LECTURE 17: DSP applications

17.1. LPC-10 algorithm for speech coding

Voiced phoneme "a"

Speech generation model

Vocal tract filter

IIR digital filter, 10 poles: 2 for one resonant frequency

$$H(z) = \frac{G}{A(z)} = \frac{G}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_{10} z^{-10}}$$

$$H(z) = \frac{G}{(1 - p_1 z^{-1})(1 - p_1^* z^{-1})...(1 - p_5 z^{-1})(1 - p_5^* z^{-1})}$$

$$s(n) = G \cdot e(n) - \sum_{k=1}^{10} a_k s(n-k)$$

When synthesized speech $s(n) \cong \text{real speech } x(n)$:

$$s(n) = G \cdot e(n) - \sum_{k=1}^{10} a_k s(n-k) \Rightarrow x(n) = G \cdot e(n) - \sum_{k=1}^{10} a_k x(n-k)$$

$$x(n) = Ge(n) + \left[-a_1 x(n-1) - a_2 x(n-2) - \dots - a_{10} x(n-10) \right]$$

$$x(n) = \hat{x}(n) + err(n)$$

$$\hat{x}(n) = -a_1 x(n-1) - a_2 x(n-2) - \dots - a_{10} x(n-10) = -\sum_{j=1}^{p} a_j x(n-j)$$

$$err(n) = Ge(n)$$

Block-based processing.

Cost function (criteria) of the best signal self-prediction (least-squares):

$$J = \sigma^{2} = \frac{1}{N - p} \sum_{n=p}^{N-1} err^{2}(n) = \frac{1}{N - p} \sum_{n=p}^{N-1} \left[x(n) - \hat{x}(n) \right]^{2}$$

$$J = \frac{1}{N-p} \sum_{n=p}^{N-1} \left[x(n) + \sum_{j=1}^{p} a_j x(n-j) \right]^2$$

$J \rightarrow \min$

For $1 \le k \le p$:

$$\frac{\partial J}{\partial a_k} = \frac{\partial}{\partial a_k} \left\{ \frac{1}{N-p} \sum_{n=p}^{N-1} \left[x^2(n) + 2x(n) \sum_{j=1}^p a_j x(n-j) + \left(\sum_{j=1}^p a_j x(n-j) \right)^2 \right] \right\} = 0$$

p equation with p unknowns.

Solution:

$$\mathbf{a} = -\mathbf{R}^{-1}\mathbf{r}$$

gdzie:

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix}, \qquad \mathbf{R} = \begin{bmatrix} r(0) & r(1) & \cdots & r(p-1) \\ r(1) & r(0) & \cdots & r(p-2) \\ \vdots & \vdots & \ddots & \vdots \\ r(p-1) & r(p-2) & \cdots & r(0) \end{bmatrix}, \qquad \mathbf{r} = \begin{bmatrix} r(1) \\ r(2) \\ \vdots \\ r(p) \end{bmatrix}$$

$$J_{\min} = \sigma_{\min}^2 = r(0) + \mathbf{a}^T \mathbf{r} = r(0) + \sum_{j=1}^p a_j r(j)$$

$$r(k) = \frac{1}{N - p} \sum_{n=p}^{N-1} x(n)x(n - k)$$

Decision voiced / unvoiced

for phoneme "a"

for phoneme "sh"

LPC-10 speech coding algorithm

Every 180 samples of speech \rightarrow 12 parameters $\{T, G, a_1, a_2, ..., a_{10}\}$. 180*8b = **1440 bitów** 54 bits (after quantization) Compression ratio = 27

Algorthm	Compression	Bitstream [kbits/s]
PCM (G711)	1:1	64
ADPCM (G721)	2 : 1	32
LD-CELP (G728)	4 : 1	16
RPE- LP T (GSM)	5 : 1	13
VSELP	8 : 1	8
CELP (standard USA)	13 : 1	4,8
LPC-10e (standard USA)	27 : 1	2,4

