

## **Introduction to Transcription Factor Databases: Part2**

Fereshteh Noroozi

Advised by: Prof. Ali Masoudi-Nejad Winter 2024



## Review of Previous Presentation

| Database Name | Subject                                      |
|---------------|----------------------------------------------|
| TmAlphaFold   | Transmembrane structure proteins             |
| BioGRID       | Protein genetic and chemical interaction     |
| HIPPIE        | Human integrated protein-protein interaction |
| dcGO          | Domain-centric ontologies                    |
| MatrisomeDB   | ECM COMPOSITION                              |
| DEPICTER2     | Disorder regions                             |
| DescribePROT  | Predicted amino acid-level descriptors       |



## Key resources

- Unibind
- hTFtarget
- Tfcancer
- FactorBook
- PlantPAN







Research Open access Published: 26 June 2021

# UniBind: maps of high-confidence direct TF-DNA interactions across nine species

Rafael Riudavets Puig, Paul Boddie, Aziz Khan, Jaime Abraham Castro-Mondragon & Anthony Mathelier

**Oslo University, Norway** 

BMC Genomics 22, Article number: 482 (2021)

Cite this article

- Processed ~10,000 public ChIP-seq datasets from nine species
- Predicted ~56 million TFBSs with experimental and computational support
- Identified TF-DNA interactions for 644 TFs in >1000 cell lines and tissues







#### Regulation of gene expression



#### What is gene?











samples



Adapted from slide set by: Stuart M. Brown, Ph.D.,

Center for Health Informatics & Bioinformatics, NYU School of Medicine















Arabidopsis thaliana



Drosophila melanogaster



**Rattus norvegicus** 



Caenorhabditis elegans



**Homo sapiens** 



Saccharomyces cerevisiae



Danio rerio



Mus musculus



Schizosaccharomyces pombe





| Species:                 | Arabidopsis th    | naliana                         | Use the search field below to restrict the ce   |                   |  |  |  |
|--------------------------|-------------------|---------------------------------|-------------------------------------------------|-------------------|--|--|--|
| TF name:                 | HY5               | leucine zipper (bZIP)<br>family | Search cell lines                               | Search <b>Q</b>   |  |  |  |
| Data source:             | All sources       | All sources, GEO,GTRD           | Cell line/tissue:                               | _                 |  |  |  |
| Collection:              |                   |                                 | ☐ flowers, 5-week-old plants                    |                   |  |  |  |
| conection.               | Robust            | ll collections, Permissive, Rol |                                                 |                   |  |  |  |
|                          |                   |                                 | inflorescence meristem and flower from          | om stages 1 to 11 |  |  |  |
|                          | ✓ Has log(p-val   | ue) below defined centrality    | $\square$ inflorescence meristems and floral bu | ds (5-7 weeks)    |  |  |  |
|                          | threshold         |                                 | $\square$ seedling                              |                   |  |  |  |
|                          |                   |                                 | $\square$ seedlings 2 weeks old                 |                   |  |  |  |
| Centrality<br>threshold: | 0.5               |                                 | ☐ transition apices                             |                   |  |  |  |
| tillesilotu.             | log(p-value); max | ximum 0                         | $\square$ whole 3 days seedings                 |                   |  |  |  |
|                          |                   |                                 | whole plants                                    | _                 |  |  |  |
|                          |                   |                                 | •                                               | <b>)</b>          |  |  |  |







Blue/Red light-treated Arabidopsis thaliana (Ws ecotype) carrying a mutation in the HY5 gene.





