Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Дискретная математика
Домашняя работа №2
Поиск кратчайшего пути
Вариант №99

Выполнил: студент группы Р3108 Васильев Никита Алексеевич

Проверил: Поляков Владимир Иванович

V/V	e1	e2	e3	e4	e5	e6	e7	e8	е9	e10	e11	e12
e1	0	2					5		2		2	
e2	2	0	3	5	4	5	1	2	1	1	3	5
e3		3	0			4		1	2			
e4		5		0	1			2		5		5
e5		4		1	0	5		4	4	2		3
e6		5	4		5	0	1	4	1	2	4	
e7	5	1				1	0		2			
e8		2	1	2	4	4		0	1	4	2	
e9	2	1	2		4	1	2	1	0	2		3
e10		1		5	2	2		4	2	0		4
e11	2	3				4		2			0	
e12		5		5	3				3	4		0

1.
$$l(e_l)=0^+$$
; $l(e_i)=\infty$, для всех $i\neq 1, p=e_l$.

Результаты итерации запишем в таблицу.

e_1	$0^{\scriptscriptstyle +}$
e_2	∞
<i>e</i> ₃	∞
<i>e</i> ₄	∞
<i>e</i> ₅	∞
e_6	∞
<i>e</i> ₇	∞
e_8	∞
e 9	∞
<i>e</i> ₁₀	∞
e_{11}	∞
e_{12}	∞

 $\overline{2}$. $\Gamma p = \{e_2, e_7, e_9, e_{11}\}$ – все пометки временные, уточним их:

$$l(e_2)=min[\infty, 0^++2]=2;$$

$$l(e_7)=min[\infty, 0^++5]=5;$$

$$l(e_9)=min[\infty, 0^++2]=2;$$

$$l(e_{11})=min[\infty, 0^++2]=2.$$

3.
$$l(e_i^*) = min[l(e_i)] = l(e_2) = l(e_9) = l(e_{11}) = 2.$$

4. e_2 получает постоянную пометку $l(e_2) = 2^+$, $p = e_2$.

	1	2
e_1	$0^{\scriptscriptstyle +}$	
e_2	∞	2+
<i>e</i> ₃	∞	∞
<i>e</i> ₄	∞	∞
<i>e</i> ₅	∞	∞
e_6	∞	∞
<i>e</i> ₇	∞	5
e_8	∞	∞
e 9	∞	2
<i>e</i> 10	∞	∞
<i>e</i> 11	∞	2
e_{12}	8	8

5. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}\}$ — временные пометки имеют вершины $e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}$ уточняем их:

$$l(e_3)=min[\infty, 2^++3]=5;$$

$$l(e_4)=min[\infty, 2^++5]=7;$$

$$l(e_5)=min[\infty, 2^++4]=6;$$

$$l(e_6)=min[\infty, 2^++5]=7;$$

$$l(e_7)=min[5, 2^++1]=3;$$

$$l(e_8)=min[\infty, 2^++2]=4;$$

$$l(e_9)=min[2, 2^++1]=2;$$

$$l(e_{10})=min[\infty, 2^++1]=3;$$

$$l(e_{11})=min[2, 2^++3]=2;$$

$$l(e_{12})=min[\infty, 2^++5]=7.$$

6.
$$l(e_i^*) = min[l(e_i)] = l(e_0) = l(e_{11}) = 2$$
.

7. *е*9 получает постоянную пометку $l(e_9) = 2^+$, $p = e_9$.

