Задача А. Рюкзак

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

У нас есть несколько предметов и рюкзак, который выдерживает вес C. Предмет с номером i имеет вес x_i . Определите число различных наборов предметов, которые можно унести в рюкзаке. Два набора считаются различными, если существует хотя бы один предмет, который включён в один из наборов и не включён в другой.

Формат входных данных

В первой строке ввода записано целое число n — количество предметов ($1\leqslant n\leqslant 30$). Во второй строке записано n целых чисел x_i ($1\leqslant x_i\leqslant 10^9$). В третье строке записано целое число C — вместимость рюкзака ($0\leqslant C\leqslant 10^9$).

Формат выходных данных

Выведите единственное целое число — искомое число способов.

стандартный ввод	стандартный вывод
1	2
1	
1	
1	2
1	
2	
2	1
2 2	
1	
2	4
1 1	
2	
2	3
1 1	
1	
30	1073741824
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1	
30	

Задача В. Равные подпоследовательности

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам задана строка четной длины. Вы хотите покрасить все ее буквы в красный или синий цвет так, чтобы подпоследовательность из красных букв была равна подпоследовательности из синих. Посчитайте число способов, которыми это может быть сделано.

Формально, вам задано строка s. Пусть |s|=2n. Вы можете полагать, что каждый символ строки s это 'o' или 'x'. Найдите число пар последовательностей (X,Y), которые удовлетворяют следующим критериям:

- $X = (x_0, ..., x_{n-1})$, что $x_0 < x_1 < ... < x_{n-1}$.
- $Y = (y_0, ..., y_{n-1})$, что $y_0 < y_1 < ... < y_{n-1}$.
- $\{x_0,...,x_{n-1},y_0,...,y_{n-1}\}=\{0,1,...,n-1\}$. Это значит, что каждое значение от 0 до 2n-1 присутствует или в X, или в Y.
- Для всех k таких, что $0 \le k < n$, выполняется $s[x_k] = s[y_k]$.

Формат входных данных

Входные данные состоят из строки s четной длины $(2 \leqslant |s| \leqslant 40)$. Строка s состоит из символов '0' и 'x'.

Формат выходных данных

Выведите число способов покрасить буквы в два цвета, чтобы подпоследовательности синего цвета и красного были равны.

стандартный ввод	стандартный вывод
oxox	2
000xxx	0
xoxxox	4
хо	0
0000x00x	8
ooxxoxox	8

Задача С. Отсортированность

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 6 секунд Ограничение по памяти: 256 мегабайт

Все любят некоторые последовательности больше, чем другие. У каждого человека есть своя функция, которая определяет насколько хороша последовательность. Например, для кого-то это просто количество отрицательных чисел в последовательности.

Любимая последовательность Жезальба — отсортированная. Когда он видит последовательность S, он сразу же вычисляет количество пар индексов i < j, таких что S[i] < S[j]. Он называет это число «отсортированностью» S.

Сегодня утром Жезальб вошел в класс и увидел на доске перестановку чисел от 1 до n. Он быстро вычислил ее отсортированность. Затем он ушел из класса и забыл перестановку, и запомнил лишь ее отсортированность.

Позже этим же днем Жезальб снова пришел в класс и увидел последовательность на доске. Последовательность была перестановкой чисел от 1 до n, но из нее удалили некоторые элементы.

Жезальб считает, эта последовательность могла получиться удалением некоторых элементов из перестановки, которую он видел утром.

Вам дана отсортированность изначальной перестановки и последовательность с удаленными элементами. Вычислите число способов восстановить элементы последовательности так, чтобы отсортированность получившейся перестановки равнялась исходной.

Формат входных данных

В первой строке содержатся два целых числа n и m ($1 \le n \le 2000, 0 \le m \le 10^9$) — количество элементов в исходной перестановке и ее отсортированность.

Во второй строке содержатся n целых чисел a_i ($0 \le a_i \le n$) — последовательность с удаленными элементами. Некоторые a_i могут равняться нулю, это значит, что элемент удален.

Все положительные a_i будут различны.

Количество элементов, равных 0, не превышает 14.

Формат выходных данных

Выведите единственное число — ответ на задачу.

стандартный ввод	стандартный вывод
5 5	2
4 0 0 2 0	
4 4	5
0 0 0 0	
3 2	1
1 3 2	
6 3	4
0 0 2 0 0 0	
2 87	0
2 0	
10 30	34
0 6 3 0 0 2 10 0 0 0	
23 100	53447326
0 13 0 0 12 0 0 0 2 0 0 10 5 0 0 0 0	
0 0 7 15 16 20	

Задача D. ЮграНефтеТранс

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Ханты-Мансийский автономный округ — Югра является важнейшим нефтяным регионом России. Добыча нефти составляет 267 млн. т. в год, её транспортировка осуществляется по трубопроводам, общая длина которых превышает длину экватора Земли. Система транспортировки нефти представляет собой совокупность n распределительных станций и m трубопроводов. Каждый трубопровод соединяет две различные станции. Между любыми двумя станциями проложено не более одного трубопровода. Эффективность работы станций существенно зависит от вязкости нефти. Поэтому компания «ЮграНефтеТранс», в ведении которой находится сеть трубопроводов, заказала инновационному исследовательскому предприятию разработку и изготовление новых сверхточных датчиков вязкости на основе самых современных технологий. Изготовление датчиков — процесс трудоёмкий и дорогостоящий, поэтому было решено изготовить k датчиков ($k \le 40$) и выбрать k различных станций, на которых датчики будут установлены. Необходимо осуществить выбор станций так, чтобы датчики контролировали все трубопроводы: для каждого трубопровода хотя бы один датчик должен быть установлен на станции, где начинается или заканчивается этот трубопровод. Напишите программу, которая проверяет, существует ли требуемое расположение датчиков, и в случае положительного ответа находит это расположение.

