EL-SOPC4000 实验系统的资源介绍

一、系统功能概述

EL-SOPC4000实验箱是集EDA 和SOPC 开发为一体的综合性实验箱,它不仅可以独立完成各种EDA 设计,也可以完成多种SOPC开发。

主 CPU 适配器 E-PLAY-SOPC(本实验系统采用型号为 E-PLAY-EP3C25-B)配合 EL-SOPC4000 底板,可完成各种基本的 EDA 实验。在实验板上有丰富的外围扩展资源,有常用的按键,拨码开关,LED 灯,蜂鸣器,交通灯,16x16 点阵,数码管,4x4 矩阵键盘,AD/DA,CAN 功能单元,RS232,RS485,可调时钟输出。实验板上还集成了一个 8寸的 VGA 接口的液晶屏,可完成视频图像的显示。由于 CPU 适配器 E-PLAY-SOPC 本身具有 E_PLAY 接口,只需提供电源即可独立完成功能测试,也可控制用户开发的 E_PLAY接口模块。由于 EL-SOPC4000 底板加入了两路 E_LAB 外扩接口,可以配合多种 E_LAB 模块,来完成毕业设计、电子设计竞赛、及创新设计,具有极高的灵活性,开放性和可开发性。EL-SOPC4000(含 E-PLAY-EP3C25-B 主 CPU 适配器)实物图及资源平面图如图1、图 2 所示:

图 1 EL-SOPC4000 实验系统实物图

图 2 EL-SOPC4000 底板资源平面图

EL-SOPC4000 支持的 CPU 适配器型号有: 主芯片采用 Altera 公司的 CycloneII 系列 E-PLAY-EP235, CycloneIII 系列 E-PLAY-EP3C25-B、E-PLAY-EP3C80, CycloneIV 系列 E-PLAY-EP4CE22。

二、系统硬件资源

1、EL-SOPC4000 实验系统的硬件资源总览

- ☆ E-PLAY CPU 板接口单元(通过 PORT A、PORT B 两组接口与 E-PLAY-EP3C25-B 主 CPU 适配器)
- **☆** E_LAB 模块接口单元(2组)
- ☆ 16 个用户 IO 单元
- ☆ 16个按键单元
- ☆ 16个拨码开关单元
- ☆ 4x4矩阵键盘单元
- **☆** 16X16 LED 点阵显示单元
- ☆ 8位数码管显示单元
- ☆ 12 个交通灯单元

- ☆ 蜂鸣器及4个LED声光单元
- **☆** 8 位用户 LED 单元
- ☆ 可调时钟输出单元
- ☆ RS232、RS485 接口单元
- ☆ 10 位串行 AD (TLV1570) 单元
- ☆ 10 位串行 DA (TLV5617) 单元
- ☆ CAN 总线接口单元
- ☆ 8寸 VGA 接口液晶屏单元(帶触摸屏)

2、底板资源的具体介绍

1)E-PLAY CPU 适配器接口单元(PORT A 接口、PORT B 接口)信号定义 以及与 E-PLAY-EP3C25-B 型 CPU 适配器的管脚对应关系

表 1 PORT A 信号分配表

PORT A	FPGA 管脚	信号	PORT A	FPGA 管脚	信号
PIN_1		+5V	PIN_2		+5V
PIN_3		GND	PIN_4		GND
PIN_5	PIN_E2	D0	PIN_6	PIN_F3	D1
PIN_7	PIN_G2	D2	PIN_8	PIN_H2	D3
PIN_9	PIN_K2	D4	PIN_10	PIN_L3	D5
PIN_11	PIN_K5	D6	PIN_12	PIN_M3	D7
PIN_13	PIN_M2	D8	PIN_14	PIN_L1	D9
PIN_15	PIN_L2	D10	PIN_16	PIN_K1	D11
PIN_17	PIN_H3	D12	PIN_18	PIN_H1	D13
PIN_19	PIN_G1	D14	PIN_20	PIN_E1	D15
PIN_21	PIN_C3	A0	PIN_22	PIN_B2	A1
PIN_23	PIN_C2	A2	PIN_24	PIN_C1	A3
PIN_25	PIN_D1	A4	PIN_26	PIN_L4	A5
PIN_27	PIN_M5	A6	PIN_28	PIN_L6	A7
PIN_29	PIN_R3	A8	PIN_30	PIN_T1	A9
PIN_31	PIN_R2	A10	PIN_32	PIN_R1	A11
PIN_33	PIN_P2	A12	PIN_34	PIN_P1	A13
PIN_35	PIN_M1	A14	PIN_36	PIN_B3	A15
PIN_37	PIN_C7	CS0	PIN_38	PIN_F6	CS1
PIN_39	PIN_E6	CS2	PIN_40	PIN_D7	CS3
PIN_41	PIN_F9	CS4/WR	PIN_42	PIN_F8	CS5/RD
PIN_43	PIN_D9	CS6/RS485_TR	PIN_44	PIN_E8	CS7
PIN_45		W/R	PIN_46		R/D
PIN_47		main_int	PIN_48		NC
PIN_49		R/S/T/0/U/T	PIN_50	PIN_E10	NC
PIN_51		NC	PIN_52		NC
PIN_53		NC	PIN_54		NC

