

Graph Denoising for Molecular Imaging

Cédric Mendelin <cedric.mendelin@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

29.06.2022

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- 3 GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Cryo-Electron Microscopy (Cryo-EM)

- > Major motivation for Thesis
- > Enables observation of molecules in near atomic resolution

Cryo-Electron Microscopy (Cryo-EM)

- Major motivation for Thesis
- > Enables observation of molecules in near atomic resolution
- Observation through an elector microscope
- > Frozen state required
 - > Frozen molecules are fragile, electron microscope needs to work with low power
 - > During freezing, molecules rotate randomly
- > Observations can be reconstructed to 3D model

Cryo-Electron Microscopy (Cryo-EM)

- Major motivation for Thesis
- > Enables observation of molecules in near atomic resolution
- > Observation through an elector microscope
- > Frozen state required
 - > Frozen molecules are fragile, electron microscope needs to work with low power
 - > During freezing, molecules rotate randomly
- Observations can be reconstructed to 3D model

Only single particle cryo-EM is considered.

Graphs & Manifolds

Figure: Cryo-EM overview

Cryo-Electron Microscopy (Cryo-EM) - Illustration

Figure: Cryo-EM overview

Cryo-Electron Microscopy (Cryo-EM) - Challenges

- High-noise level
- > Unknown rotation during freezing
- > (Structural variety of observations)

(a) Clean micrograph

(b) Noisy micrograph

Computed Tomography (CT)

- Related to cryo-EM
- > Can be seen as a simpler version in 2D
- Good to start with towards a cryo-EM algorithm

Computed Tomography (CT)

- Related to cryo-EM
- Can be seen as a simpler version in 2D
- Good to start with towards a cryo-EM algorithm

(a) Biological sample (b)

(b) Clean observation (sinogram)

Observation

$$y = p + \eta \tag{1}$$

- > y: noisy observation
- > p: noiseless observation
- $>\eta$: noise, assumed $\eta_i \sim \mathcal{N}(0,\sigma^2)$

Observation

$$y = p + \eta$$

$$y_i[j] = p_i[j] + \eta_i[j] \quad \text{with } 1 \le i \le N, 1 \le j \le M$$
(1)

- > v: noisy observation
- p: noiseless observation
- η : noise, assumed $\eta_i \sim \mathcal{N}(0, \sigma^2)$

- > N: number of observations > M: observation dimension

Graphs & Manifolds

Observation

$$y = p + \eta$$

$$y_i[j] = p_i[j] + \eta_i[j] \quad \text{with } 1 \le i \le N, 1 \le j \le M$$

$$y_i = A(x, \theta_i) + \eta_i$$
(1)

- > v: noisy observation
- p: noiseless observation
- η : noise, assumed $\eta_i \sim \mathcal{N}(0, \sigma^2)$
- > x: biological sample

- > N· number of observations
- > M: observation dimension
- $A: x \mapsto A(x; \theta_i) \in \mathbb{R}^M$: a non-linear operator
- θ_i : observation angle

Observation - Illustration

(a) CT Observation - sinogram

(b) Cryo-EM Observation - micrographs

Reconstruction

Reconstruction

Reconstruction

$$Recon: \mathbb{R}^{M \times N} \to \mathbb{R}^{M \times M} \quad y \mapsto Recon(y; \theta)$$
 (2)

- > SNR is a measure, which compares the power of an input signal to the power of the undesired noise
- Typically given in decibel (dB)
- > SNR \leq 0 dB indicated more noise than signal.

- > SNR is a measure, which compares the power of an input signal to the power of the undesired noise
- Typically given in decibel (dB)
- > SNR \leq 0 dB indicated more noise than signal.

 SNR_{y} is used to define the level of noise in an observation.

- > SNR is a measure, which compares the power of an input signal to the power of the undesired noise
- Typically given in decibel (dB)
- > SNR \leq 0 dB indicated more noise than signal.

 SNR_{y} is used to define the level of noise in an observation.

