Proyecto: Clasificación de audio.

Universidad Nacional Autónoma de México Licenciatura en Ciencia de datos

- Martiñón Luna Jonathan José
- Tapia López José de Jesús

Objetivos

Sensar

A través de un audio, poder identificar la cantidad de personas que se encuentren en ciertas áreas.

Simplificar

Dejar de lado el uso de sensores o contadores manuales y dejar el trabajo a un simple micrófono. Queremos resolver este problema usando herramientas de Aprendizaje Profundo.

Se descargó el conjunto de audios individuales de:

https://www.openslr.org/12

Open SLR

Home Resources

LibriSpeech ASR corpus

Identifier: SLR12

Summary: Large-scale (1000 hours) corpus of read English speech

Category: Speech License: CC BY 4.0

Downloads (use a mirror closer to you):

dev-clean.tar.gz [337M] (development set, "clean" speech) Mirrors: [China]

dev-other.tar.gz [314M] (development set, "other", more challenging, speech) Mirrors: [China]

test-clean.tar.gz [346M] (test set, "clean" speech) Mirrors: [China] test-other.tar.gz [328M] (test set, "other" speech) Mirrors: [China]

train-clean-100.tar.gz [6.3G] (training set of 100 hours "clean" speech.) Mirrors: [China] train-clean-360 tar.gz [23G] (training set of 360 hours "clean" speech.) Mirrors: [China]

Mezcla y etiquetado de audio Hombre - Mujer

- Entrenamiento
- Validación
- Prueba

	Entrenamiento	Validación	Prueba
Peso	3.5 GB	364 MB	364 MB
Registros	100,000	10,000	10,000

	Waveform	Speakers	Speakers sex	F	M
Registro	Tensor[[0.000 1,,0.003]]	3	MMF	1	2

Distribución de clases

Datos

Entrenamiento

Validación

Prueba

Forma de Trabajo

RNC 1D

- stride en la primera capa: 16 (de 4 en el artículo)
- número de canales producidos por la primera convolución: 32 (de 128 para M3 y M5; de 64 en la M11 y M18 en el artículo)

M3 (0.2M)	M5 (0.5M)	M11 (1.8M)	M18 (3.7M)	M34-res (4M)		
	Input: 32	2000x1 time-do	main waveform			
[80/4, 256]	[80/4, 128]	[80/4, 64]	[80/4, 64]	[80/4, 48]		
	Maxp	ool: 4x1 (outpu	t: 2000 × n)			
[3, 256]	[3, 128]	[3, 64] × 2	[3, 64] × 4	$\left[\begin{array}{c}3,48\\3,48\end{array}\right]\times3$		
	Max	pool: 4x1 (outp	ut: 500×n)			
	[3, 256]	[3, 128] × 2	[3, 128] × 4	$\left[\begin{array}{c}3,96\\3,96\end{array}\right]\times4$		
	Maxpool: 4x1 (output: 125 × n)					
	[3, 512]	[3, 256] × 3	[3, 256] × 4	$\left[\begin{array}{c} 3, 192 \\ 3, 192 \end{array}\right] \times 6$		
	Maxpool: 4x1 (output: 32 × n)					
		[3, 512] × 2	[3, 512] × 4	$\left[\begin{array}{c}3,384\\3,384\end{array}\right]\times3$		
	Global a	verage pooling	(output: $1 \times n$)			
		Softmax				

Dai, We. et al. Very Deep Convolutional Neural Networks For Raw Waveforms. 2016.

M3y M5: Pérdida

M3y M5: Exactitud

M11

M18

Comparaciones de modelos Conv1D

Arquitectura	# Paráms.	Tiempo
M3	5,923	24 minutos
M5	37,507	36 minutos
M11	449,059	50 minutos
M18	924,643	80 minutos

Mejor solución con Conv1D: M5

En la última época, es con la que tenemos la mayor exactitud en los datos de validación (79.37%) y una menor pérdida (48.17%) en estos mismos.

Consideramos que realmente no se sobreajusta.

Su número de parámetros es relativamente pequeño; su tiempo de ejecución es relativamente adecuado.

nes M5

Espectrogramas y Convolucionales

Espectrogramas y Convolucionales

Espectrogramas y Convolucionales

Primer Intento (Arquitectura 2)

- Modelo inicial. Basado en la libreta 2f
- Corrió bien la primera ocasión. Después ya no.
- Dió pie a la siguiente arquitectura.
- Se añadieron DropOuts

Arquitectura 1

- Funcionó sin mayor problema
- Se pudo ejecutar más de una sola ocasión
- 2 DropOuts
- Accuracy: 68.574
- Loss: 69.949

Arquitectura 1. ACCURACY

Arquitectura 1. LOSS

Arquitectura 2

- Modelo inicial. Basado en la libreta 2f
- Curiosamente, corrió sin mayor problema.
- 3 DropOuts
- Accuracy: 54.20
- Loss: 94.84

Arquitectura 2. ACCURACY

Arquitectura 2. LOSS

Arquitectura 3

- Consecuencia del contraste en resultados anteriores.
- 1 DropOuts
- Resultados cercanos a la segunda arquitectura
- Accuracy: 58.616
- Loss: 88.92

Arquitectura 3. ACCURACY

Arquitectura 3. LOSS

Resumen

Arquitectura	Acc	Loss	Time	Parámetros
1	68.574	69.949	28.58	9,795
2	54.20	94.84	***	65,571
3	58.616	88.92	***	483

Evaluación (Arq. 1)

Conclusiones Accuracy

Conclusiones Loss

Conclusiones

- Esta tarea nos resultó complicada desde el momento en que no contábamos con los datos (audios) que nos permitieran atacarla. Afortunadamente, conseguimos generarlos por medio de otros conjuntos de datos que se encontraban en internet y logramos que estuvieran balanceados, lo cual ayudó bastante.
- De los análisis pasados, parece ser que esta problemática se resuelve de una mejor manera utilizando redes neuronales convolucionales 1D, específicamente con la arquitectura M5 propuesta en el atrículo con las pocas adaptaciones que mencionamos. Es importante decir que decidimos no usar la M34-Res debido a que sus parámetros eran demasiados y creíamos que presentaría dificultades similares a la M11 y M18.
- Por lo tanto, podemos concluir que la resolución parece ser adecuada, pero en un futuro no descartamos atacarla basándonos, por ejemplo, en redes recurrentes.
 Asimismo, próximamente pretendemos darle más complejidad a esta tarea tratando de predecir el sexo de el, la, los o las participantes en el audio.

