Лекции по ТФКП, 3 семестр

Тимошенко Иван, 24123

1 Модели комплексных чисел

Введем стандартные понятия нужным образом:

 \mathbb{R} - множество точек на прямой.

 $\mathbb C$ - расширение $\mathbb R$ с помощью одного из корней уравнения $z^2=-1$: $\mathbb C=\mathbb R\cup\{0\}$, с замыканием относительно сложения и умножения.

Теорема 1 (Основная теорема алгебры) Множество комплексных чисел (\mathbb{C}) алгебраически замкнуто (любой многочлен степени n, коэффициенты которого лежат в \mathbb{C}), имеет корни в \mathbb{C} (с учетом кратности).

Замечание: Теорема верна и в частном случае многочлена, определенного над \mathbb{R} .

1.1 Стандартная модель комплексных чисел

Комплексное число z представляется парой $(x,y) \in \mathbb{R}^2$ с операциями:

• "+":
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

• " · " :
$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_2y_1 + x_1y_2)$$

Замечание: Операции согласованы с операциями на \mathbb{R} .

Замечание: $\mathbb{R} \subset \mathbb{C}, \quad \mathbb{R} = \{(x,0) \mid x \in \mathbb{R}\}$

B станд. модели
$$\begin{cases} 0 = (0,0) \\ 1 = (1,0) \end{cases}$$

Опр. 1. Мнимая единица определена как пара (0,1).

Замечание: Некорректно определять мнимую единицу как корень уравнения $z^2 = -1$, т.к. -i так же является корнем.

$$i^2 = (0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -1$$

$$(-i^2) = (0, -1) \cdot (0, -1) = (-(-1) \cdot (-1), 0) = (-1, 0) = -1$$

Замечание: Запись $\sqrt{-1}$ тоже некорректна.

Утв. 1 На $\mathbb C$ нельзя ввести линейный порядок.

Доказательство. Пусть $x \in \mathbb{C}$, и существует некий линейный порядок <.

$$\forall x \neq 0 \begin{cases} \text{либо} - \frac{x}{2} < \frac{x}{2} \text{ и } 0 = -\frac{x}{2} + \frac{x}{2} < \frac{x}{2} + \frac{x}{2} = x \\ \text{либо} \frac{x}{2} < -\frac{x}{2} \text{ и } 0 > x \end{cases}$$

Тогда $\forall x \neq 0$ либо x > 0, либо -x > 0. Т.е. $\forall x \neq 0 \quad x^2 > 0$. Но $-1 = i^2 < 0$ - противоречие.

1.2 Матричная модель

Комплексное число $z=\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, где $x,y\in\mathbb{R}.$

" + " :
$$\begin{pmatrix} x_1 & y_1 \\ -y_1 & x_1 \end{pmatrix}$$
 + $\begin{pmatrix} x_2 & y_2 \\ -y_2 & x_2 \end{pmatrix}$ = $\begin{pmatrix} x_1 + x_2 & y_1 + y_2 \\ -y_1 - y_2 & x_1 + x_2 \end{pmatrix}$

".":
$$\begin{pmatrix} x_1 & y_1 \\ -y_1 & x_1 \end{pmatrix}$$
 $\cdot \begin{pmatrix} x_2 & y_2 \\ -y_2 & x_2 \end{pmatrix} = \begin{pmatrix} x_1x_2 - y_1y_2 & x_1y_2 + x_2y_1 \\ -x_1y_2 - x_2y_1 & x_1x_2 - y_1y_2 \end{pmatrix}$

В матричной модели ноль (нейтральный элемент по сложению) представлен матрицей $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, единица (нейтральный по умножению) $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, мнимая единица $i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

В стандартной модели произвольное комплексное число z=(x,y) имеет стандартную запись (x- вещественная часть

$$z = x + iy$$
, где $\begin{cases} x - \text{вещественная часть} \\ y = \text{мнимая часть} \end{cases}$

Действия с комплексными числами:

1. Сравнение (проверка равенства):

$$a+ib=c+id\iff a=c$$
 и $b=d$

2. Сложение:

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

3. Умножение:

$$(a+ib)\cdot(c+id) = (ac-bd) + i(ad+bc)$$

4. Деление:

$$\frac{a+ib}{c+id} = \frac{(a+ib)\cdot(c-id)}{c^2+d^2} = \frac{(ac-bd)+i(bc-ad)}{c^2+d^2}$$

1.3 Геометрическая модель

Комплексное число представлено точкой с координатами (x,y) на плоскости. Операции:

• "+": действует как сложение векторов (покоординатно).

• " · " :
$$z_3 = z_1 z_2 \iff \begin{cases} |z_3| = |z_1| \cdot |z_2| \\ arg(z_3) = arg(z_1) + arg(z_2) \end{cases}$$
 где $|z| = \sqrt{x^2 + y^2}$, $arg(z)$ задает угол между \vec{z} и Ох (определяется с точностью до периода).

Аргумент комплексного числа Arg(z) - угол φ с точностью до периода 2π . **Главное значение аргумента** arg(z) - φ в промежутке $[0; 2\pi]$.

Комплексно сопряженное к z = x + iy это $\overline{z} = x - iy$.

$$|z| = |\overline{z}|, \quad arg(z) = -arg(\overline{z}), \quad Re(z) = Re(\overline{z}), \quad Im(z) = -Im(\overline{z})$$

$$\overline{z} \cdot z = (x + iy) \cdot (x - iy) = x^2 + y^2 = |z|^2$$

Законы де Моргана:

- $\bullet \ \overline{(\overline{z})} = z$
- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\bullet \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

Неравенство треугольника:

$$\begin{cases} |z_1 + z_2| \le |z_1| + |z_2| \\ |z_1 - z_2| \ge ||z_1| - |z_2|| \end{cases} \implies ||z_1| - |z_2|| \le |z_1 + |z_2| \le |z_1| + |z_2|$$

