Asynchronous Transfer Mode (ATM)

ATM

- Technology for broadband ISDN
- Suitable for wide range of applications
- Originally defined for WANS
 - -Now used with MANs and LANs

Essential features:-

- Fixed length cells
- 5 octet header
- 48 octet payload/information field
- Virtual path connection
- header carries VC id
 - Virtual path identifer
 - virtual circuit identifier
 - (vpi/vci)
- No flow control in network
- error control for header in network
- error control for payload in end points

Essential features:- (Cont:)

- Small cells reduce queuing delay for high priority cells
- Small cells can be switched more efficiently
- Easier to implement switching of small cells in hardware

Protocol Architecture

- Similarities between ATM and packet switching
 - -Transfer of data in discrete chunks
 - Multiple logical connections over single physical interface
- In ATM flow on each logical connection is in fixed sized packets called cells
- · Minimal error and flow control
 - -Reduced overhead
- Data rates (physical layer) 25.6Mbps to 622.08Mbps
- 34Mbps & 2Mbps also offered

ATM Logical Connections Virtual channel connections (VCC) Analogous to virtual circuit in X.25 Basic unit of switching Between two end users Full duplex Fixed size cells Data, user-network exchange (control) and Network-network exchange (network management and routing) Virtual path connection (VPC) —Bundle of VCC with same end points

Advantages of Virtual Paths • Simplified network architecture • Increased network performance and reliability • Reduced processing • Short connection setup time • Enhanced network services

Virtual Channel Connection Uses

- Between end users
 - -End to end user data
 - -Control signals
 - -VPC provides overall capacity
 - VCC organization done by users
- · Between end user and network
 - -Control signaling
- · Between network entities
 - -Network traffic management
 - -Routing

VP/VC Characteristics

- Quality of service (QoS)
- Switched and semi-permanent channel connections
- · Call sequence integrity
- Traffic parameter negotiation and usage monitoring
- VPC only
 - -Virtual channel identifier restriction within VPC

Control Signaling - VCC

- Done on separate connection
- Semi-permanent VCC
- Meta-signaling channel
- Used as permanent control signal channel
- User to network signaling virtual channel
 - For control signaling
 - Used to set up VCCs to carry user data
- · User to user signaling virtual channel
 - Within pre-established VPC
 - Used by two end users without network intervention to establish and release user to user VCC

Control Signaling - VPC

- Semi-permanent
- Customer controlled
- Network controlled

ATM Cell Header Format

- Generic flow control (GFC) 4 bits, used only in user-network interface
 - -Used to alleviate short-term overload conditions in
- Virtual path identifier (VPI) 8 bits at the usernetwork interface, 12 bits at network-network interface
 - Routing field
- Virtual channel identifier (VCI) 8 bits
 - -Used for routing to and from end user

ATM Cell Header Format

- Payload type (PT) 3 bits
 - -Indicates type of information in information field
- Cell loss priority (CLP) 1 bit
 - -Provides guidance to network in the event of congestion
- Header error control (HEC) 8 bit
 - Error code

ATM Adaptation Layer

- Function is to adapt higher layer application characteristics to bearer service (ATM layer)
- Support for information transfer protocol not based on ATM
- PCM (voice)
 - Assemble bits into cells
 - -Re-assemble into constant flow
- IP
 - -Map IP packets onto ATM cells
 - —Fragment IP packets
 - -Use LAPF over ATM to retain all IP infrastructure

 ATM Adaptation Layer (AAL) Two Sublayers —Convergence sublayer -Segmentation and Reassembly sublayer

Adaptation Layer Services Handle transmission errors Segmentation and re-assembly Handle lost and misinserted cells Flow control and timing Handle lost and misinserted cells

ATM adaptation layer

Physical laver

Constant Bit Rate (CBR) Real-time Variable Bit Rate (rt-VBR) Non-real-time Variable Bit Rate (nt-VBR) Available Bit Rate (ABR) Unspecified Bit Rate (UBR) Guaranteed Frame Rate (GFR) ABR and UBR VBR CBR

Examples of CBR Applications

- · Videoconferencing
- Interactive audio (e.g., telephony)
- Audio/video distribution (e.g., television, distance learning)
- Audio/video retrieval (e.g., video-on-demand, audio library)
- guarantees a fixed capacity, similar to circuit switching.
- guarantees a maximum delay for cells

Examples of Available Bit Rate (ABR)

- guarantees 'fairness" with respect to other traffic \bullet
- guarantees an average throughput and maximum delay•

Examples of UBR applications

- Text/data/image transfer, messaging, distribution, retrieval
- Remote terminal (e.g., telecommuting)
- service is on a "best effort" basis •

Examples of Guarantees Frame Rate (GFR)

- Throughput guarantee for multiple cell frames

Guaranteed frame rates ensure smooth video images, a prerequisite of producers.

