时序特征说明

符号说明

- (1) t_1,t_2,\cdots,t_K 表示时间序列,设共有 $T(30\leq T\leq 31)$ 个时刻,则K=T
- (2) $\{S_{t_1}, S_{t_2}, \cdots, S_{t_K}\}$ 表示业务量集合,其中, S_{t_k} 表示 t_k 时间的业务量
- (3) $\{F_1, F_2, \cdots, F_N\}$ 表示时序特征集合,其中, F_n 表示第n个特征

特征说明

编	数学表达	注释
号		
对集	合 $\{S_{t_1}, S_{t_2}, \cdots, S_{t_K}\}$, 设 $K = 30$, $epsilon = 1e$	- 10
1	$F_1 = S_{t_1}$	firstValue(第一天的值)
2	$F_2 = S_{t_K}$	lastValue(最后一天的值)
3	$F_3 = 0.5 * (S_{t_{15}} + S_{t_{16}})$	medianValue(所有天的业务量的中位数)
4	$F_4 = S_{t_{30*0.75}} - S_{t_{30*0.25}}$	interquartile(排在0.75 位置上的业务量减去
		排在0.25位置上的业务量的差)
	if $ F_1 > epsilon$	
	then $F_5 = S_{t_k}/S_{t_1} = F_2/F_1$	
5	else	tailHeadRatio(最后一天的业务量/第一天的
	if $ F_2 > epsilon$ then $F_5 = 2$	业务量)
	else $F_5 = 1$	
6	$F_6 = (S_{t_K} - S_{t_1})/30 = (F_2 - F_1)/30$	avgIncrease(平均涨幅)
7	$F_7 = max(\{S_{t_k} k \in [1,30]\})$	maxValue(最大值)
8	$F_8 = min(\{S_{t_k} k \in [1, 30]\})$	minValue(最小值)
9	$F_9 = \sum_{k=1}^{K} S_{t_k} / 30$	average(平均值)
10	$F_{10} = \sum_{k=1}^{K} S_{t_k}^2 / 30 - F_9 * F_9$	variance(方差)
11	if $ F_9 < epsilon$ then $F_{11} = F_{10}$	 varianceRatio(方差/平均值)
	else $F_{11} = F_{10}/F_9$	(,, , , , , , , , , , , , , , , , , , ,
	if $\sum_{k=1}^{K} S_{t_k} * w_k > epsilon$	
	then $F_{12} = \frac{\sum_{k=K}^{1} S_{t_k} * w_k}{\sum_{k=1}^{K} S_{t_k} * w_k}$	
	else $F_{12} = 2$	
	if $\sum_{k=1}^{K} S_{t_k} * w_k \le epsilon$	
12	and	averageSkew(nlp特征,从最近的一天往前对
	$\sum_{k=K}^{1} S_{t_k} * w_k \le epsilon$	元素做weighted average, 距离越近权重越
	then $F_{12} = 1$	大)
	其中, $w_k = 0.85 * w_{k-1}, w_1 = 1$	
13	$F_{13} = \sum_{k=1}^{7} S_{t_k}$ $F_{14} = \sum_{k=24}^{30} S_{t_k}$	first7Sum(前面7天的业务量总和)
14	$F_{14} = \sum_{k=24}^{30} S_{t_k}$	last7Sum(最后7天的业务量总和)

