Кусочно-параболический метод на локальном шаблоне для решения линейного уравнения переноса

Выполнил: Токарев А.И.

Научный руководитель: к. ф.-м. н., доц. каф. ФН2 Лукин В.В.

МГТУ им. Н.Э. Баумана

30 июня 2022 г.

Содержание

• Постановка задачи

2 Методы решения

3 Тестирование и сравнение методов

• Заключение

Постановка задачи

Линейное уравнение переноса

$$\frac{\partial y}{\partial t} + a \frac{\partial y}{\partial x} = 0. {1}$$

Характеристикой уравнения (1) является множество точек (x,t), удовлетворяющее **уравнению**:

$$\frac{dx}{dt} = a, (2)$$

то есть множество x - at = b. Точное решение линейного уравнения переноса (1) представляется в виде:

$$y(x,t) = y_0(x - at),$$

где у0 – начальный профиль.

Задача Коши (начальная задача)

$$\begin{cases} \frac{\partial y}{\partial t} + a \frac{\partial y}{\partial x} = 0, & x \in (-\infty, +\infty), \quad t > 0, \\ y(x, 0) = y_0(x). \end{cases}$$
 (3)

Решение задачи (3) заключается в сносе неизменного профиля по характеристикам. Его свойством является сохранение начального профиля y_0 .

Постановка задачи

Сетка

Введем сетку, на которой будем решать задачу:

$$\Omega_h = \left\{ x_i = l_1 + ih, \ i = 1 \dots n, \ h = \frac{l_2 - l_1}{n - 1} \right\},$$

где $[l_1,l_2]$ — отрезок, на котором определена сетка; n — число узлов; h — шаг. Определим y(x) ее разностным аналогом $y_i=y(x_i)$ на этой сетке. Значения y_i будем соотносить с узлами сетки, а $y_{i+\frac{1}{3}}=y_i^R$ и $y_{i-\frac{1}{3}}=y_i^L$ — с половинными узлами.

Интегро-интерполяционный метод. Перенос узлов

Определив решения y_i в момент времени t_j , можно вычислить \hat{y}_i на следующем временном слое t_{j+1} , применив интегро-интерполяционный метод к уравнению переноса в прямоугольнике $\left[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}\right] \times [t_j,t_{j+1}]$:

$$\int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}\int\limits_{t_{j}}^{t_{j+1}}\frac{\partial y(x,t)}{\partial t}\,dt\,dx\ +\int\limits_{t_{j}}^{t_{j+1}}\int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}a\frac{\partial y(x,t)}{\partial x}\,dx\,dt\ =\int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}\int\limits_{t_{j}}^{t_{j+1}}0\,dt\,dx\ =0.$$

Интегро-интерполяционный метод. Перенос узлов

Рассмотрим интегралы по отдельности:

$$\begin{split} \sum_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \int\limits_{t_{j}}^{t_{j+1}} \frac{\partial y(x,t)}{\partial t} \, dt \, dx \ &= \int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \left[y(x,t_{j+1}) - y(x,t_{j}) \right] dx = h \Big[\frac{1}{h} \int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(x,t_{j+1}) \, dx - \\ &- \frac{1}{h} \int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(x,t_{j}) \, dx \Big] = h (\overline{y}(x_{i},t_{j+1}) - \overline{y}(x_{i},t_{j})) = h(\hat{y}_{i} - y_{i}). \end{split}$$

Воспользуемся особенностью переноса значений по характеристикам для интеграла, подинтегральная функция которого является потоком (рис. 1):

$$\begin{split} \int\limits_{t_{j}}^{t_{j+1}} \int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} a \frac{\partial y(x,t)}{\partial x} \, dx \, dt \; &= \int\limits_{t_{j}}^{t_{j+1}} a \left(y(x_{i+\frac{1}{2}},t) - y(y_{x-\frac{1}{2}},t) \right) dt \; &= \int\limits_{x_{i+\frac{1}{2}} - a\tau}^{x_{i+\frac{1}{2}}} a y(x,t_{j}) \, dt \; - \\ &- \int\limits_{x_{i-\frac{1}{2}} - a\tau}^{x_{i-\frac{1}{2}}} a y(x,t_{j}) \, dt = a \tau \left(a \overline{y}_{i+\frac{1}{2}} - a \overline{y}_{i-\frac{1}{2}} \right). \end{split}$$

Интегро-интерполяционный метод. Перенос узлов

Объединяя оба интеграла получаем:

$$h(\hat{y}_i - y_i) + a\tau \left(a\overline{y}_{i+\frac{1}{2}} - a\overline{y}_{i-\frac{1}{2}}\right) = 0 \implies \hat{y}_i = y_i - \frac{a\tau}{h} \left(a\overline{y}_{i+\frac{1}{2}} - a\overline{y}_{i-\frac{1}{2}}\right). \tag{4}$$

