Assignment 9

Tala El Zein

Question 1

Use a weather forecast website, and utilize the psychometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving

Umidità: Relative humidity, Pressione atmospheric: Air total pressure (1 hPa: 0.1 kPa), Temperature effettiva: temperature to be utilized.

	T		er today i , 03 Decer					
	1:00 pm	14:00	4:00 pm	18:00	8:00 pm	21:00	22:00	
	LightCloud	LightCloud	PartlyCloud	LightCloud	Sun	Sun	Sun	
Effective temperature	9 ° C	10 ° C	8 ° C	6°C	4 ° C	2 ° C	2 ° C	
Perceived temperature	7 ° C	10 ° C	6°C	4°C	2°C	0 ° C	0°C	
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	
Humidity	67 %	65 %	69 %	70 %	75 %	83 %	87 %	
Atmospheric pressure	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa	
Wind intensity	15 km / h	14 km / h	9 km / h	9 km / h	7 km / h	8 km / h	8 km / h	
Wind direction	← _	\leftarrow	←	\leftarrow	1	1	1	

The hour at the moment is 14:30. According to the weather forecast shown above we know that there is no chances of rainfall, effective temperature 9° C (T= 282.15 Kalvin), the humidity is 65% (relative humidity Φ = 65%), and the atmospheric pressure 1025 hPa (total air pressure P= 102.5 kPa)

Utilize the psychometric chart, we can see, the humidity ratio, i.e., the absolute humidity ω =0.0052

The web-bulb temperature $T_{wb} = 10^{\circ}C$

Therefore
$$\omega = \frac{0.622 \, Pv}{Pa} = \frac{0.622 \, Pv}{P-Pv} = 0.0052$$
, introduce P = 102.5 KPa into this equation, and solve it. $\frac{0.622 \, Pv}{102.5 - pv} = 0.0052$

 $P_V = 0.8498 \text{ KPa}$

Autem,
$$\Phi = \frac{mv}{mg} = 70\%$$
(1)

For any ideal gas, $m = \frac{Pv}{RSPT}$, during the class we were told that for water vapor, $R_{sp} = 0.4615$

Introduce the pressure of water vapor $P_V = 0.8498$ KPa, and define the volume of Aula A is

V:
$$m_v = \frac{0.8498V}{0.4615*282.15} = 130.212225 \text{ V}$$

Subordinate this value to equation number (1)

Calculate the maximum water vapor $m_g = \frac{mv}{70\%} = 9.34 \times 10^{-3} \text{V}$

Question 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

	BRINDISI, Italy													WMO#:	163200		
	Lat	40.65N	Long:	17.95E	Elev	: 10	StdP:	101.2		Time Zone	1.00 (EU	W)	Period	86-10	WBAN:	99999	
Annual Heating and Humidification Design Conditions																	
	Coldest	oldest Heating DB			Humidification DP/M0 99.6%			/MCDB and HR 99%			Coldest month WS/MCDB 0.4% 1%			MCWS/PCWD to 99.6% DB			
	Month	99.6%	99%	DP	99.0% HR	MCDB	DP	HR	MCDB	WS 0.	MCDB	WS	MCDB	MCWS	PCWD		
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	•	
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Cooling, Dehumidification, and Enthalpy Design Conditions																
	Annual Gooling, Denormanication, and Citutalpy Ovingin Continuous														,		
	Hottest	Hottest				DB/MCWB				Evaporation WB/MCDB				MC			
	Month	Month		.4%		1%	29			4%		%		%	to 0.4		1
	(-)	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(i)	(1)	(k)	(1)	(m)	(n)	(o) 4.2	(p) 180	
(2)	- 8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific		ICDB and HE	₹			Enthalpy/MCDB						Hours	
	0.4%			1%		2%		0.4%					%	8 to 4 &			
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	ı
	(a) 26.3	(b) 21.8	(c) 29.2	(d) 25.4	(e) 20.7	28.5	(g) 24.7	(h) 19.7	(i) 27.9	(j) 86.0	(k) 30.1	(1) 82.2	(m) 29.1	(n) 78.5	(°) 28.3	(p) 1236	
(3)	20.3	21.0	29.2	25.4	20.7	20.5	24.7	19.7	27.9	00.0	30.1	02.2	29.1	70.5	20.3	1230	(3)
Extreme Annual Design Conditions																	
	Extreme Extreme Annual DB n-Year Return Period Values of Extreme DB													1			
	Extreme Annual WS			Extreme Max	Extreme Annual DB Mean Standard deviation			0=5						vears n=50 years			
1% 2.5% 5%			WB Min Max		Min Max		Min Max			Max Min	Max Min		Max	1			
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(p)	,
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)
Height= 2.5 m; Floor area= 200 m ² ; Wall area= 144 m ²													.,				

