Some Notes on Completeness of the Logic of Hebbian Learning

CALEB KISBY

Navigation

T	DEFINITIONS	
	1.1 Nets and Forward Propagation	
	1.2 Properties of Prop and Reach	
	1.3 Syntax and (Neural) Semantics	
	1.4 Hypergraphs	
	1.5 Neighborhood Semantics	
	1.6 Rules and Axioms	8
2	Are the Semantics Flipped?	8
3	Neural Semantics \leadsto Neighborhood Semantics	8
4	NEIGHBORHOOD SEMANTICS → NEURAL SEMANTICS	11
5	SOUNDNESS AND COMPLETENESS	15
6	Dynamics of Neural Network Update	15
\mathbf{R}	EFERENCES	15

1 Definitions

1.1 Nets and Forward Propagation

DEFINITION 1.1. An **ANN** (Artificial Neural Network) is a pointed directed graph $\mathcal{N} = \langle N, E, W, T, A \rangle$, where

- N is a finite nonempty set (the set of **neurons**)
- $E \subseteq N \times N$ (the set of **excitatory neurons**)
- $W: N \times N \to \mathbb{R}$ (the **weight** of a given connection)
- A is a function which maps each $n \in N$ to $A^{(n)}: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$ (the activation function for n, where k is the indegree of n)
- O is a function which maps each $n \in N$ to $O^{(n)}: \mathbb{R} \to \{0,1\}$ (the **output function** for n)

DEFINITION 1.2. A **BFNN** (Binary Feedforward Neural Network) is an ANN $\mathcal{N} = \langle N, E, W, T, A \rangle$ that is

- Feed-forward, i.e. E does not contain cycles of edges with all nonzero weights
- **Binary**, i.e. the output of each neuron is in $\{0, 1\}$
- $O^{(n)} \circ A^{(n)}$ is **zero at zero** in the first parameter, i.e.

$$O^{(n)}(A^{(n)}(\vec{0}, \vec{w})) = 0$$

• $O^{(n)} \circ A^{(n)}$ is **strictly monotonically increasing** in the second parameter, i.e. for all $\vec{x}, \vec{w}_1, \vec{w}_2 \in \mathbb{R}^k$, if $\vec{w}_1 < \vec{w}_2$ then $O^{(n)}(A^{(n)}(\vec{x}, \vec{w}_1)) < O^{(n)}(A^{(n)}(\vec{x}, \vec{w}_2))$. We will more often refer to the equivalent condition:

$$\vec{w}_1 \! \leqslant \! \vec{w}_2 \quad \text{ iff } \quad O^{(n)}(A^{(n)}(\vec{x},\vec{w}_1)) \! \leqslant \! O^{(n)}(A^{(n)}(\vec{x},\vec{w}_2))$$

DEFINITION 1.3. Given a BFNN \mathcal{N} , Set = $\mathcal{P}(N) = \{S \mid S \subseteq N\}$

DEFINITION 1.4. For $S \in \mathsf{Set}$, let $\chi_S: N \to \{0,1\}$ be given by $\chi_S = 1$ iff $n \in S$

We write W_{ij} to mean W(i,j) for $(i,j) \in E$. When m_i is drawn from a sequence m_1, \ldots, m_k , we write $\vec{W}(m_i,n)$ as shorthand for the sequence $\vec{W}(m_1,n), \ldots, \vec{W}(m_k,n)$. Similarly, we write $\vec{\chi}(m_i)$ as shorthand for the sequence $\vec{\chi}(m_1), \ldots, \vec{\chi}(m_k)$.

Neurons in a state $S \in \mathsf{Set}$ can subsequently activate new neurons, which activate yet more neurons, until eventually the state of $\mathcal N$ stabilizes. We call this final state of affairs $\mathsf{Prop}(S)$, i.e. the **propagation** of S. We would also like to consider the set of all neurons that *could possibly* be in a propagation. We call this set $\mathsf{Reach}(S)$, the set of all nodes graph-reachable from S.

DEFINITION 1.5. Let Prop: Set \rightarrow Set be defined recursively as follows: $n \in \text{Prop}(S)$ iff either

Base Case. $n \in S$, or

Constructor. For those m_1, \ldots, m_k such that $(m_i, n) \in E$ we have

$$O^{(n)}(A^{(n)}(\vec{\chi}_{\mathsf{Prop}(S)}(m_i), \vec{W}(m_i, n))) = 1$$

DEFINITION 1.6. Let Reach: Set \rightarrow Set be defined recursively as follows: $n \in \text{Reach}(S)$ iff either

Base Case. $n \in S$, or

Constructor. There is an $m \in \text{Reach}(S)$ such that $(m, n) \in E$.

For notational convenience, we also define a function Reach⁻¹: $N \to \text{Set}$ that, given a neuron $n \in N$, recovers the smallest set containing *all* of those m that graph-reach n.

```
DEFINITION 1.7. For all n \in N, Reach<sup>-1</sup>(n) = \bigcap_{n \notin \mathsf{Reach}(X)} X^{\complement}
```

```
PROPOSITION 1.8. For all n \in N, Reach<sup>-1</sup>(n) = \{m | \text{ there is an } E\text{-path from } m \text{ to } n\}
```

Proof. (\rightarrow) Suppose $u \in \mathsf{Reach}^{-1}(n)$, i.e. for all X such that $n \notin \mathsf{Reach}(X)$, $u \in X^{\complement}$. Consider in particular

$$X = \{m | \text{ there is an } E\text{-path from } m \text{ to } n\}^{\complement}$$

Notice that $n \notin \text{Reach}(X)$. And so $u \in X^{\complement}$, i.e. there is an E-path from u to n.

 (\leftarrow) Suppose there is an E-path from u to n, and let X be such that $n \notin \mathsf{Reach}(X)$. By definition of Reach, there is no $m \in X$ with an E-path from m to n. So in particular, $u \notin X$, i.e. $u \in X^\complement$. So $u \in \bigcap_{n \notin \mathsf{Reach}(X)} X^\complement = \mathsf{Reach}^{-1}(n)$.

1.2 Properties of Prop and Reach

```
PROPOSITION 1.9. (LEITGEB) Let \mathcal{N} \in \mathsf{Net}. For all S, S_1, S_2 \in \mathsf{Set}, Prop satisfies (Inclusion). S \subseteq \mathsf{Prop}(S) (Idempotence). \mathsf{Prop}(S) = \mathsf{Prop}(\mathsf{Prop}(S)) (Cumulative). If S_1 \subseteq S_2 \subseteq \mathsf{Prop}(S_1) then \mathsf{Prop}(S_1) \subseteq \mathsf{Prop}(S_2) (Loop). If S_1 \subseteq \mathsf{Prop}(S_0), \ldots, S_n \subseteq \mathsf{Prop}(S_{n-1}) and S_0 \subseteq \mathsf{Prop}(S_n), then \mathsf{Prop}(S_i) = \mathsf{Prop}(S_j) for all i, j \in \{0, \ldots, n\}
```

Proof. We prove each in turn:

(Inclusion). If $n \in S$, then $n \in Prop(S)$ by the base case of Prop.

(**Idempotence**). The (\subseteq) direction is just Inclusion. As for (\supseteq), let $n \in \mathsf{Prop}(\mathsf{Prop}(S))$, and proceed by induction on $\mathsf{Prop}(\mathsf{Prop}(S))$.

Base Step. $n \in \text{Prop}(S)$, and so we are done.

Inductive Step. For those m_1, \ldots, m_k such that $(m_i, n) \in E$,

$$O^{(n)}(A^{(n)}(\overset{\rightarrow}{\chi}_{\mathsf{Prop}(\mathsf{Prop}(S))}(m_i),\vec{W}(m_i,n))) = 1$$

By inductive hypothesis, $\chi_{\mathsf{Prop}(\mathsf{Prop}(S))}(m_i) = \chi_{\mathsf{Prop}(S)}(m_i)$. By definition, $n \in \mathsf{Prop}(S)$.

(Cumulative). For the (\subseteq) direction, let $n \in \text{Prop}(S_1)$. We proceed by induction on $\text{Prop}(S_1)$.

