PRIMA ESERCITAZIONE

ESERCIZIO 1

Siano $A = \{2,3,4\}$, $B = \{6,7,9\}$ e sia $\tau \subseteq A \times B$ la relazione così definita:

$$\forall a \in A, b \in B$$
 $a \tau b :\Leftrightarrow b - a \in P$,

dove P è l'insieme dei numeri primi.

- 1. Rappresentare la relazione τ tramite la sua matrice di incidenza e il suo grafo di incidenza.
- 2. Sia $\rho \subseteq A \times B$ un'altra relazione definita nel seguente modo:

$$\forall a \in A, b \in B$$
 $a \rho b :\Leftrightarrow mcd(a,b) = 1$

dove mcd(a,b) è il massimo comun divisore di a e b.

Determinare le matrici di incidenza di $\tau \cap \rho$ e di $\tau \cup \rho$.

3. Siano $C = \{12,18\}$ e $\sigma \subseteq B \times C$ la relazione così definita:

$$\forall b \in B, c \in C$$
 $b \sigma c :\Leftrightarrow b \mid c$

dove "l" significa "divide".

Determinare la relazione $\tau \cdot \sigma$, il suo grafo di incidenza e la sua matrice di incidenza.

4. Determinare τ^{-1} e $\tau \cdot \tau^{-1}$.

ESERCIZIO 2

Siano $X = \{a, b, c, d\}$ e $\rho \subseteq X \times X$ la relazione definita dalla seguente matrice di incidenza:

$$M_{\rho} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 1. Di che proprietà gode ρ ?
- 2. Costruire la chiusura riflessiva e la chiusura simmetrica di ρ .
- 3. Costruire la chiusura di equivalenza di ρ e determinare le classi d'equivalenza.

ESERCIZIO 3

Siano $X = \{a, b, c, d, e, f\}$ e $\rho \subseteq X \times X$ così definita:

$$\rho = \{(a,a),(a,b),(a,c),(b,d),(c,d),(d,e),(e,f)\}$$

- 1. Determinare la chiusura transitiva di ρ .
- 2. Costruire la chiusura simmetrica della chiusura riflessiva e transitiva di ρ .

ESERCIZIO 4

Siano $X = \{a, b, c, d, e, f\}$ e $\rho \subseteq X \times X$ una relazione rappresentata dal seguente grafo di incidenza:

- 1. Di che proprietà gode ρ ?
- 2. Costruire la relazione d'equivalenza $\overline{\rho}$ generata da ρ .
- 3. Determinare l'insieme quoziente $X / \overline{\rho}$.

ESERCIZIO 6

Sia R[x] l'insieme dei polinomi a coefficienti reali nella variabile x e sia $\rho \subseteq R[x] \times R[x]$ la relazione definita nel seguente modo:

$$\forall \ f,g \in R[x] \qquad f \ \rho \ g \ :\Leftrightarrow \ \exists \ b \in R \quad f(b) = g(b) = 0$$

- 1. Di che proprietà gode ρ ?
- 2. Sia ρ la chiusura di equivalenza di ρ . Dimostrare che due polinomi che ammettono una radice reale sono sempre associati rispetto a ρ .