Les Applications et Les relations

Applications : Généralités

Définition

Soient E et F deux ensembles non vides. Toute relation f qui associe chaque élément $x \in E$ à un et un seul élément $y \in F$ est appelée une application de E vers F.

$$f: E \to F, \quad f(x) = y$$

Applications : Généralités

Définition

Soient E et F deux ensembles non vides. Toute relation f qui associe chaque élément $x \in E$ à un et un seul élément $y \in F$ est appelée une application de E vers F.

$$f: E \to F, \quad f(x) = y$$

Vocabulaire

- E : Ensemble de départ (source).
- F : Ensemble d'arrivée (but).
- $x \in E$: Antécédent.
- $y \in F$: Image.

Exemples

Exemple

Soient $E = \{1, 2, 3, 4\}$ et $F = \{11, 12, 13, 14\}$.

Exemples

Exemple

Soient $E = \{1, 2, 3, 4\}$ et $F = \{11, 12, 13, 14\}$.

Remarques

• On note souvent F(E,F) l'ensemble des applications de E dans F.

Remarques

- On note souvent F(E,F) l'ensemble des applications de E dans F.
- On parle plus généralement de fonctions: Une fonction f d'un ensemble E dans un ensemble F associe à chaque élément x ∈ E un élément y ∈ F au plus. L'ensemble des éléments x ∈ E auxquels elle associe un y ∈ F est appelé le domaine de définition de la fonction f, noté Df.

Remarques

- On note souvent F(E, F) l'ensemble des applications de E dans F.
- On parle plus généralement de **fonctions**: Une fonction f d'un ensemble E dans un ensemble F associe à chaque élément $x \in E$ un élément $y \in F$ au plus. L'ensemble des éléments $x \in E$ auxquels elle associe un $y \in F$ est appelé le **domaine de définition** de la fonction f, noté D_f .
- Si $x \in D_f$, l'élément y qui lui est associé est noté y = f(x). On peut alors construire l'application (encore notée f par abus de langage) :

$$f: D_f \to F, \quad x \mapsto f(x),$$

et c'est cette application que l'on étudie.

Exemple

La fonction réelle de la variable réelle définie par $f(x) = \frac{1}{x}$, alors :

$$D_f = \mathbb{R}^*, \quad f: \mathbb{R}^* \to \mathbb{R}, \quad x \mapsto \frac{1}{x}.$$

Dans ce cas f est une application.

Égalité des applications

Définition

Deux applications f et g sont **égales** si :

- Elles ont le même ensemble de départ E,
- Elles ont le même ensemble d'arrivée F,
- $\forall x \in E, \ f(x) = g(x).$

Exemples: Égalité des applications

Soient les deux applications suivantes :

$$f: \mathbb{N} \to \mathbb{Z}, \quad f(n) = (-1)^n \cdot n$$

$$g: \mathbb{N} o \mathbb{Z}, \quad g(n) = egin{cases} n, & ext{si } n ext{ est pair}, \ -n, & ext{si } n ext{ est impair}. \end{cases}$$

Question: Vérifier que:

$$\forall n \in \mathbb{N}, \ f(n) = g(n).$$

- **1** On considère l'application $f: \mathbb{Z} \to \mathbb{Z}, f(n) = n^2$.
 - ① Déterminer les images de 0, -2 et 3.
 - Déterminer les antécédents de 1, 0, et 3.
 - **3** Est-ce que l'implication $f(n) = f(n') \implies n = n'$ est vraie ?

Définition

Une application $f: E \to F$ est injective si :

$$\forall (x_1, x_2) \in E^2, \ f(x_1) = f(x_2) \implies x_1 = x_2.$$

Définition

Une application $f: E \to F$ est injective si :

$$\forall (x_1, x_2) \in E^2, \ f(x_1) = f(x_2) \implies x_1 = x_2.$$

Exemples

• $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ f(x) = \frac{3x+1}{x-2}$. Montrer que f est injective.

Définition

Une application $f: E \to F$ est injective si :

$$\forall (x_1, x_2) \in E^2, \ f(x_1) = f(x_2) \implies x_1 = x_2.$$

Exemples

- $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ f(x) = \frac{3x+1}{x-2}$. Montrer que f est injective.
- 2 $g: \mathbb{R} \to \mathbb{R}, g(x) = x^2 + 4$. g est-elle injective ?