 ${\sf Puc.}\ 1.$ Интегрирование потока по пространству, вместо времени

Методы решения

Общая идея

Имея значения в узлах $x_i, i=0\dots n$, доопределяем значения в половинных узлах, то есть исходная сетка Ω_h преобразуется в набор отрезков $\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]$ с определенными в них параболами (рис. 2):

$$y(x) = y_i^L + \xi(\Delta y_i + y_i^{(6)}(1 - \xi)), \quad \xi = (x - x_{i - \frac{1}{2}})h^{-1}, \quad \Delta y_i = y_i^R - y_i^L,$$

$$y_i^{(6)} = 6\left[y_i - \frac{1}{2}(y_i^R + y_i^L)\right], \quad x \in [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}].$$
(5)

Рис. 2. Парабола внутри разностной ячейки

Кусочно-параболический метод. РРМ

Среднее значение на отрезке

На отрезках $[x_{i+\frac{1}{2}}-\alpha,x_{i+\frac{1}{2}}]$ и $[x_{i+\frac{1}{2}},x_{i+\frac{1}{2}}+\alpha]$ имеем средние значения:

$$\overline{y}_{i+\frac{1}{2}}^{L}(\alpha) = \frac{1}{\alpha} \int_{x_{i+\frac{1}{2}}^{-\alpha}}^{x_{i+\frac{1}{2}}^{-\alpha}} y(x)dx = y_{i}^{R} - \frac{\alpha}{2h} \left[\Delta y_{i} - \left(1 - \frac{2\alpha}{3h} \right) y_{i}^{(6)} \right], \tag{6}$$

$$\overline{y}_{i+\frac{1}{2}}^{R} = \frac{1}{\alpha} \int_{x_{i+\frac{1}{k}}}^{x_{i+\frac{1}{2}} + \alpha} y(x)dx = y_{i+1}^{L} + \frac{\alpha}{2h} \left[\Delta y_{i+1} + \left(1 - \frac{2\alpha}{3h} \right) y_{i+1}^{(6)} \right]. \tag{7}$$

Граничные значения в РРМ

$$y_i^R = y_{i+1}^L = y_{i+\frac{1}{2}} = \frac{1}{2}(y_i + y_{i+1}) - \frac{1}{6}(\delta y_{i+1} - \delta y_i), \quad \delta y_i = \frac{1}{2}(y_{i+1} + y_{i-1}).$$

Для того, чтобы обеспечить монотонность решения, δy_i заменяется на:

$$\delta_m y_i = \begin{cases} \min(|\delta y_i|, \ 2|y_i - y_{i-1}|, \ 2|y_{i+1} - y_i|) \cdot \operatorname{sign}(\delta y_i), & (y_{i+1} - y_i)(y_i - y_{i-1}) > 0, \\ 0, & (y_{i+1} - y_i)(y_i - y_{i-1}) \le 0. \end{cases}$$

Граничные значения в РРМL

• Если a > 0, то получаем:

$$y_{i+\frac{1}{2}}(t_{j+1}) = y_i^R(t_{j+1}) = y_i^L(t_j) + \xi(\Delta y_i(t_j) + y_i^{(6)}(t_j)(1-\xi)), \quad \xi = 1 - \frac{a\tau}{h}.$$

• При a < 0:

$$y_{i+\frac{1}{2}}(t_{j+1}) = y_i^R(t_{j+1}) = y_{i+1}^L(t_j) + \xi(\Delta y_{i+1}(t_j) + y_{i+1}^{(6)}(t_j)(1-\xi)), \quad \xi = -\frac{a\tau}{h}.$$

Рис. 3. Перенос значений на границах вдоль характеристик в методе РРМL

Монотонизация

Избавление от локальных экстремумов

• y_i является локальным экстремумом, тогда:

$$y_i^L = y_i^R = y_i, \quad (y_{i+1} - y_i)(y_i - y_{i-1}) \le 0;$$

• y_i лежит слишком близко к границе:

$$\begin{split} y_i^L &= 3y_i - 2y_i^R, & \Delta y_i \cdot y_i^{(6)} > (\Delta y_i)^2, \\ y_i^R &= 3y_i - 2y_i^L, & \Delta y_i \cdot y_i^{(6)} < -(\Delta y_i)^2. \end{split}$$

