Correction TD 12: continuite

Entrainements

Étude de la continuité de fonctions numériques

Étudier la continuité des deux fonctions suivantes : Exercice 1.

$$f: x \mapsto (x^2 - 1)\sin\left(\frac{1}{x - 1}\right)$$
 et $g: x \mapsto \cos(\ln|x|)\ln(1 + x)$.

Correction 1.

- 1. Étudier la continuité de la fonction suivante : $f: x \mapsto (x^2 1) \sin\left(\frac{1}{x 1}\right)$
 - Domaine de définition : La fonction f est bien définie si $x 1 \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R} \setminus \{1\}$.
 - Régularité : La fonction f est continue sur $\mathcal{D}_f = \mathbb{R} \setminus \{1\}$ comme somme, quotient, composée et produit de fonctions continues.
- 2. Étudier la continuité de la fonction suivante : $q: x \mapsto \cos(\ln|x|) \ln(1+x)$
 - Domaine de définition : la fonction g est bien définie si 1+x>0 et $|x|>0 \Leftrightarrow x\neq 0$. Ainsi $\mathcal{D}_q=$ $]-1,0[\cup]0,+\infty[.$
 - Régularité : La fonction g est continue sur $\mathcal{D}_g =]-1,0[\cup]0,+\infty[$ comme somme, composées et produit de fonctions continues.

Exercice 2. Étudier la continuité des fonctions suivantes :

1.
$$f(x) = \begin{cases} e^{-x} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$$
2. $g(x) = \begin{cases} \frac{\ln(1-4x)}{2x} & \text{si } x < 0 \\ 1 & \text{si } x = 0 \\ \frac{e^x - 1}{x} & \text{si } x > 0 \end{cases}$
3. $h(x) = \begin{cases} \frac{5x^2 + 4x}{1+x} & \text{si } x < 0 \\ 1 & \text{si } x = 0 \\ x \sin(\frac{1}{x}) & \text{si } x > 0 \end{cases}$

Correction 2.

- 1. Étude de la continuité de la fonction f définie par $f(x) = \begin{cases} e^{-x} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$:
 - Domaine de définition : $\mathcal{D}_f = \mathbb{R}^+$.

 - Continuité sur $\mathbb{R}^{+\star}$: la fonction f est continue sur $\mathbb{R}^{+\star}$ comme composée de fonctions continues. Continuité en 0: $\lim_{x\to 0} f(x) = \lim_{x\to 0} e^{-x} = 1$ et f(0) = 0. Ainsi $\lim_{x\to 0} f(x) \neq f(0)$ et donc la fonction f n'est pas continue en 0.

Conclusion: La fonction f est continue sur $\mathbb{R}^{+\star}$ mais elle n'est pas continue en 0

2. Étude de la continuité de la fonction
$$g$$
 définie par $g(x) = \begin{cases} \frac{\ln(1-4x)}{2x} & \text{si } x < 0 \\ 1 & \text{si } x = 0 \\ \frac{e^x - 1}{x} & \text{si } x > 0 \end{cases}$

- Domaine de définition : si x < 0, on a bien toujours 1 4x > 0 et $2x \neq 0$. De même, si x > 0, on a bien toujours $x \neq 0$. Ainsi $\mathcal{D}_g = \mathbb{R}$.
- Continuité sur \mathbb{R}^* : La fonction g est continue sur \mathbb{R}^{+*} comme somme et quotient de fonctions continues et sur \mathbb{R}^{-*} comme somme, composée et quotient de fonctions continues. Ainsi elle est continue sur \mathbb{R}^* .
- \bullet Continuité en 0:
 - * Par substitution, on a : $\ln(1-4x) \sim -4x$ et par quotient d'équivalents : $\frac{\ln(1-4x)}{2x} \sim -2$. Ainsi $\lim_{x\to 0^-} g(x) = -2$. Comme $g(0) = 1 \neq -2$, la fonction g n'est pas continue à gauche en 0 et ainsi elle n'est pas continue en 0.
 - * D'après les équivalents usuels et par quotient d'équivalents, on a : $\frac{e^x 1}{x} \sim 1$ et ainsi $\lim_{x \to 0^+} g(x) = 1 = g(0)$. Donc la fonction g est continue à droite en 0.

Conclusion : La fonction g est continue sur \mathbb{R}^* et à droite en 0 mais elle n'est pas continue en 0.

- 3. Étude de la continuité de la fonction h définie par $h(x) = \begin{cases} \frac{5x^2 + 4x}{1+x} & \text{si } x < 0 \\ 1 & \text{si } x = 0 \end{cases}$: x = 0: x = 0:
 - Domaine de définition : Pour tout x > 0, on a bien que $x \neq 0$. Par contre, sur \mathbb{R}^{-*} , la fonction h est bien définie si $1 + x \neq 0$. Ainsi $\mathcal{D}_h = \mathbb{R} \setminus \{-1\}$.
 - Continuité sur $\mathbb{R} \setminus \{-1,0\}$: La fonction h est continue sur $\mathbb{R}^{-\star} \setminus \{-1\}$ comme quotient de fonctions polynomiales et elle est continue sur $\mathbb{R}^{+\star}$ comme quotient, composée et produit de fonctions continues. Ainsi la fonction h est continue sur $\mathbb{R} \setminus \{-1,0\}$.
 - Continuité en 0 :
 - $\star\lim_{x\to 0^-}h(x)=0$ par propriétés sur les sommes et quotient de limites. Comme $f(0)=1\neq 0$, la fonction h n'est pas continue à gauche en 0 et donc elle n'est pas continue en 0.
 - * Pour tout x > 0, on a : $-1 \le \sin\left(\frac{1}{x}\right) \le 1 \Leftrightarrow -x \le \sin\left(\frac{1}{x}\right) \le x$ car x > 0. De plus $\lim_{x \to 0^+} -x = \lim_{x \to 0^+} x = 0$ et ainsi d'après le théorème des gendarmes : $\lim_{x \to 0^+} h(x) = 0$. Comme $h(0) = 1 \ne 0$, la fonction h n'est pas non plus continue à droite en 0.

Conclusion: La fonction h est continue sur $\mathcal{D}_h \setminus \{0\}$ mais elle n'est pas continue en 0.

Exercice 3. Étudier la continuité des fonctions suivantes :

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0 \\ x^2 & \text{si } x \le 0 \end{cases} \quad \text{et} \quad g(x) = \begin{cases} \frac{\sin^2 x}{e^{x^2} - 1} & \text{si } x \ne 0 \\ 2 & \text{si } x = 0 \end{cases}$$

Correction 3.

- 1. Étude de la fonction f:
 - La fonction f est bien définie sur $\mathbb{R} : \mathcal{D}_f = \mathbb{R}$.
 - Étude de la continuité de f:
 - \star La fonction f est continue sur $]0,+\infty[$ comme quotient et composée de fonctions continues.
 - * La fonction f est continue sur $]-\infty,0]$ comme fonction polynomiale. En particulier elle est donc continue à gauche en 0 et on a : $f(0) = \lim_{x \to 0^-} f(x) = 0$.
 - \star Étude de la continuité en 0 : la fonction f est définie par un raccord en 0, on doit donc étudier la continuité en ce point en repassant par la définition, à savoir par un calcul de limite. On a déjà que :

 $f(0) = \lim_{x \to 0^-} f(x) = 0$. Étude de la limite à droite en 0: $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^{-\frac{1}{x}} = 0$ par propriétés sur les quotient et composée de limites. Ainsi on a : $\lim_{x \to 0^+} f(x) = f(0) = \lim_{x \to 0^-} f(x)$ donc la fonction f est bien continue en 0.

La fonction f est ainsi continue sur \mathbb{R} tout entier.

2. Étude de la fonction g:

- La fonction g est bien définie sur $\mathbb{R}: \mathcal{D}_g = \mathbb{R}$. En effet pour $x \neq 0$, la fonction g est bien définie si et seulement si : $e^{x^2} 1 \neq 0 \Leftrightarrow x^2 \neq 0 \Leftrightarrow x \neq 0$ ce qui est bien le cas.
- Étude de la continuité de q :
 - \star La fonction g est continue sur $]-\infty,0[$ et sur $]0,+\infty[$ comme composée, somme et quotient de fonctions continues.
 - \star Étude de la continuité en 0: la fonction g est définie par un raccord en 0, on doit donc étudier la continuité en ce point en repassant par la définition, à savoir par un calcul de limite. On a par définition que : g(0) = 2. De plus, pour tout $x \neq 0$, on a : $g(x) = \frac{\sin^2(x)}{e^{x^2} - 1}$. Avec les équivalents usuels en 0, on a : $\sin(x) \approx x$ puis par produit d'équivalents : $\sin^2(x) \approx x^2$. De plus par substitution : $e^{x^2} - 1 \approx x^2$. Ainsi par quotient d'équivalents : $g(x) \approx 1$. Ainsi $\lim_{x \to 0} f(x) = 1$. Comme $1 \neq g(0)$, la fonction a plast par sontinue en 0. fonction g n'est pas continue en 0.

La fonction g est ainsi continue sur $]-\infty,0[$ et sur $]0,+\infty[$ et n'est pas continue en].

Exercice 4. On considère la fonction h définie par

$$h(x) = \sqrt{1 - x^2}$$
 si $|x| < 1$ et $h(x) = ax^2 + bx + c$ si $|x| \ge 1$.

Déterminer les réels a, b et c pour lesquels h est continue sur \mathbb{R} .

Correction 4. La fonction h est définie par : $h(x) = \begin{cases} \sqrt{1-x^2} & \text{si } -1 < x < 1, \\ ax^2 + bx + c & \text{si } x \le -1 \text{ ou } x \ge 1. \end{cases}$ Ainsi la fonction h

est définie sur \mathbb{R} tout entier. De plus, elle est continue sur [-1,1[comme somme et composée de fonctions continues et elle est continue sur $]-\infty,-1]\cup[1,+\infty[$ comme fonction polynomiale. Comme cette fonction est définie par deux raccords, on doit étudier la continuité en -1 et en 1 en repassant par la définition, à savoir avec les limites.

- Étude en -1 : La fonction h est continue à gauche en -1 avec $f(-1) = a b + c = \lim_{x \to -1^-} f(x)$. De plus : $\lim_{x\to -1^+} h(x) = \lim_{x\to -1^+} \sqrt{1-x^2} = 0$ par propriété sur les somme et composée de limites. Ainsi, pour que h soit continue en -1, on doit avoir : a - b + c = 0.
- Étude en 1 : La fonction h est continue à droite en 1 avec $f(1)=a+b+c=\lim_{x\to 1^+}f(x)$. De plus : $\lim_{x\to 1^-}h(x)=\lim_{x\to 1^-}\sqrt{1-x^2}=0$ par propriété sur les somme et composée de limites. Ainsi, pour que h soit continue en 1, on doit avoir : a+b+c=0.

continue en 1, on doit avoir :
$$a+b+c=0$$
.

Ainsi, on doit prendre a , b et c tels que :
$$\begin{cases} a-b+c &= 0 \\ a+b+c &= 0. \end{cases}$$
La résolution de ce système linéaire donne :
$$a+b+c=0.$$

$$\begin{cases} a-b+c=0 \\ a+b+c=0. \end{cases}$$
Ainsi, si on prend par exemple : $b=0$, $a=1$ et $c=-1$, ces trois $a+b+c=0$.

réels permettent que la fonction b soit bien continue en -1 et en 1. Et ainsi elle sera bien continue sur $\mathbb R$ tout entier.

permettent que la fonction h soit bien continue en -1 et en 1. Et ainsi elle sera bien continue sur $\mathbb R$ tout entier.

Exercice 5. Soient f et g deux fonctions continues sur \mathbb{R} .

1. Montrer que :
$$\forall x \in \mathbb{R}$$
, $\max(f(x), g(x)) = \frac{f(x) + g(x) + |f(x) - g(x)|}{2}$.

2. En déduire que la fonction $\max(f, g)$ est continue sur \mathbb{R} .

Correction 5.

- 1. Soit $x \in \mathbb{R}$ fixé. On distingue deux cas :
 - Cas 1 : si f(x) > g(x) : On a alors d'un côté que : $\max(f(x), g(x)) = f(x)$. De l'autre côté, on a aussi : |f(x) g(x)| = f(x) g(x) car f(x) g(x) > 0. Et ainsi, on a : $\frac{f(x) + g(x) + |f(x) g(x)|}{2} = \frac{f(x) + g(x) + f(x) g(x)}{2} = f(x).$ Donc dans ce cas, on a bien que : $\max(f(x), g(x)) = \frac{f(x) + g(x) + |f(x) g(x)|}{2} = f(x)$.
 - Cas 1 : si $f(x) \le g(x)$: On a alors d'un côté que : $\max(f(x), g(x)) = g(x)$. De l'autre côté, on a aussi : |f(x) g(x)| = -f(x) + g(x) car $f(x) g(x) \le 0$. Et ainsi, on a : $\frac{f(x) + g(x) + |f(x) g(x)|}{2} = \frac{f(x) + g(x) f(x) + g(x)}{2} = g(x).$ Donc dans ce cas aussi, on a bien que : $\max(f(x), g(x)) = \frac{f(x) + g(x) + |f(x) g(x)|}{2} = g(x)$.

Ainsi dans tous les cas, on a bien que : $\max(f(x), g(x)) = \frac{f(x) + g(x) + |f(x) - g(x)|}{2}$.

2. Comme la fonction valeur absolue est continue sur \mathbb{R} tout entier et que par hypothèse les fonctions f et g sont bien continues sur \mathbb{R} , on a que la fonction $\max(f,g)$ est continue sur \mathbb{R} comme composée, somme et quotient de fonctions continues.

Partie Entière

Exercice 6. On considère l'équation suivante d'inconnue $x \in \mathbb{R}$:

$$\left[2x - \sqrt{5x - 1}\right] = 0\tag{E}$$

- 1. Déterminer le domaine de définition de E.
- 2. Pour tout $a \in \mathbb{R}$, rappeler un encadrement de la partie entière de a en fonction de a.
- 3. Montrer que résoudre (E) revient à résoudre deux inéquations qu'on déterminera.
- 4. Résoudre les deux équations obtenues à la question précédente.
- 5. Résoudre (E).

