Contents

1	Some notes from which to expand this document						
2	Definitions 2.1 DiPA						
3	Coupling proofs of privacy						
4	Shift-coupling proofs of privacy 4.1 Connecting constraints	6 6					
5	The search for a tight proof as an optimization problem 5.1 Leading upto the abstract formulation						
6	Searching for a tight proof						
7	Global Optimization 7.1 An abstract description of the global optimization problem						
8	Are there tighter bounds than the tightest shift-coupling bound? 8.1 S^L is tight when there is an L -cycle						
A	LemmataA.1 Properties of f_{ε} and F_{ε} A.2 For the proof of Theorem 1						
1	Some notes from which to expand this document						
	 An overview of coupling proofs of privacy A tight shift-coupling proof of privacy (segment free) (a) What are the connecting constraints, and why are they there? (b) Proofs have to depend on Δ! (c) Proofs have to depend on sequences of segments! Simplifying the problem above in various ways: (a) Separability and the introduction of segments (b) Only inter-segment transitions matter!						
	(b) Solving the easier version, where proofs don't depend on Δ .						

(c) Showing that they are bounded within n of each other.

 \exists finite DP bound \iff hard system admits a feasible solution

2 Definitions

2.1 DiPA

Insert definition for DiPA here.

2.2 Probability

Definition 2.1. The probability $Pr(\rho|X)$ of a path $\rho = q_0 \to q_1 \to \cdots \to q_m$ given an input $X = \langle a_1, \ldots, a_m \rangle$ is defined recursively as the probability that all transitions in ρ are traversed in sequence given the input X starting at state q_0 .

Definition 2.2. Let A be a DiPA, and $s \in seg(A)$ be a segment. The **privacy loss** loss(s) of a segment $s \in seg(A)$ is defined as

$$loss(s) = \sup_{\rho \in segF(s)} \sup_{X' \sim X} \left(\frac{Pr(\rho|X)}{P(\rho|X')} \right)$$

where X and X' vary over all pairs of neighbouring datasets.

Definition 2.3. Let $f_{\varepsilon}(x)$ be the probability density function of a random variable X with $X \sim Lap(0, 1/\varepsilon)$.

$$f_{\varepsilon}(x) = \frac{\varepsilon}{2} \exp(-\varepsilon |x|)$$

Definition 2.4. Let $F_{\varepsilon}(x)$ be the cumulative distribution function of a random variable X with $X \sim Lap(0, 1/\varepsilon)$.

$$F_{\varepsilon}(x) = P(X \le x) = \begin{cases} \frac{1}{2} \exp(\varepsilon x) & x < 0\\ 1 - \frac{1}{2} \exp(-\varepsilon x) & x \ge 0 \end{cases}$$

3 Coupling proofs of privacy

A coupling proof of privacy

4 Shift-coupling proofs of privacy

Consider a path $\rho = q_0 \to q_1 \to \cdots \to q_m$. Consider inputs $X\langle 1 \rangle = \langle a_1 \langle 1 \rangle, \ldots, a_m \langle 1 \rangle \rangle$ and $X\langle 2 \rangle = \langle a_1 \langle 2 \rangle, \ldots, a_m \langle 2 \rangle \rangle$ such that $X\langle 1 \rangle \sim X\langle 2 \rangle$. We wish to show that there exists $\varepsilon \in (0, \infty)$ such that

$$\Pr\left[\rho|X\langle 1\rangle\right] \le \exp(\varepsilon) \cdot \Pr\left[\rho|X\langle 2\rangle\right]$$

TODO: Write all of this later after consulting with Sky! ALSO, distinguish between path equivalence and output equivalence.

Definition 4.1. Let $X = \langle a_1, \dots, a_m \rangle$ be an input, and $\rho = q_0 \to q_1 \to \dots \to q_m$ be a path taken by DiPA $\mathcal A$ on X. Define $\tilde{a_i}$ to be the value of insample on the ith transition in ρ on input X.

