Data sheet 5SYA 1479-01, Sept. 2020

5SNA 1500G450300 HiPak IGBT Module

- $V_{CE} = 4500 \text{ V}$
- $I_C = 1500 A$
- Ultra-low loss SPT++ technology
- Very soft switching FCE diode with increased diode area
- · Exceptional ruggedness and highest current rating
- · High insulation package
- · AlSiC base-plate for high power cycling capability
- · AIN substrate for low thermal resistance
- Recognized under UL1557, File E 196689

Maximum rated values 1)

Parameter	Symbol	Conditions	min	max	Unit
Collector-emitter voltage	V_{CES}	V _{GE} = 0 V		4500	V
DC collector current	I _C	T _C = 95 °C, T _{vj} = 150 °C		1500	А
Peak collector current	I _{CM}	$t_p = 1 \text{ ms}$		3000	А
Gate-emitter voltage	V_{GES}		-20	20	V
DC forward current	I _F			1500	А
Peak forward current	I _{FRM}	$t_p = 1 \text{ ms}$		3000	А
Surge current	I _{FSM}	$V_R = 0 \text{ V}, T_{vj \text{ Start}} = 150 \text{ °C},$ $t_p = 10 \text{ ms}, \text{ half-sinewave}$		13200	А
IGBT short circuit SOA	t _{psc}	$V_{CC} = 3200 \text{ V}, V_{CEM CHIP} \le 4500 \text{ V}$ $V_{GE} \le 15 \text{ V}, T_{vj Start} \le 150 \text{ °C}$		10	μs
Isolation voltage	V_{isol}	1 min, f = 50 Hz		7400	V
Junction temperature	T_{vj}			175	°C
Junction operating temperature	T _{vj(op)}		-40	150	°C
Case temperature	Tc		-50	125	°C
Storage temperature	T_{stg}		-50	125	°C
	Ms	Base-heatsink, M6 screws	4	6	
Mounting torques	M _{t1}	Main terminals, M8 screws	8	10	Nm
	M _{t1}	Auxiliary terminals, M4 screws	2	3	

¹⁾ Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747

IGBT characteristic values 2)

