

Topologia e Introdução à Análise Funcional

Elvira Coimbra

Cláudio Fernandes

Aos alunos:

Esta lista de exercícios destina-se aos alunos da disciplina de Introdução à Topologia e à Análise Funcional da Licenciatura de Matemática da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa. Nesta disciplina pretende-se que os alunos se familiarizem com os conceitos básicos, princípios e métodos em Topologia e Análise Funcional. Embora seja dada uma ênfase especial aos espaços lineares normados de dimensão arbitrária, são desenvolvidas ideias e estabelecidos alguns resultados fundamentais em espaços lineares topológicos. As bases da teoria mais avançada dos espaços normados, espaços de Banach e espaços de Hilbert são aqui analisadas.

A lista de exercícios encontra-se organizada do seguinte modo:

A primeira secção reúne os exercícios propostos para as aulas práticas da disciplina. Estes foram cuidadosamente escolhidos pelos docentes de modo a consolidar a matéria leccionada nas aulas teóricas e abordar todos os tópicos mencionados no programa da disciplina. Grande parte dos exercícios propostos constituem lemas, proposições e teoremas de Topologia ou Análise Funcional, preparados e organizados em alíneas de modo a facilitar e encorajar o estudante a resolvê-los por si só. A segunda secção reune testes e exames apresentados para a avaliação dos alunos em anos anteriores. Por fim, na terceira secção, analisam-se e comentam-se alguns exercícios que por razõe pedagógicas não serão efectuados nas aulas práticas.

Programa da disciplina:

- 1. Espaços métricos. Sucessões. Sucessões de Cauchy e sucessões convergentes. Espaços métricos completos.
- 2. Espaços topológicos. Subespaços. Topologia relativa. Separabilidade. Espaços de Hausdorff. Espaços conexos
- 3. Continuidade. Funções contínuas. Homeomorfismos. Compacidade. Conjuntos compactos.
- 4. Espaços lineares normados. Espaços lineares normados de dimensão finita. Compacidade e dimensão finita. Operadores lineares limitados e operadores lineares contínuos. Espaços de Banach.
- 5. Espaços lineares com produto interno. Espaços de Hilbert. Conjuntos ortonormados e ortonormados maximais. Séries relacionadas com sucessões e conjuntos ortonormados. Complementos ortogonais e somas directas. Representações de funcionais em espaços de Hilbert.
- 6. Algumas aplicações à teoria da aproximação. Aproximação em espaços de Hilbert.
- 7. Teoremas de Hahn-Banach.

BOM TRABALHO!

Conteúdo

1	Espaços métricos	1
	1.1 Generalidades	1
	1.2 Desigualdades de Hölder e Minkowski	3
	1.3 Noções topológicas	5
	1.4 Sucessões	7
	1.5 Métricas num produto cartesiano	9
	1.6 Conjuntos completos e compactos em espaços métricos	10
	1.0 Conjuntos completos e compactos em espaços metricos	10
2	Funções contínuas em espaços métricos	15
3	Completação de um espaço métrico	19
4	Espaços lineares normados	20
	4.1 Generalidades	20
	4.2 Operadores limitados	23
	4.3 Operadores lineares. Exemplos	26
	4.4 Lemma de Riesz	27
	4.5 Espaços de Banach. Alguns exemplos	29
	4.6 Séries em espaços de Banach	
5	Espaços lineares com produto interno	35
6	Funcionais lineares limitados	42
•	6.1 Generalidades e exemplos	
	6.2 Teorema de Hahn-Banach	44
7	Espaços topológicos.	
	Generalidades e conceitos básicos	49
	7.1 Generalidades	49
	7.2 Sucessões	
	7.3 Funções contínuas	
	7.4 Conjuntos compactos	53
	7.4.1 Conjuntos compactos, contavelmente compactos e sequencialmente	
	compactos	54
8	Conjuntos conexos	55
	8.1 Generalidades	55
	8.2 Espaços topológicos conexos	57
	8.3 Componentes conexas e conjuntos conexos por arcos	59
9	Testes e exames	63
10	Anexos	97
	10.1 Anexo 1. Desigualdade de Hölder e Minkowski. Os espaços l^p	97
	10.2 Anexo 2. Completação de um espaço métrico	100
	10.3 Anexo 3. Conjuntos compactos. Coberturas abertas	

PARTE IEXERCÍCIOS PROPOSTOS

1 Espaços métricos

1.1 Generalidades

Exercício 1. (Métrica discreta)

Seja X um conjunto não vazio. Considere a aplicação

$$d_s: X \times X \to \mathbb{R}$$
, definida por $d_s(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$.

Mostre que d_s é uma métrica.

Exercício 2.

Seja \mathbb{R}^k , com $k \in \mathbb{N}$, o espaço linear constituído pelos elementos $x = (x_1, x_2, ..., x_k)$ com $x_i \in \mathbb{R}$ para i = 1, ..., k. Considerem-se as aplicações

$$d_{\infty}: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}, \quad d_{\infty}(x, y) = \max_{i=1,\dots,k} |x_i - y_i|,$$

$$d_1: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}, \quad d_1(x,y) = \sum_{i=1}^k |x_i - y_i|,$$

com $x = (x_1, x_2, ..., x_k)$ e $y = (y_1, y_2, ..., y_k)$. Mostre que estas aplicações definem métricas em \mathbb{R}^k .

Exercício 3.

Seja C([a, b]) o espaço linear das funções reais contínuas e definidas no intervalo [a, b], com $a, b \in \mathbb{R}$ tais que a < b. Mostre que as aplicações

$$d_{\infty}: C([a,b]) \times C([a,b]) \to \mathbb{R}, \ d_{\infty}(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|,$$

$$d_1: C([a,b]) \times C([a,b]) \to \mathbb{R}, \quad d_1(f,g) = \int_a^b |f(x) - g(x)| dx,$$

definem métricas em C([a,b]).

Exercício 4.

Seja (X,d)um espaço métrico. Mostre que fica bem definida em Xuma outra métria $\widetilde{d},$ pondo

$$\widetilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)} \quad \forall x, y \in X.$$

Sugestão: Para estabelecer a desigualdade triangular use o facto da função $f(t) = \frac{t}{1+t}$ ser crescente no seu domínio.

Exercício 5. (Bolas abertas. Alguns resultados)

Seja (X, d) um espaço métrico. Para $x_0 \in X$ e $\delta > 0$ representa-se por $B_{\delta}(x)$ a bola aberta de centro em x_0 e raio δ , definida por

$$B_{\delta}(x_0) = \{ x \in X : d(x, x_0) < \delta \}.$$

Dados x_0 , y_0 dois elementos distintos de X, mostre que:

- (a) Existem $\delta_1 > 0$ e $\delta_2 > 0$ tais que $B_{\delta_1}(x_0) \cap B_{\delta_2}(y_0) = \emptyset$.
- (b) Dados $\delta_1 > 0$ e $\delta_2 > 0$, existe $\delta_3 > 0$ tal que $B_{\delta_1}(x_0) \cup B_{\delta_2}(y_0) \subseteq B_{\delta_3}(x_0)$
- (c) Dado $\delta > 0$, mostre que

$$\forall x \in B_{\delta}(x_0), \ \exists \delta_x > 0, \ B_{\delta_x}(x) \subseteq B_{\delta}(x_0).$$

(d) Dados $\delta_1 > 0$ e $\delta_2 > 0$, suponha-se que $B_{\delta_1}(x_0) \cap B_{\delta_2}(y_0) \neq \emptyset$. Mostre que:

$$\forall x \in B_{\delta_1}(x_0) \cap B_{\delta_2}(y_0), \ \exists \delta_x > 0, \ B_{\delta_x}(x) \subseteq B_{\delta_1}(x_0) \cap B_{\delta_2}(y_0).$$

Exercício 6.

Considere em ${\rm I\!R}^2$ as métricas d_1 e d_∞ definidas no Exercício 2. Considere ainda a métrica euclideana

$$d_2: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}, \quad d_2((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

Dado um ponto $(x_0, y_0) \in \mathbb{R}^2$ e um real positivo $\delta > 0$, defina os conjuntos

$$B_{\delta}^{2}(x_{0}, y_{0}), \quad B_{\delta}^{\infty}(x_{0}, y_{0}), \quad B_{\delta}^{1}(x_{0}, y_{0}),$$

onde $B_{\delta}^{i}(x_{0}, y_{0})$, com $i = 1, 2, \infty$, designa a bola aberta de centro em (x_{0}, y_{0}) e raio $\delta > 0$ para a métrica d_{i} .

Sugestão: Observe que dependendo da métrica se obtêm os conjuntos

Exercício 7. (Conjuntos limitados)

Num espaço métrico (X, d) um subconjunto não vazio $A \subseteq X$ diz-se limitado se

$$\exists x_0 \in X, \ \exists \delta > 0, \ A \subseteq B_{\delta}(x_0).$$

Mostre que são equivalentes as seguintes condições:

- (a) A é um conjunto limitado;
- (b) $\forall x \in X, \exists \delta > 0, A \subseteq B_{\delta}(x);$
- (c) $\exists M > 0, \forall a, b \in A, d(a, b) \leq M.$

Exercício 8. Seja (X, d) um espaço métrico.

- (a) Mostre que se $A\subseteq X$ e $B\subseteq X$ são subconjuntos de X limitados, então $A\cup B$ também é limitado.
- (b) Suponha-se que $X = \mathbb{R}$ e considere-se em X a métrica usual, isto é,

$$d(x,y) = |x - y|, \quad x, y \in \mathbb{R}.$$

Mostre que um subconjunto $A \subseteq \mathbb{R}$ é limitado se e só se é majorado e minorado.

1.2 Desigualdades de Hölder e Minkowski

Exercício 9. 1

Sejam p e q dois números reais tais que p > 1 e $\frac{1}{p} + \frac{1}{q} = 1$. Considerem-se os n-úplos de números reais $(a_1, a_2, ..., a_n)$, $(b_1, b_2, ..., b_n)$ e $(c_1, c_2, ..., c_n)$ com $n \ge 1$. O objectivo deste exercício é mostrar que são válidas as seguintes designaldades:

1. Desigualdade de Hölder para o caso finito

$$\left| \sum_{i=1}^{n} a_i c_i \right| \le \sum_{i=1}^{n} |a_i c_i| \le \left(\sum_{i=1}^{n} |a_i|^p \right)^{1/p} \left(\sum_{i=1}^{n} |c_i|^q \right)^{1/q};$$

2. Desigualdade de Minkowski para o caso finito

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/q}.$$

Para tal responda às seguintes questões:

 $^{^{1}}$ Ver Anexo 10.1

(a) Comece por verificar que p e q satisfazem as condições

$$\frac{1}{p-1} = q-1$$
 e $(p-1)q = p$.

(b) Mostre que para quaisquer números reais $\alpha, \beta \in \mathbb{R}^+$, se tem

$$\alpha\beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}.$$

(c) Para cada i = 1, ..., n defina-se

$$\widetilde{a}_i = \frac{|a_i|}{(\sum_{i=1}^n |a_i|^p)^{1/p}} \text{ e } \widetilde{c}_i = \frac{|c_i|}{(\sum_{i=1}^n |c_i|^q)^{1/q}}$$

e conclua que

$$\sum_{i=1}^{n} \widetilde{a}_{i}^{p} = 1, \quad \sum_{i=1}^{n} \widetilde{c}_{i}^{q} = 1.$$

Utilizando (b) majore a soma

$$\sum_{i=1}^{n} \widetilde{a}_i \widetilde{c}_i$$

e estabeleça a desigualdade de Hölder para o caso finito.

(d) Justifique agora que

$$\sum_{i=1}^{n} |a_i + b_i|^p \le \sum_{i=1}^{n} |a_i + b_i|^{p-1} (|a_i| + |b_i|)$$

$$= \sum_{i=1}^{n} |a_i + b_i|^{p-1} |a_i| + \sum_{i=1}^{n} |a_i + b_i|^{p-1} |b_i|$$

e, utilizando a desigualdade de Hölder e o facto de (p-1)q = p, mostre que

$$\sum_{i=1}^{n} |a_i + b_i|^p \le \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/q} \left(\left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p}\right).$$

(e) Finalmente, atendendo a que 1-1/q=1/p estabeleça a desigualdade de Minkowski para o caso finito.

4

1.3 Noções topológicas

No que se segue, dado um espaço métrico (X,d) e $A \neq \emptyset$ um subconjunto de X, representase por intA, ext(A), ad(A), A' e pi(A), respectivamente o interior, o exterior, a aderência, o conjunto dos pontos de acumulação e o conjunto dos pontos isolados do conjunto A em X.

Exercício 10.

Seja (X,d) um espaço métrico, $A \neq \emptyset$ um subconjunto de X. Mostre que:

- (a) $ad(A) = A \cup A'$.
- (b) $ad(A) = A' \cup pi(A)$.

Exercício 11.

Sejam (X,d) um espaço métrico e $A,B\subseteq X$, dois subconjuntos de X não vazios. Prove que:

- (a) se $A \subseteq B$, então $int(A) \subseteq int(B)$;
- (b) se $A \subseteq B$, então $ad(A) \subseteq ad(B)$;
- (c) int(int(A)) = int(A);
- (d) ad(ad(A)) = ad(A);
- (e) $int(A \cap B) = int(A) \cap int(B)$;
- (f) $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$. Com um exemplo em \mathbb{R} , mostre que se pode ter $\operatorname{int}(A \cup B) \neq \operatorname{int}(A) \cup \operatorname{int}(B)$;
- (g) $ad(A \cup B) = ad(A) \cup ad(B)$;
- (h) $ad(A \cap B) \subseteq ad(B) \cap ad(B)$;

Com um exemplo em IR, mostre que se pode ter $ad(A \cap B) \neq ad(A) \cap ad(B)$;

- (i) int(A) é o maior conjunto aberto contido em A, i.e, prove que
 - (1) int(A) é um conjunto aberto,
 - (2) $int(A) \subseteq A$,
 - (3) se $B \subseteq A$ é aberto, então $B \subseteq \operatorname{int}(A)$;
- (j) ad(A) é o menor conjunto fechado que contém A, i.e, prove que
 - (1) ad(A) é um conjunto fechado,
 - (2) $A \subseteq ad(A)$,
 - (3) se $B \supseteq A$ é fechado, então $B \supseteq \operatorname{ad}(A)$. Conclua ainda que $\operatorname{ad}(A)$ é a intersecção de todos os conjuntos fechados que contêm A.

Exercício 12. (Algumas propriedades dos conjuntos abertos e fechados)

Seja (X, d) um espaço métrico. Mostre que:

- (a) $X \in \emptyset$ são subconjuntos de X simultaneamente abertos e fechados.
- (b) Se $\{A_j\}_{j\in J}$ designa uma família de subconjuntos abertos de X então $\bigcup_{j\in J}A_j$ ainda é um subconjunto aberto em X.
- (c) Se $A_1, A_2, ..., A_n$ são subconjuntos abertos de X então $\bigcap_{j=1}^n A_j$ ainda é um conjunto aberto em X.
- (e) Se $\{F_j\}_{j\in J}$ designa uma família de subconjuntos fechados de X então $\bigcap_{j\in J} F_j$ ainda é um subconjunto fechado em X.
- (d) Se $F_1, F_2, ..., F_n$ são subconjuntos fechados de X então $\bigcup_{j=1}^n A_j$ ainda é um conjunto fechado em X.
- (e) Mostre com um exemplo que as alíneas (c) e (d) não são em geral verdadeiras se considerarmos famílias infinitas de conjuntos.

Exercício 13. (Subespaços métricos)

Sejam (X, d) um espaço métrico e $Y \neq \emptyset$ um subconjunto de X. Considere-se em Y a métrica induzida pela métrica d, isto é, considere-se em Y a métrica

$$d_Y: Y \times Y \to \mathbb{R}$$
, definida por $d_Y(x,y) = d(x,y)$.

 $(Y, d_Y)^2$ diz-se então um subespaço métrico de X. Sendo $x_0 \in Y \subseteq X$ e r > 0, consideremse os conjuntos

$$B_r^X(x_0) = \{x \in X: \ d(x,x_0) < r\} \quad \text{(Bola aberta, em X, de centro em x_0 e raio r)},$$

$$B_r^Y(x_0) = \{x \in Y: d_Y(x, x_0) < r\}$$
 (Bola aberta, em Y, de centro em x_0 e raio r).

- (a) Mostre que $B_r^Y(x_0) = B_r^X(x_0) \cap Y$.
- (b) Seja $A \subseteq Y (\subseteq X)$. Mostre que

$$\operatorname{ad}_Y(A) = \operatorname{ad}_X(A) \cap Y.$$

Verificar-se-á uma igualdade idêntica para o conjuntos dos pontos interiores? Será que

$$int_Y(A) = int_X(A) \cap Y?$$

- (c) Mostre que se $A \subseteq Y \subseteq X$ é um conjunto fechado em X então A é fechado em Y.
- (d) Recorrendo à alínea anterior justifique que se $A \subseteq Y \subseteq X$ é um conjunto aberto em X então A é aberto em Y.

 $[\]overline{^{2}}$ Quando não existir perigo de confusão representa-se d_{Y} apenas por d.

Exercício 14.

Considere em IR a métrica usual. Seja

$$A =]2,3] \cup \left\{ -\frac{1}{n} : n \in \mathbb{N} \right\}.$$

- (a) Determine o interior, a fronteira, a aderência, os pontos isolados e os pontos de acumulação do conjunto A.
- (b) Considere o conjunto

$$Y = \left\{ -\frac{1}{n} : n \in \mathbb{N} \right\} \cup]1, 3] \cup \{0\},$$

no qual se fixou a métrica induzida pela usual de ${\rm I\!R}$. Determine o interior, a fronteira, a aderência, os pontos isolados e os pontos de acumulação do conjunto A relativamente ao espaço métrico Y.

- (c) Indique um subconjunto $B \subseteq Y \subseteq \mathbb{R}$ tal que B é aberto em Y mas não é aberto em \mathbb{R} .
- (d) Indique um subconjunto $B \subseteq Y (\subseteq \mathbb{R})$ tal que B é fechado em Y mas não é fechado em \mathbb{R} .

Exercício 15.

Considere em \mathbb{R}^2 a métrica euclideana. Seja

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \cup \{(x, y) \in \mathbb{R}^2 : x \ge 1 \land y = 0\}.$$

- (a) Determine o interior, a fronteira, a aderência e o conjunto dos pontos de acumulação do conjunto A.
- (b) Considere o conjunto

$$Y = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\} \cup \{(x,y) \in \mathbb{R}^2 : x \ge 2 \land y = 0\}$$

no qual se fixa a métrica induzida pela métrica euclideana de \mathbb{R}^2 . Determine para A o interior, a fronteira, a aderência e o conjunto dos pontos de acumulação, agora relativamente ao espaço métrico Y.

1.4 Sucessões

Exercício 16.

Seja (X, d) um espaço métrico.

(a) Mostre que o limite de uma sucessão (x_n) , de elementos de X, se existir é único.

- (b) Mostre que toda a sucessão (x_n) de elementos de X que seja convergente então é limitada.
- (c) Mostre que qualquer subsucessão (x_{n_k}) de uma sucessão convergente (x_n) , de elementos de X, é convergente e o seu limite coincide com o limite de (x_n) .

Conclua que:

Se (x_n) é convergente e $x_0 \in X$ é o limite de uma subsucessão (x_{n_k}) , então o limite de (x_n) é também x_0 .

(d) Seja (x_n) uma sucessão de elementos de X e $x_0 \in X$. Considere (x_{2k}) e (x_{2k-1}) respectivamente as subsucessões dos termos pares e impares de (x_n) . Mostre que

$$x_n \xrightarrow[n]{} x_0 \Leftrightarrow x_{2k} \xrightarrow[k]{} x_0 \quad \text{e} \quad x_{2k-1} \xrightarrow[k]{} x_0.$$

Exercício 17. (Sucessões de Cauchy)

Seja (X, d) um espaço métrico.

- (a) Mostre que toda a sucessão convergente em X é de Cauchy em X.
- (b) Mostre que toda a sucessão de Cauchy em X é limitada.
- (c) Mostre com exemplos que as recíprocas das duas alíneas anteriores não são em geral verdadeiras.
- (d) Mostre que se uma sucessão de Cauchy em X possuir uma subsucessão convergente então também é convergente tendo por limite o mesmo limite que a subsucessão.

Exercício 18. (Pontos aderentes e sucessões)

Sejam (X,d) um espaço métrico, $F \neq \emptyset$ um subconjunto de X e $x \in X$. Mostre que:

- (a) x pertence a ad(F) se e só se existe uma sucessão (x_n) de elementos de F convergente para x.
- (b) F é um conjunto fechado se e só se F contém os limites de todas as suas sucessões convergentes, ou seja, se e só se é verdadeira a situação:

$$((\forall n \in \mathbb{N}, x_n \in F) \land x_n \to x (x \in X)) \Rightarrow x \in F.$$

Exercício 19. (Pontos de acumulação e sucessões)

Sejam (X, d) um espaço métrico, $F \neq \emptyset$ um subconjunto de X e $x \in X$. Represente por F' o conjunto dos pontos de acumulação de F.

(a) Mostre que $x \in F'$ se e só se para todo o $\delta > 0$, real positivo, se tem que

$$(B_{\delta}(x) \cap F)$$
 tem infinitos elementos.

(b) Mostre que x é ponto de acumulação do conjunto F se e só se existe uma sucessão em F, de pontos todos distintos, convergindo para x.

Exercício 20.

Seja (X,d) um espaço métrico.

- (a) Considere $(x_n), (y_n)$ duas sucessões em X tais que $d(x_n, y_n) \underset{n}{\to} 0$. Mostre que:
 - (i) Se (x_n) é convergente para um elemento $x_0 \in X$, então (y_n) também é convergente para x_0 .
 - (ii) Se (x_n) é uma sucessão de Cauchy, então (y_n) também é uma sucessão de Cauchy.
- (b) Suponha-se agora que (x_n) , (y_n) são duas sucessões de Cauchy em X. Mostre que,

$$\forall n, m \in \mathbb{N}, |d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_m, y_n),$$

e conclua que existe $\lim_{n\to\infty} d(x_n, y_n)$.

Exercício 21. (Distância de um ponto a um conjunto)

Sejam (X, d) um espaço métrico, $A \subseteq X$ um subconjunto não vazio de X e $x_0 \in X$. Define-se a distância do ponto x_0 ao conjunto A, e representa-e por $d(x_0, A)$, o número real

$$d(x_0, A) = \inf_{a \in A} d(x_0, a) \ge 0.$$

Mostre que:

$$d(x_0, A) = 0 \Leftrightarrow x_0 \in ad(A).$$

1.5 Métricas num produto cartesiano

Exercício 22.

Sejam (X, d_X) e (Y, d_Y) dois espaços métricos. Considere o produto cartesiano $X \times Y$ e a aplicação

$$d_{\infty}: (X \times Y) \times (X \times Y) \to \mathbb{R}, \quad d_{\infty}((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

- (a) Mostre que d_{∞} é uma métrica em $X \times Y$.
- (b) Sejam (x_n, y_n) uma sucessão de elementos em $X \times Y$ e $(x, y) \in X \times Y$.

(i) Mostre que

$$(x_n, y_n) \xrightarrow[n]{} (x, y) \text{ (em } X \times Y) \iff x_n \xrightarrow[n]{} x \text{ (em } X) \ e \ y_n \xrightarrow[n]{} y \text{ (em } Y).$$

(ii) Mostre que

 (x_n, y_n) é de Cauchy em $X \times Y \iff x_n$ é Cauchy em $X \in y_n$ é Cauchy em Y.

- (c) Se $A \subseteq X$ é fechado em X e $B \subseteq Y$ é fechado em Y, então $A \times B$ é um conjunto fechado em $X \times Y$.
- (d) Se $A \subseteq X$ é aberto em X e $B \subseteq Y$ é aberto em Y, então $A \times B$ é um conjunto aberto em $X \times Y$.

Sugestão: Utilize o facto de

$$(X \times Y \setminus A \times B) = ((x \setminus A) \times Y) \cup (X \times (Y \setminus B)).$$

Exercício 23.

Sejam (X, d_X) e (Y, d_Y) dois espaços métricos. Mostre que as aplicações definidas por

$$d_1: (X \times Y) \times (X \times Y) \to \mathbb{R}, \quad d_1((x, y), (x', y')) = d_X(x, x') + d_Y(y, y'),$$

$$d_2: (X \times Y) \times (X \times Y) \to \mathbb{R}, \quad d_2((x, y), (x', y')) = \sqrt{[d_X(x, x')]^2 + [d_Y(y, y')]^2},$$

definem duas métricas em $X \times Y$.

1.6 Conjuntos completos e compactos em espaços métricos

Exercício 24. (Conjuntos completos vs conjuntos fechados)

Sejam (X, d) um espaço métrico. Prove que:

- (a) Se X é completo e $F \neq \emptyset$ é um seu subconjunto fechado, então F também é um conjunto completo;
- (b) Se $F \neq \emptyset$ é um subconjunto não vazio e completo de X então F é fechado.

Exercício 25. (Produto de espaços métricos completos e compactos)

Sejam (X, d_X) e (Y, d_Y) dois espaços métricos. Considere no produto cartesiano $X \times Y$ a métrica (usual) definida no Exercício 22,

$$d_{\infty}: (X \times Y) \times (X \times Y) \rightarrow \mathbb{R}, \quad d_{\infty}((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

 $^{^3}$ Quando nada se diga em contrário consideraremos sempre num produto cartesiano de espaços métricos $X \times Y$ a métrica definida no Exercício 22. Estas duas métricas satizfazem no entanto todos os resultados estabelecidos no exercício 22.

- (a) Mostre que se os espaços métricos (X, d_X) e (Y, d_Y) são completos então o mesmo sucede ao espaço métrico $(X \times Y, d_{\infty})$.
- (b) Se (X, d_X) e (Y, d_Y) são campactos que pode afirmar sobre $(X \times Y, d_\infty)$? Justifique.

Exercício 26. (R como espaço métrico completo)

Considere em IR a métrica usual.

- (a) Com este exercício pretende-se mostrar que em \mathbb{R} todo o conjunto fechado e limitado é compacto. Para tal fixe-se $A \neq \emptyset$ um subconjunto X, simultaneamente fechado e limitado, e responda às seguintes questões:
 - i. Seja (x_n) uma qualquer sucessão em A. Justifique que existem $a, b \in \mathbb{R}$ tais que

$$\forall n \in \mathbb{N}, \ a < x_n < b.$$

Para cada $k \in \mathbb{N}$, defina-se o conjunto A_k ,

$$A_k = \{x_n : n \ge k\}.$$

ii. Justifique que para todo $k \in \mathbb{N}$, A_k é um conjunto limitado.

Seja

$$c_k = \sup A_k$$
.

iii. Justifique que

$$\forall k \in \mathbb{N}, \ a \le x_k \le c_k.$$

Seja $c = \inf\{c_k : k \in \mathbb{N}\}$. Prova-se a seguir que c é limite de uma subsucessão de (x_n) .

iv. Atendendo a que c+1>c, justifique que c+1 não é minorante do conjunto $C=\{c_k:k\in\mathbb{N}\}$, e conclua que

$$\exists p \in \mathbb{N}, \ c - 1 < c \le c_p < c + 1.$$

Usando o facto de c_p ser o supremo de A_p e de $c-1 < c_p$, justifique ainda que

$$\exists n_1 > p, \ c - 1 < x_{n_1} < c + 1.$$

v. Dado que $c + \frac{1}{2} > c$, justifique que

$$\exists p \in \mathbb{N}, \ c_p < c + \frac{1}{2}.$$

Seja $\widetilde{p} = \max\{n_1, p\} + 1$. Tem-se obviamente que $c - \frac{1}{2} < c \le c_{\widetilde{p}}$. Justifique que como $c_{\widetilde{p}} > c - \frac{1}{2}$ então $c - \frac{1}{2}$ não é majorante do conjunto $A_{\widetilde{p}}$, logo

$$\exists n_2 \ge \widetilde{p}, \ c - \frac{1}{2} < x_{n_2}.$$

Dado que $x_{n_2} \in A_p$, tem-se que

$$c - \frac{1}{2} < x_{n_2} < c + \frac{1}{2}.$$

vi. Mais geralmente, para cada $k \geq 2$ justifique

$$\exists p \in \mathbb{N}, \ c - \frac{1}{k} < c \le c_p < c + \frac{1}{k}.$$

Sendo $\widetilde{p} = \max\{n_{k-1}, p\} + 1$, e atendendo a que $c - \frac{1}{k}$ não é majorante do conjunto $A_{\widetilde{p}}$, justifique que

$$\exists n_k \ge \widetilde{p}, \ c - \frac{1}{k} < x_{n_k} < c - \frac{1}{k}.$$

Assim se garante que existe uma subsucessão (x_{n_k}) de (x_n) tal que

$$\forall k \in \mathbb{N}, \ |x_{n_k} - c| < \frac{1}{k},$$

ou seja, (x_{n_k}) é convergente para c.

vi. Conclua que A é compacto.

