0. Split original data to simulate uplift execution

Traditional Uplift Model Setup

1. Launch AutoPilot to predict conversion

2. Confirm AutoPilot Results

3. Deploy the Model to generate uplift scores

4a. Prepare score file and calculate uplift

Use the API to create **propensity*** and **response*** scores.

```
audience = pd.read_csv('./customers.csv')
audience['exposure']=0

audience.to_csv(path_or_buf='./audience')
os.system("./convert.py audience
wo_exp.csv")

audience['exposure']=1

audience.to_csv(path_or_buf='./audience')
os.system("./convert.py audience
with_exp.csv")
```

Difference of prop. and resp = **uplift** score.

```
noexp =
pd.read_csv('./wo_exp.csv').rename(columns={'con
version_1_PREDICTION': 'convert_exp_no'})

exp =
pd.read_csv('./with_exp.csv').rename(columns={'c
onversion_1_PREDICTION': 'convert_exp_yes'})

scores =
pd.concat([noexp[['convert_exp_no']],exp[['conve
rt_exp_yes']]],axis=1)

scores['uplift_score']=scores['convert_exp_no']-
scores['convert_exp_yes']

scores.plot.scatter(x = 'uplift_score', y =
'convert_exp_no');
```

^{*} Propensity = Pr(purch. | no intervention). Response = Pr(purch. | intervention)

4b. Uplift Scatter plot

These are the

(where you

ad money

starting at

top-left)

should spend

These

Appendix: Uplift open-source package

The DataRobot approach to the automation of uplift modeling is based on the Causal ML methodology (originally developed at uber).

Documentation: https://causalml.readthedocs.io/en/latest/about.html

Youtube pres: https://www.youtube.com/watch?v=2J9j7peWQgl

Python package: https://github.com/uber/causalml

White paper: https://arxiv.org/abs/2002.11631

Goal of Uplift Modeling

Uplift model estimates heterogeneous treatment effects with ML algorithms

Conditional average treatment effect: CATE = E [Y] Intervention, X] - E [Y | No Intervention, X]

Sure things 8 Lost causes – Will behave the same no matter what you do. Including them as a target in the model is okay, but will make our targeting inefficient.

Sleeping dogs - These people are turned off by your intervention. Definitely don't include them, ideally you would even downrank them.

Persuadable - This is the population you actually care about because they exhibit the ideal behavior because you intervened. Ideally you uprank them as much as possible

Source: https://www.youtube.com/watch?v=2J9j7peWQql

S Meta-Learner for Uplift Modeling

Procedure

- Create a binary feature is_treatment, indicating whether a user is from the treatment group
- 2. Train a single (S) model
- For all users, set is_treatment to 1 and calculate yhat, persent.
- For all users, set is_treatment to 0 and calculate yhat_{is_treatment=0}
- CATE = yhat is treatment=0 yhat is_treatment=1

Source: https://www.youtube.com/watch?v=2J9j7peWQql

Optimization with Uplift Model

Uplift Modeling @ Uber

- Maintaining > 100% campaign incremental values while targeting only ~ 50% population by identify the
 persuadable users
- Propensity score and uplift score are weakly negatively correlated. While propensity score model is
 easier to build in general, it cannot substitute the uplift model.

Source: https://www.youtube.com/watch?v=2J9j7peWQql