IFT2015 Structures de données: Liste détaillée de sujets¹

Miklós Csűrös

10 décembre 2013

FO Introduction

LE BUT DE CE DOCUMENT est de définir les compétences et connaissances requises dans le cours IFT2015 à l'examen final. L'examen constitue également la deuxième partie de l'examen pré-doctorale en structures de

- ★ Les notes marginales sont des références aux ouvrages suivants
 - S Sedgewick, R. Algorithmes en Java, 3e édition (2004)
 - SW Sedgewick, R. et K. Wayne. Algorithms, 4e édition (2011)
- Les notes de cours et des liens vers des articles Wikipedia sont affichés sur le site http://www.iro.umontreal.ca/~csuros/IFT2015/A13/.
- * Aucune documentation ne sera permise à l'examen final.

F1 Principes d'analyse d'algorithmes

Références

données.

- ▷ Sedgewick chapitre 2; Sedgewick & Wayne section §1.4
- Notes sur les fondations : notes01-recursion.pdf.
- Notes sur l'analyse d'algorithmes : notes04-analysis.pdf.
- Notes sur les aspects pratiques : notes05-experiments.pdf.

Sujets

- * Principes de base : pire cas, meilleur cas, moyen cas.
- * Croissance de fonctions communes : constantes, logarithmiques, polynomiales, exponentielles. Factorielle (*n*!), approximation de Stirling², nombres Fibonacci³, nombres harmoniques⁴, logarithme itéré.
- ** Fonction d'Ackermann et son inverse.
- * Notion de temps amorti.
- * Définitions de grand O(f), petit o(f), $\Theta(f)$ et $\Omega(f)$. Asymptotiques exactes $f \sim g$. Expressions avec O() ou o(), règles d'arithmétique :

¹ Detailed List of Subjects for the Final Examination — English translation starts on Page 7

\$\\$2.1,2.2,2.7
\$\\$2.3 $^{2} n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$ $^{3} F_{n} = F_{n-1} + F_{n-2}$

 $^{4}H_{n} = \sum_{i=1}^{n} 1/i = \ln n + \gamma + o(1)$

S§2.4

S§2.5,2.6

O(f) + O(g), $O(f) \cdot O(g)$. Relations avec la limite

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \qquad \Rightarrow \qquad f(n) = O(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \Leftrightarrow \qquad f(n) = o(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 \qquad \Leftrightarrow \qquad f(n) \sim g(n)$$

- * Application de la définition pour démontrer f = O(g) ou f = o(g).
- ** Preuve par induction pour récurrences asymptotiques.
- * Détermination informelle du temps de calcul et d'usage de mémoire pour algorithmes (itératifs) simples
- * Récurrences simples.

$$f(n) = f(n-1) + O(1)$$
 $f(n) = O(n);$
 $f(n) = f(n/2) + O(1)$ $f(n) = O(\log n)$

* Validation expérimentale de temps de calcul

F2Structures élémentaires et types abstraits

Références

- ▷ Sedgewick chapitres 3 et 4; Sedgewick & Wayne sections 1.1–1.3
- Notes sur les listes : notes02-linkedlist.pdf.
- Notes sur les tableaux : notes03-tableaux.pdf.

Sujets

*	Blocs de construction pour programmes Java.	S§3.1;SW§1.1
*	Tableaux.	S§3.2
*	Listes chaînées. Variations : listes circulaires, doublement chaînées.	S§3.3,3.4
	Sentinelles pour la tête et/ou la queue. Manipulation d'éléments sur la	
	liste, insertion et suppression. Parcours d'une liste.	
*	Gestion de mémoire pour listes.	S§3.5

* Notion d'un type abstrait, interface, implantation, client. S§4.1;SW§1.2 * Types abstraits de files généralisées, piles et queues/files FIFO. S§4.2,4.7 S§4.4,4.5,4.7;SW§1.3

* Implantations de pile et de queue par tableaux ou listes chaînées. Efficacité d'implantations différentes (temps de calcul pour les opérations standardes). Débordement.

F3 Arbres

Références

- ▶ Sedgewick sections 4.3, 5.4–5.7
- Notes sur les arbres : notes06-trees.pdf.

