An Introduction to the R Package Agrmt

Didier Ruedin University of Neuchâtel didier.ruedin@wolfson.oxon.org

January 24, 2013

1 Overview

This package calculates agreement in ordered rating scales. It implements Cees van der Eijk's [2001] measure of agreement "A", which can be used to describe agreement, consensus, or polarization among respondents.

2 Getting Data In

The functions in this package use what I refer to as frequency vectors. A frequency vector describes the number of observations in a given category. For example, the vector [10,20,30,15,4] describes 10 observations with position 1, 20 observations with position 2, 30 observations with position 3, 15 observations with position 4, and 4 observations with position 5. At least three categories are required to calculate agreement.

There are many ways to create frequency vectors, including the table function in R. Your data may already come in the form of a frequency vector. The package provides a helper function collapse to cater with empty cells. Consider a very simple case to illustrate the difference:

```
> library(agrmt)
> x <- c(1,1,3) # these are our data
> # 2 observations with position 1,
> # 1 observation with position 3
> table(x)

x
1 3
2 1
> collapse(x)

[1] 2 1
```

> collapse(x, pos=1:3) # now we specify which categories exist

[1] 2 0 1

Using table we simply get a summary of the positions and number of observations at these positions. The helper function collapse lets us specify which categories actually exist. In this example, we specify that these are observations on a variable with 3 categories: 1, 2, and 3. The fact that there are *no* observations at position 2 is important information when calculating agreement.

3 Agreement

3.1 Concept

Ordered rating scales are a common format in surveys, and often we are interested in the extent to which responses are in agreement (whether there is consensus, whether there is concentration among the responses). Standard deviations are in this case an inappropriate measure. Van der Eijk's measure of agreement A dis-aggregates frequency distributions into component parts called layers. At the level of these layers, agreement can easily be determined, and the measure of agreement provides the weighted average.

We can use the example provided by van der Eijk (p.331) to illustrate the use of layers.

Position on rating scale 1 2 3 4 5 6 7 Observed frequencies 30 40 210 130 530 50 10

The observed frequencies (30, 40, 210, 130, 530, 50, 10) constitute a frequency vector. The measure of agreement divides this into layers, starting with the lowest observed frequencies. The level of agreement for this layer is calculated, and weighted by the number of observations in this layer. This is repeated for all layers, using any additional observations, until we reach the highest observed frequencies. We begin with the cell with the lowest frequencies, in this case position 7 with 10 observations. This means that for the first layer, there are 10 observations for each position. This gives a level of agreement of 0 for this level. The weight of the level is the number of observations in this layer (70; that is 7 [positions] times 10 [observations]) divided by the total number of observations (1000). For the second layer, we have already used all 10 observations for position 7, so a 0 will be added. The second lowest frequency is the 20 left for position 1 (30 original observations minus 10 in level 1). The level of agreement for the second layer is 0.17, with a weight of 0.12.

We continue this way until all observations are used:

The frequency vector is visible in the bottom row ('total'). To calculate the level of agreement of each layer, the pattern of this layer is considered. A pattern consists of 0 and 1. A 1 denotes any value other than 1 in the layer. For instance,

	1	2	3	4	5	6	7	Layer	Pattern	Weight
Layer 1	10	10	10	10	10	10	10	0	1111111	0.07
Layer 2	20	20	20	20	20	20	0	0.167	1111110	0.12
Layer 3	0	10	10	10	10	10	0	0.333	0111110	0.05
Layer 4	0	0	10	10	80	10	0	0.5	0011110	0.04
Layer 5	0	0	80	80	80	0	0	0.667	0011100	0.24
Layer 6	0	0	80	0	80	0	0	0.467	0010100	0.16
Layer 7	0	0	0	0	320	0	0	1	0000100	0.32
Total	30	40	210	130	530	50	10			

in layer 2, all 20 are replaced with 1 to give the pattern; in layer 6 all the 80 are replaced with 1 to give the pattern.

