Prvih 100 let superprevodnosti

Peter Prelovšek

FMF - 21. januar 2012

Teme

- 1. Superprevodnost in HTC: 2011 memorialno leto
 - pregled zgodovine SP
- 2. Osnovne lastnosti (standardnih) superprevodnikov
 - temperatura prehoda, energijska vrzel itd.
 - izvor in mikroskopski popis
- 3. Novi materiali in njihovo razumevanje
- 4. Fenomenološka teorija in makroskopske lastnosti SP
- 5. Uporaba

Superprevodnost: čudo fizike

Superprevodno stanje: makroskopska realizacija kvantne mehanike

- valovna funkcija, interferenca na makroskopski razdaljah
- gibanje brez upora

Osnovne lastnosti SP stanja:

- idealna prevodnost, permanentni tokovi
- Meissnerjev efekt, izrivanje magnetnega polja
- obstoj energijske vrzeli $\Delta(T < T_c) > 0$, SP kolektivno stanje vezanih parov elektronov (Cooperjevih) parov
- makroskopska interferenca efekti Josephsona

Nobelove nagrade za SP: (1913), 1972, 1973, 1988, 2003

Odkritje superprevodnosti

Kamerlingh Onnes, Leiden – April 8, 1911

Superprevodnost v periodičnem sistemu elementov

SP je nizkotemperaturno stanje – faza v mnogih enostavnih **kovinah** temperatura prehoda T_c (< 10 K) je zelo nizka nizkotemperaturna konkurenca: feromagnetizem, magnetna ureditev..

SP: idealni diamagnet

Meissner - Ochsenfeld 1933: (popolno) izrinjeno magnetno polje - SP I. vrste

Kritično magnetno polje: SP I. vrste

$$B_c(T) \cong B_c(0)[1-(T/T_c)^2]$$

Enačbe Londonov

Fritz in Heinz London: 1935 - idealna prevodnost + Meissnerjev efekt

$$m\frac{d\vec{v}_s}{dt} = -e_0\vec{E} \Longrightarrow \frac{d\vec{j}_s}{dt} = \frac{n_s e_0^2}{m}\vec{E} \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\Longrightarrow \frac{\partial}{\partial t} \left(\nabla \times \vec{j}_s + \frac{n_s e_0^2}{m}\vec{B} \right) = 0 \qquad \nabla^2 \vec{B} = \frac{1}{\lambda^2} \vec{B}$$

$$\lambda = \sqrt{\frac{m}{n_s \mu_0 e_0^2}}$$
 vdorna globina

$$B(x) = B_0 e^{-x/\lambda}$$

Izotopski efekt

$$T_c \sim M^{-\alpha}$$

Substance	α
Zn	0.45
Hg	0.50
Pb	0.49
Nb_3Sn	0.08
BCS theory	1/2

BCS teorija

John Bardeen Leon Cooper Robert Schrieffer - Nobel 1972

Theory of Superconductivity*

J. BARDEEN, L. N. COOPER, † AND J. R. SCHRIEFFER, Department of Physics, University of Illinois, Urbana, Illinois (Received July 8, 1957)

Cooperjevi pari: privlačna interakcija med elektroni (blizu v energiji) Standardni SP: posrednik mrežna nihanja

Fermijeva krogla

kako se izogniti Coulombskemu odboju ? retardacija bistvena!

Cooperjevi pari

Standardni SP: par k, spin ↑ in -k, spin ↓ privlačna interakcija: posrednik fononi

b) SP osnovno stanje - kolektivno stanje (vezanih) Cooperjevih parov

$$\begin{split} \Psi^0_{BCS} &= \prod_{\vec{k}} (u_{\vec{k}} + v_{\vec{k}} b^+_{\vec{k}}) |\emptyset\rangle \quad \text{BCS valovna funkcija} \\ b^+_{\vec{k}} &= c^+_{-\vec{k}\downarrow} c^+_{\vec{k}\uparrow} \qquad \langle b_{\vec{k}} \rangle = u_{\vec{k}} v_{\vec{k}} = \frac{1}{2} \mathrm{sin} \vartheta_{\vec{k}} = \frac{\Delta}{2E_{\vec{k}}} \end{split}$$

$$E_{\vec{k}} = \sqrt{\tilde{\epsilon}_{\vec{k}}^2 + \Delta^2}$$

energijska vrzel Δ – gap s wave pairing

$$2\Delta(0) \simeq 3.5k_BT_c$$

Specifična toplota ima skok (prehod II. reda)

$$\left. \frac{C_{es} - \gamma T_c}{\gamma T_c} \right|_{T_c} = 1.52$$

BCS relacija—
ekperimentalno velja za standardne SP

Energijska vrzel - gap

gostota energijskih stanj elektronov

gap merljiv z absopcijskimi eksperimenti – EM valovanje, ultrazvok h $\nu < \Delta$ - ni absorpcije

