

Unlocking the Power of Human Language!

Introduction

Virtual assistants Chathotslels

ALL The Previous Are NLP Examples!

Let's Explore The NLP World

What IS NLP?

- A subfield of AI that deals with giving computers the ability to understand, process and generate human language.
- Human language can be text or voice.
- It is unstructured data

Bird's-eye View

Examples

NLP Tasks

Natural Language Understanding (NLU)

- A subset of NLP, which uses syntactic and semantic analysis of text and speech to determine the meaning of a sentence.
- Syntax: The grammatical structure of a sentence.
- Semantics: Focuses on the meaning of words and sentences.
- NLU focuses on computer reading comprehension

Natural Language Understanding (NLU)

For Example this sentence:

"Green ideas sleep furiously."

- Syntax: Its correct as it follows the basic structure of subject-verb-object.
- Semantics: It doesn't make any sense because the meanings of the words don't create a logical concept.

Natural Language Understanding (NLU)

Another example:

- 1. Alice is swimming against the current.
- 2. The current version of the report is in the folder.
- Words can have multiple meanings.
- NLU make it possible to understand the intended meaning depending on the context.

NLU Use Cases

Spam Detection

Sentiment Analysis

Natural Language Generating (NLG)

- NLG is the ability of a computer program to generate human-like text.
- NLG systems take data as input, which can be structured or unstructured, and use it to create natural language outputs.
- NLU May be an initial step for NLG

NLG Use Cases

Automated Reporting

NLP Lifecycle

Problem Definition and Data Collection

Data
Preprocessing
and Feature
Engineering

Model Selection and Training Model Evaluation and Tuning

Deployment and Monitoring

Problems:

Text / Voice

Sentiment Analysis, Text Classification, Topic Clustering ...etc. Data: Data Cleaning Tokenization Stemming Lemmatization Spell Correction

RNNs BERT GPT ALBERT

Common NLP Problems

Machine Translation

Speech Recognition

Text Summarization

Question Answering

Text Classification

Sentiment Analysis

INFORMATION RETRIEVAL

Text Similarity

Topic Modeling

Chatbots and Virtual Assistants

Text Preprocessing

Text Preprocessing Steps

Tokenization

- The process of breaking down a text into individual units called tokens.
- A token is a word, a phrase, a character or other meaningful elements.

Tokenization

The primary goal of tokenization:

 To represent text in a manner that's meaningful for machines without losing its context.

Tokenization

Challenges:

- Dealing with punctuation that could be part of a token or separate tokens. ("U.K.")
- Handling exceptional cases: like dates, amounts, and abbreviations.
- Splitting compound words. Breakfast
- Adjusting to the context, the same sequence of characters might need to be tokenized differently depending on its use.

Normalization

The process of transforming text into a standard, consistent format to enhance its analysis, understanding, and processing.

It helps reduce variability, noise, and redundancy in the text corpus.

Stop Words

- Stop words are commonly occurring words in a language that do not carry significant meaning or contribute to the understanding of the text.
- They are typically removed to improve the efficiency and accuracy.

Stemming

 Stemming is a technique used to simplifies a word to its stem (base or root) by removing the suffixes or prefixes from words

- It helps in enhancing text analysis and language understanding.
- Importance of stemming :
 - Normalization
 - Vocabulary Reduction
 - Improving Information Retrieval

Stemming

Challenges:

- Under-stemming can't get the root of did as do
- Over-stemming universe → univers
- Language challenges

For example, an Italian stemmer is more complicated than an English stemmer because there is a higher number of verb inflections.

Lemmatization

- A technique used to reduce inflected words to their root word by identifying an inflected word's "lemma" (dictionary form) based on its intended meaning and context.
- It ensures that the resulting lemma is a valid word in the language.

Lemmatization

Characteristics of Lemmatization

Accuracy:

- Unlike stemming ,it does not merely cut words off.
- Analysis of words is conducted based on the word's POS (Part-of-Speech) to take context into consideration.
- It leads to real dictionary words being produced.

Time-consuming:

- Compared to stemming, lemmatization is a slow.
- This is because lemmatization involves performing morphological analysis and deriving the meaning of words from a dictionary.

Part-of-Speech Tagging

- An NLP task where the goal is to assign a grammatical category (such as noun, verb, adjective, etc.) to each word in a given text.
- This provides a deeper understanding of the structure and function of each word in a sentence.

Text Representation

Text Representation (Vectorization)

 A preprocessing step that aims to converting raw text data into a format that computers can understand and work with.

Common techniques for text representation:

Bag-of-Words

TF-IDF

N-grams

Word Embeddings

One-hot Encoding

This does not provide much information about word meaning and it does not reveal any existing relationship between words.

