BÀI TẬP TRẮC NGHIỆM GIẢI TÍCH 2

Năm học 2023 -2024

CI	Nam nọc 2023 -2024
Chương 1	Hàm nhiều biến
	Câu 1: Tính vi phân cấp một của hàm số $z = x^2 + 5^y$
	$\underline{\mathbf{A}}.\ dz = 2xdx + 5^y \ln 5 \ dy$
	$B. dz = 2xdx + 5^y \ln y dy$
	$C. dz = 2xdx + 5^{y-1}dy$
	D. $dz = 2xdx + 5^{y-1} \ln 5 dy$
	Câu 2: Tính vi phân cấp một của hàm số $z = \ln \sqrt{x - y}$
	$A. dz = \frac{dy - dx}{2(x - y)}$
	$D dz = \frac{dx - dy}{dx - dx}$
	B. $dz = \frac{dx - dy}{2(x - y)}$ C. $dz = \frac{dx - dy}{x - y}$ D. $dz = \frac{dy - dx}{x - y}$
	C. $dz = \frac{dx - dy}{x - y}$
	$\int dz = \frac{dy - dx}{dy - dx}$
	$D. uz = \frac{1}{x-y}$
	Câu 3: Tính vị phân cấp một của hàm số $z = \arctan(x - y)$
	$A. dz = \frac{dx + dy}{1 + (x - y)^2}$
	$\underline{\mathbf{B}}.\ dz = \frac{dx - dy}{1 + (x - y)^2}$
	$1+(x-y)^2$ $dy-dx$
	C. $dz = \frac{dy}{1 + (x - y)^2}$
	C. $dz = \frac{dy - dx}{1 + (x - y)^2}$ D. $dz = \frac{-dx - dy}{1 + (x - y)^2}$
	Câu 4: Hàm số $u = e^{z \sin(x-y^2)}$ có các đạo hàm riêng tại $\left(\frac{\pi}{2}; 0; 1\right)$ là:
	A. $u'_x = 0$; $u'_y = 0$; $u'_z = e$
	B. $u'_x = e$; $u'_y = 0$; $u'_z = e$
	C. $u'_x = e; u'_y = -2e; u'_z = e$
	D. $u'_x = 0$; $u'_y = -2e$; $u'_z = 0$
	Câu 5: Hàm số $f(x,y) = arcsin \frac{x}{x-y}$ có giá trị $df(1;3)$ là:
	~ 9
	A. $df(1;3) = \frac{\sqrt{3}}{6}(3dx + dy)$
	B. $df(1;3) = \frac{\sqrt{3}}{6}(-3dx + dy)$
	C. $df(1;3) = \frac{\sqrt{3}}{6}(dx + 3dy)$
	D. $df(1;3) = \frac{\sqrt{3}}{6}(-dx + 3dy)$
	Câu 6: Hàm $u = ln \sqrt{\frac{xz^2}{x-y}}$ có giá trị $du(4,3,1)$ là:
	A. $du(4,3,1) = -\frac{3}{4}dx + dy + 2dz$
	B. $du(4,3,1) = -\frac{3}{4}dx + \frac{1}{2}dy + 2dz$

_	
	$\underline{C}. \ du(4,3,1) = -\frac{3}{8}dx + \frac{1}{2}dy + dz$
	D. $du(4,3,1) = \frac{1}{2}dx - \frac{3}{8}dy + dz$
	Câu 7: Hàm $f(x,y) = cos(x^2 - y)$ có giá trị $df(0; -\frac{\pi}{4})$ là:
	A. $df\left(0; -\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}dy$
	B. $df(0; -\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}dy$
	C. $df(0; -\frac{\pi}{4}) = \frac{\sqrt{2}}{2}(2dx - dy)$
	(4) 2
	D. $ddf\left(0; -\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}(-2dx + dy)$
	Câu 8: Hàm số $f(x,y) = xe^{xy^2}$ có giá trị $d^2f(1;-1)$ là:
	A. $d^2f(1;-1) = 6edx^2 - 6edxdy + 3edy^2$
	B. $d^2f(1;-1) = 6edx^2 - 12edxdy + 3edy^2$ C. $d^2f(1;-1) = 3edx^2 - 6edxdy + 6edy^2$
	D. $d^2f(1;-1) = 3edx^2 - 12edxdy + 6edy^2$
	Câu 9: Hàm số $f(x,y) = \arctan \frac{y}{x}$ có giá trị $d^2f(1;-1)$ là:
	A. $d^2f(1;-1) = -\frac{1}{2}dx^2 - 2dxdy + \frac{1}{2}dy^2$
	B. $d^2f(1;-1) = \frac{1}{2}dx^2 - 2dxdy - \frac{1}{2}dy^2$
	C. $d^2f(1;-1) = \frac{1}{2}dx^2 - \frac{1}{2}dy^2$
	$\underline{D}. d^2 f(1;-1) = -\frac{1}{2} dx^2 + \frac{1}{2} dy^2$
	Câu 10: Tính vi phân cấp hai của hàm số $z = x^3 + y^2 - 4xy$.
	A. $d^2z = 6x dx^2 - 8dxdy + 2dy^2$
	$B. d^2z = 6x dx^2 - 4dxdy + 2dy^2$
	C. $d^2z = 6x dx^2 + 8dxdy + 2dy^2$
	$D. d^2z = 6x dx^2 + 4dxdy + 2dy^2$
	Câu 11: Tính vi phân cấp hai của hàm số $z = y \ln x$.
	A. $d^2z = -\frac{y}{x^2} dx^2 + \frac{2}{x} dx dy + \frac{1}{x} dy^2$
	$\underline{\mathbf{B}}.\ d^2z = -\frac{y}{x^2}\ dx^2 + \frac{2}{x}dxdy$
	C. $d^2z = \frac{y}{x^2} dx^2 + \frac{2}{x} dx dy$
	D. $d^2z = -\frac{y}{x^2} dx^2 - \frac{2}{x} dx dy$
	Câu 12: Cho hàm hợp một biến độc lập $z=x^5e^{6y}$ với $y=arcsinx$, khẳng
	định đúng là:
	$\underline{A}. \frac{dz}{dx} = \left(5 + \frac{6x}{\sqrt{1-x^2}}\right) x^4 e^{6 \arcsin x}$
	B. $\frac{dz}{dx} = \left(5 + \frac{x}{\sqrt{1 - x^2}}\right) x^4 e^{6 \arcsin x}$
	C. $\frac{dz}{dx} = \left(5 + \frac{6}{\sqrt{1 - x^2}}\right) x^4 e^{6 \arcsin x}$
	$u\lambda$ $($ $v_1-\lambda$
	D. $\frac{dz}{dx} = \left(5 + \frac{1}{\sqrt{1 - x^2}}\right) x^4 e^{6 \arcsin x}$

