CSC 130: AVL Trees

Binary Search Trees

- A binary search tree has these properties for each of its nodes:
 - n All the values in the node's left subtree is less than the value of the node itself.
 - n All the values in the node's right subtree is greater than the value of the node itself.

AVL Trees

- An AVL tree is a binary search tree (BST) with a balance condition.
 - Named after its inventors,
 Adelson-Velskii and Landis.
- For each node of the BST, the heights of its left and right subtrees can differ by at most 1.
 - n Remember that the height of a tree is the length of the longest path from the root to a leaf.
 - n The height of the root = the height of the tree.
 - n The height of an empty tree is -1.

AVL Trees, cont'd

Figure 4.30 Smallest AVL tree of height 9

Balancing AVL Trees

Figure 4.29 Two binary search trees. Only the left tree is AVL.

- We need to rebalance the tree whenever the balance condition is violated.
 - n We need to check after every insertion and deletion.

Balancing AVL Trees, cont'd

- Assume the tree was balanced before an insertion.
- If it became unbalanced due to the insertion, then the inserted node must have caused some nodes between itself and the root to be unbalanced.
- An unbalanced node must have the height of one of its subtrees exactly 2 greater than the height its other subtree.

Balancing AVL Trees, cont'd

- o Let the deepest unbalanced node be α .
- Any node has at most two children.
- o A new height imbalance means that the heights of α 's two subtrees now differ by 2.

Balancing AVL Trees, cont'd

- o Therefore, one of the following had to occur:
 - n Case 1 (outside left-left): The insertion was into the left subtree of the left child of α .

- n Case 2 (inside left-right): The insertion was into the right subtree of the left child of α .
- n Case 3 (inside right-left): The insertion was into the left subtree of the right child of α .
- n Case 4 (outside right-right): The insertion was into the right subtree of the right child of α .

Cases 1 and 4 are mirrors of each other, and cases 2 and 3 are mirrors of each other.

Balancing AVL Trees: Case 1

Case 1 (outside left-left):
 Rebalance with a single right rotation.

Figure 4.31 Single rotation to fix case 1

Balancing AVL Trees: Case 1, cont'd

o Case 1 (outside left-left): Rebalance with a single right rotation.

Figure 4.32 AVL property destroyed by insertion of 6, then fixed by a single rotation

Node A is unbalanced **Single right rotation**: A's left child B becomes the new root of the subtree. Node A becomes the right child and adopts B's right child as its new left child.

Node 8 is unbalanced.

Single right rotation: 8's left child 7 becomes the new root of the subtree.

Node 8 is the right child.

http://www.cs.uah.edu/~rcoleman/CS221/Trees/AVLTree.htm

Balancing AVL Trees: Case 4

Case 4 (outside right-right): Rebalance with a single left rotation.

Figure 4.33 Single rotation fixes case 4

Node A is unbalanced. **Single left rotation**: A's right child C becomes the new root of the subtree. Node A becomes the left child and adopts C's left child as its new right child.

Balancing AVL Trees: Case 2

Case 2 (inside left-right):
 Rebalance with a double left-right rotation.

Figure 4.35 Left-right double rotation to fix case 2

Balancing AVL Trees: Case 2, cont'd

Case 2 (inside left-right):
 Rebalance with a double left-right rotation.

http://www.cs.uah.edu/~rcoleman/CS221/Trees/AVLTree.htm

Node A is unbalanced.

Double left-right rotation: E becomes the new root of the subtree after two rotations. Step 1 is a <u>single left rotation</u> between B and E. E replaces B as the subtree root. B becomes E's left child and B adopts E's left child F as its new right child. Step 2 is a <u>single right rotation</u> between E and A. E replaces A is the subtree root. A becomes E's right child and A adopts E's right child G as its new left child.

Balancing AVL Trees: Case 3

Case 3 (inside right-left):
 Rebalance with a double right-left rotation.

Figure 4.36 Right-left double rotation to fix case 3

Balancing AVL Trees: Case 3, cont'd

Case 3 (inside right-left):

Rebalance with a double right-left rotation.

Node A is unbalanced.

Double right-left rotation: D becomes the new root of the subtree after two rotations. Step 1 is a <u>single right rotation</u> between C and C. D replaces C as the subtree root. C becomes D's right child and C adopts D's right child G as its new left child. Step 2 is a <u>single left rotation</u> between D and A. D replaces A is the subtree root. A becomes D's left child and A adopts D's left child F as its new right child.

AVL Tree Implementation

 Since an AVL tree is just a BST with a balance condition, it makes sense to make the AVL tree class a subclass of the BST class.

public class AvlTree extends BinarySearchTree

 Both classes can share the same BinaryNode class.

The AVL Tree Node

 With so many height calculations, it makes sense to store each node's height in the node itself

- Class AVLTree overrides the insert() and remove() methods of class BinarySearchTree.
 - n Each method calls the superclass's method and wraps the result in a call to the balance() method.

```
protected BinaryNode insert(int data, BinaryNode node)
{
    return balance(super.insert(data, node));
}

protected BinaryNode remove(int data, BinaryNode node)
{
    return balance(super.remove(data, node));
}
```

