PCT/DE 00/00912 BUNDE REPUBLIK DEUT

PRIORITY DOCUMENT UBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1 COM

0 9 JUN 2000 REC'D

PCT **WIPO**

Bescheinigung

Herr Dr. Jörg Arnold in Heidelberg, Neckar/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Lichtquelle und Beleuchtungssystem"

am 22. August 1999 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole H 01 K, F 21 S und F 21 V der Internationalen Patentklassifikation erhalten.

München, den 24. Mai 2000

Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Fbert

Aktenzeichen: 199 39 903.4

Seite 1 von 13 Seiten

Patentanmeldung

"Lichtquelle und Beleuchtungssystem"

Erfinder:TTH Dr.Jörg Arnold

Beschreibung

Die Erfindung betrifft eine spezielle Lichtquelle in Form einer Vorrichtung spektral ciner einem Lampenkolben mit Lampenkolbenverspiegelung zur Strahlungsrückheizung und einem elektrisch bestehend indirekt beheizten Lampenfilament.

Desweiteren betrifst die Erfindung ein technisches Beleuchtungssystem zur 10 Gebäudebeleuchtung und Grundstücksbeleuchtung in Form einer Vorrichtung bestehend aus Beleuchtungssystemelementen im Baukastensystem zur beliebigen Lichtführung an Beleuchtungsorte und mit einer zentralen Lichteinspeisung von künstlichen Lichtquellen, die nicht am Beleuchtungsort betrieben werden, das durch die spezielle Lichtquelle ermöglicht wird.

Zur Erzeugung von sichtbarem Licht werden vielfältigste Strahlungsquellen angeboten und eingesetzt. Die diversen meistgebrauchten Typen sind z.B. thermische Strahlungsquellen wie Glühlampen oder Lichtbogenlampen oder Entladungslampen nichtthermische Strahlungquellen wie Quecksilber-, Natrium- oder Metallhalogen-Entladungslampen in Hoch- oder 20 Niederdruckausführungen.

Allen bisher bekannten elektrisch betriebenen Lampentypen haftet der Nachteil an, daß sie sehr ineffizient bezüglich der Konversion von elektrischer Leistung in sichtbare Lichtleistung sind. Die Konversionsfaktoren übersteigem kaum 30%. Der größte Anteil der verbrauchten elektrischen Leistung ist unwirtschaftliche 25 Verlustleistung. Es besteht deshalb der Wunsch die technische Effizienz und die Lichtquellen betriebenen elektrisch Wirtschaftlichkeit ron

Seite 2 von 13 Seiten

Beleuchtungssystemen zu steigern. Dies wird mittels der vorliegenden Erfindung gemäß dem Patentansprch 1 und 2 gelöst.

Die Erfindung bezieht sich beispielhaft auf einen thermischen Strahler in Form einer z.B. Wolframglühlampe oder Wolfram-Halogen-Glühlampe, die in der 5 Regel aus einem Lampenkolben und einem lichterzeugenden Filament, das als Glühwendel oder Glühbändchen ausgebildet ist und durch elektrischen Stromdurchfluß bis zur lichterzeugenden Betriebstemperatur aufgeheizt wird.

