Practice Set VI

Name: Paul Beggs

1. (3 points) Suppose you have an unlimited number of 3-cent and 5-cent stamps. You can then make a total of 3 cents, 5 cents, 6 cents, and each value from 8-cents and above. Use either regular or strong induction to show that each of 8-cents, 9-cents, 10-cents, ... can be made.

Proof.

(a) Base Cases:

n = 8¢: 3¢ + 5¢

n = 9¢: $3 \cdot 3$ ¢

n = 10¢: $2 \cdot 5$ ¢

(b) Inductive Hypothesis:

Suppose $n > 10\mathfrak{C}$, and $8\mathfrak{C} \le k < n$, we can make k cents.

(c) Inductive Step:

Our goal is to make n cent stamps. To do that, consider n-3 cent stamps. Since n is greater than 10, n-3 is at least 8 cent stamps.

By the inductive hypothesis, we can make n-3 cent stamps because this amount is within the range of our assumption. To make n cent stamps, simply add one 3 cent stamp to n-3. We have made n stamps.

2. (3 points) Write a recursive definition for the set of positive numbers which are multiples of either 3 or 5: $\{3, 5, 6, 9, 10, 12, 15, 18, 20, 21, \dots\}$.

Skip.

3. (3 points) Write a recursive definition for the set of positive powers of $3: \{3, 9, 27, 81, \ldots\}$.

Solution. Let X be recursively defined as:

- B:
 - $3 \in X$
- R:

If $3^n \in X$, then $3^{n+1} \in X$.

4. (3 points) Use structural induction and the definition that you wrote in Problem 3 above to show that each element in this set is odd.

Proof.

• Base Case:

For n = 1: $3^1 = 3$, which is clearly odd (i.e., has the form of 2m + 1 where m is just 1).

• Inductive Hypothesis:

Suppose that 3^n is odd for some $n \in \mathbb{N}$. This means there must exist an integer k such that $3^n = 2k + 1$.

• Inductive Step:

We need to show that 3^{n+1} is also odd under the assumption that 3^n is odd.

Rewriting 3^{n+1} as $3 \cdot 3^n$, we can use the inductive hypothesis to substitute and expand the expression:

$$3^{n+1} = 3 \cdot (2k+1)$$

$$= 6k+3$$

$$= 6k+2+1$$

$$= 2 \cdot (3k+1)+1$$

Because (3k+1) must be an integer by definition, 3^{n+1} must be odd by definition of odd numbers. In other words, 3^{n-1} is equivalent to some form 2m+1 (or in this case, 3m+1) for some $m \in \mathbb{Z}$.

5. (3 points) Use induction to prove that $5^n - 1$ is divisible by 4 for each integer $n \ge 0$.

Proof.

• Base Case:

For n = 0: $5^0 - 1 = 0$; which is divisible by 4 because $0 = 0 \times 4$.

• Inductive Hypothesis:

Suppose for some integer $n \ge 0$, $5^n - 1$ is divisible by 4.

• Inductive Step:

We need to show that $5^{n+1} - 1$ is also divisible by 4 under the assumption that $5^n - 1$ is divisible by 4.

Rewriting $5^{n+1}-1$ as $5\cdot 5^n-1$, we can use the inductive hypothesis to substitute and expand the expression:

$$5 \cdot 5^{n} - 1 = (4+1) \cdot 5^{n} - 1$$
$$= (4 \cdot 5^{n}) + (1 \cdot 5^{n}) - 1$$
$$= (4 \cdot 5^{n}) + (5^{n} - 1)$$

Now, we know that $4 \cdot 5^n$ is divisible by 4, because itself is a multiple of 4. Additionally, we know that 5^n-1 is also divisible by 4 by the inductive hypothesis. Hence, when we add these two expressions together, we will get a number that is also a multiple of 4 by definition. Therefore, $5^{n+1}-1$ is divisible by 4.

6. (3 points) Suppose that $f \colon \mathbb{N} \to \mathbb{N}$ is a function with two properties:

•
$$f(1) = 2$$

•
$$f(a+b) = f(a) \cdot f(b)$$
 for all $a, b \in \mathbb{N}$.

Show, by inducting on n, that $f(n) = 2^n$.

Proof.

• Base Case:

For n = 1: $2^1 = 2$, so our base case for $f(n) = 2^n$ is satisfied.

• Inductive Hypothesis:

Suppose for some $n \in \mathbb{N}$, the statement, $f(n) = 2^n$.

• Inductive Step:

We need to show that the properties of f(n) hold for $f(n+1) = 2^{n+1}$.

Given that $f(a+b) = f(a) \cdot f(b)$, for all $a, b \in \mathbb{N}$, we can rewrite f(n+1) as $f(n) \cdot f(1)$. Then, by the inductive hypothesis, we know that:

$$f(n) + f(1) = 2^{n} + 2$$
$$= 2^{n+1}$$

Hence, this means that f(n+1) upholds the specified characteristics of f.

