| • | Woo | Was             | Woz | χ,,             | X-4 | 1/05            |
|---|-----|-----------------|-----|-----------------|-----|-----------------|
| _ | Wio | Wil             | Wiz | χ,,             |     | XIS             |
|   | WLO | W <sub>21</sub> | WZL | X <sub>23</sub> |     | X <sub>25</sub> |
|   | Х,, | $\chi_{>_1}$    | Xsl | X33             |     | X35             |
|   | X40 |                 |     |                 |     | X45             |
|   | X5. | X51             | X52 | X53             | X54 | X55             |

|    | Woo              | Wol             | Y02              | <i>‰</i> }      |         |     |         |        | <b>Z</b> .        |
|----|------------------|-----------------|------------------|-----------------|---------|-----|---------|--------|-------------------|
| _  | Wip              | Wij             | Yız              | Y <sub>13</sub> |         | ≥00 | 201     |        | (Z <sub>0</sub> ) |
| NV | У <sub>2</sub> . | Y <sub>21</sub> | Y <sub>21</sub>  | Y23             | pooling | 210 | 210 211 | Hatten | (Z10)             |
|    | ) <sub>30</sub>  | ۱٤/             | λ <sup>3</sup> ′ | Y <sub>33</sub> | 1       |     |         |        | (Z1)              |
|    |                  |                 |                  |                 |         |     |         |        |                   |

Convolution 
$$\begin{bmatrix} a b \\ c d \end{bmatrix} * \begin{bmatrix} a b \\ c d \end{bmatrix} = a + b^2 + c^2 + d^2$$
 Hadanard product  $\begin{bmatrix} a b \\ c d \end{bmatrix} \circ \begin{bmatrix} a b \\ c d \end{bmatrix} = \begin{bmatrix} a^2 b^2 \\ c^2 d^2 \end{bmatrix}$ 

Ave Pooling:

$$Z_{ij} = \sum_{m=0}^{j} \sum_{n=0}^{j} Y_{(2i+m)(2j+n)} \cdot W_{mn} = \frac{1}{4} \sum_{m=0}^{j} \sum_{n=0}^{j} Y_{(2i+m)(2j+n)} \cdot W_{mn}$$

gradient 
$$Y_{ij} = \frac{\text{gradient } Z_{(i/2)(i/2)}}{\text{Ty}_{ij}} Z_{(i/12)(j/2)}$$

$$= \frac{\text{gradient } Z_{(i/2)(j/2)}}{\text{Ty}_{ij}} Z_{(i/12)(j/2)}$$

$$= \frac{1}{4} \text{gradient } Z_{(i/2)(j/2)}$$



| -        |                  |         |                  |                 |        |     |     |        |                   |
|----------|------------------|---------|------------------|-----------------|--------|-----|-----|--------|-------------------|
| <b>→</b> | Woo              | Wol     | Y02              | <i>‰</i> }      | 0      |     |     | ₹₀.    |                   |
|          | Wip              | Wij     | Yız              | У13             | poding | ≥00 | 201 | _      | (Z <sub>0</sub> ) |
|          | У <sub>2</sub> 。 | y<br>21 | y <sub>27</sub>  | Y <sub>23</sub> |        | 210 | 211 | Hatten | (Z)=              |
|          | )3 <sub>0</sub>  | ١٤/     | λ <sup>3</sup> Γ | Y33             |        |     |     |        | (2,1)             |
|          |                  |         |                  |                 |        |     |     |        |                   |

## 2 Convolution [stride=1, kernelsize=3]

$$\frac{1}{1} = \frac{1}{1} \cdot W_{00} + \frac{1}{1} \cdot W_{01} + \frac{1}{1} \cdot W_{01} + \frac{1}{1} \cdot W_{02} + \frac{1}{1} \cdot W_{10} + \frac{1}{1} \cdot W_{11} + \frac{1}{1} \cdot W_{12} +$$

gradient 
$$W_{ij} = \frac{3}{2} \frac{$$

## Sumary

Average 1700 in a Basically a conv with kernel size = stride = k, wij = 1/k²
Conly for channel = 1)

