

Федеральное государственное образовательное бюджетное учреждение высшего образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

(Финансовый университет)

Факультет информационных технологий и анализа больших данных Кафедра анализа данных и машинного обучения

М.В. Петрова

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Учебно-методический материал для самостоятельной работы и подготовки к экзамену по дисциплине «Математический анализ» 2 семестр

Для студентов, обучающихся по направлению 01.03.02 «Прикладная математика и информатика», (программа подготовки бакалавра)

УДК 517.2 ББК 22.161.1 П 30

Авторы:

Петрова М.В., старший преподаватель Кафедры анализа данных и машинного обучения Факультета информационных технологий и анализа больших данных Финансового университета при Правительстве РФ

Рецензенты:

Каверина В.В., канд. физ.-мат. наук, доцент Кафедры анализа данных и машинного обучения Факультета информационных технологий и анализа больших данных Финансового университета при Правительстве $P\Phi$

П 30 Петрова М.В.

Математический анализ. Учебно-методический материал для самостоятельной работы и подготовки к экзамену по дисциплине «Математический анализ» 2 семестр. Для студентов, обучающихся по направлению 01.03.02 «Прикладная математика и информатика», (программа подготовки бакалавра) - М.: Финансовый университет, департамент анализа данных и машинного обучения, 2024. 45 с.

Учебное издание предназначено для подготовки к экзамену по дисциплине «Математический анализ» во втором семестре и организации самостоятельной работы студентов, обучающихся по направлению «Прикладная математика и информатика». В состав материалов входят вопросы и задачи для самостоятельной работы, примерные варианты билетов экзамена и перечень рекомендуемой литературы.

УДК 517.2 ББК 22.161.1

Учебное издание

Петрова Мария Владимировна

Математический анализ. Учебно-методический материал для самостоятельной работы и подготовки к экзамену по дисциплине «Математический анализ» 2 семестр Для студентов, обучающихся по направлению 01.03.02 «Прикладная математика и информатика», (программа подготовки бакалавра)

Компьютерный набор, верстка М.В. Петрова

Электронное издание

© ФГОБУ ВО «Финансовый университет при Правительстве Российской Федерации», 2024 © Петрова Мария Владимировна, 2024.

ОГЛАВЛЕНИЕ

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	3
Интегральное исчисление функции одной переменной	3
Интегральное исчисление функции нескольких переменных	3
Числовые ряды	4
Функциональные последовательности и ряды	5
Ряды Фурье. Интеграл Фурье. Преобразование Фурье	5
Эйлеровы интегралы	6
СТРУКТУРА ЭКЗАМЕНА	7
СОДЕРЖАНИЕ ЭКЗАМЕНА	9
Теоретические вопросы (А) (формулировки)	9
Теоретические вопросы (Б) (доказательства)	13
Интегральное исчисление функций одной переменной	13
Интегральное исчисление функции нескольких переменных	14
Числовые ряды	15
Функциональные последовательности и ряды	16
Ряды Фурье. Интеграл Фурье. Преобразование Фурье	17
Эйлеровы интегралы	18
Образцы задач	20
Интегральное исчисление функций одной переменной	20
Интегральное исчисление функции нескольких переменных	23
Числовые ряды	26
Функциональные последовательности и ряды	28
Ряды Фурье. Интегралы Фурье. Преобразования Фурье	30
Эйлеровы интегралы	32
Пример контрольной работы	34
Пример экзаменационного билета	
ОТВЕТЫ	
РЕКОМЕНЛУЕМАЯ ЛИТЕРАТУРА	444

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

«Математический анализ», 2 семестр

Интегральное исчисление функции одной переменной

- 1. Первообразная функции. Теорема об общем виде первообразной. Неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов. Методы интегрирования: непосредственное интегрирование; метод замены переменной, метод интегрирования по частям в неопределенном интеграле.
- 2. Интегрирование рациональных функций. Интегрирование некоторых классов иррациональных функций. Интегрирование некоторых классов трансцендентных функций.
- 3. Определенный интеграл Римана. Геометрический смысл определенного интеграла. Свойства определенного интеграла. Необходимое условие интегрируемости функции. Достаточное условие интегрируемости функции.
- 4. Определенный интеграл с переменным верхним пределом и его свойства. Формула Ньютона-Лейбница. Формула замены переменной в определенном интеграле. Интегрирование по частям.
- 5. Геометрические приложения определенного интеграла: длина дуги, площадь плоской фигуры, объемы тел и площади поверхностей.
- 6. Несобственные интегралы с бесконечными пределами интегрирования. Несобственные интегралы от неограниченных функций. Признаки сходимости несобственных интегралов.

Интегральное исчисление функции нескольких переменных

7. Определение и существование двойного интеграла. Геометрический смысл двойного интеграла. Свойства двойного интеграла. Сведение двойного интеграла к повторному. Определение тройного интеграла. Вычисление тройных интегралов.

- 8. Замена переменных в n-кратном интеграле. Применение полярных, сферических и цилиндрических координат.
- 9. Геометрические приложения кратных интегралов.
- 10. Кратные несобственные интегралы. Интеграл Эйлера-Пуассона.
- 11. Криволинейные интегралы. Криволинейные интегралы первого рода. Вычисление криволинейных интегралов первого рода.
- 12. Криволинейные интегралы второго рода. Вычисление криволинейных интегралов второго рода. Связь между криволинейными интегралами первого и второго рода.
- 13. Формула Грина. Условия независимости криволинейного интеграла от пути интегрирования. Интегрирование полных дифференциалов. Приложение криволинейных интегралов второго рода вычисление площади с помощью формулы Грина.

Числовые ряды

- 14. Числовой ряд. Частичные суммы ряда. Сумма ряда. Сходящиеся и расходящиеся числовые ряды. Необходимое условие сходимости ряда. Свойства сходящихся рядов.
- 15. Ряды с неотрицательными членами. Критерий сходимости ряда с неотрицательными членами. Признаки сравнения, признаки Даламбера и Коши, интегральный признак.
- 16. Абсолютно и условно сходящиеся ряды. Теорема Римана для условно сходящихся рядов. Арифметические операции над сходящимися рядами. Знакочередующиеся ряды. Признак Лейбница.
- 17. Знакопеременные ряды, их абсолютная и условная сходимость. Признаки Дирихле, Абеля.

Функциональные последовательности и ряды

- 18. Понятие функциональной последовательности и функционального ряда. Сходимость функциональной последовательности в точке и на множестве. Равномерная сходимость. Критерий Коши равномерной сходимости.
- 19. Степенной ряд. Область сходимости степенного ряда. Теорема Абеля. Теорема об области сходимости степенного ряда. Радиус и интервал сходимости степенного ряда. Почленное дифференцирование и почленное интегрирование степенного ряда.
- 20. Разложение функции в ряд Тейлора (Маклорена). Теорема о разложимости бесконечно дифференцируемой функции в ряд. Разложения основных элементарных функций в ряд Маклорена.
- 21. Числовые и степенные ряды с комплексными членами. Круг сходимости степенного ряда с комплексными членами. Формулы Эйлера.

Ряды Фурье. Интеграл Фурье. Преобразование Фурье

- 22. Ортонормированные системы в пространстве кусочно-непрерывных функций. Ряды Фурье. Тригонометрический ряд Фурье. Неравенство Бесселя и равенство Парсеваля.
- 23. Комплексная форма записи тригонометрического ряда Фурье. Признак Дирихле. Ряды Фурье для четных и нечетных функций. Сдвиг и сжатие отрезка разложения.
- 22. Интеграл Фурье. Представление кусочно-гладкой функции интегралом Фурье. Интеграл Фурье четных и нечетных функций. Комплексная форма интеграла Фурье.
- 24. Преобразование Фурье и обратное преобразование Фурье. Свойства преобразований Фурье.

Эйлеровы интегралы.

- 25. Эйлеровы интегралы первого и второго рода. Свойства Гамма-функции. Логарифмическая производная Гамма-функции. Теорема умножения для Гамма-функции.
- 26. Вычисление некоторых определенных интегралов с помощью Гаммафункции.

СТРУКТУРА ЭКЗАМЕНА

Экзамен проводится в письменной форме по окончании второго семестра. На выполнение всех заданий отводится два академических часа. Итоговая оценка выставляется в 100-балльной шкале и в традиционной номинативной шкале («отлично», «хорошо», «удовлетворительно», «неудовлетворительно»). Ниже представлена шкала соответствия оценок 100-балльной и номинативной шкал.

0-49 баллов	неудовлетворительно	
50-69 баллов	удовлетворительно	
70-85 баллов	хорошо	
86-100 баллов	отлично	

Методика расчета итоговой оценки

Максимальная оценка за письменную работу на экзамене составляет 60 баллов, она получается суммированием оценок, полученных за каждое задание билета. Экзаменационный билет содержит 6 заданий (одно из которых теоретическое) по 10 баллов каждое. Максимальная оценка за работу в семестре — 40 баллов, которая складывается из 20-балльной оценки за первую половину семестра и 20-балльной оценки за вторую половину семестра.

