Course: Machine Learning - Foundations Week 2 - Practice Questions

1. (1 point)

Answer: False sin(x)/x is not defined at x=0

2. (2 points)

Answer: $A^c = [10, 29] \cup [51, 100]$ $B^c = [10, 49] \cup [91, 100]$ $A \cup B = [30, 90]$ $A \cap B = [50]$ $A^c \cap B^c = [10, 29] \cup [91, 100]$

3. (1 point)

Answer: D $\mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^d x_i y_i$

4. (1 point)

Answer: D

Linear approximation at x = a is given by L(x) = f(a) + (x - a)f'(a) $tanx - tan0 = (x - 0)sec^20 = x$

5. (1 point)

Answer: 3 $\frac{\partial f}{\partial x}$ $= 3x^2$ = 3(1)

6. (1 point)

Answer: A $\lim_{x\to 1^{-}} f(x) = 9$ $\lim_{x\to 1^{+}} f(x) = 7 \times 1 + 2 = 9$ f(1) = 9

7. (1 point)

Answer: D

Linear approximation at x=a is given by L(x)=f(a)+(x-a)f'(a)Here a=0 and $f(x)=e^x$ $e^x\approx 1+x$ 8. (2 points)

Answer: B
$$f(x) \approx f(v) + \nabla f(v)^T (x - v)$$
$$= 2 + \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} x - 1 \\ y - 1 \end{bmatrix}$$
$$= 2x + 2y - 2$$

9. (1 point)

Answer: B
$$\begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$= \begin{bmatrix} 2xy & x^2 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 1 \end{bmatrix}$$

10. (1 point)

Answer: -0.816

$$\nabla f = \begin{bmatrix} 2x & 3 & 2z \end{bmatrix}^T$$
at $(1,2,1)$

$$\nabla f = \begin{bmatrix} 2 & 3 & 2 \end{bmatrix}^T$$

$$\parallel i - 2j + k \parallel = \sqrt{6}$$
Directional derivative= $\frac{2 \times 1 - 3 \times 2 + 2 \times 1}{\sqrt{6}}$

11. (1 point)

Answer: A
$$\nabla f = \begin{bmatrix} 2x & 3y^2 & 4z^3 \end{bmatrix}^T$$
 at $(1,1,1)$
$$\nabla f = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}^T$$
 $\parallel \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}^T \parallel = \sqrt{29}$ direction of steepest ascent= $\nabla f / \parallel f \parallel$

12.

Answer:
$$0.577$$

$$\nabla f = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$
at $(-1,1,-1)$

$$\nabla f = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

$$\parallel i - j + k \parallel = \sqrt{3}$$
Directional derivative= $\frac{1 \times 1 - 1 \times 1 + 1 \times 1}{\sqrt{3}}$

13. (1 point)

Answer: Equation of a line passing through points a and b is given by
$$[x,y,z]=a+\alpha(b-a)$$
 or $[x,y,z]=b+\alpha(a-b)$

14. (1 point)

Answer: As per Cauchy Schwartz inequality $a.b \le \parallel a \parallel \parallel b \parallel$ Also, $a.b = \parallel a \parallel \parallel b \parallel$, when a = cb or b = ca Here b=-ca so, $a.b = -\parallel a \parallel \parallel b \parallel$