

Using Euclidean proofs

$$|CD|^2 = |AC|^2 + |AD|^2 + 2*|AC|*|AD| (prop 2.4)$$

$$|CB|^2 = |CD|^2 + |DB|^2 \text{ (prop 1.47)}$$

 $|AB|^2 = |AD|^2 + |DB|^2 \text{ (prop 1.47)}$

$$|CB|^2 = |AC|^2 + |AD|^2 + 2*|AC|*|AD| + |DB|^2$$

 $|CB|^2 = |AC|^2 + |AB|^2 + 2*|AC|*|AD|$

In Trigonometry

$$|CB|^2 = |AC|^2 + |AB|^2 + 2*|AC|*|AB|*cos(\pi - \alpha)$$

 $|CB|^2 = |AC|^2 + |AB|^2 + 2*|AC|*|AB|*(-cos(\alpha))$
 $|CB|^2 = |AC|^2 + |AB|^2 - 2*|AC|*|AB|*cos(\alpha)$

In Vector

C

$$|CB|^2 = (AC - AB)^2$$

 $|CB|^2 = |AC|^2 + |AB|^2 - 2*|AC|*|AB|*cos(\alpha)$
 $(AC - AB)^2 = |AC|^2 + |AB|^2 - 2*|AC|*|AB|*cos(\alpha)$
 $(AC - AB)(AC - AB) = |AC|^2 + |AB|^2 - 2*|AC|*|AB|*cos(\alpha)$
 $AC^2 + AB^2 - 2*AC*AB = |AC|^2 + |AB|^2 - 2*|AC|*|AB|*cos(\alpha)$
 $AC^3 + AC^3 +$

What is AC*AB? $AC*AB = |AC|*|AB|*cos(\alpha) = -|AC|*|AD|$ $AD = AB*cos(\pi - \alpha)$

What is AD? How come |AC| * |AD| = Cx * Bx + Cy * By

CB² + BD² = 2*CB*BD + CD² (prop 2.7) AB² = BD² + DA² AC² = DC² + DA² CB2 = DB² + DC² + 2*DB*DC

DC^2 = CB^2 + BD^2 - 2CB*BD DA^2 = AB^2 - BD^2 AC^2 = CB^2 + BD^2 - 2CB*BD + AB^2 - BD^2 AC^2 = CB^2 + AB^2 - 2CB*BD