Base Step. Suppose $n \in S_1$. Well, $S_1 \subseteq S_2 \subseteq \text{Prop}(S_2)$, so $n \in \text{Prop}(S_2)$.

Inductive Step. For those m_1, \ldots, m_k such that $(m_i, n) \in E$,

$$O^{(n)}(A^{(n)}(\overset{\rightarrow}{\chi_{\mathsf{Prop}(S_1)}}(m_i),\vec{W}(m_i,n))) = 1$$

By inductive hypothesis, $\chi_{\mathsf{Prop}(S_1)}(m_i) = \chi_{\mathsf{Prop}(S_2)}(m_i)$. By definition, $n \in \mathsf{Prop}(S_2)$.

Now consider the (\supseteq) direction. The Inductive Step holds similarly (just swap S_1 and S_2). As for the Base Step, if $n \in S_2$ then since $S_2 \subseteq \text{Prop}(S_1)$, $n \in S_1$.

(Loop). Let $n \ge 0$ and suppose the hypothesis. Our goal is to show that for each i, $\mathsf{Prop}(S_i) \subseteq \mathsf{Prop}(S_{i-1})$, and additionally $\mathsf{Prop}(S_0) \subseteq \mathsf{Prop}(S_n)$. This will show that all $\mathsf{Prop}(S_i)$ contain each other, and so are equal. Let $i \in \{0, \ldots, n\}$ (if i = 0 then i - 1 refers to n), and let $e \in \mathsf{Prop}(S_i)$. We proceed by induction on $\mathsf{Prop}(S_i)$.

Base Step. $e \in S_i$, and since $S_i \subseteq \text{Prop}(S_{i-1})$ by assumption, $e \in \text{Prop}(S_{i-1})$.

Inductive Step. For those m_1, \ldots, m_k such that $(m_i, n) \in E$,

$$O^{(e)}(A^{(e)}(\overrightarrow{\chi}_{\mathsf{Prop}(S_i)}(m_i), \overrightarrow{W}(m_i, e))) = 1$$

By inductive hypothesis, $\chi_{\mathsf{Prop}(S_i)}(m_j) = \chi_{\mathsf{Prop}(S_{i-1})}(m_j)$. By definition, $n \in \mathsf{Prop}(S_{i-1})$.

PROPOSITION 1.10. Let $\mathcal{N} \in \text{Net.}$ For all $S, S_1, S_2 \in \text{Set}$, $n, m \in \mathbb{N}$, Reach satisfies

(Inclusion). $S \subseteq \text{Reach}(S)$

(Idempotence). Reach(S) = Reach(Reach(S))

(Monotonicity). If $S_1 \subseteq S_2$ then Reach $(S_1) \subseteq \text{Reach}(S_2)$

(Pointwise-Antisymmetry). If $n \in \text{Reach}^{-1}(m)$ and $m \in \text{Reach}^{-1}(n)$ then n = m.

Proof. We check each in turn:

(Inclusion). Similar to the proof of Inclusion for Prop.

(**Idempotence**). Similar to the proof of Idempotence for Prop.

(Monotonicity). Let $n \in \text{Reach}(S_1)$. We proceed by induction on $\text{Reach}(S_1)$.

Base Step. $n \in S_1$. So $n \in S_2 \subseteq \text{Reach}(S_2)$.

Inductive Step. There is an $m \in \text{Reach}(S_1)$ such that $(m, n) \in E$. By inductive hypothesis, $m \in \text{Reach}(S_2)$. And so by definition, $n \in \text{Reach}(S_2)$.

(Inverse-Antisymmetry). Suppose $n \in \text{Reach}^{-1}(m)$ and $m \in \text{Reach}^{-1}(n)$. By Proposition 1.8, there is an E-path from n to m and an E-path from m to n. But since E is acyclic, m = n.

Intuitively, Reach is the fully monotonic extension of Prop. Prop is not monotonic because the weights of the net may be negative. Prop and Reach interact in the following way:

PROPOSITION 1.11. (Minimal Cause) For all $n \in N$, $n \in \text{Prop}(S)$ iff $n \in \text{Prop}(S \cap \text{Reach}^{-1}(n))$

[Is there a property expressible in our modal logic that implies (Minimal Cause)?]

Proof. (\rightarrow) Let $n \in \text{Prop}(S)$. We proceed by induction on Prop(S).

Base Step. $n \in S$. Our plan is to show $n \in \bigcap_{n \notin \mathsf{Reach}(X)} X^{\complement} = \mathsf{Reach}^{-1}(n)$ (so $n \in S \cap \mathsf{Reach}^{-1}(n)$), which will give us our conclusion by the base case of Prop. Let X be any set where $n \notin \mathsf{Reach}(X)$. So $n \notin X$ (since $X \subseteq \mathsf{Reach}(X)$), i.e. $n \in X^{\complement}$. But this is what we needed to show.

Inductive Step. Suppose $n \in \text{Prop}(S)$ via its constructor, i.e. for those $m_1, ..., m_k$ such that $(m_i, n) \in E$,

$$O^{(n)}(A^{(n)}(\overrightarrow{\chi}_{\mathsf{Prop}(S)}(m_i), \overrightarrow{W}(m_i, n))) = 1$$

By inductive hypothesis,

$$\chi_{\mathsf{Prop}(S)}(m_i) = \chi_{\mathsf{Prop}\left(S \cap \left(\bigcap_{n \notin \mathsf{Reach}(X)} X^{\complement}\right)\right)}(m_i)$$

So we can substitute the latter for the former. By definition, $n \in \text{Prop}(S \cap (\bigcap_{n \notin \text{Reach}(X)} X^{\complement}))$. (\leftarrow) Let $n \in \text{Prop}(S \cap \text{Reach}^{-1}(n))$. We again proceed by induction.

Base Step. $n \in S \cap \mathsf{Reach}^{-1}(n)$. So in particular, $n \in S$. By the base case of Prop , $n \in \mathsf{Prop}(S)$. **Inductive Step.** Similar to the inductive step for the (\to) direction.

1.3 Syntax and (Neural) Semantics

DEFINITION 1.12. Formulas of our language \mathcal{L} are given by

$$\varphi ::= p|\,\neg\varphi|\,\varphi \wedge \varphi|\,\mathbf{K}\varphi|\,\mathbf{T}\varphi$$

where p is any propositional variable. Material implication $\varphi \to \psi$ is defined as $\neg \varphi \lor \psi$. We define $\bot, \lor, \leftrightarrow, \Leftrightarrow$, and the dual operators $\langle \mathbf{K} \rangle, \langle \mathbf{T} \rangle$ in the usual way.

Definition 1.13. A neural network model is $\langle \mathcal{N}, \llbracket \cdot \rrbracket \rangle$, where $\overline{\mathcal{N}}$ is a BFNN and $\llbracket \cdot \rrbracket : \mathcal{L} \to \mathsf{Set}_{\mathcal{N}}$ is an interpretation function.

DEFINITION 1.14. Let $\mathcal{N} \in \text{Net}$. The semantics for \mathcal{L} are defined recursively as follows:

Definition 1.15. $\mathcal{N} \models \varphi$ iff $\llbracket \varphi \rrbracket_{\mathcal{N}} = N$

1.4 Hypergraphs

DEFINITION 1.16. A **hypergraph** is a tuple $\mathcal{H} = \langle V, H \rangle$, where V is the set of vertices and $H: \mathcal{P}(V) \times V$ is the set of **hyperarcs**.

Unfortunately, there is no agreed-upon definition of a path in a hypergraph. There are several candidates to choose from, and this choice is made to fit the use-case [3]. The same goes for properties on \mathcal{H} (e.g. reflexivity, transitivity, etc.). I've decided on the following definitions, which are highly non-standard but natural for our setting.

DEFINITION 1.17. Say we have a sequence $(S = S_1, \dots S_l)$ such that for all i,

$$S_{i+1} = \{u \mid S_i H u\}$$

We call this the sequence generated by S (of length l).

Proposition 1.18. The sequence of length l generated by S is unique.

Proof. By induction on l.

Base Step. l=1, so both sequences are (S), and we are done.

