

Analyse 1 Cours 1 11/10/2024

2024-09-11

Lucas Duchet-Annez

EPFL 2024/2025 Génie Mécanique

1 Fonctions

$$f:A\to B$$

$$x \to y = f(x)$$

y est l'image de x et x est une préimage de y

1.1 Ensemble image

1.1.1 Définition

$$Im(f) = \{ y \in B \mid \exists x \in A \mid f(x) = y \}$$

1.1.2 Surjection

 $f: A \to B$ est surjective $\Leftrightarrow Im(f) = B \leftrightarrow \forall y \in B \ \exists x \in A \mid f(x) = y$

1.1.2.1 Example

•

$$f: \mathbb{Z} \to \mathbb{Z}$$

$$x \to y = f(x) = x + 1$$

est surjective. Soit $y \in \mathbb{Z}$ et $x=y-1 \in \mathbb{Z}$ car \mathbb{Z} est stable par addition. On a f(x)=x+1=y. Ainsi $Im(f)=\mathbb{Z}$.

• Soit $A = \text{ensemble des \'el\`eves}$, $B = \mathbb{N}$

$$f:A\to B$$

 $x \to f(x) =$ nombre de frères de soeurs de x

n'est pas surjective car y = 676 n'a pas de préimage.

$$Im(f) = \{0, 1, 2, 3, 4, 5, 10\}$$

1.1.2.2 Remarque

Si $\tilde{B} = Im(f)$,

$$\tilde{f}:A \to \tilde{B}$$

$$x \to \tilde{f}(x) = f(x)$$

1.1.3 Injection

$$\begin{array}{ll} f:A\to B & \text{ est } & \text{injective } & \Longleftrightarrow \forall (x,x') \mid x\neq x' \Longrightarrow f(x)\neq f(x') \Longleftrightarrow \forall (x,x') \in A^2 \mid f(x)=f(x') \Leftrightarrow x=x' \end{array}$$

1.1.3.1 Example

- \tilde{f} n'est pas injective, car f(Marianne) = f(Pierre) = 2
- $f:\mathbb{R}\to\mathbb{R}$ $x\to f(x)=x^2$ n'est pas surjective car $y=-4\in\mathbb{R}$ n'a pas de préimage et n'est pas injective car $x=-2\neq x'=2$ f(x)=f(x')
- $f: \mathbb{N} \to \mathbb{Q} \ x \to f(x) = \frac{x^2}{x^2+1}$

Quand

$$f(x) = f(x')$$

$$\frac{x^2}{x^2 + 1} = \frac{{x'}^2}{{x'}^2 + 1}$$

$$x^2 - {x'}^2 = 0$$

$$(x - x')(x + x') = 0$$

$$x = x' \text{ ou } x = x' = 0$$

$$x = x'$$

Donc f est injective

1.1.4 Bijection

 $f: A \to B$ est bijective \iff f est surjective et injective

- $\forall y \in B \ \exists x_* \in A \mid f(x_*) = y$
- Il existe au plus une préimage pour y

$$\iff \exists ! x_* \in A \mid f(x_*) = y$$

1.1.4.1 Fonction Réciproque

Ainsi il existe une fonction, appelé réciproque de f $f^{-1}:B\to A\ y\to f^{-1}(y)=x_*$

- $\bullet \ f^{-1}(f(x)) = x$
- $f(f^{-1}(y)) = y$

1.1.4.2 Fonctions réelles

 $A, B \subseteq \mathbb{R}$

1.1.5 Graphiquement

 $f:A\to B$ est surjective si $\forall y\in B$, la droite horizontale à hauteur y coupe le graphe de f en au moins un point.

 $f:A\to B$ est injective si $\forall y\in B$, la droite horizontale à hauteur y coupe le graphe de f en au plus un point.

1.1.6 Example

$$f: \mathbb{R} \to \mathbb{R} \ x \to f(x) = \frac{x-5}{3}$$

$$\forall (x, x') \in \mathbb{R}^2 \Longleftrightarrow \frac{x-5}{3} = \frac{x'-5}{3} \Longleftrightarrow x = x'$$

Ainsi f est injective

$$\forall y \in \mathbb{R} \ f(x) = y \Longleftrightarrow \frac{x-5}{3} = y \Longleftrightarrow x = (3y+5) \in \mathbb{R}$$

Ainsi f est surjective. $\Longrightarrow f$ bijective et sa réciproque est $f^{-1}: \mathbb{R} \to \mathbb{R}$ $y \to f^{-1}(y) = 3y + 5$

Analyse 1 Cours 1 Lucas Duchet-Annez

2 Preuve par récurrence

 $\forall n \geq 0 \mathcal{P}(n)$

- 1. Montrer que $\mathcal{P}(0)$ est vraie
- 2. Montrer que si $\mathcal{P}(n)$ est vraie alors $\mathcal{P}(n+1)$ est vraie aussi

$$\Longrightarrow \mathcal{P}(n)$$
 est vraie $\forall n \geq 0$

2.1 Example

Montrons que $\forall n \geq 1 \ \sum_{k=1}^{n(n)} = \frac{n(n+1)}{2}$

$$a_n = \sum_{k=1}^{n(n)}$$

$$b_n = \frac{n(n+1)}{2}$$

- 1. $a_1=1$ et $b_1=1$ $a_1=b_1\Longrightarrow \mathcal{P}(1)$ est vraie
- 2. Supposons que $\mathcal{P}(n)$ est vraie $a_n=b_n$

$$\begin{aligned} a_{n+1} &= a_n + n + 1 = b_n + n + 1 = \frac{n(n+1)}{2} + n + 1 = \frac{n^2 + 3n + 2}{2} = (n+1)\frac{n+2}{2} = b_{n+1} \\ &\Longrightarrow \mathcal{P}(n) \text{ vraie } \forall n \geq 1 \end{aligned}$$