卒業論文「双対作用素と Schauder の定理」【詳細版】

中橋健太郎*

最終更新日:2021年1月13日

概要

この PDF は卒業論文で、紹介しきれなかった定義や命題の証明の付け加えたものである.

目次

1		萨事項	1
	1.1 Hal	nn-Banach の定理	1
	1.1.1	順序関係,極大元	
	1.1.2	Hahn-Banach の定理	2
		型作用素	
	1.3 双対	空間	5
	1.3.1	双対の記号 (6
	1.3.2	二重双対空間	6
	1.3.3	双対空間の例	6
2			7
	2.1 双対	<mark>付作用素の定義</mark>	7
	2.2 Sch	auder の定理	7
	2.2.1	コンパクト作用素	8
	2.2.2	Ascoli-Arzelà の定理	8
	2.2.3	双対作用素のコンパクト性	8

1 基礎事項

1.1 Hahn-Banach の定理

1.1.1 順序関係,極大元

Hahn-Banach の定理を述べるまえに、集合論の復習をしておこう.

定義 1.1 (順序関係). 集合 A の二項関係 \preceq が次を満たすとき,A は順序関係 \preceq をもつという:

(反射律) 任意の $a \in A$ に対して, $a \leq a$.

(推移律) 任意の $a,b,c \in A$ に対して, $a \leq b$ かつ $b \leq c$ ならば $a \leq c$.

(反対称律) 任意の $a,b \in A$ に対して, $a \leq b$ かつ $b \leq a$ ならば a = b.

また、順序集合 $A=(A,\preceq)$ が比較可能性の法則を満たす、すなわち、

 $a,b \in A \implies a \leq b \quad \sharp \, t \sharp \, b \leq a$

が成り立つとき, Aは**全順序集合**という.

- $s \in A$ が $B \subseteq A$ の上界であるとは、任意の $x \in B$ に対して、 $x \preceq s$ となることである.
- $m \in A$ が A の極大元であるとは、任意の $x \in A$ に対して、 $m \preceq x$ ならば x = m となることである.
- Aが**帰納的**であるとは、Aの任意の全順序部分集合が上界を持つことである.

事実 1.2 (Zorn の補題). 空でない任意の帰納的順序集合は極大元を持つ (証明には選択公理を使う).

^{*} 岡山理科大学理学部応用数学科 (2020 年度)

1.1.2 Hahn-Banach の定理

実線型空間における Hahn-Banach の定理が次である.

定理 1.3 (Hahn-Banach の拡張定理 1). E を \mathbf{R} 上の線型空間, $G \subseteq E$ を部分空間とする.

写像 $p: E \to \mathbf{R}$ と線型写像 $g: G \to \mathbf{R}$ が

$$p(\lambda x) = \lambda p(x) \qquad (\forall x \in E, \ \forall \lambda \geqslant 0) \tag{1.1}$$

$$p(x+y) \leqslant p(x) + p(y) \qquad (\forall x, \forall y \in E)$$
(1.2)

$$g(x) \leqslant p(x) \qquad (\forall x \in G) \tag{1.3}$$

を満たすとき、g を拡張する、E 上の線型汎函数 $f:E\to \mathbf{R}$ (i.e., $\forall x\in G,\ f(x)=g(x)$) が存在して、

$$f(x) \leqslant p(x) \qquad (\forall x \in E)$$
 (1.4)

を満たす.

定理 1.3 の証明.

次のような集合 P を考える.

$$P:=\left\{h \left| egin{array}{ll} h:D(h) o \mathbf{R},\ D(h)\ \mbox{it}\ E\ \mbox{o}$$
部分空間, $h\ \mbox{ti}$ 線型写像,
$$G\subseteq D(h),\ h\ \mbox{it}\ g\ \mbox{o}$$
拡張であり,任意の $x\in D(h)\ \mbox{it}$ に対して $h(x)\leqslant p(x)$

P の二項関係を

と定めれば,これは順序関係である.実際, $D(h_1)=D(h_1)$ かつ $h_1=h_1$ により反射律がわかり, $h_1\preceq h_2$ かつ h_2 かつ h_3 を仮定すれば $D(h_1)\subseteq D(h_2)\subseteq D(h_3)$ かつ任意の $x\in D(h_1)$ に対して, $h_1(x)=h_2(x)=h_3(x)$ より推移律もわかり, $h_1\preceq h_2$ かつ $h_2\preceq h_1$ を仮定 すれば $D(h_1)\subseteq D(h_2)\subseteq D(h_1)$ より $D(h_1)=D(h_2)$ となり $h_1=h_2$ が従い,反対称律も成り立つ.このことから $g\in P$ がわかるので $P\neq\varnothing$.また,P は帰納的である.実際, $Q\subseteq P$ を全順序部分集合とし $Q=\{h_i\mid i\in I\}$ とする.写像 $u:D(u)\to \mathbf{R}$ を次のように定義する:

$$D(u) := \bigcup_{i=1}^{n} D(h_i) \; ; \; u|_{D(h_i)} = h_i.$$

すると、 $u \in P$ かつ u は Q の上界である。 実際、D(u) が E の部分空間であることは Q が全順序部分集合であることから簡単にわかり $^{1)}$ 、u の線型性も同様にわかり $^{2)}$ 、 $u \in P$ がわかる。 また u が Q の上界であることは、任意の $h_i \in Q$ $(i \in I)$ に対して、 $D(h_i) \subseteq D(u)$ かつ $u|_{D(h_i)} = h$ となることからわかる。 よって、P は帰納的であることがわかった。 Zorn の補題 (事実 1.2) より P の極大元 $f \in P$ が存在する。 D(f) = E が示せれば主張が従う。 $D(f) \neq E$ を仮定し、 $x_0 \in E \setminus D(f)$ を取る。 任意の $\xi \in \mathbf{R}$ に対して、

$$v_{\varepsilon}: D(f) \oplus \mathbf{R} x_0 := \{x + \alpha x_0 \mid x \in D(f), \alpha \in \mathbf{R}\} \ni x + \alpha x_0 \mapsto f(x) + \alpha \xi \in \mathbf{R}$$

として, $D(v_{\xi})=D(f)\oplus \mathbf{R}x_0$ 上の線型汎函数 v_{ξ} を定めると, v_{ξ} は f の拡張である.このとき,

$$v_{\xi_0}(x + \alpha x_0) \leqslant p(x_0 + \alpha x_0) \qquad (\forall x \in D(f), \forall \alpha \in \mathbf{R})$$
 (1.5)

を満たす $\xi_0 \in \mathbf{R}$ が存在することを示す. いま, 任意の $x,y \in D(f)$ に対して,

となる. ゆえに,

$$\beta_1 := \sup \{ f(y) - p(y - x_0) \mid y \in D(f) \} \le \inf \{ p(x + x_0) - f(x) \mid x \in D(f) \} =: \beta_2$$

が成り立つから、実数の稠密性から $\beta_1 \leq \eta_0 \leq \beta_2$ なる $\eta_0 \in \mathbf{R}$ が存在する. このような $\eta_0 \in \mathbf{R}$ は (1.5) を満たす. $\alpha = 0$ のときは人間 ならわかるので、まず $\alpha > 0$ のとき、

$$v_{\eta_0}(x + \alpha x_0) = f(x) + \alpha \eta_0$$

$$\leq f(x) + \alpha \left(p(\alpha^{-1}x + x_0) - f(\alpha^{-1}x) \right) \quad \therefore \quad \beta_2$$
は下限より.
$$= p(x + \alpha x_0) \qquad \qquad \therefore \quad p$$
 の定義, f の線型性.

 $x,y \in D(u)$ とすると、ある $j,k \in I$ があって $x \in D(h_j), \ y \in D(h_k)$ となる。 Q が全順序集合であることから $h_j \preceq h_k$ または $h_k \preceq h_j$ が成り立つので $D(h_j) \subseteq D(h_k)$ または $D(h_k) \subseteq D(h_j)$ が成り立つ。 $D(h_j) \subseteq D(h_k)$ としても一般性を失わないのでそうすると、 $x,y \in D(h_k)$ となり $D(h_k)$ は E の部分空間なので $\alpha,\beta \in \mathbf{R}$ に対して $\alpha x + \beta y \in D(h_k) \subseteq \bigcup D(h_i)$ が得られる。

 $^{^{(2)}}$ 記号は ↑ と同じとする。 $h_j \leq h_k$ とすると $h_k|_{D(h_j)} = h_j$ なので $\alpha u(x) + \beta u(y) = \alpha h_j(x) + \beta h_k(y) = \alpha h_k(x) + \beta h_k(y) = h_k(\alpha x + \beta y) = u(\alpha x + \beta y)$.

となるからよい.次に α <0のとき,

$$v_{\eta_0}(x + \alpha x_0) = f(x) + \alpha \eta_0$$

 $\leq f(x) + \alpha \left(f(-\alpha^{-1}x) - p(-\alpha^{-1}x - x_0) \right)$: $\alpha < 0, \beta_1$ は上限より.
 $= (-\alpha)p(-\alpha^{-1}x - x_0) = p(x + \alpha x_0)$: $-\alpha > 0, p$ の定義, f の線型性.

となる.よって,(1.5) を満たすような $\xi_0 \in \mathbf{R}$ が存在する.すると,このとき, $f \preceq v_{\xi_0}$ であるが $f \neq v_{\xi_0}$ である.これは f を P の極大元としたことに矛盾.ゆえに,D(f) = E である.

