Grupo: al040

Alunos: Rafael Serra e Oliveira (99311) e Tiago Vieira da Silva (99335)

1 Descrição do Problema

O **Problema Takuzu** (ou *Binary Puzzle*) consiste num puzzle $N \times N$ onde cada célula pode conter o número 0 ou 1. O objetivo é preencher todas as células vazias do puzzle tendo em conta as seguintes restrições: Não podem haver 3 números seguidos iguais por linha ou coluna, não podem haver linhas nem colunas iguais e o número de 0s e 1s por linha ou coluna têm que ser iguais (ou com uma diferença de um entre eles para tabuleiros de tamanho ímpares).

2 Descrição da Solução Apresentada

Para resolver o problema acima apresentado, decidimos modelá-lo como um *Constraint Satisfaction Problem* (*CSP*). Para tal, iremos ter vários estados (*state*), cada um destes possuindo um tabuleiro (*state.board*) que, por sua vez, possuirá uma representação matricial do tabuleiro (*board.matrix*) e uma matriz de domínios (*board.domains*), que serão as possíveis escolhas de valor para cada posição, conforme as restrições impostas.

No sentido da resolução em si do problema, faremos uma procura a partir de um estado inicial, que possuirá tanto uma representação do tabuleiro como os domínios iniciais possíveis pré-calculados. Por cada nível da árvore iremos selecionar a posição com o menor domínio (usando uma ordem definida como critério de desempate), e iremos expandir os ramos desse estado, que consiste em escolher para a posição em análise cada um dos valores possíveis de acordo com o seu domínio.

As restrições descritas acima serão aplicadas no cálculo dos domínios para cada posição, sendo após, cada ação, depois de definido o valor de uma variável, recalculados os domínios afetados de acordo com as referidas restrições (e apenas esses).

De forma a que a árvore de procura não ganhásse uma largura incomportável, aplicámos o princípio em *CSP*s de considerar apenas uma variável por nível, pelo que o método *actions* da classe *Takuzu*, em vez de devolver todas as jogadas legais em todas as posições, apenas apenas devolve as ações possíveis para jogadas na primeira casa livre do tabuleiro, de acordo com uma ordem definida. Estas correspondem às jogadas de cada um dos valores do seu domínio nessa posição, na forma de tuplos (*linha*, *coluna*, *valor*).

Para além disso, de forma a encurtar a árvore de procura, implementámos uma otimização nesse mesmo método *actions* de forma a que este se comportasse da seguinte forma:

- Se existir alguma posição no tabuleiro com domínio vazio (*i.e.*, de dimensão 0), então não é possível continuar e o método retorna apenas a ação vazia (o tuplo ());
- Caso contrário, se existir alguma posição vazia no tabuleiro com domínio unitário (i.e., de dimensão 1), então será obrigatório em algum ponto colocar esse valor nessa posição, pelo que é preferível fazê-lo já no caso de tal ação restringir os domínios de outras posições. Assim, nesse caso, o método devolve apenas essa ação (linha, coluna, unico_valor_no_dominio). Note-se que, no caso de existir mais do que uma posição nessa situação, o algoritmo escolhe a primeira de acordo com a ordem definida;

• Apenas no caso de isso não se verificar, ou seja, se todas as posições livres tiverem domínio de dimensão 2 ($D_{X_{i,j}} = \{0,1\}$, não estando sujeito a restrições), será necessário fazer uma bifurcação na árvore de procura e portanto são devolvidas as duas ações correspondentes à primeira posição vazia (os tuplos (i, j, 0) e (i, j, 1)).

No caso das procuras que necessitam de uma **função heurística** para as guiar, como é o caso da **Procura Greedy** e da **Procura A***, continuámos a linha de raciocínio de *CSP*s, implementando a heurística **MRV** (*Most Restrictive Variable*). Assim sendo, o valor da função heurística por nós desenvolvida irá ser, para um dado nó, mais baixo o quão mais restritiva será a variável em análise. Para isso, avaliamos a dimensão do domínio da variável e o número de possíveis domínios de posições adjacentes que poderão ser restringidos pela escolha dessa variável.

Visto que as procuras A^* e Greedy já implementadas são apenas procuras $Best\ First$, sendo que para a A^* se tem f(n) = g(n) + h(n), e para a $Greedy\ f(n) = h(n)$, irá haver escolha de variáveis, sendo assim pertinente aplicar a heurística MRV.

Para além da MRV, como estamos a modelar o problema como um CSP, poderiamos implementar também uma heurística LCV ($Least\ Restrictive\ Value$). Para isso, iriamos ter que calcular quais são os domínios que iriam ser restringidos ao colocar um valor. Isso revelou-se ser muito dispendioso e, como tal, optámos por não implementar essa heurística na nossa função h(n), sendo mais eficiente recalcular os domínios apenas na expansão do nó.

