Algoritmi e Strutture Dati

Capitolo 6
Il problema del Dizionario

il problema del dizionario

```
tipo Dizionario:dati: un insieme S di coppie (elem, chiave)operazioni:insert(elem\,e, chiave\,k)aggiunge a S una nuova coppia (e,k)delete(elem\,e)cancella da S l'elemento esearch(chiave\,k) \rightarrow elemse la chiave k è presente in S restituisce un elemento e ad essa associato,e null altrimenti
```

Come implementare efficientemente un dizionario?

è possibile garantire che tutte le operazioni su un dizionario di n elementi abbiano tempo O(log n).

Due idee:

Definire un albero (binario) tale che ogni operazione richiede tempo O(altezza albero)

fare in modo che l'altezza dell'albero sia sempre O(log n)

alberi binari di ricerca

alberi AVL

Alberi binari di ricerca (BST = binary search tree)

Definizione

Albero binario che soddisfa le seguenti proprietà

 ogni nodo v contiene un elemento elem(v) cui è associata una chiave chiave(v) presa da un dominio totalmente ordinato.

Per ogni nodo v vale che:

- le chiavi nel sottoalbero sinistro di v sono ≤ chiave(v)
- le chiavi nel sottoalbero destro di v sono > chiave(v)

Esempi

Albero binario di ricerca

Albero binario non di ricerca

...ancora un esempio...

...che succede se visitiamo un BST in ordine simmetrico?

2 3 4 6 7 9 13 15 17 18 20

visito i nodi in ordine crescente di chiave!

Verifica di correttezza –

Indichiamo con h l'altezza dell'albero.

Vogliamo mostrare che la visita in ordine simmetrico restituisce la sequenza ordinata

Per induzione sull'altezza dell'ABR: h=1 (mostriamolo senza perdita di generalità quando l'albero è completo.)

Verifica correttezza (continua ...)

h = generico (ipotizzo che la procedura sia corretta per altezza <h)

Albero di altezza ≤ h-1. Tutti i suoi elementi sono minori o uguali della radice Albero di altezza ≤ h-1. Tutti i suoi elementi sono maggiori o uguali della radice ...implementare le operazioni del dizionario (search, insert e delete) su un BST

search(chiave k) -> elem

Traccia un cammino nell'albero partendo dalla radice: su ogni nodo, usa la proprietà di ricerca per decidere se proseguire nel sottoalbero sinistro o destro

```
algoritmo \operatorname{search}(\operatorname{chiave} k) \to \operatorname{elem}

1. v \leftarrow \operatorname{radice} \operatorname{di} T

2. \operatorname{while} (v \neq \operatorname{null}) \operatorname{do}

3. \operatorname{if} (k = \operatorname{chiave}(v)) \operatorname{then} \operatorname{return} \operatorname{elem}(v)

4. \operatorname{else} \operatorname{if} (k < \operatorname{chiave}(v)) \operatorname{then} v \leftarrow \operatorname{figlio} \operatorname{sinistro} \operatorname{di} v

5. \operatorname{else} v \leftarrow \operatorname{figlio} \operatorname{destro} \operatorname{di} v

6. \operatorname{return} \operatorname{null}
```

search(7)

insert(elem e, chiave k)

Idea: aggiunge la nuova chiave come nodo foglia; per capire dove mettere la foglia simula una ricerca con la chiave da inserire

- 1. Crea un nuovo nodo u con elem=e e chiave=k
- 2. Cerca la chiave k nell'albero, identificando così il nodo v che diventerà padre di u
- 3. Appendi u come figlio sinistro/destro di v in modo che sia mantenuta la proprietà di ricerca

insert(e,8)

correttezza:

Se seguo questo schema l'elemento *e* viene posizionato nella posizione giusta. Infatti, per costruzione, ogni antenato di *e* si ritrova *e* nel giusto sottoalbero.

...qualche operazione ausiliaria prima di implementare l'operazione di delete:

...massimo, minimo, predecessore e successore

Ricerca del massimo

```
algoritmo \max(nodo\ u) \to nodo
1. v \leftarrow u
2. while (figlio destro di v \neq \text{null}) do
3. v \leftarrow \text{figlio destro di } v
4. return v
```

Nota: è possibile definire una procedura $\min(\text{nodo } u)$ in maniera del tutto analoga

predecessore e successore

- il predecessore di un nodo *u* in un BST è il nodo *v* nell'albero avente massima chiave ≤ chiave(*u*)
- il successore di un nodo u in un BST è il nodo v nell'albero avente minima chiave \geq chiave(u)
- Come trovo il predecessore/successore di un nodo in un BST?