(b) Usando a alínea (a), mostre que IR é um espaço métrico completo, isto é, toda a sucessão de Cauchy em IR é uma sucessão convergente. Justifique ainda que IR², com a métrica euclideana, é ainda um espaço métrico completo.

Exercício 27. (Conjunto compacto vs conjunto completo)

Sejam (X, d) um espaço métrico e $A \subseteq X$ um subconjunto de X não vazio. Mostre que:

Se A é compacto então A é completo.

É a recíproca desta afirmação verdadeira?

Exercício 28. (Conjuntos compactos vs conjuntos totalmente limitados)

Considere um espaço métrico (X, d). Um conjunto não vazio $A \subseteq X$ diz-se totalmente limitado se

$$\forall \epsilon > 0, \exists y_1, y_2, ..., y_k \in A, A \subseteq (B_{\epsilon}(y_1) \cup B_{\epsilon}(y_2) \cup ... \cup B_{\epsilon}(y_k)).$$

O objectivo deste exercício é mostrar que todo o conjunto compacto e não vazio é totalmente limitado. Para tal considere $A \subseteq X$ um subconjunto nas condições anteriores, isto é, compacto e não vazio e suponha, com vista a um absurdo, que A não é totalmente limitado. Nestas condições responda às seguintes questões:

(a) Justifique que

$$\exists \epsilon > 0, \forall y_1, y_2, ..., y_k \in A, A \nsubseteq B_{\epsilon}(y_1) \cup B_{\epsilon}(y_2) \cup ... \cup B_{\epsilon}(y_k).$$

Fixe a_1 um elemento de A.

(b) Justifique que existe um elemento $a_2 \in A$ tal que $a_2 \notin B_{\epsilon}(a_1)$.

(c) Justique que existe um elemento $a_3 \in A$ tal que $a_3 \notin B_{\epsilon}(a_1) \cup B_{\epsilon}(a_2)$.

Repetindo o raciocínio das alínes (b) e (c) construímos uma sucessão (a_n) de elementos de A tal que

$$\forall n \in \mathbb{N}, \ a_n \notin B_{\epsilon}(a_1) \cup B_{\epsilon}(a_2) \cup ... \cup B_{\epsilon}(a_{n-1}).$$

(d) Para a sucessão (a_n) justifique que

$$\forall n, \forall m \in \mathbb{N}, \quad n \neq m \Rightarrow d(a_n, a_m) \geq \epsilon,$$

e conclua que (a_n) não é uma sucessão de Cauchy.

- (e) Justifique ainda que (a_n) não possui nenhuma subsucessão de Caunchy e consequentemente não possui nenhuma subsucessão convergente.
- (f) Sendo A um conjunto compacto, conclua das alínes anteriores que A é totalmente limitado.

Exercício 29. (Conjuntos compactos vs conjuntos fechados e limitados)

Sejam (X,d) um espaço métrico e $A\subseteq X$ um subconjunto não vazio. Mostre que:

SeA é compacto então A é fechado e A é limitado.

Sugestão: Para provar que A é limitado recorra ao Exercício 28.

Exercício 30. (Uma condição suficiente para um espaço ser completo)

Seja (Z, d) um espaço métrico e seja X um subconjunto próprio de Z tal que $\overline{X} = Z$ (onde \overline{X} designa o fecho ou aderência de X). Admitamos que X tem a propriedade:

"Toda a sucessão (x_n) de elementos de X, de Caunchy, converge para um elemento de Z, isto é, existe $u \in Z$ tal que $u = \lim_{n \to \infty} x_n$."

Com este exercício pretende-se provar que Z é completo. Seja então (z_n) uma sucessão de Cauchy em Z.

(a) Seja n arbitrariamente fixado em \mathbb{N} . Justifique que

$$\forall r \in \mathbb{R}^+, \exists x \in X, \ x \in B_r(z_n),$$

sendo $B_r(z_n) = \{z \in Z : d(z, z_n) < r\}$. Justifique ainda que é possível obter uma sucessão (x_n) de elementos de X tal que

$$\forall n \in \mathbb{N}, \ d(x_n, z_n) < \frac{1}{n}.$$

(b) Justifique que para todo o $n \in \mathbb{N}$ e todo o $m \in \mathbb{N}$,

$$d(x_n, x_m) \le d(x_n, z_n) + d(z_n, z_m) + d(z_m, x_m)$$

e prove que (x_n) é sucessão de Cauchy em X.

(c) A hipótese formulada garante que existe $u\in Z$ tal que $u=\lim_{n\to\infty}x_n$. Prove que a sucessão (z_n) também converge para $u\in Z$, isto é, prove que

$$\lim_{n \to \infty} d(z_n, u) = 0,$$

ficando assim concluída a demonstração de que Z é completo.

Sugestão: Utilize convenientemente a desigualdade triangular.

2 Funções contínuas em espaços métricos

Exercício 31. (Imagem e Pré-imagem)

Sejam X, Y conjuntos não vazios e $f: X \to Y$ uma aplicação. Sejam $A \subseteq X$ e $B \subseteq Y$ subconjuntos não vazios de X e Y, respectivamente. Chama-se imagem do conjunto A pela aplicação f, ao subconjunto de Y dado por

$$f(A) = \{ y \in Y : \exists x \in X, y = f(x) \} = \{ f(x) \in Y : x \in X \}.$$

Chama-se imagem inversa do conjunto B por f, ao subconjunto de X dado por

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}.$$

Mostre que:

- (a) Se $\emptyset \neq A_1 \subseteq A_2 \subseteq X$ então $f(A_1) \subseteq f(A_2)$.
- (b) Se $\emptyset \neq B_1 \subseteq B_2 \subseteq Y$ então $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.
- (c) Se $B_1, B_2 \subseteq Y$ são conjuntos não vazios então

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$
 e $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

(d) Se $A_1, A_2 \subseteq X$ são conjuntos não vazios então

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$
 e $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$.

Diga que condição tem de satisfazer a função f para que se tenha $f(A1 \cap A_2) = f(A1) \cap f(A_2)$, quaisquer que sejam os subconjuntos A_1, A_2 de X.

- (e) Se $B \subseteq Y$ é não vazio então $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.
- (f) Se $A \subseteq X$ e $B \subseteq Y$, são conjuntos não vazios, então

$$f^{-1}(f(A)) \supseteq A \quad e \quad f(f^{-1}(B)) \subseteq B.$$

Diga que condições se têm de impor à função f para que as anteriores desigualdades se transformem em igualdades, quaisquer que sejam os conjuntos $A \subseteq X$ e $B \subseteq Y$.

Exercício 32. (Algumas funções contínuas)

(a) Seja (X, d) um espaço métrico e $I: X \to X$ a função identidade, isto é,

$$I(x) = x, \quad \forall x \in X.$$

Mostre que I é uma função contínua.

(b) Sejam (X, d_X) e (Y, d_Y) dois espaços métricos e y_0 um elemento de Y. Considere a função constante

$$f: X \to Y, \quad f(x) = y_0.$$

Mostre que f é contínua.

(c) Dados dois espaços métricos (X, d_X) e (Y, d_Y) , uma função $f: X \to Y$ diz-se uma isometria, se satisfaz a condição

$$d_Y(f(x), f(y)) = d_X(x, y), \quad \forall x, y \in X.$$

Mostre que qualquer isometria f de X em Y é uma função contínua.

(d) Dados dois espaços métricos (X, d_X) e (Y, d_Y) , uma função $f: X \to Y$ diz-se lipschitziana, se satisafaz a condição

$$\exists C > 0, \forall x, y \in X, \ d_Y(f(x), f(y)) \le Cd_X(x, y).$$

Mostre que qualquer função lipschitziana f de X em Y é contínua.

(e) Considere a função $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$f(x_1, x_2) = \left(-\frac{1}{2}x_2, -\frac{1}{2}x_1\right), \quad (x_1, x_2) \in \mathbb{R}.$$

Considere em \mathbb{R}^2 a métrica euclideana. Diga se f é uma função contínua.

Exercício 33. (Métrica discreta. Algumas consequências)

Seja X um conjunto não vazio no qual se fixou a métrica discreta d_s .

(a) Fixe $x_0 \in X$. Determine as bolas abertas

$$B_{\frac{1}{2}}(x_0)$$
 e $B_{\frac{3}{2}}(x_0)$.

Mais geralmente indique as bolas abertas $B_{\delta}(x_0)$, para $\delta > 0$.

- (b) Indique quais os subconjuntos de X que são limitados.
- (c) Diga quais dos subconjuntos de X são conjuntos abertos. E os fechados?
- (d) Sendo (x_n) uma sucessão de elementos de X e $x_0 \in X$. Mostre que:

$$(x_n) \underset{n}{\to} x_0 \iff (\exists p \in \mathbb{N}, \ n > p \Rightarrow x_n = x_0)$$

- (e) Indique quais dos subconjuntos de X são conjuntos compactos.
- (f) É X um espaço métrico completo?
- (g) Seja (Y, d) um outro espaço métrico. Mostre que qualquer que seja a função $f: X \to Y$, então f é uma função contínua.

Exercício 34. (Continuidade vs continuidade sequêncial)

Sejam X e Y espaços métricos e $f: X \to Y$ uma aplicação. Dado x_0 em X, prove que as seguintes condições são equivalentes:

- (a) f é contínua em x_0 ;
- (b) Para qualquer sucessão (x_n) de elementos de X convergente para x_0 , a sucessão das imagens, $(f(x_n))$, é convergente para $f(x_0)$.

Exercício 35. (Composta de funções contínuas)

Sejam X, Y e Z três espaços métricos e $f: X \to Y$ e $g: Y \to Z$ aplicações contínuas. Mostre que a função composta $(q \circ f): X \to Z$ é contínua.

Exercício 36. (Igualdade de funções contínuas num conjunto denso)

Sejam X e Y dois espaços métricos, $f:X\to Y$ e $g:X\to Y$ duas funções contínuas e $A\subseteq X$ um subconjunto de X tal que

$$\forall x \in A, \ f(x) = g(x).$$

Mostre que se A for denso em X, ou seja, se ad(A) = A, então as funções f e q coincidem.

Exercício 37. (Continuidade. Conjuntos abertos e conjuntos fechados)

Sejam X e Y dois espaços métricos e $f: X \to Y$ uma aplicação de X em Y.

(a) Mostre que:

f é contínua em $X \Leftrightarrow (\forall A \subseteq Y, (A \text{ aberto em } Y) \Rightarrow (f^{-1}(A) \text{ é aberto de } X))$.

(b) Mostre que:

f é contínua em $X \Leftrightarrow (\forall F \subseteq Y, (F \text{ fechado em } Y) \Rightarrow (f^{-1}(F) \text{ é fechado de } X))$.

Sugestão: Para estabelecer (b) utilize a alínea (a) e o Exercício 31(e).

Exercício 38.

Considere um espaço métrico (X,d) no qual se fixa um ponto $a \in X$. Considere a aplicação

$$d_a: X \to \mathbb{R}, \ d_a(x) = d(x, a).$$

(a) Mostre que d_a é um função contínua quando se considera em X a métrica d e em \mathbb{R} a métrica usual.

(b) Justifique que para todo o $\delta > 0$, a bola aberta

$$B_{\delta}(a) = \{ x \in X : d(x, a) < \delta \}$$

é um conjunto aberto, e a bola fechada

$$\overline{B}_{\delta}(a) = \{x \in x : d(x, a) \le \delta\}$$

é um conjunto fechado em X.

Exercício 39. (Continuidade e conjuntos compactos)

Sejam X e Y dois espaços métricos e $f:X\to Y$ uma aplicação contínua de X em Y. Mostre que:

Se $A \subseteq X$ é compacto em X, então f(A) é compacto em Y.

Exercício 40. (Homeomorfismos)

Sejam X e Y dois espaços métricos com X compacto e $T: X \to Y$ uma aplicação contínua e bijectiva de X em Y. Mostre que T é um homeomorfismo, ou seja, é uma aplicação bijectiva tal que T e T^{-1} são contínuas.

Exercício 41. (Teorema de Weierstrass)

Seja X um espaço métrico e $f:X\to \mathbb{R}$ uma função contínua. Mostre que se $A\subseteq X$ é compacto e não vazio, então f tem um máximo e um mínimo no conjunto A, isto é,

$$\exists m_1, m_2 \in A, \forall x \in A, f(m_1) \leq f(x) \leq f(m_2).$$

Sugestão: Mostre que o supremo e o ínfimo de um subconjunto de \mathbb{R} , não vazio, fechado e limitado são pontoa aderentes ao conjunto.

3 Completação de um espaço métrico

Exercício 42. (Teorema da Completação)⁴

Seja (X,d) um espaço métrico não completo. O objectivo deste exercício é mostrar que existe sempre um espaço métrico completo $(\widetilde{X},\widetilde{d})$ e uma isometria $\varphi:X\to\widetilde{X}$ tal que $\varphi(X)$ é denso em \widetilde{X} . Para tal responda às seguintes questões:

1. Represente por \widehat{X} o conjunto de todas as sucessões de Cauchy em X, e defina em \widehat{X} a seguinte relação:

$$(x_n) \sim (x_n')$$
 se e só se $\lim_{n \to \infty} d(x_n, x_n') = 0$.

- (a) Mostre que " \sim " define uma relação de equivalência em \widehat{X} .
- (b) Justifique que dadas quaisquer duas sucessões de Cauchy (x_n) e (y_n) em X, existe sempre $\lim_{n\to\infty} d(x_n,y_n)$.
- 2. Seja $\widetilde{X}=(\widehat{X}/\sim)$ o conjunto de todas as classes de equivalência para a relação " \sim ", isto é

$$\widetilde{X} = \{ [(x_n)] : (x_n) \in \widehat{X} \}.$$

Considere em \widetilde{X} a correspondência $\widetilde{d}:\widetilde{X}\times\widetilde{X}\to\mathbb{R}$ dada por

$$\tilde{d}([(x_n)], [(y_n)]) = \lim_{n \to \infty} d(x_n, y_n), \quad [(x_n)], [(y_n)] \in \widetilde{X}.$$

(a) Verifique que \widetilde{d} define uma aplicação, ou seja, verifique que se $(x_n) \sim (x'_n)$ e $(y_n) \sim (y'_n)$ então

$$\lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(x'_n, y'_n).$$

- (b) Mostre que \widetilde{d} define uma métrica em \widetilde{X} .
- 3. Para cada $x \in X$, represente-se por [(x)] a classe de equivalência da sucessão constantemente igual a x. Defina-se a aplicação

$$\varphi:X\to\widetilde{X},\ x\mapsto [(x)].$$

(a) Observe que o contradomínio da função φ é

$$\varphi(X) = \left\{ [(x)] \in \widetilde{X} : x \in X \right\}$$

e justifique que a aplicação φ é uma isometria.

- (b) Mostre que $\varphi(X)$ é denso em \widetilde{X} .
- 4. Mostre que \widetilde{X} é completo.

⁴Ver Anexo2.

4 Espaços lineares normados

De agora em diante $\mathbb K$ designará sempre o corpo dos números reais, $\mathbb R$, ou dos números complexos, $\mathbb C$.

4.1 Generalidades

Exercício 43.

Sejam (X, ||.||) um espaço linear normado sobre o corpo \mathbb{K} , (x_n) , (y_n) duas sucessões de elementos em X, e $x_0, y_0 \in X$. Mostre que:

(a) $x_n \to 0 \text{ (em } X) \iff ||x_n|| \to 0 \text{ (em } \mathbb{R})$

(b) Se $x_n \xrightarrow{n} x_0$ e $y_n \xrightarrow{n} y_0$, então

$$x_n + y_n \xrightarrow[n]{} x_0 + y_0.$$

(c) Se $x_n \xrightarrow[n]{} x_0$ e (λ_n) é uma sucessão em $\mathbb K$ convergente para $\lambda_0 \in \mathbb K$, então

$$\lambda_n x_n \xrightarrow[n]{} \lambda_0 x_0.$$

- (d) Se a série $\sum_{n=1}^{\infty} x_n$ é convergente em X, então $x_n \to 0$.
- (e) Será a série $\sum_{n=1}^{\infty} \frac{1}{n^2} x_0$ convergente em X?

Exercício 44.

Seja $(X, \|.\|)$ um espaço linear normado sobre o corpo K. Mostre que:

(a) Para quaisquer $x, y \in X$ se tem

$$|||x|| - ||y||| \le ||x - y||.$$

- (b) A norma $\|.\|: X \to \mathbb{R}$ é uma função contínua quando se considera em X a métrica induzida por $\|.\|$ e em \mathbb{R} a métrica usual.
- (c) O conjunto $S = \{x \in X : ||x|| = 1\}$ é fechado e limitado. É S um conjunto compacto?

Exercício 45. (Critério de compacidade em dimensão finita)

Seja $(X, \|.\|)$ um espaço linear normado sobre \mathbb{K} tal que X tem dimensão finita. Neste exercício vai mostrar-se que os subconjuntos compactos de X são exactamente os subconjuntos fechados e limitados. Para tal responda às seguintes questões:

- (a) Justifique que qualquer subconjunto compacto A de X, é fechado e limitado.
- (b) Considere agora A um subconjunto de X simultaneamente fechado e limitado. Suponha que dim X = k e seja $(e_1, e_2, ..., e_k)$ uma base de X. Fixe-se uma sucessão (a_n) de elementos de A.
 - (i) Justifique que existem sucessões $(\alpha_1^{(n)}),(\alpha_2^{(n)}),...,(\alpha_k^{(n)})$ em $\mathbb K$ tal que

$$\forall n \in \mathbb{N}, \ a_n = \alpha_1^{(n)} e_1 + \alpha_2^{(n)} e_2 + \dots + \alpha_k^{(n)} e_k.$$

Sendo $e_1, e_2, ..., e_k$ elementos linearmente independentes, pode mostrar-se que existe uma constante C > 0 tal que qualquer que sejam os escalares $\beta_j \in \mathbb{K}$ (j = 1, 2, ..., k), se tem

$$\forall n \in \mathbb{N}, \quad \|\beta_1 e_1 + \beta_2 e_2 + \dots + \beta_k e_k\| \ge C(|\beta_1| + |\beta_2| + \dots + |\beta_k|).$$

- (ii) Justifique que as sucessões $(\alpha_1^{(n)}), (\alpha_2^{(n)}), ..., (\alpha_k^{(n)})$ são limitadas.
- (iii) Sabendo que qualquer sucessão limitada em \mathbb{K} admite uma subsucessão convergente, justifique que existem elementos $\alpha_1^0, \alpha_2^0, ..., \alpha_k^0$ em \mathbb{K} e uma subsucessão (a_{j_n}) de (a_n) tal que

$$a_{j_n} = \alpha_1^{(j_n)} e_1 + \alpha_2^{(j_n)} e_2 + \dots + \alpha_k^{(j_n)} e_k \xrightarrow{n} \alpha_1^0 e_1 + \alpha_2^0 e_2 + \dots + \alpha_k^0 e_k.$$

(iv) Justifique que o elemento $a_0=\alpha_1^0e_1+\alpha_2^0e_2+\ldots+\alpha_k^0e_k$ está em A e conclua que A é compacto.

Exercício 46. (Normas equivalentes)

Seja X um espaço linear sobre o corpo \mathbb{K} e $\|\cdot\|_1$ e $\|\cdot\|_2$ duas normas em X. Diz-se que as normas $\|\cdot\|_1$ e $\|\cdot\|_2$ são normas equivalentes se existem constantes positivas k e K tais que

$$\forall x \in X, \ k||x||_1 \le ||x||_2 \le K||x||_1.$$

(a) Represente por $X_{\|.\|}$ o conjunto de todas as normas que se podem definir no espaço X. Mostre que a relação " \sim " definida por

$$\|.\|_1 \sim \|.\|_2 \Leftrightarrow \|.\|_1$$
 e $\|.\|_2$ são normas equivalentes,

é uma relação de equivalência no conjunto $X_{\|.\|}$.

- (b) Sejam $\|\cdot\|_1$ e $\|\cdot\|_2$ normas equivalentes em X. Nestas condições prove que:
 - (i) Se (x_n) é uma sucessão de elementos de X então (x_n) é convergente para $x_0 \in X$, relativamente a $\|\cdot\|_1$, se e só se (x_n) é convergente para $x_0 \in X$, relativamente a $\|\cdot\|_2$;

- (ii) Se verifica o mesmo que na alínea anterior mas quando (x_n) é de Cauchy ou limitada;
- (iii) Se Y é um espaço linear normado sobre \mathbb{K} e $f: X \to Y$ é uma aplicação então f é contínua relativamente a $\|\cdot\|_1$ se e só se o for relativamente a $\|\cdot\|_2$.
- (c) Seja $n \in \mathbb{N}$, considere o espaço linear \mathbb{K}^n . Justifique que

$$||(x_1, \dots, x_n)||_{\infty} = \max\{|x_1|, \dots, |x_n|\},$$

$$||(x_1, \dots, x_n)||_1 = |x_1| + \dots + |x_n|,$$

$$||(x_1, \dots, x_n)||_2 = \sqrt{|x_1|^2 + \dots + |x_n|^2}$$

são normas equivalentes em \mathbb{K}^n .

Sugestão: Observe que para qualquer $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$ se tem

$$||x||_{\infty} \le ||x||_1 \le n||x||_2 \le n\sqrt{n}||x||_{\infty}.$$

Exercício 47. (Equivalencia das normas em dimensão finita)

Seja X um espaço linear sobre \mathbb{K} , de dimensão finita. Pretende-se com este exercício mostrar que quaisquer duas normas em X são equivalentes. Para tal, suponha-se que $\dim(X) = n \in \mathbb{N}$ e fixe-se uma base (e_1, \ldots, e_n) em X. Responda às seguintes questões:

(a) Prove que a aplicação $N_{\infty}: X \to \mathbb{R}$, definida por

$$N_{\infty}(\alpha_1 e_1 + \dots + \alpha_n e_n) = \max\{|\alpha_1|, \dots, |\alpha_n|\}$$

é uma norma em X.

(b) Seja N uma qualquer outra norma em X. Prove que existe uma constante positiva M tal que

$$\forall x \in X, \ N(x) \leq MN_{\infty}(x).$$

- (c) Justifique que o conjunto $S = \{x \in X : N_{\infty}(x) = 1\}$ é compacto em (X, N_{∞}) .
- (d) Mostre que $N:(X,N_{\infty})\to\mathbb{R}$ é contínua e justifique que existe $s_0\in S$ tal que

$$N(s_0) \le N(s)$$

qualquer que seja $s \in S$.

(e) Mostre que, qualquer que seja $x \in X$, se tem

$$N_{\infty}(x) \le \frac{1}{N(s_0)} N(x).$$

(f) Conclua que N é equivalente a N_{∞} e ainda que quaisquer duas normas em X, são normas equivalentes.

4.2 Operadores lineares limitados

Exercício 48. (Propriedades básicas)

Sejam X e Y espaços lineares normados sobre o mesmo corpo \mathbb{K} e $T:X\to Y$ um operador linear.

- (a) Mostre que T(0) = 0.
- (b) Seja Ker $T = \{x \in X : Tx = 0\}$. Mostre que

$$T$$
 é injectivo $\Leftrightarrow \ker T = \{0\}.$

- (c) Mostre que $\ker T$ é um subespaço linear de X e $\operatorname{Im} T = \{Tx : x \in X\}$ é um subespaço linear de Y.
- (d) Mostre que se $\{e_1, e_2, ..., e_k\}$ é um conjunto de vectores linearmente independentes de X e T é injectiva, então $\{Te_1, Te_2, ..., Te_k\}$ constitui um conjunto de vectores linearmente independentes de Y.

Exercício 49. (Continuidade de operadores lineares)

Sejam X e Y espaços lineares normados sobre o mesmo corpo \mathbb{K} e $T: X \to Y$ um operador linear contínuo num ponto $x_0 \in X$. Neste exercício vamos mostrar que a continuidde no ponto x_0 vai implicar a continuidade do operador T em todos os pontos de X.

Fixe-se $x_1 \in X$, um qualquer elemento de X e responda às seguintes questões:

(a) Dado $\delta > 0$ justifique que existe $\epsilon > 0$ tal que

$$||x - x_0|| < \epsilon \Rightarrow ||Tx - Tx_0|| < \delta.$$

(b) Justifique que

$$||x - x_1|| < \epsilon \Rightarrow ||T(x + x_0 - x_1) - Tx_0|| < \delta.$$

(c) Conclua que T é contínuo no ponto $x_1 \in X$.

Assim se garante que se T é contínuo num ponto de X então é um operador contínuo (contínuo em todos os pontos de X).

Exercício 50. (Norma de um operador linear limitado)

Sejam X,Y espaços lineares normados sobre \mathbb{K} e $T:X\to Y$ um operador linear de X em Y. O operador T diz-se limitado se,

$$\exists M > 0, \ \forall x \in X, \ \|Tx\| < M\|x\|.$$

(a) Mostre que T é um operador limitado se e só se existe e é finito

$$\sup_{\substack{x \in X \\ x \neq 0}} \frac{\|Tx\|}{\|x\|}.$$

Seja $g:L(X,Y)\to \mathbb{R}^+_0$ a aplicação definida por

$$g(T) = \sup_{\substack{x \in X \\ x \neq 0}} \frac{\|Tx\|}{\|x\|}, \quad T \in L(X, Y).$$

- (b) Mostre que g define uma norma em L(X,Y).
- (c) Mostre que se T é limitado então

$$\forall x \in X, \quad ||Tx|| \le g(T)||x||.$$

Nota: De agora em diante vamos escrever ||T|| para designar g(T).

(d) Sendo T um operador limitado, mostre que

$$||T|| = \min\{M \ge 0 : \forall x \in X, ||Tx|| \le M||x||\}.$$

(e) Sendo T um operador limitado, mostre que

$$||T|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||}{||x||} = \sup_{\substack{x \in X \\ ||x|| = 5}} \frac{||Tx||}{5}.$$

Exercício 51. (Soma, produto e composição de operadores limitados)

Sejam X, Y e Z espaços lineares normados sobre o mesmo corpo \mathbb{K} . Sejam

$$T.S: X \to Y$$
 e $U: Y \to Z$

operadores limitados.

(a) Mostre que o operador linear $(T+S): X \to Y$, definido por

$$(T+S)x = Tx + Sx, \quad \forall x \in X,$$

é limitado tendo-se $||T + S|| \le ||T|| + ||S||$.

(b) Dado $\beta \in \mathbb{K}$, considere o operador (βT) definido por,

$$(\beta T)x = \beta(Tx), \quad \forall x \in X.$$

Mostre que (βT) é um operador linear limitado, tendo-se $\|\beta T\| = |\beta| \|T\|$.

(c) Seja $(UT): X \to Z$ o operador linear definido por,

$$(UT)(x) = U(Tx), \quad \forall x \in X.$$

Mostre que UT é um operador limitado, tendo-se $||UT|| \le ||U|| ||T||$.

Exercício 52. (Operadores limitados e operadores contínuos)

Sejam X e Y espaços lineares normados sobre o mesmo corpo \mathbb{K} e $T:X\to Y$ um operador linear. Mostre que as seguintes condições são equivalentes:

- (a) T é limitado;
- (b) T é lipschitziano;
- (c) T é uniformemente contínuo;
- (d) T é contínuo;
- (e) T é contínuo num ponto $x_0 \in X$.

Exercício 53. (Continuidade de operadores lineares em dimensão finita)

Sejam X e Y espaços lineares normados sobre o mesmo corpo \mathbb{K} e $T:X\to Y$ um qualquer operador linear de X em Y. Com este exercício vai mostrar-se que se X tem dimensão finita então T é um operador limitado, ou seja, T é contínuo.

(a) Começe por justificar que se T é o operador identicamente nulo então T é contínuo.

Suponha-se então que $T \neq 0$ (onde 0 representa o operador nulo) e designe-se por $\|.\|_X$ e $\|.\|_Y$ respectivamente as normas definidas em X e Y. Suponha que dim $X = n \in \mathbb{N}$ e seja $(e_1, e_2, ..., e_n)$ uma base de X.

(b) Considere em X a função,

$$g: X \to \mathbb{R}, \ g(x) = \sum_{i=1}^{n} |\alpha_i|,$$

com $x = \alpha_1 e_1 + \alpha_2 e_2 + ... + \alpha_n e_n \in X$, onde $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{K}$. Mostre que g(.) define uma norma em X.

De agora em diante represente-se a norma g por $\|.\|_0$

(c) Mostre que

$$\exists M > 0, \ \forall x \in X, \ \|Tx\|_Y \le M\|x\|_0.$$

(d) Justifique a as normas $\|.\|_X$ e $\|.\|_0$ são equivalentes e que

$$\exists L > 0, \ \forall x \in X, \ \|Tx\|_Y \le L\|x\|_X.$$

Assim se garante que T é um operador linear limitado, logo contínuo.

