Quick Review of Long Col I

Function: f(x)=|x|=[X X20 Domain: R(-w.w) $g(x) = \sqrt{x} + x > 1$; $h(x) = n \times x > 0$ o. Odd, Even, meressing / Decressing / Monotone · Composition fog(x)=1 tx+1 = tx+1 · 1-1, onto, merce function Exponential/Logarithmic ex ax Inx Logax $5 \text{ | f(x) = } \begin{cases} \frac{x^2 - 7}{x - 3} & x \neq 3 \\ 5 & x = 3 \end{cases} \begin{cases} f(3) = 5 \\ \lim_{x \to 3} f(x) = 6 \end{cases}$ · Conjugate Lim - X+X-2 - Km (X-1XX2) (X+1) = 6 " L'Hospital, lim snt = 1, lim ton' X = 1 · lefe/Pight Limit; home f(x)= { - Lim fex) = I Derivatives: f(a) = lim f(x)-f(a) = lim f(x+h)-f(x) · slope of tangent line at a · postion function = velocity function position function = vewcing
velocity function' = occeleration function

or (x) = f(x), y', f'(x), dy = d(y)

or (c)' = o, (e^x)' = e^x, (smx)' = cox

(x') = nx^{n-1}, ()nx)' = +

cox

cox

cox Technique.

• Product Pule: (fg)' = f'g + fg' (ftg)' = f'tgi)• Rustient Rule. (f)' = f'g - fg'· Chain Rule: (fog(x))' = f'(g(x)) · g(x) $\frac{6x \cdot (\sin(\sin(\sinh(x))))' = ?}{(e^{x^2})' = e^{x^2} \cdot 2x = 2xe^{x^2}}$ (+ 24 dy =0 =) dy = - x △ Trigonometric, Pery. (arcton x) = 1/1+x2

{ 	3.8 Exponential Growth Decay
	You "Pote of change to proportional to the size"
	du o sbro / . L- + o grawth
<u> </u>	3.8 Exponential Growth Decay. Key: "Rote of change is proportional to the size" dy = ky Skyo law of natural growth dt = ky Skyo law of natural growth
	THM. y(t) = y(0) ekt
	111111111111111111111111111111111111
	AP-rulation Routh PH = 4tt)
	Population Granth: P(x)=ytt) World Population Year
	2560 M 2560 1950 t=0
	3040 M 1960 t=10
	[0]. $k=?$ year 3014 ($t=64$) $P=?$ Solution. $P(t) = P(0)e^{kt} = 2560e^{kt}$
	$3040 = p(10) = 2560 e^{\frac{1}{10}} \Rightarrow k = \frac{1}{10} \ln \frac{3040}{3860} \approx 0.017185$
	P(64) = 7689.45
	* Radioactive Decay.
	Notation. moss of remaining radioactive substances mtt)
	$m(t) = m_0 e^{kt} (k < 0)$
	Half-life: The time require for half of any given quantity
	to decay.
	$m \xrightarrow{\downarrow} \frac{1}{2}m$
	nosf-life
	Ex. The hatf-life of radium-226 To 1590 years
	(0) A sample has 100 mg radium-226. Find the formula of
~	the sample that remains often tyears.
	(=) Find the moss ofter 1000 years.
	Solution.

 $m(t) = m_0 e^{kt} = |\infty| e^{kt}$ $(-) m(1590) = \frac{1}{2}(1\infty) = 50 = |\infty| e^{kt}$ $\frac{1}{2} = e^{kt}$ $\frac{1}{2} = e^{kt}$ $\frac{1}{2} = e^{kt}$ $(=) m(1000) = 100 e^{-(n2)1000/190} = 65 mg$ Newton's Jaw of Goling.
To: temperature of the surroundings. dy = ky = k (T-Ts) Define ytt) = T(t)-Ts -dy = ky ytt) = (Tio)-Ti) ett yro) Tt) = (T(0)-Ts)et + Ts Ex. object: a bottle of soda (Coke) Tenperetures: 1 som 72°F fuge 44°F After 30 mins, the sada becomes 61°F [D]: What Is the temperature often ANOTHER 30 mins? Solution. 61=T(30)=(72-44)ek.30+44 -> k= In (1/2)/30 ~-0.01663 $T(60) = (72-44)e^{k.60} + 44 = 54.3$

