Technische Universität München Fakultät für Informatik Lehrstuhl Informatik XIV Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2014 Lösungen der Klausur 24. Juli 2014

		\mathbf{T}	heor	etisc	he Ir	ıforn	natik				
Name			Vorname			Studiengang			Matrikelnummer		
						☐ Bachelor ☐ Inform. ☐ Lehramt ☐ WirtInf.					
Hörsaal			Reihe			Sitzplatz			Unterschrift		
Code:											
Bitte sDie ArAlle Ar seiten)Sie Ne	chreiber beitszei ntworte der bet	n Sie nit beträg n sind i reffende nungen	Felder i cht mit gt 180 M n die ge en Aufg mache	in Druc Bleistif Minuten cheftete aben ei en. Der	kbuchst t oder i Angab nzutrag Schmie	n roter, e auf de en. Auf erblattb	us und u /grüner en jewei dem Sc	Farbe! ligen Se hmierbl	reiben Sie! iten (bzw. Rück attbogen könne nfalls abgegebe	er	
Hörsaal ver Vorzeitig al Besondere l	ogegebe		von . um .		bis	/	von		bis		
Max P	A1 4	A2 9	A3	A4 9	A5	A6 9	A7 9	$\begin{array}{c c} \Sigma \\ 60 \end{array}$	Korrektor		
Erstkorr.											
Zweitkorr.											

Aufgabe 1 (4 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. Falls eine Grammatik Chomsky-Normalform besitzt, dann enthält sie keine nutzlosen Variablen.
- 2. Falls $L \subseteq \Sigma^*$ deterministisch kontextfrei ist, dann gibt es eine LR(k) Grammatik, die das Komplement $\overline{L} = \Sigma^* \setminus L$ erzeugt.
- 3. Sei $\Sigma = \{0, 1\}$. Das Komplement $\overline{H_s} = \Sigma^* \setminus H_s$ des speziellen Halteproblems H_s ist eine Typ-0-Sprache. (H_s wurde in Übungen auch als K bezeichnet.)
- 4. Die Menge $\{w \in \{0,1\}^* ; \varphi_w \text{ ist } \mu\text{-rekursiv}\}\$ ist entscheidbar. Dabei ist φ_w die von der Turingmaschine M_w berechnete Funktion.

Lösung

Für die richtige Antwort und für die richtige Begründung gibt es jeweils einen $\frac{1}{2}$ Punkt.

- 1. Falsch! Es können neue, nutzlose Variable mit entsprechenden Produktionen hinzugefügt werden.
- 2. Wahr! Die Klasse der deterministisch kontextfreien Sprachen ist abgeschlossen für Komplementbildung. Zu jeder DCFL gibt es eine erzeugende LR(k) Grammatik.
- 3. Falsch! $\overline{H_s}$ ist nicht semi-entscheidbar, weil H_s nicht entscheidbar, aber semi-entscheidbar ist.
- 4. Wahr! Für alle w ist φ_w berechenbar und folglich μ -rekursiv.

Aufgabe 2 (9 Punkte)

Sei $\Sigma = \{a, b\}$. Für beliebige Sprachen $R, L \subseteq \Sigma^*$ ist der Rechtsquotient R/L definiert durch

$$R/L := \left\{ x \in \Sigma^* \, ; \, (\exists y \in L)[\, xy \in R \,] \, \right\}.$$

Hinweis: Wenden Sie im Folgenden wenn möglich bekannte Sätze an.

- 1. Seien $R \subseteq \Sigma^*$ und $R_{-2} = \{x \in \Sigma^* ; (\exists y \in \Sigma^*)[|y| = 2 \land xy \in R] \}$. Man zeige: Falls R regulär ist, dann ist auch R_{-2} regulär.
- 2. Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein deterministischer endlicher Automat, der die Sprache R:=L(A) akzeptiert.

Beschreiben Sie explizit, ausgehend von A, einen DFA oder NFA $A' = (Q', \Sigma, \delta', q'_0, F')$, der R_{-2} akzeptiert.

3. Seien $L\subseteq \Sigma^*$ un
entscheidbar und $R\subseteq \Sigma^*$ regulär. Zeigen Sie die Entscheidbarkeit von
 R/L.

