LAB3 – FIR

111064559 徐詠祺

■ Block Diagram:

1. FIR:

2. Tap RAM:

3. Data RAM:

■ Describe operation:

> Cycle count for AP_START triggered to AP_DONE triggered:

7751

FIR Timing Diagram:

1. Tap RAM write:

AXI-lite write channel 透過三個 state 的 FSM 來控制,分別是

S_IDLE, S_ADDR, S_DATA·S_ADDR 時會拉起 awready 並等待和 awvalid 握手才進去 S_DATA·S_DATA 會拉起 wready 並等待 awvalid 握手·在 address 握手時我會把 address 暫時存進一個 register 中用來判斷該 address 是否寫入的目的地為 Tap RAM·並在 data 握手時根據目的地決定是否拉起 Tap RAM WE 寫入該筆 data。

2. Tap RAM access for computation:

由於我在設計 FIR 時希望在時序上為達到能在 12 個 cycle (2 stage pipeline FIR)處理後送出 output data · 並且同時考慮 RAM 寫入 address 後下一個 posedge 才能拿到對應的 data · 為了滿足 12 個 cycle 目的 · FIR 從 IDLE 進到 PROC 的 posedge · 乘法 register 便 須存進 $X_t \times h_0$ · 並在下一個 posedge(1st PROC)存進 $X_{t-1} \times h_1$ · 再下一個 posedge(2st PROC)存進 $X_{t-2} \times h_2$ · 以此類推 · 因此需要在 FIR 狀態為 idle 時就對 Tap_A 輸入 h1 的 addr · 但同個 edge 乘法器 又要吃 h0 來做 $X_t \times h_0$ · 因此會需要一個 h0 的 register 來滿足在 IDLE 到 PROC 的 posedge 能完成 $X_t \times h_0$ · 同時下個 posedge 又能 完成 $X_{t-1} \times h_1$ 的情況 · 所以 Tap_A 會由 0x24 開始 · 且每個 cycle+4 直到完成計算。

3. Data RAM write:

同上述時序問題,且 FIR IDLE 到 PROC 的原因便是 X input 握手完

成,因此我在 IDLE 進 PROC 的 posedge 時就要對 DATA_A 輸出 X_{t-1} 的 addr,因此需要先把 X_t 先用 register 存起來等到倒數最後一個 PROC 時(乘法器已經完成 11 個 tap 和 X 的乘法)再拉起 DATA_WE 寫 入下一筆 DATA RAM addr。

4. Data RAM access for computation:

由於每次的 FIR 計算會需要 X_t 到 X_{t-10} ,因此我設計了一個 address pointer 來指向下一筆 X input 要寫入的位置,並且每次 FIR 計算的 addr 便從 address pointer -4 開始,並且在每個 cycle -4 直到計算 完成,便可以從 DATA RAM 中取出 X_{t-1} 到 X_{t-10} ,此外需要考慮到 DATA RAM 的邊界,也就是判斷是不是到了 0x00, 0X24 並相應進行 處理。

5. AP_DONE generate:

AP_DONE 是根據 FIR 該次 input 是否有收到 tlast 來判斷是否為最後
一筆 data,因此設置一個 tlast register 來記,並且在 FIR 狀態為
DONE 時根據該 register 決定 AP_DONE 是否為 1。

■ Resource usage:

➤ LUTs: 269

➤ Registers: 201

> DSPs (DSP48E1): 3

1. Slice Logic					
· '	 Used 		Prohibited	+ Available +	++ Util% +
Slice LUTs*	269	0	0	53200	0.51
LUT as Logic	269	0	0	53200	0.51
LUT as Memory	0	0	0	17400	0.00
Slice Registers	201	0	0	106400	0.19
Register as Flip Flop	201	0	0	106400	0.19
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	H	H	+	+	++

3. DSP				
+	++	+		
Site Type	Used	Fixed	Prohibited	Available Util%
+	++	+		
DSPs	3	0	0	220 1.36
DSP48E1 only	3			
+	++	+		

4. IO and GT Specific					
+	+	+	+	 	++
Site Type	Used	Fixed	Prohibited	Available	Util%
_ +	+	+	+	+	+ -
Bonded IOB	329	0	0	125	263.20
Bonded IPADs	0	0	0	2	0.00
Bonded IOPADs	0	0	0	130	0.00
PHY_CONTROL	0	0	0	4	0.00
PHASER_REF	0	0	0	4	0.00
OUT_FIFO	0	0	0	16	0.00
IN_FIFO	0	0	0	16	0.00
IDELAYCTRL	0	0	0	4	0.00
IBUFDS	0	0	0	121	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	0	16	0.00
PHASER_IN/PHASER_IN_PHY	0	0	0	16	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	0	200	0.00
ILOGIC	0	0	0	125	0.00
OLOGIC	0	0	0	125	0.00
+	+	+	+	+	++

