Práctico 1 Álgebra II – Año 2024/1 FAMAF

Soluciones

Vectores y producto escalar.

- (1) Dados v = (-1, 2, 0), w = (2, -3, -1) u = (1, -1, 1), calcular:
 - a) 2v + 3w 5u,
 - b) 5(v + w),
 - c) 5v + 5w (y verificar que es igual al vector de arriba).

Solución:

a)
$$2v + 3w - 5u = 2 \cdot (-1, 2, 0) + 3 \cdot (2, -3, -1) - 5 \cdot (1, -1, 1)$$

= $(-2, 4, 0) + (6, -9, -3) + (-5, 5, -5) = \boxed{(-1, 0, -8)}$

b)
$$5(v + w) = 5 \cdot ((-1, 2, 0) + (2, -3, -1)) = 5 \cdot (1, -1, -1) = (5, -5, -5)$$

c)
$$5v + 5w = 5 \cdot (-1, 2, 0) + 5 \cdot (2, -3, -1) = (-5, 10, 0) + (10, -15, -5) = (5, -5, -5)$$

- (2) Calcular los siguientes productos escalares.
 - a) $\langle (-1, 2, -0), (2, -3, -1) \rangle$,
 - b) $\langle (4, -1), (-1, 2) \rangle$.

Solución:

a)
$$\langle (-1, 2, -0), (2, -3, -1) \rangle = (-1) \cdot 2 + 2 \cdot (-3) + 0 \cdot (-1) = -2 + (-6) + 0 = \boxed{-8}$$

b) $\langle (4, -1), (-1, 2) \rangle = 4 \cdot (-1) + (-1) \cdot 2 = -4 + (-2) = \boxed{-6}$

(3) Dados v = (-1, 2, 0), w = (2, -3, -1) y u = (1, -1, 1), verificar que:

$$\langle 2v + 3w, -u \rangle = -2\langle v, u \rangle - 3\langle w, u \rangle$$

Solución: Calculamos ambos miembros por separado.

Miembro izquierdo:
$$\langle 2v+3w, -u \rangle = \langle 2 \cdot (-1, 2, 0) + 3 \cdot (2, -3, -1), -(1, -1, 1) \rangle$$

= $\langle (-2, 4, 0) + (6, -9, -3), (-1, 1, -1) \rangle = \langle (4, -5, -3), (-1, 1, -1) \rangle$
= $4 \cdot (-1) + (-5) \cdot 1 + (-3) \cdot (-1) = -4 + (-5) + 3 = \boxed{-6}$

Miembro derecho:
$$-2\langle v, u \rangle - 3\langle w, u \rangle = -2\langle (-1, 2, 0), (1, -1, 1) \rangle - 3\langle (2, -3, -1), (1, -1, 1) \rangle$$

= $-2 \cdot (-1 \cdot 1 + 2 \cdot (-1) + 0 \cdot 1) - 3 \cdot (2 \cdot 1 + (-3) \cdot (-1) + (-1) \cdot 1)$
= $-2 \cdot (-1 + (-2) + 0) - 3 \cdot (2 + 3 + (-1)) = -2 \cdot (-3) - 3 \cdot 4 = 6 - 12 = \boxed{-6}$

1

(4) Probar que

a)
$$(2, 3, -1)$$
 y $(1, -2, -4)$ son ortogonales.

b) (2, -1) y (1, 2) son ortogonales. Dibujar en el plano.

Solución: Calculamos su producto interno para ver si es nulo.

a)
$$\langle (2,3,-1), (1,-2,-4) \rangle = 2 \cdot 1 + 3 \cdot (-2) + (-1) \cdot (-4) = 2 + (-6) + 4 = \boxed{0}$$

b)
$$\langle (2,-1), (1,2) \rangle = 2 \cdot 1 + (-1) \cdot 2 = 2 - 2 = |0|$$

FIGURE 1. Ejercicio 4.b

(5) Encontrar

- a) un vector no nulo ortogonal a (3, -4),
- b) un vector no nulo ortogonal a (2, -1, 4),
- c) un vector no nulo ortogonal a (2, -1, 4) y (0, 1, -1),