Ricerca del predecessore

```
algoritmo \operatorname{pred}(nodo\ u) \to nodo

1. if (u \text{ ha figlio } \sin \operatorname{sin}(u)) then

2. return \max(\sin(u))

3. while (parent(u) \neq null\ e\ u\ e\ figlio\ \sin \operatorname{sinistro}\ di\ suo\ padre)\ do

4. u \leftarrow parent(u)

5. return parent(u)
```


Nota: la ricerca del successore di un nodo è simmetrica

delete(elem e)

Sia u il nodo contenente l'elemento e da cancellare:

1) u è una foglia: rimuovila

2) u ha un solo figlio:

delete(elem e)

3) u ha due figli: sostituiscilo con il predecessore (o successore) (v) e rimuovi fisicamente il predecessore (o successore) (che ha al più un figlio)

delete (u)

Costo delle operazioni

- Tutte le operazioni hanno costo O(h) dove h è l'altezza dell'albero
- O(n) nel caso peggiore (alberi molto sbilanciati e profondi)

...un albero binario di ricerca bilanciato... $h=O(\log n)$

il problema del dizionario

```
tipo Dizionario:dati: un insieme S di coppie (elem, chiave)operazioni:insert(elem\,e, chiave\,k)aggiunge a S una nuova coppia (e,k)delete(elem\,e)cancella da S l'elemento esearch(chiave\,k) \rightarrow elemse la chiave k è presente in S restituisce un elemento e ad essa associato,e null altrimenti
```

Come implementare efficientemente un dizionario?

è possibile garantire che tutte le operazioni su un dizionario di n elementi abbiano tempo O(log n).

Due idee:

Definire un albero (binario) tale che ogni operazione richiede tempo O(altezza albero)

fare in modo che l'altezza dell'albero sia sempre O(log n)

alberi binari di riceca

alberi AVL

Alberi AVL (Adel'son-Vel'skii e Landis, 1962)

Definizioni

Fattore di bilanciamento $\beta(v)$ di un nodo v = altezza del sottoalbero sinistro di v - altezza del sottoalbero destro di v

Un albero si dice bilanciato in altezza se ogni nodo v ha fattore di bilanciamento in valore assoluto ≤ 1

Alberi AVL = alberi binari di ricerca bilanciati in altezza

Generlemente $\beta(v)$ mantenuto come informazione addizionale nel record relativo a v

...qualche esempio...

è il seguente albero AVL?

Sì: tutti i nodi hanno fattore di bilanciamento = 0

...qualche esempio...

è il seguente albero AVL?

Convenzione: altezza di un albero vuoto= -1

NO! Non vale la proprietà sui fattori di bilanciamento!

...qualche esempio...

è il seguente albero AVL?

Sì: proprietà sui fattori di bilanciamento rispettata

Altezza di alberi AVL

Si può dimostrare che un albero AVL con n nodi ha altezza O(log n)

Idea della dimostrazione: considerare, tra tutti gli AVL, i più sbilanciati

albero di Fibonacci di altezza h:

albero AVL di altezza h con il minimo numero di nodi n_h

Intuizione: se gli alberi di Fibonacci hanno altezza O(log n), allora tutti gli alberi AVL hanno altezza O(log n)

Un esempio: come è fatto un albero di Fibonacci di altezza 2?

Infatti: se togliamo ancora un nodo, o diventa sbilanciato, o cambia la sua altezza Nota: ogni nodo (non foglia) ha fattore di bilanciamento pari (in valore assoluto) a 1

... Alberi di Fibonacci per valori piccoli di altezza...

T_i: albero di Fibonacci di altezza i (albero AVL di altezza i con il minimo numero di nodi)

Nota che: se a T_i tolgo un nodo, o diventa sbilanciato, o cambia la sua altezza Inoltre: ogni nodo (non foglia) ha fattore di bilanciamento pari (in valore assoluto) a 1

intravedete uno schema per generare l'i-esimo albero di Fibonacci a partire dai precedenti?

