

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za osnove elektrotehnike i električka mjerenja

9. TEMA

STATISTIČKE METODE U UPRAVLJANJU KAKVOĆOM

Prof.dr.sc. Damir Ilić Prof.dr.sc. Roman Malarić Doc.dr.sc. Ivan Leniček

Kolegij "Upravljanje kakvoćom" Zagreb, 2013.

TEME

- Statističke metode u upravljanju kakvoćom
- 7 osnovnih alata
- Promjenjivosti
- Opisna statistika
- Razdiobe

Statističke metode

- Statističke metode omogućuju bolju uporabu dostupnih podataka za donošenje odluka, te tako mogu poslužiti za neprekidno poboljšavanje kakvoće proizvoda i procesa
- Statističke metode primjenjive su na širi spektar djelatnosti:
 - istraživanje tržišta
 - projektiranje
 - razvoj
 - proizvodnju
 - provjeru
 - ugradbu
 - održavanje

Statističke metode

- Te su metode razrađene u velikom broju međunarodnih ISO i IEC norma:
 - ISO/TR 10017:2003 Guidance on statistical techniques for ISO 9001:2000
 - ISO 3534 series Statistics Vocabulary and symbols
 - ISO 2859 series Sampling procedures for inspection by attributes
 - □ ISO 8258:1991 Shewhart control charts
 - IEC 60812:2006 Analysis techniques for system reliability
 Procedure for failure mode and effects analysis (FMEA)
 - GUM Guide to the expression of uncertainty in measurement

Statističke metode

Opisne statistike

- Iskazuju količinske mjere značajka (kao što su prosjek i standardno odstupanje) podataka iz uzorka
- Pružaju učinkovit i razmjerno jednostavan način sažetoga prikazivanja podataka – temeljna sastavnica statističke analize

Planiranje pokusa

- Istraživanja koja se provode na planiran način i koja se pri izvođenju zaključaka oslanjaju na statističku procjenu rezultata
- Pri planiranju pokusa obično se u sustav koji se ispituje uvode promjene i provodi statistička procjena djelovanja takvih promjena na sustav kako bi se vrednovale značajke sustava ili istražio utjecaj jednog ili više čimbenika na značajke sustava

Provjera hipoteza

- Statistički postupak kojim se, uz zadanu razinu rizika, određuje da li je skup podataka (u tipičnom slučaju dobiven iz uzorka) skladan s danom hipotezom
- Hipoteza se može odnositi na pretpostavku o posebnoj statističkoj razdiobi ili modelu, ili se može odnositi na vrijednost nekog parametra razdiobe
- Test signifikantnosti
- Analiza mjerenja (analiza mjernog sustava)
 - Skup podataka za određivanje nesigurnosti parametara sustava

Analiza sposobnosti procesa

- Ispitivanje svojstvene promjenjivosti i razdiobe procesa kako bi se procijenila njegova sposobnost da proizvede izlaz u skladu s područjem promjena dopuštenih specifikacijama
- Mjerljive varijable svojstvena promjenjivost procesa izražava se "rasipanjem" procesa i mjeri se kao šest standardnih odstupanja (±3σ) razdiobe procesa (99,73% populacije)
- Atributivni karakter podataka (npr. broj neskladnih jedinica)
 sposobnost procesa izražava se prosječnim udjelom neskladnih jedinica ili prosječnim udjelom neskladnosti

Regresijska analiza

- Istražuje odnose promatranih značajka (koje se obično nazivaju "varijablama odziva") s mogućim uzročnicima ("neovisnim varijablama")
- Odnos se određuje modelom koji se dobiva iz znanosti, ekonomije, tehnike, ili pak iskustveno (linearni model, eksponencijalni, više varijantni)

Uzorkovanje

- Sustavna primjena statističkih metoda za dobivanje podataka o nekoj značajki populacije proučavanjem reprezentativnog dijela, odnosno uzorka populacije
- Ispravno uzorkovanje predmnijeva nepristran način odabira

Simulacije

 Zajednički naziv za postupke kojima se radi rješavanja problema određeni sustav prikazuje matematički računalnim programom

Dijagrami za statističko upravljanje procesom

- "Oruđe" za određivanje statusa statističkog upravljanja
- Upravljački dijagrami služe kao metoda za uspoređivanje podataka iz uzoraka koji predstavljaju "tekuće" stanje procesa s graničnim vrijednostima utvrđenim nakon razmatranja svojstvene promjenjivosti procesa
- Shewhartovi dijagrami

7 osnovnih alata za kontrolu kakvoće

- Kaoru Ishikawa definirao je sedam osnovnih vizualnih alata za kakvoću tako da ih i prosječno obrazovan radnik može analizirati i interpretirati ¹
- Te alate koriste razne tvrtke u svijetu, od menadžera do radnika

