

Report No.: EED32K00293602 Page 1 of 38

TEST REPORT

Product : Multi-Functional Wireless Speaker

Trade mark : WOW!dea

SKOIN, M5, M5A, M5B, M5C, M5D, M5E,

Model/Type reference: M5F, M5T, M5S, M5y (y=Refer to Different

Color and Package Set Code)

Serial Number : N/A

Report Number : EED32K00293602

FCC ID : 2AJIX-M5

Date of Issue : May 13, 2019
Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Shenzhen Hongyi Science & Technology Development Co., Ltd. Unit 601-602, Building No. A4, East Industrial Park of OCT, Nanshan District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

May 13, 2019

Compiled by:

Review Lan

Kevin Lan

Kevin Lan

Kevin yang

Check No.: 3757538892

Report Seal

2 Version

Version No.	Date	Description		
00	May 13, 2019	Original		
120				

Report No.: EED32K00293602 Page 3 of 38

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: SKOIN, M5, M5A, M5B, M5C, M5D, M5E, M5F, M5T, M5S, M5y (y=Refer to Different Color and Package Set Code)

Only the model M5 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being outer decoration.

Report No. : EED32K00293602 Page 4 of 38

4 Content

_						
C	OVER PAGE			•••••	•••••	1
2 VE	ERSION					2
B TE	ST SUMMARY					3
ı cc	ONTENT	100		20 Pag.		4
	ST REQUIREMENT					
5.	1 TEST SETUP 5.1.1 For Conducted test 5.1.2 For Radiated Emiss 5.1.3 For Conducted Emis 2 TEST ENVIRONMENT	setupions test setupssions test setup				
GE	ENERAL INFORMATION			•••••	•••••	7
6. 6. 6. 6. 6.	.1 CLIENT INFORMATION	F EUT SUBJECTIVE TO THIS ST T UNITS RDS ANDARD CONDITIONS QUESTED BY THE CUSTO	TANDARD			
7 EQ	QUIPMENT LIST			•••••	•••••	10
B RA	ADIO TECHNICAL REQUI	REMENTS SPECIFIC	ATION		•••••	12
	Appendix A): 6dB Occupie Appendix B): Conducted I Appendix C): Band-edge Appendix D): RF Conduct Appendix E): Power Spec Appendix F): Antenna Red Appendix G): AC Power L Appendix H): Restricted b Appendix I): Radiated Spe	ed Bandwidth Peak Output Power for RF Conducted Em ted Spurious Emission tral Density quirement tine Conducted Emiss	issionssisisis	idiated)		13 15 18 21 23
ЭНС	TOGRAPHS OF TEST SE	TUP		•••••	•••••	36
РНС	TOGRAPHS OF EUT CO	NSTRUCTIONAL DE	TAILS	•••••	•••••	38

Report No. : EED32K00293602 Page 5 of 38

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Report No.: EED32K00293602 Page 6 of 38

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment for		(6.)	(0,	
Temperature:	24°C			
Humidity:	55% RH			
Atmospheric Pressure:	101kPa	(3)		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
\	rest Mode	I A/NA	Low(L)	Middle(M)	High(H)	
1	CECK	2402MU= - 2490 MU=	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
İ	Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Report No. : EED32K00293602 Page 7 of 38

6 General Information

6.1 Client Information

Applicant:	Shenzhen Hongyi Science & Technology Development Co., Ltd.	
Address of Applicant:	Unit 601-602, Building No. A4, East Industrial Park of OCT, Nanshan District, Shenzhen, China	
Manufacturer:	Shenzhen Hongyi Science & Technology Development Co., Ltd.	
Address of Manufacturer:	Unit 601-602, Building No. A4, East Industrial Park of OCT, Nanshan District, Shenzhen, China	(6.2)
Factory:	Shenzhen Hongyi Science & Technology Development Co., Ltd.	
Address of Factory:	Unit 601-602, Building No. A4, East Industrial Park of OCT, Nanshan District, Shenzhen, China	

6.2 General Description of EUT

	147.47				
Product Name:	Multi-Functional Wireless Speaker				
Model No.:	SKOIN, M5, M5A, M5B, M5C, M5D, M5E, M5F, M5T, M5S, M5y (y=Refer to Different Color and Package Set Code)				
Test model No.:	M5				
Trade mark:	WOW!dea				
EUT Supports Radios application:	BT: 4.2 BT Dual mode: 2402MHz to 2480MHz				
Power Supply:	DC 12V, Battery 7.4V				
Hardware Version:	V4.0(manufacturer declare)				
Firmware Version:	V4.0(manufacturer declare)				
Sample Received Date:	Oct. 30, 2018				
Sample tested Date:	Jan. 31, 2019 to Apr. 20, 2019				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	4.0	
Modulation Technique:	DSSS	(3)
Modulation Type:	GFSK	(62.)
Number of Channel:	40	
Test Power Grade:	N/A	
Test Software of EUT:	N/A	'S ('S
Antenna Type:	PCB Antenna	(2)
Antenna Gain:	-0.58dBi	
Test Voltage:	AC 120V 60Hz, Battery 7.4V	

