

1st National Conference on Computer Science, Engineering and Information Technology

A new method for finding an initial solution for the transportation problem

Presented By: **Aslan Mehrabi**

1.Nov.2012

Overview

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future works
- References

Overview

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

Definition

Transportation problem

- one of the well-known and useful models in linear optimization
- Has many applications in determining how to optimally transport goods, require a very large number of constraints and variables
- ☐ Solving with simplex method may require an exorbitant computational effort
- Special solving method

Definition

Transportation problem

$$min\sum_{j=1}^{n}\sum_{i=1}^{m}c_{ij}x_{ij}$$

Subject to:

$$\sum_{j=1}^{n} x_{ij} = \mathsf{s}_{i}$$

$$\sum_{j=1}^{n} x_{ij} = s_i$$

$$\sum_{i=1}^{m} x_{ij} = d_j$$

Definition

Parameter table for transportation problem

		Cost per Unit Distributed			
		Destination			
	1	2	PARK	n	Supply
1	C ₁₁	C ₁₂	***	C _{1n}	S ₁
Source 2	C ₂₁	C ₂₂		C _{2n}	S ₂ ⋮
m	<i>C</i> _{<i>m</i>1}	c_{m2}		C _{mn}	Sm
Demand	<i>d</i> ₁	d_2	***	d _n	

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

Solving the transportation problem

- goal
 - Find the optimal answer to satisfy the conditions with minimum cost
 - ☐ Select n+m-1 (or less) edges for transportation
- Solving method
 - ☐ Find an initial feasible solution
 - Run the iterative algorithm to improve the answer and finally find the optimal solution
- Importance of initial solution
 - Finding a better initial solution results in an impressive decrease in the number of iterations to reach the optimal solution in the main algorithm

This paper aims to introducing a novel method, to find an appropriate initial solution for the transportation problem

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

Previous methods

Northwest corner method

- Begin by selecting x_{11} if x_{ij} was the last basic variable selected, then next select $x_{i,i+1}$ if source i has any supply remaining. Otherwise, next select $x_{i+1,i}$.

```
57*55 + 97*1 + 67*17 +
38*45 + 5*91 + 28*29 +
58*42= 9748
```

Previous methods

Least Cost Method

select the cheapest edge and transfer as much as possible

Total cost:

4*29 + 5*91 + 11*45 + 17*83 + 21*27 + 32*15 + 56*2 + 63*8 = 4140

Previous methods Vogel's method

- Calculate the difference between the smallest and next-to-the-smallest unit cost c_{ij} still remaining in every rows or columns.

- In that row or column having the largest difference, select the variable having the

smallest remaining unit cost.

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

weaknesses

- Northwest corner method choose the edges, independent of their costs
- Least Cost Method choose the minimum cost available, a greedy algorithm, but our choice in one iteration may force bad choices in the next iterations
- ☐ Vogel's method calculate a penalty to considering bad choices in the future, but only considering one level penalty, not enough to make a good choice.

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

Proposed method

Target: better greedy choice in each iteration

Definition:

• Effective number of a source node (Ens_i) is an approximation of the number of destination nodes which will transfer with the i_{th} source in next iterations.

 $ENsi = \max\{ \left\lceil \frac{csi}{cst} * Nd \right\rceil, 2 \}$

Csi: remaining capacity of i_{th} node

Cst: total remaining capacity of all sources

Nd: number of remaining destination

 Effective number of a destination node(End_i) defines similarly for the destinations.

$$ENdj = \max\{ \left\lceil \frac{cdj}{cdt} * Ns \right\rceil, 2 \}$$

Proposed method

Effective value of a source node (EVs_i) is a approximation of the total penalty cost we will pay if we do not choose the lowest edge of i_{th} source.

$$EVsi = \frac{P[1]*(ENsi-1) + P[2]*(ENsi-2) + \dots + P[ENsi-1]*(1)}{\binom{ENsi(ENsi-1)}{2}} - P[0]$$

array n[] is increasing order of ENsi reaming cheanest edges of the i_{ij} source node.