Solución:

a) (4,3) es un vector no nulo ortogonal a (3,-4), pues:

$$\langle (3, -4), (4, 3) \rangle = 3 \cdot 4 + (-4) \cdot 3 = 12 - 12 = \boxed{0}$$

b) (1,2,0) es un vector no nulo ortogonal a (2,-1,4), pues:

$$\langle (2, -1, 4), (1, 2, 0) \rangle = 2 \cdot 1 + (-1) \cdot 2 + 4 \cdot 0 = 2 - 2 + 0 = \boxed{0}$$

c) Primero notar que cualquier vector de la pinta (a, b, b) será ortogonal a (0, 1, -1), pues:

$$\langle (0,1,-1), (a,b,b) \rangle = 0 \cdot a + 1 \cdot b + (-1) \cdot b = 0 + b - b = \boxed{0}$$

Si ahora multiplicamos nuestro candidato (a, b, b) con (2, -1, 4) tenemos:

$$\langle (2, -1, 4), (a, b, b) \rangle = 2 \cdot a + (-1) \cdot b + 4 \cdot b = \boxed{2a + 3b}$$

Luego, si elegimos por ejemplo a=-3 y b=2 vamos a tener a nuestro candidato ortogonal a ambos vectores. Es decir, (-3,2,2) cumple lo requerido.

(6) Encontrar la longitud de los vectores.

(b)
$$(t, t^2)$$
,

(c)
$$(\cos \phi, \sec \phi)$$
.

Solución:

a)
$$||(2,3)|| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$$

b)
$$||(t, t^2)|| = \sqrt{t^2 + (t^2)^2} = \sqrt{t^2 + t^4} = \boxed{|t|\sqrt{1 + t^2}}$$

c)
$$||(\cos \phi, \sin \phi)|| = \sqrt{\cos^2 \phi + \sin^2 \phi} = \sqrt{1} = \boxed{1}$$

(7) Calcular $\langle v, w \rangle$ y el ángulo entre v y w para los siguientes vectores.

(a)
$$v = (2, 2), w = (1, 0),$$
 (b) $v = (-5, 3, 1), w = (2, -4, -7).$

Solución: Para encontrar el ángulo se deben calcular además las normas de los vectores:

a)
$$\langle v, w \rangle = \langle (2, 2), (1, 0) \rangle = 2 \cdot 1 + 1 \cdot 0 = 2 + 0 = \boxed{2}$$

 $||v|| = ||(2, 2)|| = \sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$
 $||w|| = ||(1, 0)|| = \sqrt{1^2 + 0^2} = \sqrt{1 + 0} = \sqrt{1} = 1$
 $\theta = \cos^{-1}\left(\frac{\langle v, w \rangle}{||v|| ||w||}\right) = \cos^{-1}\left(\frac{2}{2\sqrt{2} \cdot 1}\right) = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \boxed{45^{\circ}}$
b) $\langle v, w \rangle = \langle (-5, 3, 1), (2, -4, -7) \rangle = -5 \cdot 2 + 3 \cdot (-4) + 1 \cdot (-7) = -10 - 12 - 7 = \boxed{-29}$
 $||v|| = ||(-5, 3, 1)|| = \sqrt{(-5)^2 + 3^2 + 1^2} = \sqrt{25 + 9 + 1} = \sqrt{35}$
 $||w|| = ||(2, -4, -7)|| = \sqrt{2^2 + (-4)^2 + (-7)^2} = \sqrt{4 + 16 + 49} = \sqrt{69}$
 $\theta = \cos^{-1}\left(\frac{\langle v, w \rangle}{||v|| ||w||}\right) = \cos^{-1}\left(\frac{-29}{\sqrt{35}\sqrt{69}}\right) = \boxed{126^{\circ}9'55.57''}$

(8) Recordar los vectores e_1 , e_2 y e_3 dados en la página 12 del apunte. Sea $v=(x_1,x_2,x_3)\in\mathbb{R}^3$. Verificar que

$$v = x_1e_1 + x_2e_2 + x_3e_3 = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \langle v, e_3 \rangle e_3.$$

