CS61B Lectures #27

Today:

- Selection sorts, heap sort
- Merge sorts
- Quicksort

Readings: Today: DS(IJ), Chapter 8; Next

topic: Chapter 9.

Last modified: Tue Oct 23 23:02:59 2018

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- ullet Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

Last modified: Tue Oct 23 23:02:59 2018

Sorting By Selection: Initial Heapifying

- When covering heaps before, we created them by insertion in an initially empty heap.
- When given an array of unheaped data to start with, there is a faster procedure (assume heap indexed from 0):

```
void heapify(int[] arr) {
       int N = arr.length;
       for (int k = N / 2; k \ge 0; k = 0
1) {
           for (int p = k, c = 0; 2*p +
1 < N; p = c) {
               c = 2k+1 \text{ or } 2k+2, whichever
is < N
                   and indexes larger value
in arr;
               swap elements c and k of arr;
           }
```

- Looks like the procedure for re-inserting an element after the top element of the heap is removed, repeated N/2 times.
- ullet But instead of being $\Theta(N\lg N)$, it's just $\Theta(N)$.

Cost of Creating Heap

1 node \times 3 steps down

 $2 \text{ nodes} \times 2 \text{ steps down}$

4 nodes \times 1 step down

 In general, worst-case cost for a heap with h+1 levels is

$$2^{0} \cdot h + 2^{1} \cdot (h - 1) + \dots + 2^{h-1} \cdot 1$$

$$= (2^{0} + 2^{1} + \dots + 2^{h-1}) + (2^{0} + 2^{1} + \dots + 2^{h-2}) + \dots +$$

$$= (2^{h} - 1) + (2^{h-1} - 1) + \dots + (2^{1} - 1)$$

$$= 2^{h+1} - 1 - h$$

$$\in \Theta(2^{h}) = \Theta(N)$$

 Alas, since the rest of heapsort still takes $\Theta(N \lg N)$, this does not improve its asymptotic cost.

Last modified: Tue Oct 23 23:02:59 2018

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
- ullet Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage:

```
Data[] V = new Data[K];
For all i, set V[i] to the first data item o
while there is data left to sort:
    Find k so that V[k] is smallest;
    Output V[k], and read new value into V[k]
```

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate:

O elements processed

1 element processed

2 elements processed

0: 0 1: 0 (3, 5, 9, 15)

4 elements processed

6 elements processed

11 elen

Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything > a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- In this example, we continue until pieces are size ≤ 4 .
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

16	10	13	18	-4	-7	12	-5	19	15	0	22
-4	-5	-7	-1	18	13	12	10	19	15	j 0	
-4	-5	-7	-1	15	13	12	* 10	0	1	6	19*
-4	-5	-7	-1	10	0		2	15 1	13	16	18

 Now everything is "close to" right, so just do insertion sort:

|--|

Performance of Quicksort

- Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- \bullet Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time \emph{very} unlikely!

Quick Selection

The Selection Problem: for given k, find $k^{\dagger h}$ smallest element in data.

- \bullet Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- ullet If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- ullet Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies < m.
 - If m=k, you're done: p is answer.
 - If m > k, recursively select $k^{\dagger h}$ from left half of sequence.

- If m < k, recursively select $(k-m-1)^{\mbox{th}}$ from right half of sequence.

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents: 40* Looking for #10 to left of pivot 40: Looking for #6 to right of pivot 4: 21 | 31* | Looking for #1 to right of pivot 31: Just two elements; just sort and return #1:

Result: 39

Selection Performance

ullet For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise.} \end{cases}$$
$$= N + N/2 + \ldots + 1$$
$$= 2N - 1 \in \Theta(N)$$

- \bullet But in worst case, get $\Theta(N^2),$ as for quicksort.
- ullet By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).