Балльно-рейтинговая система

$N_{\underline{0}}$	Вид учебной деятельности	Максимум за
п/п		семестр (модуль)
	Первая половина семестра	
1.	Аудиторные самостоятельные работы	10
2.	Активность на практических занятиях	3
3.	Лекции	2
4.	Выполнение домашних работ	3

5.	Посещаемость	2
	Вторая половина семестра	
6.	Аудиторные самостоятельные работы	7
7.	Контрольная работа	5
8.	Активность на практических занятиях	3
9.	Лекции	2
10.	Выполнение домашних работ, посещаемость	3
	Всего за семестр (модуль)	40
	Экзамен	
11.	Теоретическое задание	10
12.	Практические задания	50
	Всего за экзамен	60
	Итого	100

СОДЕРЖАНИЕ ЭКЗАМЕНА

Теоретические вопросы (А)

(формулировки)

- 1. Определение первообразной для функции f(x) на промежутке X.
- 2. Определение неопределенного интеграла. Свойства неопределенного интеграла.
- 3. Таблица основных интегралов.
- 4. Формула замены переменной в неопределенном интеграле.
- 5. Формула интегрирования по частям для неопределенного интеграла.
- 6. Определение определенного интеграла Римана.
- 7. Достаточное условие интегрируемости.
- 8. Геометрический смысл определенного интеграла.
- 9. Свойства определенного интеграла.
- 10. Формула Ньютона Лейбница.
- 11. Формула замены переменной в определенном интеграле.
- 12. Формула интегрирования по частям для определенного интеграла.
- 13. Определение несобственного интеграла с бесконечным верхним пределом, с бесконечным нижним пределом.
- 14. Определение несобственного интеграла от неограниченной функции на ограниченном промежутке.
- 15. Двойной интеграл. Геометрический смысл двойного интеграла.
- 16. Свойства двойного интеграла.
- 17. Сведение двойного интеграла к повторному интегралу.
- 18. Тройной интеграл. Вычисление тройных интегралов.
- 19. Замена переменных в n-кратном интеграле. Применение полярных, сферических и цилиндрических координат.
- 20. Геометрические приложения кратных интегралов.
- 21. Кратные несобственные интегралы. Интеграл Эйлера-Пуассона.

- 22. Криволинейные интегралы первого рода. Вычисление криволинейных интегралов первого рода.
- 23. Криволинейные интегралы второго рода. Вычисление криволинейных интегралов второго рода.
- 24. Связь между криволинейными интегралами первого и второго рода.
- 25. Формула Грина.
- 26. Числовые ряды.
- 27. Последовательность частичных сумм. Сумма ряда. Сходящиеся ряды.
- 28. Свойства сходящихся рядов.
- 29. Необходимое условие сходимости числового ряда.
- 30. Числовые ряды с неотрицательными членами.
- 31. Критерий сходимости числовых рядов с неотрицательными членами.
- 32. Признаки сравнения, признак Даламбера и Коши, интегральный признак для числовых рядов с неотрицательными членами.
- 33. Знакопеременные ряды. Абсолютная и условная сходимость.
- 34. Признак Лейбница для знакочередующихся числовых рядов.
- 35. Функциональная последовательность и функциональный ряд.
- 36. Сходимость функциональной последовательности в точке и на множестве. Предельная функция последовательности.
- 37. Равномерная сходимость функциональной последовательности на множестве. Критерий Коши равномерной сходимости функциональной последовательности.
- 38. Сходимость, абсолютная сходимость, область сходимости функционального ряда.
- 39. Равномерная сходимость функционального ряда. Признаки равномерной сходимости: признак Вейерштрасса, признак Дини.
- 40. Критерий Коши равномерной сходимости функционального ряда.
- 41. Признаки Дирихле и Абеля равномерно сходимости функционального ряда.

- 42. Непрерывность суммы функционального ряда. Непрерывность предельной функции функциональной последовательности.
- 43. Теоремы о почленном дифференцировании и почленном интегрировании функциональных рядов.
- 44. Степенные ряды. Теорема Абеля.
- 45. Интервал и радиус сходимости степенного ряда.
- 46. Интегрируемость и дифференцируемость суммы степенного ряда на интервале сходимости.
- 47. Ряды Тейлора (Маклорена).
- 48. Достаточное условие разложимости функции в ряд Маклорена.
- 49. Разложение функций e^x , $\sin x$, $\cos x$, $\frac{1}{1+x}$, $\ln(1+x)$, $(1+x)^\alpha$ в ряд Маклорена.
- 50. Ортонормированные системы в пространстве кусочно-непрерывных функций.
- 51. Ряды Фурье.
- 52. Тригонометрический ряд Фурье.
- 53. Неравенство Бесселя и равенство Парсеваля.
- 54. Комплексная форма записи тригонометрического ряда Фурье.
- 55. Признак Дирихле.
- 56. Ряды Фурье для четных и нечетных функций. Сдвиг и сжатие отрезка разложения.
- 57. Собственные интегралы, зависящие от параметра. Свойства собственного интеграла, зависящего от параметра.
- 58. Равномерная сходимость несобственного интеграла по параметру.
- 59. Признаки равномерной сходимости несобственных интегралов по параметру.
- 60. Непрерывность, интегрируемость и дифференцируемость несобственного интеграла по параметру.
- 61. Интеграл Фурье как предельный случай ряда Фурье.

- 62. Представление кусочно-гладкой функции интегралом Фурье.
- 63. Интеграл Фурье четных и нечетных функций.
- 64. Комплексная форма интеграла Фурье.
- 65. Преобразование Фурье и обратное преобразование Фурье.
- 66. Эйлеров интеграл первого рода B(p,q), область сходимости, свойства.
- 67. Эйлеров интеграл второго рода $\Gamma(p)$, область сходимости, свойства.
- 68. Формула связи эйлеровых интегралов первого и второго рода.
- 69. Формула понижения для эйлерова интеграла второго рода.
- 70. Формула дополнения для эйлерова интеграла второго рода.
- 71. Формула удвоения (формула Лежандра) для эйлерова интеграла второго рода.
- 72. Формула Эйлера. Постоянная Эйлера.

Теоретические вопросы (Б)

(образцы заданий)

Интегральное исчисление функций одной переменной

- 1. Сформулируйте и докажите теорему об общем виде первообразной (вместе с необходимой леммой).
- 2. Укажите первообразную функции $f(x) = \frac{1}{1+x^2}$, график которой проходит через точку с координатами $(1; 2\pi)$.
- 3. Найдите первообразную для функции f(x) = sinx, которая в точке $x = \frac{\pi}{2}$ принимает значение, равное 10.
- 4. Докажите, что $d(\int f(x)dx) = f(x)dx$.
- 5. Докажите формулу интегрирования по частям для неопределенного интеграла.
- 6. Докажите формулу замены переменной для неопределенного интеграла.
- 7. Докажите, что если функция f(x) непрерывна на отрезке [a;b], то функция $F(x) = \int_a^x f(t) \, dt, x \in [a;b]$, является ее первообразной на этом отрезке.
- 8. Используя свойство интеграла с переменным верхним пределом, докажите формулу Ньютона-Лейбница.
- 9. Применив замену переменной в определенном интеграле, докажите, что для любой четной непрерывной на отрезке [-a;a] функции f(x) справедливо равенство $\int_{-a}^{0} f(x) \, dx = \int_{0}^{a} f(x) \, dx$. В чем состоит его геометрический смысл? 10. Применив замену переменной в определенном интеграле, докажите, что для любой нечетной непрерывной на отрезке [-a;a] функции f(x) справедливо равенство $\int_{-a}^{0} f(x) \, dx = -\int_{0}^{a} f(x) \, dx$. В чем состоит его геометрический смысл?

- 11. Доказать, что функция $sign\ x = \begin{cases} 1,\ x>0,\ 0,\ x=0,\ \text{ имеет первообразную на} \\ -1,\ x<0 \end{cases}$ любом промежутке, не содержащем точку x=0, и не имеет первообразной на любом промежутке, содержащем точку x=0.
- 12. Сходится ли интеграл $\int_0^{+\infty} \cos 4x \, dx$? Ответ обоснуйте.
- 13. Сходится ли интеграл $\int_{-\infty}^{0} e^{-4x} dx$? Ответ обоснуйте.
- 14. Сформулируйте определение несобственного интеграла первого рода. При каких значениях a сходится интеграл $\int_1^{+\infty} x^{-\alpha} dx$? Ответ обоснуйте.
- 15. Сходится ли интеграл $\int_0^1 \frac{dx}{\sqrt{1-x}}$? Ответ обоснуйте.
- 16. Сформулируйте определение несобственного интеграла второго рода. При каких значениях a>0 сходится интеграл $\int_0^1 \frac{dx}{x^a}$? Ответ обоснуйте.

