Question 2 [10 marks]

A four cylinder automobile engine is to be supported on three shock mounts as shown in the figure below. The engine block assembly has a mass of 225 kg. If the unbalanced force generated by the engine is given by $900\sin 100\pi t$ N, design the three shock mounts (each of stiffness k and viscous damping constant c) such that the amplitude of vibration is less than 2.5 mm. Assume a damping ratio of 0.01.

225×2.5×10-3 11-2-2+14 +0.0004-2 16 6.25 24 -4+1.9996 +1 71-9996+ -1-99965 ±1) -1)5-1-99965+A> 1-9996A+ /1-9996A-4'A'A lut 12=5: 52 < 4 (52-1-95965+1) 52 6-252 2452-1-9996×6-25224+6-25 0<(6.25229-1)52-1 t coefficients be 'A', D' S = -B2-102-4AC

Extra Warkanasa Ougatian Number	
Extra Workspace – Question Number 2	
Some system is who found ripus	
with to = 900 on (wort) N	
Assure Milles w= wd	
i.e. The same of wind	J1-32
1 -= 11-32	
$\frac{MX}{m} = \frac{1-3^2}{1-3^2}$	
(6.25 n2)2	
Cy-1-992612+1	
((6.2522)2-1) ~4- (6.2522) 1.9296 ~2	+ (6-15~2) >