Lösung

Vorbehaltlich einer Punktedetaillierung:

1. Mit
$$L = \{ y \in \Sigma^* ; |y| = 2 \}$$
 gilt $R_{-2} = R/L$. (2P)

Nach Satz der Vorlesung ist R/L regulär.

2. A' sei identisch mit A bis auf die Menge der Endzustände:

$$Q' = Q, \, \delta' = \delta, \, q'_0 = q_0 \text{ und}$$

$$F' = \{ q \in Q \, ; \, (\exists x, y \in \Sigma) [\, \hat{\delta}(q, xy) \in F \,] \, \}$$

(4P)

(1P)

3. Nach Satz der Vorlesung ist R/L regulär für beliebiges L. Dies schließt unentscheidbare L ein. (2P)

Aufgabe 3 (10 Punkte)

Seien $\Sigma \neq \emptyset$ und $V = \{A_1, A_2, \dots, A_n\}$ Zeichenmengen mit $n \geq 2$ und m eine Markierungsabbildung der Form $m(x) = \hat{x}$ bzw. $m(A) = \widehat{A}$ für alle $x \in \Sigma$ bzw. $A \in V$. Wir definieren $\widehat{\Sigma} = \{\hat{x} : x \in \Sigma\}$ und $\widehat{V} = \{\widehat{A}_1, \widehat{A}_2, \dots, \widehat{A}_n\}$. Wir setzen Mengendisjunktheit voraus, so dass $|\Sigma \cup \widehat{\Sigma} \cup V \cup \widehat{V}| = 2(n+|\Sigma|)$ gilt, und definieren $\Sigma' = \Sigma \cup \widehat{\Sigma}$ und $V' = V \cup \widehat{V}$.

Wir sagen, dass eine kontextfreie Grammatik $G' = (V', \Sigma', P', S')$ eine Wortendemarkierung generiert, falls S' eines der markierten Zeichen \widehat{A}_i , i = 1, ..., n ist und jede Produktion aus P' eine der folgenden Formen besitzt (mit $x \in \Sigma$):

$$\begin{array}{cccc} A_i & \to & A_j A_k \,, & & A_i & \to & x \,, \\ & & & & & & \\ \widehat{A}_i & \to & A_j \widehat{A}_k \,, & & & & \\ \widehat{A}_i & \to & \hat{x} \,. & & & \end{array}$$

1. Sei G' eine kontextfreie Grammatik, die eine Wortendemarkierung generiert. Man zeige mit struktureller Induktion für alle Wörter w der Sprache L(G') die folgende Eigenschaft

$$\widehat{P}(w)$$
: Es gibt ein $v \in \Sigma^*$ und ein $\widehat{x} \in \widehat{\Sigma}$, so dass $w = v\widehat{x}$ gilt.

Betrachten Sie dazu geeignete Eigenschaften P(w) bzw. $\widehat{P}(w)$ der aus Variablen $A \in V$ einerseits bzw. $\widehat{A} \in \widehat{V}$ andererseits ableitbaren Wörter $w \in \Sigma'^*$. Verwenden Sie die Bezeichnung $L(X) = \{w \in \Sigma'^* ; X \xrightarrow{G'} w\}$ für $X \in V'$.

2. Seien L eine kontextfreie Sprache, so dass $\epsilon \notin L$, und $E = \{x \in \Sigma^* ; |x| = 1\}$. Zeigen Sie, dass der Rechtsquotient L/E kontextfrei ist. Zum Nachweis genügt eine informelle Konstruktionsbeschreibung einer kontextfreien Grammatik für L/E.

Lösung

Vorbehaltlich einer Punktedetaillierung:

1. Sei P(w) die Eigenschaft: Es gilt $w \in \Sigma^*$.

Induktionsanfang:

Regel
$$A_i \to x$$
: Für $w = x$ gilt $P(w)$. (Klar!)
Regel $\widehat{A}_i \to \widehat{x}$: Für $w = \widehat{x}$ gilt $\widehat{P}(w)$. (Klar!)

Induktionsschluss:

Regel
$$A_i \to A_j A_k$$
: Aus $w_j \in L(A_j) \land P(w_j)$ und $w_k \in L(A_k) \land P(w_k)$ folgt $w_i = w_j w_k \in L(A_i) \land P(w_i)$.

Beweis: $w_i, w_k \in \Sigma^*$ impliziert $w_i = w_i w_k \in \Sigma^*$. Es folgt $P(w_i)$.

