עבורה Vol $_n:\mathcal{P}\left(\mathbb{R}^n
ight)
ightarrow [0,\infty]$ עבורה אזי לא קיימת $n\in\mathbb{N}$ יהי

- $.Vol_n([0,1]^n) = 1 \bullet$
- . $\operatorname{Vol}_n\left(\biguplus_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{n}\operatorname{Vol}_n\left(A_i\right)$ אזי $\left\{A_i
 ight\}_{i=1}^{\infty}\subseteq\mathcal{P}\left(\mathbb{R}^n
 ight)$ תהיינה
- . $\mathrm{Vol}_n\left(arphi\left(A
 ight)
 ight)=\mathrm{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ תהא

קבוצות חופפות בחלקים: $X,Y\subseteq\mathbb{R}^n$ עבורן קיים $X,Y\subseteq\mathbb{R}^n$ קיימות עבורן איזומטריות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות $X,Y\subseteq\mathbb{H}^n$ וכן $X,Y\subseteq\mathbb{H}^n$ איזומטריות המקיימות $X,Y\subseteq\mathbb{H}^n$ וכן $Y,Y_i=\emptyset$ איזומטריות איזומטריים אייים איזומטריים איזומטריות איזומטריות איזומטריים איזומטריי

 $X \equiv Y$ אזי בחלקים חופפות $X,Y \subseteq \mathbb{R}^n$ סימון: תהיינה

 $X \equiv Y$ אזי $(Y) \neq \varnothing$ וכן $(X) \neq \varnothing$ וונן וונן $(X) \neq \varnothing$ חסומות עבורן חסומות ווהיינה ווהיינה

- $.Vol_n([0,1]^n)=1 \bullet$
- . $\mathrm{Vol}_n\left(A \uplus B\right) = \mathrm{Vol}_n\left(A\right) + \mathrm{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- . $\mathrm{Vol}_n\left(\varphi\left(A\right)\right)=\mathrm{Vol}_n\left(A\right)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $\varphi:\mathbb{R}^n o\mathbb{R}^n$ ההא

עבורה $\operatorname{Vol}_n:\mathcal{P}\left(\mathbb{R}^n
ight) o [0,\infty]$ אזי קיימת $n\in\{1,2\}$ יהי יהי

- $.Vol_n([0,1]^n) = 1 \bullet$
- $\operatorname{Vol}_n\left(A \uplus B\right) = \operatorname{Vol}_n\left(A\right) + \operatorname{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- $\operatorname{Vol}_n\left(arphi\left(A
 ight)
 ight)=\operatorname{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ תהא

אלגברה: תהא א קבוצה אזי תהא אלגברה: אלגברה אלגברה

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . | או סופית מתקיים בכל $E\subseteq\mathcal{A}$

 $A\cap B\in\mathcal{A}$ אזי א $A,B\in\mathcal{A}$ טענה: תהא

אידיאל: תהא $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה אזי תהא

- $X \notin \mathcal{I} \bullet$
- $. \forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $\bigcup E \in \mathcal{A}$ סופית מתקיים $E \subseteq \mathcal{A}$ לכל •

המקיימת $\mathcal{A}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה X המקיימת σ

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . $\bigcup E \in \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

מסקנה: תהא $\mathcal A$ אלגברה אזי σ אלגברה.

המקיימת $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה אזי תהא X המקיימת σ

- $X \notin \mathcal{I} \bullet$
- $\forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $\bigcup E \in \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

טענה: תהיינה $\sigma \cap_{\alpha \in I} A_{\alpha}$ אזי $\sigma \in \sigma \{A_{\alpha}\}_{\alpha \in I} \subseteq \mathcal{P}(X)$ טענה: תהיינה

אזי A אזי מעל X המכילות מעל כל ה σ ־אלגברה נוצרת: תהא אזי $A\subseteq\mathcal{P}\left(X\right)$ ותהיינה ותהא $A\subseteq\mathcal{P}\left(X\right)$ המכילות את $\sigma\left(A\right)=\bigcap_{\alpha\in I}\mathcal{A}_{\alpha}$

A את המכילה ביותר המטנה ה־ σ אזי אזי הינה הי σ אזי אזי אזי אזי $A\subseteq\mathcal{P}\left(X\right)$ אזי מסקנה:

 $\mathcal{B}\left(X
ight)=\sigma\left(\left\{\mathcal{O}\in\mathcal{P}\left(X
ight)\mid$ פתוחה $\mathcal{O}
ight\}$ פתחה מטרי אזי יהי מרחב מטרי אזי מרחב מטרי אזי

טענה: יהי X מרחב מטרי אזי הקבוצות הבאות שוות

- .X אלגברה בורל על- σ
- $.\sigma\left(\left\{B_{r}\left(a\right)\mid\left(r>0\right)\wedge\left(a\in X\right)\right\}\right)\bullet$
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r\in\mathbb{Q}_+\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\left\{ B_{r}\left(a
 ight)\mid\left(r\in\mathbb{Q}_{+}
 ight)\wedge\left(a\in Y
 ight)
 ight\}
 ight)$ צפופה אזי $Y\subseteq X$ תהא \bullet

 $A=igcap_{i=1}^\infty \mathcal{O}_i$ עבורה קיימות פתוחות פתוחות איימות $\{\mathcal{O}_i\}_{i=1}^\infty$ עבורה קיימות עבורה איימות $A\subseteq X:G_\delta$

```
A=igcup_{i=1}^\infty \mathcal{O}_i סגורות המקיימות \{\mathcal{O}_i\}_{i=1}^\infty עבורה קיימות A\subseteq X:F_\delta אזי מסקנה: תהא A קבוצה G_\delta ותהא B קבוצה B אזי B ותהא B קבוצה הקבוצות הבאות שוות \mathbb{R}^n טענה: הקבוצות הבאות שוות \sigma \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) משפט: תהא \{f:\mathbb{R}\to\mathbb{R}\} ותהא \{f:\mathbb{R}\to\mathbb{R}\} אזי \mathcal{O}(f)\in G_\delta \bullet \mathcal{O}(f) אזי \mathcal{O}(f)=\{f\in \mathcal{O}(f)\}
```

.int $(\overline{A})=\varnothing$ המקיימת $A\subseteq X$ המקיימת מרחב מטרי אזי $A\subseteq X$ המקיימת מרחב מטרי אזי $A=\bigcup_{i=1}^\infty B_i$ דלילות עבורן $\{B_i\}_{i=1}^\infty$ דלילות עבורן מטרי אזי $A\subseteq X$ עבורה קיימות מקטגוריה ראשונה. קבוצה מקטגוריה שנייה: יהי A מרחב מטרי אזי $A\subseteq X$ שאינה מקטגוריה ראשונה. $A^{\mathcal{C}}$ מקטגוריה ראשונה אזי $A\subseteq X$ מקטגוריה ראשונה אזי $A^{\mathcal{C}}$

למה: יהיX מרחב מטרי אזי

- . דלילה $B \subseteq A$ אזי $A \subseteq X$ דלילה תהא $A \subseteq X$
- . דלילה $\bigcup_{i=1}^n A_i$ אזי דלילות אזי $A_1 \ldots A_n \subseteq X$ דלילה.
 - . דלילה אזי \overline{A} דלילה אזי $A\subseteq X$ תהא

מסקנה: קבוצות דלילות מהוות אידיאל.

 $\operatorname{cint}(A)=arnothing$ אזי משפט בייר: יהי X מרחב מטרי שלם ותהא $A\subseteq X$ מקטגוריה אזי משפט מייר:

מסקנה: קבוצות דלילות מהוות σ ־אידיאל.

 $\mathbb{Q} \notin G_{\delta}$:מסקנה

 $A=F\uplus N$ אזי קיימת איים וקיימת איימת משפט: תהא אזי קיימת הקטגוריה מקטגוריה אזי קיימת אזי קיימת אזי קיימת משפט

משפט בנך: במרחב המטרי $\{f\in C\left([0,1]\right)\mid\exists x\in\left(0,1\right).f\in\mathcal{D}\left(x\right)\}$ היא מקטגוריה מקסימום הקבוצה $C\left([0,1]\right)$ היא מקטגוריה במרחב המטרי ראשונה.

הערה: "רוב" הפונקציות הרציפות לא גזירות באף נקודה.

משפט: תהא $A\subseteq X$ מקטגוריה ראשונה עבורה $F\subseteq X$ סגורה בייר) \Longleftrightarrow (קיימת בייר) אזי (ל-A אזי ל-A אזי ל-A אזי אזי (ל- $A\subseteq X$).

מסקנה: תהא $A^{\mathcal{C}}$ בעלת תכונת בייר אזי $A\subseteq X$ בעלת תכונת בייר.

