UNIT-1 Transformers

Harshita Sharma

Department of Electronics and Communication Engineering

JIIT, Sec-128, Noida.

Introduction

- A transformer is a highly efficient (about 99.5 %) static (non-moving) device.
- It transfers electrical energy form one circuit to another through magnetic coupling (usually from one ac voltage level to another), without any change in its frequency.
- No simple device can accomplish such changes in d.c. voltages.
- It raises or lowers the voltage in a circuit but with a corresponding decrease or increase in current.
- The product of voltage and current i.e. power remains constant.

- It has two windings, insulated from each other, and wound on a core made up of a magnetic material, because magnetic field can store energy 25000 times more as compared to electric field.
- Transformation of voltage is necessary at different stages of the electrical network consisting of generation, transmission and distribution.

• Applications:

- Transmission and distribution: Converts generated voltage of about 11 kV to higher voltages of 132 kV, 220 kV, 400 KV for transmission and to lower voltages up to 440 V for distribution.
- Small-sized transformers: used in communication circuits, radio and TV circuits, telephone circuits, instrumentation and control systems.

Audio transformers

Principle of Operation

- It operates on the principle of mutual induction between two coils.
- When two coils are inductively coupled and if current in one coil is changed uniformly, then an EMF gets induced in the other coil.
- This EMF can drive a current, when a closed path is provided to it.

• Construction:

- The main parts are:
 - An iron core that provides a magnetic circuit.
 - Two inductive coils wound on the core. They are suitably insulated from each other and also from the core.
 - A suitable container for assembled core and windings.
 - A suitable medium for insulating the core and winding from the container and cooling windings and core (transformer oil).
 - Suitable brushings (porcelain, oil-filled or capacitor type) for insulating and bringing out the terminals of the windings from the tank.
- The vertical portions of steel core are called Limbs and top and bottom portions are called Yokes.
- Coils P and S (Primary and Secondary) are wound on the two limbs.

- Two main parts: Core and Winding(coils)

Magnetic core

Winding or coil

• Circuit Symbol:

- \mathbb{N}_1 : Number of turns in the Primary
- \mathbb{N}_2 : Number of turns in the Secondary
- \blacksquare E₁: EMF Induced in the Primary
- \blacksquare E₂: EMF Induced in the Secondary
- I₁: Current through the Primary
- I₂: Current through the Secondary

• Working:

- There are 2 principles involved:
 - An electric current produces a magnetic field (Electromagnetism).
 - A changing magnetic field within a coil induces an EMF across the ends of the coil (Electromagnetic Induction).
- In primary circuit, a changing current produces a changing magnetic field.
- In secondary circuit, voltage is induced by the changing magnetic field produced.
- There is transfer of energy from one circuit to other.

• EMF Equation:

- Due to the sinusoidally varying voltage V_1 applied to the primary, the magnetic flux set up in the core is:

$$\Phi = \Phi_{\rm m} \sin \omega t = \Phi_{\rm m} \sin 2\pi f t$$

- According to law of EMI, the resulting induced EMF in a winding of N turns:

$$e = -N\frac{d\Phi}{dt} = -N\frac{d}{dt}(\Phi_{\rm m}\sin\omega t)$$
$$= -N\omega\Phi_{\rm m}\cos\omega t = \omega N\Phi_{\rm m}\sin(\omega t - \pi/2)$$

- The peak value of the induced EMF is:

$$E_{\rm m} = \omega N \Phi_{\rm m}$$

- The RMS value of the induced EMF E:

$$E = \frac{E_{\rm m}}{\sqrt{2}} = \frac{\omega N \Phi_{\rm m}}{\sqrt{2}} = \frac{2\pi f N \Phi_{\rm m}}{\sqrt{2}} = 4.44 f N \Phi_{\rm m}$$
or
$$E = \frac{E_{\rm m}}{\sqrt{2}} = \frac{4.44 f N \Phi_{\rm m}}{\sqrt{2}}$$

This equation is known as **EMF** equation of transformer.

• Effect of Frequency:

- At a given flux, EMF of a transformer increases with frequency.
- By operating at higher frequencies, transformers can be made physically more compact.
- Because a given core is able to transfer more power without reaching saturation.
- Fewer turns are needed to achieve same impedance.
- At higher frequencies, core losses and skin effect increases, hence, it cannot be increased indefinitely.
- **E.g.:** Aircraft and military equipments employ 400-Hz power supplies which reduces size and weight.

Ideal Transformer

- Has no losses and stores no energy.
- Has no physical existence but is useful in understanding working of actual transformer.

• Conditions:

- The permeability (μ) of the core is infinite, (i.e., the magnetic circuit has zero reluctance so that no MMF is needed to set up the flux in the core).
- The core of the transformer has no losses.
- The resistance of its windings is zero, hence no I^2R losses in the windings.
- Entire flux in the core links both the windings, i.e., there is no leakage flux.

• Circuit Diagram:

- The primary and secondary windings have zero impedance for ideal transformer.
- As reluctance of the magnetic circuit is zero, the required magnetizing current to produce Φ is also zero.

• Phasor Diagram:

- We take flux Φ as reference phasor, as it is common to both the primary and secondary.
- $-V_1 = -E_1$ and $E_2 = V_2$
- EMF E_1 and E_2 lag flux Φ by 90°.
- EMF E_1 in the primary exactly counter balances the applied voltage V_1 . Hence, E_1 is called *counter emf* or *back emf*.
- EMF E_2 is called *mutually induced emf*.

