Une approximation de la probabilité de ruine ultime du modèle de ruine de Cramer-Lundberg via un développement polynomial

P.O. Goffard¹ X. Guerrault² S. Loisel³ D. Pommerêt⁴

¹Axa France - Institut de mathématiques de Luminy Université de Aix-Marseille

²Axa France

³Institut de Sciences financières et d'assurance Université de Lyon, Université de Lyon 1

⁴Institut de mathématiques de Luminy Université de Aix-Marseille

Mai 2013 / Journées de la Statistique

Sommaire

- Introduction
- 2 Familles Exponentielles Naturelles Quadratiques (FENQ)
- 3 Le modèle de ruine de Cramer-Lundberg
- Illustrations numériques

Executive summary

Objectif

Mettre en place une nouvelle méthode numérique afin d'approcher les probabilités de ruine.

Idée

Projection orthogonale d'une densité de probabilité sur une base de polynômes.

- ← Choisir une mesure de probabilité appartenant aux Familles
 Exponentielles Naturelles Quadratiques (FENQ).
- Construire une base de polynômes orthogonaux par rapport à cette mesure.

Résultats

Approximation de la probabilité de ruine ultime pour des montants de sinistres suivant une distribution à queue légère.

Notations

Soit dF une mesure de probabilité univariée.

- *F* la fonction de répartition,
- f = F' la densité de probabilité par rapport à une mesure positive,
- $\widehat{F}(\theta) = \int e^{\theta x} dF(x)$ la fonction génératrice des moments,
- $\kappa(\theta) = ln(\widehat{F}(\theta))$ la fonction génératrice des cumulants,

Soit $L^2(F)$ l'espace des fonction de carré intégrable par rapport à dF.

•
$$f \in L^2(F)$$
 si $\int f^2(x)dF(x) < \infty$.

 $L^2(F)$ est un espace vectoriel normé avec :

$$||f||^2 = \langle f, f \rangle = \int f^2(x) dF(x).$$

Famille Exponentielle Naturelle

Soit dF une mesure de probabilité admettant fonction génératrice des moments au voisinage de 0.

• $\{F_{\theta}; \theta \in \Theta\}$ definit une FEN générée par dF, telle que

$$dF_{\theta}(x) = exp(\theta x - \kappa(\theta))dF(x),$$

où Θ est le domaine de définition de $\kappa(.)$.

• L'espérance mathématique de dF_{θ} est

$$\mu = \int x dF_{\theta}(x) = \kappa'(\theta),$$

où

• $\kappa':\theta\to\kappa'(\theta)$ est une bijection.

$$\leftrightarrow \phi: \mu \to \phi(\mu) = \kappa'^{-1}(\mu) = \theta$$
 sa fonction réciproque.

• $\{F_{\mu}; \mu \in \kappa'(\Theta) = M\}$ fait référence à la même FEN avec :

$$dF_{\mu}(x) = exp(\phi(\mu)x - \kappa(\phi(\mu)))dF(x).$$

Fonction de variance quadratique

La fonction de variance de la FEN est définie par :

$$V(\mu) = \int (x - \mu)^2 dF_{\mu}(x) = \kappa''(\mu).$$

La fonction de variance est dite quadratique si :

$$V(\mu) = a\mu^2 + b\mu + c$$

Les FENQ sont générées par six distributions :

- Normal
- Gamma
- Hyperbolic

- Binomiale
- Binomiale Négative
- Poisson

Polynômes orthogonaux associés aux FENQ

Soit $\{F_{\mu}; \mu \in M\}$ une FENQ générée par dF de moyenne μ_0 .

• La densité $f(x, \mu)$, par rapport à dF d'une distribution appartenant à la FENQ est proportionnelle à $exp(\phi(\mu)x - \kappa(\phi(\mu)))$.

$$Q_n(x,\mu) = V^n(\mu) \left\{ \frac{\partial^n}{\partial \mu^n} f(x,\mu) \right\} / f(x,\mu),$$

est un polynôme de degré n en μ et en x.

