DESIGN OF UAV

Group 5

- AE21B002 : Abhigyan Roy
- AE23M004 : Vinu Mathew
- AE23M008 : Anish Konar
- AE23M014: Gautham Anil
- AE23M006 : Aditya Sai Deepak Rachagiri
- AE23M033 : Satyam Chandra

Mission Profile

Environmental Monitoring and Mapping of Forest

Cover including Security based Surveillance.

Area of Coverage per frame = 7000 m2

Payload

WIRIS Thermo-optical Sensor

IR Resolution : 640 x 512 Visual Resolution : 1920 x 1080

PM1
TVOC
HCHO
CO₂
Temperature
Humidity

Environmental Sensor: Prana Air SQUAIR

TVOC: 0-20 PPM CO: 1-200 PPM

Pixy WP Gimbal

Payload	Weight
Integrated Thermal and Optical Sensor- Workshell WIRIS	450 g
Environmental Sensor- Prana Air SQUAIR	227 g
Gimbal for Optical Stabilization	465 g
Misc	358 g
Total	1500 g

Wing Loading

Mission Segment

Wing Loading (kg/m2)

Takeoff

30.76

Climb

3.43

Cruise

17.56

Absolute Ceiling

11.93

Stall

9.30

Power Calculation

Phase	Power	Time (approx)
Take Off	130 W	10 s
Climb	284 W	5 min
Cruise	129 W	1 hr

L/D max = 19.5 AR = 8.3

Battery & Powerplant

Battery weight = 2270g

Powerplant weight = 700g

Part	Model	Specifications
Motor	AT 7215	Power @ 55%: 414W Net weight: 550g
Propeller	TF 16 * 8	Weight: 150 g Diameter: 16 Inch

Second Weight Estimate

$$W_o = \frac{W_{payload} + W_{powerplant}}{1 - \frac{W_{empty}}{W_o}}$$

$$\frac{W_{empty}}{W_o} = 1.206 * W_o^{-0.3}$$

Based on previous data and adding the powerplant weight, the second weight estimate is 8.8 kg.

CAD Model

Centre of Gravity 0.220 m behind and 0.109 m below wing leading edge

Fuselage

43-

XFLR CAD Profile

Wing Design

CL cruise	0.5
CL stall	1.35-1.48
CL to	1.21
CL climb	1.31

Chord	0.32m
Span	2.82m
Sweep	O°
Taper Ratio	1

Geometric Characteristics	Value	Aerodynamic Characteristics	Value
Camber	4.7% of chord	$C_{l_{max}}$	1.52
Chord Length	$0.34 \mathrm{m}$	α_{stall}	14°
Location of maximum camber	39.6% of chord from LE	$(L/D)_{max}$	100
Maximum Thickness	13.7% of chord		

Wing Design

Aileron dimensions

$$S_a/S = 0.05$$
 \rightarrow $S_a = 0.048 \ m^2$
 $b_a/b = 0.2$ \rightarrow $b_a = 0.564 m$
 $c_a/c = 0.25$ \rightarrow $c_a = 0.085 \ m$
 $b_{ai}/b = 0.6$ \rightarrow $b_{ai} = 1.692 \ m$
 \rightarrow $\delta_{A_{max}} = \pm 30^{\circ}$.

Coefficient of Lift for Wing vs Angle of Attack with and without flaps

Horizontal Tail Design

Moment Arm	1.159m
Horizontal Tail Area	0.27m^2 - 0.45m^2
Horizontal Tail Chord	0.23-0.3
Horizontal Tail Span	1.16-1.5
Elevator Area	0.105 m2
Elevator Span	1.5 m
Elevator Chord	0.07 m