5. Clocking					
+	+	+ Ei vod	+ Prohibited	+	+ +
+	+	+	}	+	
BUFGCTRL BUFIO	1	0 0		32 16	0.00
MMCME2_ADV PLLE2_ADV	0 0	0 0		4 4	
BUFMRCE BUFHCE	0 0	0 0		8 72	
BUFR 	0 +	0 +	0 +	16 +	0.00

■ Timing Report:

1. Max frequency: 122.699 MHz

```
| Clock Summary
| ------
Clock Waveform(ns) Period(ns) Frequency(MHz)
---- axi_clk {0.000 4.075} 8.150 122.699
```


2. Critical path: slack = 0.068 ns

```
Max Delay Paths
                        0.068ns (required time - arrival time)
Slack (MET) :
                        fir_cs_reg[1]/C
 Source:
                          (rising edge-triggered cell FDRE clocked by axi_clk {rise@0.000ns fall@4.075ns period=8.150ns})
                         fir_multi_reg/PCIN[0]
                          (rising edge-triggered cell DSP48E1 clocked by axi_clk {rise@0.000ns fall@4.075ns period=8.150ns
                        axi_clk
                        8.150ns (axi_clk rise@8.150ns - axi_clk rise@0.000ns)
 Requirement:
 Data Path Delay:
                        6.502ns (logic 4.809ns (73.965%) route 1.693ns (26.035%))
 Logic Levels:
                        2 (DSP48E1=1 LUT4=1)
 Clock Path Skew:
                        -0.145ns (DCD - SCD + CPR)
                                   2.128ns = ( 10.278 - 8.150 )
   Destination Clock Delay (DCD):
   Source Clock Delay (SCD):
   Clock Pessimism Removal (CPR):
                                    0.184ns
                                    0.000ns
   Discrete Jitter
                                    0.000ns
                           (PE): 0.000ns
   Phase Error
```

Location	Delay type	Incr(ns)	Path(ns)	Netlist Resource(s)
	, -,,-	()		
	(clock axi_clk rise edge)	0.000	0.000 r	
	`	0.000	0.000 r	axis_clk (IN)
	net (fo=0)	0.000	0.000	axis_clk
				axis_clk_IBUF_inst/I
	<pre>IBUF (Prop_ibuf_I_0)</pre>	0.972	0.972 r	axis_clk_IBUF_inst/0
	net (fo=1, unplaced)	0.800	1.771	axis_clk_IBUF
				<pre>axis_clk_IBUF_BUFG_inst/I</pre>
	BUFG (Prop_bufg_I_0)	0.101	1.872 r	<pre>axis_clk_IBUF_BUFG_inst/0</pre>
	net (fo=203, unplaced)	0.584	2.456	axis_clk_IBUF_BUFG
	FDRE		r	fir_cs_reg[1]/C
	FDRE (Prop_fdre_C_Q)	0.478	2.934 r	fir_cs_reg[1]/Q
	net (fo=90, unplaced)	0.838	3.772	fir_cs[1]
				fir_multi00_i_1/I1
	LUT4 (Prop_lut4_I1_0)	0.295	4.067 r	fir_multi00_i_1/0
	net (fo=1, unplaced)	0.800	4.867	fir_multi00_i_1_n_0
				fir_multi00/A[16]
	DSP48E1 (Prop_dsp48e1_A[1	.6]_PCOUT[0])	
		4.036	8.903 r	fir_multi00/PCOUT[0]
	net (fo=1, unplaced)	0.055	8.958	fir_multi00_n_153
	DSP48E1		r	fir_multi_reg/PCIN[0]

```
(clock axi_clk rise edge)
                            8.150
                                      8.150 r
                                      8.150 r axis_clk (IN)
                            0.000
net (fo=0)
                                      8.150 axis_clk
                            0.000
                                         r axis_clk_IBUF_inst/I
IBUF (Prop_ibuf_I_0)
                                      8.988 r axis_clk_IBUF_inst/0
                            0.838
net (fo=1, unplaced)
                            0.760
                                      9.748
                                              axis_clk_IBUF
                                          r axis_clk_IBUF_BUFG_inst/I
BUFG (Prop_bufg_I_0)
                            0.091
                                      9.839 r axis_clk_IBUF_BUFG_inst/0
                            0.439
net (fo=203, unplaced)
                                     10.278
                                              axis_clk_IBUF_BUFG
                                           r fir_multi_reg/CLK
DSP48E1
clock pessimism
                            0.184
                                     10.461
clock uncertainty
                           -0.035
                                     10.426
DSP48E1 (Setup_dsp48e1_CLK_PCIN[0])
                          -1.400
                                      9.026
                                              fir_multi_reg
required time
                                      9.026
arrival time
                                     -8.958
slack
                                      0.068
```

- Simulation Waveform (clock period = 10 ns):
 - Tap RAM write:

Tap RAM read:

Data RAM read/write:

> FIR engine start:

> FIR engine done:

