ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 (ΜΙΚΡΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1)

05.04.2024

Μέλη ομάδας:

Τσάλα Ζαφειρία 1084963 (<u>up1084963@ac.upatras.gr</u>)

Φουσκαρής Αλέξιος-Ιωσήφ 1100747 (up1100747@ac.upatras.gr)

Ομάδα Α4

Ερώτημα Α.

LDA \$K : Φόρτωσε τον Accumulator με το περιεχόμενο της διεύθυνσης Κ (της κύριας μνήμης)

// LOAD DIR SEQ~ για να πάμε στο μικροπρόγραμμα της

```
    PC + 1 -> PC , MAR // Το Κ θα πάει στον MDR
    MDR + 0 -> X // Το Κ στον accumulator
    X + 0 -> MAR // Το Κ στον MAR, άρα το περιεχόμενο της Κ στον MDR
    MDR + 0 -> ACC // Ο MDR (δηλ. το περιεχ. της Κ) στον ACC
    PC + 1 -> PC, MAR // Ο MAR θα δείξει στο opcode της επόμ. εντολής
```

Στην παραπάνω μακροεντολή LDA \$Κ μπορούμε να παραλείψουμε τις μικροεντολές MDR + 0 -> X και X + 0 -> MAR και να τις αντικαταστήσουμε από την ενιαία μικροεντολή MDR+0 -> MAR.

Επομένως ο ψευδοκώδικας γίνεται:

6. NEXT(PC)

```
    PC + 1 -> PC , MAR // Το Κ θα πάει στον MDR
    MDR + 0 -> MAR // Το Κ στον MAR, άρα το περιεχόμενο της Κ στον MDR
    MDR + 0 -> ACC // Ο MDR (δηλ. το περιεχ. της Κ) στον ACC
    PC + 1 -> PC, MAR // Ο MAR θα δείξει στο opcode της επόμ. εντολής
    NEXT(PC) // LOAD_DIR_SEQ~ για να πάμε στο μικροπρόγραμμα της
```

ADD \$K : Πρόσθεσε στον Accumulator το περιεχόμενο της διεύθυνσης Κ

2.
$$MDR + 0 -> X$$

3.
$$X + 0 -> NOP, MAR$$

Στην παραπάνω μακροεντολή ADD \$K μπορούμε να παραλείψουμε τις μικροεντολές MDR + 0 -> X και X + 0 -> NOP, MAR και να τις αντικαταστήσουμε από την ενιαία μικροεντολή MDR+0 -> NOP, MAR.

Επομένως ο ψευδοκώδικας γίνεται:

- 1. PC + 1 -> PC , MAR
- 2. MDR + 0 -> NOP, MAR
- 3. MDR + ACC -> ACC
- 4. PC + 1 🖸 -> PC, MAR
- 5. NEXT(PC)

STA \$K : Αποθήκευσε το περιεχόμενο του Accumulator στη θέση μνήμης με διεύθυνση K

2.
$$MDR + 0 -> X$$

6. NEXT(PC)

Στην παραπάνω μακροεντολή STA \$K μπορούμε να παραλείψουμε τις μικροεντολές MDR + 0 -> X και X + 0 -> NOP, MAR και να τις αντικαταστήσουμε από την ενιαία μικροεντολή MDR+0 -> NOP, MAR (όπως και παραπάνω)

Επομένως ο ψευδοκώδικας γίνεται:

- 1. PC + 1 -> PC , MAR
- 2. MDR + 0 -> NOP, MAR
- 3. ACC + 0 -> NOP, MWE~
- 4. PC + 1 -> PC, MAR
- 5. NEXT(PC)

Προφανώς και συμπεραίνουμε από τα παραπάνω πως ο βοηθητικός καταχωρητής Χ είναι αχρείαστος γενικά.

Περιεχόμενα Mapper και περιεχόμενα κύριας (main) μνήμης:

<u>MAPPER</u>	MAIN
m00 02 // εντολή LDA m01 08 // εντολή ADD m02 0e // εντολή STA	m00 00 // opcode εντολής LDA m01 08 // έντελο εντολής LDA m02 01 // opcode εντολής ADD m03 09 // έντελο εντολής ADD m04 02 // opcode εντολής STA m05 0a // έντελο εντολής STA m06 f0 m07 ff m08 03 // περιοχή δεδομένων m09 02 m0a 01

BOOTSTRAP	BRA	BIN	CON	- 1	- 1	- 1	APORT	BPORT	DDATA	SH~	SELB	MWE~	MARCLK	MSTATUS	LDS~	PCE~	CARRYE~	MDE~	DDATAE~	ADDRESS
	(4:0)	(2:0)	(2:0)	(2:0)	(5:3)	(8:6)	(3:0)	(3:0)	(1:0)											
SW+0- >PC,MAR	00000	000	000	111	000	011	0000	0001	00	0	1	1	1	0	1	0	1	1	1	m00
NEXT(PC)	XXXXX	000	XXX	XXX	XXX	001	XXXX	XXXX	XX	0	0	1	0	0	0	0	0	0	0	m01

