

QCM de mathématiques

QCM de révisions (Arnaud)

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement cellesci).

Logique

Quest Soit l'	<i>ion 1</i> équation $E: x^n = 27$.
	[Faux] E a une unique solution réelle quel que soit $n \ge 1$.
	[Vrai] E a au moins une solution réelle quel que soit $n \ge 1$.
	[Faux] E a n solutions réelles quel que soit $n \ge 1$.
	[Vrai] E a au moins n solutions complexes quel que soit $n \ge 1$.
	[Vrai] E a exactement n solutions complexes quel que soit $n \ge 1$.

Question 2

Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2 + 1$.

□ [Faux] f est injective.
□ [Vrai] f n'est pas injective.
□ [Faux] f est surjective.
□ [Vrai] f n'est pas surjective.
□ [Vrai] La restriction de f, f_|: [1,2] → [2,5] est bijective.

Question 3

Soit $f: \mathbb{C} \to \mathbb{C}$, $z \mapsto z^2 + 1$. \square [Faux] f est injective. \square [Vrai] f n'est pas injective. \square [Vrai] f est surjective. \square [Faux] f n'est pas surjective. \square [Vrai] La restriction de f, f|: $[1,2] \to [2,5]$ est bijective.

Question 4

Pour $x, y \in \mathbb{R}$ et z = x + iy, on pose $e^z = e^x \times e^{iy} = e^{x+iy}$.

- \square [Vrai] $|e^z| = e^x$.
- \square [Faux] $|e^z| = \sqrt{x^2 + y^2}$.
- \square [Vrai] Arg $e^z = y$.
- \square [Faux] Arg $e^z = x + y$.
- \square [Faux] La fonction $f: \mathbb{C} \to \mathbb{C}, z \mapsto e^z$ est injective.

Question 5

Par quoi peut on compléter les pointillés pour que les deux assertions suivantes soient vraies:

 $z \in \mathbb{C}$ $z = \overline{z} \dots z \in \mathbb{R}$; $z \in \mathbb{C}$ $z^3 = -1 \dots z = -1$

- \square [Vrai] \Longrightarrow et \Longleftarrow .
- \square [Faux] \iff et \iff .
- \square [Faux] \iff et \iff .
- \square [Faux] \Longrightarrow et \Longrightarrow .
- \square [Vrai] \iff et \iff .

Question 6

Soit la suite $(x_n)_{n\in\mathbb{N}^*}$ définie par $x_n = \frac{(-1)^n}{n}$.

- $\begin{array}{lll} & \square & [\operatorname{Faux}] \; \exists N > 0 & \forall n \in \mathbb{N}^* & (n \geqslant N \implies x_n \geqslant 0). \\ \\ & \square & [\operatorname{Faux}] \; \exists \varepsilon > 0 & \forall n \in \mathbb{N}^* & x_n \leqslant \varepsilon. \end{array}$
- \square [Vrai] $\forall N \in \mathbb{N}^* \quad \exists n \ge N \qquad x_n < 0.$
- \square [Faux] $\exists n \in \mathbb{N}^*$ $x_n = 0$.
- $\square \quad [\text{Vrai}] \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N}^* \ \forall n \in \mathbb{N}^* \ (n \geqslant N \Longrightarrow |x_n| \leqslant \varepsilon).$

Question 7

Soit *E* un ensemble, $A, B \subset E$, soit $A \triangle B = (A \cup B) \setminus (A \cap B)$. Les assertions suivantes sont-elles vraies quels que soient A et B inclus dans E?

- \square [Vrai] $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- \square [Faux] $A \triangle B = (E \setminus A) \cap (E \setminus B)$.
- \square [Faux] Si $B \subset A$ alors $A \triangle B = A$.
- \square [Vrai] Si *E* est un ensemble fini, Card($A\triangle B$) \leq Card A + Card B.
- \square [Faux] Si *E* est un ensemble fini, Card($A\triangle B$) < Card A + Card B.

Question 8

Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=1$ puis pour $n\geqslant 1$ $x_n=\frac{x_{n-1}}{n}$.

 \square [Vrai] $\forall n \in \mathbb{N}$ $x_n > 0$.

