PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-356207

(43) Date of publication of application: 26.12.2001

(51)Int.Cl.

G02B 5/02

G02F 1/13357

(21)Application number : 2000-174788

(71) Applicant: TOMOEGAWA PAPER CO LTD

(22) Date of filing:

12.06.2000

(72)Inventor: TARUISHI TOMOHIRO

AZUMA KENSAKU

(54) LIGHT DIFFUSING MEMBER

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a light diffusing medium which efficiently reflects external light from the side opposite to the backlight side without attenuating transmitted light from the backlight side.

SOLUTION: The light diffusing member is obtained by disposing a light diffusing layer 4 containing light transmitting particles 3 arranged in a monolayer state and fixed with a binder 2 on a light transmitting substrate 1, and the sum of the total light transmissivity and total light reflectivity of the member to light incident from the light transmitting particle side is ≥101%.

LEGAL STATUS

[Date of request for examination]

14.06.2002

[Date of sending the examiner's decision of

19.04.2005

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] Searching PAJ Page 2 of 2

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

2005-09323

decision of rejection]

[Date of requesting appeal against examiner's 19.05.2005

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号 特開2001-356207

(P2001-356207A)

(43)公開日 平成13年12月26日(2001.12.26)

(51) Int.CL7		織別配号	FI		;	i7:!)*(参考)
G02B	5/02		G02B	5/02	C	2H042
					B	2H091
G 0 2 P	1/13357		G02F	1/1335	530	

審査請求 京請求 請求項の数6 OL (全 8 四)

(21)出願番号	特庫2000-174788(P2000-174788)	(71)出廢人 000153591			
		株式会社巴川製紙所			
(22)出版日	平成12年6月12日(2000.6.12)	京京都中央区京協1丁目5番15号			
		(72) 死明者 掛石 智宏			
		静岡県静岡市用家巴町3番1号 株式会社			
		巴川製鮫所技術研究所內			
		(72)発明者 東 健策			
		静岡県静岡市用家巴町3番1号 株式会社			
		巴川製紙所技術研究所內			
		(74)代理人 100092484			
		弁理士 波部 剛			
		Fターム(参考) 250042 BAO2 BAO4 BAJ5 BA20			
		2H091 FA29Z FA31Z FA41Z FA50Z			
		FB02 FB06 FC23 FD14 LA16			

(54) 【発明の名称】 光拡散部材

(57)【要約】

【課題】 バックライト側からの透過光を減衰させず に、反対側からの外光を効率よく反射する光拡散媒体を 提供する。

【解決手段】 光拡散部付は、透光性基体1上に、単粒 子層状に並べられ結者削2で結者された逐光性粒子3を 含む光拡散層4が設けられたものであって、透光性粒子 側から入射した光線の全光線透過率と全光線反射率の和 が101%以上である。

(2)

【特許請求の範囲】

【詰求項1】 透光性基体上に、単位子層状に並べられ 結若剤で結者された逐光性粒子を含む光拡散層が設けら れた光拡散部特において、透光性粒子側から入射した光 銀の全光線透過率と全光線反射率の和が101%以上で あることを特徴とする光紅散部材。

【請求項2】 透光性粒子側から入射した光線の全光線 透過率が85%以上であることを特徴とする請求項1に 記載の光拡散部付。

【 請求項 3 】 過光性粒子の屈折率が 1.40~1.7 5であることを特徴とする請求項1または2に記載の光 拡散部材。

【請求項4】 光拡散層における透光性粒子の過光性基 体への投影面積が逐光性基体の面積の70%以上である ことを特徴とする請求項1または2に記載の光拡散部 材。

【請求項5】 光拡散層の表面の比表面積が1.20~ 3. 00であることを特徴とする請求項1または2に記 或の光拡散部付.

【語求項6】 遠光性基体の透光性粒子が結着されてい 20 る。 ない面がレンズ構造になっていることを特徴とする請求 項1記載の光鉱散部材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液晶ディスプレイ (LCD) のバックライト等に用いられる光拡散板に関 する.

