

Aldehydes, Ketones and Carboxylic Acids

CHAPTER

26

1.
$$CH_3CH_2COOH \xrightarrow{Cl_2} A \xrightarrow{alc.KOH} B$$
.

What is B?

[2002]

- (a) CH₃CH₂COCl
- (b) CH₃CH₂CHO
- (c) CH₂=CHCOOH
- (d) CICH, CH, COOH.
- **2.** On vigorous oxidation by permanganate solution.

$$(CH_3)_2C = CH - CH_2 - CHO$$
 gives

[2002]

(a)
$$CH_3 - CH_2 - CH_2 - CH_3$$

(b)
$$CH_3$$
 $COOH + CH_3CH_2COOH$ CH_3

(c)
$$CH_3$$
 $CH - OH + CH_2CH_2CH_2OH$

(d)
$$CH_3$$
 $C = O + CH_2CH_2CHC$

3. Picric acid is:

[2002]

(a)
$$OOOH$$
 COOH $OOOH$ (b) $OOOH$

(c)
$$O_2N$$
 OH NO_2 OH NO_2 OH NH_2

When $CH_2 = CH$ — COOH is reduced with LiAlH₄, the compound obtained will be

[2003]

- (a) $CH_2 = CH CH_2OH$
- (b) $CH_3 CH_2 CH_2OH$
- (c) CH₃—CH₂—CHO
- (d) $CH_3 CH_2 COOH$
- 5. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is [2004]
 - (a) CH₃COCl+C₂H₅OH+NaOH
 - (b) CH₃COONa+C₂H₅OH
 - (c) CH₃COOC₂H₅ + NaCl
 - (d) CH₃Cl+C₂H₅COONa
- Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of NH₄Cl gives [2004]
 - (a) 2-methyl-2propanol
 - (b) acetamide
 - (c) acetone
 - (d) acetyl iodide
- 7. Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon? [2004]
 - (a) Acetamide
- (b) Acetic acid
- (c) Ethyl acetate
- (d) Butan-2-one
- **8.** Which one of the following undergoes reaction with 50% sodium hyroxide solution to give the corresponding alcohol and acid? [2004]
 - (a) Butanal
- (b) Benzaldehyde
- (c) Phenol
- (d) Benzoic acid
- 9. Among the following acids which has the lowest pK_a value? [2005]
 - (a) CH₃CH₂COOH
 - (b) $(CH_3)_2CH-COOH$

Aldehydes, Ketones and Carboxylic Acids

- (c) HCOOH
- (d) CH₃COOH
- **10.** Reaction of cyclohexanone with dimethylamine in the presence of catalytic amount of an acid forms a compound if water during the reaction is continuously removed. The compound formed is generally known [2005]
 - (a) an amine
- (b) an imine
- (c) an anemine
- (d) a Schiff's base
- 11. The increasing order of the rate of HCN addition to compound A - D is [2006]
 - (A) HCHO
- (B) CH₂COCH₂
- (C) PhCOCH₂
- (D) PhCOPh
- (a) D < C < B < A
- (b) C < D < B < A
- (c) A < B < C < D
- (d) D < B < C < A
- The correct order of increasing acid strenght of the compounds [2006]
 - (A) CH₂CO₂H
- (B) MeOCH2CO2H
- CF₃CO₂H

is

- (a) $D \le A \le B \le C$
- (b) A < D < B < C
- (c) B < D < A < C
- (d) D < A < C < B
- 13. A liquid was mixed with ethanol and a drop of concentrated H₂SO₄ was added. A compound with a fruity smell was formed. The liquid was:
 - [2009]

- (a) HCHO
- (b) CH₃COCH₃
- (c) CH₃COOH
- (d) CH₂OH
- **14.** Which of the following on heating with aqueous KOH, produces acetaldehyde? [2009]
 - (a) CH₂CH₂Cl
- (b) CH₂ClCH₂Cl
- (c) CH₂CHCl₂
- (d) CH₃COCl
- 15. In Cannizzaro reaction given below

$$2\text{PhCHO} \xrightarrow{:\text{OH}} \text{PhCH}_2\text{OH} + \text{PhCO}_2^{\Theta}$$

the slowest step is:

[2009]

- (a) the transfer of hydride to the carbonyl group
- (b) the abstraction of proton from the carboxylic group
- the deprotonation of Ph CH₂OH

(d) the attack of: OH at the carboxyl group

- -c-129 16. Iodoform can be prepared from all except: [2012]
 - (a) Ethyl methyl ketone
 - (b) Isopropyl alcohol
 - (c) 3-Methyl 2-butanone
 - (d) Isobutyl alcohol
- In the given transformation, which of the following is the most appropriate reagent?