Интегральное исчисление функции нескольких переменных

- 17. Сформулируйте теорему о сведении двойного интеграла к повторному. Сведите двойной интеграл $\iint_G f(x,y) dx dy$ к повторному двумя способами, если G область, ограниченная кривыми $x=1,y=x^2,y=2x$ ($x\leq 1$).
- 18. Сформулируйте теорему о сведении двойного интеграла к повторному. Сведите двойной интеграл $\iint_G f(x,y) dx dy$ к повторному двумя способами, если G треугольник с вершинами (1;1), (4;1), (4;4).
- 19. Измените порядок интегрирования в повторном интеграле:

a)
$$\int_0^1 dy \int_{\sqrt{y}}^{\sqrt[3]{y}} f(x,y) dx$$
; 6) $\int_e^{e^2} dx \int_{\ln x}^{\ln x^2} f(x,y) dy$; B) $\int_{-1}^1 dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y) dy$.

- 20. Сформулируйте теорему о замене переменных в двойном интеграле. Перейдите к полярным координатам в двойном интеграле $\iint_G f(x,y) dx dy$ и сведите его к повторному, если:
- а) $G \text{круг } x^2 + y^2 \le a^2$; б) $G \text{круг } x^2 + y^2 \le 2y$;
- в) G кольцо $b^2 \le x^2 + y^2 \le a^2$.

- 21. Сформулируйте и докажите формулы длины плоской кривой, заданной в полярных координатах.
- 22. Сформулируйте теорему о представлении криволинейного интеграла первого рода определенным интегралом. Выразите криволинейный интеграл $\int_L \frac{dl}{\sqrt{x^2+y^2+4}}$, где L отрезок прямой, соединяющей точки O(0;0) и A(1;2), в виде определенного.
- 23. Сформулируйте теорему о представлении криволинейного интеграла второго рода определенным интегралом. Выразите криволинейный интеграл $\int_{AB} (x^2 2xy) dx + (2xy + y^2) dy,$ где AB дуга параболы $y = x^2$ от точки A(1;1) до точки B(2;4), в виде определенного.
- 24. Сформулируйте и докажите формулу Грина

Числовые ряды

- 25. Дайте определение числового ряда и его суммы. Найдите, исходя из определения, сумму ряда $\sum_{n=1}^{\infty} q^{n-1}$ при |q| < 1.
- 26. Дайте определения числового ряда и его суммы. Исходя из определения докажите, что сумма ряда $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ равна числу 1.
- 27. Сформулируйте и докажите необходимое условие сходимости числового ряда. Докажите, что гармонический ряд расходится.
- 28. Докажите, что если ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} b_n$ расходится, то ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ расходится.
- 29. Докажите, что для сходимости ряда $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$, необходимо и достаточно, чтобы последовательность его частичных сумм была ограничена.
- 30. Сформулируйте и докажите признак Даламбера для числовых рядов с положительными членами.
- 31. Сформулируйте и докажите признак Даламбера в предельной форме для числовых рядов с положительными членами. Приведите пример сходящегося ряда с положительными членами, к которому этот признак неприменим.

- 32. Сформулируйте признаки сравнения для числовых рядов с неотрицательными членами. Докажите первый признак сравнения.
- 33. Сформулируйте интегральный признак сходимости числового ряда с положительными членами. При каких положительных значениях α ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ сходится, а при каких расходится? Ответ обоснуйте.
- 34. Какой числовой ряд называется обобщенным гармоническим? Какой гармоническим? Докажите, что гармонический ряд расходится.
- 35. Сформулируйте и докажите признак Лейбница для знакочередующихся числовых рядов. Приведите пример знакочередующегося ряда, сходящегося условно.

Функциональные последовательности и ряды

- 32. Найдите предельную функцию f(x) последовательности $\{f_n(x)\}$ на множестве X, если: 1) $f_n(x) = x^n$, X = [0;1], 2) $f_n(x) = \frac{nx}{1+n^2x^2}$, X = R, 3) $f_n(x) = \frac{n^2}{n^2+x^2}$, X = R, 4) $f_n(x) = n \sin \frac{1}{nx}$, $X = (0; +\infty)$.
- 33. Сформулируйте определение равномерной сходимости функциональной последовательности и докажите, что последовательность $\left\{f_n = \frac{n+1}{n+x^2}\right\}$ сходится равномерно на X = [-1;1].
- 34. Найдите область сходимости и абсолютной сходимости ряда: 1) $\sum_{n=1}^{\infty} \frac{\ln^n x}{n}$;

2)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} \left(\frac{1-x}{1+x}\right)^n$$
; 3) $\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$.

35. Сформулируйте признак Вейерштрасса и докажите равномерную сходимость функционального ряда $\sum_{n=1}^{\infty} u_n(x)$ на множестве X, если:

1)
$$u_n(x) = \frac{x^n}{n^2}$$
, $X = [-1; 1]; 2$ $u_n(x) = \frac{1}{(n+x)^2}$, $X = [0; +\infty);$

3)
$$u_n(x) = \frac{(x-1)^n}{3^n(3n+1)}$$
, $X = [-1; 3]; 4)$ $u_n(x) = \frac{arctg \ nx}{x^4 + n\sqrt{n}}$, $X = R;$

5)
$$u_n(x) = \frac{(x+2)^n \cos^2 nx}{\sqrt{n^3+x^4}}, X = [-3; -1].$$

- 36. Сформулируйте и докажите теорему Абеля для степенных рядов. Может ли ряд $\sum_{n=1}^{\infty} a_n \, x^n$, расходящийся в точке x=-2, сходиться при x=-3?
- 37. Сформулируйте теорему о почленном дифференцировании степенного ряда. Используя ее, найдите сумму ряда $\sum_{n=1}^{\infty} n x^n$ при условии |x| < 1.
- 38. Найдите сумму ряда $\sum_{n=1}^{\infty} n^2 x^n$ зная, что $\sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2}$, |x| < 1.
- 39. Найдите сумму ряда: 1) $\sum_{n=1}^{\infty} \frac{x^n}{n}$; 2) $\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)}$, |x| < 1.
- 40. Сформулируйте и докажите теорему о представлении остаточного члена формулы Тейлора в интегральной форме.
- 41. Сформулируйте и докажите теорему о достаточном условии разложимости функции в ряд Тейлора.
- 42. Сформулируйте достаточное условие разложимости функции в ряд Маклорена. Докажите, что функция $f(x) = e^x$ разлагается в ряд Маклорена на всей числовой оси.
- 43. Сформулируйте достаточное условие разложимости функции в ряд Маклорена. Докажите, что функция $f(x) = \sin x$ разлагается в ряд Маклорена на любом интервале (-a; a).
- 44. Сформулируйте теорему о почленном дифференцировании степенного ряда. Используя эту теорему, найдите разложение функции $g(x) = \cos x$ в ряд Маклорена, исходя из разложения функции $f(x) = \sin x$.
- 45. Сформулируйте теорему о почленном интегрировании степенного ряда. Используя эту теорему, найдите разложение функции $f(x) = arctg\ x$, |x| < 1, в ряд Маклорена, исходя из разложения функции $g(x) = \frac{1}{1+x^2}$.

Ряды Фурье. Интеграл Фурье. Преобразование Фурье

- 46. Сформулируйте и докажите теорему о виде коэффициентов a_n равномерно сходящегося ряда Фурье $f(x) = \sum_{n=1}^{+\infty} a_n \cdot g_n(x)$.
- 47. Сформулируйте и докажите формулы коэффициентов a_0 , a_n , b_n тригонометрического ряда Фурье на отрезке $[-\pi;\pi]$.

- 48. Докажите, что для 2l-периодической функции f(x) и для любого числа a справедливо равенство: $\int_{-l}^{l} f(x) dx = \int_{-l+a}^{l+a} f(x) dx = \int_{0}^{2l} f(x) dx$.
- 49. Найдите ряд Фурье для функции $f(x) = \begin{cases} -1, -\pi \le x < 0 \\ 1, \ 0 \le x \le \pi \end{cases}$ и исследуйте его на сходимость.
- 50. Разложите в ряд Фурье на отрезке $[-\pi;\pi]$ функцию $f(x)=x^2$.
- 51. Разложите в ряд Фурье функцию f(x) периода 2π , заданную на отрезке $[-\pi;\pi]$ следующим образом: $f(x) = \begin{cases} \pi, & -\pi \leq x < 0 \\ \pi x, & 0 \leq x \leq \pi \end{cases}$.
- 52. Разложите в ряд Фурье функцию f(x) с периодом 2l, которая на отрезке [-l;l] задается формулой $f(x)=x^2$.
- 53. Используя равенство Парсеваля, покажите, что: a) $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$,
- $5) \sum_{n=1}^{\infty} \frac{1}{(2n-1)^6} = \frac{\pi^6}{960}.$
- 54. Как связаны между собой коэффициенты Фурье a_n , b_n функции f(x) и α_n , β_n функции g(x), если: а) f(-x) = g(x), б) f(-x) = -g(x).
- 55. Докажите, что для всех $x \in [0; \pi]$ верны равенства:

a)
$$x(\pi - x) = \frac{\pi^2}{6} - \sum_{n=1}^{\infty} \frac{\cos 2nx}{n^2}$$
, 6) $x(\pi - x) = \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)^3}$.

- 56. Исходя из разложения $x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}\sin(nx)}{n}$, $-\pi < x < \pi$, получить разложение в ряд Фурье функций x^2 , x^3 .
- 57. Сформулировать и доказать теорему о виде тригонометрического ряда Фурье для производной f'(x) кусочно-гладкой, 2π -периодической, непрерывной функции f(x).

Эйлеровы интегралы

- 58. Докажите, что гамма-функция $\Gamma(p)$ непрерывна при p > 0.
- 59. Докажите, что для гамма-функции $\Gamma(p)$ при p>0 справедливо равенство $\Gamma^{(k)}(p)=\int_0^{+\infty}x^{p-1}e^{-x}(\ln x)^kdx.$

- 60. Сформулируйте и докажите формулу приведения для гамма-функции.. Докажите, что $\Gamma(n+1)=n!$ при $n\in N$.
- 56. Используя формулу понижения, постройте продолжение функции $\Gamma(p)$ для отрицательных значений аргумента.
- 57. Докажите, что $\Gamma(0,5) = \sqrt{\pi}$.
- 58. Выразите через функцию $\Gamma(p)$ интегралы:

1)
$$\int_0^{+\infty} x^a e^{-x^b} dx$$
, $a > -1$, $b > 0$; 2) $\int_0^{+\infty} e^{-x^a} dx$, $a > 0$;

3)
$$\int_0^{+\infty} \frac{1}{x^{n+1}} e^{-\frac{a}{2x^2}} dx$$
, $a > 0$; 4) $\int_0^{+\infty} \frac{1}{(1+x^2)^p} dx$.

- 59. Сформулируйте и докажите свойство симметрии относительно параметров p,q бета-функции B(p,q).
- 60. Докажите справедливость формулы $B(m,n) = \frac{(n-1)!(m-1)!}{(m+n-1)!}$, где $m,n \in N$.
- 61. Докажите справедливость формулы $B(p,q) = \frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}$, p,q>0.
- 62. Докажите справедливость формулы $B(p,q) = 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1} x \cdot \cos^{2q-1} x \, dx$.
- 63. Используя равенство $\int_0^{+\infty} \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin p\pi}$, показать, что $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$, где 0 (формула дополнения).

Образцы задач

Интегральное исчисление функций одной переменной

- 1. Найдите неопределенный интеграл $\int \frac{7 + \ln(5x + 2)}{(5x + 2)\ln(5x + 2)} dx$.
- 2. Найдите неопределенный интеграл $\int (10x + 4)\sqrt{5x^2 + 4x + 3} \ dx$.
- 3. Найдите неопределенный интеграл $\int \frac{x}{4+x^4} dx$.
- 4. Найдите неопределенный интеграл $\int \frac{dx}{(1+x)\sqrt{x}}$.
- 5. Найдите неопределенный интеграл $\int \frac{dx}{x\sqrt{x^2-1}}$.
- 6. Найдите неопределенный интеграл $\int \frac{dx}{\sqrt{x(x-1)}}$.
- 7. Найдите неопределенный интеграл $\int \frac{dx}{x\sqrt{\ln x}}$.
- 8. Найдите неопределенный интеграл $\int xe^{-x^2}dx$.
- 9. Найдите неопределенный интеграл $\int \frac{\sin x + \cos x}{\sqrt[3]{\sin x \cos x}} dx$.
- 10. Найдите неопределенный интеграл $\int \frac{dx}{\sin x}$.
- 11. Найдите неопределенный интеграл $\int \frac{3x-5}{x^2+4} dx$.
- 12. Найдите неопределенный интеграл $\int \frac{7x-8}{x^2-x-20} dx$.
- 13. Найдите неопределенный интеграл $\int \frac{6x+27}{x^2+8x+17} dx$.
- 14. Найдите неопределенный интеграл $\int \frac{2x^2-2x-1}{x^2-x^3} dx$.
- 15. Найдите неопределенный интеграл $\int \frac{x^3+1}{x^3-5x^2+6x} dx$.
- 16. Найдите неопределенный интеграл $\int \frac{x^2+5x+4}{x^4+5x^2+4} dx$.
- 17. Найдите неопределенный интеграл $\int \cos^3(3x+4) dx$.
- 18. Найдите неопределенный интеграл $\int \cos 5x \sin 3x \, dx$.
- 19. Найдите неопределенный интеграл $\int \cos x \cos 2x \cos 3x \, dx$.
- 20. Найдите неопределенный интеграл $\int \frac{\sin x \, dx}{\sin^3 x + \cos^3 x}$.
- 21. Найдите неопределенный интеграл $\int (x^2 + 6x + 4)e^x dx$.

20

- 22. Найдите неопределенный интеграл $\int \sqrt[3]{x} \ln x \, dx$.
- 23. Найдите неопределенный интеграл $\int e^x \sin 4x \, dx$.
- 24. Найдите неопределенный интеграл $\int x \sin x \, dx$.
- 25. Вычислите определенный интеграл $\int_{0}^{\pi/2} \frac{7 \cos x}{\sin^2 x 5 \sin x 6} dx.$
- 26. Вычислите определенный интеграл $\int_0^{\pi/4} \frac{16x+3}{\cos^2 x} dx$.
- 27. Вычислите определенный интеграл $\int_{3}^{8} \frac{12x+3}{2\sqrt{x+1}} dx$.
- 28. Вычислите определенный интеграл $\int_0^{\pi} e^{2x} \cos x \, dx$.
- 29. Вычислите определенный интеграл $\int_0^{0.5} \arcsin x \, dx$.
- 30. Вычислите определенный интеграл $\int_{1}^{2} x \arccos \frac{1}{x} dx$.
- 31. Вычислите определенный интеграл $\int_2^2 \cos{(5x^2 + 3x)} dx$.
- 32. Вычислите определенный интеграл $\int_{-7}^{7} arctg(7x^2+3) \sin 7x \, dx$.
- 33. Вычислите несобственный интеграл $\int_0^{+\infty} e^{-5x} dx$ или установите его расходимость.
- 34. Вычислите несобственный интеграл $\int_0^{+\infty} x e^{-4x} dx$ или установите его расходимость.
- 35. Вычислите несобственный интеграл $\int_0^{16} \frac{4-\sqrt{16-x}}{\sqrt{16-x}} dx$ или установите его расходимость.
- 36. Вычислите несобственный интеграл $\int_0^1 x^5 \ln x \, dx$ или установите его расходимость.
- 37. Вычислите несобственный интеграл $\int_{1}^{+\infty} \frac{dx}{x(\ln^2 x + 4)}$ или установите его расходимость.

- 38. Вычислите несобственный интеграл $\int_{2}^{3} \ln(x-2) \, dx$ или установите его расходимость.
- 39. Найдите площадь фигуры, ограниченной линиями $y = x^2 3x$ и y = 3 x.
- 40. Найдите площадь фигуры, ограниченной линиями yx = 30 и y + x = 11.
- 41. Найдите площадь фигуры, ограниченной линиями $y = \frac{125}{x^2 + 25}$ и $y = \frac{x^2}{10}$.
- 42. Найдите площадь фигуры, ограниченной линиями $y = \sqrt{x}$, y = 2 x и y = 0.
- 43. Найдите объем тела, образованного вращением вокруг оси Ox плоской фигуры, ограниченной линиями $y^2 = 3x 6$ и y = x 2.
- 44. Найдите объем тела, образованного вращением вокруг оси Ox плоской фигуры, ограниченной линиями $y = \frac{4}{x+6}$, x = -5 и x = -4.
- 45. Определите закон роста капитала K(t), если плотность инвестиций (денежная сумма, поступающая на счет компании за единицу времени) определяется по формуле $I(t) = 200t^{\frac{7}{3}}$, а начальный капитал равен 640.
- 46. Найдите функцию дохода R(x), если предельный доход от реализации x единиц продукции определяется по формуле $MR(x) = 2x^9 310$.
- 47. Найдите общую себестоимость выпуска q единиц продукции TC(q), если предельная себестоимость производства q единиц продукции задана функцией $MC(q) = e^{7,1q}$, а начальные фиксированные затраты равны 64.
- 48. Найдите дневную выработку рабочего за восьмичасовой рабочий день, если производительность труда меняется по закону: $z(t) = -1,176t^2 + 8,7t + 6,4$, где t время (в часах), прошедшее с начала рабочего дня.
- 49. Потребление электроэнергии (кВт) предприятиями и населением некоторой местности с 8 до 20 часов приближенно описывается

функцией $f(t) = 4000 + 73t - 3t^2$, где t – время в часах, $8 \le t \le 20$. Вычислите стоимость электроэнергии, потребляемой городом за интервал времени с 9 по 18 часов, если стоимость 1 кВт·ч постоянная и равна 7 денежных единиц.

