Colégio BBBB Bandeirantes

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 174010
4.0	Matemática-Geometria		1.a Série	М	22/11/2017	
Questões	Testes	Páginas	Professor(es)			
10		9	Fábio Cáceres/Oliveira/Rosana Alves			

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a) / N.o / Turma

Nota	Professor	Assinatura do Professor

Instruções

- 1. A prova pode ser resolvida a lápis. Respostas finais somente com tinta azul ou preta.
- 2. Resposta que não vier acompanhada de resolução não será considerada.
- 3. Únicos materiais permitidos: caneta, lapiseira, borracha, régua e compasso.

Dados:

	30°	45°	60°	120°	135°	150°
sen	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
tg	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$

- 01. (valor: 1,0)
 - a. O hexágono regular abaixo tem lado de 8 cm. Calcule a área do círculo.

b. Calcule a área do triângulo equilátero, sabendo que o raio do círculo mede $2\sqrt{3}$ cm.

Resposta:_____

02. (valor: 1,0) Um triângulo é chamado de heroniano quando seus lados e a sua área são expressos por números inteiros. O triângulos abaixo é heroniano. Calcule a área do círculo inscrito no triângulo, dados $AB=17\mathrm{cm},\ AC=28\mathrm{cm}$ e BC=39 cm.

Rascunho

Aluno(a)	Turma	N.o	P 174010
			p 3

03. (valor: 0,5) Na figura, o triângulo ABC é isósceles de base \overline{BC} e M é ponto médio de \overline{AC} . Calcule a área da região sombreada, sabendo que $AG=16~\mathrm{cm}$ e $BC=20~\mathrm{cm}$.

Rascunho

Resposta:

b. (valor: 0,5) ABCD é trapézio retângulo, M é ponto médio de \overline{AD} e N é ponto médio de \overline{BC} . Determine a área desse trapézio.

04. (valor: 1,0) A figura mostra um triângulo equilátero e um hexágono regular. O lado do triângulo mede $8\sqrt{3}\,\mathrm{cm}$. Calcule:

Rascunho

a. (valor: 0,25) A altura do triângulo.

Resposta:

b. (valor: 0, 25) O raio da circunferência inscrita no triângulo.

Resposta:

c. (valor: 0,5) A área do hexágono sombreado.

Aluno(a)	Turma	N.o	P 174010
			p 5

05. (valor: 1,0) Na figura, ABCD é um quadrado, as semicircunferências têm centros no segmento $\overline{\rm EI}$ e a área da região sombreada é igual a $40\pi~{\rm cm}^2$. Sendo ${\rm EF}={\rm FG}={\rm GH}={\rm HI}$, quanto vale a área do quadrado?

Rascunho

06. (valor: 1,0). Calcule a área sombreada na figura abaixo, sabendo que ABCDEF é um hexágono regular cujo lado mede 6 cm.

Rascunho

Racnacta:		

07. (valor:1,0) A figura mostra um quadrado inscrito e outro circunscrito à mesma circunferência. Se o menor tem 6 cm de lado, calcule a área da região sombreada.

Aluno(a)	Turma	N.o	P 174010
			p 7

08. (valor: 1,0) Os arcos que delimitam a "lua" sombreada têm como centros o centro da circunferência e o vértice A do triângulo equilátero ABC, cujo lado mede 6 cm. Calcule a área da "lua".

Rascunho

09. A figura mostra um triângulo retângulo cujo cateto \overline{AB} e hipotenusa \overline{BC} medem, respectivamente, 6cm e 10 cm. Pede-se:

Rascunho

a. (valor: 0,5) calcular o raio da circunferência inscrita nesse triângulo.

Resposta: __

b. (valor: 0,5) Calcular a área do triângulo MNP em que M, N e P são os pontos de tangência (use os mesmos dados do item a)

Note e adote: área A de um triângulo, quando são conhecidos dois lados e o ângulo formado por esses lados:

Resposta: __

Aluno(a)	Turma	N.o	P 174010
			p 9

10. (valor: 1,0) Um brinquedo que se tornou muito popular neste ano foi o *hand spinner*, cujo modelo mais comum apresenta simetria em relação ao centro de um triângulo equilátero (veja imagens abaixo)

Figura 1: desenho do projeto de um hand spinner

Figura 2: quatro círculos congruentes. Os triângulos tracejados são equiláteros.

