ML Model Selection

Predicting Bank Lead Conversion

Authored by: Keshava G

Model performance dashboard

Summary of performance metrics for trained ML models

Four different machine learning models were trained, and their performance was evaluated based on parameters such as prediction accuracy, time taken for training and prediction, space utilization by the model and whether the model is available to give us the most important features affecting the lead conversion or not.

Below are the results obtained.

	Test-set accuracy	Training time	Prediction time	Model storage space	Feature imp (Y/N)
Logistic regression	0.8325	1.77878713		1425	Υ
Decision tree	0.953		0.0032386779 78515625	16081	Y
XGBoost	0.972	0.85357999 80163574	0.0130076408 38623047	139092	Υ
SVM model	0.8505		0.3113975524 902344	294317	N

Models fulfilling the given requirements:

- Test set prediction accuracy should be more than 95% Decision tree and XGBoost
- 2. The model should clearly tell the most important features. Logistic regression, decision tree and XGBoost.
- 3. Prediction time should be less than 0.1 Logistic regression, decision tree and XGBoost.
- 4. If all three conditions specified above are met, the model with lowest storage size should be selected. Logistic regression

Recommendation - Logistic Regression

Python code for training and evaluating Logistic Regression model

```
from sklearn.linear_model import LogisticRegression
 logreg = LogisticRegression(max_iter=1000)
 start_time = time.time()
 logreg.fit(X_train_smote, y_train_smote)
 logreg_train_time = time.time() - start_time
 logreg train time
 from sklearn.metrics import accuracy_score
 start_time = time.time()
 y_pred_logreg = logreg.predict(X_test)
 logreg_predict_time = time.time() - start_time
 logreg_accuracy = accuracy_score(y_test, y_pred_logreg)
 logreg_accuracy, logreg_predict_time
 Serialize Logistic Regression Model
   1. logreg stream = pickle.dumps(logreg)
   2. logreg size = sys.getsizeof(logreg stream)
 logreg_coef = abs(logreg.coef_[0])
top_2_logreg_features = X.columns[logreg_coef.argsort()[-2:][::-1]]
top_2_logreg_features
```

import time