Inductive Step. Say we have sequences $(S = A_1, A_2, ..., A_l)$ and $(S = B_1, B_2, ..., B_l)$ generated by S. By inductive hypothesis, $A_{l-1} = B_{l-1}$. And so

$$A_l = \{u \mid A_{l-1}Hu\} = \{u \mid B_{l-1}Hu\} = B_l$$

and we are done.

DEFINITION 1.19. We say there is a **strong hyperpath** from source set S to node v iff for some l, the sequence $(S = S_1, S_2, S_3, \dots S_l)$ generated by S is such that $v \in S_l$.

DEFINITION 1.20. We say there is a **strong hypercycle** iff for some S, l, the sequence generated by S begins and ends with S, i.e. is $(S = S_1, S_2, S_3, \dots S_l = S)$.

DEFINITION 1.21. Let $\mathcal{H} = \langle V, H \rangle$ be a hypergraph, and $G = \langle V, E \rangle$ be a binary graph.

- \mathcal{H} is **reflexive** iff for all $s \in S$, SHs.
- \mathcal{H} is **transitive** iff $T = \{u | SHu\}$ and THv implies SHv.
- \mathcal{H} is acyclic iff for all strong hypercycles $(S_1, S_2, S_3, \dots S_l)$ in \mathcal{H} , $S_i = S_j$ for all $i, j \in \{1, \dots, l\}$.
- \mathcal{H} extends G whenever SHv iff $(S \cap \{u | uEv\})Hv$.

DEFINITION 1.22. Let $\mathcal{H} = \langle V, H \rangle$ be a hypergraph. Then

- $\mathcal{H}^* = \langle V, H^* \rangle$, the **reflexive-transitive closure** of \mathcal{H} , is that graph extending \mathcal{H} with the minimum number of hyperedges such that it is reflexive and transitive.
- $\mathcal{H}^- = \langle V, H^- \rangle$, the **reflexive-transitive reduction** of \mathcal{H} , is the graph with the minimum number of hyperedges such that $(H^-)^* = H^*$.

PROPOSITION 1.23. Let \mathcal{H}^* be the reflexive-transitive closure of \mathcal{H}^* . Then SH^*v iff there is a strong hyperpath from S to v in \mathcal{H} .

Proof. (\rightarrow) If SH^*v , then SHv [Todo: This is a big mistake!!!] (since H^* is an extension of H). Let $S_2 = \{u \mid SHu\}$. Then (S, S_2) with $v \in S_2$ forms a strong hyperpath from S to v.

 (\leftarrow) We proceed by induction on the length of the strong hyperpath.

Base Step. The hyperpath is of length 1, i.e. (S), with $v \in S$. Since H^* is reflexive, SH^*v .

Inductive Step. Say we have strong hyperpath $(S = S_1, S_2, ..., S_l)$ from S to v (in H). By definition of strong hyperpath, $S_l = \{u \mid S_{l-1}Hu\}$. In particular, $S_{l-1}Hv$.

CLAIM. $S_{l-1} = \{u | SH^*u\}.$

Proof. (\rightarrow) Let $u \in S_{l-1}$. We have strong hyperpath $(S = S_1, S_2, \dots, S_{l-1})$ from above, with $u \in S_{l-1}$. By inductive hypothesis, SH^*u .

(\leftarrow) Suppose SH^*u . By inductive hypothesis, there is a strong hyperpath from S to u in H. But the strong sequence generated by S is unique, so we know the hyperpath is $(S = S_1, S_2, \ldots, S_{l-1})$ with $u \in S_{l-1}$.

From here, we have $S_{l-1} = \{u \mid SH^*u\}$ and $S_{l-1}Hv$ (so $S_{l-1}H^*v$). By transitivity, we have SH^*v .

PROPOSITION 1.24. Let $\mathcal{H} = \langle V, H \rangle$ be a reflexive, transitive, acyclic hypergraph relation. If V is finite, \mathcal{H} has a unique reflexive-transitive reduction \mathcal{H}^- .

Proof.

Existence. First, since \mathcal{H} is reflexive and transitive, $H^* = H$. So the set $\{H^- = \langle V, E^- \rangle | (H^-)^* = H\}$ is not empty. Since V is finite, this set is also finite. By the well-ordering principle, there is such an H^- in this set with the minimum number of hyperedges.

Uniqueness. [TODO: Should use acyclic property]

Proposition 1.25. The reflexive-transitive reduction \mathcal{H}^- of \mathcal{H} is irreflexive and anti-transitive.

Proof. [Todo: Use the fact that H^- is minimal.]

PROPOSITION 1.26. Let $u, v \in V$ be such that $u \neq v$ and there is no $x \neq v \in V$ such that uRx, xR^*v . Then

 SR^*v iff SRv

In other words, R^* and R agree on every edge that does not result in reflexivity or transitivity.

Proof. [Todo]

PROPOSITION 1.27. Let $S \in \mathcal{P}(V), v \in V$ be such that $v \notin S$ and $\neg TH^*v$ for $T = \{u \mid SHu\}$. Then SH^*v iff SHv

In other words, H^* and H agree on every hyperedge that does not result in reflexivity or transitivity.

Proof. (\leftarrow) This direction follows by definition of H^* .

 (\rightarrow) Suppose not; SH^*v , but $\neg SHv$. Let $(S, S_2, ..., S_l)$ be a strong hyperpath with $v \in S_l$. Since $v \notin S$, $l \neq 0$. Since $\neg SHv$, $l \neq 1$. So we must have $l \geqslant 2$. This means that for some $2 \leqslant i < l$, $S_i \neq S$ and $S_i \neq S_l$. Without loss of generality, say i = 2.

By definition, $S_2 = \{u \mid SHu\}$. But S_2H^*v (via the hyperpath (S_2, \ldots, S_l)), which contradicts our assumption that $\neg TH^*v$ for $T = \{u \mid SHu\}$.

1.5 Neighborhood Semantics

Modal logics are traditionally interpreted via a relational possible-worlds semantics. But relational frames do not allow for non-normal operators like \mathbf{T} . Instead, we need to use neighborhood semantics (see [2]).

DEFINITION 1.28. A neighborhood frame is a pair $\mathcal{F} = \langle W, f \rangle$, where W is a non-empty set of worlds and $f: W \to \mathcal{P}(\mathcal{P}(W))$ is a neighborhood function.

The intuition is that f(w) selects those sets of worlds that are necessary (or known, or typical) at w.

Definition 1.29. A multi-frame is $\mathfrak{F} = \langle W, f, g \rangle$, where f and g are neighborhood functions.

DEFINITION 1.30. Let $\mathcal{F} = \langle W, f \rangle$ be a neighborhood frame, and let $w \in W$. The set $\bigcap_{X \in f(w)} X$ is called the **core** of f(w). We often abbreviate this by $\cap f(w)$.

DEFINITION 1.31. Let $\mathcal{F} = \langle W, f \rangle$ be a neighborhood frame, and let $w \in W$. We say that $X, Y \in f(w)$ form a loop in \mathcal{F} iff there exist $X = X_1 \dots, X_n = Y$ such that for all $1 \le i \le n$, $\{u \mid X_i \in f(u)\} \subseteq X_{i+1}$. (Including, of course, $\{u \mid X_n \in f(u)\} \subseteq X_1$).

DEFINITION 1.32. Let $\mathcal{F} = \langle W, f \rangle$, $\mathcal{G} = \langle W, g \rangle$ be neighborhood frames with W nonempty.

