幾何数理工学ノート 位相幾何:被覆空間

平井広志

東京大学工学部 計数工学科 数理情報工学コース 東京大学大学院 情報理工学系研究科 数理情報学専攻

> hirai@mist.i.u-tokyo.ac.jp 協力:池田基樹(数理情報学専攻D1)

7 被覆空間

X, E を位相空間とする. 連続な全射 $p: E \to X$ が次の条件を満たすとする:

 $\forall x \in X, \exists x$ の開近傍 U, \exists 互いに交わらない E の開集合 V_{α} $(\alpha \in \Lambda),$

$$p^{-1}(U) = \bigcup_{\alpha \in \Lambda} V_{\alpha}, \ p|_{V_{\alpha}} : V_{\alpha} \to U$$
 が同相写像. (1)

このとき, p を被覆写像 (covering map), E を X の被覆空間 (covering space) という (図 1).

例 7.1. \mathbb{R} は S^1 の被覆空間(図 2). $p: E \to X$ は $p(x) = (\cos 2\pi x, \sin 2\pi x)$ と定義する.

証明. 例えば

$$p^{-1}\left(\left\{\left(\cos x,\sin x\right)\left|\,x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right\}\right)=\bigcup_{n\in\mathbb{Z}}\left[n-\frac{1}{4},n+\frac{1}{4}\right],$$
$$p^{-1}\left(\left\{\left(\cos x,\sin x\right)\mid x\in[0,\pi]\right\}\right)=\bigcup_{n\in\mathbb{Z}}\left[n,n+\frac{1}{2}\right].$$

例 7.2. \mathbb{R}^2 はトーラス T^2 の被覆空間.

証明. $\mathbb R$ は S^1 の被覆空間なので, $p:\mathbb R^2\to T^2$ を $p(x,y)=(\cos 2\pi x,\sin 2\pi x,\cos 2\pi y,\sin 2\pi y)$ と定義すれば p は被覆写像.

定義 7.1 (リフト). $p: E \to X$ を被覆写像とする. $f: Y \to X$ のリフト $\stackrel{\mathrm{def}}{\Longleftrightarrow} \tilde{f}: Y \to E, \ p \circ \tilde{f} = f.$

次の図式が可換になるような \tilde{f} がfのリフトである:

$$Y \xrightarrow{\tilde{f}} X$$

$$X$$

定理 7.2. $p: E \to X$ を被覆写像とする. $f: [0,1] \to X$ をパス, $x_0 := f(0)$ とおく. $\tilde{x}_0 \in p^{-1}(x_0)$ に対して f のリフト $\tilde{f}: [0,1] \to E$, $\tilde{f}(0) = \tilde{x}_0$ が一意に存在する.

図 1: 被覆空間.

図 $2: S^1$ の被覆空間.

図 $3: T^2$ の被覆空間.

証明 (スケッチ). 区間 [0,1] を細かく $0=s_0 < s_1 < \cdots < s_n=1$ と分割し,各区間 $[s_i,s_{i+1}]$ の像が上の (1) を満たす開集合 U_i に含まれるようにする(図 4). 具体的に言うと,各 $t \in [0,1]$ に対し f(t) の近傍 U_t で (1) を満たすものをとる.その逆像 $f^{-1}(U_t)$ は t の開近傍で $\{f^{-1}(U_t)\}_t$ はコンパクト空間 [0,1] の開被覆.ルベーグ数の補題より,ある $\delta>0$ があって長さ δ の任意の部分区間はある $f^{-1}(U_t)$ に含まれる.よって [0,1] を長さ δ の区間で分割すればよい. x_0 を含む U_0 の p の逆像で $\tilde{x_0} \in V_0$ なる連結成分 V_0 は一意に決まり, $\tilde{f}:[s_0,s_1]\to V_0$ で $p\circ \tilde{f}=f|_{[s_0,s_1]}$ が自動的に決まる.これを $[s_1,s_2],[s_2,s_3],\ldots$ に対して繰り返していくと,所望の \tilde{f} が自動的に決まる.

