(ase B
$$\subseteq i = \subseteq \neq 6^2 \stackrel{?}{=}$$
 \bigcirc

$$f_i(x) = -\frac{1}{2}(x - \mu_i) \subseteq (x - \mu_i) + \text{in } P_i$$
Mahalanobis dist:

Slide - 2.13, 2.14

Shape of circles around Mahalanobis circles would be determined by the eigenvalue and eigen vectors.

Decision boundary Bij

Results in a hyper plane

 $\frac{Case C}{\begin{cases} i & \leq i \neq \leq j \end{cases}} \qquad \qquad \bigcirc \bigcirc \bigcirc$ $\begin{cases} i & (2) \\ z & -\frac{1}{2} & \text{m} \left(\leq i \right) \right| - \frac{1}{2} \left(2i - \text{Mi} \right)^{T} \subseteq i^{-1} \left(2i - \text{Mi} \right) + \text{m} P_{i} \end{cases}$

a quadratic function in 2

Decision boundary Bij:

quadratic equation in 2

2.3 Minimax decision Stide 2.17

2.2 > idea no.1

data $\frac{\pi}{2}$ likelihood $\rho(2|y)$ } all are well known in 2.2 Prior $l(w_j)$ } all are well known in 2.2 loss

2.3 idea 2

2.4 idea 3 for decision

data

likelihood

prior X (unknown or varying)

X

loss

No prior - no averaged loss/error rate

-> MBR, MAP impossible

2nd idea ito design w(2): minimax

min () He max BR

worst case prior

me

The inner operation has a larger impact.

£ 2.8	cont					
		Shdento	the t	allest ones -	basket bal	l te
(c)	for each	C Xb man Y	mifallest sture he shortest out of fallest	in max dent → Hat team shodent - w player	is the ba	o kei
	shortest	basket ball	player a)	tallest we	ight lifter	b
	Proof	a> c	bSc	=> a >, b		
Bay	Jesian Risk	:				
В	R= f(-	likelihood, PA	vior $f(w_j)$	y loss ij , w	(X))	
			2 V	_	2	

(b) mex min BR
$$\rho(w_i) \, \hat{\omega}()$$
2.2. MBR where $\rho(w_i)$ is known

In general: a>, b; w(), P(w) of a + w(), P(w) of b

In case of binary class, they are equal.

Proof in books.

i.e. we determine the minimex soly by maximin:

determine the sol ? of MBR analytically for any $P(w_1) = R$ $P(w_2) = P_2 = 1 - P_1$

 $\hat{\omega}(z_{1}, \rho_{1}) : \frac{\rho(x_{1}|\omega_{1})}{\rho(x_{1}|\omega_{1})} \underset{\omega_{1}}{\overset{\omega_{1}}{\geq}} y(\rho_{1}) = \frac{l_{21} - l_{11}}{l_{12} - l_{21}} \frac{\rho_{1}}{l-\rho_{1}}$

MBR() = E[L(Q(2,P,), w)]

· determine the worst case of Pi:-

max MBR(P)

 $\frac{d}{dP_i}$ MBR(P,) $\frac{1}{P_i = P_i}$ worst case $\overline{P_i} = Y(\overline{P_i})$

Again, for 2 class problem, min max is a tog LR7: E $LR \geq V(\bar{P_i})$

2.4 Neyman - Pearcon decision

- · 2- class decision problem
- · P (x/ Wj) known
- · P(wj) no prior
- · no loss lij

Performance measures:

detection rate $P_D = TPR = P(\hat{w} = \omega_z | \hat{w} = \omega_z)$ false alarm rate $P_{EA} = FPR = P(\hat{w} = \omega_z | \hat{w} = \omega_l)$

Instead of BR, max PD subject to (st) PRA SX.

I is the threshold different according to application.

eg L=51., 17. ... depending on app.

No need for any loss or priors.

A constraint optimisation problem.

Neyman - Pearson theorem:

· optimum decision rule = LRT.

$$LR = \frac{P(2|w_2)}{P(2|w_1)} \gtrsim V \left(\text{defined by apperbound of } \alpha \right)$$

y is determined from

NP detector / Constant false alarm rate (CFAR) detector.