Définition

Une application $f: E \to F$ est injective si :

$$\forall (x_1, x_2) \in E^2, \ f(x_1) = f(x_2) \implies x_1 = x_2.$$

Exemples

- $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ f(x) = \frac{3x+1}{x-2}$. Montrer que f est injective.
- 2 $g: \mathbb{R} \to \mathbb{R}, \ g(x) = x^2 + 4$. g est-elle injective ?
- **3** $h: \mathbb{N}^* \to \mathbb{Q}, \ h(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Montrer que $n > m \implies h(n) > h(m)$. En déduire que h est injective.

3 Écriture de h(n) et h(m): Si n > m, alors:

$$h(n) = h(m) + \left(\frac{1}{m+1} + \frac{1}{m+2} + \cdots + \frac{1}{n}\right).$$

3 Écriture de h(n) et h(m) : Si n > m, alors :

$$h(n) = h(m) + \left(\frac{1}{m+1} + \frac{1}{m+2} + \cdots + \frac{1}{n}\right).$$

On a chaque fraction $\frac{1}{k}$ pour k > m est strictement positive, alors puisque on ajoute un terme strictement positif à h(m), on a :

$$n > m \implies h(n) > h(m)$$
.

Définition de l'injectivité : Une application h est injective si :

$$h(n) = h(m) \implies n = m.$$

Définition de l'injectivité : Une application *h* est injective si :

$$h(n) = h(m) \implies n = m$$
.

Contraposée : La contraposée de cette définition est :

$$n \neq m \implies h(n) \neq h(m)$$
.

Définition de l'injectivité : Une application h est injective si :

$$h(n) = h(m) \implies n = m.$$

Contraposée : La contraposée de cette définition est :

$$n \neq m \implies h(n) \neq h(m)$$
.

Preuve:

- Si n > m, on a montré que h(n) > h(m).
- Si m > n, on a h(m) > h(n) en inversant les rôles de n et m.
- Ainsi, h(n) = h(m) ne peut jamais se produire si $n \neq m$.

Définition de l'injectivité: Une application h est injective si :

$$h(n) = h(m) \implies n = m.$$

Contraposée : La contraposée de cette définition est :

$$n \neq m \implies h(n) \neq h(m).$$

Preuve:

- Si n > m, on a montré que h(n) > h(m).
- Si m > n, on a h(m) > h(n) en inversant les rôles de n et m.
- Ainsi, h(n) = h(m) ne peut jamais se produire si $n \neq m$.

Et comme $n \neq m \implies h(n) \neq h(m)$, on en déduit que h est injective.

Surjectivité

Définition

Une application $f: E \rightarrow F$ est surjective si :

$$\forall y \in F, \exists x \in E, f(x) = y.$$

Surjectivité

Définition

Une application $f: E \rightarrow F$ est surjective si :

$$\forall y \in F, \exists x \in E, f(x) = y.$$

Exemples

• $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ f(x) = \frac{3x+1}{x-2}.$ f est-elle surjective ?

Surjectivité

Définition

Une application $f: E \to F$ est surjective si :

$$\forall y \in F, \exists x \in E, f(x) = y.$$

Exemples

- $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ f(x) = \frac{3x+1}{x-2}.$ f est-elle surjective ?
- ② $g: \mathbb{R} \to [2, +\infty[, g(x) = x^2 2x + 3]$. Montrer que g est surjective. g est-elle injective ?

Bijection

Définition

Une application $f: E \to F$ est une bijection si elle est injective et surjective.

Bijection

Définition

Une application $f: E \to F$ est une bijection si elle est injective et surjective.

Propriété

f est une bijection si et seulement si :

$$\forall y \in F, \exists ! x \in E, f(x) = y.$$

Bijection

Définition

Une application $f: E \to F$ est une bijection si elle est injective et surjective.

Propriété

f est une bijection si et seulement si :

$$\forall y \in F, \exists ! x \in E, f(x) = y.$$

Exemple

$$f: [1, +\infty[\to [2, +\infty[, f(x) = x^2 - 2x + 3.$$

- Montrer que f est une bijection.
- Trouver la bijection réciproque f^{-1} .

