

Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification

Wenhao Tang, Sheng Huang*, Xiaoxian Zhang, Fengtao Zhou, Yi Zhang, Bo Liu

Reporter: Wenhao Tang PID: 6302

Background: WSI Classification

[CLAM. Nature Biomedical Engineering 2021.]

 \approx 150000 \times 150000 pixels per image

 \approx 1000 images per Dataset

- Whole-slide Images (WSI) Classification
 - Many patches: 2k-20k
 - Feature-level: use **features** as input
 - Weakly Supervised: **patch** label is **not** available
 - Offline Feature Extractor
 - Redundancy
 - Noise fools the model
 - Low Efficiency (Transformer)

Whole-slide Image

Gigapixel resolution requires us to zoom in, zoom in, and zoom in again ...

TINY details determine the classification of the HUGE image!

Used Model: AB-MIL (ResNet in MIL)

Only for Salient Area

It seems Perfect?

Whole-slide Image

Attention

$$\hat{Y} = C(F)$$
, $F = \sum_{i=1}^{N} a_i z_i$ a_i Attention Score, z_i Patch Feature

Not Perfect

in Tumor Probabilities

Used Model: AB-MIL (ResNet in MIL)

Tumor Probabilities Algorithm: DTFD (SoTA in MIL)

Whole-slide Image

Attention

Tumor Probabilities

Attention Score ≠ Tumor Probabilities

It was believed infeasible to explicitly infer instance probabilities under AB-MIL frameworks [DSMIL. CVPR 2021 Oral]

Used Model: AB-MIL (ResNet in MIL) / Tumor Probabilities Algorithm: DTFD (SoTA in MIL)

Whole-slide Image

Attention

Tumor Probabilities

Attention After Softmax

Attention Score ≠ Tumor Probabilities ≠ Final Prediction

$$\hat{Y} = C(F), \qquad F = \sum_{i=1}^{N} a_i z_i, \qquad A = Softmax(A)$$

MHIM: More 'Useless', More Powerful

Intuitive: Only focus on salient area, but fail to detect complete tumor area, and fail to get better prediction

Counter- Focus on more "useless area", and intuitive: make more complete prediction

MHIM: More 'Useless', More Powerful

More Accurate Prediction

MHIM: More 'Useless', More Powerful

More Robust Prediction

PARIS

How to effectively mine hard instances without instance label?

Find Simple First, Mask it Then, Remaining is Hard.

PARIS

MHIM: More 'Useless' and More Powerful

Model	C16	TCGA	Para.	Time	Mem.
AB-MIL	94.00	93.17	657K	4.0s	2.4G
CLAM-MB	94.70	93.69	789K	4.3s	2.7G
DTFD-MIL	95.15	93.83	987K	5.2s	2.1G
MHIM-MIL	96.14	94.97	657K	4.3s	2.3G
TransMIL	93.51	92.51	2.67M	13.1s	10.6G
MHIM-MIL	96.49	94.87	2.67M	10.1s	5.5G

	C16	TCGA
DSMIL	94.57±0.40	93.71±1.82
MHIM	96.22±0.28 (+1.65)	$95.27 \pm 1.66 \ (+1.56)$
$MHIM^{\ddagger}$	96.49±0.65 (+1.92)	$95.53\pm1.74~(+1.82)$

Module	CAMELYON-16		TCGA	
	AB.	Trans.	AB.	Trans.
Baseline	94.00	93.51	93.17	92.51
+MHIM	95.86	96.06	94.14	93.75
+MHIM+Siam.	95.82	96.24	94.55	94.13
+MHIM+Siam.+Con.	96.14	96.49	94.97	94.87

Strategy	CAME	LYON-16	TCGA	
Strategy	AB.	Trans.	AB.	Trans.
Baseline	94.00	93.51	93.17	92.51
HAM	95.68	95.90	93.83	94.54
R-HAM	96.14	95.88	94.79	94.60
L-HAM	95.81	96.49	94.33	94.67
LR-HAM	95.92	96.33	94.97	94.87

Adapt to All Major Baselines (AB-MIL, TransMIL, DSMIL)

More Powerful and More Efficient (+1.7% AUC on TCGA, -48% Mem.)

MHIM: More 'Useless' and More Powerful

Model	C16	TCGA	Para.	Time	Mem.
AB-MIL	94.00	93.17	657K	4.0s	2.4G
CLAM-MB	94.70	93.69	789K	4.3s	2.7G
DTFD-MIL	95.15	93.83	987K	5.2s	2.1G
MHIM-MIL	96.14	94.97	657K	4.3s	2.3G
TransMIL	93.51	92.51	2.67M	13.1s	10.6G
MHIM-MIL	96.49	94.87	2.67M	10.1s	5.5 G

	C16	TCGA
DSMIL	94.57 ± 0.40	93.71±1.82
MHIM	96.22±0.28 (+1.65)	95.27±1.66 (+1.56)
MHIM^{\ddagger}	96.49±0.65 (+1.92)	$95.53\pm1.74~(+1.82)$

Can teacher really provide hard instances through Mask strategies?

Take Home Message

Background: WSI Classification

- Gigapixel Resolution, Low-Data Dataset
- Offline Feature Extractor
- Redundancy

Previous Work: Only for Salient Area

- Not Perfect in Tumor Probabilities
- Not Perfect in Final Prediction

MHIM: More 'Useless', More Powerful

- More Complete Prediction
- More Accurate Prediction
- More Robust Prediction

Welcome to MHIM: Look for More about

- Masked Strategy, Experiment, Visualization
- Dataset, Pre-process, Implement Detail

Hard Instances
Mined by R-HAM

