Centre Universitaire Belhadj Bouchaïb / Ain Témouchent Institut des Sciences
Departement Mathématiques & Informatique

s opur comono mucha como manque

Année 2019-2020 M1/RID Module : RSFE

Responsable du module : Mr A. Benzerbadj

Corrigé Type Examen Final 2019-2020 RSFE

Exercice 1 (5pts)

1. (1.75pts)

Génération	Nom technologie	Débit
1	R200, NMT, (0.125pts)	Pas d'accès IP (0.125pts)
2	GSM (0.125pts)	10 Kb/s (0.125pts)
2.5	Extension GPRS-EDGE (0.125pts)	Accès IP à 100 Kb/s (0.125pts)
3	UMTS (0.125pts)	Accès IP à $1 \text{ Mb/S } (0.125 \text{pts})$
3.9	Extension HSDPA (0.125pts)	Accès à 10 Mb/s (0.125pts)
4	LTE, LTE advanced (0.125pts)	Accès IP 100 Mb/s (0.125pts)
5	LTE-b (0.125pts)	Accès IP à 1-10 Gb/s (0.125pts)

Table 1 – Caractéristiques des différentes générations des Réseaux Cellulaires.

- 2. La fréquence appropriée est : 0.8 GHz < f < 3GHz (0.375pts)
- 3. Roaming Vs Handover
 - Roaming : Déplacement d'une cellule (BSS) à une autre. (0.25pts)
 - Handover : Mécanisme qui permet de se déplacer d'une cellule à l'autre sans interruption de la communication. (0.25pts)
- 4. La portée dans un réseau sans fil dépend de :
 - La puissance des emetteurs (AP+antennes choisis) (0.25pts)
 - La sensibilité du recepteur (0.25pts)
 - Affaiblissement du signal (masque radio + interférences) (0.25pts)
- 5. Les modes d'association sont :
 - Mode Master (AP) **(0.125pts)**
 - Mode Managed or Client (Station mode) (0.125pts)
 - Mode Adhoc et mode bridge (0.125pts)
 - Mode repeater (0.125pts)
 - Mode Monitor (0.125pts)
- 6. Débit d'association variable : 54 48 36 24 12 11 5,5 2 1 Mbit/s Adapté automatiquement en fonction :
 - de la puissance reçue par l'appareil (distance) (0.5pts)
 - du rapport Signal/Bruit (qualité du signal) (0.5pts)

Exercice 2 (5pts)

1. (a) A envoie des données. (0.125pts)

Figure 1 - WLAN avec infrastructure.

- (b) C perçoit la communication car elle est dans la portée de A. (0.125pts)
- (c) Par contre B ne perçoit pas la communication initiée par A, car elle n'est pas dans sa portée. Par conséquent, le canal est libre pour B. (0.125pts)
- (d) Si B transmets des données alors collisison. (0.125pts)
- (e) A est un terminal caché pour B. (0.125pts)
- 2. (a) PC1 est entrain de communiquer avec AP1. (0.125pts)
 - (b) PC2 entend la communication etre PC1 et AP1 car il est dans le portée de PC1. (0.125pts)
 - (c) PC2 va reporter sa communication avec AP2. (0.125pts)
 - (d) Ce report est inutile car AP2 n'a rien à voir avec AP1 et ce dernier n'est pas dans la portée de PC2. (0.125pts)
 - (e) PC2 est un terminal exposé à PC1. (0.125pts)

3.

- 4. (a) B est entrain d'envoyer des données à A. (0.125pts)
 - (b) C perçoit la communication entre B et A car il est dans la portée de B. (0.125pts)
 - (c) Par conséquent le nœud C va reporter sa transmission vers le nœud D. (0.125pts)
 - (d) Ce report est inutile puisque le nœud A n'est pas dans la portée de C. (0.125pts)
 - (e) On dit que le nœud C est exposé au nœud B. (0.125pts)

Figure 2 – Solution du Problème du terminal caché. ${\bf (1.125pts)}$

FIGURE 4 – Réseau Ah Hoc. (1pts)

Exercice 3(5pts)

IEEE name	Max. bit rate	frequency	Channel width
802.11a	54 Mbps (0.25pts)	5G Hz (0.25pts)	20 MHz (0.25pts)
802.11b	11 Mbps (0.25pts)	2.4 GHz (0.25pts)	20 MHz (0.25pts)
802.11g	54 Mbps (0.25pts)	2.4 GHz (0.25pts)	20 MHz (0.25pts)
802.11n	150 Mbps (0.5pts)	2.4 GHz, 5 GHz (0.25pts)	20-40 MHz (0.5pts)
	600 Mbps (MIMO)		

Canal	Fréquence centrale (GHz)
3	2.422 (0.5pts)
10	2.457 (0.5 pts)
12	2.467 (0.5pts)

Exercice 4(5pts)

1. C, car elle a tiré le plus petit temp backoff (3). (1pts)

FIGURE 5 – Algo du Backoff. (3pts)

2.

3. $x=2^k-1$, k est le nombre de collisions qui se sont produites. C_wmin était égale à 7 au départ. Cela veut dire que nous avons considéré trois collisions qui se sont produites (k=3). Dans notre cas, si une nouvelle

collision se produit, k serait égal à 4. Ainsi, $x=2^4-1=15$. Ca serait la nouvelle fenêtre de contention $C_wmin=15$. (1pts)