Analysis II

Sebastian Baader

Frühlingssemester 2021

Über diese Vorlesung

Diese Vorlesung besteht aus drei Teilen, die in das Studium von Funktionen in mehreren reellen Variablen einführen soll. Der ganze Inhalt dieser Vorlesung (und mehr) ist in [1] zu finden, konkret in den Kapiteln XIV, XV für gewöhnliche Differentialgleichungen, XX für die Differentialrechnung, und XXI, XXIV für Gradientenfelder und Differentialformen.

Im Kapitel I geht es um "gewöhnliche Differentialgleichungen". Wir studieren dort Kurven $\gamma \colon \mathbb{R} \to \mathbb{R}^n$, deren Ableitung durch die Position $\gamma(t)$ bestimmt ist. Wir werden Vektorfelder einführen um das präziser zu formulieren, und diese dann untersuchen. Im Kapitel II geht es um differenzierbare Ableitungen $f \colon \mathbb{R}^n \to \mathbb{R}^m$ (was sich von Kurven dadurch unterscheidet, dass auch der Definitionsbereich dieser Funktionen mehrdimensional sein darf). Dieses Kapitel wird den grössten Teil dieser Vorlesung formen. Im Kapitel III lernen wir Gradientenfelder und Differentialformen kennen. Dort studieren wir Abbildungen $f \colon \mathbb{R}^n \to \mathbb{R}$. Die leitende Frage in diesem Kapitel wird sein, welche Vektorfelder $X \colon \mathbb{R}^n \to \mathbb{R}$ Gradientenfelder sind.

Über dieses Dokument

Das ist eine Mitschrift der Vorlesung "Analysis 2" von Prof. Dr. Sebastian Baader im Frühlingssemester 2021. Du darfst sie so verwenden, wie sie dir am meisten beim Verständnis des Materials hilft. Verantwortlich dafür was hier drin steht ist Levi Ryffel. Denke daran dass der Dozent dieses Dokument nicht schreibt (und vielleicht auch nicht liest). Ihn trifft keine Verantwortung, falls Unsinn steht.

Dein Beitrag zu den Notizen

Diese Vorlesungsnotizen werden in Echtzeit während der Vorlesung mitgeschrieben und werden deshalb viele Probleme enthalten. Damit sind allerlei Missgeschicke gemeint wie zum Beispiel Symbolverwechslungen, unpräzise Aussagen und Argumente, alternative Rechtschreibung und Grammatik, oder unattraktives Layout. Falls dir so etwas auffällt, auch wenn es dich nicht stark stört, und auch wenn du es als etwas subjektiv empfindest, poste doch auf

https://github.com/raw-bacon/ana2-notes,

ein "Issue", oder sende eine E-Mail an levi.ryffel@math.unibe.ch. Auf demselben Weg kannst du Wünsche und Verbesserungsvorschläge zu dieser Mitschrift anbringen.

Inhaltsverzeichnis

Ι	Gewöhnliche Differentialgleichungen	3
1	Normen auf reellen Vektorräumen	3
2	Stetigkeit	7
3	Der Fixpunktsatz von Banach	12
4	Kurven und Vektorfelder	17
5	Der Satz von Cauchy-Lipschitz-Picard-Lindelöf	22
6	Lineare Differentialgleichungen	26
7	Differentialgleichungen in einer Variable	29
8	Rektifizierbare Kurven	31
II	Differentialrechnung	36
1	Differenzierbarkeit	36
2	Die Kettenregel	43
TTT	Gradientenfelder und Differentialformen	48

Kapitel I

Gewöhnliche Differentialgleichungen

Bevor wir Differentialgleichungen studieren können, müssen wir den Raum \mathbb{R}^n besser verstehen. Wir erinnern uns nun an das Studium von Funktionen in einer Variable. Dort machen viele Definitionen vom Absolutbetrag Gebrauch.

Beispiele.

(1) Konvergenz einer Folge $a: \mathbb{N} \to \mathbb{R}$, in Symbolen

$$\lim_{n \to \infty} a(n) = \alpha \in \mathbb{R}$$

heisst Folgendes. Für alle $\varepsilon > 0$ existiert $N \in \mathbb{N}$, sodass für alle $n \geq N$ gilt, dass $|a(n) - \alpha| \leq \varepsilon$.

(2) Stetigkeit einer Funktion $f: \mathbb{R} \to \mathbb{R}$ im Punkt $p \in \mathbb{R}$ heisst, dass für alle $\varepsilon > 0$ ein $\delta > 0$ existiert, so dass für alle $q \in \mathbb{R}$ mit $|q - p| \le \delta$ gilt, dass $|f(q) - f(p)| \le \varepsilon$.

Beide dieser sehr zentralen Konzepte machen kritischen Gebrauch des Absolutbetrags. In \mathbb{R}^n gibt es aber keinen kanonischen Ersatz für diesen. Dies motiviert unseren ersten Abschnitt in diesem Kapitel.

1 Normen auf reellen Vektorräumen

Die Normaxiome greifen die wichtigsten Eigenschaften des Absolutbetrags in \mathbb{R} auf und verallgemeinern diese, so dass wir in allgemeinen reellen Vektorräumen Konzepte wie Konvergenz und Stetigkeit formalisieren können.

Definition. Sei V ein Vektorraum über \mathbb{R} . Eine Abbildung $\|\cdot\|: V \to \mathbb{R}$ heisst Norm auf V, falls folgende Eigenschaften erfüllt werden.

(i) (Strikte Positivität) Für alle $v \in V$ gilt $||v|| \ge 0$ und ||v|| = 0 genau dann, wenn v = 0.

- (ii) (Homogenität) Für alle $v \in V$ und alle $\lambda \in \mathbb{R}$ gilt $||\lambda v|| = |\lambda| \cdot ||v||$.
- (iii) (Dreiecksungleichung) Für alle $v, w \in V$ gilt $||v + w|| \le ||v|| + ||w||$.

Eigenschaft (ii) hätten wir auch folgendermassen formulieren können: Die Norm $\|\cdot\|$ auf einem eindimensionalen Unterraum von V verhält sich (bis auf Streckung) genau so wie der Absolutbetrag auf \mathbb{R} .

Definition. Sei $\|\cdot\|$ eine Norm auf einem reellen Vektorraum V. Die Menge

$$B_1 = \{ v \in V \mid ||v|| \le 1 \} \subset V$$

heisst Norm-Einheitsball.

Beispiele. Sei $V = \mathbb{R}^n$ mit Standardbasis e_1, \dots, e_n . Einen Vektor $v \in V$ können wir dann ausdrücken durch $v = v_1 e_1 + \dots + v_n e_n$ mit $v_i \in \mathbb{R}$.

(1) Die Summennorm ist die Norm

$$||v||_1 = |v_1| + \cdots + |v_n|.$$

Wir prüfen nun die Normaxiome.

- (i) Dank den Eigenschaften des Absolutsbetrag auf \mathbb{R} haben wir sofort $||v||_1 \geq 0$ und $||v||_1 = 0$ genau dann, wenn alle v_i null sind.
- (ii) Berechne $\|\lambda v\|_1 = |\lambda v_1| + \cdots + |\lambda v_n| = |\lambda| \cdot \|v\|_1$.
- (iii) Berechne

$$||v + w||_1 = |v_1 + w_1| + \dots + |v_n + w_n|$$

$$\leq |v_1| + |w_1| + \dots + |v_n| + |w_n|$$

$$= ||v||_1 + ||w||_1.$$

(2) Die Maximumnorm ist die Norm

$$||v||_{\infty} = \max\{|v_1|, \dots |v_n|\}.$$

Wir prüfen wieder die Normaxiome.

- (i) Wir haben $||v||_{\infty} \geq 0$ und auch $||v||_{\infty}$ genau dann, wenn alle v_i null sind.
- (ii) Es gilt $\|\lambda v\|_{\infty} = \max\{\lambda v_1, \dots, \lambda v_n\} = |\lambda| \cdot \|v\|_{\infty}$.
- (iii) Berechne

$$||v + w||_{\infty} = \max \{|v_1 + w_1|, \dots |v_n + w_n|\}$$

$$\leq \max \{|v_1|, \dots, |v_n|\} + \max \{|w_1|, \dots, |w_n|\}$$

$$= ||v||_{\infty} + ||w||_{\infty},$$

da jeweils $|v_i + w_i| \le |v_i| + |w_i|$ gilt.

(3) die euklidische Norm ist die Norm

$$||v||_2 = \sqrt{v_1^2 + \dots + v_n^2}.$$

Auch für diese Norm prüfen wir die Axiome.

- (i) Es gilt $||v||_2 \ge 0$ und $||v||_2 = 0$ genau dann, wenn $v_1^2 + \cdots + v_n^2 = 0$ gilt, was äquivalent dazu ist, dass alle v_i null sind.
- (ii) Berechne $\|\lambda v\|_2 = |\lambda| \cdot \|v\|_2$, da $\sqrt{\lambda^2} = |\lambda|$ gilt.
- (iii) Hier stossen wir zum ersten Mal auf Schwierigkeiten. Wir werden das im Lemma unten zeigen.
- (4) Folgendes Beispiel rechtfertigt die Notation für obige Normen. Sei $p \geq 1$ für $p \geq 1$. Die p-Norm ist

$$||v||_p = \sqrt[p]{|v_1|^p + \dots + |v_n|^p}.$$

Die Dreiecksungleichung $\|v+w\|_p \leq \|v\|_p + \|w\|_p$ heisst *Minkowski-Ungleichung*, die aus der Konkavität von log folgt. Siehe hier Abschnitt 59.3 in [1]. Die Normen $\|\cdot\|_1$ und $\|\cdot\|_2$ sind Spezialfälle dieser Familie von Normen. Für alle $p\geq 1$ gilt, dass $\|v\|_{\infty} \leq \|v\|_p \leq \sqrt[p]{n} \|v\|_{\infty}$. Im Grenzwert $p\to\infty$ erhalten wir

$$\lim_{p \to \infty} \|v\|_p = \|v\|_{\infty}$$

da $\lim_{p\to\infty} \sqrt[p]{n} = 1$.

Die Normbälle der ersten drei Normen im Fall n=2 sind in Abbildung I.1 zu sehen.

Abbildung I.1: Normbälle der Normen $\|\cdot\|_1,\|\cdot\|_{\infty},\|\cdot\|_2$

Normen aus Skalarprodukten

Definition. Ein *Skalarprodukt* auf einem reellen Vektorraum V ist eine strikt positive, symmetrische, bilineare Abbildung $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$. Das heisst,

(i) für alle $v \in V$ gilt $\langle v, v \rangle \geq 0$ und $\langle v, v \rangle = 0$ genau dann, wenn v = 0,

- (ii) für alle $v, w \in V$ gilt $\langle v, w \rangle = \langle w, v \rangle$,
- (iii) für alle $u, v, w \in V$ und $t \in \mathbb{R}$ gilt $\langle u, v + tw \rangle = \langle u, v \rangle + t \langle u, w \rangle$.

Lemma. Sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf V. Dann ist die Abbildung

$$\|\cdot\| \colon V \to \mathbb{R}$$
$$v \mapsto \sqrt{\langle v, v \rangle}$$

eine Norm auf V.

Beweis. Wir prüfen die Normaxiome folgendermassen.

- (i) Es gilt $||v|| = \sqrt{\langle v, v \rangle} \ge 0$ und ||v|| = 0 genau dann, wenn $\langle v, v \rangle = 0$, das heisst, v = 0 gilt.
- (ii) Berechne $\|\lambda v\| = \sqrt{\langle \lambda v, \lambda v \rangle} = \sqrt{\lambda^2 \cdot \langle v, v \rangle} = |\lambda| \cdot \|v\|$.
- (iii) Seien $v, w \in V$. Wir wollen zeigen, dass $\sqrt{\langle v + w, v + w \rangle} \leq \sqrt{\langle v, v \rangle} + \sqrt{\langle w, w \rangle}$. Da Quadrieren auf $\mathbb{R}_{\geq 0}$ monoton ist, reicht es zu zeigen, dass

$$\langle v + w, v + w \rangle \le \langle v, v \rangle + \langle w, w \rangle + 2 \cdot \sqrt{\langle v, v \rangle} \cdot \sqrt{\langle w, w \rangle}.$$

Ausmultiplizieren der linken Seite und Subtraktion der Terme, die dann auf beiden Seiten erscheinen liefert, dass die Dreiecksungleichung für $\|\cdot\|$ äquivalent zur Cauchy-Schwarz Ungleichung

$$\langle v, w \rangle \le \sqrt{\langle v, v \rangle} \cdot \sqrt{\langle w, w \rangle}$$

ist. Wir beweisen nun diese. Betrachte dazu die Funktion $h \colon \mathbb{R} \to \mathbb{R}$, die durch

$$h(t) = \langle v + tw, v + tw \rangle > 0$$

definiert ist. Es gilt also $h(t) = t^2 \langle w, w \rangle + 2t \langle v, w \rangle + \langle v, v \rangle$. Dies beschreibt eine Parabel mit Diskriminante

$$D = b^2 - 4ac = 4\langle v, w \rangle^2 - 4\langle w, w \rangle \cdot \langle v, v \rangle.$$

Aus $h(t) \geq 0$ für alle $t \in \mathbb{R}$ folgt, dass $D \leq 0$ ist. Wir schliessen, dass $\langle v, w \rangle^2 \leq \langle w, w \rangle \cdot \langle v, v \rangle$ gelten muss.

Beispiele.

(1) Sei $V = \mathbb{R}^n$ und

$$\langle v, w \rangle = v_1 w_1 + \dots + v_n w_n$$

das Standardskalarprodukt. Dann ist

$$||v|| = \sqrt{v_1^2 + \dots + v_n^2} = ||v||_2$$

die euklidische Norm.

(2) Sei V=C[0,1] der Raum von stetigen Funktionen $f\colon [0,1]\to \mathbb{R}$. Das ist ein unendlichdimensionaler Vektorraum, da die Funktionen $1,x,x^2,\ldots$ linear unabhängig sind. Für $f,g\in V$ definieren wir

$$\langle f, g \rangle = \int_0^1 f(x) \cdot g(x) \, dx.$$

Die Skalarproduktaxiome sind leicht zu überprüfen.

Bemerkung. Nicht jede Norm auf V stammt von einem Skalarprodukt. In den Übungen wird gezeigt, dass jede von einem Skalarprodukt induzierte Norm $\|\cdot\|$ die Parallelogramm-identität

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2)$$

erfüllt, und dass die Normen $\|\cdot\|_1$ und $\|\cdot\|_{\infty}$ diese nicht erfüllen.

2 Stetigkeit

Definition. Seien V und W reelle Vektorräume mit Normen $\|\cdot\|_V$ und $\|\cdot\|_W$. Eine Abbildung $f\colon V\to W$ heisst stetig im Punkt $p\in V$, falls für alle $\varepsilon>0$ ein $\delta>0$ existiert, so dass für alle $q\in V$ mit $\|q-p\|_V\leq \delta$ folgt, dass $\|f(q)-f(p)\|_W\leq \varepsilon$. Wir sagen, dass f stetig ist, falls f in allen Punkten von V stetig ist.

Beispiel. Im Fall $V = W = \mathbb{R}$ und $\|\cdot\| = |\cdot|$ erhalten wir den üblichen Stetigkeitsbegriff.