Matlab program

```
% read speech signal
[x,fs,Nbits]=wavread('speech.wav');
                                           % display it
plot(x); title('speech'); pause
                                           % play it on loudspeakers (headphones)
soundsc(x,fs);
                                     % signal length
N=length(x);
                                     % analyzed fragment length (number of samples)
Mlen=240;
                                     % analyzed fragment shift (number of samples)
Mstep=180;
                                     % prediction order (IIR-AR filter order)
Np=10;
                                     % initial position of voiced excitation
where=181;
                                     % table for calculated speech model coeffs
lpc=[];
s=[];
                                     % whole synthesized speech
                                     % one fragment (block) of synthesized speech
ss=[];
                                     % buffer for speech fragment
bs=zeros(1,Np);
                                     % number of speech fragments (blocks) to be analyzed
Nramek=floor((N-240)/180+1);
                                     % optional filtering (pre-emphasis) – optional
% x=filter([1 -0.9735], 1, x);
for nr = 1 : Nramek
      % take new data block (fragment of speech samples)
      n = 1+(nr-1)*Mstep : Mlen + (nr-1)*Mstep;
      bx = x(n);
      % ANALYSIS – calculate speech model parameters
                                                                     % remove mean value
      bx = bx - mean(bx);
      for k = 0: Mlen-1
            r(k+1) = sum(bx(1 : Mlen-k) .* bx(1+k : Mlen)); % autocorrelation
      end
   % subplot(411); plot(n,bx); title('speech fragment');
   % subplot(412); plot(r); title('its autocorrelation');
                                                            % find max of autocorrelation
      offset=20; rmax=max( r(offset : Mlen) );
                                                            % find its position
      imax=find(r==rmax);
      if ( rmax > 0.35*r(1) ) T=imax; else T=0; end % decision V/UV?
                                                            % second sub-harmonics found
      if (T>80) T=round(T/2); end
                                                            % display value of T
      rr(1:Np,1)=(r(2:Np+1))';
      for m=1:Np
                                                            % build autocorrelation matrix
            R(m,1:Np) = [r(m:-1:2) r(1:Np-(m-1))];
      end
                                                            % find coeffs of prediction filter
      a=-inv(R)*rr;
      gain=r(1)+r(2:Np+1)*a;
                                                            % find gain
                                                            % filter freq response
      H=freqz(1,[1;a]);
     subplot(413); plot(abs(H)); title('Freq response of vocal tract');
                                                            % store parameter values
          lpc=[lpc; T; gain; a; ];
```

% SYNTHESIS – generate speech using calculated parameters % T = 0; % remove "%" and set: T = 80, 50, 30, 0if (T~=0) where=where-Mstep; end % where next voiced excitation? for n=1:180 if(T==0)exc=2*(rand(1,1)-0.5); where=271; % random excitation if (n==where) exc=1; where=where+T; % voiced excitation else exc=0; end end % filtration of artificial excitation ss(n)=gain*exc-bs*a; bs=[ss(n) bs(1:Np-1)]; % shifting output buffer end % subplot(414); plot(ss); title('synthesized speech fragment'); pause s = [s ss];% store synthesized speech fragment end % filtratiom (de-emphasis) – inverse filter – optional % s=filter(1,[1 -0.9735],s);

plot(s); title('synthesized speech'); pause

soundsc(s,fs)

17.2. MPEG-2 audio coding layer 2

Illustration of masking effects in: frequency (a) and time (b)

Graphical illustration of frequency masking

Masking and absolute threshold of hearing

FILTER BANKS

Down-sampling

Up-sampling

FILTER BANKS (cont.)

Simple explanation =

- 1) Inner product of audio signal with many impulse responses of the FB filters (having N samples each).
- 2) **Shifting impulse responses** in time by *M* samples.
- 3) Again: inner product of signals with impulse responses of the FB.
- 4) Shift in time.

...etc....

In MPEG-audio: N=512, M=32.

FILTER BANKS (cont.)

Impulse responses of 32 filters in MPEG-audio standard:

$$h_k(n) = 2p(n)\cos\left(\frac{\pi}{M}(k+0.5)(n-\frac{L-1}{2}) + (-1)^k\frac{\pi}{4}\right)$$
 (analysis)

$$g_k(n) = 2p(n)\cos\left(\frac{\pi}{M}(k+0.5)(n-\frac{L-1}{2}) - (-1)^k\frac{\pi}{4}\right)$$
 (synthesis)

p(n) – prototype filter that is modulated using cos(.) functions

Frequency responses of all filters in the bank of filters

Since
$$\cos(\omega t) = \frac{e^{j\omega t} + e^{j\omega t}}{2}$$
, then DCT \rightarrow DFT.

$$t(k,m) = 2\cos\left(\frac{\pi}{M}(k+1/2)(m-\frac{L-1}{2}) + (-1)^k \pi/4\right)$$

Block diagram of MPEG-1 audio MP1 and MP2 encoder and decoder

Input AUDIO bit-stream: 2*768 kbits/s (2 channels * 16 bits * 48 kHz)

Output MPEG bit-stream: from 2*32 to 2*192 kbits/s

Gray color denotes MP2 extensions in respect to MP1.

