ADVANCED PLACEMENT CHEMISTRY EQUATIONS AND CONSTANTS

ATOMIC STRUCTURE

$$\Delta E = hv$$

$$c = \lambda v$$

$$\lambda = \frac{h}{mv}$$

$$p = mv$$

$$E_n = \frac{-2.178 \times 10^{-18}}{v^2} \text{ joule}$$

EQUILIBRIUM

$$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{A}^{-}]}{[\mathrm{HA}]}$$

$$K_{b} = \frac{[\mathrm{OH}^{-}][\mathrm{HB}^{+}]}{[\mathrm{B}]}$$

$$K_{w} = [\mathrm{OH}^{-}][\mathrm{H}^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}\mathrm{C}$$

$$= K_{a} \times K_{b}$$

$$\mathrm{pH} = -\log[\mathrm{H}^{+}], \ \mathrm{pOH} = -\log[\mathrm{OH}^{-}]$$

$$14 = \mathrm{pH} + \mathrm{pOH}$$

$$\mathrm{pH} = \mathrm{p}K_{a} + \log\frac{[\mathrm{A}^{-}]}{[\mathrm{HA}]}$$

$$\mathrm{pOH} = \mathrm{p}K_{b} + \log\frac{[\mathrm{HB}^{+}]}{[\mathrm{B}]}$$

$$\mathrm{p}K_{a} = -\log K_{a}, \ \mathrm{p}K_{b} = -\log K_{b}$$

$$K_{p} = K_{c}(RT)^{\Delta n},$$
where Δn = moles product gas – moles reactant gas

THERMOCHEMISTRY

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products } -\sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products } -\sum \Delta H_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products } -\sum \Delta G_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -RT \ln K = -2.303 RT \log K$$

$$= -n \mathcal{F} E^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$$

$$q = mc\Delta T$$

$$C_{p} = \frac{\Delta H}{\Delta T}$$

E = energy v = frequency $\lambda = \text{wavelength}$ p = momentum v = velocity n = principal quantum number m = mass

Speed of light, $c = 3.0 \times 10^8 \,\mathrm{m \ s^{-1}}$ Planck's constant, $h = 6.63 \times 10^{-34} \,\mathrm{J \ s}$ Boltzmann's constant, $k = 1.38 \times 10^{-23} \,\mathrm{J \ K^{-1}}$ Avogadro's number $= 6.022 \times 10^{23} \,\mathrm{molecules \ mol^{-1}}$ Electron charge, $e = -1.602 \times 10^{-19} \,\mathrm{coulomb}$ 1 electron volt per atom $= 96.5 \,\mathrm{kJ \ mol^{-1}}$

Equilibrium Constants

 K_a (weak acid) K_b (weak base) K_w (water) K_p (gas pressure) K_c (molar concentrations)

 $S^{\circ} = \text{standard entropy}$ $H^{\circ} = \text{standard enthalpy}$ $G^{\circ} = \text{standard free energy}$ $E^{\circ} = \text{standard reduction potential}$ T = temperature n = moles m = mass q = heat c = specific heat capacity

 C_p = molar heat capacity at constant pressure

1 faraday $\mathcal{F} = 96,500$ coulombs