 $\{A\subseteq X\mid$ בעלת תכונת בייר $A\}=\sigma$ ($\{A\subseteq X\mid ($ משפט: יהי $A\}=\sigma$ בעלת תכונת בייר אזי משפט: יהי $A\}=\sigma$ משפט: יהי אזי מחבר מטרי אזי ($\{A\subseteq X\mid \alpha \in A\}$

נסמן lpha+1 נסמן, $\mathcal{F}_0=\mathcal{T}\cup\{\varnothing,\Omega\}$ נסמן נסמן $\mathcal{T}\subseteq\mathcal{P}\left(X
ight)$ נסמן X לכל סודר עוקב X

באשר $\sigma\left(\mathcal{T}\right)=\mathcal{F}_{\omega_{1}}$ אזי $\mathcal{F}_{\lambda}=\bigcup_{\alpha<\lambda}\mathcal{F}_{\alpha}$ נסמן λ נסמן $\mathcal{F}_{\alpha+1}=\mathcal{F}_{\alpha}\cup\left\{A^{\mathcal{C}}\mid A\in\mathcal{F}_{\alpha}\right\}\cup\left\{\bigcap_{n=1}^{\infty}A_{n}\mid A_{n}\in\mathcal{F}_{\alpha}\right\}$ באשר ... הסודר הגבולי הקטן ביותר שאינו בן מניה.

 $|\sigma\left(X
ight)|=leph$ אזי און אזי עבורה עבורה X קבוצה עבורה א

 $.(X,\Sigma)$ אזי אזי ס אלגברה σ $\Sigma\subseteq\mathcal{P}\left(X\right)$ ותהא ותהא קבוצה אזי תהא מדיד: תהא

המקיימת $\mu:\Sigma \to [0,\infty]$ אזי מרחב מדיד הה
 (X,Σ) יהי יהי פונקציית מידה: יהי

- $.\mu\left(\varnothing\right)=0$
- $.\mu\left(\biguplus_{i=1}^{\infty}B_i\right)=\sum_{i=1}^{\infty}\mu\left(B_i\right)$ איות בזוגות אזי ורות ב $\left\{B_i\right\}_{i=1}^{\infty}\subseteq\Sigma$ ההיינה •

 (X,Σ,μ) אזי מידה פונקציית מידה בחרב מדיד מרחב ($X,\Sigma)$ יהי יהי מידה: מרחב מרחב מרחב

 $\mu\left(X
ight)<\infty$ מידה סופית: פונקציית מידה מידה מונקציית מידה סופית:

 $. orall i \in \mathbb{N}_+. \mu\left(B_i
ight) < \infty$ וכן $X = igcup_{i=1}^\infty B_i$ המקיימים $\{B_i\}_{i=1}^\infty \subseteq \Sigma$ וכן μ בורה קיימים מידה μ וכן μ בורה קיימים מידה μ המקיימת μ בורה הסתברות: פונקציית מידה μ המקיימת μ

טענה: יהי (X,Σ,μ) מרחב מידה אזי

- $.\mu\left(A
 ight) \leq \mu\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\Sigma$ יהיו מונוטוניות: יהיו
- $\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}\right)$ אזי $\left\{A_{i}\right\}_{i=1}^{\infty}\subseteq\Sigma$ התראדיטיביות: תהיינה σ
- $.\mu\left(igcup_{i=1}^{\infty}A_{i}
 ight)=\lim_{n o\infty}\mu\left(A_{n}
 ight)$ אזי $orall i\in\mathbb{N}_{+}.A_{i}\subseteq A_{i+1}$ באשר באשר $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$ היינה Φ
- $\mu\left(\bigcap_{i=1}^{\infty}A_{i}
 ight)=\lim_{n\to\infty}\mu\left(A_{n}
 ight)$ אזי $\mu\left(A_{1}
 ight)<\infty$ וכן $\forall i\in\mathbb{N}_{+}.A_{i}\supseteq A_{i+1}$ באשר $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$ באשר פידת בורל: תהא X קבוצה אזי מידה μ על $\mu\left(X,\mathcal{B}\left(X
 ight)\right)$.

 $\mu\left(E
ight)=0$ המקיימת $E\in\Sigma$ אפס/זניחה:

 $\mathcal{N}=\left\{ E\in\Sigma\mid\mu\left(E
ight)=0
ight\}$ סימון: יהי (X,Σ,μ) מרחב מידה אזי

. אניחה $\bigcup_{i=1}^{\infty} E_i$ אזי אניחות אזי $\{E_i\}_{i=1}^{\infty} \subseteq \Sigma$ אניחה: תהיינה

כמעט בכל מקום (כ.ב.מ.): יהי ψ פרידיקט עבורו קיימת $E\in\mathcal{N}$ המקיים כי ψ מתקיים לכל אזי נאמר כי ψ נכונה ψ נכונה בכל מקום..

 $F\in\mathcal{N}$ מתקיים $F\subseteq E$ ולכל ולכל לכל עבורה מידה מידה מידה פונקציית מידה לכל

 $.\overline{\Sigma}=\{E\cup F\mid (E\in\Sigma)\wedge (\exists N\in\mathcal{N}.F\subseteq N)\}$ השלמה של σ ־אלגברה: יהי (X,Σ,μ) מרחב מידה אזי

טענה: יהי $\overline{\Sigma}$ יהי מידה מידה ($X,\Sigma,\mu)$ יהי טענה:

 $u_{
ho_{\Sigma}} = \mu$ עבורה על $\overline{\Sigma}$ עבורה מידה מידה אזי קיימת ויחידה מידה אל מרחב מרחב מידה אזי קיימת ויחידה מידה שלמה על (X,Σ,μ)

 $.\overline{\mu}_{1_{\Sigma}}=\mu$ עבורה על $\overline{\Sigma}$ עבורה השלמה המידה מידה מידה מידה מרחב מרחב (X,Σ,μ) השלמה של מידה: יהי

טענה: יהי $(X,\overline{\Sigma},\overline{\mu})$ מרחב מידה אזי (X,Σ,μ) מרחב מידה.

מחלקת דינקין: תהא $X
eq \varnothing$ אזי $\mathcal{D} \subseteq \mathcal{P}\left(X
ight)$ אזי איזי תהא

- $X \in \mathcal{D} \bullet$
- $.B \backslash A \in \mathcal{D}$ אזי $A \subseteq B$ באשר $A, B \in \mathcal{D}$ יהיי •
- $.igcup_{i=1}^\infty A_i\in\mathcal{D}$ אזי $orall i\in\mathbb{N}_+.A_i\subseteq A_{i+1}$ באשר $\{A_i\}_{i=1}^\infty\subseteq\mathcal{D}$ ההיינה ullet

 $\bigcap_{i=1}^n A_i \in \Pi$ מתקיים $A_1 \dots A_n \in \Pi$ עבורה לכל עבורה $\Pi \subseteq \mathcal{P}\left(X
ight)$ אזי אזי $X
eq \varnothing$ מערכת π

. טענה: תהיינה $\bigcap_{\alpha\in I}\mathcal{D}_{lpha}$ אזי מחלקות אול מחלקת $\{\mathcal{D}_{lpha}\}_{lpha\in I}\subseteq\mathcal{P}\left(X
ight)$ טענה: תהיינה

 $d\left(A
ight)=igcap_{lpha\in I}\mathcal{D}_{lpha}$ אזי א אזי אזי $A\subseteq\mathcal{P}\left(X
ight)$ כל המחלקות דינקין מעל A המכילות את אזי $A\subseteq\mathcal{P}\left(X
ight)$ ותהיינה $A\subseteq\mathcal{P}\left(X
ight)$ הינה המחלקת דינקין הקטנה ביותר המכילה את $A\subseteq\mathcal{P}\left(X
ight)$ הינה המחלקת המחלקת דינקין הקטנה ביותר המכילה את אוי $A\subseteq\mathcal{P}\left(X
ight)$

למה: תהא A אלגברה על X עבורה לכל A עבורה לכל A באשר $A_i \in \mathbb{N}_+$ מתקיים $A_i \in \mathcal{A}$ מתקיים $A_i \in \mathcal{A}$ אזי A האלגברה על מה: תהא A אלגברה על עבורה לכל $A_i \in \mathcal{A}$ באשר $A_i \in \mathbb{N}_+$ מתקיים $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ מתקיים $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ משפט הלמה של דינקין: תהא $A_i \in \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ משפט הלמה של דינקין: תהא $A_i \in \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$