SNR is used as a metric for the quality of reconstructions.

Reconstruction - Computed Tomography

- > Filter Backprojection (FBP)
 - Can be considered historical approach
 - Enables reconstruction for moderate noise

Reconstruction - Computed Tomography

- Filter Backprojection (FBP)
 - Can be considered historical approach
 - Enables reconstruction for moderate noise

(a) Reconstruction clean: (b) Reconstruction noisy with SNR_v 0 dB: $Recon(y, \theta) \not\approx x$

Reconstruction - Computed Tomography

Graphs & Manifolds

- Filter Backprojection (FBP)
 - Can be considered historical approach
 - Enables reconstruction for moderate noise
- Neural Network Approaches
 - Today state-of-the art
 - Using result of FBP and further denoise
 - U-Net Ronneberger, Fischer, and Brox 2015

(a) Reconstruction clean: (b) Reconstruction noisy with SNR_v 0 dB: $Recon(y, \theta) \not\approx x$

Problem and Goal

Problem and Goal

Problem

p not observable directly only y is observable.

Problem and Goal

Problem

p not observable directly only y is observable.

Goal

denoiser :
$$y_i = (p_i + \eta) \mapsto p_i^* \approx p_i$$

 $Recon(denoiser(y; \theta)) \approx x$

Outline

- Molecular Imaging Methods
- 2 Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Graph - Definitions

Graph Definition

A graph is defined as $G = \langle V, E \rangle$, where V is a set of nodes and E is a set of edges.

Graph - Definitions

Graph Definition

A graph is defined as $G = \langle V, E \rangle$, where V is a set of nodes and E is a set of edges.

Figure: Sample graph

Graph - Definitions

Graph Definition

A graph is defined as $G = \langle V, E \rangle$, where V is a set of nodes and E is a set of edges.

Nodes

 $(n_1, n_2, \dots) \in \mathbb{R}^F$, with F as node feature dimensions.

Edges

Edges are defined as a set of tuples (i, j), where i and j determine the index of the nodes.

Figure: Sample graph

Graph - Definitions - Adjacency Matrix

Adjacency Matrix

The binary adjacency matrix of graph $G = \langle V, E \rangle$ is defined as:

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$
 (3)

Graph - Definitions - Adjacency Matrix

Adjacency Matrix

The binary adjacency matrix of graph $G = \langle V, E \rangle$ is defined as:

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$
 (3)

Figure: Sample graph

Degree of a node

The *degree* of a node is defined as the number of (incoming) edges.

Degree of a node

The *degree* of a node is defined as the number of (incoming) edges.

Figure: Sample graph

Degree of a node

The *degree* of a node is defined as the number of (incoming) edges.

Degree Matrix of Graph G

Is a diagonal matrix with degree of nodes as entries.

$$D_{ii} = degree(n_i)$$

Figure: Sample graph

How to construct a graph for molecular imaging?

How to construct a graph for molecular imaging?

Nodes: Single observation y_i

Figure: Sample graph for cryo-EM observation

How to construct a graph for molecular imaging?

- > Nodes: Single observation y_i
- Edges: Use k-nearest neighbours (k-NN) to construct a graph

Figure: Sample graph for cryo-EM observation

How to construct a graph for molecular imaging?

- > Nodes: Single observation y_i
- Edges: Use k-nearest neighbours (k-NN) to construct a graph
 - Define similarity measure for nodes: \(\ell 2 \)-norm

Figure: Sample graph for cryo-EM observation

How to construct a graph for molecular imaging?

- > Nodes: Single observation y_i
- Edges: Use k-nearest neighbours (k-NN) to construct a graph
 - Define similarity measure for nodes: \(\ell2\)-norm

Figure: Sample graph for cryo-EM observation

How to construct a graph for molecular imaging?

- Nodes: Single observation y_i
- Edges: Use k-nearest neighbours (k-NN) to construct a graph
 - > Define similarity measure for nodes: \(\ell 2 \)-norm

Figure: Sample graph for cryo-EM observation

How to construct a graph for molecular imaging?

