Investigation of the Higher Order Zeeman Effect

By

Evan M. R. Petrimoulx

A Thesis
Submitted to the Faculty of Graduate Studies
through the Department of Physics
in Partial Fulfillment of the Requirements for
the Degree of Bachelors of Science (With Thesis)
at the University of Windsor

Windsor, Ontario, Canada

2025

©2025 Evan M. R. Petrimoulx

Investigation of the Higher Order Zeeman E	\ffect	eman I	Ze	rder	. (Higher	the	of	gation	Investi	
--	--------	--------	----	------	-----	--------	-----	----	--------	---------	--

by

Evan M. R. Petrimoulx

APPROVED BY:

Initial. Last Name
Department of Mechanical, Automotive and Materials Engineering

Initial. Last Name School of Computer Science

Initial. Last Name Department of Physics

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.

DEDICATION

I would like to dedicate this thesis to ...

AKNOWLEDGEMENTS

. . .

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY										
DEDICATION	IV									
AKNOWLEDGEMENTS										
LIST OF TABLES	VII									
LIST OF FIGURES	VIII									
LIST OF ABBREVIATIONS	IX									
1 The Higher Order Zeeman Effect 1.1 Overview 1.2 History 1.3 Motivation 1.3.1 The $g-2$ experiment 1.3.2 High-precision magnetometry 1.3.3 Connection to Atomic Physics 1.4 The Zeeman effect in Hydrogen 1.5 The quadratic Zeeman effect 1.6 The magnetic dipole moment operator 1.6.1 The relativistic correction to 3 He $^+$	2 2 2 3 3 3 4 6 7									
1.7 Results	7 8 11									

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER 1

The Higher Order Zeeman Effect

1.1 Overview

In this chapter the Zeeman Effect is introduced, and the motivation, direct applications, and the higher order Zeeman Effect is discussed. The main focus of this chapter is to show the effect of the quadratic Zeeman Effect, and show how using the magnetic dipole operator in conjunction with the relativistic corrections to ³He⁺ yields a cubic Zeeman Effect. The effects of both the quadratic and cubic corrections are discussed in great detail, and the impact of the effect on high precision measurements is displayed for various magnetic field strengths.

Sec. 1.2 starts with the history of the Zeeman effect, its origins and discovery. Afterwards the motivation for the project in Sec. 1.3 is discussed. Here, some current experiments in the field such as the g-2 experiment conducted at the Max Planck Institute as well as applications to high-precision magnetometry are highlighted. Some additional applications in the field of atomic physics such as ... are introduced as well. In Sec. 1.4, the ordinary Zeeman effect is discussed, introducing its theory and application to atomic systems such as ${}^{3}\text{He}^{+}$. After introducing the ordinary Zeeman effect the quadratic Zeeman effect is introduced, where it is derived using the canonical momentum and a description of its impact on an atom subjected to a magnetic field is given. Moving towards higher order systems, the cubic Zeeman effect is introduced. Starting with the effects that contribute to the cubic Zeeman effect such as the magnetic dipole operator in Sec. 1.6 and relativistic corrections to

the ${}^{3}\text{He}^{+}$ ion in Sec. 1.6.1, these effects are combined to yield a B^{3} contribution to the energy splitting within the presence of an external magnetic field. Afterwards, Sec. 1.7 discusses the results of the calculation and its applications.

1.2 History

The Zeeman effect was first introduced by Pieter Zeeman, who discovered in 1896 that in the presence of a static magnetic field, spectral lines could be split into many components. After the discovery of quantum mechanics, the behaviour was found to be described as a perturbation of the Hamiltonian using the magnetic moment of the atom and the magnetic field.

Since it's discovery, the Zeeman effect has played a large role in the field of atomic physics and magnetometry, which is the study of the intensity of magnetic field across space and time. There have been several calculations to include the relativistic corrections [26, 27], field inhomogeneities, and quadratic effects in hydrogenic systems [18]. However, little is known about its behavior in helium atoms such as ${}^{3}\text{He}^{+}$ and ${}^{3}\text{He}$, which is of key interest in magnetometry and the muon magnetic moment anomaly $(\mu_{g}-2)$, for which there is a 5.0 σ discrepancy [9] with the standard model prediction.

1.3 Motivation

1.3.1 The g-2 experiment

The Dirac equation is a very successful and well studied equation in quantum mechanics. Its success comes from its ability to predict 2 important phenomena; the existence of antimatter and the magnetic dipole moment of the electron. The Dirac equation predicts that the magnetic dipole of the electron should be twice that of the classical prediction. This result is expressed in terms of the g-factor which the Dirac equation predicts is equal to 2. While the Dirac prediction is much closer to experi-

mental findings, there is still a difference between the experimentally measured value of g and the equations prediction. This is called the g-2 anomaly. The anomaly is represented by

$$a = \frac{g-2}{2} \ . \tag{1}$$

The discrepancy of g is caused by higher-order contributions from quantum field theory and to this day is yet to be properly explained.

