Neural Radiance Fields

Jon Barron

About me

UC Berkeley
PhD Student
2008-2013
Advisor: Jitendra Malik

Google Research: Perception Research Scientist 2013-Now

Team:

Peter Hedman

Pratul Srinivasan

Ben Mildenhall

Research Interests

Inverse Rendering

Smooth Motion / Depth Estimation

Color Constancy

Loss Functions

Research Impact

HDR+/Night Sight

Lens Blur / Portrait Mode

Portrait Light

Google Glass

Jump

What is graphics?

RASTERIZATION

What is graphics?

Mesh Rendering

Is this "neural rendering"?

Paradigm 1:

"The neural network is a black box that directly renders pixels"

Neural Rerendering in the Wild, Meshry et al. CVPR 2019

Paradigm A:

"The neural network is a black box that models the geometry of the world, and a (non-learned) graphics engine renders it"

"Scene Representation"
"Implicit Representations"

NeRF:

Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall*

UC Berkeley

Pratul Srinivasan*

UC Berkeley

Matt Tancik*

UC Berkeley

Jon Barron

Google Research

Ravi Ramamoorthi

UC San Diego

Ren Ng

UC Berkeley

Problem: View Interpolation

Inputs: sparsely sampled images of scene

Outputs: new views of same scene

tancik.com/nerf

Soft 3D

(Penner & Zhang 2017)
Culmination of non-deep stereo matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

Neural Volumes

(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

Soft 3D

(Penner & Zhang 2017)
Culmination of non-deep stereo
matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

Neural Volumes

(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

Soft 3D

(Penner & Zhang 2017)
Culmination of non-deep stereo
matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

Neural Volumes

(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

Soft 3D
(Penner & Zhang 2017)
Culmination of non-deep stereo matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)

Pushing the Boundaries... (Srinivasan et al. 2019

Local Light Field Fusion (Mildenhall et al. 2019)

DeenView (Flynn et al. 2019)

Neural Volumes
(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume regularized by a 3D CNINI

+ Great rendering model: good for optimization
- Horrible storage requirements (1-10 GB)

Input Sampled View

Neural networks as a continuous shape representation

Neural networks as a continuous shape representation

Occupancy Networks

(Mescheder et al. 2019)

 $(X, Y, Z) \rightarrow \text{occupancy}$

DeepSDF

(Park et al. 2019)

 $(x, y, z) \rightarrow \text{distance}$

Scene Representation Networks

(Sitzmann et al. 2019)

 $(X, Y, Z) \rightarrow \text{latent vec. (color, dist.)}$

Differentiable Volumetric Rendering

(Niemeyer et al. 2020)

 $(X, Y, Z) \rightarrow \text{color, occ.}$

Neural networks as a continuous shape representation

Occupancy Networks (Mescheder et al. 2019) $(X, y, Z) \rightarrow \text{occupancy}$

DeepSDF (Park et al. 2019) $(x, y, z) \rightarrow \text{distance}$

Limited rendering model: difficult to optimize + Highly compressible (1-10 MB)

Scene Representation Networks (Sitzmann et al. 2019) $(x, y, z) \rightarrow \text{latent vec. (color, dist.)}$

NeRF (neural radiance fields)

Generate views with traditional volume rendering

Volume rendering is trivially differentiable

Rendering model for ray r(t) = o + td:

Volume rendering is trivially differentiable

Rendering model for ray r(t) = o + td:

$$C \approx \sum_{i=1}^{N} T_i \alpha_i C_i$$
weights

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

Volume rendering is trivially differentiable

Rendering model for ray r(t) = o + td:

$$C \approx \sum_{i=1}^{N} T_i \alpha_i C_i$$
weights

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

How much light is contributed by ray segment i:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Optimize with gradient descent on rendering loss

$$\min_{\theta} \sum_{i} // \text{render}_{i}(F_{\theta}) - I_{i} //^{2}$$

Training network to reproduce all input views of the scene

Viewing directions as input

Results

vs. Prior Work (Implicit / MLP)

SRN [Sitzmann et al. 2019]

NeRF

vs. Prior Work (Implicit / MLP)

SRN [Sitzmann et al. 2019]

NeRF

Nearest Input

View-Dependent Effects

Detailed Geometry & Occlusion

Detailed Geometry & Occlusion

Meshable

Baking Neural Radiance Fields for Real-Time View Synthesis

arXiv 2021

Peter Hedman

Pratul P. Srinivasan

Ben Mildenhall

Jonathan T. Barron

Paul Debevec

Google Research

Paper

Video

http://nerf.live/

Naive implementation produces blurry results

NeRF (Naive)

Naive implementation produces blurry results

NeRF (Naive)

NeRF (with positional encoding)

Toy problem: memorizing a 2D image

$$(x, y) \rightarrow (r, g, b)$$

Toy problem: memorizing a 2D image

Ground truth image

Standard fully-connected net

Ground truth image

Standard fully-connected net

With Positional Encoding

Positional encoding also directly improves our scene representation!

NeRF (Naive)

NeRF (with positional encoding)

Why?