Câu 13: Cho hàm hợp một biến độc lập $z=e^{x^2}\ln\sqrt{y}$, $y=x^2+1$, khẳng
định đúng là:

A.
$$\frac{dz}{dx}(-1) = -e(2 \ln 2 + 1)$$

B.
$$\frac{dz}{dx}(-1) = e(2 \ln 2 + 1)$$

$$\underline{C}$$
. $\frac{dz}{dx}(-1) = -\frac{e}{2}(2 \ln 2 + 1)$

D.
$$\frac{dz}{dx}(-1) = \frac{e}{2}(2 \ln 2 + 1)$$

Câu 14: Cho hàm số hợp một biến độc lập $z = e^{2y} \ln x$ với $x = t^4$ và y = $t^2 + 1$, khẳng định đúng là:

A.
$$\frac{dz}{dt} = 4e^{2(t^2+1)} \ln t^4 + \frac{4e^2(t^2+1)}{t}$$

B.
$$\frac{dz}{dt} = 4te^{2(t^2+1)} \ln t^4 + \frac{e^2(t^2+1)}{t}$$

C.
$$\frac{dz}{dt} = te^{2(t^2+1)} \ln t^4 + \frac{4e^2(t^2+1)}{t}$$

$$\underline{\mathbf{D}}. \frac{dz}{dt} = 4te^{2(t^2+1)} \ln t^4 + \frac{4e^2(t^2+1)}{t}$$

Câu 15: Cho hàm số hợp hai biến độc lập $f(x,y) = arctan(x^2 - y)$ với $x = \ln s$ và $y = \sin^3 t$, khẳng định đúng là:

A.
$$f'_s(x,y) = \frac{\ln s}{1 + (\ln^2 s - \sin^3 t)^2}$$

B.
$$f'_s(x,y) = \frac{2 \ln s}{1 + (\ln^2 s - \sin^3 t)^2}$$

C.
$$f_s'(x,y) = \frac{\ln s}{s[1+(\ln^2 s - \sin^3 t)^2]}$$

A.
$$f'_s(x,y) = \frac{\ln s}{1 + (\ln^2 s - \sin^3 t)^2}$$

B. $f'_s(x,y) = \frac{2 \ln s}{1 + (\ln^2 s - \sin^3 t)^2}$
C. $f'_s(x,y) = \frac{\ln s}{s[1 + (\ln^2 s - \sin^3 t)^2]}$
D. $f'_s(x,y) = \frac{2 \ln s}{s[1 + (\ln^2 s - \sin^3 t)^2]}$

Câu 16: Cho hàm số hợp hai biến độc lập $f(x,y) = arctan(x^2 - y)$ với $x = \ln s$ và $y = \sin^3 t$, khẳng định đúng là:

A.
$$f'_t(x,y) = -\frac{3\sin^2 t \cos t}{1 + (\ln^2 s - \sin^3 t)^2}$$

B.
$$f'_t(x,y) = \frac{3 \sin^2 t \cos t}{1 + (\ln^2 s - \sin^3 t)^2}$$

C.
$$f'_t(x,y) = -\frac{3 \sin^2 t}{1 + (\ln^2 s - \sin^3 t)^2}$$

B.
$$f'_t(x,y) = \frac{3 \sin^2 t \cos t}{1 + (\ln^2 s - \sin^3 t)^2}$$

C. $f'_t(x,y) = -\frac{3 \sin^2 t}{1 + (\ln^2 s - \sin^3 t)^2}$
D. $f'_t(x,y) = \frac{3 \sin^2 t}{1 + (\ln^2 s - \sin^3 t)^2}$

Câu 17: Cho hàm ẩn y = y(x) xác định bởi phương trình $2x + 3y = e^{4y}$. Khi đó đạo hàm của hàm ẩn là:

A.
$$y'(x) = \frac{2x}{4e^{4y}-3}$$

B.
$$y'(x) = \frac{-2}{4e^{4y}-3}$$

C.
$$y'(x) = \frac{3}{4e^{4y}-3}$$

$\underline{D}. \ y'(x) = \frac{2}{4e^{4y} - 3}$
Câu 18: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm
riêng của $z(x, y)$ theo biến x bằng
$A. \ z_{\chi}' = \frac{xye^{z/x}}{x^2 + xye^{z/x}}$
$x^2 + xye^{z/x}$
B. $z_x' = \frac{ze^{z/x}}{x^2 - xye^{z/x}}$
$C. z_x' = \frac{ye^{z/x}}{-x^2 + xye^{z/x}}$
$\underline{D}.\ z_x' = \frac{yze^{z/x}}{-x^2 + xye^{z/x}}$
Câu 19: Cho hàm ẩn $y = y(x)$ xác định từ phương trình $\ln \sqrt{x^2 + y^2} = x^2$
$\arctan \frac{\lambda}{y}$. Khi đó đạo hàm của hàm ẩn là:
A. $y'(x) = \frac{x-y}{x}$
A. $y'(x) = \frac{x-y}{x+y}$ $\underline{B}. \ y'(x) = -\frac{x-y}{x+y}$ $C. \ y'(x) = \frac{x+y}{x-y}$
D. $y'(x) = \frac{x+y}{y-x}$
Câu 20: Khảo sát cực trị của hàm số $z = x^3 - y^3 + 3x^2y + 6y^2$, ta được:
A. Một điểm dừng.
B. Hai điểm dừng.
C. Ba điểm dừng.
D. Bốn điểm dừng
Câu 21: Khảo sát cực trị của hàm số $z = 2x^3 - 4y^3 - 6xy^2 - 21y^2 +$
$9x^2 - 18xy - 24y$, ta được:
A. Hai điểm dừng.
B. Ba điểm dừng.
C. Bốn điểm dừng.
D. Năm điểm dừng.
Câu 22: Khảo sát cực trị ta được $M_1\left(-\frac{1}{2},-\frac{1}{2}\right)$; $M_2\left(-\frac{1}{2},-\frac{5}{2}\right)$ là hai trong
số các điểm dừng của hàm số $z=2x^3-4y^3-6xy^2-21y^2+9x^2-$
18xy-24y. Khẳng định đúng là:
A. M_1 là điểm cực đại và M_2 là điểm cực đại.
B. M_1 là điểm cực tiểu và M_2 là điểm cực tiểu.
C. M_1 không là điểm cực trị và M_2 là điểm cực đại.
D. M_1 không là điểm cực trị và M_2 là điểm cực tiểu.
Câu 23: Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là:
A. $(0,0)$ và $(-1,2)$
B. $(0,0)$ và $(-2,-2)$
C. $(-1, -1)$ và $(2,2)$
D. (0,0) và (2,2)