33.9 Related Rates
33.9 Related Fates Ex. Air Is being pumped not a spherical bolloon so that the volume moresses at a rate of 100 cm3/s How that the volume moresses at a rate of 100 cm3/s How
that the volume noneses at a rate of 100 cm/s 7100
fost is the radius increasing when the diameter is socm?
Solution Notation, J Volume: V
Time: t
Radius 1 T
Diameter: $d = 2r$
Formula, $V(r) = \frac{4}{3}\pi r^3$
dV -1-m Cm²/o
Chain Rule: $f(g(x))' = f'(g(x)) \cdot g'(x)$
Choun Aule, $f(g(x))' = f'(u) \cdot g'(x) = f'(u) \cdot u'(x)$ If let $u = g(x)$, $f(g(x))' = f'(u) \cdot g'(x) = f'(u) \cdot u'(x)$
$\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$
$\frac{dx}{dx} = \frac{du}{dx}$
$\frac{dY}{dt} = \frac{dV}{dt} \cdot \frac{dr}{dt} = 4\pi r^3 \frac{dr}{dt}$
$\frac{dr}{dt} = \frac{100}{4\pi r^2} \cdot 100$
dr = lu
When $r = x$, $\frac{dr}{dt} = \frac{1}{x^{11}}$
1 / stought X
Ex: A man walks along a strought x
-th at speed of 4 1/6
search light is located 20 fl from At what rate is the
heart stating with the
on the poth closest to the searchlight?

2 Given # dx = 4 Notation, Distance X de when X=1J. X=20 tond Formule: tond == do $\frac{dx}{dt} = \frac{dx}{d\theta}$ $\Rightarrow \frac{d\theta}{dt} = \frac{1}{1} \cos \theta$ Chain Rule 20 Ser 20

M = f(2).0.01 = 0.12

	(2)
 	of" Affects f
	DEF.
	(a) If the graph of I tres above all its targents on an interval
	I, then it is called concare upword
	(b) - below -
	- downward
	Ex. 1 concove 1 concove
	downword
	G_{X} . (-) $f(x) = x^2$ / concore upword
	Gx. (-) $f(x) = x$ concore upword
	(=) f(x) = Ix concre downward
	Control (LOW) KOTO
	$(\equiv)-f(x)=\ln x$ concore downword
***************************************	(=/=//x) - m/x (concove (convinue)
···	THM [Consmits Toot]
	THM. [Concertly Test] (a) If f"(x> > o for all x in I, then it is concere appendent
	(b downword-
	Table 1 to 1 t
	G_{X} . (-) $f(x) = x^2$, $f'(x) = 2x$, $f''(x) = 2 > 0$
	(c) $f(x) = \sqrt{x} = x^{\frac{1}{2}}$ $f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}}$
	$f'(x) = \frac{1}{2} - (-\frac{1}{2})x^{-\frac{7}{2}} = -\frac{1}{4}x^{-\frac{7}{2}}$
	$=\frac{-1}{4\sqrt{\pi}}<0$
· · · ·	$(\Xi) f(x) = \ln x$, $f'(x) = \frac{1}{x}$, $f'(x) = -\frac{1}{x^2} < 0$

f' + - 0 charge signs at c I deal number (seal moximum/minimum change eigns at c inflection point DEF, [Inflection Point] Points where of I continuous at and also changes concerty at G_{x} . $f(x) = x^{3}$, $f'(x) = 2x^{2}$ f''(x) = 6xInterval (-W.O) (0+W) ON an inflection point (a) If f(c) =0 and f(10>0, then f has a local minium at c. $6x \cdot (-) f(x) = x^2$, f'(x) = 2x, f'(0) = 0, f''(0) = 2(=) $-f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ $f'(x) = 12x(x+1)(x-2) = 12x^3 - 12x^2 - 2kx$ $f'(x) = 36x^2 - 24x - 24$ (f(-1) = 0 f''(-1) = 3670 $f'(0) = 0 \qquad f''(0) = 24 < 0$ f'(2) = 0 f''(2) = 72 70

	Θ
845	Summany of Curro Statching
ZTET	
A. A	Somern
3. 1	Intercepts, [flo) y-intercept
	f(x)=0 $x-intercepts$
2	mretry, (from , $f(-x) = f(x)$)
	$\langle codd = f(x) = -f(x)$
	Gc.
J. As	7
	orizontal tim fix)=L or time-fix)=L ton'x
\(\(\(\(\(\(\(\(\)\)\\\\\\\\\\\\\\\\\\	
	X-10-1-1(X) III X
	Slort * (my - (mx+b) 7=0
]	75
E. M.	`
, /	
9 9	month and Inflution Ponts I"
本	
J 3	$(\kappa) = \kappa + \frac{1}{\kappa}$
A. A.	$\partial m_{x,n} = \{x \neq \emptyset^{\ell} = (-\infty, 0) \cup (0, \infty)$
7	or is not in domain to no y-interest
	0
	4
3.6	(I'm fex) 1
Ž	
-5}	A-1(x) -+A (x) X
*	