 \square [Vrai] $\forall n \in \mathbb{N}$ $x_{n+1} \leq x_n$.

 $\ \, \square \ \, [\text{Faux}] \, \exists N \in \mathbb{N} \quad \exists c \in \mathbb{R} \quad \forall n \in \mathbb{N} \qquad (n \geqslant N \implies x_n = c).$

 \square [Faux] $\forall n \in \mathbb{N}$ $x_n \ge \frac{1}{2} \frac{1}{n!}$.

 \square [Faux] $\forall n \in \mathbb{N}$ $x_n \leq \frac{1}{2} \frac{1}{n!}$.

Question 9

On lance de façon aléatoire deux dés identiques à 6 faces (numérotées de 1 à 6). On ne tient pas compte de l'ordre, par exemple le tirage 1 puis 5 est le même que 5 puis 1, mais les tirages 3 puis 3, et 3 puis 4 sont distincts.

☐ [Faux] Il y a 36 tirages distincts possibles.

☐ [Vrai] Il y a 30 tirages distincts possibles.

☐ [Faux] Il y a 21 tirages distincts possibles.

□ [Vrai] La somme des deux chiffres a strictement plus de chances d'être 7 que 2.

 \Box [Faux] La somme des deux chiffres a strictement plus de chances d'être \geq 11 que \leq 3.

Question 10

Soit E un ensemble fini de cardinal n, soit $A \subset E$ un ensemble à p éléments, et $B \subset E$ un ensemble à q éléments. On note $\mathscr{S} = \{(a,b) \in A \times B \mid a \neq b\}$ et $\mathscr{T} = \{(I,b) \text{ avec } I \subset A \mid \text{Card } I = r \text{ et } b \in B\}$.

 \square [Faux] Si $A \cap B = \emptyset$ alors Card $\mathcal{S} = p + q$.

 \square [Vrai] Si $A \cap B = \emptyset$ alors Card $\mathcal{S} = pq$.

 \square [Faux] Si $A \subset B$ alors $\mathcal{S} = \emptyset$.

 $\Box \quad [Faux] \operatorname{Card} \mathscr{T} = C_n^p \times r.$

 $\square \quad [Vrai] \operatorname{Card} \mathscr{T} = C_p^r \times q.$

Arithmétique

Question 11

Les propositions suivantes sont-elles vraies quels que soient $\ell \ge 2$ et p_1, \ldots, p_ℓ des nombres premiers > 2?

□ [Faux] $p_1p_2...p_\ell$ est un nombre premier.

	[Faux] Le carré de p_1 est un nombre premier.
	[Faux] $p_1 p_2 \dots p_\ell + 1$ est un nombre premier.
	[Vrai] $\prod_{i=1}^{\ell} p_i$ est un nombre impair.
	[Faux] $\sum_{i=1}^{\ell} p_i$ est un nombre impair.
•	ion 12
	[Vrai] Soit $n \in \mathbb{N}$ un entier, alors $(n+1)(n+2)(n+3)(n+4)$ est divisible par 24.
	[Faux] Soit $n \ge 6$ un entier pair alors $\frac{n}{2}$ est impair.
	[Vrai] La somme et le produit de deux nombres pairs est un nombre pair.
	$[Faux] a b \text{ et } a' b' \implies aa' bb'.$
	[Faux] $a b$ et $a' b'$ \Longrightarrow $a+a' b+b'$.
•	. 10
Quest	ion 13 [Vrai] Le pgcd de 924, 441 et 504 est 21.
	[Faux] 627 et 308 sont premiers entre eux.
	[Faux] Si $p \ge 3$ est premier, alors $p!$ est premier.
	[Vrai] Soit $n \ge 2$ alors n et $n + 1$ sont premiers entre eux.
	[Vrai] Soit $n \ge 2$ un entier, le pgcd de $\{in^i \text{ pour } i = 1,, 100\}$ est n .
Ь	[viai] both $n \ge 2$ and entitled, he piged the $\{m \text{ poin } i = 1, \dots, 100\}$ est n .
Quest	ion 14
Soien	$t \ a, b, c \ge 1$ des entiers.
	[Vrai] $ab = \operatorname{pgcd}(a, b) \times \operatorname{ppcm}(a, b)$.
	[Faux] $abc = pgcd(a, b, c) \times ppcm(a, b, c)$.
	[Vrai] $ppcm(a, b, c)$ est divisible par c .
	[Faux] $ppcm(1932, 345) = 19320.$
	[Faux] $ppcm(5, 10, 15) = 15$.
Quest	ion 15
	[Faux] Soit $a, b, c \ge 1$ des entiers. Si $a bc$ et a ne divise pas b alors $a c$.
	[Vrai] Sachant que 7 divise 86419746 × 111 alors 7 divise 86419746.
	[Vrai] Si $a = bq + r$ est la division euclidienne de a par b alors $pgcd(a, b) = pgcd(b, r)$.
	[Vrai] Il existe $u, v \in \mathbb{Z}$ tels que $195u + 2380v = 5$.
	[Faux] Sachant qu'il existe u , v tels que $2431u+65520v = 39$ alors pgcd($2431,65520$) = 39.