Transformation Ratio

Step-Up and Step-Down Transformer

If
$$N_1 > N_2$$
 $E_1 > E_2$

Step down

The transformation ratio,

$$K = \frac{N_2}{N_1} = \frac{E_2}{E_1}$$

Volt-Amperes

- *Output power* depends on $cos \phi_2$ (power factor of secondary).
- As pf can change depending on the load, the rating is not specified in watts or kilowatts.
- But is indicated as a product of voltage and current called VA RATING.
- For ideal transformer : $V_1I_1 = V_2I_2$

kVA rating of a transformer =
$$\frac{V_1I_1}{1000} = \frac{V_2I_2}{1000}$$

$$I_{1 \text{ (full load)}} = \frac{\text{kVA rating} \times 1000}{V_{1}}$$

$$I_{2 \text{ (full load)}} = \frac{\text{kVA rating} \times 1000}{V_{2}}$$

• Why is transformer rating in kVA?

- Transformers are rated in VA, because the manufacturer does not know the power factor of the load which you are going to connect.
- So the customer should not exceed the VA rating of the transformer.
- In case of motors, the manufacturer knows exactly the power factor at full load.
- That is why motors are rated in kW.

Impedance Transformation

The concept of impedance transformation is used for impedance matching.

$$Z_{\text{eq}} = \frac{V_1}{I_1} = \frac{V_1 \times (V_2 I_2)}{I_1 \times (V_2 I_2)} = \left(\frac{V_1}{V_2}\right) \times \left(\frac{I_2}{I_1}\right) \times \left(\frac{V_2}{I_2}\right) = \left(\frac{1}{K}\right) \times \left(\frac{1}{K}\right) \times Z_{\text{L}}$$

or
$$Z_{\rm eq} = Z_{\rm L} / K^2$$

Example 1: A single-phase, 50-Hz transformer has 30 primary turns and 350 secondary turns. The net cross-sectional area of the core is 250 cm². If the primary winding is connected to a 230-V, 50-Hz supply, calculate

- (a) the peak value of flux density in the core,
- (b) the voltage induced in the secondary winding, and
- (c) the primary current when the secondary current is 100 A. (Neglect losses.)

Solution:

(a) The peak value of the flux,

$$\mathcal{\Phi}_{\rm m} = \frac{E_1}{4.44 \, f N_1} = \frac{230}{4.44 \times 50 \times 30} = 0.034534 \text{ Wb}$$

$$B_{\rm m} = \frac{\Phi_{\rm m}}{A} = \frac{0.034534}{250 \times 10^{-4}} = 1.3814 \text{ T}$$

(b) The voltage induced in the secondary,

$$E_2 = E_1 \times \frac{N_2}{N_1} = 230 \times \frac{350}{30} = 2683.33 \text{ V} \approx 2.683 \text{ kV}$$

(c) The primary current,

$$I_1 = I_2 \left(\frac{N_2}{N_1}\right) = 100 \times \left(\frac{350}{30}\right) = 1166.67 \text{ A} \approx 1.167 \text{ kA}$$

Example 2: Determine the load current I_L in the ac circuit shown:

Solution:

Transforming the load impedance into the primary:

$$\mathbf{I}_{p} = \frac{30\angle 0^{\circ}}{20 + j20 + 2^{2}(2 - j10)} = 0.872\angle 35.53^{\circ} \text{ A}$$

$$I_{L} = 2 \times I_{p} = 2 \times 0.872 \angle 35.53^{\circ} = 1.74 \angle 35.53^{\circ} A$$

Practical Transformer at no Load

- Let primary be connected to a sinusoidal alternating voltage V₁.
- Let I₀ be the *no-load primary current* (also called *exciting current*) i.e. is the resultant of two components:
 - Magnetizing current component (I_m) due to effect of Magnetisation.
 - Iron loss component (I_w) due to the effect of Core Losses.

Effect of Magnetisation:

- No magnetic material can have infinite permeability.
- A finite mmf is needed to establish magnetic flux in the core.
- An in-phase *magnetizing current* $I_{\rm m}$ in the primary is needed to set up flux Φ in the core.
- $I_{\rm m}$ is purely reactive (current $I_{\rm m}$ lags voltage V_1 by 90°).
- This effect is modeled by putting reactance X_0 in parallel with the ideal transformer.

Effect of Core Losses :

- There exist hysteresis and eddy current losses for the energy loss in the core.
- The source must supply enough power to the primary to meet the core losses.
- These can be represented by putting a resistance R_0 in parallel with the ideal transformer.
- The core-loss current I_w flowing through R_0 is in phase with the applied voltage V_1 .

• Equivalent Circuit:

• Phasor Diagram:

- Angle Φ_0 is called *no-load phase angle*.
- From phasor diagram:

$$I_0 = \sqrt{I_{\rm w}^2 + I_{\rm m}^2}$$
; $\phi_0 = {\rm tan}^{-1}(I_{\rm m}/I_{\rm w})$; and Input power = Iron loss
$$= V_1 I_{\rm w} = V_1 I_0 \cos \phi_0$$

• The R_0 - X_0 circuit is called *exciting circuit*.

a) Hysteresis Loss:

When alternating current flows through the windings, the core material undergoes cyclic process of magnetization and demagnetization. It is found that there is a tendency of the flux density *B* to *lag behind* the field strength *H*. It is called *hysteresis*.

(tesla

H (At/m)

Total energy loss (per cubic metre) is represented by the area *abcea* of the hysteresis loop. The hysteresis loss (usually expressed in watts) is given as:

$$P_h = K_h B_m^n f V$$

where:

- o K_h = hysteresis coefficient whose value depends upon the material (K_h = 0.025 for cast steel, K_h = 0.001 for silicon steel)
- \circ B_m = maximum flux density (in tesla)
- o n = a constant, depending upon the material = Stein Metz's constant
- o f= frequency (in hertz)
- \circ V= volume of the core material (in m³)

Remedy: This loss can be minimized by selecting suitable ferromagnetic material for the core (Cold Rolled Grain Oriented Steel-CRGOS).

b) Eddy-Current Losses:

The eddy currents are the circulating currents set up in the core due to alternating magnetic flux. These currents may be quite high since the resistance of the iron is quite low. This results in unnecessary heating of the core and loss of power. The eddy-current loss (in watts) is given by:

$$P_e = K_e B_m^2 f^2 t^2 V$$

where:

- \circ K_e = a constant dependent upon the material
- o t = thickness of laminations (in meters)

Remedy: To reduce Eddy current losses laminated sheets of CRGO steel are used to make the transformer core.