[0002]

【従来の技術】しCDは、近年開発が目覚しく、ノート おり、将来への期待も大きい。これらのLCDは、液晶 パネルを照明する光の取り入れ方式により、反射型、透 過型、透過・反射型に大別される。反射型LCDは、反 射率の高いアルミニウム競等を貼った反射板を液晶パネ ルの背面に配し、ディスプレイ表面側から入射する外光 を反射板で反射させて液晶パネルを照射し、液晶画像を 得る方式のものである。一方、透過型LCDは、液晶パ ネルの背面に配したバックライトユニットにより液晶パ ネルを照明する方式のものである。また、透過・反射型 LCDは、明るい場所では外光の反射を用い、暗い場所 40 ではバックライトを光源として用いる方式のものであ る。反射型LCDにおいては、アルミニウム等の地色に よりコントラストが悪化するのを防ぐために、液晶パネ ルと反射板との間に光を適度に拡散する媒体を介装し て、背景色をペーパーホワイト色に近づけることが行わ れている。また、透過型しCDでは、バックライトユニ っトを構成するアクリル樹脂導光板の印刷パターンが現 れて視認性が悪化することを防ぐために、液晶パネルと バックライトユニットとの間に光を直度に拡散する媒体

成となっている。更に、透過・反射型しCDでは、反射 板の代わりに外光を反射させるとともにバックライトか らの光を効率よく液晶パネルに導くことができる拡散媒 体が使用されている。

【0003】特に拡散媒体を透過・反射型LCD用拡散 板として使用するためには、バックライト側からの透過 光を減衰させずに、反対側からの外光をより効率よく反 射させる必要がある。しかしながら、従来の拡散媒体の 場合、外光を反射するために飲乱粒子の畳を増加する と、遠過光強度が減少してしまうという問題があり、こ れらを両立させることができなかった。

[0004]

【発明が解決しようとする課題】本発明は、従来の光拡 散媒体における上記のような問題点を解決することを目 的としてなされたものであって、その目的は、バックラ イト側からの遠邉光を減衰させずに、反対側からの外光 を効率よく反射する光拡散媒体を提供することにある。 本発明の他の目的は、透過・反射型しCDのバックライ ト用拡散板として最適な光学部材を提供することにあ

[0005]

【課題を解決するための手段】本発明者等は、上記のよ うな光学特性を発現させるために、透光性基体に透光性 粒子を並べ、結着剤で結着した光学フィルムについて、 その全光線透過率と全光線反射率を詳細に測定した結 果。その和が101%以上である場合に、透過・反射型 LCDバックライト用拡散板として優れていることを見 出し、本発明を完成するに至った。

【①①06】すなわち、本発明の光拡散部材は、透光性 型パソコン、携帯電話端末等、あらゆる分野に普及して 30 基体上に、単粒子層状に並べられ結着剤で結着された透 光性粒子を含む光拡散層が設けられたものであって、透 光性粒子側から入射した光線の全光線透過率と全光線反 射率の和が101%以上であることを特徴とする。

> 【りりり7】本発明の上記光拡散部材において、透光性 粒子側から入射した光線の全光線透過率は85%以上で あることが好ましく、また、透光性粒子の屈折率は、

1. 40~1. 75であることが好ましい。

【①①08】本発明の光拡散部材において、光拡散層に おける逐光性粒子の逐光性基体への投影面論は逐光性基 - 体の面積の70%以上であることが好ましい。また、光 拡散層の表面の比表面領は、1.20~3.00である ことが好ましい。

【0009】また、本発明の光拡散部材における遠光性 基体の逐光性粒子が結者されていない面は、レンス構造 を育していてもよい。

[0010]

【発明の実施の形態】以下、本発明をより詳細に説明す る。 図1 および図2は、それぞれ本発明の光拡散部材の 一例の模式的断面図である。図1においては、遠光性基 を介装して、均一な面状の光が液晶パネルを照明する樽 50 体1の上に、結若剤2よりなる結若層によって過光性粒

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl?N0000=21&N0400=image/gif&N0401=/N...

