

Clustering

Clustering approaches and evaluation

Outline

- Introduction to clustering
- Partition-based clustering: *k*-means
- Model-based clustering: EM
- Evaluation
 - external measures: purity
 - internal measures: silhouette
- Advanced aspects

Motivation

- Patients with a shared clinical condition: how to understand disease?
 - stratified diagnostics and therapeutics
 - cancer types, dementia progression, risk groups
- Customers: how to segment their profile for personalized marketing?
- Webpages, shopping products, media, documents: how to categorize them for recommendations?
- Genes, proteins and metabolites with different expression and concentration profile: how to understand their correlated behavior (biological functions)?
- Students, researchers, professors: how to improve science and education?

Clustering

Cluster: group of data observations

Cluster analysis: group observations into clusters according to their (dis)similarity: observations in the same cluster are more similar than those in different clusters

Notes on notation: when all attributes are numeric: data observations = data point

ML applications

- Stand-alone tool to get insight into data structure
- Unsupervised data labeling
- Preprocessing step to facilitate other tasks
 - prediction: e.g. learn one predictor per cluster to mitigate challenges arising from data heterogeneity
 - outlier analysis: identify observations that deviate from expectations

Data compression

- reduce the number of data points: centers of the clusters seen as the reference/prototype observations
- highly common when handling very large data (e.g. webpage retrieval, e-commerce)

Clustering: distance and approach

Two major factors impact solutions: distance + approach

- Distance metrics depend on the:
 - input variables:
 - numeric distances, e.g. Euclidean $\left(d(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{j=1}^{m} (a_j b_j)^2}\right)$
 - nominal distances, e.g. Hamming
 - ordinal encodings
 - non-iid attributes
 - data structure: multivariate, time series, image, spatiotemporal data, events...
- Clustering approach: partitioning, hierarchical, density-based, model-based

Distances in clustering

- Given a cluster of observations C_i
 - mean center of a cluster: $\mathbf{c}_j = \frac{1}{|C_j|} \sum_{\mathbf{x} \in C_j} \mathbf{x}$
 - cluster: $C_j = \{\mathbf{x} \mid d(\mathbf{x}, \mathbf{c}_j) = \min_i d(\mathbf{x}, \mathbf{c}_i)\}$
- Distances can be applied between:
 - two observations $d(\mathbf{x}_i, \mathbf{x}_i)$
 - one observation and a cluster $d(\mathbf{x}_i, \mathbf{c}_i)$
 - two clusters $d(\mathbf{c}_i, \mathbf{c}_j)$
- (Squared) error of clustering solution: $E = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d(\mathbf{x}, \mathbf{c}_k)^2$

Approaches

Partitioning: **⇐**

Create partitions and iteratively update them (e.g. k-means, k-modes, k-medoids)

Hierarchical:

Create hierarchical decomposition of data points

Density-based:

Group points based on connectivity and density functions

Model-based: ←

Data are seen as a mixture of distributions (e.g. EM)

Tree/hierarchical clustering

- Tree clustering algorithm allow us to reveal the internal similarities of a given pattern set
 - similarities structured hierarchically
 - for n patterns these algorithm generates a sequence of 1 to n clusters
- Tree (dendrogram) can be structured bottom up or top down

Goal for today

Goal

- given a set of n observations (sample) $\{x_1, x_2, ..., x_n\}$
- partition the data set into K clusters (we can assume for now that K is given) where $K \ll n$
- First, we approach clustering with a non-probabilistic technique called k-means [Lloyd, 1982]
- Then, we introduce the latent variable view of mixture distributions
 - discrete latent variables defining assignments of data points to specific components of the mixture
 - a general technique to find maximum likelihood estimators in latent variable models is the
 expectation-maximization (EM) algorithm

Outline

- Introduction to clustering
- Partition-based clustering: *k*-means
- Model-based clustering: EM
- Evaluation
 - external measures: purity
 - internal measures: silhouette
- Advanced aspects