	1	2	3
e_1	$\theta^{\scriptscriptstyle +}$		
e_2	∞	2+	
<i>e</i> ₃	∞	∞	5
<i>e</i> ₄	∞	∞	7
<i>e</i> ₅	∞	∞	6
e_6	∞	∞	7
<i>e</i> ₇	∞	5	3
e_8	∞	∞	4
e 9	∞	2	2+
<i>e</i> 10	∞	∞	3
<i>e</i> 11	∞	2	2
<i>e</i> 12	∞	∞	7

8. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_2, e_3, e_5, e_6, e_7, e_8, e_{10}, e_{12}\}$ — временные пометки имеют вершины e_3 , e_5 , e_6 , e_7 , e_8 , e_{10} , e_{12} уточняем их:

$$l(e_3)=min[5, 2^++2]=4;$$

$$l(e_5)=min[6, 2^++4]=6;$$

$$l(e_6)=min[7, 2^++1]=3;$$

$$l(e_7)=min[3, 2^++2]=3;$$

$$l(e_8)=min[4, 2^++1]=3;$$

$$l(e_{10})=min[3, 2^++2]=3;$$

$$l(e_{12})=min[7, 2^++3]=5.$$

9.
$$l(e_i^*) = min[l(e_i)] = l(e_{11}) = 2$$
.

 $10.\,e_{II}$ получает постоянную пометку $l(e_{II})=2^+$, $p{=}e_{II}$.

	1	2	3	4	

e_1	$0^{\scriptscriptstyle +}$			
e_2	∞	2+		
<i>e</i> ₃	∞	∞	5	4
<i>e</i> ₄	∞	∞	7	7
<i>e</i> ₅	∞	∞	6	6
e_6	∞	∞	7	3
<i>e</i> ₇	∞	5	3	3
<i>e</i> ₈	∞	∞	4	3
<i>e</i> 9	∞	2	2+	
<i>e</i> 10	∞	∞	3	3
<i>e</i> ₁₁	∞	2	2	2+
<i>e</i> ₁₂	∞	∞	7	5

11. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_2, e_6, e_8\}$ — временные пометки имеют вершины e_6 , e_8 уточняем их:

$$l(e_6)=min[3, 2^++4]=3;$$

$$l(e_8)=min[3, 2^++2]=3.$$

12.
$$l(e_i^*) = min[l(e_i)] = l(e_6) = l(e_8) = 3.$$

13. e_6 получает постоянную пометку $l(e_6) = 3^+$, $p = e_6$.

	1	2	3	4	5
e_1	$\theta^{\scriptscriptstyle +}$				
e_2	∞	2+			
<i>e</i> ₃	∞	∞	5	4	4
<i>e</i> ₄	∞	∞	7	7	7
<i>e</i> ₅	∞	∞	6	6	6
<i>e</i> ₆	∞	∞	7	3	<i>3</i> ⁺
<i>e</i> ₇	∞	5	3	3	3
<i>e</i> ₈	∞	∞	4	3	3
<i>e</i> ₉	∞	2	2+		
<i>e</i> ₁₀	∞	∞	3	3	3

e_1	1	∞	2	2	2+	
e_1	2	∞	∞	7	5	5

14. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_3, e_5, e_7, e_8, e_9, e_{10}, e_{11}\}$ — временные пометки имеют вершины e_3 , e_5 , e_7 , e_8 , e_{10} уточняем их:

$$l(e_3)=min[4, 3^++4]=4;$$

$$l(e_5)=min[6, 3^++5]=6;$$

$$l(e_7)=min[3, 3^++1]=3;$$

$$l(e_8)=min[3, 3^++4]=3;$$

$$l(e_{10})=min[3, 3^++2]=3.$$

15.
$$l(e_i^*) = min[l(e_i)] = l(e_7) = l(e_8) = l(e_{10}) = 3$$
.

16. e_7 получает постоянную пометку $l(e_7) = 3^+$, $p = e_7$.

	1	2	3	4	5	6
e_1	$0^{\scriptscriptstyle +}$					
e_2	∞	2+				
<i>e</i> ₃	∞	∞	5	4	4	4
<i>e</i> ₄	∞	∞	7	7	7	7
<i>e</i> ₅	∞	∞	6	6	6	6
<i>e</i> ₆	∞	8	7	3	3+	
<i>e</i> ₇	∞	5	3	3	3	3+
e_8	∞	∞	4	3	3	3
<i>e</i> ₉	∞	2	2+			
<i>e</i> ₁₀	∞	∞	3	3	3	3
e_{11}	∞	2	2	2+		
<i>e</i> ₁₂	∞	∞	7	5	5	5

17. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_2, e_6, e_9\}$ — среди них нет временных пометок.

