ПРИСТАВКИ МЕЖДУНАРОДНОЙ СИСТЕМЫ ЕДИНИЦ (СИ)

Материал из Википедии — свободной энциклопедии

В физике и технике единицы измерения (единицы физических величин) используются для стандартизованного представления результатов измерений. Численное значение физической величины представляется как отношение измеренного значения к некоторому стандартному значению, которое и является единицей измерения. Число с указанием единицы измерения называется именованным.

Различают основные и производные единицы. Основные единицы устанавливаются для тех физических величин, которые выбраны в качестве основных. В Международной системе единиц (СИ) основными являются семь величин: длина, масса, время, электрический ток, термодинамическая температура, количество вещества и сила света. Соответственно, в СИ основными единицами являются единицы указанных величин.

Приставки СИ (десятичные приставки) это приставки перед названиями или обозначениями единиц измерения физических величин, применяемые для формирования кратных и дольных единиц, отличающихся от базовой в определённое целое, являющееся степенью числа 10, число раз. Десятичные приставки служат для сокращения количества нулей в численных значениях физических величин.

Международная система единиц (СИ) рекомендует использование стандартных десятичных приставок для обозначений кратных единиц. За исключением специально оговоренных случаев «Положение о единицах величин, допускаемых к применению в Российской Федерации» разрешает применение, как русских, так и международных обозначений единиц, но запрещает, однако, их одновременное использование.

Приставки для кратных единиц

Кратные единицы это единицы, которые в целое число раз превышают основную единицу измерения некоторой физической величины. Международная система единиц (СИ) рекомендует следующие десятичные приставки для обозначений кратных единиц:

Десятичный	Приставка		Обозначение		Пичисоп
множитель	русская	международная	русское	международное	Пример
10 ¹	дека	deca	да	da	дал - декалитр
10 ²	гекто	hecto	Γ	h	гПа - гектопаскаль
10 ³	кило	kilo	к	k	кН - килоньютон
10 ⁶	мега	Mega	M	M	МПа - мегапаскаль
10 ⁹	гига	Giga	Γ	G	ГГц - гигагерц
10 ¹²	тера	Tera	Т	Т	ТВ - теравольт
10 ¹⁵	пета	Peta	П	P	ПВт - петаватт
10 ¹⁸	экса	Exa	Э	E	ЭБ - эксабайт
10 ²¹	зетта	Zetta	3	Z	ЗэДж - зеттаджоуль
10 ²⁴	иотта	Yotta	И	Y	Иг - иоттаграмм

Приставки для дольных единиц

Дольные единицы, составляют определённую долю (часть) от установленной единицы измерения некоторой величины. Международная система единиц (СИ) рекомендует следующие приставки для обозначений дольных единиц:

Десятичный	Приставка		Обозначение		Примор
множитель	русская	международная	русское	международное	Пример
10^{-1}	деци	deci	Д	d	дм - дециметр
10^{-2}	санти	centi	c	c	см - сантиметр
10^{-3}	милли	milli	M	m	мН - миллиньютон
10 ⁻⁶	микро	micro	МК	μ	мкм - микрометр, микрон
10 ⁻⁹	нано	nano	Н	n	нм - нанометр
10^{-12}	пико	pico	П	p	пФ - пикофарад
10^{-15}	фемто	femto	ф	f	фс - фемтосекунда
10^{-18}	атто	atto	a	a	ас - аттосекунда
10 ⁻²¹	зепто	zepto	3	Z	зКл - зептокулон
10^{-24}	иокто	yocto	И	у	иг - иоктограмм

Правила использования приставок

Приставки следует писать слитно с наименованием единицы или, соответственно, с её обозначением.

Использование двух или более приставок подряд (напр., микромиллифарад) не разрешается.

Обозначения кратных и дольных единиц исходной единицы, возведённой в степень, образуют добавлением соответствующего показателя степени к обозначению кратной или дольной единицы исходной единицы, причём показатель означает возведение в степень кратной или дольной единицы (вместе с приставкой). Пример: $1 \text{ км}^2 = (10^3 \text{ м})^2 = 10^6 \text{ м}^2$ (а не 10^3 м^2). Наименования таких единиц образуют, присоединяя приставку к наименованию исходной единицы: квадратный километр (а не килоквадратный метр).

Если единица представляет собой произведение или отношение единиц, приставку, или её обозначение, присоединяют, как правило, к наименованию или обозначению первой единицы: кПа·с/м (килопаскаль-секунда на метр). Присоединять приставку ко второму множителю произведения или к знаменателю допускается лишь в обоснованных случаях.

Для образования кратных и дольных единиц массы вместо единицы массы килограмм используется дольная единица массы грамм и приставка присоединяется к слову грамм. Дольная единица массы грамм применяется без присоединения приставки.

Использовать приставки следует в соответствии со степенной формой представления чисел, например: $5320 \,\mathrm{m} = 5,32 \cdot 10^3 \,\mathrm{m} = 5,32 \,\mathrm{km}$. Приставку обычно выбирают таким образом, чтобы число, стоящее перед приставкой, находилось в диапазоне от 0,1 до 1000, однако во многих случаях допускается отход от этого правила; так, в машиностроении принято выражать все линейные размеры на чертежах в миллиметрах даже при размерах более $1000 \,\mathrm{mm}$.

Применение десятичных приставок к единицам измерения в двоичном счислении

В Положении о единицах величин, допускаемых к применению в Российской Федерации, установлено, что наименование и обозначение единицы количества информации "байт" (1 байт = 8 бит) применяются с приставками "Кило", "Мега", "Гига", которые соответствуют множителям 2^{10} , 2^{20} и 2^{30} (1 Кбайт = 1024 байт, 1 Мбайт = 1024

Кбайт, 1 Гбайт = 1024 Мбайт). Такие приставки построены по аналогии со стандартными десятичными приставками СИ и учитывают близость чисел 1024 и 1000.

Тем же Положением допускается применение и международного обозначения единицы информации с приставками "K" "M" "G" (KB, MB, GB, Kbyte, Mbyte, Gbyte).

В программировании и индустрии, связанной с компьютерами, те же приставки "кило", "мега", "гига", "тера" и т. д. в случае применения к величинам, кратным степеням двойки (напр., байт), могут означать как кратность 1000, так и 1024=2¹⁰. Какая именно система применяется, должно быть ясно из контекста (напр., применительно к объёму оперативной памяти используется кратность 1024, а применительно к объёму дисковой памяти введена производителями жёстких дисков — кратность 1000).

Соотношения выглядят следующим образом:

```
=2^{10}
              =1024^{1}
                               = 1024 байт
1 килобайт
              =1024^{2}
                        =2^{20}
1 мегабайт
                               = 1 048 576 байт
                        =2^{30}
              =1024^3
                               = 1 073 741 824 байт
1 гигабайт
              =1024^4
                        =2^{40}
1 терабайт
                               = 1 099 511 627 776 байт
              =1024^{5}
1 петабайт
                        =2^{50}
                               = 1 125 899 906 842 624 байт
              =1024^{6}
                        =2^{60}
                               = 1 152 921 504 606 846 976 байт
1 эксабайт
              =1024^{7}
                        =2^{70}
1 зеттабайт
                               = 1 180 591 620 717 411 303 424 байт
              =1024^{8}
                        =2^{80} = 1 208 925 819 614 629 174 706 176 байт
1 йоттабайт
```