• $f(x, \mu_0) = 1$ et

$$Q_n(x) = Q_n(x, \mu_0) = V^n(\mu_0) \left\{ \frac{\partial^n}{\partial \mu^n} f(x, \mu) \right\}_{\mu = \mu_0}.$$

 $\{Q_n\}$ forment une famille de polynômes orthogonaux telle que :

$$< Q_n(x), Q_m(x) > = \int Q_n(x)Q_m(x)dF(x) = ||Q_n||^2 \delta_{nm}.$$

Pour une description exhaustive des FENQ c.f. Barndorf-Nielsen[1978] [1] et Morris [1982] [3].

Développement polynomial et troncature

- L'ensemble des polynômes est dense dans $L^2(F)$. $\hookrightarrow \{Q_n\}$ est donc une base orthogonale de $L^2(F)$.
- Soit dF_X une mesure de probabilité associée à une variable aléatoire X. $\hookrightarrow \frac{dF_X}{dF}$ est la densité par rapport à dF
- Si $\frac{dF_X}{dF} \in L^2(F)$ alors :

$$\frac{dF_X}{dF}(x) = \sum_{n \in \mathbb{N}} \left\{ \frac{dF_X}{dF}, \frac{Q_n}{||Q_n||} > \frac{Q_n(x)}{||Q_n||} = \sum_{n \in \mathbb{N}} E(Q_n(X)) \frac{Q_n(x)}{||Q_n||^2}.$$

• La fonction de répartition F_X est alors :

$$F_X(x) = \sum_{n \in \mathbb{N}} E(Q_n(X)) \frac{\int_{-\infty}^x Q_n(y) dF(y)}{||Q_n||^2}.$$

L'approximation s'obtient alors par troncature de la série infinie :

$$F_X^K(x) = \sum_{n=0}^K E(Q_n(X)) \frac{\int_{-\infty}^x Q_n(y) dF(y)}{||Q_n||^2}.$$

Definition et hypothèses

Soit $\{R(t); t \ge 0\}$ le processus de réserve financière :

$$R(t) = u + pt - \sum_{i=1}^{N(t)} U_i,$$

où

- *u* est la réserve initiale,
- p est le montant des primes reçues par unité de temps,
- N(t) est un processus de Poisson simple d'intensité β ,
- $\{U_i\}_{i\in\mathbb{N}^*}$ est une suite de variables aléatoires positives, **i.i.d.**, de fonction de répartition F_U et de moyenne μ .

Soit $\{S(t); t \ge 0\}$ le processus de surplus :

$$S(t) = u - R(t).$$

 $\eta > 0$ le chargement de sécurité définie par :

$$p = (1 + \eta)\beta\mu.$$

Visualisation des processus de réserve et de surplus

Probabilité de ruine ultime

Soit $M = Sup\{S(t); t > 0\}$, la probabilité de ruine ultime est définie par :

$$\psi(u) = P(M > u) = \overline{F_M}(u).$$

La formule de Pollaczek-Khinchine

Dans le cadre du modèle de Cramer-Lundberg, la probabilité de ruine peut s'écrire :

$$\psi(u) = (1-\rho) \sum_{n=0}^{+\infty} \rho^n \overline{F_{U^I}^{*n}}(u),$$

$$M \stackrel{D}{=} \sum_{i=1}^{N} U_i^I, \qquad F_{U^I}(x) = \int_0^x \overline{F_{U}(y)} dy,$$

où N suit une loi géométrique de paramètre $\rho=\frac{\beta\mu}{p}<1$ et $F_{U^I}^{*n}$ correspond à F_{U^I} convolué n fois avec elle-même.

Voir Ruin probabilities par Asmussen et Albrecher [2001] [4].

Développement polynomial pour la probabilité de ruine ultime

La mesure de probabilité associée à $M = \sum_{i=1}^{N} U_i^I$ s'écrit :

$$dF_M(x) = (1 - \rho)\delta_0(dx) + (1 - \rho)\sum_{n=1}^{+\infty} \rho^n dF_{U'}^{*n}(x)$$
$$= (1 - \rho)\delta_0(dx) + dG_M(x).$$

Si $\frac{dG_M}{dF} \in L^2(F)$ alors :

$$\frac{dG_M}{dF}(x) = \sum_{n \in \mathbb{N}} \left\langle \frac{dG_M}{dF}, \frac{Q_n}{||Q_n||} \right\rangle \frac{Q_n(x)}{||Q_n||}.$$

Ce qui donne pour la probabilité de ruine ultime :

$$\psi(u) = \sum_{n \in \mathbb{N}} \left\langle \frac{dG_M}{dF}, \frac{Q_n}{||Q_n||} \right\rangle \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||}.$$

Approximation de la probabilité de ruine via la troncature du développement polynomial

Approximation de la probabilité de ruine

- $\{F_{\mu}; \mu \in M\}$ est une FENQ générée par F de moyenne μ_0 ,
- $f(x,\mu) \propto exp(\phi(\mu)x \kappa(\phi(\mu)))$ est la densité de F_{μ} par rapport F.