3 Análise dos Resultados

De modo a testar os nossos resultados, recorremos à classe InstrumentedProblem do código de apoio de forma a registar o número de nós gerados e nós expandidos durante a resolução de cada teste. Para medir o tempo de execução, utilizámos a ferramenta **hyperfine**, que permite fazer um benchmarking fidedigno e estatisticamente viável (com parâmetro de warmup = 1).

Para os *inputs* dos testes realizados sobre a solução implementada, recorremos a duas baterias de testes distintas:

- Bateria A: 13 tabuleiros de dimensões entre 6 e 31, disponibilizados pelo corpo docente.
- Bateria B: 205 tabuleiros de dimensões entre 4 e 12, gerados automaticamente e verificados (através de modificação do método goal_test para obter todas as soluções) para só ter uma solução possível, disponibilizados publica e livremente num repositório comunitário de alunos, sob a licensa Unlicense.

Os resultados da testagem dos respetivos algoritmos encontra-se no final do ficheiro.

Podemos concluir a partir dos dados obtidos que, no geral, o tempo de execução dos vários tipos de procura é muito semelhante, assim como a quantidade de nós expandidos e gerados. As procuras são todas **completas**, visto que a pronfundidade máxima do problema é N^2 , sendo N o número de espaços vazios.

A complexidade temporal e espacial do problema será de $O(2^n)$, visto que o fator de ramificação é, no máximo, 2.

A performance ligeiramente superior da *DFS* em relação à *BFS* é explicado pelo facto de que, visto que a solução do problema encontra-se sempre na profundidade máxima da procura, a BFS irá ter que expandir todos os nós até à profundidade máxima, enquanto que a DFS não terá que obrigatoriamente o fazer. A aplicação das heurísticas levou a um melhoramento dos tempos de execução relativamente a uma *DFS*. Sendo assim, decidimos optar por uma Greedy Search.

Sendo n a dimensão do tabuleiro e f o número de espaços em branco: Bateria de Testes A

Apêndice

			Temp	o de E	xecuçê]	Nós Ge	rados		Nós Expandidos				
Teste	n	f	BFS	DFS	A*	GS	BFS	DFS	A*	GS	BFS	DFS	A*	GS
T01	4	7	111	112	113	113	7	7	7	7	7	7	7	7
T02	6	7	117	117	119	118	7	7	7	7	7	7	7	7
T03	8	42	129	130	127	128	43	42	42	42	43	43	43	43
T04	9	32	159	133	129	129	32	32	32	32	32	32	32	32
T05	10	55	136	138	137	136	59	58	55	55	59	59	57	57
T06	12	79	149	150	150	151	85	81	85	85	85	82	85	85
T07	14	69	155	157	157	158	69	69	69	69	69	69	69	69
T08	15	19	160	159	161	161	19	19	19	19	19	19	19	19
T09	18	139	194	197	194	193	139	139	139	139	139	139	139	139
T10	20	184	227	222	231	228	184	184	184	184	184	184	184	184
T11	21	180	243	233	235	239	180	180	180	180	180	180	180	180
T12	25	166	306	292	294	292	166	166	166	166	166	166	166	166
T13	31	180	461	455	477	459	180	180	180	180	180	180	180	180

Bateria de Testes B (excerto)