図 4: パスのリフト.

図 5: パスのホモトピーのリフト.

定理 7.3. $p: E \to X$ を被覆写像とする. $f_t: [0,1] \to X$ をパスのホモトピー, $f_t(0) = x_0 \ (\forall t)$ とおく. $\tilde{x}_0 \in p^{-1}(x_0)$ に対して f_t のリフトでパスのホモトピー $\tilde{f}_t: [0,1] \to E$, $\tilde{f}_t(0) = \tilde{x}_0$ が一意に存在する.

証明 (スケッチ). $F:[0,1]\times[0,1]\to X$ を $F(s,t):=f_t(s)$ とおく. 前の定理と同様にして $[0,1]\times[0,1]$ を細かく刻み,各ブロックの像が (1) を満たす開集合に含まれるようにする(図 5). ここから所望の \tilde{f}_t (正確には $\tilde{F}(s,t)=\tilde{f}_t(s)$ なる $\tilde{F}:[0,1]\times[0,1]\to E$) が自動的に決まる。あとは $\forall t\in[0,1]$ について $\tilde{f}_t(1)=\tilde{y}_0\in p^{-1}(y_0)$ を示せばよい(ただし $y_0=f_t(1)$). 写像 $t\mapsto \tilde{f}_t(1)$ は連続写像 $[0,1]\to p^{-1}(y_0)$ を誘導する。[0,1] は連結で, $p^{-1}(y_0)$ は離散空間なので,これは定数写像となる(次の注意).

注意 7.4. X が連結, Y が離散ならば,

 $f: X \to Y:$ 連続 $\iff f:$ 定数写像 $(\exists y \in Y, \ f(x) = y \ (\forall x \in X)).$

証明、 \Leftarrow は明らかなので \Rightarrow を示す、y を $f^{-1}(y) \neq \emptyset$ にとる、 $\{y\}$ が開より $f^{-1}(\{y\})$ は開、 $Y - \{y\}$ が開より $f^{-1}(Y - \{y\})$ は開、 $X = f^{-1}(\{y\})$ 【 $f^{-1}(Y - \{y\})$ と X の連結性より $X = f^{-1}(\{y\})$.

 $p: E \to X$ を被覆写像, f を基点が x_0 のループとする. $\tilde{x}_0 \in p^{-1}(x_0)$ を定め, f のリフト \tilde{f} で $\tilde{f}(0) = \tilde{x}_0$ を満たすものをとると, $\tilde{f}(1) \in p^{-1}(x_0)$ となる. この関係から基本群と $p^{-1}(x_0)$ の間の対応関係が定義される.

定理 7.5. $p: E \to X$ を被覆写像とし、 $x_0 \in X$, $\tilde{x}_0 \in p^{-1}(x_0)$ とする.基点 x_0 を持つ X のループ f のリフトで基点が \tilde{x}_0 であるようなものを \tilde{f} とおく(図 6).写像 $\phi: \pi_1(X, x_0) \to p^{-1}(x_0)$ を

$$\phi([f]) := \tilde{f}(1)$$

とおくと ϕ は well-defined で,E が弧状連結ならば ϕ は全射,E が単連結ならば ϕ は全単射.

図 6: ループのリフト.

図 7: S^1 の被覆空間の別の見方.

証明. Well-definedness は定理 5.3 から従う。任意の $z \in p^{-1}(x_0)$ に対し \tilde{x}_0 と z を繋ぐパス h をとれば, $[p \circ h] \in \pi_1(X, x_0)$ で $\phi([p \circ h]) = h(1) = z$. E が単連結ならば $\phi([f]) = \phi([f']) = z \in p^{-1}(x_0)$ とすると \tilde{f} と \tilde{f}' は \tilde{x}_0 と z を繋ぐパスで,単連結性より $\tilde{f} \simeq \tilde{f}'$. よって $f = p \circ \tilde{f} \simeq p \circ \tilde{f}' = f'$.

