Theoretische Informatik III (T3INF2002)
Formale Sprachen und Automaten
Vorlesung im Wintersemester 2022/23

Formale Sprachen und Automaten

— Übungen

Chomsky-Normalform

Sei die folgende Grammatik zur Erzeugung der Dyck-Sprache D2 $G = (\{S\}, \{(,),[,]\}, P, S)$ gegeben: $S \rightarrow \varepsilon \mid SS \mid [S] \mid (S)$

- a) Modifizieren Sie die Grammatik so, dass sich das leere Wort nicht mehr ableiten lässt.
- b) Übersetzen Sie die modifizierte Grammatik in Chomsky-Normalform.

2022

Lösungsvorschlag 1:

komplett ohne leere Wort:

$$S \rightarrow SS | [S] | (S) | () | []$$

 $S \rightarrow EE \mid V[X1 \mid V(X2 \mid V(V) \mid V[V] \mid leere Wort falls vorhanden sein soll$

 $X1 \rightarrow EV$

 $X2 \rightarrow EV$

 $\underline{E} \rightarrow \underline{EE} | V[X1 | V(X2 | V[V] | V(V))$

V[-> [

V] ->]

V(-> (

V) ->)

Lösungsvorschlag 2:

 $S \rightarrow \varepsilon$

S->SS

 $S \rightarrow [S]$

 $S \rightarrow (S)$

ohne ε:

- S -> SS
- S->[S]
- S -> []
- S -> (S)
- S -> ()

CNF:

- S -> SS | WX | YZ | WA | YB
- A -> SX
- B -> SZ
- W -> (
- X ->)
- Y -> [
- Z ->]

Kontextsensitive Grammatik

Sei die Sprache L_{C1} = { $a^nb^nc^n \mid n \in N+$ } gegeben, die durch die folgende kontextsensitive Grammatik erzeugt wird:

 $S \rightarrow SABC$

 $S \rightarrow abc$

 $CA \rightarrow AC$

 $\mathsf{CB} \to \mathsf{BC}$

 $BA \rightarrow AB$

 $cA \rightarrow Ac$

 $cB \rightarrow Bc$

 $bA \rightarrow Ab$

 $aA \rightarrow aa$

 $bB \rightarrow bb$

 $cC \rightarrow cc$

Erzeugen Sie eine reduzierte Grammatik, die nur 3 Nonterminale besitzt und die gleiche Sprache erzeugt.

Grammatiken

Gegeben sei die folgende Grammatik:

$$S \rightarrow SD$$

$$SD \rightarrow LaD$$

$$aD \rightarrow Daa$$

$$LD \rightarrow L$$

$$L \rightarrow \epsilon$$

- a) Lässt sich das Wort a^{2^4} aus dem Startsymbol S ableiten?
- b) Welchem Chomsky-Typ entspricht diese Grammatik?
- c) Welche Sprache wird durch die Grammatik erzeugt?
- d) Welchem Chomsky-Typ entspricht die erzeugte Sprache?

Übung: $L = \{a^nb^mc^m \mid m,n > 0\}$

Beispielwort: aabbcc

 $\mathsf{S} \to \mathsf{AD}$

 $\mathsf{A} \to \mathsf{A}\mathsf{A}$

 $\mathsf{D}\to\mathsf{BC}$

 $D \rightarrow BE$

 $\mathsf{E}\to\mathsf{DC}$

 $A \rightarrow a$

 $\mathsf{B} \to \mathsf{b}$

 $C \rightarrow c$

Welche Wörter gehören zur Sprache?

```
S -> AB
```

A -> CD | CF

B -> z | EB

C -> x

D -> y

E -> z

F -> AD

Beispielworte: xxyyyzzz, xxxyyyzzz, xxxyyyz