

Adapted from material by Philipp Koehn

Machine Translation

Computational Linguistics: Jordan Boyd-Graber University of Maryland

DUDACE DACED MODELS

Motivation

- Word-Based Models translate words as atomic units
- Phrase-Based Models translate phrases as atomic units
- Advantages:
 - many-to-many translation can handle non-compositional phrases
 - use of local context in translation
 - the more data, the longer phrases can be learned
- "Standard Model" until recently

Phrase-Based Model

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Table

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for natuerlich

of course	0.5
naturally	0.3
of course,	0.15
, of course ,	0.05

Real Example

Phrase translations for den Vorschlag learned from the Europarl corpus:

English	$\phi(ar{e} ar{f})$	English	$\phi(ar{e} ar{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- noise (it)

Linguistic Phrases?

- Model is not limited to linguistic phrases (noun phrases, verb phrases, prepositional phrases, ...)
- Example non-linguistic phrase pair

spass am → fun with the

- Prior noun often helps with translation of preposition
- Experiments show that limitation to linguistic phrases hurts quality

Probabilistic Model

Bayes rule

$$\mathbf{e_{best}} = \mathbf{argmax_e} \ p(\mathbf{e}|\mathbf{f})$$

$$= \mathbf{argmax_e} \ p(\mathbf{f}|\mathbf{e}) \ p_{lm}(\mathbf{e})$$

- \Box translation model $p(\mathbf{e}|\mathbf{f})$
- \Box language model $p_{lm}(\mathbf{e})$
- Decomposition of the translation model

$$p(\overline{t}_1^I|\overline{e}_1^I) = \prod_{i=1}^I \phi(\overline{t}_i|\overline{e}_i) d(start_i - end_{i-1} - 1)$$

- phrase translation probability ϕ
- reordering probability d

Probabilistic Model

Bayes rule

$$\mathbf{e_{best}} = \mathbf{argmax_e} \ p(\mathbf{e}|\mathbf{f})$$

$$= \mathbf{argmax_e} \ p(\mathbf{f}|\mathbf{e}) \ p_{lm}(\mathbf{e})$$

- \Box translation model $p(\mathbf{e}|\mathbf{f})$
- \Box language model $p_{lm}(\mathbf{e})$
- Decomposition of the translation model

$$p(\overline{t}_1^I | \overline{\mathbf{e}}_1^I) = \prod_{i=1}^I \phi(\overline{t}_i | \overline{\mathbf{e}}_i) \ d(start_i - end_{i-1} - 1)$$

- phrase translation probability ϕ
- reordering probability d

Probabilistic Model

Bayes rule

$$\mathbf{e_{best}} = \mathbf{argmax_e} \ p(\mathbf{e}|\mathbf{f})$$

$$= \mathbf{argmax_e} \ p(\mathbf{f}|\mathbf{e}) \ p_{lm}(\mathbf{e})$$

- \Box translation model $p(\mathbf{e}|\mathbf{f})$
- \Box language model $p_{lm}(\mathbf{e})$
- Decomposition of the translation model

$$p(\overline{t}_1^I|\overline{e}_1^I) = \prod_{i=1}^I \phi(\overline{t}_i|\overline{e}_i) \, d(start_i - end_{i-1} - 1)$$

- phrase translation probability ϕ
- reordering probability d

Good to use context, but ...

- Phrases are mostly independent (LM is glue)
- Would like to use wider context
- And have fuzzy phrase boundaries

Good to use context, but ...

- Phrases are mostly independent (LM is glue)
- Would like to use wider context
- And have fuzzy phrase boundaries
- Neural models!

Distance-Based Reordering

phrase	translates	movement	distance
1	1–3	start at beginning	0
2	6	skip over 4–5	+2
3	4–5	move back over 4-6	-3
4	7	skip over 6	+1

Learning a Phrase Translation Table

- Task: learn the model from a parallel corpus
- Three stages:
 - word alignment: using IBM models or other method
 - extraction of phrase pairs
 - scoring phrase pairs

Word Alignment

Extracting Phrase Pairs

extract phrase pair consistent with word alignment: assumes that / geht davon aus , dass

Consistent

ok	violated	ok
	one alignment point	unaligned word is
	outside	fine

Bottom line:

All words of the phrase pair have to align to each other.

