Численное моделирование нестационарного одномерного течения газа с использованием схемы для логарифма плотности с центральными разностями

1 Постановка дифференциальной задачи

Одномерное движение вязкого баротропного газа описывается системой дифференциальных уравнений:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = f_0, \\ \rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f \end{cases}$$

p=p(
ho) - известная функция давления от плотности. $f_0\equiv 0,\ f$ - известная функция от (t,x).

$$\mu \in [0,001;0,1]$$

Неизвестные функции плотности и скорости:

$$\rho, \ u: [0,T] \times [0,X] \to \mathbb{R},$$
 где $T, \ X > 0$

$$\rho > 0$$

Краевые условия:

$$(\rho, u)|_{t=0} = (\rho_0, u_0), x \in [0, X]$$

Для гарантирования положительности ρ вместо функции ρ имеет смысл искать функцию $g=\ln(\rho)$

Тогда система дифференциальных уравнений примет вид

$$\begin{cases} \frac{\partial g}{\partial t} + \frac{1}{2} \left(u \frac{\partial g}{\partial x} + \frac{\partial ug}{\partial x} + (2 - g) \frac{\partial u}{\partial x} \right) = f_0, \\ \frac{\partial u}{\partial t} + \frac{1}{3} \left(u \frac{\partial u}{\partial x} + \frac{\partial u^2}{\partial x} \right) + \tilde{p}'(g) \frac{\partial g}{\partial x} = \mu e^{-g} \frac{\partial^2 u}{\partial x^2} + f \end{cases}$$

2 Построение разностной схемы

Для численного решения системы введем сетку на области $[0,T] \times [0,X]$ с шагом h по оси OX и τ по оси OT. Узел сетки с координатами (n,m) соответствует точке $(n\tau,mh)$ области. Для разностных операторов и значений в узлах сетки будем использовать обозначения, введенные в пособии к вычислительному практикуму.

M - количество узлов вдоль оси $OX.\ N$ - количество узлов вдоль оси OT.

Запишем разностную схему:

$$\begin{cases} G_{t} + \frac{1}{2}(V\hat{G}_{x}^{0} + (V\hat{G})_{x}^{0} + (2 - G)V_{x}^{0}) = f_{0}, & 1 \leq m \leq M - 1, \\ G_{t,0} + \frac{1}{2}((V\hat{G})_{x,0} + (2 - G_{0})V_{x,0}) - \\ -\frac{h}{2}((GV)_{x\overline{x},1} - \frac{1}{2}(GV)_{x\overline{x},2} + (2 - G_{0})(V_{x\overline{x},1} - \frac{1}{2}V_{x\overline{x},2})) = (f_{0})_{0}, \\ G_{t,M} + \frac{1}{2}((V\hat{G})_{\overline{x},M} + (2 - G_{M})V_{\overline{x},M}) + \\ +\frac{h}{2}((GV)_{x\overline{x},M-1} - \frac{1}{2}(GV)_{x\overline{x},M-2} + (2 - G_{M})(V_{x\overline{x},M-1} - \frac{1}{2}V_{x\overline{x},M-2})) = (f_{0})_{M}, \\ V_{t} + \frac{1}{3}(V\hat{V}_{x}^{0} + (V\hat{V}_{x}^{0})) + \tilde{p}'(\hat{G})\hat{G}_{x}^{0} = \tilde{\mu}\hat{V}_{x\overline{x}} - (\tilde{\mu} - \mu e^{-\hat{G}})V_{x\overline{x}} + f, \quad 1 \leq m \leq M - 1, \end{cases}$$

где $\tilde{\mu} = \mu ||e^{-\hat{G}}||_C$.

