R Notebook

Verena Haunschmid

Loading data, libraries, ...

```
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(magrittr)
library(lime)
##
## Attaching package: 'lime'
## The following object is masked from 'package:dplyr':
##
##
       explain
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
path_train <- "C:/Users/veroa/OneDrive/PhD/Data/kaggle-house-prices/train.csv"</pre>
data_train <- read_csv(path_train)</pre>
## Parsed with column specification:
## cols(
     .default = col_character(),
##
##
     Id = col_integer(),
    MSSubClass = col_integer(),
##
##
    LotFrontage = col_integer(),
    LotArea = col_integer(),
##
##
     OverallQual = col_integer(),
##
     OverallCond = col_integer(),
##
     YearBuilt = col_integer(),
##
     YearRemodAdd = col_integer(),
##
     MasVnrArea = col_integer(),
##
     BsmtFinSF1 = col_integer(),
     BsmtFinSF2 = col_integer(),
##
##
     BsmtUnfSF = col_integer(),
##
     TotalBsmtSF = col_integer(),
```

```
`1stFlrSF` = col_integer(),
##
     `2ndFlrSF` = col_integer(),
##
     LowQualFinSF = col_integer(),
##
     GrLivArea = col_integer(),
##
     BsmtFullBath = col_integer(),
##
     BsmtHalfBath = col_integer(),
     FullBath = col integer()
     # ... with 18 more columns
##
## )
## See spec(...) for full column specifications.
colnames(data train) <- tolower(colnames(data train))</pre>
data_train <- data_train %>% mutate_if(is.character, factor)
Split the data into training and test data. I also converted the tibble to a data frame because at the beginning
I had some issues and an answer on stackoverflow can state that caret gets confused with the class tibble.
set.seed(0987)
```

idx <- sample(1:nrow(data_train), 0.8 * nrow(data_train), replace = FALSE) x_train <- data.frame(data_train[idx,])</pre> x_test <- data.frame(data_train[-idx,])</pre>

Then I prepared the features I wanted to use. I removed mssubclass and mszoning since I couldn't figure out what they were. And I also removed all features that had NA's in them. There are better ways to deal with NA's but I wanted to keep it as simple as possible.

```
features_na <- colnames(x_train)[unique(which(is.na(x_train), arr.ind = TRUE)[, 2])]</pre>
features <- colnames(x_train[,!(colnames(x_train) %in% c("id", "mssubclass", "mszoning", "saleprice"))]
features <- features[!(features %in% features na)]</pre>
target <- "saleprice"</pre>
```

This left me with

```
length(features)
```

```
## [1] 58
```

features.

##

```
rf_model <- train(x_train[,features], x_train[,target], method='rf')</pre>
```

To save some time I've stored the model on disk:

```
# load model, train idx
load("rf_model.RData")
```

Model performance

```
preds <- predict(rf_model, x_test)</pre>
ggplot(data.frame("saleprice"=x_test$saleprice, "pred"=preds), aes(saleprice, pred)) +
  geom_point() +
  geom_abline(slope=1, intercept=0) +
  scale_y_continuous(labels = scales::comma) +
  scale_x_continuous(labels = scales::comma)
```


Residual plot

This plot shows that the residuals are not uniformly distributed and that the model performs worse on more expensive houses.

Building an explainer

For building an explainer you pass the **training data** and the model to the function lime().

explainer <- lime(x_train, rf_model)

Explaining selecting samples

```
x_expl <- x_test[1:8,]</pre>
explanation <- explain(x_expl, explainer, n_features = 2)</pre>
head(explanation)
     model_type case
                       model_r2 model_intercept model_prediction
                                                                      feature
##
## 1 regression
                   1 0.01804252
                                        182683.8
                                                         171027.0 electrical
## 2 regression
                   1 0.01804252
                                        182683.8
                                                         171027.0 grlivarea
## 3 regression
                   2 0.18974200
                                        169980.9
                                                         207139.9 bsmtunfsf
                                        169980.9
## 4 regression
                   2 0.18974200
                                                         207139.9 grlivarea
## 5 regression
                   3 0.19910279
                                        169786.0
                                                         210048.7 fireplaces
                                        169786.0
## 6 regression
                   3 0.19910279
                                                         210048.7 grlivarea
     feature_value feature_weight
                                               feature desc
## 1
                 5
                         413.4585
                                         electrical = SBrkr
## 2
              1262
                      -12070.2307 1114 < grlivarea <= 1454
```

```
## 3
               434
                         -790.9498
                                     216 < bsmtunfsf <= 468
## 4
              1786
                       37950.0359
                                           1764 < grlivarea
## 5
                 2
                         659.6091
                                             1 < fireplaces
              2090
                                           1764 < grlivarea
##
  6
                       39603.0166
##
## 1
                 2, 20, 4, 80, 9600, 2, NA, 4, 4, 1, 3, 1, 25, 2, 3, 1, 3, 6, 8, 1976, 1976, 2, 2,
## 2
                 2, 20, 4, 80, 9600, 2, NA, 4, 4, 1, 3, 1, 25, 2, 3, 1, 3, 6, 8, 1976, 1976, 2, 2,
              3, 60, 4, 68, 11250, 2, NA, 1, 4, 1, 5, 1, 6, 3, 3, 1, 6, 7, 5, 2001, 2002, 2, 2, 13, 14,
## 3
## 4
              3, 60, 4, 68, 11250, 2, NA, 1, 4, 1, 5, 1, 6, 3, 3, 1, 6, 7, 5, 2001, 2002, 2, 2, 13, 14,
## 5 8, 60, 4, NA, 10382, 2, NA, 1, 4, 1, 1, 1, 17, 5, 3, 1, 6, 7, 6, 1973, 1973, 2, 2, 7, 7, 4, 240, 4
  6 8, 60, 4, NA, 10382, 2, NA, 1, 4, 1, 1, 1, 17, 5, 3, 1, 6, 7, 6, 1973, 1973, 2, 2, 7, 7, 4, 240, 4
     prediction
##
       169271.1
## 1
## 2
       169271.1
## 3
       214555.3
## 4
       214555.3
```

Visualising the model explanations

plot_features(explanation)

220004.6

220004.6

5

6

Using scaled data

```
x_train_sc <- x_train
num_feat <- sapply(x_train_sc, is.numeric)
num_feat[names(num_feat) == "saleprice"] <- FALSE

sc_center <- apply(x_train_sc[,num_feat], 2, mean)
sc_sd <- apply(x_train_sc[,num_feat], 2, sd)

x_train_sc[,num_feat] <- scale(x_train_sc[,num_feat])

x_test_sc <- x_test
x_test_sc[,num_feat] <- scale(x_test_sc[,num_feat], center = sc_center, scale = sc_sd)

rf_model_sc <- train(x_train_sc[,features], x_train_sc[,target], method='rf')

load('rf_model_sc.RData')

explainer_sc <- lime(x_train_sc, rf_model_sc)
x_expl_sc <- x_test_sc[1:8,]

explanation_sc <- explain(x_expl_sc, explainer_sc, n_features = 3)

plot_features(explanation_sc)</pre>
```