Lo schema

Lemma

Sia n_h il numero di nodi di T_h . Risulta $n_h = F_{h+3}-1$

dim

per induzione su h si usa $n_h=1+n_{h-1}+n_{h-2}$ F_i: i-esimo numero di fibonacci

Corollario

Un albero AVL con n nodi ha altezza h=O(log n)

dim

$$n_h = F_{h+3} - 1 = \Theta(\phi^h)$$

$$h=\Theta(\log n_h)=O(\log n)$$

corollario segue da $n_h \le n$

Ricorda che vale:

$$F_k = \Theta(\phi^k)$$

$$\phi = 1.618...$$
 sezione aurea

Posso usare un albero AVL per implementare un dizionario?

come implemento Insert(14)?

...e delete(25)?

Domanda:

di quanto e quali fattori di bilanciamento cambiano a fronte di un inserimento/cancellazione?

Se parto da un albero AVL e inserisco/cancello un nodo:

• (quali) cambiano solo i fattori di bilanciamento dei nodi lungo il cammino radice-nodo inserito/cancellato

• (quanto) i fattori di bilanciamento cambiano di +/- 1

Implementazione delle operazioni

• L'operazione search procede come in un BST

• Ma inserimenti e cancellazioni potrebbero sbilanciare l'albero

⇒ Manteniamo il bilanciamento tramite opportune rotazioni

Rotazione di base verso destra/sinistra sul nodo v/u

- Mantiene la proprietà di ricerca
- Richiede tempo O(1)

Ribilanciamento tramite rotazioni

- Le rotazioni sono effettuate su nodi sbilanciati
- Sia v un nodo di profondità massima (nodo critico)
 con fattore di bilanciamento β(v) ± 2
- Esiste un sottoalbero T di v che lo sbilancia
- A seconda della posizione di T si hanno 4 casi: β(v)=+2 β(v)=-2

```
Sinistra - sinistra(SS)T è il sottoalbero sinistro del figlio sinistro di vDestra - destra(DD)T è il sottoalbero destro del figlio destro di vSinistra - destra(SD)T è il sottoalbero destro del figlio sinistro di vDestra - sinistra(DS)T è il sottoalbero sinistro del figlio destro di v
```

• I quattro casi sono simmetrici a coppie

$[\beta(v)=+2, altezza T_1=h+1]$

Caso SS

L'altezza di T(v) è h+3, l'altezza di T(u) è h+2, l'altezza di T₃ è h, e l'altezza di T₁ è $h+1 \Rightarrow \beta(v)=+2$ e lo sbilanciamento è provocato da T₁

- Si applica una rotazione semplice verso destra su v; 2 sottocasi possibili:
 - (i) l'altezza di T_2 è $h \Rightarrow$ l'altezza dell'albero coinvolto nella rotazione passa da h+3 a h+2
 - (ii) l'altezza di T_2 è $h+1 \Rightarrow$ l'altezza dell'albero coinvolto nella rotazione rimane pari a h+3

...i due sottocasi del caso SS....

Osservazioni sul caso SS

- Dopo la rotazione l'albero è bilanciato (tutti i fattori di bilanciamento sono in modulo ≤ 1)
- L'inserimento di un elemento nell'AVL (ovvero, l'aggiunta di una foglia a un albero bilanciato) può provocare solo il sottocaso (i) (perché altrimenti l'AVL era già sbilanciato!)
- Invece, la cancellazione di un elemento dall'AVL (che necessariamente fa diminuire l'altezza di qualche sottoalbero) può provocare entrambi i casi (ad esempio, se cancellando un elemento ho abbassato l'altezza di T₃)
- Nel caso (i), dopo la rotazione, l'albero diminuisce la sua altezza di uno

 $[\beta(v)=+2, \text{ altezza } T_1=h]$ (che implica altezza T(w)=h+1)

Caso SD

• L'altezza di T(v) è h+3, l'altezza di T(z) è h+2, l'altezza di T_1 è h, l'altezza di T_4 è h, e l'altezza di T(w) è $h+1 \Rightarrow \beta(v)=+2$, e $\beta(z)=-1$ cioè lo sbilanciamento è provocato dal sottoalbero destro di z

• Applicare due rotazioni semplici: una verso sinistra sul figlio sinistro del nodo critico (nodo z), l'altra verso destra sul nodo critico (nodo v)