Soit f l'application dont le diagramme sagittal est représenté ci-dessous

- **1** Déterminer les images directes des ensembles : $\{a, b, c\}$, $\{b, c\}$, et E.
- Oéterminer les antécédents des éléments appartenant aux ensembles : {1}, {1,3}, {2,3}, {1,4}.

Définition

Soit f une application de E dans F, A une partie de E, et B une partie de F.

• Image directe : L'image directe de l'ensemble A est définie par :

$$f(A) = \{ f(x) \in F \mid x \in A \}.$$

• Image réciproque : L'image réciproque de l'ensemble B est définie par :

$$f^{-1}(B) = \{x \in E \mid f(x) \in B\}.$$

Remarque

Soit f une application de E dans F, A une partie de E, et B une partie de F.

$$f(A) = B \iff \begin{cases} f(A) \subseteq B, \\ B \subseteq f(A). \end{cases}$$

Cela équivaut à :

$$f(A) = B \iff \begin{cases} \forall x \in A, \ f(x) \in B, \\ \forall y \in B, \ \exists x \in A \ \text{tel que } f(x) = y. \end{cases}$$

Suite de Remarque

- $f(A) = \emptyset \iff A = \emptyset$,
- Si $f^{-1}(B) = \emptyset$, on ne peut pas conclure que $B = \emptyset$.

Contre Exemple

Soit $f: \mathbb{R} \to (-\infty, 0)$ définie par :

$$f(x) = x^2$$
.

Dans ce cas, on a:

$$f^{-1}(\mathbb{R}^-) = \emptyset.$$

Propriété

Soit f une application de E dans F. f est surjective si et seulement si :

$$f(E) = F$$
.

Preuve

- **1** f étant une application de E dans F, on a toujours $f(E) \subseteq F$.
- \bigcirc Si f est surjective, alors :

$$\forall y \in F, \ \exists x \in E \ \text{tel que } f(x) = y,$$

donc $F \subseteq f(E)$.

3 Par conséquent, f(E) = F.

Suite de la preuve

Réciproquement : Si f(E) = F, alors $F \subseteq f(E)$, ce qui signifie que :

$$\forall y \in F, \ \exists x \in E \ \text{tel que } f(x) = y.$$

Ainsi, f est surjective.

Restriction et prolongement d'une application

Définition

Soit f une application de E dans F:

Définition

Soit f une application de E dans F:

• **Restriction**: Soit $A \subset E$. La restriction de f sur A est l'application :

$$f|_A:A\to F,\quad x\mapsto f(x).$$

Définition

Soit f une application de E dans F:

• **Restriction**: Soit $A \subset E$. La restriction de f sur A est l'application :

$$f|_A:A\to F,\quad x\mapsto f(x).$$

• **Prolongement** : Soit Γ tel que $E \subset \Gamma$. Un prolongement de f est une application :

$$f_{\Gamma}: \Gamma \to F, \quad x \mapsto \begin{cases} f(x) & \text{si } x \in E, \\ g(x) & \text{si } x \in \Gamma \setminus E, \end{cases}$$

où g(x) est une fonction définie pour $x \notin E$.

Exemple 1

Soit $f: \mathbb{R} \to \mathbb{R}$, définie par :

$$f(x)=x^2.$$

Exemple 1

Soit $f: \mathbb{R} \to \mathbb{R}$, définie par :

$$f(x)=x^2.$$

Restriction: Prenons $A = [0, +\infty[$. La restriction de f à A est :

$$f|_A: [0, +\infty[\rightarrow \mathbb{R}, \quad f|_A(x) = x^2.$$

Exemple 1

Soit $f: \mathbb{R} \to \mathbb{R}$, définie par :

$$f(x)=x^2.$$

Restriction: Prenons $A = [0, +\infty[$. La restriction de f à A est :

$$f|_A: [0, +\infty[\rightarrow \mathbb{R}, \quad f|_A(x) = x^2.$$

Exemple 2

Soit $f: \mathbb{R}^+ \to \mathbb{R}$, définie par :

$$f(x) = \sqrt{x}$$
.

Exemple 2

Soit $f: \mathbb{R}^+ \to \mathbb{R}$, définie par :

$$f(x) = \sqrt{x}$$
.