Correction 6. 1. Seule la fonction $x \mapsto \sqrt{x}$ n'est pas définie sur \mathbb{R} mais sur \mathbb{R}_+ ainsi (E) est bien définie pour tout x tel que $5x - 1 \ge 0$ c'est-à-dire

$$D_E =]\frac{1}{5}, +\infty[$$

2. Cours

$$\boxed{\forall a \in \mathbb{R} \quad a - 1 < \lfloor a \rfloor \le a}$$

3. Notons $f(x) = \lfloor 2x - \sqrt{5x - 1} \rfloor$ On a $f(\frac{1}{5}) = \lfloor 2\frac{1}{5} - \sqrt{5\frac{1}{5} - 1} \rfloor = \lfloor 2\frac{1}{5} \rfloor = 0$ Donc

$$\frac{1}{5}$$
 est solution de E

On a
$$f(\frac{1}{2}) = \left\lfloor 2\frac{1}{2} - \sqrt{5\frac{1}{2} - 1} \right\rfloor = \left\lfloor 1 - \sqrt{\frac{3}{2}} \right\rfloor$$
 Or $\frac{3}{2} > 1$ donc $\sqrt{\frac{3}{2}} > \sqrt{1} = 1$ et donc $1 - \sqrt{\frac{3}{2}} < 0$ ainsi

$$\boxed{\frac{1}{2} \text{ n'est pas solution de } E}$$

On a
$$f(1) = \lfloor 2 \times 1 - \sqrt{5 - 1} \rfloor = \lfloor 2 - 2 \rfloor = \lfloor 0 \rfloor$$

1 est solution de ${\cal E}$

On a $f(12) = \lfloor 2 \times 12 - \sqrt{60 - 1} \rfloor = \lfloor 24 - \sqrt{59} \rfloor$ Or $59 < 64 = 8^2$ donc $\sqrt{59} < 8$ et $24 - \sqrt{59} > 24 - 8 = 16$ ainsi f(2) > 16 et

$$12$$
 n'est pas solution de E

4. D'après ce qu'on vient de voir, pour tout $x \in D_E$ on a :

$$2x - \sqrt{5x - 1} - 1 < \lfloor 2x - \sqrt{5x - 1} \rfloor \le 2x - \sqrt{5x - 1}$$

Si x est solution de (E) on a $\lfloor 2x - \sqrt{5x - 1} \rfloor = 0$ et donc l'équation (E) équivaut à $2x - \sqrt{5x - 1} - 1 < 0 \le 2x - \sqrt{5x - 1}$, soit

$$\begin{cases} \sqrt{5x-1} > 2x-1 & (E_1) \\ \sqrt{5x-1} \le 2x & (E_2) \end{cases}$$

5. Résolvons ces deux inéquations. Tout d'abord la première :

$$\sqrt{5x-1} > 2x-1$$
 (E₁)

On distingue deux cas:

▶ $Cas 1 : 2x - 1 \ge 0$ c'est-à-dire $x \ge \frac{1}{2}$

Alors on peut passer au carré dans l'équation car les deux cotés sont du même signe. On a alors :

$$(E_1) \iff 5x - 1 > (2x - 1)^2$$
$$\iff 5x - 1 > 4x^2 - 4x + 1$$
$$\iff 4x^2 - 9x + 2 < 0$$

Un petit discriminant comme on aime : $\Delta = 9^2 - 4 * 4 * 2 = 81 - 32 = 49 = 7^2$. $4x^2 - 9x + 2$ admet donc deux racines

$$r_1 = \frac{9+7}{8} = 2$$
 et $r_2 = \frac{9-7}{8} = \frac{1}{4}$

Ainsi les solutions de (E_1) sur $[\frac{1}{2}, +\infty[$ sont

$$S_1 = \frac{1}{4}, 2[\cap[\frac{1}{2}, +\infty[\cap D_E]]$$

= $[\frac{1}{2}, 2[$

Les solutions de
$$(E_1)$$
 sur $[\frac{1}{2}, +\infty[$ sont $S_1 = [\frac{1}{2}, 2[$

▶ Cas 2 : 2x - 1 < 0 c'est-à-dire $x < \frac{1}{2}$

Dans ce cas, tous les réels $x \in D_E$ sont solutions car le membre de gauche est positif et celui de droite négatif.

Les solutions de
$$(E_1)$$
 sur $]-\infty, \frac{1}{2}[$ sont $\mathcal{S}'_1=[\frac{1}{5},\frac{1}{2}]$

En conclusion:

Les solutions de
$$(E_1)$$
 sur D_E sont $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}'_1 = [\frac{1}{5}, 2]$

On fait la même chose pour (E_2)

$$\sqrt{5x-1} \le 2x \quad (E_2)$$

On distingue deux cas:

ightharpoonup Cas 1: $2x \ge 0$ c'est-à-dire $x \ge 0$

Alors on peut passer au carré dans l'équation car les deux cotés sont du même signe. On a alors :

$$(E_1) \iff 5x - 1 \le (2x)^2$$

$$\iff 5x - 1 \le 4x^2$$

$$\iff 4x^2 - 5x + 1 \ge 0$$

Un petit discriminant comme on aime : $\Delta = 5^2 - 4 * 4 * 1 = 25 - 16 = 9 = 3^2$. $4x^2 - 5x + 1$ admet donc deux racines

$$r_1 = \frac{5+3}{8} = 1$$
 et $r_2 = \frac{5-3}{8} = \frac{1}{4}$

Ainsi les solutions de (E_2) sur $[0, +\infty[$ sont

$$\mathcal{E}_2 = (] - \infty, \frac{1}{4}] \cup [1, +\infty[) \cap [0, +\infty[\cap D_E]]$$
$$= [\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[$$

Les solutions de
$$(E_2)$$
 sur $[0, +\infty[$ sont $\mathcal{E}_2 = [\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[$

ightharpoonup Cas 2 : 2x < 0 c'est-à-dire x < 0

Dans ce cas, aucun réel n'est solution car le membre de gauche est positif et celui de droite négatif.

Les solutions de
$$(E_2)$$
 sur $]-\infty,0[$ sont $\mathcal{E}_2'=\emptyset$

En conclusion:

Les solutions de
$$(E_2)$$
 sur D_E sont $\mathcal{E} = \mathcal{E}_2 \cup \mathcal{E}_2' = [\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[$

6. x est solution de (E) si et seulement si il est solution de (E_1) et (E_2) , l'ensemble des solutions correspond donc à l'intersection : $\mathcal{E} \cap \mathcal{S} = ([\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[) \cap [\frac{1}{5}, 2[=[\frac{1}{5}, \frac{1}{4}] \cup [1, 2[$

Les solutions de
$$(E)$$
 sont $\left[\frac{1}{5}, \frac{1}{4}\right] \cup \left[1, 2\right[$

Exercice 7. Montrer que la fonction partie entière est croissante, ie montrer que pour tout $x, y \in \mathbb{R}^2$,:

$$x \leq y \Longrightarrow |x| \leq |y|$$
.

Montrer que pour tout $x, y \in \mathbb{R}^2$, :

$$|x| + |y| \le |x + y| \le |x| + |y| + 1.$$

Correction 7. Soit $x, y \in \mathbb{R}^2$ et k = |x|. On a donc $x \in [k, k+1]$. Il y a maintenant deux cas possibles

Cas 1: $y \in [k, k+1]$ alors |y| = k et donc $|x| = |y| \le |y|$.

Cas 3: $y \notin [k, k+1[$ Comme $y \ge x$, on a y > k+1 et comme $\lfloor y \rfloor > y-1$ on a $\lfloor y \rfloor > k = \lfloor x \rfloor$ On a ainsi montré que la fonction était croissante.

Exercice 8. Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$,

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$$

et

$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor.$$

Correction 8. Correction de l'exercice

Montrons que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$, on a :

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor,$$

et

$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor.$$

Partie 1 :
$$\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor$$

Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$.

- **1. Décomposition de** x: On écrit $x = \lfloor x \rfloor + \{x\}$, où $\lfloor x \rfloor$ est la partie entière de x et $\{x\}$ est la partie fractionnaire de x, avec $0 \le \{x\} < 1$.
- 2. Analyse de |nx|: On a :

$$nx = n|x| + n\{x\}.$$

Ainsi:

$$|nx| = |n|x| + n\{x\}|.$$

Comme n|x| est un entier, on obtient :

$$\lfloor nx \rfloor = n \lfloor x \rfloor + \lfloor n\{x\} \rfloor.$$

3. Expression de $\frac{\lfloor nx \rfloor}{n}$: En divisant par n, on trouve :

$$\frac{\lfloor nx \rfloor}{n} = \lfloor x \rfloor + \frac{\lfloor n\{x\} \rfloor}{n}.$$

Or $0 \le n\{x\} < n$, donc $0 \le \frac{\lfloor n\{x\} \rfloor}{n} < 1$.

4. Application de la partie entière : En appliquant la fonction $|\cdot|$, on a :

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \left| \lfloor x \rfloor + \frac{\lfloor n\{x\} \rfloor}{n} \right|.$$

Comme $0 \le \frac{\lfloor n\{x\} \rfloor}{n} < 1$, il en résulte :

$$\left| \lfloor x \rfloor + \frac{\lfloor n\{x\} \rfloor}{n} \right| = \lfloor x \rfloor.$$

Ainsi, on a montré que :

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor.$$

Partie 2:
$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \left\lfloor nx \right\rfloor$$

Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$.

1. Décomposition de x : On écrit $x = \lfloor x \rfloor + \{x\}$, où $\lfloor x \rfloor$ est la partie entière de x et $\{x\}$ est la partie fractionnaire de x, avec $0 \le \{x\} < 1$.

2. Analyse de $\left\lfloor x + \frac{k}{n} \right\rfloor$: Pour tout k, on a :

$$x + \frac{k}{n} = \lfloor x \rfloor + \{x\} + \frac{k}{n}.$$

Donc:

$$\left| x + \frac{k}{n} \right| = \left| \lfloor x \rfloor + \{x\} + \frac{k}{n} \right|.$$

- Si $\{x\} + \frac{k}{n} < 1$, alors $\lfloor x + \frac{k}{n} \rfloor = \lfloor x \rfloor$. - Si $\{x\} + \frac{k}{n} \ge 1$, alors $\lfloor x + \frac{k}{n} \rfloor = \lfloor x \rfloor + 1$.

3. Analyse de la somme : La somme

$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor$$

est constituée de termes égaux à $\lfloor x \rfloor$ et de termes égaux à $\lfloor x \rfloor + 1$. Le nombre de termes égaux à $\lfloor x \rfloor + 1$ est donné par le nombre m de valeurs de k telles que $\{x\} + \frac{k}{n} \geq 1$. Cela équivaut à :

$$k \ge \lceil n(1 - \{x\}) \rceil$$
.

Ainsi, la somme s'écrit :

$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = n \lfloor x \rfloor + m,$$

où m est exactement égal à :

$$m = |nx| - n|x|.$$

4. Conclusion : On a donc :

$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = n \lfloor x \rfloor + (\lfloor nx \rfloor - n \lfloor x \rfloor) = \lfloor nx \rfloor.$$

Exercice 9. Montrer que pour tout $x \in \mathbb{R}_+$:

$$\lfloor x \rfloor = \left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x+1}{2} \right\rfloor.$$

Correction 9. Distinguons les cas selon la parité de |x|.

Cas 1 : $\lfloor x \rfloor$ est paire Dans ce cas, il existe $k \in \mathbb{N}$ tel que $\lfloor x \rfloor \in [2k, 2k+1[$, où $\lfloor x \rfloor = 2k.$ On a alors $\frac{x}{2} \in [k, k+\frac{1}{2}[$ donc $\lfloor \frac{x}{2} \rfloor = k$ et $\frac{x+1}{2} \in [k+\frac{1}{2}, k+1[$, donc de nouveau $\lfloor \frac{x+1}{2} \rfloor = k$ On a bien l'égalité demandée.

Cas 2 : $\lfloor x \rfloor$ est impaire Dans ce cas, il existe $k \in \mathbb{N}$ tel que $\lfloor x \rfloor \in [2k+1,2k+2[$, où $\lfloor x \rfloor = 2k+1.$ On a alors $\frac{x}{2} \in [k+\frac{1}{2},k+1[$ donc $\lfloor \frac{x}{2} \rfloor = k$ et $\frac{x+1}{2} \in [k+1,k+\frac{3}{2},$ donc cette fois $\lfloor \frac{x+1}{2} \rfloor = k+1$ On a bien l'égalité demandée.

Exercice 10. Soit f la fonction définie par : $f: x \mapsto \lfloor x \rfloor + \sqrt{x - |x|}$.

- 1. Donner l'ensemble de définition de la fonction f.
- 2. Soit $n \in \mathbb{Z}$. Déterminer la limite de f en n à gauche et à droite.
- 3. En déduire l'ensemble de continuité de f.

Correction 10. 1. La fonction f est bien définie si et seulement si $x - \lfloor x \rfloor \geq 0$. Or par caractérisation de la partie entière, on a pour tout $x \in \mathbb{R}$: $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$. Ainsi $x - \lfloor x \rfloor \geq 0$. Donc $\mathcal{D}_f = \mathbb{R}$.

2. Soit $n \in \mathbb{Z}$ fixé.

$$\star$$
 On a : $f(n) = n + \sqrt{n-n} = n$.

$$\star \lim_{x \to n^+} f(x) = n \operatorname{car} \lim_{x \to n^+} \lfloor x \rfloor = n$$

$$\star \lim_{x \to n^+} f(x) = n \operatorname{car} \lim_{x \to n^+} \lfloor x \rfloor = n.$$

$$\star \lim_{x \to n^-} f(x) = n - 1 + \sqrt{n - (n - 1)} = n \operatorname{car} \lim_{x \to n^-} \lfloor x \rfloor = n - 1.$$

Ainsi, on a : $f(n) = \lim_{x \to n^+} f(x) = \lim_{x \to n^-} f(x)$. Ainsi la fonction f est continue sur tous les entiers.

3. Comme la fonction partie entière est continue sur $\mathbb{R} \setminus \mathbb{Z}$, la fonction f est continue sur $\mathbb{R} \setminus \mathbb{Z}$ comme somme et composée de fonctions continues. De plus, on vient de montrer que f est aussi continue sur \mathbb{Z} . Ainsi la fonction f est continue sur \mathbb{R} .

Existence d'un éventuel prolongement par continuité

Exercice 11. Étudier la continuité des fonctions suivantes. Les fonctions suivantes admettent-elles un prolongement par continuité aux bornes finies de leur domaine de définition?

1.
$$f(x) = \cos\left(\frac{1}{x}\right)$$
.

2.
$$f(x) = \frac{|x| \ln(1+x)}{e^{2x^2} - 1}$$
.

3.
$$f(x) = \ln(\sqrt{x} - 1) - \ln(x - 1)$$
.

4.
$$f(x) = \frac{x \ln x}{x^2 - 1}$$

5.
$$f(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$$

6.
$$f(x) = \frac{x^2 - 2x - 3}{\sqrt{1+x}}$$

7.
$$f(x) = \frac{\sin x}{\sqrt{1+x}-1}$$

8.
$$f(x) = \frac{1 - \cos(\sqrt{x})}{|x|}$$

9.
$$f(x) = x \ln\left(\frac{x^2 - 1}{x}\right)$$

10.
$$f(x) = x^2 \cos\left(\frac{1}{x}\right)$$

11.
$$f(x) = \frac{6x^2 + 5x - 4}{2x - 1}$$

12.
$$f(x) = \frac{\sqrt{x^2 + 1} - 1}{x}$$

$$13. \ f(x) = x^x$$

Correction 11.

- 1. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \cos\left(\frac{1}{x}\right)$:
 - Domaine de définition : La fonction f est bien définie si et seulement si $x \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R}^*$.
 - Étude de la continuité :
 - \star La fonction f est continue sur $]-\infty,0[$ et sur $]0,+\infty[$ comme composée de fonctions continues.
 - \star Étude de la limite en 0 : comme la fonction cosinus n'admet pas de limite en l'infini, la fonction fn'admet pas de limite en 0. Ainsi f n'est pas prolongeable par continuité en 0.
- 2. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{|x| \ln (1+x)}{e^{2x^2} 1}$:
 - Domaine de définition : La fonction f est bien définie si et seulement si 1+x>0 et $e^{2x^2}-1\neq 0$, à savoir si et seulement si : x > -1 et $x \neq 0$. Ainsi $\mathcal{D}_f =]-1, 0[\cup]0, +\infty[$.
 - Étude de la continuité :
 - \star La fonction f est continue sur]-1,0[et sur $]0,+\infty[$ comme composée, somme, produit et quotient de fonctions continues.
 - \star Étude d'un éventuel prolongement par continuité en 0: Par les équivalents usuels : $\ln(1+x) \sim x$, $e^{2x^2}-1 \sim 2x^2$ par substitution et par produit et quotient d'équivalents : $f_2(x) \sim \frac{|x|}{2x}$. Ainsi $\lim_{x\to 0^+} f(x) = \frac{1}{2}$ et $\lim_{x\to 0^-} f(x) = -\frac{1}{2}$. Les deux limites ne sont

pas égales et ainsi il n'existe pas de limite en 0. Donc la fonction f n'est pas prolongeable par continuité en 0. Par contre elle est prolongeable par continuité à droite en 0 en posant : f(x) =

continuité en 0. Par contre elle est prolongeable par continuité à droite en 0 en posant :
$$f(x) = \begin{cases} \frac{x \ln{(1+x)}}{e^{2x^2}-1} & \text{si } x>0 \\ \frac{1}{2} & \text{si } x=0. \end{cases}$$
 Et elle est aussi prolongeable par continuité à gauche en 0 en posant :
$$f(x) = \begin{cases} \frac{-x \ln{(1+x)}}{e^{2x^2}-1} & \text{si } x=0. \end{cases}$$
 Et ude d'un éventuel prolongement par continuité en -1 : on a : $\lim_{x\to -1} f_2(x) = -\infty$ par propriété sur les composée, somme, produit et quotient de limites. Ainsi f n'est pas prolongeable par continuité en f par continuité f

$$f(x) = \begin{cases} \frac{-x \ln(1+x)}{e^{2x^2} - 1} & \text{si } -1 < x < 0 \\ -\frac{1}{2} & \text{si } x = 0. \end{cases}$$

- * Étude d'un éventuel prolongement par continuité en -1: on a : $\lim_{x\to -1} f_2(x) = -\infty$ par propriété sur les composée, somme, produit et quotient de limites. Ainsi f n'est pas prolongeable par continuité en -1 et C_f admet une asymptote verticale d'équation x = -1.
- 3. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \ln(\sqrt{x} 1)$ $\ln(x-1)$:
 - Domaine de définition : La fonction f est bien définie si et seulement si $x \ge 0$, $\sqrt{x} 1 > 0$ et x 1 > 0, à savoir x > 1. Ainsi $\mathcal{D}_f =]1, +\infty[$.
 - Étude de la continuité :
 - \star La fonction f est continue sur \mathcal{D}_f comme composée et somme de fonctions continues.
 - * Étude d'un éventuel prolongement par continuité en 1 : on a : $f(x) = \ln\left(\frac{\sqrt{x}-1}{x-1}\right) = \ln\left(\frac{1}{\sqrt{x}+1}\right)$. Ainsi $\lim_{x\to 1} f(x) = -\ln 2$ par propriétés sur les somme, quotient et composée de limites. Ainsi la fonction f est bien prolongeable par continuité en 1 en posant $f(1) = -\ln 2$.

On obtient une fonction que l'on continue de noter f et qui est alors définie sur $[1, +\infty[$ par f(x) = $\ln\left(\sqrt{x}-1\right) - \ln\left(x-1\right) \quad \text{si } x > 1$ Cette fonction est alors bien continue sur $[1, +\infty]$ car elle est

continue sur $]1,+\infty[$ comme composée et somme de fonctions continues et elle est continue en 1 par

- 4. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{x \ln x}{x^2 1}$:
 - Domaine de définition : La fonction f est bien définie si et seulement si x > 0 et $x^2 1 \neq 0$. Ainsi, on obtient : $\mathcal{D}_f =]0, 1[\cup]1, +\infty[$.
 - Étude de la continuité :
 - ★ La fonction f est continue sur $]0,1[\cup]1,+\infty[$ comme somme, produit et quotient de fonctions conti-
 - * Étude d'un éventuel prolongement par continuité en 0 : par croissance comparée : $\lim_{x\to 0} x \ln x = 0$. Et ainsi par somme et quotient de limites, on obtient que : $\lim_{x\to 0} f(x) = 0$. Ainsi la fonction f est

prolongeable par continuité en 0 en posant f(0) = 0. On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $[0,1[\cup]1,+\infty[$ par $f(x)=\begin{cases} \frac{x\ln x}{x^2-1} & \text{si } x>0,\ x\neq 1\\ 0 & \text{si } x=0. \end{cases}$

* Étude d'un éventuel prolongement par continuité en 1 : on pose X=x-1 et on obtient que $f(x)=F(X)=\frac{1+X}{2+X}\times\frac{\ln{(1+X)}}{X}$. Par les équivalents usuels en 0, on a : $\frac{\ln{(1+X)}}{X}\sim 1$. Et ainsi par propriétés sur les sommes, quotient et produit de limites, on obtient que : $\lim_{x\to 1} f(x) = \frac{1}{2}$. Ainsi la fonction f est prolongeable par continuité en 1 en posant $f(1) = \frac{1}{2}$.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $[0, +\infty[$ par

$$f(x) = \begin{cases} \frac{x \ln x}{x^2 - 1} & \text{si } x > 0, \ x \neq 1 \\ 0 & \text{si } x = 0 \\ \frac{1}{2} & \text{si } x = 1. \end{cases}$$
 Cette fonction est alors bien continue sur $[0, +\infty[$ car elle est

continue sur $]0, +\infty[\setminus\{1\}$ comme composée et somme de fonctions continues et elle est continue en 0 et en 1 par prolongement.

5. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$:

- Domaine de définition : La fonction f est bien définie si et seulement si $1 x \neq 0$ et $1 x^2 \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R} \setminus \{-1, 1\}$.
- Étude de la continuité :
 - * La fonction f est continue sur $\mathcal{D}_f = \mathbb{R} \setminus \{-1, 1\}$ comme sommes et quotients de fonctions continues.
 - * Étude de la limite en -1 : On peut tout de suite remarquer que $f(x) = \frac{-1}{1+x}$ en mettant tout sur le même d/'enominateur et en utilisant le fait que $1-x^2=(1-x)(1+x)$. Ainsi par propriété sur les somme et quotient de limites, on obtient que $\lim_{x\to -1^-} f(x) = +\infty$ et $\lim_{x\to -1^+} f(x) = -\infty$. Ainsi f n'est pas prolongeable par continuité en -1 et la courbe \mathcal{C}_f admet une asymptote verticale d'équation x=-1.
 - * Étude de la limite en 1 : Comme $f(x) = \frac{-1}{1+x}$, on obtient que : $\lim_{x\to 1} f(x) = -\frac{1}{2}$. Ainsi la fonction f est prolongeable par continuité en 1 en posant $f(1) = -\frac{1}{2}$.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $\mathbb{R}\setminus\{-1\}$ par $f(x)=\begin{cases} \frac{1}{1-x}-\frac{2}{1-x^2} & \text{si } x\neq 1,\ x\neq -1\\ -\frac{1}{2} & \text{si } x=1 \end{cases}$ Cette fonction est alors bien continue sur $\mathbb{R}\setminus\{-1\}$ car elle est continue sur $\mathbb{R}\setminus\{-1,1\}$ comme sommes et quotients de fonctions continues et elle est continue en 1 par prolongement.

6. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{x^2 - 2x - 3}{\sqrt{1 + x}}$:

- Domaine de définition : La fonction f est bien définie si et seulement si 1+x>0. Ainsi $\mathcal{D}_f=]-1,+\infty[$
- Étude de la continuité :
 - ★ La fonction f est continue sur $\mathcal{D}_f =]-1,+\infty[$ comme sommes, composée et quotient de fonctions continues.
 - * Étude de la limite en -1 : On peut tout de suite remarquer en factorisant le numérateur et en simplifiant avec le dénominateur que $f(x) = \sqrt{1+x} \times (x-3)$. Ainsi par propriété sur les sommes et produit de limites, on obtient que : $\lim_{x \to -1} f(x) = 0$. Ainsi la fonction f est prolongeable par continuité en -1 en posant f(-1) = 0.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $[-1, +\infty[$ par $f(x) = \begin{cases} \frac{x^2 - 2x - 3}{\sqrt{1 + x}} & \text{si } x > -1, \\ 0 & \text{si } x = -1 \end{cases}$ Cette fonction est alors bien continue sur $[-1, +\infty[$ car elle est continue on $[-1, +\infty[$ car elle est continue en $[-1, +\infty[$ car elle e

sur] $-1,+\infty$ [comme sommes, composée et quotient de fonctions continues et elle est continue en -1 par prolongement.

7. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{\sin x}{\sqrt{1+x}-1}$:

- Domaine de définition : La fonction f est bien définie si et seulement si $\sqrt{1+x}-1\neq 0$ et $1+x\geq 0$ Par un passage au carré, on obtient que $\sqrt{1+x}=1 \Leftrightarrow x=0$. Ainsi $\mathcal{D}_f=[-1,0]\cup [0,+\infty[$.
- Étude de la continuité :
 - \star La fonction f est continue sur $\mathcal{D}_f = [-1,0[\cup]0,+\infty[$ comme composée, somme et quotient de fonctions continues.
 - * Étude de la limite en 0 : en utilisant les deux équivalents usuels et en les quotientant, on obtient que : $f(x) \underset{\sim}{0} \frac{x}{\frac{x}{2}}$. Ainsi $f(x) \underset{\sim}{\sim} 2$ et $\lim_{x \to 0} f(x) = 2$. Ainsi la fonction f est prolongeable par continuité

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $[-1, +\infty[$ par f(x) = $\begin{cases} \frac{\sin x}{\sqrt{1+x}-1} & \text{si } x \neq 0, \\ 2 & \text{si } x = 0 \end{cases}$ Cette fonction est alors bien continue sur $[-1,+\infty[$ car elle est $[-1,+\infty[$ car elle es

 $[-1,+\infty]\setminus\{0,\}$ comme sommes, composée et quotient de fonctions continues et elle est continue en 0 par prolongement.

- 8. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{1 \cos(\sqrt{x})}{|x|}$:
 - Domaine de définition : La fonction f est bien définie si et seulement si $x \geq 0$ et $x \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R}^{+\star}$.
 - Étude de la continuité :
 - * La fonction f est continue sur $\mathbb{R}^{+\star}$ comme composée, somme et quotient de fonctions continues.
 - * Étude de la limite en 0 : par l'équivalent usuel du cosinus et par substitution, on a : $1-\cos(\sqrt{x})$ $\frac{(\sqrt{x})^2}{2}$. Ainsi par quotient $f(x) \sim \frac{1}{2} \operatorname{car} |x| = x \operatorname{car}$ on est sur $\mathbb{R}^{+\star}$. Ainsi $\lim_{x \to 0} f(x) = \frac{1}{2}$. Ainsi la fonction f est prolongeable par continuité en 0 en posant $f(0) = \frac{1}{2}$.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur \mathbb{R}^+ par f(x) =Cette fonction est alors bien continue sur \mathbb{R}^+ car elle est continue sur \mathbb{R}^{+*}

comme composée, somme et quotient de fonctions continues et elle est continue en 0 par prolongement.

- 9. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = x \ln \left(\frac{x^2 1}{x} \right)$:
 - Domaine de définition : La fonction f est bien définie si et seulement si $x \neq 0$ et $\frac{x^2-1}{x} > 0$. On fait alors un tableau de signe. Ainsi $\mathcal{D}_f =]-1,0[\cup]1,+\infty[$
 - Étude de la continuité :
 - \star La fonction f est continue sur $]-1,0[\cup]1,+\infty[$ comme somme, quotient, composée et produit de fonctions continues.
 - * Étude de la limite en -1 : par propriété sur les somme, quotient, composée et produit de limites, on obtient que $\lim_{x\to -1^+} f(x) = +\infty$. Ainsi la fonction f n'est pas prolongeable par continuité en -1 et la courbe C_f admet une asymptote verticale d'équation x = -1.
 - * Étude de la limite en 0 : on a : $f(x) = x \ln |x^2 1| x \ln |x|$. Par croissance comparée, on obtient donc que : $\lim x \ln |x| = 0$. Et ainsi par propriété sur les sommes, composée et produit de limites, on obtient que $\lim_{x\to\infty} f(x) = 0$. Ainsi la fonction f est prolongeable par continuité en 0 en posant f(0) = 0.

* Étude de la limite en 1 : par propriété sur les somme, quotient, composée et produit de limites, on obtient que $\lim_{x\to 1^+} f(x) = -\infty$. Ainsi la fonction f n'est pas prolongeable par continuité en 1 et la courbe C_f admet une asymptote verticale d'équation x = 1.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $]-1,0]\cup]1,+\infty[$ par

$$f(x) = \begin{cases} x \ln\left(\frac{x^2 - 1}{x}\right) & \text{si } x \in]-1, 0[\cup]1, +\infty[, \\ 0 & \text{si } x = 0 \end{cases}$$
 Cette fonction est alors bien continue sur $]-1, 0]\cup]1, +\infty[$

car elle est continue sur $]-1,0[\cup]1,+\infty[$ comme somme, quotient, composée et produit de fonctions continues et elle est continue en 0 par prolongement.

10. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = x^2 \cos\left(\frac{1}{x}\right)$:

- Domaine de définition : La fonction f est bien définie si et seulement si $x \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R}^*$.
- Étude de la continuité :
 - \star La fonction f est continue sur \mathbb{R}^{\star} comme quotient, composée et produit de fonctions continues.
 - * Étude de la limite en 0 : On utilise le théorème des gendarmes : On a : $-1 \le \cos\left(\frac{1}{x}\right) \le 1 \Leftrightarrow$ $-x^2 \le x^2 \cos\left(\frac{1}{x}\right) \le x^2 \operatorname{car} x^2 > 0$. De plus $\lim_{x\to 0} -x^2 = \lim_{x\to 0} x^2 = 0$ et ainsi d'après le théorème des gendarmes : $\lim_{x\to 0} f(x) = 0$. Ainsi la fonction f est prolongeable par continuité en 0 en posant

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $\mathbb R$ par f(x)= $\begin{cases} x^2 \cos\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ \text{Cette fonction est alors bien continue sur } \mathbb{R} \text{ car elle est continue sur } \mathbb{R}^* \text{ comme} \end{cases}$

quotient, composée et produit de fonctions continues et elle est continue en 0 par prolongement.

11. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{6x^2 + 5x - 4}{2x - 1}$:

- Domaine de définition : La fonction f est bien définie si et seulement si $2x-1 \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$.
- Étude de la continuité :
 - * La fonction f est continue sur $\mathcal{D}_f = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ comme sommes et quotient de fonctions continues
 - * Étude de la limite en $\frac{1}{2}$: en factorisant le numérateur, on obtient que : $f(x) = \frac{(2x-1)(3x+4)}{2x-1} =$ 3x + 4. Ainsi par propriété sur les sommes de limites, on a : $\lim_{x \to \frac{1}{2}} f(x) = \frac{11}{2}$. Ainsi la fonction f est prolongeable par continuité en $\frac{1}{2}$ en posant $f\left(\frac{1}{2}\right) = \frac{11}{2}$.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $\mathbb R$ par f(x)=

$$\begin{cases} \frac{6x^2 + 5x - 4}{2x - 1} & \text{si } x \neq \frac{1}{2}, \\ \frac{11}{2} & \text{si } x = \frac{1}{2} \end{cases}$$
 Cette fonction est alors bien continue sur \mathbb{R} car elle est continue sur $\mathbb{R} \setminus \left\{\frac{1}{2}\right\}$ comme somme et quotient de fonctions continues et elle est continue en $\frac{1}{2}$ par prolongement.

comme somme et quotient de fonctions continues et elle est continue en $\frac{1}{2}$ par prolongement.

12. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{\sqrt{x^2 + 1} - 1}{x}$:

 \bullet Domaine de définition : la fonction f est bien définie si $x\neq 0$ et $1+x^2\geq 0$ ce qui est toujours vrai comme somme de deux termes positifs. Ainsi $\mathcal{D}_f = \mathbb{R}^*$.

- Étude de la continuité :
 - \star La fonction f est continue sur \mathbb{R}^{\star} comme sommes, composée et quotient de fonctions continues
 - * Étude de la limite en 0 : En utilisant une substitution, on obtient que : $\sqrt{1+x^2}-1 \sim \frac{x^2}{2}$. Puis par quotient d'équivalents, on obtient que $f(x) \sim \frac{x}{2}$. Ainsi $\lim_{x\to 0} f(x) = 0$. Ainsi la fonction f est prolongeable par continuité en 0 en posant f(0) = 0.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur $\mathbb R$ par

$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 1} - 1}{x} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0 \end{cases}$$
 Cette fonction est alors bien continue sur \mathbb{R} car elle est continue sur \mathbb{R}^* comme sommes, composée et quotient de fonctions continues et elle est continue en 0 par prolongement.

- 13. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = x^x =$
 - Domaine de définition : la fonction f est bien définie si x > 0. Ainsi $\mathcal{D}_f = \mathbb{R}^{+\star}$.
 - Étude de la continuité : La fonction f est continue sur $\mathbb{R}^{+\star}$ comme produit et composée de fonctions
 - \star La fonction f est continue sur $\mathbb{R}^{+\star}$ comme somme, composées et quotient de fonctions continues
 - * Étude de la limite en 0 : Par croissance comparée, on a : $\lim_{x\to 0} x \ln x = 0$. Ainsi par propriété sur la composition de limites, on obtient que $\lim_{x\to 0} f(x) = 1$. Ainsi la fonction f est prolongeable par continuité en 0 en posant f(0) = 1.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur \mathbb{R}^+ par

$$f(x) = \begin{cases} x^x & \text{si } x > 0, \\ 1 & \text{si } x = 0 \end{cases}$$
 Cette fonction est alors bien continue sur \mathbb{R}^+ car elle est continue sur \mathbb{R}^{+*} comme

produit et composées de fonctions continues et elle est continue en 0 par prolongement.

Exercice 12. Pour tout x>0, on pose $f(x)=(e^x+2x)^{\frac{1}{x}}$. Étudier un éventuel prolongement par continuité de

Correction 12. ?

Exercice 13. Peut-on prolonger par continuité en les fonctions suivantes :

1.
$$f(x) = \frac{\sqrt{x^2 + 1} - 1}{x}$$

$$2 \quad a(x) = x^x$$

Correction 13. 1. Continuité et éventuel prolongement par continuité de la fonction f définie par $f(x) = \frac{\sqrt{x^2 + 1} - 1}{x} :$

- \bullet Domaine de définition : la fonction f est bien définie si $x\neq 0$ et $1+x^2\geq 0$ ce qui est toujours vrai comme somme de deux termes positifs. Ainsi $\mathcal{D}_f = \mathbb{R}^*$.
- Étude de la continuité :
 - \star La fonction f est continue sur \mathbb{R}^{\star} comme sommes, composée et quotient de fonctions continues
 - * Étude de la limite en 0 : En utilisant une substitution, on obtient que : $\sqrt{1+x^2}-1 \sim \frac{x^2}{2}$. Puis par quotient d'équivalents, on obtient que $f(x) \sim \frac{x}{2}$. Ainsi $\lim_{x\to 0} f(x) = 0$. Ainsi la fonction f est prolongeable par continuité en 0 en posant f(0) = 0.

On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur \mathbb{R} par

$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 1} - 1}{x} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0 \end{cases}$$
 Cette fonction est alors bien continue sur \mathbb{R} car elle est continue sur \mathbb{R}^*

comme sommes, composée et quotient de fonctions continues et elle est continue en 0 par prolongement.

2. Continuité et éventuel prolongement par continuité de la fonction g définie par $g(x) = x^x = e^{x \ln x}$:

- Domaine de définition : la fonction g est bien définie si x > 0. Ainsi $\mathcal{D}_q = \mathbb{R}^{+\star}$.
- ullet Étude de la continuité : La fonction g est continue sur $\mathbb{R}^{+\star}$ comme produit et composée de fonctions
 - \star La fonction f est continue sur $\mathbb{R}^{+\star}$ comme somme, composées et quotient de fonctions continues
 - * Étude de la limite en 0 : Par croissance comparée, on a : $\lim_{x\to 0} x \ln x = 0$. Ainsi par propriété sur la composition de limites, on obtient que $\lim_{x\to 0} g(x) = 1$. Ainsi la fonction g est prolongeable par continuité en 0 en posant g(0) = 1.

On obtient alors une nouvelle fonction que l'on continue de noter g qui est définie sur \mathbb{R}^+ par

$$g(x) = \begin{cases} x^x & \text{si } x > 0, \\ 1 & \text{si } x = 0 \end{cases}$$
 Cette fonction est alors bien continue sur \mathbb{R}^+ car elle est continue sur $\mathbb{R}^{+\star}$ comme

produit et composées de fonctions continues et elle est continue en 0 par prolongement.

Exercice 14. Soit $n \in \mathbb{N}^*$. Étudier la continuité de $f_n : x \mapsto \frac{x^n}{e^x - 1}$. L'application f admet-elle un prolongement par continuité aux bornes de son domaine de définition?

Correction 14.

- Domaine de définition : La fonction f est bien définie si et seulement si $e^x 1 \neq 0 \Leftrightarrow x \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R}^*$.
- Limites aux bornes :
 - * Limite en $+\infty$: $f(x) = \frac{x^n}{e^x} \times \frac{1}{1 e^{-x}}$. Ainsi par croissance comparée, on a : $\lim_{x \to +\infty} \frac{x^n}{e^x} = 0$. Puis par propriété sur les sommes, quotient et produit de limites, on obtient que : $\lim_{x \to +\infty} f(x) = 0$. Ainsi C_f admet une asymptote horizontale d'équation y=0 au voisinage de $+\infty$. On pourrait étudier la position relative.
 - \star Limite en $-\infty$: tout dépend de la parité de n. Si n est pair, alors par propriété sur les somme et quotient de limites, on obtient que $\lim_{x\to-\infty} f(x) = -\infty$ et si n est impair, alors par propriété sur les somme et quotient de limites, on obtient que $\lim_{x\to-\infty} f(x) = +\infty$. On pourrait faire l'étude des branches infinies.
 - \star Limite en 0 : Par les équivalents usuels, on a : $e^x 1 \sim x$ et ainsi on a : $f(x) \sim x^{n-1}$. Ainsi, on doit distinguer deux cas selon que n = 1 ou n > 1:
 - o Si n=1 alors $\lim_{x\to 0} f(x)=1$ et la fonction f est prolongeable par continuité en 0 en posant f(0) = 1. On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur \mathbb{R} $\int \frac{x}{e^x - 1} \quad \text{si } x \neq 0,$

$$\operatorname{par} f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

o Si $n \geq 2$ alors $\lim_{x \to 0} f(x) = 0$ et la fonction f est prolongeable par continuité en 0 en posant f(0) = 0. On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur \mathbb{R}

$$\operatorname{par} f(x) = \begin{cases} \frac{x^n}{e^x - 1} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

• Étude de la continuité : La fonction f est continue sur $\mathbb{R}^{-\star}$ et sur $\mathbb{R}^{+\star}$ comme somme et quotient de fonctions continues. De plus elle est continue en 0 par prolongement par continuité. Ainsi la fonction f est continue sur \mathbb{R} .

Exercice 15. Soit n un entier naturel non nul. On définit f_n par $f_n(x) = \frac{e^{x^2} - e}{x^{2n} - 1}$. Quel est son ensemble de définition? La fonction f_n admet-elle un prolongement par continuité définie sur \mathbb{R} ?

Correction 15.

- Domaine de définition : la fonction f est bien définie si et seulement si $x^{2n} 1 \neq 0$, à savoir sur \mathbb{R} , on doit donc avoir $x \neq -1$ et $x \neq 1$. Ainsi $\mathcal{D}_f = \mathbb{R} \setminus \{-1, 1\}$.
- Étude des limites en -1 et en 1. **Méthode 1 :** on pose le changement de variable $X = x^2$. On a ainsi, lorsque x tend vers 1 ou -1, X qui tend vers 1. On doit donc étudier la limite de $\frac{e^X e}{X^x 1}$ en 1. On pose alors Y = X 1 pour se ramener à 0. On a :

$$\frac{e^X - e}{X^x - 1} = \frac{e^{Y+1} - e}{(1+Y)^n - 1} = \frac{e(e^Y - 1)}{(1+Y)^n - 1} \underset{Y \to 0}{\sim} \frac{eY}{nY} = \frac{e}{n}.$$

Ainsi, on a
$$\lim_{x \to -1} f(x) = \lim_{x \to 1} f(x) = \frac{e}{n}$$
. On peut donc prolonger f sur \mathbb{R} par $f(x) = \begin{cases} \frac{e^{x^2} - e}{x^{2n} - 1} & \text{si } x \notin \{-1, 1\}, \\ \frac{e}{n} & \text{si } x = 1 \text{ ou } x = -1. \end{cases}$

Méthode 2:

- ★ Limite en 1 : on reconnaît par exemple le quotient de deux taux d'accroissement : $f(x) = \frac{e^{x^2} e}{x+1} \times \frac{x+1}{x^{2n}-1}$. La fonction $g: x \mapsto e^{x^2}$ est bien dérivable en 1 car elle est dérivable sur $\mathbb R$ comme composée de fonctions dérivables et on a : g'(1) = 2e. La fonction $h: x \mapsto x^{2n}$ est bien dérivable en 1 car elle est dérivable sur $\mathbb R$ comme fonction polynomiale et on a : $h'(1) = 2n \operatorname{car} h'(x) = 2nx^{2n-1}$ et $2n-1 \ge 1 \operatorname{car} n \ge 1$. Ainsi d'après le taux d'accroissement, on obtient que : $\lim_{x \to 1} f(x) = \frac{g'(1)}{h'(1)} = \frac{e}{n}$. Ainsi la fonction f est prolongeable par continuité en 1 en posant $f(1) = \frac{e}{n}$.
- ★ Limite en 1 : on reconnaît par exemple le quotient de deux taux d'accroissement : $f(x) = \frac{e^{x^2} e}{x 1} \times \frac{x 1}{x^{2n} 1}$. La fonction $g: x \mapsto e^{x^2}$ est bien dérivable en -1 car elle est dérivable sur \mathbb{R} comme composée de fonctions dérivables et on a : g'(-1) = -2e. La fonction $h: x \mapsto x^{2n}$ est bien dérivable en -1 car elle est dérivable sur \mathbb{R} comme fonction polynomiale et on a : h'(1) = -2n car $h'(x) = 2nx^{2n-1}$ et $2n 1 \ge 1$ car $n \ge 1$. Ainsi d'après le taux d'accroissement, on obtient que : $\lim_{x \to -1} f(x) = \frac{g'(-1)}{h'(-1)} = \frac{e}{n}$. Ainsi la fonction f est prolongeable par continuité en -1 en posant $f(-1) = \frac{e}{n}$. On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur \mathbb{R} par $f(x) = \frac{e^{x^2} e}{x^{2n} 1}$ si $x \notin \{-1, 1\}$, $\frac{e}{n}$ si x = 1 ou x = -1.
- Étude de la continuité : la fonction f est ainsi continue sur \mathbb{R} car elle est continue sur $\mathbb{R} \setminus \{-1,1\}$ comme composées, sommes et quotient de fonctions continues et elle est continue en -1 et en 1 par prolongement par continuité.