Parameter	Symbol	Conditions		min	typ	max	Unit
Collector (-emitter) breakdown voltage	$V_{(BR)CES}$	$V_{GE} = 0 \text{ V, } I_{C} = 10 \text{ mA, } T_{vj} \ge -40 \text{ °C}$		4500			V
2)			T _{vj} = 25 °C		2.7		V
Collector-emitter ³⁾ saturation voltage	$V_{\text{CE sat}}$	$I_C = 1500 \text{ A}, V_{GE} = 15 \text{ V}$	T _{vj} = 125 °C		3.55		V
saturation voltage			T _{vj} = 150 °C		3.80		V
		V _{CE} = 4500 V, V _{GE} = 0 V	T _{vj} = 25 °C			1	mA
Collector cut-off current	I _{CES}		T _{vj} = 125 °C		20		mA
			T _{vj} = 150 °C		105		mA
Gate leakage current	I _{GES}	V _{CE} = 0 V, V _{GE} = ± 20 V, T _{vj} = 150 °C		-500		500	nA
Gate-emitter threshold voltage	V _{GE(TO)}	I _C = 240 mA, V _{CE} = V _{GE} , T _{vj} = 25 °C		4.5		6.5	٧
Gate charge	Q _{ge}	$I_C = 1500 \text{ A}, V_{CE} = 2800 \text{ V}, V_{GE} = -15 \text{ V}$.	+15 V		10.85		μC
Input capacitance	C _{ies}				305		nF
Internal gate resistance	R _{Gint}				0.74		Ω
Turn-on delay time	t _{d(on)}		T _{vj} = 25 °C		510		ns
		V 2000 V I 1500 A	T _{vj} = 125 °C		510		ns
		$V_{CC} = 2800 \text{ V}, I_C = 1500 \text{ A},$ $R_G = 1.5 \Omega, C_{GE} = 220 \text{ nF},$	T _{vj} = 150 °C		510		ns
Rise time	t _r	$V_{GE} = \pm 15 \text{ V},$ $T_{vj} = 25 \text{ V}$			200		ns
		L_{σ} = 150 nH, inductive load	T _{vj} = 125 °C		220		ns
			T _{vj} = 150 °C		230		ns
			T _{vj} = 25 °C		3260		ns
Turn-off delay time	$t_{\text{d(off)}}$	V 2000 V I 1500 A	T _{vj} = 125 °C		3550		ns
		$V_{CC} = 2800 \text{ V}, I_{C} = 1500 \text{ A},$ $R_{G} = 6.8 \Omega, C_{GE} = 220 \text{ nF},$ $T_{vj} = 19$	T _{vj} = 150 °C		3650		ns
		$V_{GE} = \pm 15 \text{ V},$	T _{vj} = 25 °C		560		ns
Fall time	t_f	L_{σ} = 150 nH, inductive load T_{vj} = 125 °			590		ns
		-	T _{vj} = 150 °C		650		ns
		V _{CC} = 2800 V, I _C = 1500 A,	T _{vj} = 25 °C		4000		mJ
Turn-on switching energy	E _{on}	$R_G = 1.5 \Omega$, $C_{GE} = 220 \text{ nF}$, $V_{GE} = \pm 15 \text{ V}$,	T _{vj} = 125 °C		5330		mJ
0 05		$V_{GE} = \pm 15 \text{ V},$ $L_{\sigma} = 150 \text{ nH, inductive load}$	T _{vj} = 150 °C		5860		mJ
		V _{CC} = 2800 V, I _C = 1500 A,	T _{vj} = 25 °C		4820		mJ
Turn-off switching energy	E _{off}	$R_G = 6.8 \Omega$, $C_{GE} = 220 \text{ nF}$, $V_{GE} = \pm 15 \text{ V}$,	T _{vj} = 125 °C		5620		mJ
		$V_{GE} = \pm 15 \text{ V},$ $L_{\sigma} = 150 \text{ nH, inductive load}$	T _{vj} = 150 °C		5900		mJ
Short circuit current	I _{sc}	$t_{psc} \le 10 \ \mu s, \ V_{GE} = 15 \ V,$ $V_{CC} = 3200 \ V,$ $V_{CEM \ CHIP} \le 4500 \ V$	T _{vj Start} = 150 °C		7800		А

 $^{^{2)}}$ Characteristic values according to IEC 60747 – 9 $^{3)}$ Collector-emitter saturation voltage is given at chip level

Diode characteristic values 4)

Parameter	Symbol	Conditions		min	typ	max	Unit
			T _{vj} = 25 °C		2.55		V
Forward voltage 5)	V_{F}	I _F = 1500 A	T _{vj} = 125 °C		2.80		V
			T _{vj} = 150 °C		2.75		V
			T _{vj} = 25 °C		1900		Α
Reverse recovery current	Im		T _{vj} = 125 °C		2250		Α
		$\begin{array}{c} V_{CC} = 2800 \text{ V}, & & & & & & & & & & & & & & & & & & &$	T _{vj} = 150 °C		2370		Α
Recovered charge	Q_{rr}		T _{vj} = 25 °C		1570		μC
			T _{vj} = 125 °C		2480		μC
			T _{vj} = 150 °C		2880		μC
	t _{rr}		T _{vj} = 25 °C		1320		ns
Reverse recovery time			T _{vj} = 125 °C		1780		ns
			T _{vj} = 150 °C		1930		ns
	E _{rec}		T _{vj} = 25 °C		2730		mJ
Reverse recovery energy			T _{vj} = 125 °C		4500		mJ
			T _{vj} = 150 °C		5350		mJ

Package properties 6)

