Progetto Machine Learning: Red Wine Quality

829612 Magazzù Giuseppe 829685 Magazzù Gaetano 829889 Malanchini Mirco

UCI machine learning repository

Wine Quality Data Set

11 Attributi + 1 Output
fixed acidity, volatile acidity, citric acid,
residual sugar, chlorides, free sulfur
dioxide, total sulfur dioxide, density,
pH, sulphates, alcohol, <u>quality</u>

Red: 1599 Osservazioni

White: 4989 Osservazioni

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Attributo Quality

Partizionamento del dataset

Exploratory Data Analysis

Analisi Univariata

- Valori mancanti
- Statistiche descrittive
- Analisi distribuzioni
- Outliers

	missing	mean	sd	median	min	max	skew	kurtosis
fixed.acidity	0	6,86	0,85	6,80	3,80	14,20	0,68	2,44
volatile.acidity	0	0,02	0,01	0,02	0,01	0,05	0,09	0,26
citric.acid	0	0,33	0,12	0,32	0,00	1,66	1,35	6,80
residual.sugar	0	0,28	0,22	0,22	0,04	2,76	0,05	0,18
chlorides	0	0,05	0,02	0,04	0,01	0,35	5,12	39,50
free.sulfur.dioxide	0	1,48	0,72	1,42	0,08	12,04	0,08	0,58
total.sulfur.dioxide	0	138,36	42,60	134,00	9,00	440,00	0,42	0,78
density	0	0,07	0,00	0,07	0,07	0,04	0,05	0,49
рН	0	3,19	0,15	3,18	2,72	3,82	0,46	0,57
sulphates	0	0,03	0,01	0,03	0,02	0,05	0,04	0,09
alcohol	0	10,51	1,23	10,40	8,00	14,20	0,51	-0,67

Analisi Univariata

Analisi Univariata

2 Metodi Statistici:

- Interquartile Range (rimozione)
- Winsorizing (capping)
 - Winsorizing 90% (0.05, 0.95)
 - Winsorizing 98% (0.01, 0.99)

- Tutte le variabili hanno outliers
- Pochi outliers per la classe good
- Skewness positiva => Molti outliers con valori alti
- Sulphates, residual.sugar, total.sulfur.dioxide e chlorides sono le variabili con più outliers

- Winsorizing deforma l'istogramma
- Winsorizing 98% tiene alcuni outliers
- Con IQR, residual.sugar, chlorides e sulphates assumono una distribuzione quasi simmetrica

Metodo Scelto: IQR

Analisi Multivariata

Analisi Multivariata

Threshold 95%, 8 componenti

Analisi Multivariata

Threshold 95%, 8 componenti

Pre Processing

Pre Processing

Metodo 1

+ Standardizzazione (z-score)

Metodo 2

- + Standardizzazione (z-score)
- + PCA

Rimozione Outliers

Pre Processing

Datasets

- Standardizzazione
- Standardizzazione + PCA
- Standardizzazione e rimozione outliers
- Standardizzazione + PCA e rimozione outliers

Modelli e Addestramento

Modelli e Addestramento

- 5-fold cross validation stratificata
- 5 ripetizioni
- Ottimizzazione AUC-PRC per la scelta del modello migliore
- Tuning con Grid Search

SVM

- Nella versione soft margin permette una certa tolleranza agli outliers
- Richiede un pre processing
- Richiede meno dati di una rete neurale
- Al contrario di altri modelli come Naive Bayes e CART ha un costo computazionale alto
- Kernel (Lineare, Polinomiale, Radiale)

CART

- Poco soggetto agli outliers e ai valori mancanti
- Non richiede pre processing
- Poco costoso computazionalmente rispetto a SVM e Reti Neurali
- Per alberi profondi richiede utilizzo di tecniche di pruning per evitare problematiche di overfitting

Risultati

Confronto Kernel SVM

Confronto Kernel SVM

Confronto SVM radiale e CART

Confronto SVM radiale e CART

Confronto Modelli

Matrici Di Confusione

Test Set - 319 istanze (negative: 276, positive: 43)

Accuracy: 0.91

Precision: 0.94

Recall: 0.37

F1: 0.50

AUC PRC: 0.77

Accuracy: 0.92

Precision: 0.88

Recall: **0.47**

F1: **0.56**

AUC PRC: 0.75

SVM Radiale (PCA)

CART (z-score)

Intervalli Di Confidenza 95%

Curva ROC e PRC

	SVM	CART
ROC (AUC)	0,95	0,93
PRC (AUC)	0,77	0,75
Training Time (+ Tuning)	1827s	8,06s

Sensitivity =
$$\frac{TP}{TP+FN}$$

$$1$$
 - Specificity $=rac{FP}{FP+TN}$

Conclusioni

- 1. Features poco discriminanti
- 2. Rimuovere gli outliers non migliora i modelli
- 3. In generale la PCA non migliora i risultati
- 4. Dati fortemente sbilanciati, dati skewed
- 5. I modelli presentati hanno performance simili, ma l'SVM ha un costo maggiore di CART, tuttavia gli intervalli di confidenza dell'SVM sono migliori
- 6. Recall bassa per la classe good su entrambi i modelli (FN alto)
- 7. Possibili migliorie usare tecniche di oversampling o undersampling(es. SMOTE), oppure modelli più sofisticati (es.random forest), inoltre si potrebbe estendere il problema a più classi o considerare anche il vino bianco