1.4 Стереографическая проекция

На комплексную плоскость положили сферу S радиуса $\frac{1}{2}$. Северный полюс сферы - вершина N(0;0;1). Комплексному числу c, лежащему в плоскости комплексных чисел и имеющему координаты (x,y,0) ставится в соответствие точка, которая является точкой пересечения прямой Nc со сферой S. Зададим систему координат $O\xi\eta\zeta$ аналогично Oxyz, но O имеет координаты $(0,0,\frac{1}{2})$. Уравнение сферы S:

$$\xi^2 + \eta^2 + (\xi - \frac{1}{2})^2 = (\frac{1}{2})^2 \tag{1}$$

Уравнение прямой Nc по двум точкам:

$$\frac{\xi}{x} = \frac{\eta}{y} = \frac{\zeta - 1}{-1} \iff \xi^2 + \eta^2 + \zeta^2 - \zeta = 0$$
 (2)

Получаем набор обратных формул стереографической проекции: $x=\frac{\xi}{1-\zeta}, y=\frac{\eta}{1-\zeta}, z=\frac{\xi+i\eta}{\zeta-1}.$ Отсюда найдем

$$|z|^2 = z \cdot \overline{z} = \frac{\xi^2 + \eta^2}{(1 - \zeta)^2} \underset{\text{\tiny H3}}{=} \frac{\zeta}{1 - \zeta} \implies \zeta = \frac{|z|^2}{1 + |z|^2}$$
 (3)

Подставим 3 в уравнение 1 и получим прямые формулы стереографической проекции:

$$\xi = \frac{x}{1+|z|^2}, \quad \eta = \frac{y}{1+|z|^2}, \quad \zeta = \frac{|z|^2}{1+|z|^2}$$
 (4)

Из геометр. постреония стереографическая проекция взаимно однозначно отображает комплексную плокость на сферу $S \setminus \{N\}$. Дополним стер. проекцию по непрерывности:

$$P: \overline{\mathbb{C}} \stackrel{\text{на}}{\to} S$$
 где $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, а S называют сферой Римана. (5)

Опр. 2. Обобщенная окрестность на комплексной плоскости - это любая окружность (или прямая, рассмотренная как окружность бесконечного радиуса).

Свойства стереографической проекции:

1. Для любой обобщенной окружности $l\subset \overline{\mathbb{C}}$ ее образ $P(l)\subset S^2$ - это окружность.

Доказательство. Пусть l - некая обобщ. окрестность на $\overline{\mathbb{C}}$, тогда ее уравнение:

$$l: A(x^2+y^2) + Bx + Cy + D = 0$$
 - окружность при $A \neq 0$, прямая при $A = 0$

Подставим в него обратные формулы стереогр. проекции:

$$A\frac{\zeta}{1-\zeta} + B\frac{\xi}{1-\zeta} + C\frac{\eta}{1-\zeta} + D = 0 \tag{6}$$

Поделим на $1 - \zeta$ и получим:

$$\Pi: B\xi + C\eta + (A - D)\zeta + D = 0 \tag{7}$$

Но это уравнение некоторой плоскости Π в \mathbb{R}^3 , кроме того, $P(l)\subset S^2$, значит для l выполнено уравнение сферы Римана $\xi^2+\eta^2+\zeta^2-\zeta=0$. Тогда $P(l)=S^2\cap\Pi$ - пересечение сферы с плоскосью окружность.

2. \forall окружности $L\subset S^2$ $P^{-1}(L)$ является обобщенной окружностью на $\overline{\mathbb{C}}.$

Доказательство. Плоскость $\Pi \subset \mathbb{R}^3$ такая, что $\Pi \cap S^2 = L$, а значит ее уравнение имеет вид (7). Разделим (7) на $1-\zeta$, получим обобщенное уравнение прямой, подставим туда прямые формулы проекции и получим уравнение вида $A(x^2+y^2)+Bx+Cy+D=0$, а это - уравнение обобщенной окружности в $\overline{\mathbb{C}}$.

- 3. Стереографическая проекция сохраняет углы. То есть $\forall l_1, l_2 \in \overline{\mathbb{C}}$ таких, что $l_1 \cap l_2 \neq \mathsf{u} \alpha$ угол между ними, верно, что угол между $P(l_1)$ и $P(l_2)$ тоже равен α (угол между окружностями это угол между касательными в точке пересечения).
- **Опр. 3.** Кривая это функция (или ее образ) $g:[a,b]\to\mathbb{R}^2$. Параметром кривой g называют $t\in[a,b]$.

$$\overrightarrow{v} = \frac{\frac{\partial \overrightarrow{g}}{\partial t}}{\left|\frac{\partial g}{\partial t}\right|} = \left(\frac{\frac{\partial x}{\partial t}}{\left|\frac{\partial g}{\partial t}\right|}, \frac{\frac{\partial y}{\partial t}}{\left|\frac{\partial g}{\partial t}\right|}\right) \quad \overrightarrow{n} = \frac{\frac{\partial^2 g}{\partial t^2}}{\left|\frac{\partial^2 g}{\partial t^2}\right|}$$

Натуральный параметр на кривой g это $l \subset [0,L]$ (L - длина g), такой, что $\forall l$ выполнено $\frac{\partial g}{\partial l} = 1$. Набор $\{v,n\}$ называется базис Френе, для него выполена теорема Френе. Уравнения Френе:

$$\frac{d}{dl} \begin{pmatrix} v \\ n \end{pmatrix} = \begin{pmatrix} 0 & k(l) \\ -k(l) & 0 \end{pmatrix} \begin{pmatrix} v \\ n \end{pmatrix}, \quad k(l) \text{ называется кривизной } g \subset \mathbb{R}^2$$

1.5 Виды записи

Стандартная запись z = x + iy. Пусть $r = |z|, \ \varphi = arg(z)$.