- \mathcal{F} is closed under finite intersections iff for all $w \in W$, if $X_1, ..., X_n \in f(w)$ then their intersection $\bigcap_{i=1}^k X_i \in f(w)$.
- \mathcal{F} is closed under supersets iff for all $w \in W$, if $X \in f(w)$ and $X \subseteq Y \subseteq W$, then $Y \in f(w)$.
- \mathcal{F} contains the unit iff $W \in f(w)$.
- \mathcal{F} contains the empty set iff $\emptyset \in f(w)$.
- \mathcal{F} is **reflexive** iff for all $w \in W$, $w \in \cap f(w)$
- \mathcal{F} is **transitive** iff for all $w \in W$, if $X \in f(w)$ then $\{u \mid X \in f(u)\} \in f(w)$.
- \mathcal{F} is antisymmetric iff for all $u, v \in W$, if $u \in \cap f(v)$ and $v \in \cap f(u)$ then u = v.
- \mathcal{F} is **loop-cumulative** iff for all $w \in W$, if X and Y form a loop, then

$$\{u\,|\,X\in g(u)\} = \{u\,|\,Y\in g(u)\}$$

• \mathcal{G} subsumes \mathcal{F} iff for all $w \in W$, $X \cup (\cap f(w))^{\complement} \in g(w)$ iff $X \in g(w)$.

DEFINITION 1.33. Let $\mathcal{F} = \langle W, f \rangle$ be a frame, and $\mathfrak{F} = \langle W, f, g \rangle$ be a multi-frame extending \mathcal{F} . We will focus on the following special classes of frames:

- \mathcal{F} is a **proper filter** iff for all $w \in W$, f(w) is closed under finite intersections, closed under supersets, contains the unit, and does not contain the empty set.
- \mathcal{F} is a loop-subfilter iff for all $w \in W$, f(w) contains the unit and is loop-cumulative.
- § is a preferential multi-frame iff
 - \circ $\mathcal{F} = \langle W, f \rangle$ forms a reflexive, transitive, proper filter,
 - \circ $\mathcal{G} = \langle W, g \rangle$ forms a reflexive, transitive, loop-subfilter and
 - \circ \mathcal{G} subsumes \mathcal{F}

PROPOSITION 1.34. (PACUIT) If $\mathcal{F} = \langle W, f \rangle$ is a filter, and W is finite, then \mathcal{F} contains its core.

PROPOSITION 1.35. If $\mathcal{F} = \langle W, f \rangle$ is a proper filter, then for all $w \in W, Y^{\complement} \in f(w)$ iff $Y \notin f(w)$.

Proof. (\to) Suppose for contradiction that $Y^{\complement} \in f(w)$ and $Y \in f(w)$. Since \mathcal{F} is closed under intersection, $Y^{\complement} \cap Y = \emptyset \in f(w)$, which contradicts the fact that \mathcal{F} is proper.

 (\leftarrow) Suppose for contradiction that $Y \notin f(w)$, yet $Y^{\complement} \notin f(w)$. Since \mathcal{F} is closed under intersection, $\cap f(w) \in f(w)$. Moreover, since \mathcal{F} is closed under superset we must have $\cap f(w) \not\subseteq Y$ and $\cap f(w) \not\subseteq Y^{\complement}$. But this means $\cap f(w) \not\subseteq Y \cap Y^{\complement} = \emptyset$, i.e. there is some $x \in \cap f(w)$ such that $x \in \emptyset$. This contradicts the definition of the empty set.

DEFINITION 1.36. Let $\mathcal{F} = \langle W, f \rangle$, $\mathcal{G} = \langle W, g \rangle$ be a neighborhood frame. A **neighborhood model** based on \mathcal{F} and \mathcal{G} is $\mathcal{M} = \langle W, f, g, V \rangle$, where $V : \mathcal{L} \to \mathcal{P}(W)$ is a valuation function.

DEFINITION 1.37. Let $\mathcal{M} = \langle W, f, g, V \rangle$ be a model based on two frames $\mathcal{F} = \langle W, f \rangle$, $\mathcal{G} = \langle W, g \rangle$. The (neighborhood) semantics for \mathcal{L} are defined recursively as follows:

1.6 Rules and Axioms

The proof system for our logic is as follows. We have $\vdash \varphi$ iff either φ is an axiom, or φ follows from previously obtained formulas by one of the inference rules (axioms and rules shown below). If $\Gamma \subseteq \mathcal{L}$ is a set of formulas, we consider $\Gamma \vdash \varphi$ to hold whenever there exist finitely many $\psi_1, \ldots, \psi_k \in \Gamma$ such that $\vdash \psi_1 \land \ldots \land \psi_k \to \varphi$.

Basic Axioms and Inference Rules	K Axioms	T Axioms
(PC) All propositional tautologies	(K) $\mathbf{K}(\varphi \to \psi) \to (\mathbf{K}\varphi \to \mathbf{K}\psi)$	(Loop) $(\mathbf{T}\varphi_1 \to \varphi_2) \wedge \ldots \wedge (\mathbf{T}\varphi_n \to \varphi$
$(MP) \qquad \frac{\varphi \qquad \varphi \to \psi}{\psi}$	$(T) \mathbf{K}\varphi \to \varphi$ $(4) \mathbf{K}\varphi \to \mathbf{K}\mathbf{K}\varphi$	$(T) \qquad \mathbf{T}\varphi_i \leftrightarrow \mathbf{T}\varphi_j) \text{ (for each } i,$ $\mathbf{T}\varphi \to \varphi$
$(\operatorname{Nec}_{\mathbf{K}}) \frac{\varphi}{\mathbf{K}\varphi}$, , , , , , , , , , , , , , , , , , , ,	(4) $\mathbf{T}\varphi \to \mathbf{T}\mathbf{T}\varphi$
$(\operatorname{Nec}_{\mathbf{T}}) \frac{\varphi}{\mathbf{T}\varphi}$		$(\mathbf{KT}) \mathbf{K}\varphi \! \to \! \mathbf{T}\varphi$

2 Are the Semantics Flipped?

The semantics for \land, \rightarrow are flipped, relative to what we had before. We could have alternatively given our semantics by:

and then defined

$$\mathcal{N} \models' \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket'_{\mathcal{N}} = \emptyset$$

As explained by Leitgeb in [1]: This choice reflects the intuition that neurons act as "elementary-feature-detectors". For example, say $\llbracket \varphi \rrbracket$ represents those neurons that are *necessary* for detecting an apple, and $\llbracket \psi \rrbracket$ represents those neurons that are *necessary* for detecting the color red. If the net observes a red apple $(\varphi \wedge \psi)$, both the neurons detecting red-features $\llbracket \varphi \rrbracket$ and the neurons detecting apple-features $\llbracket \psi \rrbracket$ necessarily activate, i.e. $\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$ activates. As for implication, "every apple is red" $(\varphi \to \psi)$ holds for a net iff whenever the neurons detecting apple-features $\llbracket \varphi \rrbracket$ necessarily activate, so do the neurons detecting red-features $\llbracket \psi \rrbracket$. But this is only true if $\llbracket \varphi \rrbracket \supseteq \llbracket \psi \rrbracket$.

However, our next result shows that these two choices are interchangeable — and so we stick with the choice of semantics that is easier to work with.

PROPOSITION 2.1. For all
$$\mathcal{N} \in \mathsf{Net},$$

$$\mathcal{N} \vDash' \varphi \quad \text{iff} \quad \mathcal{N} \vDash \varphi$$

Proof. The key point is that for all φ , $\llbracket \varphi \rrbracket^{\complement} = \llbracket \varphi \rrbracket'$. To see this for $\mathbf{K}\varphi$ and $\mathbf{T}\varphi$ (assuming it holds inductively for φ), note that

$$\begin{split} \llbracket \mathbf{K} \varphi \rrbracket^{\complement} &= \llbracket \neg \langle \mathbf{K} \rangle \neg \varphi \rrbracket^{\complement} = \mathsf{Reach}(\llbracket \varphi \rrbracket^{\complement}) = \mathsf{Reach}(\llbracket \varphi \rrbracket') = \llbracket \mathbf{K} \varphi \rrbracket' \\ \llbracket \mathbf{T} \varphi \rrbracket^{\complement} &= \llbracket \neg \langle \mathbf{T} \rangle \neg \varphi \rrbracket^{\complement} = \mathsf{Prop}(\llbracket \varphi \rrbracket^{\complement}) = \mathsf{Prop}(\llbracket \varphi \rrbracket') = \llbracket \mathbf{T} \varphi \rrbracket' \\ \mathcal{N} \vDash' \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket' = \emptyset \\ \quad \text{iff} \quad \llbracket \varphi \rrbracket = N \\ \quad \text{iff} \quad \mathcal{N} \vDash \varphi \end{split}$$

