7조

파이날 프로젝트 캐글 경진 대회

김수지

박지은

변진영

이소희

이정수

CONTENTS

Binary Classification with a Bank Churn Dataset

Regression with an Abalone Dataset

01

CHAPTER

이진분류분석

분류 분석 목차

01 데이터 이해

02 데이터 전처리

03 데이터 분석

04 모델 평가

(05) 회고

개요

배경

목적

디지털 전환으로 인한 업종 간 경계 모호, 경쟁 심화 단순 금융상품 제조자로 전락 예측 모델을 통한 이탈 최소화

이탈 발생 상황을 예측한 경쟁력 유지

데이터 및 영향도 예측

Feature

id	식별 번호
CustomerId	고객의 고유 식별 번호
Surname	고객의 성(씨)
Credit Score	고객의 신용 점수
Geography	고객이 거주하는 국가
Gender	고객의 성별
Age	고객의 나이
Tenure	고객이 은행을 이용한 기간
Balance	고객의 계좌 잔액
NumOfProducts	고객이 이용하는 은행 상품의 수
HasCrCard	신용카드 보유 여부
IsActiveMember	활성 회원 여부
EstimatedSalary	고객의 예상 연봉

영향도 예측

Impact Feature

영향도 ↑							
Credit Score	고객의 신용 점수						
Age	고객의 나이						
Tenure	고객이 은행을 이용한 기간						
NumOfProducts	고객이 이용하는 은행 상품의 수						
HasCrCard	신용카드 보유 여부						
EstimatedSalary	고객의 예상 연봉						

영향도↓						
id	식별 번호					
CustomerId	고객의 고유 식별 번호					
Surname	고객의 성(씨)					
Geography	고객이 거주하는 국가					
Balance	고객의 계좌 잔액					
IsActiveMember	활성 회원 여부					

데이터 상관 관계

Heatmap

변수 간의 상관 계수

Exited <-> Age : 0.34

Exited <-> Balance : 0.13

Exited <-> NumOfProducts : -0.21

Exited <-> IsActiveMember : -0.21

데이터 전처리 - 공통 파생 변수 생성

Age:

전체 데이터 165034개 중

age의 60대 이상 -> 4016개 데이터의 크기 비율 조정위해 파생변수 생성: age_group

20대 이하, 30대, 40대, 50대 이상

Balance:

전체 데이터 165034개 중

Balance = 0 인 값 -> 89648

데이터의 크기 비율 조정 위해 파생변수 생성: Balance_group

Balance = 0:0

Balance != 0 : 1

파생 변수 생성

Generate

- 1. CreditScore By Age 나이대 별 신용점수
- 2. TenureByAge 연령 별 고객이 은행을 이용한 기간
- 3. Engagement 은행 상품의 수 + 신용카드 보유 여부 + 활성 회 원 여부

- 4. CreditScore By (Balance or Balance_group) 잔고 별 신용점수
 - 5. Balance By Age 연령 별 잔고

전처리

1.	변수제거	ld, Customerld, Surname
----	------	-------------------------

2. 중복값 제거 Id, Customerld 제거 후 중복치 제거

3. 변수 변환 HasCrCard, IsActiveMember,Balance, Age, EstimatedSalary

4. 인코딩 Gender, Geography

5. 스케일링 EDA 시각화 이상치를 통해 확인

전처리 - 스케일링 (EDA 시각화 분석)

Robust

- CreditScore, Age

MinMax

- Tenure, EstimatedSalary

StandardScaler

- Balance

AutoML을 통한 알고리즘 선택 (AUC 평가 기준)

	Mode I	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
lightgbm	Light Gradient Boosting Machine	0.864	0.887	0.548	0.741	0.630	0.549	0.558	7.680
catboost	CatBoost Classifier	0.863	0.886	0.540	0.744	0.626	0.545	0.555	32.350
gbc	Gradient Boosting Classifier	0.863	0.885	0.526	0.750	0.618	0.538	0.550	20.178
xgboost	Extreme Gradient Boosting	0.862	0.883	0.546	0.732	0.625	0.543	0.551	1.312
ada	Ada Boost Classifier	0.858	0.878	0.518	0.735	0.607	0.524	0.536	4.024

데이터 공통 전처리

+

공통 파생 변수

age_group, Balance_group

+ 추가 파생 변수

CreditScoreByAge, TenureByAge, BalanceByAge Engagement CreditScoreByBalance, NumOfProductsByBalance