32 bits	16 bits	variable number of bits										
Header	CRC protect	BALLOC Bit allocation		SCFI Info SCF?	SCF Scaling coe	effs	Samples of subband signals	Auxiliary data				
	- synchronization band band band band band band band ban		bits 4 3 2 4 3	2 bits/band 00 01 10 11	• • •	B3 • • • • • • • • • • • • • • • • • • •	from1.67 bits/samp to 16 bits/sample					

Tab. A. Coefficients used for scaling of subband samples

Number	Coefficient
0	2,000000000000000
1	1,58740105196820
2	1,25992104989487
i	•
60	0,00000190734863
61	0,00000151386361
62	0,00000120155435

Tab. B. Classes of scaling coefficients in each frequency subband for blocks B_1 and B_2 (by analogy for B_2 and B_3)

$\Delta nr(B_{12}) = nr(B_1) - nr(B_2)$	Class B ₁₂
$\Delta nr(B_{12}) \le -3$	1
$-3 < \Delta nr(B_{12}) < 0$	2
$\Delta nr(B_{12}) = 0$	3
$0 < \Delta nr(B_{12}) < 3$	4
$3 \leq \Delta nr(B_{12})$	5

Tab. C. Choosing scaling coeffs for each frequency subbands from coeffs for blocks $B_1,\,B_2,\,B_3$

KlasaB ₁₂	KlasaB ₂₃	Wybór	Kod
1	1	1 2 3	0
1	2	1 2 2	3
1	3	1 2 2	3
1	4	1 3 3	3
1	5	1 2 3	0
2	1	1 1 3	1
2	2	1 1 1	2
:	i	:	:
5	5	1 2 3	0

Tab. D. Exaple of bit allocation (quantization levels) for frequency subbands

Subband	Bits per							S	ent inc	lex (col	lumn nı	ımber)				
number index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1 – 3	4	3	7	15	31	63	127	255	512	1023	2047	4095	8191	16383	32767	65535
4 - 11	4	3	5	7	9	15	31	63	127	255	512	1023	2047	4095	8191	65535
12 - 23	3	3	5	7	9	15	31	6553	35							
24 – 30	2	3	7	655	35											

Tab. E. Classes of quatization (A, B) and requatization (C, D) of subband samples for MP2 layer (CW=coding word)

Levels of quantization	Coeff. A	Coeff. B	Coeff. C	Coeff. D	SNR [dB]	Samples per CW	Bits per CW
3	0,750000000	-0,25000000	1,33333333333	0,50000000000	0,00	3	5
5	0,625000000	-0.375000000	1,60000000000	0,500000000000	7,00	3	7
7	0,875000000	-0.125000000	1,14285714286	0,250000000000	11,00	1	3
9	0,562500000	-0,437500000	1,7777777777	0,500000000000	16,00	3	10
15	0,937500000	-0.062500000	1,0666666666	0,125000000000	20,84	1	4
31	0,968750000	-0.031250000	1,03225806452	0,06250000000	25,28	1	5
ŧ	i	•	:	•	:	•	i
65535	0,999984741	-0,000015259	1,00001525902	0,00003051758	98,01	1	16

Signal filtering in MPEG-1 MP3 layer

$\downarrow M$ — *M*-times down-sampling

Signal filtering in MPEG-1 MP3 layer (cont.)

MDCT – modified discrete cosine transform

IMDCT – inverse modified discrete cosine transform

h(n) — filter impulse response

 $\downarrow M$ — *M*-times down-sampling

 $\uparrow M$ — *M*-times up-sampling

17.3. JPEG still image compression

JPEG encoder

JPEG decoder

Huffman coding

17.4. MPEG-2 video coding

DCT – 2D discrete cosine transform

Q – quantizer

VLI - lossless coding (Variable Length Integers)

MV – motion vector

I – frame coded without motion compensation

P₁ – frame coded differentially (predictively) in respect to frame I, with forward motion compensation

P₂ – frame coded differentially (predictively) in respect to frame P₁, with *forward* motion compensation

B — frames coded differentially with *forward* (from I) and *backward* (from P) motion compensation

17.3. ADSL modem

Quadrature amplitude modulation of each frequency carrier:

$$x_m(t) = A\cos(2\pi ft + \phi_m) = a_m\cos(2\pi ft) + b_m\sin(2\pi ft)$$

Channel distortions: scaling (attenuation) and rotation (phase shift due to time delay) of the signal constellation state plus noise

Basic principle of multicarrier wide-band modem:

1) division of frequency band between many carriers that transmit data the same time (in parallel)

2) generation of the transmitted signal being a sum of many modulated carriers

Simplified diagram of multi-carrier transmission scheme. Denotations: QAM i QAM⁻¹ – signal state (constellation) encoder and decoder, DFT and IDFT – direct and inverse discrete Fourier transform, P and P⁻¹ – addition and subtraction of the cyclic prefix (repetition of signal fragment), D/A and A/D – digital-to-analog and analog-to-digital converters, TEQ – time equalizer shortening the channel impulse response, FEQ – frequency equalizer, removing amplitude and phase disturbances introduced by the transmission line (channel)

Block-based transmission:

Cyclic prefix addition (reduction of cross-symbol interference)

Block diagram of the ADSL transmitter and data passing through the channel

Block diagram of the ADSL receiver