3 Neural Semantics → Neighborhood Semantics

DEFINITION 3.1. Given a BFNN \mathcal{N} , its **simulation frame** $\mathfrak{F}^{\bullet} = \langle W, f, g \rangle$ is given by:

 \bullet W = N

And so

- $f(w) = \{ S \subseteq W \mid w \notin \mathsf{Reach}(S^{\complement}) \}$
- $\bullet \quad g(w) = \{ S \subseteq W \, | \, w \not \in \mathsf{Prop}(S^{\complement}) \}$

Moreover, given an interpretation function $[\![\cdot]\!]_{\mathcal{N}}$, the **simulation model** $\mathcal{M}^{\bullet} = \langle W, f, g, V \rangle$ based on \mathfrak{F}^{\bullet} has:

• $V(p) = \llbracket p \rrbracket_{\mathcal{N}}$

THEOREM 3.2. Let \mathcal{N} be a BFNN, and let \mathcal{M}^{\bullet} be the simulation model based on \mathfrak{F}^{\bullet} . Then $\mathcal{M}^{\bullet}, w \models \varphi \quad \text{iff} \quad w \in \llbracket \varphi \rrbracket_{\mathcal{N}}$

Proof. By induction on φ .

$$\mathcal{M}^{\bullet}, w \vDash p \quad \text{iff} \quad w \in V(p) \\ \quad \text{iff} \quad w \in \llbracket p \rrbracket \\ \\ \mathcal{A}^{\bullet}, w \vDash \neg \varphi \quad \text{iff} \quad w \notin \llbracket \varphi \rrbracket \\ \quad \text{iff} \quad w \notin \llbracket \varphi \rrbracket \\ \\ \varphi \land \psi \text{ case:} \\ \\ \mathcal{M}^{\bullet}, w \vDash \varphi \land \psi \quad \text{iff} \quad \mathcal{M}^{\bullet}, w \vDash \varphi \quad \text{and} \quad \mathcal{M}^{\bullet}, w \vDash \psi \\ \quad \text{iff} \quad w \in \llbracket \varphi \rrbracket \\ \quad \text{iff} \quad w \in \llbracket \varphi \rrbracket \\ \\ \langle \mathbf{K} \rangle \varphi \quad \text{case:} \\ \\ \mathcal{M}^{\bullet}, w \vDash \langle \mathbf{K} \rangle \varphi \quad \text{iff} \quad \{u \mid \mathcal{M}^{\bullet}, w \vDash \varphi \} \notin f(w) \quad \text{(by definition)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin f(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin f(w) \quad \text{(iff)} \\ \quad \text{iff} \quad w \in \text{Reach}(\llbracket \varphi \rrbracket) \quad \text{(by definition)} \\ \quad \text{iff} \quad w \in \text{Reach}(\llbracket \varphi \rrbracket) \quad \text{(by definition)} \\ \langle \mathbf{T} \rangle \varphi \quad \text{case:} \\ \\ \mathcal{M}^{\bullet}, w \vDash \langle \mathbf{T} \rangle \varphi \quad \text{iff} \quad \{u \mid \mathcal{M}^{\bullet}, w \vDash \varphi \} \notin g(w) \quad \text{(by definition)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{iff} \quad \{u \mid u \notin \llbracket \varphi \rrbracket \} \notin g(w) \quad \text{(IH)} \\ \quad \text{(III)} \quad \text{(III)} \\ \quad \text{(III)} \quad \text{(III)} \quad \text{(III)} \quad \text{(III)} \\ \quad \text{(III)} \quad \text{(IIII)} \quad \text{$$

iff

iff

 $w \in \mathsf{Prop}(\llbracket (\varphi^{\complement})^{\complement} \rrbracket)$

 $w \in \mathsf{Prop}(\llbracket \varphi \rrbracket)$

iff $w \in [\![\langle \mathbf{T} \rangle \varphi]\!]$

(by choice of q)

(by definition)

COROLLARY 3.3. $\mathcal{M}^{\bullet} \models \varphi$ iff $\mathcal{N} \models \varphi$.

Proof.

$$\mathcal{M}^{\bullet} \vDash \varphi \quad \text{iff} \quad \mathcal{M}^{\bullet}, w \vDash \varphi \text{ for all } w \in W = N$$

$$\quad \text{iff} \quad w \in [\![\varphi]\!]_{\mathcal{N}} \text{for all } w \in N$$

$$\quad \text{iff} \quad [\![\varphi]\!]_{\mathcal{N}} = N$$

$$\quad \text{iff} \quad \mathcal{N} \vDash \varphi$$

Theorem 3.4. \mathfrak{F}^{\bullet} is a preferential multi-frame.

Proof. We show each in turn:

- \mathcal{F} is closed under finite intersection: Suppose $X_1, \ldots, X_n \in f(w)$. By definition of $f, w \notin \bigcup_i \operatorname{Reach}(X_i^{\complement})$ for all i. Since Reach is monotonic, by Proposition [TODO] we have $\bigcup_i \operatorname{Reach}(X_i^{\complement}) = \operatorname{Reach}(\bigcup_i X_i^{\complement}) = \operatorname{Reach}((\bigcap_i X_i)^{\complement})$. So $w \notin \operatorname{Reach}((\bigcap_i X_i)^{\complement})$. But this means that $\bigcap_i X_i \in f(w)$.
- \mathcal{F} is closed under superset: Suppose $X \in f(w), X \subseteq Y$. By definition of $f, w \notin \mathsf{Reach}(X^\complement)$. Note that $Y^\complement \subseteq X^\complement$, and so by monotonicity of Reach we have $w \notin \mathsf{Reach}(Y^\complement)$. But this means $Y \in f(w)$, so we are done.
- \mathcal{F} contains the unit: Note that for all $w \in W$, $w \notin \text{Reach}(\emptyset) = \text{Reach}(W^{\complement})$. So $W \in f(w)$.
- \mathcal{F} does not contain the empty set: Similarly, for all $w \in W$, $w \in \text{Reach}(W) = \text{Reach}(W) = \text{Reach}(\emptyset^{\complement})$. So $\emptyset \notin f(w)$.
- \mathcal{F} is reflexive: We want to show that $w \in \cap f(w)$. Well, suppose $X \in f(w)$, i.e. $w \notin \mathsf{Reach}(X^\complement)$ (by definition of f). Since for all $S, S \subseteq \mathsf{Reach}(S)$, we have $w \notin X^\complement$. But this means $w \in X$, and we are done.
- \mathcal{F} is transitive: Suppose $X \in f(w)$, i.e. $w \notin \text{Reach}(X^{\complement})$. Well,

```
\begin{aligned} \mathsf{Reach}(X^\complement) &= \mathsf{Reach}(\mathsf{Reach}(X^\complement)) & \text{(by Idempotence of Reach)} \\ &= \mathsf{Reach}(\{u|\, u \in \mathsf{Reach}(X^\complement)\}) \\ &= \mathsf{Reach}(\{u|\, u \not\in \mathsf{Reach}(X^\complement)\}^\complement) \\ &= \mathsf{Reach}(\{u|\, X \in f(u)\}^\complement) & \text{(by definition of } f) \end{aligned}
```

So by definition of f, $\{u | X \in f(u)\} \in f(w)$.

- \mathcal{F} is antisymmetric: Suppose $u \in \cap f(v)$ and $v \in \cap f(u)$, i.e. $u \in \bigcap_{X \in f(v)} X$ and $v \in \bigcap_{X \in f(u)} X$. By choice of f, $u \in \bigcap_{v \notin \mathsf{Reach}(X^\complement)} X$ and $v \in \bigcap_{u \notin \mathsf{Reach}(X^\complement)} X$. Substituting X^\complement for X we get $u \in \bigcap_{v \notin \mathsf{Reach}(X)} X^\complement$ and $v \in \bigcap_{u \notin \mathsf{Reach}(X)} X^\complement$. In other words, $u \in \mathsf{Reach}^{-1}(v)$ and $v \in \mathsf{Reach}^{-1}(u)$. By Pointwise-Antisymmetry of Reach, u = v.
- \mathcal{G} contains the unit: Similarly to g, for all $w \in W$, $w \notin \text{Prop}(\emptyset)$, i.e. $W \in g(w)$.
- *G* is loop-cumulative:

So in particular, if X and Y form a loop, then $\{u \mid X \in g(u)\} = \{u \mid Y \in g(u)\}.$

- \mathcal{G} is reflexive: Follows similarly, since $X \subseteq \text{Prop}(X)$ by (Inclusion).
- \mathcal{G} is transitive: Follows similarly, since Prop(X) = Prop(Prop(X)) by (Idempotence).

