Chapitre 4 : calcul littéral

Quand les nombres ne suffisent plus, ...

→ activité 4 : à toute vitesse

I) La lettre en mathématiques

En mathématiques, on utilise une lettre quand on veut représenter un nombre dont on ne connaît pas la valeur, ou dont la valeur peut changer.

Exemple : voici un programme de calcul :

Choisir un nombre.

Le multiplier par deux.

Ajouter 3

Il est facile de lancer ce programme de calcul avec des nombres. Mais si on veut écrire le calcul d'une manière générale (on appelle ça une expression), on doit écrire :

$$... \times 2 + 3$$

Eh bien en mathématiques on préfère remplacer le « ... » par une lettre minuscule de l'alphabet. Très souvent, c'est x écrit de manière bien arrondie. Par exemple, on écrirait :

$$x \times 2 + 3$$

x représente le nombre choisi au départ. Tant qu'on en a pas choisi, on laisse x. Dès qu'on en choisit un, on enlève x et on met le nombre choisi à la place.

II) Expression littérale

a) Définition

<u>Définition</u>: on appelle expression littérale un calcul qui contient une ou plusieurs lettres qui représentent des nombres. Une expression littérale à toujours un nom, qui est une lettre majuscule de l'alphabet.

<u>Exemple</u>: On reprend l'expression précédente. On l'appelle P (comme programme de calcul) et on obtient l'expression littérale :

$$P = x \times 2 + 3$$

b) Valeur d'une expression littérale

Une expression littérale a une valeur qui dépend du nombre qui remplace la lettre. Cette lettre peut être remplacée par n'importe quel nombre en fonction de la situation et de l'énoncé de l'exercice.

Exemple: on travaille avec l'expression littérale $B=4\times x+2$

Si on remplace x par 3 on a $B=4\times3+2=$

Si on remplace x par 1 on a $B=4\times1+2=$

III) Simple distributivité

Il existe une double distributivité, mais on ne la voit pas en 5e...

a) Propriété

 \rightarrow les calculs $2\times(3+5)$ et $2\times3+2\times5$ donne tous les deux la même valeur. On a donc :

$$2 \times (3+5) = 2 \times 3 + 2 \times 5$$

Comme la multiplication est commutative, on peut aussi écrire ainsi :

$$(3+5)\times 2=3\times 2+5\times 2$$

Propriété: le calcul de l'exemple précédent marche quels que soient les nombres utilisés. On peut remplacer 2 3 et 5par n'importe quels nombres. On peut remplacer le + par - . Cette propriété s'appelle la simple distributivité.

b) La simple distributivité pour calculer avec des lettres

Exemple 1:

Voilà une expression littérale $A=3\times x+2\times x$

En utilisant la simple distributivité on trouve que $A=(3+2)\times x=5\times x$

Exemple 2:

Voilà une autre expression littérale $B=6\times y-2\times y$

En utilisant la simple distributivité, on trouve que $B=(6-2)\times y=4\times y$

IV) Équations

Définition : une équation est une égalité avec une ou plusieurs valeurs manquantes, représentées par des lettres. Ces lettres sont appelées les inconnues de l'équation.

Exemple: $3 \times x + 2 = 8$ est une équation. x est l'inconnue de cette équation.

Définition : on appelle solution de l'équation la valeur par laquelle il faut remplacer l'inconnue pour que l'égalité soit vérifiée.

Exemple: la solution de l'équation $3 \times x + 2 = 8$ est x = 2 car $3 \times 2 + 2 = 8$