Laminations

- The core of a transformer is usually laminated to reduce the eddy currents.
- These laminations may be different sections of E,I,T,F.
- They are stacked finally to get the complete core of the transformer.

Alloying with manganese, silicon and aluminum increases iron's electrical resistance to eddy currents

Types of transformers (based on construction)

• Core Type Transformer

- The windings surround a considerable part of the core.
- Both the windings are divided into two parts and half of each winding is placed on each limb, side by side.
- This is done to reduce the leakage of the magnetic flux.

- To minimize the cost of insulation, the low voltage (LV) winding is placed adjacent to the core and high voltage (HV) winding is placed around the LV winding.
- The flux has a single path.
- More space for insulation so preferred for high voltages.

• Shell Type Transformer:

- It has three limbs.
- Both the windings are placed on the central limb.
- The flux divides equally in the central limb and returns through the outer two legs.
- Preferred for low voltages.

Shell-type construction

Transformer on Load

- Before connecting the load, there exists a flux Φ requiring current I_0 in the primary.
- Secondary is connected to an impedance (or load). On connecting the load, a current I_2 flows in the secondary.
- The magnitude and phase of I_2 with respect to V_2 depends upon the nature of the load.
- The current I_2 sets up a flux Φ ', which opposes the main flux Φ . Hence, it is called *demagnetizing flux*.
- This momentarily weakens Φ , and back emf E_1 gets reduced.
- The difference between the applied voltage and the back emf V_1 E_1 increases and more current is drawn from supply.
- This again increases E_1 to balance the applied voltage V_1 .

- In this process, the primary current increases by I_1 '. This current is known as *primary balancing current*, or *load component of primary current*.
- Under such a condition, the secondary ampere-turns must be counterbalanced by the primary ampere-turns.

$$N_1 I_1' = N_2 I_2 \implies I_1' = \left(\frac{N_2}{N_1}\right) I_2 = K I_2$$

• The net primary current is the vector sum of no-load current and the balancing current.

$$\mathbf{I}_{1} = \mathbf{I}_{0} + \mathbf{I}_{1}'$$

• Phasor Diagrams:

- Resistive Load:

– Inductive Load:

- Capacitive Load:

Example 3: A single-phase, 230-V/110-V, 50-Hz transformer takes an input of 350 volt amperes at no load while working at rated voltage. The core loss is 110 W. Find

- (a) the no-load power factor,
- (b) the loss component of no-load current, and
- (c) the magnetizing component of no-load current.

Solution: (a) Given:

$$V_1 I_0 = 350 \text{ VA}$$

$$\therefore I_0 = \frac{VA}{V_1} = \frac{350}{230} = 1.52 \text{ A}$$

The core loss = Input power at no load,

$$P_i = V_1 I_0 \cos \phi_0$$

$$\therefore pf = \cos \phi_0 = \frac{P_i}{V_1 I_0} = \frac{110 \text{ W}}{350 \text{ VA}} = \mathbf{0.314}$$

(b) The loss component of no-load current,

$$I_{\rm w} = I_0 \cos \phi_0 = 1.52 \times 0.314 =$$
0.478 A

(c) The magnetizing component of no-load current,

$$I_{\rm m} = \sqrt{I_0^2 - I_{\rm w}^2} = \sqrt{(1.52)^2 - (0.478)^2} = 1.44 \text{ A}$$

Example 4: A 100-kVA, 4000-V/200-V, 50-Hz, single-phase transformer has 100 secondary turns. Determine:

- (a) the primary and secondary currents,
- (b) the number of primary turns, and
- (c) the maximum value of the flux.

Solution:

(a) The kVA rating = $V_1I_1 = V_2I_2 = 100 \text{ kVA}$.

$$I_1 = \frac{\text{kVA rating}}{V_1} = \frac{100\,000}{4000} = 25\,\text{A}$$

$$I_2 = \frac{\text{kVA rating}}{V_2} = \frac{100\,000}{200} = 500\,\text{A}$$

(b) Since
$$\frac{N_1}{N_2} = \frac{V_1}{V_2}$$

$$N_1 = \left(\frac{V_1}{V_2}\right) N_2 = \left(\frac{4000}{200}\right) \times 100 = \mathbf{2000}$$

(c)
$$E_2 = 4.44 f \Phi_m N_2$$

$$\therefore \qquad \Phi_m = \frac{E_2}{4.44 f N_2} = \frac{200}{4.44 \times 50 \times 100}$$

$$= 9.01 \text{ mWb}$$

Example 5: A single-phase, 440-V/110-V, 50-Hz transformer takes a no-load current of 5 A at 0.2 power factor lagging. If the secondary supplies a current of 120 A at a power factor of 0.8 lagging to a load, determine the primary current and the primary power factor. Also, draw the phasor diagram.

