Scale-free adaptive PLANNING for deterministic dynamics & discounted rewards

Peter Bartlett, Victor Gabillon, Jennifer Healey, Michal Valko

ICML - June 13th, 2019

An MCTS setting

MDP with **starting state** $x_0 \in X$, action space A

n interactions: At time t playing a_t in x_t leads to Deterministic dynamics $g: x_{t+1} \triangleq g(x_t, a_t)$, Reward: $r_t(x_t, a_t) + \varepsilon_t$ with ε_t being the noise

Objective: Recommend action a(n) that minimizes

$$r_n \triangleq \max_{a \in A} Q^*(x, a) - Q^*(x, a(n))$$
 simple regret

where
$$Q^*(x,a) \triangleq r(x,a) + \sup_{\pi} \sum \gamma^t r(x_t, \pi(x_t))$$

Assumption: $r_t \in [0, R_{\text{max}}]$ and $|\varepsilon_t| \leq b$

Approach: Trying to explore without the parameters R_{max} and b

An MCTS setting

MDP with **starting state** $x_0 \in X$, action space A

n interactions: At time t playing a_t in x_t leads to Deterministic dynamics $g: x_{t+1} \triangleq g(x_t, a_t)$, Reward: $r_t(x_t, a_t) + \varepsilon_t$ with ε_t being the noise

Objective: Recommend action a(n) that minimizes

$$r_n \triangleq \max_{a \in A} Q^*(x, a) - Q^*(x, a(n))$$
 simple regret

where
$$Q^*(x, a) \triangleq r(x, a) + \sup_{\pi} \sum_{t} \gamma^t r(x_t, \pi(x_t))$$

Assumption: $r_t \in [0, R_{\text{max}}]$ and $|\varepsilon_t| \leq b$

Approach: Trying to explore without the parameters R_{max} and b

An MCTS setting

MDP with **starting state** $x_0 \in X$, action space A

n interactions: At time *t* playing a_t in x_t leads to Deterministic dynamics $g: x_{t+1} \triangleq g(x_t, a_t)$, Reward: $r_t(x_t, a_t) + \varepsilon_t$ with ε_t being the noise

Objective: Recommend action a(n) that minimizes

$$r_n \triangleq \max_{a \in A} Q^*(x, a) - Q^*(x, a(n))$$
 simple regret

where
$$Q^*(x, a) \triangleq r(x, a) + \sup_{\pi} \sum_{t} \gamma^t r(x_t, \pi(x_t))$$

Assumption: $r_t \in [0, R_{\text{max}}]$ and $|\varepsilon_t| \leq b$

Approach: Trying to explore without the parameters R_{max} and b

OLOP (Bubeck and Munos, 2010)

OLOP implements Optimistic Planning using Upper Confidence Bound (UCB) on the Q value of a sequence of q actions a_1, \ldots, a_q :

$$\widehat{Q}_{t}^{\textit{UCB}}(\textit{a}_{1:q}) \triangleq \underbrace{\sum_{h=1}^{q} \Biggl(\gamma^{h} \widehat{r}_{\textit{h}}(t) + \gamma^{h} \frac{1}{\textit{b}} \sqrt{\frac{1}{\textit{T}_{\textit{a}_{\textit{h}}}(t)}} + \underbrace{\frac{\textit{R}_{\text{max}} \gamma^{q+1}}{1 - \gamma}}_{\text{unseen reward}}$$

in optimization under a fixed budget n, excellent strategies allocate samples to actions without knowing R_{max} or b

OLOP (Bubeck and Munos, 2010)

OLOP implements Optimistic Planning using Upper Confidence Bound (UCB) on the Q value of a sequence of q actions a_1, \ldots, a_q :

$$\widehat{Q}_{t}^{\textit{UCB}}(\textit{a}_{1:q}) \triangleq \underbrace{\sum_{h=1}^{q} \left(\gamma^{h} \widehat{r}_{h}(t) + \gamma^{h} \frac{1}{b} \sqrt{\frac{1}{T_{\textit{a}_{h}}(t)}} \right)}_{\text{estimation of observed reward}} + \underbrace{\frac{\textit{R}_{\max} \gamma^{q+1}}{1 - \gamma}}_{\text{unseen reward}}$$

in optimization under a fixed budget n, excellent strategies allocate samples to actions without knowing R_{max} or b

Tree Search

Tree Search

This is a zero order optimization!

Zipf exploration: Open best $\frac{n}{h}$ cells at depth h

Noisy case

- need to pull more each x to limit uncertainty
- **tradeoff:** the more you pull each *x* the shallower you can explore

Noisy case: StroquOOL (Bartlett et al. 2019)

At depth *h*:

- order the cells by decreasing value and
- open the *i*-th best cell with $m = \frac{n}{hi}$ estimations

Black-box optimization vs. planning: Reuse samples and take advantage of γ

Bubeck & Munos: Only for uniform strategies . . . We figured the amount the samples needed!

Black-box optimization vs. planning: Reuse samples and take advantage of γ

Bubeck & Munos: Only for uniform strategies . . . We figured the amount the samples needed!

The power of PlaT γ POOS

- implements Zipf exploration for MCTS StroquOOL,
- explicitly pulls an action at depth h+1, γ times less than action at depth h, $(Q^*(x,a)=r(x,a)+\sup_{\pi}\sum \gamma^t r(x_t,\pi(x_t)),$
- does not use UCB & no use of R_{max} and b,)
- improves over OLOP with adaptation to low noise and additional unknown smoothness
- gets exponential speedups when no noise is present!