

Q3-Class HiperFET[™] Power MOSFET

IXFK64N60Q3 IXFX64N60Q3

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T __ = 25°C to 150°C	600	V	
V _{DGR}	$T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$	600	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	<u>±</u> 40	V	
I _{D25}	T _c = 25°C	64	A	
I _{DM}	$T_{\rm c} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	250	Α	
I _A E _{AS}	$T_c = 25$ °C $T_c = 25$ °C	64 3	A J	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns	
$\overline{\mathbf{P}_{D}}$	T _C = 25°C	1250	W	
T _J		-55 +150	°C	
T _{JM} T _{stg}		150 -55 +150	°C °C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d F _c	Mounting Torque (TO-264) Mounting Force (PLUS247)	1.13/10 20120 /4.527	Nm/lb.in N/lb	
Weight	TO-264 PLUS247	10 6	g g	

Symbol	•			Values	
$(1_J = 25^{\circ}C)$	Unless Otherwise Specified)	Min.	Тур.	Max	<u>. </u>
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	600			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.5		6.5	V
I _{gss}	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			50	μΑ
	$T_J = 125$	5°C		1.5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$			95	mΩ

G = Gate D = DrainS = Source Tab = Drain

Features

- Low Intrinsic Gate Resistance
- Low Package Inductance
- Fast Intrinsic Rectifier
- \bullet Low $\boldsymbol{R}_{\text{DS(on)}}$ and $\boldsymbol{Q}_{\text{G}}$

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- Temperature and Lighting Controls

Symbol	Test Conditions		Characteristic Values		
$(T_J = 25^\circ)$	C Unless Otherwise S	pecified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 20V, I_{D} = 0.$.5 • I _{D25} , Note 1	26	42	S
C _{iss})			9930	pF
\mathbf{C}_{oss}	$V_{GS} = 0V, V_{DS} = 2$	5V, f = 1MHz		1090	pF
C _{rss}	J			90	pF
R _{Gi}	Gate Input Resis	tance		0.13	Ω
t _{d(on)}	Resistive Switch	ning Times		45	ns
t _r		$0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_D$		15	ns
$\mathbf{t}_{d(off)}$			025	50	ns
t _f	$\int R_{\rm G} = 1\Omega \text{ (External)}$	ai)		11	ns
Q _{g(on)})			190	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} =$	$0.5 \bullet V_{DSS}, I_{D} = 0.5 \bullet I_{D}$	025	67	nC
\mathbf{Q}_{gd}	J			78	nC
R _{thJC}					0.10 °C/W
R _{thCS}				0.15	°C/W

Source-Drain Diode

Symbol (T _J = 25°C	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic	Values Max.	
I _s	$V_{GS} = 0V$			64	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			256	Α
V _{sD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array}\right\}$	$I_F = 32A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		2.1 16.6	300	ns μC Α

Note 1. Pulse test, $t \leq 300 \mu s,$ duty cycle, $d \leq 2\%.$

 $V_{\rm DS}$ - Volts

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

CVMDOL	INCHES		MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX
Α	.185	.209	4.70	5.31
A1	.102	.118	2.59	3.00
b	.037	.055	0.94	1.40
b1	.087	.102	2.21	2.59
b2	.110	.126	2.79	3.20
С	.017	.029	0.43	0.74
D	1.007	1.047	25.58	26.59
E	.760	.799	19.30	20.29
е	.215	BSC	5.46	BSC
J	.000	.010	0.00	0.25
K	.000	.010	0.00	0.25
	.779	.842	19.79	21.39
L1	.087	.102	2.21	2.59
ØΡ	.122	.138	3.10	3.51
øP1	.270	.290	6.86	7.37
Q	.240	.256	6.10	6.50
Q1	.330	.346	8.38	8.79
ØR	.155	.187	3.94	4.75
øR1	.085	.093	2.16	2.36
S	.243	.253	6.17	6.43

PLUS247™ Outline

1	=	Gate	
2,	4	= Drair	1
3	=	Sourc	е

CVM	INCH	INCHES MILLIMET		1ETERS
SYM	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
b	.045	.055	1.14	1,40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3,20
С	.024	،031	0.61	0.80
D	.819	.840	20,80	21.34
D1	.650	.690	16.51	17.53
D2	.035	.050	0.89	1.27
E	.620	.635	15.75	16.13
E1	.520	.560	13.08	14.22
е	.215 BSC		5.45 BSC	
L	،780	.810	19.81	20.57
L1	.150	.170	3.81	4.32
Q	.220	.244	5.59	6.20
R	.170	190،	4.32	4.83

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.