特殊图

哈密顿图

Lijie Wang

51.

.....

六八夕四

其它方法

应用

哈密顿图

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

周游世界问题

1859 年英国数学家威廉·哈密顿爵士发明了一个小玩具,这个小玩具是一个木刻的正十二面体,每面系正五角形,共有20个顶点,每个顶点标有世界上一个重要城市。他提出一个问题:要求沿正十二面体的边寻找一条路通过20个城市,而每个城市只通过一次,最后返回原地。哈密顿将此问题称为周游世界问题。

哈密顿图的定义

哈密顿图

Lijie Wang

引

定义

必要条

充分条

其它方法

並用

Definition

设 G 是一个无向或有向图,若存在一条通路 (回路),经过图中每个结点一次且仅一次,则称此通路 (回路) 为该图的一条哈密顿通路 (回路)。具有哈密顿回路的图称为哈密顿图(Hamiltonian graph)。

☞ 注意

- 规定:平凡图为哈密顿图;
- 哈密顿通路是经过图中所有结点的通路中长度最短的通路;
- 哈密顿回路是经过图中所有结点的回路中长度最短的回路。

哈密顿图的定义

哈密顿图

Lijie Wang

引于

定义

必要条件

充分条件

其它方法

应用

哈密顿图的必要条件

 $p(G - V_1) \leq p(C - V_1) \leq |V_1|_{a}$

哈密顿图

Lijie Wang

217

必要条件

具匕刀

应用

Theorem

设无向图 G=<V,E> 是哈密顿图 , V_1 是 V 的任意非空子集 , 则 $p(G-V_1)\leqslant |V_1|$, 其中 $p(G-V_1)$ 是从 G 中删除 V_1 后所得到图的连通分支数。

Proof.

设 C 是 G 中的一条哈密顿回路 , V_1 是 V 的任意非空子集。下面分两种情况讨论:

- (1) V_1 中结点在 C 中均相邻,删除 C 上 V_1 中各结点及关联的边后, $C-V_1$ 仍是连通的,但已非回路,因此 $p(C-V_1)=1\leqslant |V_1|$ 。
- (2) V_1 中结点在 C 上存在 $r(2\leqslant r\leqslant |V_1|)$ 个互不相邻,删除 C 上 V_1 中各结点及关联的边后,将 C 分为互不相连的 r 段,即 $p(C-V_1)=r\leqslant |V_1|$ 。
- 一般情况下, V_1 中的结点在 C 中即有相邻的,又有不相邻的,因此总有 $p(C-V_1)\leqslant |V_1|$ 。 又因 C 是 G 的生成子图,从而 $C-V_1$ 也是 $G-V_1$ 的生成子图,故有

必要条件的推论及使用

必要条件

Corollary

设无向图 $G = \langle V, E \rangle$ 中存在哈密顿通路,则对 V 的任意非空子集 V_1 ,都有 $p(G - V_1) \leq |V_1| + 1_{\bullet}$

- 此定理是哈密顿图的必要条件,而不 是充分条件。
- 此定理的主要应用是判断某些图不是 哈密顿图,即:若存在V的某个非空 子集 V_1 使得 $p(G-V_1) > |V_1|$,则 G 不是哈密顿图。
- 有割点的图一定不是哈密顿图。

证明不存在哈密顿回路

哈德顿图 Lijie Wang 引子 定义

必要条件

其它方法

应用

哈密顿图的充分条件

哈密顿图

Lijie Wang

링=

定)

充分条件

despertments 2

並用

Theorem

设 G=<V,E> 是具有 n 个结点的简单无向图。如果对任意两个不相邻的结点 $u,v\in V$,均有 $deg(u)+deg(v)\geqslant n-1$,则 G 中存在哈密顿通路。

哈密顿图的充分条件

哈密顿图

Lijie Wang

定义

必要条件

充分条件

, U/J/.

Theorem

设 G=< V, E> 是具有 n 个结点的简单无向图。如果对任意两个不相邻的结点 $u,v\in V$,均有 $deg(u)+deg(v)\geqslant n-1$,则 G 中存在哈密顿通路。

Example

某地有 5 个风景点,若每个风景点均有 2 条道路与其他点相通。问游人可否经过每个风景点恰好一次而游完这 5 处?

解 将 5 个风景点看成图中的结点,两风景点间的道路看成是无向图的边,故每个结点的度数均为 2 , 从而任意两个不相邻的结点的度数之和等于 4 , 正好为总结点数减 1。故此图中存在一条哈密顿通路 , 因此游人可以经过每个风景点恰好一次而游完这 5 处。

Theorem

设 G=<V,E> 是具有 n 个结点的简单无向图。如果对任意两个不相邻的结点 $u,v\in V$,均有 $deg(u)+deg(v)\geqslant n$,则 G 中存在哈密顿回路。

哈密顿图的充分条件

哈密顿图

Lijie Wang

517

Æ

充分条件

其它方法

Corollary

设 G=<V,E> 是具有 n 个结点的简单无向图 , $n\geqslant 3$ 。如果对任意 $v\in V$, 均有 $deg(v)\geqslant \frac{n}{2}$, 则 G 是哈密顿图。

☞ 注意

定理及其推论给出的是哈密顿图的充分条件,而不是必要条件。

六边形

4<6, 仍是哈密顿图

其它判定方法

哈密顿图

Lijie Wang

引子

定义

充分条件

其它方法

並用

Example

判断图 G 是否存在哈密顿回路。

G

方法一: G - {a, b, c, d, e},7>5, 不存在哈密顿回路

方法二

Example

若图 G 中存在哈密顿回路,则该回路组成的图中任何结点的度数均为 2。因而结点 1、2、3、4、5 所关联的边均在回路中,于是在结点 a、b、c、d、e 处均应将不与 1、2、3、4、5 关联的边删除,而要删除与结点 a、b、c、d、e 关联的其它边,得到右图,它不是连通图,因而图中不存在哈密顿回路。

0

其它判定方法

哈密顿图

Lijie Wang

引子

定文 必要条件

充分条件

其它方法

应用

Example

任取一结点如 1 用 A 标记,所有与它邻接的结点用 B 标记。继续不断地用 A 标记所有邻接于 B 的结点,用 B 标记所有邻接于 A 的结点,直到所有结点都标记完毕。

如果图中有一条哈密顿通路,那么它必交替通过结点 A 和 B,故而标记 A 的结点与标记 B 的结点数目或者相同,或者相差 1 个。然而图中有 3 个结点标记为 A,5 个结点标记为 B,它们相差两个,所以该图不存在哈密顿通路。

哈密顿图的应用

Example

今有 7 个人 a,b,c,d,e,f,g ,已知:a 会讲英语;b 会讲英语和汉语;c 会讲英语、意大利语和俄语;d 会讲日语和汉语;e 会讲德语和意大利语;f 会讲法语,日语和俄语,g 会讲法语和德语。问能 否将这 7 个人安排就坐圆桌旁,使得每个人都能与两边的人交谈?

解: 做无向图 G=<V,E> , $V=\{a,b,c,d,e,f,g\}$, $E=\{(u,v)|u\neq v, \underline{1}\ u,v$ 有共同语言 $\}$ 。 因而问题变成了图中是否存在哈密顿回路,这个回路就是他们的圆桌就坐顺序。

C = acegfdba

合密顿图

Lijie Wang

引子

~--

九万宗

其它方法

应用

THE END, THANKS!