Name:.	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
Invigilate	or's Signature :			
		CS/BCA	/SEM-2/BM-201/2012	
	20	012		
	MATHI	EMATICS	}	
Time Allotted: 3 Hours			Full Marks: 70	
	The figures in the ma	rain indicat	a full marks	
Candid	lates are required to give	•		
Cartata		as practical		
	CPC	UP – A		
	(Multiple Choice		estions)	
1 Cla	· -		•	
1. Cho	pose the correct alternat	live for arry	ten the following: $10 \times 1 = 10$	
i)	Integrating factor of the differential equation			
	$x(1-x^2) dy + (2x^2y - y - ax^3) dx = 0$ is			
	$\frac{1}{\sqrt{1-v^2}}$	1-1	$x/\sqrt{x(x^2-1)}$	
	a) $x/\sqrt{1-x}$			
	a) $x/\sqrt{1-x^2}$ c) $x/\sqrt{x^2-1}$	d)	$x^2/\sqrt{1-x^2}.$	
ii) The order and degree of the differential equation				
$\sqrt{d^2y/dx^2} + dy/dx = y$ are				
	a) 2, 1	b)	1, 2	
	c) 2, 2	d)	2, 3.	

[Turn over

2153

CS/BCA/SEM-2/BM-201/2012

iii)
$$\frac{1}{(D-2)(D-3)}e^{2x}$$
 is

a) $-e^{2x}$

c) $-xe^{2x}$

iv) If for a sequence $\{U_n\}$

- If for a sequence $\{U_n\}$, $\lim_{h\to\infty} U_n = 0$, then
 - a) $\{U_n\}$ is converget
 - b) $\{U_n\}$ is divergent
 - c) $\{U_n\}$ is convergent to 0
 - d) none of these.
- The infinite series $\sum \frac{n}{n+1}$ is
 - a)
- b) convergent
- oscillatory
- d) none of these.
- The value of a for which $\{(1,2,3), (0,-1,9), (4,0,a)\}$ is vi) linearly dep ndent is

- d) None of these.
- If the third order square matrix A is diagonalizable, then the number of independent eigenvectors of A is
 - a) two

b) three

c) one

none of these. d)

viii)	If S and T be two subspaces of a vector space V , then					
	which of the following is also a subspace of V ?					
	a)	$\mathtt{S} \cup \mathtt{T}$	b)	S - T		
	c)	T – S	d)	$S \cap T$.		
ix)	The dimension of the subspace $\{(x, 0, y, 0) \mid x, y \in R\}$ is					
	a)	1	b)	2		
	c)	3	d)	4.		
x)	Let	V and W be two vector	space	es over R nd $T: V \to W$		
	is a linear mapping. Then <i>Im T</i> is a sub space of					
	a)	V	b)	W		
	,	$V \cup W$	d)	$V \cap W$.		
xi)	The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if					
	a)	$p \ge 1$	b)	<i>p</i> > 1		
	•	$p \le 1$,	none of these.		
xii)	The lower bound of the sequence $\{(-1)^{n-1}/n!\}$ is					
	a)	-1/2	b)	1/2		
	c)	0	d)	none of these.		
xiii)	Elim	inating A and B from	<i>y</i> =	$A \cos x + B \sin y$, the		
		rential equation is		0		
	a)	$\frac{d^2y}{dx^2} = 0$	b)	$\frac{d^2y}{dx^2} - y = 0$		
		$\frac{d^2y}{dx^2} + y = 0$	d)	$\frac{d^2y}{dx^2}=1.$		

CS/BCA/SEM-2/BM-201/2012

xiv) The particular integral of $(D^2 + 1) y = \sin x$ is

- a) $x \sin x$
- b) $x \cos x$
- c) $x \tan x$

d) $-\frac{x}{2}\cos x$.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Solve: $(px y) (py + x) = a^2 p$ by using the substitution $x^2 = u$, $y^2 = v$ where $p = \frac{dy}{dx}$
- 3. Examine the convergence of the sequence $\begin{pmatrix} 2 \end{pmatrix}^n$

$$\left\{ \left(1 + \frac{2}{n}\right)^n \right\}$$

4. Examine the convergence of the series

$$\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots$$

- 5. Show that $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 x_2 + x_3 = x_4 \}$ is a subspace of \mathbb{R}^4 .
- 6. Find the representative matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z)$$

7. Find the basis of

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0, \ 2x + y + 3z = 0\}$$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Solve: $\frac{d^2y}{dx^2} + \frac{1}{x} \frac{dy}{dx} = 12 \frac{\log x}{x^2}$
 - b) Obtain the general solution and singular solution of the equation $y = px + \sqrt{a^2 p^2 + b^2}$
 - c) Solve: $3\frac{dy}{dx} + \frac{2y}{x+1} = \frac{x^3}{y^2}$ 5 + 6 + 4
- 9. a) State Leibnitz theorem for Alternating series and test the convergence of the series

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

b) Test the convergence of the following series

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$$

c) Show that the sequence $\left\{2 + \frac{(-1)^n}{n}\right\}$ is convergent.

6 + 5 + 4

- 10. a) S lve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 29 y = 0$ when x = 0, y = 0, $\frac{dy}{dx} = 15$
 - b) Show that the sequence $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$, converges to 2.
 - c) Define basis and dimension of a vector space.

6 + 6 + 3

- 11. a) Prove that the vectors (x_1, y_1) and (x_2, y_2) are linearly dependent, if and only if $x_1 y_2 x_2 y_1 = 0$.
 - b) Show that the vectors $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$ form a basis of R^3 . Express (1, 0, 0) as a linear combination of α_1 , α_2 and α_3 .
 - c) If α_1 , α_2 , α_3 form a basis of a vector space V, then prove that $\alpha_1 + \alpha_3$, $2\alpha_1 + 3\alpha_2 + 4\alpha_3$ and $\alpha_1 + 2\alpha_2 + 3\alpha_3$ also form a basis of the vector space V. 4 + 6 + 5
- 12. a) Let T be defined by T(x, y) = (x' y') where $x' = x \cos \theta y \sin \theta$, $y' = x \sin \theta + y \cos \theta$ Prove that T is a linear transformation.
 - b) The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ transforms the basis vectors (1, 2, 1), (2, 1, 0) & (1, -1, -2) to the basis vectors (1, 0, 0), (0, 1, 0) & (0, 0, 1) respectively. Find T. Hence find T(3, -3, 3).
 - c) Find the Kernel, Image, Nullity and Rank of $T:R^3\to R^2 \ \, \text{where}$

$$T(1, 0, 0) = (2, 1)$$

$$T(0, 1, 0) = (0, 1)$$

$$T(0,0,1) = (1,1)$$
 4 + 7 + 4

2153

- 13. a) Prove that a subset S of a vector space V over R is a subspace if and only if $\alpha x + \beta y \in S$ for all $\alpha, \beta \in R$ and $x, y \in S$.
 - b) Show that the family M_2 of all real square matrices of order 2 forms a vector space over reals, and find a basis for M_2 .
 - c) Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a + b = 0 \text{ and } a, b, c, d \in R \right\}$

Prove that S is a subspace of M_2 . 5 + 6 -

2153 7