Keras -- MLPs on MNIST

```
In [80]:
# if you keras is not using tensorflow as backend set "KERAS BACKEND=tensorflow" use this command
from keras.utils import np utils
from keras.datasets import mnist
import seaborn as sns
from keras.initializers import RandomNormal
In [81]:
from keras.initializers import glorot normal
from keras.initializers import he normal
In [82]:
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
import time
# https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
# https://stackoverflow.com/a/14434334
# this function is used to update the plots for each epoch and error
def plt_dynamic(x, vy, ty, ax, colors=['b']):
    ax.plot(x, vy, 'b', label="Validation Loss")
ax.plot(x, ty, 'r', label="Train Loss")
    plt.legend()
    plt.grid()
    fig.canvas.draw()
In [83]:
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
In [84]:
print("Number of training examples:", X train.shape[0], "and each image is of shape (%d, %d)"%(X
train.shape[1], X_train.shape[2]))
print("Number of test examples:", X test.shape[0], "and each image is of shape (%d, %d)"%(X test.s
hape[1], X_test.shape[2]))
                                                                                                   •
4
Number of training examples : 60000 and each image is of shape (28, 28)
Number of test examples: 10000 and each image is of shape (28, 28)
In [85]:
# if you observe the input shape its 2 dimensional vector
# for each image we have a (28*28) vector
# we will convert the (28*28) vector into single dimensional vector of 1 * 784
X train = X train.reshape(X train.shape[0], X train.shape[1]*X train.shape[2])
X test = X test.reshape(X test.shape[0], X test.shape[1]*X test.shape[2])
In [86]:
# after converting the input images from 3d to 2d vectors
print("Number of training examples :", X_train.shape[0], "and each image is of shape
(%d) "% (X train.shape[1]))
print("Number of test examples :", X test.shape[0], "and each image is of shape
(%d)"%(X test.shape[1]))
```

Number of training examples : 60000 and each image is of shape (784)

In [87]:

```
# An example data point
print(X train[0])
0 0 0 0 0 0 0
   0 0
                               0 0 0 0 0 0 0
 0
   0 0
         0 0 0 0
                     0 0 0 0
                                 0 0 0 0 0 0
                                        0
                                           0
 0
    0
       0
          0
            0 0
                  0
                     0 0 0
                             0
                                0
                                  0 0
                                             0
                                                 0
 0
    0
       0
          0
             0
               0
                  0
                     0
                        0
                          0
                              0
                                 0
                                   0
                                      0
                                         0
                                            0
                                              0
                          0
               0
 0
    0
       0
          0
             0
                  0
                     0
                        0
                              0
                                 0
                                   0
                                      0
                                         0
                                            0
                                              0
                                                 0
                       0 0
            0 0 0
                                  0 0
                                        0
                                           0 0
   0
          0
                     0
                             0
 0
       0
                                0
                        0 0
                                  0 0
   0
       0
         0
           0 0
                  0
                     0
                             0
                                 0
                                        0
                                           0 0
      0
         0
           0 0 0
 Ω
   Ω
                     0
                        3 18
                             18
                                18 126 136 175
                                           26 166 255
                                0 0 0 30
247 127
       0
          0
            0
               0
                  0
                     0
                        0
                          0
                             0
                                           36 94 154
170 253 253 253 253 253 225 172 253 242 195
                                64
                                   0
                                      0
                                        0
                                           0
                                              0
 0 0 0 0 49 238 253 253 253 253 253 253 253 251 93 82
 82 56 39 0 0 0 0 0
                      0 0 0
                               0 0 0 0 18 219 253
253 253 253 253 198 182 247 241
                       0 0 0
                                 0 0 0 0
                                           0 0 0
                     0 80 156 107 253 253 205 11
                                            0 43 154
 0 0 0
          0 0 0 0
 0
    0
       0
          0
             0
               0
                  0
                     0
                        0
                          0
                             0
                                0
                                   0 0
                                         0
                                            0
 0 14
       1 154 253 90
                  0
                     0
                        0
                           0
                              0
                                 0
                                   0
                                      0
                                         0
                                            0
                                              0
                                                 0
      0
               0 0
                       0 0
                                  0 139 253 190
                                              2
 0
    0
         0
           0
                     0
                              0
                                 0
       0
          0
               0 0
                     0
                       0 0
                              0
                                        0
                                           0 0 0
 0
   0 0
         0
           0 11 190 253
                       70 0
                              0
                                 0
                                  0 0
                                        0
                                           0
                                             0 0
                        0 0 0
 0
    0
       0
          0
            0
               0 0 0
                              0
                                 0
                                   0
                                      0
                                         0
                                           0
                                              35 241
225 160 108
             0
               0
                  0
                     0
                             0
                                 0
                                   0
                                      0
                                         0
                                            0
                                              0
          1
                                                 0
                                             0
               0 0
                       0 81 240 253 253 119
 0 0 0
          0
            0
                     0
                                        25
                                            0
                                                 0
 0
   0
      0
          0 0 0 0 0
                      0 0 0
                               0 0 0 0 0
 0
   0 45 186 253 253 150 27 0 0 0
                                 0 0 0
                                        0 0 0 0
                                  0 16 93 252 253 187
    0
          0 0 0 0 0
                       0 0
                             Ω
                                Ω
 Ω
       Ω
    0
       0
          0
             0
               0
                  0
                     0
                        0
                           0
                             0
                                 0
                                   0
                                      0
                                         0
                                           0
                                     0
 0
    0
       0
          0
             0
               0
                  0 249 253 249
                             64
                                 0
                                   0
                                        0
                                           0
                                              0
                                                 Ω
           0 0 0 0
                                  0 0 46 130 183 253
   0
          Ω
                             0
 0
       Ω
                      0 0
                                0
253 207
            0 0 0
                     0
                       0 0
                            0
                                        0 0 0 0
          0
                                 0
          0 39 148 229 253 253 253 250 182
 0 0 0
                                   0 0 0 0 0 0
          0
 0
    0
       0
            0 0 0 0 0 0
                             0
                                0
                                   24 114 221 253 253 253
253 201
      78
          0
            0
               0
                  0
                     0
                       0
                           0
                             0
                                 0
                                   0
                                        0 0 0
                                     0
                                  0 0 0 0 0
         66 213 253 253 253 253 198 81
 0 0 23
                                2
                                                 0
 0
    0 0
         0 0 0 0 0 0 18 171 219 253 253 253 253 195
                                0
 80
   9 0
          0 0 0 0 0
                          0 0
                                   0 0 0 0 0 0
                                  0 0 0 0 0 0
 55 172 226 253 253 253 253 244 133 11
                             0
                                Ω
 0
    0
       0
          0
             0
               0
                  0
                     0
                        0
                           0 136 253 253 253 212 135 132 16
                          0
 0
    Ω
       0
          0
             0
               0
                  0
                     0
                        0
                             0
                                 0
                                   Ω
                                     0
                                         Ω
                                           Ω
                                              Ω
                                                 0
                     0 0 0
                                              0
            0 0 0
 0
   0
          0
                             0
                                 0
                                  0
                                     0
                                        0
                                            0
                                                 0
       0
         0
           0 0 0
                     0 0 0 0
                                 0 0 0 0 0 0 0
  0
   0
       0
 0
   0 0 0 0 0 0 0 0 0
                                0 0 0 0 0 0
                          0
            0 0 0
 0
    0
       0
          0
                  0
                     0
                        0
                             0
                                0
                                  0
                                     0
                                        0
                                           0 0
  0
    Ω
       Ω
          0
            0
                  0
                     Ω
                        Ω
                           0]
```

In [88]:

```
# if we observe the above matrix each cell is having a value between 0-255
# before we move to apply machine learning algorithms lets try to normalize the data
# X => (X - Xmin)/(Xmax-Xmin) = X/255

X_train = X_train/255
X_test = X_test/255
```

In [89]:

```
# example data point after normlizing
print(X train[0])
           0.
                                0.
                                            0.
[0.
                      0.
           0.
                     0.
                                0.
                                            0.
                                                       0.
0.
                                0.
                                                       0.
0.
           0.
                      0.
                                            0.
0.
           0.
                      0.
                                 0.
                                            0.
                                                       0.
0.
           0.
                      0.
                                 0.
                                            0.
                                                       0.
0.
           0.
                      0.
                                0.
                                           0.
                                                       0.
0.
           0.
                      0.
                                0.
                                            0.
                                                       0.
```

```
0. 0. 0.
                       0.
0.
0.
                                                 0.
0.
0.
                                                               0.
0.
           0.
                                    0.
                                     0.
0.
0.
            0.
                                                                0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      <td
           0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.49411765 0.53333333 0.68627451 0.10196078 0.65098039 1.
0.96862745 0.49803922 0. 0. 0.
0.66666667 \ 0.99215686 \ 0.99215686 \ 0.99215686 \ 0.99215686 \ 0.99215686
0.88235294 \ 0.6745098 \ 0.99215686 \ 0.94901961 \ 0.76470588 \ 0.25098039
                                 0.
                    0.
0.
0.
           0.
                         0.
                                                  0.
                                                           0.
0.19215686
                                     0.
                                                  0.
Ο.
            Ο.
0.93333333 0.99215686 0.99215686 0.99215686 0.99215686
0.99215686\ 0.99215686\ 0.99215686\ 0.98431373\ 0.36470588\ 0.32156863
0.32156863 0.21960784 0.15294118 0. 0. 0.
   0.
                                      0.07058824 0.85882353 0.99215686
0.
0.99215686 0.99215686 0.99215686 0.99215686 0.77647059 0.71372549
0.96862745 0.94509804 0. 0.
                                             0.
                                     0. 0.
0. 0.
                                     0.
0. 0.
                                                                Ο.
0. 0.
0. 0. 0.
           0.
0.
                                     0. 0.
0. 0.
0.
                                                               0.
0.
                                                                0.
0.
            0.05490196 0.00392157 0.60392157 0.99215686 0.35294118
           0. 0. 0. 0. 0. 0.
0. 0. 0. 0.
0.
                                                  0.
0.
           0. 0. 0. 0. 0. 0. 0. 0. 0.
                                                                0.
            0.54509804 0.99215686 0.74509804 0.00784314 0.
0.
           0. 0. 0. 0. 0. 0.
0. 0. 0. 0.
0.
                                                               0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.74509804
      0.99215686
      0.2745098
      0.
      0.

      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.

0.
                                                               0.04313725
                                                               0.
0. 0. 0. 0. 0. 0. 0.
                                                  0.
                                                                0.
0.88235294 0.62745098 0.42352941 0.00392157 0. 0.
0. 0. 0. 0. 0. 0. 0.
                                                   0.
                                                   0.
                                                                0.
           0.
0.99215686 0.46666667 0.09803922 0. 0. 0.
                                                   0.
0. 0. 0.
                                                                0.
           0.
0.
0.58823529 0.10588235 0. 0. 0. 0.
0. 0.
                                     0.
                                                  0.
                                                                0.
            0. 0. 0. 0. 0. 0. 0. 0.
0.
0.
            0.0627451 0.36470588 0.98823529 0.99215686 0.73333333
           0. 0. 0. 0.
0.
           0.
                        0.
                                      0.
                                                   0.
                                                                0.
                                      0.
           0.
                                                  0.
Ο.
                        0.
                                                                0.
0.
                         0.
                                      0.
                                                   0.
            0.97647059 0.99215686 0.97647059 0.25098039 0.
0.
           0. 0. 0. 0.
0.
```

```
      0.
      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.50980392
      0.71764706
      0.99215686

      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      0.
      58039216

0.89803922\ 0.99215686\ 0.99215686\ 0.99215686\ 0.98039216\ 0.71372549
0. 0. 0. 0. 0.
0.
            0.
                          0.
                                       0.
                                                     0.
                               0. 0.
                         0.
            0.
0.09411765 0.44705882 0.86666667 0.99215686 0.99215686 0.99215686
0.99215686 0.78823529 0.30588235 0. 0. 0.
         0. 0. 0. 0. 0.
                                                    0.
0.
     0.99215686\ 0.99215686\ 0.99215686\ 0.77647059\ 0.31764706\ 0.00784314
0. 0. 0. 0. 0.
                        0.
                                      0. 0.
            0.
                                                                 0.
0.
            0.
                                       0.
                                                     0.07058824 0.67058824
0.
0.85882353 \ 0.99215686 \ 0.99215686 \ 0.99215686 \ 0.99215686 \ 0.76470588
0.31372549 0.03529412 0. 0. 0.
                                                    0.
0. 0.
                                      0.
                         0. 0. 0. 0.
            0.
0.21568627 0.6745098 0.88627451 0.99215686 0.99215686 0.99215686
0.99215686 0.95686275 0.52156863 0.04313725 0. 0.
0.
           0. 0. 0. 0.
                         0.
                                                   0.
                                      0.
            0.
     0. 0. 0. 0.53333333 0.99215686
0.99215686\ 0.99215686\ 0.83137255\ 0.52941176\ 0.51764706\ 0.0627451
0. 0. 0. 0. 0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

      0.
      0.

                                    0.
            0.
                          0.
                                       0.
                                                     0.
                                                                 0.
0.
0.
                                                                 0.
0.
0.
0.
0.
                                                                 0.
0.
                                                                 0.
0.
0.
                                                                  0.
                                                                 0.
0.
0.
0.
Ο.
```