Using the weighted average, we get a level of agreement of 0.61 in this example. The outlined procedure can be applied to any ordered frequency distribution.

3.2 Interpretation of Agreement Scores

Levels of agreement range from -1 to 1. There are three ideal-typical positions that help interpretation of the scores. If all respondents agree on the category (position), agreement is 1. This is illustrated in the top-left corner of the figure. If the respondents are evenly spread, and each category has the same number of responses, agreement is 0. This is illustrate on the top right of the figure. If respondents are divided, and half the responses are in one category, and the other half are in a different, non-neighbouring category, agreement is -1. This is show on the bottom left of the figure. The following figure also includes an example between these ideal types (bottom right). Agreement is only defined if there are at least three response categories, and it does not tell you which of the categories is the most common one. For this reason, it is advisable to look at an appropriate measure of central tendency, such as the interpolated median.

Agreement

No Agreement

Agreement = 0

Polarization

Agreement = 0.08

3.3 Calculating Agreement

To calculate agreement, we simply call agreement with the frequency vector as the argument. There is normally *no reason* to use the old algorithm, which can be set using old=TRUE.

Let us illustrate this using the data from above.

> x <- c(30, 40, 210, 130, 530, 50, 10) # these are our data > agreement(x)

[1] 0.6113333

Here are two additional examples, using data from van der Ejik's article. Van der Eijk gives the example of respondents placing political parties on a 7-point rating scale.

```
Position
             1
                     2
                             3
                                     4
                                              5
                                                       6
                                                                7
PvdA
           2.4\%
                   2.8\%
                           3.2\%
                                   6.2\%
                                           13.5\%
                                                     30.4\%
                                                              41.6\%
D66
           1.6\%
                   2.6\%
                           8.2\%
                                    21\%
                                           29.3%
                                                      27%
                                                              10.3%
```

To calculate the level of agreement for these two frequency distribution, we can simply type agreement(c(2.4,2.8,3.2,6.2,13.5,30.4,41.6)) for the PvdA, and agreement(c(1.6,2.6,8.2,21,29.3,27,10.3)) for the D66. This gives us levels of agreement of 0.61 for the PvdA, and 0.48 for the D66.

```
> agreement(c(2.4,2.8,3.2,6.2,13.5,30.4,41.6)) # PvdA
[1] 0.6097236
> agreement(c(1.6,2.6,8.2,21,29.3,27,10.3)) # D66
[1] 0.4823333
```

When using survey data (or other similarly structured data), it is easy to call agreement together with the helper function and a variable name (e.g. var99): agreement(collapse(var99, pos=0:7)). Subscripting works as expected: agreement(collapse(var99[country=="UK"], pos=0:7)), so sapply plays nicely.

3.4 Calculating Polarization

The agreement scores are suitable to express polarization, but the numbers are not intuitive to interpret. The function polarization offers easily interpretable values by re-scaling agreement A. More precisely, it gives (1 - agreement)/2. This means that a polarization value of 1 means perfect polarization (bottom-left corner of the figure above), and a value of 0 means perfect agreement. A value of 0.5 corresponds to the 'no agreement' in the above graph.

Usage is equivalent to agreement. In the first example, we specify the entire data, use the collapse helper function to determine the frequency vector (note: there are no observations at position 6, even though this position is permitted), and calculate polarization values.

```
> polarization(collapse(c(1,2,4,2,5,2,7,7,3,1,2,1,3,2,4,
+ 1,5,2,3,2,4,2,3,1,1,3), pos=1:7))
[1] 0.3038462
   Or to continue using the Dutch parties:
> polarization(c(2.4,2.8,3.2,6.2,13.5,30.4,41.6)) # PvdA
[1] 0.1951382
> polarization(c(1.6,2.6,8.2,21,29.3,27,10.3)) # D66
[1] 0.2588333
```

In a typical setting, we would probably use a variable name from a data set (e.g. POSITION): polarization(collapse(POSITION, pos=0:5)).

