Table of Contents

- 1. Vector Spaces and Subspaces
 - (a) Definitions
 - (b) Verifying a Subspace
- 2. Linear Independence and Basis
 - (a) Definitions
 - (b) Example: Checking Linear Independence
- 3. Matrix Operations
 - (a) Definitions and Properties
 - (b) Matrix Multiplication
 - (c) Determinants and Their Properties
- 4. Orthogonality and Projections
 - (a) Definitions: Orthogonality and Orthonormality
 - (b) Orthogonal Projections
 - (c) The Gram-Schmidt Process
- 5. Linear Transformations
 - (a) Definitions and Properties
 - (b) Standard Matrix of a Linear Transformation
 - (c) Examples
- 6. Eigenvalues and Eigenvectors
 - (a) Definitions
 - (b) Diagonalization of Matrices
 - (c) Applications to Dynamical Systems
- 7. Optimization Fundamentals
 - (a) Convex Sets and Functions
 - (b) Gradient Descent
 - (c) Convergence Properties
- 8. Matrix Decompositions
 - (a) LU Decomposition
 - (b) QR Decomposition
 - (c) Singular Value Decomposition (SVD)

1 Vector Spaces and Subspaces

1.1 Definitions

A **vector space** is a set of vectors, along with two operations—vector addition and scalar multiplication—that satisfies the following properties:

- Closure under addition: If \mathbf{u} and \mathbf{v} are vectors in the vector space, then their sum $\mathbf{u} + \mathbf{v}$ is also in the vector space.
- Closure under scalar multiplication: If **u** is a vector in the vector space and *c* is a scalar, then *c***u** is also in the vector space.
- Other properties: Vector spaces also satisfy properties like associativity, commutativity of addition, the existence of a zero vector, and additive inverses.

A **subspace** is a subset of a vector space that is itself a vector space. For a subset to be a subspace, it must satisfy three conditions:

- 1. The zero vector is in the subset.
- 2. Closure under addition: If u and v are in the subset, then u + v is also in the subset.
- 3. Closure under scalar multiplication: If \mathbf{u} is in the subset and c is a scalar, then $c\mathbf{u}$ is also in the subset.

1.2 Example: Verifying a Subspace

Problem: Let $V = \mathbb{R}^3$ and consider the set:

$$W = \left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0 \right\}.$$

Verify that W is a subspace of \mathbb{R}^3 .

Step 1: Check the Zero Vector The zero vector in \mathbb{R}^3 is:

$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Substituting into the condition $x_1 + x_2 + x_3 = 0$:

$$0 + 0 + 0 = 0$$
.

Thus, $\mathbf{0} \in W$.

Step 2: Check Closure Under Addition Take two vectors $\mathbf{u}, \mathbf{v} \in W$:

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}.$$

By definition of W, we know:

$$u_1 + u_2 + u_3 = 0$$
, $v_1 + v_2 + v_3 = 0$.

Adding \mathbf{u} and \mathbf{v} :

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}.$$

Checking the condition:

$$(u_1 + v_1) + (u_2 + v_2) + (u_3 + v_3) = (u_1 + u_2 + u_3) + (v_1 + v_2 + v_3) = 0 + 0 = 0.$$

Thus, $\mathbf{u} + \mathbf{v} \in W$.

Step 3: Check Closure Under Scalar Multiplication Take $\mathbf{u} \in W$ and a scalar $c \in \mathbb{R}$. Then:

$$c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ cu_3 \end{bmatrix}.$$

Checking the condition:

$$c(u_1 + u_2 + u_3) = c \cdot 0 = 0.$$

Thus, $c\mathbf{u} \in W$.

Conclusion: Since W satisfies all three conditions, it is a subspace of \mathbb{R}^3 .

1.3 Numerical Example

Let $W = \left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0 \right\}$. Verify whether $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -3 \\ 3 \\ 0 \end{bmatrix}$ belong to W, and check if their sum is in W.

Step 1: Verify $\mathbf{u} \in W$ Check if $u_1 + u_2 + u_3 = 0$:

$$1 + (-2) + 1 = 0.$$

Thus, $\mathbf{u} \in W$.

Step 2: Verify $\mathbf{v} \in W$ Check if $v_1 + v_2 + v_3 = 0$:

$$-3 + 3 + 0 = 0.$$

Thus, $\mathbf{v} \in W$.

