04-Ultrasonic-Sensor.md 2025-08-17

Chapter 3 기본 입출력 실습

초음파센서 응용

[!NOTE] 이 문서는 **초음파 센서(HC-SR04)**를 사용하여 거리를 측정하는 실습에 대해 설명합니다.

1. 실습 목표

초음파 센서로 측정한 거리를 시리얼 모니터에 출력하고, 특정 거리 이내에 물체가 감지되면 LED를 켜는 프로그램을 작성합니다.

지금까지 배운 내용으로 직접 회로를 구현해봐요

준비물

- 아두이노 우노
- 브레드보드
- 초음파 센서 (HC-SR04)
- LED 1개
- 220Ω 저항 1개
- 점퍼 와이어

2. 초음파 센서란?

사람이 들을 수 없는 초음파를 발사하고, 물체에 반사되어 돌아오는 시간을 측정하여 거리를 계산하는 센서입니다.

- Trig (Trigger): 초음파를 발사시키는 핀
- Echo (Echo): 반사된 초음파를 수신하는 핀
- 거리 계산 공식: 거리(cm) = (초음파 왕복 시간(µs) * 0.034) / 2

3. 회로 구성

- 1. 초음파 센서의 VCC 핀을 아두이노 5V에, GND 핀을 GND에 연결합니다.
- 2. 초음파 센서의 Trig 핀을 아두이노 디지털 9번 핀에 연결합니다.
- 3. 초음파 센서의 Echo 핀을 아두이노 디지털 10번 핀에 연결합니다.
- 4. LED의 긴 다리를 220Ω 저항을 거쳐 아두이노 디지털 **11번** 핀에 연결합니다.
- 5. LED의 짧은 다리를 아두이노 **GND**에 연결합니다.

4. 코드 작성

04-Ultrasonic-Sensor.md 2025-08-17

측정된 거리에 따라 LED가 켜지고 꺼지도록 코드를 작성합니다.

```
int trigPin = 9;
int echoPin = 10;
int ledPin = 11;
void setup() {
  Serial.begin(9600);
  pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 pinMode(ledPin, OUTPUT);
}
void loop() {
 // 1. 초음파 발사
  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
  // 2. 초음파 수신 및 시간 측정
 long duration = pulseIn(echoPin, HIGH);
 // 3. 거리 계산
  int distance = duration * 0.034 / 2;
  // 4. 시리얼 모니터에 거리 출력
  Serial.print(distance);
  Serial.println(" cm");
 // 5. 거리가 10cm 이내이면 LED 켜기
  if (distance < 10) {</pre>
   digitalWrite(ledPin, HIGH);
  } else {
    digitalWrite(ledPin, LOW);
  delay(200);
```

동작 설명

- 1. Trig 핀에 짧은 HIGH 신호를 보내 초음파를 발사합니다.
- 2. pulseIn() 함수를 사용하여 Echo 핀으로 초음파가 돌아올 때까지의 시간을 측정합니다.
- 3. 측정된 시간을 거리 계산 공식에 대입하여 cm 단위의 거리를 구합니다.
- 4. 계산된 거리가 10cm보다 가까우면 LED가 켜지고, 그렇지 않으면 꺼집니다.