CSC 458/2209 - Computer Networks

Handout # 16: Queuing Mechanisms; Middleboxes

Joe Lim

Department of Mathematical and Computational
Sciences
joe.lim@utoronto.ca

Announcements

- PS2 Due: Fri, Mar 16 @11:59PM
- PA2: Due: Fri, Mar 30 @11:59PM
 - 6%: Working PA112%: Working PA2
- Need to work on PA1?
 - Use PA1-Test on MarkUs
- PA2 Autotester running on MarkUs
- Finals: Mon, Apr 9, 2018 from 9-12 in IB120
 - Please consult the official timetable website https://student.utm.utoronto.ca/examschedule/finalexams.
 php

CSC 358 – Principles of Computer Networks

UTM - Spring 2018

Extra Office Hours

- Need it?
 - Friday, April 6th
 - DH3095, 2:00PM 4:00PM
- Course Evaluation

CSC 358 – Principles of Computer Networks

UTM - Spring 2018

The Story ...

- Network layers
 - Link layer
 - Framing, switches, hubs, bridges, error detection, correction, ...
 - Network layer
 - Addressing, routing, autonomous systems, BGP, ...
 - Transport layer
 - Flow control, congestion control, ...

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Today

- Random Early Detection (RED)
- Explicit Congestion Notification (ECN)
- Middleboxes
 - Network Address Translation
 - Firewalls
 - Web Proxies

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

5

End-to-end Principle

- Design principle for the Internet that says you should keep functionalities at the end-hosts
 - Application specific functions
- Example: congestion control in the Internet
- Power at the end-hosts
 - Pros: flexible, easy to change and innovate, ...
 - **Cons**: trust at the hands of least trusted component, not necessarily optimal, high overhead, ...

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Bursty Loss From Drop-Tail Queuing

- TCP depends on packet loss
 - Packet loss is the indication of congestion
 - In fact, TCP drives the network into packet loss
 - ... by continuing to increase the sending rate
- Drop-tail queuing leads to bursty loss
 - When a link becomes congested...
 - ... many arriving packets encounter a full queue
 - And, as a result, many flows divide sending rate in half
 - ... and, many individual flows lose multiple packets

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Slow Feedback from Drop Tail

- Feedback comes when buffer is completely full
 - ... even though the buffer has been filling for a while
- Plus, the filling buffer is increasing RTT
 - ... and the variance in the RTT
- Might be better to give early feedback
 - Get one or two flows to slow down, not all of them
 - Get these flows to slow down before it is too late

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Random Early Detection (RED)

- Basic idea of RED
 - Router notices that the queue is getting backlogged
 - ... and randomly drops packets to signal congestion
- Packet drop probability
 - Drop probability increases as queue length increases
 - If buffer is below some level, don't drop anything
 - ... otherwise, set drop probability as function of queue

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

RED Drop Probabilities D(t) A(t)If minTh < AvgLen < maxTh: $\hat{p}_{AvgLen} = maxP \left\{ \frac{AvgLen - minTh}{maxTh - minTh} \right\}$ $Pr(Drop Packet) = \frac{\hat{p}_{AvgLen}}{1 - count} \times \hat{p}_{AvgLen}$ count counts how long we've been in <math>minTh < AvgLen < maxTh since we last dropped a packet. i.e. drops are spaced out in time, reducing likelihood of re-entering slow-start.

Properties of RED

- Drops packets before queue is full
 - In the hope of reducing the rates of some flows
- Drops packet in proportion to each flow's rate
 - High-rate flows have more packets
 - ... and, hence, a higher chance of being selected
- Drops are spaced out in time
 - Which should help desynchronize the TCP senders
- Tolerant of burstiness in the traffic
 - By basing the decisions on average queue length

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

11

Problems With RED

- Hard to get the tunable parameters just right
 - How early to start dropping packets?
 - What slope for the increase in drop probability?
 - What time scale for averaging the queue length?
- Sometimes RED helps but sometimes not
 - If the parameters aren't set right, RED doesn't help
 - And it is hard to know how to set the parameters
- RED is implemented in practice
 - But, often not used due to the challenges of tuning right
- Many variations
 - With cute names like "Blue" and "FRED"... ☺

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Why is TCP Fair?

two competing sessions:

- additive increase gives slope of 1, as throughput increases
- multiplicative decrease decreases throughput proportionally

