

Olimpiada Națională de Matematică Etapa Națională, Craiova, 11 aprilie 2023

CLASA a XII-a – soluții și bareme

Problema 1. Fie (G,\cdot) un grup finit de ordinul $n \in \mathbb{N}^*$, unde $n \geq 2$. Vom spune că grupul (G,\cdot) este aranjabil dacă există o ordonare a elementelor sale, astfel încât

$$G = \{a_1, a_2, \dots, a_k, \dots, a_n\} = \{a_1 \cdot a_2, a_2 \cdot a_3, \dots, a_k \cdot a_{k+1}, \dots, a_n \cdot a_1\}.$$

- a) Determinați toate numerele naturale nenule n pentru care grupul $(\mathbb{Z}_n, +)$ este aranjabil.
- b) Dați un exemplu de grup de ordin par care este aranjabil.

Soluție:

a) Vom arăta că grupul $(\mathbb{Z}_n, +)$ este un grup aranjabil dacă și numai dacă n este un număr natural impar.

Dacă (G,\cdot) este un grup aranjabil abelian, atunci considerând aranjarea

$$G = \{a_1, a_2, \dots, a_k, \dots, a_n\} = \{a_1 \cdot a_2, a_2 \cdot a_3, \dots, a_k \cdot a_{k+1}, \dots, a_n \cdot a_1\}, \text{ avem}$$

$$\prod_{g \in G} g = \prod_{k=1}^{n} a_k = \prod_{k=1}^{n} (a_k \cdot a_{k+1}) = \left(\prod_{g \in G} g\right)^2,$$

(unde $a_{n+1}=a_1$), astfel că $\prod_{g\in G}g=1$, unde 1 este elementul neutru al grupului (G,\cdot) **2p**

In orice grup abelian finit avem că produsul tuturor elementelor sale este egal cu produsul elementelor sale de ordin 2.

Pentru $n \in \mathbb{N}^*$, dacă $k \in \{0,1,\ldots,n-1\}$ cu $ord(\widehat{k})=2$, înseamnă că

$$\widehat{k} \neq \widehat{0} = \widehat{k} + \widehat{k} = \widehat{2k} \,,$$

adică n divide 2k, dar nu divide k. Acest lucru este posibil doar dacă n este par și n=2k. Astfel, dacă n este par, cu n=2k, și $(\mathbb{Z}_n,+)$ ar fi aranjabil, am avea

$$\widehat{0} = \sum_{x \in \mathbb{Z}_n} x = \widehat{k} \,,$$

$$f(k) = f(l) \Longleftrightarrow \widehat{2k+1} = \widehat{2l+1} \Longleftrightarrow n | (2k-2l) \Longleftrightarrow n | (k-l) \Longleftrightarrow k = l \,,$$

funcția f este injectivă și cum $[0, n-1]_{\mathbb{N}}$ și \mathbb{Z}_n sunt mulțimi finite cu același număr de elemente, rezultă că f este bijectivă. Notând $a_k = \widehat{k-1}$ pentru orice $1 \le k \le n$ și $a_{n+1} = a_1$,

rezultă atunci că $a_k + a_{k+1} = f(k-1)$ pentru orice $k = \overline{1, n}$, astfel că $\mathbb{Z}_n = \{a_1, a_2, \dots, a_n\} = \{f(0), f(1), \dots, f(k), \dots, f(n-1)\} = \{a_1 + a_2, a_2 + a_3, \dots, a_{k-1} + a_k, \dots, a_n + a_1\}$, de unde deducem că grupul $(\mathbb{Z}_n, +)$ este aranjabil.

b) Conform punctului a), nu există grupuri aranjabile ciclice de ordin par. Considerăm $\mathbb{Z}_4 = \{\widehat{0}, \widehat{1}, \widehat{2}, \widehat{3}\}, \mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ și grupul $G = \mathbb{Z}_4 \times \mathbb{Z}_2$ cu operația de adunare pe componente $(\widehat{k}, \overline{l}) + (\widehat{m}, \overline{n}) = (\overline{k+m}, \overline{l+n})$. Atunci

$$G = \{a_1 = (\widehat{0}, \overline{0}), a_2 = (\widehat{1}, \overline{0}), a_3 = (\widehat{1}, \overline{1}), a_4 = (\widehat{3}, \overline{1}), a_5 = (\widehat{2}, \overline{0}), a_6 = (\widehat{2}, \overline{1}), a_7 = (\widehat{0}, \overline{1}), a_8 = (\widehat{3}, \overline{0})\} = \{a_1 + a_2, a_2 + a_3, a_3 + a_4, a_4 + a_5, a_5 + a_6, a_6 + a_7, a_7 + a_8, a_8 + a_1\},$$

astfel că (G,+) este un grup aranjabil de ordin 8......2p

Problema 2. Fie p un număr prim, n un număr natural nedivizibil prin p, iar \mathbb{K} un corp comutativ cu p^n elemente, cu elementul unitate $1_{\mathbb{K}}$ și elementul nul $\widehat{0} = 0_{\mathbb{K}}$. Pentru orice $m \in \mathbb{N}^*$ notăm $\widehat{m} = \underbrace{1_{\mathbb{K}} + 1_{\mathbb{K}} + \ldots + 1_{\mathbb{K}}}$ și definim polinomul

$$f_m = \sum_{k=0}^{m} (-1)^{m-k} \widehat{C_m^k} X^{p^k} \in \mathbb{K}[X].$$

- a) Arătați că mulțimea rădăcinilor polinomului f_1 este $\{\hat{k} \mid k \in \{0, 1, \dots, p-1\}\}$.
- b) Fie $m \in \mathbb{N}^*$ oarecare. Determinați mulțimea rădăcinilor din corpul \mathbb{K} ale polinomului f_m .

Soluție:

a) Pentru orice polinom $P \in \mathbb{K}[X]$ vom nota cu \mathbb{Z}_P mulţimea rădăcinilor sale din \mathbb{K} . Deoarece $|\mathbb{K}| = p^n$, caracteristica corpului \mathbb{K} este $char(\mathbb{K}) = p$. Atunci $\widehat{m} = \widehat{0}$ pentru orice multiplu m al lui p. În particular, cum $k^p \equiv k \pmod{p}$ pentru orice $k \in \mathbb{Z}$, avem că

$$f_1(\widehat{k}) = (\widehat{k})^p - \widehat{k} = \widehat{k^p} - \widehat{k} = \widehat{k^p - k} = \widehat{0},$$

pentru orice $k \in \{0, 1, \ldots, p-1\}$. Prin urmare, $\{\widehat{k} \mid k = \overline{0, p-1}\} \subseteq Z_{f_1}$. De asemenea, deoarece \mathbb{K} este un corp comutativ, $|Z_{f_1}| \leq \operatorname{grad}(f_1) = p$. Rezultă că $Z_{f_1} = \{\widehat{k} \mid k = \overline{0, p-1}\} \ldots 2p$ b) Deoarece $p|C_p^k$, pentru orice $k = \overline{1, p-1}$, rezultă că $(a+b)^p = a^p + b^p$, pentru orice $a, b \in \mathbb{K}$, și inductiv $(a+b)^{p^k} = a^{p^k} + b^{p^k}$ pentru orice $a, b \in \mathbb{K}$ și orice $k \in \mathbb{N}$. Atunci pentru orice $m \in \mathbb{N}^*$ avem:

$$f_m(f_1(X)) = \sum_{k=0}^m (-1)^{m-k} \widehat{C_m^k} (X^p - X)^{p^k} = \sum_{k=0}^m (-1)^{m-k} \widehat{C_m^k} (X^{p^{k+1}} - X^{p^k}) =$$

$$=\sum_{k=0}^{m+1}(-1)^{m+1-k}(\widehat{C_m^k}+\widehat{C_m^{k-1}})X^{p^k}=\sum_{k=0}^{m+1}(-1)^{m+1-k}\widehat{C_{m+1}^k}X^{p^k}=f_{m+1}(X).$$

 $\ldots \ldots 2p$

Arătăm prin inducție după $m \in \mathbb{N}^*$ că $Z_{f_m} = \{\widehat{k} \mid k = \overline{0, p-1}\}$ pentru orice $m \in \mathbb{N}^*$, ceea ce va rezolva problema. Pentru m = 1 am arătat acest lucru la a). Să presupunem acum că proprietatea are loc pentru un $m \in \mathbb{N}^*$ oarecare. Demonstrăm că ea are loc atunci și pentru m+1:

Pentru orice $k \in \{0, 1, \dots, p-1\}$ avem

$$f_{m+1}(\hat{k}) = f_m(f_1(\hat{k})) = f_m(\hat{0}) = \hat{0},$$

astfel că $\{\hat{k} \mid k = \overline{0, p-1}\} \subseteq Z_{f_{m+1}}$ 1p Fie $\alpha \in Z_{f_{m+1}}$ oarecare. Atunci $f_m(f_1(\alpha)) = f_{m+1}(\alpha) = \widehat{0}$, deci $f_1(\alpha) \in Z_{f_m}$. Prin urmare, există $k \in \{0, 1, \ldots, p-1\}$ astfel încât $f_1(\alpha) = \widehat{k}$. Obținem că

$$\alpha^p = \alpha + \hat{k}$$
,

$$\alpha^{p^2} = (\alpha + \hat{k})^p = \alpha^p + \hat{k}^p = (\alpha + \hat{k}) + \hat{k} = \alpha + 2 \cdot \hat{k},$$

și, inductiv, dacă $\alpha^{p^m}=\alpha+m\cdot \widehat{k}$, atunci $\alpha^{p^{m+1}}=(\alpha+m\cdot \widehat{k})^p=\alpha+(m+1)\cdot \widehat{k}$. În grupul multiplicativ (\mathbb{K}^* , ·) avem $x^{p^n-1}=1$ pentru orice $x\in\mathbb{K}^*$, astfel că $x^{p^n}=x$ pentru orice element $x\in\mathbb{K}$. Atunci

$$\alpha = \alpha^{p^n} = \alpha + n \cdot \hat{k} \,,$$

Problema 3. Fie $a, b \in \mathbb{R}$, cu a < b, două numere reale oarecare. Spunem că o funcție $f : [a, b] \longrightarrow \mathbb{R}$ are proprietatea (\mathcal{P}) dacă este o funcție integrabilă pe [a, b], cu proprietatea că

$$f(x) - f\left(\frac{x+a}{2}\right) = f\left(\frac{x+b}{2}\right) - f(x)$$
 pentru orice $x \in [a,b]$.

Arătați că pentru orice număr real t există o unică funcție $f:[a,b] \longrightarrow \mathbb{R}$ cu proprietatea (\mathcal{P}) , astfel $\widehat{incât} \int\limits_a^b f(x) \, dx = t$.

Soluţie:

Vom arăta că funcțiile cu proprietatea (\mathcal{P}) sunt exact funcțiile constante pe intervalul [a, b]. Egalitatea din enunț se transcrie echivalent

$$f(x) = \frac{1}{2} \left(f\left(\frac{x+a}{2}\right) + f\left(\frac{x+b}{2}\right) \right) \tag{1}$$

Arătăm că pentru orice $n \in \mathbb{N}^*$ și orice $x \in [a, b]$ are loc egalitatea

$$f(x) = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} f\left(\frac{x + (2^n - 1 - k)a + kb}{2^n}\right).$$
 (2)

Pentru n=1, aceasta este exact relația (1). Dacă presupunem acum egalitatea adevărată pentru un număr natural $n\in\mathbb{N}^*$ și orice $x\in[a,b]$, atunci avem

$$f(x) = \frac{1}{2^n} \sum_{k=0}^{2^{n-1}} f\left(\frac{x + (2^n - 1 - k)a + kb}{2^n}\right) =$$

$$= \frac{1}{2^n} \sum_{k=0}^{2^{n-1}} \frac{1}{2} \left(f\left(\frac{1}{2} \cdot \frac{x + (2^n - 1 - k)a + kb}{2^n} + \frac{1}{2} \cdot a\right) + f\left(\frac{1}{2} \cdot \frac{x + (2^n - 1 - k)a + kb}{2^n} + \frac{1}{2} \cdot b\right) \right) =$$

$$= \frac{1}{2^{n+1}} \sum_{k=0}^{2^{n+1} - 1} f\left(\frac{x + (2^{n+1} - 1 - k)a + kb}{2^{n+1}}\right).$$

 \sim 3p

Considerăm pentru $n \in \mathbb{N}^*$ și $x \in [a, b]$ oarecare diviziunea

$$\Delta_n = \left(x_0 = a < x_1 = \frac{(2^n - 1)a + b}{2^n} < \dots < x_k = \frac{(2^n - k)a + kb}{2^n} < \dots < x_{2^n} = b \right)$$

cu norma $|\Delta_n| = \frac{b-a}{2^n}$ și sistemul de puncte intermediare

$$\xi_{(n)}(x) = \left(\xi_k(x) = \frac{x + (2^n - k)a + (k - 1)b}{2^n} \mid k = \overline{1, 2^n}\right).$$

Atunci relația (2) se transcrie sub forma

$$f(x) = \frac{1}{b-a} \cdot \sigma(f; \Delta_n, \xi_{(n)}(x)),$$

unde prin $\sigma(f; \Delta_n, \xi_{(n)}(x))$ am notat suma Riemann asociată funcției f, diviziunii Δ_n și sistemului de puncte intermediare $\xi_{(n)}(x)$. Cum funcția f este integrabilă Riemann pe intervalul [a, b],

avem $\lim_{n\to\infty} \sigma(f; \Delta_n, \xi_{(n)}(x)) = \int_a^b f(s) \, ds$, astfel că $f(x) = \frac{1}{b-a} \cdot \int_a^b f(s) \, ds$ pentru orice $x \in [a, b]$.

Orice funcție cu proprietatea ($\overset{\circ}{\mathcal{P}}$) este deci constantă

Problema 4. Fie $f:[0,1] \longrightarrow \mathbb{R}$ o funcție monoton crescătoare, derivabilă, cu derivata continuă, pentru care f(0) = 0. Fie $g:[0,1] \longrightarrow \mathbb{R}$ funcția definită prin

$$g(x) = f(x) + (x-1)f'(x)$$
 pentru orice $x \in [0,1]$.

a) Arătați că

$$\int_0^1 g(x) \, dx = 0.$$

b) Demonstrați că pentru orice funcție $\varphi:[0,1] \longrightarrow [0,1]$, convexă și derivabilă, cu $\varphi(0)=0$ și $\varphi(1)=1$, are loc inegalitatea

$$\int_0^1 g(\varphi(x)) \, dx \le 0 \, .$$

Soluție:

a) Deoarece g(x) = f(x) + (x-1)f'(x) = ((x-1)f(x))', rezultă că

$$\int_0^1 g(x) \, dx = (x-1)f(x)|_0^1 = 0.$$

b) Fig. (a. [0, 1] \rightarrow [0, 1] a function conveys ai derivabile as a(0) = 0 at a(1) = 1. At unit

b) Fie $\varphi:[0,1] \longrightarrow [0,1]$ o funcție convexă și derivabilă cu $\varphi(0)=0$ și $\varphi(1)=1$. Atunci funcția φ' este crescătoare. Funcția f fiind monoton crescătoare și derivabilă, are derivata f' nenegativă. Rezultă că pentru orice $x \in [0,1]$ avem

$$f(\varphi(x)) = f(\varphi(x)) - f(\varphi(0)) = \int_0^x f'(\varphi(t)) \cdot \varphi'(t) dt \le \varphi'(x) \cdot \int_0^x f'(\varphi(t)) dt$$

Integrând în inegalitatea de mai sus, obținem

$$\int_0^1 f(\varphi(x)) dx \le \int_0^1 \left(\varphi'(x) \cdot \int_0^x f'(\varphi(t)) dt \right) dx.$$
 (3)

......2p

Funcția $f' \circ \varphi$ este continuă, fiind compusă de funcții continue, astfel că este primitivabilă și integrabilă, iar o primitivă a sa este funcția $\Phi: [0,1] \longrightarrow \mathbb{R}$ definită prin $\Phi(x) = \int_0^x f'(\varphi(t)) dt$. Integrând prin părți, avem:

$$\int_0^1 \left(\varphi'(x) \cdot \int_0^x f'(\varphi(t)) \, dt \right) \, dx = \int_0^1 (\varphi'(x) \cdot \Phi(x)) \, dx =$$

$$= \left(\varphi(x) \cdot \Phi(x) \right) \Big|_0^1 - \int_0^1 \left(\varphi(x) \cdot \Phi'(x) \right) \, dx =$$

$$= \varphi(1) \cdot \Phi(1) - \varphi(0) \cdot \Phi(0) - \int_0^1 \varphi(x) \cdot f'(\varphi(x)) \, dx = \int_0^1 f'(\varphi(x)) \, dx - \int_0^1 \varphi(x) \cdot f'(\varphi(x)) \, dx \, . \tag{4}$$

1p

Din definiția funcției g, inegalitatea (3) și identitatea (4) rezultă atunci că