Computer Arithmetic (III)

- Integer Division
- Restoring Division
- Algorithm to Architecture

Consider the following division:

How do we know what multiple of 13 to take off?

$$\begin{array}{c|c}
24 & R & 9 \\
13 \overline{\smash)321} \\
\underline{26} \downarrow \\
61 \\
\underline{52} \\
9
\end{array}$$
We make an estimate!

Digital hardware will require an algorithm to do this.

As a formula we can write:

 $Dividend = Quotient \times Divisor + Remainder$

Again, considering the division of 454 by 23:

Dividend = 454

Divisor = 23

Quotient = 19

Remainder = 17

$$454 = (19 \times 23) + 17$$

or in symbols:
$$D = Q \times V + R$$

Restoring Division

$$D = Q \times V + R$$

$$29 \div 6 = 4R5$$

 $29 = 4 \times 6 + 5$

As we are dealing with positive integers, $R \ge 0$ $D \ge Q \times V$

The problem is to find Q, which, without loss of generality, we can assume for the sake of this example to be a 3-digit number $\{q_2q_1q_0\}$ of base, B.

Hence
$$Q = q_2 B^2 + q_1 B^1 + q_0 B^0$$

The approach is to find the digits of Q starting with the most significant, q_2 since

$$q_2 B^2 \le q_2 B^2 + q_1 B^1 + q_0 B^0$$

Remembering that $D \ge Q \times V$

then
$$D \ge (q_2 B^2 + q_1 B^1 + q_0 B^0) \times V$$

 $D - (q_2 B^2 \times V) \ge (q_1 B^1 + q_0 B^0) \times V$

We know that $(q_1B^1 + q_0B^0) \times V \ge 0$ because we are dealing with positive numbers

Therefore, the first process in division is to search for the largest number q_2 , such that:

$$D - (q_2 B^2 \times V) \ge 0$$

After we have found q_2 , we subtract q_2B^2 from D to form a modified dividend and repeat the process to find q_1 , and so on until we have found every digit of Q. Anything that is left over is the remainder.

For the example 454÷23, we know the quotient can be at most three digits for a three digit dividend;

We need to search for the largest digit of the quotient, q_2 . Could $q_2 = 9$ or 8 or. . . ? We can set out this search process in a table:

$q_2 B^2 imes V$	$D-q_2B^2{ imes}V$	Is this q_2 ?
$9 \times 10^2 \times 23 = 20700$	-20246	No!
$8 \times 10^2 \times 23 = 18400$	-17946	No!
		• • •
$1 \times 10^2 \times 23 = 2300$	-1846	No!
$0 \times 10^2 \times 23 = 0$	454	Yes!

So q_2 is zero. At this stage we need to modify the dividend by subtracting $q_2 \times 10^2 \times 23$ from it (which in this case leaves the dividend unchanged).

Having found q_2 , we now need to find q_1 in the same manner, starting from $q_1 = 9$...

$q_1 B^1 imes V$	$D-q_1B^1\!\! imes\!V$	Is this q_1 ?
$9 \times 10^1 \times 23 = 2070$	-1616	No!
$8 \times 10^1 \times 23 = 1840$	-1386	No!
$2 \times 10^1 \times 23 = 460$	-6	No!
$1 \times 10^1 \times 23 = 230$	224	Yes!

So $q_1 = 1$. We modify the dividend: D = 454 - 230 = 224 and repeat the whole process for q_0 . Here $9 \times 10^0 \times 23 = 207$ hence $q_0 = 9$. The remainder (which is formed in exactly the same way as modifying the dividend) is 224 - 207 = 17. Therefore, our quotient is $\{019\} = 19$, remainder 17.

For binary numbers, q_n is either 1 or 0, so we only have to examine the case where $q_n = 1$.

Also, multiplying a number by Bⁿ is equivalent to shifting it left by n digits. So in binary, the mechanical division rules become a series of left-shifts of the divisor and comparisons with the current dividend.

Consider the example of $454 \div 23$ (0111000110 \div 010111).

n	Dividend	Divisor $\times 2^n$	Quotient
8	0111000110	010111 <mark>00000000</mark>	0
7	0111000110	010111 <mark>0000000</mark>	0
6	0111000110	010111 <mark>000000</mark>	0
5	0111000110	010111 <mark>00000</mark>	0
4	0111000110	010111 <mark>0000</mark>	1
3	0111000110 - 0101110000 = 01010110	010111 <mark>000</mark>	0
2	01010110	010111 <mark>00</mark>	0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

After each trial, the dividend is **restored** to its previous positive value.

