Laboratorium 5 Pierwiastki równań nieliniowych

Jan Rajczyk

19 kwietnia 2021

1 Zadania

1. Mamy równanie:

$$f(x) = x^2 - 2 = 0$$

- (a) zakładając że mamy punkt początkowy $x_0=1$, jaką wartość x_1 dostaniemy, jeśli używamy metody Newtona ?
- (b) zakładając że mamy $x_0=1$ i $x_1=2$ jako punkty początkowe, jaka będzie wartość x_2 , jeśli używamy metody siecznych do tego samego problemu ?
- 2. Napisz iteracje wg metody Newtona do rozwiązywania każdego z następujących równań nieliniowych:
 - (a) $x^3 2x 5 = 0$,
 - (b) $e^{-x} = x$,
 - (c) $x \sin(x) = 1$.
- 3. Zapisz iteracje Newtona do rozwiązywania następującego układu równań nieliniowych.

$$\begin{cases} x_1^2 + x_2^2 = 1\\ x_1^2 - x_2 = 0 \end{cases}$$

2 Rozwiązania

1. (a) Będziemy korzystali ze wzoru:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$f'(x_k) = 2x_k$$

Mamy więc: $x_{k+1} = x_k - \frac{x_k^2 - 2}{2x_k}$, stąd dla $x_0 = 1$ otrzymujemy:

$$x_1 = 1 - \frac{1-2}{2} = 1 + \frac{1}{2} = \frac{3}{2}.$$

(b) Będziemy korzystali ze wzoru:

$$x_{k+1} = x_k - \frac{f(x_k)(x_{k-1} - x_k)}{f(x_{k-1}) - f(x_k)}$$

Mamy: $f(x_0) = f(1) = -1$ oraz $f(x_1) = f(2) = 2$. Otrzymujemy

więc:

$$x_2 = 2 - \frac{2 \cdot (1-2)}{-1-2} = 2 - \frac{-2}{-3} = 2 - \frac{2}{3} = \frac{4}{3}.$$

Wnioski: Prawdziwe pierwiastki to -2 oraz 2, stąd metoda Newton'a daje nieco lepszy wynik w tym przypadku.

Metody Newton'a oraz siecznych są proste w implementacji i już dla małych k dają bardzo dobre wyniki, nie jest więc dziwne ich powszechne użycie w nauce i technice.

2. Wyniki zostały obliczone za pomocą programu napisanego w języku Py-thon:

```
from math import e
from math import sin
from math import cos
\#funkcja z zadania (a)
\mathbf{def} \ \mathbf{f} \ \mathbf{a}(\mathbf{x}):
     return (2 * x ** 3 + 5) / (3 * x ** 2 - 2)
\#funkcja z zadania (b)
\mathbf{def} \ f_b(x):
    return x-(e ** (-x) - x) / (-e ** (-x) - 1)
#funkcja z zadania (c)
\mathbf{def} \ \mathbf{f}_{\mathbf{c}}(\mathbf{x}):
     return x-(x*\sin(x))/(\sin(x)+x*\cos(x))
def Newton(x0: float, n: int, f):
    x k = x0
     for k in range (1, n + 1):
         x_k = f(x_k)
          print ("k:", k ,"x k:", x k)
print("Podpunkt_a):")
Newton (1, 10, f_a)
print("Podpunkt_b):")
Newton (1, 10, f_b)
print("Podpunkt_c):")
Newton (1, 10, f c)
```

(a) Zauważmy, że:

$$x_{k+1} = x_k - \frac{x_k^3 - 2x_k - 5}{3x_k^2 - 2} = \frac{3x_k^3 - 2x_k - x_k^3 + 2x_k + 5}{3x_k^2 - 2} = \frac{2x_k^3 + 5}{3x_k^2 - 2}$$

Niech $x_0=1$ (funkcja oraz jej dwie pochodne są ciągłe, x_0 jest blisko rozwiązania oraz $f'(x_0)\neq 0$. Wyniki przedstawia tabelka:

$\mid k \mid$	$ x_k $
1	7.0
2	4.76551724137931
3	3.348702759480283
4	2.5315996410025097
5	2.1739158849392317
6	2.097883686441764
7	2.094557715850057
8	2.0945514815642077
9	2.094551481542327
10	2.0945514815423265

