

WHAT IS CLAIMED IS:

1. A positive electrode active material containing a compound represented by the general formula $\text{Li}_x\text{Mn}_y\text{Fe}_{1-y}\text{PO}_4$, where $0 < x \leq 2$ and $0.5 < y < 0.95$.

2. The positive electrode active material according to claim 1 wherein a portion of the $\text{Li}_x\text{Mn}_y\text{Fe}_{1-y}\text{PO}_4$ has a grain size not larger than $10 \mu\text{m}$, with the Bulnauer Emmet Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.

3. A positive electrode active material containing a compound represented by the general formula $\text{Li}_x\text{Mn}_y\text{Fe}_z\text{A}_{1-(y+z)}\text{PO}_4$, where $0 < x \leq 2$, $0.5 < y < 0.95$, $0.5 < y+z < 1$ and A is at least one metal element selected from Ti and Ag.

4. The positive electrode active material according to claim 3 wherein a portion of the $\text{Li}_x\text{Mn}_y\text{Fe}_z\text{A}_{1-(y+z)}\text{PO}_4$ has a grain size not larger than $10 \mu\text{m}$, with the Bulnauer Emmet Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.

5. A non-aqueous electrolyte cell comprising:

 a positive electrode containing a positive electrode active material;

 a negative electrode containing a negative electrode active material; and

 an electrolyte interposed between said positive and negative electrodes; wherein

 said positive electrode active material contains a compound represented by the

 general formula $\text{Li}_x\text{Mn}_y\text{Fe}_{1-y}\text{PO}_4$ where $0 < x \leq 2$ and $0.5 < y < 0.95$.

6. The positive electrode active material according to claim 5 wherein a portion of the $\text{Li}_x\text{Mn}_y\text{Fe}_{1-y}\text{PO}_4$ has a grain size not larger than $10 \mu\text{m}$, with the Bulnauer Emmet Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.

7. A non-aqueous electrolyte cell comprising:

- a positive electrode containing a positive electrode active material;
- a negative electrode containing a negative electrode active material; and
- an electrolyte interposed between said positive and negative electrodes; wherein
- said positive electrode active material contains a compound represented by the
- general formula $\text{Li}_x\text{Mn}_y\text{Fe}_z\text{A}_{1-(y+z)}\text{PO}_4$ where $0 < x \leq 2$, $0.5 < y < 0.95$ and $0.5 < y+z < 1$ and wherein A is at least one metal element selected from Ti and Mg.

8. The non-aqueous electrolyte cell according to claim 7 wherein a portion of the $\text{Li}_x\text{Mn}_y\text{Fe}_z\text{A}_{1-(y+z)}\text{PO}_4$ has a grain size not larger than $10 \mu\text{m}$, with the Bulnauer Emmet Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.

9. A positive electrode active material containing a compound represented by the general formula $\text{Li}_x\text{Mn}_y\text{B}_{1-y}\text{PO}_4$, where $0 < x \leq 2$ and $0 < y < 1$ and wherein B is a metal element selected from among Ti, Zn, Mg and Co.

10. The positive electrode active material according to claim 9 wherein a portion of the $\text{Li}_x\text{Mn}_y\text{B}_{1-y}\text{PO}_4$ has a grain size not larger than $10 \mu\text{m}$, with the Bulnauer Emmet Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.

11. A positive electrode active material containing a compound represented by the general formula $\text{Li}_x\text{Mn}_y\text{B}_{1-y}\text{PO}_4$, where $0 < x \leq 2$ and $0 < y < 1$ and wherein B denotes plural metal elements selected from among Ti, Fe, Zn, Mg and Co.

12. The positive electrode active material according to claim 11 wherein a portion of the $\text{Li}_x\text{Mn}_y\text{B}_{1-y}\text{PO}_4$ has a grain size not larger than $10 \mu\text{m}$, with the Bulnauer Emmet

Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.

13. A non-aqueous electrolyte cell comprising:

a positive electrode containing a positive electrode active material;
a negative electrode containing a negative electrode active material; and
an electrolyte interposed between said positive and negative electrodes; wherein
said positive electrode active material contains a compound represented by the
general formula $\text{Li}_x\text{Mn}_y\text{B}_{1-y}\text{PO}_4$ where $0 < x \leq 2$ and $0 < y < 1$ and wherein B denotes
one metal element selected from among Ti, Zn, Mg and Co.

14. The non-aqueous electrolyte cell according to claim 13 wherein a portion of the
 $\text{Li}_x\text{Mn}_y\text{B}_{1-y}\text{PO}_4$ has a grain size not larger than $10 \mu\text{m}$, with the Bulnauer Eimnet
Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.

15. A non-aqueous electrolyte cell comprising:

a positive electrode containing a positive electrode active material;
a negative electrode containing a negative electrode active material; and
an electrolyte interposed between said positive and negative electrodes; wherein
said positive electrode active material contains a compound represented by the
general formula $\text{Li}_x\text{Mn}_y\text{B}_{1-y}\text{PO}_4$ where $0 < x \leq 2$ and $0 < y < 1$ and wherein B denotes
plural metal elements selected from among Ti, Fe, Zn, Mg and Co.

16. The non-aqueous electrolyte cell according to claim 15 wherein a portion of the
 $\text{Li}_x\text{Mn}_y\text{Fe}_{1-y}\text{PO}_4$ has a grain size not larger than $10 \mu\text{m}$, with the Bulnauer Eimnet
Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.