Aluminium		Bra	ass	Brass		
Temp (°C)	Reading	Temp (°C)	Temp (°C) Reading Te		Reading	
73.0	5.63	72.9	5.77	75.0	5.76	
71.0	5.57	71.1	5.72	73.1	5.72	
69.0	5.52	69.1	5.68	70.8	5.68	
66.8	5.47	67.1	5.64	68.9	5.65	
65.0	5.44	65.1	5.61	67.0	5.62	
63.1	5.40	62.9	5.58	65.1	5.60	
62.0	5.38	60.9	5.55	63.9	5.58	
61.1	5.36	58.9	5.52	60.9	5.55	
59.0	5.33	57.1	5.49	59.0	5.52	
57.1	5.30	55.0	5.47	57.1	5.49	
55.0	5.27	53.0	5.44	55.1	5.47	
53.1	5.25	51.1	5.42	53.1	5.44	
51.1	5.23	49.0	5.40	51.0	5.41	
48.9	5.20	47.1	5.37	49.1	5.39	
47.0	5.18	45.1	5.34	47.1	5.37	
45.0	5.15	43.1	5.32	45.1	5.35	
43.0	5.13	41.1	5.30	43.1	5.33	
41.2	5.10	39.1	5.28	41.1	5.31	
39.0	5.09	37.1	5.26	39.1	5.29	
36.9	5.07	35.0	5.24	37.1	5.27	
35.0	5.05	33.0	5.22	35.0	5.25	
32.9	5.03	31.0	5.20	33.0	5.23	
31.0	5.01	29.0	5.19	31.0	5.21	
29.0	5.00	28.0	5.18	$T_0 = 29.0$	$L_{_0} = 5.19$	
28.0	4.99	27.0	5.17			
$T_0 = 26.1$	$L_0 = 4.98$	$T_0 = 26.0$	$L_0 = 5.16$			

Aluminium		Brass 1			Brass 2			
ΔL	ΔΤ	α	ΔL	ΔΤ	α	ΔL	ΔΤ	α
0.65	46.9	(2.783±0.043)×10 ⁻³	0.61	46.9	(2.521±0.041)×10 ⁻³	0.57	46.0	(2.388±0.042)×10 ⁻³
0.59	44.9	(2.639±0.045)×10 ⁻³	0.56	45.1	(2.406±0.043)×10 ⁻³	0.53	44.1	(2.316±0.044)×10 ⁻³
0.54	42.9	(2.528±0.047)×10 ⁻³	0.52	43.1	(2.338±0.045)×10 ⁻³	0.49	41.8	(2.259±0.046)×10 ⁻³
0.49	40.7	(2.418±0.049)×10 ⁻³	0.48	41.1	(2.263±0.047)×10 ⁻³	0.46	39.9	(2.221±0.048)×10 ⁻³
0.46	38.9	(2.375±0.052)×10 ⁻³	0.45	39.1	(2.230±0.050)×10 ⁻³	0.43	38.0	(2.180±0.051)×10 ⁻³
0.42	37.0	(2.279±0.054)×10 ⁻³	0.42	36.9	(2.206±0.053)×10 ⁻³	0.41	36.1	(2.188±0.053)×10 ⁻³
0.40	35.9	(2.237±0.056)×10 ⁻³	0.39	34.9	(2.166±0.056)×10 ⁻³	0.39	34.9	(2.153±0.055)×10 ⁻³
0.38	35.0	(2.180±0.057)×10 ⁻³	0.36	32.9	(2.121±0.059)×10 ⁻³	0.36	31.9	(2.174±0.060)×10 ⁻³
0.35	32.9	(2.136±0.061)×10 ⁻³	0.33	31.1	(2.056±0.062)×10 ⁻³	0.33	30.0	(2.119±0.064)×10 ⁻³
0.32	31.0	(2.073±0.065)×10 ⁻³	0.31	29.0	(2.072±0.067)×10 ⁻³	0.30	28.1	(2.057±0.069)×10 ⁻³
0.29	28.9	(2.015±0.070)×10 ⁻³	0.28	27.0	(2.010±0.072)×10 ⁻³	0.28	26.1	(2.067±0.074)×10 ⁻³
0.27	27.0	(2.008±0.074)×10 ⁻³	0.26	25.1	(2.007±0.077)×10 ⁻³	0.25	24.1	(1.999±0.080)×10 ⁻³
0.25	25.0	(2.008±0.080)×10 ⁻³	0.24	23.0	(2.022±0.084)×10 ⁻³	0.22	22.0	(1.927±0.088)×10 ⁻³
0.22	22.8	(1.938±0.088)×10 ⁻³	0.21	21.1	(1.929±0.092)×10 ⁻³	0.20	20.1	(1.917±0.096)×10 ⁻³
0.20	20.9	(1.922±0.096)×10 ⁻³	0.18	19.1	(1.826±0.102)×10 ⁻³	0.18	18.1	(1.916±0.107)×10 ⁻³
0.17	18.9	(1.806±0.106)×10 ⁻³	0.16	17.1	(1.813±0.113)×10 ⁻³	0.16	16.1	(1.915±0.120)×10 ⁻³
0.15	16.9	(1.782±0.119)×10 ⁻³	0.14	15.1	(1.797±0.128)×10 ⁻³	0.14	14.1	(1.913±0.137)×10 ⁻³
0.12	15.1	(1.596±0.133)×10 ⁻³	0.12	13.1	(1.775±0.148)×10 ⁻³	0.12	12.1	(1.911±0.159)×10 ⁻³
0.11	12.9	(1.712±0.156)×10 ⁻³	0.10	11.1	(1.746±0.175)×10 ⁻³	0.10	10.1	(1.908±0.191)×10 ⁻³
0.09	10.8	(1.673±0.186)×10 ⁻³	0.08	9.0	(1.723±0.216)×10 ⁻³	0.08	8.1	(1.903±0.238)×10 ⁻³
0.07	8.9	(1.579±0.226)×10 ⁻³	0.06	7.0	(1.661±0.277)×10 ⁻³	0.06	6.0	(1.927±0.322)×10 ⁻³
0.05	6.8	(1.476±0.295)×10 ⁻³	0.04	5.0	(1.550±0.388)×10 ⁻³	0.04	4.0	(1.927±0.482)×10 ⁻³
0.03	4.9	(1.229±0.410)×10 ⁻³	0.03	3.0	(1.938±0.647)×10 ⁻³	0.02	2.0	(1.927±0.965)×10 ⁻³
0.02	2.9	(1.385±0.693)×10 ⁻³	0.02	2.0	(1.938±0.970)×10 ⁻³			
0.01	1.9	(1.057±1.057)×10 ⁻³	0.01	1.0	(1.938±1.940)×10 ⁻³			
Average (1.953±0.058)		(1.953±0.058)×10 ⁻³	Ave	rage	(2.002±0.094)×10 ⁻³	Ave	rage	(2.053±0.053)×10 ⁻³

```
from uncertainties import ufloat
from uncertainties import unumpy as unp

# Load File
filename = "Aluminium"
f = np.loadtxt(f"{filename}.csv", delimiter = ",", skiprows = 1)

# Set Up Data Arrays
T = f[:,0]
L = f[:,1]

L0 = L[-1]
T0 = T[-1]

Delta_L = unp.uarray([L[i] - L0 for i in range(len(L)-1)], 0.01)
Delta_T = unp.uarray([T[i] - T0 for i in range(len(T)-1)], 0.05)

# Calculate Alpha
alpha = [Delta_L[i] / (L0 * Delta_T[i]) for i in range(len(Delta_L))]
```