

y = 2x is a straight line which passes through the origin.

 $y = \frac{8}{x}$ is a curve with both vertical and horizontal asymptote.

x = 4 is a straight line.

The straight line y=2x intersects the curve $y=\frac{8}{x}$ on x=2 and x=-2

Remember that, Area bounded by the curves is given by,

Area = $\int_a^b f(x) - g(x) dx$, where f(x) is the upper curve and g(x) is the lower curve and $x \in [a, b]$.

In this case, the upper function is f(x) = 2x and lower function is $g(x) = \frac{8}{x}$ and $x \in [2, 4]$.

Area =
$$\int_{a}^{b} f(x) - g(x) dx$$

= $\int_{2}^{4} 2x - \frac{8}{x} dx$
= $\left[x^{2} - 8\ln(x)\right]_{2}^{4}$
= $\left[x^{2}\right]_{2}^{4} - \left[8\ln(x)\right]_{2}^{4}$
= $(16 - 4) - 8(\ln(4) - \ln(2))$
= $12 - 8\ln(2)$ square units