f_{ex} , $f(x) = \frac{1}{2} (e^{x} + e^{-x})$	B	B. [f(0)=f(1+1)=1 → 4-miterapt 10 (0,1)	1 from the mosolution of no mercept	C. f(-x) = \frac{1}{2} (e^{-x} + e^{x}) = f(x) = f(x) = f(x).	D. Eveny point X, fox is well defined so no vertex asymptotic	A/20	- 1	shave no participal commentate exerts.	$E. \int (x) = \frac{1}{2} (e^{x} + e^{-x} \cdot (-1)) = \frac{1}{2} (e^{x} - e^{-x})$	+(W=0 \$ e^x_e^x=0 \$ \$ e^x_1=0 \$ \$2x=0 \$ x=0	(A+ °0) (0 ' A-)	f' <0 >0	f V >	F. Ence the only exticl number 30, we only need to	2	a lotal min	G. f"(M)=2(ex+e-x)>0 = f Is always concer upward.			9		
									- d-77 Line for		***											

_	§ 4.4 Indéterminate Fortes & L'Hospital's Rule.
	$\frac{E_{X}}{(x+3)} \cdot \frac{1}{(x+3)} = \frac{1}{(x+3)} \cdot \frac{1}{(x+3)} = \frac{1}{(x+3)} \cdot \frac{1}{(x+3)} = 6$
	Fact. $\lim_{x\to 3} (x^2-9) = 0$, $\lim_{x\to 3} (x-3) = 0$ "0" Type.
	$\frac{E_{X}}{1} = \frac{\lim_{N \to \infty} \frac{1 + \frac{2}{N}}{2N - 1}} = \frac{1}{1}$
	Fact $\lim_{x \to \infty} (x+2) = \infty = \lim_{x \to \infty} (2x+1)$ "Type
	THM. [1 Hospital's Rule]
	Suppose of and g are differentiable on an open interval I that contains a. When computing lim fine reaches
	either 'o' or "D' type, then
	$\lim_{N\to\infty}\frac{f(N)}{g(N)}=\lim_{N\to\infty}\frac{f(N)}{g'(N)}.$
	if the 24s (right hand side) exists, or I IN.
	$\frac{6x \cdot \lim_{X \to 3} \frac{x^2 \cdot 1}{x^{-3}} = \lim_{X \to 3} \frac{2x}{1} = 6}{1}$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Ex. (im 1nx x-1 x
	$\lim_{X \to 1} \ln X = 0 = \lim_{X \to 1} (X \to 1) \cdot \lim_{X \to 1} \frac{\lim_{X \to 1} \ln X}{ X \to 1 } = 1$
	$\frac{G_{X}}{K+0} \cdot \lim_{X \to 0} \frac{G_{inX}}{K} = $
	Ex. KIM ex = lim ex = lim ex = W

	S_{NC} / T_{NC} N^2-N-2
	$\frac{\mathcal{E}_{X}}{\langle x \rangle}, \frac{\sqrt{m}}{\langle x \rangle} \frac{\chi^{2} - \chi - 2}{\langle x \rangle}$
	If use 1 Hospital. I'm X-1X-2 = Lim XX-1 = I, which is wrong
	$\lim_{X \to 1} (X-1) = 0 \neq -2 = \lim_{X \to 1} (X-X-2)$. This is not a "0" type.
	$\frac{\sqrt{2}m}{N+1} \frac{N^{2}-N-2}{N-1} = \frac{-2}{0} = -10$
	Remark. Check the type before applying I'stospital's Rule
	Indeterminate Produit: "O. two Type
	$\frac{G_X}{\lim_{x\to 0^+} x n_X}$, $\lim_{x\to 0^+} x = 0$, $\lim_{x\to 0^+} x = 0$
	Mothed I lim xmx - lim mx = 1 lim to =0
	Mothod I $\lim_{x\to 0^+} x \lim_{x\to 0^+} \frac{\lim_{x\to 0^+} \frac{1}{x}}{(\frac{1}{x})} \frac{\lim_{x\to 0^+} \frac{1}{x}}{(\frac{1}{x})} = 0$
	Method II? Lim x/mx = Lim x Ll Lim 1 A x x x x x x x x x x x x x x x x x x
	()mx) - x/n²x
	WRONG approach = lim - x mix WORSE than before;
	· Indeterminate Difference:
	Ex. Lim (seex-tonx) "W-W"
	Lim seex = = = Lim tonx
*	lim (con - + m) - lim 1-sinx 1 lm -cox =0
en er fin a tallen anna an eilde biller fina er fin authrijk biller fina er	Lim (seex-tons) = lim 1-sinx = lim -cox = 0

