CHAPITRE 03

Pré-requis : Généralités sur les fonctions

I. Généralités sur les fonctions

I.1. Courbe, tableau de valeurs

₹≣ Méthode 1

Une fonction peut se donner:

- par sa formule (f(x) = ...);
- par sa courbe dans un repère;
- par un tableau de valeurs.

> Exemple 1

Soit $f(x) = x^2$. La courbe \mathcal{C}_f est l'ensemble des points de coordonnées (x; f(x)).

x	-3	-2	-1	0	1	2	3
f(x)	9	4	1	0	1	4	9

I.2. Image, antécédent, équation

≅ Méthodes 2

Déterminer l'**image** d'un réel x par une fonction f revient à déterminer la valeur de f(x):

- soit par **calculs** : on remplace x;
- soit dans le tableau de valeurs : on cherche x dans la première ligne ;
- soit on utilise la courbe : on part des abscisses et on lit l'ordonnée du point de la courbe.

Déterminer les (éventuels) antécédents de y par f revient à chercher tous les x tels que que y = f(x):

- par **calculs**; en résolvant l'équation f(x) = y;
- via le tableau de valeurs : on cherche y dans la deuxième ligne;
- avec la courbe : on regarde les points d'intersection de la courbe avec la droite horizontale de hauteur y.

Remarques 1

Les calculs **algébriques** donnent toujours les valeurs exactes, mais la résolution d'**équations** (pour les antécédents) n'est pas toujours simple!

Le travail sur la courbe est le plus simple, il s'agit de **lectures graphiques**, et il faut (autant que faire se peut) travailler avec la courbe pour vérifier ses résultats!

Illustration 1

On peut donc « lire » l'image de 3 par $f: f(3) \approx -1,35$.

On peut donc « lire » les antécédents de 3 par f : environ -2,25 et -4,2.

I.3. Tableau de signes, tableau de variations

≅ Méthodes 3

Le **tableau de signes** d'une fonction permet de consigner, dans un tableau (sic), les intervalles (endroits) sur lesquels la fonction est positive (+) ou négative (-).

Graphiquement, une fonction est positive si sa courbe est au-dessus de l'axe des abscisses, négative sinon.

Le **tableau de(s) variations** d'une fonction permet de consigner, dans un tableau (sic), les intervalles (endroits) sur lesquels la fonction est croissante (\nearrow) ou décroissante (\searrow).

Graphiquement, une fonction est croissante si sa courbe « monte », décroissante sinon.

Illustration 2 - Remarque

En travaillant sur la courbe donnée précédemment :

x	-5		-0,6		4		5
f(x)		+	0	_	0	+	

x	-5	-3,25	1,5	5
f	-1	3,5	-2	1,75

Il ne faut pas « mélanger » le signe et les variations d'une fonction!

- □ une fonction peut être décroissante et positive;
- □ une fonction peut être croissante et négative;
- □ vune fonction peut être positive et changer « très souvent de variations »;

≅ Méthodes 4

Un tableau de variations (ou une courbe) permet de :

- déterminer un maximum, un minimum : valeurs Max et min de la L2 du tableau de variations;
- déterminer le nombre de solutions d'une équation du type f(x) = k: on « place » k sur les flèches;
- déterminer le tableau de signes (sans passer par la courbe) : on place les « 0 » et on « suit les flèches ».

☑ Illustration 3

On donne le tableau de variations d'une fonction f:

x	-5	a	-2	b	3	C	5	10
f	2	75 0	* -5 _	0 1	.,75 4	75	-3	-1

- \triangleright le maximum de f est 4, atteint en x = 3;
- \triangleright le minimum de f est -5, atteint en x = -2;
- \triangleright l'équation f(x) = 1,75 admet 3 solutions;
- \triangleright l'équation f(x) = 0 admet 3 solutions (notées a, b et c).

On peut donc en déduire le tableau de signes de f(x):

x	-5		a		b		С		10
f(x)		+	0	_	0	+	0	-	

II. Rappels et compléments sur les équations et les tableau de signes

II.1. Équations classiques

> Exemples 2

Pour les équations du 1^{er} degré, on « isole » le x :

- $3x + 5 = 10 \Leftrightarrow 3x = 5 \Leftrightarrow x = 5/3.$
- $-2x+9=-2x+4 \Leftrightarrow 2x+2x=4-9 \Leftrightarrow 4x=-5 \Leftrightarrow x=-5/4$.

> Exemples 3

Pour les équations du 2^d degré, on utilise Δ (ou la calculatrice et le module **géquation**):

- $x^2-6x+5=0$: $\Delta=16$ et les deux racines sont $x_1=5$ et $x_2=1$.
- $3x^2 + 7x 10 = 0$: $\Delta = 169$ et les deux racines sont $x_1 = 1$ et $x_2 = -10/3$.

> Exemples 4

On peut rappeler la méthode liée aux équations-produit (produit nul) :

- $(x-2)(4x+6) = 0 \Leftrightarrow x = 2 \text{ ou } x = -6/4 = -3/2.$
- $(x+2)(x^2+6x+9) = 0$ ⇔ x = -2 ou x = -3 (grâce à Δ).

On peut également rappeler la méthode liée aux équations/quotient (produit en croix) :

- $\frac{3}{2x+5} = 7 \Rightarrow 3 \times 1 = (2x+5) \times 7 \Rightarrow 3 = 14x+35 \Rightarrow 14x = -32 \Rightarrow x = -32/14 = -16/7.$
- $\frac{2x}{x+1} = \frac{x+1}{x+3} \Rightarrow (x+1)(x+1) = 2x(x+3) \Rightarrow x^2 + 2x + 1 = 2x^2 + 6x \Rightarrow -x^2 4x + 1 = 0 \text{ et } \Delta \text{ donne } x = -2 \pm \sqrt{5}.$

II.2. Étude de signes

🖒 Rappel 1

Pour étudier le signe d'une fonction, le plus simple est de travailler sur un tableau de signes :

- → il ne faut avoir que des produits et/ou des quotients; si besoin on met au même dénominateur, on factorise, etc
- → on « remplit » une ligne par facteur;
- → la dernière ligne repose sur la règle des signes.

Les expressions classiques à savoir étudier :

- → un carré est toujours positif (il peut quand même s'annuler...);
- → une exponentielle est toujours strictement positive;
- \rightarrow les fonctions affines mx + p, pour lesquelles on « utilise » le signe de m après le zéro;
- \rightarrow les trinômes $ax^2 + bx + c$ pour lesquelles le signe de a est à l'extérieur des éventuelles racines;

> Exemples 5

 $\rightsquigarrow f(x)3x+18$:

X	$-\infty$	-6	$+\infty$
f(x)		- 0 +	

 $\rightarrow f(x) = -2x^2 + 10x + 12$:

x	$-\infty$		-1		6		+∞
f(x)		_	0	+	0	_	

$$f(x) = \frac{x^2 - 5x + 6}{x + 3}$$
:

x	$-\infty$		-3		2		3		+∞
$x^2 - 5x + 6$		+		+	0	_	0	+	
<i>x</i> + 3		-	0	+		+		+	
f(x)		_		+	0	_	0	+	

⅍ Exemples 6

- en mettant au même dénominateur, on obtient $\frac{-4x^2}{x} + \frac{20x}{x} \frac{16}{x} = \frac{-4x^2 + 20x 16}{x}$;
- le dénominateur (x) est strictement positif sur [0,5;6,5];
- pour le numérateur, $\Delta = 144$ et les deux racines sont 1 et 4;

Ainsi on obtient:

x	0,5		1		4		6,5
f(x)		_	0	+	0	_	