TITLE: AI POWERED NUTRITION ANALYZER

**TEAM ID: PNT2022TMID28902** 

BATCH: B2-2M4E

**TYPE:** Web-Application

1. INTRODUCTION

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality

control and contamination of food.

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on

the fruits like (Sugar, Fibre, Protein, Calories, etc.).

Image classification is done by using Support Vector Machine(SVM) and Convolution Neural Network(CNN). The scalability of the solution is determined by the image of the food classified accurately, Social impact and customer satisfaction is maintained by friendly UI design and easy to operate. Mainly this business model increases the life span of the users. It provide healthy life.

business model increases the me span of the users. It provide healthy me

#### 2. PROJECT OBJECTIVES:

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

#### BY THE END OF THIS PROJECT WE KNOW ABOUT:

- Know fundamental concepts and techniques of Convolutional Neural Network.
- Gain a broad understanding of image data.
- Know how to pre-process/clean the data using different data preprocessing techniques.
- Know how to build a web application using the Flask framework.

### 3. EMPATHY MAP



# **4.TOOLS & LIBRARIES**

In this topic we are going to see about tools and libraries that I am using to develop the project.

| No | Tools&LibraryName | Usage                                                                                                                                                                                                                                           |
|----|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Keras             | We are using for deep learning tasks like creating model, predicting the object etc.                                                                                                                                                            |
| 2  | tensorflow        | TensorFlow can be used across a range of tasks but has a particular focus on training and inference of deep neural networks                                                                                                                     |
| 3  | Flask             | It is classified as a microframework because it does not require particular tools or libraries. It has no database abstraction layer, form validation, or any other components where preexisting third-party libraries provide common functions |
| 4  | scikitlearn       | Simple and efficient tools for predictive data analysis · Accessible to everybody, and reusable in various contexts · Built on NumPy, SciPy, and matplotlib ·                                                                                   |
| 5  | Numpy             | We are using it for the Image matrix handling.                                                                                                                                                                                                  |
| 6  | Pandas            | Pandas is an open-source library that is made mainly for working with relational or labeled data both easily and intuitively.                                                                                                                   |

# 5. PROPOSED SOLUTION

| S. No. | Parameter                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | Problem Statement (Problem to be solved) | <ul> <li>The absence of balanced food and nutrition security leads to health problems such as diabetes, obesity, and malnutrition.</li> <li>So we have to take adequate amounts of energy, proteins, vitamins, minerals, essential fats, micro and macronutrients.</li> <li>This will done by using nutrition analyser app.</li> <li>This app helps us to find the nutrition, vitamin and mineral content in the food.</li> </ul> |
| 2.     | Idea / Solution description              | <ul> <li>Image classification is done by using<br/>Support Vector Machine (SVM) and<br/>Convolutional Neural Network (CNN).</li> </ul>                                                                                                                                                                                                                                                                                            |
| 3.     | Novelty / Uniqueness                     | <ul> <li>Convolutional Neural Network (CNN)<br/>and Support Vector Machine (SVM) is<br/>used in this system.</li> </ul>                                                                                                                                                                                                                                                                                                           |
| 4.     | Social Impact / Customer Satisfaction    | Friendly UI design and Easy to operate.                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.     | Business Model (Revenue Model)           | It will increases the life span of the<br>Users. It will provides the healthy life.                                                                                                                                                                                                                                                                                                                                               |
| 6.     | Scalability of the Solution              | <ul> <li>The scalability of the solution is how<br/>the image of the food is<br/>classified accurately.</li> </ul>                                                                                                                                                                                                                                                                                                                |

# **6.ARCHITECTURE**

Solution architecture is the process of developing solutions based on predefined processes, guidelines and best practices with the objective that the developed solution fits within the enterprise architecture in terms of information architecture, system portfolios, integration requirements and many more.

Solution architecture includes five main processes:

- 1.Identification of business goals and objectives;
- 2.Identification of system requirements;
- 3. Definition of information models and processes;
- 4. Selection and integration of technologies, tools, and platforms;
- 5.Development of project plans.



