

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf :	DE-EX-01
-------	----------

Indice: 4

EPREUVE D'EVALUATION

Année Universitaire : 2020/2021	Date de l'Examen : 10/12/2020
Nature : ☑ DC ☐ Examen ☐ DR	Durée: □1h ☑1h30min □2h □3h
Diplôme : ☐ Mastère ☑ Ingénieur	Nombre de pages : 01
Section: □GCP ☑GCV □ GEA □GCR □GM	Enseignant (e): N. RHAYMA
Niveau d'étude ☑ 1 ère ☐ 2 ème ☐ 3 ème année	Documents Autorisés :□ Oui □ Non
Matière : Mécanique des solides déformables	Remarque:
	Il sera tenu compte de la clarté et de la précision des réponses.

Exercice 1

On considère l'état homogène de contrainte plane défini par la figure ci-contre. Les valeurs sont en (MPa)

- 1 Ecrire le tenseur de contraintes
- 2- Déterminer les contraintes principales et les directions associées
 - 2.1 Par le calcul
 - 2.2 En utilisant le cercle de Mohr
- 3- Calculer la contrainte normale et celle de cisaillement sur la facette de normale n (cf. figure).
 - 3.1 Par le calcul
 - 3.2 En utilisant le cercle de Mohr

Exercice 2

10 pts

Les composantes du champ de déplacements en un point $P(x_1, x_2, x_3)$ sont :

$$u_1 = B(x_1^2 + 2x_3^2)$$
, $u_2 = Bx_2^2$, $u_3 = B(3x_1^2 + x_3^2)$ (où B est un réel)

- 1- Définir les composantes du tenseur gradient de déformations $\bar{\bar{G}}$.
- 2- En déduire les tenseurs de déformation $\bar{\varepsilon}$, et de rotation $\bar{\omega}$.
- 3- Pour B=0,1 et au point P₁ (1,0,1) déterminer graphiquement (Sans tracer) les déformations principales.
- 4- Quel est l'allongement unitaire suivant le vecteur $\vec{n}(\frac{1}{2}, 0, \frac{\sqrt{3}}{2})$?

Bon courage

Page: 1/2

Ecole Nationale d'Ingénieurs de Gabès, Rue Omar Ibn el Khattab- Zrig -6029, Gabès Tel: 75 392 100- Fax 75 392 190 www.enig.rnu.tn, contact@enig.rnu.tn