

ECE-2002 Computer Organization and Architecture

Dr. Kritika Bansal School of Electronics Engineering, VIT-AP

Actual Microprogrammed control unit

- ➤ Instruction fetched from the main memory into IR.
- The processor uses opcode to identify the address of the first micro-instruction.
- ➤ That address is loaded into Micro PC.
- ➤ Corresponding microinstruction is fetched from control memory.
- Micro PC- holds address of next microinstruction
- ➤ Incrementor- Increment PC after every microinstruction

Actual Microprogrammed control unit

- ➤ Once microinstruction is fetched from the control memory, it generates control signals.
- Address of Next Microinstruction > Branch Address- in case of jump microinstructions
 - ➤ Branch Condition- in case of jump with conditions microinstructions
 - Conditions are selected based on status flags through Mux.
 - ➤ If condition is true, load branch address to Micro PC.

Micro-Instruction Format

The main part of the micro-instruction is its control field.

It determines the control signals to be produced.

It can be of two different formats: Horizontal or Vertical.

1) HORIZONTAL MICRO-INSTRUCTION

Here every bit of the micro-instruction corresponds to a control signal.

Whichever bit is "1", that particular control signal will be produced by the micro-instruction.

Micro-Instruction Format

2) VERTICAL MICRO-INSTRUCTION

Here bits of the micro-instruction have to be decoded.

The decoded output decides the control signal to be produced.

	HORIZONTAL MICRO-INSTRUCTION	VERTICAL MICRO-INSTRUCTION
1	Every bit of the micro-instruction corresponds to a control signal.	Bits of the micro-instruction have to be decoded to produce control signals.
2	Does not require a decoder.	Needs a decoder.
3	N bits in the micro-instruction will totally produce N control signals.	N bits in the micro-instruction will totally produce 2 ^N control signals.
4	Multiple control signals can be produced by one micro-instruction.	Only one control signal can be produced by one micro-instruction.
5	As the control signals increase, the micro- instruction grows wider. Hence the Control Memory grows Horizontally.	To produce more control signals, more number of micro-instructions are needed. Hence the Control Memory grows Vertically.
6	Executes faster as no decoding needed.	Executes slower as decoding is needed.

Nano-Programming

- ➤ Horizontal micro-instructions can produce multiple control signals simultaneously but are very wide. This makes the control memory very large.
- ➤ Vertical micro-instructions are narrow, but after decoding, only produce one control signal. This makes the control memory small, but the execution is slow since decoding is needed.
- ➤ Hence, a combination of both techniques is needed to be called nano programming.

Nano-Programming

- > Instruction fetched from the main memory into IR.
- > The processor uses opcode to identify the address of the micro-instruction.
- > That address is loaded into Micro PC.
- ➤ Corresponding microinstruction is fetched from control memory and given to micro IR.

Nano-Programming

- > Since the microinstruction is in vertical form it has to be decoded.
- ➤ The decoded output loads a new address in nPC (nano PC).
- Using this address, nano-instruction is fetched from the nCM into nIR.
- ➤ Since the instruction is in horizontal form, it can directly generate control signals.