APB BRIDGE TO SPI

Features

- 1. support 32-bit wide data width,
- 2. full duplex transmission,
- 3. simple control,
- 4. two slave select pins are available,

Pin description

Inputpin's

- PRESETn- Active Low RESET
- PCLK-Peripheral Clock
- PENABLE- Data Transmission ENABLE
- PSEL-Select Spi
- PADDR-Configuration Bits(3-bit wide)
- PWRITE-Enable Read Write Operation
- PWDATA-Data Input, Apb Slave To SpiMosi(32-bit wide)
- Miso-Data Input,Spi Master To Apb Slave

Output pin's

- PREADY-Apb Slave Output
- PRDATA-Apb Slave Output, FromSpi Miso(32-bit wide)
- ss0-Slave 0
- ss1-Slave 1
- sclk-Slave Clk
- mosi-Output Of Spi Master

Note: by default remaining pins are 1-bit wide,

Description

Thespi is a protocol which helps to communicate the external word sensors, data storage device,

So the spi protocol provide high speed data transmission, it also provides reliable data transfer with

Full duplex transmission.

Register Description

SPI Control Register

MSTR-> 1 -SPI operates in master mode, 0-SPI operates in slave mode.

CPHA-> 1-Output sampled on even clock edge, 0-Output sampled on odd clock edge.

CPOL-> 1- n idle state, SClk is high, 0-In idle state, SClk is low.

spe-> 1-SPI master enabled, 0-SPI master disabled (low power mode).

SPISWAI-> 1-Txc interrupt from SPICR is enabled, 0-Txc interrupt from SPICR is disabled.

SPTIE-> 1-SPTEF interrupt from SPICR is enabled , 0-SPTEF interrupt from SPICR is disabled.

SPI Status Register

SPE-> 1-SPI controller enabled, 0- SPI controller disabled.

Txc-> 1-Data transmission from master to slave completed, 0-Send not completed yet.

SPTEF-> 1-Data register is empty, 0-Data register is not empty.

Protocol operation

The pin configuration as follows to perform read write operation,

```
Step1: For setup state

Psel=1'b1;

Pwrite=1'b1;

Penable=1'b0;

Step2: For write data state

Psel=1'b1;

Pwrite=1'b1;

Penable=1'b1;
```

Note: if pwrite pin is zero there is no transaction take place , so fsm changes it state to complete state,

For stimulus block first use step1 configuration with some delay provide step2 configuration,

Pin Description

NET	Туре	Port Number
PCLK	Input	E3(CLK100MHZ)
PRESETn	Input	N17(IO_41)
PSEL	Input	M16(IO_9)
PWRITE	Input	V17(IO_10)
PENABLE	Input	U18(IO_11)
PADDR[2]	Input	C10(sw[2])
PADDR[1]	Input	C11(sw[1])
PADDR[0]	Input	A8(sw[0])
PWDATA[7]	Input	T16(IO_7)
PWDATA[6]	Input	T15(IO_6)
PWDATA[5]	Input	T14(IO_5)
PWDATA[4]	Input	R12(IO_4)
PWDATA[3]	Input	T11(IO_3)
PWDATA[2]	Input	P14(IO_2)
PWDATA[1]	Input	U16(IO_1)
PWDATA[0]	Input	V15(IO_0)
miso	Input	N15(IO_8)
PRDATA[7]	Output	G6(led0_r)
PRDATA[6]	Output	F6(led0_g)
PRDATA[5]	Output	E1(led0_b)
PRDATA[4]	Output	G3(led1_r)
PRDATA[3]	Output	J4(led1_g)
PRDATA[2]	Output	G4(led1_b)
PRDATA[1]	Output	J3(led2_r)
PRDATA[0]	Output	J2(led2_g)
ss1	Output	J5(led2_b)
ss2	Output	T18(IO_38)
mosi	Output	R18(IO_39)
Sclk	Output	P18(IO_14)
pready	Output	T9(led[2])

Protocol power analysis

Spi protocol is analyzed using Xilinx ise 14.7,

			Total Dy		Dyna	mic	Quiescent	
Supply	/ Power (W)	0.09	92	0.00		4 0.088	
E		Eff	ffective TJA Max Am		ax Amb	ient .	Junction Temp	
Thermal Properties			(C/W)		(C)		(C)	
			4.6		84.6		25.4	
Supply Summary		ry	Total		Dynamic		Quiescent	
Source	Voltag	е	Current (A)) Current (A)	
Vccint	1.0	00	0.01	0.018		0.00	0.017	
Vccaux	1.8		0.013		0.000		0.013	
Vcco33	3.3	00	0.00)5	C	0.00	0.004	
Vccbram	1.0		0.00		0.000		0.000	
Vccadc	1.7	10	0.02	20	(0.00	0.020	
On-Chip	Power (W)		Used	4	Availabl	e l	Utilization (%)	
Clocks	0.001		2					
Logic	0.000		110 63		63	400	0	
Signals	0.000		167					
IOs	0.003		30		- 1	210	14	
Leakage	0.088							
Total	0.092							
Environme								
Ambient Te			5.0					
Use custom TJA?		N			▼			
Custom TJA (C/W)			NA					
Airflow (LFM)			250 🔻					
Heat Sink		-	Medium Profile 💌					
Custom TSA (C/W)			NA					
Board Selection		_	Medium (10"x10") 💌					
# of Board Layers			12 to 15					
Custom TJB (C/W)			NA					
Board Tem	perature (C	N/	4					

Resource utilization

Slice Logic Utilization	Used	Available	Utilization	Note(s)
Number of Slice Registers	101	126,800	1%	
Number used as Flip Flops	101			
Number used as Latches	0			
Number used as Latch-thrus	0			
Number used as AND/OR logics	0			
Number of Slice LUTs	110	63,400	1%	
Number used as logic	105	63,400	1%	
Number using O6 output only	89			
Number using O5 output only	0			
Number using O5 and O6	16			
Number used as ROM	0			
Number used as Memory	0	19,000	0%	
Number used exclusively as route-thrus	5			
Number with same-slice register load	5			
Number with same-slice carry load	0			
Number with other load	0			
Number of occupied Slices	51	15,850	1%	
Number of LUT Flip Flop pairs used	130			
Number with an unused Flip Flop	43	130	33%	
Number with an unused LUT	20	130	15%	
Number of fully used LUT-FF pairs	67	130	51%	
Number of unique control sets	14			
Number of slice register sites lost to control set restrictions	51	126,800	1%	
Number of bonded <u>IOBs</u>	30	210	14%	
Number of LOCed IOBs	30	30	100%	
Number of RAMB36E1/FIFO36E1s	0	135	0%	
Number of RAMB18E1/FIFO18E1s	0	270	0%	
Number of BUFG/BUFGCTRLs	2	32	6%	
Number used as BUFGs	2			
Number used as BUFGCTRLs	0			
Number of IDELAYE2/IDELAYE2_FINEDELAYs	0	300	0%	
Number of ILOGICE2/ILOGICE3/ISERDESE2s	0	300	0%	

Time constraint

Here the 30mhz PCLK clock are provided, and clock divider is frequency 0.5(1/2) of PCLk $\,$,

Constraint	Paths	Failing Paths	Endpoints	Setup Errors	Hold Errors
1 TS_clkdivider_clk = PERIOD TIMEGRP "clkdivider/clk" 15 MHz HIGH 50%	595	0	269	0	0
2 TS_PCLK = PERIOD TIMEGRP "PCLK" 30 MHz HIGH 50%;	88	0	74	0	0

Tested board

Spi protocol tested using artix-7 board with following chip device

Output

