TENSORS

We review tensors and the contraction operator.

In what follows, let V be an n-dimensional real vector space. Recall that we define V^* to be the vector space of all linear maps from V to \mathbb{R} . If (b_i) is a basis for V, we define the *dual basis* by $\beta^j(\lambda^i b_i) := \lambda^j$. The following two results are straightforward to show.

Proposition. Let (b_i) be a basis for V. Then the dual basis (β^j) is a basis for V^* . Thus, V^* also has dimension n.

Proposition. The map $\Phi: V \to V^{**}$ defined by $\Phi(v)\omega := \omega(v)$ is a linear isomorphism.

Definition. A (k, l)-tensor is a multilinear map

$$F: \underbrace{V^* \times \cdots \times V^*}_{k \text{ copies}} \times \underbrace{V \times \cdots \times V}_{l \text{ copies}} \to \mathbb{R}.$$

We denote the vector space of (k, l)-tensors by

$$T^{(k,l)}(V) = \underbrace{V \otimes \cdots \otimes V}_{k \text{ copies}} \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_{l \text{ copies}}$$

If $F \in T^{(k,l)}(V)$ and $G \in T^{(p,q)}(V)$, we define $F \otimes G \in T^{(k+p,l+q)}(V)$ by

$$(F \otimes G)(\omega^1, \dots, \omega^{k+p}, v_1, \dots, v_{l+q})$$

:= $F(\omega^1, \dots, \omega^k, v_1, \dots, v_l)G(\omega^{k+1}, \dots, \omega^{k+p}, v_{l+1}, \dots, v_{l+q}).$

Proposition. Let (b_i) be a basis for V, and let (β^j) be the dual basis. Then

$$b_{i_1} \otimes \cdots \otimes b_{i_k} \otimes \beta^{j_1} \otimes \cdots \otimes \beta^{j_k}$$

form a basis for $T^{(k,l)}(V)$, where i_p and j_q run through $1, \ldots, n$.

Proof. Suppose $F = F_{j_1 \cdots j_l}^{i_1 \cdots i_k} b_{i_1} \otimes \cdots \otimes b_{i_k} \otimes \beta^{j_1} \otimes \cdots \otimes \beta^{j_l} = 0$. Fix indices r_1, \dots, r_k and s_1, \dots, s_l . Then $0 = F(\beta^{r_1}, \dots, \beta^{r_k}, b_{s_1}, \dots, b_{s_l}) = F_{s_1 \cdots s_l}^{r_1 \cdots r_k}$. This shows linear independence.

Suppose $F \in T^{(k,l)}(V)$. Define $F_{j_1\cdots j_l}^{i_1\cdots i_k} := F(\beta^{i_1},\ldots,\beta^{i_k},b_{j_1},\ldots,b_{j_l})$. Let

$$(\lambda_{r_1}^1 \beta^{r_1}, \dots, \lambda_{r_k}^1 \beta^{r_k}, \mu_1^{s_1} b_{s_1}, \dots, \mu_l^{s_l} b_{s_l}) \in \underbrace{V^* \times \dots \times V^*}_{k \text{ copies}} \times \underbrace{V \times \dots \times V}_{l \text{ copies}}$$

be an arbitrary element. Then

$$F(\lambda_{r_1}^1 \beta^{r_1}, \dots, \lambda_{r_k}^1 \beta^{r_k}, \mu_1^{s_1} b_{s_1}, \dots, \mu_l^{s_l} b_{s_l}) = \lambda_{r_1}^1 \cdots \lambda_{r_k}^1 \mu_1^{s_1} \cdots \mu_l^{s_l} F_{s_1 \cdots s_l}^{r_1 \cdots r_k}$$

$$= (F_{j_1 \cdots j_l}^{i_1 \cdots i_k} b_{i_1} \otimes \cdots \otimes b_{i_k} \otimes \beta^{j_1} \otimes \cdots \otimes \beta^{j_l}) (\lambda_{r_1}^1 \beta^{r_1}, \dots, \lambda_{r_k}^1 \beta^{r_k}, \mu_1^{s_1} b_{s_1}, \dots, \mu_l^{s_l} b_{s_l}).$$

Thus, we have shown the spanning property.

Proposition. The space of tensors $T^{(k+1,l)}(V)$ is canonically isomorphic to the space of multilinear maps of type

$$\underbrace{V^* \times \dots \times V^*}_{k \ copies} \times \underbrace{V \times \dots \times V}_{l \ copies} \to V.$$

TENSORS

2

Proof. Let us show $\operatorname{End}(V) \simeq T^{(1,1)}(V)$. The argument for the general case is analogous.

Define $\Phi: \operatorname{End}(V) \to T^{(1,1)}(V)$ by $\Phi(A)(\omega, v) := \omega(Av)$. It is straightforward to check that Φ is linear.

Suppose $\Phi(A) = 0$. Let (b_i) be a basis with dual basis (β^j) . Let $Av = \lambda^i b_i$. Then $0 = \Phi(A)(\beta^j, v) = \lambda^j$, so Av = 0. Thus, A = 0. This shows injectivity.

Next, let $F \in T^{(1,1)}(V)$, and define $Av := F(\cdot, v)$. Then $\Phi(A)(\omega, v) = \omega(F(\cdot, v)) = F(\omega, v)$. Thus, Φ is surjective.

Definition. We define the contraction operator $\operatorname{tr}: T^{(k+1,l+1)}(V) \to T^{(k,l)}(V)$ by $(\operatorname{tr} F)(\omega^1,\ldots,\omega^k,v_1,\ldots,v_l) := \operatorname{tr} A$, where $A: v \mapsto F(\omega^1,\ldots,\omega^k,\bullet,v_1,\ldots,v_l,v)$.

The following proposition shows how to compute the trace once we have fixed a basis.

Proposition. Let (b_i) be a basis for V, and let (β^j) be the dual basis. Let $F \in T^{(k+1,l+1)}(V)$. Write $F = F_{j_1\cdots j_l}^{i_1\cdots i_k}b_{i_1}\otimes \cdots \otimes b_{i_{k+1}}\otimes \beta^{j_1}\otimes \cdots \otimes \beta^{j_{l+1}}$. Then

$$\operatorname{tr} F = F_{j_1 \cdots j_1 m}^{i_1 \cdots i_k m} b_{i_1} \otimes \cdots \otimes b_{i_k} \otimes \beta^{j_1} \otimes \cdots \otimes \beta^{j_l}.$$

Proof. Let us consider tr: $T^{(1,1)}(V) \to \mathbb{R}$. The proof for the general case is analogous.

Let $F = F_j^i b_i \otimes \beta^j$. Consider $A : v \mapsto F(\bullet, v)$. It is straightforward to show that $[A]_{(b_i)}^{(b_j)} = (F_j^i)$, so tr $F = \operatorname{tr}[A]_{(b_i)}^{(b_j)} = F_m^m$.