BIKE STATIONS AND BUSINESSES STATISTICAL MODELLING PROJECT

MELISSA NIELSEN

NOVEMBER 7, 2022

PROJECT OVERVIEW

- 1. Get data from CityBikes API
- 2. Get data from Foursquare and Yelp APIs
- 3. Join data and create database
- 4. Create regression model

PROJECT SCOPE

- 1. Looked at Mobi bikes in Vancouver, BC
- 2. Investigated following business types within 100 m of every bike station:
 - Bars
 - Restaurants

KEY QUESTIONS

- 1. Are business attributes correlated with the proportion of available bikes?
- 2. Is the number of nearby bars and restaurants correlated with the proportion of available bikes?

STEP 1: CITY BIKE API

- 1. Parsed JSON file
- 2. Removed stations with status "offline"

STEP 2: GET DATA FROM FOURSQUARE AND YELP APIS

- 1. Used requests.get() function
- 2. For each of the Yelp and Foursquare APIs, created the following:

Defined a function to use requests.get() with appropriate parameters

Defined function to transform the JSON file into a dataframe and write to csv.

Used while loop to repeat for the latitude and longitude coordinates of every bike station

Used 'glob' package to read from all csvs into dataframe

STEP 2: GET DATA FROM FOURSQUARE AND YELP APIS

1. Used data from previous step to create 3 tables (for each Foursquare and Yelp):

Bike Station Table: information about unique bike stations

key = station_id

Intermediary Table:

two columns only: business id & bike station id

key = two above columns combined

Business Table:

information about **unique** businesses

key = business id (fsq_id for Foursqare and id for Yelp)

STEP 2: COMPARE RESULTS FROM FOURSQUARE AND YELP

- 1. Combined Yelp and Citybike data using pd.merge
- 2. Since there was a 'many-to-many' relationship between bike stations and restaurants, used an intermediary table to join them.

STEP 3: EXPLORATORY DATA ANALYSIS

- 1. Explored data using:
 - histograms

Data not normally distributed

- 1. Explored data using:
 - boxlots

1. Explored data using:

scatter plots

1. Explored data using:

correlation coefficients

	review_count	rating	latitude	longitude	Empty Slots	Available Bikes	Total Slots	Proportion of Bikes Available (%)
review_count	1.000000	0.072655	0.028079	0.004272	-0.000060	-0.009892	-0.012523	-0.011278
rating	0.072655	1.000000	-0.084393	-0.010481	-0.044029	-0.020562	-0.080132	0.016514
latitude	0.028079	-0.084393	1.000000	-0.159771	-0.063980	0.283725	0.297182	0.224617
longitude	0.004272	-0.010481	-0.159771	1.000000	-0.068715	-0.054827	-0.150378	-0.021609
Empty Slots	-0.000060	-0.044029	-0.063980	-0.068715	1.000000	-0.670870	0.305931	-0.875898
Available Bikes	-0.009892	-0.020562	0.283725	-0.054827	-0.670870	1.000000	0.498399	0.900851
Total Slots	-0.012523	-0.080132	0.297182	-0.150378	0.305931	0.498399	1.000000	0.132649
Proportion of Bikes Available (%)	-0.011278	0.016514	0.224617	-0.021609	-0.875898	0.900851	0.132649	1.000000

Low correlation coefficients!

INITIAL FINDINGS FROM EDA:

- 1. No correlation between business attributes an proportion of available bikes
- 2. No correlation between quantity of open businesses and proportion of available bikes

STEP 3: CREATE SQLITE DATABASE

Businesses Table:

 used 'id' (automatically assigned by Yelp) as primary key

Bike Stations Table:

Used "Station ID" as primary key

Intermediary Table (called 'id_station_ids':

- id and station_id combined as key
- id was foreign key linked to businesses table
- station_id was foreign key linked to stations table

STEP 4: CREATE MODEL

Model 1: number of available bikes as a function of attributes of nearby restaurants and bars?

- Dependent variable is Available
 Proportion of Bikes (%)
- Independent variables (x₁, x₂)
 - review_count
 - ratings

R-squared: 0.000 Model does not predict bike availability whatsoever

OLS Regression Results								
Dep. Variable:	Ava	ailable Bike	R-square	d:		0.000		
Model:		OLS	Adj. R-s	quared:		-0.001		
Method:	L	east Squares	F-statis	tic:	0.3944			
Date:	Mon,	14 Nov 2022	Prob (F-	statistic):	0.674			
Time:		20:22:01	Log-Like	lihood:	-5363.5			
No. Observation:	s:	1600	AIC:		1	L.073e+04		
Df Residuals:		1597	BIC:		1	L.075e+04		
Df Model:		2						
Covariance Type	:	nonrobust						
=========	=======		=======	:========	=======			
	coef	std err	t		[0.025	0.975		
const	10.7000	0.793			9.144	12.25		
review_count	-0.0004	0.001	-0.337	0.736	-0.002	0.00		
rating	-0.1678	0.211	-0.795	0.427	-0.582	0.24		
Omnibus:	mnibus: 170.346		====== Durbin-W	atson:	=======	0.177		
Prob(Omnibus):		0.000	Jarque-B	era (JB):	135.492			
Skew:		0.621	Prob(JB)	:		3.79e-30		
Kurtosis:		2.301	Cond. No			857.		

STEP 4: CREATE MODEL

Model 2: number of available bikes as a function of count of nearby restaurants and bars?

- Dependent variable is AvailableProportion of Bikes (%)
- Independent variables (x₁)
 - number of nearby businesses

R-squared: 0.000 Model does not predict bike availability whatsoever

		OLS	Regression Re	sults			
Dep. Variable: Model:	Proportion o	f Bikes	Available (%) OLS	•			===== 0.000 0.004
Method:			Least Squares	F-statisti	0.09119		
Date:		Mon	, 14 Nov 2022	Prob (F-st	0.763		
Time:			20:22:05	Log-Likeli	-1122.1		
No. Observations:			241	AIC:			2248.
Df Residuals:			239	BIC: 225			2255.
Df Model:			1				
Covariance Type:			nonrobust				
	coef	std e	 rr t	P> t	[0.025	0.975]	
const	44.4835	2.0	31 21.902	0.000	40.482	48.484	
count of businesse	-0.0541	0.1	79 -0.302	0.763	-0.407	0.299	
Omnibus:	========	======= 17.509	 Durbin-Watson	:	1.966		
Prob(Omnibus):			Jarque-Bera (
Skew:	0.416 Prob(JB):			0.00268			
Kurtosis:		2.302	Cond. No.		14.0		
		======			=======		

IF I HAD MORE TIME

- See how open-ness affects
 availability of bikes by looking at
 bike availability at different times
- Would look at density of total bikes, not just bikes per station

