CHAPITRE 1A

Rappels:

Semi-conducteur à l'équilibre

Semi-conducteurs à l'équilibre

- Dopage des semi-conducteurs
 - Semi-conducteur intrinsèque
 - Le dopage n et p
 - Calcul de la densité de porteurs extrinsèques

 E_{C}

 E_{V}

Semi-conducteurs

- Structure en bandes d'énergie:
 - Bande de valence: c'est la dernière bande remplie à T=0K
 - Bande de conduction: c'est la bande immédiatement au dessus et vide à T=0K

All 4 outer
electrons go
into the valence
band

Notion de trous (+e!)

- La notion de bandes permet d'introduire le porteur de charge positif : un trou
- Aux températures différentes de 0 K, électrons « montent » dans BC, laissent des « trous » dans la BV

Conduction bipolaire

 La présence d'électrons et trous entraîne une conduction bipolaire dans les SC

 On peut privilégier une conduction par le dopage du semi-conducteur, ie l'introduction d'impuretés

Électrons dans une structure Diamant (ex: Si)

(C) PLANE DIAGRAM OF DIAMOND LATTICE WITH BONDS REPRESENTED BY LINES

Électrons dans une structure Diamant (ex: Si)

Densité de porteurs dans les bandes

• Fonction de Fermi:

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

Densité d'états:

$$N_C(E) = \frac{1}{2\pi^2} \left(\frac{2m_c^*}{\hbar^2}\right)^{3/2} (E - E_C)^{1/2}$$

$$N_{v}(E) = \frac{1}{2\pi^{2}} \left(\frac{2m_{v}^{*}}{\hbar^{2}}\right)^{3/2} (E_{V} - E)^{1/2}$$

• Densité de porteurs:

$$n = \int_{E_C}^{\infty} N_C(E).f_n(E).dE$$

$$p = \int_{-\infty}^{E_V} N_V(E).f_p(E).dE$$

Densité de porteurs dans les bandes

- Approximation de Boltzmann:
 - Si le niveau de Fermi est à plus de « 3kT » du minimum de la bande de conduction ou du maximum de la bande de valence, on peut simplifier la fonction de distribution:

$$f_n(E) \approx e^{-(E - E_F)/kT}$$

 $f_p(E) \approx e^{-(E_F - E_F)/kT}$

Densité de porteurs dans les bandes

- Dans ces conditions (Boltzmann), la densité de porteurs libres s'écrit:
 - Dans la bande de conduction (électrons):

$$n = N_C \exp(-\frac{E_C - E_F}{kT}) \text{ valence (trou)} N_C = 2\left(\frac{2m_C^* kT}{h^2}\right)^{3/2}$$

$$p = N_v \exp\left(-\frac{E_F - E_v}{kT}\right) \quad \text{avec} \quad N_v = 2\left(\frac{2m_v^* kT}{h^2}\right)^{3/2}$$

$$N_{v} = 2\left(\frac{2m_{v}^{*}kT}{h^{2}}\right)^{3/2}$$

Loi d'action de masse $np=n_i^2$

 Dans un semi-conducteur <u>intrinsèque</u>, la densité de trous est égale à la densité d'électrons:

$$np = 4\left(\frac{kT}{2\pi\hbar^2}\right)^3 (m_e^* m_h^*)^{3/2} \exp(-\frac{E_g}{kT}) = n_i^2$$

• En faisant n=p, on obtient le niveau de Fermi intrinsèque:

$$E_i = E_{Fi} = \frac{E_C + E_V}{2} - \frac{kT}{2} \ln(\frac{N_C}{N_V})$$

Semi-conducteur intrinsèque

- Variation exponentielle de la densité de porteurs
- Si n_i>10¹⁵cm⁻³, le matériau inadapté pour des dispositifs électroniques.

