UNIVERSIDAD SANTO TOMAS SECCIONAL TUNJA

Electrónica Básica II y Laboratorio

Profesor: Ricardo Casallas G. jose.casallas@usantoto.edu.co

Laboratorio # 6: Amplificador BJT Multietapa.

Objetivo

Se espera que al final de este laboratorio el estudiante sea capaz de analizar de manera exacta el funcionamiento de un amplificador BJT en configuraciones multietapa.

Elementos indispensables para el laboratorio

Recuerde: si no traen todos los implementos no se puede presentar el laboratorio; y por norma de la Facultad es obligatorio el uso de la bata blanca en el laboratorio.

1. Instrumentos

- a. Fuente DC
- b. Osciloscopio con sondas para los dos canales
- c. Generador de señales con sonda de conexión
- d. Multímetro digital
- e. Protoboard
- f. Caimanes y cables de conexión tipo banana-caimán
- g. Herramienta pequeña de mano (pinzas, pelacables)

2. Componentes

Ítem	Descripción	Referencia	Cantidad
a.	2N2222A	2N2222A	4
b.	Resistencia	56 KΩ ½ w	1
C.	Resistencia	47 KΩ ½ w	1
d.	Resistencia	2.2 KΩ ½ w	1
e.	Resistencia	1.2 KΩ ½ w	1
f.	Resistencia	10 KΩ ½ w	2
g.	Resistencia	15 KΩ ½ w	2
h.	Resistencia	100 KΩ ½ w	2
i.	Resistencia	680 Ω ½ w	2
j.	Resistencia	330 Ω ½ w	2
i.	Resistencia	180 Ω ½ w	1
k.	Resistencia	100 Ω ½ w	2

UNIVERSIDAD SANTO TOMAS SECCIONAL TUNJA

Electrónica Básica II y Laboratorio

Profesor: Ricardo Casallas G. jose.casallas@usantoto.edu.co

I.	Condensador +	10 μF/25 V	2
m.	Condensador +	1 μF/25 V	3
n.	Condensador +	20 μF/25 V	2

Descripción

Para realizar el laboratorio Ud. debe:

1. Implementar el circuito

- 2. Medir las cantidades indicadas y llenar la tabla dada.
- 3. Aumentar el valor de la señal de entrada hasta el punto de distorsión anotar los valores de la señales de entrada y salida correspondientes
- 4. Comparar los resultados con el desarrollo teórico y la simulación en PSpice.
- 5. Como conclusión, describa el funcionamiento general de un amplificador BJT contestando las preguntas adjuntas de acuerdo con la práctica.

Resultado

Ud. debe entregar las respuestas a los puntos 2, 3, 4 y 5 en el formato adjunto utilizando el espacio asignado para tal fin.