Analysis I

Thomas Fleming

November 23, 2021

Contents

- 1 Seperability and Bounded Linear Functionals 4
- 2 Bounded Linear Functionals 5

Lecture 24: Riesz Representation Theorem

Tue 23 Nov 2021 14:02

Definition 0.1 (Signum Function). We define the **sign function** to bf

$$\operatorname{sgn} \overline{\mathbb{R}} \longrightarrow \{-1, 0, 1\}$$

$$\operatorname{sgn}(x) \longmapsto \operatorname{sgn}(\operatorname{sgn}(x)) = \chi_{(0, \infty]}(x) - \chi_{[-\infty, 0)}(x).$$

Note, if g is measurable, sgn(g) is measurable.

Remark. If $g:S\to \overline{\mathbb{R}}$ is measurable, then $\mathrm{sgn}\,(g^*)$ is simple. Moreover, $g\,\mathrm{sgn}\,(g)=|g|.$

Theorem 0.1. Let $S \subseteq \mathbb{R}$ be measurable with $1 \le p \le \infty$, and q being p's conjugate. For $g \in L^q(S)$, define the map

$$\varphi:L^{p}\left(S\right)\longrightarrow\mathbb{R}$$

$$f\longmapsto\varphi\left(f\right)=\int_{S}fg.$$

Then φ is a bounded linear functional on $L^p(S)$ with norm $\|\varphi\| = \|g\|_q$. In particular $\varphi(f) = 0$ for all $f \in L^p(S)$ if and only if g = 0 almost everywhere.

Proof. By Holder,

$$|\varphi(f)| \le \int_{S} |fg| \le ||f||_p \cdot ||f||_q.$$

Hence, φ is well defined, and since φ is linear we found it to be a bounded linear functional with $\|\varphi\| \leq \|g\|_q$.

It remains to be shown that $\|\varphi\| = \|g\|_q$. First, we can assume $\|g\|_q > 0$. Then, if $1 we have <math>1 \le q < \infty$. Define

$$f = ||g||_q^{1-q} |g|^{q-1} \operatorname{sgn}(g).$$

We see $f \in L^p(S)$ and $||f||_p = 1$. Moreover,

$$\varphi(f) = \int_{S} \|g\|^{1-q} |g|^{q-1} |g| = \|g\|_{q}^{1-q} \underbrace{\int_{S} |g|^{q}}_{\|g\|_{q}^{q}}$$

$$= \|g\|_{q}.$$

Hence, we see $||g||_q \leq ||\varphi||$.

Lastly, consider the case p=1 $(q=\infty)$. For $\varepsilon>0$, let $E_{\varepsilon}=\{x\in S:|g(x)|\geq \|\varphi\|+\varepsilon\}$ and define $f_n=\chi_{E_{\varepsilon}\cap(-n,n)}\operatorname{sgn}(g)$ for $n\in\mathbb{N}$. Then, $f_n\in L_1(S)$ and

$$||f_n||_1 = m \left(E_{\varepsilon} \cap (-n, n) \right).$$

Then, we see

$$||f_n||_1 ||\varphi|| \ge \varphi(f_n)$$

$$= \int_S g f_n$$

$$\ge (||p|| + \varepsilon) \cdot ||f_n||_1.$$

This implies $||f_n||_1 = 0$ as all other possibilities have already been ruled out. Then, we see $m(E_{\varepsilon}) = 0$. Then, letting $E = \bigcup_{k \in \mathbb{N}} E_{\frac{1}{k}} = \{x \in S : |g(x)| > ||\varphi||\}$ we see m(E) = 0, so $|g(x)| \le ||\varphi||$ almost everywhere (i.e. $||g||_{\infty} \le ||\varphi||$ so the claim is shown.

The additional claim about $\varphi(f) = 0$ is then trivial.

Lemma 0.1. Let $[a,b]\subseteq\mathbb{R}$ with $1\leq p<\infty$ and q being p's conjugate. Suppose $g:[a,b]\to\overline{\mathbb{R}}$ is measurable and finite almost everywhere. If there is a $M\geq 0$ so that $\left|\int_{[a,b]}gs\right|\leq M\|s\|_p$ for every simple function $s\in L^p\left(\mathbb{R}\right)$, then $g\in L^q\left([a,b]\right)$ and $\|g\|_q\leq M$.

