

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants

R. Fischer et al.

Serial No.

10/765,249

Filed

January 27, 2004

For

COMBINATIONS OF ACTIVE INGREDIENTS WITH

INSECTICIDAL AND ACARICIDAL PROPERTIES

Group Art Unit

1616

Examiner

DECLARATION

Dr. Wolfgang Thielert hereby declares:

- that he is an agronomist having studied at the University of Bonn, Germany;
- that he received his doctor's degree in agriculture at the University of Bonn, Germany in 1984;
- that he entered the employ of Bayer in 1984;
- that he has specialized in plant protection (phytopharmacology);
- that the following tests have been carried out under his supervision and direction

Formula for the efficacy of the combination of two compounds

The expected efficacy of a given combination of two compounds is calculated as follows (see Colby, S.R., "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", Weeds 15, pp. 20-22, 1967):

If

- X is the efficacy expressed in % mortality of the untreated control for test compound A at a concentration of m ppm,
- Y is the efficacy expressed in % mortality of the untreated control for test compound B at a concentration of n ppm,
- E is the efficacy expressed in % mortality of the untreated control using the mixture of A and B at m and n ppm,

then is
$$E = X + Y - \frac{X \times Y}{100}$$

If the observed insecticidal efficacy of the combination is higher than the one calculated as "E", then the combination of the two compounds is more than additive, i.e., there is a synergistic effect.

Example A

Heliothis armigera test

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 parts by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Soybean shoots (Glycine max) are treated by being dipped into the preparation of the active compound of the desired concentration and are infested with larvae of the cotton boll worm (Heliothis armigera) as long as the leaves are still moist.

After the specified period of time, the mortality in % is determined. 100 % means that all the caterpillars have been killed; 0 % means that none of the caterpillars have been killed.

Table A plant damaging insects Heliothis armigera - test

active compound	active compound concentration in ppm	mortality in % after	6 ^d
Diafenthiuron			
	20	40	
Spiromesifen	100	0	
Diafenthiuron + Spiromesifen (1:5)			_
according to the invention	20 + 100	<u>obs</u> .*	<u>cal</u> .** 40
Spinosad	·		
	0,16	10	
Spiromesifen	100	0	
Spinosad + Spiromesifen (1:625)			
according to the invention	0,16 + 100	<u>obs</u> .* 90	<u>cal</u> .** 10

^{*}obs. = observed insecticidal efficacy

** cal. = efficacy calculated with Colby-formula

Example B

Phaedon cochleariae - larvae

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 parts by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of the active compound of the desired concentration and are infested with larvae of the mustard beetle (Phaedon cochleariae) as long as the leaves are still moist.

After the specified period of time, the mortality in % is determined. 100 % means that all the beetle larvae have been killed; 0 % means that none of the beetle larvae have been killed.

Table B

plant damaging insects Phaedon cochleariae larvae - test

active compound	active compound concentration in ppm	mortality in % after	6d
Fenpyroximate			
	4	10	
Spiromesifen			
	100	10	
Fenpyroximate + Spiromesifen (1:25)			
according to the invention			1 ++
	4 + 100	<u>obs</u> .* 50	<u>cal</u> .** 19
Spinosad		<u> </u>	
known			
•	0,16	25	
Spiromesifen			
known			
	100	0	
Spinosad + Spiromesifen (1:625)			
according to the invention			
		-لم	. 1 4646
•	0,16 + 100	<u>obs</u> .* 70	<u>cal</u> .** 25
*obs. = observed insecticidal efficacy ** cal. = efficacy calculated with Colby-form	nula		

Example C

Plutella xylostella - test (sensible strain)

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 parts by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of the active compound of the desired concentration and are infested with larvae of the diamondback moth (Plutella xylostella/sensible strain) as long as the leaves are still moist.

After the specified period of time, the mortality in % is determined. 100 % means that all the caterpillars have been killed; 0 % means that none of the caterpillars have been killed.