Solution:

$$\phi_0 = \cos^{-1} 0.2 = 78.46^{\circ} \text{ and } \phi_2 = \cos^{-1} 0.8 = 36.87^{\circ}$$

$$K = \frac{V_2}{V_1} = \frac{110}{440} = \frac{1}{4}$$

$$I_1 = K \times I_2 = (1/4) \times 120 = 30 \text{ A}; \quad I_1 = 30 \angle -36.87^{\circ} \text{ A}$$

$$I_1 = I_1' + I_0 = 30\angle -36.87^{\circ} + 5\angle -78.46^{\circ} = 33.9\angle -42.49^{\circ} A$$

Primary power factor:

$$pf = \cos \phi_1 = \cos 42.49^\circ = 0.737$$
 (lagging)

Practical Transformer on Load

- We now consider the deviations from the last two *ideality conditions*:
 - 1. The *resistance* of its windings *is zero*.
 - 2. There is *no leakage flux*. All the flux produced by the primary links with the secondary.
- The effects of these deviations become more prominent when a practical transformer is put on load.

Effect of Winding Resistance

- Current flow through the windings causes a power loss called *PR loss* or *copper loss*.
- This effect is accounted for by including a resistance R_1 in the primary and resistance R_2 in the secondary.

• Effect of Flux Leakage

- The difference between the total flux linking with the primary and the useful mutual flux Φ_u linking with both the windings is called the primary leakage flux, Φ_{L1} .
- Similarly, Φ_{L2} represents the secondary leakage flux.
- Flux leakage results in energy being alternately stored in and discharged from the magnetic fields with each cycle of the power supply.
- It is not directly a power loss, but causes the secondary voltage to fail to be directly proportional to the primary voltage, particularly under heavy loads.
- The useful mutual flux $\Phi_{\rm u}$ is responsible for the transformer action.

- The leakage flux Φ_{L1} induces an emf E_{L1} in the primary winding. Similarly, flux Φ_{L2} induces an emf E_{L2} in the secondary.
- Hence, we include reactances X_1 and X_2 in the primary and secondary windings, in the equivalent circuit.
- The paths of leakage fluxes Φ_{L1} and Φ_{L2} are almost entirely due to the long air paths and are therefore practically constant.
- The reluctance of the paths being very high, Φ_{L1} and Φ_{L2} are relatively small even on full load.
- However, the useful flux $\Phi_{\rm u}$ remains almost independent of the load.

• Equivalent Circuit of a Transformer

The equivalent circuit is merely a circuit representation of the equations that describe the behavior of the device.

$$\mathbf{V}_{1} = I_{1}R_{1} + jI_{1}X_{1} - \mathbf{E}_{1} = I_{1}(R_{1} + jX_{1}) - \mathbf{E}_{1}$$

$$\mathbf{E}_{2} = I_{2}R_{2} + jI_{2}X_{2} + \mathbf{V}_{2} = I_{2}(R_{2} + jX_{2}) + \mathbf{V}_{2}$$

Points to draw phasor diagram:

- 1. Resistive voltage drop in phase with current phasor.
- 2. Inductive voltage drop in quadrature with current.
- 3. To get V_1 , add I_1Z_1 to $-E_1$.
- 4. Add V_2 and I_2Z_2 , to get E_2 .
- 5. Current I_1 is vector sum of I_0 and I_1 .
- 6. Angle between V_I and I_I gives the power factor angle of the transformer Φ_1 .
- 7. Relation between V_2 and I_2 depends on the load.
- 8. I_1 and I_2 are in inverse proportion to the number of turns in primary and secondary.

Phasor Diagrams for:

Practical Transformer on Resistive Load

Practical Transformer on Inductive Load

Practical Transformer on Capacitive Load

• Simplified equivalent circuit:

- The no-load current I_0 is only about 3-5 % percent of the full-load current, so not much error will be introduced if exciting circuit R_0 - X_0 in is shifted to the left of impedance R_1 - X_1 .

1. Referred to primary side:

- using impedance transformation, we get:

Equivalent resistance and reactance referred to the primary side:

$$R_{e1} = R_1 + (R_2 / K^2)$$
 and $X_{e1} = X_1 + (X_2 / K^2)$

- Approximate equivalent circuit referred to primary side:

2. Referred to secondary side:

Example 6: A single-phase, 50-kVA, 4400-V/220-V, 50-Hz transformer has $R_1 = 3.45 \Omega$, $R_2 = 0.009 \Omega$, $X_1 = 5.2 \Omega$ and $X_2 = 0.015 \Omega$. Calculate

- (a) the R_e as referred to the primary,
- (b) the R_e as referred to the secondary,
- (c) the X_e as referred to the primary,
- (d) the X_e as referred to the secondary,
- (e) the Z_e as referred to the primary,
- (f) the Z_e as referred to the secondary, and
- (g) the total copper loss.

Solution: Full-load primary current:

$$I_1 = \frac{\text{kVA}}{V_1} = \frac{50000}{4400} = 11.36 \text{ A}$$

Full-load secondary current:

$$I_2 = \frac{\text{kVA}}{V_2} = \frac{50000}{220} = 227.27 \text{ A}$$

Transformer ratio:

$$K = \frac{V_2}{V_1} = \frac{220}{4400} = \frac{1}{20} = 0.05$$

(a)
$$R_{e1} = R_1 + (R_2 / K^2) = 3.45 + [0.009/(0.05)^2] = 7.05 \Omega$$

(b)
$$R_{e2} = K^2 R_1 + R_2 = (0.05)^2 \times 3.45 + 0.009 = \mathbf{0.0176} \ \Omega$$

(c)
$$X_{e1} = X_1 + (X_2 / K^2) = 5.2 + [0.015/(0.05)^2] = 11.2 \Omega$$

(d)
$$X_{e2} = K^2 X_1 + X_2 = (0.05)^2 \times 5.2 + 0.015 = \mathbf{0.028} \ \Omega$$

(e)
$$Z_{e1} = \sqrt{R_{e1}^2 + X_{e1}^2} = \sqrt{(7.05)^2 + (11.2)^2} = 13.23 \ \Omega$$

