Homework 1 by Jingmin Sun Jan.15 2020

ALL REFERENCE NUMBERS ARE CORRESPONDING TO THE TEXT

1. Page 17, 1

$$-(-\mathbf{v}) = -1 \cdot (-\mathbf{v})$$

$$= -1 \cdot (-1 \cdot \mathbf{v})$$

$$= (-1 \cdot -1)\mathbf{v}$$

$$= 1\mathbf{v}$$

$$= \mathbf{v}$$
Multiplicative Identity

Or,

$$\begin{aligned} -\mathbf{v} + \mathbf{v} &= 0 & \text{Additive Inverse} \\ -(-\mathbf{v}) + (-\mathbf{v}) &= 0 & \text{Additive Inverse} \\ & \therefore -(-\mathbf{v}) &= \mathbf{v} & 1.26 \text{ Unique Additive Inverse} \end{aligned}$$

2. Page 17, 3 Firstly, we can solve the equation:

$$\mathbf{v} + 3\mathbf{x} = \mathbf{w}$$

 $3\mathbf{x} = \mathbf{w} - \mathbf{v}$
 $\mathbf{x} = \frac{1}{3} (\mathbf{w} - \mathbf{v})$

Since **x** is a linear combination of **w** and $\mathbf{v} \in V$, so $\mathbf{x} \in V$.

Suppose there exists $\mathbf{x_1}$ and $\mathbf{x_2}$ satisfying the equation $\mathbf{v} + 3\mathbf{x} = \mathbf{w}$, so

$$\mathbf{v} + 3\mathbf{x_1} = \mathbf{w}$$
$$\mathbf{v} + 3\mathbf{x_2} = \mathbf{w}$$

Subtracting (1) from (2), we can get

$$\mathbf{v} + 3\mathbf{x_2} - (\mathbf{v} + 3\mathbf{x_1}) = \mathbf{w} - \mathbf{w}$$

$$(\mathbf{v} - \mathbf{v}) + (3\mathbf{x_2} - 3\mathbf{x_1}) = \mathbf{w} - \mathbf{w}$$

$$0 + (3\mathbf{x_2} - 3\mathbf{x_1}) = 0$$

$$3\mathbf{x_2} - 3\mathbf{x_1} = 0$$

$$3(\mathbf{x_2} - \mathbf{x_1}) = 0$$

$$1(\mathbf{x_2} - \mathbf{x_1}) = \frac{1}{3} \cdot 0$$

$$\mathbf{x_2} - \mathbf{x_1} = 0 + \mathbf{x_1}$$

$$\mathbf{x_2} + (-\mathbf{x_1} + \mathbf{x_1}) = \mathbf{x_1}$$

$$\mathbf{x_2} + 0 = \mathbf{x_1}$$

$$\mathbf{x_2} - \mathbf{x_1}$$
Associativity and Additive Identity
$$\mathbf{x_2} - \mathbf{x_1} = 0$$
Additive Inverse
$$\mathbf{x_2} - \mathbf{x_1} = 0$$
Additive Inverse
$$\mathbf{x_2} - \mathbf{x_1} = 0$$
Additive Inverse

Thus, there is only one \mathbf{x} satisfying the equation $\mathbf{v} + 3\mathbf{x} = \mathbf{w}$.

3. Page 17, 4

Additive Identity. Since the empty set does not have any element, so there does not exists $0 \in \emptyset$ such that $\mathbf{v} + 0 = \mathbf{v}$ for all $\mathbf{v} \in \emptyset$

4. Page 24, 1

To examine a subspace, we need to show **Additive Identity**, **Closed Under Addition**, and **Closed under scalar multiplication** in the subspace.