עבורן Σ עבורן סופיות סופיות μ, ν מידות $\Sigma = \sigma\left(\Pi\right)$ עבורה מטקנה: יהי $\Pi \subseteq \mathcal{P}\left(X\right)$ מרחב מדיד תהא על $\Pi \subseteq \mathcal{P}\left(X\right)$ מרחב מדיד תהא $\mu = \mu$ אזי $\mu \in \mathcal{P}\left(X\right)$ וכן $\mu \in \mathcal{P}\left(X\right)$ אזי $\mu \in \mathcal{P}\left(X\right)$

 $orall i\in\mathbb{N}_+.A_i\subseteq A_{i+1}$ באשר $\{A_i\}_{i=1}^\infty\subseteq\Pi$ מסקנה: יהי $\Sigma=\sigma(\Pi)$ מערכת מערכת מערכת $\Pi\subseteq\mathcal{P}(X)$ מרחב מדיד תהא $\mu=\nu$ מידות על צורן μ,ν מידות על צורן μ,ν מידות על צורן עוכך μ,ν מידות על צורן על צורן אזי μ,ν מידות על צורן אזי μ,ν מידות על צורן אזי עוברן אזי שור μ,ν

חוג למחצה: תהא $\mathcal{E}\subseteq\mathcal{P}\left(X\right)$ אזי קבוצה X המקיימת

- $\mathscr{A} \in \mathcal{E} ullet$
- $A \cap B \in \mathcal{E}$ אזי $A, B \in \mathcal{E}$ יהיי
- $A \setminus B = \biguplus_{i=1}^n C_i$ עבורם $C_1 \dots C_n \in \mathcal{E}$ אזי קיימים $A, B \in \mathcal{E}$ יהיי

 $A_1 \ldots A_n \in \mathcal{E}$ טענה: יהי $\mathcal{E} \subseteq \mathcal{P}\left(X
ight)$ חוג למחצה ויהיו

- $.Packslash\bigcup_{i=1}^nA_i=\biguplus_{i=1}^mB_i$ יהי $P\in\mathcal{E}$ אזי קיימים יהי אז $P\in\mathcal{E}$ יהי •
- $.\bigcup_{i=1}^nA_i=\biguplus_{i=1}^m\biguplus_{j=1}^mB_{i,j}$ עבורם $\{B_{i,j}\mid (i\in[n])\wedge (j\in[m_i])\}\subseteq\mathcal{E}$ קיימים •
- $.\bigcup_{i=1}^nA_i=\biguplus_{i=1}^\infty\biguplus_{j=1}^mB_{i,j}$ עבורם $\{B_{i,j}\mid (i\in\mathbb{N}_+)\wedge (j\in[m_i])\}\subseteq\mathcal{E}$ קיימים •

מידה אלמנטרית: יהי $\mu:\mathcal{E} o [0,\infty]$ חוג למחצה אזי חוג למרית: יהי יהי

- $\mu(\varnothing) = 0 \bullet$
- $.\mu\left(A\uplus B
 ight)=\mu\left(A
 ight)+\mu\left(B
 ight)$ אזי $A\uplus B\in\mathcal{E}$ עבורם $A,B\in\mathcal{E}$ אדיטיביות: תהיינה \bullet

- $.\mu\left(A
 ight) \leq \mu\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\mathcal{E}$ מונוטוניות: תהיינה
- $\mu\left(igcup_{i=1}^\infty A_i
 ight) \leq \sum_{i=1}^\infty \mu\left(A_i
 ight)$ איי ווינה $\left\{A_i
 ight\}_{i=1}^\infty \subseteq \mathcal{E}$ התראדטיביות: תהיינה σ

מידה חיצונית: יהי $X
eq \varnothing$ אזי אזי $\mu^*: \mathcal{P}\left(X\right)
ightarrow \left[0,\infty\right]$ אזי אזי מידה חיצונית: יהי

- $.\mu^*(\varnothing) = 0 \bullet$
- $.\mu^{st}\left(A
 ight)\leq\mu^{st}\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\mathcal{P}\left(X
 ight)$ היינה •
- $\mu\left(\bigcup_{i=1}^{\infty}A_{i}
 ight)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}
 ight)$ אזי $\left\{A_{i}
 ight\}_{i=1}^{\infty}\subseteq\mathcal{P}\left(X
 ight)$ היינה σ •

 $ho\left(\varnothing
ight)=0$ אבורה $ho:\mathcal{E} o [0,\infty]$ אתהא $arphi,X\in\mathcal{E}$ באשר $\mathcal{E}\subseteq\mathcal{P}\left(X
ight)$ יהי יהי $ho:
ho^*\left(A
ight)=\inf\left\{\sum_{i=1}^\infty
ho\left(E_i
ight)\mid\left(\left\{E_i\right\}_{i=1}^\infty\subseteq\mathcal{E}\right)\wedge\left(A\subseteq\bigcup_{i=1}^\infty E_i
ight)
ight\}$ כגדיר $ho^*:\mathcal{P}\left(X
ight) o [0,\infty]$

. טענה: ho^* אזי $ho(\varnothing)=0$ אזי $ho:\mathcal{E} o[0,\infty]$ ותהא מידה חיצונית. באשר $\mathcal{E}\subseteq\mathcal{P}(X)$ אזי יהי

 $.m_{{\scriptscriptstyle \mathsf{LM}}}^* = m$ אזי אלמנטרית מידה מידה m מידה למחצה חוג למחצה שענה: יהי

 $.\Gamma_{0}=\{E\in\mathcal{A}\mid\lambda$ אזי $E\}$ אזי $\lambda\left(arnothing
ight)=0$ עבורה $\lambda:\mathcal{A} o\left[0,\infty
ight]$ אלגברה ותהא אלגברה ותהא $\lambda:\mathcal{A} o\left[0,\infty
ight]$

טענה: תהא $\lambda\left(arnothing
ight)=0$ אזי $\lambda:\mathcal{A} o\left[0,\infty
ight]$ אלגברה ותהא אלגברה לגברה אזי $\lambda:\mathcal{A} o\left[0,\infty
ight]$

- .אלגברה Γ_0
- $.\Gamma_0$ אדיטיבית על λ

 $.\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$

 $\lambda\left(\biguplus_{i=1}^{n}\left(E_{k}\cap F\right)\right)=\sum_{i=1}^{n}\lambda\left(E_{n}\cap F\right)$ אזי $F\in\mathcal{A}$ ויהי $E_{1}\ldots E_{n}\in\Gamma_{0}$ תהיינה

מתקיים לכל לכל עבורה אזי אזי אזי חיצונית מידה מידה תהא $E\subseteq X$ לכל למידה אזי אזי על אזי מידה מידה מהידה מהידה מהידה מידה תהא μ^*

 $.\Sigma_{\mu^*}=\{A\subseteq X\mid \mu^*$ מדידה $A\}$ אזי על X איזי מידה חיצונית על μ^* מידה חיצונית על

 $\mathcal{M}\subseteq \Sigma_{m^*}$ יהי אלמנטרית מידה m מידה ותהא חוג למחצה חוג למחצה ותהא

משפט הלמה של קרתאודורי: תהא μ^* מידה חיצונית על X אזי

- . אלגברה σ Σ_{μ^*}
- . מידה שלמה $\mu^*_{\restriction_{\Sigma_{..*}}}$

משפט: יהי \mathcal{M} חוג למחצה תהא m מידה אלמנטרית ותהא (X,Σ',μ) המשכת קרתיאודורי נוספת של m מידה אלמנטרית יהי

- $\mu(A) < m^*(A)$ מתקיים $A \in \Sigma' \cap \Sigma_{m^*}$
- $.\mu\left(A
 ight)=m^{st}\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{st}}$ לכל אזי לכל $m^{st}\left(X
 ight)<\infty$.
 - $\mu\left(A
 ight)=m^{st}\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{st}}$ לכל אזי לכל σ m נניח כי

. מסקנה: יהי ${\mathcal M}$ חוג למחצה ותהא m מידה אלמנטרית σ ־סופית אזי המשכת קרתיאודורי יחידה מסקנה:

מתקיים $d\left(A,B\right)>0$ באשר $A,B\subseteq X$ מתקיים μ^* מידה מטרי ותהא ווהא μ^* מידה מטרי מידה (X,d) מתקיים $\mathcal{B}\left(X\right)\subseteq\Sigma_{\mu^*}$ אזי $\mu^*\left(A\cup B\right)=\mu^*\left(A\right)+\mu^*\left(B\right)$

 $\mu\left(A
ight)=\sup\left\{ \mu\left(K
ight)\mid\left(K\subseteq A
ight)\wedge\left(\Pi^{\prime}$ קומפקטית א עבורה $A\in\Sigma$ עבורה קבוצה רגולרית:

. תולרית. אזי μ אזי אוי μ אזי μ אזי μ משפט אולם: יהי א מרחב מטרי שלם וספירבילי ותהא ותהא אוי משפט אולם: יהי אוי שלח מטרי שלח ו

עבורה $\{\prod_{i=1}^n (a_i,b_i) \mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}$ עבורה מידה אלמנטרית: מידה אלמנטרית:

 $.m(\prod_{i=1}^{n} (a_i, b_i)) = \prod_{i=1}^{n} (b_i - a_i)$

 $\mathcal{L}\left(\mathbb{R}^n
ight)=\sigma\left(\{A\subseteq\mathbb{R}^n\mid ($ מתוחה A)ee (פתוחה הנפח האלמנטרית פי מידת על פי מידת אנברה לבג:

 $\mathcal{B}\left(\mathbb{R}^d
ight)\subseteq\mathcal{L}\left(\mathbb{R}^d
ight)$:מסקנה

 $\mathcal{L}\left(\mathbb{R}^n
ight)=\Sigma_{m^*}$ אזי אזי הנפח העלמנטרית מידת מידת מידת מידת מידת מידת הנפח

מסקנה: תהא $u \left(\prod_{i=1}^n (a_i,b_i)\right) = \prod_{i=1}^n (b_i-a_i)$ מידה אלמנטרית מידה אלמנטרית מידה אלמנטרית עבורה $u : \mathcal{L}\left(\mathbb{R}^n\right) \to [0,\infty]$ אזי א הינה מידת הנפח האלמנטרית.

