Материалы презентации предназначены для размещения только для использования студентами кафедры «Компьютерные системы и технологии» НИЯУ МИФИ дневного и вечернего отделений, изучающими курс «Программирование (Алгоритмы и структуры данных)».

Публикация (размещение) данных материалов полностью или частично в электронном или печатном виде в любых других открытых или закрытых изданиях (ресурсах), а также использование их для целей, не связанных с учебным процессом в рамках курса «Программирование (Алгоритмы и структуры данных)» кафедры «КСиТ» НИЯУ МИФИ, без письменного разрешения автора запрещена.

Введение

Методологии программирования

- Хаотическое программирование
- Структурное программирование
- Объектно-ориентированное программирование

- Программа = алгоритм + данные (Вирт)
- Алгоритм
 - любая корректно определенная вычислительная процедура, на вход которой подается некоторая величина или набор величин, и результатом выполнения которой является выходная величина или набор значений

- Программа = алгоритм + данные (Вирт)
- Алгоритм

Пример: задача сортировки

Вход: $\{a_1, a_2, ..., a_n\}$

Выход: $\{a_1', a_2', ..., a_n'\}, a_1' \le a_2' \le ... \le a_n'$

• Эффективность алгоритма t = k / v

1.
$$v_1 = 10^9$$
 оп/сек; сортировка вставками; $k_1 = c_1 n^2$; $c_1 = 2$

2. $v_1 = 10^7$ оп/сек; copтировка слиянием; $k_1 = c_2 \text{nlog2(n)}; c_2 = 50$

n	t ₁	t ₂
10 ⁶	2000 сек	≈ 100 сек
10 ⁷	≈ 2,3 дня	< 20 мин

Представление алгоритма

- словесное описание
- схема алгоритма
- псевдокод
- программа

Схема алгоритма

Псевдокод

```
s = 0, i = 0
while не все элементы {
 добавить к s очередной
 элемент: s = s + a<sub>i</sub>
 i = i + 1
}
```

1. Общая характеристика структур данных

1.1

Уровни представления информации

- Интуитивные структуры
- Абстрактные (логические) структуры
- Конкретные структуры

Структура данных

- Логическая структура данных = множество элементов + связи между элементами
- Динамическое множество

Логические структуры

- Массивы
- Строки
- Стеки, очереди, деки
- Таблицы
- Деревья
- Графы

Операции

Запросы	Модифицирующие операции
Search (S, k)	Insert (S, x)
Minimum (S)	Delete (S, x)
Maximum (S)	
Successor (S, x)	
Predecessor (S, x)	

S – динамическое множество

х – указатель на элемент множества

k – значение ключа

Конкретные структуры

Отображение в памяти ЭВМ

- Вектор
- Список
- Сеть

Вектор

Доступ к элементу – по индексу $Adpec_i = базовый_adpec + i* размер_элемента$

1.7

Список

Элемент списка

Информация Поле связи

Доступ к элементу – по указателю

Список

Элемент списка

• Односвязный список

• Двухсвязный список

1.10

Организация списка

• Линейный список

• Циклический список

Задание списка

• Указатель на начало списка

• Головной элемент

1.12

Примеры

Линейный односвязный список с головным элементом

Циклический двухсвязный список с головным элементом

Сеть

