PRINCIPAL COMPONENT ANALYSIS

1 Warm-up

- 1. Let A be a $n \times d$ matrix with real entries. Show that $\text{Im}(A) = \text{Im}(AA^{\top})$.
- 2. Let $\{U_k\}_{1\leq k\leq r}$ be a family of r orthonormal vectors of \mathbb{R}^n . Show that $\sum_{k=1}^r U_k U_k^{\top}$ is the matrix associated with the orthogonal projection onto $H = \{\sum_{k=1}^r \alpha_k U_k ; \alpha_1, \ldots, \alpha_r \in \mathbb{R}\}$. Deduce that if A is a $n \times d$ matrix with real entries such that each column of A is in H, then,

$$\left(\sum_{k=1}^r U_k U_k^{\top}\right) A = A.$$

2 Kernel Principal Component Analysis

2.1 Principal Component Analysis

Let $(X_i)_{1 \leqslant i \leqslant n}$ be i.i.d. random variables in \mathbb{R}^d and consider the matrix $X \in \mathbb{R}^{n \times d}$ such that the *i*-th row of X is the observation X_i^{\top} . In this exercise, it is assumed that data are preprocessed so that the columns of X are centered. This means that for all $1 \leqslant k \leqslant d$, $\sum_{i=1}^n X_{i,k} = 0$. Let Σ_n be the empirical covariance matrix:

$$\Sigma_n = n^{-1} \sum_{i=1}^n X_i X_i^{\top}.$$

Principal Component Analysis aims at reducing the dimensionality of the observations $(X_i)_{1 \leq i \leq n}$ using a compression matrix $U \in \mathbb{R}^{d \times p}$ with orthonormal columns with $p \leq d$ so that for each $1 \leq i \leq n$, $U^{\top}X_i$ is a low dimensional representation of X_i . The original observation may then be partially recovered using $U \in \mathbb{R}^{d \times p}$. Principal Component Analysis computes U using the least squares approach:

$$U_{\star} \in \operatorname*{argmin}_{U \in \mathbb{R}^{d \times p}} \sum_{i=1}^{n} \|X_i - UU^{\top} X_i\|_2^2,$$

1. Prove that for all $\mathbb{R}^{n\times d}$ matrix A with rank r, there exist $\sigma_1 \geqslant \ldots \geqslant \sigma_r > 0$ such that

$$A = \sum_{k=1}^{r} \sigma_k u_k v_k^{\top} \,,$$

where $\{u_1, \ldots, u_r\} \subset \mathbb{R}^n$ and $\{v_1, \ldots, v_r\} \subset \mathbb{R}^d$ are two families of orthonormal vectors. The vectors $\{u_1, \ldots, u_r\}$ (resp. $\{v_1, \ldots, v_r\}$) are the left-singular (resp. right-singular) vectors associated with $\{\sigma_1, \ldots, \sigma_r\}$, the singular values of A.

2. Prove that solving the PCA least squares optimization problem boils down to computing

$$U_{\star} \in \underset{U \in \mathbb{R}^{d \times p}, U^{\top}U = \mathbf{I}_{p}}{\operatorname{argmax}} \left\{ \operatorname{trace}(U^{\top} \Sigma_{n} U) \right\}.$$

3. Let $\{\vartheta_1, \ldots, \vartheta_d\}$ be orthonormal eigenvectors associated with the eigenvalues $\lambda_1 \geqslant \ldots \geqslant \lambda_d$ of Σ_n . Prove that a solution to this problem is given by the matrix U_{\star} with columns $\{\vartheta_1, \ldots, \vartheta_p\}$.

