University of Ljubljana Faculty of Mathematics and Physics

Department of Physics

Advanced Particle Detectors and Data Analysis

Notes for Exercises

Author: Marko Urbanč Professor: prof. dr. Peter Križan Assistant: doc. dr. Rok Dolenec

Ljubljana, December 2024

Contents

1	Interactions of Particles with Photons				
	1.1	Bethe-	-Bloch Equation	1	
		1.1.1	Energy Loss of Charged Kaons	1	

1 Interactions of Particles with Photons

1.1 Bethe-Bloch Equation

The Bethe-Bloch equation describes the mean energy loss per distance traveled while traversing through matter. We generally use the Bethe-Bloch equation when we are dealing with **thick absorbers**, such as the ones in calorimeters. Do note that the Bethe-Bloch equation does not accurately describe the energy loss of **electrons** and **positrons** due to their small mass and the fact that they suffer from much larger energy losses due to bremsstrahlung and pair production. For a particle with charge z and velocity $\beta = v/c$, the Bethe-Bloch equation is given as:

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2 W_{\mathrm{max}}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right] , \qquad (1.1)$$

where δ is the density effect correction and C is the shell correction. The rest is as follows:

 $N_a = 6.022 \times 10^{23} \, \mathrm{mol^{-1}} \; , \quad r_e = 2.818 \times 10^{-15} \, \mathrm{m} \; , \quad m_e = 9.11 \times 10^{-31} \, \mathrm{kg} \; , \quad c = 3 \times 10^8 \, \mathrm{m/s} \; ,$ $\rho = \mathrm{density} \; \mathrm{of} \; \mathrm{the} \; \mathrm{material} \; , \quad A = \mathrm{atomic} \; \mathrm{mass} \; \mathrm{of} \; \mathrm{the} \; \mathrm{material} \; , \quad Z = \mathrm{atomic} \; \mathrm{number} \; \mathrm{of} \; \mathrm{the} \; \mathrm{material} \; ,$ $\gamma = \frac{1}{\sqrt{1-\beta^2}} \; , \quad W_{\mathrm{max}} = \mathrm{maximum} \; \mathrm{energy} \; \mathrm{transfer} \; \mathrm{in} \; \mathrm{a} \; \mathrm{single} \; \mathrm{collision} \; , \quad I = \mathrm{mean} \; \mathrm{excitation} \; \mathrm{energy} \; .$

The constant factor in the equation can be written as:

$$\Xi = 2\pi N_a r_e^2 m_e c^2 = 0.1535 \,\text{MeV cm}^2 \text{mol}^{-1}$$
, (1.2)

where I've chosen to mark this constant factor as Ξ for easier reference in further calculations. We can find the mean excitation energy I from the following experimentally determined formula:

$$I = \begin{cases} Z(12 + \frac{7}{Z}) & \text{for } Z < 13, \\ Z(9.76 + 58.8Z^{-1.19}) & \text{for } Z \ge 13. \end{cases}$$
 (1.3)

The maximum energy transfer in a single collision $W_{\rm max}$ can be calculated as:

$$W_{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \left(m_e/M\right) + \left(m_e/M\right)^2} \approx 2m_e c^2 \beta^2 \gamma^2 \,. \tag{1.4}$$

For our purposes we will ignore the density effect correction δ and the shell correction C.

1.1.1 Energy Loss of Charged Kaons

Let us calculate the energy losses for charged kaons K^+ and K^- with a rest mass of 0.493 MeV and momentum of 2.5 GeV in copper which has the following properties:

$$\rho = 8.92 \,\text{g/cm}^3,$$
 $Z = 29,$
 $A = 63.5 \,\text{g/mol}.$

First let us calculate the velocity β and the Lorentz factor γ . We know that

$$\beta = \frac{pc}{E} = \frac{pc}{\sqrt{(pc)^2 + (Mc^2)^2}},$$
(1.5)

where M is the mass of the particle. Thus:

$$\beta = \frac{2.5 \frac{\text{GeV}}{c} c}{\sqrt{\left(2.5 \frac{\text{GeV}}{c} c\right)^2 + \left(0.493 \frac{\text{MeV}}{c^2} c^2\right)^2}} \approx 0.981031.$$
 (1.6)

Remember to take at least 4 significant digits for the velocity β ! This is due to the logarithm in the Bethe-Bloch equation. The Lorentz factor γ is then:

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} \approx 5.159 \,. \tag{1.7}$$

Next let us calculate the maximum energy transfer in a single collision $W_{\rm max}$:

$$W_{\text{max}} = 2m_e c^2 \beta^2 \gamma^2 = 2 \cdot 0.511 \,\frac{\text{MeV}}{c^2} \, c^2 \cdot (0.981031)^2 (5.159)^2 = 26.7 \,\text{MeV} \,. \tag{1.8}$$

Last prerequisite is the mean excitation energy I which we can calculate using the formula (1.3) for $Z \ge 13$:

$$I = 29(9.76 + 58.8 \cdot 29^{-1.19}) \text{ eV} = 313.9 \text{ eV}.$$
 (1.9)

Now all that is left is to plug in the values into the Bethe-Bloch equation (1.1):

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \Xi \, \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{W_{\mathrm{max}}^2}{I^2} \right) - 2\beta^2 \right]$$

$$= 0.1535 \, \frac{\mathrm{MeV \, cm}^2}{\mathrm{mol}} \cdot 8.92 \, \frac{\mathrm{g}}{\mathrm{cm}^3} \cdot \frac{29}{63.5} \, \frac{\mathrm{mol}}{\mathrm{g}} \cdot \frac{1}{0.981031^2} \cdot \left[\ln \left(\frac{(26.7 \cdot 10^6 \, \mathrm{eV})^2}{(313.9 \, \mathrm{eV})^2} \right) - 2 \cdot (0.981031)^2 \right]$$

$$= 13.47 \, \frac{\mathrm{MeV}}{\mathrm{cm}} \, .$$