PACF for AR(2) {Xt} is covariance stablanary AR(2) XF= 1 XF-1+ 62 XF-5+ EF d(1) = f(1)X(2) = Corr (X3 - Pxx3, X1 - Pxx1) $P_{X_2}X_3 = P(i)X_2 \qquad P_{X_1}X_1 = P(i)X_2$ $x(2) = corr(x_3 - \rho(1)x_2, x_1 - \rho(1)x_2)$ = $lov(X_3-l(1)X_2, X_1-l(1)X_2)$ [V(X3-P(1)X2) V(X1-P(1)X2)]/2 $V(X_3 - P(1)X_2) = Y_0 + P(1)^T Y_0 - 2P(1)Y_1$ $= \bigvee (X^1 - \beta(1) X^2)$ LOV (X3-P(1) X2, X1-P(1) X2) = 12-P(1) x, - P(1) x, + P(1) x. = 12 - 2 P(1) x1 + P(1) x0 +0 $\alpha(z) \neq 0$ $X(3) = lom(X_4 - P(X_2, X_3), X_1 - P(X_2, X_3))$ = borr (X4 - \$ 1 X3 - \$ 2 X2, X1 - \$ 1(BLP) - \$ 2(BLP))

= Corr (Ey, X1- X11B(P) X2- X2(B(P) X3)

Further \(\delta \ge 3\); \(\delta (\k) = 0\). Remark: The above pattern holds true for a stationary AR(p) and for such a model $\alpha(k) = 0 + k > \beta$ Remark: For a stationary AR(P) XXXX asym N(0, \frangen estimator of a(x) PACF for MA(1) XF = EF + OEF-1; EF~ MN(0, 22) ((2) = Corr (X3 - Px2X3, X1-Px2X1) $P_{X_{2}}X_{3} = P_{1}X_{2}$ & $P_{X_{2}}X_{1} = P_{1}X_{2}$ $= 0^* X_2, \text{ say} = 0^* X_2$ $\theta^* = \frac{1+\theta^*}{\theta}.$ $X(2) = Corr(X_3 - 0^*X_2, X_1 - 0^*X_2)$ $= \frac{(0)(x_3 - 0*x_2, x_1 - 0*x_2)}{[V(x_3 - 0*x_2) V(x_1 - 0*x_2)]^{\gamma_2}}$

$$V(X_3 - \theta^* X_2) = Y_0 + \theta^* Y_0 - 2\theta^* Y_1$$

$$= \pi^2 (1 + \theta^2) + (\frac{\theta}{1 + \theta^2})^2 (1 + \theta^2) \pi^2 - 2(\frac{\theta}{1 + \theta^2}) \theta \pi^2$$

$$= \pi^2 (\frac{1 + \theta^2 + \theta^4}{1 + \theta^2}) = V(X_1 - \theta^* X_2)$$

$$= 0 - \theta^* Y_1 - \theta^* Y_1 + \theta^* Y_0$$

$$= -\frac{\theta^*}{1 + \theta^2} \cdot \pi^2$$

$$= -\frac{\theta^*}{1 + \theta^2} \cdot \pi^2$$

$$\Rightarrow \chi(2) = -\frac{\theta^*}{1 + \theta^2} \cdot \pi^2$$

Remark: PACF of MA(1) does not cut off but tails of Remark: MA(9) process has a similar behavior of PACF.

Remark: As ARMA (p, 2) has MA part, PACF of ARMA process also does not cut off.

Remark! To sum up the behavior of ACF & PACF Hodel. ACF PACF AR(1) Single Afrike (cuts 8H) decays exponentially (tails off) MA(1) cuts off (after I spike) tails off AR (4) toils of cuts off Cafter p spikes) MA(q) tails of cuts of (after q Mikes) ARMA(þ,9) tails off tails off The above table is to be used for model identification Model order extimation

Wring penalized log likelihood criteria or the information theoretic criteria

Akaike information Criterion (AIC)

General form of AIC:

AIC(K) = -2 loy 1 + 2 K

K: # of parameters in the model

ARMA(p,q) model

$$(\hat{p}, \hat{q}) = \underset{p \in \{0,1,\ldots,p\}}{\operatorname{arg min}} \operatorname{Alc}(p, q)$$

 $p \in \{0,1,\ldots,p\}$

Bayesian Information (riterion (BIC)

General form of BIC:

ARMA (p, a) model

$$(\hat{p}, \hat{q}) = \underset{p \in \{0, 1, ..., p\}}{\text{arg min } B \mid C(\hat{p}, q)}$$

 $q \in \{0, 1, ..., q\}$

Frequency Domain Analysis im: To study to 1

Aim: To study the frequency (corresponding to periodic component)

properties of time series and identify dominant frequencies
that drive the time series

Tool: Spectral density function

Det": Spectral density

Suppose that {X} is a stationary zero mean time series

with autocoronomice $f''(\cdot)$ satisfying $\sum |Y(h)| < \lambda'$. The spectral density of $\{X_t\}$ is the function $f(\cdot)$ defined by

 $f(\lambda) = \frac{1}{2\pi i} \sum_{h=-4}^{4} e^{-ih\lambda} \gamma(h) ; - 4 < \lambda < 4$