Sujets

*	Terminologie pour structures arborescentes : arbre k -aire, hauteur,	S§5.4
	niveau, profondeur. Implémentation d'un arbre.	
*	Propriétés d'arbres binaires (relations entre le nombre de nœuds in-	S§5.5
	ternes et externes ou la hauteur).	
*	Parcours d'un arbre : préfixe/préordre, infixe/dans l'ordre, post-	S§5.6
	fixe/postordre, ordre de niveau.	
*	Arbre syntaxique. Conversions d'expressions arithmétiques : notations	S§4.3
	infixe, postfixe et préfixe.	
*	Algorithmes récursifs sur les arbres : calcul de taille, hauteur ou profon-	S§5.7
	deur de sous-arbres.	

F4 Appartenance-union

Références

- ▷ Sedgewick sections 1.2–1.3; Sedgewick & Wayne section 1.5
- Notes sur Union-Find : notes07-unionfind.pdf.

Sujets

*	Problème de connexité, opérations d'appartenance-union.	S§1.2
*	Structure Union-Find. Astuces: union-par-rang/union-par-taille,	S§1.3;SW§1.5
	compression de chemin.	

** Coût amorti d'opérations : $O(\alpha(m,n))$ pour Union-Find avec union équilibrée et compression de chemin

F5 File de priorité

Références

- ▶ Sedgewick sections 9.1–9.6; Sedgewick & Wayne section 2.4
- Notes sur les files à priorités : notes08-heap.pdf.
- Notes sur le tri par tas : notes08b-heapsort.pdf.

temps de calcul et usage de mémoire.

Sujets

5-1-		
*	Type abstrait de file de priorité min-tas/max-tas : opérations insert,	S§9.1,9.5
	deleteMin ou deleteMax. Implantations par tableau ou liste chaînée.	
*	Arbre en ordre de tas. Manipulation du tas : nager et couler (heapisa-	S§9.2,9.3 ;SW§2.4
	tion montante et descendante). Tas binaire, sa représentation dans un	
	tableau.	
*	heapify (établissement de l'ordre de tas dans un tableau); tri par tas, son	S§9.4

F6 Algorithmes sur graphes

Références

- ▷ Sedgewick sections 3.7, 5.8; Sedgewick & Wayne sections 4.1, 4.3
- ▷ Notes sur l'arbre couvrant minimal et le plus court chemin : notes09-acm.pdf.
- Notes sur le parcours de graphes : notes10-dfs.pdf.

Sujets

* Représentation d'un graphe : matrice d'adjacence et listes d'adjacence. S§3.7;SW§4.1 * Parcours d'un graphe par profondeur et par largeur. S§5.8;SW§4.1 SW§4.3

- * Notion d'un arbre couvrant minimal. Principe de base des algorithmes : la règle bleue. Logique générale des algorithmes de Prim et de Kruskal, choix de structures de données.
- ** Analyse détaillé du temps de calcul des algorithmes. Avantages d'un tas d-aire ou Fibonacci dans l'algorithme de Prim.

Méthodes de tri F7

Références

- ▶ Sedgewick sections 6.1–6.4, 6.6, 6.9; chapitres 7, 8.
- ▶ Sedgewick & Wayne sections 2.1, 2.2, 2.3.
- Notes sur les tris : notes12-tris.pdf.
- ▷ Notes sur le tri rapide : notes13-quicksort.pdf notes14-quicksort2.pdf
- Notes sur les permutations : notes14b-permutations.pdf.

Sujets

★ Terminologie : tri stable, tri interne et externe.	S§6.1		
★ Tri par sélection et tri par insertion.	S§6.3,6.4; SW§2.1		
⋆ Performances des tris élémentaires (pire cas, meilleur cas, cas moyen).	S§6.6		
★ Fusion de tableaux.	S§8.1		
★ Tri par fusion (descendant), sa performance.	S§8.3,8.4; SW§2.2		
\star Tri rapide : algorithme de base. Améliorations : partition par la médiane-	S§7.1,7.4,7.5; SW§2.3		
de-trois, petits sous-fichiers.			
 ★ Génération d'une permutation aléatoire 			
★ Performances du tri rapide (pire cas, meilleur cas, cas moyen)	S§7.2,7.3; SW 2.3		
** Preuve de la performance moyenne $O(n \log n)$ du tri rapide.			
\star Preuve de la borne inférieure $\lg(n!)$ sur le nombre de comparaisons au			
pire pour trier	SW§2.2		

Arbres binaires de recherche

Références

- ▷ Sedgewick chapitres 12, sections 13.1, 13.3, 13.4
- ▶ Sedgewick & Wayne sections 3.1, 3.2.
- Notes sur les arbres binaires de recherche : notes15-abr.pdf.

