REMARKS

Under the provisions of 37 CFR 1.136(a), submitted herewith is a petition for a three-month extension of time extending the period for response to the instant Office Action to April 26, 2001. This amendment is therefore timely filed.

The Examiner notes that the priority document, French Patent No. 96 01309, has not been received. In fact, receipt of the priority document was acknowledged by the International Bureau which in turn appears to have forwarded the document to the USPTO as evidenced by the Notification of Acceptance of Application under 35 U.S.C. 371 and 37 CFR 1.494 or 1.495 (copy herewith) wherein receipt of the priority document is acknowledged. If the document has been lost in the PTO, it is respectfully requested that the PTO obtain another copy from the International Bureau under Rule 17.2 of the PCT Regulations.

Claims 1-38 are in the application. In response to the restriction requirement made in the Office Action mailed April 12, 2000 (Paper No. 9), applicants elected the Examiner's Group III, the polypeptide of SEQ ID No. 6 read on by claims 1-6, 25 and 33-36. In a subsequent telephonic restriction requirement claims 6 and 25 were withdrawn from consideration as not having been included in Group III in the restriction requirement of April 12, 2000 and restriction was further required among claims 1-5 and 33-36 as follows:

Group I. Claims 1-5, 33 and 34 drawn to a polypeptide of SEQ ID No. 6 Group II. Claims 35 and 36 drawn to inhibitors of SR-p70 activity.

Applicants elected Group I, claims 1-5, 33 and 34, which election is hereby affirmed.

As to the informalities in the specification noted by the Examiner (items 8-11 of the Office Action), the labeling of the drawings has been amended and the section of the specification originally entitled "LEGEND TO THE FIGURES" has been amended by replacement with a rewritten section entitled "BRIEF DESCRIPTION OF THE DRAWINGS" wherein the title has been changed; reference to the drawings has been amended to reflect the amended numbering of the drawings, and the description of Fig. 9 has been amended to conform to the labeling used in Fig. 9.

Applicants also point out that in the amendment filed January 24, 2000, the description of the drawings was amended to identify each sequence of the drawings.

As to the arrangement of the specification, applicants respectfully submit that all requisite elements of a complete patent application are present and that there is nothing in the law that requires the use of specific headings irrespective of their relevance to the content of a particular application.

Claims 1-5, 33 and 34 are rejected under 35 U.S.C. 101 as lacking a specific utility. The Examiner notes that utilities are disclosed for the elected subject matter, i.e. SEQ ID No. 6 and biologically active fragments thereof as prophylactic, therapeutic and diagnostic agents, in particular, in the field of pathologies linked to the phenomena of apoptosis or of cell transformation, but maintains that the specification does not teach what SEQ ID No. 6 is or what it does, it does not teach a utility for any of the fragments claimed, and does not teach a relationship to any specific disease or establish any involvement in the etiology of any specific diseases. The rejection is traversed and reconsideration thereof is requested. First of all, the specification clearly teaches the identity of SEQ ID No. 6 as human SR-p70 (alternatively known as p73 see WO 99/66946, copy herewith), a polypeptide of 636 amino acids as set forth in Fig. 6A and 6B (specification, p. 17, line 12; drawings pages 10 and 11). As to its utility, the specification points out that SR-p70 (p73) is related to p53 as also noted in Pathol. Int., 2000 Aug.; 50(8):589-93 (copy of abstract herewith). For example, the specification teaches that antibodies to p73 are useful in detecting an abnormal accumulation of p73 proteins in biological samples which makes them useful for detecting cancers or monitoring the progression or remission of pre-existing cancers (specification p 14, line 13, p. 15, line 2). Alternatively, the protein itself can be used to detect auto-antibodies against p73 in patients' sera (specification p. 15, lines 14-17). The accumulation of p73 in tumor cells and the testing for serum antibodies thereto is also documented in the literature, e.g., Br. J. Cancer, 2001 Jan. 5; 84(1):57-63 (copy of abstract herewith). The specification also teaches therapeutic utility in pathologies linked to apoptosis or cell transformation as confirmed in WO 99/66946. Thus, it is submitted that applicants do indeed describe the claimed polypeptides and teach a utility therefor. Withdrawal of the rejection of claims 1-5, 33 and 34 under 35 U.S.C. 101 is therefore requested.

Claims 1-5, 33 and 34 are also rejected under 35 U.S.C. 112, first paragraph. The Examiner maintains that since the claimed invention lacks a utility, one skilled in the art would not know how to use the invention. The rejection is believed overcome in view of the foregoing arguments which clearly establish that applicants do indeed teach a utility for the claimed invention.

The Examiner further urges that the specification does not enable one skilled in the art to make/use the invention commensurate in scope with the claims. The Examiner states that although enabling for SEQ ID No. 6, the specification does not reasonably provide enablement for biologically active sequences derived from SEQ ID No. 6. Applicants disagree. Claim 1 as amended is directed inter alia to SEQ ID No. 6 and sequences derived therefrom and having substantially the same biological activity. The specification teaches that derivatives are polypeptides obtained by modification, deletion or addition of a single amino acid or a limited number of amino acids and which are biologically active (specification, p. 3, lines 9-28). The definition of "biologically active" at p. 3, lines 29-37 of the specification substantially mirrors the biological activity described for SEQ ID No. 6. Thus the claimed variants of SEQ ID No. 6, the means of obtaining them and the means of verifying that they have substantially the same biological activity and hence the same utility as SEQ ID No. 6 are well within the skill of the art and would not require undue experimentation. Accordingly, the specification would enable one skilled in the art to practice the claimed invention across its entire scope. Reconsideration and withdrawal of the rejection are therefore requested.

The foregoing arguments also apply to the rejection of claims 33 and 34 under 35 U.S.C. 112, first paragraph. Moreover, one skilled in the art would surely know how to make a pharmaceutical composition containing one of the claimed polypeptides, and since, as noted above, said compounds have substantially the same biological activity, the use thereof in the treatment of cancer is effectively taught. Reconsideration and withdrawal of the rejection are requested.

Claims 1-5, 33 and 34 are also rejected under 35 U.S.C. 112, first paragraph on the grounds that the specification fails to describe the claimed invention. Substantially for the reasons given above, in particular with regard to the description of sequences derived from SEQ ID No. 6 at page 3, lines 9-37, it is submitted that the

specification does convey to one skilled in the art applicant's claimed invention. Reconsideration and withdrawal of the rejections are requested.

Claims 4, 33 and 34 are rejected under 35 U.S.C. 112, second paragraph as being indefinite. The rejection is believed fully met by the amendments of said claims.

Claims 1-4, 33 and 34 are rejected under 35 U.S.C. 102(b) as being anticipated by Dequiedt et al., (DNA SEQ. 11995, 5:255-259). The rejection is traversed and reconsideration thereof is requested. As described in applicants' specification (p. 3, lines 9-28, variant polypeptides are those obtained by modification, addition or deletion of a single amino acid, or of a limited number of amino acids as well as any isoform sequence and which, as specified in the claims, have substantially the same biological activity as SEQ ID No. 6. The cited reference shows a comparison of the prior art database polypeptide with a p73 partial sequence of some 350 amino acids. This is hardly a variant involving a single or a limited number of the 636 amino acids of p73. Moreover, even taking the entire sequence shown there are nearly as many mismatches as there are matches. Clearly then, the reference simply does not teach applicants' polypeptides and accordingly is incompetent to anticipate the instant claims. Reconsideration and withdrawal of the rejections under 102(b) is requested.

Claims 1 and 5 are rejected under 35 U.S.C. 103 as being unpatentable over Dequiedt et al. in view of U.S. Patent 5,532,348. Reconsideration and withdrawal are requested.

It is submitted that since, as pointed out hereinabove, the primary reference fails to teach the claimed polypeptides the secondary reference relating to a p53 fusion protein adds nothing to the primary reference and hence the combined references would not have suggested a fusion protein of the instantly claimed polypeptides.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current amendment. The attachment is entitled "Version With Markings To Show Changes Made".

There being no remaining issues, this application is believed in condition for favorable reconsideration and such action is earnestly solicited.

Respectfully submitted,

Paul E. Dupont

Reg. No. 27,438

Address:

Patent Department Sanofi-Synthelabo Inc. 9 Great Valley Parkway Malvern, PA 19355

Telephone No. (610) 889-6338 Facsimile: (610) 889-8799

VERSION WITH MARKINGS TO SHOW CHANGES MADE

In The Specification:

The section entitled "LEGEND TO THE FIGURES" at page 16, line 34 to page 19, line 32 has been deleted and replaced by the following section:

[LEGEND TO THE FIGURES] BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1A and 1B [Figure 1]: Nucleic acid comparison of monkey SR-p70a cDNA

(corresponding to nucleotides 1-1599 of SEQ ID No. 1) with the nucleic acid sequence of monkey p53 cDNA

(SEQ ID No. 43).

[Figure] Fig. 2: Protein comparison of monkey SR-p70a amino acids 1-

450 of SEQ ID No. 1 with monkey p53 protein (SEQ ID

No. 44) (sw: p53-cerae).

Fig. 3A-C [Figure 3]: Comparison of the nucleic acid sequence of monkey

SR-p70a and b cDNA (corresponding, respectively, to

SEQ ID No. 1 and SEQ ID No. 3).

Fig. 4A and 4B [Figure 4]: Nucleic acid sequence (SEQ ID No. 1) and deduced

protein sequence (SEQ ID No. 2) of monkey SR-p70a.

[Figure] Fig. 5: Partial nucleic acid sequence (SEQ ID No. 3) and

complete deduced protein sequence (SEQ ID No. 4) of

monkey SR-p70b.

Fig. 6A and 6B [Figure 6]: Partial nucleic acid sequence (SEQ ID No. 5) and

deduced complete protein sequence (SEQ ID No. 6) of

human SR-p70a.

[Figure] Fig. 7: Partial nucleic acid sequence (SEQ ID No. 7) and

complete deduced protein sequence (SEQ ID No. 8) of

mouse SR-p70c.

[Figure] Fig. 8: Partial nucleic acid sequence (SEQ ID No. 9) and

partially deduced protein sequence (SEQ ID No. 10) of

mouse SR-p70a.

Fig. 9A and 9B [Figure 9]: Multialignment of the proteins deduced from monkey

(SR-p70a-cos3 and SR-p70b-cos3) [(a and b)] (SEQ ID

No. 2 and SEQ ID No. 4, respectively), human [(a)] (SR-p70-ht29) and mouse [(a and c)] (SR-p70c-att20 and sr-p70a-att20) (SEQ ID No. 10 and SEQ ID No. 8, respectively), SR-p70 cDNAs.

[Figure] Fig. 10a:

Immunoblot of the SR-p70 protein.

[Figure] Fig. 10b:

Detection of the endogenous SR-p70 protein.

[Figure] Fig. 11:

Chromosomal localization of the human SR-p70 gene. The signal appears on chromosome 1, in the p36 region.

[Figure] Fig. 12:

Genomic structure of the SR-p70 gene and comparison with that of the p53 gene. The human protein sequences of SR-p70a (SEQ ID No. 6) (upper line of the alignment) and of p53 (SEQ ID No. 45) (lower line) are divided up into peptides on the basis of the respective exons from which they are encoded. The figures beside the arrows correspond to the numbering of the corresponding exons.

[Figure] Fig. 13:

Human genomic sequence of SR-p70 from the 3' end of intron 1 to the 5' end of exon 3 (SEQ ID No. 46). The introns are boxed. At positions 123 and 133, two variable nucleic acid positions are localized ($G \square A$ at 123 and $C \square T$ at 133). The restriction sites for the enzyme StyI are underlined (position 130 in the case where a T is present instead of a C at position 133, position 542 and position 610). The arrows indicate the positions of the nucleic acid primers used in Example XI.

[Figure] Fig. 14:

Nucleic acid comparison of the 5' region of the human cDNAs of SR-p70d (SEQ ID No. 12) and of SR-p70a (SEQ ID No. 5).

Fig. 15A-J [Figure 15]:

Multialignment of the nucleic acid sequences corresponding to human SR-p70a, b, d, e, and f (SEQ ID No. 5, SEQ ID No. 18, SEQ ID No. 12, SEQ ID No. 14 and SEQ ID No. 16, respectively).

Fig. 16A-C [Figure 16]:

Multialignment of the proteins deduced from human SR-p70 (a, b, d, e and f) (SEQ ID No. 6, SEQ ID No. 19, SEQ ID No. 13, SEQ ID No. 15 and SEQ ID No. 17, respectively), cDNA's.

[Figure] Fig. 17:

Partial nucleic acid sequence (SEQ ID No. 5) and partial deduced protein sequence (SEQ ID No. 6) of human SR-p70a. The two bases in bold characters correspond to two variable positions (see Figure 6). This sequence

possesses a more complete non-coding 5' region than the one presented in Figure 6.

[Figure] Fig. 18:

Analysis of the SR-p70a transcripts after PCR amplification.

lane M: 1 kb ladder (GIBCO-BRL) molecular weight

markers

lane 1: line HT29 lane 3: line SK-N-AS lane 5: line UMR-32 lane 7: line U-373 MG lane 9: line SW 480 lane 11: line CHP 212 lane 13: line SK-N-MC

lanes 2, 4, 6, 8, 10, 12, 14: negative controls corresponding to lanes 1, 3, 5, 7, 9, 11 and 13, respectively (absence of inverse transcriptase in the RT-PCR reaction).

Fig. 19A and 19B [Figure 19]: A:

Analysis by agarose gel electrophoresis of genomic fragments amplified by PCR (from the 3' end of intron 1 to the 5' end of exon 3). The numbering of the lanes corresponds to the numbering of the control population. Lane M: molecular weight markers (1 kb ladder).

ladd

B:

Analysis identical to that of part A, after digestion of the same samples with the restriction enzyme Styl.

[Figure] Fig. 20:

Diagrammatic representation with a partial restriction map of the plasmid pCDNA3 containing human SR-p70a.

In The Claims:

Claims 1, 4 and 33 have been amended as follows:

1.(Twice amended) A purified polypeptide, comprising an amino acid sequence selected from the group consisting of:

- a) sequence SEQ ID No. 2;
- b) sequence SEQ ID No. 4;
- c) sequence SEQ ID No. 6;

- d) sequence SEQ ID No. 8;
- e) sequence SEQ ID No. 10;
- f) sequence SEQ ID No. 13;
- g) sequence SEQ ID No. 15;
- h) sequence SEQ ID No. 17;
- i) sequence SEQ ID No. 19; and
- j) any [biologically active] sequence derived from SEQ ID No. 2, SEQ ID No. 4, SEQ ID No. 6, SEQ ID No. 8, SEQ ID No. 10, SEQ ID No. 13, SEQ ID No. 15, SEQ ID No. 17 or SEQ ID No. 19 and having substantially the same biological activity.
- 4. (Twice amended) A polypeptide according to Claim 1, which is produced from an alternative splicing of messenger RNA of a gene coding for said polypeptide.
- 33. (Twice amended) A pharmaceutical composition for the treatment of pathologies linked to apoptosis or cell transformation comprising an effective amount of the polypeptide according to Claim 1.

Entrez PubMed

☐1: Br J Cancer 2001 Jan 5;84(1):57-63

DEPL

Related Articles, Books, LinkOut

HEW

PubMed Services Detection of p73 antibodies in patients with various types of cancer: immunological characterization.

Tominaga O, Unsal K, Zalcman G, Soussi T.

Unite de genotoxicologie des tumeurs, Institut Curie, 26 rue d'Ulm, Paris, 75005.

p53 antibodies have been found in the sera of patients with various types of cancer. The presence of these antibodies is generally associated with p53 accumulation in the tumour that is believed to trigger this humoral response. The recent discovery of 2 new members of the p53 family, p73 and p63, led us to study the specificity of this immune response towards the 3 proteins. Serum samples from 148 patients with various types of cancer were tested for antibodies against p73 and p63 using immunoprecipitation. 72 patients were previously shown to have p53 antibodies whereas 76 were negative. The control group consisted of 50 blood donors. p73 were detected in 22/148 (14.9%) of the cancer patients (11/72 in the group with p53-antibodies and 11/76 in the negative group). Only two sera from the control (4%) were positive. p63 antibodies were detected in only 4/148 (2.7%) of the cancer patients. Epitope mappings were performed and demonstrate that p73 antibodies are directed toward the central region of the p73 protein whereas p53 antibodies react predominantly toward the amino- and the carboxy-terminus of p53. Our results indicate that there is a specific immune response toward the p73 protein in cancer patients, a finding supported by an increasing number of publications describing p73 accumulation in tumoral cells. Copyright 2001 Cancer Research Campaign.

PMID: 11139314 [PubMed - indexed for MEDLINE]

Display Abstract Save Text Order Add to Clipboard

> Write to the Help Desk NCBI I NLM I NIH Department of Health & Human Services Freedom of Information Act | Disclaimer

Related Resources

p73: structure and function.

PubMed Services

Ichimiya S, Nakagawara A, Sakuma Y, Kimura S, Ikeda T, Satoh M, Takahashi N, Sato N, Mori M.

Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. ichimiya@sapmed.ac.jp

Related Resources Alteration of the p53 tumor suppressor gene is a common, if not general, observation in human malignant tumors. p73 Is a novel member of the p53 family at chromosome 1p36.3, at which locus frequent defects are seen in many tumors including neuroblastoma. Besides structural similarities, the fact that p73 functions in the regulation of the cell cycle and apoptosis promotes the expansion of the research field concerning p53-associated tumor progression. In this paper, we review the structure and function of p73 as well as the mutational status in various human tumors. In addition, possibilities for new therapeutic applications with p73 for cancer cell control are discussed.

Publication Types:

- Review
- Review, tutorial

PMID: 10972855 [PubMed - indexed for MEDLINE]

Save Text Order Add to Clipboard Display Abstract

> Write to the Help Desk NCBI I NLM I NIH Department of Health & Human Services Freedom of Information Act | Disclaimer

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A61K 38/00, 48/00, C12N 15/85

(11) International Publication Number: A1

WO 99/66946

(43) International Publication Date:

29 December 1999 (29,12,99)

(21) International Application Number:

PCT/US99/14057

(22) International Filing Date:

23 June 1999 (23,06,99)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

60/090,526

24 June 1998 (24.06.98)

US

(71) Applicant (for all designated States except US): TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; Suite 300, 3700 Market Street, Philadelphia, PA 19104 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): EL-DEIRY, Wafik, S. [US/US]; Apartment P113, 1500 Locust Street, Philadelphia, PA 19102 (US).

(74) Agents: REED, Janet, E. et al.; Dann Dorfman Herrell and Skillman, Suite 720, 1601 Market Street, Philadelphia, PA 19103 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: COMPOSITIONS AND METHODS FOR INDUCING APOPTOSIS IN E6-EXPRESSING CELLS

(57) Abstract

Methods, pharmaceutical compositions and kits are provided for inducing programmed cell death in cells expressing the E6 oncogene. The methods and compositions are particularly suited for treatment of cancers involving infections with E6-expressing virus, such as human papilloma virus (HPV). The methods and compositions utilize the p53 homolog, p73. Unlike p53, p73 is not targeted by the E6 oncoprotein for ubiquitin-mediated degradation, and so provides a viable alternative to p53 therapy for treatment of E6-expressing cancers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI .	Pinland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	8Z	Swaziland
ΑZ	· Azerbaijan	GB	United Kingdom	MC	Monaco .	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Treland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda ·
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	2W	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		-
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOSITIONS AND METHODS FOR INDUCING APOPTOSIS IN E6-EXPRESSING CELLS

This application claims priority to U.S. Provisional Application 60/090,526, filed June 24, 1998, the entirety of which is incorporated by reference herein.

5

10

FIELD OF THE INVENTION

This invention relates to the field of methods of treatment of cancer. In particular, this invention provides a method of treatment of cancers associated with human papillomavirus infection or other tumors in which the E6 oncogene is expressed, and a pharmaceutical preparation and kit to practice the method.

BACKGROUND OF THE INVENTION

Various scientific and scholarly articles and patents are referred to in brackets throughout the specification. These articles and patents are incorporated by reference herein to describe the state of the art to which this invention pertains.

Infection with human papillomavirus (HPV) is a major risk factor for the development of squamous cell carcinoma of the cervix. The E6-oncoprotein encoded by HPV has been shown to target the tumor suppressor protein p53 for degradation via ubiquitin conjugation and subsequent proteolysis (Scheffner et al., 1990, Cell 63: 1129-1136). HPV-E6-expressing cancer cells are resistant to the tumor suppressive effects of exogenous wild-type

p53 delivered by an adenovirus (Ad) vector (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229).

Several approaches have been proposed to control the growth of HPV E6-expressing cancer cells. These include the use of p21-expressing adenovirus to bypass the p53-degradation step (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229), the use of bovine papillomavirus E2 gene to reactivate endogenous p53 (Hwang et al., 1996, Oncogene 12:795-803), the use of hypoxic conditions to suppress p53 degradation (Kim et 10 al., 1997, Cancer Res. 57:4200-4204), the use of alternatively spliced E6 to compete with normally spliced E6 (Pim et al., 1997, Oncogene 15: 257-264), the use of antisense strategies to lower E6 expression (Hamada et al., 1996, Gyn. Onc. 63:219-227; Beer-Romero et al., 15 1997, Oncogene 14: 595-602), and the generation of p53 mutants resistant to ubiquitin-directed degradation (Crook et al., 1996, Virology, 217:285-292). mentioned approach, it was found that, although lysine 20 mutants of the C-terminus of p53 did resist E6-mediated degradation in vitro, the effect was not observed in intact cells, where the lysine mutant was efficiently targeted for degradation (Crook et al., 1996, Virology, 217:285-292). Some tumor-derived mutants of p53 may also 25 be resistant to E6-dependent proteolysis in vitro (Medcalf and Milner, 1993, Oncogene 8:2847-2851). p21-expressing adenovirus (Ad-p21) inhibits the growth of E6-over-expressing cells, although the primary effect of p21 over-expression is a growth arrest associated with a 30 large cell phenotype and little, if any, apoptosis (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229; Meng et al., 1998, Clin. Cancer Res. 4: 251-259). none of the aforementioned approaches has been

20

25

30

particularly successful in controlling the growth of E6over-expressing cells by induction of programmed cell death.