4.3 Operadores lineares. Exemplos

Exercício 54. (Operadores de deslocamento)

Seja l^{∞} o espaço linear sobre \mathbb{K} constituído por todas as sucessões $x = (\alpha_k)$ em \mathbb{K} que são limitadas. Considere-se em l^{∞} a norma $\|.\|_{\infty}$ definida por,

$$\forall x = (\alpha_k) = (\alpha_1, \alpha_2, ..., \alpha_k, ...) \in l^{\infty}, \quad ||x||_{\infty} = \sup_{k \in \mathbb{N}} |\alpha_k|.$$

Considere os operadores de deslocamento S_d e S_e definidos por

$$S_d: l^{\infty} \to l^{\infty}$$
, onde $S_d(\alpha_1, \alpha_2, ..., \alpha_k, ...) = (0, \alpha_1, \alpha_2, ..., \alpha_k, ...)$,
 $S_e: l^{\infty} \to l^{\infty}$, onde $S_e(\alpha_1, \alpha_2, ..., \alpha_k, ...) = (\alpha_2, ..., \alpha_k, ...)$.

- (a) Mostre que S_d e S_e são lineares.
- (b) Determine $Ker S_d$ e $Ker S_e$. São estes operadores injectivos?
- (c) Mostre que S_d e S_e são operadores limitados e determine a sua norma.

Exercício 55.

Seja l^{∞} o espaço linear sobre \mathbb{K} constituído pelas sucessões $x = (\alpha_k)$ em \mathbb{K} que são limitadas e no qual se considera a norma definida por

$$||x||_{\infty} = \sup_{k \in \mathbb{N}} |\alpha_k|, \quad x = (\alpha_1, \alpha_2, ..., \alpha_k, ...).$$

Seja $T: l^{\infty} \to l^{\infty}$ o operador linear definido por

$$Tx = T(\alpha_1, \alpha_2, ..., \alpha_k, ...) = (\alpha_1, \alpha_2/2, ..., \alpha_k/k, ...).$$

- (a) T é um operador linear injectivo?
- (b) E T sobrejectivo? Caracterize o contradomínio do operator T.
- (c) Justifique que T é um operador linear limitado e que $||T|| \le 1.$?
- (d) Determine ||T||.

Exercício 56. (Operador de multiplicação)

Seja C([0,1]) o espaço linear constituído por todas as funções reais e contínuas definidas no intervalo [0,1], no qual se fixou a norma

$$||f||_{\infty} = \max_{t \in [0,1]} |f(t)|, \quad \forall f \in C([0,1].$$

Sendo $g \in C([0,1])$ uma função contínua que nunca se anula em [0,1], considere o operador T_g definido em C([0,1]) por,

$$T_q: C([0,1]) \to C([0,1]), T_q(f) = gf,$$

onde gf designa a função dada por

$$(gf)(x) = g(x)f(x), x \in [0, 1].$$

- (a) Mostre que T_g é um operador linear. Supondo que $g(x) \neq 0$ para todo o $x \in [0,1]$, mostre que T_g é injectivo. É T_g sobrejectivo?
- (b) Mostre que $||T_g|| \le ||g||_{\infty}$, o que permite concluir que T_g é operador limitado.
- (c) Determine $||T_g||$.

Exercício 57. (Operador de derivação)

Seja P([0,1]) o espaço linear constituído por todos os polinómios reais definidos no intervalo [0,1], no qual se fixou a norma

$$||f||_{\infty} = \max_{t \in [0,1]} |f(t)|, \quad \forall f \in P([0,1]).$$

Considere o operador de derivação D definido em P([0,1]) por

$$D: P([0,1]) \to P([0,1]), f \mapsto D(f) = f'.$$

Considere a sucessão de polinómios (f_n) onde, para todo o $n \in \mathbb{N}$,

$$f_n(t) = t^n, \quad t \in [0, 1].$$

- 1. Para cada $n \in \mathbb{N}$, determine $||f_n||_{\infty}$ e $||D(f_n)||_{\infty}$.
- 2. É D um operador limitado?

4.4 Lemma de Riesz

Exercício 58.

Sejam X um espaço linear normado e (M_n) uma sucessão de subespaços lineares próprios e fechados de X, tais que

$$M_1 \subset M_2 \subset \ldots \subset M_n \subset \ldots$$

com $M_1 \neq \{0\}$ e $M_i \neq M_{i+1}$.

Mostre que existe uma sucessão (y_n) de elementos de X tal que

- (i) $y_1 \in M_1 \in ||y_1|| = 1$;
- (ii) $y_n \in M_n$, $||y_n|| = 1$ e $\inf_{y \in M_{n-1}} ||y_n y|| \ge \frac{1}{3}$, para todo o $n \ge 2$.

Exercício 59.

Seja X um espaço linear normado sobre \mathbb{K} , de dimensão finita e X_0 um seu subespaço próprio. Pretende-se com este exercício mostrar que

$$\exists x^* \in X, \ \|x^*\| = 1 \land (\|x^* - x\| \ge 1, \ \forall x \in X_0).$$

Para tal responda às seguintes questões:

- (a) Justifique que X_0 é um subespaço fechado de X.
- (b) Justifique que existe uma sucessão (x_n) de elementos de X tal que,

$$\forall n \in \mathbb{N}, \ \|x_n\| = 1 \land (\|x_n - x\| \ge 1 - \frac{1}{n}, \ \forall x \in X_0).$$

(c) Justifique que é possível extrair de (x_n) uma subsucessão (x_{n_k}) convergente para um elemento $x^* \in S$, onde

$$S = \{ x \in X : ||x|| = 1 \}.$$

(d) Mostre que o elemento x^* está nas condições pretendidas, i.e, que

$$||x^*|| = 1 \land (||x^* - x|| \ge 1, \ \forall x \in X_0).$$

Exercício 60. (Uma condição suficiente para o espaço ter dimensão finita)

Seja X um espaço linear normado sobre \mathbb{K} e S o conjunto,

$$S = \{ x \in X : ||x|| = 1 \}.$$

Suponha que S é um conjunto compacto. Com este exercício pretende-se mostrar que X é um espaço linear com dimensão finita. Ora, sendo S compacto sabe-se que 5 se $(A_i)_{i\in I}$ é uma família de subconjuntos abertos de X tais que $S\subseteq \bigcup_{i\in I}A_i$ então existe $p\in\mathbb{N}$ e

$$\exists i_1, i_2, ... i_p \in I, \ S \subseteq \bigcup_{k=1}^p A_{i_k}.$$

(a) Prove que $S\subseteq \underset{x\in S}{\cup}B_{\frac{1}{4}}(x)$. Justifique que existe um conjunto finito D,

$$D = \{x_1, x_2, ..., x_n\} \subseteq S$$

tal que

$$S \subseteq \bigcup_{i=1}^n B_{\frac{1}{4}}(x_i).$$

Seja $Z = \langle x_1, x_2, ..., x_n \rangle$ o subespaço linear de X gerado pelo conjunto D.

(b) Que pode afirmar relativamente à dimensão de Z? É Z fechado?

Vejamos no que se segue que X = Z. Para tal admita-se que $X \neq Z$. Nesta situação Z é um subespaço próprio e fechado de X.

(c) Justifique que existe $x^* \in S$ tal que

$$||x^* - x_j|| \ge \frac{1}{4}, \quad j = 1, 2, ..., n.$$

(d) A partir das alíneas anteriores, justifique que se chega a um absurdo, concluíndo-se assim que X=Z, logo, X é um espaço linear de dimensão finita.

⁵Ver início do Anexo 3

4.5 Espaços de Banach. Alguns exemplos

Exercício 61. (C([a,b])- Espaço das funções reais contínuas e definidas em [a,b])

Seja C([a,b]) o espaço linear constituído por todas as funções reais contínuas definidas no intervalo [a,b] (b>a), no qual se fixou a norma

$$||f||_{\infty} = \max_{t \in [a,b]} |f(t)|, \quad \forall f \in C([a,b]).$$

Mostra-se a seguir que este espaço linear normado é completo. Seja então (f_n) uma sucessão de Cauchy em C([a, b]).

(a) Mostre que

$$\forall \epsilon > 0 \ \exists p \in \mathbb{N}, \ n > p \land m > p \Rightarrow (\forall t \in [a, b], \ |f_n(t) - f_m(t)| < \epsilon).$$

(b) Seja t_o um ponto arbitrário de [a,b] e (x_n) a sucessão de números reais definida por

$$\forall n \in \mathbb{N}, \ x_n = f_n(t_0).$$

Mostre que (x_n) é uma sucessão de números reais convergente.

(c) Seja f a função definida por

$$\forall t \in [a, b], \quad f(t) = \lim_{n \to \infty} f_n(t_0).$$

Mostre que

$$\forall \epsilon > 0 \ \exists p \in \mathbb{N}, \ n > p \Rightarrow (\forall t \in [a, b], \ |f_n(t) - f(t)| < \epsilon).$$

(d) Mostre detalhadamente que f é uma função contínua em qualquer ponto de [a,b] e justifique que

$$f = \lim_{n \to \infty} f_n.$$

Assim se garante que a sucessão de Cauchy (f_n) é convergente para uma função $f \in C([a,b])$, ou seja, que C([a,b]) é um espaço completo.

Exercício 62. (l^{∞} -Espaço das sucessões limitadas)

Seja l^{∞} o espaço linear sobre K constituído por todas as sucessões

$$x = (\alpha_k) = (\alpha_1, \alpha_2, ..., \alpha_k, ...)$$

em \mathbb{K} , que são limitadas. Considere-se em l^{∞} a norma $\|.\|_{\infty}$ definida por,

$$\forall x = (\alpha_k), \quad ||x||_{\infty} = \sup_{k \in \mathbb{N}} |\alpha_k|.$$

O objectivo deste exercício é mostrar que l^{∞} é um espaço completo. Para tal fixe-se em l^{∞} uma qualquer sucessão de Cauchy (x_n) ,

$$x_n = (\alpha_1^{(n)}, \alpha_2^{(n)}, ..., \alpha_k^{(n)}, ...).$$

(a) Justifique que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n, m > p \Rightarrow (\forall k \in \mathbb{N}, \ |\alpha_k^{(n)} - \alpha_k^{(m)}| < \delta).$$

(b) Mostre que para cada $k \in \mathbb{N}$, a sucessão $(\alpha_k^{(n)})$ é uma sucessão de Cauchy (em \mathbb{K}) e justifique que

$$\forall k \in \mathbb{N}, \ \exists \alpha_k^* \in \mathbb{K}, \quad \lim_{n \to \infty} \alpha_k^{(n)} = \alpha_k^*.$$

Considere o elemento $x^* = (\alpha_1^*, \alpha_2^*, ..., \alpha_k^*, ...)$.

(c) Justifique que existe M > 0 tal que

$$\forall n \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ |\alpha_k^{(n)}| \le M.$$

- (d) Justifique que $x^* \in l^{\infty}$.
- (e) Mostre que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n > p \Rightarrow (\forall k \in \mathbb{N}, \ |\alpha_k^{(n)} - \alpha_k^*| \le \delta),$$

e que

$$\lim_{n\to\infty} ||x_n - x^*||_{\infty} = 0$$

(f) Conclua que l^{∞} é completo

Exercício 63. (l^p- Espaço das sucessões p-somáveis)

Seja $1 \leq p < \infty$. Represente-se por l^p o espaço linear sobre $\mathbb K$ constituído pelas sucessões de números em $\mathbb K$

$$x = (\alpha_k) = (\alpha_1, \alpha_2, ..., \alpha_k, ...)$$

tal que a série $\sum_{k=1}^{\infty} |\alpha_k|^p$ é convergente. Considere em l^p a aplicação $\|.\|_p: l^p \to \mathbb{R}_0^+$ definida por

$$||x||_p = \sqrt[p]{\sum_{k=1}^{\infty} |\alpha_k|^p}.$$

Com este exercício vamos mostrar que a aplicação $\|.\|_p$ define uma norma no espaço l^p que o torna um espaço de Banach. Seja $p \ge 1$.

(a) Mostre que $\|.\|_p$ é uma norma em l^p .

Sugestão: Para estabelecer a desiguldade triângular recorra à desigualdade de Minkowski.

Assim, $(l^p, ||.||_p)$ constitui um espaço linear normado. Considere-se agora uma sucessão de Cauchy (x_n) de elementos de l^p ,

$$x_n = (\alpha_1^n, \alpha_2^n, ..., \alpha_k^n, ...).$$

Vejamos que existe um elemento $x^* \in l^p$, com $x^* = (\alpha_1^*, \alpha_2^*, ..., \alpha_k^*, ...)$, por forma a que $\lim_{n \to \infty} ||x_n - x^*||_p = 0$.

(b) Mostre que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n, m > p \Rightarrow \sqrt[p]{\sum_{k=1}^{\infty} |\alpha_k^n - \alpha_k^m|^p} < \delta,$$

e ainda que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n, m > p \Rightarrow (|\alpha_k^n - \alpha_k^m| < \delta^p, \ \forall k \in \mathbb{N}).$$

(c) Para cada $k \in \mathbb{N}$, justifique que (α_k^n) é uma sucessão de Cauchy em \mathbb{K} e que existe $\alpha_k^* \in \mathbb{K}$ tal que $\lim_{n \to \infty} \alpha_k^n = \alpha_k^*$.

Fixe o elemento $x^* = (\alpha_1^*, \alpha_2^*, ..., \alpha_k^*,)$.

(e) Justifique que

$$\exists M > 0, \forall n \in \mathbb{N}, \quad \sqrt[p]{\sum_{k=1}^{\infty} |\alpha_k^n|^p} \le M$$

e ainda que

$$\exists M > 0, \forall n \in \mathbb{N}, \forall i \in \mathbb{N}, \quad \sum_{k=1}^{i} |\alpha_k^n|^p \le M^p.$$

(f) Para cada $i \in \mathbb{N}$ justifique que

$$\sum_{k=1}^{i} |\alpha_k^*|^p \le M^p$$

e ainda que $\sum_{k=1}^{\infty} |\alpha_k^*|^p$ é convergente.

Assim se garante que $x^* \in l^p$.

(g) Com o auxílio de (b) mostre que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n, m > p \Rightarrow \left(\forall i \in \mathbb{N}, \quad \sqrt[p]{\sum_{k=1}^{i} |\alpha_k^n - \alpha_k^m|^p} < \delta \right)$$

e que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n > p \Rightarrow \left(\forall i \in \mathbb{N}, \quad \sqrt[p]{\sum_{k=1}^{i} |\alpha_k^n - \alpha_k^*|^p} \le \delta \right).$$

(h) Finalmente conclua que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n > p \Rightarrow \sqrt[p]{\sum_{k=1}^{\infty} |\alpha_i^n - \alpha_i^*|^p} \le \delta.$$

ou seja, que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n > p \Rightarrow ||x_n - x^*|| \le \delta,$$

o que permite afirmar que a sucessão de Cauchy (x_n) é convergente para um elemento $x^* \in l^p$.

Exercício 64. ($\mathcal{L}(X,Y)$ -Espaço dos operadores limetados)

Sejam X, Y espaços lineares normados sobre o mesmo corpo \mathbb{K} e $\mathcal{L}(X, Y)$ o espaço linear constituído por todos os operdores lineares limitados de X em Y, no qual se fixa a norma habitual, isto é,

$$||T|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||}{||x||}, \quad \forall T \in \mathcal{L}(X, Y).$$

Suponha-se que Y é um espaço de Banach. Pretende-se neste exercício mostrar que $\mathcal{L}(X,Y)$ também é um espaço de Banach.

Fixe-se uma qualquer sucessão de Cauchy (A_n) em $\mathcal{L}(X,Y)$.

(a) Mostre que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \quad n, m > p \Rightarrow (\|A_n x - A_m x\| < \delta \|x\|, \quad \forall x \in X).$$

(b) Para cada $x \in X$, mostre que a sucessão $(A_n(x))$ é de Cauchy em Y e justifique que $(A_n(x))$ é convergente.

Considere o operador $A: X \to Y$ definido por

$$Ax = \lim_{n \to \infty} A_n x.$$

- (c) Mostre que A é um operador linear.
- (d) Justifique que

$$\exists M \geq 0, \forall n \in \mathbb{N}, \|A_n\| \leq M.$$

- (e) Utilizando a alínea anterior prove que o operador A é limitado.
- (f) Dado $\delta > 0$, justifique que

$$\exists p \in \mathbb{N}, \ n > p \Rightarrow (\|A_n x - A x\| \le \delta \|x\|, \ \forall x \in X)$$

e ainda que

$$\forall \delta > 0, \exists p \in \mathbb{N}, \ n > p \Rightarrow ||A_n - A|| \le \delta.$$

(g) Conclua finalmente que $\mathcal{L}(X,Y)$ é completo.

Exercício 65.

Sejam X, Y espaços lineares normados, não nulos, sobre o mesmo corpo \mathbb{K} e $\mathcal{L}(X, Y)$ o espaço linear constituído por todos os operadores lineares limitados de X em Y, com a norma

$$||T|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||}{||x||}, \quad \forall T \in \mathcal{L}(X, Y).$$

Suponha-se que $\mathcal{L}(X,Y)$ é um espaço de Banach. Com este exercício pretende-se mostrar que Y também é um espaço de Banach e a demonstração vai ser feita por redução ao absurdo

Sendo $\mathcal{L}(X,Y)$ um espaço de Banach, suponha-se que Y não o é:

(a) Justifique que existe uma sucessão (y_n) de elementos de Y de Cauchy que não é convergente.

Se $X \neq \{0\}$ pode provar-se que existe um operador linear não nulo e contínuo $F: X \to \mathbb{K}$. Considere a sucessão de operadores $T_n: X \to Y$ definidos por

$$\forall n \in \mathbb{N}, \ \forall x \in X, \quad T_n(x) = F(x)y_n, \quad n \in \mathbb{N}.$$

- (b) Para cada $n \in \mathbb{N}$, mostre que T_n é um operador linear limitado.
- (c) Fixe $n, m \in \mathbb{N}$. Mostre que

$$\forall x \in X, \ \|T_n(x) - T_m(x)\| = |F(x)| \|y_n - y_m\|,$$

e conclua que

$$||T_n - T_m|| = ||F|| ||y_n - y_m||.$$

(d) Justifique que (T_n) é um sucessão de Cauchy em $\mathcal{L}(X,Y)$ e que existe $T_0 \in \mathcal{L}(X,Y)$ tal que

$$\lim_{n\to\infty} T_n = T_0.$$

(e) Para cada $x \in X$ mostre que

$$\lim_{n \to \infty} T_n(x) = T_0(x).$$

(f) Recorrendo à alínea anterior justifique que se chega a um absurdo.

Assim se conclui que se $\mathcal{L}(X,Y)$ é um espaço de Banach então o mesmo sucede ao espaço Y.

4.6 Séries em espaços de Banach

Exercício 66.

Seja X um espaço de Banach e (x_n) uma sucessão de elementos de X.

- (a) Mostre que se a série $\sum_{n=1}^{\infty} ||x_n||$ é convergente em \mathbb{R} , então a série $\sum_{n=1}^{\infty} x_n$ é convergente em X.
- (b) Seja (y_n) uma sucessão de elementos em X tal que

$$\forall n \in \mathbb{N}, \quad ||y_n|| \le 3^n.$$

Justifique que a série $\sum_{n=1}^{\infty} \frac{1}{n!} y_n$ é convergente em X.

(c) Seja (y_n) uma sucessão limitada de elementos em X e (λ_n) uma sucessão de elementos em \mathbb{K} tal que a série $\sum_{n=1}^{\infty} |\lambda_n|$ é convergente. Mostre que a sucessão das somas parciais da série

$$\sum_{n=1}^{\infty} \|\lambda_n y_n\|$$

é limitada e conclua que a série $\sum_{n=1}^{\infty} \lambda_n y_n$ é convergente em X.

Exercício 67. Sejam X e Y dois espaços de Banach sobre \mathbb{K} , $T: X \to Y$ um operador linear limitado e (x_n) uma sucessão de elementos de X. Mostre que se a série $\sum_{n=1}^{\infty} x_n$ é convergente em X então a série $\sum_{n=1}^{\infty} Tx_n$ é convergente em Y, tendo-se

$$T\left(\sum_{n=1}^{\infty} x_n\right) = \sum_{n=1}^{\infty} Tx_n.$$

5 Espaços lineares com produto interno

Exercício 68. Considere C([0,1]) o espaço linear sobre \mathbb{K} constituído pelas funções $f:[0,1] \mapsto \mathbb{K}$ contínuas. Mostre que a aplicação

$$(.|.): C([0,1]) \times C([0,1]) \to \mathbb{K}, \quad (f|g) = \int_0^1 f(x)\overline{g(x)}dx,$$

define um produto interno em C([0,1]). Indique a norma associa a (.|.).

Exercício 69. (Continuidade do produto interno)

Seja X um espaço de produto interno. Considere (x_n) , (y_n) sucessões em X e $x, y \in X$. Mostre que se $x_n \to x$ e $y_n \to y$ então $(x_n, y_n) \to (x, y)$.

Exercício 70. (Complemento ortogonal. Algumas propriedades)

Seja X um espaço linear sobre \mathbb{K} , no qual se fixou um produto interno. Dado M um subconjunto não vazio de X, represente-se por M^{\perp} o complemento ortogonal do conjunto M, isto é,

$$M^{\perp} = \{ x \in X : (x|m) = 0, \forall m \in M \}.$$

Se $x \in M^{\perp}$ diz-se que x é ortogonal ao conjunto M e representa-se por $x \perp M$. Mostre que:

- (a) Para qualquer subconjunto não vazio M de X, o seu complemento ortogonal, M^{\perp} , é um subespaço vectorial fechado de X.
- (b) $\{0\}^{\perp} = X e X^{\perp} = \{0\}.$
- (c) Se M e N são subconjuntos não vazios de X tais que $N\subseteq M$ então $M^\perp\subseteq N^\perp.$
- (d) Se M e N são subconjuntos não vazios de X então $(M \cup N)^{\perp} = M^{\perp} \cap N^{\perp}$.
- (e) Se M é um subconjunto não vazio de X então $M \subseteq (M^{\perp})^{\perp}$. Diga que condições teremos de impôr ao conjunto M para que se possa ter a igualdade $M = (M^{\perp})^{\perp}$.
- (f) Se M é um subconjunto não vazio de X então $M \cap M^{\perp} \subseteq \{0\}$. Caso M seja um subespaço vectorial de X então $M \cap M^{\perp} = \{0\}$.
- (g) Se M é um subconjunto não vazio de X e $x \in X$ então

$$x \perp M \Rightarrow x \perp < M > \text{ e } x \perp < M > \Rightarrow x \perp \overline{< M >}.$$

Conclua que $M^{\perp} = \langle M \rangle^{\perp} = \overline{\langle M \rangle}^{\perp}$, onde $\langle M \rangle$ designa o espaço linear gerado pelo conjunto M e $\overline{\langle M \rangle}$ designa a aderência (ou fecho) do conjunto $\langle M \rangle$.

(h) Se M é um subconjunto não vazio de X e < M > é denso em X então $< M >^{\perp} = \{0\}$.

Exercício 71. (Identidade do Paralelogramo)

Seja X um espaço linear com produto interno e $\|\cdot\|$ a norma associada a esse produto interno. Prove que a norma verifica a identidade do paralelogramo, isto é,

$$\forall x, y \in X, \quad \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).$$

Exercício 72.

Seja C([0,1]) o espaço linear das funções reais definidas e contínuas em [0,1], no qual se fixou a norma

$$||x||_{\infty} = \max_{x \in [0,1]} |x(t)|, \quad \forall x \in C([0,1]).$$

A norma $\|.\|_{\infty}$ está associada a um produto interno?

Exercício 73. (Norma associada a um produto interno)

Seja $(X, \|.\|)$ um espaço linear real, normado.

(a) Mostre que se ||.|| está associada a um produto interno então o produto interno é dado por,

$$(x|y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2), \quad \forall x, y \in X. \quad (I)$$

(b) Suponha-se agora que a norma ||. || satisfaz a identidade do paralelogramo. Considere a aplicação $g: X \times X \to \mathbb{R}$ definida por (I), isto é,

$$g(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2), \quad \forall x, y \in X.$$

No que se segue vamos provar que g define um produto interno cuja norma associado é ||.||.

(a) Comece por verificar que

$$\forall x \in X, \quad \|x\| = \sqrt{g(x, x)}.$$

(b) Prove que:

i.
$$\forall x, y \in X$$
, $g(-x, y) = -g(x, y)$;
ii. $\forall x, y, z \in X$, $g(x + y, z) = g(x, z) + g(y, z)$.

ii.
$$\forall x, y, z \in X$$
, $q(x+y,z) = q(x,z) + q(y,z)$

Sugestão: Da identidade do paralelogramo conclui-se que

$$||x + y + z||^2 + || - x + y + z||^2 = 2||x||^2 + 2||y + z||^2,$$

$$|| - x - y + z||^2 + || - x + y + z||^2 = 2||y||^2 + 2|| - x + z||^2.$$

Subtraíndo estas igualdades termo a termo, vem

$$g(x+y,z) = \frac{1}{2}(\|x\|^2 - \|y\|^2 + \|y+z\|^2 - \|x-z\|^2).$$

iii.
$$\forall x, y \in X, \forall n \in \mathbb{Z}, \quad g(nx, y) = ng(x, y);$$

iv. $\forall x, y \in X, \forall \lambda \in \mathbb{R}, \quad g(\lambda x, y) = \lambda g(x, y).$

Sugestão: Comece por estabelecer o resultado para $\lambda \in \mathbb{Q}$ e atendendo a que todo o número real é o limite de uma sucessão de números racionais estabeleça o resultado para os números reais.

(c) Conclua que g é um produto interno cuja norma associada é a norma $\|.\|$ dada inicialmente.

Assim se conclui que se a norma de um espaço linear real satisfaz a identidade do paralelogramo, então está associada ao produto interno definido por (I).

Exercício 74.

Seja X um espaço linear com produto interno.

(a) Mostre que se u, v são dois elementos de X tais que

$$\forall x \in X, \ (u|x) = (v|x),$$

então u=v.

- (b) Mostre que se $\{x_1, x_2, ..., x_n\}$ é um subconjunto finito e ortogonal de $X \setminus \{0\}$ então $x_1, x_2, ..., x_n$ são linearmente independentes.
- (c) Mostre que se $\{x_1, x_2, ..., x_n\}$ é um subconjunto finito e ortogonal de X então

$$||x_1 + x_2 + \dots + x_n||^2 = ||x_1||^2 + ||x_2||^2 + \dots + ||x_n||^2.$$

Usando este resultado demonstre o Teorema de Pitágoras.

(d) Dados dois elementos $u, v \in X$ mostre que

$$u \perp v \iff ||u + \alpha v|| \ge ||u||, \quad \forall \alpha \in \mathbb{K}.$$

Exercício 75. (Aproximação óptima. Um critério de identificação)

Sejam X um espaço com produto interno, $x \in X$ e $Y \neq \{0\}$ um subespaço de X. Diz-se que $x_Y \in Y$ é uma aproximação óptima de x em Y se

$$||x - x_Y|| = \inf_{y \in Y} ||x_- y||.$$

- (a) Prove que se existe uma aproximação óptima de x em Y esta é única.
- (b) Mostre que são equivalentes as seguintes condições:
 - (i) x_Y é a aproximação óptima de x_0 em Y;
 - (ii) $x x_Y \perp Y$.

Exercício 76. (Aproximação óptima em espaços de dimensão finita)

Sejam X um espaço com produto interno e $Y \neq \{0\}$ um subespaço de X de dimensão finita. Seja $(e_1, e_2, ..., e_n)$ uma base ortonormada de Y. Fixemos $x \in X$ e seja x_Y o elemento de Y definido por

$$x_Y = (x|e_1)e_1 + (x|e_2)e_2 + \dots + (x|e_n)e_n.$$

- (a) Justifique que $x_Y \in Y$.
- (b) Mostre que:

$$\forall j = 1, ..., n, (x_Y | e_j) = (x | e_j).$$

Conclua que $(x - x_Y) \perp Y$.

(c) Indique o elemento de Y que está à distância mínima de x.

Exercício 77. (Teorema da aproximação óptima. Caso Geral)

Seja X um espaço com produto interno e $Y \neq \{0\}$ um seu subespaço próprio completo. Seja ainda $x_0 \in X \setminus Y$ um elemento arbitrariamente fixado. Pretende-se provar que existe um e um só elemento $y_0 \in Y$ tal que

$$||x_0 - y_0|| = \inf_{y \in Y} ||x_0 - y|| = \min_{y \in Y} ||x_0 - y||,$$

tendo-se ainda que

$$x_0 - y_0 \in Y^{\perp}$$

- (a) Mostre que $d = \inf_{y \in Y} ||x_0 y|| > 0$.
- (b) Justifique que existe uma sucessão (y_n) de elementos de Y que verifica

$$d \le ||x_0 - y_n|| \le d + \frac{1}{n},$$

qualquer que seja $n \in \mathbb{N}$.

