Sexual Selection,
Geographic
Speciation

Paleobiology

February 03, 2016

Sexual selection

- Charles Darwin (again)
 - The descent of man, and selection in relation to sex (1871)
 - Intra-Gender competition Members of the same gender fight each other for the right to mate with the opposite sex. Traits advantageous to winning fights are selected for.
 - Inter-Gender preference Members of one sex only prefer members of the opposite gender with certain traits.
 - Tiered Sexual selection intra-gender competition is followed by inter-gender preference.
 - (The above is not formally recognized jargon)

Inter-gender preference

- Generally what is meant by sexual selection is inter-gender preference
- However, the line between inter-gender preference and intragender competition is somewhat blurry.
- Generally it is the females that does the choosing, but this is not a rule.

The *classic* example of sexual selection

The *classic* example of sexual selection

Tail treatment

Explanations for sexual selection

■ Handicap Hypothesis – Female widowbirds prefer males with long tails that make life more difficult, because it shows how "tough" they are that they can succeed despite this disability.

Explanations for sexual selection

 Pre-Existing Bias Hypothesis – Females have a genetic preference for the extreme trait that exists before the extreme

trait is phenotypically manifest.

Pre-existing bias in swordtail fish

 Pre-Existing Bias Hypothesis – Females have a genetic preference for the extreme trait that exists before the extreme

trait is phenotypically manifest.

Why is sexual selection noteworthy?

■ The pre-existing bias hypothesis/effect shows that the potential for morphologic change can be present in populations well before we see the change. This dovetails with the ideas of the "sloshing bucket" or "neo-mutationism" models of evolution, where we are waiting for state changes.

Sexual selection is invoked fairly frequently in the Dinosaur community to explain morphological features that we do not understand.

- Intra-gender competition (sexual selection)
- Inter-gender preference (sexual selection)
- Intraspecific competition (dominance)
- Intraspecific cooperation (recognition)
- Interspecific competition (defense)
- Physiological need (thermoregulation)

Sexual selection in fossils

- In order to demonstrate sexual selection, do we need to disprove other uses for those traits?
 - Many structures may serve more than one role.
 - Even if a feature is primarily used for a certain purpose, does not mean that it originally evolved (was selected) for that purpose.
- One proposed criterion for proving sexual selection in dinosaurs is the requirement to show strong sexual dimorphism.
 - Demonstrating sexual dimorphism is just as difficult.
- What we really need is experimentation like in the cases of the widowbirds and swordtail fishes.

Models of geographic speciation

- Allopatric speciation A species is geographically divided into separate populations.
- Those populations adapt to their new environments (or experience genetic drift) and become new species
- *Allo* Other, Different

Allopatry:

Each variety in its own range Become species due to drift and local adaptation

Models of geographic speciation

- Allopatry can come about in two different ways.
- Vicariance the ancestral population is divided by a geographic barrier
- Dispersal a new population migrates across a geographic barrier that now separates it from its ancestral home.

A disjunct distribution

A genus or other higher taxon (e.g., genus, family) that is split into different species populations – presumably by vicariance or dispersal

What is and is not dispersal

- Dispersal != Radiation
 - Radiation is when a clade (taxonomic group) creates many new species i.e., undergoes a period of high speciation rates.
- Dispersal != Peripatry
 - Peripatry does involve a sub-population at the edge or just beyond the range of the ancestral population that is sort of geographically distinct, but is not separated by a barrier.
- Dispersal != Propagule Disperal
 - Dispersal can also refer to biological dispersal, how an organisms disperses its sperm or young.

Peripatric speciation

- Peripatric speciation is often defined in two different ways.
 - Population Size In this definition peripatry is the same as allopatry, but the younger species population is smaller than the older.
 - Geographic Barrier In this definition, peripatry is the same as allopatry, but the two population are close together and may or may not be separated by a barrier.

Peripatry:

Varieties differ at the edge of the range Become species similarly to allopatry

Parapatry:

Variation evolves at the edge of the range Become species similarly to sympatry

Parapatric speciation

- Parapatric Speciation happens when a population covers a large, continuous geographic area.
- Although the subpopulations at both ends of the geographic range are technically connected, they are more likely to mate with each other.
- They may also experience different environmental conditions leading to different selective pressures.

Peripatry:

Varieties differ at the edge of the range Become species similarly to allopatry

Parapatry:

Variation evolves at the edge of the range Become species similarly to sympatry

Parapatric speciation

- The classic example of parapatric speciation comes from the existence of ring species.
- There is now some doubt as to whether ring species are a real phenomenon.

Parapatric speciation

- Nevertheless, parapatric speciation is real, and is predicted by basic ecological gradient/niche theory.
- We will discuss this more later on in the course.

Sympatric speciation

- Sympatric speciation is very similar to parapatric speciation.
- It represents speciation within a single population that is not geographically widespread

Sympatry:

Many varieties in one range Become species through adaptation to different aspects of the range

Classic sympatric speciation example

We probably should not distinguish

- Both sympatry and parapatry are both characterized by three criteria
 - A single geographically continuous population.
 - Non-random mating habits.
 - Different environmental conditions within the population's range.
- You may also hear about stasipatric speciation, which is a rarely used term because it is effectively equivalent to parapatry and sympatry.