DATA UNDERSTANDING

> EXPLORE DATA

There are 12 attribute and 1309 entries in the initial dataset.

NAME	DATA TYPE	DATA QUALITY ISSUES
	(RapidMiner)	
Age	real	missing values
Sex	binomial	
Passenger Class	polynomial	
Name	polynomial	
No of Siblings or	integer	
Spouses on Board		
No of Parents or	integer	
Children on Board		
Ticket Number	polynomial	
Passenger Fare	numeric	missing values
Cabin	polynomial	missing values
Port of	polynomial	missing values
Embarkation		
Life Boat	polynomial	missing values
Survived	binomial	

From the 4 columns with numerical data, 3 attributes (siblings/spouses, parents/children, fare) are right-skewed and age is normally distributed.

> VERIFY DATA QUALITY

There are some missing values in 5 columns. Cabin and Life Boat columns each have more than half of instances missing values. Age has about 20% missing values. Fare and Embarked columns each have less than 3 missing values.

DATA PREPARATION

> SELECT DATA

Cabin and Life Boat columns will be removed as they have too much data missing. Name and Ticket Number will be removed as they are irrelevant attributes. No of Siblings or Spouses on Board and No of Parents or Children on Board columns will be combined into Relatives column and then removed.

The Passenger Class, Passenger Fare and Port of Embarkation columns will be shortened to PClass, Fare and Embarked respectively.

> CLEAN DATA

The missing values in the Age column will be replaced by mean value. The missing values in the Fare column will be replaced by median value. The missing values in the Embarked column will be replaced by the modal value.

Row No.	average(Age)	median(Passenger F ↑	mode(Port of Embarkation)
1	29.881	14.454	Southampton

> CONSTRUCT DATA

A new instance based on student number 41118874 has been inserted into the data. The new Relatives column is made by combining the No of Siblings or Spouses on Board and No of Parents or Children on Board columns.

> FORMAT DATA

For tree-based algorithms, the numeric attributes (Fare, Relatives, Age) will be converted to nominal (binning).

For the distance-based kNN algorithm, the nominal attributes will be converted to binary and numeric attributes will be normalized or standardized.

MODELING & EVALUATION

> TEST DESIGN

10-fold cross validation will be used to split the data for both Random Forest and Decision Tree. A percentage split of 75/25 will be used for the k-NN algorithm.

> BUILD MODEL

o K-NN

The k-NN model will use 4 different values for k (3,5,7,9). Results will be evaluated to determine the best value for k.

DECISION TREE

The decision Tree will use the Optimize Parameters operator to try improving its accuracy. The following parameters in the Decision Tree operator will be optimized: confidence, minimal leaf size, minimal size for split, apply pruning, and apply pre-pruning.

> ASSESS MODEL

o K-NN

K = 3:

accuracy: 75,54%			
	true Yes	true No	class precision
pred. Yes	88	43	67.18%
pred. No	37	159	81.12%
class recall	70.40%	78.71%	

K = 5:

ассигасу: 77.68%

	true Yes	true No	class precision
pred. Yes	88	36	70.97%
pred. No	37	166	81.77%
class recall	70.40%	82.18%	

K = 7:

accuracy: 77.37%			
	true Yes	true No	class precision
pred. Yes	84	33	71.79%
pred. No	41	169	80.48%
class recall	67.20%	83.66%	

K = 9:

ассигасу: 77.98%

	true Yes	true No	class precision
pred. Yes	82	29	73.87%
pred. No	43	173	80.09%
class recall	65.60%	85.64%	

o **DECISION TREE**

The optimal results and optimal parameters are as follows:

PerformanceVector [

----accuracy: 80.92% +/- 2.86% (micro average: 80.92%)

ConfusionMatrix:

True: Yes No Yes: 319 68 No: 182 741

Decision Tree.confidence = 0.35000002999999996

Decision Tree.minimal_leaf_size = 51

Decision Tree.minimal_size_for_split = 51

Decision Tree.apply_pruning = true

Decision Tree.apply_prepruning = false

DISCUSSION OF RESULTS

> K-NN RESULTS

The accuracy does not increase much when going from 5 to 9. Peak accuracy is at 9.

true positive	82
true negative	173
false positive	29
false negative	43
accuracy	77.98%
precision	73.87%
sensitivity	65.60%
specificity	85.64%
F1 measure	69.49%

> DECISION TREE RESULTS

Using the Optimize Parameters operator, the best accuracy can be obtained.

true positive	319
true negative	741
false positive	68
false negative	182
accuracy	80.92%
precision	82.43%
sensitivity	63.67%
specificity	91.59%
F1 measure	71.85%

The best 5 rules from the tree:

Sex = Female

| PClass = First: Yes {Yes=139, No=5}

| PClass = Second: Yes {Yes=94, No=12}

| PClass = Third

| | Embarked = Cherbourg: Yes {Yes=22, No=9}

| Embarked = Queenstown: Yes {Yes=33, No=23}

| Embarked = Southampton: No {Yes=51, No=78}

The tree considers sex to be the most important parameter.

> COMBINED RESULTS

Both results are about the same accuracy in the end which is hovering around 80% accuracy.

DECISION TREE

No ot No of Y = 5 sunny /N = 3 No of sunny 14 = 1 No of overcast /N = 0 overcast /4 = 2 No of rainy /Y = 2 No of rainy / N= 1 No of hot / N = 2 No of hot /Y = 1 No of mild IN = 1 No of mild/Y No of cold /N = 1 No of cold/4=3 No of high /N = 3 No of high / = 2 No of normal N=1 No of normal/ = 3 No of False / N = 2 No of falsely = 4 No of true / N = 2 No of true /Y = 1 $P(Y_{en}) = -\frac{5}{9} \times \log_2 \frac{5}{9} = 0.47$ $P(N_0) = -\frac{4}{9} \times \log_2 \frac{4}{9} = 0.51$ H(s) = P(yer) + P(no) = 0.99 H (sunny) = - 4 x log 4 0 - 3 x log 3 = 0, 00 81 H (overcart) = $-\frac{2}{2}\log_2\frac{2}{3} - \frac{2}{3}\times\log_2\frac{2}{3} = 0$ H (raing) = $-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\times\log_2\frac{2}{3} = 0.912$ M (outlook) = $\frac{4}{3}\times0.81 + \frac{1}{3}\times0 + \frac{3}{3}\times0.91 = 0.367$ Gain (outlook) = M (outlook) = H (N) - M (outlook) = 0.99 = 0.026 H(hot) = - \frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 H(mild) = - \frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{2}{3} = 1 H((001) = - 3 x log 3 - 7 x log 4 = 0.00 81 M(temperature) = 3 x 0.92 + 2 x 1 + 3 x 0.801=0. Gain (temperature) = H(5) - MC+ comperature)=0.99-0.80=0= H(high) = - = xlog = = - = xlog = = 0.97 H(hornal) = - = xlog = = - = xlog = = 0.00 fl M(humidity) = = = x0.97 + = x0.00 = = 0.00 fl M(humidity) = = = = x0.97 + = x0.00 fl = 0.90 Gain (humidity) = H(s) - M(humidity) = 0,99-0, \$ =0. =

