Permutations of 4 objects

A permutation of the 4 objects is an "action"

$$\alpha' : A \rightarrow B$$
 $\alpha'' : A \rightarrow B$ $C \rightarrow C$ $C \rightarrow D$ $C \rightarrow D$

Combining permutations

$$\alpha_2 \circ \alpha_1 : A \rightarrow C$$

$$\beta \rightarrow \beta$$

$$C \rightarrow D$$

$$0 \rightarrow A$$

Properties

- "Closure" any combination of doing two "actions" give an "action"
- · Combining actions is not ambiguous (ie (a · b) · c = a · (b · c))
- "Identity action" is an action that doesn't do anything
- · Every action has an "inverse" action

Rubik cube

An action is any number of rotations counterclockwise in one or several of directions.

Integers

The set of which can be combined by adding them.

Actions - integers Composition - adding

Groups

Let G be a set and * a function that combines an ordered pair of elements of G, a * b. We say that (G, *) is a group if the 4 properties hold.

- ° Closure: ∀a, b ∈ G, a * b ∈ G
- · Associativity: Va, b, c &G, (a · b) · c = a · (b · c)
- · Identity: Be & G s.t. Va & G are = era = a
- · Inverse: Ya & G]a' & G s.t. a * a' = a' * a = e

Identifying Groups

- (Z, +) Group
- (Z, x) Not a group, fails at "inverse"
- (all integers except 0, ") Not a group, fails at "inverse"
- (Q, *) Not a group, fails at "inverse"
- (all rational except 0, *) Group
- (Z⁺, -) Not a group, fails at "closure"
- (R+,+) Not a group, fails at "identity"
- (R, *) Not a group, fails at "associativity"

2 + 4 = 24 + 1

General Linear Group - GL (n, 1R)

 Let G be the set of n * n matrices with real entries and with with non-zero determinant. Operation is matrix multiplication.

Associativity:
$$(AB) C = A(BC)$$

Identity: Identity matrix
$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}$$

$$det(I) = 1, ... I \in G$$

Inverse: Let
$$A \in G$$
, s.t. $\det(A) \neq 0$ so $A' = xists$

$$A' \text{ is } n \neq n, \text{ real entries and } \det(A') = \overline{\det(A)} \neq 0$$
So $A' \in G$

$$A \cdot A' = A' \cdot A = I$$

Symbol example

- · Identity: (is identity
- · Inverse: (1 = (n': 0 /

- · See page 44-49 for more examples
- If * is understood or not important we often write ab instead of a * b

Abelian

A group G such that ab = ba for all a, $b \in G$ is called Abelian All others are called non-Abelian

Theorem 1

In any group G there is only one identity element (ie it is unique)

Proof by contradiction

Suppose that there are two identities, e, and e2