Caso SD

- L'altezza dell'albero dopo la rotazione passa da h+3 a h+2, poiché T₂ e T₃ sono alti al più h, e il fattore di bilanciamento di w diventa 0, mentre i fattori di bilanciamento di z e v sono 0 oppure ±1.
- Il caso SD può essere provocato sia da inserimenti (in T₂ o T₃), sia da cancellazioni che abbassano di 1 l'altezza di T₄.

insert(elem e, chiave k)

- 1. Crea un nuovo nodo u con elem=e e chiave=k
- 2. Inserisci u come in un BST
- 3. Ricalcola i fattori di bilanciamento dei nodi nel cammino dalla radice a u: sia v il più profondo nodo con fattore di bilanciamento pari a ±2 (nodo critico)
- 4. Esegui una rotazione opportuna su v

Oss.: un solo ribilanciamento è sufficiente, poiché l'altezza dell'albero coinvolto diminuisce di 1 (sottocaso (i) del caso SS o DD, o casi SD o DS), e quindi torna ad essere uguale all'altezza che aveva prima dell'inserimento

insert (10,e)

insert (10,e)

Esempio: insert (10,e)

delete(elem e)

- 1. Cancella il nodo come in un BST
- 2. Ricalcola il fattore di bilanciamento del padre del nodo eliminato fisicamente (che potrebbe essere diverso dal nodo contenente e), ed esegui l'opportuna rotazione semplice o doppia ove necessario
- 3. Ripeti questo passo, sino ad arrivare eventualmente alla radice dell'AVL:
 - Se l'altezza del sottoalbero appena ribilanciato è uguale a quella che aveva prima della cancellazione, termina. Invece, se tale altezza è diminuita, risali verso l'alto (cioè vai nel padre del sottoalbero appena ribilanciato), calcola il fattore di bilanciamento, e applica l'opportuno ribilanciamento.

Oss.: potrebbero essere necessarie O(log n) rotazioni: infatti eventuali diminuzioni di altezza indotte dalle rotazioni possono propagare lo sbilanciamento verso l'alto nell'albero (l'altezza del sottoalbero in cui è avvenuta la rotazione diminuisce di 1 rispetto a quella che aveva prima della cancellazione)

Esempio: delete (18)

Ribilanciamento DD e aggiornamento del fattore di bilanciamento del padre del sottoalbero ruotato

Ribilanciamento DD e aggiornamento del fattore di bilanciamento del padre del sottoalbero ruotato

Albero ribilanciato

Cancellazione con rotazioni a cascata

Costo delle operazioni

 Tutte le operazioni hanno costo O(log n) poiché l'altezza dell'albero è O(log n) e ciascuna rotazione richiede solo tempo costante

Classe AlberoAVL

classe AlberoAVL estende AlberoBinarioDiRicerca:

dati:

$$S(n) = O(n)$$

albero binario di ricerca T ereditato, più il fattore di bilanciamento di ogni nodo.

operazioni:

$$search(chiave k) \rightarrow elem$$
 ereditata.

$$T(n) = O(\log n)$$

$$T(n) = O(\log n)$$

chiama insert() ereditata, poi ricalcola i fattori di bilanciamento ed eventualmente ribilancia tramite O(1) rotazioni.

$$T(n) = O(\log n)$$

chiama delete() ereditata, poi ricalcola i fattori di bilanciamento ed eventualmente ribilancia tramite $O(\log n)$ rotazioni.

...qualche dettaglio importante.

- Nell'analisi della complessità dell'operazione di insert/delete abbiamo implicitamente usato le seguenti tre proprietà:
- (i) dato un nodo v, è possibile conoscere $\beta(v)$ in tempo O(1);
- (ii) dopo aver inserito/cancellato un nodo *v* nell'albero come se fosse un semplice BST, è possibile ricalcolare i fattori di bilanciamento dei nodi lungo il cammino da *v* alla radice in tempo complessivo O(log n);
- (iii) nell'eseguire le rotazioni necessarie per ribilanciare l'albero, è possibile aggiornare anche i fattori di bilanciamento dei nodi coinvolti in tempo complessivo O(log n).

Esercizio

Si mostri come è possibile arricchire le informazioni contenute nel record di ogni nodo *v* in modo da garantite le proprietà (i), (ii) e (iii).

Suggerimento: aggiungere un campo al record di ogni nodo *v* che contiene l'altezza del sottoalbero radicato in *v*.