

Learning Outcomes

- VHDL modelling for synthesis
 - Registers (state)
 - Combinational logic
 - Avoid latches
- State machines
 - Mealy
 - Moore
- Testbench
- Xilinx Vivado

Moore Machine

Output = f(State) Output **Next State** Output Input Combinational Combinational State Registers Logic Logic Clock

Output a function of current state

Mealy Machine

Moore vs. Mealy

- Mealy
 - Fewer states
 - React faster
- Moore
 - Safer
 - Synchronous

Parallel to Serial Convertor

Most significant bit first

Sequence Detector

• Detect the sequence 1011

Sequence in Sequence

Mealy State Machine

Moore State Machine

Testbench

Vivado Design Suite

Nexys 4 FPGA (Labs 2-5)

Lab1 Assignment

- Draw the state diagrams
- Implement FSM in VHDL
- Show simulation
- Demonstrate understanding

