Department of Mathematics PRELIMINARY EXAMINATION

August 10, 2007 2:30-5:00 pm

Work all of the following problems, justifying your answers. The problems are weighted evenly.

 \mathbb{R} denotes the set of real numbers and \mathcal{P}_n denotes the vector space of (real) polynomials of degree $\leq n$. As usual, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binomial coefficient.

1. a. Suppose A and B are false statements. Is the statement

$$(A \Longrightarrow B) \Longrightarrow (A \lor B)$$

true or false? ("V" denotes "or.")

- b. Give the negation of the statement
 If all blockoids are split and some blockoid is nontrivial, then there is a short blockoid.
- 2. Let k be a nonnegative integer. Prove by mathematical induction that for all $n \geq k$ we have

$$\sum_{m=k}^{n} \binom{m}{k} = \binom{n+1}{k+1}.$$

- 3. Suppose A, B, and C are sets, and $f: B \to C$ and $g: A \to B$ are functions.
 - a. Prove that if f and g are surjective (onto), then so is $f \circ g$.
 - b. Prove or give a counterexample: If g is not surjective, then $f \circ g$ is not surjective.
- 4. a. Complete the δ - ε definition of a limit: Given a function $f: \mathbb{R} \to \mathbb{R}$ and $a, L \in \mathbb{R}$,

$$\lim_{x \to a} f(x) = L \qquad \text{means} \quad \dots$$

b. Using the definition, prove that

$$\lim_{x \to 1} \frac{1}{1 + x^2} = \frac{1}{2} \,.$$

5. Let Δ be the triangle in \mathbb{R}^2 with vertices (0,1), (2,0), and (2,1), traversed counterclockwise. Evaluate the line integral

$$\int_{\Delta} y \, dx + 2x \, dy \, .$$

- 6. Suppose V and W are vector spaces and $T: V \to W$ is a linear transformation. Suppose that T(v) = 0 only when v = 0. Prove that if $\{v_1, \ldots, v_k\}$ is a linearly independent set of vectors in V, then $\{T(v_1), \ldots, T(v_k)\}$ is a linearly independent set of vectors in W.
- 7. Give an example (without proof) of each of the following:
 - a. An integrable function $f \colon \mathbb{R} \to \mathbb{R}$ so that the function $F(x) = \int_0^x f(t) \, dt$ is differentiable everywhere but at x = 1.
 - b. A sequence $\{a_n\}$ of real numbers such that $\sum_{n=1}^{\infty}a_n$ converges and $\sum_{n=1}^{\infty}a_n^2$ diverges.
 - c. A basis for the subspace of \mathcal{P}_3 spanned by x^2+x+1 , x^3-x+2 , x^3+x^2+3 , and $-x^3+x^2+2x+1$.