		
编号	数学表达	注释
15	if $ \sum_{k=1}^{7} S_{t_k}(\mathbb{H}F_{13}) > epsilon$ then $F_{15} = \frac{\sum_{k=24}^{30} S_{t_k}}{\sum_{k=1}^{7} S_{t_k}}$ else if $ \sum_{k=24}^{30} S_{t_k} > epsilon$ then $F_{15} = 2$ else $F_{15} = 1$	tailHead7SumRatio(last7Sum/first7Sum)
16	$F_{16} = (F_{14} - F_{13})/30$	tailHead7SumAvgIncrease((last7Sumfirst7Sum)/30)
17	if $ F_9 > epsilon$ then $F_{17} = F_{14}/7/F_9$ else if $ F_{14} > epsilon$ then $F_{17} = 2$	last7AvgToOverallAvg(last7Sum/7/average)
18	$F_{18} = \sum (S_{t_k} < epsilon)$	zeroCount(为0的天数)
19	$F_{19} = \{first \{ S_{t_k} \ge epsilon\}_{index}\}$	firstNonzeroIndex(业务量中第一个不为0的下标)
20	$F_{20} = \{last \{ S_{t_k} \ge epsilon\}_{index}\}$	lastNonzeroIndex(业务量中最后一个不为0的下标)
21	$F_{21} = \{S_{t_k} \{ S_{t_k} \ge epsilon \}_{first} \}$	firstNonzeroValue(第一个不为0的业务量)
22	$F_{22} = \{S_{t_k} \{ S_{t_k} \ge epsilon\}_{last} \}$	lastNonzeroValue(最后一个不为0的业务量)
23	$F_{23} = F_{20} - F_{19} + 1$	
24	$F_{24} = (F_{22} - F_{21})/F_{23}$	lifeAvgIncrease(在整个生命周期的平均增长量)
25	$F_{25} = q - p + 1$ 其中, $\{S_{(t_k)_p}, \cdots, S_{(t_k)_q}\}$, $[p,q]$ 为连续区间, $S_{t_k} < epsilon$	maxZeroLength(连续值为0的天数)
26	$F_{26} = q - p + 1$ 其中, $\{S_{(t_k)_p}, \dots, S_{(t_k)_q}\}$, $[p,q]$ 为连续区间, $S_{t_k} > epsilon$	maxNonzeroLength(连续值不为0的天数)
27	$F_{27} = \frac{\sum_{k=1}^{30} (S_{t_k} - \frac{\sum_{k=1}^{30} S_{t_k}}{30}) * (k - (0.5*(1+30)))}{\sum_{k=1}^{30} (k - (0.5*(1+30))) * (k - (0.5*(1+30)))}$	slope(斜率,最小二乘法可以算拟合的直线的斜率)
28	$F_{28} = argmax(S_{t_k} - S_{t_{(k-1)}}, t \in [2, 30])$	maxJump(相邻两天的上升最大值)
29	$F_{29} = argmax(S_{t_{(k-1)}} - S_{t_k}, t \in [2, 30])$	maxFall(相邻两天的下降最大值)
30	$F_{30} = \sum_{k=2}^{30} S_{t_k} - S_{t_{(k-1)}} /29$	diffAvg(所有相邻的差异的平均)
31	$F_{31} = \sum (S_{t_{k+1}} - S_{t_k})/m$ 其中, $S_{t_{k+1}} > S_{t_k}$, m为满足 $S_{t_{k+1}} > S_{t_k}$ 的天数总和	avgJump(平均上升值)
32	$F_{32} = \sum (S_{t_k} - S_{t_{k+1}})/n$ 其中, $S_{t_k} > S_{t_{k+1}}$, n 为满足 $S_{t_k} > S_{t_{k+1}}$ 的天数总和	avgFall(平均下降值)