알고리즘에 영향을 주는 변화 찾기 – 파생 변수

전처리

lightGBM 0.8884

CatBoost 0.8876

GradientBoosting 0.8878

XGBoost 0.8832

AdaBoost 0.8793

전처리 + 파생변수

lightGBM 0.8918

CatBoost 0.8914

GradientBoosting 0.8905

XGBoost 0.8917

AdaBoost 0.8834

LightGBM

XGBoost

GradientBoost

. TEALIT

LightGBM XGBoost GradientBoost

QL

LightGBM XGBoost CatBoost

모델 성능 향상을 위해 사용한 방법 – 파생변수 생성

방법 4

기본 공통 전처리

-

공통 파생변수(age_group + Balance_group)

H

모델 3에서 파생변수(BalanceByAge) 제거

lightGBM

0.8918(0.88773)

AdaBoost

0.8884

CatBoost

0.8914

XGBoost

0.8914

GradientBoost

0.8911

방법 5

기본 공통 전처리

+

공통 파생변수(age_group + Balance_group)

+

모델 3에서 파생변수(NumOfProductsByBalance) 제거

lightGBM

0.8918(0.88685)

AdaBoost

0.8884

CatBoost

0.8914

XGBoost

0.8914

GradientBoost

0.8911

모델 성능 평가 : 각 모델 보팅 성능 비교

알고리즘	LGB	ADA	CAT	XGB	GBC	보팅 (각 방법 중 Score Top3) - 캐글 score
방법 1	0.8918	0.8834	0.8914	0.8917	0.8909	0.88793 (LGB, XGB, GBC)
방법 2	0.8918	0.8832	0.8909	0.8919	0.8905	0.88799 (LGB, CAT, XGB)
방법 3	0.8919	0.8883	0.8914	0.8916	0.8909	0.88823(LGB, CAT, XGB)
방법 4	0.8918	0.8884	0.8914	0.8914	0.8911	0.88776 (LGB, CAT, XGB)
방법 5	0.8918	0.8882	0.8914	0.8916	0.8916	0.88788 (LGB, XGB, GBC)

은행 고객 이탈 분석 결론

고객 이탈에 영향 있을 것 같은 요인 예상

Age (고객의 나이)

Tenure (고객이 은행을 이용한 기간)

NumOfProducts (고객이 이용하는 은행 상품의 수)

CreditScore (고객의 신용 점수)

HasCrCard (신용카드 보유 여부)

EstimatedSalary (고객의 예상 연봉)

고객 이탈에 영향 없을 것 같은 요인 예상

ld (식별 번호)

CustomerId(고객고유 식별 번호)

Surname (고객의 성(씨))

Geography (고객이 거주하는 국가)

Balance (고객의 계좌 잔액)

IsActiveMember (활성회원여부)

은행 고객 이탈 분석 결론

은행이 고객 이탈을 방지하기 위해서..

연령별 적용가능한 마케팅 계획 수립

연령별 다양한 은행 상품 수립

고객 참여와 주인의식 고취

이번 은행 고객 이탈 분석의 한계점 & 회고

- 1. 중복값 처리에 대한 방향성
- 2. SVD (특이값 분해) 처리 역량

02

CHAPTER

호구님분석

회귀 분석 목차

01) 대회 선정

- (02) 데이터 소개 및 EDA (03) 데이터 전처리

- 04) 데이터 분석 결과
- 05 회귀 모델 평가 및 제출 결과
- 06 인사이트 제안

전복 데이터 회귀 분석 대회

[REGRESSION WITH AN ABALONE DATASET]

- 대회 목표: 전복의 연령 예측 □ 다양한 물리적 측정을 통해 얻은 전복 데이터
- 대회 유형: 회귀
- 대회 평가 유형: Root Mean Squared Logarithmic Error (RMSLE)
- 대회 기간: 2024.04.01 ~ 2024.05.01 (현재 진행 중)

데이터 소개

대회에서 제공하는 전복의 다양한 물리적 측정 데이터

[FEATUR	[FEATURE DATA, TARGET DATA]							
• ID	전복의 샘플 아이디							
• SEX	전복의 성별							
- LENGTH	전복의 길이							
DIAMETER	전복의 지름							
HEIGHT	전복의 높이							
 WHOLE WEIGHT 	전복의 전체 무게							
 WHOLE WEIGHT.1 	= SHUCKED WEIGHT 껍질 벗긴 전복의 출혈 후 무게							
 WHOLE WEIGHT.2 	= VISCERA WEIGHT 전복의 내장 무게							
SHELL WEIGHT	물기를 제거한 전복의 껍질 무게							
• RINGS	전복의 나이를 나타내는 고리 수							