Интегральное исчисление функции нескольких переменных

- 50. Вычислите двойной интеграл $\iint_G xy^2 dx dy$ по области $G = \{(x;y) \mid 2 \le x \le 4; 0 \le y \le 1\}.$
- 51. Вычислите двойной интеграл $\iint_G (x-y) dx dy$ по области $G = \{(x;y) \mid 1 \le x \le 4; 1 \le y \le 3 \}.$
- 52. Вычислите двойной интеграл $\iint_G \sin(x+y) \, dx dy$ по области $G = \{(x;y) \mid 0 \le x \le \frac{\pi}{2}; 0 \le y \le \frac{\pi}{2}\}.$
- 53. Вычислите двойной интеграл $\iint_G xe^{xy}dxdy$ по области $G = \{(x;y) \mid 0 \le x \le 1; \ -1 \le y \le 0\}.$
- 54. Вычислите двойной интеграл $\iint_G (x-y) dx dy$ по области G, ограниченной линиями x=0, y=0, x+y=2.
- 55. Вычислите двойной интеграл $\iint_G xydxdy$ по области G, ограниченной линиями $y=x^2$, $y^2=x$.
- 56. Вычислите двойной интеграл $\iint_G x dx dy$ по области G, ограниченной линиями $y = x^3$, x + y = 2, x = 0.
- 57. Вычислите двойной интеграл $\iint_G \sin(x+y) \, dx dy$ по области G, ограниченной линиями x=y, $x+y=\frac{\pi}{2}$, y=0.
- 58. Вычислите двойной интеграл $\iint_G e^{-y^2} dx dy$, если область G треугольник с вершинами O(0;0), B(0;1), A(1;1).
- 59. Вычислите двойной интеграл $\iint_G e^{x^2+y^2} dx dy$, если область G круг радиуса R с центром в начале координат.

- 60. Вычислите двойной интеграл $\iint_G (x^2 + y^2) dx dy$, если область G половина круга радиуса R = 3 с центром в начале координат, лежащая в области $y \ge 0$.
- 61. Вычислите двойной интеграл $\iint_G (x^2 + y^2) dx dy$, если область G круг $x^2 + y^2 \le 2x$.
- 62. Вычислите двойной интеграл $\iint_G \frac{\ln(x^2+y^2)}{x^2+y^2} dx dy$, если область G кольцо между окружностями радиусов R=e, r=1 с центром в начале координат.
- 63. Вычислите двойной интеграл $\iint_G \sqrt{x^2 + y^2} dx dy$, если область G четверть круга с центром в начале координат и радиусом R = 4, расположенная в первой четверти.
- 64. Вычислите с помощью двойного интеграла площадь области, ограниченной линиями $y^2 = x + 1$, x + y = 1.
- 65. Вычислите с помощью двойного интеграла площадь области, ограниченной линиями xy = 4, y = 2, x = 1.
- 66. Вычислите с помощью двойного интеграла площадь области, ограниченной линиями xy = 4, y = x, x = 4.
- 67. Вычислите с помощью двойного интеграла площадь области, ограниченной линиями $y = x^2 2x$, y = x.
- 68. Вычислите с помощью двойного интеграла площадь области, ограниченной линиями $x^2 + y^2 2ax = 0$, $x^2 + y^2 2bx = 0$ (0 < a < b).
- 69. Вычислите тройной интеграл $\iiint_T (x + 2y^2 + xz) dx dy dz$, если область T - прямоугольный параллелепипед, заданный неравенствами $0 \le x \le 3, \ 0 \le y \le 3, \ 0 \le z \le 4.$
- 70. Вычислите тройной интеграл $\iiint_T (x^2 + y^2 + z^2)^3 dx dy dz$, если область $T: x^2 + y^2 + z^2 \le 4$.

- 71. Вычислите двойной интеграл $\iint \frac{dxdy}{(x^2+y^2+1)^3}$ по всей плоскости xOy.
- 72. Вычислите двойной интеграл $\iint_G \ln \frac{1}{\sqrt{x^2 + y^2}} dx dy$ по области $G = \{(x; y): x^2 + y^2 \le 1\}.$
- 73. Найдите длину кривой, заданной параметрически:

$$\begin{cases} x = 3(cost + tsint) \\ y = 3(sint - tcost) \end{cases} 0 \le t \le \frac{\pi}{3}.$$

- 74. Найдите длину кривой, заданной параметрически $\begin{cases} x = 6 3t^2 \\ y = 4t^3 \end{cases}$ при x > 0.
- 75. Найдите длину кривой, заданной параметрически:

$$\begin{cases} x = \frac{1}{2}\cos t - \frac{1}{4}\cos 2t \\ y = \frac{1}{2}\sin t - \frac{1}{4}\sin 2t \end{cases}, \frac{\pi}{2} \le t \le \frac{2\pi}{3}.$$

- 76. Найдите длину кривой, заданной функцией $y = \sqrt{1 x^2} + \arccos x$ при $0 \le x \le \frac{8}{9}$.
- 77. Найдите длину кривой, заданной в полярных координатах:

$$\rho = 4 - 4\sin\varphi, \, 0 \le \varphi \le \frac{\pi}{2}.$$

- 78. Вычислите криволинейный интеграл $\int_L y dl$ по параболе $y^2 = 2x$ от точки (0; 0) до точки (2; 2).
- 79. Вычислите криволинейный интеграл $\int_L \frac{dl}{\sqrt{x^2+y^2+4}}$, где L отрезок прямой, соединяющей точки O(0;0) и A(1;2).
- 80. Вычислите криволинейный интеграл $\oint_L (2x + y) dl$, где L контур треугольника ABO с вершинами A(1;0), O(0;0) и B(0;2).
- 81.Вычислите криволинейный интеграл $\int_{AB} (x^2 2xy) dx + (2xy + y^2) dy$, где AB дуга параболы $y = x^2$ от точки A(1;1) до точки B(2;4).

- 82. Вычислите криволинейный интеграл $\int_{AB} (x^2 + y^2) dx + xy dy$ по кривой $y = e^x$ от точки (0; 1) до точки (1; e).
- 83. Вычислите криволинейный интеграл $\int_L y^2 dx + x^2 dy$, где L верхняя половина эллипса $x = a \cos t$, $y = b \sin t$, пробегаемая по ходу часовой стрелки.
- 84. С помощью формулы Грина вычислите криволинейный интеграл $\oint_L (x-y) dx + (x+y) dy, \text{ где } L \text{окружность } x^2 + y^2 = 4.$
- 85. С помощью формулы Грина вычислите криволинейный интеграл $\oint_L y^2 dx + (x+y)^2 dy$ по контуру треугольника *ABC* с вершинами A(4;0), B(4;4) и C(0;4).
- 86. С помощью формулы Грина вычислите криволинейный интеграл $\oint_L (y-x^2)dx + (x+y^2)dy$, где контур L ограничивает круговой сектор радиуса R с углом φ , $0 \le \varphi \le \frac{\pi}{2}$.
- 87. С помощью формулы Грина вычислите криволинейный интеграл $\oint_L -x^2 y dx + x y^2 dy,$ где L окружность $x^2 + y^2 = R^2$.

Числовые ряды

- 88. Найдите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{n^2+7n+12}$.
- 89. Найдите сумму ряда $\sum_{n=1}^{\infty} (2^{-n} 2^{-n-3})$.
- 90. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{1-\sin n}{n^2+1}$.
- 91. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{1-\cos n}{n^2+16}$.
- 92. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{n+5}{5^n}$.
- 93. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{n}{6^n}$.
- 94. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{n}{n-7}$.
- 95. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{1}{(12n-7)^n}$.

- 96. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{9}{n^2+1}$.
- 97. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{3^n}{(n+1)!}$.
- 98. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{3}{n!}$.
- 99. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{(n+4)8^n}{9^{n+1}}$.
- 100. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{(n+1)!}{9^n}$.
- 101. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{n-3}{n^2+10}$.
- 102. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{5}{n \ln n}$.
- 103. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{10}{n \ln^2 n}$
- 104. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{9n+5}{(n+1)!}$.
- 105. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{6^n 7n}{12^n + 1}$
- 106. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{4}{n(n+9)}$.
- 107. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{n+2}{n+6}$
- 108. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{\sqrt{3n+10}}$.
- 109. Исследуйте ряд на сходимость $\sum_{n=1}^{\infty} \frac{\sqrt{n} + (-1)^n}{n(n+7)}$.
- 110. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{10n-5}$.
- 111. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{5^n}$.
- 112. Исследуйте на абсолютную и условную сходимость ряд

$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+5)}{n^2+1}.$$

- 113. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{(6n+2)^3}$.
- 114. Исследуйте на абсолютную и условную сходимость ряд $(-1)^n(n+2)$

$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{6^n}.$$

115. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5n}$.

- 116. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^n n^4}{10^n}$.
- 117. Исследуйте на абсолютную и условную сходимость ряд

$$\sum_{n=1}^{\infty} \frac{7}{(-1)^{n+6}(n+3)}.$$

- 118. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{3n^2+1}}$.
- 119. Исследуйте на абсолютную и условную сходимость ряд

$$\sum_{n=1}^{\infty} (-1)^n \left(1 + \frac{1}{2n}\right)^{-n}.$$

- 120. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} (-1)^{n-2} \cdot tg \, \frac{2}{5^n}.$
- 121. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \sin \frac{3}{n \sqrt[4]{n}}.$
- 122. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\frac{2}{3}}}$.
- 123. Исследуйте на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n^3+3}$
- 124. Исследуйте ряд $\sum_{n=1}^{\infty} \frac{\sin n \cdot n}{n!}$. на сходимость, укажите характер сходимости.
- 125. Исследуйте ряд $\sum_{n=1}^{\infty} \frac{\cos 3n}{n + \ln n}$. на сходимость, укажите характер сходимости.
- 126. Исследуйте ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt[3]{n+1}}$. на сходимость, укажите характер сходимости.