Se o lado do triângulo maior mede $12~\mathrm{cm}$, quanto mede a área de um dos círculos mostrado na figura 2?

P 174010G 1.a Série Matemática - Geometria Fábio Cáceres/Oliveira/Rosana Alves 22/11/2017

01. (valor: 1,0)

a. O hexágono regular abaixo tem lado de 8 cm. Calcule a área do círculo.

$$(1) r = \frac{8\sqrt{3}}{2} \Rightarrow r = 4\sqrt{3}$$

(1)
$$r = \frac{8\sqrt{3}}{2} \Rightarrow r = 4\sqrt{3}$$

(2) $A = \pi \cdot r^2 \Rightarrow A = \pi (4\sqrt{3})^2 \Rightarrow A = 48\pi \text{ cm}^2$

Resposta: $48\pi \text{ cm}^2$

b. Calcule a área do triângulo equilátero, sabendo que o raio do círculo mede $2\sqrt{3}$ cm.

$$(1) \qquad h = \frac{a\sqrt{3}}{2}$$

(1)
$$h = \frac{a\sqrt{3}}{2}$$
 (2) $A = \frac{a^2\sqrt{3}}{4}$ $A = \frac{6^2\sqrt{3}}{4}$ $a = 6$ $A = 9\sqrt{3}$

$$a = 6$$

(2)
$$A = \frac{a^2 \sqrt{3}}{4}$$

$$A = \frac{6^2 \sqrt{3}}{4}$$

$$A = 9\sqrt{3}$$

Resposta: $9\sqrt{3}$ cm²

02. (valor: 1,0) Um triângulo é chamado de heroniano quando seus lados e a sua área são expressos por números inteiros. O triângulos abaixo é heroniano. Calcule a área do círculo inscrito no triângulo, dados AB = 17 cm, AC = 28 cm e BC = 39 cm.

(1)
$$A = \frac{17 + 28 + 39}{2} \Rightarrow s = 42$$

(2)
$$A = \sqrt{42 \cdot (42 - 17) (42 - 28) (42 - 39)}$$

 $A = \sqrt{6 \cdot 7 \cdot 25 \cdot 7 \cdot 2 \cdot 3}$
 $A = 6 \cdot 7 \cdot 5 \Rightarrow A = 210$

(3)
$$A = r \cdot s \Rightarrow 210 = r \cdot 42 \Rightarrow r = 5$$

(4)
$$A_{circ.} = \pi r^2 \Rightarrow A_{circ.} = \pi \cdot 5^2 \Rightarrow A_{circ.} = 25\pi$$

Resposta: 25 cm²

03. (valor: 0,5) Na figura, o triângulo ABC é isósceles de base \overline{BC} e M é ponto médio de \overline{AC} . Calcule a área da região sombreada, sabendo que AG = 16 cm e BC = 20 cm.

- (1) Note que ABC é isósceles e AH é altura relativa à base. Portanto, H é ponto médio de \overline{BC} . Assim, BH = HC = 10 cm.
- (2) G é baricentro \Rightarrow GH = 8
- $(3) \qquad S = \frac{8 \cdot 10}{2} \Rightarrow S = 40$
- $(4) A_F = 2S \Rightarrow A_F = 80$

Resposta: 80 cm²

b. (valor: 0,5) ABCD é trapézio retângulo, M é ponto médio de \overline{AD} e N é ponto médio de \overline{BC} . Determine a área desse trapézio.

