

DM54LS240/DM74LS240, DM54LS241/DM74LS241 Octal TRI-STATE® Buffers/Line Drivers/Line Receivers

General Description

These buffers/line drivers are designed to improve both the performance and PC board density of TRI-STATE buffers/drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to $133\Omega.$

Features

- TRI-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins

■ Typical I_{OL} (sink current)

54LS 12 mA 74LS 24 mA

■ Typical I_{OH} (source current)

54LS —12 mA 74LS —15 mA

■ Typical propagation delay times Inverting 10.5 ns

Noninverting 12 ns

- Typical enable/disable time 18 ns
- Typical power dissipation (enabled)
 Inverting 130 mW
 Noninverting 135 mW

Connection Diagrams

Dual-In-Line Package

Order Number DM54LS240J, DM54LS240W, DM54LS240E, DM74LS240WM or DM74LS240N See NS Package Number E20A, J20A, M20B, N20A or W20A

Dual-In-Line Package

Order Number DM54LS241J, DM54LS241W, DM54LS241E, DM74LS241WM or DM74LS241N See NS Package Number E20A, J20A, M20B, N20A or W20A

Function Tables

LS240

Inp	uts	Output
G	Α	Y
L	L	Н
L	Н	L
Н	X	Z

LS241

	In	puts		Out	puts
G	G	1A	2A	1Y	2Y
Х	L	L	Х	L	
X	L	Н	X	Н	
X	Н	Х	X	Z	
Н	X	Х	L		L
Н	X	Х	Н		Н
L	X	Х	X		Z

L = Low Logic Level

H = High Logic Level

X = Either Low or High Logic Level

Z = High Impedance

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range

Storage Temperature Range $-65^{\circ}\text{C to} + 150^{\circ}\text{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DN	//54LS240,	241	DI	//74LS240,	241	Units
	i drameter	Min	Nom	Max	Min	Nom	Max	Cinto
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-12			-15	mA
l _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions			Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$					-1.5	V
HYS	Hysteresis (V _{T+} - V _{T-}) Data Inputs Only	$V_{CC} = Min$		0.2	0.4		V	
V _{OH}	High Level Output Voltage	$V_{IL} = Max, I_{OH} = -1 \text{ mA}$ $V_{OO} = Min, V_{UV} = Min$ $DM54/DM74$		2.7				
				DM54/DM74	2.4	3.4		v
		$V_{CC} = Min, V_{IH} = Min$ $V_{IL} = 0.5V, I_{OH} = Max$		DM54/DM74	2			
V _{OL}	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA DM74				0.4	
	$egin{array}{l} V_{IL} = Max \ V_{IH} = Min \end{array}$		I _{OL} = Max	DM54			0.4	V
			DM74			0.5		
I _{OZH}	Off-State Output Current, High Level Voltage Applied		$V_{O} = 2.7V$ $V_{O} = 0.4V$				20	μΑ
lozL	Off-State Output Current, Low Level Voltage Applied	V _{IH} = Min					-20	μΑ
II	Input Current at Maximum Input Voltage	V _{CC} = Max, V _I = 7V (DM74) V _I = 10V (DM54)					0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$					20	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$					-0.2	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 2)			-40		-225	mA
Icc	Supply Current	V _{CC} = Max,	Outputs High	LS240, LS241		13	23	
		Outputs Open	Outputs Low	LS240		26	44	
				LS241		27	46	mA
			Outputs Disabled	LS240		29	50	
				LS241		32	54	

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}$	Switching	'acteristics at $V_{CC} = 5V$ and $T_A = 2$	5°C
---	-----------	---	-----

Symbol	Parameter	Conditions		DM54LS	DM74LS	Units	
Cymbol	rarameter			Max	Max	Office	
t _{PLH}	Propagation Delay Time	$C_L = 45 pF$	LS240	18	14	ns	
	Low to High Level Output	$R_L = 667\Omega$	LS241	18	18	113	
t _{PHL}	Propagation Delay Time	$C_L = 45 pF$	LS240	18	18	ns	
	High to Low Level Output	$R_L = 667\Omega$	LS241	18	18	113	
t_{PZL}	Output Enable Time to	$C_L = 45 pF$	LS240	30	30	ns	
	Low Level	$R_L = 667\Omega$	LS241	30	30	110	
t _{PZH}	Output Enable Time to	$C_L = 45 pF$	LS240	23	23	ns	
	High Level	$R_L = 667\Omega$	LS241	23	23		
t _{PLZ}	Output Disable Time	$C_L = 5 pF$	LS240	25	25	ns	
	from Low Level	$R_L = 667\Omega$	LS241	25	25		
t _{PHZ}	Output Disable Time	$C_L = 5 pF$	LS240	18	18	ns	
	from High Level	$R_L = 667\Omega$	LS241	18	18	115	
t _{PLH}	Propagation Delay Time	$C_L = 150 pF$	LS240		18	ns	
	Low to High Level Output	$R_L = 667\Omega$	LS241		21	1 ns	
t _{PHL}	Propagation Delay Time	$C_{L} = 150 pF$	LS240		22		
	High to Low Level Output	$R_L = 667\Omega$	LS241		22	ns	
t _{PZL}	Output Enable Time to	$C_{L} = 150 pF$	LS240		33	ns	
	Low Level	$R_L = 667\Omega$	LS241		33	113	
t _{PZH}	Output Enable Time to	$C_{L} = 150 pF$	LS240		26	ns	
	High Level	$R_L = 667\Omega$	LS241		26		

Note: 54LS Output load is $C_L\,=\,50$ pF for $t_{PLH},\,t_{PHL},\,t_{PZL}$ and $t_{PZH}.$

Physical Dimensions inches (millimeters) (Continued)

NS Package Number W20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408