Feuille d'exercices n^o6

Exercice 1 #: partiel 2016

Pour tout $n \in \mathbb{N}^*$, on note L_n le segment de \mathbb{R}^2 reliant (0,0) à (1,1/n) et L_{∞} le segment de \mathbb{R}^2 reliant (0,0) à (1,0). Soit L la réunion des L_n pour $n \in \mathbb{N}^* \cup \{\infty\}$. On munit chaque L_n de la topologie de sous-espace de \mathbb{R}^2 . Soit \mathcal{T} l'ensemble des parties O de L telles que pour tout $n \in \mathbb{N}^* \cup \{\infty\}$, $O \cap L_n$ est un ouvert de L_n .

- 1. Montrer que \mathcal{T} est une topologie sur L. Comparer \mathcal{T} avec la topologie de sous-espace de \mathbb{R}^2 .
- 2. (L, \mathcal{T}) est-il séparé? compact?
- 3. Montrer que (L, \mathcal{T}) n'est pas métrisable. Indication : on raisonne par l'absurde ; étant donnée une distance d de L engendrant \mathcal{T} , construire une suite (x_n) telle que $x_n \in L_n \{(0,0)\}$ pour tout $n \in \mathbb{N}^*$, (x_n) tend vers (0,0) dans (L,d) mais pas dans (L,\mathcal{T}) .

Exercice 2 ##: partiel 2015

Soient X un espace métrique complet, et Y un espace métrique. On propose dans cet exercice de démontrer la proposition suivante :

- Si $\{f_n\}_{n\in\mathbb{N}}$ est une suite d'applications continues de X dans Y qui converge simplement vers une application $f: X \to Y$, alors l'ensemble des points de continuité de f est dense dans X.
- 1. Soit $\{F_j\}_{j\in\mathbb{N}}$ une suite de parties fermées de X qui recouvrent X. Montrer que \cup_j int (F_j) est dense dans X (on pourra considérer l'ensemble $X\setminus(\cup_j\partial F_j)$).
- 2. Pour $i \in \mathbb{N}$ et $j \in \mathbb{N}$, on pose

$$G_{i,j} := \left\{ x \in X : d_Y \left(f_n(x), f_i(x) \right) \le \frac{2^{-j}}{3} \text{ pour tout } n \ge i \right\},\,$$

et

$$\Omega_j := \bigcup_{i \in \mathbb{N}} \operatorname{int}(G_{i,j}).$$

Étant donné $j \in \mathbb{N}$, montrer que pour tout $a \in \Omega_j$ il existe un rayon $\rho > 0$ tel que

$$d_Y(f(x), f(a)) \le 2^{-j}$$
 pour tout $x \in B_X(a, \rho)$.

3. Conclure.

Exercice 3 ##: Partiel 2014

Dans cet exercice, on munit $\mathcal{C}([0,1];\mathbb{R})$ de la distance de la convergence uniforme, et on considère sur $\mathcal{C}([0,1];\mathbb{R})$ l'ordre partiel suivant : nous dirons que $v \leq w$ si $v(x) \leq w(x)$ pour tout $x \in [0,1]$. Pour $v \in \mathcal{C}([0,1];\mathbb{R})$, nous noterons

$$\boldsymbol{\alpha}(v) := \int_0^1 |v(x)| \, dx \, .$$

Soit \mathcal{H} le sous-espace de $\mathcal{C}([0,1];\mathbb{R})$ donné par

$$\mathcal{H} := \{ v \in \mathcal{C}([0,1]; \mathbb{R}) : v \text{ est 1-lipschitzienne et } \boldsymbol{\alpha}(v) \leq 1 \}.$$

On considère la famille \mathcal{F} des applications croissantes de [0,1] dans \mathcal{H} , et on propose de démontrer la propriété suivante :

Toute suite de points de \mathcal{F} admet une sous-suite qui converge simplement vers un point de \mathcal{F} .