¹ Kaoru Ishikawa, What is Total Quality Control?, Englewood Cliffs, NJ: Prentice-Hall, Inc, 1985

7 osnovnih alata za kontrolu kakvoće

- 1. Histogram (*histogram*)
- 2. Paretov dijagram (*Pareto diagram*)
- 3. Dijagram tijeka procesa (process flowchart)
- 4. Dijagram raspršenja (scatter diagram)
- Ispitni list (check sheet)
- 6. Dijagram uzroka i posljedica (cause and effect diagram)
- 7. Kontrolne karte (control charts)

Histogram

- Grafički prikaz podataka u obliku stupčastog grafikona - raspored učestalosti nekog parametra
 - jednostavan uvid u razdiobu promatranog skupa

Broj opažanja	Broj razreda	Broj opažanja	Broj razreda
20 do 50	6	201 do 500	9
51 do 100	7	501 do 1000	10
101 do 200	8	Više od 1000	11 do 20

Paretov dijagram (pravilo 80:20)

- Paretov princip
- Vilfredo Pareto (1848-1923), talijanski ekonomist: 20 % populacije ima 80 % bogatstva
- Paretov dijagram razvio je Juran koristeći histogram u kombinaciji sa 80/20 pravilom

80% problema leži u 20% uzroka

- Identificiraju i rangiraju probleme koje treba riješiti
- Mogu se koristiti za različite analize
- Primjeri korištenja Pareto analiza: identifikacija i rangiranje reklamacija kupaca, skladišni inventar, distribucija bogatstva među zemljama

Paretov dijagram

Primjer:

Uzroci loše kvalitete

Dijagram tijeka procesa

 Dijagram tijeka procesa vizualno prikazuje sve korake u procesu

Dijagram tijeka procesa

- Slikoviti prikaz svih koraka u procesu
- Dijagram tijeka procesa stvara se od osnovnih blokova (operacija, odluka, podatak, dokument...)

Dijagram raspršenja

- Koristi se za ispitivanje veza između dvije varijable (zavisne i nezavisne varijable)
- Istražuje veze između dvije varijable vezane uz isti "događaj". Često se prikazuje i ravna linija (pravac regresije) koja prikazuje optimalnu vezu
- Ukazuje na korelaciju između ovih varijabli

Dijagram raspršenja - moguće korelacije

Ispitni list

- Jednostavan alat za nadziranje poboljšanja sustava kakvoće
- Jednostavan način prikupljanja podataka
- Koristi se kada se podaci mogu prikupljati od jedne osobe na jednom mjestu

Ispitni list - primjer

Vrsta	Označi	Ukupno
Pukotina		104
Ogrebotina		36
Mrlja		22
Naprezanje		14
Rupa		8
Mala rupica	<i> </i>	6
Ostalo		10
Ukupno		200

Dijagram uzroka i posljedica

- Još se naziva i Ishikawin dijagram ili riblja kost
 - To je prvi korak u rješavanju problema, a njime se pronalaze svi mogući potencijalni uzroci nekog problema

Struktura dijagrama uzroka i posljedica

Dijagram uzroka i posljedica

Kontrolne karte

Korisne za praćenje procesa kroz vrijeme

Kontrolne karte

Tradicionalna definicija kakvoće

- Prikladnost za uporabu
 - Dva gruba, ali stereotipna aspekta:
 - kakvoća dizajna
 - kakvoća skladnosti sa specifikacijama

Moderna definicija kakvoće

- Kakvoća je obrnuto razmjerna promjenjivosti
 - Tumačenje: Ako se promjenjivost važne i mjerljive karakteristike proizvoda ili usluge smanjuje, kakvoća raste
 - Slijedi: Poboljšanje kakvoće povlači smanjenje promjenjivosti u procesima i konačnom proizvodu
 - Ekvivalentna definicija poboljšanja kakvoće: <u>eliminacija</u> <u>škarta</u> (gubitka, otpada)
- Promjenjivost u procesima je kvantitativna, dakle mjerljiva
- Za mjerenje, opis, analizu, tumačenje i modeliranje promjenjivosti služe statističke metode za kontrolu procesa

Ključni pojmovi

- Promjenjivost
- Slučajni uzroci
- Posebni uzroci
- Granice specifikacije
 - LSL lower specification limit (donja granica specifikacije)
 - USL upper specification limit (gornja granica specifikacije)

Promjenjivost (variability)

- Problemi vezani uz promjenjivost:
 - povećava nepredvidljivost
 - smanjuje iskorištenje kapaciteta
 - doprinosi "iskakanjima izvan okvira"
 - čini teškim pronalaženje ključnih uzroka
 - čini teškim određivanje potencijalnih problema unaprijed

Izvori promjenjivosti u procesima

Vrste promjenjivosti

- Slučajni uzroci (common causes):
 - Uobičajena promjenjivost sadržana u svakom procesu
- Posebni uzroci (special causes):
 - Sustavne pogrješke koje se mogu pronaći, objasniti i kontrolirati
- Neophodno za poboljšanje bilo kakvog procesa je razumijevanje razlike između slučajnih i posebnih uzroka promjenjivosti

Statističkim metodama se može utvrditi postoje li posebni uzroci u procesu!

