Kriterler	Breadth-First	Uniform-Cost	Depth-First	Depth-Limited	Iterative Deepening	A*	Greedy Best-First Search
Completeness	Evet. Genişlik tabanlı bir arama algoritması olduğu için tamamlanabilirlik açısından avantajlıdır. Ancak, büyük N değerleri için bellek tüketimi sorunu olabilir.	Evet. Tamamlanabilirlik açısından güçlüdür çünkü düşük maliyetli yolları keşfetme eğilimindedir. Ancak, büyük problem boyutları için zaman ve bellek açısından maliyetli olabilir.	Hayır. Tamamlanabilirlik sorunlu olabilir çünkü sınırsız derinlikte devam eder ve bazı durumlarda çözümü bulamayabilir.	Tamamlanabilirlik açısından sınırlıdır. Yeterince büyük bir sınırlama olmazsa tamamlanamayabilir.	Evet. Tamamlanabilir ve optimaldir. Ancak, her seviyede aynı işlemleri tekrar ettiği için zaman açısından maliyetli olabilir.	Tamamlanabilir ve optimaldir. Fakat, heuristik fonksiyonun kalitesine bağlı olarak performansı değişebilir.	Tamamlanabilirlik problemli olabilir çünkü yerel optimumlara takılabilir.
Time complexity	O(b^d) (b: dallanma, d: derinlik). Yüksek zaman karmaşıklığına sahiptir. Yüksek zaman karmaşıklığı nedeniyle büyük N değerleri için uygun olmayabiliyor.	O(b^d) (b: dallanma, d: derinlik). İyi bir durumda hızlıdır.	O(b^m) (m: maksimum derinlik). Genellikle düşük zaman karmaşıklığına sahiptir, ancak geniş ve derin ağaçlarda kötü performans gösterebilir.	O(b^l) (l: sınırlı derinlik). Daha kontrollü bir zaman karmaşıklığına sahiptir, ancak sınırlama büyükse çözümü kaçırabilir.	O(b^d). Genişlik öncelikli ve derinlik öncelikli arama algoritmalarının bir kombinasyonu olduğu için genellikle makul bir zaman karmaşıklığına sahiptir.	Genellikle etkili bir zaman karmaşıklığına sahiptir, ancak heuristik fonksiyonun kalitesine bağlı olarak değişir.	Genellikle hızlıdır, ancak yerel optimumlara takılabileceği için genelde optimal değildir. Düşük zaman karmaşıklığı ve düşük alan karmaşıklığı, bazı durumlarda tercih edilmesini sağlayabiliyor.

Space complexity	O(b^d), b^n eleman içerebilir.	O(b^d), b^n eleman içerebilir.	O(bm), m derinliği temsil eder.	O(b*I), I sınırlı derinliği temsil eder.	O(bd), b^n eleman içerebilir.	Genellikle makul bir alan karmaşıklığına sahiptir, ancak heuristik fonksiyonun kalitesine bağlı olarak değişir.	Genellikle düşük alan karmaşıklığına sahiptir.
Optimality	Optimaldir.	Optimaldir.	Genellikle optimal değildir.	Genellikle optimal değildir.	Optimaldir.	Optimaldir, ancak heuristik fonksiyonun kalitesine bağlı olarak değişebilir.	Genellikle optimal değildir.