Matemática Discreta Aula 3 - Parte 1 Predicados, Quantificadores e Quantificadores Agrupados

Profa. Rosane Rossato Binotto

23/08/2023 e 30/08/2023

Tópicos

- Exemplos de proposições compostas.
- Predicados.
- Quantificadores.
- Quantificadores Agrupados.
- Traduzindo sentenças do português para expressões lógicas e vice-versa.

Revisando ...

Exemplo 1:

Use as leis de Morgan para expressar as negações das proposições:

- a) Miguel tem um celular e um laptop.
- b) Rodrigo vai ao concerto ou Carlos vai ao concerto.
- Solução: fazer na aula.

Mais exemplos ...

Exemplo 2:

Mostre que $p \to q$ e $(\neg p \lor q)$ são logicamente equivalentes. Esta propriedade é chamada condicional.

Solução:

р	q	¬р	p o q	¬ p ∨ q
V	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

- Predicados são declarações que não são nem verdadeiras nem falsas, quando o valor das variáveis não é especificado.
- São sentenças ou expressões abertas que não são proposições.

Exemplos:

- i) x > 2.
- ii) O computador x está funcionando.
- Como torná-las proposições?
 - Usando predicados ou quantificadores.

- Voltando ao exemplo x > 2.
 - Sujeito: *x*;
 - Predicado: > 2.
- Podemos escrever P(x): x > 2, onde P indica o predicado e x a variável.
- Uma vez atribuído um valor para a variável x, a declaração P(x) torna-se uma proposição e tem um valor verdade.
- Por exemplo, P(0): 0 > 2 é uma proposição falsa.
- P(5): 5 > 2 é uma proposição verdadeira.

Dadas n variáveis x₁, x₂, x₃, ..., x_n, a sentença indicada por P(x₁, x₂, x₃, ..., x_n) é chamada de função proposicional P para a n-úpla (x₁, x₂, ..., x_n) e P é chamado de predicado n-ário.

Exemplo 5:

Dado Q(x, y): x = y + 3. Quais os valores verdade de Q(1, 2) e Q(3, 0)?

- Solução:
- Q(1,2): 1 = 2 + 3 é falso.
- Q(3,0): 3 = 0 + 3 é verdadeiro.

Exemplo 3:

Consideramos a afirmação

if
$$x > 0$$
 then $x := x + 1$.

• Neste programa o valor da variável x é inserido em

- Se P(x) é verdadeira para o x em questão, então o comando x := x + 1 é executado.
- Continua no próximo slide ...

- Continuação ...
 - Logo o valor de x é incrementado em uma nova unidade.
- Por exemplo, se x=3>0 então o novo valor de x é 3+1=4.
- Se P(x) é falsa para o x em questão, então o comando x := x + 1 não é executado.
 - Portanto, o valor de x não é alterado.
- Por exemplo, se x = -2 < 0 então o programa não é executado.

Quantificadores

Exemplos:

- 1) P: x + y = 5.
- 2) Q : Ele é jogador de vôlei.
- P e Q são ditas sentenças abertas ou predicados.
- Podemos gerar novas sentenças abertas utilizando os conectivos: e, ou, não, se-então e se-e-somente-se.

Quantificadores

- Maneiras de transformar uma sentença aberta em proposição?
- Utilizando quantificadores:
 - quantificador universal: para todo e qualquer,

∀;

- quantificador existencial: **existe**, ∃.
- Um quantificador universal necessita de um universo ou domínio de discussão, isto é, uma coleção de objetos para os quais consideramos propriedades.

Quantificador Universal

Definição 1:

A quantificação universal da proposição P(x) é a afirmação:

P(x) é válida para todos os valores de x do domínio.

Ou ainda,

$$\forall x \ P(x)$$

que se lê "para todo valor de x vale P(x)".

• Essa quantificação pode ser lida como: "para todo x, P(x)"; "para cada x, P(x)"; "para qualquer x, P(x)".

Quantificador Universal

Exemplo 4:

Todos os homens são mortais.

- Universo (ou domínio): coleção de todos os homens.
- Para todo x do universo, x é mortal.
- P(x) : x é mortal.
 - x é o sujeito;
 - P(x) é o predicado.
- $(\forall x)(P(x))$.

