A brief tutorial on runing Maxent in R

Xiao Feng, Cassondra Walker, Fikirte Gebresenbet July 4, 2017

- 1. Setup the working environment
 - 1.1 Load packages
 - 1.2 Set up the Maxent path
- 2. Prepare data input
 - 2.1 Load environmental layers
 - 2.2 Occurrence data
 - 2.2.1 Download occurrence data
 - 2.2.2 Clean occurrence data
 - 2.3 Set up study area
 - 2.4 Split occurrence data into training & testing
 - 2.5 Format data for Maxent
- 3 Maxent models
 - 3.1 Simple implementation
 - 3.2 Predict function
 - 3.3 Model evaluation
- · 4 Maxent parameters
 - 4.1 Select features
 - 4.2 Change beta-multiplier
 - 4.3 Specify projection layers
 - 4.4 Clamping function
 - 4.5 Cross validation

1. Setup the working environment

1.1 Load packages

```
library(dismo)
library(raster)
library(knitr)
require(rgeos)
require(rJava)
knitr::opts_knit$set(root.dir = 'd:/projects/2017_7_workshop_enm_R')
```

1.2 Set up the Maxent path

2. Prepare data input

2.1 Load environmental layers

```
# Load GIS layers; here we used bioclim variables as an example (downloaded from worldclim.org)
clim <- list.files("data/bioclim/",pattern=".bil$",full.names = T)
clim <- stack(clim) ## stacking the bioclim variables to process them at one go</pre>
```

2.2 Occurrence data

2.2.1 Download occurrence data

```
# download occurrence data from GBIF; for example, we used nine-banded armadillo that distribute
s in America
if(file.exists("data/occ_raw")){
    #cat(1)
    load("data/occ_raw")
}else{
    #cat(2)
    occ_raw <- gbif("Dasypus novemcinctus")
    save(occ_raw,file = "data/occ_raw")
    write.csv("data/occ_raw.csv")
}
#head(occ_raw)</pre>
```

2.2.2 Clean occurrence data

```
# remove bad coordinates, where either the lat or long coordinate is missing
occ_clean <- subset(occ_raw,(!is.na(lat))&(!is.na(lon)))
cat(nrow(occ_raw)-nrow(occ_clean), "records are removed")</pre>
```

```
## 2426 records are removed
```

```
# remove duplicated data based on latitude and longitude
dups <- duplicated(occ_clean[c("lat","lon")])
occ_unique <- occ_clean[!dups,]
cat(nrow(occ_clean)-nrow(occ_unique), "records are removed")</pre>
```

1506 records are removed

```
# make occ spatial
coordinates(occ_unique) <- ~ lon + lat
plot(occ_unique) ## we may notice an erroneous point</pre>
```


1124 records are removed

plot(clim[[1]]) ## to draw the first layer (or replace [[1]] with any nth number of the layers w
ith in the raster stack)

2.3 Set up study area

this creates a buffer around the occurence data
occ_buff <- buffer(occ_final,4) ## 4 decimal degree
plot(clim[[1]]) ## this plots the first element ([[1]]) in the raster stack and adds the occuren
ce data
plot(occ_final,add=T,col="red") ## this adds the occurrence data
plot(occ_buff,add=T,col="blue") ## this adds the buffer polygon</pre>


```
# if the area we will mask from is very large, use crop first; it will crop from a rectangle and
 then mask - that will save a lot of time.
studyArea <- crop(clim,extent(occ_buff)) ## gives a coarser rectangle of the study area (a rect
angle encompassing the buffered area).
studyArea <- mask(studyArea,occ_buff) ## the 'study area' created by cropping and masking the ra
ste stacks is also going to remain a raster stack
# save the buffer areas into raster files
writeRaster(studyArea,
            filename=paste0("data/studyarea/",names(studyArea),".asc"), ## a series of names for
 output files
            format="ascii", ## the output format
            bylayer=TRUE, ## this will save a series of layers
            overwrite=T)
# select background points from this buffered area
set.seed(1) ## when the number provided to set.seed() function, the same random sample will be s
elected in the next line; use this code before the sampleRandom function everytime, if you want
 to ge the same "random samples"
bg <- sampleRandom(x=studyArea,</pre>
                   size=10000,
                   na.rm=T, ## na.rm is telling R to remove the 'Not Applicaple' points,
                   sp=T) ## sp is telling R to give us a spatially points
plot(studyArea[[1]])
plot(bg,add=T) ## add the background points to the plotted raster
plot(occ final,add=T,col="red") ## add the occurrence data to the plottted raster
```


2.4 Split occurrence data into training & testing

```
# randomly select 50% for training
set.seed(1) ## get the same random sample for training and testing
selected <- sample(1:nrow(occ_final),nrow(occ_final)*0.5)
occ_train <- occ_final[selected,] ## this is the selection
occ_test <- occ_final[-selected,] ## this is the opposite of the selection</pre>
```

