LINEAR ALGEBRA – KEY TERMS & MAIN RESULTS

Key terms	Problems with solutions	Exercises - Do yourself
	Chapter 1. Systems of Linear Equat	ions
Reduced row- echelon form	Ex. Find x and y such that the matrix $ \begin{pmatrix} 1 & 1 & -1 & 3 & 5 \\ 0 & x & 1 & 0 & -2 \\ 0 & y & x & 2 & 1 \end{pmatrix} $ is a reduced row-echelon	1/ Find x and y such that the matrix $ \begin{pmatrix} 1 & 1 & -1 & 3 & 5 \\ 0 & y & x & 0 & -2 \\ 0 & 0 & x & 1 & -1 \end{pmatrix} $ is a reduced row-echelon matrix.
Consistent and inconsistent system	Conclusion: $x = 1$ and $y = 0$. Ex1. Solve the system $x + 2y + 3z = 0$ $2x + 4y - z = 0$ $x + 2y - z = 0$ Solution. • Step 1. Carry augmented matrix to reduced row-echelon form: $ \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & -1 & 0 \\ 1 & 2 & -1 & 0 \end{pmatrix} $ $ \xrightarrow{-\frac{2r_1 + r_2}{-r_1 + r_3}} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & -7 & 0 \\ 0 & 0 & -4 & 0 \end{pmatrix} $ $ \xrightarrow{-\frac{1}{7}r_2} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -4 & 0 \end{pmatrix} $ • Step 2. From the last matrix, the system has infinitely many solution described as below: $y = t$ (parameter = any number) // no leading one with respect to $y = 0$ $x = -2t$ • Step 3. Conclusion: solution set is $\{(-2t, t, 0)\}$ where t is arbitrary} Ex2. Find all values of m such that the system	2/ a/ Solve the system $x - y + 2z = 0$ $-x + y - z = 0$ b/ Solve the system corresponding to the augmented matrix $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -2 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 3/ Find all values of m such that the system $\begin{cases} x - y + 2z = -1 \\ -y + z = 1 \\ x - y + mz = 0 \end{cases}$ has unique solution.

	$\int x - y + 2z = 2$	
	$\begin{cases} -2x + y - z = -1 \\ x + y + mz = 0 \end{cases}$	
	x + y + mz = 0	
	has unique solution.	
	Solution.	
	$\begin{bmatrix} 1 & -1 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 2 & 2 \end{bmatrix}$	
	$\begin{vmatrix} 1 & -2 & 1 & -1 \end{vmatrix} \begin{vmatrix} 1 & -1 & 1 \end{vmatrix} \begin{vmatrix} -2 & 1 & -1 \end{vmatrix} \begin{vmatrix} 1 & -1 & 3 \end{vmatrix} \begin{vmatrix} 5 & 1 \end{vmatrix}$	
	$\begin{bmatrix} 1 & -1 & 2 & 2 \\ -2 & 1 & -1 & 1 \\ 1 & 1 & m & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & -1 & 3 & 5 \\ 0 & 2 & m-2 & -2 \end{bmatrix}$	
	$ \rightarrow 0 1 -3 -5 \rightarrow 0 1 -3 -5 \mid$	
	$\begin{vmatrix} -1 & -1 & 2 & 2 \\ 0 & 1 & -3 & -5 \\ 0 & 2 & m-2 & -2 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & -3 & -5 \\ 0 & 0 & m+4 & 8 \end{vmatrix}$	
	From the last matrix, the system has unique solution	
	when $m + 4 \neq 0$	
	Conclusion: m ≠ -4.	
Rank of a	Ex. Find the <i>rank</i> of the matrix.	4/ Find the <i>rank</i> of the
matrix r(A)	0 -2 1 3	matrix.
I(A)	$A = \begin{bmatrix} 0 & -2 & 1 & 3 \\ 1 & -2 & -1 & 1 \\ -2 & 2 & 3 & 1 \end{bmatrix}.$	1 -2 1 -3
	-2 2 3 1	$ \mid A = \mid -2 0 -1 1 \mid . $
	Solution.	$A = \begin{bmatrix} 1 & -2 & 1 & -3 \\ -2 & 0 & -1 & 1 \\ 2 & 2 & -2 & 3 \end{bmatrix}.$
	In general, carry A to a row echelon matrix, and	
	rank(A) = number of leading ones.	
	$\begin{bmatrix} 0 & -2 & 1 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & -1 & 1 \end{bmatrix}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{bmatrix} 0 & -2 & 1 & 3 \\ 1 & -2 & -1 & 1 \\ -2 & 2 & 3 & 1 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & -2 & 1 & 3 \\ -2 & 2 & 3 & 1 \end{bmatrix}$	
	$\begin{vmatrix} 2r_1+r_3 \\ 0 & -2 & 1 & 3 \end{vmatrix} = \begin{vmatrix} -r_2+r_3 \\ 0 & -2 & 1 & 3 \end{vmatrix}$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	We can see the latest matrix can be carried to a row echelon matrix with <i>2 leading ones</i> .	
	So, $rank(A) = 2$.	
the number of	Ex. A homogeneous system has the coefficient matrix	5/ A homogeneous system
free parameters	of rank 8. If there are 11 linear equations involving 13	has the coefficient matrix
$\mathbf{p} = \mathbf{n} - \mathbf{r}$	variables (or unknowns) in the system, then how	of rank 7 . If there are 13
of a homogeneous	many <i>free parameters</i> in the solution set of the system? Solution.	linear equations involving 15 variables (or
system	p: number of parameters	unknowns) in the system,
	n: number of variables	then how many <i>free</i>
	r = rank of the coefficient matrix	parameters in the solution
	p = n - r = 13 - 8 = 5.	set of the system?
Chapter 2-3. Matrix Algebra		

