"Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network"

Compiled by Michael M. Pieler

History

• "Bag of tricks/freebies"^[1,2]

ImageNet (ILSVRC2012)

Model	FLOPs	top-1	top-5
ResNet-50 [9]	3.9 G	75.3	92.2
ResNeXt-50 [27]	4.2 G	77.8	-
SE-ResNet-50 [12]	3.9 G	76.71	93.38
SE-ResNeXt-50 [12]	4.3 G	78.90	94.51
DenseNet-201 [13]	4.3 G	77.42	93.66
ResNet-50 + tricks (ours)	4.3 G	79.29	94.63

In the meantime new powerful architectures and tricks!

^[1] Bag of Tricks for Image Classification with Convolutional Neural Networks

^[2] Bag of Freebies for Training Object Detection Neural Networks

Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network^[3]

- Studied several CNN-related techniques and how they can be assembled into a single network.
- Goal: Improve
 - Accuracy
 - Robustness (mean corruption error "mCE")
 - Throughput (images/sec, instead of FLOPS, because they are not proportional to the inference speed.)

Focus on network tweaks & regularization

"Network tweaks are methods that modify the CNN architectures to be more efficient"

 "Regularization is a method that prevents overfitting by increasing the training data through data augmentation processes... or by limiting the complexity of the CNN"

Training Procedure

- Image preprocessing: normalize & random crop, resize, flip
- Hyperparameter: initial Ir = 0.4, wd = 0.0001, epochs = 120, optimizer: SGD, mom = 0.9
- Learning rate warmup: 0 to initial Ir in the first 5 epochs
- Cosine learning rate decay
- Mixed precision training (FP32 & FP16)
- Zero γ init: Initialize γ = 0 for all BN layers at the end of a res-block. Returns identity at the beginning!

Network tweaks: ResNet-D

Network tweaks: Channel attention

• Squeeze & Excite (SE)^[4]

• Selective Kernel (SK)^[5]

One 3x3 kernel with doubled channel output

- Outlook: Efficient Channel (EC)^[6]
- [4] Squeeze-and-Excitation Networks
- [5] Selective Kernel Networks
- [6] ECA-Net: Efficient Channel Attention for D-CNNs

Network tweaks: AA downsampling & Big Little Net

• Anti-alias downsampling^[7]: Improves the shift-equivariance

• Big Little Net^[8]

[7] Making Convolutional Networks Shift-Invariant Again

& https://github.com/adobe/antialiased-cnns

[8] Big Little Net

Regularization

• DropOut and DropBlock^[9]

• MixUp^[10]

• AutoAugment^[11]

[9] DropBlock

[10] MixUp & blog post (CutOut, Ricap, CutMix & blending them) During searching

[11] <u>AutoAugment</u>, <u>Fast AutoAugment</u> & <u>Faster AutoAugment</u>

Regularization

Label Smoothing^[12]

- avoid overconfidence
- smoothing factor f = 0.1
- Pos. p_i : 1 → 1 f = 0.9
- $\circ \quad \text{Neg. p}_{i}: 0 \to f/(N-1)$
- different implementations!

Knowledge Distillation^[13]

$$(1 - eps) (-\log(p_i)) + \sum_{j \neq i} \frac{eps}{N-1} (-\log(p_j))$$

^[12] Regularizing Neural Networks by Penalizing Confident Output Distributions, When Does Label Smoothing Help? & blog post

Network overview

Results

ImageNet (ILSVRC2012)

Model	top-1	mCE	throughput
EfficientNet B4 [34]+AutoAugment [4]	83.0	60.7	95
EfficientNet B6 [34]+AutoAugment [4]	84.2	60.6	28
EfficientNet B7 [34]+AutoAugment [4]	84.5	59.4	16
ResNet-50 [9] (baseline)	76.3	76.0	536
Assemble-ResNet-50 (ours)	82.8	48.9	312
Assemble-ResNet-152 (ours)	84.2	43.3	143

Questions?