Resultados do projeto "Estatística descritiva de um banco de dados de pacientes pediátricos com tumores do sistema nervoso central"

Um caderno aberto de pesquisa

Francisco Hélder Cavalcante Félix, Centro Pediátrico do Câncer - Hospital Infantil Albert Sabin

Abstract: Um banco de dados de pacientes pediátricos com tumores do sistema nervoso central diagnosticados em um grande hospital estadual foi criado pelos autores. Os resultados e análises foram colocados num repositório do serviço GitHub. O código sas análises foi checado com o serviço de integração contínua em nuvem Travis Ci e o resultado final publicado neste arquivo. Este arquivo traz tabelas, gráficos e texto mostrando os resultados do projeto. Foi elaborado em Rmarkdown, utilizando a linguagem de marcação simplificada Markdown com "pedaços" de código da linguagem estatística R entremeados. O arquivo foi avaliado pelo pacote rmarkdown e compilado para o formato pdf neste texto. Devido à integração contínua, pode ser atualizado em tempo real, enquanto dados novos são acrescentados.

Keywords: tumores do sistema nervoso central, cancerologia pediátrica, estística escritiva, rmarkdown, integração contínua, ciência aberta

February 14, 2018

Introdução:

A ciência aberta baseia-se principalmente na capacidade de divulgar (compartilhar) eletronicamente as informações coletadas (dados brutos) e produzidas (análises e seus resultados) de um projeto de pesquisa através da internet. Dessa forma, 2 consequências advém imediatamente: 1 - Transparência da informação e do processo científicos, inclusive para públicos não técnicos. 2 - Capacidade irrestrita de comentários, tanto por especialistas (análogo ã revisão por pares), quanto por não especialistas (que poderíamos chamar de revisão cidadã).

O observador arguto já pode levantar a questão de que o controle de comentários numa plataforma é dos controladores daquele serviço, ou seja, é possível criar um canal de comunicação tipo "ciência aberta", porém unidirecional, sem recepção de comentários (ou pior, é possível censurá-los). Independentemente disso, os comentários a uma publicação livremente disponível na internet podem ser publicados em qualquer canal sem relação com o canal original e referenciado ao primeiro. Ou seja, não há como verdadeiramente censurar comentários a uma publicação livre na internet.

Outra característica importante da ciência aberta é a capacidade de *reuso* de informações, o que pode ser entendido como a principal utilidade social da ciência aberta. Esta característica simples tem o potencial de otimizar a produção científica a nível global. Bastaria isso para justificar a implementação em larga escala da ciência aberta. Outros benefícios podem ser descritos de forma ilimitada.

Esta é a implementação de ciência aberta que criei, baseando-me largamente em projetos já existentes. Tratase de um caderno de pesquisa aberto, armazenado num repositório remoto para o programa Git (existem vários), gerado através de um serviço de integração contínua (CI) em nuvem (vários idem) e com a estrutura de um pacote da linguagem estatística R, usada para as análises. Não se trata de um pacote verdadeiro, apesar de ter um diretório de código R e um arquivo de definições DESCRIPTION. O objetivo desse mimetismo é facilitar as análises numa plataforma de CI. Um pacote de R é um programa com funções utilizáveis. Não é isso que este(s) caderno(s) é(são). Assim, propositadamente deixe de fora partes imprescindíveis de um pacote, como o NAMESPACE e os manuais.

Na seção a seguir, são mostrados resultados de análises estatísticas concernentes a este caderno aberto de pesquisa em particular. Todos os dados pertinentes a seres humanos são adequadamente desidentificados.

Análises:

```
require(pander)
require(survival)
snc<-read.csv('../data/snc.csv')
attach(snc)

barplot(summary(as.factor(sex)),names.arg=c("masculino","feminino"),
xlab="Sexo",width=0.5,xlim=c(0,1.7),space=0.5,col=0)</pre>
```


Figura 1: número de pacientes segundo o sexo.

Figura 2: idade dos pacientes ao diagnóstico.

```
require(DescTools)
panderOptions('table.split.table', Inf)
set.caption("Procedência dos pacientes")
pander(Freq(origin,ord='desc'), style = 'rmarkdown')
```

Table 1: Procedência dos pacientes

level	freq	perc	cumfreq	cumperc
Fortaleza	131	0.3316	131	0.3316
Caucaia	21	0.05316	152	0.3848
Itapipoca	11	0.02785	163	0.4127
Caninde	7	0.01772	170	0.4304
Maracanau	7	0.01772	177	0.4481
Itapaje	6	0.01519	183	0.4633
Pacatuba	6	0.01519	189	0.4785
Quixada	6	0.01519	195	0.4937
Sobral	6	0.01519	201	0.5089
Iguatu	5	0.01266	206	0.5215
Juazeiro do Norte	5	0.01266	211	0.5342
Eusebio	4	0.01013	215	0.5443
Horizonte	4	0.01013	219	0.5544
Itarema	4	0.01013	223	0.5646
Maranguape	4	0.01013	227	0.5747
Pacajus	4	0.01013	231	0.5848
Sao Benedito	4	0.01013	235	0.5949
Tiangua	4	0.01013	239	0.6051
Aquiraz	3	0.007595	242	0.6127
Aracoiaba	3	0.007595	245	0.6203
Barbalha	3	0.007595	248	0.6278
Barreira	3	0.007595	251	0.6354
Capistrano	3	0.007595	254	0.643
Crato	3	0.007595	257	0.6506
Guaiuba	3	0.007595	260	0.6582
Jucas	3	0.007595	263	0.6658
Lavras Da Mangabeira	3	0.007595	266	0.6734
Limoeiro	3	0.007595	269	0.681
Morada Nova	3	0.007595	272	0.6886
Parambu	3	0.007595	275	0.6962
Pindoretama	3	0.007595	278	0.7038
Ubajara	3	0.007595	281	0.7114
Acopiara	2	0.005063	283	0.7165
Amontada	2	0.005063	285	0.7215
Apuiares	2	0.005063	287	0.7266
Aracati	2	0.005063	289	0.7316
Barro	2	0.005063	291	0.7367
Baturite	2	0.005063	293	0.7418
Beberibe	2	0.005063	295	0.7468
Bela Cruz	2	0.005063	297	0.7519
Camocim	2	0.005063	299	0.757
Carire	2	0.005063	301	0.762
Cedro	2	0.005063	303	0.7671
Forquilha	2	0.005063	305	0.7722
Guaraciaba Do Norte	2	0.005063	307	0.7772

level	freq	perc	cumfreq	cumperc
Ibicuitinga	2	0.005063	309	0.7823
Ico	2	0.005063	311	0.7873
Ipu	2	0.005063	313	0.7924
Iracema	2	0.005063	315	0.7975
Itatira	2	0.005063	317	0.8025
Jaguaribe	2	0.005063	319	0.8076
Madalena	2	0.005063	321	0.8127
Massape	2	0.005063	323	0.8177
Moraujo	2	0.005063	325	0.8228
Ocara	2	0.005063	327	0.8278
Oros	2	0.005063	329	0.8329
Paraipaba	2	0.005063	331	0.838
Pedra Branca	2	0.005063	333	0.843
Pentecoste	2	0.005063	335	0.8481
Quiterianopolis	2	0.005063	337	0.8532
Quixeramobim	2	0.005063	339	0.8582
Reriutaba	$\overline{2}$	0.005063	341	0.8633
Russas	$\overline{2}$	0.005063	343	0.8684
Santana Do Acarau	$\frac{2}{2}$	0.005063	345	0.8734
Abaiara	1	0.002532	346	0.8759
Acarape	1	0.002532	347	0.8785
Acarau	1	0.002532	348	0.881
Aiuaba	1	0.002532	349	0.8835
Alcantaras	1	0.002532	350	0.8861
Alto Santo	1	0.002532 0.002532	350	0.8886
Ararende	1	0.002532 0.002532	352	0.8911
Aurora	1	0.002532 0.002532	352	0.8937
Boa Viagem	1	0.002532 0.002532	354	0.8962
Boa Vista	1	0.002532 0.002532	355	0.8987
Cascavel	1	0.002532 0.002532	356	0.9013
Catunda	1	0.002532 0.002532	357	0.9013
Chaval	1	0.002532 0.002532	358	0.9063
Crateus	1	0.002532 0.002532	359	0.9003
Cruz	1	0.002532 0.002532	360	0.9089
Farias Brito	1	0.002532 0.002532		
			361	0.9139
Frecheirinha	1	0.002532	362	0.9165
Graca	1	0.002532	363	0.919
Granja	1	0.002532	364	0.9215
Granjeiro	1	0.002532	365	0.9241
Hidrolandia	1	0.002532	366	0.9266
Ibaretama	1	0.002532	367	0.9291
Icapui	1	0.002532	368	0.9316
Independencia	1	0.002532	369	0.9342
Iraucuba	1	0.002532	370	0.9367
Itaiçaba	1	0.002532	371	0.9392
Jaguaruana	1	0.002532	372	0.9418
Martinopole	1	0.002532	373	0.9443
Meruoca	1	0.002532	374	0.9468
Miraima	1	0.002532	375	0.9494
Missao Velha	1	0.002532	376	0.9519
			376 377 378	0.9519 0.9544 0.957

level	freq	perc	cumfreq	cumperc
Nova Olinda	1	0.002532	379	0.9595
Novo Oriente	1	0.002532	380	0.962
Pacoti	1	0.002532	381	0.9646
Pacuja	1	0.002532	382	0.9671
Palmacia	1	0.002532	383	0.9696
Penaforte	1	0.002532	384	0.9722
Pires Ferreira	1	0.002532	385	0.9747
Santa Quiteria	1	0.002532	386	0.9772
Sao Luis Do Curu	1	0.002532	387	0.9797
Solonopole	1	0.002532	388	0.9823
Tabuleiro Do Norte	1	0.002532	389	0.9848
Tarauaca	1	0.002532	390	0.9873
Taua	1	0.002532	391	0.9899
Trairi	1	0.002532	392	0.9924
Tururu	1	0.002532	393	0.9949
Umirim	1	0.002532	394	0.9975
Uruburetama	1	0.002532	395	1

boxplot(follow/365.25,xlab="Tempo (anos)",boxwex=0.6,staplewex=0.4, frame.plot=F)