Step 3: Verify $\mathbf{u} + \mathbf{v} \in W$ Compute $\mathbf{u} + \mathbf{v}$:

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} + \begin{bmatrix} -3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}.$$

Check if the sum satisfies the condition:

$$-2+1+1=0.$$

Thus, $\mathbf{u} + \mathbf{v} \in W$.

Conclusion: Both vectors \mathbf{u} and \mathbf{v} belong to W, and their sum is also in W, verifying closure under addition.

Linear Independence and Basis

Definitions

• Linear Independence: A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ in a vector space is linearly independent if the only solution to the equation:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$$

is $c_1 = c_2 = \dots = c_n = 0$.

- Here, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are vectors, and c_1, c_2, \dots, c_n are scalars.
- If there exist non-zero scalars c_1, c_2, \ldots, c_n such that the equation holds, the vectors are **linearly** dependent.
- Basis: A basis of a vector space is a set of linearly independent vectors that span the entire vector space.
 - Span: The span of a set of vectors is the set of all possible linear combinations of those vectors.
 - A basis provides the minimum number of vectors needed to represent every vector in the space.

Worked Example: Checking Linear Independence

Problem: Consider the vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ in \mathbb{R}^3 . Determine if the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.

Step 1: Set Up the Linear Independence Equation To check linear independence, solve the equation:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0},$$

where $\mathbf{0}$ is the zero vector $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Substituting the given vectors:

$$c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Step 2: Combine the Vectors Adding the scaled vectors:

$$\begin{bmatrix} c_1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ c_2 \\ 0 \end{bmatrix} + \begin{bmatrix} c_3 \\ c_3 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 + c_3 \\ c_2 + c_3 \\ 0 \end{bmatrix}.$$

Equating components to the zero vector:

$$c_1 + c_3 = 0,$$

$$c_2 + c_3 = 0,$$

$$0 = 0.$$

Step 3: Solve for the Scalars From the first equation:

$$c_3 = -c_1$$
.

From the second equation:

$$c_3 = -c_2.$$

Equating $-c_1$ and $-c_2$:

$$c_1 = c_2$$
.

Substituting $c_1 = c_2$ into $c_3 = -c_1$:

$$c_3 = -c_1.$$

The only solution is $c_1 = c_2 = c_3 = 0$.

Step 4: Conclusion Since the only solution is the trivial solution $c_1 = c_2 = c_3 = 0$, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

Worked Example: Basis of a Subspace

Problem: Find a basis for the subspace $W \subseteq \mathbb{R}^3$ defined by:

$$W = \left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0 \right\}.$$

Step 1: Write the Condition as a Constraint The subspace is defined by the equation:

$$x_1 + x_2 + x_3 = 0.$$

Express x_3 in terms of x_1 and x_2 :

$$x_3 = -(x_1 + x_2).$$

Thus, any vector in W can be written as:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ -(x_1 + x_2) \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}.$$

Step 2: Identify the Basis The vectors:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

are linearly independent and span W. Thus, $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for W.

Step 3: Verify Linear Independence To verify, solve:

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2=\mathbf{0}.$$

Substituting \mathbf{v}_1 and \mathbf{v}_2 :

$$c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Equating components:

$$c_1=0,$$

$$c_2 = 0,$$

$$-c_1 - c_2 = 0.$$

The only solution is $c_1 = c_2 = 0$, so the vectors are linearly independent.

Step 4: Conclusion The basis for W is $\{\mathbf{v}_1, \mathbf{v}_2\}$.

Matrix Operations

Definitions and Properties

- A matrix is a rectangular array of numbers arranged in rows and columns. A matrix with m rows and n columns is called an $m \times n$ matrix.
- Matrices can be added, subtracted, and multiplied if they conform to specific rules for their dimensions.
- The identity matrix, I, is a square matrix with 1s on the diagonal and 0s elsewhere.
- The **transpose** of a matrix \mathbf{A} , denoted \mathbf{A}^T , swaps its rows and columns.

Matrix Multiplication

Matrix multiplication combines two matrices A and B, provided that the number of columns of A matches the number of rows of B.

For $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, the product $\mathbf{C} = \mathbf{A}\mathbf{B}$ is a matrix in $\mathbb{R}^{m \times p}$, where each entry c_{ij} is given by:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Worked Example: Matrix Multiplication

Problem: Compute the product of the following matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}.$$

Step 1: Verify Dimensions A is a 2×2 matrix, and B is also a 2×2 matrix. Since the number of columns in A matches the number of rows in B, the product C = AB is well-defined and will be a 2×2 matrix.

Step 2: Compute Each Entry of C Using the formula $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$:

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} = (1)(2) + (2)(1) = 2 + 2 = 4,$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} = (1)(0) + (2)(3) = 0 + 6 = 6,$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} = (3)(2) + (4)(1) = 6 + 4 = 10,$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22} = (3)(0) + (4)(3) = 0 + 12 = 12.$$

Step 3: Write the Result The resulting matrix C is:

$$\mathbf{C} = \begin{bmatrix} 4 & 6 \\ 10 & 12 \end{bmatrix}.$$

Determinants and Their Properties

Definition: The **determinant** of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted $\det(\mathbf{A})$, is a scalar that provides important information about the matrix, such as whether it is invertible.

Properties:

- $det(\mathbf{A}) = 0$ implies that **A** is singular (not invertible).
- The determinant changes sign if two rows (or columns) of **A** are swapped.
- $\det(\mathbf{AB}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$.

Worked Example: Computing a Determinant

Problem: Compute the determinant of the matrix:

$$\mathbf{A} = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}.$$

Step 1: Use the Formula for a 2×2 Matrix For $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the determinant is:

$$\det(\mathbf{A}) = ad - bc.$$

Substitute the values:

$$\det(\mathbf{A}) = (4)(3) - (3)(6) = 12 - 18 = -6.$$

Step 2: Conclusion The determinant of **A** is -6, so **A** is invertible.

Inverse of a Matrix

Definition: The **inverse** of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted \mathbf{A}^{-1} , satisfies:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}.$$

where I is the identity matrix.

Formula for a 2×2 Matrix: If $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $\det(\mathbf{A}) \neq 0$, then:

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Worked Example: Computing an Inverse

Problem: Compute the inverse of the matrix:

$$\mathbf{A} = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}.$$

Step 1: Compute the Determinant

$$\det(\mathbf{A}) = (4)(6) - (7)(2) = 24 - 14 = 10.$$

Step 2: Apply the Formula Substitute into the formula for the inverse:

$$\mathbf{A}^{-1} = \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}.$$

Step 3: Verify the Result (Optional) Multiply A and A^{-1} to confirm that $AA^{-1} = I$.

Orthogonality and Projections

Definitions

• Orthogonality: Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal if their dot product is zero:

$$\mathbf{u} \cdot \mathbf{v} = 0$$

- Orthonormality: A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is orthonormal if:
 - Each vector is a unit vector: $\|\mathbf{v}_i\| = 1$.
 - The vectors are mutually orthogonal: $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for all $i \neq j$.
- \bullet Orthogonal Projection: The projection of a vector ${\bf b}$ onto a vector ${\bf a}$ is given by:

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\mathbf{a}.$$

Worked Example: Orthogonal Projection

Problem: Compute the projection of $\mathbf{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ onto $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Step 2: Compute the Projection Substitute into the formula:

Step 1: Compute the Dot Products

$$\mathbf{a} \cdot \mathbf{b} = (1)(3) + (2)(4) = 3 + 8 = 11,$$

 $\mathbf{a} \cdot \mathbf{a} = (1)(1) + (2)(2) = 1 + 4 = 5.$

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} = \frac{11}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{11}{5} \\ \frac{22}{5} \end{bmatrix}.$$

Step 3: Write the Result The projection is:

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \begin{bmatrix} 2.2\\4.4 \end{bmatrix}.$$

The Gram-Schmidt Process

Definition: The Gram-Schmidt process takes a set of linearly independent vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and produces an orthonormal set of vectors $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$.

Algorithm:

- 1. Start with $\mathbf{q}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$.
- 2. For each subsequent vector \mathbf{v}_k , subtract its projections onto all previous \mathbf{q}_i :

$$\mathbf{u}_k = \mathbf{v}_k - \sum_{i=1}^{k-1} \operatorname{proj}_{\mathbf{q}_i} \mathbf{v}_k.$$

3. Normalize \mathbf{u}_k to obtain \mathbf{q}_k :

$$\mathbf{q}_k = \frac{\mathbf{u}_k}{\|\mathbf{u}_k\|}.$$

Worked Example: Gram-Schmidt Process

Problem: Apply the Gram-Schmidt process to the set $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Step 1: Normalize v_1

$$\begin{aligned} \|\mathbf{v}_1\| &= \sqrt{(1)^2 + (1)^2} = \sqrt{2}, \\ \mathbf{q}_1 &= \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix}. \end{aligned}$$

