Randomized Block Cubic Newton Method

Nikita Doikov¹

Peter Richtárik 2, 3, 4

nikitad101@gmail.com

peter.richtarik@kaust.edu.sa

Motivation

We consider a convex optimization problem: $\min_{x \in Q} F(x)$, $Q \subset \mathbb{R}^N$.

- ullet Gradient Descent requires K=O(1/arepsilon) iterations to solve the problem with accuracy ε : $F(x^K) - F^* \leq \varepsilon$. Cubic Newton [1] requires $O(1/\sqrt{\varepsilon})$ iterations, which is much faster.
- But the costs of one iteration are O(N) and $O(N^3)$ respectively. This is too high for huge-scale applications.
- Modern block coordinate methods [3, 2] have computationally effective steps (updating only a subset of coordinates per step) and their convergence rate is similar to that of the full methods. Thus, they are suitable for huge-scale applications.
- Our aim is to develop a fast second-order method with global complexity guarantees and low cost of every iteration. By utilizing the problem structure, we combine the block-coordinate randomization technique and cubic regularization of Newton's method.

Problem Structure

Consider the following decomposition for $F: \mathbb{R}^N \to \mathbb{R}$:

$$F(x) \equiv \underbrace{\phi(x)}_{\text{twice}} + \underbrace{g(x)}_{\text{differentiable}} + \underbrace{\psi(x)}_{\text{nonsmoot}}$$

For a given space decomposition

$$\mathbb{R}^{N} \equiv \mathbb{R}^{N_1} \times \cdots \times \mathbb{R}^{N_n}, \quad x \equiv (x_{(1)}, \dots, x_{(n)}), \quad x_{(i)} \in \mathbb{R}^{N_i},$$
 assume that ϕ and ψ are block separable:

assume that ϕ and ψ are block separable:

$$\phi(x) \equiv \sum_{i=1}^n \phi_i(x_{(i)}), \qquad \psi(x) \equiv \sum_{i=1}^n \psi_i(x_{(i)}).$$

There are no assumptions on the block separability of $g: \mathbb{R}^N \to \mathbb{R}$.

Thus, our Convex Optimization Problem has the following structure:

$$\min_{x \in Q} \left[F(x) \equiv \sum_{i=1}^{n} \phi_i(x_{(i)}) + g(x) + \sum_{i=1}^{n} \psi_i(x_{(i)}) \right],$$

where $Q \subset \mathbb{R}^N$ is a *simple* convex set.

Assumptions

• Every ϕ_i , $i \in \{1, \ldots, n\}$, is twice-differentiable and convex, with Lipschitz-continuous Hessian:

$$\|\nabla^2\phi_i(x)-\nabla^2\phi_i(y)\| \leq H_i\|x-y\|, \quad \forall x,y\in\mathbb{R}^{N_i}.$$

- g is differentiable, and for some fixed symmetric positive semi-definite matrices $A \succeq G \succeq 0$ we have, for all $x, y \in \mathbb{R}^N$:
 - $g(y) \leq g(x) + \langle \nabla g(x), y x \rangle + \frac{1}{2} \langle A(y x), y x \rangle$,
 - $g(y) \ge g(x) + \langle \nabla g(x), y x \rangle + \frac{1}{2} \langle G(y x), y x \rangle$.
- ψ_i are arbitrary convex functions, possibly nondifferentiable but simple.

Model of the Objective

- Fix a subset of blocks: $S \subset \{1, \ldots, n\}$.
- For $y \in \mathbb{R}^N$ denote by $y_{[S]} \in \mathbb{R}^N$ the vector with zeroed $i \notin S$.
- $M_{H,S}(x;y) \equiv F(x) + \langle \nabla \phi(x), y_{[S]} \rangle + \frac{1}{2} \langle \nabla^2 \phi(x) y_{[S]}, y_{[S]} \rangle + \frac{H}{6} ||y_{[S]}||^3$ $+ \langle \nabla g(x), y_{[S]} \rangle + \frac{1}{2} \langle Ay_{[S]}, y_{[S]} \rangle + \sum_{i \in S} \left[\psi_i(x_{(i)} + y_{(i)}) - \psi_i(x_{(i)}) \right].$
- From smoothness: $F(x+y) \leq M_{H,S}(x;y) \ \forall x,y \in \mathbb{R}^N$ for $H \geq \sum H_i$.
- Step of the method: $T_{H,S}(x) \equiv \operatorname{argmin} M_{H,S}(x;y)$.

Algorithm 1: Randomized Block Cubic Newton (RBCN)

Parameters: starting point $x^0 \in Q$, uniform random distribution \hat{S} . **Iteration** k > 0:

- 1: Sample $S_k \sim \hat{S}$
- 2: Find $H_k > 0$ such that

$$F(x^k + T_{H_k,S_k}(x^k)) \leq M_{H_k,S_k}(x^k; x^k + T_{H_k,S_k}(x^k)).$$

3: Make the step: $x^{k+1} \stackrel{\text{def}}{=} x^k + T_{H_k,S_k}(x^k)$.

