8.1.2) This system has fixed points at
$$x'=\pm \sqrt{u}$$
 and $y'=0$.

The Jacobian matrix is:

$$A = \begin{bmatrix} -2x & 0 \\ 0 & -i \end{bmatrix}.$$

This has eigenvalues $\lambda = -2x - 1$. So, the stable Fixed point occurs at $x^* = \sqrt{u}$. Since $\lambda_i = -2\sqrt{u}$, we see that $\lambda_i \to 0$ as $u \to 0$.

8.1.3) This system has fixed points at $x^* = 0$, μ and $y^* = 0$.

The Jacobian matrix is:

$$A = \begin{bmatrix} M-2 \times 0 \\ 0 & -1 \end{bmatrix}.$$

This has eigenvalues $\lambda = \mu - 2x - 1$. So, the stable fixed occurs at $x^* = \mu$ if $\mu > 0$ and at $x^* = 0$ if $\mu < 0$.

When $u > 0: \lambda = -u \rightarrow 0$ as $u \rightarrow 0$.

When $u < 0: \lambda_1 = u \rightarrow 0$ as $u \rightarrow 0$.

8.1.4) This system has fixed points at $x^* = 0, \pm \sqrt{-u}$ and $y^* = 0$.

The Jacobian matrix is:

$$A = \begin{bmatrix} M+3x^2 & 0 \\ 0 & -1 \end{bmatrix}.$$

This has eigenvalues $\lambda = M + 3x^2 - 1$. The only stable fixed point occurs at $x^* = 0$ if M < 0.

Since $\lambda = M$, we see that $\lambda \to 0$ as $M \to 0$.

8.1.6) a) The nullclines are given by the curves y-2x=0, $u+x^2-y=0$. Alternatively: y=2x, $y=u+x^2$.

These two curves are tangent when M=1.

- b) There is one bifurcation at M=1, which is clearly a saddle-node bifurcation.
- 8.2.2) We find the Jacobian matrix:

$$A = \begin{bmatrix} M+y^2 & -1+2xy \\ 1-2x & M \end{bmatrix}.$$

Setting X=Y=M=O, we find:

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

This has eigen values $\lambda = \pm i$.

8.2.3) You should find that the origin is a spiral source for $\mu > 0$ and a spiral sink encircled by an unstable limit cycle for $\mu < 0$. This is a subcritical Hopf bifurcation.

8.2.4) We have:

$$\dot{r} = \frac{1}{r} \left(x \dot{x} + y \dot{y} \right)$$

$$= \frac{1}{r} \left(x \left(-x \right) + \mu x + x y^{2} \right)$$

$$+ y \left(x + \mu y - x^{2} \right)$$

$$= \frac{1}{r} \left(\mu \left(x^{2} + y^{2} \right) + x^{2} y^{2} - x^{2} y \right)$$

$$= \frac{1}{r} \left(\mu r^{2} + r^{4} \cos^{2}\theta \sin^{2}\theta - r^{3} \cos^{2}\theta \sin\theta \right)$$

$$= \mu r + r^{3} (\cos^{2}\theta \sin^{2}\theta - r^{2} \cos^{2}\theta \sin\theta)$$

$$= \mu \Gamma + \Gamma^3 \cos^2 \theta \sin^2 \theta - \Gamma^2 \cos^2 \theta \sin \theta.$$

$$\Theta = \frac{1}{r^{2}} \left(x \dot{y} - y \dot{x} \right)
= \frac{1}{r^{2}} \left(x \left(x + y \dot{y} - x^{2} \right) - y \left(-y + y \dot{x} + x y^{2} \right) \right)
= \frac{1}{r^{2}} \left(x^{2} + y^{2} - x^{3} - x y^{3} \right)
= \frac{1}{r^{2}} \left(r^{2} - r^{3} \cos^{3} \Theta - r^{4} \cos \Theta \sin^{3} \Theta \right)$$

b) If r<<1, we can disregard terms in \(\theta\) proportional to r. So \(\theta\)≈1.

We also average over one revolution in r to Find: