Biologicky motivované výpočtové modely

Mgr. Michal Kováč Školiteľ: doc. RNDr. Damas Gruska, PhD.

FMFI UK

24.6.2013

[0]

- Prehľad problematiky
 - Prehľad modelov
 - P systémy
- Skúmané varianty P systémov
 - Sekvenčné P systémy s inhibítormi
 - Sekvenčné P systémy s aktívnymi membránami
 - Detekcia prázdnosti membrán
 - Sekvenčné P systémy s množinami namiesto multimnožín

Biologicky motivované výpočtové modely

Dvojaké uplatnenie:

- reálne modely živých systémov
 - virtuálne biologické experimenty
 - verifikácia správnosti chápania ich činností
- modely na popis iných systémov

Biologicky motivované výpočtové modely

- Neurónové siete (od 1943)
- Celulárne automaty (od 1948)
- Evolučné algoritmy (od 1954)
- L systémy (od 1968)
- P systémy (od 1998) [Păun, 1998]
- Calculi of Looping Sequences (od 2007)
- Reaction systems (od 2007)
- ...

Membránová štruktúra

- Multimnožiny
- Pravidlá

Výpočet a jazyk

- Maximálny paralelizmus
- Jazyk
 - Generatívny mód: postupnosť objektov vypustených do okolitého prostredia
 - Akceptačný mód: daná konfigurácia je akceptovaná, ak sa systém vie dostať do stavu, kde sa už nedá použiť žiadne pravidlo

Varianty pravidiel

- Kooperatívne $(a \mid b \mid b \rightarrow b)$ (RE [Păun, 1998])
- Nekooperatívne (b o c) (CF [Sburlan, 2005])
- Nekooperatívne s inhibítormi $(a \to b \mid_{\neg c,d})$ (ET0L [Ionescu and Sburlan, 2004])
- Katalytické $(a \mid b \rightarrow a \mid c \mid d)$
 - s 2 katalyzátormi (RE [Freund et al., 2005])
 - s 1 katalyzátorom (otvorený problém)
 - s 1 katalyzátorom a inhibítormi (RE [lonescu and Sburlan, 2004])

Sekvenčné P systémy

- Maximálny paralelizmus vs. sekvenčný mód
- Sekvenčné P systémy s kooperatívnymi pravidlami (VASS [Ibarra et al., 2005])
 - s prioritami (RE [Ibarra et al., 2005])
 - s aktívnymi membránami (RE [Ibarra et al., 2005])
 - s inhibítormi (RE [Kováč, 2014])

Sekvenčné P systémy s inhibítormi

 Kováč (2014). Using Inhibitors to Achieve Universality of Sequential P Systems.

In Electronic Proceedings of CiE 2014

Prehľad simulácie pre akceptačný mód

- Simulácia registrového stroja
- Obsah registra x sa reprezentuje početnosťou objektu x
- Objekt pre každú inštrukciu
- SUB inštrukcia sa simuluje pomocou inhibítora
 - i : SUB(x, j, k)
 - $ix \rightarrow j$
 - $i \rightarrow k|_{\neg x}$

Prehľad simulácie pre generatívny mód

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Produkty si označujeme, aby neboli použité, kým neskončí daný maximálne paralelný krok.
- Pomocou inhibítorov zistíme moment, kedy sa už v Π₂ nedá aplikovať žiadne pravidlo, aby sa mohol simulovať ďalší maximálne paralelný krok.

Sekvenčné P systémy s aktívnymi membránami

- Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (RE [Ibarra, 2005])
- Kováč, M. (2015). Decidability of Termination Problems for Sequential P Systems with Active Membranes.
 In Beckmann, A., Mitrana, V., and Soskova, M., editors, Evolving Computability, volume 9136 of Lecture Notes in Computer Science, pages 236–245. Springer International

Publishing

Problém zastavenia

- Problém zastavenia je definovaný pre deterministické modely
- Zovšeobecnenie: Existencia (ne)konečného výpočtu

Existencia nekonečného výpočtu

- Graf dosiahnuteľnosti
- Čiastočné usporiadanie ≤:
 - $C_1 \leq C_2 \Rightarrow$ každé pravidlo v C_1 je aplikovateľné v C_2 .
 - Pre každú nekonečnú postupnosť konfigurácií existuje C_1, C_2 : $C_1 \to^* C_2$ a $C_1 \le C_2$.
- Dicksonova lemma: Pre každú nekonečnú postupnosť n-tíc nad \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ existujú i < j: $a_i \le a_j$

Algoritmus rozhodujúci existenciu nekonečného výpočtu

- Traverzuj graf dosiahnuteľnosti
- Dosiahnutá konfigurácia C₂, taká, že na ceste z počiatočnej konfigurácie existuje C₁ ≤ C₂ ⇒ YES.
- Ak traverzovanie skončilo ⇒ NO.

Existencia konečného výpočtu

Pre daný P systém Π a danú konfiguráciu C vieme zostrojiť P systém Π' : ∃ konečný výpočet Π' ⇔ C je dosiahnuteľná v Π.

Detekcia prázdnosti membrán

- Objekty vyhýbajúce sa prázdnym membránam
- Mutovanie objektov pri poslaní do prázdnej membrány
- Objekt reprezetujúci vákuum

Sekvenčné P systémy s množinami namiesto multimnožín

 Kováč and Gruska (2015). Sequential P Systems with Active Membranes Working on Sets.

In Zbigniew Suraj, L. C., editor, *Proceedings of the 24th International Workshop on Concurrency, Specification and Programming*, pages 247–257

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Detekcia prázdnosti membrán Sekvenčné P systémy s množinami namiesto multimnožín

Nevýhody používania multimnožín

- Nakoľko realistické je reprezentovať presný počet objektov?
- Nepraktická analýza kvôli veľkosti stavového priestoru

P systémy s množinami objektov

- Alhazov [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.
- Kleijn, Koutny [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)
 - Ekvivalencia s konečnostavovými automatmi.
- Vlastnosti:
 - Pravidlá bez konfliktu (objekty sa môžu zúčastniť ako reaktanty súčasne vo viacerých pravidlách).
 - Ak je objekt použitý aspoň v jednom pravidle ako reaktant, bude spotrebovaný.

Sekvenčné P systémy s množinami objektov a aktívnymi membránami

- $\Pi = (\Sigma, C_0, R_1, \dots R_m)$ • C = (T, I, c)
 - $\bullet \ I: V(T) \to \{1, \ldots, m\}$
 - $c:V(T)\to 2^{\Sigma}$
- Pravidlá
 - $u \rightarrow w$
 - $u \rightarrow w\delta$
 - $u \to [jv_1]_j v_2$, kde $u \in \Sigma, |u| \ge 1$, $v_1, v_2 \in \mathbb{N}$ a $w \in (\Sigma \times \{\cdot, \uparrow, \downarrow_j\})$

Iné spôsoby vytvárania membrány

- Problémy pôvodnej sémantiky:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány
- Inject-or-create
- Wrap-or-create

Simulácia registrového stroja

	membrány	čas
original	<i>O</i> (<i>n</i>)	O(n)
original	O(log(n))	O(log(n))
inject-or-create	O(log(n))	O(log(n))
wrap-or-create	O(n)	O(1)

Ďakujem za pozornosť

Vyjadrenia k posudkom

- Štandardnou motiváciou pre skúmanie týchto modelov je potenciál vysokého paralelizmu. Práca je príliš zameraná na sekvenčný mód, ktorý úplne eliminuje potenciál tohto modelu.
- V práci sa hovorí o slabých rozšíreniach sekvenčných P systémov s čiastočnými výsledkami. Aký je v uvedenom smere pokrok od podania dizertácie?