ĐẠI SỐ QUAN HỆ

Các phép toán đại số quan hệ: 8 phép

1. Phép hợp: $R \cup S = \{ t | t \in R \text{ hoặc } t \in S \}$

Phép hợp hai quan hệ R và S thực chất là việc gộp các bản ghi trong hai quan hệ thành 1 quan hệ mà các bản ghi trùng nhau thì chỉ giữ lại một bản ghi.

R		
Α	В	С
a1	b1	c1
a1	b2	c1
a2	b2	c2

s		
Α	В	С
a2	b1	c2
a2	b2	c2

RUS					
Α	В	С			
a1	b1	c1			
a1	b2	c1			
a2	b2	c2			
a2	b1	c2			

2. Phép giao : $R \cap S = \{ t \mid t \in R \text{ và } t \in S \}$

Phép giao giữa R và S thực chất là việc chọn ra trong hai quan hệ R và S những bản ghi trùng nhau.

3. Phép trừ: $R - S = \{ t \mid t \in R \text{ hoặc } t \notin S \}$

Phép trừ R - S thực chất là việc chọn ra các bản ghi chỉ có ở R mà không có ở S.

R		
Α	В	С
a1	b1	с1
a1	b2	c1
a2	b2	c2

R-S						
В	С					
b1	c1					
b2	c1					
	B b1					

4. Tích đề-các : R x S

Phép tích đề các của hai quan hệ R và S thực chất là việc lấy mọi bản ghi của R "gắn" với mọi bản ghi của S.

Α	В	С	D	Е	F
a1	b1	c1	d2	e1	f2
a1	b1	c1	d2	e2	f2
a1	b2	c1	d2	e1	f2
a1	b2	c1	d2	e2	f2
a2	b2	c2	d2	e1	f2
a2	b2	c2	d2	e2	f2

5. Phép chia : $R(z = x+y) \div S(y)$ được kết quả là 1 quan hệ xác định trên tập thuộc tính

(x)
Kết quả trả về là [các bộ với các thuộc tính chỉ có trong R] sao cho sự kết hợp của nó với
[các bộ trong S] có mặt trong R

Ví dụ: Đưa ra môn học được dạy ở tất cả các khoá học

6. Phép chiếu : R [X] , kí hiệu $\pi_X(R) \to VD$: $\pi_{Name}(Subject)$ Là phép cắt dọc quan hệ để lấy ra dữ liệu trên một số thuộc tính của quan hệ.

Subject

		_	
Name	Course		Name
System	BCS		System
Database	BCS		Database
Database	MCS		Database
Algebra	MCS		Algebra

Phép chọn : $\mathbf{O}_{\mathbb{D}}(R) \to \mathrm{VD}$: $\mathbf{O}_{Name = 'Database'}$ (Subject) Chọn ra các bộ dữ liệu

Subject

Name	Course
System	BCS
Database	BCS
Database	MCS
Algebra	MCS

7.

Name	Course
Database	BCS
Database	MCS

8. Phép kết nối: Phép kết nối giữa hai quan hệ R và S thực chất là việc lấy một bản ghi của R "gắn" với một bản ghi của S sao cho bản ghi kết quả thỏa mãn điều kiện kết nối.

Student ⋈_{Id=SID} Enrol

thỏa mãn điều kiên chon.

Id	Name	Suburb	M	SID	Course
1108	Robert	Kew	Laboration	3936	101
3936	Glen	Bundoora	Id=SID	1108	113
8507	Norman	Bundoora	1	8507	w 101
8452	Mary	Balwyn	1	,	

1000	SID	Id	Name	Suburb	Course
Kết quả	1108	1108	Robert	Kew	113
	3936	3936	Glen	Bundoora	101
	8507	8507	Norman	Bundoora	101

Phép kết nối bằng (**Phép kết nối tự nhiên**) : kết nối từng bản ghi của R với từng bản ghi của S => được bảng mới lược bỏ bớt đi 1 cột thuộc tính chung

akes			Enrol				UII-	
SID	SNO	1 1	SID	Course		SID	SNO	Course
1108	21	*	3936	101		1108	21	113
1108	23		1108	113		1108	23	113
8507	23		8507	101	(8507	23	101
8507	29	i				8507	29	101

Phép kết nối nội: là kết nối bằng nhưng trong trường hợp 2 thuộc tính cùng tên thì kết quả vẫn giữ lại 2 tên thuộc tính

Phép kết nối ngoài (Phép kết nối trái / Phép kết nối phải) :

ID	Name	Suburb			nrol	Cours
1108	Robert	Kew		1	3936	101
3936	Glen	Bundoora	1	1	1108	113
8507	Norman	Bundoora		-	Commission, Commission	
8452	Mary	Balwyn		L	8507	101
1						
1	Kết quả	ID	Name	Suburb	Co	urse
	Kết quả	1D 1108	Name Robert	Suburb	-	urse
	Kết quả					
	Kết quả	1108	Robert	Kew	a i	113

Bài tập 1:

- **HANG** (<u>MaH</u>, TenH, SLTon)
- KHACH (MaK, TenK, Diachi)
- **HOADON** (<u>SoHD</u>, ngayHD, MaK)
- CHITIETHD (SoHD, MaH, SLBan, DGia)
- 1. Đưa ra danh sách địa chỉ của các khách hàng:

$$\pi_{Diachi}(KHACH)$$

2. Đưa ra tên hàng và số lượng tồn của những mặt hàng:

$$\pi_{TenH,SLTon}(HANG)$$

3. Đưa ra thông tin của các mặt hàng có số lượng tồn >5:

4. Đưa ra các thông tin khách hàng có địa chỉ ở Hà Nội:

5. Đưa ra tên khách hàng mua hàng ngày 1/1/2013:

$$\pi_{TenK}(\sigma_{ngayHD='1/1/2013'}(KHACH\bowtie HOADON))$$

6. Đưa ra Mã hàng, Tên hàng có đơn giá bán > 200,000:

$$\pi_{MaH,TenH}$$
 ($\sigma_{DGia > 200,000}$ (HANG \bowtie CHITIETHD))

7. Đưa ra tên khách hàng ở Hải Phòng mua hàng ngày 2/2/2013:

$$\pi_{TenK}(\sigma_{Diachi='H\dot{a}i\ Ph\dot{o}ng'}(KHACH))\bowtie \sigma_{ngayHD='2/2/2013'}(HOADON))$$

8. Đưa ra tên hàng được bán trong ngày 2/2/2013:

$$\pi_{TenH}(HANG*(\sigma_{ngavHD='2/2/2013'}(HOADON\bowtie CHITIETHD)))$$

9. Đưa ra các mã hàng chưa từng được bán:

$$\mathbf{\pi}_{MaH}(HANG) - (\mathbf{\pi}_{MaH}(CHITIETHD))$$

10. Đưa ra các mã khách chưa từng mua hàng từ ngày 12/12/2012:

$$\pi_{MaK}(KHACH) - (\pi_{MaK}(\mathbf{O}_{ngayHD} = '12/12/2012' (HOADON)))$$

Bài tập 2:

- THISINH (<u>sbd</u>, hoten, ngaysinh, noisinh, namduthi, matruong)
- TRUONG (matruong , tentruong)
- **MONTHI** (maMT, tenMT)
- **KETQUA** (<u>sbd</u>, maMT, diemthi)
- 1. Cho biết điểm thị các môn của thí sinh có số báo danh là '080191000001'.

$$\pi_{diemthi}(\pi_{maMT, tenMT}(MONTHI)) \bowtie \sigma_{sbd='080191000001'}(KETQUA))$$

2. Cho biết các thí sinh có ít nhất một môn thi nào đó bị điểm 0 ở kỳ thi năm 2010.

3. Cho biết các thí sinh có điểm tất cả các môn thi đều lớn hơn hoặc bằng 8 trong kỳ thi năm 2010.

$$\mathbf{O}_{namduthi = 2010}(THISINH) \bowtie (\mathbf{\pi}_{sbd}(THISINH) - \mathbf{\pi}_{sbd}(\mathbf{O}_{diemthi < 8}(KETQUA)))$$

4. Cho biết các thí sinh cùng trường với thí sinh có số báo danh là '080191000001'.

$$\pi_{sbd}$$
, hoten, matruong (THISINH) \bowtie ($\pi_{matruong}(\sigma_{sbd} = '080191000001' (THISINH)))$

Bài tập 3:

- KHACH (maKH, hoten, dchi, sdt, ngsinh, doanhso)
- NHANVIEN (\underline{maNV} , hoten, ngsinh, heso, mucluong)
- SANPHAM (maSP, tenSP, DVT, nuocSX, gia)
- HOADON (soHD, ngayHD, maKH, maNV, trigia)
- **CTHD** (<u>soHD</u>, maSP, SL)
- 1. In ra số hóa đơn cùng trị giá của các hóa đơn do nhân viên có tên "Nguyễn Văn A" lập trong ngày 10/10/2005

 $olimits_{soHD = trigia} (HOADON \bowtie (olimits_{ngayHD = '10/10/2005}(HOADON) \bowtie olimits_{hoten = 'Nguyễn Văn A'} (NHANVIEN)))$

2. In ra danh sách các sản phẩm (mã sản phẩm, tên sản phẩm) được khách hàng có tên "Nguyễn Văn A" mua.

 $\pi_{maSP, tenSP} \left(SANPHAM \bowtie \left(\sigma_{hoten = 'Nguy\~en V\~an A'}(KHACH * (HOADON * CTHD))) \right)$

3. Tìm các số hóa đơn đã mua cùng lúc 2 sản phẩm có mã số "SP01" và "SP02"

 $\pi_{soHD}\left(\sigma_{maSP='SP01'\ \lor\ 'SP02'}(CTHD)\right)$

4. In ra danh sách các sản phẩm không bán được trong năm 2005

 $\pi_{maSP}(SANPHAM) - \pi_{maSP}(\sigma_{ngayHD} = '2005'(HOADON * CTHD))$