In [90]:

```
# here we are having a class number for each image
print("Class label of first image :", y_train[0])

# lets convert this into a 10 dimensional vector
# ex: consider an image is 5 convert it into 5 => [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
# this conversion needed for MLPs

Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)

print("After converting the output into a vector : ",Y_train[0])

Class label of first image : 5
```

After converting the output into a vector: [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

Softmax classifier

In [91]:

```
# https://keras.io/getting-started/sequential-model-guide/

# The Sequential model is a linear stack of layers.

# you can create a Sequential model by passing a list of layer instances to the constructor:
```

```
# model = Sequential([
  Dense(32, input shape=(784,)),
#
     Activation('relu'),
#
     Dense (10),
     Activation('softmax'),
# ])
# You can also simply add layers via the .add() method:
# model = Sequential()
# model.add(Dense(32, input dim=784))
# model.add(Activation('relu'))
# https://keras.io/layers/core/
# keras.layers.Dense(units, activation=None, use bias=True, kernel initializer='qlorot uniform',
# bias initializer='zeros', kernel regularizer=None, bias regularizer=None,
activity_regularizer=None,
# kernel constraint=None, bias constraint=None)
# Dense implements the operation: output = activation(dot(input, kernel) + bias) where
# activation is the element-wise activation function passed as the activation argument,
# kernel is a weights matrix created by the layer, and
# bias is a bias vector created by the layer (only applicable if use bias is True).
\# output = activation(dot(input, kernel) + bias) => y = activation(WT. X + b)
####
# https://keras.io/activations/
# Activations can either be used through an Activation layer, or through the activation argument s
upported by all forward layers:
# from keras.layers import Activation, Dense
# model.add(Dense(64))
# model.add(Activation('tanh'))
# This is equivalent to:
# model.add(Dense(64, activation='tanh'))
# there are many activation functions ar available ex: tanh, relu, softmax
from keras.models import Sequential
from keras.layers import Dense, Activation
```

In [92]:

```
# some model parameters

output_dim = 10
input_dim = X_train.shape[1]

batch_size = 128
nb_epoch = 20
```

In [93]:

```
# start building a model
model = Sequential()

# The model needs to know what input shape it should expect.
# For this reason, the first layer in a Sequential model
# (and only the first, because following layers can do automatic shape inference)
# needs to receive information about its input shape.
# you can use input_shape and input_dim to pass the shape of input
# output_dim represent the number of nodes need in that layer
# here we have 10 nodes
```

```
model.add(Dense(output_dim, input_dim=input_dim, activation='softmax'))
```

In [94]:

```
# Before training a model, you need to configure the learning process, which is done via the compi
le method
# It receives three arguments:
\# An optimizer. This could be the string identifier of an existing optimizer ,
https://keras.io/optimizers/
# A loss function. This is the objective that the model will try to minimize.,
https://keras.io/losses/
# A list of metrics. For any classification problem you will want to set this to metrics=['accurac
y']. https://keras.io/metrics/
# Note: when using the categorical crossentropy loss, your targets should be in categorical format
# (e.g. if you have 10 classes, the target for each sample should be a 10-dimensional vector that
is all-zeros except
# for a 1 at the index corresponding to the class of the sample).
# that is why we converted out labels into vectors
model.compile(optimizer='sgd', loss='categorical crossentropy', metrics=['accuracy'])
# Keras models are trained on Numpy arrays of input data and labels.
# For training a model, you will typically use the fit function
# fit(self, x=None, y=None, batch size=None, epochs=1, verbose=1, callbacks=None,
validation split=0.0,
# validation data=None, shuffle=True, class weight=None, sample weight=None, initial epoch=0, step
s_per_epoch=None,
# validation steps=None)
# fit() function Trains the model for a fixed number of epochs (iterations on a dataset).
# it returns A History object. Its History.history attribute is a record of training loss values a
# metrics values at successive epochs, as well as validation loss values and validation metrics va
lues (if applicable).
# https://github.com/openai/baselines/issues/20
history = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, validation
_data=(X_test, Y test))
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [=============] - 7s 111us/step - loss: 1.2659 - acc: 0.7094 -
val loss: 0.8067 - val acc: 0.8280
Epoch 2/20
val loss: 0.6061 - val acc: 0.8616
Epoch 3/20
60000/60000 [============] - 3s 43us/step - loss: 0.5854 - acc: 0.8597 -
val loss: 0.5252 - val acc: 0.8740
Epoch 4/20
val loss: 0.4799 - val acc: 0.8815
Epoch 5/20
60000/60000 [============] - 3s 42us/step - loss: 0.4871 - acc: 0.8753 -
val loss: 0.4507 - val acc: 0.8866
Epoch 6/20
60000/60000 [============] - 3s 43us/step - loss: 0.4614 - acc: 0.8796 -
val loss: 0.4292 - val acc: 0.8889
Epoch 7/20
val loss: 0.4131 - val acc: 0.8920
Epoch 8/20
val loss: 0.4002 - val acc: 0.8949
Epoch 9/20
60000/60000 [============] - 3s 43us/step - loss: 0.4154 - acc: 0.8886 -
val_loss: 0.3901 - val_acc: 0.8962
```

```
Epocn IU/ZU
60000/60000 [============] - 3s 43us/step - loss: 0.4054 - acc: 0.8904 -
val loss: 0.3811 - val acc: 0.8976
Epoch 11/20
60000/60000 [============] - 3s 42us/step - loss: 0.3969 - acc: 0.8922 -
val loss: 0.3739 - val acc: 0.9004
Epoch 12/20
60000/60000 [============] - 3s 42us/step - loss: 0.3896 - acc: 0.8939 -
val loss: 0.3671 - val acc: 0.9017
Epoch 13/20
60000/60000 [===========] - 3s 43us/step - loss: 0.3833 - acc: 0.8952 -
val loss: 0.3617 - val acc: 0.9027
Epoch 14/20
val loss: 0.3568 - val_acc: 0.9033
Epoch 15/20
val loss: 0.3524 - val acc: 0.9046
Epoch 16/20
60000/60000 [===========] - 3s 42us/step - loss: 0.3681 - acc: 0.8986 -
val loss: 0.3481 - val_acc: 0.9047
Epoch 17/20
60000/60000 [============ ] - 2s 41us/step - loss: 0.3640 - acc: 0.8994 -
val loss: 0.3447 - val acc: 0.9052
Epoch 18/20
60000/60000 [===========] - 3s 43us/step - loss: 0.3603 - acc: 0.9003 -
val loss: 0.3414 - val acc: 0.9069
Epoch 19/20
val loss: 0.3383 - val acc: 0.9076
Epoch 20/20
60000/60000 [============= ] - 3s 42us/step - loss: 0.3537 - acc: 0.9020 -
val loss: 0.3357 - val acc: 0.9086
```

In [95]:

```
score = model.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation_data=(X_test, Y_test))
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.3357250750780106 Test accuracy: 0.9086

MLP + Sigmoid activation + SGDOptimizer

In [96]:

```
# Multilayer perceptron

model_sigmoid = Sequential()
model_sigmoid.add(Dense(512, activation='sigmoid', input_shape=(input_dim,)))
model_sigmoid.add(Dense(128, activation='sigmoid'))
model_sigmoid.add(Dense(output_dim, activation='softmax'))
model_sigmoid.summary()
```

Layer (type)	Output Shape	Param #
dense_103 (Dense)	(None, 512)	401920
dense_104 (Dense)	(None, 128)	65664
dense_105 (Dense)	(None, 10)	1290
Total params: 468,874		

Total params: 468,874
Trainable params: 468,874
Non-trainable params: 0

In [97]:

```
model_sigmoid.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_sigmoid.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============ ] - 7s 116us/step - loss: 2.2665 - acc: 0.2311 -
val loss: 2.2210 - val acc: 0.4829
Epoch 2/20
60000/60000 [============] - 3s 46us/step - loss: 2.1767 - acc: 0.4668 -
val loss: 2.1211 - val acc: 0.5636
Epoch 3/20
60000/60000 [===========] - 3s 47us/step - loss: 2.0609 - acc: 0.5972 -
val loss: 1.9797 - val acc: 0.6697
Epoch 4/20
60000/60000 [============] - 3s 46us/step - loss: 1.8947 - acc: 0.6608 -
val loss: 1.7812 - val acc: 0.6553
Epoch 5/20
60000/60000 [============] - 3s 47us/step - loss: 1.6747 - acc: 0.6968 -
val_loss: 1.5382 - val_acc: 0.7561
Epoch 6/20
60000/60000 [=============] - 3s 47us/step - loss: 1.4344 - acc: 0.7361 -
val_loss: 1.3019 - val_acc: 0.7611
Epoch 7/20
60000/60000 [============] - 3s 46us/step - loss: 1.2204 - acc: 0.7636 -
val loss: 1.1097 - val acc: 0.7879
Epoch 8/20
60000/60000 [============] - 3s 46us/step - loss: 1.0534 - acc: 0.7845 -
val loss: 0.9659 - val acc: 0.7938
Epoch 9/20
val loss: 0.8579 - val_acc: 0.8082
Epoch 10/20
                                                       . . . . . .
```

```
val loss: 0.7763 - val acc: 0.8234
Epoch 11/20
60000/60000 [===========] - 3s 46us/step - loss: 0.7623 - acc: 0.8208 -
val loss: 0.7125 - val_acc: 0.8313
Epoch 12/20
60000/60000 [===========] - 3s 46us/step - loss: 0.7049 - acc: 0.8292 -
val_loss: 0.6622 - val_acc: 0.8421
Epoch 13/20
val loss: 0.6196 - val acc: 0.8463
Epoch 14/20
60000/60000 [============] - 3s 46us/step - loss: 0.6206 - acc: 0.8437 -
val loss: 0.5854 - val_acc: 0.8509
Epoch 15/20
60000/60000 [============] - 3s 46us/step - loss: 0.5888 - acc: 0.8493 -
val loss: 0.5572 - val acc: 0.8578
Epoch 16/20
60000/60000 [============] - 3s 45us/step - loss: 0.5619 - acc: 0.8549 -
val loss: 0.5329 - val acc: 0.8620
Epoch 17/20
60000/60000 [============= ] - 3s 45us/step - loss: 0.5388 - acc: 0.8593 -
val loss: 0.5110 - val acc: 0.8666
Epoch 18/20
60000/60000 [=========== ] - 3s 46us/step - loss: 0.5187 - acc: 0.8634 -
val loss: 0.4927 - val acc: 0.8702
Epoch 19/20
val loss: 0.4761 - val acc: 0.8727
Epoch 20/20
60000/60000 [============] - 3s 46us/step - loss: 0.4856 - acc: 0.8700 -
val loss: 0.4625 - val acc: 0.8764
```

In [98]:

```
score = model sigmoid.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt dynamic(x, vy, ty, ax)
```

Test score: 0.4624546233654022 Test accuracy: 0.8764

In [99]:

```
w after = model sigmoid.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1 w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer')
plt.show()
```


MLP + Sigmoid activation + ADAM

In [100]:

```
model_sigmoid = Sequential()
model_sigmoid.add(Dense(512, activation='sigmoid', input_shape=(input_dim,)))
model_sigmoid.add(Dense(128, activation='sigmoid'))
model_sigmoid.add(Dense(output_dim, activation='softmax'))
model_sigmoid.summary()
model_sigmoid.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_sigmoid.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation_data=(X_test, Y_test))
```

dense_106 (Dense)	(None, 512)	401920
dense_107 (Dense)	(None, 128)	65664
dense_108 (Dense)	(None, 10)	1290
Total params: 468,874 Trainable params: 468,874 Non-trainable params: 0		
Train on 60000 samples, vali Epoch 1/20	date on 10000	samples
60000/60000 [======		==] - 8s 125us/step - loss: 0.5394 - acc: 0.8597 -
<pre>val_loss: 0.2513 - val_acc: Epoch 2/20</pre>	0.9265	
60000/60000 [======		==] - 3s 53us/step - loss: 0.2212 - acc: 0.9357 -
<pre>val_loss: 0.1897 - val_acc: Epoch 3/20</pre>	0.9416	
60000/60000 [======		==] - 3s 52us/step - loss: 0.1631 - acc: 0.9518 -
<pre>val_loss: 0.1475 - val_acc: Epoch 4/20</pre>	0.9547	
60000/60000 [======		==] - 3s 53us/step - loss: 0.1251 - acc: 0.9627 -
<pre>val_loss: 0.1142 - val_acc: Epoch 5/20</pre>	0.9649	
60000/60000 [======		==] - 3s 52us/step - loss: 0.0985 - acc: 0.9711 -
<pre>val_loss: 0.0977 - val_acc: Epoch 6/20</pre>	0.9703	
60000/60000 [======		==] - 3s 52us/step - loss: 0.0793 - acc: 0.9762 -
<pre>val_loss: 0.0865 - val_acc: Epoch 7/20</pre>	0.9729	
60000/60000 [======		==] - 3s 52us/step - loss: 0.0631 - acc: 0.9812 -
<pre>val_loss: 0.0771 - val_acc: Epoch 8/20</pre>	0.9760	
60000/60000 [======		==] - 3s 51us/step - loss: 0.0514 - acc: 0.9846 -
<pre>val_loss: 0.0805 - val_acc: Epoch 9/20</pre>	0.9/54	
		==] - 3s 52us/step - loss: 0.0421 - acc: 0.9879 -
<pre>val_loss: 0.0718 - val_acc: Epoch 10/20</pre>	0.9/81	
		==] - 3s 52us/step - loss: 0.0337 - acc: 0.9906 -
<pre>val_loss: 0.0650 - val_acc: Epoch 11/20</pre>	0.9/69	
60000/60000 [=================================		==] - 3s 51us/step - loss: 0.0268 - acc: 0.9929 -
Epoch 12/20		
60000/60000 [=================================		==] - 3s 53us/step - loss: 0.0223 - acc: 0.9940 -
Epoch 13/20		
60000/60000 [=================================		==] - 3s 53us/step - loss: 0.0175 - acc: 0.9956 -
Epoch 14/20		
60000/60000 [=================================		==] - 3s 52us/step - loss: 0.0141 - acc: 0.9966 -
Epoch 15/20		
val loss: 0.0682 - val acc:		==] - 4s 67us/step - loss: 0.0119 - acc: 0.9971 -
Epoch 16/20		
val loss: 0.0679 - val acc:		==] - 3s 57us/step - loss: 0.0084 - acc: 0.9983 -
Epoch 17/20		1 2 52 / 1 1 2 2075
val loss: 0.0651 - val acc:		==] - 3s 53us/step - loss: 0.0075 - acc: 0.9984 -
Epoch 18/20		==] - 3s 52us/step - loss: 0.0056 - acc: 0.9990 -
val_loss: 0.0647 - val_acc:		1 35 J2u5/Step - 1055: 0.0030 - dCC: 0.9990 -
Epoch 19/20		==] - 3s 53us/step - loss: 0.0053 - acc: 0.9988 -
val_loss: 0.0727 - val_acc:] 35 3343/3CEP 1033. 0.0033 - acc. 0.9900 -
Epoch 20/20		==] - 3s 52us/step - loss: 0.0034 - acc: 0.9994 -
val_loss: 0.0700 - val_acc:		, 30 3245, 300p 1035. 0.0034 acc. 0.3394 -

```
print('Test score:', score[U])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch'); ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt dynamic(x, vy, ty, ax)
```

Test score: 0.0699703871981983 Test accuracy: 0.9826

In [102]:

```
w after = model sigmoid.get weights()
h1 w = w after[0].flatten().reshape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1 w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2 w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + ReLU +SGD

In [103]:

```
# Multilayer perceptron

# https://arxiv.org/pdf/1707.09725.pdf#page=95

# for relu layers

# If we sample weights from a normal distribution N(0,\sigma) we satisfy this condition with \sigma = \sqrt{(2/(ni))}.

# h1 => \sigma = \sqrt{(2/(fan_in))} = 0.062 => N(0,\sigma) = N(0,0.062)

# h2 => \sigma = \sqrt{(2/(fan_in))} = 0.125 => N(0,\sigma) = N(0,0.125)

# out => \sigma = \sqrt{(2/(fan_in))} = 0.125 => N(0,\sigma) = N(0,0.125)

# out => \sigma = \sqrt{(2/(fan_in))} = 0.120 => N(0,\sigma) = N(0,0.120)

model_relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNormal(mean=0.0, stddev=0.062, seed=None)))
model_relu.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.125, seed=None)))
model_relu.add(Dense(output_dim, activation='softmax'))

model_relu.summary()
```

Layer (type)	Output Shape	Param #
dense_109 (Dense)	(None, 512)	401920
dense_110 (Dense)	(None, 128)	65664
dense_111 (Dense)	(None, 10)	1290

Total params: 468,874 Trainable params: 468,874 Non-trainable params: 0

val loss: 0.2617 - val acc: 0.9263

In [104]:

```
Epoch 4/20
60000/60000 [============] - 3s 47us/step - loss: 0.2585 - acc: 0.9263 -
val loss: 0.2349 - val acc: 0.9343
Epoch 5/20
val loss: 0.2166 - val acc: 0.9387
Epoch 6/20
val loss: 0.2030 - val acc: 0.9409
Epoch 7/20
60000/60000 [============] - 3s 47us/step - loss: 0.1983 - acc: 0.9437 -
val_loss: 0.1905 - val_acc: 0.9453
Epoch 8/20
60000/60000 [===========] - 3s 47us/step - loss: 0.1855 - acc: 0.9478 -
val loss: 0.1810 - val acc: 0.9477
Epoch 9/20
60000/60000 [=========== ] - 3s 46us/step - loss: 0.1747 - acc: 0.9501 -
val loss: 0.1721 - val acc: 0.9485
Epoch 10/20
val loss: 0.1646 - val acc: 0.9510
Epoch 11/20
60000/60000 [============] - 3s 45us/step - loss: 0.1567 - acc: 0.9556 -
val loss: 0.1579 - val acc: 0.9527
Epoch 12/20
60000/60000 [=============] - 3s 48us/step - loss: 0.1494 - acc: 0.9573 -
val_loss: 0.1536 - val_acc: 0.9545
Epoch 13/20
60000/60000 [========== ] - 3s 48us/step - loss: 0.1424 - acc: 0.9602 -
val loss: 0.1474 - val acc: 0.9564
Epoch 14/20
60000/60000 [===========] - 3s 48us/step - loss: 0.1366 - acc: 0.9618 -
val_loss: 0.1424 - val_acc: 0.9571
Epoch 15/20
60000/60000 [===========] - 3s 49us/step - loss: 0.1311 - acc: 0.9636 -
val loss: 0.1413 - val acc: 0.9574
Epoch 16/20
val loss: 0.1350 - val acc: 0.9590
Epoch 17/20
60000/60000 [===========] - 3s 47us/step - loss: 0.1211 - acc: 0.9660 -
val loss: 0.1317 - val_acc: 0.9595
Epoch 18/20
val_loss: 0.1276 - val_acc: 0.9609
Epoch 19/20
60000/60000 [===========] - 3s 47us/step - loss: 0.1125 - acc: 0.9689 -
val loss: 0.1260 - val acc: 0.9610
Epoch 20/20
60000/60000 [============] - 3s 46us/step - loss: 0.1087 - acc: 0.9698 -
val loss: 0.1225 - val acc: 0.9627
In [105]:
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model drop.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, va
lidation_data=(X_test, Y_test))
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
```

for each key in histrory.histrory we will have a list of length equal to number of epochs

```
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.12253610298782587

Test accuracy: 0.9627

In [106]:

```
w_after = model_relu.get_weights()
h1 w = w after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + ReLU + ADAM

In [107]:

```
model_relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model_relu.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.125
, seed=None)))
model_relu.add(Dense(output_dim, activation='softmax'))

print(model_relu.summary())

model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, valid
ation_data=(X_test, Y_test))
```

```
Layer (type)
                     Output Shape
                                        Param #
______
dense_112 (Dense)
                     (None, 512)
                                         401920
dense 113 (Dense)
                     (None, 128)
                                         65664
dense_114 (Dense)
                     (None, 10)
                                         1290
Total params: 468,874
Trainable params: 468,874
Non-trainable params: 0
None
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============ ] - 8s 130us/step - loss: 0.2288 - acc: 0.9326 -
val loss: 0.1132 - val acc: 0.9655
Epoch 2/20
60000/60000 [===========] - 3s 53us/step - loss: 0.0854 - acc: 0.9737 -
val loss: 0.0770 - val acc: 0.9761
Epoch 3/20
60000/60000 [============] - 3s 54us/step - loss: 0.0522 - acc: 0.9837 -
val_loss: 0.0829 - val_acc: 0.9741
Epoch 4/20
val_loss: 0.0755 - val_acc: 0.9764
Epoch 5/20
val loss: 0.0712 - val acc: 0.9793
Epoch 6/20
60000/60000 [============] - 3s 53us/step - loss: 0.0200 - acc: 0.9940 -
val loss: 0.0768 - val acc: 0.9788
Epoch 7/20
60000/60000 [============] - 3s 53us/step - loss: 0.0152 - acc: 0.9951 -
val loss: 0.0642 - val acc: 0.9828
Epoch 8/20
60000/60000 [============= ] - 3s 53us/step - loss: 0.0151 - acc: 0.9950 -
val loss: 0.0781 - val acc: 0.9796
Epoch 9/20
60000/60000 [============] - 3s 53us/step - loss: 0.0151 - acc: 0.9950 -
val loss: 0.0795 - val acc: 0.9795
Epoch 10/20
60000/60000 [============] - 3s 54us/step - loss: 0.0111 - acc: 0.9962 -
val_loss: 0.0853 - val_acc: 0.9806
Epoch 11/20
val loss: 0.1058 - val acc: 0.9755
Epoch 12/20
60000/60000 [============] - 3s 53us/step - loss: 0.0129 - acc: 0.9956 -
val loss: 0.0834 - val acc: 0.9799
Epoch 13/20
val loss: 0.0840 - val acc: 0.9814
Epoch 14/20
60000/60000 [=============] - 3s 53us/step - loss: 0.0095 - acc: 0.9968 -
val_loss: 0.0819 - val_acc: 0.9814
Epoch 15/20
```

```
val loss: 0.1173 - val acc: 0.9756
Epoch 16/20
60000/60000 [============] - 3s 52us/step - loss: 0.0096 - acc: 0.9966 -
val loss: 0.0950 - val acc: 0.9800
Epoch 17/20
60000/60000 [============] - 3s 52us/step - loss: 0.0068 - acc: 0.9978 -
val loss: 0.1090 - val acc: 0.9777
Epoch 18/20
60000/60000 [============] - 3s 52us/step - loss: 0.0093 - acc: 0.9972 -
val_loss: 0.1086 - val_acc: 0.9780
Epoch 19/20
60000/60000 [=============] - 3s 52us/step - loss: 0.0082 - acc: 0.9971 -
val_loss: 0.0813 - val_acc: 0.9820
Epoch 20/20
60000/60000 [============] - 3s 51us/step - loss: 0.0038 - acc: 0.9988 -
val loss: 0.0990 - val acc: 0.9826
```

In [108]:

```
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model drop.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val loss and val acc only when you pass the paramter validation data
# val_loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.09899708161438571 Test accuracy: 0.9826

In [109]:

```
w_after = model_relu.get_weights()
```

```
nl_w = w_arrer[U].rratten().resnape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out w = w after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2 w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


MLP + Batch-Norm on hidden Layers + AdamOptimizer </2>

```
In [110]:
```

```
# Multilayer perceptron
# https://intoli.com/blog/neural-network-initialization/
# If we sample weights from a normal distribution N(0,\sigma) we satisfy this condition with
\sigma = \sqrt{(2/(ni+ni+1))}.
# h1 => \sigma = \sqrt{(2/(ni+ni+1))} = 0.039 => N(0,\sigma) = N(0,0.039)
# h2 \Rightarrow \sigma = \sqrt{(2/(ni+ni+1))} = 0.055 \Rightarrow N(0,\sigma) = N(0,0.055)
# h1 \Rightarrow \sigma = \sqrt{(2/(ni+ni+1))} = 0.120 \Rightarrow N(0,\sigma) = N(0,0.120)
from keras.layers.normalization import BatchNormalization
model batch = Sequential()
model_batch.add(Dense(512, activation='sigmoid', input_shape=(input_dim,), kernel_initializer=Rando
mNormal (mean=0.0, stddev=0.039, seed=None)))
model batch.add(BatchNormalization())
model batch.add(Dense(128, activation='sigmoid', kernel initializer=RandomNormal(mean=0.0, stddev=0
.55, seed=None)) )
model batch.add(BatchNormalization())
model_batch.add(Dense(output_dim, activation='softmax'))
model batch.summary()
```