Makroskopska interferenca - Josephsonovi efekti 1962

Nobel 1973: Ivar Giaever, Leo Esaki, Brian Josephson

B. Josephson: "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects"

SIS junction

a.c. Josephson efekt

$$I = I_0 \sin \omega_0 t , \qquad \omega_0 = \frac{2e_0}{\hbar} U$$

SQUID: superconducting quantum interference device

$$\Phi_0 = \frac{h}{2e_0} = 2,0678.10^{-15} Tm^2$$

SQUID

magnetometer

HTC – visokotemperaturna superprevodnost

G. Bednorz and K.A. Mueller 1986

25 let

LaSrCuO BiSrCaCuO YBaCuO

Ravnine CuO

Kuprati – fazni diagram

nedopirani kuprati: Mottovi izolatorji,

antiferomagneti

dopirani kuprati: dopirani Mottovi izolatorji

nekonvencionalna (d-wave) SP, mehanizem – spinske fluktuacije, AFM magnoni anomalne lastnosti v N stanju, non-Fermi liquid, **energijska pseudovrzel**

Mikroskopski kvantni model: kuprati

preskakovanje elektronov med mesti (kovina) +
močan Coulombski odboj med elektroni **močne korelacije: U >> t**nedopiran sistem = 1 elektron (vrzel) = Mottov izolator

Cu: d orbitala x²–y²

1 orbitala / osnovno celico

2D kvadratna mreža

Intermezzo – Mg B₂

Jun Akimitsu: 2001

better late than never

standardni s – tip SP: fononski mehanizem

Pniktidi – spojine železa

1111 družina

Kamihara, Hosono et al. (08)

NHK「プロフェッショナル仕事の流儀」「爆笑問題のニッポンの教養」に出演、科学誌「Science」のプレークスルー・オブ・ザ・イヤーにも選出!
「論文の引用件数」
世界一の学者
※2008年度の
が編み出した
ものごとの本質をつかむ思考法と、
世界的発見の舞台裏。

122 družina

pnictogen: skupina 5 - N, P, As, Sb

Visoko (nizko) – temperaturni SP

Transition temperature (in kelvins)	Material	Class
133	HgBa ₂ Ca ₂ Cu ₃ O _x	Copper-oxide superconductors
110	Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀ (BSCCO)	
90	YBa ₂ Cu ₃ O ₇ (YBCO)	
77	Boiling point of liquid nitrogen	
55	SmFeAs(O,F)	Iron-based superconductors
41	CeFeAs(O,F)	
26	LaFeAs(O,F)	
20	Boiling point of liquid hydrogen	
18	Nb ₃ Sn	Metallic low-temperature superconductors
10	NbTi	
9.2	Nb	
4.2	Hg (mercury)	

Železovi pniktidi: kuprati

- podobnosti: fazni diagram, magnetne lastnosti nekonvencionalna SP, transportne lasnosti – NFL
- razlike: mikroskopski model več pasov, več orbital
- Rosetta plošča za razumevanje HTC?

Železovi pniktidi: mikroskopsko modeliranje

Fe d orbitale

večorbitalni Hubbardov model

Pniktidi: globalna fizika – novi igralci

Electronic Structure of the BaFe₂As₂ Family of Iron Pnictides

M. Yi,^{1,2} D. H. Lu,^{1,2} J. G. Analytis,³ J.-H. Chu,³ S.-K. Mo,^{2,4} R.-H. He,^{1,2} X. J. Zhou,⁵ G. F. Chen,⁵ J. L. Luo,⁵ N. L. Wang,⁵ Z. Hussain,⁴ D. J. Singh,⁶ I. R. Fisher,³ and Z.-X. Shen^{1,2},*

Low Energy Spin Waves and Magnetic Interactions in SrFe₂As₂

Jun Zhao,¹ Dao-Xin Yao,² Shiliang Li,¹ Tao Hong,³ Y. Chen,⁴ S. Chang,⁴ W. Ratcliff II,⁴ J. W. Lynn,⁴ H. A. Mook,³ G. F. Chen,⁵ J. L. Luo,⁵ N. L. Wang,⁵ E. W. Carlson,² Jiangping Hu,² and Pengcheng Dai^{1,3,*}

Spin waves and magnetic exchange interactions in CaFe₂As₂

Jun Zhao¹, D. T. Adroja², Dao-Xin Yao³, R. Bewley², Shiliang Li^{1,4}, X. F. Wang⁵, G. Wu⁵, X. H. Chen⁵, Jiangping Hu³ and Pengcheng Dai^{1,4,6}*

Superprevodnost samo iz odbojnih interakcij?

odboj – anizotropna SP: BCS gap enačba

$$\Delta(\mathbf{k}) = -\sum_{\mathbf{k}'} V(\mathbf{k}, \mathbf{k}') \frac{\Delta(\mathbf{k}')}{2E(\mathbf{k}')} \tanh\left(\frac{1}{2}\beta E(\mathbf{k}')\right)$$

privlak, če Δ menja znak – **d wave**

kuprati:

zakaj T_c tako visok (nizek) ? $T_c \sim \omega_D \sim J \sim 0.1 t$

← Fe pniktidi - s+- tip

What do we expect from theory?

