```
In [ ]: !pip install xlrd
```

In []: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline from mlxtend.plotting import plot_decision_regions import missingno as msno from pandas.plotting import scatter_matrix from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix from sklearn import metrics from sklearn.metrics import classification_report

In [44]: d=pd.read_csv('C:/Users/ANTO CHARLES/Downloads/archive/diabetes.csv')
d

0	ut	[44]	Ŀ

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFuncti
0	6	148	72	35	0	33.6	0.6
1	1	85	66	29	0	26.6	5.0
2	8	183	64	0	0	23.3	0.6
3	1	89	66	23	94	28.1	0.1
4	0	137	40	35	168	43.1	2.2
763	10	101	76	48	180	32.9	0.1
764	2	122	70	27	0	36.8	3.0
765	5	121	72	23	112	26.2	0.2
766	1	126	60	0	0	30.1	0.3
767	1	93	70	31	0	30.4	0.3

768 rows × 9 columns


```
In [45]: print(d.head())
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

In [46]: print (df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

None

In [47]: print(df.describe())

	Pregnancies	Glucose	BloodPressure	SkinThick	ness	Insulin	\
count	768.000000	768.000000	768.000000	768.00	0000	768.000000	
mean	3.845052	120.894531	69.105469	20.53	6458	79.799479	
std	3.369578	31.972618	19.355807	15.95	2218	115.244002	
min	0.000000	0.000000	0.000000	0.00	0000	0.000000	
25%	1.000000	99.000000	62.000000	0.00	0000	0.000000	
50%	3.000000	117.000000	72.000000	23.00	0000	30.500000	
75%	6.000000	140.250000	80.000000	32.00	0000	127.250000	
max	17.000000	199.000000	122.000000	99.00	0000	846.000000	
	BMI	DiabetesPedi	greeFunction	Age	0	utcome	
count	768.000000		768.000000	768.000000	768.	000000	
mean	31.992578		0.471876	33.240885	0.	348958	
std	7.884160		0.331329	11.760232	0.	476951	
min	0.000000		0.078000	21.000000	0.	000000	
25%	27.300000		0.243750	24.000000	0.	000000	
50%	32.000000		0.372500	29.000000	0.	000000	
75%	36.600000		0.626250	41.000000	1.	000000	
max	67.100000		2.420000	81.000000	1.	000000	

```
d.hist(figsize=(12,12))
In [48]:
Out[48]: array([[<AxesSubplot:title={'center':'Pregnancies'}>,
                      <AxesSubplot:title={'center':'Glucose'}>,
                      <AxesSubplot:title={'center':'BloodPressure'}>],
                     [<AxesSubplot:title={'center':'SkinThickness'}>,
                      <AxesSubplot:title={'center':'Insulin'}>,
                      <AxesSubplot:title={'center':'BMI'}>],
                     [<AxesSubplot:title={'center':'DiabetesPedigreeFunction'}>,
                      <AxesSubplot:title={'center':'Age'}>,
                      <AxesSubplot:title={'center':'Outcome'}>]], dtype=object)
                        Pregnancies
                                                          Glucose
                                                                                       BloodPressure
             250
                                                                             250
                                             200
                                             175
             200
                                                                             200
                                             150
            150
                                             125
                                                                             150
                                             100
            100
                                                                             100
                                              75
                                              50
             50
                                                                              50
                                              25
              0
                                                      50
                                                            100
                                                                 150
                                                                                     25
                                                                                          50
                                                                                               75
                                                                                                   100
                                                                       200
                                                                                                        125
                       SkinThickness
                                                          Insulin
                                                                                            BMI
                                             500 -
                                                                             250
             200
                                             400
                                                                             200
            150
                                             300
                                                                             150
             100
                                             200
                                                                             100
             50
                                             100
                                                                              50
              0
                                              0
                                                                               0
                 Ó
                     20
                         40
                                                      200
                                                           400
                                                                      800
                                                                                                     60
                  DiabetesPedigreeFunction
                                                           Age
                                                                                          Outcome
                                             300
                                                                             500
             300
                                             250
                                                                             400
             250
                                             200
             200
                                                                             300
                                             150
            150
                                                                             200
                                             100
            100
                                                                             100
                                              50
             50
                                                                               0
                                       2.5
                                                               60
               0.0
                    0.5
                         1.0
                              1.5
                                   2.0
                                                20
                                                        40
                                                                       80
                                                                                 0.0
                                                                                     0.2
                                                                                          0.4
                                                                                              0.6
                                                                                                   0.8
                                                                                                       1.0
```

In []:

```
In [49]: X = d.drop('Outcome', axis=1)
y = d['Outcome']
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.33, random_state=7)
```

```
In [50]: from sklearn.ensemble import RandomForestClassifier
    rfc = RandomForestClassifier(n_estimators=200)
    rfc.fit(X_train, y_train)
    rfc_train = rfc.predict(X_train)
    from sklearn import metrics

print("Accuracy_Score =", format(metrics.accuracy_score(y_train, rfc_train)))
```

Accuracy_Score = 1.0

```
In [51]: from sklearn import metrics
    predictions = rfc.predict(X_test)
    print("Accuracy_Score =", format(metrics.accuracy_score(y_test, predictions)))
```

Accuracy_Score = 0.7598425196850394

```
In [52]: rfc.feature_importances_
```

Out[52]: array([0.07930868, 0.25479811, 0.0896756 , 0.07814899, 0.07308363, 0.15869966, 0.12913698, 0.13714836])

```
In [53]: (pd.Series(rfc.feature_importances_, index=X.columns)
    .plot(kind='barh'))
```

Out[53]: <AxesSubplot:>


```
print('Prediction Probabilities')
In [54]:
        rfc.predict proba(X test)
        Prediction Probabilities
Out[54]: array([[0.98, 0.02],
               [0.14, 0.86],
               [0.465, 0.535],
               [0.845, 0.155],
               [0.445, 0.555],
               [0.505, 0.495],
               [0.91 , 0.09 ],
               [0.84, 0.16],
               [0.14, 0.86],
               [0.785, 0.215],
               [0.165, 0.835],
               [0.955, 0.045],
               [0.295, 0.705],
               [0.155, 0.845],
               [0.765, 0.235],
               [0.795, 0.205],
               [0.855, 0.145],
               [0 595 0 105]
        import pickle
In [55]:
        saved model = pickle.dumps(rfc)
        rfc_from_pickle = pickle.loads(saved_model)
        rfc from pickle.predict(X test)
1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,
              0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
              0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
              1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
              0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
              0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
              1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,
              0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
              0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,
              1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1], dtype=int64)
In [56]: rfc.predict([[0,137,40,35,168,43.1,2.228,33]])
        C:\Users\ANTO CHARLES\anaconda3\lib\site-packages\sklearn\base.py:450: UserW
        arning: X does not have valid feature names, but RandomForestClassifier was
        fitted with feature names
          warnings.warn(
Out[56]: array([1], dtype=int64)
```