MENG-4349 - Introduction to Renewable Energy Systems

Module Title: Solar Thermal Energy

Assignment: Sizing Flat Plate Collector Panels for Residential Hot Water Load

Step 1: Calculate your daily household water heating load

[Volume of water (cubic meters) x Temperature rise x density of water x specific heat of water]

Volume of water (m³) = 372.39 Gallons =
$$1.69~m^3$$
 Density of water = $1000 \frac{kg}{m^3}$ Temperature Rise = $T_h - T_c$ = $(48^{\circ}C - 6^{\circ}C) = 42^{\circ}C$ $C_p = 4.186 \frac{J}{g^{\circ}c}$ = $4186 \frac{J}{kg^{\circ}c}$
$$Q = \rho V C_p (T_h - T_c)$$

$$Q = 1.69~m^3 * 1000 \frac{kg}{m^3} * 4186 \frac{J}{kg^{\circ}C} (48^{\circ}C - 6^{\circ}C)$$

$$Q = 297649716~J = \mathbf{82.6804766667}~kWh$$

Step 2: Determine your locations 's average daily insolation and equivalent SRCC "Sky Type Category."

[Use the online Global Solar Atlas https://globalsolaratlas.info/map to determine average daily insolation. Type in the address of your location and determine DNI in kWh/m2 per day. Handy conversion: 1 kWh/m2/day = 317.1 Btu/ft2/day].

Woodlands, TX
$$\rightarrow$$
 DNI = 4.331 $\frac{kWh}{m^2}$ per day * 317.1 = 1373.3601 $\frac{BTU}{ft^2}$ per day

Based on Standard Rating Conditions (SRC) and mean temperature (T _m) in accordance with ISO 9806-2017						
T _m -T _a (°C)	Blue sky	Hazy sky	Grey sky			
	$G_b = 850, G_d = 150 (W/m^2)$	$G_b = 440$, $G_d = 260$ (W/m ²)	G _b =0, G _d = 400 (W/m ²)			
-10	1375	973	566			
0	1263*	861	454			
10	1151	749	342			
20	1039	637	230			
30	927	525	118			
40	815	413	6			
50	703	301	0			
60	591	189	0			

Table 1. Sky Type Category

According to the table above and in correspondence with collector performance data, the appropriate sky type will be **Hazy sky**.

Step 3: Categorize your climate.

[For all but the coldest locations in the United States, using the "C" category will give you a reasonable estimate.]

OG-100 STANDARD DAILY PRODUCTION TABLE								
Kilowatt-hours (thermal) per Collector per Day				Thousands of BTU per Collector per Day				
Climate →	High Radiation	Medium Radiation	Low Radiation	Climate →	High Radiation	Medium Radiation	Low Radiation	
Category (T _i -T _a)	(6.3 kWh/m²•day)	(4.7 kWh/m²•day)	(3.1 kWh/m²+day)	Category (T _i -T _a)	(2 kBTU/ft²•day)	(1.5 kBTU/ft²•day)	(1 kBTU/ft²•day)	
A (-5°C)	7.93	6.13	4.34	A (-9°F)	27.04	20.93	14.81	
B (5°C)	6.48	4.69	2.90	B (9°F)	22.11	16.00	9.90	
C (20°C)	4.68	2.98	1.32	C (36°F)	15.96	10.17	4.52	
D (60°C)	1.93	0.59	0.00	D (90°F)	6.58	2.02	0.00	
E (80°C)	0.22	0.00	0.00	E (144°F)	0.75	0.00	0.00	

Using the "C" category which is considered for the Water Heating (warm climate) the Woodlands, TX DNI falls closest to Medium Radiation where the value will correspond to **2.98 kWh per panel per day** or **10.17 kBTU per panel per day**.

Step 4: Obtain collector performance data from the SRCC website and determine the number of collectors required.

[Choose a flat plate, glazed or unglazed collector: https://solar-rating.org/programs/og-100-program/ OG-100 CERTIFICATION PROGRAM. Hint: Assume system losses of about 20%] Note: Attach the specification sheet of the collector you decided to choose]

How much Energy is required?

$$= \frac{Load(Q)}{kWh per panel per day}$$

$$= \frac{82.6804766667 kWh}{2.98 kWh per panel per day}$$

$$= 27.75 panels per day \approx 28 panels per day$$

Below is the attached specification sheet for the Glazed flat plate and the pdf.

OG-100 STANDARD DAILY PRODUCTION TABLE								
Kilowatt-hours (thermal) per Collector per Day				Thousands of BTU per Collector per Day				
Climate →	High Radiation	Medium Radiation	Low Radiation	Climate →	High Radiation	Medium Radiation	Low Radiation	
Category (T _i -T _a)	(6.3 kWh/m²•day)	(4.7 kWh/m²•day)	(3.1 kWh/m²•day)	Category (T _i -T _a)	(2 kBTU/ft²-day)	(1.5 kBTU/ft²•day)	(1 kBTU/ft²•day)	
A (-5°C)	7.93	6.13	4.34	A (-9'F)	27.04	20.93	14.81	
B (5°C)	6.48	4.69	2.90	B (9°F)	22.11	16.00	9.90	
C (20°C)	4.68	2.98	1.32	C (36°F)	15.96	10.17	4.52	
D (60°C)	1.93	0.59	0.00	D (90°F)	6.58	2.02	0.00	
E (80°C)	0.22	0.00	0.00	E (144 ⁻ F)	0.75	0.00	0.00	