(f)
$$Z_{e2} = \sqrt{R_{e2}^2 + X_{e2}^2} = \sqrt{(0.0176)^2 + (0.028)^2} = \mathbf{0.0331} \ \Omega$$

(g) Total copper loss:

=
$$I_1^2 R_1 + I_2^2 R_2 = (11.36)^2 \times 3.45 + (227)^2 \times 0.009 = 909$$
 W

Alternatively, by considering equivalent resistances, total copper loss:

=
$$I_1^2 R_{e1} = (11.36)^2 \times 7.05 =$$
909.8 W
= $I_2^2 R_{e2} = (227.27)^2 \times 0.0176 =$ **909** W

Voltage Regulation of transformer

- The voltage regulation of a transformer is defined as the change in its secondary terminal voltage from no load to full load, the primary voltage being assumed constant.
- $V_{2(0)}$ = secondary terminal voltage at no load and V_2 = secondary terminal voltage at full load.
- The voltage drop $V_{2(0)}$ - V_2 is called the inherent regulation.

(i) Per unit **regulation down** =
$$\frac{V_{2(0)} - V_2}{V_{2(0)}}$$

% regulation down =
$$\frac{V_{2(0)} - V_2}{V_{2(0)}} \times 100$$

(ii) Per unit **regulation up** =
$$\frac{V_{2(0)} - V_2}{V_2}$$

% regulation up =
$$\frac{V_{2(0)} - V_2}{V_2} \times 100$$

Normally, when nothing is specified, 'regulation' means 'regulation down'.

• Approximate Voltage Drop:

- The secondary terminal voltage at no load:

$$V_{2(0)} = E_2 = KE_1 = KV_1$$

– Exact voltage drop:

$$V_{2(0)} - V_2 = OC - OA = OG - OA = AG = AF + FG$$

Approximate voltage drop, AF = AE + EF = AE + BD = $I_2R_{e2}\cos\phi + I_2X_{e2}\sin\phi$

-For leading power factor:

Approximate voltage drop, AF = AE – EF = AE – BD

$$= I_2 R_{e2} \cos \phi - I_2 X_{e2} \sin \phi$$

-In general:

Approximate voltage drop = $I_2 R_{e2} \cos \phi \pm I_2 X_{e2} \sin \phi$

% Regulation =
$$\frac{I_2 R_{e2} \cos \phi \pm I_2 X_{e2} \sin \phi}{V_{2(0)}} \times 100$$
$$= V_r \cos \phi \pm V_r \sin \phi$$

Use + sign for lagging power factor and – sign for leading power factor.

• Condition for zero regulation:

- Possible only if the load has leading power factor.

$$I_2 R_{e2} \cos \phi - I_2 X_{e2} \sin \phi = 0 \quad \Rightarrow \quad \tan \phi = \frac{R_{e2}}{X_{e2}}$$

-Note that for leading power factor, if the magnitude of the phase angle ϕ is high, we may have

$$I_2 X_{e2} \sin \phi > I_2 R_{e2} \cos \phi$$

- -The regulation then becomes negative.
- -It means that on increasing the load, the terminal voltage increases.

- The complete variation of % variation with pf is:

- % regulation is zero at leading pf.
- At zero pf the % regulation is positive.

• Condition for Maximum Regulation:

Maximum regulation can occur only for lagging pf (inductive load). The voltage drop is maximum when:

$$\frac{d}{d\phi}(I_2R_{e2}\cos\phi + I_2X_{e2}\sin\phi) = 0$$

$$\Rightarrow (-I_2 R_{e2} \sin \phi + I_2 X_{e2} \cos \phi) = 0$$

$$\Rightarrow \tan \phi = \frac{X_{e2}}{R_{e2}}$$

Example 7: A 5 kVA, 200 V/400 V, single-phase transformer has a secondary terminal voltage of 387.6 volts when loaded. Determine the regulation of the transformer.

Solution:

regulation =
$$\frac{\text{(No-load secondary voltage}}{\text{no-load secondary voltage}} \times 100\%$$

$$= \left[\frac{400 - 387.6}{400}\right] \times 100\%$$

$$= \left(\frac{12.4}{400}\right) \times 100\% = 3.1\%$$

Example 8: The open circuit voltage of a transformer is 240 V. A tap changing device is set to operate when the percentage regulation drops below 2.5%. Determine the load voltage at which the mechanism operates.

Solution:

$$Regulation = \frac{(no\ load\ voltage\ -\ terminal\ load\ voltage)}{no\ load\ voltage} \times 100\%$$

Hence
$$2.5 = \left[\frac{240 - V_2}{240}\right] 100\%$$

 \therefore the load voltage, $V_2 = 240 - 6 = 234 \text{ V}$

Example 9: A single-phase, 40-kVA, 6600-V/250-V, transformer has primary and secondary resistances $R_1 = 10 \Omega$ and $R_2 = 0.02 \Omega$, respectively. The equivalent leakage reactance as referred to the primary is 35 Ω . Find the full-load regulation for the load power factor of

- (a) unity,
- (b) 0.8 lagging, and
- (*c*) 0.8 leading.