定理 1.4 (Hahn-Banach の拡張定理 2). E を K 上の線型空間, $G \subseteq E$ を部分空間とする.

写像 $p: E \to [0, \infty)$ と G 上の線型写像 $g: G \to \mathbf{K}$ は

$$p(\lambda x) = |\lambda| \ p(x) \qquad (\forall x \in E, \ \forall \lambda \in \mathbf{K})$$
 (1.6)

$$p(x+y) \leqslant p(x) + p(y) \qquad (\forall x, y \in E) \tag{1.7}$$

$$|g(x)| \leqslant p(x) \qquad (\forall x \in G) \tag{1.8}$$

を満たすとする.このとき,g を拡張する,E 上の線型汎函数 $f:E \to \mathbf{K}$ (i.e., $f|_G = g$) が存在して,

$$|f(x)| \leqslant p(x) \qquad (\forall x \in E) \tag{1.9}$$

//

を満たす.

定理 1.4 の証明.

i. $\mathbf{K} = \mathbf{R}$ の場合:

p は (1.6) を満たすので当然 (1.1) も満たす.また,任意の $x \in G$ に対して, $g(x) \leqslant |g(x)| \leqslant p(x)$ となることから,定理 1.3 を適用すれば,E 上の線型汎函数 $f: E \to \mathbf{R}$ が存在して

$$f(x) = g(x) \quad (\forall x \in G), \qquad f(x) \leqslant p(x) \quad (\forall x \in E)$$

を満たす. また, (1.6) より任意の $x \in E$ に対して,

$$-f(x) = f(-x) \le p(-x) = |-1| p(x) = p(x)$$

が成り立つので、f は (1.9) を満たしている.

ii. $\mathbf{K} = \mathbf{C}$ の場合:E, G のスカラー値を実数に制限したものをそれぞれ, $E_{\mathbf{R}}, G_{\mathbf{R}}$ と表す. 写像 $\mathrm{Re}: G \ni x \mapsto \mathrm{Re}\big(g(x)\big) \in \mathbf{R}$, $\mathrm{Im}: G \ni x \mapsto \mathrm{Im}\big(g(x)\big) \in \mathbf{R}$ は $G_{\mathbf{R}}$ 上の実線型汎函数であるから,前半の証明により $E_{\mathbf{R}}$ 上の実線型汎函数 $\widetilde{F}_1: E_{\mathbf{R}} \to \mathbf{R}$, $\widetilde{F}_2: E_{\mathbf{R}} \to \mathbf{R}$ が存在して,

$$\left.\widetilde{F}_{1}\right|_{G_{\mathbf{R}}} = \operatorname{Re} g, \quad \left.\widetilde{F}_{2}\right|_{G_{\mathbf{R}}} = \operatorname{Im} g, \quad \left.\left|\widetilde{F}_{i}(x)\right| \leqslant p(x) \quad (\forall x \in E_{\mathbf{R}}, \ i = 1, 2)\right.$$

を満たす. また, E 上の新たな写像 $\widetilde{f}: E \to \mathbf{R}$ を

$$\widetilde{f}(a+ib) := \widetilde{F}_1(a) - \widetilde{F}_2(b) \qquad (\forall a, \forall b \in E_{\mathbf{R}})$$

で定めると、 \widetilde{f} は明らかに実線型であり、任意の $x \in G$ に対して、 $\widetilde{f}(x) = \operatorname{Re}\big(g(x)\big)$ である. $^{3)}$ ここで $f: E \to \mathbf{C}$ を

$$f(x) := \widetilde{f}(x) - i \, \widetilde{f}(ix) \qquad (\forall x \in E)$$

により定めると、f は線型である. 実際、任意の $x \in E$ に対して、

$$f(ix) = \widetilde{f}(ix) - i \, \widetilde{f}(i(ix)) \qquad \qquad :: f \, \mathcal{O}$$
定義.

$$= \widetilde{f}(ix) - i \, \widetilde{f}(-x) \qquad \qquad :: i^2 = -1.$$

$$= \widetilde{f}(ix) + i \, \widetilde{f}(x) \qquad \qquad :: f \, \mathcal{O}$$
実線型性

$$= -i^2 \, \widetilde{f}(ix) + i \, \widetilde{f}(x) \qquad \qquad :: 1 = -(-1) = -i^2.$$

$$= i \big(\widetilde{f}(x) - i \widetilde{f}(ix) \big) \qquad = i \, f(x)$$

であることから、任意の $x,y \in E,\ \alpha=\alpha_1+i\alpha_2 \in \mathbf{C}, \beta=\beta_1+i\beta_2 \in \mathbf{C}\ (\alpha_1,\alpha_2,\beta_1,\beta_2 \in \mathbf{R})$ に対して、

$$f(\alpha x + \beta y) = \alpha_1 f(x) + \beta_1 f(y) + i f(\alpha_2 x) + i f(\beta_2 y)$$
$$= (\alpha_1 + i\alpha_2) f(x) + (\beta_1 + i\beta_2) f(y)$$
$$= \alpha f(x) + \beta f(y)$$

