1 Quasi-Monte Carlo

Quasi-Monte Carlo approximates the integral $\int_{[0,1)^m} f(\boldsymbol{x}) d\boldsymbol{x}$ using

$$\int_{[0,1)^m} f(\boldsymbol{x}) d\boldsymbol{x} \approx \frac{1}{n} \sum_{i=1}^n f(\boldsymbol{x}_i)$$

for carefully and deterministically chosen points x_1, \ldots, x_n . Quasi-Monte Carlo differ from ordinary Monte Carlo in by making no attempt to mimic randomness. Quasi-Monte Carlo try to increase accuracy specifically by generating points that are too evenly distributed to be random.

1.1 Sequences of Numbers with Low Discrepancy

One difficulty with random numbers is that they may **fail to distribute** uniformly. Here "uniform" is **not meant in the stochastic** sense of the distribution U(0,1), but has the meaning of **equidistributiveness**. The aim is to generate numbers for which the deviation from uniformity is minimal. This **deviation** is called "**discrepancy**".

It would be desirable to find a **compromise**, picking samples points in some schemes such that the **fineness advances but clustering is avoided**. The sample points should **fill the integration domain** as **uniformly as possible**. Let $Q \subseteq [0,1]^m$ be an arbitrary axially parallel m-dimensional rectangle in the unit cube $[0,1]^m$ of \mathbb{R}^m . This Q is thus a **product** of m-intervals. Suppose a set of points $x_1, x_2, \ldots, x_M \in [0,1]^m$. Let # denote the number of points, then the **goal** is,

$$\frac{\# \text{ of } x_i \in Q}{\# \text{ of all points}} \cong \frac{\text{vol}(Q)}{\text{vol}([0,1]^m)}.$$

for as many rectangles as possible.

Given a collection \mathcal{A} of subsets of $[0, 1)^m$, the **discrepancy of the point set** $\{x_1, x_2, \ldots, x_N\}$ relative to \mathcal{A} is defined by

$$D(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N; \mathcal{A}) := \sup_{Q \in \mathcal{A}} \left| \frac{\# \text{ of } \boldsymbol{x}_i \in Q}{N} - \text{vol}(Q) \right|.$$

Taking \mathcal{A} be the collection of rectangles in $[0, 1)^m$ of the form

$$\prod_{j=1}^{m} [u_j, v_j), \qquad 0 \le u_j < v_j < 1,$$

yields ordinary discrepancy $D(x_1, \ldots, x_N)$. Restricting A to rectangles of the form

$$\prod_{j=1}^{m} [0, v_j), \qquad 0 < u_j < 1$$

defines the star discrepancy $D^*(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N)$. It can be shown that

$$D^*(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N) \leq D(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N) \leq 2^m D^*(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N).$$

It is customary to reserve the informal term "low discrepancy" for methods that achieve a star discrepancy of $O((\log n)^m/n)$. The following introduce low discrepancy sequences, viz., Van Der Corput sequence and Halton sequence.

Van Der Corput Sequence

It is an **one-dimensional** low-discrepancy sequence. For i = 1, 2, ... let

$$i = \sum_{k=0}^{\infty} d_k b^k,$$

be the expression in base b (integer ≥ 2) with digits $d_k \in \{0, 1, ..., b-1\}$. In the expression of i, all but finitely many of the coefficients d_k equal to zero. Then the radical inverse function is defined by

$$\phi_b(i) := \sum_{k=0}^{\infty} d_k b^{-k-1} = \sum_{k=0}^{\infty} \frac{d_k}{b^{k+1}}.$$

The base-b Van Der Corput sequence is given by

$$x_i := \phi_b(i).$$

Halton Sequence

It is a multi-dimensional low-discrepancy sequence. Let p_1, p_2, \ldots, p_m be a relatively prime integers. The Halton sequence in m dimension is defined as follows:

$$\mathbf{x}_i := (\phi_{p_1}(i), \phi_{p_2}(i), \dots, \phi_{p_m}(i)), i = 1, 2, \dots$$

Usually one takes p_1, p_2, \ldots, p_m to the **first** m **prime** numbers.