ATM Service Categories

- Real time
 - —Constant bit rate (CBR)
 - —Real time variable bit rate (rt-VBR)
- Non-real time
 - —Non-real time variable bit rate (nrt-VBR)
 - -Available bit rate (ABR)
 - -Unspecified bit rate (UBR)
 - —Guaranteed frame rate (GFR)

rt-VBR

- Time sensitive application
 - —Tightly constrained delay and delay variation
- rt-VBR applications transmit at a rate that varies with time
- · e.g. compressed video
 - —Produces varying sized image frames
 - -Original (uncompressed) frame rate constant
 - —So compressed data rate varies
- · Can statistically multiplex connections

nrt-VBR

- May be able to characterize expected traffic flow
- · Improve QoS in loss and delay
- End system specifies:
 - -Peak cell rate
 - -Sustainable or average rate
 - —Measure of how bursty traffic is
- e.g. Airline reservations, banking transactions

UBR

- May be additional capacity over and above that used by CBR and VBR traffic
 - -Not all resources dedicated
 - -Bursty nature of VBR
- For application that can tolerate some cell loss or variable delays
 - -e.g. TCP based traffic
- · Cells forwarded on FIFO basis
- · Best efforts service

ABR

- Application specifies peak cell rate (PCR) and minimum cell rate (MCR)
- Resources allocated to give at least MCR
- Spare capacity shared among all ABR sources
- e.g. LAN interconnection

Guaranteed Frame Rate (GFR)

- Designed to support IP backbone subnetworks
- Better service than UBR for frame based traffic
 - Including IP and Ethernet
- Optimize handling of frame based traffic passing from LAN through router to ATM backbone
 - —Used by enterprise, carrier and ISP networks
 - Consolidation and extension of IP over WAN
- ABR difficult to implement between routers over ATM network
- GFR better alternative for traffic originating on Ethernet
 - Network aware of frame/packet boundaries
 - When congested, all cells from frame discarded
 - Guaranteed minimum capacity
 - —Additional frames carried of not congested

AAL Protocols

- Convergence sublayer (CS)
 - —Support for specific applications
 - —AAL user attaches at Service Access Point (SAP)
- Segmentation and re-assembly sublayer (SAR)
 - Packages and unpacks info received from CS into cells
- Four types
 - -Type 1
 - —Type 2
 - —Type 3/4
 - -Type 5

Classes of Service

- The Convergence Sublayer (CS) interprets the type and format of incoming information based on 1 of 4 classes of service assigned by the application
- <u>Class A:</u> Constant bit rate (CBR), Connection oriented, strict timing relationship between source and destination, i.e voice
- <u>Class B:</u> Variable bit rate (VBR), Connection oriented, strict timing, e.g. packet-mode video for video conferencing
- Class C: Connection oriented VBR, not strict timing, e.g. LAN
- data transfer applications such as Frame Relay
- <u>Class D:</u> Connectionless VBR, not strict timing, e.g. LAN data
- transfer applications such as IP

ATM Adaptation Layer (AAL)

Segmentation and Reassembly (SAR) sublayer

- AAL Type 1
- CBR source
- SAR packs and unpacks bits
- Block accompanied by sequence number

- Carries Class A Services
 - —e.g. CBR packetised voice (traditional circuit switched)
 - -48 octet payload

ATM Adaptation Layer (AAL)

Segmentation and Reassembly (SAR) sublayer

- AAL Type 2
- VBR
- Analog applications
- Carries Class B Services
 - —Not fully developed yet, but some characteristics are:-
 - Transfer of Service Data Units with variable source bit rate
 - · Transfer of timing information

ATM Adaptation Layer (AAL)

 $Segmentation\ and\ Reassembly\ (SAR)\ sublayer$

- AAL Type 3/4
- Connectionless or connected
- Message mode or stream mode
- Carries Class C&D Services
 - —Can operate in message or stream mode
 - Message mode entire message carried in one CS-PDU
 - -Stream mode involves many CS-PDUs.

ATM Adaptation Layer (AAL)

Segmentation and Reassembly (SAR) sublayer

- AAL Type 5
- Streamlined transport for connection oriented higher layer protocols
- · Carries Class C & D Services
 - -Designed for same class of traffic as AAL3/4
 - -Simpler, less overhead
 - -SAR-PDU for instance has no header / trailer
 - Essentially CS-PDU is segmented and segments mapped to ATM payload

ATM Concepts: Service Categories

- ABR (Available bit rate):
 - —Source follows network feedback.
 - —Max throughput with minimum loss.
- UBR (Unspecified bit rate):
 - User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.
- CBR (Constant bit rate): User declares required rate.
- —Throughput, delay and delay variation guaranteed.
- VBR (Variable bit rate): Declare avg and max rate.

 —rt-VBR (Real-time): Conferencing.
 - Max delay guaranteed.
 - -nrt-VBR (non-real time): Stored video.

Real Time Services

- Amount of delay
- · Variation of delay (jitter)

CBR

- Fixed data rate continuously available
- · Tight upper bound on delay
- Uncompressed audio and video
 - -Video conferencing
 - -Interactive audio
 - -A/V distribution and retrieval

Asynchronous Transfer Mode ATM - Star network

- Asynchronous Transfer Mode technology consists of electronic packet switches to which computers can connect .
- ATM switches form hub into which computers connect in a star topology.
- Computers get point-to-point connections data from transmitter is routed directly through hub switches to destination

46

ATM details

- Transmits data at over 100Mbps
- Uses fiber optics to connect computer to switch
- Each connection includes two fibers

ATM switches

48