ENEL 469: Analog Electronic Circuits

Quiz-2, Fall 2023

Total marks: 20; Time: 11:00 am – 12:00 pm

ID (Optional)	First Name (PRINT)	Last Name (PRINT)

- 1. [Total 4+1=5] Consider the following circuit where $I_B = 20 \mu A$, $\beta = 100$, and $V_A = 180 V$. Assume $I_C = I_E$, and $V_{CE(Sat)} = 0V$ for simplicity.
 - a) [4] Draw the load line for the following circuit in the given space. Neatly draw the line at scale. Any ambiguities will be deemed as incorrect answers.

Soln:

b) [1] Determine the operating point, i.e., $I_{C,Q}$ and $V_{CE,Q}$. Here, the subscript Q indicates the respective values at the operating point.

Ans: $I_{C,Q} = 2mA$

and $V_{CE,Q} = 6V$

2. **[Total 4**] Draw the small-signal model for the following circuit. Use the π -model for transistor Q1 and T-model for Q2. Note: Indicate the circuit elements using the suffix 1 for Q1 and 2 for Q2, i.e., g_{m1} or g_{m2} . The circuit must be neatly drawn, and all elements must be properly labelled.

3. [**Total 3**] Consider the following circuit, which has a base current of I_{B1} . Assume the resistor R2 is changed from 4.7k to 3.0k, which sets a new base current I_{B2} in the circuit. Assume the transistor operates in the active region in both cases.

Which of the following arguments is correct? Circle the correct one.

- i) $I_{B1} > I_{B2}$
- $|I_{B1} < I_{B2}|$
- $I_{B1} = I_{B2}$
- iv) All of the above
- v) None of the above

4. [**Total 3**] An ENEL469 student wanted to make CE amplifier circuit in his/her lab. The student mistakenly added the third capacitor, C3, as shown in the circuit below. The circuit without C3 gave a voltage gain of 120 and $v_0 = 0.6$ V. What will the new output voltage (v_0) be when C3 is added? The student did not disclose the value of R2.

Ans: $v_o = 0$

5. [**Total 5**] In the following circuit, $V_{CC} = 10V$, $V_{BE(on)} = 0.7 V$, $V_{CE(Sat)} = 0.2V$, $V_A = 160V$, and the internal resistance of the AC source is 200 Ω . The capacitor values are such that they are shorted for the AC signal. Determine the signal voltage that appears at the base, i.e., v_{be} . Assume the transistor remains in the active region.

$$I_{(5k)} = \frac{0.7}{5000} = 140\mu A$$

and
$$I_{(62k)} = \frac{12-0.7}{62000} = 150 \mu A$$

Thus,
$$I_B = 150 - 140 = 10 \mu A$$

If so,
$$r_{\pi} = (V_T)/(I_B) = 2.5 \text{ k}\Omega$$

The input resistance seen by the source
$$= 62k\Omega \, // \, 5k\Omega \, // \, (r_\pi)$$

$$= 62k\Omega \, // \, 1.67k\Omega$$

$$= 1.63k\Omega$$

Since the internal resistance 200 Ω and the input resistance 1.63k Ω are in series, the base voltage can be obtained by voltage division,

$$v_{be} = \frac{10 \times 10^{-3} \cdot 1.63}{(1.63 + 0.2)} = 8.91 \text{mV}$$

Ans: v_{be} = 8.91 mV