

第一章线性规划

谢秉磊

第一章 线性规划

第四节 单纯形法

- ✓典式
- ✓迭代原理
- ✓单纯形法举例
- 两阶段法

四. 两阶段法:

何时使用两阶段法:

例1-11

$$\max S = x_1 + 3x_2 + 4x_3$$

$$\begin{cases} 3x_1 + 5x_2 - 4x_3 \le 10 \\ -2x_1 + 3x_2 + x_3 \le 5 \end{cases}$$

$$x_j \ge 0, j = 1, 2, 3$$

注意: 还有很多标准

形不是典式

例:

$$\min S = 4x_1 + x_2 + x_3$$

$$2x_1 + x_2 + 2x_3 = 4$$

$$3x_1 + 3x_2 + x_3 = 3$$

$$x_i \ge 0, j = 1, 2, 3$$

 $\min(-S) = -x_1 - 3x_2 - 4x_3$ $3x_1 + 5x_2 - 4x_3 + x_4 = 10$ $-2x_1 + 3x_2 + x_3 + x_5 = 5$ $x_j \ge 0, j = 1, 2, 3, 4, 5$

以 x_4, x_5 为基变量的典式

$$X^0 = (0,0,0,10,5)^T$$

用单纯形法求解

用两阶段法求解

两阶段法的思想:

1

第一阶段:建立辅助(LP),求出原(LP)的一个初始基本可行解。

两阶段法:

第二阶段: 再用单纯形法去求原(LP)

的最优解。

第一阶段:建立辅助(LP),求原(LP)的一个初始基本可行解。

$$\min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$\min Z = \sum_{i=1}^{m} y_i$$

$$AX + Y = b$$

$$AX + Y = b$$
$$X \ge 0, Y \ge 0$$

<u>用单纯形法求解</u>

辅助(*LP*)

$$\min Z = \sum_{i=1}^m y_i$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + y_1 = b_1$$

$$\min Z = \sum_{i=1}^{m} y_i \begin{cases} a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + y_2 = b_2 \\ \dots & \dots & \dots \end{cases}$$

$$\begin{vmatrix} a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + y_m = b_m \\ x_j \ge 0, j = 1, 2, \dots n, y_i \ge 0, i = 1, 2, \dots m \end{vmatrix}$$

$$\mathbf{y}_{00} = C_B C_B B^{11} \mathbf{p}_i$$

			0	0		0	1	<u> 1</u>		1	
			\mathcal{X}_1								
C_{B}	y_{0j}	$-\sum_{i=1}^m b_i$	$-\sum_{i=1}^m a_{i1}$	$-\sum_{i=1}^{m}a_{i2}$	_	$\sum_{i=1}^{m} a_{in}$	0	0	• • •	0	
1	y_1	b_1	a_{11}	a_{12}	• • •	a_{1n}	1	0	• • •	0	
1	y_2	b_2	$a_{11} \\ a_{21}$	a_{22}	• • •	a_{2n}	0	1	• • •	0	
1	\dot{y}_m	b_m	a_{m1}	a_{m2}	• • •	a_{mn}	0	0	• • •	1	

用单纯形法求得辅助问题的最优解。

例1-13 求解线性规划问题:

$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$

$$\min S = 4x_1 + x_2 + x_3$$
第一阶段 $\min Z = y_1 + y_2$ $2x_1 + x_2 + 2x_3 = 4$ $3x_1 + 3x_2 + x_3 = 3$ 辅助(LP) $3x_1 + 3x_2 + x_3 = 3$ 和助(LP) $x_j \ge 0, j = 1, 2, 3$ $x_j \ge 0, j = 1, 2, 3$

$$\min Z = y_1 + y_2$$

$$2x_1 + x_2 + 2x_3 + y_1 = 4$$

$$3x_1 + 3x_2 + x_3 + y_2 = 3$$

$$x_j \ge 0, j = 1, 2, 3$$

$$y_j \ge 0, j = 1, 2$$

辅助
(LP) 单
纯形

汞

				U	U	U	<u> </u>	
				x_1	x_2	\mathcal{X}_3	y_1	y_2
$\Big]$	C_{B}	X_{B}	-7	-5	-4	-3	0	0
	1	X_B y_1	4	2	1	2	1	0
	1	y_2	3	3	3	1	0	1

辅助(
$$LP$$
) min $Z = \sum_{i=1}^{m} y_i$ 设辅助(LP)的 $X^* = (y_1^*, y_2^*, \cdots X_n^*)$ min $X = CX$ $X^* = (y_1^*, y_2^*, \cdots X_n^*)$ $X \ge 0$ $X \ge 0$

原(LP)AX = b $X \ge 0$

辅助(LP)的最优解与原(LP)的初始基本可行解的关系:

1) 若
$$Z^* = \sum_{i=1}^{m} y_i^* > 0$$
 ,则原(*LP*)无可行解。

反证法:

若原(LP)有可行解
$$\overline{X}$$
,则 $A\overline{X}=b,\overline{X}\geq 0$

$$\overline{\mathbf{m0}} = \sum_{i=1}^{m} \overline{\mathbf{y}}_{i} = \overline{\mathbf{Z}} < \mathbf{Z}^{*},$$
 矛盾。所以原(*LP*)无可行解。

线性规划1-4

辅助(LP)
$$\min Z = \sum_{i=1}^{m} y_i$$
 设辅助(LP)的量 $X^* = (y_1^*, y_2^*, \cdots X)$ $X^* = (y_1^*, y_2^*, \cdots X)$ $X^* = \sum_{i=1}^{m} y_i^* \ge 0$ $X^* = \sum_{i=1}^{m} y_i^* \ge 0$ $X \ge 0$

原(LP)AX = b $X \ge 0$

辅助(LP)的最优解与原(LP)的初始基本可行解的关系:

- 1) 若 $Z^* = \sum_{i=1}^{m} y_i^* > 0$,原(*LP*)无可行解。
- 2) 若 $Z^* = \sum_{i=1}^{m} y_i^* = 0$,可得到原(*LP*)的一个初始基本可行解。

$$:: 每个y_i^* \ge 0 :: y_i^* = 0, i = 1, 2, \dots, m, 即Y^* = 0$$

辅助(LP) min
$$Z = \sum_{i=1}^{m} y_i$$
 设辅助(LP)的最优解为 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$
$$X^* = (y_1^*, y_2^*, \dots, y_m^*)^T$$

$$X \ge 0, Y \ge 0$$
 则 $Z^* = \sum_{i=1}^{m} y_i^* \ge 0$

辅助(LP)的最优解与原(LP)的初始基本可行解的关系:

- 1) 若 $Z^* = \sum_{i=1}^{m} y_i^* > 0$, 原(*LP*)无可行解。
- 2) 若 $Z^* = \sum_{i=1}^{\frac{i}{n-1}} y_i^* = 0$, 可得到原(*LP*)的一个初始基本可行解。

$$\mathbf{1}^{\circ}$$
在辅助(LP)的最优解 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$ 中,若 $y_i^* = \mathbf{0}, i = 1, 2, \dots, m$

都是非基变量,则m个基变量都在中 X^* ,

 $:: X^*$ 是原(LP)的初始基本可行解。

2) 若 $Z^* = \sum_{i=1}^{\infty} y_i^* = 0$,则可得到原(LP)的一个初始基本可行解

$$\mathbf{1}^{\circ}$$
在辅助(LP)的最优解 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$ 中,若 $y_i^* = 0, i = 1, 2, \dots, m$

