Alunc	o(a):		
1.	Considere o vetor $v=[1,3,5,9,12,13,15,18,20,21,23,25]$. Escreva a sequência de números avaliados na busca binária pelos seguintes números: 12:	5.	Escreva o estado do vetor $v = [26, 23, 19, 1, 14, 28, 25, 12] \text{ após cada um dos passos da execução do algoritmo de ordenação por seleção.}$
2.	Considere a o vetor $v=[3,4,6,8,11,12,14,16,17,20,22]$. Escreva a sequência de números avaliados na busca binária pelos seguintes números: 9:		
3.	Selecione, entre as opções a seguir, aquela que representa o estado do vetor $v = [98, 96, 42, 5, 19, 65, 16, 88, 53, 32]$ após quatro passos completos do algoritmo de ordenação por seleção.	6.	Nas afirmativas a seguir a respeito da ordenação do vetor $v=[78,16,10,90,28,72,5,63],$ assinale V para as verdadeiras e F para as falsas
	(a) [42, 32, 53, 5, 19, 65, 16, 88, 96, 98]		() Na ordenação por <i>quick sort</i> , o número 5 encontrará sua posição definitiva antes do número 90. Considerar que o pivô é o elemento central do vetor.
	(b) [42, 96, 98, 5, 19, 65, 16, 88, 53, 32] (c) [5, 16, 19, 32, 42, 65, 96, 88, 53, 98]		() O número 5 levará menos passos para ocupar sua posição definitiva se o vetor v for ordenado através da ordenação por seleção do que se for ordenado através da ordenação por inserção.
	(d) [5, 42, 96, 98, 19, 65, 16, 88, 53, 32]		() Na ordenação por seleção, o número 16 encontra sua posição definitiva antes do número 5.
	(e) $[5, 19, 42, 96, 98, 16, 32, 53, 65, 88]$		() Sendo n o maior índice do vetor, no caso de ordenação por $merge\ sort$, o número 5 ocupará uma posição menor que $\lfloor \frac{n}{2} \rfloor$ apenas no vetor final, já ordenado.
4.	Escreva o estado do vetor $v=[28,12,6,26,13,18,27,2] \ {\rm após} \ {\rm cada} \ {\rm passo}$ completo na execução do algoritmo de ordenação por inserção.	7.	Considere o vetor $v=[45,18,24,15,36,41,43,8,31,14]$. Ao final do processo de ordenação por $merge\ sort$, os dois vetores que, quando intercalados no processo de ordenação, resultarão no vetor v ordenado são:
			(a) [8, 14, 15, 18, 24] e [31, 36, 41, 43, 45]
			(b) [15, 18, 24, 36, 45] e [8, 14, 31, 41, 43]
			(c) $[8, 24, 15, 18, 14]$ e $[36, 31, 41, 43, 45]$
			(d) $[15, 24, 45, 18, 36]$ e $[8, 41, 43, 14, 31]$
			$(e) \ [45, 36, 24, 18, 15] \ e \ [43, 41, 31, 14, 8] \\$
		8.	Considere a aplicação do algoritmo $merge\ sort$ ao vetor $v=[10,23,27,28,29,21,39,25,24,22,41,38,49,40,26,11]$ Escreva abaixo os dois vetores que, quando intercalados no processo de ordenação, resultarão no vetor v ordenado.

9.	Aplique o algoritmo de ordenação $Quick\ sort$ no vetor $v=[34,16,40,28,24,47,38,25]$ utilizando como pivô p o elemento central do vetor (ou seja, sendo l e r os índices das extremidades esquerda e direita do vetor respectivamente, considera-se $p=\lfloor\frac{l+r}{2}\rfloor$). Durante a ordenação, o subvetor mais à esquerda do pivô deve ser ordenado antes do subvetor mais à direita. Mostre cada um dos passos da ordenação que levaram a obter o vetor ordenado. Considere que um $passo\ de$ $ordenação\ está\ completo\ quando\ o\ pivô\ está\ em\ sua\ posição\ definitiva.$		10. Assinale V para as alternativas verdadeiras ou F para as alternativas falsas com respeito ao algoritmo de ordenação quick sort:			
		(,	A escolha como pivô do elemento que ocupa a posição central do vetor a ser ordenado garante que o algoritmo terá o melhor desempenho possível		
		(,	O pior caso, isto é, o caso em que o algoritmo tem o pior desempenho, é aquele em que os pivôs, ao final de um passo de ordenação, sempre ocuparão uma das extremidades do vetor.		
		(,	Mesmo no pior caso, o <i>quick sort</i> tem desempenho melhor que a ordenação por inserção e que a ordenação por seleção		
		(,	No melhor caso, o <i>quick sort</i> tem desempenho igual ao <i>merge sort</i> .		
		(,	Para que o quick sort apresente o melhor desempenho possível, o pivô deve ser sempre o elemento com o menor valor entre os elementos ainda não ordenados.		
		(,	Em um subvetor com n elementos, para $n \geq 3$, pode-se selecionar, como pivô, o elemento médio entre três valores quaisquer. Nesse caso, garante-se que o custo da ordenação será inferior ao pior caso, que é $O(n2)$.		
		(Se, em todas as iterações do algoritmo, o pivô for o elemento médio de um vetor com n elementos, então a ordenação terá custo de $O(n^2)$. Observação: por elemento médio, entende-se o elemento cujo valor seja o valor mediano entre todos os elementos do vetor. Por exemplo, o elemento médio do vetor v=[3,5,1,7,2,15,11] é 5.		

Informações úteis

- Em vetores com número par de elementos, considerar, como elemento central, o último elemento da primeira metade.
- Quando dois subvetores precisarem ser ordenados, considerar que o subvetor da esquerda é ordenado antes do subvetor da direita.
- Ao dividir um vetor $v = [v_0, \cdots, v_n]$ pela metade, sendo 0 (zero) o índice do primeiro elemento e n o índice do último elemento, considerar que (i) a primeira metade é $[v_0, \cdots, v_c]$ e (ii) a segunda metade é $[v_{c+1}, \cdots, v_n]$, onde $c = \lfloor \frac{0+n}{2} \rfloor$.
- Em um algoritmo de ordenação, um passo completo acontece quando um determinado elemento do vetor é colocado em sua posição definitiva.