TF Name:

HY5

Quantitative measure of the similarity between a predicted TFBS sequence and a known transcription factor binding motif or consensus sequence.







| Advantages                                   | Disadvantages                                                                 |
|----------------------------------------------|-------------------------------------------------------------------------------|
| Comprehensive dataset covering 9 species     | Data limitations: Certain TFs, cell types, or species may be underrepresented |
| High-quality predictions based on robust QC  | Quality control thresholds may affect dataset inclusion                       |
| Predictive modeling enhances accuracy        | Algorithmic assumptions may influence predictions                             |
| User-friendly interface for easy exploration | Interpretation challenges require experimental validation                     |
| Public accessibility promotes collaboration  | Maintenance and updates are essential for relevance                           |





Database

7190 ChIP-seq samples of 659 TFs and high-confidence binding sites of 699 TFs

# hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets



China, 2020

- Browse or search general targets of a query TF across datasets.
- Browse TF-target regulations for a query TF in a specific dataset or tissue.
- Search potential TFs for a given target gene or non-coding RNA.
- Investigate co-association between TFs in cell lines.
- Explore potential co-regulations for given target genes or TFs.
- Predict candidate TF binding sites on given DNA sequences.
- Visualize ChIP-seq peaks for different TFs and conditions in a genome browser.







## Database of Human Transcription Factor Targets

hTFtarget TF Target Peak Co-regulation Co-association Prediction Document Contact Download

Query gene

ASCL2

**Submit** 

#### Query gene(s): **ASCL2** regulated by Transcription Factors:

| ı | # | Ensembl ID      | Official Name | Chromosome | Start   | End     | Biotype        |
|---|---|-----------------|---------------|------------|---------|---------|----------------|
|   | 1 | ENSG00000183734 | ASCL2         | chr11      | 2268495 | 2270952 | protein_coding |





| TF                         | Tissue             | No. of peaks (total/average) | No. of peaks in gene body (total/average) | No. of peaks around TSS (total/average) | The peak close to TSS                             | The peak with strongest signal                    |
|----------------------------|--------------------|------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------------------------|---------------------------------------------------|
| CTCF CCCTC- binding factor | Aortic adventitial | 1/1                          | 1/1                                       | 0/0                                     | Chr11,2269980,2270117,5.18,835,gb,dataset-<br>676 | Chr11,2269980,2270117,5.18,835,gb,dataset-<br>676 |



**CTCF** 







| Androgen Receptor: mediating                                      | Dataset-36 | AR | 22RV1 | Prostate | Carcinoma |
|-------------------------------------------------------------------|------------|----|-------|----------|-----------|
| the biological effects of androgen hormones, such as testosterone | Dataset-37 | AR | 22RV1 | Prostate | Carcinoma |
| Hormones, sach as testosterone                                    | Dataset-78 | AR | 22RV1 | Prostate | Carcinoma |







Datab

Target

Peak Co-regulation

tion Co-a

Co-association P

Please input TFs in gene symbol format, se

MYC, GATA1

hTFtarget

MYC is a proto-oncogene that encodes the c-MYC protein, a transcription factor involved in the regulation of cell proliferation, growth, differentiation, and apoptosis.

GATA1 is a transcription factor belonging to the GATA family of zinc-finger proteins, which are characterized by their ability to bind to DNA sequences containing the GATA motif

| Gene id         | Gene name | Chromosome | Start    | End      |  |
|-----------------|-----------|------------|----------|----------|--|
| ENSG00000110514 | MADD      | Chr11      | 47269161 | 47330031 |  |

Submit

Reset

Download







Data

The Relative Information (RI) score is a measure of the similarity between the binding preferences of two transcription factors (TFs) across a set of genomic regions, here: between TF ATF2 and other TF(s) in the GM12878 cell line



close

×







#### Database of Human Transcription Factor Targets

hTFtarget

TF

Target

Peak

Co-regulation

Co-association

Prediction

Document

Contact

**Download** 

>SEQ1

| TF  | Pattern name | Source - | Sequence name | Start | Stop | Strand | Score   | P value  | Q value | Matched motif |
|-----|--------------|----------|---------------|-------|------|--------|---------|----------|---------|---------------|
| AP1 |              | database | SEQ1          | 39    | 49   | +      | 11.8265 | 4.26e-05 | 0.00418 | GCTGACTGACT   |
| AP4 |              | database | SEQ1          | 35    | 44   | -      | 11.9633 | 5.36e-05 | 0.00536 | GTCAGCTGAT    |
| FOS |              | database | SEQ1          | 38    | 49   | +      | 11.0678 | 6.96e-05 | 0.00668 | AGCTGACTGACT  |
| AP1 |              | database | SEQ1          | 39    | 49   | +      | 11.3061 | 7.11e-05 | 0.00696 | GCTGACTGACT   |
| AP1 |              | database | SEQ1          | 39    | 49   | +      | 10.7195 | 7.95e-05 | 0.00779 | GCTGACTGACT   |





| Advantages             | Disadvantages                            |
|------------------------|------------------------------------------|
| Comprehensive Coverage | Does not link to articles                |
| Large Dataset          | Co-association information is incomplete |
| Diverse Conditions     |                                          |





