ОД A POSTERIORI КОН ИНФОРМИРАНИ A PRIORI РАСПРЕДЕЛБИ

Баесово преносно учење за временски серии Јован Крајевски 2 јули 2025

Содржина

- ▶ Дефиниција на проблемот
- ▶ Теоретска рамка
- ► A priori распределби
- ► Facebook Prophet

- ▶ Vangja
- Методологија
- Резултати
- Заклучок

Прогноза на кратки временски серии

- Тренирачко множество: 500 серии × 3 месеци
- Тестирачко множество: 365 дена
- Проблеми
 - over-fitting
 - сезонални ефекти со голема периода
- Како изгледа прогноза од класичен модел?

Прогноза од класичен модел

Решение со преносно учење

- Контекстна временска серија: 40 години
- Моделот е истрениран на контекстната временска серија
 - Заклучуваме дека временската серија расте во март
- Предиктор временски серии фино го подесуваат моделот
 - Го подесуваме растот во март за секоја од 500-те предиктор временски серии

Визуелизација на временските серии

Содржина 2 Теоретска рамка

- Дефиниција на проблемот
- ▶ Теоретска рамка
- ► A priori распределби
- ► Facebook Prophet

- ► Vangja
- Методологија
- Резултати
- ▶ Заклучок

Класична наспроти Баесова статистика ² Теоретска рамка

- Објективисти наспроти Субјективисти
- Честота наспроти Верување
- Точкесто оценување наспроти a posteriori распределба
 - параметрите се случајни променливи!
 - параметарот секогаш има распределба и пред, и после податоците
 - од *a priori* до *a posteriori* преку Баесовата теорема
- Интервали на доверба наспроти Интервали на кредибилитет

Зошто Баесова статистика?

2 Теоретска рамка

- $\bullet\,$ Присуство на *a priori* верување
- Целосна распределба на параметрите
- Мали примероци

Зошто навистина Баесова статистика?

2 Теоретска рамка

- Хиерархиско моделирање
- Детално истражување на a posteriori распределбата
- Принципиелно преносно учење
 - -a priori \rightarrow a posteriori \rightarrow a priori \rightarrow a posteriori $\rightarrow \dots$

Содржина

3 A priori распределби

- Дефиниција на проблемот
- ▶ Теоретска рамка
- ► A priori распределби
- ► Facebook Prophe

- ► Vangja
- Методологија
- Резултати
- Заклучов

Видови a priori распределби

3 A priori распределби

- Информирани а priori распределби
 - Потекнуваат од знаењето на експертите
 - Нема формален метод да се дојде до нив
- Слабо-информирани а priori распределби
 - Принципиелна регуларизација
- Генерички слабо-информирани а priori распределби
- Нејасни *a priori* распределби
- Рамномерни а priori распределби
 - Класична статистика + истражување на a posteriori распределба

Нормални a priori распределби

3 A priori распределби

 $\begin{array}{l} \mathbf{posterior} \propto \mathbf{prior} \times \mathbf{likelihood} \\ \mathbf{posterior} \propto \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \times \mathbf{likelihood} \\ \\ \mathbf{logposterior} \propto -\frac{1}{2\sigma^2} (x-\mu)^2 + \mathbf{loglikelihood} \end{array} \label{eq:posterior}$

• Ако $\mu=0,$ ова е L2 регуларизација со $\lambda=\frac{1}{2\sigma^2}$

$$\mathcal{L}_{L2} = \mathcal{L} + \lambda ||x||_2^2$$

Лапласови а priorі распределби

3 *A priori* распределби

$$\begin{array}{l} \mathbf{posterior} \propto \mathbf{prior} \times \mathbf{likelihood} \\ \mathbf{posterior} \propto \frac{1}{2b} e^{-\frac{|x-\mu|}{b}} \times \mathbf{likelihood} \\ \\ \mathbf{logposterior} \propto -\frac{1}{b} |x-\mu| + \mathbf{loglikelihood} \end{array} \tag{$$} / \log \\ \\ \end{array}$$

• Ако $\mu=0$, ова е L1 регуларизација со $\lambda=\frac{1}{b}$

$$\mathcal{L}_{L1} = \mathcal{L} + \lambda ||x||_1$$

Содржина

- Дефиниција на проблемо^r
- ▶ Теоретска рамка
- ► A priori распределби
- \blacktriangleright Facebook Prophet