- 1. Montrer que \mathcal{H} est une partie compacte de $\mathcal{C}([0,1];\mathbb{R})$.
- 2. Soit $\{u_n\}_{n\in\mathbb{N}}$ une suite de points de \mathcal{F} . Montrer qu'il existe une sous-suite $\{u_{n_j}\}_{j\in\mathbb{N}}$ telle que $\{u_{n_j}(t)\}_{j\in\mathbb{N}}$ converge dans $\mathcal{C}([0,1];\mathbb{R})$ vers un point $u_*(t)\in\mathcal{H}$ pour tout $t\in[0,1]\cap\mathbb{Q}$.
- 3. Soit $t \in [0,1] \setminus \mathbb{Q}$. Montrer qu'il existe $u_*^+(t) \in \mathcal{H}$ et $u_*^-(t) \in \mathcal{H}$ telles que
 - (i) $\{u_*(t_k)\}_{k\in\mathbb{N}}$ converge dans $\mathcal{C}([0,1];\mathbb{R})$ vers $u_*^+(t)$ pour toute suite $\{t_k\}_{k\in\mathbb{N}}$ décroissante de $[0,1]\setminus\mathbb{Q}$ convergeant vers t;
 - (ii) $\{u_*(t_k)\}_{k\in\mathbb{N}}$ converge dans $\mathcal{C}([0,1];\mathbb{R})$ vers $u_*^-(t)$ pour toute suite $\{t_k\}_{k\in\mathbb{N}}$ croissante de $[0,1]\setminus\mathbb{Q}$ convergeant vers t;
- 4. Montrer qu'il existe une constante $\Lambda > 0$ indépendante de n telle que

$$\sum_{i=1}^{M-1} \alpha \left(u_n(t_{i+1}) - u_n(t_i) \right) \le \Lambda$$

pour tout entier $M \ge 2$ et tous $t_1, \ldots, t_M \in [0, 1]$ tels que $t_1 < t_2 < \ldots < t_M$.

- 5. Déduire de la question précédente que l'ensemble $D:=\{t\in[0,1]\setminus\mathbb{Q}:u_*^+(t)\neq u_*^-(t)\}$ est au plus dénombrable.
- 6. Conclure.

Exercice 4 #: la topologie compacts-ouverts

On dit qu'un espace est localement compact s'il est séparé, et si pour tout point x il existe une base de voisinages compacts au sens où tout voisinage de x contient un voisinage compact de x.

1. Montrer qu'un espace est localement compact si et seulement si chaque point admet un voisinage compact.

Soient X et Y deux espaces topologiques. On munit l'ensemble des applications de X dans Y de la topologie engendrée par les ensembles de la forme $\mathcal{M}_{K,U} := \{f : f(K) \subset U\}$ où K est un compact de X et U un ouvert de Y.

- 2. Soit $f: X \times Y \to Z$ une application continue. Montrer que l'application de curyfication $x \in X \mapsto f_x := (y \mapsto f(x,y)) \in Z^Y$ est continue.
- 3. Montrer que si X est localement compact, l'application d'évaluation $(x, f) \in X \times Y^X \mapsto f(x) \in Y$ est continue.
- 4. Soit $f: X \to Z^Y$ une application continue. Montrer que si Y est localement compact, l'application $(x,y) \mapsto f(x)(y)$ est continue.

Exercice 5 // // : sur les différentes séparations

Soit X un espace topologique. On définit les axiomes de séparation suivants :

- (T_0) (Kolmogorov) Si $x \neq y$, il existe un ouvert contenant x et pas y ou l'inverse.
- (T_1) (faiblement séparé, ou Fréchet) Si $x \neq y$, il est possible de trouver U ouvert contenant x mais pas y.
- (T_2) (séparé, ou Hausdorff) Si $x \neq y$, il est possible de trouver des ouverts disjoints contenant respectivement x et y.
- (T_3) Si F est un fermé et $x \notin F$, on peut trouver des ouverts disjoints contenant respectivement F et x.
- (T_4) Si F_1 et F_2 sont deux fermés disjoints, on peut trouver des ouverts disjoints contenant respectivement F_1 et F_2 .
- 1. a) Montrer qu'un espace est (T_1) si et seulement si les points sont fermés.
- b) Montrer qu'un espace est (T_2) si et seulement si la diagonale est fermée dans $X \times X$.
- c) Montrer qu'un espace est (T_2) si et seulement si un point est l'intersection de ses voisinages fermés.
- d) Montrer qu'un espace est (T_3) si et seulement si tout ouvert contient un voisinage fermé de chacun de ses points.
- 2. Quelles sont les différentes implications que l'on a entre ces différents axiomes? (le faire sur un dessin, commencer par placer T_0 , T_1 et T_2 , puis remarquer que T_0 et T_3 impliquent T_2 . Placer T_4 est plus compliqué car un espace peut-être seulement T_0 et T_4 , ou bien T_4 mais pas T_3 . Utiliser le bestiaire fourni en fin d'exercice pour les contrexemples.)