JOURNAL ARTICLE

# Tfcancer: a manually curated database of transcription factors associated with human cancers

Qingqing Huang, Zhengtang Tan, Yanjing Li, Wenzhu Wang, Mei Lang, Changying Li, Zhiyun Guo 💌 Author Notes

Bioinformatics, Volume 37

https://doi.org/10.1093/bi

Published: 26 May 2021

#### China

- Contains 3136 experimentally supported associations between 364 TFs and 33 TCGA cancers.
- Curated through the manual examination of over 1800 literature sources.
- Offers a user-friendly interface for browsing and searching.
- Allows flexible data downloading.
- Facilitates user data submission, promoting collaboration and data sharing among researchers.



















| Cancer | TF    | Characteristics | Gene  | Regulation type                 | Processes & Pathways | Pmid     | Details |
|--------|-------|-----------------|-------|---------------------------------|----------------------|----------|---------|
| BRCA   | FOXA1 | regulate        | Smad3 | negative; nuclear translocation | apoptosis            | 30206966 | details |
| BRCA   | FOXA1 | regulate        | Smad3 | negative; nuclear translocation | apoptosis            | 30206966 | details |



# Tfcancer-By TF



#### Α

#### AHR ALX4 AR ARNT ASCL1 ATF2 ATF3 ATF4 ATF5 ATF6 ARNTL ARNTL2 AIRE ATF1 ARID3B

|   | Cancer | TF | Characteristics                    | Gene                  | Regulation type | Processes & Pathways                    | PMID     | Details |
|---|--------|----|------------------------------------|-----------------------|-----------------|-----------------------------------------|----------|---------|
|   | BRCA   | AR | polymorphism; CAG repeat<br>length | N/A                   | N/A             | N/A                                     | 10817350 | details |
|   | BRCA   | AR | N/A                                | N/A                   | N/A             | proliferation                           | 12203367 | details |
|   | BRCA   | AR | N/A                                | N/A                   | N/A             | hypoxia signaling; ER signaling pathway | 17140257 | details |
|   | BRCA   | AR | regulate                           | E-cadherin            | positive        | bone metastasis                         | 25447306 | details |
|   | BRCA   | AR | high expression; targeted by       | HER2                  | positive        | N/A                                     | 12912973 | details |
| 0 | BRCA   | AR | regulate                           | MMP9; TIMP1;<br>TIMP3 | positive        | tumor growth; invasion                  | 16636675 | details |



# Tfcancer-By Cancer





| Cancer | TF    | Characteristics | Gene | Regulation type | Processes & Pathways | PMID     | Detai   |  |
|--------|-------|-----------------|------|-----------------|----------------------|----------|---------|--|
| LUSC   | NR1H2 | low expression  | N/A  | N/A             | N/A                  | 27335465 | details |  |
| LUSC   | NR1H3 | low expression  | N/A  | N/A             | N/A                  | 27335465 | details |  |



Big red dots signify TFs, while small yellow dots denote genes.

A "—|" shape connection indicates negative regulation by the TF.

A "—>" shape connection indicates positive regulation.

Other relations are represented by a simple "—" shape connection.





