

PROPIEDADES DE INTEGRABILIDAD

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 05) 25.ENERO.2023

Teorema (Criterio de Riemann de Integrabilidad)

Sean $f,g:[a,b]\to\mathbb{R}$ limitadas, g monótona no-decreciente. Entonces f es Riemann-Stieltjes integrable respecto de g en $[a,b]\iff$ para todo $\varepsilon>$ 0, existe una partición P_ε de [a,b] tal que si $P=\{t_0,t_1,\ldots,t_n\}$ es refinamiento de P_ε , entonces

$$\sum_{i=1}^{n} (M_i - m_i) \left(g(t_i) - g(t_{i-1}) \right) < \varepsilon,$$

$$\textit{donde } m_i = \inf_{[t_{i-1},t_i]} f \textit{ y } M_i = \sup_{[t_{i-1},t_i]} f.$$

Prueba: (\Rightarrow) Pendiente.

Corolario

Sean $f, g : [a, b] \rightarrow \mathbb{R}$ limitadas. Entonces:

- i) Si f es continua y g es monótona $\Rightarrow f$ es g-integrable.
- ii) Si f es continua y $g \in BV[a, b] \Rightarrow f$ es g-integrable.
- iii) Si f es monótona y g es continua \Rightarrow f es g-integrable.
- iv) Si $f \in BV[a, b]$ y g es continua $\Rightarrow f$ es g-integrable.

Prueba: Ejercicio!

Teorema

Sean $f, f_1, f_2, g : [a, b] \to \mathbb{R}$ limitadas, g monótona no-decreciente en [a, b].

- i) f es g-integrable $\Rightarrow |f|$ es g-integrable.
- ii) Si f_1, f_2 son g-integrables $\Rightarrow f_1 f_2$ es g-integrable.

Prueba: (i) Tome $P = \{t_0, \dots, t_n\}$ una partición de [a,b], que cumple el criterio de integrabilidad de Riemann

$$\sum_{i=1}^{n} (M_i - m_i) \left(g(t_i) - g(t_{i-1}) \right) < \varepsilon,$$

con $m_i = \inf_{[t_{i-1},t_i]} f$ y $M_i = \sup_{[t_{i-1},t_i]} f$. Observe que

$$M_i - m_i = \sup\{f(x) - f(y) : x, y \in [t_{i-1}, t_i]\} < \varepsilon.$$

(i) De la desigualdad triangular $||f(x)| - |f(y)|| \le |f(x) - f(y)| \le \varepsilon$, cuando tomamos $x, y \in [t_{i-1}, t_i]$.

Luego, la misma partición P sirve para mostrar que

$$\sum_{i=1}^n (\sup |f|_i - \inf |f|_i) \left(g(t_i) - g(t_{i-1})\right) \leq \sum_{i=1}^n (\sup f_i - \inf f_i) \left(g(t_i) - g(t_{i-1})\right) < \varepsilon,$$

de modo que |f| también es g-integrable.

(ii) Si $|f| \leq K$, entonces

$$|(f(x))^{2} - (f(y))^{2}| = |(f(x) + f(y))(f(x) - f(y))| \le 2||f|| \cdot |\cdot|f(x) - f(y)|$$

Esto muestra que f^2 es g-integrable, nuevamente por el criterio de Riemann. Como $2f_1f_2=(f_1+f_2)^2-f_1^2-f_2^2$, entonces f_1f_2 es suma de funciones g-integrables. Portanto, es g-integrable. \square

