进阶练习: 38译码电路+245信号发生电路

74系列芯片

74系列芯片型号汇总: https://blog.csdn.net/weixin 44301306/article/details/120761661

排针与电源网络

排针: pin header

02p: 2引脚排针

254:2.54mm=0.1inch (1inch=25.4mm)

3-8译码器74HC138N

封装方式: DIP (双列直插)

工作原理

使能端: CS1=1, CS2=CS3=0

3-8译码: 二进制A2A1A0->十进制j, Yj=0

ADDRESS INPUTS $\begin{cases} A0 & 1 \\ A1 & 2 \\ A2 & 3 \end{cases}$ ACTIVE-LOW OUTPUTS $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CHIP- SELECT <math display="block">\begin{cases} CS1 & 6 \\ CS2 & 4 \end{cases}$ $CS1 & 6 \\ CS2 & 4 \end{cases}$

FUNCTION TABLE

	TONOTION IABLE												
Inputs						Outputs							
CS1	CS2	CS3	A2	A1	A0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Χ	Н	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
X	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
L	X	Χ	Χ	Χ	X	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high level (steady state); L = low level (steady state); X = don't care

38译码器输入: XKB7070-Z自锁开关

机械结构

工作原理

常态: 2-3导通 5-6导通 按下: 1-2导通 4-5导通

方块对应蓝色按钮,两边各有三个触点,每边的三个触点彼此连通(万用表蜂鸣档测量短路),外壳两侧分别由三个引脚,中间引脚贯通上下,外侧引脚偏短,内侧引脚的一端有一个靠近中间引脚的触点。 当按钮按下时,外侧、中间引脚通过按钮触点相连;按钮松开时,内侧、中间引脚通过按钮触点相连。

电源通过自锁开关连接38译码器输入端

38译码器使能: 3P排针+跳脚帽

38译码器输出: LED+电阻串联

(8-05) PCB学习视频19-30

245原理图绘制

245芯片信号放大原理

输入信号A, A=高电平时,输出B=VCC, A点高电平<VCC(由于大上拉电阻的作用)。实际上由于二极管正向导通压降的限制, A点电平始终在1.7V左右(实测)。

输入不同的VCC时,高低电平划分标准不同,参考数据手册

实验发现,输入电压3V、4V时,放大电路输出端led灯点亮,这是因为1.7V位于/接近高电平区间 而输入电压5V时,放大电路输出端led灯熄灭,这时1.7V位于/接近低电平区间

PCB布局

PCB中快速选择原理图中对应的元件, shift+X

板框: 99mm×99mm(刚好免费打样), 板框层锁定

38译码电路元件布局

电源排插间距3cm

三个三引脚排针相距3引脚距离 (2.54×3=7.62mm): 水平指定边沿间距分布

245电路元件布局

ctrl+左键选中多个元件

网络与飞线

查看网络-飞线: 所有未物理连线 (蓝线非红线连接) 的网络

------8:05------

VCC布线

注意线宽需要满足电路板载流能力,可以利用pcb走流载流计算器计算线宽,默认线宽10mil,可承受约900mA电流,实测电流<50mA,符合要求

http://elecfans.com/tools/108.html

技巧:

- (1) 布线快捷键alt+w
- (2) 绘制T型结点方法,右键属性:取消勾选移除回路

移除回路

- (3) 布线时先忽略GND网络
- (4) 38译码电路和245信号放大电路之间的VCC连线放在底层,便于区分两部分电路

除了GND其他布线

调整布线245右侧

GND布线-铺铜

(1) 通桥连接GND焊盘【默认】

选中铺铜, , , , 框中顶面/底面, 点击确认

优点: 焊盘集中吸收热量, 便于焊接

(2) 修改铺铜方式:全包围

修改设计规则-连接方式-单层/多层焊盘-直连

选中顶层/底层铺铜区,点击右侧重建铺铜区按键

适用场景: 电路板载流大时

T型结点和泪滴

处理直角连线,工具-泪滴(修改直角连接宽度600%)-应用,作用是增大平滑过渡 (泪滴加宽后drc检查会出现距离过小错误,需要重建铺铜区)

丝印与过滤层

丝印层-文本

过滤铺铜区域 (不可见), 便于选中对象编辑

shift+拖住图片边角: 等比例缩放

添加USB供电

USB Micro-B

Pin	Name	Cable color	Description
1	vcc	Red	+5 VDC
2	D-	White	Data -
3	D+	Green	Data +
4	ID	n/a	USB OTG ID
5	GND	Black	Ground

ID接VCC, USB作为主设备

ID接GND/悬空, USB作为从设备

外壳接地,静电保护

完整版

8.06-----