#### Welcome to submit new entries for TFcancer.

| PubMed ID              | Please enter a PMID (e.g. '546782')                                        |
|------------------------|----------------------------------------------------------------------------|
| Cancer                 | Please enter a cancer type (e.g. 'Breast invasive carcinoma')              |
| TF                     | Please enter a TF gene symbol (e.g. 'BCL6' or 'ENSG00000113916.18')        |
| Characteristics        | Please enter a TF characteristics (e.g. 'high expression')                 |
| Gene                   | Please enter a gene name (e.g. 'GADD45A')                                  |
| Regulation type        | Please enter a regulation mode (e.g. 'positive')                           |
| Processes and Pathways | Please enter the cancer hallmark (e.g. 'tumorigenesis')                    |
| Original text          | Original descriptions of the association users input above in the article. |
| Your email             |                                                                            |

Submit





| Advantages                                       | Disadvantages                                          |
|--------------------------------------------------|--------------------------------------------------------|
| Comprehensive Coverage of TFs in human cancers   | Incomplete coverage of all TF-cancer associations      |
| Manual curation ensures accuracy and reliability | Potential for bias in manual curation process          |
| Diverse Conditions                               | Limited functional annotations or mechanistic insights |





JOURNAL ARTICLE

# Factorbook: an updated catalog of transcription factor motifs and candidate regulatory motif sites



Henry E Pratt, Gregory R Andrews, Nishigandha Phalke, Jack D

Arjan van der Velde, Jill E Moore, Zhiping Weng ☒ Author No

Nucleic Acids Research, Volume 50, Issue D1,7 January 2022, Pa

Worcester, MA, USA

- Factorbook expansion: Includes more cell types and TFs.
- Improved motif catalog: Adds motifs from thousands of experiments.
- New machine learning tools: Simplify motif model use.
- Variant annotation and disease analysis: Helps assess heritability and annotate variants.







#### FACTORBOOK MAIN TF SEARCH



#### Search Human TFs

2688 experiments · 881 transcription factors · 170 cell types



CTCF
Go

Browse all TFs →

A highly conserved zinc finger protein that functions as a transcriptional regulator and insulator protein in the genome, CTCF binds to specific DNA sequences known as CCCTC-binding motifs.

#### **CTCF**

Sequence-specific TF chr16:67,562,467-67,639,177

| ENCODE              |  |  |
|---------------------|--|--|
| Ensembl             |  |  |
| GO                  |  |  |
| GeneCards           |  |  |
| HGNC                |  |  |
| RefSeq              |  |  |
| UCSC Genome Browser |  |  |
| UniProt             |  |  |
| Wikipedia           |  |  |





Function

Expression (RNA-seq)

Measure the abundance of RNA transcripts in a sample, providing insights into gene expression levels.

rch CTCF peaks by region

Visualizes the expression pattern of transcription factor across different tissues or conditions, with the X-axis representing tissues or conditions and the Y-axis representing the expression level on a logarithmic scale.

The log10 transformed transcripts per million (TPM) values







Function

Expression (RNA-seq)

Motif Enrichment (MEME, ChIP-seq)

Motif Enrichment (SELEX)

Epigenetic Profile

Search CTCF peaks by region



E-value provides a quantitative measure of the likelihood

How many times the motif or sequence pattern was identified within the set of genomic regions being analyzed

GRCh38, also known as hg38, is the latest version of the human reference genome assembly

Best external database match:

CTCF\_MOUSE.H11MO.0.A (HOCOMOCO)





Function

Expression (RNA-seq)

Motif Enrichment (MEME, ChIP-seq)

Motif Enrichment (SELEX)

Epigenetic Profile

Search CTCF peaks by region

It is a laboratory technique used to identify specific nucleic acid sequences (DNA or RNA) that bind to a particular protein of interest.

#### Cycle 2



export motif (MEME)



**Export Logo** 









Function

Expression (RNA-seq)

Motif Enrichment (MEME, ChIP-seq)

Motif Enrichment (SELEX)

Epigenetic Profile

Search CTCF peaks by region



Fold change is a measure of the relative increase or decrease in signal intensity between the experimental condition (e.g., treatment or cell type) and the control condition.







#### MOTIF AND MOTIF SITE CATALOG

SEARCH THE MOTIF CATALOG

Enter a consensus sequence or regex:

ccascagrgggggd

Collection of information regarding the presence and characteristics of specific DNA sequence motifs within the genome or a set of genomic regions.



UMAP (Uniform Manifold Approximation and Projection).