Layer (type)	Output	Shape	Param #
dense_115 (Dense)	(None,	512)	401920
batch_normalization_45 (Batc	(None,	512)	2048
dense_116 (Dense)	(None,	128)	65664
batch_normalization_46 (Batc	(None,	128)	512
dense_117 (Dense)	(None,	10)	1290
Total params: 471,434 Trainable params: 470,154 Non-trainable params: 1,280			

In [111]:

```
model_batch.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_batch.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [==============] - 10s 163us/step - loss: 0.3013 - acc: 0.9113 - val 1
oss: 0.2207 - val acc: 0.9347
Epoch 2/20
60000/60000 [============] - 5s 79us/step - loss: 0.1757 - acc: 0.9487 -
val loss: 0.1698 - val acc: 0.9502
Epoch 3/20
val loss: 0.1542 - val acc: 0.9546
Epoch 4/20
val loss: 0.1405 - val acc: 0.9581
Epoch 5/20
val loss: 0.1276 - val acc: 0.9625
Epoch 6/20
60000/60000 [============] - 5s 80us/step - loss: 0.0804 - acc: 0.9753 -
val loss: 0.1157 - val_acc: 0.9654
Epoch 7/20
val loss: 0.1131 - val acc: 0.9656
Epoch 8/20
60000/60000 [===========] - 5s 84us/step - loss: 0.0582 - acc: 0.9826 -
val loss: 0.1060 - val acc: 0.9675
Epoch 9/20
60000/60000 [============] - 5s 81us/step - loss: 0.0509 - acc: 0.9842 -
val loss: 0.1078 - val acc: 0.9687
Epoch 10/20
val loss: 0.1032 - val acc: 0.9681
Epoch 11/20
60000/60000 [============] - 5s 81us/step - loss: 0.0395 - acc: 0.9876 -
val loss: 0.0999 - val acc: 0.9705
Epoch 12/20
60000/60000 [============] - 5s 81us/step - loss: 0.0341 - acc: 0.9889 -
val loss: 0.0963 - val acc: 0.9719
Epoch 13/20
60000/60000 [===========] - 5s 81us/step - loss: 0.0308 - acc: 0.9902 -
val_loss: 0.0936 - val_acc: 0.9710
Epoch 14/20
val loss: 0.0916 - val acc: 0.9733
Epoch 15/20
val loss: 0.1015 - val_acc: 0.9717
Epoch 16/20
60000/60000 [============] - 5s 82us/step - loss: 0.0202 - acc: 0.9936 -
val loss: 0.0969 - val acc: 0.9737
Epoch 17/20
60000/60000 [===========] - 5s 81us/step - loss: 0.0208 - acc: 0.9932 -
val loss: 0.1138 - val acc: 0.9698
```

In [112]:

```
score = model_batch.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model drop.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt dynamic(x, vy, ty, ax)
```

Test score: 0.09825632937119808 Test accuracy: 0.9734

In [113]:

```
w_after = model_batch.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
```

```
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


5. MLP + Dropout + AdamOptimizer

In [114]:

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-function-in-
keras

from keras.layers import Dropout

model_drop = Sequential()

model_drop.add(Dense(512, activation='sigmoid', input_shape=(input_dim,), kernel_initializer=Random
Normal(mean=0.0, stddev=0.039, seed=None)))
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))

model_drop.add(Dense(128, activation='sigmoid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.
55, seed=None)))
model_drop.add(BatchNormalization())
model_drop.add(Dropout(0.5))

model_drop.add(Dense(output_dim, activation='softmax'))

model_drop.summary()
```

Layer (type)	Output	Shape	Param #
dense_118 (Dense)	(None,	512)	401920
batch_normalization_47 (Batc	(None,	512)	2048
dropout_35 (Dropout)	(None,	512)	0
dense_119 (Dense)	(None,	128)	65664
batch_normalization_48 (Batc	(None,	128)	512
dropout_36 (Dropout)	(None,	128)	0

```
dense_120 (Dense) (None, 10) 1290
```

Total params: 471,434 Trainable params: 470,154 Non-trainable params: 1,280

In [115]:

```
model_drop.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, valid
ation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [==============] - 11s 177us/step - loss: 0.6745 - acc: 0.7926 - val 1
oss: 0.2803 - val acc: 0.9194
Epoch 2/20
60000/60000 [============] - 5s 85us/step - loss: 0.4344 - acc: 0.8685 -
val loss: 0.2526 - val acc: 0.9237
Epoch 3/20
60000/60000 [=========== ] - 5s 84us/step - loss: 0.3827 - acc: 0.8839 -
val loss: 0.2336 - val acc: 0.9312
Epoch 4/20
val loss: 0.2309 - val acc: 0.9323
Epoch 5/20
val loss: 0.2153 - val acc: 0.9359
Epoch 6/20
60000/60000 [============] - 5s 84us/step - loss: 0.3227 - acc: 0.9015 -
val_loss: 0.2070 - val_acc: 0.9396
Epoch 7/20
60000/60000 [============] - 5s 85us/step - loss: 0.3092 - acc: 0.9063 -
val_loss: 0.1990 - val_acc: 0.9406
Epoch 8/20
val_loss: 0.1854 - val_acc: 0.9429
Epoch 9/20
val loss: 0.1767 - val acc: 0.9462
Epoch 10/20
val loss: 0.1742 - val acc: 0.9467
Epoch 11/20
60000/60000 [===========] - 5s 85us/step - loss: 0.2585 - acc: 0.9223 -
val_loss: 0.1670 - val_acc: 0.9505
Epoch 12/20
60000/60000 [============] - 5s 85us/step - loss: 0.2499 - acc: 0.9249 -
val loss: 0.1550 - val acc: 0.9541
Epoch 13/20
60000/60000 [============] - 5s 84us/step - loss: 0.2384 - acc: 0.9281 -
val loss: 0.1533 - val acc: 0.9534
Epoch 14/20
60000/60000 [============ ] - 5s 84us/step - loss: 0.2262 - acc: 0.9318 -
val loss: 0.1447 - val acc: 0.9560
Epoch 15/20
val loss: 0.1387 - val acc: 0.9570
Epoch 16/20
60000/60000 [============] - 5s 85us/step - loss: 0.2133 - acc: 0.9354 -
val loss: 0.1286 - val acc: 0.9619
Epoch 17/20
60000/60000 [============] - 5s 83us/step - loss: 0.1993 - acc: 0.9406 -
val_loss: 0.1242 - val_acc: 0.9622
Epoch 18/20
60000/60000 [============= ] - 5s 88us/step - loss: 0.1947 - acc: 0.9415 -
val loss: 0.1251 - val_acc: 0.9626
Epoch 19/20
val_loss: 0.1217 - val_acc: 0.9649
Epoch 20/20
60000/60000 [============] - 5s 84us/step - loss: 0.1799 - acc: 0.9449 -
val loss: 0.1129 - val acc: 0.9685
```

In [116]:

```
score = model_drop.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model drop.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.11289959549605846 Test accuracy: 0.9685

In [117]:

```
w after = model drop.get weights()
h1 w = w after[0].flatten().reshape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
nlt.title("Trained model Weights")
```

```
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


Hyper-parameter tuning of Keras models using Sklearn

```
In [118]:
```

```
from keras.optimizers import Adam,RMSprop,SGD

def best_hyperparameters(activ):

    model = Sequential()
    model.add(Dense(512, activation=activ, input_shape=(input_dim,), kernel_initializer=RandomNormal(mean=0.0, stddev=0.062, seed=None)))
    model.add(Dense(128, activation=activ, kernel_initializer=RandomNormal(mean=0.0, stddev=0.125, seed=None)))
    model.add(Dense(output_dim, activation='softmax'))

model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')
    return model
```

```
In [119]:
```

```
# https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras
activ = ['sigmoid','relu']
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
model = KerasClassifier(build_fn=best_hyperparameters, epochs=nb_epoch, batch_size=batch_size, verb
ose=0)
param grid = dict(activ=activ)
# if you are using CPU
# grid = GridSearchCV(estimator=model, param grid=param grid, n jobs=-1)
# if you are using GPU dont use the n jobs parameter
grid = GridSearchCV(estimator=model, param grid=param grid)
grid_result = grid.fit(X_train, Y_train)
/opt/conda/lib/python3.6/site-packages/sklearn/model_selection/_split.py:1978: FutureWarning: The
default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence this
warning.
 warnings.warn(CV WARNING, FutureWarning)
```

```
In [120]:
```

```
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
```

```
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
    print("%f (%f) with: %r" % (mean, stdev, param))

Best: 0.976300 using {'activ': 'relu'}
0.975617 (0.001652) with: {'activ': 'sigmoid'}
0.976300 (0.002729) with: {'activ': 'relu'}
```

6. Model 1 with two hidden layers + Batch Normalization + Dropout:

```
In [121]:
```

Epoch 7/20

```
model_relu = Sequential()
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model_relu.add(BatchNormalization())
model_relu.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.125
, seed=None))
model_relu.add(BatchNormalization())
model_relu.add(BatchNormalization())
model_relu.add(Dense(output_dim, activation='softmax'))
model_relu.add(Dense(output_dim, activation='softmax'))
print(model_relu.summary())

model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, valid
ation_data=(X_test, Y_test))
```

	-	Shape	Param #	
dense_142 (Dense)	(None,		200960	
batch_normalization_49 (Batc	(None,	256)	1024	
dropout_37 (Dropout)	(None,	256)	0	
dense_143 (Dense)	(None,	128)	32896	
batch_normalization_50 (Batc	(None,	128)	512	
dropout_38 (Dropout)	(None,	128)	0	
dense_144 (Dense)	(None,	10)	1290	
Non-trainable params: 768 None Train on 60000 samples, vali	date on	10000 sampl	es	
None Train on 60000 samples, vali- Epoch 1/20 60000/60000 [=================================		_		oss: 0.3786 - acc: 0.8847 - val_l
None Train on 60000 samples, vali Epoch 1/20 60000/60000 [=================================	 0 		11s 192us/step - lo	oss: 0.3786 - acc: 0.8847 - val_l :: 0.1768 - acc: 0.9470 -
None Train on 60000 samples, vali Epoch 1/20 60000/60000 [=================================	0 . 9682		11s 192us/step - lo 5s 88us/step - loss	-: 0.1768 - acc: 0.9470 -
None Train on 60000 samples, vali Epoch 1/20 60000/60000 [=================================	0.9682 0.9728		11s 192us/step - loss 5s 88us/step - loss 5s 89us/step - loss	:: 0.1768 - acc: 0.9470 - :: 0.1326 - acc: 0.9583 -
None Train on 60000 samples, vali Epoch 1/20 60000/60000 [=================================	0.9682 0.9728 0.9741		11s 192us/step - loss 5s 88us/step - loss 5s 89us/step - loss 5s 88us/step - loss	:: 0.1768 - acc: 0.9470 - :: 0.1326 - acc: 0.9583 - :: 0.1104 - acc: 0.9652 -

```
60000/60000 [===========] - 5s 89us/step - loss: 0.0683 - acc: 0.9783 -
val_loss: 0.0650 - val_acc: 0.9805
Epoch 9/20
60000/60000 [============] - 5s 88us/step - loss: 0.0652 - acc: 0.9794 -
val loss: 0.0627 - val acc: 0.9810
Epoch 10/20
60000/60000 [============] - 5s 88us/step - loss: 0.0610 - acc: 0.9803 -
val loss: 0.0710 - val acc: 0.9803
Epoch 11/20
60000/60000 [============= ] - 5s 89us/step - loss: 0.0559 - acc: 0.9811 -
val_loss: 0.0630 - val_acc: 0.9816
Epoch 12/20
60000/60000 [=========== ] - 5s 88us/step - loss: 0.0525 - acc: 0.9830 -
val loss: 0.0640 - val acc: 0.9814
Epoch 13/20
60000/60000 [===========] - 5s 88us/step - loss: 0.0500 - acc: 0.9840 -
val loss: 0.0710 - val acc: 0.9798
Epoch 14/20
val loss: 0.0672 - val_acc: 0.9807
Epoch 15/20
60000/60000 [============] - 5s 88us/step - loss: 0.0456 - acc: 0.9844 -
val_loss: 0.0621 - val_acc: 0.9820
Epoch 16/20
60000/60000 [============] - 5s 88us/step - loss: 0.0428 - acc: 0.9859 -
val loss: 0.0575 - val acc: 0.9826
Epoch 17/20
60000/60000 [============= ] - 5s 88us/step - loss: 0.0427 - acc: 0.9861 -
val_loss: 0.0585 - val_acc: 0.9826
Epoch 18/20
60000/60000 [============] - 5s 87us/step - loss: 0.0401 - acc: 0.9862 -
val loss: 0.0611 - val acc: 0.9833
Epoch 19/20
60000/60000 [=============] - 5s 88us/step - loss: 0.0387 - acc: 0.9876 -
val loss: 0.0600 - val acc: 0.9818
Epoch 20/20
60000/60000 [============] - 5s 88us/step - loss: 0.0358 - acc: 0.9880 -
val loss: 0.0637 - val acc: 0.9827
In [122]:
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch'); ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation_data=(X_test, Y_test))
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

60000/60000 [============] - 5s 88us/step - loss: 0.0755 - acc: 0.9759 -

val loss: 0.0704 - val acc: 0.9786

Epoch 8/20

Test score: 0.06367886031113303 Test accuracy: 0.9827

In [123]:

```
w after = model relu.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1 w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


7. Model 2 with three hidden layers + Batch Normalization + Dropout:

In [124]:

```
model_relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model_relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
```

```
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model relu.add(Dense(128, activation='relu', kernel initializer=RandomNormal(mean=0.0, stddev=0.125
, seed=None)) )
model relu.add(BatchNormalization())
model_relu.add(Dropout(0.3))
model relu.add(Dense(output dim, activation='softmax'))
print(model relu.summary())
model relu.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, valid
ation_data=(X_test, Y_test))
                           Output Shape
                                                    Param #
Layer (type)
 -----
                                                   401920
```

```
dense_145 (Dense)
                         (None, 512)
batch normalization 51 (Batc (None, 512)
                                                 2048
dropout 39 (Dropout)
                          (None, 512)
dense 146 (Dense)
                          (None, 256)
                                                 131328
batch normalization 52 (Batc (None, 256)
                                                 1024
dropout 40 (Dropout)
                          (None, 256)
dense 147 (Dense)
                          (None, 128)
                                                 32896
batch normalization_53 (Batc (None, 128)
                                                 512
dropout 41 (Dropout)
                          (None, 128)
dense 148 (Dense)
                                                 1290
                          (None, 10)
______
Total params: 571,018
Trainable params: 569,226
Non-trainable params: 1,792
None
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [==============] - 13s 224us/step - loss: 0.3627 - acc: 0.8891 - val 1
oss: 0.1164 - val acc: 0.9641
Epoch 2/20
60000/60000 [============= ] - 6s 106us/step - loss: 0.1567 - acc: 0.9530 -
val loss: 0.0919 - val acc: 0.9695
Epoch 3/20
60000/60000 [============= ] - 6s 108us/step - loss: 0.1184 - acc: 0.9636 -
val_loss: 0.0804 - val_acc: 0.9751
Epoch 4/20
60000/60000 [============= ] - 6s 106us/step - loss: 0.1020 - acc: 0.9687 -
val loss: 0.0829 - val acc: 0.9746
Epoch 5/20
60000/60000 [============= ] - 6s 107us/step - loss: 0.0844 - acc: 0.9733 -
val loss: 0.0787 - val acc: 0.9756
Epoch 6/20
60000/60000 [============ ] - 6s 107us/step - loss: 0.0770 - acc: 0.9754 -
val loss: 0.0699 - val acc: 0.9785
Epoch 7/20
60000/60000 [============= ] - 6s 107us/step - loss: 0.0689 - acc: 0.9780 -
val_loss: 0.0686 - val_acc: 0.9770
Epoch 8/20
60000/60000 [============= ] - 7s 118us/step - loss: 0.0626 - acc: 0.9799 -
val loss: 0.0690 - val acc: 0.9794
Epoch 9/20
60000/60000 [============= ] - 7s 111us/step - loss: 0.0568 - acc: 0.9819 -
val loss: 0.0632 - val acc: 0.9808
Epoch 10/20
60000/60000 [============= ] - 6s 108us/step - loss: 0.0511 - acc: 0.9834 -
```

val loss: 0.0666 - val acc: 0.9802

```
Epoch 11/20
60000/60000 [============] - 6s 108us/step - loss: 0.0495 - acc: 0.9839 -
val loss: 0.0640 - val acc: 0.9800
Epoch 12/20
60000/60000 [============] - 7s 109us/step - loss: 0.0475 - acc: 0.9845 -
val loss: 0.0567 - val acc: 0.9833
Epoch 13/20
60000/60000 [============= ] - 6s 107us/step - loss: 0.0444 - acc: 0.9856 -
val_loss: 0.0566 - val_acc: 0.9836
Epoch 14/20
60000/60000 [==============] - 6s 108us/step - loss: 0.0388 - acc: 0.9875 -
val loss: 0.0595 - val_acc: 0.9823
Epoch 15/20
60000/60000 [==============] - 6s 107us/step - loss: 0.0391 - acc: 0.9874 -
val loss: 0.0619 - val_acc: 0.9820
Epoch 16/20
60000/60000 [============= ] - 6s 107us/step - loss: 0.0378 - acc: 0.9879 -
val loss: 0.0609 - val acc: 0.9828
Epoch 17/20
60000/60000 [============] - 6s 108us/step - loss: 0.0332 - acc: 0.9890 -
val loss: 0.0576 - val acc: 0.9844
Epoch 18/20
60000/60000 [============= ] - 6s 107us/step - loss: 0.0349 - acc: 0.9884 -
val loss: 0.0621 - val acc: 0.9821
Epoch 19/20
60000/60000 [============ ] - 6s 107us/step - loss: 0.0323 - acc: 0.9894 -
val loss: 0.0549 - val acc: 0.9857
Epoch 20/20
val loss: 0.0609 - val acc: 0.9843
```

In [125]:

```
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.060851101654174275 Test accuracy: 0.9843

In [126]:

```
w after = model relu.get weights()
h1 w = w after[0].flatten().reshape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out w = w after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1 w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2 w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


8. Model 3 with five hidden layers + Batch Normalization + Dropout:

In [127]:

```
model relu = Sequential()
model relu.add(Dense(512, activation='relu', input shape=(input dim,), kernel initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model_relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model relu.add(Dense(128, activation='relu', input shape=(input dim,), kernel initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model_relu.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.125,
seed=None)) )
model relu.add(BatchNormalization())
```

```
model_relu.add(Dense(32, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.125, seed=None)) )
model_relu.add(BatchNormalization())
model_relu.add(Dense(output_dim, activation='softmax'))

print(model_relu.summary())

model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, valid ation_data=(X_test, Y_test))
```

Layer (type)	Output	-	Param #
dense_149 (Dense)	(None,	512)	401920
batch_normalization_54 (Batc	(None,	512)	2048
dropout_42 (Dropout)	(None,	512)	0
dense_150 (Dense)	(None,	256)	131328
batch_normalization_55 (Batc	(None,	256)	1024
dropout_43 (Dropout)	(None,	256)	0
dense_151 (Dense)	(None,	128)	32896
batch_normalization_56 (Batc	(None,	128)	512
dropout_44 (Dropout)	(None,	128)	0
dense_152 (Dense)	(None,	64)	8256
batch_normalization_57 (Batc	(None,	64)	256
dense_153 (Dense)	(None,	32)	2080
batch_normalization_58 (Batc	(None,	32)	128
dense_154 (Dense)	(None,		330
Total params: 580,778 Trainable params: 578,794 Non-trainable params: 1,984			
None Train on 60000 samples, valid	date on	10000 samples	

```
60000/60000 [============= ] - 16s 273us/step - loss: 0.4450 - acc: 0.8676 - val 1
oss: 0.1393 - val acc: 0.9595
Epoch 2/20
60000/60000 [============] - 9s 144us/step - loss: 0.1794 - acc: 0.9467 -
val loss: 0.1054 - val acc: 0.9682
Epoch 3/20
60000/60000 [============] - 9s 143us/step - loss: 0.1373 - acc: 0.9597 -
val loss: 0.0938 - val acc: 0.9715
Epoch 4/20
60000/60000 [=============] - 9s 144us/step - loss: 0.1131 - acc: 0.9658 -
val loss: 0.0848 - val acc: 0.9747
Epoch 5/20
60000/60000 [============] - 9s 142us/step - loss: 0.0990 - acc: 0.9699 -
val_loss: 0.0750 - val_acc: 0.9779
Epoch 6/20
val loss: 0.0688 - val acc: 0.9805
Epoch 7/20
60000/60000 [============= ] - 8s 141us/step - loss: 0.0795 - acc: 0.9754 -
val loss: 0.0703 - val acc: 0.9788
Epoch 8/20
60000/60000 [============= ] - 9s 143us/step - loss: 0.0718 - acc: 0.9781 -
val loss: 0.0624 - val acc: 0.9816
Epoch 9/20
60000/60000 [============] - 9s 143us/step - loss: 0.0664 - acc: 0.9800 -
val loss: 0.0672 - val_acc: 0.9805
```

```
FDOCII IU/ZU
60000/60000 [============= ] - 9s 142us/step - loss: 0.0625 - acc: 0.9800 -
val_loss: 0.0611 - val_acc: 0.9813
Epoch 11/20
60000/60000 [============= ] - 9s 144us/step - loss: 0.0588 - acc: 0.9817 -
val_loss: 0.0627 - val_acc: 0.9824
Epoch 12/20
60000/60000 [============== ] - 9s 142us/step - loss: 0.0559 - acc: 0.9827 -
val loss: 0.0598 - val_acc: 0.9830
Epoch 13/20
60000/60000 [==============] - 9s 143us/step - loss: 0.0528 - acc: 0.9834 -
val loss: 0.0611 - val acc: 0.9839
Epoch 14/20
60000/60000 [============= ] - 9s 143us/step - loss: 0.0510 - acc: 0.9841 -
val loss: 0.0659 - val acc: 0.9822
Epoch 15/20
60000/60000 [============= ] - 9s 143us/step - loss: 0.0460 - acc: 0.9860 -
val loss: 0.0639 - val acc: 0.9822
Epoch 16/20
60000/60000 [============= ] - 9s 144us/step - loss: 0.0444 - acc: 0.9861 -
val loss: 0.0593 - val acc: 0.9834
Epoch 17/20
60000/60000 [============ ] - 8s 141us/step - loss: 0.0433 - acc: 0.9865 -
val loss: 0.0599 - val acc: 0.9835
Epoch 18/20
val loss: 0.0582 - val acc: 0.9850
Epoch 19/20
60000/60000 [===========] - 9s 142us/step - loss: 0.0407 - acc: 0.9875 -
val loss: 0.0593 - val acc: 0.9835
Epoch 20/20
60000/60000 [=============] - 9s 143us/step - loss: 0.0376 - acc: 0.9880 -
val loss: 0.0561 - val acc: 0.9843
```

In [128]:

```
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch size, epochs=nb epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.05613952756321523 Test accuracy: 0.9843

In [129]:

```
w_after = model_relu.get_weights()
h1 w = w after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1 w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


Conclusion:

In [150]:

```
from prettytable import PrettyTable

x = PrettyTable()
x.field_names = ["# Layers", "Epoch", "Accuracy"]
x.add_row(["2", 20, 0.9827])
x.add_row(["3", 20, 0.9843])
x.add_row(["5", 20, 0.9843])
print(x)
```

```
| 3 | 20 | 0.9843 |
| 5 | 20 | 0.9843 |
```

9. Model 1: MLP + BatchNormalization + Dropout (0.30)

#layers: 5activation: ReLU

· Weight Initializer: RandomNormal

• Optimizer: ADAM

In [131]:

```
model relu = Sequential()
model relu.add(Dense(512, activation='relu', input shape=(input dim,), kernel initializer=RandomNor
mal(mean=0.0, stddev=0.050, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model relu.add(Dense(128, activation='relu', input shape=(input dim,), kernel initializer=RandomNor
mal(mean=0.0, stddev=0.088, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model_relu.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.125,
seed=None)) )
model relu.add(BatchNormalization())
model_relu.add(Dense(32, activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.176,
seed=None)) )
model relu.add(BatchNormalization())
model relu.add(Dense(output dim, activation='softmax'))
print(model relu.summary())
model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model relu.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, valid
ation_data=(X_test, Y_test))
```