- ▶ Vangja
- Методологија
- Резултати
- Заклучов

Општа дефиниција на моделот

4 Facebook Prophet

• Обопштен адитивен модел:

$$y_i(t; \boldsymbol{\gamma}_i, \boldsymbol{\theta}_i) = g_i(t; \boldsymbol{\gamma}_i) + \sum_{j=1}^m s_i(p^{(j)}, t; \boldsymbol{\theta}_i^{(j)}) + h_i(t) + \epsilon_i^{(t)}$$

- ullet g_i линеарен тренд по делови
- s_i сезоналност моделирана со Фуриеров ред

$$P = \{p^{(j)} : j \in \mathbb{N}, 1 \le j \le M\} \subseteq \mathbb{R}$$
$$\forall k, j \in \mathbb{N}, j \le m$$
$$s(p^{(j)}, t^{(k)}; \boldsymbol{\theta}_i^{(j)}) = s(p^{(j)}, t^{(k)} - p^{(j)}; \boldsymbol{\theta}_i^{(j)})$$

Визуелизација на линеарниот тренд

Визуелизација на линеарниот тренд

Параметри на линеарниот тренд 4 Facebook Prophet

- $w_i \sim \mathcal{N}(0,5)$ почетен раст **параметар**
- $b_i \sim \mathcal{N}(0,5)$ почетен пресек со y-оската **параметар**
- ullet s $_i$ точки на промена на растот w_i
- $\delta_i \sim Laplace(0,0.05)$ промена на растот во точките \mathbf{s}_i параметар
- \mathbf{A}_i индикатор матрица, $t^{(k)} > s_{i,l} \implies a_{i,k}^{(l)} = 1$
 - корисно за векторизација

$$\mathbf{g}_i = (w_i + \mathbf{A}_i \boldsymbol{\delta}_i) \odot \mathbf{t}^T + b_i - \mathbf{A}_i (\boldsymbol{\delta}_i \odot \mathbf{s}_i)$$

Визуелизација на Фуриеровата сезоналност

Визуелизација на Фуриеровата сезоналност

Визуелизација на Фуриеровата сезоналност

Параметри на Фуриеровата сезоналност 4 Facebook Prophet

- C_i број на синусни и косинусни собироци за периодата $p^{(j)}$
- $\boldsymbol{\theta}_i^{(j)} \sim \mathcal{N}(0,10)$ коефициенти на Фуриеровиот ред параметар
- $oldsymbol{f F}^{(j)}$ матрица од синусни и косинусни собироци
 - корисно за векторизација

$$\mathbf{fs}_i^{(j)} = \mathbf{F}^{(j)} \boldsymbol{\theta}_i^{(j)}$$

Целосен модел

$$\sigma_i \sim \mathcal{HN}(0,0.5)$$
 - параметар $y_i \sim \mathcal{N}(\mathbf{g}_i + \sum_{j=1}^M \mathbf{f}\mathbf{s}_i^{(j)}, \sigma_i)$

Содржина 5 Vangja

- ▶ Дефиниција на проблемо⁶
- ▶ Теоретска рамка
- ► A priori распределби
- ► Facebook Prophe

- ▶ Vangja
- Методологија
- Резултати
- ▶ Заклучон

Опис на Vangja 5 Vangja

- Надградба на Facebook Prophet
 - модуларен интерфејс
 - хиерархиско моделирање
 - преносно учење
 - разни методи за Баесово заклучување (MCMC, VI, MAP)
- Python, PyMC, JAX, GPU поддршка

Апликативен интерфејс 5 Vangia

```
"Teven" unrephejc

model = Prophet(
seasonality_mode="multiplicative",
yearly_seasonality=10,
weekly_seasonality=3,
).add_seasonality(
name="monthly",
period=30.5,
fourier_order=5,
))
```

```
Moдуларен интерфејс

1 model = LinearTrend() * (
2 1
3 + FourierSeasonality(365.25, 10)
4 + FourierSeasonality(30.5, 5)
5 + FourierSeasonality(7, 3)
6 )
```