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

17

More about Fairness

Fairness and UDP

- multimedia apps often do not use TCP
 - do not want rate throttled by congestion control
- instead use UDP:
 - send audio/video at constant rate, tolerate packet loss

Fairness, parallel TCP connections

- application can open multiple parallel connections between two hosts
- web browsers do this
- e.g., link of rate R with 9 existing connections:
 - new app asks for 1 TCP, gets rate R/10
 - new app asks for 11 TCPs, gets R/2

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Explicit Congestion Notification

- Early dropping of packets
 - Good: gives early feedback
 - Bad: has to drop the packet to give the feedback
- Explicit Congestion Notification
 - Router marks the packet with an ECN bit
 - ... and sending host interprets as a sign of congestion
- Surmounting the challenges
 - Must be supported by the end hosts and the routers
 - Requires two bits in the IP header (one for the ECN mark, and one to indicate the ECN capability)
 - Solution: borrow two of the Type-Of-Service bits in the IPv4 packet header

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

19

Conclusions

- Congestion is inevitable
 - Internet does not reserve resources in advance
 - TCP actively tries to push the envelope
- Congestion can be handled
 - Additive increase, multiplicative decrease
 - Slow start, and slow-start restart
- Active Queue Management can help
 - Random Early Detection (RED)
 - Explicit Congestion Notification (ECN)

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

21

Today

- Queuing Mechanisms
 - Random Early Detection (RED)
 - Explicit Congestion Notification (ECN)

Middleboxes

- Network Address Translation
- Firewalls
- Web Proxies

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Network-Layer Principles

- Globally unique identifiers
 - Each node has a unique, fixed IP address
 - ... reachable from everyone and everywhere
- Simple packet forwarding
 - Network nodes simply forward packets
 - ... rather than modifying or filtering them

Internet Reality

- Host mobility
 - Changes in IP addresses as hosts move
- IP address depletion
 - Dynamic assignment of IP addresses
 - Use of private addresses
- Security concerns
 - Discarding suspicious or unwanted packets
 - Detecting suspicious traffic
- Performance concerns
 - Controlling how link bandwidth is allocated
 - Storing popular Web content near the clients

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Middleboxes

- Middleboxes are intermediaries
 - Interposed in-between the communicating hosts
 - Often without knowledge of one or both parties
- Examples
 - Network address translators
 - Firewalls
 - Traffic shapers
 - Intrusion detection systems
 - Transparent Web proxy caches

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

25

Two Views of Middleboxes

- An abomination
 - Violation of layering
 - Cause confusion in reasoning about the network
 - Responsible for many subtle bugs
- A necessity
 - Solving real and pressing problems
 - Needs that are not likely to go away

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Today

- Queuing Mechanisms
 - Random Early Detection (RED)
 - Explicit Congestion Notification (ECN)
- Middleboxes
 - Network Address Translation
 - Firewalls
 - Web Proxies

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

27

History of NATs

- IP address space depletion
 - Clear in early 90s that 2³² addresses not enough
 - Work began on a successor to IPv4
- In the meantime...
 - Share addresses among numerous devices
 - ... without requiring changes to existing hosts
- Meant to provide temporary relief
 - Intended as a short-term remedy
 - Now, NAT are very widely deployed
 - ... much more so than IPv6

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

IP Header Translators

- Local network addresses not globally unique
 - E.g., private IP addresses (in 10.0.0.0/8)
- NAT box rewrites the IP addresses
 - Make the "inside" look like a single IP address
 - ... and change header checksums accordingly
- Outbound traffic: from inside to outside
 - Rewrite the source IP address
- Inbound traffic: from outside to inside
 - Rewrite the destination IP address

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

What if Both Hosts Contact Same Site?

- Suppose hosts contact the same destination
 - E.g., both hosts open a socket with local port 3345 to destination 128.119.40.186 on port 80
- NAT gives packets same source address
 - All packets have source address 138.76.29.7
- Problems
 - Can destination differentiate between senders?
 - Can return traffic get back to the correct hosts?

