

Regression II:

Multiple linear regression

Sessions 11-14
Programación Estadística con Python

Alberto Sanz, Ph.D

asanz@edem.es

MASTER EN DATA ANALYTICS PARA LA EMPRESA

Goals (+ to be developed)

- Multiple linear regression.
 - Comprehensive models
 - Gaining control over alternative explanations: Ceteris paribus
- Dealing with the qualitative in regression models (I)
 - Interpretation of coefficients from dichotomies
- Dealing with non linearity
 - Curvilinear modeling under linear regression
- Graphic methods in multiple linear regression:
 - Coefficent plot
 - Confidence interval plot

Multiple Regression

- Always DESCRIBE the variables involved in the regression model separately. Check and validate the integrity of the data prior to any analysis.
- 2. EXPLORE bivariate relation: Scatterplot / Pearson's r / Simple Regression
- 3. Fit your multiple linear regression model carefully. Attend to:
 - a) Slope & intercept
 - b) P. value
 - c) Model fit
 - d) Sample size
 - e) Model Diagnostics

Research Question

Why some days are rent more bikes?

- Temperature ?
- Windspeed ?
- Humidity ?
- Holiday ?
- • •

The (simple) Regression Model

Figure 9. Daily bicycle rentals, by temperature.

$$Y = a + b*x$$

#rentals= 1215 + 162 * temperature

The Regression Model


```
model1 = ols('cnt ~ temp_celsius', data=wbr).fit()
model1b = ols('cnt ~ windspeed_kh', data=wbr).fit()
print(model1b.summary2())
```

```
Results: Ordinary least squares
Model:
                           Adj. R-squared: 0.054
               OLS
                                           13102.0108
Dependent Variable: cnt
                            AIC:
                                          13111.1996
               2019-12-11 15:56 BTC:
Date:
No. Observations: 731 Log-Likelihood: -6549.0
                          F-statistic: 42.44
Df Model:
               1
                          Prob (F-statistic): 1.36e-10
             729
Df Residuals:
             0.055
                           Scale:
                                     3.5512e+06
R-squared:
           Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept 5621.1529 185.0624 30.3744 0.0000 5257.8341 5984.4717
windspeed kh -87.5062 13.4327 -6.5144 0.0000 -113.8775 -61.1348
                         Durbin-Watson:
Omnibus:
                45.655
                                               0.350
            0.000
                         Jarque-Bera (JB): 17.090
Prob(Omnibus):
Skew:
                -0.026 Prob(JB):
                                               0.000
Kurtosis:
                 2.253
                            Condition No.:
```

The Multiple Regression Model


```
model1 = ols('cnt ~ temp_celsius', data=wbr).fit()
model2 = ols('cnt ~ temp_celsius + windspeed_kh', data=wbr).fit()
print(mode2.summary2())
```

```
Results: Ordinary least squares
_____
                           Adj. R-squared: 0.411
AIC: 12756.4931
Model:
Dependent Variable: cnt
                                          12770.2763
Date:
               2019-12-11 16:03 BIC:
                             Log-Likelihood: -6375.2
No. Observations: 731
                        F-statistic: 255.6
Df Model:
                           Prob (F-statistic): 7.99e-85
Df Residuals:
                                      2.2106e+06
              (0.413)
R-squared:
                             Scale:
            Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept _____1991_0459 225.9615 8.8114 0.0000 1547.4319 2434.6599
temp_celsius 156.3058 7.4254 21.0500 0.0000 141.7279 170.8836
windspeed_kh -51.8225 10.7328 -4.8284 0.0000 -72.8934 -30.7515
                                               0.467
Omnibus:
                 25.144 Durbin-Watson:
Prob(Omnibus): 0.000 Jarque-Bera (JB):
                                               15.379
Skew:
                0.206 Prob(JB):
                                               0.000
Kurtosis:
                 2.422
                            Condition No.:
```