Die Verbesserung der Energiekonversionseffizienz wird nun mittels der Erfindung gemäß dem Patentanspruch 1 dadurch erreicht, daß der Lampenkolben 10 mit einer spektral selektiven Verspiegelung, z.B. einer dielektrischen Rotfernen versehen wird, die den Mehrschichtbeschichtung Infrarotstrahlungsanteil in den Lampenkolben hinein zurückreflektiert, wo er vom Lampenfilament reabsorbiert wird. Durch die Verspiegelung wird im Lampenkolben ein erhöhtes Infrarotstrahlungsfeld aufgebaut, daß durch die die rückheizt und Lampenfilament dieses im 15 Reabsorption Lampenfilamenttemperatur unterstützt, sodaß zum stationären Betrieb der Lampe nur noch diejenige elektrische Leistung benötigt wird, die der sichtbaren transmittierten Lichtleistung und der vom Lampenkolben absorbierten thermischen Verlustleistung entspricht. Die Konversionseffizienz wird somit um Infrarotstrahlungsleistungsbruchteil verbessert. reflektierten 20 den Konversionseffizienz für die oben beispielhaft genannten Glühlampen kann somit theoretisch auf bis zu 75 % bzw. 140 Lumen/Watt gesteigert werden, wenn man die übliche thermische Verlustleistung der Wolframlampen von ca. 25% zugrundelegt und die Strahlungsabsorption der Verspiegelung vernachlässigen 25 kann. Dieelektrische Verspiegelungen haben eine Absorption von typ 0,1 %.

Bei einer Verspiegelung mit einem Reflexionsvermögen von z.B. 99,9% wird statistisch jedes 1000ste Photon im Spiegelmaterial absorbiert. Bei der Rückreflexion der Strahlung in den Lampenkolben kann der Photonenfluß deshalb lediglich 1000 Wandreflexionen erfahren, bis er vollständig in der Kolbenwand

Seite 3 von 13 Seiten

absorbiert wird. Die Wahrscheinlichkeit dafür, daß der Photonenfluß auf dem Reflexionsweg das Lampenfilament trifft und dort absorbiert wird, ist proportional zum Verhältnis des Filamentvolumen bzw. der Filamentoberfläche zum verspiegelten Lampenkolbenvolumen bzw. der verspiegelten 5 Lampenkolbenoberfläche, je nach der Ausführungsform des Filamentes als Bandfilament bzw. Flächenfilament oder als Zylinderlfilament bzw. Volumenfilament, siehe unten.

Die Filamentoberfläche bzw. das Filamentvolumen muß deshalb so groß gewählt werden, daß der Photonenfluß nach möglichst wenigen Wandreflexionen auf das Filament trifft und dort absorbiert werden kann. Dies wird konstruktiv dadurch erreichen, daß das Filament als z.B. geschlossener oder als offener, d.h. z.B. längs geschlitzter Zylinder ausgebildet ist und konzentrisch und coaxial in dem z.B. zylindrischen Lampenkolben steht und von seinem Durchmesser nicht erheblich vom Lampenkolbeninnendurchmesser verschieden ist. Eine andere 15 konstruktive Lösung ist die Verwendung eines ebnfalls konzentrisch und coaxial angeordneten Flachbandfilamentes oder Schalenfilamentes, das das z.B. zylindrische Lampenkolbenvolumen in zwei Halbräume oder Teilräume teilt.

Der z.B. zylindrische Lampenkolben seinerseit muß eine solche große Außenobersläche besitzen, daß störende Oberslächenwärme durch z.B. eine Strahlungsabsorption durch Konvektionskühlung oder Zwangskühlung abgeführt werden kann. Dem muß sich dann der Durchmesser des z.B. zylindrischen Filamentes anpassen. Dies kann dazu führen, daß das Filament entsptrechend der direkten durch mehr nicht Heizleistung elektrischen angeforderten Stromdurchfluß geheizt werden kann, weil der relevante stromdurchflossene 25 Querschnitt des Filamentes ggf. zu groß wird, d.h. der elektrische notwendige Widerstand zu klein wird, um den gesorderten elektrischen Leistungsabfall zu erreichen.

Diese Problematik wird durch die indirekte Beheizung des Filamentes gelöst, indem eine Heizwendel z.B. konzentrisch und coaxial im Zylinderfilament

ſ

plaziert wird oder coaxial vor dem Bandfilament angeordnet wird. Die Heizwendel kann nun unabhängig vom Filament elektrotechnisch auf die angeforderte Lampenleistung angepaßt werden. Eine alternative konstruktive Lösung zum Heizen des Filametes wäre ein direktes Aufheizen des Filamentes 5 durch magnetische Induktion.

