Informe de Física: Encontrando el coeficiente de fricción dinámica

Francisco Carruthers, Facundo Firpo y Joel Jablonski UDESA

2do Semestre 2024

Resumen

Utilizando un carrito, una soga y una polea, se busca encontrar el coeficiente de fricción dinámica entre el carrito y la superficie. Para ello, se mide la aceleración del carrito con distintas masas y se calcula el coeficiente de fricción dinámica. También, utilizamos varias superficies para ver cómo afecta el coeficiente de fricción.

1. Introducción

Medimos los datos usando un Arduino

Objeto	Masa(g)
Pesa dorada	72 +- 1
Pesa plateada	23 + 1
Pesa madera	6 + - 1
Trineo	109 + 1
Metro	134 + 1

Tabla 1: Mediciones de masa

2. Calibración

Utilizamos un sistema de referencia para calibrar el sistema.

Figura 1: Calibración del sistema

Pendiente: 0.0184 ± 0.0005

Ordenada al origen: -0.508 \pm 0.532

Distancia para 600: 10.54 ± 0.44 cm

3. Resultados

3.1. Papel y Papel

 $\mathbf{m} = \mathbf{Metro},\, \mathbf{M} = \mathbf{Pesa}$ Dorada

Figura 2: Papel y Papel, m = Metro y M = Pesa dorada

Figura 3: Ajuste cuadratico

 $\begin{array}{l} \text{Con } Pos_1(t) = 3.9146637317708874t^2 + 0.22601767425705577t - 0.8134488393102333 \\ \text{Con } Pos_2(t) = 3.4724812213941743t^2 + 1.4487578256464553t - 0.7508679099098365 \\ \end{array}$

Figura 4: Velocidad y aceleracion