DATA SCIENCE – UNIVARIATE ANALYSIS

Histogram, Skewness, Kurtosis

	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
Mean	67.303395	66.333163	66.370186	72.100558	62.278186	288655.405405
Median	67.0	65.0	66.0	71.0	62.0	265000.0
Mode	62.0	63.0	65.0	60.0	56.7	300000.0
Q1:25%	60.6	60.9	61.0	60.0	57.945	240000.0
Q2:50%	67.0	65.0	66.0	71.0	62.0	265000.0
Q3:75%	75.7	73.0	72.0	83.5	66.255	300000.0
Q4:100%	89.4	97.7	91.0	98.0	77.89	940000.0
IQR	15.1	12.1	11.0	23.5	8.31	60000.0
1.5Rule	22.65	18.15	16.5	35.25	12.465	90000.0
Lesser	37.95	42.75	44.5	24.75	45.48	150000.0
Greater	98.35	91.15	88.5	118.75	78.72	390000.0
Min	40.89	37.0	50.0	50.0	51.21	200000.0
Max	89.4	97.7	91.0	98.0	77.89	940000.0
kurtosis	-0.60751	0.450765	0.052143	-1.08858	-0.470723	18.544273
skew	-0.132649	0.163639	0.244917	0.282308	0.313576	3.569747
Q5:99%	87.0	91.86	83.86	97.0	76.1142	671200.0

UNDERSTANDING HISTOGRAM, SKEWNESS, AND KURTOSIS:-

HISTOGRAM:

A histogram visually represents the distribution of a dataset by grouping values into bins. It helps to see if the data is normally distributed, skewed, or has outliers.

SKEWNESS:

Skewness measures the asymmetry of data distribution. If skewness is near zero, the data is symmetric. Positive skewness indicates a longer right tail, while negative skewness means a longer left tail.

KURTOSIS:

Kurtosis measures the "tailedness" of the distribution. A high kurtosis indicates heavy tails (more outliers), whereas low kurtosis suggests a flatter distribution.

Kurtosis Analysis:

- 1. The kurtosis value for salary (18.544273) is significantly high, indicating a heavy-tailed distribution with extreme values (outliers).
- 2. The other variables (ssc_p, hsc_p, degree_p, etest_p, mba_p) have kurtosis values close to zero, meaning they follow a near-normal distribution.

- 3. The etest_p (-1.08858) and mba_p (-0.470723) have negative kurtosis, indicating a platykurtic (flat) distribution with fewer extreme values.
- 4. A comparison shows that salary has the most variation in data, likely due to differences in experience and job roles.

Skewness Analysis:

1. Salary (3.569747) has the highest skewness, indicating a highly right-skewed distribution, meaning most salaries are concentrated at the lower end, with a few extreme high values.

- 2. All other variables have skewness values close to zero, suggesting a nearly symmetrical distribution of academic percentages.
- 3. Etest_p (0.282308) and mba_p (0.313576) have a slight positive skew, indicating a minor right tail but still close to normal distribution.
- 4. Ssc_p (-0.132649) has a small negative skew, suggesting slightly more values on the higher end but not significantly.

Conclusion:

The salary column has the highest kurtosis and skewness, meaning it has many extreme values and is highly right-skewed. The academic scores have kurtosis near zero, showing a normal distribution, with slight skewness in some variables. Etest p and mba_p show mild positive skewness, while ssc p is slightly negatively skewed. The presence of high kurtosis in salary suggests that a few individuals earn significantly higher than the average, creating outliers. **Understanding these statistical** properties helps analyze distribution patterns and detect anomalies in the dataset.