(c) Seja (a_n) a sucessão de elementos de X definida por $a_n = x_0 - y_n$. Mostre que, quaisquer que sejam $n, m \in \mathbb{N}$,

$$||a_n + a_m|| > 2d.$$

(d) Utilizando a identidade do paralelogramo mostre que,

$$\forall n, m \in \mathbb{N}, \|y_n - y_m\|^2 \le 2(\|x_0 - y_n\|^2 + \|x_0 - y_m\|^2) - 4d^2.$$

Justifique ainda a existência de $y_0 \in Y$ tal que $\lim y_n = y_0$.

- (e) Mostre que $||x_0 y_0|| = d$.
- (f) Mostre que y_0 é o único elemento de Y nas condições da alínea anterior. Para tal considere y'_0 um outro elemento nas condições da alíena anterior e utilize a identidade do paralelogramo com $x = x_0 y_0$ e $y = x_0 y'_0$.
- (g) Justifique que $x_0 y_0 \in Y^{\perp}$.

Exercício 78. (Decomposição ortogonal)

Seja X um espaço de Hilbert e Y um seu subespaço linear fechado. Com este exercício vai mostrar-se que:

- 1. $X = Y \oplus Y^{\perp}$;
- 2. $Y = (Y^{\perp})^{\perp}$.
- (a) Comece por mostrar que as condições 1. e 2. são verdadeiras no caso de Y = X.

Suponha-se então que $Y \neq X$, ou seja, que Y é um subespaço próprio e fechado de X.

- (b) Mostre que $Y \cap Y^{\perp} = \{0\}$.
- (c) Mostre-se agora que $X = Y + Y^{\perp}$. Para tal começe por justificar que $X \supseteq Y + Y^{\perp}$.
 - i. Dado $x \in X$, justifique que se $x \in Y$ então existe $z \in Y^{\perp}$ tal que x = y + z e portanto $x \in Y + Y^{\perp}$.
 - ii Dado $x \in X$, justifique que se $x \notin Y$ então existe $z \in Y^{\perp}$ tal que x = y + z e portanto $x \in Y + Y^{\perp}$.

Sugestão: Recorra ao teorema da apróximação óptima.

Assim se garante que $X=Y+Y^{\perp}$ e, atendendo à alínea (b), tem-se que $X=Y\oplus Y^{\perp}$ ficando estabelecida a igualdade 1.

- (d) Prove-se que $Y = (Y^{\perp})^{\perp}$. Para tal fixe-se $x \in (Y^{\perp})^{\perp}$.
 - i Justifique que existe $y_1 \in Y$ e $y_2 \in Y^{\perp}$ tal que $x = y_1 + y_2$.
 - ii. Recorrendo à alínea anterior justifique que $x-y_1=0$, ou seja, que $x=y_1\in Y$.
 - iii. Justifique que $Y = (Y^{\perp})^{\perp}$, ficando estabelecida a igualdade 2.

Exercício 79. (Séries relacionadas com conjuntos ortonormados)

Seja X um espaço de Hilbert sobre o corpo \mathbb{K} , ou seja, um espaço linear sobre \mathbb{K} com produto interno, completo, e seja $S = \{e_k : k \in \mathbb{N}\} \subset X$ um conjunto ortonormado numerável onde se admite que para $k \neq l$ se tem $e_k \neq e_l$.

- (a) Seja (λ_n) uma sucessão de elementos em \mathbb{K} e considere a série $\sum_{n=1}^{\infty} \lambda_n e_n$. Mostre que:
 - (i) Se a série $\sum_{n=1}^{\infty} \lambda_n e_n$ é convergente em X então a série $\sum_{n=1}^{\infty} |\lambda_n|^2$ é convergente em \mathbb{R} .
 - (ii) Reciprocamente, se a série $\sum_{n=1}^{\infty} |\lambda_n|^2$ é convergente em \mathbbm{R} então a série $\sum_{n=1}^{\infty} \lambda_n e_n$ é convergente em X.

Sugestão: Para ambas as alíneas relacione $||s_n - s_m||^2$ com $|S_n - S_m|$, onde

$$s_n = \sum_{k=1}^n \lambda_k e_k \quad e \quad S_n = \sum_{k=1}^n |\lambda_k|^2, \quad n \in \mathbb{N}.$$

(b) Seja $x \in X$ e (β_n) a sucessão de elementos de \mathbb{K} definida por

$$\forall n \in \mathbb{N}, \quad \beta_n = (x|e_n).$$

Pretende-se nesta alínea provar que a série

$$\sum_{n=1}^{\infty} (x|e_n)e_n = \sum_{n=1}^{\infty} \beta_n e_n$$

é convergente em X. Para tal responda às seguintes questões:

(i) Mostre que

$$\forall n \in \mathbb{N}, \quad \sum_{k=1}^{n} |\beta_k|^2 \le ||x||^2.$$

(ii) Justifique que a série $\sum_{k=1}^{\infty} |\beta_k|^2$ é convergente, tendo-se

$$\sum_{k=1}^{\infty} |(x|e_k)|^2 \le ||x||^2$$
 (Designaldade de Bessel).

(iii) Conclua que a série $\sum_{k=1}^{\infty} (x|e_k)e_k$ é convergente em X.

Exercício 80.

Seja X um espaço de Hilbert e $S = \{e_k : k \in \mathbb{N}\} \subset X$ um conjunto ortonormado numerável onde se admite que para $k \neq l$ se tem $e_k \neq e_l$. Dado $x \in X$ represente-se por x_S a soma da série $\sum_{k=1}^{\infty} (x|e_k)e_k$, i.e.,

$$x_S = \sum_{k=1}^{\infty} (x|e_k)e_k.$$

- (a) Justifique que $x_S \in M$, onde $M = \langle S \rangle$.
- (b) Mostre que

$$\forall j \in \mathbb{N}, \ (x_S|e_j) = (x|e_j).$$

- (c) Mostre que $x-x_S$ é ortogonal ao conjunto S, bem como aos conjunto $\langle S \rangle$ e $M=\overline{\langle S \rangle}$.
- (d) Justifique que se S é um conjunto ortonormado maximal então $x=x_S$ e conclua que neste caso X = M.
- (e) Suponha agora que X = M e conclua que neste caso S é um conjunto ortonormado maximal.

Exercício 81.

Sejam X um espaço de Hilbert e

$$S_1 = \{e_k : k \in \mathbb{N}\} \subseteq X, \quad S_2 = \{f_k : k \in \mathbb{N}\} \subseteq X$$

dois subconjuntos de X ortonormados numeráveis onde se admite que para $k \neq l$ se tem $e_k \neq e_l$ e $f_k \neq f_l$. Sejam,

$$M_1 = \overline{\langle S_1 \rangle}, \quad M_2 = \overline{\langle S_2 \rangle}.$$

(a) Admita que para todo o $n \in \mathbb{N}$ se tem

$$e_n = \sum_{k=1}^{\infty} (e_n | f_k) f_k$$
 e $f_n = \sum_{k=1}^{\infty} (f_n | e_k) e_k$.

Mostre que $M_1 = M_2$.

(b) Reciprocamente admita que $M_1=M_2$. Mostre que neste caso se tem, para todo $n\in\mathbb{N},$

$$e_n = \sum_{k=1}^{\infty} (e_n | f_k) f_k$$
 e $f_n = \sum_{k=1}^{\infty} (f_n | e_k) e_k$.

6 Funcionais lineares limitados

6.1 Generalidades e exemplos

Exercício 82.

Seja $X \neq \{0\}$ um espaço linear normado sobre \mathbb{K} e $\varphi : X \to \mathbb{K}$ um funcional linear não nulo. Mostre que φ é sobrejectivo.

Exercício 83.

Seja C([0,1]) o espaço linear constituído pelas funções reais definidas e contínuas em [0,1], no qual se fixou a norma

$$||f||_{\infty} = \max_{t \in [0,1]} |f(t)|, \quad \forall f \in C([0,1]).$$

Seja $g \in C([0,1])$ e $G: C([0,1]) \to \mathbb{R}$ a função definida por

$$G(f) = \int_0^1 f(x)g(x)dx, \quad \forall f \in C([0,1]).$$

Mostre que G é um funcional linear limitado.

Exercício 84.

Sejam $1 , e <math>l^p$ o espaço linear constituído pelas sucessões de números reais

$$x = (a_n) = (a_1, a_2, ..., a_n, ...)$$

tais que a série $\sum_{i=1}^{\infty} |a_i|^p$ é convergente. Considere-se em l^p a norma

$$||x||_p = \sqrt[p]{\sum_{i=1}^{\infty} |a_i|^p}, \quad \forall x = (a_n) \in l^p.$$

Seja $1 < q < \infty$ o número real tal que $\frac{1}{p} + \frac{1}{q} = 1$. Fixe-se uma sucessão $y^* = (b_n) \in l^q$ e defina-se a aplicação F_{y^*} por

$$F_{y^*}: l^p \to \mathbb{R}, \quad x = (a_n) \mapsto \sum_{i=1}^{\infty} a_i b_i.$$

- 1. Está F_{y^*} bem definida? Justifique.
- 2. Mostre que F_{y^*} é um funcional linear limitado.

Exercício 85.

Sejam X um espaço onde foi definido um produto interno e $x_0 \in X$. Mostre que aplicação

$$\varphi: X \to \mathbb{K}, \quad \varphi(x) = (x|x_0),$$

é um funcional linear limitado definido em X. Determine a sua norma.

Exercício 86. (Teorema da representação de Riesz)

Seja X um espaço de Hilbert e $F: X \to \mathbb{K}$ um funcional linear limitado definido em X. Pretende-se com este exercício mostrar que existe um e um só $x_0 \in X$ tal que,

$$\forall x \in X, \quad F(x) = (x|x_0),$$

tendo-se $||F|| = ||x_0||$.

(a) Comece por justificar que se F é o funcional identicamente nulo então $x_0 = 0$.

Suponha que $F \neq 0$, ou seja, suponha-se que F não é o funcional linear nulo.

(b) Mostre que Ker F é um subespaço linear próprio e fechado de X.

Considere um elemento $x^* \in X$ tal que $x^* \notin \operatorname{Ker} F$.

(c) Justifique que existe um elemento $y_0 \in \text{Ker } F$ tal que $x^* - y_0 \neq 0$ e $(x^* - y_0) \perp \text{Ker } F$. Defina-se

$$x_1^* = \frac{x^* - y_0}{\parallel x^* - y_0 \parallel},$$

tendo y_0 o significado referido em (c).

Para qualquer $x \in X$, justifique que:

(d) O elemento

$$(F(x_1^*)x - F(x)x_1^*) \in \operatorname{Ker} F,$$

e que
$$(F(x_1^*)x - F(x)x_1^*|x_1^*) = 0$$

(e) Utilizando a alínea anterior determine $x_0 \in X$ tal que se tenha

$$\forall x \in X, \ F(x) = (x|x_0).$$

(f) Finalmente, justifique que x_0 é o único elemento que satisfaz a condição anterior e que $||F|| = ||x_0||$.

Exercício 87.

Considere em \mathbb{R}^n $(n \in \mathbb{N})$ a métrica euclideana.

- (a) Indique o produto interno associado à norma euclideana. É \mathbb{R}^n um espaço de Hilbert?
- (b) Caracterize o dual, $(\mathbb{R}^n)'$, de \mathbb{R}^n , isto é, indique a forma de todos os funcionais lineares limitados definidos em \mathbb{R}^n .

6.2 Teorema de Hahn-Banach

Exercício 88.

Seja $X \neq \{0\}$ um espaço linear normado e $x_0 \in X$ tal que $x_0 \neq 0$. Utilizando o Teorema de Hahn-Banach mostre que existe um funcional linear limitado $F: X \to \mathbb{K}$ tal que,

$$F(x_0) = 5||x_0|| e ||F|| = 5.$$

Exercício 89.

Seja $X \neq \{0\}$ um espaço linear normado e $x_0 \in X \setminus \{0\}$. Mostre que para qualquer $K \in \mathbb{R}^+$, existe um funcional linear limitado $F: X \to \mathbb{K}$ tal que

$$||F|| = \frac{k}{||x_0||}$$

.

Exercício 90. Seja X um espaço linear normado e $\{x_1, x_2, x_3\} \subseteq X$ um subconjunto de X constituído por vectores linearmente independentes. Mostre que existe um funcional linear limitado $F: X \to \mathbb{K}$ tal que

$$F(x_1) = 2$$
, $F(x_2) = 1$, $F(x_3) = 5$.

Generalize o resultado anterior a qualquer conjunto finito $\{x_1, x_2, ..., x_n\} \subseteq X$ de vectores linearmente independentes e a quaisquer escalares $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{K}$.

Exercício 91.

Seja X um espaço linear normado sobre \mathbb{K} . Represente-se por X' o espaço dual de X, i.e., o espaço linear normado constituído pelos funcionais lineares limitados definidos em X. Pretende-se com este exercício mostrar que

$$\forall x_0 \in X, \quad ||x_0|| = \sup_{\substack{F \in X' \\ F \neq 0}} \frac{|F(x_0)|}{||F||}.$$

- (a) Comece por verificar que o resultado se verifica para $x_0=0$ Considere-se então $x_0\neq 0$.
 - (b) Mostre que para qualquer funcional $F \in X'$ se tem

$$\forall x \in X, \ |F(x)| \le ||F|| ||x||$$

e conclua que $|F(x_0)| \le ||F|| ||x_0||$.

(c) Justifique que

$$\sup_{\substack{F \in X' \\ F \neq 0}} \frac{|F(x_0)|}{\|F\|} \le \|x_0\|.$$

(d) Justifique que

$$\sup_{\substack{F \in X' \\ F \neq 0}} \frac{|F(x_0)|}{\|F\|} \ge \frac{|F(x_0)|}{\|F\|}, \quad \forall F \in X' \setminus \{0\},$$

e justifique que existe um funcional linear limitado $F^* \in X'$ tal que

$$\frac{|F^*(x_0)|}{\|F^*\|} = \|x_0\|.$$

Conclua o pretendido.

Exercício 92.

Seja X um espaço linear normado sobre \mathbb{K} tal que $X \neq \{0\}$. Mostre que se $x \in X$ é um elemento tal que

$$\forall G \in X', \quad G(x) = 0,$$

então x=0.

Exercício 93.

Mostre que num espaço de Hilbert X,

$$\forall x_0 \in X, \quad ||x_0|| = \sup_{\substack{y \in X \\ y \neq 0}} \frac{|(x_0|y)|}{||y||}.$$

Exercício 94. (Teorema de Hahn-Banach em espaços de Hilbert)

Sejam X um espaço de Hilbert sobre \mathbb{K} , M um subespaço linear fechado e não nulo de X e $f: M \to \mathbb{K}$ um funcional linear limitado definido em M.

Com este exercício pretende-se mostrar o Teorema de Hanh-Banach, ou seja, que existe um funcional linear limitado $F: X \to \mathbb{K}$ tal que,

(i)
$$\forall x \in M, \ F(x) = f(x),$$

$$(ii) ||F|| = ||f||;$$

Para tal considere conhecido o seguinte resultado⁶:

"Sendo M um subespaço linear fechado, de um espaço de Hilbert, então, qualquer elemento $x \in X$ admite uma única decomposição da forma

$$x = y + z$$
, com $y \in M$ e $z \in M^{\perp}$."

Seja então M um subespaço linear fechado do espaço de Hilbert X, sobre o corpo \mathbb{K} , e $f: M \to \mathbb{K}$ um funcional linear limitado de domínio M.

Dado $x \in X$, considere-se a decomposição $x = y + z, y \in M$ e $z \in M^{\perp}$.

⁶ Ver Exercício 78

i. Prove que

$$||x||^2 = ||y||^2 + ||z||^2.$$

Defina-se em X o seguinte funcional linear

$$\forall x \in X, \ F(x) = f(y) \ (\text{sendo } x = y + z, \ y \in M, z \in M^{\perp}).$$

ii. Prove que, em relação ao funcional que foi definido

$$\forall x \in M, \ F(x) = f(x)$$

e ainda

$$||F|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{|F(x)|}{||x||} \ge ||f||.$$

iii. Prove que

$$\forall x \in X, |F(x)| \le ||f|| ||y|| \le ||f|| ||x||$$

e que

$$||F|| \le ||f||$$
.

Pode então concluir-se que ||F|| = ||f||, ficando assim provado o teorema de Hanh-Banach.

Exercício 95. (Extensão única de funcionais limitados em espaços de Hilbert)

Sejam X um espaço de Hilbert, M um subespaço linear não nulo e fechado de X e $f: M \to \mathbb{K}$ um funcional linear limitado de domínio M. Com este exercício pretende-se mostrar que existe uma e uma só funcional linear limitado $F: X \to \mathbb{K}$ tal que,

(i)
$$\forall x \in M, F(x) = f(x),$$

$$(ii) ||F|| = ||f||;$$

Para tal considere-se conhecido o seguinte resultado⁷:

"Sendo Z um espaço de Hilbert e $h:Z\to \mathbb{K}$ um funcional linear limitado, então existe um elemento $w\in Z$ tal que

$$\forall x \in Z, h(x) = (x \mid w).$$
"

Sendo M um subespaço linear fechado do espaço de Hilbert X então M é também um espaço de Hilbert e existe $a \in M$ tal que

$$\forall x \in M, \quad f(x) = (x \mid a).$$

i. Justifique que

$$\forall x \in M, |f(x)| \le ||x|| ||a||,$$

e prove que

$$||f|| = \sup_{\substack{x \in M \\ x \neq 0}} \frac{|f(x)|}{||x||} \le ||a||.$$

⁷Ver Exrcício 86

- ii. Determine $\frac{|f(a)|}{||a||}$ e conclua que ||f|| = ||a||.
- iii. Seja F^* o funcional linear de domínio X definido por

$$\forall x \in X, \quad F^*(x) = (x \mid a),$$

sendo $a \in M$, com o significado referido anteriormente. Prove que $||F^*|| = ||a|| = ||f||$.

iv. Seja G um qualquer funcional linear de domínio X, limitado, extensão de f, isto é, satisfazendo

$$\forall x \in M, \ G(x) = f(x)$$

e verificando ||G|| = ||f|| = ||a||.

Com este exercício pretende-se provar que $G = F^*$, ficando assim demonstrada a unicidade de uma tal extensão linear de f.

Sendo G um funcional linear limitado de domínio X então existe $b \in X$, tal que

$$\forall x \in X, \ G(x) = (x \mid b).$$

Justifique que

$$\forall x \in M, \ (b - a \mid x) = 0$$

e que

$$||b||^2 = ||a||^2 + ||b - a||^2.$$

Conclua que b = a, ou seja,

$$\forall x \in X, \quad G(x) = F^*(x),$$

ficando assim provado a unicidade referida.

Exercício 96.

Seja X um espaço linear normado, Y um subespaço próprio fechado e $x_0 \in X \setminus Y$. Se $Z = \langle Y, x_0 \rangle$ espaço linear gerado por Y e $\{x_0\}$ e considere o funcional f definido em Z por

$$f: Z \to \mathbb{K}, \quad f(z) = f(y + \alpha x_0) = \alpha \inf_{\underline{y \in Y}} ||x_0 - \underline{y}|| = \alpha d,$$

qualquer que seja $z \in Z$.

- (a) Mostre que f é um funcional linear não identicamente nulo.
- (b) Mostre que f se anula em Y, que é limitado e determine a sua norma.
- (c) Justifique que existe um funcional linear F, limitado, definido em X, tal que ||F|| = 1 e que se anula em Y.

Exercício 97.

Seja $X \neq \{0\}$ um espaço linear normado e $x_1, x_2, ..., x_n \in X$ elementos linearmente independentes. Mostre que existem funcionais $F_1, F_2, ..., F_n \in X'$ tais que

$$F_j(x_k) = \begin{cases} 1 & \text{se } j = k \\ 0 & \text{se } j = k \end{cases}, \quad j, k = 1, ...n.$$

Justifique que os funcionais $F_1,F_2,...,F_n$ são linearente independentes e que se $x=\alpha_1x_1+\alpha_2x_2+...+\alpha_nx_n$ então

$$x = F_1(x)x_1 + F_2(x)x_2 + \dots + F_n(x)x_n.$$

7 Espaços topológicos.

Generalidades e conceitos básicos

7.1 Generalidades

Exercício 98. (Topologia discreta e topologia caótica)

Dado um qualquer conjunto $X \neq \emptyset$ considere as duas famílias de subconjuntos de X que se seguem:

$$\tau_d = P(X), \quad \tau_c = \{\emptyset, X\}.$$

- (a) Mostre que τ_d e τ_G definem duas topologias em X.
- (b) Indique os conjuntos abertos e os conjuntos fechados de X, para cada uma das topologias.
- (c) Defina em X a métrica discreta d_s , introduzida no exercício 1, compare o espaço topológico (X, τ_d) com o espaço métrico (X, d_s) do ponto de vista dos conjuntos abertos.

Exercício 99.

Seja $X = \{a, b, c, d, e\}$. Considere as seguintes famílias de subconjuntos de X:

- (i) $\tau_1 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\};$
- (ii) $\tau_2 = \{X, \emptyset, \{a, b, c\}, \{a, b, d\}, \{a, d, c, d\}\};$
- (iii) $\tau_3 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}\}.$
- (a) Indique qual ou quais das famílias definem topologias em X.
- (b) Para cada uma das topologias referidas na alínea anterior indique os conjuntos abertos e os conjuntos fechados.
- (c) Para a topologia τ_1 indique o conjunto ϑ_{a,τ_1} de todas as vizinhanças do ponto a.
- (d) Para a topologia τ_3 determine o interior, o exterior e a aderência do conjunto $A = \{a, c, d\}$.

Exercício 100. (Topologias co-finita e co-contável)

Seja X um conjunto não vazio. Considere as famílias de subconjuntos de X definidas por

$$\mathcal{C} = \{ A \subseteq X : A = \emptyset \ \lor \ X \setminus A \text{ \'e finito} \} \quad \text{(topologia co-finita)}$$

$$\mathcal{L} = \{ A \subseteq X : A = \emptyset \ \lor \ X \setminus A \text{ \'e cont\'avel} \} \quad \text{(topologia co-cont\'avel)}$$

Mostre que C e L definem topologias em X. Para cada uma das topologias indique os conjuntos abertos e os conjuntos fechados.

Exercício 101. (Propriedades das vizinhanças)

Seja (X, τ) um espaço topológico. Para cada $x \in X$, repesente-se por ϑ_x o conjunto de todas as vizinhanças do ponto x. Fixando $x \in X$, mostre que:

- (a) ϑ_x é não vazio;
- (b) Se $V_1, V_2 \in \vartheta_x$ então $V_1 \cap V_2 \in \vartheta_x$;
- (c) Se $V_1 \in \vartheta_x$ e $V_2 \subseteq X$ tal que $V_1 \subseteq V_2$, então $V_2 \in \vartheta_x$;
- (d) Se $V \in \vartheta_x$, então existe $W \in \vartheta_x$ tal que $V \in \vartheta_y$, para todo $y \in W$.

Exercício 102. (Interior e aderência de um conjunto em espaços topológicos)

Seja (X, τ) um espaço topológico e A um subconjunto de X. Designe por int(A) e ad(A) respectivamente o interior e a aderência do conjunto A em X. Mostre que:

- (a) int $A \subseteq A$ e $A \subseteq ad(A)$.
- (b) O interior de A é a união de todos os conjuntos abertos de X contidos em A, isto é,

$$int(A) = \bigcup_{\substack{B \in \tau \\ B \subseteq A}} B.$$

Conclua que int(A) é um conjunto aberto de X, ou seja, $int(A) \in \tau$.

- (c) O conjunto A é aberto se e só se A = int(A).
- (d) A aderência do conjunto A é a interseção de todos os conjuntos fechados de X que contêm o conjunto A, isto é,

$$ad(A) = \bigcap_{\substack{F fechado \\ A \subseteq F}} F.$$

Conclua que ad(A) é um conjunto fechado de X.

(e) O conjunto A é fechado em X se e só se A = ad(A)

Exercício 103. (Subespaços topológicos)

Sejam (X, τ) um espaço topológico e Y um subconjunto de X. Considere a família de subconjuntos de Y definida por

$$\tau_Y = \{ U \cap Y : U \in \tau \}.$$

- (a) Mostre que τ_Y define uma topologia em Y (topologia induzida de τ em Y).
- (b) Tendo em conta que um conjunto $A\subseteq Y$ é aberto no subespaço (Y,τ_Y) se e só se

$$\exists \, \widetilde{A} \in \tau, \ A = \widetilde{A} \cap Y,$$

mostre que um conjunto $F \subseteq Y$ é fechado no subespaço (Y, τ_Y) se e só se existe \widetilde{F} , fechado em X, tal que

$$F=\widetilde{F}\cap Y.$$

7.2 Sucessões

Exercício 104.

Sejam X um conjunto e (x_n) uma sucessão de elementos de X.

- (a) Considere em X a topologia caótica. Mostre que (x_n) converge para todos os elementos de X.
- (b) Considere em X a topologia discreta. Mostre que (x_n) converge para um elemento $x^* \in X$ se e só se

$$\exists p_0 \in \mathbb{N}, \quad n > p_0 \implies x_n = x^*.$$

Exercício 105. (Espaços Hausdorff)

Um espaço topológico (X,τ) diz-se Hausdorff se dados $x\in X,\,y\in X$ com $x\neq y,$ então

$$\exists V \in \vartheta_x, \ \exists W \in \vartheta_y, \ V \cap W = \emptyset.$$

Mostre que num espaço topológico Hausdorff (X, τ) o limite de uma sucessão se existir é único.

Exercício 106.

Considere em \mathbb{R} a topologia co-contável \mathcal{L} , definida no Exercício 100.

- (a) É $(\mathbb{R}, \mathcal{L})$ um espaço Hausdorff?
- (b) Sendo (x_n) uma sucessão de elementos de \mathbb{R} e $x_0 \in \mathbb{R}$, mostre que

$$(x_n) \underset{n}{\longrightarrow} x_0 \iff \exists p_0 \in \mathbb{N}, \quad n > p_0 \implies x_n = x_0.$$

(c) Determine o interior e a aderência do conjunto A =]0, 1[em $(\mathbb{R}, \mathcal{L})$.

Exercício 107. (Problema das sucessões em espaços topológicos)

- 1. Seja (X, τ) um espaço topológico.
 - (a) Sejam $A \subseteq X$ e $x_0 \in X$. Mostre que se existe uma sucessão (x_n) de elementos em A convergente para x_0 então $x_0 \in \operatorname{ad} A$.
 - (b) Sabe-se que num espaço métrico (X,d) o recíproco do resultado anterior é verdadeiro. Mostre, com um exemplo, que o mesmo não tem de acontecer num espaço topológico (X,τ) geral.
- 2. Seja (X,τ) um espaço topológico.
 - (a) Sejam $A \subseteq X$. Mostre que se A é fechado, então A contém o limite de todas as suas sucessões convergentes.
 - (b) Sabe-se que num espaço métrico (X, d) o recíproco do resultado anterior é verdadeiro. Mostre, com um exemplo, que o mesmo não tem de acontecer para um espaço topológico (X, τ) geral.

7.3 Funções contínuas

Exercício 108.

Considere os conjuntos $X = \{a, b, c, d\}$ e $Y = \{x, y, z, w\}$ nos quais se fixou, respectivamente, as topologias

$$\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\} \quad \text{e} \quad \theta = \{Y, \emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z, w\}\}.$$

Considere as funções $f,g:X\to Y$ definidas pelo diagrama em baixo:

Estude a continuidade de f e g no ponto c. É f uma função contínua?

Exercício 109.

Sejam X e Y dois conjuntos não vazios e $f: X \to Y$ uma função.

- (a) Considere em X uma qualquer topologia τ e em Y a topologia caótica. Mostre que nestas condições f é uma função contínua.
- (b) Considere agora em Y uma qualquer topologia θ e em X a topologia discreta. Mostre que nestas condições f é uma função contínua.

Exercício 110.

Sejam (X, τ) e (Y, θ) espaços topológicos e $f: X \to Y$. À semelhança do exercício 37, para espaços métricos, é conhecido o seguinte resultado:

"f é contínua em X sse dado um qualquer conjunto aberto $A\subseteq Y$, a imagem inversa, $f^{-1}(A)$, é um conjunto aberto em X"

Mostre que as condições são equivalentes:

- (a) f é contínua em X;
- (b) Para qualquer conjunto fechado $F \subseteq Y$, a imagem inversa, $f^{-1}(F)$, é um conjunto fechado em X"
- (c) $\forall A \subseteq X, \ f(\overline{A}) \subseteq \overline{f(A)}$.

Exercício 111. (Continuidade e continuidade sequêncial)

Sejam (X,τ) e (Y,θ) dois espaços topológicos e $f:(X,\tau)\to (Y,\theta)$ uma função de X em Y.

(a) Mostre que se f é contínua num ponto $x_0 \in X$ e (x_n) é um sucessão em X então

$$x_n \xrightarrow[n]{} x_0 \Rightarrow f(x_n) \xrightarrow[n]{} f(x_0).$$

(b) Num espaço métrico (X, d) sabe-se que o recíproco do resultado anterior é verdadeiro. Mostre com um exemplo que o mesmo não tem de suceder em espaços topológicos.

