Palabras y autómatas

Clase 01

IIC 2223

Prof. Dante Pinto

Outline

Palabras

Autómatas

Outline

Palabras

Autómatas

Alfabetos, letras y palabras

Definiciones

- Un alfabeto Σ es un conjunto finito.
- Un elemento de Σ lo llamaremos una letra o símbolo.
- Una palabra o string sobre Σ es una secuencia finita de letras en Σ .

Ejemplo

- $\Sigma = \{a, b, c\}$
- Palabras sobre Σ:

```
aaaaabb , bcaabab , a , bbbbbb , ...
```

¿Cuál es el alfabeto preferido en computación?

Alfabetos, letras y palabras

Más definiciones

■ El largo |w| de una palabra w es el número de letras.

$$|w| \stackrel{\mathsf{def}}{\equiv} \# \mathsf{de} \mathsf{letras} \mathsf{en} w$$

 $lue{}$ Denotaremos ε como la palabra sin símbolos de largo 0.

$$|\varepsilon| \stackrel{\mathsf{def}}{\equiv} 0$$

■ Denotaremos por Σ^* como el conjunto de todas las palabras sobre Σ .

Ejemplo

Para $\Sigma = \{0, 1\}$:

- **|** |00011001| = ?
- $\Sigma^* = ?$

Concatenación entre palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$ tal que $u = a_1 \dots a_n$ y $v = b_1 \dots b_m$:

$$u \cdot v \stackrel{\mathsf{def}}{\equiv} a_1 \dots a_n b_1 \dots b_m$$

Decimos que $u \cdot v$ es la palabra "u concatenada con v".

Ejemplo

Para $\Sigma = \{0, 1, 2, \dots, 9\}$:

- $0123 \cdot 9938 = ?$
- $3493 \cdot \varepsilon = ?$

Concatenación sobre palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$ tal que $u = a_1 \dots a_n$ y $v = b_1 \dots b_m$:

$$u \cdot v \stackrel{\mathsf{def}}{\equiv} a_1 \dots a_n b_1 \dots b_m$$

Decimos que $u \cdot v$ es la palabra "u concatenada con v".

Algunas propiedades:

- ¿Es la concatenación asociativa: $(u \cdot v) \cdot w = u \cdot (v \cdot w)$?
- **E** Es la concatenación **conmutativa**: $u \cdot v = v \cdot u$?
- Es verdad que $|u \cdot v| = |u| + |v|$?

Lenguajes

Definición

Sea Σ un alfabeto y $L \subseteq \Sigma^*$.

Decimos que L es un lenguaje sobre el alfabeto Σ .

Ejemplos de lenguajes

Sea
$$\Sigma = \{a, b\}$$
:

$$L_0 = \{\varepsilon, a, aa, b, ba\}$$

$$L_1 = \{\varepsilon, b, bb, bbb, bbbb, \ldots \}$$

$$-L_2 = \{w \mid \exists u \in L_1. \ w = a \cdot u\}$$

$$L_3 = \{ w \mid \exists u, v \in \Sigma^*. \ w = u \cdot abba \cdot v \}$$

$$-L_4 = \{ w \mid \exists u \in \Sigma^*. \ w = u \cdot u \}$$

Un lenguaje puede ser visto como una propiedad de palabras

Ocuparemos estas definiciones durante TODO el curso

Convenciones

Durante todo el curso:

- Para letras usaremos los símbolos: a, b, c, d, e, \dots
- Para palabras usaremos los símbolos: w, u, v, x, y, z, ...
- Para alfabetos usaremos los símbolos: Σ , Γ ,...
- Para lenguajes usaremos los símbolos: *L*, *M*, *N*, . . .
- Para números usaremos los símbolos: i, k, j, l, m, n, ...

¡No olvidar!

Outline

Palabras

Autómatas

Autómatas finitos

- Modelo de computación más sencillo, basado en una cantidad finita de memoria.
- Procesa cada palabra de principio a fin en una sola pasada.
- Al terminar, el autómata decide si acepta o rechaza el input.

Usaremos los autómatas finitos para definir lenguajes

Autómata finito determinista

Definición

Un autómata finito determinista (DFA) es una tupla:

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- $\delta: Q \times \Sigma \rightarrow Q$ es la función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales (o aceptación).

Autómata finito determinista

Ejemplo

- $Q = \{0, 1, 2\}$
- $\Sigma = \{a, b\}$
- $\delta: Q \times \Sigma \rightarrow Q$ se define como:

$$\delta(0, a) = 1$$
 $\delta(1, a) = 2$
 $\delta(2, a) = 2$
 $\delta(q, b) = q \quad \forall \ q \in \{0, 1, 2\}$

- $q_0 = 0$
- $F = \{2\}$

¿cómo se ejecuta un autómata sobre una palabra?

Sea:

- Un autómata $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$.
- Un input $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Una ejecución (o run) ρ de A sobre w es una secuencia:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} p_2 \stackrel{a_3}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 = q_0$ y
- para todo $i \in \{0, 1, ..., n-1\}$, $\delta(p_i, a_{i+1}) = p_{i+1}$.

Una ejecución ρ de \mathcal{A} sobre w es de aceptación si:

$$p_n \in F$$
.

Desde ahora hablaremos de **LA** ejecución de \mathcal{A} sobre w

¿Cómo se ejecuta un autómata sobre una palabra?

Una ejecución (o run) ρ de $\mathcal A$ sobre w es una secuencia:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} p_2 \stackrel{a_3}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 = q_0$ y
- para todo $i \in \{0, 1, ..., n-1\}$, $\delta(p_i, a_{i+1}) = p_{i+1}$.

Ejemplo

- ¿Cuál es la ejecución de A sobre bbab?
- ¿Cuál es la ejecución de A sobre abab?

¿Cuál(es) de las dos ejecuciones son de aceptación?

Sea un autómata $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ y $w \in \Sigma^*$.

Definiciones

- **A** acepta w si la ejecución de \mathcal{A} sobre w es de aceptación.
- **A** rechaza w si la ejecución de \mathcal{A} sobre w NO es de aceptación.
- El lenguaje aceptado o definido por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

Defina un autómata para los siguientes lenguajes

- 1. Todas las palabras sobre $\{a, b\}$ tal que cada a-letra esta seguida de una b-letra.
- 2. Todas las palabras sobre $\{a, b\}$ que terminan con ab.
- 3. Todas las palabras sobre $\{a, b\}$ con una cantidad par de *a*-letras tal que no hay dos *a*-letras seguidas.

Sea un autómata $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ y $w \in \Sigma^*$.

Definiciones

- **A** acepta w si la ejecución de \mathcal{A} sobre w es de aceptación.
- **A** rechaza w si la ejecución de \mathcal{A} sobre w NO es de aceptación.
- El lenguaje aceptado por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

■ Un lenguaje $L \subseteq \Sigma^*$ se dice regular si, y solo si, existe un autómata finito determinista A tal que:

$$L = \mathcal{L}(\mathcal{A})$$