Опр. 4. Тригонометрическая запись комплексного числа:

$$\begin{cases} Re(z) = x = r \cdot \cos(\varphi) \\ Im(z) = y = r \cdot \sin(\varphi) \end{cases} \implies z = x + iy = r(\cos(\varphi) + i\sin(\varphi))$$

Опр. 5. Формула Эйлера:

$$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi) \implies z = re^{i\varphi}$$

Тогда для натурального n:

$$z^n = r^n e^{in\varphi} = r^n (\cos(n\varphi) + i\sin(n\varphi))$$

Пусть $z\neq 0 \implies r=|z|>0$. тогда $z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot e^{\frac{i(\varphi+2\pi k)}{n}},$ где $k=0\dots n-1$. Отсюда же получается формула Муавра для корней степени n из $z\neq 0$:

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} \left(\cos(\frac{\varphi + 2\pi k}{n}) + i \sin(\frac{\varphi + 2\pi k}{n}) \right)$$

Замечание: $\exists n$ различных корней степени n из комплексного числа $z \neq 0$.

 $z_0, z_1, \dots z_{n-1} \in$ окружности радиуса $r^{\frac{1}{n}}$ с центром в (0,0)

$\mathbf{2}$ Множества на $\overline{\mathbb{C}}$

Опр. 6. • δ - окрестность точки $z_0 \in \mathbb{C}$ - это множество $C(\delta, z_0) = \{z \in \mathbb{C} \mid |z - z_0| < \delta\}, \delta > 0$.

- Проколотая окрестность точки $z_0 \in \mathbb{C}$ это множество $C^*(\delta,z_0) = C(\delta,z_0) \backslash \{z_0\}$
- Окрестность точки $\{\infty\}$ множество $\{z\in\mathbb{C}\mid |z|>\delta\}$
- Точка z изолированная точка множества $E \subset \overline{\mathbb{C}},$ если $\exists \delta > 0 : C(\delta, z_0) \cap E = \{z_0\}$

Опр. 7. Точка z называется предельной точкой множества $E\subset \overline{\mathbb{C}},$ если $\forall \delta>0$ $C^*(\delta,z)\cap E\neq\varnothing$

Опр. 8. Точка z называется внутренней точкой множества $E \subset \overline{\mathbb{C}}$, если $\exists \delta > 0 \ C(\delta, z) \subset E$

Опр. 9. Точка z называется внешней точкой множества $E \subset \overline{\mathbb{C}}$, если $\exists \delta > 0 \ C(\delta, z) \cap E = \emptyset$

Опр. 10. Точка z называется граничной точкой E, если

$$\forall \delta > 0 \begin{cases} C(\delta, z) \cap E \neq \emptyset \\ C(\delta, z) \backslash E \neq \emptyset \end{cases}$$

Замечание: Если граничная точка $z \notin E$, то она является предельной для E.

Опр. 11. Граница E - это совокупность всех граничных точек, обозначается ∂E .

Опр. 12. Множестов называется ограниченным, если $\exists M \ (0 < M < \infty)$ - число, такое, что $\forall z \in E \ |z| < M$

Опр. 13. Множество E называется замкнутым, если оно содержит все свои граничные точки (или их нет).

Опр. 14. Множество E называется открытым, если $\forall z \in E \ z$ является внутренней точкой для E, то есть $\forall z \in E \ \exists \delta > 0: \ C(\delta, z) \subset E$

Опр. 15. Замыкание множества E это $\overline{E} = E \cup \partial E$.

Опр. 16. Диаметр множества $d(E) = \sup_{z,\xi \in E} |z - \xi|$

Опр. 17. Расстоянием между множествами E и G называется $D(E,G) = \inf_{z \in E, \zeta \in G} |z - \zeta|$

Опр. 18. Множество E называется связным, если его нельзя представить как $E = A \cup B, \ A, B \subset E,$ таких, что

- 1. $A, B \neq \emptyset$
- $2. A \cap B = \emptyset$
- 3. A и B не содержат предельных точек друг друга.

Опр. 19. Множество E называется линейно связным, если $\forall z_1, z_2 \in E \exists$ непрерывная функция $\varphi: [0,1] \to E$ такая, что $\varphi(0) = z_1, \ \varphi(1) = z_2$

Опр. 20. Областью называется открытое связное множество.

Опр. 21. Компонента множества E - \forall максимальное по включению связное подмножество E. Область $E \neq \overline{\mathbb{C}}$ n-связная, если граница ∂E состоит из n компонент ($\overline{\mathbb{C}}$ считаем 1-связным).

Утв. 2 \forall множества $E \subset \overline{\mathbb{C}}$ граница ∂E является замкнутым множеством.

Доказательство. Доказывается от противного: Допустим, \exists предельная точка z_0 для ∂E : $z_0 \notin \partial E$.

Теорема 2 (Принцип Больцано-Вейерштрасса) У любого бесконечного множества $E\subset \overline{\mathbb{C}}$ \exists хотя бы одна предельная точка.

Теорема 3 (Лемма Гейне-Бореля) Из бесконечного открытого покрытия замкнутого множества точек на $\overline{\mathbb{C}}$ можно выделить конечное подпокрытие.

Следствие: На $\overline{\mathbb{C}}$ любое замкнутое и ограниченное множество является компактом.

3 Предельные ряды комплексных чисел

Опр. 22. Последовательность $\{z_n\}$ комплексных чисел $z_n=x_n+iy_n,\ n\in\mathbb{N}$ называется сходящейся к пределу $\alpha = a + ib$, если

$$\forall \varepsilon > 0 \exists N : |z_n - \alpha| < \varepsilon \ \forall n > N$$

Обозначается $\lim_{n\to\infty} z_n = \alpha$

Следствие: $\lim_{n\to\infty} z_n = 0 \iff \lim_{n\to\infty} |z_n| = 0$

Попробуем перенести теорию последовательностей вещественных числе на комплексные числа:

$$\exists \lim_{n \to \infty} z_n = \alpha \implies \begin{cases} \exists \lim_{n \to \infty} x_n = a \\ \exists \lim_{n \to \infty} y_n = b \end{cases} \implies$$

$$\implies \begin{cases} \forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \ |x_n - a| < \frac{\varepsilon}{2} \ \forall n > N_1 \\ \forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \ |y_n - b| < \frac{\varepsilon}{2} \ \forall n > N_2 \end{cases} \implies |z_n - \alpha| \le |x_n - a| + |y_n - b| < \varepsilon$$

Значит $\forall \varepsilon > 0 \ \exists N = \max(N_1, N_2) \ |z_n - \alpha| < \varepsilon \ \forall n > N$

Таким образом $\begin{cases}\exists \lim_{n \to \infty} x_n = a \\ \exists \lim_{n \to \infty} y_n = b \end{cases} \implies \exists \lim_{n \to \infty} z_n = \alpha$ Это позволяет свести теорию последовательностей $\{z_n\}$ комплексных чисел к \mathbb{R} , то есть все теоремы о сходимости вещественных

последовательностей переносятся на комплексные числа.

Теорема (Критерий Коши)

Последовательность $\{z_n\}$ сходится $\iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : |z_{n+m} - z_n| < \varepsilon$ выполнено $\forall n, m > N$

Опр. 23. Последовательность $\{z_n\}$ сходится к ∞ ($\lim_{n\to\infty} z_n = \infty$) если

$$\forall R>0 \; \exists N \; |z_n|>R$$
 выполнено для $\forall n>N$

При
$$z_n \neq 0$$
 $\lim_{n \to \infty} z_n = \infty \iff \lim_{n \to \infty} \frac{1}{z_n} = 0$

3.1 Ряды комплексных чисел

Если у знака суммы ряда не указаны границы - считать, что слагаемые суммируются по индексу k, k пробегает набор от 1 (иногда 0) до ∞

Опр. 24. Ряд комплексных чисел $\sum_{k=1}^{\infty} \alpha_k$ сходится (расходится), если сходится (расходится) последовательность частичных сумм $S_n = \sum_{k=1}^n \alpha_k$, т.е. $\exists \lim_{n \to \infty} S_n = S$.

Теорема (Критерий Коши сходимости ряда)

$$\sum_{k=1}^{\infty} \text{ сходится } \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \begin{cases} \forall n > N \\ \forall k \in \mathbb{N} \end{cases} |S_{n+k} - S_n| < \varepsilon$$

Опр. 25. Ряд α_k сходится абсолютно, если сходится ряд $\sum_{k=1}^{\infty} |\alpha_k|$. Но поскольку $|\sum_{k=1}^{m} \alpha_{n+k}| \leq \sum_{k=1}^{m} |\alpha_{n+k}|$, то из абсолютной сходимости ряда следует общая сходимость.

Утв. 3 Член ряда α_k представим в виде $a_k + ib_k$. Тогда:

$$\begin{cases} |a_k| \le |\alpha_k| \le |a_k| + |b_k| \\ |b_k| \le |\alpha_k| \le |a_k| + |b_k| \end{cases}$$

Значит, если $\sum_{k=1}^{\infty} \alpha_k$ абсолютно сходится, то $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ тоже абсолютно сходится. В свою очередь, из абсолютной сходимости $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ следует абсолютная сходимость $\sum_{k=1}^{\infty} \alpha_k$.

Опр. 26. Произведение двух сходящихся рядов сходится к произведению их сумм.

Стандартные разложения функций от комплексных чисел:

1.
$$e^{\alpha} = 1 + \alpha + \frac{\alpha^2}{2!} + \ldots + \frac{\alpha^n}{n!} + \ldots = \sum_{k=0}^{\infty} \frac{\alpha^k}{k!}$$

2.
$$\sin(\alpha) = \alpha - \frac{\alpha^3}{3!} + \frac{\alpha^5}{5!} + \ldots = \sum_{k=0}^{\infty} \frac{(-1)^k \cdot \alpha^{2k+1}}{(2k+1)!}$$

3.
$$\cos(\alpha) = \sum_{k=0}^{\infty} \frac{(-1)^k \cdot \alpha^{2k}}{2k!}$$

4.
$$e^{i\alpha} = \sum \frac{(i\alpha)^k}{k!} = \sum \frac{(-1)^k \cdot \alpha^{2k}}{2k!} + i\sum \frac{(-1)^k \cdot \alpha^{(2k+1)}}{(2k+1)!} = \cos(\alpha) + i\sin(\alpha)$$

Пусть | $\alpha \mid = R$, $\arg(\alpha) = \varphi$. Тогда:

$$\alpha = R \cdot e^{i \cdot \arg(\alpha)} = R(\cos(\varphi) + i\sin(\varphi))$$

И поскольку можем представить $\alpha = a + ib$:

$$e^{\alpha} = e^{a} \cdot (\cos(b) + i\sin(b)), \quad |e^{\alpha}| = e^{a}, \arg(e^{\alpha}) = b$$

Поэтому $e^{2\pi k \cdot i} = 1$

4 Функции комплексного переменного

Пусть $E \subset \mathbb{C}$ и $f: E \to \mathbb{C}$ (т.е. $z \to f(z)$). Если f - инъекция, т.е. $z_1 \neq z_2 \implies f(z_1) \neq f(z_2)$, то говорят, что f - однослойна. Если f действует из E в f(E) (то есть еще и сюръективна, а значит - биекция), то $\exists f^{-1}: f(E) \to E$.

Опр. 27. Если z_0 - предельная точка множества E и $\lim_{z\to z_0} f(x) = f(z_0)$, то f(z) непрерывна в z_0 .

$$\lim_{z \to z_0} f(z) = f(z_0) \iff \forall \varepsilon > 0 \ \exists \delta : |z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon$$

Функция f(z) представима в виде u(z)+iv(z) (мнимая и комплексная части), а значит f непрерывна на $E \iff u(z),v(z),|f(z)|$ - непрерывны на E.

Если E - компактно, а f - непрерывно, то:

- 1. |f(z)| достигает max и min на E
- $2. \ f(z)$ равномерно непрерывна на E по т. Кантора

Опр. 28. Функция $\gamma(t) = x(t) + iy(t), \ t \in [\alpha, \beta]$ - задает кривую на комплексной плоскости, если x(t), y(t) - непрерывны.

- Если $\gamma(t)$ инъективна (за исключением $\gamma(\alpha) = \gamma(\beta)$), то γ жорданова кривая.
- $\gamma(t)$ называется гладкой, если x(t), y(t) непрерывно дифферециируемы и $\forall t \ \gamma'(t) = x'(t) + iy'(t) \neq 0$

Теорема (о стандартном радиусе) Пусть $\Gamma(t), t \in [\alpha, \beta]$ - гладкая замкнутая жорданова кривая. Тогда

$$\forall \theta_0 \in (0, \frac{\pi}{2}) \; \exists \delta_0 \; \text{такаая, что}$$

- 1. Окружность $|z-z_0|=\mathop{R}\limits_{z_0\in\Gamma}\leq \delta_0$ пересекает Γ строго в двух точках
- 2. При переходе от $z_1 \in \Gamma$ к $z_2 \in \Gamma$, где $|z_2 z_1| < \delta_0$ угол наклона касательной меняется меньше, чем θ_0
- 3. Если $|z-z_0|<\delta_0$ то $dS(s)<rac{dr}{d\cos(heta_0)}$

4.1 Функциональные ряды

Опр. 29. Ряд $\sum f_n(z)$ сходится на $E \subset \mathbb{C}$, если он сходится $\forall z \in E$. Сходится равномерно на E, если:

$$\forall \varepsilon > 0 \ \exists N \mid \forall n > N \ \forall z \ |S_n(z) - S(z)| < \varepsilon$$

Или ряд $\sum f_n(z)$ сходится равномерно, если

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall m \forall z \left| \sum_{k=0}^{m} f_{n+k}(z) \right| < \varepsilon$$

Теорема (Признак равномерной сходимости Вейерштрасса) Если $\forall z \in E$ каждый элемент ряда, начиная с некоторого номера n_0 удовлетворяет неравенству

$$|f_k(z)| \le \alpha_k, \ k \ge n_0 \tag{8}$$

и числовой ряд $\sum_{k=n_0}^{\infty} \alpha_k$ сходится, то Функциональный ряд $\sum f_k(z)$ сходится равномерно и абсолютно на E.

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \sum_{k=1}^{m} \alpha_{n+k} < \varepsilon \quad \forall n > N, \ \forall m \in \mathbb{N}$$

$$\left|\sum_{k=1}^m f_{n+k}(z)\right| \leq \sum_{k=1}^m \left|f_{n+k}(z)\right| \stackrel{\text{по нер-ву } 8}{\leq} \sum_{k=1}^m \alpha_{n+k} < \varepsilon$$

Следовательно, по критерию Коши $\sum f_k(z)$ сходится равномерно и абсолютно.

Теорема Сумма $S(z) = \sum f_k(z)$ равномерно сходящегося ряда непрерывных на E функций $f_k(z)$ сама непрерывна на E.

Доказательство. Пусть $z_0 \in E$ - произвольная точка. Тогда для $z \in E$:

$$|S(z) - S(z_0)| \le |S(z) - S_N(z)| + |S_N(z) - S_N(z_0)| + |S_N(z_0) - S(z_0)|$$

По определению равномерной сходимости ряда $\sum f_k(z)$:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ |S(z) - S_N(z)| < \frac{\varepsilon}{3} \ \mathrm{if} \ |S_N(z_0) - S(z_0)| < \frac{\varepsilon}{3}$$

Конечная сумма $S_N(z) = \sum_{k=1}^N f_k(z)$ непрерывных на E функций $f_k(z)$ - сама непрерывна на E. Тогда по определению непрерывности функции:

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ |z - z_0| < \delta \implies |S_N(z) - S_N(z_0)| < \frac{\varepsilon}{3}$$

А значит $|S(z) - S(z_0)| < \varepsilon \implies$ функция S(z) непрерывна в z_0 . В силу произвольности выбора $z_0 \in E$ S(z) непрерывна на E.

Опр. 30. Бесконечная сумма вида $\sum_{k=0}^{\infty} C_k \cdot (z-z_0)^k$ называется степенным рядом, в котором C_k - коэффициенты степенного ряда.

Поскольку линейная замена $t=z-z_0$ превращает этот ряд в более удобную форму $\sum C_k t^k$ - то будем рассматривать ряды именно такого вида.

Теорема (Коши-Адамара) Пусть дан ряд $\sum C_k z^k$ и $l = \overline{\lim}_{k \to \infty} \sqrt[k]{|C_k|}$. Тогда:

- 1. Если l=0, то данный ряд сходится на всей комплексной плоскости ($\forall z \in \mathbb{C}$).
- 2. Если $l=\infty$, то ряд сходится при z=0 и расходится $\forall z\neq 0$.
- 3. Если $0 < l < \infty$, то ряд абсолютно сходится в круге $|z| < \frac{1}{l}$ и расходится при $|z| > \frac{1}{l}$.

Число $R=\frac{1}{\lim_{k\to\infty}\sqrt[k]{|C_k|}}$ называется радиусом сходимости степенного ряда, а круг $|z-z_0|< R$ называется кругом сходимости.

Доказательство. В точке z=0 утверждение верно при $\forall C_k \implies \forall l$ ряд сходится, так как ряд сходится в z=0. Пусть теперь $z\neq 0$.

Случай 1: l = 0.

To есть $l = \overline{\lim}_{k \to \infty} \sqrt[k]{|C_k|} = \lim_{k \to \infty} \sqrt[k]{|C_k|} = 0$. Значит:

$$\forall z\neq\infty \lim_{k\to\infty}\sqrt[k]{|C_kz^k|}=|z|\cdot\lim_{k\to\infty}\sqrt[k]{|C_k|}=0 \text{ так как } |z|\neq\infty, \text{ а предел равен } 0$$

Тогда по радикальному признаку Коши для рядов с положительными членами ряд $\sum_{k=0}^{\infty} |C_k z^k|$ сходится $\forall z \neq \infty$, т.е. ряд $\sum C_k z^k$ сходится на \mathbb{C} .

Случай 2: $l=\infty$.