Valor Verdade dos Quantificadores

Negação da quantificação universal:

Existe um elemento x tal que P(x) é falsa.

- Este elemento é chamado contra-exemplo.
- Valor verdade do quantificador universal

Sentença	Quando é verdadeira?	Quando é falsa?
$\forall x P(x)$	P(x) é verdadeira para todo x .	Existe um x tal que $P(x)$ é falsa.
$\exists x P(x)$	Existe um x tal que $P(x)$ é verdadeira.	P(x) é falsa para todo x .

Valor Verdade do Quantificador Universal

Exemplo 5:

Seja P(x): x + 1 > x, para todo x número real.

• **Solução:** P(x) é verdadeira.

Exemplo 6:

Seja Q(x) : x < 2, para todo x número real.

• **Solução:** Q(x) é falsa, pois Q(3) : 3 < 2 é falso (é um contra-exemplo).

Quantificador Existencial

Definição 2:

A quantificação existencial da proposição P(x) é a afirmação:

Existe um elemento x no domínio tal que P(x).

Ou ainda,

$$\exists x \ P(x)$$

que se lê "existe um valor de x tal que vale P(x)".

• Outras maneiras de escrever esse quantificador: "existe x, tal que P(x)"; "para algum x, P(x)"; "para no mínimo um x, P(x)".

23/08/2023 e 30/08/2023

Quantificador Existencial Único

• Quando existe um único elemento x no domínio que torna a sentença $(\exists x)(P(x))$ verdadeira, denotamos essa proposição por:

$$(\exists!x) (P(x))$$

que se lê "existe um **único** valor de x, tal que vale P(x)".

Quantificador Existencial

Exemplo 7:

Alguns homens são mortais.

- Existe no mínimo um homem que é mortal.
- Existe no mínimo um valor de x do universo, tal que x é mortal.
- $(\exists x)(P(x))$.

Valor Verdade dos Quantificadores

• Lembrando que ...

Sentença	Quando é verdadeira?	Quando é falsa?
$\forall x P(x)$	P(x) é verdadeira para todo x .	Existe um x tal que $P(x)$
		é falsa.
$\exists x P(x)$	Existe um x tal que $P(x)$ é ver-	P(x) é falsa para todo x .
	dadeira.	

• O conjunto de todos os valores que tornam uma proposição P(x) verdadeira é chamado **conjunto dos valores verdade de** P(x).

Exemplos

Exemplo 8:

Seja P(x): x + 1 = 5, para todo x número real. Qual é o conjunto dos valores verdade de P(x)?

- Solução:
- P(4): 4 + 1 = 5 é verdadeira, ou seja, existe um único valor de x tal que P(x) é verdadeira.
- Conjunto dos valores verdade de P(x): {4}.

Exemplos

Exemplo 9:

Seja Q(x): $\sin^2(x) + \cos^2(x) = 1$. Qual é o conjunto dos valores verdade de Q(x)?

- Solução:
- Q(x) é verdadeira para todo e qualquer x real.
- O conjunto dos valores verdade de Q(x) é o conjunto dos números reais \mathbb{R} .

Mais exemplos

Exemplo 10:

Seja R(x): x + 2 > 10, com $x \in \mathbb{R}$. Qual é o conjunto dos valores verdade de R(x)?

- R(x) é verdadeira para todo x > 8.
- O conjunto dos valores verdade de R(x) é

$$\left\{x \in \mathbb{R} \ / \ x > 8\right\} = (8, +\infty).$$

Generalização - Conjunção

- Sejam $x_1, x_2, x_3, ..., x_n$, os elementos do domínio das variáveis.
- Então: $(\forall x) (P(x))$ é o mesmo que a conjunção $P(x_1) \wedge P(x_2) \wedge P(x_3) \wedge ... \wedge P(x_n)$ que é **verdadeira** se e somente se $P(x_i)$ é **verdadeira** $\forall i = 1, 2, 3, ..., n$.
- Ou ainda,

$$(\forall x) (P(x)) \equiv P(x_1) \wedge P(x_2) \wedge P(x_3) \wedge ... \wedge P(x_n).$$

Exemplo

Exemplo 11:

Dado P(x): $x^2 < 10$. Qual o valor verdade de $(\forall x) (P(x))$, para x inteiro positivo e $x \le 4$?