, FO 20
Câu 24: Giá trị cực tiểu của hàm $f = xy + \frac{50}{x} + \frac{20}{y}$; $x, y > 0$ là:
<u>A</u> . 30.
B. 15.
C. 19.
D15.
Câu 25: Cho hàm số $z = x^6 - y^5 - \cos^2 x - 32y$. Hãy chọn khẳng định
đúng:
A. z đạt cực đại tại (1;2)
B. z đạt cực tiểu tại (1;2)
C. z không có điểm dừng
D. z có 1 cực trị
Câu 26: Tìm cực trị của hàm số $z = \ln(x^2 - 2y)$ với điều kiện $x - y - 2 =$
0. Hãy chọn khẳng định đúng:
A. z đạt cực đại tại $(1; -1)$
B. z đạt cực tiểu tại $(1;-1)$
C. z có 2 cực trị
D. z không có cực trị
Câu 27: Cho hàm số $z = x^2 - 2x + y^2$. Hãy chọn khẳng định đúng:
A. z đạt cực đại tại M(1;0)
B. z đạt cực tiểu tại M(1;0)
C. z có một cực đại và một cực tiểu
D. z không có cực trị
Câu 28: Cho hàm số $z = x^4 - 8x^2 + y^2 + 5$. Hãy chọn khẳng định đúng:
A. z đạt cực đại tại (0;0)
B. z đạt cực tiểu tại (2;0) và (-2;0)
C. z chỉ có đúng 2 điểm dừng
D. z đạt cực đại tại (2;0) và (-2;0)
Câu 29: Cho hàm số $z = x^2 - 2xy + 5$. Hãy chọn khẳng định đúng:
A. z đạt cực đại tại (0;0)
B. z đạt cực tiểu tại (0;0)
C. z có một cực đại và một cực tiểu
D. z một điểm dừng
 Câu 30: Cho hàm số $z = x^2 - xy + y^2$. Hãy chọn khẳng định đúng:
A. z đạt cực đại tại (0;0)
B. z đạt cực tiểu tại (0;0)
C. z không có cực trị
 D. z không có điểm dừng
 Câu 31: Cho hàm số $z = x^3 + y^3 - 12x - 3y$. Hãy chọn khẳng định đúng:
A. z đạt cực đại tại (2;1)
B. z đạt cực tiểu tại (2;-1)
C. z có đúng 2 điểm dừng
D. z có 4 điểm dừng

	Câu 32: Cho hàm số $z = x^4 - y^4 - 4x + 32y$. Hãy chọn khẳng định đúng:
	A. z đạt cực đại tại (1;2)
	B. z đạt cực tiểu tại (1;2)
	C. z không có điểm dừng
Chươn	D. z không có cực trị
g 2	Tích phân bội
	Câu 1: Cho miền <i>D</i> được giới hạn bởi các đường thẳng $x = 3, x = 5, 3x -$
	$2y + 4 = 0$, $3x - 2y + 1 = 0$. Tích phân bội hai $I = \iint_D f(x, y) dx dy$ được
	đưa về tích phân lặp là: $\frac{3x+4}{3x+4}$
	A. $I = \int_3^5 dy \int_{\frac{3x+1}{2}}^{\frac{2}{3x+1}} f(x,y) dx$
	$\underline{B}. \ I = \int_3^5 dx \int_{\frac{3x+1}{2}}^{\frac{3x+4}{2}} f(x,y) dy$
	C. $I = \int_{\frac{3x+4}{2}}^{\frac{3x+4}{2}} dy \int_{3}^{5} f(x,y) dx$
	D. $I = \int_3^5 dx \int_{\frac{3x+4}{2}}^{\frac{3x+1}{2}} f(x,y) dy$
	Câu 2: Miền phẳng $D = \{(x, y) \in \mathbb{R}^2 x^2 + y^2 + 2y \le 0, x + y \le 0\}$ được viết lại trong tọa độ cực là:
	$\underline{A}. \ D_{r\varphi} = \left\{ (\varphi, r) -\frac{\pi}{4} \le \varphi \le \pi, 0 \le r \le -2\sin\varphi \right\}$
	$\underline{\mathbf{B}}.\ \ D_{r\varphi} = \left\{ (\varphi, r) -\frac{\pi}{4} \le \varphi \le 0, 0 \le r \le -2\sin\varphi \right\}$
	C. $D_{r\varphi} = \left\{ (\varphi, r) -\pi \le \varphi \le -\frac{\pi}{4}, 0 \le r \le -2\sin\varphi \right\}$
	D. $D_{r\varphi} = \left\{ (\varphi, r) -\pi \le \varphi \le -\frac{\pi}{4}, -2\sin\varphi \le r \le 0 \right\}$
	Câu 3: Cho miền $D = \{(x, y) \in \mathbb{R}^2 x^2 + y^2 \le 4y \}$. Tích phân bội hai $I =$
	$\iint_D f(x,y)dxdy \text{ dược viết lại trong tọa độ cực là:}$
	A. $I = \int_0^{\pi} d\varphi \int_0^{4\sin\varphi} f(r\cos\varphi, r\sin\varphi) r dr$
	B. $I = \int_0^{2\pi} d\varphi \int_0^{4\sin\varphi} f(r\cos\varphi, r\sin\varphi) r dr$
	C. $I = \int_0^{\pi} d\varphi \int_0^{2\sin\varphi} f(r\cos\varphi, r\sin\varphi) r dr$
	D. $I = \int_0^{2\pi} d\varphi \int_0^{2\sin\varphi} f(r\cos\varphi, r\sin\varphi) r dr$
	Câu 4: Giá trị của tích phân $I = 2 \int_0^1 dy \int_0^y e^{x+y} dx$ là:
	A. $I = e^2 - 1$
	$\underline{\mathbf{B}}. \ I = e^2 - 2e + 1$
	C. $I = e^2 + 2e + 1$
	D. $I = e^2 + 2e - 1$