Если бы ряд сходился в точке $z \neq 0$, то в силу необходимого условия сходимости $\exists M > 1 \ \left| C_k z^k \right| < M$ или $\sqrt[k]{|C_k|} < \frac{M}{|z|}$, что противоречит условию $\overline{\lim}_{k \to \infty} \sqrt[k]{|C_k|} = \infty$.

Случай 3: $0 < l < \infty$

Пусть $0<|z|<\frac{1}{l}.$ По определению верхнего предела:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \sqrt[k]{|C_k|} < \varepsilon \ \forall k > N$$

Пусть $\varepsilon=rac{1-l|z|}{2|z|}\implies \sqrt[k]{|C_k|} < l+rac{1-l|z|}{2|z|}=rac{1+l|z|}{2|z|}.$ Тогда:

$$|z| \sqrt[k]{|C_k|} < \frac{1+l|z|}{2} = q < 1$$

$$\left| C_k z^k \right| < q^k, \ k > N$$

Значит ряд сходится абсолютно при $|z|<\frac{1}{I}$.

Пусть $|z| > \frac{1}{I}$. По определению верхнего предела:

 $\forall \varepsilon > 0 \; \exists \;$ бесконечное множество индексов $k_n, \; n = 1 \dots \infty$ таких, что $\sqrt[k_n]{|C_{k_n}|} > l - \varepsilon$

Пусть $\varepsilon=\frac{l|z|-1}{|z|}$. Тогда $\sqrt[k_n]{C_{k_n}}>\frac{l|z|-l|z|+1}{|z|}$ \Longrightarrow $|z|\sqrt[k_n]{|C_{k_n}|}>1$. Значит ряд расходится по радикальному признаку Коши при $|z|>\frac{1}{l}$.

Теорема 4 (Первая теорема Абеля) Если степенной ряд $\sum C_k z^k$ сходится в некоторой $z_0 \in \mathbb{C}$ такой, что $z_0 \neq 0$, то он сходится абсолютно в круге $|z| < |z_0|$.

Доказательство. По теореме Коши-Адамара ряд сходится абсолютно в круге |z| < R и расходится при |z| > R. Значит $|z_0| \le R \implies$ ряд сходится абсолютно при $|z| < |z_0|$.

Напомню контекст: ряд $(1)\sum C_k z^k,\ R=\frac{1}{\overline{lim}_{k\to\infty}}\sqrt[k]{|C_k|}.$

Замечание: Степенной ряд не обязательно сходится равномерно в круге |z| < R.

Определение равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists N |S_n(z) - S(z)| < \varepsilon \ \forall n > N, \forall z \in E$$

Доказательство. Для доказательства этого замечания сначала докажем формулы геометрической прогрессии:

 y_{TB} .

$$S_n(q) = \sum_{k=0}^n q^k = \frac{1 - q^{n+1}}{1 - q}$$

Доказательство.

$$S_n + q^{n+1} = 1 + q + q^2 + \ldots + q^n + q^{n+1} = 1 + q * S_n$$

Значит $S_n=rac{1-q^n+1}{1-a}$

 y_{TB} .

$$|q| < 1 \implies S = \lim_{n \to \infty} S_n = \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

Доказательство.

$$\lim_{n \to \infty} \sum_{k=0}^{n} q^k = \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \lim_{n \to \infty} \frac{1}{1 - q} (1 - q^{n+1}) = \frac{1}{1 - q} \lim_{n \to \infty} 1 - q^{n+1} = \frac{1}{1 - q}$$

По первому утверждению:

$$S_n(z) = \sum_{k=0}^n \frac{1 - z^{n+1}}{1 - z} \implies \forall \in \mathbb{N}S(z) - S_n(z) = \frac{z^{n+1}}{1 - z} \implies \sup_{|z| < 1} |S(z) - S_n(z)| = \sup_{|z| < 1} \frac{|z|^{n+1}}{|1 - z|} = \infty$$

Замечание: Степенной ряд равномерно сходится в любом замкнутом круге $|z| < r, \forall r < R$ (может быть 0).

Доказательство. Из условия теоремы ряд мажорируется рядом $\sum |C_k| \, r^k$, который сходится по радикальному признаку Коши. Значит степенной ряд равномерно сходится по признаку Вейерштрасса.

Замечание: На границе круга сходимости (при |z| = R) степенной ряд может:

- расходится во всех точках (пример $\sum z^k$)
- $\bullet\,$ сходится в некоторых точках границы и расходится в других (например, $\sum \frac{z^k}{k})$
- сходиться во всех точках границы (например, $\sum \frac{z^k}{k^2}$)

Теорема 5 (Вторая теорема Абеля) Если степенной ряд с радиусом сходимости $R \in (0,\infty)$ сходится в точке z_0 , такой, что $|z_0| = R$, то сумма $S(z) \to S(z_0)$ при $z \to z_0$ изнутри круга по любой некасательной траектории.

Возвращаясь к формуле Эйлера:

$$e^{iz} = \cos(z) + i\sin(z)$$

Степенные ряды для e^z , $\cos(z)$, $\sin(z)$ сходятся равномерно в \forall круге |z| < R, где $0 < R < \infty$ \Longrightarrow эти функции непрерывны на \mathbb{C} .

Утв. e^z - периодичная функция с периодом $2\pi ki$

Доказательство.

$$e^z \cdot e^t = e^{z+t} \implies e^{z+2\pi ki} = e^z \cdot e^{2\pi ki} = e^z (\cos(2\pi ki) + i\sin(2\pi ki)), k \in \mathbb{Z}$$

По формуле Эйлера:

$$e^{iz} = \cos(z) + i\sin(z) \tag{9}$$

$$e^{-iz} = \cos(z) - i\sin(z) \tag{10}$$

$$(9) + (10) : e^{iz} + e^{-iz} = 2\cos(z) \implies \cos(z) = \frac{e^{iz} + e^{iz}}{2}$$
(11)

$$(9) - (10) : e^{iz} - e^{-iz} = 2i\sin(z) \implies \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$
(12)

То есть формулы тригонометрии остаются в силе.

Нули функции $\sin(z)$: Из (12):

$$\sin(z) = 0 \implies e^{iz} - e^{-iz} = 0 \implies e^{2iz} - 1 = 0 \implies e^{2iz} = e^{2\pi ki}, k \in \mathbb{Z}$$

Значит нули функции $\sin(z)$ имеют вид $z=\pi k,\ k\in\mathbb{Z}$ Аналогично нули функции $\cos(z)$ имеют вид $z=\frac{\pi}{2}+\pi k, k\in\mathbb{Z}$

Замечание: Функции $\sin(z)$ и $\cos(z)$ не ограничены на $\mathbb C$

Доказательство. z представимо в виде x+iy. Из (11): $2\cos(z)=e^{iz}+e^{-iz}$. Мы знаем, что $|z|^2=z\cdot\overline{z}$, значит:

$$|2\cos(z)|^2 = (e^{iz} + e^{-iz}) \cdot (e^{i\overline{z}} + e^{-i\overline{z}}) = e^{-2y} + e^{2y} + 2\cos(2x) \underset{y \to \infty}{\to} \infty$$

Опр. 31.

$$\cosh(z) = \frac{e^z + e^{-z}}{2}, \ \cosh(iz) = \cos(iz)$$

$$\sinh(z) = \frac{e^z - e^{-z}}{2}, \ \sinh(iz) = i\sin(iz)$$

5 Аналитические функции

Пусть w = f(z) = u(x,y) + iv(x,y), где z = x + iy - функция, определенная в области $D \in \mathbb{C}$.

Опр. 32. Функция f(z) называется дифференцируемой (моногенной), в точке $z \in D$, если

$$\exists ! \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}, \text{ где } z + \Delta z \in D$$

Этот предел называется производной функции f и обозначается f'(z)

Замечание: Если этот предел существует, то он не зависит от того, как Δz стремится к 0.

Доказательство. Шаг 1

Рассмотрим $\Delta z = \Delta x \rightarrow 0 \ (\Delta y = 0)$:

$$f'(z) = \lim_{\Delta x \to 0} \left[\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \right] = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

Шаг 2

Пусть теперь $\Delta z = i\Delta y \rightarrow 0 \ (\Delta x = 0)$:

$$f'(z) = \lim_{\Delta y \to 0} \left[\frac{u(x, y + \Delta y) - u(x, y)}{i\Delta y} + i \frac{v(x, y + \Delta y) - v(x, y)}{i\Delta y} \right] = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

Для доказательства замечания нам необходимо, чтобы эти производные были равны, тогда:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases}$$
 - условие Коши-Римана

Утв. 4 Если $\exists f'(z)$ в точке $z \in D$, то выполнено условие Коши-Римана, но обратное утверждение не верно.

Доказательство. Слева направо (\Longrightarrow) доказали в предыдущем замечании. Докажем справа налево (\Longleftrightarrow). Построим контрпример:

$$f(z) = \begin{cases} e^{-\frac{1}{z^4}} & z \neq 0 \\ 0 & z = 0 \end{cases}$$

Заметим, что если f(0)=0, то $f'(0)=\lim_{z\to 0} rac{f(z)}{z}$

Пусть $x \to 0, y = 0$:

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{e^{-\frac{1}{x^4}}}{x} = u_x + iv_x = 0 \implies u_x = 0, v_x = 0$$

Пусть $y \to 0, x = 0$:

$$\lim_{y \to 0} \frac{f(iy)}{iy} = \lim_{y \to 0} \frac{e^{-\frac{1}{(iy)^4}}}{iy} = v_y + iu_y = 0 \implies v_y = 0, u_y = 0$$

То есть $u_x = v_y = 0, v_x = -u_y = 0$. Значит условие Коши-Римана выполнено в z = 0, но с другой стороны, f(z) не то, что не дифференцируема, она разрывна в z = 0:

Пусть $z = (1+i)x \to 0$.

$$\lim_{x \to 0} \frac{f((1+i)x)}{(1+i)x} = \lim_{x \to 0} \frac{e^{-\frac{1}{(1+i)^4x^4}}}{(1+i)x} = \lim_{x \to 0} \frac{e^{\frac{1}{4x^4}}}{(1+i)x} = \infty$$

 $\infty \neq 0 \implies$ функция f(z) не непрерывна в $0 \implies \nexists f'(0)$.

Утв. 5 Если функции u(x,y), v(x,y) дифференцируемы в z и выполнено условие Коши-Римана, то $\exists f'(z)$.

Доказательство. Так как u, v - дифференцируемы в z, то

$$\Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + o(|\Delta z|)$$
 где $|\Delta z| = \sqrt{\Delta x^2 + \Delta y^2}$ (13)
$$\Delta v = \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + o(|\Delta z|)$$

Обозначим:

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)
\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$
(14)

Заметим, что

$$\Delta x = \frac{1}{2} (\Delta z + \Delta \overline{z}), \ \Delta y = \frac{1}{2i} (\Delta z - \Delta \overline{z})$$
 (15)

Тогда перепишем (13):

$$\begin{split} \Delta f &= \Delta u + i \Delta v = \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right) \Delta x + \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}\right) \Delta y + o(\Delta z) \overset{\text{no } (14)}{=} \overset{\text{n }}{=} \overset{\Delta x, \Delta y}{\partial y} \frac{\partial f}{\partial z} \Delta z + \frac{\partial f}{\partial \overline{z}} \Delta \overline{z} + o(\Delta z) \\ \frac{\partial f}{\partial z} &= \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y}\right) (u + iv) = \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + i \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) \right] \\ \frac{\partial f}{\partial \overline{z}} &= \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y}\right) (u + iv) = \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) + i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) \right] \end{split}$$

Это выражение - формальная частная производная по z и \bar{z} . Подставив эти формулы в (15) получим

$$\Delta f = \frac{\partial f}{\partial z} \Delta z + \frac{\partial f}{\partial \overline{z}} \Delta \overline{z} + o(|\Delta z|)$$

Заметим, что $\frac{\partial f}{\partial \overline{z}}=0\iff$ выполнено условие Коши-Римана. Разделим предыдущее выражение на $\Delta z\neq 0$:

$$\frac{\Delta f}{\Delta z} = \frac{\partial f}{\partial z} + \frac{o(\Delta z)}{\Delta z}$$

Поскольку $\frac{o(\Delta z)}{\Delta z} \xrightarrow{\Delta z \to 0} 0$, то

$$\exists \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \frac{\partial f}{\partial z} = f'(z)$$

 $\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = f'(z) \implies \frac{\Delta f}{\Delta z} = f'(z) + \eta, \ \lim_{\Delta z \to 0} \eta = 0$

Значит $\Delta w = \Delta f = f'(z)\Delta z + \eta \cdot \Delta z$, где $f'(z)\Delta z$ - линейная часть приращения функции относительная Δz , она же главная часть приращения, она же дифференциал функции.

Обозначим $dw=df(z)=f'(z)\Delta z$. В частности, если f(z)=z, то $df(z)=dz=\Delta z \implies df(z)=f'(z)dz$ или $f'(z)=\frac{df(z)}{dz}$.

Опр. 33. Функция f(z) называется аналитичной в области D, если $\forall z \in D \ \exists f'(z)$.

Опр. 34. Функция f(z) называется аналитичной в точке $z_0 \in D$ (D - область), если f(z) аналитична в некоторой открытой окрестности точки z_0 .

Теорема Сумма степенного ряда $S(z) = \sum_{k=1}^{\infty} C_k z^k$ аналитична в круге его сходимости |z| < R, причем $S'(z) = \sum k C_k z^{k-1}$.

Доказательство. Пусть ряд

$$S_0(z) = \sum_{k=1}^{\infty} kC_k z^{k-1} \tag{16}$$

Заметим, что радиус сходимости ряда $S'_0(z)$ тоже равен R:

$$\overline{\lim_{k \to \infty}} \sqrt[k]{|kC_k|} = \lim_{k \to \infty} \sqrt[k]{k} \cdot \overline{\lim} \sqrt[k]{|C_k|} = R$$
 - по теореме Коши-Адамара

$$S_0(0) = C_1; \ S_0(z) = \sum kC_k z^{k-1} = \frac{1}{z} \sum kC_k z^k$$

Заметим, что

$$k = (1 + (k^{\frac{1}{k}} - 1))^k = 1 + k(k^{\frac{1}{k}} - 1) + \frac{k(k - 1)}{2}(k^{\frac{1}{k}} - 1)^2 + \dots + (k^{\frac{1}{k}} - 1)^k \implies k > \frac{k(k - 1)}{2}(k^{\frac{1}{k}} - 1)^2$$

$$\implies |k^2 - 1| < \sqrt{\frac{2}{\sqrt{k - 1}}} < \varepsilon$$

Пусть z - произвольная точка круга |z| < R и $\Delta z : |z + \Delta z| < R$.

$$\left| \frac{S(z + \Delta z) - S(z)}{\Delta z} - S_0(z) \right| \stackrel{?}{<} \varepsilon$$

$$\left| \frac{S(z + \Delta z) - S(z)}{\Delta z} - S_0(z) \right| \le \left| \sum \left[\frac{C_k (z + \Delta z)^k - C_k z^k}{\Delta z} - k C_k z^k \right] \right| = \left| \sum C_k \left[\frac{(z + \Delta z)^k}{\Delta z} \right] \right|$$
(17)

Заметим, что первое слагаемое можно расписать как

$$\frac{(z + \Delta z)^k}{\Delta z} = \frac{(z + \Delta z)^{k-1}(z + \Delta z)}{\Delta z} =
= (z + \Delta z)^{k-1} + \frac{z(z + \Delta z)^{k-1}}{\Delta z} \xrightarrow{\text{Tak Me}} (z + \Delta z)^{k-1} + z(z + \Delta z)^{k-2} + \dots + z^{k-1} + \frac{z^k}{\Delta z} \quad (18)$$

Тогда второе слагаемое из (17) сокращается с последним слагаемым (18) и получаем

$$\begin{split} \left| \sum C_k \left[(z + \Delta z)^{k-1} + z (z + \Delta z)^{k-2} + \ldots + z^{k-1} - k z^{k-1} \right] \right| &\overset{\text{дважды нер-во } \Delta\text{-ника}}{\leq} \\ &\leq \left| \sum_{k=1}^N C_k \left[(z + \Delta z)^{k-1} + z (z + \Delta z)^{k-2} + \ldots + z^{k-1} - k z^{k-1} \right] \right| + \\ & \left| \sum_{k=N-1}^\infty C_k \left[(z + \Delta z)^{k-1} + z (z + \Delta z)^{k-2} + \ldots + z^{k-1} \right] \right| + \left| \sum_{k=N-1}^\infty k C_k z^{k-1} \right| \end{split}$$

Возьмем число r:0 < r < R и $|z+\Delta z| < r$. Из аболютной сходимости ряда (16) в круге $|z| < R \implies \forall \varepsilon > 0 \ \exists N = N(r,\varepsilon)$ Введем новый ряд

$$\sum_{k=N+1}^{\infty} k |C_k| r^{k-1} < \frac{\varepsilon}{3}$$

При таком N второй и третий модули $<\frac{\varepsilon}{3}$ по критерию Коши абсолютной сходимости ряда (16). А в первом модуле конечная сумма, которая стремится к 0 при $\Delta z \to 0$, то есть по определению предела, первый модуль тоже $<\frac{\varepsilon}{3}$

Замечание: Сумма степенного ряда $S'(z) = \sum k C_k z^{k-1}$ тоже аналитична в круге |z| < R, причем

$$S''(z) = \sum k(k-1)C_k z^{k-2}$$

$$S^{(n)} = \sum k(k-1)\dots(k-n+1)C_k z^{k-n} \stackrel{\text{при } z=0}{\Longrightarrow} C_n = \frac{S^{(n)}(z)}{n!}, \ n=1,2,\dots$$