

1 Publication number:

0 509 512 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92106635.3

(5) Int. Cl.⁵: **G03F 7/00**, G03F 7/029, C08F 2/50

2 Date of filing: 16.04.92

Priority: 17.04.91 JP 85177/91 25.03.92 JP 67021/92

Date of publication of application:21.10.92 Bulletin 92/43

Designated Contracting States:
DE FR GB

Applicant: Nippon Paint Co., Ltd.
 2-1-2, Oyodokita, Kita-ku
 Osaka-shi Osaka-fu(JP)

2 Inventor: Kawabata, Masami 5-5-1-508, Douu-cho Takatsuki-shi, Osaka-fu(JP) Inventor: Sato, Akihiko 12-12-606, Aobaokaminami Suita-shi, Osaka-fu(JP) Inventor: Sumiyoshi, Iwao

2-6-16, Aikawa, Higashiyodogawa-ku

Osaka-shi, Osaka-fu(JP)

Representative: Hansen, Bernd, Dr. Dlpl.-Chem. et al Hoffmann, Eltle & Partner Patent- und Rechtsanwälte Arabellastrasse 4 Postfach 81 04 20 W-8000 München 81(DE)

- (54) Photosensitive composition for volume hologram recording.
- Disclosed is a photosensitive composition for volume hologram recording which is used for recording an interference fringe produced by a laser beam or a light having excellent coherence, as fringes having different refractive index. The composition comprising:
 - (a) a cationic polymerizable compound which is liquid at ambient temperature;
 - (b) a radical polymerizable compound;
 - (c) a radical photopolymerization initiator composition sensitized by a laser beam or a light having excellent coherence which has a specific wavelength to polymerize the ingredient (b); and
 - (d) a cationic photopolymerization initiator composition which shows low photosensitivity to the light having a specific wavelength and is sensitized by a light having the other wavelength to polymerize the ingredient (a), wherein an average refractive index of the ingredient (a) is smaller than that of the ingredient (b). A process for producing the photosensitive composition is also disclosed.

FILED OF THE INVENTION

The present invention relates to a photosensitive composition for volume hologram recording, and a process for producing a volume hologram using the same. More particularly, it relates to a photosensitive composition for volume hologram recording, which provides a hologram having excellent diffraction efficiency, wavelength selectivity, refractive index modulation, film strength, etc., and a process for producing a volume hologram wherein a hologram can be easily produced using the same.

BACKGROUND OF THE INVENTION

10

20

35

40

45

55

A hologram is that in which two lights having the same wavelength (object light and reference light) are allowed to interfere with each other to record the wave front of the objective light as an interference fringe on a photosensitive material. When the hologram is irradiated by a light having the same condition as that of the original reference light, a diffraction phenomenon due to the interference fringe is arisen, and the same wave front as that of the original object light can be reproduced.

The hologram is classified into some kinds according to a recording form of the interference fringe. A so-called volume hologram in which the interference fringe is recorded according to the difference of refractive index in the inside of a recording layer has recently been used for applications such as three-dimensional display, optical element, etc. because of its high efficiency and excellent wavelength selectivity.

As the photosensitive material for recording the volume hologram, for example, silver halide or gelatin dichromate have hitherto been used in the field of art. However, since these materials require wet development or complicated fixing treatment, it is not suitable to produce the hologram industrially. Further, there is a disadvantage that the recorded image may disappear due to moisture.

In order to solve the above disadvantage, U.S. Patent Nos. 3,658,526 and 3,993,485 suggest to prepare a volume hologram using a photopolymer by a simple dry treatment. Further, a mechanism of forming a hologram using a photopolymer is estimated in Applied Optics, B.L. Booth, Vol. 14, No. 3, pages 593-601 (1975); Applied Optics, W.J. Tomlinson & E.A. Chandross, Vol. 15, No. 2, pages 534-541 (1976) and the like. However, these techniques were inferior to the above prior art in refractive index modulation which is one of important properties. U.S. Patent Nos. 4,942,102 and 4,942,112 suggest to improve it by using a non-reactive plasticizer. However, the hologram thus formed is inferior in film strength and the refractive index modulation is not sufficiently improved.

OBJECTS OF THE INVENTION

One object of the present invention is to provide a photosensitive composition for volume hologram recording, which provides a hologram having excellent diffraction efficiency, wavelength selectivity, refractive index modulation, film strength, etc.

Another object of the present invention is to provide a process for producing a volume hologram wherein a hologram can be easily produced using the same.

These objects as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

BRIEF EXPLANATION OF THE INVENTION

Fig 1 is a schematic diagram illustrating a reflection type hologram recording in the first exposure.

Fig 2 is a schematic diagram illustrating a transmission type hologram recording in the first exposure.

SUMMARY OF THE INVENTION

According to the present invention, there is provided a photosensitive composition for volume hologram recording which is used for recording an interference fringe produced by a laser beam or a light having excellent coherence, said composition comprising:

- (a) a cationic polymerizable compound which is liquid at ambient temperature;
- (b) a radical polymerizable compound;
- (c) a radical photopolymerization initiator composition sensitized by a laser beam or a light having excellent coherence which has a specific wavelength to polymerize the ingredient (b); and
- (d) a cationic photopolymerization initiator composition which shows low photosensitivity to the light having a specific wavelength and is sensitized by a light having the other wavelength to polymerize the

ingredient (c), wherein an average refractive index of the ingredient (a) is smaller than that of the ingredient (b).

The present invention also provides a process for producing a volume hologram which comprises irradiating a laser beam or a light having excellent coherence by which a radical photopolymerization initiator composition (c) is sensitized and then irradiating a light having a wavelength which is different from that of the beam or the light having excellent coherence by which a cationic photopolymerization initiator composition (d) is sensitized, to the photosensitive composition for volume hologram recording applied on a substrate.

DETAILED DESCRIPTION OF THE INVENTION

In the present specification, a cationic photopolymerization initiator composition which shows "low photosensitivity" to a laser beam or a light having excellent coherence means those in which the maximum DSC value caused by polymerization initiated by said cationic photopolymerization when a thermal analysis is conducted under the following conditions is not more than 500 μ W per 1 mg of a measuring sample, including 0 μ W:

Apparatus: A differential scanning calorimeter DSC220 and a light source equipment UV-1 (both manufactured by Seiko Denshi Kogyo K.K.) are used in a thermal analysis system SSC5200;

Sample: It is prepared by dissolving the objective cationic photopolymerization initiator composition in a cationic polymerizable compound UVR-6110 (manufactured by Union Carbide Co.) in an amount of 3 % by weight (an organic solvent may be evaporated after the cationic photopolymerization initiator composition is dissolved in a mixture of the organic solvent and the cationic polymerizable compound); and

Irraditaion: A 200 mJ/cm² of light containing the same wavelength as a laser beam or a light having excellent coherence is irradiated by UV-1 equipped with an interference filter (band width: 10nm).

The cationic polymerizable compound (a) used in the present invention is cationically polymerized by Brønsted acid or Rewise acid produced by decomposition of a cationic photopolymerization initiator composition (d) in the composition according to the whole exposure (hereinafter, reffered to as postex-posure) after a radical polymerized compound (b) was polymerized by irradiation of a laser beam or a light having excellent coherence (hereinafter, referred to as the first exposure). As the cationic polymerizable compound (a), those which are liquid at a normal temperature may be used such that polymerization of the radical polymerizable compound (b) is consistently conducted in a composition having comparative low viscosity. As the cationic polymerizable compound (a), for example, there are compounds as described in Chemtech. Oct., J.V. Crivello, page 624, (1980); Japanese Patent Kokai No. 62-149784; Japan Adhesion Society, Vol. 26, No. 5, pages 179-187 (1990) and the like.

Examples of the cationic polymerizable compound (a) include diglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, 1,4-bis(2,3-epoxypropoxyperfluoroisopropyl)cyclohexane, sorbitol polyglycidyl ether, trimethylolpropane polyglycidyl ether, resorcin diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, phenyl glycidyl ether, p-t-butylphenyl diglycidyl ether, diglycidyl adipate, diglycidyl o-phthalate, dibromophenyl glycidyl ether, dibromoneopenthyl, glycol diglycidyl ether, 1,2,7,8-diepoxyoctane, 1,6-dimethylolperfluorohexane glycidyl ether, 4,4'-bis(2,3-epoxypropoxyperfluoroisopropyl)diphenyl ether, 3,4-epoxycyclohexylemethyl-3',4'-epoxycyclohexane carboxylate, 3,4-epoxycyclohexyl oxirane, 1,2,5,6-diepoxy-4,7-methanoperhydroindene, 2-(3,4-epoxycyclohexyl)-3',4'-epoxy-1,3-dioxane-5spirocyclohexane, 1,2-ethylenedioxy-bis(3,4-epoxycyclohexylmethane), 4',5'-epoxy-2'methylcyclohexylmethyl-4.5-epoxy-2-methylcyclohexane carboxylate, ethylene glycol-bis(3,4-epoxycyclohexane carboxylate), bis(3,4-epoxycyclohexylmethyl)adipate, di-2,3-epoxycyclopentyl ether, vinyl-2chloroethyl ether, vinyl-n-butyl ether, triethylene glycol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether, trimethylolethane trivinyl ether, vinylglycidyl ether, compounds represented by the formulas:

55

50

25

[wherein n is an integer of 1 to 5] and

$$R_{4-m}-C$$
 CH_{2} $\{-0-C-(CH_{2})_{4}\}$ $\{-0-C-(CH_{2})_{4}\}$

[wherein m is 3 or 4, R is ethyl or a hydroxymethyl group and n is as defined above] and the like, and one or more sorts of them may be used.

The radical polymerizable compound (b) used in the present invention may be those containing at least one ethylenically unsaturated double bond in a molecule, preferably. Further, an average refractive index of the radical polymerizable compound (b) is larger than that of the above cationic polymerizable compound (a), and difference is preferably larger than 0.02. When the average refractive index is smaller than that of the compound (a), refractive index modulation becomes insufficient, and it is not preferred. Examples of the radical polymerizable compound (b) include acrylamide, methacrylamide, styrene, 2-bromosryrene, phenyl acrylate, 2-pheoxyethyl acrylate, (acryloxyethyl)naphthalene dicarboxylate monoester, methylpheoxyethyl acrylate, nonylphenoxyethyl acrylate, β-acryloxyetyl hydrogen phthalate, phenoxy polyethylene glycol acrylate, 2,4,6-tribromophenyl acrylate, (2-methacryloxyethyl)diphenate monoester, benzyl acrylate, 2,3dibromophenyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-naphthyl acrylate, N-vinylcarbazole, 2-(9carbazole)ethyl acrylate, triphenylmethyl triacrylate, 2-(tricyclo[5,2,102.6]dibromodecylthio)ethyl acrylate, S-(1-naphthylmethyl)thioacrylate, dicyclopentanyl acrylate, methylene bisacrylamide, polyethylene glycol diacrylate, trimethylpropane triacrylate, pentaerythritol acrylate, (2-acryloxyethyl) (3-acryloxypropyl-2-hydroxy)diphenate, (2-acryloxyethyl)(3-acryloxypropyl-2-hydroxy)2,3-naphthalenedicarboxylate, (2-acryloxyethyl)(3acryloxypropyl-2-hydroxy)4,5-phenanthrenedicarboxylate diester, dibromoneopenthyl glycol diacrylate, dipentaerythritol hexaacrylate, 1,3-bis-[2-acryloxy-3-(2,4,6-tribromophenoxy)propoxy)benzene, diethylene dithioglycol diacrylate, 2,2-bis(4-acryloxyethoxyphenyl)propane, bis(4-acryloxydiethoxyphenyl)methane, bis-(4-acryloxyethoxy-3,5-dibromophenyl)methane, 2,2-bis(4-acryloxyethoxyphenyl)propane, acryloxyethoxy-3,5-dibromophenyl)propane, bis(4-acryloxyethoxyphenyl)sulfone, bis(4-acryloxydiethoxbis(4-acryloxypropoxyphenyl)sulfone, bis(4-acryloxyethoxy-3,5-dibromophenyl)sulfone, vphenyl)sulfone, compounds wherein the above-described acrylate is changed to methacrylate, ethylenically unsaturated double bond-containing compounds having at least two S atoms in a molecule as described in Japanese Patent Kokai Nos. 2-247205 and 2-261808 and the like, and one or more sorts of them may be used.

The radical photopolymerization initiator composition (c) used in the present invention may be those in which the above radical polymerizable composition (b) is polymerized by an active radical which is formed by the first exposure for the production of a hologram. As the radical photopolymerization initiator composition (c), for example, there can be used known compositions described in U.S. Patent Nos. 4,766,055, 4,868,092, 4,965,171, Japanese Patent Kokai Nos. 54-151204, 58-15503, 58-29803, 59-189340, 60-76735, 1-28715, Japanese Patent Application Nos. 3-5569, Proceedings of Conference on Radiation Curing Asia, pages 461-477, 1988 and the like.

35

The term "photopolymerization initiator composition" used in the present specification means that a sensitizer which is generally an ingredient absorbing a light can be used in combination with an active radical-generating compound or acid-generating compound. As the sensitizer in the radical photopolymerization initiator composition, a color compound (e.g. organic dyestuff, etc.) is normally used for absorbing a visible laser light. When a colorless and transparent hologram is requested (e.g. using a head up display of car, etc.), it is preferred to use a cyanine dye as described in Japanese Patent Application No, 58-29803, Japanese Patent Kokai No. 1-287105, Japanese Patent Application No. 3-5569 and the like as the sensitizer. The cyanine dye is liable to decompose by a light and, therefore, a dye in the hologram is decomposed by standing it under postexposure in the present invention, or a room light or sunlight for several hours or days, which results in no absorption of a visible light to give a colorless and transparent hologram. Examples of the cyanine dye include anhydro-3,3'-dicarboxymethyl-9-ethyl-2,2'-thiacarbocyanine anhydro-3-carboxymethyl-3',9-diethyl-2,2'-thiacarbocyanine-betaine, 3,3',9-triethyl-2,2'-thiacarbocyanine iodide, 3,9-diethyl-3'-carboxymethyl-2,2'-thiacarbocyanine iodide, 3,3',9-triethyl-2,2'-(4,5,4',5'dibenzo)thiacarbocyanine iodide, 2-[3-(3-ethyl-2-benzothiazolidene)-1-propenyl]-6-[2-(3-ethyl-2-benzothiazolidene)ethylideneimino]-3-ethyl-1,3,5-thiadiazolium iodide, 2-[[3-allyi-4-oxo-5-(3-n-propyi-5,6dimethyl-2-benzothiazolidene)-ethylidene-thiazolidene]methyl]3-ethyl-4,5-diphenylthiazolinium 1,1',3,3,3',3'-hexamethyl-2,2'-indotricarbocyanineiodide, 3,3'-diethyl-2,2'-thiatricarbocyanine perchlorate,

anhydro-1-ethyl-4-methoxy-3'-carboxymethyl-5'-chloro-2,2'-quinothiacyanine betaine, anhydro-5,5'-diphenyl-9-ethyl-3,3'-disulfopropyloxacarbocyanine hydroxide triethylamine salt and the like, and one or more sorts of them may be used.

As the active radical-generating compound which may be used in combination with the cyanine dye, there are diaryl iodonium salts as described in Japanese Patent Kokai Nos. 58-29803, 1-287105, Japanese Patent Application No. 3-5569, 2,4,6-substituted-1,3,5-triazines and the like. When high photosensitivity is requested, it is particularly preferred to use diaryl iodonium salts. Examples of the above diaryl iodonium salts include chloride, bromide, tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate, hexafluoroantimonate and the like (e.g. diphenyliodonium, 4,4'-dichlorodiphenyl iodonium, (4-methoxyphenyl)-phenyliodonium, (4-octyloxyphenyl)phenyliodonium, 4,4'-dimethoxydiphenyliodonium, 4,4'-ditertiary butyl-diphenyliodonium, 3,3'-dinitrodiphenyliodonium, etc.). Examples of the above-described 2,4,6-substituted-1,3,5-triazines include 2-methyl-4,6-bis(trichloromethyl)-1,3,5-triazine, 2,4,6-tris(trichloromethyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(p-methoxyphenylvinyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-1,3,5-triazine and the like.

The cationic photopolymerization initiator composition (d) used in the present invention may be those which show low photosensitivity to the first exposure, which are sensitized with a postexposure irradiating a light having a wavelength which is different from that of the first exposure to form Brønsted acid or Lewise acid which polymerizes the above cationic polymerizable compound (a). The present invention is characterized in that a cationic polymerizable compound which is liquid at ambient temperature hardly react during polymerizing a radical polymerizable compound by the irradiation of a laser beam or a light having excellent coherence. Thereby, refractive index modulation which is larger in comparison with the prior art can be obtained. Accordingly, as the cationic photopolymerization initiator composition, those in which no cationic polymerizable compound is polymerized during the first exposure is particularly preferred. As the cationic photopolymerization initiator composition (d), for example, there are those as described in "UV Curing", Science and Technology, pp. 23-76, edited by S. Peter Pappas; A Technology Marketing Publication; and Commemts Inorg. Chem., B. Klingert, M.Riediker and A. Roloff, Vol. 7, No. 3, pp.109-138 (1988), and one or more sorts of them may be used.

As the particularly preferable cationic photopolymerization initiator composition (d), for example, there are diaryliodonium salts, triarylsulfonium salts, iron allene complex and the like.

