2 Qubit Systems and Entanglement



Priya Angara, Ulrike Stege

# Two Qubit System



# First Qubit





# Second Qubit





#### Two qubit systems

When we have two quantum states in the same systems, the qubit can be in one to all of the following states



#### Psi for a two qubit system

$$|\psi>|$$
  $=lpha \ |00>+eta \ |01>+\gamma \ |10>+\delta \ |11>$ 

### Controlled-NOT: A Two Qubit Gate





Controlled NOT gates make use of two qubits



The first qubit decides the fate of the second qubit



If the first qubit is |0>, the second qubit remains unchanged



If the first qubit is |1>, the second qubit flips state



Let's Qode!



### CNOT + Hadamard: Something Spooky

$$|00>$$
  $\begin{array}{c|c} |q_0
angle & H \\ \hline |q_1
angle & \hline \end{array} \begin{array}{c} |00>+|11> \\ \hline \sqrt{2} \end{array}$ 

$$|00> \stackrel{\text{H}}{\rightarrow} \frac{|00>+|10>}{\sqrt{2}} \stackrel{\text{C-NOT}}{\rightarrow} \frac{|00>+|11>}{\sqrt{2}}$$



## Which Qubit goes first?



#### Let's try this with some other states

Hadamard + CNOT on:

$$|q_0
angle -H$$
 $|q_1
angle -H$ 
 $|q_1
angle -H$ 

We'll do this on our worksheet

#### Measurements

- We can measure both qubits at the end of our experiments like the single qubit systems.
- However, we can also do a partial measurement – This means we measure only one of the qubits.
- Maybe we can look at the measured qubit, and speculate about the unmeasured one?



We'll do this on our worksheet

# |00>+|11>

# Entanglement: Spooky Action at a distance

If we measure the first qubit, we know that it could be either 0 or 1.

But once we measure the first qubit, can we say something about the second qubit?

#### Bell States

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$





Let's Qode!