Alternative strategies for the suppression of growth of E6-expressing cancer cells are of great utility. Such alternative strategies would ideally induce apoptosis of the E6-over-expressing cells, as well as inhibit cell proliferation.

10 SUMMARY OF THE INVENTION

Therapy based on the p53 tumor suppressor is unavailable for cancers associated with expression of the E6 oncogene because the E6 protein targets p53 for degradation by ubiquitin-mediated proteolysis. It has been discovered in accordance with the present invention that the p53 homolog, p73, is not targeted for degradation by E6 and, moreover, is a potent inhibitor of cancer colony growth and inducer of apoptosis, even in cells that over-express E6. Thus, p73 is a superior tumor suppressor protein for treatment of cancers in which the E6 oncogene is expressed, such as those associated with HPV infection.

According to one aspect of the present invention, method is provided for inducing apoptosis in an E6-expressing cell. The method comprises administering to the cell an amount of p73 protein effective to induce the apoptosis. In one embodiment, the p53 protein is administered as a DNA construct comprising an expressible sequence that encodes the protein. Preferably, the DNA construct is operably inserted into a viral vector for transforming cells.

The method is typically utilized for arresting growth of cancerous cells, particularly cancers

. 5

20

associated with infection with E6-expressing viruses, such as HPV. In one embodiment, the cell is a cultured cell In another embodiment, the cell is obtained from the body of a living organism, the administering is performed ex vivo, and the cell is returned to the living organism. In still another embodiment, the cell is disposed within a living organism and the administering is performed in vivo.

The p73 protein utilized in the method is

10 preferred to be p73α or p73β, most preferably the latter.

In a preferred embodiment, the protein comprises a sequence selected from the group consisting of SEQ ID

NO:1 and SEQ ID NO:2. If a DNA construct is used, the DNA construct preferably comprises more than 50

15 nucleotides of SEQ ID NO:3.

According to another aspect of the invention, an apoptotic, E6-expressing transgenic cell is provided, which comprises a heterologous, expressible DNA construct encoding p73. In one embodiment, the cell is obtained from a cultured cell line. In another embodiment, the cell is a primary cell obtained from a living organism. In yet another embodiment, it is disposed within a living organism.

According to another aspect of the invention, a

25 pharmaceutical preparation for treatment of cancers
associated with E6 over-expression is provided. In one
embodiment, the pharmaceutical preparation comprises a
p73 protein associated with a delivery vehicle for
delivering proteins to cancer cells. In another

30 embodiment, the preparation comprises an expressible DNA
construct encoding p73, associated with a delivery
vehicle for delivering DNA to cancer cells. The

pharmaceutical preparation also may comprise at least one additional active ingredient for treatment of cancer.

According to another aspect of the invention, a kit is provided that contains the pharmaceutical preparation and other optional components. For instance, in a preferred embodiment, the kit may include a second pharmaceutical agent useful for treating cancer.

Other features and advantages of the present invention will be better understood by reference to the drawings, detailed description and examples that follow.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Ad-E6 infection leads to degradation of both wild-type and mutant p53 in human cancer cells. The human brain (U373, H80; lanes 1-4), breast(SKBr3; 15 lanes 5,6), lung (H460; lanes 7,8), or colon (HCT116, SW480; lanes 9-12) cancer cell lines were infected using Ad-LacZ or Ad-E6 (as indicated). Immunoblotting for p53 expression (upper panels) or pRb expression (lower 20 panels) was carried out as described in Example 1. pRb expression is presented to document equivalent loading between lysates derived from Ad-LacZ and Ad-E6 infected cells. For cell lines that express mutant p53, the following mutations have been previously reported: U373 cell line: R273H (Kaghad et al., 1997, Cell 90: 809-819); 25 SW480 cell line: R273H, P309S (Kaghad et al., 1997, Cell 90: 809-819); SKBr3 cell line: R175H (Kovach et al., 1991, J. Natl. Cancer Inst., 83:1004-1009); H80 cell line (also known as U-373 MG): R273H (Gomez-Manzano et al., 30 1996, Cancer Res. 56:694-699).

Figure 2. p73, unlike p53, is not specifically targeted for degradation in Ad-E6 infected cancer cells. SW480 cells were transfected by p73 α (lanes 1,2), p73 α m

(lanes 3,4), p73 β (lanes 5,6), or p73 β m (lanes 7,8). At six hours following transfection, cells were infected by either Ad-LacZ or Ad-E6 (as indicated). At 20 hrs. following infection, expression of p73 α (upper left) or p73 β (upper right) was detected by immunoblotting using anti-HA antibody and for p53 (lower panels) expression using anti-p53 antibody, as described in Example 1. The band just above p73 α is a non-specific anti-HA cross-reactive band.

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

Various terms relating to the biological molecules of the present invention are used hereinabove and also throughout the specifications and claims.

With reference to nucleic acid molecules, the term "isolated nucleic acid" is sometimes used. This term, when applied to DNA, refers to a DNA molecule that is separated from sequences with which it is immediately contiguous (in the 5' and 3' directions) in the naturally occurring genome of the organism from which it was derived. For example, the "isolated nucleic acid" may comprise a DNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the genomic DNA of a procaryote or eucaryote. An "isolated nucleic acid molecule" may also comprise a cDNA molecule.

With respect to RNA molecules, the term
"isolated nucleic acid" primarily refers to an RNA
molecule encoded by an isolated DNA molecule as defined
above. Alternatively, the term may refer to an RNA
molecule that has been sufficiently separated from RNA
molecules with which it would be associated in its
natural state (i.e., in cells or tissues), such that it

10

25

30

exists in a "substantially pure" form (the term "substantially pure" is defined below).

With respect to proteins or polypeptides, the term "isolated protein (or polypeptide)" or "isolated and purified protein (or polypeptide)" is sometimes used herein. This term refers primarily to a protein produced by expression of an isolated nucleic acid molecule of the invention. Alternatively, this term may refer to a protein which has been sufficiently separated from other proteins with which it would naturally be associated, so as to exist in "substantially pure" form.

The term "substantially pure" refers to a preparation comprising at least 50-60% by weight the compound of interest (e.g., nucleic acid,

oligonucleotide, protein, etc.). More preferably, the preparation comprises at least 75% by weight, and most preferably 90-99% by weight, the compound of interest. Purity is measured by methods appropriate for the compound of interest (e.g. chromatographic methods, agarose or polyacrylamide gel electrophoresis, HPLC analysis, and the like).

Nucleic acid sequences and amino acid sequences can be compared using computer programs that align the similar sequences of the nucleic or amino acids thus define the differences. For purposes of this invention, the GCG Wisconsin Package version 9.1, available from the Genetics Computer Group in Madison, Wisconsin, and the default parameters used (gap creation penalty=12, gap extension penalty=4) by that program are the parameters intended to be used herein to compare sequence identity and similarity. Alternatively, standard BLAST query parameters, utilized by public databases such as GenBank, are utilized herein.

25

30

The term "substantially the same" refers to nucleic acid or amino acid sequences having sequence variation that do not materially affect the nature of the protein (i.e. the structure, thermostability 5 characteristics and/or biological activity of the protein). With particular reference to nucleic acid sequences, the term "substantially the same" is intended to refer to the coding region and to conserved sequences governing expression, and refers primarily to degenerate codons encoding the same amino acid, or alternate codons 10 encoding conservative substitute amino acids in the encoded polypeptide. With reference to amino acid sequences, the term "substantially the same" refers generally to conservative substitutions and/or variations in regions of the polypeptide not involved in 15 determination of structure or function.

The terms "percent identical" and "percent similar" are also used herein in comparisons among amino acid and nucleic acid sequences. When referring to amino acid sequences, "percent identical" refers to the percent of the amino acids of the subject amino acid sequence that have been matched to identical amino acids in the compared amino acid sequence by a sequence analysis "Percent similar" refers to the percent of the amino acids of the subject amino acid sequence that have been matched to identical or conserved amino acids. Conserved amino acids are those which differ in structure but are similar in physical properties such that the exchange of one for another would not appreciably change the tertiary structure of the resulting protein. Conservative substitutions are defined in Taylor (1986, J. Theor. Biol. 119:205). When referring to nucleic acid molecules, "percent identical" refers to the percent of

the nucleotides of the subject nucleic acid sequence that have been matched to identical nucleotides by a sequence analysis program.

Transcriptional and translational control

sequences, sometimes referred to herein as "expression control" sequences or elements, or "expression regulating" sequences or elements, are DNA regulatory elements such as promoters, enhancers, ribosome binding sites, polyadenylation signals, terminators, and the

like, that provide for the expression of a coding sequence in a host cell. The term "expression" is intended to include transcription of DNA and translation of the mRNA transcript.

The terms "promoter", "promoter region" or "promoter sequence" refer generally to transcriptional 15 regulatory regions of a gene, which may be found at the 5' or 3' side of the coding region, or within the coding region, or within introns. Typically, a promoter is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream 20 (3' direction) coding sequence. The typical 5' promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels 25 detectable above background. Within the promoter sequence is a transcription initiation site (conveniently defined by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. 30

The term "selectable marker gene" refers to a gene encoding a product that, when expressed, confers a

-10-

selectable phenotype such as antibiotic resistance on a transformed cell.

The term "operably linked" means that the regulatory sequences necessary for expression of a particular coding sequence are placed in the DNA molecule in the appropriate positions relative to the coding sequence so as to enable expression of the coding sequence. This same definition is sometimes applied to the arrangement of transcription units and other regulatory elements (e.g., enhancers or translation regulatory sequences) in an expression vector.

5

10

15

20

25

30

A "vector" is a replicon, such as plasmid, phage, cosmid, or virus to which another nucleic acid segment may be operably inserted so as to bring about the replication or expression of the segment.

The term "nucleic acid construct" or "DNA construct" is sometimes used to refer to a coding sequence or sequences operably linked to appropriate regulatory sequences and inserted into a vector for transforming a cell. This term may be used interchangeably with the term "transforming DNA". Such a nucleic acid construct may contain a coding sequence for a gene product of interest, along with a selectable marker gene and/or a reporter gene.

A "heterologous" region of a nucleic acid construct is an identifiable segment (or segments) of the nucleic acid molecule within a larger molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, coding sequence is a construct where the coding sequence itself

is not found in nature (e.g., a cDNA where the genomic coding sequence contains introns, or synthetic sequences having codons different than the native gene). Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

A cell has been "transformed" or "transfected" by exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome 10 of the cell. For example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by 15 daughter cells through chromosome replication. stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells 20 derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

"Killing", "programmed cell death" and

"apoptosis" are used interchangeably in this text to
describe a series of cellular events that culminates in
the death of the target cell. Apoptosis is a
characteristic morphological change in which the cell and
its nucleus shrink, condense and fragment. Frequently

accompanying this morphological change are the activation
of intracellular proteases and nucleases that lead to,
for example, cell nucleus involution and nuclear DNA
fragmentation.

II. Description

Human papillomavirus (HPV) is the major cause of cervical cancer worldwide. HPV-E6 protein targets the p53 tumor suppressor protein for degradation by ubiquitin-mediated proteolysis, making such cancers resistant to p53-mediated therapy.

In accordance with the present invention, two discoveries have been made that have significant implications and suggest novel strategies for cancer 10 therapy. The first discovery is that HPV-E6 targets both endogenous wild-type and mutant p53 for degradation (Fig. Possibly because p53 mutations are rare in cervical cancer (Busby-Earle et al., 1994, Br. J. Cancer 69: 732-737) the hypothesis that HPV-E6 could target endogenous mutant p53 for degradation has not been 15 previously directly tested. While several studies have reported low levels of p53 expression and an inverse correlation between the presence of HPV and p53 expression (Scheffner et al., 1991, Proc. Natl. Acad. Sci. USA 88: 5523-5527; Srivastava et al., 1992, 20 Carcinogenesis 13: 1273-1275; Baret al., 1996, Eur. J. Gyn. Onc. 17: 283-285; Hachisuga et al., 1996, Pathology 28: 28-31), there is apparently no such correlation between p53 mutation and HPV (Busby-Earle et al., 1994, Br. J. Cancer 69: 732-737; Kim and Kim, 1995, Yonsei Med. 25 J. 36:412-425). While the discovery that HPV-E6 also targets mutant p53 for degradation provides no insight into how the rare p53 mutations may contribute to HPV-associated cervical cancer, it is consistent with the

The second and more significant discovery is that the p53 homolog, p73, is not targeted for

presence of HPV in high risk cervical cancer.

known inverse correlation between p53 expression and the

degradation by the E6 oncoprotein. Furthermore, as described in greater detail below and in Example 1, p73 is a potent inducer of apoptosis and is an effective inhibitor of cancer cell growth. For such HPV

- 5 E6-expressing cancers where p53 is degraded and fails to control growth, p73 is an excellent substitute for p53 in gene replacement because of its resistance to E6-mediated proteolysis. Other differences of effect of viral oncoproteins have been noted (Marin et al., 1998, Mol.
- Cell. Biol. 18:6316-6324; Steengenga et al., 1999, Mol.
 Cell. Biol. 19:3885-3894; Dobbelstein and Roth, 1998, J.
 Gen Virol. 79:3079-3083; Roth et al., 1998, J. Virol.
 72:8510-8516; Reichelt et al., 1999, Arch. Virol.
 144:621-626). It is noteworthy that, even though p73 has
- the potential to interact with p53 in a yeast two-hybrid analysis (Kaghad et al., 1997, Cell 90: 809-819), the expressed p73 is not subject to E6-dependent proteolysis under conditions where high levels of endogenous mutant p53 are degraded (Fig. 2).
- 20 Provided with this invention are methods, pharmaceutical preparations and kits that utilize p73 for arresting the growth of E6-expressing cells, particularly HPV-infected cancer cells. The treatment of the target cells may be in vivo, within the patient; or ex vivo,
- removed from the patient, treated, and reintroduced into the patient. It is contemplated that the methods, pharmaceutical preparations and kits of the invention can be used alone or in conjunction with chemotherapy or radiation therapy to treat cancers in vivo.
- Additionally, the methods, pharmaceutical preparations and kit of the invention can be used for experimental purposes *in vitro* with standard cell cultures.

25

As mentioned, the treatment of cancers associated with the over-expression of E6 protein is of particular interest. Several circumstances may result in mammalian cells that over-express E6 protein. Commonly, this nature of cell results from an infection with human papillomavirus (HPV) wherein the E6-oncogene encoded by the virus is expressed in the cell. "HPV infection is well-known to result in cancers of the uterine cervix. In addition to anogential cancer, HPV infection may also result in esophageal squamous cell cancer, laryngeal 10 papilloma, bronchiolo-alveolar carcinoma, penile carcinoma and bladder carcinoma, among others. Additionally, E6-over-expression may also result from a mutation in the mammalian cell genome such that the endogenous E6 gene is over-expressed. All mammalian 15 cells that over-express the E6 protein, regardless of the origin of the phenotype, are contemplated for treatment with the method of the invention.

The following description set forth the general procedures involved in practicing the present invention. To the extent that specific materials are mentioned, it is merely for purposes of illustration and is not intended to limit the invention. Unless otherwise specified, general cloning procedures, such as those set forth in Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory (1989) (hereinafter "Sambrook et al.") or Ausubel et al. (eds) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons (1999) (hereinafter "Ausubel et al.") are used.

Any p73 variant and the nucleic acid sequence encoding it are considered suitable for use in the present invention. In this regard, it should be noted that the two major splice variants of p73, p73 α and p73 β ,

25

30

both have been found resistant to E6-mediated degradation (see Example 1), though $p73\beta$ appears to be somewhat more effective in this regard and is preferred for the practice of the present invention.

The amino acid sequence of p73 protein on which 5 to base the nucleic acid construct is ideally from the gene that is endogenous to the species which is being treated. In a preferred embodiments, Homo sapiens is being treated and the nucleic acid construct encodes SEO ID NO:1 or SEQ ID NO:2. In a most preferred embodiment, 10 the nucleic acid sequence is SEQ ID NO:3. Other variants of p73 protein also exist in Homo sapiens and the sequences of these variants are also contemplated for use with the invention (DeLaurenzi et al., 1999, Cell Death Differ. 6:389-390 incorporated by reference herein; 15 Genbank Accession No. Y11416 incorporated by reference herein).

The availability of amino acid sequence information, such as the full length sequence in SEQ ID NO:1 and SEQ ID NO:2 enables the preparation of a synthetic gene that can be used to synthesize the Homo sapiens p73 protein in standard in vivo expression systems or to make viral vectors expressing the p73 protein. The sequence encoding Homo sapiens p73 from isolated native nucleic acid molecules such as SEQ ID NO:3 can be utilized. The amino acid and nucleic acid sequences found in Genbank Accession Nos. AF138873, Y11419 and AF043641 can be used to prepare the p73 protein endogenous to Mus musculus, Chlorocebus aethiops and Barbus barbus, respectively. Alternately, an isolated nucleic acid that encodes the amino acid sequence of the invention can be prepared by oligonucleotide synthesis. Codon usage tables can be

used to design a synthetic sequence that encodes the protein of the invention. In a preferred embodiment, the codon usage table has been derived from the organism in which the synthetic nucleic acid will be expressed. For example, the codon usage for E. coli would be used to design an expression DNA construct to produce the Homo sapiens p73 in E. coli.

5

10

Synthetic oligonucleotides may be prepared by the phosphoramadite method employed in the Applied Biosystems 38A DNA Synthesizer or similar devices. The resultant oligonucleotide may be purified according to methods known in the art, such as high performance liquid chromatography (HPLC).

Nucleic acid molecules encoding p73 also may be 15 isolated from appropriate species using methods well known in the art. Native nucleic acid sequences may be isolated by screening mammalian or other cDNA or genomic libraries with oligonucleotides preferably designed to match the Homo sapiens coding sequence of p73 (SEQ ID 20 Several other p73 amino acid sequences are now NO:3). known: Mus musculus, Genbank Accession No. AF138873; Chlorocebus aethiops (Green Monkey), Genbank Accession No. Y11419; and Barbus barbus, Genbank Accession No. AF043641; each of these sequences is incorporated by reference herein. Oligonucleotides designed to match any 25 of these sequences or to match regions of high homology between these sequences may also be used to screen for mammalian p73-encoding nucleotides. In positions of degeneracy where more than one nucleic acid residue could 30 be used to encode the appropriate amino acid residue, all the appropriate nucleic acids residues may be incorporated to create a mixed oligonucleotide population, or a neutral base such as inosine may be

used. The strategy of oligonucleotide design is well known in the art (see also Sambrook et al., Molecular Cloning, 1989, Cold Spring Harbor Press, Cold Spring Harbor NY). Alternatively, PCR (polymerase chain reaction) primers may be designed by the above method to match a known coding sequence of p73, and these primers used to amplify the native nucleic acids from isolated mammalian cDNA or genomic DNA.

Nucleic acids having the appropriate sequence
homology with a Homo sapiens p73 synthetic nucleic acid
molecule may be identified by using hybridization and
washing conditions of appropriate stringency. One common
formula for calculating the stringency conditions
required to achieve hybridization between nucleic acid
molecules of a specified sequence homology (Sambrook et
al., 1989, supra):

 $T_m = 81.5$ °C + 16.6Log [Na+] + 0.41(% G+C) - 0.63 (% formamide) - 600/#bp in duplex

As an illustration of the above formula, using [N+] = [0.368] and 50% formamide, with GC content of 42% and an average probe size of 200 bases, the T_m is 57°C. The T_m of a DNA duplex decreases by 1 - 1.5°C with every 1% decrease in homology. Thus, targets with greater than about 75% sequence identity would be observed using a hybridization temperature of 42°C.

Nucleic acids of the present invention may be maintained as DNA in any convenient cloning vector. In a preferred embodiment, clones are maintained in plasmid cloning/expression vector, such as pBluescript (Stratagene, La Jolla, CA), which is propagated in a suitable E. coli host cell.

-18-

P73 protein can be produced by using in vitro expression methods known in the art. For example, part or all of a DNA molecule, such as a DNA encoding the amino acid sequence SEQ ID NO:1 or SEQ ID NO:2, may be inserted into a plasmid vector adapted for expression in a bacterial cell, such as E. coli, or a eukaryotic cell, such as Saccharomyces cerevisiae or other yeast. preferred embodiment, a commercially available expression/secretion system can be used, whereby the recombinant protein is expressed and thereafter secreted from the host cell, to be easily purified from the surrounding medium. If expression/secretion vectors are not used, an alternative approach involves purifying the recombinant protein by affinity separation, such as by immunological interaction with antibodies that bind specifically to the recombinant protein or fusion proteins such as His tags. Such methods are commonly used by skilled practitioners.

5

10

15

20

25

30

The method of the invention for treating mammalian cells that over-express E6 comprises administering a therapeutically effective amount of p73 protein to the target cells. The administration of the p73 protein can be accomplished via several methods, including the exposing the target cell, i.e., the E6-over-expressing cell, to p73 protein, or exposing the target cell to a nucleic acid construct that expresses an appropriate p73 coding sequence.