Câu 5: Giá trị của tích phân $I = \int_0^2 dx \int_0^{\ln x} 6x e^y dy$ là:
$\triangle \cdot I = 4$
B. $I=5$
C. $I = 6$ D. $I = 7$
Câu 6: Cho miền $D = \{(x, y) \in \mathbb{R}^2 x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$. Giá trị của
tích phân $I = \iint_D \frac{4dxdy}{\sqrt{1+x^2+y^2}}$ là:
A. $I=2\pi$
B. $I = (\sqrt{3} - \sqrt{2})2\pi$
C. $I = 2\pi\sqrt{2}$
D. $I = (\sqrt{2} - 1)2\pi$
Câu 7: Cho miền $D = \{(x, y) \in \mathbb{R}^2 x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$. Giá trị của
tích phân $I = \iint_D x^2 y^3 dx dy$ là:
A. $I = \frac{2\pi}{15}$ B. $I = \frac{4\pi}{15}$
B. $I = \frac{4\pi}{4\pi}$
$\underline{\mathbf{C}}. \ I = \frac{15}{105}$
105
D. $I = \frac{4}{105}$
Câu 8: Trong $Oxyz$, cho khối Ω được giới hạn bởi các mặt $x=0,y=0,z=0$
0 và $x + y + z + 1 = 0$. Tích phân $I = \iiint_{\Omega} f(x, y, z) dx dy dz$ được đưa về
tích phân lặp là:
A. $I = \int_0^1 dy \int_0^{1-y} dx \int_0^{1-x-y} f(x, y, z) dz$
B. $I = \int_{-1}^{0} dy \int_{-1-y}^{0} dx \int_{-1-x-y}^{0} f(x, y, z) dz$
C. $I = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} f(x, y, z) dz$
D. $I = \int_{-1}^{0} dx \int_{-1-y}^{0} dy \int_{-1-x-y}^{0} f(x, y, z) dz$
Câu 9: Trong $Oxyz$, cho khối Ω được giới hạn bởi các mặt $z=4$ và $z=$
$x^2 + y^2$. Tích phân $I = \iiint_{\Omega} f(x, y, z) dx dy dz$ được viết trong tọa độ trụ là:
A. $I = \int_0^{2\pi} d\varphi \int_0^2 r dr \int_{r^2}^4 f(r\cos\varphi, r\sin\varphi, z) dz$
B. $I = \int_0^{2\pi} d\varphi \int_0^4 r dr \int_{r^2}^4 f(r \cos \varphi, r \sin \varphi, z) dz$
C. $I = \int_0^{2\pi} d\varphi \int_0^2 r dr \int_4^{r^2} f(r\cos\varphi, r\sin\varphi, z) dz$
D. $I = \int_0^{2\pi} d\varphi \int_0^4 r dr \int_4^{r^2} f(r\cos\varphi, r\sin\varphi, z) dz$
Câu 10: Trong $Oxyz$, cho khối Ω được giới hạn bởi các mặt $z=0$, $z=1$ và
$x^2 + y^2 + 2y = 0$. Tích phân $I = \iiint_{\Omega} z\sqrt{x^2 + y^2} dx dy dz$ được viết trong
tọa độ trụ là:
 A. $I = \int_{\pi}^{2\pi} d\varphi \int_{0}^{-2\sin\varphi} r^{2} dr \int_{0}^{1} z dz$

	B. $I = \int_0^{\pi} d\varphi \int_0^{-2\sin\varphi} r^2 dr \int_0^1 z dz$
	C. $I = \int_{\pi}^{2\pi} d\varphi \int_{0}^{2\sin\varphi} r^{2} dr \int_{0}^{1} z dz$
	D. $I = \int_0^{\pi} d\varphi \int_0^{2\sin\varphi} r^2 dr \int_0^1 z dz$
Câ	u 11: Trong $Oxyz$, cho khối $\Omega = \{1 \le x^2 + y^2 + z^2 \le 4\}$. Tích phân $I =$
$\int \int $	$\int_{\Omega} f(x,y,z) dx dy dz$ được viết trong tọa độ cầu là:
	A. $I = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta \int_1^4 rf(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta) dr$
	B. $I = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta \int_1^4 r^2 f(r \sin\theta \cos\varphi, r \sin\theta \sin\varphi, r \cos\theta) dr$
	C. $I = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta \int_1^2 r^2 f(r \sin\theta \sin\varphi, r \sin\theta \cos\varphi, r \cos\theta) dr$
	D. $I = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta \int_1^2 r^2 f(r \sin\theta \cos\varphi, r \sin\theta \sin\varphi, r \cos\theta) dr$
	iu 12: Giá trị của tích phân $I = \int_0^1 dx \int_0^x dy \int_0^{y^2} dz$ là:
	$\underline{A}.\ \ I = \frac{1}{12}$
	B. $I = \frac{1}{6}$
	C. $I = \frac{6}{3}$
	D. $I = \frac{1}{2}$
Câ	u 13: Cho miền $D = \{(x, y) \in \mathbb{R}^2 x^2 + y^2 \le 1\}$. Giá trị của tích phân $I =$
D	$\sqrt{x^2 + y^2} dxdy$ là:
	$\underline{A}. I = \frac{2\pi}{3}$
	B. $I = \frac{\pi}{3}$
	C. $I = \frac{4\pi}{3}$
	D. $I = \frac{\pi}{2}$
	u 14: Cho miền $D = \{(x, y) \in \mathbb{R}^2 y = x^2, y = 1\}$. Giá trị của tích phân
	$= \iint_{D} \frac{2y dx dy}{8} $ là:
	A. $I = \frac{8}{5}$
	$\underline{B}.\ \ I = \frac{\frac{3}{4}}{\frac{3}{3}}$
	C. $I = \frac{2}{3}$
	D. $I = \frac{1}{5}$
	10. 15: Cho miền $D = \{(x, y) \in \mathbb{R}^2 0 \le x \le 1, 0 \le y \le x^3 \}$. Tích phân li hại $I = \{(x, y) dy dy được được về tích phân lặp là:$
	i hai $I = \iint_D f(x,y) dx dy$ được đưa về tích phân lặp là:
	A. $I = \int_0^1 dy \int_{\sqrt[3]{y}}^1 f(x, y) dx$
	$ \frac{1}{B} I = \int_0^{x^3} dy \int_0^1 f(x, y) dx $
	C. $I = \int_0^1 dy \int_1^{\sqrt[3]{y}} f(x, y) dx$

D. $I = \int_{\sqrt[3]{y}}^{1} dx \int_{0}^{1} f(x, y) dy$
Câu 16: Cho miền $D = \{(x, y) \in \mathbb{R}^2 x^2 + y^2 \le 1, y \ge 0\}$. Tích phân bội
hai $I = \iint_D f(x,y) dx dy$ được đưa về tích phân lặp là:
A. $I = \int_{-1}^{1} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx$
$\underline{B}. \ I = \int_0^1 dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx$
C. $I = \int_{-1}^{1} dy \int_{0}^{\sqrt{1-y^2}} f(x,y) dx$
D. $I = \int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$
Câu 17: Trong $Oxyz$, cho miền Ω được giới hạn bởi các mặt $z=0, z=1$ và
$x^2 + y^2 = 1$. Giá trị của tích phân $I = \iiint_{\Omega} \frac{dxdydz}{\sqrt{x^2 + y^2}}$ là:
$\underline{A}.\ I=2\pi$
B. $I = \pi$
C. $I = 3\pi$ D. $I = 4\pi$
Câu 18: Trong $Oxyz$, cho miền Ω được giới hạn bởi các mặt $z=0, z=3$ và
$x^2 + y^2 = 4$. Giá trị của tích phân $I = \iiint_{\Omega} (\sqrt{x^2 + y^2} + 1) dx dy dz$ là:
$\triangle . I = \frac{84\pi}{3}$
$C. I = \frac{4\pi}{4\pi}$
B. $I = \frac{80\pi}{3}$ C. $I = \frac{4\pi}{3}$ D. $I = \frac{8\pi}{3}$
Câu 19: Trong $Oxyz$, cho miền $\Omega = \{x^2 + y^2 + z^2 \le R^2, z \ge 0\}$. Tích phân
$I = \iiint_{\Omega} \frac{dx dy dz}{\sqrt{x^2 + y^2 + z^2}} d\text{trong tọa độ cầu là:}$
A. $I = \int_0^{2\pi} d\varphi \int_0^{\frac{\pi}{4}} \sin\theta \ d\theta \int_0^R r^2 dr$
B. $I = \int_0^{2\pi} d\varphi \int_0^{\frac{\pi}{4}} \sin\theta \ d\theta \int_0^R r dr$
C. $I = \int_0^{2\pi} d\varphi \int_0^{\frac{\pi}{2}} \sin\theta d\theta \int_0^R r dr$
D. $= \int_0^{2\pi} d\varphi \int_0^{\frac{\kappa}{2}} \sin\theta \ d\theta \int_0^R r^2 dr$
Câu 20: Cho miền D giới hạn bởi các đường $y = \sqrt{x}, y = x^3$. Tích phân bội
hai $I = \iint_D dxdy$ có giá trị là:
A. $I = \frac{\sqrt{2}}{3}$
A. $I = \frac{\sqrt{2}}{3}$ B. $I = \frac{5}{12}$ C. $I = \frac{5}{6}$ D. $I = \frac{5}{3}$
C. $I = \frac{5}{6}$
D. $I = \frac{5}{3}$