UMAP-1 represents the first dimension (or component) resulting from the UMAP projection. UMAP-2 represents the second dimension resulting from the UMAP projection.





| Advantages                                         | Disadvantages                     |
|----------------------------------------------------|-----------------------------------|
| Comprehensive coverage of TF binding motifs        | Lack of clear analysis            |
| Integration of in vitro and in vivo profiling data | Lack of guidance in visualization |
| Novel tools for integrative analysis               |                                   |



### **PlantPAN**



JOURNAL ARTICLE

# PlantPAN 4.0: updated database for identifying conserved non-coding sequences and exploring dynamic transcriptional regulation in plant promoters & and exploring promoters &

Chi-Nga Chow, Chien-Wen Yang, Nai-Yun Wu, Hun Yu-Hsuan Chiu, Tzong-Yi Lee, Wen-Chi Chang ▼

Nucleic Acids Research, Volume 52, Issue D1, 5 Jar

https://doi.org/10.1093/nar/gkad945

- Integrative resource for building regulatory networks in 115 plant species.
- Expanded gene annotation and promoter sequences.
- Identification of conserved non-coding sequences.
- Updated repository with 3428 TF binding site matrices.
- Improved statistical analysis for ChIP-seq data.
- Easy-to-read experimental condition clusters.
- Peak visualization for all regulatory factors.

National Cheng Kung University , Taiwan



### **PlantPAN**



#### **Choose species**

Please choose a model plant of interest:

Arabidopsis thaliana

▼ Submit

or Quick Select:



Arabidopsis thaliana



Solanum lycopersicum







#### Selected

- Species: Arabidopsis thaliana
- Function: Gene Search Gene ID
- Query: AT1G15820.1

#### Results: 1 record

| Gene ID     | Description                                       | Symbol |
|-------------|---------------------------------------------------|--------|
| AT1G15820.1 | light harvesting complex photosystem II subunit 6 | LHCB6  |

### Input Gene ID or keyword

Please enter Gene ID, Locus or keyword to search:

- Gene ID/Locus
- O Keyword

AT1G15820.1

Search

Reset

Go To PCBase









### PlantPAN-TF/TFBS Search



Please choose a function of interest:

Explore a TF

Explore a TFBS by keyword or ID

Explore a TFBS by sequence

Promoter

Promoter

TSS Coding gene

#### Explore a TF of interest:

TF Name

O TF Locus

O UniProt ID

AGL15

Search

#### Selected

• Function: Explore a TF

• TF Name: AGL15

These proteins are characterized by the presence of a highly conserved DNA-binding domain(60 amino acids) known as the MADS-box domain.

#### Results: 1 record

| TF ID     | TF family      | Species              |
|-----------|----------------|----------------------|
| AT5G13790 | MADS box; MIKC | Arabidopsis thaliana |



### PlantPAN-Gene Group Search



#### **Choose species**

Please choose a model plant of interest:

Arabidopsis thaliana

or Quick Select:



Arabidopsis thaliana

#### Selected

· Species: Aegilops tauschii



Step 1 Plea

Please input a group of transcript IDs and separate with ";"

>AET6Gv20916900.1;AET7Gv20385300.2;AET4Gv20629900.1;AET7Gv20535700.3;AET4Gv20030000.2



## Laboratory of Systems Biology PlantPAN-Gene Group Search and Bioinformatics



Step 2 Set parameters

- How many co-occurrence TFBSs you want to analyze?
   1 0 2
- Individual TFBSs (1) or pairs of TFBSs (2) within genomic regions

Input the threshold for analysis

Support >= 90 % (the frequency of promoters containing the TF/TFBS)

Step 3 Please customize upstream and downstream coordinates of promoter

- Choose transcription start site/5'UTR-End or transcription stop site/3'UTR-End
  - transcription start site/5'UTR-End transcription stop site/3'UTR-End





### PlantPAN-TF/TFBS Search



### **Gene Group**



TRANSCRIPTION FACTOR BINDING SITE WITH TRANSCRIPTION F.