• \mathcal{G} subsumes \mathcal{F} : Suppose $X \cup (\cap f(w))^{\complement} \in g(w)$. By choice of $g, w \notin \operatorname{Prop}([X \cup (\cap f(w))^{\complement}]^{\complement})$. Distributing the outer complement, we have $w \notin \operatorname{Prop}(X^{\complement} \cap (\cap f(w)))$, i.e. $w \notin \operatorname{Prop}(X^{\complement} \cap (\bigcap_{Y \in f(w)} Y))$. By choice of $f, w \notin \operatorname{Prop}(X^{\complement} \cap (\bigcap_{w \notin \operatorname{Reach}(Y^{\complement})} Y))$. Substituting Y^{\complement} for Y, we get $w \notin \operatorname{Prop}(X^{\complement} \cap (\bigcap_{w \notin \operatorname{Reach}(Y)} Y^{\complement}))$. By definition of $\operatorname{Reach}^{-1}$, $w \notin \operatorname{Prop}(X^{\complement} \cap \operatorname{Reach}^{-1}(w))$. From (Minimal Cause), we conclude that $w \notin \operatorname{Prop}(X^{\complement})$, i.e. $X \in g(w)$.

4 Neighborhood Semantics → Neural Semantics

DEFINITION 4.1. Let $\mathfrak{F} = \langle W, f, g \rangle$ be a preferential multi-frame. We define the graph relation R_f^* and hypergraph relation H_q^* by:

- uR_f^*v iff $u \in \cap f(v)$
- SH_q^*v iff $S^{\complement} \notin g(v)$

PROPOSITION 4.2. R_f^* and H_g^* are both reflexive, transitive, and acyclic, and H_g^* extends R_f^* .

Proof. Let $\mathcal{F} = \langle W, f \rangle$, and $\mathcal{G} = \langle W, g \rangle$

- \mathbf{R}_f^* is reflexive: Since \mathcal{F} is a reflexive frame, for all $u \in W$ we have $u \in \cap f(u)$. But by definition this means $u R_f^* u$.
- R_f^* is transitive: Suppose $u R_f^* v$ and $v R_f^* w$. So $u \in \cap f(v)$ and $v \in \cap f(w)$. Our goal is to show that $u \in \cap f(w)$. So let $X \in f(w)$ we want to show that $u \in X$.

Since $X \in f(w)$, $\{y \mid X \in f(y)\} \in f(w)$ (since \mathcal{F} is a transitive frame). But this means that $\cap f(w) \subseteq \{y \mid X \in f(y)\}$. Since $v \in \cap f(w)$, $X \in f(v)$. But this means that $\cap f(v) \subseteq X$. Since $u \in \cap f(v)$, $u \in X$.

- \mathbf{R}_f^* is acyclic: Suppose $u_1 R_f^* u_2, \ldots, u_{n-1} R_f^* u_n, u_n R_f^* u_1$. We will show $u_1 = u_n$ (the other cases are similar). Since R_f^* is transitive, we have $u_1 R_f^* u_n$ gives us $u_n \in \cap f(u_1)$, and $u_1 R_f^* u_n$ gives us $u_1 \in \cap f(u_n)$. Since \mathcal{F} is an antisymmetric frame, $u_1 = u_n$.
- H_g^* is reflexive: Suppose $s \in S$ and for contradiction $\neg SH_g^*s$, i.e. $S^{\complement} \in g(s)$. Since $s \in \cap g(s)$ (since \mathcal{G} is a reflexive frame), and $\cap g(s) \subseteq S^{\complement}$ (by definition of core), $s \in S^{\complement}$, which contradicts $s \in S$.
- H_g^* is transitive: Suppose $T = \{v | SH_g^*v\}$ and TH_g^*u . We want to show that SH_g^*u . Suppose for contradiction that $\neg SH_g^*u$, i.e. $S^\complement \in g(u)$. Since $u \in U$, TH_g^*u , i.e. $T^\complement \notin g(u)$. Note also that $T = \{u | S^\complement \notin g(u)\}$, i.e. $T^\complement = \{u | S^\complement \in g(u)\}$. Since \mathcal{G} is a transitive frame, $T^\complement \in g(u)$. But this contradicts $T^\complement \notin g(u)$.
- H_g^* is acyclic: Suppose we have a strong hypercycle $(S_1, ..., S_l, S_1)$ in H_g^* . We will show that $S_1 = S_l$ (the other cases are similar). By definition, for each (i, i+1) (including (l, 1)), $S_{i+1} = \{u | S_i H_g^* u\}$. So $S_{i+1} = \{u | S_i \notin g(u)\}$, i.e.

$$S_{i+1}^{\complement} = \{ u | S_i^{\complement} \in g(u) \}$$

Since \mathcal{G} is a loop-cumulative frame, $\{u | S_i^{\complement} \in g(u)\} = \{u | S_j^{\complement} \in g(u)\}$ for all $i, j \in \{1, \dots, n\}$.

From here, we can prove $S_1 = S_l$. We will show $S_1 \subseteq S_l$, but the other direction is similar (in fact, it's easier). Let $u \in S_1$. Well,

$$S_l^{\complement} = \{ u | S_{l-1}^{\complement} \in g(u) \} = \{ u | S_1^{\complement} \in g(u) \}$$

We claim that $S_1^{\complement} \notin g(u)$ — from which we can conclude $u \notin S_l^{\complement}$, i.e. $u \in S_l$ (which was our goal). Well, suppose not; say $S_1^{\complement} \in g(u)$. By definition of core we have $\cap g(u) \subseteq S_1^{\complement}$. Since \mathcal{G} is a reflexive frame, $u \in \cap g(u)$, and so $u \in S_1^{\complement}$. This contradicts $u \in S_1$ from before.

• H_g^* extends R_f^* : Suppose SH_g^*v . By definition, $S^{\complement} \notin g(v)$. Since \mathcal{G} subsumes \mathcal{F} , $S^{\complement} \cup (\cap f(v))^{\complement} \notin g(v)$. But this means that $(S^{\complement} \cup (\cap f(v))^{\complement})^{\complement}H_g^*v$. Distributing the outer complement, we get $(S \cap (\cap f(v)))H_g^*v$. By definition of R_f^* , we conclude that $(S \cap \{u \mid uR_f^*v\})H_g^*v$.

PROPOSITION 4.3. The reflexive-transitive reductions R_f, H_g of R_f^* and H_g^* are well-defined.

Proof. Since R_f^* is just a binary graph relation, its reflexive-transitive reduction exists and is unique (since R_f^* is acyclic). Similarly, by Proposition 1.24 the transitive reduction of H_q^* exists and is unique.

PROPOSITION 4.4. (PACUIT) For all $w \in W$,

$$S \in f(w)$$
 iff $\{v | vR_f^*w\} \subseteq S$

Proof. (\rightarrow) Suppose $S \in f(w)$, and let v be such that vR_f^*w . So $v \in \cap f(w)$, and so in particular $v \in S$. (\leftarrow) Now suppose $\{v \mid vR_f^*w\} \subseteq S$. Note that by definition of $R_f^*, \cap f(w) \subseteq \{v \mid vR_f^*w\}$ (any v in the core will be vR_f^*w). Since \mathcal{F} is closed under finite intersections and supersets, $S \in f(w)$.

PROPOSITION 4.5. For all $w \in W$,

$$S \in g(w)$$
 iff $\neg S^{\complement} H_g^* w$

Proof. By definition, $S \in g(w)$ iff $\neg S \notin g(w)$ iff $\neg S^{\complement} H_q^* w$.

