1) Principaux ensembles de nombres

1 - 1) Les ensembles

Notation	Liste	Description
\mathbb{R}	tous les nombres que vous connaissez	nombres réels
N	$\{0\;;\;1\;;\;2\;;\;3\;;\;\dots\}$	nombres entiers naturels
\mathbb{Z}	$\{\ldots; -3; -2; -1; 0; 1; 2; 3; \ldots\}$	nombres entiers relatifs

On définit aussi les sous-ensembles suivants :

 $-\mathbb{R}^*$: tous les nombres réels sauf 0;

 $-\mathbb{R}^+$: tous les nombres réels positifs;

 $-\mathbb{R}^-$: tous les nombres réels négatifs.

1 - 2) Appartenance et inclusion

Certains nombres **appartiennent** à un ensemble donné ; on note cette appartenance avec le symbole \in

Par exemple, $-5 \in \mathbb{Z}$.

Certains ensembles sont **inclus** dans d'autres ensembles; on note cette inclusion avec le symbole \subset

Par exemple, si un nombre est entier naturel, alors il est entier relatif; cela se note : $\mathbb{N} \subset \mathbb{Z}$

2) L'axe des réels

On peut représenter les nombres réels sur une droite graduée :

- On définit un repère (O, I): O est l'origine (abscisse 0), I définit l'unité (abscisse 1).

- Chaque point est repéré par son abscisse. Ici : A(3) et B(-2).
- L'axe des réels n'a pas de borne : il est infini à gauche et à droite.
- On note ∞ la notion d'infini : $-\infty$ est l'infini à gauche, et $+\infty$ est l'infini à droite.

3) Intervalles de \mathbb{R}

a et b sont deux nombres, avec a < b

EXEMPLES:

« x appartient à l'intervalle fermé [a ; b] »

« x appartient à l'intervalle ouvert a ; b[»

- signifie a < x < b
- se note $x \in]a ; b[$

« x appartient à l'intervalle $[a; +\infty[$ »

- signifie $a \leqslant x$
- se note $x \in]a; +\infty[$

« x appartient à l'intervalle] $-\infty$; a] »

- signifie $x \leq a$
- se note $x \in]-\infty$; a]

REMARQUE ET VOCABULAIRE:

- $\in \text{signifie} \times \text{appartient} \Rightarrow \text{et} \notin \text{signifie} \times \text{n'appartient pas} \Rightarrow ;$
- a et b sont les bornes de l'intervalle;
- Lorsque la borne **appartient** à l'intervalle, elle est dite « fermée » : le crochet est orienté vers la borne ;

5

- Lorsque la borne **n'appartient pas** à l'intervalle, elle est dite « ouverte » : le crochet « tourne le dos » à la borne.

exemples : avec
$$I=[-2\ ;\ 6[,\ {\rm on\ sait\ que}\ 2\in I\ {\rm et}\ 6\not\in I$$
 avec $J=]0\ ;\ 7[,\ {\rm on\ sait\ que}\ 0\not\in J\ {\rm et}\ 7\not\in J$

- L'infini n'étant pas un nombre, cette borne est toujours ouverte.
- Il y a une infinité de nombres dans un intervalle [a; b] (avec a < b).

4) Union d'ensembles

Avec A et B deux ensembles de nombres.

- * se dit « x appartient à A union B » * signifie $x \in A$ ou $x \in B$ (x appartient à A, à B, ou aux deux)

APPLICATION:

 $x \in [-1; 3] \cup [4; 6]$ signifie que x est soit un nombre compris entre -1 et 3, soit un nombre compris entre 4 et 6.

On peut schématiser de la manière suivante :

 $x \in]0; 4[\cup \{5; 6\}]$ signifie que x est soit un nombre compris (strictement) entre 0 et 4, soit un nombre égal à 5, soit un nombre égal à 6.

On peut schématiser de la manière suivante :

Ou inclusif, ou exclusif

« Entrée ou dessert » sur un menu signifie l'un ou l'autre, pas les deux pour le prix indiqué : le « ou » est exclusif.

« Pour Noël, j'aimerais avoir un PC ou un voyage aux USA » : le « ou » est inclusif : on souhaiterait évidemment avoir les deux.

En mathématiques, le ou est inclusif (l'un, l'autre ou les deux)

Dans le langage, « Et » et « Ou » peuvent piéger...

« Les personnes ayant droit à des réductions à la SNCF sont celles de moins de 25 ans et celles de plus de 65 ans. »

On comprend:

« Une personne a une réduction si elle a moins de 25 ans ou plus de 65 ans (elle ne peut pas avoir les deux à la fois). »

En mathématiques :

« les solutions sont les nombres compris entre -2 et 0 (inclus) et entre 4 et 5 (inclus) »

On peut dire aussi:

« L'ensemble des solutions est $[-2; 0] \cup [4; 5] : x$ est solution équivaut à dire qu'il appartient $\hat{a} [-2; 0] \text{ ou } \hat{a} [4; 5].$

Intersection d'ensembles 5)

Avec A et B deux ensembles de nombres.

* se dit « x appartient à A inter B »

* signifie $x \in A$ et $x \in B$ (x appartient à la fois à A et à B)

APPLICATION:

 $x \in [-1; 3] \cap [2; 6]$ signifie que x est à la fois un nombre compris entre -1 et 3, et compris entre 2 et 6 : il est donc compris entre 2 et 3. En fait, $[-1; 3] \cap [2; 6] = [2; 3]$

On peut schématiser de la manière suivante :

* $x \in]0$; $4 \cap \{2; 6\}$ signifie que x est à la fois un nombre compris (strictement) entre 0 et 4, et soit égal à 2, soit égal à 6: il est égal à 2. En fait,]0; $4 \cap \{2; 6\} = \{2\}$

On peut schématiser de la manière suivante_:

