ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIO DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS MICROONES, TARDOR 1998-99

EXAMEN FINAL

PROFESSORS: A. AGUASCA, A. COMERON

N. DUFFO, LL. PRADELL

Barcelona, 15 de gener de 1999

αγβ βαγ

γ β α

Cal realitzar **només tres** dels quatre problemes proposats Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

En el circulador utilitzat en el sistema de la figura, el qual presenta un comportament no ideal segons la matriu S adjunta (referida a Z_0), hi connectem un generador d'impedància interna Z_0 a l'accés 1, a l'accés 2 una càrrega Z_D , i a l'accés 3 una $Z_L = Z_0 = 50\Omega$, la qual és la sortida de l'estructura:

- a) Trobi els coeficients de reflexió d'entrada a 1 (Γ_{IN}) i de sortida a 3 (Γ_{OUT}).
- b) Calculi el Guany de Transferència de Potència (G_T) des de l'accés 1 cap a l'accés 3.
- c) En el cas que la càrrega de l'accés 2 sigui activa (dispositiu de resistència negativa) l'estructura pot utilitzar-se com amplificador. Si α = 0,1 \angle 0° β =0,9 \angle 0° i γ =0,1 \angle 0°, trobi un valor de Γ_D i Z_D per a que el guany Z_D sigui de 10dB.

PROBLEMA 2

La figura 1 representa esquemàticament un circuit format per dos acobladors direccionals ideals idèntics de línies acoblades units per dues línies d'impedància característica Z_0 , igual a la impedància de referència dels acobladors, i de la mateixa longitud elèctrica $\boldsymbol{b}\ l = \boldsymbol{q}$. Quan una ona a_1 incideix per l'accés 1 del circuit, en la unió de la línia \boldsymbol{m} amb l'acoblador 1 apareix només una ona progressiva b_m que es propaga cap a l'acoblador 2, i en la unió de la línia \boldsymbol{n} amb l'acoblador 2 només una ona progressiva b_n que es propaga cap a l'acoblador 1.

Figura 2

- b) En les mateixes condicions de l'apartat anterior, calculeu $b_{\scriptscriptstyle m}$ en funció de $a_{\scriptscriptstyle 1}$ i ${m q}$.
- c) En les mateixes condicions que a l'apartat a), calculeu la mínima longitud elèctrica q de les línies que uneixen els dos acobladors que maximitza $|b_m|$.
- d) En aquesta situació, calculeu la matriu [s] del circuit de la figura 1.
- e) Si el circuit de la figura 1 ha estat realitzat en strip-line sobre un substrat de $e_r = 2,17$, ¿quina serà la longitud en mil·límetres de les línies m i n i la longitud dels acobladors direccionals perquè es donin les condicions dels apartats a) i c) a 10 GHz?

PROBLEMA 3

Es vol dissenyar un filtre passa-banda Txebisxev, mitjançant trams de línia de transmissió i inversors de impedàncies, amb les següents especificacions:

Banda de pas: entre $f_1=1,9GHz$ i $f_2=2,1GHz$, amb arrissat constant de 3dB.

Banda atenuada: amb una atenuació superior a 35dB per sobre de f_a =2,5GHz.

a) Determini la plantilla del model passa-banda i trobi, a partir del gràfic i la taula adjunta, el prototipus passa baix d'ordre menor possible.

- b) Trobi el filtre passa-banda (Valors de les constants d'inversió i longitud dels trams de línia necessaris) a partir del prototipus passa-baix anterior, mitjançant línies de transmissió i inversors de impedància.
- c) Si, finalment, les reactàncies dels inversors es fan mitjançant stubs d'impedància Z_0 acabats en curtcircuit, calculi totes les longituds (tant dels stubs com la distància entre ells). Totes les línies tenen $\varepsilon_{ref} = 2.2$.

$$\overline{K}_{01} = \sqrt{\frac{\mathbf{p}W}{2g_1}} \quad , \quad \dots \quad , \quad \overline{K}_{i,i+1} = \frac{\mathbf{p}W}{2\sqrt{g_ig_{i+1}}} \quad , \quad \dots \quad , \quad \overline{K}_{n,n+1} = \sqrt{\frac{\mathbf{p}W}{2g_ng_{n+1}}}$$

$$\mathbf{b}\ell_{ij} = \frac{1}{2}\tan^{-1}\frac{2}{\overline{B}_{ij}} \qquad \qquad |\overline{B}_{ij}| = \frac{1 - \overline{K}_{ij}^2}{\overline{K}_{ij}}$$

PROBLEMA 4

La figura representa l'esquema d'un amplificador a la freqüència de 5 GHz. Les xarxes d'adaptació estan realitzades en stripline sobre un dielèctric de constant ε_r = 4. La matriu de paràmetres (S) referida a 50 Ω del transistor és:

$$[S] = \begin{bmatrix} 0.6_{\angle 150^{\circ}} & 0.04_{\angle 30^{\circ}} \\ 3.0_{\angle 60^{\circ}} & 0.7_{\angle -45^{\circ}} \end{bmatrix}$$

i el seu coeficient òptim de soroll és $\Gamma_{\rm opt}$ = 0.5 $_{\angle 180^{\circ}}$

- a) Calculeu el coeficient de reflexió de càrrega, $\Gamma_{\rm L}$
- b) El Γ_L calculat a l'apartat anterior, dóna lloc a comportament estable ? Per què ?
- c) Calculeu les longituds l₁ i l₂ de la xarxa d'entrada per obtenir mínim soroll. De les possibles solucions, considereu únicament la que proporciona longituds l₁ i l₂ mínimes.
- d) Calculeu el guany unilateral de l'amplificador en les condicions dels apartats anteriors

$$G_{T} = \frac{\left(1 - \left|\Gamma_{S}\right|^{2}\right) \left|S_{21}\right|^{2} \left(1 - \left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1 - S_{11}\Gamma_{S}\right) \left(1 - S_{22}\Gamma_{L}\right) - S_{12}S_{21}\Gamma_{S}\Gamma_{L}\right|^{2}}$$