Analysis Project

M1 MIASHS

October 2025

Individual or pair work The quality of writing will be strongly evaluated!

General Guidelines

- Expected deliverables:
 - 1. **PDF report** written in L^AT_EX (Overleaf or equivalent). The **theoretical answers** must be written with mathematical rigor; numerical results (tables and figures) should be inserted and discussed.
 - 2. **Python notebook** (.ipynb) containing the computations and plots. The code remains in the notebook and **must not** be explained line by line in the report.
- → Avoid referring to the code in the report: describe the *methodology*, the *results*, the *tests*, and their *interpretation* (not the loops, imports, etc.).
- Figures and tables: provide informative captions, clearly labeled axes and units, and cite them in the text (e.g., "see Fig. 1"). Figures must be sufficiently readable (size, font).
- **Reproducibility**: the notebook must allow for reproducing all numerical results and figures shown in the report (set a random seed if relevant).

Exercise 1: Numerical Sequences and Convergence

We consider the sequence $(u_n)_{n\geq 0}$ defined by

$$u_0 = 0,$$
 $u_{n+1} = \sqrt{u_n + 2}, \quad \forall n \in \mathbb{N}.$

Part A — Theory (formal reasoning)

- 1. (Existence) Prove by induction that $u_n \geq 0$ for all $n \in \mathbb{N}$.
- 2. (Monotonicity and upper bound) Show that $(u_n)_{n\geq 0}$ is increasing and bounded above by 2.
- 3. (Convergence) Conclude that $(u_n)_{n\geq 0}$ converges, and cite the appropriate theorem.
- 4. (Characterization of the limit) Let $\ell = \lim_{n \to \infty} u_n$. Show that

$$\ell = \sqrt{\ell + 2}.$$

Determine all possible values of ℓ and specify which one is actually reached by the sequence $(u_n)_{n\geq 0}$.

- 5. (Rate of convergence local contraction) Let $f(x) = \sqrt{x+2}$. On [0,2], check that f is C^1 and compute f'(x). Deduce:
 - (a) a **global bound** of the contraction rate $q = \sup_{x \in [0,2]} |f'(x)|$;
 - (b) the **asymptotic rate** $|f'(\ell)|$. This leads to the linearized *error relation* $e_{n+1} \approx f'(\ell) e_n$ with $e_n = u_n \ell$.

Why do we focus on $f'(\ell)$? When n becomes large, the terms u_n are very close to the limit ℓ , so it makes sense to study the sequence in a neighborhood of this point. Expanding f in a first-order Taylor series around ℓ , we write:

$$f(u_n) \underset{n \to \infty}{=} f(\ell) + f'(\ell) (u_n - \ell) + o(u_n - \ell),$$

with $f(\ell) = \ell$ since ℓ is a fixed point. Hence:

$$u_{n+1} - \ell \underset{n \to \infty}{=} f'(\ell) (u_n - \ell) + o(u_n - \ell),$$

or, setting $e_n = u_n - \ell$,

$$e_{n+1} = f'(\ell) e_n + o(e_n).$$

Thus, in a neighborhood of ℓ , the remainder term $o(e_n)$ becomes negligible compared to e_n , giving the linearized approximation:

$$e_{n+1} \approx f'(\ell) e_n$$
.

Hence, the study of the asymptotic rate $|f'(\ell)|$ and the error relation $e_{n+1} \approx f'(\ell)e_n$ allows us to **quantify the speed of convergence** of the sequence toward its limit. This linearized relation shows that $f'(\ell)$ governs the local rate of convergence: if $|f'(\ell)| < 1$, the sequence is contractive and converges toward ℓ .

Part B — Numerical exploration (Python Notebook, results integrated into the report)

Objective: Illustrate and quantify the convergence of $(u_n)_{n\geq 0}$; compare theoretical and numerical behavior. Unless explicitly stated otherwise, the **theoretical justification is not required** in this Part B.

1. Computation and value table. Compute $(u_n)_{n\geq 0}$ for $n=0,\ldots,N$ with a reasonable N (e.g. N=20) and initial conditions

$$u_0 \in \{0, 1.5, 2.5, -1\}.$$

- (i) Identify for which initial values the definition of the sequence is valid;
- (ii) present a synthetic table (a few iterations) in the report;
- (iii) plot $n \mapsto u_n$.
- 2. Global contraction bound. On [0,2], verify numerically that

$$|u_{n+1} - \ell| \le q |u_n - \ell|$$
 where q is the constant found in Part A,

at least from a certain index onward. Illustrate this using a figure (for example, plot $|u_{n+1} - \ell|$ versus $|u_n - \ell|$, along with the line y = qx on the same graph).

3. Graphical analysis of the associated function. It can be shown that the sequence $(u_n)_{n\geq 0}$ admits an explicit expression:

$$u_n = g(n),$$
 $g(x) = 2\cos\left(\frac{\pi}{2^{x+1}}\right).$

This continuous function extends the discrete sequence $(u_n)_{n\geq 0}$ to all real $x\geq 0$.