18.
$$l(e_i^*) = min[l(e_i)] = l(e_8) = l(e_{10}) = 3.$$

19. e_8 получает постоянную пометку $l(e_8) = 3^+$, $p = e_8$.

	1	2	3	4	5	6	7
e_1	$\theta^{\scriptscriptstyle +}$						
<i>e</i> ₂	∞	2+					
ез	∞	∞	5	4	4	4	4
<i>e</i> ₄	∞	∞	7	7	7	7	7
<i>e</i> ₅	∞	∞	6	6	6	6	6
<i>e</i> ₆	∞	∞	7	3	3+		
<i>e</i> ₇	∞	5	3	3	3	3+	
e_8	∞	∞	4	3	3	3	3+
e 9	∞	2	2+				
<i>e</i> ₁₀	∞	∞	3	3	3	3	3
<i>e</i> ₁₁	∞	2	2	2+			
e_{12}	∞	∞	7	5	5	5	5

20. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_3, e_4, e_5, e_6, e_9, e_{10}, e_{11}\}$ – временные пометки имеют вершины e_3, e_4, e_5, e_{10} уточняем их:

$$l(e_3)=min[4, 3^++1]=4;$$

$$l(e_4)=min[7, 3^++2]=5;$$

$$l(e_5)=min[6, 3^++4]=6;$$

$$l(e_{10})=min[3, 3^++4]=3.$$

$$21. l(e_i^*) = min[l(e_i)] = l(e_{10}) = 3.$$

22. e_{10} получает постоянную пометку $l(e_{10})=3^+$, $p=e_{10}$.

	1	2	3	4	5	6	7	8
e_1	$\theta^{\scriptscriptstyle +}$							
<i>e</i> ₂	∞	2+						
ез	∞	∞	5	4	4	4	4	4
<i>e</i> ₄	∞	∞	7	7	7	7	7	5
<i>e</i> ₅	∞	∞	6	6	6	6	6	6

e_6	∞	∞	7	3	3+			
<i>e</i> ₇	∞	5	3	3	3	3+		
<i>e</i> 8	∞	∞	4	3	3	3	<i>3</i> ⁺	
e 9	∞	2	2+					
<i>e</i> 10	∞	∞	3	3	3	3	3	<i>3</i> ⁺
e_{11}	∞	2	2	2+				
<i>e</i> ₁₂	∞	∞	7	5	5	5	5	5

23. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_4, e_5, e_6, e_8, e_9, e_{12}\}$ – временные пометки имеют вершины e_4 , e_5 , e_{12} уточняем их:

$$l(e_4)=min[5, 3^++5]=5;$$

$$l(e_5)=min[6, 3^++2]=5;$$

$$l(e_{12})=min[5, 3^++4]=5.$$

$$24. l(e_i^*) = min[l(e_i)] = l(e_3) = 4.$$

25. e_3 получает постоянную пометку $l(e_3) = 4^+$, $p = e_3$.

	1	2	3	4	5	6	7	8	9
e_1	$0^{\scriptscriptstyle +}$								
e_2	∞	2+							
<i>e</i> ₃	∞	∞	5	4	4	4	4	4	4+
<i>e</i> ₄	∞	∞	7	7	7	7	7	5	5
<i>e</i> ₅	∞	∞	6	6	6	6	6	6	5
e_6	∞	∞	7	3	3+				
<i>e</i> ₇	∞	5	3	3	3	3+			
e_8	∞	∞	4	3	3	3	3+		
e 9	∞	2	2+						
<i>e</i> ₁₀	∞	∞	3	3	3	3	3	3+	
<i>e</i> 11	∞	2	2	2+					
e_{12}	∞	∞	7	5	5	5	5	5	5

26. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_6, e_8, e_9\}$ — среди них нет временных пометок.

$$27. l(e_i^*) = min[l(e_i)] = l(e_4) = 5.$$

 $28. \, e_4$ получает постоянную пометку $l(e_4) = 5^+, \, p = e_4.$

	1	2	3	4	5	6	7	8	9	10
e_1	$0^{\scriptscriptstyle +}$									
e_2	∞	2+								
<i>e</i> ₃	∞	∞	5	4	4	4	4	4	4+	
<i>e</i> ₄	∞	∞	7	7	7	7	7	5	5	5 ⁺
<i>e</i> ₅	∞	∞	6	6	6	6	6	6	5	5
<i>e</i> ₆	∞	∞	7	3	3+					
<i>e</i> ₇	∞	5	3	3	3	3+				
e_8	∞	∞	4	3	3	3	3+			
e 9	∞	2	2+							
<i>e</i> ₁₀	∞	∞	3	3	3	3	3	3+		
<i>e</i> 11	∞	2	2	2+						
<i>e</i> ₁₂	∞	∞	7	5	5	5	5	5	5	5

29. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_5, e_8, e_{10}, e_{12}\}$ – временные пометки имеют вершины e_5, e_{12} уточняем их:

$$l(e_5)=min[5, 5^++1]=5;$$

$$l(e_{12})=min[5, 5^++5]=5.$$

$$30. l(e_i^*) = min[l(e_i)] = l(e_5) = l(e_{12}) = 5.$$

31. e_5 получает постоянную пометку $l(e_5) = 5^+$, $p = e_5$.

	1	2	3	4	5	6	7	8	9	10	11
e_1	$0^{\scriptscriptstyle +}$										
e_2	∞	2+									
<i>e</i> ₃	∞	∞	5	4	4	4	4	4	4+		
<i>e</i> ₄	∞	∞	7	7	7	7	7	5	5	5 ⁺	

<i>e</i> ₅	∞	∞	6	6	6	6	6	6	5	5	5 ⁺
<i>e</i> ₆	∞	∞	7	3	3+						
<i>e</i> ₇	∞	5	3	3	3	3+					
<i>e</i> 8	∞	∞	4	3	3	3	3+				
<i>e</i> 9	∞	2	2+								
<i>e</i> ₁₀	∞	∞	3	3	3	3	3	3+			
e_{11}	∞	2	2	2+							
e_{12}	∞	∞	7	5	5	5	5	5	5	5	5

32. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_4, e_6, e_8, e_9, e_{10}, e_{12}\}$ – временную пометку имеет вершина e_{12} уточняем ее:

$$l(e_{12})=min[5, 5^++3]=5.$$

33.
$$l(e_i^*) = min[l(e_i)] = l(e_{12}) = 5.$$

 $34.\,e_{12}$ получает постоянную пометку $l(e_{12})=5^+$, $p=e_{12}$.

	1	2	3	4	5	6	7	8	9	10	11	12
e_1	$\theta^{\scriptscriptstyle +}$											
e_2	∞	2+										
<i>e</i> ₃	∞	∞	5	4	4	4	4	4	4+			
<i>e</i> ₄	∞	∞	7	7	7	7	7	5	5	5 ⁺		
<i>e</i> ₅	∞	∞	6	6	6	6	6	6	5	5	5+	
e_6	∞	∞	7	3	3+							
<i>e</i> ₇	∞	5	3	3	3	3+						
e_8	∞	∞	4	3	3	3	3+					
<i>e</i> 9	∞	2	2+									
<i>e</i> 10	∞	∞	3	3	3	3	3	3+				
<i>e</i> ₁₁	∞	2	2	2+								
<i>e</i> ₁₂	∞	∞	7	5	5	5	5	5	5	5	5	5 ⁺

Все пометки постоянные.

Кратчайшие расстояния от вершины e_{1} до всех вершин найдены.