DIAMOND vs BLAST Sequence Alignment Software

Sheila Podell November 9, 2015

Why use Diamond?

- Sequence comparisons on really large data sets
 - Nucleotide or protein query versus protein database
- Advantages
 - MUCH faster than BLASTX or BLASTP
 - Sensitivity similar to BLAST
- Disadvantages
 - Slower than BLAST on small data sets
 - Lower sensitivity on distant matches (e-value >1e-5)
 - Can't be used for BLASTN (nucleotide versus nucleotide)

Why is DIAMOND faster?

- Double Index Alignment
 - Seed list and locations calculated for both query and reference sequences (BLAST indexes reference only)
- Spaced kmer (word) seeds
 - Longer total length, subset of discontinuous positions
- Simplified kmer amino acid alphabet (11 vs 20)
- Smaller binary database reference file (1/2 size)
- Optimized RAM usage avoids VM delays
- Seeds selected by simple exact match for final extension using Smith-Waterman alignment

How to get it

Algorithm description

 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015 Jan;12(1): 59-60

Documentation and downloading

– http://ab.inf.uni-tuebingen.de/software/diamond/

Installation

- Linux 64-bit binary available
- OSX compile from source (wasn't difficult)
- Clear, detailed instructions on website

How to use it

- Format database
 - took ~30 mins for Genbank nr (54 million sequences)

```
diamond makedb --in nr.faa -d nr --threads 16
```

Run program (separate commands for output)

```
diamond blastp -d nr.dmnd -q query.faa -a matches.daa -t tmpdir diamond view -a matches.daa -o matches.tab -f tab diamond view -a matches.daa -o matches.sam -f sam --compress 1
```

- Very clear instructions, options similar to BLAST
 - blastx/p, number of matches reported, gap penalties, e-value or bitscore cutoffs, low complexity masking, threads
 - additional options: sensitivity profile, memory usage

DIAMOND versus BLAST comparisons

- Published claims (BLASTX, 100bp Illumina reads)
 - 20,000 times faster than BLASTX in "default" mode
 - Found 80-90% BLASTX matches at threshold e-value < 1e-5
 - 2,500 times faster than BLASTX in "sensitive" mode
 - Found 94% BLASTX matches at threshold e-value < 1e-5
- My own experience (BLASTP, full length proteins)
 - 50X faster in default mode, 15X faster in sensitive mode
 - Differences between numbers of matches are smaller than statistical "noise" from uneven database representation at e-value < 1e-5

Published BLASTX comparisons

Figure 1 | Comparison of DIAMOND and RAPSearch2 against BLASTX for four sequencing technologies and for ORFs predicted from a bacterial assembly.

(a) Fold speedup of each program over BLASTX. (b) Percentage (relative to BLASTX) of queries for which each program reports at least one alignment.

(c) Percentage (relative to BLASTX) of matches recovered by each program. Only alignments with an expected value of ≤0.001 are considered. Programs were set to report alignments for up to 250 target sequences per read. Times are wall-clock times on a server using 48 cores and exclude one-time program startup overhead, which was <1 min for BLASTX and 5 min for DIAMOND-fast. HMP, Human Microbiome Project.

BLASTP versus DIAMOND My own unpublished results

					non-self	missing	pct			
				speed	matches	non-self	-	num LPI	pct LPI	
query	method	CPU time	wall time	•			•	<0.6	<0.6	pct GC
		257:25:55	36:03:02	1	3979	738	15.6%	872	18.5%	58
Pirellula staleyi	blastp			1						30
query size = 4717	diamond_sens		1:57:30	18	4057	660	14.0%	965	20.5%	
	diamond	4:49:05	0:39:27	55	3853	864	18.3%	923	19.6%	
Gemmatimonas aurantiaca	blastp	204:53:56	29:52:20	1	3614	321	8.2%	983	25.0%	64
query size =3935	diamond_sens		2:06:27	14	3656	279	7.1%	1001	25.4%	
q.a.c.) c.=c	diamond	4:55:35	0:39:49	45	3566	369	9.4%	968	24.6%	
Chloroflexus aurantiacus	blastp	210:03:14	34:03:05	1	3786	67	1.7%	198	5.1%	57
query size =3853	diamond_sens	15:33:13	2:01:00	17	3807	46	1.2%	180	4.7%	
,	diamond	4:55:00	0:40:51	50	3788	65	1.7%	173	4.5%	
Bifidobacterium longum	diamond_sens	14:02:57	1:49:48	nd	2362	190	7.4%	70	2.7%	60
_	_									00
query size = 2552	diamond	4:33:32	0:37:43	nd	2345	207	8.1%	70	2.7%	
Fusobacterium nucleatum	diamond_sens	15:13:06	1:57:11	nd	1962	21	1.1%	50	2.5%	
query size = 1983	diamond	4:58:03	0:39:48	nd	1958	25	1.3%	49	2.5%	27
Buchnera aphidicola	diamond_sens	14:10:02	1:50:44	nd	561	3	0.1%	3	0.1%	
•	_	4:40:54						3		26
query size = 564	diamond	4.40.54	0:39:03	nd	560	4	0.2%	ა	0.1%	20

DarkHorse LPI scores < 0.6 identify phylogenetically unexpected matches, e.g. HGT

DIAMOND fast vs sensitive Which finds the "best" match?

Conclusions

- DIAMOND really works.
- Easy to install and use.
- Even if you are using BLASTP instead of BLASTX, a 15-50X speed up (versus 2,500-20,000X) can still be incredibly helpful on large data sets.
- If you do large blastx or blastp comparisons

Get it NOW!