Report No.: EED32K00293602 Page 8 of 38

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	ssociated oment name	Manufacture	model	Serial number	Supplied by	Certification
AE1	DC Source	TRADEX	LPS 202A	10209898	СТІ	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No. : EED32K00293602 Page 9 of 38

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nover conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
3	Padiated Spurious emission test	4.3dB (30MHz-1GHz)	
	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No. : EED32K00293602 Page 10 of 38

7 Equipment List

RF test system								
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-02-2018 03-01-2019	03-01-2019 02-28-2020			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-09-2019	01-08-2020			
DC Power	Keysight	E3642A	MY54426035	03-02-2018 03-01-2019	03-01-2019 02-28-2020			
PC-1	Lenovo	R4960d		03-02-2018 03-01-2019	03-01-2019 02-28-2020			
BT&WI-FI Automatic control	R&S	OSP120	101374	03-02-2018 03-01-2019	03-01-2019 02-28-2020			
RF control unit	JS Tonscend	JS0806-2	15860006	03-02-2018 03-01-2019	03-01-2019 02-28-2020			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-02-2018 03-01-2019	03-01-2019 02-28-2020			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019			

Conducted disturbance Test												
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)							
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019							
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019							
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019							

Report No. : EED32K00293602 Page 11 of 38

			1.00		
	3M S	Semi/full-anechoid	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device Controller	maturo	NCD/070/1071 1112		01-09-2019	01-08-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020

3M full-anechoic Chamber										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-20-2018	06-19-2019					
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-28-2018 03-27-2019	03-27-2019 03-25-2020					
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-28-2018 03-27-2019	03-27-2019 03-25-2020					
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021					
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021					
Preamplifier	EMCI	EMC184055S E	980596	06-20-2018	06-19-2019					
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019					
Temperature/ Humidity Indicator	biaozhi	GM1360 EE1186631		05-02-2018	05-01-2019					
Fully Anechoic Chamber	TDK	FAC-3	-	01-17-2018	01-15-2021					
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021					
Cable line	Times	SFT205- NMSM-2.50M	394812-0001	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-2.50M	394812-0002	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-2.50M	394812-0003	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-2.50M	393495-0001	01-09-2019	01-08-2020					
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020					
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020					
Cable line	Times	HF160- KMKM-3.00M	393493-0001	01-09-2019	01-08-2020					

Report No. : EED32K00293602 Page 12 of 38

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No.: EED32K00293602 Page 13 of 38

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.5298	1.0954	PASS
BLE	MCH	0.5276	1.0906	PASS
BLE	нсн	0.5378	1.0933	PASS

Test Graphs

Report No. : EED32K00293602 Page 15 of 38

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.914	PASS
BLE	MCH	0.376	PASS
BLE	НСН	1.295	PASS

Report No.: EED32K00293602 Page 17 of 38

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
À	BLE	LCH	-1.320	-53.210	-21.32	PASS
2	BLE	НСН	0.917	-42.459	-19.08	PASS

Test Graphs

Report No.: EED32K00293602 Page 18 of 38

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-1.444	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-0.134	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	0.794	<limit< td=""><td>PASS</td></limit<>	PASS

Remark: Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, more than 10dB below the limit, and the below emissions were the highest point could be found when testing, so only the below emissions had been displayed. The amplitude of spurious emissions from the conducted which are attenuated more than 10dB below the limit need not be reported.

Test Graphs

Report No. : EED32K00293602 Page 21 of 38

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-18.774	8	PASS
BLE	MCH	-17.394	8	PASS
BLE	НСН	-16.482	8	PASS

Report No.: EED32K00293602 Page 23 of 38

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is -0.58 dBi.