Figure 1. TECHNICAL ARCHITECTURE

### 7. PROJECT STRUCTURE



- Dataset folders contains the training and testing images for training our model We are building a Flask Application that needs HTML pages stored in the templates folder and a python script app.py for serverside scripting
- we need the model which is saved and the saved model in this content is a nutrition.h5
- templates folder contains home.html, image.html, imageprediction.html pages.
- Statis folder had the css and js files which are necessary for styling the html page and for executing the actions.
- Uploads folder will have the uploaded images(which are already tested).
- Sample\_images will have the images which are used to test or upload.
- Training folder contains the trained model file.

#### 8.WORK-FLOW

The user interacts with UI and gives the image as input. Then the input image is then pass to our flask application, And finally with the help of the model which we build we will classify the result and showcase it on the UI.

To accomplish this, we have to complete all the activities below

- 1. DATA COLLECTION
- 2. DATA PREPROCESSING.
- 3. MODEL BUILDING
- 4. APPLICATION BUILDING
- 5. DEPLOYMENT

#### 8.1.DATA COLLECTION

- Collect images of different food items organized into subdirectories based on their respective names as shown in the project structure. Create folders of types of food items that need to be recognized.
- In this project, we have collected images of 5 types of food items apples, 'banana', 'orange', 'pineapple' and 'watermelon', they are saved in the respective subdirectories with their respective names.
- For more accurate results we can collect images of high resolution and feed the model with more images.

### 8.2. DATA PREPROCESSING

 Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

ImageDataGenerator class is instantiated and the configuration for the types of data augmentation

• There are five main types of data augmentation techniques for image data; specifically:

Image shifts via the width\_shift\_range and height\_shift\_range arguments.

The image flips via the horizontal\_flip and vertical\_flip arguments.

Image rotations via the rotation\_range argument

Image brightness via the brightness\_range argument.

Image zoom via the zoom\_range argument.

- Let us apply ImageDataGenerator functionality to Trainset and Testset . For Training set using flow\_from\_directory function.
- This function will return batches of images from the subdirectories'apples', 'banana', 'orange', 'pineapple', 'watermelon' together with labels 0 to 4{'apples': 0, 'banana': 1, 'orange': 2, 'pineapple': 3, 'watermelon': 4}

### 8.3. MODEL BUILDING

• The compilation is the final step in creating a model. Once the compilation is done, we can move on to the training phase. The loss function is used to find errors or deviations in the learning process. Keras requires loss function

during the model compilation process.

- Optimization is an important process that optimizes the input weights by comparing the prediction and the loss function. Here we are using adam optimizer
- Metrics are used to evaluate the performance of your model. It is similar to the loss function, but not used in the training process
- Now, let us train our model with our image dataset. The model is trained for 20 epochs and after every epoch, the current model state is saved if the model has the least loss encountered till that time. We can see that the training loss decreases in almost every epoch till 20 epochs and probably there is further scope to improve the model
- Evaluation is a process during the development of the model to check whether the model is the best fit for the given problem and corresponding data. Load the saved model using load\_model.

#### 8.4. APPLICATION BUILDING

- We use HTML to create the front-end part of the web page. Here, we have created 3 HTML pages- home.html, image.html, imageprediction.html, and 0.html.home.html displays the home page.image.html is used for uploading the image imageprediction.html will showcase the output
- The first step is usually importing the libraries that will be needed in the program. Importing the flask module into the project is mandatory. An object of the Flask class is our WSGI application. Flask constructor takes the name of the current module (\_\_name\_\_) as an argument Pickle library to

load the model file.

- The '/' URL is bound with the home.html function. Hence, when the home page of the webserver is opened in the browser, the HTML page is rendered. Whenever you enter the values from the HTML page the values can be retrieved using the POST Method.
- It will take the image request and we will be storing that image in our local system then we will convert the image into our required size and finally, we will be predicting the results with the help of our model which we trained and depending upon the class identified we will showcase the class name and its properties by rendering the respective html pages.