Layer (type)	Output	Shape	Param #
dense_155 (Dense)	(None,	512)	401920
batch_normalization_59 (Bat	c (None,	512)	2048
dropout_45 (Dropout)	(None,	512)	0
dense_156 (Dense)	(None,	256)	131328
batch_normalization_60 (Bat	c (None,	256)	1024
dropout_46 (Dropout)	(None,	256)	0
dense_157 (Dense)	(None,	128)	32896
batch_normalization_61 (Bat	c (None,	128)	512
dropout_47 (Dropout)	(None,	128)	0
dense_158 (Dense)	(None,	64)	8256
batch_normalization_62 (Bat	c (None,	64)	256
dense_159 (Dense)	(None,	32)	2080
batch_normalization_63 (Bat	c (None,	32)	128
dense 160 (Dense)	(None,	10)	330

Total params: 580,778

```
Trainable params: 5/8,/94
Non-trainable params: 1,984
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============ ] - 17s 278us/step - loss: 0.4477 - acc: 0.8703 - val 1
oss: 0.1462 - val_acc: 0.9558
Epoch 2/20
60000/60000 [============= ] - 8s 142us/step - loss: 0.1781 - acc: 0.9478 -
val loss: 0.0991 - val acc: 0.9717
Epoch 3/20
60000/60000 [============] - 9s 158us/step - loss: 0.1386 - acc: 0.9588 -
val loss: 0.0854 - val acc: 0.9741
Epoch 4/20
val loss: 0.0748 - val acc: 0.9775
Epoch 5/20
60000/60000 [============ ] - 9s 144us/step - loss: 0.0966 - acc: 0.9700 -
val_loss: 0.0822 - val_acc: 0.9767
Epoch 6/20
60000/60000 [============] - 8s 141us/step - loss: 0.0863 - acc: 0.9734 -
val_loss: 0.0783 - val_acc: 0.9772
Epoch 7/20
60000/60000 [============= ] - 9s 143us/step - loss: 0.0803 - acc: 0.9758 -
val loss: 0.0704 - val acc: 0.9790
Epoch 8/20
60000/60000 [============= ] - 9s 142us/step - loss: 0.0723 - acc: 0.9777 -
val loss: 0.0646 - val acc: 0.9802
Epoch 9/20
60000/60000 [============= ] - 8s 142us/step - loss: 0.0678 - acc: 0.9787 -
val loss: 0.0602 - val acc: 0.9831
Epoch 10/20
60000/60000 [============== ] - 8s 142us/step - loss: 0.0644 - acc: 0.9802 -
val_loss: 0.0638 - val_acc: 0.9814
Epoch 11/20
60000/60000 [============== ] - 9s 143us/step - loss: 0.0583 - acc: 0.9819 -
val loss: 0.0568 - val_acc: 0.9834
Epoch 12/20
60000/60000 [============== ] - 9s 145us/step - loss: 0.0559 - acc: 0.9826 -
val loss: 0.0593 - val acc: 0.9831
Epoch 13/20
60000/60000 [============ ] - 9s 142us/step - loss: 0.0529 - acc: 0.9838 -
val loss: 0.0670 - val acc: 0.9802
Epoch 14/20
60000/60000 [============= ] - 9s 146us/step - loss: 0.0502 - acc: 0.9838 -
val loss: 0.0541 - val acc: 0.9845
Epoch 15/20
60000/60000 [============= ] - 8s 141us/step - loss: 0.0468 - acc: 0.9851 -
val loss: 0.0590 - val acc: 0.9848
Epoch 16/20
60000/60000 [============] - 9s 143us/step - loss: 0.0438 - acc: 0.9863 -
val loss: 0.0633 - val acc: 0.9835
Epoch 17/20
val loss: 0.0622 - val acc: 0.9836
Epoch 18/20
60000/60000 [============] - 9s 142us/step - loss: 0.0423 - acc: 0.9872 -
val loss: 0.0568 - val acc: 0.9834
Epoch 19/20
60000/60000 [============= ] - 9s 143us/step - loss: 0.0396 - acc: 0.9871 -
val loss: 0.0584 - val acc: 0.9849
Epoch 20/20
60000/60000 [============= ] - 9s 142us/step - loss: 0.0387 - acc: 0.9882 -
val loss: 0.0600 - val acc: 0.9832
```

In [132]:

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
# list of epoch numbers
```

```
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation_data=(X_test, Y_test))

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss: validation loss
# val_acc: validation accuracy

# loss: training loss
# acc: train accuracy
# for each key in history.history we will have a list of length equal to number of epochs

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06003061625857372 Test accuracy: 0.9832

In [133]:

```
w_after = model_relu.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2 w = w_after[2].flatten().reshape(-1,1)
out w = w after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py:514: RuntimeWarning: More than 20
```

figures have been opened. Figures created through the pyplot interface
('matplotlib.pyplot.figure') are retained until explicitly closed and may consume too much memory.
(To control this warning, see the rcParam 'figure.max_open_warning').
 max_open_warning, RuntimeWarning)

10. Model 2: MLP + Dropout (0.30)

#layers: 5activation: ReLU

• Weight Initializer: He Normal

• Optimizer: ADAM

In [134]:

```
model_relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=he_normal
()))
model_relu.add(Dropout(0.3))
model_relu.add(Dropout(0.3))
model_relu.add(Dropout(0.3))
model_relu.add(Dense(128, activation='relu', kernel_initializer=he_normal()))
model_relu.add(Dropout(0.3))
model_relu.add(Dense(64, activation='relu', kernel_initializer=he_normal()))
model_relu.add(Dense(64, activation='relu', kernel_initializer=he_normal()))
model_relu.add(Dense(32, activation='relu', kernel_initializer=he_normal()))
model_relu.add(Dense(output_dim, activation='softmax'))

print(model_relu.summary())

model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, valid ation_data=(X_test, Y_test))
```

Layer (type)	Output	Shape	Param #
dense_161 (Dense)	(None,	512)	401920
dropout_48 (Dropout)	(None,	512)	0
dense_162 (Dense)	(None,	256)	131328
dropout_49 (Dropout)	(None,	256)	0
dense_163 (Dense)	(None,	128)	32896
dropout_50 (Dropout)	(None,	128)	0
dense_164 (Dense)	(None,	64)	8256
dense_165 (Dense)	(None,	32)	2080
dense_166 (Dense)	(None,	10)	330

Total params: 576,810 Trainable params: 576,810 Non-trainable params: 0

None

Train on 60000 samples validate on 10000 samples

```
TEATH OH OUTOU SAMPLES, VALUACE OH TOUT SAMPLES
Epoch 1/20
60000/60000 [============== ] - 12s 194us/step - loss: 0.4457 - acc: 0.8628 - val 1
oss: 0.1451 - val acc: 0.9572
Epoch 2/20
val loss: 0.1117 - val acc: 0.9678
Epoch 3/20
60000/60000 [============= ] - 4s 74us/step - loss: 0.1319 - acc: 0.9628 -
val loss: 0.0957 - val acc: 0.9693
Epoch 4/20
val loss: 0.0755 - val acc: 0.9762
Epoch 5/20
60000/60000 [============] - 4s 73us/step - loss: 0.0885 - acc: 0.9738 -
val_loss: 0.0729 - val_acc: 0.9785
Epoch 6/20
60000/60000 [============] - 4s 74us/step - loss: 0.0804 - acc: 0.9756 -
val_loss: 0.0725 - val_acc: 0.9783
Epoch 7/20
60000/60000 [============= ] - 4s 75us/step - loss: 0.0689 - acc: 0.9796 -
val loss: 0.0730 - val acc: 0.9782
Epoch 8/20
60000/60000 [============] - 4s 74us/step - loss: 0.0650 - acc: 0.9807 -
val loss: 0.0749 - val acc: 0.9788
Epoch 9/20
val loss: 0.0718 - val acc: 0.9794
Epoch 10/20
60000/60000 [============= ] - 4s 74us/step - loss: 0.0548 - acc: 0.9834 -
val loss: 0.0708 - val acc: 0.9813
Epoch 11/20
60000/60000 [=============] - 4s 74us/step - loss: 0.0544 - acc: 0.9832 -
val loss: 0.0816 - val acc: 0.9791
Epoch 12/20
val loss: 0.0659 - val acc: 0.9825
Epoch 13/20
val loss: 0.0730 - val acc: 0.9813
Epoch 14/20
60000/60000 [============= ] - 4s 73us/step - loss: 0.0411 - acc: 0.9875 -
val loss: 0.0662 - val acc: 0.9829
Epoch 15/20
60000/60000 [============] - 4s 74us/step - loss: 0.0410 - acc: 0.9877 -
val_loss: 0.0734 - val_acc: 0.9827
Epoch 16/20
60000/60000 [============] - 4s 74us/step - loss: 0.0397 - acc: 0.9886 -
val loss: 0.0705 - val acc: 0.9828
Epoch 17/20
val loss: 0.0742 - val_acc: 0.9814
Epoch 18/20
60000/60000 [============ ] - 4s 74us/step - loss: 0.0390 - acc: 0.9885 -
val loss: 0.0655 - val acc: 0.9829
Epoch 19/20
60000/60000 [============] - 4s 73us/step - loss: 0.0309 - acc: 0.9904 -
val loss: 0.0689 - val acc: 0.9833
Epoch 20/20
60000/60000 [============ ] - 4s 74us/step - loss: 0.0335 - acc: 0.9901 -
val loss: 0.0675 - val acc: 0.9833
In [135]:
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
```

list of epoch numbers
x = list(range(1,nb epoch+1))

print(history.history.keys())

```
# instory = model_drop.fit(x_train, f_train, batch_size=batch_size, epochs=in_epoch, verbose=1, validation_data=(X_test, Y_test))

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in history.history we will have a list of length equal to number of epochs

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06747149933629462 Test accuracy: 0.9833

In [136]:

```
w after = model relu.get weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1 w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer')
plt.show()
```


11. Model 3: MLP + BatchNormalization + Dropout (0.40)

#layers: 5activation: ReLU

• Weight Initializer: RandomNormal

· Optimizer: ADAM

In [137]:

```
model relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNor
mal(mean=0.0, stddev=0.050, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.4))
model relu.add(Dense(256, activation='relu', input shape=(input dim,), kernel initializer=RandomNor
mal(mean=0.0, stddev=0.062, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.4))
model_relu.add(Dense(128, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNor
mal(mean=0.0, stddev=0.088, seed=None)))
model relu.add(BatchNormalization())
model_relu.add(Dropout(0.4))
model relu.add(Dense(64, activation='relu', kernel initializer=RandomNormal(mean=0.0, stddev=0.125,
seed=None)) )
model relu.add(BatchNormalization())
model relu.add(Dense(32, activation='relu', kernel initializer=RandomNormal(mean=0.0, stddev=0.176,
seed=None)) )
model relu.add(BatchNormalization())
model_relu.add(Dense(output_dim, activation='softmax'))
print(model relu.summary())
model relu.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
history = model relu.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, valid
ation_data=(X_test, Y_test))
```

Layer (type)	Output	Shape	Param #
dense_167 (Dense)	(None,	512)	401920
batch_normalization_64 (Ba	atc (None,	512)	2048
dropout_51 (Dropout)	(None,	512)	0
dense_168 (Dense)	(None,	256)	131328
batch_normalization_65 (Ba	atc (None,	256)	1024
dropout_52 (Dropout)	(None,	256)	0
dense_169 (Dense)	(None,	128)	32896
batch_normalization_66 (Ba	atc (None,	128)	512
dropout_53 (Dropout)	(None,	128)	0
dense_170 (Dense)	(None,	64)	8256
batch_normalization_67 (Ba	atc (None,	64)	256
dense_171 (Dense)	(None,	32)	2080
batch_normalization_68 (Ba	atc (None,	32)	128