Додатоци на Facebook Prophet ⁵ Vangja

- Промени на растот "од десно"
 - \mathbf{A}_i индикатор матрица, $t^{(k)} < s_{i,l} \implies a_{i,k}^{(l)} = 1$
- Векторизирана анализа на повеќе временски серии

$$-\mathbf{s} = \mathbf{s}_1 = \cdots = \mathbf{s}_N \implies \mathbf{A} = \mathbf{A}_1 = \cdots = \mathbf{A}_N$$

$$\mathbf{G} = (\mathbf{w} + \mathbf{A}\Delta) \odot \mathbf{t}^T + \mathbf{b} - \mathbf{A}(\Delta \odot \mathbf{s})$$

$$\mathbf{F}\mathbf{S}^{(j)} = \mathbf{F}^{(j)}\boldsymbol{\theta}^{(j)}$$

$$\mathbf{y} \sim \mathcal{N}(\mathbf{G} + \sum_{j=1}^{M} \mathbf{F}\mathbf{S}^{(j)}, \boldsymbol{\sigma}_{\epsilon})$$

Хиерархиско моделирање

5 Vangja

Зошто промени на растот од "десно"? ⁵ Vangja

Зошто промени на растот од "десно"? ⁵ Vangja

Репараметризација - проблем на инка ⁵ Vangia

локално = глобално + отстапување $\times \frac{\text{мерна}}{\text{единица}}$

$$\begin{aligned} w_0 &\sim \mathcal{N}(\mu_{\mathbf{w}}, \sigma_{\mathbf{w}}) & \boldsymbol{\delta}_0 &\sim \mathcal{N}(\mu_{\Delta}, \sigma_{\Delta}) & \boldsymbol{\theta}_0^{(j)} &\sim \mathcal{N}(\mu_{\boldsymbol{\theta}^{(j)}}, \sigma_{\boldsymbol{\theta}^{(j)}}) \\ \boldsymbol{\sigma}_{\mathbf{w}} &\sim \mathcal{H} \mathcal{N}(\frac{\sigma_{\mathbf{w}}}{\lambda_{\mathbf{w}}}) & \boldsymbol{\sigma}_{\Delta} &\sim \mathcal{H} \mathcal{N}(\frac{\sigma_{\Delta}}{\lambda_{\Delta}}) & \boldsymbol{\sigma}_{\boldsymbol{\theta}^{(j)}} &\sim \mathcal{H} \mathcal{N}(\frac{\sigma_{\boldsymbol{\theta}^{(j)}}}{\lambda_{\boldsymbol{\theta}^{(j)}}}) \\ \mathbf{c}_{\mathbf{w}} &\sim \mathcal{N}(0, 1) & \mathbf{C}_{\Delta} &\sim Laplace(0, 1) & \mathbf{C}_{\boldsymbol{\theta}^{(j)}} &\sim \mathcal{N}(0, 1) \\ \mathbf{w} &= w_0 + \boldsymbol{\sigma}_{\mathbf{w}} \odot \mathbf{c}_{\mathbf{w}} & \Delta &= \boldsymbol{\delta}_0 + \boldsymbol{\sigma}_{\Delta} \odot \mathbf{C}_{\Delta} & \boldsymbol{\theta}^{(j)} &= \boldsymbol{\theta}_0^{(j)} + \boldsymbol{\sigma}_{\boldsymbol{\theta}^{(j)}} \odot \mathbf{C}_{\boldsymbol{\theta}^{(j)}} \end{aligned}$$

a posteriori \rightarrow a priori

5 Vangja

Иста форма на *a priori* распределбата ⁵ Vangia

контекстен a posteriori \rightarrow предиктор a priori контекстен a posteriori \rightarrow глобално a priori

$$\begin{split} w_1^{MAP} &= \underset{w_1}{\operatorname{argmax}} \ P(w_1|C) \\ \sigma_{w_1|C} &= \sqrt{\mathbb{V}(w_1|C)} \\ w_i &\sim \mathcal{N}(w_1^{MAP}, \sigma_{w_1|C}) \end{split} \qquad \begin{aligned} \boldsymbol{\delta}_1^{MAP} &= \underset{\boldsymbol{\delta}_1}{\operatorname{argmax}} \ P(\boldsymbol{\delta}_1|C) \\ \sigma_{\boldsymbol{\delta}_1|C} &= \sqrt{\mathbb{V}(\boldsymbol{\delta}_1|C)} \\ \sigma_{\boldsymbol{\delta}_1|C} &= \sqrt{\mathbb{V}(\boldsymbol{\delta}_1|C)} \\ \sigma_{\boldsymbol{\delta}_1|C} &= \sqrt{\mathbb{V}(\boldsymbol{\delta}_1|C)} \\ \sigma_{\boldsymbol{\delta}_1|C} &= \sqrt{\mathbb{V}(\boldsymbol{\theta}_1^{(j)})} \\ \sigma_{\boldsymbol{\delta}_1^{(j)}|C} &= \sqrt{\mathbb{V}(\boldsymbol{\theta}_1^{(j)})} \\ \sigma_{\boldsymbol{\theta}_1^{(j)}|C} &= \sqrt{\mathbb{V}(\boldsymbol{\theta}_1^{(j)})} \\ \sigma_{\boldsymbol{\theta}_1^{(j)}|C} &= \sqrt{\mathbb{V}(\boldsymbol{\theta}_1^{(j)})} \\ \sigma_{\boldsymbol{\theta}_1^{(j)}|C} &= \sqrt{\mathbb{V}(\boldsymbol{\theta}_1^{(j)})} \end{aligned}$$

