Computer Networks – HW 1

- 1- Suppose users share a 2 Mbps link. Also suppose each user transmits continuously at 1 Mbps when transmitting, but each user transmits only 20 percent of the time.
 - a. When circuit switching is used, how many users can be supported?
 - b. For the remainder of this problem, suppose packet switching is used. Why will there be essentially no queuing delay before the link if two or fewer users transmit at the same time? Why will there be a queuing delay if three users transmit at the same time?
 - c. Find the probability that a given user is transmitting.
 - d. Suppose now there are three users. Find the probability that at any given time, all three users are transmitting simultaneously. Find the fraction of time during which the queue grows.
- 2- A user can directly connect to a server through either long-range wireless or a twisted-pair cable for transmitting a 1500-bytes file. The transmission rates of the wireless and wired media are 2 and 100 Mbps, respectively. Assume that the propagation speed in air is 3 3 108 m/s, while the speed in the twisted pair is 2 3 108 m/s. If the user is located 1 km away from the server, what is the nodal delay when using each of the two technologies?
- 3- Suppose Host A wants to send a large file to Host B. The path from Host A to Host B has three links, of rates R1 = 500 kbps, R2 = 2 Mbps, and R3 = 1 Mbps.
 - a. Assuming no other traffic in the network, what is the throughput for the file transfer?
 - b. Suppose the file is 4 million bytes. Dividing the file size by the throughput, roughly how long will it take to transfer the file to Host B?
 - c. Repeat (a) and (b), but now with R2 reduced to 100 kbps.
- 4- Give a formula for the end-to-end delay of sending one packet of length L over N links of transmission rate R. Generalize this formula for sending P such packets back-to-back over the N links.