```
dense 172 (Dense)
                          (None, 10)
                                                 330
Total params: 580,778
Trainable params: 578,794
Non-trainable params: 1,984
None
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============ ] - 17s 291us/step - loss: 0.5734 - acc: 0.8261 - val 1
oss: 0.1564 - val acc: 0.9542
Epoch 2/20
60000/60000 [============== ] - 9s 145us/step - loss: 0.2228 - acc: 0.9344 -
val loss: 0.1220 - val acc: 0.9634
Epoch 3/20
60000/60000 [============ ] - 9s 153us/step - loss: 0.1739 - acc: 0.9496 -
val_loss: 0.1009 - val_acc: 0.9690
Epoch 4/20
60000/60000 [============= ] - 9s 148us/step - loss: 0.1416 - acc: 0.9580 -
val_loss: 0.0903 - val_acc: 0.9737
Epoch 5/20
60000/60000 [==============] - 9s 145us/step - loss: 0.1279 - acc: 0.9622 -
val_loss: 0.0767 - val_acc: 0.9766
Epoch 6/20
60000/60000 [==============] - 9s 145us/step - loss: 0.1174 - acc: 0.9654 -
val loss: 0.0806 - val acc: 0.9762
Epoch 7/20
60000/60000 [============] - 9s 145us/step - loss: 0.1058 - acc: 0.9683 -
val loss: 0.0778 - val acc: 0.9760
Epoch 8/20
60000/60000 [============ ] - 9s 144us/step - loss: 0.0971 - acc: 0.9710 -
val loss: 0.0673 - val acc: 0.9793
Epoch 9/20
60000/60000 [============= ] - 9s 144us/step - loss: 0.0893 - acc: 0.9730 -
val loss: 0.0737 - val acc: 0.9785
Epoch 10/20
60000/60000 [============] - 9s 147us/step - loss: 0.0840 - acc: 0.9748 -
val loss: 0.0634 - val acc: 0.9824
Epoch 11/20
60000/60000 [============= ] - 9s 144us/step - loss: 0.0816 - acc: 0.9757 -
val loss: 0.0611 - val acc: 0.9824
Epoch 12/20
60000/60000 [=============] - 9s 145us/step - loss: 0.0751 - acc: 0.9776 -
val loss: 0.0667 - val acc: 0.9811
Epoch 13/20
60000/60000 [============ ] - 9s 147us/step - loss: 0.0715 - acc: 0.9783 -
val loss: 0.0640 - val acc: 0.9810
Epoch 14/20
60000/60000 [============= ] - 9s 143us/step - loss: 0.0658 - acc: 0.9798 -
val_loss: 0.0632 - val_acc: 0.9824
Epoch 15/20
60000/60000 [==============] - 9s 150us/step - loss: 0.0665 - acc: 0.9799 -
val_loss: 0.0613 - val_acc: 0.9835
Epoch 16/20
60000/60000 [==============] - 9s 145us/step - loss: 0.0623 - acc: 0.9809 -
val loss: 0.0619 - val acc: 0.9819
Epoch 17/20
60000/60000 [==============] - 9s 145us/step - loss: 0.0597 - acc: 0.9822 -
val loss: 0.0571 - val_acc: 0.9836
Epoch 18/20
60000/60000 [============] - 9s 144us/step - loss: 0.0577 - acc: 0.9822 -
val loss: 0.0557 - val acc: 0.9836
Epoch 19/20
60000/60000 [============= ] - 9s 145us/step - loss: 0.0558 - acc: 0.9826 -
val loss: 0.0590 - val acc: 0.9833
Epoch 20/20
60000/60000 [============== ] - 9s 143us/step - loss: 0.0522 - acc: 0.9837 -
val loss: 0.0556 - val acc: 0.9836
```

In [138]:

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(l,l)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation_data=(X_test, Y_test))
# we will get val loss and val acc only when you pass the paramter validation data
# val_loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.055616749329864976 Test accuracy: 0.9836

/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py:514: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

max_open_warning, RuntimeWarning)

In [139]:

```
w after = model relu.get weights()
h1 w = w after[0].flatten().reshape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out w = w after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2 w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
```

```
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


12. Model 4: MLP + BatchNormalization + Dropout (0.30)

• #layers: 5

· activation: sigmoid

· Weight Initializer: RandomNormal

• Optimizer: ADAM

In [140]:

```
model_relu = Sequential()
model_relu.add(Dense(512, activation='sigmoid', input_shape=(input_dim,), kernel initializer=Random
Normal(mean=0.0, stddev=0.039, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model relu.add(Dense(256, activation='sigmoid', kernel initializer=RandomNormal(mean=0.0, stddev=0.
051, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model relu.add(Dense(128, activation='sigmoid', kernel initializer=RandomNormal(mean=0.0, stddev=0.
072, seed=None)))
model_relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model relu.add(Dense(64, activation='sigmoid', kernel initializer=RandomNormal(mean=0.0, stddev=0.1
02, seed=None))))
model relu.add(BatchNormalization())
model_relu.add(Dense(32, activation='sigmoid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.1
44, seed=None)) )
model relu.add(BatchNormalization())
model_relu.add(Dense(output_dim, activation='softmax'))
print(model relu.summary())
model relu.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, valid
ation data=(X test, Y test))
```

Layer (type)	Output Shape	Param #
dense_173 (Dense)	(None, 512)	401920
batch_normalization_69 (Ba	tc (None, 512)	2048
dropout_54 (Dropout)	(None, 512)	0
dense_174 (Dense)	(None, 256)	131328
batch_normalization_70 (Ba	tc (None, 256)	1024
dropout 55 (Dropout)	(None 256)	Λ

```
aropout oo (propout)
                        (110110, 200)
dense 175 (Dense)
                        (None, 128)
                                              32896
batch_normalization_71 (Batc (None, 128)
                                              512
                        (None, 128)
dropout 56 (Dropout)
dense 176 (Dense)
                        (None, 64)
                                              8256
batch normalization 72 (Batc (None, 64)
                                              256
dense 177 (Dense)
                                              2080
                        (None, 32)
batch normalization 73 (Batc (None, 32)
                                              128
dense 178 (Dense)
                        (None, 10)
                                              330
______
Total params: 580,778
Trainable params: 578,794
Non-trainable params: 1,984
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [==============] - 18s 303us/step - loss: 0.4027 - acc: 0.8826 - val 1
oss: 0.2217 - val acc: 0.9337
Epoch 2/20
60000/60000 [============ ] - 9s 147us/step - loss: 0.2438 - acc: 0.9262 -
val loss: 0.1567 - val_acc: 0.9532
Epoch 3/20
60000/60000 [============== ] - 9s 147us/step - loss: 0.1918 - acc: 0.9430 -
val_loss: 0.1241 - val_acc: 0.9624
Epoch 4/20
val loss: 0.1181 - val acc: 0.9643
Epoch 5/20
60000/60000 [==============] - 9s 146us/step - loss: 0.1455 - acc: 0.9564 -
val loss: 0.1064 - val acc: 0.9688
Epoch 6/20
60000/60000 [============] - 9s 147us/step - loss: 0.1307 - acc: 0.9600 -
val loss: 0.0982 - val acc: 0.9722
Epoch 7/20
60000/60000 [============] - 9s 147us/step - loss: 0.1157 - acc: 0.9651 -
val loss: 0.0866 - val acc: 0.9719
Epoch 8/20
60000/60000 [============] - 9s 147us/step - loss: 0.1076 - acc: 0.9669 -
val_loss: 0.0824 - val_acc: 0.9745
Epoch 9/20
60000/60000 [============= ] - 9s 146us/step - loss: 0.0948 - acc: 0.9706 -
val loss: 0.0808 - val acc: 0.9747
Epoch 10/20
60000/60000 [============= ] - 9s 148us/step - loss: 0.0923 - acc: 0.9713 -
val loss: 0.0797 - val acc: 0.9771
Epoch 11/20
60000/60000 [============= ] - 9s 146us/step - loss: 0.0816 - acc: 0.9751 -
val loss: 0.0727 - val_acc: 0.9778
Epoch 12/20
60000/60000 [=============] - 9s 147us/step - loss: 0.0795 - acc: 0.9761 -
val loss: 0.0691 - val acc: 0.9799
Epoch 13/20
60000/60000 [============== ] - 9s 147us/step - loss: 0.0761 - acc: 0.9766 -
val_loss: 0.0670 - val_acc: 0.9799
Epoch 14/20
val loss: 0.0659 - val acc: 0.9800
Epoch 15/20
60000/60000 [============= ] - 9s 147us/step - loss: 0.0652 - acc: 0.9793 -
val loss: 0.0674 - val acc: 0.9807
Epoch 16/20
60000/60000 [============= ] - 10s 161us/step - loss: 0.0631 - acc: 0.9801 - val 1
oss: 0.0662 - val acc: 0.9812
Epoch 17/20
60000/60000 [=============] - 9s 147us/step - loss: 0.0575 - acc: 0.9820 -
val loss: 0.0635 - val acc: 0.9819
Epoch 18/20
60000/60000 [============= ] - 9s 147us/step - loss: 0.0574 - acc: 0.9819 -
```

1721 1000 · 0 06/3 - 1721 200 · 0 0805

In [141]:

```
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model drop.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val_loss and val_acc only when you pass the paramter validation_data
# val loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06166264152140356 Test accuracy: 0.982

/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py:514: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

max_open_warning, RuntimeWarning)

In [142]:

```
w_after = model_relu.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)
```

```
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


13. Model 5: MLP + BatchNormalization + Dropout (0.30)

• #layers: 5

• activation: sigmoid

· Weight Initializer: RandomNormal

· Optimizer: adadelta

In [143]:

```
model relu = Sequential()
model relu.add(Dense(512, activation='sigmoid', input shape=(input dim,), kernel initializer=Random
Normal(mean=0.0, stddev=0.039, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model relu.add(Dense(256, activation='sigmoid', kernel initializer=RandomNormal(mean=0.0, stddev=0.
051, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model relu.add(Dense(128, activation='sigmoid', kernel initializer=RandomNormal(mean=0.0, stddev=0.
072, seed=None)))
model relu.add(BatchNormalization())
model relu.add(Dropout(0.3))
model_relu.add(Dense(64, activation='sigmoid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.1
02, seed=None)) )
model relu.add(BatchNormalization())
model_relu.add(Dense(32, activation='sigmoid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.1
44, seed=None)) )
model relu.add(BatchNormalization())
model relu.add(Dense(output dim, activation='softmax'))
print(model relu.summary())
model relu.compile(optimizer='adadelta', loss='categorical crossentropy', metrics=['accuracy'])
history = model relu.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, valid
ation_data=(X_test, Y_test))
```