Report No. : EED32K00293602 Page 24 of 38

Appendix G): AC Power Line Conducted Emission

Test Procedure:	 Test frequency range :150KHz-30MHz The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the 								
	horizontal ground 4) The test was per	d reference formed wi	e plane, th a vertical ground	reference plane. Th erence plane. The ve	e rear of the				
	1 was placed 0. ground reference plane. This dista	reference plane was bonded to the horizontal ground reference plane. The LISI 1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the							
		cables		ive positions of equip according to ANSI					
Limit:					_				
	Fraguenov renge	(NALI=)	Limit	(dBµV)					
	Frequency range	(1011 12)	Quasi-peak	Average					
	0.15-0.5	(1)	66 to 56*	56 to 46*					
	0.5-5	(0,)	56	46	(0,				
	5-30		60	50					
	* The limit decrease MHz to 0.50 MHz		with the logarithm o	f the frequency in th	e range 0.15				
	NOTE : The lower li	mit is appli	cable at the transitio	n freguency					

Page 25 of 38

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

		Reading_Level			Correct	N	Measurement			nit	Ma	rgin		
No.	Freq.	(dBuV)		Factor		(dBuV)		(dB	uV)	(0	dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1864	38.42	32.30	5.15	9.91	48.33	42.21	15.06	64.19	54.19	-21.98	-39.13	Р	
2	0.2819	37.47	31.40	2.00	9.98	47.45	41.38	11.98	60.76	50.76	-19.38	-38.78	Р	
3	1.2059	12.46	4.70	-12.0	9.79	22.25	14.49	-2.29	56.00	46.00	-41.51	-48.29	Р	
4	9.1260	17.74	6.70	-7.46	9.82	27.56	16.52	2.36	60.00	50.00	-43.48	-47.64	Р	
5	12.7140	18.75	7.23	-10.5	9.92	28.67	17.15	-0.66	60.00	50.00	-42.85	-50.66	Р	
6	27.3540	21.86	10.80	-4.41	9.95	31.81	20.75	5.54	60.00	50.00	-39.25	-44.46	Р	

Page 26 of 38

Report No.: EED32K00293602

		Reading_Level Correct Measurement		Limit		Margin									
	No.	lo. Freq. (dBuV)		Factor	(dBuV)		(dBuV)		(dB)						
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1660	38.47	32.10	4.67	9.91	48.38	42.01	14.58	65.15	55.15	-23.14	-40.57	Р	
Ī	2	0.3059	37.56	31.40	1.93	9.99	47.55	41.39	11.92	60.08	50.08	-18.69	-38.16	Р	
3	3	0.3339	37.00	30.80	2.07	9.96	46.96	40.76	12.03	59.35	49.35	-18.59	-37.32	Р	
۰	4	1.3140	11.97	4.30	-12.6	9.78	21.75	14.08	-2.85	56.00	46.00	-41.92	-48.85	Р	
	5	19.9139	2.07	-5.70	-13.5	9.91	11.98	4.21	-3.64	60.00	50.00	-55.79	-53.64	Р	
	6	24.8738	5.40	-1.70	-9.29	9.93	15.33	8.23	0.64	60.00	50.00	-51.77	-49.36	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32K00293602 Page 27 of 38

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)	(6)	- (C)		- 4					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak	- 0			
6)	Above IGHZ	Peak	1MHz	10Hz	Average	A			
Below 1GHz test procedure as below: a. The EUT was placed on the top of a rotating table 0.8 meters above the grat a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground determine the maximum value of the field strength. Both horizontal and very polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and the antenna was tuned to heights from 1 meter to 4 meters and the rotatab was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modula for lowest and highest channel Above 1GHz test procedure as below:									
	_	lure as below: ove is the test site, mber change form 1 meter and table owest channel, the ements are perfor	n table 0.8 e is 1.5 me he Highest med in X, is positioni	meter to 1 ter). channel Y, Z axis p ng which i	.5 meter(Abo	ve			
Limit:	Frequency	Limit (dBµV/ı	m @3m)	Rei	mark				
	30MHz-88MHz	40.0	· ·	Quasi-pe	eak Value				
	88MHz-216MHz	43.5	<u> </u>	· ·	eak Value				
	216MHz-960MHz	46.0	l	Quasi-pe	eak Value				
	960MHz-1GHz	54.0	1	Quasi-pe	eak Value				
		54.0	(6		ge Value				
	Above 1GHz	74.0			Value				
Toot Ambient	Tomp : 24°C	Humid : F70/		Dress : 1	101kDo				
Test Ambient:	Temp.: 24°C	Humid.: 57%		Press.: '	IUIKPA				

Report No.: EED32K00293602 Page 28 of 38

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak	97	(0)

