Simulating Dithered Microlensing Astrometry for Roman Space Telescope

Evan Meade^{1,2,3,*}, Matthew T. Penny³

The University of Texas at Dallas, Department of Physics
 The University of Texas at Dallas, Department of Mathematical Sciences
 Louisiana State University, Department of Physics & Astronomy

What are alien planets like?

Exoplanets (Expectation)

Star Wars!!

Obtained from cimsec.org, copyright Lucasfilm

Obtained from comicvears.com, copyright Lucasfilm

Exoplanets (Reality)

Example transit event

Credit NASA

Radial velocity graph of 51 Pegasi

Credit exoplanets.org, obtained from the Planetary Society

Detecting Exoplanets

Exoplanet Parameter Space (With Method of Discovery) "Hot" "Cold" Transit "Large" Microlensing Radial Velocity "Small" Transit Microlensing **Kepler** Roman

NASA Exoplanet Census

- Representative sample of all exoplanets
- Can reveal more about planet formation
- 2 stages
 - Kepler "hot" planets
 - Roman "cold" planets

What is Microlensing?

Pros

- Works on distant exoplanets
- Sensitive to small exoplanets

Cons

- One-time events
- Requires stellar separation to mass

Roman Space Telescope (aka. WFIRST)

NASA's flagship astrophysics mission

(2010 Decadal Survey)

Expected launch ~ 2026

2.4 m main mirror

Image from NASA

Wide Field Instrument

- Infrared band
- Similar resolution to Hubble, but covering a field x100 as large!
 - Undersampling

Image from <u>NASA</u>

The Undersampling Trade-Off

Undersampling (top images) vs. regular sampling (bottom images)

Maximizes area, which increases exoplanet detection rates

Drawbacks:

- Lower resolution makes stellar separation harder
- Systematic errors in time domain make photometry more difficult

Images provided courtesy of Matthew Penny

How good will Roman be at detecting exoplanet microlensing events?

GULLS Codebase

Developed by Penny, et al. (2013)

Simulates time-series microlensing data

Precisely models point spread functions (PSFs)

Generates singular images

Basic Improvements

- Poisson sampling of star lists
- Bug fixes

* Images on **sqrt zscale** to show all faint stars

GULLS Dithering

Added support for custom dithering configurations

- Translational
- Rotational

^{*} Images on min/max scale for clarity

GULLS Proper Motion

Added support for motion of stars over time

In total, dither courses specify:

- d timestamp (days)
- x, y translation offset (pixels)
- θ rotation (centered, degrees)

Proper Motion Demo

Frames at 0, 100, 200, 300 years

* Images on linear min/max scale for clarity

Drizzle

<u>Linear combination</u> of aligned dithered images for high-resolution imaging

Potential for **noise correlation** among adjacent pixels

State-of-the-art implementation in DrizzlePac

DrizzlePac

- Python package from STScl
- Tailored almost exclusively for Hubble; difficult to implement
 - Work in progress

Ground-Based
Difference
Imaging (CFHT
Microlensing
Survey)

CFHT images provided courtesy of Matthew Penny

Roman
Difference
Imaging
(GULLS/ISIS)

Difference Imaging Analysis

<u>ISIS</u> - Alard & Lupton 1998, ApJ, v. 503, p. 325

Generates light curves from **image subtraction**

Very flexible, relatively simple implementation

<u>Systematic error</u> arises from undersampling and physical design

With Gaussian Convolution

Photometric Variation vs. Magnitude for GULLS/ISIS 10¹ 10⁰ ₩ 10⁻¹ 10^{-2} 10^{-3} 10^{-4} 12 14 16 18 20 22 24 Magnitude (W149)

Naive Implementation

Conclusions

Roman is poised to play a crucial role in the **NASA exoplanet census**

GULLS is a powerful simulation tool which can be applied to Roman imaging

Improvements made are more reflective of <u>real world observing conditions</u>

Drizzle is a **promising technique in theory**, but difficult to implement in practice

ISIS is relatively simple to implement, and has **promising preliminary photometry**

Acknowledgements

Special thanks to my mentor, **Dr. Matthew Penny** (LSU)

Ali Crisp, my go-to grad student The LSU Interferometry Group

REU Directors, Dr. Robert Hynes (LSU) and Dr. Rongying Jin (LSU) The LSU Department of Physics & Astronomy
The National Science Foundation (*Grant NSF PHY-1852356*)

My home institution mentor, Dr. Lindsay King (UTD)
The University of Texas at Dallas Department of Physics

Questions?