Low Tail or Conventional tail configuration

 $S_e/S_t : 0.15 - 0.4$ $b_e/b_t : 0.8 - 1$ $c_e/c_t : 0.2 - 0.4$

Elevator dimensions

Vertical Tail Design

Moment Arm	1.159m
Vertical Tail Area	0.13m2
Vertical Tail Chord	0.4
Vertical Tail Span	0.325
Rudder Area	0.042 m2
Rudder Span	0.4 m
Rudder Chord	0.105 m2

Low Tail or Conventional tail configuration

 $S_r/S_v : 0.15 - 0.35$ $b_r/b_v : 0.7 - 1$

 $c_r/c_v: 0.15-0.4$

Rudder dimensions

Stability Analysis

Parameters	Value
Wing Area	$0.96 \ m^2$
Wing Span	$2.82 \mathrm{m}$
Taper Ratio	1
Root Chord	$0.34 \mathrm{m}$
Tip Chord	$0.34 \mathrm{m}$
Aspect Ratio	8.3
Twist Angle	0 Deg
Sweep Angle	0 Deg
Dihedral Angle	2 Deg
Wing Setting Angle	1 Deg
Aerofoil	GOE 553
Alieron Area	$0.048 \ m^2$
Alieron Chord	0.085 m
Alieron Span	$0.564 \mathrm{\ m}$

- A dihedral angle of 2° was given
- The tail arm length was optimized
- The horizontal stabilizer was given a
 - 2.2° tail setting angle

XFLR5 Model used for Stability Analysis

Parameters	Value
Tail Area	$0.42 \ m^2$
Tail Span	1.5 m
Taper Ratio	1
Root Chord	0.28 m
Tip Chord	0.28 m
Aspect Ratio	5.0
Twist Angle	0 Deg
Sweep Angle	0 Deg
Dihedral Angle	0 Deg
Tail Setting Angle	2 Deg
Aerofoil	NACA 0014
Elevator Area	$0.105 m^2$
Elevator Chord	$0.07 \mathrm{m}$
Elevator Span	1.5 m

Parameters	Value
Tail Area	$0.14 \ m^2$
Tail Span	0.4 m
Taper Ratio	1
Root Chord	$0.35 \mathrm{m}$
Tip Chord	$0.35 \mathrm{m}$
Aspect Ratio	1.14
Twist Angle	0 Deg
Sweep Angle	0 Deg
Dihedral Angle	0 Deg
Tail Setting Angle	0 Deg
Aerofoil	NACA 0014
Rudder Area	$0.042 \ m^2$
Rudder Chord	$0.105 \mathrm{\ m}$
Rudder Span	0.4 m

-0.008

Design $\alpha = 2^{\circ}$ Trim $\alpha = 2^{\circ}$

SM = 0.08

From wing CG = 0.22 m NP = 0.26 m

$$\frac{\partial C_n}{\partial \beta} = 0.0153 \, rad^{-1} \, \frac{\partial C_l}{\partial \beta} = -0.0076 \, rad^{-1}$$

$$C_{m_{\alpha}} = -1.089 \, rad^{-1}$$

Landing Gear

Requirement of LG

Design Specifications

- Configuration
- Retractability
- Geometry
- Load on Each LG

Tire Selection

LANDING GEAR	DISTANCE FROM NOSE
NOSE LG	0.15 m
MAIN LG	0.5 M
PROPERTY	VALUE
WHEEL BASE	0.35m
WHEEL TRACK	1.5m
GROUND CLEARANCE	0.275m

Loads on LG

LANDING GEAR

LOAD

NOSE

13.81 N

PORT MAIN

36.26 N

STBD MAIN

36.26 N

• 3.5 Inch PU Wheels

1.75 -1.50 1.25 **ී** 1.00 -0.75 -0.50 -0.25 0.00 上 0.050 0.075 0.150 0.100 0.125 0.175 0.025 0.200 C_D