#### Transcription Factor Binding site with Transcription Factor

| TFBS ID           | TF Family of TFBS    |
|-------------------|----------------------|
| TFmatrixID_0221   | CG-1; CAMTA          |
| TFmatrixID_0220   | CG-1; CAMTA          |
| TFmatrixID_0199   | bZIP                 |
| TF_motif_seq_0237 | GATA; tify           |
| TF_motif_seq_0239 | Dof                  |
| TFmatrixID_0174   | bнгн                 |
| TF_motif_seq_0241 | ZF-HD                |
| TF_motif_seq_0243 | GATA; tify           |
| TF_motif_seq_0244 | SBP                  |
| TF_motif_seq_0246 | Homeodomain; TALE    |
| TF_motif_seq_0251 | TCP                  |
| TF_motif_seq_0252 | Myb/SANT; MYB; ARR-B |







### **Promoter Analysis**

QQQ For optimal use of this database, we recommend to use Google Chrome or Firefox browser and above at 1680 x 1050 resolution.

- . If there are two or more promoters for scanning, please use Multiple promoter analysis.
- · If you want to use matrices from ChIP-seq dataset for scanning, please use Promoter analysis in PCBase.

#### Step 1

Please input sequence name and the promoter sequence in FASTA format.

>promoter\_sequence

GTTGGGGTTTCTTCAGGCTATCAGAGATGCCGAGAAAGCAGGGCGACTACCGCACCCGGATATGGAAATTCGAGGACG GGTTGAGCAACGTGTTGGTTATACAATTGAACAAATTAATCATATGCGTGATGTGTTTGGTACGCGATTGCGACGTGCTGAA GACGTATTTCCACCGGTGATCGGGGTTGCTGCCCATAAAGGTGGCGTTTACAAAACCTCAGTTTCTGTTCATCTTGCTCAGGA TCTGGCTCTGAAGGGGCTACGTGTTTTGCTCGTGGAAGGTAACGACCCCCAGGGAACAGCCTCAATGTATCACGGATGGGT ACCAGATCTTCATATTCATGCAGAAGACACTCTCCTGCCTTTCTATCTTGGGGAAAAGGACGATGTCACTTATGCAATAAAGC CCACTTGCTGGCCGGGGCTTGACATTATTCCTTCCTGTCTGGCTCTGCACCGTATTGAAACTGAGTTAATGGGCAAATTTGAT TGACAGCGCGCCTAACCTGGGTATCGGCACGATTAATGTCGTATGTGCTGATGTGCTGATTGTTCCCACGCCTGCTGAG TGGGGAAGCATGGTTCTAAAAAATGTTGTACGTGAAACGGATGAAGTTGGTAAAGGTCAGATCCGGATGAGACTGTTTTT GAACAGGCCATTGATCAACGCTCTTCAACTGGTGCCTGGAGAAATGCTCTTTCTATTTGGGAACCTGTCTGCAATGAAATTTT CGATCGTCTGATTAAACCACGCTGGGAGATTAGATAATGAAGCGTGCGCCTGTTATTCCAAAACATACGCTCAATACTCAACC GGTTGAAGATACTTCGTTATCGACACCAGCTGCCCCGATGGTGGATTCGTTAATTGCGCGCGTAGGAGTAATGGCTCGCGG TAATGCCATTACTTTGCCTGTATGTGGTCGGGATGTGAAGTTTACTCTTGAAGTGCTCCGGGGTGATAGTGTTGAGAAGACC TCTCGGGTATGGTCAGGTAATGAACGTGACCAGGAGCTGCTTACTGAGGACGCACTGGATGATCTCATCCCTTCTTTTCTACT GACTGGTCAACAGACACCGGCGTTCGGTCGAAGAGTATCTGGTGTCATAGAAATTGCCGATGGGAGTCGCCGTCGTAAAGC TGCTGCACTTACCGAAAGTGATTATCGTGTTCTGGTTGGCGAGCTGGATGATGAGCAGATGGCTGCATTATCCAGATTGGGT 





| Step 2 | Please specify TF binding motifs:  |
|--------|------------------------------------|
| Seep 2 | riease specify ir billaling moths. |

PlantPAN 3.0 database

Please select transcription factors from the following species:

- All species
- Choose species

| Arabidopsis thaliana | Brachypodium d  | istachyon C   | Thlamydomonas i | reinhardtii | Glycine max   | Malus domestica | Oryza sativa |
|----------------------|-----------------|---------------|-----------------|-------------|---------------|-----------------|--------------|
| Populus trichocarpa  | Sorghum bicolor | Volvox carter | ri Zea mays     | Physcomit   | trella patens |                 |              |

User-customized motifs

Input custom motif sequence (max=10, separate by line feed) with IUPAC code and group with "[]" (EX: [GC]SS[GC]GC);

NAWWWAN RTWWWTR ACGT

Step 3 Please select the optional promoter elements:

- ✓ Tandem Repeat
- ✓ CpNpG

Search

Reset





### - Visualization —

Visualize TF binding sites within the promoter region.

Visualize TF binding sites within one promoter region.



Measures the randomness or disorder within the repeat sequence, with higher values indicating more variability.

- Tandem Repeat ——🚥

| Location | Period<br>size | Copy<br>number | Consensus | Percent<br>matches            | Percent<br>indels | Score | l  | Number of the nucleotides |    | Entropy<br>(0-2)               | Seed  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|----------------|----------------|-----------|-------------------------------|-------------------|-------|----|---------------------------|----|--------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 3126           | Humber         | 3126      | materies                      | ilideis           |       | Α  | Т                         | С  | G                              | (0-2) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2082-    | 43             | 10.7           | 43        | 93                            | 0                 | 749   | 16 | 28                        | 25 | 29                             | 1.97  | TCTGGGACCACGGTCCCACTCGTATCGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2541     | 45             | 10.7           | 43        | 95                            | U                 | 749   | 10 | 20                        | 23 | 29                             | 1.97  | GGTCTGATTATTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                |                |           |                               |                   |       |    |                           |    | CGAATATGACTTGATGTCATGTGTATGATT |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                |                | Inserti   | sertions or deletions (indels |                   |       |    |                           |    |                                |       | GAGTATAAGAACTTAAACCGCAACCCGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3319-    |                |                |           |                               |                   | T     |    |                           | ı  |                                |       | CTTAAAAGCCTAAGTAGTGTTGCCTTGTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3023     | 178            | 3.4            | 178       | 94                            | 0                 | 1059  | 33 | 15                        | 22 | 28                             | 1.95  | GAAGACACAAAGCCAAAGACTCATATGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 5975   | 1              | ı              | I         | I                             | I                 |       |    |                           |    |                                |       | The state of the s |

A short, conserved sequence motif or pattern that serves as a starting point for identifying or detecting similar sequences or motifs within a larger dataset.





| Begin site | End site | Length | G+C<br>frequency | CpG o/e ratio | AT Skew | CG Skew | Start-p | Strand | Strand-p |
|------------|----------|--------|------------------|---------------|---------|---------|---------|--------|----------|
| 1032       | 1580     | 549    | 0.49             | 1.07          | -0.09   | 0.14    | 0.55    | +      | 0.95     |
| 1904       | 3021     | 1118   | 0.5              | 1.12          | -0.19   | 0.01    | 0.7     | +      | 0.91     |

observed/expected ratio

p-value associated with.....