The quotient is read from the right-hand column: 000010011 = 19 The remainder is what is left in the dividend column: 010001=17

n	Dividend	Divisor $\times 2^n$	Quotient
8	$454 \rightarrow 0111000110$	010111000000000	← 5888 0
7	0111000110	010111 <mark>0000000</mark>	0
6	0111000110	010111 <mark>000000</mark>	0
5	0111000110	010111 <mark>00000</mark>	0
4	0111000110	010111 <mark>0000</mark>	1
3	0111000110 - 0101110000 = 01010110	010111 <mark>000</mark>	0
2	01010110	010111 <mark>00</mark>	0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	$454 \rightarrow 0111000110$	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	0111000110	010111 <mark>000000</mark>	0
5	0111000110	010111 <mark>00000</mark>	0
4	0111000110	010111 <mark>0000</mark>	1
3	0111000110 - 0101110000 = 01010110	010111 <mark>000</mark>	0
2	01010110	010111 <mark>00</mark>	0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	$454 \rightarrow 0111000110$	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	0111000110	010111 <mark>00000</mark>	0
4	0111000110	010111 <mark>0000</mark>	1
3	0111000110 - 0101110000 = 01010110	010111 <mark>000</mark>	0
2	01010110	010111 <mark>00</mark>	0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	$454 \rightarrow 0111000110$	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	$454 \rightarrow 0111000110$	010111 <mark>00000 <</mark>	← 736 0
4	0111000110	010111 <mark>0000</mark>	1
3	0111000110 - 0101110000 = 01010110	010111 <mark>000</mark>	0
2	01010110	010111 <mark>00</mark>	0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	$454 \rightarrow 0111000110$	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	$454 \rightarrow 0111000110$	010111 <mark>00000</mark> <	← 736 0
4	$454 \rightarrow 0111000110$	010111 <mark>0000</mark> <	← 368 1
3	0111000110 - 0101110000 = 01010110	010111 <mark>000</mark>	0
2	01010110	010111 <mark>00</mark>	0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

Process could begin at step 4 as both numbers have their MSB aligned.

n	Dividend	Divisor $\times 2^n$	Quotient
8	$454 \rightarrow 0111000110$	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	454 → 0111000110	010111 <mark>00000 <</mark>	← 736 0
4	454 - 368 0111000110	010111 <mark>0000</mark> <	← 368 1
3	0111000110 - 0101110000 = 01010110	010111 <mark>000</mark>	0
2	01010110	010111 <mark>00</mark>	0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	$454 \rightarrow 0111000110$	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	$454 \rightarrow 0111000110$	010111 <mark>00000 <</mark>	← 736 0
4	454 → 0111000110	010111 <mark>0000</mark> <	← 368 1
3	0111000110 - 0101110000 = 01010110<	-86 010111 <mark>000</mark>	← 184 0
2	01010110	010111 <mark>00</mark>	0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	454 → 0111000110	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	$454 \rightarrow 0111000110$	010111 <mark>00000 <</mark>	← 736 0
4	454 → 0111000110	010111 <mark>0000</mark> <	← 368 1
3	0111000110 - 0101110000 = 01010110<	-86 010111 <mark>000</mark>	← 184 0
2	86 → 01010110	010111 <mark>00</mark> <	← 92 0
1	01010110	010111 <mark>0</mark>	1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	454 → 0111000110	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	$454 \rightarrow 0111000110$	010111 <mark>00000</mark> <	← 736 0
4	$454 \rightarrow 0111000110$	010111 <mark>0000</mark> <	← 368 1
3	0111000110 - 0101110000 = 01010110<	-86 010111 <mark>000</mark>	← 184 0
2	86 → 01010110	010111 <mark>00</mark> <	← 92 0
1	86 → 01010110	010111 <mark>0</mark> <	← 46 1
0	01010110 - 0101110 = 0101000	010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	$454 \rightarrow 0111000110$	010111000000000	← 5888 0
7	$454 \rightarrow 0111000110$	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	$454 \rightarrow 0111000110$	010111 <mark>00000</mark> <	← 736 0
4	$454 \rightarrow 0111000110$	010111 <mark>0000</mark> <	← 368 1
3	0111000110 - 0101110000 = 01010110<	-86 010111 <mark>000</mark>	← 184 0
2	86 → 01010110	010111 <mark>00</mark> <	← 92 0
1	86 - 46 01010110	010111 <mark>0</mark> <	← 46 1
0	01010110 - 0101110 = 0101000<	-40 010111	1
	0101000 - 010111 = 010001		

n	Dividend	Divisor $\times 2^n$	Quotient
8	454 → 0111000110	010111000000000	← 5888 0
7	454 → 0111000110	010111 <mark>0000000 <</mark>	← 2944 0
6	$454 \rightarrow 0111000110$	010111 <mark>000000 <</mark>	← 1472 0
5	454 → 0111000110	010111 <mark>00000 <</mark>	← 736 0
4	454 → 0111000110	010111 <mark>0000</mark> <	← 368 1
3	0111000110 - 0101110000 = 01010110<	-86 010111 <mark>000</mark>	← 184 0
2	86 → 01010110	010111 <mark>00</mark> <	← 92 0
1	86 → 01010110	010111 <mark>0</mark> <	← 46 1
0	01010110 - 0101110 = 0101000<	- 40 010111 →	← 23 1
	0101000 - 010111 = 010001<	- 17	

40 - 23 = 17

Possible Hardware Solution

- Right shift register for extended divisor
- Combinatorial subtractor (2s complement)
- Dividend register with enable. (only enable when there is a +ve result to be clocked in, this is how the *restoring* functionality is obtained)
- Control logic inverter on the sign bit of the subtraction result
- Quotient register (contents initially unknown