#### 8.5. DEPLOYMENT

- Open the anaconda prompt from the start menu.
- Navigate to the folder where your app.py resides.
- Now type the "python app.py" command.
- It will show the local host where your app is running on http://127.0.0.1.5000/
- Copy that localhost URL and open that URL in the browser. It does navigate to where you can view your web page.
- Enter the values, click on the predict button and see the result/prediction on the web page.
- Click on classify button to see the results.

# 9. CODE

Code is open source and published into GitHub with read-me file.

https://github.com/IBM-EPBL/IBM-Project-5345-1658759382

# 10. OUTPUT

Some of the screenshots of project given below:











# 11. REFERENCE SURVEY TABULAR FORM

| S. | Authors                                                                                                                                                                     | Title                                                                                                                         | Methodology                                                                                                                                  | ProS                        | Cons     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|
| No |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                              | (Advan                      | (Disadya |
|    |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                              | age)                        | ntage)   |
|    | Muha mmad Asla m, Inzamam Ul Haq, Muhamma d Saad Rehan, Faheem Ali, Abdul Basit, Muham mad Iftikhar Khan, Muham mad Iftikhar Khan, Muham mad Naeem Arbab (2021) (IEEE paper | Health Analysis of Transforme r Winding Insulation Through Thermal Monitoring and Fast Fourier Transform (FFT) Power Spectrum | Thermal monitoring, novel winding insulation model, thermal monitoring algorithm and installation of monitoring unit at 500 kv grid station. | (Advan                      | (Disadva |
|    | 1)                                                                                                                                                                          |                                                                                                                               |                                                                                                                                              | the<br>winding<br>insulatio |          |
|    |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                              | n.                          |          |

| 2 | <u>Yuita</u>       | Leftovers  | The dataset | The      | The       |
|---|--------------------|------------|-------------|----------|-----------|
|   | <u>Arum</u>        | Nutrition  | was taken   | method   | segme     |
|   | <u>Sari,</u>       | Prediction | using an    | was also | ntation   |
|   | <u>Luthfi</u>      | for        | SNB         | embedde  | algorit   |
|   | Maulana,           | Augmentin  | prototype   | d in     | hm has    |
|   | <u>Yusuf</u>       | g Smart    | combined    | SNB      | drawbacks |
|   | <u>Gladiesnyah</u> | Nutrition  | with        | prototyp | when      |
|   |                    | Box        |             | e to     |           |
|   |                    |            |             | enhance  |           |
|   |                    |            |             | the      |           |
|   |                    |            |             |          |           |
|   |                    |            |             |          |           |

|   | Bihanda,        | Prototype  | full of       | estimation   | applying in |
|---|-----------------|------------|---------------|--------------|-------------|
|   | <del>Jaya</del> | Feature    | lighting      | function.    | multi       |
|   | ——<br>Mahar     | Using      | inside the    |              | ple         |
|   | Maligan,        | Image      | box. Each     |              | condi       |
|   | Nabila          | Processin  | item of       |              | tions.      |
|   | Nur'aini,       | g          | food was      |              |             |
|   | <u>Dhea</u>     | Approach   | placed in     |              |             |
|   | <u>Rahma</u>    | and AFLE   | the           |              |             |
|   | <u>Widyadh</u>  | Algorithm  | compartme     |              |             |
|   | <u>ana</u>      |            | nt of         |              |             |
|   | (2020)          |            | the           |              |             |
|   | (IEEE paper     |            | white         |              |             |
|   | 2)              |            | tray          |              |             |
|   |                 |            | box.          |              |             |
| 3 | Yongpan         | A Low-Cost | More          | The          | The         |
| • | Zou             | Smart      | specifically, | detection of | overall     |
|   | ,Dan            | Glove      | iCoach, is    | non-         | speed of    |
|   | Wang,Sc         | System     | a Smart       | standard     | repetition  |
|   | hiong           | for Real-  | fitness       | behaviors    | is too fast |
|   | Hong,Ru         | time       | glove with    | and quality  | or too      |
|   | khsana          | Fitness    | commercia     | assessment   | slow.       |
|   | Ruby,           | Coaching   | 1 inertial    | results are  | The         |
|   | Dian            |            | measureme     | displayed    | speed of    |
|   | Zhang,K         |            | nt IMU        | on the user  | outward     |
|   | aishun          |            | including     | interface.   | and         |
|   | Wu              |            | accelerome    | The results  | backward    |
|   | (2020)          |            | ter,          | can also be  | processes   |
|   | (IEEE paper     |            | gyroscope,    | reported to  | is not      |
|   | 3)              |            | magnetom      | users in the | balanced.   |
|   |                 |            | eter          | form of      | The         |