9/1/2006

子3が結合され、光拡散層4が形成されている。図2に おいては、透光性基体として、一面がレンズ構造になっ ている逐光性基体1、が用いられている。

【0011】本発明において、逐光性芸体としては、公 知の透明なフィルム状およびシート状のものを使用する ことができる。具体的には、ポリエチレンテレフタレー ト(PET)、ポリエチレンナフタレート、トリアセチ ルセルロース(TAC)、ポリアレート、ポリイミド、 ポリエーテル。ポリカーボネート、ポリスルホン。ポリ リエチレン、ポリプロピレン、ポリビニルアルコール等 からなる各種樹脂フィルムが好適に使用される。また、 上記樹脂からなる硬質板および石英ガラス、ソーダガラ ス等のガラス材料からなるシート状部材も用いることが

【0012】透光性基体は、光が透過されるものであれ は、非透明状のものでも使用することができるが、液晶 ディスプレイ等に用いる場合等には、屈折率(JIS K 7 1 4 2) が 1. 4 5 ~ 1. 7 () の範囲にある透明基 超えるものは、結者剤や透光性粒子との屈折率差が大き くなりすぎるため、透過率が低下する。これらの過光性 基体の透明性は高いものほど好ましいが、光線透過率 (JIS C6714) としては80%以上、より好き しくは85%以上のものである。また、ヘーズ(J!S K7105) としては、3. 0以下、より好ましくは 1. 0以下、最も好ましくは0. 5以下のものである。 このような逐光性基材としては、トリアセチルセルロー ス(TAC)、ポリエチレンテレフタレート(PE よびポリメチルメタクリレート等のアクリル系樹脂フィ ルム等をあげることができる。また、この透光性基体 は、それを小型軽量の液晶ディスプレイに用いる場合に は、フィルムであることがより好ましい。逐光性基体の 厚さは、軽量化の観点から薄い方が望ましいが、その生 産性を考慮すると、一般に1μm~5mmの範囲のもの を使用することが好適である。

【0013】更に、逐光性基体としては、その片面に集 光性または拡散性を有するレンズ格道を有するものを用 いてもよい。例えば、フレネルレンズ、プリズムレン ズ、レンチキュラーレンズのように、片面が集光性また は拡散性を有するレンズ構造になっている逐光性基体を 用い、反対側に逐光性粒子を並べて結若剤で結若するこ とにより、光学フィルムの枚数を増やすことなく、高透 過率の光拡散機能を付与することができ、それにより、 様々な光学機能フィルムを作製することができる。

【①①14】本発明において用いる透光性粒子として は、シリカ、アルミナ等よりなる無概透光性粒子、およ びアクリル樹脂、ポリスチレン樹脂、スチレンーアクリ

ーン樹脂、ポリファ化ビニリデン、ポリファ化エチレン 系樹脂等よりなる有機逐光性粒子を使用することができ るが、光透過性および結着剤との密着性の面で有极透光 性粒子が好ましく、更に耐光性の面でアクリル樹脂ビー ズ、シリコーン樹脂ビーズが特に好ましい。シリカやガ ラス等よりなる無機逐光性粒子では、結音剤との密音性 が悪いため、遠光性粒子の埋め込み工程や洗浄工程で透 光性粒子が脱落し易い。また、透光性粒子の屈折率は、 透光性基体および結者剤の屈折率と近似していることが エーテルスルホン、セロファン、芳香族ポリアミド、ポ 10 好ましく、その範囲は1.40~1.75である。屈折 率が1.40未満または1.75より大きい場合は、透 光性基体或いは結者剤との屈折率差が大きくなり過ぎ、 透過率が低下する。透光性粒子の粒径は0.3~20 μ mの範囲ものが好ましい。 粒径がり、 3 mm以下の場合 は反射率が低下するため好ましくない。また、20 mm 以上の場合は、LCDセルの大きさに対して大きくなる ため、各セルへの入射が不均一になり好ましくない。 【0015】本発明において、透光性粒子を結着するた めには、結者剤を上記透光性基体上にコーティングして