As the preferred diaryliodonium salts in the cationic photopolymerization initiator composition (d), for example, there are tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate and hexafluoroantimonate of iodonium described as to the above radical photopolymerization initiator composition (c). As the preferred triaryl sulfonium salts, for example, there are tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate and hexafluoroantimonate of sulfonium (e.g. triphenylsulfonium, 4-tertiarybutyltriphenylsulfonium, tris(4-methylphenyl)sulfonium, tris(4-methoxyphenyl)sulfonium, 4-thiophenyltriphenylsulfonium, etc.).

In the photosensitive composition of the present invention, if necessary, additives such as polymeric binder, thermopolymerization inhibitor, silane coupling agent, plasticizer, colorant and the like may be used in combination. The polymeric binder may be used for improving film-forming properties of the composition before formation of hologram and uniformity of film thickness, or for keeping the interference fringe formed by radical polymerization stable until postexposure. The polymeric binder may be those which have good compatibility with the cationic polymerizable compound or radical polymerizable compound, and example thereof include chlorinated polyethylene, polymethyl metacrylate, copolymer of methyl methacrylate with the other acrylic alkyl ester, copolymer of vinyl chloride with acrylonitrile, polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyvinyl pyrrolidone, ethyl cellulose, acetyl cellulose and the like. The polymeric binder may contain a reactive group (e.g. cationic polymerizable group, etc.) at the side chain or main chain thereof.

In the photosensitive composition of the present invention, the amount of the cationic polymerizable compound (a) is preferably 2 to 70 % by weight (particularly 10 to 50 % by weight), the amount of the radical polymerizable compound (b) is preferably 30 to 90 % by weight (particularly 40 to 70 % by weight), the amount of the radical photopolymerization initiator composition (c) is preferably 0.3 to 8 % by weight (particularly 1 to 5 % by weight) and the amount of the cationic photopolymerization initiator composition (d) is preferably 0.3 to 8 % (particularly 1 to 5 %), based on the total weight of the composition.

The photosensitive composition of the present invention may be prepared by a normal method. For example, it can be prepared by formulating the above ingredients (a) to (d) and optional ingredients as they are or formulating them in a solvent (e.g. ketone solvents such as methyl ethyl ketone, acetone, cyclohexanone and the like; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol diacetate and the like; aromatic solvents such as toluene, xylene and the like; cellosolve solvents such as methylcellosolve, ethyl cellosolve, butyl cellosolve and the like; alcohol solvents such as methanol, ethanol,

propanol and the like; ether solvents such as tetrahydrofuran, dioxane and the like; halogen solvents such as dichloromethane, chloroform; etc.) and mixing in a dark place, for example, using a high speed stirrer.

In the production of the hologram of the present invention, a recording layer (2) can be formed by applying the above photosensitive composition on a transparent substrate (e.g. glass sheet (1), polyethylene terephthalate film, polyethylene film, acrylic sheet, etc.) and optionally drying. The amount of coating may be appropriately selected, for example, the dry coating weight may be 1 to 50 g/m². Further, a protective layer (e.g. polyethylene terephthalate film, polyethylene film (3), polypropylene film, etc.) is normally provided on this recording layer (2). In the other method for preparing a three-layer article of which intermediate layer is a recording layer of the composition of the present invention, for example, a recording layer (2) is formed between two polyethylene terephthalate films, one of which is subjected to a treatment which enables easy peeling, and one of the films may be peeled off upon use to laminate the surface on an appropriate substrate. For example, the composition of the present invention can also be poured between two glass sheets.

The recording layer (2) thus prepared polymerizes with the above radical polymerizable compound (b) by a laser beam (4) or light having excellent coherence (e.g. a light having a wavelength of 300 to 1200 nm), using a holography exposing apparatus, thereby, an interference fringe is recorded in the inside. In the composition of the present invention, a diffracted light due to the recorded interference fringe can be obtained at this stage to form a hologram. However, in order to further polymerize the unreacted cationic polymerizable compound (a), a light as the postexposure, by which the cationic photopolymerization initiator composition (d) is sensitized, is irradiated to the whole hologram to obtain a hologram of the present invention. In this case, the unreacted radical polymerizable compound may be cured, simultaneously. Further, by treating a recording layer with heat or infrared rays before postexposure, diffraction efficiency, peak wavelength or half-value of diffracted light, band width and the like can be changed.

For example, the above volume hologram can be used for lens, diffraction grating, interference filter, head up display apparatus, general three-dimensional display, binder for optical fiber, optical polarized light device for facsimile, memory material such as ID card, windowpane for building, advertisement medium and the like.

According to the photosensitive composition for volume hologram recording, a volume hologram which is superior in diffraction efficiency, wavelength selectivity, defractive index modulation, film strength and the like can be easily produced.

The following Examples, Comparative Examples and Reference Examples further illustrate the present invention in detail but are not to be construed to limit the scope thereof.

By using a photosensitive composition in each Example and Comparative Example described below, a test sheet was made. Then, the test sheet was exposed to obtain each hologram, and determination of physical properties were conducted by the following method.

Preparation of test sheet

A predetermined amount of a radical photopolymerization initiator composition (c) and a cationic photopolymerization initiator composition (d) were dissolved or dispersed in ethanol (1.5 g) and to this were added methyl ethyl ketone (0.7 g) and a predetermined amount of a cationic polymerizable compound (a), a radical polymerizable compound (b) and a polymeric binder. Then, the mixture was stirred and filtered to obtain a photosensitive solution. This photosensitive solution was applied on a glass sheet (16cm × 16cm) using an applicator, followed by drying at 60°C for 5 minutes. Further, a polyethylene film (LUPIC LI, manufactured by Tonen Kagaku K.K.) was laminated thereon using a roller for laminating and the resulting sheet was cut into pieces in size of 3cm × 4cm to form a test sheet.

Exposure

The first exposure was normally conducted by a light (514.5 nm) using an argon laser. A recording method of a reflection type hologram is shown in Fig 1 and that of a transmission type hologram is shown in Fig 2. In both cases, a light intensity of a light beam at the surface of a test sheet is 3 mw/cm² and exposure time is 10 or 30 seconds.