타겟 데이터, 피처 데이터 바 플랏으로 분포 확인

1.5

0.6

1.0

피처 데이터 박스 플랏으로 이상치 확인

피처 데이터에서 이상치가 다수 존재하므로 파생변수 생성으로 인한 성능 향상을 기대하기 어려움

피처 데이터와 타겟 데이터 히트맵으로 상관 관계 확인

성별을 제외한 피처들은 서로 매우 강한 양의 상관 관계 성별을 제외한 피처들은 타겟 데이터와 강한 양의 상관 관계 성별은 다른 피처, 타겟 데이터와 매우 약한 음의 상관 관계

전처리에 앞서, 훈련 데이터 양을 늘리기 위하여 원본 데이터를 획득 후 훈련 데이터와 합침

불필요한 ID 변수 제거 후, 피처 데이터 이름 변경

I, M, F로 이루어진 Sex에서 IsAdult 파생 변수 생성 Object 타입인 Sex를 Label Encoding을 통해 0, 1, 2로 변경

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Rings	IsAdult
0	0	0.550	0.430	0.150	0.7715	0.3285	0.1465	0.2400	11	1
1	0	0.630	0.490	0.145	1.1300	0.4580	0.2765	0.3200	11	1
2	1	0.160	0.110	0.025	0.0210	0.0055	0.0030	0.0050	6	0
3	2	0.595	0.475	0.150	0.9145	0.3755	0.2055	0.2500	10	1
4	1	0.555	0.425	0.130	0.7820	0.3695	0.1600	0.1975	9	0

Sex I 34435 M 32555 F 27802 Name: count, dtype: int64

Sex: F = 0, I = 1, M = 2로 인코딩

IsAdult: F, M은 성체 전복, I는 유체 전복으로 판단하여 성체 전복은 1, 유체 전복은 0으로 값을 매김

I, M, F로 구성된 Sex에서 IsAdult 파생변수를 생성 성체는 유체의 약 2배 가량 존재함

Water, Volume, Density 파생 변수 생성

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	IsAdult	Water	Volume	Density	Rings
0	0	0.550	0.430	0.150	0.7715	0.3285	0.1465	0.2400	1	0.6830	0.035475	9.260042	11
1	0	0.630	0.490	0.145	1.1300	0.4580	0.2765	0.3200	1	0.9920	0.044761	10.232007	11
2	1	0.160	0.110	0.025	0.0210	0.0055	0.0030	0.0050	0	0.0205	0.000440	12.500000	6
3	2	0.595	0.475	0.150	0.9145	0.3755	0.2055	0.2500	1	0.7890	0.042394	8.857438	10
4	1	0.555	0.425	0.130	0.7820	0.3695	0.1600	0.1975	0	0.6100	0.030664	12.050059	9

- Water(물과 피의 양): 전복의 전체 무게 (껍질 벗긴 무게 + 껍질 무게)
- Volume(부피) : 전복의 길이 * 지름 * 높이
- Density(실수율, 밀도) : 전복의 껍질 벗긴 무게 / Volume

```
1 zero_count = (train.Height == 0).sum()
2 print("0의 개수:", zero_count)
```

0의 개수: 8


```
# infinity 값 nan으로 대체
```

X_train3.replace([np.inf, -np.inf], np.nan, inplace=True)
X_valid3.replace([np.inf, -np.inf], np.nan, inplace=True)

NaN 값을 해당 열의 중앙값으로 대체

X_train3.fillna(X_train3.median(), inplace=True)
X_valid3.fillna(X_valid3.median(), inplace=True)

