STRUCTURES DE DONNÉES MIP — S4

Pr. K. Abbad & Pr. Ad. Ben Abbou & Pr. A. Zahi Département Informatique FSTF 2019-2020

Séance 3

- Fichiers
- Récursivité

Fichiers

- Ouverture
- Ecriture
- Lecture
- Fermeture

Fichier — Définition

- Un fichier est une entité qui permet de conserver l'information de manière permanente.
- Les supports destinés pour le stockage d'un fichier sont:
 - disque dur,
 - CD,
 - flash disque (USB),
 - etc.,
- Un fichier conserve une collection d'informations homogènes et les structures comme une suite:
 - d'octets fichiers binaires
 - de caractères. fichiers textes

Fichier — Représentation physique

- Un fichier est identifié par une chaîne de caractères:
 - Qui désigne le nom physique du fichier sur un support de stockage.
 - Qui est attribuée par l'utilisateur.
- Deux fichiers sont définis par défaut pour tous les programmes C:
 - le fichier stdin, qui est associé avec l'entrée standard (le clavier).
 - le fichier stdout qui est associé avec la sortie standard (l'écran).

Fichier — Exemples

 L'explorateur Windows affiche 4 fichiers caractérisés par leurs noms et leurs extensions.

Fichiers considérés comme une suite d'octets

Fichiers considérés comme une suite de caractères

Fichiers en C — *Principe*

- Les programmes sont situés dans la Mémoire Centrale (MC).
- Les fichiers physiques sont situés dans un support de stockage (SS).
- La MC et les SS n'ont pas la même vitesse de lecture/écriture.

Nécessité d'utiliser un intermédiaire pour réduire le temps d'accès à un support de stockage.

Mémoire tampon (buffer)

Fichiers en C — *Principe*

Fichiers en C — Descripteur de fichier

- C'est un pointeur de type FILE
 - ► FILE —Structure prédéfinie qui contient :
 - L'adresse de la mémoire tampon,
 - La position courante de la tête de lecture/écriture,
 - Le type d'accès au fichier,
 - L'état d'erreur,
 - etc.,
 - Assure la liaison entre le fichier physique et le programme.

Fichiers en C — Scénario d'utilisation

Déclarer un descripteur de fichier;
 FILE * fp;

 Établir la connexion entre le descripteur fp et le nom physique du fichier.

```
la fonction fopen;
```

- fp devient le représentant du fichier physique dans le programme.
- Lire/écrire à partir/dans le fichier.

```
les fonctions fscanf/fprintf;
```

Fermer le fichier.

la fonction fclose;

Fichiers en C — fopen

- Ouverture d'un fichier et liaison avec le fichier physique.
 - Syntaxe

```
Exemle
```

```
FILE * fp;
fp= fopen(non physique, mode ouverture);
```

- **fp** : Descripteur de fichier
- non_physique : Une chaîne de caractères qui contient le nom du fichier physique.
- mode_ouverture : Pointeur sur une chaîne de caractères qui indique le mode d'ouverture du fichier
- La fonction **fopen** retourne le descripteur de fichier si l'ouverture a réussi et **NULL** dans le cas échéant.

Fichiers en C — fopen

Le mode d'ouverture peut être l'une des chaînes suivantes :

Exemle

Mode	Position	Signification
"r"	début	fichier texte en lecture
"w"	début	fichier texte en écriture
"a"	fin	fichier texte en écriture
"rb"	début	fichier binaire en lecture
"wb"	début	fichier binaire en écriture
"ab"	fin	fichier texte en écriture
"r+"	début	fichier texte en lecture/ écriture
"w+"	début	fichier texte en lecture/ écriture
"a+"	fin	fichier texte en lecture/écriture
"r+b" ou "rb+"	début	fichier binaire en lecture/écriture
"w+b" ou "wb+"	début	fichier binaire en lecture/écriture
"a+b" ou "ab+"	fin	fichier binaire en lecture/ écriture

Fichiers en C — fclose

- Fermeture d'un fichier et rupture du lien entre le descripteur et le fichier physique.
 - Syntaxe

```
FILE * fp;

.
fclose(fp);
```

- La fonction **fclose** retourne la valeur 0 si le fichier a été fermé, et retourne la valeur EOF s'il y a eu une erreur.
- La fonction **fclose** doit être appelée dès qu'on termine l'exploitation du fichier.