Slučajni i posebni uzroci

Opisna statistika

- Opisna statistika opisuje, upoznaje, uspoređuje i analizira procese temeljem prikaza i brojčane obrade poznatih podataka
 - odstupanje: udaljenost pojedinog očitanja od aritmetičke sredine

$$d = x_i - \bar{x}$$

aritmetička sredina: najvjerojatnija vrijednost ponovljenih očitanja

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

varijanca: kvadrat srednje udaljenosti između pojedinačnih očitanja i aritmetičke sredine

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

standardno odstupanje: pozitivni drugi korijen varijance

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Opisna statistika - primjer

Štef i Jura gađaju iz puške

Tko bolje puca?

Analiza - Štef

Poj. očitanja	Odstupanja	Kvadrati odstupanja	
10	10 - 8,4 = 1,6	2,56	
9	9 - 8,4 = 0,6	0,36	
8	8 - 8,4 = -0,4	0,16	
8	8 - 8,4 = -0,4	0,16	
7	7 - 8,4 = -1,4	1,96	
8,4	0,0	(1,3)	1,14
1	1	1	1
Aritmetička	Suma	Varijanca -	Standardno
sredina	odstupanja	•	odstupanje
	$\sum_{i=1}^{n} (x_i - \overline{x}) = 0$		

Analiza - Jura

			_
Poj. očitanja	Odstupanja	Kvadrati odstupanja	
7	7 - 6,6 = 0,4	0,16	
7	7 - 6,6 = 0,4	0,16	
7	7 - 6,6 = 0,4	0,16	
6	6 - 6,6 = -0,6	0,36	
6	6 - 6,6 = -0,6	0,36]
6,6	0,0	0,3	
1	1	1	
Aritmetička	Suma	Varijanca	Sta
sredina	odstupanja	•	od

Preciznost - točnost

Neprecizan

Precizan netočan

Točan

Promjenjivost - razdioba

- Promjenjivost značajke procesa (proizvoda) "mjeri" se prikladnom razdiobom
- Razdioba funkcija gustoće vjerojatnosti

Kako se razlikuju razdiobe?

Razdiobe slučajnih varijabli

- Diskretne
 - Poissonova
 - Binomna
- Kontinuirane
 - Normalna (Gaussova)
 - Eksponencijalna
 - Weibullova

- Normalna (Gaussova) razdioba je zvonolika, simetrična, jednotjemena funkcija kontinuirane slučajne varijable x
- Slučajna varijabla kod normalne razdiobe može poprimiti bilo koju vrijednost u zadanom intervalu s određenom vjerojatnošću
- □ Jednoznačno je određena očekivanjem μ i varijancom σ^2 pa se označava sa $N\{\mu, \sigma^2\}$.

Normalna razdioba se dijeli u tri standardna odstupanja na svakoj strani aritmetičke sredine

Standardno odstupanje je koristan podatak

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

t	μ ± σ	$P\left\{ x - \sigma < x < x + \sigma \right\}$	Postotak ispod krivulje
0,67	μ ± 0,67σ	0,5000	50
1	μ ± 1σ	0,6827	68,27
1,96	μ ± 1,96σ	0,9500	95
2	μ ± 2σ	0,9545	95,45
3	μ ± 3σ	0,9973	99,73
6	μ ± 6σ	0,99999998	99,999998

Centralni granični teorem

Razdioba aritmetičkih sredina uzoraka iz jedne populacije bit će normalna čak i ako razdioba promatranog obilježja u populaciji nije normalna, uz uvjet da su uzorci dovoljno veliki i da je varijanca populacije (σ^2) konačan broj

Centralni granični teorem ima veliku važnost, jer bi inače za svaku razdiobu iz prakse bilo potrebno razviti posebni statistički model

Zaključak

- Naučili smo da se u upravljanju kakvoćom
 - rabe različite statističke metode (opisna statistika, analiza sposobnosti procesa, i dr.)
 - rabi 7 osnovnih alata za kontrolu kakvoće (Paretov dijagram, histogram, dijagram uzroka i posljedica, i dr.)
- Promjenjivost je neizostavni dio procesa
- Opisna statistika daje brojčane pokazatelje utjecaja promjenjivosti
- Normalna (Gaussova) razdioba se vrlo često pojavljuje