Question 16

- \square [Vrai] $\exists P \in \mathbb{Z}[X] \quad \forall x \in \mathbb{R} \qquad P(x) > 0.$
- \square [Faux] $\forall P \in \mathbb{Z}[X]$ $\exists x \in \mathbb{R}$ |P(x)| < 1.
- \square [Vrai] $\forall P \in \mathbb{Q}[X]$ $x \in \mathbb{Q} \Longrightarrow P(x) \in \mathbb{Q}$.
- \square [Vrai] $\forall P \in \mathbb{C}[X]$ de degré ≥ 1 $\exists z \in \mathbb{C}$ P(z) = 0.
- ☐ [Faux] Tout polynôme de degré 2 ne s'annulant pas, prend uniquement des valeurs positives.

Question 17

Soit $P,Q \in \mathbb{C}[X]$ des polynômes non nuls $P = \sum_{i=0}^n a_i X^i$, soit $I_P = \{i \in \mathbb{N} \mid a_i \neq 0\}$, soit $\operatorname{val}(P) = \min I_P$.

- \Box [Vrai] val($-X^7 + X^3 + 7X^2$) = 2.
- \square [Vrai] val(P + Q) \geqslant val(P).
- \square [Vrai] val($P \times Q$) \geqslant val(P) + val(Q).
- \square [Faux] val $(k.P) = k \cdot \text{val}(P)$ où $k \in \mathbb{N}^*$.
- \square [Vrai] Si Q|P alors val(P/Q) = val(P) val(Q).

Question 18

- \square [Vrai] $X^4 + X^3 X^2 X$ est divisible par X(X 1).
- \square [Faux] Le reste la division euclidienne de $X^3 + X^2 + 3$ par X 1 est X + 4.
- \Box [Vrai] Le quotient de $X^5 + 2X^3 + X^2 + 2X + 1$ par $X^2 + 1$ est $X^3 + X + 1$.
- \square [Vrai] X 1 divise $X^n 1$ pour $n \ge 1$.
- \square [Faux] X + 1 divise $X^n + 1$ pour $n \ge 1$.

Question 19

- \square [Vrai] Soit $P \in \mathbb{C}[X]$. X a divise P ssi P(a) = 0.
- \square [Vrai] Soit $P \in \mathbb{R}[X]$ de degré impair. Il existe $x \in \mathbb{R}$ tel que P(x) = 0.
- \square [Vrai] Soit $P \in \mathbb{R}[X]$, les racines de P^2 sont d'ordre au moins 2.
- \square [Faux] Soit $P \in \mathbb{R}[X]$, x est racine simple ssi P(x) = 0.
- \square [Faux] Un polynôme $P \in \mathbb{C}[X]$ de degré n a n racines réelles.