Запишем эту схему в следующем виде, сгруппировав слагаемые:

$$\begin{cases} G_{m-1}^{n+1}\left(\frac{-V_m^n}{2h}\right) + G_m^{n+1}\left(\frac{1}{\tau} + \frac{1}{2}\left(V_0\right)_m^n\right) + \\ + G_{m+1}^{n+1}\left(\frac{V_m^n}{2h}\right) + V_{m+1}^{n+1}\left(\frac{1}{2h}\right) + V_{m-1}^{n+1}\left(\frac{1}{2h}\right) = \\ = f_0(n\tau, mh) + G_m^n\left(\frac{1}{\tau} + \frac{1}{2}\left(V_0\right)_m^n\right), \quad 1 \leqslant m \leqslant M-1 \end{cases} \tag{1}$$

$$G_0^{n+1}\left(\frac{1}{\tau} + \frac{(V_x)_0^n}{2}\right) + V_1^{n+1}\left(\frac{1}{h}\right) = f_0(n\tau, 0) + \frac{G_0^n}{\tau} + \\ + \frac{h}{2}\left(((GV)_{x\overline{x}})_1^n - \frac{1}{2}((GV)_{x\overline{x}})_1^n + (2 - G_0^n)((V_{x\overline{x}})_1^n - \frac{1}{2}(V_{x\overline{x}})_2^n)\right) + G_0^n\frac{(V_x)_0^n}{2}, \quad (2)$$

$$G_M^{n+1}\left(\frac{1}{\tau} + \frac{(V_{\overline{x}})_M^n}{2}\right) + V_{M-1}^{n+1}\left(-\frac{1}{h}\right) = f_0(n\tau, X) + \frac{G_M^n}{\tau} + G_M^n\frac{V_{\overline{x}}}{2} - \\ - \frac{h}{2}\left(((GV)_{x\overline{x}})_{M-1}^n - \frac{1}{2}((GV)_{x\overline{x}})_{M-2}^n + (2 - G_M^n)(V_{x\overline{x}})_{M-1}^n - \frac{1}{2}(V_{x\overline{x}})_{M-2}^n\right), \quad (3)$$

$$V_{m-1}^{n+1}\left(-\frac{V_m^n}{3h} - \left(\frac{\mu||e^{-\hat{G}}||_C}{h^2}\right)\right) + V_m^{n+1}\left(\frac{1}{\tau} + \frac{(V_0)_m^n}{2h} + \frac{2\mu||e^{-\hat{G}}||_C}{h^2}\right) + \\ V_{m+1}^{n+1}\left(\frac{V_m^n}{3h} - \frac{\mu||e^{-\hat{G}}||_C}{h^2}\right) + G_{m-1}^{n+1}\left(-\tilde{p}'\frac{G_m^n}{2h}\right) + G_{m+1}^{n+1}\left(\tilde{p}'\frac{G_m^n}{2h}\right) = \\ f(n\tau, mh) - (V_{x\overline{x}})_m^n\left(\mu||e^{-\hat{G}}||_C - \mu e^{-G_m^n} + \frac{V_m^n}{\tau}\right), \quad 1 \leqslant m \leqslant M-1$$

Будем называть *n-ым слоем* узлы сетки с координатой по времени равной n. Заметим, что значения V и G известны на нулевом слое. При известных значениях функции на слое n, с помощью системы уравнений, можно вычислить значения функций на n+1 слое. Покажем, как уравнения (1) - (4) формируют необходимую СЛАУ (*).

Уравнение (1) для m=1 и m=M-1 содержит четыре неизвестных, т.к. $V_0 = V_M = 0$ на любом слое. Для $2 \leqslant m \leqslant M - 2$ уравнение (1)

содержит пять неизвестных. m, пробегая в уравнении (1) значения от 1 до M-1, формирует M-1 уравнение в системе (*) для неизвестных $G_0^{n+1},\ldots,G_M^{n+1}$ и $V_1^{n+1},\ldots,V_{M-1}^{n+1}$ Уравнение (2) дает 1 уравнение в СЛАУ (*) для неизвестных G_0^{n+1},V_1^{n+1} Уравнение (3) дает 1 уравнение в СЛАУ (*) для неизвестных G_M^{n+1}, V

Уравнение (4) для m=1 и m=M-1 содержит четыре неизвестных, по тем же причинам, что и уравнение (1), и пять при $2\leqslant m\leqslant M-2$. m, пробегая в уравнении (4) значения от 1 до M-1, формирует M-1 уравнение в системе (*) для неизвестных $G_0^{n+1},\ldots,G_M^{n+1}$ и $V_1^{n+1},\ldots,V_{M-1}^{n+1}$

И так, СЛАУ (*) является системой с (M+1)+(M-1)=2M неизвестными и (M-1)+1+1+(M-1)=2M уравнениями. В каждом уравнении не более пяти ненулевых коэффициентов.

