Практическое занятие 1 РАСЧЕТ ОСНОВНЫХ ХАРАКТЕРИСТИК ШУМА И ВИБРАЦИИ

Постановка задачи. В практической деятельности необходимо иметь опыт применения простых соотношений для определения основных характеристик шума и вибрации, использования справочного материала и т. д. Данное практическое задание направлено на решение этой задачи.

Исходные данные. В качестве исходных данных используются справочные материалы и различные результаты измерений шума и вибрации.

Требуется найти расчетные уровни шума и вибрации, скорости распространения звука и другие физические величины.

 $3a\partial a$ ча 1. Заданы уровни шума источников $L_1, L_2, ..., L_n$, расположенных в одном помещении. Необходимо найти суммарный уровень шума L_{Σ} в этом помещении при различных источниках шума.

Решение.

1. Все источники имеют одинаковый уровень шума.

Одинаковые источники по уровню шума: $L_1 = L_2 = L_j = ..., = L_n$. Тогда

$$L_{\Sigma} = L_j + 10 \lg n.$$

Пример. $L_j = 80$ дБ, n = 5. Получаем $L_{\Sigma} = 80 + 10$ lg 5 = 87 дБ.

2. Источники имеют разные уровни шума. Тогда

$$L_{\Sigma} = 10 \lg \frac{1}{n} \sum_{i=1}^{n} 10^{0,1L_i}$$
.

$$\Pi$$
ример. L_1 = 90 дБ, L_2 = 94 дБ, L_3 = 93 дБ, L_4 = 97 дБ. Получим:
$$L_{\Sigma} = 10 \text{ lg } (10^{0,1\cdot90} + 10^{0,1\cdot94} + 10^{0,1\cdot93} + 10^{0,1\cdot97}) = 101,3 \text{ дБ}.$$

3. Для двух источников:

$$L_{\Sigma} = L_{\text{max}} + \Delta L$$

где ΔL – поправка, которая определяется по табл. 1.1.

 Π ример. $L_1 = 80$ дБ, $L_2 = 100$ дБ. Тогда

$$\Delta = 100 - 80 = 20 > 6$$
 дБ; $\Delta L = 0$;
$$L_{\Sigma} = L_{\max} = 100$$
 дБ.

Таблица 1.1

Разность складываемых уровней Δ, дБ	0	1	2	3	4	5	6	7	8	9	10	15	20
Поправка к более высокому уровню ΔL , дБ	3	2,5	2	1,8	1,5	1,2	1	0,8	0,6	0,5	0,4	0,2	0

 $3a\partial a 4a$ 2. Шум в помещении с одинаковым по уровню шума оборудованием составляет $L_0=90\,$ дБ. Часть оборудования отключили. Определить уровень шума в этом помещении после замены оборудования, L_k , если, например, отключена половина оборудования (k=0,5).

$$\label{eq:Pemerue} Pemerue. L_0 = L_j + 10 \lg n = 90 \ \text{дБ}, \ L_k = L_j + 10 \lg n \cdot k \ ,$$

$$L_k = L_j + 10 \lg n \cdot 0, 5 = L_j + 10 \lg n - 10 \lg 2 = L_0 - 10 \lg 2 = 87 \ \text{дБ}.$$

 $3a\partial a 4a$ 3. Первоначальный уровень шума в помещении $L_0=110$ дБ. Поставим новое оборудование, такое, что шум десяти новых машин (k=10) равен шуму одной старой. Определить уровень шума в помещении при новом оборудовании L_k .

Pешение. Обозначим шум машины старого образца L, а новой L_1 . Общее количество машин в помещении n:

$$L_0 = 110 \text{ дБ} = L + 10 \text{ lg } n, L = L_1 + 10 \text{ lg } k = L_1 + 10 \text{ lg } 10, L_k = L_1 + 10 \text{ lg } n = L - 10 \text{ lg } 10 + 10 \text{ lg } n = 110 - 10 \text{ lg } n - 10 \text{ lg } 10 + 10 \text{ lg } n = 100 \text{ дБ}.$$

 $\it 3ada4a$ 4. Задан уровень шума $\it L_1$, измеренный на расстоянии $\it R_1$ от источника. Необходимо найти уровень шума $\it L_2$ на расстоянии $\it R_2$ для того же

источника.
$$L_1 = 20 \lg \frac{X}{R_1}$$
; $L_2 = 20 \lg \frac{X}{R_2}$.

Пример, магнитопровод издает шум 80 дБ на расстоянии 1 м. Определить уровень шума L_2 на расстоянии 10 м.

$$P$$
ешение. $L_1=20 \lg X=80 \ дБ$, $\lg X=4$, $X=10000$, $L_2=20 \lg \frac{X}{10}=20 \lg 1000=60 \ дБ$.

Задача 5. По результатам измерений известны следующие величины:

звуковое давление P, амплитуда x, скорость \dot{x} , ускорение \ddot{x} перемещения. Найти уровень шума (вибрации), дБ.

