Fizika 1i, 2018 őszi félév, 5. gyakorlat

Szükséges előismeretek: Munka fogalma, munkatétel, mozgási energia, konzervatív erőtér, potenciális energiák: homogén nehézségi erőtérben, gravitációs erőtérben, rugó esetén; a mechanikai energia megmaradásának törvénye;

Feladatok

F1. Egy fiú lassan mászik fel egy havas dombra, és egy kötél segítségével maga mögött húzza a szánkóját. A kötél mindig párhuzamos a pálya érintőjével. A domb teteje vízszintes irányban L távolságra és h magasságra van a szélétől (lásd az $\acute{a}br\acute{a}t$). Mennyi munkát fordít a szánkó felhúzására a fiú, amíg feljut a domb tetejére? (A szánkó tömege m, a súrlódási együttható havon μ .)

- **F2.** Egy 15 kg tömegű szánkó 8 m magasságból csúszik le a lejtőn és vízszintes síkra érve valahol megáll. Mekkora munkával lehet ezt a szánkót a kiindulási helyzetbe visszahúzni? (A lejtő és a vízszintes sík közötti rövid átmenet súrlódásmentes.)
- **F3.** Egy lejtő hosszának felső felén μ_1 a súrlódási együttható, alsó felén pedig $\mu_2 > \mu_1$. Ha a lejtő tetejéről egy kicsiny testet elengedünk, az lecsúszik, és éppen a lejtő aljához érve áll meg. Mekkora a lejtő hajlásszöge?
- **F4.** Adott hosszúságú, de különböző hajlásszögű lejtők közül mekkora hajlásszögűn kerül a legtöbb munkába lassan feltolni egy súlyos ládát, ha a csúszási súrlódási együttható μ ?
- **F5.** A d vastagságú deszkába m tömegű v_0 sebességű lövedék csapódik. Mekkora lesz a másik oldalon kilépő lövedék v sebessége, ha
 - a) a deszkában állandó F a fékezőerő,
- b)a deszkában a behatolási mélységtől F(x)=Dxmódon függ a fékezőerő? (Itt Dkonstans paraméter.)
- **F6.** Függőlegesen feldobunk egy pingponglabdát. Mi tart hosszabb ideig: a labda felfelé vagy lefelé mozgása? (A légellenállás számottevő.)
- **F7.** Egy kicsiny, test egy rögzített, sima félgömb tetején nyugszik. Instabil egyensúlyi állapotából elindulva a test súrlódásmentesen csúszni kezd a gömbfelületen. Mekkora φ szögnél válik el a test a felülettől?

- **F8.** Egy függőlegesen lógó, L hosszúságú fonálinga nehezékének vízszintes irányú v_0 sebességet adunk. Legalább mekkora legyen v_0 értéke, hogy az ingatest egy teljes, függőleges síkú kört leírjon?
- **F9.** Egy m tömegű testet L hosszúságú fonálra ingaként felfüggesztünk. Az ingát vízszintesig kitérítjük, majd elengedjük. A felfüggesztési pont alatt L-x távolságra egy szöget rögzítünk, amelybe a fonál lengése során beleakad. Így a test a legalsó pont elérése után egy x sugarú körpályára tér át.

- a) Mekkora legyen x értéke, hogy a test megtegyen egy teljes kört?
- b) A szög utáni mozgás során mekkora erő feszíti a kötelet a körpálya legmagasabb pontján, ha x=L/3?
- **F10.** Egy súrlódásmentesnek tekinthető lejtő vízszintes platóban végződik. A lejtőn a talajhoz képest H magasságból egy kis test csúszik le. Mekkora legyen a plató talajtól mért h magassága, hogy a test a plató végétől a lehető legnagyobb s távolságra érje el a talajt?

- **F11.** Milyen magasra ér fel az a rakéta, amit az első kozmikus sebességgel függőlegesen lőnek ki az északi sarkról? (Első kozmikus sebességnek nevezzük azt a sebességet, amellyel egy műhold a Föld felszíne fölött a földsugárnál sokkal kisebb távolságban körpályán keringhet.)
- **F12.** Egy kismajom 5 m hosszú lánca a 3 m magasban levő mennyezeti kampóhoz van erősítve, így a majom könnyedén sétálgathat a padlón. Egy alkalommal a saját láncán lassan felmászott a kampóhoz. Mennyi munkát kellett végeznie ezalatt? A lánc teljes tömege 60 dkg, a majomé 2 kg.

