This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1

2

2

(3)

fightenen

Offenlegungsschrift 23 46 787

Aktenzeichen:

P 23 46 787.0-44

Anmeldetag:

17. 9.75

Offenlegungstag:

27. 3.75

= US 3941752

Unionsprioritāt:

39 39 3

Bezeichnung:

Schwer entflammbare lineare Polyester, sowie geformte Gebilde daraus

O Zusatz in:

P 24 54 189.7

Anmelder:

Farbwerke Hoechst AG, vormals Meister Lucius & Brüning.

6000 Frankfurt

Erfinder:

Kleiner, Hans-Jerg, Dipl.-Chem. Dr., 6232 Bad Soden: Finke, Manfred, Dipl.-Chem. Dr., 6239 Fischbach: Bollert, Ulrich, Dipl.-Chem. Dr., 6239 Diedenbergen:

Herwig, Walter, Dipl-Chem. Dr., 6232 Neuenhain

Prūfungsantrag gem. § 28b PatG ist gestellt

United States Patent [19]

[54] FLAME RETARDING LINEAR.

Kleiner et al.

3,092,606

3,169,944

3,853,819

1,232,348

2/1965

12/1974

1/1967

(11) 3,941,752

[45] Mar. 2, 1976

		POLYESTERS AND SHAPED ARTICLES THEREOF				
	[75]	Inventors:	Hans-Jerg Kleiner, Bad Soden, Taunus, Manfred Finke, Fischbach, Taunus; Ulrich Bollert, Diedenbergen, Taunus; Walter Herwig, Neuenhain, Taunus, all of Germany			
	[73]	Assignee:	Hoechst Aktiengesellschaft, Frankfurt am Main, Germany			
	[22]	Filed:	Sept. 13, 1974			
	[21]	Appl. No.: 505,686				
	[30]	<u> </u>				
		Sept. 17, 1	973 Germany 2346787			
	[52] [51] [58]	Int. Cl. ²				
	[56]		References Cited			
		UNI	TED STATES PATENTS			

FOREIGN PATENTS OR APPLICATIONS

Germany

Ruppert et al. 260/75 P X

Scott et al. 260/75 P X

Herwig et al. 260/75 P

1,196,971 11/1959 France

OTHER PUBLICATIONS

Henning, Chemical Abstracts, Vol. 67:3124n (1967). Khairullin et al., Chemical Abstracts, Vol. 68:105,302g (1968).

Primary Examiner—Harold D. Anderson Assistant Examiner—W. C. Danison, Jr. Attorney, Agent, or Firm—Curtis, Morris & Safford

57] ABSTRACT

Flame-repellant linear polyesters are obtained by incorporating by condensation phosphorus-compounds having the formula

wherein R and R₁ are organic radicals which may also contain hereto atoms into the linear polyesters, preferably those from terephthalic acid and ethylene glycol. These polyesters are materials of which flame-repellent filaments, fibers, sheets, press-moulded and injection-moulded articles may be made. Products of the invention can be used whereever especially acute risks of ignition and fire exist.

8 Claims, No Drawings

shaped from these modified polyesters.

It is known that shaped articles, such as filaments and fibers can be prepared from linear polyesters which to comprise in the polymer molecule phosphorus-containing compounds. In these cases, various acids of phosphorus and their derivatives were especially used as phosphorus-containing modification-compounds, e.g. also phosphonic acids and phosphinic acids. Thus, the German Auslegeschrift No. 1,243,819 describes filaments and fibers made from polyesters modified with phosphonic acid esters. The filaments and fibers are well suited for dyeing with basic and disperse dyestufs and have a low pilling tendency.

Phosphonic and phosphinic acids or their esters are added in course of the processes for the preparation of fiber-forming linear polyesters, according to the disclosures in German Offenlegungsschrift No. 1,520,079 and German Offenlegungsschrift No. 1,595,598, and 25 incorporated into the polymer chains. The main purpose of this modification is also to improve the dyeing properties of the corresponding filaments and fibers, and improvement in dyeing properties is the sole purpose of the polyester modification with bis-(p-carboxy-phenyl)-phosphinic acid described by German Auslegeschrift No. 1,232,348.

However, it is also known that polyesters comprising phosphorus-containing compounds may have flame-repellent properties. Thus, French Pat. No. 1,196,971 35 discloses copolyesters having phosphonic acid units, and being resistant to flames and heat. These copolyester products can be used as flame-protection agents, adhesives, variable and impregnating substances for paper and textiles as well as intermediate products. On the other hand, it is not possible to spin these polyesters to yield filaments or fibers, since their phosphorus content imparts brittleness to the products.

Furthermore, it has been suggested that flame-repellent polyesters be prepared by incorporating by con- 45 densation into the polyester molecules alkylenediphosphinic acids, arylene-di-phosphinic acids or aralkylene-di-phosphinic acids which may also contain additional hetero atoms such as F, Cl, Br, O and S. These polyesters can be worked up to filaments, fibers 50 and to shaped articles (German Offenlegungsschrift Nos. 2,236,037, 2,328,343, 2,236,038 and 2,236,039). But, due to their occasionally rather considerable volutility at the condensation temperatures, it is quite difficult to incorporate the diphosphinic acids by condensation. Therefore, non-volatile oligomers of diphosphinic acids with diols are often used and incorporated in the polyester by condensation. In such cases it is, of course, necessary to first prepare the oligomers.

Another method for preparation of flame-repellent 60 polyesters has also been plasticized which involves incorporating phosphorus compounds into the polyester in such a way that they are not built into the polymer chains. According to the two Japanese Pat. Nos. 7,142,230 and 7,142,231 certain esters of phosphoric acid and halogen-containing aromatic dihydroxy-compounds have been used as such additives and according to Belgian Pat. No. 769,229 special polyphosphonates

and poly(phosphonate-phosphates) have been similarly used. While the use of these additives provides good flame protection properties, the flame-protection is not permanent and the products are subject to certain other disadvantages. These advantages are especially a consequence of the considerable tendency of the additives to migrate as a result of which the polymer products have a certain toxicity and the additives can be washed out relatively easily, e.g. in the course of dry cleaning of articles made of corresponding fibers. When the additives are washed out of the articles, the polymer products, of course, lose their flame-repellent properties.

In the course of the preparation of such fibers, the additives are often responsible for sticking together of the polymer chips during the drying process, as a consequence of the additives tending to migrate to the surface of the polymer chips. The quite highly-viscous polymer additives described in Belgian Pat. No. 769,229 have a viscosity such that mixing them homogeneously with the polyesters is rather difficult. Moreover, they cause undesirably high diglycol contents in cases where the additives are blended in while the polyester-forming reaction is still going on.

A comparison of these polymers with polymers in which, phosphorus compounds are incorporated into the chain molecules shows the polymers with the additives in question have poorer dyeing properties. Even red phosphorus has been used as an additive for producing flame-repellent and self-extinguishing properties of polyester fibers and filaments (German Offeniegungsschrift No. 2,148,348).

Even though such filaments and fibers are sufficiently flame-repellent or self-extinguishing, the addition of red phosphorus does not permit white products to be obtained. Thus the products obtained are of limited use only

Therefore, it is an object of the present invention to produce permanently flame-retarding linear polyesters by using an appropriate modify agent which imparts flame-repellent properties to filaments and fibers spun therefrom the textile properties of which compare favorably with those of filaments and fibers made of the corresponding non-modified polyesters, and which also permit a work-up to yield useful sheets and shaped articles. Moreover, the modification agent should not be volatile during the process of incorporation by condensation.

The problems outlined above have been solved by the modified linear polyesters of the present invention. These modified polyesters consist of dicarboxylic acid components and diol-components as well as of phosphorus-containing chain members and comprise phosphorus-containing chain members having structural units of the formula

which constitute about 3 to 20 mol.% of the acid component of the polyester.