Eayer Cycene Cycne, 512 40120				
batch normalization 74 (Fate (None, 512) 2048 dropout 57 (Drogout) (None, 512) 0 dense_180 (Dense) (None, 256) 1024 dropout 57 (Drogout) (None, 256) 1024 dropout 58 (Drogout) (None, 256) 0 dense_181 (Dense) (None, 128) 32896 batch normalization 76 (Fate (None, 128) 512 dropout 59 (Drogout) (None, 128) 512 dropout 59 (Drogout) (None, 64) 526 batch normalization 77 (Rate (None, 64) 256 dense_182 (Dense) (None, 64) 256 dense_183 (Dense) (None, 32) 2080 batch_normalization_77 (Rate (None, 32) 128 dense_184 (Dense) (None, 32) 3330 Total parents 580,778 Trainable parents: 1,984 None Train on 60000 somples, validate on 10000 somples Froch 1/20 60000/60000 (-	-	
dense 100 (Dense)	dense_179 (Dense)	(None,	512)	401920
Semen_180 (Dense) None, 256) 131328	batch_normalization_74 (Batc	(None,	512)	2048
### Action normalization 75 (Batc (Mone, 256)	dropout_57 (Dropout)	(None,	512)	0
dropout_58 (Dropout) (Mone, 258) 0 dense_B81 (Dense) (Mone, 128) 32896 batch_normalization_76 (Natc (None, 128) 512 dropout_59 (Dropout) (Mone, 128) 0 dense_B82 (Dense) (Mone, 64) 8256 batch_normalization_77 (Natc (Mone, 64) 256 dense_B83 (Mense) (Mone, 32) 2080 batch_normalization_78 (Satc (Mone, 32) 128 dense_B84 (Mense) (Mone, 10) 330 Total params: S80,778 Trainable params: S80,778 Trainable params: 1,984 None Trai	dense_180 (Dense)	(None,	256)	131328
dense_181 (Dense) (None, 128) 32896 batch_normalization_76 (Batc (None, 128) 512 dropout_59 (Dropout) (None, 64) 3256 batch_normalization_77 (Batc (None, 64) 256 dense_182 (Dense) (None, 64) 256 dense_183 (Dense) (None, 32) 2080 batch_normalization_78 (Batc (None, 32) 128 dense_184 (Dense) (None, 10) 330 Total parame: 580,778 Trainable_parame: 588,794 Non-trainable_parame: 1,984 None Total parame: 588,794 Non-trainable_parame: 1,984 None Total parame: 580,778 Trainable_parame: 588,794 Non-trainable_parame: 1,984 None 10000/60000 [=================================	batch_normalization_75 (Batc	(None,	256)	1024
Datch_normalization_76 (Nate (None, 128) 512	dropout_58 (Dropout)	(None,	256)	0
dense_182 (Dense)	dense_181 (Dense)	(None,	128)	32896
Description (None, 64) 8256 Description (None, 64) 256 Description (None, 64) 256 Description (None, 10) 2080 Description (None, 10) 330 Total params: 580,778 Trainable params: 578,794 Non-trainable params: 1,984 None Train on 50000 samples, validate on 10000 samples Froch 1/20 Signification (Source of Source of S	batch_normalization_76 (Batc	(None,	128)	512
Datch_normalization_77 (Batc (None, 64)	dropout_59 (Dropout)	(None,	128)	0
Description Content Description Desc	dense_182 (Dense)	(None,	64)	8256
Description	batch_normalization_77 (Batc	(None,	64)	256
Continue	dense_183 (Dense)	(None,	32)	2080
Total params: 580,778 Trainable params: 578,794 Non-trainable params: 1,984 None Train on 60000 samples, validate on 10000 samples Epoch 1/20 60000/60000 [batch_normalization_78 (Batc	(None,	32)	128
Total params: 580,778 Trainable params: 578,794 Non-trainable params: 1,984 None Train on 60000 samples, validate on 10000 samples Epoch 1/20 60000/600000 [================================	_			
Train on 60000 samples, validate on 10000 samples Epoch 1/20 60000/60000 [Total params: 580,778 Trainable params: 578,794			
val_loss: 0.1451 - val_acc: 0.9578 Epoch 4/20 60000/60000 [=================================	60000/60000 [=================================	7		
Val_loss: 0.1324 - val_acc: 0.9632 Epoch 5/20 60000/60000 [=================================	<pre>val_loss: 0.1451 - val_acc: Epoch 4/20</pre>	0.9578		
<pre>val_loss: 0.1179 - val_acc: 0.9650 Epoch 6/20 60000/60000 [=================================</pre>	<pre>val_loss: 0.1324 - val_acc: Epoch 5/20</pre>	0.9632		
Epoch 7/20 60000/60000 [=================================	<pre>val_loss: 0.1179 - val_acc: Epoch 6/20 60000/60000 [=================================</pre>	0.9650		
60000/60000 [=================================	Epoch 7/20 60000/60000 [=================================		=====] ·	- 9s 154us/step - loss: 0.1299 - acc: 0.9610 -
<pre>val_loss: 0.0883 - val_acc: 0.9744 Epoch 10/20 60000/60000 [=================================</pre>	60000/60000 [=================================	0.9732		
<pre>val_loss: 0.0860 - val_acc: 0.9748 Epoch 11/20 60000/60000 [=================================</pre>	<pre>val_loss: 0.0883 - val_acc: Epoch 10/20</pre>	0.9744		
Epoch 12/20 60000/60000 [=================================	<pre>val_loss: 0.0860 - val_acc: Epoch 11/20</pre>	0.9748		
Epoch 13/20 60000/60000 [=================================	Epoch 12/20 60000/60000 [======		=====] -	- 9s 153us/step - loss: 0.0948 - acc: 0.9703 -
	Epoch 13/20 60000/60000 [======	======	=====]	- 9s 155us/step - loss: 0.0896 - acc: 0.9730 -

```
Epoch 14/20
60000/60000 [============] - 9s 156us/step - loss: 0.0857 - acc: 0.9733 -
val loss: 0.0798 - val acc: 0.9774
Epoch 15/20
60000/60000 [=============] - 9s 155us/step - loss: 0.0828 - acc: 0.9744 -
val loss: 0.0741 - val acc: 0.9786
Epoch 16/20
val loss: 0.0696 - val acc: 0.9793
Epoch 17/20
60000/60000 [============] - 9s 156us/step - loss: 0.0752 - acc: 0.9759 -
val loss: 0.0695 - val acc: 0.9803
Epoch 18/20
60000/60000 [============ ] - 9s 154us/step - loss: 0.0721 - acc: 0.9767 -
val loss: 0.0684 - val acc: 0.9796
Epoch 19/20
val loss: 0.0729 - val acc: 0.9788
Epoch 20/20
60000/60000 [============= ] - 9s 155us/step - loss: 0.0675 - acc: 0.9789 -
val loss: 0.0698 - val acc: 0.9804
```

- _----

In [144]:

```
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val loss and val acc only when you pass the paramter validation data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06982594733461737 Test accuracy: 0.9804

/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py:514: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

max_open_warning, RuntimeWarning)


```
0.10
0.05
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epoch
```

In [145]:

```
w after = model relu.get weights()
h1 w = w after[0].flatten().reshape(-1,1)
h2 w = w after[2].flatten().reshape(-1,1)
out w = w after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


14. Model 6: MLP + BatchNormalization + Dropout (0.30)

#layers: 5

activation: tanh

• Weight Initializer: glorot_normal

· Optimizer: ADAM

In [146]:

```
model_relu = Sequential()
model_relu.add(Dense(512, activation='tanh', input_shape=(input_dim,), kernel_initializer=glorot_no
rmal()))
model_relu.add(BatchNormalization())
model_relu.add(Dropout(0.3))
model_relu.add(Dense(256, activation='tanh', kernel_initializer=glorot_normal()))
model_relu.add(BatchNormalization())
model_relu.add(Dropout(0.3))
model_relu.add(Dense(128, activation='tanh', kernel_initializer=glorot_normal()))
model_relu.add(BatchNormalization())
model_relu.add(Dropout(0.3))
model_relu.add(Dropout(0.3))
model_relu.add(Dense(64, activation='tanh', kernel_initializer=glorot_normal()))
model_relu.add(Dense(64, activation='tanh', kernel_initializer=glorot_normal()))
model_relu.add(BatchNormalization())
```

```
model_relu.add(Dense(32, activation='tanh', kernel_initializer=glorot_normal()))
model_relu.add(BatchNormalization())
model_relu.add(Dense(output_dim, activation='softmax'))

print(model_relu.summary())

model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, valid ation_data=(X_test, Y_test))
```

Layer (type)	Output	-	Param #	_	
dense_185 (Dense)	(None,		401920	=	
batch_normalization_79 (Batc	(None,	512)	2048	_	
dropout_60 (Dropout)	(None,	512)	0	_	
dense_186 (Dense)	(None,	256)	131328	_	
batch_normalization_80 (Batc	(None,	256)	1024	_	
dropout_61 (Dropout)	(None,	256)	0	_	
dense_187 (Dense)	(None,	128)	32896	_	
batch_normalization_81 (Batc	(None,	128)	512	_	
dropout_62 (Dropout)	(None,	128)	0	_	
dense_188 (Dense)	(None,	64)	8256	_	
batch_normalization_82 (Batc	(None,	64)	256	_	
dense_189 (Dense)	(None,	32)	2080	_	
batch_normalization_83 (Batc	(None,	32)	128	_	
dense_190 (Dense)	(None,		330	_	
None Train on 60000 samples, vali Epoch 1/20 60000/60000 [=================================			-	- loss: 0.4344 - acc	c: 0.8725 - val_l
Epoch 2/20 60000/60000 [=======		======]	- 9s 145us/step - 10	oss: 0.2380 - acc:	0.9296 -
<pre>val_loss: 0.1496 - val_acc: Epoch 3/20</pre>	0.9580				
60000/60000 [=================================	0.9636		-		
60000/60000 [=================================	0.9712				
60000/60000 [=================================	0.9722		-		
60000/60000 [=================================	0.9740		-		
60000/60000 [=================================	0.9737		-		
60000/60000 [=================================	0.9763		-		
60000/60000 [=========		=====]	- 95 140uS/Step - 10	JSS: U.U9UU - acc:	0.9/34 -

val_loss: 0.0769 - val_acc: 0.9776

Epoch 10/20

```
60000/60000 [=============] - 9s 146us/step - loss: 0.0818 - acc: 0.9751 -
val loss: 0.0716 - val acc: 0.9796
Epoch 11/20
60000/60000 [===========] - 9s 147us/step - loss: 0.0744 - acc: 0.9770 -
val loss: 0.0713 - val acc: 0.9801
Epoch 12/20
60000/60000 [===========] - 9s 147us/step - loss: 0.0755 - acc: 0.9772 -
val loss: 0.0691 - val acc: 0.9818
Epoch 13/20
60000/60000 [============= ] - 9s 146us/step - loss: 0.0677 - acc: 0.9797 -
val loss: 0.0741 - val acc: 0.9814
Epoch 14/20
60000/60000 [============== ] - 9s 148us/step - loss: 0.0613 - acc: 0.9815 -
val_loss: 0.0655 - val_acc: 0.9832
Epoch 15/20
60000/60000 [============== ] - 9s 147us/step - loss: 0.0602 - acc: 0.9821 -
val loss: 0.0731 - val acc: 0.9819
Epoch 16/20
60000/60000 [============= ] - 9s 146us/step - loss: 0.0596 - acc: 0.9817 -
val loss: 0.0713 - val acc: 0.9821
Epoch 17/20
60000/60000 [=============] - 9s 149us/step - loss: 0.0548 - acc: 0.9834 -
val loss: 0.0730 - val acc: 0.9814
Epoch 18/20
60000/60000 [============= ] - 9s 148us/step - loss: 0.0562 - acc: 0.9825 -
val loss: 0.0634 - val acc: 0.9829
Epoch 19/20
60000/60000 [============] - 9s 148us/step - loss: 0.0508 - acc: 0.9847 -
val loss: 0.0717 - val acc: 0.9822
Epoch 20/20
val loss: 0.0628 - val acc: 0.9843
```

In [147]:

```
score = model relu.evaluate(X test, Y test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
fig.ax = plt.subplots(1.1)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, va
lidation data=(X test, Y test))
# we will get val loss and val acc only when you pass the paramter validation data
# val_loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
vy = history.history['val loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06275533262640237 Test accuracy: 0.9843

/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py:514: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

max_open_warning, RuntimeWarning)

In [148]:

```
w after = model relu.get weights()
h1 w = w after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out w = w after[4].flatten().reshape(-1,1)
fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2 w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


Feedback Conclusion:

- I have used Kaggle platform to do this assignment as I found that kaggle is much much faster than Google colab.
- I have trained MLP Models with 2, 3 and 5 layers.
- I have used RandomNormal, He Normal and Glorot Normal weight initialization.
- I have used ReLU, sigmoid and tanh activation function.
- I have used AdaDelta and ADAM as optimizer.
- ADAM is faster than AdaDelta.
- I have also used BatchNormalization and Dropout.

```
In [149]:
table = PrettyTable()
table.field names = ['Model #', 'Batch Normalization', 'Dropout + Value', 'Activation', 'Initialize
r', 'Optimizer', 'Accuracy']
r', 'Optimizer', 'Accuracy']
table.add_row([1, "Yes", "Yes, 0.3", "ReLU", "RandomNormal", "ADAM", 0.9832])
table.add_row([2, "No", "Yes, 0.3", "ReLU", "He Normal", "ADAM", 0.9833])
table.add_row([3, "Yes", "Yes, 0.4", "ReLU", "RandomNormal", "ADAM", 0.9836])
table.add_row([4, "Yes", "Yes, 0.3", "sigmoid", "RandomNormal", "ADAM", 0.9820])
table.add_row([5, "Yes", "Yes, 0.3", "sigmoid", "RandomNormal", "AdaDelta", 0.9804])
table.add_row([6, "Yes", "Yes, 0.3", "tanh", "Glorot Normal", "ADAM", 0.9848])
print(table)
+-----
| Model # | Batch Normalization | Dropout + Value | Activation | Initializer | Optimizer |
Accuracy |
              1 |
                                          Yes, 0.3 | ReLU
                                                                      | RandomNormal | ADAM | 0.983
                      Yes
                                  Yes, 0.3 | ReLU | He Normal | ADAM | 0.983
                      No
                                  Yes, 0.4 | ReLU | RandomNormal | ADAM | 0.983
                      Yes
                                         Yes, 0.3 | sigmoid | RandomNormal | ADAM | 0.982
     4
           - 1
                      Yes
                                    Yes, 0.3 | sigmoid | RandomNormal | AdaDelta | 0.980
                      Yes
                                    Yes
                                          Yes, 0.3 | tanh | Glorot Normal | ADAM | 0.984
```

____+

)

4