피처 데이터 로그 변환

```
1#로그 변환
2 train["Sex"]=np.log(0.00001+train["Sex"])
 3 train["Length"]=np.log(0.00001+train["Length"])
 4 train["Diameter"]=np.log(0.00001+train["Diameter"])
 5 train["Height"]=np.log(0.00001+train["Height"])
6 train["Whole_weight"]=np.log(0.00001+train["Whole_weight"])
 7 train["Shucked_weight"]=np.log(0.00001+train["Shucked_weight"])
 8 train["Viscera_weight"]=np.log(0.00001+train["Viscera_weight"])
9 train["Shell_weight"]=np.log(0.00001+train["Shell_weight"])
10
12 test["Sex"]=np.log(0.00001+test["Sex"])
13 test["Length"]=np.log(0.00001+test["Length"])
14 test["Diameter"]=np.log(0.00001+test["Diameter"])
15 test["Height"]=np.log(0.00001+test["Height"])
16 test["Whole_weight"]=np.log(0.00001+test["Whole_weight"])
17 test["Shucked_weight"]=np.log(0.00001+test["Shucked_weight"])
18 test["Viscera_weight"]=np.log(0.00001+test["Viscera_weight"])
19 test["Shell_weight"]=np.log(0.00001+test["Shell_weight"])
```

- 히스트 플랏으로 확인한 바와 같이, 피처 데이터의 분포는 고르지 않음
- 대회 평가 유형 RSMLE
 - → 로그 변환으로 인한 성능 향상을 기대
- 입력 값이 0 이하인 경우 로그 변환 적용 불가능
 - → 0.00001을 합한 값으로 로그 변환 수행

데이터 분리 후, 정규화 진행

```
7 # 데이터 분리
 8 X_train, X_valid, y_train,y_valid = train_test_split(train_final_feature, train_final_target,
                                                        test_size=0.1,
10
                                                        stratify=train_final_target,
11
                                                        random_state=42)
13 X_train.shape, X_valid.shape, y_train.shape, y_valid.shape
((85312, 8), (9480, 8), (85312,), (9480,))
```

train_test_split 함수를 이용하여 기존 훈련+원본데이터를 훈련 데이터와 검증 데이터로 9:1 분할하여 이용

```
1 # 스케일링
 2 from sklearn.preprocessing import StandardScaler
 3 scaler = StandardScaler()
 4 X_train_scaled = scaler.fit_transform(X_train)
 5 X_train_scaled_df = pd.DataFrame(X_train_scaled, columns=X_train.columns)
 6 X_val_scaled = scaler.transform(X_valid)
 1 X = pd.concat([X train scaled df. v train.reset index(drop=True)]. axis=1)
 2 X.shape
(85312, 9)
1 test_scaled = scaler.transform(test)
```

훈련, 검증, 테스트 데이터 모두 정규화 스케일링

회귀 레포트 분석을 통하여 변수 간 관계, 예측 및 추정, 이상치 및 다중 공선성 등 파악

2.10	Regress	ion	Resul	lts
~_~	I CMI COO		11000	

		ULS negres	STOR NESULTS	s =======		
Dep. Variable: Model:		Rings OLS	R-squared: Adj. R-squ			0.602 0.602
Method:	Lea	ast Squares	F-statisti	ic:	1.5	90e+04
Date:	₩ed, 3	24 Apr 2024	Prob (F-st	atistic):		0.00
Time:		07:07:38	Log-Likeli	ihood:	-2.00)51e+05
No. Observatio	ns:	94792	AIC:		4.0)10e+05
Df Residuals:		94782	BIC:		4.0)11e+05
Df Model:		9				
Covariance Typ	e:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.258e+11	1.36e+12	0.092	0.926	-2.54e+12	2.79e+12
	-1.258e+11	1.36e+12	-0.092	0.926	-2.79e+12	
Sex[T.M]	-0.0119	0.016	-0.721	0.471	-0.044	0.020
Length	-1.9489	0.392	-4.975	0.000	-2.717	-1.181
Diameter	8.2616	0.486	16.985	0.000	7.308	9.215
Height	20.1040	0.463	43.456	0.000	19.197	21.011
Whole_weight	3.9256	0.119	32.957	0.000	3.692	4.159
Shucked_weight		0.148	-107.715	0.000	-16.183	-15.605
Viscera_weight		0.286	-24.442	0.000	-7.549	-6.428
Shell_weight	20.2519	0.213	94.916	0.000	19.834	20.670
IsAdult	-1.258e+11	1.36e+12	-0.092	0.926	-2.79e+12	2.54e+12
Omnibus:		30763.600	Durbin-Wat	son:		1.971
Prob(Omnibus):		0.000	Jarque-Ber		1923	33.943
Skew:		1.420	Prob(JB):	, ,		0.00
Kurtosis:		9.375	Cond. No.		6.	42e+14