(a)
$$V = \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$$

• Additive Identity

$$0 + 2 \cdot 0 + 3 \cdot 0 = 0$$
$$\therefore 0 \in V$$

• Closed Under Addition Suppose $\mathbf{x} = (x_1, x_2, x_3) \in V$, $\mathbf{y} = (y_1, y_2, y_3) \in V$, then $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ And

$$(x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3) = x_1 + y_1 + 2x_2 + 2y_2 + 3x_3 + 3y_3$$
$$= (x_1 + 2x_2 + 3x_3) + (y_1 + 2y_2 + 3y_3)$$
$$= 0 + 0$$
$$= 0$$

Therefore, $\mathbf{x} + \mathbf{y} \in V$

• Closed under scalar multiplication

Suppose $a \in \mathbf{F}$, $\mathbf{x} \in V$ and we can get

$$a\mathbf{x} = (ax_1, ax_2, ax_3)$$

$$ax_1 + 2(ax_2) + 3(ax_3) = a(x_1 + 2x_2 + 3x_3)$$

$$= a \cdot 0$$

$$= 0$$

$$\therefore a\mathbf{x} \in V$$

So, V is a subspace of \mathbf{F}^3 .

- (b) $V = \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 4\}$
 - Additive Identity

$$0 + 2 \cdot 0 + 3 \cdot 0 = 0$$
$$\therefore 0 \notin V$$

So, V is not a subspace of \mathbf{F}^3 .

Or we can check

• Closed under scalar multiplication Suppose $a \in \mathbf{F}$, $\mathbf{x} \in V$ and we can get

$$a\mathbf{x} = (ax_1, ax_2, ax_3)$$

 $ax_1 + 2(ax_2) + 3(ax_3) = a(x_1 + 2x_2 + 3x_3)$
 $= a \cdot 4$
 $= 4a$
 $\therefore a\mathbf{x} \notin V$

- (c) $V = \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 x_2 x_3 = 0\}$
 - Additive Identity

$$0 \cdot 0 \cdot 0 = 0$$
$$\therefore 0 \in V$$

• Closed Under Addition Suppose $\mathbf{x}=(x_1,x_2,x_3)\in V$, $\mathbf{y}=(y_1,y_2,y_3)\in V$, then $\mathbf{x}+\mathbf{y}=(x_1+y_1,x_2+y_2,x_3+y_3)$ And

$$(x_1 + y_1) \cdot (x_2 + y_2) \cdot (x_3 + y_3) = (x_1 + y_1) \cdot (x_2 x_3 + x_2 y_3 + y_2 x_3 + y_2 y_3)$$

$$= x_1 x_2 x_3 + x_1 x_2 y_3 + x_1 y_2 x_3 + x_1 y_2 y_3 + x_2 x_3 y_1 + x_2 y_1 y_3 + y_1 y_2 x_3 + y_1 y_2 y_3$$

$$= 0 + x_1 x_2 y_3 + x_1 y_2 x_3 + x_1 y_2 y_3 + x_2 x_3 y_1 + x_2 y_1 y_3 + y_1 y_2 x_3 + 0$$

$$= x_1 x_2 y_3 + x_1 y_2 x_3 + x_1 y_2 y_3 + x_2 x_3 y_1 + x_2 y_1 y_3 + y_1 y_2 x_3$$

$$\neq 0$$

Therefore, $\mathbf{x} + \mathbf{y} \notin V$

So, V is not a subspace of \mathbf{F}^3 .

- (d) $V = \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 = 5x_3\}$
 - Additive Identity

$$0 = 5 \cdot 0$$
$$\therefore 0 \in V$$

• Closed Under Addition Suppose $\mathbf{x}=(x_1,x_2,x_3)\in V$, $\mathbf{y}=(y_1,y_2,y_3)\in V$, then $\mathbf{x}+\mathbf{y}=(x_1+y_1,x_2+y_2,x_3+y_3)$ And

$$x_1 + y_1 = 5x_3 + 5y_3$$
$$= 5(x_3 + y_3)$$

Therefore, $\mathbf{x} + \mathbf{y} \in V$

• Closed under scalar multiplication Suppose $a \in \mathbf{F}$, $\mathbf{x} \in V$ and we can get

$$a\mathbf{x} = (ax_1, ax_2, ax_3)$$

$$ax_1 = a \cdot 5x_3$$

$$= 5 \cdot ax_3$$

$$\therefore a\mathbf{x} \in V$$

So, V is a subspace of \mathbf{F}^3 .

5. Page 24,5

No.

