

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Álgebra Elementar — Avaliação PS Prof. Adriano Barbosa

Matemática	07/12/2018
Matematica	01/12/2010

1	
2	
3	
4	
5	
Nota	

Aluno	(e)																										
Aiuno	aj	 	 	 	 	٠.	• •	• • •	• •	 • • •	• •	 	 	 ٠.	٠.	• •	 	 	 	٠.	 ٠.	 ٠.	٠.	 ٠.	٠.	• •	

Todas as respostas devem ser justificadas.

Avaliação P1:

- 1. Dadas as proposições p: João é feliz, q: Maria é alta. Escreva usando a linguagem corrente as proposições abaixo:
 - (a) $\sim p$
 - (b) $p \wedge q$
 - (c) $p \vee q$
 - (d) $(\sim p) \rightarrow q$
- 2. Determine se a equivalência $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$ é válida.
- 3. Escreva a forma contrária, a contrapositiva e a recíproca da proposição P: Se eu não for ao parque, então irei circo.
- 4. Determine o conjunto verdade das sentenças abertas:

(a)
$$x \in \mathbb{N}$$
 tal que $2x^2 - x = 0$

(b)
$$x \in \mathbb{Z}$$
 tal que $2x^2 - x = 0$

(c)
$$x \in \mathbb{Q}$$
 tal que $2x^2 - x = 0$

(d)
$$x \in \mathbb{R}$$
 tal que $2x^2 - x = 0$

5. Mostre que se mn é um inteiro ímpar, então m e n são ambos inteiros ímpares.

Avaliação P2:

- 1. Dados $A = \{1, 2\}$ e $B = \{1, 2, 3\}$. Determine se as afirmações abaixo são verdadeiras ou falsas:
 - (a) $1 \in A$
- (b) $\{1\} \in A$
- (c) $\{1\} \subset A$
- (d) $\varnothing \in A$

- (e) $A \subset B$ (f) $A \in B$ (g) $\varnothing \in \{\varnothing, A\}$ (h) $\varnothing \subset \{\varnothing, A\}$
- $\text{(i)} \ \ \{\varnothing\} \in \{\varnothing,A\} \\ \text{(j)} \ \ \{\varnothing\} \subset \{\varnothing,A\}$

- 2. Mostre que $(A\cap B)^C=A^C\cup B^C,$ quaisquer que sejam os conjuntos A e B.
- 3. Use o princípio de indução para mostrar que

$$2^{1} + 2^{2} + 2^{3} + \dots + 2^{n} = 2^{n+1} - 2, \forall n \in \mathbb{N}.$$

4. Determine no diagrama de Venn cada um dos conjuntos abaixo:

(a)
$$A - (B \cap C)$$

(b)
$$(A - B) \cup (A - C)$$

- 5. Dados os conjuntos $A = \{-1,0,1\}$ e $B = \{-i,i\}$, determine os elementos de:
 - (a) $A \times B$
 - (b) $B \times A$
 - (c) $R = \{(x, y) \in A \times A \mid x^2 + y^2 = 1\}$

- (1) a) Joan navé feliz.
 - b) Joan é feliz e Maria é alta.
 - c) Joan é feliz ou Maria é alta.
 - d) Se Joan nous é feliz, enton Maria é alta.
- (2) Construindo a tabela verdade:

,	\sim	(p)	٨	4)	\longleftrightarrow	\sim	†	V	2	9
_ F	:	>			V	Ŧ	V	F	Ŧ	V
				F	V	F	V		V	
		F			V	V	F		F	
\(\frac{\dagger}{\dagger}\)		T	F	F	V	V	F	V	V	F

Como o bicondicional é uma tantologia, temos que a equivalencia é válido.

3 Sejam

p: não vou ao parque.

9: vou as viras.

Logo, P: p → q. Assim,

contrária (~p -> ~q): Se en for as parque, entas non vou as circo. contrapositiva (ng) np): Se não vou ao circo, então vou ao parque. reciprova (9 -> p): Se vou as circo, então não vou as parque.

A Resolvendo a equação para XER:

 $2x^2 - x = 0 \Leftrightarrow x(2x-1) = 0 \Leftrightarrow x = 0 \text{ ou } 2x-1 = 0 \Leftrightarrow x = \infty \text{ ou } x = \frac{1}{2}$

- $a) \phi$
- 0人0,量
- b) 10/
- d) (0, 1/2)

 \bigcirc Sem perdo de generalidade, suponho que mé par, ou sije, existe $k\in\mathbb{Z}$ tal que m=2k. Logo,

 $m \cdot n = 2k \cdot n = 2(kn) = 2$, com $p = kn \in \mathbb{Z}$.

Um absurdo, pois $m \cdot n$ é impar.

Avaliação P2:

- (1) a) 1 é elemento do conj. A, isto é, 1EA.
 - b) O conjunto 1/1 now é elemento do conjunto A, logo 1/4A.
 - c) Todo elemento de 919 também é elemento de A, entaw 919 cA.
 - d) O conjunto vazio now é elemento de A. Assim, Ø &A.
 - e) todo elemento de A é também elemento de B, ou sije, ACB.
 - f) o conjunto A now é elemento de B, logo A&B.
 - g) ϕ é elemento do conjunto ϕ , A. Assim, $\phi \in \phi A$.
 - h) ϕ é subconjunto de qualquer conjunto, logo ϕ CA.
 - i) o conjunto formado telo conjunto vazio 10/2 não é elemento de 10,A/. Assim, 10/# 10/A/.
 - ϕ ϕ é elemento de ϕ , ϕ , ou size, ϕ ϕ .
- 1 Dado xE (ANB), timos que

x \$ ANB ⇒ x\$A ou x\$B ⇒ xEA ou x €B c → x € A UBC. Assim, (ANB) CACUBC. Por outro lado, dado xEACUBC,

REA OU REB = REA OU REB = REANB = RE(ANB), logo ACUBCC (ANB)C. Portanto, (ANB)C=ACUBC.

3 Usando indução sobre n:

Para n = 1: $2^{1} = 2 = 2^{1+1} - 2$.

Supondo que $2^{1}+2^{2}+...+2^{n}=2^{n+1}-2$, temos que

 $2^{n} + 2^{2} + \dots + 2^{n} + 2^{n+1} = 2^{n+1} - 2 + 2^{n+1} = 2 \cdot 2^{n+1} - 2 = 2^{(n+1)+1} - 2$

Portanto, pelo princípio de indução, a fórmula vale para todo ne IN.

 $A-(B\cap c)$

BNC

d

Δ- C

(5)

$$\triangle$$
 $\triangle \times B = \{ (-1,-i), (-1,i), (0,-i), (0,i), (1,-i), (1,i) \}$

b)
$$B \times A = \{(-i, -\lambda), (-i, 0), (-i, \lambda), (i, -\lambda), (i, 0), (i, 1)\}$$

$$C) \quad A \times A = \left\{ (-\lambda_{1} - \lambda)_{1} (-\lambda_{1} 0)_{1} (-\lambda_{1} \lambda)_{1} (0_{1} - \lambda)_{1} (0_{1} 0)_{1} (0_{1} \lambda)_{1} (\lambda_{1} - 1)_{1} (\lambda_{1} 0)_{1} (\lambda_{1} 1)_{1} \right\}$$

$$\mathcal{P} = \left\{ (-\lambda_{1} 0)_{1} (0_{1} \lambda)_{1} (0_{1} \lambda)_{1} (\lambda_{1} 0)_{1} \right\}$$