- (i) Plot on the interval [0,10] the graph of g in an orthonormal coordinate system. Comment on the global behavior of g (monotonicity, limit, overall shape).
- (ii) For $x \ge 0$, compute the derivative g'(x) (symbolic differentiation expected). Choose a point $a \in [0, 10]$ and find the equation of the tangent line to g at x = a.
- (iii) Write the explicit equation of the tangent T_a ,

$$y = g'(a)(x - a) + g(a),$$

and plot this tangent on the same graph as g.

(iv) Interpret geometrically the slope g'(a): how does it evolve as a increases? What does this tell us about the rate of convergence of the sequence $(u_n)_{n\geq 0}$ toward its limit?

Exercise 2: Optimization and Convexity — Theoretical and Interpretative Component

We model the potential energy of a particle in the plane by the quadratic function:

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = 6x^2 + 3xy + 5y^2 - 8x + 4y + 9.$$

This function combines:

- a quadratic term $(6x^2 + 3xy + 5y^2)$ representing the stored energy in the system;
- a coupling term xy describing the interaction between the two spatial directions;
- linear terms (-8x + 4y) representing external forces or sources acting on the particle.

Part A — Theoretical Analysis

- 1. (Continuity) Justify that f is continuous and differentiable on \mathbb{R}^2 .
- 2. (Existence of an extremum) On the closed and bounded set $D = [-1, 1]^2$, does f admit a minimum? Explain why.
- 3. (Gradient and critical points) Compute, for all $(x,y) \in \mathbb{R}^2$, the gradient $\nabla f(x,y)$ and explicitly solve the system $\nabla f(x^*,y^*) = \mathbf{0}$.
- 4. (Hessian matrix) Compute, for all $(x,y) \in \mathbb{R}^2$, the Hessian matrix $H_f(x,y)$.
- 5. (Eigenvalues and classification) Compute the eigenvalues of $H_f(x^*, y^*)$ and determine whether this matrix is positive definite. Deduce the convexity of f and conclude about the nature and uniqueness of the critical point.
- 6. (Canonical form) Show that f can be rewritten as

$$f(x, y) = f(x^*, y^*) + Q(x - x^*, y - y^*),$$

where Q is a positive definite quadratic form. Provide the explicit expression of Q.

Motivation. This reformulation isolates the purely quadratic contribution around the minimum: the term $Q(x - x^*, y - y^*)$ measures the **local stability** of the equilibrium, while $f(x^*, y^*)$ represents the minimal energy achieved at equilibrium. The larger the eigenvalues of H_f , the steeper the "valley" of the minimum, and the faster the system returns to equilibrium when perturbed.

7. (Energy along a trajectory) Suppose now that the particle follows a circular trajectory in the plane:

$$\gamma : \mathbb{R} \to \mathbb{R}^2, \qquad \gamma(t) = (\cos t, \sin t).$$

We then define the potential energy along the trajectory:

$$E(t) = f(\gamma(t)).$$

- (i) Express E(t) explicitly as a function of t.
- (ii) Compute the derivative E'(t) using the **chain rule** $E'(t) = \nabla f(\gamma(t)) \cdot \gamma'(t)$.

Intuition. The derivative E'(t) represents the instantaneous rate of change of energy along the circular motion. It measures the infinitesimal work of the force associated with the gradient field of f along the trajectory γ . If E'(t) = 0, the particle is at an equilibrium position along the circle.

Part B — Numerical Implementation and Visualization

Objective. Deepen the understanding of the behavior of f and the trajectory γ through graphical representations and numerical calculations. All figures should be inserted into the report and accompanied by qualitative interpretations.

- 1. Representation of γ . Plot, for $t \in [0, 2\pi]$, the curve representing $\gamma(t)$.
- 2. Visualization of the energy surface. Represent f(x, y) as a 3D surface over the domain $D = [-1, 1]^2$. Identify visually the position of the global minimum (x^*, y^*) and verify the symmetry of the energy landscape. Overlay contour lines (level curves) on the ground projection.
- 3. Simulation of the circular trajectory. Implement the trajectory $\gamma(t) = (\cos t, \sin t)$ for $t \in [0, 2\pi]$. On the (x, y)-plane, plot:
 - the contour levels of f,
 - the unit circle traversed by the particle,
 - and the current point $\gamma(t)$ moving along the circle.

The figure should be clear, color-coded, and properly labeled (axes, legend, titles).

- 4. Energy along the motion. Compute and plot the energy curve $t \mapsto E(t) = f(\gamma(t))$ for $t \in [0, 2\pi]$. Identify graphically the points where E'(t) = 0 and discuss their physical meaning: do they correspond to energy minima or maxima along the circle?
- 5. Study of energy stability. Discuss the behavior of E(t): amplitude, variations, and positions of extrema. How do these observations relate to the global convexity of f?

Presentation guidelines. Figures must include clearly labeled axes, consistent units, descriptive titles, and explicit legends. Comments in the report should connect numerical results with theoretical analysis: convexity, gradient, equilibrium points, and energy variations along the trajectory. No code blocks should be included in the report; only methodology, results, and interpretations are expected.