ANOVA - Chapter 3

Outline

- ANOVA what is it...
- How to compute ANOVA
 - Examples
- Assumption checking
- Extensions (next class):
 - Unbalanced samples
 - Differing variances
 - Regression / fitted models

ANOVA

- Assume *a* set of samples
 - Each experiment has *n* replicants
 - Want to see if any of the sets are "significantly" different from the others
- Compute:
 - The overall mean
 - The mean for each set
 - The total sum of squares (SS_T)
 - The sum of squares of just the means (times n) (SS_{Treatments})
 - The sum of squares of the errors = SS_T $SS_{Treatments}$

Examples:

- 3.17
- 3.29

3.4.1. Normal probability plot of residuals

- NPP of residuals combine observations in *a* treatments in one plot
 - Chapter 2 for t-test: NPP of raw data at 2 conditions.
 - In ANOVA, it is usually more effective to work with residuals
- No evidence of a violation of the normality assumption

Departures from normality - Skewed residuals

Departures from normality - Heavy tailed residuals

3.4.2. Check for independence

- Residuals versus run order: To satisfy independence assumption, there should not be strong correlation between residuals
 - Tendency to have "runs" of positive or negative residuals indicates strong correlation and indicates that the observations are not independent
 - In this experiment there is no indication of correlation between residuals

3.4.3. Check for constant variance

- Residuals versus fitted values \hat{y}_{ij}
 - To satisfy the constant variance assumption at all treatments plot should look like a "parallel band" centered about zero
 - In this experiment there is no indication of non-constant variation at different treatments

