Slab ASE 01			•	
Inputs:	alab lasa the Com			
10 0.35	slab length (cm)			
0.35 0.25	slab height (cm) slab thickness (cm)			
1.82	slab refractive index			
1.6	parasitic coating index	more than		
0.08	specific gain (nepers/cm)	1000 parastic		. 1 . 2 .
100000	number of rays to launch	1000 parastic	ound	. Hur the
•		0		July !
			M	I SU WANK
Outputs:			lu .	AG Browner Oc
0.08	maximum gain (nepers/cm)		2801.3	July 40 mass
-21.9501	minimum gain (nepers/cm)		of its	20141: 1"
		نور	la ma pel gard	of New
		. O.	مرمير برركيب	rather.
	x ·	we go	1 1 pp	·
	3	It thington	and the same	
		س میں		
	Smm		,	
		11/0	7	> O 0
	3.5mm	210	Lala ku	nd of
			7 6	
	y -	CM	1	er mode
	,		para	sitic
			1 04:	€.
			- Line	- W
			for no	< 7mg-1/2/2
			#1:	
			Thus ca	n be
			a zero	loss itie mod
_	2 -+ 40.		10000	: A.
tor	Farauru Moke:	0	paras	une moc
	1 marella	K	L	
Aven	or to the	A.1		
	Parautic Mode: age distance, bles top and bottom	ren grupes		
on	top and bottom	2 3.5mm.	875mm	
		•4	0,70000	
Ave	range distance 1.	10014	-	
מנים	of the state of the	welled belive	en screes	
	rage distance tra lift and right	sides of 2.	Smm _	25 mm
Λ	U		4 6.	L- / 11/L
Au	erage distance.	tra, 200 0	1	
A		1	servee	1
80	uses on slat	rends =	1 Cam	. 12 2 0 44
	erage distance ribes on slat	~	.82	14,40
	• .	•		


```
Dim GainDistribution (1000)
Const pi As Double = 3.141592654
Sub Main()
' Main Macro
 Macro recorded
                        by Raymond J. Beach
  Keyboard Shortcut: Ctrl+u
'Get input parameters
    Worksheets ("sheet1") . Select
    Range("length").Select: SlabLength = ActiveCell.Value
    Range("height").Select: SlabHeight = ActiveCell.Value
    Range("thickness").Select: SlabThickness = ActiveCell.Value
    Range("slabindex").Select: SlabIndex = ActiveCell.Value
    Range("coatingindex").Select: CoatingIndex = ActiveCell.Value
    Range("specificgain").Select: SpecificGain = ActiveCell.Value
    Range("numberofrays").Select: NumberOfRays = ActiveCell.Value
'Define other parameters
    NumberOfParasiticDirections = 0
    Nbins = 100
    MaxGain = SpecificGain
    Range("maximumgain").Select: ActiveCell.Value = MaxGain
    RelativeIndex = SlabIndex / CoatingIndex
    If SlabHeight < SlabThickness Then
        MinGain = 2 * Log((RelativeIndex - 1) / (RelativeIndex + 1)) / SlabHeight
    Else
        MinGain = 2 * Log((RelativeIndex - 1) / (RelativeIndex + 1)) / SlabThickness
    Range("minimumgain").Select: ActiveCell.Value = MinGain
'Initialize the random number generator
    Randomize
'Start the launch cycle.
For i = 1 To NumberOfRays
'Define a random launch direction in (+,+,+) quadrant using direction cosines to define the dire
tion
    Phi = (pi / 2) * Rnd
    Theta = (pi / 2) * Rnd
'x is the slab height direction
'y is the slab thickness direction
'z is the slab length direction
    cx = Sin(Theta) * Cos(Phi)
                                'direction cos in x-direction
    cy = Sin(Theta) * Sin(Phi)
                                 'direction cos in y-direction
    cz = Cos(Theta)
                                 'direction cos in z-direction
'Define unpolarized Fresnel reflection coefficients for three different planes that generate im-
ge space
     'x-plane calculation
    Thetal = ArcCos(cx)
    Temp = SlabIndex * Sin(Thetal) / CoatingIndex
    If Abs(Temp) > 1 Then
        Refx = 1
         Theta2 = ArcSin(Temp)
         Refx = ((Sin(Thetal - Theta2) / Sin(Thetal + Theta2)) ^ 2 + (Tan(Thetal - Theta2) / Tan
Theta1 + Theta2)) ^ 2) / 2
    End If
     'y-plane Calculation
    Theta1 = ArcCos(cy)
    Temp = SlabIndex * Sin(Thetal) / CoatingIndex
    If Abs(Temp) > 1 Then
```

```
Refy = 1
   Else
     . Theta2 = ArcSin(Temp)
       Refy = ((Sin(Thetal - Theta2) / Sin(Thetal + Theta2)) ^ 2 + (Tan(Thetal - Theta2) / Tan
Theta1 + Theta2)) ^ 2) / 2
   End If
    'z-plane calculation
   Thetal = ArcCos(cz)
   Temp = SlabIndex * Sin(Theta1)
    If Abs(Temp) > 1 Then
        Refz = 1
    Else
        Theta2 = ArcSin(Temp)
        Refz = ((Sin(Thetal - Theta2) / Sin(Thetal + Theta2)) ^ 2 + (Tan(Thetal - Theta2) / Tan
Theta1 + Theta2)) ^ 2) / 2
    End If
'Calculate the loss per cm in nepers/cm due to x, y, and z reflections
    Nepersx = cx * Log(Refx) / SlabHeight
    Nepersy = cy * Log(Refy) / SlabThickness
    Nepersz = cz * Log(Refz) / SlabLength
'Calculate the net gain-loss in nepers/cm seen by this ray
    Nepers = SpecificGain + Nepersx + Nepersy + Nepersz
'Bin this launch
    BinNumber = Nbins * (Nepers - MinGain) / (MaxGain - MinGain)
    If BinNumber < 0 Then BinNumber = 0
    GainDistribution(BinNumber) = GainDistribution(BinNumber) + 1
    If Nepers > 0 Then
        Beep
        NumberOfParasiticDirections = NumberOfParasiticDirections + 1
        Worksheets("sheet2").Cells(1 + NumberOfParasiticDirections, 1).Value = cx
        Worksheets("sheet2").Cells(1 + NumberOfParasiticDirections, 2).Value = cy
        Worksheets("sheet2").Cells(1 + NumberOfParasiticDirections, 3).Value = cz
        Worksheets("sheet2").Cells(1 + NumberOfParasiticDirections, 4).Value = Refx
        Worksheets("sheet2").Cells(1 + NumberOfParasiticDirections, 5).Value = Refy
        Worksheets("sheet2").Cells(1 + NumberOfParasiticDirections, 6).Value = Refz
        Check = Sqr(cx ^2 + cy ^2 + cz ^2)
     End If
Next i
End Sub
Function ArcCos(C)
'Returns the Arc Cos of C.
    If C = 0 Then
        ArcCos = pi / 2
        ArcCos = Atn(Sqr(1 - C ^ 2) / C)
    End If
End Function
Function ArcSin(S)
 'Returns the Arc Sin of S
    If S = 1 Then
        ArcSin = pi / 2
    Else
         ArcSin = Atn(S / Sqr(1 - S^2))
     End If
End Function
```