Die gesamte von der Heizwendel emmitierte Strahlungsleistung wird im umgebenden Zylinderfilament absorbiert und heizt dieses. Im Falle des Bandfilamentes trägt die Heizwendel ebenfalls zum von der Lampe emmitierten sichtbaren Lichtstrom bei. Hier wird das Bandfilament einseitig und nach einer Strahlungsreflexion an der Verspiegelung des Lampenkolbens von der Heizwendel aufgeheizt. Die Filamentoberfläche kann ihrerseits entsprechend dem angeforderten Lichtstrom dimensioniert werden. Das Filament selbst bzw. der verspiegelte Lampenkolben bildet einen von innen beheizten Strahlungsofen für die Infrarotstrahlung, weswegen diese Lampenkonstruktion als Ofenlampe 15 bezeichnet werden soll.

Durch die große mögliche Oberstäche des Filamentes können Lampen mit großen Lichtleistungen gebaut werden. Auch kann die Farbtemperatur der Ofenlampe unabhängig von der Oberstächentemperatur des Filamentes oder der Heizwendel eingestellt werden. Dies kann durch die spektral selektive Verspiegelung geschehen, die die transmittierte Spektralverteilung, der aus dem Lampenkolben emmitierten Strahlungsleistung und damit die Farbtemperatur, vorgeben kann.

Insbesondere kann die Oberstächentemperatur sowohl des Filamentes als auch der Heizwendel im Vergleich zu bisherigen thermischen Strahlungsquellen der gleichen Lichtleistung gesenkt werden, denn die gesamte Strahlungsleistung der 25 Heizwendel muß nur der Summe aus der sichtbaren Strahlungsleistung und der thermischen Verlustleistung der Osenlampe entsprechen. Diese ist aber um den reslektierten und reabsorbierten Infrarotstrahlungsleistungsanteil geringer als die Gesamtstrahlungsleistung vergleichbarer bisherigen Temperaturstrahler und die gesamte thermische spezisische Ausstrahlung ist nach dem

Seite 5 von 13 Seiten

Stefan-Bolzmann-Gesetz Funktion der Temperatur, sodaß die Heizwendel der Ofenlampe gegenüber dem Filament von vergleichbaren bisherigen thermischen Strahlungsquellen auf niedrigerer Temperatur betrieben werden kann. Die Oberflächentemperatur des Filamentes kann ebenfalls im Vergleich geringer eingestellt werden, da der vergleichbare sichtbare Lichtstrom wahlweise durch weniger heiße Oberfläche oder entsprechend mehr kältere Oberfläche des Filamentes erzeugt werden kann und die Filamentoberfläche der Ofenlampe ist ein neuer zusätzlicher konstruktiver Freiheitsgrad.

Obwohl das Filament im Prinzip auf niedrigerer Temperatur als die 10 Lampenfarbtemperatur betrieben werden kann und damit auch die Verdampfung des Filamentmateriales herabgesetzt werden kann, kann die Verdampfung des Filamentmateriales problematisch werden. Das Filament der Ofenlampe kann eine sehr große Oberfläche besitzen, die sehr nahe an der Lampenkolbenwand liegt. Die ggf. dennoch großen Mengen an verdampftem und auf der 15 Lampenkolbeninnenoberfläche niedergeschlagenen Filamentmaterial wird die Reslektivität der Lampenkolbenverspiegelung herabsetzen und die Absorption des Lampenkolbens bzw. die thermische Verlustleistung erhöhen.