After completion of the first exposure, a light of 15 W low-pressure mercury vapour lamp is irradiated from the polyethylene film side for 5 minutes, as postexposure.

Evaluation

The diffraction efficiency of a reflection type hologram was determined by measuring a reflection rate of a hologram, using a spectrophotometer UV-2100 (manufactured by Shimazu Seisakusho K.K.) equipped with an intergrating sphere reflector ISR-260. The diffraction efficiency of a transmission type hologram was determined by measuring a transmission rate of a hologram, using the above-described spectrophotometer. Further, a film thickness of the part at which diffraction efficiency is determined was determined using a film thickness gauge betascope 850 (manufactured by Fischer Co.). The defractive index modulation (half-value of diffraction index change of interference fringe) was determined by calculating from the diffraction efficiency and film thickness thus obtained. The calculation formula described in "Coupled Wave Theory for Thick Hologram Graings", H. Kogelnik, pages 2909-2947 (1969) was used. The value of the diffraction index modulation does not depend upon the film thickness and diffraction index modulation ability of the composition can be compared using this value.

In order to compare a mechanical strength, a pencil hardness test was conducted as to a part of the hologram.

Examples 1 to 9

In these Examples, a reflection type hologram was prepared, using various cationic polymerizable compounds (a). As the radical polymerizable compound (b), AEPM was used. As the radical photopolymerization initiator composition (c), a combination of DYE-1 and DPI*SbF₆ was used. The above-described DPI*SbF₆ was also used as the cationic photopolymerization initiator composition. The first exposure was conducted at 514.5 nm for 10 seconds in all Examples.

The amount of each ingredient and evaluation results of the hologram are shown in Table 1. In all Examples, a transparent reflection type hologram suitable for practical use was obtained.

25

30

35

40

45

50

٠	-
	٥

	Formulation of photosensitive composition, mg	f phot	osens i t	ive co	mposition, mg	•	Evaluation results of reflection type hologram	lection type	hologram
	Cationic	AEPU	DYE-1	÷ G	Other .	Film	Peak wavelength	Diffraction	Defractive
	polymerizable			SbF.	ingredient	thickness	of diffracted	efficiency	index
	compound(a)					(шп)	light(naa)	(%)	modulation
EX.	Ex. 1 CAT-1, 900	006	ນ	09	P-1, 500	16.5	520	32	0.0054
Ex. 2	Ex. 2 CAT-2, 900	900	ည	99	P-1, 500	16.1	516	54	0. 0081
E. 3	Ex. 3 CAT-3, 900	900	5	09	P-1, 500	19.6	220	18	0.0050
Ex. 4	CAT-4, 900	006	5	99	P-1, 500	15.5	213	26	0.0050
EX. 5	Ex. 5 CAT-5, 900	006	S	09	P-1, 500	17.4	515	41	0.0060
E. 6	Ex. 6 CAT-6, 900	006	S	09	P-1, 500	15.3	515	46	00075
고	Ex. 7 CAT-7, 900	006	5	09	P-1, 500	15. 5	524	44	0.0071
Ex. 8	CAT-8, 900	006	5	09	P-1, 500	14.7	584	24	0.0050
Ex. 9	CAT-9, 900	006	2	09	P-1, 500	15.8	539	33	0. 0058

Examples 10 to 13

According to the same manner as that described in Examples 1 to 9 except that CAT-1 is used as the cationic polymerizable compound (a) and a kind and combination of the radical polymerizable compound (b)

was changed, a reflection type hologram was prepared.

The amount of each ingredient and evaluation results of the hologram was shown in Table 2. In all Examples, a transparent reflection type hologram suitable for practical use was obtained.

	Formulation	ation of photos	ensitiv	e comp	osition, mg	Evaluation	of photosensitive composition, mg Evaluation results of reflection type hologram	ction type ho	logram
	CAT-1	CAT-1 Radical	DYE-1	DYE-1 DPI+ Other	Other	Fila	Peak mavelength Diffraction Defractive	Diffraction	Defractive
		polymerizable		SbF	SbF ₆ ingredient		thickness of diffracted efficiency	efficiency	index
		compound(b)				(n m)	light(nm)	(%)	modulation
Ex 10	900	BMPP, 900	5	09	P-1, 500	4.6	515	22	0.0165
:		BMPP, 450	и	US	D_1 E00	0 13	£17.	26	0000
<u>:</u>	200	AEPIN, 450		8	1, 300			90	0,000
	6	BAPP, 450	u	9	. 1		601	ç	0
EX. 14)) 	AEPN, 450	n	8	r-1, 300	11.4	176	n c	0.0009
	6	DMMD, 450	ū	5	1 500	10 E	663	10	. 0055
<u>ਨ</u>) } *	AEPIK, 450	ი	8	00C -1-L	6.7	335	17	u. vuos

Compartive Examples 1 to 5

These are Comparative Examples against the above-described Examples 1 to 13, which show the fact that, when the cationic polymerizable compound (a) and radical polymerizable compound (b) are not used in a proper combination, a reflection type hologram is scarcely obtained, or performances of the resulting hologram is insufficient. The amount of each ingredient and evaluation results of the hologram are shown in Table 3. In the present invention, when the defractive index of the cationic polymerizable compound (a) is larger than that of the radical polymerizable compound (b), as shown in Comparative Examples 3 to 5, the defractive index modulation becomes remarkably inferior. It is considered that the mechanism of the present invention for forming the interference fringe is different from that of E.A. Chandross et al..