Test Graph

Cable Ant Pream Reading Limit Margin Freq. Level NO Factor loss gain Result **Polarity** [MHz] [dBµV] [dBµV/m] $[dB\mu V/m]$ [dB] [dB] [dB] [dB] 2390.0000 -42.44 53.83 74.00 20.17 1 32.25 13.37 50.65 **Pass** Horizontal 2 78.83 74.00 2401.7897 32.26 13.31 -42.43 75.69 -4.83 **Pass** Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak		/

Test Graph

Ant Cable Pream Reading Level Limit Margin Freq. NO gain Result Factor loss Polarity [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 1 2390.0000 32.25 13.37 -42.44 50.02 53.20 74.00 20.80 **Pass** Vertical 2 32.26 -42.43 72.33 74.00 1.67 2401.6708 13.31 69.19 **Pass** Vertical

Ра	ge	29	OT	38	

Mode:	BLE GFSK Transmitting	Channel:	2402		
Remark:	AV	(6.2)	(67)		

Test Graph

Cable Pream Ant Reading Level Limit Margin Freq. NO Result Factor loss gain Polarity [MHz] [dBµV] [dBµV/m] [dB] [dBµV/m] [dB] [dB] [dB] 2390.0000 1 32.25 13.37 -42.44 38.39 41.57 54.00 12.43 **Pass** Horizontal

44.09

Mode:	BLE GFSK	Transmitting	Channel:	2402	
Remark:	AV			i -	

47.23

54.00

6.77

Pass

Horizontal

Test Graph

2401.9086

32.26

* AV Detector

13.31

-42.43

2

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.69	41.87	54.00	12.13	Pass	Vertical
Г	2	2401 0086	32.26	13 31	-12.13	/3 10	46.24	54.00	7.76	Page	Vertical

Page 30 of 38

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak		

Test Graph

Cable Pream Ant Reading Level Limit Margin Freq. NO Result **Polarity** Factor loss gain [MHz] [dBµV] [dBµV/m] $[dB\mu V/m]$ [dB] [dB] [dB] [dB] 2479.7309 75.06 74.00 1 32.37 13.39 -42.39 71.69 -1.06 **Pass** Horizontal 2 2483.5000 32.38 13.38 -42.40 49.99 53.35 74.00 20.65 **Pass** Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak		

Test Graph

AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0814	32.37	13.39	-42.40	67.41	70.77	74.00	3.23	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.05	52.41	74.00	21.59	Pass	Vertical

AV Detector

Page 31 of 38

Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	AV	(6.2)	(62)	

Test Graph

Ant Cable Pream Reading Level Limit Margin Freq. NO Result Polarity Factor loss gain [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] 2479.9061 8.28 1 32.37 13.39 -42.3942.35 45.72 54.00 **Pass** Horizontal 2 2483.5000 32.38 13.38 -42.40 36.72 40.08 54.00 13.92 Pass Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8185	32.37	13.39	-42.39	41.64	45.01	54.00	8.99	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.72	40.08	54.00	13.92	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Report No.: EED32K00293602 Page 32 of 38

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	(301)	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24000/F(kHz)	-	(3)	30	
)	1.705MHz-30MHz	30	-	(0.5)	30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	
	88MHz-216MHz	150	43.5	Quasi-peak	3	
(3)	216MHz-960MHz	200	46.0	Quasi-peak	3	
(6.2)	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3	

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Ambient: Temp.: 24°C Humid.: 57% Press.: 101kPa

Report No.: EED32K00293602 Page 33 of 38

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode: GFSK Transmitting						Channel: 2	402	Remark: QP		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	31.8432	10.57	0.64	-32.12	43.96	23.05	40.00	16.95	Pass	Н
2	131.9572	7.60	1.34	-32.01	45.79	22.72	43.50	20.78	Pass	Н
3	359.8330	14.52	2.27	-31.84	54.87	39.82	46.00	6.18	Pass	Н
4	384.2794	15.05	2.33	-31.85	52.97	38.50	46.00	7.50	Pass	Н
5	480.0280	16.68	2.61	-31.90	51.75	39.14	46.00	6.86	Pass	Н
6	528.0478	17.56	2.75	-31.91	49.91	38.31	46.00	7.69	Pass	Н
7	32.2312	10.59	0.64	-32.12	42.15	21.26	40.00	18.74	Pass	V
8	55.2225	12.36	0.84	-32.07	40.40	21.53	40.00	18.47	Pass	V
9	120.0250	9.20	1.30	-32.07	44.88	23.31	43.50	20.19	Pass	V
10	208.8859	11.13	1.71	-31.94	45.43	26.33	43.50	17.17	Pass	V
11	371.6682	14.78	2.30	-31.88	48.46	33.66	46.00	12.34	Pass	V
12	480.0280	16.68	2.61	-31.90	45.25	32.64	46.00	13.36	Pass	V

Remark: All modes are tested, only the worst mode is reported.

