Example

TBox:

 $MixedTeam \equiv Team \sqcap \exists hasMember.Male \sqcap \exists hasMember.Female$

 $\mathtt{Male} \equiv \neg \mathtt{Female}$

ABox:

MixedTeam(FC)

 $(\forall \mathtt{hasMember.Male})(\mathtt{FC})$

The above knowledge base is unsatisfiable. How can we prove it using tableaus?

After unfolding the definition of MixedTeam, we have:

 $(\texttt{Team} \sqcap \exists \texttt{hasMember}. \texttt{Male} \sqcap \exists \texttt{hasMember}. \texttt{Female})(\texttt{FC})$

 $(\forall \mathtt{hasMember.Male})(\mathtt{FC})$

After unfolding the definition of Male, we have:

 $(\texttt{Team} \sqcap \exists \texttt{hasMember}. \neg \texttt{Female} \sqcap \exists \texttt{hasMember}. \texttt{Female})(\texttt{FC})$

 $(\forall \mathtt{hasMember}. \neg \mathtt{Female})(\mathtt{FC})$

The closed tableau showing unsatisfiability is as follows:

1	$(\texttt{Team} \sqcap \exists \texttt{hasMember}. \neg \texttt{Female} \sqcap \exists \texttt{hasMember}. \texttt{Female})(\texttt{FC})$	given
2	$(\forall \mathtt{hasMember}. \neg \mathtt{Female})(\mathtt{FC})$	given
3	$(\texttt{Team} \sqcap \exists \texttt{hasMember}. \neg \texttt{Female})(\texttt{FC})$	$1, \sqcap$ -rule
4	$(\exists \mathtt{hasMember}. \mathtt{Female})(\mathtt{FC})$	$1, \sqcap$ -rule
5	${\tt hasMember}({\tt FC}, {\tt a})$	4 , \exists -rule
6	${\tt Female(a)}$	4 , \exists -rule
7	$\neg \texttt{Female}(\mathtt{a})$	$2, 5, \forall$ -rule
8	Clash	6, 7

General TBoxes

General TBoxes include concept definitions and concept inclusions.

Example:

 $Woman \equiv Person \sqcap Female$

 $\texttt{Person} \sqsubseteq \exists \texttt{hasParent.Person}$

Tableau Techniques for General TBoxes

To construct a tableau proof for general TBoxes, we proceed as follows:

- 1. Given a of TBox \mathcal{T} , we construct a set of concepts $\widehat{\mathcal{T}}$ as follows:
 - Each concept definition is equivalently re-written as two concept inclusions.
 - Each concept inclusion $C \sqsubseteq D$ is rewritten as $\neg C \sqcup D$.
- 2. We compute the negation normal form $nnf(\widehat{\mathcal{T}})$ of $\widehat{\mathcal{T}}$ as the set of the negation normal forms of its members.

Example

```
\mathcal{T} = \{ 	ext{ Woman} \equiv 	ext{Person} \ \sqcap \ 	ext{Female}, \ 	ext{Person} \sqsubseteq \exists 	ext{hasParent.Person} \ \}
\mathcal{T} can be equivalently rewritten as follows:
      \widehat{\mathcal{T}} = \{ \text{ Woman } \sqsubseteq \text{ Person } \sqcap \text{ Female}, \text{ Person } \sqcap \text{ Female } \sqsubseteq \text{ Woman}, \}
                                  Person 

∃hasParent.Person }
Then
\widehat{\mathcal{T}} = \{ \neg \mathtt{Woman} \sqcup (\mathtt{Person} \sqcap \mathtt{Female}), \neg (\mathtt{Person} \sqcap \mathtt{Female}) \sqcup \mathtt{Woman}, \}
                                 \negPerson \sqcup \existshasParent.Person \}
```

Then

$$\label{eq:nnf} \begin{split} \mathsf{nnf}(\widehat{\mathcal{T}}) &= \{ \, \neg \mathsf{Woman} \sqcup (\mathsf{Person} \sqcap \mathsf{Female}), \, \neg \mathsf{Person} \sqcup \neg \mathsf{Female} \sqcup \mathsf{Woman}, \\ &\neg \mathsf{Person} \sqcup \exists \mathsf{hasParent.Person} \, \} \end{split}$$

Rationale

The rationale behind the construction of $\widehat{\mathcal{T}}$ is the following.

Given any Tbox \mathcal{T} such that $\widehat{\mathcal{T}} = \{C_1, \dots, C_n\}$, it is easy to see that \mathcal{T} is equivalent to

$$\top \sqsubseteq C_1 \sqcap \cdots \sqcap C_n$$
.

How do we prove this?

We have to prove that for every interpretation \mathcal{I} :

$$\mathcal{I} \models \mathcal{T} \text{ iff } \mathcal{I} \models \top \sqsubseteq C_1 \sqcap \cdots \sqcap C_n.$$

Rationale (cont'd)

Try first proving a simple version:

For any concepts C and D and every interpretation \mathcal{I} :

$$\mathcal{I} \models C \sqsubseteq D \text{ iff } \mathcal{I} \models \top \sqsubseteq \neg C \sqcup D.$$

The ⊑-rule

We now introduce a new inference rule.

If a is an individual that appears in \mathcal{A} and C is a concept in $\widehat{\mathcal{T}}$ then

$$\mathcal{A} := \mathcal{A} \cup \{C(a)\}.$$

Example

Let us assume we are given the following knowledge base:

 $Woman \equiv Person \sqcap Female$

Person(ANN), Female(ANN), ¬Woman(ANN)

Can we use tableau to prove that it is unsatisfiable?

If \mathcal{T} is the above Tbox, then

 $\mathtt{nnf}(\widehat{\mathcal{T}}) = \{ \, \neg \mathtt{Woman} \sqcup (\mathtt{Person} \sqcap \mathtt{Female}), \, \neg \mathtt{Person} \sqcup \neg \mathtt{Female} \sqcup \mathtt{Woman} \, \}$

If we use abbreviations A, F, P, W to save space, the complete proof is as follows:

1	$\mathtt{P}(\mathtt{A})$	given						
2	$\mathtt{F}(\mathtt{A})$	given						
3	$\neg \mathtt{W}(\mathtt{A})$	given						
4	$(\neg \mathtt{P} \sqcup \neg \mathtt{F} \sqcup \mathtt{W})(\mathtt{A})$	by \sqsubseteq for A						
5	$(\neg \mathtt{P})(\mathtt{A})$		6	$(\neg \mathtt{F})(\mathtt{A}) \sqcup \mathtt{W}(\mathtt{A})$	by 4 , \Box			
	\mathbf{Clash}	by 1,5	7	$(\neg \mathtt{F})(\mathtt{A})$		8	$\mathtt{W}(\mathtt{A})$	by 6 , \sqcup
				\mathbf{Clash}	by 2,7		Clash	by 3,8