20 25 30

35

40

45

50

5

10

15

Defractive modulation 0.0018 0.0011 Evaluation results of reflection type hologram 0 Peak wavelength Diffraction efficiency 0 (% of diffracted light(mm) 533 520 1 ١ thickness 14.5 (m n) 4. 12. 53 ₹. ingredient 59 59 50 쭚 50 **Other** P-1. P-1. P-1, 8 photosensitive composition, PI: ස 8 8 89 8 DYE-1 Ŋ S 2 ß Ŋ polymerizab 900 compound(b) **AEPIA**, 1800 Radical HDDA, Formulation of polymerizable 900 compound(a) CAT-1, 1800 CAT-10, 900 CAT-10, 900 Cationic CAT-1, 2 Com Š Com

Examples 14 to 18

Table 3

A reflection hologram was prepared using various radical photopolymerization initiator composition (c) and cationic photopolymerization initiator composition (d), according to the same manner as that described

in Example 1 except that the first exposure was conducted using a light (488 nm) of an argon laser and the exposure time of Examples 16 and 18 was 30 seconds. The amount of each ingredient and evaluation results of the hologram are shown in Table 4. Since DPI*SbF₆ and DPI*PF₆ in Examples 14 and 15 can be used for both active radical-generating compound in the radical photopolymerization initiator composition (c) and cationic photopolymerization initiator composition (d), half of the amount were described in both items of the above compositions, respectively. A hologram of Example 15 was colored to yellow by a sensitizer DYE-3, and a reflection type hologram which is suitable for practical use was obtained in all Examples.

0.0056

32

₹.

500

TPS·PF₈, 30

900

8

<u>~</u>

껓

DP1-C1, 30

0.0041

3

517

14.0

20

900

∞

젔

5	hologram	Defractive	index	modulation			0.0065			0.0069			0.0038	
10	lection type	Diffraction	efficiancy	(%	•		23			36			. 11	
	Evaluation results of reflection type hologram	Peak wavelength Diffraction	polymerization polymerization ingredient thickness of diffracted	light(nm)			518		490	(488nm	exposure)		514	
20	Evaluation	Film Pe	thickness of	(ma)			11.2			13.3			16.3	
25	шg	Other	ingredient	-			P-1, 500			P-1, 500			P-1, 500	
30	Formulation of photosensitive composition, mg	CAT-1 AEPM Radical photo- Cationic photo- Other	merization	initiator	osition(d)		DPI-SbF, 30		L	DP1 - SbF B, 30			TPS-PF, 30	
35	osensitive	photo- Cati	zation poly	r init	composition(c) composition(d)	- 2	i	30	2		30	.5	TPS-	
40	on of photo	Radical	po ymer i	initiator	composit	DYE-2, 5		DPI-SbFe, 30	DYE-3	NPG 30	DP1.SbFs. 30	DYE-1, 5		BTTB, 30
45	mulati	AEP					906			900			900	
og Table 4	For	CAT-1					900			006			906	
Tab							Ex. 14			Ex. 15			전 16	

55 Examples 19 and 20

According to the same manner as that described in Examples 1 and 11 except that no polymeric binder P-1 was used, a reflection type hologram was prepared. The evaluation results of the hologram are shown

in Table 5. In these Examples, since a viscosity of the solution becomes smaller than that of the solution wherein a polymeric binder is used, it was slightly difficult to control the film thickness, although refractive index modulation which is the same as that obtained when P-1 was used can be obtained in both Examples.

5 Examples 21 and 22

In these Examples, a transmission type hologram was prepared. A test sheet which is the same as that used in Examples 1 and 11 was used. The evaluation results of the hologram thus obtained are shown in Table 5. In all Examples, a transmission type hologram suitable for practical use was obtained.

Example 23

10

35

40

45

50

55

According to the same manner as that described in Example 1 except that the amount of CAT-1 and AEPM was respectively changed to 100 mg and 1700 mg, a reflection type hologram suitable for practical use was obtained. The evaluation results are as follows.

Film thickness: 17.1 µm

Peak wavelength of diffracted light: 510 nm

Diffraction efficiency: 25%

Defractive index modulation: 0.0045

20 Pencil hardness: 3H

Example 24

According to the same manner as that described in Example 1 except that DYE-4 was used instead of DYE-1 and a light of 632.8 nm (light intensity of a light beam: 0.15 mW/cm²) was irradiated for 60 seconds using a helium neon laser as the first exposure, a reflection type hologram which can diffract a red light was obtained. The determination results are as follows.

Film thickness: 17.4 µ

Peak wavelength of diffracted light: 625 nm

30 Diffraction efficiency: 32 %

Refractive index modulation: 0.0063

Tab	Table 5						
		Type of	Film	Peak Wavelength Diffraction Defractive	Diffraction	Defractive	
	Formulation of photosensitive composition hologram	hologram	thickness	thickness of diffracted efficiency	efficiency	index	
			(m n)	light(nm)	(%	modulation	
Ex. 19	Ex. 19 same as that of Ex. 1	Reflection	8.7	525	8	0.0046	
	except that p-1 is excluded						
Ex. 20	Ex. 20 same as that of Ex. 11	Reflection	7.5	518	13	0.0070	
	except that p-1 is excluded			-			
Ex. 21	Ex. 21 same as that of Ex. 1	Transmission 12.1	12.1	555	=	0.0048	
Ex. 22	Ex. 22 same as that of Ex. 1	Transmission 11.7	11.7	555	82	0.0062	

The pencil hardness of a hologram obtained in the above Examples 1,11,19,22 and 23 was 3H, and that so of a hologram obtained in Example 7 was 2H.

Further, when DPI $^{\circ}$ SbF $_{6}$ and TPS $^{\circ}$ PF $_{6}$ used as the cationic photopolymerization initiator composition in the above Examples were subjected to a thermal analysis test, respectively and, as a result, all maximum DSC value was about 0 μ W. This value is that from which a DSC value (heat of absorption) obtained when

UVR-6110 was tested alone was deducted to get the value caused by photopolymerization.

Reference Examples 1 to 6

These are results of a test which was conducted in order to compare a hologram of the present invention with that of the prior art. According to the same manner as that described in Example 1 except some changes mentioned in Table 6, a hologram was prepared. The evaluation results of the hologram are shown in Table 6.

