4.1.3. Метод хорд

Метод хорд (пропорциональных частей, линейной интер**поляции)** предназначен для уточнения корня на интервале [a, b], на концах которого функция f(x) принимает значения разных знаков. Поскольку нам известны значения функции на концах интервала, т.е. f(a) и f(b), то вместо того чтобы делить отрезок пополам целесообразно разделить его пропорционально значениям функции в начальных точках f(a): f(b). Таким образом, нахождение решения заключается в определении координаты точки $x = x_0$, полученной путем пересечения оси абсцисс Ох и прямой линией (хордой) проходящей через точки A(a; f(a)) и B(b; f(b)).

Геометрическая интерпретация метода пропорциональных частей представлена на рис. 15 для случая с монотонной функции f(x) и на рис. 16 для случая, когда заданная функция f(x) на интервале [a, b] имеет немонотонное поведение.

Запишем уравнение прямой (хорды), проходящей через точки \boldsymbol{A} и \boldsymbol{B} :

$$\frac{y-f(a)}{f(b)-f(a)} = \frac{x-a}{b-a}.$$

Для нахождения точки $x=x_0$ являющейся местом пересечения хорды с осью абсцисс Ox (имеющей уравнение y=0) получим уравнение

$$x_0 = a - \frac{b - a}{f(b) - f(a)} f(a).$$

В качестве нового интервала для продолжения итерационного процесса выбирается тот из двух $[a, x_0]$ и $[x_0, b]$, на концах которого функция f(x) принимает значения разных знаков. Для обоих рассмотренных выше случаев выбираем отрезок $[a, x_0]$, так как $f(a) \cdot f(x_0) < 0$.

Рис. 15 – Графическое представление первой итерации метода хорд для монотонной функции

В качестве нового интервала для продолжения итерационного процесса выбирается тот из двух $[a, x_0]$ и $[x_0, b]$, на концах которого функция f(x) принимает значения разных знаков. Для обоих рассмотренных выше случаев выбираем отрезок $[a, x_0]$, так как $f(a) \cdot f(x_0) < 0$. Следующая итерация состоит в определении нового приближения x_1 как точки пересечения хорды AB_1 с осью абсцисс (рис. 17 и 18) и т.д.

Рис. 16 — Схематичное представление первой итерации метода хорд для функции с немонотонным поведением

Рис. 17 – Визуализация второй итерации процесса нахождения решения с помощью метода хорд для монотонной функции

Замечание. В случае, когда заданная функция f(x) на интервале [a, b] является монотонной (убывающей или возрастающей), то в процессе решения одна из границ a или b остаются неизменными. Как видно на рис. 15 и 17 для монотонно возрастающей функции выпуклой вверх граница a является постоянной.

В отличие от других интервальных методов, в методе хорд уменьшение длины промежутка локализации корня не является гарантированным, поэтому процесс нахождения решения сопоставляется между решениями, полученными на двух соседних итерациях.

Рис. 18 – Геометрическое представление второй итерации для немонотонной функции по методу хорд

Таким образом, процесс уточнения корня заканчивается, когда расстояние между очередными приближениями станет меньше заданной точности ε , т.е. используется формула, применяемая для итерационных методов

$$\left|x_{k+1}-x_k\right|<\varepsilon.$$

Для доказательства сходимости процесса предполагается, что искомый корень отделен и вторая производная f''(x) заданной функции f(x) сохраняет постоянный знак на локализованном отрезке [a, b].

Предположим, что f''(x) > 0 для $a \le x \le b$. Тогда график заданной функции будет выпуклым вниз и располагаться ниже своей хорды AB, при этом возможна два варианта. Вариант 1, когда заданная функция f(x) в начальной точке a является

положительной, т.е. f(a)>0, данный случай представлен на рис. 19. Второй вариант, реализуется в случае, когда функция f(x) в начальной точке a является отрицательной, т.е. f(a)<0, на рис. 20 проиллюстрирован этот случай.

Рис. 19 — Нахождение решения нелинейного уравнения по методу хорд для функции, имеющей f''(x) > 0 и f(a) > 0

Рис. 20 — Нахождение решения нелинейного уравнения по методу хорд для функции, имеющей f''(x) > 0 и f(a) < 0.

Вариант 1. Левый конец начального интервала a остается неподвижным, а последовательные приближения: $x_0 = b$;

$$x_{k+1} = x_k - \frac{x_k - a}{f(x_k) - f(a)} f(x_k),$$

где k = 0, 1, 2, ..., образуют ограниченную монотонно убывающую последовательность, причем

$$a < x^* < ... < x_{k+1} < x_k < ... < x_1 < x_0$$
.