• The above is true if and only if $path_A(X)\Psi_0^{(\varepsilon,0)}path_A(X')$, where

$$\Psi_{\rho} = \{ (\rho_1, \rho_2) \in P \times P : \rho_1 = \rho \implies \rho_2 = \rho \}$$

Shift-couplings are a technique to show that $path_A(X)\Psi_{\rho}^{(\varepsilon,0)}path_A(X')$ by constructing the couplings

$$\tilde{a}_i\langle 1\rangle + \gamma_i(=)^{\#(\varepsilon_i,0)}\tilde{a}_i\langle 2\rangle \qquad \forall i \in \{0,\ldots,m-1\}$$

and showing that

$$(\tilde{a}\langle 1\rangle + \gamma = \tilde{a}\langle 2\rangle) \implies path_A(X\langle 1\rangle)\Psi_\rho path_A(X\langle 2\rangle)$$

thus showing that $path_A(X)\Psi_{\rho}^{(\varepsilon,0)}path_A(X')$ for

$$\varepsilon = \sum_{i=0}^{m-1} \varepsilon_i$$

- A discussion that ends in choosing γ shifts for each segment.
- Maybe: A discussion of the cost of each shift.

4.1 Connecting constraints

Definition 4.2. Given a fixed path, we say that an assignment of shifts $\{\gamma_i\}$ is valid if

$$(\tilde{a}\langle 1\rangle + \gamma = \tilde{a}\langle 2\rangle) \implies path_A(X\langle 1\rangle)\Psi_\rho path_A(X\langle 2\rangle)$$

Definition 4.3. Let $\rho = q_0 \to q_1 \to \cdots \to q_m$ be a path, and let $i \in \{1, \dots, m\}$. Define at(i) to be the largest index a(i) < i such that $\rho[a(i)] \to \rho[a(i) + 1]$ is an assignment transition.

Definition 4.4. Let $\rho = q_0 \to q_1 \to \cdots \to q_m$ be a path. Define t_i to be the transition $q_i \to q_{i+1}$.

Definition 4.5. Let $X = \langle a_1, \ldots, a_m \rangle$ be an input, and let $\rho = q_0 \to q_1 \to \cdots \to q_m$ be a path. Define X[i] to be the value of a_i .

Note that such an index must exist due to the initialization condition on DiPA.

Proposition 4.1. Given $\rho = q_0 \to q_1 \to \cdots \to q_m$, an assignment of shifts $\{\gamma_i\}$ is valid if and only if it satisfies the following constraints for all $i \in \{0, \dots, m-1\}$:

$$\gamma_i \leq \gamma_{at(i)}$$
 if t_i has guard $<$
 $\gamma_i \geq \gamma_{at(i)}$ if t_i has guard \geq

Proof. (Constraints \implies valid) Suppose that the above constraints hold. We will show that $\{\gamma_i\}$ is valid using induction on $m = |\rho|$. Construct the couplings $\tilde{a}_i\langle 1 \rangle + \gamma_i(=)^{(\varepsilon_i,0)}\tilde{a}_i\langle 2 \rangle$ for all $i \in \{0,\ldots,m-1\}$.

For a base case, assume m=1. Then ρ consists of an assignment transition t_0 with true guard (initialization condition). The constraints are trivially satisfied, and we have that $path_A(X\langle 1\rangle)\Psi_\rho^{(0,0)}path_A(X\langle 2\rangle)$.

Assume that the constraints hold for all paths of length m. Let $\rho = q_0 \to q_1 \to \cdots \to q_m \to q_{m+1}$. We will show that $\{\gamma_i\}$ is valid for ρ . First, by the validity of $\{\gamma_i\}_{i=0}^{m-1}$ for $\rho[0:m]$ by the inductive hypothesis, we have that

$$path_A(X\langle 1\rangle)\Psi_{\rho[0:m]}path_A(X\langle 2\rangle)$$

by the inductive hypothesis. Now, assume $path_A(X\langle 1\rangle) = \rho$. We have $path_A(X\langle 2\rangle)[0:m] = \rho[0:m]$. Consider the last transition t_m in ρ . Since $path_A(X\langle 1\rangle) = \rho$, we know that t_m is traversed by A on $X\langle 1\rangle$.