Trivial: If an elegant theory agrees with experiment, there is nothing to worry about.

Heisenberg: If an elegant theory does not agree with experiment, the experiment is wrong.

Bohr (compromise): If an elegant theory disagrees with experiment, the case is not lost, since by improving theory one can make it agree with experiment.

Dirac: If an inelegant theory agrees with experiment, the case is hopeless.

Fenomenološka teorija superprevodnikov

in supertekočin

Aleksej Abrikosov, Vitalij Ginzburg

in Anthony Leggett

for pioneering contribution to the theory of superconductors and superfluids

The Nobel Prize in Physics 2003

"for pioneering contributions to the theory of superconductors and superfluids"

Alexei A. Abrikosov

O 1/3 of the prize
USA and Russia

Argonne National Laboratory Argonne, IL, USA

Ь. 1928

Vitaly L. Ginzburg

● 1/3 of the prize Russia

P.N. Lebedev Physical Institute Moscow, Russia

Anthony J. Leggett

1/3 of the prize
United Kingdom
and USA

University of Illinois

Urbana, IL, USA b. 1938

Ь. 1916

L. Landau (v zaporu)

V. Ginzburg

A. Leggett

L.Gorkov, A. Abrikosov, I.Dzialoshinski

Predhodnica

F. in H. London (1935): Idealna prevodnost + Meissnerjev efekt

$$\nabla^2 \mathbf{B} = \frac{1}{\lambda_L^2} \mathbf{B}$$

vdorna globina
$$\rightarrow \lambda_L^2 = \frac{m}{\mu_0 e^2 n_s}$$
 gostota SP elektronov

L. Landau (1937, 1943): teorija mešanega SP stanja

v prisotnosti magn. polja

L. Landau (1937): fenomenoška teorija zveznih faznih prehodov

ureditveni parameter

razvoj proste energije po UP

Fenomenološka teorija SP Ginzburga in Landaua (1950)

ureditveni parameter kompleksen $\Psi(\vec{r})$ efektivna v.f. SP elektronov $|\Psi|^2=n_s$ gostota SP elektronov

$$f = f_0 + \alpha |\Psi|^2 + \frac{\beta}{2} |\Psi|^4 + \frac{1}{2m^*} |(-i\hbar\nabla - e^*\vec{A})\Psi|^2 + \frac{1}{2\mu_0} B^2$$

$$\alpha = \alpha_0 (T - T_c)$$

prispevek magn.polja

GL
$$e^* = e_0$$
: 'charge, which there is no reason to consider as different from the electronic charge'

Bardeen, Cooper, Schrieffer (57) $e^* = 2e_0$: Cooperjevi pari

GL enačbe

$$F = \int dV f(\Psi, \vec{A}) = min$$

celotna prosta energija je minimalna pogoj za magn. polje B (A) in v.f. Ψ

$$\alpha\Psi + \beta|\Psi|^2\Psi + \frac{1}{2m^*}(i\hbar\nabla + e^*\vec{A})^2\Psi = 0$$

$$\frac{1}{\mu_0}\nabla\times\vec{B}\equiv\vec{j} = \frac{e^*\hbar}{2m^*i}[\Psi^*\nabla\Psi - \Psi\nabla\Psi^*] - \frac{e^{*2}}{m^*}|\Psi|^2\vec{A}$$

vključuje enačbe Londonov

Značaj ureditvenega parametra

 $\Psi = |\Psi| \mathbf{e}^{i\varphi}$ v SP stanju zlomljena zvezna umeritvena (gauge) simetrija φ določen

Karakteristične dolžine in parametri

koherenčna dolžina

$$\xi(T) = \sqrt{\frac{\hbar^2}{2m^*|\alpha|}}$$

vdorna globina polja
$$\lambda = \sqrt{\frac{m^*}{\mu_0 e^{*2} |\Psi_0|^2}} = \sqrt{\frac{m^* \beta}{\mu_0 e^{*2} |\alpha|}}$$

GL parameter $\kappa = \lambda/\xi$

Energija domenske stene

GL: $\kappa < 1$: Hg $\kappa \sim 0.16$

 $\kappa >> 1$? 'does not offer any intrinsic interest, we shall not discuss it'

О МАГНИТНЫХ СВОЙСТВАХ СВЕРХПРОВОДНИКОВ ВТОРОЙ ГРУППЫ

А. А. Абрикосов

Рассматриваются магнитные свойства массивных сверхпроводников, лля которых параметр \mathbf{x} , введенный в теории Гинзбурга и Ландау, больше $1/\sqrt{2}$ (сверхпроводники второй группы). Полученные данные объясняют ряд опытных закономерностей поведения сверхпроводящих сплавов в магнитном поле.