Si $\frac{dG_M}{dF} \in L^2(dF)$ alors:

$$\psi^{K}(u) = \sum_{n=0}^{K} V_{F}(\mu_{0})^{n} \left[\frac{\partial^{n}}{\partial \mu^{n}} e^{-\kappa(\phi(\mu))} \left(\widehat{G}_{M}(\phi(\mu)) \right) \right]_{\mu=\mu_{0}}$$

$$\times \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}(x)||^{2}}$$

 dG_M est une mesure de probabilité défaillante de support $[0, +\infty[$. Parmi les FENQ, la seule supportée sur $[0, +\infty[$ est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegö [1939] [5]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$, voir Lundberg [1926] [2]. où γ est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

 $\hookrightarrow \xi < 2\gamma$

 dG_M est une mesure de probabilité défaillante de support $[0, +\infty[$. Parmi les FENQ, la seule supportée sur $[0, +\infty[$ est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegö [1939] [5]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$, voir Lundberg [1926] [2]. où γ est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

 $\hookrightarrow \xi < 2\gamma$

 dG_M est une mesure de probabilité défaillante de support $[0, +\infty[$. Parmi les FENQ, la seule supportée sur $[0, +\infty[$ est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegö [1939] [5]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$, voir Lundberg [1926] [2]. où γ est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

 $\hookrightarrow \xi < 2\gamma$

 dG_M est une mesure de probabilité défaillante de support $[0, +\infty[$. Parmi les FENQ, la seule supportée sur $[0, +\infty[$ est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegö [1939] [5]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$, voir Lundberg [1926] [2]. où γ est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

 dG_M est une mesure de probabilité défaillante de support $[0, +\infty[$. Parmi les FENQ, la seule supportée sur $[0, +\infty[$ est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegö [1939] [5]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$, voir Lundberg [1926] [2]. où γ est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

$$\hookrightarrow \xi < 2\gamma$$

Calibration des simulations

Concernant le modèle de ruine :

- Le montant des primes p est égal à 1,
- le chargement de sécurité η est égal à 33% ce qui implique que $\rho = 0.75$.

Une visualisation graphique est proposée, avec en ordonnée :

$$\Delta\psi(u) = \psi(u) - \psi^K(u),$$

pour une réserve initiale u et un ordre de troncature K (en abscisse).

 \hookrightarrow Differentes valeurs pour ξ sont testées dont une égale à γ .

Montant de sinistres de loi exponentielle

$$f_U(x) = e^{-x} 1_{\mathbb{R}^+}(x)$$
 $\gamma = 0, 25$

Montant de sinistres de type-phase

$$f_U(x) = \frac{2}{5}Erlang(3,1) + \frac{3}{5}Erlang(2,2/3)$$
 $\gamma = 0,1205$

Montant de sinistres de loi Gamma

$$f_U(x) = \frac{e^{-x/2}}{\Gamma(1/2)\sqrt{2x}} 1_{\mathbb{R}^+}(x)$$
 $\gamma = 0, 1614$

Conclusion

- + Une méthode numérique efficace
 - \hookrightarrow L'approximation peut-être aussi précise que souhaitée par l'utilisateur
- + Facile à comprendre et à implémenter
- + Il n'est pas nécessaire de discrétiser la distribution des montants.
- Limitée aux distributions à queue légère

Perspectives:

- Étude théorique de la sensitivité de l'approximation au paramètre ξ .
- Approximation de la fonction de répartition de distributions composées plus générale
- Approximation de la probabilité de ruine en temps fini

Bibliographie

O. Barndorf-Nielsen.

Information and exponential Families in Statistical Theory. Wiley, 1978.

