APPENDIX E GS1

In this section, we describe the results for use case GS1. First, for each problem and each time budget, we compare a pair of algorithms. Second, to compare the overall performance of the algorithms, we combine all objectives together by calculating average values of the objective functions (called *OFV*):

$$OFV = \frac{\sum_{i=1}^{n} Fitness_i}{n}$$

where n is the number of objectives for the prioritization problem, and $Fitness_i$ is the fitness value of the ith objective for the problem. Third, we used hypervolume (HV)—the most commonly used quality indicator to compare the overall performance of multi-objective search algorithms. Last, we calculated Rank and Confidence (as described in Section 4.1.5) for group comparison.

E.1 Experiment Results for RQ1

This section describes the results for Experiment Results for RQ1.

E.1.1 Problem 1

This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, AUM))

ТВ	A loo with me A	A loosith as D	P	ET	P'	TR	A	UM	О	FV	H	IV
1 D	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 DU40	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 00/0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	Al	UM	О	FV	H	IV
10	Aigonuma	Aigontiilib	A12	p	A12	p	A12	p	A12	p	A12	p
TB090	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

E.1.2 Problem 2

This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	US	О	FV	I	IV
1 D			A12	р	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
15100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	<0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

E.1.3 Problem 3

This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, ANU))

ТВ	A loositlesse A	A loonith as D	P	ET	P	TR	A	NU	О	FV	I	IV
I D	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	p	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 Dood	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
12070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
15100	SPEA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

E.1.4 Problem 4

This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	P	UU	О	FV	Н	IV
1 1 1	AigoriumA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	UU	О	FV	H	IV
1 D	AigoriumA	Aigoriumb	A12	р	A12	р	A12	р	A12	p	A12	p
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

E.1.5 Problem 5

This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, AUM, PUS))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	Al	UM	P	US	О	FV	H	IV
1 1 1	AigontiiliA	Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	A	UM	P	US	О	FV	Н	IV
1 D	AigoriumiA	Aigoriumib	A12	p	A12	p	A12	р	A12	р	A12	p	A12	р
TB040	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

E.1.6 Problem 6

This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, AUM, ANU))

	I	I	n	ræ	D'	TD	A 1	T T N / T	Α.	N T T T		TT 7	т	TX 7
TB	AlgorithmA	AlgorithmB		ET		ΓR		UM		NU		FV		IV
		•	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TDOO	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TROFO	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB050	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TDOCO	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB060	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	A	UM	A	NU	О	FV	I.	łV
10	AigoriumiA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10090	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	>0.05
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

E.1.7 Problem 7

This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, AUM, PUU))

TD	A1 '(1 A	A1 '41 D	P	ET	P'	TR	A	UM	P	UU	О	FV	Н	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	p	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	Al	UM	PI	UU	О	FV	H	IV
10	AigontiiliA	Aigontiiiib	A12	p	A12	p								
	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

E.1.8 Problem 8

This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, PUS, ANU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	P	US	A	NU	О	FV	H	ΗV
1 D	AigoriumiA	Aiguittiiii	A12	p	A12	р	A12	р	A12	р	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
15100	SPEA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

E.1.9 Problem 9

This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, PUS, PUU))

тр	A 1 A	A languith and D	P	ET	P	TR	P	US	P	UU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	p	A12	p	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	<0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

E.1.10 Problem 10

This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	ANU		PUU		OFV		HV	
1 1 1	AigontiiliA	Aigoritimib	A12	p	A12	p	A12	р	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	A loosith on D	P	ET	P	TR	A]	NU	Pl	UU	О	FV	Н	IV
1 D	AigoriumA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
TB020	SPEA2	SimpleRS	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	CellDE	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10030	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

E.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

E.2.1 Problem 1

This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 11. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM))

TB	Metric	ChiSq	DF	p
	ET	27926.73	3	< 0.01
	CTR	3288.81	3	< 0.01
TB010	UM	26892.24	3	< 0.01
	OFV	24265.11	3	< 0.01
	HV	341.79	3	< 0.01
	ET	25404.75	3	< 0.01
	CTR	2900.68	3	< 0.01
TB020	UM	24379.53	3	< 0.01
	OFV	24741.28	3	< 0.01
	HV	358.13	3	< 0.01
TB030	ET	24324.22	3	< 0.01
1 0000	CTR	2202.45	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	UM	23137.36	3	< 0.01
TB030	OFV	24487.82	3	< 0.01
	HV	362.31	3	< 0.01
	ET	17167.65	3	< 0.01
	CTR	2412.61	3	< 0.01
TB040	UM	16283.69	3	< 0.01
	OFV	17267.73	3	< 0.01
	HV	362.68	3	< 0.01
	ET	14811.38	3	< 0.01
	CTR	2923.23	3	< 0.01
TB050	UM	14532.51	3	< 0.01
	OFV	14954.83	3	< 0.01
	HV	366.5	3	< 0.01
	ET	11290.46	3	< 0.01
	CTR	2844.64	3	< 0.01
TB060	UM	10975.68	3	< 0.01
	OFV	11365.86	3	< 0.01
	HV	362.38	3	< 0.01
	ET	9787.76	3	< 0.01
	CTR	2299.46	3	< 0.01
TB070	UM	9577.27	3	< 0.01
	OFV	9846.18	3	< 0.01
	HV	362.27	3	< 0.01
	ET	8825.22	3	< 0.01
	CTR	2628.34	3	< 0.01
TB080	UM	8761.78	3	< 0.01
	OFV	8878.64	3	< 0.01
	HV	361.05	3	< 0.01
	ET	8028.61	3	< 0.01
	CTR	2609.39	3	< 0.01
TB090	UM	7700.71	3	< 0.01
	OFV	8061.59	3	< 0.01
	HV	360.03	3	< 0.01
	ET	7898.74	3	< 0.01
	CTR	2326.44	3	< 0.01
TB100	UM	7768.88	3	< 0.01
	OFV	7935.71	3	< 0.01
	HV	363.86	3	< 0.01

TABLE 12. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM))

ТВ	AlgorithmA	AlgorithmB	E	ET	C	TR	U	J M	О	FV	I	IV
1 1	AiguitumA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TB030 NSGA2 CellDE Cel	P	A12 >0.9 <0.1 >0.9 >0.9 >0.9 <0.1 >0.9	P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
TB030	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	>0.9 <0.1 >0.9 >0.9 >0.9 >0.9 <0.1	<0.01 <0.01 <0.01 <0.01 <0.01
MoCell SPEA2 >0.9 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.1 >0.9 >0.9 >0.9 >0.9 <0.1	<0.01 <0.01 <0.01 <0.01
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	>0.9 >0.9 >0.9 >0.9 <0.1	<0.01 <0.01 <0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1 NSGA2 MoCell <0.1	<0.01 <0.01 <0.01 <0.01 <0.01	>0.9 >0.9 <0.1	<0.01 <0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1 <0.1 <0.1 <0.1 NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.9	<0.01 <0.01 <0.01 <0.01	>0.9 <0.1	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.9	<0.01 <0.01 <0.01	< 0.1	
	<0.01 <0.01	1	
NSGA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01		< 0.01
TB040 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.	1	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1		>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.9	< 0.01	<0.1	< 0.01
NCCA2 CallDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
TB050 MoCell SPEA2 >0.9 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.	< 0.01	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5	< 0.01	< 0.1	< 0.01
NSC A 2 CollDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.1 <0.1	< 0.01	>0.9	< 0.01
TB060 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.	< 0.01	<0.1	< 0.01
MoCell CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5	< 0.01	< 0.1	< 0.01
NSGA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
TB070 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.	< 0.01	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.9 <0.01 >0.9	< 0.01	< 0.1	< 0.01
TB080 NSGA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.9	< 0.01	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.9	< 0.01	< 0.1	< 0.01
NSGA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
TB090 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.	< 0.01	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.01 <0.01 <0.1 <0.01 <0.1 <0.	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5	< 0.01	< 0.1	< 0.01
NSGA2 CellDF <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.01	< 0.01	>0.9	< 0.01
TB100 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.9	< 0.01	<0.1	< 0.01
MoCell CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1	< 0.01	>0.9	< 0.01

TABLE 13. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, AUM))

ТВ	Metric		Rar	ık		Confidence					
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	1	4	30%	20%	10%	40%		
TB010	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		

TD	Matri	Rank				Confidence					
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB020	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
TD000	CTR	2	4	1	3	20%	40%	10%	30%		
TB030	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3 3	2	4	1	30%	20%	40%	10%		
	ET CTR	2	2 3	4	1	30% 20%	20% 30%	40% 10%	10%		
TB040	UM	2	3	1 1	4	20%	30%	10%	40% 40%		
10040	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB050	UM	2	3	1	4	20%	30%	10%	40%		
10000	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB060	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB070	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB080	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
TDOO	CTR	2	3	1	4	20%	30%	10%	40%		
TB090	UM OFV	2	3	1	4	20%	30% 30%	10%	40% 40%		
	HV	2 3	3 2	4	4	30%	20%	10% 40%	10%		
	ET	3	2			30%	20%	40%	10%		
	CTR	2	3	4	1 4	20%	30%	10%	40%		
TB100	UM	2	3	1 1	4	20%	30%	10%	40%		
1 10100	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	117			4	1	JU /0	ZU /0	4 U /0	10 /0		

E.2.2 Problem 2

This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 14. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	1877.67	3	< 0.01
	CTR	253.4	3	< 0.01
TB010	USP	5.66	3	>0.05
	OFV	1183.39	3	< 0.01
	HV	356.39	3	< 0.01

TB	Metric	ChiSq	DF	р
	ET	768.49	3	< 0.01
	CTR	238.1	3	< 0.01
TB020	USP	15.2	3	< 0.01
	OFV	764.3	3	< 0.01
	HV	352.55	3	< 0.01
	ET	502.81	3	< 0.01
	CTR	208.24	3	< 0.01
TB030	USP	19.84	3	< 0.01
	OFV	505.09	3	< 0.01
	HV	354.24	3	< 0.01
	ET	466.69	3	< 0.01
	CTR	127.81	3	< 0.01
TB040	USP	3	3	>0.05
	OFV	464.49	3	< 0.01
	HV	356.71	3	< 0.01
	ET	425.13	3	< 0.01
	CTR	178.26	3	< 0.01
TB050	USP	3.25	3	>0.05
	OFV	425.46	3	< 0.01
	HV	356.56	3	< 0.01
	ET	394.88	3	< 0.01
	CTR	125.55	3	< 0.01
TB060	USP	30.6	3	< 0.01
	OFV	395.63	3	< 0.01
	HV	349.16	3	< 0.01
	ET	401.81	3	< 0.01
	CTR	209.43	3	< 0.01
TB070	USP	3	3	>0.05
	OFV	403.98	3	< 0.01
	HV	343.68	3	< 0.01
	ET	387.38	3	< 0.01
	CTR	216.55	3	< 0.01
TB080	USP	6.01	3	>0.05
	OFV	389.67	3	< 0.01
	HV	338.67	3	< 0.01
	ET	339.42	3	< 0.01
	CTR	172.1	3	< 0.01
TB090	USP	15.14	3	< 0.01
	OFV	344.94	3	< 0.01
	HV	335.87	3	< 0.01
	ET	350.38	3	<0.01
ED400	CTR	174.3	3	<0.01
TB100	USP	3.68	3	>0.05
	OFV	352.37	3	<0.01
	HV	340.83	3	< 0.01

TABLE 15. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	ET		CTR		USP		OFV		HV	
10	AiguitimiA		A12	p								
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 10010	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01

TTD.	A1 1/1 A	41 'd D	F	ET	С	TR	U	SP	О	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
Ī	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
Ī	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
Ī	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
Ī	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
Ī	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
Ī	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	=0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
Ī	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
Ī	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	=0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
1 00 90	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

TABLE 16. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, PUS))

	25.4		Ra	nk		Confidence				
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	1	1	2	3	14%	14%	29%	43%	
TB010	USP	1	2	1	2	17%	33%	17%	33%	
	OFV	1	2	1	3	14%	29%	14%	43%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	2	1	3	25%	25%	12%	38%	
TB020	USP	1	2	1	2	17%	33%	17%	33%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	2	1	3	25%	25%	12%	38%	
TB030	USP	1	1	1	2	20%	20%	20%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	1	1	1	2	20%	20%	20%	40%	
TB040	USP	1	1	1	1	25%	25%	25%	25%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	1	2	1	3	14%	29%	14%	43%	
TB050	USP	1	1	1	1	25%	25%	25%	25%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	1	1	2	3	14%	14%	29%	43%	
TB060	USP	1	1	1	2	20%	20%	20%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	1	4	30%	20%	10%	40%	
TB070	USP	1	1	1	1	25%	25%	25%	25%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	2	1	3	25%	25%	12%	38%	
TB080	USP	1	1	1	1	25%	25%	25%	25%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	1	1	1	2	20%	20%	20%	40%	
TB090	USP	1	1	1	2	20%	20%	20%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	1	3	4	20%	10%	30%	40%	
TB100	USP	1	1	1	1	25%	25%	25%	25%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	

E.2.3 Problem 3

This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 17. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	610.77	3	< 0.01
	CTR	924.33	3	< 0.01
TB010	NU	2541.87	3	< 0.01
	OFV	840.47	3	< 0.01
	HV	355.11	3	< 0.01
	ET	831.87	3	< 0.01
	CTR	1926.14	3	< 0.01
TB020	NU	3494.81	3	< 0.01
	OFV	1826.97	3	< 0.01
	HV	352.95	3	< 0.01
	ET	478.14	3	< 0.01
	CTR	2920.67	3	< 0.01
TB030	NU	3026.75	3	< 0.01
	OFV	2732.16	3	< 0.01
	HV	339.94	3	< 0.01
	ET	562.68	3	< 0.01
	CTR	3772.52	3	< 0.01
TB040	NU	3169.37	3	< 0.01
	OFV	3484.69	3	< 0.01
	HV	329.65	3	< 0.01
	ET	434.19	3	< 0.01
	CTR	3595.17	3	< 0.01
TB050	NU	3002.03	3	< 0.01
	OFV	3214.6	3	< 0.01
	HV	310.74	3	< 0.01
	ET	350.28	3	< 0.01
	CTR	2965.48	3	< 0.01
TB060	NU	2734.86	3	< 0.01
	OFV	2440.93	3	< 0.01
	HV	299.15	3	< 0.01
	ET	407.75	3	< 0.01
	CTR	2511.89	3	< 0.01
TB070	NU	3370.04	3	< 0.01
	OFV	2002.24	3	< 0.01
	HV	286.34	3	< 0.01
	ET	468.64	3	< 0.01
	CTR	1975.29	3	< 0.01
TB080	NU	3229.26	3	< 0.01
	OFV	1371.44	3	< 0.01
	HV	271.28	3	< 0.01
	ET	703.59	3	< 0.01
	CTR	902.16	3	< 0.01
TB090	NU	3183.03	3	<0.01
	OFV	591.7	3	<0.01
	HV	269.7	3	<0.01
	ET	617.21	3	<0.01
	CTR	926.77	3	<0.01
TB100	NU	3587.09	3	<0.01
	OFV	580.36	3	<0.01
	HV	264.96	3	< 0.01

TABLE 18. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, ANU))

TD	A 1 11 A	A1 '(1 D	I	ET	С	TR	N	NU	О	FV	l I	ΙV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TP010	NSGA2	CellDE	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
TB010 -	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	NSGA2	CellDE	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB050	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01
[NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB060	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
1 DOOG	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB070	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
l IDO70	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
IDOOU	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
j	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
10000		0	. 0.	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
į l	MoCell	SPEA2	>0.5									
	MoCell MoCell SPEA2	SPEA2 CellDE CellDE	>0.5 >0.5 <0.5	<0.01 <0.01 <0.01	>0.5 >0.5 >0.5	<0.03 <0.01 <0.01	<0.5 <0.5	<0.01	>0.5	<0.01	>0.5	<0.01 <0.01

ТВ	AlgorithmA	AlgorithmB	ET		CTR		NU		OFV		HV	
10	Aigonuma		A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	NSGA2	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
10100	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01

TABLE 19. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, ANU))

тр	Metric		Ra	nk		Confidence					
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	1	3	33%	22%	11%	33%		
	CTR	2	1	4	3	20%	10%	40%	30%		
TB010	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	1	3	2	25%	12%	38%	25%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	2	1	4	30%	20%	10%	40%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB020	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	3	2	4	1	30%	20%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	1	2	3	33%	11%	22%	33%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB030	NU	3	2	1	4	30%	20%	10%	40%		
	OFV	2	2	3	1	25%	25%	38%	12%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	1	1	2	43%	14%	14%	29%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB040	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	2	3	1	25%	25%	38%	12%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	4	1	2	3	40%	10%	20%	30%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB050	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	2	3	1	25%	25%	38%	12%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	4	1	2	3	40%	10%	20%	30%		
	CTR	2	2	3	1	25%	25%	38%	12%		
TB060	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	4	1	2	3	40%	10%	20%	30%		
	CTR	2	2	3	1	25%	25%	38%	12%		
TB070	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	4	1	3	2	40%	10%	30%	20%		
	CTR	2	2	3	1	25%	25%	38%	12%		
TB080	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	4	1	3	2	40%	10%	30%	20%		
	CTR	2	3	4	1	20%	30%	40%	10%		
TB090	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	4	3	1	20%	40%	30%	10%		
	HV	3	3	1	2	33%	33%	11%	22%		

ТВ	Metric		Rar	ık		Confidence				
1 0	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
	ET	3	1	3	2	33%	11%	33%	22%	
	CTR	2	3	4	1	20%	30%	40%	10%	
TB100	NU	2	3	1	4	20%	30%	10%	40%	
	OFV	2	4	3	1	20%	40%	30%	10%	
	HV	3	3	1	2	33%	33%	11%	22%	

E.2.4 Problem 4

This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 20. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, PUU))

ТВ	Metric	ChiSq	DF	p
	ET	2726.07	3	< 0.01
	CTR	460.03	3	< 0.01
TB010	NUU	52.53	3	< 0.01
	OFV	1739.1	3	< 0.01
	HV	349.06	3	< 0.01
	ET	808.48	3	< 0.01
	CTR	266.97	3	< 0.01
TB020	NUU	40.27	3	< 0.01
	OFV	724.43	3	< 0.01
	HV	349.41	3	< 0.01
	ET	532.31	3	< 0.01
	CTR	233.73	3	< 0.01
TB030	NUU	54.15	3	< 0.01
	OFV	537.87	3	< 0.01
	HV	354.93	3	< 0.01
	ET	525.29	3	< 0.01
	CTR	197.11	3	< 0.01
TB040	NUU	35.97	3	< 0.01
	OFV	528.6	3	< 0.01
	HV	352.87	3	< 0.01
	ET	438.11	3	< 0.01
	CTR	175.06	3	< 0.01
TB050	NUU	42.71	3	< 0.01
	OFV	443.82	3	< 0.01
	HV	355.98	3	< 0.01
	ET	445.63	3	< 0.01
	CTR	258.06	3	< 0.01
TB060	NUU	128.56	3	< 0.01
	OFV	446.34	3	< 0.01
	HV	354.23	3	< 0.01
	ET	406.58	3	< 0.01
	CTR	175.08	3	< 0.01
TB070	NUU	53.31	3	< 0.01
	OFV	408.06	3	< 0.01
	HV	347.18	3	< 0.01
	ET	403.33	3	< 0.01
	CTR	184.15	3	< 0.01
TB080	NUU	87.42	3	< 0.01
	OFV	405.59	3	< 0.01
	HV	353.23	3	< 0.01
	ET	381.34	3	< 0.01
	CTR	229.57	3	< 0.01
TB090	NUU	109.13	3	< 0.01
	OFV	385.52	3	< 0.01
	HV	347.01	3	< 0.01

TB	Metric	ChiSq	DF	p
	ET	375.5	3	< 0.01
	CTR	209.22	3	< 0.01
TB100	NUU	97.25	3	< 0.01
	OFV	377.98	3	< 0.01
	HV	346.54	3	< 0.01

TABLE 21. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, PUU))

			ET			CTR NUU			OFV			HV	
TB	AlgorithmA	AlgorithmB	A12										
	NSGA2	MoCell	<0.1	p <0.01	<0.5	p <0.01	<0.5	p <0.01	<0.5	p <0.01	>0.9	p <0.01	
-	NSGA2 NSGA2	SPEA2	>0.1	< 0.01	>0.5	<0.01	>0.5	>0.01	>0.5	< 0.01	<0.5	< 0.01	
a	NSGA2	CellDE	<0.1	< 0.01	<0.5	<0.01	>0.5	<0.01	<0.1	<0.01	>0.9	< 0.01	
TB010	MoCell	SPEA2	>0.1	<0.01	>0.5	<0.01	>0.5	< 0.01	>0.1	<0.01	<0.1	< 0.01	
	MoCell	CellDE	<0.1	<0.01	<0.5	<0.01	>0.5	< 0.01	<0.1	<0.01	>0.1	< 0.01	
	SPEA2	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	>0.01	<0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	<0.1	<0.01	>0.5	>0.01	>0.5	>0.05	<0.1	<0.01	>0.9	< 0.01	
	NSGA2	SPEA2	>0.1	>0.01	>0.5	>0.05	>0.5	<0.01	>0.1	>0.01	<0.5	< 0.01	
-	NSGA2	CellDE	<0.1	<0.01	<0.5	<0.01	<0.5	>0.05	<0.1	<0.01	>0.9	< 0.01	
TB020	MoCell	SPEA2	>0.1	<0.01	<0.5	>0.05	>0.5	< 0.05	>0.1	<0.01	<0.1	< 0.01	
=	MoCell	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	< 0.05	<0.1	< 0.01	>0.1	< 0.01	
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	<0.01	<0.5	< 0.03	<0.1	<0.01	>0.9	< 0.01	
	NSGA2	MoCell	<0.1	<0.01	>0.5	< 0.05	>0.5	< 0.05	<0.1	<0.01	>0.9	< 0.01	
_	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.03	>0.5	< 0.01	>0.5	<0.01	<0.5	< 0.01	
-	NSGA2	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	>0.05	<0.1	<0.01	>0.9	< 0.01	
TB030	MoCell	SPEA2	>0.9	< 0.01	>0.5	<0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.05	<0.1	<0.01	>0.9	< 0.01	
	SPEA2	CellDE	<0.1	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	<0.5	< 0.01	
	NSGA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	<0.1	< 0.01	
-	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	<0.1	< 0.01	>0.9	< 0.01	
-	SPEA2	CellDE	<0.1	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
_	NSGA2	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	
TD050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
TB050	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	
-	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
-	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	
-	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	
TDOCO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
-	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
ļ	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
ļ	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	
ļ	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	

ТВ	AlgorithmA	AlgorithmB	I	ET	С	TR	NUU		OFV		HV	
1.0	Aiguittilia	Aigontillib	A12	p								
TB080	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 22. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, PUU))

ТВ	Matria		Rai	nk		Confidence					
IB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB010	NUU	1	2	1	1	20%	40%	20%	20%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	3	1	33%	22%	33%	11%		
	CTR	1	1	1	2	20%	20%	20%	40%		
TB020	NUU	2	2	1	2	29%	29%	14%	29%		
	OFV	1	2	1	3	14%	29%	14%	43%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	1	4	30%	20%	10%	40%		
TB030	NUU	3	2	1	3	33%	22%	11%	33%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB040	NUU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	1	2	3	25%	12%	25%	38%		
TB050	NUU	1	1	1	2	20%	20%	20%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB060	NUU	3	2	1	4	30%	20%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	2	20%	20%	20%	40%		
TB070	NUU	1	1	2	2	17%	17%	33%	33%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
TB080	CTR	2	1	2	3	25%	12%	25%	38%		
	NUU	2	1	1	3	29%	14%	14%	43%		

ТВ	Metric		Rai	nk		Confidence						
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
TB080	OFV	2	3	1	4	20%	30%	10%	40%			
1 0000	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	1	4	30%	20%	10%	40%			
TB090	NUU	2	1	1	3	29%	14%	14%	43%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB100	NUU	2	1	1	3	29%	14%	14%	43%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

E.2.5 Problem 5

This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 23. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUS))

TB	Metric	ChiSq	DF	p
	ET	28423.92	3	< 0.01
	CTR	2498.64	3	< 0.01
TB010	UM	26671.39	3	< 0.01
1 DO10	USP	2206.91	3	< 0.01
	OFV	23767.89	3	< 0.01
	HV	331.16	3	< 0.01
	ET	26215.56	3	< 0.01
	CTR	3281.1	3	< 0.01
TB020	UM	24447.9	3	< 0.01
1 DUZU	USP	1838.86	3	< 0.01
	OFV	25193.7	3	< 0.01
	HV	350.72	3	< 0.01
	ET	16284.87	3	< 0.01
	CTR	1496.64	3	< 0.01
TB030	UM	15318.06	3	< 0.01
1 0030	USP	549.35	3	< 0.01
	OFV	16244.77	3	< 0.01
	HV	356.16	3	< 0.01
	ET	10710.8	3	< 0.01
	CTR	1962.15	3	< 0.01
TB040	UM	10136.71	3	< 0.01
1 0040	USP	477.88	3	< 0.01
	OFV	10792.74	3	< 0.01
	HV	358.09	3	< 0.01
	ET	7792.66	3	< 0.01
	CTR	1625.13	3	< 0.01
TB050	UM	7277.37	3	< 0.01
1 DUOU	USP	151.58	3	< 0.01
	OFV	7837.33	3	< 0.01
	HV	363.16	3	< 0.01
	ET	6507.72	3	< 0.01
	CTR	1119.09	3	< 0.01
TD060	UM	6284.14	3	< 0.01
TB060	USP	14.64	3	< 0.01
	OFV	6523.68	3	< 0.01
	HV	361.85	3	< 0.01
TD070	ET	5520.02	3	< 0.01
TB070	CTR	1378.19	3	< 0.01

TB	Metric	ChiSq	DF	p
	UM	5318.91	3	< 0.01
TB070	USP	53.93	3	< 0.01
1 0070	OFV	5562.51	3	< 0.01
	HV	357.56	3	< 0.01
	ET	4829.83	3	< 0.01
	CTR	1479.65	3	< 0.01
TB080	UM	4666.42	3	< 0.01
1 0000	USP	77.51	3	< 0.01
	OFV	4838.33	3	< 0.01
	HV	360.45	3	< 0.01
	ET	4958.03	3	< 0.01
	CTR	1744.4	3	< 0.01
TB090	UM	4838.68	3	< 0.01
1 0090	USP	54.67	3	< 0.01
	OFV	4982.69	3	< 0.01
	HV	362.06	3	< 0.01
	ET	4773.04	3	< 0.01
	CTR	1548.09	3	< 0.01
TB100	UM	4515.81	3	< 0.01
10100	USP	62.92	3	< 0.01
	OFV	4783	3	< 0.01
	HV	365.25	3	< 0.01

TABLE 24. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUS))

ТВ	A loosith as A	A languith and D	I	ET	C	TR	U	M	U	SP	О	FV	H	IV
1 D	AlgorithmA	AlgorithmB	A12	p	A12	р								
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0010	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	> 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

									24					
ТВ	AlgorithmA	AlgorithmB		ET		TR		J M		SP		FV	l	IV
1.0			A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 D100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	•	•												

TABLE 25. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk		Confidence					
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	1	2	3	25%	12%	25%	38%		
TB010	UM	2	3	1	4	20%	30%	10%	40%		
1 0010	USP	3	4	2	1	30%	40%	20%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB020	UM	2	3	1	4	20%	30%	10%	40%		
1 0020	USP	3	4	1	2	30%	40%	10%	20%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB030	UM	2	3	1	4	20%	30%	10%	40%		
1 0000	USP	2	4	1	3	20%	40%	10%	30%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
-	ET	3	2	4	1	30%	20%	40%	10%		
TB040	CTR	2	3	1	4	20%	30%	10%	40%		
	UM	2	3	1	4	20%	30%	10%	40%		

TD	M-1		Raı	ık		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	USP	1	3	1	2	14%	43%	14%	29%			
TB040	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB050	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	USP	2	2	1	2	29%	29%	14%	29%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB060	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	USP	1	1	1	1	25%	25%	25%	25%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB070	UM	2	3	1	4	20%	30%	10%	40%			
1 0070	USP	3	2	1	3	33%	22%	11%	33%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB080	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	USP	1	3	1	2	14%	43%	14%	29%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB090	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	USP	1	2	1	3	14%	29%	14%	43%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB100	UM	2	3	1	4	20%	30%	10%	40%			
1 1 1 1 0 0	USP	2	3	1	3	22%	33%	11%	33%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

E.2.6 Problem 6

This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 26. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	324.34	3	< 0.01
	CTR	1222.25	3	< 0.01
TB010	UM	1424.25	3	< 0.01
1 0010	NU	1756.56	3	< 0.01
	OFV	1435.72	3	< 0.01
	HV	317.4	3	< 0.01
	ET	612.18	3	< 0.01
	CTR	2126.97	3	< 0.01
TB020	UM	803.27	3	< 0.01
	NU	2705.73	3	< 0.01
	OFV	2079.02	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB020	HV	357.58	3	< 0.01
	ET	745.94	3	< 0.01
	CTR	2930.53	3	< 0.01
TB030	UM	643.46	3	< 0.01
1 0030	NU	3305.44	3	< 0.01
	OFV	2784.67	3	< 0.01
	HV	361.53	3	< 0.01
	ET	745.9	3	< 0.01
	CTR	2853.45	3	< 0.01
TB040	UM	553.26	3	< 0.01
1 0040	NU	3435.94	3	< 0.01
	OFV	2635.85	3	< 0.01
	HV	359.08	3	< 0.01
	ET	619.54	3	< 0.01
	CTR	2354.61	3	< 0.01
TB050	UM	240.06	3	< 0.01
1 0000	NU	2949.43	3	< 0.01
	OFV	2041.84	3	< 0.01
	HV	348.58	3	< 0.01
	ET	604.83	3	< 0.01
	CTR	2238.37	3	< 0.01
TB060	UM	108.95	3	< 0.01
1 0000	NU	3072.22	3	< 0.01
	OFV	1891.29	3	< 0.01
	HV	346.3	3	< 0.01
	ET	549.28	3	< 0.01
	CTR	1711.04	3	< 0.01
TB070	UM	75.18	3	< 0.01
10070	NU	2518.26	3	< 0.01
	OFV	1267.33	3	< 0.01
	HV	335.54	3	< 0.01
	ET	435.91	3	< 0.01
	CTR	1768.72	3	< 0.01
TB080	UM	106.91	3	< 0.01
1 0000	NU	2613.96	3	< 0.01
	OFV	1300.94	3	< 0.01
	HV	334.49	3	< 0.01
	ET	574.08	3	< 0.01
	CTR	1417.53	3	< 0.01
TB090	UM	302.61	3	< 0.01
15070	NU	2603.37	3	< 0.01
	OFV	950.73	3	< 0.01
	HV	330.19	3	< 0.01
	ET	464.01	3	< 0.01
	CTR	989.38	3	< 0.01
TB100	UM	880.28	3	< 0.01
12100	NU	2252.5	3	< 0.01
	OFV	587.62	3	< 0.01
	HV	323.87	3	< 0.01

TABLE 27. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, ANU))

ТВ	Algorithm A	AlgorithmB	I	ET	C	TR	U	J M	N	IU	0	FV	Н	IV
10	AigoriumiA	Aigontiilib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01
TB010	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10010	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	I	ET	С	TR	U	J M	N	NU	О	FV	I	IV
10	AigoriumA	J	A12	р	A12	p	A12	p	A12	p	A12	p	A12	p
TB010	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01
	NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0020	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TD000	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
TB030 -	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040 -	MoCell	SPEA2	>0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	<0.5	< 0.01	>0.5	>0.05	>0.5	< 0.05	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
l	NSGA2	CellDE	>0.5	< 0.01	<0.5	>0.05	<0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01
TB050 -	MoCell	SPEA2	>0.5	>0.05	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.1	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB060 -	MoCell	SPEA2	>0.5	>0.05	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
-	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	<0.5	< 0.01	>0.5	>0.05	>0.5	< 0.05	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	>0.01	<0.5	< 0.01	>0.5	>0.01	>0.5	<0.01	<0.5	< 0.03	>0.1	< 0.01
-	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB070 -	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
-	MoCell	CellDE	>0.5	<0.01	< 0.5		>0.5	< 0.01	<0.5	<0.01	<0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.5	<0.01	>0.5		<0.5	< 0.01	>0.5	>0.01	<0.5	< 0.01	<0.1	< 0.01
	NSGA2 NSGA2	SPEA2	>0.5	<0.01	<0.5		>0.5	>0.01	>0.5	<0.01	<0.5	< 0.01	>0.1	< 0.01
	NSGA2 NSGA2	CellDE	>0.5	<0.01	<0.5		>0.5	>0.05	<0.5	<0.01	<0.5	< 0.01	>0.9	< 0.01
TB080 -	MoCell	SPEA2	>0.5	<0.01	<0.5	< 0.01	>0.5	<0.01	>0.5	<0.01	<0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	>0.5	<0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	<0.01	>0.5	< 0.01	>0.9	< 0.01
-	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.5					<0.01				< 0.01	<0.1	< 0.01
				<0.01	<0.5	<0.01	<0.5		>0.5	<0.01	<0.5		1	
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	<0.01	<0.5	< 0.01	>0.9	< 0.01
TB090 -	NSGA2	CellDE	>0.5	<0.01	<0.5	<0.01	>0.5	>0.05	<0.5	<0.01	<0.5	<0.01	>0.5	<0.01
	MoCell	SPEA2	>0.5	<0.01	<0.5	<0.01	>0.5	< 0.01	>0.5	<0.01	<0.5	<0.01	>0.9	<0.01
	MoCell	CellDE	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	<0.01	>0.9	<0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.5	<0.01	>0.5	< 0.01	<0.1	<0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	<0.01	< 0.5	<0.01	>0.5	< 0.01	>0.5	<0.01	<0.5	<0.01	>0.9	<0.01
TB100 -	NSGA2	CellDE	>0.5	<0.01	<0.5	< 0.01	>0.5	>0.05	<0.5	<0.01	>0.5	<0.01	>0.5	>0.05
_	MoCell	SPEA2	>0.5	< 0.01	<0.5		>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5		>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01

TABLE 28. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, ANU))

TD	Matri		Ra	nk		Confidence					
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	2	2	1	3	25%	25%	12%	38%		
	CTR	1	1	3	2	14%	14%	43%	29%		
TB010	UM	1	1	2	2	17%	17%	33%	33%		
1 DU10	NU	2	3	1	3	22%	33%	11%	33%		
	OFV	1	1	3	2	14%	14%	43%	29%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	2	2	1	3	25%	25%	12%	38%		
	CTR	1	1	3	2	14%	14%	43%	29%		
TTD020	UM	1	1	3	2	14%	14%	43%	29%		
TB020	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	1	1	3	2	14%	14%	43%	29%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	1	2	4	30%	10%	20%	40%		
	CTR	2	1	4	3	20%	10%	40%	30%		
	UM	1	1	3	2	14%	14%	43%	29%		
TB030	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	1	3	2	25%	12%	38%	25%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	1	2	4	30%	10%	20%	40%		
	CTR	1	1	3	2	14%	14%	43%	29%		
	UM	1	2	3	2	12%	25%	38%	25%		
TB040	NU	2	2			25%	25%	12%	38%		
				1	3						
	OFV	1	1	3	2	14%	14%	43%	29%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	2	1	3	4	20%	10%	30%	40%		
	CTR	1	1	3	2	14%	14%	43%	29%		
TB050	UM	1	2	3	1	14%	29%	43%	14%		
12000	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	1	4	3	20%	10%	40%	30%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	2	1	1	3	29%	14%	14%	43%		
	CTR	2	1	4	3	20%	10%	40%	30%		
TB060	UM	1	2	3	1	14%	29%	43%	14%		
1 0000	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	1	2	4	3	10%	20%	40%	30%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	2	1	2	3	25%	12%	25%	38%		
	CTR	1	1	3	2	14%	14%	43%	29%		
TD070	UM	1	3	2	1	14%	43%	29%	14%		
TB070	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	1	4	3	20%	10%	40%	30%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	2	1	3	4	20%	10%	30%	40%		
	CTR	2	1	4	3	20%	10%	40%	30%		
	UM	1	2	1	1	20%	40%	20%	20%		
TB080	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	1	3	4	2	10%	30%	40%	20%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	2	1	3	4	20%	10%	30%	40%		
	CTR		2		3	10%	20%	40%	30%		
		1		4							
TB090	UM	2	3	1	2	25%	38%	12%	25%		
	NU	3	2	1	4	30%	20%	10%	40%		
	OFV	1	3	4	2	10%	30%	40%	20%		
	HV	3	4	1	2	30%	40%	10%	20%		

ТВ	Metric		Rar	ık		Confidence					
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	2	1	3	4	20%	10%	30%	40%		
	CTR	1	3	4	2	10%	30%	40%	20%		
TB100	UM	2	3	1	2	25%	38%	12%	25%		
10100	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	3	3	1	22%	33%	33%	11%		
	HV	2	3	1	2	25%	38%	12%	25%		

E.2.7 Problem 7

This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 29. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	31821.62	3	< 0.01
	CTR	6259.56	3	< 0.01
TB010	UM	30506.68	3	< 0.01
1 DU1U	NUU	8803.89	3	< 0.01
	OFV	20563.95	3	< 0.01
	HV	317.44	3	< 0.01
	ET	33473.56	3	< 0.01
	CTR	12343.82	3	< 0.01
TB020	UM	31033.13	3	< 0.01
1 D020	NUU	5205.39	3	< 0.01
	OFV	30031.94	3	< 0.01
	HV	348.43	3	< 0.01
	ET	27425.29	3	< 0.01
	CTR	8192.22	3	< 0.01
TB030	UM	25213.52	3	< 0.01
1 0000	NUU	2974.57	3	< 0.01
	OFV	26430.3	3	< 0.01
	HV	358.62	3	< 0.01
	ET	21623.02	3	< 0.01
	CTR	6183.42	3	< 0.01
TB040	UM	21231.81	3	< 0.01
10040	NUU	2036.41	3	< 0.01
	OFV	21573.67	3	< 0.01
	HV	356.73	3	< 0.01
	ET	17487.42	3	< 0.01
	CTR	5527.47	3	< 0.01
TB050	UM	16837.88	3	< 0.01
10000	NUU	1683.01	3	< 0.01
	OFV	17454.71	3	< 0.01
	HV	356.64	3	< 0.01
	ET	14209.85	3	< 0.01
	CTR	5751.97	3	< 0.01
TB060	UM	13945.15	3	< 0.01
10000	NUU	1840.2	3	< 0.01
	OFV	14486.93	3	< 0.01
	HV	353.64	3	< 0.01
	ET	13829.27	3	< 0.01
	CTR	4993.1	3	< 0.01
TB070	UM	12676.93	3	< 0.01
120.0	NUU	1680.86	3	< 0.01
	OFV	13880.98	3	< 0.01
	HV	356.3	3	< 0.01
TB080	ET	9992.36	3	< 0.01
12000	CTR	4241.75	3	< 0.01

TB	Metric	ChiSq	DF	p
	UM	9427.19	3	< 0.01
TB080	NUU	1235.49	3	< 0.01
10000	OFV	10069.44	3	< 0.01
	HV	353.17	3	< 0.01
	ET	9468.71	3	< 0.01
	CTR	3570.32	3	< 0.01
TB090	UM	8661.83	3	< 0.01
1 0090	NUU	878.76	3	< 0.01
	OFV	9502.74	3	< 0.01
	HV	358.27	3	< 0.01
	ET	8026.2	3	< 0.01
	CTR	3509.65	3	< 0.01
TB100	UM	7473.86	3	< 0.01
10100	NUU	895.87	3	< 0.01
	OFV	8045.72	3	< 0.01
	HV	357.89	3	< 0.01

TABLE 30. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUU))

ТВ	AlgorithmA	AlgorithmB	I	T	C	TR	U	JM	N	UU	О	FV	I	IV
1 D	AigorithmA	Algorithmb	A12	р										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.1	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

	<u> </u>		T	ET		TR	T	M	N	UU	OFV		HV	
TB	AlgorithmA	AlgorithmB	A12											
	NSGA2	MoCell	<0.1	p <0.01	<0.5	p <0.01	<0.1	p <0.01	<0.5	p <0.01	<0.1	p <0.01	>0.9	p <0.01
	NSGA2 NSGA2	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01
TB070	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
					I		l							
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	< 0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	<0.01	<0.1	<0.01	<0.1	< 0.01	<0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
12000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 31. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUU))

ТВ	Metric		Raı	ık		Confidence						
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	1	4	30%	20%	10%	40%			
TB010	UM	2	3	1	4	20%	30%	10%	40%			
1 1 1 1 1 1 1 1	NUU	4	3	2	1	40%	30%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB020	UM	2	3	1	4	20%	30%	10%	40%			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUU	3	4	1	2	30%	40%	10%	20%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB030	UM	2	3	1	4	20%	30%	10%	40%			
1 0030	NUU	3	4	1	2	30%	40%	10%	20%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB040	UM	2	3	1	4	20%	30%	10%	40%			
1 0040	NUU	2	4	1	3	20%	40%	10%	30%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
TB050	CTR	2	3	1	4	20%	30%	10%	40%			
	UM	2	3	1	4	20%	30%	10%	40%			

TD	M-1		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	NUU	2	4	1	3	20%	40%	10%	30%			
TB050	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB060	UM	2	3	1	4	20%	30%	10%	40%			
1 DUOU	NUU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB070	UM	2	3	1	4	20%	30%	10%	40%			
1 D07 0	NUU	2	3	1	3	22%	33%	11%	33%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB080	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	NUU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB090	UM	2	3	1	4	20%	30%	10%	40%			
1 0090	NUU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB100	UM	2	3	1	4	20%	30%	10%	40%			
1 D100	NUU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

E.2.8 Problem 8

This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 32. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, ANU))

TB	Metric	ChiSq	DF	p
	ET	487.75	3	< 0.01
	CTR	971.99	3	< 0.01
TB010	USP	5507.16	3	< 0.01
10010	NU	2594.5	3	< 0.01
	OFV	865.54	3	< 0.01
	HV	343.09	3	< 0.01
	ET	595.9	3	< 0.01
	CTR	1882.26	3	< 0.01
TB020	USP	6056.19	3	< 0.01
1 0020	NU	3313.61	3	< 0.01
	OFV	1756.84	3	< 0.01
	HV	336.01	3	< 0.01
	ET	429.42	3	< 0.01
	CTR	2948.79	3	< 0.01
TB030	USP	6961.18	3	< 0.01
	NU	3386.44	3	< 0.01
	OFV	2770.21	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB030	HV	336.23	3	< 0.01
	ET	199.95	3	< 0.01
	CTR	3897.07	3	< 0.01
TB040	USP	6724.66	3	< 0.01
1 0040	NU	3348.3	3	< 0.01
	OFV	3592.21	3	< 0.01
	HV	314.77	3	< 0.01
	ET	186.52	3	< 0.01
	CTR	3914.47	3	< 0.01
TB050	USP	6733.53	3	< 0.01
1 0000	NU	3490.03	3	< 0.01
	OFV	3543.13	3	< 0.01
	HV	298.17	3	< 0.01
	ET	107.08	3	< 0.01
	CTR	3386.52	3	< 0.01
TB060	USP	7269.21	3	< 0.01
1 0000	NU	3272.57	3	< 0.01
	OFV	2841.08	3	< 0.01
	HV	288.19	3	< 0.01
	ET	131.12	3	< 0.01
	CTR	2171.87	3	< 0.01
TB070	USP	6838.49	3	< 0.01
1 00/0	NU	3372.7	3	< 0.01
	OFV	1673.83	3	< 0.01
	HV	268.95	3	< 0.01
	ET	217.97	3	< 0.01
	CTR	2057.32	3	< 0.01
TB080	USP	7224.66	3	< 0.01
1 0000	NU	3047.17	3	< 0.01
	OFV	1422.75	3	< 0.01
	HV	260.68	3	< 0.01
	ET	218.5	3	< 0.01
	CTR	1444.56	3	< 0.01
TB090	USP	6959.2	3	< 0.01
10070	NU	3957.17	3	< 0.01
	OFV	943.62	3	< 0.01
	HV	253.94	3	< 0.01
	ET	512.25	3	< 0.01
	CTR	907.19	3	< 0.01
TB100	USP	7146.03	3	< 0.01
1 10100	NU	3739.35	3	< 0.01
	OFV	548.05	3	< 0.01
	HV	263.94	3	< 0.01

TABLE 33. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, ANU))

ТВ	AlgorithmA	AlgorithmB	I	ET	С	CTR		USP		IU	OFV		HV	
1 1 1	AigoriumiA	Aigontillib	A12	p										
	NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	NSGA2	CellDE	>0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01

TD	A 1: 11 A	A1::11D]	ΞT	С	TR	U	SP	N	IU	О	FV	I	ΙV
TB	AlgorithmA		A12	р	A12	p	A12	р	A12	p	A12	р	A12	p
	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TPO20	NSGA2	CellDE	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TP040	NSGA2	CellDE	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB040	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TDOFO	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB050	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB060	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.05	<0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TTD 000	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB080	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB090	MoCell	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.5	<0.01	<0.1	<0.01
	NSGA2	SPEA2	>0.5	>0.01	< 0.5		>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	<0.01
	NSGA2	CellDE	<0.5	<0.01	>0.5		>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SPEA2	>0.5	< 0.01	<0.5		>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.5	< 0.01	>0.5		<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	<0.01
	31 EA2	Cende	<0.5	<0.01	/0.3	<0.01	<0.5	<0.01	<0.3	<0.01	/0.3	<0.01	<0.1	√0.01

TABLE 34. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, ANU))

			Rai	nk		Confidence					
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	2	2	1	3	25%	25%	12%	38%		
	CTR	1	1	2	1	20%	20%	40%	20%		
TD010	USP	2	4	1	3	20%	40%	10%	30%		
TB010	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	1	1	2	1	20%	20%	40%	20%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	2	1	3	33%	22%	11%	33%		
	CTR	2	3	4	1	20%	30%	40%	10%		
TP020	USP	2	4	1	3	20%	40%	10%	30%		
TB020	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	4	2	1	3	40%	20%	10%	30%		
	CTR	2	3	4	1	20%	30%	40%	10%		
TDOOO	USP	2	4	1	3	20%	40%	10%	30%		
TB030	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	2	1	3	33%	22%	11%	33%		
	CTR	2	2	3	1	25%	25%	38%	12%		
	USP	2	4	1	3	20%	40%	10%	30%		
TB040	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	2	3	1	25%	25%	38%	12%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	2	1	3	33%	22%	11%	33%		
	CTR	2	3	4	1	20%	30%	40%	10%		
	USP	2	4	1	3	20%	40%	10%	30%		
TB050	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	3	1	1	2	43%	14%	14%	29%		
	CTR	2	3	4	1	20%	30%	40%	10%		
	USP	2	4	1	3	20%	40%	10%	30%		
TB060	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET CTR	3 2	3	2	2	38%	12%	25%	25% 10%		
	USP			4	1	20%	30% 40%	40%	30%		
TB070	NU	2 2	3	1	3	20%	30%	10%	40%		
	OFV			1	4		30%	10%			
		2	3	4	1	20%		40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	4	1	3	2	40%	10%	30%	20%		
	CTR	2	3	4	1	20%	30%	40%	10%		
TB080	USP	2	4	1	3	20%	40%	10%	30%		
	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		
	ET	4	1	3	2	40%	10%	30%	20%		
	CTR	2	3	4	1	20%	30%	40%	10%		
TB090	USP	2	3	1	2	25%	38%	12%	25%		
12070	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	3	1	22%	33%	33%	11%		
	HV	3	3	1	2	33%	33%	11%	22%		

ТВ	Metric		Rai	ık		Confidence					
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	1	3	2	33%	11%	33%	22%		
	CTR	2	3	4	1	20%	30%	40%	10%		
TB100	USP	3	4	1	2	30%	40%	10%	20%		
10100	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	4	3	1	20%	40%	30%	10%		
	HV	3	4	1	2	30%	40%	10%	20%		

E.2.9 Problem 9

This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 35. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, PUU))

TB	Metric	ChiSq	DF	p
	ET	2518.42	3	< 0.01
	CTR	452.49	3	< 0.01
TB010	USP	27.91	3	< 0.01
10010	NUU	49.6	3	< 0.01
	OFV	1689.9	3	< 0.01
	HV	352.8	3	< 0.01
	ET	1071.05	3	< 0.01
	CTR	476.41	3	< 0.01
TB020	USP	27.51	3	< 0.01
10020	NUU	90.41	3	< 0.01
	OFV	1058.76	3	< 0.01
	HV	350.8	3	< 0.01
	ET	535.27	3	< 0.01
	CTR	111.01	3	< 0.01
TB030	USP	3	3	>0.05
10000	NUU	14.87	3	< 0.01
	OFV	532.81	3	< 0.01
	HV	354.56	3	< 0.01
	ET	429.38	3	< 0.01
	CTR	141.37	3	< 0.01
TB040	USP	14.73	3	< 0.01
10040	NUU	33.8	3	< 0.01
	OFV	429.33	3	< 0.01
	HV	348.39	3	< 0.01
	ET	462.86	3	< 0.01
	CTR	231.64	3	< 0.01
TB050	USP	11.81	3	< 0.01
1 DUOU	NUU	65.39	3	< 0.01
	OFV	461.75	3	< 0.01
	HV	356.85	3	< 0.01
	ET	429.12	3	< 0.01
	CTR	186.03	3	< 0.01
TB060	USP	3	3	>0.05
10000	NUU	42.61	3	< 0.01
	OFV	431.45	3	< 0.01
	HV	354.19	3	< 0.01
	ET	418.7	3	< 0.01
	CTR	226.34	3	< 0.01
TB070	USP	3	3	>0.05
100/0	NUU	112.26	3	< 0.01
	OFV	419.83	3	< 0.01
	HV	356.76	3	< 0.01
TB080	ET	385.77	3	< 0.01
I DUðU	CTR	188.9	3	< 0.01

TB	Metric	ChiSq	DF	p
	USP	1	3	>0.05
TB080	NUU	56.83	3	< 0.01
1 0000	OFV	387.25	3	< 0.01
	HV	349.85	3	< 0.01
	ET	386.25	3	< 0.01
	CTR	277.41	3	< 0.01
TB090	USP	3	3	>0.05
1 0090	NUU	116.97	3	< 0.01
	OFV	391	3	< 0.01
	HV	347.51	3	< 0.01
	ET	372.63	3	< 0.01
	CTR	181.87	3	< 0.01
TB100	USP	NaN	3	>0.05
1 1 100	NUU	72.96	3	< 0.01
	OFV	379.02	3	< 0.01
	HV	353.05	3	< 0.01

TABLE 36. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, PUU))

ТВ	AlgorithmA	AlgorithmB		ET	С	TR	U	SP	N	UU	OFV		HV	
10	AigonumiA	Aigoriumib	A12	p										
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 B000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01

TED	A1 '-1 A	A1 '41 D	I	ET	С	TR	U	SP	N	UU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 37. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, PUU))

ТВ	Metric		Raı	nk		Confidence					
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	1	2	3	25%	12%	25%	38%		
TB010	USP	3	2	2	1	38%	25%	25%	12%		
1 10010	NUU	2	2	1	1	33%	33%	17%	17%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB020	USP	2	1	1	1	40%	20%	20%	20%		
1 0020	NUU	2	2	1	2	29%	29%	14%	29%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	1	2	3	25%	12%	25%	38%		
TB030	USP	1	1	1	1	25%	25%	25%	25%		
1 0000	NUU	2	1	2	2	29%	14%	29%	29%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	1	1	3	29%	14%	14%	43%		
TB040	USP	2	1	2	1	33%	17%	33%	17%		
1 0040	NUU	2	1	2	3	25%	12%	25%	38%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
TB050	CTR	2	2	1	3	25%	25%	12%	38%		
	USP	1	1	2	1	20%	20%	40%	20%		

TD	M-1		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	NUU	1	1	1	2	20%	20%	20%	40%			
TB050	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB060	USP	1	1	1	1	25%	25%	25%	25%			
1 DUOU	NUU	1	1	2	3	14%	14%	29%	43%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB070	USP	1	1	1	1	25%	25%	25%	25%			
1 0070	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	1	1	2	3	14%	14%	29%	43%			
TB080	USP	1	1	1	1	25%	25%	25%	25%			
1 0000	NUU	1	1	2	3	14%	14%	29%	43%			
	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB090	USP	1	1	1	1	25%	25%	25%	25%			
1 0090	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB100	USP	1	1	1	1	25%	25%	25%	25%			
1 0100	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

E.2.10 Problem 10

This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 38. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, ANU, PUU))

TB	Metric	ChiSq	DF	p
	ET	1373.14	3	< 0.01
	CTR	1866.83	3	< 0.01
TB010	NU	4338.07	3	< 0.01
10010	NUU	898.31	3	< 0.01
	OFV	1361.87	3	< 0.01
	HV	364.8	3	< 0.01
	ET	1523.25	3	< 0.01
	CTR	3897.47	3	< 0.01
TB020	NU	5559.88	3	< 0.01
1 0020	NUU	1313.62	3	< 0.01
	OFV	2715.09	3	< 0.01
	HV	348.4	3	< 0.01
	ET	1456.39	3	< 0.01
	CTR	5496.83	3	< 0.01
TB030	NU	5911.74	3	< 0.01
	NUU	2000.7	3	< 0.01
	OFV	4001.07	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB030	HV	327.9	3	< 0.01
	ET	1132.36	3	< 0.01
	CTR	5955	3	< 0.01
TB040	NU	5482.68	3	< 0.01
1 DU40	NUU	2241.63	3	< 0.01
	OFV	4366.48	3	< 0.01
	HV	311.82	3	< 0.01
	ET	945.89	3	< 0.01
	CTR	5794.85	3	< 0.01
TB050	NU	4798.96	3	< 0.01
1 D030	NUU	2097.03	3	< 0.01
	OFV	4167.63	3	< 0.01
	HV	291.02	3	< 0.01
	ET	879.56	3	< 0.01
	CTR	5829.69	3	< 0.01
TD0/0	NU	5957.36	3	< 0.01
TB060	NUU	1862.41	3	< 0.01
	OFV	4020.79	3	< 0.01
	HV	270.27	3	< 0.01
	ET	793.2	3	< 0.01
	CTR	4299.08	3	< 0.01
TB070	NU	5657.38	3	< 0.01
1 DU/ U	NUU	1309.42	3	< 0.01
	OFV	2742.48	3	< 0.01
	HV	268.8	3	< 0.01
	ET	1000.2	3	< 0.01
	CTR	3534.88	3	< 0.01
TB080	NU	5250.43	3	< 0.01
1 0000	NUU	1042.4	3	< 0.01
	OFV	2134.15	3	< 0.01
	HV	254.62	3	< 0.01
	ET	1107.68	3	< 0.01
	CTR	2869.13	3	< 0.01
TB090	NU	5640.44	3	< 0.01
1 DU7U	NUU	1033	3	< 0.01
	OFV	1755.97	3	< 0.01
	HV	239.29	3	< 0.01
	ET	1041.71	3	< 0.01
	CTR	2782.62	3	< 0.01
TB100	NU	6528.2	3	< 0.01
10100	NUU	961.07	3	< 0.01
	OFV	1592.91	3	< 0.01
	HV	249.8	3	< 0.01

TABLE 39. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmB	F	ET	С	CTR		NU		NUU		OFV		IV
10	AigoriumiA	Aigontillio	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01
TB020	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01

тр	A I constituent A	A loo with me D	I	ET	C	TR	N	IU	N	UU	О	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	p								
	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TROSO	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TD040	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB040	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TROFO	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB050	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TTD 0 60	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
TB060	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
TB070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
EDOOO	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
TB080	MoCell	SPEA2	>0.5	< 0.01	< 0.5		>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB090	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	>0.05
TB100	MoCell	SPEA2	>0.5	< 0.01	< 0.5		>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5		<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5		<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	01 11/14	CCHDL	/ 0.0	\0.01	/ 0.0	\0.01	\0.0	₹0.01	/ 0.0	\0.01	/ 0.0	\0.01	\0.1	\0.01

TABLE 40. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, ANU, PUU))

	25.4	Rank			Confidence				
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB010	ET	3	2	1	4	30%	20%	10%	40%
	CTR	2	1	3	2	25%	12%	38%	25%
	NU	2	3	1	4	20%	30%	10%	40%
	NUU	3	2	4	1	30%	20%	40%	10%
	OFV	3	1	4	2	30%	10%	40%	20%
	HV	3	4	1	2	30%	40%	10%	20%
	ET	3	2	1	4	30%	20%	10%	40%
	CTR	2	2	3	1	25%	25%	38%	12%
TB020	NU	2	2	1	3	25%	25%	12%	38%
10020	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	4	1	2	30%	40%	10%	20%
	ET	3	1	2	4	30%	10%	20%	40%
	CTR	2	2	3	1	25%	25%	38%	12%
TB030	NU	2	2	1	3	25%	25%	12%	38%
10000	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	4	1	2	30%	40%	10%	20%
	ET	2	1	1	3	29%	14%	14%	43%
	CTR	2	3	4	1	20%	30%	40%	10%
TB040	NU	3	2	1	4	30%	20%	10%	40%
1 00 10	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	3	4	1	20%	30%	40%	10%
TB050	NU	3	2	1	4	30%	20%	10%	40%
12000	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	ET	3	1	2	4	30%	10%	20%	40%
	CTR	2	3	4	1	20%	30%	40%	10%
TB060	NU	3	2	1	4	30%	20%	10%	40%
	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	3	4	1	20%	30%	40%	10%
TB070	NU	2	2	1	3	25%	25%	12%	38%
	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	ET	2	1	2	3	25%	12%	25%	38%
TB080	CTR	2	3	4	1	20%	30%	40%	10%
	NU NUU	3	2	1	4	30% 20%	20% 30%	10%	40% 10%
	OFV	2	3	4	1			40%	
	HV	2	3	4	1	20% 25%	30% 38%	40%	10%
		2	3	1	2			12%	25%
TB090	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	3	2	1	4	30%	20%	10%	40%
	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%

ТВ	Metric	Rank			Confidence				
		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB100	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	3	3	1	22%	33%	33%	11%
	NU	2	2	1	3	25%	25%	12%	38%
	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	2	1	25%	38%	25%	12%
	HV	2	3	1	2	25%	38%	12%	25%

E.3 Experiment Results for RQ4

This section describes the results for Experiment Results for RQ4.

 ${\it TABLE~41} \\ {\it Results~for~the~Kruskal-Wallis~Test~among~Test~Case~Prioritization~Problems~(GS1)} \\$

Metric	ChiSq	DF	p
ANOU	18411.63	10	< 0.01

TABLE 42. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (GS1)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
ET_CTR_UM	ET_CTR_USP	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NU	SPEA2	NSGA2	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_UM_USP	SPEA2	SPEA2	>0.5	< 0.01
ET_CTR_UM	ET_CTR_UM_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_UM_NUU	SPEA2	SPEA2	>0.5	>0.05
ET_CTR_UM	ET_CTR_USP_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NU_NUU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NU	SPEA2	NSGA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_USP	ET_CTR_UM_USP	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NU_NUU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_NU	ET_CTR_NUU	NSGA2	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_USP	NSGA2	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_USP	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_NU	NSGA2	MoCell	< 0.5	< 0.01
ET_CTR_NU	ET_CTR_UM_NU	MoCell	MoCell	< 0.5	< 0.01
ET_CTR_NU	ET_CTR_UM_NUU	NSGA2	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_USP_NU	NSGA2	MoCell	< 0.5	< 0.01
ET_CTR_NU	ET_CTR_USP_NU	MoCell	MoCell	>0.5	< 0.01
ET_CTR_NU	ET_CTR_USP_NUU	NSGA2	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_USP_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_NU_NUU	NSGA2	MoCell	< 0.5	< 0.01
ET_CTR_NU	ET_CTR_NU_NUU	MoCell	MoCell	< 0.5	< 0.01
ET_CTR_NUU	ET_CTR_UM_USP	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_UM_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_UM_NUU	SPEA2	SPEA2	<0.1	< 0.01

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
ET_CTR_NUU	ET_CTR_USP_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_USP_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_NU_NUU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_UM_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_UM_USP	ET_CTR_USP_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_USP	ET_CTR_NU_NUU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM_NU	ET_CTR_UM_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NU	MoCell	MoCell	>0.5	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_NU_NUU	MoCell	MoCell	>0.5	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_NU_NUU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_USP_NU	ET_CTR_USP_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_USP_NU	ET_CTR_NU_NUU	MoCell	MoCell	< 0.5	< 0.01
ET_CTR_USP_NUU	ET_CTR_NU_NUU	SPEA2	MoCell	< 0.1	< 0.01