Каждое задание можно выполнять в группах. Каждый должен знать хоть какой-то разумный кусок математических выкладок.

Рассмотрим в некоторой области векторное поле $A=(\frac{dx}{dt}=A_x,\frac{dy}{dt}=A_y), A=A_x+iA_y$. Нас интересует семейство фазовых траекторий y(x), которые необходимо визуализировать. Поток векторного поля через границу γ области: $N=\int_{\gamma}(A,n)ds=\int_{\gamma}-A_ydx+A_xdy$ (второе равенство не определение - надо показать), введём дивергенцию для перехода к интегралу по площади: $div~A=\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}$ (применить формулу Грина). Аналогично для циркуляции $\Gamma=\int_{\gamma}(A,t)ds$ и ротора $rot~A=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}$. Интеграл по сопряжению векторного поля есть мнимый вектор, состоящий из потока и циркуляции: $\Gamma+iN=\int_{\gamma}\overline{A(z)}dz$.

Обтекание тел

$1 \div 5$ человек

Рассмотреть поле скоростей жидкости $V=(v_x,v_y)$ (как мы знаем, жидкости несжимаемы $div\ V=0$) с соответствующим комплексным потенциалом f(z)=u(x,y)+iv(x,y), где $V=\overline{f'(z)}$. Рассмотреть односвязную область в потоке жикости с заданной скоростью на бесконечности $V_{\rm inf}$, причём $f'(\inf)=\overline{V_{\rm inf}}$. Разложить в ряд на бесконечности $(c_{-1}$ будет интересовать особенно). Скорость на бесконечности считать заданной, условие на границе обтекаемой области не изменная комплексная составляющая скорости, потому что на границе скорость направлена по касательной.

Теорема: Потенциал w=f(z) обтекания тела конформно отображает область D на внешность отрезка, параллельного действительной оси.

Отсюда мы хотим рассмотреть конформное преобразование области на внешность отрезка [0,1]. Проделать разложения комплексного потенциала для областей:

- круговой срез цилиндрического тела;
- тела с эллиптическим срезом;
- профиля Жуковского, для которого функция $w = \frac{1}{2}(z + \sqrt{z^2 a^2})$ конформно отображает профиль на внешность круга.