Firstly, $\mathbf{R}^2 \subset \mathbf{C}^2$ then we can examine three properties:

• Additive Identity

$$0 \in \mathbf{R}^2$$

ullet Closed Under Addition

Suppose
$$\mathbf{x} = (x_1, x_2) \in \mathbf{R}^2$$
, $\mathbf{y} = (y_1, y_2) \in \mathbf{R}^2$, then $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2)$
 $\mathbf{x} + \mathbf{y} \in \mathbf{R}^2$, since if $a, b \in \mathbf{R}$, $a + b \in \mathbf{R}$.

• Closed under scalar multiplication

Suppose $a \in \mathbf{F}$, $\mathbf{x} \in \mathbf{R}^2$ and we can get

$$a\mathbf{x} = (ax_1, ax_2, ax_3) \notin \mathbf{R}^2$$

when \mathbf{F} stands for \mathbf{C} , since the multiplication of reals and complex number may not be a real number.

So, \mathbb{R}^2 is not subspace of \mathbb{C}^2 .

6. Page 24,6

(a)
$$V = \{(a, b, c) \in \mathbf{R}^3 : a^3 = b^3\}$$

• Additive Identity

$$0^3 = 0^3 : 0 \in V$$

• Closed Under Addition Since for $a, b \in \mathbf{R}$, $a^3 = b^3$ iff a = b, so: Suppose $\mathbf{x} = (x_1, x_2, x_3) \in V$, $\mathbf{y} = (y_1, y_2, y_3) \in V$, then $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ And

$$(x_1 + y_1)^3 = x_1^3 + y_1^3 + 3x_1y_1(x_1 + y_1)$$

= $x_2^3 + y_2^3 + 3x_2y_2(x_2 + y_2)$
 $\neq (x_2 + y_2)^3$

Therefore, $\mathbf{x} + \mathbf{y} \in V$

• Closed under scalar multiplication Suppose $a \in \mathbf{F}$, $\mathbf{x} \in V$ and we can get

$$(ax_1)^3 = a^3 x_1^3$$

$$= a^3 x_2^3$$

$$= (ax_2)^3$$

$$\therefore a\mathbf{x} \in V$$

So, V is a subspace of \mathbb{R}^3 .

- (b) $V = \{(a, b, c) \in \mathbb{C}^3 : a^3 = b^3\}$
 - Additive Identity

$$0^3 = 0^3 : 0 \in V$$

• Closed Under Addition Suppose $\mathbf{x} = (x_1, x_2, x_3) \in V$, $\mathbf{y} = (y_1, y_2, y_3) \in V$, then $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ Since $\sqrt[3]{1} = e^{2\pi/3i}$, $e^{4\pi/3i}$, $1 = (\frac{-1 + \sqrt{3}i}{2}, \frac{-1 - \sqrt{3}i}{2}, 1)$, so we can make $\mathbf{x} = (\frac{-1 + \sqrt{3}i}{2}, \frac{-1 - \sqrt{3}i}{2}, 1)$ and $\mathbf{y} = (1, \frac{-1 - \sqrt{3}i}{2}, \frac{-1 + \sqrt{3}i}{2})$ and $\mathbf{x} + \mathbf{y} = (\frac{1 + \sqrt{3}i}{2}, 2 \cdot \frac{-1 - \sqrt{3}i}{2}, \frac{1 + \sqrt{3}i}{2})$, and

$$\left(\frac{1+\sqrt{3}i}{2}\right)^3 = -1$$

$$\left(2 \cdot \frac{-1-\sqrt{3}i}{2}\right)^3 = 8 \neq 1$$

Therefore, $\mathbf{x} + \mathbf{y} \notin V$ So, V is a subspace of \mathbb{C}^3 .