- (1) \overline{MN} é base média de ABCD $\Rightarrow \overline{MN}$ // \overline{AB} // \overline{CD}
- (2) \overline{MP} é base média de ABD \Rightarrow AB = 8 cm
- (3) \overline{PN} é base média de BCD \Rightarrow CD = 18 cm
- (4) Por Pitágoras: $h^2 + 10^2 = 26^2 \Rightarrow h = 24$
- (5) área (ABCD) = $\frac{(18+8) \cdot h}{2}$ área (ABCD) = $\frac{26 \cdot 24}{2}$ área (ABCD) = 312 cm^2

Resposta: 312 cm²

04. (valor: 1,0) A figura mostra um triângulo equilátero e um hexágono regular. O lado do triângulo mede $8\sqrt{3}$ cm. Calcule:

a. (valor: 0,25) A altura do triângulo.

$$h = \frac{a\sqrt{3}}{2} \Rightarrow h = \frac{8\sqrt{3} \cdot \sqrt{3}}{2} \Rightarrow h = 12 \text{ cm}$$

Resposta: 12 cm

b. (valor: 0,25) O raio da circunferência inscrita no triângulo.

$$r = \frac{1}{3} \cdot h \Rightarrow r = \frac{1}{3} \cdot 12 \Rightarrow r = 4 \text{ cm}$$

Resposta: 4 cm

c. (valor: 0,5) A área do hexágono sombreado.

b: lado do hexágono.

$$b = r \Rightarrow b = 4$$

A_F: área do hexágono

$$A_{F} = \frac{6 \cdot b^2 \sqrt{3}}{4}$$

$$A_F = \frac{6 \cdot 4^2 \sqrt{3}}{4} \Rightarrow A_F = 24\sqrt{3}$$

Resposta: $24\sqrt{3}$ cm²

05. (valor: 1,0) Na figura, ABCD é um quadrado, as semicircunferências têm centros no segmento \overline{EI} e a área da região sombreada é igual a 40π cm². Sendo EF = FG = GH = HI, quanto vale a área do quadrado?

Sejam AF a área da região sombreada e a a medida do lado do quadrado.

(1)
$$A_F = 40\pi \Rightarrow \frac{\pi \cdot (4r)^2}{2} + \frac{\pi \cdot (2r)^2}{2} = 40\pi \Rightarrow r = 2 \text{ cm}$$

- (2) $a = 8r \Rightarrow a = 8 \cdot 2 \Rightarrow a = 16 \text{ cm}$
- (3) área (ABCD) = $a^2 = 16^2 \Rightarrow$ \Rightarrow área (ABCD) = 256 cm²

Resposta: 256 cm²

06. (valor: 1,0) Calcule a área sombreada na figura abaixo, sabendo que ABCDEF é um hexágono regular cujo lado mede 6 cm.

- (1) BF = $a\sqrt{3} \Rightarrow$ BF = $6\sqrt{3}$
- (2) área (BDF) = $\frac{(6\sqrt{3})^2 \sqrt{3}}{4}$ \Rightarrow área (BDF) = $27\sqrt{3}$
- (3) A_F : área sombreada

$$A_F = \frac{\text{área (círculo)} - \text{área (BDF)}}{3}$$

$$A_{F} = \frac{\pi \cdot 6^{2} - 27\sqrt{3}}{3} = \frac{9(4\pi - 3\sqrt{3})}{3}$$

$$\therefore A_F = 3 (4\pi - 3\sqrt{3}) cm^2$$

Resposta: $3(4\pi - 3\sqrt{3})$ cm²

07. (valor: 1,0) A figura mostra um quadrado inscrito e outro circunscrito à mesma circunferência. Se o menor tem 6 cm de lado, calcule a área da região sombreada.

- (1) Por Pitágoras: $a^2 + a^2 = 36 \Rightarrow a = 3\sqrt{2}$
- (2) Note que a área sombreada, A_F , equivale a um quarto da área do quadrado maior. Então: $A_F = \frac{1}{4} \cdot (2a)^2 \Rightarrow A_F = \frac{1}{4} \cdot (6\sqrt{2})^2 \Rightarrow A_F = 18$

Resposta: 18 cm²

08. (valor: 1,0) Os arcos que delimitam a "lua" sombreada têm como centros o centro da circunferência e o vértice A do triângulo equilátero ABC, cujo lado mede 6 cm. Calcule a área da "lua".