[2012]

Reagent

$$CH = CH - CH_2 - CH_3$$

- NH_2NH_2 , OH (b) Zn Hg/HCl
- (c) Na, Liq NH₃
- (d) NaBH₄
- An organic compound A upon reacting with NH₃ gives B. On heating B gives C. C in presence of KOH reacts with Br₂ to given CH₃CH₂NH₂. A is: [2013]
 - (a) CH₂COOH
 - CH₂CH₂CH₂COOH

- (d) CH₂CH₂COOH
- In the reaction,

$$CH_3COOH \xrightarrow{LiAlH_4} A$$

$$\xrightarrow{\text{PCl}_5} \text{B} \xrightarrow{\text{Alc.KOH}} \text{C}$$

the product C is:

[2014]

- (a) Acetaldehyde
- (b) Acetylene
- (c) Ethylene
- (d) Acetyl chloride
- The correct sequence of reagents for the following conversion will be:

c-130---

Chemistry

- (a) $[Ag(NH_3)_2]^+OH^-, H^+/CH_3OH, CH_3MgBr$
- (b) $CH_3MgBr, H^+/CH_3OH, [Ag(NH_3)_2]^+OH^-$
- (c) CH_3MgBr , $[Ag(NH_3)_2]^+OH^-$, H^+/CH_3OH
- (d) $[Ag(NH_3)_2]^+OH^-, CH_3MgBr, H^+/CH_3OH$
- 21. Sodium salt of an organic acid 'X' produces effervescence with conc. H₂SO₄. 'X' reacts with the acidified aqueous CaCl₂ solution to give a white precipitate which decolourises acidic solution of KMnO₄. 'X' is:
 - (a) C₆H₅COONa
- (b) HCOONa
- (c) CH₃COONa
- (d) $Na_2C_2O_4$
- **22.** The major product obtained in the following reaction is:

DIBAL-H

	Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
(c)	(b)	(c)	(a)	(c)	(a)	(d)	(b)	(c)	(c)	(a)	(a)	(c)	(c)	(a)	
16	17	18	19	20	21	22									
(d)	(a)	(d)	(c)	(a)	(d)	(b)									

SOLUTIONS

1. (c) $CH_3CH_2COOH \xrightarrow{Cl_2} CH_3CHCICOOH$

$$\xrightarrow{\text{alc.KOH}} \text{CH}_2 = \text{CHCOOH}$$

$$\xrightarrow{\text{Acrylic acid}}$$

- **2. (b)** Aldehydic group gets oxidised to carboxylic group. Double bond breaks and carbon gets oxidised to carboxylic group.
- **3. (c)** 2,4,6-Trinitrophenol is also known as picric acid.
- (a) LiAlH₄ can reduce COOH group and not the double bond.

$$CH_2 = CH - COOH \xrightarrow{LiAlH_4}$$

$$CH_2 = CH - CH_2OH$$

5. (c) There is no reaction hence the resultant mixture contains $CH_3 COOC_2H_5 + NaCl$.

6. (a)
$$CH_3 - C - Br \xrightarrow{(i)CH_3MgI}$$
 (ii)Saturated NH_4CI

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \begin{array}{c} \text{CH}_3 \\ \text{C} - \text{OH} \\ \text{CH}_3 \end{array}$$
 2-methyl-2-propanol

Aldehydes, Ketones and Carboxylic Acids

7. (d) It is Clemmensen's reduction

$$\begin{array}{c}
O \\
CH_3 - C - CH_2 - CH_3 \xrightarrow{Zn-Hg} \xrightarrow{Conc.HCl}
\end{array}$$
Butane-2-one

$$\begin{array}{c} \mathrm{CH_{3}CH_{2}}\!-\!\mathrm{CH_{2}CH_{3}} \\ \mathrm{(Butane)} \end{array}$$

8. **(b)** This reaction is known as cannizzaro's reaction. In this reaction benzaldehyde in presence of 50%. NaOH undergoes disproportionation reaction and form one mol of Benzyl alcohol (Red. product) and one mole of sod. benzoate (ox. product)

CHO 50% NaOH
$$\rightarrow$$
 COO † Na $^{-}$

9. (c) $pK_a = -\log K_a$; HCOOH is the strongest acid and hence it has the highest K_a or lowest pK_a value.

10. (c)

OH
$$O + HN(CH_3)_2 \longrightarrow OH$$

$$N (CH_3)_2$$

$$-H_2O \longrightarrow N (CH_3)_2$$

$$Requires$$

11. (a) NOTE Addition of HCN to carbonyl compounds is nucleophilic addition reaction. The order of reactivity of carbonyl compounds is

Aldehydes (smaller to higher) Ketones (smaller to higher), Then

HCHO > CH₃COCH₃ > PhCOCH₃ > PhCOPh

NOTE The lower reactivity of Ketones is due to presence of two alkyl group which shows +I effect. The reactivity of Ketones decreases as the size of alkyl group increases.

12. (a) The correct order of increasing acid strength

(Me)₂CHCOOH < CH₃COOH < MeOCH₂COOH < CF₃COOH

NOTE Electron withdrawing groups increase the acid strength and electron donating groups decrease the acid strength.]

