Prof : BEN OTHMAN Tarek MATHEMATIQUES Durée : 45 mn

Exercice $N^{\circ}1$: (4 points)

Répondre par vrai ou faux sans justification :

l)- Les deux droites (xx') et (yy') sont parallèles.

- 2)-Deux angles inscrits dans un cercle qui interceptent le même arc sont égaux.
- 3)- Si n est un diviseur de 8 avec n \neq 2, alors $\frac{10}{n-2}$ est un entier naturel.
- 4)- Soient n et m deux entiers naturels tels que : n > m alors : PPCD $(2^n \times 3^2 ; 2^m \times 3) = 2^n \times 3^2$.

Exercice $N^{\circ}2$: (8 points)

 $1/a^{\circ}$)- Décomposer en produit des facteurs premiers 300 et 1890.

b°)- Calculer : PGCD (**300**, **1890**)

- 2/ Utiliser la méthode d'algorithme d'Euclide pour trouver le PGCD (300, 1890)
- 3/ Déduire le PPCM (300, 1890)
- 4/ Rendre la fraction $\frac{300}{1890}$ irréductible.
- 5/ Soit $\mathbf{a} \in \mathbb{N}$ tel que : PGCD (13, \mathbf{a})= 7 et PPCM (13,a)= 26. Calculer \mathbf{a} .

Exercice $N^{\circ}3$: (8 points)

La figure dans la page (3) représente un triangle ABC inscrit dans

le cercle (\mathcal{C}) de centre O tel que $\widehat{ABC} = 68^{\circ}$ et $\widehat{ACB} = 56^{\circ}$

Niv: 1^{ère} S4

- 1) a) calculer : $B\hat{A}C$
 - -b) Calculer $A\hat{OB}$.
- 2) soit E le point de $\mathcal C$ tel que [BE] soit un diamètre de $\mathcal C$
 - -a) Quelle est la nature du triangle ABE ? Justifier.
 - -b) Montrer que $B\hat{A}C = B\hat{E}C$
- 3) Soit [Bx) la bissectrice de l'angle $C\widehat{B}Z$.
 - a)-Calculer $C\widehat{B}X$
 - b)- Montrer que : (AC) // (Bx).

Bon Travail