Wir untersuchen nun, wie der Stetigkeitsbegriff von den Normen auf V und W abhängt. Betrachte zunächst folgenden günstigen Fall. Sei $V=W=\mathbb{R}$. Sei $\|\cdot\|$ eine Norm auf \mathbb{R} . Für alle $x\in\mathbb{R}$ gilt dann

$$||x|| = ||x \cdot 1|| = |x| \cdot ||1||.$$

Sei nun $f \colon \mathbb{R} \to \mathbb{R}$ bezüglich der Norm $|\cdot|$ im Punkt $p \in \mathbb{R}$ stetig. Wir zeigen nun, dass f auch bezüglich der Norm $|\cdot|$ im Punkt p stetig ist. Wähle $\delta > 0$ so, dass für alle $q \in \mathbb{R}$ mit $|q-p| \le \delta/\|1\|$ gilt, dass $|f(q)f(p) \le \varepsilon/\|1\|$. Das geht, da $\|1\| > 0$ aus $1 \ne 0$ folgt. Sei nun $q \in \mathbb{R}$ mit $\|q-p\| \le \delta$. Dann gilt $|q-p| \le \delta/\|1\|$. Wir schliessen, dass $|f(q)-f(p)| \le \varepsilon/\|1\|$, also $\|f(q)-f(p)\| = |f(q)-f(p)| \cdot \|1\| \le \varepsilon$. Insgesamt hängt also der Stetigkeitsbegriff auf \mathbb{R} nicht von der Norm auf \mathbb{R} ab.

Es gibt aber auch einen ungünstigen Fall. Sei \mathbb{R}^{∞} der Raum aller Folgen $(x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}}$ für welche N > 0 existiert, so dass für alle $n \geq N$ gilt, dass $x_n = 0$. Betrachte auf \mathbb{R}^{∞} die beiden Normen

$$||v||_2 = \sqrt{v_1^2 + v_2^2 + \cdots}$$

 $||v||_{\infty} = \max\{|v_1|, |v_2|, \dots\}.$

Es gilt für alle $v \in \mathbb{R}^{\infty}$, dass $||v||_{\infty} \leq ||v||_2$. Sei $V = (\mathbb{R}^{\infty}, ||\cdot||_2)$ und $W = (\mathbb{R}^{\infty}, ||\cdot||_{\infty})$. Die Identitätsabbildung

$$\mathrm{Id} \colon \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$$
$$v \mapsto v$$

kann auf vier Arten als Abbildung zwischen normierten Räumen betrachtet werden, nämlich

- $f_1: V \to V$,
- $f_2 \colon W \to W$,
- $f_3 \colon V \to W$,
- $f_4 \colon W \to V$.

Wir bemerken, dass f_1 , f_2 und f_3 stetig sind, indem wir $\delta = \varepsilon$ wählen. Aber f_4 ist nicht stetig!. Betrachte dazu die Folge von Punkten $p_n = (1/n, 1/n, \dots, 1/n, 0, \dots) \in \mathbb{R}^{\infty}$, wobei das Glied 1/n gerade n^2 mal vorkommt. Es gilt $||p_n||_{\infty} = 1/n$ und $||p_n||_2 = 1$. Insbesondere gilt

$$||f_4(p_n) - f_4(0)||_2 = ||p_n||_2 = 1$$

und $||p_n||_{\infty} = 1/n$, also ist f_4 im Punkt p = 0 nicht stetig.

Zusammengefasst erkennen wir, dass auf \mathbb{R}^{∞} das Verhältnis der Normen $\|\cdot\|_2$ und $\|\cdot\|_{\infty}$ beliebig hohe Werte annimmt. Im Sinne folgender Definition bedeutet das, dass in \mathbb{R}^{∞} diese beiden normen nicht äquivalent sind.

Definition. Zwei Normen $\|\cdot\|$, $\|\cdot\|$ heissen äquivalent, falls es Konstanten $0 < c \le C$ gibt, so dass für alle $v \in V \setminus \{0\}$ gilt, dass

$$c \le \frac{\widetilde{\|v\|}}{\|v\|} \le C.$$

Bildlich können wir uns die Äquivalenz von Normen so vorstellen, dass der $\|\cdot\|$ -Normball sowohl eine skalierte Version vom $\|\cdot\|$ -Normball enthält, wie auch in einer skalierten Version vom $\|\cdot\|$ -Normball enthalten ist.

Beispiele.

- (1) Sei $\|\cdot\|$ eine Norm auf \mathbb{R} . Dann gilt für alle $x \in \mathbb{R}$, dass $\|x\| = \|1\| \cdot |x|$, also sind $\|\cdot\|$ und $|\cdot|$ äquivalent.
- (2) Für alle $v \in \mathbb{R}^n$ gilt, dass

$$||v||_{\infty} \le ||v||_2 \le \sqrt{n} \cdot ||v||_{\infty}.$$

also sind die beiden Normen $\|\cdot\|_{\infty}$ und $\|\cdot\|_2$ äquivalent auf \mathbb{R}^n .

(3) Auf \mathbb{R}^{∞} sind die Normen $\|\cdot\|_{\infty}$ und $\|\cdot\|_{2}$ nicht äquivalent.

Bemerkung. Die Äquivalenz von Normen ist eine Äquivalenzrelation. Die Symmetrie und die Reflexivität sind leicht zu überprüfen. Für die Transitivität bemerke, dass aus $a \le x/y \le A$ und $b \le y/z \le B$ folgt, dass $ab \le x/z \le AB$.

Theorem. Auf \mathbb{R}^n sind alle Normen äquivalent.

Beweis. Es reicht zu zeigen, dass jede Norm $\|\cdot\|$ auf \mathbb{R}^n zur euklidischen Norm $\|\cdot\|_2$ äquivalent ist. In einem ersten Schritt zeigen wir, dass eine Konstante C>0 existiert, so dass $\|\cdot\|/\|\cdot\|_2 \leq C$ gilt. Sei $v=v_1e_1+\cdots+v_ne_n$ mit $v_i\in\mathbb{R}$. Schätze ab, dass

$$||v|| \le ||v_1e_1|| + \dots + ||v_ne_n||$$

$$= |v_1| \cdot ||e_1|| + \dots + |v_n| \cdot ||e_n||$$

$$\le ||v||_2 \cdot (||e_1|| + \dots + ||e_n||).$$

Wir erhalten das gewünschte Resultat, indem wir $C = ||e_1|| + \cdots + ||e_n||$ setzen, dann gilt nämlich $||v|| \le C \cdot ||v||_2$.

Wir suchen nun im zweiten Schritt eine Konstante c>0, für die $\|\cdot\|/\|\cdot\|_2\geq c$ gilt. Nimm widerspruchsweise an, dass das Verhältnis $\|\cdot\|/\|\cdot\|_2$ beliebig kleine Werte annimmt. Dann gibt es eine Folge von Vektoren $v_k\in\mathbb{R}^n\setminus\{0\}$ mit $\|v_k\|/\|v_k\|_2\leq 1/k$. Für die normierten Vektoren $w_k=v_k/\|v_k\|_2\in\mathbb{R}^n\setminus\{0\}$ gilt dann, dass $\|w_k\|_2=1$ und $\|w_k\|\leq 1/k$. Somit liegen alle Koordinaten von w_k im Intervall [-1,1]. Also existiert eine Teilfolge der w_k , so dass die erste Koordinatenfolge mit Grenzwert in [-1,1] konvergiert. Wir iterieren dieses Verfahren n-mal, und erhalten eine Teilfolge w_{k_i} der w_k , welche in allen Koordinaten konvergiert. Setze $w=\lim_{i\to\infty}w_{k_i}$. Wir behaupten nun, dass $\|w\|_2=1$ und $\|w\|=0$ gilt, was natürlich den Widerspruch w=0 impliziert. Bemerke dazu, dass für alle $i\in\mathbb{N}$ gilt, dass

$$1 - \|w - w_{k_i}\|_2 = \|w_{k_i}\|_2 - \|w - w_{k_i}\|_2$$

$$\leq \|w\|_2$$

$$\leq \|w - w_{k_i}\|_2 + \|w_{k_i}\|_2$$

$$= 1 + \|w - w_{k_i}\|_2.$$

Da die w_{k_i} koordinatenweise gegen w konvergieren, folgt, dass

$$\lim_{i \to \infty} \|w - w_{k_i}\|_2 = 0$$

gilt. Schätze weiterhin ab, dass

$$||w|| \le ||w_{k_i}|| + ||w - w_{k_i}||,$$

also existiert nach Schritt 1 eine Konstante C > 0, sodass $||w|| \le 1/k_i + C \cdot ||w - w_{k_i}||_2$ gilt, woraus im Grenzwert $i \to \infty$ folgt, dass ||w|| = 0 gilt.

Korollar 1. Der Stetigkeitsbegriff für Abbildungen $f: \mathbb{R}^n \to \mathbb{R}^m$ hängt nicht von den Normen auf \mathbb{R}^n und \mathbb{R}^m ab.

Der Beweis hier lässt sich durch einfache Ajustierung der δ und ε führen. Siehe dazu unseren Beweis für den Fakt, dass alle Normen auf $\mathbb R$ zum selben Stetigkeitsbegriff führen.

Lineare Abbildungen

Frage. Seien V, W normierte Vektorräume und $A: V \to W$ linear. Ist A dann stetig?

Die Antwort ist im allgemeinen nein, was unsere Abbildung f_4 oben zeigt. Wir untersuchen nun noch ein weiteres Beispiel.

Beispiel. Sei $V = \mathbb{R}^{\infty}$ mit der Maximumsnorm $\|\cdot\|_{\infty}$. Definiere $A \colon \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ als die lineare Erweiterung der Abbildung $e_k \mapsto ke_k$. Setze $q_k = e_k/k \in \mathbb{R}^{\infty}$. Es gilt, dass $\|q_k - 0\|_{\infty} = \|q_k\|_{\infty} = 1/k$ und $\|A(q_k) - A(0)\|_{\infty} = \|e_k - 0\|_{\infty} = 1$. Somit ist A im Nullpunkt (und auch in allen anderen Punkten) nicht stetig.

Definition. Seien $\|\cdot\|_V$, $\|\cdot\|_W$ Normen auf normierten Vektorräumen V, W. Sei $A: V \to W$ linear. Die *Operatornorm* von A ist

$$||A||_{\mathrm{op}} = \sup \left\{ \frac{||Av||_W}{||v||_V} \mid v \in V \setminus \{0\} \right\} \in \mathbb{R} \cup \{\infty\}.$$

Beispiele.

(1) Betrachte die Abbildung

$$A \colon \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$$
$$e_k \mapsto ke_k$$

auf \mathbb{R}^{∞} mit der Norm $\|\cdot\|_{\infty}.$ Dann gilt $\|A\|_{\mathrm{op}}=\infty.$

(2) Sei $A\colon \mathbb{R}^2 \to \mathbb{R}^2$ auf \mathbb{R}^2 mit der euklidischen Norm $\|\cdot\|_2$ die Abbildung, die durch die Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

gegeben ist. Bemerke folgende Eigenschaften.

- (i) A = 0 genau dann, wenn $||A||_{op} = 0$.
- (ii) Betrachte

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Sei v = (x, y). Es gilt dann Av = (y, 0), also gilt

$$\frac{\|Av\|_2}{\|v\|_2} = \frac{y}{\sqrt{x^2 + y^2}} \le 1.$$

Für x = 0 erhalten wir 1 für diesen Quotienten, also gilt $||A||_{op} = 1$.

(iii) Betrachte die Matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$$

für $d \ge 1$. Um $||A||_{\text{op}}$ zu bestimmen reicht es, Vektoren der Form v = (1,0) und v = (x,1) zu betrachten. Es gilt A(1,0) = (1,0), also ist $||A||_{\text{op}} \ge 1$. Weiter ist A(x,1) = (x,d). Wir schliessen, dass für v = (x,1) gilt, dass

$$\frac{\|Av\|_2}{\|v\|_2} = \frac{\sqrt{x^2 + d^2}}{\sqrt{x^2 + 1^2}} \le d.$$

Aber d wird im Fall x = 0 angenommen, also folgt $||A||_{op} = d$.

Proposition 1. Sei $A: V \to W$ eine lineare Abbildung zwischen normierten Vektorräumen. Dann ist A stetig, genau dann, wenn $||A||_{op} < \infty$ gilt.

Beweis. Seien $p \in V$ und $\varepsilon > 0$ vorgegeben. Setze

$$\delta = \frac{\varepsilon}{\|A\|_{\text{op}} + 1}.$$

Sei nun $q \in V$ mit $||q - p||_V \le \delta$. Dann gilt

$$||A(q) - A(p)||_{W} = ||A(q - p)||_{W}$$

$$\leq ||A||_{\text{op}} \cdot ||q - p||_{V}$$

$$\leq ||A||_{\text{op}} \cdot \frac{\varepsilon}{||A||_{\text{op}} + 1}$$

$$\leq \varepsilon.$$

Somit ist A stetig im Punkt $p \in V$. Für die Umkehrung, siehe Serie 2.

Spezialfall. Sei $A \colon \mathbb{R}^n \to \mathbb{R}^m$ linear. Schätze $||A||_{\text{op}}$ bezüglich der Maximumsnorm $||\cdot||_{\infty}$ auf \mathbb{R}^n und \mathbb{R}^m wie folgt ab. Schreibe

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

als Matrix, das heisst $A(e_i) = \sum_{j=1}^m a_{ij}e_j$. Setze $a = \max\{|a_{ij}| \mid 1 \le i \le m, 1 \le j \le n\}$. Für $v \in \mathbb{R}^n$ gilt dann $||Av||_{\infty} \le n \cdot a \cdot ||v||_{\infty}$. Insbesondere ist $||A||_{\text{op}} \le n \cdot a$ endlich. Wir schliessen, dass $A : \mathbb{R}^n \to \mathbb{R}^m$ stetig ist.

Korollar 2. Lineare Abbildungen $A: \mathbb{R}^n \to \mathbb{R}^m$ sind stetiq.

Beweis. Wir haben soeben gezeigt, dass A bezüglich der Maximumsnorm stetig ist. Aus Korollar 1 folgt, dass A bezüglich jeder Norm stetig ist.

3 Der Fixpunktsatz von Banach

Motivation. Sei V ein normierter reeller Vektorraum, und sei $A: V \to V$ linear und kontrahierend, das heisst, es gilt $||A||_{\text{op}} < 1$. Wir wollen die Abbildung Id $-A: V \to V$ wie folgt invertieren:

$$(\mathrm{Id} - A)^{-1} = \mathrm{Id} + A + A^2 + A^3 + \cdots$$

Als Analogie dazu erinnern wir uns an den Fakt, dass für $q \in \mathbb{R}$ mit |q| < 1 gilt, dass

$$\frac{1}{1-q} = 1 + q + q^2 + \cdots.$$

Für alle $Y \in V$ suchen wir ein eindeutiges $X \in V$ mit $(\mathrm{Id} - A)(X) = Y$, also X - A(X) = Y. Definiere

$$f \colon V \to V$$

 $X \mapsto A(X) + Y.$

Gesucht ist also eine (offenbar eindeutige) Lösung der Fixpunkgleichung f(X) = X.

Bemerkung. Die Bedingung $||A||_{\text{op}} < 1$ ist stärker als die Bedingung $||Av||_V < ||v||_V$ für alle $v \in V \setminus \{0\}$. Betrachte dazu $V = \mathbb{R}^{\infty}$ mit der Maximumnorm $||\cdot||_{\infty}$. Definiere $A \colon \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ als die Lineare Erweiterung der Abbildung

$$e_k \mapsto \frac{k}{k+1} e_k.$$

Wir stellen fest, dass $||Av||_{\infty} < ||v||_{\infty}$ für alle $v \in \mathbb{R}^{\infty} \setminus \{0\}$ gilt, aber $||A||_{\text{op}} = 1$, da

$$\sup\left\{\frac{k}{k+1}\mid k\in\mathbb{N}\right\}=1$$

gilt. Somit ist A nicht kontrahierend.

Wir stossen auch auf ein Problem beim Invertieren von

$$\operatorname{Id} - A \colon \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$$
$$e_k \mapsto \left(1 - \frac{k}{k+1}\right) e_k = \frac{1}{k+1} e_k.$$

Die inverse Abbildung

$$(\operatorname{Id} - A)^{-1} \colon \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$$
 $e_k \mapsto (k+1)e_k$

ist also nicht stetig, da $\|(\operatorname{Id} - A)^{-1}\|_{\operatorname{op}} = +\infty$.

Metrische Räume

Definition. Sei X eine Menge. Eine Metrik auf X ist eine Abbildung $d: X \times X \to \mathbb{R}$ mit folgenden Eigenschaften.

- (i) Positivität: Für alle $p, q \in X$ gilt $d(p, q) \ge 0$, und d(p, q) = 0 genau dann, wenn p = q.
- (ii) Symmetrie. Für alle $p, q \in X$ gilt d(q, p) = d(p, q).
- (iii) Dreiecksungleichung. Für alle $a, b, c \in X$ gilt $d(a, c) \leq d(a, b) + d(b, c)$.

Beispiele.

(1) Sei V ein reeller Vektorraum mit Norm $\|\cdot\|$. Definiere

$$d \colon V \times V \to \mathbb{R}$$
$$(p,q) \mapsto \|q - p\|.$$

Das erste Axiom für Metrische Räume folgt direkt aus dem ersten Axiom für normierte Räume. Zur Symmetrie bemerke, dass

$$d(p,q) = \|q - p\| = \|(-1)(p - q)\| = |-1| \cdot \|p - q\| = \|p - q\| = d(q,p).$$

Die Dreiecksungleichung erfordert keinen Trick.

(2) Sei X beliebig. Definiere auf X die diskrete Metrik wie folgt:

$$d(p,q) = \begin{cases} 0 & q = p \\ 1 & q \neq p \end{cases}.$$

Das einzige interessante Axiom ist die Dreiecksungleichung. Falls d(a,c)=0 gilt, dann gilt sowieso $d(a,c)\leq d(a,b)+d(b,c)$. Der einzige Fall, den wir ausschliessen müssen, ist also d(a,c)=1 und d(a,b)=d(b,c)=0. Aber aus d(a,b)=0 folgt a=b, und aus d(b,c)=0 folgt b=c und somit auch a=c, was d(a,c)=0 impliziert. Dies ist ein Widerspruch.

(3) Folgende Metrik ist enorm wichtig in der Zahlentheorie. Wir werden sie aber bloss in den Übungen antreffen. Sei $p \in \mathbb{N}$ eine Primzahl. Definiere die p-adische Metrik auf \mathbb{Z} wie folgt:

$$d_p(n,m) = \begin{cases} 0 & n = m \\ p^{-x} & n \neq m, \end{cases}$$

wobei $x \in \mathbb{N}$ maximal mit der Eigenschaft ist, dass p^x die Zahl n-m teilt. Insbesondere gilt $d_p(n, n+1) = 1 = p^{-0}$, da in diesem Fall x = 0 gilt. Weiter ist $d_p(0, p^n) = p^{-n}$, ist also klein für grosse n.

Definitionen. Sei X ein metrischer Raum mit Metrik d.

- Eine Folge $(a_n)_{n\in\mathbb{N}}$ in X heisst konvergent mit Grenzwert $a\in X$, falls für alle ε ein $N\in\mathbb{N}$ existiert, so dass für alle $n\in\mathbb{N}$ mit $n\geq N$ gilt, dass $d(a_n,a)\leq \varepsilon$.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ in X heisst Cauchyfolge, falls für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, so dass für alle $n, m \geq N$ gilt, dass $d(a_n, a_m) \leq \varepsilon$.
- \bullet Der metrische Raum X heisst vollständig, falls alle Cauchyfolgen in X konvergieren.

Ein vollständiger normierter Vektorraum heisst Banachraum.

Beispiele.

- (1) Der metrische Raum \mathbb{R} mit d(p,q) = |p-q| ist vollständig.
- (2) (a) Der metrische Raum $X=(0,1)\subset\mathbb{R}$ mit der von \mathbb{R} induzierten Metrik d(p,q)=|q-p| ist unvollständig.
 - (b) Ebenso ist $X=\mathbb{Q}\subset\mathbb{R}$ mit der von \mathbb{R} induzierten Metrik unvollständig.
- (3) Sei $X=\mathbb{Z}$ mit der p-adischen Metrik d_p . Betrachte die Folge $a_n=p^n$. Dies ist eine Cauchyfolge mit Grenzwert $0\in\mathbb{Z}$. Man könnte nun vermuten, dass \mathbb{Z} mit dieser Metrik vollständig ist. Das ist jedoch nicht der Fall. Betrachte dazu die Folge $b_n=1+p+p^2+\cdots+p^n$. Dies ist eine Cauchyfolge, leider aber ohne Grenzwert in \mathbb{Z} . Das heisst, dass \mathbb{Z} mit der p-adischen Metrik unvollständig ist. Siehe dazu auch die Übungen.

Definition. Sei (X, d) ein metrischer Raum. Eine Abbildung $f: X \to X$ heisst kontrahierend, falls es eine positive Konstante k < 1 gibt, so dass für alle $p, q \in X$ gilt, dass $d(f(p), f(q)) \le k \cdot d(p, q)$.

Unser Ziel in diesem Abschnitt ist es, folgenden wichtigen Satz vom polnischen Mathematiker Stefan Banach (1892–1945) zu beweisen.

Theorem (Fixpunktsatz von Banach 1922, Heuser 111.11). Sei (X, d) ein vollständiger nicht-leerer metrischer Raum. Dann hat jede kontrahierende Abbildung $f: X \to X$ einen eindeutigen Fixpunkt, das heisst es existiert genau ein Punkt $p \in X$ mit f(p) = p.

Bemerkungen.

- (1) Es ist wichtig, dass k < 1 gilt. Betrachte zum Beispiel folgende Funktionen.
 - (a) Betrachte die Abbildung

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x + 1.$$

Dann gilt $|f(y) - f(x)| = 1 \cdot |y - x|$, aber f hat keinen Fixpunkt.

(b) Die Identität

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x$$

hat unendlich viele Fixpunkte.

(2) Auch die Vollständigkeit ist wichtig. Betrachte hier zum Beispiel die Funktion

$$f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$$

 $x \mapsto x/2$

Die Abbildung f ist kontrahierend mit k = 1/2, hat aber keinen Fixpunkt in $\mathbb{R} \setminus \{0\}$. In den Übungen werden wir ein weniger künstliches Beispiel untersuchen.

(3) Kontrahierende Abbildungen $f\colon X\to X$ sind wie alle Lipschitz-stetigen Abbildungen $g\colon X\to X$ gleichmässig stetig: Sei $L\geq 0$ so, dass für alle $p,q\in X$ gilt, dass $d(g(p),g(q))\leq L\cdot d(p,q)$. Sei $\varepsilon>0$ vorgegeben. Setze $\delta=\varepsilon/(L+1)$. Dann gilt für alle $p,q\in X$ mit $d(p,q)\leq \delta$, dass $d(f(p),f(q))\leq \varepsilon$.

Lemma. Seien (X_1, d_1) und (X_2, d_2) metrische Räume. Sei $f: X_1 \to X_2$ eine beliebige Abbildung. Dann ist f stetig im Punkt p, genau dann, wenn f folgenstetig in p ist. Folgenstetig heisst, dass für alle konvergenten Folgen $(a_n)_{n\in\mathbb{N}}$ in X_1 mit $\lim_{n\to\infty} a_n = p$ gilt, dass $\lim_{n\to\infty} f(a_n) = f(p)$.

Beweis. Für die Richtung " \Rightarrow ", sei f stetig in p und $(a_n)_{n\in\mathbb{N}}$ konvergent mit Grenzwert $\lim_{n\to\infty} a_n = p$. Sei $\varepsilon > 0$ vorgegeben. Wähle $\delta > 0$ so, dass wenn $d_1(q,p) \le \delta$ gilt, dann auch $d_2(f(q), f(p)) \le \varepsilon$. Dann existiert $N \in \mathbb{N}$ so, dass für $n \ge N$ gilt, dass $d(a_n, p) \le \delta$. Somit gilt auch für alle $n \ge N$, dass $d_2(f(a_n), f(p)) \le \varepsilon$. Somit ist f folgenstetig.

Umgekehrt, für " \Leftarrow ", sei f nicht stetig in p. Dann existiert $\varepsilon > 0$ so, dass für alle $n \in \mathbb{N}$ ein $a_n \in X_1$ existiert mit $d_1(a_n, p) \leq 1/n$, aber $d_2(f(a_n), f(p)) > \varepsilon$. Nach Konstruktion gilt $\lim_{n\to\infty} a_n = p$, aber $\lim_{n\to\infty} f(a_n) \neq f(p)$. Folglich ist f nicht folgenstetig in p. \square

Beweis vom Fixpunktsatz. Wir zeigen erst die Eindeutigkeit, was ganz schnell geht. Seien $p, q \in X$ Fixpunkte von f. Dann gilt $d(f(p), f(q)) \leq k \cdot d(p, q)$. Aus k < 1 folgt dann d(p, q) = 0, also q = p.

Für die Existenz, wähle $a_0 \in X$. Dieser Schritt ist der Grund für die Annahme, dass X nicht leer ist. Definiere eine Folge in X durch die Vorschrift $a_{n+1} = f(a_n)$. Es gilt dann $a_1 = f(a_0), a_2 = f^2(a_0) = f(f(a_0))$, und allgemein $a_n = f^n(a_0)$. Die so konstruierte Folge $(a_n)_{n \in \mathbb{N}}$ ist eine Cauchyfolge in X. Wir zeigen das später und nehmen vorerst an, dass das stimmt. Da X vollständig ist, existiert der Grenzwert $p = \lim_{n \to \infty} a_n$ in X. Es gilt dann f(p) = p. Tatsächlich, berechne

$$f(p) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_{n+1} = p.$$

Es bleibt also bloss zu zeigen, dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchyfolge ist. Sei dazu $\varepsilon > 0$ vorgegeben. Für $n, m \in \mathbb{N}$ mit $n \geq m$ schätzen wir ab, dass

$$d(a_n, a_m) = d(f(a_{n-1}), f(a_{m-1}))$$

$$\leq k \cdot d(a_{n-1}, a_{m-1})$$

$$\leq k^2 \cdot d(a_{n-2}, a_{m-2})$$

$$\leq \cdots$$

$$\leq k^m \cdot d(a_{n-m}, a_0).$$

Setze $\ell = n - m$. Schätze weiterhin ab, dass

$$d(a_{\ell}, a_0) \leq d(a_{\ell}, a_{\ell-1}) + d(a_{\ell-1}, a_{\ell-2}) + \dots + d(a_1, a_0)$$

$$\leq k^{\ell-1} \cdot d(a_1, a_0) + k^{\ell-2} \cdot d(a_1, a_0) + \dots + d(a_1, a_0)$$

$$= (1 + k + k^2 + \dots + k^{\ell-1}) \cdot d(a_1, a_0)$$

$$\leq \frac{1}{1 - k} \cdot d(a_1, a_0).$$

Insgesamt erhalten wir

$$d(a_n, a_m) \le k^m \cdot \frac{1}{1 - k} \cdot d(a_1, a_0).$$

Wähle $N \in \mathbb{N}$ so, dass $k^N \cdot 1/(1-k) \cdot d(a_1, a_0) \leq \varepsilon$. Solch ein N existiert, da nach unseren Annahmen an k gilt, dass $\lim_{n\to\infty} k^n = 0$. Es gilt dann für alle $n, m \geq N$, dass $d(a_n, a_m) \leq \varepsilon$.

Wir werden den Fixpunktsatz auf Banachräume anwenden um Sätze zur Existenz und Eindeutigkeit gewisser Differentialgleichungen zu zeigen.

Beispiel. Sei $K \subset \mathbb{R}$ kompakt, das heisst K ist beschränkt und abgeschlossen. Definiere C(K) als die Menge aller stetigen Abbildungen $f: K \to \mathbb{R}$. Man kann sich leicht überlegen, dass C(K) ein reeller Vektorraum ist. Wir statten C(K) mit der Norm

$$||f||_{\infty} = \max\{|f(x)| \mid x \in K\} < +\infty$$

aus. Der Satz von Weierstrass besagt, dass für eine Folge $f_n \colon K \to \mathbb{R}$ stetiger Funktionen, welche auf K gleichmässig gegen eine Funktion $f \colon K \to \mathbb{R}$ konvergiert, f stetig ist. Gleichmässige Konvergenz heisst, dass für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, so dass für alle $n \geq N$ und alle $p \in K$ gilt, dass $|f_n(p) - f(p)| \leq \varepsilon$. In unseren Worten heisst das $|f_n - f|_{\infty} \leq \varepsilon$. Der Satz von Weierstrass besagt also, dass der Raum C(K) mit der Maximumnorm vollständig ist.

4 Kurven und Vektorfelder

Definition. Eine Kurve in \mathbb{R}^n ist das Bild einer stetigen Abbildung $\gamma \colon \mathbb{R} \to \mathbb{R}^n$. Die Abbildung γ heisst Parametrisierung der Kurve γ . Wir werden die Unterscheidung zwischen Kurven und Parametrisierungen nicht immer explizit machen.

Wir untersuchen nun kurz den Stetigkeitsbegriff auf Kurven. Stetigkeit heisst, dass in jedem $t \in \mathbb{R}$ die (ε, δ) -Bedingung für γ bezüglich beliebiger Normen auf \mathbb{R} und \mathbb{R}^n erfüllt ist, insbesondere bezüglich der Normen $|\cdot|$ und $||\cdot||_{\infty}$. Schreibe nun

$$\gamma(t) = \sum_{i=1}^{n} \gamma_i(t) \cdot e_i,$$

wobei e_i der *i*-te Basisvektor in \mathbb{R}^n ist. In diesem Fall ist $\gamma_i(t) = \langle \gamma(t), e_i \rangle$ die *i*-te Komponentenfunktion von γ . Für alle $s, t \in \mathbb{R}$ gilt $\|\gamma(s) - \gamma(t)\|_{\infty} \leq \varepsilon$ genau dann, wenn $|\gamma_i(s) - \gamma_i(t)| \leq \varepsilon$ für alle *i*. Wir folgern, dass γ stetig in $t \in \mathbb{R}$ ist, genau dann wenn alle Komponentenfunktionen γ_i stetig in t sind.

Beispiel.

(1) Betrachte die Funktion

$$\gamma \colon \mathbb{R} \to \mathbb{R}^2$$

$$t \mapsto (\cos(t), \sin(t)).$$

Dann hat γ stetige Komponentenfunktionen und ist daher die Parametrisierung einer Kurve. In diesem Fall ist die beschriebene Kurve der Einheitskreis, siehe Abbildung I.2. Die Pfeile erklären wir später.

(2) Die Funktion

$$\gamma \colon \mathbb{R} \to \mathbb{R}^2$$

$$t \mapsto (t^2, t^3 - t)$$

ist stetig und somit die Parametrisierung einer Kurve, dargestellt in Abbildung I.2. Diese Kurve einen "singulären Punkt", herbeigeführt durch die Eigenschaft, dass $\gamma(1) = \gamma(-1) = 1$ gilt.

