

In-video Quiz

- □ The following table summarizes the clustering result of a clustering algorithm. What is the maximum matching schema for maximum matching, i.e., which partition should each cluster match?
 - \square (C₁-T₃), (C₂-T₃), (C₃-T₁)
 - \Box (C₁-T₂), (C₂-T₃), (C₃-T₁)
 - \Box (C₁-T₃), (C₂-T₁), (C₃-T₁)
 - \Box (C₁-T₂), (C₂-T₂), (C₃-T₁)
- □ Answer: (C_1-T_3) , (C_2-T_1) , (C_3-T_1)

$C \setminus T$	T ₁	T ₂	T ₃	Sum
C_1	5	15	45	65
C_2	10	25	30	65
C_3	45	15	10	70
m_j	60	55	85	200

- Explanation: First off, based on the definition of **Maximum matching**, we have that one cluster can match one partition.
 - \Box (C₁-T₃), (C₂-T₃), (C₃-T₁): two clusters C₁ and C₂ match the same partition T₃.
 - \Box (C₁-T₂), (C₂-T₂), (C₃-T₁): two clusters C₁ and C₂ match the same partition T₂.
 - (C_1-T_2) , (C_2-T_3) , (C_3-T_1) : The weight matching is 15 + 30 + 45 = 90;
 - (C_1-T_3) , (C_2-T_1) , (C_3-T_1) : The weight matching is 45+ 25+ 45 = 115 > 90.
 - □ Thus the maximum matching schema should be (C_1-T_3) , (C_2-T_1) , (C_3-T_1) .