PIN_55		ALE	PIN_56		NC
PIN_57	PIN_F11	SPI_NSSO(AD)	PIN_58	PIN_C12	SPI_CLKO(AD)
PIN_59	PIN_C14	SPI_MISOO(AD)	PIN_60	PIN_D14	SPI_MOSIO(AD)

表 2 PORT B 信号分配表

PORT B	FPGA 管脚	信号	PORT B	FPGA 管脚	信号
PIN 1		+12V	PIN 2		+12V
PIN_3		NC	PIN_4		NC
PIN_5	PIN_U5	SPI_NSS1 (DA)	PIN_6	PIN_V4	SPI_CLK1 (DA)
PIN_7	PIN_U6	RS485_RXD/SPI_MIS01(DA)	PIN_8	PIN_V5	SPI_MOSI1(DA)
PIN_9	PIN_U7	RX_CAN	PIN_10	PIN_V6	TX_CAN
PIN_11	PIN_U8	RX_RS232	PIN_12	PIN_V7	TX_RS232
PIN_13		NC	PIN_14		NC
PIN_15	PIN_V8	ALE	PIN_16	PIN_T3	GPI01
PIN_17	PIN_R4	GPI03	PIN_18	PIN_T4	GPI02
PIN_19	PIN_R5	GPI04	PIN_20		NC
PIN_21		NC	PIN_22		NC
PIN_23		NC	PIN_24		NC
PIN_25	PIN_N6	GPI09	PIN_26	PIN_N7	GPI010
PIN_27	PIN_P6	GPI011	PIN_28	PIN_T6	GPI012
PIN_29	PIN_P7	GPI013	PIN_30	PIN_P8	GPI014
PIN_31	PIN_N8	GPI015	PIN_32	PIN_T8	GPI016
PIN_33	PIN_P9	RS485_TXD	PIN_34		NC
PIN_35		NC	PIN_36		NC
PIN_37	PIN_N9	GPI05	PIN_38	PIN_R8	GPI06
PIN_39	PIN_N10	GPI07	PIN_40	PIN_P10	GPI08
PIN_41	PIN_P11	M[0]	PIN_42	PIN_U11	M[1]
PIN_43	PIN_R11	M[2]	PIN_44	PIN_N11	M[3]
PIN_45		NC	PIN_46		NC
PIN_47		NC	PIN_48		NC
PIN_49		NC	PIN_50		NC
•••		•••	•••		•••
PIN_69		-12V	PIN_70		-12V

说明:标有"NC"的引脚,表示没有用到适配器上的引脚;

2)E-LAB 总线接口

图 3 E-LAB接口信号

底板上的两组 E-LAB 接口上的信号线完全相同。

3) 16 个用户 10 单元

IO1-IO16 都是通过 **PORT B 接口(GPIO1**—**GPIO16)**从 FPGA 直接引出,供用户二次 开发使用,具体定义请参照 PORT B 的接口定义。

4)16个拨码开关,16个按键,12个交通灯和蜂鸣器四周 4个灯,8位数码管,4x4矩阵键盘,16x16 点阵 LED 均是从底板的两片 CPLD 引出的,这些资源有 IO 方式和总线操作两种控制方式。

