Une urne contient une boule blanche et une boule noire, les boules étant indiscernables au toucher.

On y prélève une boule, chaque boule ayant la même probabilité d'être tirée, on note sa couleur, et on la remet dans l'urne avec c boules de la couleur de la boule tirée. On répète cette épreuve, on réalise ainsi une succession de n tirages $(n \ge 2)$.

A - Étude du cas c = 0.

On effectue donc ici n tirages avec remise de la boule dans l'urne.

On note X la variable aléatoire réelle égale au nombre de boules blanches obtenues au cours des n tirages et Y la variable aléatoire réelle définie par :

 $\begin{cases} Y=k & \text{si l'on obtient une boule blanche pour la première fois au } k^{i\grave{e}me} \text{ tirage.} \\ Y=0 & \text{si les } n \text{ boules tirées sont noires.} \end{cases}$

- 1. Déterminer la loi de X. Donner la valeur de E(X) et de V(X).
- 2. Pour $k \in \{1, ..., n\}$, déterminer la probabilité P(Y = k) de l'événement (Y = k), puis déterminer P(Y = 0).
- 3. Vérifier que :

$$\sum_{k=0}^{n} P(Y = k) = 1.$$

4. Pour $x \neq 1$ et n entier naturel non nul, montrer que :

$$\sum_{k=1}^{n} kx^{k} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(1-x)^{2}}.$$

5. En déduire E(Y).

B - Étude du cas $c \neq 0$.

On considère les variables aléatoires $(X_i)_{1\leqslant i\leqslant n}$ définies par :

 $\begin{cases} X_i = 1 & \text{si on obtient une boule blanche au } i^{\grave{e}me} \text{ tirage.} \\ X_i = 0 & \text{sinon.} \end{cases}$

On définit alors, pour $2 \leq p \leq n$, la variable aléatoire Z_p , par :

$$Z_p = \sum_{i=1}^p X_i.$$

- 1. Que représente la variable \mathbb{Z}_p ?
- 2. Donner la loi de X_1 et l'espérance $E(X_1)$ de X_1 .
- 3. Déterminer la loi du couple (X_1, X_2) . En déduire la loi de X_2 puis l'espérance $E(X_2)$.
- 4. Déterminer la loi de probabilité de Z_2 .
- 5. Déterminer l'univers image $Z_p(\Omega)$ de Z_p .
- 6. Soit $p \leq n-1$.
 - (a) Déterminer $P_{Z_p=k}(X_{p+1}=1)$ pour $k \in Z_p(\Omega)$.
 - (b) En utilisant la formule des probabilités totales, montrer que :

$$P(X_{p+1} = 1) = \frac{1 + cE(Z_p)}{2 + pc}.$$

(c) En déduire que X_p est une variable aléatoire de Bernoulli de paramètre $\frac{1}{2}$. (On raisonnera par récurrence sur p: les variables $X_1, X_2,, X_p$ étant supposées suivre une loi de de Bernoulli de paramètre $\frac{1}{2}$, et on calculera $E(Z_p)$).