결정계수

0.602으로 회귀 모형은 데이터를 60.2%로 설명

왜도 Skew

1.402으로 오른쪽으로 긴 꼬리

다중 공선성 VIF

6.42e+14으로 높은 다중 공선성

AutoML 결과 RMSLE 기준 TOP 4 모델 사용

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	II (Sec)
catboost	CatBoost Regressor	1.241	3.385	1.840	0.666	0.150	0.126	13.324
lightgbm	Light Gradient Boosting Machine	1.249	3.439	1.854	0.661	0.151	0.126	1.292
xgboost	Extreme Gradient Boosting	1.257	3.491	1.868	0.656	0.152	0.127	0.504
rf	Random Forest Regressor	1.284	3.559	1.886	0.649	0.155	0.131	35.632
gbr	Gradient Boosting Regressor	1.280	3.583	1.893	0.647	0.153	0.129	7.624

기본 전처리 TOP 5 모델

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	II (Sec)
catboost	CatBoost Regressor	1.239	3.365	1.834	0.665	0.150	0.126	14.686
lightgbm	Light Gradient Boosting Machine	1.245	3.407	1.846	0.661	0.151	0.126	1.764
xgboost	Extreme Gradient Boosting	1.255	3.471	1.863	0.655	0.152	0.127	0.562
rf	Random Forest Regressor	1.280	3.525	1.877	0.649	0.154	0.131	34.102
gbr	Gradient Boosting Regressor	1.274	3.531	1.879	0.649	0.153	0.129	8.188

기본 전처리 + IsAdult 파생 변수 TOP 5 모델

catboost, lightgbm, xgboost, gbr 모델을 통하여 학습 진행

베이지안 최적화를 통하여 기본 전처리에서의 다양한 모델 학습 진행

기본 전처리

cat	0.14864
lgbm	0.14824
xgb	0.14871
gbr	0.14855
cat +lgbm +gbr	0.14708
cat + lgbm + xgb	0.14645
TOP 4	0.14808

기본 전처리 + 모든 변수 로그 변환

cat	0.14873
lgbm	0.14808
xgb	0.14871
gbr	0.14852
cat +lgbm +gbr	0.14669
cat + lgbm + xgb	0.14679
TOP 4	0.14668

대회 평가 지표가 RMSLE인 것을 고려하여 로그 변환으로 인한 성능 향상 가능성 고려

Lgbm 기준 피처 중요도

기본 전처리 + Sex 변수 제외

Sex: 114

Length: 472

Diameter: 417

Height: 309

Whole_weight: 548

Shucked_weight : 612

Viscera_weight: 529

Shell_weight: 752

cat	0.15012
lgbm	0.14988
xgb	0.14997
gbr	0.14980
cat +lgbm +gbr	0.14949
cat + lgbm + xgb	0.14930
TOP 4	0.14920

Sex의 피처 중요도가 낮게 나와서 해당 변수를 제외했을 때의 모델 성능 향상을 고려

기본 전처리에 다양한 파생변수를 추가해보며 모델 성능을 확인해보았다.

IsAdult 파생변수 추가

cat	0.14734
lgbm	0.14724
xgb	0.14758
gbr	0.14699
cat +lgbm +gbr	0.14656
cat + lgbm + xgb	0.14656
TOP 4	0.14642

F/M (성체 전복) -> 1 I (새끼 전복) -> 0

IsAdult, water 파생변수 추가

cat	0.14854
lgbm	0.14861
xgb	0.14855
gbr	0.14896
cat +lgbm +gbr	0.14731
cat + lgbm + xgb	0.14830
TOP 4	0.14761

Water = Whole_weight -Shucked_Weight - Shell_weight

lsAdult, Volume, Density 파생변수 추가

cat	0.14915
lgbm	0.14850
xgb	0.14919
gbr	0.14928
cat +lgbm +gbr	0.14778
cat + lgbm + xgb	0.14829
TOP 4	0.14806

Volume = Length * Diameter * Height Density = Shucked_Weight/Volume

IsAdult, water, Volume, Density 파생변수 추가

cat	0.14916
lgbm	0.14884
xgb	0.14932
gbr	0.14915
cat +lgbm +gbr	0.14769
cat + lgbm + xgb	0.14819
TOP 4	0.14793

파생변수를 생성한 모델의 성능이 더 낮게 나온 것을 볼 수 있었다.

베이지안 최적화를 통하여 기본 전처리에서의 다양한 모델 학습 진행

기본 전처리

0.14855
0.14708
0.14808

기본 전처리 + 모든 변수 로그

Lgbm 기준

|본 전처리 + Sex 변수 제오

성별에 관련된 Sex, IsAdult 변수는

cat 0.14873

성능에 큰 영향을 미치고 있으며,

0.14871

cat 0.15012

Igbm 0.14988

xgb 0.14997

abr 0.14980

로그 변환 데이터가 좋은 성능을 보이고 있음

Viscera_weight : 52

대회 평가 지표가 RMSLE인 것을 고려하여 로그 변환으로 인한 성능 향상 가능성 고려 Sex의 피처 중요도가 낮게 나와서 해당 변수를 제외했을 때의 모델 성능 향상을 고려

캐글에서 구한 origin 추가 데이터를 활용하여 앞에서 성능이 좋았던 모델을 보안

기본 전처리

cat	0.14902
lgbm	0.14874
xgb	0.14920
gbr	0.14858
cat +lgbm +gbr	0.14907
cat + lgbm + xgb	0.14931
TOP 4	0.14897

기본 전처리 + 로그 변환

cat	0.14902
lgbm	0.14912
xgb	0.14920
gbr	0.14859
cat +lgbm +gbr	0.14631
cat + lgbm + xgb	0.14684
TOP 4	0.14643

기본 전처리 + IsAdult 변수 추가

cat	0.14909
lgbm	0.14881
xgb	0.14943
gbr	0.14852
cat +lgbm +gbr	0.14648
cat + lgbm + xgb	0.14671
TOP 4	0.14643

기본 전처리 + IsAdult 변수 추가 + 로그 변환

cat	0.14909
lgbm	0.14873
xgb	0.14943
gbr	1.48501
cat +lgbm +gbr	0.14632
cat + lgbm + xgb	0.14656
TOP 4	0.14633

로그 변환을 하지 않은 데이터는 top4에서, 로그 변환을 한 데이터는 cat+lgbm+gbr에서 좋은 성능을 보임

마지막으로, 그리드 서치를 통한 모델링을 진행하여 성능을 개선시킴

기본 전처리 로그 변환 (3차)

cat +lgbm +gbr	0.14632
cat + lgbm + xgb	0.14650
TOP 4	0.14637

기본 전처리 로그 변환 (6차)

cat +lgbm +gbr	0.14667
cat + lgbm + xgb	0.14643
TOP 4	0.14650

기본 전처리 + IsAdult 변수 추가 + 로그 변환 (3차)

cat +lgbm +gbr	0.14650
cat + lgbm + xgb	0.14675
TOP 4	0.14672

기본 전처리 + IsAdult 변수 추가 + 로그 변환 (6차)

cat +lgbm +gbr	0.14663
cat + lgbm + xgb	0.14690
TOP 4	0.14677

6차 그리드 서치까지 진행한 모델이 좋은 성능을 낼 것이라고 예상했지만, 3차까지 진행한 모델의 성능이 더 좋게 나왔기에 과적합을 의심

내용을 종합해본 결과, 가장 성능이 좋았던 Top3를 최종 모델로 선정

*4월 25일 PM 3:40 Public Score기준

1st

최종 스코어 0.14631 370등/2138 (상위 17.3%)

전처리 기본 전처리 + origin 데이터 추가 + 변수 로그 변환

> 모델링 베이지안 최적화를 통한 앙상블 (cat+lgbm+gbr)

2nd

최종 스코어 0.14632 372등/2138 (상위 17.4%)

전처리

기본 전처리 + origin 데이터 추가 + IsAdult 변수 추가 + 변수 로그 변환

모델링

베이지안 최적화를 통한 앙상블 (cat+lgbm+gbr) 2nd

최종 스코어 0.14632 373등/2138 (상위 17.4%)

전처리

기본 전처리 + origin 데이터 추가 + 변수 로그 변환

모델링

이분법적 그리드 서치 3차 진행 앙상블 (cat+lgbm+gbr)

- 그리드 서치에서 과적합이 발생하여 성능이 오히려 저하되는 문제가 발생하였기 때문에 L1, L2 규제를 통하여 모델 성능 향상을 예상 가능
- 대부분의 상위권 사람들이 Neural Network를 사용하여 모델링을 진행하였기 때문에 추후 DNN과 같은 모델로 만들어본다면 모델 성능 향상을 예상 가능

Q&A

감사합니다