Data Mining

Ensemble Techniques

Ensemble Methods

 Construct a set of classifiers from the training data

 Predict class label of test records by combining the predictions made by multiple classifiers

Why Ensemble Methods work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume errors made by classifiers are uncorrelated
 - Probability that the ensemble classifier makes a wrong prediction:

General Approach

Types of Ensemble Methods

- Manipulate data distribution
 - Example: bagging, boosting
- Manipulate input features
 - Example: random forests
- Manipulate class labels
 - Example: error-correcting output coding

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- □ Each data instance has probability 1- (1 − 1/n)ⁿ of being selected as pat of the bootstrap sample

Bagging Algorithm

Algorithm 5.6 Bagging Algorithm

- Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- Create a bootstrap sample of size n, D_i.
- Train a base classifier C_i on the bootstrap sample D_i.
- 5: end for
- 6: C*(x) = arg max_y ∑_i δ(C_i(x) = y), {δ(·) = 1 if its argument is true, and 0 otherwise.}

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
у	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

Bagg	ing Rour	nd 1:								
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
У	1	1	1	1	-1	-1	-1	-1	1	1

$$x \le 0.35 \Rightarrow y = 1$$

 $x > 0.35 \Rightarrow y = -1$

Baggii	ng Rour	nd 1:									
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x <= 0.35 \Rightarrow y = 1$
У	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \implies y = -1$
Baggiı	ng Rour	nd 2:									
X	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1	$x <= 0.7 \implies y = 1$
у	1	1	1	-1	-1	-1	1	1	1	1	$x > 0.7 \implies y = 1$
X	ng Rour	0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9	$x \le 0.35 \Rightarrow y = 1$ $x > 0.35 \Rightarrow y = -1$
y Baggii	ng Rour	nd 4:	1	-1	-1	-1	-1	-1	1	1	
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x <= 0.3 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.3 \implies y = -1$
Baggii	ng Rour	nd 5:									
X	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x <= 0.35 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \implies y = -1$

x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1 $x \leftarrow 0.75 \Rightarrow y = -1$ $y = 1$ 1 -1 -1 -1 1 1 1 1 $x > 0.75 \Rightarrow y = 1$ Bagging Round 7: x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1 $x \leftarrow 0.75 \Rightarrow y = 1$ $y = 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -$	Baggir	ng Rour	nd 6:									
Bagging Round 7: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	8.0	0.9	1	
x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1 x <= 0.75 → y = -1 y 1 -1 -1 -1 -1 1 1 1 1 1 1 x > 0.75 → y = -1 x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1 x <= 0.75 → y = -1 y 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 Bagging Round 9: x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1 1 x <= 0.75 → y = -1 x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1 1 x <= 0.75 → y = -1	у	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
y 1 -1 -1 -1 1 1 1 1 1 1 $x > 0.75 \Rightarrow y = 1$ Bagging Round 8: x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1 $x <= 0.75 \Rightarrow y = -1$ y 1 1 -1 -1 -1 -1 1 1 1 1 1 $x > 0.75 \Rightarrow y = -1$ Bagging Round 9: x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1 $x <= 0.75 \Rightarrow y = -1$	Baggir	ng Rour	nd 7:									
Bagging Round 8: $ \begin{array}{c cccccccccccccccccccccccccccccccc$	X	0.1	0.4	0.4	0.6	0.7	8.0	0.9	0.9	0.9	1	
x 0.1 0.2 0.5 0.5 0.7 0.7 0.8 0.9 1 x <= 0.75 → y = -1 y 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 x > 0.75 → y = -1 x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1 x <= 0.75 → y = -1 x > 0.75 → y = 1	у	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \implies y = 1$
y 1 1 -1 -1 -1 -1 1 1 1 1 $x > 0.75$ → y = 1 Bagging Round 9: x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1 $x < 0.75$ → y = -1	Baggir	ng Rour										
Bagging Round 9: x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1	X	0.1	0.2						8.0	0.9	1	
x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1 $x \le 0.75 \Rightarrow y = -1$	У	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 y y = 1
× > 0.75 → V = 1	Baggir	ng Rour	nd 9:									
y 1 1 -1 -1 -1 -1 1 1 1 x>0.75 y y=1	X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	8.0	1	1	
	у	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Bagging Round 10:	Baggir	ng Rour	nd 10:									
x 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9 $x <= 0.05 \Rightarrow y = 1$	X	0.1	0.1	0.1	0.1	0.3	0.3	8.0	8.0	0.9	0.9	
y 1 1 1 1 1 1 1 1 1 1 $x > 0.05 \Rightarrow y = 1$	У	1	1	1	1	1	1	1	1	1	1	x > 0.03 7 y = 1

Summary of Training sets:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

- Assume test set is the same as the original data
- Use majority vote to determine class of ensemble classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3 Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2 Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4	Original Data	1	2	3	4	5	6	7	8	9	10
	Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4	Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
	Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- □ Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost Algorithm

Weight update:

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$

where Z_i is the normalization factor

If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated

Classification:

$$C^*(x) = \underset{y}{\operatorname{argmax}} \sum_{i=1}^{T} \alpha_i \delta(C_i(x) = y)$$

AdaBoost Algorithm

Algorithm 5.7 AdaBoost Algorithm

```
1: \mathbf{w} = \{w_i = 1/n \mid j = 1, 2, \dots, n\}. {Initialize the weights for all n instances.}
 Let k be the number of boosting rounds.
 3: for i = 1 to k do
       Create training set D_i by sampling (with replacement) from D according to w.
 4:
       Train a base classifier C_i on D_i.
 5:
       Apply C_i to all instances in the original training set, D.
      \epsilon_i = \frac{1}{n} \left[ \sum_j w_j \, \delta(C_i(x_j) \neq y_j) \right] {Calculate the weighted error}
       if \epsilon_i > 0.5 then
          \mathbf{w} = \{w_i = 1/n \mid j = 1, 2, \cdots, n\}. {Reset the weights for all n instances.}
 9:
          Go back to Step 4.
10:
11:
       end if
       \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
12:
       Update the weight of each instance according to equation (5.88).
13:
14: end for
15: C^*(\mathbf{x}) = \arg \max_y \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y).
```

AdaBoost Example

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
у	1	1	1	7	7	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

AdaBoost Example

Training sets for the first 3 boosting rounds:

Boostin	ng Roui	nd 1:								
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boostin	ng Roui	nd 2:								
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
У	1	1	1	1	1	1	1	1	1	1
Boostin	ng Roui	nd 3:								
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1
	•				•					

Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

Weights

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x = 0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x = 0.8	x=0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class