Функциональные последовательности и ряды

- 127. Найдите радиус и интервал сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 8^n}$
- 128. Найдите радиус и интервал сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{n(x-3)^n}{6n+3}$.
- 129. Найдите радиус и интервал сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{7^n (n+1)}$.
- 130. Найдите радиус и интервал сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{3n+1}$

- 131. Найдите радиус и интервал сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(n-8)x^n}{n}$.
- 132. Найдите радиус и интервал сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{n(n+5)}$.
- 133. Найдите область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(x+3)^n}{2^n \cdot n}$.
- 134. Найдите область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{4^n (x-6)^n}{n+5}$.
- 135. Найдите область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(-1)^n (x+6)^n}{n^2+4}$.
- 136. Найдите область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(-1)^n (x-5)^n}{\sqrt{n+4}}$.
- 137. Найдите радиус, интервал и область сходимости ряда $\sum_{n=2}^{\infty} \frac{(-1)^{n+3}(n+1)5^{n+2}(x+1)^n}{(n-1)^n}.$
- 138. Найдите радиус, интервал и область сходимости ряда $\sum_{n=4}^{\infty} \frac{(n+1)(n-4)!x^n}{3^{n-3}}$.
- 139. Разложите функцию $f(x) = \frac{4}{3+2x-x^2}$ в ряд Тейлора (Маклорена) с центром в точке $x_0 = 2$ и найдите интервал сходимости полученного ряда.
- 140. Разложите функцию $f(x) = \frac{1}{x^2 + 3x + 2}$ в ряд Тейлора (Маклорена) с центром в точке $x_0 = -4$ и найдите интервал сходимости полученного ряда.
- 141. Разложите функцию $f(x) = \ln(8 + 2x x^2)$ в ряд Тейлора (Маклорена) с центром в точке $x_0 = -1$ и найдите интервал сходимости полученного ряда.
- 142. Разложите функцию $f(x) = \ln(2+x)$ в ряд Тейлора (Маклорена) с центром в точке $x_0 = 0$ и найдите интервал сходимости полученного ряда.
- 143. Разложите функцию $f(x) = \frac{1}{1+2x}$ в ряд Тейлора (Маклорена) с центром в точке $x_0 = 0$ и найдите интервал сходимости полученного ряда.

- 144. Разложите функцию $f(x) = \frac{3}{4-x}$ в ряд Тейлора (Маклорена) с центром в точке $x_0 = 0$ и найдите интервал сходимости полученного ряда.
- 145. Разложите функцию $f(x) = \ln \frac{3-2x}{1+2x}$ в ряд Тейлора (Маклорена) с центром в точке $x_0 = 0$ и найдите интервал сходимости полученного ряда.
- 146. Разложите функцию $f(x) = \frac{1}{1-x^2}$ в ряд Тейлора (Маклорена) с центром в точке $x_0 = 0$ и найдите интервал сходимости полученного ряда.
- 147. Найдите сумму степенного ряда $1+2x+3x^2+\ldots+nx^{n-1}+\ldots$, если |x|<1.
- 148. Найдите сумму степенного ряда $x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n} + \ldots$, если |x| < 1.
- 149. Найдите сумму степенного ряда $x + 2x^2 + \frac{16}{3}x^3 + \dots + \frac{4^n x^{n+1}}{n+1} + \dots$, если $|x| < \frac{1}{4}$.
- 150. Найдите сумму степенного ряда $3x^2 + 6x^5 + 9x^8 + \dots + 3nx^{3n-1} + \dots$, если |x| < 1.

Ряды Фурье. Интегралы Фурье. Преобразования Фурье.

- 151. Разложите функцию $f(x) = \begin{cases} -1, & -\pi \le x \le 0 \\ 1, & 0 < x \le \pi \end{cases}$ в ряд Фурье на отрезке $[-\pi;\pi].$
- 152. Разложите функцию $f(x) = x^2$ в ряд Фурье на отрезке $[-\pi; \pi]$.
- 153. Разложите функцию $f(x) = x + \pi$ в ряд Фурье на отрезке $[-\pi; \pi]$.
- 154. Разложите функцию f(x) = 2 3x в ряд Фурье на отрезке $[-\pi;\pi]$.
- 155. Разложите функцию $f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ 1, & 0 < x \le \pi \end{cases}$ в ряд Фурье на отрезке $[-\pi;\pi].$
- 156. Разложите функцию $f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ \sin x, & 0 < x \le \pi \end{cases}$ в ряд Фурье на отрезке $[-\pi;\pi]$.

- 157. Разложите функцию f(x) = x в ряд Фурье на отрезке [-l; l].
- 158. Разложите функцию f(x) = |x| в ряд Фурье на отрезке [-l; l].
- 159. Разложите функцию $f(x) = \begin{cases} 1, & -l \le x \le 0 \\ -1, & 0 < x \le l \end{cases}$ в ряд Фурье на отрезке [-l;l].
- 160. Разложите функцию $f(x) = x \cos x$ в ряд Фурье на отрезке $[-\frac{\pi}{2}; \frac{\pi}{2}]$.
- 161. Разложите в ряд Фурье периодическую функцию с периодом T = 8:

$$f(x) = \begin{cases} -x, & -4 \le x \le 0 \\ x, & 0 < x \le 4 \end{cases}.$$

162. Разложите в ряд Фурье периодическую функцию с периодом T=4:

$$f(x) = \begin{cases} 8, & 0 < x < 2 \\ -8, & 2 < x < 4 \end{cases}$$

- 163. Разложите в тригонометрический ряд Фурье по косинусам и по синусам функцию f(x) = 4 x, заданную на отрезке [0; 4].
- 164. Разложите в ряд Фурье функцию $f(x) = \frac{\pi x}{2}$ в интервале (0; 2π).
- 165. Разложите функцию f(x) = 3 x, заданную на отрезке [0; 3] в тригонометрический ряд Фурье: а) по косинусам, б) по синусам.
- 166. Разложите в тригонометрический ряд Фурье по косинусам функцию $f(x) = \sin x$, заданную на отрезке $[0; \pi]$.
- 167. Разложите в тригонометрический ряд Фурье функцию f(x) = x, заданную на интервале (0; 2): а) по косинусам и б) по синусам.
- 168. Представьте интегралом Фурье функцию $f(x) = \begin{cases} 5, & |x| \leq 5 \\ 0, & |x| > 5 \end{cases}$
- 169. Представьте интегралом Фурье функцию $f(x) = \begin{cases} 4, & 0 \le x \le 5 \\ -4, & -5 \le x < 0 \\ 0, & |x| > 5 \end{cases}$
- 170. Представьте интегралом Фурье функцию $f(x) = e^{-2x}, x \ge 0$, продолжая ее четным образом.
- 171. Представьте интегралом Фурье функцию $f(x) = e^{-x}, x \ge 0$, продолжая ее нечетным образом.

- 172. Представьте интегралом Фурье функцию $f(x) = \begin{cases} \sin x, & |x| \leq \frac{\pi}{4} \\ 0, & |x| > \frac{\pi}{4} \end{cases}$.
- 173. Представьте интегралом Фурье функцию $f(x) = \begin{cases} 4 4x, & 0 < x \le 1 \\ 0, x > 1 \end{cases}$, продолжая ее четным образом.

