14. Model Checking

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Assignments

- Assignment 3 (model checking and automata)
 - out now; due 12 noon next Thur (1 Mar)
 - tutorials in week 9 (8/9 Mar)
- Assignment 5 ("extended" version only)
 - due Thur of week 10 (15 March)
 - released early; out now

Module syllabus

- Modelling sequential and parallel systems
 - labelled transitions systems, parallel composition
- Temporal logic
 - LTL, CTL and CTL*, etc.
- Model checking
 - CTL model checking algorithms
 - automata-theoretic model checking (LTL)
- Verification tools: SPIN
- Advanced verification techniques
 - bounded model checking via propositional satisfiability
 - (symbolic execution), (symbolic model checking)
- Quantitative verification
 - (real-time systems), probabilistic systems

Overview

- Model checking
 - strengths & weaknesses
 - example applications
- Counterexamples
 - evidence of property refutation
 - or witness to desired behaviour
- Complexity & scalability
 - model size is crucial, many approaches to tackle this

LTL model checking: Summary

- Model checking algorithm
 - construct NBA $\mathcal{A}_{\neg \psi}$ for negation of formula ψ to be verified
 - check for reachable "accept" cycles in product $M \otimes \mathcal{A}_{\neg \psi}$
- LTL-to-automaton translation
 - various algorithms, tools exist (not covered on this module)
- Cycle detection various options
 - 1. search for reachable non-trivial SCCs containing "accept"
 - 2. find all "accept" states, perform DFS to find back edges
 - 3. nested depth-first search (DFS)

Complexity of LTL model checking

- The time complexity of LTL model checking
 - for LTS M and LTL formula ψ
- is: $O(|M| \cdot 2^{|\psi|})$
 - i.e. linear in model and exponential in formula size
 - where |M| = number of states + number of transitions in M
 - and $|\psi|$ = number of operators in ψ
- Worst-case execution:
 - there are LTL formulas ψ whose NBA $\mathcal{A}_{\neg\psi}$ is of size $O(2^{|\psi|})$
 - the product to be analysed is $|M| \cdot |\mathcal{A}_{\neg \psi}|$
 - checking for cycles can be done in linear time (nested DFS)

CTL & LTL model checking

- Model checking key ideas
 - LTSs to model nondeterministic/concurrent systems
 - temporal logics to formally define behaviour
 - relationships between logic & automata
- CTL/LTL model checking differences
 - CTL: recursive descent + backwards model search
 - LTL: automata-based + cycle detection
 - CTL model checking simple and lower complexity
- CTL/LTL model checking common themes
 - reduce a hard problem to an instance of a simpler one
 - reduce checking of "good" executions to a search for a "bad" one
 - reduction to basic graph algorithms

Model checking: Pros & cons

Strengths

- exhaustive analysis, sound mathematical underpinning
- fully automated, tool support, limited expertise required
- general verification approach, broadly applicable
- partial system verification (property-based)
- diagnostic information (counterexamples) in case of errors

Weaknesses

- scalability (state-space explosion)
- verifies only the stated requirements, not total correctness
- verifies a model of the system, not the actual system
- developing appropriately abstract models may require expertise

Verification in practice

- (see Canvas page for links to papers)
- SLAM: model checking for device drivers in Windows
 - more generally: checking for client violation of APIs
 - simple examples: spinlock must be locked/unlocked in strict alternation; a file can be read only after it is opened.
 - uses "counterexample-guided abstraction refinement"
- Example application domains
 - NASA Martian Rover control software
 - safety and dependability of satellite control software
 - breaking/fixing the Needham-Schroeder public-key protocol
 - Facebook: static analysis of code errors in a rapid release cycle

Counterexamples

Example

Recall this simple concurrent program:

```
process Inc = while true do if x < 200 then x := x + 1 od
process Dec = while true do if x > 0 then x := x - 1 od
process Reset = while true do if x = 200 then x := 0 od
```

- Property specification:
 - variable x always remains in the range {0,1,...,200}
 - i.e., the invariant \square safe where safe means $0 \le x \le 200$
- Property is false (not satisfied)
 - evidenced by a path which reaches a state where x=-1

Example - counterexample

Counterexample trace produced by the model checker:

```
[((x<200))]
605: proc 1 (Inc)
606: proc 1 (Inc)
                                                     [x = (x+1)]
                                                     [((x > 0))]
607: proc 2 (Dec)
608: proc 1 (Inc)
                                                     [(1)]
609: proc 3 (Reset) line 13 "pan in" (state 2)
                                                    [((x==200))]
610: proc 3 (Reset) line 13 "pan in" (state 3)
                                                    [x=0]
611: proc 3 (Reset) line 13 "pan_in" (state 1) [(1)]
612: proc 2 (Dec) line 5 "pan in" (state 3)
                                           [x = (x-1)]
613: proc 2 (Dec) line 5 "pan in" (state 1)
                                            [(1)]
spin: line 17 "pan_in", Error: assertion violated spin: text of failed
assertion: assert(((x>=0)\&\&(x<=200)))
```

Counterexamples

- Counterexample for $M \not\models \psi$ where ψ is an LTL formula
 - path π of M that refutes ψ (i.e. indicates why ψ is false)
 - in practice: sufficiently long prefix of π showing why π refutes ψ

Examples

- counterexample for $\square a$? finite path ending in $\neg a$
- counterexample for $\bigcirc a$? 2-state path ending in $\neg a$
- counterexample for ♦a?
 - finite prefix of $\neg a$ states followed by single cycle of $\neg a$ states
- counterexample for a U b ?
 - finite path of $a \land \neg b$ states ending in $\neg a \land \neg b$
 - or finite prefix of $a \land \neg b$ states followed by cycle of $a \land \neg b$ states

Diversion: LTL model checking of a U b

- Formula to be verified
 - $\psi = a U b$
- Negation
 - $\neg \psi = \neg (a \cup b)$
- Automaton
 - NBA $\mathcal{A}_{\neg \psi}$

Counterexamples

- Counterexample for $M \not\models \psi$ where ψ is an LTL formula
 - path π of M that refutes ψ (i.e. indicates why ψ is false)
 - in practice: sufficiently long prefix of π showing why π refutes ψ

Examples

- counterexample for $\square a$? finite path ending in $\neg a$
- counterexample for $\bigcirc a$? 2-state path ending in $\neg a$
- counterexample for ♦a?
 - finite prefix of $\neg a$ states followed by single cycle of $\neg a$ states
- counterexample for a U b ?
 - finite path of $a \land \neg b$ states ending in $\neg a \land \neg b$
 - or finite prefix of $a \land \neg b$ states followed by cycle of $a \land \neg b$ states
- counterexample for arbitrary LTL formula?
 - finite prefix plus cycle, extracted from LTS-NBA product

Counterexamples (and witnesses)

- Counterexample for $M \not\models \phi$ where ϕ is an CTL formula
 - depends on path quantifier \forall /\exists
- For formulae of the form $\forall \psi$ (e.g., $\phi = \forall \Box a$)
 - same as for LTL, just discussed
 - (ignoring nested operators)
- For formulae of the form $\exists \psi$ (e.g., $\varphi = \exists \Box a$)
 - there may be no convenient form of counterexamples
 - but is often to natural to provide witnesses when $M \models \phi$
 - a witness is a path giving an example of how ψ can be true
 - a witness for ψ is a counterexample for $\neg \psi$