	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_1^{\#_2}$	$\tau_1^{\#1}_+ _{\alpha\beta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_1^{\#2}{}_{lpha}$	$\tau_{1^{-}\alpha}^{\#1}$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1} + \alpha^{\beta}$	0		$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$r_1^{#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#_{1}} +^{\alpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3 (1+2 k^2) t_1 t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
$\sigma_1^{\#2} +^{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2 t_3)}{3 (1 + 2 k^2) t_1 t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\tau_{1}^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0
$t_1^{\#2} +^{\alpha}$	0	0	0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$

	$f_1^{-}\alpha$	0	0	0	$\frac{1}{3}$ i k (t ₁ - 2 t ₃)	$\frac{1}{3} \bar{l} \sqrt{2} k (t_1 + t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
£ #1	$f_{1}^{"}\alpha$	0	0	0	0	0	0	0
2#: 7	$\omega_1^{} \alpha$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\left -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\right $
#1	$\omega_{1}^{} \alpha$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
£#1	f 1 ⁺ $\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
,,#2	$\omega_{1} + \alpha \beta \ \omega_{1} + \alpha \beta \ ^{I} + \alpha \beta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
,,#1	$\omega_{1} + \alpha \beta$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
		$\omega_1^{#1} + \alpha \beta$	$\omega_1^{\#_2^2} +^{\alpha\beta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} +^{\alpha}$

Lagrangian density

 $\frac{2}{3}t_3\;\omega_{,\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\kappa}+\frac{1}{2}t_1\;\partial^{\alpha}f^{\lambda}_{\;\;\kappa}\;\partial^{\kappa}f_{\;\lambda\alpha}+\frac{1}{2}t_1\;\partial_{\kappa}f^{\;\;\lambda}_{\;\;\theta}\partial^{\kappa}f_{\;\;\lambda}^{\;\;\theta}+\frac{1}{2}t_1\;\partial_{\kappa}f^{\lambda}_{\;\;\theta}\partial^{\kappa}f_{\;\;\lambda}^{\;\;\theta} ^{\lambda}_{\lambda}\partial^{\kappa}f'$ + $2t_{1}\,\omega_{_{IK}\theta}\,\partial^{\kappa}f^{'\theta}-\tfrac{1}{3}t_{1}\,\omega_{_{I}\alpha}^{\alpha}\,\partial^{\kappa}f^{'}_{\kappa}+\tfrac{2}{3}t_{3}\,\omega_{_{I}\alpha}^{\alpha}\,\partial^{\kappa}f^{'}_{\kappa}-\tfrac{1}{3}t_{1}\,\omega_{_{I}\lambda}^{\lambda}\,\partial^{\kappa}f^{'}_{\kappa}+$ $\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+$ $\frac{2}{3}r_2\,\partial_\theta\omega_{\alpha\beta}^{}\,\partial_\kappa\omega^{\theta\alpha\beta} - \frac{1}{2}\,t_1\,\partial^\alpha f_{\beta}\,\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}\,t_1\,\partial^\alpha f_{\theta}\,\partial^\kappa f_{\theta}^{\theta} - \frac{1}{2}\,t_1\,\partial^\alpha f_{\theta}^{\theta} + \frac{1}{2}\,t_1\,\partial^\alpha f_{\theta}^{\theta} + \frac{1}{2}\,t_2\,\partial^\alpha f_{\theta}^{\theta} + \frac{1}{2}\,t_3\,\partial^\alpha f_{\theta}^{\phantom{\alpha$ $\tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \,\, \sigma_{\alpha\beta\chi} + \tfrac{2}{3} \, r_2 \, \partial^\beta \omega^{\theta\alpha}_{\ \ \kappa} \, \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} - \tfrac{1}{3} \, r_2 \, \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} \, \partial_\kappa \omega^{\alpha\beta\theta}$ $\frac{1}{3}t_{1}\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{2}{3}t_{3}\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_{2}\partial^{\beta}\omega^{\alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta} + \frac{2}{3}r_{2}\partial^{\beta}\omega^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta} + \frac{2}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta}\partial^{$ $\int_{\lambda} \partial^{\kappa} f' + \frac{2}{3} t_3 \partial_{\kappa} f^{\lambda}$ $_{\alpha}^{}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}\,r_{2}\,\partial_{\kappa}\omega^{\alpha\beta\theta}\,\partial^{\kappa}\omega_{\alpha\beta\theta} +$ $-\frac{1}{3}t_{1}\;\omega_{'}^{\alpha'}\;\omega_{\kappa\alpha}^{\;\;\kappa} + \frac{2}{3}t_{3}\;\omega_{'}^{\alpha'}\;\omega_{\kappa\alpha}^{\;\;\kappa} - t_{1}\;\omega_{'}^{\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime} +$ $rac{2}{3}t_1\partial^{lpha}f_{\kappalpha}\partial^{\kappa}f'_{}$, $-rac{4}{3}t_3\partial^{lpha}f_{\kappalpha}\partial^{\kappa}f'_{}$, $-rac{1}{3}t_1\partial_{\kappa}f^{\lambda}_{}$ $_{\alpha}^{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{2}{3}t_{3}\partial^{\alpha}f^{\lambda}_{c}$ $f^{\alpha\beta}$

 $_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda}+$

S S ** ** ** ** ** ** S S							
	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$			
$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0			
$ au_{0}^{\#1} +$	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0			
$\tau_{0}^{\#2}$ †	0	0	0	0			
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$			

	4	1	1	$^{\circ}$	m	ϵ	2		
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0$		
	_	σ	r#1 0 ⁺		$\tau_{0}^{\#1}$		$ au_{0}^{\#2}$	$\sigma_0^{\#1}$	
$\sigma_0^{\#}$	¹ †		$\frac{1}{k^2)^2} t_1$	<u>-</u>	<i>i</i> √2 1+2 k ²)	$\frac{k}{t_3}$	0	0	
$\tau_0^{\#_2}$	1 + †	$\frac{i}{(1+2)}$	$\frac{\sqrt{2} k}{k^2)^2 t_1^2}$	- - (1	$\frac{2k^2}{+2k^2}$	$\frac{2}{t_3}$	0	0	
$\tau^{\#}$	2+		0		0		0	0	I
-0	<u> </u>								4

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2^{+}}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

$\omega_{2^{+} \alpha \beta}^{\#1} f_{2^{+} \alpha \beta}^{\#1} \omega_{2^{-} \alpha \beta \chi}^{\#1}$							
$^{1}_{+}$ † $^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0				
¹ † ^{αβ}	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2				

 \mathfrak{C}

$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
$\tau_2^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2^+}^{\#1} \dagger^{\alpha\beta}$	$\sigma_{2}^{#1} +^{\alpha \beta \chi}$

0

0

 $2\,k^2\,t_3$

 $i\sqrt{2}kt_3$

 $f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + f_{0}^{#2}$

0

 $-i\sqrt{2}kt_3$

*t*³

 $\omega_{0}^{\#1}$ \dagger

 $\omega_{0}^{\#1}$

16

2

 $^{\circ}$

0

0

0

0

0

0

0

 $\omega_{0}^{\#1}$ \dagger

? $J^P = 0^-$	
? k^{μ} ?	

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)