体が望ましい。屈折率が1.45未満または1.70を 20 結若層を形成する。使用される結若剤は、通常結若剤と して市販されているものが好適に使用されるが、屈折率 が1. 42~1. 60の範囲のものが好ましい。 鮎者剤 としては、ポリエステル系樹脂、エポキシ樹脂、ポリウ レタン系樹脂、シリコーン系樹脂、アクリル系樹脂等の 樹脂製粘着剤をあげることができる。 これらは、単独も しくは2種以上混合して使用してもよい。 特に、アクリ ル系結者剤は、耐水性、耐熱性、耐光性等に優れ、粘着 力、透明性がよく、更に、液晶ディスプレイに用いる場 台には、屈折率をそれに複合するように調整しやすい等 T)、ポリエチレンナフタレート、ポリカーボネートは「30」の点から好ましい。アクリル系粘着剤としては、アクリ ル酸およびそのエステル。メタクリル酸およびそのエス テル、アクリルアミド、アクリロニトリル等のアクリル モノマーの単独重合体もしくはこれらの共宣合体。更に 前記アクリルモノマーの少なくとも1種と、酢酸ビニ ル、無水マレイン酸、ステレン等の芳香族ピニルモノマ ーとの共宣台体をあげることができる。特に、钻着性を 発現するエチルアクリレート、ブチルアクリレート、2 - エチルヘキシルアクリレート等の主モノマーと、経集 力成分となる酢酸ビニル、アクリロニトリル、アクリル アミド、スチレン、メチルメタクリレート、メチルアク リレート等のモノマーと、更に粘着方向上や、架橋化起 点を付与するメタクリル酸、アクリル酸、イタコン酸、 ヒドロキシエチルメタクリレート、ヒドロキシブロビル メタクリレート、ジメチルアミノエデルメタクリレー ト、ジメチルアミノメチルメタクリレート、アクリルア ミド、メチロールアクリルアミド、グリジシルメタクリ レート、無水マレイン酸等の官能基含有モノマーとから なる共全合体である。

【0016】 これらの結若剤は、Tg(ガラス転移点) ル共重合体、ポリエチレン樹脂、エポキシ樹脂。シリコ 50 が-60~-15℃の範囲にあり、重量平均分子量が2

0万~200万の範囲にあるものが好ましい。Tgが-60°Cより低い結者剤や重量平均分子量が20万未満の 結着剤からなる結者層では柔らかすぎるため、一度付着 した逐光性粒子(フィラー)が剝がされ、フィラー抜け 等の欠陥が発生し易くなる。また、一度剝がされた逐光 性粒子には結着剤が付着しており、その透光性粒子が再 度透光性粒子層上に付着してしまうこともある。更に、 柔らかすぎる結着層では、加圧媒体の衝撃により選光性 粒子が結者層の表面で縦方向に回転することにより粘着 剤が付着した遠光性粒子の部位が光拡散層の表面に現 れ、そこに他の過光性粒子が付着したり、結者剤が加圧 媒体の首撃力や毛細管現象により透光性粒子の隙間から 染みあがり、そこに他の返光性粒子が付着することがあ る。このような現象により、柔らかい結音層では透光性 粒子層が単粒子層にならずに復層になり易く、光透過性 が低くなるので好ましくない。一方、Tgが-15℃よ り高い結音剤および重量平均分子量が200万より大き い結着剤の場合は、粘着性不足のため、余剝透光性粒子 を洗浄する工程等で結若している透光性粒子の脱落が発 生しやすくなり、好ましくない。

【0017】また、粘着剤には、硬化剤として、例えば 金属キレート系、インシアネート系、エポキシ系の架橋 剤を必要に応じて1種または2種以上混合して用いるこ とができる。これらの硬化剤は、結着剤の粘着力(J! S Z 0237の8項)が、100g/25mm以上 になるよう配合するのが実用上好ましく、粘着力が10 ①g/25mm未満では透光性粒子の脱離が起きたり、 耐環境性が悪くなったりする。特に、高温高湿下では、 結着層が透光性基体から測能したりする恐れがある。そ して、結者剤の保持力 (JIS 2 0237の11 項) は0.5 mm以下が好ましい。保持力が0.5 mm より大きいと乗らかいため、前述したように逐光性粒子 層が復層になり易い。

【0018】更に、結者剤には、光重合性モノマー、オ リゴマーおよび光重台開始剤を加えてUV硬化性とし、 耐擦傷性、耐熱湿性を向上させることもできる。このよ うな光重合性をノマーとしては、例えば、ペンタエリス リトールテトラアクリレート、ペンタエリスリトールト リアクリレート、ジベンタエリスリトールヘキサアクリ レート、トリメチロールプロパントリアクリレート、テ 46 トラメチロールブタンテトラアクレート、ジエチレング リコールジアクリレート、テトラエチレングリコールジ アクリレート、ヘキサエチレングリコールジアクリレー ト、インボルニルアクリレート、2-ヒドロキシブロビ ルアクリレート等が挙げられるがこれらに限定されるも のではない。光重合性オリゴマーとしては、エポキシア クリレート、ウレタンアクリレート、ポリエステルアク リレート、シリコーンアクリレート等が挙げられるがこ れらに限定されるものではない。光重合関始剤として は、ベンゾフェノン、 [4-(メチルフェニルチオ)フ 50 満たしており、そのディスプレイの輝度を向上させるこ

ェニル] フェニルメタノン、1-ヒドロキシシクロヘキ シルフェニルケトン、2-ベンジル-2-ジメチルアミ ノー1- (4-モルホリノフェニル) -1-ブタノン、 2-ヒドロキシ-2-メチル-1-フェニル-1-プロ パノン、2、4、6ートリメチルベンゾイルジフェニル ホスフィンオキシド等が挙げられるが、これらに限定さ れるものではない。

【0019】本発明の光拡散部材は、透光性粒子側から の全光浪透過率と全光線反射率の和が101%以上であ 10 ることが必要である。全光線透過率と全光線反射率の和 が101%より低くなると、全光银透過率または反射率 の少なくともいずれかが低いことになり、LCDなどの ディスプレイに適用した際に、十分な輝度が得られない という問題がある。本発明において、全光線透過率と全 光線反射率の和を101%以上にするためには、使用す る遠光性基体、結若剤、遠光性粒子に関して、前記のよ うな好ましい村斜組成、その物性等を適宜選択したり、 さらにこれらを組み合わせることにより達成される。ま た透光性粒子の結者層への埋め込みの度合や、後述する 20 透光性粒子の投影面積や光鉱散層表面の比表面積を調整 することによって行うことができる。

【0020】また、本発明の光拡散部付は、透光性粒子 側から入射した光線の全光線透過率が85%以上である のが望ましい。また、逐光性粒子側から入射した光線の 全反射率は2~4%の範囲にあるのが好ましい。

【0021】全光線透過率は、可視繁外分光計に直径6 Ommは、入射開口12×20mm. サンプル開口12 ×24mmの確酸パリウム積分球を取り付け、サンブル 関口を硫酸パリウム板で塞ぎ、入射関口部を関放した状 30 感でバックグラウンド測定をし、入射開口部を光拡散部 材よりなるサンプルフィルムで塞いだ状態でサンプル測 定を行うことによって得られた値である(図3参照)。 一方、全光線反射率は、上記と同じ積分球、同じ条件で バックグラウンド測定を行った上で、サンブル開口の硫 酸バリウム板をサンプルフィルムに変更してサンブル刺 定を行うことによって得られた値である(図4参照)。 本発明においては、これらの値は、島津製作所製築外・ 可視分光計UV-3100を用い、波長550nmで測 定したものである。

【10022】上記の方法で測定した全光線透過率は、積 分球内で散乱した光が入射開口部から抜けることなく光 拡散部材により反射されるために、積分球内の明るさが 向上し、全光線透過率は非常に高い値を示す。本発明の 光拡散部材においては、本来100%となるべき全光線 透過率 (前方散乱) と全光線反射率 (後方散乱) の和が 上記の測定により、101%以上の値となる。透過・反 射型ディスプレイの光源用拡散板として用いた場合に は、透過光を損失させずに外光を反射させる光学部材が 必要であるが、本発明の光拡散部材は、この光学特性を

(5)

とができる。

【0023】より効率的に反射を起こさせるためには、 屈折率が高い透光性粒子を結音層から露出させ、再帰反 射を起こさせる必要がある(図5(a))。しかしなが ら 単純に透光性粒子の屈折率を上げて再帰反射性を上 げても、それに伴う全光線透過率の低下が問題となる。 そこで本発明においては、透光性粒子の屈折率を全光線 透過率が低下しない程度に抑え、その代わりに粒子間の 距離を近づけることによって、複数の過光性粒子を介し た再帰反射を利用する(図5(b))、本発明の光拡散 10 は、過光性粒子の露出度合いの指標となるものであっ 部村では、透光性粒子の屈折率は、1.40~1.75 の箇囲にあるようにすればよい。透光性粒子の屈折率が 1. 4() 未満または1. 75を超える場合には、結若剤 および逐光性基体との屈折率差が大きくなりすぎるた め、前方飲乱光が減衰し、全光透過率透過率が低下す る。また、本発明において、透光性粒子の屈折率と結者 剤および透光性基体の屈折率との差は、(). 25以内で あるのが好ましい。

【0024】また本願発明の光拡散部付は、光拡散層に*

* おける透光性粒子の透光性基体への投影面積が、透光性 基体の面積の70%以上であるのが好ましい。 遠光性粒 子の退光性基体への投影面積が逐光性基体の面積の70 %よりも小さい場合は、本来の拡散の効率が低下するは かりではなく、複数の逐光性粒子を介した耳場反射が起 こちなくなるため、反射効率が低下し、好ましくない。 【0025】さらに、光拡散層の衰面の比衰面積は1. 20~3.00であることが必要であり、好ましくは 1. 25~1. 50の範囲である。光拡散層の比表面論 て、比表面積が1、20未満の場合、再帰反射を起こす のに必要な粒子/空気界面が少なくなるため、反射効率 -が低下し、好ましくない。また、比表面積が3.00よ

も低下するため好ましくない。 【0026】なお、透光性粒子の透光性基体への投影面 誦は、下式(1)で算出される値である。

り大きい場合、粒子表面に起因する凹凸以外の凹凸が殆

どとなり、透過率が低下するとともに、再帰反射の効率

(投影面積比率)* ×(透光性粒子の平均半径)* ×(測定面積中の粒子個数) ×100(%) (1)(測定面積)

【數1】

ことで、測定面積中の粒子個数は、原子間力顕微鏡(例 えば、セイコー電子製、SPA-300)を用いて10 0×100μmの範囲で測定した値である。また、比表 面積も上記原子間力顕微鏡を用いて、100×100 u mの節間で測定した値である。

【0027】本発明の光鉱散部材は、例えば、以下の方 法で製造することができる。透光性基体上に透光性粒子 と結着剤を分散した塗料を塗布し、乾燥する方法。結者 30 剤を塗布した透光性基体上にエアー等を用いて透光性粒 子を吹き付ける方法、離型性の基材上に粒子を整列させ た後、結者剤を塗布した透光性基体を圧者し、髪型性の 基計を剥離除去する方法、振動等の方法で運動エネルギ ーを与えた加圧媒体に透光性粒子を狙持させ、結着剤を 塗布した透光性基体を接触させて透光性粒子を埋め込む 方法、逐光性基体上に結着層、逐光性粒子を順次積層 し、この上に能型性基材を載せ、ローラー等で加圧プレ スして結者層に透光性粒子を埋め込む方法等が挙げられ る。しかしながら、本願発明の光拡散部材はその製造方 40 フィルム製、厚さ80μm、屈折率1.48)を、シリ 法によって限定されるものではない。

[0028]

【実能例】以下、本発明について実能例を示すことによ り更に具体的に説明する。

章能例1

5gのシリコーン樹脂ビーズ(トスパール)4.5。 京芝 シリコーン製. 屈折率1. 43、粒径4. 5μm)を2 ① gのメチルエチルケトン中に分散し、易接者PETフ ィルム (メリネックス75. | C | ジャパン製. 厚さ7 5μm)上に、単層に並ぶようにアプリケータを用いて 50 UV照射装置(メタルハライドランプ、120W/c

塗布した。この上に、アクリル粘着剤 (H-6F. 綜研 化学製、屈折率1.47)を2.5μmの厚さに塗布し たTACフィルム(富士タックUVD-80、富士写真 フイルム製、厚さ80μm、屈折率1、48)をラミネ ートし、剥離することによって、シリコーン勧脂ビーズ をTACフィルム側に転写した。これを水洗いして余分 なシリコーン樹脂ビーズを洗い落とし、60℃の温風で 2時間乾燥して目的の光拡散部材を得た。

【0029】得られた光拡散部材の比表面積は1.32 4であり、光紅散層におけるシリコーン樹脂ビーズの投 影面積の割合は90%であった。また、光拡散部村の全 光線透過率は95%、全光線透過率と全光線反射率との 和は104%であった。

【0030】実施例2

UV硬化性樹脂(UV-3300、東亜合成製。 屈折率 1. 53) を2. 5 μ mの厚さに塗布して結着層を設け たTACフィルム(富士タックUVD-80、富士写真 コーン樹脂ピーズ (トスパール145、泉芝シリコー ン製、屈折率1.43、粒径4.5μm)の粉体浴中を 通して、シリコーン樹脂ビーズを十分に付着させた。少 置のシリコーン樹脂ビーズをまぶしたジルコニアビーズ (粒径約0.5mm)を振動容器中で振動させて流動状 態にしたものに、上記のフィルムを4回通し、ビーズの 振動加圧によってシリコーン樹脂ビーズを結若層中に十 分埋め込んだ。その後、水洗いして余分なシリコーン樹 脂ビーズを洗い箱とした。このフィルムに、コンベア型

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl?N0000=21&N0400=image/gif&N0401=/N...

9/1/2006

(6)

血)によって積算光量が約600mリノcm。になるよ うにUV厩射して結者層を硬化させ、60℃の温風で2 時間乾燥して目的の光拡散部材を得た。

【0031】得られた光鉱散部材の比表面論は1.36 ()であり、光拡散層におけるシリコーン樹脂ビーズの投 影面積の割合は88%であった。また、この光拡散部材 の全光線透過率は97%であり、全光線透過率と全光線 反射率との和は105%であった。

【0032】実能例3

アクリル粘着剤 (H-6F、綜研化学製、屈折率1.4 10 目的の光拡散部材を得た。 7) を2. 5 µmの厚さに塗布して結着層を設けたTA Cフィルム(富士タックUVD-80、富士写真フィル ム製、厚さ80 µm、屈折率1.48) に、アクリル樹 脂ピーズ (MX-500、綜研化学製、屈折率1.5 (i) 粒径5 μm) を吹き付けた。その上をシリコンゴム パッドで繰り、アクリル樹脂ピーズを結着層中に十分短 め込んだ。水洗いして余分なアクリル樹脂ビーズを洗い 落とし、60℃の温風で2時間乾燥して目的の光拡散部 材を得た。

【0033】得られた光紅散部材の比表面領は1.43 26 ()であり、光拡散層におけるアクリル樹脂ピーズの投影 面積の割合は88%であった。また、この光拡散部材の 全光線透過率は98%、全光線透過率と全光線反射率と の和は106%であった。

【()()34】実施例4

透光性粒子として、シリコーン樹脂ビーズ (トスパール 130、泉芝シリコーン製、屈折率1.43、粒径約 3. () μm) を用い、結着剤の塗布厚を1. 5 μmに変 えた以外は、実施例1と同様の方法で目的の光拡散部材 を得た。

【10035】得られた光鉱散部材の比表面論は1.25 5であり、光拡散層におけるシリコーン樹脂ビーズの投 影面積の割合は90%であった。また、この光拡散部材 の全光線透過率は9.4%。全光線透過率と全光線反射率 との和は102%であった。

【0036】実能例5

透光性粒子として、アクリル樹脂ビーズ (MX-100) 0. 綜研化学製、屈折率1.5、粒径約10.0 µm) を用いた以外は、実施例1と同様の方法で目的の光拡散 部村を得た。

【0037】得られた光鉱散部材の比表面補は1.50 5であり、光鉱散層におけるアクリル樹脂ピーズの投影 面積の割合は89%であった。また、この光拡散部材の 全光線透過率は97%、全光線透過率と全光線反射率と の和は102%であった。

【0038】 実能例6

逐光性粒子として、スチレン樹脂ビーズ(テクポリマー SBX-6、積水化成品製、屈折率1.59、粒径約 6. 0 μm)を用いた以外は、実施例3と同様の方法で 目的の光拡散部科を得た。