Формат входных данных

В первой строке входного файла записаны три натуральных числа — n, m и k ($k \le n \le 2000$, $1 \le m \le 10^5$, $1 \le k \le 40$). Далее следуют m строк, каждая из которых описывает один трубопровод. Трубопровод задаётся двумя целыми числами — порядковыми номерами станций, которые он соединяет. Станции пронумерованы от 1 до n. Гарантируется, что к любой станции подведён хотя бы один трубопровод и между любыми двумя станциями проложено не более одного трубопровода. Числа в каждой строке разделены пробелами.

Формат выходных данных

В первую строку выходного файла выведите слово «Yes», если требуемое расположение датчиков существует, в противном случае — слово «No». В случае положительного ответа выведите во вторую строку выходного файла k различных целых чисел — номера станций, на которых необходимо установить датчики. Номера можно выводить в любом порядке. Если существует несколько подходящих расположений датчиков, выведите любое из них. Разделяйте числа во второй строке пробелами.

Алгоритмы и структуры данных Лабораторная работа по экспоненциальным алгоритмам, 2021 год

стандартный ввод	стандартный вывод
2 1 2	Yes
1 2	1 2
3 3 1	No
1 2	
2 3	
3 1	
7 6 2	Yes
1 2	1 2
1 3	
1 4	
2 5	
2 6	
2 7	
5 5 2	Yes
1 2	1 4
1 3	
1 4	
1 5	
4 5	

Задача Е. Раскраска в три цвета

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Петя нарисовал на бумаге n кружков и соединил некоторые пары кружков линиями. После этого он раскрасил каждый кружок в один из трех цветов — красный, синий или зеленый.

Теперь Петя хочет изменить их раскраску. А именно — он хочет перекрасить каждый кружок в некоторый другой цвет так, чтобы никакие два кружка одного цвета не были соединены линией. При этом он хочет обязательно перекрасить каждый кружок, а перекрашивать кружок в тот же цвет, в который он был раскрашен исходно, не разрешается.

Помогите Пете решить, в какие цвета следует перекрасить кружки, чтобы выполнялось указанное условие.

Формат входных данных

Первая строка содержит два целых числа n и m — количество кружков и количество линий, которые нарисовал Петя, соответственно ($1 \le n \le 1000, 0 \le m \le 20000$).

Следующая строка содержит n символов из множества $\{`\mathtt{R}', `\mathtt{G}', `\mathtt{B}'\} - i$ -й из этих символов означает цвет, в который раскрашен i-й кружок $(`\mathtt{R}' - \mathtt{красный}, `\mathtt{G}' - \mathtt{зеленый}, `\mathtt{B}' - \mathtt{синий}).$

Следующие m строк содержат по два целых числа — пары кружков, соединенных отрезками.

Формат выходных данных

Выведите в выходной файл одну строку, состоящую из n символов из множества $\{'R', 'G', 'B'\}$ цвета кружков после перекраски. Если решений несколько, выведите любое.

Если решения не существует, выведите в выходной файл слово "Impossible".

стандартный ввод	стандартный вывод
4 5	GGBR
RRRG	
1 3	
1 4	
3 4	
2 4	
2 3	
4 5	Impossible
RGRR	
1 3	
1 4	
3 4	
2 4	
2 3	

Задача F. Раскраска графа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан неориентированный граф без петель и кратных рёбер. Ваша задача — покрасить рёбра графа в минимальное число цветов так, чтобы смежные по вершине рёбра имели различные цвета. Если минимальное число цветов больше трёх, раскраску искать не нужно.

Формат входных данных

В первой строке ввода заданы количество вершин n ($2 \le n \le 25$) и количество рёбер m ($1 \le m \le \frac{n(n-1)}{2}$). Следующие m строк содержат пары номеров вершин a_i, b_i ($1 \le a_i, b_i \le n$) — описания рёбер графа. Гарантируется, что в графе нет петель и кратных рёбер.

Формат выходных данных

Пусть минимальное число цветов равно c. Если c>3, выведите «NO». Иначе в первой строке выведите «YES», а во второй m чисел от 1 до c- цвета рёбер. Цвета рёбер следует выводить в том порядке, в котором рёбра даны во входных данных.

Если существует несколько возможных раскрасок с минимальным числом цветов, не большим трёх,— выведите одну любую.

стандартный ввод	стандартный вывод
4 5	YES
1 2	1 3 2 1 3
2 3	
3 1	
3 4	
1 4	
4 3	YES
1 2	1 2 3
3 1	
1 4	

Задача G. Покраска в три цвета

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан неориентированный граф G из n вершин и m ребер. Ваша задача — покрасить его вершины в три цвета таким образом, чтобы смежные вершины были покрашены в разные цвета. Гарантируется, что покрасить граф в три цвета возможно.

Формат входных данных

В первой строке заданы два целых числа n и m — число вершин и число ребер, соответственно $(1 \le n \le 50)$.

Следующие m строк содержат пары чисел v_i и u_i — ребра графа $(1 \le v_i, u_i \le n)$.

В графе нет петель и кратных ребер.

Формат выходных данных

Выведите n чисел от 1 до 3 — цвета вершин. Если покрасок несколько, выведите любую.

стандартный ввод	стандартный вывод
5 5	1 2 3 1 2
1 2	
2 3	
3 1	
4 5	
1 5	