MvN апроксимација на *a posteriori* ⁵ Vangia

- Ги моделира и корелациите помеѓу параметрите
- prior_from_idata

$$\boldsymbol{\mu}^C = \left(\mathbb{E}(w_1|C), \quad \mathbb{E}(b_1|C), \quad \mathbb{E}(\delta_{1,1}|C), \quad \dots, \quad \mathbb{E}(\beta_{1,1}^{(1)}|C), \quad \dots, \quad \mathbb{E}(\sigma_{\epsilon}|C) \right)^T$$

$$\mathbf{\Sigma}^{C} = \begin{pmatrix} \mathbb{V}(w_{1}|C) & Cov(w_{1}, b_{1}|C) & Cov(w_{1}, \delta_{1,1}|C) & \dots & Cov(w_{1}, \sigma_{\epsilon}|C) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ Cov(\sigma_{\epsilon}, w_{1}|C) & Cov(\sigma_{\epsilon}, b_{1}|C) & Cov(\sigma_{\epsilon}, \delta_{1,1}|C) & \dots & \mathbb{V}(\sigma_{\epsilon}|C) \end{pmatrix}$$

$$\left(w_i, b_i, \delta_{i,1}, \ldots, \beta_{i,1}^{(1)}, \ldots, \sigma_{\epsilon}\right) \sim \mathcal{N}(\boldsymbol{\mu}^C, \boldsymbol{\Sigma}^C)$$

Регуларизација

5 Vangja

- Слични иницијални растови
- Слични норми на сезоналностите

$$log(P(\boldsymbol{\gamma}_{i}, \boldsymbol{\theta}_{i}^{(1)}, \dots, \boldsymbol{\theta}_{i}^{(M)}, \sigma_{\epsilon}|X_{i})) \propto log(P(\boldsymbol{\gamma}_{i}, \boldsymbol{\theta}_{i}^{(1)}, \dots, \boldsymbol{\theta}_{i}^{(M)}, \sigma_{\epsilon}))$$

$$+log(P(X_{i}|\boldsymbol{\gamma}_{i}, \boldsymbol{\theta}_{i}^{(1)}, \dots, \boldsymbol{\theta}_{i}^{(M)}, \sigma_{\epsilon}))$$

$$-\phi_{\mathbf{w}}(w_{i} - w_{1}^{MAP})^{2}$$

$$+ \sum_{i=1}^{M} \phi_{\boldsymbol{\theta}^{(j)}} \cdot min(0, \|\mathbf{fs}_{1}^{(j)MAP}\|_{2}^{2} - \|\mathbf{fs}_{i}^{(j)}\|_{2}^{2})$$

Содржина 6 Методологија

- Дефиниција на проблемо⁶
- ▶ Теоретска рамка
- ► A priori распределби
- ► Facebook Prophet

- ► Vangja
- ▶ Методологија
- Резултати
- ▶ Заклучон

Податочно множество

6 Методологија

- Дневни берзански податоци типична цена
- Контекстна временска серија: S&P 500 индекс, 40 години
- Предиктор временски серии: 500-те композитни акции, 3 месеци
- 730 последователни прозорци: од 01.01.2015 до 01.01.2017

Модели 6 Методологија

- Holt-Winters Exponential Smoothing
- Unobserved Components
- Facebook Prophet
- Timeseers
- Vangja со хиерархиско моделирање
- \bullet Vangja контекстен
 $a\ posteriori \rightarrow$ предиктор $a\ priori$
- \bullet Vangja контекстен a posteriori \rightarrow глобално a priori

Содржина 7 Резултати

- Дефиниција на проблемо^r
- ▶ Теоретска рамка
- ► A priori распределби
- ► Facebook Prophet