4 AJUS

The package includes a few additional functions for frequency vectors. The AJUS classification of distributions is one: Galtung [1969] introduced a system to classify distributions according to shape. This is a means to reduce complexity. For full details refer to Galtung's book on social research.

ajus(distribution) gives you the shape or type of the distribution, as well as whether there is a skew. I have added two new types F and L to complement the ones identified by Galtung. The skew is given as -1 for a negative skew, 0 for absence of skew, or +1 for a positive skew.

You can choose whether to use a strict AJUS system following Galtung, or use the modified AJUSFL system that includes the L and F types. The default is the modified variant. The modified system draws a distinction between J and L distributions, depending on whether they increase or decrease: J types have a peak on the right, L types have the peak on the left. The strict AJUS system has no F type and returns NA instead.

- A: unimodal distribution, peak in the middle
- J: unimodal, peak at either end (strict) or peak on right (modified)
- L: unimodal, peak on left (modified only)
- U: bimodal, peak at both ends
- S: bimodal or multi-modal, multiple peaks
- F: flat, no peak (modified only)

Galtung developed the AJUS system for a somewhat systematic classification of distributions, but not for the use on computers. The advantage of using a function on the computer is twofold. On the one hand, we can easily apply the AJUS system to many distributions, sapply may be your friend there. On the other hand, the tolerance used in the AJUS system is applied in a systematic manner. When using human judgement on whether two values are 'roughly the same' or different, a really systematic approach cannot guaranteed. In the AJUS function, you can specify the argument tolerance to change the tolerance. The AJUS function ignores all differences equal to or smaller than the tolerance parameter. The package default is 0.1, possibly useful when working with values between 0 and 1, in which case it corresponds to 10 per cent. The tolerance parameter is not a trivial choice, and it can affect results.

```
> # Example 1: different types of distributions
> V1 <- c(0,1,0)  # A
> ajus(V1)

$type
[1] "A"
```

```
$skew
[1] 0
$pattern
[1] 1 -1
> V2 <- c(0,0,1)
                 # J
> ajus(V2)
$type
[1] "J"
$skew
[1] 1
pattern
[1] 0 1
> V3 <- c(1,0,1)
                 # U
> ajus(V3)
$type
[1] "U"
$skew
[1] 0
$pattern
[1] -1 1
> V4 <- c(1,0,1,0) # S
> ajus(V4)
$type
[1] "S"
$skew
[1] 0
$pattern
[1] -1 1 -1
> V5 <- c(0,0,0)
                 # F
> ajus(V5)
$type
```

[1] "F"

```
$skew
[1] 0
$pattern
[1] 0 0
> V6 <- c(1,0,0)
                      # L
> ajus(V6)
$type
[1] "L"
$skew
[1] -1
$pattern
[1] -1 0
> ajus(V6, variant="strict") # gives J
$type
[1] "J"
$skew
[1] -1
$pattern
[1] -1 0
```

Additional functions are provided to use the AJUS system: ajusCheck takes a vector of tolerance values to test the sensitivity of the classification to the tolerance parameter; ajusPlot plots the distribution along with its type and skew. The latter function can deal with missing values, such as when using time series data with missing values.

```
> # Example 2: varying tolerance to check sensitivity
> V7 <- c(0,0,1,2,1)
> ajus(V7, tolerance=0.5)

$type
[1] "A"

$skew
[1] 1

$pattern
[1] 0 1 1-1
```

```
> ajus(V7, tolerance=1)

$type
[1] "F"

$skew
[1] 1

$pattern
[1] 0 0 0 0

> ajusCheck(V7, t=c(0.1, 0.5, 0.6, 1))

$tolerance
[1] 0.1 0.5 0.6 1.0

$type
[1] "A" "A" "A" "F"

$skew
[1] 1 1 1 1

> # Example 3: plotting AJUS
> ajusPlot(V7)
```


5 ISD

The ISD system by Galtung [1969] is another way to reduce complexity, this time for changes over time. The ISD takes a vector with three time points. These three points describe two periods during which changes may occur (that is two transition points). isd(distribution) gives you a type (i.e the number) and a description of the type (i.e. the description in words).

