Parte B: Redes Locales Virtuales (VLANs) bajo la norma 802.1Q

a) IP sobre Ethernet

Mecanismo de transmisión de una máquina genérica C, a otra genérica B.

La máquina C envía un Broadcast preguntando por B (mediante su número IP). Entonces B captura la trama y se la devuelve a C indicando además su dirección MAC.

b) Aplicación al caso de un ping ICMP de C a B

C envía paquetes a B y B los devuelve a C. Debe haber conectividad en ambas direcciones.

b.bis) El switch Baynet 350 asigna los paquetes entrantes no marcados según el valor del parámetro PVID.

c) Aplicación de los conceptos anteriores: a las siguientes situaciones:

- **c.1)** Los puertos 1, 2 y 3 (Máquinas A, B y C conectadas a ellos) pertenecen a la VLAN#1
- c.2) El puerto 1 pertenece a la VLAN#1, con PVID=1 El puerto 2 pertenece a la VLAN#2, con PVID=2 El puerto 3 pertenece a la VLAN#3, con PVID=3
- c.3) Caso de puertos pertenecientes a más de una VLAN
 Agregar VLAN#2 a puerto 1
 Agregar VLAN#1 y VLAN#3 a puerto 2
 Agregar VLAN#2 a puerto 3

Resolución del caso c.1)

Se arma tabla de conectividad:

Puerto	MAC address	VLAN	PVID
1	MAC de A	1	1
2	MAC de B	1	1
3	MAC de C	1	1

Domino de difusión de A es ... PC: B y C , Puerto 2 y 3...... (indicar pc y puerto)

Domino de difusión de B es ... PC: A y B, Puerto 1 y 3...... (indicar pc y puerto)

Domino de difusión de C es ... PC: A y B, Puerto 1 y 2...... (indicar pc y puerto)

Se utiliza la tabla ARP de la VLAN# ... en la cual se encuentran listados todos los

puertos.

Discusión: Se hace un ping desde C a B. El ping genera un paquete de ida y otro de vuelta. A la ida, el puerto de origen es .3. (máquina .C.), el cual marca el como perteneciente a la VLAN#....... y el de destino es .3.(máquina.C.). Esta posible conectividad dado que todos los puertos pertenecen a la misma VL'AN

Resolución del caso c.2)

Se arma tabla de conectividad:

Puerto	MAC address	VLAN	PVID
1	MAC de A	1	1
2	MAC de B	2	2
3	MAC de C	3	3

Domino de difusión de A comprende solo a ...A.. (puertos .1—)

Domino de difusión de C comprende solo a .C... (puertos ..3...)

El puerto 1 utiliza la tabla ARP de la VLAN#..1... en la cual se encuentran solo se encuentra él mismo.

El puerto 2 utiliza la tabla ARP de la VLAN#...2.. en la cual se encuentran solo se encuentra él mismo.

El puerto 3 utiliza la tabla ARP de la VLAN#..3... en la cual se encuentran solo se encuentra él mismo.

Discusión: No realizar es posible el ping dado cada puerto se encuentra en una VLAN distinta..... En el puerto de ingreso se marca el paquete como perteneciente a una VLAN distinta a la de los puertos de destino. En otras palabras, la dirección IP de destino no se puede encontrar porque la VLAN limita el dominio de difusión.

Resolución del caso c.3)

Se arma tabla de conectividad:

Puerto	MAC address	VLAN	PVID
1	MAC de A	1,2	1
2	MAC de B	1,2,3	
3	MAC de C	2,3	3

El puerto 1 utiliza la tabla ARP de la VLAN#...¹.. en la cual se encuentran los puertos.¹..⁹...²...

El puerto 2 utiliza la tabla ARP de la VLAN#..²... en la cual se encuentran los puertos.1..2 y.3

El puerto 3 utiliza la tabla ARP de la VLAN#..... en la cual se encuentran los puertos.².y..³..

<u>Discusión:</u> Se hace un ping desde C a B. El ping genera un paquete de ida y otro de vuelta. A la ida, el puerto de origen es...3. (máquina...9...), el cual marca el paquete como perteneciente a la VLAN#...3. (por el PVID) y el puerto de destino es...2. (máquina...8...), el cual pertenece a la VLAN#...3... A la vuelta el puerto de origen es ...2..(máquina...8....), el cual marca el paquete como perteneciente a la VLAN#...3... (por el PVID) y el de destino es...3... (máquina...9...) que también pertenece a la VLAN#...3... La conectividad es posible dado que tanto a la ida como a la vuelta los puertos de origen y destino pertenecen a la misma VLAN. Nótese que estas VLAN son distintas para cada dirección.

Parte C: Definición de Redes Locales Virtuales (VLANs)

- 1. Suponga el siguiente switch que entiende de VLANs bajo la norma IEEE 802.1Q para el desarrollo de la práctica:
 - 13. Este switch posee seis puertos
 - 14. Los puertos 1, 2 y 3 conectan a las computadoras A1, A2 y A3 respectivamente.
 - 15. Los puertos 4, 5 y 6 conectan a las computadoras A4, A5 y A6 respectivamente.
 - 16. Los puertos 1, 2 y 3 pertenecen a la VLAN #1
 - 17. Los puertos 4, 5 y 6 pertenecen a la VLAN #2

- 2. Asignar todos los puertos a una misma VLAN. Graficar una tabla donde se indique el número de puerto, VLAN y PVID.
- 3. Definir VLAN #1, VLAN #2 y VLAN #3. Asignar a cada puerto una VLAN y graficar una tabla donde se indique el número de puerto, VLAN y PVID. Graficar una tabla donde se indique el número de puerto, VLAN y PVID.
- 4. Agregar al puerto 2 las VLANs necesarias para que el puerto 2 se comunique con el puerto 1 y con el puerto 3. Qué sucede con la conectividad entre los puertos 1 y 3, entre los puertos 1 y 2 y entre los puertos 2 y 3? Graficar una tabla donde se indique el número de puerto, VLAN y PVID.
- 5. Considere ahora que cada puerto está configurado en una VLAN distinta, como el caso del punto 3.
- Cómo dispondría la asignación de VLANs para garantizar conectividad entre los puertos 1 y 3? Graficar una tabla donde se indique el número de puerto, VLAN y PVID.

1.

Puerto	MAC address	VLAN	PVID	
1	A1	1	1	
2	A2	1	1	
3	A3	1	1	
4	A4	2	2	
5	A5	2	2	
6	A6	2	2	

2

Puerto	Mac address	VLAN	PVID
1	A1	1	1
2	A2	1	1
3	A3	1	1
4	A4	1	1
5	A5	1	1
6	A6	1	1

Puerto	Mac address	VLAN	PVID
1	A1	1	1
2	A2	1	1
3	A3	2	2
4	A4	2	2
5	A5	3	3
6	A6	3	3

Puerto	Mac address	VLAN	PVID
1	A1	1, 2	1
2	A2	1, 2, 3	2
3	A3	2, 3	3
4	A4	4	4
5	A5	4	4
6	A6	4	4

- La conectividad entre el puerto 1 y 3 no es posible, ya que se encuentran en VLANs distintas.
- La conectividad entre los puertos 1 y 2 ; 2 y 3 , es posible, ya que se encuentran en la misma VLAN

Puerto	Mac address	VLAN	PVID
1	A1	1	1
2	A2	2	2
3	A3	3	3
4	A4	4	4
5	A5	5	5
6	A6	6	6

Puerto	Mac address	VLAN	PVID
1	A1	1,3	1
2	A2	2	2
3	A3	3,1	3
4	A4	4	4
5	A5	5	5
6	A6	6	6