Centers and distances

- Custer as a group of data points with...
 - small inter-point distances when compared with the distances to points outside of the cluster
- The cluster centers (also called **centroids**) represent the compressed data set
 - mean center of a cluster: $c_k = \frac{1}{|C_k|} \sum_{\mathbf{x} \in C_k} \mathbf{x}$
- Data points are grouped into clusters according to a distance function, applicable to...
 - two observations $d(\mathbf{x}_i, \mathbf{x}_i)$
 - one observation and a cluster $d(\mathbf{x}_i, \boldsymbol{c}_k)$

Clustering objective function

In this context, a cluster is defined as

$$C_k = \{\mathbf{x} \mid d(\mathbf{x}, c_k) = \min_i d(\mathbf{x}, c_i)\}\$$

- We can then define an objective function to assess the error of a clustering solution
 - squared error

$$E = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} ||\mathbf{x} - c_k||^2 = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d(\mathbf{x}, c_k)^2$$

Partitioning algorithms

Given *k* clusters:

- 1. partition objects into *k* non-empty subsets
- 2. compute the centroid c_k of each subset
 - centroid is the center of mass: e.g. mean or median centers
- 3. reassign each observation to the cluster with the nearest centroid
- 4. goto *step 2, stop* when:
 - i) assignment does not change, ii) $|E^{new} E^{old}| < \varepsilon$, or iii) max iterations is reached

Variants

- centroid calculus
- selection of the initial seeds
- adjustments for batches of observations (instead of all) for very large datasets

k-means

k-medoids

- 1. **numeric** data: centroid as the mean or median
- **2.** categoric data: centroid as the mode -k-modes [Huang'98]
 - frequency-based procedure to update modes of clusters
- **3. mixed** data: centroid combining mean and modes (*k*-prototype)
- <u>k-medoids</u>: the most centrally located observation in a cluster is the centroid
 - observation with minimum average distance to all observations in the cluster
- What is the algorithm most robust to outliers: *k*-means or *k*-medoids?

k-means: challenges

• Efficiency: O(tkn) n=#observation, k=#clusters, t=#iterations, usually k, $t \ll n$

Problems

- dependent on initialization
- sensitive to outliers
- sensitive noisy data
 - noise can substantially distort centroids
- not suitable to discover clusters with non-convex shapes
 - deal only with clusters with spherical symmetrical point distribution
- need to specify k, the *number* of clusters, in advance
- convergence?

Limitations of *k***-means**

Limitations of k-means

Overcoming k-means limitations

Outline

- Introduction to clustering
- Partition-based clustering: *k*-means
- Model-based clustering: EM
- Evaluation
 - external measures: purity
 - internal measures: silhouette
- Advanced aspects

EM clustering

- Expectation maximization (EM) clustering
 - cluster described by a multivariate distribution
 - observations have a probability of belonging to each cluster
 - soft clustering (in contrast with hard clustering)
- Recovering essentials
 - **posterior** probability (after the evidence is obtained): $P(cluster = k \mid \mathbf{x})$
 - Baye's rule $P(cluster = k | \mathbf{x}) = \frac{P(\mathbf{x}|cluster = k)P(cluster = k)}{P(\mathbf{x})}$
 - covariance: direction and strength on how two variables y_i and y_j vary
 - **univariate Gaussian** probability density function, $p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x-u}{\sigma}\right)^2}$

Multivariate Gaussian

• A Gaussian distribution in a m-dimensional space is defined as:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{u})^T \Sigma^{-1} (\mathbf{x} - \mathbf{u})}$$

- where ${\bf u}$ is the m-dimensional mean vector
- $-\Sigma$ is the $m \times m$ covariance matrix
- $|\Sigma|$ is the determinant of Σ

FIG. 7.3. The bivariate normal distribution.

Gaussian mixture

- What kind of probability distribution might have generated the data?
 - clustering presumes that the data are generated from a mixture of distributions

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \cdot N(\mathbf{x} | \mathbf{u}_k, \Sigma_k) \quad \text{with} \quad \sum_{k=1}^{K} \pi_k = 1$$

Gaussian of cluster c_k

- Univariate density
 - cluster c_k generates x

$$p(x|c_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{1}{2}\left(\frac{x-u_k}{\sigma_k}\right)^2}$$

- where u_k and σ_k are the mean and standard deviation of component c_k
- Multivariate density
 - $-\mathbf{x}$ generated by cluster c_k

$$p(\mathbf{x}|c_k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{u}_k)^T \Sigma_k^{-1} (\mathbf{x} - \mathbf{u}_k)}$$