Prolongement : Si $\Gamma=\mathbb{R}$, on peut définir un prolongement f_Γ par :

$$f_{\Gamma}: \mathbb{R} \to \mathbb{R}, \quad f_{\Gamma}(x) = \begin{cases} \sqrt{x} & \text{si } x \geq 0, \\ 0 & \text{si } x < 0. \end{cases}$$

Exemple 2

Soit $f: \mathbb{R}^+ \to \mathbb{R}$, définie par :

$$f(x) = \sqrt{x}$$
.

Prolongement : Si $\Gamma=\mathbb{R}$, on peut définir un prolongement f_Γ par :

$$f_{\Gamma}: \mathbb{R} \to \mathbb{R}, \quad f_{\Gamma}(x) = \begin{cases} \sqrt{x} & \text{si } x \geq 0, \\ 0 & \text{si } x < 0. \end{cases}$$

Ce prolongement permet d'étendre f à tout \mathbb{R} , même si les valeurs négatives de x n'ont pas de sens pour la racine carrée réelle.

Définition

Soient $f: E \to F$ et $g: G \to H$ deux applications telles que $f(E) \subset G$.

Définition

Soient $f: E \to F$ et $g: G \to H$ deux applications telles que $f(E) \subset G$. L'application h définie par :

$$h: E \to H$$
, $h(x) = g(f(x))$ pour tout $x \in E$,

s'appelle la **composition** de f et g. Elle se note :

$$g \circ f : E \to H$$
, $(g \circ f)(x) = g(f(x))$.

Exemple

Soient

- $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$
- $g: \mathbb{R} \to \mathbb{R}, \ g(y) = y + 1.$

Exemple

Soient

- $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$
- $g: \mathbb{R} \to \mathbb{R}, \ g(y) = y + 1.$

La composition $g \circ f$ est donnée par :

$$(g \circ f)(x) = g(f(x)).$$

Calculons:

$$f(x) = x^2 \implies g(f(x)) = g(x^2) = x^2 + 1.$$

Exemple

Soient

- $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$
- $g: \mathbb{R} \to \mathbb{R}, \ g(y) = y + 1.$

La composition $g \circ f$ est donnée par :

$$(g \circ f)(x) = g(f(x)).$$

Calculons:

$$f(x) = x^2 \implies g(f(x)) = g(x^2) = x^2 + 1.$$

Alors

$$g \circ f : \mathbb{R} \to \mathbb{R}, \quad (g \circ f)(x) = x^2 + 1.$$

Définition d'une relation

Définition: Soient E et F deux ensembles. Une **relation** R de E vers F est un sous-ensemble du produit cartésien $E \times F$, c'est-à-dire :

$$R \subseteq E \times F$$
.

Définition d'une relation

Définition: Soient E et F deux ensembles. Une **relation** R de E vers F est un sous-ensemble du produit cartésien $E \times F$, c'est-à-dire :

$$R \subseteq E \times F$$
.

Exemple: Soient $E = \{1, 2, 3\}$ et $F = \{a, b\}$. Une relation R peut être définie par :

$$R = \{(1, a), (2, b), (3, a)\}.$$

Définition d'une relation

Définition: Soient E et F deux ensembles. Une **relation** R de E vers F est un sous-ensemble du produit cartésien $E \times F$, c'est-à-dire :

$$R \subseteq E \times F$$
.

Exemple: Soient $E = \{1, 2, 3\}$ et $F = \{a, b\}$. Une relation R peut être définie par :

$$R = \{(1, a), (2, b), (3, a)\}.$$

Représentation: Diagramme en flèches entre E et F:

$$\begin{array}{c|ccc}
1 & \longrightarrow & a \\
2 & \longrightarrow & b \\
3 & \longrightarrow & a
\end{array}$$

Définition d'une relation binaire

Définition

Une **relation binaire** est une relation d'un ensemble *E* dans lui-même, c'est-à-dire :

$$R \subseteq E \times E$$
.

Définition d'une relation binaire

Définition

Une **relation binaire** est une relation d'un ensemble *E* dans lui-même, c'est-à-dire :

$$R \subseteq E \times E$$
.

Exemple

Soit $E = \{1, 2, 3\}$. La relation R définie par "être inférieur ou égal" est donnée par :

$$R = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}.$$

Définition d'une relation binaire

Représentation : Diagramme orienté (boucles pour réflexivité) :

Relation totale ou partielle

Définition

Soit R une relation binaire sur E.