Step 2: Compute \mathbf{u}_2 Subtract the projection of \mathbf{v}_2 onto \mathbf{q}_1 :

$$\operatorname{proj}_{\mathbf{q}_{1}} \mathbf{v}_{2} = \frac{\mathbf{q}_{1} \cdot \mathbf{v}_{2}}{\mathbf{q}_{1} \cdot \mathbf{q}_{1}} \mathbf{q}_{1},$$

$$\mathbf{q}_{1} \cdot \mathbf{v}_{2} = \frac{1}{\sqrt{2}} (1) + \frac{1}{\sqrt{2}} (-1) = 0,$$

$$\operatorname{proj}_{\mathbf{q}_{1}} \mathbf{v}_{2} = 0 \cdot \mathbf{q}_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$\mathbf{u}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{\mathbf{q}_{1}} \mathbf{v}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Step 3: Normalize u₂

$$\begin{split} \|\mathbf{u}_2\| &= \sqrt{(1)^2 + (-1)^2} = \sqrt{2}, \\ \mathbf{q}_2 &= \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} \end{bmatrix}. \end{split}$$

Step 4: Conclusion The orthonormal set is:

$$\mathbf{q}_1 = \begin{bmatrix} rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{bmatrix}, \quad \mathbf{q}_2 = \begin{bmatrix} rac{1}{\sqrt{2}} \\ -rac{1}{\sqrt{2}} \end{bmatrix}.$$

Linear Transformations

Definitions

- A linear transformation is a function $T: \mathbb{R}^n \to \mathbb{R}^m$ that satisfies two properties for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and scalars c:
 - 1. Additivity: $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$.
 - 2. Homogeneity: $T(c\mathbf{u}) = cT(\mathbf{u})$.
- A linear transformation can be represented as a matrix multiplication: $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the matrix associated with the transformation.

Standard Matrix of a Linear Transformation

The standard matrix **A** of a linear transformation T is constructed by applying T to each column of the identity matrix \mathbf{I}_n :

$$\mathbf{A} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \dots & T(\mathbf{e}_n) \end{bmatrix},$$

where \mathbf{e}_i are the standard basis vectors in \mathbb{R}^n .

Worked Example: Constructing a Standard Matrix

Problem: Find the matrix **A** representing the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, where:

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}2x_1 + 3x_2\\-x_1 + 4x_2\end{bmatrix}.$$

Step 1: Apply T to the Standard Basis Vectors The standard basis vectors in \mathbb{R}^2 are:

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Compute $T(\mathbf{e}_1)$:

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2(1) + 3(0)\\-1(1) + 4(0)\end{bmatrix} = \begin{bmatrix}2\\-1\end{bmatrix}.$$

Compute $T(\mathbf{e}_2)$:

$$T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2(0) + 3(1)\\-1(0) + 4(1)\end{bmatrix} = \begin{bmatrix}3\\4\end{bmatrix}.$$

Step 2: Form the Matrix A The columns of A are $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$:

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}.$$

Worked Example: Applying a Linear Transformation

Problem: Use the matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$ to compute $T \begin{pmatrix} 5 \\ 2 \end{bmatrix}$.

Step 1: Perform the Matrix Multiplication Substitute $\mathbf{x} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$:

$$T\left(\begin{bmatrix} 5 \\ 2 \end{bmatrix}\right) = \mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix}.$$

Compute each entry:

First row:
$$(2)(5) + (3)(2) = 10 + 6 = 16$$
,
Second row: $(-1)(5) + (4)(2) = -5 + 8 = 3$.

Step 2: Write the Result

$$T\left(\begin{bmatrix} 5\\2\end{bmatrix}\right) = \begin{bmatrix} 16\\3\end{bmatrix}.$$

Properties of Linear Transformations

- The transformation T is **invertible** if **A** is a square matrix and $det(\mathbf{A}) \neq 0$.
- The image of T, also called the **column space** of A, is the span of the columns of A.
- The null space of A is the set of all vectors x such that Ax = 0.

Worked Example: Finding the Null Space

Problem: Find the null space of $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$.

Step 1: Solve $\mathbf{A}\mathbf{x} = \mathbf{0}$ Substitute $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$:

$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

This gives the system of equations:

$$2x_1 + 3x_2 = 0,$$

 $-x_1 + 4x_2 = 0.$

Step 2: Solve the System From the second equation:

$$x_1 = 4x_2$$
.

Substitute into the first equation:

$$2(4x_2) + 3x_2 = 8x_2 + 3x_2 = 11x_2 = 0.$$

Thus, $x_2 = 0$ and $x_1 = 0$.

