Question number	Scheme	Marks
10 (a) (i)	$\overrightarrow{DC} = \overrightarrow{DA} + \overrightarrow{AC}, = 7\mathbf{i} - 10\mathbf{j} - 2\mathbf{i} + 15\mathbf{j} = 5\mathbf{i} + 5\mathbf{j}$	M1,A1
(ii)	$\overrightarrow{DC} = \overrightarrow{AB}$ ∴ $ABCD$ is a parallelogram	M1 A1
(b)	$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = -5\mathbf{i} - 5\mathbf{j} - 7\mathbf{i} + 10\mathbf{j} = -12\mathbf{i} + 5\mathbf{j}$	[4] M1A1
	unit vector $= (\pm)\frac{1}{13}, (-12\mathbf{i} + 5\mathbf{j})$	B1ft,B1 [4]
(c)	$\overrightarrow{BE} = \frac{3}{13} \left(-12\mathbf{i} + 5\mathbf{j} \right)$	
	$\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = \frac{29}{13}\mathbf{i} + \frac{80}{13}\mathbf{j}$	M1A1 [2]
(d)	$\overrightarrow{AF} = \lambda \overrightarrow{AE} = \lambda \left(\frac{29}{13} \mathbf{i} + \frac{80}{13} \mathbf{j} \right) \text{ or } \lambda' (29 \mathbf{i} + 80 \mathbf{j})$	B1
	$\overrightarrow{AF} = \overrightarrow{AC} + \mu \overrightarrow{DC} = -2\mathbf{i} + 15\mathbf{j} + \mu (5\mathbf{i} + 5\mathbf{j})$	M1A1
	$\frac{29}{13}\lambda = -2 + 5\mu \qquad \frac{80}{13}\lambda = 15 + 5\mu$	
	$\mu = \frac{7}{3} \left(\lambda = \frac{13}{3}, \lambda' = \frac{1}{3}\right)$	M1A1
	$DC: CF = 1: \frac{7}{3} (=3:7)$	A1 [6]
Total 16 marks		

		Notes			
(a)	M1	For the correct vector statement for \overrightarrow{DC} so $\overrightarrow{DC} = \overrightarrow{DA} + \overrightarrow{AC}$			
	A1	For the correct simplified expression $\overrightarrow{DC} = 5\mathbf{i} + 5\mathbf{j}$			
	M1	States $\overrightarrow{DC} = \overrightarrow{AB}$ Condone lack of arrows on vectors if they are clearly using vectors. i.e accept $DC = AB$			
	A1	Conclusion required, therefore <i>ABCD</i> is a parallelogram. Accept; a labelled diagram, shown, QED, or even a tick or # etc.			
(b)	M1	For the correct vector statement for $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD}$ or $\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$			
	A1	For the correct simplified expression $\overrightarrow{BD} = -12\mathbf{i} + 5\mathbf{j}$			
	B1ft	For the correct magnitude of their vector.			
		So that for $\overrightarrow{BD} = a\mathbf{i} + b\mathbf{j} \implies \left \overrightarrow{BD} \right = \sqrt{a^2 + b^2}, \left \overrightarrow{BD} \right = 13$			
	B1ft	Writes $\frac{1}{13}(a\mathbf{i} + b\mathbf{j})$ for their \overline{BD}			
(c)	M1	For any correct path for \overrightarrow{AE} with correct use of the ratio for \overrightarrow{ED} or \overrightarrow{BE}			
	A1	For $\overrightarrow{AE} = \frac{29}{13}\mathbf{i} + \frac{80}{13}\mathbf{j}$ oe			
Method 1 using triangle ACF (they may use any letters for μ and λ)					
(d)	B1	States $\overrightarrow{AF} = \lambda \overrightarrow{AE}$ or $\overrightarrow{AF} = \lambda' \left(\frac{29}{13} \mathbf{i} + \frac{80}{13} \mathbf{j} \right)'$			
	M1	$\overrightarrow{AF} = \overrightarrow{AC} + \mu \overrightarrow{DC}$			
	A1	For the fully correct expression which need not be simplified			
		$\overrightarrow{AF} = -2\mathbf{i} + 15\mathbf{j} + \mu'(5\mathbf{i} + 5\mathbf{j})'$			
	M1	Sets $\lambda' \left(\frac{29}{13} \mathbf{i} + \frac{80}{13} \mathbf{j} \right)' = -2\mathbf{i} + 15\mathbf{j} + \mu' (5\mathbf{i} + 5\mathbf{j})'$ and equates coefficients of			
		i and j to form two equations in λ and μ .			
		Condone i and j in their equations.			
	A1	For finding $\mu = \frac{7}{3}$			
	A1	$DC: CF = 1: \frac{7}{3}$ or $DC: CF = 3: 7$			
Metho	d 2 usi	ng triangle ADF (they may use any letters for μ and λ)			
	B1	States $\overrightarrow{AF} = \lambda \overrightarrow{AE}$ or $\overrightarrow{AF} = \lambda' \left(\frac{29}{13} \mathbf{i} + \frac{80}{13} \mathbf{j} \right)'$			
	M1	$\overrightarrow{AF} = \overrightarrow{AD} + \mu \overrightarrow{DC}$			
	A1	For a fully correct expression which need not be simplified			
		$\overrightarrow{AF} = -7\mathbf{i} + 10\mathbf{j} + \mu'(5\mathbf{i} + 5\mathbf{j})'$			
	M1	Sets $\lambda' \left(\frac{29}{13} \mathbf{i} + \frac{80}{13} \mathbf{j} \right)' = -7\mathbf{i} + 10\mathbf{j} + \mu' (5\mathbf{i} + 5\mathbf{j})'$ and equates coefficients of			
		i and j to form two equations in μ and λ .			
		Condone i and j in their equations.			
	A1	For finding $\mu = \frac{10}{3}$			
	•				

	A1	$DC:DF=1:\frac{10}{3} \Rightarrow DC:CF=1:\frac{7}{3} \text{ or } DC:CF=3:7$		
Method 3 using similar triangles				
(d)	B1	States triangles AEB and DEF are similar. Can be implied from correct work.		
	M1	BE: ED = 3:10 (given)		
	A1	So therefore correspondingly $AB:DF=3:10$		
	M1	AB = DC parallelogram		
	A1	So <i>DC:DF</i> = 3:10		
	A1	Hence <i>DC:CF</i> = 3:7		

Question number	Scheme	Marks
11 (a)	AC = 20x or $AX = 10x$	B1
	$EX = AX \tan 45^\circ = 10x$	M1A1 [3]
(b)	$EA = \frac{EX}{\sin 45^{\circ}} = \frac{10x}{\sin 45^{\circ}}, = \sqrt{200}x = (10\sqrt{2}x)$	M1A1
	Or use ΔEAC which is right-angled and isosceles	[2]
(c)	$\tan \theta = \frac{EX}{\frac{1}{2}AD} = \frac{10}{6}$	M1A1ft
	$\theta = 59.0^{\circ}$	A1 [3]
(d)	Reqd angle is $AXD(=\phi)$	
	$\tan\frac{1}{2}\phi = \frac{6}{8}$	M1A1
	$\phi = 73.7^{\circ}$ must be acute	A1 [3]
	ALT: Use cosine rule in triangle AXD	
(e)	Y is midpoint of AD	
	$EY = x\sqrt{(10\sqrt{2})^2 - 6^2} \ (= x\sqrt{164} \text{ or } 2x\sqrt{41})$	M1
	Area $\triangle AED = 6x^2 \sqrt{164} = 250$	M1
	x = 1.8037 = 1.804	A1
		[3]
Total 14 marks		al 14 marks

In this question penalise ROUNDING of angles only once in parts (c) and (d).

This applies only if both answers are correct but over-accurate, i.e. they would both round to the correct angle to 1 decimal place. For example; for an angle in (c) given as 59.04° award M1A1A0, but if the angle in (d) is then given as 73.74° do not penalise the angle in (d), and award M1A1A1.

If however the answer given in (c) is 59° without 59.04° seen, this is M1A1A0, and because it is under-accurate, if they then give the angle in (d) as 73.74° , then this is awarded M1A1A0 as well.

		Notes
(a)	B1	For using Pythagoras theorem to find either $AC = 20x$ or $AX = 10x$
		Do not accept $AC = 20$ or $AX = 10$
•	M1	For $EX = AX \tan 45^\circ = (10x)$
		Ft their AX but not if they use their AC
		If there is no x in their working it is M0 UNLESS they put x into their final answer.
•	A1	For 10 <i>x</i>
ALT		
	M1	Triangle AEC is isosceles with $\angle EAX = \angle ECX = 45^{\circ}$
		Hence triangle AEX is also isosceles with $\angle EAX = \angle AEX = 45^{\circ}$
		Thence thangle them is the bosecies with Zelini Zilen is
		If there is no x in their working it is M0 UNLESS they put x into their final answer.
-	A1	Hence $AX = EX$ so $EX = 10x$
Accept	t EX = 1	10x just stated without working.
(b)	M1	Uses Pythagoras theorem or any acceptable trigonometry to find length AE
,		
		$AE = \sqrt{(10.0)^2 + (10.0)^2} = (\sqrt{200.0})$
		$AE = \sqrt{(10x)^2 + (10x)^2} = (\sqrt{200}x)$
		$AE = \frac{10x}{\sin 45^{\circ}} = (\sqrt{200}x) \text{ or } AE = \frac{10}{\cos 45^{\circ}} = (\sqrt{200}x)$
		$AE = \frac{1}{\sin 45^{\circ}} = (\sqrt{200}x) \text{ or } AE = \frac{1}{\cos 45^{\circ}} = (\sqrt{200}x)$
		5111 +3
		If there is no x in their working it is M0 UNLESS they put x into their final answer.
-	A1	$AF = 10 \text{ y.} \sqrt{2} \text{ or } \sqrt{200} \text{ y.}$ Also exact 14.1 y. or better
		Accept unsimplified answers. Even accept answers given as $AE = \frac{10x}{\sqrt{2}/2}$
		Accept unsimplified answers. Even accept answers given as $AE = \frac{10x}{x}$
		The copt and simplified all sweets. Even accept and well given as $\frac{112}{\sqrt{2}}$
(c)	M1	Uses their EX to find $\tan \theta = \frac{EX'}{\frac{1}{4}AD} = \frac{10x'}{6x} \Rightarrow \theta = \dots$
		$\frac{1}{4}D$ $6x$
		2^{nD}
		(Or any other complete method for the required angle)
		4
		_ /
		$2\sqrt{34}x$
		10x
		θ
		/
		6x
		Accept working without x's as this is a ratio, but do not accept an x in the numerator or
		denominator only.
	A1ft	A correct value of θ for their EX
	A1	$\theta = 59.0^{\circ}$ rounded correctly

