#### ЛАБОРАТОРНАЯ РАБОТА №9

## ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В ВОЗДУХЕ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ

Поляков Даниил, Б23-Ф3

**Цель работы:** определение скорости звука в воздухе методом «динамика и микрофона», изучение зависимости скорости звука от температуры.

#### Схема установки и оборудование:



- 1) Блок преобразования электрических сигналов;
- 2) Динамик;
- 3) Микрофон;
- 4) Трубка, в которой распространяется звуковая волна;
- 5) Нагреватель воздуха в трубке;
- 6) Блок питания нагревателя воздуха;
- 7) Линейка;
- 8) Термопара для измерения температуры воздуха в трубке;
- Компьютер с ПО CASSY Lab.

# Расчётные формулы:

Скорость звука:

$$c = \frac{S + \Delta S}{\Delta t}$$

S — измеренное расстояние между динамиком и микрофоном;

 $\Delta S$  — поправка на неопределённость положения источника звука;

 $\Delta t$  – время между отправкой и приёмом звукового сигнала.

Поправка на положение источника звука:

$$\Delta S = \frac{S_2 \Delta t_1 - S_1 \Delta t_2}{\Delta t_2 - \Delta t_1}$$

 $S_1$  – измеренное расстояние между динамиком и микрофоном в 1-ом положении;

 $S_2$  – измеренное расстояние между динамиком и микрофоном во 2-ом положении;

 $\Delta t_1$  – время между отправкой и приёмом звукового сигнала в 1-ом положении;

 $\Delta t_2$  – время между отправкой и приёмом звукового сигнала во 2-ом положении.

Теоретическая зависимость скорости звука от температуры:

$$c\left(\frac{M}{c}\right) = \sqrt{\frac{\gamma RT}{\mu}} = 331.4 \cdot \sqrt{1 + \frac{\theta (^{\circ}C)}{273.2}}$$
  $\frac{\theta}{R}$  – температура воздуха в  $^{\circ}C$ ;  $R$  – газовая постоянная;

 $\theta$  – температура воздуха в °C;

 $\gamma$  — показатель адиабаты;

 $\mu$  — молярная масса воздуха.

Формулы для вычисления погрешностей:

о Стандартное отклонение измеряемой величины:

$$\sigma_F = \sqrt{\frac{1}{(N-1)} \sum_{i=1}^{N} (\bar{F} - F_i)^2}$$

Относительная погрешность косвенных измерений:

$$\circ \frac{\Delta(\Delta S)}{\overline{\Delta S}} = \sqrt{\left(\frac{S_2 \sigma_{\Delta t_1}}{S_2 \overline{\Delta t_1} - S_1 \overline{\Delta t_2}}\right)^2 + \left(\frac{S_1 \sigma_{\Delta t_2}}{S_2 \overline{\Delta t_1} - S_1 \overline{\Delta t_2}}\right)^2 + \frac{\sigma_{S_1}^2 (\overline{\Delta t}_2^2 + \overline{\Delta t}_1^2)}{(S_2 \overline{\Delta t_1} - S_1 \overline{\Delta t_2})^2} + \frac{\left(\sigma_{\Delta t_2}^2 + \sigma_{\Delta t_1}^2\right)}{(\overline{\Delta t_2} - \overline{\Delta t_1})^2};$$

2

$$\circ \frac{\Delta c}{c} = \sqrt{\left(\frac{\sigma_{\Delta t_2}}{\Delta t_2}\right)^2 + \frac{\left(\Delta(\Delta S)\right)^2 + \sigma_{S_2}^2}{(S_2 + \overline{\Delta S})^2}};$$

### Методика измерений

- 1. Запустим ПО CASSY Lab и установку. Расположим микрофон на расстоянии до динамика, примерно равном  $S_1$ , измеренном линейкой. Проведём серию из **5** измерений времени  $\Delta t_1$  между отправкой и приёмом звукового сигнала в установке. Переместим микрофон на расстояние  $S_2$  и аналогично измерим  $\Delta t_2$ . Вычислим поправку  $\Delta S$ .
- 2. Определим зависимость скорости звука от температуры. Зафиксируем положение микрофона и измерим  $\Delta t$  при начальной температуре  $\theta$ . Включим нагреватель воздуха в трубке. Постепенно увеличивая температуру трубки, будем снимать соответствующие значения времени  $\Delta t$  и температуры  $\theta$ . После того, как температура воздуха в трубке достигнет 60 °C, выключим нагреватель и повторим измерения в обратном направлении, при остывании воздуха.

