CS201: Discrete Math for Computer Science 2024 Spring Semester Written Assignment #3 Due: Apr. 2th, 2025

The assignment needs to be written in English. Assignments in any other language will get zero point. Any plagiarism behavior will lead to zero point.

Q. 1. Show that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Q. 2. Let a, b, and c be integers. Suppose m is an integer greater than 1 and $ac \equiv bc \pmod{m}$. Prove $a \equiv b \pmod{m/\gcd(c, m)}$.

Q. 3. For two integers a, b, suppose that gcd(a, b) = 1 and $b \ge a$. Prove that $gcd(b + a, b - a) \le 2$.

Q. 4. Given an integer a, we say that a number n passes the "Fermat primality test (for base a)" if $a^{n-1} \equiv 1 \pmod{n}$.

- (a) For a = 2, does n = 561 pass the test?
- (b) Did the test give the correct answer in this case?

Q. 5. Solve the following linear congruence equations.

- (a) $778x \equiv 10 \pmod{379}$.
- (b) $312x \equiv 3 \pmod{97}$.

Q. 6. Find all solutions, if any, to the system of congruences $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{15}$.

Q. 7. Prove that if a and m are positive integer such that gcd(a, m) = 1 then the function

$$f: \{0, \dots, m-1\} \to \{0, \dots, m-1\}$$

defined by

$$f(x) = (a \cdot x) \bmod m$$

is a bijection.

Q. 8. Let m_1, m_2, \ldots, m_n be pairwise relatively prime integers greater than or equal to 2. Show that if $a \equiv b \pmod{m_i}$ for $i = 1, 2, \ldots, n$, then $a \equiv b \pmod{m}$, where $m = m_1 m_2 \cdots m_n$.

Q. 9. Show that we can easily factor n when we know that n is the product of two primes, p and q, and we know the value of (p-1)(q-1).