# **Observational Studies**

#### Week 3

Yunkyu Sohn School of Political Science and Economics Waseda University

#### Logistics

- R Tips on <a href="https://github.com/ysohn/stats/">https://github.com/ysohn/stats/</a>
- R Exercises (from textbook): <a href="https://github.com/kosukeimai/qss">https://github.com/kosukeimai/qss</a>

### Contents (Book Chapter 2.5 - 2.7)

- Descriptive statistics for a single variable
- Review of casualty and experimental studies
- Observational studies
  - Confounding bias
  - Cross-section design
  - Before-and-after design
  - Difference-in-differences design
- Summary

## Descriptive Statistics for a Single Variable (Lab Class)

- Center of Data X
  - ightharpoonup Mean ( $\overline{X}$ ): sum(values) / n
  - ► Median (med(*X*); robust for outliers than mean) for *n* observations
    - n is odd: middle value
    - $\triangleright$  n is even: some of 2 middle values

• e.g.  $X = \{1,5,3,7\}$ : Mean:

Median:

• e.g.  $X = \{1,3,5,9,7\}$ : Mean:

Median:

### Descriptive Statistics for a Single Variable (Lab Class)

- Spread of Data X
  - ightharpoonup Range: [min(X), max(X)]
  - Quantile: quartile (4), quintiles (5), deciles (10) percentiles (100)
    - ▶ 25 percentile = lower quartile (median of *X* lower than median)
    - ► 50 percentile = median
    - ► 75 percentile = upper quartile (median of *X* higher than median
  - Inter-Quartile Range (IQR): Upper quartile Lower quartile
  - Standard deviation:  $\sigma = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i \bar{x})^2$
  - e.g.  $X = \{1,3,3,3,4,4,4,6,8\}$

### Contents (Book Chapter 2.5 - 2.7)

- Descriptive statistics for a single variable
- Review of casualty and experimental studies
- Observational studies
  - Confounding bias
  - Cross-section design
  - Before-and-after design
  - Difference-in-differences design
    - Sample Average Treatment effect for the Treated (SATT)
- Summary

### Research Question: Emotional Contagion Hypothesis

Effect of your friends' FB wall posting on your expressed emotion

Positive post



Great foods!

I love vegetables.

Negative post



I hate vegetables..
I'll not come here again.





Your emotion

Implication: Large-scale global synchrony/diffusion of emotion

### **Experimental Version of Facebook Emotion Study**

- RCT: 3 mil posts; 155,000 users
- Manipulating FB wall post content exposure probability by sentiment
- 3 page paper with a single figure HOW??
  - Thanks to The POWER of RCT: sole effect of treatment identified



**Fig. 1.** Mean number of positive (*Upper*) and negative (*Lower*) emotion words (percent) generated people, by condition. Bars represent standard errors.

Kramer, Guillory, and Hancock (2014)

## **Confounders: Facebook Emotion Study**

- Confounders:
  - Pretreatment variables that are associated with both the treatment and outcome variables



#### **Observational Version of Facebook Emotion Study**

# Detecting Emotional Contagion in Massive Social Networks

Lorenzo Coviello<sup>1</sup>, Yunkyu Sohn<sup>2</sup>, Adam D. I. Kramer<sup>3</sup>, Cameron Marlow<sup>3</sup>, Massimo Franceschetti<sup>1</sup>, Nicholas A. Christakis<sup>4,5</sup>, James H. Fowler<sup>2,6</sup>\*

- Observational Studies (things get super complicated)
  - Non-experimental study using spontaneous user activities
  - ▶ 1,180 days of observation of millions of Facebook users in US
  - Advanced statistical methods to deal with confounders
    - confounders: both affecting messages you see and your emotion
      - weather: precipitation, temperature, ....
      - user demographic characteristics
      - article length: 44 pages in total.

- Objective of causal inference
  - Isolating (identifying) the effect of treatment on outcome
- Sample Average Treatment Effect (SATE)
  - Estimating the causal effect of treatment within sample
  - ▶ e.g. Impact of social pressure on turnout for n=10

| unit              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------------------|---|---|---|---|---|---|---|---|---|----|
| $Y_i(1)$          | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0  |
| $Y_i(0)$          | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1  |
| $Y_i(1) - Y_i(0)$ | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | -1 |

**SATE** = 
$$\frac{1}{n} \sum_{i=1}^{n} \{Y_i(1) - Y_i(0)\}$$

▶ e.g. Impact of social pressure on turnout for n=10

| unit              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------------------|---|---|---|---|---|---|---|---|---|----|
| $Y_i(1)$          | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0  |
| $Y_i(0)$          | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1  |
| $Y_i(1) - Y_i(0)$ | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | -1 |

- ► Can we observe both  $Y_i(1)$  &  $Y_i(0)$  (potential outcomes)?
  - ► NO!
    - due to Fundamental problem of causal inference
    - ► =For each *i*, You only observe ONE among  $Y_i(1)$  &  $Y_i(0)$
    - What would a real dataset look like?

 $\triangleright$  e.g. Impact of social pressure on turnout for n=10

| unit              | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-------------------|----|----|----|----|----|----|----|----|----|----|
| $Y_i(1)$          | X  | X  | 0  | X  | 0  | X  | X  | 1  | 1  | 0  |
| $Y_i(0)$          | 0  | 1  | X  | 0  | X  | 0  | 1  | X  | X  | X  |
| $Y_i(1) - Y_i(0)$ | \$ | \$ | \$ | \$ | \$ | \$ | \$ | \$ | \$ | \$ |

- What would a real dataset look like?
  - ► = For each *i*, You only observe ONE among  $Y_i(1)$  &  $Y_i(0)$ 
    - Can you calculate SATE?
      - NO! ➡ We should find a way to approximate SATE.
        - What would be a feasible alternative?

 $\triangleright$  e.g. Impact of social pressure on turnout for n=10

| unit              | 1        | 2        | 3 | 4 | 5 | 6        | 7        | 8 | 9 | 10        |
|-------------------|----------|----------|---|---|---|----------|----------|---|---|-----------|
| $Y_i(1)$          | X        | X        | 0 | X | 0 | X        | X        | 1 | 1 | 0         |
| $Y_i(0)$          | 0        | 1        | X | 0 | X | 0        | 1        | X | X | X         |
| $Y_i(1) - Y_i(0)$ | <b>.</b> | <b>.</b> | 3 | 3 | 3 | <b>.</b> | <b>.</b> | 3 | 3 | <u>\$</u> |

- ► (If we can choose to assign treatment & control groups)
- ► The best possible design: Randomized Control Trials (RCTs)
  - Assign treatment status completely at random
    - Why does this guarantee the best possible estimation?
      - ▶ No sample selection bias

 $\triangleright$  e.g. Impact of social pressure on turnout for n=10

| unit              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------------------|---|---|---|---|---|---|---|---|---|----|
| $Y_i(1)$          | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0  |
| $Y_i(0)$          | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1  |
| Education         | С | Н | Е | Е | Н | Н | Н | С | С | С  |
| Race              | W | W | В | В | Α | W | W | В | W | А  |
| Gender            | F | М | М | F | F | M | F | M | M | F  |
| •••               |   |   |   |   |   |   |   |   |   |    |
| $Y_i(1) - Y_i(0)$ | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | -1 |

- So many confounding variables that we do not observe
  - ▶ Bias in treatment assignment ► Invalid inference

Biased assignment scenario 1:

| unit              | 1 | 2        | 3        | 4        | 5         | 6 | 7         | 8         | 9 | 10       |                |
|-------------------|---|----------|----------|----------|-----------|---|-----------|-----------|---|----------|----------------|
| $Y_i(1)$          | X | 1        | 0        | X        | X         | 1 | X         | 1         | 1 | X        | _              |
| $Y_i(0)$          | 0 | X        | X        | 0        | 0         | X | 1         | X         | X | 1        | . <del>-</del> |
| Education         | С | Н        | Е        | Е        | Н         | Н | Н         | С         | С | С        |                |
| Race              | W | W        | В        | В        | Α         | W | W         | В         | W | A        |                |
| Gender            | F | M        | М        | F        | F         | М | F         | M         | М | F        |                |
| •••               |   |          |          |          |           |   |           |           |   |          |                |
| $Y_i(1) - Y_i(0)$ |   | <b>.</b> | <b>?</b> | <b>?</b> | <u>\$</u> | 3 | <u>\$</u> | <u>\$</u> | 3 | <b>?</b> | _              |

- So many confounding variables that we do not observe
  - ▶ Bias in treatment assignment ► Invalid inference