13. (c) Fruity smell is due to ester formation which is formed between ethanol and acid.

$$\begin{array}{c} \text{CH}_{3}\text{COOH} + \text{C}_{2}\text{H}_{5}\text{OH} \xrightarrow{\quad \text{Conc. H}_{2}\text{SO}_{4} \\ \\ \text{CH}_{3}\text{COOC}_{2}\text{H}_{5} + \text{H}_{2}\text{O} \end{array}$$

14. (c) $CH_3CHCl_2 \xrightarrow{\text{aq.KOH}} CH_3CH(OH)_2$

$$\xrightarrow{-\text{H}_2\text{O}}$$
 CH₃CHO

O | | 15. (a) Ph - C - H + OH - fast

$$\begin{array}{c} O \\ O \\ Ph - C - H \\ O \\ O \\ \end{array} \xrightarrow{Ph - C - H} \begin{array}{c} O \\ Ph - C - H \\ slow \\ \end{array}$$

$$\begin{array}{ccc} O & O^- \\ \parallel & \mid & \mid \\ Ph-C & + & Ph-C-H \\ \mid & \mid & \mid \\ OH & H \end{array}$$

$$\begin{array}{c}
O & OH \\
\parallel & \parallel \\
\hline
 & \text{fast}
\end{array}$$

$$\begin{array}{c}
O & OH \\
\parallel & \parallel \\
Ph - C + Ph - C - H \\
\downarrow & \parallel \\
O & H$$

16. (d) Iodoform test is given by methyl ketones, acetaldehyde and methyl secondary alcohols.

isobutyl alcohol is a primary alcohol hence does'nt give positive iodoform test.

17. (a) Aldehydes and ketones can be reduced to hydrocarbons by the action (i) of amalgamated zinc and concentrated hydrochloric acid (Clemmensen reduction), or (b) of hydrazine (NH₂NH₂) and a strong base like NaOH, KOH or potassium *tert*-butoxide in a high-boiling alcohol like

c-132-

ethylene glycol or triethylene glycol (Wolf-Kishner reduction)

 $\begin{array}{c} & \xrightarrow{\text{NH}_2\text{NH}_2/\text{OH}} \\ & \xrightarrow{\text{Wolf-kishner}} \\ \text{Reduction} \\ \text{CH} = \text{CH} - \text{CH}_2 - \text{CH}_3 \end{array}$

-OH group and alkene are acid-sensitive groups so elemmensen reduction can not be used. Acid sensitive substrate should be reacted in the Wolf-Kishner reduction which utilise strongly basic conditions.

18. (d)

$$A \xrightarrow{NH_3} B \xrightarrow{\Delta} C \xrightarrow{Br_2} CH_3CH_2NH_2$$

Reaction (III) is a Hofmann bromamide reaction. Now formation of CH₃CH₂NH₂ is possible only from a compound CH₃CH₂CONH₂(C) which can be obtained from the compound CH₃CH₂COO⁻ NH₄⁺ (B).

Thus (A) should be CH₃CH₂COOH

$$\begin{array}{c} O \\ CH_3CH_2-C-OH \xrightarrow{NH_3} CH_3CH_2COO^-NH_4^+ \\ (A) & (B) \\ & \xrightarrow{\Delta} CH_3CH_2CONH_2 \\ (C) \\ KOH \downarrow Br_2 \\ CH_3CH_2NH_2 \end{array}$$

19. (c)
$$CH_3COOH \xrightarrow{LiAIH_4} CH_3CH_2OH \xrightarrow{(A)}$$

$$\downarrow^{PCl_5}$$
 $CH_3CH_2CI \xrightarrow{(B)}$

$$\downarrow^{Alc. KOH}$$
 $CH_2 = CH_2 \xrightarrow{(C)}$

Hence the product (C) is ethylene.

Chemistry

20. (a)
$$\frac{[Ag(NH_3)_2]OH}{Tollens reagent}$$

$$CHO$$

$$CO_2H$$

$$\downarrow H^+/CH_3OH$$
(esterification)

$$O = C$$
 $O CH_3$
 CH_3MgBr
 CH_3
 CH_3
 $O CH_3$
 $O CH_3$

21. (d)
$$\text{Na}_2\text{C}_2\text{O}_4 + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{CO}\uparrow + \text{CO}_2\uparrow + \text{H}_2\text{O}$$

'x' (conc.)

 $\text{Na}_2\text{C}_2\text{O}_4 + \text{CaCl}_2 \rightarrow \text{CaC}_2\text{O}_4 \downarrow + 2\text{NaCl}$

'x' (white ppt.)

 $5\text{CaC}_2\text{O}_4 \downarrow + 2\text{KMnO}_4 + 8\text{H}_2\text{SO}_4 \longrightarrow \text{(purple)}$
 $\text{K}_2\text{SO}_4 + 5\text{CaSO}_4 + 2\text{MnSO}_4 + 10\text{CO}_2 + \text{8H}_2\text{O}$

(colourless)

22. (b) DIBAL-H is an electrophilic reducing agent. It reduces both ester and carboxylic group into an aldehyde at low temperature.

$$\begin{array}{c} O \\ O \\ \hline \\ CO_2H \end{array} \begin{array}{c} OH \\ OH \\ CHO \end{array}$$