Tempo (anos)

Figura 3: tempo de seguimento.

```
require(DescTools)
panderOptions('table.split.table', Inf)
set.caption("Histologia dos tumores")
pander(Freq(histo,ord='desc')[,-4], style = 'rmarkdown')
```

Table 2: Histologia dos tumores

level	freq	perc	cumperc
Unknown	105	0.2658	0.2658
Meduloblastoma classico	54	0.1367	0.4025
Astrocitoma pilocitico	30	0.07595	0.4785
Astrocitoma difuso/fibrilar	26	0.06582	0.5443
Ependimoma	26	0.06582	0.6101
Ependimoma anaplasico	17	0.04304	0.6532
Glioblastoma	16	0.04051	0.6937
Meduloblastoma desmoplasico/nodular	15	0.03797	0.7316
Craniofaringioma	11	0.02785	0.7595
Astrocitoma pilomixoide	10	0.02532	0.7848
Meduloblastoma	10	0.02532	0.8101
Tumor de celulas germinativas SOE	8	0.02025	0.8304
Astrocitoma anaplasico	6	0.01519	0.8456
Malformação cavernosa (cavernoma)	4	0.01013	0.8557
Oligodendroglioma	4	0.01013	0.8658
Tumor neuroectodermico primitivo - PNET	4	0.01013	0.8759
Germinoma	3	0.007595	0.8835
Melanoma	3	0.007595	0.8911
Meningioma	3	0.007595	0.8987
Meningioma transicional	3	0.007595	0.9063
Papiloma de plexo coroide	3	0.007595	0.9139
Carcinoma de plexo coroide	$\overset{\circ}{2}$	0.005063	0.919
Ganglioglioma anaplasico	$\frac{2}{2}$	0.005063	0.9241
Ganglioglioma atipico	$\frac{2}{2}$	0.005063	0.9291
Ganglioglioma Infantil Desmoplasico	$\frac{2}{2}$	0.005063	0.9342
Glioma SOE	$\frac{2}{2}$	0.005063	0.9392
Meduloepitelioma	$\overset{2}{2}$	0.005063	0.9443
Meningioma atipico	$\frac{2}{2}$	0.005063	0.9494
Meningioma meningotelial	$\overset{2}{2}$	0.005063	0.9544
Pineoblastoma	$\overset{2}{2}$	0.005063	0.9595
Schwannoma	$\overset{2}{2}$	0.005063	0.9646
Tumor teratoide-rabdoide atipico	$\overset{2}{2}$	0.005063	0.9696
Adenoma de hipofise	1	0.002532	0.9722
Astrocitoma	1	0.002532 0.002532	0.9722 0.9747
Astrocitoma subependimario de celulas gigantes	1	0.002532 0.002532	0.9747 0.9772
-		0.002532 0.002532	
Carcinoma embrionario	1	0.002532 0.002532	0.9797
Coriocarcinoma	1		0.9823
Disgerminona	1	0.002532	0.9848
Fibrossarcoma infantil	1	0.002532	0.9873
Gangliocitoma	1	0.002532	0.9899
Meduloblastoma de grandes celulas/anaplasico	1	0.002532	0.9924
Oligodendroglioma anaplasico	1	0.002532	0.9949
Sarcoma granulocítico	1	0.002532	0.9975
Xantoastrocitoma pleomorfico	1	0.002532	1

require(reshape)

Loading required package: reshape

```
snc$histo.group=combine_factor(histo,c(1,2,3,2,2,2,2,4,5,5,1,5,6,7,4,8,8,8,8,5,3,8,1,9,9,9,9,10,4,1,1,1,1,8,8,1,10,4,1,5,10,11,12,8))
levels(snc$histo.group)=c("Outros tumores benignos", "Glioma de baixo grau", "Glioma de alto grau",
"Outros tumores malignos", "Tumores de células germinativas", "Ependimoma", "Ependimoma anaplásico", "Outro
par(las=2)
par(mar=c(5,11,4,2))
barplot(sort(summary(snc$histo.group)*100/sum(summary(snc$histo.group)),decreasing=T),col="white",horiz
```


Figura 4: grupos segundo a histologia (%).

barplot(summary(as.factor(who.g))*100/sum(summary(as.factor(who.g))), col="white", names.arg=c("I", "II", "II",

Figura 5: classificação segundo o grau da OMS (%). $Dados\ e\ c\'odigo\ para\ replicação\ estão\ dispon\'iveis\ no\ reposit\'orio\ do\ GitHub\ do\ projeto$