# Explanation of "On Two Minimax Theorems in Graph"

## Daniel Blévin George Apaaboah

October 24, 2018

### Contents

| 1 | Theorems |         |                                  | 1 |
|---|----------|---------|----------------------------------|---|
| 2 | Def      | initior | ıs                               | 1 |
| 3 | Examples |         |                                  |   |
|   | 3.1      | Branc   | ching                            | 3 |
|   |          | 3.1.1   | Simple branching                 | 3 |
|   |          | 3.1.2   | Edge disjoint branching          | 3 |
|   |          |         | Edge disjoint a-routed branching |   |
|   | 3.2      | a-cut   | exemples                         | 4 |

### 1 Theorems

**THEOREM 1** (Edmonds). The maximum number of edge-disjoint branchings (rooted at a) equals the minimum number of edges in a-cuts.

## 2 Definitions

## Branching and a-cut (from the paper)

**branching** In a directed graph D = (V, A) a branching is a set of arcs not containing circuits s.t. each node of D is entered at most by one arc in A'. (So the arc in A' make up a forest).

**a-cut** A a-cut of G determined by a set  $S \subset V(G)$  is the set of edges going from S to V(G) - S. It will be denoted by  $\Delta_G(S)$ . We also set that  $\delta_G(S) = |\Delta_G(S)|$ .

## Branching and a-cut (from books)

**branching** A branching B is an arc set in a digraph D that is a forest such that every node of D is the head of at most one arc of B. A branching that is a tree is called an arborescence. A branching that is a spanning tree of D is called a spanning arborescence of D. Clearly, in a spanning arborescence B of D every node of D is the head of one arc of B except for one node. This node is called the root of B. If F is the root of arborescence B we also say that B is rooted at F or F-rooted.

**r-arborescence** An arborescence in a digraph D = (V, A) is a set A' of arcs making up a spanning tree such that each node of D is entered by at most one arc in A'. It follows that there is exactly one node r that is not entered by any arc of A'. This node is called the root of A', and A' is called rooted in r, or an r-arborescence.

**r-cut** An r-cut in a digraph is an edge set  $\delta^+(X)$  for some  $X \subset V(G)$  with  $r \in X$ .

**edge-disjoint branchings** Two branching are edge-disjoint if they do not have any internal edge in common.

A note on orientation A rooted tree is a tree in which one vertex has been designated the root. The edges of a rooted tree can be assigned a natural orientation, either away from or towards the root, in which case the structure becomes a directed rooted tree. When a directed rooted tree has an orientation away from the root, it is called an arborescence, branching, or out-tree; when it has an orientation towards the root, it is called an anti-arborescence or in-tree.

# 3 Examples

# 3.1 Branching

# 3.1.1 Simple branching



Figure 1: A digraph D = (A, V) Figure 2: A branching of D routed at a.

## 3.1.2 Edge disjoint branching



Figure 3: Two edge-disjoint branching routed respectively at a and d.

## 3.1.3 Edge disjoint a-routed branching



Figure 4: Two edge-disjoint a-routed branching.

# 3.2 a-cut exemples



Figure 5: A digraph D = (A, V).



Figure 6: An a-cut of D,  $S = \{a\},$   $\Delta_D(S) = \{ab, ad\},$   $\delta_D(S) = 2.$ 



Figure 7: An minimal a-cut of D,  $S = \{a, b, c, d, f\},$   $\Delta_D(S) = \{be\},$   $\delta_D(S) = 1.$ 



Figure 8: An minimal a-cut of D,  $S = \{a, b, d, e, f\},$   $\Delta_D(S) = \{bc\},$   $\delta_D(S) = 1.$