Problem 7.21. Let G represent an undirected graph. Also let

 $SPATH = \{ \langle G, a, b, k \rangle \mid G \text{ contains a simple path of length at most } k \text{ from } a \text{ to } b \},$

and

 $LPATH = \{ \langle G, a, b, k \rangle \mid G \text{ contains a simple path of length at least } k \text{ from } a \text{ to } b \}.$

Part a. Show that $SPATH \in P$.

Proof. We show that $SPATH \in P$ by presenting a polynomial time algorithm that decides SPATH. A polynomial time algorithm M for SPATH operates as follows.

M = "On input $\langle G, a, b, k \rangle$:

- 1. Unmark all nodes.
- 2. Assign each node a value of ∞ .
- 3. Mark a, and set it's value 0.
- 4. Let integer d = 0.
- 5. Repeat until no additional nodes are marked:
- 6. Let d = d + 1.
- 7. Scan all edges of G. If an edge (u, v) exists between a marked node u and an unmarked node v, then mark v and set value of v to d.
- 8. If b is marked and value of b is at most k, then Accept. Otherwise reject."

Now we analyze this algorithm to show that it runs in polynomial time. Obviously, stages 1 to 4 and stage 8 are executed only once. Stage 7 runs at most m times because each time except the last it marks an additional node in G, where m is the number of nodes in G. Stage 6 also runs at most m times. Thus, the total number of stages used is at most 1+1+m+m, giving a polynomial in the size of G.

Stages 1 to 4 along with stages 6 and 8 are easily implemented in polynomial time on any reasonable deterministic model. Stage 7 involves a scan of the input and a test of whether certain nodes are marked and an update of node values, which also is easily implemented in polynomial time. Hence M is a polynomial time algorithm for SPATH.

Part b. Show that *LPATH* is NP-complete.

Proof. First, we need to show that $LPATH \in P$, which is easy as certificate is the path. Next, to show that all problems in NP are polynomial time reducible to LPATH, we show $3SAT \leq_p LPATH$. We show how to construct an integer k and an undirected graph G with two nodes, s and t, where a simple path of length at least k exists between s and t, iff ϕ is satisfiable. Let ϕ be any Boolean formula in 3CNF containing m clauses:

$$\phi = (a_1 \vee b_1 \vee c_1) \wedge (a_2 \vee b_2 \vee c_2) \wedge \cdots \wedge (a_m \vee b_m \vee c_m).$$

where each a, b and c is a literal x_i or $\overline{x_i}$, and $x_1, x_2 \cdots x_n$ are the n variables of ϕ . Now we show how to convert ϕ to G. The graph contains nodes for literals, and each node's label is the same as the literal that it represents.

- 1. Repeat for each literal $l = a_1, b_1, c_1$ of the first clause C_1 in ϕ .
- 2. Add a node for literal l.
- 3. Repeat for each subsequent clause C_2, C_3, \dots, C_m :
- 4. Add nodes for the three literal a_i , b_i and c_i in clause C_i .
- 5. If i = 2, then add an edge between node l and any non-conflicting nodes added in step 3.
- 6. If i > 2, then add an edge between a_{i-1} and any node added in step 3 that does not conlict with a_{i-1} and all the nodes reachable from a_{i-1} . Repeat this step for nodes b_{i-1} and c_{i-1} .
- 7. Add node s. Add edges between node s and nodes a_1 , b_1 and c_1 .
- 8. Add node t. Add edges between node t and all nodes for literals a_m , b_m and c_m .
- 9. k = m + 1.

Now we analyze this algorithm to show that it runs in polynomial time. Obviously, stages 7, 8 and 9 are executed only once. Stage 2 runs 3 times. Stages 4, 5 and 6 execute at most m times. Thus, the total number of stages used is at most 1+1+1+3+m+m+m, giving a polynomial in the size of ϕ . All stages are easily implemented in polynomial time on any reasonable deterministic model.

Now we demonstrate why this construction works. We show that graph G has a simple path of length at least k from s to t, iff ϕ is satisfiable.

Suppose that ϕ has a satisfying assignment. In that satisfying assignment, at least one literal is true in every clause. In graph G, there is an edge between node s and nodes of literals a_1 , b_1 and c_1 of first cluase. One of these literal is true, say c_1 is true. Node c_1 would have an edge with at least one of the nodes a_2 , b_2 and c_2 of second clause as one of these literals must be true, which means that they cannot all be $\overline{c_1}$. Therefore, there is at least one literal among a_2 , b_2 and c_2 that does not conlict with c_1 , say b_2 , and node c_1 has an edge to node b_2 . Similarly, node b_2

would have an edge to at least one of the nodes for literals of next clause and so on. Nodes for literals a_m , b_m and c_m have an edge to node t, so there is a path of length at least m+1 in G from s to t.

Suppose that G has a path of length at least k from s to t. No two nodes on this path conflict each other. Therefore, intermediate nodes n_1, n_2, \dots, n_{k-1} on the path $(s, n_1, n_2, \dots, n_{k-1}, t)$ give a satisfying assignment for ϕ .

Graph G with k=4 for $\phi=(x_1\vee x_1\vee x_2)\ \wedge (\overline{x_1}\vee \overline{x_2}\vee \overline{x_2})\ \wedge (\overline{x_1}\vee x_2\vee x_2).$