- If t_m has guard true, then we trivially have that $path_A(X\langle 2\rangle) = \rho$.
- If t_m has guard <, we have from the constraints that $\gamma_m \leq \gamma_{at(m)}$. The value of the state variable $x\langle 1 \rangle$ is

$$x\langle 1\rangle = \tilde{a}_{at(m)}\langle 1\rangle$$

and since t_m is traversed by A on $X\langle 1 \rangle$, we have

$$\tilde{a}_{m}\langle 1 \rangle < \tilde{a}_{at(m)}\langle 1 \rangle
\tilde{a}_{m}\langle 2 \rangle - \gamma_{m} < \tilde{a}_{at(m)}\langle 2 \rangle - \gamma_{at(m)}
\tilde{a}_{m}\langle 2 \rangle < \tilde{a}_{at(m)}\langle 2 \rangle - (\gamma_{at(m)} - \gamma_{m}) < \tilde{a}_{at(m)}\langle 2 \rangle$$

showing that $\tilde{a}_m\langle 2\rangle$ satisfies the guard of t_m . Thus, $path_A(X\langle 2\rangle) = \rho$.

• If t_m has guard \geq , a similar argument as above shows that $path_A(X\langle 2\rangle) = \rho$.

Thus, assuming that $a\langle 1 \rangle + \gamma = a\langle 2 \rangle$, we have shown that $path_A(X\langle 1 \rangle) = \rho \implies path_A(X\langle 2 \rangle) = \rho$, which shows $path_A(X\langle 1 \rangle)\Psi_\rho path_A(X\langle 2 \rangle)$, and so $\{\gamma_i\}$ is valid.

(Valid \implies constraints) Suppose that $\{\gamma_i\}$ is valid. Let $i \in \{0, \dots, m-1\}$. We will show that the constraints hold for i.

We will run the argument above in reverse. Again, we use induction on the length $m = |\rho|$. For a base case, assume m = 1, and so ρ consists of an assignment transition t_0 with true guard. The constraints are trivially satisfied, since there are none.

Assume that the constraints hold for all valid shift assignments on paths of length m, and let $\rho = q_0 \to q_1 \to \cdots \to q_m \to q_{m+1}$. Since $\{\gamma_i\}$ is valid for ρ , we have that $a\langle 1\rangle + \gamma = a\langle 2\rangle \implies path_A(X\langle 1\rangle)\Psi_\rho path_A(X\langle 2\rangle)$. Also, we have that $\{\gamma_i\}_{i=0}^{m-1}$ is valid for $\rho[0:m]$, and that constraints on transitions $t_i \in \rho[0:m]$ hold.

We will now show that the constraints on t_m hold by cases on the guard of t_m .

- If t_m has guard true, then there is no constraint on γ_m , and so the constraints hold.
- If t_m has guard \langle , the constraint to be shown is $\gamma_m \leq \gamma_{at(m)}$. Recall that we have $a\langle 1 \rangle + \gamma = a\langle 2 \rangle \Longrightarrow path_A(X\langle 1 \rangle)\Psi_\rho path_A(X\langle 2 \rangle)$, showing that t_m being traversed by A on $X\langle 1 \rangle$ leads t_m to be traversed by A on $X\langle 2 \rangle$. Thus, we have

$$\begin{split} \tilde{a}_{m}\langle 1 \rangle < \tilde{a}_{at(m)}\langle 1 \rangle &\implies \tilde{a}_{m}\langle 2 \rangle < \tilde{a}_{at(m)}\langle 2 \rangle \\ &\iff \tilde{a}_{m}\langle 1 \rangle + \gamma_{m} < \tilde{a}_{at(m)}\langle 1 \rangle + \gamma_{at(m)} \\ &\iff \tilde{a}_{m}\langle 1 \rangle < \tilde{a}_{at(m)}\langle 1 \rangle + (\gamma_{at(m)} - \gamma_{m}) \end{split}$$

which is true if and only if $\gamma_m \leq \gamma_{at(m)}$. Thus, the constraint holds.

