

Lecture 17 Topic 4 Power & Refrigeration Cycles

Topic

4.2 Rankine Cycles (Steam Power Plant) pt 2

Reading:

Ch 9: 9.1 – 9.7 Borgnakke & Sonntag Ed. 8

Ch 10: 10-1 – 10-7 Cengel and Boles Ed. 7

4.2.4 Rankine Cycle Efficiency

Increasing the Efficiency of the Rankine Cycle

•
$$\eta_{th} = \frac{desired\ output}{required\ input} = \frac{\dot{W}_{NET,out}}{\dot{Q}_H}$$

- Want to maximize W_{NET} for a given Q_H
- $W_{NET} = Q_{NET} = Q_H Q_L$
 - $Q_H \rightarrow$ area under T-s diagram (2-3)
 - Q_I \rightarrow area under T-s diagram (4-1)
 - W_{NET} is area enclosed in T-s diagram

4.2.4 Rankine Cycle Efficiency

Increasing the Efficiency of the Rankine Cycle

•
$$\eta_{th} = rac{ ext{desired output}}{ ext{required input}} = rac{\dot{W}_{NET,out}}{\dot{Q}_H}$$

Want to maximize W_{NET} for a given Q_H

Effect of Pressure and Temperature

Method 1: Lower condenser pressure (P_1, P_4)

- Additional expansion of working fluid
- W_{turbine} increases
- Q_I decreases
- η_{th} increases

Drawbacks

- W_{pump} increases (minor)
- Liquid in turbine increases
- Quality > 90% to avoid corrosion in turbine

4.2.4 Rankine Cycle Efficiency

Increasing the Efficiency of the Rankine Cycle

•
$$\eta_{th} = \frac{desired\ output}{required\ input} = \frac{\dot{W}_{NET,out}}{\dot{Q}_H}$$

Want to maximize W_{NET} for a given Q_H

Effect of Pressure and Temperature

Method 2: Increase T_{max} ($T_3 \rightarrow T_{3'}$)

- η_{TH} increases (think Carnot: $\eta_{TH}=1-rac{T_L}{T_H}$)
- Liquid content in turbine decreases
- W_{turbine} increases

Drawbacks

- Q_H increases
- Turbine components can be damaged above 600°C

4.2.4 Rankine Cycle

REHEAT Rankine Cycle –

- Two stage turbine
 - Fluid from high-P turbine is reheated in the boiler
 - Reheated vapour sent to low pressure turbine
- Achieve two expansion processes
 - Increase W_{NET}
 - η_{TH} increases (but so does \dot{Q}_H)
 - Increase mixture quality exiting turbine

Regenerative Rankine Cycle with OPEN Feed Water Heater -

- Preheat & require less energy from boiler
- Steam from the turbine extracted to heat (& mix) liquid before boiler.
- Open FWH: constant pressure mixing process
- Fluid leaving FWH (sat. liquid) enters Pump II to achieve higher press.
- 2 stage pumping process

Open Feed Water Heater – Control Volume analysis

Conservation of mass: $\dot{m}_6 + \dot{m}_2 = \dot{m}_3$, where $\dot{m}_6 = (y)\dot{m}_5$ and $\dot{m}_7 = (1-y)\dot{m}_5 = \dot{m}_2$

Conservation of energy: $\dot{m}_6 h_6 + \dot{m}_2 h_2 = \dot{m}_3 h_3 \rightarrow (y) \dot{m}_5 h_6 + (1-y) \dot{m}_5 h_2 = \dot{m}_5 h_3$

<u>Turbine</u> – Control Volume analysis

Conservation of mass: $\dot{m}_5 = \dot{m}_6 + \dot{m}_7$, where $\dot{m}_6 = (y)\dot{m}_5$ and $\dot{m}_7 = (1-y)\dot{m}_5$

Conservation of energy:

$$\dot{W}_{Turbine} = \dot{m}_5 h_5 - \dot{m}_6 h_6 - \dot{m}_7 h_7 = \dot{m}_5 (h_5 - y h_6 - (1 - y) h_7)$$

Regenerative Rankine Cycle with CLOSED Feed Water Heater

- Preheat, but no mixing in FWH
- Each fluid can be at <u>different</u> pressures.
- Fluid (\dot{m}_7) exits FWH as a <u>saturated liquid</u>.
- Compressed liquids mix in a <u>mixing chamber</u>
- Mixing chamber: compressed liquid at two different temperatures.