Step 3: Conclusion The null space of A is {0}, meaning A

Eigenvalues and Eigenvectors

Definitions

• An eigenvector of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a non-zero vector \mathbf{v} such that:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
,

where λ is a scalar known as the **eigenvalue** associated with \mathbf{v} .

• Geometrically, \mathbf{v} is a vector that does not change direction under the transformation \mathbf{A} , and λ describes the scaling factor.

Finding Eigenvalues and Eigenvectors

To find the eigenvalues and eigenvectors of a matrix **A**:

- 1. Solve the **characteristic equation**: $det(\mathbf{A} \lambda \mathbf{I}) = 0$.
- 2. For each eigenvalue λ , solve $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ to find the eigenvectors.

Worked Example: Eigenvalues and Eigenvectors

Problem: Find the eigenvalues and eigenvectors of:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}.$$

Step 1: Set Up the Characteristic Equation The characteristic equation is:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

Substitute A and I:

$$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{bmatrix}.$$

Compute the determinant:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{bmatrix}$$
$$= (4 - \lambda)(3 - \lambda) - (1)(2)$$
$$= (4 - \lambda)(3 - \lambda) - 2$$
$$= 12 - 4\lambda - 3\lambda + \lambda^2 - 2$$
$$= \lambda^2 - 7\lambda + 10.$$

Set the determinant to zero:

$$\lambda^2 - 7\lambda + 10 = 0.$$

Step 2: Solve for Eigenvalues Factorize the quadratic equation:

$$\lambda^{2} - 7\lambda + 10 = (\lambda - 5)(\lambda - 2) = 0.$$

The eigenvalues are:

$$\lambda_1 = 5, \quad \lambda_2 = 2.$$

Step 3: Solve for Eigenvectors For each eigenvalue, solve $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$.

Eigenvector for $\lambda_1 = 5$: Substitute $\lambda_1 = 5$ into $\mathbf{A} - \lambda \mathbf{I}$:

$$\mathbf{A} - 5\mathbf{I} = \begin{bmatrix} 4 - 5 & 2 \\ 1 & 3 - 5 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}.$$

Solve $(\mathbf{A} - 5\mathbf{I})\mathbf{v} = \mathbf{0}$:

$$\begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

This gives the system of equations:

$$-v_1 + 2v_2 = 0,$$

$$v_1 - 2v_2 = 0.$$

Both equations are equivalent. Let $v_2 = t$. Then:

$$v_1 = 2t$$
.

The eigenvector is:

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} t = t \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Choose t = 1:

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Eigenvector for $\lambda_2 = 2$: Substitute $\lambda_2 = 2$ into $\mathbf{A} - \lambda \mathbf{I}$:

$$\mathbf{A} - 2\mathbf{I} = \begin{bmatrix} 4 - 2 & 2 \\ 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}.$$

Solve $(\mathbf{A} - 2\mathbf{I})\mathbf{v} = \mathbf{0}$:

$$\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

This gives the system of equations:

$$2v_1 + 2v_2 = 0,$$

$$v_1 + v_2 = 0.$$

Both equations are equivalent. Let $v_2 = t$. Then:

$$v_1 = -t$$
.

The eigenvector is:

$$\mathbf{v}_2 = \begin{bmatrix} -1\\1 \end{bmatrix} t = t \begin{bmatrix} -1\\1 \end{bmatrix}.$$

Choose t = 1:

$$\mathbf{v}_2 = \begin{bmatrix} -1\\1 \end{bmatrix}.$$

Step 4: Conclusion The eigenvalues and eigenvectors of **A** are:

•
$$\lambda_1 = 5$$
, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

•
$$\lambda_2 = 2$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Optimization Fundamentals

Optimization is the process of finding the best solution from a set of feasible solutions. In mathematical terms, it involves minimizing or maximizing an objective function subject to constraints.

Convex Sets and Functions

Convex Sets: A set $S \subseteq \mathbb{R}^n$ is convex if, for any two points $\mathbf{x}, \mathbf{y} \in S$ and any $\alpha \in [0, 1]$:

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in S.$$

This means the line segment between any two points in S lies entirely within S.

Convex Functions: A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha \in [0, 1]$:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

This means the function lies below the line segment connecting any two points on its graph.

