Package 'rTensor2'

March 29, 2024

Type Package

Title MultiLinear Algebra

Version 2.0.0

Maintainer Kyle Caudle <kyle.caudle@sdsmt.edu>

Description A set of tools for basic tensor operators. A tensor in the context of data analysis in a multidimensional array. The tools in this package rely on using any discrete transformation (e.g. Fast Fourier Transform (FFT)). Standard tools included are the Eigenvalue decomposition of a tensor, the QR decomposition and LU decomposition. Other functionality includes the inverse of a tensor and the transpose of a symmetric tensor. Functionality in the package is outlined in Kernfeld et al. (2015) https://dx.doi.org/10.100/nttps:

//www.sciencedirect.com/science/article/pii/S0024379515004358>.

Depends R (>= 4.2.0)

Imports methods,raster,png,rTensor, wavethresh, gsignal, Matrix, matrixcale

License GPL-3

Encoding UTF-8

LazyData true

LazyDataCompression xz

Config/testthat/edition 3

RoxygenNote 7.2.3

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Kyle Caudle [aut, cre], Randy Hoover [ctb], Jackson Cates [ctb]

Repository CRAN

Date/Publication 2024-03-29 16:30:02 UTC

R topics documented:

ıs.tensor	
LU	
Mnist	. 4
polar	. 5
QR	. 6
and tensor	. 6
aytrace	. 7
ĎWT	
EIG	
EIGdct	
EIGdht	
EIGdst	
EIGdwht	
EIGdwt	
EIGfft	
IDWT	
INV	
INVdct	
INVdht	
INVdst	
INVdwht	
INVdwt	
INVfft	
LDA	
LU	
LUdet	
LUdht	
LUdst	
LUdwht	
LUdwt	
LUfft	
mean	
mult	
QR	
QRdct	
QRdht	
QRdst	
QRdwht	
QRdwt	. 33
QRfft	. 34
SVD	. 34
SVDdct	. 36
SVDdht	
SVDdst	
SVDdwht	. 39
SVDdwt	40

as.tensor 3

as.tensor

Tensor Conversion

Description

Create a Tensor-class object from an array, matrix, or vector.

Usage

```
as.tensor(x, drop = FALSE)
```

Arguments

x : an instance of array, matrix, or vector

drop : whether or not modes equal to 1 should be dropped

Value

a Tensor-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

References

Imported from rTensor package version 1.4.8.

```
#From vector
vec <- runif(3); vecT <- as.tensor(vec); vecT
#From matrix
mat <- matrix(runif(2*3),nrow=2,ncol=3)
matT <- as.tensor(mat); matT
#From array
indices <- c(2,3,4)
arr <- array(runif(prod(indices)), dim = indices)
arrT <- as.tensor(arr); arrT</pre>
```

4 Mnist

LU

LU Decomposition of a Complex Matrix

Description

Decompose a square matrix \boldsymbol{A} into the product of a lower triangular matrix \boldsymbol{L} and an upper triangular matrix \boldsymbol{U} .

Usage

LU(A)

Arguments

A : an $n \times n$ matrix

Value

a lower triangular matrix L and an upper triangular matrix U so that A = LU.

Author(s)

Kyle Caudle Randy Hoover Jackson Cates

Examples

```
z <- complex(real = rnorm(16), imag = rnorm(16))
A <- matrix(z,nrow=4)
LU(A)</pre>
```

Mnist

Subset of MNIST training and testing data.

Description

10000 MNIST training images (1000 of every digit), reformatted into a tensor: $28 \times 10000 \times 28$. 1000 MNIST test images (100 of every digit), reformatted into a tensor: $28 \times 1000 \times 28$

Usage

```
data("Mnist")
```

polar 5

Format

The format is:

Mnist\$train\$images, Mnist\$train\$labels

Mnist\$test\$images, Mnist\$test\$labels

References

Deng L (2012). "The mnist database of handwritten digit images for machine learning research." IEEE Signal Processing Magazine, 29(6), 141–142

Examples

```
data(tensor)
```

polar

Polar/Jordan Form of a Matrix

Description

Creates the polar/Jordan form of the P and D matrices after performing eigenvalue decomposition where the eigenvalue values are complex.