7. Page 24, 7

$$\{(a,b) \in \mathbf{R}^2 : a \neq 0\}$$

8. Page 24, 8

$$\{(a,b) \in \mathbf{R}^2 : a = 0 \text{ (and/) or } b = 0\}$$

9. Page 25,10

- Additive Identity Since U_1 and U_2 are subspaces of V, so $0 \in U_1$ and $0 \in U_2$ follows, which implies $0 \in U_1 \cap U_2$
- Closed under Addition

Suppose $\mathbf{x}, \mathbf{y} \in U_1 \cap U_2$, then $\mathbf{x} \in U_1$, $\mathbf{x} \in U_2$, $\mathbf{y} \in U_1$, and $\mathbf{y} \in U_2$. Since U_1 and U_2 are subspaces of V, $\mathbf{x} + \mathbf{y} \in U_1$, and $\mathbf{x} + \mathbf{y} \in U_2$. Thus, $\mathbf{x} + \mathbf{y} \in U_1 \cap U_2$

• Closed under scalar multiplication Suppose $\mathbf{x} \in U_1 \cap U_2$, then $\mathbf{x} \in U_1$, $\mathbf{x} \in U_2$. Since U_1 and U_2 are subspaces of V, $a\mathbf{x} \in U_1$, $a\mathbf{x} \in U_2$, and $a\mathbf{x} \in U_1 \cap U_2$

So, $U_1 \cap U_2$ is a subspace of V.

10. Page 25,12

To prove that statement, we can show

• If one subspace is contained in the other, then the union of two subspace of V is a subspace of V Obviously, if U_1 and U_2 are subspace of V: if $U_1 \subseteq U_2$, then $U_1 \cup U_2 = U_2$ and it's a subspace of V.

If $U_1 \subseteq U_2$, then $U_1 \cup U_2 = U_1$ and it's a subspace of V.

• If the union of two subspace of V is a subspace of V, then one subspace is contained in the other. Suppose U_1 and U_2 are subspace of V and $U_1 \not\subseteq U_2$ and $U_2 \not\subseteq U_1$, so there exists an $\mathbf{x} \in U_1 \backslash U_2$ and $\mathbf{y} \in U_2 \backslash U_1$.

Suppose $U_1 \cup U_2$ is a subspace of V. And since $\mathbf{x} \in U_1 \subset U_1 \cup U_2$ and $\mathbf{y} \in U_2 \subset U_2 \cup U_1$, $\mathbf{x} + \mathbf{y} \in U_1 \cup U_2$.

Thus

$$\mathbf{x} + \mathbf{y} \in U_1$$

or

$$\mathbf{x} + \mathbf{y} \in U_2$$

If $\mathbf{x} + \mathbf{y} \in U_1$, and from $\mathbf{x} \in U_1$, we can get $\mathbf{y} \in U_1$, which contradicts with $\mathbf{y} \in U_2 \setminus U_1$, and If $\mathbf{x} + \mathbf{y} \in U_2$, and from $\mathbf{y} \in U_2$, we can get $\mathbf{x} \in U_2$, which contradicts with $\mathbf{x} \in U_1 \setminus U_2$ So, $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.

11. **Page 25,19** Suppose $V = \mathbb{R}^2$

If
$$U_1 = \{(0,0)\}, U_2 = \{(x_1, x_2) \in \mathbf{R}^2 : x_1 = x_2\}, \text{ and } W = \mathbf{R}^2.$$

It's obvious that U_1 , U_2 and W is a subspace of V, and $U_1 + W = U_2 + W = V$, but $U_1 \neq U_2$

12. Page **25,20**

We can express
$$U = x \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

To make $\mathbf{F}^4 = U \bigoplus W$, we need $W = a\mathbf{v} + b\mathbf{u}$, such that $\mathbf{v}, \mathbf{u}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ are linear independent.

For example,
$$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

It's obvious that $W = a\mathbf{v} + b\mathbf{u}$ satisfies three properties of subspaces, and since four vectors are

It's obvious that
$$W = a\mathbf{v} + b\mathbf{u}$$
 satisfies three properties of subspaces, and since four vectors are linearly independent, so for any $\mathbf{x} \in \mathbf{F}^4$, there is only one kind of combination of 4 vectors such that $\mathbf{x} = a\mathbf{v} + b\mathbf{u} + x \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. So $\mathbb{F}^4 = W + U$, and for all $\mathbf{x} \in \mathbf{F}^4$, there only one way as a sum of $\mathbf{f} \in U$ and $\mathbf{g} \in W$.