Proof. Consider p=1 and let $E_{\varepsilon}=\{x\in[a,b]:|g(x)|\geq M+\varepsilon\}$ for some $\varepsilon>0$. Define $f_{\varepsilon}=\chi_{E_{\varepsilon}}\operatorname{sgn}(g^*)$. Since E_{ε} is measurable and contained within [a,b], then $m(E_{\varepsilon})<\infty$ and f_{ε} is simple in $L^1(\mathbb{R})$ so that

$$Mm\left(E_{\varepsilon}\right)=M\left(\|f_{\varepsilon}\|_{1}\right)\geq\int_{\left[a,b\right]}gf_{\varepsilon}=\int_{E_{\varepsilon}}gf_{\varepsilon}\geq\left(M+\varepsilon\right)m\left(E\varepsilon\right).$$

Again, we find $m(E_{\varepsilon}) = 0$, so taking the union over all such $E_{\frac{1}{k}}$ yields $|g(x)| \leq M$ almost everywhere, hence the claim is shown.

For the case 1 , we see <math>g measurable implies a sequence of simple functions (s_n) so that $\lim_{n \to \infty} s_n(x) = |g^*(x)|$ for all $x \in \mathbb{R}$ and $0 \le s_n \le |g^*|$ for all n. Next, define a sequence of simple functions (t_n) with $t_n = s_n^{q-1} \operatorname{sgn}(g^*)$. Since $|g^*| \ge s_n \ge 0$, we find $t_n(x) = 0$ for $x \notin [a, b]$. Hence, $t_n \in L^p(\mathbb{R})$ with

$$\int |t_n|^p = \int |s_n| (pq - p) = \int |s_n|^q.$$

Moreover,

$$||s_n||_q^q = \int s_n^q$$

$$= \int s_n^{q-1} s_n \qquad \leq \int_{[a,b]} s_n^{q-1} |g|$$

$$= \int_{[a,b]} g \operatorname{sgn}(g) s_n^{q-1}$$

$$= \int_{[a,b]} g t_n$$

$$\leq M \cdot ||t_n||_p$$

$$= M \cdot \left(\int \underbrace{(s_n^{q-1})^p}_{s_n^q}\right)^{\frac{1}{p}}$$

$$= M \cdot \left(\int s_n^q\right)^{\frac{1}{q} \cdot \frac{q}{p}}$$

$$= M ||s_n||_q^{\frac{q}{p}}$$

. Hence, $||s_n||_q^q \leq M ||s_n||_p^{\frac{q}{p}}$. Dividing yields

$$||s_n||_q^{q-\frac{q}{p}} = ||s_n||_q \le M.$$

Applying Fatous lemma

$$\begin{split} \int_{[a,b]} |g| &= \int_{[a,b]} \left(\lim_{n \to \infty} s_n^q \right) \\ &\leq \liminf_{n \to \infty} \int_{[a,b]} s_n^q \\ &\leq M^q. \end{split}$$

Theorem 0.2 (Riesz Representation Theorem). Let $S \subseteq \mathbb{R}$ be measurable with $1 \leq p < \infty$ and q being p's conjugate. Then, for every bounded linear functional $\varphi: L^p(S) \to \mathbb{R}$ there is a unique $g \in L^q(S)$ so that

$$\pi\left(f\right) = \int_{S} fg \; \forall \; f \in L^{p}\left(S\right)$$

and $\|\varphi\| = \|g\|_q$.

Proof. Defining $\varphi^*(f) = \varphi(f|_S)$ for some $f \in L^p(\mathbb{R})$, we see φ is a bounded linear functional on $L^p(\mathbb{R})$ whiles preserving its norm. Hence, we can assume $S = \mathbb{R}$.

