

Sommaire

- Contexte
- Jeu de données
- Performances de référence
- Architectures
- Résultats
- Démonstration

Sentiment Analysis

My experience so far has been fantastic!

POSITIVE

The product is ok I guess

NEUTRAL

Contexte

La société **Air Paradis** souhaite anticiper le bad buzz sur les réseaux sociaux.

Prototyper un produit IA permettant de prédire le sentiment associé à un Tweet

Sentiment Analysis

My experience so far has been fantastic!

POSITIVE

800 000

The product is ok I guess

NEUTRAL

800 000

Jeu de données

1 600 000 tweets

- 1. target: negatif ou positif
- 2. ids: une clé d'identification du tweet
- 3. date: date de création
- 4. flag: un flag
- 5. user: utilisateur
- 6. text: le texte du tweet

NB: pas d'émojis dans les textes

Go, A., Bhayani, R. and Huang, L., 2009. Twitter sentiment classification using distant supervision. *CS224N Project Report, Stanford*, 1(2009)

Voir en annexe pour la version agrandie

Performances de référence -Baselines

Performances de référence (Accuracy)	
Azure Cognitive Services	73,1%
Azure ML Designer : 1- Gram + Régression logisitque	74,9%

Good, I should say Great Experiences with this great Company!!

Preprocessing

<u>Lemmatisation</u> ou <u>Stemming</u>

Génération de variables

Convolutional network Identifie la présence de **motifs** au niveau local

Recurrent network
Identifie la présence de
motifs au niveau global

Décision

Architectures

Preprocessing

Codage des mots (embedding)

Génération de variables

(feature engineering – RNN ou CNN)

Décision (dense layer)

Word2Vect
Glove

Résultats

Entrainement sur 80 000 exemples. Embedding non entrainé.

La lemmatisation et l'embedding Glove donnent de meilleurs accuracies que le stemming et Word2Vec.

sur CNN: 77,36%

sur LSTM: 77,77%

Embedding non entrainé

Embedding entrainé

Résultats

L'entrainement de l'embedding améliore de +1% les résultats.

Les deux architectures CNN ou LSTM obtiennent des performances comparables mais LSTM est 60% plus lent.

CNN = 78.84%

LSTM = 78.82%

Architecture retenue: Lemmatisation + Glove + CNN

Résultat final

Entrainement sur 1,52 M d'exemples.

Accuracy: 81 %

Azure Designer

Schéma du modèle de référence dans le Designer Azure ML

Performances de référence		
Azure Cognitive Services	73,1%	
Azure Cognitive Services	74,9%	

Fichier de résultats