Extra

Analisi Outliers: Q-Q plot

SVM

$$egin{aligned} minrac{1}{2}{||w||}^2 + C\sum_i \xi_i \ y_i(w^Tx_i+b) &\geq 1-\xi_i \ \xi_i &\geq 0 \end{aligned}$$

C: più è grande più diminuisce il margine, permette miss-classification

Gamma: controlla la forma dell'iperpiano

$$egin{aligned} K(\mathbf{x},\mathbf{x}') &= \exp(-\gamma \|\mathbf{x}-\mathbf{x}'\|^2) \ K(\mathbf{x},\mathbf{x}') &= (scale \langle \mathbf{x},\mathbf{x}'
angle + offset)^{degree} \end{aligned}$$

https://tomaszkacmajor.pl/index.php/2016/04/24/svm-model-selection/

Decision Tree

Max Depth: Tramite la scelta di questo parametro è possibile ottenere un albero meno profondo e ridurre il rischio di overfitting

https://bradleyboehmke.github.io/HOML/DT.html

Tabelle Risultati Esperimenti

Kernel	Overall Accuracy	Precision	Recall	F1	${ m ROC~AUC}$	PRC AUC	95% CI	P-Value
lineare	0.8652	NA	0	NA	0.8604651	0.4288328	(0.8228, 0.9007)	0.5405
polinomiale	0.8746	0.57895	0.25581	0.35484	0.8795079	0.5608824	(0.8332, 0.9089)	0.3471558
radiale	0.9122	0.94118	0.37209	0.53333	0.9313279	0.7520759	(0.8756, 0.9409)	0.006404

Tabella 6.1: Risultati dei diversi kernel sul testset con Standardizzazione

viodeis	Overall Accuracy	Precision	Recall	P I	ROC AUC	PRC AUC	95% C1	P-value
cart	0.9154	0.83333	0.46512	0.59701	0.8476154	0.6564769	(0.8792, 0.9435)	0.003747
svm	0.9122	0.94118	0.37209	0.53333	0.9313279	0.7520759	(0.8756, 0.9409)	0.006404

Modele Overell Assures Presiden

Tabella 6.5: Risultati modelli scelti con Standardizzazione

Kernel	Overall Accuracy	Precision	Recall	F1	ROC AUC	PRC AUC	95% CI	P-Value
lineare	0.8652	NA	0	NA	0.8547354	0.5011905	(0.8228, 0.9007)	0.5405
polinomiale	0.8715	0.54545	0.27907	0.36923	0.8844793	0.5368917	(0.8297, 0.9062)	0.410227
radiale	0.9122	0.94118	0.37209	0.53333	0.9469161	0.7732596	(0.8756, 0.9409)	0.006404

Tabella 6.2: Risultati dei diversi kernel sul testset con Standardizzazione + PCA

Kernel	Overall Accuracy	Precision	Recall	F1	ROC AUC	PRC AUC	95% CI	P-Value
lineare	0.8652	NA	0	NA	0.8681328	0.4870888	(0.8228, 0.9007)	0.5405
polinomiale	0.884	0.59375	0.44186	0.50667	0.8313953	0.4587525	(0.8437, 0.917)	0.1845
radiale	0.8997	0.92308	0.27907	0.42857	0.8711662	0.6230968	(0.8613, 0.9304)	0.03864

Tabella 6.3: Risultati dei diversi kernel sul testset con Standardizzazione e rimozione outliers

Kernel	Overall Accuracy	Precision	Recall	$\mathbf{F1}$	ROC AUC	PRC AUC	95% CI	P-Value
lineare	0.8652	NA	0	NA	0.8624031	0.408548	(0.8228, 0.9007)	0.5405
polinomiale	0.8903	0.63333	0.44186	0.52055	0.878244	0.5411327	(0.8507, 0.9224)	0.10722
radiale	0.8934	0.90909	0.23256	0.37037	0.8684277	0.6079154	(0.8543, 0.9251)	0.07852

Tabella 6.4: Risultati dei diversi kernel sul testset con Standardizzazione + PCA e rimozione outliers

Models	Overall Accuracy	Precision	Recall	F1	ROC AUC	PRC AUC	95% CI	P-Value
cart	0.884	0.6	0.4186	0.49315	0.8194725	0.485855	(0.8437, 0.917)	0.18452
svm	0.9122	0.94118	0.37209	0.53333	0.9469161	0.7732596	(0.8756, 0.9409)	0.006404

Tabella 6.6: Risultati modelli scelti con Standardizzazione + PCA

Models	Overall Accuracy	Precision	Recall	F1	ROC AUC	PRC AUC	95% CI	P-Value
cart	0.8746	0.56522	0.30233	0.39394	0.7817661	0.4226265	(0.8332, 0.9089)	0.347156
svm	0.8997	0.92308	0.27907	0.42857	0.8711662	0.6230968	(0.8613, 0.9304)	0.03864

Tabella 6.7: Risultati modelli scelti con Standardizzazione e rimozione outliers

Models	Overall Accuracy	Precision	Recall	F1	ROC AUC	PRC AUC	95% CI	P-Value
cart	0.8746	0.58824	0.23256	0.33333	0.7598163	0.440484	(0.8332, 0.9089)	0.3472
svm	0.8934	0.90909	0.23256	0.37037	0.8684277	0.6079154	(0.8543, 0.9251)	0.07852

Tabella 6.8: Risultati modelli scelti con Standardizzazione + PCA e rimozione outliers