Question Number	Answer		Mark
18a	Use of speed = distance / time	(1)	
	Coloulates distance travelled by sound in 2s = 1020 (m)		
	Calculates distance travelled by sound in 3s = 1020 (m) Or calculates time taken for sound to travel 1 km = 2.04 (s)		
	Or calculates time taken for sound to travel 1 km = 2.94 (s) Or calculates speed to travel 1000m in 3 seconds = 333 (ms ⁻¹)	(1)	
	Of calculates speed to travel 1000m in 3 seconds – 333 (ms.)	(1)	
	Time taken by light to reach 1 km is almost instantaneous / 3.3×10^{-6} s		
	so teacher is (approximately) correct.	(1)	
	Example of calculation		
	For light, $t = d/v = 1000 \text{ m} / 3.00 \times 10^8 \text{ ms}^{-1} = 3.33 \times 10^{-6} \text{ s}$		
	For sound, $t = d/v = 1000 \text{ m} / 340 \text{ ms}^{-1} = 2.94 \text{ s}$		
	Difference in arrival time = $2.94 \text{ s} \approx 3 \text{ s}$		(2)
18bi	Use of $Q = It$	(1)	(3)
	Q = 0.75 C	(1)	
	2 0.73 0	()	
	Example of calculation		
	$Q = It = 25,000 \text{ A} \times (30 \times 10^{-6} \text{ s}) = 0.75\text{C}$		
			(2)
18bii	Use of $P = VI$	(1)	
	$P = 3.0 \times 10^{13} \text{ W}$	(1)	
	Example of calculation $P = VI = (1.2 \times 10^9 \text{ V}) \times 25,000 \text{ A} = 3.0 \times 10^{13} \text{ W}$		
	$P - VI - (1.2 \times 10^{\circ} \text{ V}) \times 23,000 \text{ A} - 3.0 \times 10^{\circ} \text{ W}$		(2)
18biii	Use of $A = \pi r^2$	(1)	(2)
	Use of $R = \rho l/A$	(1)	
	$\rho = 0.24 \; (\Omega' \mathrm{m})$	(1)	
	Example of calculation		
	Cross sectional area of wire = $\pi r^2 = \pi (2.5 \times 10^{-2})^2 = 1.96 \times 10^{-3} \text{ m}^2$		
	$R = V/I = (1.2 \times 10^9 \text{ V}) / 25,000 \text{ A} = 48,000 \Omega$		
	$\rho = RA/l = (48,000 \Omega) (1.96 \times 10^{-3} \text{ m}^2) / 400 \text{ m} = 0.235 \Omega \text{m}$		(2)
10h!	Air in the Helician shows the heart is also		(3)
18biv	Air in the lightning channel has been ionised Or Lightning channel unlikely to have a uniform diameter / CSA	(1)	
	Or Lightning channel unlikely to have a uniform diameter / CSA	(1)	(1)
			(1)