Internal Gains:

Sensible cooling load from internal gains,

$$q_{ig,sensible} = 136 + 2.2 A_{cf} + 22 N_{oc} = 136 + 2.2 *200 + 22 *2 = 620 W$$

Latent cooling load from internal gains,

$$q_{ig,latent} = 20 + 0.22 A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88W$$

Infiltration:

Unit leakage area $A_{ul} = 1.4 \text{ cm}^2/\text{m}^2$

Exposed surface A_L = A(wall)+ A(roof)= 200+144= $344m^2$

So,
$$A_L = A_{es} * A_{ul} = 344 * 1.4 = 481.6 \text{ cm}^2$$

Define the cooling temperature $T_{cooling} = 24^{\circ}C$, and heating temperature $T_{heating} = 20^{\circ}C$ in Brindisi,

$$\Delta$$
 T cooling = 31.1–24 = 7.1 °C = 7.1 k

$$\Delta$$
 T heating = 20 °C – (- 4.1 °C) = 24.1 °C = 24.1 k

$$DR = 7.1 \, ^{\circ}C = 7.1 \, k$$

Given: IDF (heating) =
$$0.073 \frac{L}{s*cm2}$$

IDF (cooling) =
$$0.033 \frac{L}{s*cm2}$$

Calculate infiltration airflow rate,

$$Q_{I, heating} = A_L * IDF_{heating} = 481.6 * 0.073 = 35.157 \frac{L}{s}$$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 = 15.893 \frac{L}{s}$$

The required minimum whole building ventilation rate is

$$Qv = 0.05A_{cf} + 3.5 (N_{br} + 1) = 0.05 * 200 + 3.5 * (1+1) = 17 \frac{L}{s}$$

Thus,

$$Q_{\text{i-v, heating}} = Q_{\text{I, heating}} + Q_{\text{v}} = 35.157 + 17 = 52.157 \frac{\textit{L}}{\textit{s}}$$

$$Q_{i\text{--}v, \, cooling} = Q_{I, \, cooling} + Q_v = 15.893 + 17 \ = 32.893 \frac{\textit{L}}{\textit{s}}$$

Given that $C_{sensible}$ = 1.23, C_{talent} = 3010, Δw cooling = 0.0039

 $\dot{q}_{\text{ inf-ventilation (cooling sensible)}} = C_{\text{ sensible}} Q_{\text{ i-v,cooling}} \Delta T cooling = 1.23 * 32.893 * 7.1 = 287.25 W$

 $\dot{q}_{\text{inf-ventilation (cooling talent)}} = C_{\text{talent}} Q_{\text{i-v,cooling}} \Delta \text{wcooling} = 3010 * 32.893 * 0.0039 = 386.13 \text{ W}$

 $\dot{q}_{\text{ inf-ventilation (heating sensible)}} = C_{\text{ sensible}} Q_{\text{ i-v,cooling}} \Delta \text{Theating} = 1.23 * 52.157 * 24.1 = 1546.09 W$