Definition. Eine parametrisierte Kurve $\gamma \colon \mathbb{R} \to \mathbb{R}^n$ heisst differenzierbar, falls für alle $t \in \mathbb{R}$ die Ableitung

$$\dot{\gamma}(t) = \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h}$$

existiert. Der Vektor $\dot{\gamma}(t)$ heisst Geschwindigkeitsvektor.

Abbildung I.2: Die Bilder der Kurven γ aus den Beispielen

Bemerkung. Für alle $t, h \in \mathbb{R}$ mit $h \neq 0$ gilt

$$\frac{\gamma(t+h) - \gamma(t)}{h} = \sum_{k=1}^{n} \frac{\gamma_k(t+h) - \gamma_k(t)}{h} \cdot e_k$$

Wir folgern, dass $\dot{\gamma}(t) \in \mathbb{R}^n$ existiert, genau dann, wenn alle Ableitungen $\dot{\gamma}_k(t) \in \mathbb{R}$ existieren. In anderen Worten: Eine Kurve $\gamma \colon \mathbb{R} \to \mathbb{R}^n$ ist differenzierbar, genau dann, wenn alle $\gamma_k \colon \mathbb{R} \to \mathbb{R}$ differenzierbar sind.

Beispiele.

(1) Die Kurve

$$\gamma \colon \mathbb{R} \to \mathbb{R}^2$$

$$t \mapsto (\cos(t), \sin(t))$$

ist differenzierbar mit $\dot{\gamma}(t)=(-\sin(t),\cos(t))$. Die grauen Pfeile in Abbildung I.2 stellen die Ableitung von γ dar.

(2) Die Kurve

$$\gamma \colon \mathbb{R} \to \mathbb{R}^2$$
$$t \mapsto (t^2, t^3 - t)$$

ist differenzierbar mit $\dot{\gamma}(t)=(2t,3t^2-1).$ Wir berechnen

- $\gamma(0) = (0,0)$ und $\dot{\gamma}(0) = (0,-1)$,
- $\gamma(1) = (1,0)$ und $\dot{\gamma}(1) = (2,2)$,
- $\gamma(-1) = (1,0)$ und $\dot{\gamma}(-1) = (-2,2)$,

- $\gamma(1/\sqrt{3}) = (1/2, -2/3 \cdot 1/\sqrt{3})$ und $\dot{\gamma}(1/\sqrt{3}) = (2/\sqrt{3}, 0)$,
- $\gamma(-1/\sqrt{3}) = (1/3, 2/3 \cdot 1/\sqrt{3})$ und $\dot{\gamma}(-1/\sqrt{3}) = (-2/\sqrt{3}, 0)$.

Für grosse t ist y ungefähr $x^{3/2}$. Diese Information reicht, um das Bild von γ wie in Abbildung I.2 zu erraten. Die Ableitungen sind in grau (mit 1/4 gestreckt) eingezeichnet.

Definition. Sei $U \subset \mathbb{R}^n$ offen. Ein Vektorfeld auf U ist eine stetige Abbildung

$$X \colon U \to \mathbb{R}^n$$

 $q \mapsto X(q).$

Jedes Vektorfeld X auf U liefert eine gewöhnliche Differentialgleichung $\dot{\gamma}(t) = X(\gamma(t))$. Dies ist wie folgt zu interpretieren. Sei $p \in U$ fest. Gesucht ist T > 0 und eine differenzierbare Lösungskurve $\gamma \colon (-T,T) \to U$ zur Anfangsbedingung $\gamma(0) = p$. Falls $X = A \colon \mathbb{R}^n \to \mathbb{R}^n$ linear ist, dann heisst die Differentialgleichung $\dot{\gamma}(t) = A(\gamma(t))$ linear.

Geometrische Interpretation. Ein Vektorfeld $X \colon U \to \mathbb{R}^2$ liefert in jedem Punkt $q \in U$ einen Vektor $X(q) \in \mathbb{R}^n$. Siehe Abbildung I.3. In jedem Punkt der Kurve $\gamma(t) \in U$ stimmt der Geschwindigkeitsvektor $\dot{\gamma}(t) \in \mathbb{R}^n$ mit dem Vektor $X(\gamma(t))$ überein.

Abbildung I.3: Ein Vektorfeld X auf $U\subset\mathbb{R}^2$ mit einer Lösungskurve γ in schwarz

Beispiele.

(1) Betrachte das lineare Vektorfeld

$$X \colon \mathbb{R} \to \mathbb{R}^n$$
$$q \mapsto 0.$$

Sei $p \in \mathbb{R}^n$. Dann ist $\gamma(t) = p$ die eindeutige Lösung der Differentialgleichung $\gamma(0) = p$ und $\dot{\gamma}(t) = X(\gamma(t))$.

(2) Betrachte das lineare Vektorfeld

$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix},$$

siehe Abbildung I.4. Betrachte nochmals die Kurve

$$\gamma \colon \mathbb{R} \to \mathbb{R}^2$$
$$t \mapsto \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}.$$

Es gilt

$$\dot{\gamma}(t) = \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix} = A(\gamma(t)).$$

Also ist die Kurve $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ eine Lösung der linearen Differentialgleichung $\dot{\gamma}(t) = A(\gamma(t))$ zur Anfangsbedingung $\gamma(0) = e_1 \in \mathbb{R}^2$. Allgemeiner ist die Funktion

$$\gamma \colon \mathbb{R} \to \mathbb{R}^2$$
$$t \mapsto \begin{pmatrix} r\cos(t+\varphi) \\ r\sin(t+\varphi) \end{pmatrix}$$

eine Lösung dieser Differentialgleichung. Durch geschickte Wahl von φ und r deckt das jede Anfangsbedingung ab.

(3) Die Kurve $\gamma(t) = (t^2, t^3 - t)$ ist nicht die Lösung einer gewöhnlichen Differentialgleichung. Der Grund dafür ist, dass γ den Punkt (1,0) zweimal mit unterschiedlichen Geschwindigkeitsvektoren durchläuft: Es gilt $\gamma(1) = \gamma(-1)$. aber $\dot{\gamma}(1) \neq \dot{\gamma}(-1)$. Falls nämlich $X : \mathbb{R}^2 \to \mathbb{R}^2$ existiert mit $\dot{\gamma}(t) = X(\gamma(t))$, dann gälte

$$X(e_1) = X(\gamma(1)) = \dot{\gamma}(1) = (2, 2),$$

 $X(e_1) = X(\gamma(-1)) = \dot{\gamma}(-1) = (-2, 2).$

Das ist aber nicht möglich, da $2 \neq -2$.

Abbildung I.4: Das Vektorfeld A(x,y) = (-y,x) und das Vektorfeld A(x,y) = (y,0)

(4) Betrachte das lineare Vektorfeld

$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ 0 \end{pmatrix}.$$

Sei $p=(x_0,y_0)$ vorgegeben. Als Ansatz für γ schreiben wir $\gamma(t)=(x(t),y(t))$. Aus $\dot{\gamma}(t)=(y(t),0)$ erhalten wir $\dot{y}(t)=0$, also ist $y(t)=y_0$ konstant. Weiterhin ist $\dot{x}(t)=y(t)=y_0$, also ist $x(t)=y_0t+x_0$. Zusammengefasst erhalten wir die Lösungskurve

$$\gamma(t) = \begin{pmatrix} x_0 + y_0 t \\ y_0 \end{pmatrix}.$$

(5) Sei $A : \mathbb{R}^n \to \mathbb{R}^n$ beliebig und linear. Sei $v \in \mathbb{R}^n$ ein Eigenvektor zum Eigenwert $\lambda \in \mathbb{R}$, das heisst $A(v) = \lambda v$. Definiere

$$\gamma \colon \mathbb{R} \to \mathbb{R}^n$$
$$t \mapsto e^{\lambda t} \cdot v.$$

Es gilt $\gamma(0) = v$ und

$$\dot{\gamma}(t) = e^{\lambda t} \cdot \lambda \cdot v = e^{\lambda t} \cdot A(v) = A(e^{\lambda t} \cdot v).$$

Also ist γ eine Lösungskurve. Wir haben aber verwendet, dass v ein Eigenvektor von A ist. Die anderen Lösungskurven von A könnten komplizierter sein.

(6) Sei $A: \mathbb{R}^n \to \mathbb{R}^n$ linear und diagonalisierbar über \mathbb{R} , das heisst es existieren Eigenwerte $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ und eine Basis aus Eigenvektoren $\{v_1, \ldots, v_n\}$ von \mathbb{R}^n mit $A(v_i) = \lambda_i v_i$. Sei $p \in \mathbb{R}^n$ vorgegeben. Schreibe

$$p = \sum_{i=1}^{n} x_i v_i$$

mit $x_i \in \mathbb{R}$. Definiere

$$\gamma \colon \mathbb{R} \to \mathbb{R}^n$$
$$t \mapsto e^{\lambda_1 t} \cdot x_1 \cdot v_1 + \dots + e^{\lambda_n t} \cdot x_n \cdot v_n.$$

Es gilt $\gamma(0) = p$ und

$$\dot{\gamma}(t) = \sum_{i=1}^{n} \lambda_i e^{\lambda_i t} x_i v_i = A(\gamma(t)).$$

Es existiert also eine Lösungskurve $\gamma(t)$ für beliebige Anfangsbedingungen.

(7) Sei

$$f \colon \mathbb{R} \to \mathbb{R}$$

 $x \mapsto 2\sqrt{|x|}$

ein Vektorfeld auf \mathbb{R} . Betrachte die Anfangsbedingung p=0. Die konstante Nullkurve ist eine Lösungskurve. Betrachte nun die Kurve

$$\gamma \colon \mathbb{R} \to \mathbb{R}$$

$$t \mapsto \begin{cases} 0 & t \le 0 \\ t^2 & t \ge 0. \end{cases}$$

Es gilt $\gamma(0) = 0$ und

$$\dot{\gamma}(t) = \begin{cases} 0 & t \le 0\\ 2t & t \ge 0. \end{cases}$$

Es gilt aber auch

$$f(\gamma(t)) = \begin{cases} 2\sqrt{|0|} = 0 & t \le 0\\ 2\sqrt{|t^2|} = 2t & t \ge 0. \end{cases}$$

Das heisst $\gamma(t)$ ist auch eine Lösung zur selben Anfangsbedingung. Das "Problem" hier ist, dass $f: \mathbb{R} \to \mathbb{R}$ nicht Lipschitz-stetig ist.

5 Der Satz von Cauchy-Lipschitz-Picard-Lindelöf

Definition. Sei $U \subset \mathbb{R}^n$ offen. Eine Abbildung $X: U \to \mathbb{R}^n$ heisst *Lipschitz-stetig* mit Konstante $k \geq 0$, falls für alle $p, q \in U$ die Ungleichung

$$||X(q) - X(p)||_2 \le k \cdot ||q - p||_2$$

gilt.

Bemerkung. Die Wahl der Norm $\|\cdot\|_2$ ist für diese Definition irrelevant, da alle Normen auf \mathbb{R}^n äquivalent sind. Die Konstante $k \geq 0$ hängt aber von der gewählten Norm ab.

Theorem (Cauchy-Lipschitz-Picard-Lindelöf). Sei $U \subset \mathbb{R}^n$ offen und $X: U \to \mathbb{R}^n$ Lipschitz-stetig mit Konstante $k \geq 0$. Sei $p \in U$ vorgegeben. Dann existiert T > 0 und eine eindeutige differenzierbare Kurve $\gamma: (-T,T) \to U$ mit $\gamma(0) = p$, so dass für alle $t \in (-T,T)$ gilt, dass $\dot{\gamma}(t) = X(\gamma(t))$.

Bemerkung.

- 1. Falls $U = \mathbb{R}^n$ ist, kann T > 0 beliebig gewählt werden. Siehe dazu Übungsserie 4.
- 2. Falls $U=\mathbb{R}^n$ und k=0, dann gilt für alle $p,q\in\mathbb{R}^n$, dass $\|X(p)-X(q)\|_2\le 0\cdot\|p-q\|_2=0$. Das Vektorfeld X ist also konstant. Dann ist die Lösungskurve

$$\gamma \colon \mathbb{R} \to \mathbb{R}^n$$

$$t \mapsto p + t \cdot X(p).$$

Vergleiche [1], Satz 117.1. Ein wichtiger Unterschied in der Version, die Heuser formuliert, ist es, dass das Vektorfeld f dort auch von der Zeit x abhängen darf. Wir werden nun einige Vorbereitungen zum Beweis treffen. Dazu werden wir zunächst Kurven genauer betrachten.

Definition. Sei $\alpha \colon [a,b] \to \mathbb{R}^n$ stetig. Schreibe

$$\alpha(t) = \sum_{i=1}^{n} \alpha_i(t)e_i,$$

wobei $\alpha_i : [a, b] \to \mathbb{R}$ stetige Funktionen sind. Wir schreiben dann

$$\int_{a}^{b} \alpha(s) ds = \sum_{i=1}^{n} \left(\int_{a}^{b} \alpha_{i}(s) ds \right) \cdot e_{i}.$$

Proposition 2. Seien $\alpha: [a,b] \to \mathbb{R}$ stetig und $\gamma: (a,b) \to \mathbb{R}$ stetig differenzierbar. Dann gilt:

(i) $f\ddot{u}r$ alle $t \in (a,b)$ gilt

$$\frac{d}{dt} \int_{0}^{t} \alpha(s) \, ds = \alpha(t),$$

(ii) unter der Annahme, dass $[0,t] \subset (a,b)$, gilt

$$\gamma(t) - \gamma(0) = \int_0^t \dot{\gamma}(s) \, ds.$$

Beweis. Sowohl die Differentiation als auch die Integration von Kurven lässt sich komponentenweise ausführen. Deshalb folgen die beiden Eigenschaften aus den entsprechenden Sätzen der Differential- und Integralrechnung für Funktionen auf \mathbb{R} .

Sei $C([a,b],\mathbb{R}^n)$ der Raum aller stetiger Funktionen $\alpha\colon [a,b]\to\mathbb{R}^n$. Für eine Funktion $\alpha\in C([a,b],\mathbb{R}^n)$ definieren wir

$$\|\alpha\|_{\infty} = \max\{\|\alpha(t)\|_2 \mid t \in [a, b]\} \ge 0.$$

Lemma 1. Der Raum $C([a,b],\mathbb{R}^n)$ ist bezüglich der Norm $\|\cdot\|_{\infty}$ vollständig.

Beweis. Sei $(\alpha_m)_{m\in\mathbb{N}}$ eine Cauchyfolge in $C([a,b],\mathbb{R})$ bezüglich der Norm $\|\cdot\|_{\infty}$. Dann erhalten wir in jeder Komponente $i\leq n$ eine Cauchyfolge $\langle \alpha_m,e_i\rangle$ in $C([a,b],\mathbb{R})$ (bezüglich der Norm $\|\cdot\|_{\infty}$). Nach Weierstrass existiert für alle $i\leq n$ der Grenzwert $\lim_{m\to\infty}\langle \alpha_m,e_i\rangle$ in $C([a,b],\mathbb{R})$. Es folgt wie im Beweis von Banachs Fixpunktsatz, dass der Grenzwert

$$\lim_{m \to \infty} \alpha_m = \sum_{i=1}^n \lim_{m \to \infty} \langle \alpha_m, e_i \rangle \cdot e_i$$

in $C([a,b],\mathbb{R}^n)$ existiert. Also ist $C([a,b],\mathbb{R})$ mit der Norm $\|\cdot\|_{\infty}$ vollständig.

Der Beweis des Theorems reduziert sich auf ein Fixpunktproblem, welches wir mit Banachs Fixpunktsatz lösen können. Dazu verwenden wir folgende Abschätzung.

Lemma 2. Sei α : $[a,b] \to \mathbb{R}^n$ stetig und $t \in \mathbb{R}$ mit $[0,t] \subset [a,b]$. Dann gilt

$$\left\| \int_0^t \alpha(s) \, ds \right\|_2 \le \int_0^t \|\alpha(s)\|_2 \, ds.$$

Beweis. Setze $v = \int_0^t \alpha(s) ds$ Berechne

$$\begin{aligned} \|v\|_2^2 &= \langle v, v \rangle \\ &= \left\langle v, \int_0^t \alpha(s) \, ds \right\rangle \\ &= \int_0^t \langle v, \alpha(s) \rangle \, ds \\ &\leq \int_0^t \|v\|_2 \cdot \|\alpha(s)\|_2 \, ds \end{aligned}$$

nach komponentenweiser Integration und einer Anwendung der Cauchy-Schwarz Ungleichung. Teilung durch $||v||_2$ liefert

$$||v||_2 \le \int_0^t ||\alpha(s)||_2 ds.$$

Beweis von Cauchy-Lipschitz-Picard-Lindelöf. Wir betrachten nur den Fall, dass $U=\mathbb{R}^n$ gilt. Allgemeine U zu betrachten benötigt nicht viele zusätzliche Überlegungen. Sei T>0. Betrachte $V=C([-T,T],\mathbb{R}^n)$ mit der Norm

$$\|\alpha\|_{\infty} = \max\{\|\alpha(t)\|_2 \mid t \in [-T, T]\}.$$

Definiere nun

$$P \colon V \to V$$

 $\alpha \mapsto P(\alpha)$

durch

$$P(\alpha)(t) = p + \int_0^t X(\alpha(s)) \, ds$$

für alle $t \in [-T, T]$. Wir bemerken, dass $X \circ \alpha$ stetig ist, da α und X beide stetig sind. Deshalb ist $P(\alpha)$ auf (-T, T) differenzierbar. Weiterhin haben wir bereits gesehen, dass für $t \in (-T, T)$ gilt, dass

$$\frac{d}{dt}P(\alpha)(t) = X(\alpha(t)).$$

Nimm nun an, dass P einen Fixpunkt $\gamma \in V$ hat (wir schreiben γ für diesen Punkt, da die Punkte in V Kurven sind). Dann gilt für alle $t \in (-T, T)$, dass

$$\dot{\gamma}(t) = \frac{d}{dt}\gamma(t) = \frac{d}{dt}P(\gamma)(t) = X(\gamma(t)).$$

Ausserdem ist

$$\gamma(0) = P(\gamma)(0) = p + \int_0^0 X(\gamma(s)) ds = p,$$

also ist γ eine Lösungskurve unserer Differentialgleichung mit $\gamma(0) = p$. Umgekehrt, sei $\gamma \in V$ so, dass $\gamma|_{(-T,T)}$ eine Lösungskurve der Differentialgleichung $\dot{\gamma}(t) = X(\gamma(t))$ mit $\gamma(0) = p$ ist. Dann gilt für alle $t \in (-T,T)$, dass

$$P(\gamma(t)) = p + \int_0^t X(\gamma(s)) ds = p + \int_0^t \dot{\gamma}(s) ds = p + \gamma(t) - \gamma(0) = \gamma(t).$$

Aus der Stetigkeit von γ und $P(\gamma)$ folgt auch $P(\gamma)(\pm T) = \gamma(\pm T)$. Also ist γ ein Fixpunkt von P. Zusammengefasst erhalten wir, dass die Fixpunkte von P genau die Lösungskurven der Differentialgleichung sind.

Um Banachs Fixpunktsatz anzuwenden zeigen wir nun, dass für alle T<1/k die Abbildung P kontrahierend ist. Dazu sei $t\in[-T,T]$ beliebig, und $\alpha,\beta\in V$. Schätze ab, dass

$$||P(\alpha(t)) - P(\beta)(t)||_{2} = \left\| \int_{0}^{t} X(\alpha(s)) - X(\beta(s)) \, ds \right\|_{2}$$

$$\leq \int_{0}^{t} ||X(\alpha(s)) - X(\beta(s))||_{2} \, ds$$

$$\leq k \int_{0}^{t} ||\alpha(s) - \beta(s)||_{2} \, ds$$

$$\leq k \cdot T \cdot ||\alpha - \beta||_{\infty}.$$

Wir schliessen, dass $\|P(\alpha) - P(\beta)\|_{\infty} \leq k \cdot T \cdot \|\alpha - \beta\|_{\infty}$, also P kontrahierend ist. Wir schliessen aus der Vollständigkeit von V mit Hilfe des Fixpunktsatzes von Banach, dass P einen eindeutigen Fixpunkt $\gamma \in V$ hat. Also ist $\gamma \in V$ die eindeutige Lösung zur Differentialgleichung $\dot{\gamma}(t) = X(\gamma(t))$ mit $\gamma(0) = p$.

6 Lineare Differentialgleichungen

Sei $A: \mathbb{R}^n \to \mathbb{R}^n$ linear. Aus Abschnitt 2 wissen wir, dass die Operatornorm $||A||_{\text{op}}$ endlich ist. Insbesondere ist A Lipschitz-stetig mit Konstante $k = ||A||_{\text{op}}$. Tatsächlich gilt für alle $v, w \in \mathbb{R}^n$, dass

$$||A(w) - A(v)||_2 \le ||A||_{\text{op}} \cdot ||v - w||_2.$$

Wir folgern, dass die Differentialgleichung $\dot{\gamma}(t) = A(\gamma(t))$ zu jeder Anfangsbedingung $p \in \mathbb{R}^n$ und jeder Zeit T < 1/k eine eindeutige Lösungskurve $\gamma \colon (-T, T) \to \mathbb{R}^n$ hat. Sei $V = C([-T, T], \mathbb{R}^n)$. Wir hatten γ als Fixpunkt eines kontrahierenden Operators

$$P \colon V \to V$$

konstruiert, wobei

$$P(\alpha)(t) = p + \int_0^t A(\alpha(s)) \, ds.$$

Sei $\gamma_0 \in V$ beliebig. Definiere rekursiv $\gamma_{n+1} = P(\gamma_n) \in V$. Dann gilt $\gamma = \lim_{n \to \infty} \gamma_n$. Wähle nun $\gamma_0(t) = p$ konstant. Wir berechnen nun einige Glieder der Folge $(\gamma_n)_{n \in \mathbb{N}}$. Das erste Glied ist

$$\gamma_1(t) = P(\gamma_0)(t)$$

$$= p + \int_0^t A(\gamma_0(s)) ds$$

$$= p + t \cdot A(p).$$

Mit der Linearität von A berechnen wir

$$\gamma_2(t) = p + \int_0^t A(\gamma_1(s)) \, ds$$

$$= p + \int_0^t A(p + s \cdot A(p)) \, ds$$

$$= p + \int_0^t A(p) + s \cdot A^2(p) \, ds$$

$$= p + t \cdot A(p) + \frac{t^2}{2} A^2(p).$$

Um unsere Vermutung, wie diese Folge weitergeht, zu bestätigen, berechnen wir noch einen letzten Term explizit:

$$\gamma_3(t) = P(\gamma_2)(t)$$

$$= p + \int_0^t A(p + s \cdot A(p) + s^2/2 \cdot A^2(p)) ds$$

$$= p + t \cdot A(p) + \frac{t^2}{2} A^2(p) + \frac{t^3}{3!} A^3(p).$$

Induktiv erhalten wir für alle $n \in \mathbb{N}$, dass

$$\gamma_n(t) = \sum_{k=0}^n \frac{t^k}{k!} A^k(p)$$

(mit der Konvention, dass A^0 die Identitätsabbildung ist).

Definition. Sei $A: \mathbb{R}^n \to \mathbb{R}^n$ linear. Die Endomorphismenexponentialabbildung ist

$$\exp(tA) = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k.$$

Bemerkung. Aus den Beweisen der Theoreme von Banach und Cauchy-Lipschitz-Picard-Lindelöf wissen wir bloss, dass dieser Grenzwert für alle $|t| < 1/\|A\|_{\text{op}}$ existiert. Tatsächlich existiert der Grenzwert für alle $t \in \mathbb{R}$, unabhängig von A. Benutze dazu, dass für die Operatornorm die Ungleichung $\|A^k\|_{\text{op}} \leq \|A\|_{\text{op}}^k$ gilt. Dann folgt nämlich $\|e^{tA}\|_{\text{op}} \leq e^{|t|\cdot\|A\|_{\text{op}}}$. Also ist die Abbildung $\exp(tA)$ ein Endomorphismus von \mathbb{R}^n für alle $t \in \mathbb{R}$.

Wir schliessen, dass die Lösung zur Differentialgleichung $\dot{\gamma}(t)=A(\gamma(t))$ mit $\gamma(0)=p$ durch

$$\gamma(t) = e^{tA} \cdot p$$

gegeben ist.

Beispiele. Sei $A \colon \mathbb{R}^2 \to \mathbb{R}^2$ linear, repräsentiert bezüglich der Standardbasis durch eine Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

(1) Betrachte

$$A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} = \operatorname{diag}(a, d).$$

Berechne für $k \in \mathbb{N}$, dass $A^k = \operatorname{diag}(a^k, d^k)$, Also ist $e^{tA} = \operatorname{diag}(e^{ta}, e^{td})$. Wir betrachten den Spezialfall a = 1, d = -1. Dann ist $e^{tA} = \operatorname{diag}(e^t, e^{-t})$. Einige Lösungskurven sind in Tabelle I.1 aufgelistet und in Abbildung I.5 gezeichnet.

Anfangsbedingung $p \in \mathbb{R}^2$	Lösungskurve $\gamma(t)$
$(\pm 1, 0)$	$(\pm e^t, 0)$
$(0, \pm 1)$	$(0, \pm e^{-t})$
$\pm(1,1)$	$\pm(e^t, e^{-t})$
$\pm(1,-1)$	$\pm (e^t, -e^{-t})$

Tabelle I.1: Einige Lösungen der Differentialgleichung zur Matrix A = diag(1, -1).

Abbildung I.5: Einige Lösungen der Differentialgleichung zur Matrix A = diag(1, -1).

(2) Betrachte die Matrix

$$A = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$

und bemerke, dass $A^2 = 0$ gilt. Folglich ist

$$e^{tA} = \begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix}.$$

Die Lösungskurven von A sind konstant auf der x-Achse, und ausserhalb sind sie parallel dazu, wobei ihre Geschwindigkeit mit zunehmender y-Komponente linear wächst.

(3) Die Matrix

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

liefert ein rotiertes Bild des obigen Beispiels.

(4) Die Matrix

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

ist eine Drehung um den Winkel $\pi/2$. Die Potenzen von A sind $A^2=-1,\,A^3=-A,$ und $A^4=1.$ Dann geht es periodisch weiter. Berechne

$$e^{tA} = \begin{pmatrix} 1 - t^2/2! + t^4/4! - \cdots & -t + t^3/3! - t^5/5! + \cdots \\ t - t^3/3! + t^5/5! - \cdots & 1 - t^2/2! + t^4/4! - \cdots \end{pmatrix} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}.$$

Wir haben also nun hergeleitet, dass die Lösungskurven dieses Vektorfelds konzentrische Kreise sind. Wir sehen auch, dass im allgemeinen $e^{t(A+B)} = e^{tA} \cdot e^{tB}$ nicht gilt (das gilt nur, wenn AB = BA).

Bemerkung. Die Matrix e^{tA} lässt sich für diagonalisierbare Matrizen $A \in \mathbb{R}^{n \times n}$ relativ einfach berechnen. Sei A eine solche Matrix, das heisst, es existiert $P \in \mathbb{R}^{n \times n}$ mit $\det(P) \neq 0$ und $PAP^{-1} = D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ ist diagonal. Es gilt dann

$$A^k = (P^{-1}DP)^k = P^{-1}D^kP$$

also folgt $e^{tA} = P^{-1}e^{tD}P$, wobei $e^{tD} = \operatorname{diag}(e^{t\lambda_1}, \dots, e^{t\lambda_n})$. Dies funktioniert genau so, falls A über $\mathbb C$ diagonalisierbar ist. Für nicht diagonalisierbare A wird die Jordan-Normalform zur Berechnung von e^{tA} verwendet. Schreibe dazu A = D + N für eine diagonalisierbare Matrix D und eine nilpotente Matrix N mit DN = ND.

7 Differentialgleichungen in einer Variable

Sei $f: \mathbb{R} \to \mathbb{R}$ stetig (aber nicht unbedingt linear). Wir erhalten eine Differentialgleichung für $y: (-T,T) \to \mathbb{R}$ mit $y(0) = y_0 \in \mathbb{R}$, nämlich $\dot{y} = f(y(t))$. Falls $f(y_0) = 0$, dann ist $y(t) = y_0$ eine konstante Lösung. Falls $f(y_0) \neq 0$, schreibe (lokal) um, dass

$$\dot{y}(t)\frac{1}{f(y(t))} = 1.$$

Lemma. Mit den Voraussetzungen oben, sei $g: \mathbb{R} \to \mathbb{R}$ eine Stammfunktion von 1/f, das heisst g'(x) = 1/f(x). Dann gilt g(y(t)) = t + c.

Beweis. Berechne

$$\frac{d}{dt} g(y(t)) = g'(y(t)) \cdot \frac{d}{dt} y(t)$$
$$= \frac{1}{f(y(t))} \dot{y}(t)$$

Mit etwas Glück lässt sich diese Formel nach y(t) auflösen.

Beispiele.

(1) Betrachte f(x) = x, das heisst, wir untersuchen die Differentialgleichung $\dot{y}(t) = y(t)$. Sei $y_0 > 0$ und $g(x) = \log(x)$. Dann sind die Voraussetzungen vom Lemma erfüllt. Es gilt also $\log(y(t)) = t + c$, also $y(t) = e^{t+c} = e^{t \cdot e^c}$. Mit $y(0) = e^c = y_0$ folgt $y(t) = y_0 e^t$.

(2) Sei $f(x) = x^2$, das heisst wir untersuchen $\dot{y}(t) = (y(t))^2$. Sei $y_0 \ge 0$ und g(x) = -1/x. Aus -1/y(t) = t + c erhalten wir y(t) = -1/(t+c). Mit $y(0) = -1/c = y_0$ erhalten wir

$$y(t) = \frac{1}{1/y_0 - t}.$$

Im Spezialfall $y_0 = 1$ sehen wir, dass die Lösung $y(t) = \frac{1}{1-t}$ in endlicher Zeit divergiert: es gilt

$$\lim_{t \to 1} \frac{1}{1 - t} = +\infty.$$

(3) Sei $f(x) = 2\sqrt{x}$. Dann ist $\dot{y}(t) = 2\sqrt{y(t)}$. Wir haben $g(x) = \sqrt{x}$, also ist $\sqrt{y(t)} = t + c$. Wir schliessen, dass $y(t) = (t + c)^2$ eine Lösung ist. Mit $y(0) = y_0$ folgt $y(t) = (t + \sqrt{y_0})^2$. Im Grenzfall $y_0 = 0$ erhalten wir $y(t) = t^2$. Es gibt aber noch eine alternative Lösung zur selben Anfangsbedingung, nämlich y(t) = 0. Diese Differentialgleichung modelliert das Abflussverhalten einer Badewanne. Dies kann einen physikalischen Hinweis darauf geben, dass die Lösungen nicht eindeutig sind. Tatsächlich weiss man, wenn man eine leere Badewanne antrifft nicht, wann sie zum letzten Mal voll war.

Bemerkungen.

- (i) Die Lösugskurven brauchen nicht für alle Zeiten zu existieren. Im Beispiel zwei zum Beispiel galt $\lim_{t\to 1} y(t) = \infty$.
- (ii) Die Lösungskurven brauchen bei gegebener Anfangsbedingung nicht eindeutig zu sein, siehe Beispiel (3). Für die Eindeutigkeit ist die Lipschitz-Stetigkeit des Vektorfelds essentiell.
- (iii) Für die Existenz von Lösungen reicht die Stetigkeit des Vektorfelds. Diese Tatsache ist als "Satz von Peano" bekannt.

Seien $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$. Wir möchten die lineare homogene Differentialgleichung n-ter Ordnung

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_2y''(t) + a_1y'(t) + a_0y(t) = 0$$

mit Anfangsbedingungen $(0) = a_0, y'(0) = y_1, \dots y^{(n-1)}(0) = y_{n-1}$. Konkret gesucht ist eine n-mal differenzierbare Lösungsfunktion $y \colon \mathbb{R} \to \mathbb{R}$ die diese Bedingungen erfüllt. Unsere Methode ist es, die Differentialgleichung auf eine lineare Differentialgleichung erster Ordnung auf \mathbb{R}^n zurückzuführen. Führe dazu Koordinaten $y, y', y'', \dots, y^{(n-1)}$ auf \mathbb{R}^n ein. Schreibe $\gamma(t) = (y(t), y'(t), \dots, y^{(n-1)}(t))$,

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & \ddots & & \vdots \\ & & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{pmatrix}.$$

Dann liest sich unsere Differentialgleichung als $\dot{\gamma}(t) = A \cdot \gamma(t)$. Also ist jede lineare homogene Differentialgleichung n-ter Ordnung auf \mathbb{R} äquivalent zu einer linearen homogenen Differentialgleichung erster Ordnung auf \mathbb{R}^n . Die Anfangsbedingung in unserer Formulierung lautet $\gamma(0) = (y_0, y_1, \dots, y_{n-1})$. Die bekannte Lösung $\gamma(t) = e^{tA} \cdot \gamma(0)$ liefert die gewünschte Lösung $\gamma(t)$ durch herauslesen der ersten Komponente von γ .

Beispiele.

(1) Die Differentialgleichung $\ddot{y}(t) + y(t) = 0$ ist als freie Schwingung bekannt. In der Physik ist $\ddot{y} = -g/\ell \cdot y$, wobei g die Gravitationsbeschleunigung und ℓ die Länge des Pendels ist. Die Funktion g beschreibt den Auslenkungswinkel. Wir betrachten den Fall $g/\ell = 1$. Setze $g/\ell = (y(t), \dot{y}(t))$. Dann ist

$$\dot{\gamma}(t) = (\dot{y}(t)\ddot{y}(t)) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (y(t)\dot{y}(t)).$$

Wenn wir die Anfangbedingungen $y_0 = 0$ und $y_1 = 1$ betrachten, dann ist die Lösung

$$\gamma(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

(2) Die Differentialgleichung $\ddot{y}(t)+\dot{y}(t)+y(t)=0$ ist als gedämpfte Schwingung bekannt. In der Physik trifft man diese Gleichung als $\ddot{y}(t)=-ky(t)-\theta\dot{y}(t)$ an, wobei θ ein Reibungsterm ist. Setze $\gamma(t)=(y(t),\dot{y}(t))$ wie oben. Wir erhalten die Differentialgleichung

$$\dot{\gamma}(t) = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} y(t) \\ \dot{y}(t) \end{pmatrix}.$$

Um die explizite Lösung e^{tA} für

$$A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

zu bestimmen, berechne das charakteristische Polynom $\chi_A(t)=t^2+t+1$ und dessen Eigenwerte und Eigenvektoren v_1 und v_2 um A zu diagonalisieren. Vergleiche Serie 4.

8 Rektifizierbare Kurven

Das Material in diesem Abschnitt ist im Abschnitt 177 in [1] nachzuschlagen.

Definition. Eine Kurve $\gamma \colon [0,T] \to \mathbb{R}^n$ heisst stetig differenzierbar, falls ein offenes Intervall (a,b) existiert, welches [0,T] enthält, und eine stetig differenzierbare Kurve $\overline{\gamma} \colon (a,b) \to \mathbb{R}^n$ mit $\overline{\gamma}|_{[0,T]} = \gamma$ existiert. Wir setzen

$$L(\gamma) = \int_0^T \|\dot{\gamma}(s)\|_2 \, ds.$$

Beispiel. Betrachte die Kurve

$$\gamma \colon [0, 2\pi] \to \mathbb{R}^2$$

$$t \mapsto (\cos(t), \sin(t)).$$

Berechne $\dot{\gamma}(s) = (-\sin(s), \cos(s))$ und $\|\dot{\gamma}(s)\|_2 = 1$ für alle $s \in \mathbb{R}$. Wir folgern, dass

$$L(\gamma) = \int_0^{2\pi} 1 \, ds = 2\pi.$$

Eine Kurve braucht nicht stetig differenzierbar zu sein, um eine endliche "Länge" zu haben.

Beispiele. Folgende Beispiele sollen Zeigen, dass unser $L(\gamma)$ als Längenbegriff nicht allgemein genug ist.

(1) Betrachte die Kurve

$$\gamma \colon [0,1] \to \mathbb{R}^2$$

$$t \mapsto (t,\sqrt{t}).$$

Dann ist γ im Nullpunkt nicht stetig differenzierbar: es gilt

$$\lim_{s \to 0} \|\dot{\gamma}(s)\|_2 = \lim_{s \to 0} \sqrt{1 + 1/4s} = +\infty.$$

Somit ist $\dot{\gamma}$ nicht Riemann-integrierbar. Dennoch hat γ eine endliche "Länge" (siehe auch Abbildung I.6). Der Grund dazu ist folgender. Sei $\varepsilon > 0$. Dann gilt

$$\int_{\varepsilon}^{1} \|\dot{\gamma}(s)\|_{2} ds = \int_{\varepsilon}^{1} \sqrt{1 + 1/4s} ds \le \int_{\varepsilon}^{1} \sqrt{5/4s} ds \le \sqrt{5}(1 - \sqrt{\varepsilon}) \le \sqrt{5}.$$

- (2) Betrachte die Kurve $\gamma \colon [0,1] \to \mathbb{R}^2$ aus Abbildung I.6 welche durch stückweise gerade Abschnitte deren Länge durch Terme einer geometrischen Reihe $\sum (1/2)^n$ gegeben sind. Wir geben keine expliziten Formeln dafür an. Die Kurve γ ist in abzählbar vielen Punkten nicht differenzierbar, hat aber "Länge" 1.
- (3) Es gibt sogar Kurven endlicher "Länge", welche in überabzählbar vielen Punkten nicht differenzierbar sind. Eine Konstruktion inspiriert durch die "Kochsche Schneeflocke" liefert solch eine Kurve.

Abbildung I.6: Die Kurven aus den Beispielen (1) und (2)

Definition. Sei $\gamma: [0,1] \to \mathbb{R}^n$ stetig. Eine Partition des Intervalls [0,1] ist eine endliche Folge von Zeitparametern $0 = t_0 < t_1 < \cdots < t_N = 1$. Wir notieren diese Partition als $P = \{t_0, t_1, \ldots, t_N\}$. Setze

$$L(\gamma; P) = \sum_{k=1}^{N} \|\gamma(t_k) - \gamma(t_{k-1})\|_2.$$

Dies ist in Abbildung I.7 veranschaulicht.

Abbildung I.7: Eine Partition der Länge N=3

Bemerkung. Falls eine Partition P_2 feiner ist als P_1 , das heisst $P_1 \subset P_2$, dann gilt $L(\gamma; P_1) \leq L(\gamma; P_2)$. Der Grund dafür ist die Dreiecksungleichung.

Definition. Sei $\gamma \colon [0,1] \to \mathbb{R}^n$ stetig. Dann ist die Länge von γ das Supremum von $L(\gamma; P)$, wobei P über alle Partitionen von [0,1] läuft. Falls die Länge von γ endlich ist, dann heisst γ rektifizierbar.

Beispiele.

(1) Sei $\gamma: [0,1] \to \mathbb{R}^n$ Lipschitz-stetig mit Konstante $k \geq 0$. Dann gilt für alle Zeiten $t_{k-1}, t_k \in [0,1]$, dass $\|\gamma(t_k) - \gamma(t_{k-1})\|_2 \leq k \cdot |t_k - t_{k-1}|$. Für jede Partition P von [0,1] gilt also

$$L(\gamma; P) = \sum_{k=1}^{N} \|\gamma(t_k) - \gamma(t_{k-1})\|_2 \le k.$$

Also ist γ rektifizierbar mit Länge höchstens k.

(2) Betrachte die Kurve

$$\gamma \colon [0,1] \to \mathbb{R}^2$$

$$t \mapsto \begin{cases} (0,0) & t = 0, \\ (t, t \cos(\pi/t)) & t > 0. \end{cases}$$

Betrachte die Partition $P = \{0, 1/N, 1/(N-1), \dots, 1/2, 1\}$ für festes $N \in \mathbb{N}$. Dann ist $L(\gamma; P) \ge 1 + 1/2 + \dots + 1/N$. Vergleiche dazu Serie 5. Es folgt, dass die Länge von γ nicht endlich ist, da die harmonische Reihe divergiert.

Theorem. Sei $\gamma \colon [0,1] \to \mathbb{R}^n$ stetig differenzierbar. Dann ist γ rektifizierbar, und die Länge von γ ist

$$L(\gamma) = \int_0^1 \|\dot{\gamma}(s)\|_2 ds.$$

Beweis. Wir zeigen zunächst, dass die Länge von γ höchstens $L(\gamma)$ ist. Sei dazu $P = \{t_0, t_1, \dots, t_N\}$ eine Partition von [0, 1]. Für alle $a, b \in [0, 1]$ mit $a \leq b$ gilt

$$\gamma(b) - \gamma(a) = \int_a^b \dot{\gamma}(s) \, ds.$$

Es folgt, dass

$$\|\gamma(b) - \gamma(a)\|_2 = \left\| \int_a^b \dot{\gamma}(s) \, ds \right\|_2 \le \int_a^b \|\dot{\gamma}(s)\|_2 \, ds.$$

Siehe dazu die Integralabschätzung in der Vorbereitung zum Beweis von Theorem von Cauchy-Lipschitz-Picard-Lindelöf. Wir folgern, dass

$$L(\gamma; P) = \sum_{k=1}^{N} \|\gamma(t_k) - \gamma(t_{k-1})\|_2 \le \sum_{k=1}^{N} \int_{t_{k-1}}^{t_k} \|\dot{\gamma}(s)\|_2 \, ds = \int_0^1 \|\dot{\gamma}(s)\|_2 \, ds = L(\gamma).$$

Die Länge von γ ist also höchstens $L(\gamma) < \infty$, und γ ist rektifizierbar.

Als nächstes ist die Gleichheit zu zeigen. Sei dazu $\varepsilon > 0$. Wir konstruieren eine Partition P mit $L(\gamma; P) \geq L(\gamma) - 2\varepsilon$. Daraus wird folgen, dass das Supremum über alle Partitionen genau $L(\gamma)$ ist. Da $\dot{\gamma} \colon [0,1] \to \mathbb{R}^n$ stetig ist, und [0,1] kompakt ist folgt, dass $\dot{\gamma}$ gleichmässig stetig ist. Es existiert also $\delta > 0$ so, dass für alle $a,b \in [0,1]$ mit $|b-a| \leq \delta$ gilt, dass $||\dot{\gamma}(b) - \dot{\gamma}(a)||_2 \leq \varepsilon$. Wähle nun $N \in \mathbb{N}$ mit $1/N \leq \delta$. Betrachte die Partition $P = \{0, 1/N, 2/N, \dots, (N-1)/N, 1\}$. Sei $k \in \{1, \dots, N\}$ beliebig. Dann gilt für $s \in [t_{k-1}, t_k]$, dass

$$\|\dot{\gamma}(s)\|_2 \le \|\dot{\gamma}(t_{k-1})\|_2 + \|\dot{\gamma}(s) - \dot{\gamma}(t_{k-1})\|_2 \le \|\dot{\gamma}(t_{k-1})\|_2 + \varepsilon,$$

da $|s - t_{k-1}| \le 1/N$. Es gilt also, dass

$$\int_{t_{k-1}}^{t_k} \|\dot{\gamma}(s)\|_2 ds \le \int_{t_{k-1}}^{t_k} \|\dot{\gamma}(t_{k-1})\|_2 ds + \int_{t_{k-1}}^{t_k} \|\dot{\gamma}(s) - \dot{\gamma}(t_{k-1})\|_2 ds
\le 1/N \cdot \|\dot{\gamma}(t_{k-1})\|_2 + \varepsilon/N.$$

Berechne weiterhin, dass

$$\left\| \int_{t_{k-1}}^{t_k} \dot{\gamma}(s) \, ds \right\|_2 = \left\| \int_{t_{k-1}}^{t_k} \dot{\gamma}(t_{k-1}) \, ds + \int_{t_{k-1}}^{t_k} \dot{\gamma}(s) - \dot{\gamma}(t_{k-1}) \, ds \right\|$$

$$\geq \left\| \int_{t_{k-1}}^{t_k} \dot{\gamma}(t_{k-1}) \, ds \right\|_2 - \left\| \int_{t_{k-1}}^{t_k} \dot{\gamma}(s) - \dot{\gamma}(t_{k-1}) \, ds \right\|_2$$

$$\geq \frac{1}{N} \cdot \|\dot{\gamma}(t_{k-1})\|_2 - \frac{\varepsilon}{N}.$$

Es folgt, dass

$$\|\gamma(t_{k}) - \gamma(t_{k-1})\|_{2} \ge \frac{\|\dot{\gamma}(t_{k-1})\|_{2}}{N} - \frac{\varepsilon}{N}$$
$$\ge \int_{t_{k-1}}^{t_{k}} \|\dot{\gamma}(s)\|_{2} ds - \frac{2\varepsilon}{N}.$$

Aufsummieren liefert, dass

$$L(\gamma; P) \ge \int_0^1 \|\dot{\gamma}(s)\|_2 \, ds - 2\varepsilon.$$

Beispiel (Schwarzscher Stiefel). Wir versuchen, den Inhalt einer Fläche durch eine "feine" Triangulierung zu approximieren. Leider geht der naiv Ansatz schief! Dazu untersuchen wir Fl einen Zylinder der Höhe h mit Radius 1. Wähle $N \in \mathbb{N}$ gross, und Punkte P_1, \ldots, P_N auf der Höhe 0, welche ein regelmässiges N-Eck bilden. Wähle versetzte Punkte Q_1, \ldots, Q_N auf der Höhe h, welche auch ein regelmässiges N-Eck bilden. Siehe Abbildung I.8. Wir erhalten eine Triangulierung mit 2N Dreiecken.