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Port-Translating NAT

- Map outgoing packets
 - Replace source address with NAT address
 - Replace source port number with a new port number
 - Remote hosts respond using (NAT address, new port #)
- Maintain a translation table
 - Store map of (source address, port #) to (NAT address, new port #)
- Map incoming packets
 - Consult the translation table
 - Map the destination address and port number
 - Local host receives the incoming packet

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Maintaining the Mapping Table

- Create an entry upon seeing a packet
 - Packet with new (source addr, source port) pair
- Eventually, need to delete the map entry
 - But when to remove the binding?
- If no packets arrive within a time window
 - ... then delete the mapping to free up the port #s
- Yet another example of "soft state"
 - I.e., removing state if not refreshed for a while

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Objections Against NAT

- Difficult to support peer-to-peer applications
 - P2P needs a host to act as a server
 - ... difficult if both hosts are behind NATs
- Routers are not supposed to look at port #s
 - Network layer should care only about IP header
 - ... and not be looking at the port numbers at all
- NAT violates the end-to-end argument
 - Network nodes should not modify the packets
- IPv6 is a cleaner solution
 - Better to migrate than to limp along with a hack

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

37

Where is NAT Implemented?

- Home router (e.g., Linksys box)
 - Integrates router, DHCP server, NAT, etc.
 - Use single IP address from the service provider
 - ... and have a bunch of hosts hiding behind it
- Campus or corporate network
 - NAT at the connection to the Internet
 - Share a collection of public IP addresses
 - Avoid complexity of renumbering end hosts and local routers when changing service providers

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Today

- Queuing Mechanisms
 - Random Early Detection (RED)
 - Explicit Congestion Notification (ECN)
- Middleboxes
 - Network Address Translation

Web Proxies

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Internet Attacks: Denial of Service

- Denial-of-service attacks
 - Outsider overwhelms the host with unsolicited traffic
 - ... with the goal of preventing any useful work
- Example
 - Bad guys take over a large collection of hosts
 - ... and program these hosts to send traffic to your host
 - Leading to excessive traffic
- Motivations for denial-of-service attacks
 - Malice (e.g., just to be mean)
 - Revenge (e.g. for some past perceived injustice)
 - Greed (e.g., blackmailing)

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

41

Internet Attacks: Break-Ins

- Breaking in to a host
 - Outsider exploits a vulnerability in the end host
 - ... with the goal of changing the behavior of the host
- Example
 - Bad guys know a Web server has a buffer-overflow vulnerability
 - ... and, say, send an HTTP request with a long URL
 - Allowing them to break in
- Motivations for break-ins
 - Take over the machine to launch other attacks
 - Steal information stored on the machine
 - Modify/replace the content the site normally returns

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Packet Filtering Examples

- Block all packets with IP protocol field = 17 and with either source or dest port = 23.
 - All incoming and outgoing UDP flows blocked
 - All Telnet connections are blocked
- Block inbound TCP packets with SYN but no ACK
 - Prevents external clients from making TCP connections with internal clients
 - But allows internal clients to connect to outside
- Block all packets with TCP port of Doom3

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Firewall Configuration

- Firewall applies a set of rules to each packet
 - To decide whether to permit or deny the packet
- Each rule is a test on the packet
 - Comparing IP and TCP/UDP header fields
 - ... and deciding whether to permit or deny
- Order matters
 - Once the packet matches a rule, the decision is done

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

45

Firewall Configuration Example

- Alice runs a network in 222.22.0.0/16
 - Wants to let Bob's school access certain hosts
 - Bob is on 111.11.0.0/16
 - Alice's special hosts on 222.22.22.0/24
 - Alice doesn't trust Trudy, inside Bob's network
 - Trudy is on 111.11.11.0/24
 - Alice doesn't want any other traffic from Internet
- Rules
 - #1: Don't let Trudy machines in
 - Deny (src = 111.11.11.0/24, dst = 222.22.0.0/16)
 - #2: Let rest of Bob's network in to special dests
 - Permit (src=111.11.0.0/16, dst = 222.22.22.0/24)
 - #3: Block the rest of the world
 - Deny (src = 0.0.0.0/0, dst = 0.0.0.0/0)

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

A Variation: Traffic Management

- Permit vs. deny is too binary a decision
 - Maybe better to classify the traffic based on rules
 - ... and then handle the classes of traffic differently
- Traffic shaping (rate limiting)
 - · Limit the amount of bandwidth for certain traffic
 - E.g., rate limit on Web or P2P traffic
- Separate queues
 - Use rules to group related packets
 - And then do round-robin scheduling across the groups
 - E.g., separate queue for each internal IP address

