KUZOO31US.NP

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-137143

(43)Date of publication of application: 27.05.1997

(51)Int.CI.

CO9J133/06 GO2B 5/30 GO2F 1/1335

(21)Application number: 08-024832

(71)Applicant: NIPPON KAYAKU CO LTD

(22)Date of filing:

19.01.1996

(72)Inventor: SAKURAI HIROSHI

KAJIWARA YOSHITAKA TAKAHASHI TERUJI

(30)Priority

Priority number: 07261005

Priority date: 14.09.1995

Priority country: JP

(54) OPTICAL TACKY ADHESIVE COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To prepare an optical tacky adhesive compsn. which can prevent light leakage by incorporating a plasticizer and a crosslinking agent into a tacky adhesive based on an acrylic resin.

SOLUTION: A crosslinking agent, such as a polyisocyanate compd., is added in an amt. of 0.001 to 10 pts.wt. (hereinafter referred to as 'pts.') to 100 pts. copolymer, having a wt.-average mol.wt. of 1,200,000 to 1,500,000, prepd by copolymerizing about 50 to 98wt.% (hereinafter referred to as '%') alkyl (meth) acrylate with about 2 to 50% other polymerizable monomer, such as a carboxyl- contg. monomer, a hydroxyl-contg. monomer, or an amide-contg. monomer, to prepare an acrylic resin (A). Similarly, a crosslinking agent is added to a copolymer having a wt.-average mol.wt. of 500,000 to 900,000 to prepare an acrylic resin (B). Subsequently, the acrylic resin (A) and the acrylic resin (B) are mixed together in a wt. ratio of (6:4) to (4:6), and a predetermined amt. of a plasticizer, such as a phthalic ester, is added thereto, followed by kneading. A solvent, such as methyl ethyl ketone, is added to dilute the kneaded product so that the nonvolatile content is about 10 to 20%, thus preparing an optical tacky adhesive compsn. based on an acrylic resin.

LEGAL STATUS

[Date of request for examination]

21.12.2001

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3594206

[Date of registration]

10.09.2004

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出關公開番号

特開平9-137143

(43)公開日 平成9年(1997)5月27日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FI	技術表示箇所
C 0 9 J 133/06	JDB		C 0 9 J 133/06	JDB
G 0 2 B 5/30			G 0 2 B 5/30	
G 0 2 F 1/1335	5 1 0		G 0 2 F 1/1335	5 1 0

		審查請求	未請求 請求項の数7 FD (全 7 頁)			
(21)出願番号	特顧平8-24832	(71)出顧人	000004086			
(22)出顯日	平成8年(1996)1月19日		日本化薬株式会社 東京都千代田区富士見1丁目11番2号			
		(72)発明者	桜井 弘			
(31)優先権主張番号	特膜平7-261005		埼玉県入間市根岸419-2			
(32) 優先日	平7 (1995) 9月14日	(72)発明者	梶原 義孝			
(33)優先権主張国	日本(JP)		埼玉県与野市上蔣合1090			
		(72)発明者	高橋 照士			
			東京都北区志茂 3 -33-5			

(54) 【発明の名称】 光学用粘着剤組成物

(57)【要約】

【課題】信頼性試験後クロスニコル状態での光漏れを制 御した偏光板や位相差板等に適した光学用粘着剤組成物 を提供する。

【解決手段】アクリル樹脂共重合体系粘着剤に可塑剤及 び架橋剤を配合したことを特徴とする光学用粘着剤組成 物。

1

【特許請求の範囲】

【請求項1】アクリル樹脂系粘着剤に可塑剤及び架橋剤 を配合したととを特徴とする光学用粘着剤組成物。

【請求項2】アクリル樹脂系粘着剤が異なる重量平均分 子量を有するアクリル樹脂の混合物である請求項1の光 学用粘着剤組成物。

【請求項3】異なる重量平均分子量を有するアクリル樹 脂の混合物が重量平均分子量120~160万のアクリ ル樹脂と重量平均分子量50~90万のアクリル樹脂と の混合物である請求項2の光学用粘着剤組成物。

【請求項4】アクリル樹脂の1成分が分子中にアミド基 を有するモノマーの共重合体である請求項1ないし3の いずれか一項の光学用粘着剤組成物。

【請求項5】請求項1ないし4のいずれか一項の光学用 粘着剤組成物の層を有する位相差板。

【請求項6】請求項1ないし4のいずれか―項の光学用 粘着剤組成物の層を有する偏光板。

【請求項7】MD (Machinery Direction) 方向の抗張力 が15kg/mm'以上、TD(Transverse Direction) 方向の抗張力が12.5 kg/mm²以上であるセル 20 ロース系フィルムを支持体とする請求項6の偏光板。