Verwendung übliche die durch Problematik kann Diese Edelgas-Halogenmischungen, bzw. durch einen Wolframjoditkreislauf reduziert 20 werden. Eine andere Lösung dieser Problematik ist die Beschichtung des Filamentes und der Heizwendel mit Materialien, die einen wesentlich höheren Schmelzpunkt aufweisen, als das in der Regel verwendete Filament- oder Heizwendelmaterial, denn der temperaturabhängige Dampfdruck von Festkörpern ist auch vom Schelzpunkt des Festkörpers abhängig. Daneben könnten ihre 25 Niederschläge ggf. geringere Absorptivität zeigen als der des üblichen Filament-Heizwendelmaterials. Als Beschichtungsmaterial mit sehr hohem Schmelzpunkt bzw. mit Schelzpunkten über dem des Wolframs könnten sich z.B. Tantalcarbid, Rheniumcarbid, Niobcarbid, Zirkoncarbid eignen. Bei der Verwendung dieser Materialicn als Filamentmaterial könnten auch höhere ggf.

gewünschte Oberflächentemperaturen erreicht werden, als bisher für Wolframfilamentlampen üblich.

Durch die konstruktiv bedingte große Filamentsläche können sehr große Lichtströme erzeugt und von der Lampe emmitiert werden, sodaß die Beleuchtung 5 von großen Gebäudeinnenräumen oder von Außenarealen mit nur einer erfindungsgemäßen Lampe möglich ist. Dies ermöglicht dann gleichzeitig wirtschaftlich effizientere Beleuchtungssysteme zu betreiben.

Bisher sind technische Beleuchtungssysteme für die Gebäudebeleuchtung oder Grundstücksbeleuchtung bekannt, bei denen Räume oder Flächen mit mehreren Beleuchtungskörpern ausgestattet sind und jeder Beleuchtungskörper immer eine eigene Lichtquelle wie z.B. eine oder mehrere Glühbirne oder Leuchtstoffröhren oder andere Lichtquellen umfaßt. Jeder Beleuchtungskörper umfaßt dabei eine oder mehreren Lichtquellen und ein, das von der Lichtquelle emmitierte Licht unmittelbar und ohne Umwege an den zu beleuchtenden Ort lenkendes Bauteil, 15 wie z.B. ein Lichtreflektor oder ein Lichtzerstreuer, der direkt mit der Lichtquelle verbunden ist, bzw. diese zumindest teilweise umgibt. Die Beleuchtungskörper bzw. Lichtquellen sind dabei dezentral angeordnet, sodaß die gewünschte Ausleuchtung bzw. Lichtverteilung in den Räumen oder auf den Flächen erreicht wird. Die Beleuchtungskörper bzw. Lichtquellen werden dabei möglichst nahe an 20 den zu beleuchtenden Ort plaziert.

Solche Beleuchtungssysteme werden eingesetzt, wenn die notwendige Beleuchtung bzw. die benötigte Lichtmenge ein Vielfaches der zur Verfügung stehenden Lichtausbeute der verwendbaren Lichtquellen beträgt. Dies ist der Fall in z.B. Fabrikationsräumen, Lagerräumen, Veranstaltungsräumen, und ggf. auch 25 in Wohnräumen und auf Außenflächen wie Plätzen oder Straßen. Der Nachteil solcher Beleuchtungssysteme sind die hohen Kosten, für die ggf. vielen notwendigen einzelnen elektrotechnischen Beleuchtungskörper und für die notwendige umfangreiche elektrotechnische Installation des Beleuchtungssystems, sowie für die Wartung, speziell für den Austausch

Seite 7 von 13 Seiten

verbrauchter Lichtquellen. Ein Großteil der Investitionskosten in solch ein Beleuchtungssystem wird oftmals durch die notwendigen hohen Sicherheitsanforderungen an die elektrische Installation verursacht. Hier können oftmals keine preiswerten standartisierten Installationslösungen gefunden werden, da die Lösungen meist auf eine sehr differenzierte Installationsumgebung induividuell abzustimmen ist.