- ▶ Vangja
- Методологија
- ▶ Резултати
- ▶ Заклучон

Метрики 7 Резултати

	MSE	RMSE	MAE	MAPE	+
ARIMA	0.5400	0.2934	0.2439	0.2486	/
Prophet	0.1147	0.2696	0.2335	0.2421	2.61%
Timeseers	0.0505	0.1801	0.1535	0.1541	36.35%
Vangja хиерархиски	0.0413	0.1640	0.1424	0.1384	10.19%
Vangja предиктор a priori	0.0380	0.1583	0.1342	0.1324	4.34%
Vangja глобално a priori	0.0348	0.1493	0.1284	0.1297	2.04%
ETS	0.0357	0.1518	0.1285	0.1253	3.39%
UC	0.0357	0.1518	0.1285	0.1253	0%

Визуелизација на МАРЕ

Визуелизација на МАРЕ

Хиперпараметри кај Vangja хиерархиски ⁷ Резултати

Стеснување	MSE	RMSE	MAE	MAPE
1000000	0.0413	0.1640	0.1424	0.1384
100000	0.0413	0.1640	0.1424	0.1384
10000000	0.0413	0.1640	0.1425	0.1384
10000	0.0441	0.1762	0.1496	0.1484
1000	0.0755	0.2404	0.1967	0.1995
100	0.4180	0.4625	0.3681	0.3748
1	3.1461	1.4366	1.0810	1.1251
10	9.6955	2.1440	1.5652	1.6445

Хиперпараметри кај Timeseers

Стеснување	MSE	RMSE	MAE	MAPE
10000	0.0505	0.1801	0.1535	0.1541
1000000	0.0707	0.2008	0.1734	0.1749
10000000	0.0712	0.2018	0.1741	0.1758
100000	0.0725	0.2037	0.1758	0.1777
1000	0.0730	0.2305	0.1910	0.1971
100	0.2792	0.4236	0.3344	0.3497
1	1.2220	1.0768	0.8894	0.9073
10	3.7595	1.5247	1.1208	1.1746

Хиперпараметри кај Vangja предиктор *a priori* 7 Резултати

Тренд	Сезоналност	$\lambda_{\mathbf{w}}$	MSE	RMSE	MAE	MAPE
форма	prior_from_idata	1	0.0380	0.1583	0.1342	0.1324
форма	prior_from_idata	0	0.0386	0.1594	0.1353	0.1330
форма	prior_from_idata	-1	0.0392	0.1607	0.1365	0.1339
prior_from_idata	prior_from_idata	1	0.0374	0.1571	0.1337	0.1353
prior_from_idata	prior_from_idata	0	0.0374	0.1571	0.1337	0.1353
prior_from_idata	prior_from_idata	-1	0.0374	0.1571	0.1337	0.1353
форма	форма	1	0.0394	0.1609	0.1373	0.1360
форма	форма	0	0.0399	0.1618	0.1381	0.1364
форма	форма	-1	0.0401	0.1623	0.1386	0.1368
prior_from_idata	форма	1	0.0380	0.1582	0.1352	0.1368
prior_from_idata	форма	0	0.0380	0.1582	0.1352	0.1368
prior_from_idata	форма	-1	0.0380	0.1582	0.1352	0.1368

Содржина 8 Заклучок

- Дефиниција на проблемо
- ▶ Теоретска рамка
- ► A priori распределби
- ► Facebook Prophet

- ► Vangja
- Методологија
- Резултати
- ▶ Заклучок

Заклучок 8 Заклучок

- ullet а posteriori
 ightarrow a priori соодветна замена за хиерархиско моделирање
 - пресметковна ефикасност
- Информирање на слабо-информираните а priori распределби
 - $-\mu$ преносно учење
 - $-\sigma, b$ дискриминативна L2 и L1 регуларизација по параметар!
- Регуларизацијата конзистентно подобрува, но е занемарлива

Понатамошна работа 8 Заклучок

- Надоградба на Vangja со повеќе компоненти
 - логистички тренд (Facebook Prophet)
 - константи (Timeseers)
 - Radial basis functions за сезоналност (Timeseers)
 - авто-регресивност (Neural Prophet)
- Обопштена парадигма за Баесово преносно учење
- Емпириско информирање на а priori верувања

Репродукција на резултатите

8 Заклучок

🕥 github.com/jovan-krajevski/magisterska

🕥 github.com/jovan-krajevski/vangja

Q&A

Благодариме на вниманието! Секоја забелешка е добредојдена!