Эйлеровы интегралы

- 174. Вычислите: а) $\frac{\Gamma(6)}{2\Gamma(3)}$; б) $\frac{\Gamma(2,5)}{\Gamma(0,5)}$; в) $\frac{\Gamma(3)\Gamma(2,5)}{\Gamma(5,5)}$; г) $\frac{6\Gamma\left(\frac{8}{3}\right)}{5\Gamma\left(\frac{2}{3}\right)}$.
- 175. Вычислите: а) $\Gamma(-0.5)$; б) $\Gamma(-1.5)$.
- 176. Найдите интеграл с помощью гамма- или бета-функции $\int_0^{+\infty} x^3 e^{-x} dx$.
- 177. Найдите интеграл с помощью гамма- или бета-функции $\int_0^2 \frac{x^2}{\sqrt{2-x}} dx$.
- 178. Найдите интеграл с помощью гамма- или бета-функции $\int_0^{+\infty} x^6 e^{-2x} dx$.
- 179. Найдите интеграл с помощью гамма- или бета-функции $\int_0^{\frac{\pi}{2}} \sin^6 x \, dx$.
- 180. Найдите интеграл с помощью гамма-функции или бета-функции $\int_0^{+\infty} \sqrt{x} e^{-x^3} dx.$
- 181. Найдите интеграл с помощью гамма-функции или бета-функции $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^5 x \, dx.$
- 182. Найдите интеграл с помощью гамма-функции или бета-функции $\int_0^1 x^4 (1-x)^3 dx.$
- 183. Найдите интеграл с помощью гамма- или бета-функции $\int_0^{\frac{\pi}{2}} \cos^4 x \, dx$.
- 184. Найдите интеграл с помощью гамма- или бета-функции $\int_0^{+\infty} \frac{x dx}{1+x^6}$.
- 185. Найдите интеграл с помощью гамма- или бета-функции $\int_0^{+\infty} \frac{x^2 dx}{1+x^4}$.
- 186. Найдите интеграл с помощью гамма-функции или бета-функции

$$\int_{-1}^{2} \frac{dx}{\sqrt[4]{(2-x)(1+x)^3}}.$$

- 187. Найдите интеграл с помощью гамма- или бета-функции $\int_0^2 \frac{dx}{\sqrt[5]{(2-x)^2x^3}}$.
- 188. Найдите интеграл с помощью гамма- или бета-функции $\int_0^3 \frac{dx}{\sqrt[5]{(3-x)^3x^2}}$.
- 189. Найдите интеграл с помощью гамма- или бета-функции $\int_0^1 \sqrt{\frac{1-x}{x}} \frac{dx}{(x+2)^2}$.
- 190. Используя равенство $\int_0^\infty \frac{\cos x}{x^p} dx = \frac{\pi}{2\Gamma(p)\cos\left(\frac{\pi p}{2}\right)}$, $0 , найдите интеграл <math>\int_0^\infty \cos(x^2) \, dx$.
- 191. Используя равенство $\int_0^\infty \frac{\sin x}{x^p} dx = \frac{\pi}{2\Gamma(p)\sin\left(\frac{\pi p}{2}\right)}$, $0 , найдите интеграл <math>\int_0^\infty \sin(x^2) dx$.
- 192. Найдите или выразите через эйлеровы функции интеграл $\int_0^{+\infty} x \cos(x^3) \, dx.$
- 193. Найдите или выразите через эйлеровы функции интеграл $\int_0^1 \frac{dx}{\sqrt{-\ln x}}$.
- 194. Найдите или выразите через эйлеровы функции интеграл $\int_0^{+\infty} x^m e^{-ax^n} dx, \, \text{где } m, n, a>0.$

Пример контрольной работы

Демовариант №1

- 1. Вычислить неопределенный интеграл $\int \frac{-3x^2+4x+8}{x^3-2x^2} dx$.
- 2. Вычислить криволинейный интеграл $\int_L xy^2 dl$ вдоль ломаной ABC, где A(1;4), B(4;4), C(8;6).
- 3. Исследовать ряд на сходимость $\sum_{n=1}^{\infty} \frac{2^{n-4}}{(n+2)\cdot 9^{n+1}}$.
- 4. Найти радиус, интервал и область сходимости ряда $\sum_{n=1}^{\infty} \frac{(n^3+4)\cdot 4^n(x+1)^n}{(n+1)!}$.

Пример экзаменационного билета

Демовариант №2

- 1. (10 баллов) Сформулировать и доказать формулу Ньютона-Лейбница.
- **2.** (10 баллов) Вычислить определенный интеграл $\int_{-8}^{-7} \frac{2x+2}{x^2-4x+3} dx$.
- **3.** (10 баллов) Вычислить криволинейный интеграл $\oint_L (x+y) dx + (x-y) dy$, где L эллипс $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- **4.** (10 баллов) Исследовать на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\frac{8}{3}}}.$
- **5.** (10 баллов) Найти радиус, интервал и область сходимости ряда $\sum_{n=1}^{\infty} \frac{(n-5)\cdot 5^n(x+1)^n}{(n-5)!}.$
- **6. (10 баллов)** Представить интегралом Фурье функцию $f(x) = \begin{cases} sinx, & 0 \le x \le 2\pi \\ 0, & x > 2\pi \end{cases}$, продолжая ее четным образом.

ОТВЕТЫ

Образцы задач

1.
$$\frac{7}{5}\ln|\ln(5x+2)| + \frac{1}{5}\ln(5x+2) + C$$
;

2.
$$\frac{2}{3}(5x^2+4x+3)^{\frac{3}{2}}+C$$
;

3.
$$\frac{1}{4} arctg \frac{x^2}{2} + C$$
;

4.
$$2arctq\sqrt{x} + C$$
;

5.
$$-\arcsin\frac{1}{|x|} + C$$
;

6.
$$\ln \left| x - \frac{1}{2} + \sqrt{x(x-1)} \right| + C$$
;

7.
$$2\sqrt{\ln x} + C$$
;

8.
$$-\frac{1}{2}e^{x^2}+C$$
;

9.
$$\frac{3}{2}\sqrt[3]{1-\sin 2x}+C$$
;

10.
$$\ln \left| tg \frac{x}{2} \right| + C$$
;

11.
$$\frac{3}{2}\ln(x^2+4) - \frac{5}{2}arctg\frac{x}{2} + C$$
;

12.
$$4 \ln|x + 4| + 3 \ln|x - 5| + C$$
;

13.
$$3\ln(x^2 + 8x + 17) + 3arctg(x + 4) + C$$
;

14.
$$\ln|x-1| - 3\ln|x| + \frac{1}{x} + C$$
;

15.
$$x + \frac{\ln|x|}{6} - \frac{9\ln|x-2|}{2} + \frac{28\ln|x-3|}{3} + C$$
;

16.
$$arctg \ x + \frac{5}{6} \ln \frac{x^2 + 1}{x^2 + 4} + C;$$

17.
$$-\frac{1}{9}\sin^3(3x+4) + \frac{1}{3}\sin(3x+4) + C$$
;

$$18.\,\frac{1}{4}\cos 2x - \frac{1}{16}\cos 8x + C;$$

19.
$$\frac{x}{4} + \frac{\sin 6x}{24} + \frac{\sin 4x}{16} + \frac{\sin 2x}{8} + C$$
;

$$20. \frac{1}{6} \ln \frac{1 - \sin x \cos x}{1 + \sin 2x} + \frac{1}{\sqrt{3}} \arctan \frac{2 \sin x - \cos x}{\sqrt{3} \cos x} + C;$$

21.
$$(x^2 + 4x)e^x + C$$
;

22.
$$x^{\frac{4}{3}} \left(\frac{3}{4} \ln x - \frac{9}{16} \right) + C$$
;

23.
$$e^x(\sin 4x - 4\cos 4x) + C$$
;

$$24. -x\cos x + \sin x + C;$$

25.
$$\ln \frac{5}{12}$$
;

26.
$$4\pi - 8 \ln 2 + 3$$
;

$$28. - \frac{2(e^{2\pi}+1)}{5};$$

29.
$$\frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1$$
;

$$30.\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$$
;

32. 0; 33.
$$\frac{1}{5}$$
;

$$34.\frac{1}{16}$$
;

$$36. -\frac{1}{36}$$
;

37.
$$\frac{\pi}{4}$$
;

$$38. -1;$$

39.
$$\frac{32}{3}$$
;

$$40.\frac{11}{2} - 30 \ln \frac{6}{5}$$
;

41.
$$\frac{25\pi}{2} - \frac{25}{3}$$
;

42.
$$\frac{7}{6}$$
;

43.
$$\frac{9\pi}{2}$$
;

44.
$$8\pi$$
;

$$45. K(t) = 60t^{\frac{10}{3}} + 640;$$

- $46. R(x) = \frac{1}{5}x^{10} 310x;$
- 47. $TC(q) = \frac{10}{71}e^{7,1q} + \frac{4534}{71}$;
- 48. $A \approx 128,896$;
- 49. 278365,5;
- 50.2;
- 51.3;
- 52. 2;
- $53.\frac{1}{e}$;
- 54. 0;
- $55.\frac{1}{12}$;
- $56.\frac{7}{15}$;
- 57. 0,5;
- $58. \frac{e-1}{2e}$;
- 59. $2\pi(e^{R^2}-1)$;
- 60. 20,25 π ;
- 61. $\frac{3\pi}{2}$;
- 62. 2π ;
- $63.\frac{32\pi}{3}$;
- 64. 4,5;
- $65.4 \ln 2 2;$
- $66.6 4 \ln 2$;
- 67. 4,5;
- 68. $(b^2 a^2)\pi$;
- 69. 378;
- $70.\frac{2048}{9}\pi;$
- 71. $\frac{\pi}{2}$;

- 72. $\frac{\pi}{2}$;
- $73.\frac{\pi^2}{6}$;
- 74. 26;
- 75. $\sqrt{2} 1$;
- 76. $\frac{4\sqrt{2}}{3}$;
- 77. $16 8\sqrt{2}$;
- $78.\frac{5\sqrt{5}-1}{3}$;
- 79. $\ln \frac{\sqrt{5}+3}{2}$;
- $80.\ 2\sqrt{5} + 3;$
- 81. $40\frac{19}{30}$;
- $82.\frac{3}{4}e^2 + \frac{1}{12};$
- 83. $\frac{4}{3}ab^2$;
- 84. 8π ;
- 85. $42\frac{2}{3}$;
- 86. $\frac{\pi R^2}{2}$;
- 87. $\frac{\pi R^4}{2}$;
- $88.\frac{1}{4}$;
- 89. $\frac{7}{8}$;
- 90. сходится;
- 91. сходится;
- 92. сходится;
- 93. сходится;
- 94. расходится;
- 95. сходится;

