REARRANGEMENT OF CARBOCATIONS

- Carbocation CH3 CH2 CH2 rearranges to
 - CH₃ CH CH₃
 - CH2-CH2-CH3

 - (d) $CH_2 = CH \overrightarrow{CH}_2$

Carbocation $CH_3 = \begin{pmatrix} & & & & & \\ & & & \\ & & & \\ & & & \end{pmatrix}$ rearranges to CH_3

2.

- CH₃ CH₂ CH₂ CH₂ CH₂
- $CH_3 CH_2 \tilde{CH} CH_2 CH_3$

- 3. What will be number of α –H in finally rearranged carbocation if Undergoes rearrangement
 - (a) 7
 - (b) 8
 - (c) 9
 - (d) 10

$$\begin{array}{cccc} & CH_3\,H & \\ & | & | & | \\ CH_3-& C & -C-CH_2 \\ & | & | & | \\ & CH_3\,H \end{array}$$

- 4. When carbocation Shifting involved are
 - (a) Two methyl shifts

undergoes rearrangement to a most stable carbocation,

- (b) Two hydride shifts
- (c) One methyl and one hydride shift
- (d) Two methyl & One hydride shift

- 5. When carbocation (II) undergoes rearrangement, which atom/group will migrate to produce more stable carbocation.
 - (a) I
 - (b) II
 - (c) III
 - (d) IV
- 6. When following carbocations may undergo rearrangement, hydride shifting may be involved in...... number of carbocation.

- (a) 2
- (b) 3
- (c) 4
- (d) 5

7. Carbocation , When rearranges to most stable carbocation, which of the following is not obtained.

(c) (d)

when carbocation undergoes rearrangement, which the following can not be obtained

8.

- "\ C
- (b) •
- (c)

9. How many of the following carbocations will undergo rearrangement

- (I) ⊕
- (III)

- (a) 3
- (b) 4
- (c) 5
- (d) 6

10.When carbocation undergoes rearrangement to most stable carbocation, which of the following statement is INCORRECT about most stable carbocation.

- (a) It has 6 α -H
- (b) It contains two methyl groups
- (c) It is formed by ring expansion
- (d) methyl shifting is involved

Chemistry Reaction Mechanism

ANSWER KEY

Ques.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Ans.	a	b	b	c	c	b	d	d	c	d