Abbildung I.8: Die Punkte P_i und Q_i von oben betrachtet und die daraus resultierende Triangulierung

Sei Δ eines der Dreiecke. Die Fläche von Δ ist ungefähr $\pi/N \cdot 1$. Die Gesamtfläche ist also ungefähr 2π , was genau die Fläche des Zylinders ist. Sei aber nun h sehr klein, zum Beispiel $1/N^3$. Dann ist die Höhe von Δ ungefähr proportional $1/N^2$ (und nicht wie erwartet $1/N^3$). Das liegt daran, dass $\cos(1/N)$ etwa $1-1/(2N^2)$ ist. Die Gesamtfläche ist dann etwa proportional zu $1/N^2$. Teilen wir nun die ursprüngliche Fläche in N^3 Unterzylinder, so ist der Gesamtflächeninhalt der Dreiecke proportional zu $N^3/N^2=N$. Unsere Definition der Rektifizierbarkeit ist somit für Flächen unangebracht. Ein besserer Flächenbegriff wird in der Differentialgeometrie studiert.

Kapitel II

Differentialrechnung

Dieses Kapitel stellt den Hauptteil dieser Vorlesung dar. Auch in [1] ist das korrespondierende Kapitel XX bei weitem das grösste. Der Inhalt ist das Studium differenzierbarer Abbildungen $f: \mathbb{R}^m \to \mathbb{R}^n$. Die erste Schwierigkeit daran ist, dass der Ausdruck

$$\lim_{h \to 0} \frac{f(p+h) - f(p)}{h}$$

für $m \geq 2$ keinen Sinn macht: Vektoren kann man nicht definieren.

1 Differenzierbarkeit

Definition. Sei $U \subset \mathbb{R}^m$ offen. Eine Abbildung $f: U \to \mathbb{R}^n$ heisst differenzierbar im Punkt $p \in U$, falls folgendes existiert:

- (i) eine lineare Abbildung $(Df)_p \colon \mathbb{R}^m \to \mathbb{R}^n$, genannt Differential von f an der Stelle p,
- (ii) für alle $h \in \mathbb{R}^m$ mit $p + h \in U$ ein $Restterm\ (Rf)_p(h) \in \mathbb{R}^n$, der relativ klein in $||h||_2$ ist, so dass für alle $h \in \mathbb{R}^m$ mit $p + h \in U$ gilt, dass

$$f(p+h) = f(p) + (Df)_n(h) + (Rf)_n(h).$$

Der Unterteilung von f in diese drei Summanden sagt man Dreigliedentwicklung. Die Forderung, dass $(Rf)_p(h)$ relativ klein in $||h||_2$ ist, bedeutet, dass

$$\lim_{h \to 0} \frac{\|(Rf)_p(h)\|_2}{\|h\|_2} = 0.$$

In anderen Worten existiert für alle $\varepsilon > 0$ ein $\delta > 0$, so dass für alle $h \in \mathbb{R}^m$ mit $||h||_2 \le \delta$ gilt, dass $||(Rf)_p(h)||_2 \le \varepsilon \cdot ||h||_2$.

Bemerkung. Das Differential ist a priori nur für diejenigen h definiert, für die p + h noch in U liegt. Da U aber offen ist, existiert aber eine Basis von \mathbb{R}^m aus Vektoren h_i für die $p + h_i$ noch in U liegt. Da lineare Abbildungen durch die Bilder der Basisvektoren eindeutig bestimmt sind, lässt sich das Differential auf ganz \mathbb{R}^m erweitern.

Beispiel. Sei $L: \mathbb{R}^m \to \mathbb{R}^n$ linear. Dann gilt für alle $p, h \in \mathbb{R}^m$, dass

$$L(p+h) = L(p) + L(h).$$

Dies ist eine Dreigliedentwicklung für L an der Stelle p mit Restterm $(RL)_p(h) = 0$. Tatsächlich ist die Abbildung $(DL)_p = L$ linear. Die informale Erklärung dafür ist, dass L die "beste lineare Approximation" von L ist, und das an jeder Stelle.

Beispiele.

(1) Betrachte die Funktion

$$f \colon \mathbb{R}^m \to \mathbb{R}$$
$$p \mapsto \langle p, p \rangle.$$

Für alle $p, h \in \mathbb{R}^m$ gilt, dass

$$f(p+h) = \langle p+h, p+h \rangle = \langle p, p \rangle + 2 \langle p, h \rangle + \langle h, h \rangle.$$

Dies ist eine Dreigliedentwicklung für f mit Differential $(Df)_p(h) = 2\langle p, h \rangle$ und Restterm $(Rf)_p(h) = \langle h, h \rangle$. Tatsächlich ist $(Df)_p$ linear in h, da Skalarprodukte bilinear sind, und

$$(Rf)_p(h) = \langle h, h \rangle = ||h||_2^2$$

ist relativ klein in $||h||_2$. Zum Beweis dafür sei $\varepsilon > 0$ und setze $\delta = \varepsilon$. Für alle $h \in \mathbb{R}^m$ mit $||h||_2 \le \delta$ gilt dann, dass $|(Rf)_p(h)| = ||h||_2^2 \le \varepsilon \cdot ||h||_2$.

(2) Betrachte die Abbildung

$$m: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto xy.$

Seien $p = (p_1, p_2)$ und $h = (h_1, h_2)$ in \mathbb{R}^2 . Dann gilt

$$m(p+h) = (p_1 + h_1) \cdot (p_2 + h_2) = p_1 p_2 + (p_1 h_2 + p_2 h_1) + h_1 h_2.$$

Dies ist eine Dreigliedentwicklung für m bei p mit $(Dm)_p(h) = p_1h_2 + p_2h_1$ und $(Rm)_p(h) = h_1h_2$. Da

$$(Dm)_p(h) = \begin{pmatrix} p_2 & p_1 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

gilt, ist $(Dm)_n$ linear. Weiter ist der Restterm relativ klein in $||h||_2$, da

$$|(Rm)_p(h)| = |h_1| \cdot |h_2| \le ||h||_2 \cdot ||h||_2 = ||h||_2^2,$$

und $||h||_2^2$ ist nach Beispiel (1) relativ klein in $||h||_2$.

Wir treffen nun die Kettenregel als Quelle für viele Beispiele an. Wir werden sie später in diesem Kapitel beweisen.

Theorem (Kettenregel). Seien $U \subset \mathbb{R}^m$ und $V \subset \mathbb{R}^k$ offen, und sei $f: U \to \mathbb{R}^k$ differenzierbar bei $p \in U$ mit $f(U) \subset V$, sowie $g: V \to \mathbb{R}^n$ bei $f(p) \in V$ differenzierbar. Dann ist die Komposition $g \circ f: U \to \mathbb{R}^n$ differenzierbar bei p, und es gilt

$$(D(g\circ f))_p=(Dg)_{f(p)}\circ (Df)_p.$$

Beispiel. Betrachte die Abbildung

$$\ell \colon \mathbb{R}^m \to \mathbb{R}$$
$$p \mapsto \sqrt{\langle p, p \rangle}.$$

In Koordinaten x_1, \ldots, x_m ist

$$\ell(x_1,\ldots,x_m) = \sqrt{x_1^2 + \cdots + x_m^2}.$$

Sei $U = \mathbb{R}^m \setminus \{0\} \subset \mathbb{R}^m$ und $V = \mathbb{R}_{>0}$. Beide dieser Mengen sind offen. Setze weiterhin

$$f \colon U \to \mathbb{R}$$
$$p \mapsto \langle p, p \rangle$$

und

$$g \colon \mathbb{R}_{>0} \to \mathbb{R}$$
$$t \mapsto \sqrt{t}.$$

Für alle $p \in U$ gilt $\ell(p) = g(f(p))$. Die Funktion f ist differenzierbar in allen Punkten $p \in U$ (eigentlich sogar in allen $p \in \mathbb{R}^n$). Ausserdem ist g differenzierbar an allen Stellen t > 0. Aus der Analysis I wissen wir, dass

$$(Dg)_t(h) = g'(t) \cdot h = \frac{1}{2\sqrt{t}} \cdot h.$$

Die Kettenregel liefert, dass $\ell=g\circ f$ an jeder Stelle $p\in U$ differenzierbar ist, und es gilt

$$(D\ell)_p(h) = (Dg)_{f(p)}((Df)_p(h)) = \frac{1}{2\sqrt{\langle p, p \rangle}} \cdot 2\langle p, h \rangle = \langle p/||p||_2, h \rangle.$$

Der Vektor $p/\|p\|_2$ ist der Vektor mit Länge 1, der in die selbe Richtung zeigt wie p. Er beschreibt den "Zuwachs" der Funktion ℓ .

Definition. Sei $f: \mathbb{R}^m \to \mathbb{R}^n$ eine Abbildung. Dann existieren eindeutige Komponentenfunktionen $f_k: \mathbb{R}^m \to \mathbb{R}$ für $1 \le k \le n$ mit folgender Eigenschaft: für alle $p \in \mathbb{R}^m$ gilt, dass

$$f(p) = \sum_{k=1}^{n} f_k(p) \cdot e_k.$$

Lemma. Eine Abbildung $f: \mathbb{R}^m \to \mathbb{R}^n$ ist differenzierbar, genau dann wenn alle Komponentenfunktionen $f_k: \mathbb{R}^m \to \mathbb{R}$ bei p differenzierbar sind.

Beweis. Um zu zeigen, dass die Komponentenfunktionen einer differenzierbaren Abbildung $f: \mathbb{R}^m \to \mathbb{R}^n$ selbst differenzierbar sind, sei

$$f(p+h) = f(p) + (Df)_p(h) + (Rf)_p(h)$$

eine Dreigliedentwicklung von f. Für $1 \leq k \leq n$ setze $(Df_k)_p(h) = \langle (Df)_p(h), e_k \rangle$ und $(Rf_k)_p(h) = \langle (Rf)_p(h), e_k \rangle$. Dann gilt für alle $k \leq n$, dass

$$f_k(p+h) = f_k(p) + (Df_k)_n(h) + (Rf_k)_n(h).$$

Weiterhin ist

(i) die Funktion

$$(Df_k)_p \colon \mathbb{R}^m \to \mathbb{R}$$

 $h \mapsto \langle (Df)_p(h), e_k \rangle$

als Verknüpfung einer linearen Funktion mit einer Projektion linear,

(ii) der Restterm $(Rf_k)_p(h)$ relativ klein in $||h||_2$, da $|(Rf_k)_p(h)| \le ||(Rf)_p(h)||_2$ gilt.

Umgekehrt nehmen wir an, dass die Komponentenfunktionen $f_k \colon \mathbb{R}^m \to \mathbb{R}$ einer Funktion $f \colon \mathbb{R}^m \to \mathbb{R}^n$ differenzierbar sind. Für alle k gibt es dann eine Dreigliedentwicklung $f_k(p+h) = f_k(p) + (Df_k)_p(h) + (Rf_k)_p(h)$. Setze

$$(Df)_p(h) = \sum_{k=1}^n (Df_k)_p(h) \cdot e_k$$

und

$$(Rf)_p(h) = \sum_{k=1}^n (Rf_k)_p(h) \cdot e_k.$$

Dann gilt $f(p+h) = f(p) + (Df)_p(h) + (Rf)_p(h)$. Weiterhin ist

(i) die Abbildung

$$(Df)_p \colon \mathbb{R}^m \to \mathbb{R}^n$$

$$h \mapsto \sum_{k=1}^n (Df_k)_p(h) \cdot e_k$$

linear da Summen linearer Abbildungen linear sind, und

(ii) $(Rf)_p(h)$ ist relativ klein in $||h||_2$, da

$$||(Rf)_p(h)||_2 \le \sum_{k=1}^n |(Rf_k)_p(h)|.$$

Dies folgt aus der allgemeinen Ungleichung, dass die euklidische Norm immer kleiner ist als die Summennorm. Weiterhin verwenden wir, dass endliche Summen relativ kleiner Funktionen selbst relativ klein ist. Dazu teile ε durch n um ein geeignetes δ als Minimum n verschiedener δ zu bekommen.

Frage. Können wir die Differenzierbarkeit von Abbildungen $f: \mathbb{R}^m \to \mathbb{R}$ weiter auf die Differenzierbarkeit von Funktionen $g: \mathbb{R} \to \mathbb{R}$ zurückführen? Konkreter: Ist $f: \mathbb{R}^m \to \mathbb{R}$ bei p=0 differenzierbar, falls die Einschränkung von f auf allen Koordinatenachsen differenzierbar ist?

Die Antwort hier ist leider "nein", wie in folgendem Beispiel zu erkennen ist.

Beispiel. Betrachte die Funktion

$$f \colon \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Die Einschränkung von f auf beide Achsen ist identisch null, also differenzierbar. Aber f ist nicht einmal stetig im Nullpunkt:

$$\lim_{n \to \infty} f(1/n, 1/n) = \frac{1}{2} \neq f(0, 0).$$

Vergleiche auch Serie 6 für ein Beispiel einer Funktion, die trotz Stetigkeit im Nullpunkt dort nicht differenzierbar ist.

Bemerkung. Falls f an der Stelle $p \in U$ eine Dreigliedentwicklung besitzt, dann ist diese eindeutig. Insbesondere ist das Differential $(Df)_p \colon \mathbb{R}^m \to \mathbb{R}^n$ wohldefiniert. Der Grund für die Eindeutigkeit des Differentials liegt darin, dass nur die Nullfunktion gleichzeitig linear und relativ klein ist. Man kann zeigen, dass die Differenz zweier potentiellen Differentialen derselben Funktion diese Eigenschaften erfüllt. Die Details dazu werden in Serie 7 behandelt.

Definition. Das Differential $(Df)_p \colon \mathbb{R}^m \to \mathbb{R}^n$ einer differenzierbaren Funktion f ist linear, hat also bezüglich der Standardbasen auf \mathbb{R}^m und \mathbb{R}^n eine Abbildungsmatrix $(Jf)_p \in \mathbb{R}^{n \times m}$, genannt Jakobimatrix von f an der Stelle $p \in U$.

Wir bestimmen nun die Einträge der Jakobimatrix $(Jf)_p$. Schreibe wie üblich

$$f(p) = \sum_{k=1}^{n} f_k(p)e_k.$$

Die Koeffizienten von $(Jf)_p$ sind dann

$$\begin{split} \left((Jf)_p \right)_{ij} &= \langle (Df)_p(e_j), e_i \rangle \\ &= \left\langle \sum_{k=1}^n (Df_k)_p(e_j) e_k, e_i \right\rangle \\ &= (Df_i)_p(e_j). \end{split}$$

Definition. Sei $U \subset \mathbb{R}^m$ offen und $f: U \to \mathbb{R}^n$ differenzierbar. Die *j*-te partielle Ableitung von $f_i: \mathbb{R}^m \to \mathbb{R}$ ist gegeben durch

$$\frac{\partial f_i}{\partial x_j}(p) = (Df_i)_p(e_j) \in \mathbb{R}.$$

Gemäss dieser Definition ist dann

$$(Jf)_{p} = \begin{pmatrix} \partial f_{1}/\partial x_{1}(p) & \partial f_{1}/\partial x_{2}(p) & \cdots & \partial f_{1}/\partial x_{m}(p) \\ \partial f_{2}/\partial x_{1}(p) & \partial f_{2}/\partial x_{2}(p) & \cdots & \partial f_{2}/\partial x_{m}(p) \\ \vdots & \vdots & \ddots & \vdots \\ \partial f_{n}/\partial x_{1}(p) & \partial f_{n}/\partial x_{2}(p) & \cdots & \partial f_{n}/\partial x_{m}(p) \end{pmatrix}.$$

Im Spezialfall n=1, das heisst, dass $f: \mathbb{R}^m \to \mathbb{R}$ skalare Werte annimmt, erhalten wir einen Zeilenvektor $(Jf)_p$. Der transponierte Vektor

$$(\nabla f)_p = \begin{pmatrix} \partial f/\partial x_1(p) \\ \vdots \\ \partial f/\partial x_m(p) \end{pmatrix} \in \mathbb{R}^m$$

heisst Gradient von f bei p. Es gilt

$$(Df)_p(v) = \langle (\nabla f)_p, v \rangle.$$

Beispiele.

(1) Betrachte die Funktion

$$f: \mathbb{R}^m \to \mathbb{R}$$

$$p \mapsto \langle p, p \rangle$$

In Koordinaten ist

$$f(x_1, x_2, \dots, x_m) = x_1^2 + x_2^2 + \dots + x_m^2$$

und es gilt

$$(\nabla f)_p = \begin{pmatrix} 2x_1 \\ 2x_2 \\ \vdots \\ 2x_m \end{pmatrix} = 2p.$$

(2) Betrachte die Funktion

$$f: \mathbb{R}^m \to \mathbb{R}$$

 $p \mapsto \sqrt{\langle p, p \rangle} = ||p||_2.$

Dann gilt

$$(Df)_p(v) = \left\langle \frac{p}{\|p\|_2}, v \right\rangle,$$

also ist

$$(\nabla f)_p = \frac{p}{\|p\|_2}.$$

In Koordinaten liest sich das als

$$(\nabla f)_{(x_1,\dots,x_m)} = \frac{1}{\sqrt{x_1^2 + \dots + x_m^2}} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix},$$

wobei $f(x_1,...,x_m) = \sqrt{x_1^2 + \dots + x_m^2}$.

(3) Betrachte die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto xy.$

Es gilt dann

$$(Df)_p(v) = yv_1 + xv_2.$$

Also ist

$$(\nabla f)_{(x,y)} = \begin{pmatrix} y \\ x \end{pmatrix}.$$

Mithilfe folgender Proposition können wir $(Df)_p(v)$ für beliebige $v \in \mathbb{R}^n$ ausrechnen. Insbesondere liefert sie Möglichkeiten für die Berechnung der Partiellen Ableitungen $\partial f/\partial x_i(p) = (Df)_p(e_i)$.

Proposition. Sei $f: \mathbb{R}^m \to \mathbb{R}$ differenzierbar an der Stelle $p \in \mathbb{R}^m$. Dann gilt für alle $v \in \mathbb{R}^m$, dass

$$(Df)_p(v) = \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t}.$$

Beweis. Falls v = 0 gilt, dann gilt

$$(Df)_p(0) = 0 = \lim_{t \to 0} \frac{f(p) - f(p)}{t}.$$

Für $v \neq 0$ folgt aus der Dreigliedentwicklung bei p, dass

$$f(p+tv) - f(p) = (Df)_p(tv) + (Rf)_p(tv).$$

Mithilfe der Linearität folgern wir, dass

$$(Df)_p(v) = \frac{f(p+tv) - f(p)}{t} - \frac{(Rf)_p(tv)}{t}.$$

Sei $\varepsilon > 0$ vorgegeben. Wähle $\delta > 0$ so, dass für alle h mit $||h||_2 \le \delta$ gilt, dass $||(Rf)_p(h)||_2 \le \varepsilon \cdot ||h||_2/||v||_2$. Für $t \le \delta/||v||_2$ gilt dann, dass $||tv||_2 \le \delta$, also gilt auch, dass $||(Rf)_p(tv)| \le \varepsilon \cdot ||tv||_2/||v||_2$. Wir schliessen, dass

$$\left\|\frac{(Rf)_p(tv)}{t}\right\| \leq \frac{\varepsilon \cdot \|v\|_2}{\|v\|_2} = \varepsilon.$$

In anderen Worten ist

$$\lim_{t \to 0} \frac{(Rf)_p(tv)}{t} = 0.$$

Bemerkung. Die Existenz des Grenzwerts

$$\lim_{t \to 0} \frac{f(p+tv) - f(p)}{t}$$

für alle $v \in \mathbb{R}^m$ impliziert nicht die Differenzierbarkeit von f an der Stelle p.

Beispiel. Die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto \frac{xy(x-y)}{x^2+y^2}$

ist nicht differenzierbar bei p=0, obwohl die Funktion auf allen eindimensionalen Untervektorräumen von \mathbb{R}^2 linear ist. Siehe Serie 6 für die Details.

2 Die Kettenregel

Theorem (Kettenregel). Seien $U \subset \mathbb{R}^m$ und $V \subset \mathbb{R}^k$ offen, und sei $f: U \to \mathbb{R}^k$ differenzierbar bei $p \in U$ mit $f(U) \subset V$, sowie $g: V \to \mathbb{R}^n$ bei $f(p) \in V$ differenzierbar. Dann ist die Komposition $g \circ f: U \to \mathbb{R}^n$ differenzierbar bei p, und es gilt

$$(D(g\circ f))_p=(Dg)_{f(p)}\circ (Df)_p.$$

Beweis. Wir leiten eine Dreigliedentwicklung für $g \circ f$ bei $p \in U$ her. Sei $h \in \mathbb{R}^m$ mit $p + h \in U$. Berechne mit der Dreigliedentwicklung von f, dass

$$\begin{split} g \circ f(p+h) &= g(f(p+h)) \\ &= g(f(p) + (Df)_p(h) + (Rf)_p(h)). \end{split}$$

Für $\overline{h} = (Df)_p(h) + (Rf)_p(h)$ gilt dann $f(p) + \overline{h} = f(p+h) \in V$, da $p+h \in U$. Es gilt also mit Hilfe der Dreigliedentwicklung von g, dass

$$g \circ f(p+h) = g(f(p) + \overline{h})$$

$$= g(f(p)) + (Dg)_{f(p)}(\overline{h}) + (Rg)_{f(p)}(\overline{h})$$

$$= g(f(p)) + (Dg)_{f(p)}((Df)_p(h)) + S_1 + S_2,$$

wobei $S_1=(Dg)_{f(p)}((Rf)_p(h))$ und $S_2=(Rg)_{f(p)}((Df)_p(h)+(Rf)_p(h))$. Wir zeigen nun, dass S_1 und S_2 relativ klein in $\|h\|_2$ sind. Es folgt dann nämlich, dass

$$g(f(p+h)) = g(f(p)) + (Dg)_{f(p)}((Df)_p(h)) + S_1 + S_2$$

eine Dreigliedentwicklung für die Komposition $g \circ f$ an der Stelle p ist, was das Theorem impliziert. Die Behauptung folgt aus untenstehendem Lemma.

Lemma. Seien $A_1: \mathbb{R}^m \to \mathbb{R}^k$ und $A_2: \mathbb{R}^k \to \mathbb{R}^n$ linear, so wie $R_1: \mathbb{R}^m \to \mathbb{R}^k$ und $\mathbb{R}_2: \mathbb{R}^k \to \mathbb{R}^n$ relativ klein in $||h||_2$. Dann sind die Ausdrücke

- (i) $A_2(R_1(h))$
- (ii) $R_2(A_1(h)) + R_1(h)$

relativ klein in $||h||_2$.

Beweis. Wir erinnern uns zunächst an die Operatornorm

$$||A||_{\text{op}} = \sup \left\{ \frac{||A(v)||_2}{||v||_2} \mid v \in \mathbb{R}^m \setminus \{0\} \right\}$$

einer linearen Abbildung $A: \mathbb{R}^m \to \mathbb{R}^n$. Setze $a_1 = ||A_1||_{\text{op}}$ und $a_2 = ||A_2||_{\text{op}}$. Falls $A_2 = 0$, dann ist $A_2(R_1(h)) = 0$, was relativ klein in $||h||_2$ ist.

(i) Falls $A_2 \neq 0$ gilt, dann gilt $a_2 > 0$. Sei $\varepsilon > 0$ vorgegeben. Wähle ein $\delta > 0$ so, dass für $h \in \mathbb{R}^m$ mit $||h||_2 \leq \delta$ gilt, dass $\varepsilon/a_2||h||_2$ folgt. Dann gilt

$$||A_2(R_1(h))||_2 \le a_2 \cdot ||R_1(h)||_2 \le \varepsilon \cdot ||h||_2.$$

(ii) Sei $\varepsilon > 0$ vorgegeben. Wähle $\delta_1 > 0$ so, dass für alle $h \in \mathbb{R}^m$ mit $||h||_2 \le \delta_1$ gilt, dass $||R_1(h)||_2 \le ||h||_2$. Dann folgt, dass

$$||A_1(h) + R_1(h)||_2 \le = ||A_1(h)||_2 + ||R_1(h)||_2$$

$$\le a_1 ||h||_2 + ||h||_2$$

$$= (a_1 + 1)||h||_2.$$

Wähle $\delta_2 > 0$ so dass für $v \in \mathbb{R}^k$ und $||v||_2 \le \delta_2$ gilt, dass $||R_2(v)||_2 \le \varepsilon/(a_1+1) \cdot ||v||_2$. Wähle nun $\delta = \min \{\delta_1, \delta_2/(a_1+1)\}$. Für alle $h \in \mathbb{R}^m$ mit $||h||_2 \le \delta$ gilt dann, dass

$$||A_1(h) + R_1(h)||_2 \le (a_1 + 1)||h||_2 \le \delta_2$$

Setze nun $v = A_1(h) + R_1(h)$. Wir folgern wegen $||v||_2 \le \delta_2$, dass

$$||R_2(A_1(h) + R_1(h))|| = ||R_2(v)||_2$$

 $\leq \varepsilon/(a_1 + 1) \cdot ||v||_2$
 $\leq \varepsilon \cdot ||h||_2.$

Also ist $R_2(A_1(h) + R_1(h))$ relativ klein in $||h||_2$.

Anwendungen der Kettenregel

Dimension eins

Sei $f: \mathbb{R} \to \mathbb{R}$ an der Stelle $x \in \mathbb{R}$ differenzierbar. Dann gilt für alle $h \in \mathbb{R}$, dass

$$(Df)_x(h) = h \cdot (Df)_x(1) = h \cdot \lim_{t \to 0} \frac{f(x+t \cdot 1) - f(x)}{t}.$$

Daraus folgt, dass $(Df)_x(h) = h \cdot f'(x)$. Insbesondere ist $f'(x) = (Df)_x(1)$. Seien nun $f : \mathbb{R} \to \mathbb{R}$ und $g : \mathbb{R} \to \mathbb{R}$ an den Stellen $x \in \mathbb{R}$ beziehungsweise $f(x) \in \mathbb{R}$ differenzierbar. Dann ist $g \circ f : \mathbb{R} \to \mathbb{R}$ an der Stelle x differenzierbar und es gilt

$$(g \circ f)'(x) = (D(g \circ f))_x(1)$$

$$= (Dg)_{f(x)}((Df)_x(1))$$

$$= (Dg)_{f(x)}(f'(x))$$

$$= f'(x) \cdot g'(f(x)).$$

Wir haben somit die eindimensionale Kettenregel

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

erfolgreich aus der höherdimensionalen Version hergeleitet.

Die Produktregel

Seien $f, g: \mathbb{R}^n \to \mathbb{R}$ an der Stelle $p \in \mathbb{R}^n$ differenzierbar. Das Produkt $fg: \mathbb{R}^n \to \mathbb{R}$ lässt sich als Komposition $m \circ h$ darstellen, wobei

$$h \colon \mathbb{R}^n \to \mathbb{R}^2$$

 $q \mapsto (f(q), g(q))$

und

$$m: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto xy.$

Wir erinnern uns, dass

$$(Dh)_{p}(v) = ((Df)_{p}(v), (Dg)_{p}(v))$$

und

$$(Dm)_{(x,y)}(h_1,h_2) = y \cdot h_1 + x \cdot h_2.$$

Daraus folgt, dass

$$\begin{split} (D(fg))_p(v) &= (D(m+h))_p(v) \\ &= (Dm)_{h(p)}((Dh)_p(v)) \\ &= (Dm)_{(f(p),g(p))}((Df)_p(v), (Dg)_p(v)) \\ &= g(p) \cdot (Df)_p(v) + f(p) \cdot (Dg)_p(v). \end{split}$$

Kurz erhalten wir die Produktregel

$$(D(fg))_p = g(p) \cdot (Df)_p + f(p) \cdot (Dg)_p.$$

Bemerkung. Die Summe $f+g\colon\mathbb{R}^n\to\mathbb{R}$ ist ebenso differenzierbar bei $p\in\mathbb{R}^n$ und es gilt

$$(D(f+g))_p = (Df)_p + (Dg)_p.$$

Es folgt, dass alle polynomialen Abbildungen $\mathbb{R}^n \to \mathbb{R}$ auf ganz \mathbb{R}^n differenzierbar sind. Dies kann durch Induktion über den Grad unter Benutzung der Produkt- und Additionsregeln gezeigt werden. Die Verankerung ist lediglich, dass konstante und lineare Abbildungen $\mathbb{R}^n \to \mathbb{R}$ auf \mathbb{R}^n differenzierbar sind. Insbesondere sind dies alle Koordinatenfunktionen $x_i \colon \mathbb{R}^n \to \mathbb{R}$.

Extrema von Abbildungen

Definition. Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ eine Abbildung. Dann hat f an der Stelle $p \in U$ ein lokales Minimum (beziehungsweise ein lokales Maximum) falls ein r > 0 existiert mit

- (i) $B_p(r) = \{ q \in \mathbb{R}^n \mid ||q p||_2 < r \} \subset U$,
- (ii) für alle $q \in B_p(r)$ gilt $f(q) \ge f(p)$ (beziehungsweise $f(q) \le f(p)$).

Proposition. Sei $f: U \to \mathbb{R}$ differenzierbar an der Stelle $p \in U$, welche ein lokales Minimum (beziehungsweise Maximum) von f ist. Dann gilt $(Df)_p = 0$.

Beweis. Sei $v \in \mathbb{R}^n$ beliebig. Wähle $\delta > 0$ so, dass $B_p(\delta \cdot ||v||_2) \subset U$ gilt. Definiere eine Kurve

$$\gamma \colon (-\delta, \delta) \to \mathbb{R}^n$$

$$t \mapsto p + tv.$$

Es gilt $\gamma(0) = p$, $\gamma'(0) = v$, und das Bild von γ liegt im Ball $B_p(\delta \cdot ||v||_2)$. Betrachte die Komposition

$$h: (-\delta, \delta) \to \mathbb{R}$$

 $t \mapsto f(\gamma(t)).$

Nach Annahme hat die Funktion h an der Stelle t=0 ein lokales Minimum (beziehungsweise Maximum). Wir bemerken mit der Kettenregel, dass h an der Stelle t=0 differenzierbar ist. Es folgt aus Diskussion in der Analysis I, dass h'(0)=0. Andererseits gilt

$$h'(0) = (Dh)_0(1) = (Df)_{\gamma(0)}((D\gamma)_0(1)) = (Df)_{\gamma(0)}(\gamma'(0)) = (Df)_p(v).$$

Beispiel. Die Funktion

$$\ell \colon \mathbb{R}^n \to \mathbb{R}$$
$$p \mapsto \langle p, p \rangle$$

hat ein (globales) Minimum bei p=0. Die Beobachtung, dass $(\nabla \ell)_0=0$ gilt, ist kompatibel mit obiger Proposition.

Kapitel III

Gradientenfelder und Differentialformen

Literaturverzeichnis

- [1] H. Heuser. Lehrbuch der Analysis. Mathematische Leitfäden. Vieweg+Teubner Verlag, 2009.
- [2] E. Hairer and G. Wanner. *Analysis by Its History*. Undergraduate Texts in Mathematics / Readings in Mathematics. Springer New York, 2000.