– where \mathbf{u}_k and Σ_k are the mean vector and covariance matrix of component c_k

Example

- (a) three components of the mixture depicted in red, green, and blue
- (b) the corresponding samples from the marginal distribution $p(\mathbf{x})$
- (c) the same samples in which the colors represent the value of the responsibilities

$$p(c_k \mid \mathbf{x}) = \frac{p(\mathbf{x} | c_k) p(c_k)}{p(\mathbf{x})}$$

Maximum likelihood

Training set consists on n observations (sample)

$$X = (\mathbf{x}_1, \dots, \mathbf{x}_i, \dots, \mathbf{x}_n)$$

- We can represent the dataset as a design matrix X of size $n \times m$ as before
- The log of the likelihood function is given by

$$\log p(X|\mathbf{\pi}, \mathbf{u}, \mathbf{\Sigma}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \cdot N(\mathbf{x}|\mathbf{u}_k, \Sigma_k) \right)$$

EM algorithm

- Given a Gaussian mixture model, the goal is to maximize the likelihood function
 - ... with respect to the parameters: means, covariances and the mixing coefficients
- Four major steps
 - 1. Initialization
 - 2. Expectation
 - 3. Maximization
 - 4. **Evaluate** the log likelihood

$$\log p(X|\mathbf{\pi}, \mathbf{u}, \mathbf{\Sigma}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \cdot N(\mathbf{x}|\mathbf{u}_k, \Sigma_k) \right)$$

if convergence criterion is not satisfied return to step 2

1. Initialization

- We initialize the mixture parameters arbitrarily
 - mean vectors, usually correspond to random points
 - covariance matrices, generally correspond to identity matrix
 - $-\pi_k$ mixing coefficients, generally initialized as 1/K (equiprobability)

2. Expectation (E-step)

• Compute for each data point \mathbf{x}_i and each cluster c_k

$$\gamma_{ki} = p(c_k \mid \mathbf{x}_i) = \frac{p(\mathbf{x}_i \mid c_k)p(c_k)}{p(\mathbf{x}_i)} = \frac{N(\mathbf{x}_i \mid \mathbf{u}_k, \Sigma_k) \cdot \pi_k}{\sum_k \pi_k N(\mathbf{x}_i \mid \mathbf{u}_k, \Sigma_k)}$$

• As $p(\mathbf{x}_i)$ is invariant to the components, we can compute...

$$p(c_k, \mathbf{x}_i) = p(\mathbf{x}_i | c_k) p(c_k) = N(\mathbf{x}_i | \mathbf{u}_k, \Sigma_k) \cdot \pi_k$$

and then normalize,
$$\gamma_{ki} = p(c_k \mid \mathbf{x}_i) = \frac{p(c_k, \mathbf{x}_i)}{\sum_j p(c_j, \mathbf{x}_i)}$$

3. Maximization (M-step)

- Each observation \mathbf{x}_i will contribute to update cluster \mathbf{c}_k with weight γ_{ki}
- Accordingly, recalculate the components of the mixture. For each \mathbf{c}_k :

$$N_k = \sum_{i=1}^n \gamma_{ki}$$

$$\mathbf{u}_k = \frac{1}{N_k} \sum_{i=1}^n \gamma_{ki} \cdot \mathbf{x}_i$$

$$\Sigma_k = \frac{1}{N_k} \sum_{i=1}^n \gamma_{ki} \cdot (\mathbf{x}_i - \mathbf{u}_k) \cdot (\mathbf{x}_i - \mathbf{u}_k)^T$$

$$\pi_k = p(c_k) = \frac{N_k}{N}$$

EM example

Challenges

- Gaussian components can shrink to covers just a single point
- When variance goes to zero, likelihood will go to infinity
- Two components can "merge" acquiring identical means and variances and sharing their data points
- Other serious problems, especially in high dimensions

- Extension of EM beyond Gaussian mixture assumptions
 - exactly as we work with Bayesian approaches: replacing $p(c_k, \mathbf{x}_i)$ by alternative probabilistic views

