## **Decision Tree**

Supervised Learning, Information Theory, Scalable, Human Comprehensible

## Supervised Learning (Black Box)



### **Black Box**



### **Black Box**



## Black Box



#### Introducing: Fisher's Iris Data

- shape of data: (150, 4)
- iv names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
- shape of labels: (150,)
- label names: ['setosa' 'versicolor' 'virginica']
- Picking 15 samples, with labels:
  - [5.1 3.5 1.4 0.2] 0
  - [5.7 4.4 1.5 0.4]0
  - [4.8 3.1 1.6 0.2]0
  - [4.8 3. 1.4 0.3]0
  - [5. 2. 3.5 1.]1
  - [6.6 3. 4.4 1.4] 1
  - [5.5 2.6 4.4 1.2]1
  - *-* [7.6 3. 6.6 2.1] 2
  - [6.9 3.2 5.7 2.3]2
  - [7.7 3. 6.1 2.3] 2

#### Iris Data (red=setosa,green=versicolor,blue=virginica)



# **Petal Length**

!!!!! (add graph without line)

## Depth = 1

petal width (cm) <= 0.8000 impurity = 1.58496250072 samples = 150

impurity = 0.0000 samples = 50 value = [ 50. 0. 0.] impurity = 1.0000 samples = 100 value = [ 0. 50. 50.]

## Petal Length, with decision line



## Depth = 2

```
petal length (cm) \leq 2.4500
           impurity = 1.58496250072
                 samples = 150
 impurity = 0.0000
                         petal width (cm) \leq 1.7500
   samples = 50
                               impurity = 1.0
value = [50. 0. 0.]
                               samples = 100
                 impurity = 0.4451
                                          impurity = 0.1511
                   samples = 54
                                             samples = 46
               value = [0.49.5]
                                         value = [0. 1. 45.]
```

# Petal Length and Petal Width. d=2



## Depth = 3



# Petal Length and Petal Width. d=3



# Depth = \*



# Petal Length and Petal Width. d=\*



# Entropy

To the notebook!