Sugestão: Considere a aplicação identidade $id_{\mathbb{R}} : (\mathbb{R}, \mathcal{L}) \to (\mathbb{R}, \tau_d)$, onde \mathcal{L} designa a topologia co-contável e τ_d a topologia discreta.

Exercício 112. (Hierarquia nas topologias)

Sejam X um conjunto e τ_1, τ_2 duas topologias em X. Diz que que a topologia τ_2 é mais fina que τ_1 se $\tau_1 \subseteq \tau_2$ (ou τ_1 é menos fina que τ_2)

- 1. Indique a a mais fina das topologias que se pode definir em X. Qual a menos fina?
- 2. Suponha que τ_2 é mais fina que τ_1 .
 - (a) Dado $A \subseteq X$, represente por $\operatorname{int}_i(A)$ (ad_i(A)) o interior (resp. aderência) de A para a topologia τ_i , i = 1, 2. Mostre que

$$\operatorname{int}_{1}(A) \subseteq \operatorname{int}_{2}(A)$$
 e $\operatorname{ad}_{2}(A) \subseteq \operatorname{ad}_{1}(A)$.

(b) Mostre que se (x_n) é uma sucessão de X e $x_0 \in X$, então

$$x_n \xrightarrow[n]{} x_0 (\tau_2) \Rightarrow x_n \xrightarrow[n]{} x_0 (\tau_1).$$

(c) Sejam (Y, θ) um outro espaço topológico e $f: X \to Y$ uma função. Mostre que:

$$f:(X,\tau_2) \to (Y,\theta)$$
 contínua em $X \Rightarrow f:(X,\tau_1) \to (Y,\theta)$ contínua em X .

7.4 Conjuntos compactos

Exercício 113. Seja (X, τ) um espaço topológico.

- (a) Suponha que $\tau = \tau_c$ é a topologia caótica. Mostre que com esta topologia X é um espaço topológico compacto.
- (b) Suponha que $\tau = \tau_d$ é a topologia discreta. Mostre que com esta topologia X é um espaço topológico compacto se e só se X é finito.

Exercício 114.

Seja (X, τ) um espaço topológico.

(a) Mostre que se (x_n) for uma sucessão de elementos de X convergente para $x_0 \in X$, então o conjunto

$$C = \{x_n : n \in \mathbb{N}\} \cup \{x_0\}$$

é compacto.

- (b) Se X é compacto então qualquer subconjunto fechado F de X é compacto.
- (c) Se X é Hausdorff e F é compacto, então F é fechado em X.
- (d) Se (Y, θ) é um espaço topológico e $f: X \to Y$ é contínua, então dado um qualquer conjunto compacto C em X tem-se que f(C) é compacto em Y.

Exercício 115. (Homeomorfismos)

Mostre que se (X, τ) é compacto e (Y, θ) é Hausdorff então toda a função $f: X \to Y$ bijectiva e contínua é também um homeomorfismo (cf. com exercício 40).

7.4.1 Conjuntos compactos, contavelmente compactos e sequencialmente compactos

Nota: cf. com Anexo 10.3

Exercício 116. (Conjunto compacto vs contavelmente compacto)

Seja (X,τ) um espaço topológico. Um subconjunto $A\subseteq X$ diz-se contavelmente compacto se:

Todo o subconjunto infinito B de A tem pelo menos um ponto de acumulação em A.

O objectivo deste exercício é mostrar que num espaço topológico (X, τ) qualquer subconjunto $A \subseteq X$ que seja compacto é necessariamente contavelmente compacto.

Para tal fixe-se A um subconjunto de X compacto e suponha-se que existe um conjunto infinito $B \subseteq A$ que não tem pontos de acumulação. Responda às seguintes questões:

- (a) Justifique que para qualquer ponto $a \in A$ existe uma vizinhança aberta V_a do ponto a tal que $V_a \cap B$ contém no máximo um elemento.
- (b) Considere a família de conjuntos abertos $\{V_a\}_{a\in A}$ e justifique que

$$\exists a_1, a_2, ..., a_k \in A : A \subseteq V_{a_1} \cup V_{a_2} \cup ... \cup V_{a_k}.$$

(c) Atendendo a que $B \subseteq A$ conclua que B 'é um conjunto finito, o que contradiz a hipótese.

Como consequência B tem pelo menos um ponto de acumulação ficando provado que se A é compacto então A é contavelmente compacto.

Exercício 117. (Conjunto sequencialmente compacto vs contavelmente compacto)

Seja (X,τ) um espaço topológico. Um subconjunto $A\subseteq X$ diz-se sequencialmente compacto se:

 $Toda\ a\ sucess\~ao\ de\ elementos\ de\ A\ tem\ pelo\ menos\ uma\ subsucess\~ao\ convergente\ para\ um\ elemento\ de\ A$

Com este exercício mostra-se que num espaço topológico (X,τ) , se $A\subseteq X$ é sequencialmente compacto então A é necessariamente contavelmente compacto.

Para tal fixe-se A, sequencialmente compacto, e seja B um seu subconjunto infinito. Responda ás seguintes questões.

- (a) Justifique que existe em uma sucessão (b_n) de elementos de elementos em B com termos todos distintos.
- (b) Justifique que a sucessão (b_n) tem uma subsucessão convergente para um elemento $a \in A$
- (c) Justifique que a a é um ponto de acumulação de B, garantindo-se assim que A é contavelmente compacto.

8 Conjuntos conexos

8.1 Generalidades

Exercício 118. Seja (X, τ) um espaço topológico. Diz-se que um conjunto $A \subseteq X$ é desconexo se existem conjuntos G e H abertos de X tais que:

- (1) $A \cap G \neq \emptyset$ e $A \cap H \neq \emptyset$;
- $(2)\ (A\cap G)\cap (A\cap H)=\emptyset\quad (\text{ou equivalentemente},\ A\cap (G\cap H)=\emptyset);$
- (3) $A = (A \cap G) \cup (A \cap H)$ (ou equivalentemente, $A \subseteq (G \cup H)$).

Um conjunto $B \subseteq X$ diz-se conexo caso não seja desconexo.

- (a) Mostre que se $x \in X$ então o conjunto $\{x\}$ (conjunto singular) é um conjunto conexo.
- (b) Suponha que $X = \{a, b, c, d, e\}$ e $\tau = \{X, \emptyset, \{a, b, c\}, \{c, d, e\}, \{c\}\}$. Mostre que o conjunto $A = \{a, d, e\}$ é desconexo
- (c) Suponha agora que $X = \{a, b, c, d, e\}$ e $\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$. Mostre que o conjunto X é desconexo.

Exercício 119. (Conjuntos desconexos vs conjuntos separados)

Seja (X, τ) um espaço topológico. Dois subconjuntos A e B de X dizem-se separados se

$$A \cap \overline{B} = \emptyset$$
 e $\overline{A} \cap B = \emptyset$.

Com este exercício pretende-se mostrar que um conjunto $C \subseteq X$ é desconexo se e só se é a união de dois conjuntos não vazios e separados, A e B.

- (a) Começe-se por supor que $C = A \cup B$, com $A \neq \emptyset$, $B \neq \emptyset$ e A, B separados. Fazendo $H = X \setminus B$ e $G = X \setminus A$, justifique que H, G são conjuntos abertos de X tais que:
 - (1) $C \cap G \neq \emptyset$ e $C \cap H \neq \emptyset$;
 - (2) $(C \cap G) \cap (C \cap H) = \emptyset$;
 - $(3) C = (C \cap G) \cup (C \cap H),$

o que permite concluir que C é desconexo.

- (b) Suponha-se agora que $C \subseteq X$ é um subconjunto de X desconexo. Nesta situação existem conjuntos abertos G, H tais que:
 - (1) $C \cap G \neq \emptyset$ e $C \cap H \neq \emptyset$;
 - (2) $(C \cap G) \cap (C \cap H) = \emptyset$;
 - $(3) C = (C \cap G) \cup (C \cap H).$

Faça-se $A = C \cap G$ e $B = C \cap H$.

- i. Justifique que A e B são não vazios e que $C = A \cup B$.
- ii. Suponha que $\overline{A} \cap B \neq \emptyset$. Existe então um elemento $x \in X$ tal que $x \in B$ e $x \in \overline{A}$. Justifique que neste caso

$$H \cap A \neq \emptyset$$

e que se chega a um absurdo. Assim se conclui que $\overline{A} \cap B = \emptyset$.

iii. Conclua que A e B são separados.

Exercício 120. (Aderência de um conjunto conexo)

Seja (X, τ) um espaço topológico e $A \subseteq X$ conexo. Mostra-se neste exercício que a aderência de A, \overline{A} , é também um conjunto conexo.

Para tal admita-se que $\overline{A} = B \cup C$ com $B \in C$ dois conjuntos separados.

(a) Justifique que

$$A = (A \cap B) \cup (A \cap C),$$

e que
$$A \cap B = \emptyset$$
 ou $A \cap C = \emptyset$.

Suponha-se, sem perda de generalidade, que $A \cap B = \emptyset$.

- (b) Na situação anterior conclua que $A \subseteq C$.
- (c) Dado $x \in \overline{A}$ então $x \in \overline{C}$. Justifique que se $x \in \overline{A}$, então $x \notin B$. Justifique ainda que $B = \emptyset$.

Assim se garante que \overline{A} não é a união de dois conjuntos separados e não vazios, logo, \overline{A} é conexo.

Exercício 121.

Sejam (X, τ) um espaço topológico e $\mathcal{F} = \{A_i\}_{i \in I}$ uma família de subconjuntos de X conexos tais que

$$\exists i_0 \in I : \forall j \in I \setminus \{i_0\}, \ A_{i_0} \cap A_j \neq \emptyset.$$
 (*)

Pretende-se com este exercício mostrar que o conjunto $A=\underset{j\in I}{\cup}A_j$ é ainda um conjunto conexo.

Para tal suponha-se que $A = B \cup C$ com B, C dois conjuntos separados e mostre-se que $B = \emptyset$ ou $C = \emptyset$. Responda às seguintes questões:

(a) Justifique que

$$A_{i_0} = (B \cap A_{i_0}) \cup (C \cap A_{i_0}),$$

e que $B\cap A_{i_0}$ e $C\cap A_{i_0}$ são conjuntos separados.

Como A_{i_0} é conexo, tem-se que $B \cap A_{i_0} = \emptyset$ ou $C \cap A_{i_0} = \emptyset$. Suponha-se, sem perda de generalidade, que $B \cap A_{i_0} = \emptyset$.

- (b) Justifique que nas condições anteriores $A_{i_0} \subseteq C$.
- (c) Fixe-se agora um qualquer $j \in I \setminus \{i_0\}$. Justifique que

$$A_j = (B \cap A_j) \cup (C \cap A_j),$$

e ainda que $B \cap A_j = \emptyset$.

(d) Conclua que

$$\forall j \in I, \ A_j \subseteq C,$$

logo $A = \bigcup_{j \in I} A_j \subseteq C$, o que implica que $B = \emptyset$.

Assim se garante que $A=\bigcup_{j\in I}A_j$ não é a união de dois conjuntos separados não vazios, ou seja, que A é conexo.

(*) Observe a figura

Espaços topológicos conexos

Exercício 122.

8.2

Seja (X, τ) um espaço topológico. Mostre que X é um conjunto desconexo se e só se existem conjuntos abertos G e H de X tais que:

(1)
$$G \neq \emptyset$$
 e $H \neq \emptyset$;

$$(2) G \cap H = \emptyset; \qquad ,$$

$$(3) X = G \cup H.$$

ou seja se X for a união de dois conjuntos abertos não vazios e disjuntos.

Exercício 123. (Espaços topológicos conexos. Diferentes caracterizações)

Seja (X, τ) um espaço topológico. Mostre que são equivalentes as seguintes condições:

- i. X é desconexo.
- ii. Existem subconjuntos C e D de X, fechados, disjuntos e não vazios tal que $X = C \cup D$.
- iii. Existem subconjuntos de X, diferentes de \emptyset e de X, simultaneamente abertos e fechados.

Exercício 124. (Conjuntos conexos vs espaços conexos)

Seja (X, τ) um espaço topológico e $A \subseteq X$ um subconjunto não vazio de X. Considere em A e topologia induzida por τ em A, que representaremos por τ_A .

Mostre que são equivalentes as afirmações:

- (a) A é um subconjunto de X conexo.
- (b) A com a topologia τ_A , é um espaço topológico conexo.

Exercício 125. (Continuidade vs conjuntos conexos)

Sejam (X,τ) e (Y,θ) espaços topológicos e $f:X\to Y$ uma função contínua.

(a) Sejam A um subconjunto não vazio de X e $f_{|_A}$ a restrição de f ao conjunto A, isto é,

$$f_{|A}: A \to f(A)$$
, onde $f_{|A}(x) = f(x)$, $\forall x \in A$.

Mostre que se colocarmos em A e em f(A) as topologias induzidas, respectivamente, por τ em A, e θ e f(A), que designamos por τ_A e $\theta_{f(A)}$, então $f_{|A}$ é contínua.

(b) Mostre que a função f transforma conjuntos conexos em conjuntos conexos, isto é, se $A \subseteq X$ é conexo então f(A) é conexo.

Exercício 126. (Conjuntos conexos em R)

Considere-se em \mathbb{R} a topologia usual. O objectivo deste exercício é provar que os conjuntos conexos em \mathbb{R} são exactamente os intervalos. Começe por assumir a seguinte definição de "intervalo" em \mathbb{R} :

"Um subconjunto $I \subseteq \mathbb{R}$ diz-se um intervalo se e só se para quaisquer dois elementos $a, b \in I$ tal que $a \leq b$, então

$$\forall x \in \mathbb{R}, \ a < x < b \Rightarrow x \in I$$
."

Responda às seguintes questões:

- 1. Comece-se por mostrar que se A é um subconjunto conexo de \mathbb{R} então A é um intervalo. Para tal considere-se A um subconjunto não vazio de \mathbb{R} que não é um intervalo. Vejamos que A é desconexo.
 - (a) Justifique que existem elementos $a, b \in A$ com $a \leq b$ e existe um elemento $d \in \mathbb{R}$ tal que a < d < b mas $d \notin A$.
 - (b) Considere os conjuntos $A_1=(]-\infty,d[\cap A)$ e $A_2=(]d,-\infty[\cap A)$. Justifique que:
 - (i) A_1 e A_2 são abertos em A;
 - (ii) A_1 e A_2 são não vazios e disjuntos;
 - (iii) $A = A_1 \cup A_2$,
 - o que permite concluir que A é desconexo.
- 2. Fixe-se agora um intervalo não vazio A em \mathbb{R} . No que se segue vamos provar que A é conexo e a demonstração vai ser feita por redução ao absurdo. Suponha-se então que A é um intervalo em \mathbb{R} que é desconexo.
 - (a) Justifique que existem subconjuntos $B \in C$ de A tais que

(1)
$$B \neq \emptyset$$
 e $C \neq \emptyset$; (2) $B \cap C = \emptyset$; (3) $A = B \cup C$.

Fixe-se $b \in B$, $c \in C$ e suponha-se que b < c. Como A é um intervalo então

$$\forall x \in \mathbb{R}. \ b < x < c \Rightarrow x \in A.$$

(b) Considere-se o conjunto $D = B \cap [b, c]$. Justifique que existe $d \in \mathbb{R}$ tal que

$$d = \sup D$$
.

- (c) Justifique que $d \in ad_{\mathbb{R}}(D)$. Justifique ainda que $d \in ad_{\mathbb{R}}(B) \cap [b, c]$ e conclua que $d \in B$, logo $d \notin C$.
- (d) Sabendo que $d \in A$ e que $d \notin C = ad_A(C)$ conclua que $d \notin ad_{\mathbb{R}}(C)$, logo

$$\exists \epsilon > 0, \quad]d - \epsilon, d + \epsilon [\cap C = \emptyset.$$

(e) Seja t um elemento do intervalo aberto $]d, d + \epsilon[$. Justifique que $t \notin C$ mas $t \in [b, c]$. Conclua que $t \in D$ e diga porque razão se obtém um absurdo.

Assim se garante que se A é um intervalo então A é conexo.

8.3 Componentes conexas e conjuntos conexos por arcos

Exercício 127. (Componentes conexas)

Sejam (X, τ) um espaço topológico. Diz-se que um conjunto $C \subseteq X$ é uma componente conexa de X se:

- (1) C é conexo;
- (2) Se $B \subseteq X$ é conexo e $C \subseteq B$ então C = B.

- (a) Justifique que se C é uma componente conexa de X então $C \neq \emptyset$.
- (b) Mostre que todo o conjunto conexo de X está contido numa componente conexa.
- (c) Justifique que se X é conexo então existe apenas uma componente conexa de X.
- (d) Mostre que toda a componente conexa de X é um conjunto fechado.

Exercício 128. (Componentes conexas. Partição de X)

Sejam (X,τ) um espaço topológico. Para qualquer ponto $p\in X$ considere $\mathcal{F}_p=\{A_i\}_{i\in I_p}$ a família de todos os conjuntos conexos de X que contêm o ponto p.

(a) Para cada ponto $p \in X$, justifique que a família \mathcal{F}_p é não vazia.

Defina-se o conjunto $C_p = \bigcup_{i \in I_p} A_i$.

- (b) Justifique que C_p é um conjunto conexo.
- (c) Justifique que se B é um conjunto conexo que contém C_p então $C_p = B$. Por (a) e (b) conclui-se que C_p é uma componente conexa de X (componente conexa do elemento p).
- (d) Seja $C = \{C_p : p \in X\}$. Mostra-se a seguir que C define uma partição de X.
 - i. Mostre que $X = \bigcup_{p \in X} C_p$.
 - ii. Mostre que se $p, q \in X$ são elementos tais que $q \in C_p$ então $C_p = C_q$. Este facto permite concluir que

$$\forall p, q \in X, \ C_p \cap C_q = \emptyset \text{ ou } C_p = C_q.$$

Por i. e ii. conclui-se que C define uma partição de X.

- (e) Defina-se em X uma relação binária, " ~ ", do seguinte modo: $p \sim q$ se e só se existe um conjunto conexo $C \subseteq X$ que contém p e q.
 - i. Mostre que " \sim " é uma relação de equivalência em X.
 - ii. Para cada $p \in X$ seja

$$[p] = \{x \in X : p \sim q\},$$

a classe de equivalência do elemento p. Mostre que $[p] = C_p$.

Exercício 129. (Conjuntos conexos por arcos vs conjuntos conexos)

Sejam (X, τ) um espaço topológico.

Um subconjunto $E\subseteq X$ diz-se conexo por arcos se para quaisquer dois pontos $a,b\in H$ existe uma função contínua

$$f_{a,b}: [0,1] \to X$$

tal que:

(1)
$$f_{a,b}(0) = a$$
, $f_{a,b}(1) = b$;

$$(2) f_{a,b}([0,1]) \subseteq E.$$

O objectivo deste exercício é mostrar que se $E \neq \emptyset$ é um conjunto conexo por arcos então E é ainda um conjunto conexo em X. Fixe-se $p \in E$.

(a) Para cada ponto $a \in E$, justifique que existe uma função $f_{a,p}:[0,1] \to X$ tal que:

(1)
$$f_{a,p}(0) = a$$
, $f_{a,p}(1) = p$;

$$(2)f_{a,p}([0,1]) \subseteq E.$$

- (b) Justifique que para cada $a \in E$ o contradomínio $f_{a,p}([0,1])$ é um conjunto conexo em X.
- (c) Mostre que

$$E = \bigcup_{a \in E} f_{a,p}([0,1])$$

e justifique que E é conexo.

PARTE II

TESTES E EXAMES

9 Testes e exames

teste de Topologia e Introdução à Análise Funcional

LICENCIATURA EM MATEMÁTICA 6 DE MAIO DE 2010

1^APARTE

I. 1) Seja Z um espaço métrico e seja X um subconjunto próprio de Z tal que $\overline{X} = Z$ (onde \overline{X} designa o fecho ou aderência de X). Admitamos que X tem a propriedade:

"Toda a sucessão (x_n) de elementos de X, de Caunchy, converge para um elemento de Z, isto é, existe $u \in Z$ tal que $u = \lim_{n \to \infty} x_n$."

Com este exercício pretende-se provar que Z é completo.

Seja então (z_n) uma sucessão de Cauchy em Z.

(a) Seja n arbitrariamente fixado em \mathbb{N} . Justifique que

$$\forall r \in \mathbb{R}^+, \exists x \in X, x \in B_r(z_n),$$

sendo $B_r(z_n) = \{x \in Z : d(x, z_n) < r\}$. Justifique ainda que é possível obter uma sucessão (x_n) de elementos de X tal que

$$\forall n \in \mathbb{N}, \ d(x_n, z_n) < \frac{1}{n}.$$

(b) Justifique que para todo o $n \in \mathbb{N}$ e todo o $m \in \mathbb{N}$,

$$d(x_n, x_m) \le d(x_n, z_n) + d(z_n, z_m) + d(z_m, x_m)$$

e prove que (x_n) é sucessão de Cauchy em X.

(c) A hipótese formulada garante que existe $u \in Z$ tal que $u = \lim_{n \to \infty} x_n$. Prove que a sucessão (z_n) também converge para $u \in Z$, isto é, prove que

$$\lim_{n\to\infty} d(z_n, u) = 0,$$

ficando assim concluída a demonstração de que Z é completo.

Sugestão: Utilize convenientemente a desigualdade triângular.

2) Seja Y um espaço linear normado e seja $A \subseteq Y$ um subconjunto não vazio e fechado de X. Seja b um elemento fixado em Y e seja

$$\delta = \inf_{x \in A} ||x - b||.$$

Com a primeira parte deste exercício pretende-se provar que existe uma sucessão (x_n) de elementos de A tal que

$$\delta = \lim_{n \to \infty} ||x_n - b||.$$

(a) Justifique que para todo o $n \in \mathbb{N}$, o conjunto

$$C_n = \{x \in A : ||x - b|| < \delta + \frac{1}{n}\}$$

é diferente do conjunto vazio. Assim é possível obter uma sucessão (x_n) de elementos de A tal que

$$\forall n \in \mathbb{N}, \ \|x_n - b\| < \delta + \frac{1}{n}.$$

V.S.F.F.

(b) Justifique que

$$\forall n \in \mathbb{N}, \ \delta \le ||x_n - b|| < \delta + \frac{1}{n},$$

e conclua que $\delta = \lim_{n \to \infty} ||x_n - b||$.

- (c) Admita agora que $\delta = 0$. Prove que $b \in A$.
- II. Seja X um espaço linear normado sobre o corpo \mathbb{K} . Seja T um operador linear de X em X e seja l uma constante real positiva tal que

$$\forall x \in X, \quad 0 \le ||x|| \le l||Tx||.$$

- (a) Prove que se $x_1 \in X$, $x_2 \in X$ e $Tx_1 = Tx_2$ então $x_1 = x_2$, isto é, mostre que T é um operador injectivo.
- (b) Seja $R \subseteq X$ o contradomínio de T. Indique uma constante real positiva C, relacionada com l, tal que se possa escrever

$$\forall y \in R, \quad ||T^{-1}y|| \le C||y||,$$

ficando assim demonstrado que T^{-1} é um operador limitado.

(c) Admita que, para além de T^{-1} ser limitado o operador T também é limitado. Seja M uma constante real positiva tal que

$$\forall x \in X, \ \|Tx\| \le M\|x\|.$$

i. Justifique que $||T|| \le M$ e ainda que

$$\forall x \in X, \quad ||Tx|| \le ||T|| ||x||,$$

onde,

$$||T|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||}{||x||}.$$

ii. Prove que

$$\forall x \in X, \ \|x\| = \|T^{-1}(Tx)\| \le \|T^{-1}\| \|T\| \|x\|$$

e conclua que

$$||T^{-1}|| \ge \frac{1}{||T||}.$$

TESTE DE TOPOLOGIA E INTRODUÇÃO À ANÁLISE FUNCIONAL

LICENCIATURA EM MATEMÁTICA

6 DE MAIO DE 2010

2^aParte

III. 1) Seja X um espaço linear sobre o corpo \mathbb{K} , de dimensão infinita, normado. Seja S o conjunto

$$S = \{x \in X : ||x|| = 1\}.$$

Com este exercícios pretende-se provar que S não é compacto.

(a) Justifique que

$$\forall w \in X, \ w \in B_{\frac{1}{2}}(w)$$

e que

$$S \subseteq \underset{x \in S}{\cup} B_{\frac{1}{3}}(x).$$

Seja D um subconjunto finito de S, isto é, um conjunto constituído por um número finito de elementos

$$D = \{x_1, x_2, ..., x_k\} \subseteq S,$$

e seja X_0 o subespaço linear de X gerado por D.

(b) Justifique que existe $x^* \in X$ tal que

$$||x^*|| = 1 \text{ e } \forall x \in X_0, ||x^* - x|| \ge \frac{1}{3}.$$

(c) Justifique que

$$x^* \notin \bigcup_{i=1,2,...,k} B_{\frac{1}{3}}(x_i).$$

- (d) Conclua, obrigatoriamente a partir das alíneas anteriores, que S não é compacto.
- 2) Seja X um espaço métrico e $A\subseteq X$ um subconjunto compacto. Prove que A é fechado.
- IV. Seja X um espaço linear sobre o corpo \mathbb{K} , onde foi definido um produto interno e a norma a ele associada,

$$\forall x \in X, \ \|x\| = \sqrt{(x|x)}.$$

Admita ainda que X é um espaço de Hilbert.

(a) Prove que

$$\forall x, y \in X, \|x - y\|^2 = \|x\|^2 + \|y\|^2 - 2\operatorname{Re}(x|y).$$

(b) Com esta alínea pretende-se provar que o produto interno é uma função contínua, isto é, pretende-se provar que se (x_n) e (y_n) são sucessões de X tais que $x_n \to x$ e $y_n \to y$ então $(x_n|y_n) \to (x|y)$.

Justifique que, para todo o $n \in \mathbb{N}$,

$$0 \le |(x_n|y_n) - (x|y)| = |(((x_n - x) + x)|((y_n - y) + y)) - (x|y)|$$

$$\le ||x_n - x|| ||y_n - y|| + ||x_n - x|| ||y|| + ||x|| ||y_n - y||,$$

e conclua o pretendido.

 $\overrightarrow{V.S.F.F}$.

- (c) Seja $S = \{u_n : n \in \mathbb{N}\} \subset X$ (com $u_{j_1} \neq u_{j_2}$ sempre que $j_1 \neq j_2$) um conjunto ortonormado e seja $x \in X$. Seja ainda $\alpha_i = (x|u_i)$.
 - i. A partir de

$$((x - \sum_{i=1}^{n} \alpha_i u_i) | (x - \sum_{i=1}^{n} \alpha_i u_i))$$

deduza que

$$\sum_{j=1}^{n} |\alpha_j|^2 \le ||x||^2$$

e justifique que a série

$$\sum_{j=1}^{\infty} |(x|u_j)|^2$$

é convergente.

É sabido que a série $\sum_{j=1}^{\infty} \alpha_j u_j$ é convergente. Seja x^* a soma da série, isto é, $x^* = \sum_{j=1}^{\infty} \alpha_j u_j$.

ii. Desenvolva

$$\left(\sum_{j=1}^{n} \alpha_{j} u_{j} | \sum_{i=1}^{n} \alpha_{i} u_{i}\right)$$

e prove que

$$||x^*||^2 = (x^*|x^*) = \sum_{j=1}^{\infty} |\alpha_j|^2.$$

(d) Seja Y um subespaço linear de X. Seja x um elemento arbitrariamente fixado em X e seja $y_0 \in Y$ tal que

$$||x - y_0|| = \min_{y \in Y} ||x - y||.$$

Com este exercício, pretende-se provar que

$$\forall y \in Y, (x - y_0|y) = 0.$$

- i. Justifique que para todo o $\lambda \in \mathbb{K}$ e todo o $y \in Y$, $(y_0 + \lambda y) \in Y$.
- ii. Seja $y \neq 0$. Tem-se

$$\forall \lambda \in \mathbb{K}, \ \|x - y_0 - \lambda y\|^2 = \|x - y_0\|^2 + |\lambda|^2 \|y\|^2 - 2\operatorname{Re}(x - y_0|\lambda y).$$

Particularizando

$$\lambda = \frac{1}{\|y\|^2} (x - y_0 | y)$$

deduza que

$$\forall y \in Y, \ (x - y_0|y) = 0.$$

FIM!

Teste de Topologia e Introdução à Análise Funcional Licenciatura em Matemática 2 de Maio de 2008

1. (a) Seja (a_n) uma sucessão de Cauchy num espaço métrico (X, d) e seja (c_n) uma sucessão de elementos de X tal que

$$\forall n \in \mathbb{N}, \quad d(a_n, c_n) < \frac{1}{n}.$$

O objectivo deste exercício é provar que (c_n) também é uma sucessão de Cauchy. Seja $\epsilon \in \mathbb{R}^+$.

i. Justifique que

$$\exists p_1 \in \mathbb{N}, \ m > p_1 \land n > p_1 \Rightarrow d(a_n, a_m) < \frac{\epsilon}{3}.$$

ii. Justifique que

$$\exists p_2 \in \mathbb{N}, \ n > p_2 \Rightarrow d(a_n, c_n) < \frac{\epsilon}{3}.$$

iii. Justifique que

$$\forall n \in \mathbb{N}, \forall m \in \mathbb{N}, d(c_m, c_n) \le d(c_m, a_m) + d(a_m, a_n) + d(a_n, c_n),$$

e indique $p_3 \in \mathbb{N}$, relacionando-o com p_1 e p_2 , por forma a que

$$n > p_3 \land n > p_3 \Rightarrow d(c_n, c_m) < \epsilon$$
.