【発明の詳細な説明】

[0001]

【発明の属する利用分野】本発明は、セルロース系フィ ルムを保護層に持つ偏光板または位相差フィルムと液晶 セルとを接着させる等の光学用に特に有用な粘着剤組成 物に関するものである。更に詳しくは、耐久性試験後ク ロスニコル状態での光漏れ、および光学ムラを抑制する 粘着剤組成物に関するものである。

[0002]

【従来の技術】液晶表示素子は、2枚の電極基盤の間に 液晶を封入し、電極基盤の電極に電圧を印加することに よって光学的性質が変化する液晶の特性を利用し、所望 の表示バターンを得る素子である。この様な液晶表示素 子は、素子の厚みが薄く表示パターンを自由に選択する ことが出来、かつ、消費電力が非常に低く、低電圧駆動 が可能であり、CMOS-ICの直接駆動が出来ること から、電卓、エアコン、電話機などの殆どの表示部分の 表示素子として使用されている。例えば、ツイストネマ チック型液晶表示素子は、前記2枚の上下電極基盤の外 40 側に偏光板を備えている素子であり、この素子の各ドッ トにスイッチング素子(TFT)を付けて駆動させら れ、カラーフィルターと組み合わせた表示体が液晶テレ ビや液晶ムービーに使用されている。

【0003】との液晶表示素子に使用される偏光板の殆 どは、ポリビニルアルコール (PVA) フィルムにヨウ 素または2色性色素を吸着または分散させ、一定方向に フィルムを延伸することにより得られる偏光素子膜を使 用している。との偏光素子膜は、非常に薄い膜であり、

め、一般的には支持体に貼合わせて使用される。この支 持体には、三酢酸セルロース、セルロースブチレート、 セルロースアセテート等のセルロース系フィルムが一般 的に使用されている。

[0004]

【発明が解決しようとする課題】しかし、従来のセルロ ース系フィルムを支持体に使用した偏光板は、信頼性試 験において光軸のずれを生じ、そして、上下電極基板側 に対応する支持体の光軸のずれにより、黒色表示状態で 面内のコントラストにバラツキを起こすことが見いださ れた。本発明の目的は、信頼性試験後クロスニコル状態 での光漏れを制御した偏光板を提供することにあり、具 体的には、偏光板の信頼性試験において、光軸のずれに 基づく光漏れが発生せず、特に、上下電極基板側に対応 する支持体の光軸のずれにより、黒色表示状態で粘着層 を介してガラス電極に貼り合わせた偏光板を有する液晶 表示素子が信頼性試験後に光漏れが発生しないようにす るととである。

[0005]

【課題を解決するための手段】本発明者等は、ガラス電 極に粘着層を介して貼り合わせた偏光板を有する液晶表 示素子について、耐久性試験後に黒色表示状態で生じる 光漏れ防止のため、鋭意検討を重ねた結果、本発明を完 成した。即ち、本発明は、(1)アクリル樹脂系粘着剤 に可塑剤及び架橋剤を配合したことを特徴とする光学用 粘着剤組成物。

(2)アクリル樹脂系粘着剤が異なる重量平均分子量を 有するアクリル樹脂の混合物である(1)の光学用粘着 剤組成物、(3)異なる重量平均分子量を有するアクリ 30 ル樹脂の混合物が重量平均分子量120~160万のア クリル樹脂と重量平均分子量50~90万のアクリル樹 脂との混合物である(2)の光学用粘着剤組成物、

(4)アクリル樹脂の1成分が分子中にアミド基を有す るモノマーの共重合体である(1)ないし(3)の光学 用粘着剤組成物、(5)(1)ないし(4)の光学用粘 着剤組成物の層を有する位相差板、(6)(1)ないし... (4)の光学用粘着剤組成物の層を有する偏光板、

(6)MD (Machinery Direction) 方向の抗張力が15 kg/mm'以上、TD(Transverse Direction) 方向 の抗張力が12.5 kg/mm² 以上であるセルロース 系フィルムを支持体とする(6)の偏光板、に関する。 [0006]