### Таблицы и обработка данных

Коэффициенты наклона графиков (и их погрешности) прямых зависимостей найдём по методу наименьших квадратов.

Погрешность расстояний, измеренных линейкой, примем равной половине цены деления:  $\sigma_{\rm S}=0.05~{\rm cm}$ .

# 1. Определение поправки

Таблица 1. Результаты исследования зависимости Δt(S)

| Nº | $S \pm \sigma_{s}$ , | $\Delta t$ , мс | $\overline{\Delta t} \pm \sigma_{\Delta t}$ , мс |  |
|----|----------------------|-----------------|--------------------------------------------------|--|
| 1  | 20±0.05              | 0.4987          | 0.49876±0.00013                                  |  |
|    |                      | 0.4987          |                                                  |  |
|    |                      | 0.4987          |                                                  |  |
|    |                      | 0.4987          |                                                  |  |
|    |                      | 0.4990          |                                                  |  |
| 2  | 40±0.05              | 1.0945          | 1.09478±0.00018                                  |  |
|    |                      | 1.0948          |                                                  |  |
|    |                      | 1.0948          |                                                  |  |
|    |                      | 1.0950          |                                                  |  |
|    |                      | 1.0948          |                                                  |  |

Вычислим поправку **Д**\$ и её погрешность:

$$\overline{\Delta S} = -3.26 \pm 0.10$$
 cm

Теперь можно найти значение скорости звука. Измерения проводились при температуре  $\theta=22.4$  °C. При расчёте будем использовать результаты при  $S=40~{\rm cm}$ .

$$c = 33.56 \pm 0.10 \frac{\text{cM}}{\text{MC}} = 335.6 \pm 1.0 \frac{\text{M}}{\text{c}}$$

# 2. Исследование зависимости скорости звука от температуры

Зафиксируем положение микрофона в положении  $S_2$ . При этом реальное расстояние от источника звука до приёмника равно  $S=S_2+\overline{\Delta S}=36.74\pm0.11$  см.

Таблица 2. Результаты исследования зависимости с(д)

| Nº | θ,°C | t, mc  | $c_{\mathfrak{I}}, \frac{M}{C}$ | $C_{\mathrm{T}}, \frac{\mathrm{M}}{\mathrm{C}}$ | $\left \frac{c_{\scriptscriptstyle 9}-c_{\scriptscriptstyle \mathrm{T}}}{c_{\scriptscriptstyle \mathrm{T}}}\right $ , % |
|----|------|--------|---------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1  | 22.2 | 1.0905 | 336.9                           | 344.6                                           | -2.24                                                                                                                   |
| 2  | 25.0 | 1.0885 | 337.5                           | 346.2                                           | -2.52                                                                                                                   |
| 3  | 30.1 | 1.0810 | 339.8                           | 349.2                                           | -2.68                                                                                                                   |
| 4  | 32.5 | 1.0792 | 340.4                           | 350.6                                           | -2.90                                                                                                                   |
| 5  | 35.1 | 1.0783 | 340.7                           | 352.0                                           | -3.23                                                                                                                   |
| 6  | 37.5 | 1.0770 | 341.1                           | 353.4                                           | -3.48                                                                                                                   |
| 7  | 40.0 | 1.0763 | 341.3                           | 354.8                                           | -3.81                                                                                                                   |
| 8  | 42.6 | 1.0742 | 342.0                           | 356.3                                           | -4.02                                                                                                                   |
| 9  | 45.0 | 1.0730 | 342.4                           | 357.7                                           | -4.27                                                                                                                   |
| 10 | 47.4 | 1.0713 | 342.9                           | 359.0                                           | -4.48                                                                                                                   |
| 11 | 50.0 | 1.0653 | 344.8                           | 360.5                                           | -4.33                                                                                                                   |
| 12 | 52.5 | 1.0628 | 345.7                           | 361.8                                           | -4.47                                                                                                                   |
| 13 | 55.1 | 1.0598 | 346.6                           | 363.3                                           | -4.58                                                                                                                   |
| 14 | 57.5 | 1.0573 | 347.5                           | 364.6                                           | -4.71                                                                                                                   |
| 15 | 60.0 | 1.0555 | 348.0                           | 366.0                                           | -4.90                                                                                                                   |
| 16 | 56.9 | 1.0590 | 346.9                           | 364.3                                           | -4.77                                                                                                                   |
| 17 | 54.9 | 1.0613 | 346.1                           | 363.2                                           | -4.69                                                                                                                   |
| 18 | 52.5 | 1.0628 | 345.7                           | 361.8                                           | -4.47                                                                                                                   |
| 19 | 49.9 | 1.0643 | 345.2                           | 360.4                                           | -4.23                                                                                                                   |
| 20 | 47.5 | 1.0665 | 344.5                           | 359.1                                           | -4.07                                                                                                                   |
| 21 | 45.0 | 1.068  | 344.0                           | 357.7                                           | -3.82                                                                                                                   |
| 22 | 42.4 | 1.0695 | 343.5                           | 356.2                                           | -3.57                                                                                                                   |
| 23 | 39.9 | 1.0712 | 342.9                           | 354.8                                           | -3.33                                                                                                                   |
| 24 | 37.5 | 1.0730 | 342.4                           | 353.4                                           | -3.12                                                                                                                   |
| 25 | 35.0 | 1.0750 | 341.7                           | 352.0                                           | -2.91                                                                                                                   |
| 26 | 32.2 | 1.0773 | 341.0                           | 350.4                                           | -2.68                                                                                                                   |
| 27 | 29.7 | 1.0800 | 340.2                           | 348.9                                           | -2.52                                                                                                                   |
| 28 | 27.5 | 1.0835 | 339.1                           | 347.7                                           | -2.48                                                                                                                   |

