EGZAMIN Z ANALIZY NUMERYCZNEJ (L)

8 lutego 2021 r.

Pierwszy termin

Pracuj samodzielnie!!!

Część 1: godz. 9.30–10.15, jedno zadanie.

Deklaracja wyboru: godz. $9.30-9.45 \Rightarrow SKOS$.

- 1. 13 punktów Podaj definicję krzywej Béziera P stopnia n o punktach kontrolnych $W_k \in \mathbb{E}^2$ $(0 \le k \le n)$. Uzasadnij, że dla każdego $t \in [0, 1], P(t)$ jest punktem na płaszczyźnie.
- 2. 13 punktów Dana jest postać Béziera wielomianu $p \in \Pi_n$, tj.

$$p(t) := \sum_{k=0}^{n} a_k B_k^n(t),$$

gdzie B_k^n oznacza k-ty wielomian Bernsteina stopnia $n \in \mathbb{N} \ (0 \le k \le n)$. Uzasadnij, że

$$p(t) = \sum_{k=0}^{n+1} a_k^{(1)} B_k^{n+1}(t) \qquad \text{dla} \qquad a_k^{(1)} := \frac{n-k+1}{n+1} a_k + \frac{k}{n+1} a_{k-1} \quad (0 \le k \le n+1),$$

gdzie przyjęto $a_{-1} = a_{n+1} := 0$. Jakie zastosowanie może mieć ta zależność?

- 3. 13 punktów Podaj definicję ciągu wielomianów ortogonalnych względem dyskretnego iloczynu skalarnego $(\cdot, \cdot)_N$. Jak efektywnie wyznaczać takie wielomiany? Jakie jest ich zastosowanie w aproksymacji średniokwadratowej na zbiorze dyskretnym?
- 4. $\boxed{\textbf{13 punktów}}$ Znajdź wielomiany P_0, P_1, P_2 ortogonalne względem iloczynu skalarnego

$$(f,g) := f(-3)g(-3) + f(-2)g(-2) + f(0)g(0) + f(2)g(2) + f(3)g(3).$$

Wykorzystując otrzymane wielomiany, wyznacz wielomian $w_2^* \in \Pi_2$ najlepiej dopasowany w sensie aproksymacji średniokwadratowej do danych

Powodzenia!

Pawer

Pamiętaj, że

- 1. rozwiązanie musi być spisane na szablonie udostępnionym w SKOSie;
- 2. plik PDF z rozwiązaniem musi mieć orientację pionową, być czytelny oraz zawierać następujące dane: imię i nazwisko, numer części i numer zadania;
- 3. sprawdzane mogą być **jedynie zadeklarowane zadania** spełniające **podane warunki** oraz **przesłane w ustalonym czasie** (patrz wyżej i SKOS).