CS57300 PURDUE UNIVERSITY OCTOBER 4, 2021

DATA MINING

LOGISTIC REGRESSION

LOGISTIC REGRESSION

- Probabilistic classification
 - Output is the posterior (positive) class probability $P(y=1|\mathbf{x})$
 - Output is in the range [0, 1]
- Can we map the posterior class probability to another range that is easier to process?

LOGISTIC REGRESSION KNOWLEDGE REPRESENTATION

$$p = P(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + w_0)}}$$

Logistic function:

logistic(x) :=
$$\frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

LOGISTIC REGRESSION: LEARNING

- Model space: parametric model with the parameters being all possible [\mathbf{w} , w_0]
- Scoring function: Likelihood function

$$L(\mathbf{w}) = \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i)$$

- Search
 - Take derivative respect to w
 - Concave function but can not get a closed form solution for the optimal parameters
 - Need new optimization methods!
 - More on this next week

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES

- Discriminative classification
 - Output is the class label
 - Directly model the decision boundary
- Linear SVM
 - Parametric form: $y = sign \left[\sum_{i=1}^{m} w_i x_i + b \right]$
 - Decision boundaries are hyperplanes in the p-D space
 - \blacktriangleright Model space: different parameter values for ${m w}$ and ${m b}$

WHAT ABOUT BOUNDARY 1?

WHAT ABOUT BOUNDARY 4?

WHAT DOES BOUNDARY 1, 2, 4 HAVE IN COMMON?

MOST ROBUST BOUNDARY

NORMALIZATION

14

HOW LARGE IS THE MARGIN?

SVM LEARNING SCORING FUNCTION

- Maximize margin, i.e., max 2/||w||
- Subject to constraints!

- Margin is defined by the closet positive/negative examples to the boundary
- Constraint 1: $\mathbf{w}^\mathsf{T}\mathbf{x} + b \ge 1, \forall y_i = +1$
- Constraint 2: $\mathbf{w}^\mathsf{T} \mathbf{x} + b \le -1, \forall y_i = -1$
- Combine constraints 1 and 2: $y_i(\mathbf{w}^\mathsf{T}\mathbf{x} + b) \ge 1, \forall i \in \{1,2,...,N\}$
- Search: solve this optimization problem...more in the next class!

OPTIMIZATION

OPTIMIZATION IN MODEL LEARNING

- Consider a **space** of possible models $M = \{M_1, M_2, ..., M_k\}$ with parameters θ
- Search over model structures or parameters, e.g.:
 - Parameters: In a logistic regression model, what are regression coefficients
 (w) that maximize log likelihood on the training data?
 - Model structure: In a decision trees, what is the tree structure that minimizes 0/1 loss on the training data?
- Find the best model structure or parameter values that **optimize** scoring function value on the training dataset

COMBINATORIAL OPTIMIZATION VS. SMOOTH OPTIMIZATION

- **Combinatorial** optimization:
 - The model space is a finite or countably infinite set (i.e., the scoring function is discrete)
 - > Systematically search through the model space, often using heuristics
 - Example: Search the best decision tree structure
- > Smooth optimization:
 - The model space is an uncountable set (i.e., the scoring function is continuous)
 - Gradient-based optimization
 - Example: Find parameter values for Naive Bayes Classifier

COMBINATORIAL OPTIMIZATION

COMBINATORIAL OPTIMIZATION: STATE SPACE

- S: state; the set of all possible models
- \blacktriangleright Action(s): the set of all possible actions that can be performed at state s
- Result(s, a): the result of performing action a on state s, which is another state
- Score(s): the scoring function value of state s (i.e., for the model represented by state s)
- State space: representing each state as a node, and two nodes s and s' are connected by an edge if s'=Result(s, a) for some a in Action(s)

STATE SPACE EXAMPLE

Constructing the state space of decision trees where each data point has three binary variables X_1 , X_2 , X_3

SEARCH THROUGH THE STATE SPACE

- Start from a particular state (i.e., model)
- Evaluate the score of the current state
- If the current state is not the goal state (e.g., model with maximum score), expand the current state by applying all possible actions to the current state and generate successor states
- Pick one of the successor state, repeat, and backtrack
- Exhaustive search: systematic search through all possible states in the state space
 - e.g., depth-first search, breadth-first search, etc.

HEURISTIC SEARCH

- Typically, there is an exponential number of models in the model space, making it intractable to exhaustively search the space
 - Thus, it is generally impossible to return a model that is **guaranteed** to have the best score
- Instead, we have to resort to heuristic search techniques
 - Methods are evaluated experimentally and shown to have good performance on average
 - **Greedy** search: Given a current model M, look for the successor of M and move to the best of these (if any have a score better than M)

GREEDY SEARCH

- ▶ Choose an initial state M⁰ corresponding to a particular model structure (e.g., an empty tree)
- Let Mi be the model considered at the i-th iteration
- For each iteration i
 - Construct all possible models $\{M^{j1}, ..., M^{jk}\}$ adjacent to M^i (as defined by action operators)
 - Evaluate scores for all models {Mj1, ..., Mjk}
 - Choose to move to the adjacent model with best score: $M^{i+1} = M^{j,best}$
 - Repeat until there is no possible further improvement in the score

Root feature, left child, right child X1,X2,X2 X1,X2,X3 Root feature, left child X1,X3,X2 X1,X2 X1,X3,X3 **Root feature** X1,X3 X2,X1,X1 X1 X2,X1 X2,X1,X3 X2 X2,X3,X1 X2,X3 X2,X3,X3 X3,X1 X3,X1,X1 X3,X1,X2 X3,X2 X3,X2,X1 X3,X2,X2

Which states does greedy search consider?

SMOOTH OPTIMIZATION

SMOOTH OPTIMIZATION

- > Smooth scoring functions:
 - If a function is *smooth*, it is differentiable and the derivatives are continuous, then we can use gradient-based optimization
 - If function is *convex*, we can often solve the minimization problem using convex optimization or gradient descent
 - If function is smooth but non-linear, we can use iterative search over the surface of S to find a local minimum (e.g., hill-climbing)

CONVEX OPTIMIZATION PROBLEMS

```
minimize f(x)
subject to x \in C
```

- x is the optimization variable (e.g., model parameters)
 f (e.g., score function) is a convex function
 C is a convex set (e.g., constraints on model parameters)
- For convex optimization problems, all locally optimal points are globally optimal

CONVEX SET

▶ A set C is convex if for any $x, y \in C$ and any θ with $0 \le \theta \le 1$ we have

$$\theta x + (1 - \theta)y \in C$$

CONVEX FUNCTIONS

- In graph of convex function f, the line connecting two points must lie above the function: $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y)$ for all $0 \le \alpha \le 1$
- Practical test for convexity: a twice differentiable function f of a variable x is convex on an interval if an only if for any x in the interval: $f''(x) \ge 0$

- Strictly convex if f''(x) > 0
- Sum of convex functions is convex; max of convex functions is convex