LDA \$K	BRA	BIN	CON	- 1	- 1	- 1	APORT	BPORT	DDATA	SH~	SELB	MWE~	MARCLK	MSTATUS	LDS~	PCE~	CARRYE~	MDE~	DDATAE~	ADDRESS
	(4:0)	(2:0)	(2:0)	(2:0)	(5:3)	(8:6)	(3:0)	(3:0)	(1:0)											
PC+1->PC,MAR	XXXXX	000	XXX	101	000	011	0001	0001	01	0	1	1	1	0	1	1	1	1	0	m02
MDR+0->ACC	XXXXX	000	XXX	111	000	011	XXXX	0010	XX	0	1	1	0	0	1	1	1	0	1	m03
ACC+0- >NOP,mar	xxxxx	000	XXX	100	000	001	0010	XXXX	XX	0	1	1	1	0	1	1	1	1	1	m04
MDR+0->ACC	00000	000	000	111	000	011	0000	0000	00	0	1	1	0	0	1	1	1	0	1	m05
PC+1->PC,MAR	XXXXX	000	XXX	101	000	011	0001	0001	01	0	1	1	1	0	1	1	1	1	0	m06
NEXT(PC)	XXXXX	000	XXX	XXX	XXX	001	XXXX	XXXX	XX	0	0	1	0	0	0	0	0	0	0	m07

ADD \$K	BRA	BIN	CON	- 1	- 1	- 1	APORT	BPORT	DDATA	SH~	SELB	MWE~	MARCLK	MSTATUS	LDS~	PCE~	CARRYE~	MDE~	DDATAE~	ADDRESS
	(4:0)	(2:0)	(2:0)	(2:0)	(5:3)	(8:6)	(3:0)	(3:0)	(1:0)											
PC+1->PC,MAR	XXXXX	000	XXX	101	000	011	0001	0001	01	0	1	1	1	0	1	1	1	1	0	m08
MDR+0->X	00000	000	000	111	000	011	0000	0010	XX	0	1	1	0	0	1	1	1	0	1	m09
X+0->NOP,MAR	00000	000	000	100	000	001	0010	0000	XX	0	1	1	1	0	1	1	1	1	1	m0a
MDR+ACC- >ACC	00000	000	000	101	000	011	0000	0000	00	0	1	1	0	0	1	1	1	0	1	m0b
PC+1->PC,MAR	XXXXX	000	XXX	101	000	011	0001	0001	01	0	1	1	1	0	1	1	1	1	0	m0c
NEXT(PC)	XXXXX	000	XXX	XXX	XXX	001	XXXX	XXXX	Х	0	0	1	0	0	0	0	0	0	0	m0d

STA \$K	BRA	BIN	CON	I	I	I	APORT	BPORT	DDATA	SH~	SELB	MWE~	MARCLK	MSTATUS	LDS~	PCE~	CARRYE~	MDE~	DDATAE~	ADDRESS
	(4:0)	(2:0)	(2:0)	(2:0)	(5:3)	(8:6)	(3:0)	(3:0)	(1:0)											
PC+1->PC,MAR	XXXXX	000	XXX	101	000	011	0001	0001	01	0	1	1	1	0	1	1	1	1	0	m0e
MDR+0->X	00000	000	000	111	000	011	0000	0010	00	0	1	1	0	0	1	1	1	0	1	m0f
X+0->NOP,MAR	00000	000	000	100	000	001	0010	0000	00	0	1	1	1	0	1	1	1	1	1	m10
ACC+0- >NOP,MWE	00000	000	000	100	000	001	0000	0000	00	0	1	0	0	0	1	1	1	1	1	m11
PC+1->PC,MAR	XXXXX	000	XXX	101	000	011	0001	0001	01	0	1	1	1	0	1	1	1	1	0	m12
NEXT(PC)	XXXXX	000	XXX	XXX	XXX	001	XXXX	XXXX	XX	0	0	1	0	0	0	0	0	0	0	m13

Καταχωρητές που χρησιμοποιούμε

<u>Accumulator</u>: $(00)_{16} --> (0000)_2$

<u>Program Counter</u>: (01)₁₆ --> (0001)₂

<u>Βοηθ. Καταχωρητής</u> Χ: (02)₁₆ --> (0010)₂

Mapper										
Κώδικας εντολής	Opcode/Θέση	Περιεχόμενα								
LDA \$K	00000000	0000010								
ADD \$K	0000001	00001000								
STA \$K	00000010	00001110								

Αποθηκεύουμε στην θέση 0a το άθροισμα του περιεχομένου των θέσεων 08 και 09

Ερώτημα Β.

Οι εντολές που θα χρησιμοποιήσουμε είναι:

LDA A

ADD B

STA C

1	Main Memory										
Κώδικας εντολής	Θέση	Περιεχόμενο									
LDA \$08	00000000	00000000									
2011 400	0000001	00001000									
ADD \$09	00000010	0000001									
700 4 07	00000011	00001001									
STA \$oa	00000100	0000010									
5171 4 00	00000101	00001010									
	00000110	11110000									
	00000111	11111111									
	00001000	00000011									
	00001001	0000010									
	00001010	0000001									

Ερώτημα Γ.

Για να εκτελέσουμε την πράξη $\Gamma = A + B$ 10 φορές , θα χρειαστούμε 30 εντολές συνολικά ($10 \varphi o \rho$ ές * 3 εντολές) . Θα χρησιμοποιήσουμε το sequence εντολών που έχουμε παρουσιάσει στο ερώτημα B

Ερώτημα Δ.

Θα μπορούσαμε να ξεπεράσουμε το παραπάνω πρόβλημα με χρήση loop μέσα στο πρόγραμμα. . Το πρόβλημα που προκύπτει από την παραπάνω υλοποίηση(στο ερώτημα Γ) είναι ότι αυξάνεται η μνήμη που καταλαμβάνει το πρόγραμμά μας καθώς και ο χρόνος εκτέλεσής του. Επίσης η συντήρηση του είναι ακόμα πιο δύσκολη και κουραστική.