Tablica 1: Wyniki dla pierwszych dziesięciu punktów

(b) Mamy:

$$x_{k+1} = x_k - \frac{e^{-x_k}}{-e^{-x_k} - 1}$$

Niech $x_0 = 1$ (funkcja oraz jej dwie pochodne są ciągłe, x_0 jest blisko rozwiązania oraz $f'(x_0) \neq 0$. Wyniki przedstawia tabelka:

k	$ x_k $
1	0.5378828427399902
2	0.5669869914054133
3	0.567143285989123
4	0.5671432904097838
5	0.567143290409784
6	0.5671432904097838
7	0.567143290409784
8	0.5671432904097838
9	0.567143290409784
10	0.5671432904097838

Tablica 2: Wyniki dla pierwszych dziesięciu punktów

(c) Mamy:

$$x_{k+1} = x_k - \frac{x_k \sin x_k}{\sin x_k + x_k \cos x_k}$$

Niech $x_0=1$ (funkcja oraz jej dwie pochodne są ciągłe, x_0 jest blisko rozwiązania oraz $f'(x_0)\neq 0$. Wyniki przedstawia tabelka:

k	$ x_k $
1	0.391020950769569
2	0.19034374168959914
3	0.0945922783938496
4	0.047225459684434624
5	0.02360394824726822
6	0.011800878076633858
7	0.00590030208396525
8	0.0029501339242978884
9	0.0014750648224886335
10	0.0007375321437883491

Tablica 3: Wyniki dla pierwszych dziesięciu punktów

Wnioski: Wartość wybranego przez nas x_0 nie ma zbytniego znaczenia, ponieważ już po kilku iteracjach kolejne wartości są bardzo zbliżone.

3. Zapiszmy zadany układ jako:

Newton (1, 1, 10)

$$\begin{cases} x_1^2 + x_2^2 - 1 = 0 \\ x_1^2 - x_2 = 0 \end{cases}$$

Korzystając ze wzorów z prezentacji napisałem program w języku Python na podstawie którego udało mi się wyliczyć x oraz y dla 10 iteracji.

```
\mathbf{def} f1(x, y):
     return x**2 + y**2 - 1
\mathbf{def} \ f2(x, y):
     return x**2 - y
\mathbf{def} \ \mathrm{f1x}(\mathrm{x}, \mathrm{y}):
     return 2*x
\mathbf{def} \ f2x(x, y):
     return 2*x
\mathbf{def} \ \mathrm{fly}(\mathrm{x}, \mathrm{y}):
     return 2*y
\mathbf{def} \ f2y(x, y):
     return -1
\mathbf{def} \ \mathrm{Jacob}(\mathbf{x}, \ \mathbf{y}):
     return f1x(x, y)*f2y(x, y) - f1y(x, y)*f2x(x, y)
\mathbf{def} Newton (x0, y0, n):
     x = x0
     y = y0
     for i in range (1, n+1):
           delta_x = (-f1(x, y) * f2y(x, y) + f2(x, y) * f1y(x, y)) / Jacob(x, y)
           delta_y = (-f2(x, y)*f1x(x, y)+f1(x, y)*f2x(x, y))/Jacob(x, y)
           x = x + delta_x
           y \, = \, y \, + \, delta\_y
           print("i:", i, "x:", x, "y:", y)
```

Wyniki przedstawiłem w tabelce:

i	$ x_i $	$ y_i $
1	0.8333333333333333	0.6666666666666666666666666666666666666
2	0.7880952380952381	0.6190476190476191
3	0.7861540663060879	0.6180344478216818
4	0.7861513777620804	0.618033988749989
5	0.7861513777574233	0.6180339887498948
6	0.7861513777574233	0.6180339887498948
7	0.7861513777574233	0.6180339887498948
8	0.7861513777574233	0.6180339887498948
9	0.7861513777574233	0.6180339887498948
10	0.7861513777574233	0.6180339887498948

Tablica 4: Wyniki dla pierwszych dziesięciu iteracji

Wnioski: Widzimy, że już po kilku pierwszych iteracjach wyniki są do siebie bardzo zbliżone. Metoda ta, choć nie najprostsza w zrozumieniu, jest bardzo prosta w implementacji i daje naprawdę dobre rezultaty.

3 Bibliografia

- https://en.wikipedia.org/wiki/Newton%27s_method
- https://www.wolframalpha.com/
- \bullet Piotr Fronczak $Metody\ numeryczne$