

Recommendation System Application Development by using Association Analysis Apriori Algorithm

SAO Kimsong

Supervisor: Dr. SRUN Sovila

15-Feb-2020

Contents

- I. Introduction
- II. Literature Reviews
- III. Methodology
- IV. Experiments
- V. Conclusions and Future Works

Introduction

- Background of the Study
 - o Most companies and corporations are computer systems to handle their business transactions.
 - o **Amazon and Netflix** can recommend product to their customers by analyze a huge of their data.
 - o What is a recommendation system?
 - o What is a **association analysis**?

Introduction – Cont.

Problem Statement

- Th analysis of shopping baskets has been very attractive to retailers in recent years.
- Advanced technology allowed them to collect information about and purchase from their customers.
- o The analysis of their customer data are useful for understanding the purchasing behavior of retail businesses.
- Mining purchasing patterns allows retailers to better customize promotions and store settings.

Introduction – Cont.

- > Aims and Objectives of the Study
 - o Proposed the architecture of association item analysis for the recommendation system.
 - o Developed and conducted experiments of recommendation system by using association analysis Apriori algorithm.
- > Limitation and Scope
 - Focused on the propose architecture of association item analysis for recommendation system.
 - Conducted experiment of Apriori algorithm.

Literature Reviews

Association Rules

- o A model that identifies how data items are associated with each other.
- Structure of Rule: If (Condition) Then (Result)
- o Support and Confidence measures the strong of rule.

$$Support(A) = \frac{Transaction\ contianing\ A}{Total\ Transactions}$$

$$Confidence(A \Rightarrow B) = \frac{support(A \cup B)}{support(A)}$$

Literature Reviews

> Apriori algorithm

- o A well-known algorithm that is used for mining frequent itemsets for association rules.
- o Easy to understand and implement.
- Can use on large itemsets.
- Recommendation System Techniques
 - Content-Based Recommendation
 - o Collaborative Filtering Recommendation
 - o Demographic Based Approach

Literature Reviews – Cont.

- > Chellatamilan and Suresh, 2011
 - o Presented an idea for building a recommendation system for the e-Learning system.
 - o Their proposed require gathering information from users.
- ➤ Abhishek Saxena, Navneet K Gaur, 2015
 - o Proposed the recommendation system by using Apriori.
 - o It won't require the customer's profile to recommend products.
 - Authors are not show the experimental with real life transaction data.

Literature Reviews – Cont.

- > Shadi, et al., 2018
 - o Proposed a new recommender framework for requirements engineering.
 - They used Apriori algorithm to extract rules from user requirements data not transaction database.
- > JinHyun, et al., 2016
 - o Implemented the mobile coupon recommendation system.
 - o Recommended coupons to the user based on the consumer usage pattern.

Literature Reviews – Cont.

- ➤ Bendakir and Aimeur, 2006
 - o Proposed a course recommendation system based on association rules for students.
 - o It does not make use of a student's academic background.
- > Aijaz, Tasleem, and Majid, 2018
 - o Proposed technique for recommender system be using Opinion Based.
 - Because they used KNN for recommendation process so it make memory intensive.

Methodology

- System Overview
 - o Importing Data
 - o Preprocessing Data
 - o Apply the Apriori Algorithm
 - o Generated Association Rules

Methodology - Cont. ___

Importing Data

Methodology - Cont. ____

Preprocessing Data

- o Converted historical transaction data into our algorithm formation.
- Labeled the item as a number.
- o For example, ESPRESSO -> 1, SUGAR -> 2, NEWSPAPER -> 3 etc.

TID	Item	Item Label
T1	espresso, sugar, newspaper	1, 2, 3
T2	espresso, sugar, cola	1, 2, 4
T3	ESPRESSO, SUGAR	1, 2
T4	CAPPUCCINO, CIGARETTES	5, 6

Methodology - Cont. ___

Apriori Algorithm

o The example customer purchase histories.

TID	Items	Item Label
T1	ESPRESSO, SUGAR, NEWSPAPER	1, 2, 3
T1	ESPRESSO, SUGAR, COLA	1, 2, 4
T1	ESPRESSO, SUGAR	1, 2
T1	CAPPUCCINO, CIGARETTES	5, 6
T1	CAPPUCCINO, SUGAR	5, 2
T1	CAPPUCCINO, SUGAR, SWEETS	5, 2, 7
T1	DECAF, SUGAR, CHEWING_GUMS	8, 2, 9
T1	DECAF, SODA, VINEGAR	8, 10, 11
T1	DECAF, SUGAR, CIGARETTES	8, 2, 6

Methodology - Cont. _

- > Apriori Algorithm Cont.
 - o The high level of frequent itemset generation for the Apriori.

Methodology - Cont. ____

Association Rule Generation

Minimum Confidence = 60%

$$Confidence(A \Longrightarrow B) = \frac{\sum transaction\ contain\ A\ \&\ B}{\sum transactions\ contain\ A}$$

Rules	Rules	Support	Confidence
$\{ESPRESSO\} \Rightarrow \{SUGAR\}$	{1} ⇒ {2}	3/9 = 30%	3/3 = 100%
$\{DECAF\} \Rightarrow \{SUGAR\}$	{8} ⇒ {2}	2/9 = 22%	2/3 = 66%
$\{CAPPUCCINO\} \Rightarrow \{SUGAR\}$	{5} ⇒ {2}	2/9 = 22%	2/3 = 66%

Experiments

> Environmental Setup

Processor: Intel(R) Core (TM) i5-5200U CPU @ 2.20GHz, 2201Mhz, 2
 Core(s), 4 Logical Processor(s).

RAM: 16.00 GB

Datasets

Name	Total transactions	Average no of items per transactions
Dataset1	4,444	10
Dataset2	16,466	10

Experiments – Cont.

> Results

Figure 5. Response time of frequent itemset generation for Dataset1.

Figure 6. Response time of frequent itemset generation for Dataset2.

Conclusions & Future Works

Conclusions

- Proposed an architecture for association item analysis for RSs.
- o Developed and conducted experiment of RS by using Association Analysis Apriori Algorithm.
- o The results can provide recommended a new item to customers by understanding historical transaction data.

> Future Works

o Make a library for recommend product to customers by using association items from our proposed frameworks.

Thank You