טענה: תהא λ מידת לבג אזי

```
.\lambda\left(E
ight)=\lim_{n	o\infty}\lambda\left(E\cap\left[-n,n
ight]^{d}
ight) אזי E\in\mathcal{L}\left(\mathbb{R}^{d}
ight) תהא
```

- $A(\mathcal{O}\backslash E)<arepsilon$ פתוחה עבורה $E\subseteq\mathcal{O}$ אזי קיימת arepsilon>0 ויהי ויהי ויהי $E\in\mathcal{L}\left(\mathbb{R}^d
 ight)$
- $\lambda\left(Eackslash F
 ight)<arepsilon$ סגורה עבורה אזי קיימת $E\in\mathcal{L}\left(\mathbb{R}^d
 ight)$ תהא $E\in\mathcal{L}\left(\mathbb{R}^d
 ight)$
- $.\lambda\left(E\backslash F\right)<\varepsilon$ עבורה עבורה $F\subseteq E$ אזי קיימת יהי ויהי $\mu\left(E\right)<\infty$ עבורה עבורה תהא \bullet
- .($\lambda\left(A\right)=\lambda\left(B\right)$ וכן $A\subseteq E\subseteq B$ המקיימות $A,B\in\mathcal{B}\left(\mathbb{R}^{d}\right)$ (קיימות לב) אזי וכן $E\subseteq\mathbb{R}^{d}$ אזי $E\subseteq\mathbb{R}^{d}$

טענה: תהא $A\subseteq\mathbb{R}^d$ מידת לבג ותהא μ התב"ש

- $A \in \mathcal{L}\left(\mathbb{R}^d\right)$ •
- A=Gackslash E עבורן $E\in\mathcal{N}$ וקיימת וקיימת $G\in G_\delta$
- $A=F\cup E$ עבורן איימת $E\in\mathcal{N}$ וקיימת וקיימת $F\in F_{\sigma}$

 $.(\mathcal{B}\left(\mathbb{R}^d
ight),m)$ מסקנה: תהא λ מידת לבג אזי $(\mathcal{L}\left(\mathbb{R}^d
ight),\lambda)$ השלמה של

משפט: תהא $A\subseteq\mathcal{O}$ מידת לבג תהא $f:\mathcal{O} o\mathbb{R}^d$ פתוחה תהא פתוחה לבג תהא מידת לבג תהא לבג תהא משפט

- $f\left(A
 ight)\in\mathcal{L}\left(\mathbb{R}^{d}
 ight)$ אזי $A\in\mathcal{L}\left(\mathbb{R}^{d}
 ight)$ נניח כי
 - $.\lambda\left(f\left(A\right)
 ight)=0$ נניח כי $\lambda\left(A\right)=0$ אזי •

 $A(A)=\lambda\left(A+x
ight)$ אזי $x\in\mathbb{R}^n$ ויהי $A\in\mathcal{L}\left(\mathbb{R}^n
ight)$ משפט אינווריאנטיות להזזות: תהא

מסקנה: תהא $\nu\left(E\right)<\infty$ חבומה מתקיים בע וכן לכל לכל לכל $E\in\mathcal{L}\left(\mathbb{R}^d\right)$ מידה אינווריאנטית מידה אינווריאנטית מידה אינווריאנטית האינווריאנטית מידה אינווריאנטית $u:\mathcal{L}\left(\mathbb{R}^n\right)\to\left[0,\infty\right]$ איי קיים $\lambda=\kappa \nu$ אוי עבורו $\kappa\in\left[0,\infty\right)$

 $\lambda\left(T\left(E
ight)
ight)=\left|\det\left(T
ight)
ight|\lambda\left(E
ight)$ אזי $E\in\mathcal{L}\left(\mathbb{R}^{d}
ight)$ ותהא $T\in\operatorname{Hom}\left(\mathbb{R}^{d}
ight)$ משפט: תהא

 $A=\prod_{i=1}^n{(a_i,b_i)}$ המקיימים $a_1,b_1\dots a_n,b_n\in\mathbb{R}$ עבורה קיימים עבורה $A\subseteq\mathbb{R}^d$ המדרה: תהא $E\subset\mathbb{R}^d$ חסומה ותהא A מידת לבג אזי

- $\lambda_{*,I}(E) = \sup \{\lambda(A) \mid (\lambda(A) \subseteq E)\}$ מידת ז'ורדן פנימית:
- $.\lambda_{I}^{st}(E)=\inf\left\{ \lambda\left(A
 ight) \mid$ (פשוטה) איורדן חיצונית: $A \cap A \cap A \supseteq B$

 $\lambda_{J}\left(E
ight)=\lambda_{J}^{*}\left(E
ight)$ אזי א $\lambda_{*,J}\left(E
ight)=\lambda_{J}^{*}\left(E
ight)$ חסומה עבורה $E\subseteq\mathbb{R}^{d}$ אזי אוירדן: תהא

 $.\lambda_{J}^{*}\left(E
ight)=\lambda\left(\overline{E}
ight)$ וכן $\lambda_{*,J}\left(E
ight)=\lambda\left(\mathrm{int}\left(E
ight)
ight)$ חסומה אזי וכן וכן

טענה: תהא λ מידת לבג אזי $E\subseteq \mathbb{R}^d$ מידת לבג אזי

- .מדידה ז'ורדן E ullet
- $A(B\backslash A)<arepsilon$ וכן $A\subseteq E\subseteq B$ פשוטות עבורן A,B אזי קיימות arepsilon>0
 - $\lambda_I^*(\partial E) = 0 \bullet$
 - $.\lambda^* \left(\partial E \right) = 0 \bullet$

 $(x-y)\in\mathbb{Z}^dackslash\{0\}$ עבורם $x,y\in E$ אזי קיימים אזי $\lambda\left(E
ight)>1$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$

 $V\cap \left(\mathbb{Z}^dackslash\{0\}
ight)
eq arnothing$ אזי א $V\subseteq \mathbb{R}^d$ משפט מינקובסקי: יהי $V\subseteq \mathbb{R}^d$ גוף קמור סימטרי סביב $V\cap \left(\mathbb{Z}^d\setminus\{0\}
ight)$

 $\lambda\left(E\cap Q
ight)> heta\cdot\lambda\left(Q
ight)$ עבורה $Q\subseteq\mathbb{R}^d$ אזי קיימת קוביה $\theta\in(0,1)$ ותהא $\lambda\left(E
ight)\in(0,\infty)$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$ משפט שטיינהאוס: תהא $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$ אזי $E\in\mathcal{L}\left(\mathbb{R}^d\right)$

 $(x-y)\in\mathbb{Q}\setminus\{0\}$ עבורם $x,y\in E$ אזי קיימים א $\lambda\left(E
ight)>0$ עבורה $E\in\mathcal{L}\left(\mathbb{R}
ight)$ מסקנה: תהא

 $\mathcal{O}=(\biguplus_{i=1}^\infty B_i)\cup E$ עבורם $E\in\mathcal{N}$ עבורים וקיימת למה: תהא $\mathcal{O}=\{B_i\}_{i=1}^\infty\subseteq\mathcal{P}\left(\mathbb{R}^d
ight)$ פתוחה אזי קיימים

פונקציית התפלגות: $F:\mathbb{R} o\mathbb{R}_{>0}$ מונוטונית עולה ורציפה מימין.

