SELEXTCITT CBGS 28/5/14

QP Code: NP-18690

		(3 Hours)	Total Marks: 80
N.B	· (1 (2 (3 (4		•
1.		lain the following: (a) For ECL and CMOS logic families define— (i) noise margin (ii) fan-in (iii) fan-out. (b) Compare Asynchronous and synchronous counter (c) Explain static RAM (d) Explain Master-Salve J.K Flip-flop.	20
2.		Perform following operation using 2's compliment method— (i) $(28)_{10}$ – $(42)_{10}$ (ii) $(52)_{10}$ – $(-18)_{10}$ Prove the following using Boolean algebra.	5
•	• •	\overline{A} BC + \overline{A} BC + ABC+ AB \overline{C} = AB + BC + CA Design 2 bit comparator.	10
3.	(a)	Minimum the following using Quine Mc Clusky method. $F(A, B, C, D) = \Sigma m(3, 4, 9, 13, 14, 15) + \Sigma d(5,6)$. 10
	(b)	Design synchronous counter using J. K flip-flop for the given se $0-2-3-5-7-0$.	quence — 10
4.	(a)	Design following Boolean equation using 4:1 mux $F((A, B, C, D) = \Sigma m(2, 4, 5, 7, 9, 11, 12)$	5
•	(b) (c)		5 10
5.	• •	Explain 3: 8 decoder.	5
	` ′	Explain Mealey machine and Moore machine. Write VHDL code for 3 bit binary down counter.	5 1 A
	(0)	write ville code for 5 on onlary down counter.	10
6.		Explain Architecture and teatures of FPGA.	ĺŪ
	(b)		5
	(c)	Convert (118 ₁₀) in to (i) BCD (ii) Hexadecimal (iii) octal.	5