# **Computer Networks Assignment 2**

Aayush Adhikari (PAS077BCT003) Roshan Tiwari (PAS077BCT030) Shishir Rijal (PAS077BCT037) Sudip Acharya (PAS077BCT041)

Date: May 23, 2024

# Contents

| 1 | Introduction                  | 3 |
|---|-------------------------------|---|
| 2 | Questions and Answers         | 3 |
|   | 2.1 Question 1                | 3 |
|   | 2.1.1 Layers of the OSI Model | 4 |
|   | 2.2 Question 2                | 5 |
|   | 2.3 TCP/IP Model              | 7 |
| 3 | Conclusion                    | 7 |

## 1 Introduction

This report presents a detailed analysis of the concepts covered in Assignment 2, focusing on network security protocols, OSI model enhancements, subnetting scenarios, and practical tools like Wireshark and firewalls.

## 2 Questions and Answers

#### 2.1 Question 1

The OSI (Open Systems Interconnection) model provides a conceptual framework for understanding network communication. Let's explore its layers and functionalities.

#### 2.1.1 Layers of the OSI Model



Figure 1: OSI Model Layers

The OSI model consists of seven layers, each serving specific functions:

- **Application Layer:** Provides services directly to user applications, such as email and web browsers.
- **Presentation Layer:** Handles data formatting and encryption, ensuring compatibility between different systems.
- **Session Layer:** Manages communication sessions, establishing, maintaining, and terminating connections.
- **Transport Layer:** Ensures reliable data transfer between end systems, providing error recovery and flow control.

- **Network Layer:** Routes data packets across different networks, handling logical addressing and routing.
- **Data Link Layer:** Transmits data frames over the physical medium, ensuring error-free communication within a local network.
- **Physical Layer:** Transmits raw binary data over physical cables or wireless signals, defining electrical and mechanical specifications.

#### 2.2 Question 2

Discuss the differences between the OSI model and the TCP/IP model.

Here are several key differences between the OSI (Open Systems Interconnection) model and the TCP/IP (Transmission Control Protocol/Internet Protocol) model:

| OSI Model                                                                                                                            | TCP/IP Model                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| The OSI model is a theoretical framework that standardizes network functions into seven layers.                                      | The TCP/IP model is a practical implementation that focuses on the transmission of data over networks.                                        |
| The OSI model has seven layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.                     | The TCP/IP model has four layers: Link, Internet, Transport, and Application.                                                                 |
| The OSI model provides clear separation between different functions and services in each layer.                                      | The TCP/IP model often has overlapping functionalities between layers.                                                                        |
| The OSI model is rarely implemented as a whole but serves as a guideline for network architecture.                                   | The TCP/IP model is widely used in the Internet and is the de facto standard for network communication.                                       |
| The OSI model's layer names are abstract and universal, allowing for easy comprehension and discussion of network concepts.          | The TCP/IP model's layers are based on the protocols developed for the ARPANET and are more focused on practical implementation.              |
| The OSI model is a closed model that does not directly map to existing network technologies.                                         | The TCP/IP model is an open model that directly corresponds to the Internet and its protocols.                                                |
| The OSI model includes a dedicated session layer for managing communication sessions between applications.                           | The TCP/IP model does not explicitly define a session layer, leaving session management to applications or protocols like HTTP.               |
| The OSI model's transport layer provides both connection-oriented (e.g., TCP) and connectionless (e.g., UDP) communication services. | The TCP/IP model's transport layer primarily supports connection-oriented communication (TCP) and offers basic connectionless services (UDP). |
| The OSI model's physical layer specifies physical medium standards and electrical signaling characteristics.                         | The TCP/IP model does not explicitly define standards for the physical layer, adapting to various physical mediums.                           |
| The OSI model facilitates interoperability among different vendors' networking equipment.                                            | The TCP/IP model's flexibility allows for easier adaptation to new technologies and environments.                                             |

#### 2.3 TCP/IP Model



Figure 2: TCP/IP Model Layers

The TCP/IP model, as shown in Figure 2, consists of four layers:

- **Application Layer:** Provides high-level APIs for network services, including protocols like HTTP, FTP, and SMTP.
- **Transport Layer:** Manages end-to-end communication, providing reliable data transfer and error recovery using protocols like TCP and UDP.
- **Internet Layer:** Handles addressing, routing, and packet forwarding across interconnected networks (the Internet).
- Link Layer: Transmits data over the physical medium within a single network segment, defining protocols like Ethernet and Wi-Fi.

## 3 Conclusion

This assignment explored fundamental concepts in computer networks, focusing on the OSI model, TCP/IP model, and their respective roles in network communication. Understanding these models is crucial for designing, analyzing, and troubleshooting modern networks.