编	数学表达	注释
号対隹	合 $\{S_{t_{10}},S_{t_{11}},\cdots,S_{t_{30}}\}$, 即取出时间序列中的最	
33	$F_{33} = \frac{\sum_{k=1}^{21} \left(S_{t_k} - \frac{\sum_{k=1}^{21} S_{t_k}}{21}\right) * \left(k - (0.5 * (1 + 21))\right)}{\left(k - \left(0.5 * \left(1 + 21\right)\right)\right)}$	slopeLast21(最后21天的斜率)
34	$F_{33} = \frac{\sum_{k=1}^{21} (S_{t_k} - \frac{\sum_{k=1}^{21} S_{t_k}}{21}) * (k - (0.5 * (1 + 21)))}{\sum_{k=1}^{21} (k - (0.5 * (1 + 21))) * (k - (0.5 * (1 + 21)))}$ $F_{34} = \frac{\sum_{k=1}^{21} (S'_{t_k} - \frac{\sum_{k=1}^{21} S'_{t_k}}{21}) * (k - (0.5 * (1 + 21)))}{\sum_{k=1}^{21} (k - (0.5 * (1 + 21))) * (k - (0.5 * (1 + 21)))}$ $\sharp \Phi S' = \left\{ \frac{S_{t_k}}{\max \text{ of } \{S_{t_{10}}, S_{t_{11}}, \cdots, S_{t_{30}}\}} \right\}$	slopeLast21Norm(slopeLast21/slope)
35	$F_{35} = \sum_{k=1}^{21} S_{t_k} / 21$	averageLast21(最后21天的平均值)
36	$F_{36} = \sum_{k=1}^{7} S_{t_k}$	first7SumLast21(最后21天中的前面7天的业务量总和)
37	if $ \sum_{k=1}^{7} S_{t_k}(\mathbb{E}[F_{36}) > epsilon$ then $F_{37} = \frac{\sum_{k=15}^{21} S_{t_k}}{\sum_{k=1}^{7} S_{t_k}}$ else if $ \sum_{k=15}^{21} S_{t_k} > epsilon$ then $F_{37} = 2$ else $F_{37} = 1$	tailHead7SumRatioLast21
38	else $F_{37} = 1$ $F_{38} = \left(\sum_{k=15}^{21} S_{t_k} - \sum_{k=1}^{7} S_{t_k}\right) / 21$	tailHead7SumAvgIncreaseLast21(last7SumLast21
		first7SumLast21)/21
39	if $ F_{35} > epsilon$ then $F_{39} = \sum_{k=15}^{21} S_{t_k}/7/F_{35}$ else if $ \sum_{k=15}^{21} S_{t_k} > epsilon$ then $F_{39} = 2$	last7AvgToOverallAvgLast21(last7Sum/7/averag
40	$F_{40} = argmax(S_{t_k} - S_{t_{(k-1)}}, t \in [2, 21])$	last21MaxJump(在最后21天算maxJump)
41	$F_{41} = argmax(S_{t_{(k-1)}-S_{t_k}}, t \in [2, 21])$	last21MaxFall(在最后21天算maxFall)
42	$F_{42} = \sum_{k=2}^{21} S_{t_k} - S_{t_{(k-1)}} / 20$	last21diffAvg(在最后21天算差异的平均值)
43	$F_{43} = \sum (S_{t_{k+1}} - S_{t_k})/m$ 其中, $S_{t_{k+1}} > S_{t_k}$, m 为满足 $S_{t_{k+1}} > S_{t_k}$ 的天数总和	last21avgJump(最后21天的平均上升值)
44	$F_{44} = \sum (S_{t_k} - S_{t_{k+1}})/n$ 其中, $S_{t_k} > S_{t_{k+1}}$, n 为满足 $S_{t_k} > S_{t_{k+1}}$ 的天数总和	last21avgFall(最后21天的平均下降值)
对集		$\sum_{t=15}^{21} S_{t_k}, \sum_{t=16}^{28} S_{t_k} $
45		slopeWeekly(每周的斜率的平均值)
46	$F_{46} = argmax(S'_{x} - S'_{x-1}, x \in [2, 4])$	weeklyMaxJump(每周算一个maxJump,然后 算平均)
47	$F_{47} = argmax(S'_{x-1} - S'_x, x \in [2, 4])$	weeklyMaxFall(每周算一个maxFall,然后算平均)
48	$F_{48} = \sum_{x=2}^{4} S_x' - S_{x-1} /3$	weeklydiffAvg(每周算一个diffAvg, 然后算平均)
49	$F_{49} = \sum (S'_{x+1} - S_{\cdot x})/m$ 其中, $S'_{x+1} > S_{\cdot x}$, m 为满足 $S'_{x+1} > S_{\cdot x}$ 的天数总和	weeklyavgJump(每周的平均上升值)

		续表		
编	数学表达	注释		
号				
50	$F_{50} = \sum (S'_x - S'_{x+1})/n$ 其中, $S'_x > S'_{x+1}$, n 为满足 $S'_x > S'_{x+1}$ 的天数总和	weeklyavgFall(每周的平均下降值)		
熵特征($\{S_{t_1}, S_{t_2}, \cdots, S_{t_K}\}$)				
51	$F_{51} = -\sum_{k=1}^{30} \frac{S_{t_k}}{\sum_{k=1}^{30} S_{t_k}} \log \frac{S_{t_k}}{\sum_{k=1}^{30} S_{t_k}}$	entropy(熵)		