Consistent

Phrase pair (\bar{e}, \bar{f}) consistent with an alignment A, if all words $f_1, ..., f_n$ in \bar{f} that have alignment points in A have these with words $e_1, ..., e_n$ in \bar{e} and vice versa:

$$(\bar{e}, \bar{f})$$
 consistent with $A \Leftrightarrow$

$$\forall e_i \in \bar{e} : (e_i, f_j) \in A \to f_j \in \bar{f}$$
and $\forall f_j \in \bar{f} : (e_i, f_j) \in A \to e_i \in \bar{e}$
and $\exists e_i \in \bar{e}, f_i \in \bar{f} : (e_i, f_i) \in A$

Phrase Pair Extraction

Smallest phrase pairs: michael - michael

assumes — geht davon aus / geht davon aus

that — dass / , dass he - er will stay — bleibt in the - im house - haus

unaligned words (here: German comma) lead to multiple translations

Larger Phrase Pairs


```
michael assumes — michael geht davon aus / michael
                  geht davon aus .
 assumes that — geht davon aus, dass; assumes
         that he — geht davon aus, dass er
  that he — dass er /, dass er ; in the house — im
                       haus
  michael assumes that — michael geht davon aus,
                       dass
michael assumes that he — michael geht davon aus,
                      dass er
  michael assumes that he will stay in the house —
   michael geht davon aus, dass er im haus bleibt
 assumes that he will stay in the house — geht davon
             aus, dass er im haus bleibt
that he will stay in the house — dass er im haus bleibt
              : dass er im haus bleibt .
 he will stay in the house — er im haus bleibt : will
```

stay in the house — im haus bleibt

Scoring Phrase Translations

- Phrase pair extraction: collect all phrase pairs from the data
- Phrase pair scoring: assign probabilities to phrase translations
- Score by relative frequency:

$$\phi(\bar{f}|\bar{e}) = \frac{\mathsf{count}(\bar{e},\bar{f})}{\sum_{\bar{f}_i} \mathsf{count}(\bar{e},\bar{f}_i)}$$

Size of the Phrase Table

- Phrase translation table typically bigger than corpus
 - ... even with limits on phrase lengths (e.g., max 7 words)
- → Too big to store in memory?
 - Solution for training
 - extract to disk, sort, construct for one source phrase at a time
 - Solutions for decoding
 - on-disk data structures with index for quick look-ups
 - suffix arrays to create phrase pairs on demand

Weighted Model

- Described standard model consists of three sub-models
 - phrase translation model $\phi(\bar{f}|\bar{e})$
 - reordering model d
 - $\begin{array}{l} \text{language model } P_{LM}^{f}(e) = \\ e_{\textbf{best}} = \operatorname{argmax}_{e} \prod_{i=1}^{f} \phi(\bar{f}_{i}|\bar{e}_{i}) \ d(\operatorname{start}_{i} \operatorname{end}_{i-1} 1) \prod_{i=1}^{|\mathbf{e}|} p_{LM}(e_{i}|e_{1}...e_{i-1}) \end{array}$
- Some sub-models may be more important than others
- Add weights λ_{ϕ} , λ_{d} , λ_{LM}

$$\begin{split} e_{\textbf{best}} = & \operatorname{argmax}_e \prod_{i=1}^{I} \phi\left(\overline{t}_i | \overline{e}_i\right)^{\lambda_\phi} \ d(\mathit{start}_i - \mathit{end}_{i-1} - 1)^{\lambda_d} \\ & \prod_{i=1}^{|\mathbf{e}|} p_{\mathit{LM}}(e_i | e_1 ... e_{i-1})^{\lambda_{\mathit{LM}}} \end{split}$$

