CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

Vineet Verma

GL Bajaj Institute Of Technology and Management

Department - Information Technology (IT)

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

Data Acquisition & Understanding

Utilize the Kaggle dataset containing electrical parameters (Voltage, Current, etc.) under normal and various fault conditions.

Data Preprocessing

- Handle missing or inconsistent values
- Normalize/standardize voltage & current readings
- Encode fault types for classification
- Perform feature selection to focus on key electrical signatures

Model Design

- Implement supervised machine learning algorithms (e.g., Random Forest, SVM, or Neural Networks)
- Train models to classify:
 - Line-to-Ground Fault
 - Line-to-Line Fault
 - Three-Phase Fault
 - No Fault (Normal)

Cloud Integration – IBM Cloud Lite

- Use IBM Watson Studio for model development and training
- Deploy trained model as a REST API using IBM Cloud Functions or IBM Cloud Foundry
- Monitor performance and enable online predictions

Evaluation & Optimization

- Assess using accuracy, precision, recall, and F1-score
- Use confusion matrix for detailed fault classification analysis
- Fine-tune hyperparameters for optimal results

Outcome

A reliable ML system that can automatically detect and classify faults, enabling faster fault response and power grid stability.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the Power System Fault Detection and Classification model. Here's a suggested structure for this section:

- System requirements Windows 10 OS, 8GB RAM, Python 3.x
- Resources required on IBM Cloud platform to run AutoAl experiment Watson Studio, Cloud
 Object Storage, Watson Machine Learning

ALGORITHM & DEPLOYMENT

- Step 1 Allocate Cloud Object Storage and Watson Studio in IBM Cloud
- Step 2 Create a new project and enter project name, then click on create
- Step 3 Associate Watson Machine Learning service
- Step 4 Select AutoAl to automatically build models
- Step 5 Enter a name and create the AutoAl experiment
- Step 6 Upload the power system faults dataset from Kaggle to IBM Cloud and select it in AutoAl
- Step 7 Select the target column (Fault Type) to classify fault types based on voltage and current readings
- Step 8 Click on "Run Experiment"
- Step 9 Algorithm Selection:

AutoAl will automate model selection, hyperparameter tuning, and recommend the best classification model for power system faults

- Step 10 Save the model with the highest accuracy
- Step 11 Click "Promote to Deployment Space" to deploy the model
- Step 12 Evaluation and testing using new voltage/current data for fault prediction

RESULT

	Rank ↑	Name	Algorithm	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 9	 Batched Tree Ensemble Classifier (Random Forest Classifier) 	0.409	HPO-1 FE HPO-2 BATCH	00:01:41
	2	Pipeline 8	• Random Forest Classifier	0.409	HPO-1 FE HPO-2	00:01:38
	3	Pipeline 4	 Snap Logistic Regression 	0.393	HPO-1 FE HPO-2	00:00:26
	4	Pipeline 3	 Snap Logistic Regression 	0.393	HPO-1 FE	00:00:23

CONCLUSION

- The system successfully detects and classifies different types of power system faults using machine learning techniques, ensuring rapid and accurate fault identification.
- This approach enables electrical utilities to respond faster to faults, reduce downtime, and maintain grid stability and reliability.
- The results highlight the significance of integrating machine learning into power systems for realtime monitoring and intelligent fault management. By leveraging such data-driven solutions, power distribution networks can become more efficient, resilient, and future-ready.

FUTURE SCOPE

- Real-Time Integration: Connect with SCADA/smart meters for live fault detection.
- Fault Location Estimation: Extend model to pinpoint fault locations on the grid.
- Edge Deployment: Deploy lightweight models on substations for on-site analysis.
- Renewable Support: Adapt system for dynamic behavior from solar and wind sources.
- Scalability: Scale to large power grids using cloud-native and distributed systems.
- Automated Alerts: Use IBM Cloud to trigger real-time alerts and maintenance actions.

REFERENCES

- ChatGPT
- IBM cloud platform
- Research Paper "Power System Fault Detection and Classification Using Machine Learning" – <u>Link to paper</u>
- Project Link –

https://dataplatform.cloud.ibm.com/projects/846904b4-ea60-4dee-b506-01ca07e1daa7?context=cpdaas

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Vineet Verma

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 15, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/d6eaa6ad-9db4-4e7d-b350-7096784076fe

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Vineet Verma

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/35875a58-c9b9-453f-a492-fb740be1c3ee

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Vineet Verma

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 25 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