• A symmetric argument shows that the constraint holds if t_m has guard \geq .

Thus, the given constraints on γ hold if and only if it is valid for ρ .

Theorem 1. A choice of valid $\{\gamma_i\}$ for each path ρ and pairs of inputs $X\langle 1\rangle \sim X\langle 2\rangle$ which satisfies

$$\gamma_i = 0$$
 if t_i outputs insample or insample,

shows that \mathcal{A} is $(\varepsilon,0)$ -differentially private, where $\varepsilon = \sup_{X\langle 1 \rangle \sim X\langle 2 \rangle} \sup_{\rho} cost(\{\gamma_i\})$. TODO: Define cost. Maybe prove a proposition before this about (path equivalence and output constraints) \iff output equivalence.

Proof. By definition, almost.

4.2 The cost of a shift-coupling

Proposition 4.2. Consider a transition $t_i = q_i \rightarrow q_{i+1}$ which is traversed independently by A on input $a_i\langle 1\rangle$ and $a_i\langle 2\rangle$. Let $\Delta_i = a_i\langle 2\rangle - a_i\langle 1\rangle$. Let q_i draw from the distribution $Lap(0,\varepsilon_i)$ to noise insample. The ε -cost of the shift-coupling

$$\tilde{a_i}\langle 1\rangle + \gamma_i(=)^{(c_i,0)}\tilde{a_i}\langle 2\rangle$$

is given by

$$c_i = |\Delta_i - \gamma_i|\varepsilon_i$$

Proof. TODO

4.3 A tight proof must regard input differences

Since the total validity constraints on $\{\gamma_i\}$ does not depend on $X\langle 1\rangle$ and $X\langle 2\rangle$, one might be tempted to produce a proof of privacy by choosing γ_i to be the same for all $X\langle 1\rangle$ and $X\langle 2\rangle$, given a path ρ . Although this is possible, this does not in general produce a tight proof of privacy.

Proposition 4.3.

4.4 A tight proof must regard paths

5 The search for a tight proof as an optimization problem

- 5.1 Leading up to the abstract formulation
- 5.2 The problem as a whole
- 5.3 Specifying the inner minimization problem

Here, we specify how $A_{s,\Delta}$ and $c_{s,\Delta}$ are defined. Let $s=s_1 \hookrightarrow \cdots \hookrightarrow s_n$ be a sequence of segments with total number of transitions m. Let $\Delta \in \{-1,0,1\}^m$ be a vector of input perturbations.

We define some notation as follows:

- Let t_i^i denote the jth transition in segment i, and ε_i^i denote the noise added to the input before that transition.
- Let Δ_j^i denote the entry of Δ that corresponds to the input perturbation for the jth transition in segment i.
- Let γ_j^i denote the entry of $\gamma \in [-1, 1]^m$ that corresponds to the coupling shift for the jth transition in segment i this is to be determined by the inner minimization problem.

Then, the minimization problem over γ is as follows:

$$\begin{aligned} & \min_{\boldsymbol{\gamma} \in [-1,1]^m} & \sum_{i=1}^n \sum_{j=1}^{|s_i|} |\gamma_j^i - \Delta_j^i| \varepsilon_i \\ & \text{subject to} & \gamma_k^i \leq \gamma_0^i & \text{if } t_k^i \text{ has guard} < \\ & \gamma_k^i \geq \gamma_0^i & \text{if } t_k^i \text{ has guard} \geq \\ & \gamma_0^i \leq \gamma_0^k & \text{if } s_k \hookrightarrow s_i \text{ and guard}(s_i) \text{ is } < \\ & \gamma_0^i \geq \gamma_0^k & \text{if } s_k \hookrightarrow s_i \text{ and guard}(s_i) \text{ is } \geq \\ & \gamma_k^i = 0 & \text{if } t_k^i \text{ outputs insample} \\ & \gamma_k^i = \Delta_k^i & \text{if } t_k^i \text{ belongs to a cycle} \end{aligned}$$

This can be rewritten as a linear program using standard techniques, producing a constraint matrix $A_{s,\Delta}$ and a cost vector $c_{s,\Delta}$.