Таким образом СЛАУ (*) является разреженной, что делает естественным применение итерационных алгоритмов для ее решения.

Последовательно решая такие СЛАУ для $1\leqslant n\leqslant N,$ получим значения G и V во всех узлах сетки.

3 Результаты тестовых расчетов для гладких решений

Для проверки реализованного на ЭВМ алгоритма сделаем следующее.

1. Положим

$$\begin{cases} \rho(t,x) = e^t(\cos(\pi x/10) + 1.5), \\ u(t,x) = \cos(2\pi t)\sin(\pi (x/10)^2). \end{cases}$$

- 2. Аналитически вычислим f_0 и f поставленной дифференциальной задачи с такими ρ и u.
- 3. Сравним значения функций $g(t,x) = \ln(\rho(t,x))$ и u в узлах сетки, вычисленные алгоритмом со значениями, вычисленными аналитически.

Рассмотрим нормы невязок скорости и плотности на последнем слое и их динамику при изменении шага сетки.

$$||G_m^n - g(\tau n, hm)||_C$$
:

$N\backslash M$	20	60	180	540
20	3,362763e-03	6,904808e-03	7,248479e-03	7,287653e-03
60	1,424766e-03	1,641603e-03	1,932583e-03	1,967819e-03
180	2,576837e-03	2,758106e-04	5,668744e-04	6,014177e-04
540	2,916249e-03	1,400972e-04	1,573306e-04	1,919499e-04

$$||G_m^n - g(\tau n, hm)||_{L_{2_h}}$$
:

$N\backslash M$	20	60	180	540
20	5,557584e-03	6,769331e-03	6,772578e-03	6,721444e-03
60	1,396404e-03	1,638533e-03	1,861853e-03	1,872744e-03
180	2,464337e-03	4,534565e-04	6,725535e-04	6,949450e-04
540	2,847338e-03	1,578137e-04	2,164430e-04	2,405244e-04

$||G_m^n - g(\tau n, hm)||_{W_2^1}:$

$N\backslash M$	20	60	180	540
20	1,136667e-02	9,072672e-03	8,801006e-03	8,703443e-03
60	8,457332e-03	3,237552e-03	2,976311e-03	2,959965e-03
180	8,482201e-03	1,756316e-03	1,106216e-03	1,084601e-03
540	8,574849e-03	1,478489e-03	4,476420e-04	3,764018e-04

$||V_m^n - u(\tau n, hm)||_C$:

$N\backslash M$	20	60	180	540
20	4,468816e-03	4,320572e-03	4,391831e-03	4,402297e-03
60	2,274610e-03	2,065016e-03	2,338842e-03	2,372508e-03
180	3,366699e-03	6,409690e-04	8,794924e-04	9,151004e-04
540	3,848622e-03	1,976056e-04	2,818159e-04	3,165054e-04

$||V_m^n - u(\tau n, hm)||_{L2_h}$:

	$N\backslash M$	20	60	180	540
ĺ	20	7,078412e-03	7,252476e-03	7,459118e-03	7,483797e-03
ĺ	60	3,487132e-03	3,275770e-03	3,623278e-03	3,663961e-03
	180	4,084412e-03	1,008701e-03	1,337205e-03	1,379699e-03
Ì	540	4,679689e-03	3,338699e-04	4,329982e-04	4,749383e-04

$||V_m^n - u(\tau n, hm)||_{W_2^1}$:

$N\backslash M$	20	60	180	540
20	1,602271e-02	8,270292e-03	8,606246e-03	8,665422e-03
60	1,488460e-02	4,022029e-03	4,374032e-03	4,474257e-03
180	1,596604e-02	2,403521e-03	1,641375e-03	1,709770e-03
540	1,654288e-02	2,447612e-03	6,304648e-04	5,906696e-04