_	Table 6							
ж п.	Formulation of photosensitive composition (mg)	Remarks	Type of hologram	Film thickness (µm)	Film Peak wavelength Diffraction Defractive Pencil thickness of diffracted efficiency index hardne (ym) (ym) modulation	Diffraction efficiency (%)	Defractive index modulation	Pencil hardness
ш×-	PVAC/NVC/POEA/TEGD/DYE-1/DPI+SbF, Solvent 1230 600 230 230 5 60 3.7g	Solvent :MEK 3.7g	Reflection 10.5	10.5	-	0	0	89)
m ×.~	PVAC/NVC/POEA/TMPT/DYE-1/DPI-SbF ₆ Solvent :MEX :MEX 1400 290 560 50 5 60 3.7g	Solvent :MEK 3.7g	Reflection	9. 1	518 470*1	4 11#11	0.0031	58 F#1
m x,w	BMA/EGDM/PNA/DYE-1/DPI·SbF ₆ 770 770 770 5 60	2 ‡	Reflection 15.0	15.0	1	0	6	#3
шҳҽ	P-1/AEPM/DES/DYE-1/DP1·SbF. 500 900 900 5 60		Reflection	26.0	486	26	0. 0030	89)
m x,ru	CAB/POEA/TEGD/OYE-1/DP1·SbF ₆ 1100 830 370 5 60	Solvent : MEK 5. 7g	Trans- -mission	10.9	480	ထ	0.0034	89)
ш х'ю	same as that of REF.EX.3	same as that of REF. EX. 3	Trans- -mission	13.0	1	0	0	#3
ş	Note) *1 After completion of postexposure, a hologram was subjected to a heattreatment at 150% for 90 minutes	xposure,	a hologram	was subjec	ted to a heattre	Batment at 15	Of for 90 m	inites

Overall exposure was conducted before laser exposure. solvent was used. 윤 **4**5

*3 ... No cured film was obtained.

In Tables 1 to 6, abbreviations used were as follows. A refractive index was measured using an Abbé's refractometer. A refractive index is given in parentheses.

Cationic polymerizable compound (a)

5

10

15

20

25

30

35

50

CAT-1 (1.498): 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate UVR-6110, manufac-

tured by Union Carbide Co.

CAT-2 (1.490): Celloxide 2081, manufactured by Daiseru Kagaku K.K.

CAT-3 (1.485): Celloxide 2083, manufactured by Daiseru Kagaku K.K.

CAT-4 (1.501): Epolead GT-300, manufactured by Daiseru Kagaku K.K.

CAT-5 (1.495): Epolead GT-302, manufactured by Daiseru Kagaku K.K.

CAT-6 (1.492): Sorbitol polyglycidyl ether, Denacol EX-614B, manufactured by Nagase Kasei Kogyo K.K.

CAT-7 (1.487): Pentaerythritol polyglycidyl ether, Denacol EX-411, manufactured by Nagase Kasei Kogyo K.K.

CAT-8 (1.462): Neopentyl glycol diglycidyl ether, Denacol EX-212, manufactured by Nagase Kasei Kogyo K.K.

CAT-9 (1.468): Celloxide 3000, manufactured by Daiseru Kagaku Kogyo K.K.

CAT-10 (1.601): Dibromphenyl glycidyl ether, Denacol EX-147, manufactured by Nagase Kasei Kogyo K.K.

15

20

25

35

40

5

10

Radical polymerizable compound (b)

AEPM (1.539): Bis(4-acryloxydiethoxyphenyl)methane

BMPP (1.585): 2,2-Bis(3,5-dibromo-4-methacryloxyethoxyphenyl)propane

BAPP (1.590): 2,2-Bis(3,5-dibromo-4-acryloxyethoxyphenyl)propane

PETA (1.484): Pentaerythritol tetraacrylate

HDDA (1.480): 1,6-Hexanediol diacrylate

DMMD (1.546): (2-Methacryloxyethyl)(3-methacryloxypropyl-2-hydroxy)dipehnate

NVP: N-vinylcarbazole

POEA: 2-Phenoxyethyl acrylate

TMPT: Trimethylolpropane triacrylate

BMA: n-Butyl methacrylate

EGDM: Ethylene glycol dimethacrylate

30 Radical photopolymerization initiator composition (c), Cationic photopolymerization initiator composition (d)

DYE-1: 3,9-Diethyl-3'-carboxymethyl-2,2'-thiacarbocyanine iodide

DYE-2: Anhydro-1-ethyl-4-methoxy-3'-carboxymethyl-5'-chloro-2,2'-quinothiacyanine betain

DYE-3: 3,3'-Carbonylbis(7-diethylaminocumarin)

DYE-4: 2-[3-(3-ethyl-2-benzothiazolidene)-1-propenyl]-6-[2-(3-ethyl-2-benzothiazolidene)-ethylideneimino]-3-ethyl-1,3,5-thiadiazolium iodide

NPG: N-Phenylglycine

BTTB: 3,3',4,4'-Tetra(t-butylperoxycarbonyl)benzophenone

TCMT: 2,4,6-Tris(trichloromethyl)-1,3,5-triazine

DPI*Cl: Diphenyliodonium chloride

 $\label{eq:continuous} DPI^{\bullet}SbF_{6}\colon Diphenyliodonium\ hexafluoroantimonate \\ TPS^{\bullet}PF_{6}\colon Triphenylsulfonium\ hexafluorophosphate$

Other ingredients

45

P-1: Copolymer of methyl methacrylate/ethyl acrylate/2-hydroxypropyl methacrylate (copolymerization ratio: 88/2/10), Mw:50,000

PVAC: Polyvinyl acetate (Aldrich. No. 18,948-0)

CAB: Cellulose acetate butyrate (Aldrich. No.18,096-3)

TEGD: Triethylene glycol dimethyl ether

DES: Diethyl sebacate PNA: 1-Phenyl naphthalene

Claims

55

50

1. A photosensitive composition for volume hologram recording which is used for recording an interference fringe produced by a laser beam or a light having excellent coherence, as fringes having different refractive index, said composition comprising:

- (a) a cationic polymerizable compound which is liquid at ambient temperature;
- (b) a radical polymerizable compound;

5

30

35

40

45

50

55

- (c) a radical photopolymerization initiator composition sensitized by a laser beam or a light having excellent coherence which has a specific wavelength to polymerize the ingredient (b); and
- (d) a cationic photopolymerization initiator composition which shows low photosensitivity to the light having a specific wavelength and is sensitized by a light having the other wavelength to polymerize the ingredient (a), wherein an average refractive index of the ingredient (a) is smaller than that of the ingredient (b).
- 70 2. The composition according to claim 1, wherein the radical photopolymerization initiator composition contains a photosensitizer and an active radical-generating compound.
 - 3. The composition according to claim 2, wherein the sensitizer is cyanine dye.
- 15 4. The composition according to claim 2, wherein the active radical-generating compound is diaryliodonium salt.
 - 5. The composition according to claim 1 which further comprises a polymeric binder.
- 20 6. A process for producing a volume hologram which comprises irradiating a laser beam or a light having excellent coherence by which a radical photopolymerization initiator composition (c) is sensitized and then irradiating a light having a wavelength which is different from that of the beam or the light having excellent coherence by which a cationic photopolymerization initiator composition (d) is sensitized, to the photosensitive composition for volume hologram recording according to claim 1 applied on a substrate.

EUROPEAN SEARCH REPORT

Application Number

92 10 6635 EP

7. D	of relevant pi EP-A-0 425 440 (CIBA-Gi * page 5, line 7 - line * page 7, line 9 - line EP-A-0 324 482 (E.I. D. COMPANY) * claim 9 * EP-A-0 344 911 (MINNESOMANUFACTURING COMPANY) * page 13, line 14 - lier page 13, line 35 - lier page 12, line 20 - lier page 12, line 20 - lier page 12, line 20 - lier page 12, line 28 - lier page 12, line 31 - lier page 12, line 31 - lier page 13, line 31 - lier page 14, line 31 - lier page 15, line 31 - lier page 16, lier pag	EIGY AG) e 27 * e 12; claim 5 * U PONT DE NEMOURS AND TOTA MINING AND Tine 16 * Tine 56; claims * TA MINING AND Tine 27; claims 1,10 * TSAO ET AL.) Tine 60; claims * ARTON)	1,5 1-6 1-6 1-6	APPLICATION (Int. CL5) G03F7/00 G03F7/029 C08F2/50 TECHNICAL FIELDS
, D	EP-A-0 324 482 (E.I. D COMPANY) * claim 9 * EP-A-0 344 911 (MINNESS MANUFACTURING COMPANY) * page 13, line 14 - 1 * page 13, line 35 - 1 EP-A-0 188 380 (MINNESS MANUFACTORING COMPANY) * page 12, line 20 - 1 " us-A-4 156 035 (JH. 1 * column 5, line 28 US-A-4 227 978 (R.W. BA	U PONT DE NEMOURS AND THE 16 * Ine 16 * Ine 56; claims * OTA MINING AND Ine 27; claims 1,10 * Ine 50; claims *	1-6 1-6	
	COMPANY) * claim 9 * EP-A-0 344 911 (MINNESC MANUFACTURING COMPANY) * page 13, line 14 - 1 * page 13, line 35 - 1 EP-A-0 188 380 (MINNESC MANUFACTORING COMPANY) * page 12, line 20 - 1 US-A-4 156 035 (JH. 1 * column 5, line 28 - 1 US-A-4 227 978 (R.W. B/	ora Mining AND ine 16 * ine 56; claims * ora Mining AND ine 27; claims 1,10 * ine 27; claims 1,10 * ine 60; claims *	1-6 1-6	TECHNICAL PIELDS
	MANUFACTURING COMPANY) * page 13, line 14 - 1: * page 13, line 35 - 1: EP-A-0 188 380 (MINNESO MANUFACTORING COMPANY) * page 12, line 20 - 1: US-A-4 156 035 (JH. 1: * column 5, line 28 - : US-A-4 227 978 (R.W. B/	ine 16 * ine 56; claims * DTA MINING AND ine 27; claims 1,10 * ISAO ET AL.) line 60; claims * ARTON)	1-6	TECHNICAL PIELDS
	* page 13, line 35 - 1: EP-A-0 188 380 (MINNESO MANUFACTORING COMPANY) * page 12, line 20 - 1: """ US-A-4 156 035 (JH. 1: """ """ Column 5, line 28 - 1: "" US-A-4 227 978 (R.W. B/	ine 56; claims * DTA MINING AND ine 27; claims 1,10 * ISAO ET AL.) line 60; claims * ARTON)	1-6	TECHNICAL PIELDS
	MANUFACTORING COMPANY) * page 12, line 20 - 1 US-A-4 156 035 (JH. 1 * column 5, line 28 US-A-4 227 978 (R.W. B/	ine 27; claims 1,10 * ISAO ET AL.) Iine 60; claims * ARTON)	1-6	TECHNICAL PIELDS
·	US-A-4 156 035 (JH. 1 column 5, line 28	 ISAO ET AL.) Inne 60; claims * ARTON)		TECHNICAL PIELDS
	* column 5, line 28 - US-A-4 227 978 (R.W. B/	line 60; claims * ARTON)		TECHNICAL PIPLOS
1	• • •	•	1-6	TECHNICAL PIELDS
			.	SEARCHED (Int. Cl.5)
				CO3F
	The present search report has b	cen drawn up for all claims Data of completion of the a		Executary
	HE HAGUE	17 JUNE 1992		RT J-M, B,
X : particu Y : particu docum	TEGORY OF CITED DOCUME ularly relevant if taken alone ularly relevant if combined with an ent of the same category logical betground	E : earlier ; after the other D : docume	r principle underlying the atent document, but publi filing date at cited in the application at cited for other reasons	

RPO FORM 1500 00.42 (PO601)