Usage

```
polar(P,D)
```

Arguments

P : the eigenvectors from an eigenvalue decomposition.

D : the eigenvalues from an eigenvalue decomposition.

Value

P the polar form (real-valued) matrix of eigenvectors.

D the polar form (real-valued) matrix of eigenvalues.

Author(s)

Kyle Caudle Randy Hoover Jackson Cates

```
z <- complex(real = rnorm(16), imag = rnorm(16))
M <- matrix(z,nrow=4)
decomp <- eigen(M)
polar(decomp$vectors,decomp$values)</pre>
```

frand_tensor

QR

QR Decomposition of a Complex Matrix Without Pivoting

Description

Performs QR Decomposition of a Complex Matrix without pivoting.

Usage

QR(A)

Arguments

A : an $n \times n$ matrix

Value

an orthogonal matrix Q and an upper triangular matrix R so that A = QR.

Author(s)

Kyle Caudle Randy Hoover

Jackson Cates

Examples

```
z <- complex(real = rnorm(16), imag = rnorm(16))
A <- matrix(z,nrow=4)
QR(A)</pre>
```

rand_tensor

Tensor with Random Entries

Description

Generate a Tensor with specified modes with iid normal(0,1) entries.

Usage

```
rand_{tensor}(modes = c(3, 4, 5), drop = FALSE)
```

Arguments

modes : the modes of the output Tensor

drop : whether or not modes equal to 1 should be dropped

raytrace 7

Value

a Tensor object with modes given by modes

Author(s)

```
Kyle Caudle
Randy Hoover
Jackson Cates
```

References

Imported from rTensor package version 1.4.8.

Examples

```
rand_tensor()
rand_tensor(c(4,4,4))
rand_tensor(c(10,2,1),TRUE)
```

raytrace

Subset of raytrace data

Description

4 tensors (128 x 128 x 128) for 4 different gray scale images. boat, flashlight, keyboard, scooter.

Usage

```
data("raytrace")
```

Format

The format is: raytrace\$boat raytrace\$flashlight raytrace\$keyboard raytrace\$scooter

References

Hoover RC, Braman KS, Hao N (2011b). "Pose estimation from a single image using tensor decomposition and an algebra of circulants." In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2928–2934. IEEE.

```
data(raytrace)
```

tDWT

tDWT

Discrete Wavelet Transform of a 3-D Tensor

Description

Performs the Discrete Wavelet Transform of a 3-D Tensor.

Usage

```
tDWT(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

References

G. Strang and T. Nguyen, Wavelets and filter banks. SIAM, 1996.

A. Haar, "Zur theorie der orthogonalen funktionensysteme", Mathematische annalen, vol. 69, no. 3, pp. 331-371, 1910.

```
T <- rand_tensor(modes=c(2,3,4))
print(tDWT(T))</pre>
```

tEIG 9

tEIG

Tensor Eigenvalue Decomposition Using any Discrete Transform

Description

Performs a Eigenvalue decomposition of 3-mode tensor using any discrete transform.

Usage

```
tEIG(tnsr, tform)
```

Arguments

tnsr : a 3-mode tensor, $n \times n \times k$

tform : Any discrete transform. Supported transforms are:

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

a Tensor-class object

If Eigenvalue decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

P: A tensor of Eigenvectors $(n \times n \times k)$

D: An diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

References

Kernfeld, E., Kilmer, M., & Aeron, S. (2015). Tensor-tensor products with invertible linear transforms. Linear Algebra and its Applications, 485, 545-570.

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

tEIGdct

Examples

```
T <- rand_tensor(modes=c(2,2,4))
tEIG(T,"dst")</pre>
```

tEIGdct

Tensor Eigenvalue Decomposition Using the Discrete Cosine Transform

Description

Performs a Eigenvalue decomposition of 3-mode tensor using the discrete Cosine transform.

Usage

```
tEIGdct(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If Eigenvalue decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

P: A tensor of Eigenvectors $(n \times n \times k)$

D: An diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,2,4))
print(tEIGdct(T))</pre>
```

tEIGdht 11

tEIGdht

Tensor Eigenvalue Decomposition Using the Discrete Hadley Transform

Description

Performs a Eigenvalue decomposition of 3-mode tensor using the discrete Hadley transform.

Usage