Question 20

- \square [Faux] $X^4 + 1$ est irréductible dans $\mathbb{R}[X]$.
- \square [Vrai] $X^2 + 7$ est irréductible dans $\mathbb{Q}[X]$.
- \square [Faux] $X^2 + 7$ est irréductible dans $\mathbb{C}[X]$.
- \square [Faux] Dans $\mathbb{Z}[X]$, pgcd($X(X-1)^2(X^2+1), X^2(X-1)(X^2-1)$) = X(X-1).
- \square [Vrai] Dans $\mathbb{Z}[X]$, pgcd $(X^4 + X^3 + X^2 + X, X^3 X^2 X + 1) = X + 1$.

Réels

Question 21 (Réel et rationnels)

- \square [Vrai] $(x \in \mathbb{Q} \text{ et } y \in \mathbb{Q}) \Longrightarrow x + y \in \mathbb{Q}$
- \square [Faux] $(x \in \mathbb{R} \setminus \mathbb{Q} \text{ et } y \in \mathbb{R} \setminus \mathbb{Q}) \Longrightarrow x + y \in \mathbb{R} \setminus \mathbb{Q}$
- $\square \quad [Vrai] \ \forall x \in \mathbb{R} \setminus \mathbb{Q} \quad \forall y \in \mathbb{R} \setminus \mathbb{Q} \qquad x < y \implies (\exists z \in \mathbb{Q} \quad x < z < y)$
- $\square \quad [\text{Vrai}] \ (\forall x \in \mathbb{R} \setminus \mathbb{Q}) \quad (\forall y \in \mathbb{R} \setminus \mathbb{Q}) \qquad x < y \implies (\exists z \in \mathbb{R} \setminus \mathbb{Q} \quad x < z < y)$
- \square [Faux] Pour $n \ge 3$, n impair $\implies \sqrt{n} \in \mathbb{R} \setminus \mathbb{Q}$

Question 22

Soient A, B, C des parties de \mathbb{R}

- \square [Faux] Si sup A existe alors max A existe.
- \square [Vrai] Si max A existe alors sup A existe.
- \square [Vrai] Pour A, B majorées et $C \subseteq A \cap B$ alors $\sup C \leq \sup A$ et $\sup C \leq \sup B$.
- \square [Faux] Si $A = \left\{ \frac{(-1)^n}{n} + 1 \mid n \in \mathbb{N}^* \right\}$ alors $\inf A = 0$ et $\sup A = 1$.
- \square [Vrai] Si $B = \left\{ \frac{E(x)}{x} | x > 0 \right\}$ alors $\inf B = 0$ et $\sup B = 1$.

Question 23 (Limites de suites)

- \square [Vrai] Si $u_n = n \sin(\frac{1}{n})$ alors (u_n) tend vers 1.
- \square [Faux] Si $u_n = \ln(\ln(n))$ alors (u_n) a une limite finie.
- \square [Faux] $u_n = \frac{(\ln n)^2}{\sqrt{n}}$ alors (u_n) tend vers $+\infty$.
- \square [Faux] $u_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$ alors (u_n) diverge.
- \square [Vrai] $u_n = \sin(n)$, il existe une sous-suite de (u_n) convergente.

Question 24 (Suites définies par récurrence)

Soit f(x) = 2x(1-x) et la suite définie par $u_0 \in [0,1]$ et $u_{n+1} = f(u_n)$.

- \square [Vrai] $\forall n \in \mathbb{N}$ $u_n \in [0, 1]$.
- \square [Faux] Quelque soit u_0 dans [0,1], (u_n) est monotone.