Matrix addition A + Bscalar multiplication (k.A) and transpose $\mathbf{A}^{\mathbf{T}}$

Matrix multiplication $\mathbf{A} \cdot \mathbf{B}$

Matrix inverse A-1

Ex1. Given
$$A = A = \begin{bmatrix} -2 & 1/2 & 3 \\ 3/2 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ -3 & 2 \\ 1 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 6/ \text{ Find } A^{-1} \text{ if } \\ A = \begin{bmatrix} -1 & -2 \\ 3 & 3 \end{bmatrix}$$

Find $2A - B^{T}$.

Solution.

$$2A = \begin{bmatrix} -4 & 1 & 6 \\ 3 & -2 & 0 \end{bmatrix}$$
$$B^{T} = \begin{bmatrix} 1 & -3 & 1 \\ 0 & 2 & 5 \end{bmatrix}$$

$$2A - B^{T} = \begin{bmatrix} -4 & 1 & 6 \\ 3 & -2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & -3 & 1 \\ 0 & 2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} -5 & 4 & 5 \\ 3 & -4 & -5 \end{bmatrix}$$

Ex2. Find $(2A)^{-1}$ if $A = \begin{bmatrix} -1 & 3 \\ 2 & 3 \end{bmatrix}$

Solution.

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 3 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} -2 & 6 \\ 4 & 6 \end{bmatrix}$$
$$\Rightarrow (2A)^{-1} = \frac{1}{-36} \begin{bmatrix} 6 & -6 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -1/6 & 1/6 \\ 1/9 & 1/18 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 3 \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{-9} \begin{bmatrix} 3 & -3 \\ -2 & -1 \end{bmatrix}$$
$$\Rightarrow (2A)^{-1} = \frac{1}{2}A^{-1} = \begin{bmatrix} -1/6 & 1/6 \\ 1/9 & 1/18 \end{bmatrix}$$

Ex3. Find A if $(A^T - 2I)^{-1} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$.