F. Lundberg.

Försäkringsteknisk riskutjämning.

F. Englunds Boktryckeri AB, Stockholm, 1926.

Carl N. Morris.

Natural exponential families with quadratic variance functions.

The Annals of Mathematical Statistics, 10(1):65–80, 1982.

S.Asmussen and H.Albrecher.

Ruin Probabilities, volume 2 of Advanced Series on Statistical Science Applied Probability.

World Scientific, 2001.

G. Szegö.

Orthogonal Polynomials, volume XXIII.

American mathematical society Colloquium publications, 1939.

Tableaux complémentaires

		K						
		0	5	10	15	20		
ξ	$6\gamma/4$	0.06863	-0.00062	0.	0.	0.		
	$5\gamma/4$	0.03539	-0.00001	0.	0.	0.		
	γ	0.	0.	0.	0.	0.		
	$3\gamma/4$	-0.03767	-0.00002	0.	0.	0.		
	$2\gamma/4$	-0.07777	-0.00172	-0.00004	0.	0.		

TABLE : Ecart entre la probabilité de ruine et son approximation pour le cas exponentiel

Tableaux complémentaires

		K						
		0	20	40	60	80	100	
	$3\gamma/2$	0.05596	0.00005	0.00001	0.	0.	0.	
ξ	$ \gamma $	0.01709	0.00018	0.00004	0.00001	0.	0.	
	$\gamma/2$	-0.0242	0.00253	0.00021	0.00004	0.00004	0.00003	

TABLE : Ecart entre la probabilité de ruine et son approximation pour le cas Phase-Type

Tableaux complémentaires

		K					
		0	25	50	75	100	
	$3\gamma/2$	0.0342	0.0004	-0.00016	-0.00004	0.00005	
ξ	$ \gamma $	-0.01529	0.00085	0.00006	-0.00017	-0.00009	
	$\gamma/2$	-0.06892	-0.00006	0.00091	0.00046	0.00007	

Table : Ecart entre la probabilité de ruine et son approximation pour le cas $\Gamma(1/2,1/2)$

Proof for the ruin probability approximation

Let's start from:

$$\psi(u) = \sum_{n \in \mathbb{N}} \langle \frac{dG_M}{dF}, Q_n \rangle \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||^2}
= \sum_{n \in \mathbb{N}} \int_{\mathbb{R}} Q_n(x) \frac{dG_M}{dF}(x) dF(x) \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||^2}
= \sum_{n \in \mathbb{N}} \int_{\mathbb{R}} Q_n(x) dG_M(x) \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||^2}$$
(1)

recall that:

$$\begin{split} Q_n(x) &= V_F(\mu_0)^n \left\{ \frac{\partial^n}{\partial \mu^n} f(x, \mu) \right\}_{\mu = \mu_0} \\ &= V_F(\mu_0)^n \left\{ \frac{\partial^n}{\partial \mu^n} exp(\phi(\mu)x - \kappa(\phi(\mu))) \right\}_{\mu = \mu} \end{split}$$

Proof for the ruin probability approximation

Re-injecting in (1), one gets:

$$\begin{split} \psi(u) &= \sum_{n \in \mathbb{N}} \int_{\mathbb{R}} V_{F}(\mu_{0})^{n} \left\{ \frac{\partial^{n}}{\partial \mu^{n}} exp(\phi(\mu)x - \kappa(\phi(\mu))) \right\}_{\mu = \mu_{0}} dG_{M}(x) \\ &\times \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}||^{2}} \\ &= \sum_{n \in \mathbb{N}} V_{F}(\mu_{0})^{n} \left\{ \frac{\partial^{n}}{\partial \mu^{n}} e^{-\kappa(\phi(\mu))} \int_{\mathbb{R}} exp(\phi(\mu)x) dG_{M}(x) \right\}_{\mu = \mu_{0}} \\ &\times \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}||^{2}} \\ &= \sum_{n \in \mathbb{N}} V_{F}(\mu_{0})^{n} \left\{ \frac{\partial^{n}}{\partial \mu^{n}} e^{-\kappa(\phi(\mu))} \widehat{G}_{M}(\phi(\mu)) \right\}_{\mu = \mu_{0}} \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}||^{2}} \end{split}$$