- On dit que x et y de E sont comparables par R si : x R y ou y R x.
- On dit que la relation R est totale si deux éléments quelconques de E sont comparables :

$$\forall x, y \in E, x R y \text{ ou } y R x.$$

• On dit que la relation R est partielle dans le cas contraire.

Relation totale ou partielle

Exemple

- Les relations \leq et \geq sur $\mathbb R$ sont **totales**, car on peut toujours comparer deux réels.
- Les relations < et > sont partielles car on ne peut pas comparer deux éléments identiques.
- La relation de divisibilité | sur \mathbb{Z}^* est **partielle** : par exemple, on ne peut pas comparer 3 et 5, car aucun n'est le diviseur de l'autre.

Définition d'une relation réflexive

Définition

Une relation R sur un ensemble E est dite **réflexive** si pour tout $x \in E$, on a :

$$(x,x) \in R$$
.

Autrement dit

$$\forall x \in E, x \mathcal{R} x$$
.

Définition d'une relation réflexive

Définition

Une relation R sur un ensemble E est dite **réflexive** si pour tout $x \in E$, on a :

$$(x,x) \in R$$
.

Autrement dit

$$\forall x \in E, x \mathcal{R} x$$
.

Interprétation : Chaque élément de *E* est en relation avec lui-même.

Exemple classique : Relation d'égalité

Exemple : Soit $E = \{1, 2, 3\}$. La relation R définie par "égalité" est donnée par :

$$R = \{(1,1), (2,2), (3,3)\}.$$

Exemple classique : Relation d'égalité

Exemple : Soit $E = \{1, 2, 3\}$. La relation R définie par "égalité" est donnée par :

$$R = \{(1,1), (2,2), (3,3)\}.$$

Diagramme orienté : Chaque élément possède une boucle réflexive.

Exemple: Relation "inférieur ou égal"

Soit $E = \{1, 2, 3\}$. La relation R définie par "inférieur ou égal" (\leq) est donnée par :

$$R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (2,3)\}.$$

Exemple : Relation "inférieur ou égal"

Soit $E = \{1, 2, 3\}$. La relation R définie par "inférieur ou égal" (\leq) est donnée par :

$$R = \{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)\}.$$

Diagramme orienté : Les boucles montrent la réflexivité.

Exemple : Relation de divisibilité dans N

Soit $E = \{1, 2, 3, 4\}$. La relation R définie par "divise" (notée $x \mid y$) est réflexive car tout entier divise lui-même :

$$x \mid x \quad \forall x \in E.$$

Définition d'une relation symétrique

Définition

Une relation R sur un ensemble A est dite **symétrique** si pour tous $x, y \in A$, on a :

$$x\mathcal{R}y \implies y\mathcal{R}x.$$

Définition d'une relation symétrique

Définition

Une relation R sur un ensemble A est dite **symétrique** si pour tous $x, y \in A$, on a :

$$x\mathcal{R}y \implies y\mathcal{R}x.$$

Exemple

- Si $E = \mathbb{N}$. La relation binaire définie dans E par $\forall (n, m) \in E^2 : n\mathcal{R}m \Leftrightarrow n = m$ est une relation symétrique.
- Soit E = P(X) avec X un ensemble non vide. La relation binaire définie par $\forall (A, B) \in E^2 : ARB \Leftrightarrow A \subset B$ n'est pas symétrique.

Définition d'une relation transitive

Définition

Une relation binaire R sur un ensemble E est dite **transitive** si pour tous $x, y, z \in A$, on a :

$$x\mathcal{R}y$$
 et $y\mathcal{R}z \implies x\mathcal{R}z$.

Définition d'une relation transitive

Définition

Une relation binaire R sur un ensemble E est dite **transitive** si pour tous $x, y, z \in A$, on a :

$$x\mathcal{R}y$$
 et $y\mathcal{R}z \implies x\mathcal{R}z$.

Exemple La relation "être plus petit ou égal à" (\leq) sur \mathbb{N} .

• Si $x \le y$ et $y \le z$, alors $x \le z$.

