學號:R05921077 系級:電機碩一姓名:陳立杰

1. (1%)請問 softmax 適不適合作為本次作業的 output layer? 寫出你最後選擇的 output layer 並說明理由。

我的架構是一層 embedding layer、GRU 128(drop 0.25)+tanh、 Dense 256(drop 0.1)+relu、 Dense 128(drop 0.1)+relu、 Dense 64(drop 0.1)+relu、 Dense 38+sigmoid, optimizer 是 Adam。我覺得 softmax 不適合這次的作業,因為 softmax 的 output 全部加起來的質是 1,所以最多只會有一個 output 為 1,但是因為這次作業 有多個 label,所以理想情況應該要有多個 output 的質都可以為 1,所以我最後選擇用 sigmoid 來當作 output layer,因為每一個 output 的質都可以是 1。

2. (1%)請設計實驗驗證上述推論。

相同的架構下,我用 softmax 當 output layer,很難 train,幾乎是 train 不起來,後來改成用 sigmoid 當 output layer 後 F1 最低都有到 0.4 以上,最好可以到 0.50549。 F1 score 是種評估利用 precision 跟 recall 來評估準確度的方法。

3. (1%)請試著分析 tags 的分布情況(數量)。

下列是 training data 的 tag 分布情況:

SCIENCE-	SPECULATIVE-	FICTION	NOVEL	FANTASY	CHILDREN'S-
FICTION	FICTION				LITERATURE
959	1448	1672	992	773	777

HUMOUR	SATIRE	HISTORICAL- FICTION	HISTORY	MYSTERY	SUSPENSE
18	35	137	40	642	318

ADVENTUR	SPY-	AUTOBIOGRAP	HORRO	THRILLE	ROMANC
E-NOVEL	FICTIO	HY	R	R	E-NOVEL
	N				
109	75	51	192	243	157

COMEDY	NOVELLA	WAR- NOVEL	DYSTOPIA	COMIC- NOVEL	DETECTIVE- FICTION
59	29	31	30	37	178

HISTORICA	BIOGRAP	MEMOI	NON-	CRIME	AUTOBIOGRAPHIC
L-NOVEL	HY	R	FICTIO	-	AL-NOVEL
			N	FICTIO	
				N	
222	42	35	102	368	31

ALTERNATE	TECHNO-	UTOPIAN-	YOUNG-	SHORT	GOTHIC
-HISTORY	THRILLE	AND-	ADULT-	-	-
	R	DYSTOPIAN	LITERATUR	STORY	FICTION
		-FICTION	Е		
72	18	11	288	41	12

APOCALYPTIC-AND-POST- APOCALYPTIC-FICTION	HIGH-FANTASY
14	15

可以看到前六種小說 SCIENCE-FICTION, SPECULATIVE-FICTION, FICTION, NOVEL, FANTASY, CHILDREN'S-LITERATURE 的 tag 數量最多,相較其他其它就少很多。

- 4. (1%)本次作業中使用何種方式得到 word embedding?請簡單描述做法。 我是利用 glove 的 dictionary 來得到 word embedding,如果在 glove 裡面找不到的字我就用 dog 這個單字來取代,結果效果還不錯。Glove 是利用 count based 的方式來做,它的原理是去計算任兩個 word 在同一份 document 出現的次數,並且讓兩個單字的 vector 內積後會接近這個次數。
- 5. (1%)試比較 bag of word 和 RNN 何者在本次作業中效果較好。 我的 bag of word 架構是 Dense 256(drop 0.1)+relu+l2 regu=0.1、 4*Dense 256(drop 0.1)+relu、 Dense 38+sigmoid, optimizer 是 Adam。 Bag of word 的做法相較於 RNN 需要更多的 memory,因為他每個 input 的 size 都太大了,所以它參數也更多,很容易 overfitting,最後做出來的結果 F1 只有 0.31386,而 RNN 可以到 0.50549,所以 RNN 不管是在 memory space 和 accuracy 都比 bag of word 好。