[TODO: Clean up and streamline the hash function & its properties, etc. Make sure that the (Loop) property doesn't secretly show up here.]

DEFINITION 4.6. Suppose we have net \mathcal{N} and node $n \in \mathbb{N}$ with incoming nodes $m_1, \ldots, m_k, (m_i, n) \in E$. Let hash: $\mathcal{P}(\{m_1, \ldots, m_k\}) \times \mathbb{N}^k \to \mathbb{N}$ be defined by

$$\mathsf{hash}(S,\vec{w}) = \prod_{m_i \in S} w_i$$

DEFINITION 4.7. Let $\mathfrak{F} = \langle W, f, g \rangle$ be a preferential multi-frame, and let R_f, H_g be the reflexive-transitive reductions of R_f^*, H_g^* . Its **simulation net** $\mathcal{N}^{\bullet} = \langle N, E, W, A, O \rangle$ is the BFNN given by:

- \bullet N = W
- $E = R_f$

Now let m_1, \ldots, m_k list those nodes such that $(m_i, n) \in E$.

- $W(m_i, n) = p_i$, the *i*th prime number.
- $A^{(n)}(\vec{x}, \vec{w}) = \mathsf{hash}(\{m_i | x_i = 1\}, \vec{w})$
- $O^{(n)}(x) = 1$ iff $\mathsf{hash}^{-1}(x)[0]Hn$ (hash^{-1} is well-defined in special circumstances, see the next proposition)

Moreover, given a valuation function V, the **simulation net model** $\langle \mathcal{N}^{\bullet}, \llbracket \cdot \rrbracket \rangle$ based on \mathcal{N} has for all propositions p:

$$[\![p]\!]_{\mathcal{N}^{\bullet}} = V(p)$$

PROPOSITION 4.8. $\mathsf{hash}(S, \widetilde{W}(m_i, n)) : \mathcal{P}(\{m_1, \dots, m_k\}) \to \mathcal{P}_k$, where

 $P_k = \{n \in \mathbb{N} \mid n \text{ is the product of some subset of primes } \{p_1, \dots, p_k\}\}$

is bijective (and so has a well-defined inverse $hash^{-1}$).

Proof. To show that hash is injective, suppose $\mathsf{hash}(S_1) = \mathsf{hash}(S_2)$. So $\prod_{m_i \in S_1} p_i = \prod_{m_i \in S_2} p_i$, and since products of primes are unique, $\{p_i | m_i \in S_1\} = \{p_i | m_i \in S_2\}$. And so $S_1 = S_2$.

To show that hash is surjective, let $x \in P_k$. Now let $S = \{m_i | p_i \text{ divides } x\}$. Then $\mathsf{hash}(S) = \prod_{m_i \in S} p_i = \prod_{(p_i \text{ divides } x)} p_i = x$.

Proposition 4.9. $O^{(n)} \circ A^{(n)}$ is zero at zero and monotonically increasing.

Proof. First, note that $O^{(n)}(A^{(n)}(\vec{0},\vec{w})) = 0$, since we cannot have $\mathsf{hash}^{-1}(\mathsf{hash}(\emptyset)) = \emptyset Hn$. Now let \vec{w}_1, \vec{w}_2 be such that O is well-defined (i.e. are vectors of prime numbers), and suppose $\vec{w}_1 < \vec{w}_2$. If $O^{(n)}(A^{(n)}(\vec{x},\vec{w}_1)) = 1$, then $\mathsf{hash}^{-1}(\mathsf{hash}(\vec{x},\vec{w}_1))[0]$ Hn. But this just means $\{m_i | x_i = 1\}Hn$. And so $\mathsf{hash}^{-1}(\mathsf{hash}(\vec{x},\vec{w}_2))[0]$ Hn. But then $O^{(n)}(A^{(n)}(\vec{x},\vec{w}_2)) = 1$.

The main point here is just that $\vec{w_1}$ and $\vec{w_2}$ are just indexing the set in question, and their actual values don't affect the final output.

LEMMA 4.10. Reach $\mathcal{N} \bullet (S) = \{ v | \exists u \in S \text{ such that } u R_f^* v \}.$

Proof. For the (\supseteq) direction, suppose there is a $u \in S$ such that uR_f^*v and proceed by induction on the length of this path. If the path has length $0, v \in S$, and so $v \in \text{Reach}(S)$. Otherwise, let u immediately precede v on this path. By inductive hypothesis $u \in \text{Reach}(S)$. Since $(u, v) \in E$, $v \in \text{Reach}(S)$.

Now for the \subseteq direction. Suppose $v \in \text{Reach}(S)$, and proceed by induction on Reach.

Base step. $v \in S$. Since R_f^* is reflexive, vR_f^*v , and we are done.

Inductive step. There is $u \in \text{Reach}(S)$ such that $(u, v) \in E$ (and so $(u, v) \in R_f^*$). By inductive hypothesis, there is a $t \in S$ such that tR_f^*u . Since R_f^* is transitive, tR_f^*v as well.

Lemma 4.11. $\operatorname{Prop}_{\mathcal{N}^{\bullet}}(S) = \{n \mid SH_g^*n\}$

Proof. For the (\supseteq) direction, suppose SH_g^*n . By Proposition 1.23 there is a strong hyperpath from S to n in H_q . We show that $n \in \mathsf{Prop}_{\mathcal{N}^{\bullet}}(S)$ by induction on the length of this hyperpath:

Base step. We have a strong hyperpath of length 1, (S) with $n \in S$. So $n \in \mathsf{Prop}_{\mathcal{N}^{\bullet}}(S)$.

Inductive step. Say the hyperpath is $(S = S_1, S_2, \dots, S_l)$, with $n \in S_l$. By definition we have

$$S_l = \{u | S_{l-1} H_q u\}$$

In particular, $S_{l-1}H_gn$. So $S_{l-1}H_g^*n$, and by [Todo] we have $(S_{l-1}\cap \{m_i|m_iR_f^*n\})H_g^*n$.

CLAIM. $(S_{l-1} \cap \{m_i | m_i R_f^* n\}) H_g n$

Proof. We make use of Proposition 1.27 to move from H_g^* . Let $T = \{u | (S_{l-1} \cap \{m_i | m_i R_f^* n\}) H_g u\}$. We need to check that $n \notin S_{l-1} \cap \{m_i | m_i R_f^* n\}$ and $\neg T H_g^* n$.

Check 1: $n \notin S_{l-1}$. Suppose for contradiction that $n \in S_{l-1} \cap \{m_i | m_i R_f^* n\}$. Then in particular, $n \in S_{l-1}$. But $S_{l-1}H_g n$, which contradicts the fact that H_g is irreflexive.

Check 2: $\neg TH_g^*n$. Suppose for contradiction that TH_g^*n . [Todo $-n \in T$, and so it loops back on itself]

CLAIM. $S_{l-1} \cap \{m_i | m_i R_f^* n\} = S_{l-1} \cap \{m_i | m_i R_f n\}$

Proof. (\supseteq) This direction is easy.

(\subseteq) Suppose $u \in S_{l-1}$ and uR_f^*n . This time, we make use of Proposition 1.26 to move from R_f^* to R_f . We need to check that $u \neq n$ and there is no $x \neq n \in N$ such that uR_fx, xR_f^*n .

Check 1: $u \neq n$. Suppose for contradiction that u = n. So $n \in S_{l-1}$ and $S_{l-1}H_gn$, which contradicts the fact that H_g is irreflexive.