Fichiers en C — fscanf

- Lecture formatée avec conversion de type.
 - Syntaxe

```
FILE* fp;

...
fscanf (fp, format,&var_1, &var_2,...);
```

- fp: descripteur du fichier à partir duquel se fait la lecture.
- format : chaîne de caractère qui contient des caractères constants et des spécificateurs de formats.
- var_i : une variable dans laquelle on récupère la valeur à lire.

Fichiers en C — fprintf

- Ecriture formatée avec conversion de type
 - Syntaxe

```
FILE* fp;
.
.
fprintf(fp, format, var_1, var_2,...);
```

- **f p:** descripteur du fichier sur lequel se fait l'écriture.
- format : chaîne de caractère qui contient des caractères constants et des spécificateurs de formats.
- var_i : une variable à écrire sur le fichier.

Fichiers en C — feof

- Lors de la fermeture d'un fichier ouvert en écriture, la fin du fichier est marquée par le symbole EOF.
- Lors de la lecture d'un fichier, la fonction feof permet de détecter la fin du fichier.
- Une valeur non nulle est retournée si l'on est à la fin du fichier, sinon, une valeur nulle est renvoyée.
 - Syntaxe

```
FILE* fp;
.
.
feof(fp);
```

- Un programme qui permet de :
 - Créer le fichier « temperature.dat »;
 - Stocker les températures de N villes (le nombre de ville N à saisir au clavier).

```
/* déclaration des variables */
    FILE *fp;
               /*descripteur de fichier*/
    int i,t;
    int N;
            /*nombre de villes*/
/* saisir le nombre de villes */
   printf("donner le nombre de ville:");
   scanf("%d",&N);
/* ouvrir le fichier en mode écriture */
     fp=fopen("temperature.dat","w");
/* remplir le fichier */
    if(fp!=NULL){
          for(i=0;i<N;i++){
                printf("entrer une temperature:");
                scanf("%d",&t);
                fprintf(pf,"%d\n",t);
/* fermer le fichier */
    fclose(fp);
```

• Un programme qui :

- Ouvre un fichier « temperature.dat » qui contient la température de N villes (N à saisir au clavier);
- Charge les températures dans un tableau ;
- Diminue les températures de 2 degré ;
- Enregistre les données du tableau dans le même fichier.

```
/* déclaration des variables */
    FILE *fp; /*descripteur de fichier*/
    int T[20];
    int i,cpt;
/* ouvrir le fichier en mode lecture */
     fp=fopen("temperature.dat","r");
/* charger le contenu du fichier dans le tableau T*/
      if(fp!=NULL){
          cpt=0;
          fscanf(fp, "%d", &t);
          while (!feof(fp)){
                T[cpt]=t;
                cpt++;
                fscanf(fp,"%d",&t);
 /* fermer le fichier */
        fclose(fp);
```

```
/* modification du tableau */
   for (i=0; i<cpt; i++) {
           T[i] -=2;
     }
/* ouvrir le fichier en mode écriture*/
   fp=fopen("temperature.dat","w");
/* charger le tableau dans le fichier */
     if (fp != NULL){
          for (i=0; i<cpt; i++)
              fprintf(fp, "%d\n", T[i]);
/* fermer le fichier */
      fclose(fp);
```

Récursivité

- Illustrations
- Problèmes récursifs
- Fonctions récursives

Récursivité — Illustrations

 La récursivité est un principe de pensée qui n'est pas propre à l'informatique.

l'art en fait usage pour créer des œuvres d'art.

Récursivité — Illustrations

 La récursivité est un principe de pensée qui n'est pas propre à l'informatique.

On la trouve dans les motifs des végétaux

Récursivité — Illustrations

 La récursivité est un principe de pensée qui n'est pas propre à l'informatique.

Pratiquée dans la vie courante pour résoudre les situations rencontrées.

La récursivité en informatique

Technique puissante et naturelle pour :

- Définir et décrire les problèmes à résoudre.
- Mettre en œuvre les fonctions qui implémentent les solutions de ces problèmes.
- Définir les structures qui représentent les données qui sont de nature récursives.

- La définition récursive d'un problème
 - trouve son formalise dans le raisonnement par récurrence.