- Remarque:
 - Le produit *np* est indépendant du niveau de Fermi

Expression valable même si semi-conducteur dopé

SC à grands « gap » Type SiC, GaN, Diamant

Introduction du dopage

Dopage: introduction de niveau énergétique dans le gap

Dopage type n

Dopage type p

Dopage d'un SC: type n

Dopage d'un SC: type p

Variation de la conduction d'un semi-conducteur dopé en fonction de la température

Calcul de la position du niveau énergétique E_d ou E_a

 Le problème « ressemble » au modèle de l'atome d'hydrogène

$$E_{n} = \frac{m_{0}e^{4}}{2(4\pi\varepsilon_{0})^{2}\hbar^{2}} = \frac{13.6}{n^{2}}eV$$

Introduction du Rydberg
 « modifié » :

$$E_d = E_C - 13.6 \left(\frac{m^*}{m_0}\right) \left(\frac{\varepsilon_0}{\varepsilon}\right)^2$$

Semiconductor	Impurity (Donor)	Shallow Donor Energy (meV)	$\begin{array}{c} {\rm Impurity} \\ ({\rm Acceptor}) \end{array}$	Shallow Accepto Energy (meV)
GaAs	Si	5.8	С	26
	$_{ m Ge}$	6.0	${ m Be}$	28
	S	6.0	Mg	28
	Sn	6.0	Si	35
Si	Li	33	В	45
	Sb	39	Al	67
	P	45	Ga	72
	As	54	In	160
Ge	Li	9.3	В	10
	Sb	9.6	Al	10
	P	12.0	$_{ m Ga}$	11
	As	13.0	In	11

Exemple de dopants et leurs énergies

Densité de porteurs extrinsèques:

nb d'électrons différents du nb de trous

$$n - p = \Delta n \neq 0$$

 Mais loi d'action de masse toujours valable, avec n.p=cte (sauf si dopage trop élevé).

$$n.p = n_i^2 = cste$$

 Pour déterminer ces concentrations (n et p), on écrit la neutralité électrique du système.

$$n + N_A = p + N_D$$
 $n^2 - (N_D - N_A)n - n_i^2 = 0$

Densité de porteurs extrinsèques:

• Semi-conducteurs type $n(N_D > N_A)$:

$$n = \frac{1}{2} \left[N_D - N_A + \left((N_D - N_A)^2 + 4n_i^2 \right)^{\frac{1}{2}} \right]$$

$$p = -\frac{1}{2} \left[N_D - N_A - \left((N_D - N_A)^2 + 4n_i^2 \right)^{\frac{1}{2}} \right]$$

• Dans la pratique $(N_D, N_A, \text{ et } N_D - N_A >>)n_i \text{ si bien que}$:

$$n \approx N_D - N_A$$
$$p \approx n_i^2 / (N_D - N_A)$$

Niveau de Fermi dans un SC dopé

- Si le SC n'est pas dégénéré, l'approximation de Boltzmann reste valable:
 - Type n et p respectivement

$$n \approx N_D - N_A = N_C \exp(-\frac{E_C - E_{F_n}}{kT})$$
$$p \approx N_A - N_D = N_V \exp(-\frac{E_{F_p} - E_V}{kT})$$

Soit un niveau de Fermi type n et type p donné par:

$$E_{F_n} = E_C - kT \ln(N_C / (N_D - N_A))$$

$$E_{F_p} = E_V + kT \ln(N_V / (N_A - N_D))$$

Différence E_f - E_{fi}

• Au lieu d'exprimer E_f en fonction de N_c et N_v , on peut écrire:

$$E_f - E_i = kT \ln\left(\frac{N_d}{n_i}\right)$$
 type in

type n

$$E_i - E_f = kT \ln \left(\frac{N_a}{n_i}\right)$$

Différence E_f - E_{fi}

 On peut alors exprimer les densité d'électrons et de trous à l'équilibre par:

$$n = n_{i}e^{(E_{F}-E_{Fi})/kT} = n_{i}e^{e\phi_{Fi}/kT}$$

$$p = n_{i}e^{-(E_{F}-E_{Fi})/kT} = n_{i}e^{-e\phi_{Fi}/kT}$$

Équations de Boltzmann

avec:

$$e\phi_{Fi} = E_F - E_{Fi} > 0$$

$$e\phi_{Fi} = E_F - E_{Fi} < 0$$

type n

type p

Semi-conducteurs dégénérés: approximation de *Joyce –Dixon*

- Dans ce cas, l'approximation de Boltzmann n'est plus valable pour le calcul:
 - soit de n et p
 - soit de la position du niveau de Fermi:
 on utilise alors l'approximation de Joyce-Dixon:

$$E_F = E_C + kT \left[\ln \frac{n}{N_C} + \frac{1}{\sqrt{8}} \frac{n}{N_C} \right] = E_V - kT \left[\ln \frac{p}{N_V} + \frac{1}{\sqrt{8}} \frac{p}{N_V} \right]$$

Peuplement des niveaux d'impuretés : gel des porteurs

- En fonction de la température, le niveau d'impureté est plus ou moins peuplé. Supposons un SC « avec » N_D donneurs et N_A accepteurs (N_D>N_A)
 - À T=0K
 - BV =>pleine
 - • $E_A => N_A$ électrons
 - • $E_D => N_D N_A$ électrons
 - •BC => vide

Peuplement des niveaux d'impuretés : gel des porteurs

• À température non nulle: les électrons sont redistribués mais leur nombre reste *constant !!!. L'équation de neutralité électrique* permet de connaître leur répartition:

$$(n - n_i) + n_d = N_D (p - n_i) + p_a = N_A$$

$$n + n_d = N_D - N_A + p + p_a$$

n, p: électrons (trous) libres dans BC (BV)

 $n_d(p_a)$: électrons (trous) liés aux donneurs (accepteurs)

Fonction de distribution des atomes d'impuretés – Principe d'exclusion de Pauli

Comparaison de l'image « <u>chimique</u> » et de la description en « <u>bande d'énergie</u> » de l'atome donneur ou accepteur:

« liaison chimique » Atome donneur ⇔ atome Si + noyau chargé positivement.

« Bande d'énergie » Cristal parfait + puits de potentiel attractif sur un site du réseau

Mécanique quantique (électrons indépendants)

Niveau énergétique E_d dans le gap sous E_c doublement dégénéré (spin up et down)

Interaction Coulombienne + écrantage du noyau: E_d diminue

Le deuxième électron « s'échappe » : occupation du niveau par un <u>seul électron</u>

Probabilité d'occupation du niveau d'impureté

Proba d'occupation et nb d'électrons sur E_d:

$$f_n = (1 + \frac{1}{2} \exp \frac{E_d - E_f}{kT}) \qquad n_d = \frac{N_d}{1 + \frac{1}{2} \exp \frac{E_d - E_f}{kT}}$$
• Proba de non occupation et nb de trous sur E_a :

$$f_p = (1 + \frac{1}{4} \exp \frac{E_f - E_a}{kT})$$
 $p_a = \frac{N_a}{1 + \frac{1}{4} \exp \frac{E_f - E_a}{kT}}$

Niveau « donneur »:le facteur 1/2

- Atome de Phosphore (col V):
 - États électroniques $3s^2 3p^3$: 2e s et 2e p participent aux liaisons \Leftrightarrow 1e sur le niveau E_D (le 5° !)
- il (le 5°!) possède un spin particulier *up ou down*
- Une fois l'e parti (f(E)) la « case » vide peut capturer un spin up ou down => le mécanisme (la proba.) de capture est augmenté / à l'émission.

$$f_D(E) > f(E)$$

Semi-conducteur fortement dopé

- Si dopage trop important, les impuretés se « voient » (rayon de Bohr 100 angströms)
- le niveau d'énergie associé s'élargit
 - Un effet important est la diminution du « Gap » du SC et donc <u>n_i augmente!!:</u>

$$\Delta E_g \cong -22.5 \left(\frac{N_d}{10^{18}} \frac{300}{T(K)} \right)^{1/2} meV$$

CHAPITRE 1B

Semi-conducteurs hors équilibre

Plan:

- Recombinaison et génération
- Courants dans les SC
- Équation de densité de courants
- Équations de continuité
- Longueur de Debye
- Équation de Poisson
- Temps de relaxation diélectrique

