Middag for 4-1

Forsøket tar utgangspunkt i oppgaven kalt «Elgtungen». Heller enn en elgtunge, ble avkjølingen til en porsjon lasagne målt. Porsjonen lå i en romtemperert skål.

Målinger fra forsøket

Tid / minutter	Temperatur / °C
0	95.2
10	68.7
20	57.8
30	46.3
45	38.8
60	34.9
75	31.2
95	28.2
115	26.2
135	25.0

Tabell 1: Målinger fra forsøket med temperatur gitt i C og tid gitt i minutter.

Newtons avkjølingslov blir brukt for å finne en modell for avkjølingen av lasagnen.

$$\dot{T}(t) = \alpha(T(t) - T_K)$$
, $T(0) = T_0$

Romtemperaturen var 24°C. Differensiallikningen som forhåpentlig vil gi en god modell for avkjølingen blir da:

$$\dot{T}(t) = \alpha(T(t) - 24)$$

Utregning for differensiallikning med ukjent α :

$$T = 24 + Ce^{\alpha t}$$

Initialkravet T(0) = 95.2 gir

$$T(t) = 24 + 71.2e^{\alpha t}$$

Hvordan fant jeg α ? Litt grunnleggende algebra gir

$$\alpha = \frac{\ln\left(\frac{T(t) - T_K}{T_{T_0} - T_K}\right)}{t}$$

 T_0 = starttemperaturen

T(t) = temperaturen ved et valgt tidspunkt

t = et valgt tidspunkt

Med t = 135, altså tiden det tok å gjennomføre alle målingene, er

$$\alpha = -0.0316$$

Det gir modellen:

$$T(t) = 24 + 71.2e^{-0.0316t}$$

Hvor godt passer modellen i forhold til de målte verdiene? Trommevirvel ...

Figur 1: Plot som viser målte verdier og modellen

Her er det noen feilkilder og fysikk som ikke blir tatt hensyn til i modellen. Ulike tidsrom for å finne α påvirker også modellen. Det er samtidig ikke en helt forferdelig modell.