• **Solução:** A proposição $(\forall x)$ (P(x)) com x inteiro positivo e $x \le 4$ é a mesma que

$$P(1) \wedge P(2) \wedge P(3) \wedge P(4)$$
.

- Além do mais, $P(1) \wedge P(2) \wedge P(3)$ é verdadeira pois cada uma das proposições é verdadeira.
- Porém, como P(4): $4^2 < 10$ é falsa, então a proposição P(x): $x^2 < 10$ é falsa para x inteiro positivo e $x \le 4$.

Generalização - Disjunção

- Sejam $x_1, x_2, x_3, ..., x_n$, os elementos do domínio das variáveis.
- Então: $(\exists x) \ (Q(x))$ é o mesmo que a disjunção $Q(x_1) \lor Q(x_2) \lor Q(x_3) \lor ... \lor Q(x_n)$ que é **verdadeira** se e somente se **pelo menos um** dos $Q(x_i)$ é **verdadeira** para i = 1, 2, 3, ..., n.
- Ou ainda,

$$(\exists x) \ (Q(x)) \ \equiv \ Q(x_1) \lor Q(x_2) \lor Q(x_3) \lor ... \lor Q(x_n).$$

Exemplo

Exemplo 12:

Dado Q(x): $x^2 > 10$. Qual o valor verdade de $(\exists x) (Q(x))$, para x inteiro positivo e $x \le 4$.

• **Solução:** O domínio de Q(x) é $\{1,2,3,4\}$ e a proposição $(\exists x) (Q(x))$ é a mesma que

$$Q(1) \vee Q(2) \vee Q(3) \vee Q(4)$$
.

• Como Q(4): $4^2 > 10$ é verdadeira, então $(\exists x)(Q(x))$: $x^2 > 10$ é verdadeira.

Prioridade dos Quantificadores

- Os quantificadores ∀ e ∃ têm prioridade maior que todos os operadores lógicos do cálculo proposicional.
- Por exemplo,

$$\forall x \ P(x) \lor Q(x) \equiv (\forall x \ P(x)) \lor Q(x)$$

em vez de $\forall x (P(x) \vee Q(x))$.

Equivalências Lógicas que Envolvem Quantificadores

- Sentenças que envolvem predicados e quantificadores são logicamente equivalentes (notação ≡) se e somente se elas têm o mesmo valor verdade quaisquer que sejam os predicados substituídos nessas sentenças e qualquer que seja o domínio para as variáveis nessas funções proposicionais.
- Exemplo 13: As expressões dadas são logicamente equivalentes, isto é,

$$\forall x \ \Big(P(x) \ \land \ Q(x) \Big) \ \equiv \ \forall x \Big(P(x) \Big) \land \forall x \Big(Q(x) \Big).$$

Negando Expressões Quantificadas

Exemplo 14:

Negue a expressão quantificada "Todo estudante desta sala teve aulas de Cálculo I".

- **Solução:** Estamos negando uma proposição com quantificador universal, isto é, $\forall x (P(x))$, onde:
- x é estudante desta sala e a declaração P(x) : x teve aulas de Cálculo I.
- Negação: Existe um estudante desta sala que não teve aulas de Cálculo I. $\left[\exists x (\neg P(x))\right]$.
- **Propriedade:** $\neg [\forall x (P(x))] \equiv \exists x (\neg P(x)).$

Negando Expressões Quantificadas

Exemplo 15:

Negue a expressão quantificada "Existe um estudante desta sala que teve aulas de Cálculo I".

- **Solução**: Estamos negando uma proposição com quantificador existencial, isto é, $\exists x (P(x))$, onde:
- x é estudante desta sala e a declaração P(x) : x teve aulas de Cálculo I.
- Negação: Todo estudante desta sala não teve aulas de Cálculo I. $\left[\forall x (\neg P(x)) \right]$.
- **Propriedade:** $\neg \left[\exists x (P(x)) \right] \equiv \forall x (\neg P(x)).$

Negando Expressões Quantificadas

Teorema 1: Leis de Morgan para quantificadores

- Dado P(x). A negação dos quantificadores é dada por:
 - 1) $\sim [(\forall x) (P(x))] \equiv (\exists x) (\sim P(x)).$
 - 2) $\sim [(\exists x) (P(x))] \equiv (\forall x) (\sim P(x)).$
- As notações ¬ e ∼ significam negação.
- Demonstração: fazer em aula.

