

PROJECT OVERVIEW

Exploratory Data Analysis

Identify key features , pairwise relationships

Linear regression and Feature engineering

Interaction terms, Optimise ordinal features, Minimize Outliers

Lasso Regression

Optimise coefficients

Key Takeaways and Future work ahead

HEATMAP ON CORRELATION TO SALE PRICE

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

FEATURES IDENTIFIED

- Generally the bigger the area the higher the price
- Ordinal categories with strong correlation with Sale Price (Quality and conditions)
- 3) Notably strong correlations
 - Overall quality +ve correlation (+0.8)
 - Age of buildings –ve correlation generally with all features (-0.55 with sale price)

PAIRWISE RELATIONSHIPS

Feature 1	Feature 2	Pair Correlation	Feature 1 & Sales Correlation	Feature 2 & Sales Correlation
garag_cars	garage_area	0.889558	0.648128	0.650246
gr_liv_area	tot_rms_abv_grd	0.808174	0.697038	0.504014
total_bsmt_sf	1st_flr_sf	0.798801	0.629303	0.618486
bedroom_abv_gr	tot_rms_abv_grd	0.673442	0.137067	0.504014
2nd_flr_sf	gr_liv_area	0.654530	0.248452	0.697038
bsmtfin_sf1	bsmt_full_bath	0.640606	0.423856	0.283332
gr_liv_area	full_bath	0.629736	0.697038	0.537969
2nd_flr_sf	half_bath	0.611432	0.248452	0.283001
overall_qual	garag_cars	0.598912	0.800207	0.648128
2nd_flr_sf	tot_rms_abv_grd	0.584059	0.248452	0.504014

High correlation to each other

PAIRWISE RELATIONSHIPS

Feature 1	Feature 2	Pair Correlation	Feature 1 & Sales Correlation	Feature 2 & Sales Correlation
garag_cars	garage_area	0.889558	0.648128	0.650246
gr_liv_area	tot_rms_abv_grd	0.808174	0.697038	0.504014
total_bsmt_sf	1st_flr_sf	0.798801	0.629303	0.618486
bedroom_abv_gr	tot_rms_abv_grd	0.673442	0.137067	0.504014
2nd_flr_sf	gr_liv_area	0.654530	0.248452	0.697038
bsmtfin_sf1	bsmt_full_bath	0.640606	0.423856	0.283332
gr_liv_area	full_bath	0.629736	0.697038	0.537969
2nd_flr_sf	half_bath	0.611432	0.248452	0.283001
overall_qual	garag_cars	0.598912	0.800207	0.648128
2nd_flr_sf	tot_rms_abv_grd	0.584059	0.248452	0.504014

High correlation to each other

PAIRWISE RELATIONSHIPS

Feature 1	Feature 2	Pair Correlation	Feature 1 & Sales Correlation	Feature 2 & Sales Correlation
garag_cars	garage_area	0.889558	0.648128	0.650246
gr_liv_area	tot_rms_abv_grd	0.808174	0.697038	0.504014
total_bsmt_sf	1st_flr_sf	0.798801	0.629303	0.618486
bedroom_abv_gr	tot_rms_abv_grd	0.673442	0.137067	0.504014
2nd_flr_sf	gr_liv_area	0.654530	0.248452	0.697038
bsmtfin_sf1	bsmt_full_bath	0.640606	0.423856	0.283332
gr_liv_area	full_bath	0.629736	0.697038	0.537969
2nd_flr_sf	half_bath	0.611432	0.248452	0.283001
overall_qual	garag_cars	0.598912	0.800207	0.648128
2nd_flr_sf	tot_rms_abv_grd	0.584059	0.248452	0.504014

LINEAR REGRESSION MODEL

- ✓ Underfitted, with higher variance at the top above
- ✓ Noted after \$350,000, higher residuals observed

Predictions vs Residults from Linear regression

Current RMSE: 26149

LINEAR REGRESSION MODEL

Predictions vs Residults from Linear regression

- √ Observation:
 - ✓ This indicates under-prediction of housing prices (Residual of \$200,000!)
- ✓ Hypothesis:
 - ✓ We are missing the X-factor that helps
 bring up these assets to its true potential

IMAGINE VIEWING...

Fireplace

Kitchen Quality

LOOKING AT THEIR CORRELATION INDEPENDENTLY

Fireplace

Boxplot - Fireplace Quality vs Sale Price

Kitchen Quality

Boxplot - Kitchen Quality vs Sale Price

IN THE REAL WORLD, WE SEE IT AS A WHOLE

Fireplace

Kitchen Quality

Interacting with one another

- ✓ How big the living space is?
- ✓ How grand it looks overall
- Hence, we multiply these together to have an amplified effect of these features together

FEATURING ENGINEERING - INTERACTION TERMS

Model takes in interaction terms

- ✓ Quality
- √ Square Feet Area
- √ Condition

INTERACTION TERMS

<u>Current RMSE</u>: 21376, -18.76%

- √ Highly correlated to price
- √ High in magnitude
- ✓ Improved RMSE by 18.7%

- ✓ No more skewing upwards from higher sale price
- ✓ Noted still high bias
- ✓ Need more variables

LASSO REGULARIZATION

Model	Changes done	Comments	RMSE	RMSE % Change
Linear regression	Added more features, including ✓ All Ordinal ranked sequentially ✓ Nominal features	Variance and bias too large for large coefficients and number of variables Need loss function to penalize each variable	272751033127647.7	NA
Lasso Regression	Alpha used: 577	Most coefficients are zeroed out	19517	-7.87%
Lasso Regression	Remove zeroed features: 183 → 79 Alpha used: 171	Most coefficients are zeroed out	19497	-0.1%
Lasso Regression	Optimized ordinal features As not all ordinal features are strongly related and should not be ranked. Changed to nominal instead	Outliers removed More linear with lesser variance	18519	-5%

FINAL - LASSO REGRESSION

Predictions vs Residults from Lasso regression

OUTLIERS REMOVED

✓ Outlier found in holdup set is not found in Train set hence removed

THANK YOU

Key takeaways

- ✓ Not all ordinal categories should be given sequential scoring, else unnecessary amplication can ruin predictions
- ✓ Understanding interaction terms in consumer's POV and putting into Data science concepts

Future work ahead

- Explore deeper EDA on each ordinal categories and considering doing interaction or putting a score to it instead of nominal categories that kills it with 1s and 0s
- Can explore rare variables and filter it off from model