The private AVLTree method balance () checks whether the balance condition still holds, and rebalances the tree with rotations whenever necessary.

```
private BinaryNode balance(BinaryNode node)
    if (height(node.getLeft()) - height(node.getRight())
                                                           > 1) {
        if (height(node.getLeft().getLeft())
                >= height(node.getLeft().getRight()))
            node = singleRightRotation(node);
                                                           Case 1
        else {
            node = doubleLeftRightRotation(node);
                                                           Case 2
    else if (height(node.getRight()) - height(node.getLeft())
        if (height(node.getRight().getRight())
                >= height(node.getRight().getLeft()))
            node = singleLeftRotation(node);
                                                           Case 4
        else {
            node = doubleRightLeftRotation(node);
                                                           Case 3
    return node;
}
```

```
private BinaryNode singleRightRotation(BinaryNode k2)
                                                          Case 1
    BinaryNode k1 = k2.getLeft();
    k2.setLeft(k1.getRight());
    k1.setRight(k2);
    k2.setHeight(Math.max(height(k2.getLeft()), height(k2.getRight()))
                                                                          + 1);
    k1.setHeight(Math.max(height(k1.getLeft()), k2.getHeight()) + 1);
    return k1;
}
private BinaryNode singleLeftRotation(BinaryNode k1)
                                                          Case 4
{
    BinaryNode k2 = k1.getRight();
    k1.setRight(k2.getLeft());
    k2.setLeft(k1);
    k1.setHeight(Math.max(height(k1.getLeft()), height(k1.getRight()))
                                                                          + 1);
    k2.setHeight(Math.max(height(k2.getRight()), k1.getHeight()) + 1);
    return k2;
}
```

Break

Project 2

- This assignment will give you practice with binary search trees (BST) and AVL trees.
- o You are provided a TreePrinter class that has a print() method that will print any arbitrary binary tree.
 - n A template for how it prints a tree:

o **TreePrinter** is able to print trees with height up to 5, i.e., 32 node values on the bottom row.

n An example of an actual printed tree:

 The first part of the assignment makes sure that you can successfully insert nodes into, and delete nodes from, a binary search tree (BST) and an AVLtree.

- First generate a random BST that has height 5 and contains random values from 10 through 99.
 - n You may have to generate dozens of trees until you get one that's exactly height 5.
 - n Don't worry that the tree is unbalanced.
 - n Print the tree.
- Now repeatedly delete the root of the tree.
 - Print the tree after each deletion to verify that you did the deletion correctly.
 - n Stop when the tree becomes empty.

- Second, create an AVL tree node by node.
 - n Generate 35 unique random integers 10-99 to insert into the tree.
 - n Print the tree after each insertion to verify that you are keeping it balanced.
 - n Each time you do a rebalancing, print a message indicating which rotation operation and which node.
 - O Example: Double left-right rotation: 76
- As you did with the BST, repeatedly delete the root of your AVLtree.
 - n Print the tree after each deletion to verify that you are keeping it balanced.

A handy AVL tree balance checker:

```
private int checkBalance (BinaryNode node) throws Exception
{
    if (node == null) return -1;
    if (node != null) {
        int leftHeight = checkBalance(node.getLeft());
        int rightHeight = checkBalance(node.getRight());
                (Math.abs(height(node.getLeft()) - height(node.getRight())) > 1
            || (height(node.getLeft()) != leftHeight)
            || (height(node.getRight()) != rightHeight)) {
            throw new Exception ("Unbalanced trees.");
    return height (node);
```

- First, generate *n* random integers.
 - n is some large number, explained on the next slide.
- Time and print how long it takes to insert the random integers one at a time into an initially empty BST.
 - n Do not print the tree after each insertion.
- Time and print how long it takes to insert the same random integers one at a time into an initially empty AVL tree.
 - n Do not print the tree after each insertion.

- You can use any code from the lectures or from the textbook.
- You do not have to use parameterized generic types.
 - n You can use raw (nongeneric) types, or <Integer>.

- You may choose a partner to work with you on this assignment.
 - n Both of you will receive the same score.
- Create a zip file containing:
 - n Your Java source files.
 - n Any instructions on how to build and run your code.
 - n Text files containing your outputs.
 - n A 1- or 2-page that briefly describes your conclusions from doing this assignment.

Splay Trees

- Not a new type of tree, but a reimplementation of the BST insert, delete, and search methods.
 n The goal is to improve their performance.
- No single operation on a splay tree is guaranteed to have better performance.
 - n But a series of m operations will take $O(m \log n)$ time for a tree of n nodes, whenever m > n.
- Not highly balanced like an AVL tree.
 - Lowering the cost of an entire series of operations is more important then keeping the tree balanced.

- Whenever a splay tree node is accessed, the tree performs splaying operations that moves the accessed node to the root of the tree.
- Splaying a node consists of a series of rotations.
 - n Similar to AVL tree rotations.
- The goal is to move the accessed node to the root.
- A side benefit is to make the tree more balanced.

- The theory is that once a node has been accessed, it will soon be accessed again.
- Future accesses are fast if the node is the root.

- How is a worst-case BST created?
 - n When all the nodes are entered in sorted order.
 - n Suppose the bottom node is accessed in such a tree:

Figure 4.47 Result of splaying at node 1

- If a node hasn't been accessed in a while, then the next time it's accessed, you pay the performance penalty of splaying.
- But accesses of that node in the near future will be very fast.
- And so we amortize the cost of splaying over future operations.

Figure 4.48 Result of splaying at node 1 a tree of all left children

Figure 4.49 Result of splaying the previous tree at node 2

Figure 4.50 Result of splaying the previous tree at node 3

Figure 4.51 Result of splaying the previous tree at node 4

Figure 4.52 Result of splaying the previous tree at node 5

Figure 4.53 Result of splaying the previous tree at node 6

Figure 4.54 Result of splaying the previous tree at node 7

Figure 4.55 Result of splaying the previous tree at node 8

Figure 4.56 Result of splaying the previous tree at node 9