Solution : Given :
$$R_1 = 10 \ \Omega$$
; $R_2 = 0.02 \ \Omega$; $X_{e1} = 35 \ \Omega$

the turns-ratio,
$$K = \frac{250}{6600} = 0.0379$$

the full-load current,
$$I_2 = \frac{40000}{250} = 160 \text{ A}$$

$$\therefore R_{e2} = K^2 R_1 + R_2 = (0.0379)^2 \times 10 + 0.02 = 0.0343 \Omega$$

and
$$X_{e2} = K^2 X_{e1} = (0.0379)^2 \times 35 = 0.0502 \Omega$$

(a) For power factor, $\cos \phi = 1$; $\sin \phi = 0$. Hence,

$$\therefore \text{ Regulation} = \frac{I_2 R_{e2} \cos \phi + I_2 X_{e2} \sin \phi}{V_{2(0)}} \times 100$$
$$= \frac{160 \times 0.0343 \times 1 + 0}{250} \times 100 = 2.195 \%$$

(b) For power factor, $\cos \phi = 0.8$ (lagging, ϕ positive):

$$\sin \phi = \sqrt{1 - \cos^2 \phi} = 0.6$$

$$\therefore \text{ % Regulation} = \frac{I_2 R_{e2} \cos \phi + I_2 X_{e2} \sin \phi}{V_{2(0)}} \times 100$$
$$= \frac{160 \times 0.0343 \times 0.8 + 160 \times 0.0502 \times 0.6}{250} \times 100 = 3.68 \%$$

(c) For power factor, $\cos \phi = 0.8$ (leading, ϕ negative):

$$\sin \phi = 0.6$$

$$\therefore \text{ Regulation} = \frac{I_2 R_{e2} \cos \phi - I_2 X_{e2} \sin \phi}{V_{2(0)}} \times 100$$
$$= \frac{160 \times 0.0343 \times 0.8 - 160 \times 0.0502 \times 0.6}{250} \times 100 = -0.172 \%$$

Efficiency of a transformer

• Like any other machine, the efficiency of a transformer is defined as:

$$\eta = \frac{\text{Power output}}{\text{Power input}} = \frac{\text{Power output}}{\text{Power output +Power loss}} = \frac{P_o}{P_o + P_l}$$

- Ideal transformer is 100% efficient.
- Large-size transformers are designed to be more efficient ($\eta > 98$ %)
- But, the efficiency of **small transformers** (used in power adapters for charging mobile phones) is not more than 85 %.

Power losses in transformer:

1. Copper losses or I²R losses:

- In the primary and secondary windings, given as:

$$P_c = I_1^2 R_1 + I_2^2 R_2 = I_1^2 R_{e1} = I_2^2 R_{e2}$$

- The copper losses are variable with current (square of current).

$$P_c \alpha I^2$$

 Copper losses for a given load (and hence for given VA) can be calculated as (assuming voltage to be constant):

$$P_c = \left(\frac{\text{VA}}{\text{VA}_{\text{FL}}}\right)^2 P_{c(\text{FL})}$$

2. Iron losses or core losses:

- Due to hysteresis and eddy-currents.
- Given by: $P_i = P_h + P_e$
- Since the flux $\Phi_{\rm m}$ does not vary more than about 2 % between no load and full load, it is usual to assume *the core* losses constant at all loads.
- The efficiency of a transformer can thus be written as:

$$\eta = \frac{P_{o}}{P_{o} + P_{1}} = \frac{P_{o}}{P_{o} + P_{c} + P_{i}} = \frac{V_{2}I_{2}\cos\phi_{2}}{V_{2}I_{2}\cos\phi_{2} + I_{2}^{2}R_{e2} + P_{i}}$$

Conditions for maximum efficiency:

- Assuming the operation at a constant voltage and a constant power factor, for what load (i.e., what value of I_2) the efficiency becomes maximum?
- Let us first divide the numerator and denominator by I_2 , to get

$$\eta = \frac{V_2 \cos \phi_2}{V_2 \cos \phi_2 + I_2 R_{e2} + P_i / I_2}$$

- The efficiency will be maximum when the denominator of the above equation is minimum:

$$\frac{d}{dI_2}(V_2\cos\phi_2 + I_2R_{e2} + P_i/I_2) = 0 \qquad \text{or} \qquad R_{e2} - \frac{P_i}{I_2^2} = 0$$
or
$$I_2^2R_{e2} = P_i \qquad \text{or} \qquad P_c = P_i$$

- Thus, the efficiency at a given terminal voltage and load power factor is maximum when the variable losses (copper losses) equal to the constant losses (iron losses).

Max. efficiency when Copper loss = Iron loss

• All-day Efficiency:

- The efficiency defined above is called *commercial efficiency*.
- In a distribution transformer, the primary remains energized all the time. But the load on the secondary is intermittent and variable during the day.
- The core losses occur throughout the day, but the copper losses occur only when the transformer is loaded.
- Such transformers, therefore, are designed to have minimum core losses. This gives them better *all-day efficiency*, defined below.

$$\eta_{\text{all-day}} = \frac{\text{Output energy (in kW h) in a cycle of 24 hours}}{\text{Total input energy (in kW h)}}$$

- **Example 10:** For a single-phase, 50-Hz, 150-kVA transformer, the required no-load voltage ratio is 5000-V/250-V and the full-load copper losses are 1800 W and core losses are 1500 W. Find
- (a) the number of turns in each winding for a maximum core flux of 0.06 Wb,
- (b) the efficiency at half rated kVA, and unity power factor,
- (c) the efficiency at full load, and 0.8 power factor lagging, and
- (d) the kVA load for maximum efficiency.