都是非基变量,则m个基变量都在中 X^* ,

 $\therefore X^*$ 是原(LP)的初始基本可行解。

			X_1	x_2	• • •	X_n	y_1	y_2	• • •	\mathcal{Y}_m	- - ‡
$C_{\scriptscriptstyle B}$	y_{0j}	$-\sum_{i=1}^m b_i$	$-\sum_{i=1}^{m}a_{i1}$	$-\sum_{i=1}^{m}a_{i2}$	_	$\sum_{i=1}^{m} a_{in}$	0	0	• • •	0	
\mathcal{X}_m	y_1	b_1	a_{11}	a_{12}	• • •	a_{1n}	1	0	• • •	0	_
x_1	y_2	b_2	$a_{21}^{}$	$a_{12} \\ a_{22}$	• • •	a_{2n}	0	1	• • •	0	
\mathcal{X}_{2}	\dot{y}_m	$\dot{b}_{\scriptscriptstyle m}$	a_{m1}	a_{m2}		a_{mn}	0	0	• • •	1	

线性规划1-4

辅助(LP) min
$$Z = \sum_{i=1}^{m} y_i$$
 设辅助(LP)的最优解为 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$ $X^* = (y_1^*, y_2^*, \dots, y_m^*)^T$ $X \ge 0, Y \ge 0$ $X \ge 0, Y \ge 0$ $X \ge 0, Y \ge 0$

辅助(LP)的最优解与原(LP)的初始基本可行解的关系:

- 1) 若 $Z^* = \sum_{i=1}^m y_i^* > 0$, 原(*LP*)无可行解。
- 2) 若 $Z^* = \sum_{i=1}^{\frac{i}{m-1}} y_i^* = 0$,可得到原(*LP*)的一个初始基本可行解。
 - \mathbf{Z}° 在辅助(*LP*)的最优解 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$ 中,若有某个 $\mathbf{y}_i^* = \mathbf{0}$ 仍是基变量,

则可将 y_i 与某个非基变量 $x_j (= 0)$ 交换 $(y_{ij} \neq 0)$,

交换后可得到原(LP)的一个退化的初始基本可行解。

辅助(LP)得最优表

$$x_i^* = 0$$

			\mathcal{X}_1	x_2	x_{j}	X_n	y_1	<i>y</i> ₂ • ·	y_m
	y_{0j}	0	*	* 0	*	*	*	*	*
	X_1	*	*	* 0	*	*	*	*	*
	x_2	*	*	★ 0 ★ 0 ★ 1	*	*	*	*	*
<i>x</i> _j	y_i	y_i^*) *	★1	$y_{ij} \neq 0$	*	*	*	*
	X_{m}	*	*		*				*

在 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$ 中,若有某个 $y_i^* = \mathbf{0}$ 仍是基变量,则 X^* 中只有m-1个基变量,则可将 y_i 与 $x_j (= \mathbf{0})$ 交换 $(y_{ij} \neq \mathbf{0})$,交换后可得到原(LP)的一个退化的初始基本可行解。

线性规划1-4

辅助(
$$LP$$
) $\min Z = \sum_i y_i$ 设最优解为 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$ $X \ge 0, Y \ge 0$

原(*LP*) $\min S = CX$ AX = b $X \ge 0$

辅助(LP)的最优解与原(LP)的初始基本可行解的关系:

- 1) 若 $Z^* = \sum_{i=1}^{m} y_i^* > 0$,则原(*LP*)无可行解。
- 2) 若 $Z^* = \sum_{i=1}^m y_i^* = 0$,则可得到原(LP)的一个初始基本可行解。 $\mathbf{1}^\circ$ 在辅助(LP)的最优解 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$ 中,若 $y_i^* = \mathbf{0}, i = 1, 2, \cdots, m$

都是非基变量,则 X^* 是原(LP)的初始基本可行解。

2°在辅助(*LP*)的最优解 $\begin{pmatrix} X^* \\ Y^* \end{pmatrix}$ 中,若有某个 $y_i^* = 0$ 仍是基变量, 则可将 y_i 与某个非基变量 x_i (= 0) 交换 ($y_{ii} \neq 0$), 交换后可得到原(LP)的一个退化的初始基本可行解。