Exercice 16. Montrer que pour a > -1, la fonction f_a définie par $f_a(x) = |x|^a \sin x \sin\left(\frac{1}{x}\right)$ admet un prolongement par continuité sur \mathbb{R} .

Correction 16. On va montrer que pour a > -1, la fonction f est bien prolongeable par continuité en 0.

- La fonction f est bien définie si et seulement si $x \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R}^*$.
- La fonction f est continue sur $\mathbb{R}^{+\star}$ et sur $\mathbb{R}^{-\star}$ comme quotient, composée et produits de fonctions continues.
- Vérifions que si a > -1, alors la fonction f est prolongeable par continuité en 0:
 - * En utilisant l'équivalent usuel en $0: \sin x \sim x$ et par produit d'équivalents, on sait que $: f(x) \sim |x|^a x \sin\left(\frac{1}{x}\right)$. Ainsi il suffit de calculer la limite de la fonction $g: x \mapsto |x|^a x \sin\left(\frac{1}{x}\right)$ en 0.
 - * Comme il y a le terme sin $\left(\frac{1}{x}\right)$, on utilise soit le théorème des gendarmes, soit le corollaire du théorème des gendarmes. Ici on va utiliser le corollaire. On a : $|g(x)| \le |x|^a \times |x| \Leftrightarrow |g(x)| \le |x|^{a+1}$. Ainsi, on a :
 - o Comme a+1>0 car par hypothèse a>-1, on a : $\lim_{x\to 0}|x|^{a+1}=0$.
 - $\circ \ \forall x \in \mathbb{R}^{\star}, \ |g(x)| \le |x|^{a+1}.$

Ainsi d'après le corollaire du théorème des gendarmes, on obtient que : $\lim_{x\to 0} g(x) = 0$.

* Ainsi, comme les fonctions f et g sont équivalentes en 0, on vient de montrer que pour a > -1, on a : $\lim_{x\to 0} f(x) = 0$.

Ainsi la fonction f est prolongeable par continuité en 0 en posant f(0) = 0. On obtient alors une nouvelle fonction que l'on continue de noter f qui est définie sur \mathbb{R} par $f(x) = \begin{cases} |x|^a \sin(x) \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$

• Étude de la continuité : la fonction f est ainsi continue sur \mathbb{R} car elle est continue sur \mathbb{R}^* comme composées et produits de fonctions continues et elle est continue en 0 par prolongement par continuité.

Applications des théorèmes sur la continuité

Exercice 17. Soit l'équation $x^3 - 3x + 1 = 0$. Montrer qu'elle a trois racines dans \mathbb{R} .

Correction 17. On ne demande pas ici d'expliciter les trois racines réelles juste de montrer qu'il en existe trois. Ainsi il faut résoudre f(x) = 0 pour $f: x \mapsto x^3 - 3x + 1$ et cela fait donc penser au théorème de la bijection (et non le TVI car on va vouloir aussi l'unicité).

- La fonction f est définie, continue et dérivable sur \mathbb{R} comme fonction polynomiale.
- Comme elle est dérivable sur \mathbb{R} , on a pour tout $x \in \mathbb{R}$: $f'(x) = 3x^2 3 = 3(x^2 1)$.
- Limites aux bornes : par le théorème des monômes de plus haut degré, on obtient que : $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. On obtient ainsi le tableau de variations suivant :

x	$-\infty$		-1		1		$+\infty$
f'(x)		+	0	-	0	+	
f	$-\infty$		✓ ³ ✓		-1		+∞

• Il s'agit alors d'appliquer le théorème de la bijection sur les intervalles $]-\infty,-1],$ [-1,1] et $[1,+\infty[$. A faire.

Exercice 18. Étudier la fonction $f: x \mapsto x^3 - x + 1$. Montrer que l'équation f(x) = 0 admet une unique solution réelle $\alpha \in]-2,-1[$. Déterminer un encadrement de α à 10^{-2} près.

Correction 18.

- 1. Étudier la fonction $f: x \mapsto x^3 x + 1$:
 - La fonction f est définie sur \mathbb{R} .
 - La fonction f est dérivable sur \mathbb{R} comme fonction polynomiale et pour tout $x \in \mathbb{R}$: $f'(x) = 3x^2 1$.
 - Variations de f:

x	$-\infty$		$-\frac{1}{\sqrt{3}}$		$\frac{1}{\sqrt{3}}$		$+\infty$
f'(x)		+	0	-	0	+	
f	$-\infty$		$1 + \frac{2}{3\sqrt{3}}$		$1 - \frac{2}{3\sqrt{3}}$		+∞

Les limites en $\pm \infty$ ont été obtenu par le théorème du monôme de plus haut degré.

- 2. Démontrer que l'équation f(x)=0 admet une unique solution réelle $\alpha\in]-2,-1[$:
 - Montrons que l'équation f(x) = 0 admet une unique solution dans]-2,-1[:
 - \star La fonction f est continue sur]-2,-1[comme fonction polynomiale.
 - * La fonction f est strictement croissante sur]-2,-1[.
 - $\star \lim_{x \to -2} f(x) = -5 < 0 \text{ et } \lim_{x \to -1} f(x) = 1 > 0.$

Ainsi d'après le théorème de la bijection, l'équation f(x) = 0 admet sur]-2,-1[une unique solution réelle r

- Vérifions que l'équation f(x) = 0 n'a pas d'autre solution sur \mathbb{R} : En appliquant de la même façon le théorème de la bijection sur chacun des intervalles où la fonction est strictement monotone, on montre que : f(x) < 0 sur $]-\infty,-2]$ et f(x) > 0 sur $[-1,+\infty[$ et ainsi α est bien l'unique solution réelle à l'équation f(x) = 0.
- 3. Déterminer un encadrement de α à 10^{-2} près : À faire avec la calculatrice en utilisant la méthode de dichotomie.

Exercice 19. Suites implicites, le retour!

Pour tout $n \in \mathbb{N}^*$, on considère la fonction f_n définie par : $\forall x \in \mathbb{R}, \ f_n(x) = x^3 + 3x - n$.

- 1. Soit $n \in \mathbb{N}^*$. Montrer que l'équation $f_n(x) = 0$ admet une unique solution sur \mathbb{R} . On note u_n cette solution.
- 2. Montrer que : $0 \le u_n \le n^{\frac{1}{3}}$ pour tout $n \in \mathbb{N}^*$.
- 3. Montrer que la suite est croissante.
- 4. Montrer que pour tout $n \in \mathbb{N}^*$ on a : $\left(\frac{u_n}{n^{\frac{1}{3}}}\right)^3 = 1 3\frac{u_n}{n}$. En déduire que : $u_n \underset{+\infty}{\sim} n^{\frac{1}{3}}$ ainsi que la limite de la suite.

Correction 19. Pour tout $n \in \mathbb{N}^*$, on considère la fonction f_n définie par pour tout $x \in \mathbb{R}$, $f_n(x) = x^3 + 3x - n$.

1. Soit $n \in \mathbb{N}^*$. Démontrer que l'équation $f_n(x) = 0$ admet une unique solution sur \mathbb{R} . On note u_n cette solution :

La fonction f_n est bien définie sur \mathbb{R} comme fonction polynomiale et elle est dérivable sur \mathbb{R} comme fonction polynomiale. Ainsi pour tout $x \in \mathbb{R}$: $f'_n(x) = 3x^2 + 3$. Ainsi $f'_n(x) > 0$ comme somme de deux termes positifs dont l'un est strictement positif. On obtient donc le tableau de variation suivant :

x	$-\infty$	$+\infty$
f_n	$-\infty$	+∞

Les limites sont obtenu avec le théorème du monôme de plus haut degré. On a donc

- La fonction f_n est continue sur \mathbb{R} comme fonction polynomiale.
- La fonction f_n est strictement croissante sur \mathbb{R} .
- $\lim_{x \to -\infty} f_n(x) = -\infty$ et $\lim_{x \to +\infty} f_n(x) = +\infty$.

Ainsi d'après le théorème de la bijection, l'équation $f_n(x) = 0$ admet une unique solution dans \mathbb{R} . On note

2. Montrer que : $0 \le u_n \le n^{\frac{1}{3}}$ pour tout $n \in \mathbb{N}^*$: On a : $f_n(0) = -n < 0$ et $f_n(n^{\frac{1}{3}}) = 3n^{\frac{1}{3}} > 0$. Comme par définition de u_n , on a : $f_n(u_n) = 0$, on vient de montrer que : $f_n(0) < f_n(u_n) < f_n(n^{\frac{1}{3}})$. Or la fonction f_n est strictement croissante sur \mathbb{R} et ainsi on a :

$$f_n(0) < f_n(u_n) < f_n(n^{\frac{1}{3}}) \Leftrightarrow 0 < u_n < n^{\frac{1}{3}}.$$

Et donc on a aussi $0 \le u_n \le n^{\frac{1}{3}}$.

3. Montrer que la suite est croissante :

Par définition de f_n , on a : $f_n(u_{n+1}) = (u_{n+1})^3 + 3u_{n+1} - n$. De plus par définition de la suite, on a aussi que:

$$f_{n+1}(u_{n+1}) = 0 \Leftrightarrow (u_{n+1})^3 + 3u_{n+1} - n - 1 = 0 \Leftrightarrow (u_{n+1})^3 + 3u_{n+1} - n = 1.$$

Ainsi on vient de montrer que : $f_n(u_{n+1}) = 1 > 0$. Comme $f_n(u_n) = 0$, on vient de prouver que : $f_n(u_{n+1}) > 0$ $f_n(u_n)$ et comme la fonction f_n est strictement croissante sur \mathbb{R} , on a :

$$f_n(u_{n+1}) > f_n(u_n) \Leftrightarrow u_{n+1} > u_n.$$

Ainsi | La suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante.

4. (a) Montrer que pour tout $n \in \mathbb{N}^*$: $\left(\frac{u_n}{n^{\frac{1}{3}}}\right)^3 = 1 - 3\frac{u_n}{n}$:

On utilise la définition de la suite. En effet, on sait que pour tout $n \in \mathbb{N}^*$, on a :

$$f_n(u_n) = 0 \Leftrightarrow u_n^3 + 3u_n - n = 0 \Leftrightarrow u_n^3 = n - 3u_n.$$

On divise alors cette égalité par n > 0 et on obtient que

$$\frac{u_n^3}{n} = 1 - 3\frac{u_n}{n} \Leftrightarrow \left[\left(\frac{u_n}{n^{\frac{1}{3}}} \right)^3 = 1 - 3\frac{u_n}{n} \right].$$

- (b) En déduire que : $u_n \underset{+\infty}{\sim} n^{\frac{1}{3}}$ ainsi que la limite de la suite :
 - On sait que pour tout $n \in \mathbb{N}^*$: $0 \le u_n \le n^{\frac{1}{3}}$. Ainsi on a :

$$0 \le \frac{u_n}{n} \le \frac{1}{n^{\frac{2}{3}}}.$$

Comme $\lim_{n\to+\infty} 0 = \lim_{n\to+\infty} \frac{1}{n^{\frac{2}{3}}} = 0$, on obtient d'après le théorème des gendarmes que : $\lim_{n\to+\infty} \frac{u_n}{n} = 0$.

Ainsi par somme de limites, on obtient que : $\lim_{n\to+\infty} 1 - \frac{u_n}{n} = 1$. On vient donc de prouver que :

 $\lim_{n\to+\infty} \left(\frac{u_n}{n^{\frac{1}{3}}}\right)^3 = 1 \text{ et par composition de limite (on compose par la fonction racine cubique continue sur } \mathbb{R}), \text{ on obtient que : } \lim_{n\to+\infty} \frac{u_n}{n^{\frac{1}{3}}} = 1. \text{ On vient donc bien de prouver que } \boxed{u_n \sim n^{\frac{1}{3}}.}$

• Par propriété sur les équivalents, on a : $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} n^{\frac{1}{3}} = +\infty$. Ainsi la suite diverge vers $+\infty$.

Exercice 20. Soient $f:[0,1] \to \mathbb{R}$ et $g:[0,1] \to \mathbb{R}$ deux fonctions continues telles que f(0) = g(1) et f(1) = g(0). Démontrer que l'équation f(x) = g(x) possède au moins une solution dans [0,1].

Correction 20. Soient $f:[0,1] \to \mathbb{R}$ et $g:[0,1] \to \mathbb{R}$ deux fonctions continues telles que f(0) = g(1) et f(1) = g(0). Démontrer que l'équation f(x) = g(x) possède au moins une solution dans [0,1]: Montrer que l'équation f(x) = g(x) admet au moins une solution dans [0,1] est équivalent à montrer que l'équation h(x) = 0 avec $h: x \mapsto f(x) - g(x)$ admet au moins une solution dans [0,1]. On est dans le cas d'un exercice abstrait (on ne connaît pas l'expression explicite de la fonction) et l'on doit montrer l'existence d'une solution à une équation. On est donc dans le cadre typique du théorème des valeurs intermédiaires. On a donc

- La fonction h est continue sur [0,1] comme somme de fonctions continues car, par hypothèse, on sait que f et g sont continues sur [0,1].
- On a : h(0) = f(0) g(0) et h(1) = f(1) g(1). Or f(1) = g(0) et g(1) = f(0). Ainsi on obtient que h(1) = g(0) f(0) = -h(0). Ainsi h(0) et h(1) sont de signes contraires donc il y en a forcément un positif et un négatif.

Ainsi d'après le théorème des valeurs intermédiaires, il existe au moins une solution à l'équation h(x) = 0 sur [0, 1]. Ainsi l'équation f(x) = g(x) possède au moins une solution dans [0, 1].

Exercice 21. Étude des points fixes d'une fonction.

- 1. Montrer que si $f:[0,1] \to [0,1]$ est une fonction continue sur [0,1] alors f admet un point fixe dans [0,1].
- 2. Montrer que si f est continue et décroissante sur [0,1] à valeurs dans [0,1], f admet un unique point fixe dans [0,1].

Correction 21.

- 1. Très classique. On cherche à montrer que l'équation f(x) = x admet une solution ce qui est équivalent à la résolution de f(x) x = 0. On pose ainsi la fonction $h: x \mapsto h(x) = f(x) x$ et on cherche alors à montrer que l'équation h(x) = 0 admet une solution. Comme on ne veut pas l'unicité, on peut se douter qu'il va falloir utiliser le TVI. On a en effet :
 - La fonction h est continue sur [0,1] comme somme de deux fonctions continues car, par hypothèse la fonction f est continue sur [0,1].
 - On a de plus : h(0) = f(0) 0 = f(0). Or comme la fonction f va de [0,1] dans [0,1], on a : $\forall x \in [0,1]$: $0 \le f(x) \le 1$. En particulier on a : $f(0) \ge 0$ donc $h(0) \ge 0$. On a aussi : h(1) = f(1) 1. Or comme la fonction f va de [0,1] dans [0,1], on a : $\forall x \in [0,1]$: $0 \le f(x) \le 1$. En particulier on a : $f(1) \le 1 \Leftrightarrow f(1) 1 \le 0$ donc $h(1) \le 0$.