【発明の実施の態様】ここで使用されるアクリル樹脂系 粘着剤としては、例えば(メタ)アクリル酸アルキルエ ステルと他の重合性モノマーとの共重合体があげられ る。(メタ)アクリル酸アルキルエステルとしては、例 えば(メタ)アクリル酸メチル、(メタ)アクリル酸エ チル、(メタ)アクリル酸イソプロピル、(メタ)アク リル酸n-ブチル、(メタ)アクリル酸t-ブチル、 しかも、延伸軸と直角方向の引っ張り力に対して弱いた 50 (メタ)アクリル酸ドデシル等があげられる。これらの

(メタ)アクリル酸アルキルエステルは1種または2種 以上使用してもよい。他の重合性モノマーとしては、例 えば次の3種の重合性モノマー、即ち、分子中にカルボ キシル基を有する重合性モノマーや分子中に水酸基を有 する重合性モノマー、分子中にアミド基を有する重合性 モノマー等があげられる。分子中にカルボキシル基を有 する重合性モノマーや分子中に水酸基を有する重合性モ ノマーは高温下もしくは高湿熱下(信頼性試験)におけ る発泡や剥離を押さえる必要がある場合に使用され、分 子中にアミド基を有する重合性モノマーは信頼性試験で 10 の酸による劣化を押さえる必要がある場合に使用され る。とれらの他の重合性モノマーは通常2種以上使用さ れる。又、必要に応じ、任意成分としてさらにスチレン 等の官能基不含有の重合性モノマー、酢酸ビニル、アク リロニトリル等の、上記の3種の重合性モノマー以外 の、重合性モノマーも併用される。

【0007】分子中にカルボキシル基を有する重合性モ ノマーとしては、例えばアクリル酸、メタクリル酸、マ レイン酸、イタコン酸等があげられる。分子中に水酸基 を有する重合性モノマーとしては、例えば2-ヒドロキ 20 シエチルアクリレート、2-ヒドロキシエチルメタクリ レート、2-ヒドロキシプロピルアクリレート、2-ヒ ドロキシプロピルメタクリレート、3-クロロー2-ヒ ドロキシプロピルアクリレート、3-クロロ-2-ヒド ロキシプロピルメタクリレート等のヒドロキシ(炭素数) 1~5)アルキル(メタ)アクリレート、ジエチレング リコールモノアクリレート、ジエチレングリコールモノ メタクリレート等のジエチレングリコール (メタ)アク リレート等があげられ、さらにグリシジルメタクリレー にアミド基を有する重合性モノマーとしては、例えば N, N-ジメチルアミノプロピルアクリルアミド、N, **N-ジメチルアクリルアミド、N,N-ジエチルアクリ** ルアミド、アクリロイルモルホリン、N-イソプロピル アクリルアミド、N-メチロールアクリルアミド、アク リルアミド等のアクリルアミド系モノマーがあげられ る。

【0008】(メタ)アクリル酸アルキルエステルと他 の重合性モノマーの使用割合は、(メタ)アクリル酸ア ルキルエステルが50~98重量%、好ましくは70~ 40 95重量%、他の重合性モノマーが50~2重量%、好 ましくは30~5重量%程度である。他の重合性モノマ ー中、分子中にカルボキシル基を有する重合性モノマー を使用する場合は0.5~10重量%、好ましくは1~ 7重量%、分子中に水酸基を有する重合性モノマーを使 用する場合は0.1~10重量%、好ましくは0.5~ 5重量%、分子中にアミド基を有する重合性モノマーを 使用する場合は1~20重量%、好ましくは3~15重 量%程度である。又、任意成分として使用する重合性モ ノマーは0~20重量%、好ましくは0~10重量%程 50 い。

度である。又、分子中にカルボキシル基を有する重合性 モノマーと分子中にアミド基を有する重合性モノマーを 併用する場合、分子中にアミド基を有する重合性モノマ 一成分のアミド基の数は、高温高湿での耐久性や粘着力 を考慮すると、樹脂全体のカルボキシル基の数の3~5 倍程度が好ましい。

【0009】本発明で使用されるアクリル樹脂系粘着剤 は、使用するモノマーを有機溶剤に溶解し、一般的な周 知方法によりラジカル共重合させることにより容易に製 造できる。有機溶剤としては、例えばトルエン、キシレ ン等の芳香族炭化水素、酢酸エチル、酢酸ブチル等のエ ステル類、n-プロピルアルコール、イソプロピルアル コール等の脂肪族アルコール類、メチルエチルケトン、 メチルイソブチルケトン等のケトン類等があげられる。 重合触媒としては、例えばアゾビスイソブチロニトリ ル、ベンゾイルパーオキサイド、ジーtーブチルパーオ キサイド、クメンハイドロバーオキサイド等があげられ る。