5.4 A simplification

Let \mathcal{F} be a finite family of segment sequences. The global optimization problem is to find

$$\max_{s \in \mathcal{F}} \max_{\boldsymbol{\Delta} \in \{-1,0,1\}^{|s|}} \left(\min_{\boldsymbol{\gamma} \in [-1,1]^{|s|}} c_{s,\boldsymbol{\Delta}}^T \cdot \boldsymbol{\gamma} \quad \text{subject to} \quad A_{s,\boldsymbol{\Delta}} \cdot \boldsymbol{\gamma} \ge 0 \right)$$

6 Searching for a tight proof

7	Global	\mathbf{O}	ntin	niza	tion
•	Global	$\mathbf{\circ}$	POIL	1120	101011

7.1 An abstract description of the global optimization problem

7.2 Constraints for all coupling strategies on a segment

In this section, we will try to understand the constraints that all valid coupling strategies on a segment must satisfy. For the purpose of this section, we will assume that our DiPA consists of a single segment. This assumption will be relaxed in later sections.

Here are some assumptions that are made throughout this document.

- 1. The noise added to inputs on each state q_i is the same (ε) .
- 2. Since we know tight coupling strategies for segments with cycles, we are restricting our attention to segments with no cycles.
- 3. We will only consider one segment at a time.

Some notation:

- 1. Let N be the number of transitions in the segment.
- 2. The raw input received on the *i*th transition is denoted by a_i .
- 3. If we are considering two datasets $X\langle 1 \rangle$ and $X\langle 2 \rangle$, we will use $a_i\langle 1 \rangle$ to denote the value of a_i in the first dataset, and vice versa for $a_i\langle 2 \rangle$.
- 4. Similarly, we use $x_i\langle 1\rangle$ to denote the random variable representing the value of **insample** before the *i*th transition when A receives the input $X\langle 1\rangle$, and vice versa for $x_i\langle 2\rangle$.

A coupling strategy is a choice of values $\gamma_0, \ldots, \gamma_N$ such that $\gamma_i \in \Gamma$ for all i.

8 Are there tighter bounds than the tightest shift-coupling bound?

Last Updated: Wednesday, June 28th, 2023

The relevant definitions and lemmata for proofs in this section are in the appendix. It is also assumed, for now, that all transition outputs are in Γ .

8.1 S^L is tight when there is an L-cycle

Theorem 2. (S^L is tight for segments with L-cycles) Consider a segment $s \in seg(A)$ corresponding to the sequence of states $q_0 \to q_1 \to \cdots \to q_m$. If s contains an L-cycle, then the L-cost of the segment gives a tight upper bound on the privacy loss of the segment. That is,

$$\operatorname{loss}(s) = \exp\left(2\varepsilon_0 + \sum_{i>0: \operatorname{guard}(a_i) = \operatorname{insample} \geq \mathbf{x}} 2\varepsilon_i\right)$$

given that state q_i draws from the distribution $Lap(0,1/\varepsilon_i)$ to noise insample.

Proof. We will prove the result for when $\varepsilon_i = \varepsilon$ for all $i \geq 0$. The proof for the general case goes through in the same fashion. Let f, F be the probability density function and cumulative distribution function of a random variable X with $X \sim Lap(0, 1/\varepsilon)$ as defined in the appendix.

Since s has an L-cycle, there exists a sequence of paths ρ_i for $i \in \mathbb{N}$ each with l_i number of L-transitions such that $\lim_{i \to \infty} l_i = \infty$. Let m be the number of G-transitions in ρ_i . We will assume that this number is the same across all ρ_i .