<u>Closed Feed Water Heater</u> – Control Volume Analysis

Conservation of energy: $\dot{m}_7 h_7 + \dot{m}_2 h_2 = \dot{m}_3 h_3 + \dot{m}_9 h_9$

<u>Mixing Chamber</u> – Control Volume Analysis

Conservation of mass: $\dot{m}_9 + \dot{m}_4 = \dot{m}_5$, where $\dot{m}_9 = (y)\dot{m}_6$ and $\dot{m}_4 = (1-y)\dot{m}_6$ and $\dot{m}_5 = \dot{m}_6$

Conservation of energy: $\dot{m}_9 h_9 + \dot{m}_4 h_4 = \dot{m}_5 h_5 \rightarrow (y) \dot{m}_6 h_9 + (1-y) \dot{m}_6 h_4 = \dot{m}_6 h_5$

Turbine – Control Volume Analysis

Conservation of mass: $\dot{m}_6 = \dot{m}_7 + \dot{m}_8$, where $\dot{m}_7 = (y)\dot{m}_6$ & $\dot{m}_8 = (1 - y)\dot{m}_6$

Conservation of energy: $\dot{W}_T = \dot{m}_6 h_6 - \dot{m}_7 h_7 - \dot{m}_8 h_8 \rightarrow \dot{m}_6 (h_5 - y h_7 - (1 - y) h_8)$

Ideal Feedwater Heater cycles

- Goal: preheat liquid before boiler
- Pumps: adiabatic & reversible
 - Saturated liquid entering pumps: h_f , s_f , v_f
- Turbine: adiabatic, reversible
 - Fraction of steam $(y \dot{m}_{total})$ sent to FWH
- FWH: adiabatic & const. pressure
 - Open:
 - Mixing & internal heat transfer
 - Two-stage pumping in series
 - Closed:
 - Internal heat transfer
 - Two pumps in parallel
- Mixing chamber (closed FWH)
 - Constant pressure
 - Compressed liquid

Ideal Feedwater Heater Processes

- Isentropic
 - Pumps & Turbine

-
$$s_1 = s_2 = s_{f@P_1}$$
; $s_3 = s_4 = s_{f@P_3}$

- OFWH: $s_5 = s_6 = s_7$
- CFWH: $s_6 = s_7 = s_8$
- Constant pressure
 - Heat exchangers & mixing chambers
 - OFWH:
 - Condenser: $P_1 = P_7$
 - FWH: $P_2 = P_3 = P_6$
 - Boiler: $P_4 = P_5$
 - CFWH
 - Condenser: $P_1 = P_7$
 - FWH: $P_2 = P_3 = P_6$
 - Boiler & mix chamber: $P_4 = P_5 = P_9 = P_6$

4.2.5 Example

Example 4-5: An ideal closed feedwater heater is used in a steam power plant. 20 kg/s of liquid water is heated in the closed FWH from 100°C to 250°C at a constant pressure of 20 MPa. The extraction vapour from the turbine enters the FWH at 4 MPa and 300°C and leaves as a saturated liquid. The condenser pressure is 50 kPa.

- a) What is the mass flow rate of the extracted steam (i.e. \dot{m}_7)?.
- b) What is the maximum working temperature of the cycle?
- c) What is the power output from the turbine (in kW)?
- d) Extra: What is the thermal efficiency of this Rankine Cycle?

4.2.6 Exercise (Rankine)

Exercise 4.2:

- a) Take Example 4.5. Find the processes (devices) where entropy is generated.
- b) Assume that Q_H is delivered from a constant high temperature reservoir at 750°C and the heat is rejected to a lake at constant temperature of 20°C.
 - i. Determine the rate of entropy generation for each process / device in which entropy is generated. What are the mechanisms for entropy generation?

