LES SUITES NUMÉRIQUES E03C

EXERCICE N°2 Suite arithmétique et formule explicite : départ à 0

- (u_n) est la suite arithmétique de premier terme $u_0 = 4$ et de raison r = 2.
- 1) Pour tout entier nature n, exprimer u_{n+1} en fonction de u_n .

Pour $n \in \mathbb{N}$, $u_{n+1} = u_n + r$, d'où $u_{n+1} = u_n + 2$

 u_{n+1} en fonction de u_n « signifie que » u_{n+1} est à gauche du « = » et que dans le membre de droite, il n'y a pas « autre chose » que u_n , des nombres et des symboles opératoires.

Contre-exemple: dans $u_{n+1} = u_n + r$, on exprime u_{n+1} en fonction de u_n et de r.

- 2) Calculer les termes u_1 , u_2 et u_3 .
- $u_1 = u_0 + r = 4 + 2$, ainsi $u_1 = 6$
- $u_2 = u_1 + r = 6 + 2$, ainsi $u_2 = 8$
- $u_3 = u_2 + r = 8 + 2$, ainsi $u_3 = 10$
- 3) Pour tout entier n, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}$, $u_n = u_0 + nr$, d'où $u_n = 4 + 2n$

- 4) Donner alors les valeurs de u_{10} , u_{17} et u_{23} .
- $u_{10} = 4 + 2 \times 10$, ainsi $u_{10} = 24$
- $u_{17} = 4 + 2 \times 17$, ainsi $u_{17} = 38$
- $u_{23} = 4 + 2 \times 23$, ainsi $u_{23} = 50$