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333

Report No. : EED32K00293602 Page 34 of 38

Transmitter Emission above 1GHz

Mode: BLE GFSK Transmitting						Channel: 2	402	Remark: Peak		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1428.0428	28.33	2.93	-42.68	51.18	39.76	74.00	34.24	Pass	Н
2	3512.2341	33.41	4.48	-41.80	49.22	45.31	74.00	28.69	Pass	Н
3	4804.0000	34.50	4.55	-40.66	45.51	43.90	74.00	30.10	Pass	Н
4	6183.9123	35.84	5.23	-41.13	47.81	47.75	74.00	26.25	Pass	Н
5	7206.0000	36.31	5.81	-41.02	44.83	45.93	74.00	28.07	Pass	Н
6	9608.0000	37.64	6.63	-40.76	44.59	48.10	74.00	25.90	Pass	Н
7	1407.6408	28.31	2.91	-42.68	52.88	41.42	74.00	32.58	Pass	V
8	3298.3699	33.32	4.58	-41.95	49.60	45.55	74.00	28.45	Pass	V
9	4804.0000	34.50	4.55	-40.66	45.29	43.68	74.00	30.32	Pass	V
10	6327.5718	35.87	5.46	-41.16	47.48	47.65	74.00	26.35	Pass	V
11	7206.0000	36.31	5.81	-41.02	45.75	46.85	74.00	27.15	Pass	V
12	9608.0000	37.64	6.63	-40.76	44.73	48.24	74.00	25.76	Pass	V

Mode	Mode: BLE GFSK Transmitting						Channel: 2440 Remark: Pe			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1796.6797	30.36	3.31	-42.71	54.47	45.43	74.00	28.57	Pass	Н
2	3124.8083	33.25	4.65	-42.05	49.93	45.78	74.00	28.22	Pass	Н
3	4880.0000	34.50	4.80	-40.60	44.41	43.11	74.00	30.89	Pass	Н
4	6202.7635	35.84	5.23	-41.13	47.60	47.54	74.00	26.46	Pass	Н
5	7320.0000	36.42	5.85	-40.92	44.36	45.71	74.00	28.29	Pass	Н
6	9760.0000	37.70	6.73	-40.62	44.05	47.86	74.00	26.14	Pass	Н
7	1400.2400	28.30	2.90	-42.68	54.89	43.41	74.00	30.59	Pass	V
8	2961.9962	33.14	4.44	-42.15	51.08	46.51	74.00	27.49	Pass	V
9	4880.0000	34.50	4.80	-40.60	45.32	44.02	74.00	29.98	Pass	V
10	5962.8975	35.74	5.33	-41.06	47.83	47.84	74.00	26.16	Pass	V
11	7320.0000	36.42	5.85	-40.92	45.13	46.48	74.00	27.52	Pass	V
12	9760.0000	37.70	6.73	-40.62	44.69	48.50	74.00	25.50	Pass	V

Mode: BLE GFSK Transmitting						Channel: 2	480		Remark: Peak	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1454.4454	28.35	2.95	-42.67	51.30	39.93	74.00	34.07	Pass	Н
2	3267.1678	33.31	4.49	-41.96	50.39	46.23	74.00	27.77	Pass	Н
3	4960.0000	34.50	4.82	-40.53	46.05	44.84	74.00	29.16	Pass	Н
4	6447.1798	35.89	5.51	-41.18	47.30	47.52	74.00	26.48	Pass	Н
5	7440.0000	36.54	5.85	-40.82	45.14	46.71	74.00	27.29	Pass	Н
6	9920.0000	37.77	6.79	-40.48	45.05	49.13	74.00	24.87	Pass	Н
7	1199.0199	28.10	2.66	-42.89	52.96	40.83	74.00	33.17	Pass	V
8	3530.4354	33.42	4.46	-41.75	50.04	46.17	74.00	27.83	Pass	V
9	4960.0000	34.50	4.82	-40.53	45.65	44.44	74.00	29.56	Pass	V
10	6486.1824	35.90	5.48	-41.19	48.03	48.22	74.00	25.78	Pass	V
11	7440.0000	36.54	5.85	-40.82	44.49	46.06	74.00	27.94	Pass	V
12	9920.0000	37.77	6.79	-40.48	44.01	48.09	74.00	25.91	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32K00293602 Page 36 of 38

PHOTOGRAPHS OF TEST SETUP

Test model No.: M5

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Page 38 of 38

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32K00293601 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