טענה: תהא μ מידת בורל סופית על \mathbb{R} אזי $F:\mathbb{R} \to \mathbb{R}$ המוגדרת $F:\mathbb{R} \to \mathbb{R}$ הינה פונקציית התפלגות. μ מידה: תהא μ אלגברה אזי $\mu:\mathcal{A} \to [0,\infty]$ אלגברה אזי $\mu:\mathcal{A} \to [0,\infty]$

- $.\mu(\varnothing) = 0 \bullet$
- $\mu(iguplus_{i=1}^\infty B_i) = \sum_{i=1}^\infty \mu(B_i)$ ארות בזוגות אזי ורות ב $\{B_i\}_{i=1}^\infty \subseteq \Sigma$ אדטיביות: תהיינה σ

 $.m_{\restriction_{\mathcal{A}}}^*=m$ אזי קדם־מידה אזי ותהא אלגברה אלגברה

 $\mathcal{A} \subseteq \Sigma_{m^*}$ איי קדם־מידה m קדם ותהא אלגברה תהא

 Σ_{m^*} מידה מעל m^* מידה המשכת קרתיאודורי: תהא אלגברה ותהא M

משפט: תהא Aאלגברה תהא m קדם־מידה ותהא (X,Σ',μ) המשכת קרתיאודורי נוספת של

- $\mu(A) < m^*(A)$ מתקיים $A \in \Sigma' \cap \Sigma_{m^*}$ •
- $\mu\left(A
 ight)=m^{*}\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{*}}$ אזי לכל $m^{*}\left(X
 ight)<\infty$ פניח כי
 - $.\mu\left(A
 ight)=m^{st}\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{st}}$ לכל אזי לכל יניח כי σ מתקיים •

"מסקנה: תהא Aאלגברה ותהא m קדם־מידה σ ־סופית אזי המשכת קרתיאודורי יחידה.

 $A([a,b)\mid a\leq b\}$ פונקציית מעל החוג למחצה $B([a,b)\mid a\leq b$ פונקציית התפלגות אזי $A([a,b)\mid a\leq b$ פונקציית התפלגות אזי טענה: תהא $\mu\left(\biguplus_{i=1}^n\left[a_i,b_i
ight)
ight) = \sum_{i=1}^n\left(F\left(b_i\right) - F\left(a_i
ight)
ight)$ איז התפלגות איז פונקציית התפלגות איז $F:\mathbb{R} o \mathbb{R}$ $.\{\biguplus_{i=1}^{n} [a_i, b_i) \mid \forall i \in [n] . a_i \leq b_i\}$

> $\mu_F\left([a,b)
> ight)=F\left(b
> ight)-F\left(a
> ight)$ עבורה μ_F עבורה מידת התפלגות אזי קיימת ויחידה מידת בורל μ_F עבורה פונקציית התפלגות אזי קיימת ויחידה מידת בורל $A: \exists c \in \mathbb{R}. F - G = c \iff (\mu_F = \mu_G)$ טענה: תהיינה $A: G: \mathbb{R} \to \mathbb{R}$ פונקציות התפלגות אזי

> > $.orall a,b\in\mathbb{R}.\mu\left([a,b]
> > ight)<\infty$ עבורה מעל μ מידת מקומית: מידת מקומית: מידת מעל

 $\mu=\mu_F$ עבורה $F:\mathbb{R} o\mathbb{R}$ מסקנה: תהא μ מידת בורל סופית מקומית על \mathbb{R} אזי קיימת פונקציית התפלגות

 $\overline{\mu_F}$ מידת לבג־סטילטייס: תהא $F:\mathbb{R} o\mathbb{R}$ פונקציית התפלגות אזי

 $\mu_F = \overline{\mu_F}$ פונקציית התפלגות פונקציי $F: \mathbb{R} o \mathbb{R}$ פונקציית הרא

 $\mu_F\left(E
ight)=\inf\left\{\sum_{i=1}^n\left(F\left(b_i
ight)-F\left(a_i
ight)
ight)\mid E\subseteqigcup_{i=1}^n\left[a_i,b_i
ight)
ight\}$ אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ פונקציית התפלגות ותהא $F:\mathbb{R} o\mathbb{R}$ $\mu_F\left(E
ight)=\inf\left\{\sum_{i=1}^n\left(F\left(b_i
ight)-F\left(a_i
ight)
ight)\mid E\subseteqigcup_{i=1}^n\left(a_i,b_i
ight)
ight\}$ אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ פונקציית התפלגות ותהא $\mu_F\left(E
ight)=\sup\left\{\mu_F\left(K
ight)\mid (K\subseteq E)\land ($ משפט: תהא $E\in\Sigma_{\mu_F}$ אזי ותהא ותהא פונקציית התפלגות ותהא $E:\mathbb{R} o\mathbb{R}$ אזי ותהא . רגולרית אזי μ_F אזי התפלגות פונקציית פונקציית $F:\mathbb{R} \to \mathbb{R}$ אהי מסקנה: תהא

משפט: תהא $E\subseteq\mathbb{R}$ התב"ש התפלגות פונקציית התב $F:\mathbb{R} o\mathbb{R}$

- $.E \in \Sigma_{\mu_F} \bullet$
- E=Gackslash N עבורן $N\in\mathcal{N}$ וכן $G\in G_\delta$ קיימת
- $.E = F \uplus N$ עבורן $N \in \mathcal{N}$ וכן וכן $F \in F_{\sigma}$

 $A,B\in\mathcal{B}\left(\mathbb{R}
ight)$ וכן $A\subseteq E\subseteq B$ וכן (קיימות אזי אזי (קיימות אזי (קיימות אזי (קיימות אזי ו $E\subseteq \mathbb{R}$) אזי (דענה: תהא

טענה $E\in \Sigma_{u_F}$ אזי ותהא $F:\mathbb{R} o\mathbb{R}$ ותהא ותהא $\mu_F(E)<\infty$ עבורה עבורה עיקרון הראשון של ליטלווד: תהא $\mu_F\left(E\triangle\left(igcup_{i=1}^n\left(a_i,b_i
ight)
ight)
ight)<arepsilon$ עבורם $a_1,b_1\dots a_n,b_n\in\mathbb{R}$ קיימים

 $\mathcal{C}=[0,1]\setminus igcup_{n=0}^\infty igcup_{k=0}^{3^n-1}\left(rac{3k+1}{3^{n+1}},rac{3k+2}{3^{n+1}}
ight)$ קבוצת קנטור:

 $\mathcal{C} \in \mathcal{N}$ טענה: תהא λ מידת לבג אזי

 $\mathcal{C} = \left\{\sum_{i=1}^{\infty} rac{x_i}{3^i} \mid x \in \mathbb{N}^{\{0,2\}}
ight\}$ טענה:

. בלתי קבוצה מושלמת: קבוצה לחלוטין בלתי קשירה בלתי קבוצה בלתי קבוצה בלתי קבוצה בלתי קבוצה בלתי קבוצה בלתי קשירה לחלוטין אשר לא

:טענה

- $|\mathcal{C}| = \aleph \bullet$
- . קומפקטית \mathcal{C}
 - מושלמת. \mathcal{C}

קבוצת ממרכזו שהוצאנו מהיינה C_n אחר היינה וכך ($\delta_n\}_{n=1}^\infty\subseteq\mathcal{P}\left((0,1)\right)$ נגדיר להיות מוכללת: תהיינה להיות מוכללת: ענדיר $\{\delta_n\}_{n=1}^\infty\subseteq\mathcal{P}\left((0,1)\right)$ $\bigcap_{i=1}^{\infty}C_{i}$ אזי $\delta_{n}\cdot\lambda\left(I
ight)$ קטע באורך C_{n-1} ב־

 $.orall n\in\mathbb{N}_+.\delta_n=rac{1}{3}$ שענה: קבוצת קנטור הינה קבוצת קנטור מוכללת באשר

.($\sum_{i=1}^{\infty}\delta_i=\infty$) אזי לבג) איי אניחה אניחה אזי קנטור אזי קבוצת אזי לבג) אזי אזי אזי לבגן אזי אזי אזי אזי לבגו אזי לבגו אזי לבגו אזי לבגו אזי לבגו אזי לבגו

 $.arphi^\star(x)=\sum_{i=1}^\inftyrac{a_i}{3^i}$ אזי $a_i\in\{0,1\}$ אזי $x=\sum_{i=1}^\inftyrac{2a_i}{3^i}$ הגדרה: נגדיר כך שאם $arphi^\star:\mathcal{C} o[0,1]$ אזי $x\in\mathcal{C}$

 $arphi\left(x
ight)=\sup\left\{ arphi^{\star}\left(t
ight)\mid\left(t\in\mathcal{C}
ight)\wedge\left(t\leq x
ight)
ight\}$ בך $arphi:\left[0,1
ight]
ightarrow\left[0,1
ight]$ בונקציית קנטור: נגדיר