Solution.

$$(A^{T} - 2I)^{-1} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \Leftrightarrow A^{T} - 2I = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} + 2I = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & -2 \\ 3 & 3 \end{bmatrix}$$

7/ Find A if

$$\left(A^T - 2I\right)^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}.$$

		,
	$A^{T} = \begin{bmatrix} 6 & -3 \\ -1 & 3 \end{bmatrix}$	
	$\Rightarrow A = \begin{bmatrix} 6 & -1 \\ -3 & 3 \end{bmatrix}$	
T		0/E: 1 -11 1 f 1
Invertible and determinant	Ex. Find all values of x such that the matrix	8/ Find all values of x such that the matrix
deteriiiiaiit	$\begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$	
	$\begin{vmatrix} 2 & 0 & -3 \end{vmatrix}$ has an inverse .	
	$\begin{bmatrix} -1 & 2 & 1 \\ 2 & 0 & -3 \\ 1 & x & 1 \end{bmatrix}$ has an inverse .	$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 0 & 3 \\ -1 & 2 & x \end{bmatrix}$
	Solution.	$\begin{bmatrix} -1 & 2 & x \end{bmatrix}$
	$\begin{vmatrix} \det & 2 & 0 & -3 \\ -x & -10 \end{vmatrix} = -x - 10$	
	-	
Linear	A has an inverse iff $det(A) \neq 0 \Leftrightarrow x \neq -10$. Ex. Let T: $R^2 \rightarrow R^2$ be a linear transformation such	9/ Let T: $R^2 \rightarrow R^2$ be a
transformations	that $T(u) = (-1, 2)$ and $T(v) = (-1, 1)$	linear transformation
$T(\vec{au} + \vec{bv})$	Find $T(2u - 3v)$.	such that $T(u) = (1, -2)$ and
, ,	Solution.	T(v) = (1, 2)
$= aT(\vec{u}) + bT(\vec{v})$	T(2u - 3v) = 2T(u) - 3T(v) = 2(-1, 2) - 3(-1, 1) = (1, 1).	Find $T(3u - 2v)$.
Determinants of	Ex.	10/ Given
2x2, 3x3, 4x4	$\begin{vmatrix} a & -2 & 0 \end{vmatrix}$	「3 −2 0]
matrices	Find 1 1 0	$A = \begin{bmatrix} 0 & 1 & k \end{bmatrix}$
det(A)	Find $\begin{vmatrix} a & -2 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & -2 \end{vmatrix}$	$A = \begin{bmatrix} 3 & -2 & 0 \\ 0 & 1 & k \\ 0 & 1 & -3 \end{bmatrix}$
	Solution.	a/ Find det(A).
		b/ Find k such that A has
	$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} = 2(1)^{3+3} dot \begin{bmatrix} a & -2 \\ -2 & 2(a+2) \end{bmatrix}$	an inverse.
	$\begin{vmatrix} a & -2 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & -2 \end{vmatrix} = -2(-1)^{3+3} \det \begin{bmatrix} a & -2 \\ 1 & 1 \end{bmatrix} = -2(a+2)$	
	<u> </u>	
Properties of	Ex. Suppose A and B are $3x3$ matrices such that $ A =$	
determinants	3, B = -6.	4x4 matrices such that A
	a/ Find 2AB ⁻¹ b/ Find 3A ^T BA ⁻²	= -2, B = 3. a/ Find $ 2AB^{T} $
	Solution.	b/ Find A ² B ⁻¹ A ⁻¹
	$a/ 2AB^{-1} = 2^3 A \frac{1}{ B } = \frac{8 \cdot 3}{-6} = -4$	
	$b/ 3A^{T}BA^{-2} =$	
	$3^{3} A^{T} B \frac{1}{ A ^{2}} = 3^{3} A B \frac{1}{ A ^{2}} = \frac{3^{3} \cdot (-6)}{3} = -54$	
(i, j)-cofactor	Ex. Find (2, 3)-cofactor and (3, 1)-cofactor of A if	12/ Find (2, 3)-cofactor
and A ⁻¹ .		and (3, 1)-cofactor of A if
(-1) ^{i+j} det(delete		
row i, delete		
1311 19 401010		

