Analyse

Séries numériques

Question 1/19

Critère d'Abel

Réponse 1/19

Si (a_n) est une suite réelle positive décroissante de limite nulle, et la somme partielle de $\sum b_n$ est bornée, alors $\sum a_n b_n$ converge Les suites $e^{in\alpha}$, $\cos(n\alpha)$ et $\sin(n\alpha)$ vérifient les conditions pour (b_n) lorsque $\alpha \not\equiv 0$ $[2\pi]$

Question 2/19

Produit de Cauchy

Réponse 2/19

Si $\sum a_n$ et $\sum b_n$ sont absolument convergentes et $c_n = \sum (a_k b_{n-k})$, alors $\sum c_n$ est absolument

convergente
$$\left(\sum_{n=0}^{+\infty} (a_n)\right) \left(\sum_{n=0}^{+\infty} (b_n)\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} (a_k b_{n-k})\right)$$

Question 3/19

Encadrement des sommes par les intégrales f est continue et décroissante sur $[n_0, +\infty[$ avec $n_0 \in \mathbb{Z}$

Réponse 3/19

$$\int_{n_0+1}^{n+1} (f(t)) dt$$

$$\leq \sum_{k=n_0+1}^{n} (f(k)) \leq$$

$$\int_{n_0}^{n} (f(t)) dt$$

Question 4/19

Convergence absolue

Réponse 4/19

$$\sum u_n$$
 converge absolument si $\sum |u_n|$ converge
Si $\sum |u_n|$ converge alors $\sum u_n$ converge

Question 5/19

Série alternée

Réponse 5/19

$$\sum u_n$$
 est alternée s'il existe une suite (a_n) positive décroissante de limite nulle telle que $u_n = (-1)^n a_n$

Question 6/19

Comparaison par dominance

Réponse 6/19

$$u_n = O(v_n)$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ ou $\sum |u_n|$ diverge alors $\sum v_n$ diverge

Question 7/19

$$\sum_{i \in I} (a_i)$$

Réponse 7/19

$$\sup \left(\left\{ \sum_{i \in I} (a_i), \ J \in \mathcal{P}_f(I) \right\} \right)$$

Question 8/19

Formule du binôme négatif

Réponse 8/19

$$\sum_{n=p}^{+\infty} \left(\frac{n!}{(n-p)!} z^{n-p} \right) = \frac{p!}{(1-z)^{p+1}}$$
$$\sum_{n=0}^{+\infty} \left(\binom{n+p}{p} z^n \right) = \frac{1}{(1-z)^{p+1}}$$

Question 9/19

Sommabilité

Réponse 9/19

$$(a_i)$$
 est sommable si $\sum_{i \in I} (|a_i|) < +\infty$

Question 10/19

Série de Bertrand

Réponse 10/19

$$\sum_{n=2}^{+\infty} \left(\frac{1}{n^{\alpha} \ln^{\beta}(n)} \right)$$

Une série de Bertrand converge si et seulement si $(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique

Question 11/19

$$\sum u_n$$
 diverge grossièrement

Réponse 11/19

 (u_n) ne tend pas vers 0

Question 12/19

Caractérisation par ε de la somme

Réponse 12/19

$$\forall \varepsilon > 0, \ \exists J_{\varepsilon} \in \mathcal{P}_f(I), \ \forall K \in \mathcal{P}_f(I)$$

$$J_{\varepsilon} \subset K \Rightarrow \left| S - \sum_{i \in K} (a_i) \right| \leqslant \varepsilon$$

Question 13/19

Règle de d'Alembert

Réponse 13/19

Si
$$\left| \frac{u_{n+1}}{u_n} \right| \to \ell$$
 où $0 \le \ell < 1$, alors $\sum u_n$ converge absolument

Si $\left| \frac{u_{n+1}}{u_n} \right| \to \ell$ où $\ell > 1$, alors $\sum u_n$ diverge grossièrement

Question 14/19

Série de Riemann

Réponse 14/19

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha}} \right)$$

Une série de Riemann converge si et seulement si $\alpha>1$

Question 15/19

Théorème de comparaison des séries à termes positifs

Réponse 15/19

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ 0 \leqslant u_n \leqslant v_n$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ diverge alors $\sum v_n$ diverge

Question 16/19

$$\ell^1(I,X)$$

Réponse 16/19

Ensemble des familles sommables indexées sur I à valeurs dans $X\subset \mathbb{C}$

Question 17/19

Semi-convergence

Réponse 17/19

Convergence sans convergence absolue

Question 18/19

Théorème spécial de convergence des séries alternées

Réponse 18/19

Une série alternée est convergente Les sommes partielles sont du signe du premier terme

Les restes sont du signe de leur premier terme et de valeur absolue plus petite que celle de ce dernier

Question 19/19

Règle de Riemann

Réponse 19/19

S'il existe $\alpha > 1$ tel que $(n^{\alpha}u_n)$ est bornée, alors $\sum u_n$ converge Si (nu_n) est minorée par m > 0 à partir de

 $n \in \mathbb{N}$, alors $\sum u_n$ diverge