	Câu 21: Cho miền $D = \{(x, y) \in \mathbb{R}^2 x^2 + y^2 \le 16, x \ge 0, y \ge 0\}$. Tích
	phân bội hai $I = \iint_D xy dx dy$ có giá trị là:
	A. $I = 32$
	B. $I = 64$
	C. $I = 90$ D. $I = 120$
	Câu 22: Trong $Oxyz$, cho miền $\Omega = [0,1] \times [0,1] \times [0,1]$. Giá trị của tích
	phân $I = \iiint_{\Omega} 24xy^2z^3dxdydz$ là:
	A. $I=1$
	B. $I = 2$
	C. $I = 3$
	D. $I=4$ Câu 23: Trong $Oxyz$, cho miền Ω giới hạn bởi các mặt $z=\sqrt{x^2+y^2}$ và $z=$
	1. Giá trị của tích phân $I = \iiint_{\Omega} 2z dx dy dz$ là:
	$\underline{A}.\ I = \frac{n}{2}$
	B. $I = \pi$ C. $I = \frac{3\pi}{2}$
	2
	D. $I = 2\pi$ Câu 24: Cho miền D giới hạn bởi các đường $y = x$ và $y = 2 - x$. Tích phân
	bội hai $I = \iint_D (x - y) dx dy$ có giá trị là:
	A. $I = -\frac{81}{20}$
	B. $I = \frac{81}{20}$
	C. $I = 0$
	D. $I = \frac{21}{20}$
	Câu 25: Cho miền $D = \{(x, y) \in \mathbb{R}^2 x^2 + y^2 \le 2x, y \ge 0\}$. Tích phân bội
	hai $I = \iint_D (\sqrt{x^2 + y^2} + x) dx dy$ được viết lại trong tọa độ cực là:
	A. $I = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} (1 + \cos\varphi) r^2 dr$
	B. $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} (1 + \cos\varphi) r^{2} dr$
	C. $I = \int_0^{\frac{\pi^2}{2}} d\varphi \int_0^{2\cos\varphi} (1 + \cos\varphi) r dr$
	D. $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} (1+\cos\varphi) r dr$
Chương 3	Tích phân đường, Tích phân mặt

	Câu 1. Cho tích phân $I = \int_C x^2 ds$, với C là cung tròn có phương trình
	tham số $x = 2\cos t$, $y = 2\sin t$, $0 \le t \le \pi$. Giá trị của I là:
	$A. I = 2\pi$
	$B. I = 4\pi$
	$C. I = 6\pi$
	$D. I = 8\pi$
	Câu 2. Cho tích phân $I = \int_{L} (x^2 - y) ds$, trong đó L là đoạn thẳng nối điểm
	A(0,2) và điểm $B(-2,-3)$. Giá trị của I là:
	A. $I = \frac{13}{6}\sqrt{29}$
	B. $I = \frac{13}{8}\sqrt{29}$
	C. $I = \frac{11}{6}\sqrt{29}$
	D. $I = \frac{11}{8}\sqrt{29}$
	Câu 3. Cho tích phân $I = \int_{\widetilde{OA}} \frac{3y}{\sqrt{4x^2+1}} ds$, trong đó \widetilde{OA} : $y = x^2$ nối điểm
	O(0,0) và điểm $A(-2,4)$. Giá trị của I là:
	A. $I = 12$
	B. $I = -12$
	C. I = -8
	D. $I = 8$
	Câu 4. Cho tích phân $I = \int_C (x^2 + y^2) ds$, trong đó C là đường tròn có
	phương trình $x^2 + y^2 - 2y = 0$. Giá trị của I là:
	$A. I = 4\pi\sqrt{2}$
	$B. I = 4\pi$
	$C. I = 8\pi$
	$D. I = 8\pi\sqrt{2}$
	Câu 5. Cho một dây thép có dạng đoạn thẳng trong mặt phẳng Oxy nối
	điểm $A(1,1)$ và điểm $B(3,-5)$ với hàm mật độ khối lượng là $\rho(x,y) = (x-y)^2$. Khối lượng của dây thép đã cho là:
	A. $m = \frac{16}{3}\sqrt{10}$
	3
	B. $m = \frac{32}{3}\sqrt{10}$
_	

C. $m = \frac{125}{3}\sqrt{10}$
D. $m = \frac{128}{3}\sqrt{10}$
Câu 6. Cho một dây thép có dạng parabol $y = x^2$ trong mặt phẳng Oxy nối điểm $O(0,0)$ và điểm $A(1,1)$ với hàm mật độ khối lượng là $\rho(x,y) =$
$x\sqrt{1+4y}$. Khối lượng của dây thép đã cho là:
$A. m = \frac{3}{4}$
B. $m = \frac{4}{3}$
C. $m = \frac{3}{2}$
D. $m = \frac{2}{3}$
Câu 7. Cho tích phân $I = \int_{\widetilde{AB}} x dx + (x - y) dy$, trong đó \widetilde{AB} có phương
trình $x = t^2$, $y = 4 - t$ với $A(0,4)$ và $B(4,6)$. Giá trị của I là:
A. $I = \frac{2}{3}$
B. $I = -\frac{2}{3}$
C. $I = \frac{34}{3}$
D. $I = -\frac{34}{3}$
Câu 8. Tích phân không phụ thuộc vào các đường tron từng khúc nối hai điểm <i>A</i> và <i>B</i> là:
A. $I = \int_{\widetilde{AB}} (4xy^3 + 2x)dx + (y^4 + 2y - x)dy$
B. $I = \int_{\widetilde{AB}} (4xy^3 + 2x - 1)dx + (y^4 + 6x^2y^2 - 1)dy$
C. $I = \int_{\widetilde{AB}} (4xy^3 + 2x)dx - (y^4 + 2y - x)dy$
D. $I = \int_{\widetilde{AB}} (4xy^3 + 2x - 1)dx - (y^4 + 6x^2y^2 - 1)dy$
Câu 9. Cho tích phân $I = \int_{\widetilde{AB}} 5x^4y^5dx + 5x^5y^4dy$, \widetilde{AB} : $y = \ln x$ với $A(1,0)$ và $B(e,1)$. Giá trị của I là:
A. I = 0
$B. I = -e^3$
$C. I = -e^5$