Regel
$$\widehat{A}_i \to A_j \widehat{A}_k$$
: Aus $w_j \in L(A_j) \wedge P(w_j)$ und $w_k \in L(\widehat{A}_k) \wedge \widehat{P}(w_k)$ folgt $w_i = w_j w_k \in L(\widehat{A}_i) \wedge \widehat{P}(w_i)$.

Beweis: $w_j \in \Sigma^*$ und $w_k = v\hat{x}$ impliziert $w_i = w_j w_k = w_j v\hat{x}$ mit $w_i v \in \Sigma^*$ und $\hat{x} \in \widehat{\Sigma}$. Es folgt $\widehat{P}(w_i)$.

Da sich jedes Wort $w \in L(G')$ aus $S' \in \widehat{V}$ ableiten lässt, folgt $\widehat{P}(w)$. (6P)

2. Wenn in allen Wörtern $w \in L$ der letzte Buchstabe gestrichen wird, dann erhält man L/E. Wir konstruieren eine kontextfreie Grammatik, die L/E erzeugt, wie folgt:

Sei G eine kontextfreie Grammatik mit L = L(G) in Chomsky-Normalform. Wir ergänzen G zu einer Grammatik G', die eine Wortendemarkierung generiert, d.h., dass alle letzten Buchstaben von Wörtern w in L markiert werden.

Dies geschieht durch

Hinzufügen von $\widehat{\Sigma}$, \widehat{V} ,

Ersetzung von S durch \widehat{S} ,

Hinzufügen von Produktionen $\widehat{A}_i \to A_j \widehat{A}_k$ zu jeder Produktion $A_i \to A_j A_k$ und Hinzufügen von Produktionen $\widehat{A}_i \to \widehat{x}$ zu jeder Produktion $A_i \to x$.

Um die Grammatik für L/E zu gewinnen, werden alle Produktionen der Form $\widehat{A}_i \to \widehat{x}$ von G' ersetzt durch $\widehat{A}_i \to \epsilon$. Dadurch entfällt $\widehat{\Sigma}$.

Die erhaltene Grammatik G'' erzeugt L/E, wobei sich G'' nach Satz der Vorlesung durch Elimination der ϵ -Produktionen in eine kontextfreie Grammatik umwandeln lässt.

(4P)

Aufgabe 4 (9 Punkte)

Seien $\Sigma = \{a, b\}$ und $L = \{a^n b^m a^n ; m, n \in \mathbb{N}\}$. (Beachte: $0 \notin \mathbb{N}$.)

- 1. Definieren Sie einen deterministischen Kellerautomaten $K = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, der die Sprache L mit Endzustand akzeptiert, so dass also L(K) = L gilt! Geben Sie dazu den Übergangsgraphen Ihres Automaten K an.
- 2. Zeigen Sie mit Hilfe des Pumping-Lemmas, dass kein NFA existiert, der L akzeptiert.

Lösung

Vorbehaltlich geänderter Punktedetaillierung:

1. Seien $Q = \{q_0, q_1, q_2, q_3\}, \Delta = \{Z_0, A\}, F = \{q_3\}.$

Für alle $X \in \Delta$:

2. Angenommen L sei regulär.

Sei N eine Pumping-Lemma-Zahl für L und $z=a^Nba^N$ mit z=uvw, so dass $|uv|\leq N,\,v\neq\epsilon$ und für alle $i\in\mathbb{N}_0\,uv^iw\in L$ gilt.

Es folgt $uv \in a^+$, insbesondere $v = a^k$ für ein $k \in \mathbb{N}$.

Damit folgt für i=0 $z_i:=uv^iw=a^{N-k}ba^N\in L.$

Widerspruch, wegen $a^{N-k} \neq a^N$!

(4P)

Aufgabe 5 (10 Punkte)

Gegeben sei eine kontextfreie Grammatik G mit Startsymbol S in Chomsky-Normalform mit der folgenden Produktionenmenge:

- 1. Geben Sie eine Ableitung für $S \xrightarrow[G]{} BSBA$ an und zeigen Sie, dass $b^n(ba)^n \in L(G)$ für alle $n \in \mathbb{N}$ gilt.
- 2. Zeigen Sie durch Anwendung des CYK-Algorithmus, dass $T \xrightarrow{G} bbbab$ gilt und dass es von T aus mindestens zwei verschiedene Linksableitungen für w = bbbab gibt. Gilt $w \in L(G)$?
- 3. Ist die Grammatik G eindeutig? Begründung!