column j)	[121]	Γ 1 2 5 7
commi j)	$A = \begin{bmatrix} -1 & 2 & 1 \\ 2 & 0 & -3 \\ 1 & 2 & 1 \end{bmatrix}$	$A = \begin{vmatrix} -1 & 2 & 5 \\ 2 & 3 & -1 \\ -1 & 0 & 2 \end{vmatrix}$
	Solution.	
	(2, 3)-cofactor = $c_{23} = (-1)^{2+3} \det \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix} = 4$	
	(3, 1)-cofactor = $c_{31} = (-1)^{3+1} \det \begin{pmatrix} 2 & 1 \\ 0 & -3 \end{pmatrix} = -6$	
Adjugate matrix	Ex. Find the first row of the adjugate of $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 5 \\ 0 & 1 & -1 \end{bmatrix}$ Solution.	13/ Find the second row of the adjugate matrix of $A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & 3 & -1 \end{bmatrix}$
	Solution.	_1 0 2]
	Find the first row of the adjugate of $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 5 \\ 0 & 1 & -1 \end{bmatrix}$	
	Solution. The first row of adjugate matrix of A is cofactors c_{11} , c_{21} , c_{31} :	
	$c_{11} = (-1)^{1+1} \det \begin{pmatrix} 0 & 5 \\ 1 & -1 \end{pmatrix} = -5$	
	$\begin{vmatrix} c_{21} = (-1)^{2+1} \det \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = 1$ $\begin{vmatrix} c_{31} = (-1)^{3+1} \det \begin{pmatrix} -1 & 2 \\ 0 & 5 \end{pmatrix} = -5$	
	The first row of adj(A) is: $[-5 \ 1 \ -5]$.	
eigenvalues	Ex. Find all eigenvalues of the matrix of the matrix $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 2 & -3 \end{bmatrix}$	14/ Find all eigenvalues of the matrix of the matrix $ \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} $
	Solution. \bullet det(xI – A) =	
	$\begin{vmatrix} x-1 & -1 & 1 \end{vmatrix}$	Choose one from options below
	$\begin{vmatrix} x-1 & -1 & 1 \\ 0 & x & 1 \\ 0 & -2 & x+3 \end{vmatrix} = (x-1)[x(x+3)+2]$	(i) -2, 1, 3 (ii) 2, -1, -3 (iii) -1, -2, 3
	$=(x-1)(x^2+3x+2)$	(iv) 2, 1, -1
	• $det(xI - A) = 0 \Leftrightarrow x = 1, x = -1, x = -2.$ • Eigenvalues: 1, -1, -2	

* Note that for a multiple choice question: first we can find det(A) = 2.

Then, choose options which the product of values is 2

a) 2, 3, 4

b) -3, 3, 4

d) -3, 0, 4

- e) -1, -2, 1
- e) is the possible option because det(A) = 2 = (-1)(-2).1

Chapter 5. The Vector Space Rⁿ

Linear independence, Linear dependence

Ex1. Find all values of x such that the set $\{(1, 0, -2); (-2, 1, 1); (1, -3, x)\}$ is linearly **independent**. **Solution.**

• We solve the system for a, b, c a(1, 0, -2) + b(-2, 1, 1) + c(1, -3, x) = (0, 0, 0) Equivalently, in augmented matrix

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ -2 & 1 & x & 0 \end{bmatrix}$$

• Carry the matrix to row-echelon form

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ -2 & 1 & x & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & -3 & x - 2 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -2 & 1 & | 0 \\ 0 & 1 & -3 & | 0 \\ 0 & 0 & x - 11 & | 0 \end{bmatrix}$$

We want the set is linearly independent, so the system must have solution a = 0, b = 0, c = 0.

$$\Rightarrow$$
 $x - 10 \neq 0$.

Ex2. Find all values of a such that the set $\{(1, -1, 1); (2, 1, 3); (-1, a, 2)\}$ is linearly **dependent**.

Solution.

Similar to the previous example, solve the system

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ -1 & 1 & 2 & 0 \\ 1 & 3 & a & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 1 & a+1 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & | & 0 \\ 0 & 1 & a+1 & | & 0 \\ 0 & 3 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & | & 0 \\ 0 & 1 & a+1 & | & 0 \\ 0 & 0 & 1-3(a+1) & | & 0 \end{bmatrix}$$

- **15**/ Find all values of x such that the set {(1, -1, 2); (-2, 0, 1); (-1, x, 3)} is linearly **independent**.
- **16**/ Find all values of a such that the set {(1, 1, 0); (2, 1, 3); (-1, 0, a)} is linearly **dependent**.