```
tEIGdht(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

a Tensor-class object

If Eigenvalue decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

P: A tensor of Eigenvectors $(n \times n \times k)$

D: An diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,2,4))
print(tEIGdht(T))</pre>
```

12 tEIGdwht

tEIGdst

Tensor Eigenvalue Decomposition Using the Discrete Sine Transform

Description

Performs a Eigenvalue decomposition of 3-mode tensor using the discrete Sine transform.

Usage

```
tEIGdst(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If Eigenvalue decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

P: A tensor of Eigenvectors $(n \times n \times k)$

D: An diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tEIGdst(T))</pre>
```

tEIGdwht

Tensor Eigenvalue Decomposition Using the Discrete Walsh-Hadamard Transform

Description

Performs a Eigenvalue decomposition of 3-mode tensor using the discrete Walsh-Hadamard transform.

tEIGdwt 13

Usage

```
tEIGdwht(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

```
a Tensor-class object
```

If Eigenvalue decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

P: A tensor of Eigenvectors $(n \times n \times k)$

D: An diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tEIGdwht(T))</pre>
```

tEIGdwt

Tensor Eigenvalue Decomposition Using the Discrete Wavelet Transform

Description

Performs a Eigenvalue decomposition of 3-mode tensor using the discrete Wavelet transform (Haar Wavelet).

Usage

```
tEIGdwt(tnsr)
```

Arguments

tnsr : a 3-mode tensor

14 tEIGfft

Value

a Tensor-class object

If Eigenvalue decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

P: A tensor of Eigenvectors $(n \times n \times k)$

D: An diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

References

G. Strang and T. Nguyen, Wavelets and filter banks. SIAM, 1996.

A. Haar, "Zur theorie der orthogonalen funktionensysteme," Mathema- tische annalen, vol. 69, no. 3, pp. 331–371, 1910.

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tEIGdwt(T))</pre>
```

tEIGfft

Tensor Eigenvalue Decomposition Using the Discrete Fourier Transform

Description

Performs a Eigenvalue decomposition of 3-mode tensor using the discrete Fourier transform.

Usage

```
tEIGfft(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If Eigenvalue decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

P: A tensor of Eigenvectors $(n \times n \times k)$

D: An diagonal tensor of Eigenvalues $(n \times n \times k)$

tIDWT

Author(s)

Kyle Caudle Randy Hoover Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tEIGfft(T))</pre>
```

tIDWT

Discrete Inverse Wavelet Transform of a 3-D Tensor

Description

Performs the Discrete Inverse Wavelet Transform of a 3-D Tensor.

Usage

```
tIDWT(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

References

G. Strang and T. Nguyen, Wavelets and filter banks. SIAM, 1996.

A. Haar, "Zur theorie der orthogonalen funktionensysteme", Mathematische annalen, vol. 69, no. 3, pp. 331-371, 1910.

```
T <- rand_tensor(modes=c(2,3,4))
print(tIDWT(T))</pre>
```

16 tINV

tINV

Inverse of a 3-mode Tensor Using any Discrete Transform

Description

Performs the inverse of a tensor using the any discrete transform.

Usage

```
tINV(tnsr,tform)
```

Arguments

tnsr : a 3-mode tensor

tform : Any discrete transform. Supported transforms are:

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transformdst: Discrete Sine transformdht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

```
a Tensor-class object
```

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,2,4))
print(tINV(T,"dst"))</pre>
```

tINVdct 17

tINVdct

Inverse of a 3-mode Tensor Using the Discrete Cosine Transform

Description

Performs the inverse of a tensor using the discrete cosine transform.

Usage

```
tINVdct(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tINVdct(T))</pre>
```

tINVdht

Inverse of a 3-mode Tensor Using the Discrete Hartley Transform

Description

Performs the inverse of a tensor using the discrete Hartley transform.

Usage

```
tINVdht(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

tINVdst

Value

```
a Tensor-class object
```

Author(s)

Kyle Caudle Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tINVdht(T))</pre>
```

tINVdst

Inverse of a 3-mode Tensor Using the Discrete Sine Transform

Description

Performs the inverse of a tensor using the discrete sine transform.