|                                                                                     |                                                       | embedded<br>in its wrist<br>band.                                                                                                                            | voice<br>reminder.                                                                                                                                                                                     | repetition s are not stable with noticeabl e shakes.                                                                                                                                   |
|-------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 Zhao Z<br>Ali<br>Arya,<br>Rita<br>Orji,<br>Gerry<br>Chan<br>(2020)<br>(IEEE<br>4) | Activity Recomme ndation for Exergame Player Modeling | The methodolog y was to use the questionnai re data to train a binary predictive model to predict whether the user would like a new type of exercise or not. | The feasibility of using the player model for personalizi ng PA, potential of using machine learning in building the recommen der system for PA and the considerab le effect in optimizing the system. | Sometimes it might not be realistic for some users to try those new Pas that our system recomm ended. The system did not look at the distance between PA with different perspecti ves. |

| 5 | Asmabee      | Optimizing | The          | An expert    | There must  |
|---|--------------|------------|--------------|--------------|-------------|
|   | <u>Khan,</u> | Nutrition  | background   | recommen     | not         |
|   | <u>Sachi</u> | using      | studies      | dation       | be a lack   |
|   | <u>n</u>     | Machine    | towards      | system is    | of          |
|   | <u>Desh</u>  | Learning   | designing    | designed,    | knowled     |
|   | <u>pande</u> | Algorithms | recommen     | which        | ge about    |
|   | <u>.</u>     | -a         | dation       | wills the    | proper      |
|   | <u>Amiy</u>  | Comparati  | system       | user to      | nutrient-   |
|   | <u>a K.</u>  | ve         | using        | assess their | content     |
|   | <u>Tripa</u> | Analysis   | machine      | nutritional  | diet to     |
|   | <u>thy</u>   |            | learning     | status and   | predict     |
|   | (2019        |            | algorithms   | get a        | and form    |
|   | )            |            | that lead to | Web/App-     | statistics. |
|   | (IEEE paper  |            | the design   | based        |             |
|   | 5)           |            | of           | counseling   |             |
|   |              |            | nutrition    | from         |             |
|   |              |            | based        | Nutritionis  |             |
|   |              |            | recommen     | ts/D         |             |
|   |              |            | dation       | ietitian.    |             |
|   |              |            | system.      |              |             |
| 6 | Jihyeon      | Emo Wei:   | To confirm   | The paper    | This field  |
| • | Kim,         | Emotion-   | the          | provided     | has         |
|   | Uran Oh      | Oriented   | feasibility  | design       | not yet     |
|   | (2019)       | Personaliz | of           | implicati    | develope    |
|   | (IEEE paper  | ed Weight  | monitorin    | ons for      | d enough    |
|   | 6)           | Management | g emotion    | future       | to grasp    |
|   |              |            | from         | weight       | the         |
|   |              |            | personal     | managemen    | situation,  |
|   |              |            | logs         | t            | the         |

# 12. CONCLUSION

We developed a project which can identify the fruit images uploaded to the web application. The web application is built using deep learning, machine learning and using other technologies such as numpy, flask packages in python,