 $m{\varphi}:[0,1] o [0,1]$ טענה: תהא $m{\varphi}:[0,1] o [0,1]$ פונקציית קנטור

- עולה. φ
 - רציפה. φ

 - $.\varphi(C) = [0,1] \bullet$
- $arphi\left(E
 ight)
 otin\mathcal{L}\left(\mathbb{R}
 ight)$ עבורה $E\subseteq\mathcal{C}$ קיימת

. $\operatorname{diam}\left(A\right)=\sup\left\{d\left(x,y\right)\mid x,y\in A\right\}$ אזי אזי $A\subseteq X$ מרחב מטרי ותהא מרחב מטרי יהי (X,d) אוי

```
טענה: יהי n\in\mathbb{N}_+ איז \infty איז n\in\mathbb{N}_+ איז n\in\mathbb{N}_+ העתקה מדידה: יהי n\in\mathbb{N}_+ איז n\in\mathbb{N}_+ און מרובים מדידים ותהא n\in\mathbb{N}_+ העתקה מדידה איז n\in\mathbb{N}_+ און מרובים מדידים ותהא n\in\mathbb{N}_+ העתקה מדידה איז n\in\mathbb{N}_+ און מרובים מדידים ותהא n\in\mathbb{N}_+ העתקה n\in\mathbb{N}_+ העתקה n\in\mathbb{N}_+ העתקה n\in\mathbb{N}_+ העתקה n\in\mathbb{N}_+ און n\in\mathbb{N}_+ העתקה n\in\mathbb{N}_+ העת
```

אזי $E\subseteq X$ יהי $\delta>0$ יהי הברה: יהי (X,d) מרחב מטרי יהי $s\geq 0$ יהי מטרי יהי (X,d) מרחב $\mathcal{H}_{s,\delta}\left(E\right)=\inf\left\{\sum_{i=1}^{n}\mathrm{diam}\left(A_{i}\right)^{s}\mid\left(E\subseteq\bigcup_{i=1}^{n}A_{i}\right)\wedge\left(\mathrm{diam}\left(A_{i}\right)<\delta\right)\right\}$

טענה: יהי $\delta>0$ ויהי מטרי מרחב מטרי יהי $s\geq 0$ אזי מרחב מרחב מטרי.

 \mathcal{H}_s מדידה $E\in\mathcal{B}\left(X
ight)$ אזי $s\geq0$ מדידה מסקנה: יהי

טענה: יהי $E\subseteq X$ אהי איי יהי $s\geq 0$ מרחב מטרי יהי $s\geq 0$ מרחב מטרי איי איי איי איי לכל $\mathcal{H}_s\left(E\right)=0$ איי לכל t>s איי לכל $\mathcal{H}_s\left(E\right)<\infty$ אם • אם $\mathcal{H}_s\left(E\right)=\infty$ איי לכל t< s מתקיים • $\mathcal{H}_s\left(E\right)>0$ איי לכל

 $\mathcal{H}_n = rac{2^n}{\lambda(\{|x| \le 1\})} \cdot \lambda$ אזי איזי λ משפט: תהא λ מידת לבג מעל

 $\mathcal{H}_s\left(E
ight) = 0$ אזי n < s ויהי $E \subseteq \mathbb{R}^n$ מסקנה: תהא

- העתקה $(\Sigma, \mathcal{B}(\mathbb{R}))$ $f: X \to \mathbb{R}$ העתקה העתקה העתקה $(\Sigma, \mathcal{B}(\overline{\mathbb{R}}))$ $f: X \to \overline{\mathbb{R}}$ העתקה

 $\{f\geq a\}\in \Sigma$ מתקיים $a\in \mathbb{R}$ • לכל • $\{f\geq a\}\in \Sigma$ מתקיים $a\in \mathbb{Q}$ • לכל • •

מדידה בורל. $f \bullet$

מסקנה: יהי $f:X o\mathbb{R}$ מרחב מדיד ותהא מסקנה: יהי

 $\dim_{\mathcal{H}}(\mathbb{R}^n)=n$ אזי $n\in\mathbb{N}_+$ מסקנה: יהי

 $\dim_{\mathcal{H}}\left(\mathcal{C}\right)=\log_{3}\left(2\right)$ משפט:

 $\mathcal{H}_s(\varnothing) = 0 \bullet$

. מידות חיצוניות $\mathcal{H}_s, \mathcal{H}_{s,\delta}$

 $\mathcal{H}_{s,\delta}(A \cup B) = \mathcal{H}_{s,\delta}(A) + \mathcal{H}_{s,\delta}(B)$

 $\mathcal{H}_{s}\left(E
ight)=\lim_{\delta\downarrow0}\mathcal{H}_{s,\delta}\left(E
ight)$ אזי אזי $E\subseteq X$ ויהי ויהי $s\geq0$ מידת האוסדורף: יהי יהי

טענה: יהי $d\left(A,B
ight)>\delta$ עבורן $A,B\subseteq X$ ותהיינה $s\geq 0$ יהי יהי מטרי מרחב מטרי יהי מענה:

 $\dim_{\mathcal{H}}(E)=\inf\{s\geq 0\mid \mathcal{H}_s\left(E
ight)=0\}$ מימד האוסדורף: יהי (X,d) מרחב מטרי ותהא

 $\mathcal{H}_s\left(A\cup B
ight)=\mathcal{H}_s\left(A
ight)+\mathcal{H}_s\left(B
ight)$ אזי $d\left(A,B
ight)>0$ מסקנה: יהי (X,d) מרחב מטרי יהי $s\geq 0$ ותהיינה אונהיינה $s\geq 0$ ותהיינה

יהרת. $f\left(\delta\right)=\mathcal{H}_{s,\delta}\left(E\right)$ המוגדרת $f:\left(0,\infty\right)\to\left[0,\infty\right]$ אזי $E\subseteq X$ יהי $f:\left[0,\infty\right)\to\left[0,\infty\right]$ אזי $f:\left[0,\infty\right)\to\left[0,\infty\right]$ אזי $E\subseteq X$ יהי $E\subseteq X$ אזי $f:\left(0,\infty\right)\to\left[0,\infty\right]$ אזי $E\subseteq X$ יהי יהי $E\subseteq X$ אזי $f:\left(0,\infty\right)\to\left[0,\infty\right]$ אזי יורדת.