Are pooling 
$$\frac{1}{\sqrt{k}}$$
  $\frac{1}{\sqrt{k}}$   $\frac{1}$ 

gradient Xij = 1 gradient Y(ijk)(jik)

if chame = c

Forward: Yijc = 1 Exp X(kitm)(kijth)c

Backward: gradient Xijc = 1/k² gradient Y (11/K) (j/K) C

Convolution



Forward 
$$Y_{ij} = \sum_{m=0}^{k-1} \sum_{n=0}^{k+1} \times (s.i+m)(s.j+n) \cdot W_{mn} + 1$$
  
Backward  $grad \underline{w} = Rot | 80^{\circ} (Inserted Grad \underline{Y} * \underline{X})$   
 $grad \underline{x} = Inserted Grad \underline{Y} * Rot | 80^{\circ} (\underline{w})$   
 $grad \underline{b} = Sum (gradient \underline{Y})$ 

Ex: 
$$5$$
  $\frac{512e-3}{5}$   $\frac{512e-3}{5}$   $\frac{5}{5}$   $\frac{5}{5$ 

Generally, hxw to (h-k+1)x(w-k+1)

Y

 $\left[\frac{h_{-}k}{5}+1+(5-1)\cdot\frac{h_{-}k}{5}+2(k-1)\right]\times\left[\frac{w_{-}k}{5}+1+(5-1)\cdot\frac{w_{-}k}{5}+2(k-1)\right]$ eg.  $(h_{+}k-1)\times(w_{+}k-1)$ 

## Convolution [channel=Cin, Cont]



Forward  $y_{q,j} = \sum_{p=0}^{c_{in}-1} \frac{k-1}{\sum_{p=0}^{k-1}} \sum_{m=0}^{k-1} X_{p(s\cdot i+m)(s\cdot j+n)} W_{qpmn} + 1_{q} \left[0 \leq q \leq C_{out}-1\right]$ 

Backward grad  $\underline{\mathbb{W}}_{qp} = Rot | 80^{\circ} (Inserted Grad \underline{\mathbb{V}}_{q} \times \underline{\mathbb{V}}_{p})$ Since the second section of the used to accelerate computation.  $qrad \underline{\mathbb{V}}_{q} = \underbrace{\mathbb{V}}_{q=0}^{\text{out-1}} Inserted Grad \underline{\mathbb{V}}_{q} \times Rot | 80^{\circ} (\underline{\mathbb{V}}_{q})$ Tayer-wise 2p conv

grad  $b_q = SUM (gradient Y_q)$ with numpy, b = np.sum (gradient Y, axis = (1,2)) is faster than loop

## Convolution [batch=n, channel=cin, cont]



Forward 
$$\forall nq j = \sum_{p=0}^{c_{in}-1} \sum_{m=0}^{k-1} \sum_{n=0}^{k-1} X_{np}(s_{i}+m)(s_{j}+n) \cdot W_{qpmn} + |_{q} [0 \leq q \leq C_{out}-1]$$

Backward grad 
$$\underline{\underline{w}}_{qp} = \frac{1}{n} \operatorname{Rot} |80^{\circ} (\operatorname{Inserted} \operatorname{Errad} \underline{\underline{Y}}_{nq} * \underline{\underline{Y}}_{nq})$$
 $\operatorname{grad} \underline{\underline{Y}}_{q=0} = \frac{\operatorname{Gout}^{-1}}{\operatorname{q}^{-1}} \operatorname{Inserted} \operatorname{Grad} \underline{\underline{Y}}_{nq} * \operatorname{Rot} |80^{\circ} (\underline{\underline{W}}_{q})$ 
 $\operatorname{grad} \underline{\underline{Y}}_{q} = \underline{\underline{Y}}_{q=0} \operatorname{Sum} (\operatorname{gradient} \underline{\underline{Y}}_{nq})$ 

the idea is pretty simple, but it loops are used to calculate them, trianing time would be unacceptable.