$\tan\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}\times AD}{\frac{1}{2}\times CD} = \frac{6x}{8x} \Rightarrow \angle AXD =$ $\sin\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}\times AD}{\frac{1}{10x'}} = \frac{6x}{10x} \Rightarrow \angle AXD =$ $\cos\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}\times CD}{\frac{1}{10x'}} = \frac{8x}{10x} \Rightarrow \angle AXD =$ Accept working without x's as this is a ratio, but do not accept x in the numerator or denominator only. A1 Uses correct values for their method $A1 \angle AXD = 73.7^{\circ} \text{ (must be acute)}$ Note: Do not isw if both angles are given and the acute angle not identified. ALT (using cosine rule) $\angle AXD = \cos^{-1}\left(\frac{(10x)^2 + (10x)^2 - (12x)^2}{2\times 10x \times 10x}\right) = \frac{56x^2}{200x^2} =$	
$\sin\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}\times AD}{\frac{1}{10x'}} = \frac{6x}{10x} \Rightarrow \angle AXD = \frac{1}{2} \times \frac{1}$	l
$\sin\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}\times AD}{\frac{1}{10x'}} = \frac{6x}{10x} \Rightarrow \angle AXD = \frac{1}{2} \times \frac{1}$	<i>⇒</i> ∠ <i>AXD</i> =
$\sin\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}\times AD}{^{1}10x'} = \frac{6x}{10x} \Rightarrow \angle AXD = \frac{1}{2}$ $\cos\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}\times CD}{^{1}10x'} = \frac{8x}{10x} \Rightarrow \angle AXD = \frac{1}{2}$ Accept working without x's as this is a ratio, but do not accept x in the numerator or denominator only. A1 Uses correct values for their method $A1 \angle AXD = 73.7^{\circ} \text{ (must be acute)}$ Note: Do not isw if both angles are given and the acute angle not identified. ALT (using cosine rule)	
$\sin\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}AXD}{10x'} = \frac{6x}{10x} \Rightarrow \angle AXD = \frac{1}{2}AXD$ $\cos\left(\frac{1}{2}\angle AXD\right) = \frac{\frac{1}{2}AXD}{10x'} = \frac{8x}{10x} \Rightarrow \angle AXD = \frac{1}{2}AXD$ Accept working without x's as this is a ratio, but do not accept x in the numerator or denominator only. A1 Uses correct values for their method A1 $\angle AXD = 73.7^{\circ}$ (must be acute) Note: Do not isw if both angles are given and the acute angle not identified.	
Accept working without x's as this is a ratio, but do not accept x in the numerator or denominator only. Al Uses correct values for their method Al $\angle AXD = 73.7^{\circ}$ (must be acute) Note: Do not isw if both angles are given and the acute angle not identified. ALT (using cosine rule)	⇒ ∠AXD =
but do not accept x in the numerator or denominator only. A1 Uses correct values for their method A1 $\angle AXD = 73.7^{\circ}$ (must be acute) Note: Do not isw if both angles are given and the acute angle not identified. ALT (using cosine rule)	$\Rightarrow \angle AXD = \dots$
A1 Uses correct values for their method A1 $\angle AXD = 73.7^{\circ}$ (must be acute) Note: Do not isw if both angles are given and the acute angle not identified. ALT (using cosine rule)	
A1 $\angle AXD = 73.7^{\circ}$ (must be acute) Note: Do not isw if both angles are given and the acute angle not identified. ALT (using cosine rule)	
Note: Do not isw if both angles are given and the acute angle not identified. ALT (using cosine rule)	
ALT (using cosine rule)	
(J) M1 (2 2 2 2)	tified.
$ \angle AXD = \cos^{-1} \left \frac{(10x)^2 + (10x)^2 - (12x)^2}{2 \times 10x \times 10x} \right = \frac{56x^2}{200x^2} = \dots $	
$2 \times 10 \times 10 \times 10 \times 10^{2}$	
2/10/2/10/2	
Accept working without x's as this is a ratio, but do not accept x^2 in the numerator of	umerator or
denominator only.	
A1 Uses the correct value for AX	
A1 $\angle AXD = 73.7^{\circ}$ (must be acute)	
(e) M1 Finds the length of E to the midpoint of AD (Y)	tified.
$EY = x\sqrt{(10\sqrt{2})^2 - 6^2} = x\sqrt{164} \text{ or } 2x\sqrt{41}$ ft their AE	
Any working without <i>x</i> is M0.	
M1 Equates area of 250 cm ² to $\frac{1}{2} \times AD \times EY = \frac{1}{2} \times 12x \times x\sqrt{164} \Rightarrow x =$	
A1 $x = 1.804$ rounded correctly	
ALT cosine rule and $\frac{1}{2}ab\sin C$	
(e) M1 Finds angle AED	
$\left((10\sqrt{2}x')^2 + (10\sqrt{2}x')^2 - (12x)^2 \right)$	
$\angle AED = \cos^{-1} \left[\frac{\left('10\sqrt{2}x' \right) + \left('10\sqrt{2}x' \right) - \left(12x \right)^2}{2 \times \left('10\sqrt{2}x' \right) \times \left('10\sqrt{2}x' \right)} \right] = 50.208^{\circ}$	
Any working without x is M0.	
M1 Equates area of 250 cm ² to expression for area of triangle:	
$250 = \frac{1}{2} \times AE \times ED \sin \angle AED = \frac{1}{2} \times 10\sqrt{2}x \times 10\sqrt{2}x \sin 50.208^{\circ} \Rightarrow x^{2} = 3.2536.$	2.2526 0
$\Rightarrow x = 1.8037$	= 3.2536°
A1 $x = 1.804$ rounded correctly	= 3.2536°