#### FMI, Info, Anul I

#### Logică matematică și computațională

## Seminar 2

### (S2.1) Confirmați sau infirmați:

- (i) pentru orice  $\varphi, \psi \in Form, \models \varphi \land \psi$  dacă și numai dacă  $\models \varphi$  și  $\models \psi$ ;
- (ii) pentru orice  $\varphi, \psi \in Form, \vDash \varphi \lor \psi$  dacă și numai dacă  $\vDash \varphi$  sau  $\vDash \psi$ .

#### Demonstrație:

(i) Este adevărat. Fie  $\varphi$ ,  $\psi \in Form$ . Avem:

(ii) Nu este adevărat! Vom lua  $\varphi := v_0$  şi  $\psi := \neg v_0$ .

Luăm  $e_0: V \to \{0, 1\}$  ca fiind funcția constantă 0. Atunci  $e_0^+(\varphi) = e_0^+(v_0) = e_0(v_0) = 0$ . Deci  $e_0 \not\vDash \varphi$ . Prin urmare,  $\not\vDash \varphi$ .

Luăm  $e_1: V \to \{0,1\}$  ca fiind funcția constantă 1. Atunci  $e_1^+(\psi) = e_1^+(\neg v_0) = \neg e_1^+(v_0) = \neg e_1(v_0) = \neg 1 = 0$ . Deci  $e_1 \not\vDash \psi$ . Prin urmare,  $\not\vDash \psi$ .

Fie acum  $e: V \to \{0,1\}$  arbitrară. Atunci

$$e^+(\varphi \vee \psi) = e^+(v_0 \vee \neg v_0) = e^+(v_0) \vee e^+(\neg v_0) = e^+(v_0) \vee \neg e^+(v_0) = e(v_0) \vee \neg e(v_0) = 1,$$

deci  $e \vDash \varphi \lor \psi$ . Prin urmare, avem că  $\vDash \varphi \lor \psi$ .

(S2.2) Să se aducă următoarele formule la cele două forme normale prin transformări sintactice:

(i) 
$$((v_0 \to v_1) \land v_1) \to v_0$$
;

(ii) 
$$(v_1 \vee \neg v_4) \rightarrow (\neg v_2 \rightarrow v_3)$$
.

## Demonstraţie:

(i) Avem:

$$((v_0 \to v_1) \land v_1) \to v_0 \sim \neg((\neg v_0 \lor v_1) \land v_1) \lor v_0 \qquad \text{(înlocuirea implicației)}$$

$$\sim \neg(\neg v_0 \lor v_1) \lor \neg v_1 \lor v_0 \qquad \text{(de Morgan)}$$

$$\sim (\neg \neg v_0 \land \neg v_1) \lor \neg v_1 \lor v_0 \qquad \text{(de Morgan)}$$

$$\sim (v_0 \land \neg v_1) \lor \neg v_1 \lor v_0, \qquad \text{(reducerea dublei negații)}$$

iar ultima formulă este în FND. Mai departe, obținem:

$$(v_0 \wedge \neg v_1) \vee \neg v_1 \vee v_0 \sim ((v_0 \vee \neg v_1) \wedge (\neg v_1 \vee \neg v_1)) \vee v_0 \qquad \text{(distributivitate)}$$
$$\sim (v_0 \vee \neg v_1 \vee v_0) \wedge (\neg v_1 \vee \neg v_1 \vee v_0) \qquad \text{(distributivitate)}$$
$$\sim (v_0 \vee \neg v_1) \wedge (\neg v_1 \vee v_0), \qquad \text{(idempotență)}$$

iar ultima formulă este în FNC. De asemenea, ultima formulă este echivalentă și cu:

$$v_0 \vee \neg v_1$$

care este şi în FND, şi în FNC.