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

47

Firewall Implementation Challenges

- Per-packet handling
 - Must inspect every packet
 - Challenging on very high-speed links
- Complex filtering rules
 - May have large # of rules
 - May have very complicated rules
- Location of firewalls
 - Complex firewalls near the edge, at low speed
 - Simpler firewalls in the core, at higher speed

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Clever Users Subvert Firewalls

- Example: filtering dorm access to a server
 - Firewall rule based on IP addresses of dorms
 - ... and the server IP address and port number
 - Problem: users may log in to another machine
 - E.g., connect from the dorms to another host
 - ... and then onward to the blocked server
- Example: filtering P2P based on port #s
 - Firewall rule based on TCP/UDP port numbers
 - E.g., allow only port 80 (e.g., Web) traffic
 - Problem: software using non-traditional ports
 - E.g., write P2P client to use port 80 instead

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

49

Application Gateways

- Filter packets on application data
 - Not just on IP and TCP/UDP headers
- Example: restricting Telnet usage
 - Don't allow any external clients to Telnet inside
 - Only allow certain internal users to Telnet outside
- Solution: Telnet gateway
 - Force all Telnet traffic to go through a gateway
 - I.e. filter Telnet traffic that doesn't originate from the IP address of the gateway
- At the gateway...
 - Require user to login and provide password
 - Apply policy to decide whether they can proceed

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Motivation for Gateways

- Enable more detailed policies
 - E.g., login id and password at Telnet gateway
- Avoid rogue machines sending traffic
 - E.g., e-mail "server" running on user machines
 - ... probably a sign of a spammer
- Enable a central place to perform logging
 - E.g., forcing all Web accesses through a gateway
 - ... to log the IP addresses and URLs
- Improve performance through caching
 - E.g., forcing all Web accesses through a gateway
 - ... to enable caching of the popular content

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Today

- Queuing Mechanisms
 - Random Early Detection (RED)
 - Explicit Congestion Notification (ECN)
- Middleboxes
 - Network Address Translation
 - Firewalls

CSC 458/CSC 2209 – Computer Networks

University of Toronto - Fall 2017

Proxy Caching

- Client #1 requests http://www.foo.com/fun.jpg
 - Client sends "GET fun.jpg" to the proxy
 - Proxy sends "GET fun.jpg" to the server
 - Server sends response to the proxy
 - Proxy stores the response, and forwards to client
- Client #2 requests http://www.foo.com/fun.jpg
 - Client sends "GET fun.jpg" to the proxy
 - Proxy sends response to the client from the cache
- Benefits
 - Faster response time to the clients
 - Lower load on the Web server
 - Reduced bandwidth consumption inside the network

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

55

Getting Requests to the Proxy

- Explicit configuration
 - Browser configured to use a proxy
 - Directs all requests through the proxy
 - Problem: requires user action
- Transparent proxy (or "interception proxy")
 - Proxy lies in path from the client to the servers
 - Proxy intercepts packets en route to the server
 - ... and interposes itself in the data transfer
 - Benefit: does not require user action

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Challenges of Transparent Proxies

- Must ensure all packets pass by the proxy
 - By placing it at the only access point to the Internet
 - E.g., at the border router of a campus or company
- Overhead of reconstructing the requests
 - Must intercept the packets as they fly by
 - ... and reconstruct into the ordered by stream
- May be viewed as a violation of user privacy
 - The user does not know the proxy lies in the path
 - Proxy may be keeping logs of the user's requests

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

57

Other Functions of Web Proxies

- Anonymization
 - Server sees requests coming from the proxy address
 - ... rather than the individual user IP addresses
- Transcoding
 - Converting data from one form to another
 - E.g., reducing the size of images for cell-phone browsers
- Prefetching
 - Requesting content before the user asks for it
- Filtering
 - Blocking access to sites, based on URL or content

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017

Conclusions

- Middleboxes address important problems
 - Using fewer IP addresses
 - Blocking unwanted traffic
 - Making fair use of network resources
 - Improving Web performance
- Middleboxes cause problems of their own
 - No longer globally unique IP addresses
 - No longer can assume network simply delivers packets

CSC 458/CSC 2209 - Computer Networks

University of Toronto - Fall 2017