Problem 1. Deduce from de Rham's Theorem that if $U \subset \mathbb{R}^3$ is open and $H^1(U) = 0$ then any vector field \vec{F} on U with curl $\vec{F} = 0$ is a gradient field.

Proof. If there was a vector field with zero curl that was not a gradient field that would imply that the $H^1(U) \neq 0$. As such the above property must hold for any vector field.

Problem 2. Deduce from de Rham's Theorem that if $U \subset \mathbb{R}^3$ is open and $H^2(U) = 0$ then any vector field \vec{F} on U with div $\vec{F} = 0$ has the form $\vec{F} = \text{curl } \vec{G}$ for some vector field \vec{G} on U.

Proof. Similar to above if there were such a vector field that would imply that $H^2(U) \neq 0$. As such if a vector field has zero divergence then it must be the curl of some vector field.