EE-220 Signals and Systems Session 2019 Week 11 Instructor: Engr. All Raza edirect / Engr. All

Continu	Property	Aperiodic Signal		Fourier Transform
Section	rioperty			
5.3.2 5.3.3 5.3.3 5.3.4 5.3.6	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Expansion	x[n] y[n] ax[n] + by[n] $x[n - n_0]$ $e^{i\omega_0x}x[n]$ $x^*[n]$ x[n] x[n]	, if $n = \text{multiple of } k$	$X(e^{i\omega})$] periodic with $Y(e^{i\omega})$] period 2π $aX(e^{i\omega}) + bY(e^{i\omega})$ $e^{-i\omega\omega}X(e^{i\omega})$ $X(e^{i\omega})$ $X(e^{i\omega})$ $X(e^{-i\omega})$ $X(e^{-i\omega})$ $X(e^{-i\omega})$
		$x_{(i)}[n] = \begin{cases} x_{(i)}x_{i} \\ 0, \end{cases}$	if $n \neq \text{multiple of } k$	
5.4	Convolution	x[n] + y[n]		$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$\frac{1}{2\pi}\int_{2\pi} X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5.3.5	Differencing in Time	x[n] = x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-n}^{n} x[k]$		$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{\beta t}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega t})}{d\omega}$ $[X(e^{j\omega t}) = X^{*}(e^{-j\omega t})]$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$\Re e[X(e^{j\omega})] - \Re e[X(e^{-j\omega})]$ $\Im e[X(e^{j\omega})] = -\Im e[X(e^{-j\omega})]$ $ X(e^{j\omega}) = X(e^{-j\omega}) $ $\blacktriangleleft X(e^{j\omega}) = -\blacktriangleleft X(e^{-j\omega})$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even		$X(e^{\rho r})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		X(e ^{/w}) purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$x_r[n] = \operatorname{En}\{x[n]\}$ $x_r[n] = \operatorname{Od}\{x[n]\}$		$\Re e[X(e^{i\omega})]$ $i \dim [X(e^{i\omega})]$
5.3.9	Parseval's Re	lation for Aperiodic		
	$\sum_{n=-\infty}^{++} x(n) ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$			

Example 5.13/5.1 $h[n] = \alpha^{n}u[n], \quad |\alpha| < 1 \qquad x[n] = \beta^{n}u[n], \quad |\beta| < 1$ $H(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}} \qquad X(e^{j\omega}) = \frac{1}{1 - \beta e^{-j\omega}}$ $Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}) \qquad Y(e^{j\omega}) = \frac{1}{(1 - \alpha e^{-j\omega})(1 - \beta e^{-j\omega})}$ $Y(e^{j\omega}) = \frac{A}{(1 - \alpha e^{-j\omega})} + \frac{B}{(1 - \beta e^{-j\omega})}$

DUALITY ☐ In considering the continuous-time Fourier transform, we observed a symmetry or duality between the analysis equation and the synthesis equation. ☐ No corresponding duality exists between the analysis equation and the synthesis equation for the discrete-time Fourier transform ☐ Duality exist for DT-FS ☐ See Table 5.1 and 5.2

Example 5.16/3.12

 \square Periodic signal with a period of N = 9

$$x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\pi n/9)}{\sin(\pi n/9)}, & n \neq \text{multiple of } 9\\ \frac{5}{9}, & n = \text{multiple of } 9 \end{cases}$$

☐ In Chapter 3, we found that a rectangular square wave has Fourier coefficients in the above form. Let g[n] be a rectangular square wave with period N = 9, N1=2 such that

Example 5.17/3.5

$$x[n] = \frac{\sin(\pi n/2)}{\pi n}$$

$$g(t) = \left\{ \begin{array}{ll} 1, & |t| \leq T_1 \\ 0, & T_1 < |t| \leq \pi \end{array} \right., \hspace{1cm} a_k = \frac{\sin(kT_1)}{k\pi}$$
 Using Duality Relationship between DT-FT and CT-FS

$$x[n] = \frac{\sin(\pi n/2)}{\pi n}. \qquad \qquad X(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \pi/2 \\ 0 & \pi/2 < |\omega| \le \pi \end{cases}$$

Linear Constant-Coeff. Difference Equation

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k].$$

$$\sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega}),$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}.$$

Example 5.18

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}.$$

$$y[n] - ay[n-1] = x[n],$$

$$H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}.$$

$$h[n] = a^n u[n].$$

Example 5.19

$$y[n] = \frac{3}{2}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]. \tag{5.84}$$
 "rom eq. (5.80), the frequency response is
$$H(e^{i\omega}) = \frac{2}{1-\frac{1}{4}e^{-i\omega} + \frac{1}{4}e^{-i\omega}}. \tag{5.85}$$
 So a first step in obtaining the impulse response, we factor the denominator of eq. (5.85):
$$H(e^{i\omega}) = \frac{2}{(1-\frac{1}{4}e^{-i\omega})^2(1-\frac{1}{4}e^{-i\omega})}. \tag{5.86}$$

$$H(e^{i\omega}) = \frac{4}{(1-\frac{1}{4}e^{-i\omega})^2(1-\frac{1}{4}e^{-i\omega})}. \tag{5.86}$$

$$H(e^{i\omega}) = \frac{4}{1-\frac{1}{4}e^{-i\omega}} - \frac{2}{1-\frac{1}{4}e^{-i\omega}}. \tag{5.87}$$
 The inverse transform of each term can be recognized by impaction, with the result that
$$h[n] = 4\left[\frac{1}{2}\right]^{N}u[n] - 2\left(\frac{1}{2}\right)^{N}u[n]. \tag{5.88}$$

4

Example 5.20

$$X[n] = \left(\frac{1}{4}\right)^{n} u[n].$$

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}) = \left[\frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}\right] \left[\frac{1}{1 - \frac{1}{4}e^{-j\omega}}\right]$$

$$= \frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})^{2}}.$$

$$Y(e^{j\omega}) = \frac{B_{11}}{1 - \frac{1}{4}e^{-j\omega}} + \frac{B_{12}}{(1 - \frac{1}{4}e^{-j\omega})^{2}} + \frac{B_{21}}{1 - \frac{1}{2}e^{-j\omega}}, \quad Y(e^{j\omega}) = -\frac{4}{1 - \frac{1}{4}e^{-j\omega}} - \frac{2}{(1 - \frac{1}{4}e^{-j\omega})^{2}} + \frac{8}{1 - \frac{1}{2}e^{-j\omega}}.$$

$$y[a] = \left[-4\left(\frac{1}{4}\right)^{n} - 2(a + 1)\left(\frac{1}{4}\right)^{n} + 8\left(\frac{1}{2}\right)^{n}\right]u[a].$$