Parameter	Symbol	Conditions	min	typ	max	Unit
IGBT thermal resistance junction to case	$R_{th(j-c)IGBT}$				0.0098	K/W
Diode thermal resistance junction to case	R _{th(j-c)DIODE}				0.016	K/W
IGBT thermal resistance ²⁾ case to heatsink	R _{th(c-s)IGBT}	IGBT per switch, λ grease = 1W/m x K		0.008		K/W
Diode thermal resistance ²⁾ case to heatsink	R _{th(c-s)DIODE}	Diode per switch, λ grease = 1W/m x K		0.011		K/W
Partial discharge voltage	V _e	$f = 50 \text{ Hz}, Q_{PD} \le 10 \text{pC} \text{ (acc. to IEC 61287)}$	3500			V
Comparative tracking index	CTI		600			V
Module stray inductance	L _{o CE}			18		nH
		T _C = 25 °C		0.07		
Resistance, terminal-chip	R _{CC'+EE'}	T _C = 125 °C		0.10		mΩ
		T _C = 150 °C		0.11		

Mechanical properties 6)

Parameter	Symbol	Conditions	min	typ	max	Unit	
Dimensions	LxWxH	Typical	190	190 x 140 x 48			
Oleana and the term of the ele	.1	According to IEC 60664-1 and EN 50124-1	Term. to base:	40			
Clearance distance in air	d _a		Term. to term:	26			mm
Comfactor	.1	According to IEC 60664-1 and EN 50124-1	Term. to base:	64			
Surface creepage distance	d _s		Term. to term:	56			mm
Mass	m				1330		g

 $^{^{\}rm 6)}$ Package and mechanical properties according to IEC 60747 – 15

Electrical configuration

Outline drawing (mm)

Note: This is an electrostatic sensitive device, please observe the international standard IEC 60747-1, chap. VIII. This product has been designed and qualified for Industrial Level.

Fig. 1 Typical on-state characteristics, chip level

Fig. 3 Typical output characteristics, chip level

Fig. 5 Typical switching energies per pulse vs. collector current

Fig. 2 Typical transfer characteristics, chip level

Fig. 4 Typical output characteristics, chip level

Fig. 6 Typical switching energies per pulse vs. gate resistor

Fig. 7 Typical switching times vs. collector current

Fig. 9 Typical gate charge characteristics

Fig. 11 Typicial diode forward characteristics chip level

Fig. 8 Typical switching times vs. gate resistor

Fig. 10 Turn-off safe operating area (RBSOA)

Fig. 12 Typical reverse recovery characteristics vs. forward current

Fig. 13 Typical reverse recovery characteristics vs. di/dt

Fig. 15 Thermal impedance vs. time

Fig. 14 Safe operating area diode (SOA)

Analytical function of the transient thermal resistance

$Z_{th(j-c)}(t) = \sum_{i=1}^{n} R_i (1 - e^{-t/\tau_i})$									
	i	1	2	3	4	5			
IGBT	$R_i(K/kW)$	0.9	2.35	4.84	1.68				
16	$\tau_i(ms)$	3609	364	51	3.7				
DIODE	R _i (K/kW)	1.95	6.11	5.9	2.06				
DIC	τ _i (ms)	2283	160	32	2.7				

Related documents:

- 5SYA 2039 Mounting Instructions for HiPak modules
- 5SYA 2042 Failure rates of HiPak modules due to cosmic rays
- 5SYA 2043 Load cycle capability of HiPaks
- 5SYA 2045 Thermal runaway during blocking
- 5SYA 2053 Applying IGBT
- 5SYA 2058 Surge currents for IGBT diodes
- 5SYA 2093 Thermal design of IGBT modules

- 5SYA 2098 Paralleling of IGBT modules
- 5SZK 9111 Specification of environmental class for HiPak Storage
- 5SZK 9118 General Environmental Conditions For High Power Semiconductors
- 5SZK 9120 Specification of environmental class for HiPak

ABB Power Grids Switzerland Ltd, Semiconductors A Hitachi ABB Joint Venture

Fabrikstrasse 3 CH-5600 Lenzburg Switzerland

www.hitachiabb-powergrids.com/semiconductors

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent. Copyright 2020 Hitachi Powergrids. All rights reserved. ABB is a registered trademark of ABB Asea Brown Boveri Ltd. Manufactured by/for a Hitachi Power Grids company