【0010】本発明で使用されるアクリル樹脂系粘着剤 としては、重量平均分子量が120万~160万、更に 好ましくは130万~150万程度の高分子量のもの と、重量平均分子量が50万~90万、更に好ましくは 60万~80万程度の低分子量のものとの2種の粘着剤 を混合したものが好ましい。その混合割合は、高分子量 のものを8~3重量部に対し低分子量のものを3~7重 量部、好ましくは前者を6~4重量部に対し後者を4~ 6 重量部程度がよい。又、位相差板や偏光板の支持体で あるトリアセテートの信頼性試験での酸による劣化を防 止するために、高分子量のものと低分子量のものとのど ト、アリルグリシジルエーテル等があげられる。分子中 30 ちらか一方もしくは双方、好ましくは高分子量のもの、 に他の重合性モノマーの成分として分子中にアミド基を 有する重合性モノマーを使用することが好ましく、更に 信頼性試験における発泡や剥離をも考慮すると、分子中 にカルボキシル基を有する重合性モノマー、分子中に水 酸基を有する重合性モノマー及び分子中にアミド基を有 する重合性モノマーの三者を併用することが好ましい。 【0011】本発明の粘着剤組成物に使用される可塑剤 としては、フタル酸エステル系のもの、例えば、フタル 酸ジブチル、フタル酸ジヘプチル、フタル酸ジ-n-オ クチル、フタル酸ジー2-エチルヘキシル、フタル酸ジ イソノニル、フタル酸ジオクチルデシル、フタル酸ブチ ルベンジル、リン酸エステル系としてリン酸トリフェニ ルが好ましい。更に好ましくは信頼性の面からフタル酸 ジー2-エチルヘキシルが有用である。また、アクリル 樹脂共重合体系粘着剤に対して常用のその他の可塑剤を 使用しても良い。可塑剤の使用量はアクリル樹脂系粘着 剤に対して1~40重量%、好ましくは10~30重量 %程度がよい。フタル酸エステル系やリン酸トリフェニ ル系の可塑剤の場合は20~30重量%がより好まし

【0012】本発明に用いられる架橋剤としてはアクリ ル樹脂系粘着剤に対して常用のものであれば特に制限は なく、例えば脂肪族ジイソシアネート、芳香族ジイソシ アネート等のポリイソシアネート化合物、ブチルエーテ ル化スチロールメラミン、トリメチロールメラミン等の メラミン化合物、エポキシ樹脂系化合物、金属塩等が用 いられる。架橋剤の使用量はアクリル樹脂系粘着剤10 ○重量部あたり○. ○○1~1○重量部、好ましくは 0.005~5重量部、さらに好ましくは0.01~5 重量部程度がよい。

【0013】ここで、イソシアネート化合物としては、 例えばトリレンジイソシアネート、水素化トリレンジイ ソシアネート、トリメチロールプロパンのトリレンジイ ソシアネート付加物、トリメチロールプロパンのキシリ レンジイソシアネート付加物、トリフェニルメタントリ イソシアネート、メチレンビス(4-フェニルメタン) トリイソシアネート、イソホロンジイソシアネート等、 及びこれらのケトオキシムブロック物又はフェノールブ ロック物等があげられる。エポキシ樹脂系化合物として は、例えばビスフェノールA・エピクロルヒドリン型の 20 エポキシ樹脂、エチレングリコールジグリシジルエーテ ル、ポリエチレングリコールジグリシジルエーテル、 1,6-ヘキサンジオールジグリシジルエーテル、トリ メチロールプロパントリグリシジルエーテル、ジグリシ **ジルアニリン、ジグリシジルアミン、N, N, N',** N'ーテトラグリシジルーmーキシレンジアミン、1, 3-ビス(N, N'-ジグリシジルアミノエチル)シク ロヘキサン等があげられる。金属塩としては、例えばア ルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、 価金属の塩化物、臭化物、硝酸塩、硫酸塩、酢酸塩等の 塩、具体的には、例えば塩化第二銅、塩化アルミニウ ム、塩化第二鉄、塩化第二スズ、塩化亜鉛、塩化ニッケ ル、塩化マグネシウム、硫酸アルミニウム、酢酸銅、酢 酸クロム等があげられる。