Let $[a, b] \subseteq R$ and define the following function

$$F: [a, b] \longrightarrow \mathbb{R}$$
$$x \longmapsto F(x) = \varphi\left(\chi_{[a, x]}\right).$$

Given a finite disjoint collection $\{(a_k, b_k) : 1 \le k \le n\} \in [a, b]$ with each interval being nonempty $(a_k < b_k)$. Define $s_k = \operatorname{sgn}(F(b_k) - F(a_k))$. Then, linearity yields

$$\varphi\left(\sum_{k=1}^{n} \delta_{k} \chi_{(a_{k},b_{k}]}\right) = \sum_{i=1}^{n} \delta_{k} \varphi\left(\chi_{(a_{k},b_{k}]}\right)$$
$$= \sum_{k=1}^{n} \delta_{k} \left(\varphi\left(\chi_{[a,b_{k}]} - \chi_{[a,a_{k}]}\right)\right)$$
$$= \sum_{k=1}^{n} |F\left(b_{k}\right) - F\left(a_{k}\right)|.$$

Since $\left|\sum_{k=1}^{n} \delta_{k} \chi_{(a_{k},b_{k}]}\right|^{p} = \sum_{k=1}^{n} \chi_{(a_{k},b_{k}]}$, we see

$$\sum_{k=1}^{n} |F(b_k) - F(a_k)| \le \|\varphi\| \left(\int \sum_{k=1}^{n} \chi_{(a_k, b_k]} \right)$$
$$= \|\varphi\| \left(\sum_{k=1}^{n} (b_k - a_k) \right)^{\frac{1}{p}}.$$

Hence, we find F to be absolutely continuous.

Now, for $n \in \mathbb{N}$, define $I_n = [-n, n]$ and define the functions

$$F_n: I_n \longrightarrow \mathbb{R}$$

 $x \longmapsto F_n(x) = \varphi\left(\chi_{(-n,x]}\right).$

We see each F_n is absolutely continuous, so applying the fundamental theorem of calculus, we find a $g_n \in L^1(I_n)$ so that $F_n(x) = \int_{[-n,x]} g_n$ for $x \in I_n$ and $F'_n = g_n$ almost everywhere on I_n .

Since $F_{n+1}(x) = \varphi\left(\chi_{(-(n+1),n]}\right) + F_n(x)$ for $x \in I_n$. Since this differs only by a constant, we see $g_{n+1} = g_n$ almost everywhere on I_n .

Hence, the sequence of integrable functions (g_n^*) converges pointwise almost everywhere to a measurable $g: \mathbb{R} \to \overline{\mathbb{R}}$. Moreover, every bounded interval $I \subseteq \mathbb{R}$ has $\varphi(\chi_I) = \int_I (g) = \int g\chi_I$ since, there is an $N \in \mathbb{N}$ so that $g\chi_I = g_N^*\chi_I$ almost everywhere.

Hence linearity yields $\varphi(\psi) = \int g\psi$ for every step function ψ . Applying the density results from the previous lecture yields the result for all $f \in L^p(\mathbb{R})$. \square

1 Seperability and Bounded Linear Functionals

Lecture 23: Separability of L^p spaces

Thu 18 Nov 2021 13:57

Definition 1.1 (Step-Function). A step function, $\psi : \mathbb{R} \to \mathbb{R}$ is a simple function of the form

$$x \mapsto \sum_{k=1}^{m} a_k \chi_{J_k} \left(x \right)$$

where every set J_k is a bounded interval.

Theorem 1.1. (22.4).

Proof. 1. For the case $p = \infty$, we have f bounded almost everywhere. By splitting f into functions f^+ , f^- we can assume $f \geq 0$. Then, we see a sequence of simple functions (s_n) converging uniformly to f almost everywhere.

For $1 \leq p < \infty$ we find a sequence of simple functions (s_n) converging pointwise to f so that $|s_n| \leq |f|$. Consequently, we see

$$|f - s_n|^p \le (|f| + |s|)^p \le (2|f|)^p = 2^p |f|^p$$
.

So, we see dominated convergence implies

$$\int |f - s_n|^p = 0.$$

2. Assuming the case 1, we see we can assume f simple. Moreover, we can assume $f = \chi_S$, a characteristic function in $L^p(\mathbb{R})$. Then, we see S is measurable with $\int \chi_S = m(S) < \infty$, hence $\int \chi_S^p < \infty$

 ∞ . Applying littlewoods first princple and finxing $\varepsilon > 0$ we find a finite disjoint collection of open intervals $\{J_k : 1 \le k \le n\}$ so that for $U = \bigcup_{k=1}^m J_k$, we find $m(S \triangle U) < \varepsilon^p$.

Then, we see

$$\int |\chi_S - \chi_U|^p = \int \chi_{S \triangle U}^p$$

$$= m (S \triangle U)$$

$$< \varepsilon^p.$$

Since $m(U \setminus S) < \infty$, we see each interval J_k must be bounded (else U would be of infinite measure), so χ_U is a step function on the interval $[a,b] \supseteq U$ satisfying the required conditions.