- Notes sur les arbres rouge-et-noir : notes16-rn.pdf.
- ▶ Notes sur les arbres 2-3-4 : notes17-234.pdf.

Sujets

*	Type abstrait de la table de symboles.	S§12.1,12.2
*	Recherche séquentielle et recherche binaire.	S§12.3-12.5
*	Arbre binaire de recherche. Procédures fondamentales sur un ABR :	S§12.6-12.9
	recherche, insertion, suppression. Recherche de minimum ou maxi-	
	mum, successeur ou prédecesseur.	

- * Performance moyenne des opérations sur un ABR standard avec clés S§13.1 aléatoires.
- * Notion d'un ABR équilibré. Maintenance d'équilibre : rotations simples et doubles.
- * ABR rouge et noir. Définition par rang (hauteur noire) ou coloriage; S§13.4 équivalence des deux définitions. Coût des opérations dans le pire cas.
- ** Hauteur maximale d'un arbre rouge et noir.
- ★ Techniques de base sur les ABR rouges et noirs : promotion/rétrogradation, changement de couleur, rotation. Déroulement général d'une insertion ou suppression.
- ** Déroulement détaillé de l'insertion et de la suppression.
- ★ Les arbres 2-3-4, et leur équivalence avec les arbres rouges et noirs. S§13.3 Techniques de base sur les arbres 2-3-4 : décalage et découpage, leur relation aux rotations et promotions.

F9 Tableaux de hachage

Références

- ▷ Sedgewick chapitre 14.
- ▶ Sedgewick & Wayne sections 3.4, 3.5.
- Notes sur le hachage : notes18-hashing.pdf.

Sujets

- * Notions de base pour tableaux de hachage : facteur de charge/remplissage, S§14.1 collisions.
- * Fonctions de hachage : méthodes de la division et de la multiplication.
- ** Hachage universel.
- * Résolution de collisions par chaînage séparé. Coût moyen des opérations de l'interface (table de symboles) en fonction de la facteur de charge.
- * Addressage ouvert : notion de sondage/test. Procédures de recherche et d'insertion avec addressage ouvert. Suppression paresseuse et hachage dynamique. Sondage linéaire, grappe forte. Double hachage.
- ** Coût moyen des opérations de l'interface avec sondage linéaire et double hachage en fonction de la facteur de charge.

S§14.2

S§14.3-14.6

◀ français

E0Introduction

THIS DOCUMENT defines the skills and knowledge for the final examination in IFT2015, which is also the second part of the examen pré-doctoral in data

- **♦** Topics for a «B/A-» level are denoted by ★; ★★ denote somewhat more advanced topics for «A+/A» level.
- ★ The margin notes refer to the following books :
 - S Sedgewick, R. Algorithms in Java, Parts 1-4, 3rd edition (2003) SW Sedgewick, R. et K. Wayne. Algorithms, 4th edition (2011)
- * The class notes and links to Wikipedia articles are available on the webpage http://www.iro.umontreal.ca/~csuros/IFT2015/A13/.
- * No documentation is allowed at the examen.

Principles of algorithm analysis E1

References

- ▷ Sedgewick chapter 2; Sedgewick & Wayne section §1.4
- Notes on the foundations: notes01-recursion.pdf.
- Notes on algorithm analysis: notes04-analysis.pdf.
- Notes on practical aspects: notes05-experiments.pdf.