Fruchter and Hook (2002), obtained from STScl

Incredibly clear direct image of **2M1207b**

Credit ESO, obtained from NASA

Roman Specifications (Cycle 7 Design)

 Table 1

 Adopted Parameters of Each Mission Design

	IDR	M	DRN	/ 11	DRI	M2	AF	ΓA	WFIRST	Cycle 7
Reference	Green et al. (2011)		Green et al. (2012)		Green et al. (2012)		Spergel et al. (2015)		a,b	
Mirror diameter (m)	1.3		1.3		1.1		2.36		2.36	
Obscured fraction (area, %)	0		0		0		13.9		13.9	
Detectors	7 × 4 H2RG-10		9 × 4 H2RG-10		7 × 2 H4RG-10		6×3 H4RG-10		6×3 H4RG-10	
Plate scale ("/pix)	0.18		0.18		0.18		0.11		0.11	
Field of view (deg ²)	0.294		0.377		0.587		0.282		0.282	
Fields	7		7		6		10		7	
Survey area (deg ²)	2.06		2.64		3.52		2.82		1.97	
Avg. slew and settle time (s)	38	3	38 38		3	38		83.1		
Orbit	L2		L2		L2		Geosynchronous		L2	
Total survey length (day)	432		432		266		411 ^c		432	
Season length (day)	72		72		72		72		72	
Seasons	6		6		3.7		6		6	
Baseline mission duration (yr)	5		5		3		6		5	
Primary bandpass (μm)	1.0-2.0 (W149)		1.0-2.4 (W169)		1.0-2.4 (W169)		0.93-2.00 (W149)		0.93-2.00 (W149)	
Secondary bandpass (μ m)	0.74-1.0 (Z087)		0.74-1.0 (Z087)		0.74-1.0 (Z087)		0.76-0.98 (Z087)		0.76-0.98 (Z087)	
	W149	Z087	W169	Z087	W169	Z087	W149	Z087	W149	Z087
Zeropoint ^d (mag)	26.315	25.001	26.636	24.922	25.990	24.367	27.554	26.163	27.615	26.387
Exposure time (s)	88	116	85	290	112	412	52	290	46.8	286
Cadence	14.98 min	11.89 hr	14.35 min	12.0 hr	15.0 min	12.0 hr	15.0 min	12.0 hr	15.16 min	12.0 hr
Bias (counts/pix)	380	380	1000	1000	1000	1000	1000	1000	1000	1000
Readout noise ^e (counts/pix)	9.1	9.1	7.6	4.2	9.1	9.1	8.0	8.0	12.12	12.12
Thermal + dark ^f (counts/pix/s)	0.36	0.36	0.76	0.76	0.76	0.76	1.30	0.05	1.072	0.130
Sky background ^g (mag/arcsec ²)	21.48	21.54	21.53	21.48	21.52	21.50	21.47	21.50	21.48	21.55
Sky background (counts/pix/s)	2.78	0.79	3.57	0.77	1.99	0.45	3.28	0.89	3.43	1.04
Error floor (mmag)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Saturation ^h (10 ³ counts/pix)	65.5	65.5	80	80	80	80	679	2037	679	679

Roman Specifications (Cycle 7 Design)

 Table 2

 The WFIRST Microlensing Survey at a Glance

The William Wherefolding Survey at a State					
Area	$1.96 \deg^2$				
Baseline	4.5 yr				
Seasons	6×72 days				
W149 Exposures	\sim 41,000 per field				
W149 Cadence	15 min				
W149 Saturation	\sim 14.8				
Phot. Precision	$0.01 \text{ mag } @ W149 \sim 21.15$				
Z087 Exposures	\sim 860 per field				
Z087 Saturation	~13.9				
Z087 Cadence	\lesssim 12 hr				
Stars ($W149 < 15$)	$\sim 0.3 \times 10^6$				
Stars ($W149 < 17$)	$\sim 1.4 \times 10^6$				
Stars ($W149 < 19$)	$\sim 5.8 \times 10^6$				
Stars ($W149 < 21$)	$\sim 38 \times 10^6$				
Stars ($W149 < 23$)	$\sim 110 \times 10^{6}$				
Stars ($W149 < 25$)	$\sim 240 \times 10^6$				
Microlensing events $ u_0 < 1$	\sim 27,000				
Microlensing events $ u_0 < 3$	~54,000				
Planet detections $(0.1-10^4 M_{\oplus})$	~ 1400				
Planet detections ($<3 M_{\oplus}$)	\sim 200				

Penny et al. (2019) 25