I. Fonction exponentielle de base a

1) Définition

Définition

Pour tout nombre réel a strictement positif, et pour tout entier positif n, le nombre a^n est défini par :

$$a^n = \underbrace{a \times \dots \times a}_{n \ fois}$$

La fonction f définie pour tout nombre réel x par $f(x) = a^x$, est appelée fonction exponentielle de base a.

Exemple

- La fonction f, définie par $f(x) = 2^x$, est la fonction exponentielle de base 2.
- La fonction g, définie par $g(x) = 0, 5^x$, est la fonction exponentielle de base 0, 5.

2) Propriétés et variations

Propriétés

- 1 Propriétés :
 - Si $a \neq 1$, alors $a^x = a^y \Leftrightarrow x = y$.
 - Si a > 1, alors $a^x < a^y \Leftrightarrow x < y$
 - Si a < 1, alors $a^x < a^y \Leftrightarrow x > y$
- 2 Valeurs particulières :
 - $a^0 = 1$
 - $a^1 = a$
- 3 Variations:
 - Si a > 0, alors la fonction est croissante.
 - Si a < 0, alors la fonction est décroissante.

Exemple

$$f(x) = 2^x, 2 > 1$$

la fonction f est croissante

$$g(x) = 0, 5^x, 0, 5 > 1$$

la fonction g est décroissante

3) Règles de calcul

Propriétés

Les règles de calculs sont les mêmes que pour les puissances entières. a et b sont deux nombres quelconques et q un nombre strictement positif.

•
$$a^x \times a^y = a^{x+y}$$

$$\bullet \quad \frac{a^x}{a^y} = a^{x-y}$$

•
$$a^x \times a^y = a^{x+y}$$
 • $\frac{a^x}{a^y} = a^{x-y}$ • $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$ • $(ab)^x = a^x \times b^x$ • $(a^x)^y = a^{x \times y}$

$$\bullet \ a^{-x} = \frac{1}{a^x}$$

•
$$(ab)^x = a^x \times b^x$$

•
$$(a^x)^y = a^{x \times y}$$

Exemples

•
$$2^{0.5} \times 2^{1.5} = 2^{0.5+1.5} = 2^2 = 4$$

•
$$\frac{5^{5,2}}{5^{2,2}} = 5^{5,2-2,2} = 5^3 = 125$$

•
$$8^{-2} = \frac{1}{8^2} = \frac{1}{64}$$

•
$$(10^{0,4})^5 = 10^{0,4 \times 5} = 10^2 = 100$$

II. Fonction logarithme décimal

1) Définition

Définition

Pour tout nombre réel x strictement positif, il existe un unique nombre a tel que $10^a = x$.

Ce nombre a est le logarithme décimal de x, noté $\log(x)$.

On a donc:

$$\log(x) = a \Leftrightarrow x = 10^a$$

La fonction logarithme décimal est la fonction f, telle que $f(x) = \log(x)$.

2) Propriétés et variations

Propriétés

- 1 Propriétés :
 - Pour tout nombre réel $a : \log(10^a) = a$
 - Pour tous nombre réels positifs a et b: $\log(a) = \log(b) \Leftrightarrow a = b$
 - Pour tous nombre réels positifs $\log(a) < \log(b) \Leftrightarrow a < b$
- 2 Valeurs particulières :
 - $\log 1 = 0$
 - $\log 10 = 1$
 - $\log 100 = 2$
- 3 Signe et variations:

- La fonction $\log(x)$ est croissante pour x > 0.
- Si $0 \le x < 1$, alors $\log(x) \le 0$.
- Si $x \ge 1$, alors $\log(x) \ge 0$.

\boldsymbol{x}	()]	L	$+\infty$
$\log(x)$		- ()	+

3) Règles de calcul

Propriétés

a et b sont deux nombres strictement positifs :

- $\log(a^x) = x \times \log(a)$
- $\log(a \times b) = \log(a) + \log(b)$ $\log\left(\frac{a}{b}\right) = \log(a) \log(b)$

III. Résolutions d'équations et d'inéquations

1) Équations du type $a^x = b$

Exemple

Résoudre l'équation $1,3^x = 2$:

$$1,3^{x} = 2$$

$$\log(1,3^{x}) = \log(2)$$

$$x \times \log(1,3) = \log(2)$$

$$x = \frac{\log(2)}{\log(1,3)}$$

La solution est donc $\frac{\log(2)}{\log(1,3)}$, soit environ 2,64.

2) Inéquations du type $a^x < b$ et $a^x > b$

Exemple

Déterminer les nombres entiers n tels que $4^n \le 200$. On résout l'équation $4^x \le 200$:

$$4^{x} \le 200$$

 $\log(4^{x}) \le \log(200)$
 $x \log(4) \le \log(200)$
 $x \le \frac{\log(200)}{\log(4)}$
 $(car \log(4) > 0 \ puisque \ 4 > 1)$

Or
$$\frac{\log(200)}{\log(4)} \approx 3.82$$
.

Les nombres entiers n cherchés sont donc les entiers inférieurs ou égaux à 3.

Exemple

Déterminer les nombres entiers n tels que $1000\times0,95^n<800$. On résout l'équation $0,95^x<\frac{800}{1000}$:

$$\begin{array}{rcl} 0.95^{x} & < & 0.8 \\ \log(0.95^{x}) & < & \log(0.8) \\ x \times \log(0.95) & < & \log(0.8) \\ x & > & \frac{\log(0.8)}{\log(0.95)} \\ & & & (car \log(0.95 < 0 \ puisque \ 0 < 0.95 < 1) \end{array}$$

Or
$$\frac{\log(0.8)}{\log(0.95)} \approx 4.35$$
.

Les nombres entiers n cherchés sont donc les entiers supérieurs ou égaux à 5.