- met en jeu deux parties:
 - des cas de base
 - définissent des sous problèmes triviaux.
 - une équation de récurrence

- Exemple 1 les suites récurrentes
 - le problème P(n) consiste à calculer l'expression suivante:

$$P(n) = \prod_{i=1}^{n} i$$

- la définition récursive de P(n) est :
 - Un cas de base :

$$P(0) = 1$$

- Une équation de récurrence :

$$P(n) = \prod_{i=1}^{n} i = p(n-1) * n$$

- Exemple 2 les suites récurrentes
 - le problème P(n) consiste à calculer l'expression suivante:

$$S(n) = \sum_{i=0}^{n} i$$

- ▶ la définition récursive de P(n) est :
 - Un cas de base :

$$S(0) = 0$$
,

- Une équation de récurrence :

$$S(n) = \sum_{i=0}^{n} i = \sum_{i=0}^{n-1} i + n = S(n-1) + n$$

- Exemple 3 *les suites récurrentes*
 - le problème P(n) consiste à calculer le nombre de Fibonacci par la suite définie par:

$$\begin{cases} U(n) = U(n-1) + U(n-2) & n >= 2 \\ U(0) = 1 & & \\ U(1) = 1 & & \end{cases}$$

- ▶ la définition récursive de P(n) est :
 - Deux cas de base :

$$U(0) = 1, U(1) = 1$$

Une équation de récurrence :

$$U(n) = U(n-1) + U(n-2)$$

- Exemple 4 le reste de la division entière
 - le problème P(n,d) consiste à calculer le reste de
 n par d en utilisant les soustractions successives.
 - ▶ la définition récursive de P(n, d) est :
 - Un cas de base : le reste de n par d est n si n<d.
 - Une équation de récurrence : le reste de n par d est exactement le reste de n-d par d.

- Exemple 5 l'affichage à l'envers d'une chaine de caractères
 - le problème P(n) consiste à afficher une chaine de caractères à l'envers, la chaine est saisie caractère par caractère jusqu'à la saisie du caractère \.'.
 - ▶ la définition récursive de P(n) est :
 - Un cas de base : la saisie du \'.' ne rien faire
 - Une équation de récurrence :saisir un caractère, afficher la chaine, ensuite afficher le caractère saisie.

- Une fonction récursive est une fonction qui:
 - s'appelle elle-même d'une manière directe ou indirecte.
 - Implémente une définition récursive de la manière suivante :
 - Un test d'arrêt qui exprime les cas de base.
 - Des appels récursifs qui expriment l'équation de récurrence.

Syntaxe de la 1ere forme

Syntaxe de la 2eme forme

Exemple 1 : calcul de la factorielle d'un entier

```
int fact(int n)
    {
      if (n = = 0) return 1;
      return n * fact(n-1);
    }
```

Exemple 1 : Exécution avec 4!

• Exemple 2 — calcul de la somme

```
float somme(int n)
      /* aucun prétraitement*/
      if (n == 0) return 0; /* les cas de base*/
      return n+somme(n-1); /* appel récursif*/
      /* aucun post-traitement*/
```

• Exemple 3 — *le reste de la division entière*

```
int reste(int n, int d)
      /* aucun prétraitement*/
      if (n < d) return n; /* les cas de base*/</pre>
      return reste(n-d,d); /* appel récursif*/
      /* aucun post-traitement*/
```

• Exemple 4— calcul du nombre de Fibonacci

```
float fibonacci (int n)
      /* aucun prétraitement*/
      /* les cas de base*/
      if (n == 0) return 1;
      if (n == 1) return 1;
      /* appel récursif*/
      return fibonacci (n-1)+ fibonacci (n-2); ;
      /* aucun post-traitement*/
```

Exemple 4 : Exécution avec U(4)

Exemple 5 — l'affichage d'une chaine à l'envers

```
void aff_envers()
{
      char ch1;
      /* prétraitement*/
      ch1=getchar();
      if (ch1!= '.'){
            aff_envers(); /* appel récursif*/
            printf("%c",ch1);
      }
}
```

Exemple 5 — l'affichage d'une chaine à l'envers (merci)

Récursivité — Exercice

Recherche dichotomique

- le problème P(T, d,f,valeur) consiste a diviser le tableau en deux parties et chercher la valeur dans les sous tableaux.
- ▶ la définition récursive de P(n) est :
 - Deux cas de base :
 - la valeur n'existe pas d>f
 - La valeur se trouve dans le milieu si T[mileu] == valeur
 - Équation de récurrence :

$$P(T,d,f,valeur) -> P(T,milieu+1,f,valeur) P(T,d,milieu-1,valeur)$$

Récursivité — Exercice

Recherche dichotomique

```
int rechercheDich(int *T, int d, int f, int val)
      /* prétraitement*/
       int m=(d+f)/2;
    /* les cas de base*/
      if (d >f) return -1;
      if (T[ m] == val) return m;
    /* le cas general*/
      if (T[ m]< val)</pre>
            return(rechercheDich(T,d,m-1,val);
      else
            return(rechercheDich(T,m+1,f,val);
```