两阶段法的思想:

第一阶段:建立辅助(LP)求出原(LP) 的一个初始基本可行解

两阶段法:

第二阶段: 再用单纯形法去求原(LP)

的最优解

用两阶段法写出下列问题第一阶段的辅助规划模型。

第二阶段: 用单纯形法去求原(LP)的最优解

第二阶段:用单纯形法去求原(LP)的最优解

				_				占	_
		x_1	x_2	x_{j}	\mathcal{X}_n	y_1	y_2 .		助
y_{0j}	*	*	*	•	*	*	*	的★	(LP 的
X_1	*	*	*	0	*	*	*	初大	最
\mathcal{X}_2	*	*	*	0	*	*	*	単★	
x_{j}	0	*	*	1	*	*	*	纯★	() 退
\mathcal{X}_{m}	*	*	*	0	*	*	*	形★ 表	
								12	

在辅助 (LP) 的最优表中删去人工列及检验数行,

补上原(*LP*)的检验数行,即得到原(*LP*)的初始单纯形表(对应初始基本可行解),再用单纯形法求原(*LP*)的最优解。

第二阶段:用单纯形法去求原(LP)的最优解

				_		原	拥
		x_1	\mathcal{X}_2	\boldsymbol{x}_{j}	\mathcal{X}_n	(LP)	助
y_{0j}	*	*	*	*	*	的	的
X_1	*	*	*	0	*	始	- 最
X_2	*	*	*	0	*	単	优表
x_{j}	0	*	*	1	*	纯	(退
X_{m}	*	*	*	0	*	形 ————————————————————————————————————	化
	·		·	·	·		

原(LP)

$$\min S = CX$$

$$AX = b$$

 $X \geq 0$

辅助(LP)

$$\min Z = \sum_{i=1}^{m} y_i$$

$$AX + Y \stackrel{i=1}{=} b$$

$$X \ge 0, Y \ge 0$$

$$AX + Y = b$$

$$AX + Y = b$$
 \downarrow
 $AX - = b$ 初始表
 \downarrow
 $A'X = b'$ 最优表

线性规划1-4

例1-13 求解线性规划问题:
$$y_{0j} = c_j - C_B B^{-1} y_{00} = C_B B^{-1} b$$

$$\min S = 4x_1 + x_2 + x_3$$
第一阶段 $\min Z = y_1 + y_2$ $2x_1 + x_2 + 2x_3 = 4$ $3x_1 + 3x_2 + x_3 = 3$ 辅助 (LP) $3x_1 + 3x_2 + x_3 = 3$ 和助 (LP) $x_j \ge 0, j = 1, 2, 3$ $x_j \ge 0, j = 1, 2, 3$

$$\min Z = y_1 + y_2
2x_1 + x_2 + 2x_3 + y_1 = 4
3x_1 + 3x_2 + x_3 + y_2 = 3
x_j \ge 0, j = 1,2,3
y_j \ge 0, j = 1,2$$

				U	U	U		
辅助				x_1	\mathcal{X}_2	x_3	\mathcal{Y}_1	y_2
(ID)	C_{B}	X_{B}	-7	-5	-4	-3	0	0
単位	1	\mathcal{Y}_1	4	2	1	2	1	0
単纯形	1	y_2	3	3	3	1	0	1

例1-13 第一阶段
$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$
 初始表 x_1 x_2 x_3 y_1 y_2 x_3 y_1 y_2 x_3 y_1 y_2 y_1 4 2 1 2 1 0 y_1 4 1 1 1 y_2 y_3 y_4 y_5 y_6 y_7 y_8 y_8 y_8 y_9 y_9

初始表
$$\longrightarrow$$
 表1 \longrightarrow 表2 \longrightarrow 最优表 X^0 X^1 X^2 X^*

