

MODULE INTERNE

Miramont Alexandre

Courteaux Evan

Boulière Rémi

Caire Olivier

Sommaire

- I) Présentation générale
- II) Avancement programmation
- II) Avancement montage électronique
- IV) Synthèse globale et prévisions

I) Présentation générale

Le système doit pouvoir récupérer plusieurs grandeurs physiques qui par la suite seront transmises en Lora (protocole de télécommunication choisi) à un autre module.

Les différentes grandeurs physiques à récupérer sont :

- · La température
- · L'humidité
- Le taux de CO2 (pour déterminer la qualité de l'air)
- · Le son
- · Les vibrations

I) Présentation générale

Contraintes

- La carte doit avoir une hauteur maximale de 7mm.
- Il faut éviter toutes connexions filaires pour conserver la disponibilité de la ruche pour l'apiculteur ainsi que la mobilité de la ruche.

A) Découverte de l'ESP32

- -Mise en place de l'adaptateur USB vers UART
- -Test des entrées/sorties de l'ESP32

- B) Tests et programmation des différents composants
 - 1) CCS811

A quoi ça sert?

- Capteur de la qualité de l'air, hygrométrie et de température

Situations:

- Savoir s'il y a une variation brutale de température dans la ruche
- Connaître la température ambiante dans la ruche
- Hygrométrie = fuites, intempéries ...

Registres

0x00	STATUS	R	1 byte	Status register
0x01	MEAS_MODE	R/W	1 byte	Measurement mode and conditions register
0x02	ALG_RESULT_DATA	R	up to 8 bytes	Algorithm result. The most significant 2 bytes contain a ppm estimate of the equivalent CO_2 (e CO_2) level, and the next two bytes contain a ppb estimate of the total VOC level.
0x03	RAW_DATA	R	2 bytes	Raw ADC data values for resistance and current source used.
0x05	ENV_DATA	W	4 bytes	Temperature and Humidity data can be written to enable compensation
0x06	NTC	R	4 bytes	Provides the voltage across the reference resistor and the voltage across the NTC resistor – from which the ambient temperature can be determined.
0x10	THRESHOLDS	W	5 bytes	Thresholds for operation when interrupts are only generated when eCO2 ppm crosses a threshold
0x11	BASELINE	R/W	2 bytes	The encoded current baseline value can be read. A previously saved encoded baseline can be written.
0x20	HW_ID	R	1 byte	Hardware ID. The value is 0x81
0x21	HW Version	R	1 byte	Hardware Version. The value is 0x1X

- B) Tests et programmation des différents composants
 - 1) CCS811

Résultats obtenus

```
CO2: 439 ppm, TVOC: 5ppm, Temp:59.14 C
CO2: 434 ppm, TVOC: 5ppm, Temp:61.58 C
CO2: 434 ppm, TVOC: 5ppm, Temp:61.98 C
CO2: 423 ppm, TVOC: 3ppm, Temp:61.58 C
CO2: 415 ppm, TVOC: 2ppm, Temp:61.58 C
CO2: 408 ppm, TVOC: 1ppm, Temp:61.58 C
CO2: 405 ppm, TVOC: 0ppm, Temp:59.14 C
CO2: 401 ppm, TVOC: 0ppm, Temp:59.14 C
CO2: 400 ppm, TVOC: 0ppm, Temp:59.14 C
```

Difficultés rencontrées

- Valeurs illisibles dû au premier programme effectué (sans bibliothèque)
- Valeurs très élevées → faire tourner le capteur pendant 48h → il reste des soucis concernant la température

- B) Tests et programmation des différents composants
- 2) MMA8452Q

A quoi ça sert?

- Accéléromètre avec 3 axes permettant donc de connaître la position de la ruche

Situations:

- Ruche tombée, déplacée, bougée par le vent ...

Registres

Name	Туре	Register Address	Auto-Increm	Default	Hex	Comment	
Name			F_READ=0	F_READ=1	Delault	Value	Comment
STATUS(1)(2)	R	0x00	0x01		00000000	0x00	Real time status
OUT_X_MSB ⁽¹⁾⁽²⁾	R	0x01	0x02 0x03		Output	2.—22	[7:0] are 8 MSBs of 12-bit sample
OUT_X_LSB ⁽¹⁾⁽²⁾	R	0x02	0x03	0x00	Output	-	[7:4] are 4 LSBs of 12-bit sample
OUT_Y_MSB ⁽¹⁾⁽²⁾	R	0x03	0x04	0x05	Output	_	[7:0] are 8 MSBs of 12-bit sample
OUT_Y_LSB ⁽¹⁾⁽²⁾	R	0x04	0x05	0x00	Output	V-0	[7:4] are 4 LSBs of 12-bit sample
OUT_Z_MSB ⁽¹⁾⁽²⁾	R	0x05	0x06	0x00	Output	10 — 20	[7:0] are 8 MSBs of 12-bit sample
OUT_Z_LSB ⁽¹⁾⁽²⁾	R	0x06	0x00		Output	·—	[7:4] are 4 LSBs of 12-bit sampl
Reserved	R	0x07			_	1.—0	Reserved. Read return 0x00.
Reserved	R	0x08	_		_	::	Reserved. Read return 0x00.
SYSMOD	R	0x0B	0x	00000000	0x00	Current System Mode	
INT_SOURCE ⁽¹⁾⁽²⁾	R	0x0C	0x	00000000	0x00	Interrupt status	
WHO_AM_I	R	0x0D	Ох	00101010	0x2A	Device ID (0x2A)	
XYZ_DATA_CFG ⁽³⁾⁽⁴⁾	R/W	0x0E	0>	00000000	0x00	HPF Data Out and Dynamic Range Settings	

