Análisis formal de complejidad para floyd_distancia

Sea $L = \texttt{MAX_LOCALIDADES}$ (número de localidades).

1. Planteamiento y desarrollo de T(L)

La función realiza:

• Un ciclo doble para copiar los valores:

for
$$i = 0$$
 to $L-1$: for $j = 0$ to $L-1$: $resultado[i][j] = matriz_distancia[i][j]$;

Esto realiza $L \times L$ operaciones (llamémoslo t_1L^2).

• Tres ciclos anidados para el algoritmo de Floyd-Warshall:

for
$$k=0$$
 to $L-1$: for $i=0$ to $L-1$: for $j=0$ to $L-1$: if (...): resultado[i][j] = ...

Esto realiza $L \times L \times L = L^3$ operaciones (llamémoslo t_2L^3).

Así,

$$T(L) = t_1 L^2 + t_2 L^3$$

2. Calculando los casos

Mejor caso: No importa la entrada, siempre se ejecutan todos los ciclos completos:

$$T_m(L) = t_1 L^2 + t_2 L^3$$

Peor caso: De igual forma, el recorrido es el mismo:

$$T_p(L) = t_1 L^2 + t_2 L^3$$

Caso promedio: También es igual, pues la estructura de ciclos es fija:

$$T_{nr}(L) = t_1 L^2 + t_2 L^3$$

3. Resolución de sumatoria y límites

Para cotas asintóticas, el término dominante es t_2L^3 , por lo tanto:

$$\lim_{L \to \infty} \frac{T(L)}{L^3} = t_2$$

Por lo tanto:

$$T(L) \in \mathcal{O}(L^3)$$

$$T(L) \in \Omega(L^3)$$

$$T(L) \in \Theta(L^3)$$

4. Resumen Final:

• Mejor caso: $\Theta(L^3)$

• Peor caso: $\Theta(L^3)$

• Caso promedio: $\Theta(L^3)$

Cada cota ha sido comprobada con límites tendiendo a infinito y usando los nombres del código.