例1-13 第一阶段

		x_1	\mathcal{X}_2	\mathcal{X}_3	y_1	y_2
$X_{\scriptscriptstyle B}$	-7	-5	-4	-3	0	0
y_1	2	0	-1	4/3	1	$-\frac{2}{3}$
x_1	1	1	1	1/3	0	$\frac{1}{3}$

例1-13 第一阶段

		x_1	\mathcal{X}_2	\mathcal{X}_3	y_1	y_2
X_{B}	-2	0	1	$-\frac{4}{3}$	0	5/3
y_1	2	0	-1	4/3	1	$-\frac{2}{3}$
x_1	1	1	1	1/3	0	1/3

例1-13 第一阶段 $y_{0j} = c_j - C_B B^{-1} p_j \ge 0$ 表 x_1 x_2 x_3 y_1 y_2 x_3 x_4 x_5 x_5 x_5 x_6 x_7 x_8 $x_$

例1-13 第一阶段

表	£1	x_1	\mathcal{X}_2	x_3	y_1	y_2	
$X_{\scriptscriptstyle B}$	-2	0	1	$-\frac{4}{3}$	0	5/3	
X_3	3/2	0	-3/4	1	3/4	$-\frac{1}{2}$	$\times -\frac{1}{3}$
X_1	$ \frac{1}{2} $	1	5/4	0	-1/4	$\frac{1}{2}$	

例1-13 第一阶段

表	<u> 1</u>	X_1	\mathcal{X}_2	x_3	y_1	y_2
X_{B}	0	0	0	0	1	1
X_3	3/2	0	-3/4	1	3/4	$-\frac{1}{2}$
\mathcal{X}_1	1/2	1	5/4	0	-1/4	1/2

$$y_{0j} = c_j -$$

$$\min_{y_1} S = 4x_1 + x_2 + x_3
2x_1 + x_2 + 2x_3 = 4
3x_1 + 3x_2 + x_3 = 3
, j = 1,2,3$$

$$x_1 \qquad x$$

$$x_3$$
 y

$$X_{B}$$

$$-\frac{3}{4}$$
 1

$$x_1 \mid \frac{1}{2}$$

$$2x_1 + x_2 + 2x_3$$

$$\begin{cases} 2x_1 + x_2 + 2x_3 + y_1 = 4 \\ 3x_1 + 3x_2 + x_3 + y_2 = 3 \\ x_j \ge 0, j = 1, 2, 3 \end{cases}$$

 $y_{i} \ge 0, j = 1,2$

 $\min Z = y_1 + y_2$

$$\left(0x_{1}-\frac{3}{4}x_{2}+x_{3}\right)$$

 $3x_1 + 3x_2 + x_3$

$$=\frac{3}{2}$$

$$x_1 + \frac{5}{4}x_2 + 0x_3$$

$$=\frac{1}{2}$$

第二阶段
$$y_{0j} = c_j - C_B B^{-1} p_j$$
 $y_{00} = C_B B^{-1} b$

$$y_{00} = C_B B^{-1} b$$

		4	1			
初始表		X_1	\mathcal{X}_2	\mathcal{X}_3	y_1	\mathcal{Y}_2
$X_{\scriptscriptstyle B}$	$-\mathbf{b}_{2}^{\prime}$	0	$-\frac{1}{9}\frac{3}{4}$	0	1	1
X_3	3/2	0	-3/4	1	3/4	-1/2
X_1	1/2	1 R-1	5/4 	O	-1/4	1/2

在上面最优表中删去人工列和 $S = 4x_1 + x_2 + x_3$

添加原(LP)的检验数行,得到 单纯形表。

$$B = (p_3, p_1) = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} \quad B^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix}$$

