Transformers in CV

Никита Степанов

Зачем?

 Изображение "нарезаем" на кусочки, размер кусочка гиперпараметр

- Изображение "нарезаем" на кусочки, размер кусочка гиперпараметр
- Каждый кусочек преобразуем в вектор, затем слева на матрицу

- Изображение "нарезаем" на кусочки, размер кусочка гиперпараметр
- Каждый кусочек преобразуем в вектор, затем слева на матрицу
- Подаем на вход encoder-y, приписывая в начало фиктивный обучаемый вектор

- Изображение "нарезаем" на кусочки, размер кусочка гиперпараметр
- Каждый кусочек преобразуем в вектор, затем слева на матрицу
- Подаем на вход encoder-y, приписывая в начало фиктивный обучаемый вектор
- На первом векторе из выхода encoder-а строим классификатор

April 6, 2021

Результаты

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Object detection

lacktriangle Получаем карту признаков $\mathbb{R}^{\mathsf{C} imes \mathsf{H} imes \mathsf{W}}$ с помощью предобученной CNN

- lacktriangle Получаем карту признаков $\mathbb{R}^{\mathsf{C} imes \mathsf{H} imes \mathsf{W}}$ с помощью предобученной CNN
- ▶ Получаем последовательность из HW векторов, подаем на вход encoder-y

- lacktriangle Получаем карту признаков $\mathbb{R}^{\mathsf{C} imes \mathsf{H} imes \mathsf{W}}$ с помощью предобученной CNN
- ▶ Получаем последовательность из HW векторов, подаем на вход encoder-y
- ▶ Введем метку [EOS], запускаем decoder, пока классификатор не выдаст [EOS]

April 6, 2021

8/13

► Выберем N так, чтобы оно было всегда больше, чем число объектов

- Выберем N так, чтобы оно было всегда больше, чем число объектов
- Добавим метку [no object]

Loss

$$\mathbf{w}(\mathbf{u},\mathbf{v}) = egin{cases} 0$$
, если \mathbf{v} — фиктивная $-\mathbb{P}[\mathsf{class}(\mathbf{u}) = \mathsf{class}(\mathbf{v})] + \mathcal{L}_\mathsf{box}(\mathbf{u},\mathbf{v}) \end{cases}$

Loss

$$\mathcal{L} = \sum_{(u,v) \in M} \left(-\ln \mathbb{P}[\mathsf{class}(u) = \mathsf{class}(v)] + [v \text{ не фиктивная}] \mathcal{L}_\mathsf{box}(u,v) \right)$$

April 6, 2021

Результаты

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	AP_S	AP_M	$\mathrm{AP_L}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
${\it Faster RCNN-R101-FPN+}$	246/20	60M	44.0	63.9	47. 8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

Список источников

- https://arxiv.org/pdf/2010.11929.pdf
- https://arxiv.org/pdf/2005.12872.pdf
- https://medium.com/visionwizard/detr-b677c7016a47