Programme de khôlle de maths no 11

Semaine du 9 janvier

Cours

Chapitre 8 : Nombres complexes

- Partie réelle, partie imaginaire. Deux nombres complexes sont égaux <u>ssi</u> ils ont même partie réelle et même partie imaginaire.
- Opérations élémentaires, conjugué
- Équation de la forme $z^2 = a$ avec $a \in \mathbb{R}^-$, équation du second degré dans \mathbb{C} : cas $\Delta < 0$
- Plan complexe, affixe, module, argument
- Forme trigonométrique
- Forme exponentielle
- Propriétés de l'exponentielle complexe, formule de Moivre, $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$, $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$
- Racines n-èmes de l'unité. Définition et existence d'exactement n racines n-ème de l'unité.
- $\{\xi_k = e^{2i k\pi/n} \mid k \in [0, n-1]\}$ sont les n racines n-ème de l'unité. On a alors $\forall k \in [0, n], \xi_k = \xi_1^k$ et $\xi_n = \xi_0$. Conséquence : $\xi_1 + \xi_2 + \cdots + \xi_n = 0$

Questions de cours et exercice

• Questions de cours

- Démontrer que si $\Delta < 0$, l'équation $az^2 + bz + c = 0$ admet deux solutions complexes $z_1 = \frac{-b i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$
- Montrer que $\overline{zz'} = \overline{z}\overline{z'}$ et $\overline{\frac{1}{z}} = \frac{1}{\overline{z}}$
- Montrer que $|z+z'| \leq |z| + |z'|$ avec égalité si et seulement si $z = \lambda z'$ avec $\lambda \in \mathbb{R}_+$.
- Montrer que $\arg(zz') = \arg(z) + \arg(z') + 2k\pi, \ k \in \mathbb{Z}$

• Exercices vus en classe

- 1) Passer d'une forme trigonométrique à une forme algébrique et inversement
- 2) Résoudre $z^2 + 2z + 2 = 0$
- 3) Résoudre $\overline{z+5i} = z(3-i)$
- 4) On note $Z = \frac{i-z}{z+2}$. Déterminer l'ensemble des points M d'affixe z tels que Z a un module égal à 1.
- 5) Calculer $S = \sum_{k=0}^{n} {n \choose k} \cos(x+ky)$ en fonction de n, x et y.