- 96. сходится;
- 97. сходится;
- 98. сходится;
- 99. сходится;
- 100. расходится;
- 101. расходится;
- 102. расходится;
- 103. сходится;
- 104. сходится;
- 105. сходится;
- 106. сходится;
- 107. расходится;
- 108. расходится;
- 109. сходится;
- 110. расходится;
- 111. сходится абсолютно;
- 112. сходится условно;
- 113. абсолютно сходится;
- 114. абсолютно сходится;
- 115. условно сходится;
- 116. абсолютно сходится;
- 117. условно сходится;
- 118. сходится условно;
- 119. расходится;
- 120. сходится абсолютно;
- 121. сходится абсолютно;
- 122. сходится условно;
- 123. сходится абсолютно;
- 124. сходится абсолютно;

- 125. сходится условно;
- 126. сходится условно;
- 127. 8; (-8; 8);
- 128. 1; (2; 4);
- 129. 7; (-7; 7);
- 130. 1; (-1; 1);
- 131. 1; (-1; 1);
- 132. 1; (-1; 1);
- 133. 2; [-5; -1);
- 134. 0,25; [5,75;6,25);
- 135. 1; [-7; -5];
- 136. 1; (4; 6];
- 137. ∞ , $(-\infty; +\infty)$, $(-\infty; +\infty)$;
- 138. 0, 0, 0;
- 139. $\sum_{n=0}^{\infty} (1+(-1)^n 3^{-n-1})(x-2)^n$, (1; 3);
- 140. $\sum_{n=0}^{\infty} \frac{3^{n+1}-2^{n+1}}{6^{n+1}} (x+4)^n$, (-6;-2);
- 141. $\ln 5 + \sum_{n=0}^{\infty} ((-1)^{n-1} 5^{-n}) \frac{(x+1)^n}{n}$, (-2; 0);
- 142. $\ln 2 + \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{2^{n+1} (n+1)}, (-2; 2);$
- 143. $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{2^n}$, (-2; 2);
- 144. $\sum_{n=0}^{\infty} \frac{3x^n}{4^{n+1}}$, (-4; 4);
- 145. $\ln 3 \sum_{n=0}^{\infty} \frac{2^{n+1}(1+(-3)^{n+1})x^{n+1}}{(n+1)3^{n+1}}, \left(-\frac{1}{2}; \frac{1}{2}\right);$
- 146. $\sum_{n=0}^{\infty} x^{2n}$, (-1; 1);
- 147. $\frac{1}{(x-1)^2}$;
- 148. $-\ln(1-x)$;
- 149. $-\frac{1}{4}\ln(1-4x)$;

150.
$$\frac{3x^2}{(x^3-1)^2}$$
;

151.
$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)}$$
;

152.
$$\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2}$$
;

153.
$$\pi + 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin nx}{n}$$
;

154.
$$2 + \sum_{n=1}^{\infty} \frac{(-1)^n \sin nx}{n}$$
;

155.
$$\frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}$$
;

156.
$$\frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$$
;

157.
$$\frac{2l}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{\pi nx}{l}$$
;

158.
$$\frac{l}{2} - \frac{4l}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos \frac{(2n-1)\pi x}{l}$$
;

159.
$$-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)} \sin \frac{(2n-1)\pi x}{l}$$
;

160.
$$\frac{16}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n n \sin 2nx}{(4n^2-1)^2}$$
;

161.
$$2 - \frac{16}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos \frac{\pi (2n-1)x}{4}$$
;

162.
$$\frac{32}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin \frac{\pi (2n-1)x}{2}$$
;

163.
$$2 + \frac{16}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos \frac{\pi (2n-1)x}{4}; \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi nx}{4};$$

164.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
;

165.
$$\frac{3}{2} + \frac{12}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos \frac{\pi(2n-1)x}{3}; \frac{6}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi nx}{3}$$

166.
$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$$
;

167.
$$1 - \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos \frac{\pi(2n-1)x}{2}; \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{\pi nx}{2};$$

168.
$$\frac{10}{\pi} \int_0^{+\infty} \frac{\sin 5y}{y} \cos(xy) \, dy;$$

169.
$$\frac{8}{\pi} \int_0^{+\infty} \frac{1 - \cos 5y}{y} \sin(xy) \, dy;$$

- 170. $\frac{4}{\pi} \int_0^{+\infty} \frac{\cos(xy)}{4+y^2} dy;$
- 171. $\frac{2}{\pi} \int_0^{+\infty} \frac{y \sin(xy)}{1+y^2} dy;$
- 172. $\frac{\sqrt{2}}{\pi} \int_0^{+\infty} \frac{\cos\left(\frac{\pi y}{4}\right) \sin\left(\frac{\pi y}{4}\right)}{1 y^2} \sin(xy) \, dy;$
- 173. $\frac{8}{\pi} \int_0^{+\infty} \frac{1-\cos y}{y^2} \cos(xy) \, dy;$
- 174. a) 30; б) 0,75; в) $\frac{16}{315}$; г) $\frac{4}{3}$;
- 175. a) $-2\sqrt{\pi}$; 6) $4\sqrt{\pi}/3$;
- 176. 6;
- 177. $\frac{45}{8}$;
- 178. $\frac{\sqrt{\pi}}{3}$;
- 179. $\frac{1}{280}$;
- 180. $\frac{\pi}{3\sqrt{3}}$;
- 181. $\frac{3\sqrt{2}\pi}{16}$;
- $182. \ \frac{\pi}{\sin\frac{3\pi}{5}};$
- 183. $\frac{64\sqrt{2}}{15}$;
- 184. $\frac{5\pi}{32}$;
- 185. $\frac{8}{315}$;
- 186. $\frac{3\pi}{16}$;
- 187. $\frac{\pi}{2\sqrt{2}}$;
- 188. $\frac{\pi}{\sin^{2\pi} 5}$;
- 189. $\frac{\sqrt{6\pi}}{24}$;
- 190. $\frac{\sqrt{\pi}}{2\sqrt{2}}$;

191.
$$\frac{\sqrt{\pi}}{2\sqrt{2}}$$
;

192.
$$\frac{\sqrt{3}\pi}{9\Gamma(\frac{1}{3})}$$
;

193.
$$\sqrt{\pi}$$
;

194.
$$\frac{\Gamma\left(\frac{1+m}{n}\right)}{na^{\frac{m+1}{n}}};$$

Демовариант 1

1.
$$\ln|x-2|-4\ln|x|+\frac{4}{x}+C$$
,

2. 2.
$$120 + \frac{952\sqrt{5}}{3}$$
,

$$4. R = +\infty, x \in (-\infty; +\infty),$$

5.
$$f(x) = 1 + 12 \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \sin nx$$
, $x \in (-\pi; \pi)$; $S(\pm \pi) = \frac{1}{2}$.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Математика в экономике. Ч. 2: Математический анализ: Учебник для студ. экономич. спец. вузов / А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандра. 3-е изд., перераб. и доп. М.: Финансы и статистика; ИНФРА-М, 2011.
- 2. Сборник задач по курсу «Математика в экономике». В 3 ч. Ч. 2: Математический анализ: учебное пособие/под ред. В.А. Бабайцева, В.Б. Гисина.— Москва: Финансы и статистика, 2017
- 3. Волкова Е.С., Орёл Е.Н. Дополнительные главы математического анализа: учебное пособие/ под редакцией В.Б. Гисина и Е.Н. Орла. М.: Финуниверситет, 2013.
- 4. Курс математического анализа: учебное пособие для вузов. :учебное пособие / Тер-А.М. Крикоров, М.И. Шабунин. 6-е издание. Москва: Лаборатория знаний, 2015. 675 с. ISBN 978-5-9963-2987-8.
- 5. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 1 [Электронный ресурс]: учебник / Г.М. Фихтенгольц. Электрон. дан. Санкт-Петербург: Лань, 2019. 608 с.
- 6. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 2 [Электронный ресурс]: учебник / Г.М. Фихтенгольц. Электрон. дан. Санкт-Петербург: Лань, 2019. 800 с.
- 7. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 3 [Электронный ресурс]: учебник / Г.М. Фихтенгольц. Электрон. дан. Санкт-Петербург: Лань, 2019. 656 с.
- 8. Демидович, Б.П. Сборник задач и упражнений по математическому анализу [Электронный ресурс]: учебное пособие / Б.П. Демидович. Электрон.дан. Санкт-Петербург: Лань, 2019. 624 с.

9. Основы математического анализа. В 2 ч.: учебник для студ. физических спец. и спец. «Прикладная математика» / В.А.Ильин, Э.Г.Позняк.— 7-е изд., стер. — М.: Физматлит, 2014.