| CACGTTTTAGTCTACGTTTATCTGTCTTTACTTAATGTCCTTTGTTACAGGCCAGAAAGCATAACTGGCCTGAATATTCTCTCTGGGCCCACTGTTCCAC GTGCAAAATCAGATGCAAATAGACAGAAATGAACTACAGGAAACAATGTCCGGTCTTTCGTATTGACCGGACTTATAAGAGAGACCCGGGTGACAAGGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TTGTATCGTCGGTCTGATAATCAGACTGGGACCACGGTCCCACTCGTATCGTCGGTCTGATTATTAGTCTGGGACCACGGTCCCACTCGTATCGTCGGTCACACACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TGATTATTAGTCTGGGACCACGGTCCCACTCGTATCGTCGGTCTGATAATCAGACTGGGACCACGGTCCCACTCGTATCGTCGGTCTGATTATTAGTCTC ACTAATAATCAGACCCTGGTGCCAGGGTGAGCATAGCAGCCAGACTATTAGTCTGACCCTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GGACCATGGTCCCACTCGTATCGTCGGTCTGATTATTAGTCTGGGACCACGGTCCCACTCGTATCGTCGGTCTGATTATTAGTCTGGAACCACGGTCCCACTCGTACCAGGGTGAGCATAGCAGCATAGTCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGCAGACTAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGACCTAGATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGACCTAGATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGACCTAGATAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGACCTAGATAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGACCTAGATAATAATCAGACCTTGGTGCCAGGGTGAGCATAGCAGACAGA                                                                                                                                                                                                                                                                                                                                                     |
| CTCGTATCGTCGGTCTGATTATTAGTCTGGGACCACGGTCCCACTCGTATCGTCGGTCTGATTATTAGTCTGGGACCACGATCCCACTCGTGTTGTCGGTGAGCATAGCAGCCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACCAGACACAGACCAGACACAGACACAGACACAGACACAGACACACAGACACACACACACACACACACACACACACACACACACACAC |
| CTGATTATCGGTCTGGGACCACGGTCCCACTTGTATTGTCGATCAGACTATCAGCGTGAGACTACGATTCCATCAATGCCTGTCAAGGGCAAGTATTGAGGACTAATAGCCAGACCCTGGTGCCAGGGTGAACATAACAGCTAGTCTGATAGTCGCACTCTGATGCTAAGGTAGTTACGGACAGTTCCCGTTCATAACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





#### Pattern Search Results -

| TFmatrixID_0008 / AT-Hook (CpG Island)                 |           |
|--------------------------------------------------------|-----------|
| TFmatrixID_0011 / NAC; NAM                             |           |
| TFmatrixID_0012 / NAC; NAM (CpG Island)                |           |
| TFmatrixID_0015 / MYB; ARR-B                           |           |
| TFmatrixID_0016 / MYB; ARR-B                           |           |
| TFmatrixID_0018 / Myb/SANT; MYB; ARR-B                 |           |
| TFmatrixID_0019 / Myb/SANT; MYB; ARR-B                 |           |
| TFmatrixID_0020 / AP2; ERF (CpG Island, Tandem Repeat) | , ——      |
| TFmatrixID_0021 / C2H2 (CpG Island)                    |           |
| TFmatrixID_0022 / Trihelix (CpG Island)                |           |
| TFmatrixID_0024 / AP2; ERF (CpG Island)                |           |
| TFmatrixID_0025 / Homeodomain; bZIP; HD-ZIP (Tanden    | n Repeat) |
| TFmatrixID_0028 / bZIP (CpG Island)                    |           |
| TFmatrixID_0029 / MYB-related                          |           |
| TFmatrixID_0032 / AP2; ERF (CpG Island)                |           |
| TFmatrixID_0033 / AP2; ERF (CpG Island)                |           |
| TFmatrixID_0034 / AP2; ERF (CpG Island, Tandem Repeat) | )         |
| TFmatrixID_0035 / AP2; ERF (CpG Island, Tandem Repeat) | )         |
| TFmatrixID_0037 / AP2                                  |           |
| TFmatrixID_0038 / AP2 (CpG Island, Tandem Repeat)      |           |
| TFmatrixID_0040 / B3; ARF (CpG Island, Tandem Repeat)  |           |
| TFmatrixID 0041 / B3; ARF (CpG Island)                 |           |

| Gene name (TF name) | TF Family |
|---------------------|-----------|
| AHL25; AGF1         | AT-Hook   |

The AT hook family refers to a group of DNA-binding proteins that contain a characteristic DNA-binding motif known as the AT hook. This motif consists of a short peptide sequence that specifically recognizes and binds to regions of DNA rich in adenine (A) and thymine (T), which are the two nucleotides forming the DNA double helix.



### **PlantPAN**



| Advantages                       | Disadvantages        |
|----------------------------------|----------------------|
| Full coverage and friendly user. | Its only for plants. |



### THANKS FOR YOUR ATTENTION

Enter your sub headline here

