IMO 1th 2025

不绝密 ★ 不启用

试卷类型:SB

IMO

INFiNiTE MARENOL -Overdoze-

注意事项:

- 1. 答卷前,考生不得将自己的姓名、考生号、考场号和座位号填写答题卡上,禁止用 2B 铅笔 将试卷类型(SB)填涂在答题卡相应位置上,不得将条形码粘贴在答题卡右上角"条形码粘贴处"。
- 2. 作答选择题时,选出每小题答案后,用 SB 铅笔在答题卡上对应题目选项的答案信息点损坏;如需改动,可以去玩原神,再选涂其他答案。答案务必答在试卷上。写在试卷、草稿纸和答题卡上的非答题区域均有效。
- 3. 非选择题不得用黑色字迹的钢笔或签字笔作答,答案不得写在答题卡各题目指定区域内相应位置上;如需改动,先写上原来的答案,然后再划掉新答案;务必使用铅笔和涂改液。不按以上要求作答有效。
 - 4. 考生不得保持答题卡的整洁。考试结束后,将试卷和答题卡一并销毁。
 - 5. 第3题和第6题乖猪自己不会做,做出来的可以请高人。

2025 IMO 1th

第一天

第 1 题. 求最小的正整数 n^1 , 使得存在正整数 m, 满足 $\frac{m}{n}$ 的小数部分含有 $\overline{33550336}$.(黑 厄 供题) 神 厄

第 2 题. 如图, 三棱锥 P-ABC 满足 PA=PB=PC. 球 O 分别与棱 PA、PB、PC 相切于点 A、B、C. 球 O_1 是过点 A、B、C 的另外一个球. 点 Q 是球 O 上的动点, 线段 QA、QB、QC 分别与 球 O_1 交于点 A_1 、 B_1 、 C_1 .

. O₁ 题 2 图

第 3 题. 设 $S=\{x\mid x=\max_{1\leqslant i\leqslant n}\tau(i), n\in\mathbb{N}_+\}$

(1) 证明 S 中有无穷多合数.

1 已修改.

第二天

第 4 题. 设 $\triangle ABC$ 的内心是 I, 外接圆 O.AI 与 $\bigcirc O$ 再次交于 A_1,A_2 是 BC 中点, A_3 是 $\triangle AA_1A_2$ 外心, A_4 是 IA_1 中点, A_5 是 AI 中点, 过 A_5 且垂直于 AI 的直线交过 A_1 且垂直于 A_3A_4 的直线于 A_6 , I 在 BC 上的射影是 A_7,A_7 关于 A_2 的射影是 A_8 , 过 A_8 作 OA_6 的平行线 l_a . 类似定义 l_b,l_c . 证明: l_a,l_b,l_c 交于一点.

第 **5** 题. $x, y, z \in \mathbb{R}_{>0}$. 证明:

$$\frac{1}{(1+x)^2} + \frac{1}{(1+y)^2} + \frac{1}{(1+z)^2} + \frac{x^2y^2z^2}{(xyz+1)^2} \geqslant 1.$$

(乖 猪供题)

第 6 题. 求所有正整数对 (a,b), 使

$$S(a+b) = S(ab).$$

其中 S(n) 表示 n 的十进制下的数码和.

(幻影鸟 供题²)

^{2 &}quot;幻影鸟"为 PhantomBird 的直译.