Cauchy-Riemann Equations

Reading

Section 3.1

Problems

Practice problems:

(Pages 41-42) 1. 2, 5, 6, 7, 8, 9, 10

Be ready to present propositions 3.6 and 3.7, problems 8, 9, 10

Topics to know

- 1. If f is complex-differentiable, then f_x and f_y both exist and relate to complex derivative f':
 - For real h: $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h} = f_x$.
 - For imaginary h = it, $\lim_{h \to 0} \frac{f(z+h) f(z)}{h} = \frac{f_y}{i}$.
 - So $f_y = if_x$. Equivalently $u_x = v_y$ and $u_y = -v_x$.
- 2. Converse is true if the partial derivatives are continuous: If f_x and f_y exist in a neighborhood of z and $\hat{f}_y = if_x$. Then f is complex-differentiable and $f(z) = f_x = f(z)$ -i f y \$.
 - Rewrite of mean value theorem: $\frac{f(x+h)-f(x)}{h}=f'(x+\theta h)$ where $0<\theta<1$ is some specific but unknown number. $(x+\theta h)$ is a way to specify an element between x and x + h)

 - Suppose $h = h_1 + ih_2$, z = x + iy. $\frac{f(z+h) f(z)}{h} = \frac{u(z+h) u(z)}{h} + i\frac{v(z+h) v(z)}{h}$.
 - $u(z+h)-u(z)=u(x+h_1,y+h_2)-u(x+h_1,y)+u(x+h_1,y)-u(x,y)$ which equals $h_2u_y(x+h_1,y+\theta_2h_2)+h_1u_x(x+\theta_1h_1,y)$ where $\theta_1,\theta_2\in(0,1)$.
 - That becomes $h_2u_y(z_2) + h_1u_x(z_1)$ where $z_2 = (x+h_1) + i(y+\theta_2h_2)$, $z_1 = x+\theta_1h_1+iy$. In both cases $z_1, z_2 \to z$ as $h \to 0$.
 - Similarly $v(z+h) v(z) = h_2 v_u(z_4) + h_1 v_x(z_3)$ where $z_3, z_4 \to z$ as $h \to 0$.
 - Therefore $\frac{f(z+h)-f(z)}{h} = \frac{h_2}{h} [u_y(z_2)+iv_y(z_4)] + \frac{h_1}{h} [u_x(z_1)+iv_x(z_3)]$
 - Since $f_y = if_x$, we can write $f_x(z) = \frac{h_2}{h} f_y(z) + \frac{h_1}{h} f_x(z)$
 - Take the difference: $\frac{f(z+h)-f(z)}{h} f_x(z) = \frac{h_2}{h} \left[(u_y(z_2) u_y(z)) + i(v_y(z_1) v_y(z)) \right] + i(v_y(z_1) v_y(z)) \right]$ $\frac{h_1}{h} \left[(u_u(z_4) - u_u(z)) + i(v_u(z_3) - v_u(z)) \right]$

- Because of continuity, each of the terms goes to 0. The factors in front are bound by 1. Therefore the whole thing goes to 0.
- 3. f is called **analytic** at z if it is complex-differentiable everywhere in a neighborhood of z. It is called analytic on a set S if it is complex-differentiable everywhere in an open set containing S.