Вариант 2. Правый конец начального интервала b остается неподвижным, а последовательные приближения: $x_0 = a$;

$$x_{k+1} = x_k - \frac{b - x_k}{f(b) - f(x_k)} f(x_k)$$

образуют ограниченную монотонно возрастающую последовательность, причем

$$x_0 < x_1 < ... < x_k < x_{k+1} < ... < x^* < b$$
.

Здесь видно, что 1) неподвижным является тот конец функции, у которого её знак совпадает со знаком второй производной, т.е. f(a)>0 и f''(x)>0 (вариант 1) или f(b)>0 и f''(x)>0 (вариант 2); 2) последовательность приближений x_k лежит по ту сторону от корня x^* , где функция f(x) имеет противоположный знак со второй производной f''(x). В обоих вариантах каждое последующее приближение x_{k+1} ближе к искомому корню x^* , чем предыдущее x_k . Пусть на интервале [a,b] существует

$$\overline{x} = \lim_{k \to \infty} \{x_k\}.$$

Тогда переходя к пределу в равенстве для первого варианта, имеем

$$\overline{x} = \overline{x} - \frac{\overline{x} - a}{f(\overline{x}) - f(a)} f(\overline{x}),$$

отсюда $f(\bar{x}) = 0$. Поскольку по предположению заданное уравнение f(x) = 0 имеет единственный корень x^* на искомом интервале [a,b], то, следовательно, $\bar{x} = x^*$, что и требовалось доказать.

Замечание. В некоторых случаях метод хорд может сходиться очень медленно, один из таких примеров представлен на рис. 21.

Метод хорд обладают гарантированной сходимостью даже для разрывных функций.

Рис. 21 – Медленное приближение к искомому решению по методу хорд

Пример. На интервале [1; 1,5] уточнить корень нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$

до точности $\varepsilon = 10^{-3}$ применяя метод хорд.

Решение. Вначале вычисляются значения функции на концах заданного интервала

$$f(1) = 1^{3} - \frac{1^{2} + 1}{5} - 1, 2 = -0, 6,$$

$$f(1,5) = 1, 5^{3} - \frac{1, 5^{2} + 1, 5}{5} - 1, 2 = 1,425.$$

На первом этапе определяется координата пересечения хордой оси абсцисс с помощью соотношения для метода хорд

$$x_0 = 1 - \frac{1,5-1}{1,425-(-0,6)} \cdot (-0,6) = 1 + 0,148148 = 1,148148$$

и значение функции во вновь найденной точке

$$f(1,148148) = 1,148148^{3} - \frac{1,148148^{2} + 1,148148}{5} - 1,2 = -0,179739.$$

На втором этапе проводится анализ знаков функции и выбор интервала, на котором функция меняет знак. В данном случае осуществляется замена точки a на x_0 . Таким образом, интервал, на котором продолжается поиск решения, сузился до [1,148148; 1,5]. Проводим повторный расчет первого этапа для вновь полученного интервала.

Определяется новая координата пересечения хорды с осью абсцисс

$$x_1 = 1,148148 - \frac{1,5 - 1,148148}{1,425 - (-0,179739)} \cdot (-0,179739) =$$

$$= 1,148148 + 0,039409 = 1,187557$$

и значение функции во вновь найденной точке

$$f(1,187557) = 1,187557^{3} - \frac{1,187557^{2} + 1,187557}{5} - 1,2 =$$

$$= -0,044767.$$

Проводится проверка на достижение полученным решением заданной точности

$$|x_1 - x_0| < \varepsilon$$
,
 $|1,187557 - 1,148148| = 0,039409 < 0,001$.

Убеждаемся в необходимости продолжения процесса уточнения искомого решения. Для этого исследуемый интервал изменяется и уменьшается до [1,187557; 1,5] и процесс нахождения решения продолжается.

Весь процесс нахождения решения нелинейного уравнения методом хорд рационально представить в виде таблицы.

Как видно из табл. 9 после четырех повторений процедуры расчета было получено решение, которое удовлетворяет заданной точности

Таблица 9 – Решение нелинейного уравнения методом хорд

k	а	f(a)	b	f(b)	x	f(x)
0	1	-0,6	1,5	1,425	1,148148	-0,179739
1	1,148148	-0,179739	1,5	1,425	1,187557	-0,044767
2	1,187557	-0,044767	1,5	1,425	1,197074	-0,010622
3	1,197074	-0,010622	1,5	1,425	1,199315	-0,002491
4	1,199315	-0,002491	1,5	1,425	1,199840	-0,000583

$$|1,199840-1,199315| = 0,000525 < 0,001.$$

Отметим, что точное решение заданного нелинейного уравнения соответствует $x^* = 1, 2$.

<u>Ответ.</u> Заданное нелинейное уравнение на рассматриваемом интервале имеет решение x = 1,199840, которое получено с точностью $\varepsilon = 0,001$.