

Voice Activated Security System

!Deactivate or be locked out forever!

Daniel Bernstein '23 & Nataly Zarzuela '23 PHYS 336 Electronics/ Professor Segall/ Spring 2021

Our Project:

The voice activated security system is essentially a game where a player has to press a button to initiate the device then has to speak into a microphone and guess at what frequency they have to say the words "deactivate". If they initiate with the wrong frequency, a countdown will begin and the player has 9 seconds to repeat the word "deactivate" in different pitches until the security system turns on a green LED and a tone of victory is played. If the player is unsuccessful, the LED will flash red and play a tone of failure.

Components:

1 Power Supply	(2) $100 \text{ k}\Omega$ resistor
Microphone	$2 k\Omega$ resistor
Speaker	(2) 1000 pF capacitor
LM386	(3) LM741
	1 Teensy
10 μF capacitor	Button
470 μF capacitor	74LS47
0.047 μF capacitor	7116RLF
0.1 μF capacitor	7-segment display
10 Ω resistor	(2) 741CN op-amp
8 Ω resistor	(1) 17741 op-amp
10 kΩ resistor	1 Potentiometer
21 kΩ resistor	1 Oscilloscope
10 kΩ resistor	1 Function Generator

How It Works:

With the use of both digital and analog components, we decided to use a microphone as the input into an amplifier that is then connected to an active band-pass filter and then connected to Teensy. The band pass filter will allow us to pre-determine which frequencies we will allow the player to pass through as they speak into the microphone. The three outputs of the Teensy are the 7-segment display that will execute the 9 second countdown, the flashing LEDs, and the speaker. Along with the 7-segment display there is a button that will allow the game to begin. The tones are played by sending a voltage into the Voltage to Frequency input of the function generator, allowing us to connect the speaker output to the teensy.

Acknowledgements: Professor Ken Segall

Professor Ken Segall
Our Tutors The Goats