Estatística Inferencial

Prof. Wagner Hugo Bonat

Departamento de Estatística Universidade Federal do Paraná

Normalidade assintótica da função escore

► Principal resultado

$$U(\theta|Y) \stackrel{a}{\sim} N(0, I_{E}(\theta)),$$

onde

$$U(\theta|Y) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(\theta, Y_i).$$

ightharpoonup A função escore é a soma de v.a iid para um dado heta. Pelas igualdades de Bartlet, temos

$$E(U(\theta|Y)) = 0$$
 e $Var(U(\theta|Y))$.

▶ Pelo Teorema Central do Limite, temos

$$\frac{\mathsf{U}(\theta|Y) - \mathsf{E}(\mathsf{U}(\theta|Y))}{\sqrt{\mathsf{Var}(\mathsf{U}(\theta|Y))}} \overset{a}{\sim} \mathcal{N}(0,1).$$

Estimador de máxima verossimilhança (EMV)

- Estimativa de máxima verossimilhança: Seja $L(\theta, \mathbf{y})$ a função de verossimilhança. O valor $\hat{\theta} = \hat{\theta}(\mathbf{y})$ é a estimativa de máxima verossimilhança para θ se $L(\hat{\theta}) \geq L(\theta)$, $\forall \theta$.
- Estimador de máxima verossimilhança: Se $\hat{\theta}(\mathbf{y})$ é a estimativa de máxima verossimilhança, então $\hat{\theta}(\mathbf{Y})$ é o estimador de máxima verossimilhança (EMV).
- \blacktriangleright Em muitos casos $\hat{\theta}$ é um máximo local no interior de Θ e satisfaz

$$\cup(\hat{\theta}|\mathbf{Y})=0.$$

Propriedades do EMV

 $\rightarrow \hat{\theta}$ é consistente, ou seja.

$$\hat{\theta} \stackrel{P}{\to} \theta$$
, quando $n \to \infty$.

► Isso significa que

$$P(|\hat{\theta} - \theta| \ge \epsilon) \to 0$$
 quando $n \to \infty$.

 $\rightarrow \hat{\theta}$ é assintóticamente normal e eficiente, ou seja.

$$\hat{\theta} \stackrel{a}{\sim} N(\theta, I_{E}(\theta)^{-1}).$$

- \triangleright $\hat{\theta}$ é o melhor estimador disponível para θ quando o tamanho da amostra é grande.
- Assintóticamente não-viciado e eficiente.
- ► Exemplos com dados simulados (ScriptPoisson.R).

Método delta

► Se uma seguência Y_n satisfaz

$$\sqrt{n}(Y_n - \theta) \stackrel{D}{\to} N(0, \sigma^2)$$
 quando $n \to \infty$,

e se $q: \Re \to \Re$ diferenciável em $\theta \in q'(\theta) \neq 0$, então

$$\sqrt{n}(g(Y_n) - g(\theta)) \stackrel{D}{\to} \mathcal{N}(0, \sigma^2 g'(\theta)^2)$$
 quando $n \to \infty$.

► Demonstração.

Consistência: Caso geral

► Lembre-se do Teorema que deu origen a ideia do EMV.

$$P(l(\theta_0) > l(\theta)) \to 1$$
 quando $n \to \infty$

para $\theta \neq \theta_0$ fixado.

- ▶ Teorema (Consistência): Com probabilidade tendendo a 1 quando $n \to \infty$, a verossimilhança tem uma solução $\hat{\theta}$ que é consistente.
- Demonstração (opcional ver Notas adicionais).

Eficiência e normalidade assintótica

ightharpoonup Assumimos que existe uma função $\mathcal{M}(y)$ tal que

$$\left| \frac{\partial^3}{\partial \theta^3} \log f(y; \theta) \right| < M(y),$$

e E $(M(y)) < \infty$. Então

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{D}{\to} N(0, i_E(\theta)^{-1})$$
 quando $n \to \infty$.

onde $i_E(\theta)$ é a informação de Fisher para uma observação.