■ 采用 IO 控制方式

当采用 **IO 控制方式**时,通过 <u>PORT B 的 M[0]~M[3](即 PIN 41~PIN 44)四位</u>设置不同的值,来选择 <u>PORT A 的数据总线 D0~D15(即 PIN 5~PIN 20)以及部分地址总线</u> A1~A4(即 PIN22~PIN25)与不同的资源连接。

 M[3..0]的设置值
 资源连接方式

 0001
 16 位拨码开关接到 PORT A 的 16 位数据总线上,即 SW1~SW16 与 D0~D15 连接。

 0011
 16 位按键接到 PORT A 的 16 位数据总线上,即 PB1~PB16 与 D0~D15 连接。

 0111
 12 个交通灯和蜂鸣器四周 4 个灯接到 PORT

表 3 IO 控制方式时资源连接表

	A 始 17
A 的 16 位数据总线上,即 LED1~LED	
	D0~D15 连接。
	8个数码管,低8位为7位段总加小数点选
	取位,高8位为8个数码管com端选取,即
	如果要选取数码管 0,则发送总线值为:1111
	1110 1111 1111, 如要选取数码管 1, 则发送
	总线值为:1111 1101 1111 1111, 此时所选数
0010	码管 7 段和 DP 位将全部亮。 <mark>注意</mark> ,数码管
	的段数据端 a,b,c,d,e,f,g,dp 与 PORT A 的
	D0~D7 相连,数码管的位选端 com0~com7
	与 D8~D15 相连, com0 对应最右端数码
	管,且数码管为共阴极,即位选低电平有
	效,段数据高电平有效。
	4X4 键盘功能选取,此时只有最低的 8 位有
	效, 高 4 位为键盘的 4 位列扫描输出(低电
	平有效),低4位为键盘的4位行查询输入
	(低电平有效)。PORT A 的 D7~D4 对应第
	1 列至第 4 列扫描输出(最左边为第 1
	列), D3~D0对应第1行至第4行查询输入
0101	(最上面为第 1 行)。例如,当 D7~D4 输
	出 0111 时,扫描到键盘第 1 列,若此时
	D3~D0 返回 0111, 说明第 1 列的第 1 行按
	下,即按键"1"按下;若返回 1011,说明
	第 1 列的第 2 行按下,即按键"4"按下,
	若返回 1111, 说明此列没有任何键按下, 其
	他按键的识别以此类推。
	16X16 LED 点阵显示功能选取,PORT A 的
	16 位数据总线作为点阵的每行显示值
	(D15~D0 对应一行从左至右 16 个 LED,
0110	高电平点亮),A4~A1 四位地址对应行值编
	码,0000 时扫描第 1 行,0001 时扫描第 2
	行,以此类推(最上面一行为第1行)。

在做基本的数字逻辑实验时,如果用到底板的资源时,切记一定根据资源使用情况,依据表3设置M[3..0]四位功能位,否则有可能对硬件造成损伤!!

当实验用到的拨码、按键、LED 小于 5 位时,可以使用 E-PLAY-EP3C25-B 适配器上的资源(具体内容参阅 E-PLAY-EP3C25-B 硬件说明书),当实验中仅使用到 E-PLAY-EP3C25-B 适配器就可以完成时,可以不设置 M[3..0]。

■ 采用总线控制方式

当采用**总线控制方式(适合 Nios II 软核嵌入系统环境下对资源的调用,且** 要自定制 16 位三态总线元件)时,两片 CPLD 共用同一条片选信号线 CS7,CS4/WR 用作写信号线,CS5/RD 用作读信号线,16 位数据线 D15~D0 用于数据读写, 4 位地址线 A4~A1 可访问到 16 个寄存器。注意,片选、读/写信号都是低电平有效。

