm})$				
$\overline{r}^2 \; (\mathrm{mm}^2)$				
$\sigma_{\overline{r}^2_c} \; (\mathrm{mm}^2)$				

Q3) Detalhem abaixo as fórmulas que foram usadas para calcular os desvios de cada uma das grandezas da tabela acima.

Determinem com um paquímetro o diâmetro médio \overline{D} do tubo de óleo, para que possam corrigir $v_{\lim D}$ e obter mais tarde $v_{\lim \infty}$.

	D (mm)
1	
2	
3	
\overline{D}	
σ_D	
$\sigma_{\overline{D}}$	
$\sigma_{\overline{D}_c}$	
$\begin{array}{c} \sigma_{\overline{D}} \\ \\ \sigma_{\overline{D}_c} \\ \\ \overline{D} \pm \sigma_{\overline{D}_c} \end{array}$	±

4 Medida dos tempos de queda Δt durante o percurso Δh

Realizem alguns testes de lançamento com as esferas que não foram medidas, de maneira a estimar o tempo que elas levarão para percorrer a distância Δh escolhida, assim como para avaliar seus reflexos e a estratégia a ser usada (cuidado com erros de paralaxe e o tempo de reação para acionar o cronômetro). Utilizem um copinho de plástico disponível para embeber as esferas em óleo, de tal maneira que estas já entrem "molhadas" no fluido e não gerem bolhas de ar. Quando estiverem prontos, meçam a temperatura inicial do óleo (a viscosidade depende fortemente da temperatura) e comecem a cronometrar os tempos de queda no tubo para as quatro esferas que foram separadas das outras. Em seguida, meçam a temperatura final do óleo, preencham a tabela, calculem as incertezas e **comuniquem todos esses dados ao professor**.

Tinicial =	+	^{0}C
inicial —		

Exp 3 - Viscosidade 5

Tabela de valores de Δt (em s)								
$\operatorname{Esfera} \rightarrow$	#1	#2	#3	#4	#5	#6	#7	#8
1								
2								
3								
4								
$\overline{\Delta t}$ (s)								
$\sigma_{\Delta t}$ (s)								
$ \frac{\sigma_{\overline{\Delta}t}(s)}{\sigma_{\overline{\Delta}t_c}(s)} $ $ \overline{\Delta}t \pm \sigma_{\overline{\Delta}t_c}(s) $								
$\sigma_{\overline{\Delta t}_c}$ (s)								
$\overline{\Delta t} \pm \sigma_{\overline{\Delta t}_c}$ (s)	土	±	±	±	±	±	\pm	±

$$T_{\rm final} = \pm 0C$$

Calculem a temperatura média, que será considerada como a temperatura em que trabalhou:

$$T_{
m m\acute{e}dia} = \pm 0$$

5 Cálculo das velocidades e correções

Calculem a velocidade limite $v_{\lim D}$ e corrijam o valor com as expressões abaixo para encontrar $v_{\lim \infty}$ e descontar a influência do diâmetro finito do tubo em que está o óleo.

$$v_{\lim D} = \frac{\Delta h}{\overline{\Delta t}}$$
, (usar CGS)
 $x = \frac{9r}{2D}$, (Usar r e D na mesma unidade)
 $f = 1 + x + x^2$,
 $v_{\lim \infty} = v_{\lim D} \times f$.

Considerem x e f sem desvio, o que simplificará muito o cálculo dos desvios.

Tabela de velocidades e de correções.								
$\operatorname{Esfera} \rightarrow$	#1	#2	#3	#4	#5	#6	#7	#8
$v_{\lim D} \text{ (cm/s)}$								
$\sigma_{v_{\lim D}}$ (cm/s)								
x (adim.)								
f (adim.)								
$v_{\lim \infty} \text{ (cm/s)}$								
$\sigma_{v_{ m lim}\infty}~({ m cm/s})$								

Determinem a massa específica ("densidade") do óleo com o densímetro de mergulho disponível no laboratório.

$$\rho_{\rm flu} = \pm g/cm^3$$

6 Análise gráfica, η , e número de Reynolds, \mathcal{R}

De posse de todos os dados e cálculos de incerteza dos outros grupos, discutam com o professor a estratégia correta para fazer o gráfico de $v_{\rm lim\,\infty}$ em função de r^2 (cuidado com as unidades), identificar a região de validade da lei de Stokes e eventualmente visualizar a saída do regime laminar. Observem que estamos pressupondo a dependência com o quadrado do raio, para que seja possível extrair o valor da viscosidade a partir do coeficiente angular que deve ser obtido levando em conta as observações acima. O professor fará o gráfico e lhes comunicará o coeficiente angular e seu desvio. Respondam então às perguntas abaixo, anexem ao relatório uma cópia do gráfico e da planilha com todos os dados, e entreguem tudo ao professor.

Q4) Apresentem aqui o coeficiente angular obtido pelo gráfico e seu desvio.	Calculem a partir deles a
viscosidade absoluta e cinemática, assim como seus respectivos desvios.	Apresentem seus cálculos,
utilizando $ ho_{\rm esf}=7.85g/cm^3$ (sem desvio). Comparem o seu valor de $ u$	com os valores da tabela da
apostila (talvez precisem fazer uma interpolação).	

Calculem agora o número de Reynolds $\mathcal{R} = \frac{2vr}{\nu}$ para seu conjunto de esferas, utilizando os valores da velocidade terminal $v_{\lim D}$ e lembrando que $\mathcal{R} > 1$ representa a saída do regime laminar neste caso.

Tabela dos números de Reynolds (adim.)								
$Esfera \rightarrow$	#1	#2	#3	#4	#5	#6	#7	#8
\mathcal{R}								

Exp 3 - Viscosidade 7

Q5) Discutam aqui quais esferas estão mais afastadas do regime laminar e verifiquem se o gráfico resenta indícios que comprovem sua discussão. Expliquem o que vocês podem concluir, o que eventualmente errado, por quê, e como melhorar o experimento.	_