 $\mathcal{H}_s\left(f\left(E
ight)
ight)\leq L^s\cdot\mathcal{H}_s\left(E
ight)$ אזי $E\subseteq X$ אות ליפשיץ f:X o Y מסקנה: תהא $\mathcal{H}_s\left(f\left(E
ight)
ight)=\mathcal{H}_s\left(E
ight)$ אזי $E\subseteq X$ איזומטריה ותהא f:X o X איזומטריה תהא

```
\{f \leq a\} \in \Sigma מתקיים a \in \mathbb{R} לכל
                                                                                                               \{f \leq a\} \in \Sigma מתקיים a \in \mathbb{Q} לכל
                                                                                                               \{f < a\} \in \Sigma מתקיים a \in \mathbb{R} לכל
                                                                                                               \{f < a\} \in \Sigma מתקיים a \in \mathbb{Q} לכל
                                                              מסקנה: יהי f מדידה מדיד ותהא ותהא f \in C\left(X,\mathbb{R}\right) מדידה בורל.
            .(f^{-1} (\pm\infty)\in\Sigma מרחב מדידה בורל וכן f:X	o\overline{\mathbb{R}} אאי איי (f:X	o\overline{\mathbb{R}} מדידה בורל וכן (X,\Sigma) מרחב מדיד ותהא
                                                                           תינה \frac{1}{f}, f \cdot g, f + g, f^2 מדידות אזי f, g: X 	o \overline{\mathbb{R}} מדידות.
                                                                \{f < g\}, \{f \leq g\}, \{f = g\} \in \Sigma מדידות אזי f, g: X 	o \overline{\mathbb{R}} מסקנה: תהיינה
              \sup\{f_n\} , \inf\{f_n\} , \limsup\{f_n\} , \liminf\{f_n\} , \liminf\{f_n\} משפט: תהא \{f_n\}\subseteq X	o\overline{\mathbb{R}} סדרת פונקציות מדידות אזי
                               מסקנה: תהא f:X	o \overline{\mathbb{R}} עבורה f אזי f אזי f מדידה. f:X	o \overline{\mathbb{R}} מסקנה: תהא
                                                             מדידות. \min\left\{f,g\right\},\max\left\{f,g\right\},|f| מדידות מדידות מדידות f,g:X	o\overline{\mathbb{R}} מדידות.
                   עבורם a_1\ldots a_n\in\mathbb{R} וכן וכן E_1\ldots E_n\in\Sigma עבורה קיימים arphi:X	o\mathbb{R} עבור אזי אזי אזי a_1\ldots a_n\in\mathbb{R} וכן
                                                                                                                                            \varphi = \sum_{i=1}^{n} a_i \mathbb{1}_{E_i}
וקיימים \biguplus_{i=1}^n E_i = X עבורם E_1 \dots E_n \in \Sigma עבורה קיימים arphi : X 	o \mathbb{R} אזי אזי אזי איז מרחב מדיד אזי
                                                                                                                \varphi = \sum_{i=1}^n a_i \mathbb{1}_{E_i} עבורס a_1 \dots a_n \in \mathbb{R}
iguplus_{i=1}^n E_i = X באשר ar{arphi} = \sum_{i=1}^n a_i \mathbb{1}_{E_i} פשוטה אזיar{arphi} = \sum_{i=1}^n a_i \mathbb{1}_{E_i} באשר באר סטנדרטית של פונקציה פשוטה: יהי
                                                       טענה: יהי קיימת הצגה סטנדרטית. \varphi:X	o\mathbb{R} מרחב מדיד ותהא מרחב מדיד יהי יהי
                                      (ט סופית). מרחב מדיד ותהא \varphi:X \to \mathbb{R} אזי איי פשוטה) מדידה וכן \varphi(X,\Sigma) מרחב מדיד ותהא שענה: יהי
                                   (arphi_n\uparrow f) משפט: תהא \{arphi_n\}\subseteq X	o\overline{\mathbb{R}} משפט: מדידה חיוביות עבורן f:X	o\overline{\mathbb{R}} משפט: משפט
arphi_n\uparrow f משפט: תהא f:X	o\overline{\mathbb{R}} משפט: תהא f:X	o\overline{\mathbb{R}} מדידה חיוביות עבורה f:X	o\overline{\mathbb{R}} אבורה חסומה ותהיינה
                                                                                                                                           A על \varphi_n \rightrightarrows f אזי
                                 |arphi_n|\uparrow|f| מסקנה: תהא f:X	o\overline{\mathbb{R}} מדידה אזי קיימות f:X	o\overline{\mathbb{R}} פשוטות עבורן מסקנה:
            . מדידה g מדידה שלמה תהא f=g כמעט בכל מקום אזי מדידה ותהא f:X	o \overline{\mathbb{R}} מדידה שלמה תהא מידה שלמה תהא
f מדידה. f מדידה f כמעט בכל מקום אזי מדידה f:X	o\mathbb{R} מדידות ותהא מידה שלמה תהיינה f כמעט בכל מקום אזי f מדידות ותהא
                                 \mu כ.ב.מ. \mu מידה וכן g:X	o \overline{\mathbb{R}} מדידה אזי קיימת הא f:X	o \overline{\mathbb{R}} מידה וכן מידה וכן סענה:
                                                           .Borel (X)=\{f:X	o\mathbb{R}\mid מדידה בורל: יהי X מרחב מטרי אזי מחלקת מחלקת מריב מטרי אזי
                         .
Baire (X) = \bigcup_{i=0}^{\infty} Baire _i(X) מחלקת בייר: יהי מרחב מטרי אזי
                                                               .arphi\left(f,g
ight)\in \mathrm{Baire}\left(X
ight) אזי f,g\in \mathrm{Baire}\left(X
ight) ותהיינה arphi\in C\left(\mathbb{R}^{2},\mathbb{R}
ight) אזי
                                                                     f_n 	o \mathbb{1}_F עבורן \{f_n\} \subseteq C\left(X,\mathbb{R}
ight) עבורה אזי קיימות סגורה F \subseteq X
                                                                                  מחלקה מונוטונית: יהי X מרחב מטרי אזי R\subseteq\mathcal{P}\left( X
ight) המקיימת
                                                                         \bigcup_{i=1}^\infty E_i \in R אזי orall i \in \mathbb{N}. E_i \subseteq E_{i+1} עבורן \{E_i\} \subseteq R תהיינה ullet
                                                                         \bigcap_{i=1}^\infty E_i \in R אזי \forall i \in \mathbb{N}. E_i \supseteq E_{i+1} עבורן \{E_i\} \subseteq R תהיינה •
               מחלקה מונוטוניות מעל X המכילות את A\subseteq\mathcal{P}\left(X
ight) מחלקה מונוטוניות מעל A\subseteq\mathcal{P}\left(X
ight) ותהיינה A\subseteq\mathcal{P}\left(X
ight) כל המחלקות המונוטוניות מעל
                                                                                                                                        \mathcal{M}(\mathcal{A}) = \bigcap_{\alpha \in I} \mathcal{R}_{\alpha}
                                A את המכילה ביותר המכילה המחלקה המונוטונית הינה אזי \mathcal{M}\left(A
ight) אלגברה אזי אלגברה אזי \mathcal{M}\left(A
ight) הינה המחלקה
                                                                                              \sigma\left(\mathcal{A}
ight)=\mathcal{M}\left(\mathcal{A}
ight) אלגברה אזי \mathcal{A}\subseteq\mathcal{P}\left(X
ight) למה: תהא
```

משפט לוזין/טענה העיקרון השני של ליטלווד: תהא $f:(\mathbb{R},\mathcal{B}(\mathbb{R})) o (\mathbb{R},\mathcal{B}(\mathbb{R}))$ תהא $f:(\mathbb{R},\mathcal{B}(\mathbb{R}))$ ותהא

 $\{f>a\}\in \Sigma$ מתקיים $a\in \mathbb{R}$ לכל • $\{f>a\}\in \Sigma$ מתקיים $a\in \mathbb{Q}$ לכל • לכל $a\in \mathbb{Q}$

.Baire (X) = Borel(X) משפט: יהי X מרחב מטרי אזי

 $f_n \xrightarrow{\mu} f$ איי $\mu\left(\left\{x \in X \mid |f_n\left(x\right) - f\left(x\right)| > 0\right\}\right) \to 0$

 $f\in C\left(K
ight)$ וכן $\mu\left(\mathbb{R}\backslash K
ight)<arepsilon$ קיימת קומפקטית עבורה $K\subseteq\mathbb{R}$ קיימת

 $L^{0}\left(X,\Sigma
ight)=\left\{ f:X
ightarrow\overline{\mathbb{R}}\mid$ מדידה f
brace מרחב מידה אזי (X,Σ,μ) יהי הגדרה: יהי