Any method of administration of p73 (e.g, as a protein or as a nucleic acid encoding the protein) is appropriate as long as it results in increased levels of p73 protein within the target cell. The choice of method of administration will depend largely on the position of the target cells and the length of time the treatment is

needed. Target cells may be removed from the patient and treated ex vivo, and then reintroduced to the patient. Additionally, the treatment may be used in cell cultures for experimental purposes. In a preferred embodiment, the target cells comprise E6-over-expressing carcinomas. In a more preferred embodiment, the target cells are papilloma-virus positive cancers. In a most preferred embodiment, the target cells are HPV-positive carcinomas of the uterine cervix.

5

10

15

20

25

30

The administration of p73 protein to target cells can be accomplished by exposing the target cell to p73 protein. When the target cell are tumor cells within an animal, it is preferred that the protein is administered in a protected form to increase their stability cells One strategy of accomplishing this is to use liposomes. Liposomes are water-filled vesicles composed of several phospholipids layers surrounding an aqueous core with an outer shell capable of providing direction to specific target cells. Typically liposomes are composed of some combination of phosphatidylcholine, cholesterol, phosphatidylglycerol or other glycolipids or phospholipids (Hudson and Black, 1993, American Pharmacy NS33(5):23-24). Insoluble polymers composed of polyethylene may also be used to form a protective layer around the protein, inhibiting degradation while traveling to the target cell (Hudson and Black, 1993, American Pharmacy NS33(5):23-24). Another way to deliver p73 protein to target cells is to couple the protein to a target cell-specific monoclonal antibody. This approach allows the protein to be specifically delivered to the target cell and minimizes toxic effects on non-target cells (Houston, 1993, Current Opinion in Biotechnology 4:739-744).

In preferred embodiments, the p73 protein is administered to the target cell through the use of heterologous nucleic acids that will cause the protein to be synthesized within the target cell. These nucleic acids can be temporary residents in the target cell, such as expression plasmids, or they can be stably integrated into the genome of the target cell. Expression plasmids are particularly appropriate for experimental work with cell cultures, such as illustrated in Example 1. construction of such plasmids and the transformation of target cells with them in vitro is well known to those of skill in the art of cell biology. Expression vectors suitable for p73 expression in mammalian cells are commercially available (Gene Therapy Systems, San Diego). Naked DNA and plasmids may be delivered to the target cells by several known means. The naked DNA may be transferred directly into the genetic material of the cells (Wolff et al., 1990, Science 247:1465-1468), the p73-encoding DNA may be delivered in liposomes (Ledley, 1987, J. Pediatrics 110:1) or proteoliposomes that contain viral envelope receptor proteins (Nicolau et al, 1983, Proc. Natl. Acad. Sci. U.S.A. 80:1068), or the p73encoding DNA may be coupled to a polylysine-glycoprotein carrier complex.

10

15

20

For a longer lasting expression of p73 within target cells, viral vectors are preferred. A variety of viral vector may be used in this invention, included retroviral vectors such as the herpes simplex virus (U.S.Patent 5,288,641, incorporated herein by reference), Cytomegalovirus, murine leukemia virus (Blaese et al., 1995, Science 270:475-479) and similar as described by Miller (Miller, 1992, Curr. Top. Microbiol. Immunol. 158:1). Recombinant adeno-associated virus (AAV vectors)

-21-

such as those described by U.S. Patent No. 5,139,941 (which is incorporated herein by reference) and recombinant adenoviral vectors (He et al., 1998, PNAS 95:2509-2514, incorporated by reference herein) are particularly preferred. Also contemplated are 5 recombinant lentivirus vectors such as a recombinant Human Immunodeficiency Virus (U.S. Patent No. 5,885,805; Blaese et al., 1995, Science 270:475-479; Onodera et al., 1998, J. of Virology 72:1769-1774) and Feline Immunodeficiency Virus. Often these vectors have been 10 designed so that they are replication-defective, and the techniques to prepare such vectors are well known in the art (Ghosh-Choudhury and Graham, 1987, Biochem. Biophys. Res. Comm. 147:964-973; McGrory, W. J. et al., 1988, Virology 163:614-617; Gluzman et al., 1982 in <u>Eukaryotic</u> 15 Viral Vectors (Gluzman, Y., Ed.) pp. 187-192, Cold Spring Harbor Press, Cold Spring Harbor, N.Y). It is also contemplated that viral vectors that are replication competent may be used to improve the efficacy of the 20 treatment of solid tumors (Wildner et al., 1999, Gene Ther. 6:57-62).

The recombinant vector of the invention comprises a nucleic acid construct comprising a sequence encoding a p73 protein operably linked to an appropriate promoter and other expression-regulatory sequences. For treatment of cancer cells, a strong constitutive promoter, such as a cytomegalovirus promoter, a viral LTR, RSV or SV40 promoter, is preferred. In a preferred embodiment, a cytomegalovirus promoter is used.

Additionally, promoters associated with genes that are expressed at high levels in mammalian cells, such as elongation factor-1 and actin, are also contemplated. It is particularly advantageous to use a viral-specific and

25

30

-regulated promoter to direct expression specifically in affected cancer cells. In a particularly preferred embodiment, the HPV-E6 promoter is used.

In a particularly preferred embodiment, a recombinant adenoviral vector is used to deliver the p73-. 5 expressing construct to the target cell. The use of adenoviral vectors for gene therapy is well known in the art (El-Deiry et al., 1993, Cell 75:817; Blogosklonny and El-Deiry, 1996, Int. J. Cancer 67:386-395; Prabhu et al., 1996, Clin Cancer Res. 2:1221-1230; Zeng et al., 1997, 10 Int. J. Oncol. 11:221-226; Mitchell and El-Deiry, 1999. Cell Growth and Diff. 10:223-230; Meng et al., 1998, Clin. Cancer Res. 4:251-259; Blagosklonny and El-Deiry, 1998, Int. J. Cancer 75:933-940). In particular, an 15 adenovirus vector has been used successfully to deliver p53 to target cells to treat lung cancer in human patients (Roth et al., 1996, Nature Med. 2:974 incorporated herein by reference; and U.S. Patent 5,747,469 incorporated herein by reference). It is contemplated that these protocols with simple variation 20 that will be well known to those in the art can be used to administer the p73 protein to target cells in the invention. In a most preferred embodiment, therapeutically effective amounts of the viral vector are delivered to the cancers by direct injection. 25

The interchangeability of p53 and p73 in these methods arises from the high degree of similarity that these proteins have, both in structure and function. p53 and p73 have significant amino acid sequence similarities (Kaghad et al, 1997, Cell 90:809-818, incorporated by reference herein), particularly in the most conserved regions of p53: the transactivation, DNA binding and p53 oligomerization domains. A sequence similar to the MDM2-

30

binding domain is also present in p73. The residues in p53 often found mutated in tumors and shown to be required for DNA recognition are conserved and occupy identical positions in p73. The C-terminal domain of p73 α shows homology to invertebrate p53 homologs. Finally the intron-exon organization of p73 is very similar to p53.

p53 and p73 are also functionally similar. Both display homotypic interactions, and p53 and p738 display significant mutual interactions (Kaghad et al, 10 1997, Cell 90:809-818). Both are inhibited by adenovirus E4ORF6 (Higashino et al., 1998, PNAS 95:15683-15687) and the MDM2 oncoprotein (Zeng et al., 1999, Mol. Cell. Biol. 19:327-3266; Dobbelstein et al., 1999, Oncogene 18:2101-15 2106). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells in a manner similar to p53 (Di Como et al., 1999, Mol. Cell. Biol. 19:1438-1449). p73 regulates p53 target genes when p73 is over-expressed in cells (Zhu et al., 1998, Cancer Research 58:5061-5065; 20 Jost et al., 1997, Nature 389:181-184). Finally, as a result of activation of p53-responsive genes, p73 can inhibit cell growth and induce apoptosis in a manner similar to p53.

pharmaceutical compositions that can be used to treat mammalian cells with p73 in vitro, in vivo and ex vivo.

The compositions comprise either p73 protein or nucleic acids encoding p73 protein. The pharmaceutical compositions of the invention are formulated in an appropriate "biologically acceptable medium". As used herein, "biologically acceptable medium" includes any and all solvents, dispersion media and the like which may be appropriate for the desired route of administration of

WO 99/66946 PCT/US99/14057

the pharmaceutical preparation, as exemplified in the preceding paragraph. The use of such media for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the nucleic acid molecules or proteins to be administered, its use in the pharmaceutical preparation is contemplated.

The pharmaceutical preparation is formulated in dosage unit form for ease of administration and

uniformity of dosage. Dosage unit form, as used herein, refers to a physically discrete unit of the pharmaceutical preparation appropriate for the patient undergoing treatment. Each dosage should contain a quantity of active ingredient calculated to produce the desired effect in association with the selected pharmaceutical carrier. Procedures for determining the appropriate dosage unit are well known to those skilled in the art.

The pharmaceutical composition also can include various other components as additives or adjuncts. 20 Exemplary pharmaceutically acceptable components or adjuncts which are employed in relevant circumstances include antioxidants, free radical scavenging agents, peptides, growth factors, antibiotics, bacteriostatic 25 agents, immunosuppressives, anticoagulants, buffering agents, anti-inflammatory agents, anti-pyretics, time release binders, anaesthetics, steroids and corticosteroids. Such components can provide additional therapeutic benefit, act to effect the therapeutic action of the pharmaceutical composition, or act towards 30 preventing any potential side effects which may be posed as a result of administration of the pharmaceutical composition. In certain circumstances, the p73 protein

or nucleic acid molecule can be employed as part of a pharmaceutical composition with other compounds (e.g., chemotherapeutic agents) intended to prevent or treat cancer or a related disorder.

5 The manner in which the pharmaceutical preparations are administered can vary. They can be administered by inhalation (e.g., in the form of an aerosol either nasally or using delivery articles of the type set forth in U.S. Patent No. 4,922,901 to Brooks et al.); topically (e.g., in lotion form or as a 10 suppository); orally (e.g., in liquid form within a solvent such as an aqueous or non-aqueous liquid, or within a solid carrier); intravenously (e.g., within a dextrose or saline solution); as an infusion or injection 15 (e.g., as a suspension or as an emulsion in a pharmaceutically acceptable liquid or mixture of liquids); intrathecally; intracerebro- ventricularly; or transdermally (e.g., using a transdermal patch). Exemplary methods for administering such compounds will 20 be apparent to the skilled artisan. The administration of the pharmaceutical compositions of the present invention can be intermittent, or at a gradual, continuous, constant or controlled rate to a warm-blooded animal, (e.g., a mammal such as a mouse, rat, cat, 25 rabbit, dog, pig, cow, or monkey); but advantageously is preferably administered to a human being. In addition, the time interval between administrations can vary. Administration preferably is such that the active ingredients of the pharmaceutical formulation contact the 30 target cells, whether within or outside the body of a mammalian subject.

The appropriate dose of the compound is that amount effective to result in increased levels of p73

protein within the target cell. By "effective amount", "therapeutic amount" or "effective dose" is meant that amount sufficient to elicit the desired pharmacological or therapeutic effects, thus resulting in effective prevention or treatment of the disorder. Prevention of the disorder is manifested by delaying the onset of the symptoms of the disorder. Treatment of the disorder is manifested by a decrease in the symptoms associated with the disorder or an amelioration of the recurrence of the symptoms of the disorder.

5

10

15

20

The effective dose can vary, depending upon factors such as the condition of the patient, the severity of the symptoms of the disorder, and the manner in which the pharmaceutical composition is administered. The effective dose of compounds will of course differ from patient to patient but in general includes amounts starting where target cell growth is halted to where the target cell is killed. Dosages contemplated for use with the retroviral vector embodiment of the invention are those suggested in U.S. Patent 5,747,469 (incorporated herein by reference). One of ordinary skill in the art will know how to determine such doses without undue experimentation.

over-expressing target cells by the method of the invention are also provided. In a preferred embodiment, the kit contains therapeutically effective amounts of the pharmaceutical preparation of the invention in a container. The pharmaceutical preparation in the kit may be comprised of p73 protein or a DNA construct encoding p73, preferably inserted into a vector for transforming cells. The p73 protein or p73 encoding viral vector may be in the form of a pharmaceutically acceptable sterile

10

20

solution such as sterile saline, dextrose solution or buffered solution. Alternatively, the p73 protein or p73 encoding viral vector can be lyophilized or desiccated. In this instance the kit may optionally further comprise a container of a pharmaceutically acceptable solution, (e.g., saline, dextrose solution, etc.), preferably sterile, to reconstitute the pharmaceutical preparation to form a solution for injection purposes. Optionally, instructions may be included in the kit. The kit may additionally comprise pharmaceutical preparations in containers for other therapies related to cancer treatment, such as chemotherapy.

The following example is provided to describe

the invention in greater detail. It is intended to

illustrate, not to limit, the invention.

EXAMPLE 1

p73α and p73β Suppress Growth and Induce Apoptosis in Human Papilloma Virus E6-Expressing Cancer Cells

Materials and Methods

Plasmids. The mammalian expression vector pCMV-neo-Bam (Baker et al., 1990, Science 249: 912-915)

25 and the wild-type p53 expression vector SN3 (Baker et al., 1990, Science 249: 912-915) were obtained from Bert Vogelstein (Johns Hopkins University). Wild-type and mutant p73α and p73β plasmids (Jost et al.,1997, Nature 389: 191-194; incorporated herein by reference) were obtained from William G. Kaelin, Jr. (Dana Farber Cancer Institute). The HPV-E6 expression plasmid (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229; incorporated herein by reference) was obtained from Kathleen Cho (Johns Hopkins University).

Cell culture and transfection conditions. mutant p53-expressing human colon adenocarcinoma cell line SW480 was maintained in culture as previously described (Prabhu et al., 1996, Clin. Cancer Res. 2: The mutant p53-expressing human glioma cell 1221-1229). 5 lines U373 and H80 were obtained from Peter C. Phillips (The Children's Hospital of Philadelphia) and the wild-type p53-expressing human non-small cell lung cancer cell line H460 was obtained from Stephen B. Baylin (Johns Hopkins University). Mutant p53-expressing SKBr3 cells 10 were obtained from American Type Culture Collection (Rockville, MD). SW480 cells were transfected using Lipofectin (BRL) as previously described (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229). At 20 hrs. following transfection, cells were harvested and protein 15 lysates electrophoresed through 10% polyacrylamide gels and immunoblotted as previously described (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229). Analysis of p53 expression was performed using the anti-human p53 20 monoclonal antibody pAb1801 (Ab2; Oncogene Science). For detection of exogenous p73 protein expression, the anti-HA antibody was used as previously described (Jost et al.,1997, Nature 389: 191-194).

Adenovirus infections. The Ad-LacZ reagent

(Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229) was obtained from Bert Vogelstein. The HPV type 16

E6-expressing replication deficient adenovirus was prepared and titered as previously described

(Satyamoorthy et al., 1997, Cancer Res. 57: 1873-1876;

Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229).

Briefly, the CMV promoter-driven HPV type 16 E6 cDNA was inserted into an E3-deleted adenovirus by homologous recombination to generate E1 and E3 deleted replication

defective Ad-E6 adenovirus (Satyamoorthy et al., 1997, Cancer Res. 57: 1873-1876; incorporated herein by reference). The cloned HPV-E6 DNA sequence was verified and expression of HPV-E6 was verified by Northern

5 blotting of total RNA derived from Ad-E6 versus Ad-LacZ infected cells. Cells were infected using an MOI of 50 as previously described (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229). Infection of SW480 cells using Ad-LacZ at an MOI of 50 followed by X-gal staining revealed greater than 99% infectivity.

Colony suppression assays. Transfections were carried out as described above except that the tumor suppressive (p53 or p73) or control (pCMV-neo-Bam) plasmid represented 80% of the total DNA and the degrading (pCMV-E6) or control (pCMV-neo-Bam) represented the remaining 20% of the total DNA. At 24 hrs following transfection, G418 selection was begun using 1 mg/ml as a final concentration. Selection was continued for 7-12 days and colony growth was analyzed as previously described (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229).

TUNEL assays. At 48 hrs following transfection, cells were formalin fixed and the extent of apoptosis was assessed by nicked-end labeling using the Apotag kit (Oncor) followed by analysis using fluorescence microscopy.

Results

25

protein for degradation. Using an E6-expressing adenovirus (Ad-E6) a panel of human cancer cells derived from different tissues and containing either endogenous wild-type or mutant p53 were infected (Fig. 1). As

5

10

15

20

compared with Ad-LacZ infected cells, E6-expressing cells expressed substantially reduced levels of either wild-type or mutant p53 protein (Fig. 1, compare even to odd lanes). Thus the HPV-E6 protein targets both wild-type and mutant p53 for degradation. E6 does not target the cell cycle regulatory proteins pRb, p21, cyclin E or p27 for degradation (Fig. 1 lower panels). The phosphorylation state of Rb in Ad-E6 was not altered as compared to Ad-LacZ infected cells (Fig. 1 lower panels), regardless of the p53 status of the cells.

p73 is resistant to HPV E6-dependent proteolysis. Because p53 is degraded in HPV-E6 expressing cancer cells, such cells are not ideally suited for gene replacement therapy (Prabhu et al., 1996, Clin. Cancer Res. 2: 1221-1229). In HPV E6-expressing cancer cells, p53 is degraded while exogenous p73 is resistant to E6-targeting to the proteasome (Fig. 2). The resistance of p73 to E6-dependent proteolysis was observed with p73 α , p73 α m, p73 β , or p73 β m. This observation suggested that p73 is a candidate for gene replacement in E6-expressing cancer cells.

p73β induces apoptosis and suppresses growth in

HPV E6-expressing human cancer cells. p73β was

previously found to be a potent activator of

25 p53-dependent gene expression (Kaghad et al., 1997, Cell

90: 809-819; Jost et al.,1997, Nature 389: 191-194).

p73β in colony suppression assays in the absence or

presence of E6-expression. Whereas p53 failed to inhibit

the growth of E6-expressing cancer cells, p73β was found

30 to be a potent growth suppressor. Transfection studies

revealed

that p73α was a less potent suppressor of growth of SW480

cancer cells either in the absence or presence of HPV-E6.

This could not be explained by dominant negative inhibition of p73 α by the endogenous p53 mutant in SW480 cells because it was previously shown that p73 α shows negligible interaction with p53 (Kaghad et al., 1997, Cell 90: 809-819).

p73β has been previously shown to be an inducer of apoptosis, similar to p53 (Jost et al.,1997, Nature 389: 191-194). Whereas p53-dependent apoptosis was inhibited in E6-expressing cells, p73β was still capable of inducing apoptosis similar to what is observed in the absence of E6. Therefore the colony suppression phenotype observed following p53 or p73β expression in the presence or absence of E6 can be explained by their ability to induce apoptosis under these conditions.

These results suggest that the p73β-dependent suppression of growth of HPV E6-expressing cancer cells occurs through an apoptotic mechanism.

The present invention is not limited to the
embodiments described and exemplified above, but is
capable of variation and modification without departure
from the scope of the appended claims.

What is claimed:

- 1. A method of inducing apoptosis in an E6expressing cell, comprising administering to the cell an amount of p73 protein effective to induce the apoptosis.
- 2. The method of claim 1 wherein the p53 protein is administered as a DNA construct comprising an expressible sequence that encodes the p73 protein.

10

5

- 3. The method of claim 2, wherein the DNA construct is operably inserted into a viral vector.
- 4. The method of claim 3, wherein the viral vector is selected from the group consisting of adenoviral vectors, HIV vectors, FIV vectors, herpes viral vectors, adeno-associated vectors and cytovegaviral vectors.
- 20 5. The method of claim 1, wherein the cell is a cancerous cell.
 - 6. The method of claim 1, wherein the cell is infected with Human papilloma virus.

25.

- 7. The method of claim 1, wherein the cell is a cultured cell.
- 8. The method of claim 1, wherein the cell is obtained from the body of a living organism, the administering is performed ex vivo, and the cell is returned to the living organism.

- 9. The method of claim 1, wherein the cell is disposed within a living organism and the administering is performed in vivo.
- 5 10. The method of claim 1, wherein the cell is obtained from a species selected from the group consisting of Homo sapiens, Mus musculus and Chlorocebus aethiops.
- 11. The method of claim 1, wherein the p73 protein is p73 α or p73 β .
- 12. The method of claim 11, wherein the protein comprises a sequence selected from the group consisting of SEQ ID NO:1 and SEQ ID NO:2.
 - 13. The method of claim 2, wherein the DNA construct comprises more than 50 nucleotides of SEQ ID NO:3.

20

14. A pharmaceutical preparation for treatment of cancers associated with E6 over-expression, comprising p73 protein associated with a delivery vehicle for delivering the preparation to cancer cells.

25

- 15. The pharmaceutical preparation of claim 14, wherein the p73 protein is $p73\alpha$ or $p73\beta$.
- 16. The pharmaceutical preparation of claim
 30 15, wherein the protein comprises a sequence selected
 from the group consisting of SEQ ID NO:1 and SEQ ID NO:2.

- 17. The pharmaceutical preparation of claim 14, which further comprises at least one additional active ingredient for treatment of cancer.
- 5 18. A kit comprising a container containing one or more dosage units of the pharmaceutical composition of claim 14.
- 19. The kit of claim 18, which further
 10 comprises at least one additional pharmaceutical agent for treatment of cancer.
- 20. A pharmaceutical preparation for treatment of cancers associated with E6 over-expression, comprising an expressible DNA construct encoding p73, associated with a delivery vehicle for delivering the preparation to cancer cells.
- 21. The pharmaceutical preparation of claim20 20, wherein the DNA construct is operably inserted into a vector for transforming cells.
- 22. The pharmaceutical preparation of claim
 21, wherein the vector is a viral vector selected from
 25 the group consisting of adenoviral vectors, HIV vectors,
 FIV vectors, herpes viral vectors, adeno-associated
 vectors and cytovegaviral vectors.
- 23. A kit comprising a container containing
 30 one or more dosage units of the pharmaceutical
 composition of claim 20.