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

Matthew Tancik*, Pratul Srinivasan*, Ben Mildenhall*, Sara Fridovich-Keil, Nithin Ragahavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, Ren Ng

Positional Encoding [1]:
$$\gamma(\mathbf{v}) = [\cos(2^0\mathbf{v}), \sin(2^0\mathbf{v}), \dots, \cos(2^{L-1}\mathbf{v}), \sin(2^{L-1}\mathbf{v})]$$

Random Fourier Features [2]: $\gamma(\mathbf{v}) = [\cos(\mathbf{B}\mathbf{v}), \sin(\mathbf{B}\mathbf{v})]$ $\mathbf{B} \sim \mathcal{N}(0, \overline{\mathbf{o}}^2)$

[1] Vaswani et al.. NeurIPS, 2017

[2] Rahimi & Recht. NeurIPS, 2007

Neural Tangent Kernel

$$f(\mathbf{x};\theta) \approx \sum_{i} (\mathbf{K}^{-1}\mathbf{y})_{i} k(\mathbf{x}_{i},\mathbf{x})$$

Under certain conditions, neural networks are kernel regression(!)

$$k(\mathbf{x}_i, \mathbf{x}_j) = h_{\text{NTK}}(\langle \mathbf{x}_i, \mathbf{x}_j \rangle)$$

 $h_{\text{NTK}} : \mathbb{R} \to \mathbb{R}$

ReLU MLPs correspond to a "dot product" kernel

Dot Product of Fourier Features

$$\langle \gamma(\mathbf{v}_1), \gamma(\mathbf{v}_2) \rangle = \sum_{j} \left(\cos(\mathbf{b}_{j}^{\mathsf{T}} \mathbf{v}_1) \cos(\mathbf{b}_{j}^{\mathsf{T}} \mathbf{v}_2) + \sin(\mathbf{b}_{j}^{\mathsf{T}} \mathbf{v}_1) \sin(\mathbf{b}_{j}^{\mathsf{T}} \mathbf{v}_2) \right)$$

$$= \sum_{j} \cos(\mathbf{b}_{j}^{\mathsf{T}} (\mathbf{v}_1 - \mathbf{v}_2)) \quad \text{(cosine difference trig identity)}$$

$$\triangleq h_{\gamma}(\mathbf{v}_1 - \mathbf{v}_2)$$

Fourier Features → stationary kernel

Resulting composed NTK is stationary

$$h_{\text{NTK}}\left(\langle \gamma(\mathbf{v})_i, \gamma(\mathbf{v})_j \rangle\right) = h_{\text{NTK}}(h_{\gamma}(\mathbf{v}_i - \mathbf{v}_j))$$

Resulting network regression function is a convolution

$$\hat{f} = (h_{ ext{NTK}} \circ h_{\gamma}) * \sum_{i=1}^{n} w_{i} \delta_{\mathbf{v}_{i}}$$

Mapping bandwidth controls underfitting / overfitting

$$\gamma(\mathbf{v}) = [\cos(\mathbf{B}\mathbf{v}), \sin(\mathbf{B}\mathbf{v})]$$

$$\mathbf{B} \sim \mathcal{N}(0, \sigma^2)$$

Mapping bandwidth controls underfitting / overfitting

$$\gamma(\mathbf{v}) = [\cos(\mathbf{B}\mathbf{v}), \sin(\mathbf{B}\mathbf{v})]$$

$$\mathbf{B} \sim \mathcal{N}(0, \sigma^2)$$

Mapping bandwidth controls underfitting / overfitting

$$\gamma(\mathbf{v}) = [\cos(\mathbf{B}\mathbf{v}), \sin(\mathbf{B}\mathbf{v})]$$

$$\mathbf{B} \sim \mathcal{N}(0, \sigma^2)$$

Try It!

```
B = SCALE * np.random.normal(shape=(input_dims, NUM_FEATURES))
x = np.concatenate([np.sin(x @ B), np.cos(x @ B)], axis=-1)
x = nn.Dense(x, features=256)
```

Coordinate based neural representation

 \neq

a magic black box that learns things and generalizes

Coordinate based neural representation # a magic black box that learns things and generalizes

Coordinate based neural representation

=

a tiny n-dimensional lookup table with extremely high resolution

Learned Initializations for Optimizing Coordinate-Based Neural Representations

Matthew Tancik*1

Ben Mildenhall*1

Terrance Wang¹

Divi Schmidt¹

Pratul P. Srinivasan² Jonathan T. Barron²

Ren Ng¹

Target

Standard Initialization

Meta-learned Initialization (MAML)

NeRF in the Wild: Neural Radiance Fields for Uncontrolled Photo Collections

CVPR 2021

Ricardo Martin-Brualla*, Noha Radwan*, Mehdi Sajjadi*, Jonathan T. Barron, Alexey Dosovitskiy, Daniel Duckworth

Google Brain Berlin & Google Research

https://nerf-w.github.io/

Novel views + Novel appearance

Unconstrained photo collection

Inputs

Viewpoint

Static

Transient

Uncertainty

Reconstruction

Target

Viewpoint

NeRF

"NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", Mildenhall, Srinivasan, Tancik et. al., ECCV 2020

Ours

Neural Rendering in the Wild

"Neural Rerendering In the Wild", Meshry et. al., CVPR 2019

Thanks!

http://jonbarron.info

https://twitter.com/jon_barron