Unsupervised Machine Learning

Evaluating Recommendation Systems

Prof. Yannis Velegrakis

https://velgias.github.io

Collaborative Filtering: Complexity

- Expensive step is finding k most similar users (or items): O(|U|)
 - |U| = size of utility matrix
- Too expensive to do at runtime
 - Could pre-compute
 - Naïve pre-computation takes time O(n · | U |)
 - Where n = number of users (items)
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction (coming soon!)

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

Cold Start:

Need enough users in the system to find a match

• - Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

• - First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Global Baseline Estimate

- Estimate Joe's rating for the movie The Sixth Sense
 - Problem: Joe has not rated any movie "similar" to The Sixth Sense
- Global Baseline approach
 - Mean movie rating: 3.7 stars
 - The Sixth Sense is 0.5 stars above avg.
 - Joe rates 0.2 stars below avg.
 - Baseline estimate: 3.7 + 0.5 0.2 = 4 stars

Combining Global Baseline Estimate with CF

- Global Baseline estimate
 - Joe will give The Sixth Sense 4 stars
- Local neighborhood (CF/NN)
 - Joe didn't like related movie Signs
 - Rated it 1 star below his average rating
- Final estimate

Joe will rate The Sixth Sense 4-1 = 3.5 stars

WRONG

CORRECT!!!

Evaluation

Matrix R

17,700 movies

480,000 users

1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

Evaluation

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(| X |)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(k · | X |)
 - * X ... set of customers
- We already know how to do this!
 - Near-neighbor search in high dimensions (**LSH**)
 - Clustering
 - Dimensionality reduction

Tip: Add Data

Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

When no prize...
Getting desperate.

Try a "kitchen sink" approach!

Grand Prize: 0.8563

Rank aggregation

[Fagin, PODS 1996]

 Rank aggregation is the problem of combining several ranked lists of objects in a robust way to produce a single consensus ranking of the objects

Candidate	Candidate	Candidate	Candidate	Candidate
1	2	4	5	3
2	4	2	1	5
3	5	5	3	1
4	1	3	4	2
5	3	1	2	4

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

- What is the overall ranking?
- Who is the best candidate?