Solution: (a) Using the emf equation, we have:

$$E_2 = 4.44 f N_2 \Phi_{\rm m}$$

$$\Rightarrow N_2 = \frac{E_2}{4.44 f \Phi_m} = \frac{250}{4.44 \times 50 \times 0.06} = 18.8 \text{ (say, 19 turns)}$$

and
$$N_1 = \frac{E_1}{E_2} N_2 = \frac{5000}{250} \times 19 = 380 \text{ turns}$$

(b) At half rated-kVA, the current is half the full-load current, and hence the output power too reduces by 0.5. Thus:

$$P_o = 0.5 \times (\text{kVA}) \times (\text{power factor}) = 0.5 \times 150 \times 1 = 75 \text{ kW}$$

 $P_c = (0.5)^2 \times (\text{full-load copper loss}) = (0.5)^2 \times 1800 \text{ W} = 0.45 \text{ kW}$

Iron losses (fixed),
$$P_i = 1500 \text{ W} = 1.5 \text{ kW}$$

$$\therefore \qquad \eta = \frac{P_o}{P_o + P_c + P_i} \times 100 = \frac{75}{75 + 0.45 + 1.5} \times 100 = 97.47 \%$$

(c) At full load and 0.8 power factor:

$$P_o = (\text{kVA}) \times (\text{power factor}) = 150 \times 0.8 = 120 \text{ kW}$$

 $P_c = 1800 \text{ W} = 1.8 \text{ kW}; \text{ and } P_i = 1500 \text{ W} = 1.5 \text{ kW}$
 $\therefore \quad \eta = \frac{P_o}{P_o + P_c + P_i} \times 100 = \frac{120}{120 + 1.8 + 1.5} \times 100 = 97.3 \%$

(d) Let x be the fraction of full-load kVA at which the efficiency becomes maximum

$$P_c = P_i$$
 or $x^2 \times 1800 = 1500$ $x = \sqrt{1500/1800} = 0.913$

Therefore, the load kVA under the condition of maximum efficiency,

= (Full-load kVA)
$$\times x = 150 \times 0.913 = 137$$
 kVA

Example 11: For a single-phase, 200-kVA, distribution transformer has full-load copper losses of 3.02 kW and iron losses of 1.6 kW. It has following load distribution over a 24-hour day:

- (i) 80 kW at unity power factor, for 6 hours.
- (ii) 160 kW at 0.8 power factor (lagging), for 8 hours.
- (iii) No load, for the remaining 10 hours.

Determine its all-day efficiency.

Solution:

(i) For 80 kW load at unity power factor (for 6 hours):

Output energy $= 80 \times 6 = 480 \text{ kW h}$

$$kVA = \frac{P_o}{pf} = \frac{80}{1} = 80 \, kVA$$

$$\therefore P_c = \left(\frac{\text{kVA}}{\text{kVA}_{\text{FL}}}\right)^2 P_{\text{c(FL)}} = \left(\frac{80}{200}\right)^2 \times (3.02) = 0.4832 \text{ kW}$$

Iron losses, Pi = 1.6 kW

Total losses, Pl = Pc + Pi = 0.4832 kW + 1.6 kW = 2.0832 kW

 \therefore Total energy losses in 6 hours = $2.0832 \times 6 = 12.50 \text{ kWh}$

(ii) For 160-kW load at 0.8 power factor (for 8 hours):

Output energy = $160 \times 8 = 1280 \text{ kW h}$

$$kVA = \frac{P_o}{pf} = \frac{160}{0.8} = 200 \,\text{kVA} = \text{kVA}_{FL}$$

 \therefore Copper losses, $P_c = P_{c(FL)} = 3.02 \text{ kW}$

Iron losses, $P_i = 1.6 \text{ kW}$ Total losses, $Pl = P_c + P_i = 3.02 \text{ kW} + 1.6 \text{ kW} = 4.62 \text{ kW}$

 \therefore Total energy losses in 8 hours = $4.62 \times 8 = 36.96$ kW h

(iii) For the no-load period of 10 hours:

Output energy
$$P_o = 0$$

Copper losses,
$$P_{\rm c} = 0$$

Iron losses,
$$P_i = 1.6 \text{ kW}$$

Total losses,
$$P_1 = P_c + P_i = 0 + 1.6 = 1.6 \text{ kW}$$

 \therefore Total energy losses in 10 hours = 1.6×10 = 16 kW h

Thus, for 24-hour period:

- Total output energy, $W_0 = 480 + 1280 = 1760 \text{ kW h}$
- Total energy losses, $W_1 = 12.50 + 36.96 + 16 = 65.46 \text{ kW h}$
- :. All-day efficiency,

$$\eta_{\text{all-day}} = \frac{W_{\text{o}}}{W_{\text{o}} + W_{\text{l}}} \times 100 = \frac{1760}{1760 + 65.46} \times 100 = 96.41\%$$

Autotransformers

- It is a special transformer that is useful in power systems, motor starters, variable ac sources, etc.
- It has a part of its winding common to the primary and secondary circuits.

• Types:

- The portion YZ of the winding is called *common* winding.
- The portion XY is called *series winding*.
- In *variacs* (*variable autotransformers*), point Y is made a sliding contact so as to give a variable output voltage.

Saving of Copper:

- For the same voltage ratio and capacity (voltampere rating), an autotransformer needs much less copper compared to a two-winding transformer.
- The cross-sectional area of a conductor is proportional to the current carried by it, and its length is proportional to the number of turns. Therefore,

Weight of copper $\propto NI = kNI$

– For a two-winding transformer :

Weight of copper in primary = kN_1I_1 Weight of copper in secondary = kN_2I_2 Total weight of copper = $k(N_1I_1 + N_2I_2)$

– For a step-up autotransformer :

Weight of copper in portion $XY = k(N_1 - N_2)I_1$ Weight of copper in portion $YZ = kN_2(I_2 - I_1)$ Total weight of copper $= k(N_1 - N_2)I_1 + kN_2(I_2 - I_1)$ $= k[(N_1 - 2N_2)I_1 + N_2I_2]$ • Therefore, the ratio of copper- weights for the two cases is:

$$\frac{k[(N_1 - 2N_2)I_1 + N_2I_2]}{k(N_1I_1 + N_2I_2)} = \frac{\left[1 - 2\left(\frac{N_2}{N_1}\right)\right]\left(\frac{I_1}{I_2}\right) + \left(\frac{N_2}{N_1}\right)}{\left(\frac{I_1}{I_2}\right) + \left(\frac{N_2}{N_1}\right)} = \frac{[1 - 2K]K + K}{K + K} = 1 - K$$

- Evidently, the saving is large if *K* is close to unity.
- A unity transformation ratio means that no copper is needed at all for the autotransformer.
- The winding can be removed all together.
- The volt-amperes are conductively transformed directly to the load!

