Optimization in Machine Learning

Nelder-Mead method

Learning goals

- General idea
- Reflection, expansion, contraction
- Advantages & disadvantages
- Examples

- Derivative-free method ⇒ heuristic
- Generalization of bisection in d-dimensional space
- Based on d-simplex, defined by d + 1 points:
 - d = 1 interval
 - d = 2 triangle
 - d = 3 tetrahedron
 - • •

A version of the Nelder-Mead method:

Initialization: Choose d+1 random, affinely independent points \mathbf{v}_i (\mathbf{v}_i are vertices: corner points of the simplex/polytope).

Order: Order points according to ascending function values

$$f(\mathbf{v}_1) \leq f(\mathbf{v}_2) \leq \ldots \leq f(\mathbf{v}_d) \leq f(\mathbf{v}_{d+1}).$$

with \mathbf{v}_1 best point, \mathbf{v}_{d+1} worst point.

Compute centroid without worst point

$$\bar{\mathbf{v}} = \frac{1}{d} \sum_{i=1}^{d} \mathbf{v}_{i}.$$

Reflection: Compute reflection point

$$\mathbf{v}_r = \mathbf{\bar{v}} + \rho(\mathbf{\bar{v}} - \mathbf{v}_{d+1}),$$

with $\rho > 0$. Compute $f(\mathbf{v}_r)$.

Note: Default value for reflection coefficient: $\rho = 1$

Distinguish three cases:

- Case 1: $f(\mathbf{v}_1) \le f(\mathbf{v}_r) < f(\mathbf{v}_d)$
 - \Rightarrow Accept \mathbf{v}_r and discard \mathbf{v}_{d+1}
- Case 2: $f(\mathbf{v}_r) < f(\mathbf{v}_1)$
 - \Rightarrow Expansion:

$$\mathbf{v}_{e} = \mathbf{\bar{v}} + \chi(\mathbf{v}_{r} - \mathbf{\bar{v}}), \quad \chi > 1.$$

We discard \mathbf{v}_{d+1} and except the better of \mathbf{v}_r and \mathbf{v}_e .

Note: Default value for expansion coefficient: $\chi = 2$

- Case 3: $f(\mathbf{v}_r) \geq f(\mathbf{v}_d)$
 - ⇒ Contraction:

$$\mathbf{v}_c = \mathbf{\bar{v}} + \gamma (\mathbf{v}_{d+1} - \mathbf{\bar{v}})$$

with $0 < \gamma \le 1/2$.

- If $f(\mathbf{v}_c) < f(\mathbf{v}_{d+1})$, accept \mathbf{v}_c .
- Otherwise, shrink entire simplex (Shrinking):

$$\mathbf{v}_i = \mathbf{v}_1 + \sigma(\mathbf{v}_i - \mathbf{v}_1) \quad \forall i$$

Note: Default values for contraction and shrinking coefficient: $\gamma = \sigma = 1/2$

Repeat all steps until stopping criterion met.

NELDER-MEAD

Advantages:

- No gradients needed
- Robust, often works well for non-differentiable functions.

Drawbacks:

- Relatively slow (not applicable in high dimensions)
- Not each step improves solution, only mean of corner values is reduced.
- No guarantee for convergence to local optimum / stationary point.

Visualization:

```
http://www.benfrederickson.com/numerical-optimization/
```

Note: Nelder-Mead is default method of R function optim(). If gradient is available and cheap, L-BFGS is preferred.

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

NELDER-MEAD VS. GD

Nelder-Mead in multiple dimensions: Organize points (US cities) to keep predefined mutual distances. For 10 cities, gradient descent (top) converges well for a suitable learning rate. Nelder-Mead (bottom) fails to converge, even after many iterations.

NELDER-MEAD VS. GD

Even for only 5 cities, Nelder-Mead (bottom) performs poorly. However, gradient descent (top) still works.