DATAFRAMES WITH PANDAS PART 1:

Read the data:

In [1]:

import pandas as pd

In [2]:

df = pd.read_csv("Uber Drives 2016.csv")

In [3]:

df

Out[3]:

	START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
0	1/1/2016 21:11	1/1/2016 21:17	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain
1	1/2/2016 1:25	1/2/2016 1:37	Business	Fort Pierce	Fort Pierce	5.0	NaN
2	1/2/2016 20:25	1/2/2016 20:38	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies
3	1/5/2016 17:31	1/5/2016 17:45	Business	Fort Pierce	Fort Pierce	4.7	Meeting
4	1/6/2016 14:42	1/6/2016 15:49	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit
1151	12/31/2016 13:24	12/31/2016 13:42	Business	Kar?chi	Unknown Location	3.9	Temporary Site
1152	12/31/2016 15:03	12/31/2016 15:38	Business	Unknown Location	Unknown Location	16.2	Meeting
1153	12/31/2016 21:32	12/31/2016 21:50	Business	Katunayake	Gampaha	6.4	Temporary Site
1154	12/31/2016 22:08	12/31/2016 23:51	Business	Gampaha	Ilukwatta	48.2	Temporary Site
1155	Totals	NaN	NaN	NaN	NaN	12204.7	NaN

¹¹⁵⁶ rows × 7 columns

df: DataFrame

A dataframe is a basic data structure inside pandas which represents data in the form of rows and columns.

In [4]:

type(df)

Out[4]:

pandas.core.frame.DataFrame

To know each column datatype:

In [5]:

df.dtypes

Out[5]:

START_DATE* object
END_DATE* object
CATEGORY* object
START* object
STOP* object
MILES* float64
PURPOSE* object

dtype: object

head():

It is used to print only first five rows.

In [6]:

df.head()

Out[6]:

	START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
0	1/1/2016 21:11	1/1/2016 21:17	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain
1	1/2/2016 1:25	1/2/2016 1:37	Business	Fort Pierce	Fort Pierce	5.0	NaN
2	1/2/2016 20:25	1/2/2016 20:38	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies
3	1/5/2016 17:31	1/5/2016 17:45	Business	Fort Pierce	Fort Pierce	4.7	Meeting
4	1/6/2016 14:42	1/6/2016 15:49	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit

In [7]:

df.head(n = 10)

Out[7]:

	START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
0	1/1/2016 21:11	1/1/2016 21:17	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain
1	1/2/2016 1:25	1/2/2016 1:37	Business	Fort Pierce	Fort Pierce	5.0	NaN
2	1/2/2016 20:25	1/2/2016 20:38	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies
3	1/5/2016 17:31	1/5/2016 17:45	Business	Fort Pierce	Fort Pierce	4.7	Meeting
4	1/6/2016 14:42	1/6/2016 15:49	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit
5	1/6/2016 17:15	1/6/2016 17:19	Business	West Palm Beach	West Palm Beach	4.3	Meal/Entertain
6	1/6/2016 17:30	1/6/2016 17:35	Business	West Palm Beach	Palm Beach	7.1	Meeting
7	1/7/2016 13:27	1/7/2016 13:33	Business	Cary	Cary	0.8	Meeting
8	1/10/2016 8:05	1/10/2016 8:25	Business	Cary	Morrisville	8.3	Meeting
9	1/10/2016 12:17	1/10/2016 12:44	Business	Jamaica	New York	16.5	Customer Visit

Shape:

It is used to tell how many rows and columns are present.

In [9]:

df.shape

```
Out[9]: (1156, 7)
```

tail():

It is used to print only last five rows.

In [10]:

```
df.tail()
```

Out[10]:

	START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
1151	12/31/2016 13:24	12/31/2016 13:42	Business	Kar?chi	Unknown Location	3.9	Temporary Site
1152	12/31/2016 15:03	12/31/2016 15:38	Business	Unknown Location	Unknown Location	16.2	Meeting
1153	12/31/2016 21:32	12/31/2016 21:50	Business	Katunayake	Gampaha	6.4	Temporary Site
1154	12/31/2016 22:08	12/31/2016 23:51	Business	Gampaha	Ilukwatta	48.2	Temporary Site
1155	Totals	NaN	NaN	NaN	NaN	12204.7	NaN

Last row is the sum of all the values of each columns.

NaN:

- * Is is official junk values.
- $\mbox{\ensuremath{\star}}$ It stands for Not Any Number.

Changing data types:

pd.DataFrame():

It is used to create a dataframe form our own definition.

In [14]:

```
temp = pd.DataFrame({"A" : ["1","2","3"], "B" : [11,12,13], "C" : ["12-06-2012","13-06-2015","15-06-2017"]})
```

In [15]:

temp

Out[15]:

	Α	В	С
0	1	11	12-06-2012
1	2	12	13-06-2015
2	3	13	15-06-2017

```
• keys : column name
 • values : datas
In [16]:
temp.dtypes
Out[16]:
A object
B int64
C object
dtype: object
to_datetime:
   It converts a string into date and time.
In [18]:
date = pd.to_datetime("12-Jun-2012")
date
Out[18]:
Timestamp('2012-06-12 00:00:00')
In [20]:
type (date)
Out[20]:
\verb|pandas._libs.tslibs.timestamps.Timestamp|\\
In [ ]:
```