(b) Seja X um espaço linear normado, completo. Pretendende-se, com este exercício, provar que se (x_n) for uma sucessão de elementos de X tal que a série $\sum_{n=1}^{\infty} \|x_n\|$ é convergente então a série $\sum_{n=1}^{\infty} x_n$ é convergente. Admita então que $\sum_{n=1}^{\infty} \|x_n\|$ é convergente. Designe-se por (s_n) e (S_n) as sucessões

$$s_n = \sum_{n=1}^n x_n$$
 e $\sum_{n=1}^n ||x_n||$.

i. Prove que com $m \in \mathbb{N}$ e $m \in \mathbb{N}$ se tem

$$||s_n - s_m|| \le |S_n - S_m|.$$

- ii. Justifique que (S_n) é sucessão de Cauchy, o mesmo sucedendo a (s_n) . Justifique ainda que (s_n) é convergente o que garante que a série $\sum_{n=1}^{\infty} x_n$ é convergente.
- 2. (a) Seja (X, d) um espaço métrico e seja $\mathfrak D$ um subconjunto de X. Mostre que se $\mathfrak D$ é completo então $\mathfrak D$ é fechado.
 - (b) Seja (X, d) um espaço métrico e $A \subseteq X$. Seja $\overline{A} = A \cup A'$, onde A' designa o conjunto dos pontos de acumulação de A. Seja $x \in X$ e defina-se $\varepsilon = \inf_{a \in A} d(x, a)$. Pretende-se, com este exercício, provar que se $\varepsilon = 0$ então $x \in \overline{A}$.

i. Prove que dado $n \in \mathbb{N}$, o conjunto \mathcal{C}_n , definido por

$$C_n = B(x; \frac{1}{n}) \cap A \qquad (\operatorname{com} B(x; \frac{1}{n}) = \{z \in X : d(z, x) < \frac{1}{n}\})$$

é diferente do conjunto vazio.

Sugestão: Comece por justificar que se C_n fosse o conjunto vazio então para todo o $a \in A$ ter-se-ia $a \notin B(x; \frac{1}{n})$ ou seja $d(x, a) > \frac{1}{n}$ o que conduziria a $\inf_{a \in A} d(x, a) \neq 0$ o que seria absurdo.

ii. Utilizando a alínea anterior mostre que existe uma sucessão (x_n) de elementos de A tal que

$$d(x_n, x) < \frac{1}{n}.$$

Conclua que $\lim_{n\to\infty} x_n = x$, o que permite afirmar que $x \in \overline{A}$.

3. (a) Sejam X e Y espaços lineares normados sobre o mesmo corpo \mathbb{K} e seja T um operador linear de X em Y. Admitamos que existe $b \in \mathbb{R}^+$, tal que

$$\forall x \in X, \quad b||x|| \le ||Tx||.$$

i. Prove que , com $x_1 \in X$, $x_2 \in X$, se tem

$$Tx_1 = Tx_2 \Rightarrow x_1 = x_2$$

isto é, T é um operador injectivo.

ii. Considere o operador inverso T^{-1} . O operador T^{-1} tem por domínio $R \subseteq Y$, onde R designa o contradomínio de T. Indique $L \in \mathbb{R}^+$ tal que se possa escrever

$$\forall y \in R, \quad \|T^{-1}y\| \le L\|y\|$$

(b) Considere o espaço linear X constituído por todas as sucessões (α_n) de números reais ou complexos, limitadas, onde foi definida a norma

$$||x|| = \sup_{n \in \mathbb{N}} |\alpha_n|.$$

Seja T o operador linear de X em X definido por

$$Tx = T(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n, ...) = (\alpha_1, \frac{\alpha_2}{2}, \frac{\alpha_3}{3}, ..., \frac{\alpha_n}{n}, ...).$$

Diga, justificando, se T^{-1} é um operador limitado

- 4. Seja X um espaço linear normado sobre o corpo \mathbb{K} . Admita que existe uma sucessão (x_n) de elementos de X tal que
 - $(1) \ \forall n \in \mathbb{N}, \quad ||x_n|| = 1;$
 - (2) $\forall n \in \mathbb{N}, \ \forall m \in \mathbb{N}, \ m \neq n \Rightarrow ||x_n x_m|| = 1.$

Seja
$$A = \{x_n : n \in \mathbb{N}\}.$$

- (a) Prove que A é um conjunto limitado.
- (b) Pretende-se com esta alínea, provar que A não tem pontos de acumulação e a demonstração feita provando que se obtém uma contradição se se admitir que A tem pelo menos um ponto de acumulação. Seja então a um ponto de acumulação de A.
 - i. Justifique que definindo

$$\mathcal{D} = B(a; \frac{1}{3}) \cap A \setminus \{a\},\$$

onde $B(a; \frac{1}{3}) = \{x \in \mathbb{N} : ||x - a|| < \frac{1}{3}\}, \text{ se tem } \mathcal{D} \neq \emptyset.$

Seja $p \in \mathbb{N}$ tal que $x_p \in \mathcal{D}$ e defina-se

$$\mathcal{D}_1 = B(a; r) \cap A \setminus \{a\}$$

 $com r \in \mathbb{R}^+$ tal que

$$r < ||x_p - a|| < \frac{1}{3}.$$

ii. Mostre que $\mathcal{D}_1 \neq \emptyset$ e seja $x_q \in \mathcal{D}_1$. Prove ainda que

$$||x_p - x_q|| < \frac{2}{3}$$

e que $x_p \neq x_q$ o que é uma contradição com a hipótese (2).

Ficou assim provado que A não tem pontos de acumulação.

- (c) Justifique que $\overline{A} = A$, ou seja A é um conjunto fechado.
- (d) Diga, justificando, se (x_n) tem alguma subsucessão que seja de Cauchy.
- (e) É A um conjunto compacto? Justifique.
- (f) Que pode garantir sobre a dimensão do espaço X? Justifique.

Topologia e Introdução à Análise Funcional 1^aParte-Prova Global 29 de Junho de 2010

I. Seja X um espaço linear sobre o corpo \mathbb{K} , onde foi definido um produto interno e a norma a ele associada, $||x|| = \sqrt{(x|x)}$. Admitamos que X é um espaço completo e sejam C e D subespaços lineares de X, ortogonais, isto é, tais que

$$\forall c \in C, \forall d \in D, \quad (c|d) = 0.$$

(a) Prove que

$$\forall c \in C, \forall d \in D, \quad \|c + d\|^2 = \|c\|^2 + \|d\|^2.$$

(b) Admita que C e D são fechados. Com este exercício pretende-se provar que o subespaço Z, Z = C + D também é fechado.

Seja (z_n) uma sucessão de elementos de Z, convergente. Então, existem sucessões de elementos de C e de D, respectivamente (c_n) e (d_n) , tais que

$$\forall n \in \mathbb{N}, \quad z_n = c_n + d_n.$$

i. Justifique que (z_n) é uma sucessão de Cauchy. Utilizando,

$$\forall n \in \mathbb{N}, \forall m \in \mathbb{N}, \|z_n - z_m\|^2 = \|c_n - c_m\|^2 + \|d_n - d_m\|^2,$$

e justificando que

$$||c_n - c_m|| \le ||z_n - z_m||$$
 e $||d_n - d_m|| \le ||z_n - z_m||$,

prove que (c_n) e (d_n) são sucessões de Cauchy.

- ii. Justifique que existe $c^* \in C$ e $d^* \in D$ tais que $\lim_{n \to \infty} c_n = c^*$ e $\lim_{n \to \infty} d_n = d^*$. Justifique ainda que (z_n) converge para um elemento de Z.
- II. Seja X um espaço linear normados sobre o corpo $\mathbb K$ e seja T um operador linear limitado de domínio X e tendo X por contradomínio.
 - (a) Justifique que

$$\forall x \in X, \quad ||Tx|| \le ||T|| ||x||,$$

sendo

$$||T|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||}{||x||}.$$

(b) Admita que ||T|| < 1 e seja V o operador linear de domínio X definido por

$$V = I - T$$
,

onde I designa o operador identidade. Tem-se,

$$\forall x \in X. \ Vx = x - Tx.$$

O objectivo das alíneas que se seguem é provar que V é injectivo e V^{-1} é limitado.

i. Prove que

$$||Vx|| \ge (1 - ||T||)||x||.$$

 $\overrightarrow{V.S.F.F}$.

- ii. Justifique que se Vx=0 então x=0, o que permite afirmar que V é um operador injectivo.
- iii. Seja V^{-1} o operador inverso de V. Indique uma constante real positiva L, relacionada com ||T||, tal que

$$||V^{-1}|| = \sup_{\substack{w \in X \\ w \neq 0}} \frac{||V^{-1}w||}{||w||} \le L.$$

- III. Seja X um espaço linear sobre o corpo \mathbb{K} , normado.
 - (a) Seja $x_0 \neq 0$ um elemento de X. Considere o subespaço M gerado por $\{x_0\}$,

$$M = \{\alpha x_0 : \alpha \in \mathbb{K}\},\$$

e a aplicação f de domínio M definida por

$$\forall x \in M, \quad f(x) = f(\alpha x_0) = \frac{\alpha}{\|x_0\|}.$$

i. Determine ||f||, sendo

$$||f|| = \sup_{\substack{x \in M \\ x \neq 0}} \frac{|f(x)|}{||x||}.$$

- ii. Justifique que existe um funcional linear F, de domínio X, limitado, tal que $F(x_0) = \frac{1}{||x_0||}$ e ||F|| = ||f||.
- (b) Seja Zum subespaço linear de Xtal que $\overline{Z} \neq X.$ Seja $x_0 \in X \setminus \overline{Z}.$ Seja ainda

$$d = \inf_{z \in Z} ||x_0 - z||.$$

i. Justifique que, para todo o $n \in \mathbb{N}$, o conjunto C_n ,

$$C_n = \{ z \in Z : ||x_0 - z|| < d + \frac{1}{n} \}$$

não é o conjunto vazio.

ii. Justifique que é possível obter uma sucessão (z_n) de elementos de Z tal que

$$\forall n \in \mathbb{N}, \quad d \le ||x_0 - z_n|| < d + \frac{1}{n},$$

o que permite concluir que $d = \lim_{n \to \infty} ||x_0 - z_n||$.

iii. Utilizando ii. prove, por redução ao absurdo, que $d \neq 0$.

Seja W o subespaço linear gerado por Z e $\{x_0\}$, isto é,

$$W = \{ w \in X : w = z + \alpha x_0, z \in Z, \alpha \in \mathbb{K} \}.$$

Seja f o funcional linear de domínio W definido por

$$f(w) = f(z + \alpha x_0) = \alpha.$$

 $\overrightarrow{V.S.F.F}$.

iv. Seja (z_n) uma sucessão nas condições referidas em ii. Justifique que

$$\forall n \in \mathbb{N}, \ \|f\| \ge \frac{|f(z_n - x_0)|}{\|z_n - x_0\|} = \frac{1}{\|z_n - x_0\|}$$

e justifique ainda que $||f|| \ge \frac{1}{d}$.

v. Prove que

$$\forall w \in W \setminus \{0\}, \quad \frac{|f(w)|}{\|w\|} = \frac{|f(z + \alpha x_0)|}{\|z + \alpha x_0\|} \le \frac{1}{d}.$$

vi. Prove que existe um funcional linear F, de domínio X, tal que

$$F(x_0)=1, \quad F(z)=0 \text{ para todo o } z\in Z, \text{ e } \|F\|=\frac{1}{d}.$$

Bom Trabalho!

Topologia e Introdução à Análise Funcional 1^aParte-Prova Parcial 29 de Junho de 2010

- I. Seja X um espaço linear sobre o corpo \mathbb{K} , normado.
 - (a) Seja $x_0 \neq 0$ um elemento de X. Considere o subespaço M gerado por $\{x_0\}$,

$$M = \{\alpha x_0 : \alpha \in \mathbb{K}\},\$$

e a aplicação f de domínio M definida por

$$\forall x \in M, \quad f(x) = f(\alpha x_0) = \frac{\alpha}{\|x_0\|}.$$

i. Determine ||f||, sendo

$$||f|| = \sup_{\substack{x \in M \\ x \neq 0}} \frac{|f(x)|}{||x||}.$$

- ii. Justifique que existe um funcional linear F, de domínio X, limitado, tal que $F(x_0)=\frac{1}{||x_0||}$ e $||F||=\|f\|$.
- (b) Seja Z um subespaço linear de X tal que $\overline{Z} \neq X$. Seja $x_0 \in X \setminus \overline{Z}$. Seja ainda

$$d = \inf_{z \in Z} ||x_0 - z||.$$

i. Justifique que, para todo o $n \in \mathbb{N}$, o conjunto C_n ,

$$C_n = \{ z \in Z : \|x_0 - z_n\| < d + \frac{1}{n} \}$$

não é o conjunto vazio.

ii. Justifique que é possível obter uma sucessão (z_n) de elementos de Z tal que

$$\forall n \in \mathbb{N}, \quad d \le ||x_0 - z_n|| < d + \frac{1}{n},$$

o que permite concluir que $d = \lim_{n \to \infty} ||x_0 - z_n||$.

iii. Utilizando ii. prove, por redução ao absurdo, que $d \neq 0$.

Seja W o subespaço linear gerado por Z e $\{x_0\}$, isto é,

$$W = \{ w \in X : w = z + \alpha x_0, z \in Z, \alpha \in \mathbb{K} \}.$$

Seja f o funcional linear de domínio W definido por

$$f(w) = f(z + \alpha x_0) = \alpha.$$

iv. Seja (z_n) uma sucessão nas condições referidas em ii. Justifique que

$$\forall n \in \mathbb{N}, \ \|f\| \ge \frac{|f(z_n - x_0)|}{\|z_n - x_0\|} = \frac{1}{\|z_n - x_0\|}$$

e justifique ainda que $||f|| \ge \frac{1}{d}$.

 $\overrightarrow{V.S.F.F}$.

v. Prove que

$$\forall w \in W \setminus \{0\}, \quad \frac{|f(w)|}{\|w\|} = \frac{|f(z + \alpha x_0)|}{\|z + \alpha x_0\|} \le \frac{1}{d}.$$

vi. Prove que existe um funcional linear F, de domínio X, tal que

$$F(x_0) = 1$$
, $F(z) = 0$ para todo o $z \in Z$, e $||F|| = \frac{1}{d}$.

- II. (a) Mostre que se (X, τ_X) e (Y, τ_Y) forem espaços topológicos e se f for uma aplicação contínua de X em Y então a imagem inversa de qualquer conjunto fechado contido em Y é um conjunto fechado em X.
 - (b) Seja X um espaço e sejam τ_1 e τ_2 topologias definidas em X. Seja

$$I:(X,\tau_1)\to (X,\tau_2),\quad Ix=x,$$

o operador identidade. Diga, justificando, se no caso de I ser um operador contínuo então todo o conjunto pertencente a τ_2 também pertence a τ_1 .

III. Seja (X, τ) um espaço topológico compacto e seja $A \subseteq X$ um subconjunto fechado. Com este exercício, pretende-se provar que, se se considerar a topologia relativa de τ a A, então A é um conjunto compacto.

Considere uma cobertura aberta de A, isto é, uma família de conjuntos

$$\{H_{\alpha}: \alpha \in I\}$$

tal que

$$A \subseteq \bigcup_{\alpha \in I} H_{\alpha}$$

e sendo $H_{\alpha} = G_{\alpha} \cap A$ onde G_{α} designa um conjunto aberto em (X, τ) .

(a) Justifique que

$$X = \left(\bigcup_{\alpha \in I} G_{\alpha} \right) \cup (X \setminus A).$$

(b) Justifique que existe um conjunto finito $\{\alpha_1, \alpha_2, ..., \alpha_p\}$ tal que

$$A \subseteq \cup_{i=1}^p G_{\alpha_i}$$

e que

$$A \subseteq \cup_{i=1}^p H_{\alpha_i}$$

o que permite concluir que A é compacto.

Bom Trabalho!

TOPOLOGIA E INTRODUÇAO À ANÁLISE FUNCIONAL 2^APARTE-PROVA GLOBAL/PARCIAL 29 DE JUNHO DE 2010

- IV. Seja X um espaço linear sobre o corpo \mathbb{K} , onde foi definido um produto interno, completo. Seja $x \in X$ e seja $S = \{u_n : n \in \mathbb{N}\} \subseteq X$ (com $u_i \neq u_j$, sempre que $i \neq j$), um conjunto ortonormado. A série $\sum_{i=1}^{\infty} |(x|u_i)|^2$ é uma série convergente.
 - (a) Considere a série $\sum_{i=1}^{\infty} \alpha_i u_i$ com $\alpha_i = (x|u_i)$.
 - i. Prove que para $n \in \mathbb{N}$ e $m \in \mathbb{N}$ se tem

$$||s_n - s_m||^2 = |S_n - S_m|,$$

com $s_n = \sum_{i=1}^n \alpha_i u_i$ e $S_n = \sum_{i=1}^n |\alpha_i|^2$. ii. Sabendo que a série $\sum_{i=1}^\infty |(x|u_i)|^2$ é convergente e utilizando i. justifique que a série $\sum_{i=1}^\infty \alpha_i u_i$ é convergente

Seja $x^* = \sum_{i=1}^{\infty} \alpha_i u_i$. Seja $y \in X$ e $y^* = \sum_{i=1}^{\infty} \beta_i u_i$, com $\beta_i = (y|u_i)$.

(b) Desenvolva

$$\left(\sum_{i=1}^{n} \alpha_i u_i \mid \sum_{j=1}^{n} \beta_j u_j\right)$$

e prove que

$$(x^*|y^*) = \sum_{i=1}^{\infty} \alpha_i \overline{\beta_i}.$$

(c) Seja $k \in \mathbb{N}$. Prove que, com $n \geq k$,

$$\left(\sum_{i=1}^{n} \alpha_i u_i \,|\, u_k\right) = \alpha_k$$

e justifique que

$$(x^*|u_k) = \alpha_k.$$

Conclua que

$$(x-x^*)\bot S$$

e que se S for um conjunto ortonormado maximal então $x=x^*.$

(d) Admita que se S é um conjunto ortonormado maximal. Justifique que

$$(x|y) = \sum_{i=1}^{\infty} \alpha_i \overline{\beta_i}.$$

(e) Prove que se S for um conjunto ortonormado tal que

$$\forall z \in X, \forall w \in X, \ (z|w) = \sum_{i=1}^{\infty} (z|u_i) \overline{(w|u_i)}$$

então S é um conjunto ortonormado maximal.

 $V.\overline{S.F.F}$

- V. Seja (X, τ) um espaço topológico.
 - (a) Seja $A \subseteq X$ um conjunto desconexo. Então existem G e H conjuntos abertos tais que

(1)
$$A \cap G \neq \emptyset$$
 e $A \cap H \neq \emptyset$

$$(2)$$
 $A \subseteq (G \cup H)$

$$(3) A \cap (G \cap H) = \emptyset.$$

Seja $B \subseteq A$. Prove que

$$B \subseteq (G \cup H)$$
 e $B \cap (G \cap H) = \emptyset$.

Prove ainda que se B for um conjunto conexo então ou

$$B \cap G = \emptyset$$
 e $B \subseteq H$,

ou

$$B \cap H = \emptyset$$
 e $B \subseteq G$.

(b) Seja $D\subseteq X$ e $E=\overline{D}$ onde \overline{D} designa o fecho de D, isto é, a intersecção de todos os conjuntos fechados que contêm D. Com este exercício, pretende-se provar que se E for desconexo então D também o é.

Admita-se então que E é desconexo e sejam G_1 e H_1 conjuntos abertos tais que

(1')
$$E \cap G_1 \neq \emptyset$$
 e $E \cap H_1 \neq \emptyset$

$$(2')$$
 $E \subseteq (G_1 \cup H_1)$

$$(3') E \cap (G_1 \cap H_1) = \emptyset.$$

i. Justifique que nestas condições se D fosse um conjunto conexo, então, ou

$$D \cap G_1 = \emptyset$$
 e $D \subseteq H_1$,

ou

$$D \cap H_1 = \emptyset$$
 e $D \subseteq G_1$.

ii. Considere a situação em que

$$D \cap G_1 = \emptyset$$
 e $D \subseteq H_1$.

Justifique que, definindo $G_2 = X \setminus G_1$, se tem

$$D \subseteq G_2$$
 e $E = \overline{D} \subseteq G_2$.

Justifique ainda que se obtém uma contradição.

Conclusão análoga se pode tirar no caso de $D \cap H_1 = \emptyset$ e $D \subseteq G_1$, ficando assim completa a demonstração de que D é desconexo.

Topologia e Introdução à Análise Funcional Licenciatura em Matemática 1^aParte-Prova Global 27 de Junho de 2009

- 1. (a) Seja (X, d) um espaço métrico. Admitamos que (x_n) é uma sucessão de Cauchy, em X, que possui uma subsucessão (x_{n_k}) convergente para $x \in X$. Pretende-se, com este exercício, provar que (x_n) é convergente e o seu limite é x. Seja $\epsilon \in \mathbb{R}^+$
 - i. Justifique que existe $p \in \mathbb{N}$ tal que

$$(n > p \land m > p) \Rightarrow d(x_n, x_m) < \epsilon/2.$$

Justifique que é possível escolher $n_{k^*} \in \mathbb{N}$ com $n_{k^*} > p$ tal que

$$d(x_{n_{k^*}}, x) < \epsilon/2.$$

ii. Mostre que, tendo p o significado referido em i.

$$n > p \Rightarrow d(x_n, x) < \epsilon$$

o que permite afirmar que $\lim_{n\to\infty} x_n = x$.

Sugestão: Utilize a desigualdade triangular.

- (b) Admita que (X, d) é um espaço métrico compacto. Diga, justificando, se X é completo
- 2. Sejam X e Z espaços lineares normados sobre o mesmo corpo \mathbb{K} e seja T um operador linear limitado de X em Z. Admita ainda que o operador T é injectivo e que o operador inverso T^{-1} é contínuo.
 - (a) Justifique que

$$\forall x \in X, \quad ||Tx|| < ||T|| ||x||.$$

(b) Designe-se por R o contradomínio de T. Prove que

$$\forall z \in R, \quad ||T(T^{-1}z)|| \le ||T|| ||T^{-1}|| ||z||.$$

- (c) Utilizando a alínea (b) justifique que $||T^{-1}|| \ge \frac{1}{||T||}$.
- 3. Seja X um espaço linear sobre o corpo \mathbb{K} , normado.
 - (a) Seja $x_0 \neq 0$ um elemento de X. Considere o subespaço M gerado por $\{x_0\}$,

$$M = \{\alpha x_0 : \alpha \in \mathbb{K}\},\$$

e a aplicação f de domínio M definida por

$$\forall x \in M, \quad f(x) = f(\alpha x_0) = \alpha ||x_0||.$$

i. Prove que f é linear.

 $\overrightarrow{V.S.F.F}$.

ii. Determine ||f||, sendo

$$||f|| = \sup_{\substack{x \in M \\ x \neq 0}} \frac{|f(x)|}{||x||}.$$

- iii. Justifique que existe um funcional linear F, de domínio X, limitado, tal que $F(x_0) = ||x_0||$ e ||F|| = 1.
- (b) Seja A um subespaço linear de X tal que $\overline{A} = X$. Dado $x \in X$, existe uma sucessão (x_n) de elementos de A convergindo para x. Seja g um funcional linear limitado de domínio A.
 - i. Prove que $g(x_n)$ é uma sucessão de Cauchy e justifique a sua convergência.
 - ii. Sejam (a_n) e (b_n) sucessões de elementos de A convergindo para $x \in X$. Diga Justificando se $\lim_{n\to\infty} g(a_n) = \lim_{n\to\infty} g(b_n)$.

Seja G o funcional linear de domínio X definido por

$$G(x) = \lim_{n \to \infty} g(x_n),$$

em que (x_n) é uma qualquer sucessão em A de limite x.

iii. prove que G é uma extensão de g e justifique que

$$||G|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{|G(x)|}{||x||} \ge \sup_{\substack{x \in A \\ x \neq 0}} \frac{|g(x)|}{||x||} = ||g||.$$

iv. Justifique que

$$|g(x_n)| \le ||g|| ||x_n||$$

e que

$$|G(x)| \le ||g|| ||x||.$$

v. Justifique que ||G|| = ||g||.

Bom Trabalho!

Topologia e Introdução à Análise Funcional Licenciatura em Matemática 2^aParte-Prova Global/Parcial 27 de Junho de 2009

- 4. Seja X um espaço linear sobre o corpo \mathbb{K} , onde foi definido um produto interno, completo. Seja $x \in X$ e seja $\mathcal{S} = \{u_n : n \in \mathbb{N}\} \subseteq X$ (com $u_i \neq u_j$, sempre que $i \neq j$), um conjunto ortonormado.
 - (a) Sabendo que

$$\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} |(x|u_i)|^2 \le ||x||^2,$$

justifique que a série $\sum_{i=1}^{\infty} |(x|u_i)|^2$ é convergente.

- (b) Considere a série $\sum_{i=1}^{\infty} \alpha_i u_i$, com $\alpha_i = (x|u_i)$.
 - i. Prove que para $n \in \mathbb{N}$, $m \in \mathbb{N}$ e n > m se tem

$$||s_n - s_m||^2 = |S_n - S_m|,$$

com
$$s_n = \sum_{i=1}^n \alpha_i u_i$$
 e $S_n = \sum_{i=1}^n |\alpha_i|^2$.

- ii. Utilizando i. justifique que a série $\sum_{i=1}^{\infty} \alpha_i u_i$ é convergente.
- iii. Seja $j \in \mathbb{N}$. Tem-se

$$(x - s_n | u_j) = (x | u_j) - (s_n | u_j).$$

Determine $(x - s_n | u_j)$. Prove que $(x - y | u_j) = 0$, sendo $y = \sum_{i=1}^{\infty} \alpha_i u_i$.

(c) Seja $\mathcal{S}^* = \{v_n : n \in \mathbb{N}\} \subseteq X \text{ (com } v_i \neq v_j, \text{ sempre que } i \neq j)$, um conjunto ortonormado. Designe-se por \mathcal{M} e \mathcal{M}^* os fechos dos espaços lineares gerados por \mathcal{S} e \mathcal{S}^* respectivamente.

Admita que $\mathcal{M}^* \subseteq \mathcal{M}$.

i. Diga justificando se se tem

$$\forall k \in \mathbb{N}, \quad v_k = \sum_{i=1}^{\infty} (v_k | u_i) u_i.$$

- ii. Diga ainda, justificando, se no caso de \mathcal{S}^* ser maximal o mesmo sucede a \mathcal{S} .
- 5. Seja (X, \mathcal{T}) um espaço topológico e sejam $A_1 \subseteq X$ e $A_2 \subseteq X$ conjuntos conexos tais que $A_1 \cap A_2 \neq \emptyset$. Pretende-se, com este exercício, provar que o conjunto $A = A_1 \cup A_2$ é conexo e a demonstração vai ser feita por redução ao absurdo. Admitamos então que A é desconexo e sejam G e H conjuntos abertos tais que

(1)
$$A\cap G\neq\emptyset$$
e $A\cap H\neq\emptyset$

$$(2)\ A\subseteq (G\cup H)$$

(3)
$$A \cap (G \cap H) = \emptyset$$
.

(a) Justifique que $A_1 \subseteq (G \cup H)$ e $A_1 \cap (G \cap H) = \emptyset$. Justifique ainda que

$$A_1 \cap G = \emptyset$$
 e $A_1 \subseteq H$,

ou

$$A_1 \cap H = \emptyset$$
 e $A_1 \subseteq G$.

Analogamente tem-se $A_2 \cap G = \emptyset$ e $A_2 \subseteq H$ ou então $A_2 \cap H = \emptyset$ e $A_2 \subseteq G$.

(b) i. Considere a situação em que

$$A_1 \cap G = \emptyset$$
 e $A_1 \subseteq H$

$$A_2 \cap G = \emptyset$$
 e $A_2 \subseteq H$.

Começando por determinar $A\cap G$ justifique que se obtém uma contradição. Tudo se passa de modo análogo no caso em que $A_1\cap H=\emptyset,\ A_1\subseteq G,\ A_2\cap H=\emptyset$ e $A_2\subseteq G.$

ii. Considere agora o caso em que

$$A_1 \cap G = \emptyset$$
 e $A_1 \subseteq H$

$$A_2 \cap H = \emptyset \ \text{e} \ A_2 \subseteq G.$$

Determine $A \cap G$, $A \cap H$ e justifique que também se obtém uma contradição. Conclusões análogas se podem tirar no caso de $A_1 \cap H = \emptyset$, $A_1 \subseteq G$, $A_2 \cap G = \emptyset$, $A_2 \subseteq H$, ficando assim completa a demonstração de que A é conexo.