表 4 总线控制方式时资源连接表

表 4 总线控制方 A4~A1	对应写入寄存器
	16 位数据写入 16 个 LED 寄存器, D15~D0
	对应 LED16~LED1。如执行 NIOS II 指令:
1000	write_bus16((cs7+8),0x0001);
1000	则向以 cs7 为基地址,以 8(即 1000)为偏移地址的寄存器写 0x0001,这条指令的功能是使 LED1 点亮,除 LED1 以外的其它 LED均为不点亮状态。
	16位数据写入16个8段数码管寄存器,
	PORT A 的 16 位数据,低 8 位(D0~D7)为
	8段数码管的段选(a、b、c、d、e、f、g、
	dp), 高 8 位的低 4 位(D11~D8)为 16 个数
	码管选择(本实验系统只能选到前8个),
1001	高 4 位数据 D15~D12 未定义,可以不作理
	会。如执行 NIOS II 指令:
	write_bus16((cs7+9),0x007f);
	则为向以 cs7 为基地址,以 9 为偏移地址的
	寄存器写 0x007f, 使用数码管 0 显示"8"
	(注:最右侧为第0个数码管)。
	从 16 位按键寄存器读出 16 位数据,PORT
	A 的 16 位数据 D15~D0 与按键 PB16~PB1 对
1100	应。
	读按键值操作指令为: read_bus16((cs7+12));
	从 16 位拨码寄存器读出 16 位数据,PORT
	A 的 16 位数据 D15~D0 与拨码 SW16~SW1
1101	对应。
	读按键值操作指令为: read_bus16((cs7+13));
	向该寄存器写入任意数据,都将对 LED 及 8
1111	 段数码管进行复位。
	例如 write_bus16((cs7+15),0x00);
	读出矩阵键盘寄存器内容至 PORT A 的 16
	位数据端,其中 D5~D0 有效: D5 位状态值
0100	+D4 位有效标志+第 D3~D0 位键盘值。写入
	任意值,将清除 D4 位有效标志(注意: 读
	完后, 紧跟着写一次); D5 位为 1 时,说

	明键盘有键正在按下,为0时说明按键已弹
	起;只有当 D5 位为 0, D4 位为 1 时,读到
	的值才为有效值。
	例如: temp=read_bus16((cs7+4));
	write_bus16((cs7+4),0x00);
	另外:按键 0~9 对应 D3~D0 读出"0000"~
	"1001",按键 A~D 对应 D3~D0 读出
	"1010"~"1101",按键*对应 D3~D0 读
	出"1110",按键#对应 D3~D0 读出
	"1111"。
	向该寄存器写入任意数据,都将对矩阵键盘
0101	复位,D3~D0 复位为"1111"。
	例如 write_bus16((cs7+5),0x00);
	16X16点行选寄存器,低4位行选,写
0000	D3~D0 位二进制来决定对哪一行操作,
	"0000"对应最上面一行。
	16X16点行数据寄存器,D15~D0对应点阵
	一行显示内容,D15 对应左侧第一个 LED
	点像素。要写某一行值时,先写寄存器 0000
	行选,再写寄存器 0001 行值数据。在底板
0001	的 CPLD 中,分别把 16 行的行值数据保存
	到 16 个输出寄存器中, 当编程对某行数据
	显示时,只是更新对应行的输出寄存器值。
	扫描时钟由外部时钟分频得到。底板 CPLD
	程序自动完成 16×16 LED 点阵的扫描输出。
0111	向该寄存器写入任意数据,对全局复位。

5) 8 位用户 LED 单元

L1-L8 为用户 LED 灯,通过二号孔输入**高**电平点亮。

6) 用户时钟输出单元

包括 CLK1~CLK5、ADJ_CLK 共 6 组时钟输出, 其中 CLK1~CLK5 为固定输出, ADJ_CLK 为可调输出。CLK1 时钟输出为 10MHz、CLK2 为 1MHz、CLK3 为 100KHz、CLK4 为 5KHz、CLK5 为 100Hz,ADJ_CLK 由 4 位拨码开关 SW17~SW20 来控制输出 40M 分频得到可调时钟, 具体如表 5 所示,

表 5 ADJ_CLK 时钟控制

SW20) SW19	SW18	SW17	ADJ_CLK
1	1	1	1	1Hz
0	1	1	1	5Hz
1	0	1	1	10Hz
0	0	1	1	25Hz
1	1	0	1	50Hz
0	1	0	1	500Hz
1	0	0	1	1KHz
0	0	0	1	2.5KHz
1	1	1	0	10KHz
0	1	1	0	20KHz
1	0	1	0	50KHz
0	0	1	0	200KHz
1	1	0	0	500KHz
0	1	0	0	2MHz
1	0	0	0	5MHz
0	0	0	0	20MHz

