Lecture 6: Methods for combining codes

Invited lecturer: Pavel Rybin

p.rybin@skoltech.ru

Teaching Assistant: Stanislav Kruglik

 $\verb|stanislav.kruglik@skolkovotech.ru|$

February 9, 2018

- Repetition of BCH codes
- 2 Are the codes we already know asymptotically good?
- Interleaved codes
- Product codes
- 6 Problems

- Repetition of BCH codes
- 2 Are the codes we already know asymptotically good?
- 3 Interleaved codes
- 4 Product codes
- 5 Problems

BCH codes

Definition

BCH code is defined by the roots of generator polynomial

$$\beta^b, \beta^{b+1}, \ldots, \beta^{b+d-2}$$
.

$$g(x) = LCM(m_b(x), \ldots, m_{b+d-2}(x)).$$

BCH codes

Definition

- $b = 1 \Rightarrow$ narrow sense BCH code;
- $n = q^m 1 \Rightarrow$ primitive BCH code;
- m = 1, $n = q 1 \Rightarrow RS$ code.

Parity check matrix

$$H = \begin{pmatrix} 1 & \beta^b & (\beta^b)^2 & \dots & (\beta^b)^{n-1} \\ 1 & \beta^{b+1} & (\beta^{b+1})^2 & \dots & (\beta^{b+1})^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & \beta^{b+d-2} & (\beta^{b+d-2})^2 & \dots & (\beta^{b+d-2})^{n-1} \end{pmatrix}.$$

Bounded minimum distance decoding. Notations

Let us consider a situation when t errors $\{e_{j_1}, e_{j_2}, \dots, e_{j_t}\}$. We introduce a notation of error locator

$$X_i = \alpha^{\mathbf{e}_{j_i}}, i = 1, \ldots, t.$$

and error values $Y_i = e_{j_i}$, i = 1, ..., t.

Let $\mathbf{S} = (S_1, S_2, \dots, S_{2t})$. The syndrome can be calculated as follows

$$S_1 = Y_1X_1 + Y_2X_2 + \dots + Y_tX_t$$

$$S_2 = Y_1X_1^2 + Y_2X_2^2 + \dots + Y_tX_t^2$$

$$\dots$$

$$S_{2t} = Y_1X_1^t + Y_2X_2^t + \dots + Y_tX_t^t$$

Polynomials

Syndrome polynomial

$$S(z) = \sum_{j=1}^{2t} S_j z^{j-1}$$

Error locator polynomial

$$\sigma(z) = \prod_{i=1}^{t} (X_i z - 1)$$

Error value polynomial

$$\omega(z) = \sum_{i=1}^t Y_i X_i \prod_{l=1, l\neq i}^t (X_l z - 1).$$

Additional (unnamed) polynomial

$$\Phi(z) = \sum_{i=1}^{t} Y_i X_i^{2t+1} \prod_{l=1, l \neq i}^{t} (X_l z - 1).$$

Key equation

$$S(z)\sigma(z) = z^{2t}\Phi(z) - \omega(z)$$

To solve the equation use extended Euclidean algorithm. Start with polynomial z^{2t} and S(z), stop when the degree of residue is less or equal t-1 for the first time. Use extended Euclidean algorithm to find $\sigma(z)$ and $\omega(z)$

Chien search

We know $\sigma(z)$, find X_i by exhaustive search over all the elements of \mathbb{F}_q .

Forney's algorithm

$$Y_i = \frac{\omega(X_i^{-1})}{\sigma_z'(X_i^{-1})} \quad i = 1, \dots, t.$$

- Repetition of BCH codes
- 2 Are the codes we already know asymptotically good?
- 3 Interleaved codes
- Product codes
- 5 Problems

Asymptotic regime, $n \to \infty$

 $\frac{d}{n} \to \delta$ (relative minimum distance), $\frac{k}{n} \to R$ (code rate).

Definition

A code family $\{C_n\}$ is said to be *asymptotically good* if there exist constants $R, \delta > 0$:

- $\bullet \ \frac{k_n}{n} \ge R > 0;$
- $\frac{d_n}{n} \geq \delta > 0$;

Are the codes we already know asymptotically good?

- $(n = 2^m 1, k = 2^m m 1, d = 3)_2$ Hamming codes
 - $R = \frac{2^m m 1}{2^m 1} \to 1$; • $\delta = \frac{3}{2m-1} \rightarrow 0$.
- ② $(n = 2^m, k, d)_2 RM(m, s)$ code
 - $k = \sum_{i=0}^{s} {m \choose i} = V_s;$ $d = 2^{m-s};$

 - $R = \frac{V_r}{2m}$
 - $\delta = 2^{-s}$

Statement

Hamming and RM codes are asymptotically bad.

Are the codes we already know asymptotically good?

BCH codes:

• t = const. Hamming bound

$$n-k \ge t \log n + O(1).$$

BCH code

$$n-k \le t \log n + O(1).$$

BCH codes are good!

• t grows with n

Theorem

Let $n \to \infty$ and $\delta > 0$, then the rate of BCH code $R \to 0$.

BCH codes are asymptotically bad.

- Repetition of BCH codes
- 2 Are the codes we already know asymptotically good?
- 3 Interleaved codes
- Product codes
- ⑤ Problems

Interleaved codes

$$R = \frac{\sum R_i}{\ell}.$$

- Repetition of BCH codes
- 2 Are the codes we already know asymptotically good?
- Interleaved codes
- 4 Product codes
- 6 Problems

Construction

A codeword of a product code is a matrix whose rows are codewords of the first component code and whose columns are codewords of the second component code.

Parameters

Consider a product code C constructed from row code C_r and column code C_c , then

$$n(C) = n_r n_c$$

 $R(C) = R(C_r)R(C_c)$
 $d(C) \ge d(C_r)d(C_c)$

Iterative decoder

Generator matrix

Statement

Let G_r and G_c be generator matrices of a row code C_r and a column code C_c , then

$$G = G_r \otimes G_c$$
.

Recall the Kronecker product definition. Let $\mathbf{X} = [x_{i,j}]$ be of size $m_x \times n_x$, $\mathbf{Y} = [y_{i,j}]$ be of size $m_y \times n_y$, then

$$X \otimes Y = \begin{bmatrix} x_{1,1}Y & x_{1,2}Y & \dots & x_{1,n_x}Y \\ x_{2,1}Y & x_{2,2}Y & \dots & x_{2,n_x}Y \\ \vdots & \vdots & \ddots & \vdots \\ x_{m_x,1}Y & x_{m_x,2}Y & \dots & x_{m_x,n_x}Y \end{bmatrix}$$

Product of cyclic codes

Statement

Let C_r and C_c be cyclic codes with $(n_r, n_c) = 1$, then $C = C_r \otimes C_c$ is also cyclic.

- Repetition of BCH codes
- 2 Are the codes we already know asymptotically good?
- 3 Interleaved codes
- Product codes
- 6 Problems

Problem 1

Generator polynom of (15,5) cyclic code over $\mathbb{F}(2)$ has form $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$. Write its' generator and parity-check matrix.

Problem 2

Let generator plolynom of cyclic code over $\mathbb{F}(2)$ has a form $g(x) = 1 + x^4 + x^6 + x^7 + x^8$. Find the length of such code.

Problem 3

- Constuct field \mathbb{F}_2^{16} over modulo of $\phi(x) = 1 + x + x^4$
- Find the generator matrix of (15,7)-BCH code which can correct two errors
- Decode vector y = (001100101100000)

Thank you for your attention!