Homework for Linear Algebra (XXV)

Yijia Chen

In the following V is a finite dimensional vector space with dual space V'.

Exercise 1. Prove that every $L \in V'$ is either surjective or the zero function (i.e., L(v) = 0 for every $v \in V$).

Exercise 2. Show that the dual transformation of the *identity* linear transformation on V, i.e., T(v) = v for every $v \in V$, is the identity linear transformation on V', i.e., T'(L) = L for every $L \in V'$.

Exercise 3. Assume L_1, \ldots, L_n is a basis for V'. Show that there exists a basis v_1, \ldots, v_n for V whose dual basis is precisely L_1, \ldots, L_n .

Hint: We suggest three approaches, and the second and third ones are by your brilliant TAs.

(i) Induction on n, and for $n \ge 2$ consider $U = \operatorname{Ker}(L_1) \subseteq V$ and the restrictions of L_2, \ldots, L_n on U. Thereby the *restriction* of $L_i : V \to \mathbb{R}$ on U is the function $L_i \upharpoonright_U : U \to \mathbb{R}$ defined by

$$L_i \upharpoonright_{\boldsymbol{U}} (\boldsymbol{u}) = L_i(\boldsymbol{u})$$

for every $u \in U$. Prove that $L_2 \upharpoonright_U, \ldots, L_n \upharpoonright_U$ is a basis for U' and then apply the induction hypothesis.

(ii) Consider the dual space of V', i.e., V''. For every $v \in V$ let ϕ_v be the function defined by

$$\varphi_{\boldsymbol{\mathit{v}}}(L) = L(\boldsymbol{\mathit{v}})$$

for every $L \in V'$. Show $\phi_v \in V''$. Then prove that the function $\Phi : V \to V''$ defined by

$$\Phi(\mathbf{v}) = \phi_{\mathbf{v}}$$

is a bijective linear transformation from V to V''.

Finally for the dual basis ϕ_1, \ldots, ϕ_n of L_1, \ldots, L_n (which is basis for V'') consider

$$\Phi^{-1}(\phi_1), \ldots, \Phi^{-1}(\phi_n).$$

(iii) Choose an arbitrary basis $\tilde{v}_1, \ldots, \tilde{v}_n$ for V and the corresponding dual basis $\tilde{L}_1, \ldots, \tilde{L}_n$. Then let M be the change of basis matrix M from $\tilde{L}_1, \ldots, \tilde{L}_n$ to L_1, \ldots, L_n . Try to apply M in a clever way to $\tilde{v}_1, \ldots, \tilde{v}_n$.

Exercise 4. Let V and W be two finite dimensional vector spaces and $T \in T(V, W)$. Prove that

$$T' = 0 \iff T = 0.$$

Exercise 5. Let A be an $m \times n$ matrix. Prove that rank(A) = 1 if and only if there are $u \in \mathbb{R}^m \setminus \{0\}$ and $v \in \mathbb{R}^n \setminus \{0\}$ such that

$$A = uv^{T}$$
.