Lösung

Vorbehaltlich geänderter Punktedetaillierung:

1.
$$S \rightarrow UA \rightarrow BTA \rightarrow BSBA$$
.

Durch Iteration folgt:

$$S \to BSBA \to BBSBABA \to \dots \to B^n S(BA)^n \xrightarrow{G^*} b^n S(ba)^n$$
.
Außerdem gilt $S \to UA \to BTA \xrightarrow{G^*} bba$. (3P)

2.

Es gilt
$$T \to BT \xrightarrow{G} bbbab$$
 und $T \to SB \xrightarrow{G} bbbab$. (1P)

S kommt nicht im Feld (15) vor, d.h., dass bbbab nicht aus S ableitbar ist. (1P)

3. Nein! Denn T ist ein nützliches Symbol: es gilt $S \xrightarrow{G} BTA \xrightarrow{G} bwa \in L(G)$. Damit besitzt w' = bbbbaba mindestens zwei Linksableitungen. (2P)

Aufgabe 6 (9 Punkte)

Sei $\Sigma = \{*, \#\}$. Wir kodieren ganze Zahlen $n \in \mathbb{N}_0$ als Folge $** \dots *$ der Länge n, d. h. $|** \dots *| = n$, und stellen Paare $(x, y) \in \{*\}^* \times \{*\}^*$ als Wort $x \# y \in \Sigma^*$ dar. Wir betrachten für $x, y, z \in \{*\}^*$ die Addition |z| = |x| + |y|.

1. Definieren Sie durch Angabe der Übergangsfunktion δ eine linear beschränkte Turingmaschine $M=(Q,\Sigma,\Gamma,\delta,q_0,\Box,F)$, die für $x,y,z\in\{*\}^*$ die Addition |z|=|x|+|y| wie folgt durchführt:

Startkonfiguration: $(\epsilon, q_0, x \# y)$. Endkonfiguration: (ϵ, q_e, z) , mit $q_e \in F$. Es gilt: $(\epsilon, q_0, x \# y) \xrightarrow{M} (\epsilon, q_e, z)$.

Beschreiben Sie kurz die Konstruktionsidee für Ihre Maschine.

2. Seien c_1, c_2 die Umkehrfunktionen einer Paarfunktion $c : \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$. Dann ist $plus : \mathbb{N}_0 \to \mathbb{N}_0$ mit $plus(n) = c_1(n) + c_2(n)$ die Kodierung der Addition nichtnegativer ganzer Zahlen, d.h., x + y = plus(c(x, y)) für alle $x, y \in \mathbb{N}_0$.

Zeigen Sie die Unentscheidbarkeit der folgenden Menge P:

 $P = \{w \in \{0,1\}^*; \text{ die von } M_w \text{ berechnete Funktion ist gleich } plus\}.$

3. Sei $H_0 = \{w \in \{0,1\}^*; M_w$ hält auf leerem Band} das Halteproblem auf leerem Band. Zeigen Sie durch informelle Spezifikation einer Reduktionsabbildung f (wie in entsprechenden Beweisen der Vorlesung), dass H_0 reduzierbar ist auf P, i. Z. $H_0 \leq P$.

Lösung

Vorbehaltlich geänderter Punktedetaillierung:

1. <u>Idee:</u> Falls $x \neq \epsilon$, dann wird das erste Zeichen * in x gelöscht und das Zeichen # durch * ersetzt. Falls $x = \epsilon$, dann wird nur # gelöscht. Schließlich wird der Kopf nach vorne positioniert.

Seien $Q = \{q_0, q_1, q_2, q_e\}, \Delta = \{*, \#, \square\} \text{ und } F = \{q_e\}.$

$$\delta(q_0, *) = (q_1, \square, R),
\delta(q_1, *) = (q_1, *, R),
\delta(q_2, *) = (q_2, *, L),
\delta(q_2, \square) = (q_2, \square, R).$$

$$\delta(q_0, \#) = (q_2, \square, R),
\delta(q_1, \#) = (q_2, *, L),
\delta(q_2, \square) = (q_2, \square, R).$$
(5P)

2. Sei $S = \{plus\}$ die einelementige Menge von berechenbaren Funktionen $\mathbb{N}_0 \to \mathbb{N}_0$, mit dem berechenbaren Element plus.