【0039】得られた光鉱散部材の比表面積は1.35 1であり、光拡散層におけるスチレン樹脂ビーズの投影 面積の割合は87%であった。また、この光拡散部材の 全光線透過率は92%、全光線透過率と全光線反射率と

の和は106%であった。 【0040】比較例1

逐光性粒子として、シリコーン樹脂ピーズ(トスパール 130、東芝シリコーン製、屈折率1.43、粒径約 3. りμm)を用いた以外は、箕施倒1と同様の方法で

【10041】得られた光鉱散部材の比表面補は1.16 9であり、光鉱散圏におけるシリコーン樹脂ビーズの投 影面積の割合は89%であった。また、この光鉱散部材 の全光浪透過率は93%、全光線透過率と全光線反射率 との和は100%であった。

【0042】比較例2

結着剤であるUV硬化性樹脂の塗布厚を5. () μ m に変 えた以外は、実施例2と同様の方法で目的の光拡散部材 を得た。

【0043】得られた光鉱散部材の比表面論は1.05 ()であり、光紅散圏におけるシリコーン樹脂ビーズの投 影面債の割合は90%であった。また、この光拡散部材 の全光很透過率は93%、全光很透過率と全光線反射率 との和は98%であった。

【0044】比較例3

アクリル粘着剤(H-6F、綜研化学製、屈折率)、4 7) を2. 5 µmの厚さに塗布して結着層を設けたTA Cフィルム(富士タックUVD-80、富士写真フイル ム製、厚さ80 µm、屈折率1.48) に、アクリル樹 30 脂ピーズ (MX-1000) 線研化学製、屈折率1.5 3. 粒径5 µ m)を吹き付けた。これを特に粒子の退め 込み処理をすることなく水流いして余分なアクリル樹脂 ビーズを洗い落とし、60℃の温風で2時間乾燥して目 的の光拡散部材を得た。

【0045】得られた光拡散部材の比表面論は1.25 ①であり、光拡散層におけるアクリル樹脂ビーズの投影 面積の割合は66%であった。また、この光拡散部材の 全光線透過率は94%、全光線透過率と全光線反射率と の和は98%であった。

46 【 0 0 4 6 】上記真施例および比較例の光拡散部材につ いて、透過・反射型LCDに光拡散板として用いたとこ ろ、本発明の実施例のものは、いずれも優れた輝度を有 する画像が得られた。これに対して、比較例のものは、 いずれも輝度が劣るものであった。

[0047]

【発明の効果】本発明の光拡散部材は、上記の構成を有 するから、バックライト側からの透過光を減衰させず に、反対側からの外光を効率よく反射するという優れた 光学特性を有する。したがって、本発明の光拡散部材 50 は、種々の用途、例えば、電子ディスプレイの前面板、

9/1/2006

JP,2001-356207,A

STANDARD RELOAD ZOOM-UP ROTATION No Rotation REVERSAL

PREVIOUS PAGE

NEXT PAGE

TAIL

 $http://www4.ipdl.ncipi.go.jp/tjdispdben.ipdl?N0000=621\&N0500=1E_N/;\%3e\%3c\%3c\%3a...~~9/1/2006$

特開2001-356207

バックライト用拡散板、照明用拡散フィルム、写真緑彩 用光学フィルタ、建造物の窓用高透過率拡散フィルム等 に利用可能である。特に、透過·反射型用LCDバック ライトの拡散板として好ましく用いることができる。 【図面の簡単な説明】

<u>11</u>

【図1】 本発明の光拡散部材の一例の模式的断面図で ある.

【図2】 本発明の光拡散部材の他の一例の模式的断面 図である。

全光線透過率の測定方法を説明する図であ *【図3】 る.

[図4] 全光線反射率の測定方法を説明する図であ る.

【図5】 透光性粒子による再帰反射を説明する図であ る.

【符号の説明】

(7)

1、1′…透光性基体、2…結音剂。3…透光性粒子、 4…光拡散層。

[図1]

[図3]

[図2]

全光線透過率

[図4]

全光線反射率

(8)

特闘2001-356207

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ GRAY SCALE DOCUMENTS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.