2.5 Format data for Maxent

```
# extracting env conditions for training occ from the raster stack; a data frame is returned
p <- extract(clim,occ_train) ## env conditions for training occ this makes a dataframe since env
ironmental conditions extracted are from the raster stack (i.e multiple columns)
p test <- extract(clim,occ test) ## env conditions for testing occ</pre>
```

a <- extract(clim,bg) ## env conditions for background

pa <- c(rep(1,nrow(p)), rep(0,nrow(a))) ## repeat the number 1 as many numbers as the number of raws in my p

(rep(1,nrow(p)) creating the number of rows as the p data set to have the number one as the i ndicator for presence

rep(0,nrow(a)) creating the number of rows as the a data set to have the number zero as the i ndicator for absence

The c combines these ones and zeros into a new vector that can be added to the Maxent table $pder \leftarrow as.data.frame(rbind(p,a))$ ## this makes a data frame with the environmental attributes of the presence and absence locations

3 Maxent models

3.1 Simple implementation

```
## class : MaxEnt
## variables: bio1 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 bio2 bio3 bio4 bi
o5 bio6 bio7 bio8 bio9
```

view detailed results
mod@results

	r 11
## ## V Insining samples	[,1] 655.0000
<pre>## X.Training.samples ## Regularized.training.gain</pre>	0.7265
## Unregularized.training.gain	0.9604
## Iterations	500.0000
## Training.AUC	0.8596
## X.Background.points	10575.0000
## bio1.contribution	17.1627
## bio10.contribution	20.4753
## bio11.contribution	8.7616
## bio12.contribution	8.4875
## bio13.contribution	1.8276
## bio14.contribution	0.7496
## bio15.contribution	9.2740
## bio16.contribution	0.6694
## bio17.contribution	0.6045
## bio18.contribution	0.9334
## bio19.contribution	0.9610
## bio2.contribution	1.0134
## bio3.contribution	15.1186
## bio4.contribution	1.3084
## bio5.contribution	8.2928
## bio6.contribution	3.3366
## bio7.contribution	0.3255
## bio8.contribution	0.1911
## bio9.contribution	0.5069
## bio1.permutation.importance	16.4025
## bio10.permutation.importance	10.6769
## bio11.permutation.importance	3.4186
## bio12.permutation.importance	7.1080
## bio13.permutation.importance	3.0867
## bio14.permutation.importance	3.9966
## bio15.permutation.importance	20.4166
## bio16.permutation.importance	0.3416
## bio17.permutation.importance	0.5438
## bio18.permutation.importance	0.6744
## bio19.permutation.importance	1.3227
## bio2.permutation.importance	1.5541
## bio3.permutation.importance	2.9937
## bio4.permutation.importance	20.8722
## bio5.permutation.importance	1.2303
## bio6.permutation.importance	3.2102
## bio7.permutation.importance	1.0008
## bio8.permutation.importance	0.0737
## bio9.permutation.importance	1.0766
## Entropy	8.5492
## Prevalenceaverage.of.logistic.output.over.background.sites.	0.2410
## Fixed.cumulative.value.1.cumulative.threshold	1.0000
<pre>## Fixed.cumulative.value.1.logistic.threshold ## Fixed.cumulative.value.1.area</pre>	0.0625
## Fixed.cumulative.value.1.area ## Fixed.cumulative.value.1.training.omission	0.8119 0.0046
## Fixed.cumulative.value.1.training.omission ## Fixed.cumulative.value.5.cumulative.threshold	5.0000
	0.1355
## Fixed.cumulative.value.5.logistic.threshold	0.1355

	· · · · · · · · · · · · · · · · · · ·	
##	Fixed.cumulative.value.5.area	0.6447
##	Fixed.cumulative.value.5.training.omission	0.0229
##	Fixed.cumulative.value.10.cumulative.threshold	10.0000
##	Fixed.cumulative.value.10.logistic.threshold	0.1833
##	Fixed.cumulative.value.10.area	0.5157
##	Fixed.cumulative.value.10.training.omission	0.0473
##	Minimum.training.presence.cumulative.threshold	0.0200
##	Minimum.training.presence.logistic.threshold	0.0054
##	Minimum.training.presence.area	0.9608
##	Minimum.training.presence.training.omission	0.0000
##	X10.percentile.training.presence.cumulative.threshold	17.8502
##	X10.percentile.training.presence.logistic.threshold	0.2531
##	X10.percentile.training.presence.area	0.3762
##	X10.percentile.training.presence.training.omission	0.0992
##	Equal.training.sensitivity.and.specificity.cumulative.threshold	32.3187
##	Equal.training.sensitivity.and.specificity.logistic.threshold	0.3702
##	Equal.training.sensitivity.and.specificity.area	0.2168
##	Equal.training.sensitivity.and.specificity.training.omission	0.2168
##	Maximum.training.sensitivity.plus.specificity.cumulative.threshold	25.9220
##	Maximum.training.sensitivity.plus.specificity.logistic.threshold	0.3177
##	Maximum.training.sensitivity.plus.specificity.area	0.2765
##	Maximum.training.sensitivity.plus.specificity.training.omission	0.1389
##	Balance.training.omissionpredicted.area.and.threshold.value.cumulative.threshold	2.0374
##	Balance.training.omissionpredicted.area.and.threshold.value.logistic.threshold	0.0965
##	Balance.training.omissionpredicted.area.and.threshold.value.area	0.7536
##	Balance.training.omissionpredicted.area.and.threshold.value.training.omission	0.0076
##	Equate.entropy.of.thresholded.and.original.distributions.cumulative.threshold	11.3240
##	Equate.entropy.of.thresholded.and.original.distributions.logistic.threshold	0.1949
##	Equate.entropy.of.thresholded.and.original.distributions.area	0.4881
##	Equate.entropy.of.thresholded.and.original.distributions.training.omission	0.0534