FIM!

Topologia e Introdução à Análise Funcional Licenciatura em Matemática 1^aParte-Prova Parcial 27 de Junho de 2009

- 1. Seja X um espaço linear sobre \mathbb{K} , normado.
 - (a) Seja $x_0 \neq 0$ um elemento de X. Considere o subespaço M gerado por $\{x_0\}$,

$$M = \{\alpha x_0 : \alpha \in \mathbb{K}\},\$$

e a aplicação f de domínio M definida por

$$\forall x \in M, \quad f(x) = f(\alpha x_0) = \alpha ||x_0||.$$

- i. Prove que f é linear.
- ii. Determine ||f||, sendo

$$||f|| = \sup_{\substack{x \in M \\ x \neq 0}} \frac{|f(x)|}{||x||}.$$

- iii. Justifique que existe um funcional linear F, de domínio X, limitado, tal que $F(x_0) = ||x_0||$ e ||F|| = 1.
- (b) Seja A um subespaço linear de X tal que $\overline{A} = X$. Dado $x \in X$, existe uma sucessão (x_n) de elementos de A convergindo para x. Seja g um funcional linear limitado de domínio A.
 - i. Prove que $g(x_n)$ é uma sucessão de Cauchy e justifique a sua convergência.
 - ii. Sejam (a_n) e (b_n) sucessões de elementos de A convergindo para $x \in X$. Diga Justificando se $\lim_{n\to\infty} g(a_n) = \lim_{n\to\infty} g(b_n)$.

Seja G o funcional linear de domínio X definido por

$$G(x) = \lim_{n \to \infty} g(x_n),$$

em que (x_n) é uma qualquer sucessão em A de limite x.

iii. prove que G é uma extensão de g e justifique que

$$||G|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{|G(x)|}{||x||} \ge \sup_{\substack{x \in A \\ x \neq 0}} \frac{|g(x)|}{||x||} = ||g||.$$

iv. Justifique que

$$|g(x_n)| \le ||g|| ||x_n||,$$

e que

$$|G(z)| \le ||g|| ||z||.$$

v. Justifique que ||G|| = ||g||.

 $\overrightarrow{V.S.F.F}$

- 2. Sejam (X, \mathcal{T}_X) e (Y, \mathcal{T}_Y) espaços topológicos e seja $p \in X$ tal que $\{p\}$ é um conjunto aberto em (X, \mathcal{T}_X) . Diga, justificando, se qualquer que seja a aplicação f de X em Y, f é contínua no ponto p.
- 3. Seja X um espaço topológico de Hausdorff. Seja $x \in X$ e seja $C \subseteq X$ um conjunto compacto de X tal que $x \notin C$. Pretende-se, com este exercício, provar que existe um conjunto aberto A^* contendo $\{x\}$ tal que $A^* \subseteq X \setminus C$.
 - (a) Seja y um qualquer ponto de C. Justifique que existe um conjunto aberto A, com $x \in A$, e um conjunto aberto B, com $y \in B$, satisfazendo

$$A \cap B = \emptyset$$
.

Fixando x e fazendo y percorrer C obtêm-se conjuntos abertos $A^{(y)}$ e $B^{(y)}$ tais que $x \in A^{(y)}, y \in B^{(y)}$ e $A^{(y)} \cap B^{(y)} = \emptyset$.

(b) Justifique que

$$C \subseteq \bigcup_{y \in C} B^{(y)}$$

e justifique ainda que existe um conjunto finito $\{y_1,y_2,...,y_p\}\subseteq C$ tal que

$$C \subseteq \bigcup_{i=1,\dots,p} B^{(y_i)}.$$

Seja $A^* = A^{(y_1)} \cap A^{(y_2)} \cap ... \cap A^{(y_p)}$.

(c) Justifique que A^* é um conjunto aberto contendo $\{x\}$ e tal que $A^*\subseteq X\setminus C$.

Bom Trabalho!

Topologia e Introdução à Análise Funcional 1^aParte (Prova Parcial) Licenciatura em Matemática 2 de Julho de 2008

1. (a) Sejam (X, \mathcal{T}) e (Y, \mathcal{F}) espaços topológicos. Seja f uma aplicação constante de X em Y, isto é, tal que

$$\forall x \in X, \ f(x) = y_0$$

com y_0 um elemento determinado em Y. Prove que f é contínua.

Sugestão: Determine a imagem inversa de qualquer conjunto aberto $C \subseteq Y$ considerando separadamente os casos em que $y_0 \in C$ e $y_0 \notin C$.

- (b) Sejam (X, \mathcal{T}_1) , (X, \mathcal{T}_2) espaços topológicos. Admita que se $A \subseteq X$ é aberto em (X, \mathcal{T}_2) então A também é aberto em (X, \mathcal{T}_1) , isto é, $\mathcal{T}_2 \subseteq \mathcal{T}_1$. Diga, justificando se a aplicação identidade I de (X, \mathcal{T}_1) em (X, \mathcal{T}_2) , é uma aplicação contínua.
- 2. (a) Seja (X, \mathcal{T}) um espaço topológico. Prove que a reunião de um número finito de conjuntos fechados é um conjunto fechado.
 - (b) Seja (X, \mathcal{T}) um espaço Hausdorff.
 - i. O objectivo deste exercício é provar que, sendo $x \in X$, o conjunto $D = \{x\}$ não tem pontos de acumulação. Consequentemente, \mathcal{D} é fechado. Seja y um elemento pertencente ao complementar de \mathcal{D} , $C(\mathcal{D})$.
 - I. Justifique que existem conjuntos abertos A e B tais que $x \in A$, $y \in B$ e $A \cap B = \emptyset$. Justifique que $\mathcal{D} \cap B = \emptyset$ e que y não é ponto de acumulação de \mathcal{D} .
 - II. Justifique que o conjunto dos pontos de acumulação de \mathcal{D} é o conjunto vazio e conclua que \mathcal{D} é fechado.
 - ii. prove que qualquer subconjunto finito de X é fechado.
- 3. Seja X um espaço linear sobre o corpo \mathbb{K} , normado.
 - (a) Seja $x_0 \neq 0$ um elemento de X. Seja M o subespaço de X gerado por $\{x_0\}$,

$$M = \{\alpha x_0 : \alpha \in \mathbb{K}\}.$$

- i. Defina um funcional linear f de domínio M satisfazendo $f(x_0) = 1$. Determine ||f||.
- ii. Justifique que existe um funcional linear F, de domínio X, limitado, tal que

$$F(x_0) = 1 \text{ e } ||F|| = \frac{1}{||x_0||}.$$

(b) Seja Z um subespaço linear próprio de X tal que o fecho de Z é X, isto é $\overline{Z} = X$. Seja h um funcional linear contínuo de domínio Z. Prove que existe um único funcional linear contínuo H, de domínio X tal que

$$\forall x \in Z, \quad H(x) = h(x).$$

Topologia e Introdução à Análise Funcional 1^aParte(Prova Global)) Licenciatura em Matemática 3 de Julho de 2008

- 1. Seja (X, d) um espaço métrico. Admitamos que (x_n) é uma sucessão de Cauchy, em X, que possui uma subsucessão (x_{n_k}) convergente para $x \in X$. Pretende-se, com este exercício, provar que (x_n) é convergente e o seu limite é x. Seja $\epsilon \in \mathbb{R}^+$
 - (a) Prove que existe $p \in \mathbb{N}$ tal que

$$(n > p \land m > p) \Longrightarrow d(x_n, x_m) < \epsilon/2$$

Justifique que é possível escolher $x_{n_{k^*}} \in \mathbb{N}$ com $n_{k^*} > p$ tal que

$$d(x_{n_{k*}},x)<\epsilon/2$$

(b) Mostre que, tendo p o significado referido em a)

$$n > p \Longrightarrow d(x_n, x) < \epsilon$$

o que permite afirmar que $\lim_{n\to\infty} = x$.

Sugestão: Utilize a desigualdade triangular.

2. Sejam X e Y espaços lineares sobre o mesmo corpo \mathbb{K} , normado e seja T um operador linear de X em Y. Designe-se por R o contradomínio de T. Admita-se que existem $l \in \mathbb{R}^+$ e $L \in \mathbb{R}^+$ tais que

$$\forall x \in X, \quad l||x|| < ||Tx|| < L||x|| \tag{1}$$

(a) Seja $\delta \in \mathbb{R}^+$. Indique $\epsilon \in \mathbb{R}^+$ tal que

$$||x|| < \epsilon \Longrightarrow ||Tx|| < \delta$$

Prove ainda que, com x_0 arbitrariamente fixado em X,

$$||x - x_0|| < \epsilon \Longrightarrow ||Tx - Tx_0|| < \delta$$

(b) Considere o operador inverso do operador T. Justificando, indique $k \in \mathbb{R}^+$ tal que se possa escrever

$$||T^{-1}|| \le \frac{k}{l}$$
, sendo $||T^{-1}|| = \sup_{\substack{y \in R \\ y \ne 0}} \frac{||T^{-1}y||}{||y||}$

(c) Mostre que se $A\subseteq X$ for um conjunto compacto, o conjunto $B,\,B=T(A)=\{Tx:x\in A\}\subseteq Y$ é compacto.

Sugestão: Seja (y_n) uma sucessão de elementos de B. Comece por provar que a sucessão (x_n) tal que $y_n = Tx_n$, para todo o $n \in \mathbb{N}$, tem uma subsucessão convergente.

Topologia e Introdução à Análise Funcional 2^AParte (Prova Global e Parcial) Licenciatura em Matemática 3 de Julho de 2008

- 3. Seja X um espaço de Hilbert e seja $S = \{u_k : k \in \mathbb{N}\} \subset X$ um conjunto ortonormado numerável (onde se admite que para $k \neq l$ se tem $u_k \neq u_l$).
 - (a) Com este exercício pretende-se provar que

$$\forall x \in X, \quad \sum_{j=1}^{\infty} |(x|u_j)|^2 = ||x||^2$$

se e só se S for maximal.

- i. Admitamos que S é um conjunto ortonormado não maximal. Justifique que existe $x \neq 0$ tal que $\sum_{j=1}^{\infty} |(x|u_j)|^2 = 0 \neq ||x||^2$.
- ii. Admita agora que S é um conjunto ortonormado maximal. Dado $x \in X$, seja x_S definido por

$$x_S = \sum_{j=1}^{\infty} \alpha_j u_j \quad \text{com } \alpha_j = (x|u_j)$$

e seja

$$s_n = \sum_{j=1}^n \alpha_j u_j.$$

Tem-se, com K arbitrariamente fixado em \mathbb{N}

$$(x - s_n | u_k) = (x | u_k) - (\sum_{j=1}^n \alpha_j u_j | u_k).$$

- A. Prove que com $n \geq K$, $(x s_n | u_k) = 0$. Justifique ainda que $(x x_S | u_k) = 0$ o que permite escrever $(x x_S) \perp S$.
- B. Justifique que $x = x_S$.
- C. Mostre que

$$\forall x \in X, \quad ||x||^2 = \sum_{i=1}^{\infty} |(x|u_i)|^2.$$

(b) Admita novamente que S não é maximal e seja M o fecho do espaço linear gerado por S. Seja $x \in X$. Mostre que

$$||x_S|| = \min_{z \in M} ||x - z||.$$

Sugestão: sendo $z \in M$, relacione $||x - z||^2$ com $||x - x_S||$ tendo em conta que $(x - x_S)$ é ortogonal a S.

4. Seja (X, \mathcal{T}) um espaço topológico e seja B um subconjunto de X. Pretende-se, com este exercício, provar que se o fecho de $B,\,B$ for desconexo então B também é desconexo. Admitamos que \overline{B} é desconexo. Então, existem conjuntos abertos $G \in \mathcal{T}, H \in \mathcal{T}$, tais que com $B_1 = \overline{B} \cap G$ e $B_2 = \overline{B} \cap G$ se tem

(1)
$$B_1 \neq \emptyset$$
 e $B_2 \neq \emptyset$
(2) $B_1 \cap B_2 = \emptyset$
(3) $\overline{B} = B_1 \cup B_2$.

(2)
$$B_1 \cap B_2 = \emptyset$$

$$(3) \ \overline{B} = B_1 \cup B_2.$$

- (a) Designemos por B' o conjunto dos pontos de acumulação de B. O objectivo desta alínea é provar que se $B' \cap G \neq \emptyset$ então $B \cap G \neq \emptyset$. Admita que $B' \cap G \neq \emptyset$ e seja $x \in B' \cap G \neq \emptyset$. Justifique que $B \cap G \neq \emptyset$.
- (b) Utilizando (a) e sabendo que $\overline{B} = B \cup B'$ prove que $B \cap G \neq \emptyset$. Analogamente se prova que $B \cap H \neq \emptyset$.
- (c) Justifique que definindo $B_3 = B \cap G$ e $B_4 = B \cap H$ então

$$B_3 \cap B_4 \subseteq B_1 \cap B_2$$

e justifique que $B_3 \cap B_4 = \emptyset$.

A partir de (3) prove que $\overline{B} \subseteq G \cup H$, e $B_3 \cap B_4 = B$. Conclua, justificando, que B é desconexo.

FIM!

Topologia e Introdução à Análise Funcional 1^aParte-Prova Global 20 de Julho de 2010

- I. Seja X um espaço linear sobre o corpo \mathbb{K} e seja $A\subseteq X$. Seja A' o conjunto dos pontos de acumulação de A e seja $\overline{A}=A\cup A'$.
 - (a) Pretende-se, com este exercício, provar que se $x \in \overline{A}$ então existe uma sucessão (x_n) de elementos de A tal que $\lim_{n \to \infty} x_n = x$.
 - i. Considere em primeiro lugar a situação em que $x \in A$. Indique uma sucessão de elementos de A que seja convergente para x.
 - ii. Admitamos agora que $x \in A'$ e que $x \notin A$. Justifique que existe uma sucessão (x_n) de elementos de A tal que,

$$\forall n \in \mathbb{N}, \quad 0 < d(x_n, x) < \frac{1}{n},$$

e conclua que $\lim_{n\to\infty} x_n = x$.

(b) Admita que A é um conjunto satisfazendo, "Se (x_n) for uma sucessão de elementos de A convergente para x então $x \in A$."

Utilizando o exercício anterior prove que $\overline{A}=A$ (o que permite afirmar que A é fechado).

II. Sejam X e W espaços lineares sobre o mesmo corpo \mathbb{K} , normados e seja $D\subseteq X$ um subespaço linear. Admitamos que W é completo e seja T um operador linear limitado de D em W. Pretende-se provar que existe um operador linear limitado \widetilde{T} , de domínio \overline{D} , limitado, que é extensão de T.

Dado $x \in \overline{D}$, existe uma sucessão (x_n) de elementos de D tal que $\lim_{n \to \infty} x_n = x$.

(a) Justifique que existe uma constante real positiva M, tal que

$$\forall n \in \mathbb{N}, m \in \mathbb{N}, \quad ||Tx_n - Tx_m|| \le M||x_n - x_m||.$$

- (b) Justifique que (Tx_n) é uma sucessão convergente.
- (c) Seja \widetilde{T} o operador linear definido por

$$\forall x \in \overline{D}, \quad \widetilde{T}x = \lim_{n \to \infty} Tx_n,$$

sendo (x_n) uma (qualquer) sucessão de elementos de D convergente para x. Prove que

$$\forall x \in \overline{D}, \quad \|\widetilde{T}x\| \le \|T\| \|x\|,$$

ficando assim demonstrado que \widetilde{T} é limitado.

 $\overrightarrow{V.S.F.F}$.

- III. Seja X um espaço de Hilbert. Seja $S = \{u_n : n \in \mathbb{N}\} \subseteq X$ (com $u_{j_1} \neq u_{j_2}$, sempre que $j_1 \neq j_2$), um conjunto ortonormado. Designe-se por M o fecho do espaço linear gerado por S. Seja $x \in X$ e seja $\alpha_j = (x|u_j)$ para todo $j \in \mathbb{N}$.
 - (a) A partir de

$$((x - \sum_{j=1}^{n} \alpha_j u_j) | (x - \sum_{i=1}^{n} \alpha_i u_i)),$$

deduza que

$$\forall n \in \mathbb{N}, \quad \sum_{j=1}^{n} |\alpha_j|^2 \le ||x||^2$$

e justifique que a série

$$\sum_{j=1}^{\infty} |(x|u_j)|^2$$

é convergente.

É sabido que a série $\sum_{j=1}^{\infty} \alpha_j u_j$ é convergente. Designe-se por x^* a soma da série, isto é, $x^* = \sum_{j=1}^{\infty} \alpha_j u_j$.

(b) Seja $k \in \mathbb{N}$. Prove que, com $n \geq k$

$$\left(\sum_{j=1}^{n} \alpha_{j} u_{j} \left| u_{k} \right.\right) = \alpha_{k}$$

e justifique que

$$(x^*|u_k) = \alpha_k.$$

Conclua que $(x - x^*) \perp S$.

- (c) Justifique que $x^* \in M$ e prove que se S for um conjunto ortonormado maximal então X = M.
- IV. Seja X um espaço linear sobre o corpo \mathbb{K} , normado e seja S o conjunto

$$S = \{x \in X : ||x|| = 1\}.$$

Admitamos que S é um conjunto compacto. Com este execício pretendemos provar que X tem dimensão finita.

(a) Prove que

$$\forall w \in X, \quad w \in B_{\frac{1}{5}}(w)$$

e que

$$S \subseteq \underset{x \in S}{\cup} B_{\frac{1}{5}}(x).$$

(b) Justifique que existe um subconjunto finito de S, $\{x_1, x_2, ..., x_k\}$, tal que

$$S \subseteq \cup_{i=1}^k B_{\frac{1}{5}}(x_i).$$

Seja A o subespaço linear de X gerado por $\{x_1, x_2, ..., x_k\}$.

- (c) Justifique que A é um subconjunto fechado de X.
- (d) Pretende-se provar, em seguida, que a dimensão de X coincide com a dimensão de A. Admitamos, por redução ao absurdo, que tal não sucedia.

Justifique a existência de um elemento $\overline{x} \in S$ tal que

$$\overline{x} \notin \bigcup_{i=1}^k B_{\frac{1}{5}}(x_i),$$

e justifique ainda que se obtém uma contradição.

(e) Conclua que a dimensão de X é finita.

Bom Trabalho!

Topologia e Introdução à Análise Funcional $2^{\rm A}$ Parte 20 de Julho de 2010

- V. Seja X um espaço linear sobre o corpo \mathbb{K} , normado.
 - (a) Seja $x_0 \neq 0$ um elemento de X. Considere o subespaço M gerado por $\{x_0\}$,

$$M = \{\alpha x_0 : \alpha \in \mathbb{K}\},\$$

e a aplicação f de domínio M, definida por

$$\forall x \in M, \quad f(x) = f(\alpha x_0) = \alpha.$$

i. Determine ||f||, sendo

$$||f|| = \sup_{\substack{x \in M \\ x \neq 0}} \frac{|f(x)|}{||x||}.$$

- ii. Justifique que existe um funcional linear F, de domínio X, limitado, tal que $F(x_0) = 1$ e ||F|| = ||f||.
- (b) Considere conhecido,

"Sendo M um subespaço linear fechado, de um espaço de Hilbert, então, qualquer elemento $x \in X$ admite uma única decomposição da forma

$$x = y + z$$
, com $y \in M$ e $z \in M^{\perp}$."

Seja então M um subespaço linear fechado de um espaço de Hilbert X, sobre o corpo \mathbb{K} .

Pretende-se, com este exercício, provar o Teorema de Hanh-Banach, isto é, sendo $f:M\to\mathbb{K}$ um funcional linear limitado de domínio M, pretende-se provar que existe um funcional linear F^* de domínio X, satisfzendo

$$||F^*|| = ||f|| \text{ e } \forall x \in M, F^*(x) = f(x).$$

Dado $x \in X$, considere-se a decomposição $x = y + z, y \in M$ e $z \in M^{\perp}$.

i. Prove que

$$||x||^2 = ||y||^2 + ||z||^2.$$

Defina-se em X o seguinte funcional linear

$$\forall x \in X, \quad F^*(x) = f(y) \quad (\text{sendo } x = y + z).$$

ii. Prove que, em relação ao funcional que foi definido

$$\forall x \in M, \quad F^*(x) = f(x)$$

e ainda

$$||F^*|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{|F^*(x)|}{||x||} \ge ||f||.$$

 $\overrightarrow{V.S.F.F}$

iii. Prove que

$$\forall x \in X, |F^*(x)| \le ||f|| ||y|| \le ||f|| ||x||$$

e que

$$||F^*|| \le ||f||.$$

Pode então concluir-se que $||F^*|| = ||f||$.

- VI. Seja (X, τ) um espaço topológico.
 - (a) Seja $A \subseteq X$ um conjunto desconexo. Então existem conjuntos abertos G e H tais que

(1)
$$A \cap G \neq \emptyset$$
 e $A \cap H \neq \emptyset$

(2)
$$A \subseteq (G \cup H)$$

$$(3) A \cap (G \cap H) = \emptyset.$$

Pretende-se, com esta alínea, provar que os conjuntos $A\cap G$ e $A\cap H$ são separados.

Admita que p é ponto de acumulação de $A \cap G$. Justifique que se se tivesse $p \in A \cap H$ então

$$H \cap (A \cap G) \neq \emptyset$$
,

o que sería uma contradição. Conclua que $A\cap G$ e $A\cap H$ são separados.

(b) Admita agora que que

$$B = C \cup D$$
,

em que $C \neq \emptyset$, $D \neq \emptyset$ com $C \subseteq X$ e $D \subseteq X$ conjuntos separados, isto é, tais que $C \cap \overline{D} = \emptyset$ e $\overline{C} \cap D = \emptyset$. Com esta alínea pretende-se provar que existem conjuntos abertos G_1 e H_1 tais que

(1')
$$B \cap G_1 \neq \emptyset$$
 e $B \cap H_1 \neq \emptyset$

$$(2')$$
 $B \subseteq (G_1 \cup H_1)$

$$(3') B \cap (G_1 \cap H_1) = \emptyset.$$

Seja $G_1 = X \setminus \overline{C}$ e $H_1 = X \setminus \overline{D}$.

- i. Prove que $C \subseteq H_1$ e $C \cap G_1 = \emptyset$. Analogamente se provaria que $D \subseteq G_1$ e $D \cap H_1 = \emptyset$.
- ii. Prove que

$$B \cap G_1 = D$$
 e $B \cap H_1 = C$.

Justifique que se verifica (1'), (2') e (3').

VII. Sejam X e Y espaços topológicos, com Y espaço de Hausdorff. Seja $C \subseteq X$ tal que $\overline{C} = C \cup C' = X$. Seja f uma aplicação contínua de X em Y. Mostre que se f satisfazer

$$\forall x \in C, \quad f(x) = 0,$$

então

$$\forall x \in X, \quad f(x) = 0.$$

Sugestão: Efectue a demonstração por redução ao absurdo.

FIM!

Topologia e Introdução à Análise Funcional Licenciatura em Matemática 1^aParte 18 de Julho de 2009

- I. Seja (X, d) um espaço métrico. Admita que (x_n) é uma sucessão de Cauchy em X. O objectivo deste exercício é provar que (x_n) é uma sucessão limitada.
 - (a) Justifique que existe $p \in \mathbb{N}$ tal que

$$(n > p \land m > p) \Rightarrow d(x_n, x_m) < 2,$$

e que

$$n > p \Rightarrow d(x_n, x_{p+1}) < 2.$$

(b) Seja $r = 2 + \max\{d(x_1, x_{p+1}), d(x_2, x_{p+1}), ..., d(x_p, x_{p+1})\}$. Prove que

$$\forall n \in \mathbb{N}, \ x_n \in B(x_{p+1}; r),$$

onde $B(x_{p+1};r)$ designa a bola aberta de centro em x_{p+1} e raio r, concluindo-se assim o pretendido.

II. Sejam X e Z espaços lineares normados sobre o mesmo corpo \mathbb{K} e seja T um operador linear de X em Z. Admita que existe $l \in \mathbb{R}^+$ tal que

$$\forall x \in X, \quad ||x|| < l||Tx||.$$

- (a) i. Prove que T é injectivo.
 - ii. Seja $R \subseteq Z$ o contradomínio de T. Prove que

$$||T^{-1}|| = \sup_{\substack{z \neq 0 \\ z \in R}} \frac{||T^{-1}(z)||}{||z||} \le l.$$

(b) Admita que existe $x_0 \in X$, $\delta \in \mathbb{R}^+$ e $A \in \mathbb{R}^+$ tais que para todo o elemento w pertencente à bola aberta $B(x_0; \delta)$ se tem

$$||Tw|| \le A$$
.

Pretende-se com este exercício provar que o operador linear T é limitado. Seja $x \neq 0$, um qualquer elemento de X e seja

$$y = x_0 + \gamma x$$
, com $\gamma = \frac{\delta}{5||x||}$.

- i. Justifique que $||Ty|| \le A$. Justifique ainda que $||Tx_0|| \le A$. $\overrightarrow{V.S.F.F}$.
- ii. Indique uma constante real positiva K tal que

$$\forall x \in X, \quad ||Tx|| \le K||x||,$$

o que permite concluir que T é limitado.

- III. Seja X um espaço linear sobre o corpo \mathbb{K} .
 - (a) Seja $x_0 \neq 0$ um elemento de X e M o subespaço de X gerado por $\{x_0\}$,

$$M = \{\alpha x_0 : \alpha \in \mathbb{K}\}.$$

- i. Determine um funcional linear f de domínio M tal que $f(x_0) = 1$.
- ii. Determine ||f||.
- iii. Justifique que existe um funcional linear F, de domínio X, limitado, tal que

$$F(x_0) = 1$$
 e $||F|| = \frac{1}{||x_0||}$.

(b) Considere o espaço linear X' (dual de X), constituído por todos os funcionais lineares, de domínio X, contínuos. Sejam x e y elementos de X tais que

$$\forall G \in X', \quad G(x) = G(y).$$

Diga, Justificando, se se pode afirmar que x = y.

Bom Trabalho!

Topologia e Introdução à Análise Funcional

LICENCIATURA EM MATEMÁTICA

2^aParte

18 de Julho de 2009

- IV. Seja X um espaço linear sobre o corpo \mathbb{K} , onde foi definido um produto interno, completo. Seja $x \in X$ e seja $S = \{u_n : n \in \mathbb{N}\} \subseteq X$ (com $u_i \neq u_j$, sempre que $i \neq j$), um conjunto ortonormado.
 - (a) Prove que

$$\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} |(x|u_i)|^2 \le ||x||^2,$$

e justifique que a série $\sum_{i=1}^{\infty} |(x|u_i)|^2$ é convergente.

Sugestão: Comece por desenvolver

$$(x - \sum_{i=1}^{n} \alpha_i u_i \mid x - \sum_{j=1}^{n} \alpha_j u_j), \quad \text{com } \alpha_i = (x \mid u_i).$$

- (b) Seja $y = \sum_{i=1}^{\infty} \alpha_i u_i$, com $\alpha_i = (x|u_i)$ e seja $s_n = \sum_{i=1}^n \alpha_i u_i$.
 - i. Prove que, sendo n um qualquer número natural,

$$(s_n|s_n) = \sum_{i=1}^n |\alpha_i|^2.$$

ii. Justifique que

$$||y||^2 = \sum_{i=1}^{\infty} |(x|u_i)|^2.$$

iii. Seja $j \in \mathbb{N}$. Tem-se

$$(x - s_n|u_j) = (x|u_j) - (s_n|u_j).$$

Determine $(x - s_n | u_j)$. Prove que $(x - y | u_j) = 0$.

iv. Admita que ${\mathcal S}$ é um conjunto ortonormado maximal. Justifique que

$$||x||^2 = \sum_{i=1}^{\infty} |(x|u_i)|^2.$$

V. Seja X um espaço linear normado sobre o corpo \mathbb{K} e seja C um subconjunto de X, compacto. Então, dado $x \in X$, existe $c^* \in C$ tal que

$$||x - c^*|| = \inf_{c \in C} ||x - c||.$$

Com este exercício pretende-se provar que se Y for um subespaço linear de X, de dimensão finita, então, dado $x \in X$, existe $y^* \in Y$ tal que

$$||x - y^*|| = \inf_{y \in Y} ||x - y||.$$

Seja então Y um subespaço linear de X, de dimensão finita. Seja $x \in X$ e seja r = ||x||. Seja ainda

$$A = Y \cap \mathcal{B}$$

com
$$\mathcal{B} = \{ z \in X : ||z|| \le 2r \}.$$

- (a) Prove que A é um conjunto limitado e fechado.
- (b) Justifique que existe $y^* \in A$ tal que

$$||x - y^*|| = \inf_{y \in A} ||x - y||,$$

e justifique ainda que $||x - y^*|| \le r$.