	[Faux] Si (u_n) converge vers ℓ alors $\ell = 0$ ou $\ell = 1$.
	[Vrai] Si (u_n) converge vers ℓ alors $\ell=0$ ou $\ell=\frac{1}{2}$.
	[Vrai] $u_0 \in]0,1[$ alors (u_n) ne converge pas vers 0.
Oues	stion 25 (Fonctions continues)
	[Faux] La somme, le produit et le quotient de deux fonctions continues est continue.
	[Vrai] La fonction $\sqrt{\sqrt{x}} \ln x$ est prolongeable par continuité en 0.
	[Faux] Il existe $a, b \ge 0$ tels que fonction définie par $f(x) = -e^x$ si $x < 0$ et $f(x) = ax^2 + b$ si $x \ge 0$ soit continue.
	[Faux] Toute fonction impaire de $\mathbb R$ dans $\mathbb R$ est continue en 0.
	[Faux] La fonction $\frac{\sqrt{ x }}{x}$ est prolongeable par continuité en 0.
Ques	tion 26 (Théorème des valeurs intermédiaires, fonctions bornées)
	[Vrai] La méthode de dichotomie est basée sur le théorème des valeurs intermédiaires.
	[Faux] Tout polynôme de degré ≥ 3 a au moins une racine réelle.
	[Faux] La fonction $f(x) = \frac{1}{x^3(x^2+1)}$ admet au moins une racine réelle dans] $-1, +1$ [.
	[Vrai] Pour $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue admettant une limite finie en $+\infty$, f est bornée.
Ц	[Faux] Pour $f : \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue admettant une limite finie qui vaut $f(0)$ en $+\infty$ alors f est bornée et atteint ses bornes.
Ques	stion 27 (Dérivation)
	[Faux] La fonction $f(x) = 1/x$ est décroissante sur \mathbb{R}^* .
	[Vrai] La fonction $f(x) = x \sin \frac{1}{x}$ est continue et dérivable en 0.
	[Vrai] La fonction définie par $x \mapsto 0$ si $x \in \mathbb{Q}$ et $x \mapsto x^2$ si $x \notin \mathbb{Q}$ est dérivable en 0.
	[Vrai] Si $f(x) = P(x)e^x$ avec P un polynôme alors pour tout $n \in \mathbb{N}$ il existe un polynôme Q_n tel que $f^{(n)}(x) = Q_n(x)e^x$.
	[Faux] Si $f(x) = \sqrt{x} \ln x$ si $x \in \mathbb{R}^*$ et $f(0) = 0$ alors f est dérivable en 0.
Ques	stion 28 (Théorème de Rolle et des accroissements finis)
	[Faux] Si f est dérivable sur $[a, b]$ avec $f(a) = f(b)$ il existe un unique $c \in]a, b[$ tel que $f'(c) = 0$.
	[Vrai] Si f est une fonction continue sur $[a, b]$ et dérivable sur $]a, b[$ et $f'(x)$ tend vers ℓ quand x tend vers a alors f est dérivable en a et $f'(a) = \ell$.
	[Faux] Soit $f(x) = \ln x$ si $x > 0$ et $f(0) = 0$. Pour $x > 0$ il existe $c \in]0, x[$ tel que $\ln x = \frac{x}{c}$.

- □ [Vrai] Si f est dérivable sur \mathbb{R} et $\lim f(x) = +1$ quand $x \to +\infty$ et $\lim f(x) = +1$ quand $x \to -\infty$ alors il existe $c \in \mathbb{R}$ tel que f'(c) = 0.
- \square [Vrai] $\forall x > 0 \ e^x \le xe^x + 1$.

Question 29 (Fonctions usuelles)

- \square [Vrai] $\forall n \in \mathbb{N} \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$.
- \square [Vrai] $\forall x \in \mathbb{R} \operatorname{ch} x \ge \operatorname{sh} x$.
- \square [Vrai] $\frac{\operatorname{ch} x}{\operatorname{sh} x}$ tend vers 1 quand x tend vers $+\infty$.
- $\Box \quad [Vrai] \operatorname{ch} 2x = 1 + 2\operatorname{sh}^2 x.$
- $\Box \quad [Faux] th(a+b) = \frac{th a + th b}{1 th a th b}.$

Question 30 (Fonctions réciproques)

- \square [Faux] Un fonction continue $\mathbb{R} \longrightarrow \mathbb{R}$ strictement décroissante est bijective.
- $\hfill\Box$ [Vrai] Si f est une fonction continue bijective croissante alors f^{-1} est croissante.
- \square [Faux] Si f est une fonction continue bijective ne s'annulant jamais alors $(\frac{1}{f})^{-1} = f$.
- \square [Faux] $\arcsin(\sin x) = x$ pour tout $x \in [0, 2\pi[$.
- \square [Faux] Si $f(x) = \arctan(x^2)$ alors $f'(x) = \frac{1}{1+x^4}$.