A Practical Algorithm for Topic Modling with Provable Guarantees

Sanjeev Arora Rong Ge Yoni Halpern David Mimno Ankur Moitra David Sontag Yihcen Wu Michael Zhu

Presented by: Vanush Vaswani and Kristy Hughes

- Introduction
- 2 Background
- 3 Topic Recovery via Bayes' Rule
- Efficiently Finding Anchor Words
- **5** Experimental Results
- Conclusion

Topic modeling

- Statistical modeling
- Discovers hidden thematic structure (topics) in a collection of documents
- Help to develop new ways to:
 - Search
 - Browse
 - Summarize

Intro Background Topic Recovery ○●○ ○ ○ ○ ○ ○

Recent Work

- Posterior inference is NP-hard (worst case)
- Approximate techniques used (SVD, Variational Inference, MCMC)
- Provably polynomial time algorithms: Statistical recovery problem
- Anandkumar et al. (2012)
 - Third-order moments
 - Assumes topics are not correlated
- Arpra et al.
 - Second-order moments
 - Assumes topics are separable
 - i.e. There exists an anchor word for every topic
 - Steps: find anchor words, reconstruct topic distributions

- Combinatorial anchor selection algorithm
 - Assumes separability
 - Stable in presence of noise
 - Polynomial sample complexity
- Simple probabilistic interpretation of the recovery step
 - Arora et al. (2012) use matrix inversions → sensitive to noise
 - Replace matrix inversion with gradient-based inference
- Empirical comparison between recovery-based algorithms and existing likelihood-based algorithms

- Introduction
- 2 Background
- 3 Topic Recovery via Bayes' Rule
- Efficiently Finding Anchor Words
- **5** Experimental Results
- Conclusion

Word-topic matrix

THE UNIVERSITY OF

SYDNEY

- Introduction
- 2 Background
- 3 Topic Recovery via Bayes' Rule
- Efficiently Finding Anchor Words
- **5** Experimental Results
- Conclusion

Original recovery method

Bayes' Rule

New Algorithm

- Introduction
- 2 Background
- 3 Topic Recovery via Bayes' Rule
- 4 Efficiently Finding Anchor Words
- **5** Experimental Results
- 6 Conclusion

Finding Anchor Words

Efficient Algorithm

Efficient Algorithm

Related Work

- Background Topic Recovery

- Introduction
- 2 Background
- 3 Topic Recovery via Bayes' Rule
- Efficiently Finding Anchor Words
- **5** Experimental Results
- 6 Conclusion

THE UNIVERSITY OF SYDNEY

Methodology

Efficiency

Semi-synthetic documents

Real Documents

- Introduction
- 2 Background
- 3 Topic Recovery via Bayes' Rule
- Efficiently Finding Anchor Words
- **6** Experimental Results
- 6 Conclusion

Conclusion