- Type 1: increase in both periods
- Type 2: increase in first period, flat in second period
- Type 3: increase in first period, decrease in second period
- Type 4: flat in first period, increase in second period
- Type 5: flat in both periods
- Type 6: flat in first period, decrease in second period
- Type 7: decrease in first period, increase in second period
- Type 8: decrease in first period, flat in second period
- Type 9: decrease in both periods

The tolerance parameter works like described in the previous section on AJUS.

6 (Multiple) Modes

The function modes tells you at which position the mode is. This can be used, for instance, in conjunction with the agreement function to identify at which point agreement is reached (not only that). The function accepts frequency distributions where multiple positions are the most common ones, which can happen in ordered rating scales. The function secondModes additionally gives you the value and position(s) of the second most common value. In addition to the mode and the positions, the functions also indicate whether these values are contiguous (i.e. in neighbouring response categories).

A tolerance parameter is used to ignore small differences. See the section on AJUS above for details.

Let us look at made-up examples to illustrate the function. The output first shows the categories at which observations occur; use the parameter pos to specify the values. If there are categories with 0 observations, these need to be indicated in the frequency vector accordingly (you might want to use the helper function collapse. If the length of the pos argument does not match the length of the frequency vector, a warning is shown and the pos argument is discarded. Second, it shows the number of observations at each position. This is the frequency vector. The mode is identified, and the position at which it occurs. If there are multiple positions where the mode occurs, these are all listed. Finally, it is stated whether the modes are contiguous (true/false). This factor is interesting if there are multiple modes – if they are not contiguous, this can be understood as polarization; with a single mode it is always 'contiguous'.

In the first example, we look at a simple frequency vector. No categories are specified (pos argument not declared), so the categories are assumed to be 1:7 in this case.

```
> # Example 1: finding the mode
> V1 <- c(30,40,210,130,530,50,10)
> modes(V1) # will find position 5
$at
[1] 1 2 3 4 5 6 7
$frequencies
[1] 30 40 210 130 530 50 10
$mode
[1] 5
$positions
[1] 5
$contiguous
[1] TRUE
  Here is a shorter frequency vector, again without specifying the categories –
1 to 4 are assumed.
> # Example 2:
> V2 <- c(3,0,4,1)
> modes(V2) # will find position 3
$at
[1] 1 2 3 4
$frequencies
[1] 3 0 4 1
$mode
[1] 3
$positions
[1] 3
$contiguous
[1] TRUE
```

This example illustrates the pos argument. The frequency vector from the previous example is reused, but it is specified that the categories refer to values of [-1, 0, 1, 2]. The mode identified reflects this change, while the position is unchanged (since the same frequency vector is used).

```
> # Example 3: providing categories > modes(V2,pos=-1:2) # will still find position 3, but give the value of 1 as mode
```

```
[1] -1 0 1 2
$frequencies
[1] 3 0 4 1
$mode
[1] 1
$positions
[1] 3
$contiguous
[1] TRUE
  This example illustrates multiple modes. The frequencies o 528 and 530 are
nearly the same, that is to say given the (default) tolerance they are considered
the same.
> # Example 4: similar values
> V3 \leftarrow c(30,40,510,130,530,50,10)
> modes(V3, tolerance=30) # will find positions 3 and 5 (510 and 530 are nearly the same)
[1] 1 2 3 4 5 6 7
$frequencies
[1] 30 40 510 130 530 50 10
$mode
[1] 3 5
$positions
[1] 3 5
$contiguous
[1] FALSE
```

7 Going Further

\$at

For further documentation, please refer to the original contributions by Van der Eijk [2001] and Galtung [1969], and refer to the package help files.

References

- J. Galtung. Theory and Methods of Social Research. Universitetsforlaget, Oslo, 1969. ISBN 0043000177.
- C. Van der Eijk. Measuring agreement in ordered rating scales. *Quality and Quantity*, 35(3):325–341, 2001.