Teorema

Si q es monótona no-decreciente en [a, b] y f es q-integrable en [a, b], entonces

$$\Big|\int_a^b f\,dg\Big| \leq \int_a^b |f|\,dg \leq ||f||\, ig(g(b)-g(a)ig).$$

Prueba: Sabemos que |f| es q-integrable. Sea $P = \{t_0, \ldots, t_n\}$ una partición de [a, b], con representantes \mathcal{E}_i , entonces

$$-||f|| \le -|f(\xi_i)| \le f(\xi_i) \le |f(\xi_i)| \le ||f||, \quad \forall i = 1, 2, \dots, n.$$

$$\begin{aligned} & \text{Multiplicando por } \Delta g_i = g(t_i) - g(t_{i-1}) \text{, y sumando} \\ & - \sum_{i=1}^n ||f|| \, \Delta g_i \leq - \sum_{i=1}^n |f(\xi_i)| \, \Delta g_i \leq \sum_{i=1}^n f(\xi_i) \, \Delta g_i \leq \sum_{i=1}^n |f(\xi_i)| \, \Delta g_i \leq \sum_{i=1}^n ||f|| \, \Delta g_i. \end{aligned}$$

Luego

$$-||f|| (g(b) - g(a)) \le -s(P, |f|, g) \le s(P, f, g) \le s(P, |f|, g) \le ||f|| (g(b) - g(a)).$$

Así,
$$|s(P, f, g)| \le s(P, |f|, g) \le ||f|| (g(b) - g(a)).$$

Tomando el límite cuando $||P|| \rightarrow o$, obtenemos

$$\left|\int_a^b f\,dg\right| \leq \int_a^b |f|\,dg \leq ||f||\, ig(g(b)-g(a)ig).$$

Corolario

Si $m \le f(x) \le M$, para todo $x \in [a, b]$, entonces

$$m\left(g(b)-g(a)\right) \leq \int_a^b f \, dg \leq M\left(g(b)-g(a)\right).$$

Teorema (1er. Teorema del Valor Medio)

Sean $f,g:[a,b]\to\mathbb{R}$ funciones, f continua, g monótona no-decreciente. Entonces, existe $c\in[a,b]$ tal que

$$\int_a^b f \, dg = f(c) \, \int_a^b dg = f(c) \, \big(g(b) - g(a)\big).$$

Prueba: Sean $m = \inf_{[a,b]} f$, $M = \sup_{[a,b]} f$. Del corolario anterior, tenemos

$$m\left(g(b)-g(a)
ight)\leq \int_a^b f\,dg\leq M\left(g(b)-g(a)
ight).$$

• g(b) = g(a): g seria constante, y

$$\int f dg = O = f(c) \cdot O = f(c) \left(g(b) - g(a)\right),$$

para cualquier $c \in [a, b]$.

• g(b) > g(a): la desigualdad de arriba implica que

$$\inf f = m \le k = \frac{\int_a^b f \, dg}{g(b) - g(a)} \le M = \sup f,$$

Como f es continua, por el Teorema del Valor Medio de Bolzano, existe $c \in [a,b]$ tal que f(c) = k. Así

$$\int_a^b f \, dg = k \left(g(b) - g(a) \right) = f(c) \left(g(b) - g(a) \right). \, \Box$$

Teorema (de Diferenciación (análogo a la 1a. parte del T. Fundamental))

Sean $f,g:[a,b]\to\mathbb{R}$ funciones, f continua, g monótona no-decreciente, g suponga que g es diferenciable en $g\in (a,b)$. Entonces, la función $g:[a,b]\to\mathbb{R}$ dada por

$$F(t) = \int_a^t f \, dg$$

es diferenciable en c y F'(c) = f(c)g'(c).

Prueba: Tome h > 0 tal que $c + h \in [a, b]$. Entonces, del 1er. Teorema del Valor Medio, obtenemos

$$F(c+h)-F(c)=\int_a^{c+h}f\,dg-\int_a^cf\,dg=\int_c^{c+h}f\,dg=f(\xi)\,\big(g(c+h)-g(c)\big),$$

para algún $\xi \in [c, c+h]$.