- Nodes: Single observation y_i
- Edges: Use k-nearest neighbours (k-NN) to construct a graph
 - > Define similarity measure for nodes: \(\ell 2 \)-norm

Figure: Sample graph for cryo-EM observation

What happens with our noisy observations?

What happens with our noisy observations?

With noise, graph will capture neighborhood inaccurately.

Figure: Sample graph for noisy cryo-EM observation

Graph Laplacian (GL)

What can we use this graph for?

Graph Laplacian (GL)

What can we use this graph for?

Coifman, Shkolnisky, et al. 2008 used it to approximate angles for CT:

Graph Laplacian (GL)

What can we use this graph for?

> Coifman, Shkolnisky, et al. 2008 used it to approximate angles for CT:

Low-dimensional Embedding

- 1. Construct a k-NN graph from observations.
- 2. Calculate L = D A
- 3. Get 2nd and 3rd smallest eigenvalue with corresponding eigenvectors.

Low-dimensional Embedding for Computed Tomography

(a) Clean CT observation

Low-dimensional Embedding for Computed Tomography

(a) Clean CT observation

(b) Building k-NN graph with k = 2

Low-dimensional Embedding for Computed Tomography

(a) Clean CT observation

(b) Building k-NN graph with k = 2

(c) 2_{nd} and 3_{rd} smallest eigenvectors of L = D - A

- > GL Embedding estimates observation angles for noiseless case.
- > Can be applied during reconstruction.

- > GL Embedding estimates observation angles for noiseless case.
- > Can be applied during reconstruction.

(a) Reconstruction known angles

- > GL Embedding estimates observation angles for noiseless case.
- > Can be applied during reconstruction.

(a) Reconstruction known angles

(b) GL-Embedding from k = 2

- GL Embedding estimates observation angles for noiseless case.
- Can be applied during reconstruction.

(a) Reconstruction known angles

(b) GL-Embedding from k=2

(c) Reconstruction unknown angles

- > GL Embedding estimates observation angles for noiseless case.
- > Can be applied during reconstruction.

What happens in the noisy case?

- > GL Embedding estimates observation angles for noiseless case.
- > Can be applied during reconstruction.

(a) Reconstruction known angles SNR_v : 10 dB

(b) GL-Embedding from k = 6 and $SNR_v : 10 \text{ dB}$

(c) Reconstruction unknown angles SNR_v : 10 dB

- GL Embedding estimates observation angles for noiseless case.
- Can be applied during reconstruction.

(a) Reconstruction known angles SNR_v : 0 dB

(b) GL-Embedding from k = 6and SNR_v : 0 dB

(c) Reconstruction unknown angles SNR_v : 0 dB

Observation Denoising

The fewer noise is available in the observation, the better reconstruction is possible.

Observation Denoising

The fewer noise is available in the observation, the better reconstruction is possible.

- > Use existing denoising algorithms
 - > Block-matching and 3D filtering (BM3D) Dabov et al. 2007
 - Non-local means Buades, Coll, and Morel 2005
 - No graph as data structure
 - > But, both exploit neighborhood during averaging

Observation Denoising

The fewer noise is available in the observation, the better reconstruction is possible.

- > Use existing denoising algorithms
 - > Block-matching and 3D filtering (BM3D) Dabov et al. 2007
 - Non-local means Buades, Coll, and Morel 2005
 - No graph as data structure
 - > But, both exploit neighborhood during averaging
- > Show potential for graph as a data structure

olecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Ques

Observation Denoising

The fewer noise is available in the observation, the better reconstruction is possible.

- > Use existing denoising algorithms
 - > Block-matching and 3D filtering (BM3D) Dabov et al. 2007
 - Non-local means Buades, Coll, and Morel 2005
 - > No graph as data structure
 - > But, both exploit neighborhood during averaging
- Show potential for graph as a data structure

Exploit graph as a data structure and the GL-embedding.