Solución: Podemos empezar desde el miembro de la derecha, pasar por el del medio y llegar al de la izquierda aplicando las definiciones y propiedades conocidas:

$$\langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \langle v, e_3 \rangle e_3 =$$

$$= \langle (x_1, x_2, x_3), (1, 0, 0) \rangle e_1 + \langle (x_1, x_2, x_3), (0, 1, 0) \rangle e_2 + \langle (x_1, x_2, x_3), (0, 0, 1) \rangle e_3$$

$$= (x_1 \cdot 1 + x_2 \cdot 0 + x_3 \cdot 0) e_1 + (x_1 \cdot 0 + x_2 \cdot 1 + x_3 \cdot 0) e_2 + (x_1 \cdot 0 + x_2 \cdot 0 + x_3 \cdot 1) e_3$$

$$= (x_1 + 0 + 0) e_1 + (0 + x_2 + 0) e_2 + (0 + 0 + x_3) e_3 = x_1 e_1 + x_2 e_2 + x_3 e_3$$

$$x_1 e_1 + x_2 e_2 + x_3 e_3 = x_1 (1, 0, 0) + x_2 (0, 1, 0) + x_3 (0, 0, 1) =$$

$$= (x_1 \cdot 1, x_1 \cdot 0, x_1 \cdot 0) + (x_2 \cdot 0, x_2 \cdot 1, x_2 \cdot 0) + (x_3 \cdot 0, x_3 \cdot 0, x_3 \cdot 1)$$

$$= (x_1, 0, 0) + (0, x_2, 0) + (0, 0, x_3) = (x_1 + 0 + 0, 0 + x_2 + 0, 0 + 0 + x_3) =$$

$$(x_1, x_2, x_3) = \boxed{v}$$

- (9) Probar, usando sólo las propiedades P1, P2, y P3 del producto escalar, que dados $v, w, u \in \mathbb{R}^n$ y $\lambda_1, \lambda_2 \in \mathbb{R}$,
 - a) se cumple:

$$\langle \lambda_1 v + \lambda_2 w, u \rangle = \lambda_1 \langle v, u \rangle + \lambda_2 \langle w, u \rangle.$$

b) Si $\langle v, w \rangle = 0$, es decir si v y w son ortogonales, entonces $\langle \lambda_1 v + \lambda_2 w, \lambda_1 v + \lambda_2 w \rangle = \lambda_1^2 \langle v, v \rangle + \lambda_2^2 \langle w, w \rangle$.

Saución

a)
$$\langle \lambda_1 v + \lambda_2 w, u \rangle \stackrel{P2}{=} \langle u, \lambda_1 v \rangle + \langle u, \lambda_2 w \rangle \stackrel{P3}{=} \lambda_1 \langle u, v \rangle + \lambda_2 \langle u, w \rangle \stackrel{P1}{=} \lambda_1 \langle v, u \rangle + \lambda_2 \langle w, u \rangle$$

b)
$$\langle \lambda_1 v + \lambda_2 w, \lambda_1 v + \lambda_2 w \rangle \stackrel{P2}{=} \langle \lambda_1 v + \lambda_2 w, \lambda_1 v \rangle + \langle \lambda_1 v + \lambda_2 w, \lambda_2 w \rangle \stackrel{P2}{=}$$

 $\stackrel{P2}{=} \langle \lambda_1 v, \lambda_1 v \rangle + \langle \lambda_1 v, \lambda_2 w \rangle + \langle \lambda_2 w, \lambda_1 v \rangle + \langle \lambda_2 w, \lambda_2 w \rangle \stackrel{P3}{=}$
 $\stackrel{P3}{=} \lambda_1^2 \langle v, v \rangle + \lambda_1 \lambda_2 \langle v, w \rangle + \lambda_2 \lambda_1 \langle w, v \rangle + \lambda_2^2 \langle w, w \rangle \stackrel{HIP}{=} \lambda_1^2 \langle v, v \rangle + \lambda_2^2 \langle w, w \rangle$

En el último paso se utilizó la hipótesis $\langle v, w \rangle = 0$.

(10) Dados $v, w \in \mathbb{R}^n$, probar que si $\langle v, w \rangle = 0$, es decir si v y w son ortogonales, entonces

$$||v + w||^2 = ||v||^2 + ||w||^2$$
.

¿Cuál es el nombre con que se conoce este resultado en \mathbb{R}^2 ?