3.2 Predict function

```
# maxent.R doesnt give us a prediction of training data/layers (unless you specify the projectio
n layers in the "args""), the alternative is to use the predict function
# a maxent model (in R) can be projected on raster layers or a dataframes

# example 1, project to out study area [raster]
ped1 <- predict(mod, studyArea)
plot(ped1)</pre>
```



```
# example 2, project to the world
#ped2 <- predict(mod,clim)
#plot(ped2)

# example 3, project training occurrences [dataframes]
ped3 <- predict(mod,p)
head(ped3)</pre>
```

[1] 0.7553921 0.3420225 0.5019929 0.5993227 0.7655950 0.7684774

hist(ped3)

Histogram of ped3

3.3 Model evaluation

using "training data" to evaluate
"evaluate"" is an evaluation function from dismo package; p= presence and a=background
mod_eval_train <- dismo::evaluate(p=p,a=a,model=mod) #p & a are dataframes (the p and a are the
 training presence and training absence points, and vice verse in the testing as well (below))
print(mod_eval_train)</pre>

class : ModelEvaluation

n presences : 655 ## n absences : 10000 ## AUC : 0.8807075 ## cor : 0.4044683 ## max TPR+TNR at : 0.3175671

```
# This is the test AUC
mod_eval_test <- dismo::evaluate(p=p_test,a=a,model=mod)
print(mod_eval_test) # training AUC may be higher than testing AUC</pre>
```

class : ModelEvaluation

n presences : 657

n absences : 10000

AUC : 0.8401474

cor : 0.3532565

max TPR+TNR at : 0.3763733

calculate thresholds of models

threshold function is in dismo and based on the evaluation function

thd1 <- threshold(mod_eval_train,"no_omission") # 0% omission rate [minimum training presence]</pre>

thd2 <- threshold(mod_eval_train,"spec_sens") # hiest TSS</pre>

Only plot the predictions that are higher than the threshold....giving a binary output plot(ped1>=thd1) ## plotting points that are above the previously calculated tresholded value

4 Maxent parameters

4.1 Select features

```
# load the function that prepares parameters for maxent
source("code/Appendix2 prepPara.R")
mod1_autofeature <- maxent(x=pder[c("bio1","bio4","bio11")], ## env conditions, here we selected</pre>
only 3 predictors
               p=pa, ## 1:presence or 0:absence
              path=paste0(getwd(),"/output/maxent_outputs1_auto"), ## path of maxent output, thi
s is the folder you will find manxent output
              args=prepPara(userfeatures=NULL) ) ## default is autofeature
# or select Linear& Quadratic features
mod1_lq <- maxent(x=pder[c("bio1","bio4","bio11")], ## env conditions, here we selected only 3 p</pre>
redictors
               p=pa, ## 1:presence or 0:absence
              path=paste0(getwd(),"/output/maxent_outputs1_lq"), ## path of maxent output, this
 is the folder you will find manxent output
              args=prepPara(userfeatures="LQ") ) ## default is autofeature, here LQ represents
 Linear& Quadratic (L-linear, Q-Quadratic, H-Hinge, P-Product, T-Threshold)
```

4.2 Change beta-multiplier

4.3 Specify projection layers

4.4 Clamping function

```
# enable or disable clamping function; note clamping function is involved when projecting
mod4_clamp <- maxent(x=pder[c("bio1","bio11")],</pre>
                      p=pa,
                      path=paste0(getwd(),"/output/maxent_outputs4_clamp"),
                      args=prepPara(userfeatures="LQ",
                                    betamultiplier=1,
                                    doclamp = TRUE,
                                    projectionlayers="D:/projects/2017_7_workshop_enm_R/data/bioc
lim"))
mod4_noclamp <- maxent(x=pder[c("bio1","bio11")],</pre>
                        p=pa,
                        path=paste0(getwd(),"/output/maxent_outputs4_noclamp"),
                        args=prepPara(userfeatures="LQ",
                                       betamultiplier=1,
                                       doclamp = FALSE,
                                       projectionlayers="D:/projects/2017_7_workshop_enm_R/data/b
ioclim") )
ped_clamp <- raster(paste0(getwd(),"/output/maxent_outputs4_clamp/species_bioclim.asc") )</pre>
ped_noclamp <- raster(paste0(getwd(),"/output/maxent_outputs4_noclamp/species_bioclim.asc") )</pre>
plot(stack(ped_clamp,ped_noclamp))
```


plot(ped_clamp - ped_noclamp) ## we may notice small difference, especially clamp shows higher p
redictions in most areas.

4.5 Cross validation