

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 3.2.3 Резонанс токов в параллельном контуре

Автор: Чикин Андрей Павлович Б05-304

Цель работы:

- 1. исследование резонанса токов в параллельном колебатель ном контуре с изменяемой ёмкостью
- 2. получение амплитудно-частотных и фазово-частотных характеристик
- 3. определение основных параметров кон тура

Приборы:

- 1. генератор сигналов
- 2. источник напряжения, нагрузкой которого является параллельный колебательный контур с переменнойёмкость
- 3. двухканальный осциллограф
- 4. цифровые вольтметры

0.1 Ход работы

- 1. Проведем настройку экспериментального стенда по техническому описанию установки.
- 2. Меняя частоту ν генератора, убедимся по осциллографу и вольтметрам, что у синусоиды U(t) меняется фаза и амплитуда, тогда как синусоида $\mathcal{E}(t)$ привязана к началу координат: $\mathcal{E}(0) = 0$, $\dot{\mathcal{E}}(0) = 0$.
- 3. Меняя C_n найдем резонансные частоты v_{0n} и напряжения $U(v_{0n})$. Резонанс можно найти по вольтметру или осциллографу. См. таблицу 1.

	ν_0 , кГц	и, в	Е, В
7	15.62	0.86	0.7143
6	17.97	0.40	0.7142
5	19.46	1.46	0.7144
4	21.24	2.00	0.7145
3	23.17	2.33	0.7145
2	27.84	2.89	0.7145
1	32.16	3.26	0.7144

Таблица 1: Измеренные значения п. 3

4. Повторим измерения в п. 3 при другом напряжении в диапазоне 100-500 мВ. См. таблицу 2.

	ν_0 , к Γ ц	И, В	Е, В
7	16.03	0.56	0.3587
6	18.30	0.59	0.3586
5	19.52	0.62	0.3586
4	21.26	1.01	0.3587
3	23.20	1.13	0.3587
2	27.57	1.47	0.3588
1	31.84	1.52	0.3588

Таблица 2: Измеренные значения п. 4

5. Для двух разных C_n снимим АЧХ U(f) вблизи резонанса, при $U(f) \ge 0.6$ $U(\nu_0)$ (18 точек по обе стороны). См. таблицу 3.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ν, кГц	И, В	$\Delta \psi$, π
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_7	16.15	0.58	12.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16.35	0.50	10.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16.50	0.43	10.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16.65	0.41	8.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16.60	0.39	8.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16.70	0.35	9.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16.75	0.34	9.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16.01	0.59	1.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15.90	0.55	2.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15.80	0.52	4.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16.57	0.47	6.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15.33	0.40	8.0
21.40 0.96 2.0 5.00 0.90 3.5 6.00 0.82 4.5 7.00 0.75 5.5 8.00 0.58 6.6 8.50 0.54 6.5 2.00 0.99 0.7 21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		16.48	0.37	8.5
21.40 0.96 2.0 5.00 0.90 3.5 6.00 0.82 4.5 7.00 0.75 5.5 8.00 0.58 6.6 8.50 0.54 6.5 2.00 0.99 0.7 21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0				
5.00 0.90 3.5 6.00 0.82 4.5 7.00 0.75 5.5 8.00 0.58 6.6 8.50 0.54 6.5 2.00 0.99 0.7 21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0	C_4	21.30	1.00	1.0
6.00 0.82 4.5 7.00 0.75 5.5 8.00 0.58 6.6 8.50 0.54 6.5 2.00 0.99 0.7 21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		21.40	0.96	2.0
7.00 0.75 5.5 8.00 0.58 6.6 8.50 0.54 6.5 2.00 0.99 0.7 21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		5.00	0.90	3.5
8.00 0.58 6.6 8.50 0.54 6.5 2.00 0.99 0.7 21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		6.00	0.82	4.5
8.50 0.54 6.5 2.00 0.99 0.7 21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		7.00	0.75	5.5
2.00 0.99 0.7 21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		8.00	0.58	6.6
21.10 0.95 2.0 21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		8.50	0.54	6.5
21.00 0.88 3.5 20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		2.00	0.99	0.7
20.90 0.80 5.0 20.80 0.72 6.0 20.75 0.69 6.0		21.10	0.95	2.0
20.80 0.72 6.0 20.75 0.69 6.0		21.00	0.88	3.5
20.75 0.69 6.0		20.90	0.80	5.0
		20.80	0.72	6.0
20.70 0.65 6.5		20.75	0.69	6.0
		20.70	0.65	6.5

Таблица 3: Измеренные значения п. 5 и п. 6

- 6. Для техже C_n и $\mathcal E$ из пункта 5 измерим ФЧХ $\psi_U(f)$ при $U(f) \ge 0.3~U(\nu_0)$. См. таблицу 3.
- 7. Результаты п. 3 пнесем в таблицу, как на рис. 1. См. таблицу 4.

C,	f,	U,	\mathcal{E} ,	L,	ρ ,	$ Z_{pes} $,	Q	R_{Σ} ,	$R_{S\max}$,	R_L ,
нΦ	кГц	В	В	мкГн	Ом	Ом		Ом	Ом	Ом
C_1	_		_	_	_	_	_	_	_	_
	_		_	_	_	_	_	_	_	_
C_7	C_7 $ -$		_	_	_	_	_	_	_	
Сре	днее з	начен	ие	_						_
Слу	ч. погр	ешно	СТЬ	_						_

Рис. 1: table_example

$$L = \frac{1}{C(2\pi f)^2} \tag{1}$$

$$\rho = \frac{1}{2\pi f C} \tag{2}$$

$$Z_{\text{pes}} = \frac{U}{E_0} R_1 \tag{3}$$

$$Q = \frac{Z_{\text{pe3}}}{\rho} = \frac{UR_1}{E_0} 2\pi f C \tag{4}$$

$$R_{\Sigma} = \frac{\rho^2}{Z_{\text{pes}}} \frac{E_0}{UR_1} \frac{1}{(2\pi f C)^2}$$
 (5)

$$R_{Smax} = \rho \tan \delta \approx 10^{-3} \cdot \frac{1}{\omega_0 C} \tag{6}$$

$$R_{Smax} = \rho \tan \delta \approx 10^{-3} \cdot \frac{1}{\omega_0 C}$$

$$R_L = R_{\Sigma} - R_S - R = \frac{E_0}{UR_1} \frac{1}{(2\pi f C)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$
(6)

	С, нФ	ν_0 , к Γ ц	U, B	E, B	L , мк Γ н	ρ , Ом	$ Z_{\rm pes} $, Om	Q	R_{Σ} , Om	R_{Smax} , Om	R_L , Ом
7	101.5	15.62	0.86	0.7143	1023	100	1216	12.1	8.3	0.10	4.69
6	82.7	17.97	1.16	0.7142	949	107	1638	15.3	7.0	0.11	6.89
5	67.5	19.46	1.46	0.7144	991	121	2060	17.0	7.1	0.12	7.01
4	57.4	21.24	2.00	0.7145	978	131	2814	21.6	6.1	0.13	5.92
3	47.3	23.17	2.33	0.7145	998	145	3289	22.6	6.4	0.15	6.27
2	32.3	27.84	2.89	0.7145	1012	177	4078	23.0	7.7	0.18	7.50
1	25.1	32.16	3.26	0.7144	976	197	4606	23.4	8.4	0.20	8.24
					989						6.65
					61						2.83

Таблица 4: Измеренные значения п. 7

Получили, что

$$L = (989 \pm 61) \text{ MK}\Gamma \text{H} \tag{8}$$

$$R_L = (6.65 \pm 2.83) \text{ Om}$$
 (9)

8. Выполним п. 7 по результатам п. 4. См. таблицу 5.