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm hadron} \tag{2}$$

The first two terms can be derived from first principles, but the hadronic term cannot be calculated precisely on its own and is estimated from experimental results. The effort to measure the muon magnetic moment precisely is an active area of research. The work presented in this thesis aids in the investigation of the g-2 anomaly by providing corrections to the Zeeman splitting in ${}^{3}\text{He+}$, the element used in the magnetometry experiment to measure the anomaly. Accounting for higher order corrections to the Zeeman effect may help consolidate the discrepancy between theory and experiment and help researchers further understand the muon magnetic moment and its impact on muonic systems.

1.3.2 High-precision magnetometry

1.3.3 Connection to Atomic Physics

1.4 The Zeeman effect in Hydrogen

When an atom is placed in an external magnetic field, its energy levels are shifted. The shifting of energy levels is known as the Zeeman effect. The effect can be written as a perturbation to the Hamiltonian [19]

$$\hat{H}_Z = -\left(\vec{\mu_l} + \vec{\mu_s}\right) \cdot \vec{B} \ . \tag{3}$$

 μ_l is the orbital dipole moment, and μ_s is the spin magnetic dipole moment, which have the definitions

$$\vec{\mu_l} = -\frac{e}{2m}\vec{L} \qquad \qquad \vec{\mu_s} = -\frac{e}{m}\vec{S} \tag{4}$$

So the first order Zeeman effect Hamiltonian is

$$\hat{H}_Z = \frac{e}{2m} \left(\vec{L} + 2\vec{S} \right) \cdot \vec{B} \tag{5}$$

and has the following eigen energy solutions

$$E_{n,m_s,m_l} = -\frac{E_0}{n^2} + \mu_B B(m_l + 2m_s) . {(6)}$$

So it is seen that depending on the magnetic quantum number, the energy levels split apart. Their corresponding new energies depend on this magnetic quantum number as well as the principle quantum number n, and scale linearly with magnetic field strength B.

1.5 The quadratic Zeeman effect

The quadratic Zeeman effect is derived using the Schrodinger equation and the canonical momentum. The canonical momentum is a conserved quantity that describes a moving charged particle. It can be written as

$$\vec{p} = m\vec{v} + e\vec{A} \ . \tag{7}$$

Where $m\vec{v}$ is the classical definition of the momentum, and $e\vec{A}$ is the extension from electrodynamics that accounts for the impact of an external magnetic field on a charged particle. This term is required in order to ensure that the conservation of momentum holds true, since charged particles subject to an external magnetic field travel in a circular path dependant on the direction of the field.

The canonical momentum then is also written in replacement to the typical momentum operator in quantum mechanics, giving the canonical momentum operator

$$\hat{p}_{\text{canonical}} = i\hbar \vec{\nabla} + e\hat{A} . \tag{8}$$

Where \hat{A} is the vector potential operator. For an external magnetic field of strength B pointing in the \hat{k} direction the operator becomes

$$\hat{A} = \frac{B}{2} \left(y\hat{i} - x\hat{j} \right) . \tag{9}$$

Substituting this in for the vector potential operator in the canonical momentum and placing it into the Hamiltonian equation one gets

$$\hat{H} = \frac{\left(i\hbar\vec{\nabla} + \frac{Be}{2}\left(y\hat{i} - x\hat{j}\right)\right)^2}{2m_e} - \frac{Ze^2}{4\pi\epsilon_0\vec{r}}.$$
 (10)

Which when expanded gives

$$\hat{H} = \frac{-\hbar^2 \nabla^2}{2m} - \frac{i\hbar eB}{4mc} \vec{\nabla} \cdot \left[y\hat{i} - x\hat{j} \right] - \frac{i\hbar eB}{4mc} \left[y\hat{i} - x\hat{j} \right] \cdot \vec{\nabla} + \frac{e^2 B^2}{8mc} \left(x^2 + y^2 \right) - \frac{Ze^2}{4\pi\epsilon_0 r} . \tag{11}$$

The B^2 term is the quadratic Zeeman effect and is written on its own as

$$\hat{H}_Z = \frac{B^2 e^2}{8m_e} (x^2 + y^2) \ . \tag{12}$$

Using $x^2 + y^2 = r^2 - z^2 = \frac{2}{3}r^2 \left[P_0(\cos \theta) - P_2(\cos \theta) \right]$ where $P_2(\cos \theta) = \frac{1}{2} \left(3\cos^2 \theta - 1 \right)$ and $P_0(\cos \theta) = 1$ are a Legendre polynomials,

$$\hat{H}_Z = \frac{B^2 e^2}{8m_e} (P_0(\cos \theta) - P_2(\cos \theta)) . \tag{13}$$

1.6 The magnetic dipole moment operator

The magnetic dipole moment operator represents the interaction of a magnetic dipole moment with an external magnetic field. It is described via the following relation

$$Q_{M1} = \mu_B \left(1 - \frac{2p^2}{3m^2c^2} + \frac{Ze^2}{3mc^2r} \right) \vec{\sigma} \cdot \vec{B}$$
 (14)

Where μ_B is the Bohr magneton

$$\mu_B = \frac{e\hbar}{2mc} \tag{15}$$

The second term in the brackets of the magnetic dipole moment operator accounts for the relativistic correction to the kinetic energy of the electron, and the third term is the potential energy due to the Coulomb interaction between the electron and the nucleus. The first term corresponds to the ordinary Zeeman Effect, which does not contribute to the sum over states due to orthogonality.

The ordinary Zeeman effect contributes to Q_{M1} in ${}^{3}\text{He}^{+}$ because it has non-zero spin due to the missing electron. For systems such as ${}^{3}\text{He}$, the ordinary Zeeman effect will not contribute.

1.6.1 The relativistic correction to ³He⁺

Combining the magnetic dipole moment with the quadratic Zeeman operator, we can write down the relativistic corrections for ${}^{3}\text{He}^{+}$. Written in terms of pseudostates the relativistic correction is

$$C_{\text{rel}}^{(2)} = \sum_{\substack{n = -\infty\\n \neq 0}}^{\infty} \frac{\langle \psi_0 | H_Z^{(2)} | \psi_n \rangle \langle \psi_n | Q_{M1} | \psi_0 \rangle}{E_0 - E_n}$$
(16)

1.7 Results

REFERENCES

- [1] Codata value: atomic unit of magnetic flux density.
- [2] Codata value: electron mass.
- [3] Codata value: elementary charge.
- [4] Codata value: fine-structure constant.
- [5] Codata value: reduced planck constant.
- [6] Codata value: speed of light in vacuum.
- [7] Codata value: vacuum electric permittivity.
- [8] Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer New York, New York, NY, 2006.
- [9] DP Aguillard, T Albahri, D Allspach, A Anisenkov, K Badgley, S Baeßler, I Bailey, L Bailey, VA Baranov, E Barlas-Yucel, et al. Measurement of the positive muon anomalous magnetic moment to 0.20 ppm. *Physical review letters*, 131(16):161802, 2023.
- [10] John M. Anthony and Kunnat J. Sebastian. Relativistic corrections to the zeeman effect in hydrogenlike atoms and positronium. *Physical Review A*, 49(1):192– 206, Jan 1994.
- [11] G. W. F. Drake. New variational techniques for the 1snd states of helium. Physical Review Letters, 59(14):1549–1552, Oct 1987.

- [12] G. W. F. Drake and A. J. Makowski. High-precision eigenvalues for the $1s2p^1p$ and 3p states of helium. *Journal of the Optical Society of America B*, 5(10):2207, Oct 1988.
- [13] G. W. F. Drake and Zong-Chao Yan. Energies and relativistic corrections for the rydberg states of helium: Variational results and asymptotic analysis. *Physical Review A*, 46(5):2378–2409, Sep 1992.
- [14] G.W.F. Drake. High precision variational calculations for the 1s21s state of hand the 1s21s, 1s2s 1s and 1s2s 3s states of helium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 31(1):7–13, 1988.
- [15] A. R. Edmonds. Angular Momentum in Quantum Mechanics. Investigations in Physics. Princeton University Press, Princeton, NJ, 2016.
- [16] Midhat Farooq, Timothy Chupp, Joe Grange, Alec Tewsley-Booth, David Flay, David Kawall, Natasha Sachdeva, and Peter Winter. Absolute magnetometry with he-3. *Physical Review Letters*, 124(22), Jun 2020.
- [17] L. Fibonacci. Liber Abaci. 1202.
- [18] Daniele Fontanari and Dmitrií A Sadovskií. Perturbations of the hydrogen atom by inhomogeneous static electric and magnetic fields. *Journal of Physics A:*Mathematical and Theoretical, 48(9):095203, Feb 2015.
- [19] David J. Griffiths. *Introduction to Quantum Mechanics*. Cambridge University Press, Cambridge, 3rd ed edition, 2018.
- [20] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24(1):89–110, January 1928.
- [21] A. A. Michelson and E. W. Morley. On the relative motion of the earth and the luminiferous ether. American Journal of Science, s3-34(203):333–345, November 1887.

- [22] W.H. Press. Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, UK; New York, 3rd ed edition, 2007.
- [23] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules. *Physical Review*, 28(6):1049–1070, December 1926.
- [24] A. Sommerfeld. Zur quantentheorie der spektrallinien. Annalen der Physik, 356(17):1–94, January 1916.
- [25] H. Weber. Ueber die integration der partiellen differentialgleichung:. *Mathematische Annalen*, 1:1–36, 1869.
- [26] Qixue Wu and G. W. F. Drake. Precision Hyperfine Structure of 2;3P State of 3He with External Magnetic. 38:R1.060, June 2007.
- [27] Zong-Chao Yan and G. W. F. Drake. High-precision calculations of the zeeman effect in the 2^3p_j , 2^1p_1 , 2^3s_1 , and 3^3p_j states of helium. *Phys. Rev. A*, 50:R1980–R1983, Sep 1994.

VITA AUCTORIS

NAME: Evan Petrimoulx

Windsor Ontario,

Canada:

2003:

Highschool Diploma:

University of Windsor, Undergraduate Honours

Physics, Windsor, Ontario, 2025