Реалізація алгоритму розв'язування інтегральних рівнянь та задачі Діріхле для рівняння Лапласа використовуючи ієрархічні матриці

Солук Олена

Львівський національний університет імені І.Франка

Кластерне дерево

Блочне кластерне дерево

Означення

Нехай \mathbb{T}_I і \mathbb{T}_J - кластерні дерева над множинами індексів I та J відповідно. Кластерне дерево $\mathbb{T}_{I\times J}=\mathbb{T}_{\mathbb{T}_I\times \mathbb{T}_J}=(V,E)$ називається блочним кластерним деревом над добутком множини індексів $I\times J$, якщо $\forall v\in V$ виконуються наступні умови:

- $\mathbb{T}_{I \times I}^{(0)} = I \times J$
- Якщо $v\in\mathbb{T}_{I\times J}^{(I)}$, то існують $\tau\in\mathbb{T}_I^{(I)}$ і $\sigma\in\mathbb{T}_J^{(I)}$ такі, що $v= au imes\sigma$.
- Для синів $v= au imes\sigma$, де $au\in\mathbb{T}_I$ і $\sigma\in\mathbb{T}_J$ виконується $\mathsf{S}(\mathsf{v}) {=} \begin{cases} \emptyset\text{,}\mathsf{якщо}\ S(au) = \emptyset \text{ aбo } S(\sigma) = \emptyset \\ \{ au' imes\sigma': au'\in S(au), \sigma'\in S(\sigma)\}\text{,}\mathsf{інакшe} \end{cases}$

Приклад побудови блочного кластерного дерева

Означення \mathcal{H} -матриці

Означення

Нехай $\mathbb{T}_{I \times I}$ - блочне кластерне дерево над множиною індексів I. Означаємо множину \mathcal{H} -матриць як

$$\mathcal{H}(\mathbb{T}_{I imes I},m):=\{M\in\mathbb{R}^{I imes I}| \mathit{rank}(M|_{t imes s})\leq m$$
 для всіх допустимих листків $t imes s$ дерева $\mathbb{T}_{I imes I}\}$

$$G|_{t \times s} = AB^{\top},$$

 $A \in \mathbb{R}^{t \times \{0, \dots, m-1\}},$
 $B \in \mathbb{R}^{s \times \{0, \dots, m-1\}}$

Внутрішня задача Діріхле для рівняння Лапласа

 $\Omega\subset\mathbb{R}^2$ - обмежена однозв'язна область з границею $\Gamma\subset C^2$, $f\in C(\Gamma)$ - задана. Знайти $u\in C^2(\Omega)\cap C(\bar\Omega)$:

$$\triangle u = 0 \text{ B } \Omega$$
 (1)

$$u = f$$
 на Γ (2)

$$\Upsilon_{slp}[u](x) := -\frac{1}{2\pi} \int_{\Gamma} \log(\|x - y\|) u(y) dy$$
 (3)

$$a_{slp}(u,v) := -\frac{1}{2\pi} \int_{\Gamma} v(x) \int_{\Gamma} \log(\|x-y\|) u(y) dy dx \tag{4}$$

Область і базисні функції

$$\gamma_i:[0,1] o\mathbb{R}^2$$
 $y\mapsto p_{i-1}(1-y)+p_iy$ $arphi_i(x)=egin{cases} 1,& ext{якщо }x\in\gamma_i[0,1]\ 0,& ext{якщо }x
ot\in\gamma_i[0,1] \end{cases}$

$$G_{ij} = -\frac{1}{2\pi} \int_{\Gamma} \varphi_i(x) \int_{\Gamma} \log(\|x - y\|) \varphi_j(y) dy dx \tag{5}$$

$$= -\frac{1}{2\pi} \|p_i - p_{i-1}\| \|p_j - p_{j-1}\| \int_0^1 \int_0^1 \log(\|\gamma_i(x) - \gamma_j(y)\|) dy dx$$
 (6)

4 D > 4 A > 4 B > 4 B > B 9 9 9

Геометрична бісекція і обмежувальні коробки

$$i \in I, \Omega_i := supp(\varphi_i), x_i \in \Omega_i$$

 $\hat{t} \in I$ - множина індексів, що відповідає кластеру t

$$a_I := \min\{(x_i)_I : i \in \hat{t}\}$$

$$b_l := \max\{(x_i)_l : i \in \hat{t}\}$$

для кожного $I \in \{1, ..., d\}$.