מתקיים arepsilon>0 עבורה לכל $f\in L^0\left(X,\Sigma
ight)$ ותהא ותהא $\{f_n\}\subseteq L^0\left(X,\Sigma
ight)$ מתקיים

```
f_n \xrightarrow{\mu} f אזי אזי f_n \xrightarrow{\mu-a.e.} f עבורן עבורן f \in L^0\left(X,\Sigma
ight) ותהא ותהא ותהא \{f_n\} \subseteq L^0\left(X,\Sigma
ight) אזי אזי משפט לבג:
                                                .\mu\left(igcap_{n=1}^\inftyigcup_{k=n}^\infty E_k
ight)=0 אזי איזי \sum_{n=1}^\infty\mu\left(E_n
ight)<\infty מדידות עבורן מדידות אזי \{E_n\}\subseteq\Sigma אזי
                                                              מסקנה: יהיו \sum_{n=1}^{\infty}\mu\left(\{|f_n>arepsilon|\}
ight)<\infty מתקיים arepsilon>0 עבורן לכל \{f_n\}\subseteq L^0\left(X,\Sigma
ight) אזי
                                                                                                                                                                                     .f_n f_n \xrightarrow{a.e.} f0 \bullet
                                                                                   A\setminus E על f_n \rightrightarrows 0 וכן \mu(E) < \delta עבורה E \subseteq X אזי קיימת \delta > 0 אהא \bullet
                                                                                                          f_{n_k} \xrightarrow{a.e.} f משפט ריס: תהיינה f_n \xrightarrow{\mu} f אזי קיימת תת"ס עבורה
                   . מסקנה: f=g אזי f=g אזי f=g וכן f_n \xrightarrow{\mu} g וכן f_n \xrightarrow{\mu} f ותהיינה f,g \in L^0 \left(X,\Sigma\right) ותהיינה \left\{f_n\right\} \subseteq L^0 \left(X,\Sigma\right)
עבורה E\subseteq X קיימת arepsilon>0 אזי לכל f_n \xrightarrow{a.e.} f אזי חופית משפט אגורוב/טענה העיקרון השלישי של ליטלווד: תהא
                                                                                                                                                               X \setminus E על f_n \rightrightarrows f וכן \mu(E) < \varepsilon
עבורן \{A_k\}\subseteq \mathcal{P}\left(X
ight) עבורה \mu\left(N
ight)=0 עבורה אזי קיימת אזי קיימת f_n \xrightarrow{a.e.} f עבורן ותהיינה \mu מסקנה לוזין: תהא
                                                                                                                 A_k על f_n 
ightrightarrows f מתקיים k \in \mathbb{N} וכן לכל X = N \cup igcup_{k=1}^\infty A_k
למה פרשה: יהי (X,\mathcal{B}(X))	o (\mathbb{R},\mathcal{B}(\mathbb{R})) מרחב מטרי שלם וספרבילי תהא \mu מידת בורל סופית על אזי מרחב מטרי מטרי אזי (X,\rho) אזי מידת בורל מופית על אזי
                                                                                                                                                   f_n \xrightarrow{a.e.} f עבורן \{f_n\} \subseteq C(X) קיימות
ותהא f:(X,\mathcal{B}(X))	o (\mathbb{R},\mathcal{B}(\mathbb{R})) משפט לוזין: יהי (X,
ho) מרחב מטרי שלם וספרבילי תהא \mu מידת בורל סופית על
                                                                                          f\in C\left(K
ight) וכן \mu\left(\mathbb{R}\backslash K
ight)<arepsilon אזי קיימת אוכן קומפקטית עבורה K\subseteq\mathbb{R} אזי קיימת arepsilon>0
                                                                            \mathcal{S}\left(\Sigma\right)=\{arphi\in X
ightarrow\mathbb{R}\mid שימון: יהי (X,\Sigma,\mu) מרחב מידה אזי מרחב מידה אזי סימון: יהי
    \mathcal{S}^+(\Sigma)=\{arphi\in\mathcal{S}\,(\Sigma)\midarphi\geq0\} מרחב מידה אזי (X,\Sigma,\mu) מרחב מידה אזי f=\sum_{i=1}^Nx_i\mu\,(A_i)=\sum_{i=1}^My_i\mu\,(B_i) אינטגרל: תהא f=\sum_{i=1}^Nx_i\mu\,(A_i)=\sum_{i=1}^Nx_i\mu\,(A_i) חתהי f\in\mathcal{S}^+(\Sigma) ותהא f\in\mathcal{S}^+(\Sigma) ותהא f\in\mathcal{S}^+(\Sigma) ותהא f\in\mathcal{S}^+(\Sigma) ותהא f\in\mathcal{S}^+(\Sigma) ותהא f\in\mathcal{S}^+(\Sigma) ותהא
                                                                                                   \int_E f \mathrm{d}\mu = \int_X 1\!\!1_E f \mathrm{d}\mu אזי E \in \Sigma ותהא ותהא f \in \mathcal{S}^+ \left( \Sigma 
ight) אינטגרל: תהא
                                                                                                                       טענה: תהיינה \lambda \geq 0 ויהי A \in \Sigma תהא f,g \in \mathcal{S}^+\left(\Sigma\right) אזי
                                                                                                                                                                             \int_{X} \mathbb{1}_{A} d\mu = \mu(A) \bullet
                                                                                                                                       \int_X \lambda f \mathrm{d}\mu = \lambda \int_X f \mathrm{d}\mu -חומוגניות חיובית: •
                                                                                                                             \int_{X}\left(f+g
ight)\mathrm{d}\mu=\int_{X}f\mathrm{d}\mu+\int_{X}g\mathrm{d}\mu חיבוריות: •
                                                                                                                         \int_X f \mathrm{d}\mu \leq \int_X g \mathrm{d}\muאזי אזי נניח כי • מונוטוניות: נניח אזי 
                                                                   .\Sigma טענה: \psi\left(E
ight)=\int_{E}f\mathrm{d}\mu המוגדרת \psi:\Sigma	o\mathbb{R} אזי אזי f\in\mathcal{S}^{+}\left(\Sigma\right) הינה מעל
                                                            L^{0}\left(X,\Sigma
ight)=\left\{ f\in X
ightarrow\overline{\mathbb{R}}\mid\left(\Sigma,\mathcal{B}\left(\overline{\mathbb{R}}
ight)
ight) מרחב מידה אזי f
brace מדידה (X,\Sigma,\mu) יהי מידה אזי
                                                                                  L^0_+\left(X,\Sigma
ight)=\left\{f\in L^0\left(X,\Sigma
ight)\mid f\geq 0
ight\} סימון: יהי (X,\Sigma,\mu) מרחב מידה אזי
                                                                           \int_X f \mathrm{d}\mu = \sup\left\{\int_X \varphi \mathrm{d}\mu \mid (\varphi \in \mathcal{S}^+(\Sigma)) \wedge (\varphi \leq f)
ight\} אזי f \in \mathcal{S}^+(\Sigma) למה: תהא
                                                              \int_X f \mathrm{d}\mu = \sup\left\{\int_X \varphi \mathrm{d}\mu \mid (\varphi \in \mathcal{S}^+\left(\Sigma\right)) \wedge (\varphi \leq f)
ight\} אינטגרל: תהא f \in L^0_+\left(X,\Sigma\right) אינטגרל: תהא
                                                                                              \int_E f \mathrm{d}\mu = \int_X 1\!\!1_E f \mathrm{d}\mu אזי E \in \Sigma ותהא ותהא f \in L^0_+(X,\Sigma) אינטגרל: תהא
                 \int_X g \mathrm{d}\mu \leq \sup_{n \in \mathbb{N}} \int_X f_n \mathrm{d}\mu איי g \leq f איי שענה: תהיינה f, \{f_n\} \subseteq L^0_+(X, \Sigma) עבורן f, \{f_n\} \subseteq L^0_+(X, \Sigma)
 \int_X f \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \int_X f_n \mathrm{d}\mu = \lim_{n \to \infty} \int_X f_n \mathrm{d}\mu איי אf_n \uparrow f עבורן f, \{f_n\} \subseteq L^0_+(X, \Sigma) משפט התכנסות מונוטונית: תהיינה
```

 $\int_X f \mathrm{d}\mu = \lim_{n o \infty} \int_X arphi_n \mathrm{d}\mu$ אזי $arphi_n o f$ ותהא $f \in L^0_+(X,\Sigma)$ אחיי ווהא $f \in L^0_+(X,\Sigma)$

טענה: תהיינה $\lambda \geq 0$ ויהי $A \in \Sigma$ תהא $f,g \in L^0_+\left(X,\Sigma\right)$ אזי

 $\int_{Y} \lambda f d\mu = \lambda \int_{Y} f d\mu$ הומוגניות חיובית: •

 $.\int_X (f+g)\,\mathrm{d}\mu = \int_X f\mathrm{d}\mu + \int_X g\mathrm{d}\mu$ חיבוריות: • חיבוריות: נניח כי $f\mathrm{d}\mu \leq \int_X g\mathrm{d}\mu$ אזי $f\leq g$

 $\int_E f\mathrm{d}\mu = \sum_{n=1}^\infty \int_E f_n\mathrm{d}\mu$ איי $E\in \Sigma$ ותהא ותהא $\{f_n\}\subseteq L^0_+(X,\Sigma)$ מסקנה: תהא $\{f_n\}\subseteq L^0_+(X,\Sigma)$ איי $\{f_n\}\in L^0_+(X,\Sigma)$ כמעט בכל מקום).

 $\int_{X} \mathbb{1}_{A} d\mu = \mu(A) \bullet$

 $\mu\left(Xackslash\{x\in X\mid \lim_{n o\infty}f_n\left(x
ight)=f\left(x
ight)\}
ight)=0$ אבורה $f\in L^0\left(X,\Sigma
ight)$ ותהא ותהא $\{f_n\}\subseteq L^0\left(X,\Sigma
ight)$ יהיו

 $f_n \xrightarrow{a.s.} f$ וכן $f_n \xrightarrow{a.e.} f$ אזי וכן $f_n \xrightarrow{a.e.} f$ וכן ותהא $f_n \xrightarrow{\mu-a.e.} f$ עבורן $f \in L^0\left(X,\Sigma\right)$ ותהא

 $\int_X f \mathrm{d}\mu = \lim_{n o \infty} \int_X f_n \mathrm{d}\mu$ איז מונוטונית: תהיינה $\int_X f \mathrm{d}\mu = \lim_{n o \infty} \int_X f_n \mathrm{d}\mu$ כמעט בכל מקום איז $f_n + f$ עבורן $f_n + f$ עבורן $f_n + f$ איז $f_n + f$ איז $f_n + f$ איז $f_n + f$ עבורן $f_n + f$ עבורן $f_n + f$ איז $f_n + f$ איז $f_n + f$ עבורן $f_n + f$ עבורן $f_n + f$ איז $f_n + f$ איז $f_n + f$ עבורן $f_n + f$ עבורן $f_n + f$ איז $f_n + f$