В работе автора [1] уже было отмечено, что из квазимикроскопической теории сверхпроводимости Гинзбурга и Ландау [2] можно сделать вывод о наличии двух групп сверхпроводников. Для сверхпроводников первой группы параметр \varkappa , входящий в теорию Гинзбурга и Ландау, меньше $1/\sqrt{2}$, для сверхпроводников второй группы он больше $1/\sqrt{2}$.

Teorija SP II. vrste:

Abrikosov (1957)

$$\kappa > 1/\sqrt{2}, \delta < 0$$

$$B_{c1} < B < B_{c2}$$

Abrikosov 57: quadratic lattice

triangular lattice

unstable!

Vrtinčne niti – vortex lines

$$B_{c1} < B < B_{c2}$$

kvantizacija magn. pretoka

B ~ B_{c2} gosta mreža vrtincev

Gibanje vrtincev

$$\mathbf{E} = \mathbf{v}_{\phi} \times \mathbf{B} \parallel \mathbf{J} \to \rho > 0$$

gibanje vrtincev povzroča električni upor ρ>0

za idealno prevodnost ρ=0 potrebno

pripetje (pinning) vrtincev!

energija dveh vrtincev

de Gennes $\mathbf{F}/L = \mathbf{J} imes \mathbf{\Phi}_0$

sila na vrtinec pri homogenem toku

Lorentz

Superprevodne snovi

Table 9.1 Coherence Length ξ , Penetration Depth λ , and Ginzburg-Landau Parameter κ of Various Superconductors^a

Material	<i>T</i> _c (K)	ξ (nm)	λ (nm)	κ (λ/ξ)	Source	
Cd	0.56	760	110	0.14	Meservey and Schwartz (1969)	
Ala	1.18	550	40	0.03	Table 9.2	
In ^a	3.41	360	40	0.11	Table 9.2	
Sn ^a	3.72	180	42	0.23	Table 9.2	
Ta	4.4	93	35	0.38	Buckel (1991)	
Pb ^a	7.20	82	39	0.48	Table 9.2	
Nb ^a	9.25	39	50	1.28	Table 9.2	
Pb-In	7.0	30	150	5.0	Orlando and Delin (1991)	
Pb-Bi	8.3	20	200	10	Orlando and Delin (1991)	
Nb-Ti	9.5	4	300	75	Orlando and Delin (1991)	
Nb-N	16	5	200	40	Orlando and Delin (1991)	
PbMo ₆ S ₈ (Chevrel)	15	2	200	100	Orlando and Delin (1991)	
V_3 Ga (A15)	15	≈ 2.5	90	≈ 35	Orlando and Delin (1991)	
V_3 Si $(A15)$	16	3	60	20	Orlando and Delin (1991)	
$Nb_3Sn(A15)$	18	3	65	22	Orlando and Delin (1991)	
$Nb_3Ge(A15)$	23.2	3	90	30	Orlando and Delin (1991)	
K_3C_{60}	19	2.6	240	92	Holczer et al. (1991)	High To
Rb ₃ C ₆₀	29.6	2.0	247	124	Sparn et al. (1992)	High To
$(La_{0.925}Sr_{0.075})_2CuO_4^b$ $YBa_2Cu_3O_7^b$	37	2.0	200	100	Poole et al. (1988)	
	89	1.8	170	95	Poole et al. (1988)	kuprati
HgBaCaCuO	126	2.3			Gao et al. (1993)	1
$HgBa_2Ca_2Cu_3O_{8+\delta}$	131			100	Schilling et al. (1994b)	

dekoracija - Pb

 $STM - NbSe_2$

vzorec z luknjami

 MgB_2

STM – HTC trikristal

HTC kuprati

čisti superprevodnik

³He – anizotropna supertekočina

D. Osheroff, D. Lee in R. Richardson 1971 Nobelova nagrada 1996

Vrtinci v superfluidu

Uporaba superprevodnikov

SP kabli

standardni SP: Nb Ti LHC magneti

Superconducting power cable, with its low resistance, may transform the electric-power industry in much the same way that optical fibers transformed telecommunications.

HTC

Expectations of the Development of Superconducting Tape

Levitacija

MAGLEV

SP naslednjih 100 let

Nove SP snovi: višji T_c? boljše snovne lastnosti

Razumevanje nekonvencionalne SP

Uporaba in tehnološki razvoj