Relation d'équivalence

Définition

Une relation binaire $\mathcal R$ sur un ensemble E est une relation d'équivalence sur E si elle vérifie les trois propriétés suivantes :

- Réflexivité : pour tout $x \in E$, xRx.
- Symétrie : pour tous $x, y \in E$, si $x \mathcal{R} y$, alors $y \mathcal{R} x$.
- Transitivité : pour tous $x, y, z \in E$, si xRy et yRz, alors xRz.

Exemple général 1: La relation d'égalité x = y est une relation d'équivalence.

Exemple classique 2 : Congruence modulo n Soit $n \in \mathbb{N}^*$. La relation \mathcal{R} définie sur \mathbb{Z} par :

$$x\mathcal{R}y \iff x \equiv y \pmod{n} \iff n \mid (x - y)$$

est une relation d'équivalence.

D'abord, montrons que $x\mathcal{R}x$, c'est-à-dire $x \equiv x \pmod{n}$.

Exemple classique 2 : Congruence modulo n Soit $n \in \mathbb{N}^*$. La relation \mathcal{R} définie sur \mathbb{Z} par :

$$x\mathcal{R}y \iff x \equiv y \pmod{n} \iff n \mid (x - y)$$

est une relation d'équivalence.

D'abord, montrons que $x\mathcal{R}x$, c'est-à-dire $x \equiv x \pmod{n}$.

• Par définition, x - x = 0.

Exemple classique 2 : Congruence modulo n Soit $n \in \mathbb{N}^*$. La relation \mathcal{R} définie sur \mathbb{Z} par :

$$x\mathcal{R}y \iff x \equiv y \pmod{n} \iff n \mid (x-y)$$

est une relation d'équivalence.

D'abord, montrons que $x\mathcal{R}x$, c'est-à-dire $x \equiv x \pmod{n}$.

- Par définition, x x = 0.
- Comme $n \mid 0$ pour tout $n \in \mathbb{N}^*$, alors $x \equiv x \pmod{n}$.

Exemple classique 2 : Congruence modulo n Soit $n \in \mathbb{N}^*$. La relation \mathcal{R} définie sur \mathbb{Z} par :

$$xRy \iff x \equiv y \pmod{n} \iff n \mid (x - y)$$

est une relation d'équivalence.

D'abord, montrons que $x\mathcal{R}x$, c'est-à-dire $x \equiv x \pmod{n}$.

- Par définition, x x = 0.
- Comme $n \mid 0$ pour tout $n \in \mathbb{N}^*$, alors $x \equiv x \pmod{n}$.

La propriété de **réflexivité** est donc vérifiée.

Symétrie: Montrons que si xRy, alors yRx, c'est-à-dire si $x \equiv y \pmod{n}$, alors $y \equiv x \pmod{n}$.

Symétrie: Montrons que si xRy, alors yRx, c'est-à-dire si $x \equiv y \pmod{n}$, alors $y \equiv x \pmod{n}$.

• Par hypothèse, $x \equiv y \pmod{n}$, donc $n \mid (x - y)$.

Symétrie: Montrons que si xRy, alors yRx, c'est-à-dire si $x \equiv y \pmod{n}$, alors $y \equiv x \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$, donc $n \mid (x y)$.
- Cela signifie qu'il existe un entier k tel que x y = kn.

Symétrie: Montrons que si xRy, alors yRx, c'est-à-dire si $x \equiv y \pmod{n}$, alors $y \equiv x \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$, donc $n \mid (x y)$.
- Cela signifie qu'il existe un entier k tel que x y = kn.
- En prenant l'opposé, on a y x = -kn, donc $n \mid (y x)$.

Symétrie: Montrons que si xRy, alors yRx, c'est-à-dire si $x \equiv y \pmod{n}$, alors $y \equiv x \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$, donc $n \mid (x y)$.
- Cela signifie qu'il existe un entier k tel que x y = kn.
- En prenant l'opposé, on a y x = -kn, donc $n \mid (y x)$.

Par conséquent, $y \equiv x \pmod{n}$.

Symétrie: Montrons que si xRy, alors yRx, c'est-à-dire si $x \equiv y \pmod{n}$, alors $y \equiv x \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$, donc $n \mid (x y)$.
- Cela signifie qu'il existe un entier k tel que x y = kn.
- En prenant l'opposé, on a y x = -kn, donc $n \mid (y x)$.

Par conséquent, $y \equiv x \pmod{n}$. La propriété de **symétrie** est donc vérifiée.