For each ρ_i , construct the adjacent pair of inputs X_i, X_i' as follows. Let $X_i[j] = 0$ for all $j \in \{1, \dots, |\rho_i|\}$, where $|\rho_i|$ is the number of transitions in ρ . Define $X_i[j]$ as follows:

$$X_i[j] = \begin{cases} 1 & \text{if } \rho_i[j] \to \rho_i[j+1] \text{ is an assignment transition or has guard insample} \geq \mathbf{x} \\ -1 & \text{otherwise, in which case } \rho_i[j] \to \rho_i[j+1] \text{ has guard insample} < \mathbf{x} \end{cases}$$

¹Otherwise, s has a G-cycle, and A is not differentially private. The privacy loss through s is ∞ , which matches the L-cost.

Let $\tilde{a_j}$ be the random variable representing the value of **insample** before the jth transition in ρ on input X_i . Let $\tilde{b_j}$ be the random variable representing the value of **insample** before the jth transition in ρ on input X_i' . Further, let $\Gamma_L = \{j : \rho_i[j] \to \rho_i[j+1] \text{ has guard insample} \ge x\}$.

Notice that $\tilde{a_j} = \tilde{b_j} + 1$ for $j \in \Gamma_L$, and $\tilde{a_j} + 1 = \tilde{b_j}$ for $j \in \{0\} \cup \Gamma_G$. Since $\tilde{a_j}$ is distributed as $Lap(X_i[j], 1/\varepsilon)$, we can write its probability density function as $f(x - X_i[j])$, and its cumulative distribution function as $F(x - X_i[j])$. A similar statement holds for $\tilde{b_j}$.

We may now compute and compare $Pr(\rho_i|X_i')$ and $Pr(\rho_i|X_i)$ as follows.

$$\begin{split} \Pr(\rho_i|X_i') &= \int_{-\infty}^{\infty} \Pr(\tilde{b_0} = x) \prod_{j \in \Gamma_L} \Pr(\tilde{b_j} < x) \prod_{j \in \Gamma_G} \Pr(\tilde{b_j} \ge x) \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr(\tilde{b_0} = x) \prod_{j \in \Gamma_L} \Pr(\tilde{b_j} < x) \prod_{j \in \Gamma_G} \Pr(\tilde{b_j} \ge x) \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} f_{\varepsilon}(x - X_i[0]) \prod_{j \in \Gamma_L} F_{\varepsilon}(x - X_i[j]) \prod_{j \in \Gamma_G} (1 - F_{\varepsilon}(x - X_i[j])) \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} f(x - 1) F(x + 1)^{\ell_i} (1 - F(x - 1))^m \\ &= \int_{-\infty}^{\infty} f(x) F(x + 2)^{\ell_i} (1 - F(x))^m \\ &= \exp(2\varepsilon(m + 1)) \left(\int_{(-\infty, -2) \cup (2, \infty)} f(x) F(x)^{\ell_i} (1 - F(x))^m \, \mathrm{d}x + g(\ell_i) \int_{-2}^2 f(x) F(x + 2)^{\ell_i} (1 - F(x))^m \right) \end{split}$$

with $g(\ell_i) \to 1$ as $\ell_i \to \infty$. As we take $\ell_i \to \infty$, we see that

$$h(\ell_i) := \frac{\left(\int_{(-\infty, -2) \cup (2, \infty)} f(x) F(x)^{\ell_i} (1 - F(x))^m \, \mathrm{d}x + g(\ell_i) \int_{-2}^2 f(x) F(x + 2)^{\ell_i} (1 - F(x))^m\right)}{\Pr(\rho_i | X_i)} \to 1$$

and so as we take the supremum over ρ_i below, we get:

$$loss(s) \ge \sup_{\rho_i} \frac{\Pr(\rho_i | X_i')}{\Pr(\rho_i | X_i)} = \exp(2\varepsilon(m+1)) \sup_{\rho_i} \{h(l_i)\}$$
$$= \exp(2\varepsilon(m+1))$$

We know that S^L is tight, and gives the bound $\exp(2\varepsilon(m+1))$. Thus, we have shown that $\log(s) = \exp(2\varepsilon(m+1))$, as desired.