Check 2: There is no such x. Suppose for contradiction that we have x such that uR_fx, xR_f^*n . [Todo $-u \in S_{l-1}$, and $n \in S_l$. Think about it. Try to prove that x = n, which contradicts $x \neq n$.] \square

From here, we have

$$\begin{array}{ll} (S_{l-1} \cap \{m_i | \, m_i R_f n \}) H_g n \\ (\rightarrow) & \{m_i | \, m_i \in S_{l-1} \, \text{ and } \, (m_i, n) \in E \} H_g n & \text{(by choice of } E) \\ (\rightarrow) & \{m_i | \, m_i \in \operatorname{\mathsf{Prop}}_{\mathcal{N}^{\bullet}}(S) \, \text{ and } \, (m_i, n) \in E \} H_g n & \text{(by Inductive Hypothesis)} \\ (\rightarrow) & \operatorname{\mathsf{hash}}^{-1}(\operatorname{\mathsf{hash}}(\overrightarrow{\chi}_{\operatorname{\mathsf{Prop}}_{\mathcal{N}^{\bullet}}(S)}(m_i), \overrightarrow{W}(m_i, n)))[0] \, H_g \, n & \text{(by definition of hash)} \\ (\rightarrow) & O^{(n)}(A^{(n)}(\overrightarrow{\chi}_{\operatorname{\mathsf{Prop}}_{\mathcal{N}^{\bullet}}(S)}(m_i), \overrightarrow{W}(m_i, n))) = 1 & \text{(by choice of } O \text{ and } A) \\ \end{array}$$

By definition, $n \in \mathsf{Prop}_{\mathcal{N}^{\bullet}}(S)$.

As for the (\subseteq) direction, suppose $n \in \mathsf{Prop}_{\mathcal{N}^{\bullet}}(S)$, and proceed by induction on Prop .

Base step. $n \in S$. Since H_q^* is reflexive, $SH_q^* n$.

Inductive step. Let m_1, \ldots, m_k list those nodes such that $(m_i, n) \in E$. We have

$$O^{(n)}(A^{(n)}(\overrightarrow{\chi}_{\mathsf{Prop}_{\mathcal{N}^{\bullet}}(S)}(m_i), \overrightarrow{W}(m_i, n))) = 1$$

Let $T = \{u \mid SH_q^*u\}$. By our inductive hypothesis,

$$O^{(n)}(A^{(n)}(\overrightarrow{\chi}_T(m_i), \overrightarrow{W}(m_i, n))) = 1$$

By choice of O and A,

$$\mathsf{hash}^{-1}(\mathsf{hash}(\overrightarrow{\chi}_T(m_i), \overrightarrow{W}(m_i, n)))[0]\,H_q\,n$$

i.e. $TH_g n$ (and so $TH_g^* n$). Since H_g^* is transitive, $SH_g^* n$.

Theorem 4.12. Let \mathcal{M} be a model based on a preferential multi-frame \mathfrak{F} , and let $\langle \mathcal{N}^{\bullet}, \llbracket \cdot \rrbracket \rangle$ be the corresponding simulation net model. We have

$$\mathcal{M}, w \vDash \varphi \quad \text{iff} \quad w \in \llbracket \varphi \rrbracket_{\mathcal{N}^{\bullet}}$$

Proof. By induction on φ .

p case:

$$\mathcal{M}, w \vDash p \text{ iff } w \in V(p)$$

iff $w \in \llbracket p \rrbracket_{\mathcal{N}^{\bullet}}$

 $\neg \varphi$ case:

$$\mathcal{M}, w \models \neg \varphi \quad \text{iff} \quad \mathcal{M}, w \not\models \varphi \\ \quad \text{iff} \quad w \notin \llbracket \varphi \rrbracket_{\mathcal{N}^{\bullet}} \quad \text{(IH)} \\ \quad \text{iff} \quad w \in \llbracket \neg \varphi \rrbracket_{\mathcal{N}^{\bullet}}$$

 $\varphi \wedge \psi$ case:

$$\mathcal{M}, w \vDash \varphi \land \psi \quad \text{iff} \quad \mathcal{M}, w \vDash \varphi \quad \text{and} \quad \mathcal{M}, w \vDash \psi$$
$$\quad \text{iff} \quad w \in \llbracket \varphi \rrbracket_{\mathcal{N}^{\bullet}} \quad \text{and} \quad w \in \llbracket \psi \rrbracket_{\mathcal{N}^{\bullet}} \quad \text{(IH)}$$
$$\quad \text{iff} \quad w \in \llbracket \varphi \land \psi \rrbracket_{\mathcal{N}^{\bullet}}$$

 $\langle \mathbf{K} \rangle \varphi$ case:

```
\mathcal{M}, w \models \langle \mathbf{K} \rangle \varphi \text{ iff } \{u | \mathcal{M}, u \not\models \varphi\} \notin f(w)
                                                                                                                                                                                   (by definition)
                                                                        iff \{u \mid u \notin \llbracket \varphi \rrbracket_{\mathcal{N}^{\bullet}}\} \notin f(w)
                                                                                                                                                                                   (IH)
                                                                        iff \{u | u R_f^* w\} \nsubseteq \{u | u \notin \llbracket \varphi \rrbracket_{\mathcal{N}^{\bullet}} \}
                                                                                                                                                                                   (by Proposition 4.4)
                                                                        iff \exists u \text{ such that } u R_f^* w \text{ and } u \in \llbracket \varphi \rrbracket_{\mathcal{N}} \bullet
                                                                        iff w \in \mathsf{Reach}_{\mathcal{N}^{\bullet}}(\llbracket \varphi \rrbracket)
                                                                                                                                                                                   (by Lemma 4.10)
                                                                        iff w \in [\![\langle \mathbf{K} \rangle \varphi]\!]_{\mathcal{N}}
                                                                                                                                                                                   (by definition)
\langle \mathbf{T} \rangle \varphi case:
                                             \mathcal{M}, w \vDash \langle \mathbf{T} \rangle \varphi iff \{u | \mathcal{M}, u \not\vDash \varphi\} \notin g(w) (by definition)
                                                                                    iff \{u \mid u \notin \llbracket \varphi \rrbracket_{\mathcal{N}^{\bullet}} \} \notin g(w) (IH)
                                                                                    iff \llbracket \varphi \rrbracket_{\mathcal{N}^{\bullet}}^{\complement} \notin g(w)
                                                                                                                                                                                                                                                                     \llbracket \varphi \rrbracket_{\mathcal{N}} \cdot H_a^* w
                                                                                                                                                              (by Proposition 4.5)
                                                                                    iff w \in \mathsf{Prop}_{\mathcal{N}^{\bullet}}(\llbracket \varphi \rrbracket)
                                                                                                                                                              (by Lemma 4.11)
                                                                                    iff w \in [\![\langle \mathbf{T} \rangle \varphi]\!]_{\mathcal{N}^{\bullet}}
                                                                                                                                                              (by definition)
```

COROLLARY 4.13. $\mathcal{M} \models \varphi$ iff $\mathcal{N}^{\bullet} \models \varphi$.

Proof.

$$\begin{split} \mathcal{M} &\models \varphi & \text{iff} \quad \mathcal{M}, w \vDash \varphi \text{ for all } w \in W = N \\ & \text{iff} \quad w \in [\![\varphi]\!]_{\mathcal{N}} \bullet \text{for all } w \in N \\ & \text{iff} \quad [\![\varphi]\!]_{\mathcal{N}} \bullet = N \\ & \text{iff} \quad \mathcal{N}^{\bullet} \vDash \varphi \end{split}$$

5 Soundness and Completeness

[Soundness is straightforward, it's just a check that the properties hold for all models based on the frame.]

[Corollary: Soundness of neural semantics!]

[[The plan for completeness: High-level describe that we can do the canonical model construction (from, e.g., Pacuit, see page 65, second to last paragraph) & Lindenbaum Lemma stuff for our particular logic. [actually state canonical model definition] We then, as usual, prove the truth lemma [actually state truth lemma] The last thing to show is that our canonical model's frame is a preferential frame, i.e. satisfies all the right properties [then put it all together]]

[Strong completeness follows straightforwardly from weak completeness]

[Corollary: Strong completeness for neural semantics!]

6 Dynamics of Neural Network Update

References

- [1] Hannes Leitgeb. Nonmonotonic reasoning by inhibition nets. Artificial Intelligence, 128(1-2):161–201, 2001.
- [2] Eric Pacuit. Neighborhood semantics for modal logic. Springer, 2017.
- [3] Mayur Thakur and Rahul Tripathi. Linear connectivity problems in directed hypergraphs. *Theoretical Computer Science*, 410(27-29):2592–2618, 2009.