In this formula R is a saturated open-chained or cyclic alkylene-radical having from one to 15, preferably from two to 10 carbon atoms or an arylene or aralkylene-radical for example

$$-CH_{2}-$$
, $-CH_{2}-CH_{2}-$, $-(CH_{2})_{3}-$

$$-(CH_2)_4-.$$

and R₁ is an alkyl radical having up to six carbon atoms, an aryl radical or an aralkyl radical for example

 $CH_{a}, C_{2}H_{5}, \text{ n- and } i \cdot C_{4}H_{9}, C_{5}H_{11}, C_{6}H_{13}, C_{6}H_{5}, C_{6}H_{5}$ $CH_{2} \text{ etc.}).$

Preferred phosphorus-containing chain members are the structural units of the above formula with R being —CH₂—CH₂— or C₆H₃ and R₁ being CH₃ or C₆H₅, i.e.,

$$= O = \bigcap_{i=1}^{N} CH_i = CH_i - \bigcap_{i=1}^{N} CH_i$$

Radical R as well as radical R, may additionally comprise one or more hetero atoms, preferably halogen (F, Cl, Br) atoms, oxygen atoms or sulphur atoms; they may be located in branches or in the chain, the latter being preferred. "In the chain" means here a member of a chian consisting of carbon atoms. Due to their monovalence, halogen atoms cannot be located in the chain. Most suitable are O atoms and S atoms only. Though N-atoms are also possible chain members as -NH- or -NR'- groups (R' = an organic radical), they are less desirable, since N-compounds, as is well known to those skilled in the art are often responsible for producing undesirable discoloration in course of the polycondensation process.

Within the chain the S-atoms can be present as sulfide groups, sulfoxide groups or sulfone-groups, whereas on the chain or on the aromatic ring they may be present mainly as sulfonate groups.

The following examples may be cited to illustrate radicals R containing hetero atoms:

$$\sum_{C1} - CH_2 - \cdot - \sum_{C1} - \sum_{C1} - \text{etc.}$$

and with O atoms and S atoms in chain position.

$$-(CH_2)_3 - O - (CH_2)_3, \qquad -(CH_2)_2 - O - (CH_2)_4.$$
55
$$-(CH_2)_4 - CH_2)_4 - (CH_2)_4 - CH_2)_4 - CH_$$

-
$$\langle \text{II} \rangle$$
 -0- $\langle \text{II} \rangle$ -, $\langle \text{CII}_2 - \text{CII}_$

$$-CH_2$$
 $-CH_2$ $-CH_$

-сн₂-С- \$-.

In cases where cyclic alkylene rate factory only, if the slightly yield hyde used for preparatic substituted alkylen ple, the radical

or perfluorinated a

Radical R₁ may manner. In this ca stituents are halog example,

CH₂CI, C₈H₄CI, The linear polyc structural units as lows. The usual sta be most suitable fe ticularly fiber-forn ters are reacted in ing or shortly befo bifunctional carbo tionally contain fu ters with a lower a carbon atoms or : forming the diol of possible to use th phosphinic acid-di the cyclic anhydr which form easily a tity of the carboxy from about 3 - 20

The carboxy-ph formula

110

wherein R and R₁. The dicarboxylic be free acids or n alcohols having r atoms, especially ferred and may be co-components. C isophthalic acid, propoxy-isophthal lic acid, diphenyldiacetic acid, dip

$$-CH_{2}$$
 $-CH_{2}$ $-CH_$

$$-\text{CH}_2 - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{O} - \text{O} - \text{CH}_2 - \text{CH}_2 - \text{O} - \text{$$

In cases where R is a saturated, open-chained or cyclic alkylene radical a halogen substitution is satisfactory only, if the compounds either do not or only slightly yield hydrogen halide under the conditions used for preparation of the polyester. Suitable halogensubstituted alkylene radicals of this kind are, for example, the radical

$$-CH_{z} - \begin{cases} H_{z} \lambda \\ -CH_{z} - \\ H_{z} \lambda \end{cases} \quad (X = F, CI, Br)$$

or perfluorinated alkylene radicals.

Radical R₁ may also contain hetero atoms in similar manner. In this case, however, the most suitable substituents are halogen atoms or the sulfonate group, for example,

CH2Cl, C6H4Cl, C6H4Br, C6H4SO2Na, etc.

The linear polyesters comprising the above, special structural units as chain members are obtained as follows: The usual starting materials which are known to be most suitable for preparing high-molecular and par- 35 ticularly fiber-forming and film-forming linear polyesters are reacted in known manner, while prioreto, during or shortly before the end of the polycondensation bifunctional carboxy-phosphinic acids which may optionally contain further hetero atoms and/or their esters with a lower alcohol of especially from one to four carbon atoms or with diol are added, the latter also forming the diol component of the polyester. It is also possible to use the oligomers of the above carboxyphosphinic acid-diol esters. It is further possible to use: 45 the cyclic anhydrides of phosphinic-earboxylic acids which form easily and are readily accessible. The quantity of the carboxy-phosphinic acid component may be from about 3 - 20 mol.% of the total acid component.

The carboxy-phosphinic acids used here have the 50 formula

wherein R and R₁ have the aforesaid meaning.

The dicarboxylic acids used as starting materials may be free acids or may be esterified with lower aliphatic 60 alcohols having preferably from one to four carbon atoms, especially CH₃OH, Terephthalic acid is preferred and may be used with other diearboxylic acids as co-components. Other suitable acids are, for example, isophthalic acid, 5-sulfo-isophthalic acid, 5-sulfo-65 propoxy-isophthalic acid, naphthalene-2,6-dicarboxylie acid, diphenyl-p, p-dicarboxylic acid, p-phenylenediacetic acid, diphenyloxide-p, p'-dicarboxylic acid,

diphenoxy-alkane-dicarboxylic acids, transhexahydroterephthalic acid, adipic acid, sebacic acid, 1,2eyelobutane-dicarboxylic acid etc.

Suitable diol-components are, besides ethyleneglycol, e.g. propane-diol-1,3, butane-diol-1,4 and the higher homologues of butane-diol-1,4 as well as, 2,2dimethyl-propanediol-1,3, 1,4-cyclohexane-dime-20 thanol etc., as well as co-componets.

In cases where terephthalic acid is used with additional dicarboxylic acids as disclosed above, it is preferable that the additional acid constitute not much more than 10 mol.% of the total acid used. Similar considerations apply to the composition of the diol component. For example, if further diols besides the ethylene-glycol are used as components, their quantity preferably should not substantially exceed 10 mol. 4 of the total diol component:

If the starting materials are free dicarboxylic acids and diols, the first step, as usual for these reaction partners, is the esterification, followed by polycondensation. If the starting materials are dicarboxylic acid esters, and especially dimethyl esters, instead of free dicarboxylic acids, the first step is also transesterification which is followed by polycondensation, each of these steps using the usual catalysts.

Of course usual additives (cross-linking agents, delusterants and stabilizers, nucleating agents, coloring agent and fillers etc.) can be added during the preparation of polyesters, in addition to the usual catalysts.

Bifunctional carboxyphosphinic acids which are added prior to, during or shortly before termination of the polycondensation and which contain still further hetero atoms, or their esters or their cyclic anhydrides can be prepared as follows:

Carboxyphosphinic acids having but one carbon atom inserted between the P-atom and the COOHgroup are obtained, for example, according to the reaction described by H.G. Hennig and G. Hilgetag in J. Prakt. Chem. 29, 86 ff (1965), starting from α-Cl or α-Br-acetic acid alkylesters and phosphonous acid alkyl esters. A carboxymethyl-phenyl-phosphinic acid having e.g. the formula

is obtainable by this method.

If R is an alkylene group having two or more carbon atoms, it is useful to follow the reaction scheme described by V. K. Chajrullin et al aprox. in Z. Obsc. Chim. 37 (1967) No. 3, pg. 710 - 714, starting from dichlorophosphines and unsaturated carboxylic acids, such as, for example:

nally comalogen cF, onis, they the 'atter th, after a record term the only. embers as : radical). as is well

nt as sul e-groups, they may

sponsible

course of

illustrate

on. **—(СН**2.

(CH.) e. $\mathcal{H}_{2})_{i}=0$

•

7

<u>...</u>

in a proportishowed a resbreak of 35 % which was use Dyeing with names of

"Supranol | "Alphanol (Blue)

"Lanaperly yielded deep The flamm

the oxygen-r ASTM D 28 was fitted ver above. An a created with enough to al

A value of sponding tublene-tercphtl centration o

The test a different car

Among the unsaturated acids preference is given to the use of acrylic acid, methacrylic acid and crotonic acid. 20

Carboxyphosphinic acids having an aromatic radical (R = arylene) inserted between the P and COOH-groups can be prepared for instance according to the guidelines of the process described by L. D. Quin et al in J. Org. Chem.:27, 4120 (1962) or according to the 25 process disclosed in Application serial No. (German Patent Application No. P 2346657.1) filed concurrently herewith.