D. $I = e^5$
Câu 10. Cho tích phân $I = \int_{\widetilde{AB}} e^y dx + x e^y dy$, \widetilde{AB} : $y = x^3 - 3x + 2$ với $A(1,0)$ và $B(0,2)$. Giá trị của I là: A. $I = 1$ B. $I = -1$ C. $I = -e$
D. I = e
Câu 11. Công sinh ra khi lực $\vec{F}(x,y) = 3x^2\vec{\imath} + 2y\vec{\jmath}$ tác động lên chất điểm $M(x,y)$ làm dịch chuyển điểm M từ điểm $A(2,4)$ đến điểm $B(-1,1)$ trên đường cong $C: y = x^2$ là:
B. $W = 24$.
B. $W = 24$. C. $W = -12$.
D. $W = 12$.
Câu 12. Công sinh ra khi lực $\vec{F}(x,y,z) = (x,-xy,-xyz)$ tác động lên chất điểm $M(x,y,z)$ từ điểm $A(1,1,-1)$ đến điểm $B(1,0,0)$ trên đường cong $C: x = 1, y = t^2, z = -t$ là:
A. $W = -\frac{3}{4}$
B. $W = \frac{3}{4}$
C. $W = -\frac{1}{4}$
C. $W = -\frac{1}{4}$ D. $W = \frac{1}{4}$
Câu 13. Cho tích phân $I = \iint_S xdS$, trong đó S là hình ΔABC với $A(1,0,0)$, $B(0,2,0)$ và $C(0,0,4)$. Giá trị của I là:
A. $I = \frac{\sqrt{21}}{3}$
B. $I = \frac{\sqrt{21}}{4}$
C. $I = \frac{\sqrt{21}}{5}$ D. $I = \frac{\sqrt{21}}{6}$
$D. I = \frac{\sqrt{21}}{6}$

Câu 14. Cho tích phân $I = \iint_S z dS$, trong đó S là phần parabolic $z = x^2 + y^2$ nằm dưới mặt phẳng z = 4. Giá trị của I là:

A.
$$I = \frac{391\sqrt{17}+1}{120}\pi$$

B.
$$I = \frac{391\sqrt{17}}{120}\pi$$

C.
$$I = \frac{391\sqrt{17}+1}{60}\pi$$

D.
$$I = \frac{391\sqrt{17}}{60}\pi$$

Câu 15. Diện tích của phần mặt nón $z=\sqrt{x^2+y^2}$ nằm phía dưới mặt phẳng z=1 là

A.
$$S = 4\pi\sqrt{2}$$

B.
$$S = 3\pi\sqrt{2}$$

C.
$$S = 2\pi\sqrt{2}$$

D.
$$S = \pi \sqrt{2}$$

Câu 16. Diện tích của phần mặt parabolic $z = 4 - x^2 - y^2$ nằm trong mặt trụ $x^2 + y^2 - 2y = 0$ được tính theo công thức

A.
$$S = \int_0^{\pi} d\varphi \int_0^{2 \sin \varphi} r \sqrt{1 + r^2} dr$$

B.
$$S = \int_0^{\pi} d\varphi \int_0^{2\sin\varphi} r\sqrt{1 + 4r^2} dr$$

C.
$$S = \int_0^{2\pi} d\varphi \int_0^{2\sin\varphi} r\sqrt{1 + 8r^2} dr$$

D.
$$S = \int_0^{2\pi} d\varphi \int_0^{\sin\varphi} r\sqrt{1 + 16r^2} dr$$

Câu 17. Tích phân mặt loại hai $I = \iint_S x dx dy - y dz dx + z dy dz$, với S là một phần mặt phía trên của mặt phẳng x + 2y - 2z = 0 có biểu diễn thành tích phân mặt loại một là:

A.
$$I = \frac{1}{3} \iint_{S} (x - 2y + 2z) dS$$

B.
$$I = -\frac{1}{3} \iint_{S} (2x - 2y + z) dS$$

C.
$$I = -\frac{1}{3} \iint_{S} (x - 2y + 2z) dS$$

D.
$$I = \frac{1}{3} \iint_{S} (2x + 2y - z) dS$$

Câu 18. Tích phân $I=\iint_S dxdy$, với S là mặt dưới của mặt $z=2$ được giới hạn bởi $x^2+y^2\leq 1$, có giá trị là $A. I=\pi$ B. $I=-\pi$ C. $I=2\pi$ D. $I=-2\pi$
Câu 19. Tích phân $I = \iint_S x dx dy$, với S là mặt trên của mặt $z=2$ được giới hạn bởi $x \geq 0$, $y \geq 0$ và $x+y \leq 1$, có giá trị là: A. $I=1$ B. $I=2$ C. $I=3$ D. $I=4$
Câu 20. Tích phân $I= \oiint_S 4y^2zdxdy+x^2ydxdz+x^3dydz$, với S là mặt biên ngoài của miền bị chặn giới hạn bởi $z=2$, $z=0$ và $x^2+y^2=1$, có giá trị là: A. $I=\pi$ B. $I=2\pi$ C. $I=4\pi$ D. $I=8\pi$
Câu 21. Tích phân $I=\oiint_S x^2zdxdy+xz^2dydz+\frac{y^3}{3}dzdx$, với S là mặt biên ngoài của hình cầu $x^2+y^2+z^2\leq 1$, có giá trị là: A. $I=\frac{\pi}{5}$ B. $I=\frac{2\pi}{5}$ C. $I=\frac{3\pi}{5}$ D. $I=\frac{4\pi}{5}$
Câu 22. Tích phân $I=\oint_S 3xdydz+2zdzdx+dxdy$, với S là mặt biên ngoài của hình cầu $x^2+y^2+z^2-2z=0$, có giá trị là: A. $I=\pi$ B. $I=2\pi$