Transitivité: Montrons que si xRy et yRz, alors xRz, c'est-à-dire si $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$, alors $x \equiv z \pmod{n}$.

Transitivité: Montrons que si xRy et yRz, alors xRz, c'est-à-dire si $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$, alors $x \equiv z \pmod{n}$.

• Par hypothèse, $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$.

Transitivité: Montrons que si xRy et yRz, alors xRz, c'est-à-dire si $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$, alors $x \equiv z \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$.
- Cela signifie que $n \mid (x y)$ et $n \mid (y z)$.

Transitivité: Montrons que si xRy et yRz, alors xRz, c'est-à-dire si $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$, alors $x \equiv z \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$.
- Cela signifie que $n \mid (x y)$ et $n \mid (y z)$.
- En additionnant ces deux relations :

$$(x-y)+(y-z)=x-z.$$

Transitivité: Montrons que si xRy et yRz, alors xRz, c'est-à-dire si $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$, alors $x \equiv z \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$.
- Cela signifie que $n \mid (x y)$ et $n \mid (y z)$.
- En additionnant ces deux relations :

$$(x-y)+(y-z)=x-z.$$

• Comme $n \mid (x - y)$ et $n \mid (y - z)$, on a $n \mid (x - z)$.

Transitivité: Montrons que si xRy et yRz, alors xRz, c'est-à-dire si $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$, alors $x \equiv z \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$.
- Cela signifie que $n \mid (x y)$ et $n \mid (y z)$.
- En additionnant ces deux relations :

$$(x-y)+(y-z)=x-z.$$

• Comme $n \mid (x - y)$ et $n \mid (y - z)$, on a $n \mid (x - z)$.

Par conséquent, $x \equiv z \pmod{n}$.

Transitivité: Montrons que si xRy et yRz, alors xRz, c'est-à-dire si $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$, alors $x \equiv z \pmod{n}$.

- Par hypothèse, $x \equiv y \pmod{n}$ et $y \equiv z \pmod{n}$.
- Cela signifie que $n \mid (x y)$ et $n \mid (y z)$.
- En additionnant ces deux relations :

$$(x-y)+(y-z)=x-z.$$

• Comme $n \mid (x - y)$ et $n \mid (y - z)$, on a $n \mid (x - z)$.

Par conséquent, $x \equiv z \pmod{n}$. La propriété de **transitivité** est donc vérifiée.

Définition d'une classe d'équivalence

Définitions

• Soit \mathcal{R} une relation d'équivalence sur un ensemble E. La classe d'équivalence de $x \in E$ par rapport à \mathcal{R} est définie par

$$\bar{x} = \operatorname{cl}_{\mathcal{R}}(x) = \{ y \in E \mid x\mathcal{R}y \}.$$

- ullet L'ensemble des classes d'équivalence pour R forme une partition de E
 - Leur réunion forme E,
 - Elles sont deux à deux disjointes.
- L'ensemble des classes d'équivalence de E pour R est appelé l'ensemble quotient de E par R, noté E/R.

Définition d'une classe d'équivalence

Interprétation : La classe d'équivalence de x est l'ensemble des éléments de E qui sont en relation avec x.

Considérons la relation de congruence modulo n sur \mathbb{Z} , notée $x\mathcal{R}y \iff x \equiv y \pmod{n}$.

Considérons la relation de congruence modulo n sur \mathbb{Z}_{+} notée $x\mathcal{R}y \iff x \equiv y \pmod{n}$ Classe d'équivalence de x:

$$\bar{x} = \operatorname{cl}_{\mathcal{R}}(x) = \{ y \in \mathbb{Z} \mid y \equiv x \pmod{n} \}.$$

Considérons la relation de congruence modulo n sur \mathbb{Z} , notée $x\mathcal{R}y \iff x \equiv y \pmod{n}$. Classe d'équivalence de x:

$$\bar{x} = \operatorname{cl}_{\mathcal{R}}(x) = \{ y \in \mathbb{Z} \mid y \equiv x \pmod{n} \}.$$