Biased assignment scenario 2:

| unit              | 1 | 2 | 3 | 4 | 5 | 6        | 7 | 8 | 9 | 10 |
|-------------------|---|---|---|---|---|----------|---|---|---|----|
| $Y_i(1)$          | 1 | X | X | X | X | X        | X | 1 | 1 | 0  |
| $Y_i(0)$          | X | 1 | 0 | 0 | 0 | 0        | 1 | X | X | X  |
| Education         | С | Н | Е | Е | Н | Н        | Н | С | С | С  |
| Race              | W | W | В | В | Α | W        | W | В | W | А  |
| Gender            | F | М | М | F | F | М        | F | М | М | F  |
| •••               |   |   |   |   |   |          |   |   |   |    |
| $Y_i(1) - Y_i(0)$ |   | ? | ? | 3 | 3 | <b>?</b> | 3 | 3 | 3 | 3  |

- So many confounding variables that we do not observe
  - ▶ Bias in treatment assignment ► Invalid inference

What would be the best possible assignment??

| unit              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------------------|---|---|---|---|---|---|---|---|---|----|
| $Y_i(1)$          | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0  |
| $Y_i(0)$          | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1  |
| Education         | С | Н | Е | Е | Н | Н | Н | С | С | С  |
| Race              | W | W | В | В | Α | W | W | В | W | Α  |
| Gender            | F | М | М | F | F | M | F | М | М | F  |
| • • •             |   |   |   |   |   |   |   |   |   |    |
| $Y_i(1) - Y_i(0)$ | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | -1 |
|                   |   |   |   |   |   |   |   |   |   |    |

- What would be the best possible assignment??
  - Assign treatment status completely at random



or sample() or rbinom() in R: <u>link</u>

- Flipped coin 10 times: Head (1) -> Treated; Tail (0) -> Control
  - e.g. Say you got 0 1 0 0 1 0 0 1 1 1

| unit                     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------------------------|---|---|---|---|---|---|---|---|---|----|
| $Y_i(1)$                 | X | 1 | X | X | 0 | X | X | 1 | 1 | 0  |
| <i>Y<sub>i</sub></i> (0) | 0 | X | 0 | 0 | X | 0 | 1 | X | X | X  |
| Education                | С | Н | Е | Е | Н | Н | Н | С | С | С  |
| Race                     | W | W | В | В | А | W | W | В | W | Α  |
| Gender                   | F | М | М | F | F | М | F | М | М | F  |
| $Y_i(1) - Y_i(0)$        | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3  |

- ► What does this guarantee? Now we can trust using
- ▶ Difference in the sample means estimator (size of treated:  $|\{T_i=1\}|$ )

$$D = \frac{1}{|\{T_i = 1\}|} \sum_{i \in \{T_i = 1\}} Y_i - \frac{1}{|\{T_i = 0\}|} \sum_{i \in \{T_i = 0\}} Y_i$$

#### **Observational Studies: Getting Extremely Complicated**

Challenge: Can we randomly assign as the previous example?

| unit                     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------------------------|---|---|---|---|---|---|---|---|---|----|
| <i>Y<sub>i</sub></i> (1) | X | 1 | X | X | 0 | X | X | 1 | 1 | 0  |
| $Y_i(0)$                 | 0 | X | 0 | 0 | X | 0 | 1 | X | X | X  |
| Education                | С | Н | Е | Е | Н | Н | Н | С | С | С  |
| Race                     | W | W | В | В | Α | W | W | В | W | А  |
| Gender                   | F | М | М | F | F | М | F | M | M | F  |
| $Y_i(1) - Y_i(0)$        | 3 | 3 | 3 | 3 | 3 | 3 | 5 | 3 | 3 | 5  |

- Real life: Not conducting experiment but mostly observations
  - Some will get pressures and some will not get pressures
    - ▶ No guarantee in balanced pre-treatment variables

#### **Observational Studies: Sources of Bias**

- Experiment: Merit of conducting RCTs between 2 groups
  - No difference on average except treatment status
- Observations Unbalanced pre-treatment variables
  - ► These variables affect both treatment status & outcome



#### **Observational Studies: Sources of Bias**



- Examples: why selection bias matters
  - ▶ 1) X: demographic traits; T: happy neighbors; Y: emotion
  - ▶ 2) X: colonial history; T: democratic; Y: wealth
    - Selection bias in real life (observational studies)
- What does RCTs guarantee? Unconfoundedness
- Observations: Confounding bias meeds Statistical Control