	$C. I = 4\pi$
	D. $I = 8\pi$
	Câu 23. Tích phân $I = \oiint_S x^2 dy dz + z^2 dx dy$, với S là mặt biên ngoài của miền bị chặn giới hạn bởi $z = \sqrt{x^2 + y^2}$ và $z = 1$, có giá trị là: A. $I = \frac{\pi}{2}$ B. $I = \frac{3\pi}{4}$ C. $I = \frac{2\pi}{3}$ D. $I = \frac{5\pi}{6}$
	Câu 24. Cho một phần của mặt parabolic $S: x + y + z = 1$ được giới hạn bởi $x^2 + y^2 \le 1$ có hàm mật độ $\rho(x, y, z) = x^2 + y^2$. Khối lượng của S là
	A. $m = \frac{\pi\sqrt{3}}{2}$ B. $m = \frac{\pi\sqrt{3}}{3}$
	$C. m = \frac{\pi\sqrt{3}}{4}$
	D. $m = \frac{\pi\sqrt{3}}{6}$
	Câu 25. Cho một phần của mặt parabolic $S: z = x^2 + y^2$ được giới hạn bởi $x^2 + y^2 \le 4$ có hàm mật độ $\rho(x, y, z) = \sqrt{1 + 4z}$. Khối lượng của S được tính theo công thức:
	A. $m = \int_0^{2\pi} d\varphi \int_0^2 r(1+4r^2)dr$
	B. $m = \int_0^{2\pi} d\varphi \int_0^2 r\sqrt{1 + 4r^2} dr$
	C. $m = \int_0^{\pi} d\varphi \int_0^2 r(1+4r^2)dr$
	D. $m = \int_0^{\pi} d\varphi \int_0^2 r \sqrt{1 + 4r^2} dr$
Chương 4	Phương trình vi phân
	Câu 1: Phương trình vi phân $\frac{dx}{1+x^2} + \frac{dy}{\sqrt{1-y^2}} = 0$ có nghiệm tổng quát là:
	A. $y = C - \sin(\arctan x)$
	B. $y = \sin(C - \arctan x)$ C. $y = \sin C - \sin(\arctan x)$
	D. $y = \arctan(C - \sin x)$

Câu 2: Phương trình vi phân $x(y^2 + 1)dx = y(x^2 + 1)dy$ có nghiệm tổng
quát là: $\frac{1}{2} = \frac{1}{2} = 1$
A. $(x^2 + 1)(y^2 + 1) = C$ B. $(x^2 + 1) + (y^2 + 1) = C$
C. $(y^2 + 1) + (y^2 + 1) - C$
D. $y^2 = C(x^2 + 1) - 1$
Câu 3: Phương trình vi phân $\frac{dx}{x(y-1)} + \frac{dy}{y(x+2)} = 0$ với điều kiện $y(1) = 1$ có
nghiệm là:
$A. x^2 = ye^{2-x-y}$
$B. y^2 = xe^{2-x-y}$
$C. x^2 y = e^{2-x-y}$
$D. xy^2 = e^{2-x-y}$
Câu 4: Phương trình vi phân $y' = e^{x+y} + e^{x-y}$ với điều kiện $y(0) = 0$ có nghiệm là:
$A. e^{y} = \tan\left(x + \frac{\pi}{4}\right)$
B. $e^x = \tan\left(y + \frac{\pi}{4}\right)$
C. $e^y = \tan\left(e^x + \frac{\pi}{4} - 1\right)$
$D. e^x = \tan\left(e^y + \frac{\pi}{4} - 1\right)$
Câu 5: Phương trình vi phân $y \ln^3 y + \sqrt{x+1}y' = 0$ với điều kiện $y(0) = 0$
e có nghiệm là:
A. $\ln^2 y = \frac{1}{2\sqrt{x+1}} + \frac{1}{2}$
B. $2 \ln^2 y = \frac{1}{\sqrt{x+1}} + 1$
C. $\frac{1}{2 \ln^2 y} = 2\sqrt{x+1} - \frac{3}{2}$
D. $\frac{1}{\ln^2 y} = 2\sqrt{x+1} - 1$
Câu 6: Phương trình vi phân $(xy' - y)$ arctan $\frac{y}{x} = x$ có nghiệm tổng quát
là:
$A. x^2 + y^2 = C e^{\frac{y}{x} \arctan \frac{y}{x}}$
$B. x^2 + y^2 = C e^{2\frac{y}{x} \arctan \frac{y}{x}}$
$C. x^2 + y^2 = C e^{\frac{y}{x} + \arctan \frac{y}{x}}$
$D. x^2 + y^2 = C e^{\frac{y}{x} - \arctan \frac{y}{x}}$
Câu 7: Phương trình vi phân $xy' = y + x \sin \frac{y}{x}$ với điều kiện $y(1) = \frac{\pi}{2}$ có
nghiệm là:
$A. 1 - \cos\frac{y}{x} = x^2 \left(\cos\frac{y}{x} + 1\right)$
$B. \cos \frac{y}{x} = x^2 \left(\cos \frac{y}{x} + 1 \right) - 1$
$C. \cos \frac{y}{x} = x^2 \left(\cos \frac{y}{x} - 1 \right) + 1$

<i>y</i>
 $D. \cos \frac{y}{x} - 1 = x^2 \left(\cos \frac{y}{x} + 1 \right)$
Câu 8: Phương trình vi phân $xy' = y + x$ với điều kiện $y(1) = 2$ có
nghiệm là:
$A. y = x(\ln x + 2x)$
$B. y = x \ln x + 2$
$C. y = 2(\ln x + x)$
D. $y = x(\ln x + 2)$
Câu 9: Phương trình vi phân $xy' = 2y - 2\sqrt{xy}$ có nghiệm tổng quát là:
$A. \sqrt{\frac{y}{x}} - 2 = C + \sqrt{x}$
$B. \sqrt{\frac{y}{x}} + 2 = C - \sqrt{x}$
$C. \sqrt{\frac{y}{x}} - 2 = C\sqrt{x}$
$D. \sqrt{\frac{y}{x}} + 2 = C\sqrt{x}$
Câu 10: Phương trình vi phân $(2xy + \sin y)dx + (x^2 + x\cos y)dy = 0$ có
nghiệm tổng quát là:
$A. x^2 y + x \sin y = C$
$B. x^2 y + x \cos y = C$
$C. 2x^2y + x \sin y + xy = C$
$D. x^2y + 2x\sin y = C$
Câu 11: Phương trình vi phân $(e^{x+y} + 3x^2)dx + (e^{x+y} + 4y^3)dy = 0$ với
điều kiện $y(0) = 0$ có nghiệm là:
A. $y^3 + x^4 + e^{x+y} - 1 = 0$
B. $y^4 + x^3 + e^{x+y} - 1 = 0$
C. $y^3 - x^4 + e^{x+y} - 1 = 0$
D. $y^4 - x^3 + e^{x+y} - 1 = 0$
Câu 12: Phương trình vi phân $xy' - y = x^2 \cos x$ có nghiệm tổng quát là:
$A. y = x \sin x - \frac{2 \sin x}{x^2} + C$
$B. y = x \sin x - \frac{2 \sin x}{x^2} + Cx$
$C. y = x \sin x + C^{x^2}$
$D. y = x \sin x + Cx$
Câu 13: Phương trình vi phân $4xy' + 3y = -e^x x^4 y^5$ có nghiệm tổng quát
là:
A. $y^4 = \frac{1}{x^3(C_1 e^{-x})}$
A. $y^4 = \frac{1}{x^3(C - e^{-x})}$ B. $y^4 = \frac{1}{x^2(C - e^{-x})}$ C. $y^4 = \frac{1}{x^3(C + e^x)}$ D. $y^4 = \frac{1}{x^2(C + e^x)}$
C. $y^4 = \frac{1}{x^3(C+e^x)}$
D. $y^4 = \frac{1}{2(1-y^2)}$
$x^2(C+e^x)$

