B.Tech. DEGREE EXAMINATION, MAY 2024

Sixth Semester

18BMC306J - MEDICAL IMAGE PROCESSING

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note: (i) (ii)	over	t - A should be answered in OMR so to hall invigilator at the end of 40 th t - B & Part - C should be answered	minute	rithin first 40 minutes and OMR sheet. wer booklet.	et shoul	d be	han	ded
Time: 3	hours				Max. N	Marl	cs: 1	00
		$PART - A (20 \times 1)$	= 20 N	Marks)	Marks	BL	со	РО
		Answer ALL C						
1.	Iden			energy compaction property for	. 1	1	1	1
		ly corelated images						
		DCT	(B)	DFT				
	(C)	Hadamard	(D)	HAAR			•	
2.	Find the chess board distance for the image coordinates (5,4) and (7,8)					1	1	1
	(A)	2	(B)	3				
	(C)	4	(D)	5				
3.	If th	e number of gray level in the in	nage i	s 512, the number of bits used to	1	1	1	1
		esent each pixels.						
	(A)	8	(B)	9				
	(C)	10	(D)	11				
4.	heig the i	tht is 15 m. the focal length of the image formed in the retina of the	he len e eye o	of 100 m looking at a tree whose s of a person is 17 mm. calculate of the person	e ¹	1	1	1
	`	2.5 mm	. ,	2.55 mm				
	(C)	2.75 mm	(D)	3.5 mm				
5.	. Ider	ntify the example of non-linear fi	ilter		1	1	2	2
		Low pass filter	(B)	High pass filter				
	(C)	Median filter	(D)	Band pass filter				
6	. Highlighting the specific gray level present in the image is called					, 1	2	2
	(A)	Intensity level slicing	(B)	Contrast stretching				
	(C)	Dynamic range compression	(D)	Bit plane slicing				
7.		model is used in color TV m	onitor	S.	1	1	2	2
	$\overline{(A)}$	RGB	(B)	CMY				
	(C)	HIS	(D)	YIQ				
8		refers to purity of color		×	1	1	2	2
	$\overline{(A)}$	Hue	(B)	Saturation				
	(C)	Intensity	(D)	Brightness				

Page 1 of 3

21MF6-18BMC306J

9.	The image degradation model is gir	ven by		1	1	3	1
	(A) H=FG-N	_	F=HG-N				
	(C) F=NH-G		G=HF+N				
10.	Find the filters which does not com	ie unde	order statistics filter	1	1	3	1
	(A) Median filter	(B)	Max and min filter				
	(C) Midpoint filter	(D)	Laplacian filter				
11.	In unconstrained restoration, the re-	stored i	mage is given by	1	1	3	1
	$(A) F = H^{-1}g$	(B)	F=HG				Š
	(C) $G = F^{-1}H$	(D)	G=FH				
12.	filter is good for rando	m Gaus	ssian and uniform noise	1	1	3	1
	(A) Median filter	(B)	Max and min filter				
	(C) Midpoint filter	(D)	Laplacian filter				
13.	Non maxima suppression occurs in			1	1	4	2
	(A) Canny edge detection	(B)	0				
	(C) Marr Hildreth	(D)	Prewitt				
14.	algorithm segments the re	egions i	nto catchment basins.	1	1	4	2
	(A) Watershed		Region growing				
	(C) Snake	(D)	k-means clustering				
15.	Seed points are fixed inalg	_		1	1	4	2
	(A) Watershed		Region growing				
÷.	(C) Snake	(D)	k-means clustering				
16.	The Laplacian of Gaussian is called			1	1	4	2
	(A) Sobel	. ,	Prewitt				
	(C) Robert	(D)	Mexican hat				
17.	Feature map fusion is performed in		fusion.	1	1	5	3
	(A) Pixel based	` '	PCA based				
	(C) Wavelet transform based	(D)	Frequency based				
18.	Decomposing the images into set of binary images takes place in					5	3
	(A) Arithmetic coding	` /	Huffman				
	(C) Bit-plane	(D)	Run length				
19.	Which of the following comes under			1	1	5	3
	(A) Huffman	. ,	Arithmetic				
	(C) Bit plane	(D)	Transform				
20.	coding is slower than	Huffn	nan coding but achieve better	1	1	5	3
	compression	-	T. 0				
	(A) Arithmetic coding		Transform				
	(C) Bit-plane	(\mathbf{D})	Run length				

$PART - B (5 \times 4 = 20 \text{ Marks})$				co	PO
	Answer ANY FIVE Questions	4			
21.	Define DST and mention its properties.		2	1	1
22.	Illustrate adjacency and connectivity with an example.		3	1	1
23.	Write a brief note on log transformation and power law transformation.		2	2	2
24.	Convert RGB to HIS model with suitable mathematical expressions.		3	2	2
25.	Draw the image degradation model and mention its properties.		3	3	2
26.	Comment on region splitting and merging algorithm.			4	3
27.	Mention the types of registration and give an example.		2	5	3
$PART - C (5 \times 12 = 60 Marks)$					
	Answer ALL Questions	Marks	BL	CO	PO
28. a.	Elucidate the basic relationship between the pixels with an example.	12	3	1	1
	(OR)				
b.	Design a 2D DCT for N=4 mention the properties of 2D-DCT.	12	3	1	1
29. a.	a. Enumerate in detail about the pseudo color image processing using slicing technique and frequency approach.		2	2	4
b.	(OR) Discuss in detail about the first order and second order derivative filter using suitable mathematical expressions.	12	2	2	4
30. a.	Derive the necessary expressions for least means square (wiener) filter for image restoration process.	12	3	3	3
	(OR)				
b.	Elaborate in detail about the digital implementation of filter back projection algorithm with a neat block diagram.	12	2	3	3
31. a.	Explain in detail about the canny edge detection algorithm.	12	2	4	2
	(OR)				
b.	Illustrate in detail about the segmentation using morphological watersheds based on dam construction and algorithm.	12	2	4	2
32. a.	Perform Huffman coding for the source symbols a_1 , a_2 , a_3 , a_4 , a_5 , a_6 and a_7 with probabilities 0.05, 0.1, 0.6, 0.01, 0.04, 0.2. calculate the average length, entropy and efficiency.	12	2	5	3
	(OR)				
Ъ.	Describe in detail about the pixel based image fusion.	12	2	5	3

•