- Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.
- Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.
- Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

Pregunta	1	2	3	4	Total
Puntos	2	4	3	10	19
Puntaje					

Nombre: .

1. Considera la siguiente propiedad fundamental de los triángulos en el plano: Dado cualquier triángulo ABC en el plano, las distancias entre sus vértices cumplen que

$$d(A, B) + d(A, C) \ge d(B, C)$$

y además, la igualdad se da si y solamente si los tres puntos son colineales (es decir, existe una recta que pasa por los tres).

Usando esta propiedad demuestra que:

- (a) (1 Punto) Dado cualquier triángulo ABC, se cumple que $d(B,C)-d(A,C) \leq d(A,B)$
- (b) (1 Punto) Dados dos puntos distintos F_1 y F_2 , si otro punto P cumple que $d(P, F_1) d(P, F_2) = d(F_1, F_2)$, entonces P es colineal a F_1 y F_2 .
- 2. Sean $F_1=(-1,0)$ y $F_2=(1,0)$ dos puntos. Sea $f=\frac{1}{2}d(F_1,F_2)=1$. Recuerda que si escogemos un número a>0 y tal que a< f, entonces el conjunto de puntos

$$\mathcal{H} := \{(x, y) \mid |d(F_1, (x, y)) - d(F_2, (x, y))| = 2a\}$$

es una hipérbola cuyos focos son los puntos F_1 y F_2 . El objetivo de este ejercicio es analizar el caso en que a=0 y en que a=f

- (a) (2 Puntos) Encuentra todos los puntos (x,y) tales que $|d(F_1,(x,y))-d(F_2,(x,y))|=0$
- (b) (2 Puntos) Encuentra todos los puntos (x, y) tales que $|d(F_1, (x, y)) d(F_2, (x, y))| = f$. [Sugerencia: utiliza el ejercicio anterior]

3. (3 Puntos) Sean $F_1=(-1,0)$ y $F_2=(1,0)$ dos puntos. Sea $f=\frac{1}{2}d(F_1,F_2)=1$. Sea $a=\frac{1}{\sqrt{2}}$. Encuentra la ecuación de la hipérbola

$$\mathcal{H} := \{(x,y) \mid |d(F_1,(x,y)) - d(F_2,(x,y))| = 2a\}$$

- 4. Considera la ecuación:
 - (a) (1 Punto) Si $P_1 = (u_1, u_2)$ y $P_2 = (v_1, v_2)$ son los dos vectores unitarios de un nuevo sistema de coordenadas, escribe la condición que deben satisfacer para que la ecuación no tenga término cruzado en dichas nuevas coordenadas.
 - (b) (1 Punto) Escribe la ecuación caracterísica para λ que permite encontrar los vectores P_1 y P_2
 - (c) (3 Puntos) Encuentra los vectores P_1 y P_2
 - (d) (2 Puntos) Escribe la ecuación en el nuevo sistema de coordenadas (en las coordenadas w y z)
 - (e) (3 Puntos) Describe geométricamente el conjunto de puntos que satisfacen la ecuación. (¿es una elipse o una hipérbola?, ¿dónde están sus focos? etc)

Fin del exámen