Es gilt $S \neq \emptyset$ und S ungleich der Menge aller Funktionen. Damit ist der Satz von Rice anwendbar, der beweist, dass P unentscheidbar ist. (2P)

3. Sei w_p der Code einer Turingmaschine M_{w_p} , die plus berechnet.

Für alle $w \in \{0,1\}^*$ sei f(w) der Code einer Turingmaschine M, die wie folgt definiert ist:

M simuliert eine 2-Band-Turingmaschine, die Eingabe von M auf Band 1 schreibt und anschließend auf Band 2 die Turingmaschine M_w auf leerem Band ausführt.

Falls M_w hält, dann wird auf Band 1 die Eingabe von M mit M_{w_p} ausgeführt und das Ergebnis auf das Band von M geschrieben.

Offenbar ist f eine totale und berechenbare Funktion, so dass $f(H_0) \subseteq P$ und $f(\overline{H_0}) \subseteq \overline{P}$ gelten. (2P)

Aufgabe 7 (9 Punkte)

1. Sei $g: \mathbb{N}_0 \to \mathbb{N}_0$ total und μ -rekursiv, und sei $f: \mathbb{N}_0 \to \mathbb{N}_0$ definiert durch die Startwerte f(0) = 1 und f(1) = 2 zusammen mit der Rekursion

$$f(n) = g(n) + f(n-1) \cdot f(n-2)$$
 für alle $n \in \mathbb{N} \setminus \{1\}$.

Zeigen Sie die μ -Rekursivität der Funktion f, indem Sie die Erzeugungsregeln für μ -rekursive Funktionen zusammen mit einer Paarfunktion $c: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ und deren Umkehrfunktionen c_1 und c_2 anwenden.

<u>Hinweis</u>: Sie dürfen zusätzlich zu den Basisfunktionen der primitiven Rekursion die folgenden Funktionen als primitiv rekursiv annehmen: plus(m,n) (+), times(m,n) (·), pred(n), c(m,n), $c_1(n)$, $c_2(n)$ und die konstante k-stellige Funktion c_n^k . Sie dürfen die erweiterte Komposition und das erweiterte rekursive Definitionsschema benützen. LOOP- und WHILE-Programme sind nicht erlaubt.

2. Sei $f: \mathbb{N}_0 \to \mathbb{N}_0$ definiert durch die Startwerte f(0) = 1 und f(1) = 2 zusammen mit der Rekursion

$$f(n) = 1 + f(n-1) \cdot f(n-2)$$
 für alle $n \in \mathbb{N} \setminus \{1\}$.

Zeigen Sie, dass f primitiv-rekursiv ist, indem Sie f durch ein LOOP-Programm darstellen. $IF\ THEN\ ELSE$ Konstrukte sowie arithmetische Operationen dürfen verwendet werden.

Lösung

Vorbehaltlich geänderter Punktedetaillierung:

1. Sei k(n) = c(f(n), f(n+1)). Dann gilt

$$k(0) = c(1,2),$$

 $k(n+1) = c(c_2(k(n)), g(n+2) + c_2(k(n)) \cdot c_1(k(n))).$

Mithin ist k μ -rekursiv.

Wegen
$$f(n) = c_1(k(n))$$
 ist damit auch f μ -rekursiv. (4P)

2. Das folgende LOOP-Programm basiert auf den Variablen x_0, \ldots, x_5 . In x_0 wird das Ergebnis f(n) ausgegeben, x_1 enthält beim Start das Argument n.

$$x_2 := x_1 - 1; \ x_3 := 1; \ x_4 := 2;$$
 $LOOP \ x_2 \ DO$
 $x_5 := x_4 * x_3;$
 $x_5 := x_5 + 1;$
 $x_3 := x_4; \ x_4 := x_5;$
 $END;$
 $x_0 := x_5$
 $IF \ x_1 = 0 \ THEN \ x_0 := 1 \ END;$
 $IF \ x_1 = 1 \ THEN \ x_0 := 2 \ END$

Wenn wir den Satz der Vorlesung benutzen, dann folgt aus der Existenz eines LOOP-Programms für die Funktion f die primitive Rekursivität von f. (5P)