Convergence Results

We want to obtain: $\mathbb{P}\Big(F(x^K) - F^* \leq \varepsilon\Big) \geq 1 - \rho$,

 $\varepsilon > 0$ is the required accuracy, $\rho \in (0,1)$ is the confidence level.

Theorem 1. Under our assumptions, it is enough to set

$$K = O\left(rac{1}{arepsilon} \cdot rac{n}{ au} \cdot \left(1 + \log rac{1}{
ho}
ight)\right), \quad ext{where } oldsymbol{ au} \equiv \mathbb{E}[|\hat{S}|].$$

Theorem 2. Let $\sigma \in [0,1]$ be a special *condition number* (see our paper).

We have a bound for it: $\sigma \geq \lambda_{\min}(G) / \lambda_{\max}(A)$.

Then if $\sigma > 0$, it is enough to set

$$K = O\left(\frac{1}{\sqrt{\varepsilon}} \cdot \frac{n}{\tau} \cdot \frac{1}{\sigma} \cdot \left(1 + \log \frac{1}{\rho}\right)\right).$$

Theorem 3. Strongly convex case. Let $\mu \equiv \lambda_{\min}(G)$ be greater than zero. Then it is enough to set

$$K = O\left(\log\left(\frac{1}{\varepsilon\rho}\right) \cdot \frac{n}{\tau} \cdot \frac{1}{\sigma} \cdot \sqrt{\max\left\{\frac{HD}{\mu}, 1\right\}}\right), \text{ where } D \ge \|x^0 - x^*\|.$$

- ¹ Higher School of Economics, Russia
- ² King Abdullah University of Science and Technology, Saudi Arabia
- ³ The University of Edinburgh, United Kingdom
- ⁴ Moscow Institute of Physics and Technology, Russia

Empirical Risk Minimization

$$\min_{w \in \mathbb{R}^d} \left[P(w) \equiv \sum_{i=1}^n \phi_i(b_i^T w) + \underbrace{g(w)}_{\text{regularizer}} \right]$$

Examples. Logistic regression: $\phi_i(a) = \log(1 + \exp(-y_i a))$, Poisson regression: $\phi_i(a) = \exp(a) - y_i a$, Generalized linear models.

Reformulation:
$$\min_{w \in \mathbb{R}^d} P(w) = \min_{\substack{w \in \mathbb{R}^d \\ \mu \in \mathbb{R}^n \\ \equiv Q}} \left[\sum_{i=1}^n \phi_i(\mu_i) + \underbrace{g(w)}_{\text{differentiable}} \right]$$

Option 1: Solve this using the primal method (Algorithm 1).

Dual Problem:
$$\min_{w \in \mathbb{R}^d} P(w) \ge \max_{\alpha \in \mathbb{R}^n} D(\alpha) \equiv \underbrace{\sum_{i=1}^m -\phi_i^*(\alpha_i)}_{\text{separable, twice}} - \underbrace{g^*(-B^T\alpha)}_{\text{differentiable}}.$$

• Option 2: Primal-Dual algorithm: updates of the cubic model $M_{H,S}(\alpha;\cdot)$ for Dual problem.

Algorithm 2: Stochastic Dual Cubic Newton Ascent (SDCNA)

Parameters: starting dual variable $\alpha^0 \in Q$, distribution \hat{S} , $H_0 > 0$. **Iteration** $k \geq 0$:

- 1: Make the primal update: $w^k \stackrel{\text{def}}{=} \nabla g^* (B^T \alpha^k)$
- 2: Sample $S_k \sim \hat{S}$
- 3: While $\widetilde{M}_{H_k,S_k}(\alpha^k;\alpha^k+\widetilde{T}_{H_k,S_k}(\alpha^k))>-D(\alpha^k+\widetilde{T}_{H_k,S_k}(\alpha^k))$ do $H_k := 0.5 \cdot H_k$
- 4: Make the dual update: $\alpha^{k+1} \stackrel{\text{def}}{=} \alpha^k + \widetilde{T}_{H_{\iota}.S_{\iota}}(\alpha^k)$
- 5: Set $H_{k+1} := 2 \cdot H_k$

Experiments

Training Logistic Regression (Algorithm 1)

Training Poisson Regression (Algorithm 2)

SDNA: [2] and SDCA: [4] methods.

References

- [1] Yurii Nesterov and Boris T Polyak. "Cubic regularization of Newton's method and its global performance". In: Mathematical Programming 108.1 (2006), pp. 177–205
- [3] Peter Richtárik and Martin Takáč. "Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function". In: Mathematical Programming 144.1-2 (2014), pp. 1–38
- [2] Zheng Qu et al. "SDNA: stochastic dual Newton ascent for empirical risk minimization". In: International Conference on Machine Learning. 2016, pp. 1823–1832