

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO PARA LOS MAYORES DE 25 AÑOS

Curso 2018

MATERIA: MATEMÁTICAS

INSTRUCCIONES GENERALES Y CALIFICACIÓN

INSTRUCCIONES: Para la realización de esta prueba puede utilizarse calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico.

TIEMPO MÁXIMO: Una hora y media.

CALIFICACIÓN: Cada ejercicio lleva indicada su puntuación máxima.

OPCIÓN A

Ejercicio 1. (Puntuación máxima: 2 puntos)

Se considera el sistema de ecuaciones lineales:

$$x + 2my - z = -6$$

$$x + my + z = m$$

$$x + y + mz = 0$$

- a) Discútase según los distintos valores del parámetro real m.
- b) Resuélvase para m = 0.

Ejercicio 2. (Puntuación máxima: 2 puntos)

Se consideran las matrices
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} 4 & -1 \\ 3 & 0 \\ 1 & 2 \end{pmatrix}$ y $C = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}$

- a) Calcule la matriz $A \cdot B 2C$.
- b) Obtenga la matriz $2C^{-1} \cdot C'$ y determine si es simétrica e invertible. C^{-1} y C' denotan la inversa y traspuesta de C.

Ejercicio 3. (Puntuación máxima: 2 puntos)

Se considera la función real de variable real $f(x) = x^3 - 7 - e^{-x}$, calcúlese:

- a) El valor de la pendiente de la recta tangente a la gráfica de f(x) en el punto x = 3.
- b) $\int_{-1}^{0} f(x)dx$.

Ejercicio 4. (Puntuación máxima: 2 puntos)

Se consideran los planos $\pi 1 \equiv 2x + y - 5z = 3$ y $\pi 2 \equiv -x + 3y - z = 4$.

- a) Estudie la posición relativa entre ambos planos. En caso de que se corten calcule la ecuación de la recta donde se cortan.
- b) Calcúlese la distancia del punto P(2,-1,-1) al plano $\pi 1$.

Ejercicio 5. (Puntuación máxima: 2 puntos)

La cotización diaria de cierre de una determinada acción de Bolsa se puede aproximar por una variable aleatoria con distribución normal, de media 9 euros y desviación típica 0'2 euros.

- a) Calcúlese la probabilidad de que un día determinado la cotización de cierre supere los 9'2 euros.
- b) Si se sabe que un día ha superado los 8'8 euros, ¿cuál es la probabilidad de que haya cerrado con un valor menor de 9'4

MATEMÁTICAS

OPCIÓN B

Ejercicio 1. (Puntuación máxima: 2 puntos)

Se considera el sistema de ecuaciones lineales, dependiente del parámetro real m:

- a) Discuta el sistema según los diferentes valores m.
- b) Resuélvase el sistema para el caso m = -3.

Ejercicio 2. (Puntuación máxima: 2 puntos)

Dada la matriz:

$$A = \begin{pmatrix} 1 & m & 1 \\ 0 & m & -6 \\ 1 & -3 & 1 \end{pmatrix}$$

- a) Estúdiese el rango de A según los valores del parámetro real m.
- b) Para m = 0, calcule la matriz $A^t \cdot A^{-1}$, donde A^t denota la traspuesta de la matriz $A \cdot A^{-1}$ la inversa de la matriz A.

Ejercicio 3. (Puntuación máxima: 2 puntos)

Se considera la función real de variable real:

$$f(x) = \frac{4x^2 + 4}{x - 2}$$

- a) Estúdiense sus asíntotas.
- b) Determínense los extremos relativos de la función f(x) en su dominio de definición.

Ejercicio 4. (Puntuación máxima: 2 puntos)

Se consideran la recta $r \equiv 2x = -y = z + 2$ y el plano $\pi \equiv 7x - y + 2z = 14$.

- a) Estudie la posición relativa entre la recta r y el plano π .
- b) Calcúlese la distancia del punto P(2,0,-1) la recta r.

Ejercicio 5. (Puntuación máxima: 2 puntos)

Una agencia de publicidad, que promociona un producto en internet y en televisión, sabe que uno de cada 50 de los posibles compradores del producto ha visto su anuncio en internet, uno de cada cinco ha visto el anuncio correspondiente en la televisión y uno de cada 100 lo ha visto en ambos medios. Por tro lado, sabe que uno de cada 3 compra el producto después de ver el anuncio, mientras que uno de cada 10 lo compra sin haber visto ningún anuncio.

- a) ¿Qué porcentaje de posibles compradores del producto ha visto el anuncio en alguno de los dos medios?
- b) Calcule la probabilidad de que un cliente potencial seleccionado al azar compre el producto.

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

Z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990