A área sombreada é a diferença entre as áreas de dois segmentos circulares: aquele limitado pelo arco \widehat{BEC} e pela corda \widehat{BC} e o que é limitado pelo arco \widehat{BDC} e pela corda \widehat{BC} . Então:

- (1) área (segmento BEC) = $= \frac{1}{3} \cdot \pi (2\sqrt{3})^2 \frac{1}{2} \cdot 2\sqrt{3} \cdot 2\sqrt{3} \cdot \text{sen} 120^\circ$ área (seg BEC) = $4\pi 3\sqrt{3}$
- (2) área (seg BDC) = $\frac{1}{6} \cdot \pi \cdot 6^2 \frac{6^2 \sqrt{3}}{4}$ \Rightarrow área (seg BDC) = $6\pi - 9\sqrt{3}$
- (3) $A_F = 4\pi 3\sqrt{3} (6\pi 9\sqrt{3}) \Rightarrow A_F = 6\sqrt{3} 2\pi$

Resposta: $2(3\sqrt{3}-\pi) \text{ cm}^2$

- 09. A figura mostra um triângulo retângulo cujo cateto \overline{AB} e hipotenusa \overline{BC} medem, respectivamente, 6 cm e 10 cm. Pede-se:
- a. (valor: 0,5) calcular o raio da circunferência inscrita nesse triângulo.

- (1) Pitágoras: $a^2 + 6^2 = 10^2 \Rightarrow a = 8$
- (2) $A = r \cdot s \Rightarrow \frac{6 \cdot a}{2} = r \cdot \left(\frac{6 + 10 + 8}{2}\right) \Rightarrow 3 \cdot 8 = r \cdot 12 \Rightarrow r = 2$

Resposta: 2 cm

b. (valor: 0,5) Calcular a área do triângulo MNP em que M, N e P são os pontos de tangência (use os mesmos dados do item a).

Note e adote: área A de um triângulo, quando são conhecidos dois lados e o ângulo formado por esses lados:

 A_{F} : área da região sombreada.

 A_F = área (ABC) – área (AMP) – área (BMN) – área (CNP)

$$A_F = \frac{6 \cdot 8}{2} - \frac{2 \cdot 2}{2} - \frac{1}{2} \cdot 4 \cdot 4 \cdot \operatorname{sen}\beta - \frac{1}{2} \cdot 6 \cdot 6 \cdot \operatorname{sen}\gamma$$

$$A_F = 24 - 2 - \frac{1}{2} \cdot 4 \cdot 4 \cdot \frac{8}{10} - \frac{1}{2} \cdot 6 \cdot 6 \cdot \frac{6}{10}$$

$$A_{\rm F} = 22 - \frac{32}{5} - \frac{54}{5}$$

$$A_F = \frac{24}{5} cm^2$$

Resposta: $\frac{24}{5}$ cm²

10. (valor: 1,0) Um brinquedo que se tornou muito popular neste ano foi o *hand spinner*, cujo modelo mais comum apresenta simetria em relação ao centro de um triângulo equilátero (veja imagens abaixo).

Figura 1: desenho do projeto de um hand spinner

Figura 2: quatro círculos congruentes. Os triângulos tracejados são equiláteros.

Se o lado do triângulo maior mede 12 cm, quanto mede a área de um dos círculos mostrado na figura 2?

De acordo com as medidas indicadas, tem-se:

(1)
$$\frac{r}{a} = \text{tg} 30^{\circ} \Rightarrow \frac{r}{a} = \frac{\sqrt{3}}{3} \Rightarrow a = r\sqrt{3}$$

(2)
$$4a = 12 \Rightarrow 4r\sqrt{3} = 12 \Rightarrow r = \sqrt{3}$$

(3)
$$A_{circ} = \pi r^2 \Rightarrow A_{circ} = \pi (\sqrt{3})^2 \Rightarrow A_{circ} = 3\pi$$

Resposta: $3\pi \text{ cm}^2$