Simplified and Inexpensive Mobile Digital Forensic Device

A Thesis Presented to

The Faculty of the Computer Science Department

California State University Channel Islands

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Eric Elwood Gentry

Advisor: Michael Soltys

December 2018

© 2018 Eric Elwood Gentry ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Advisor Name	Date
Name	Date
Name	Date
APPROVED FOR THE UNIVERITY	
 Name	——————————————————————————————————————

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to the following terms is necessary. The author(s) retain any copyright currently on the item as well as the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission (including the abstract) worldwide in print and electronic format and in any medium, including but not limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the rights contained in this license. You also represent that your submission does not, to the best of your knowledge, infringe upon anyone's copyright. You also represent and warrant that the submission contains no libelous or other unlawful matter and makes no improper invasion of the privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by this license, and that such third party owned material is clearly identified and acknowledged within the text or content of the submission. You take full responsibility to obtain permission to use any material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of the submission, and will not make any alteration, other than as allowed by this license, to your submission.

Title of Item	
3 to 5 keywords or phrases to describe the item	
Author(s) Name (Print)	
Author(s) Signature	Date

Simplified and Inexpensive Mobile Digital Forensic Device

Eric Elwood Gentry May 9, 2018

Abstract

Contents

1	Abstract	1
2	Introduction	1
3	Background 3.1 Review Material and Analysis	2
4	Conclusion and future work	5

List of Figures

1 Abstract

Keywords: Digital Forensics, Triage, Mobile, Digital Evidence Backlog, Raspberry Pi

2 Introduction

3 Background

3.1 Review Material and Analysis

Current challenges and future research areas for digital forensic investigation [7]

Some of the current challenges in digital forensic investigations are directly related to the amount of data being created. As Lillis et al[7] explores in their research, there are three main factors involved in the digital forensic backlog: increasing number of devices seized per case, increased number of cases involving digitial evidence, and the increasing volume of data per digital media. This has lead to a growing and already substantial backlog in digital forensic investigations.

One effect of this increased delay and backlog is that cases become inactive, waiting for new leads. A more aggressive approach to solving the backlog could help prevent dismissals, cold cases, and potentially more societal harm from a corrupt investigation suspect.

Raghavan[9] has accumulated a list of 5 major challenges that the digital forensics community is facing and continue to add to the backlog problem.

The first is the complexity of binary data aquisition, i.e. low level data aquisition through digital media duplication. This challenge causes the need for sophisticated data reduction techniques.

Another complexity is the diversity of data and lack of standard examination techniques. The plethora of operating systems and file formats has been increasing and is posing a more and more significant challenge over time.

The consistency and correlation problem is yet another challenge. This is a problem resulting from the current digital media investigation tools not providing the entire picture to investigators. Only part of the whole picture is provided when these tools find digital evidence.

Another issue that Raghavan[9] proposed is the volume of data to sort

through. The sheer amount of data that exists per user is increasing at an alarming rate [cite?], and has lead to a very large backlog of digital evidence to investigate. These delays have even caused some cases to be dismissed. This challenge is exacerbated by the lack of adequate automation for digesting the data.

The fifth, but certainly not the last, challenge proposed by Raghavan[9] is the timeline synchronization issue with digital evidence. Since the evidence could be collected in different time zones, with different timestamp formats, clock skew, etc, lining up the events in order can be challenging or infeasible.

With the proliferation of Internet Of Things (IOT) devices and cloud storage, the field of digital forensics continues to expand. These areas pose a great challenge, but also new opportunities. Lillis et al[7] researched cloud storage and found some areas of opportunity, for instance parallel processing, distibuted computing, GPU/FPGA utilization, and others. These areas for increasing the efficiency of ditigal forensics can be explored further due to the substantially reduced I/O limitations in cloud storage.

The Internet of Things (IOT) also poses new challenges. IOT devices are estimated to number near 40 billion by 2020, contributing to the overwhelming amount of digital data. Since these devices tend to have more non-persistent memory and less storage, this causes added complexity for gathering and analysis. In addition, a portion of IOT devices are battery operated and computationally challenged, leading to loss of data over time.

Testing the harmonised digital forensic investigation process model-using an Android mobile phone [8]

Forensic analysis of iPhone backups [10]

Forensic analysis of social networking applications on mobile devices [1]

A practical and robust approach to coping with large volumes of data submitted for digital forensic examination [11]

Jailbroken iPhone Forensics for the Investigations and Controversy to Digital

Evidence [2]

Methods and tools of digital triage in forensic context: survey and future directions [6]

A survey of digital forensic investigator decision processes and measurement of decisions based on enhanced preview [5]

Forensic examination of digital evidence: a guide for law enforcement [3]

Tiered for ensic methodology model for Digital Field Triage by non-digital evidence specialists [4]

4 Conclusion and future work

Your work goes here

References

- [1] Noora Al Mutawa, Ibrahim Baggili, and Andrew Marrington. Forensic analysis of social networking applications on mobile devices. *Digital Investigation*, 9:S24–S33, 2012.
- [2] Ya-Ting Chang, Ke-Chun Teng, Yu-Cheng Tso, and Shiuh-Jeng Wang. Jailbroken iphone forensics for the investigations and controversy to digital evidence. *Journal of Computers*, 26(2), 2015.
- [3] Sara V Hart, John Ashcroft, and Deborah J Daniels. Forensic examination of digital evidence: a guide for law enforcement. *National Institute of Justice NIJ-US, Washington DC, USA, Tech. Rep. NCJ*, 199408, 2004.
- [4] Ben Hitchcock, Nhien-An Le-Khac, and Mark Scanlon. Tiered forensic methodology model for digital field triage by non-digital evidence specialists. *Digital Investigation*, 16:S75–S85, 2016.
- [5] Joshua I James and Pavel Gladyshev. A survey of digital forensic investigator decision processes and measurement of decisions based on enhanced preview. *Digital Investigation*, 10(2):148–157, 2013.
- [6] Vacius Jusas, Darius Birvinskas, and Elvar Gahramanov. Methods and tools of digital triage in forensic context: survey and future directions. *Symmetry*, 9(4):49, 2017.
- [7] David Lillis, Brett Becker, Tadhg O'Sullivan, and Mark Scanlon. Current challenges and future research areas for digital forensic investigation. arXiv preprint arXiv:1604.03850, 2016.
- [8] Stacey Omeleze and Hein S Venter. Testing the harmonised digital forensic investigation process model-using an android mobile phone. In *Information Security for South Africa*, 2013, pages 1–8. IEEE, 2013.
- [9] Sriram Raghavan. Digital forensic research: current state of the art. CSI Transactions on ICT, 1(1):91–114, 2013.
- [10] B Satish. Forensic analysis of iphone backups. Securitylearn. net.

[11] Adrian Shaw and Alan Browne. A practical and robust approach to coping with large volumes of data submitted for digital forensic examination. *Digital Investigation*, 10(2):116–128, 2013.