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

olecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Quest

GAT-Denoiser

- > GAT-Denoiser is a graph neural network (GNN) to denoise observations.
- > Consists of three components:
 - Convolution
 - > Graph Attention Network (GAT) Veličković et al. 2017
 - > End-to-End Learning

GAT-Denoiser Pipeline

GAT-Denoiser

- > GAT-Denoiser is a graph neural network (GNN) to denoise observations.
- > Consists of three components:
 - > Convolution
 - Graph Attention Network (GAT) veličković et al. 2017
 - > End-to-End Learning

olecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Ques

GAT-Denoiser

- > GAT-Denoiser is a graph neural network (GNN) to denoise observations.
- > Consists of three components:
 - Convolution
 - Graph Attention Network (GAT) Veličković et al. 2017
 - > End-to-End Learning

GAT-Denoiser Pipeline

lecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Que

GAT-Denoiser

- > GAT-Denoiser is a graph neural network (GNN) to denoise observations.
- > Consists of three components:
 - > Convolution
 - Graph Attention Network (GAT) Veličković et al. 2017
 - > End-to-End Learning

GAT-Denoiser Pipeline

- Convolution
 - > Denoise single observation

- Convolution
 - > Denoise single observation
- Graph Attention Network (GAT) Veličković et al. 2017
 - Denoise neighboring observation

- Convolution
 - Denoise single observation
- Graph Attention Network (GAT) Veličković et al. 2017
 - Denoise neighboring observation
- End-to-End Learning
 - Optimize for reconstruction quality
 - $\mathcal{L} = ||x Recon(GAT-Denoiser(A(x, \theta) + \eta))||_2^2$
 - $\mathcal{L}_{sino} = \| p GAT Denoiser(A(x, \theta) + n) \|_2^2$

Graphs & Manifolds

- Extends Graph Convolution Network with attention (weights)
- Compute new node features
- Averages graph over neighborhood
- Multi-head available, motivated by Vaswani et al. 2017

Graphs & Manifolds

- Extends Graph Convolution Network with attention (weights)
- Compute new node features
- Averages graph over neighborhood
- Multi-head available, motivated by Vaswani et al. 2017
- σ : activation function (Exponential Linear Unit)
- W: learnable weight matrix
- $\geq \alpha$: normalized attention coefficients

$$h_1' = \sigma \left(\sum_{i=1}^5 \alpha_i W h_{1,i} \right)$$

- > Exploit information from GL
- > Low-dimensional embedding estimates angles
- Dominant information in data can be considered observation angles.

olecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Quest

- > Exploit information from GL
- > Low-dimensional embedding estimates angles
- Dominant information in data can be considered observation angles.
- > Construct graph from observation angles

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions

- > Exploit information from GL
- > Low-dimensional embedding estimates angles
- Dominant information in data can be considered observation angles.
- > Construct graph from observation angles

lecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Ques

Input Graph

- Exploit information from GL
- > Low-dimensional embedding estimates angles
- Dominant information in data can be considered observation angles.
- > Construct graph from observation angles

Observation angles θ are assumed to be equally spaced.

lecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Ques

Input Graph

- Exploit information from GL
- > Low-dimensional embedding estimates angles
- Dominant information in data can be considered observation angles.
- > Construct graph from observation angles

Observation angles θ are assumed to be equally spaced.

GAT-Denoiser Implementation for Computed Tomography

- Use U-Net for reconstruction
- > During Trainig, U-Net might be trained jointly

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

LoDoPaB-CT dataset

- > Dataset for low-dose Computed tomography
- > 35'820 train samples
- > 3'553 test samples
- > BM3D as baseline algorithm
- Resolution 64 x 64

Figure: Some samples from the LoDoPaB-CT dataset.