Eine notwendige große Verteilung von Beleuchtungskörpern mit integrierten Lichtquellen in permanent genutzten Betriebsräumen führt oft zu einer unwirtschaftlichen Beeinträchtigung des Betriebsablaufes. Diese Nachteile 10 bisheriger Beleuchtungssysteme soll mit der Erfindung, gemäß dem Patentanspruch 2 überwunden werden, indem ein Beleuchtungssystem aus speziellen kombinierbaren Beleuchtungselementen nach einem Baukastensystem verwendet wird, daß von zentralen künstlichen Lichtquellen, wie z.B. gemäß Patentanspruch 1, gespeißt wird, die nicht direkt am Beleuchtungsort oder in 15 seiner Nähe angebracht sind.

Es ist in erfindungsgemäßer Weise erkannt worden, daß eine Störung oder Gefährdung des Betriebsablaufes in z.B. Betriebsräumen oder auf Betriebsflächen vermieden werden kann, wenn die notwendigen anfälligen Lichtquellen möglichst auf nur eine Lichtquelle reduziert werden, die selbst an einem Ort, ggf. fernab 20 von den zu beleuchtenden Orten, in einem Bereich installiert werden kann, in dem geringere und damit kostengünstige Sicherheitsanforderungen bezüglich der nur einen einzigen notwendigen elektrotechnischen Installation notwendig sind.

Hierzu entsteht der Vorteil, daß die mit ggf vielen dezentralen Lichtquellen einhergehenden physikalischen Wirkungen am Beleuchtungsort, wie die 25 Wärmeerzeugung der Lichtquellen oder die resultierende Wärmekonvektion oder die elektromagnetische Störleistung der Lichterzeugung aus Betriebsbereichen herausgehalten werden kann, in denen diese Wirkungen für den Betriebsablauf nachteilig sind. Die Nachteile sind die von der Lichtquelle oder ihrer elektrischen Versorgungseinheit erzeugte Abwärme z.B. in klimatisierten Räumen oder der

Seite 8 von 13 Seiten

Abwärmekonvenktionstransport von Staubteilchen in Reinsträumen oder die in elektromagnetisch Störleistung der Lichtquellen elektromagnetische abzuschirmenden Räumen oder die notwendige Wartung der Lichtquellen im Betriebsbereiche Besonders empfindliche Betriebsablauf. umgebenden 5 diesbezüglich können Kühlräume, Rechnerräume, Testräume, Laboratorien, medizinische Untersuchungs-, Operations-, Isolierstationen, Produktionsräume oder stark befahrene Verkehrswege u.A. sein.

Es ist weiter in erfindungsgemäßer Weise erkannt worden, daß die Lenkung des von der zentralen Lichtquelle ausgesandten Lichtes mittels spezieller 10 Systemelemente eines Baukastensystem an die zu beleuchtenden Orte dort die bisherigen Beleuchtungskörper mit ihren eigenen Lichtquellen und Elektroinstallationen erspart, sodaß diese dort nicht mehr elektrotechnisch angeschlossen werden müssen oder dort im Verbrauchsfalle nicht mehr ausgewechselt werden müssen. Dies erspart einen Großteil der bisher 15 notwendigen gesamten elektrotechnischen Installation in den zu beleuchtenden Betriebsräumen oder auf den zu beleuchtenden Betriebsflächen und verhindert eine Beeinträchtigung des Betriebsablaufes durch den Ausfall einzelner Beleuchtungskörper oder durch deren Ersatz.

In der technischen Ausgestaltung des Beleuchtungssysstemes werden die Offolgenden Beleuchtungssystemelemente a - e verwendet bzw. kombiniert.

a) Lichtleitröhren, die zur Leitung des von der Lichtquelle ausgesandten Lichtes an die weiteren Beleuchtungssystemelemente dienen. Sie sind z.B. als einfache Kunststoffröhren mit einer metallischen oder dielektrischen Verspiegelung auf der Innenfläche der Röhren oder bestehend aus einem hoch reflektierenden 25 Material, wie z.B. Teflon, und mit Verbindungsanschlüssen an den Enden der Röhren in Form von Steck- oder Schraubanschlüssen ausführbar. Sie können desweiteren an den Enden Abschlußfenster aufweisen, um das Röhreninnenvolumen vor Staub oder Verunreinigungen zu schützen und ein ggf.

verwendetes Spülgas in den Röhren einzuschließen. Diese Lichtleitröhren sind aus flexiblem Kunststoff und können gebogen verlegt werden.

- b) Lichtreflektoren. Sie dienen zur Lenkung des Lichtes in die Richtungen des Verlaufes des Röhrensystems, falls anstelle eines gebogenen ein gewinkelter 5 Verlauf des Lichweges bzw. des Röhrenganges erforderlich ist und falls die Lenkung des Lichtes aus einem Röhrenende an bestimmte Beleuchtungsorte erfolgen soll. Diese Reflektoren sind als einfache Umlenkungsspiegel oder bestimmte falls können ausgestaltbar oder Umlenmkprismen Aperturanforderungen an den Lichtaustritt gefordert werden in form von O nichtplanen Umlenkspiegeln oder Spiegelsystemen oder Spiegellinsensystemen, ausgeführt werden. Diese Bauteile können ebensalls in z.B. röhrenförmigen gestreckten, gewinkelten oder gebogenen Gehäusen stecken, die wiederum mit kompatiblen Steck- oder Schraubverbindungen an die oder zwischen die Lichtleitröhren gesetzt werden können und ebenfalls mit Schutzabschlußfenstern 15 versehen sein können. Solche Reflektorelemente können vorrangig zur punktförmigen oder sogenannten Spotbeleuchtung der Umgebung dienen.
 - c) Lichtzersteuer. Sie dienen der Beleuchtung der Umgebung mit diffus gestreutem Licht. Sie können in gestreckten oder gebogenen Röhren mit ebenfalls kompatiblen Steck- oder Schraubanschlüssen und mit Abschlußschutzfenstern ausgeführt werden. Diese Röhren können durchsichtig mit ggf. Teilverspiegelungen ausgeführt sein. Als Ausführungsmaterial können z.B. Kunststoffe wie Akrylglas verwendet werden, die bestimmte Filtereigenschaften bezüglich von z.B. Ultraviolettstrahlung aufweisen. Die Lichtstreuung wird durch eine streuende innere Oberfläche erreicht.
- 25 Als besonderes Ausführungsbeispiel können Streuscheiben verwendet werden, die in den Röhren senkrecht im Lichtstrahlengang angeordnet werden. Sie können in einer bestimmten Anzahl, mit einem bestimmten Abstand, mit einer bestimmten Orientierung der Streuscheiben und mit einer bestimmten Zerstreuungswirkung der einzelnen Streuscheiben so kombiniert werden, daß eine diffuse Beleuchtung

r

Seite 10 von 13 Seiten

einer vorgegebenen Beleuchtungscharakteristik erreicht Die mit bestimmte eine Streuscheiben kann durch Streuwirkung der Oberflächenbehandlung erreicht werden. Werden die Streuscheiben z.B. leicht sandgestrahlt, so wird ein bestimmter Lichtanteil in einem bestimmten 5 Raumwinkel senkrecht zum Strahlengang ausgestreut und ein bestimmter Lichtanteil ohne eine Änderung der Strahlungsrichtung durch die Sreuscheiben hindurchgelassen. Dieser nicht ausgestreute Anteil kann dann durch das Lichtleitröhrensystem an weitere Beleuchtungsorte transportiert werden. Diese Beleuchtungssystembauteile können vorrangig zur großflächigen diffusen bzw. 10 gleichförmigen Beleuchtung der Umgebung eingesetzt werden.

