Composición de funciones

En análisis matemático de una variable, se ha visto que dadas dos funciones f y g, bajo ciertas condiciones, tiene sentido por ejemplo, usar a la función g como variable de entrada para la función f, lo que se indica como $f \circ g$, y se dice g compuesta con f. Con más detalle,

Si $f: A \subseteq \mathbb{R} \to \mathbb{R}$, y, $g: B \subseteq \mathbb{R} \to \mathbb{R}$, y la imagen de g está contenida en A, $imag g \subseteq A$, entonces tiene sentido la relación $f \circ g$.

Pasemos ahora al caso de composición de funciones de varias variables escalares, trayectorias y vectoriales.

1) Caso de composición entre una trayectoria y una función escalar

Sean el campo escalar f(x, y) = 6 - x - y,

y la trayectoria en el plano $\vec{\alpha}$: $[0; 2\pi] \to \mathbb{R}^2/\vec{\alpha}(t) = (2\cos t, 2\sin t)$.

Hacer la composición de $\vec{\alpha}$ con f.

Primeramente, hallamos el dominio de $f \circ \vec{\alpha}$

 $dom \ f \circ \vec{\alpha} = \{t \in dom \ \vec{\alpha} / \vec{\alpha}(t) \in dom \ f\} = \{t \in [0; 2\pi] / (2\cos t, 2\sin t) \in \mathbb{R}^2\} = [0; 2\pi]$

ya que $(2\cos t, 2\sin t) \in \mathbb{R}^2$ es una proposición verdadera.

Ahora, hallamos $f \circ \vec{\alpha}$

 $f \circ \vec{\alpha} : dom \ f \circ \vec{\alpha} \to \mathbb{R}/f \circ \vec{\alpha}(t) = f[\vec{\alpha}(t)],$

Pero, $f[\vec{\alpha}(t)] = f(2\cos t, 2\sin t) = 6 - 2\cos t - 2\sin t$. Luego

$$f \circ \vec{\alpha}$$
: $[0; 2\pi] \to \mathbb{R}/f \circ \vec{\alpha}(t) = 6 - 2\cos t - 2\sin t$

2) Caso de composición entre una trayectoria y una función vectorial

Dados el campo vectorial $\vec{F}(x,y) = (x^2 - y^2, 2xy)$, y la trayectoria en el plano $\vec{\omega} : \mathbb{R} \to \mathbb{R}^2 / \vec{\omega}(t) = (t,t)$.

Hallar la función compuesta $\vec{F} \circ \vec{\omega}$.

Hallamos el dominio de $\vec{F} \circ \vec{\omega}$

$$dom \vec{F} \circ \vec{\omega} = \{t \in dom \vec{\omega} / \vec{\omega}(t) \in dom \vec{F}\} = \{t \in \mathbb{R} / (t, t) \in \mathbb{R}^2\} = \mathbb{R}$$

porque $(t,t) \in \mathbb{R}^2$ es una proposición verdadera.

Hallamos $\vec{F} \circ \vec{\omega}$

$$\vec{F} \circ \vec{\omega} : dom \ \vec{F} \circ \vec{\omega} \to \mathbb{R}^2 / \vec{F} \circ \vec{\omega}(t) = \vec{F}[\vec{\omega}(t)]$$

Pero,
$$\vec{F}[\vec{\omega}(t)] = \vec{F}(t,t) = (t^2 - t^2, 2tt) = (0,2t^2)$$
. Entonces

$$\vec{F} \circ \vec{\omega} : R \to \mathbb{R}^2 / \vec{F} \circ \vec{\omega}(t) = (0.2t^2)$$

3) Caso de composición entre una trayectoria y una función vectorial

Sean el campo vectorial $\vec{F}(x,y,z) = \left(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2},0\right)$, y la trayectoria en el espacio $\vec{\mu} \colon \mathbb{R} \to \mathbb{R}^3 / \vec{\mu}(t) = (t,t,4)$. Hallar $\vec{F} \circ \vec{\mu}$.

Hallamos el dominio del campo vectorial \vec{F}

$$dom \vec{F} = \{(x, y, z) \in \mathbb{R}^3 / (x, y) \neq (0, 0)\} = \mathbb{R}^3 - \{(x, y, z) \in \mathbb{R}^3 / (x, y) = (0, 0)\}$$
$$dom \vec{F} = \mathbb{R}^3 - \{(0, 0, z) / z \in R\}$$

Podemos ver claramente que $dom \vec{F}$: espacio - eje z.

Hallamos el dominio de $\vec{F} \circ \vec{\mu}$

$$dom \ \vec{F} \circ \vec{\mu} = \{t \in dom \ \vec{\mu}/\ \vec{\mu}(t) \in dom \ \vec{F}\} = \{t \in \mathbb{R}/\ (t, t, 4) \in dom \ \vec{F}\}$$
$$dom \ \vec{F} \circ \vec{\mu} = \{t \in \mathbb{R}/t \neq 0\} = \mathbb{R} - \{0\}$$

Hallamos $\vec{F} \circ \vec{\mu}$

$$\vec{F} \circ \vec{\mu} : dom \ \vec{F} \circ \vec{\mu} \to \mathbb{R}^3 / \vec{F} \circ \vec{\mu}(t) = \vec{F}[\vec{\mu}(t)]$$

Pero,
$$\vec{F}[\vec{\mu}(t)] = \vec{F}(t,t,4) = \left(-\frac{t}{t^2+t^2}, \frac{t}{t^2+t^2}, 0\right) = \left(-\frac{1}{2t}, \frac{1}{2t}, 0\right)$$
. Luego

$$\vec{F} \circ \vec{\mu} \colon \mathbb{R} - \{0\} \to \mathbb{R}^3 / \vec{F} \circ \vec{\mu}(t) = \left(-\frac{1}{2t}, \frac{1}{2t}, 0\right)$$