## DoSA-3D 사용 메뉴얼

#### **Voice Coil Motor Example**

(Speaker, Auto-Focus, Linear Vibrator)

2022-05-07 zgitae@gmail.com



# DoSA 구성

## PC 요구사항

➤ CPU : 4 Core 이상

➤ RAM : 16GB 이상





### 프로그램 구성



#### **Toolbar**

#### 1. 작업관리

✓ New : 신규작업 생성

✓ Open : 이전작업 열기

✓ Save : 작업 저장

✓ SaveAs : 다른 이름으로 저장

✓ Shape : 3D 형상 확인

#### 2. 설계

✓ Coil : 권선 추가 및 사양 설계

✓ Magnet : 영구자석 추가 및 사양 설정

## ✓ Steel : 연자성체 추가 및 사양 설정

#### 3. 가상실험

✓ Force : 자기력 예측







# 해석 모델

### 해석모델 설명

#### 1. 형상 모델





#### 2. 제품 사양

#### 가. 코일권선

• Coil Turns: 126 turns

• Coil Resistance: 15.75 Ohm

#### 나. 영구자석

• Material : NdFeB 40

• 착자방향: 90 (UP)

#### 다. 전원

• Voltage: 2.5V

(작업 예제파일 : DoSA-3D 설치 디렉토리 > Samples > VCM )



### Design 생성

1. Toolbar > New 버튼 클릭

2. Design Name: "VCM"

3. Shape File (STEP): VCM.step 선택 ( 튜토리얼 문서와 함께 제공됨 )



#### [형상작업 주의사항]

DoSA-3D 는 아직 아래의 기능제한을 가지고 있음

- 가. 코일 형상 제한
  - 코일 중심 축이 Y 축 방향이어야 한다.
  - 전류는 원통코일 형태로 인가된다.(사각 코일은 약간의 차이가 발생할 수 있음)
- 나. 구동부 형상 제한
  - 구동부는 아직 하나의 부품만을 지원함
- 다. 형상작업 가이드
  - https://solenoid.or.kr/data/Drawing Guide KOR.pdf



## Design 생성

- 4. Gmsh 에서 Solenoid 3차원 형상을 확인한다.
- 5. Gmsh 를 종료한다.
- 6. Part Name 을 확인 한다.
- 7. 형상과 Part Name 에 문제가 없다면 OK 를 클릭한다.







## Design 생성

8. Design 생성을 확인한다.



## Parts Design

## Coil 추가

- 1. Toolbar > Coil 버튼 클릭
- 2. List Box 에서 "Coil" 선택
- 3. OK 버튼 클릭







#### Coil 설계

#### 자기력 계산 파트 선정

1. Coil 기구사양 입력

✓ Moving Parts: MOVING

✓ Coil Wire Grade : Bonded\_IEC\_Grade\_1B

✓ Inner Diameter: 3

✓ Outer Diameter: 3.73

✓ Coil Height: 1.18

✓ Copper Diameter: 0.045

✓ Horizontal Coefficient : 0.95 (Bonded Type)

✓ Vertical Coefficient : 1.13 (Bonded Type)

✓ Resistance Coefficient : 1.1 (Bonded Type)

2. Coil 사양 계산

✓ Design Coil 버튼 클릭

3. Coil 사양 확인

| Δ | Common Fields                                  |                     |  |  |
|---|------------------------------------------------|---------------------|--|--|
|   | Node Name                                      | Coil                |  |  |
| ⊿ | Specification Fields                           |                     |  |  |
|   | Part Material                                  | Copper              |  |  |
|   | Curent Direction                               | IN                  |  |  |
|   | Moving Parts                                   | MOVING              |  |  |
| Δ | Calculated Fields                              |                     |  |  |
|   | Coil Turns                                     | 126                 |  |  |
|   | Coil Resistance [Ω]                            | 15,74769            |  |  |
|   | Coil Layers                                    | 6                   |  |  |
|   | Turns of One Layer                             | 21                  |  |  |
| А | Nesign Fields (optio                           | nal)                |  |  |
|   | Coil Wire Grade                                | Bonded_IEC_Grade_1B |  |  |
|   | Inner Diameter [mm]                            | 3                   |  |  |
|   | Outer Diameter [mm]                            | 3,73                |  |  |
|   | Coil Height [mm]                               | 1,18                |  |  |
|   | Copper Diameter [mm]                           | 0,045               |  |  |
|   | Wire Diameter [mm]                             | 0,04953             |  |  |
|   | Coil Temperature [°C]                          | 20                  |  |  |
|   |                                                |                     |  |  |
|   | Horizontal Coefficient                         | 0,95                |  |  |
|   | Horizontal Coefficient<br>Vertical Coefficient | 0,95<br>1,13        |  |  |





