More algebraic structures

Casey Blacker Math 300

- 1 Rings
- 2 Fields
- 3 Vector spaces
- 4 Modules

Section 1

Rings

Definition

A *ring* $(R, +, \cdot)$ comprises a set R and two binary operations $+, \cdot : R \times R \to R$, such that

- i. (R, +) is an abelian group,
- ii. (R, \cdot) is a monoid,
- iii. the operation \cdot distributes over +, that is, for all $a,b,c\in R$,

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

Remarks

- i. We typically call + addition and \cdot multiplication.
- ii. The additive identity of R is conventionally denoted $0 \in R$ and called zero, and the multiplicative identity by $1 \in R$ and called one.

Remarks

- i. If the multiplication \cdot is commutative, then $(R, +, \cdot)$ is called a *commutative ring*.
- ii. If $(R, +, \cdot)$ satisfies all the conditions of a ring except for the existence of a multiplicative identity $1 \in R$, then it is called a rng.

Challenge! Is it a ring?

$$(\mathbb{Z},+,\cdot)$$

Yes!

$$(\mathbb{R},+,\cdot)$$

Yes!

$$(\mathbb{N},+,\cdot)$$

No!

$$(2\mathbb{Z},+,\cdot)$$

No!

$$(\{0\},+,\cdot)$$

Yes! The zero ring

Definition

A zero divisor in a commutative ring $(A, +, \cdot)$ is an element $a \in A$ for which there exists a nonzero $b \in A$ with ab = 0.

Definition

A commutative ring $(R, +, \cdot)$ is called an *integral domain* when

- i. it does not contain any nonzero zero divisor,
- ii. $0 \neq 1$.

Is it an integral domain?

$$(\mathbb{Z},+,\cdot)$$

Yes!

Is it an integral domain?

$$(\{0\},+,\cdot)$$
No!

Is it an integral domain?

$$(\mathbb{Z}_4,+,\cdot)$$

No!

Section 2

Fields

Definition

An integral domain $(R, +, \cdot)$ is called a *field* when every nonzero element $a \in R \setminus \{0\}$ has a multiplicative inverse $a^{-1} \in R$.

$$(\mathbb{Z},+,\cdot)$$

No!

$$(\mathbb{R},+,\cdot)$$

Yes!

$$ig(\{0\},+,\cdotig)$$
No!

$$(\mathbb{Z}_2,+,\cdot)$$

Yes!

Section 3

Vector spaces

Definition

Let k be field. A k-vector space $(V, +, \cdot)$ comprises a set V together with operations

$$+: V \times V \rightarrow V$$

 $\cdot: k \times V \rightarrow V$

such that

- i. (V, +) is an abelian group
- ii. scalar multiplication \cdot and vector addition + satisfy

$$1 \cdot u = u$$
$$(a+b) \cdot u = (a \cdot u) + (b \cdot u)$$
$$a \cdot (b \cdot u) = (a \cdot b) \cdot u$$
$$a \cdot (u+v) = (a \cdot u) + (a \cdot v)$$

$$k=\mathbb{R},\ V=\mathbb{R}$$
Yes!

$$k=\mathbb{R},\ V=\mathbb{C}$$
Yes!

$$k=\mathbb{Z},\ V=\mathbb{R}$$
No!

$$k=\mathbb{R},\ V=\mathbb{R}^n$$

Yes!

Section 4

Modules

Fix a ring R.

Definition

An R-module $(V, +, \cdot)$ comprises a set V together with operations

$$+: V \times V \rightarrow V$$

and

$$\cdot: k \times V \rightarrow V$$

that together satisfy the familiar vector space conditions.

Remark

That is, an R-module is a vector space with a ring of scalars R rather than a field of scalars k.

Is it a module?

k-vector space V

Yes!

Is it a module?

$$R=\mathbb{Z},\ V=\mathbb{Z}^n$$

Yes!

Is it a module?

$$R = \{0\}, \ V = \{0\}$$
Yes!