【0014】本発明の光学用粘着剤組成物を製造するに は、例えばアクリル樹脂系粘着剤、可塑剤、架橋剤を均 一に混合すればよい。又、支持体への塗布の容易さを考 慮すると、メチルエチルケトン(MEK)、トルエン、 酢酸エチル等のアクリル樹脂系粘着剤の希釈に通常一般 40 的に使用される溶剤で、不揮発分が15~20%となる ように希釈することが好ましい。

【0015】本発明の偏光板は、偏光素子膜(偏光フィ ルム)の少なくとも片面を、例えば三酢酸セルロース膜 等のセルロースフィルムから成る支持体で積層接着(粘 着)し、該支持体上に本発明の光学用粘着剤組成物の層 を、 $15\sim30\mu$ m、好ましくは $20\sim25\mu$ mの厚さ で、形成することにより作成される。本発明の光学用粘 着剤組成物の層にはさらに剥離フィルムでカバーされて

されるものではないが、例えば、PVAフィルムにヨウ 素または2色性色素を吸着または分散させ、ホウ酸水溶 液中でエステル化しながら一軸方向に約3~5倍に延伸 し、加熱乾燥して得ることが出来る。2色性色素として は、例えば酸性染料や直接染料から任意に選ぶことが出 来、アゾ系色素、アントラキノン系色素、メチン系色 素、シアニン系色素などが挙げられる。また、積層接着 (粘着)に使用される接着(粘着)剤としては、例え は、透明性の良好なエポキシ系、ポリエステル系、酢酸 10 ビニルなどの溶剤型接着剤(粘着)、または、アクリル 系重合樹脂、ウレタン樹脂などの重合反応により硬化し 得る接着(粘着)性樹脂が挙げられる。

【0016】ここで使用する偏光素子膜の支持体として は、例えばMD方向の抗張力が15kg/mm゚以上、 好ましくは15~20kg/mm²、TD方向の抗張力 が12. 5 kg/mm'以上、好ましくは12. 5~1 5kg/mm²のセルロース系フィルムがあげられる。 その素材としては、例えば三酢酸セルロースが挙げられ る。このセルロース系フィルムは、例えば特開平5-1 85445号公報に記載の溶液製膜方法で製造される。 **ここで使用するセルロース系フィルムの模厚は、特に限** 定されるものではないが、好ましくは50~200μ m、更に好ましくは50~100μm程度である。 【0017】本発明の位相差板を製造するために使用し うる位相差膜としては、例えばポリビニルアルコール (PVA)系位相差膜、ポリカーボネート系位相差膜、 ポリアリレート系位相差膜、ポリスルホン系位相差膜等 があげられるが、特に限定されるものではない。その製 法は、例えばPVA系位相差板の場合、PVA膜からな アンチモン、マグネシウム、バナジウム、クロム等の多 30 る公知の位相差膜(位相差フィルム)の少なくとも片面 を、例えば三酢酸セルロース膜等のセルロースフィルム から成る支持体で積層接着(粘着)し、該支持体上に本 発明のの光学用粘着剤組成物の層を、15~30 μm、 好ましくは20~25μmの厚さで、形成することによ り作成される。本発明の光学用粘着剤組成物の層にはさ らに剥離フィルムでカバーされていてもよい。ことで使 用する位相差フィルムは、PVAフィルムをホウ酸水溶 液中でエステル化しながら―軸方向に約1.1~1.2 倍に延伸し、加熱乾燥して得ることが出来る。また、積 層接着(粘着)に使用される接着(粘着)剤としては、 例えば、透明性の良好なエポキシ系、ポリエステル系、 酢酸ビニルなどの溶剤型接着剤(粘着)、または、アク リル系重合樹脂、ウレタン樹脂などの重合反応により硬 化し得る接着(粘着)性樹脂が挙げられる。

【0018】ここで使用する位相差膜の支持体として は、例えばMD方向の抗張力が15kg/mm゚以上、 好ましくは15~20kg/mm²、TD方向の抗張力 が12. 5 k g / m m * 以上、好ましくは12. 5~1 5 kg/mm¹ のセルロース系フィルムがあげられる。 いてもよい。ここで使用する偏光フィルムは、特に限定 50 その素材としては、例えば三酢酸セルロースが挙げられ

る。このセルロース系フィルムは、例えば特開平5-1 85445号公報に記載の溶液製膜方法で製造される。 **ここで使用するセルロース系フィルムの膜厚は、特に限** 定されるものではないが、好ましくは50~200μ m、更に好ましくは50~100μm程度である。 【0019】本発明の位相差板は、例えば本発明の偏光

板の粘着剤面に貼付され、楕円偏光板として使用され る。本発明の位相差板を使用することにより、偏光板の 支持体であるセルロース系フィルムの軸ずれを防ぎ、色 ムラの発生を解消することができる。

[0020]

【実施例】以下、実施例および比較例を挙げて本発明を 更に詳細に説明するが、本発明は、その要旨を越えない 限り、以下の実施例に限定されるものではない。

【0021】実施例1

膜厚25μmのPVA系偏光フィルム(平均重合度17 00、平均ケン化度99.8モル%のPVAフィルムを 4倍延伸して得たもの)の両側をMD方向の抗張力が1 7. lkg/mm²、TD方向の抗張力が13. lkg /mm²の三酢酸セルロースフィルム (膜厚80μm、 商品名TD80U(富士写真フィルム社製))で積層 し、図1に示すような偏光板を作成し、基材として用意 した。

【0022】下記の2種類のアクリル樹脂を用意した。 【0023】アクリル樹脂(A)は次の方法により得 た。すなわち、重量平均分子量140万のアクリル樹脂 系粘着剤(樹脂成分:アクリル酸 n – ブチル/2 – ヒド ロキシエチルアクリレート/アクリル酸/N. N-ジメ チルアクリルアミド=80重量%/1重量%/3重量% /16重量%の共重合物) 100重量部に、トリレンジ 30 【0029】試験例1 イソシアネート (3モル) のトリメチロールプロパン (1モル)付加物(架橋剤)3重量部、アーグリシドキ シプロピルシラン1重量部を配合して髙分子量タイプの アクリル樹脂(A)を得た。

【0024】アクリル樹脂(B)は次の方法により得 た。重量平均分子量70万のアクリル樹脂系粘着剤(樹 脂成分:nープチルアクリレート/メチルアクリレート /2-ヒドロキシエチルアクリレート=80重量%/1 8重量%/2重量%の共重合物)100重量部に、トリ パン(1モル)付加物(架橋剤)3重量部、ケーグリシ ドキシプロピルシラン1重量部を配合して低分子量タイ プのアクリル樹脂(B)を得た。

【0025】上記、アクリル樹脂(A)と(B)を1対 1の割合で配合し、フタル酸ジオクチル(可塑剤)を3 重量部添加配合した後、不揮発分が15%になるように MEKで希釈し、本発明の粘着剤組成物とした。この本 発明の粘着剤組成物を剥離フィルム上に乾燥後の膜厚が米 *20~30µmになるように塗布し乾燥後、三酢酸セル ロースフィルムを保護層とするポリビニルアルコール系 **偏光板(ポリビニルアルコール系偏光性フィルムの平均** 重合度1700、平均ケン化度99.5モル%、5倍延 伸)の三酢酸セルロースフィルム側に積層し、ローラー で押圧して本発明の粘着剤組成物層を有する偏光板を作

【0026】実施例2

成した。

実施例1の粘着剤組成物中の可塑剤のフタル酸ジオクチ 10 ルをリン酸トリフェニルに代えた他は、実施例1と同様 にして本発明の粘着剤組成物層を有する偏光板を作成し 7C.

【0027】比較例1

アクリル樹脂(C)を次の方法により得た。重量平均分 子量140万のアクリル樹脂系粘着剤(樹脂成分:n-ブチルアクリレート/アクリル酸/2-ヒドロキシエチ ルアクリレート=94.5重量%/5重量%/0.5重 量%の共重合物) 100重量部に、トリレンジイソシア ネート(3モル)のトリメチロールプロパン(1モル) 20 付加物3重量部、ケーグリシドキシプロピルシラン1重 量部を配合して本発明に対する比較のための酸を有する 高分子量タイプのアクリル樹脂(C)を得た。以下、可 塑剤を添加せずに、実施例 1 と同様にして、粘着剤組成 物層を有する偏光板を作成した。