 $\int 2x_1 + x_2 + 2x_3 = 4$ $3x_1 + 3x_2 + x_3 = 3$ $x_j \ge 0, j = 1, 2, 3$

例1-13 第二阶段
$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$

	初始表		X_1	x_2	\mathcal{X}_3	
	$X_{\scriptscriptstyle B}$	-7/2	0	_13/4	0	
	X_3	3/2	0	-3/4	1	
(x_2	2/5	4/5	1	0	

例1-13 第二阶段

初效	初始表		x_2	x_3	
X_{B}	$-\frac{7}{2}$	0	_13/4	0	
X_3	9/5	3/5	0	1	
x_2	2/5	4/5	1	0	

例1-13 第二阶段

初效	台表	X_1	x_2	\mathcal{X}_3	
$X_{\scriptscriptstyle B}$	_11/5	13/5	0	0	
X_3	9/5	3/5	0	1	
x_2	2/5	4/5	1	0	$\times \frac{1}{2}$

例1-13 第二阶段 $y_{0i} = c_i - C_B B^{-1} p_i \ge 0$

最优	 表	x_1	\mathcal{X}_2	\mathcal{X}_3	
X_{B}	_11/5	13/5	0	0	
X_3	9/5	3/5	0	1	
X_2	2/5	4/5	1	0	

得到原(LP)的最优解:

$$X^* = (0, \frac{2}{5}, \frac{9}{5})^T, Z^* = \frac{11}{5}$$

得到原(*LP*)的最优解:
$$\min S = 4x_1 + x_2 + x_3$$

$$X^* = (0, \frac{2}{5}, \frac{9}{5})^T, Z^* = \frac{11}{5}$$

$$\begin{cases} 2x_1 + x_2 + 2x_3 = 4 \\ 3x_1 + 3x_2 + x_3 = 3 \\ x_j \ge 0, j = 1, 2, 3 \end{cases}$$

							_	
辅助	初始表		x_1	\mathcal{X}_2	x_3	\mathcal{Y}_1	y_2	
(IP)	C_{B}	X_B	20	-5	11	-18	0	0
単	1	y_1	4	1	-2	4	1	0
単纯形	1	y_2	16	4	-9	14	0	1

例1-14 第一阶段 初始表 \mathcal{X}_2 X_3 y_1 X_{B} 2 0 5 0 \boldsymbol{x}_1 **-2** 0 4 0 0

已得辅助(LP)的最优表, $X^* = (4,0,0,0,0)^T$, $Z^* = 0$ 但人工变量 $y_2 = 0$ 仍是基变量,为使它离基, y_2 所在第二行中的非零元均可做主元,如-1为主元,用 x_2 替换 y_2 为基变量。

例1-14 第一阶段

最仂	走表	X_1	x_2	\mathcal{X}_3	y_1	y_2
$X_{\scriptscriptstyle B}$	0	0	1	2	5	0
X_1	4	1	0	8	9	-2
x_2	0	0	1	2	4	-1

例1-14 第一阶段

最仂	表	X_1	x_2	\mathcal{X}_3	y_1	y_2
$X_{\scriptscriptstyle B}$	0	0	0	0	1	1
\mathcal{X}_1	4	1	0	8	9	-2
x_2	0	0	1	2	4	-1

例1-14 第一阶段

最化	尤表	X_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{Y}_1	\mathcal{Y}_2
X_{B}	0	0	0	0	1	1
x_1	4	1	0	8	9	-2
x_2	0	0	1	2	4	-1

$$X^* = (4,0,0,0,0)^T, Z^* = 0$$

得到原(LP)的退化的初始基本可行解 $X^0 = (4,0,0)^T$

最化	尤表	X_1	x_2	x_3	y_1	y_2
$X_{\scriptscriptstyle B}$	0	0	0	0	1	1
X_1	4	1	0	8	9	-2
X_2	0	0	1	2	4	-1

在上面最优表中删去人工列和检验数行,

例1-14 第二阶段
$$y_{0j} = c_j - C_B B^{-1} p_j$$
 $y_{00} = C_B B^{-1} b$ 初始表 x_1 x_2 x_3 x_3 x_4 x_5 x_6 x_6 x_7 x_8 x_8

