تمرین سری هفتم تجزیه و تحلیل سیگنالها و سیستمها، گروههای ۱-۴، ترم ۲- ۱۳۹۸

تاریخ تحویل ۱۳۹۹/۰۴/۱۰

۱- در سیستم نمونه بردار زیر از قطار ضربه متفاوتی مطابق شکل استفاده کردهایم.

Figure 1_1, The system.

Figure 1_2, $H(j\omega)$.

Figure 1 3, new s(t)

الف)اگر طیف سیگنال ورودی محدود باشد و بزرگترین فرکانس ورودی برابر ω_M باشد، طیف سیگنال های z(t) و y(t) و را رسم کنید.z(t) الف)اگر مقدار z(t) مقدار z(t) برای عدم تداخل طیف چقدر است؟

ب) برای $\omega_M < 90$ ، سیستم بازسازی کننده سیگنال $\chi(t)$ از روی z(t) را بدست آورید.

y(t) برای y(t) برای کننده سیگنال پارسازی کننده سیگنال پارسازی کننده سیگنال پارسازی وی y(t) را بدست آورید.

۲ - سیگنال x(t) با پهنای باند محدود ω_M با فرکانس نمونهبرداری $\omega_S=2\omega_M$ نمونهبرداری میشود. درصورتیکه داشته باشیم:

$$x(nT_s) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

که T_s زمان بین نمونه ها است، x(t) را بدست بیاورید.

۳ - سیستم زیر طراحی یک پردازشگر دیجیتال برای سیگنالهای پیوسته را نشان میدهد.

که در آن $\omega_{
m S}=rac{2\pi}{T}$ و $p(t)=\sum_{k=-\infty}^{+\infty}\delta(t-kT)$ است.

الف) حداكثر مقدار فركانس قطع ω_a برحسب T چقدر باید باشد تا اختلاط فركانسی (aliasing) در طیف $x_{
ho}(t)$ رخ ندهد؟

 $y_p(t)$ ، $y_d[n]$ ، $x_d[n]$ ، $x_p(t)$ ، $x_f(t)$ ، x(t) های $x_f(t)$ ، $x_f(t)$

را رسم کنید. (مسئله را در دو حالت $\frac{\omega_s}{4}$ و $\omega_a > \frac{\omega_s}{4}$ درنظر بگیرید.) y(t)

ج) پاسخ فرکانسی سیستم پردازشگر زمان پیوسته معادل سیستم فوق را در دو حالت $\omega_a > \frac{\omega_s}{4}$ و سم کنید.

- ۴- مسئله ۷-۲۴ کتاب درسی، نمونه برداری با موج مربعی
- ۵- مسئله ۷-۲۶ کتاب درسی، نمونه برداری از سیگنال میانگذر با نرخ کمتر از نایکوئیست
 - ۶- مسئله ۷-۲۸ کتاب درسی، نمونه برداری از سیگنال متناوب
 - ۷- مسئله ۷-۳۷ کتاب درسی، نمونه برداری با قطار ضربه غیر یکنواخت
 - ۸- (اختیاری) مسئله ۷-۳۸ کتاب درسی، نحوه کار اسیلوسکوپ
 - ۹- (اختیاری) مسئله ۷-۴۱ کتاب درسی، مقابله با چندمسیر گی سیگنال های بی سیم