Applications of Approximate Word Matching in Information Retrieval

J. C. French, A. L. Powell, E. Schulman*

Department of Computer Science, University of Virginia

*National Radio Astronomy Observatory

Introduction

Approximate Word Matching

- refinement of approximate string matching
- finer control over types of differences allowed

Introduction (cont.)

- Overview of associated work
 - Motivation and application area
 - General approach
 - Issues remaining
- Approximate word matching
 - Definition
 - Uses
 - Evaluation

What are we trying to do?

- Merge bibliographic records
- Search distributed collections
- Bibliometric studies

ADS

%T An H I survey of high-velocity clouds in nearby disk galaxies

%A Schulman, Eric; Bregman, Joel N.; Roberts, Morton S.

%J The Astrophysical Journal, vol. 423, no. 1, p. 180-189

SIMBAD

%T An HI survey of high-velocity clouds in nearby disk galaxies

%A Schulman, E.; Bregman, J.N.; Roberts, M.S.

%J Astrophys. J., 423, 180-189 (1994)

What is the problem?

Messy data!

- variants
- misspellings
- acronyms and abbreviations
- multiple languages
 - translation and transliteration problems

makes it difficult to tell when two strings represent the same entity

Our solution?

We use a combination of

- approximate data transforms
- string matching techniques
- approximate word matching techniques

to cluster the data and generate equivalence classes for entity names

Approach

- Extract strings
- Cluster strings using chosen approach
- Domain expert reviews outcome of above; iterate until list finalized
- Utilize canonical forms and equivalence classes

A running example

Astrophysics Data System (ADS)

- collection of bibliographic data,
 abstracts, and full text from astronomy
 and astrophysics
- approximately 240,000 entries from over 1,000 journals and conference proceedings
- our experiments are based on a subset of 146,000 journal articles

Data Set

- 120 affiliation strings representing 57 author affiliations in the states of Virginia and West Virginia
- 57 equivalence classes

Edit Distance

The edit distance, *e(u,v)*, from a string *u* to a string *v* is the minimum number of simple edit operations (insert, delete, replace, transpose) required to transform one string to the other.

```
Example,
e("Virginia", "Vermont") = 5
```

Virginia
Verginia
Verminia
Vermonia
Vermonta
Vermont

Raw affiliation strings for the University of Virginia

Affiliation string	Count
Univ. of Virgina, Charlottesville, VA, US	1
Univ. of Virginia, Charlottesvill, VA, US	1
Univ. of Virginia, Charlottesville, VA, US	44
Univ. of Virginia, Charlottsville, VA, US	1
Univ. of Virginia, VA, US	1
University of VA., Charlottesville	1
University of Virginia, Charlottesville, VA, US	23
University of Virginia, Virginia, US	1
Virgina Univ., Charlottesville, VA, US	1
Virgina, University, Charlottesville, VA	1
Virginia Univ.	2
Virginia Univ., Charlottesville	58
Virginia Univ., Charlottesville, VA	1
Virginia Univ., Charlottesville, VA, US	4
Virginia University, Charlottesville	1
Virginia University, Charlottesville, VA	1
Virginia, University	57
Virginia, University, Charlottesville	204
Virginia, University, Charlottesville, VA	77
Virginia, University, Charlottesville, Va.	83

564

Clustering Alternatives

Absolute edit distance

$$e(u,v) \le \delta$$

Relative edit distance

$$e(u, v) \le \alpha \min(u, v)$$

Approximate word matching

Difficulties with Traditional Edit Distance

Moskovskii Gosudarstvenni Pedagogicheskii Institut, Moscow

Moskovskij Pedagogicheskij Gosudarstvennj University, Moscow

Edit distance 36

Alternative distance measures

Sorted surrogates

Original distance 36

Gosudarstvenni Institut Moscow Moskovskii Pedagogicheskii

Gosudarstvennj Moscow Moskovskij Pedagogicheskij_University

Distance 22

Approximate Word Matching

- Given two strings u and v, find a minimum distance matching between the words in the strings.
- The sum of the edit distances is minimized.
- The cost of an unmatched word is the length of the word.
- Consider the sum of the edit distances.

Moskovskii Gosudarstvenni Pedagogicheskii Institut, Moscow

Moskovskij Pedagogicheskij Gosudarstvennyj University, Moscow

Distance = 11

Approximate Word Matching vs. String Matching

 s_1 : Moskovskii Gosudarstvennyi Pedagogicheskii Institut, Moscow

 s_2 : Moskovskij Pedagogicheskij Gosudarstvennyj University, Moscow

 s_3 : Virginia, University

 s_4 : University of Virginia

s₅: University of Vermont

	$oldsymbol{s}_1$	$oldsymbol{arsigma}_2$	s ₃	$oldsymbol{arsigma}_4$	$oldsymbol{arsigma}_{5}$
	(59)	(61)	(20)	(22)	(21)
$oldsymbol{s}_1$	0	36	50	50	50
s_2		0	45	52	51
s ₃			0	17	16
$oldsymbol{\mathcal{S}}_4$				0	5
s ₅					0

	$oldsymbol{s}_1$	$oldsymbol{s}_2$	s ₃	$oldsymbol{arsigma}_4$	S ₅
	(55)	(57)	(18)	(20)	(19)
$oldsymbol{s}_1$	0	11	56	52	52
s_2		0	48	44	44
S 3			0	2	7
$oldsymbol{\mathcal{S}}_4$				0	5
s ₅					0

Coincidences

Moskovskij Pedagogicheskij Gosudarstvennj University, Moscow Virginia, University

Moskovskij Pedagogicheskij Gosudarstvennj University, Moscow
V ir g in i a, University

Universitaetssternwarte, Vienna, Austria Universitaet Sternwarte, Vienna, Austria

Evaluation Measures

- Purity of Clusters = of the clusters
 produced, the fraction that do not contain incorrectly placed items
- Number incorrectly placed
- Number not placed
- Total misclassified = number incorrectly placed + number not placed.

Clustering Experiments Using e(u,v) and w(u,v)

Distance measure	Relative distance (α)	Purity of clusters	Total mis- classified	Number misplaced	Number not placed
e(u,v)	0.20	78/79	29	1	28
	0.35	65/69	30	8	22
	0.50	55/62	30	13	17
w(u,v)	0.20	75/76	25	1	24
	0.35	62/66	23	4	19
	0.50	50/58	23	10	13

Finer Control

- Some problems still remain
 - **University of California, Davis University of California, Irvine**
- Constrain the allowable inter-word edit distance
- Use a Jaccard Coefficient to measure the degree of overlap
- Apply thresholds

Clustering Experiments using a Jaccard Coefficient

Similarity coefficient	Purity of clusters	Total mis- classified	Number misplaced	Number not placed
0.75	78/78	24	0	24
0.65	68/69	15	1	14
0.50	56/59	11	5	6
0.40	48/54	13	10	3

Journal Title Clustering Experiments

Distance measure	Relative distance (α)	Purity of clusters	Total mis- classified	Number misplaced	Number not placed
e(u,v)	0.20	65/67	34	2	32
	0.35	46/54	31	10	21
	0.50	23/38	36	24	12
w(u,v)	0.20	60/61	29	1	28
	0.35	42/48	24	8	16
	0.50	25/38	31	23	8

Journal Title Clustering Experiments

Similarity coefficient	Purity of clusters	Total mis- classified	Number misplaced	Number not placed
0.75	70/71	39	2	37
0.65	49/60	39	12	27
0.50	29/43	37	23	14
0.40	29/42	36	23	13

Affiliation cluster/string	Number of
ALLITIACION CIUSCEL/SCIING	occurrences
Virginia, University, Charlottesville	502
Virginia, University, Charlottesville	431
University of Virginia, Charlottesville	70
Virginia, University	59
University of Virginia	2
University of Virginia	1
University of Virginia, Virginia	1
University of VA., Charlottesville	1

Conclusions

- Automated approaches can aid in the construction of equivalence classes.
- Approximate word matching is a useful tool for this activity.

Acknowledgements

This work supported in part by:

- NSF grant CDA-9529253
- DARPA contract N66001-97-C-8542
- DOE grant DE-FG05-95ER25254
- NASA GSRP fellowship NGT5-50062

Approximate word matching

Moskovskii Gosudarstvenni Pedagogicheskii Institut, Moscow

Moskovskij Pedagogicheskij Gosudarstvennyj University, Moscow

Distance 11