【0028】比較例2

実施例1の粘着剤組成物で、架橋剤及び可塑剤を添加せ ずにアクリル樹脂(A)だけを使用した他は、実施例1 と同じ方法で粘着剤組成物層を有する偏光板を作成し

吸収軸を45 (又は135)とし、実施例1~2及 び比較例1で作成した偏光板を120mm×90mmの サイズにカットして剥離フィルムを剥離した後ガラス板 に貼り合わせ、各2枚ごとを100℃の条件下または6 0°C/95%RHの条件下に24時間放置した(信頼性 試験条件に相当する)。次いで、クロスニコル状態と し、図2に示す測定位置(A:面内中央部、B:長辺中 央より1 c m内側部) での輝度%(C1, C2)を測定 し、輝度比(C2/C1)を算出した。図2中、(1 レンジイソシアネート(3モル)のトリメチロールプロ 40 0)、(20)はそれぞれ偏光板を表す。輝度%は、光 源の輝度を100としたときの値であり、その値が小さ いほど光漏れが少ないことを意味する。また、輝度比 は、その値が小さいほど液晶表示装置面内のコントラス トのバラツキが少ないことを意味する。 結果を表 1 に示 す。

[0030]

【表1】

表1

100℃×24時間

60℃/90%RH×24時間

9 10 C 2 C1輝度比 輝度比 C 2 C 1 実施例1 0.0521 0.0216 0.0224 0.0142 1. 58 2. 41 実施例2 0.0512 2.46 1. 52 0.0208 0.0231 0.0152 比較例1 3. 52 0.0779 0.0221 0.0739 4.02 0.0184 (僅か発泡が見られる)

(6)

比較例2 0.1271 0.0239 5. 43 5.72 0.1100 0.0192

【0031】実施例3

実施例1で得た本発明の粘着剤組成物を剥離フィルム上 に乾燥後の膜厚が20~30µmになるように塗布し乾 爆後、三酢酸セルロースフィルムを保護層とするボリビ 10 後図4に示す測定位置(A:面内中央部、B:長辺中央 ニルアルコール(PVA)系位相差板(PVA系位相差 フィルムの平均重合度1700、平均ケン化度99.5 モル%、1.1倍延伸、位相差値450nm)の三酢酸 セルロースフィルム側に積層し、ローラーで押圧して本 発明の粘着剤組成物層を有する位相差板を作成した。

【0032】試験例2

実施例1で得た本発明の偏光板の上に本発明の粘着剤組 成物を乾燥後の膜厚が20~30μmになるように塗布 し乾燥後、偏光板を15°、実施例3の粘着剤組成物層 を有するPVA系位相差板を75°の軸角度で貼り合わ※20

せて楕円偏光板を作成した。このものを120mm×9 0 m m のサイズにカットし剥離フィルムを剥離した後ガ ラス板に貼り合わせ、70°Cの恒温糟中に48時間放置。 より 1 c m内側部) での色相(L^{}、a^{*}、b^{*}:Cl A1976により定められた表色法である)を輝度計 「TOPCON BM-5A」((株)トプコン製)で 測定し、耐久性試験前後の色相変化を比較した。尚、比 較例 1 で使用したアクリル樹脂(C)を粘着剤組成物と して使用したものを比較例3とした。結果を表2に示 す。

[0033] 【表2】

表2

		L.	a*	b.	
		A / B	A / B	A / B	
実施例3	試験前	34.0/34.6	40.9/39.8	9.5/10.1	
	試験後	34.0/34.6	40.6/40.2	9.7/10.2	
	変化	0/0	+0.3/-0.4	-0.2/-0.1	色変化が少ない
比較例3	試験前	33.1/33.8	39.7/40.4	3.8/7.8	
	試験後	33.9/35.4	39.5/39.0	5.7/10.9	
	変化	-0.8/-1.6	-0.2/+0.6	-1.9/-3.1	青みが強くなる

[0034]

【発明の効果】本発明の粘着剤組成物を使用することに より、光漏れによる液晶表示装置面内のコントラストの 【符号の説明】 バラツキが少なくなり表示品位が向上する。

【図面の簡単な説明】

【図1】 偏光板の構成の説明図である。

【図2】実施例1、2および比較例1、2における透過 率の測定位置(AおよびB)を示す説明図である。

【図3】楕円偏光板の構成の説明図である。

30※【図4】実施例3および比較例3における輝度計による 色相変化の測定の説明図である。

1:支持体

2:偏光素子膜 10: 偏光板 20: 偏光板

30:位相差板

【図1】 【図2】 【図3】

×

[図4]