- 24. The kit of claim 23, which further comprises at least one additional pharmaceutical agent for treatment of cancer.
- 5 25. An apoptotic, E6-expressing transgenic cell comprising a heterologous, expressible DNA construct encoding p73.
- 26. The cell of claim 25, obtained from a 10 cultured cell line.
 - 27. The cell of claim 25, disposed within a living organism.
- 15 28. The cell of claim 25, from a species selected from the group consisting of Homo sapiens, Mus musculus and Chlorocebus aethiops.

SW480	mut	• ·	+		11 12
HCT116	×	+	+		6 10
H460	w t	+	+		7 8
SKBr3	mut		+		υ (1)
U373	mut	+	+	1	6 to 1
H80	mut	+	+		1 2
Line:	p53:	Ad-LacZ:	E6:	p53 -	††
Cell Line:	Endog.	Ad-1	Ad-E6	ģ	g g

Figure 2

SEQUENCE LISTING

_		<:	110>	E1-	Deir	y, W	afik						•	•			
5		<:			posi:			d Me	thod	s fo	r In	duci	ng A	popt	osis	in	E6
10		· `<:	L30>	Pen	n K-:	1824			•								
•	•				090,5 B-06				•	Ē	ere e			٠			
15			L60>		5-00	-24			٠								
		<1	L70>	Fast	LSEQ	for	Win	dows	Ver	sion	3.0						
-		٠.	210>	7													
20			211>					-									
			212>														
	•	<2	213>	Homo	sar	pien	s										
							. ~										
25			300>	Kagi	had	м	Roni	net	ч	Vand	π Δ	۲.	rean	cier	т	10.	
23														to p			
				Cel										<u>F</u> .		_	
		<3	304>	90													
			305>														
30					-819												
					7-08- cank		116										
					7-09-		#10							•			
															•		
35	•		£00>														
	. 1				5					10				Thr	15		
				20					25			•		Asp 30			
40			35					40					45	Asp			
		50					55					60		Met			
4 =		Asn	Leu	Leu	Ser		Thr	Met	Asp	Gln		Ser	Ser	Arg	Ala		
45	65 Ser	Δ1 a	Ser	Dro	Tur	70 Thr	Dro	Glu	Wie	7 J =	75 71 a	Sor	Va l	Pro	mb	80	
					85					90				Ser	95		
	OC.	110	-1-	100	U		001	JCI	105		App	- 111	Mec	110	PIO	Ala	
50	Pro	Val	Ile 115	Pro	Ser	Asn	Thr	Asp 120		Pro	Gly	Pro	His 125	His	Phe	Glu	
	Val	Thr 130		Gln	Gln	Ser	Ser 135		Ala	Lys	Ser	Ala 140		Trp	Thr	Tyr	
	Ser	Pro	Leu	Leu	Lys	Lys	Leu	Tyr	Cys	Gln	Ile	Ala	Lys	Thr	Сув	Pro	
55	145					150					155				-	160	
					165					170				Ala	175		
	Ala	Met	Pro	Val 180	Tyr	Lys	Lys	Ala	Glu 185	His	Val	Thr	Asp	Val	Val	Lys	
60	Arg	Cys	Pro		His	Glu	Leu	Gly		Asp	Phe	Asn	Glu	190 Gly	Gln	Ser	

				•												
			195					200					205			
		210					215					220				Gln
5	225	Val				230					235					240
•	Glu	Pro	Pro	Gln	Val 245	Gly	Thr	Glu	Phe	Thr 250		Ile	Leu	Tyr	Asn 255	Phe
	Met	Сув	Asn	Ser 260	Ser	Сув	Val	Gly	Gly 265		Asn	Arg	Arg	Pro 270	Ile	Leu
10		Ile	275					-280		•		•	285	_	•	-
		Phe 290					295					300				
15	305	Glu				310					315					320
	•	Asn			325					330					335	Ala
		Pro		340					345			•		350	_	
20		Thr	355					360					365			
		Lys 370					375					380				
25	385	Val	•			390					395					400
		Leu			405					410					415	_
		His		420			•		425					430		-
30		Pro	435					440					445			•
		Pro 450					455					460				•
35	465	Met 				470					475			-		480
		Thr			485					490					495	
40		Thr		500					505					510		
40		Leu	515					520					525		_	
		Ala 530					535					540		_	_	-
45	545	Gln				550					555					560
		Arg			565					570					575	
EO				580					585					590	_	His
50	•	Ile	595					600					605		_	
		Ala 610					615					620	Ala	Arg	Lys	Gln
55	Pro 625	Ile	гуз	Glu		Phe 630	Thr	Glu	Ala	Glu	Ile 635	Hiş				
			10-	2												
			10>													
			11>													
C 0		<2	12>	PRT						•						

60 <213> Homo sapiens

```
<300>
             <301> Kaghad et al.,
             <302> Monoallelically expressed gene related to p53 at 1
 5
             <304> 90
             <305> 4
             <306> 809-819
             <307> 1997-08-22
             <308> Genbank Y11416
10
             <309> 1997-09-02
            . <400> 2
       Met Ala Gln Ser Thr Ala Thr Ser Pro Asp Gly Gly Thr Thr Phe Glu
15
       His Leu Trp Ser Ser Leu Glu Pro Asp Ser Thr Tyr Phe Asp Leu Pro
       Gln Ser Ser Arg Gly Asn Asn Glu Val Val Gly Gly Thr Asp Ser Ser
       Met Asp Val Phe His Leu Glu Gly Met Thr Thr Ser Val Met Ala Gln
20
       Phe Asn Leu Leu Ser Ser Thr Met Asp Gln Met Ser Ser Arg Ala Ala
       Ser Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His
                     85
                                           90
25
       Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala
                                       105
       Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu
                                   120
       Val Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr
30
                               135
       Ser Pro Leu Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro
                           150
       Ile Gln Ile Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg
                                           170
       Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Val Val Lys
.35
                                       185
       Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser
                                   200
       Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln
40
                               215
       Tyr Val Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Pro Tyr
                           230
                                               235
       Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe
                       245
                                           250
       Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu
45
                                       265
       Ile Ile Ile Thr Leu Glu Met Arg Asp Gly Gln Val Leu Gly Arg Arg
                                   280
       Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala
50
       Asp Glu Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala
       Lys Asn Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala
                                           330
55
       Val Pro Ala Leu Gly Ala Gly Val Lys Lys Arg Arg His Gly Asp Glu
       Asp Thr Tyr Tyr Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu
                                   360
       Met Lys Leu Lys Glu Ser Leu Glu Leu Met Glu Leu Val Pro Gln Pro
60
                               375
       Leu Val Asp Ser Tyr Arg Gln Gln Gln Leu Leu Gln Arg Pro Ser
```

4 / 4

```
385
                           390
                                                395
       His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys
                       405
                                            410
       Val His Gly Gly Met Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly
 5
                                        425
       Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val
                                    440
       Gly Pro Gly Met Leu Asn Asn His Gly His Ala Val Pro Ala Asn Gly
                               455
       Glu Met Ser Ser Ser His Ser Ala Gln Ser Met Val Ser Gly Ser His
10
                           470
                                                475
       Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Arg Thr
                       485
                                           490
                                                                495
       Trp Gly Pro
15
             <210> 3
             <211> 1594
             <212> DNA
20
             <213> Homo sapiens
             <300>
             <301> Kaghad et al.
             <302> Monoallelically expressed gene related to p53 at 1
25
             <303> Cell
             <304> 90
             <305> 4
             <306> 809-819
             <307> 1997-08-22
             <308> Genbank Y11416
30
             <309> 1997-09-02
             <400> 3
    atggcccagt ccaccgccac ctcccctgat gggggcacca cgtttgagca cctctggagc
                                                                            60
35 tototggaac cagacagcac ctacttcgac cttccccagt caagccgggg gaataatgag
                                                                           120
    gtggtgggcg gaacggattc cagcatggac gtcttccacc tggagggcat gactacatct
                                                                           180
    gtcatggccc agttcaatct gctgagcagc accatggacc agatgagcag ccgcgcgcc
                                                                           240
    teggecagee ectacaceee agageaegee gecagegtge ecaceeacte gecetaegea
                                                                           300
    caacccaget ccaccttega caccatgteg ceggegeetg teateccete caacaccgae
                                                                           360
40 taccceggac cocaccactt tgaggtcact ttccagcagt ccagcacggc caagtcagcc
                                                                           420
    acctggacgt actecceget ettgaagaaa etetactgee agategeeaa gacatgeece
                                                                           480
    atccagatca aggtgtccac cocgecacee ccaggeactg ccatecggge catgectgtt
                                                                           540
    tacaagaaag cggagcacgt gaccgacgtc gtgaaacgct gccccaacca cgagctcggg
                                                                           600
    agggacttca acgaaggaca gtctgctcca gccagccacc tcatccgcgt ggaaggcaat
                                                                           660
    aatototogo agtatgtgga tgaccotgto accggcaggo agagogtogt ggtgccotat
                                                                           720
    gagecaccae aggtggggae ggaatteace accatectgt acaactteat gtgtaacage
                                                                           780
    agctgtgtag ggggcatgaa ccggcggccc atcctcatca tcatcaccct ggagatgcgg
                                                                           840
    gatgggcagg tgctgggccg ccggtccttt gagggccgca tctgcgcctg tcctggccgc
                                                                           900
    gaccgaaaag ctgatgagga ccactaccgg gagcagcagg ccctgaacga gagctccgcc
                                                                           960
50 aagaacgggg ccgccagcaa gcgtgccttc aagcagagcc cccctgccgt ccccgccctt
                                                                           1020
    ggtgccggtg tgaagaagcg gcggcatgga gacgaggaca cgtactacct tcaggtgcga
                                                                          1080
    ggccgggaga actttgagat cctgatgaag ctgaaagaga gcctggagct gatggagttg
                                                                          1140
    gtgccgcagc cactggtgga ctcctatcgg cagcagcagc agctcctaca gaggccgagt
                                                                          1200
    cacctacage ecceptecta egggeeggte etetegeeca tgaacaaggt geaegggge
                                                                          1260
55 atgaacaagc tgccctccgt caaccagctg gtgggccagc ctcccccgca cagttcggca
                                                                           1320
    gctacaccca acctggggcc cgtgggcccc gggatgctca acaaccatgg ccacgcagtg
                                                                           1380
    ccagccaacg gcgagatgag cagcagccac agcgcccagt ccatggtctc ggggtcccac
                                                                           1440
    tgcactccgc cacccccta ccacgccgac cccagcctcg tcagtttttt aacaggattg
                                                                          1500
    gggtgtccaa actgcatcga gtatttcacc teccaagggt tacagagcat ttaccacctg
                                                                          1560
60 cagaacctga ccattgagga cctgggggcc ctga
                                                                           1594
```

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/14057

A. CLAS	SSIFICATION OF SUBJECT MATTER		
	A61K 38/00, 48/00; C12N 15/85		
	514/2, 44, 424/93.21, 93.3; 435/455, 456 International Patent Classification (IPC) or to both	national classification and IPC	
B. FIEL	DS SEARCHED		
Minimum de	ocumentation searched (classification system follow	ed by classification symbols)	
U.S. :	514/2, 44; 424/93.21, 93.3; 435/455, 456		
Documentati	ion searched other than minimum documentation to the	ne extent that such documents are included	in the fields searched
	, .		.
	ata base consulted during the international search (r		, search terms used)
1	DLINE, BIOSIS, EMBASE, CAPLUS, BIOTECHE ms: p73, e6, papilloma, acthiops	OS .	
	CE SEARCH; SEQ ID NOS 1-3		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
P, Y	Database Medline, AN 1998290825, F	PRABHU et al. p73beta, unlike	1-28
-, -	p53, suppresses growth and inc		1 20
	papillomavirus E6-expressing cancer		
	Oncology. July 1998. Vol. 13. pages	s 5-9, abstract only.	
A	JOST et al. p73 is a human p53-re	aloted protein that con induce	1-28
T.	apoptosis. Nature. 11 September 19	- '	1-20
	entire document.	77. Vol. 569. pages 191-194,	
A	KAGHAD et al. Monoallelically exp	pressed gene related to p53 at	1-28
	1p36, a region frequently deleted in no		
	, –	90. pages 809-819, entire	
ı	document.	·	
		·	
			•
X Furth	er documents are listed in the continuation of Box (C. See patent family annex.	
* Spe	roial estegories of cited documents:	"T" later document published after the into	rnational filing date or priority
	nument defining the general state of the sixt which is not considered so of particular relevance	date and not in conflict with the appli the principle or theory underlying the	estion but cited to understand
	ier document published on or after the international filing date	"X" document of perticular relevance; the	claimed invention cannot be
"L" . doc	unsent which may throw doubts on priority claim(s) or which is d to establish the publication date of another citation or other	considered novel or cannot be consider when the document is taken alone	en to myone an inventive step
	one reason (se specified)	"Y" document of particular relevance; the considered to involve an inventive	claimed invention cannot be
O doc	ument referring to an oral disclosure, use, exhibition or other ms	combined with one or more other such being obvious to a person skilled in the	documents, such combination
	ument published prior to the international filing date but later than priority date claimed	*& document member of the same patent	family .
Date of the s	actual completion of the international search	Date of mailing of the international sea	rch report
07 SEPTE	MBER 1999	2 8 OCT 199	
Commission	ailing address of the ISA/US er of Patents and Trademarks	Authorized officer	Jellen for
Box PCT Washington,	, D.C. 20231	RICHARD SCHNIZER	Cocum /
Facsimile No	•	Telephone No. (703) 308-0196	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/14057

P, A MARIN et al. Viral oncoproteins discriminate between p53 and the p53 homologue p73. Molecular and Cellular Biology. November 1998. Vol. 16, pages 6316-6324, entire document. OREN. Lonely no more: p53 finds its kin in a tumor suppressor haven. Cell. September 1997. Vol 90. Pages 829-832, entire document.	Category*	Citation of document, with in	ndication, where appropriate, of the relev	vent passages	Relevant to claim No.		
haven. Cell. September 1997. Vol 90. Pages 829-832, entire	P, A	the p53 homologue p73.	gy.	1-28			
	A	haven. Cell. September	e: p53 finds its kin in a tumor 1997. Vol 90. Pages 829-832,	suppressor entire	1-28		
			•				
			 	• .•		·	
					:		
				٠			

SEQ ID No. 6 of Serial No. 09/125,005 (SR-p70)

<400> 6 Met Ala Gln Ser Thr Ala Thr Ser Pro Asp Gly Gly Thr Thr Phe Glu His Leu Trp Ser Ser Leu Glu Pro Asp Ser Thr Tyr Phe Asp Leu Pro Gln Ser Ser Arg Gly Asn Asn Glu Val Val Gly Gly Thr Asp Ser Ser Met Asp Val Phe His Leu Glu Gly Met Thr Thr Ser Val Met Ala Gln Phe Asn Leu Leu Ser Ser Thr Met Asp Gln Met Ser Ser Arg Ala Ala Ser Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu Val Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Pro Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln Ile Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Val Val Lys Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln Tyr Val Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile Ile Ile Thr Leu Glu Met Arg Asp Gly Gln Val Leu Gly Arg Arg Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala Lys Asn Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala Val Pro Ala Leu Gly Ala Gly Val Lys Lys Arg Arg His Gly Asp Glu Asp Thr Tyr Tyr Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu Met Lys Leu Lys Glu Ser Leu Glu Leu Met Glu Leu Val Pro Gln Pro Leu Val Asp Ser Tyr Arg Gln Gln Gln Leu Leu Gln Arg Pro Ser His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys Val His Gly Gly Met Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val Gly Pro Gly Met Leu Asn Asn His Gly His Ala Val Pro Ala Asn Gly Glu Met Ser Ser His Ser Ala Gln Ser Met Val Ser Gly Ser His Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Ser Phe Leu Thr Gly Leu Gly Cys Pro Asn Cys Ile Glu Tyr Phe Thr Ser Gln Gly Leu.Gln Ser Ile Tyr His Leu Gln Asn Leu Thr Ile Glu Asp Leu Gly Ala Leu Lys Ile Pro Glu Gln Tyr Arg Met Thr Ile Trp Arg Gly Leu Gln Asp Leu Lys Gln Gly His Asp Tyr Ser Thr Ala Gln Gln Leu Leu Arg Ser Ser Asn Ala Ala Thr Ile Ser Ile Gly Gly Ser Gly Glu Leu Gln Arg Gln Arg Val Met Glu Ala Val His Phe Arg Val Arg His Thr Ile Thr Ile Pro Asn Arg Gly Gly Pro Gly Gly Gly Pro Asp Glu Trp Ala Asp Phe Gly Phe Asp Leu Pro Asp Cys Lys Ala Arg Lys Gln Pro Ile Lys Glu Glu Phe Thr Glu Ala Glu Ile His

Met Ala Gln Ser Thr Ala Thr Ser Pro Asp Gly Gly Thr Thr Phe Glu His Leu Trp Ser Ser Leu Glu Pro Asp Ser Thr Tyr Phe Asp Leu Pro 20 Gln Ser Ser Arg Gly Asn Asn Glu Val Val Gly Gly Thr Asp Ser Ser Met Asp Val Phe His Leu Glu Gly Met Thr Thr Ser Val Met Ala Gln 55 Phe Asn Leu Leu Ser Ser Thr Met Asp Gln Met Ser Ser Arg Ala Ala Ser Ala Ser Pro Tyr Thr Pro Glu His Ala Ala Ser Val Pro Thr His 85 Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Thr Met Ser Pro Ala 100 105 Pro Val Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His His Phe Glu 120 115 125 Val Thr Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr 135 140 Ser Pro Leu Leu Lys Lys Leu Tyr Cys Gln İle Ala Lys Thr Cys Pro 155 Ile Gln Ile Lys Val Ser Thr Pro Pro Pro Pro Gly Thr Ala Ile Arg 165 170 Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Asp Val Val Lys 185 Arg Cys Pro Asn His Glu Leu Gly Arg Asp Phe Asn Glu Gly Gln Ser Ala Pro Ala Ser His Leu Ile Arg Val Glu Gly Asn Asn Leu Ser Gln 215 220 Tyr Val Asp Asp Pro Val Thr Gly Arg Gln Ser Val Val Val Pro Tyr 230 225 235 Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Ile Leu Tyr Asn Phe 245 250 255 Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu 265 260 270 Ile Ile Ile Thr Leu Glu Met Arg Asp Gly Gln Val Leu Gly Arg Arg 280 Ser Phe Glu Gly Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala 295 300 Asp Glu Asp His Tyr Arg Glu Gln Gln Ala Leu Asn Glu Ser Ser Ala 310 315 Lys Asn Gly Ala Ala Ser Lys Arg Ala Phe Lys Gln Ser Pro Pro Ala 325 330 Val Pro Ala Leu Gly Ala Gly Val Lys Lys Arg Arg His Gly Asp Glu 345 350 Asp Thr Tyr Tyr Leu Gln Val Arg Gly Arg Glu Asn Phe Glu Ile Leu Met Lys Leu Lys Glu Ser Leu Glu Leu Met Glu Leu Val Pro Gln Pro 375 380 Leu Val Asp Ser Tyr Arg Gln Gln Gln Leu Leu Gln Arg Pro Ser 390 395 His Leu Gln Pro Pro Ser Tyr Gly Pro Val Leu Ser Pro Met Asn Lys 405 410 Val His Gly Gly Met Asn Lys Leu Pro Ser Val Asn Gln Leu Val Gly 420 425 Gln Pro Pro Pro His Ser Ser Ala Ala Thr Pro Asn Leu Gly Pro Val 440 435 Gly Pro Gly Met Leu Asn Asn His Gly His Ala Val Pro Ala Asn Gly Glu Met Ser Ser Ser His Ser Ala Gln Ser Met Val Ser Gly Ser His 470 Cys Thr Pro Pro Pro Pro Tyr His Ala Asp Pro Ser Leu Val Ser Phe 485 490 495 Leu Thr Gly Leu Gly Cys Pro Asn Cys Ile Glu Tyr Phe Thr Ser Gln 505 Gly Leu Gln Ser Ile Tyr His Leu Gln Asn Leu Thr Ile Glu Asp Leu 520 515 525 Gly Ala Leu Lys Ile Pro Glu Gln Tyr Arg Met Thr Ile Trp Arg Gly 535 Leu Gln Asp Leu Lys Gln Gly His Asp Tyr Ser Thr Ala Gln Gln Leu Leu Arg Ser Ser Asn Ala Ala Thr Ile Ser Ile Gly Gly Ser Gly Glu 565 570 Leu Gln Arg Gln Arg Val Met Glu Ala Val His Phe Arg Val Arg His 585 Thr Ile Thr Ile Pro Asn Arg Gly Gly Pro Gly Gly Pro Asp Glu 595 600 605 Trp Ala Asp Phe Gly Phe Asp Leu Pro Asp Cys Lys Ala Arg Lys Gln 615 Pro Ile Lys Glu Glu Phe Thr Glu Ala Glu Ile His