	We need values of a such that the set is linearly	
	dependent \rightarrow -3a - 2 = 0 \Leftrightarrow a = -2/3.	
Spanning sets,	Ex. Given $U = \text{span}\{(-1, 0, 1); (2, -1, 1)\}.$	17/ Given $U = \text{span}\{(1, -1, $
span	a/ Does the vector (1, -2, 3) belong to U?	0); (-2, 1, 1)}.
	b/ Find all values of m such that $(-2, 2, m) \in U$.	Find all values of m such
	Solution.	that $(0, -1, m) \in U$.
	a/We want to find a, b such that	
	(1, -2, 3) = a(-1, 0, 1) + b(2, -1, 1)	
	Or equivalent,	
	1 = -a + 2b (1)	
	-2 = 0a - b (2)	
	3 = a + b (3) Solve for a, b from (1), (2) \Rightarrow a = 3, b = 2	
	$\Rightarrow (3) \text{ becomes: } 3 = 5 \text{ (!)}$	
	Conclusion: vector (1, -2, 3) does not belong to U.	
	b/ $(-2, 2, m) \in U$ if and only if the system	
	(-2, 2, m) = a(-1, 0, 1) + b(2, -1, 1) has solution a, b.	
	Or equivalent,	
	-2 = -a + 2b (1)	
	2 = 0a - b (2)	
	m = a + b (3)	
	Solve for a, b from (1), (2) \Rightarrow a = -2, b = -2	
	\Rightarrow (3) becomes: $m = -4$	
	Conclusion: m = -4	
Basis of a vector	Ex1. Given $U = \text{span}\{(1, 2, 1); (3, 2, 0); (-1, 2, 2)\}.$	18 / Given $U = \text{span}\{(1, 2, $
space,	Find the dimension of U (find dim(U)).	0); (-3, 1, 1); (1, 3, -1)}.
Dimension	Solution.	Find the dimension of U
	First, check for independence of the set $\{(1, 2, 1); (3, 2, 2)\}$	(find dim(U)).
	0); (-1, 2, 2)}	10/6: 11 (/1.2
	1 3 -1 0 1 3 -1 0	19/ Given $U = \text{span}\{(1, 2, 0, 1), (2, 0, 1), (3, 1, 2), (1, 1, 1)\}$
	$\begin{vmatrix} 2 & 2 & 2 & 0 \end{vmatrix} \rightarrow \begin{vmatrix} 0 & -4 & 4 & 0 \end{vmatrix}$	0, 1); (-3, 0, 1, -2); (1, 1, -
	$\begin{bmatrix} 1 & 3 & -1 & 0 \\ 2 & 2 & 2 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1 & 0 \\ 0 & -4 & 4 & 0 \\ 0 & -3 & 3 & 0 \end{bmatrix}$	1, 3)}. Find the dimension of U (find dim(U)).
		or o (iiiid dilli(o)).
	$ \begin{vmatrix} 1 & 3 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -3 & 3 & 0 \end{vmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $	
	$ \rightarrow 0 1 -1 0 \rightarrow 0 1 -1 0 $	
	From the last matrix, the set is NOT INDEPENDENT.	
	Only two vectors make an independent set →	
	Two vectors are chosen to form a basis of $U \rightarrow \dim(U)$	
	= 2.	
	Ex2. Find all values of x such that $dim(V) = 2$ where V	
	$= span\{(1, -1, 2); (-1, 0, 3); (2, -3, x)\}.$	
	Solution.	

$$\begin{bmatrix} 1 & -1 & 2 & | 0 \\ -1 & 0 & -3 & | 0 \\ 2 & 3 & x & | 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | 0 \\ 0 & -1 & -1 & | 0 \\ 0 & 5 & x - 4 & | 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & | 0 \\ 0 & 1 & 1 & | 0 \\ 0 & 0 & x - 9 & | 0 \end{bmatrix}$$

$$\dim(V) = 2 \text{ if and only if } x = 9.$$

$$\begin{bmatrix} \text{Column space} \\ \text{Col(A) and row} \\ \text{space row(A)} \end{bmatrix}$$

$$\begin{bmatrix} \text{Ex. Find dim(col(A)) if A} = \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ -2 & 6 & -4 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ -2 & 6 & -4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 2 & -4 & 2 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \text{Dim(col(A)) = rank(A)} = 3.$$

END OF PART II - LINEAR ALGEBRA