Phénomènes de Génération - Recombinaison

- Loi d'action de masse:
 - À l'équilibre thermodynamique:
 - Hors équilibre: apparition de phénomènes de Gé $n_i^{\prime\prime}$ Recombinaison
 - création ou recombinaison de porteurs :
 Unité [g]=[r]=s⁻¹cm⁻³
 - Taux net de recombinaison:

$$g'-r'=g+g_{th}-r'=g-r$$
 avec $r=r'-g$

Différents chemins de recombinaison

Fig. 1.6. Band diagram illustrating nonradiative recombination (a) via a deep level, (b) via an Auger process and (c) radiative recombination.

Recombinaison: 2 « chemins » possibles

- Recombinaison directe électron-trou
 - Processus fonction du nombre d'électron et de trous

$$r_{p} = \frac{\Delta p}{\tau_{p}} \qquad r_{n} = \frac{\Delta n}{\tau_{n}}$$

• Exemple: type n +excitation lumineuse en faible injection (ie $\Delta n = \Delta p << n_0$

$$p = p_0 + \Delta p \qquad n = n_0 + \Delta n \approx n_0$$

• En régime de faible injection le nombre de porteurs majoritaires n'est pas affecté.

Recombinaison: 2 « chemins » possibles

- Recombinaison par centres de recombinaison:
 - En général ces centres se trouvent en milieu de bande interdite
 - Le taux de recombinaison s'écrit:

$$r = \frac{1}{\tau_m} \frac{np - n_i^2}{2n_i + p + n}$$

$$\stackrel{\text{Équation de Shockley-Read}}{}$$

- Où \mathcal{T}_m est caractéristique du centre recombinant
- Si les 2 processus s'appliquent:

$$\frac{1}{\tau} = \frac{1}{\tau_m} + \frac{1}{\tau_{n(p)}}$$

Recombinaison: 2 « chemins » possibles

- Si semi-conducteur peu dopé: on applique SR
- Si semi-conducteur dopé n:

$$r_p = \frac{\Delta p}{\tau_p}$$

Si région « vide » de porteurs (ex: ZCE)

$$r = -\frac{n_i}{2\tau_m} < 0$$

Taux net de génération. Création de porteurs

Excitation lumineuse

Fig. 1.2. Carrier concentration as a function of time before, during, and after an optical excitation pulse. The semiconductor is assumed to be p-type and thus it is $p_0 >> n_0$. Electrons and holes are generated in pairs, thus $\Delta p = \Delta n$. Under low-level excitation shown here, it is $\Delta n << p_0$. In most practical cases the equilibrium minority carrier concentration is extremely small so that $n_0 << \Delta n$.

Recombinaison radiative ou non

Fig. 1.5. (a) Radiative recombination of an electron-hole pair accompanied by the emission of a photon with energy $hv \approx E_g$. (b) In non-radiative recombination events, the energy released during the electron-hole recombination is converted to phonons (adopted from Shockley, 1950).

Recombinaisons de surface

Nonradiative recombination at surfaces

Fig. 1.9. (a) Illuminated p-type semiconductor, (b) band diagram, and (c) minority and majority carrier concentration near the surface assuming unifor carrier generation due to illumination. The excess carrier concentrations are Δn and Δp .

- Courant de conduction: présence de champ électrique
 - Si E=0, vitesse des électron=vitesse thermique (10⁷ cm/s) mais => vitesse *moyenne* nulle car chocs (« scattering ») avec le réseau + impuretés.
 - Libre parcours moyen (« mean free path »):

$$l = vth.\tau \approx 100 \, \text{Å}$$

$$\tau \approx 0.1 ps$$

- Courant de conduction: présence de champ électrique
 - Entre deux chocs, les électrons sont accélérés uniformément suivant \underline{E}
 - Accélération: $\gamma = -qE/m^*$
 - Vitesse: $v = -qE\tau/m^* = \pm \mu E$
 - Mobilité: $\mu = |q \, au / m^*|$