Models of increasing complexity

The Multiple Regression Model


```
Adj. R-squared:
Model:
                                                        0.459
Dependent Variable: cnt
                                                        12696.4930
                                    AIC:
                   2019-12-11 16:20 BIC:
                                                        12719.4650
No. Observations:
                                    Log-Likelihood:
                                                      -6343.2
                   731
                                   F-statistic:
Df Model:
                                                       155.7
                                    Prob (F-statistic): 3.61e-96
Df Residuals:
                                            2.0309e+06
R-squared:
                   0.462
                                    Scale:
                                                 [0.025 0.975]
                       Std.Err.
               Coef.
             4009.3688.344.5244 11.6374 0.0000 3332.9858 4685.7517
Intercept
temp celsius
             161.2124 \ 7.1558 22.5289 0.0000 | 147.1639 175.2609
              -71.6672 10.5792 -6.7743 0.0000 -92.4367 -50.8976
windspeed kh
              -31.0683 /3.8398 -8.0911 0.0000 / -38.6067 -23.5299
hum
              125.8049 113.5505 1.107 0.2683 -97.1217 348.7315
workingday
Omnibus:
                      10.037
                                    Durbin-Watson:
                                                             0.404
Prob(Omnibus):
                      0.007
                                    Jarque-Bera (JB):
                                                            7.868
Skew:
                      0.160
                                    Prob(JB):
                                                             0.020
Kurtosis:
                                    Condition No.:
                      2.604
                                                             449
```

Alberto Sanz, Ph.D. asanz@edem.es

Models of increasing complexity

Tip: Visit https://pypi.org/project/stargazer/ for stargazer functionalities

Visit https://github.com/mwburke/stargazer/blob/master/examples.ipynb for use examples

Tip: Stargezer will output HTML code. 1) You can render it into a nice (and editable) table in: https://htmledit.squarefree.com/

Or 2) You can save the code in a plain text document with .html extensión and read it in word

Model reporting with Stargazer

Table 1. Models of number of daily bicycle rentals in Washington D.C.

	Model 1	Model 2	Model 3	Model 4		
Temperature C°	162.0***	156.3***	161.6***	161.2***		
	(7.4)	(7.4)	(7.1)	(7.2)		
Windspeed_k/h		-51.8***	-71.7***	-71.7***		
		(10.7)	(10.6)	(10.6)		
Humidity			-31.0***	-31.1***		
			(3.8)	(3.8)		
Workingday (0/1)				125.8		
				(113.6)		
Intercept	1214.6***	1991.0***	4084.4***	4009.4***		
	(161.2)	(226.0)	(337.9)	(344.5)		
Observations	731	731	731	731		
\mathbb{R}^2	0.4	0.4	0.5	0.5		
Note:	e: *p<0.1;**p<0.05; ***p<0.01					

Models of increasing complexity

	Dependent Variable: Number of bicycle rentals in Washington					
	Model 1	Model 2	Model 3	Model 4	Model 6	
Temperature in C ^o	161.969***	156.306***	161.598***	161.212***	646.078***	
	(7.444)	(7.425)	(7.148)	(7.156)	(38.263)	
Temperature in C° squared					-12.022***	
					(0.935)	
Windspeed (Km/h)		-51.822***	-71.745***	-71.667***	-85.550***	
		(10.733)	(10.581)	(10.579)	(9.614)	
Humidity (in %)			-31.001***	-31.068***	-42.666***	
			(3.840)	(3.840)	(3.583)	
Working day (0:No, 1:Yes)				125.805	85.370	
				(113.551)	(102.588)	
Constant	1,214.642***	1,991.046***	4,084.363***	4,009.369***	730.179*	
	(161.164)	(225.962)	(337.862)	(344.524)	(402.305)	
Observations	731	731	731	731	731	
\mathbb{R}^2	0.394	0.413	0.461	0.462	0.562	
Note: *p<0.1 **p<0.05 ***p<0.01						

Basic diagnostics for simple LM

- □ Linear relation:
 - Check Residuals vs. Fitted (or predicted) plot
- Normality of residuals:
 - Check Normal Q-Q plot
- Homocedasticity:
 - Check Scale-Location plot
- No influential observations
 - Check the Residuals vs. Leverage plot

Basic diagnostics for simple LM

Code available at:

Regression I. Summing UP

- 1. Always DESCRIBE the variables involved in the regression model separately. Check and validate the integrity of the data prior to any analysis.
- 2. **EXPLORE** of bivariate relation: Scatterplot / Pearson's r
- 3. Fit your linear regression model carefully. Pay attention to:
 - a) Slope & intercept
 - b) P. value
 - c) Model fit
 - d) Sample size
 - e) Model Diagnostics

Regression II. Summing UP

16

- Always DESCRIBE the variables involved in the regression model separately. Check and validate the integrity of the data prior to any analysis.
- **EXPLORE** of bivariate relation: Scatterplot / Pearson's r 2.
- Fit your linear regression model carefully. Pay attention to: 3.
 - Slope & intercept a)
 - P. value **b**)
 - Model fit c)
 - Sample size d)
 - **Model Diagnostics** e)

Statistical Programming with Python

Questions?

Statistical Programming with Python

Thank you!

Alberto Sanz asanz@edem.es