	С, нФ	ν_0 , к Γ ц	И, В	E, B	L , мк Γ н	ρ , Ом	$ Z_{\rm pes} $, Om	Q	R_{Σ} , Ом	R_{Smax} , Om	R_L , Ом
7	101.5	16.03	0.56	0.3587	971	98	1561	16.0	6.1	0.10	6.03
6	82.7	18.30	0.59	0.3586	915	105	1664	15.8	6.6	0.11	6.54
5	67.5	19.52	0.62	0.3586	985	121	1751	14.5	8.3	0.12	8.21
4	57.4	21.26	1.01	0.3587	976	130	2831	21.7	6.0	0.13	5.88
3	47.3	23.20	1.13	0.3587	995	145	3175	21.9	6.6	0.15	6.48
2	32.3	27.57	1.47	0.3588	1032	179	4137	23.1	7.7	0.18	7.54
1	25.1	31.84	1.52	0.3588	995	199	4282	21.5	9.3	0.20	9.06
					981						7.11
					87						2.93

Таблица 5: Измеренные значения п. 8

Получили, что

$$L = (981 \pm 87) \text{ MK}\Gamma \text{H} \tag{10}$$

$$R_L = (7.11 \pm 2.93) \text{ Om}$$
 (11)

Значения L довольно близки, в пределах погрешности. Случайная погрешность не велика. R_L значительно отличаются, но в пределах погрешности. Случайная погрешность R_L велика.

9. По данным из п. 5 построим графики $U(\nu)$. Проведем анализ характеристик. См. рис. 2.

Рис. 2: $U(\nu)$

10. По данным из п. 5 построим графики в безразмерных координатах: $x = \frac{\nu}{\nu_0}$, $y = \frac{U}{U(\nu_0)}$. Проведем анализ характеристик.

См. рис. 3.

Рис. 3: $\frac{U}{U_0}(\frac{v}{v_0})$

11. По данным из п. 6 построим графики в координатах: $x=\frac{\nu}{\nu_0},\ y=\frac{\psi_U}{\pi}.$ Проведем анализ характеристик. См. рис. 4.

По характеристикам определим добротности контуров двумя способами: 1. $Q=\frac{1}{2}\frac{\partial \psi_U}{\partial x}(1)$ $Q=\frac{\pi}{2}\frac{\partial y}{\partial x}$

1.
$$Q = \frac{1}{2} \frac{\partial \psi_U}{\partial x} (1)$$

$$Q = \frac{\pi}{2} \frac{\partial y}{\partial x}$$

$$C_4: \frac{\partial y}{\partial x} \approx 11.1$$

 $C_7: \frac{\partial y}{\partial x} \approx 9.2$

$$Q_4 \approx 17.4 \tag{12}$$

$$Q_7 \approx 14.5 \tag{13}$$

(14)

Значения Q близки к полученным в п. 8:

$$Q_4 \approx 21.7 \tag{15}$$

$$Q_7 \approx 16.0 \tag{16}$$

(17)

12. Построим зависимость $R_L(\nu_{0n})$ в системе координат с началом в точке $(0.6 \cdot \nu_{07}; 0)$. Построим прямую $y = \langle R_L \rangle$.

См. рис. 5.

Назовем возможные причины изменения R_L .

Рис. 5: $R_L(\nu_0)$

Можно заметить, что R_L медленно возростает с частотой.

13. Построим векторную диаграмму токов и напряжений для контура с наименьшей добротностью в резонансном состоянии.

0.2 Вывод.

В данной работе мы изучили резонанс токов в параллельном контуре. Меняя состояние цепи, нашли резонансы. По полученным измерениям нашли индуктивность катушки L, R_L и добротность Q. Мы построили графики АЧХ и Φ ЧХ. Оценили добротность по графикам и получили схожие результаты.