

HIROSHIMA UNIVERSITY 広島大学

課題 2 Finding Similar Items (Homework 2)

Big Data KA218001 ビッグデータ KA218001

Submission Information

Date	Student ID	Name
4/1/2025	C240424	Yousef Ibrahim Gomaa Mahmoud Mabrouk
(DD/MM/YYYY)		

第1問の答え:

1.1. K-Shingles Sets (K=2)

- 文書 1 (Document 1): HIRODAIHERO
 - o Set of 2-shingles: {HI, IR, RO, OD, DA, AI, IH, HE, ER}
- 文書 2 (Document 2): BIGDATAHERO
 - o Set of 2-shingles: {BI, IG, GD, DA, AT, TA, AH, HE, ER, RO}

1.2. Jaccard Similarity of Documents

Jaccard Similarity =
$$Sim(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

- Set 1: {HI, IR, RO, OD, DA, AI, IH, HE, ER}
- Set 2: {BI, IG, GD, DA, AT, TA, AH, HE, ER, RO}

From Table 1, which shows the Characteristic Matrix of Set 1 and 2, the Jaccard Similarity can be calculated as follows:

$$Sim(Set1, Set2) = \frac{|Set \cap Set2|}{|Set1 \cup Set2|} = \frac{RO + DA + HE + E}{HI + IR + RO + OD + DA + AI... + AH} = \frac{4}{15} \approx 0.267$$

	Set 1	Set 2
НІ	1	0
IR	1	0
RO	1	1
OD	1	0
DA	1	1
AI	1	0
ΙΗ	1	0
HE	1	1
ER	1	1
BI	0	1
IG	0	1
GD	0	1
AT	0	1
TA	0	1
АН	0	1

Table 1.

第2問の答え:

	<i>C</i> 1	<i>C</i> 2	<i>C</i> 3	<i>C</i> 4
<i>R</i> 1	0	1	1	0
<i>R</i> 2	1	0	1	1
R3	0	1	0	1
R4	0	0	1	0
<i>R</i> 5	1	0	1	0
<i>R</i> 6	0	1	0	0

- Jaccard Similarity of Each Pair 2.1.

 - Sim(C1, C2) = $\frac{0}{R1+R2+R3+R5+R6}$ = 0 Sim(C1, C3) = $\frac{R2+R5}{R1+R2+R4+R5}$ = $\frac{2}{4}$ = 0.5
 - Sim(C1, C4) = $\frac{R2}{R2+R3+R5} = \frac{1}{3} = 0.33$
 - Sim(C2, C3) = $\frac{R1}{R1+R2+R3+R4+R5+R6} = \frac{1}{6} = 0.167$
 - $Sim(C2, C4) = \frac{R3}{R1 + R2 + R3 + R6} = \frac{1}{4} = 0.25$
 - Sim(C3, C4) = $\frac{R2}{R1+R2+R3+R4+R5} = \frac{1}{5} = 0.2$
 - o Note that Sim(C3, C1) is the same as Sim(C1, C3), this applies to the other columns as well.
- Minhash (row order: R4, R6, R1, R3, R5, R2 ~ 3, 5, 0, 2, 4, 1)
 - Let there be two hash functions and replace the rows with integers. $(0 \rightarrow k-1)$

o
$$h1(x) = x+1 \mod k$$
, $h2(x) = 2x+1 \mod k$,

where
$$k = row count$$

 ∞

 ∞

• Step 1: Pick min(Sig(i, j), hx(x)) for R4 (x=3) which updates C3 as it has 1.

$$C1$$
 $C2$ $C3$ $C4$ $Sig.Matrix:$ $h1$ ∞ ∞ 4 ∞ $h2$ ∞ ∞ 1 ∞

• Step 2: Similarly, for $\frac{R6}{(x=5)}$, only C2 has 1.

$$C1$$
 $C2$ $C3$ $C4$ $Sig.Matrix:$ $h1$ ∞ 0 4 ∞ $h2$ ∞ 5 1 ∞

• Step 3: For R1 (x=0), C2 and C3 have 1. (Update C3 and h2 of C2)

• Step 4: For R3 (x=2), C2 and C4 have 1. (Update only C4)

$$C1$$
 $C2$ $C3$ $C4$ $Sig.Matrix:$ $h1$ ∞ 0 1 3 $h2$ ∞ 1 1 5

• Step 5: For R5 (x=4), C1 and C3 have 1. (C3 is unchanged)

Step 6: Finally, for R2 (x=1), C1, C3, and C4 have 1. (Update h(1,1), h(1,4), and h(2,4)

- According to this signature matrix, columns C1 and C4 are identical. C2 and C3 are identical in only half the rows in this case as well.
- o However, this is not entirely true due to the small sample used.

$$Sim(C1, C4) = \frac{x}{x+y} = \frac{1}{1+2} = \frac{1}{3}$$

Where *x* are the rows where both columns had 1, and *y* are the rows where either had 1 and the other had 0.

o $Sim(C1, C2) = \frac{0}{0+5} = 0$, which is the same as the result from the signature. This proves that Minhash can be useful to remove dissimilar features effectively.

第3問の答え:

C1	C2	C3	C4	C5	C6	C7
1	2	1	1	2	5	4
2	3	4	2	3	2	2
3	1	2	3	1	3	2
4	1	3	1	2	4	4
5	2	5	1	1	5	1
6	1	6	4	1	1	4

• The signature matrix is divided into 3 bands, and each has 2 rows.

C1	C2	С3	C4	C5	C6	C7
1	2	1	1	2	5	4
2	3	4	2	3	2	2
3	1	2	3	1	3	2
4	1	3	1	2	4	4
5	2	5	1	1	5	1
6	1	6	4	1	1	4

- Since a hashing function would put identical pairs in the same bucket, and assuming other pairs have a low chance of appearing in said same bucket.
- Then the candidate pairs for each band are:
 - o Band 1: (RED)
 - (C1,C4), (C2, C5)
 - Band 2: (BLUE)
 - **(C1,C6)**
 - o Band 3: (GREEN)
 - (C1,C3), (C4, C7)
- The aggregated candidate list is: {(C1,C4), (C2, C5), (C1,C6), (C1,C3), (C4, C7)}