Determining the Dark Matter distribution in galaxies with Deep Learning (2111.08725)

As part of the darkmachines projects challenges: https://darkmachines.org/

Martín de los Rios

IFT/UAM (Madrid Spain) - ICTP/SAIFR (Sao Paulo Brasil)

Mihael Petac

CAC (Slovenia) - LUPM (France)

Bryan Zaldivar

IFIC (Valencia Spain)

Nina Bonaventura

Cosmic Dawn Center (Copenhagen Denmark)

Francesca Calore

CNRS LAPTh (Annecy France)

Fabio locco

Dipartimento di Fisica INFN (Napoles Italy)

Outline

- Brief Introduction to Dark Matter
- Brief Introduction to Machine Learning
 - Supervised Learning
 - Neural Networks
 - Deep Learning
- Constructions of the dataset
 - O TNG100 Simulations (1707.03401, 1707.03395, 1707.03395, ...)
 - O SKIRT (2003.00721)
 - O MARTINI (https://github.com/kyleaoman/martini)
- Results
 - Prediction of the Dark matter profile
 - Comparison between different architectures
 - Comparison between different inputs
 - Comparison with Rotation Curve method
- Conclusions and Future work

https://sci.esa.int/web/xmm-newton/-/60430-the-cosmic-budget-of-ordinary-matter

http://background.uchicago.edu/~whu/animbut/anim2.html

Planck Collaboration 1807.06209

Bullet Cluster

Markevitch et al. 0309303

NGC 6503 Rotation Curve

Katherine Freese 0812.4005

Evidence for dark matter in the inner Milky Way (1502.03821)

Fabio locco, Miguel Pato & Gianfranco Bertone

Motivations and previous works

Supervised Learning

Neural Networks

Deep Learning

Machine Learning

Deep Learning

Convolutional layers

Pooling layers

Construction of the dataset

TNG100 Simulation

- Planck cosmology
- 106.5 Mpc by side
- 1820³ DM particles
- 1820^3 hydrodynamic cells
- DM resolution 7.5 *10^6 M☉
- Baryon resolution 1.4*10^6 M[⊙]
- 136 snapshots from z=127 to z=0

Property	Criterium
Simulation snapshot	$99 \ (z=0)$
Stellar mass	$10^{10} M_{\odot} \le M_{\star} \le 10^{12} M_{\odot}$
Star formation rate	$SFR \geq 0.1 \ M_{\odot}/yr$
Central galaxy	SubhaloParent = 0
Cosmological origin	SubhaloFlag = 1

Construction of the dataset

SKIRT* (2003.00721, skirt.ugent.be)

Radiative transfer code which emulates the stellar emissions and subsequent light-ray propagation to the observer, taking into account the absorption and re-emission by dust.

SED interpolated from template family for each particle or cell

Construction of the dataset

MARTINI

Allows for the creation of synthetic resolved HI line observations (i.e. data cubes) directly from the snapshot of a hydrodynamic simulation, and its posterior analysis.

Layer	Details
2D convolution	64 kernels, 5 × 5 px kernel size, 2 px stride, ReLU activation
2D max pooling	2 px pooling
Dropout	50% dropout fraction
Batch normalization	
2D convolution	128 kernels, 5 × 5 px kernel size, 2 px stride, ReLU activation
2D max pooling	2 px pooling
Dropout	50% dropout fraction
Batch normalization	ACCOMPANIES OF CONTRACT CONTRACT OF
2D convolution	256 kernels, 5×5 px kernel size, 2 px stride, ReLU activation
Batch normalization	
Dense	256 units, ReLU activation
Dropout	50% dropout fraction
Batch normalization	
Dense	128 units, ReLU activation
Dropout	50% dropout fraction
Batch normalization	
Dense	64 units, ReLU activation
Dropout	50% dropout fraction
Batch normalization	
Dense (output)	20 units, linear activation

Comparison between different architectures

$$\Delta_{\text{MSE}}(R_i) = \left[\frac{1}{N} \sum_{j=1}^{N} \left(\frac{\mu_j(R_i) - \hat{\mu}_j(R_i)}{\hat{\mu}_j(R_i)}\right)^2\right]^{1/2}$$

$$\Delta_{\text{MAE}}(R_i) = \frac{1}{N} \sum_{i=j}^{N} \frac{|\mu_j(R_i) - \hat{\mu}_j(R_i)|}{\hat{\mu}_j(R_i)},$$

Comparison between different inputs

Prediction of the dark matter profile

Understanding the results

Understanding the results

Conclusions and Future work

- Our algorithm is able to reconstruct the DM distribution profile with high performance throughout the extension of the galaxy.
- The highest performance is achieved in the intermediate regions with a mean square error below
 0.2 using all the photometric and spectroscopic information.
- Even in the absence of spectroscopic information, our method is able to recover the dark matter profile with a mean square error below 0.3 in the intermediate regions.
- Our reconstruction of the DM distribution is completely data-driven, and does not need any assumption on the shape nor the functional form of the DM profile.
- The method developed here is applicable to different types of galaxies since it does not rely on explicit physical assumptions regarding the dynamical state of the system.
- The results achieved have been obtained for galaxies with masses in the range ~10^{10}-10^{12} M₀
 but the methodology can be extended to a broader mass range.

Conclusions and Future work

- We will make a comparison with the dark matter profile obtained through the traditional rotation curve analysis for the simulated galaxies.
- Study the robustness of our results to the hydrodynamical cosmological simulation.
- Apply our method to real galaxies and compare the results with other estimations.