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

$$ENs4 = \max\{\left[\frac{182}{300} * 5\right], 2\} = 4 \qquad EVs_4 = \frac{17 * (3) + 28 * (2) + 58 * (1)}{(6)} - 5 = 22.5$$

$$EVd_1 = \frac{56}{(1)} - 11 = 45 \qquad ENd_1 = \max\{\left[\frac{55}{300} * 4\right], 2\} = 2$$

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

comparing

Properties of proposing method

- by using the *effective number*, estimating the number of next transitions of each node
- by calculating effective value choosing a better greedy choice in each iteration which will provide better initial solutions
- \square We can implement this method by $O(n^2)$ in time complexity, like Vogel's method.

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

implementation

- □ We compared our method and Vogel's method using 13 different size problems.
- For each problem instance, 1000 balanced transportation problem was implemented and solved using both method.

- Comparison criteria
 - average of total cost of the solution
 - Number of the better answers in each size of the problem

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

Experimental results

Average total cost of proposed method

Average total cost of Vogel's method

A new method for finding an initial solution for the transportation problem

Experimental results

Experimental results

		Num of proposed	Num of
Size of	Num of vogel 's	method 's better	equal
problem	better answers	answers	answers
5*5	67	95	838
10*10	208	326	466
10*20	165	567	268
30*30	269	699	32
20*50	45	930	25
40*40	226	757	17
60*60	179	820	1
50*80	0	1000	0
100*100	121	879	0
150*130	0	1000	0
150*150	91	909	0
160*180	14	986	0
200*200	90	910	0

Size of	Avg cost vogel	Avg cost our
problem	's answer	answer
5*5	17836	17777
10*10	24052	23735
10*20	54814	53066
30*30	34213	31213
20*50	148577	134252
40*40	37486	32814
60*60	42730	34708
50*80	150351	96446
100*100	49125	35550
150*130	152166	73396
150*150	55631	35984
160*180	108752	48316
200*200	58805	35651

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

conclusion

- This paper aims to introducing a novel method, to find an initial solution for transportation problem
- ☐ The proposed method, according to the remaining capacity of each node and calculating an estimation number of next transitions of the node, will reach better answer through making a better choice in each iteration
- ☐ The implementation also shows the prospering performance of this method

- Transportation problem
 - Definition
 - Solving
- Previous methods
 - Explanation
 - weaknesses
- Proposed method
 - Explanation
 - Examples
- Comparing
 - Runtime Comparing
 - Implementation
 - Results and tables
- Conclusion
- Future

Future works

- Focus on the main algorithm in order to reduce the number of iterations to solve the problem.
- Define a new formula for effective number and effective value.
- ☐ Take beneficiary of distributed and parallel systems to implement the algorithm.

references

•

- [1] T.Cakmak and F.Ersoz , Methodology recommendation for one-criterion transportation problems: cakmak method, transport XXII 3, 221-224 , 2007
- [2] N.balakrishnan, Modified Vogel's approximation method for unbalanced transportation problem. Applied mathematics Letters 3(2), 9-11, 1990
- [3] D.G.Shimshak, J.A.Kaslik and T.D.Barclay, A modified Vogel's approximation method through the use of heuristic, infor 19, 259-63, 1981.
- [4] H.A.Taha, Operation Research: An introduction, New York: Macillan Publishing Company, 1987.
- [5] S.Korukoglu and S.Balli, An improved Vogel's approximation method for the transportation problem, mathematical and computational applications, 370-381, 2011
- [6] R.R.K.Sharma and S.Prasad, Obtaining a good primal solution to the uncapacitated transportation problem, European journal of Operation Reaearch 144 560-564, 2003
- [7] Solving transportation problem using object oriented model, IJCSNS International Journal of computer science and security, Vol.9,No.2, 2009
- [8] T.Imam, G.Elsharway, M.Gomah and I.Samy MIJCSNS, International Journal of Computer Science and Network Security, VOL.9 No.2, February 2009

Thanks to

Shahab Shams (collaborator of the project)

Dr. Koorosh Ziarati Morteza Keshtkaran Mohammad Moein and

You for your attention

