

Methode: complexe

Mise sous forme trigonométrique d'un complexe

Pour mettre sous forme trigonométrique un complexe z=a+ib, on met en facteur le module $\sqrt{a^2+b^2}$, puis on cherche un angle θ tel que

$$\begin{cases}
\cos \theta &= \frac{a}{\sqrt{a^2 + b^2}} \\
\sin \theta &= \frac{b}{\sqrt{a^2 + b^2}}.
\end{cases}$$

- Pour trouver θ, on peut s'aider du cercle trigonométrique
- Pour mettre sous forme trigonométrique la somme de deux nombres complexes de même module, on factorise par l'angle moitié :

$$re^{ilpha}+re^{ieta}=re^{irac{lpha+eta}{2}}\left(e^{irac{lpha-eta}{2}}+e^{-irac{lpha-eta}{2}}
ight)=2r\cosigg(rac{lpha-eta}{2}igg)e^{irac{lpha+eta}{2}}.$$

Attention! $\cos((\alpha-\beta)/2)$ n'est pas nécessairement positif, on n'a pas toujours automatiquement la forme trigonométrique. Dans le cas où ce réel est négatif, il faut faire un décalage d'angle de π

Calcul de la puissance d'un nombre complexe

- Pour calculer la puissance d'un nombre complexe, on l'écrit sous forme trigonométrique

Racine carrée d'un nombre complexe

Si w=x+iy, on cherche les solutions de $z^2=w$ avec z=u+iv en écrivant que :

$$\begin{cases} \Re e(z^2) & = & \Re e(w) \\ \Im m(z^2) & = & \Im m(w) \iff \begin{cases} u^2 - v^2 & = & x \\ 2uv & = & y \\ u^2 + v^2 & = & \sqrt{x^2 + y^2} \end{cases}$$

La première et la dernière équation donnent u et v au signe près, la seconde donne le signe du produit uv, donc les deux racines souhaitées

Racine n-ième d'un nombre complexe

Pour calculer la racine n-ième d'un nombre complexe, c'est-à-dire pour résoudre l'équation $z^n=a$ avec $a\neq 0$,

M

on commence par mettre a sous forme trigonométrique, $a=re^{\imath \theta}$ on utilise le théorème qui nous dit qu'alors les solutions sont les nombres complexes $r^{1/n}e^{i\left(\frac{\theta}{n}+\frac{2k\pi}{n}\right)}$, avec $k=0,\ldots,n-1$.

Applications des nombres complexes à la trigonométrie

Pour linéariser $\sin^n t$ et $\cos^n t$:

- ullet on utilise la formule d'Euler en remplaçant $\cos t$ par $rac{e^{it}+e^{-it}}{2}$ et $\sin t$ par $rac{e^{it}-e^{-it}}{2i}$;
- on développe en utilisant la formule du binôme de Newton;
- on regroupe les exponentielles d'angles opposés en utilisant à nouveau la formule d'Euler

Pour exprimer $\sin(nt)$ et $\cos(nt)$ en un polynôme en $\sin t$ et $\cos t$:

- on utilise la formule de Moivre (cost+isin)ⁿ=cos(nt)+isin(nt)
- on développe le membre de gauche par la formule du binôme de Newton
 - on identifie les parties réelles et les parties imaginaires