Solución: Vamos a usar la definición de norma y el inciso b) del ejercicio anterior, tomando $\lambda_1=\lambda_2=1$:

$$||v+w||^2 \stackrel{def}{=} \langle v+w, v+w \rangle \stackrel{9.b)}{=} \langle v, v \rangle + \langle w, w \rangle \stackrel{def}{=} ||v||^2 + ||w||^2 \qquad \Box$$

En \mathbb{R}^2 esta igualdad es el *Teorema de Pitágoras*.

(11) ⓐ Sean $v, w \in \mathbb{R}^2$, probar usando solo la definición explícita del producto escalar en \mathbb{R}^2 que

$$|\langle v, w \rangle| \le ||v|| ||w||$$
 (Designaldad de Schwarz).

Solución: Vamos a escribir $v=(v_1,v_2)$ y $w=(w_1,w_2)$. Veamos la pinta del cuadrado del lado izquierdo:

$$\langle v, w \rangle^2 = \langle (v_1, v_2), (w_1, w_2) \rangle^2 = (v_1 w_1 + v_2 w_2)^2$$
 (0.1)

Ahora comenzamos por el cuadrado del lado derecho con el objetivo de llegar a (0.1):

$$||v||^2||w||^2 = (v_1^2 + v_2^2)(w_1^2 + w_2^2) = (v_1w_1)^2 + (v_1w_2)^2 + (v_2w_1)^2 + (v_2w_2)^2$$

Mirando el primer y último término tenemos que si completamos ese cuadrado obtendríamos (0.1). Sumamos y restamos $2(v_1w_1)(v_2w_2)$ y agrupamos:

$$||v||^2||w||^2 = (v_1w_1)^2 + (v_1w_2)^2 + (v_2w_1)^2 + (v_2w_2)^2 + 2(v_1w_1)(v_2w_2) - 2(v_1w_1)(v_2w_2) =$$

=
$$[(v_1w_1)^2 + 2(v_1w_1)(v_2w_2) + (v_2w_2)^2] + [(v_2w_1)^2 - 2v_1w_1v_2w_2 + (v_1w_2)^2]$$

El segundo grupo de términos también forma un cuadrado perfecto. Escribimos ambos como cuadrados y acotamos:

$$||v||^2||w||^2 = \underbrace{(v_1w_1 + v_2w_2)^2}_{=\langle v, w \rangle^2} + \underbrace{(v_2w_1 - v_1w_2)^2}_{\geq 0} \geq \langle v, w \rangle^2$$

Rectas y planos.

- (12) En cada uno de los siguientes casos determinar si los vectores \overrightarrow{vw} y \overrightarrow{xy} son equivalentes y/o paralelos.
 - a) v = (1, -1), w = (4, 3), x = (-1, 5), y = (5, 2).

b)
$$v = (1, -1, 5), w = (-2, 3, -4), x = (3, 1, 1), y = (-3, 9, -17).$$

Solución: Calulamos las diferencias correspondientes y las analizamos:

a) w - v = (4, 3) - (1, -1) = (4 - 1, 3 - (-1)) = (3, 4)y - x = (5, 2) - (-1, 5) = (5 - (-1), 2 - 5) = (6, -3)

No son equivalentes ni paralelos.

- b) w v = (-2, 3, -4) (1, -1, 5) = (-2 1, 3 (-1), -4 5) = (-3, 4, -9) y x = (-3, 9, -17) (3, 1, 1) = (-3 3, 9 1, -17 1) = (-6, 8, -18). No son equivalente pero si paralelos. Tomando $\lambda = 2$ se tiene que $y x = \lambda(w v)$.
- (13) Sea R_1 la recta que pasa por $p_1 = (2,0)$ y es ortogonal a (1,3).
 - a) Dar la descripción paramétrica e implícita de R_1 .
 - b) Graficar en el plano a R_1 .
 - c) Dar un punto p por el que pase R_1 distinto a p_1 .
 - d) Verificar si $p + p_1$ y -p pertenecen a R_1

Solución:

a) Para la descripción paramétrica necesitamos un vector paralelo a R_1 , es decir, ortogonal a (1,3). Un vector así puede ser el (3,-1), con el que tenemos:

Descripción paramétrica: $R_1 = \{(2,0) + t(3,-1) \mid t \in \mathbb{R}\}$

Para la descripción implícita simplemente reemplazamos todos los datos dados en la ecuación $ax + by = \langle (x_0, y_0), (a, b) \rangle$ y tenemos:

Descripción implícita: $R_1 = \{(x, y) \mid x + 3y = 2\}$

- b) ver figura 2
- c) Para dar un punto sobre la recta conviene usar la descripción paramétrica. En este caso debe ser distinto a p_1 , con lo que cualquier valor de $t \neq 0$ va a servir. Si tomamos por ejemplo t = -1 vamos a tener p = (-1, 1).
- d) Para verificar si un punto pertenece, conviene usar la descripción implícita. Calculamos cada punto y reemplazamos en la ecuación:

$$p + p_1 = (-1, 1) + (2, 0) = (1, 1)$$

 $(1) + 3 \cdot (1) = 4 \neq 2$
 $\therefore p + p_1 \notin R_1$
 $-p = (1, -1)$
 $(1) + 3 \cdot (-1) = -2 \neq 2$
 $\therefore -p \notin R_1$

- (14) Repetir el ejercicio anterior con las siguientes rectas.
 - a) R_2 : recta que pasa por $p_2 = (0,0)$ y es ortogonal a (1,3).
 - b) R_3 : recta que pasa por $p_3 = (1,0)$ y es paralela a R_1 .

Solución: Los procedimientos son análogos a los del ejercicio 13. Las gráficas están en la figura 2

a) Descripción paramétrica: $R_2 = \{t(3, -1) \mid t \in \mathbb{R}\}$

Descripción implícita: $R_2 = \{(x, y) \mid x + 3y = 0\}$ Tomando t = -1 tenemos p = (-3, 1).

$$p + p_2 = (-3, 1) + (0, 0) = (-3, 1)$$

 $(-3) + 3 \cdot (1) = -3 + 3 = 0$
 $\therefore p + p_2 \in R_2$
 $-p = (3, -1)$
 $(3) + 3 \cdot (-1) = 3 - 3 = 0$
 $\therefore -p \in R_2$

b) Descripción paramétrica: $R_3 = \{(1,0) + t(3,-1) \mid t \in \mathbb{R}\}$

Descripción implícita: $R_3 = \{(x, y) \mid x + 3y = 1\}$ Tomando t = -1 tenemos p = (-2, 1).

$$p + p_3 = (-2, 1) + (1, 0) = (-1, 1)$$
 $-p = (2, -1)$ $(2) + 3 \cdot (-1) = -1 \neq 1$ $\therefore p + p_3 \notin R_3$ $\therefore -p \notin R_3$

FIGURE 2

(15) Calcular, numérica y graficamente, las intersecciones $R_1 \cap R_2$ y $R_1 \cap R_3$.

Solución: Para el cálculo numérico, notar que las ecuaciones de las tres rectas son de la forma x+3y=c donde c vale 2, 0 y 1 para R_1 , R_2 y R_3 respectivamente. Así tendremos por ejemplo que para calcular la intersección $R_1 \cap R_2$ tendremos que resolver el sistema:

$$\begin{cases} x + 3y = 2 \\ x + 3y = 0 \end{cases}$$

Este sistema no tiene solución, pues para cualquier valores de x e y que elijamos, no puede suceder que al hacer la cuenta x+3y obtengamos simultáneamente el resultado 2 y el resultado 0. El caso $R_1 \cap R_3$ es análogo.

Para la determinación gráfica, se pueden observar los gráficos de la figura 2 y notar que ambas parejas son paralelas, y por lo tanto no tienen intersección.

En conclusión, tenemos $R_1 \cap R_2 = R_1 \cap R_3 = \emptyset$

- (16) Sea $v_0 = (2, -1, 1)$.
 - a) Describir paramétricamente el conjunto $P_1 = \{ w \in \mathbb{R}^3 : \langle v_0, w \rangle = 0 \}.$
 - b) Describir paramétricamente el conjunto $P_2 = \{ w \in \mathbb{R}^3 : \langle v_0, w \rangle = 1 \}$.
 - c) ¿Qué relación hay entre P_1 y P_2 ?

Solución:

a) Debemos despejar la ecuación implícita y reemplazarla en el vector:

$$(x, y, z) \in P_1 \iff \langle (2, -1, 1), (x, y, z) \rangle = 0$$

 $(x, y, z) \in P_1 \iff 2x - y + z = 0$
 $(x, y, z) \in P_1 \iff 2x + z = y$
 $(x, y, z) \in P_1 \iff (x, y, z) = (x, 2x + z, z) = x(1, 2, 0) + z(0, 1, 1)$
 $\therefore P_1 = \{s(1, 2, 0) + t(0, 1, 1) \mid s, t, \in \mathbb{R}\}$

b) Análogo al item anterior:

$$(x, y, z) \in P_2 \iff \langle (2, -1, 1), (x, y, z) \rangle = 1$$

 $(x, y, z) \in P_2 \iff 2x - y + z = 1$
 $(x, y, z) \in P_2 \iff 2x + z - 1 = y$
 $(x, y, z) \in P_2 \iff (x, y, z) = (x, 2x + z - 1, z) = (0, -1, 0) + x(1, 2, 0) + z(0, 1, 1)$
 $\therefore P_2 = \{(0, -1, 0) + s(1, 2, 0) + t(0, 1, 1) \mid s, t, \in \mathbb{R}\}$

- c) Los planos P_1 y P_2 son paralelos.
- (17) Escribir la ecuación paramétrica y la ecuación normal de los siguientes planos.
 - a) π_1 : el plano que pasa por (0,0,0), (1,1,0), (1,-2,0).
 - b) π_2 : el plano que pasa por (1, 2, -2) y es perpendicular a la recta que pasa por (2, 1, -1), (3, -2, 1).
 - c) $\pi_3 = \{ w \in \mathbb{R}^3 : w = s(1, 2, 0) + t(2, 0, 1) + (1, 0, 0); s, t \in \mathbb{R} \}.$

Solución:

a) Llamemos $p_0 = (0,0,0)$, $p_1 = (1,1,0)$ y $p_2 = (1,-2,0)$ a los puntos involucrados. Como p_0 es el origen y p_2 no es un múltiplo de p_1 , tenemos que los puntos no son colineales. Luego para la descripción paramétrica basta con elegir uno de ellos y dos parejas distintas cualquiera. Así, por ejemplo podríamos escribir:

$$\pi_1 = \{p_0 + s \ \overrightarrow{p_0p_1} + t \ \overrightarrow{p_0p_2} \mid s, t \in \mathbb{R}\} = \{s(1,1,0) + t(1,-2,0) \mid s, t \in \mathbb{R}\}$$

Notar que cualquier otra elección para el primer punto y las dos parejas da lugar a parametrizaciones diferentes, pero equivalentes, de π_1 .

Para la ecuación normal vamos a necesitar un vector que sea ortogonal a ambas direcciones, $\overrightarrow{p_0p_1}$ y $\overrightarrow{p_0p_2}$. A simple vista puede verse que un vector que cumple eso es $e_3 = (0,0,1)$. Luego reemplazamos eso en la ecuación normal $\langle v, e_3 \rangle = \langle p_0, e_3 \rangle$. Notar que podríamos haber elegido cualquier

punto en π_1 en lugar de p_0 , y todos deberían dar el mismo resultado. La ecuación normal sería entonces:

$$\pi_1 = \left[\left\{ w \in \mathbb{R}^3 \mid \langle w, e_3 \rangle = 0 \right\} \right]$$

b) Llamemos $p_0 = (1, 2, -2)$, $p_1 = (2, 1, -1)$ y $p_2 = (3, -2, 1)$. En este caso conviene empezar con la ecuación normal pues contamos con una dirección perpendicular al plano: $\overrightarrow{p_1p_2} = p_2 - p_1 = (1, -3, 2)$. Reemplazamos en la ecuación normal y tenemos:

$$\pi_2 = \{ w \in \mathbb{R}^3 \mid \langle w, \overrightarrow{p_1 p_2} \rangle = \langle p_0, \overrightarrow{p_1 p_2} \rangle \} = \left[\{ w \in \mathbb{R}^3 \mid \langle w, \overrightarrow{p_1 p_2} \rangle = -9 \} \right]$$

Para encontrar la forma paramétrica se siguen los mismos pasos que en el ejercicio 16.a) y 16.b):

$$(x, y, z) \in \pi_2 \iff \langle (1, -3, 2), (x, y, z) \rangle = -9$$

 $(x, y, z) \in \pi_2 \iff x - 3y + 2z = -9$
 $(x, y, z) \in \pi_2 \iff x = -9 + 3y - 2z$
 $(x, y, z) \in \pi_2 \iff (x, y, z) = (-9 + 3y - 2z, y, z) = (-9, 0, 0) + y(3, 1, 0) + y(3, 1, 0)$

$$(x, y, z) \in \pi_2 \iff (x, y, z) = (-9 + 3y - 2z, y, z) = (-9, 0, 0) + y(3, 1, 0) + z(-2, 1, 0)$$

$$\therefore \boxed{\pi_2 = \{(-9,0,0) + s(3,1,0) + t(-2,1,0) \mid s,t,\in\mathbb{R}\}}$$

c) El plano ya viene dado en forma paramétrica, por lo que sólo resta expresarlo en forma normal. Para ello es necesario encontrar un vector (x, y, z) que sea perpendicular a (1, 2, 0) y a (2, 0, 1). Como en este caso no es obvio, podemos plantear ambos productos escalares y despejar:

$$\left\{ \begin{array}{ll} x+2y&=0\\ 2x+z&=0 \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} x&=-2y\\ z&=-2x=-2(-2y)=4y \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} x&=-2y\\ z&=4y \end{array} \right.$$

Es decir que el vector buscado es de la pinta (-2y, y, 4y) = y(-2, 1, 4) o, lo que es lo mismo, cualquier múltplo de (-2, 1, 4) será perpendicular al plano. La forma normal es entonces:

$$\pi_3 = \{ w \in \mathbb{R}^3 \mid \langle w, (-2, 1, 4) \rangle = \langle (1, 0, 0), (-2, 1 - 4) \rangle \} = \{ w \in \mathbb{R}^3 \mid \langle w, (-2, 1, 4) \rangle = -2 \}$$

(18) ¿Cuáles de las siguientes rectas cortan al plano π_3 del ejercicio (c))? Describir la intersección en cada caso.

(a)
$$\{w: w = (3, 2, 1) + t(1, 1, 1)\},$$
 (b) $\{w: w = (1, -1, 1) + t(1, 2, -1)\},$

(c)
$$\{w: w = (-1, 0, -1) + t(1, 2, -1)\},$$
 (d) $\{w: w = (1, -2, 1) + t(2, -1, 1)\}.$

Solución: La manera más directa de chequear si una recta interseca a un plano es con la forma normal del plano. Si la dirección de la recta es perpendicular a la dirección normal del plano, la recta es paralela al plano. Luego, o bien toda la recta está contenida en el plano, o bien la recta y el plano tienen intersección vacía.

Si una recta no es paralela a un plano, lo corta en un único punto. La manera más fácil de hallar ese punto es reemplazar la parametrización de la recta en la ecuación normal y despejar t. Luego, reemplazando t en la parametrización de la recta se encuentra el punto.

a) Como $\langle (1,1,1), (-2,1,4) \rangle = 3 \neq 0$, la recta corta al plano π_3 . Encuentro el punto de intersección:

$$\begin{array}{rcl}
-2(3+t) + (2+t) + 4(1+t) &= -2 \\
-6 - 2t + 2 + t + 4 + 4t &= -2
\end{array}$$

$$3t = -2 \implies \boxed{t = -\frac{2}{3}}$$

El punto de intersección es $(3, 2, 1) - \frac{2}{3}(1, 1, 1) = \left[\left(\frac{7}{3}, \frac{4}{3}, \frac{1}{3} \right) \right]$

b) Como $\langle (1,2,-1), (-2,1,4) \rangle = -4 \neq 0$, la recta corta al plano π_3 . Encuentro el punto de intersección:

$$-2(1+t) + (-1+2t) + 4(1-t) = -2$$

$$-2 - 2t - 1 + 2t + 4 - 4t = -2$$

$$3 = 4t \implies t = \frac{3}{4}$$

El punto de intersección es $(1, -1, 1) + \frac{3}{4}(1, 2, -1) = \left(\frac{7}{4}, \frac{1}{2}, \frac{1}{4}\right)$

c) Como $\langle (1,2,-1), (-2,1,4) \rangle = -4 \neq 0$, la recta corta al plano π_3 . Encuentro el punto de intersección:

$$\begin{array}{rcl}
-2(-1+t) + (2t) + 4(-1-t) & = -2 \\
2 - 2t + 2t - 4 - 4t & = -2 \\
-4t & = 0 \Longrightarrow \boxed{t=0}
\end{array}$$

El punto de intersección es $(-1, 0, -1) + 0 \cdot (1, 2, -1) = (-1, 0, -1)$

d) Como $\langle (2, -1, 1), (-2, 1, 4) \rangle = -1 \neq 0$, la recta corta al plano π_3 . Encuentro el punto de intersección:

$$-2(1+2t) + (-2-t) + 4(1+t) = -2
-2-4t-2-t+4+4t = -2
-t = -2 \Longrightarrow t=2$$

El punto de intersección es (1, -2, 1) + 2(2, -1, 1) = (5, -4, 3)

- (19) Sea $L = \{(x, y) \in \mathbb{R}^2 : ax + by = c\}$ una recta en \mathbb{R}^2 . Sean p y q dos puntos por los que pasa L.
 - a) ¿Para qué valores de c puede asegurar que $(0,0) \in L$?
 - b) ¿Para qué valores de c puede asegurar que $\lambda q \in L$? donde $\lambda \in \mathbb{R}$.
 - c) ¿Para qué valores de c puede asegurar que $p + q \in L$?

Solución:

a) Si $(0,0) \in L$, entonces esos valores de x e y deben verificar la ecuación normal de la recta. Es decir, debe suceder $c = ax + by = a \cdot 0 + b \cdot 0 = 0$. Con lo cual debe ser c = 0 y por lo tanto es el único valor de c con esta propiedad.

b) Llamemos $q = (x_q, y_q)$. Como $q \in L$, sabemos que se cumple

$$ax_q + by_q = c (0.2)$$

Ahora supongamos que además $\lambda q = (\lambda x_q, \lambda y_q) \in L$. Vamos a tener entonces:

$$a(\lambda x_q) + b(\lambda y_q) = c$$

 $\lambda a x_q + \lambda b y_q = c$
 $\lambda (a x_q + b y_q) = c$ (Reemplazamos la ecuación 0.2)
 $\lambda c = c$
 $(\lambda - 1)c = 0$

Luego tenemos dos casos: Si $\lambda=1$, entonces c puede tomar cualquier valor. Si $\lambda\neq 1$ entonces sólo puede ser c=0. En particular, si c=0, λ puede tener cualquier valor.

c) Llamemos $p = (x_p, y_p)$. Como $p \in L$ vamos a tener el análogo a la ecuación 0.2 para p:

$$ax_p + by_p = c (0.3)$$

Ahora suponemos que además $p + q = (x_p + x_q, y_p + y_q) \in L$ y tenemos:

$$a(x_p + x_q) + b(y_p + y_q) = c$$

$$ax_p + ax_q + by_p + by_q = c$$

$$(ax_p + by_p) + (ax_q + by_q) = c$$

$$c + c = c$$

$$c + c = c$$

$$c = c$$

$$c = 0$$
(Reemplazamos las ecuaciones 0.2 y 0.3)

Por lo tanto debe ser c = 0 y es el único valor con esta propiedad.

(20) Sea L una recta en \mathbb{R}^2 . Probar que L pasa por (0,0) si y sólo si pasa por $p + \lambda q$ para todo par de puntos $p \neq q$ de $L \neq q$ para todo $\lambda \in \mathbb{R}$.

Solución:

Supongo que $(0,0) \in L$, entonces por el ejercicio 19.a) tengo que c=0. Si c=0, por ejercicio 19.b) tengo que como $q\in L$ entonces $\lambda q\in L$. Luego, por ejercicio 19.c) tengo que como $p\in L$ y $\lambda q\in L$ entonces su suma también: $p+\lambda q\in L$.

Considero un $p \in L$ cualquiera, y tomo $\lambda = -1$ y q = p. Tengo entonces por hipótesis que $p + \lambda q \in L$, pero $p + \lambda q = p + (-1)p = p - p = (0,0)$ y por lo tanto $(0,0) \in L$.