А. Простая сортировка

2 секунды, 64 мегабайта

В этой задаче вам нужно реализовать любую из пройденных сортировок, работающих за время $O(n \log n)$. Использовать встроенные в язык сортировки и структуры данных запрещается.

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания.

Входные данные

В первой строке содержится число n ($1 \le n \le 100\,000$) — количество элементов в массиве. Во второй строке находятся n целых чисел, по модулю не превосходящих 10^9 .

Выходные данные

Выведите этот же массив в порядке неубывания.

В	X	οд	НЬ	ıe	Д	ļαi	НН	ы	e	
10	9									
1	8	2	1	4	7	3	2	3	6	
В	Ы)	(0	Дŀ	Ы	е	Д	ан	Н	ые	
1	1	2	2	3	3	4	6	7	8	

В. Сортировка подсчетом

1 секунда, 64 мегабайта

А в этой задаче вам нужно реализовать сортировку подсчетом. Использовать другие сортировки запрещается.

Дан массив из *п* элементов, которые принимают целые значения от 0 до 100. Отсортируйте этот массив в порядке неубывания элементов.

Входные данные

В первой строке содержится число n ($1 \le n \le 200\,000$) — количество элементов в массиве. Во второй строке находятся n целых чисел, от 0 до 100 каждое.

Выходные данные

Выведите отсортированный массив.

В	входные данные							
5	0	724		-				
1	3	4	2	5				
В	Ы)	(0	дн	ые	данные			
2	3	4	5	7				

С. Количество инверсий

5 секунд, 256 мегабайт

Напишите программу, которая для заданного массива $A = \langle a_1, a_2, \dots, a_n \rangle$ находит количество пар (i,j) таких, что i < j и $a_i > a_j$.

Входные данные

Первая строка входного файла содержит натуральное число n ($1 \leq n \leq 500\,000$) — количество элементов массива. Вторая строка содержит n попарно различных элементов массива A ($0 \leq a_i \leq 10^6$).

Выходные данные

В выходной файл выведите одно число — ответ на задачу.

входные данные	
4	
1 2 4 5	
выходные данные	
Θ	

входные данные					
4 5 4 2 1					
выходные данные					
6					

D. Хип ли?

1 секунда, 256 мегабайт

Структуру данных Неар можно реализовать на основе массива.

Для этого должно выполнятся *основное свойство Неар'а*, которое заключается в следующем. Для каждого $1\leqslant i\leqslant n$ выполняются следующие условия:

ullet Если $2i\leqslant n$, то $a[i]\leqslant a[2i]$ ullet Если $2i+1\leqslant n$, то $a[i]\leqslant a[2i+1]$

Дан массив целых чисел. Определите является ли он Неар'ом.

Входные данные

Первая строка входного файла содержит целое число n ($1\leqslant n\leqslant 10^5$). Вторая строка содержит n целых чисел по модулю не превосходящих $2\cdot 10^9$.

Выходные данные

Выведите «YES», если массив является Неар'ом и «NO» в противном случае.

Е. Хипуй!

3 секунды, 256 мегабайт

В этой задаче вам необходимо организовать структуру данных Неар для хранения целых чисел, над которой определены следующие операции:

- Insert(X) добавить в Неар число X;
- Extract достать из Неар наибольшее число (удалив его при этом).

Эту задачу нужно решить без использования встроенных структур данных для поиска максимального числа.

Входные данные

Во входном файле записано количество команд n ($1 \le n \le 100~000$), потом последовательность из n команд, каждая в своей строке.

Каждая команда имеет такой формат: "0 <число>" или "1", что означает соответственно операции Insert(<число>) и Extract. Добавляемые числа находятся в интервале от 1 до 10^7 включительно.

Гарантируется, что при выполнении команды Extract в структуре находится по крайней мере один элемент.

Выходные данные

В выходной файл для каждой команды извлечения необходимо вывести число, полученное при выполнении команды Extract.

В	входные данные					
7						
0	100					
0	10					
1						
0	5					
0	30					
0	50					
1						
В	ыходны	е данные				
10	00					
56)					

F. Быстрый поиск в массиве

1 секунда, 512 мегабайт

Дан массив из $m{n}$ целых чисел. Все числа от -10^9 до 10^9 .

Нужно уметь отвечать на запросы вида «Сколько чисел имеют значения от \boldsymbol{l} до \boldsymbol{r} »?

Входные данные

Число n ($1 \le n \le 10^5$). Далее n целых чисел.

Затем число запросов k ($1 \le k \le 10^5$).

Далее k пар чисел l,r ($-10^9 \le l \le r \le 10^9$) — собственно запросы.

Выходные данные

Выведите ${\pmb k}$ чисел — ответы на запросы.

```
    входные данные

    5

    10 1 10 3 4

    4

    1 10

    2 9

    3 4

    2 2

    выходные данные

    5 2 2 0
```

G. Приближенный двоичный поиск

2 секунды, 256 метабайт

Даны два массива. Первый массив отсортирован по неубыванию, второй массив содержит запросы — целые числа.

Для каждого запроса выведите число из первого массива наиболее близкое (то есть с минимальным модулем разности) к числу в этом запросе. Если таких несколько, выведите меньшее из них.