Ainsi d'après le TVI, il existe donc $c \in [0,1]$ tel que : $h(c) = 0 \Leftrightarrow f(c) = c$. Ainsi c est un point fixe de f.

- 2. Très classique. Même type de raisonnement que ci-dessus sauf que l'on veut l'unicité du point fixe, il va donc falloir utiliser le théorème de la bijection. On cherche à montrer que l'équation f(x) = x admet une solution unique ce qui est équivalent à la résolution de f(x) x = 0. On pose ainsi la fonction $h: x \mapsto h(x) = f(x) x$ et on cherche alors à montrer que l'équation h(x) = 0 admet une unique solution. On a alors :
 - La fonction h est continue sur [0,1] comme somme de deux fonctions continues car, par hypothèse la fonction f est continue sur [0,1].
 - La fonction f est décroissante sur [0,1]. Il en est de même pour la fonction $x \mapsto -x$. Ainsi la fonction h est décroissante sur [0,1] comme somme de deux fonctions décroissantes.

• On a de plus : h(0) = f(0) - 0 = f(0). Or comme la fonction f va de [0, 1] dans [0, 1], on a : $\forall x \in [0, 1]$: $0 \le f(x) \le 1$. En particulier on a : $f(0) \ge 0$ donc $h(0) \ge 0$.

On a aussi : h(1) = f(1) - 1. Or comme la fonction f va de [0,1] dans [0,1], on a : $\forall x \in [0,1]$: $0 \le f(x) \le 1$. En particulier on a : $f(1) \le 1 \Leftrightarrow f(1) - 1 \le 0$ donc $h(1) \le 0$.

Ainsi d'après le théorème de la bijection, il existe donc un unique $c \in [0,1]$ tel que : $h(c) = 0 \Leftrightarrow f(c) = c$. Ainsi c est l'unique point fixe de f.

Exercice 22. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue.

Montrer que si f possède des limites finies en $-\infty$ et en $+\infty$ alors elle est bornée.

Correction 22. On suppose que f possède des limites finies en $+\infty$ et en $-\infty$ que l'on note respectivement l et l'. Ainsi par définition d'une limite, on a :

$$\forall \varepsilon > 0, \exists A > 0, \ \forall x \ge A : |f(x) - l| \le \varepsilon$$
 et $\forall \varepsilon' > 0, \exists A' > 0, \ \forall x \le -A' : |f(x) - l'| \le \varepsilon'.$

Ainsi si on prend par exemple $\varepsilon = \varepsilon' = 1$, on a l'existence de A > 0 et de A' > 0 tel que :

- $\forall x \ge A$: $-1 \le f(x) l \le 1 \Leftrightarrow -1 + l \le f(x) \le 1 + l$
- $\forall x \le -A' : -1 \le f(x) l' \le 1 \Leftrightarrow -1 + l' \le f(x) \le 1 + l'$.

Ainsi on a donc montré que sur $]-\infty,A']$ et sur $[A,+\infty[$, la fonction f est bien bornée. Il reste donc à étudier l'intervalle [A',A]. Mais la fonction f est alors continue sur le segment [A',A], ainsi d'après le théorème sur les fonctions continues sur un segment, la fonction f est bornée sur cet intervalle. Ainsi on a bien montré que la fonction f est bornée sur $\mathbb R$ tout entier.

Exercice 23. Soient $f:[0,1] \to [0,1]$ et $g:[0,1] \to [0,1]$ deux fonctions continues sur [0,1] et telles que $f \circ g = g \circ f$. Le but est de montrer qu'il existe $x_0 \in [0,1]$ tel que $f(x_0) = g(x_0)$. On va raisonner par l'absurde en supposant que

$$\forall x \in [0, 1], \quad f(x) \neq g(x).$$

- 1. Montrer que l'on peut se ramener au cas où : $\forall x \in [0,1], \quad f(x) > g(x)$.
- 2. Démontrer qu'il existe m > 0 tel que : $\forall x \in [0,1], \quad f(x) \ge g(x) + m$.
- 3. Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in [0,1]$: $f^n(x) \in [0,1]$ et $g^n(x) \in [0,1]$.
- 4. Montrer que : $\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \quad f^n(x) > q^n(x) + nm.$
- 5. Conclure.

Correction 23. On suppose donc par l'absurde que pour tout $x \in [0,1]: f(x) \neq g(x)$.

- 1. On pose la fonction $h: x \mapsto h(x) = f(x) g(x)$. Comme pour tout $x \in [0,1]: f(x) \neq g(x)$, on obtient que pour tout $x \in [0,1]: h(x) \neq 0$. Ainsi la fonction h ne s'annule pas sur [0,1]. On peut donc appliquer le corollaire du TVI. En effet on a :
 - La fonction h est continue sur [0,1] comme somme de deux fonctions continues.
 - Pour tout $x \in [0,1] : h(x) \neq 0$.

Ainsi d'après le corollaire du TVI, on sait que la fonction h garde un signe constant sur [0,1]: soit h est toujours strictement positive sur [0,1], soit h est toujours strictement négative sur [0,1]. On peut donc supposer par exemple que h reste toujours strictement positive sur [0,1] (le même type de raisonnement donnerait le même résultat si h reste toujours strictement négative). Ainsi pour tout $x \in [0,1]$, on a : f(x) > g(x).

2. • La fonction h est continue sur le segment [0,1] donc d'après le théorème sur les fonctions continues sur un segment, on sait que h est bornée et qu'elle atteint ses bornes. En particulier, il existe un minimum de h sur [0,1] que l'on note m. Ainsi on a par définition d'un minimum :

$$\forall x \in [0,1], \ h(x) \ge m \Leftrightarrow \forall x \in [0,1], \ f(x) \ge g(x) + m.$$

• Il reste donc à montrer que m > 0. Comme m est le minimum de h sur [0,1], on sait qu'il existe $c \in [0,1]$ tel que : m = h(c). Or on a supposé que h reste toujours strictement positive. Ainsi m = h(c) > 0.

Ainsi on a bien montré qu'il existe m > 0, tel que pour tout $x \in [0,1]: f(x) \ge g(x) + m$.

- 3. On montre par récurrence sur $n \in \mathbb{N}^*$ la propriété $\mathcal{P}(n)$: $\forall x \in [0,1], f^n(x) \geq g^n(x) + mn$.
 - Initialisation pour n=1: d'un côté, on a : pour tout $x \in [0,1]$: f(x) et de l'autre côté, on a pour tout $x \in [0,1]$: g(x)+m. D'après la question précédente on sait que pour tout $x \in [0,1]$: $f(x) \ge g(x)+m$. Donc $\mathcal{P}(1)$ est vraie.
 - Hérédité : soit $n \in \mathbb{N}^*$ fixé. On suppose que $\mathcal{P}(n)$ est vraie, montrons que $\mathcal{P}(n+1)$ est vraie. On a montré à la question précédente que pour tout $x \in [0,1]$, on a : $f(x) \geq g(x) + m$. En prenant $x = f^n(x) \in [0,1]$, on obtient que : $f(f^n(x)) \geq g(f^n(x)) + m$. Or on sait aussi que $f \circ g = g \circ f$ donc par une récurrence imédiate on pourrait montrer que $g \circ f^n = f^n \circ g$. Ainsi, on a pour tout $x \in [0,1]$: $g(f^n(x)) + m = f^n(g(x)) + m$. Ainsi, on vient de montrer que pour tout $x \in [0,1]$, on a : $f^{n+1}(x) \geq f^n(g(x)) + m$. Mais par hypothèse de récurrence, on sait aussi que pour tout $x \in [0,1]$, on a : $f^n(x) \geq g^n(x) + nm$. Ainsi en prenant $x = g(x) \in [0,1]$, on a : $f^n(g(x)) \geq g^n(g(x)) + nm$, à savoir : $f^n(g(x)) \geq g^{n+1}(x) + nm$. Finalement, on a donc montré que pour tout $x \in [0,1]$: $f^{n+1}(x) \geq f^n(g(x)) + m \geq g^{n+1}(x) + nm + m$ donc on a bien : $f^{n+1}(x) \geq g^{n+1}(x) + (n+1)m$ et ceci pour tout $x \in [0,1]$. Donc $\mathcal{P}(n+1)$ est vraie.
 - Il résulte du principe de récurrence que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in [0,1]: f^n(x) \geq g^n(x) + nm$.
- 4. On fixe alors $x \in [0,1]$ et on regarde ce que l'on obtient si on fait tendre n vers $+\infty$. On a pour tout $n \in \mathbb{N}$: $g^n(x) + nm = nm\left(1 + \frac{g^n(x)}{nm}\right)$. Or la suite $(g^n(x))_{n \in \mathbb{N}}$ est bornée car elle est toujours comprise entre 0 et 1

et cela pour tout $n \in \mathbb{N}$. Ainsi pour tout $n \in \mathbb{N}^*$ et comme m > 0, on a : $0 \le g^n(x) \le 1 \Leftrightarrow 0 \le \frac{g^n(x)}{nm} \le \frac{1}{nm}$.

Ainsi en utilisant le théorème des gendarmes, on montre que : $\lim_{n \to +\infty} \frac{g^n(x)}{nm} = 0$. Ainsi par propiétés sur les somme et produit de limites et comme m > 0, on obtient que $\lim_{n \to +\infty} g^n(x) + nm = +\infty$. Ainsi, on a

- $\forall n \in \mathbb{N}, \ f^n(x) \ge g^n(x) + nm.$
- $\lim_{n \to +\infty} g^n(x) + nm = +\infty.$

Ainsi d'après le théorème de minoration, on sait que : $\lim_{n\to+\infty} f^n(x) = +\infty$. Absurde car on sait aussi que pour tout $n \in \mathbb{N} : 0 \le f^n(x) \le 1$. Ainsi on a bien aboutit à une contradiction et donc il existe bien $x_0 \in [0,1]$ tel que $f(x_0) = g(x_0)$.

Exercice 24. Montrer que $f: x \mapsto \frac{e^x - e^{-x}}{2}$ est une bijection de \mathbb{R} dans \mathbb{R} . Expliciter f^{-1} .

- Correction 24. Montrons que f est une bijection de \mathbb{R} dans \mathbb{R} . On utilise pour cela le théorème de la bijection.
 - \star La fonction f est bien définie sur $\mathbb R$ et elle est continue et dérivable sur $\mathbb R$ comme composée, somme et quotient de fonctions continues et dérivables.
 - * Pour tout $x \in \mathbb{R}$, on a : $f'(x) = \frac{e^x + e^{-x}}{2}$. Ainsi f'(x) > 0 comme somme de deux termes strictement positifs. Ainsi la fonction f est strictement croissante sur \mathbb{R} . De plus, $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$ par propriété sur les composée, somme et quotient de limites.
 - * On a donc:
 - $\circ\,$ La fonction f est continue sur $\mathbb R$ comme composée, somme et quotient de fonctions continues.
 - \circ La fonction f est strictement croissante sur \mathbb{R} .
 - $\circ \lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to -\infty} f(x) = -\infty$

Ainsi d'après le théorème de la bijection, la fonction f est bijective de \mathbb{R} dans \mathbb{R} et on note $f^{-1}: \mathbb{R} \to \mathbb{R}$ sa fonction réciproque.

• Expression de f^{-1} :

On sait que : $\forall (x,y) \in \mathbb{R}^2, \ y = f(x) \Leftrightarrow x = f^{-1}(y)$. Or on a :

$$y = f(x) \Leftrightarrow e^x - e^{-x} = 2y \Leftrightarrow \frac{e^{2x} - 2ye^x - 1}{e^x} = 0 \Leftrightarrow e^{2x} - 2ye^x - 1 = 0.$$

On pose $X=e^x$ et on doit résoudre : $X^2-2yX-1=0$. Le discriminant vaut $\Delta=4(1+y^2)>0$ comme somme de deux termes positifs dont l'un est strictement positif. Les solutions sont : $X_1=y+\sqrt{1+y^2}$ et $X_2=y-\sqrt{1+y^2}$. Un calcul rapide permet de vérifier que $X_2<0$ (il suffit de remarquer que : $1+y^2>y^2\Leftrightarrow \sqrt{1+y^2}>|y|\Leftrightarrow -\sqrt{1+y^2}< y<\sqrt{1+y^2})$ et ainsi $e^x=X_2$ n'admet aucune solution. Par contre comme on peut aussi montrer que $X_1>0$, l'équation $e^x=X_1$ admet une unique solution qui est : $x=\ln\big(y+\sqrt{1+y^2}\big)$. On obtient ainsi :

$$\forall (x,y) \in \mathbb{R}^2, \ y = f(x) \Longleftrightarrow x = \ln(y + \sqrt{1 + y^2})$$

Ainsi, on a pour tout $y \in \mathbb{R}$: $f^{-1}(y) = \ln(y + \sqrt{1 + y^2})$.

Exercice 25. Soit la fonction
$$f$$
 définie par $f(x) = \begin{cases} \frac{x^2}{x^2 + 1} & \text{si } x \ge 0 \\ \frac{x^2}{x^2 - 1} & \text{si } x < 0 \end{cases}$

Montrer que f est une bijection de \mathcal{D}_f sur $f(\mathcal{D}_f)$, ensembles à préciser. Quelles sont les propriétés de f^{-1} ? Expliciter f^{-1} .

Correction 25.

- 1. Domaine de définition : La fonction f est bien définie si et seulement si pour x < 0, on a : $x^2 1 \neq 0$. Ainsi on a : $\mathcal{D}_f = \mathbb{R} \setminus \{-1\}$.
- 2. Limites aux bornes du domaine :
 - Limite en $-\infty$: en utilisant le théorème du monôme de plus haut degré, on obtient : $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{x^2 1} = 1$. Ainsi C_f admet une asymptote horizontale d'équation y = 1 au voisinage de $-\infty$.
 - Limite en $+\infty$: en utilisant le théorème du monôme de plus haut degré, on obtient : $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x^2 + 1} = 1$. Ainsi C_f admet une asymptote horizontale d'équation y = 1 au voisinage de $+\infty$.
 - Étude en -1: par propriétés sur les somme et quotient de limites, on obtient que : $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \frac{x^2}{x^2 1} = +\infty$ et $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{x^2}{x^2 1} = -\infty$. Ainsi la courbe \mathcal{C}_f admet une asymptote verticale d'équation x = -1.
- 3. Continuité de la fonction f:
 - La fonction f est continue sur $]-\infty,-1[$ et sur]-1,0[comme somme et quotient de fonctions continues.
 - La fonction f est continue sur \mathbb{R}^+ comme somme et quotient de fonctions continues. En particulier, on a que : $f(0) = 0 = \lim_{x \to 0^+} f(x)$.
 - Étude de la continuité en 0: comme la fonction f est définie par un raccord en 0, on doit étudier la continuité de f en 0 par les limites. On a déjà que la fonction f est continue à droite en 0 avec $f(0) = 0 = \lim_{x \to 0^+} f(x)$. Étude de la limite à gauche en 0: on a : $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{x^2}{x^2 1} = 0$ par propriétés sur les somme et quotient de limites. Ainsi, on a : $f(0) = 0 = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x)$ et donc f est continue en 0.