• Advantages of Autotransformers:

- **S** A saving in cost since less copper is needed.
- **S** Less volume, hence less weight.
- \S A higher efficiency, resulting from lower I^2R losses.
- A continuously variable output voltage is achievable if a sliding contact is used.
- **S** A smaller percentage voltage regulation.
- **S** Higher VA Rating.

• Disadvantages of Autotransformers:

- The primary and secondary windings are not electrically separate, hence if an open-circuit occurs in the secondary winding the full primary voltage appears across the secondary.
- Low impedance hence high short circuit currents for short circuits on secondary side in a two-winding transformer.
- No electrical separation between primary and secondary which is risky in case of high voltage levels.
- Economical only when the voltage ratio is less than 2.

• Applications of Autotransformers:

- Power Systems: Boosting or buckling of supply voltage by a small amount.
- Motor Starters: Starting of ac machines, where the voltage is raised in two or more steps.
- Variable ac sources: Continuously varying ac supply as in variacs.

Transformer Testing

- There are two simple tests to determine the equivalent-circuit parameters and its efficiency and regulation:
 - Open-circuit test (OC Test)
 - Short-circuit test (SC Test)
- Advantage of these tests is without actually loading the transformers, we can determine the Losses and Regulation, for full-load.

• Open Circuit Test:

- This test determines the no-load current and the parameters of the exciting circuit of the transformer.
- Generally, the low voltage (LV) side is supplied rated voltage through a *variac*.
- The high voltage (HV) side is left open.

- The I^2R loss on no load is negligibly small compared with the core loss.
- Hence the wattmeter reading, W_o , can be assumed to give the core loss of the transformer.

- Calculations:

$$P_{\rm i} = W_{\rm o}; \qquad I_0 = I_{\rm o}; \qquad K = rac{V_2}{V_1}$$

$$I_{\rm w} = rac{W_{\rm o}}{V_1}; \qquad I_{\rm m} = \sqrt{I_0^2 - I_{\rm w}^2};$$

$$R_0 = rac{V_1}{I_{\rm w}}; \qquad X_0 = rac{V_1}{I_{\rm m}}$$

• Short-Circuit Test:

- This test determines the equivalent resistance and leakage reactance.
- Generally, the LV side of the transformer is short-circuited through a suitable ammeter A_2 .
- A low voltage is applied to the primary (HV) side.
- This voltage is adjusted with the help of a variac so as to circulate full-load currents in the primary and secondary circuits.

- The reading of ammeter A_1 , I_{sc} , gives the full-load current in the primary winding.
- Since the applied voltage (and hence the flux) is small, the core loss is negligibly small.
- Hence, the wattmeter reading, W_{sc}, gives the copper loss (P_c).

- Calculations:

$$R_{\rm el} = \frac{W_{\rm sc}}{I_{\rm sc}^2}; \qquad Z_{\rm el} = \frac{V_{\rm sc}}{I_{\rm sc}}; \qquad X_{\rm el} = \sqrt{Z_{\rm el}^2 - R_{\rm el}^2}$$

Example 12: A single-phase, 50-Hz, 12-kVA, 200-V/400-V transformer gives the following test results :

- (i) Open-circuit test (with HV winding open) : 200 V, 1.3 A, 120 W
- (ii) Short-circuit test (with LV winding short-circuited): 22 V, 30 A, 200 W

Calculate:

- (a) the magnetizing current and the core-loss current, and
- (b) the parameters of equivalent circuit as referred to the low voltage winding.

Solution:

(a) The wattmeter reading, 120 W, in the open-circuit test gives the core losses. Therefore, the core-loss current is given as

$$I_{w} = \frac{W_{o}}{V_{1}} = \frac{120 \text{ W}}{200 \text{ V}} = \mathbf{0.6 A}$$

$$\therefore I_{m} = \sqrt{I_{0}^{2} - I_{w}^{2}} = \sqrt{(1.3)^{2} - (0.6)^{2}} = \mathbf{1.15 A}$$

(b) The parameters of the exciting circuit are given by the open-circuit test, as

$$R_0 = \frac{V_1}{I_w} = \frac{200 \text{ V}}{0.6 \text{ A}} = 333 \Omega$$
 and $X_0 = \frac{V_1}{I_m} = \frac{200 \text{ V}}{1.15 \text{ A}} = 174 \Omega$
Now, $K = \frac{V_2}{V_1} = \frac{200 \text{ V}}{400 \text{ V}} = \frac{1}{2}$ and $I_{FL} = \frac{12 \text{ kVA}}{400 \text{ V}} = 30 \text{ A}$

This confirms that the short-circuit test has been done at the rated full-load.

$$\therefore R_{e1} = \frac{W_{sc}}{I_{sc}^2} = \frac{200 \text{ W}}{(30 \text{ A})^2} = 0.222 \Omega \quad \text{and} \quad Z_{e1} = \frac{V_{sc}}{I_{sc}} = \frac{22 \text{ V}}{30 \text{ A}} = 0.733 \Omega$$

The equivalent resistance and reactance as referred to the secondary side (low voltage winding):

$$R_{\rm e2} = K^2 R_{\rm e1} = \left(\frac{1}{2}\right)^2 \times 0.222 = {\bf 0.055} \ \Omega$$
 and $X_{\rm e2} = K^2 X_{\rm e1} = \left(\frac{1}{2}\right)^2 \times 0.699 = {\bf 0.175} \ \Omega$