FCC ID: WUS00002

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Peak Radiated Field Strength:	84.4	(dBuV/m @ 3m)
Peak EIRP:	-10.87	(dBm)
Peak EIRP:(0.081846479	(mW)
Antenna gain(assuming isotropic):	0	(dBi)
Maximum antenna gain:	1	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	305.5	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.2	(mW/cm^2)

Power density at prediction frequency: 0.000016 (mW/cm^2)

FCC ID: NKRCM9

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest rel. to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: 22.80 (dBm)

Maximum peak output power at antenna input terminal: 190.5461 (mW)

Antenna gain(typical): 7 (dBi)

Maximum antenna gain: 5.011872 (numeric)

Prediction distance: 20 (cm)

Prediction frequency: 2400 (MHz)

MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm^2)

Power density at prediction frequency: 0.18999 (mW/cm^2)

Summation of RF Exposure Calculation:

When all the antennas are at least 20cm away from the user, but individual antennas <u>can</u> <u>not</u> be separated by 20cm from each other.

$$\frac{0.000016\frac{mW}{cm^2}}{0.2\frac{mW}{cm^2}} + \frac{0.18999\frac{mW}{cm^2}}{1.0\frac{mW}{cm^2}} = 0.19007$$

0.19007 < 1

Therefore, the device complies with FCC's RF radiation exposure limit for general population for a mobile device.