Ainsi la fonction f est continue sur son ensemble de définition.

4. Dérivabilité de la fonction f:

- La fonction f est dérivable sur $]-\infty, -1[$ et sur]-1, 0[comme somme et quotient de fonctions dérivables. De plus, pout tout x < 0 avec $x \ne -1$, on a : $f'(x) = \frac{-2x}{(x^2-1)^2}$.
- La fonction f est dérivable sur \mathbb{R}^+ comme somme et quotient de fonctions dérivables. De plus, pout tout $x \geq 0$, on $a: f'(x) = \frac{2x}{(x^2+1)^2}$. En particulier, elle est donc dérivable à droite en 0 et on $a: f'_d(0) = 0$.
- Étude de la dérivabilité en 0: on étudie pour cela le taux d'accroissement quand x tend vers 0 par valeur inférieure. On a pour tout x < 0, $x \ne -1$: $\frac{f(x) f(0)}{x} = \frac{x}{x^2 1}$. Ainsi par propriété sur les somme et quotient de limites, on obtient que : $\lim_{x \to 0^-} \frac{f(x) f(0)}{x} = 0$. Ainsi la fonction f est aussi dérivable à gauche en 0 avec $f'_g(0) = 0$. Comme $f'_g(0) = 0 = f'_d(0)$, la fonction f est dérivable en 0 et f'(0) = 0. La courbe \mathcal{C}_f admet une tangente horizontale au point d'abscisse 0.

On a donc montré que la fonction f est dérivable sur son ensemble de définition et que pour tout $x \in \mathbb{R}$,

$$x \neq -1, \text{ on a : } f'(x) = \begin{cases} \frac{2x}{(1+x^2)^2} & \text{si } x > 0\\ \frac{-2x}{(x^2-1)^2} & \text{si } x < 0, \ x \neq -1\\ 0 & \text{si } x = 0. \end{cases}$$

5. Variations de f: On remarque ainsi que pour tout $x \in \mathbb{R}$, $x \neq -1$, on a: $f'(x) \geq 0$ et f'(x) > 0 si $x \notin \{-1, 0\}$. Ainsi la fonction f est strictement croissante sur $]-\infty, -1[$ et sur $]-1, +\infty[$. On obtient

x	$-\infty$	-1	+∞
f'(x)	+		+
f	1	+∞	1

- 6. Théorème de la bijection :
 - Étude sur $]-\infty,-1[$:
 - \star La fonction f est continue sur $]-\infty,-1[$ comme somme et quotient de fonctions continues.
 - * La fonction f est strictement croissante sur $]-\infty,-1[$.
 - $\star \lim_{x \to -\infty} f(x) = 1$ et $\lim_{x \to -1^-} f(x) = +\infty$.

Ainsi d'après le théorème de la bijection, la fonction f est bijective de $]-\infty,-1[$ dans $]1,+\infty[$.

- Étude sur $]-1,+\infty[$:
 - * La fonction f est continue sur $]-1,+\infty[$ comme somme et quotient de fonctions continues sur]-1,0[et sur $]0,+\infty[$ et par raccord continu en 0.
 - * La fonction f est strictement croissante sur $]-1,+\infty[$.
 - $\star \lim_{x \to +\infty} f(x) = 1 \text{ et } \lim_{x \to -1^+} f(x) = -\infty.$

Ainsi d'après le théorème de la bijection, la fonction f est bijective de $]-1,+\infty[$ dans $]-\infty,1[$.

- Ainsi la fonction f est bijective de $\mathbb{R} \setminus \{-1\}$ dans $\mathbb{R} \setminus \{1\}$.
- 7. Propriétés de la réciproque : On a la continuité de f^{-1} sur $]-\infty,1[$ et sur $]1,+\infty[$ comme réciproque d'une fonction continue. On a les variations suivantes pour f^{-1} :

- 8. Expression de la réciproque : on sait donc que pour tout $x \neq -1$ et tout $y \neq 1$, on a : $y = f(x) \Leftrightarrow x = f^{-1}(y)$. Comme f a deux expressions différentes, on doit donc faire deux cas :
 - Cas 1 : si $x \ge 0$ et ainsi en utilisant le théorème de la bijection, on montre que $0 \le y < 1$: on a alors

$$y = f(x) \Leftrightarrow x^2 = y(1+x^2) \Leftrightarrow (1-y)x^2 = y.$$

Comme y < 1, on a : $1-y \neq 0$ et on peut bien diviser par 1-y. On obtient alors : $y = f(x) \Leftrightarrow x^2 = \frac{y}{1-y}$. De plus, comme $y \geq 0$ et $y < 1 \Leftrightarrow 1-y > 0$, les deux membres sont bien positifs et on peut composer par la fonction racine carrée. On obtient : $x = \sqrt{\frac{y}{1-y}}$ ou $x = -\sqrt{\frac{y}{1-y}}$. Mais comme $x \geq 0$, on obtient finalement que :

$$\forall x \ge 0, \forall y \in [0, 1[: y = f(x) \Leftrightarrow x = \sqrt{\frac{y}{1 - y}}.$$

• Cas 2 : si x < 0 avec $x \ne -1$ et ainsi en utilisant le théorème de la bijection, on montre que soit y > 1, soit y < 0. On a alors :

$$y = f(x) \Leftrightarrow x^2 = y(x^2 - 1) \Leftrightarrow (1 - y)x^2 = -y$$

Comme y>1 ou y<0, on a dans tous les cas : $1-y\neq 0$ et on peut bien diviser par 1-y. On obtient alors : $y=f(x)\Leftrightarrow x^2=\frac{-y}{1-y}=\frac{y}{y-1}$. Or si y>1 alors $\frac{y}{y-1}>0$ comme quotient de deux termes strictement positifs. Et si y<0 alors $\frac{y}{y-1}>0$ comme quotient de deux termes strictement négatifs. Ainsi dans tous les cas $\frac{y}{y-1}>0$. Les deux membres sont bien positifs et on peut composer par la fonction racine carrée. On obtient : $x=\sqrt{\frac{y}{y-1}}$ ou $x=-\sqrt{\frac{y}{y-1}}$. Mais comme x<0, on obtient finalement que :

$$\forall x<0,\ x\neq -1, \forall y>1 \text{ ou } y<0: y=f(x) \Leftrightarrow x=-\sqrt{\frac{y}{y-1}}.$$

Finalement on obtient pour f^{-1} l'expression suivante : $f^{-1}(x) = \begin{cases} \sqrt{\frac{x}{1-x}} & \text{si } 0 \leq x < 1 \\ -\sqrt{\frac{x}{x-1}} & \text{si } x < 0 \text{ ou } x > 1. \end{cases}$

Exercice 26. Soient a et b deux nombres réels tels que a < b. On pose, $\forall x \in]a, b[, f(x) = \frac{1}{x-a} + \frac{1}{x-b}]$.

- 1. Démontrer que f réalise une bijection de]a,b[sur un intervalle J que l'on précisera. Que peut-on dire de l'application f^{-1} ?
- 2. Déterminer f^{-1} dans le cas a=-1 et b=1. Représenter graphiquement f et f^{-1} .

Correction 26. Soient a et b deux nombres réels tels que a < b. On pose : $\forall x \in]a, b[, f(x) = \frac{1}{x-a} + \frac{1}{x-b}]$.

1. (a) Démontrer que f réalise une bijection de]a,b[sur un intervalle J que l'on précisera :

• Étude de la fonction f:

La fonction f est bien définie sur a, b et elle est dérivable sur a, b comme composées et somme de fonctions dérivables. Pour tout $x \in]a, b[$, on a :

$$f'(x) = \frac{-1}{(x-a)^2} + \frac{-1}{(x-b)^2} = -\left[\frac{1}{(x-a)^2} + \frac{1}{(x-b)^2}\right].$$

Ainsi f' < 0 comme somme de deux termes strictement négatifs. On obtient les variations suivantes $\operatorname{sur} \left[a, b \right[$

Les limites en a et b sont obtenues par propriétés sur les quotients et somme de limites.

• Existence de f^{-1} :

- \star La fonction f est continue sur a,b comme composées et somme de fonctions continues.
- \star La fonction f est strictement d/'ecroissante sur]a,b[.
- $\star \lim_{x \to a^+} f(x) = +\infty \text{ et } \lim_{x \to b^-} f(x) = -\infty.$

Ainsi d'après le théorème de la bijection, la fonction f est bijective de a, b sur \mathbb{R} . On a donc l'existence de $f^{-1}: \mathbb{R} \to]a, b[$.

(b) Que peut-on dire de l'application f^{-1} ?:

- La fonction f^{-1} est continue sur \mathbb{R} comme réciproque d'une fonction continue.
- La fonction f^{-1} est strictement décroissante sur \mathbb{R} comme réciproque d'une fonction strictement décroissante.
- $\forall x \in]a, b[, \forall y \in \mathbb{R} : y = f(x) \Leftrightarrow x = f^{-1}(y).$

2. **Déterminer** f^{-1} dans le cas a = -1 et b = 1:
On a donc $f(x) = \frac{1}{x+1} + \frac{1}{x-1}$. On sait que f est bijective de]-1,1[dans \mathbb{R} et donc on a en particulier

$$\forall x \in]-1,1[, \forall y \in \mathbb{R}: y = f(x) \Leftrightarrow x = f^{-1}(y).$$

On a donc:

$$y = f(x) \Leftrightarrow y = \frac{1}{x+1} + \frac{1}{x-1} \Leftrightarrow \frac{2x}{x^2-1} - y = 0 \Leftrightarrow \frac{-yx^2 + 2x + y}{x^2-1} = 0 \Leftrightarrow -yx^2 + 2x + y = 0.$$

Vérifions donc que pour tout $y \in \mathbb{R}$ fixé, cette équation a une unique solution $x \in]-1,1[$.

• CAS 1 si y = 0:

L'équation à résoudre devient : $2x = 0 \Leftrightarrow x = 0$. Ainsi il existe bien une unique solution dans]-1,1[.

• CAS 2 : si $y \neq 0$:

On doit alors résoudre une vraie équation du second ordre et on obtient que le discriminant vaut : $\Delta = 4y^2 + 4 = 4(1+y^2)$. Ainsi $\Delta > 0$ comme somme de deux termes positifs dont l'un est strictement

positif. Il existe donc deux solutions réelles distinctes : $x_1 = \frac{1 - \sqrt{1 + y^2}}{y}$ et $x_2 = \frac{1 + \sqrt{1 + y^2}}{y}$. Il reste alors à vérifier que seule l'une des douvernes. alors à vérifier que seule l'une des deux est entre -1 et 1 strictement

* Résolution de : $x_1 < 1 \Leftrightarrow \frac{1 - \sqrt{1 + y^2}}{y} < 1$:

On a:

$$\frac{1-\sqrt{1+y^2}}{y} < 1 \Leftrightarrow \frac{1-\sqrt{1+y^2}-y}{y} < 0.$$

Étude du signe de $1 - y - \sqrt{1 + y^2}$:

$$1 - y - \sqrt{1 + y^2} > 0 \Leftrightarrow 1 - y > \sqrt{1 + y^2}$$

On fait alors deux cas:

- o CAS a) : si $1-y<0\Leftrightarrow y>1$: pas de solution car une racine carrée est toujours positive ou nulle, elle ne peut donc pas être strictement inférieure à un nombre strictement négatif. Ainsi si y>1, on a : $1-y-\sqrt{1+y^2}\leq 0$.
- ∘ CAS b) : si $1 y \ge 0 \Leftrightarrow y \le 1$: on peut alors passer au carré des deux côtés car la fonction carré est strictement croissante sur \mathbb{R}^+ et que les termes sont alors positifs. On obtient que :

$$1 - y > \sqrt{1 + y^2} \Leftrightarrow 1 + y^2 - 2y > 1 + y^2 \Leftrightarrow -2y > 0 \Leftrightarrow y < 0.$$

Ainsi sur] $-\infty$, 0[, on a : $1-y-\sqrt{1+y^2}>0$ et sur [0, 1], on a : $1-y-\sqrt{1+y^2}\leq 0$.

On peut donc faire un tableau de signe et on a :

x	$-\infty$		0		$+\infty$
$1 - \sqrt{1 + y^2} - y$		+	0	-	
y		-	0	+	
$x_1 - 1$		-		-	

Ainsi pour tout $y \in \mathbb{R}^*$, on a : $x_1 < 1$.

- * On peut montrer de la même façon que pour tout $y \in \mathbb{R}^*$, on a : $x_1 > -1$.
- * On peut montrer de la même façon que pour tout $y \in \mathbb{R}^*$, on a : $x_2 \notin]-1,1[$

Ainsi dans le cas où $y \in \mathbb{R}^*$, il existe bien une unique solution dans] -1,1[qui est donnée par $x=x_1=\frac{1-\sqrt{1+y^2}}{y}$.

On obtient donc l'expression de f^{-1} suivant :

$$\forall y \in \mathbb{R}, \ f^{-1}(y) = \begin{cases} \frac{1 - \sqrt{1 + y^2}}{y} & \text{si } y \neq 0 \\ 0 & \text{si } y = 0. \end{cases}$$

Exercice 27. On note f la fonction définie par $f(x) = e^{(1+\frac{1}{x})\ln(x)}$.

- 1. Montrer que f est prolongeable par continuité en 0. On notera encore f la fonction ainsi prolongée.
- 2. Étudier la fonction.
- 3. On définit alors la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0 > 0$ et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$. Déterminer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.

Correction 27. On note f la fonction définie par $f(x) = e^{(1+\frac{1}{x})\ln(x)}$.

1. Montrer que la fonction f est prolongeable par continuité en 0. On notera encore f la fonction ainsi prolongée :

La fonction f est définie sur $]0, +\infty[$.

