United International University (UIU) Dept. of Computer Science and Engineering (CSE) Final Exam Year: 2021 Trimester: Summer

Course: CSE 2215/CSI 217 Data Structure and Algorithms I

Total Marks: 25, Time: 1 hour 15 min, Upload & Download Time:15 min

(Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules)

There are FOUR questions. Answer all of them. Figures in the right-hand margin indicate full marks.

1.	a) Draw a binary tree using the data given below, where x, y, z, p, r, t, u and v are nodes of the tree.	[1]
	y p z x r t u v Here, x=last two digits of your student id+1, y=x+3, z=x+y, p=y+z, r=x+2, t=700, u=800, v=900	
	b) Traverse the binary tree of Ques. 1(a) using the preoder, inorder, postorder and level order techniques. Also find the height of the tree.	[3]
	c) Draw a binary tree from the following Preorder and Inorder sequences Preorder: x y p v r z t u Inorder: v p y r x t z u	[2]
	Here, x=last two digits of your student id+1, y=x+3, z=x+y, p=y+z, r=x+2, t=700, u=800, v=900	
2.	a) Show the status of a QUEUE and a Priority QUEUE (Data in Ascending Order) for the following operations, where both QUEUEs are implemented by an array of size, $m=3$. Here, Enqueue and Dequeue mean insert and delete respectively, and $x=last$ two digits of your student $id+1$, $y=x+3$, $z=x+y$ and $p=y+z$.	[3]
	Enqueue(z), Enqueue(p), Dequeue(), Enqueue(y), Dequeue()	
	b) Draw a complete binary and then build the max-heap tree from the following data, where x= last two digits of your student id+100, $y=x+30$, $z=x+y$. 10 x 20 8 y 32 15 z 56	[3]
3.	a) Draw a directed acyclic graph using the vertices y , p , z , x , r and u , where x =last two digits of your student id+1, y = x +3, z = x + y , p = y + z , r = x +2, u =900	[1]
	b) Construct an Adjacency Marix and an Adjacency List for the graph in Ques. 3(a).	[3]
	c) Find a topological order from the graph in Ques. 3(a).	[2]
4.	a) Draw an undirected graph using the vertices y , p , z , x and r , where x =last two digits of your student id+1, y = x +3, z = x + y , p = y + z , r = x +2. Also find the Breadth First Search (BFS) sequence from the graph using a QUEUE.	[2]
	b) Construct a binary search tree (BST) using the nodes y , p , z , x , r , and t , where, x =last two digits of your student id+1, y = x +3, z = x + y , p = y + z , r = x +2, t =900. Show the insertion and deletion of p + r and z , respectively in/from the BST.	[3]
	c) Two disjoint sets $\{y, p, z, x\}$ and $\{r, t\}$ are given, where minimum one of a set is the representative of that set. Determine UNION(Find(x), Find(t)). How can you check x and y are in the same set using Find operation? Here, x=last two digits of your student id+1, y=x+3, z=x+y, p=y+z, r=x+2, t=900.	[2]