That latter process consists in reacting halogenobenzoic acid esters with phosphoneous acid diesters according to the guidelines of an Arbusov reaction. The carboxylalkyl-phosphinic acid esters can be saponified e.g. by means of strong inorganic acids or bases.

-Carboxyphosphinic acids with R being aralkylene can be prepared by analogy to Belgian Pat. No. 35 601,710 from carboxybenzylhalides and phosphoneous acid esters and subsequent saponification of the ester groups to yield free acids.

The carboxyphosphinic acids or their esters or cyclic anhydrides are not volatile under the conditions of the polyester-forming reaction — contrary to e.g. various diphosphinic acids — so that the former may be incorporated well and completely by condensation.

The phosphorus-organic structural unit is randomly distributed in the macromolecule of the polyester final product. Occasionally the carboxyphosphinic acid units may also be present as terminal groups, due to their random distribution. In order to guarantee the desired flame-repellent properties, moulding compositions should contain at least approx. 0,5 wt.% of phosphorus in the polyester, whilst the amount in filaments and fibers should be at least 1 wt.%. The flame-retarding qualities are further improved, if the P-containing chain members in the polyesters include halides as hetero atoms.

Subsequently, the completely condensed polyesters are spun to filaments and fibers as usual, stretched and submitted to additional treatment or extruded to yield sheets or, in known manner, worked-up to obtain shaped articles by press-moulding, injection-moulding or extrusion. Particularly suitable are filaments, fibers, sheets and shaped articles the dicarboxylic acid component of which contains mainly terephthalic acid and the diol component of which comprises essentially ethylene-glycol. All these shaped articles are also an object of the present invention.

The fibers and filaments have very good and permanent flame-repellent and self-extinguishing properties.

Since they have a good degree of whiteness, they have very good dyeing properties for disperse dyestuffs and their receptivity includes acid dyestuffs in colour shades of average to deep intensity. If the P-containing chain members additionally include sulfonate groups, the receptivity also extends to basic dyestuffs. The diglycol portion of the polyesters increases only slightly. The tensile strength of the filaments and fibers, second order transition temperature, melting point, etc. approximately correspond to the values of the non-modified polyesters.

Such fibers and filaments are generally useful, for applications where readily ignitible textiles and technical articles cannot be tolerated, for example for awning cloths, carpets, curtains etc. It is also possible to use these filaments as one of the components in bi-component-filaments in combination with other polymers.

The sheets and shaped articles as well are used whereever serious risks of ignition and fire exist. If the transparency of the shaped articles is not a matter of concern, their solidity can be enhanced by imbedding therein e.g. inorganic fiber materials such as glass fibers, fibers from quartz, asbestos and carbon in the usual quantities. As examples of such shaped articles there can be cited casings, structural parts, electric machinery, mechanical transmission parts in automates, hollow articles, structural units in large-scale computers and sensitive electronic apparatus.

The following examples illustrate the present invention

EXAMPLE 1

1,000 g of dimethylterephthalate are transesterified with 720 ml of ethylene-glycol in the presence of 230 mg of manganacetate 4 H₂O as catalyst, the transesterification taking place under nitrogen at temperatures of from 170° – 220°C. After completion of the separation of methanol 100 g of 2-carboxy-ethyl-methylphosphinic acid (preparation according to V. K. Chajrullin et al, Z. obsc. Chim 37 (1967) No. 3, pg. 710 – 714) are added at 220°C and esterified.

After having added 350 mg of Sb₂O₃ the reaction mixture is further heated and, simultaneously, evacuated slowly so that a pressure of 1 torr at 250°C interior temperature is built up. The polycondensation is carried out at 0.2 torr and at 275°C until a relative viscosity (1% solution in dichloroacetic acid at 25°) of 1.85 is attained. Melting point 244° - 248°C, phosphorus contents: 1.85%.

The condensation product was spun from the melt under the usual conditions and, subsequently, stretched

10 suitable for incorporation into polyester molecules. The following table shows the results.