Étude de la limite en 0 :

Par propriété sur les somme et les produit de limites, on obtient que : $\lim_{x\to 0} \left(1+\frac{1}{x}\right) \ln\left(x\right) = -\infty$. Puis par

propriété sur la composition de limites, on a : $\lim_{x\to 0} f(x) = 0$. Donc la fonction f est prolongeable par continuité en 0 en posant f(0) = 0. La nouvelle fonction est encore notée f et elle est définie sur \mathbb{R}^+ par :

$$\forall x \in \mathbb{R}, \ f(x) = \begin{cases} e^{(1+\frac{1}{x})\ln(x)} & \text{si } x > 0\\ 0 & \text{si } x = 0. \end{cases}$$

2. Étudier la fonction:

La fonction f est dérivable sur $\mathbb{R}^{+\star}$ comme somme, produit et composée de fonctions dérivables et pour tout x>0: $f'(x)=\frac{e^{(1+\frac{1}{x})\ln(x)}}{x^2}[1+x-\ln x]$. Comme pour tout x>0, on a : $\frac{e^{(1+\frac{1}{x})\ln(x)}}{x^2}>0$, le signe de f' ne dépend que du signe de la fonction $g:x\mapsto 1+x-\ln x$. Cette fonction est dérivable sur $\mathbb{R}^{+\star}$ comme somme de fonction dérivables et pour tout $x>0:g'(x)=\frac{x-1}{x}$. On obtient donc :

x	0	1	$+\infty$
g'(x)	-	0	+
g			,

Ainsi 2 est le minimum global de g et donc pour tout x > 0 : g(x) > 0. Ainsi f' est strictement positive sur $\mathbb{R}^{+\star}$ et on obtient le tableau de variations suivant :

x	0	$+\infty$
f	0	+∞

La limite en $+\infty$ de f s'obtient par somme, produit et composée de limites.

- 3. On définit alors la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0>0$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. Déterminer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$:
 - On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel $l\in\mathbb{R}^+$.
 - * Étude de la limite de $(f(u_n))_{n\in\mathbb{N}}$:
 - \circ La suite $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}^+$.
 - o La fonction f est continue en l car la fonction f est continue sur \mathbb{R}^+ . En effet elle est continue sur $\mathbb{R}^{+\star}$ comme somme, produit et composée de fonctions continues et elle est continue en 0 par prolongement par continuité.

Ainsi d'après le théorème sur les suite et fonction, on sait que : $\lim_{n \to +\infty} f(u_n) = f(l)$.

- * De plus : $\lim_{n \to +\infty} u_{n+1} = l$ car la suite converge vers l d'après ce que l'on a supposé.
- * Ainsi en passant à la limite dans l'égalité : $u_{n+1} = f(u_n)$, on obtient que : l = f(l)
- Il reste alors à résoudre f(l) = l:
 - * Comme f(0) = 0, 0 est un point fixe de f.

* Pour tout $x \neq 0$, on doit alors résoudre : $e^{(1+\frac{1}{x})\ln{(x)}} = x$. On a

$$e^{(1+\frac{1}{x})\ln{(x)}} = x \Leftrightarrow \left(1+\frac{1}{x}\right)\ln{x} = \ln{x} \Leftrightarrow \frac{\ln{x}}{x} = 0 \Leftrightarrow x = 1.$$

Ainsi 1 est aussi point fixe de la fonction f.

On vient donc de prouver que la suite $(u_n)_{n\in\mathbb{N}}$ a deux limites éventuelles qui sont 0 et 1.

Exercice 28. On note f la fonction définie par $f(x) = \frac{x}{e^x - 1}$.

- 1. Montrer que f est prolongeable par continuité en 0. On notera encore f la fonction ainsi prolongée.
- 2. On définit alors la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0=0$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. Déterminer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.

Correction 28. On note f la fonction définie par $f(x) = \frac{x}{e^x - 1}$.

1. Montrer que la fonction f est prolongeable par continuité en 0. On notera encore f la fonction ainsi prolongée :

La fonction f est bien définie si $e^x - 1 \neq 0 \Leftrightarrow x \neq 0$. Ainsi $\mathcal{D}_f = \mathbb{R}^*$.

Étudions la limite en 0: en utilisant les équivalents usuels, on a : $e^x - 1 \sim x$ et ainsi par quotient d'équivalents, on a : $f(x) \sim 1$. Ainsi $\lim_{x \to 0} f(x) = 1$. Donc la fonction f est prolongeable par continuité en 0 en posant f(0) = 1. La nouvelle fonction est encore notée f et elle est définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

- 2. On définit alors la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0=0$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. Déterminer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$:
 - On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel $l\in\mathbb{R}$.
 - \star Étude de la limite de $(f(u_n))_{n\in\mathbb{N}}$:
 - \circ La suite $(u_n)_{n\in\mathbb{N}}$ converge vers l.
 - \circ La fonction f est continue en l car la fonction f est continue sur \mathbb{R} . En effet elle est continue sur \mathbb{R}^* comme somme et quotient de fonctions continues et elle est continue en 0 par prolongement par continuité.

Ainsi d'après le théorème sur les suite et fonction, on sait que : $\lim_{n\to+\infty} f(u_n) = f(l)$.

- \star De plus : $\lim_{n \to +\infty} u_{n+1} = l$ car la suite converge vers l d'après ce que l'on a supposé.
- \star Ainsi en passant à la limite dans l'égalité : $u_{n+1} = f(u_n)$, on obtient que : l = f(l)
- Il reste alors à résoudre f(l) = l:
 - * Comme $f(0) = 1 \neq 0$, 0 n'est pas point fixe de f.
 - \star Pour tout $l\neq 0,$ on doit alors résoudre : $\frac{l}{e^l-1}=x.$ On a

$$\frac{l}{e^l-1} = x \Leftrightarrow l = l(e^l-1) \Leftrightarrow 1 = e^l-1 \Leftrightarrow e^l = 2 \Leftrightarrow l = \ln 2,$$

car on a $l \neq 0$. Ainsi la seule limite éventuelle est $l = \ln 2$

Résolution d'équations fonctionnelles

Exercice 29. Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0. On suppose que $\forall x \in \mathbb{R}$, $g(x) = g\left(\frac{x}{2}\right)$.

- 1. Montrer que : $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \quad g(x) = g\left(\frac{x}{2^n}\right)$.
- 2. En déduire que g est constante sur \mathbb{R} .

Correction 29.

- 1. On montre par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: $\forall x \in \mathbb{R}, \ g(x) = g\left(\frac{x}{2^n}\right)$.
 - Initialisation : pour n=0 : d'un côté, on a pour tout $x \in \mathbb{R}$: g(x) et de l'autre côté, on a pour tout $x \in \mathbb{R}$: $g\left(\frac{x}{2^0}\right) = g(x)$. Donc $\mathcal{P}(0)$ est vraie.
 - Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose que la propriété $\mathcal{P}(n)$ est vraie, montrons que $\mathcal{P}(n+1)$ est vraie. Soit $x \in \mathbb{R}$ fixé quelconque. Par hypothèse de récurrence, on sait que : $g(x) = g\left(\frac{x}{2^n}\right)$. Mais si on pose $X = \frac{x}{2n}$, on sait aussi par hypothèse sur g que : $g(X) = g\left(\frac{X}{2}\right)$, à savoir : $g\left(\frac{x}{2^n}\right) = g\left(\frac{x}{2^n}\right) = g\left(\frac{x}{2^n+1}\right)$. On vient donc de montrer que : $g(x) = g\left(\frac{x}{2^n}\right) = g\left(\frac{x}{2^{n+1}}\right)$ donc on a bien pour tout $x \in \mathbb{R}$: $g(x) = g\left(\frac{x}{2^{n+1}}\right)$. Ainsi $\mathcal{P}(n+1)$ est vraie.
 - Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$: $g(x) = g\left(\frac{x}{2^n}\right)$.
- 2. Soit $x \in \mathbb{R}$ fixé. On sait donc que pour tout $n \in \mathbb{N}$: $g(x) = g\left(\frac{x}{2^n}\right)$. Or on a : $\lim_{n \to +\infty} \frac{x}{2^n} = 0$ car $-1 < \frac{1}{2} < 1$ et par propriété sur le produit de limites. On a donc
 - $\bullet \ \lim_{n \to +\infty} \frac{x}{2^n} = 0$
 - ullet La fonction g est continue en 0 par hypothèse.

Ainsi d'après le théorème sur les suites et les fonctions, on obtient que : $\lim_{n\to +\infty} g\left(\frac{x}{2^n}\right) = g(0)$. Comme on sait aussi que pour tout $n\in \mathbb{N}$: $g(x)=g\left(\frac{x}{2^n}\right)$ et que $\lim_{n\to +\infty} g(x)=g(x)$ car g(x) ne dépend pas de n, on a par unicité de la limite que : g(x)=g(0). Comme ceci est vrai pour tout $x\in \mathbb{R}$, on vient bien de montrer que g est constante tout le temps égale à g(0).

Exercice 30. Le but est de déterminer toutes les fonctions f continues sur \mathbb{R} telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y).$$

On considère une telle fonction et on pose a = f(1).

- 1. Calculer f(0).
- 2. Montrer que la fonction f est impaire.
- 3. Soit $x \in \mathbb{R}$. Montrer que : $\forall n \in \mathbb{Z}$, f(nx) = nf(x). On pourra commencer à le montrer pour $n \in \mathbb{N}$.
- 4. Montrer que : $\forall (p,q) \in \mathbb{Z} \times \mathbb{N}^*, \quad f\left(\frac{p}{q}\right) = \frac{p}{q}a.$
- 5. En déduire que : $\forall x \in \mathbb{R}$, f(x) = xa (on pourra utiliser en l'admettant le fait que tout réel est limite d'une suite de rationnels).
- 6. Conclure.

Correction 30. On fait ici un raisonnement par analyse-synthèse. Analyse: On considère une fonction f continue sur \mathbb{R} et qui vérifie la condition: $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y).

1. On a: $f(0+0) = f(0) + f(0) \Leftrightarrow f(0) = 2f(0) \Leftrightarrow f(0) = 0$.

- (a) Montrons que f est une fonction impaire :
 - \mathbb{R} est bien centré en 0 et f est une fonction définie sur \mathbb{R} tout entier.
 - Soit $x \in \mathbb{R}$, on a: f(x+(-x)) = f(x) + f(-x) par hypothèse sur f. Mais f(x+(-x)) = f(0) = 0d'après la question précédente. Ainsi on vient de montrer que f(x) = -f(-x) et ceci pour tout $x \in \mathbb{R}$.

Ainsi la fonction f est bien une fonction impaire.

- (b) Montrons alors que pour tout $x \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$: f(nx) = nf(x).
 - On montre par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: $\forall x \in \mathbb{R}, \ f(nx) = nf(x)$.
 - Initialisation : pour n=0 : d'un côté, on a : $f(0\times x)=f(0)=0$ et de l'autre côté, on a : $0 \times f(x) = 0$. Donc $\mathcal{P}(0)$ est vraie.
 - Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose la propriété vraie à l'ordre n, montrons qu'elle est vraie à l'ordre n+1. Soit $x \in \mathbb{R}$. On a : f((n+1)x) = f(nx+x) = f(nx) + f(x) par hypothèse sur la fonction f. Puis par hypothèse de récurrence, on sait que : f(nx) = nf(x). Ainsi, on obtient que : f((n+1)x) = f(x) + nf(x) = (n+1)f(x). Donc $\mathcal{P}(n+1)$ est vraie.
 - Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$: f(nx) = nf(x).
- (c) Soit alors $x \in \mathbb{R}$ et $n \in \mathbb{Z} \setminus \mathbb{N}$. On a ainsi $-n \in \mathbb{N}$ et on vient donc de démontrer que : f(-nx) = -nf(x) $car - n \in \mathbb{N}$ et en appliquant le résultat de la récurrence ci-dessus. En utilisant alors de plus le fait que la fonction f est impaire, on sait alors que : f(nx) = f(-(-nx)) = -f(-nx) = -(-nf(x)) = nf(x) ce qui est le résultat voulu.

Ainsi, on vient bien de montrer que pour tout $n \in \mathbb{Z}$ et pour tout $x \in \mathbb{R}$: f(nx) = nf(x).

3. Soient $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ fixés. On calcule $f\left(q \times \frac{p}{q}\right)$ de deux façons différentes. En effet, on a d'un côté :

 $f\left(q\times\frac{p}{q}\right)=f(p)=f(p\times 1)=pf(1)=pa \text{ car } p\in\mathbb{Z} \text{ et en appliquant la question précédente avec } x=1.$ Mais d'un autre côté, on a aussi : $f\left(q\times\frac{p}{q}\right)=qf\left(\frac{p}{q}\right)$ en appliquant cette fois ci la question précédente

avec $x = \frac{p}{a}$. Ainsi, on obtient l'égalité suivante : $pa = qf\left(\frac{p}{q}\right) \Leftrightarrow f\left(\frac{p}{q}\right) = \frac{p}{q}a$ ce qui est le résultat attendu.

- 4. On utilise alors le fait que tout réel est limite d'une suite de rationnels. Soit $x \in \mathbb{R}$. On sait donc qu'il existe une suite $(r_n)_{n\in\mathbb{N}}$ de nombres rationnels telle que : $\lim_{n\to+\infty} r_n = x$. On peut alors remarquer deux choses :
 - Comme pour tout $n \in \mathbb{N}$: $f(r_n) = r_n a$ d'après la question précédente car $r_n \in \mathbb{Q}$, on a par propriété sur le produit de limites : $\lim_{n \to +\infty} f(r_n) = xa$.
 - De plus, on a aussi:
 - $\star \lim_{n \to +\infty} r_n = x$
 - \star f est continue en x car elle est continue sur $\mathbb R$ tout entier par hypothèse de départ.

Ainsi d'après le théorème sur les suites et les fonctions, on sait que : $\lim_{n \to +\infty} f(r_n) = f(x)$.

Ainsi par unicité de la limite, on obtient que : f(x) = ax.

5. On a donc ainsi montrer dans l'analyse que si f est une fonction continue sur \mathbb{R} et vérifiant pour tout $(x,y) \in \mathbb{R}^2$: f(x+y) = f(x) + f(y) alors la fonction f est une fonction linéaire.

Synthèse: comme toutes les fonctions linéaires, à savoir toutes les fonctions de type $f: x \mapsto ax$ sont bien continues et vérifient bien que pour tout $(x,y) \in \mathbb{R}^2$ f(x+y) = f(x) + f(y), on obtient : l'ensemble des fonctions f cherchées est l'ensemble des fonctions linéaires.