Dividiendo por h, y tomando el límite cuando $h \rightarrow o^+$

$$\lim_{h\to 0}\frac{F(c+h)-F(c)}{h}=\lim_{h\to 0}f(\xi)\cdot\frac{g(c+h)-g(c)}{h}=\lim_{h\to 0}f(\xi)\cdot\lim_{h\to 0}\frac{g(c+h)-g(c)}{h}=f(c)g'(c).$$

Portanto, F es diferenciable en c. \square

Teorema (2do. Teorema del Valor Medio)

Sean $f, g : [a, b] \to \mathbb{R}$ funciones, f monótona no-decreciente, g continua. Entonces, existe $c \in [a, b]$ tal que

 $\int_a^b f \, dg = f(a) \, \int_a^c dg + f(b) \, \int_c^b dg.$

Prueba: g es f-integrable. Por el 1er. Teorema del Valor Medio, existe $c \in [a,b]$ tal que

$$\int_a^b g\,df=g(c)\,\big(f(b)-f(a)\big).$$

De la integración por partes, entonces f es g-integrable y

$$\int_{a}^{b} f \, dg = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g \, df = f(b)g(b) - f(a)g(a) - g(c) \left(f(b) - f(a) \right)$$

$$= f(a) \left(g(c) - g(a) \right) + f(b) \left(g(b) - g(c) \right) = f(a) \int_{a}^{c} dg + f(b) \int_{c}^{b} dg. \, \Box$$

Teorema (Cambio de Variable)

Sean $f,g:[a,b]\to\mathbb{R}$ funciones, f continually g-integrable. Suponga que $\varphi:[\alpha,\beta]\to[a,b]$ es un difeomorfismo, con $\varphi(\alpha)=a$ y $\varphi(\beta)=b$. Entonces

$$\int_a^b f \, dg = \int_\alpha^\beta (f \circ \varphi)(\mathsf{s}) \, d(g \circ \varphi)(\mathsf{s}) = \int_\alpha^\beta (f \circ \varphi) \, d(g \circ \varphi).$$

Relacionar con el cambio de variable tradicional, $d(g \circ \varphi) = dg(\varphi) \cdot \varphi'$.

Prueba: Ejercicio! ...

Propiedades de Convergencia

Sea $g:[a,b]\to\mathbb{R}$ una función monótona no-decreciente, y consideremos una secuencia de funciones $\{f_n\}_{n\geq 1}$, con $f_n:[a,b]\to\mathbb{R}$, y tal que converge a otra función $f:[a,b]\to\mathbb{R}$, esto es $f_n\to f$.

Es de esperar que, $\int_a^b f_n\,dg o \int_a^b f\,dg.$

Ejemplo: Sea g(x) = x, y considere la secuencia de funciones $f_n : [0,4] \to \mathbb{R}$ dadas por

$$f_n(x) = \begin{cases} n^2 x, & 0 \le x \le \frac{1}{n}; \\ -n^2 (x - \frac{2}{n}), & \frac{1}{n} < x \le \frac{2}{n}; \\ 0, & \frac{2}{n} < x \le 4. \end{cases}$$

¿Qué ocurre con las integrales $\int f_n dg$?

Propiedades de Convergencia

Teorema (Integrabilidad bajo convergencia uniforme)

Sean $f_n:[a,b]\to\mathbb{R}$ funciones g-integrables, g monótona no-decreciente, tales que $f_n\xrightarrow{unif} f$. Entonces, f es g-integrable en [a,b] y $\int f \, dg = \lim_n \int f_n \, dg$.

Teorema (Teorema de Convergencia Limitada)

Sean $f_n:[a,b]\to\mathbb{R}$ funciones g-integrables, g monótona no-decreciente. Suponga que existe B>0 tal que $||f_n||\leq B, \forall n$. Si la función $f=\lim_n f_n$ existe y es g-integrable en [a,b], entonces $\int f\,dg=\lim_n \int f_n\,dg$.

Teorema (Teorema de Convergencia Monótona)

Sean $\{f_n\}$ una secuencia monótona de funciones $f_n:[a,b]\to\mathbb{R}$ g-integrables, g monótona no-decreciente. Si la función $f=\lim_n f_n$ existe y es g-integrable en [a,b], entonces $\int f \, dg=\lim_n \int f_n \, dg$.