Random signal processing

Stochastic Processes for EE (EE2511) Lecture 5

TUDelft

Summary Filtered WSS Process

$$\mu_X$$

$$\mu_Y = \mu_X H_0$$

$$R_X(k)$$

$$R_Y(k) = h(k) * h(-k) * R_X(k)$$

• Time continuous: $R_Y(\tau) = h(\tau) * h(-\tau) * R_X(\tau)$

TUDelft

What can we do with Stoch. Proc.?

- System identification
- Modeling of real signals (e.g. speech)
- Prediction (next week)

Today's Agenda

- Moving average (MA) and autoregressive (AR) processes
- Modeling of speech signals as an AR process
- Fourier Transform of the autocorrelation function: Power Spectral Density

Two typical LTI systems

• Tapped delay line or Finite Impulse Response Filter (FIR) system

$$Y(n) = h_0 W(n) + h_1 W(n-1) + ... + h_p W(n-p)$$

TUDelft

Two typical LTI systems

• Infinite Impulse Response (IIR) system

$$Y(n) = h_1 Y(n-1) + h_2 Y(n-2) + \dots + h_q Y(n-q) + W(n)$$

Terminology

If we input white noise into these LTI systems, then

- output of FIR filter is called a *moving average* (MA) process
- output of IIR filter is called an *autoregressive* (AR) process
- Combination of the two is called ARMA process
- Many speech processing systems (including speech compression in GSM) use AR model

• First order AR process $Y(n) = h_1 Y(n-1) + W(n)$

• First order MA process

$$Y(n) = h_0 W(n) + h_1 W(n-1)$$

• Autocorrelation function (Method 1)

$$R_{Y}(k) = E[Y(n)Y(n+k)]$$

$$= E[(h_{0}W(n) + h_{1}W(n-1))(h_{0}W(n+k) + h_{1}W(n+k-1))]$$

$$= h_{0}^{2}E[W(n)W(n+k)] + h_{0}h_{1}E[W(n)W(n+k-1)]$$

$$+ h_{0}h_{1}E[W(n-1)W(n+k)] + h_{1}^{2}E[W(n-1)W(n+k-1)]$$

$$= (h_{0}^{2} + h_{1}^{2})R_{W}(k) + h_{0}h_{1}R_{W}(k+1) + h_{0}h_{1}R_{W}(k-1)$$

TUDelft

Autocorrelation Functions (MA-1)

• First order MA process

$$Y(n) = h_0 W(n) + h_1 W(n-1)$$

• Autocorrelation function (Method 1)

$$R_{Y}(k) = E[Y(n)Y(n+k)]$$

$$= (h_{0}^{2} + h_{1}^{2})R_{W}(k) + h_{0}h_{1}R_{W}(k+1) + h_{0}h_{1}R_{W}(k-1)$$

$$= \begin{cases} (h_{0}^{2} + h_{1}^{2})\sigma_{w}^{2} & k = 0\\ h_{0}h_{1}\sigma_{w}^{2} & k = 1\\ h_{0}h_{1}\sigma_{w}^{2} & k = -1\\ 0 & \text{elsewhere} \end{cases}$$

• First order MA process

$$Y(n) = h_0 W(n) + h_1 W(n-1)$$

• Autocorrelation function (Method 2)

Autocorrelation Functions (MA-1)

• First order MA process

$$Y(n) = h_0 W(n) + h_1 W(n-1)$$

• Autocorrelation function (Method 2)

$$Y(n) = (...,0,0,h_0,h_1,0,0,...)*W(n) = h(n)*W(n)$$

$$R_{\gamma}(k) = h(k) * h(-k) * R_{W}(k)$$

= (..,0,0, h₀ h₁, h₀² + h₁², h₀ h₁,0,0,...) * \sigma_{W}^{2} \delta(k)

Autocorrelation function (Method 2)

$$R_Y(k) = h(k) * h(-k) * R_W(k)$$

$$f(k) = h(k) * h(-k)$$

$$= \sum_{n} h(n)h(-(k-n))$$

$$= h(0)h(-k) + h(1)h(-k+1)$$

$$R_Y(k) = \sum_{n} (h(0)h(-n) + h(1)h(-n+1)) \sigma_W^2 \delta(k-n)$$

$$= \sigma_W^2 h(0)h(-k) + \sigma_W^2 h(1)h(-k+1)$$

$$= \begin{cases} (h(0)^2 + h(1)^2) \sigma_W^2 & \text{if } k = 0 \\ h(0)h(1) \sigma_W^2 & \text{if } k = 1 \\ h(0)h(1) \sigma_W^2 & \text{if } k = 1 \end{cases}$$