Evaluation

- > Small Scale Experiments
 - > 1024 train samples
 - > 100 test samples
 - > 200 epochs
- Large Scale Experiments
 - > Complete LoDoPaB-CT dataset
 - > 20 40 epochs

olecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Qu

Evaluation

- > Small Scale Experiments
 - > 1024 train samples
 - > 100 test samples
 - > 200 epochs
 - > Goal: Find most promising architecture
- Large Scale Experiments
 - Complete LoDoPaB-CT dataset
 - > 20 40 epochs
 - > Goal: Find best model

Training

- U-Net used for reconstruction
 - \rightarrow Pre-trained with complete dataset and SNR_y in [-10, 0] for 200 epochs
- > Mini-batch gradient descent with batch size 64
- > Adam optimizer
- > Joint U-Net training possible

Small Scale Results

- > Learning fails with random graph
- Learning succeeds with defined input graph
- Components contribute to success of GAT-Denoiser
- > Best model with joint U-Net training

Large Scale Results

Large Scale Results - Visual - SNR_v 0 dB

Figure: Large Scale Experiment: Visual results for SNR_v 0 dB.

Large Scale Results - Visual - SNR_v 0 dB

Figure: Large Scale Experiment: Visual results for SNR_v 0 dB.

GAT-Denoiser improves BM3D by 27.6%.

Large Scale Results - Visual - SNR_v -10 dB

Figure: Large Scale Experiment: Visual results for SNR_v -10 dB.

Large Scale Results - Visual - SNR_v -10 dB

Figure: Large Scale Experiment: Visual results for SNR_v -10 dB.

GAT-Denoiser improves BM3D by 126.0%.

Large Scale Results - Visual - SNR_v -15 dB

Figure: Large Scale Experiment: Visual results for SNR_v -15 dB.

Large Scale Results - Visual - SNR_v -15 dB

Figure: Large Scale Experiment: Visual results for SNR_v -15 dB.

GAT-Denoiser improves BM3D by 379.9%.

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT datases
- 5 Summary & Future Work
- 6 Questions

Summary

- > GAT-Denoiser enables denoising of observations
 - > Convolution
 - GAT
 - End-To-End Learning
 - > Joint U-Net training boost performance

Summary

- > GAT-Denoiser enables denoising of observations
 - > Convolution
 - GAT
 - End-To-End Learning
 - > Joint U-Net training boost performance
- Evaluated on LoDoPaB-CT dataset
 - > Outperformed baseline BM3D by up to 379.9 %

Future Work

- > Improve current GAT-Denoiser
- > Derive GAT-Denoiser for 3D
- > Make it work for unknown angles

olecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset **Summary & Future Work** Ques

Future Work

- Improve current GAT-Denoiser
- > Derive GAT-Denoiser for 3D
- Make it work for unknown angles
- > Cryo-EM
 - Known angles
 - > Unknown angles
 - > Work with structural variety in observations

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Questions

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions

Questions

References

- Basu, Samit and Yoram Bresler (2000). "Feasibility of tomography with unknown view angles". In: **IEEE Transactions on Image Processing 9.6, pp. 1107–1122.** DOI: 10.1109/83.846252.
- Bendory, Tamir, Alberto Bartesaghi, and Amit Singer (2020). "Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities". In: IEEE Signal Processing Magazine 37.2, pp. 58–76. DOI: 10.1109/MSP.2019.2957822.
- Biewald, Lukas (2020). Experiment Tracking with Weights and Biases. Software available from wandb.com. URL: https://www.wandb.com/.
- Brenner, David J and Eric J Hall (2007). "Computed tomography—an increasing source of radiation exposure". In: New England journal of medicine 357.22, pp. 2277–2284. DOI: 10.1056/NEJMra072149.
- Buades, Antoni, Bartomeu Coll, and J-M Morel (2005). "A non-local algorithm for image denoising". In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), Vol. 2. IEEE, pp. 60-65, DOI: 10.1109/CVPR.2005.38.
- Cayton, Lawrence (2005). "Algorithms for manifold learning". In: Univ. of California at San Diego **Tech. Rep** 12.1-17, p. 1.
- Clackdoyle, Rolf and Michel Defrise (2010). "Tomographic reconstruction in the 21st century". In: