Hypothesis Testing II

Dr. Md. Israt Rayhan
Professor
Institute of Statistical Research and Training (ISRT)
University of Dhaka

Email: israt@isrt.ac.bd

Example: Two-Tail Test

The average cost of a blood test in a hospital is said to be Tk.168. A random sample of 25 patients resulted in

x = Tk.172.50 and

s = Tk.15.40. Test at the

 $\alpha = 0.05$ level.

(Assume the population distribution is normal)

 H_0 : $\mu = 168$

 H_1 : $\mu \neq 168$

Example Solution: Two-Tail Test

$$H_0$$
: $\mu = 168$

 H_1 : µ ≠ 168

$$\alpha = 0.05$$

- n = 25
- σ is unknown, so use a t statistic
- Critical Value:

$$t_{24,.025} = \pm 2.0639$$

$$t_{n-1} = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{172.50 - 168}{\frac{15.40}{\sqrt{25}}} = 1.46$$

Do not reject H₀: not sufficient evidence that true mean cost is different than Tk.168

Matched Pairs

Matched Pairs

Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$d_i = x_i - y_i$$

- Assumptions:
 - Both Populations Are Normally Distributed

Test Statistic: Matched Pairs

Matched Pairs

The test statistic for the mean difference is a t value, with n – 1 degrees of freedom:

$$t = \frac{\bar{d} - D_0}{\frac{s_d}{\sqrt{n}}}$$

Where

 D_0 = hypothesized mean difference s_d = sample standard dev. of differences n = the sample size (number of pairs)

Matched Pairs Example

Assume you send your Doctors to a training workshop. Has the training made a difference in the number of complaints? You collect the following data:

Doctors	Number of Before (1)	Complaints: After (2)	(2) - (1) <u>Difference,</u> <u>d</u> _i
DMC	6	4	- 2
Mitford	20	6	-14
SMC	3	2	- 1
RMC	0	0	0
CMC	4	0	<u>- 4</u>
			-21

$$S_{d} = \sqrt{\frac{\sum (d_{i} - \overline{d})^{2}}{n - 1}}$$

$$= 5.67$$

Matched Pairs: Solution

■ Has the training made a difference in the number of complaints (at the $\alpha = 0.01$ level)?

$$H_0: \mu_x - \mu_y = 0$$

 $H_1: \mu_x - \mu_y \neq 0$

$$\alpha = .01$$
 $\overline{d} = -4.2$

Critical Value =
$$\pm 4.604$$

d.f. = n - 1 = 4

Test Statistic:

$$t = \frac{\bar{d} - D_0}{s_d / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = \boxed{-1.66}$$

Decision: Do not reject H_0 (t stat is not in the reject region)

Conclusion: There is not a significant change in the number of complaints.

Difference Between Two Means

Population means, independent samples

Goal: Form a confidence interval for the difference between two population means, $\mu_x - \mu_y$

- Different data sources
 - Unrelated
 - Independent
 - Sample selected from one population has no effect on the sample selected from the other population

Pooled Variance t Test: Example

You are an analyst. Is there a difference in the ICU patients dying in DMC and SMC per day? You collect the following data:

Number Average Dying Sample std dev

<u>DMC</u>	<u>SMC</u>	
21	25	
3.27	2.53	
1.30	1.16	

Assuming both populations are approximately normal with equal variances, is there a difference in average number of dying ($\alpha = 0.05$)?

Calculating the Test Statistic

The test statistic is:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}} = 2.040$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(21 - 1)1.30^2 + (25 - 1)1.16^2}{(21 - 1) + (25 - 1)} = 1.5021$$

Solution

2.040

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha = 0.05$$

$$df = 21 + 25 - 2 = 44$$

Critical Values: $t = \pm 2.0154$

Test Statistic:

$$t = \frac{3.27 - 2.53}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}}$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is evidence of a difference in means.