EM exercise

Given:

$$-\operatorname{data} \mathbf{x} = \left\{ \begin{pmatrix} 2\\2 \end{pmatrix}, \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 0\\0 \end{pmatrix} \right\}$$

- two clusters with priors $p(c_k) = \frac{1}{2}$
- *Exercise*: perform one step of the EM under the following assumptions:
 - real-valued data given by **Gaussian mixture** $\mathbf{u}_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\Sigma_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\Sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - independent $\{0,1,2\}$ -ordinal variables with **multinomial distribution** $\mathbf{u}_1 = \begin{pmatrix} 0.1 \\ 0.2 \\ 0.7 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 0.5 \\ 0.3 \\ 0.2 \end{pmatrix}$

EM and K-means Clustering

- Practical comparison shows close similarity, yet...
 - k-means algorithm performs a hard assignment of data points to clusters,
 in which each data point is associated uniquely with one cluster
 - in k-means the shape of the cluster is described by Euclidean distance function...
 - EM algorithm makes a soft assignment based on the posterior probabilities

Outline

- Introduction to clustering
- Partition-based clustering: *k*-means
- Model-based clustering: EM
- Evaluation
 - external measures: purity
 - internal measures: silhouette
- Advanced aspects

Evaluation: clustering validation

- 3 kinds of validity measures: external, internal and relative indexes
- **External criteria** (supervised): extent to which cluster labels match **pre-specified structure**
 - requires prior or expert knowledge
- Internal criteria (unsupervised): goodness without external information
 - how well they are separated (e.g. silhouette)
 - should be independent from algorithm-specific functions (unbiased)
- Relative: compare different cluster structures (different parameters or algorithms)

External measures: purity

• $\{C_1, C_2, \dots, C_K\}$ is the set of clusters $\{L_1, L_2, \dots, L_G\}$ is the set of reference classes

$$purity = \frac{1}{n} \sum_{k=1}^{K} \max_{j} (|C_k \cap L_j|)$$

- **Problem**: biased $\Rightarrow K = n$ clusters minimize error
- Alternative: entropy of classes in clusters (or mutual information between classes and clusters)

Sec. 16.3

External measures: purity

$$purity = \frac{1}{17}(max(1,0,5) + max(4,1,1) + max(0,3,2)) = \frac{12}{17}$$

$$purity(C_1) = \frac{5}{6}$$
, $purity(C_2) = \frac{4}{6}$, $purity(C_3) = \frac{3}{5}$

Internal criteria

- There are two major internal criteria [Berry and Linoff, 1996]
 - compactness (cohesion)
 - the members of each cluster should be as close to each other as possible
 - a common measure of compactness is the variance, which should be minimized

separation

the clusters themselves should be widely spaced

Internal measures: silhouette

- Silhouette combines both cohesion and separation
- Calculated for a specific object x_i
 - $a(\mathbf{x}_i)$ = average distance of \mathbf{x}_i to the points in its cluster
 - $-b(\mathbf{x}_i)$ = min (average distance of \mathbf{x}_i to points in another cluster)
 - the silhouette coefficient for a point is then given by

$$s(\mathbf{x}_i) = 1 - a(\mathbf{x}_i)/b(\mathbf{x}_i)$$
 if $a < b$, (or $s = b/a - 1$ if $a \ge b$, not the usual case)

between -1 and 1 (the closer to 1 the better)

- Silhouette of cluster: average of observation silhouettes
- Silhouette of clustering solution: average of cluster silhouettes

Internal measures: silhouette

Dunn index (optional)

- Dunn index D_K , a cluster validity index originally proposed for k-means [Dunn, 1974]
 - compact and well-separated clusters

$$d(C_1, C_2) = \min_{\mathbf{x}_i \in C_1, \mathbf{x}_j \in C_2} d(\mathbf{x}_i, \mathbf{x}_j)$$

$$diam(C) = \max_{\mathbf{x}_i, \mathbf{x}_j \in C} d(\mathbf{x}_i, \mathbf{x}_j)$$

$$D_K = \frac{\min_{1 \le i < j \le K} d(C_i, C_j)}{\max_{1 \le i \le K} \{diam(C_i)\}}$$

Dunn index (optional)