Topics

- * Basic principles: worst case, best case, average case.
- * Growth of common functions: constants, logarithms, polynomials, exponentials. Factorial (n!), Stirling's formula⁵, Fibonacci numbers⁶, harmonic numbers⁷, iterated logarithm
- * Notion of amortized cost.
- ** Ackermann's function and its inverse
- * Asymptotic notation : definitions of big-Oh O(f), small-oh o(f), $\Theta(f)$, and $\Omega(f)$. Arithmetic expressions involving asymptotics, rules: O(f) + O(g), $O(f) \cdot O(g)$. Connections to lim

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \qquad \Rightarrow \qquad f(n) = O(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \Leftrightarrow \qquad f(n) = o(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 \qquad \Leftrightarrow \qquad f(n) \sim g(n)$$

- * Using the definitions to prove f = O(g) or f = o(g).
- * Informal determination of space and time complexity for simple (iterative) algorithms

S§2.1.2.2.2.7 S§2.3 ⁵ $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ $^{6} F_{n} = F_{n-1} + F_{n-2}$

 $^{7}H_{n} = \sum_{i=1}^{n} 1/i = \ln n + \gamma + o(1)$

S§2.4

★ Basic recurrences.

S§2.5,2.6

$$f(n) = f(n-1) + O(1)$$
 $f(n) = O(n);$
 $f(n) = f(n/2) + O(1)$ $f(n) = O(\log n)$

- ** Proof by induction for asymptotic recurrences.
- * Experimental validation of running time

E2Elementary structures and abstract data types

References

- ▷ Sedgewick chapters 3 et 4; Sedgewick & Wayne sections 1.1–1.3
- Notes on lists: notes02-linkedlist.pdf.
- Notes on tables: notes03-tableaux.pdf.

Topics

*	Java building blocks.	S§3.1;SW§1.1
*	Tables.	S§3.2
*	Linked lists. Variations: circular, doubly-linked lists. Sentinels for the	S§3.3,3.4
	head and/or tail. Manipulation of elements, insertion and deletion. List	
	traversal.	
*	Memory management for lists.	S§3.5
*	Concept of an abstract data type, interface, implementation, client.	S§4.1 ;SW§1.2
*	Abstract types for stacks, queues and generalized queues,	S§4.2,4.7
*	Implementations of stack and queue by tables or linked lists. Run-	S§4.4,4.5,4.7;SW§1.3
	ning time for standard operations in different implementations. Over-	
	flow/underflow.	

E3 Trees

References

- ▶ Sedgewick sections 4.3, 5.4–5.7
- \triangleright Notes on trees: notes06-trees.pdf.

Topics

*	Terminology for tree structures : <i>k</i> -ary tree, height, level, depth. Tree	S§5.4
	implementations.	
*	Mathematical properties of binary trees (relationships between number	S§5.5
	of internal and external nodes, height)	
*	Tree traversal: preorder, inorder, postorder, level-order.	S§5.6
*	Syntax tree. Conversion between arithmetic notations : infix, prefix	S§4.3
	and postfix.	
*	Recursions on trees: computing the size, height, or depth of subtrees.	S§5.7

Union-find E4

References

- ▶ Sedgewick sections 1.2–1.3; Sedgewick & Wayne section 1.5
- Notes on Union-Find: notes07-unionfind.pdf.

Topics

* Connectivity problems, union-find operations.

S§1.2

* Union-Find data structure. Techniques: union-by-rank/union-by-size, path compression.

S§1.3;SW§1.5

** Amortized cost per operation : $O(\alpha(m,n))$ for Union-Find with balanced trees and path compression.

Priority queues E5

References

▶ Sedgewick sections 9.1–9.6; Sedgewick & Wayne section 2.4

- Notes on priority queues: notes08-heap.pdf.
- Notes on heapsort: notes08b-heapsort.pdf.

Topics

* ADT for priority queue : operations insert, deleteMin or deleteMax. Implementations by table or linked list.

S§9.2,9.3;SW§2.4

S§9.1,9.5

- * Heap order for a tree. Heap manipulation : swim and sink. Binary heap, its representation in a table.
- * heapify (linear-time construction of heap order in a table); Heapsort, S§9.4 its running time and memory.