Тестирование и сравнение методов. Исходные параметры

Примем l=200, $l_1=10$, $l_2=30$, $l_{11}=\frac{50}{3}$, $l_{22}=\frac{70}{3}$, $l_{12}=20$, T=200, h=1, a=1. Норму ошибки будем считать в пространствах C, L_1 , L_2 :

$$\|z\|_C = \max_{\Omega_h \times [0,T]} |z|, \quad \|z\|_{L_1} = \int_0^T \int_{\Omega_h} |z| \, dx dt, \quad z = |y(x,t) - y_h(x,t)|,$$

$$\|z\|_{L_2} = \left(\int\limits_0^T \int\limits_{\Omega_h} z^2 \, dx dt\right)^{\frac{1}{2}}, \quad \text{где } z = |y(x,t) - y_h(x,t)|.$$

Анализ точного вычисления граничных и серединных узлов

Puc. 4. Правый треугольник для PPM при $\sigma=1$

Таблица 1. Нормы ошибок для правого треугольника в методе РРМ

	h = 1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.5125	0.58	0.65	0.506	0.61	0.695	0.503	0.613	0.696
$\ \cdot\ _{L_1}$	1.038	0.519	0.26	0.255	0.13	0.064	0.063	0.0315	0.0158
$\ \cdot \ _{L_2}$	0.622	0.44	0.311	0.309	0.22	0.154	0.154	0.1087	0.077

Анализ точного вычисления граничных и серединных узлов

Рис. 5. Правый треугольник для PPML при $\sigma=1$

Таблица 2. Нормы ошибок для правого треугольника в методе PPML

	h = 1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.5125	0.5039	0.5544	0.50625	0.502	0.5487	0.5031	0.5001	0.5458
$\ \cdot\ _{L_1}$	1.0375	0.5187	0.2593	0.255	0.1273	0.0637	0.063	0.03154	0.01577
$\ \cdot\ _{L_2}$	0.6228	0.4404	0.3114	0.3087	0.2183	0.1544	0.1537	0.1087	0.0768

12 / 17

Анализ кусочно-линейного графика при уменьшенном числе Куранта

Рис. 6. Зуб для РРМ при $\sigma=0.8$

Таблица 3. Нормы ошибок для профиля "зуб"в методе РРМ

	h = 1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.525	0.84	0.754	0.5125	0.8375	0.7501	0.50625	0.835	0.7494
$\ \cdot\ _{L_1}$	2.1	1.05	0.525	0.5125	0.26	0.13	0.127	0.0633	0.032
$\ \cdot\ _{L_2}$	0.9	0.63	0.45	0.44	0.311	0.22	0.22	0.154	0.11

Анализ кусочно-линейного графика при уменьшенном числе Куранта

Рис. 7. Зуб для PPML при $\sigma=0.8$

Таблица 4. Нормы ошибок для профиля "зуб" в методе PPML

	h = 1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.525	0.6437	0.6347	0.5125	0.6343	0.6262	0.50625	0.6297	0.6219
$\ \cdot\ _{L_1}$	2.1	1.049	0.5249	0.5125	0.2563	0.1281	0.1265	0.0633	0.03164
$\ \cdot\ _{L_2}$	0.895	0.633	0.4478	0.4403	0.3113	0.2202	0.2183	0.1544	0.10916

Анализ методов на непрерывном графике

Рис. 8. Косинус для РРМ при $\sigma=0.5$

Таблица 5. Нормы ошибок для косинуса в методе РРМ

	h = 1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.078	0.244	0.242	0.039	0.11	0.156	0.0196	0.044	0.06
$\ \cdot\ _{L_1}$	0.195	0.098	0.048	0.0245	0.012	0.006	0.003	0.0015	0.00077
$\ \cdot\ _{L_2}$	0.028	0.02	0.014	0.005	0.0035	0.00245	0.00089	0.0006	0.00044

15 / 17

Анализ методов на непрерывном графике

Рис. 9. Косинус для PPML при $\sigma=0.5$

Таблица 6. Нормы ошибок для косинуса в методе PPML

	h = 1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.00615	0.0479	0.0576	0.00154	0.0158	0.01859	0.00039	0.00515	0.00599
$\ \cdot\ _{L_1}$	0.19475	0.09738	0.0487	0.02449	0.01225	0.0061	0.00306	0.00153	0.00076
$\ \cdot\ _{L_2}$	0.0277	0.01958	0.01384	0.005	0.00351	0.00248	0.00088	0.00059	0.00044

Заключение

- Рассмотрены кусочно-параболический метод и его варинат кусочно-параболический метод на локальном шаблоне.
- Снос по характеристикам граничных значений оказался удачным, потому что обеспечивает более точное решение и уменьшенную диссипацию.
- Методы PPM и PPML протестированы на ряде примеров, рассмотренных с различными профилями и временными и пространственными шагами.
- Точность оценивалась на основе норм разности между точным и численным решениям в пространствах C, L_1, L_2 .
- В пространствах $L_1,\,L_2$ PPML оказался точнее для всех рассмотренных профилей.
- \bullet В пространстве C результат нельзя интерпретировать однозначно.