F13. Vízszintes, súrlódásmentes felületen egy m tömegű test nyugszik, melyhez egy vízszintes, D rugóállandójú rugó egyik vége van rögzítve. A rugó másik végét egyszercsak állandó v sebességgel kezdjük húzni. Mekkora a mozgás során a rugó legnagyobb megnyúlása?

F14. A mennyezetre függesztett vékony gumiszál végére egy m tömegű testet, arra pedig cérnával egy 2m tömegű másik testet erősítünk. A gumiszál megnyúlása ekkor $\Delta \ell$. Milyen magasra emelkedik fel az m tömegű test, ha a cérnát elégetjük? (A gumiszál megnyújtva követi a lineáris erőtörvényt, azaz a Hooketörvényt, tömege pedig elhanyagolható.)

F15. Egy átfúrt test súrlódásmentesen mozoghat az *ábrán* látható függőleges rúdon. Ha a testet óvatosan egy elég hosszú rugóra engedjük, akkor az 1 cm-t nyomódik össze. A rugó felső végétől mekkora h magasságból kell elengedni a testet, hogy a rugó legnagyobb összenyomódása 8 cm legyen?

Megoldások

F2. $2mgh \approx 2400 \text{ J}$.

F5. a)
$$\sqrt{v_0^2 - 2Fd/m}$$
, b) $\sqrt{v_0^2 - Dd^2/m}$.

F6. Az esési idő hosszabb. A közegellenállás munkája miatt minden adott magasságú pontban a felfelé emelkedés sebessége nagyobb, mint a lefelé esés sebessége.

F7.
$$\varphi = \arccos(2/3) = 48.2^{\circ}$$
.

F9. a)
$$x = 2L/5$$
, b) $F = mg$.

F11. A Föld középpontjától 2R, a felszínétől R távolságra.

F13. Be kell ülni a húzott pont rendszerébe, $\Delta \ell = \sqrt{mv^2/D}$.

F16. Összenyomott egyenes csavarrugó egyik vége egy falhoz, másik vége pedig egy olyan testhez van erősítve, amelyik egy érdes, vízszintes felületen csúszhat. A rugó kezdeti összenyomódása 24 cm, ebben a helyzetben a rendszert magára hagyjuk. Amikor a rugó éppen nyújtatlan, a rendszer mechanikai energiája már csak fele az eredetinek. Milyen messzire juthat el a test kiindulási helyzetétől?

F17. Vízszintes, súrlódásmentes asztalon m tömegű test nyugszik, melyhez az asztal szélén rögzített állócsigán átvetett fonállal egy másik m tömegű test csatlakozik (lásd az ábrát). Az asztalon lévő testhez egy függőleges tengelyű rugó van erősítve, melynek másik vége a mennyezethez rögzített. Kezdetben a rugó nyújtatlan ($L_0=50~{\rm cm}$ hosszúságú), a rugóállandó értéke $D=5mg/L_0$. A testeket nyugalomban tartó, P ponthoz kötött fonalat egy adott pillanatban elégetjük.

Mekkora sebességgel mozognak a testek, amikor az asztalon lévő éppen elválik az asztallaptól?

F18. Egy hídról leugró 75 kg tömegű artista a h=20 m hosszúságú gumikötél egyik végét a korláthoz, a másik végét pedig magához erősíti. A kötél fékezi az ember esését és eközben a legnagyobb megnyúlása 2h. Mekkora maximális sebességre gyorsul fel az ember?

(Az artista nem éri el a víz felszinét. Tegyük fel, hogy a gumi követi a Hooke-törvényt, a légellenállástól pedig tekintsünk el!)

F18. A sebesség akkor maximális, ha a gyorsulás nulla, azaz $mg=D\Delta\ell$. Ebből $\sqrt{8gh/3}\approx 23$ m/s.