630

•	
1 TGCCTCCCGCCGCGCGCGCCCGAGGCCTGTGCTCCTGCGAAGGGG	50
1	12
51 ACGCAGCGAAGCCGGGGCCGGGCCGGGACGCCGATG	100
13 ACACTTGGCGTCCGGGCTGGAAGCGTTTCCAAGACGGTGACACGCTT	
101 CCCGGAGCTGCGACGGCTGCAGAGCCGGTGTGA	150
63 CCCTGAGGATTGGCAGCCAGACTGCTTACGGGTCACTGCCATGGAGG	
151 GGAAGATGGCCCAGTCCACCACCTCCCCGATGGGGGCACCACGTTT	
110 AGCCGCAGTCAGATCCCAGCATCGAGCCCCCTCTGAGTCAGGAAACATTT	159
201 GAGCACCTCTGGAGCTCTCTGGACCTACTTCGACCTTCC	250
160 TCAGACCTATGGAAACTACTTCCTGAAAACAAC GTTCTGTCCCCCTTGC	208
	300
209 CGTCCCAAGCGGTGGATGATTTGATGCTCTCCGGATGATCTTGCACAA	258
	350
259 TGGTTAACTGAAGACCCAGGTC 351 AATTTGCTGAGCAGCACCATGGACCAGGTGAGCAGCCGCGCGCG	
281 CAGATGAAGCTC	400
401 CAGCCGTACACCCCGGAGCACGCCGCCAGCGTGCCCACCCA	
	368
451 ACGCACAGCCCAGCTCCACCTTCGACACCATGTCGCCCGCGCCTGTCATC	500
369CTCCTGGCCCTGTCATCCTCTGTC	393
501 CCCTCCAACACCGACTATCCCGGACCCACCACTTCGAGGTCACTTTCCA	550
394 CCTTCCCAGAAAACCTACCACGGCAGCTACGGTTTCCGTCTGGGCTTCCT	443
551 GCAGTCCAGCACGGCCAAGTCAGCCACCTGGACGTACTCCCCACTCTTGA	600
444 GCATTCTGGAACAGCCAAGTCTGTGACTTGCACGTACTCCCTGACCTCA	493
601 AGAAACTCTACTGCCAGATCGCCAAGACATGCCCCATCCAGATCAAGGTG	650
494 ACAAGATGTTTTGCCAGCTGGCCAAGACCTGCCCGTGCAGCTGTGGGTT	543
651 TCCGCCCACCGCCCCCGGGCACCGCCATCCCGGCCATGCCTGTCTACAA	700
544 GATTCCACACCCCGCCCGCCGCCGCCGCCGCCATCCACAA	593
701 GAAGGCGGAGCACGTGACCGACCACGAGC	750
594 GCAGTCACAGCACATGACTGAGGCGCTGCCCCCACCATGAGC	643
751 TCGGGAGGACTTCAACGAAGGACAGTCTGCCCCAGCCAGC	800
644 GCTGCTCAGACAGCGATGGACTGGCCCCTCCTCAACATCTTATC	
801 CGTGTGGAAGGCAATAATCTCTCGCAGTATGTGGACGACCCTGTCACCGG	
688 CGAGTGGAAGGAAATTTGCGTGTGGAGTATTCGGATGACAGAAACACTTT	
851 CAGGCAGAGCGTCGTGCCCTATGAGCCACCACAGGTGGGGACAGAAT	
738 TCGACATAGTGTGGTGGTGCCCTATGAGCTGAGCTTGACT	787

FIG. 1A

FIG.1

901		950
788		837
951	ATGAACCGACGGCCCATCCTCATCATCACCCTGGAGACGCGGGATGG	1000
838	ATGAACCGGAGGCCCATCCTCACAATTATCACACTGGAAGACTCCAGTGG	887
1001		1050
888	TAATCTACTGGGACGGAACAGCTTTGAGGTGCGAGTTTGTGCCTGTCCTG	937
1051	The state of the s	1100
938	GGAGAGACCGGCGCACAGAGGAAGAGAATTTCC	971
1101	AATGAGAGCTCCGCCAAGAACGGGGCTGCCAGCAAGCGCGCCTTCAAGCA	1150
972	CAAGAAAGGGGAGCCTTGCCACGAGCTGCCCCCTGGGAGCACTAAGCGAG	1021
1151	GAGTCCCCTGCCGTCCCGCCCTGGGCCC.GGGTGTGAAGAAGCGGCGG	1199
1022	CACTGCCCAACAACACCAGCTCCTCTCCCCAGCCAAAGAAAACCACTG	1071
1200	CACGGAGACGAGGACACGTACTACCTGCAGGTGCGAGGCCGCGAGAACTT	1249
1072	GATGGAGAATATTTCACCCTTCAGATCCGCGGGCGTGAGCGCTT	1115
1250	CGAGATCCTGATGAAGCTGAAGGAGAGCCTGGAGCTGATGGAGTTGGTGC	1299
1116		1157
1300	CGCAGCCGCTGGTAGACTCCTATCGGCAGCAGCAGCAGCTCCTACAGAGG	1349
1158	TGCCCAGGCTGGGAAAGAGCCAGCGGGGAGCAGGGCTCACTCCAGCCA	1205
1350		1399
1206	CCTGAAGTCCAAGAAGGGGCAATCTACCTCCCGCCATAAAAAATTCATGT	1255
1400	CAAGGTGCACGGGGGCGTGAACAAGCTGCCCTCCGTCAACCAGCTGGTGG	1449
1256	TCAAGACAGAGGGCCTGACTCAGACTGACATTCTCAGCTTCTTG	1300
1450	GCCAGCCTCCCCGCACAGCTCGGCAGCTACACCCAACCTGGG	1499
1301	TTCCCCCACTGAGCCTCCCACCCCCATCT.CTCCCTCCCCTGCCATTTTG	1349
1500	GGCTCTGGGATGCTCAACAACCACGGCCACGCAGTGCCAGCCA	1549
1350	AGTTCTGGGTCTTTAAACCCTTGCTTGCAATAGGTGTGTGT	1399
1550	GATGACCAGCACCACGCACCCAGTCCATGGTCTCGGGGTCCCACTGCA	1599
1400	A	1400

FIG. 1B
FIG.1 cont.

1	MAQSTTTSPDGGTTFEHLWSSLEPDSTYFDLPQSSRGNNEVVGGTDSSMD	50
1	MEEPQSDPSIEPPLSQETFSDLWKLLPENNVLSPLPSQAVD	41
51	VFHLEGMTTSVMAQFNLLSSTMDQMSSRAASASPYTPEHAASVPTHSPYA	100
42	DLMLSPDDLAQWLTEDPGPDEAPRMSEAAPHMAPTPAAPTPA.APAP	87
	QPSSTFDTMSPAPVIPSNTDYPGPHHFEVTFQQSSTAKSATWTYSPLLKK	
88	APSWPLSSSVPSQKTYHGSYGFRLGFLHSGTAKSVTCTYSPDLNK	132
151	LYCOIAKTCPIOIKVSAPPPPGTAIRAMPYYKKAEHVTDIVKRCPNHELG	200
133	MFCQLAKTCPVQLWVDSTPPPGSRVRAMAIYKQSQHMTEVVRRCPHHE	180
201	RDFNEGOSAPASHLIRVEGNNLSOYVDDPVTGROSVVVPYEPPOVGTEFT	250
181	RCSDSDGLAPPOHLIRVEGNLRVEYSDDRNTFRHSVVVPYEPPEVGSDCT	230
251	TILYNFMCNSSCVGGMNRRPILIIITLETRDGQVLGRRSFEGRICACPGR	300
231	TIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGR	280
301	DRKADEDHYREQQALNESSAKNGAASKRAFKQSPPAVPALGPGVKKRRHG	350
	DRRTEEENFRKKG. EPCHELPPGSTKRALPNNTSSSPQPKKKPL	
351	DEDTYYLOVRGRENFEILMKLKESLELMELVPQPLVDSYRQQQQLLQRPS	400
324	DGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPAGSRAHSSHLKSKK	373
	HLQPPSYGPVLSPMNKVHGGVNKLPSVNQLVGQPPPHSSAATPNLGPVGS	450
374	GQSTSRHKKFMFKTEGPDSD	393

```
TGCCTCCCGCCCGCGCACCCGCCCCGAGGCCTGTGCTCCTGCGAAGGGG 50
 TGCCTCCCGGCCGGGCCCCGAGGCCTGTGCTCCTGCGAAGGGG 50
GGAAGATGGCCCAGTCCACCACCACCTCCCCGATGGGGCACCACGTTT 200
AGCCCGTACACCCCGGAGCACGCCGCCAGCGTGCCCATTCACCCT
501 CCCTCCAACACCGACTATCCCGGACCCCACCACTTCGAGGTCACTTTCCA 550
551 GCAGTCCAGCACGGCCAAGTCAGCCACCTGGACGTACTCCCCACTCTTGA 600
701 GAAGGCGGAGCACGTGACCGACATCGTGAAGCGCTGCCCCAACCACGAGC 750
```

FIG.3cont.

```
901 TCACCACCATCCTGTACAACTTCATGTGTAACAGCAGCTGTGTGGGGGGGC 950
  TCACCACCATCCTGTACAACTTCATGTGTAACAGCAGCTGTGTGGGGGGGC 950
 951 ATGAACCGACGGCCCATCCTCATCATCATCACCCTGGAGACGCGGGATGG 1000
 951 ATGAACCGACGGCCCATCCTCATCATCACCCTGGAGACGCGGGATGG 1000
1051 GCCGCGACCGAAAAGCCGATGAGGACCACTACCGGGAGCAGCAGCCCTTG
1051 GCCGCGACCGAAAAGCCCGATGAGGACCACTACCGGGAGCAGCAGCCTTG 1100
1101 AATGAGAGCTCCGCCAAGAACGGGGCTGCCAGCAAGCGCGCCTTCAAGCA 1150
1101 AATGAGAGCTCCGCCAAGAACGGGGCTGCCAGCAAGCGCGCCTTCAAGCA
1751 GATCCCCGAGCAGTATCGCATGACCATCTGGCGGGGCCTGCAGGACCTGA 1800
```

GATCCCCGAGCAGTATCGCATGACCATCTGGCGGGGCCTGCAGGACCTGA	1706
AGCAGGGCCACGACTACGGCGCCGCCGCGCAGCAGCTGCTCCGCTCCAGC	1850
AGCAGGCCACGACTACGGCGCCGCCGCCAGCAGCTGCTCCAGC	1756
	1900
AACGCGGCCATTTCCATCGGCGGCTCCGGGAGCTGCAGCGCAGCG	
GGTCATGGAGGCCGTGCACTTCCGCGTGCGCCACACCATCACCATCCCCA	1950
GGTCATGGAGGCCGTGCACTTCCGCGTGCGCCACACCATCACCATCCCCA	1856
ACCGCGGCGCCCCGGCCCCGACGACGGGCGGACTTCGGCTTC	
ACCGCGGCGCCCGGCCCCGACGAGTGGGCGGACTTCGGCTTC	1906
GACCTGCCCGACTGCAAGGCCCCGCAAGCAGCCCCATCAAGGAGGAGTTCAC	2050
GACCTGCCCGACTGCAAGGCCCCGCAAGCAGCCCATCAAGGAGGAGTTCAC	1956
GGAGGCCGAGATCCACTGAGGGGCCGGGCCCAGCCAGAGCCTGTGCCACC	2100
GGAGGCCGAGATCCACTGAGGGGCCGGGCCCAGCCAGAGCCTGTGCCACC	2006
GCCCAGAGACCCAGGCCGCCTCGCTCTC 2128	
GCCCAGAGACCCAGGCCGCCTCGCTCTC 2034	
	AGCAGGGCCACGACTACGGCGCCGCGCGCAGCAGCTGCTCCGGCTCCAGC

FIG.30 -FIG.3cont.

```
TGCCTCCCGCCCGCGCACCCGCGCCCGAGGCCTGTGCTCCTGCGAAGGGGACGCAGCGAA
                                                                  60
      GCCGGGGCCCGCGCCAGGCCGGCCGGACGGACGCCGATGCCCGGAGCTGCGACGGCTGC
  61
                                                                  120
 121
      AGAGCGAGCTGCCCTCGGAGGCCGGTGTGAGGAAGATGGCCCAGTCCACCACCACCTCCC
                                                                  180
 -10
                                       M
                                          Α
                                             Q
      CCGATGGGGGCACCACGTTTGAGCACCTCTGGAGCTCTCTGGAACCAGACAGCACCTACT
 181
                                                                  240
  10
                           н
                               LWSS
                                          L
                                            E P
                                                  D
                                                     s
                                                                  29
      241
                                                                  300
  30
                                  N
                                    E V
                                             G
                                               G
      TGGACGTCTTCCACCTAGAGGGCATGACCACATCTGTCATGGCCCAGTTCAATTTGCTGA
 301
                                                                  360
                                               Q
  50
        DVFHLEGMTTSVM
                                            Α
                                                 F
                                                    N
      GCĂGCĂCCĂTGGĂCCĂGĂTGĂGCĂGCCGCGCCGCTGCCTCGGCCĂGCCCGTĂCĂCCCCGĞĂGC
 361
                                                                  420
             M D Q M S S R A
  70
                                    Α
                                                           E
                                                                  89
      ACGCCGCCAGCGTGCCCACCCATTCACCCTACGCACAGCCCAGCTCCACCTTCGACACCA
 421
                                                                  480
      A A S V P T H S P Y A Q P S S T F D T M
TGTCGCCCGCGCCTGTCATCCCCTCCAACACCGACTATCCCGGACCCCACCACTTCGAGG
  90
                                                                  109
 481
                                                                  540
 110
                        P
                           SNTDYP
                                                  H
                                                     Н
                                                                  129
      TCACTTTCCAGCAGTCCAGCACGGCCAAGTCAGCCACCTGGACGTACTCCCCACTCTTGA
 541
                                                                  600
      T F Q Q S S T A K S A T W T Y S P L L K AGAAACTCTACTGCCAGATCGCCCAAGACATGCCCCATCCAGATCAAGGTGTCCGCCCCAC
 130
                                                                  149
 601
                                                                  660
 150
                   OIAK
                              TCPIQ
                                                                  169
      CGCCCCGGGCACCGCCATCCGGGCCATGCCTGTCTACAAGAAGGCGGAGCACGTGACCG
 661
                                                                  720
      170
                                                                  189
 721
                                                                  780
 190
                         N H
                                         DFNEGQ
                              Ε
                                LGR
                                                                  209
      CCCCAGCCAGCCACCTCATCCGTGTGGAAGGCAATAATCTCTCGCAGTATGTGGACGACC
 781
                                                                  840
     PASHLIRVEGNNLSQYVDDPCTGTCACCGGCAGGAGGCGTCGTGGTGCCCTATGAGCCACCACAGGTGGGGACAGAAT
                                                                  229
 841
                                                                  900
 230
                                       E
                                               0
                                                  V G
                                                                  249
      TCACCACCATCCTGTACAACTTCATGTGTAACAGCAGCTGTGTGGGGGGGCATGAACCGAC
 901
                                                                  960
 250
                                    S
                           M
                                N
                                       S
                                          C V G G M N R
                                                                  269
 961
     GGCCCATCCTCATCATCATCACCCTGGAGACGCGGGATGGGCAGGTGCTGGGCCGCCGGT
                                                                  1020
 270
                                    R D
                                         G
                                                                  289
     CCTTCGAGGGCCGCATCTGCGCCTGTCCTGGCCGCGACCGAAAAGCCGATGAGGACCACT
1021
                                                                  1080
 290
                                 G
                                       D
                                          R
                                            KAD
                                                     E
                                                        D H
                                                                  309
1081
     ACCGGGAGCAGCAGGCCTTGAATGAGAGCTCCGCCAAGAACGGGGCTGCCAGCAAGCGCG
                                                                 1140
 310
                        N
                                                                  329
     CCTTCAAGCAGAGTCCCCCTGCCGTCCCCGCCCTGGGCCCGGGTGTGAAGAAGCGGCGGC
1141
                                                                 1200
330
                                                          R
                                                                 349
     ACGGAGACGAGGACACGTACTACCTGCAGGTGCGAGGCCGCGAGAACTTCGAGATCCTGA
1201
                                                                 1260
350
       GDED
                   T
                                    R G
                                                                 369
1261
     TGAAGCTGAAGGAGAGCCTGGAGCTGATGGAGTTGGTGCCGCAGCCGCTGGTAGACTCCT
                                                                 1320
370
             KE
                   S
                                                                 389
1321
     ATCGGCAGCAGCAGCTCCTACAGAGGCCGAGTCACCTACAGCCCCCATCCTACGGGC
                                                                 1380
390
             QQ
                  Q
                      L
                        L
                           Q
                              R
                                 P
                                    s
                                      H
                                            Q
                                                                  409
1381
     CGGTCCTCTCGCCCATGAACAAGGTGCACGGGGGGGGTGAACAAGCTGCCCTCCGTCAACC
                                                                 1440
 410
                      N
                              H
                                 G
                                    G
                                                                  429
     AGCTGGTGGGCCAGCCTCCCCGCACAGCTCGGCAGCTACACCCAACCTGGGACCTGTGG
1441
                                                                 1500
     430
                                                                  449
1501
                                                                 1560
 450
          G M
               L
                   N
                      N
                         н
                           G
                              H
                                 A
                                                           s
                                                                  469
1561
     GCCACGGCACCCAGTCCATGGTCTCGGGGTCCCACTGCACTCCGCCACCCCCCTACCACG
                                                                 1620
                        v
470
          G
               Q
                     M
       H
             T
                   s
                           S
                              G
                                S
                                   н
                                      С
                                         T
                                            P
                                                                  489
     CCGACCCCAGCCTCGTCAGTTTTTTAACAGGATTGGGGTGTCCAAACTGCATCGAGTATT
1621
                                                                 1680
                                      G
                                                                 509
```

```
TCACGTCCCAGGGGTTACAGAGCATTTACCACCTGCAGAACCTGACCATCGAGGACCTGG
                                                                       1740
      T S Q G L Q S I Y H L Q N L T I E D L G GGGCCCTGAAGATCCCCGAGCAGTATCGCATGACCATCTGGCGGGGCCTGCAGGACCTGA
                                                                       529
1741
                                                                       1800
 530
                       E Q
                                 RMT
                                             W
                                                RGL
                                                                       549
      AGCAGGCCACGACTACGCGCCGCCGCGCAGCAGCTGCTCCGCTCCAGCAACGCGGCCG
1801
                                                                       1860
      Q G H D Y G A A A Q Q L L R S S N A A A CCATTTCCATCGGCGGCTCCGGGGAGCTGCAGCGCCAGCGGGTCATGAGGCCGTGCACT
 550
                                                                       569
1861
                                                                       1920
      I S I G G S G E L Q R Q R V M E A V H F TCCGCGTGCGCCACACCATCACCATCCCAACCGCGCGCCCGGCGCCCGGCCCCGACG
 570
                                                                       589
1921
                                                                       1980
      R V R H T I T I P N R G G P G A G P D E AGTGGGGGGGACTTCGACCTGCCCGACTGCAAGGCCCGAAGCAGCCCAACAGCAGCCCAATCAAGG
 590
                                                                       609
1981
                                                                       2040
      610
                                                                       629
2041
                                                                       2100
630
      E F T E A E I H *
GCCCAGAGACCCAGGCCGCCCCCGCTCTCCTTCCTGTGTCCAAAACTGCCTCCGGAGGCAG
                                                                       649
2160
2101
2161
2221
2281
      GGCCTCCAGGCTGTGCCCGGGGAAAGGCAAGGTCCGGCCCATGCCCCGGCACCTCACCGG
                                                                       2220
      CCCCAGGAGAGGCCCAGCCACCAAAGCCGCCTGCGGACAGCCTGAGTCACCTGCAGAACC
                                                                       2280
      2340
2341
                                                                       2400
      2401
                                                                       2460
2461
2521
      AATCCTCTTCGCTGGTGGACTGCCAAAAAGTATTTTGCGACATCTTTTGGTTCTGGAGAG
                                                                       2520
      TGGTGAGCAGCCAAGCGACTGTGTCTGAAACACCGTGCATTTTCAGGGAATGTCCCTAAC
                                                                       2580
2581
      GGGCTGGGGACTCTCTCTGCTGGACTTGGGAGTGGCCTTTGCCCCCAGCACACTGTATTC
                                                                       2640
      TGCGGGACCGCCTCCTTCCTGCCCCTAACAACCACCAAAGTGTTGCTGAAATTGGAGAAA
2641
                                                                       2700
2701
      ACTGGGGAAGGCGCAACCCCTCCCAGGTGCGGGAAGCATCTGGTACCGCCTCGGCCAGTG
                                                                       2760
2761
      CCCCTCAGCCTGGCCACAGTCACCTCTCCTTGGGGAACCCTGGGCAGAAAGGGACAGCCT
                                                                       2820
      GTCCTTAGAGGACCGGAAATTGTCAATATTTGATAAAATGATACCCTTTTCTAC 2874
```

FIG. 4B FIG.4 cont.

```
TGCCTCCCGCCCGCGCACCCGCCCCGAGGCCTGTGCTCCTGCGAAGGGGACGCAGCGAA
                                                              60
  61
      GCCGGGGCCCGCGCAGGCCGGCCGGACGCACGCCGATGCCCGGAGCTGCGACGGCTGC
                                                              120
 121
      AGAGCGAGCTGCCCTCGGAGGCCGGTGTGAGGAAGATGGCCCAGTCCACCACCACCTCCC
                                                              180
 -10
                                     MAQS
                                                T
                                                  T
                                                     T
                                                        S
                                                              9
 181
      CCGATGGGGGCACCACGTTTGAGCACCTCTGGAGCTCTCTGGAACCAGACAGCACCTACT
                                                              240
       DGGTTFEHLWS
  10
                                                              29
      241
                                                              300
  30
                                N
                                          G
                                                        s
                                                              49
      TGGACGTCTTCCACCTAGAGGGCATGACCACATCTGTCATGGCCCAGTTCAATTTGCTGA
 301
                                                              360
  50
       D
            F
               H L
                     E G M
                             Т
                                T
                                   s
                                     v
                                       M
                                                              69
     GCAGCACCATGGACCAGATGAGCAGCCGCGCTGCCTCGGCCAGCCCGTACACCCCGGAGC
 361
                                                              420
  70
             M
               D
                  Q
                     М
                        S
                           s
                             R
                                Α
                                   Α
                                           S
                                                              89
     ACGCCGCCAGCGTGCCCACCCATTCACCCTACGCACAGCCCAGCTCCACCTTCGACACCA
 421
                                                               480
  90
             s
               V P
                     T H S
                             P
                                Y
                                   A
       A A
                                     Q
                                        P
                                          S
                                             S
                                                T
                                                     D
                                                              109
     TGTCGCCCGCGCCTGTCATCCCCTCCAACACCGACTATCCCGGACCCCACCACTTCGAGG
 481
                                                              540
 110
                           s
                             N
                                T
                                   D
                                          G
                                             P
                                                н
                                                  н
                                                              129
     TCACTTTCCAGCAGTCCAGCACGGCCAAGTCAGCCACCTGGACGTACTCCCCACTCTTGA
                                                              600
 130
             Q
               Q
                  s
                     s
                        Т
                          Α
                             K
                                s
                                   A
                                     T
                                       W
                                          Т
                                                S
                                                  P
                                                     T.
                                                              149
     AGAAACTCTACTGCCAGATCGCCAAGACATGCCCCATCCAGATCAAGGTGTCCGCCCCAC
 601
                                                              660
 150
                            T
                                С
                                     I
                                        Q
                                             ·K
                                          I
                                                              169
     CGCCCCGGGCACCGCCATCCGGGCCATGCCTGTCTACAAGAAGGCGGAGCACGTGACCG
 661
                                                              720
     PPGTAIRAMPVYKKAEHVTD
ACATCGTGAAGCGTGCCCCAACCACGAGCTCGGGAGGACTTCAACGAAGGACAGTCTG
 170
                                                              189
 721
                                                              780
 190
            KRCPNHELG
                                     RDF
                                            N
                                                E
                                                  G
                                                     0
                                                              209
                                                        S
     CCCCAGCCAGCCACCTCATCCGTGTGGAAGGCAATAATCTCTCGCAGTATGTGGACGACC
 781
                                                              840
     210
                                                              229
 841
                                                              900
 230
            G R Q S V V V P Y E P P Q
                                                        Ē
                                                              249
     TCACCACCATCTGTACAACTTCATGTGTAACAGCAGCTGTGTGGGGGGCATGAACCGAC
901
                                                              960
         T I L Y N F M C N S S C V G G M N
 250
                                                              269
     GGCCCATCCTCATCATCATCACCCTGGAGACGCGGGATGGGCAGGTGCTGGGCCGGCGGG
961
                                                              1020
 270
          T
            L I
                  T T
                       т
                          LETRDGOVLGR
                                                              289
     CCTTCGAGGGCCGCATCTGCGCCTGTCCTGGCCGCGACCGAAAAGCCGATGAGGACCACT
1021
                                                              1080
290
         EGRICACPGRDRKADEDH
                                                              309
     ACCGGGAGCAGCAGGCCTTGAATGAGAGCTCCGCCAAGAACGGGGCTGCCAGCAAGCGCG
1081
                                                              1140
310
                         E S
                      N
                                S
                                    KNG
                                  Α
                                            A A
                                                              329
1141
     CCTTCAAGCAGAGTCCCCCTGCCGTCCCCGCCCTGGGCCCGGGTGTGAAGAAGCGGCGGC
                                                              1200
330
         KQSP
                   P
                          V P
                      A
                                ALGPG
                                             VKKRRH
                                                              349
     ACGGAGACGAGGACACGTACTACCTGCAGGTGCGAGGCCGCGAGAACTTCGAGATCCTGA
1201
                                                              1260
350
                             Q
                                  RGRE
                                             N
                                                  e i
                                                              369
1261
     TGAAGCTGAAGGAGAGCCTGAGCTGATGGAGTTGGTGCCGCAGCCGCTGGTAGACTCCT
                                                              1320
370
       KLKE
                  S L
                       E
                                E
                                  L V P
                                             P L
                             M
                                          0
                                                  v
                                                    מ
                                                        S
                                                              389
1321
     ATCGGCAGCAGCAGCTCCTACAGAGGCCGAGTCACCTACAGCCCCCATCCTACGGGC
                                                              1380
                  Q L
                          Q
                             R
                                  s
                                    H L
                                          Q
                                                              409
1381
     CGGTCCTCTCGCCCATGAACAAGGTGCACGGGGGGGGTGAACAAGCTGCCCTCCGTCAACC
                                                              1440
410
                       K
                          v
                                Ģ
                                  G
                                          K
                                                  s
                                                        N
                                                              429
1441
     AGCTGGTGGGCCAGCCTCCCCCGCACAGCTCGGCAGCTACACCCAACCTGGGACCTGTGG
                                                              1500
430
                          H
                             S
                                S
                                                              449
1501
     1560
450
                  N N
                          G
                            H
                                         N
                                             S
                                                              469
     GCCACGGCACCCAGTCCATGGTCTCGGGGTCCCACTGCACTCCGCCACCCCCTACCACG
1561
                                                              1620
470
         G T Q S M V
                         SGSHCT
                                         PP.P
                                                              489
1621
     CCGACCCCAGCCTCGTCAGGACCTGGGGGCCCTGAAGATCCCCGAGCAGTATCGCATGAC
                                                              1680
490
       D P S L V R T W G P *
                                                              509
     CATCTGGCGGGGCCTGCAGGACCTGAAGCAGGGCCACGACTACGGCGCGCCGCGCAGCA
1681
                                                              1740
1741
     GCTGCTCCGCTCCAGCAACGCGGCCGCCATTTCCATCGGCGGCTCCGGGGAGCTGCAGCG
                                                              1800
1801
     CCAGCGGGTCATGGAGGCCGTGCACTTCCGCGTGCGCCACCCATCACCATCCCCAACCG
                                                              1860
1861
     CGGCGGCCCGGCGGCCCGACGAGTGGGCGGACTTCGGCTTCGACCTGCCCGACTG
                                                              1920
1921
     CAAGGCCCGCAAGCAGCCCATCAAGGAGGAGTTCACGGAGGCCGAGATCCACTGAGGGGC
                                                              1980
1981
     CGGGCCAGCCAGAGCCTGTGCCACCGCCAGAGACCAGGCCGCCTCGCTCTC 2034
```


1441	ACAG	CGC	CCA	GTC	CAT	GGT	CTC	GGG	GTC	CCA	CTG	CAC	TCC	GCC	ACC	ccc	CTA	CCA	CGC	CG	1500
471	S	Α	Q	S	M	V	s	G	S	H	С	T	P	P	P	P	Y	н	Α	D	490
1501	ACCC	CAG	CCT	CGT	CAG	TTT	TTT	'AAC	AGG	ATT	GGG	GTG	TCC	AAA	CTG	CAT	CGA	GTA	ттт	CA	1560
491	P	S	L	V	S	F	L	T	G	L	G	С	P	N	С	I	E	Y	F	T	510
1561	CCTC	CCA	AGG	GTT	ACA	GAG	CAT	TTA	CCA	CCT	GCA	GAA	CCT	GAC	CAT	TGA	GGA	CCT	GGG	GG	1620
511	S	Q	G	L	Q	S	I	Y	H	L	Q	N	L	T	I	E	D	L	G	Α	530
1621	CCCT	GAA	GAT	CCC	CGA	GCA	GTA	.CCG	CAT	GAC	CAT	CTG	GCG	GGG	CCT	GCA	GGA	CCT	GAA	GC	1680
531	L	K	I	P	E	Q	Y	R	M	T	I	W	R	G	L	Q	D	L	K	Q	550
1681	AGGG	CCA	CGA	CTA	CAG	CAC	CGC	GCA	GCA	GCT	GCT	CCG	CTC	TAG	CAA	CGC	GGC	CAC	CAT	CT	1740
551	G	Н	D	Y	S	T	Α	Q	Q	L	L	R	S	S	N	Α	Α	T	I	S	570
1741	CCAT	CGG	CGG	CTC.	AGG	GGA	ACT	GCA	GCG	CCA	GCG	GGT	CAT	GGA	GGC	CGT	GCA	CTT	CCG	CG	1800
571	I	G	G	S	G	E	L	Q	R	Q	R	V	M	E	Α	V	H	F	R	V	590
1801	TGCG	CCA	CAC	CAT	CAC	CAT	CCC	CAA	CCG	CGG	CGG	CCC	AGG	CGG	CGG	CCC	TGA	CGA	GTG	GG _.	1860
591	R	Н	T	I	T	I	P	N	R	G	G	P	G	G	G	P	D	E	W	Α	610
1861	CGGA	CTT	CGG	CTT	CGA	CCT	GCC	CGA	CTG	CAA	GGC	CCG	CAA	GCA	GCC	CAT	CAA	GGA (GGA(GT	1920
611	D	F	G	F	D	L	P	D	С	K	Α	R	K	Q	P	I	K	E	E	F	630
1921	TCAC	GGA	GGC	CGA	GAT	CCA	CTG.	AGG	GCC'	TCG	CCT	GGC'	TGC.	AGC	CTG	CGC	CAC	CGC	CCA	GA	1980
631	T	E	A	Ε	I	H	*														650
1981	GACC																				2040
2041	TTCG																			CC	2100
2101	AGGA	AAG	GCC	CAG	CCA	CCG	AAG	CCG	CCT	GTG	GAC	AGC	CTG	AGT	CAC	CTG	CAG	AAC	2	2156	

FIG.6B FIG.6 cont.

```
TGATCTCCCTGTGGCCTGCAGGGGACTGAGCCCAGGGAGTAGATGCCCTGAGACCCCAAGG
      GACACCCAAGGAAACCTTGCTGGCTTTGAGAAAGGGATCGTCTCTCCTGCCCAAGAGA
                                                               60
   61
       AGCATGTGTATGGGCCCTGTGTATGAATCCTTGGGGCAGGCCCAGTTCAATTTGCTCAGC
                                                              120
  121
                                                               180
             MGPVYESLGQAQFNLLS
      AGTGCCATGGACCAGATGGGCAGCCGTGCGCCCCGGGGCGCCCTACACCCCGGAGCAC
                                                              19
  181
                                                              240
      SAMDQMGSRAAPASPY
   20
      GCCGCCAGCGCGCCACCCACTCGCCCTACGCGCAGCCCAGCTCCACCTTCGACACCATG
                                                              39
  241
      A A S A P T H S P Y A Q P S S T F D T M
TCTCCGGCGCCTGTCATCCCTTCCAATACCGACTACCCCGGCCCCCACCACTTCGAGGTC
                                                              300
   40
                                                              59
  301
                                                              360
   60
      SPAPVIP
                        SNTDYPGP
                                             HHF
      ACCTTCCAGCAGTCGAGCACTGCCAAGTCGGCCACCTGGACATACTCCCCACTCTTGAAG
                                                      E V
                                                              79
  361
                                                              420
      T F Q Q S S T A K S A T W T Y S P L L K
   80
      AAGTTGTACTGTCAGATTGCTAAGACATGCCCCATCCAGATCAAAGTGTCCACACCACCA
                                                              99
  421
                                                              480
  100
        LYCO
                   IAKTCP
                                   IQIKVSTPP
      CCCCGGGCACGGCCATCCGGGCCATGCCTGTCTACAAGAAGGCAGAGCATGTGACCGAC
                                                              119
  481
                                                              540
      PPGTAIRAMPVYKKAEHVT
  120
      ATTGTTAAGCGCTGCCCCAACCACGAGCTTGGAAGGGACTTCAATGAAGGACAGTCTGCC
                                                              139
  541
                                                              600
  140
           K R C P N H E L G R D F N E G Q S
                                                              159
      CCGGCTAGCCACCTCATCCGTGTAGAAGGCAACAACCTCGCCCAGTACGTGGATGACCCT
  601
                                                              660
      PASHLIRVEGNNLAQYVDDP
  160
      GTCACCGGAAGGCAGAGTGTGGTTGTGCCGTATGAACCCCCACAGGTGGGAACAGAATTT
                                                              179
  661
                                                              720
 180
        T G R Q S V V V P Y E P P Q V G T E F
      ACCACCATCCTGTACAACTTCATGTGTAACAGCAGCTGTGTGGGGGGGCATGAATCGGAGG
                                                              199
 721
                                                              780
 200
           ILYNF
                        M C N S S C V G G M N R R
      CCCATCCTTGTCATCATCACCCTGGAGACCCGGGATGGACAGGTCCTGGGCCGCCGGTCT
                                                              219
 781
                                                              840
        I L V I I T L E T R D G Q V L G R R
 220
      TTCGAGGGTCGCATCTGTGCCTGTCCTGGCCGTGACCGCAAAGCTGATGAAGACCATTAC
                                                              239
 841
                                                              900
        E G R I C A C P G R D R K A D E D H
 240
      CGGGAGCAACAGGCTCTGAATGAAAGTACCACCAAAAATGGAGCTGCCAGCAAACGTGCA
                                                              259
 901
                                                              960
      R E Q Q A L N E S T T K N G A A S K R A
 260
                                                              279
      TTCAAGCAGAGCCCCCTGCCATCCCTGCCCTGGGTACCAACGTGAAGAAGAGACGCCAC
 961
     F K Q S P P A I P A L G T N V K K R R H GGGGACGAGGACATGTTCTACATGCACGTGCGAGGCCGGGAGAACTTTGAGATCTTGATG
                                                              1020
 280
                                                              299
1021
                                                              1080
 300
             D M F Y M H V R G R E N F E I L M
                                                              319
     AAAGTCAAGGAGAGCCTAGAACTGATGGAGCTTGTGCCCCAGCCTTTGGTTGACTCCTAT
1081
                                                              1140
 320
     KVKESLELMELVPQPLVDS
     CGACAGCAGCAGCAGCAGCTCCTACAGAGGCCGAGTCACCTGCAGCCTCCATCCTAT
                                                              339
1141
                                                              1200
        QQQQQLLQRPSHLQPP
 340
                                                              359
     GGGCCCGTGCTCTCCCCAATGAACAAGGTACACGGTGTGTCAACAAACTGCCCTCCGTC
1201
                                                              1260
 360
        P V L S P M N K V H G G
                                        VNKLPSV
                                                              379
     AACCAGCTGGTGGGCCAGCCTCCCCCGCACAGCTCAGCAGCTGGGCCCAACCTGGGGCCC
1261
     N Q L V G Q P P P H S S A A G P N L G P ATGGGCTCCGGGATGCTCAACAGCCACGGCCACAGCATGCCGCCAATGGTGAGATGAAT
                                                              1320
 380
                                                              399
1321
                                                              1380
400
             G M L N S H G H S M P A N G E M N
                                                              419
     GGAGGCCACAGCTCCCAGACCATGGTTTCGGGATCCCACTGcACCCCGCCACCCCCTAT
1381
                                                             1440
     G G H S S Q T M V S G S H C T P P P
 420
     CATGCAGACCCCAGCCTCGTCAGTTTTTTGACAGGGTTGGGGTGTCCAAACTGCATCGAG
H A D P S L V S F L T G L G C P N C I E
                                                              439
1441
                                                             1500
 440
     TGCTTCACTTCCCAAGGGTTGCAGAGCATCTACCACCTGCAGAACCTTACCATCGAGGAC
                                                              459
1501
                                                             1560
             S Q G L Q S I Y H L Q N L T I B D
 460
          T
                                                              479
     CTTGGGGCTCTGAAGGTCCCTGACCAGTACCGTATGACCATCTGGAGGGGCCTACAGGAC
1561
                                                             1620
     LGALKVPDQYRMTIWRGLQD
 480
                                                              499
     CTGAAGCAGAGCCATGACTGCGGCCAGCAACTGCTACGCTCCAGCAGCAACGCGGCCACC
1621
                                                             1680
 500
       K Q S H D C G Q Q L L R S S S N A A
                                                             519
     ATCTCCATCGGCGGCTCTGGCGAGCTGCAGCGGCAGCGGTCATGGAAGCCGTGCATTTC
1681
                                                             1740
520
       SIGGSGELQRQRVMEAVHF
                                                             539
     CGTGTGCGCCACACCATCACAATCCCCAACCGTGGAGGCGCAGGTGCGGTGACAGGTCCC
1741
                                                             1800
540
        V R H T I T I P N R G G A G A V T G P
                                                             559
     GACGAGTGGGCGGACTTTGGCTTTGACCTGCCTGACTGCAAGTCCCGTAAGCAGCCCATC
1801
                                                             1860
560
       EWAD
                  F G F D L P D C K S R K Q P I
                                                             579
     AAAGAGGAGTTCACAGAGACAGAGAGCCACTGAGGAACGTACCTTCTTCTCCTGTCCTTC
1861
                                                             1920
580
       EEFTETESH
                                                             599
     CTCTGTGAGAAACTGCTCTTGGAAGTGGGACCTGTTGGCTGTGCCCACAGAAACCAGCAA
1921
                                                             1980
     1981
                                                             2040
```

_			
_	1	TGGTCCCGCTTCGACCAAGACTCCGGCTACCAGCTTGCGGGCCCCGGGGAGGAGGAGACC	60
_	61	CCGCTGGGGCTAGCTGGGCGACGCGCGCAAGCGGCGGGAAGGAGGCGGAAGGAGCG	120
_	121	GGGCCCGAGACCCCGACTCGGGCAGAGCCAGCTGGGGAGCGGGGGGGG	
_	181	GGGCCCGGGTGGCCGCCTCCTCCGCCACGGCTGAGTGCCCGCGCTGCCTTCCCGGCCG	180
_	241	CTCCCCA ACA ACCCCCTA ACCCCCCCCCCCCCCCCC	240
-		GTCCGCCAAGAAAGGCGCTAAGCCTGCGGCAGTCCCCTCGCCGCCGCCTCCCTGCTCCGC	300
-	301	ACCCTTATAACCCGCCGTCCCGCATCCAGGCGAGGGAGGCAACGCTGCAGCCCAGCCCTCG	360
_	361	CCGACGCCGACGCCCGGAGCAGAATGAGCGGCAGCGTTGGGGAGATGGCCCAGAC	420
_	-8	MSGSVGEMAOT	11
_	421	CTCTTCTTCCTCCTCCACCTTCGAGCACCTGTGGAGTTCTCTAGAGCCAGACAGCAC	480
	12	S S S S S T F E H L W S S L E P D S T	
_	481	CTACTTTGACCTCCCCAGCCAGCCAAGGGACTAGCGAGGCATCAGGCAGCGAGGAGTC	31
_	32	V P D 1 D 0 D C 0 D D 0 D 0 D 0 D 0 D 0 D 0 D 0	540
_			51
-	541	CAACATGGATGTCTTCCACCTGCAAGGCATGGCCCAGTTCAATTTGCTCAGCAGTGCCAT	600
_	52	N M D V F H L Q G M A Q F N L L S S A M	71
- .	601	GGACCAGATGGGCAGCCGTGCGGCCCGGCGAGCCCCTACACCCCGGAGCACGCCGCCAG	660
_	72	DQMGSRAAPASPYTPEHAAS	91
_	661	CGCGCCCACCCACTCGCCCTACGCGCAGCCCAGCTCCACCTTCGACACCATGTCTCCGGC	
_	92		720
_	721	COMMON TO COMMON	111
-			
	112	PVIPSNTDYPGP 123	

```
Name: sr-p70a-cos3
                            Len:
                                    650
                                          Check: 9661 Weight:
                                                                 1.00
_ Name: sr-p70b-cos3
                            Len:
                                    650
                                          Check: 3605
                                                        Weight:
                                                                 1.00
 _ Name: sr-p70-ht29
                                    650
                            Len:
                                          Check:
                                                   85
                                                        Weight:
                                                                  1.00
                                          Check: 4072
  Name: sr-p70c-att20
                            Len:
                                    650
                                                        Weight:
                                                                  1.00
_ Name: sr-p70a-att20
                            Len:
                                    650
                                         Check: 4204
                                                        Weight:
_//
 _ sr-p70a-cos3
                  .....MAQ STTTSPDGGT TFEHLWSSLE PDSTYFDLPQ SSRGNNEVVG
 sr-p70b-cos3
                  ..... MAQ STATSPDGGT TFEHLWSSLE PDSTYFDLPQ SSRGNNEVVG
   sr-p70-ht29
 _sr-p70c-att20
_sr-p70a-att20
                  MSGSVGEMAQ ...TSSSSSS TFEHLWSSLE PDSTYFDLPQ PSQGTSEASG
                  GTDSSMD.VF HLEGMTTSVM AQFNLLSSTM DQMSSRAASA SPYTPEHAAS
_ sr-p70a-cos3
                  GTDSSMD.VF HLEGMTTSVM AQFNLLSSTM DQMSSRAASA SPYTPEHAAS
_ sr-p70b-cos3
   sr-p70-ht29
                  GTDSSMD.VF HLEGMTTSVM AQFNLLSSTM DQMSSRAASA SPYTPEHAAS
_sr-p70c-att20
                  ...MCMGPVY ..ESLG...Q AQFNLLSSAM DQMGSRAAPA SPYTPEHAAS
_sr-p70a-att20
                  SEESNMD. VF HLQGM..... AQFNLLSSAM DQMGSRAAPA SPYTPEHAAS
                  VPTHSPYAQP SSTFDTMSPA PVIPSNTDYP GPHHFEVTFQ QSSTAKSATW
VPTHSPYAQP SSTFDTMSPA PVIPSNTDYP GPHHFEVTFQ QSSTAKSATW
  sr-p70a-cos3
_ sr-p70b-cos3
                  VPTHSPYAQP SSTFDTMSPA PVIPSNTDYP GPHHFEVTFQ QSSTAKSATW
   sr-p70-ht29
_sr-p70c-att20
                  APTHSPYAQP SSTFDTMSPA PVIPSNTDYP GPHHFEVTFQ QSSTAKSATW
                  APTHSPYAQP SSTFDTMSPA PVIPSNTDYP GP......
_sr-p70a-att20
_sr-p70a-cos3
                  TYSPLLKKLY CQIAKTCPIQ IKVSAPPPPG TAIRAMPVYK KAEHVTDIVK
sr-p70b-cos3
                  TYSPLLKKLY CQIAKTCPIQ IKVSAPPPPG TAIRAMPVYK KAEHVTDIVK
                  TYSPLLKKLY CQIAKTCPIQ IKVSTPPPPG TAIRAMPVYK KAEHVTDVVK
  sr-p70-ht29
sr-p70c-att20
                  TYSPLLKKLY CQIAKTCPIQ IKVSTPPPPG TAIRAMPVYK KAEHVTDIVK
_sr-p70a-att20
                  201
_ sr-p70a-cos3
                 RCPNHELGRD FNEGQSAPAS HLIRVEGNNL SQYVDDPVTG RQSVVVPYEP
                 RCPNHELGRD FNEGQSAPAS HLIRVEGNNL SQYVDDPVTG RQSVVVPYEP
_ sr-p70b-cos3
  sr-p70-ht29
                  RCPNHELGRD FNEGQSAPAS HLIRVEGNNL SQYVDDPVTG RQSVVVPYEP
                 RCPNHELGRD FNEGQSAPAS HLIRVEGNNL AQYVDDPVTG RQSVVVPYEP
_sr-p70c-att20
sr-p70a-att20
                 PQVGTEFTTI LYNFMCNSSC VGGMNRRPIL IIITLETRDG QVLGRRSFEG
PQVGTEFTTI LYNFMCNSSC VGGMNRRPIL IIITLETRDG QVLGRRSFEG
PQVGTEFTTI LYNFMCNSSC VGGMNRRPIL IIITLEMRDG QVLGRRSFEG
_sr-p70a-cos3
_ sr-p70b-cos3
  sr-p70-ht29
_sr-p70c-att20
                 PQVGTEFTTI LYNFMCNSSC VGGMNRRPIL VIITLETRDG QVLGRRSFEG
_sr-p70a-att20
                             _ sr-p70a-cos3
                 RICACPGRDR KADEDHYREQ QALNESSAKN GAASKRAFKQ SPPAVPALGP
                 RICACPGRDR KADEDHYREQ QALNESSAKN GAASKRAFKQ SPPAVPALGP
RICACPGRDR KADEDHYREQ QALNESSAKN GAASKRAFKQ SPPAVPALGA
_ sr-p70b-cos3
  sr-p70-ht29
_sr-p70c-att20
                 RICACPGRDR KADEDHYREQ QALNESTTKN GAASKRAFKQ SPPAIPALGT
_sr-p70a-att20
```

-FIG.9

FIG. 9A

_ sr-p70a-cos3 _ sr-p70b-cos3 _ sr-p70-ht29 _sr-p70c-att20 _sr-p70a-att20	GVKKRRHGDE GVKKRRHGDE	DTYYLQVRGR DTYYLQVRGR DTYYLQVRGR DMFYMHVRGR	ENFEILMKLK ENFEILMKLK	ESLELMELVP ESLELMELVP	QPLVDSYR
- - - - - - - - - - - - - -	QQQQLLQRPS QQQQLLQRPS	HLQPPSYGPV HLQPPSYGPV HLQPPSYGPV HLQPPSYGPV	LSPMNKVHGG LSPMNKVHGG	VNKLPSVNQL MNKLPSVNQL	VGQPPPHSSA VGQPPPHSSA
- _ sr-p70a-cos3 _ sr-p70b-cos3 _ sr-p70-ht29 _sr-p70c-att20 _sr-p70a-att20	ATPNLGPVGS ATPNLGPVGP	GMLNNHGHAV GMLNNHGHAV GMLNNHGHAV GMLNSHGHSM	PANSEMTSSH PANGEMSSSH	GTQSMVSGSH SAQSMVSGSH	500 СТРРРРУНАД СТРРРРУНАД СТРРРРУНАД СТРРРРУНАД
- _ sr-p70a-cos3 _ sr-p70b-cos3 _ sr-p70-ht29 _sr-p70c-att20 _sr-p70a-att20	PSLVRT.W PSLVSFLTGL	GCPNCIEYFT G.P GCPNCIEYFT GCPNCIECFT	SQGLQSIYHL	QNLTIEDLGA	LKIPEOYRMT
- _ sr-p70a-cos3 _ sr-p70b-cos3 _ sr-p70-ht29 _sr-p70c-att20 _sr-p70a-att20	IWRGLQDLKQ	GHDYGAAAQQ GHDYS.TAQQ SHDCGQQ	LLR. SSNAAT	ISIGGSGELQ	RORVMEAVHF
- sr-p70a-cos3 - sr-p70b-cos3 - sr-p70-ht29 - sr-p70c-att20 - sr-p70a-att20	RVRHTITIPN	RGGPGAGP RGGPGGGP RGGAGAVTGP	DEWADFGFDL	PDCKARKQPI	KEEFTEAEIH

FIG. 9B FIG.9 cont.

FIG.10 b

FIG.11

1 		< 1>3	
ŧ	1 M	AQSTATSPDGGTTFEHLWSSLEPDSTYFDLPQSSRGNNEVVGGTDSSMD	50
1			
$1 \leftarrow \downarrow 2$		PQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMD	
	51	VFHLEGMTTSVMAQFNLLSSTMDQMSSRAASASPYTPEHAASVPTHSPYA	100
	42	DLMLSPDDIEQWFTEDPGPDEAPRMPEAAPPVAPAPAAPTPA.APAP	87
:	101	QPSSTFDTMSPAPVIPSNTDYPGPHHFEVTFQQSSTAKSATWTYSPLLKK	150
	88	APSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNK	132
1	151	LYCQIAKTCPIQIKVSTPPPPGTAIRAMPVYKKAEHVTDVVKRCPNHELG	200
1	133	MFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE	180
·	201	RDFNEGQSAPASHLIRVEGNNLSQYVDDPVTGRQSVVVPYEPPQVGTEFT	250
. 1	181	RCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCT	230
2	251	TILYNFMCNSSCVGGMNRRPILIIITLEMRDGQVLGRRSFEGRICACPGR	300
2	231	TIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGR	280
3	801	DRKADEDHYREQQALNESSAKNGAASKRAFKQSPPAVPALGAGVKKRRHG	350
2	81	DRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPL	
3	5.1	DEDTYVI OVDODENIETI MYLVEGI TI MOLVODI I	1 1
		DEDTYYLQVRGRENFEILMKLKESLELMELVPQPLVDSYRQQQQLLQRPS	
٠ .	24	DGEYFTLO TRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKK	373
4	01	HLQPPSYGPVLSPMNKVHGGMNKLPSVNQLVGQPPPHSSAATPNLGPVGP	→12 4 50
3	74 (GQSTSRHKKLMFKTEGPDSD	393
4	51	GMLNNHGHAVPANGEMSSSHSAQSMVSGSHCTPPPPYHADPSLVSFLTGL	500
.	01	GCPNCIEYFTSQGLQSIYHLQNLTIEDLGALKIPEQYRMTIWRGLQDLKQ	550
5	51 (GHDYSTAQQLLRSSNAATISIGGSGELQRQRVMEAVHFRVRHTITIPNRG	600
6	01 (GPGGGPDEWADFGFDLPDCKARKOPIKEEFTEAEIH	636

	•													-	
INTRON1	EXON2						•-	INTRONZ							EXON3
CACCTACTCC AGGGATGCCC CAGGCAGGCC CACTTGCCTG CCGCCCCCAC	CATTCCTTCC TTCCTGCAGA GCGAGCTGCC CTCGGAGGCC GGCGTGGGGA AGATGGCCCA GTCCACCGCC ACCTCCCCTG ATGGGGGCAC CACGTTTGAG	CACCTCTGGA GCTCTCTGTG AGTGCGCTTG GCTGGCCAGA GCTGGGGGCC	CCCCTGGGAG GCACTCTGGG CTAGCCTCAG CCACCTTCGC TGGGCTAACT	GGGCCAGAGC AGGAGGGGTG GCCCCGGGAG GACTCTGGGC TAGCCCCAGC	CACCCTCACT GAGACTTTGG GCTAAACTTG GCAACCCTCA CTGGGATTCT	GGGCTAGCCT CGACCACCCT TGCTGCACTA ACTGGACCAG AGCAGGAGAG	GIGGCICCAC ACTAGICTIG GGCTAGCCTT AGCCACCTC ATCAGCTTGG	GGACAGGGCG GGTCGGAGGG GCAGGGAAGA GGGACTGCTG CCCTAGGCCT	TCCCTGGGGA TGCAGGACCA AAAITCAGAC TCTTTTCTCT GGCCAGCTCT	GGAGAGGGCC CATGGCCAGC AGAGGCCCAG AATAACAGAG CCCATGACTG	GCTCTGCCTC TCTGGCACTC ACAGCAGCCC TGGAATGGCA GGTGGAGGAC	AGAGATGGGA TGAGAGGGAA TGGGAAGGGC AGGAGACGTA GGCCTCACCA	GGAGTCTCAG GCTAGCCTTG AGCTCTGGGC CTGGGAGGTA TTGGGGTGAC	ACCCAAACTG GGGACTGACG CTTCTATTTT CCTCTCCTG CCCCAGGGAA	CCAGACAGCA CCTACCTTCGA CCTTCCCCAG TCAAGCCGG
1 51	-STY1 101 +STY1 151	201	251	301	351	401	451	501	551	. 109	651	701	751	801	851
	CCTCGG									,	-			•	

F16.13

-p70d-imr32 r-p70a-ht29		CG CG	ACCTTCCCCA ACCTTCCCCA	GTCAAGCCGG GTCAAGCCGG	GGGAATAATG GGGAATAATG	32 150
	AGGTGGTGGG AGGTGGTGGG	CGGAACGGAT CGGAACGGAT	TCCAGCATGG TCCAGCATGG	ACGTCTTCCA ACGTCTTCCA	CCTGGAGGGC CCTGGAGGGC	82 200
	ATGACTACAT ATGACTACAT	CTGTCATGCA CTGTCAT	TCCTCGGCTC	CTGCCTCACT	AGCTGCGGAG	132 217
	CCTCTCCCGC	TCGGTCCACG	CTGCCGGGCG	GCCACGACCG	TGACCCTTCC	182
	CCTCGGGCCG	CCCAGATCCA	TGCCTCGTCC	CACGGGACAC	CAGTTCCCTG	232
	GCGTGTGCAG	ACCCCCGGC	GCCTACCATG		GTGACCCCGC	
	ACGGCACCTC	GCCACGGCCC	AGTTCAATCT	GCTGAGCAGC	ACCATGGACC	332
	AGATGAGCAG	CCGCGCGGCC	TCGGCCAGCC	CCTACACCCC	ACCATGGACC AGAGCACGCC	382
	GCCAGCGTGC	CCACCCACTC	GCCCTACGCA	CAACCCAGCT	AGAGCACGCC CCACCTTCGA	432
	GCCAGCGTGC	CCACCCAcTC	GCCCTACGCA	CAACCCAGCT	CCACCTTCGA TACCCCGGAC	352
	CACCATGTCG	CCGGCGCCTG	TCATCCCCTC	CAACACCGAC	TACCCCGGAC TACCCCGGAC CAAGTCAGCC	402
	CCCACCACTT	TGAGGTCACT	TTCCAGCAGT	CCAGCACGGC	CAAGTCAGCC	452
	ACCTGGACGT ACCTGGACGT					

20	1000	150 0 0 0 0	200 20 0 0	250 24 0 0 13	
sr-p70a T A A C G C C C G C G C C T A C T C C C C G G G C G C C T C C C C T C C C G C G	sr-p70a T A T A A C C C G C C T A G G G C C G G C C C G C C C T G C C T C C C G C C G C A Sr-p70f	sr-p70a C C G C C G G A G G C T C G C G C G C C G C G A A G G G G A C G C A G C G A A A C C G G G G	sr-p70a C C G C C A G C C A G C C G G A C G G A C G C C G A T G C C C G G G C T G C G A C G G C T sr-p70f	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FIG. 15A -FIG. 15-

•		22/30		
300 24 0 0	350 72 0 0 113	400 122 33 33 163	450 172 66 66 213	500 222 116 116 263
sr-p70a C C G C C A C C T C C C C T G A T G G G G C A C C A C G T T T G A G C A C C T C T G G A G C T C T S sr-p70f	sr-p70a C T G G A A C C A G A C A C C T A C T T C G A C C T T C C C C A G T C A A G C C G G G G A A sr-p70f G G A A C C A G A C C T T C G A C C T T C C C C A G T C A A G C C G G G G A A sr-p70d	sr-p70a TAATGAGGTGGGCGGAACGGATTCCAGCATGGACGTCTTCCACCTGG sr-p70f TAATGAGGTGGTGGTGGTCGGATTCCAGCATGGACGTCTTCCACCTGG sr-p70d ATGCTGTACGTCGGTGACCCCGCACGGCACGTC ATGCTGTACGTCGTGGTGACCCCGCACGGCACGTC ATGCTGTACGTCCCCGCACGGCACGCCACCTC	sr-p70a A G G C A T G A C T A C A T C T G T C A T G G C C C A G T T C A A T C T G C T G A G C A C C C Sr-p70f A G G G C A T G T C A T G T C A T G G C C C A G T T C A A T C T G T G A G C A C C Sr-p70d	sr-p70a A T G G A C C A G A T G A G C A G C C G C G C C T C G G C C A G C C C T A C A C C C C A G A Sr-p70f A T G G A C C A G A T G A G C A G C G C G G C C T C G G C C A G C C T T A C A C C C C A G A Sr-p70d A T G G A C C A G A G C G C G C G G C C T C G G C C A G C C C T A C A C C C C A G A Sr-p70e A T G G A C C A G A G C G C G C G C G C C T C G G C C A G C C C T A C A C C C C A G A Sr-p70b A T G G A C C A G A G C C G C G C G C C T C G G C C C A G C C C C A G A C C C C A G A C C C C

F16, 15B F16.15 cont.

•	•				
00000	90998	36620	36620	3000	
55 27 16 16 31	60 32 21 21 36	65 37 26 26 41	70 42 31 31 46	75 47 36 36 51	
AAAAA	\bigcirc	AAAAA	AAAAA		
00000	AAAAA	AAAA	5 5 5 5	AAAAA	
00000		00000	AAAAA	00000	
66666	00000	00000	00000	00000	
00000	AAAAA	00000	00000	00000	
00000	00000	00000	00000	00000	
AAAAA	00000	00000		AAAAA	
	00000	AAAAA	00000	00000	
	AAAAA	00000	AAAAA	00000	•
00000	00000	00000	E E E E E	00000	
AAAAA	AAAAA	AAAAA	00000	00000	
RARAR	AAAAA	00000	66666	00000	
00000	00000	00000	00000	00000	
AAAAA	00000	E E E E E	RARAR	00000	
00000		ပြင္ ပင္မ	AAAAA	AAAAA	
00000		AAAAA	AAAAA	00000	
00000	00000	00000	00000	$\circ \circ \circ \circ \circ$	
AAAAA	00000	ပြာ ပ ပ ပ ပ	AAAAA		
		AAAAA	AAAAA	00000	
00000	E E E E E	00000	00000	E E E E E	
00000	AAAAA	00000		00000	
00000	00000		F	ပြင် ပြင်	
0 0 0 0 0			00000	AAAAA	0)
00000	0 0 0 0			AAAAA	\mathcal{L}
		00000	00000	00000	70 I
AAAA	0000	0 0 0 0 0 0 0	0 0 0 0		
0000	0 0 0 0		00000	AAAAA	.1.4
00000	00000	00000	00000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9
00000	00000	0 0 0 0 0	00000	00000	
AAAAA	00000	AAAAA	E E E E E	00000	1
00000	0 0 0 0 0	00000	00000		•
00000	00000	E E E E E	AAAAA	AAAAA	
00000	00000	E E E E E		00000	
00000	00000		00000		
E E E E E	E E E E E	$\circ \circ \circ \circ \circ$	00000	00000	
ပ ပ ပ ပ ပ	00000	AAAAA	RARAR	00000	
00000	E E E E E		00000	ပြပ္ပပ္ပ	
ပ ပ ပ ပ ပ ပ	AAAAA	00000	00000	6666	
AAAAA	00000	AAAAA		AAAAA	
	00000		00000		
00000	REERE	00000		AAAAA	
00000	00000	00000	AAAAA	00000	
00000	AAAAA	00000	00000	AAAAA	
00000	00000	AAAAA	00000	AAAAA	
00000		00000	00000	00000	
AAAAA		00000	PAPAP	00000	
0000	00000	00000		00000	
00000	00000	00000	00000		
	be d. fra		L		
70a 70f 70d 70d 70e	0000	70a 70f 70d 70e 70e	70a 70f 70d 70e 70b	70a 70f 70d 70e 70b	
	700	79- 79- 79-	ದ್ದಾರ್ ರಾಧ	7 7 7 7 7 7	
	ST- ST- ST-	4444	7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Sr- Sr- Sr-	
	01 01 01 01 01	ທ ທ ທ ທ ທ	0 0 0 0 0	വ വ വ വ വ	

F16 150 F16.15 cont

•				
00 22 16 16 16	50 72 66 66 13	30000	90999	36620
80 52 54 56 56	52446	90 62 51 51 66	95 67 56 56 71	00 72 61 61 76
				-
\bigcirc	00000	8 8 8 8 8	E E E E E	AAAAA
AAAAA	00000	AAAAA	00000	00000
00000	AAAAA	***	00000	AAAAA
E E E E E	RARAR	E E E E E	E E E E E	E E E E E
00000	00000	AAAAA	ပ ပ ပ ပ ပ	00000
00000	E E E E E	AAAAA	00000	E E E E E
RARAA	E E E E E	00000	66666	00000
00000	00000	00000	00000	00000
00000	AAAAA	00000	00000	E E E E E
AAAAA	ပြင္သည္	REREE	ပ ပ ပ ပ ပ	AAAAA
00000	00000	REREE	REERE	00000
ပြင္သည္လည္	00000	ပ ပ ပ ပ ပ	ပြပ္ပပ္	00000
00000	AAAAA	00000	RARAR	AAAAA
00000	၁၁၁၁	E E E E E		00000
AAAAA	00000	00000	00000	00000
AAAAA	00000	00000		AAAAA
AAAAA	00000	00000	AAAAA	00000
00000		00000	00000	
AAAA	00000	00000	00000	FFFFF
AAAAA	0000		0 0 0 0 0	AAAA
CCCC	8 8 8 8 8 0 0 0 0 0	A A A A A		8 8 8 8 8 8 8 8 8 8
	00000		AAAAA	0 0 0 0
	AAAAA	00000	00000	00000
	00000	00000	E E E E E	AAAAA
00000	00000	AAAAA	00000	00000
	AAAAA	00000		00000
00000	AAAAA	00000	00000	00000
00000	00000	00000	00000	00000
00000	00000	AAAAA	00000	E E E E E
E E E E E	00000	00000	AAAAA	00000 1
AAAAA	0.0000	00000	ပပပပ	ပြပ္ ပုပ္ ပု
00000	00000	00000		AAAAA
00000	E E E E E	AAAAA	AAAAA	00000
00000	00000	00000	00000	AAAAA
00000	ပ္ပ္ပ္ပ္ပ	00000	ပြတ္တတ္	00000
ပြင္သင္လည္	00000	66666	E E E E E	00000
	AAAAA	00000	ပြင္လည္လည္	REERE
	REERE	တြတ္တတ္ တ	66666	
	AAAAA	66666	AAAAA	
AAAAA	00000	00000		00000
00000	88866		0000	AAAAA
00000	0 0 0 0 0	00000	A A A A A	00000
00000		0 0 0 0 0 0	00000	THARA
	00000	AAAAA	00000	
AAAAA	00000	00000	E E E E E	00000
00000	AAAAA	00000	00000	00000
0000	00000	AAAAA	E E E E E	00000
00000	00000	AAAAA	00000	00000
<u> </u>	редна			b e d f
70a 70f 70d 70e 70b	705 705 706 707	70a 70f 70d 70e 70b	70a 70f 70d 70e 70b	705 705 706 700 700
	െ 6 6 6 6	0,0,0,0,0		. ማሻሻሻሻ
	Sr- Sr- Sr- Sr-	Sr- Sr-	Sr- Sr- Sr- Sr-	sr- sr- sr- sr-
	01 01 01 01	01 01 01 01 01	01 01 01 01	01 01 01 01 01
	·			