### **Observational Study Designs and Statistical Control**

- Learn several forms of observational study designs through example
- Important question in labor economics:
  - How does increase in minimum wage affect fulltime employment?
  - Theory: "raising minimum wage will encourage employers to replace full time employees with part-timers to recoup the increased cost in wages."
  - Center of debate in multiple countries
  - Extremely difficult to conduct experiments: Why?
- Our (longitudinal/panel) data set for a case study
  - ▶ 1992: New Jersey minimum wage increased from \$4.25 to \$5.05
  - ▶ PA located right next to NJ remained at \$4.25 <sup>th</sup>
  - PA and NJ are similar
  - wage/#employees of ff chains in PA and NJ before/after 1992

### **Observational Study Designs and Statistical Control**

Complete data (please check <a href="https://github.com/kosukeimai/qss">https://github.com/kosukeimai/qss</a>)

| J, PA, |
|--------|
|        |
|        |
|        |
| mum    |
|        |
| mum    |
|        |
| mini-  |
|        |
| mini-  |
|        |
|        |

#### **Cross-Sectional Comparison**

- Calculate difference in sample means (approximation of SATE)
  - Assumption: NJ and PA are very similar except the treatment
    - ▶ We can use PA as a control
  - ► Estimate SATE using difference in means estimator

$$D = \frac{1}{|\{T_i = 1\}|} \sum_{i \in \{T_i = 1\}} Y_i - \frac{1}{|\{T_i = 0\}|} \sum_{i \in \{T_i = 0\}} Y_i$$

- $ightharpoonup Y_i$  = proportion of fulltime employment for chain i
- ► Treated units: NJ employee income after the reform
- Control units: PA employee income after the reform

#### Before-and-After Design

- Before-and after design
  - ► In case X (confounder) is very different between NJ and PA
  - Assumption: time-constant confounder NJ before/after?
  - Compare only NJ before and after the treatment
  - ▶ Difference in means estimator

$$D = \frac{1}{|\{T_i = 1\}|} \sum_{i \in \{T_i = 1\}} Y_i - \frac{1}{|\{T_i = 0\}|} \sum_{i \in \{T_i = 0\}} Y_i$$

- $ightharpoonup Y_i$  = proportion of fulltime employment for chain *i*
- Treated units: NJ employee income before the reform
- Control units: NJ employee income after the reform

### Difference-in-Differences Design

- Difference-in-Differences design:
  - Controlling for Time-varying confounders (e.g. US economy)
    - with the parallel time trend assumption
  - Sample Average Treatment Effect for the Treated (SATT)
    - ► Difference-in-Differences (DiD) estimate using counterfactual Y =



$$\begin{split} & \overline{Y}_{\textbf{treated}}^{\textbf{after}} - \left\{ \overline{Y}_{\textbf{treated}}^{\textbf{before}} - \left( \overline{Y}_{\textbf{control}}^{\textbf{before}} - \overline{Y}_{\textbf{control}}^{\textbf{after}} \right) \right\} \\ & = \left( \overline{Y}_{\textbf{treated}}^{\textbf{after}} - \overline{Y}_{\textbf{treated}}^{\textbf{before}} \right) \\ & - \left( \overline{Y}_{\textbf{control}}^{\textbf{after}} - \overline{Y}_{\textbf{control}}^{\textbf{before}} \right) \\ & \text{difference for the treatment group} \end{split}$$

Parallel time trend assumption for

Time-varying confounders:

What would have happened if NJ was not treated?: Following the same path of PA

### The Three Identification Strategies



- Draw lines on the graph
- **Cross-sectional design**
- Difference in Means
- Before-and-after design
  - Difference in Means
- **Difference in Differences** 
  - Diference in Differences

#### The Three Identification Strategies

#### Cross-sectional design

```
mean(minwageNJ$fullPropAfter) -
  mean(minwagePA$fullPropAfter)
## [1] 0.0481
```

#### Before-and-after design

```
NJdiff <- mean(minwageNJ$fullPropAfter) -
    mean(minwageNJ$fullPropBefore)
NJdiff
## [1] 0.0239</pre>
```

#### Difference in Differences

```
PAdiff <- mean(minwagePA$fullPropAfter) -
   mean(minwagePA$fullPropBefore)

NJdiff - PAdiff
## [1] 0.0616</pre>
```

#### Summary

- Descriptive statistics for a single variable
- Review of casualty and experimental studies
- Observational studies
  - Confounding bias
  - Cross-section design
  - Before-and-after design
  - Difference-in-differences design

#### **Next Next Week**

- Next week: break!
  - Hope you have a great time.
- 2 weeks later
  - Measurement and survey sampling
  - Base Graphics in R

See you 2 weeks later.