1

4. For any dimension $1 \leq p \leq d$, let \mathcal{F}_d^p be the set of all vector subpaces of \mathbb{R}^d with dimension p. Consider the linear span V_d defined as

$$V_p \in \underset{V \in \mathcal{F}_d^p}{\operatorname{argmin}} \sum_{i=1}^n \|X_i - \pi_V(X_i)\|_2^2,$$

where π_V is the orthogonal projection onto the linear span V. Prove that $V_1 = \text{span}\{v_1\}$ where

$$v_1 \in \underset{v \in \mathbb{R}^d; ||v||_2=1}{\operatorname{argmax}} \sum_{i=1}^n \langle X_i, v \rangle^2.$$

5. For all $2 \leq p \leq d$, following the same steps, prove that a solution to the optimization problem is given by $V_p = \text{span}\{v_1, \dots, v_p\}$ where

$$v_1 \in \underset{v \in \mathbb{R}^d; ||v||=1}{\operatorname{argmax}} \sum_{i=1}^n \langle X_i, v \rangle^2 \quad \text{and for all } 2 \leqslant k \leqslant p \;, \quad v_k \in \underset{v \in \mathbb{R}^d; ||v||=1}{\operatorname{argmax}} \sum_{i=1}^n \langle X_i, v \rangle^2 \;. \tag{1}$$

- 6. Prove that the vectors $\{v_1, \ldots, v_k\}$ defined by (1) can be chosen as the orthonormal eigenvectors associated with the k largest eigenvalues of the empirical covariance matrix Σ_n .
- 7. The orthonormal eigenvectors associated with the eigenvalues of Σ_n allow to define the principal components as follows. Then, as $V_d = \text{span}\{\vartheta_1, \dots, \vartheta_d\}$, for all $1 \leq i \leq n$,

$$\pi_{V_d}(X_i) = \sum_{k=1}^d \langle X_i, \vartheta_k \rangle \vartheta_k = \sum_{k=1}^d (X_i^\top \vartheta_k) \vartheta_k = \sum_{k=1}^d c_k(i) \vartheta_k \,,$$

where for all $1 \le k \le d$, the k-th principal component is defined as $c_k = \mathbf{X}\vartheta_k$. Prove that (c_1, \ldots, c_d) are orthogonal vectors.

2.2 Application to RKHS

Let $(X_i)_{1 \leq i \leq n}$ be n observations in a general space \mathcal{X} and $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a positive function. We assume that k is symmetric and that for all $n \geq 1$, $(a_i)_{1 \leq i \leq n} \in \mathbb{R}^n$ and $(x_i)_{1 \leq i \leq n} \in \mathcal{X}^n$, $\sum_{1 \leq i,j \leq n} a_i a_j k(x_i, x_j) \geq 0$. For all $x \in \mathcal{X}$, $\phi(x)$ denotes the function $\phi(x): y \to k(x, y)$.

Let \mathcal{W} be a Hilbert space of real-valued functions defined on \mathcal{X} , endowed with an inner product denoted by $\langle \cdot, \cdot \rangle_{\mathcal{W}}$, and such that for all $x \in \mathcal{X}$, $\phi(x) \in \mathcal{W}$ and for all $f \in \mathcal{W}$ and all $x \in \mathcal{X}$, $f(x) = \langle f, \phi(x) \rangle_{\mathcal{W}}$. The aim is now to perform a PCA on $(\phi(X_1), \dots, \phi(X_n))$. It is assumed that $\sum_{i=1}^{n} \phi(X_i) = 0$. Define

$$K = (k(X_i, X_j))_{1 \leqslant i, j \leqslant n} .$$

1. Prove that

$$f_1 = \underset{f \in \mathcal{W}; \|f\|_{\mathcal{W}} = 1}{\operatorname{argmax}} \sum_{i=1}^{n} \langle \phi(X_i), f \rangle_{\mathcal{W}}^2$$

may be written

$$f_1 = \sum_{i=1}^n \alpha_1(i)\phi(X_i)$$
, where $\alpha_1 = \underset{\alpha \in \mathbb{R}^n ; \alpha^T K \alpha = 1}{\operatorname{argmax}} \alpha^\top K^2 \alpha$.

- 2. Prove that $\alpha_1 = \lambda_1^{-1/2} b_1$ where b_1 is the unit eigenvector associated with the largest eigenvalue λ_1 of K.
- 3. Write $H_d = \text{span}\{f_1, \dots, f_d\}$. Prove that, for all $1 \leq i \leq n$,

$$\pi_{H_d}(\phi(X_i)) = \sum_{j=1}^d \lambda_j \alpha_j(i) f_j .$$