► Demonstração.

Algumas implicações

 \triangleright Qualquer termo assintóticamente equivalente a $I_{\rm F}(\theta)$ pode ser usado. Assim,

$$\begin{split} \hat{\boldsymbol{\theta}} &\sim \mathcal{N} \mathcal{M}_p(\boldsymbol{\theta}, \boldsymbol{I}_E^{-1}(\hat{\boldsymbol{\theta}})) \\ \hat{\boldsymbol{\theta}} &\sim \mathcal{N} \mathcal{M}_p(\boldsymbol{\theta}, \boldsymbol{I}_O^{-1}(\boldsymbol{\theta})) \\ \hat{\boldsymbol{\theta}} &\sim \mathcal{N} \mathcal{M}_p(\boldsymbol{\theta}, \boldsymbol{I}_O^{-1}(\hat{\boldsymbol{\theta}})). \end{split}$$

▶ **Distribuição assintótica da deviance** - Para um problema de estimação regular, no limite com $n \to \infty$, se θ é o verdadeiro valor do parâmetro, então

$$D(\boldsymbol{\theta}) = -2[l(\boldsymbol{\theta}) - l(\hat{\boldsymbol{\theta}})] \sim \chi_d^2$$

ou seja, a função deviance segue uma distribuição qui-Quadrado com p graus de liberdade, onde p é a dimensão do vetor θ .

Resumo dos resultados

- ▶ O EMV $\hat{\theta}$ de θ é assintóticamente não-viciado, isto é, $E(\hat{\theta}) \rightarrow \theta$.
- ► Assintóticamente $V(\hat{\theta}) \to I_E^{-1}(\theta)$, mostrando que o EMV é eficiente para o vetor θ , ao menos para grandes amostras.
- ▶ Denote $J = I_E^{-1}(\theta)$, então $V(\hat{\theta}) = J$, sendo que, J é uma matriz simétrica e definida positiva, com elementos $J_{ij} = Cov(\hat{\theta}_i, \hat{\theta}_j)$ então J_{ii} é a variância de $\hat{\theta}_i$.
- ▶ Podemos construir intervalos de 100(1 − α)% de confiança para θ_i na forma $\hat{\theta}_i \pm z_{\frac{\alpha}{2}} J_{ii}^{\frac{1}{2}}$.

Família exponencial de distribuições (Tópico adicional)

▶ Uma v.a Y é dita ser da familia exponencial se sua fp ou fdp tem a seguinte forma

$$f(y; \theta) = a(y) \exp^{\theta y - \kappa(\theta)}$$

onde θ é chamado parâmetro canônico e $\kappa(\cdot)$ é uma função conhecida.

- ► Teorema: $E(Y) = \kappa'(\theta)$ e $Var(Y) = \kappa''(\theta)$.
- Demonstração.

Propriedades do EMV na familia exponencial

- ▶ Se Y_i são v.a iid com distribuição de probabilidade pertencente a familia exponencial temos:
 - ▶ O EMV $\hat{\theta}$ é consistente para θ .
 - ▶ O EMV é assintóticamente eficiente e normalmente distribuído.
- Demonstração (ver Notas adicionais).

Exemplos

- ▶ Sejam $Y_i \sim G(\theta)$ iid para i = 1, ..., n.
 - ► Encontro o EMV.
 - Qual a distribuição assintótica do EMV neste caso? Especifique sua esperança e variância.
- ▶ Sejam $Y_i \sim B(p)$ iid para i = 1, ..., n.
 - ► Encontro o EMV.
 - Qual a distribuição assintótica do EMV neste caso? Especifique sua esperança e variância.
- ► Sejam $Y_i \sim P(\lambda)$ iid para i = 1, ..., n.
 - ► Encontro o EMV.
 - Qual a distribuição assintótica do EMV neste caso? Especifique sua esperança e variância.