One-hot Encoding

```
Rome Paris word V

Rome = [1, 0, 0, 0, 0, 0, 0, ..., 0]

Paris = [0, 1, 0, 0, 0, 0, ..., 0]

Italy = [0, 0, 1, 0, 0, 0, ..., 0]

France = [0, 0, 0, 1, 0, 0, ..., 0]
```

Bag-of-Words (BoW)

Bag-of-Words (BoW)

- The Bag-of-Words (BoW) model is a simplified approach to representing text data.
- It simplifies the text by representing it as a numerical vector. It focuses on word frequency rather than word order
- The complexity of BoW depends on the tokenization level.

BoW Sentence Similarity Example

- « The dog started to run after the cat, but the cat jumped over the fence. »
- « The cat's food was eaten by the dog in a few seconds. »
- « The cat attacked the bird the other day. »

```
[ « dog », « start », « run », « cat », « cat », « jump », « fence » ]
[ « cat », « food », « eat », « dog », « second » ]
[« cat », « attack », « bird », « day » ]
```

Lowercasing Stemming Lemmatization Stop Words

Bag-Of-Words representation

	Dog	Start	Run	Cat	Jump	Fence	Food	Eat	Second	attack	Bird	Day
1	1	1	1	2	1	1	0	0	0	0	0	0
2	1	0	0	1	0	0	1	1	1	0	0	0
3	0	0	0	1	0	0	0	0	0	1	1	1

How does BOW work?

 It uses One-hot encoding method to generate a feature vector for each unique word

	satisf ied	prod uct	amaz ing	happ y	best	bad	servi ce	unha ppy	not
satisf ied	1	0	0	0	0	0	0	0	0
prod uct	0	1	0	0	0	0	0	0	0
amaz ing	0	0	1	0	0	0	0	0	0
happ y	0	0	0	1	0	0	0	0	0
best	0	0	0	0	1	0	0	0	0
bad	0	0	0	0	0	1	0	0	0
servi ce	0	0	0	0	0	0	1	0	0
unha ppy	0	0	0	0	0	0	0	1	0
not	0	0	0	0	0	0	0	0	1

1. Then generate a **sentence feature vector** by summing the words vectors
that this sentence include

satisf ied	prod uct	amaz ing	happ y	best	bad	servi ce	unha ppy	not
1	2	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0
0	1	0	0	2	0	1	0	0
0	1	0	0	0	2	1	0	0
0	1	0	0	0	1	0	1	0
1	1	0	0	0	0	0	0	1

TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF)

- A statistical measure that evaluates how relevant a word is to a document in a collection of documents.
- Term Frequency (TF): is a measure of how frequently a term appears in a document
- Inverse Document Frequency (IDF): is a measure of how important a term is.

Term Frequency-Inverse Document Frequency (TF-IDF)

TF IDF

Frequency of a word within the document

Frequency of a word across the documents

Term Frequency-Inverse Document Frequency (TF-IDF)

$$W_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF

Term x within document y

 $tf_{x,y}$ = frequency of x in y

 df_x = number of documents containing x

N = total number of documents

BoW Vs TF-IDF

BOW

Assigns equal importance to all words.

TF-IDF

Gives higher weight to rare words

Both

• Both methods ignore word order and context, resulting in a loss of semantic information.

- A type of word representation where every term in the corpus is represented by a numerical vector.
- It allows words with similar meanings to have a similar representation.

Word Coordinates						
Gender Age						
grandfather	[1,	9]		
man	[1,	7]		
adult	[5,	7]		
woman	[9,	7]		
boy	[1,	2]		
child	[5,	2]		
girl	[9,	2]		
infant	[5,	1]		

3 Dimensions vector representation

Word Coordinates						
	Ge	nder	Age	Roy	alty	
man	[1,	7,	1]	
woman	[9,	7,	1]	
boy	[1,	2,	1]	
girl	[9,	2,	1]	
king	[1,	8,	8]	
queen	[9,	7,	8]	
prince	[1,	2,	8]	
princess	[9,	2,	8]	

3D Semantic Feature Space

word embeddings can capture both semantic and syntactic relationships between words.

Man – King + Women -> A vector that's similar to queen

Why Do We Use Word Embedding Instead of TF-IDF and BOW?

Loss of semantic information:

 Both BOW and TF-IDF focus on frequency and ignore word order and context.

Eliminating the sparse representation:

• The resulting vectors in BOW and TF-IDF techniques are sparse(have a lot of 0's), which is bad to memory and algorithm.

CBOW

 In CBOW approach, the neural network model will try to predict the center word given context words.

INPUT PROJECTION OUTPUT

Skip-gram

• It aims to predict surrounding context words based on a given target word.

INPUT PROJECTION OUTPUT

CBOW Vs Skip-grams

	CBOW	Skip-grams
Convergence Time	Hours	Days
Learning Relationships Between Words	Better at syntactic relationships	Better at understanding the semantic relationships.
Sensitivity to Overfitting Frequent Words	High	Less
Amount of Documents Required	More	Less

Thanks

Tamara Abu-hawele

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

Please keep this slide for attribution