МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский национальный исследовательский университет ИТМО Мегафакультет трансляционных информационных технологий

Факультет информационных технологий и программирования

Лабораторная работа 3

По дисциплине «Аппаратное обеспечение вычислительных систем» Вариант № 6

Выполнил студент группы №М3113

Полянский Егор

Проверил

Шевчик Софья Владимировна

Цель работы: изучение способов организации циклических программ и исследование порядка функционирования ЭВМ при выполнении циклических программ.

Заданный вариант:

Адрес	Код
00A	0000
00B	0000
00C	0000
00D	0010
00E	0000
00F	0000
010	0000
011	0010
012	0000
013	0707
014	0000
015	FFFC
016	F200 +
017	480D
018	B01A
019	C01D
01A	F800
01B	4011
01C	3011
01D	0015
01E	C016
01F	F000

^{*} знаком "+" помечена первая команда программы

Подготовка к выполнению работы:

1. Восстановим текст заданного варианта программы:

Адрес	Код команды	Мнемоника	Комментарий
00A	0000		
00B	0000		
00C	0000		
00D	0010		
00E	0000		
00F	0000		

010	0000		
011	0010		
012	0000		
013	0707		
014	0000		
015	FFFC		
016	F200 +	CLA	0 -> A
017	480D	ADD (00D)	(A) + ((00D)) -> A, (00D) -> (00D)+1
018	B01A	BEQ 01A	(A) = 0 и $(C) = 0$, то $(01A) -> CK$
019	C01D	BR 01D	(01D) -> CK
01A	F800	INC	(A) + 1 -> A
01B	4011	ADD 011	(A) + (011) -> A
01C	3011	MOV 011	(A) -> (011)
01D	0015	ISZ 015	(015) + 1 -> (015), если $(015) >= 0$, то СК -> СК +1
01E	C016	BR 016	(016) -> CK
01F	F000	HLT	Остановка

^{*} знаком "+" помечена первая команда программы

2. Составим описание программы:

Назначение программы и реализуемые ею функции	Программа идет по элементам массива чисел и при обнаружении ненулевого элемента увеличивает значение в 011 ячейке на 1						
Расположение в памяти ЭВМ данных и результатов	00D — указатель на текущий элемент массива, 010-013 — элементы массива, 015 — количество элементов массива						
Расположение в памяти ЭВМ программы	016-01F						
Адреса первой и последней выполняемой команд программы	016 — первая, 01F — последняя						

Процесс выполнения работы:

1. Занесем в память базовой ЭВМ заданный вариант программы и заполним таблицу трассировки, выполняя эту программу по командам:

Выполня		Содержимое регистров процессора после выполнения команды					pa	Ячейка, содержимое которой изменилось после выполнения программы		
Адрес	Код	СК	PA	РК	РД	A	\mathbf{C}	Адрес	Новый код	
016	F200	0017	0016	F200	F200	0000	0			

^{*} двойными скобками помечена косвенная адресация

017	480D	0018	0010	480D	0000	0000	0	00D	0011
018	B01A	001A	0018	B01A	B01A	0000	0	302	0011
01A	F800	001B	001A	F800	F800	0001	0		
01B	4011	001C	0011	4011	0010	0011	0		
01C	3011	001D	0011	3011	0011	0011	0	011	0011
01D	0015	001E	0015	0015	FFFD	0011	0	015	FFFD
01E	C016	0016	001E	C016	C016	0011	0		
016	F200	0017	0016	F200	F200	0000	0		
017	480D	0018	0011	480D	0011	0011	0	00D	0012
018	B01A	0019	0018	B01A	B01A	0011	0		
019	C01D	001D	0019	C01D	C01D	0011	0		
01D	0015	001E	0015	0015	FFFE	0011	0	015	FFFE
01E	C016	0016	001E	C016	C016	0011	0		
016	F200	0017	0016	F200	F200	0000	0		
017	480D	0018	0012	480D	000	0000	0	00D	0013
018	B01A	001A	0018	B01A	B01A	0000	0		
01A	F800	001B	001A	F800	F800	0001	0		
01B	4011	001C	0011	4011	0011	0012	0		
01C	3011	001D	0011	3011	0012	0012	0	011	0012
01D	0015	001E	0015	0015	FFFF	0012	0	015	FFFF
01E	C016	0016	001E	C016	C016	0012	0		
016	F200	0017	0016	F200	F200	0000	0		
017	480D	0018	0013	480D	0707	0707	0	00D	0014
018	B01A	0019	0018	B01A	B01A	0707	0		
019	C01D	001D	0019	C01D	C01D	0707	0		
01D	0015	001F	0015	0015	0000	0707	0	015	0000
01F	F000	0020	001F	F000	F000	0707	0		

Вывод: мы изучили способы организации циклических программ и исследовали порядок функционирования ЭВМ при выполнении циклических программ.