Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3216	К работе допущен	
Студент Сиразетдинов А.Н.	Работа выполнена	
Преподаватель Смирнов А.В.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.03

Определение удельного заряда электрона

1. Цель работы.

Определить удельный заряд электрона экспериментальным путем

- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести измерения зависимости анодного тока Ia вакуумного диода от величины тока в соленоиде при различных значениях анодного напряжения.
 - 2. Найти значение коэффициента связи между током соленоида и магнитным полем B внутри него.
 - 3. Построить графики зависимостей Ia от B и определить по ним величины критических полей для каждого значения анодного напряжения.
 - 4. По значениям критического поля найти величину удельного заряда электрона и оценить ее погрешность.
- 3. Объект исследования.

Вакуумный диод, находящийся под действием магнитного поля соленоида

4. Метод экспериментального исследования.

Многократное прямое измерение

5. Рабочие формулы и исходные данные.

Удельный заряд электрона – отношение заряда к массе.

Табличное значение $1,76*10^{11}\frac{\mathrm{K}\pi}{\mathrm{c}}$

$$\frac{e}{m} = \frac{8U}{B_c^2 r_a^2}$$

Формула для вычисления магнитной индукции в утри соленоида:

$$B_c = \mu_0 I_c N \frac{1}{\sqrt{(l^2 + d^2)}}$$

Параметры соленоида: радиус обмотки ra=0,003 м. Диаметр d=37 мм, длина $\ell=36$ мм, количество витков N=1500

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Вольтметр	Электронный	0-15B	1B
2	Амперметр	Электронный	0-500мА	1мА

^{7.} Схема установки (перечень схем, которые составляют Приложение 1.

Рис 1. Принципиальная электрическая схема измерительного стенда

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

	Анодное напряжение			
N	U = 9B		U = 11 B	
опыта	I_L ,м A	I_a , м $\mathsf A$	I_L , MA	I_a , MA
1	0	0,2241	0	0,2801
2	0,03	0,2243	0,03	0,2797
3	0,05	0,2241	0,05	0,2801
4	0,07	0,2239	0,07	0,2805
5	0,1	0,2243	0,09	0,2809
6	0,13	0,2245	0,12	0,2811
7	0,15	0,2245	0,15	0,282
8	0,17	0,223	0,18	0,2801
9	0,2	0,2232	0,21	0,2734
10	0,22	0,2022	0,23	0,2474
11	0,25	0,1345	0,25	0,1883
12	0,28	0,1072	0,27	0,1504
13	0,3	0,0896	0,3	0,1216
14	0,35	0,0621	0,32	0,1119
15	0,38	0,0532	0,35	0,0941
16	0,4	0,047	0,37	0,0824
17	0,42	0,0433	0,4	0,0706
18	0,45	0,0383	0,43	0,0611
19	0,48	0,0342	0,45	0,0555
20	0,5	0,0316	0,48	0,0487
21			0,5	0,0451

Таблица 1. Зависимость напряжения *UR* от тока в соленоиде

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

U, B	$I_{L_{ m kp}}$, мк ${ m A}$	$B_{\kappa p}$, мк T л	e/m, Кл/кг
9	0,22	0,008033	1,23977E+11
11	0,22	0,008033	1,51527E+11

Таблица 2. Значения критической силы катодного тока и индукции

$$B_{\mathrm{Kp}}=1,3*10^{-6}*0,22*1500*\frac{1}{\sqrt{(0,036^2+0,037^2)}}=0,008033$$
 мкТл
$$\frac{e}{m}=\frac{8*9}{0,008033^20,003^2}=1,23977*10^{11}$$

Среднее значение удельного заряда электрона - 1,37752 * 10^{11} Угловой коэффициент $\frac{\Delta(B_c^2)}{\Lambda \, {
m H}} \, = \, 0$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta \frac{e}{m} = \frac{1}{2} \left| \left(\frac{e}{m} \right)_1 - \left(\frac{e}{m} \right)_2 \right| = 1,378 * 10^{10}$$

$$\varepsilon = \frac{1,378 * 10^{10}}{1,378 * 10^{11}} \ 100\% = 10\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Зависимость анодного тока диода от тока на соленоиде

График 2. Зависимость la/IL от IL

График 3. Зависимость Вс^2 от анодного напряжения U

12. Окончательные результаты.

$$\frac{e}{m} = (1.37 * 10^{11} \pm 0.137 * 10^{11}) \frac{K\pi}{K\Gamma}$$
 $\varepsilon = 10\%$

13. Выводы и анализ результатов работы.

Табличное значение удельного заряда электрона не попало в промежуток, полученный в результате экспериментальных измерений. Это произошло из-за того, что при вычислениях мы рассматривали только два значения напряжения, чего недостаточно

Приложение 1

Рис 1. Принципиальная электрическая схема измерительного стенда

Приложение 2

График 1. Зависимость анодного тока диода от тока на соленоиде

График 2. Зависимость la/IL om IL

График 3. Зависимость Bc^2 от анодного напряжения U