Exemple: Pour n=3 et x=1, la classe d'équivalence de 1 est :

$$\bar{1} = \{\dots, -5, -2, 1, 4, 7, \dots\}.$$

Considérons la relation de congruence modulo n sur \mathbb{Z} , notée $x\mathcal{R}y \iff x \equiv y \pmod{n}$. Classe d'équivalence de x:

$$\bar{x} = \operatorname{cl}_{\mathcal{R}}(x) = \{ y \in \mathbb{Z} \mid y \equiv x \pmod{n} \}.$$

Exemple: Pour n=3 et x=1, la classe d'équivalence de 1 est :

$$\bar{1} = \{\dots, -5, -2, 1, 4, 7, \dots\}.$$

Représentation: Les classes d'équivalence modulo 3 sont :

$$\bar{0} = \{\dots, -6, -3, 0, 3, 6, \dots\},\$$

$$\bar{1} = \{\ldots, -5, -2, 1, 4, 7, \ldots\},\$$

$$\bar{2} = \{\ldots, -4, -1, 2, 5, 8, \ldots\}.$$

4□ > 4団 > 4 = > 4 = > = 90

Considérons l'ensemble $\mathcal{P}(E)$, l'ensemble des parties d'un ensemble E. Définissons la relation \mathcal{R} sur $\mathcal{P}(E)$ par :

$$ARB \iff A = B$$
.

Considérons l'ensemble $\mathcal{P}(E)$, l'ensemble des parties d'un ensemble E. Définissons la relation \mathcal{R} sur $\mathcal{P}(E)$ par :

$$ARB \iff A = B.$$

Classe d'équivalence de A :

$$\bar{A} = \operatorname{cl}_{\mathcal{R}}(A) = \{B \in \mathcal{P}(E) \mid B = A\} = A.$$

Considérons l'ensemble $\mathcal{P}(E)$, l'ensemble des parties d'un ensemble E. Définissons la relation \mathcal{R} sur $\mathcal{P}(E)$ par :

$$ARB \iff A = B.$$

Classe d'équivalence de A :

$$\bar{A} = \operatorname{cl}_{\mathcal{R}}(A) = \{B \in \mathcal{P}(E) \mid B = A\} = A.$$

Exemple: Soit $E = \{1, 2, 3\}$ et $A = \{1, 2\}$, alors la classe d'équivalence de A est :

$$\bar{A} = \{\{1,2\}\}.$$

Considérons l'ensemble $\mathcal{P}(E)$, l'ensemble des parties d'un ensemble E. Définissons la relation \mathcal{R} sur $\mathcal{P}(E)$ par :

$$ARB \iff A = B$$
.

Classe d'équivalence de A :

$$\bar{A} = \operatorname{cl}_{\mathcal{R}}(A) = \{B \in \mathcal{P}(E) \mid B = A\} = A.$$

Exemple: Soit $E = \{1, 2, 3\}$ et $A = \{1, 2\}$, alors la classe d'équivalence de A est :

$$\bar{A} = \{\{1, 2\}\}.$$

Remarque: Dans ce cas, chaque classe d'équivalence contient un seul élément.

Relation d'ordre

Définition

Soit E un ensemble. Une relation binaire $\mathcal R$ dans E est une relation d'ordre si elle vérifie les propriétés suivantes :

- Réflexivité : pour tout $x \in E$, xRx.
- Antisymétrie : pour tous $x, y \in E$, si $x \mathcal{R} y$ et $y \mathcal{R} x$, alors x = y.
- Transitivité : pour tous $x, y, z \in E$, si xRy et yRz, alors xRz.

Relations d'ordre sur les ensembles

Exemples

- Les relations ≤, ≥ sur R sont des relations d'ordre tandis que < et > ne le sont pas par manque de réflexivité.
- La relation de divisibilité | est une relation d'ordre sur \mathbb{N}^* (mais pas sur \mathbb{Z}^*):
 - $\forall n \in \mathbb{N}^*$, $n \mid n$ donc | est réflexive.
 - n|n' et $n'|n \exists k, k' \in \mathbb{N}^* \Rightarrow n' = kn$ et $n = k'n' \Rightarrow kk' = 1 \Rightarrow k, k' \in \mathbb{N}^* \Rightarrow k = k' = 1 \Rightarrow n = n'$ donc | est antisymétrique.
 - n|n' et n'|n'' $\exists k, k' \in \mathbb{N}^* \Rightarrow n' = kn$ et $n'' = k'n' \Rightarrow n'' = kk'n$ donc est transitive.