Table C

plant damaging insects Plutella xylostella (sensible strain) - test

active compound	active compound concentration in ppm	mortality in % after 6 ^d
Azocyclotin		
	100	0
Spiromesifen	100	30
Azocyclotin + Spiromesifen (1:1)		
according to the invention	100 + 100	obs.* cal.** 95 30
active compound	active compound concentration in ppm	mortality in % after 3d
Fenpyroximate	4	10
Spiromesifen	100	35
Fenpyroximate + Spiromesifen (1:25)		
according to the invention	4 + 100	obs.* cal.** 85 41,5

^{*}obs. = observed insecticidal efficacy

** cal. = efficacy calculated with Colby-formula

Table C

plant damaging insects Plutella xylostella (normal strain) - test

active compound	active compound concentration in ppm	mortality in % after	3 d
Fenazaquin			
	100	0	
Spiromesifen			
	100	0	
Fenazaquin + Spiromesifen (1 : 1)			
according to the invention		obs.*	<u>cal</u> .**
	100 + 100	30	0
active compound	active compound concentration in ppm	mortality in % after	6 d
Spinosad			
	0,032	80	
Spiromesifen			<u> </u>
	100	15	
Spinosad + Spiromesifen (1:3125)			
according to the invention	0,032 + 100	<u>obs</u> .* 100	<u>cal</u> .** 83
11.00			· .

^{*}obs. = observed insecticidal efficacy

** cal. = efficacy calculated with Colby-formula

Table 🗲

plant damaging insects Plutella xylostella (normal strain) - test

4	
4	
1	
4	15
1 .	
•	
100	50
4+100	<u>obs.* cal</u> .** 75 57,5
_	

Example D

Plutella xylostella test (resistant strain)

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 parts by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of the active compound of the desired concentration and are infested with larvae of the diamondback moth (Plutella xylostella/resistant strain) as long as the leaves are still moist.

After the specified period of time, the mortality in % is determined. 100 % means that all the caterpillars have been killed; 0 % means that none of the caterpillars have been killed.

Table D

plant damaging insects Plutella xylostella (resistant strain) - test

active compound	active compound concentration in ppm	mortality in % after 3d
Fenpyroximate		
known		
,	20	40
Spiromesifen	,	
known		
	100	15
Fenpyroximate + Spiromesifen (1:5)		
according to the invention		
	20 + 100	<u>obs</u> .* <u>cal</u> .** 80 49

^{*}obs. = observed insecticidal efficacy

** cal. = efficacy calculated with Colby-formula

Example F

Spodoptera frugiperda test

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

2 parts by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of the active compound of the desired concentration and are infested with caterpillars of the fall army worm (Spodoptera frugiperda) while the leaves are still moist.

After the specified period of time, mortality in % is determined. 100 % means that all the caterpillars have been killed; 0 % means that none of the caterpillars have been killed.

Table F

plant damaging insects Spodoptera frugiperda - test

active compound concentration in ppm	mortality in % after 6 ^d
100	25
500	40
100 + 500	obs.* cal.** 100 55
	100 500

^{*}obs. = observed insecticidal efficacy

** cal. = efficacy calculated with Colby-formula

Example G

Tetranychus test (OP-resistant/dip test)

Solvent:

7 parts by weight of dimethylformamide

Emulsifier:

1 part by weight of alkylaryl polyglycolether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.

Bean plants (Phaseolus vulgaris) which are heavily infested with all stages of the two-spotted spider mite (Tetranychus urticae) are treated by being dipped into the preparation of the active compound of the desired concentration.

After the specified period of time, mortality in % is determined. 100 % means that all the spider mites have been killed; 0 % means that none of the spider mites have been killed.

Table G plant damaging mites Tetranychus urticae - test

active compound	active compound concentration in ppm	mortality in % after 7 ^d	
Spinosad			
	4	0	
Spiromesifen	0,8	40	
Spinosad + Spiromesifen (5 : 1)			
according to the invention	4 + 0,8	<u>obs</u> .* <u>cal</u> .** 65 40	

^{*}obs. = observed insecticidal efficacy
** cal. = efficacy calculated with Colby-formula

The undersigned declarant hereby declares that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

8.8.206

Date

Wolfgang Thielert