E6 Graph algorithms

References

- ▷ Sedgewick sections 3.7, 5.8; Sedgewick & Wayne sections 4.1, 4.3
- ▷ Notes on minimum spanning tree and shortest path: notes09-acm.pdf.
- Notes on graph traversal: notes10-dfs.pdf.

Topics

* Graph representations by adjacency matrix and adjacency lists.

S§3.7;SW§4.1

* Depth-first and breadth-first search in a graph

S§5.8;SW§4.1

neral logic of Kruskal's and Prim's algorithms, choice of data structures.

algorithms: the blue rule (adding minimum-weight edge in a cut). Ge-

* Concept of a minimal spanning tree (MST). Basic principles of MST

Basic justification for $O(n \log n)$ and $O(m \log n)$ running times (n nodes, m edges).

** Detailed analysis of running time for Kruskal's and Prim's algorithms. Uses of d-ary or Fibonacci heap in Prim's algorithm.

SW§4.3

Sorting algorithms E7

References

- ▶ Sedgewick Sections 6.1–6.4, 6.6, 6.9; Chapters 7, 8.
- ▶ Sedgewick & Wayne sections 2.1, 2.2, 2.3.
- ▶ Notes on elementary sorting algorithms: notes12-tris.pdf.
- \triangleright Notes on quicksort: notes13-quicksort.pdf notes14-quicksort2.pdf
- Notes sur permutations : notes14b-permutations.pdf.

Topics

*	Terminology: stable sort, internal and external sort.	S§6.1
*	Insertion sort and selection sort.	S§6.3,6.4; SW §2.1

* Performance of elementary sorting algorithms (worst case, best case, S§6.6

average case).

* Merging arrays. S§8.1

* Mergesort (top-down), its performance. S§8.3,8.4; SW§2.2 * Quicksort: basic algorithm. Improvements: pivoting by median-of-S§7.1,7.4,7.5; SW§2.3

three, small subarrays.

* Performance of quicksort (worst case, best case, average case). S§7.2,7.3

* Generating a random permutation

** Proof of $O(n \log n)$ average running time for quicksort.

 \star Proof of the lower bound $\lg(n!)$ for the worst-case number of comparisons

SW§2.2

E8 Binary search trees

worst-case.

Reference

- ▶ Sedgewick chapters 12, sections 13.1, 13.3 and 13.4
- ▶ Sedgewick & Wayne sections 3.1, 3.2.
- Notes on binary search trees: notes15-abr.pdf.
- Notes on red-black trees: notes16-rn.pdf.
- \triangleright Notes on 2-3-4 trees: notes17-234.pdf.

Topics

*	Abstract data type of symbol table.	S§12.1,12.2
*	Sequential and binary search.	S§12.3-12.5
*	Binary search tree. Basic techniques : search, insertion, deletion. Sear-	S§12.6-12.9
	ching for minimum or maximum, successor or predecessor.	
*	Average performance of a standard BST with random keys.	S§13.1
*	Notion of a balanced BST. Maintaining the balance : simple and double	
	rotations.	
*	Red-black tree. Definition by rank (black height) or coloring; equi-	S§13.4
	valence of the two definitions. Time complexity for operations in the	

- ** Maximum height of a red-black tree.
- * Basic techniques for red-black trees: promotion/demotion, recoloring, rotations. General outline of insertion and deletion.
- ** Detailed (case-by-case) steps in insertion and deletion.
- * 2-3-4 trees, their equivalence with red-black trees. Basic techniques with 2-3-4 trees: shifting and splitting, relationship with promotions and rotations in red-black tree.

S§13.3

E9 Hash tables

Reference

- ▷ Sedgewick chapter 14.
- ▷ Sedgewick & Wayne sections 3.4, 3.5.

clustering. Double hashing.

function of the load factor.

Notes on hashing: notes18-hashing.pdf.

Topics

* Basic notions for hashtables : load factor, collisions. S§14.1 $\star~$ Hash functions : division and multiplication methods. ** Universal hashing. * Collision resolution by separate chaining. Average-case performance S§14.2 with separate chaining as function of the load factor. ★ Open addressing: probe sequence. Search and insertion with open S§14.3-14.6 addressing. Lazy deletion, dynamic hashing. Linear probing, primary

** Average-case performance of linear probing and double hashing as