Здесь в таблице  $c_{\text{3}}$  – экспериментально полученная скорость звука,  $c_{\text{т}}$  – вычисленная по формуле (теоретическая) скорость звука.



**График 2.1.** Зависимость экспериментально полученной скорости звука  $c_{\mathfrak{I}}$  ( $\bullet$ ) и теоретически вычисленной  $c_{\mathfrak{T}}$  ( $\bullet$ ) от температуры воздуха  $\theta$ 

Полученные графики напоминают прямые, что связано с коротким диапазоном изменения температуры.

Теперь изобразим графики линеаризованных зависимостей  $c_{\scriptscriptstyle 9}^2(\theta)$  и  $c_{\scriptscriptstyle \mathrm{T}}^2(\theta)$ :



**График 2.2.** Зависимость квадратов экспериментально полученной скорости звука  $c_3^2$  (•) и теоретически вычисленной  $c_{\scriptscriptstyle {
m T}}^2$  (•) от температуры воздуха  $\theta$ 

Коэффициенты наклона графиков:

$$\alpha_{9} = \frac{\gamma R}{\mu} = 186 \pm 8 \frac{\text{M}^2}{\text{c}^2 \cdot {}^{\circ}\text{C}}$$

$$\alpha_{\mathrm{T}} = \frac{\gamma R}{\mu} = 401.87 \frac{\mathrm{M}^2}{\mathrm{c}^2 \cdot {}^{\circ}\mathrm{C}}$$

#### Выводы

В результате эксперимента была получена скорость звука в воздухе при нормальных условиях и температуре  $\theta = 22.4$  °C:

$$c = 335.6 \pm 1.0 \frac{M}{c}$$

Это значение совпадает с теоретическим.

При исследовании зависимости скорости звука от температуры, были получены значения скорости, близкие к теоретическим. Однако, процентное отклонение было не постоянным – оно увеличивалось с увеличением температуры, вплоть до 4.9% при 60 °C. После линеаризации графиков **c(θ)** можно наблюдать большую разницу экспериментально и теоретически полученных коэффициентов наклона:

$$\alpha_{9} = \frac{\gamma R}{\mu} = 186 \pm 8 \frac{\text{M}^2}{\text{c}^2 \cdot {}^{\circ}\text{C}}$$

$$\alpha_{\rm T} = \frac{\gamma R}{\mu} = 401.87 \frac{\text{M}^2}{\text{c}^2 \cdot {}^{\circ}\text{C}}$$

Теоретически коэффициент вычисляется как  $\alpha = \frac{\gamma R}{\mu}$ . Вряд ли свойства воздуха в комнате, где проводилась лабораторная работа, так сильно отличаются от средних. Скорее всего это различие связано с неправильной калибровкой экспериментальной установки или термопары, но также может быть связано с малым диапазоном рассмотренных температур. Также мы не учитывали уменьшение показателя адиабаты с ростом температуры, но оно очень мало изменяется в нашем диапазоне температур. Несмотря на это, экспериментально полученные значения скорости звука достаточно близки к теоретическим в том диапазоне температур, в котором проводились измерения.