TUDelft

Autocorrelation Functions (AR-1)

First order AR process

$$Y(n) = h_1 Y(n-1) + W(n)$$

• First order AR process

$$Y(n) = h_1 Y(n-1) + W(n)$$

• Autocorrelation function (Method 1)

$$R_{Y}(k) = E[Y(n)Y(n+k)]$$

$$= E[Y(n)(h_{1}Y(n+k-1)+W(n+k))]$$

$$= h_{1}E[Y(n)Y(n+k-1)] + E[Y(n)W(n+k)]$$

$$= h_{1}R_{Y}(k-1) + E[Y(n)]E[W(n+k)]$$
independent
$$= h_{1}R_{Y}(k-1) \qquad (k > 0)$$

(Similarly for k<0:

$$R_{\gamma}(k) = h_1 R_{\gamma}(k+1)$$
 $(k < 0)$

Autocorrelation Functions (AR-1)

• First order AR process

$$Y(n) = h_1 Y(n-1) + W(n)$$

• Autocorrelation function (Method 1)

$$R_{Y}(0) = E[(h_{1}Y(n-1) + W(n))(h_{1}Y(n-1) + W(n))]$$

$$= h_{1}^{2}E[Y(n-1)^{2}] + 2h_{1}E[Y(n-1)W(n)] + E[W(n)^{2}]$$

$$= h_{1}^{2}R_{Y}(0) + 2h_{1}E[Y(n-1)]E[W(n)] + R_{W}(0)$$

$$= h_{1}^{2}R_{Y}(0) + \sigma_{W}^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$R_{Y}(0) = \frac{1}{2} e^{2}$$

$$R_{\gamma}(0)=\frac{1}{1-h_1^2}\sigma_w^2$$

• First order AR process

$$Y(n) = h_1 Y(n-1) + W(n)$$

• Autocorrelation function (Method 1)

$$R_{\gamma}(k) = h_{1} R_{\gamma}(k-1) \qquad k > 0$$

$$R_{\gamma}(k) = h_{1} R_{\gamma}(k+1) \qquad k < 0$$

$$R_{\gamma}(0) = \frac{1}{1 - h_{1}^{2}} \sigma_{w}^{2}$$

$$= R_{\gamma}(k) = \frac{\sigma_{w}^{2}}{1 - h_{1}^{2}} h_{1}^{|k|}$$

Autocorrelation Functions (AR-1)

• First order AR process

$$Y(n) = h_1 Y(n-1) + W(n)$$

• Autocorrelation function (Method 2)

Linear system with impulse response:

...,0,1,
$$h_1$$
, h_1^2 , h_1^3 ,......
= ...,0,0,0, h_1^n

TUDelft

• First order AR process

$$Y(n) = h_1 Y(n-1) + W(n)$$

• Autocorrelation function (Method 2)

$$Y(n) = (...,0,0,h_1^k) * W(n) = h(n) * W(n)$$

$$R_{Y}(k) = h(k) * h(-k) * R_{W}(k)$$

$$= (..., h_{1}^{3}, h_{1}^{2}, h_{1}, 1, h_{1}, h_{1}^{2}, h_{1}^{3}, ...) * \sigma_{W}^{2} \delta(k)$$

$$= \frac{\sigma_{W}^{2}}{1 - h_{1}^{2}} h_{1}^{|k|}$$

What About Speech?!?

What to transmit?

The statistical description of the speech process

Choose $h_1(n)$ such that the output is uncorrelated with minimum variance.

$$W(n) = h_1(n) * X(n)$$

Then transmit $h_1(n)$ (= inverse filter of $h_2(n)$) and σ_W^2

Speech Production Model

What does $h_1(n)$ model? It is a model of the speech production process.

Speech Production Model

Typically, speech is seen as an AR-process:

Predict current speech sample from the q previous speech samples

$$Y(n) = h_1 Y(n-1) + h_2 Y(n-2) + ... + h_q Y(n-q) + W(n)$$

Tugelft

Estimation of the AR Coefficients (1)

- The signal model should match the real data as well as possible
- Real data Y(n)
- Modeled data $\hat{Y}(n) = \sum_{k=1}^{q} h_k Y(n-k)$ (linear prediction)
- Difference $Y(n) \hat{Y}(n) = Y(n) \sum_{k=1}^q h_k Y(n-k) = W(n)$
- Minimize the difference by choosing the AR coefficients optimally

Estimation of the AR Coefficients (2)

• Difference is quantified as variance

$$\sigma_w^2 = E[(Y(n) - \hat{Y}(n))^2] = E[(Y(n) - \sum_{k=1}^q h_k Y(n-k))^2]$$

• Minimize this difference:

$$\min_{h_{i}} \sigma_{W}^{2} \qquad i = 1, 2, ..., q$$

$$\Rightarrow \frac{\partial}{\partial h_{i}} \sigma_{W}^{2} = 0 \qquad i = 1, 2, ..., q$$

$$\frac{\partial}{\partial h_i} E[(Y(n) - \sum_{k=1}^q h_k Y(n-k))^2] = 0$$

Estimation of the AR Coefficients (3)

• Solution of minimization problem:

$$\frac{\partial}{\partial h_{i}} E[(Y(n) - \sum_{k=1}^{q} h_{k} Y(n-k))^{2}] = 0 \qquad i=1,2,...,q$$

$$E[(Y(n) - \sum_{k=1}^{q} h_{k} Y(n-k))(-2) \left\{ \frac{\partial}{\partial h_{i}} \sum_{k=1}^{q} h_{k} Y(n-k) \right\}] = 0$$

$$E[(Y(n) - \sum_{k=1}^{q} h_{k} Y(n-k)) Y(n-i)] = 0$$

$$R_{Y}(i) = \sum_{k=1}^{q} h_{k} R_{Y}(i-k)$$

Estimation of the AR Coefficients (4)

• Yule Walker or normal equations

$$R_{\gamma}(i) = \sum_{k=1}^{q} h_{k} R_{\gamma}(i-k) \qquad i = 1,2,...,q$$

$$\begin{pmatrix} R_{\gamma}(1) \\ R_{\gamma}(2) \\ \vdots \\ R_{\gamma}(q) \end{pmatrix} = \begin{pmatrix} R_{\gamma}(0) & R_{\gamma}(1) & \cdots & R_{\gamma}(q-1) \\ R_{\gamma}(1) & R_{\gamma}(0) & R_{\gamma}(1) & \vdots \\ \vdots & R_{\gamma}(1) & \ddots & R_{\gamma}(1) \\ R_{\gamma}(q-1) & \cdots & R_{\gamma}(1) & R_{\gamma}(0) \end{pmatrix} \begin{pmatrix} h_{1} \\ h_{2} \\ \vdots \\ h_{q} \end{pmatrix}$$

• Variance of excitation noise:

$$\sigma_w^2 = E[(Y(n) - \sum_{k=1}^q h_k Y(n-k))^2] = R_Y(0) - \sum_{k=1}^q h_k R_Y(k)$$

How to Synthesize speech? (1)

• Estimate the correlation function

$$\widetilde{R}_{Y}(k) = \frac{1}{N-k} \sum_{n=1}^{N-k} Y(n)Y(n+k)$$

• Compute filter coefficients

$$\begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_q \end{pmatrix} = \begin{pmatrix} \widetilde{R}_Y(0) & \widetilde{R}_Y(1) & \cdots & \widetilde{R}_Y(q-1) \\ \widetilde{R}_Y(1) & \widetilde{R}_Y(0) & \widetilde{R}_Y(1) & \vdots \\ \vdots & \widetilde{R}_Y(1) & \ddots & \widetilde{R}_Y(1) \\ \widetilde{R}_Y(q-1) & \cdots & \widetilde{R}_Y(1) & \widetilde{R}_Y(0) \end{pmatrix}^{-1} \begin{pmatrix} \widetilde{R}_Y(1) \\ \widetilde{R}_Y(2) \\ \vdots \\ \widetilde{R}_Y(q) \end{pmatrix}$$

TUDelft

How to Synthesize speech? (2)

•Variance of excitation noise:

$$\sigma_w^2 = \widetilde{R}_Y(0) - \sum_{k=1}^q h_k \widetilde{R}_Y(k)$$

Perform filtering:

$$Y(n) = h_1 Y(n-1) + h_2 Y(n-2) + ... + h_q Y(n-q) + W(n)$$

If we apply z-transform: $H(z) = \frac{1}{1 - \sum_{q=1}^{Q} h_q z^{-q}}$

All-pole!

Voiced vs. Unvoiced Speech

Does W(n) really get uncorrelated in practice?

This depends on

- the model order used in $H_1(z^{-1})$
- the type of speech sound:
 - voiced excitation still contains the long term correlation that originates from the vocal cords
 - unvoiced

Voiced vs. Unvoiced Speech

- Voiced: Air pushed through the glottis which oscillates, generating quasi-periodic puffs of air (e.g. vowels /a/, /i/, etc.)
- Unvoiced: Air forced through constriction somewhere along the vocal tract (e.g. /s/, /f/).

voiced:

0 1000 2000 3000 4000

unvoiced:

Vocoder

• Discrete-time linear source-filter model of speech production

Speech can be synthesized if we know:

- 1. spectral envelope
- 2. pitch period T_0

(can be computed using the auto-correlation function)

_

TUDelft

Demonstration - Speech Coding

- Determine filter h(n) using Yule Walker equations and error variance
- 2. Determine whether speech is unvoiced or voiced
- 3. Transmission/Quantization of h(n) and voiced/unvoiced information

4. Synthesis of speech based on received filter h(n) and voiced/unvoiced information.

Demo Vocoder

English female speech, $f_s=8\ \mathrm{kHz},$ mono, 8 bit/sample

- original
- modelled
- modelled as unvoiced speech

German male speech, $f_s=8\,\mathrm{kHz}$, mono, 8 bit/sample

- original
- modelled
- modelled as unvoiced speech

35

Usage of Fourier transforms The Power Spectral Density

• (needed for system identification)

Usual tool in Signal Processing

- Fourier transforms are used to
 - describe deterministic signals (functions) and linear systems
 - analyze and design signals and linear systems

What about random signals?

• Fourier transforms of random signals are rather useless: the result depends on the particular realization

Power Spectral Density

- Instead of considering the Fourier transform of one realization, we should look at 'average behavior' in the Fourier domain
- Power Spectral Density (PSD)

$$S_X(f) = F\left\{R_X(\tau)\right\} = \int_{-\infty}^{\infty} R_X(\tau) \exp(-j2\pi f \tau) d\tau$$
 $S_X(f) = F\left\{R_X(k)\right\} = \sum_{k=-\infty}^{\infty} R_X(k) \exp(-j2\pi f k)$

PSD only exists for WSS random processes!

Actually...

• The original definition of PSD is a bit more ugly:

$$S_X(f) = \lim_{T \to \infty} \frac{1}{2T} E\left[|X_T(f)|^2 \right]$$

- It highlights the fact that we are computing the average power in a frequency, but for (in principle) infinitely long signals
- The Wiener-Khintchine theorem shows the equivalence with

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) \exp(-j2\pi f \tau) d\tau$$

Heuristic interpretation

- (Amplitude component of) Fourier transform of a deterministic signal gives the strength of a particular complex exponential (sine-cosine combination)
- PSD of a random process/signal gives the average power carried by a particular complex exponential
- PSD can be calculated from the autocorrelation function of the WSS random process

Example Random Telegraph

$$R_X(t,\tau) = \exp(-2\alpha|\tau|)$$
$$S_X(f) = \frac{4\alpha}{4\alpha^2 + 4\pi^2 f^2}$$

From PSD to autocorrelation funct.

• Continuous time:

Continuous time:
$$S_X(f) = F\left\{R_X(\tau)\right\} = \int_{-\infty}^{\infty} R_X(\tau) \exp(-j2\pi f \tau) d\tau$$

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) \exp(j2\pi f \tau) df$$

• Discrete time:

$$S_X(f) = F\{R_X(k)\} = \sum_{k=-\infty}^{\infty} R_X(k) \exp(-j2\pi f k)$$
 $R_X(k) = \int_{-1/2}^{1/2} S_X(f) \exp(j2\pi f k) df$

Properties of PSD

• Because we are using real-valued signals, the power spectral density function is symmetric around f=0

$$S_X(-f) = S_X(f)$$

- The function expresses a **density**, and is therefore always non-negative
- Integral over power spectral density is average power

$$\int_{-\infty}^{\infty} S_X(f)df = E[X(t)^2] = R_X(0)$$

Filtered WSS Process

• The power spectral density of Y(t) is given by

$$S_Y(f) = |H(f)|^2 S_X(f)$$

Result can easily be understood

• Since

$$R_Y(\tau) = h(\tau) * h(-\tau) * R_X(\tau)$$

• then

$$S_Y(f) = H(f)H^*(f)S_X(f)$$
$$= |H(f)|^2 S_X(f)$$

Autocorrelation Functions (AR-1)

• First order AR process

$$Y(n) = h_1 Y(n-1) + W(n)$$

Autocorrelation function

①
$$R_{\gamma}(k) = E[Y(n)Y(n+k)]$$

= $E[Y(n)(h_1Y(n+k-1)+W(n+k))]$
= ...