Usage

```
tINVdst(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,2,4))
print(tINVdst(T))</pre>
```

tINVdwht 19

tINVdwht

Inverse of a 3-mode Tensor Using the Discrete Walsh-Hadamard Transform

Description

Performs the inverse of a tensor using the discrete Walsh-Hadamard transform.

Usage

```
tINVdwht(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

a Tensor-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tINVdwht(T))</pre>
```

tINVdwt

Inverse of a 3-mode Tensor Using the Discrete Wavelet Transform

Description

Performs the inverse of a tensor using the discrete wavelet transform (Haar Wavelet).

Usage

```
tINVdwt(tnsr)
```

Arguments

tnsr : a 3-mode tensor

20 tINVfft

Value

```
a Tensor-class object
```

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tINVdwt(T))</pre>
```

tINVfft

Inverse of a 3-mode Tensor Using the Discrete Fourier Transform

Description

Performs the inverse of a tensor using the discrete Fourier transform.

Usage

```
tINVfft(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,2,4))
print(tINVfft(T))</pre>
```

tLDA 21

tLDA	Linear Discriminate Analysis of a 3-mode Tensor Using any Discrete
	Transform

Description

Performs linear discriminate analysis on a tensor using any discrete transform. Assumes tensor is sorted by classes.

Usage

```
tLDA(tnsr,nClass,nSamplesPerClass,tform)
```

Arguments

tnsr : a 3-mode tensor nClass : Number of classes

nSamplesPerClass

: Samples in each class

tform : one of six-discrete transforms. Supported transforms are:

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

a Tensor-class object

Author(s)

Kyle Caudle Randy Hoover Jackson Cates

```
data("Mnist")
T <- Mnist$train$images
myorder <- order(Mnist$train$labels)
# tLDA need to be sorted by classes
T_sorted <- as.tensor(T[,myorder,])
# Using small tensor, 2 images for each class for demonstration
T <- T_sorted[,c(1:2,1001:1002,2001:2002,3001:3002,</pre>
```

22 tLU

```
4001:4002,5001:5002,6001:6002,7001:7002,
8001:8002,9001:9002),]
tLDA(T,10,2,"dct")
```

tLU

Tensor LU Decomposition Using Using Any Discrete Transform

Description

Performs a tensor LU decomposition on any 3-mode tensor using any discrete transform.

Usage

```
tLU(tnsr,tform)
```

Arguments

tnsr : a 3-mode tensor

tform : Any discrete transform. Supported transforms are:

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transformdst: Discrete Sine transformdht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

a Tensor-class object

If LU decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

L: The lower triangular tensor object $(n \times n \times k)$

U: The upper triangular tensor object $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

tLUdct 23

References

Kernfeld, E., Kilmer, M., & Aeron, S. (2015). Tensor-tensor products with invertible linear transforms. Linear Algebra and its Applications, 485, 545-570.

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

Examples

```
T <- rand_tensor(modes=c(2,2,4))
tLU(T,"dst")</pre>
```

tLUdct

Tensor LU Decomposition Using the Discrete Cosine Transform

Description

Performs a LU decomposition of 3-mode tensor using the discrete Cosine transform.

Usage

```
tLUdct(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

a Tensor-class object

If LU decomposition is performed on a nxnxk tensor, the components in the returned value are:

L: The lower triangular tensor object (nxnxk)

U: The upper triangular tensor object (nxnxk)

Author(s)

Kyle Caudle kyle.caudle@sdsmt.edu

```
T <- rand_tensor(modes=c(2,2,4))
print(tLUdct(T))</pre>
```

24 tLUdst

tLUdht

Tensor LU Decomposition Using the Discrete Hartley Transform

Description

Performs a LU decomposition of 3-mode tensor using the discrete Hartley transform.

Usage

```
tLUdht(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If LU decomposition is performed on a nxnxk tensor, the components in the returned value are:

L: The lower triangular tensor object (nxnxk)

U: The upper triangular tensor object (nxnxk)

Author(s)

Kyle Caudle kyle.caudle@sdsmt.edu

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tLUdht(T))</pre>
```

tLUdst

Tensor LU Decomposition Using the Discrete Cosine Transform

Description

Performs a LU decomposition of 3-mode tensor using the discrete Sine transform.

