ACCELERATING EVOLUTION:

PARALLELISATION OF EVOLUTIONARY ALGORITHMS ON GPU

ASHIRBAD SARANGI

SC23M002

CONTENT

OBJECTIVE

GPU PRE-REQUISITES

EVOLUTIONARY ALGORITHMS

PLAN OF ACTION

TIMELINE

OBJECTIVE

To try and implement evolutionary algorithms and compare the run time in CPU and GPU

GPU PRE-REQUISITES

GPU PRE-REQUISITES

- GPU Graphics Processing Unit
- Fast amount of dense matrix multiplication due to parallelism

CUDA Basic Linear Algebra Subprograms

WHAT IS CUBLAS GOOD FOR?

- Anything that uses <u>heavy linear algebra computations</u> (on dense matrices) can likely benefit from GPU acceleration
 - Graphics
 - Machine learning (this will be covered next week)
 - Computer vision
 - Physical simulations
 - Finance
 - etc.....
- cuBLAS excels in situations where you want to maximize your performance by batching multiple kernels using streams.
 - Like making many small matrix-matrix multiplications on dense matrices
- cuBLAS selected column-first indexing

NUMPY VS CUBLAS

Numpy	math	cuBLAS (<t> is one of S, D, C, Z, H)</t>
numpy.matmul(α, χ)	$(\lambda {f A})_{ij} = \lambda ({f A})_{ij}$	cublas <t>gemm(α, χ)</t>
numpy.dot(χ, γ) (Multiply arguments element-wise)	$(A\circ B)_{i,j}=(A)_{i,j}(B)_{i,j}$.	cublas <t>gemm(χ, γ)</t>
numpy.matmul(A , χ)	Α χ = C	cublas <t>gemm(χ, A)</t>
numpy.matmul(A, B)	$m{C} \leftarrow lpha m{A} m{B} + eta m{C}$	cublas <t>gemm(A, B)</t>

ARRAY INDEXING

The arrays are linearized into one dimension, so we will use an **indexing macro**.

#define IDX2C(i,j,ld) (((j)*(ld))+(i))

Where "i" is the row, "j" is the column, and "ld" is the leading dimension.

In column major storage "ld" is the number of rows.

FEATURES

- All of the functions defined in cuBLAS have four versions which correspond to the four types of numbers in CUDA C
 - S, s : single precision (32 bit) real float
 - O D, d: double precision (64 bit) real float
 - C, c : single precision (32 bit) complex float (implemented as a float2)
 - O Z, z : double precision (64 bit) complex float
 - H, h: half precision (16 bit) real float
- Functions used for Matrix / Vector Multiplication :
 - cublasSgemm → cublas S gemm
 - cublasHgemm
 - cublasDgemv → cublas D gemv

EVOLUTIONARY ALGORITHMS

EVOLUTIONARY ALGORITHMS

• Evolutionary Algorithms (EAs) are a family of optimization algorithms inspired by the process of natural selection. They are used to find approximate solutions to optimization and search problems.

- Key Concepts:
 - Natural Selection:
 - Mimics the process of natural selection where individuals with favorable traits are more likely to survive and reproduce.
 - Population:
 - Solutions are represented as individuals in a population. Multiple solutions coexist and evolve over generations.
 - Crossover and Mutation:
 - Individuals undergo genetic operations like crossover (recombination) and mutation to create new offspring.
 - Fitness Function:
 - Measures the quality of an individual. Individuals with higher fitness values are more likely to contribute to the next generation.

GENETIC ALGORITHM

Initialise population size, number of generations,
cross over rate and mutation rate

Repeat till number of generations:
 check fitness
 Select Fit parents
 Generate Offsprings from cross over rate
 Mutate offsprings
 Replace Population
Get Best solution

ANT COLONY OPTIMIATION

Initialize pheromone levels

Repeat for a fixed number of iterations or until a convergence criterion is met:

Place ants at the starting point

For each ant:

Construct a solution by probabilistically selecting components Update pheromone levels based on the constructed solutions Evaporate pheromones

PARTICLE SWARM OPTIMIZATION

```
Initialise number of particles, number of parameters, max
iterations, cognitive parameters, social parameters, inertia
weight
particles = initialize particles(num particles, num dimensions)
For each particle initialize best position and fitness both
personally and Collectively as Globally
Until max iterations:
   Update velocity
   Update position
   Check fitness
   Update personal best if current fitness is better than best fitness
   Update Global best
best solution = global best position
```

PLAN OF ACTION

GENERATE A PATH TO FOLLOW

To implement the algo, a unique path needs to be present.

Trying to generate a path using the India map

LEARN THE ALGORITHMS

Learn all the three Algorithms

IMPLEMENT THEM ON CPU

Implement the algos in the path decided through the map on CPU

IMPLEMENT ON GPU

Implement the same on GPU

COMPARE

Compare performance of both techniques and report

PLAN OF ACTION

GENERATE A PATH TO FOLLOW

To implement the algo, a unique path needs to be present.

Trying to generate a path using the India map

LEARN THE ALGORITHMS

Learn all the three Algorithms

IMPLEMENT THEM ON CPU

Implement the algos in the path decided through the map on CPU

IMPLEMENT ON GPU

Implement the same on GPU

COMPARE

Compare performance of both techniques and report

PLAN OF ACTION

TIMELINE

COMPLETELY LEARN THE ALGO

By 9th November

IMPLEMENTATION ON CPU

Start by 9th November Complete by 10th November IMPLEMENT THEM ON GPU

Start by 11th November Complete by 15th November COMPARISON

Start by 16th November Complete by 17th November REPORT

Start by 18th November Complete by 20th November

TIMELINE

THANK YOU