Câu 14: Phương trình vi phân $y' + \frac{4}{x}y = \frac{3}{x^4}$ với điều kiện $y(1) - 0$ có
nghiệm là:
A. $y = \frac{3(x-1)}{x^4}$
B. $y = \frac{3(1-x)}{x^4}$
C. $y = \frac{3(x-1)}{x^5}$
D. $y = \frac{3(1-x)}{x^5}$
Câu 15: Phương trình vi phân $\sqrt{1-x^2}y' + y = \arcsin x$ với điều kiện
y(0) = 0 có nghiệm là:
$A. y = \arcsin x + e^{\arcsin x} - 1$
B. $y = \arcsin x + e^{-\arcsin x} - 1$
$C. y = \arcsin x - e^{\arcsin x} + 1$
$D. y = \arcsin x - e^{-\arcsin x} + 1$
Câu 16: Phương trình vi phân $y'' - 4y' + 3y = 0$ có nghiệm tổng quát là
$A. y = C_1 e^x + C_2 e^{3x}$
B. $y = e^x (C_1 \cos 3x + C_2 \sin 3x)$
$C. y = e^{3x} (C_1 \cos x + C_2 \sin x)$
D. $y = C_1 x^3 + C_2 x$
Câu 17: Phương trình vi phân $y'' + 2y' + 2y = 0$ có nghiệm tổng quát là
$A. y = e^{x} (C_1 \cos x + C_2 \sin x)$ $B. y = e^{-x} (C_1 \cos x + C_2 \sin x)$
B. $y = e^{-x}(C_1 \cos x + C_2 \sin x)$ C. $y = e^x(C_1 \cos(-x) + C_2 \sin(-x))$
D. $y = e^{-x} (C_1 \cos(-x) + C_2 \sin(-x))$
Câu 18: Phương trình vi phân $y'' + 3y' = 0$ với điều kiện $y(0) = 1$ và
y'(0) = 2 có nghiệm là:
A. $y = \frac{1}{2}(5 - 3e^{3x})$
B. $y = \frac{1}{3}(5 - 2e^{3x})$
C. $y = \frac{3}{2}(5 - 3e^{-3x})$
D. $y = \frac{1}{3}(5 - 2e^{-3x})$
Câu 19: Phương trình vi phân $y'' + 9y' = 0$ với điều kiện $y\left(\frac{\pi}{4}\right) = 0$ và
$y'\left(\frac{\pi}{4}\right) = -1$ có nghiệm là:
$A. y = \frac{\sqrt{2}}{6} (\cos 3x - \sin 3x)$
$B. y = \frac{\sqrt{2}}{6} (\cos 3x + \sin 3x)$
C. $y = \frac{6-\sqrt{2}}{6} + \frac{\sqrt{2}}{6}\cos 3x$
D. $y = \frac{6+\sqrt{2}}{6} - \frac{\sqrt{2}}{6}\cos 3x$
6 6

Câu 20: Phương trình vi phân $y'' - 4y' + 3y = e^{5x}$ với điều kiện $y(0) =$
3, y'(0) = 9 có nghiệm là:
A. $y = e^{5x} + e^{3x} + e^x$
B. $y = 2e^{5x} + e^{3x} - e^x$
C. $y = \frac{1}{8}(e^{5x} + 22e^{3x} + e^x)$
D. $y = \frac{1}{2}(5e^{3x} - e^{5x} + 2e^x)$
Câu 21: Phương trình vi phân $y'' - 6y' + 5 = 0$ có nghiệm tổng quát là:
A. $y = C_1 e^x + C_2 e^{5x} - x$
B. $y = C_1 e^x + C_2 e^{5x} + x + 1$
C. $y = C_1 + C_2 e^{6x} - \frac{5}{6}x$
0
D. $y = C_1 + C_2 e^{6x} + \frac{5}{6}x$
Câu 22: Phương trình vi phân $y'' + 4y + 4 = 0$ có nghiệm tổng quát là:
$A. y = C_1 + C_2 \sin 2x - 1$
B. $y = C_1 + C_2 \cos 2x - 1$
$C. y = C_1 \cos 2x + C_2 \sin 2x - 1$
D. $y = C_1 \cos 2x + C_2 \sin 2x + 1$
Câu 23: Phương trình vi phân $y'' + 2y' - 3y = e^x \cos x + 3xe^x \sin x$ có
dạng nghiệm riêng là:
$A. y^* = e^x [(Ax + B)\cos x + (Cx + D)\sin x]$
$B. y^* = xe^x[(Ax + B)\cos x + (Cx + D)\sin x]$
$C. y^* = e^x (A\cos x + B\sin x)$
$D. y^* = xe^x (A\cos x + B\sin x)$
Câu 24: Phương trình vi phân $y'' - 2y' + 2y = e^x[(x^2 + 1)\cos x +$
$[x \sin x]$ có dạng nghiệm riêng là:
$A. y^* = e^x[(Ax + B)\cos x + (Cx + D)\sin x]$
$B. y^* = xe^x[(Ax + B)\cos x + (Cx + D)\sin x]$
C. $y^* = e^x[(Ax^2 + Bx + C)\cos x + (Dx^2 + Ex + F)\sin x]$
D. $y^* = xe^x[(Ax^2 + Bx + C)\cos x + (Dx^2 + Ex + F)\sin x]$
Câu 25: Phương trình vi phân $y'' - 6y' + 25y = 2 \sin x + 3 \cos x$ có
nghiệm tổng quát là:
A. $y = e^{3x} (C_1 \cos 4x + C_2 \sin 4x) + \frac{1}{51} (14 \cos x + 5 \sin x)$
B. $y = e^{3x} (C_1 \cos 4x + C_2 \sin 4x) + \frac{1}{102} (14 \cos x + 5 \sin x)$
C. $y = e^{4x} (C_1 \cos 3x + C_2 \sin 3x) + \frac{1}{51} (14 \cos x + 5 \sin x)$
D. $y = e^{4x} (C_1 \cos 3x + C_2 \sin 3x) + \frac{1}{102} (14 \cos x + 5 \sin x)$