- d) Lichtstrahlteiler. Sie sind in gabelförmigen, T-Stück-förmigen, gekreuzten oder sternförmigen Gehäusen untergebracht, die ebenfalls mit kompatiblen Steckoder Schraubanschlüssen versehen sind und über Schutzabschlußfenster verfügen können. Die eigentlichen Strahlteilerbauteile im Inneren können 15 Strahlteilerprismen oder Strahlteilerspiegel sein. Mit den Strahlteilerbauteilen können Verzweigungen und Parallelführungen des Beleuchtungssystems eingerichtet werden.
- e) Beleuchtungssystemsonderbauteile. Dies sind Sonderbauteile, die neben den oben genannten Grundbauteilen für Sonderanwendungen zur Verfügung stehen. Sonderbauteile sind Farbfilter, Graufilter, Polarisationsfilter-, Kollimatorbauteile und Absorber, die ebenfalls über kompatible Steck- oder Schraubverbindungen verfügen und ggf. mit Schutzabschlußfenstern versehen sind.

Die oben aufgeführten Bauteile können in vielfältigster Weise zu Beleuchtungssystemen zusammengesetzt werden. Das Beleuchtungssystem ist ein 25 Baukastensystem, bei dem die Beleuchtungsbauteile einfach kombiniert und zusammengesteckt werden und z.B. an der Decke oder an Trägern in den Gebäuden in einfachster Weise angebracht bzw. montiert werden oder in Außenbereichen einfach unter der Erdoberfläche wie z.B. Telefonkabel verlegt werden. Das Beleuchtungssystem ist damit flexibel und kann jederzeit

Seite 11 von 13 Seiten

abgenommen, verändert und neuinstalliert werden, ohne Rücksicht auf bisher notwendige Lichtstromanschlüsse oder Elektroinstallationen. Mit der Erfindung können die bei anderen Beleuchtungssystemen notwendigen hohen und teueren Sicherheitsanforderungen von elektrischen Lichtinstallationen in 5 Gefährdungsbereichen wie z.B. explosionsgefährdeten Betriebsbereichen vermieden werden.

Die einzige Elektoinstallation betrifft die zentrale Lichtquelleneinheit, die günstigerweise in der Nähe oder an bereits bestehenden Elektroinstallationen installiert werden kann. Als Lichtquelle können alle bekannten Lichtquellen mit ausreichender Lichtemmission wie z.B. Natrium-, Quecksilber-, Metallhalogen-, Schwefel-Entladungslampen oder die ersindungsgemäße Ofenlampe und andere verwendet werden. Der Lichtstrom der anwendbaren Lampen kann einfach über Sammelspiegel oder Sammellinsen in eine oder mehrere Lichtleitröhren des Beleuchtungssystems eingekoppelt werden.

Seitc 12 von 13 Seiten

Patentansprüche

- Eine Strahlungsquelle zur Erzeugung von Licht, gekennzeichnet dadurch, daß die von der Strahlenquelle erzeugte Strahlung teilweise wieder dem die Strahlung erzeugenden Bereich zur Absorption zugeführt wird.
- Ein Beleuchtungssystem zur Gebäudebeleuchtung und Grundstücksbeleuchtung gekennzeich net dadurch, daß es ein Baukastensystem aus speziellen kompatiblen Beleuchtungssystembauteilen ist und über eine zentrale Lichteinspeisung von künstlichen Lichtquellen verfügt, die nicht am Beleuchtungsort betrieben werden.

Seite 13 von 13 Seiten

Zusammenfassung

Die Erfindung betrifft eine spezielle Lichtquelle und ein technisches Beleuchtungssystem zur Gebäudebeleuchtung und Grundstücksbeleuchtung in Forn einer Vorrichtung bestehend aus Beleuchtungssystemelementen im 5 Baukastensystem zur beliebigen Lichtführung an Beleuchtungsorte und mit einer zentralen Lichteinspeisung von künstlichen Lichtquellen, die nicht am Beleuchtungsort betrieben werden.