在上面最优表中删去人工列 $\min S = x_1 + 2x_2 + 3x_3$ 添加原(*LP*)的检验数行,得 $\begin{cases} x_1-2x_2+4x_3=4\\ 4x_1-9x_2+14x_3=16 \end{cases}$

0

$$X^0 = (4,0,0)^T$$
(退化解) $S^0 =$

单纯形表。 $X^{0} = (4,0,0)^{T} (退化解) \quad S^{0} = \begin{cases} 4x_{1} - 9x_{2} + 14x_{3} \\ x_{j} \geq 0, j = 1,2,3 \end{cases}$

线性规划1-4

例1-14 第二阶段 $y_{0j} = c_j - C_B B^{-1} p_j \ge 0$

初始表		X_1	\mathcal{X}_2	x_3	
$X_{\scriptscriptstyle B}$	-4	0	0	-9	
x_1	4	1	0	8	
x_3	0	0	1	2	$\theta = 0$

初女	台表	X_1	\mathcal{X}_2	x_3	
$X_{\scriptscriptstyle B}$	-4	0	0	-9	
x_1	4	1	0	8	
x_3	0	0	1/2	1	

初女	台表	X_1	X_2	x_3	
$X_{\scriptscriptstyle B}$	-4	0	0	-9	
X_1	4	1	-4	0	
x_3	0	0	1/2	1	-

线性规划1-4

初如	台表	X_1	\mathcal{X}_2	x_3	
X_{B}	-4	0	9/2	0	
x_1	4	1	-4	0	
x_3	0	0	1/2	1	

例1-14 第二阶段 $y_{0j} = c_j - C_B B^{-1} p_j \ge 0$

最	尤表	X_1	\mathcal{X}_2	x_3	
$X_{\scriptscriptstyle B}$	-4	0	9/2	0	
x_1	4	1	-4	0	
x_3	0	0	1/2	1	

得到原(*LP*)的最优解: $X^* = (4,0,0)^T$ (退化解) $S^* = 4$

初如	台表	X_1	\mathcal{X}_2	\mathcal{X}_3	
X_{B}	-4	0	0	-9	
X_1	4	1	0	8	
X_2	0	0	1	$\boldsymbol{2} \theta = 0$	

原(*LP*)的初始单纯形表。
$$X^0 = (4,0,0)^T$$
(退化解)
$$S^1 = y_{00} + y_{03}\theta = 4 - 9\theta = 4$$

$$S^0 = 4$$

在退化情况下,负检验数相应的非基变量进基得到的新的基本可行解目标值未必一定下降。

判断当前基本可行解是否是最优解: 充分但不必要

1)若
$$C - C_B B^{-1} A \ge 0$$
或 $C_N - C_B B^{-1} N \ge 0$,

即非基变量 x_j 的检验数 $y_{0j} = c_j - C_B B^{-1} p_j$ 都 ≥ 0

则
$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \in \mathbb{R}$$
 是最优解。

则
$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
 是最优解。
$$S^{1} = y_{00} + y_{0q}\theta \begin{cases} \langle y_{00}, \theta \rangle 0 \\ = y_{00}, \theta = 0 \end{cases}$$
 2) 若有某些检验数 $y_{0j} < 0$, 例如: $y_{0q} < 0$, $(m+1 \le q \le n)$,

3)若有某些检验数 $y_{0j} < 0$, 例如: $y_{0q} < 0$, $(m+1 \le q \le n)$,

$$X = \begin{pmatrix} B^{-1}b \end{pmatrix}$$
 也有可能是最优解。(退化情形) 线性规划1

线性规划1-4

第一章 线性规划

第四节 单纯形法

- ✓典式
- ✓迭代原理
- ✓单纯形法举例
- ✓两阶段法

作业: 第1章 7(1)(3)/