## Magnet 추가

- 1. Toolbar > Magnet 버튼 클릭
- 2. List Box 에서 "Magnet" 선택
- 3. OK 버튼 클릭









## Magnet 설정

- 1. Magnet 속성 설정
  - ✓ 기본 설정 값 사용

1

| Δ | Common Fields        |            |  |  |  |
|---|----------------------|------------|--|--|--|
|   | Node Name            | Magnet     |  |  |  |
| Δ | Specification Fields |            |  |  |  |
|   | Part Material        | NdFeB_40   |  |  |  |
|   | Hc                   | 969969     |  |  |  |
|   | Br                   | 1,26497    |  |  |  |
|   | Moving Parts         | FIXED      |  |  |  |
| Δ | Magnetization Fields |            |  |  |  |
|   | Magnet Plane         | XY_Plane_Z |  |  |  |
|   | Magnet Angle         | 90         |  |  |  |





## [참고] Magnet 착자설정

✓ Magnet Plane : XY\_Plane\_Z

✓ Magnet Angle: 90



✓ Magnet Plane : ZX\_Plane\_Y

✓ Magnet Angle : 45° (135°, -45°, -135°)



## Plate 추가

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Plate" 선택
- 3. OK 버튼 클릭







#### Plate 설정

1. Plate 속성 설정

✓ Part Material : SUS\_430 선택

#### [ BH 곡선 ]



1





## Case 추가

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Case" 선택
- 3. OK 버튼 클릭







#### Case 설정

1. Case 속성 설정

✓ Part Material : SUS\_430 선택

#### [ BH 곡선 ]



1



## Virtual Test

### 자기력 가상실험

- 1. Toolbar > Force 버튼 클릭
- 2. Test Name: "Force"
- 3. OK 버튼 클릭
- 4. 자기력 가상실험 설정
  - ✓ Voltage: 2.5
- 5. 해석조건 설정
  - ✓ Mesh Size Percent : 5✓ Actuator Type : VCM
- 6. Force Test 버튼 클릭





| ~        | Common Fields                |         |   |
|----------|------------------------------|---------|---|
|          | Node Name                    | Force   |   |
| ~        | Input Fields                 |         |   |
|          | Voltage [V]                  | 2.5     | 4 |
|          | Max, Current [A]             | 0,15875 |   |
| <b>~</b> | <b>Initial Position Fiel</b> | ds      |   |
|          | Y Movement [mm]              | 0       |   |
|          | X Movement [mm]              | 0       |   |
|          | Z Movement [mm]              | 0       |   |
| <b>~</b> | Condition Fields             |         |   |
|          | Mesh Size [%]                | 5       |   |
|          | Actuator Type                | VCM     | 5 |







#### 자기력 가상실험 실행

- 7. 형상을 확인 하고 Run 버튼 클릭한다
- 8. 해석 진행 중에 상황을 확인하려면 Gmsh 상태 바를 클릭한다





#### 자기력 가상실험 실행

- 9. 해석 결과를 확인 한다 (해석 시간은 컴퓨터 사양에 따라 다름)
- 10. **Gmsh 를 종료한다** (종료하면 자동으로 Gmsh 가 다시 실행됨)
- 11. 다시 Run 버튼을 클릭한다 ( VCM 방식 액추에이터는 자기력 정확도를 높이기 위해 두 번 해석을 진행함 )





#### 자기력 가상실험 결과

- 12. 해석 결과를 확인하고 Gmsh 를 종료한다
- 13. VCM 의 자기력을 확인한다





# Tips

### Design 열기

- 1. Toolbar > Open 버튼 클릭
- 2. Design 디렉토리 더블 클릭
- 3. Design 파일 더블 클릭







## 감사합니다

Email: zgitae@gmail.com