3. Assuming 2 we see it suffices to show case for the step function $f = \chi_{[c,d]}$ with $c \leq d$. Then, fixing $\varepsilon > 0$ and considering the function

$$x\mapsto g\left(x\right)=\chi_{\left[c,d\right]}+\left(1+\varepsilon^{-p}\left(x-c\right)\right)\chi_{\left(c-\frac{\varepsilon^{p}}{3},\right),c}+\left(1-e^{-p}\left(x-d\right)\right)\chi\left(d,d+\frac{\varepsilon^{p}}{3}\right).$$

We see this functions is continuous as it is simply piecewise linear, being 1 on [c,d] and a linear interpolation between 1 and 0 in a small interval either side of [c,d]. Importantly, $\int_{\left(c-\frac{1}{3}\varepsilon^p\right)}|g|\leq \frac{1}{3}\varepsilon^p$, the length of the

interval.

Hence, we find

$$\int \left| \chi_{[c,d]} - g \right|^p \le \left(\frac{2}{3} \varepsilon^p \right)^p < \varepsilon^p.$$

This completes the proof.

Note that this proof essentially showed simple functions, step functions, and continuous functions are dense in $L^p(\mathbb{R})$ (given $1 \leq p < \infty$ for the last 2).

Definition 1.2 (Density). Let $(X, \|\cdot\|)$ be a normed linear space. If $S \subseteq T \subseteq X$, then S is **dense** in T if for all $v \in T, \varepsilon > 0$ we find a vector $u \in S$ so that $\|v - u\| < \varepsilon$.

Definition 1.3 (Seperability). A normed linear space $(X, \| \cdot \|)$ is **seperable** if it contains a countable, dense subset.

Theorem 1.2. For $1 \leq p < \infty$, $L^p(\mathbb{R})$ is separable.

Proof. If $\varphi = c\chi_{[a,b]}$ with $a,b,c \in R$, then for any $\varepsilon > 0$ we find an interval $I = [c,d] \subseteq [a,b]$ with $c,d \in \mathbb{Q}$ and an $r \in \mathbb{Q}$ so that $\int |\varphi - r\chi_I|^p < \varepsilon^p$ (the function vanishes except on an arbitrarily small interval). Letting Ψ be the collection of all such step functions of the form $\psi = \sum_{i=1}^n c_k \chi_{I_k}$ with $c_k \in \mathbb{Q}$ and I_k having rational endpoints, then linearity combined with the preceding lemmas guarantees Ψ to be a countable dense subset, so $L^p(\mathbb{R})$ is separable. \square

2 Bounded Linear Functionals

Definition 2.1 (Functionals). • A function $\varphi : X \to \mathbb{R}$ on a linear space X is called a **linear functional** if the laws of linearity holds for φ .

- A linear functional $\varphi: X \to \mathbb{R}$ on a normed linear space $(X, \|\cdot\|)$ is called **bounded** if there is $M \ge 0$ so that $|\varphi(x)| \le M \|x\|$ for all $x \in X$.
- If φ is a bounded linear functional, the quantity

$$\|\varphi\| = \inf\{M \ge 0 : |\varphi(x)| \le M\|x\| \ \forall \ x \in X\}$$

is called the **norm** of φ .

Proposition 2.1. Let $\varphi: X \to \mathbb{R}$ be a bounded linear functional on a normed linear space $(X, \|\cdot\|)$. Then,

$$\|\varphi\| = \sup\{|\varphi(x)| : x \in X, \|x\| \le 1\}.$$

Definition 2.2 (Continuity). A linear functional $\varphi: X \to \mathbb{R}$ on $(X, \|\cdot\|)$ is **continuous at** x_0 if for every $\varepsilon > 0$ we find a $\delta > 0$ so that $|\varphi(x) - \varphi(x_0)| < \varepsilon$ if $||x - x_0|| < \delta$.

If φ is continuous for all $x \in X$, then φ is **continuous.**

Proposition 2.2. Let $\varphi:X\to\mathbb{R}$ be a linear functional on $(X,\|\cdot\|)$. Then, the following are equivalent

- φ is continuous,
- φ is continuous at some $x_0 \in X$,
- φ is bounded.