TABLE

1 vamples 2 - 8 1 v Modification No agent	Preparation according to	quantity added	rel ** viscosity	characteristics of polyester P melting points content		Oxygen-test on tubular knit
(H) 0 (H)	V K. Chaprallin et al. Z obsc. Chini. 38 (1968) Nr. 2, S. 288, 292	100 g	1,75	240-242°C	1,9 9	30 Vol 9
, <u> </u>	V & Chapullin et al. Z obsc Chin 37 (1967) Nr. 3, S. 710-714	ко д	נא, ו	241 245°C	1,6 %	30 Vol.4
T CHOOH	simultaneously filed Patent application no P 23 4o 057.1	90 g	1,54	243-245°C	1,25, 4	28 Vol.%
CLOOH	5 - our no. HOE 73/F 288	100 g	1.37	241-243℃	1,4 %	29 Vol.@
COOH		luo g	. 1,81	247-249℃	i.a %	29 Vol.9
7	V.K.Chajrullin et al. Z obsc. Chin. 37 (1907) Nr. 2, S. 455-400	125 g	1,79	240~244°C'	1,7,4	30 Vol.4
8 С ₂ Н ₂ Р—СН ₂ —СП ₂ —СООН	V.K. Chajrullin et al. Doklady Akad. SSSR 162 (1905) Nr. 4, S 827-828 or Z obse Chim. 42 (1972) Nr. 8 S 1730-1733	75 g	1,77	245-247℃	1.3 %	27,5 Vol.9

incasured or earried out according to the description of Example 1

in a proportion of 1: 3.65. The threads obtained showed a resistance of 33 g/tex at an elongation at break of 35 %. They were worked up to a tubular knit 45 which was used for dyeing and flame tests.

Dycing with the acid dyestuffs having the commercial names of

"Supranol Echtrot" (C.I. No. 24,790) (Red)

"Alphanol Echtblau FGLL" (C.I. No. 62,155) and 50 (Blue)

"Lanaperlgelb 3 G" (C.l. No. 19,025) (Yellow) yielded deep colour shades.

The flammability test was carried out according to ASTM D 2863-70. For that purpose the tubular knit was fitted vertically into the apparatus and flamed from above. An artificial oxygen/nitrogen atmosphere was created with a quantity of oxygen which was just enough to allow the test knit to burn.

A value of 29 vol.% of O2 had been found. A corresponding tubular knit made of non-modified polyethylene-terephthalate started burning at an oxygen concentration of 20 vol.%.

EXAMPLES 2 - 8

The test according to example, I was repeated with different carboxyphosphinic acids or their derivatives

EXAMPLE 9

The experiment as per example 1 was repeated, except that 6 mol.% of the DMT was replaced by dimethyl-isophthalate in the transesterification step. The polymer melting point was then 236° - 238°C. The relative viscosity was 1.82. Tubular knits made of this material have an oxygen index value of 30 %.

EXAMPLE 10

Example I was repeated with the difference that, the oxygen-index method as per the test regulation 55 instead of 100 g of 2-carboxy-ethyl-methyl-phosphinic acid there are used 75 g of its cyclic anhydride 2-methyl-2,5-dioxo-1-oxa-2-phospholane having formula

and, instead of 350 mg of Sh₂O₃ of example 1, the present example 10 used 300 mg of GeHPO₃.

they have duffs and : grey ıffs. 💱 ies only id fibers,

eful, for. Ltechnirawning t to use componers. ed whe-

g point, s of the

. If the atter of edding glass Jūin (articles :lectgig

inven-

crified of 230 æsteriares of tration lphusgrullin

action Macu. iterior S car. iscus-£ 1,85

horus

4) are

The purely white polyester containing 1.5 % of phosphorus was crushed in the cold. The reduced specific viscosity of the granules was 1.08 (measured in phenol/tetrachloroethane = 3 : 2 at 25°C). The viscosity of the granules was increased to 1.36 by condensation of 5 the solid matter in a rotating vessel at 230°C and at 0.2

torr, condensation period 8 hours.

