Solutions to Test 3

1. *f* is a linear function, since it satisfies

$$f(ax + b\tilde{x}) = (ax^T + b\tilde{x}^T) \begin{pmatrix} y_2 \\ -y_1 \end{pmatrix} = ax^T \begin{pmatrix} y_2 \\ -y_1 \end{pmatrix} + b\tilde{x}^T \begin{pmatrix} y_2 \\ -y_1 \end{pmatrix} = af(x) + bf(\tilde{x}),$$
 where $x, \tilde{x} \in \mathbb{R}^2$.

- 2. Let $x=(b_1-1,b_2-1,...,b_M-1)$ and $y=(1,1,...,1)\in\mathbb{R}^M$. By Cauchy-Schwarz inequality, we have $\sum_{m=1}^M (b_m-1) \leq \sqrt{M}\sqrt{\sum_{m=1}^M (b_m-1)^2}$. Then we square both sides and move M to the left-hand side, and we obtain $\sum_{m=1}^M (b_m-1)^2 \geq \frac{1}{M}(\sum_{m=1}^M (b_m-1))^2$.
- 3. The span of x and y is given by

$$\{v \in \mathbb{R}^3 : \alpha x + \beta y, \text{ where } \alpha, \beta \in \mathbb{R} \}.$$

Assume there are two vectors $v_1 = \alpha_1 x + \beta_1 y$ and $v_2 = \alpha_2 x + \beta_2 y$, and $a, b \in \mathbb{R}$. We have

$$av_1 + bv_2 = a(\alpha_1 x + \beta_1 y) + b(\alpha_2 x + \beta_2 y) = (a\alpha_1 + b\alpha_2)x + (a\beta_1 + b\beta_2)y$$

which is also in the span of x and y. Hence, it is closed under addition and multiplication and thus it is a subspace of \mathbb{R}^3 .

4.

a)
$$\mathcal{C}(A) = \{v \in \mathbb{R}^2 : v = \alpha \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
, where $\alpha \in \mathbb{R}\}$ and $\{\begin{bmatrix} 1 \\ 3 \end{bmatrix}\}$ is a basis.

$$Ax = 0 \Rightarrow \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \Rightarrow x_1 + 2x_2 = 0.$$

Hence,
$$\mathcal{N}(A) = \left\{ v \in \mathbb{R}^2 : v = \alpha \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \text{ where } \alpha \in \mathbb{R} \right\}.$$

b)
$$Ax = b \Rightarrow \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \end{bmatrix} \Rightarrow x_1 + 2x_2 = 4.$$

Direct observation gives a particular solution $x_p = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

General solution: $x = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \alpha \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, where $\alpha \in \mathbb{R}$.

a) The generator matrix
$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$
.

The parity check matrix
$$H = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
.

- b) No, it is not. One possible counter example: 00001000 has no inverse image.
- c) All the codewords are:

```
00000000; 00010101; 00100110; 00110011; 01001001; 01011100; 01101111; 01111010; 10001010; 10011111; 10101100; 10111001; 11000011; 11010110; 11100101; 11110000.
```

The minimum weight of all non-zero codewords is 3, so it can correct at most 1 error.

d) The syndrome is
$$s = yH^T = [1, 0, 0, 0, 1, 1, 1, 1] \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = [0, 1, 0, 1]$$

e) The second component and the last component are non-zero, which indicate that the second parity-check equation and the last are in error while the other two parity-check equations are without error. Since only c_4 occurs in the two erroneous equations but not in the two correct equations, according to the nearest-neighbor decoding, c_4 is wrong, so the decoder output is 1001.

6.

a) Yes, it is linear, since it satisfies
$$f_{\theta}(ax + by) = A_{\theta}(ax + by) = aA_{\theta}x + bA_{\theta}y = af_{\theta}(x) + bf_{\theta}(y).$$

b)
$$f_{\pi/4}^{-1}(x) = A_{-\pi/4}x$$
, where $A_{-\pi/4} = \begin{pmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix}$.

- c) $f_{\pi/4} \circ f_{\pi/2} = f_{3\pi/4}$.
- d) It satisfies the four properties:

Closure: For any $f_{\theta_1} \circ f_{\theta_2}$, it means rotating the vector x anti-clockwise by $\theta_2 + \theta_1$ degrees, which is multiples of $\pi/4$ and is still in the set.

Identity: f_0 is the identity.

Inverse: The inverse for f_0 is f_0 , the inverse for other f_θ is $f_{2\pi-\theta}$ Associativity: $(f_{\theta_1} \circ f_{\theta_2}) \circ f_{\theta_3} = f_{\theta_1} \circ (f_{\theta_2} \circ f_{\theta_3})$.

e) $\langle \{f_0, f_{\pi/4}, f_{\pi/2}, f_{3\pi/4}, f_{\pi}, f_{5\pi/4}, f_{3\pi/2}, f_{7\pi/4}\}, \circ \rangle$; $\langle \{f_0, f_{\pi/2}, f_{\pi}, f_{3\pi/2}\}, \circ \rangle$; $\langle \{f_0, f_{\pi}\}, \circ \rangle$; $\langle \{f_0\}, \circ \rangle$