On rajoute les intermédiaires suivants qui sont des versions plus fortes de certains des axiomes précédents :

- $(T_{2\frac{1}{2}})$ (complètement Hausdorff) Si $x \neq y$, il est possible de trouver des ouverts d'adhérences disjointes contenant respectivement x et y.
- $(T_{3\frac{1}{2}})$ Si F est un fermé et $x \notin F$, il existe une fonction (d'Urysohn) : continue à valeurs réelles et valant 0 en x et 1 sur F.
- 3. Comment placer ces nouveaux axiomes de séparation sur le diagramme d'implication?
 - (topologie de l'ordre?) Munir \mathbb{R} de la topologie où les ouverts sont les $]-\infty,a[$.
 - (topologie cofinie) Un ensemble infini munit de la topologie dont les ouverts sont les complémentaires des parties finies.

- (topologie codénombrable) Un ensemble infini indénombrable munit de la topologie dont les fermés sont les ensembles dénombrables et l'ensemble tout entier.
- (topologie du point exclu) Un ensemble avec un point distingué ω où les fermés sont les ensembles contenants ω .
- (topologie de l'extension ouverte) Si X est un espace topologique, on considère $X \cup \{\omega\}$ où les ouverts sont ceux de X et l'ensemble tout entier.
- (topologie pente irrationnelle) Soit θ un nombre irrationnel. On munit $X := \mathbb{Q} \times \mathbb{Q}_+$ de la topologie engendrée par les ε -voisinages suivants : si $(x, y) \in \mathbb{Q} \times \mathbb{Q}_+$,

$$N_{\varepsilon}(x,y) = \{(x,y)\} \cup \{(\zeta,0) : |\zeta - x - \frac{y}{\theta}|\} \cup \{(\zeta,0) : |\zeta - x + \frac{y}{\theta}|\}.$$

- (topologie demi-disque) On munit $\mathbb{R} \times \mathbb{R}_+$ de la topologie engendrée par les voisinages suivants : pour les points du demi-plan ouvert, ce sont les voisinages usuels, mais pour les points de l'axe des abscisses, ce sont les intersection des disques ouverts avec le demi-plan supérieur ouvert, plus le point lui-même. (donc le disque centré sur le point mais pas les autres points de l'axe.)
- (topologie disque tangent) On munit $\mathbb{R} \times \mathbb{R}_+$ de la topologie engendrée par les voisinages suivants : pour les points du demi-plan ouvert, ce sont les voisinages usuels, mais pour les points de l'axe des abscisses, ce sont les intersection des disques ouverts tangents à l'axe des abscisses plus le point lui-même.
- (Plan de Mysior) On munit l'ensemble $\mathbb{R} \times \mathbb{R}_+ \cup \{\omega\}$ de la topologie où les voisinages des points sont les suivants :
 - Pour un point du demi-plan ouvert, le singleton est ouvert.
 - Pour un point de l'axe (x,0), une base de voisinage est donnée par la réunion du point et de tous les points de $\{(x,t), (x+t,t)\}_{0 \le t < 2}$ sauf un nombre fini.
 - Pour ω , les ensembles de la forme $U_n:=\{\omega\}\cup\{(x,y)\}_{y\geq 0,x>n}$. (Montrer que cet espace est séparé, (T_3) mais pas $(T_{3\frac{1}{2}})$.)

Exercice 6 ###: dimension boîte

Soit E une partie pré-compact d'un espace métrique (X, d). On note $N_E(\varepsilon)$ le plus petit nombre de boules fermées de rayon ε qu'il faut pour recouvrir E, et $P_E(\varepsilon)$ le cardinal maximal d'une famille de points à distance supérieure à ε les uns des autres. On note ensuite

$$\dim E := \lim_{\varepsilon \to 0} \frac{\log N_E(\varepsilon)}{-\log \varepsilon}$$

lorsque cette limite existe.

1. Montrer que

$$N_E(\varepsilon) \le P_E(\varepsilon) \le N_E\left(\frac{\varepsilon}{2}\right).$$

- 2. Calculer la dimension de la boule unité d'un espace vectoriel réel normé de dimension n.
- 3. Calculer la dimension boîte de l'ensemble de Cantor triadique. (vu comme partie de [0; 1]) Que dire si l'on remplace le 3 par autre chose?
- 4. Montrer que la dimension de l'ensemble $\{\frac{1}{n^{\alpha}}\}_n \cup \{0\}$ vaut $\frac{1}{\alpha+1}$.