Chapitre 1

Arithmétique

I. Nombres entiers

1) Diviseurs communs

Définition:

Un diviseur commun à deux nombres est un **nombre entier** qui divise chacun de ces deux nombres.

Exemple:

3 est un diviseur commun à 27 et 45.

- Les diviseurs de 27 sont : 1 ; 3 ; 9 ; 27.
- Les diviseurs de 45 sont : 1; 3; 5; 9; 15; 45.
- Donc les diviseurs communs à 27 et 45 sont : 1; 3; 9.

2) PGCD

Définition:

Le **Plus Grand Commun Diviseur** à plusieurs nombres entiers est appelé le **PGCD** de ces nombres.

Exemple:

9 est le plus grand diviseur commun à 27 et 45, donc 9 est le PGCD de 27 et 45.

On note : PGCD(27; 45) = 9

Algorithmes de recherche du PGCD:

Algorithme des différences

On a deux nombres

Oui

Les nombres sont-ils égaux?

Ce nombre est le PGCD cherché

Calculer leur différence

3) Nombres premiers entre eux

Définition:

Remplacer le plus grand des deux par cette différence

On dit que deux nombres entiers sont premiers entre eux lorsque leur seul diviseur commun est 1.

Exemple:

Les diviseurs de 12 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 12. Les diviseurs de 25 sont : 1 ; 5 ; 25.

Le seul diviseur commun à 12 et 25 est donc : 1 Ces deux nombres sont donc premiers entre eux.

II. Fractions irréductibles

Définition:

On dit qu'une fraction est **irréductible** lorsque le **numérateur** et le **dénominateur** de cette fraction sont **premiers entre eux**.

Exemples:

- 12 et 25 sont des nombres premiers entre eux, donc la fraction $\frac{12}{25}$ est irréductible (de même que $\frac{25}{12}$).
- La fraction $\frac{27}{45}$ peut être simplifiée par 9. Elle n'est donc pas irréductible.

III. Nombres rationnels

Définition:

Un **nombre rationnel** est un nombre qui peut s'écrire sous la forme d'un quotient de deux nombres entiers relatifs

Exemples:

- 0; -3; $\frac{7}{11}$; $-\frac{2}{3}$; 3,2 sont des nombres rationnels. Car $0 = \frac{0}{1}$; $-3 = \frac{-3}{1}$; $3,2 = \frac{32}{10}$
- $\sqrt{2}$; $-\sqrt{5}$; π ne sont pas des nombres rationnels, on dit qu'ils sont **irrationnels**.

Remarque:

- Entre deux nombres rationnels, il existe un nombre irrationnel.
- Entre deux nombres irrationnels, il existe un nombre rationnel.