- B) Tests et programmation des différents composants
- 2) MMA8452Q

Résultats obtenus

0.509	0.298	0.791
0.516	0.300	0.795
0.516	0.304	0.789
0.518	0.313	0.799
0.515	0.312	0.799
0.520	0.313	0.795
0.526	0.318	0.795
0.528	0.314	0.799
0.531	0.324	0.792

Difficultés rencontrées

 Valeurs négatives → changement de bibliothèque → sparkFun_MMA8452Q.h

C) Logigramme

A) Montage sur plaque de test

Premier objectif:

Programmer l'esp32 et récupérer les valeurs d'un module.

Travail réalisé:

Câblage de l'esp32, de l'interface USB UART, et du module CCS811.

A) Montage sur plaque de test

Etape suivante:

Câbler le reste des modules sur la plaque de test

Solution:

Câbler les modules au fur et à mesure

Difficultées rencontrés:

Module non alimenté empêchait la récupération des valeurs par le bus I2C

B) Choix du capteur de son

ADMP401

1,5V à 3,3V

Rapport signal/bruit "SNR" \rightarrow 62dBA Sensibilité \rightarrow -42 dBV Réponse en fréquence plate de 100 Hz à 15 kHz Consommation <250 μ A Sortie dépendante de la tension d'alimentation(sortie analogique) -40 à +70°C

INMP411

1.8 V à 3.3 V.

Rapport signal/bruit "SNR" → 61 dBA Sensibilité → -26 dBFS(full scale)

Réponse en fréquence plate de 60Hz à 15 kHz

Consommation < 1.4 mA

Sortie indépendante de la sortie d'alimentation(sortie numérique)

-40 à +85°C

C) Montage sur EAGLE

Premier objectif:

- Implanter les modules
- Connecter les modules à l'ESP32

Travail réalisé:

-Implémentation et connection des modules à l'ESP32

IV) Synthèse globale et prévision

•	Nom de tâche	Durée	Début	Fin
	MODULE INTE	9,5 jours	25/10/2019	30/05/2020
~	✓ □ Prise en m	2 jours	25/10/2019	29/11/2019
-	Présentati	4 hr	25/10/2019	25/10/2019
-	Création d	1 hr	08/11/2019	08/11/2019
~	Elaboratio	3 hr	08/11/2019	08/11/2019
~	Elaboratio	4 hr	29/11/2019	29/11/2019
	☐ Récupérati	0,12 jour	19/12/2019	19/12/2019
Ĉ	Analyse e	0,5 hr	19/12/2019	19/12/2019
Ĉ	Analyse e	1 hr	19/12/2019	19/12/2019
Ĉ	Analyse e	1 hr	19/12/2019	19/12/2019
Ĉ	Analyse e	0,5 hr	19/12/2019	19/12/2019
Ĉ	Analyse e	0,5 hr	19/12/2019	19/12/2019
Ĉ	Analyse e	0,5 hr	19/12/2019	19/12/2019
	☐ Câblage de	1,25 jours	20/12/2019	17/01/2020
î	Schéma d	4 hr	20/12/2019	20/12/2019
î	ESP32	1 hr	10/01/2020	10/01/2020
Û	RFM95	1 hr	10/01/2020	10/01/2020
î	FTDI 232	1 hr	10/01/2020	10/01/2020
Ĉ	CJMCU	1 hr	10/01/2020	10/01/2020
Ê	MMA 8452	1 hr	17/01/2020	17/01/2020
Ĉ	ADMP 401	1 hr	17/01/2020	17/01/2020
Ê	Vérificatio	2 hr	17/01/2020	17/01/2020
	□ Codage de	3,5 jours	20/01/2020	20/03/2020
_	ESP32	4 hr	20/01/2020	20/01/2020
Ĉ	RFM95	4 hr	07/02/2020	07/02/2020
Ê	FTDI 232	4 hr	14/02/2020	14/02/2020

IV) Synthèse globale et prévision

Prévisions Elec

Etape suivante:

- Création de points de test
- Positionner les modules de façon à obtenir une carte qui respecte le cahier des charges(hauteur maximale de 7mm.)
- Validation

Etape finale:

- Impression de la carte
- Soudage des composants
- Vérification du bon fonctionnement

Prévisions Info

- Tests unitaires des capteurs restants
- Correction de l'erreur de coefficient pour la température
- Étudier l'analyse de Fourier concernant le micro
- Implémentation Lora

Nous vous remercions de nous avoir écouté

Avez-vous des questions ?