Входные данные

В первой строке входных данных содержатся числа n и k ($0 \le n, k \le 10^5$). Во второй строке задаются n чисел первого массива, отсортированного по неубыванию, а в третьей строке — k чисел второго массива. Каждое число в обоих массивах по модулю не превосходит $2 \cdot 10^9$.

Выходные данные

Для каждого из k чисел выведите в отдельную строку число из первого массива, наиболее близкое к данному. Если таких несколько, выведите меньшее из них.

входные данные						
5 5						
1 3 5 7 9						
2 4 8 1 6						
выходные данные						
1						
1						
выходные данные 1 3 7						

Н. Очень Легкая Задача

2 секунды, 256 мегабайт

Сегодня утром жюри решило добавить в вариант олимпиады еще одну, Очень Легкую Задачу. Ответственный секретарь Оргкомитета напечатал ее условие в одном экземпляре, и теперь ему нужно до начала олимпиады успеть сделать еще n копий. В его распоряжении имеются два ксерокса, один из которых копирует лист за x секунд, а другой — за y. (Разрешается использовать как один ксерокс, так и оба одновременно. Можно копировать не только с оригинала, но и с копии.) Помогите ему выяснить, какое минимальное время для этого потребуется.

Входные данные

На вход программы поступают три натуральных числа n, x и y, разделенные пробелом $(1 \le n \le 2 \cdot 10^8, 1 \le x, y \le 10)$.

Выходные данные

Выведите одно число — минимальное время в секундах, необходимое для получения n копий.

В	входные данные							
4	1	1						
В	ых	одные данные						
3								

входные данные	
5 1 2	
выходные данные	
4	

І. Квадратный корень и квадратный квадрат

2 секунды, 256 мегабайт

Найдите такое число $m{x}$, что $m{x^2} + \sqrt{m{x}} = m{C}$, с точностью не менее 6 знаков после точки.

Входные данные

В единственной строке содержится вещественное число $1.0 \le C \le 10^{10}$.

Выходные данные

Выведите одно число — искомый x.

входные данные					
2.000000000					
выходные данные					
1.0					

входные данные	
18.0000000000	
выходные данные	
4.0	

J. Поляна дров

2 секунды, 256 мегабайт

Маленький мальчик Ферм**а́** живет в деревне. Наступают холодные времена, поэтому бабушка попросила мальчика сходить в лес, чтобы собрать дров. В лесу около деревни, в которой живет Ферма, находится волшебная Поляна Дров, на которой всегда лежат дрова, и никогда не кончаются. Естественно, Ферма должен пойти именно туда.

Единственная проблема заключается в том, что идти до Поляны не очень близко, тем более что скорость передвижения по лесу намного меньше, чем скорость передвижения по полю, в котором находится деревня.

- Деревня находится в точке с координатами (0, 1).
- Поляна находится в точке с координатами (1,0).
- ullet Граница между лесом и полем горизонтальная прямая $oldsymbol{y}=oldsymbol{a}$, где $oldsymbol{a}$ некоторое число ($oldsymbol{0}\leqslantoldsymbol{a}\leqslantoldsymbol{1}$).
- ullet Скорость передвижения по полю составляет V_p , скорость передвижения по лесу V_f . Вдоль границы можно двигаться как по лесу, так и по полю.

Найдите точку, в которой мальчик Ферма должен войти в лес, чтобы дойти до Поляны Дров как можно быстрее.

Входные данные

В первой строке входного файла содержатся два положительных целых числа — V_p и V_f ($1\leqslant V_p,V_f\leqslant 10^5$). Во второй строке содержится единственное вещественное число — координата по оси Oy границы между лесом и полем a ($0\leqslant a\leqslant 1$)

Выходные данные

В единственной строке выходного файла выведите вещественное число с точностью не менее 4 знаков после запятой — координата по оси Ox точки, в которой мальчик Ферма должен войти в лес.

Задачи - Codeforces

входные данные							
5 3 0.4							
выходные данные							
0.783310604							

K. K-best

2 секунды, 256 мегабайт

У Демьяны есть \boldsymbol{n} драгоценностей. Каждая из драгоценностей имеет ценность $\boldsymbol{v_i}$ и вес $\boldsymbol{w_i}$. С тех пор, как её мужа Джонни уволили в связи с последним финансовым кризисом, Демьяна решила продать несколько драгоценностей. Для себя она решила оставить лишь \boldsymbol{k} лучших. Лучших в смысле максимизации достаточно специфического выражения: пусть она оставила для себя драгоценности номер i_1, i_2, \ldots, i_k , тогда максимальной должна быть величина

Помогите Демьяне выбрать ${m k}$ драгоценностей требуемым образом.

Входные данные

На первой строке n и k (1 < k < n < 100000).

Следующие n строк содержат пары целых чисел v_i , w_i ($0 \leq v_i \leq 10^6, 1 \leq w_i \leq 10^6$, сумма всех v_i не превосходит 10^7 , сумма всех w_i также не превосходит 10^7).

Выходные данные

Выведите \pmb{k} различных чисел от $\pmb{1}$ до \pmb{n} — номера драгоценностей. Драгоценности нумеруются в том порядке, в котором перечислены во входных данных. Если есть несколько оптимальных ответов, выведите любой.

В	входные данные						
3	3 2						
	1 1						
1	1 2						
1	1 3						
В	выходные данные						
1	1						
2							