F16.15D F16.15 cont

050 772 666 666 813	100 822 716 716 863	150 872 766 766 913	200 922 816 816 963	250 72 166 113
		т.		12 9 8 8 10
	9 9 9 9	00000	00000	ပပပ
AAAAA	00000	00000	A A A A A A A A A A A A	00000
00000	00000	00000	00000	
00000	00000	RARAR	00000	00000
00000	00000	AAAAA	ပ ပ ပ ပ ပ	00000
9999	0 0 0 0 0	AAAA	00000	00000
0000	00000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		00000
00000	E E E E E	00000	00000	
ပပပပပ	00000	00000	00000	00000
00000	00000	AAAAA	AAAAA	00000
00000		00000	ပ ပ ပ ပ ပ	00000
A A A A A A A A A A A A A A A A A A A	0 0 0 0	0000	AAAAA	00000
00000	AAAAA	00000	00000	00000
E E E E E	\cup \cup \cup \cup \cup	00000	AAAAA	AAAA
AAAAA	00000	ပပပပ	AAAAA	00000
00000	00000	00000	0 0 0 0 0	RARAC
00000	0 0 0 0			00000
0 0 0 0	THEFT	00000	00000	9 9 9
00000	00000	E E E E E	00000	A A A A A A A A A A A A A A A A A A A
00000	00000	00000	00000	00000
4444	00000	E E E E E	00000	
	00000	00000	4444	
9999	99999	00000	00000	00000
00000	AAAAA	00000	A A A A A A B G G G G	00000
E E E E E	00000	00000	00000	
00000	AAAAA	E E E E E	00000	ပ ပ ပ ပ ပ
0 0 0 0	0 0 0 0 0	00000	AAAAA	00000
O O O O O O O O O O O O O O O O O O O	99999		0 0 0 0	00000
0 0 0 0	00000	AAAAA	0 0 0 0	AAAAA
AAAAA	00000	00000	00000	00000
00000	00000	00000	00000	00000
AAAAA	AAAAA	00000	AAAAA	AAAAA
AAAAAAAAAAA		00000	66666	
00000	AAAA	0 0 0 0 0	CCCC	00000
E E E E E	00000	AAAAA	00000	00000
00000	E E E E E	ပ ပ ပ ပ ပ	00000	00000
	RARAR		AAAAA	00000
AAAAA	00000	E E E E E	00000	00000
E E E E E	THELL		SSSSS	00000
	00000	00000	00000	
00000			66666	RAAAA
RARAR	$\circ \circ \circ \circ \circ$	00000	RARAR	RARAA
0a 0f 0e 0b	0a 0d 0e 0b	00 f 00 d 00 b	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 d 0 d 0 b
700	7 7 7 7 8	7 7 7 7 7 8	p7(q p7(q p7(q p7)(q	p70 p70 p70 p70 p70
Sr- Sr- Sr- Sr-	SI- SI- SI- SI-		Sr- Sr- Sr-	
J. 01 01 01 01	01 01 01 01	വ വ വ വ വ	01 01 01 01 0 <u>1</u>	

5 5 5 5 00000 0000 00000 00000 AAAAA ၁ ၁ ၁ ၁ REERC 0 0 0 0 0 00000 RARARA ** 00000 $\circ \circ \circ \circ \circ$ 00000 00000 00000 $\circ \circ \circ \circ \circ$ ပ ပ ပ ပ ပ RARAA RARAA ၁ ၁ ၁ ၁ ១១១១ AAAAA 00000 $\circ \circ \circ \circ \circ$ 0 0 0 0 $\circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ$ 0 0 0 0 0 00000 00000 00000 0000 RARAR

						•								
	300 322 316	1 0	7	99	٥,	0	7	116	•	7	66			,
	13 10 9	10,01	13	900	11,			10			10			,
		E E	0 0	5 5 0	<u>5 </u>	ರ	ن د	, , ,	ה	<u>ာ ၁</u>	ਹਾ .	ပြ		Г
	000	ပ ပ ပ	E⊢E	· E - E	- =-	E→	€ €	. E- E-	,	ان ن	- 1	اتا		
	000	. U U		, ص ر				ی ن	1	ပ ပ	1	اتا		١
	AAA	AA	0 0	9 0 0	ای د	A	A A	A A	:	ပြပ	j	انا		١
	000	ပပ	1	. A.		- 1			i i	ပ ပ	ı	5		1
	AAA	AA	AA	. A.	K A	1		0 0	1	AA	- 1	A		I,
	000	00	0 0	0	ای و	1		E E	i	ပ ပ	- 1	ان		1
	ပ ပ ပ	ပ ပ ပါ	E→E	. € €	→ E→	ပ	00	0 0	,	AA	4 1	A		ŀ
	AAA	A A	A A	*	K 4	ပ	0 0	00	,	E E	€ 1	E		Į,
	ပြာ ပြာ ပြ	ပ ပ	ပ ပ	9	2 CO	E→	₽ =		4	ပ ပ	را ان	ပါ		ŀ
	000	ပပ	₽ ₽	- E	→ E	ပ	ပပ	ں ر		ပ ပ	ပ <u>ြ</u>	ပါ		ŀ
	AAA	A A	ပ ပ	ا ن	ان د	4	A A	AA	:	A A	A 1	A		ŀ
	ပြာ ပြာ ပြ	ပ ပ	ပ ပ	ں ر	ان ر	ပ	ပ ပ	ں ر		ပ ပ	ပ <u>ြ</u>	이		1
	AAA	A A	₽ ₽	€ €	→ E→	ပ	ပ	ں ر	,	₽ ₽	€ 1	⊟	•	1
	0.00	ပ ပ	A A	N A	4	ပ	9	. O C	·	ပ ပ	را ا	ပြ		ŀ
	000	ပ ပ	ပြာ ပ	9	ان د	A	A A	KK	:[AA	4	Æ		ŀ
	F- F- F-		A A	A A	4	ျပ	ပ ပ	S C	·	ပ ပ	ပြု	ပြ		ŀ
	AAA	1	ł	9		၂၅	9	9)	ပပ	ပ ပ	ပ		ŀ
	000	·	1	€ €		1		ပ ပ	1	ပပ		- 1		ľ
	0 0 0		1	€ • •		- 1		00	ł	ပ ပ		- 1		ľ
	000	- 1	1	E→ E-	i			9 9	ı	00		- i		ľ
	000			0					1	AA		- 1		ľ
	000	1	ł	A A				9 9	1	0 0				ľ
	000		T .	4 4				99		AA				ľ
	000	ł		~ A	i		-	TT		ACC		1		Ľ
	AAA		1	50		- 1		0 0	1	T 1		- 1		ľ
	AAA	į.	1	0 0				A A	1	ပ ၂		- 1		ľ
	000	1		0 0	1			5 5	1) ပ		- 1		ľ
	AAA		ပြပ					00	1	_T_		- i		ľ
	AAA		ပ ပ		1	1			1	ວັວ		- 1		ľ
	000	ပ ပ		5 0	- 1	Æ	A A	A A		ပ ပ				ŀ
	E- E- E-	₽ ₽	l .	ග	ı			ပ ပ		AA		- 1		
	000	ပ ပ	A A	A A	: «I	₽	⊢ ⊢	⊢ ⊢		ပ ပ	ပ ပ	ပါ		k
		E- E-	ပ ပ	90	ာ ပ	ان	ပ ပ	ပ ပ		ပ ပ	ල ල	0		ŀ
	ပြပပ	ပ ပ	ပ ပ	ں ر	ان د	ပ	ල ල	ပ ပ		A A	4	~		k
	ပ ပ ပ	ပ ပ	ပ ပ	9	<u>ල</u>	Æ	A A	AA	-	ပ ပ	ပ ပ	이		k
	ပပပ	ပပ	₽ ₽	₽ ₽	• €-	ပ	ල ල	ပ ပ		ပ ပ	ပ ပ	ပ		k
	$\circ \circ \circ$	ပပ	ပ ပ	<u>ن</u> ق	<u>ල</u>	ပ	დ	ပ ပ		A A	A A	~	٠.	k
	ပ ပ ပ		ပ ပ	<u>ი</u> ი	이	₽	⊢⊢	E E		ပ ပ	ပ ပ	ပ		k
			AA		I			ပ ပ	1 1	ი ი	დ დ	ပ		ľ
	ပ ပ ပ		ပပ		i			ပ		A				ľ
	000							00	1 1	၁		- 1		ľ
		1			- 1	1		A A		9				ľ
		1	00		. I	1		00		_ອ ວ				ľ
	000	1	AC		- 1	1		8 8 8 8		T T		- 1		I,
	000	1	E E		- 1			4 A		A 1		- 1		1,
- :	000	1	ပပ		- 1			AA	1 1	T 1		- 1		1
	000	1	AA		- 1	I '		AA	1	,)				1
	——					_		<u>.</u>						_
	70a 70f 70d	20.0	70a 70f			0	\circ	705		70a 70f	ŏĕ	701		9
	[d, [d, [d,	Q , Q ,		ם גם	24 PA	Ċ,	ָם ה	ָם הַ	•	0,0				٠
	sr- sr- sr-	ЯЙ	3r- 3r-	SI	4 🛏	ř		Sr-		sr. sr.		3r.		
	J. J. UI	V1 V1	01 01	5 2 0		01	J. VI	J. J.		•.	01	-1		

1500 1222 1116 1049 1263 <u>ວ</u> ວ K ပ ၁ ၁ ၁ ၁ ပ ပ ය ය ය ပ ပ ပ တ တ တ တ တ တ Ø, Z, æ AAA K ပ ပ ပ ပ ī T C T C G C C C A ပ ပ ပ ပ ပ ပ ပ ပ ပ ပ ပ ပ ပ ₽ ပ ပ ပ ල ල ල 1 0 ပ ပ ပ ပ ပ 1 0 ပ ပ ပ ပြ C T A C G C T A C G C T A C G C G ₽ ن ر ပ ပ ا ا ₽ ₽ ₽ ပ ပ G sr-p70a C (sr-p70f C (sr-p70e - sr-p70e - sr-p70e - sr-p70e - sr-p70b C (sr-p70e - sr-p70b C (sr-p70b C (sr-p7

1550 1272 1166 1049 1313	1600° 1322 1216 1067 1363	1650 1372 1266 1117 1413	1700 1422 1316 1167 1463	1750 1472 1366 1186 1482
55 27 16 04 31	60 32 21 06 36	65 37 26 11	70 42 31 16	75 47 36 18 48
C C T C C G T C A A C C C T C C G T C A A C C C T C C G T C A A C C C T C C G T C A A C C C T C C G T C A A C C C T C C G T C A A C C C T C C G T C A A C	ACACCCAACCT ACACCCAACCT ACACCCAACCT 	C G C A G T G C C A G C G C A G T G C C A G C G C A G T G C C A G C G C A G T G C C A G C G C A G T G C C A G	7 6 6 7 C 7 C 6 6 6 6 7 C 7 C 6 6 6 6 6	A G C C T C G T C A G A G C C T C G T C A G A G C C T C G T C A G A G C C T C G T C A G A G C C T C G T C A G
P70a A A C A A G C T G C P70f A A C A A G C T G C P70d A A C A A G C T G C P70e	P70a T T C G G C A G C T P70f T T C G G C A G C T P70d T T C G G C A G C T P70e	P70a A C C A T G G C C A P70f A C C A T G G C C A P70d A C C A T G G C C A P70e A C C A T G G C C A P70b A C C A T G G C C A P70b A C C A T G G C C A P70b	-p70a G C C C A G T C C A -p70f G C C C A G T C C C A G T C C A G T C C C A	. p70a C G C C G A C C C C p70f C G C C G A C C C C C p70d C G C C G A C C C C C p70e C C C C C C C C C C C C C C C C C C C
Sr- Sr- Sr-	Sr- sr- sr-	Sr- Sr- Sr-	SI- SI- SI-	SYL

F16.15 cont.

00 22 16 86 88	50 72 66 23 19	00 22 16 16 73 69	50 72 66 23 19	00 22 16 73 69
18 14 14	18 15 14 12 15	19 16 15 12 15	16 115 113 113	20 17 16 16 16
(0.00.0)	[60, 60, 60, 60]			
8 8 8 1 1	00000	AAAAA	00000	
000	00000	AAAA	THHH	
000	AAAAA		00000	AAAAA
EEE	E E E E E	00000	00000	00000
00011	00000	AAAAA	E E E E E	00000
00011	AAAAA	00000	00000	E E E E E
44411	00000	00000	F F F F F	00000
00011	00000	RARAR	AAAAA	00000
00011	AAAAA			00000
AAA	00000	00000	00000	တြ လ လ လ လ
	00000	0 0 0 0 0	AAAA	0000
	00000	00000		8 8 8 8 8 0 0 0 0 0
AAA	00000	AAAAA	0 0 0 0	00000
0001	E E E E E	00000	00000	E E E E E
0001	AAAAA	00000	00000	AAAAA
AAAII	00000	AAAAA	00000	00000
0001	AAAAA	AAAAA	00000	
AAA	AAAA	00000	AAAA	00000
AAA	5555	00000	AAAAA	0 0 0 0
	00000	00000	0 0 0 0	00000
E E E I I	00000	AAAAA	AAAAA	00000
00011	00000	00000		AAAAA I
00011	ပ ပ ပ ပ ပ	00000	00000	00000 (
0001	00000	AAAAA	F F F F F F	
AA	0 0 0 0	00000	00000	00000
A A A I I	00000	00000	00000	
000	E E E E E	00000	00000	T GGGGG
00011	00000	00000		00000
	00000	00000	00000	0 0 0 0 0
00011	AAAAA	00000	00000	E E E E E
00011	00000	00000		00000
AAAII	0000	00000	00000	AAAAA
	0 0 1 - 1 A A A A A		AAAA	00000
	E E E I I	0 0 0 0	00000	00000
E-E-E-II	E E E I I	E E E E E	00000	0000
A A A I I	REELI	00000	AAAAA	0 0 0 0 0
E E E ! ;	00011		00000	AAAAA
00011	00011	AAAAA	00000	00000
AAA	AAA	00000	00000	F F F F F
99911		CCCC	00000	00000
	0001	0000	00000	0 0 0 0
AAA	00011	E E E E E	AAAAA	00000
00011	AAA	AAAAA	00000	ပ ပ ပ ပ ပ
0001	A A A I I	$\circ \circ \circ \circ \circ$	00000	00000
ob Ob Ob	of Od Ob Ob	Da Od Ob	00 00 00 00 00 00 00 00 00 00 00 00 00	De Op
070 070 070 070 070	570 570 570 570 570	p70 p70 p70 p70 p70	p70 p70 p70 p70 p70	070 070 070 070 070
1 1 1 1 1		1 1 1 3 1	1 1 1 1 1	1 1 1 1 1
sr sr sr	S S S S S S S S S S S S S S S S S S S	sr sr sr	sr sr sr	S S S S S S S S S S S S S S S S S S S

FIG. 15 H

F16.15 cont.

		30/36
2300 1870 1764 1521 1817	2350 1870 1764 1521 1817	2361 1870 1764 1521 1817
sr-p70a G C T G T G C C C G G G G A A A G G T C C G G C C C A T C C C C A G G C A C C T C A C A G sr-p70f	sr-p70a G C C C C A G G A A A G G C C C A C C G A A G C C G C C T G T G G A C A G C C T G A G T C A sr-p70f	sr-p70a C C T G C A G A A C C sr-p70f sr-p70f sr-p70d sr-p70e sr-p70e
ഗ ഗാ ഗാ ഗാ	, , , , , , , , , , , , , , , , , , , 	ு வெவைவ

F16,15J F16.15cont.

F1G. 16 A F1G. 16

YNFMCNSSCVGGMNRRPILIIITLEMRDGQVLGRRSFEGRICACPGR YNFMCNSSCVGGMNRRPILIITLEMRDGQVLGRRSFEGRICACPGR YNFMCNSSCVGGMNRRPILIITLEMRDGQVLGRRSFEGRICACPGR YNFMCNSSCVGGMNRRPILIITLEMRDGQVLGRRSFEGRICACPGR YNFMCNSSCVGGMNRRPILIITLEMRDGQVLGRRSFEGRICACPGR	A D E D H Y R E Q Q A L N E S S A K N G A A S K R A F K Q S P P A V P A L G A G V K K R R H G A D E D H Y R E Q Q A L N E S S A K N G A A S K R A F K Q S P P A V P A L G A G V K K R R H G 302 A D E D H Y R E Q Q A L N E S S A K N G A A S K R A F K Q S P P A V P A L G A G V K K R R H G 301 A D E D H Y R E Q Q A L N E S S A K N G A A S K R A F K Q S P P A V P A L G A G V K K R H G 350 A D E D H Y R E Q Q A L N E S S A K N G A A S K R A F K Q S P P A V P A L G A G V K K R R H G 350 A D E D H Y R E Q Q A L N E S S A K N G A A S K R A F K Q S P P A V P A L G A G V K K R R H G 301	TYYLQVRGRENFEILMKLKESLELMELVPQPLVDSYRQQQLLQRPS 352 TYYLQVRGRENFEILMKLKESLELMELVPQPLVDSYRQQQLLQRPS 351 TYYLQVRGRENFEILMKLKESLELMELVPQPLVDSYRQQQQLLQRPS 351 C TYYLQVRGRENFEILMKLKESLELMELVPQPLVDSYRQQQQLLQRPS 77 YLQVRGRENFEILMKLKESLELMELVPQPLVDSYRQQQQLLQRPS 751 C	PPSYGPULSPMNKVHGGMNKLPSVNQLVGQPPPHSSAATPNLGPVGP460 PPSYGPULSPMNKVHGGMNKLPSVNQLVGQPPPHSSAATPNLGPVGP402 PPSYGPULSPMNKVHGGMNKLPSVNQLVGQPPPHSSAATPNLGPVGP401 PPSYGPVLSPMNKVHGGMNKLPSVNQLVGQPPPHSSAATPNLGPVGP401 PPSYGPVLSPMNKVHGGMNKLPSVNQLVGQPPPHSSAATPNLGPVGP	NNHGHAVPANGEMSSSHSAQSMVSGSHCTPPPPYHADPSLVSFLTGL 452 NNHGHAVPANGEMSSSHSAQSMVSGSHCTPPPPYHADPSLVSFLTGL 451 NNHGHAVPANGEMSSSHSAQSMVSGSHCTPPPPYHADPSLVSFLTGL 451 NNHGHAVPANGEMSSSHSAQSMVSGSHCTPPPPYHADPSLVSFLTGL 499	F16, 16 B
N N N N N N N N N N N N N N N N N N N	D E D H Y R E D E D H Y R E D E D H Y R E D E D H Y R E D E D H Y R E D E D H Y R E	Y L Q V R G Y L Q V R G	S Y G P V L S Y G P V L S Y G P V L S Y G P V L	H G H A V P H G H A V P H G H A V P H G H A V P	

110.10.00NI.

550	499	600 552 551 499 470	636 588 587 599 506
Sr-p70a_ GCPNCIEYFTSQGLQSIYHLQNLTIEDLGALKIPEQYRMTIWRGLQDLKQ Sr-p70f_ GCPNCIEYFTSQGLQSIYHLQNLTIEDLGALKIPEQYRMTIWRGLQDLKQ Sr-p70d_ GCPNCIEYFTSQGLQSIYHLQNLTIEDLGALKIPEQYRMTIWRGLQDLKQ		sr-p70a_ G H D Y S T A Q Q L L R S S N A A T I S I G G S G E L Q R Q R V M E A V H F R V R H T I T I P N R G sr-p70f_ G H D Y S T A Q Q L L R S S N A A T I S I G G S G E L Q R Q R V M E A V H F R V R H T I T I P N R G sr-p70d_ G H D Y S T A Q Q L L R S S N A A T I S I G G S G E L Q R Q R V M E A V H F R V R H T I T I P N R G sr-p70b	sr-p70a_GPGGPDEWADFGFDLPDCKARKQPIKEEFTEAEIH sr-p70f_GPGGPDEWADFGFDLPDCKARKQPIKEEFTEAEIH sr-p70d_GPGGPDEWADFGFDLPDCKARKQPIKEEFTEAEIH sr-p70b

FIG. 16 cont.

-	COMO KINOCOCOCOCOCO KAM L				ļ
٠,			יכפרר ויכררכי	CCCCCCCATATACCCCCC	09
61	•	GCCTC	ງອວອນນວອນນະ	ACCCGCCCGGAGGCTCGCGCG	120
121		999001	SCCCGCGCCAC	GCCAGCCGGGACGGCCGA	180
181	81 TGCCCGGGGCTGCGACGCTCCAGAGCTGCCCTTTGGAGGCCGGCGTGGGGAAGATG	GAGCA	4GCTGCCCT'TC	GAGGCCGCGTGGGGAAGATG	240
				Σ	٠.
241	41 GCCCAGTCCACCGCCACCTCCCTGATGGGGGCACCACGTTTGAGCACCTCTGGAGCTCT	TGATG	SGGCACCACC	STTTGAGCACCTCTGGAGCTCT	300
7		D	GTT	FEHLWSS	21
301		CGACC	PTCCCCAGTC?	AGCCGGGGAATAATGAGGTG	360
22		D L	P Q S	SRGNNEV	41
361		GGACG	PCTTCCACCTC	GAGGCATGACTACATCTGTC	420
42		D V	F H L	E G M T T S V	61
421		CAGCA	CATGGACCAG	ATGAGCAGCCGCGCGCCTCG	480
62		ST	Ø Q W	MSSRAAS	81
481	_	50000	CAGCGTGCCC	ACCCACTCGCCCTACGCACAA	540
82	82 A S P Y T P E H A A S V P T H S P Y A Q	A	S V P	THSPYAQ	101
541		GTCGC	CGCCCTGTC	ATCCCCTCCAACACCGACTAC	009
102		S	A P V	I P S N T D Y	121
601		CACIPIT	PCCAGCAGTCC	AGCACGGCCAAGTICAGCCACC	099
122		Ŧ	s 0 0	STAKSAT	141
661			!		
142					

F16.17

M 1 2 3 4 5 6 7 8 9 10 M

FIG.19A

M 1 2 3 4 5 6 7 8 9 10 M

FIG 19 B

Polyllnker1: 0.0/Hindlll.Notl.Kpnl. Polyllnker2: 2.16/Xbal.Notl.Apal.

Mar