Question 32.

Let M be a subset of \mathbb{R}^n , let $p_0 \in M$ be a point, and let $\vec{v} \in \mathbb{R}^n$ be a vector. We say that \vec{v} is a **tangent vector** to M at p_0 if there exists $\delta > 0$ and a C^1 function $\alpha : (-\delta, \delta) \to M$ such that $\alpha(0) = p_0$ and $\alpha'(0) = \vec{v}$. In other words, \vec{v} is the velocity vector of a curve through M.

(a) Suppose now that M is the zero set of some C^1 function $f: U \to \mathbf{R}$, where U is an open set in \mathbf{R}^n : thus

$$M = \{ p \in U : f(p) = 0 \}.$$

Suppose that $p_0 \in M$ is a point such that $\nabla f(p_0) \neq \vec{0}$, and let $\vec{v} \in \mathbf{R}^n$ be a vector Show that \vec{v} is a tangent vector to M at p_0 if and only if $\nabla f(p_0) \cdot \vec{v} = 0$.

(b) Let E be the ellipsoid in \mathbb{R}^3 defined by the following equation:

$$x^2 + yz + y^2 - xy - xz + z^2 = 3$$

Find the equation of the tangent plane to M at the point $p_0 = (1, 2, 3)$.

Hint: Define an appropriate function f, then find two vectors which are orthogonal to $\nabla f(p_0)$. By (a), these two vectors span the tangent plane. I recommend using graphing software to confirm your result.

Proof. (a):

Suppose that \vec{v} is a tangent vector to M at p_0 . Then there exists a function $\alpha: (-\delta, \delta) \to M$ so that $\alpha(0) = p_0$ and $\alpha'(0) = \vec{v}$. Define $g: (-\delta, \delta) \to \mathbb{R}$ by $g(t) = f(\alpha(t))$. For all $t \in (-\delta, \delta)$, $\alpha(t) \in M$, so g(t) = 0. It follows that

$$0 = g'(t) = \nabla f(\alpha(t)) \cdot \alpha'(t)$$

Substituting t = 0 yields

$$f(p_0) \cdot \vec{v} = 0$$

as needed.

Conversely, suppose that $\nabla f(p_0) \cdot \vec{v} = 0$.

Question 33.

Let $f(x) = \sum_{i=0}^{n} a_i x^i$ be a **monic** polynomial with **no repeated real roots**. This means that $a_n = 1$ and that all real roots of f have multiplicity 1.

- (a) Let r be a root of f(x). Prove that for all $\varepsilon > 0$, there exists $\delta > 0$ such that: if $g(x) = \sum_{i=0}^{n} b_i x^i$ is a monic polynomial with coefficients b_i satisfying $|a_i b_i| < \delta$, then g(x) has at least one root in the interval $(r \varepsilon, r + \varepsilon)$.
 - This shows that slight perturbations of the coefficients results in slight perturbations of the roots.

Hint: You will need the Implicit Function Theorem.

(b) Suppose that f has fewer than n real roots. Prove that number of real roots of f does not change under small perturbation of the coefficients.