R como minero de datos Sesión 1

Natalie Julian - www.nataliejulian.com

Estadística UC y Data Scientist en Zippedi Inc.

Panorama actual

An automated health care system that understands when to step in

The New Era of Information Abundance: What Does It Mean for Higher Education?

Digital learning statistics reveal how Highland schools have adapted to coronavirus crisis

How India is using Artificial Intelligence to combat COVID-19

Big Data Apple

Big Data Apps Wasting Billions in the Cloud

Digital transformation has become 'unstoppable' and essential for retailers, study finds

Explosión de información

El flujo explosivo de información ha conllevado un replanteamiento del panorama tecnológico.

¿Cómo darnos cuenta de esta *explosión de la información* en nuestro día a día? Solo pensemos:

- ¿Cuántas plataformas tecnológicas uso a diario?
- ¿Cuántas stories de Instagram publican mis amig@s por semana?
- ¿Cuánta información tuya aportas a internet?

Explosión de datos

El flujo explosivo de información ha conllevado un replanteamiento del panorama tecnológico.

¿Cómo darnos cuenta de esta *explosión de la información* en nuestro día a día? Solo pensemos:

- ¿Cuántas plataformas tecnológicas uso a diario? Instagram, Facebook, Tinder, Google, LinkedIn, Zoom, Tik Tok, Netflix, Amazon Prime Video, Photoshop, Spotify, Youtube, Gmail...
- ¿Cuántas stories de Instagram publican mis amig@s por semana? No sé, ¿500?
- ¿Cuánta información tuya aportas a internet? No sé y prefiero no saber!

Tanto dato necesita minarse

¿Se imaginan cuántos datos se generan cada segundo? ¡Muchísimos!. Pero no sirve de nada si sólo está ahí en el ciberespacio: Además de almacenarla, se necesitan realizar inferencias y así descubrir *lo verdadero*, *entender el comportamientos de los datos*.

La Ciencia: En búsqueda de la verdad

La ciencia, está hecha de errores, pero de errores útiles de cometer, pues poco a poco, conducen a la verdad.

Julio Verne

¿Cómo determinar científicamente lo verdadero?

- Realizar una transcripción de los fenómenos y sucesos del mundo de manera compacta: Es necesario cuantificar la información y almacenarla en **Datos**.
- Aplicar la lógica en los datos: Desarrollar análisis, usar metodología y procedimientos para obtener Inferencias basadas en Evidencia presente en los datos.

¿Cómo recopilar evidencia? Usando metodología, análisis, usando estadística.

Lenguaje de programación R

Aprenderemos a utilizar una de las herramientas más fuertes e imprescindibles a la hora de analizar datos: **manejo de software**.

El software que aprenderemos será **RStudio**, una plataforma amigable para aprender el lenguaje de programación **R**. Este lenguaje es eficaz para la manipulación de bases de datos y desarrollo de análisis estadísticos.

Vista general

- 1 Aquí se encuentra la *consola*, aquí se entregan resultados y también puede utilizarse como una calculadora. ¡Pero **nada** queda quardado en la consola!
- 2 Aquí se mostrarán todos los objetos que definamos, los objetos del workspace.
- 3 Aquí veremos los gráficos que realicemos, entre otras cosas que comentaremos más adelante.

R como calculadora

Escribamos de una en una las siguientes operaciones en la consola:

- = 2 + 2
- $3 \frac{1}{5} \cdot 100$
- $2 \cdot 2 + \frac{3}{6} \frac{6}{8+1}$

Para que se muestre el resultado, debemos apretar Enter.

____1

R como calculadora

```
Console Terminal × Jobs ×
R version 3.6.2 (2019-12-12) -- "Dark and Stormy Night"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R es un software libre y viene sin GARANTIA ALGUNA.
Usted puede redistribuirlo bajo ciertas circunstancias.
Escriba 'license()' o 'licence()' para detalles de distribucion.
R es un provecto colaborativo con muchos contribuventes.
Escriba 'contributors()' para obtener más información v
'citation()' para saber cómo citar R o paquetes de R en publicaciones.
Escriba 'demo()' para demostraciones, 'help()' para el sistema on-line de ayuda,
o 'help.start()' para abrir el sistema de avuda HTML con su navegador.
Escriba 'g()' para salir de R.
> 2+2
[1] 4
> 3-1/5*100
Γ17 -17
> 2*2+3/6-6/(8+1)
[1] 3.833333
>
```

Muchas operaciones

Algunas operaciones matemáticas que podemos realizar:

Función	Ejemplo 1	Ejemplo 2
Suma	6+1	sum(2,5)
Multiplicación	90*11	prod(4,3)
Valor absoluto	abs(-2)	abs(-0.005)
Potencia	4**8	8^10
Raíz cuadrada	sqrt(4)	sqrt(0.05)
División	8/9	5/3
Exponencial	exp(-1/2)	exp(1)
Logaritmo	log(5,exp(2))	log(5,3)
Seno	sin(10)	sin(pi)

¿Cómo guardar mis códigos?

Debemos abrir un *script*, un script corresponde al código que iremos escribiendo para obtener los resultados.

Para abrir un script:

Vista del script

Escribiendo en el script

Podemos escribir comentarios anteponiendo el símbolo # y añadir las operaciones que antes realizamos:

Definiendo objetos en RStudio

Supongamos que queremos conocer el resultado de la siguiente operación:

$$\frac{1000000000000 \cdot 20}{exp(20)} + \frac{log(20)}{100000000000} + seno(\frac{1000000000000}{20})$$

Escribir esa expresión en R resulta un poco larga... ¿Qué hacer?

Podemos crear un objeto llamado a que sea equivalente al valor 100000000000 y un objeto b equivalente a 20.

Siempre que queramos definir un objeto debemos utilizar la flecha de asignación "< -" con la siguiente estructura:

nombreobjeto<-valor del objeto

Calculando expresiones con objetos

Creando los objetos a y b podemos calcular el valor de la expresión en R de forma sencilla:

