

Multidi-mentional Outlier Detection

missing anomaly transformation:

1	<i>)</i>			
	177-			
	decimal	min-max	z-index	
numout	scaling	method	method	
45	0.045	0.295	-0.006	
20	0.02	0.078	-0.023	
69	0.069	0.504	-0.01	
66	0.066	0.478	0.008	
11	0.011	0	-0.029	
42	0.042	0.269	-0.008	
126	0.126	1	0.049	
original	,O *		, O	<i>x</i>
values		`_		
	×.	TO.		TO.
		CELLO.		

Dimentionality reduction

Principal component analysis

- Principal component analysis (PCA) is the oldest and most popular technique of attribute reduction by means of projection.
- The n original attributes are replaced by n new attributes (principal components) obtained as a linear combination of the original ones.
- Principal components are generated in sequence by means of an iterative algorithm:
 - the first component is determined by solving an appropriate optimization problem, in order to explain the highest percentage of variation in the data.
 - at each iteration the next principal component is selected, among vectors orthogonal to components already determined, as the one which explains the maximum percentage of variance not yet explained by the previously generated components.
- \bullet In most cases, q principal components, with $\ q < n$, have information content almost equivalent to the original attributes.

Machine Learning © Carlo Vercellis

POLITECNICO MILANO 1863

Principal component analysis

$$\mathbf{V} = \mathbf{X}'\mathbf{X}$$
 COVARIANCE matrix of data, after standardization: $\tilde{x}_{ij} = x_{ij} - \frac{1}{m} \sum_{i=1}^{m} x_{ij}$.

The principal components are obtained as linear combinations of the original variables:

$$\mathbf{p}_j = \mathbf{X}\mathbf{w}_j$$

where the coefficients \mathbf{W}_j have to be determined.

The variance of the projection $(\mathbf{W}_j'\mathbf{X}_i)$ can be calculated as:

covariance matrix of data, after standardization:
$$\ddot{x}_{ij} = x_{ij} - \frac{1}{m} \sum_{i=1}^{n} x_{ij}$$
 emponents are obtained as linear combinations of the original variables:
$$\mathbf{p}_{j} = \mathbf{X}\mathbf{w}_{j}$$
 ficients \mathbf{W}_{j} have to be determined.
$$\mathbf{W}_{j}^{\prime}\mathbf{X}_{i} \text{ can be calculated as:}$$

$$\mathbf{E}[\mathbf{w}_{j}^{\prime}\mathbf{x}_{i} - \mathbf{E}[\mathbf{w}_{j}^{\prime}(\mathbf{x}_{i} - \mathbf{E}[\mathbf{x}_{i}])^{2}] = \mathbf{w}_{j}^{\prime}\mathbf{E}[(\mathbf{x}_{i} - \mathbf{E}[\mathbf{x}_{i}])^{\prime}(\mathbf{x}_{i} - \mathbf{E}[\mathbf{x}_{i}])]\mathbf{w}_{j} = \mathbf{w}_{j}^{\prime}\mathbf{V}\mathbf{w}_{j}.$$

19

Principal component analysis

The first principal component $\mathbf{p}_j = \mathbf{X} \mathbf{w}_j$ is obtained by solving an optimization problem

$$\max_{\mathbf{w}_1} \{ \mathbf{w}_1' \mathbf{V} \mathbf{w}_1 : \mathbf{w}_1' \mathbf{w}_1 = 1 \}$$

It can be shown that:

the vector that solves the problem is the eigenvector $oldsymbol{u}_1$ associated to the largest eigenvalue λ_1 of the covariance matrix V

the eigenvalue $\widetilde{\lambda}_1$ is equal to the amount of explained variance

The SECOND PRINCIPAL COMPONENT is obtained by solving a similar optimization problem with the additional condition

$$\mathbf{w}_2'\mathbf{w}_1 = 0$$

A CANAL SANGER		Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	
4-5	mpg	0.363	-0.226	-0.103	-0.109	0.368	0.754	
()	cyl	-0.374	-0.175	0.169	0.231	-0.846	10111777	
	disp	-0.368	0.257	-0.394	-0.336	0.214	0.198	
Y /\>	hp	-0.33	-0.249	0.14	-0.54	0.222	-0.576	
- N	drat	0.294	-0.275	0.161	0.855	0.244	-0.101	
<u> </u>	wt	-0.346	0.143	0.342	0.246	-0.465	0.359	
	qsec	0.2	0.463	0.403	0.165	-0.33	0.232	
	VS	0.307	0.232	0.429	-0.215	-0.6	0.194	
	am	0.235	-0.429	-0.206	-0.571	-0.587	-0.178	
	gear	0.207	-0.462	0.29	-0.265	-0.244	0.605	
	carb	-0.214	-0.414	0.529	-0,127	0.361	0.184	
		Comp.7	Comp.8	Comp.9	Comp.10	Comp.11		
	mpg	0.236	0.139			0.125		
	cyl					0.141		
	disp					-0,661		
	hp drat	0.248				0.256		
	wt					0.567		
	qsec	-0.528	-0.271			-0.181		A
	Vs.	-0.266	0,359	-0.159				ER CELL
	2013							
	gear	-0.336	-0.214					~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	carb	-0.175	0.396	0.171		-0.32		~ /

ML Trees are the most intrepratable algos.

Timportance of components:

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 1.5257 1.4824 0.8224 0.69466 0.45322 0.33260
Proportion of Variance 0.3879 0.3662 0.1127 0.08043 0.03423 0.01844
Cumulative Proportion 0.3879 0.7542 0.8669 0.94733 0.98156 1.00000

The first two components account for about 75% of the variance.

Machine Learning © Carlo Vercellis

POLITECNICO MILANO 1863

