Experimental Design Note 7-1 2^K Factorial Design (II)

Keunbaik Lee

Sungkyunkwan University

General 2^K Design I

- k factors: A, B, \dots, K each with 2 levels (+,-)
- consists of all possible level combinations (2^K treatments) each with n replicates
- Classify factorial effects:

Type of effect	Label	Number of effects
Main effects (of order 1)	A, B, \cdots, K	K
2-factor interactions (of order 2)	AB, AC, \cdots, JK	$\binom{K}{2}$
3-factor interactions (of order 3)	ABC, ABD, \cdots, IJK	$\binom{2}{K}$
• • •	• • •	
K-factor interaction (of order k)	$ABC \cdots K$	$\binom{\kappa}{\kappa} = 1$

- In total, how many effects?
- Each effect (main or interaction) has 1 degree of freedom full model (i.e., model consisting of all the effects) has $2^K 1$ degrees of freedom.

General 2^K Design II

- Error component has $2^K(n-1)$ degrees of freedom (why?).
- One-to-one correspondence between effects and contrasts:
 - For main effect: convert the level column of a factor using \Rightarrow -1 and + \Rightarrow 1.
 - For interactions: multiply the contrasts of the main effects of the involved factors, componentwisely.
- Estimates:

grand mean:
$$\frac{\sum_{i} \bar{y}_{i}}{2^{K}}$$

For effect with contrast $C=(c_1,c_2,\cdots,c_{2^K})$, its estimate is

$$\mathsf{effect} = \frac{\sum_{i} c_{i} \bar{y}_{i}}{2^{K-1}}$$

General 2^K Design III

Variance:

$$var(effect) = \frac{\sigma^2}{n2^{K-2}}$$
Herror of the effect?

what is the standard error of the effect?

• t-test for H_0 : effect = 0. Using the confidence interval approach,

effect
$$\pm t_{\alpha/2,2^K(n-1)}SE(effect)$$

Using ANOVA model:

Sum of Squares due to an effect, using its contrast,

$$SS_{Effect} = \frac{\left(\sum_{i} c_{i} \bar{y}_{i.}\right)^{2}}{2^{K}/n} = n2^{K-2} (effect)^{2}$$

General 2^K Design IV

• SS_T and SSE can be calculated as before and a ANOVA table including SS due to the effects and SSE can be constructed and the effects can be tested by F-tests.

Using Regression:

Introducing variables x_1, \dots, x_K for main effects, their products are used for interactions, the following regression model can be fitted

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_K + \dots + \beta_{12\dots k} x_1 x_2 \dots x_K + \epsilon$$

The coefficients are estimated by half of effects they represent, that is,

$$\hat{\beta} = \frac{\text{effect}}{2}$$

Unreplicated 2^K Design I

- No degree of freedom left for error component if full model is fitted.
- Formulas used for estimates and contrast sum of squares are given in the previous slides with n = 1
- No error sum of squares available, cannot estimate σ^2 and test effects in both the ANOVA and Regression approaches.
- Approach 1: pooling high-order interactions
 - Often assume 3 or higher interactions do not occur.
 - Pool estimates together for error.
 - Warning: may pool significant interaction.
- Approach 2: Using the normal probability plot (QQ plot) to identify significant effects.

Unreplicated 2^K Design II

Recall

$$var(effect) = \frac{\sigma^2}{2^{(K-2)}}.$$

If the effect is not significant (= 0), then the effect estimate follows $N\left(0,\frac{\sigma^2}{2^{(K-2)}}\right)$.

- Assume all effects not significant, their estimates can be considered as a random sample from $N\left(0, \frac{\sigma^2}{2(K-2)}\right)$.
- QQ plot of the estimates is expected to be a linear line.
- Deviation from a linear line indicates significant effects.

Unreplicated 2^K Design III

Filtration Rate Experiment

	fac	tor		
\mathcal{A}	\boldsymbol{B}	\boldsymbol{C}	D	filtration
_	_	_	_	45
+	_	_	_	71
_	+	_	_	48
+	+	_	_	65
_	_	+	_	68
+	_	+	_	60
_	+	+	_	80
+	+	+	_	65
_	_	_	+	43
+	_	_	+	100
_	+	_	+	45
+	+	_	+	104
_	_	+	+	75
+	_	+	+	86
_	+	+	+	70
+	+	+	+	96

Unreplicated 2^K Design IV

See Design2level.SAS.

Fit a linear line based on small effects, identify the effects which are potentially significant, then use ANOVA or regression fit a sub-model with those effects.

- Potentially significant effects: A, AD, C, D, AC.
- Use main effect plot and interaction plot.
- ANOVA model involving only A, B, D and their interactions (projecting the original unreplicated 2⁴ experiment onto a replicated 2³ experiment).
- regression model only involving A, C, D, AC and AD.
- Diagnostics using residuals.

See Design2level-1.SAS.