- (c) Justifique que se $y \in Y$ é tal que $||y|| \le 2r$, então $||x y^*|| \le ||x y||$.
- (d) Justifique também que se $y \in Y$ é tal que ||y|| > 2r, então

$$||x - y|| \ge |r - ||y||| \ge ||x - y^*||,$$

o que permite escrever

$$\forall y \in Y, \ \|x - y^*\| \le \|x - y\|,$$

ou seja

$$||x - y^*|| = \inf_{y \in Y} ||x - y||.$$

VI. Seja (X,\mathcal{T}) um espaço topológico. Sejam $A\subseteq X$ um conjunto não vazio e seja $C\subseteq X$ tal que

$$A \subseteq C \subseteq \overline{A}$$
,

em que \overline{A} designa o fecho de A, isto é, a intersecção de todos os conjuntos fechados que contêm A.

Admitamos que C é desconexo. Pretende-se, com este exercício provar que A é também desconexo. Sejam $G \subseteq X$ e $H \subseteq X$ conjuntos abertos tais que

- (1) $C \cap G \neq \emptyset$ e $C \cap H \neq \emptyset$
- (2) $C \subseteq (G \cup H)$, ou o que é equivalente, $C = (C \cap G) \cup (C \cap H)$.
- (3) $C \cap (G \cap H) = \emptyset$.
- (a) Justifique que $A \subseteq (G \cup H)$ e que $A \cap (G \cap H) = \emptyset$.
- (b) Pretende-se, com esta alínea, provar que $A \cap G \neq \emptyset$ e $A \cap H \neq \emptyset$. Comecemos por admitir que $A \cap G = \emptyset$.
 - i. Justifique que, com $F = X \setminus G$,

$$A \subseteq F$$

e justifique ainda que $\overline{A} \subseteq F$.

ii. Justifique que, nas condições referidas,

$$C \cap G = \emptyset$$
,

o que contraria (1).

Conclui-se então que $A \cap G \neq \emptyset$. De forma análoga se provaria que $A \cap H \neq \emptyset$.

iii. Justifique que A é desconexo.

FIM!

PARTE III

Anexos

10 Anexos

10.1 Anexo 1. Desigualdade de Hölder e Minkowski. Os espaços l^p

Seja $1 \leq p < \infty$. Represente-se por l^p o espaço linear constituído pelas sucessões de números reais

$$x = (a_n) = (a_1, a_2, ..., a_n, ...)$$

tal que a série $\sum_{i=1}^{\infty} |a_i|^p$ é convergente. Fixe-se em l^p a norma

$$||x||_p = (\sum_{i=1}^{\infty} |a_i|^p)^{1/p} < \infty.$$
 (1)

As operações de soma e produto por um escalar definidos em l^p , são dadas por

$$x + y = (a_1, a_2, ..., a_n, ...) + (b_1, b_2, ..., b_n, ...) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n, ...)$$

$$\lambda x = \lambda(a_1, a_2, ..., a_n, ...) = (\lambda a_1, \lambda a_2, ..., \lambda a_n, ...),$$

onde
$$x = (a_1, a_2, ..., a_n, ...), y = (b_1, b_2, ..., b_n, ...)$$
 e $\lambda \in \mathbb{R}$.

Ora, para p=1 é fácil constatar que l^1 , com as anteriores operações, constitui um espaço linear e que a aplicação $\|.\|_1$ define de facto uma norma em l^1 . No entanto, para p>1, a resposta a estas questões não é imediata. Efectivamente, dadas duas sucessões em l^p ,

$$x = (a_1, a_2, ..., a_n, ...)$$
 e $y = (b_1, b_2, ..., b, ...),$

será que a sucessão $x + y = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n +, ...)$ ainda está em l^p ? Ou equivalentemente, será a série

$$\sum_{i=1}^{\infty} |a_i + b_i|^p$$

convergente? Quanto à norma $||x||_p$, o problema reside na desigualdade triangular. Dadas duas sucessões $x, y \in l^p$, será válida a desigualde

$$||x+y||_p \le ||x||_p + ||y||_p$$
?

A resposta a estas questões é afirmativa e compreesível após conhecidas as desigualdades de Hölder e de Minkowsi que passamos a apresentar e a demonstrar:

Teorema 1. Sejam $1 < p, q < \infty$ dois números reais tais que $\frac{1}{p} + \frac{1}{q} = 1$. Dadas as sucessões $(a_n), (b_n) \in l^p$ e $(c_n) \in l^q$ tem-se:

1. Desigualdade de Hölder

$$\left| \sum_{i=1}^{\infty} a_i c_i \right| \le \sum_{i=1}^{\infty} |a_i c_i| \le \left(\sum_{i=1}^{\infty} |a_i|^p \right)^{1/p} \left(\sum_{i=1}^{\infty} |c_i|^q \right)^{1/q}; \tag{2}$$

2. Desigualdade de Minkowski

$$\left(\sum_{i=1}^{\infty} |a_i + b_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{\infty} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{\infty} |b_i|^p\right)^{1/q}.$$
 (3)

Demonstração:

Comece-se por observar que se as desigualdades (2) e (3) forem satisfeitas para sequências finitas de números reais $(a_i)_{i=1}^n$, $(b_i)_{i=1}^n$ e $(c_i)_{i=1}^n$ então serão também satisfeitas para sucessões numéricas. Por esta razão trabalharemos apenas com sequências finitas de números.

De
$$\frac{1}{p} + \frac{1}{q} = 1$$
, sai que

$$\frac{1}{p} + \frac{1}{q} = 1 \Leftrightarrow \frac{1}{q} = 1 - \frac{1}{p} \Leftrightarrow q = \frac{p}{p-1}.$$
 (4)

Considere a curva $y=x^{p-1}$ (x>0) que, atendendo a (4), é equivalente a $x=y^{q-1}$ (y>0).

Sejam S_1 e S_2 as àreas dos domínios representados na figura em cima. Claramente,

$$S_1 + S_2 > \alpha \beta$$
.

Calculando as àreas S_1 e S_2 , tem-se

$$S_1 = \int_0^\alpha x^{p-1} dx = \frac{\alpha^p}{p} \text{ e } S_2 = \int_0^\beta y^{q-1} dx = \frac{\beta^q}{q},$$

pelo que

$$\alpha\beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}.\tag{5}$$

Para cada i = 1, ..., n ponha-se

$$\widetilde{\alpha}_i = \frac{|a_i|}{(\sum_{i=1}^n |a_i|^p)^{1/p}} \text{ e } \widetilde{\beta}_i = \frac{|c_i|}{(\sum_{i=1}^n |c_i|^q)^{1/q}}.$$

Claramente

$$\sum_{i=1}^{n} \widetilde{\alpha}_{i}^{p} = 1, \quad \sum_{i=1}^{n} \widetilde{\beta}_{i}^{q} = 1,$$

pelo que, substituíndo $\widetilde{\alpha}_i$ e $\widetilde{\beta}_i$ em (5) vem

$$\widetilde{\alpha}_i \widetilde{\beta}_i \le \frac{\widetilde{\alpha}_i^p}{p} + \frac{\widetilde{\beta}_i^q}{q},$$

ou seja,

$$\sum_{i=1}^{n} \widetilde{\alpha}_i \widetilde{\beta}_i \le \frac{1}{p} \sum_{i=1}^{n} \widetilde{\alpha}_i^p + \frac{1}{q} \sum_{i=1}^{n} \widetilde{\beta}_i^q = \frac{1}{p} + \frac{1}{q} = 1.$$

Assim,

$$\frac{\sum_{i=1}^{n} |a_i c_i|}{(\sum_{i=1}^{n} |a_i|^p)^{1/p} (\sum_{i=1}^{n} |c_i|^q)^{1/q}} \le 1 \Leftrightarrow \sum_{i=1}^{n} |a_i c_i| \le (\sum_{i=1}^{n} |a_i|^p)^{1/p} (\sum_{i=1}^{n} |c_i|^q)^{1/q},$$

estabelecendo-se a desigualdade de Hölder para o caso finito.

Atendendo agora a que

$$\sum_{i=1}^{n} |a_i + b_i|^p \le \sum_{i=1}^{n} |a_i + b_i|^{p-1} (|a_i| + |b_i|)$$

$$= \sum_{i=1}^{n} |a_i + b_i|^{p-1} |a_i| + \sum_{i=1}^{n} |a_i + b_i|^{p-1} |b_i|$$
(6)

resulta da desigualdade de Hölder aplicada aos elementos $\widetilde{a}_i = |a_i|$ e $\widetilde{c}_i = |a_i + b_i|^{p-1}$ e ao facto de (p-1)q = p, que

$$\sum_{i=1}^{n} |a_i + b_i|^{p-1} |a_i| \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |a_i + b_i|^{q(p-1)}\right)^{\frac{1}{q}} = \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{1}{q}}$$

$$\tag{7}$$

Analogamente se estabelece que

$$\sum_{i=1}^{n} |a_i + b_i|^{p-1} |b_i| \le \left(\sum_{i=1}^{n} |b_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{1}{q}}.$$
 (8)

Juntando as majorações (7) e (8) à desigualdade (6) obtém-se,

$$\sum_{i=1}^{n} |a_i + b_i|^p \le \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/q} \left(\left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p}\right),$$

o que, atendendo a que 1-1/q=1/p, permite estabelecer a desigualdade de Minkowski para o caso finito. $\ \Box$

Estabelecida a desigualdade de Minkowski fica agora garantido que os espaços vectoriais l^p com a aplicação $\|.\|_p$, para $1 \le p < \infty$, definem espaços vectoriais normados.

10.2 Anexo 2. Completação de um espaço métrico

Definição 1. Sejam (X, d_X) e (Y, d_Y) dois espaços métricos. Uma função $f: X \to Y$ diz-se uma isometria se

$$\forall a, b \in X, d_Y(f(a), f(b)) = d_X(a, b).$$

Se existir uma isometria de X em Y então os espaço métricos (X,d) e (Y,d) dizem-se isométricos.

Teorema da Completação

Se (X, d) é um espaço métrico, então existe um espaço métrico completo $(\widetilde{X}, \widetilde{d})$ tal que X é isométrico a um subespaço denso de \widetilde{X} $(\widetilde{X}$ diz-se um completado de X).

Demonstração:

Seja (X, d) um espaço métrico não completo. Represente-se por \widehat{X} o conjunto de todas as sucessões de Cauchy em X, e defina em \widehat{X} a relação " \sim ", onde

$$(x_n) \sim (x_n')$$
 se e só se $\lim_{n \to \infty} d(x_n, x_n') = 0$.

Facilmente se constacta que " \sim " define uma relação de equivalência em \widehat{X} . Seja $\widetilde{X} = (\widehat{X}/\sim)$ o conjunto de todas as classes de equivalência para a relação " \sim ", isto é,

$$\widetilde{X} = \{ [(x_n)] : (x_n) \in \widehat{X} \}.$$

Dadas quaisquer duas sucessões de Cauchy (x_n) e (y_n) em X, comecemos por verificar que existe $\lim_{n\to\infty} d(x_n,y_n)$. Para tal basta provar que a sucessão de números reais $(d(x_n,y_n))$ é uma sucessão de Cauchy em \mathbb{R} e o resultado será consequência de \mathbb{R} ser completo.

Fixemos então $n, m \in \mathbb{N}$. Pela desigualdade triângular tem-se

$$d(x_n, y_n) \le d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n)$$

$$d(x_m, y_m) \le d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m),$$

logo,

$$|d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_m, y_n).$$

Como (x_n) e (y_n) são de Cauchy, então

$$0 \le |d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_m, y_n) \xrightarrow{n} 0,$$

ou seja $(d(x_n, y_n))$ é uma sucessão de Cauchy em \mathbb{R} , logo convergente.

Defina-se $\widetilde{d}:\widetilde{X}\times\widetilde{X}\to\mathbb{R}$ por

$$\tilde{d}\left([(x_n)],[(y_n)]\right) = \lim_{n \to \infty} d(x_n,y_n),$$

com $[(x_n)], [(y_n)] \in \widetilde{X}$. Para provar que \widetilde{d} está bem definida considerem-se (x'_n) e (y'_n) duas sucessões de Cauchy em X tais que $(x_n) \sim (x'_n)$ e $(y_n) \sim (y'_n)$. Tal como anteriormente, estabelece-se sem dificuldade que

$$0 \le |d(x_n, y_n) - d(x'_n, y'_n)| \le d(x_n, x'_n) + d(y_n, y'_m) \xrightarrow{n} 0,$$

o que, atendendo a que as sucessões $(d(x_n,y_n))$ e $(d(x_n',y_n'))$ são convergentes, permite concluir que

$$\lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(x'_n, y'_n)$$

ou seja, \widetilde{d} está bem definida.

De seguida mostra-se que \widetilde{d} é uma métrica em \widetilde{X} . Sejam $[(x_n)], [(y_n)] \in \widetilde{X}$. Então,

$$\tilde{d}\left([(x_n)],[(y_n)]\right) = 0 \Leftrightarrow \lim_{n \to \infty} d(x_n,y_n) = 0 \Leftrightarrow (x_n) \sim (y_n) \Leftrightarrow [(x_n)] = [(y_n)].$$

Claramente se tem $\tilde{d}([(x_n)],[(y_n)]) = \tilde{d}([(y_n)],[(x_n)])$ e, da desigualdade triangular da métrica d, resulta que $d(x_n,y_n) \leq d(x_n,z_n) + d(z_n,y_n)$, logo

$$\lim_{n \to \infty} d(x_n, y_n) \le \lim_{n \to \infty} d(x_n, z_n) + \lim_{n \to \infty} d(z_n, y_n),$$

ou seja

$$\tilde{d}([(x_n)], [(y_n)]) \le \tilde{d}([(x_n)], [(z_n)]) + \tilde{d}([(z_n)], [(y_n)]),$$

para $[(x_n)], [(y_n)], [(z_n)] \in \widetilde{X}$. Assim se garante que \widetilde{d} é uma métrica.

Para cada $x \in X$, represente-se por \widetilde{x} a classe de equivalência da sucessão constantemente igual a x, isto é, $\widetilde{x} = [(x, x, ..., x, ...)]$ e defina-se a aplicação

$$\varphi: X \to \widetilde{X}, \quad x \mapsto \widetilde{x} = [(x, x, ..., x, ...)].$$

Ora, para todo o $x, y \in X$,

$$\widetilde{d}\left(\varphi(x),\varphi(y)\right) = \widetilde{d}\left(\widetilde{x},\widetilde{y}\right) = \lim_{n \to \infty} d(x,y) = d(x,y),$$

pelo que φ é uma isometria.

Vejamos que $\varphi(X) = \{\widetilde{x} : x \in X\}$ é um subconjunto denso em \widetilde{X} $(\widetilde{X} = \overline{\varphi(X)})$. Fixe-se um elemento (classe) $[(x_n)] \in \widetilde{X}$. Para todo o $\epsilon > 0$, como (x_n) é uma sucessão de Cauchy,

$$\exists p \in \mathbb{N} : n, m > p \Rightarrow d(x_n, x_m) < \frac{\epsilon}{2}.$$

Seja $\widetilde{x}_{p+1} = [(x_{p+1}, x_{p+1}, ..., x_{p+1}, ...)]$. Assim, $\widetilde{x}_{p+1} \in \varphi(X)$ e

$$\widetilde{d}\left([(x_n)], \widetilde{x}_{p+1}\right) \le \lim_{n \to \infty} d(x_n, x_{p+1}) \le \frac{\epsilon}{2} < \varepsilon,$$

pelo que

$$B_{\epsilon}([(x_n)]) \cap \varphi(X) \neq \emptyset, \quad \forall \epsilon > 0,$$

ou seja, $[(x_n)] \in \overline{\varphi(X)}$, concluindo-se assim que $\widetilde{X} \subseteq \overline{\varphi(X)}$.

Para finalizar vai provar-se que \widetilde{X} é completo e para tal recorre-se ao exercício 30. Basta então mostrar que toda a sucessão de Cauchy no subconjunto denso $\varphi(X)$, de \widetilde{X} , é convergente em \widetilde{X} . Seja então (\widetilde{x}_j) uma sucessão de Cauchy em $\varphi(X)$. Observe-se que cada \widetilde{x}_j representa a classe de equivalência de uma sucessão constante em X. Para cada $j \in \mathbb{N}$ represente-se a constante associada a \widetilde{x}_j por x_j . Assim, para cada $j \in \mathbb{N}$,

$$\widetilde{x}_j = [(x_j, x_j, ..., x_j, ...)].$$

Como \widetilde{d} é uma isometria então

$$d(x_j, x_k) = \widetilde{d}(\widetilde{x}_j, \widetilde{x}_k), \quad \forall j, k \in \mathbb{N},$$

e, atendendo a que (\widetilde{x}_j) é uma sucessão de Cauchy, (x_j) é também uma sucessão de Cauchy em X. Represente-se por \widetilde{x}^* a classe da sucessão de Cauchy (x_j) , isto é, $\widetilde{x}^* = [(x_j)] \in \widetilde{X}$. Vejamos que a sucessão de classes \widetilde{x}_j é convergente para a classe \widetilde{x}^* . Ora, para cada $j \in \mathbb{N}$,

$$\widetilde{d}(\widetilde{x}_j, \widetilde{x}) = \lim_{n \to \infty} d(x_j, x_n),$$

pelo que

$$\lim_{j \to \infty} \widetilde{d}(\widetilde{x}_j, \widetilde{x}) = \lim_{j \to \infty} (\lim_{n \to \infty} d(x_j, x_n)) = \lim_{j, n \to \infty} d(x_j, x_n) = 0,$$

uma vez que a sucessão (x_n) é uma sucessão de Cauchy. Assim se garante que qualquer sucessão de Cauchy em $\varphi(X)$ é convergente para um elemento de \widetilde{X} , o que permite concluir que \widetilde{X} é completo. \square

10.3 Anexo 3. Conjuntos compactos. Coberturas abertas

Sejam (X, τ) um espaço topológico e A um subconjunto de X.

Definição 10.3.1. (Cobertura aberta)

Diz-se que uma família de subconjuntos de X,

$$\mathcal{F} = \{F_i\}_{i \in I},$$

onde $F_i \subseteq X$ para todo o $i \in I$, é uma cobertura aberta do conjunto A, se:

- (i) $\forall i \in I$, $F_i \in \tau$ (F_i é um conjunto aberto);
- (ii) $A \subseteq \bigcup_{i \in I} F_i$.

Uma família de conjuntos $\mathcal{F}' \subseteq \mathcal{F}$ diz-se uma subcobertura de \mathcal{F} , se \mathcal{F}' ainda é uma cobertura de A, isto é, se sendo $\mathcal{F}' = \{F_i\}_{i \in J}$, com $J \subseteq I$, então

$$A \subseteq \bigcup_{i \in J} F_i$$
.

A subcobertura \mathcal{F}' diz-se finita se é constituída por um número finito de conjuntos F_i da cobertura \mathcal{F} , isto é, se

$$\mathcal{F}' = \{F_{i_1}, F_{i_2}, ..., F_{i_k}\}, \text{ para algum } k \in \mathbb{N}.$$

No espaço topológico (X, τ) , diz-se que o conjunto $A \subseteq X$ é compacto se satisfaz a propriedade das coberturas:

Definição 10.3.2. (Conjunto compacto)

O conjunto $A \subseteq X$ diz-se compacto se toda a cobertura aberta de A admite uma subcobertura finita (propriedade das coberturas), isto é, se

"Qualquer que seja \mathcal{F} , uma cobertura aberta de A, $\mathcal{F} = \{F_i\}_{i \in I}$, existe um subconjunto finito $J = \{i_1, i_2, ..., i_k\} \subseteq I$, tal que $A \subseteq \bigcup_{j \in J} F_j$ ".

Considere-se agora a definição de conjunto sequencialmente compacto:

Definição 10.3.3. (Conjunto sequencialmente compacto)

No espaço topológico (X, τ) o conjunto $A \subseteq X$ diz-se sequêncialmente compacto se satisfaz a propriedade das sucessões, isto é, se toda a sucessão (x_n) de elementos de A admitir pelo menos uma subsucessão (x_{n_k}) convergente para um elemento $x^* \in A$.

Note-se que a definição de conjunto sequêncialmente compacto, no contexto dos espaços métricos, coincide com a definição apresentada no curso para conjunto compacto. O objectivo desta secção é precisamente mostrar que as Definições 10.3.2 e 10.3.3, que num espaço topológico genérico são diferentes (em geral), quando colocadas no contexto de um espaços métrico (Y,d) já são equivalentes. Para facilitar a demonstração deste resultado introduz-se de seguida a noção de $conjunto\ contavelmente\ compacto$.

Definição 10.3.4. (Conjunto contavelmente compacto)

No espaço topológico (X, τ) o conjunto $A \subseteq X$ diz-se contavelmente compacto se qualquer seu subconjunto infinito admite pelo menos um ponto de acumulação⁸.

Tem-se o seguinte resultado:

Teorema 10.3.5. Num espaço métrico (Y, d), se A um qualquer subconjunto de Y, são equivalentes as seguintes condições:

- 1. A é sequencialmente compacto (Definição 10.3.3);
- 2. A é contavelmente compacto (Definição 10.3.4);
- 3. A satisfaz a propriedade das coberturas (Definição 10.3.2).

Demonstração: Distribuída pelas três proposições que se seguem. □

Proposição 10.3.6. Sejam (Y, d) um espaço métrico e $A \subseteq Y$. Se A é sequencialmente compacto então A contavelmente compacto.

Demonstração: Seja A um subconjunto sequencialmente compacto de Y e B um qualquer subconjunto de A infinito (quando A é vazio ou finito então A é contavelmente compacto).

Ora, se B é um conjunto infinito então existe necessariamente em B uma sucessão (b_n) de elementos todos distintos. Como (b_n) é uma sucessão de A que é sequencialmente compacto, então (b_n) admite uma subsucessão (b_{n_k}) convergente para um elemento $b \in A$. O ponto b é evidentemente um ponto de acumulação de B, uma vez que existe uma sucessão (b_{n_k}) de elementos todos distintos de B a convergir para b.

Assim se garante que se A é um conjunto sequencialmente compacto então A é contavelmente compacto. \Box

Proposição 10.3.7. Sejam (Y, d) um espaço métrico e $A \subseteq Y$. Se A é contavelmente compacto então A é sequencialmente compacto.

Demonstração: Suponha-se que A é contavelmente compacto e não vazio (caso A seja vazio então é sequencialmente compacto e a demostração está completa). Seja (a_n) uma qualquer sucessão em A. Duas situações podem acontecer:

• Suponha-se que o conjunto dos termos da sucessão,

$$T = \{a_n : n \in \mathbb{N}\},\$$

é finito. Por exemplo, considere-se

$$T = \{t_1, t_2, ..., t_j\}, \text{ com } j \in \mathbb{N}.$$

 $^{^8 \}text{Repare-se}$ que de acordo com a definição, o conjunto \emptyset e os conjuntos finitos são contavelmente compactos

Netas condições, existe um $t_{i_0} \in T$ que se repete infinitas vezes na sucessão (a_n) . Sejam

$$n_1 < n_2 < \dots < n_k < \dots$$

os termos da sucessão (a_n) tal que $a_n=t_{i_0}$, ordenados de forma crescente. A sucessão (a_{n_k}) é então uma subsucessão de (a_n) que é constantemente igual a t_{i_0} e como tal $\lim_{k\to\infty}a_{n_k}=t_{i_0}$.

• Suponha-se agora que o conjunto $T = \{a_n : n \in \mathbb{N}\}$ é infinito. Nestas condições T é um subconjunto infinito de A e então, sendo A contavelmente compacto, T tem pelo menos um ponto de acumulação $b \in A$. Vejamos agora que é possível extrair de (a_n) uma subsucessão convergente para b.

Dado $\delta=1>0,$ como $b\in T'$ (onde T' designa o conjunto dos pontos de acumulação de T), então

$$\exists n_1 \in \mathbb{N}: \ d(a_{n_1}, b) < 1.$$

Dado $\delta=1/2>0$, como $b\in T'$ então $(B_{1/2}(b)\cap T)\setminus\{b\}$ é um conjunto infinito⁹. Como tal

$$\exists n_2 \in \mathbb{N}: n_2 > n_1 \land d(a_{n_2}, b) < 1/2.$$

Mais geralmente, dado $\delta = 1/k > 0$, com $k \in \mathbb{N}$, como $b \in T'$ então $(B_{1/k}(b) \cap T) \setminus \{b\}$ é um conjunto infinito e como tal

$$\exists n_k \in \mathbb{N}: n_k > n_{k-1} \land d(a_{n_k}, b) < 1/k.$$

Assim se constrói uma subsucessão (a_{n_k}) de (a_n) tal que

$$\forall k \in \mathbb{N}, \ d(a_{n_k}, b) < 1/k,$$

logo convergente para b.

Com as duas situações anteriores garantiu-se que qualquer sucessão (a_n) de elementos de A admite pelo menos uma subsucessão convergente para um elemento de A, ou seja, provou-se que A é sequencialmente compacto. \square

Proposição 10.3.8. Sejam (Y, d) um espaço métrico e $A \subseteq Y$. Se A é sequencialmente compacto então A tem a propriedade das coberturas.

Demonstração: Seja A um subconjunto de Y sequencialmente compacto e $\mathcal{F} = \{F_i\}_{i \in I}$ uma qualquer cobertura aberta do conjunto A. Vejamos que \mathcal{F} admite uma subcobertura finita:

• Começemos por provar que,

$$\exists \epsilon > 0 : \forall x \in A, \ \exists i_r \in I, \ B_{\epsilon}(x) \subseteq F_{i_r},$$
 (9)

e a demonstração vai ser feita por redução ao absurdo.

Suponha-se então que a condição (9) não é satisfeita. Nestas condições,

$$\forall \epsilon > 0, \exists x \in A : \forall i \in I, B_{\epsilon}(x) \not\subset F_i.$$

⁹Ver exercício 19

Particularizando na anterior condição, para cada $n \in \mathbb{N}$, $\epsilon = 1/n$, obtém-se uma sucessão (x_n) em A tal que

$$\forall i \in I, \forall n \in \mathbb{N}, \ B_{\perp}(x_n) \nsubseteq F_i. \tag{10}$$

Como A é sequencialmente compacto, então existe (x_{n_k}) , uma subsucessão de (x_n) , e um elemento $x^* \in A$ tal que

$$\lim_{k \to \infty} x_{n_k} = x^*.$$

Se $x^* \in A$ e \mathcal{F} é uma cobertura de A, então $A \subseteq \underset{i \in I}{\cup} F_i$ pelo que

$$\exists i_0 \in I : x^* \in F_{i_0}.$$

Com F_{i_0} é um conjunto aberto, então

$$\exists \delta > 0: B_{\delta}(x^*) \subseteq F_{i_0},$$

e dado que x^* é o limite da sucessão x_{n_k} , então

$$\exists p_0 \in \mathbb{N} : n_k > p_0 \Rightarrow d(x_{n_k}, x^*) < \frac{\delta}{2}.$$

Ora, fixando $n_{k^*}>p_0$ tal que $\frac{1}{n_{k^*}}<\frac{\delta}{2},$ então

$$B_{\frac{1}{n_{k^*}}}(x_{n_{k^*}}) \subseteq B_{\frac{\delta}{2}}(x_{n_{k^*}}) \subseteq B_{\delta}(x^*) \subseteq F_{i_0},$$

o que contraria a condição (10). Assim se garante a veracidade de (9).

• Satisfeita a condição (9), seja $\epsilon > 0$ o número real positivo nela mencionado. Como A é sequencialmente compacto, resulta do exercício 28 que

$$\exists a_1, a_2, ..., a_k \in A : A \subseteq B_{\epsilon}(a_1) \cup B_{\epsilon}(a_2) \cup ... \cup B_{\epsilon}(a_k). \tag{11}$$

Agora, resulta de (9) que existem indices $i_{a_1}, i_{a_2}, ..., i_{a_k} \in I$ tal que

$$\forall j = 1, 2, ..., k, \quad B_{\epsilon}(a_j) \subseteq F_{a_j}. \tag{12}$$

Juntando (11) e (12), vem que

$$A \subseteq F_{a_1} \cup F_{a_2} \cup ... \cup F_{a_k}$$

pelo que a família $\mathcal{F}'=\{F_{a_j}\}_{j=1}^k$ constitui uma subcobertura finta de A, obtida da cobertura \mathcal{F} .

Assim se garante que qualquer cobertura aberta de A admite uma subcobertura finita, ou seja, A satizfaz a propriedade das coberturas. \Box

Finalmente com o resultado que se segue estabelece-se o Teorema 10.3.5.

Proposição 10.3.9. Sejam (Y, d) um espaço métrico e $A \subseteq Y$. Se A satisfaz a propriedade das coberturas então A é contavelmente compacto.

Demonstração: Basta reparar que se A satisfaz a propriedade das coberturas então o espaço métrico (Y, d) é um espaço topológico compacto, resultando do Exercício 116 que A é contavelmente compacto. \square