$$Y(n) = (...,0,0,h_1^k) * W(n) = h(n) * W(n)$$

$$R_{\gamma}(k) = h(k) * h(-k) * R_{W}(k)$$

$$= (...,h_1^{3},h_1^{2},h_1,1,h_1,h_1^{2},h_1^{3},...) * \sigma_{W}^{2} \delta(k) = \frac{\sigma_{W}^{2}}{16 - h_1^{2}} h_1^{|k|}$$

$$= \frac{\sigma_{W}^{2}}{16 - h_1^{2}} h_1^{|k|}$$

• First order AR process

$$Y(n) = h_1 Y(n-1) + W(n)$$

Impulse response

$$h(n) = \begin{cases} 0 & n < 0 \\ h_1^n & n \ge 0 \end{cases}$$

• Frequency response

$$H(f) = \frac{1}{1 - h_1 \exp(-j2\pi f)}$$

Autocorrelation Functions (AR-1)

• Power Spectral Density of Output Y(k)

$$S_{\gamma}(f) = |H(f)|^2 S_{\omega}(f)$$

• Power Spectral Density of Input W(k)

$$S_{\gamma}(f) = |H(f)|^2 \sigma_W^2 = \frac{\sigma_W^2}{|1 - h_1 \exp(-j2\pi f)|^2} \Rightarrow R_{\gamma}(k)$$
TuDelft

$$W(n) \longrightarrow h(n) = \begin{cases} 0 & k < 0 \\ h_1^k & k \ge 0 \end{cases} \longrightarrow Y(n)$$

Power Spectral Density

$$S_{\gamma}(f) = |H(f)|^2 \sigma_W^2$$
$$= \frac{\sigma_W^2}{|1 - h_1 \exp(-j2\pi f)|^2}$$

Autocorrelation Function

$$R_{\gamma}(k) = \frac{\sigma_{W}^{2}}{1 - h_{1}^{2}} h_{1}^{|k|}$$

Example (time continuous)

$$X(t) \longrightarrow h(t) = \begin{cases} 3 \exp(-t) & t \ge 0 \\ 0 & t < 0 \end{cases} \longrightarrow Y(t)$$

$$R_X(\tau) = 4 + 3\delta(\tau)$$

• What is $R_Y(\tau) = ?$

Example (time continuous)

$$X(t) \longrightarrow h(t) = \begin{cases} 3 \exp(-t) & t \ge 0 \\ 0 & t < 0 \end{cases} \longrightarrow Y(t)$$

$$R_X(\tau) = 4 + 3\delta(\tau)$$

• then
$$S_X(f)=4\delta(f)+3$$
 and $H(f)=\frac{3}{1+i(2\pi f)}$

• then
$$S_X(f)=4\delta(f)+3$$
 and $H(f)=\frac{3}{1+j(2\pi f)}$
• and
$$S_Y(f)=|H(f)|^2S_X(f)=\frac{9}{1+(2\pi f)^2}(4\delta(f)+3)$$

$$=36\delta(f)+\frac{27}{1+(2\pi f)^2} \qquad \text{Inverse Fourier transform}$$
• SO $R_Y(\tau)=36+\frac{27}{2}\exp(-|\tau|)$

Using the PSD

- White noise process (again)
- Cross-correlation (again)
- System identification

White noise signal/process

• Bandlimited white noise process with $\mu_X=0$

White noise signal/process

White noise signal/process

 \bullet If we sample the time continuous white noise process at

• This time discrete process can be realized:

$$R_X(k) = \begin{cases} \sigma_X^2 & k = 0\\ 0 & k \neq 0 \end{cases}$$

TUDelft

Cross correlation function

 \bullet What is the stochastic relation between $X(t_1)$ and $Y(t_2)$?

Cross correlation function

• Cross correlation function for a jointly WSS random process is:

$$R_{XY}(\tau) = E[X(t)Y(t+\tau)]$$
$$= R_{YX}(-\tau)$$

• We get in frequency domain:

$$R_{XY}(au) = h(au) * R_X(au)$$
 $S_{XY}(f) = H(f) S_X(f)$ cross power spectral density

Application: system identification

• Find the impulse (or frequency) response H(f) of the system

Application: system identification

• When feeding white noise into a linear system, we obtain

$$S_{XY}(f) = H(f)S_X(f) = \frac{N_0}{2}H(f)$$

TUDelft

Covered Today

- Chapter 11
- Key terms
 - Moving average, autoregressive processes
 - Autocorrelation for infinite impulse response
 - Power spectral density
 - Average power
 - White Gaussian noise process
 - Cross power spectral density
 - System identification

