

Cisco – Ariel University API Security Detection Challenge 2023

Moriya Bitton | | Victor Kushnir

GitHub Link

Original Features

We have 6 datasets, each with the same <u>original</u> features.

#	Column	Non-Null Count	Dtype
0	request.headers.Host	4282 non-null	object
1	request.headers.User-Agent	4282 non-null	object
2	request.headers.Accept-Encoding	4282 non-null	object
3	request.headers.Accept	4282 non-null	object
4	request.headers.Connection	4282 non-null	object
5	request.headers.Accept-Language	4282 non-null	object
6	request.headers.Sec-Fetch-Site	4282 non-null	object
7	request.headers.Sec-Fetch-Mode	4282 non-null	object
8	request.headers.Sec-Fetch-User	4282 non-null	object
9	request.headers.Sec-Fetch-Dest	4282 non-null	object
10	request.headers.Set-Cookie	4282 non-null	object
11	request.headers.Date	4282 non-null	object
12	request.method	4282 non-null	object
13	request.url	4282 non-null	object
14	request.body	4282 non-null	object
15	response.status	4282 non-null	object
16	response.headers.Content-Type	4282 non-null	object
17	response.headers.Content-Length	4282 non-null	object
18	response.status_code	4282 non-null	int64
19	response.body	4282 non-null	object
20	request.headers.Cookie	566 non-null	object
21	response.headers.Location	401 non-null	object
22	request.headers.Content-Length	299 non-null	object
23	response.headers.Set-Cookie	299 non-null	object
24	attack_type	4282 non-null	object
25	label	4282 non-null	object

Preprocessing Data

In each dataset, we repeat the same preprocessing for our specific dataset:

- Replace all Nan values with the string 'Null'
- > Check the correlation of the features
- Remove columns that have:
 - Same values for all rows
 - More then 90% 'Null' values
- Create new features from URL

```
columns_to_remove = [
    'request.body',
    'response.headers.Content-Length',
    'request.headers.Date',
    'request.headers.Accept',
    'request.headers.Connection',
    'request.headers.Sec-Fetch-User',
```


PCA in 2D

Compressing the data into two components allows us to analyze its distribution.

PCA - Ratio

Using this ratio, we can find out how much information we lose compared to how many features we have.

Important Feature

Then, we <u>Identify</u> the importance of features using the following models:

- > Random Forest
- > Ada Boost
- ➤ Gradient Boosting
- ➤ Linear SVM
- > Decision Tree
- > Extra Tree

Feature Selection

Using RFECV we found the optimal number of features.

Now, a grid search object finds the best hyperparameters for the model.

Random Forest Classifier

The <u>RandomForestClassifier</u> is an ensemble learning algorithm that uses multiple decision trees to predict the future.

Except for Task_4_Attach, which was 97% accurate, our model was 100% accurate across all datasets.

We then repeat our preprocessing steps for the test data, just as we did for the training data.

The END

Moriya Bitton | | Victor Kushnir

GitHub Link