Log-Linear Model

Such a weighted model is a log-linear model:

$$p(x) = \exp \sum_{i=1}^{n} \lambda_i h_i(x)$$

- Our feature functions
 - \square number of feature function n=3
 - random variable x = (e, f, start, end)
 - feature function $h_1 = \log \phi$
 - feature function $h_2 = \log d$
 - feature function $h_3 = \log p_1$ M

Weighted Model as Log-Linear Model

$$\begin{split} \rho(e,a|f) = & \exp(\lambda_{\phi} \sum_{i=1}^{l} \log \phi(\overline{f}_{i}|\overline{e}_{i}) + \\ & \lambda_{d} \sum_{i=1}^{l} \log d(a_{i} - b_{i-1} - 1) + \\ & \lambda_{LM} \sum_{i=1}^{|\mathbf{e}|} \log p_{LM}(e_{i}|e_{1}...e_{i-1})) \end{split}$$

More Feature Functions

- Bidirectional alignment probabilities: $\phi(\bar{e}|\bar{t})$ and $\phi(\bar{t}|\bar{e})$
- Rare phrase pairs have unreliable phrase translation probability estimates
- → lexical weighting with word translation probabilities

$$\mathbf{lex}(\bar{e}|\bar{f},a) = \prod_{i=1}^{\mathbf{length}(\bar{e})} \frac{1}{|\{j|(i,j) \in a\}|} \sum_{\forall (i,j) \in a} w(e_i|f_j)$$

More Feature Functions

- Language model has a bias towards short translations
 - \rightarrow word count: **wc**(e) = log |**e**| $^{\omega}$
- We may prefer finer or coarser segmentation
 - \rightarrow phrase count **pc**(e) = log $|I|^p$
- Multiple language models
- Multiple translation models
- Other knowledge sources

Lexicalized Reordering

- Distance-based reordering model is weak
 - → learn reordering preference for each phrase pair
- Three orientations types: (m) monotone, (s) swap, (d) discontinuous

orientation
$$\in \{m, s, d\}$$

 $p_o(\text{orientation}|\bar{f}, \bar{e})$

Learning Lexicalized Reordering

- Collect orientation information. during phrase pair extraction
 - if word alignment point to the top left exists → monotone
 - if a word alignment point to the top right exists→ swap
 - if neither a word alignment point to top left nor to the top right exists \rightarrow neither monotone nor swap \rightarrow discontinuous

Learning Lexicalized Reordering

Estimation by relative frequency

$$\rho_o(\mathbf{orientation}) = \frac{\sum_{\overline{t}} \sum_{\overline{e}} count(\mathbf{orientation}, \overline{e}, \overline{t})}{\sum_o \sum_{\overline{t}} \sum_{\overline{e}} count(o, \overline{e}, \overline{t})}$$

• Smoothing with unlexicalized orientation model p(orientation) to avoid zero probabilities for unseen orientations

$$\rho_o(\text{orientation}|\bar{f},\bar{e}) = \frac{\sigma \ \rho(\text{orientation}) + count(\text{orientation},\bar{e},\bar{f})}{\sigma + \sum_o count(o,\bar{e},\bar{f})}$$

EM Training of the Phrase Model

- We presented a heuristic set-up to build phrase translation table (word alignment, phrase extraction, phrase scoring)
- Alternative: align phrase pairs directly with EM algorithm
 - initialization: uniform model, all $\phi(\bar{e},\bar{f})$ are the same
 - expectation step:
 - estimate likelihood of all possible phrase alignments for all sentence pairs
 - maximization step:
 - collect counts for phrase pairs (\bar{e}, \bar{f}) , weighted by alignment probability
 - update phrase translation probabilties $p(\bar{e}, \bar{f})$
- However: method easily overfits (learns very large phrase pairs, spanning entire sentences)

Summary

- Phrase Model
- Training the model
 - word alignment
 - phrase pair extraction
 - phrase pair scoring
- Log linear model
 - sub-models as feature functions
 - lexical weighting
 - word and phrase count features
- Lexicalized reordering model
- EM training of the phrase model