

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

AGRICULTURAL SCIENCES P1

NOVEMBER 2009

MEMORANDUM

MARKS: 150

This memorandum consists of 9 pages.

SECTION A

QUESTION 1.1

1.1.1	X\sum_	В	С	D
1.1.2	Α	В	С	X\sum_
1.1.3	Α	В	C	X\(\sqrt{1}
1.1.4	Α	В	C	X\sum_
1.1.5	X\sum_	В	С	D
1.1.6	Α	В	Χ//	D
1.1.7	Α	В	С	X\sum_
1.1.8	Α	Χ//	С	D
1.1.9	Α	В	X\sum_	D
1.1.10	Α	В	Χ//	D

(10 x 2) (20)

QUESTION 1.2

	ONLY A	ONLY B	A and B	NONE
1.2.1				Χ//
1.2.2	Χ/ſ			
1.2.3			Χ//	
1.2.4	Χ/ſ			
1.2.5		Χ//		

(5 x 2) (10)

QUESTION 1.3

- 1.3.1 Abomasum $\mathcal{I}\mathcal{I}$
- 1.3.2 Villus *∫ ∫*
- 1.3.3 Feedlot/Intensive farming/Intensive production \$\int I\$
- 1.3.4 Cryptorchidism \$\int I \int I\$
- 1.3.5 Docking JJ (5 x 2) (10)

QUESTION 1.4

- 1.4.1 Protein √
- 1.4.2 Nutritional *√*
- 1.4.3 Shelter/Housing √
- 1.4.4 Precision *J*
- 1.4.5 Pregnancy/Gestation J

 $(5 \times 1) (5)$

TOTAL SECTION A: 45

SECTION B

QUESTION 2

2.1	Digestive sy	vstem of	ruminants
	2.9000.700	,	

2.1.1 Diagram 1 \int and

The compartments of the stomach A, B and C are underdeveloped \int D is well developed \int (2)

2.1.2

Diagram 1	Diagram 2
Α	E√
В	F√
С	G√
D	Н√

(4)

2.1.3 I – oesophagus/gullet \int J – small intestine/duodenum \int (2)

2.1.4 Diagram 2/E/rumen √

Rumen/reticulo-rumen is well developed and large (great volume) ${\cal I}$ to cater for the bulky and fibrous roughages ${\cal I}$ formed like a fermentation organ or vessel ${\cal I}$ and is ideal for microbe/bacteria/protozoa activity ${\cal I}$ has a warm and moist environment ${\cal I}$ (Any 4)

(4) [12]

2.2 Energy loss in animal body

2.2.1 A – Digestible energy \int C – Energy lost in heat \int (2)

2.2.2 Importance of nett energy value of a feed

It shows how much energy is directly available to the animal for:

- Maintenance √
- Growth √
- Production \int (3)
- 2.2.3 Lipids have a high gross energy level and would increase the gross energy value ${\it I}$

because they do not contribute greatly to the formation of faeces and fermentation gases $\boldsymbol{\mathcal{I}}$

so less energy is lost \int (Any (2) 2)

2.2.4 Monogastric animals $\mathcal I$ They lose less energy $\mathcal I$ in faeces and fermentation gases $\mathcal I$

(3)

[10]

2.3 Lucerne as a feed to livestock

- 2.3.1 Protein rich \int Roughage \int (2)
- 2.3.2 Hay Dry content: 7 kg 0.56 = 6.44 kgManure – Dry content: 2 kg - 0.08 = 1.92 kg
 - = <u>Dry matter intake (kg) Dry mass of manure</u> x <u>100</u> \mathcal{F} Dry matter intake 1
 - = $(7 \text{ kg} 0.056 \text{ kg}) (2 \text{ kg} 0.08 \text{ kg}) \checkmark \times 100$ 6.44
 - = 6,44 1,92 $\times 100 \mathcal{J}$ **OR** = 4,52 $\times 100 \mathcal{J}$ 6,44 1
 - $= 70,1\% \int$ (4)
- 2.3.3 Younger sheep need proteins mainly for growth \int while older sheep need proteins for production and reproduction \int (2)

2.3.4 Suitability of lucerne hay

- Easy for sheep (ruminant) to digest I
- It is palatable $\boldsymbol{\mathcal{I}}$
- Rich in proteins \int
- Rich in calcium √
- Rich in vitamins A and D √
- Contains cobalt and potassium that stimulate microbial activities √ (Any 2) (2)

2.3.5 THREE ways to improve digestibility of lucerne hay

- Grinding √
- Pelleting √
- Soaking √
- Milling √
- Chopping/cutting \int (Any 3)

3) (3) [13]

[35]

QUESTION 3

3.1	Animal p	nimal production			
	3.1.1	Nkomani feedlot ${\cal F}$	(1)		
	3.1.2	Sondela feedlot: $\mathcal I$ The total cost was the lowest (78 compared to 81) and $\mathcal I$ The production output was the highest (72 compared to 68) $\mathcal I$	(3)		
	3.1.3	The most efficient way to improve • Genetic improvement and breeding ✓	(1)		
	3.1.4	Temperature/Light/Humidity/Wind/Nutrition/feeding √ (Any 1)	(1)		
	3.1.5	A specialised breeding program/Inbreeding/Cross-breeding/Upgrading will increase the genetic potential of the herd ${m f}$	(1) [7]		
3.2.	Dairy far	ming			
	3.2.1	Suitable/favourable/conducive/ideal temperature for maximum production ${\it I}$	(1)		
	3.2.2	 Low temperature will increase food intake to maintain a constant body temperature (heat) \(\int \) High temperature leads to a lower intake of food as the animal needs less energy to maintain its body temperature / animal is uncomfortable and eats less \(\int \) 	(2)		
	3.2.3	TWO possible measures to control high temperature			
		 Shelter √ Ventilation √ 	(2) [5]		
3.3	Big andEnoulCorreAnimaSuffice	equirements for transporting animals and strong vehicles/adapted vehicles for transportation/strong sides $\mathcal I$ gh space for animals $\mathcal I$ ext documentation for the transport of livestock $\mathcal I$ als should be marked as prescribed by regulations $\mathcal I$ als of same sex and age transported together $\mathcal I$ sient protection $\mathcal I$ sion of drinking water/a calm area prior to departure $\mathcal I$ (Any 3)	(3)		

(5)

3.4 Inspection by organic farmers' association

3.4.1 The reasons for inspection of a farmer by organic association To make sure that the farmer meets the requirements for being a registered member of the association \mathcal{I} (1)

3.4.2 Five criteria for organic farming

- Irrigation water should be free from inorganic minerals like sodium, potassium, boron etc $\mathcal I$
- ullet Fertilisation is done with organic fertilisers e.g. compost/farm manure $oldsymbol{arsigma}$
- Weed control is done biologically without any herbicides I
- Pest and disease are controlled biologically I
- The produce (milk) is supplied to consumers that deal with organic products e.g. Woolworths ${\cal I}$
- No growth stimulants added into rations e.g. hormones/ antibiotics ${m J}$
- No supplements of mineral licks, only animal products like bone meal or carcass meal √ (Any 5)

3.4.3 **Necessity for registration with the association**

- To ensure that the products have a relevant market I
- To ensure that the produce (milk) supplied to consumers (Woolworths) meets the criteria ${\cal J}$
- Dairy farmer will be supplied with relevant and new information as well as technology ${\cal F}$
- The association will ensure/strengthen the negotiating power of the organic dairy producer \int (Any 2) (2)

3.4.4 **TWO advantages of organic farming**

- There is no more pollution of the environment with poisonous chemicals/the use of ecologically friendly methods and substances to improve soil and control pests $\mathcal F$
- The produce is sold at a higher price I
- The higher price for the produce will make his/her dairy farming more profitable ${\cal I}$
- Milk is free of contaminants (additives such as chemicals, antibiotics and hormones) ${\cal J}$
- Farmer and workers enjoy healthier working conditions

 (Any 2) (2)

 [10]

3.5 **Natural grazing**

3.5.1 July **√**

- No rainfall in winter \int

- Too low temperatures for growth I

(3)

3.5.2 TWO observations of pasture conditions

- Colour of grazing/green highly nutritious/age of plants I

Volume of grazing/size of plants√

- Type of dominant plants/permanent plants/annual plants $\mathcal I$

- Cover density/damage to grazing plants \int (Any 2) (2)

3.5.3 Summer**√**

because the nutritive value is high during summer J (2)

3.5.4 Early winter months (May – Sept.) \int (1)

3.5.5 When the nutritional value of the pasture starts to drop II (2)

[10] **[35]**

QUESTION 4

4.1 Animal disease carriers

4.1.1 Ticks are parasites that have toxins and pathogens in their salivary glands $\boldsymbol{\mathcal{I}}$

When ticks suck blood these pathogens (toxins and bacteria) are transmitted ${m \digamma}$

(2)

4.1.2 Control measures to restrict infectious diseases

- Work closely with veterinarians I
- Apply strict health measures on the farm (clean housing and clean fresh water)/sanitation ${\cal J}$
- Isolate sick animals I
- Destroy carcasses, skins and other material from infected animals ${\cal J}$
- Strict control of pests or parasites √
- Provide proper nutrition √
- Quarantine of sick animals I (Any 3)

[5]

Fertilisation and embryo development 4.2

Oestrogen \(\int \) 4.2.1 Ovulation \(\int \)

(2)

4.2.2 B/fallopian tube/oviduct $\boldsymbol{\mathcal{I}}$ (1)

4.2.3 TWO functions of membranes around the embryo

- For nutrition/gases/antibodies I
- For protection against shock I
- For excretion/waste products \int

(Any 2)

(2)

4.2.4 Causes of termination of pregnancy

- Infections √
- Allergies **√**
- Poison/Toxin √
- Malnutrition/Incorrect feeding *√*
- Diseases √
- Vaccines **√**
- Injuries
- Hormonal disturbances \int

(Any 2)

(2)

4.2.5 Visible signs of approaching parturition

- Isolation \(\int \)
- Stops eating I
- Making bellowing noises I
- Urinates and defaecates often \int
- Ligaments of tail area, pelvis, vagina and cervix relax I
- Vulva enlarges/swollen ✓
- Strings of mucus appear \int
- Udder becomes swollen and leak milk I(2)(Any 2) [9]

4.3 Life cycle of animal pests

4.3.1 The pest will affect the human alimentary canal/human health (nutrition) $\boldsymbol{\mathcal{I}}$

The animal health (market value) will be affected I

The quality of meat will be negatively affected ${\cal J}$

Mechanical damage on the digestive system as it destroys some tissues and organs/cause wounds ${m f}$

Damage to the digestive capacity in both animals since the pests destroy tissue (cells) secreting gastric juices

Depletive damage as it absorbs nutrients required by the host I

(3)

(Any 3)

Please turn over

4.4

4.3.2	The animal will get the pest through grazing/infected pasture ${m \digamma}$	(1)
4.3.3	Man (humans) ${m arsigma}$ and cattle ${m arsigma}$	(2)
4.3.4	Meat is inspected before consumption ${m \digamma}$	(1)
4.3.5	Dosing/Drenching/Premixes (worm remedy mixed into feed)/Pastes (remedies smeared onto the tongue)/Injections (remedies that are injected)/Lick blocks (that contain remedies) $\boldsymbol{\mathcal{I}}$	
	The tapeworm is an internal parasite ${m f}$	(2)
4.3.6	Beef measles tapeworm/Taenia saginata/Tapeworm √	(1) [10]

Battery system Free-range system Chickens are protected from contact Chickens are allowed to utilise the with other chickens and humans \int space freely $\boldsymbol{\mathcal{I}}$ Chickens are protected in Chickens are exposed to the sunlight and other environmental conditions $\mathcal I$ enclosed environment \mathcal{I} Disease prevention is emphasised Chickens are more exposed to at all levels of the operation Idiseases √ Sterilisation of cages and shelter is Manure and other material is left on carefully done and monitored Ithe soil surface √ All layers receive vaccines and Chickens are treated for diseases as remedies simultaneously Inecessary √ Receive only food and roam the Receive additions in their food Γ area where they are kept IThey supplement their food with Separate food is provided for vegetation and things they pick from batches \(\int \) the soil √

(Any 3 from each column)

4.5 Mineral deficiency diseases

4.5.1	Vitamin B $_2 oldsymbol{f}$	(1)
4.5.2	Vitamin D $oldsymbol{arsigma}$	(1)
4.5.3	Vitamin A $oldsymbol{arsigma}$	(1)
4.5.4	Vitamin K $oldsymbol{arsigma}$	(1)
4.5.5	Vitamin D √	(1)
		[5] [35]

TOTAL SECTION B: 105

GRAND TOTAL: 150

(6)