8.2 An alternative coupling strategy: S^J

Definition 8.1. S^J is a coupling strategy in which we do not couple the noised threshold, but couple the results of all other transitions with twice the cost. [TODO: Describe in more detail]

Theorem 3. Let $s = q_0 \to \cdots \to q_m$ be a segment with only L-transitions. If S^J is the least-cost coupling strategy on s, then it provides a tight bound on loss(s) given by

$$loss(s) = \sum_{i=1}^{m} 2\varepsilon_i$$

Proof. I have a proof for this, but I will add it into this document soon. [TODO]

Figure 1: A segment s with only L-transitions.

Figure 2:

Hypothesis 8.1. For segments which contain only L-transitions and for which the J-cost exceeds the L-cost, S^L is tight.

Proof. I think this is true from the graph above, but I need to prove it.

Note June 28 2023: I think this is not true for segments that contain both L-transitions and G-transitions.

A Lemmata

A.1 Properties of f_{ε} and F_{ε}

Lemma 4. For $x \leq 0$, we have

$$F_{\varepsilon}(x) = \exp(2\varepsilon)F_{\varepsilon}(x-2)$$

and equivalently for $x \leq -2$, we have

$$F_{\varepsilon}(x+2) = \exp(2\varepsilon)F_{\varepsilon}(x)$$

Lemma 5. For $x \ge 0$, we have

$$1 - F_{\varepsilon}(x) = \exp(2\varepsilon)(1 - F_{\varepsilon}(x+2))$$

Lemma 6. For $x \ge 0$, we have

$$f_{\varepsilon}(x) = \exp(2\varepsilon) f_{\varepsilon}(x+2)$$

A.2 For the proof of Theorem 1

Lemma 7.

$$\int_{-\infty}^{-2} f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^m dx = \exp(2\varepsilon\ell) \int_{-\infty}^{-2} f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^m dx$$

Proof. From Lemma 4, we have that

$$\int_{-\infty}^{-2} f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^{m} dx = \int_{-\infty}^{-2} f_{\varepsilon}(x) (\exp(2\varepsilon) F_{\varepsilon}(x))^{\ell} (1 - F_{\varepsilon}(x))^{m} dx$$
$$= \exp(2\varepsilon\ell) \int_{-\infty}^{-2} f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^{m} dx$$

Lemma 8.

$$\int_0^\infty f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^m dx = \exp(2\varepsilon m) \int_2^\infty f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^m dx$$

Proof. From Lemma 5 and 6, we have that

$$\int_0^\infty f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^m \, \mathrm{d}x = \int_0^\infty \exp(2\varepsilon) f_{\varepsilon}(x+2) F_{\varepsilon}(x+2)^{\ell} (\exp(2\varepsilon) (1 - F_{\varepsilon}(x+2)))^m \, \mathrm{d}x$$

$$= \exp(2\varepsilon m) \int_0^\infty f_{\varepsilon}(x+2) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x+2))^m \, \mathrm{d}x$$

$$= \exp(2\varepsilon (m+1)) \int_2^\infty f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^m \, \mathrm{d}x$$

Lemma 9. There exists a function $q: \mathbb{N} \to \mathbb{R}$ such that

$$\int_{-2}^{0} f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^{m} dx = g(\ell) \exp(2\varepsilon(m+1)) \int_{-2}^{2} f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^{m} dx$$

with $g(\ell) \to 1$ as $\ell \to \infty$.

Proof. I'm not sure yet how to prove this, although I strongly suspect that the (m+1) term comes from the fact that $f_{\varepsilon}(x)$ is the derivative of $-(1-F_{\varepsilon}(x))$, and it is taken to the *m*th power. Its integral should behave like a polynomial of degree m+1 evaluated at 2, which corresponds to $\exp(2\varepsilon(m+1))$.