$$Q_t = [a_1,b_1] imes ... imes [a_d,b_d]$$
 - обмежувальна коробка.

$$min(diam(\Omega_{\tau}), diam(\Omega_{\sigma})) \leq \eta \cdot dist(\Omega_{\tau}, \Omega_{\sigma})$$
 (7)

$$max(diam(Q_t), diam(Q_s)) \le \eta \cdot dist(Q_t, Q_s)$$
 (8)

Інтерполяція

$$\tilde{g}(x,y) := \sum_{v \in K} g(x_v, y) \mathcal{L}_v(x) \tag{9}$$

$$\tilde{G}_{ij} = \int_{\Omega} \varphi_i(x) \int_{\Omega} \tilde{g}(x, y) \varphi_j(y) dy dx = \sum_{v \in K} \int_{\Omega} \varphi_i(x) \mathcal{L}_v(x) dx \int_{\Omega} \varphi_j(y) g(x_v, y) dy = (AB^\top)_{ij} \tag{10}$$

Якщо $diam(Q_t) \leq diam(Q_s)$

$$A_{iv}^{t,s} = \int_{\Omega} \varphi_i(x) \mathcal{L}_v^t(x) dx$$
 $B_{jv}^{t,s} = \int_{\Omega} \varphi_j(y) g(x_v^t, y) dy$

інакше

$$A_{iv}^{t,s} = \int_{\Omega} \varphi_i(x) g(x, x_v^s) dx \qquad B_{jv}^{t,s} = \int_{\Omega} \varphi_j(y) \mathcal{L}_v^s(y) dy$$

Інтерполяція

$$\mathcal{K}:=\{v\in\mathbb{N}_0^d: v_i\leq m$$
 для всіх $i\in\{1,...,d\}\}$

$$(x_{\nu})_{\nu=0}^{m} = \left(\cos\left(\frac{2\nu+1}{2m+2}\pi\right)\right)_{\nu=0}^{m} \qquad \mathcal{L}_{\nu}(x) = \prod_{\mu=0, \mu\neq\nu}^{m} \frac{x-x_{\mu}}{x_{\nu}-x_{\mu}}$$
 (11)

$$\mathcal{L}_{\nu}^{t}(x) = \prod_{i=1}^{d} \mathcal{L}_{\nu_{i}}^{[a_{i},b_{i}]}(x_{i}) = \prod_{i=1}^{d} \prod_{\mu=0, \mu \neq \nu_{i}}^{m} \frac{x_{i} - x_{\mu}^{[a_{i},b_{i}]}}{x_{\nu_{i}}^{[a_{i},b_{i}]} - x_{\mu}^{[a_{i},b_{i}]}}$$
(12)

$$A_{iv}^{(t,s)} = \|p_i - p_{i-1}\| \int_0^1 \mathcal{L}_v^t(\gamma_i(x)) dx$$

$$B_{jv}^{t,s} = -\frac{1}{2\pi} \|p_j - p_{j-1}\| \int_0^1 \log(\|x_v^t - \gamma_j(y)\|) dy$$

Чисельні експерименти

Розглядаємо рівняння

$$f(x) = \log \|x - x^*\|$$

на
$$D = (\cos(t+10), \sin(t)), x^* \not\in D, x^* = (2,2).$$

Чисельні експерименти

n m	1	2	4	8	<u>n</u> 2	n
16	0.006358	0.005982	0.005982	0.005982	0.005982	0.005982
128	0.005312	2.11039E-4	1.38351E-5	1.38039E-5	1.38039E-5	1.38039E-5
512	0.002525	7.28675E-5	5.84060E-7	2.10061E-7	2.10046E-7	2.10046E-7
1024	0.002373	6.46704E-5	4.55549E-7	2.19112E-8	2.17739E-8	2.17739E-8
2048	0.002462	7.13012E-5	4.38285E-8	1.01539E-9	8.32696E-10	8.32696E-10

Табл.: Похибки при різних п і т

n	Обчислення з іє	рархічними матрицями	Обчислення з методом Гауса		
	похибка	час	похибка	час	
16	0.0059827717	308мс	0.0059827717	156мс	
128	1.38351742E-5	2747мс	1.380390913E-5	2281мс	
512	5.8406019E-7	11844мс	2.10046807E-7	20133мс	
1024	4.555495E-7	30741мс	2.17744124E-8	70600мс	
2048	4.38285E-8	88427мс	4.88285E-9	274826мс	

Дякую за увагу!