Gradient Descent

Definition: Gradient descent is an iterative optimization algorithm used to minimize a function $f(\mathbf{x})$. Starting from an initial guess \mathbf{x}_0 , the algorithm updates \mathbf{x} in the direction of the negative gradient:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla f(\mathbf{x}_k),$$

where:

- $\eta > 0$ is the learning rate (step size).
- $\nabla f(\mathbf{x}_k)$ is the gradient of f at \mathbf{x}_k .

Convergence: If f is convex and differentiable, gradient descent converges to a global minimum under appropriate choices of η .

Worked Example: Gradient Descent

Problem: Minimize the quadratic function:

$$f(x) = x^2 + 4x + 4$$
.

Step 1: Compute the Gradient The gradient of f is the derivative:

$$\nabla f(x) = \frac{d}{dx}(x^2 + 4x + 4) = 2x + 4.$$

Step 2: Gradient Descent Update Rule Starting from an initial guess x_0 , update x using:

$$x_{k+1} = x_k - \eta \nabla f(x_k).$$

Step 3: Perform Iterations Let $\eta = 0.1$ and $x_0 = 5$. Compute the first three iterations:

• k = 0:

$$x_1 = x_0 - \eta \nabla f(x_0)$$

= 5 - 0.1(2(5) + 4)
= 5 - 0.1(14)
= 5 - 1.4 = 3.6.

• k = 1:

$$x_2 = x_1 - \eta \nabla f(x_1)$$

= 3.6 - 0.1(2(3.6) + 4)
= 3.6 - 0.1(11.2)
= 3.6 - 1.12 = 2.48.

• k = 2:

$$x_3 = x_2 - \eta \nabla f(x_2)$$

$$= 2.48 - 0.1(2(2.48) + 4)$$

$$= 2.48 - 0.1(8.96)$$

$$= 2.48 - 0.896 = 1.584.$$

Step 4: Interpret the Results After three iterations, the approximation to the minimum is $x_3 = 1.584$. Continuing further iterations will bring x_k closer to the true minimum at x = -2.

Properties of Convex Optimization

- If the objective function is convex, any local minimum is also a global minimum.
- Gradient descent is guaranteed to converge for appropriately chosen step sizes.
- Strongly convex functions have unique minima, and gradient descent converges faster.

Matrix Decompositions

Matrix decompositions are methods of breaking down a matrix into simpler components, making it easier to analyze or compute properties like determinants, eigenvalues, and solutions to linear systems.

LU Decomposition

Definition: LU decomposition factors a square matrix $\bf A$ into the product of a lower triangular matrix $\bf L$ and an upper triangular matrix $\bf U$:

$$A = LU$$

where:

- L is a lower triangular matrix with ones on the diagonal.
- U is an upper triangular matrix.

Worked Example: LU Decomposition

Problem: Decompose the matrix:

$$\mathbf{A} = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}.$$

Step 1: Initialize L and U Start with:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}.$$

Step 2: Compute U Using A = LU:

$$u_{11} = a_{11} = 4,$$

 $u_{12} = a_{12} = 3.$

Step 3: Compute L

$$l_{21} = \frac{a_{21}}{u_{11}} = \frac{6}{4} = 1.5.$$

Step 4: Solve for u_{22}

$$u_{22} = a_{22} - l_{21} \cdot u_{12} = 3 - (1.5 \cdot 3) = -1.5.$$

Step 5: Write the Result

$$\mathbf{L} = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}.$$

QR Decomposition

Definition: QR decomposition factors a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ into the product of an orthogonal matrix \mathbf{Q} and an upper triangular matrix \mathbf{R} :

$$A = QR$$
.

Worked Example: QR Decomposition

Problem: Compute the QR decomposition of:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

Step 1: Apply the Gram-Schmidt Process

$$\mathbf{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix},$$

$$\mathbf{q}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}.$$

Step 2: Form Q and R

$$\mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix},$$
$$\mathbf{R} = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix}.$$

Singular Value Decomposition (SVD)

Definition: SVD decomposes a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ into:

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T,$$

where:

• $\mathbf{U} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix (columns are left singular vectors).

• $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix of singular values.

• $\mathbf{V} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix (columns are right singular vectors).

Worked Example: SVD

Problem: Compute the SVD of:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Step 1: Compute Σ The singular values are the square roots of the eigenvalues of A^TA :

$$\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}.$$

The eigenvalues are 1 and 4, so the singular values are 1 and 2:

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Step 2: Compute U and V The eigenvectors of AA^T and A^TA give U and V, respectively:

$$\mathbf{U} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$\mathbf{V} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Step 3: Write the Result

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T.$$