- 7. We have previously used that, given a set of numbers s(n) for integers $n \geq 0$ if the k^{th} sequence of differences is constant (and not 0) then s(n) is generated by a polynomial of degree k. We will justify that here. Suppose that s(n) can be written as a polynomial $a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$. We wish to show that the k^{th} sequence of differences from s is constant. If we write that constant as c, then $a_k = c/k!$. We will show this by induction on k.
 - (a) **Base Case**: Our base case is when k = 1 Suppose that $s(n) = a_1 n + a_0$. We need to show two related facts:
 - i. (2 points) s(n) s(n-1) is constant.

Solution.

$$s(n) - s(n - 1) = (a_1n + a_0) - (a_1(n - 1) + a_0)$$

$$= a_1n + a_0 - a_1n + a_1 - a_0$$

$$= (a_1n - a_1n) + (a_0 - a_0) + a_1$$

$$= a_1$$

Thus, s(n) - s(n-1) yields a constant answer, a_1 .

ii. (2 points) Let us call that constant number c. Show that $s(n) = (c/1!) \cdot n$ plus another smaller powered term.

Solution. Start with $s(n) = c \cdot n + a_0$ from part (i). Considering the factorial of 1 is 1, the substituted expression fits the expression $(c/1!) \cdot n + a_0$. This is the case because we can divide any number by 1, as it is the multiplication and division identity.

- (b) **Inductive Hypothesis**: Let k > 1 and suppose that for any $f(n) = b_{k-1}n^{k-1} + b_{k-2} + \cdots + b_1n + b_0$ the following are true:
 - i. the $(k-1)^{\rm st}$ sequence of differences for f is constant.
 - ii. if we denote this constant c, then $f(n) = \frac{c}{(k-1)!} \cdot n^{k-1} +$ other smaller terms.
- (c) Inductive Step: Suppose that $s(n) = a_k n^k + \text{ other smaller terms.}$
 - i. (2 points) Show that s has a constant k^{th} sequence of differences. [Hint: Define g(n) = s(n) s(n-1) and explain how we know that g has a constant $(k-1)^{\text{st}}$ sequence of differences]

Solution. Define g(n) = s(n) - s(n-1). To show that g(n) has a constant $(k-1)^{st}$ sequence of differences, consider:

$$s(n) = a_k n^k + \text{lower terms}$$

$$s(n-1) = a_k(n-1)^k + \text{lower terms}$$

Now, we must calculate g(n). First, we will substitute: $g(n) = [a_k n^k + \text{lower terms}] - [a_k (n-1)^k + \text{lower terms}]$. We will focus on the highest-order term.

To determine the value of $a_k(n-1)^k$, we can use the Binomial Theorem¹. Thus,

$$a_k(n-1)^k = a_k \left[\sum_{i=0}^k \binom{k}{i} n^{k-i} (-1)^i \right]$$

Now, when we subtract $a_k n^k$ from the summation expression when i = 0, we will end up with:

$$g(n) = a_k n^k - a_k n^k - a_k \left[\sum_{i=1}^k \binom{k}{i} n^{k-i} (-1)^i \right]$$

Which simplifies to:

$$g(n) = -a_k \left[\sum_{i=1}^k \binom{k}{i} n^{k-i} (-1)^i \right]$$

Finally, we can conclude that since g(n) is a polynomial of degree k-1, taking the $(k-1)^{\text{st}}$ difference of g(n) will yield a constant by the inductive hypothesis. This is the case because a polynomial of degree d has a d^{th} sequence of differences that is constant.

ii. (2 points) Show that if this constant is c, then $a_k = c/k!$.

We know that the k^{th} difference of n^k , multiplied by the coefficient a_k simplifies to $a_k \cdot k!$. Therefore, if that difference is the constant c, we have $c = a_k \cdot k!$, and by solving for a_k , we get $a_k = c/k!$.

¹Huge thanks to Tanvi Kiran for this hint she provided. If it wasn't for her, I would have never figured this problem out.

The Last Part of 7 (in class):

 $g(n) = s(n) - s(n-1) + \cdots \Rightarrow s(n) = a_k / n^k + a_{k-1} / n^{k-1} + \cdots \Rightarrow s(n-1) = a_k (n^k - kn^n k - 1 + \cdots) + a_{k-1} (n / m \Rightarrow a_k n^{k-1} + \text{smaller terms.}$ By the inductive hypothesis and since this is a $(k-1^{\text{st}})$ degree polynomial, it has a constant $(k-1^{\text{st}})$ sequence of differences.

This implies s has a constant k^{th} sequence of difference.

Let c be that constant. By the inductive hypothesis, $g(n) = \frac{c}{(k-1)!} \cdot n^{k-1} + \cdots$. But we proved just earlier, that this expression is equal to $a_k k n^{k-1} + \cdots$. Hence, because they are the same polynomial, it must be the case that $\frac{c}{(k-1)!}$ is equal to $a_k k n^{k-1}$.

Solving for
$$a_k$$
, we get $\frac{c}{(k-1)!} = a_k k \Rightarrow \frac{c}{k(k-1)!} = a_k \Rightarrow \frac{c}{k!} = a_k$.