Network Reconstruction Using Sensitivity Analysis

github.com/gerritgr/insa

Dr. Gerrit Großmann

Problem Setting

- ► Goal: Infer latent network structure of a system.
- ► Input: Large number of independent snapshots.
- Each snapshot measures state of each node/component.

Motivation

Measurement problem:

- ► Often limited to one measurement before needing to restart the system.
 - E.g., Cells, quantum states, brains
- ► Time-scales may not be adequate for detecting temporal correlations.

Prediction-based paradigm converts static snapshots into interactions.

Sensitivity analysis separates meaningful interactions from spurious correlations.

Method

- ► Step 1: Reconstruction task train individual NN for each node:
- Predict state/value of the node based on all other nodes.
- ► Step 2: Sensitivity analysis determines importance of each node.
- Step 3: Normalization + Thresholding + Symmetry leads to recovered interaction graph.

Sensitivity Analysis:

Masking

Obscure a node and evaluate the decrease in prediction accuracy for all remaining nodes.

Permutation

Distort a node and evaluate the decrease in prediction accuracy for all remaining nodes.

Saliency Values (Gradient)

Measure the extent of change in the prediction when altering the node value infinitesimally.

Results

Model	Graph	INSA (our method)	Corr	MI	ParCorr
Cascade	ER Grid WS	480 ± 41.8 94 ± 10.3 125 ± 7.5	697 ± 363.4 149 ± 71.8 485 ± 240.4	858 ± 482.1 98 ± 11.3 325 ± 209.2	717 ± 84.3 169 ± 33.7 559 ± 117.1
Majority Vote	ER Grid WS	755 ± 47.6 3 ± 3.9 31 ± 5.6	722 ± 80.3 44 ± 6.6 455 ± 112.1	703 ± 78.2 39 ± 7.3 455 ± 112.1	721 ± 62.3 10 ± 4.7 44 ± 5.9
Opinion	ER Grid WS	184 ± 10.2 52 ± 20.5 117 ± 18.7	684 ± 108.2 158 ± 57.6 653 ± 129.0	249 ± 18.3 64 ± 11.9 127 ± 16.2	761 ± 107.1 155 ± 36.1 646 ± 152.9
SIS	ER Grid WS	270 ± 41.4 18 ± 6.7 78 ± 15.2	830 ± 168.4 69 ± 61.2 408 ± 341.0	225 \pm 32.3 27 ± 9.3 58 \pm 15.7	674 ± 211.3 160 ± 70.8 563 ± 168.5

Conclusion: Sensitivity analysis can successfully differentiate between neighbors and non-neighbors.

Related Work

- ► GINA: Network inference for homogenous graphs without the need for thresholding.

 Großmann et al., 2023
- ► Neural Granger Causality: Measures how well a node can predict another node's state/value. Tank et al., 2021
- ► AIDD: Prediction-based network inference for time-series data. Zhang et al., 2019
- ► Netrd: Python library to compute baselines. Hartle et al., 2020