Exercícios

Exercício 1:

Negue as proposições dadas na sequência.

- i) Existe um político honesto.
- ii) Todo brasileiro come churrasco.
- iii) $(\forall x)(x^2 > x)$.
- iv) $(\exists x)(x^2 = x)$.

Exercícios

Exercício 2:

Expresse as sentenças da sequência usando predicados e quantificadores.

- i) Algum estudante da classe visitou Florianópolis.
- ii) Todo estudante da classe visitou Florianópolis.

Exercícios

Exercício 3:

Mostre que

$$\sim \left[\forall x \ (P(x) \rightarrow Q(x)) \right] \equiv \exists x (P(x) \land \sim Q(x)).$$

• Lembre que, dadas as proposições *p* e *q* vale:

$$\sim (p \rightarrow q) \equiv (p \wedge \sim q).$$

Definição 3:

Dizemos que dois quantificadores são agrupados quando um está no escopo do outro.

Exemplo 16:

Sejam $x, y \in \mathbb{R}$. Então,

$$\forall x \ \forall y \ (x+y=y+x)$$

nos diz que x + y = y + x para todo $x, y \in \mathbb{R}$.

Exemplo 17:

Sejam $x, y \in \mathbb{R}$. Então,

$$\forall x \; \exists y \; \big(x+y=0\big)$$

nos diz que $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R} \ \text{tal que } x + y = 0.$

 Observação: A ordem dos quantificadores não interessa quando eles são todos universais ou existenciais.

Exemplo 18:

Sejam $x, y \in \mathbb{R}$ e Q(x,y): x+y=0. Quais os valores verdade da quantificação $\exists x \exists y \ Q(x,y)$?

• Solução: fazer em aula.

Exercício 4:

Sejam $x, y, z \in \mathbb{R}$ e Q(x, y, z) : x + y = z. Quais os valores verdade das sentenças

- i) $\forall x \ \forall y \ \exists z \ Q(x,y,z)$?
- ii) $\exists z \ \forall x \ \forall y \ Q(x,y,z)$?
- Solução: fazer em aula.

Traduzindo Setenças Matemáticas para Sentenças que Envolvem Quantificadores Agrupados

Exemplo 19:

Traduza para uma expressão lógica a sentença "A soma de dois números inteiros positivos é sempre positiva".

• **Solução:** sejam x, y números inteiros positivos. Então,

$$\forall x \ \forall y \Big[\big((x > 0) \land (y > 0) \big) \ \rightarrow \ (x + y > 0) \Big]$$

OU

$$\forall x \ \forall y (x+y>0).$$

Mais Exemplos

Exemplo 20:

Traduza para uma expressão lógica a sentença "Todo número real diferente de zero tem um inverso multiplicativo."

Solução: fazer em aula.

Traduzindo Quantificadores Agrupados para o Português

Exemplo 21:

Traduza a sentença

$$\forall x \Big[C(x) \vee \exists y \Big(C(y) \wedge F(x,y) \Big) \Big]$$

para o português em que, C(x) é "x tem um computador", F(x,y) é "x e y são amigos" e o domínio para ambas as variáveis são os estudantes da universidade.

• Solução: fazer em aula.

Traduzindo Quantificadores Agrupados para o Português

Exercício 5:

Traduza a sentença

$$\exists x \forall y \forall z \Big[\big(F(x,y) \land F(x,z) \land (y \neq z) \big) \rightarrow \sim F(y,z) \Big]$$

para o português em que, F(a, b) é "a e b são amigos" e o domínio para ambas as variáveis são os estudantes da universidade.

Solução: fazer em aula.

Referências

- LIPSCHUTZ, S.; LIPSON, M. Teoria e Problemas de Matemática Discreta. 2. ed. Bookman, 2004.
- MENEZES, P. B. Matemática Discreta para Computação e Informática. 3. ed. Bookman, 2010.
- ROSEN, K. H. Matemática Discreta e Suas Aplicações. 6. ed. McGraw-Hill, 2009.