ş. 9.	· I detain Parks (San Fig. 7800)
-	Indetermine Power Lim [(x)] g(x)
	"0°" "W°" [1] W"
	KEY: Natural Logarithmic: In [fix)] 9100 = gex). In [fix] [] n'o°' = "o-)no" = o-(-10)
	$\int n'o^{\circ'} = o - no' = o - (-m)$
:	/mpo° = 0.), mo = 0. m
	$l_{n_1}^{p_0} = p_0 \cdot m_1 = p_0 \cdot o$
	fox tim of ?
1	7
	o [*]
	$y = x^{\alpha} \Rightarrow)ny = x)nx$
	$\Rightarrow \lim_{x \to 0} \ln y = \lim_{x \to 0} x \ln x = 0$
	= lim y = lim e my = e kin my = e°=1
	Ex: 6m ()+sm4x) cotx
<u>.</u>	, ,
	" $y = (1+2m4x)^{\cot x} \Rightarrow my = \cot x [m(Hem4x)]$
	- In (1+sm 4x)
	torx
	Um Iny = Lm 400 1+ 50 4 = 4
	JEL N
	12m 1 2m my 4
	$\lim_{N\to\infty}y=e^{iN}=e^{4}$
· · · · · · · · · · · · · · · · · · ·	

§4.2 The Mean Value Theorem THM. (Rolle's] [() f 15 continuous on [a, b] , then there exists If (=) f'(a) = f(b) (a (a) (differentiable) a number cin (a) (a) cuch that f'(a) = 0&x. (-) f(x) = 2 constant function a = 0. $b = 3 \Rightarrow Any c$ (=) $f(x) = x^2$ a = -2 b = 2 e = 0THM. [Mean Value] If s(-) f is continuous on [a,b], then there exists a number c (=) flexists on (a,b) in (a,b) such that s(0)=f(b)=f(b) Remark ()When f(0)=f(b) =)f'(c)=0 =) Rolle's

THM. If f(x)=0 for all x in (a:b), then f(x) is constant on (a:b).

Corol. If f(x)=g(x) for all x in (a:b), then f(x)-g(x).

To constant on (a:b), 1.0. f(x)=g(x)+c for some constant c.

Gx. $ton^{-1}X + cot^{-1}X = \frac{1}{2}$. Let $f(x) = ton^{-1}X + cot^{-1}X$. Then $f(x) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0 \Rightarrow f(x) = C$ $C = f(1) = \frac{1}{4} + \frac{1}{4} = \frac{\pi}{2}$

DEF. [Indefinite Integrals], $\int f(x) dx = F(x) + C$

 $\int \frac{1}{x} dx = |n|x| + c$ $\int x^2 dx = \frac{x^3}{3} + c$ $\int \sin x \, dx = -\cos x \, dx = e^x + c$ Ex. [1st Order Differential Equation]. Find f(x) such that f(x) = e^x + 20(1+x2) and f(0) = -2 $f(x) = \int f(x) dx$ $= \int \left[e^{x} + \frac{20}{1+x^{2}} \right] dx$ = $e^{x} + 20$ anton x + c $\Rightarrow f(x) = e^{x} + \frac{20}{1+x^{2}}$ $f(0) = 1 + 20.0 + (=2) \Rightarrow (=-3)$ f(x) = ex+ 20 ontenx -3.

	DEF. [Definite Integral]
_	Area(s) = $\int_{c}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) dx$
	The second of th
·	- AK B
	othery xt on this intend
	the ith interval
	THM. If I is continuous on [a.b] (or has noty a finite number
	of jump discontinuous), then I integrable on [a.b]
	j.e, Jof(x) dx exists.
	The state of the s
	P. b TMDODTANT
	Remark . IMPORIANT:
	This one is a signed organies.
	$\int_{b}^{e} \pm ix y dx = Asea (B) > 0$
	$\int_{0}^{\infty} f(x) dx = -Aree(G_{i}) < 0$
	9 1-132
	Sold = Area (Si) - Area (Si)
	Ja James Andrew
	J. HMAK = ALG)+ALG)+ALG) -{A(G)+A(G)+ALG)}
	-fa(s,)+A(s,)+A(s,)
	<u>-</u> £(20)
	5, 5,
·	
	52

	Properties:
-	/ Marchander - Pa Consider
	When $b=a$ $\int_{a}^{b} f(x) dx = -\int_{a}^{b} f(x) dx = 0$
	2. $\int_a^b C dx = \zeta cb - \alpha$ Sconstart
	3. Jo [f(x) + g(x)] dx = Jo f(x) dx + Jo gur) dr
	l. a b
	4. $\int_{a}^{b} C f(x) dx = C \int_{a}^{b} f(x) dx$
	5. $\int_{a}^{c} f(x) dx + \int_{c}^{c} f(x) dx = \int_{a}^{b} f(x) dx$
	10 c 5
İ	6. H fix>>0 for asxeb, then So fixdx>0
***************************************	7. If frozgen for a exeb then Sefendon - So gendon
	8. If m = fox) = M for a = x = b, then
	$m(b-a) \leq \int_a^b f(x) dx \leq y \cdot q \cdot (b-a)$
i !	
i	
1	
_	