			Tempo de Execução (ms)					Nós G	erados		Nós Expandidos				
Teste	n	f	BFS	DFS		GS	BFS	DFS	A*	GS	BFS	DFS	A*	GS	
T10 01	10	80	127	125	107	107	288	277	94	94	288	281	99	99	
$T10_{02}$	10	79	162	150	105	105	614	517	81	81	614	520	89	89	
T10 03	10	80	882	737	109	109	6855	5913	107	107	6855	5919	120	120	
$T10^{-04}$	10	79	165	152	123	123	618	518	225	225	618	522	231	231	
$T10_{-}^{-}05$	10	81	168	154	118	118	665	550	185	185	665	555	194	194	
$T10_{-}06$	10	78	248	224	126	126	1378	1198	245	245	1378	1202	253	253	
$T10_{-}^{-}07$	10	81	683	621	106	106	5054	4784	85	85	5054	4789	95	95	
$T10_{-}08$	10	79	120	118	119	119	229	211	196	196	229	215	200	200	
$T10_{-}09$	10	81	4436	3517	106	106	36334	31767	82	82	36334	31773	96	96	
$T10_10$	10	79	125	122	124	125	274	245	235	235	274	249	240	240	
$T10_{-}11$	10	80	120	119	105	106	232	219	82	83	232	221	91	92	
$T10_{-}12$	10	79	292	261	106	107	1758	1516	91	93	1758	1520	100	102	
$T10_{13}$	10	79	560	503	140	141	4064	3771	362	362	4064	3775	371	371	
$T10_{-14}$	10	81	195	184	128	128	893	818	261	261	893	822	268	268	
T10_15	10	81	738	576	107	108	5604	4415	95	95	5604	4421	107	107	
T10_16	10	81	146	142	106	106	454	424	87	87	454	428	95	95	
T10_17	10	80	203	179	125	125	960	775	238	238	960	781	249	249	
T10_18	10	80	742	595	113	113	5617	4587	135	135	5617	4595	149	149	
T10_19	10	78 78	173	163	155	155	699	629	482 89	483	699	631	487	487	
T10_20 T10_21	10 10	79	$\frac{148}{197}$	144 190	$\frac{107}{106}$	$107 \\ 107$	476 910	$450 \\ 865$	89 91	89 91	476 910	$456 \\ 869$	100 98	100 98	
T10_21 T10_22	10	80	657	598	106	107	4863	805 4545	80	80	4863	809 4550	98 92	98 92	
T10_22 T10_23	10	79	311	297	110	110	1925	1864	113	114	1925	1872	$\frac{92}{127}$	92 128	
T10_23	10	78	155	150	107	107	545	510	91	91	545	516	101	101	
T10_24	10	81	187	181	107	107	817	781	93	93	817	785	100	100	
T10_26	10	80	126	125	106	106	285	277	91	91	285	280	96	96	
$T10_{27}$	10	79	164	147	118	118	624	477	183	183	624	482	194	194	
T10_28	10	81	185	161	154	154	800	602	470	470	800	606	476	476	
$T10^{-29}$	10	79	120	115	118	118	231	183	184	184	231	187	189	189	
$T10_{30}^{-}$	10	78	128	121	121	121	303	246	213	213	303	248	217	217	
$T10^{-}31$	10	81	178	158	106	106	734	567	86	86	734	571	95	95	
$T10_{32}$	10	80	268	241	106	106	1541	1345	85	89	1541	1349	95	98	
$T10_{33}$	10	78	1787	1383	728	726	14497	11985	4975	4977	14497	11991	4985	4987	
$T10_{34}$	10	78	136	134	108	108	379	358	101	101	379	364	110	110	
$T10_{35}$	10	80	226	217	107	106	1154	1108	91	91	1154	1112	100	100	
$T10_{36}$	10	79	270	245	127	127	1570	1389	254	254	1570	1393	262	262	
$T10_37$	10	78	433	379	110	110	2932	2580	117	117	2932	2586	127	127	
$T10_{-38}$	10	81	225	207	177	177	1147	1017	650	650	1147	1022	659	659	
$T10_{39}$	10	80	1160	981	106	106	9113	8134	83	83	9113	8139	95	95	
$T10_{-40}$	10	79	290	279	109	109	1731	1691	106	107	1731	1699	120	121	
$T10_{-41}$	10	83	244	235	106	107	1307	1278	91	91	1307	1282	100	100	
T10_42	10	81	2101	1662	107	107	17032	14372	88	88	17032	14378	101	101	
T10_43	10	78	151	147	113	113	498	474	148	148	498	478	153	153	
T10_44	10	79	121	120	121	122	239	230	212	213	239	233	217	218	
T10_45	10	79	308	251	108	107	1891	1422	95	95	1891	1428	107	107	
T10_46	10	79	156	144	116	116	557	464	169	169	557 964	467	176	176	
T10_47	10	80	192	186 158	107	107 150	864 757	835 573	91 433	92 434	864 757	839 577	99 430	100 440	
T10_48 T10_49	10 10	80 78	180 142	158 139	149 111	$\frac{150}{111}$	420	402	$\frac{433}{126}$	434 126	420	406	$439 \\ 131$	$\frac{440}{131}$	
T10_49 T10_50	10	79	$142 \\ 127$	139 124	126	126	284	261	251	$\frac{120}{251}$	284	$\frac{400}{265}$	255	$\frac{151}{255}$	
T12_01	12	114	1105	881	$\frac{120}{324}$	$\frac{120}{323}$	6714	5519	1386	1386	6714	5527	$\frac{255}{1397}$	$\frac{255}{1397}$	
$T12_{02}$	12	115	8085	6013	3595	3605	50942	41486	21233	21233	50942	41495	21247	21247	
$T12_{03}$	12	114	9617	6567	3660	3675	59649	45325	21726	21726	59649	45334	21739	21739	
T12_03	12	113	1485	1182	831	831	9333	7714	4555	4555	9333	7724	4569	4569	
$T12_{05}$	12	115	6187	4174	2161	2177	38679	28660	12709	12709	38679	28671	12725	12725	
		-			•								-	-	