Известно:

$$L = 20 \lg \frac{P}{P_0}, \ L_{\chi} = 20 \lg \frac{x}{x_0}, \ L_{\dot{\chi}} = 20 \lg \frac{\dot{x}}{\dot{x}_0}, \ L_{\ddot{\chi}} = 20 \lg \frac{\ddot{x}}{\ddot{x}_0},$$

где $P_0 = 2 \cdot 10^{-5}$ Па, $x_0 = 8 \cdot 10^{-12}$ м, $\dot{x}_0 = 5 \cdot 10^{-8}$ м · с⁻¹, $\ddot{x}_0 = 3 \cdot 10^{-4}$ м – пороговые значения амплитуды, скорости и ускорения соответственно.

Пример:
$$P = 2 \cdot 10^{-3}$$
 Па; $L = 20 \text{ lg } \frac{2 \cdot 10^{-3}}{2 \cdot 10^{-5}} = 20 \text{ lg } 100 = 40 \text{ дБ}.$

Решение: Амплитуда:
$$x = 8 \cdot 10^{-10}$$
 м; $L_{\chi} = 20 \text{ lg } \frac{8 \cdot 10^{-8}}{8 \cdot 10^{-12}} = 80 \text{ дБ}.$

Скорость:
$$\dot{x} = 5 \cdot 10^{-4} \text{ м} \cdot \text{c}^{-1}$$
; $L_{\dot{x}} = 20 \text{ lg } \frac{5 \cdot 10^{-6}}{5 \cdot 10^{-8}} = 20 \text{ lg } 100 = 40 \text{ дБ}.$

Ускорение:
$$\ddot{x} = 3 \cdot 10^{-2} \text{ м} \cdot \text{c}^{-2}$$
; $L_{\ddot{x}} = 20 \text{ lg } \frac{3 \cdot 10^{-2}}{3 \cdot 10^{-4}} = 20 \text{ lg } 100 = 40 \text{ дБ}.$

 $3a\partial a ua$ 6. Для некоторых типовых агрегатов (например, электродвигателей) известно примерное значение соотношения мощности W_p и звуковой мощности W излучаемого шума. Определить примерную мощность агрегата по известному уровню шума.

Звуковая мощность W = J S,

где
$$J = \frac{P^2}{\rho c}$$
 – интенсивность звука, Вт · м $^{-2}$, S – площадь излучателя, м 2 .

Пример, электродвигатель создает уровень шума 80 дБ. Определить примерную его мощность W_p .

Предположим, что *W/W* $_p$ = $\xi = 2 \cdot 10^{-7}$. Тогда

$$L = 20 \lg \frac{P}{P_0} = 80 \text{ дБ}, \ 20 \lg 10^{-4} \frac{P}{2 \cdot 10^{-5}} = 80 \text{ дБ}, \ P = 2 \cdot 10^{-1} \Pi a;$$

$$J = \frac{(2 \cdot 10^{-1})^2}{400} = 10^{-4} \frac{\Pi a \cdot M}{c},$$

или $J=10^{-4} \text{ Bt} \cdot \text{м}^{-2}$.

Таблица 1.2

Номер	Исходные	Вариант									
задачи	данные	1	2	3	4	5	6	7	8	9	10
1/3	L, д F	80	85	82	81	80	80	83	84	85	87
		100	100	102	98	95	105	97	101	105	98
1/1	L , д \mathbf{b}	80	82	81	80	83	87	88	95	93	91
	n	5	4	5	5	4	5	6	4	6	5
2	L, дБ	90	90	91	92	93	94	95	96	97	98
	k	0,5	0,4	0,3	0,5	0,4	0,6	0,4	0,3	0,6	0,6
3	L, дБ	110	110	108	109	107	106	106	104	103	102
	k	10	12	9	10	11	12	8	9	10	11
1,2	L_1 , дБ	90	90	90	90	90	90	90	90	90	90
	L_2 , дБ	94	92	91	92	93	94	96	91	98	95
	L_3 , дБ	93	91	93	85	86	87	88	89	84	70
	L_4 , дБ	97	96	95	87	88	89	91	93	88	85
4	<i>L</i> , дБ	80	80	85	84	83	82	81	79	78	77
	R_1 , M	1	1	1	2	1	1	1	1	3	1
	R ₂ , м	10	8	10	9	10	11	12	9	8	10

Решение: Предположим, что площадь излучаемой поверхности

$$S=\pi~d^2=3,14~\cdot~0,35^2=0,38~\mathrm{m}^2$$
, тогда $W=10^{-4}\cdot~0,38~\mathrm{Bt};$
$$W_p=\frac{10^{-4}\cdot0,38}{2\cdot10^{-7}}=0,19\cdot10^3~\mathrm{Bt}.$$

Варианты для расчета приведены в табл. 1.2.