Homework 4.3

①
$$f(x) = 2x + \frac{6}{x}$$

 $f(x) = 2 - \frac{6}{x^2} = 0; \pm \sqrt{3}$
 $+ - - +$
 $- \frac{1}{3} = 0$

inc: 26 (-0, \(\frac{13}{13}\)\(\frac{13}{10}\)

dec: no (-\(\frac{13}{10}\)\(\frac{10}{10}\)\(\frac{10}{10}\)

local min: \(\frac{13}{13}\)

local max: -\(\frac{13}{13}\)

2) f(n)=bn+5einn f'(n)=6+5cus n=D nevel so always? increase: ne R decrease: ne Q Mo Ciutials

(3) $f(x) = \frac{anb}{lu(x)}$; $f(\frac{1}{7}) = 1$; $local_{nin}$ $f'(x) = \frac{ab nb^{-1} lu(x) - anb y_n}{lu(x)^2} = 0$ $lu(x)^2$ lu(x) = 1; $b = \frac{y_n}{lu(y_1)}$ then, $\frac{a(y_1)^b}{lu(y_1)} = 1$; $a = \frac{lu(y_1)}{(y_1)^b}$

(4) Analy zing the graphe and elist leve that. +(3)+(6)

The sut $78n^2-20n^2+8$ $f'(n)=32n^2+28nn^2-60n$ $f''(n)=96n^2+468n-66=0$ 12(8n+1)(n+6)=0infliction point = $\frac{1}{8}$, -6

9 f(n)= $\frac{e^{n}}{7+e^{n}}$; $f(n)=\frac{7e^{n}}{(7+e^{n})^{2}}$ eincreasing at (-60,60) decreasing at NA NA local min and max: approching HA somme

 $7e^{u}(7+e^{u})^{2}-7e^{u}(a)(7+e^{u})e^{u}=0$ $7\cdot 49e^{u}-7\cdot e^{u}(a)(7+e^{u})e^{u}=0$ $e^{u}-7\cdot lu(7)=u$ inflection point $f''(u)=\frac{e^{u}(343-7e^{2u})}{(7+e^{u})^{4}}=0$ $f''(u)=\frac{e^{u}(343-7e^{2u})}{(7+e^{u})^{4}}=0$ $f''(u)=\frac{e^{u}(343-7e^{u})}{(7+e^{u})^{4}}=0$ $f''(u)=\frac{e^{u}(343-7e^{u})}{(7+e^{u})^{4}}=0$

Homewood 4-3 Cont.

(b)
$$f(n) = n \sqrt{n^2 + q} = \sqrt{n^4 + qn^2}$$
; [-1.5]
 $f'(n) = \frac{1}{2}(n^4 + qn)^{-1}(n^3 + 18n) = 0$
 $\partial u(\partial n^2 + q) = 0$; $n = 0$
 $f(0) = 0$; $f(-1) = -63.3$; $f(5) = \partial q \cdot 14$
 $g(0) = 0$ $f'(n) = \frac{18n(n^2 + q)^{-1/2}}{(n^2 + q)^{-1/2}} = \frac{18n(n^2 + q)^{-1/2}}{(n^2 + q)} = \frac{18n(n^2 + q)^{-1/2}}{(n^2 + q)} = 0$
 $18n(n^2 + q)^{-1/2} = (\partial n^3 + qn)(n^2 + q)^{-1/2}$
 $18n^3 + 162n = \partial n^3 + qn$
 $16n^3 + 163n = 0$; $n = 0$; that it

Concavery: (0,00); Loun: (-00,0) W/int: (0,6) and (-7,0)

(1)
$$f(n) = casn+\frac{1}{2}n$$
; $f(n) = \frac{1}{0} - ain(n)$; $[0,art]$
 $ein(\frac{1}{2}) = n$; $n = \pi/6$ and $\frac{5\pi}{6}$
 $\frac{+}{\pi/6} = \frac{+}{\pi/6}$
 $f''(n) = -cae(n)$; $f''(\frac{\pi}{6}) = \frac{-53}{2}$; $f''(\frac{5\pi}{6}) = \frac{53}{2}$
 $ein(\frac{1}{2}) = n$; $ein(n)$; e