The granules were worked up to plates on an injection moulding machine, the cylinder having temperatures of 260°/270°/260°C, the moulding temperature 10 being 20°C. The plates measuring $60 \times 60 \times 2$ mm were transparent and completely colorless, their reduced specific viscosity was 1.25. The impact strength of the plates was examined by means of the drop hammer test, exposing the plates to the vertical impact of a dropping object (drop hammer) from various heights, the plates being clamped onto a frame. The tip of the drop hammer was shaped as a hemisphere having a radius of 10 mm and a weight of 1 kg. For each height 10 plates were submitted to the test. For example, at a given dropping height of 150 cm the impact was strong enough to break 50. % of the plates. The impact strength of the plates of the example was 200 cm.

Plates being obtained under the same conditions but without the phosphorus inodification compound and having a reduced specific viscosity of 1.32, showed an impact strength of 190 cm when submitted to impact

under the same conditions.

For the flammability test the granules were pressed to plates 1.3 mm thick at a temperature between 230° and 250°C and under a pressure of 80 atm. From these plates were cut test specimens measuring 127×12.7 mm. The result of the flammability test according to ASTM D 635-68 was "non-ignitible," the flammability 35 test being carried out according to Underwriters Laboratories (UL) Subject 94 "SE O."

EXAMPLE 11

Example 10 was repeated with the difference that 40 instead of 75 g of 2-methyl-2,5-dioxo-1-oxa-2-phospholane only 35 g of this compound were used. The phosphorus portion was then 0.7 %. The flammability test according to ASTM D 635-68 showed the material to be "self-extinguishing."

We claim:

1. A linear polyester which is the polycondensation product of a dicarboxylic acid, a diol and a flameretarding carboxy-phosphinic acid monomer, said monomer being used in an amount of from 3 to 20 mol 50 percent, based on the total amount of dicarboxylic acid and monomer, said monomer being a source of structural units in said polyester of the formula

wherein R is saturated, open-chain or cyclic alkylene. arylene or aralkylene having one to 15 carbon atoms. and may contain one or more hetero atoms selected from F, Cl, Br, O and S, and R₁ is alky! having up to six carbon atoms, aryl, or aralkyl and may contain one or more hetero atoms selected from F. Cl. Br. O and S. provided that in the R and R₁ groups the O, if present, is the oxygen of an ether group, and the S, if present, is the sulfur of a thioether, sulfoxide, sulfone or sulfonate

2. A linear polyester according to claim 1 wherein

R is
$$-CH_2-CH_2-$$
 or $-C_6H_4$ and R_1 is CH_3- or C_6H_5- :

15 3. A linear polyester according to claim I wherein the radical R or R₁ contains a hetero atom O or S.

4. A linear polyester according to claim 1 wherein the units derived from dicarboxylic acid are essentially terephthalic acid units and the units derived from the diol are essentially units of a diol of the formula

HO (CH₂),OH

wherein n is 2 to 10, or the diol units are derived from

1.4-cyclohexane-dimethanol.

5. A linear polyester according to claim 1 wherein the units derived from dicarboxylic acid are essentially terephthalic acid units and the units derived from diol are essentially ethylene glycol units.

6. A method of making a linear polyester which comprises polycondensing a dicarboxylic acid or a loweralkyl ester thereof with a diol in the presence of a flame-retarding phosphorus containing monomer of the general formula

or a lower alkyl ester or cyclic anhydride of said monomer in an amount of about 3 to 20 mole percent of the total acid components wherein the symbol R of said formula is saturated, open-chain or cyclic alkylene 45 having one to 15 carbon atoms, arylene or aralkylene, and R₁ of the formula is alkyl having up to 6 carbon atoms, aryl or aralkyl, and wherein R and R1 may further contain one or more betero atoms selected from F. Cl, Br, O and S, provided that in the R and R₁ groups the O, if present, is the oxygen of an ether group, and the S, if present, is the sulfur of a thioether, sulfoxide, sulfone or sulfonate group.

7. A process according to claim 6 wherein the dicarboxylic acid is terephthalic acid and the diol is ethylene

55 glycol.

8. Shaped articles made by molding or extrusion of the linear polyester of claim L

? Old to Beneficion in To I for my form town a hungaristics, op. a. 0.48 Jul ? .. Tayesh