GREEN METRICS ON HYPERBOLIC GROUPS AND REPARAMETERIZATIONS OF THE GEODESIC FLOW

Eduardo Reyes Yale

Joint work with

Stephen Cantrell & Didac Martinez-Granado

STDC, GGT Session March 8 2025

MOTIVATION

 $(\sum q)$: closed negatively curved manifold

$$\Gamma = \pi_1(\Sigma)$$

ISOMETRIC ACTION

$$\Gamma \curvearrowright (\widetilde{\Sigma, g})$$

GEODESIC FLOW

$$\varphi_{t} = \varphi_{t}^{g} : T^{1}\Sigma \mathcal{D}$$

Conjugacy classes in [

Oriented closed geodesics in (Σ, g) Periodic orbits under geodesic flow

[9]

89

LENGTH FUNCTION: $\ell_q: \Gamma \longrightarrow \mathbb{R}$

 $g \mapsto length of g$ in Σg

Consider 9 another negatively curved metric on [

GEOMETRIC ACTION

$$\Gamma \curvearrowright (\widetilde{\Sigma}, \underline{q}_*)$$

isometric proper cobounded

FLOW REPARAMETERIZATION

$$\exists \ \Psi : (T^1 \Sigma, \varphi^9) \longrightarrow (T^1 \Sigma, \varphi^9_*)$$

homeo, orbit-preserving

$$T_{t}^{q_{*}}:=\psi^{-1}\circ\varphi_{t}^{q_{*}}\circ\psi$$
 flow on $T^{1}\Sigma$

DUALITY:
$$l_{g_*}(g) = l_{g_*}(g) := \tau^{g_*} - \text{period of } \gamma_g \quad \forall g \in \Gamma$$

THEOREM (CANTRELL-MARTINEZ-GRANADO - R. '25):

"Dictionary"
$$\left\{\begin{array}{c} \text{Geometric actions} \\ \Gamma \searrow X \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{Flow reparameterizations} \\ \tau = (\tau_t)_t : \tau' \Sigma \geqslant \end{array}\right\}$$

metric space

LENGTH FUNCTIONS

 $\Gamma \cap X$ isometric action $\longrightarrow \mathcal{L}_X : \Gamma \longrightarrow \mathbb{R}$ $g \mapsto \lim_{\kappa \to \infty} \frac{1}{\kappa} d_X(x, g^{\kappa} \cdot x)$

EXAMPLES:

- * $\Gamma = \pi_1(\overline{X})$, \overline{X} compact NPC space

 \[
 \times \Gamma_X: \Gamma \times \mathbb{R}_X: \Gamma \mathb
- * $\Gamma \stackrel{\sim}{\hookrightarrow} H^{\cap}$ convex cocompact rep. $\Rightarrow \Gamma \stackrel{\sim}{\hookrightarrow} Hull(\Lambda(\rho(\Gamma)))$ geometric $\longrightarrow l_{\rho}: \Gamma \longrightarrow \mathbb{R}$
- THEOREM (FURMAN '02): Γ hyperbolic, X,Y geodesic, $\Gamma^{\prime\prime}$ X, $\Gamma^{\prime\prime}$ X geometric $\ell_{X}(g) = \ell_{Y}(g) \ \forall \ g \in \Gamma \iff X,Y \ \Gamma$ -equivariantly almost isometric

MAIN RESULT

THEOREM (C-MG-R'25):
$$\Gamma = \pi_1(\Sigma)$$
, (Σ, g) closed neg. curved mfd $1 \mid \Gamma \mid \times \text{ geometric action} \Rightarrow 1 \text{ continuous flow } T \text{ on } T^1 \Sigma$, orbit equivalent to φ^g , s.t. $\ell_X(g) = \ell_T(g)$ $\forall g \in \Gamma$

New for X = Cay(1,5), & CAT(0) cube complex!

2
$$T = T_t$$
: $T^1\Sigma \ni$ Hölder flow \Rightarrow $\exists \Gamma \cap X$ geometric action orbit equivalent to φ^g

s.t. $\ell_X(g) = \ell_T(g)$ $\forall g \in \Gamma$

Connell-Muchnik 'Of

MAIN TOOL: GREEN METRICS

I finitely generated group

- λ∈Prob(Γ) admissible: supp(λ) finite & generates Γ
 λ(g⁻¹) = λ(g) ∀g
 - \Rightarrow Random walk $(Z_n)_n$ on $\Gamma: Z_n = X_1 \cdot ... \cdot X_n$ $X_i: i.i.d.$ random variables with law λ
- GREEN METRIC (on Γ): dx(g,h) = Log P(∃n | gZn=h)

PROPERTIES

 $d_{\lambda}(g,h) := - Log P(\exists n | gZ_n = h)$

* Γ non-amenable \Rightarrow d_{λ} quasi-isometric to word metric

* THEOREM (BLACHÈRE-HAÏSSINSKY-MATHIEU'11):

Γ non-elementary hyperbolic ⇒ d, δ-hyperbolic

* THEOREM (LEDRAPPIER '95, NICA-ŠPAKULA '15):

 $\Gamma = \pi_1(\Sigma)$, (Σ,g) closed neg. curved manifold

 $\Rightarrow \exists$ Hölder flow reparameterization $T=(\tau_t)_t$ of $T^1\Sigma$ dual to d_λ

almost CAT(-1)!

DENSITY OF GREEN METRICS

```
THEOREM(C-MG-R'25): \Gamma non-elementary hyperbolic group \Gamma \cap X geometric \Rightarrow 3 sequence \lambda_{\kappa} \in \text{Prob}(\Gamma) admissible s.t. \ell_{\lambda_{\kappa}} \to \ell_{\chi} "uniformly"
```

```
 \left( \exists \ \Gamma > 0 \text{ s.t. if } x \in X \Rightarrow \lambda_{K} := \text{un: form probability measure w:th} \right)  support S_{K} := \{g \in \Gamma : |d_{X}(x,gx) - K| \le \Gamma \}
```

COROLLARY (GOUËZEL-MATHÉUS-MACOURANT 15):

$$\ell_{\lambda_k} \rightarrow \ell_{\chi}$$
 "on average"

PROOF OF MAIN RESULT

Start with Max geometric

- > Find Green metrics dak s.t. lak → lx un: formly
- \hookrightarrow Each d_{λ_k} is dual to a reparameterization $T^* = (T_t^*)_t : T^1 \sum Q$
- \rightarrow Up to conjugacies & subsequences, have $T^{\infty}=(T_t^{\infty})_t:T^1\sum_{t} \geq T^{\infty}$
- → Show To is dual to Tax

Thank You!!