(ii) Avem:

$$(v_1 \vee \neg v_4) \rightarrow (\neg v_2 \rightarrow v_3) \sim \neg(v_1 \vee \neg v_4) \vee (\neg \neg v_2 \vee v_3) \qquad \text{(înlocuirea implicațiilor)}$$

$$\sim \neg(v_1 \vee \neg v_4) \vee v_2 \vee v_3 \qquad \text{(reducerea dublei negații)}$$

$$\sim (\neg v_1 \wedge \neg \neg v_4) \vee v_2 \vee v_3 \qquad \text{(de Morgan)}$$

$$\sim (\neg v_1 \wedge v_4) \vee v_2 \vee v_3, \qquad \text{(reducerea dublei negații)}$$

iar ultima formulă este în FND. Mai departe, obținem:

$$(\neg v_1 \wedge v_4) \vee v_2 \vee v_3 \sim ((\neg v_1 \vee v_2) \wedge (v_4 \vee v_2)) \vee v_3 \qquad \text{(distributivitate)}$$
$$\sim (\neg v_1 \vee v_2 \vee v_3) \wedge (v_4 \vee v_2 \vee v_3), \qquad \text{(distributivitate)}$$

iar ultima formulă este în FNC.

(S2.3) Să se aducă formula  $\varphi = (v_0 \to v_1) \to v_2$  la cele două forme normale trecându-se prin funcția booleană asociată (i.e. metoda tabelului).

**Demonstrație:** Alcătuim tabelul de valori al funcției asociate  $F_{\varphi}: \{0,1\}^3 \to \{0,1\}$ , precum şi pe cel al funcției  $\neg \circ F_{\varphi}$ .

| _ | $x_0$ | $x_1$ | $x_2$ | $x_0 \rightarrow x_1$ | $F_{\varphi}(x_0, x_1, x_2) := (x_0 \to x_1) \to x_2$ | $\neg F_{\varphi}(x_0,x_1,x_2)$ |
|---|-------|-------|-------|-----------------------|-------------------------------------------------------|---------------------------------|
|   | 1     | 1     | 1     | 1                     | 1                                                     | 0                               |
|   | 1     | 1     | 0     | 1                     | 0                                                     | 1                               |
|   | 1     | 0     | 1     | 0                     | 1                                                     | 0                               |
|   | 1     | 0     | 0     | 0                     | 1                                                     | 0                               |
|   | 0     | 1     | 1     | 1                     | 1                                                     | 0                               |
|   | 0     | 1     | 0     | 1                     | 0                                                     | 1                               |
|   | 0     | 0     | 1     | 1                     | 1                                                     | 0                               |
|   | 0     | 0     | 0     | 1                     | 0                                                     | 1                               |

Obținem, așadar, uitându-ne pe liniile cu 1 de pe coloana valorilor lui  $F_{\varphi}$  și aplicând raționamentul din demonstrațiile Teoremelor 1.30 și 1.32, că o formă normală disjunctivă a lui  $\varphi$  este:

$$(v_0 \wedge v_1 \wedge v_2) \vee (v_0 \wedge \neg v_1 \wedge v_2) \vee (v_0 \wedge \neg v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge v_1 \wedge v_2) \vee (\neg v_0 \wedge \neg v_1 \wedge v_2),$$

iar uitându-ne pe liniile cu 0 de pe coloana valorilor lui  $F_{\varphi}$  și aplicând raționamentul din demonstrațiile Teoremelor 1.31 și 1.32, obținem că o formă normală conjunctivă a lui  $\varphi$  este:

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor v_1 \lor v_2).$$

Alternativ, ne putem uita pe liniile cu 1 de pe coloana valorilor lui  $\neg \circ F_{\varphi} = F_{\neg \varphi}$  pentru a obține (ca mai sus) următoarea formă normală disjunctivă a lui  $\neg \varphi$ :

$$(v_0 \wedge v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge \neg v_1 \wedge \neg v_2),$$

iar, pe urmă, aplicând Propoziția 1.26.(ii), obținem că o formă normală conjunctivă a lui  $\neg\neg\varphi$ , și deci a lui  $\varphi$ , este:

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor v_1 \lor v_2).$$

(S2.4) Să se testeze dacă următoarele mulțimi de clauze sunt satisfiabile:

- (i)  $\{\{\neg v_0, v_1, \neg v_3\}, \{\neg v_2, \neg v_1\}, \{v_0, v_2\}, \{v_0\}, \{v_2\}, \{v_3\}\};$
- (ii)  $\{\{v_0, v_1\}, \{\neg v_1, v_2\}, \{\neg v_0, v_2, v_3\}\}.$

## Demonstrație:

- (i) Presupunem că am avea un model e al mulțimii de clauze. Atunci  $e(v_0) = e(v_2) = e(v_3) = 1$ . Cum e satisface clauza  $\{\neg v_0, v_1, \neg v_3\}$ , avem că  $e(v_1) = 1$ . Dar atunci e nu satisface clauza  $\{\neg v_2, \neg v_1\}$ . Am obținut o contradicție. Rămâne că mulțimea de clauze din enunț este nesatisfiabilă.
- (ii) Fie evaluarea  $e: V \to \{0,1\}$  astfel încât  $e(v_0) = 1$ ,  $e(v_1) = 0$ , şi  $e(v_i) = 1$  pentru orice  $i \geq 2$ . Atunci e satisface fiecare clauză din mulţime, deci este model pentru mulţimea de clauze. Aşadar, mulţimea de clauze din enunţ este satisfiabilă.

(S2.5) Să se determine mulțimea  $Res(C_1, C_2)$  în fiecare dintre următoarele cazuri:

- (i)  $C_1 := \{v_1, \neg v_4, v_5\}; C_2 := \{v_4, v_5, v_6\};$
- (ii)  $C_1 := \{v_3, \neg v_4, v_5\}; C_2 := \{\neg v_3, v_1, v_6, v_4\};$
- (iii)  $C_1 := \{v_1, \neg v_3\}; C_2 := \{v_1, \neg v_2\}.$

# Demonstraţie:

- (i) Putem alege doar  $L := \neg v_4$ , deci există un singur rezolvent, anume  $\{v_1, v_5, v_6\}$ .
- (ii) Putem rezolva clauzele, pe rând, după  $L := v_3$  și  $L := \neg v_4$ , obținând așadar

$$Res(C_1, C_2) = \{ \{ \neg v_4, v_5, v_1, v_6, v_4 \}, \{ v_3, v_5, \neg v_3, v_1, v_6 \} \}.$$

(iii) Nu există L astfel încât  $L \in C_1$  și  $L^c \in C_2$ , deci  $Res(C_1, C_2) = \emptyset$ .

(S2.6) Derivați prin rezoluție clauza  $C := \{v_0, \neg v_2, v_3\}$  din mulțimea

$$\mathcal{S} := \{\{v_0, v_4\}, \{\neg v_1, \neg v_2, v_0\}, \{\neg v_4, v_0, v_1\}, \{\neg v_0, v_3\}\}.$$

Demonstrație: Notăm:

$$\begin{split} C_1 &:= \{v_0, v_4\} \\ C_2 &:= \{\neg v_1, \neg v_2, v_0\} \\ C_3 &:= \{\neg v_4, v_0, v_1\} \\ C_4 &:= \{\neg v_0, v_3\} \\ C_5 &:= \{v_0, v_1\} & \text{(rezolvent al } C_1, C_3) \\ C_6 &:= \{\neg v_1, \neg v_2, v_3\} & \text{(rezolvent al } C_2, C_4) \\ C_7 &:= \{v_0, \neg v_2, v_3\} & \text{(rezolvent al } C_5, C_6) \end{split}$$

Avem, aşadar, că secvența  $(C_1, C_2, \dots, C_6, C_7 = C)$  este o derivare prin rezoluție a lui C din S.