Usage

```
tLUdst(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

tLUdwht 25

Value

```
a Tensor-class object
```

If LU decomposition is performed on a nxnxk tensor, the components in the returned value are:

L: The lower triangular tensor object (nxnxk)

U: The upper triangular tensor object (nxnxk)

Author(s)

Kyle Caudle kyle.caudle@sdsmt.edu

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tLUdst(T))</pre>
```

tLUdwht

Tensor LU Decomposition Using the Discrete Walsh-Hadamard Transform

Description

Performs a LU decomposition of 3-mode tensor using the discrete Walsh-Hadamard transform.

Usage

```
tLUdwht(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If LU decomposition is performed on a nxnxk tensor, the components in the returned value are:

L: The lower triangular tensor object (nxnxk)

U: The upper triangular tensor object (nxnxk)

Author(s)

Kyle Caudle kyle.caudle@sdsmt.edu

```
T <- rand_tensor(modes=c(2,2,4))
print(tLUdwht(T))</pre>
```

26 tLUfft

tLUdwt

Tensor LU Decomposition Using the Discrete Wavelet Transform

Description

Performs a LU decomposition of 3-mode tensor using the discrete Wavelet transform (Haar Wavelet).

Usage

```
tLUdwt(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

a Tensor-class object

If LU decomposition is performed on a nxnxk tensor, the components in the returned value are:

L: The left singular value tensor object (nxnxk)

U: The right singular value tensor object (nxnxk)

Author(s)

Kyle Caudle kyle.caudle@sdsmt.edu

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tLUdwt(T))</pre>
```

tLUfft

Tensor LU Decomposition Using the Discrete Fourier Transform

Description

Performs a LU decomposition of 3-mode tensor using the discrete Fourier transform.

Usage

```
tLUfft(tnsr)
```

Arguments

tnsr : a 3-mode tensor

tmean 27

Value

```
a Tensor-class object
```

If LU decomposition is performed on a nxnxk tensor, the components in the returned value are:

L: The lower triangular tensor object (nxnxk)

U: The upper triangular tensor object (nxnxk)

Author(s)

Kyle Caudle kyle.caudle@sdsmt.edu

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tLUfft(T))</pre>
```

tmean

Find the mean of a tensor

Description

Find the mean of a 3-mode tensor.

Usage

```
tmean(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
tnsr <- rand_tensor(modes=c(3,4,5))
tmean(tnsr)</pre>
```

28 tmult

tmult

Tensor Multiplication Using Any Discrete Transform

Description

Multiplies two 3-mode tensors using any discrete transform.

Usage

```
tmult(x,y,tform)
```

Arguments

x : a 3-mode tensor y : a 3-mode tensor

tform : Any discrete transform. Supported transforms are:

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transformdst: Discrete Sine transformdht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

```
a Tensor-class object
```

Author(s)

Kyle Caudle Randy Hoover

Jackson Cates

```
T1 <- rand_tensor(modes=c(2,2,4))
T2 <- rand_tensor(modes=c(2,3,4))
print(tmult(T1,T2,"dst"))</pre>
```

tQR 29

tQR

Tensor QR Decomposition Using Using Any Discrete Transform

Description

Performs a tensor QR decomposition on any 3-mode tensor using any discrete transform.

Usage

```
tQR(tnsr,tform)
```

Arguments

tnsr : a 3-mode tensor

tform : Any discrete transform. Supported transforms are:

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

a Tensor-class object

If the QR decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

Q: The left singular value tensor object $(n \times n \times k)$

R: The right singular value tensor object $(n \times n \times k)$

Author(s)

Kyle Caudle kyle.caudle@sdsmt.edu

References

Kernfeld, E., Kilmer, M., & Aeron, S. (2015). Tensor-tensor products with invertible linear transforms. Linear Algebra and its Applications, 485, 545-570.

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

30 tQRdct

Examples

```
T <- rand_tensor(modes=c(2,2,4))
tQR(T,"dst")</pre>
```

tQRdct

Tensor QR Decomposition Using the Discrete Cosine Transform

Description

Performs a QR decomposition of 3-mode tensor using the discrete Cosine transform.

Usage

```
tQRdct(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If QR decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

Q: An orthogonal tensor $(n \times n \times k)$.

R: An upper triangular tensor $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,2,4))
print(tQR(T,"dct"))</pre>
```

tQRdht 31

tQRdht

Tensor QR Decomposition Using the Discrete Hartley Transform

Description

Performs a QR decomposition of 3-mode tensor using the discrete Hartley transform.

Usage

```
tQRdht(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If QR decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

Q: An orthogonal tensor $(n \times n \times k)$.

R: An upper triangular tensor $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tQRdht(T))</pre>
```

tQRdst

Tensor QR Decomposition Using the Discrete Sine Transform

Description

Performs a QR decomposition of 3-mode tensor using the discrete Sine transform.

Usage

```
tQRdst(tnsr)
```

32 tQRdwht

Arguments

tnsr : a 3-mode tensor

Value

```
a Tensor-class object
```

If QR decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

Q: An orthogonal tensor $(n \times n \times k)$.

R: An upper triangular tensor $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tQRdst(T))</pre>
```

tQRdwht

Tensor QR Decomposition Using the Discrete Walsh-Hadamard Transform

Description

Performs a QR decomposition of 3-mode tensor using the discrete Walsh-Hadamard transform.

Usage

```
tQRdwht(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

a Tensor-class object

If QR decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

Q: An orthogonal tensor $(n \times n \times k)$.

R: An upper triangular tensor $(n \times n \times k)$

tQRdwt 33

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tQRdwht(T))</pre>
```

tQRdwt

Tensor QR Decomposition Using the Discrete Wavelet Transform

Description

Performs a QR decomposition of 3-mode tensor using the discrete wavelet transform.

Usage

```
tQRdwt(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If QR decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

Q: An orthogonal tensor $(n \times n \times k)$.

R: An upper triangular tensor $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,2,4))
print(tQRdwt(T))</pre>
```

tSVD

tQRfft

Tensor QR Decomposition Using the Discrete Fourier Transform

Description

Performs a QR decomposition of 3-mode tensor using the discrete Fourier transform.

Usage

```
tQRfft(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

a Tensor-class object

If QR decomposition is performed on a $n \times n \times k$ tensor, the components in the returned value are:

Q: An orthogonal tensor $(n \times n \times k)$.

R: An upper triangular tensor $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Examples

```
T <- rand_tensor(modes=c(2,2,4))
print(tQRfft(T))</pre>
```

tSVD

Tensor Singular Value Decomposition Using Any Discrete Transform

Description

Performs a tensor singular value decomposition on any 3-mode tensor using any discrete transform.

Usage

```
tSVD(tnsr,tform)
```

tSVD 35

Arguments

tnsr : a 3-mode tensor

tform : Any discrete transform. Supported transforms are:

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

a Tensor-class object

If the SVD is performed on a $m \times n \times k$ tensor, the components in the returned value are:

U: The left singular value tensor object $(m \times m \times k)$

V: The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

References

Kernfeld, E., Kilmer, M., & Aeron, S. (2015). Tensor-tensor products with invertible linear transforms. Linear Algebra and its Applications, 485, 545-570.

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- rand_tensor(modes=c(2,3,4))
print(tSVD(T,"dst"))</pre>
```

36 tSVDdct

tSVDdct

Tensor Singular Value Decomposition Using the Discrete Cosine Transform

Description

Performs a tensor singular value decomposition on any 3-mode tensor using the discrete cosine transform.

Usage

```
tSVDdct(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

```
a Tensor-class object
```

If the SVD is performed on a $m \times n \times k$ tensor, the components in the returned value are:

U: The left singular value tensor object $(m \times m \times k)$

V: The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,3,4))
print(tSVDdct(T))</pre>
```

tSVDdht 37

tSVDdht

Tensor Singular Value Decomposition Using the Discrete Harley Transform

Description

Performs a tensor singular value decomposition on any 3-mode tensor using the discrete Harley transform.

Usage

```
tSVDdht(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

```
a Tensor-class object
```

If the SVD is performed on a $m \times n \times k$ tensor, the components in the returned value are:

U: The left singular value tensor object $(m \times m \times k)$

V: The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,3,4))
print(tSVDdht(T))</pre>
```

38 tSVDdst

tSVDdst

Tensor Singular Value Decomposition Using the Discrete Sine Transform

Description

Performs a tensor singular value decomposition on any 3-mode tensor using the discrete Sine transform.

Usage

```
tSVDdst(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

```
a Tensor-class object
```

If the SVD is performed on a $m \times n \times k$ tensor, the components in the returned value are:

U: The left singular value tensor object $(m \times m \times k)$

V: The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,3,4))
print(tSVDdst(T))</pre>
```

tSVDdwht 39

tSVDdwht

Tensor Singular Value Decomposition Using the Discrete Walsh-Hadamard Transform

Description

Performs a tensor singular value decomposition on any 3-mode tensor using the discrete Walsh-Hadamard transform.

Usage

```
tSVDdwht(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

a Tensor-class object

If the SVD is performed on a $m \times n \times k$ tensor, the components in the returned value are:

U: The left singular value tensor object $(m \times m \times k)$

V: The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,3,4))
print(tSVDdwht(T))</pre>
```

40 tSVDdwt

tSVDdwt

Tensor Singular Value Decomposition Using the Discrete Wavelet Transform

Description

Performs a tensor singular value decomposition on any 3-mode tensor using the discrete wavelet transform (Haar Wavelet).

Usage

```
tSVDdwt(tnsr)
```

Arguments

tnsr : a 3-mode tensor

Value

```
a Tensor-class object
```

If the SVD is performed on a $m \times n \times k$ tensor, the components in the returned value are:

U: The left singular value tensor object $(m \times m \times k)$

V: The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,3,4))
print(tSVDdwt(T))</pre>
```

tSVDfft 41

 ${\sf tSVDfft}$

Tensor Singular Value Decomposition Using the Discrete Fourier Transform

Description

Performs a tensor singular value decomposition on any 3-mode tensor using the discrete Fourier transform.

Usage

```
tSVDfft(tnsr)
```

Arguments

tnsr

: a 3-mode tensor

Value

```
a Tensor-class object
```

If the SVD is performed on a $m \times n \times k$ tensor, the components in the returned value are:

U: The left singular value tensor object $(m \times m \times k)$

V: The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

```
T <- rand_tensor(modes=c(2,3,4))
print(tSVDfft(T))</pre>
```

t_tpose

t_tpose

Transpose 3-mode Tensor

Description

Performs the transpose of a symmetric 3-mode tensor using any discrete transform.

Usage

```
t_tpose(tnsr,tform)
```

Arguments

tnsr : a 3-mode tensor

tform : Any discrete transform. Supported transforms are:

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transformdst: Discrete Sine transformdht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

a Tensor-class object

Author(s)

Kyle Caudle Randy Hoover Jackson Cates

```
T <- rand_tensor(modes=c(2,3,4))
print(t_tpose(T,"dct"))</pre>
```

Index

* datasets Mnist, 4 raytrace, 7 * misc LU, 4		
as.tensor, 3		
LU, 4		
Mnist,4		
polar, 5		
QR, 6		
rand_tensor, 6 raytrace, 7		
t_tpose, 42 tDWT, 8 tEIG, 9 tEIGdct, 10 tEIGdht, 11 tEIGdst, 12 tEIGdwht, 12 tEIGdwht, 13 tEIGfft, 14 tIDWT, 15 tINV, 16 tINVdct, 17 tINVdst, 18 tINVdwht, 19 tINVdwt, 19 tINVfft, 20 tLDA, 21		
tLU, 22 tLUdct, 23		
tLUdht, 24 tLUdst, 24		

tLUdwht, 25 tLUdwt, 26 $\mathsf{tLUfft}, 26$ tmean, 27 tmult, 28 tQR, 29 tQRdct, 30tQRdht, 31 $\mathsf{tQRdst}, \textcolor{red}{\mathbf{31}}$ tQRdwht, 32tQRdwt, 33 tQRfft, 34 tSVD, 34 $\mathsf{tSVDdct}, \frac{36}{}$ tSVDdht, 37 tSVDdst, 38 tSVDdwht, 39 $\mathsf{tSVDdwt}, 40$ tSVDfft, 41