Лабораторная работа № 3.3.4. Эффект Холла в полупроводниках.

Содержание

1	Теория и вводные	2
	1.1 Цель работы и используемые приборы	
2	Ход работы.	3
3	Обработка результатов.	4

1 Теория и вводные

1.1 Цель работы и используемые приборы.

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе испольщуются: электромагнит с источником питания, амперметр, милиамперметр, милливеберметр, реостат, цифровой вольтметр, источник питания (1.5B), образцы легированного германия.

1.2 Экспериментальная установка.

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках.

Схема установки для измерения ЭДС Холла представлена на рисунке (1.2).

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора R_1 источника питания электромагнита. Ток питания электромагнита измеряется амперметром A_1 . Разьём K_1 позволяет менять направление тока в обмолках электромагнита.

Градуировка магнита проводится при помощи милливебермелра.

Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания ($\simeq 1,5$ В). При замыкании ключа

 K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контаклами 3 и 4 возникает разность потенциалов (U_{34} , которая измеряется с помощью цифрового вольтметра.

Иногда контакты 3 и 4 вследствие неточности поднайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при друтом — их разности. В этом случае ЭДО Холла ε_x может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре. Знак измеряемого напряжения высвечивается на цифровом табло вольтметра.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$\varepsilon_x = U_{34} \pm U_0 \tag{1}$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку ε_x можно определить характер проводимости — электронный или дырочный. Для этого необходимо зналь направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле

$$\sigma = \frac{IL_{35}}{U_{35}a \ l} \tag{2}$$

Где L_{35} – расстояние между контактами 3 и 5, a – толщина образца, l – его ширина.

2 Ход работы.

В работе предлагается исследовать зависимость ЭДС Холла от величины магнитного поля при различных токах через образец для определения константы Холла; определиль знак носителей заряда и проводимость материала образца.

- 1. Подготовим приборы к работе.
- 2. Проверим работу цепи питания образца. Ток через образец не должен превышать 1 мА.
- 3. Проверим раболу цепи магнита. Определите диапазон изменения тока через магнит.
- 4. Прокалибруем электромагнит определите связь между индукцией В магнитного поля в зазоре электромагнита и током I_m через обмотки магнита. Для этого с помощью милливеберметра снимем зависимость магнитного потока, Φ пронизывающего пробную катушку, находящуюся в зазоре, от тока I_m ($\Phi = \text{BSN}$). Значение SN (произведение площади сечения контура катушки на число токов в ней) указано на держателе катушки.
- 5. Продевед измерение ЭДС Холла. Для этого втавим образец в зазор выключенного электромагнита и определим напряжение U_0 между холловскими контактами 3 и 4при минимальном токе через образец ($\simeq 0.2$ мА). Это напряжение U_0 вызвано несовершенством контактов 3, 4 и при фиксированном токе через образец остается неизменным. Значение U_0 с учетом значка следует принять за нулевое.

Включим электромагнит и снимем зависимость напряжения U_{34} от тока I_m через обмотки магнита при фиксированном токе через образец.

Проведем измерения $U_{34} = f(I_m)$ при постоянном токе через образец для 6-8 его значений в интервале 0.2-1 мА. При каждом новом значении тока через образец величина U_0 будет иметь свое значение.

При максимальном токе через образец ($\simeq 1$ мА) $U=f\left(I_{m}\right)$ при другом направлении магнитного поля.

6. Определим знак носителей в образце. Для этого необходимо знать направление тока через образец, направление магнитного поля и знак ЭДС Холла.

Направление тока в образце показано знаками «+» и «-» на рисунке (1.2). Направление тока в обмотках электромагнита при установке разъёма K_1 в положение I показано стрелкой на торце магнита.

Сфотографируем образец. Укажем на рисунке направления тока, магнитного поля и отклонение носителей. По знаку (\pm) на клеммах цифрового вольтметра определите характер проводимости.

- 7. Для определение удельной проводимости удалим держатель с образцом из зазора. Подлкючим к клеммам « H_x » и « L_x » вольтметра поленциальные концы 3 и 5. Измерим падение напряжения между ними при токе через образец 1 мА.
- 8. Запишем характеристики приборов и параметры образца L_{35} , a, l, указанные на держателе.

3 Обработка результатов.