- If the dataset contains compact and well-separated clusters:
 - the distance between the clusters is expected to be large
 - the *diameter* of the clusters is expected to be *small*
- Large values of the index indicate the presence of compact and well-separated clusters
- D_K can be **normalized** to more easily compare solutions
- Silhouette and D_k do not exhibit any trend with respect to number of clusters
 - the maximum in a plot with the indices against the number of clusters K offer an indication of the best number of clusters that fits the data
- Challenges:
 - considerable amount of time to compute silhouette and D_K
 - sensitive to the presence of noise and outliers in data

Davies-Bouldin (optional)

Revision: Davies-Bouldin (DB) index (1979)

$$DB_K = \frac{1}{K} \sum_{i=1}^K \max_{(i,j), i \neq j} \left\{ \frac{diam(C_i) + diam(C_j)}{d(\mathbf{c}_i, \mathbf{c}_j)} \right\}$$

- in contrast to D_K , small DB_K indexes correspond to good clusters, i.e. compact with centers far away
- similarly to D_K , DB_K index exhibits no trends with respect to the number of clusters

Distances and diameters (optional)

Different distances

$$d(C_1, C_2) = \min_{\mathbf{x}_i \in C_1, \mathbf{x}_j \in C_2} d(\mathbf{x}_i, \mathbf{x}_j)$$

$$d(C_1, C_2) = \max_{\mathbf{x}_i \in C_1, \mathbf{x}_i \in C_2} d(\mathbf{x}_i, \mathbf{x}_j)$$

$$d(\mathcal{C}_1, \mathcal{C}_1) = d(\boldsymbol{c}_1, \boldsymbol{c}_2)$$

$$d(C_1, C_2) = \frac{1}{|C_1| \times |C_2|} \sum_{\mathbf{x}_i \in C_1} \sum_{\mathbf{x}_j \in C_2} d(\mathbf{x}_i, \mathbf{x}_j)$$

$$diam(C) = \max_{\mathbf{x}_i, \mathbf{x}_j \in C} d(\mathbf{x}_i, \mathbf{x}_j)$$

$$diam(C) = \max_{\mathbf{x}_i \in C} d(\mathbf{x}_i, \mathbf{c})$$

$$diam(C) = \frac{1}{\frac{(|C|-1)|C|}{2}} \sum_{\mathbf{x}_i, \mathbf{x}_j \in C} d(\mathbf{x}_i, \mathbf{x}_j)$$

Outline

- Introduction to clustering
- Partition-based clustering: *k*-means
- Model-based clustering: EM
- Evaluation
 - external measures: purity
 - internal measures: silhouette
- Advanced aspects

Clustering variants

Semi-supervised clustering

- cluster observations when:
 - labels of some observations may be known or
 - pairs of observations are known to belong to the same cluster

- Hard versus soft clustering (each object has a membership for every cluster)
- Complete versus partial clustering (observations may not belong to clusters)
- Uniform versus weighted attributes

Number of clusters?

Number of clusters

Knee/elbow finding:

- plot the squared loss function values for different k
- abrupt changes are highly suggestive => k=2 clusters in the example belos

Alternatives: many others including k that maximizes internal indices (e.g. silhouette)

Importance of seeding initial centroids

Initialization

- Many alternatives for seeding
 - run clustering multiple times with varying seeds and select the best solution
 - use the **centroids** of an alternative clustering algorithm **as seeds** of the target clustering algorithm
 - adaptive initialization
 - choose a maximum radius and seed spheres
 (clusters) with the given radius
 - a data point becomes a new cluster seed
 if not covered by the existing spheres
 - K-MAI clustering (Wichert et al. 2003)
 - alternatives?

Pre- and post-processing

Pre-processing

- normalize data
- data reduction and transformation
- remove outliers

Post-processing

- eliminate small clusters that may represent outliers
- split 'loose' clusters (clusters with relatively high SSE)
- merge clusters that are 'close' (clusters with relatively low SSE)
- these steps can be integrated within the clustering process

Outline

- Introduction to clustering
- Partition-based clustering: *k*-means
- Model-based clustering: EM
- Evaluation
 - external measures: purity
 - internal measures: silhouette
- Advanced aspects

Thank You

rmch@tecnico.ulisboa.pt andreas.wichert@tecnico.ulisboa.pt