7) RS232 、RS485 接口单元

RS232 接口控制信号线都是从 PORT B 端口(即 PIN_11 和 PIN_12)引出。由于 1C12 和 2C35 两块开发板已经在 CPU 板上通过了 RS232 电平转换,无需再通过外部的 MAX3232 芯片了,而 3C, 4C 系列的板卡是直接从 FPGA 引出,没有经过 RS232 电平转换,需要通过外接的 MAX3232 芯片,所以通过跳线选择 1C/2C、3C/4C。对于 E-PLAY-EP3C25-B 适配器,将 J2-J4 跳线帽全部跳到右侧,同时将 3C25 适配器板上的 P1 跳线帽拨掉。

图 4 RS232 电路图

RS485 接口控制信号线是从 PORT A(PIN_43)及 PORT B 端口(即 PIN_7和 PIN_33)引出。RS485 测试时可采用两个实验箱连接组成,用二号导线分别连接两实验箱上的 A 和 B 接口,同时 J6 跳线帽跳到 ON 端。

图 5 RS458 电路图

8) 10 位串行 AD (TLV1570) 单元

该模块主要完成模拟量与数字量的转换,使用 TI 的 TLV1570 芯片,该芯片是 10 位的串行 A/D 转换芯片,采用 SPI 的通信模式。其接线口由 PORT A (PIN_57~PIN_60)引出。

图 6 AD 模块电路图

9) 10 位串行 DA (TLV5617) 单元

该模块主要完成数字量与模拟量的转换,使用 TI 的 TLV5617 芯片,该芯片是 10 位的串行 D/A 转换芯片,采用 SPI 的通信模式。其接线口由 PORT B (PIN 5~PIN 8)引出。

图 7 DA 模块电路图

10) CAN 总线接口单元

CAN 全称为"Controller Area Network",即控制器局域网,是国际上应用最广泛的现场总线之一。最初 CAN 被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置 ECU 之间交换信息,形成汽车电子控制网络。比如发动机管理、系统变速箱控制器、仪表装备、电子主干系统中,均嵌入 CAN 控制装置。本实验系统 CAN 模块使用 CAN 总线收发器 82C250,带有高速光耦 6N137。接口控制信号线从 PORT B 端口(即 PIN_9 和 PIN 10)引出。

图 7 CAN 模块电路图

11) 8 寸 VGA 接口液晶屏单元

该模块使用的是带 VGA 接口的 8 寸液晶屏,最大分辨率为 800x600,可以用于视频图像算法的开发和用于 VGA 时序的验证实验。触摸屏控制芯片 ADS7843 的原理图如下所示:

图 8 触摸屏控制电路图

该触摸屏分为上下 2 层, X+, X-, Y+,Y-信号与 ADS7843 芯片相连,通过操作 ADS7843 采集触摸屏坐标。其工作过程如下:

- 当触摸屏被触摸时,ADS7843 产生一个中断信号,用来中断 NIOS II 处理器,以 进行后续处理。
- FPGA 可以向 ADS7843 发送控制字,读取被触摸点的横坐标。此时, X+=VCC X-=GND, Y+为 ADS7843 芯片内部 AD的输入,通过对 Y+的操作,得到的 12 位数据即可表示触摸点相对于触摸屏 X 方向的位置。
- 同理, FPGA 可以向 ADS7843 发送控制字,读取被触摸点的纵坐标。此时,Y+= VCC Y-= GND, X+为 ADS7843 芯片内部 AD的输入,通过对 X+的操作,得 到的 12 位数据即可表示触摸点相对于触摸屏 Y 方向的位置。

通过以上的操作,我们就可以得到触摸点的位置,这也就是触摸屏的工作原理。 ADS7843 控制信号对应的 PORT B 管脚如下表所示

 PORT B
 信号
 PORT B
 信号

 PIN_15
 INT
 PIN_37
 MISO

 PIN_38
 MOSI
 PIN_39
 CS7843

 PIN 40
 SPICLK

表 6 ADS7843 控制信号表

三、特别说明: 在以 E-PLAY-3C25-B 为 CPU 板做实验时,请将 CPU 板底下的小拨码开关全部拨到 ON,其他 CPU 板全部拨到 OFF。