この定理を用いて S^1 の基本群が求まる.

定理 **7.6.** $\pi_1(S^1) \simeq \mathbb{Z}$.

証明・ $p: \mathbb{R} \to S^1$ 、 $p(x) = (\cos 2\pi x, \sin 2\pi x)$ が被覆写像であったことを思い出す(図 7)。 $x_0 = (1,0) \in S^1$ を基点とする S^1 の基本群を考えると, $p^{-1}(1,0) = \mathbb{Z}$ より ϕ は $\pi_1(S^1,(1,0)) \simeq \pi_1(S^1)$ から \mathbb{Z} への全単射になる.特に $h_k: [0,1] \to S^1$ $(k \in \mathbb{Z})$ を

$$h_k(x) = (\cos 2\pi kx, \sin 2\pi kx)$$

とおくと $\phi([h_k]) = k$ となる.よって $\phi([f]) = k$ なら $f \simeq h_k$ となる.さらに $[h_k] \cdot [h_l] = [h_{k+l}]$ であるから, $\phi([f] \cdot [g]) = \phi([f]) + \phi([g])$. すなわち ϕ は同型写像.

定理 7.7. $\pi_1(P^2) \simeq \mathbb{Z}/2\mathbb{Z}$.

証明. 射影平面 P^2 は球面 S^2 の x と -x を同一視した空間であったことを思い出す. $p:S^2 \to P^2$ を

$$p(x) := x/\sim \quad (x \in S^2)$$

で定義すると、p は被覆写像になる。 S^2 は単連結だから、 ϕ は $\pi_1(P^2,x_0)$ から $p^{-1}(x)$ への全単射になる。 $|p^{-1}(x)|=2$ より $|\pi_1(P^2)|=2$. よって $\pi_1(P^2)\simeq \mathbb{Z}/2\mathbb{Z}$.

図 8: P^2 のループとそのリフト.

例 7.3. 図 8 の最も左のループ f について, $[f] \neq e$ のように思われる.そのような 2 つのループの積を考えると,連続的に e に変形することができる. P^2 の被覆空間 S^2 で考えると,最初のループは x_0 から x_0 の対蹠点 $-x_0$ へのパス,そのような 2 つのループの積は x_0 を基点とするループに対応する.

定義 7.8 (普遍的被覆空間). X の普遍的被覆空間 \tilde{X} (universal covering space) $\stackrel{\text{def}}{\Longleftrightarrow}$ \tilde{X} は X の任意の被覆空間の被覆空間になる.

定理 7.9. \tilde{X} が X の普遍的被覆空間 $\Leftrightarrow \tilde{X}$ は X の被覆空間で単連結.

 $\tilde{X} := \{[f] \mid f: x_0$ を始点とするパス $[0,1] \to X\}$ と定義し、 $p: \tilde{X} \to X$ を

$$p([f]) := f(1)$$

とおく. \tilde{X} にうまく位相を入れると(入れることができるとき) \tilde{X} は普遍被覆になる.

問題 7.1. 被覆空間, 普遍被覆についてさらに調べよ.

問題 **7.2.** *X* がグラフのとき普遍被覆はどのようになるか?

例 7.4. $S^1 \vee S^1$ は 1 つの頂点と 2 つの自己ループからなるグラフと思うことができる(図 9a). 自己ループにラベルと適当な向きを付ける. すると, グラフであって

- 各枝にaかbがラベリングされており、
- 各点のまわりが図 9b のようになっているもの

は $S^1 \vee S^1$ の被覆になる.例えば図 9c はそのようなグラフの 1 例である.次数 4 の無限木は $S^1 \vee S^1$ の普遍的被覆空間になる(図 9d).

(b) $S^1 \vee S^1$ の被覆になる条件.

(d) $S^1 \vee S^1$ の普遍的被覆空間.