Performance

AR = 8.3

$$C_{D_o} = \frac{C_f \cdot S_{wet}}{S_{ref}} = 0.03$$

$$e = \frac{1}{1.05 + 0.007 \cdot \pi AR} = 0.8113$$

$$C_f = \frac{0.074}{Re^{1/7}} = 0.0116$$

Drag
Polar

$$C_D = C_{D_o} + \frac{1}{\pi eAR} C_L^2$$

Energy Consumption

V - n Diagram $n = \frac{L}{W} = \frac{1}{2} \frac{\rho v^2 S C_{L_{max}}}{W}$

$$n = \frac{L}{W} = \frac{1}{2} \frac{\rho v^2 S C_{L_{max}}}{W}$$

THANK YOU

DATASHEET

PROPERTY	VALUE		PROPERTY	VALUE	PROPERTY	VALUE
Cruise Speed	18 m/s		Wing Area	0.96 m2	HT Area	0.42 m2
Max Speed	20 m/s		Wing Span	2.82 m	HT Span	1.5 m
Stall speed	10 m/s		Chord	0.34 m	HT Chord	0.28 m
Rotation Speed	11 m/s		Aspect Ratio	8.34	HT Aspect Ratio	5.0
Climb Speed	11.51 m/s		Dihedral	2 Deg	HT Setting Angle	2 Deg
Max Climb Rate	2 m/s		Wing Setting	1 Deg	HT Dihedral	0 Deg
Max Climb		Angle		Angle		
Angle	12 Deg		Wing Aerofoil	GOE 553	HT Aerofoil	NACA 0014
Absolute ceiling	100m		Alieron Area	0.048 m2	Elevator Area	0.105 m2
L/D	19.48		Alieron Chord	0.085 m	Elevator Chord	0.07
Battery Capacity	18000 mAH		Alieron Span	0.564 m	Elevator Span	1.5m

PROPERTY	VALUE
Vertical Tail Area	0.14 m^2
Vertical Tail Span	0.4 m
Vertical Tail Chord	0.35 m
VT Aspect Ratio	1.14
VT Setting Angle	0 Deg
VT Dihedral Angle	0 Deg
VT Aerofoil	NACA 0014
Rudder Area	0.042 m2
Rudder Chord	0.105 m
Rudder Span	0.4 m

PROPERTY	VALUE
Fuselage Length	1.2 m
Fuselage Diameter	0.250 m
Fuselage Width	0.2 m
MTOW	9.85 Kgs
Design payload Weight	1.5 Kgs
Max Payload Weight	2.0 Kgs
Powerplant weight	2.27 Kgs
CL Max	1.56
CDO	0.03
Wing Loading	90 N/m^2

Abhigyan AE21B002	 Second weight estimate Airfoil selection latek writing, Angle of Incidence, Dihedral angle and aileron Fuselage length and sizing coding and latek, Internal placement of components Latex (equations) writing of tail design Cad modelling and 3 view diagram Latek writing for longitudinal, lateral and directional stability Swet and Cdo for drag polar Range and endurance V-n diagram Entire report formatting
Anish Konar AE23M008	 CL calculations, Airfoil Selection and XFLR5 analysis and report writing Wing design with flaps and taper ratio with XFLR5 analysis and report writing Horizontal Tail area estimation and Tail airfoil selection Helped in conceptual design of the CAD Model Modelled the UAV in XFLR5 and performed the stability analysis and calculations Power Estimate Re-calculation

Vinu AE23M004	 Landing Gear Design Control Surface sizing Contributed to tail design Report Presentation Report Writing
Gautham AE23M014	 Wing configuration and tail configuration theory Flight controller and GPS selection Researched about control of control surface Researched about sensors Report writing and Data collection

Aditya AE23M006	 Control surfaces for the Tail Correction of previous Power Calculations Theory Behind Sweep Angle Helped in Wing Configuration Report Writing and Data collection Theory behind the Tail configuration (advantages, disadvantages,)
Satyam AE23M033	 Wing Design Vertical Tail Design Control Surfaces for tail Report Writing and Data collection