Si: 1500 cm²/Vs GaAs: 8500 cm²/Vs In_{0.53}Ga_{0.47}As:11000 cm²/Vs

- La densité de courant de conduction s'écrit:
 - Pour les électrons:

$$\vec{J}_{cn} = -n\vec{ev}_n = ne\mu_n \vec{E}$$

• Pour les trous:

$$\vec{J}_{cp} = + \vec{pev_p} = \vec{pe\mu_p}\vec{E}$$

Pour l'ensemble:

$$\vec{J}_{ctotal} = \vec{J}_n + \vec{J}_p = (ne\mu_n + pe\mu_p)\vec{E}$$

- Importance de la mobilité sur les composants
 - Mobilité la plus élevée possible
 - => vitesse plus grande pour un même E
 - Facteurs limitants:
 - Dopage
 - Défauts (cristallins, structuraux, ...)
 - Température
 - Champ électrique de saturation + géométrie

- Vitesse de saturation des électrons
 - La relation linéaire vitesse champ valide uniquement pour:
 - Champ électrique pas trop élevé
 - Porteurs en équilibre thermique avec le réseau
 - Sinon:
 - Au-delà d'un champ critique, saturation de la vitesse
 - Apparition d'un autre phénomène: « velocity overshoot » pour des semiconducteurs multivallée.
 - Régime balistique:pour des dispositifs de dimensions inférieures au libre parcours moyen (0.1µm)

Vitesse de saturation

Différents
 comportement en
 fonction du SC

Survitesse (« overshoot »)

Survitesse dans le cas de SC multi vallées

- Courant de diffusion:
 - Origine: gradient de concentration
 - Diffusion depuis la région de forte concentration vers la région de moindre [].
 - 1° loi de Fick:

$$n_D^x = -D_n \frac{dn}{dx}$$
$$p_D^x = -D_p \frac{dp}{dx}$$

nb d'e qui diffusent par unité de temps et de volume (flux)

nb de h⁺ qui diffusent par unité de temps et de volume (flux)

 Courant de diffusion: somme des deux contributions (électrons et trous):

$$J_{diff} = e(-n_D^x + p_D^x) = eD_n \frac{dn}{dx} - eD_p \frac{dp}{dx}$$

• Constante ou coefficient de diffusion $[D_{n,p}]=cm^2/s.$

 Courant total: somme des deux contributions (si elles existent) de conduction et diffusion:

$$J_{T} = J_{cond} + J_{diff} = J_{n} + J_{p}$$

$$J_{T} = (ne\mu_{n} + pe\mu_{p})E + e(D_{n}\frac{dn}{dx} - D_{p}\frac{dp}{dx})$$

 D et μ expriment la faculté des porteurs à se déplacer. Il existe une relation entre eux: relation d'Einstein:

$$\frac{D}{\mu} = \frac{kT}{e}$$

Equations de continuité – longueur de diffusion

 G et R altèrent la distribution des porteurs donc du courant

$$A\Delta x \frac{dn(x,t)}{dt} = A \left[\frac{J_n(x + \Delta x)}{e} - \frac{J_n(x)}{e} \right] - R + G$$

$$A\Delta x \frac{dn(x,t)}{dt} \cong A \frac{dJ_n(x)}{dx} \frac{\Delta x}{e} - R + G$$

On obtient alors les *équations de* continuité pour les électrons et les trous:

$$\frac{dn(x,t)}{dt} = \frac{1}{e} \frac{dJ_n}{dx} - r_n + g_n$$

$$\frac{dn(x,t)}{dt} = \frac{1}{e} \frac{dJ_n}{dx} - r_n + g_n$$

$$\frac{dp(x,t)}{dt} = -\frac{1}{e} \frac{dJ_p}{dx} - r_p + g_p$$

Équations de continuité – longueur de diffusion

• Exemple: cas où le courant est exclusivement du à de la diffusion:

$$J_{n}(diff) = eD_{n} \frac{dn}{dx}$$
$$J_{p}(diff) = -eD_{p} \frac{dp}{dx}$$

$$\frac{dn}{dt} = D_n \frac{d^2n}{dx^2} - \frac{n - n_0}{\tau_n}$$

$$\frac{dp}{dt} = D_p \frac{d^2p}{dx^2} - \frac{p - p_0}{\tau_p}$$

Équations de continuité – longueur de diffusion

 En régime stationnaire, les dérivées par rapport au temps s'annulent:

$$\frac{d^{2}(n-n_{0})}{dx^{2}} = \frac{n-n_{0}}{D_{n}\tau_{n}} = \frac{n-n_{0}}{L_{n}^{2}}$$

$$\frac{d^{2}(p-p_{0})}{dx^{2}} = \frac{p-p_{0}}{D_{p}\tau_{p}} = \frac{p-p_{0}}{L_{p}^{2}}$$

$$L_{\scriptscriptstyle n} = \sqrt{D_{\scriptscriptstyle n} \tau_{\scriptscriptstyle n}}$$

$$L_{_p} = \sqrt{D_{_p} au_{_p}}$$

Solutions:

$$\Delta n(x) = (n(x) - n_0) = \Delta n(0)e^{-x/L_n}$$

Longueur de diffusion: représente la distance moyenne parcourue avant que l'électron ne se recombine avec un trou (qq microns voire qq mm)

 L_n ou $L_p >>$ aux dispos VLSI

R et G jouent un petit rôle sauf dans qq cas précis (Taur et al)

Équation de Poisson

 Elle est dérivée de la première équation de Maxwell. Elle relie le potentiel électrique et la densité de charge:

$$\frac{d^2V}{dx^2} = -\frac{dE}{dx} = -\frac{\rho(x)}{\varepsilon_{sc}}$$

Dans les SC, deux types de charges (fixes et mobiles):

$$\frac{d^{2}V}{dx^{2}} = -\frac{e}{\varepsilon_{sc}} \Big[p(x) - n(x) + N_{D}^{+}(x) - N_{A}^{-}(x) \Big]$$

$$Charge mobiles \qquad Charges fixes \qquad (dopants ionisés)$$

Longueur de Debye

• Si on écrit l'équation de Poisson dans un type n en exprimant n en fonction de $\phi_{\scriptscriptstyle Fi}$:

$$\frac{d^2\Phi_{Fi}}{dx^2} = -\frac{e}{\varepsilon_{sc}} \left[N_d(x) - n_i e^{e\Phi_{Fi}/kT} \right]$$

en remarquant que: $V(x) = \Phi_{Fi} + cte$

• Si $N_d(x) => N_d + \Delta N_d(x)$, alors Φ_{Fi} est modifié de $\Delta \Phi_{Fi}$

$$\frac{d^2 \Delta \phi_{Fi}}{dx^2} - \frac{e^2 N_d}{\varepsilon_{sc} kT} \Delta \phi_{Fi} = -\frac{e}{\varepsilon_{sc}} \Delta N_d(x)$$

Longueur de Debye

- Signification physique?
 - Solution de l'équation différentielle du 2° degré:

$$\Delta \phi_{Fi} = A \exp{-\frac{x}{L_D}}$$
 avec $L_D = \sqrt{\frac{\varepsilon_{sc}kT}{e^2N_D}}$

• La « réponse » des bandes n'est pas *abrupte* mais « prend » quelques L_D (si N_d =10¹⁶ cm⁻³, L_D =0.04µm). Dans cette région, *présence d'un champ électrique* (neutralité électrique non réalisée)

Temps de relaxation diélectrique

- Comment évolue dans le temps la densité de porteurs majoritaires?
 - Équation de continuité (R et G négligés):

$$\frac{\partial n}{\partial t} = \frac{1}{e} \frac{\partial J_n}{\partial x}$$
 or $J_n = \sigma E = E / \rho_n$ et $\frac{\partial E}{\partial x} = -en/\varepsilon_{sc}$

d'où

$$\frac{\partial n}{\partial t} = -\frac{n}{\rho_n \varepsilon_{sc}}$$

Solution: $n(t) \propto \exp(-t/\rho_n \varepsilon_{sc})$

$$\tau = \rho_{n} \mathcal{E}_{sc}$$

Temps de relaxation diélectrique (10-12 s)