 $^{^{(3)}}$ 実際, x=a+ib $(a,b\in G_{\mathbf{R}})$ とすると, $\widetilde{f}(x)=\widetilde{f}(a+ib)=\mathrm{Re}\big(g(a)\big)-\mathrm{Im}\big(g(b)\big)=\mathrm{Re}\big(g(a)\big)+\mathrm{Re}\big(i\,g(b)\big)=\mathrm{Re}\big(g(a)\big)+\mathrm{Re}\big(g(a)\big)=\mathrm{Re}\big(g(a+ib)\big)=\mathrm{Re}\big(g(a)(a+ib)\big)=\mathrm{Re}\big(g(a)(a+ib)(a+ib))=\mathrm{Re}\big(g(a)(a+ib)$

となる. また, 任意の $x \in G$ に対して

$$f(x) = \operatorname{Re}(g(x)) - i\operatorname{Re}(g(ix)) = \operatorname{Re}(g(x)) + i\operatorname{Im}(g(x)) = g(x)$$

であり、任意の $x \in E$ に対して、 $|f(x)| = \alpha f(x)$ かつ $|\alpha| = 1$ なる $\alpha \in \mathbb{C}$ を選べば 4 、

$$|f(x)| = \alpha f(x) = f(\alpha x) = \text{Re}(f(\alpha x)) = \widetilde{f}(\alpha x) \leqslant p(\alpha x) = |\alpha| \ p(x) = p(x)$$

となる. これが求めるものであった.

1.2 線型作用素

定義 1.5 (線型作用素). X,Y をノルム空間とする.

写像 $T:X \to Y$ が次を満たすとき,T を**線型作用素 (linear operator)** と呼ぶ:

$$\forall \alpha, \forall \beta \in \mathbf{K}, \quad \forall x, \forall y \in X, \qquad T(\alpha x + \beta y) = \alpha Tx + \beta Ty.$$

定義 1.6. *X*, *Y* をノルム空間とする.

線型作用素 $T: X \to Y$ が**有界**であるとは,ある定数 $K \ge 0$ が存在して,任意の $x \in X$ に対して,

$$||Tx||_{Y} \leqslant K ||x||_{X}$$

が成り立つことである.また,線型作用素 T が点 $x\in X$ で連続であるとは,x に収束する X 内の任意の点列 $\{x_n\}_{n=1}^\infty$ に対して, $\|Tx-Tx_n\|_Y \to 0 \ (n \to \infty)$ が成り立つことである.

定理 1.7. X,Y をノルム空間, $T:X\to Y$ を線型作用素とする. このとき, 以下は同値である.

(1) T は X 上で連続である. (2) T は原点で連続である. (3) T は有界である.

定理 1.7 の証明.

- $(1) \Longrightarrow (2)$ 自明.
- (3) \Longrightarrow (1) 任意に $x\in X$ を固定する. x に収束する X 内の任意の点列を $\{x_n\}_{n=1}^\infty$ とする. まず,T の線型性から $\|Tx_n-Tx\|_Y=$ $\|T(x_n-x)\|_Y$ であり、いま、T が有界なので、ある定数 $K\geqslant 0$ があって $\|T(x_n-x)\|_Y\leqslant K\|x_n-x\|_X$ となる. また、 $||x_n - x||_X \to 0 \ (n \to \infty)$ であるから,

$$||Tx_n - Tx||_Y \leqslant K ||x_n - x||_X \to 0 \qquad (n \to \infty)$$

となる. よって,TはX上で連続である.

(2) \Longrightarrow (3) 背理法で示す. T が有界でないとすると、任意の $n \in \mathbb{N}$ に対して、ある単位ベクトル $x_n \in X$ が存在し、

$$||Tx_n||_Y > n ||x_n||_X = n$$

が成り立つ. $y_n := \frac{1}{\sqrt{n}} x_n とおくと,$

$$||y_n - 0||_X = \left\| \frac{1}{\sqrt{n}} x_n \right\|_Y = \frac{1}{\sqrt{n}} ||x_n||_X = \frac{1}{\sqrt{n}} \to 0 \quad (n \to \infty)$$

となるから $y_n o 0 \; (n o \infty)$ である. 一方,

$$||Ty_n - T0||_Y = ||Ty_n||_Y = \frac{1}{\sqrt{n}} ||Tx_n||_Y > \frac{1}{\sqrt{n}} \cdot n = \sqrt{n} \to \infty \quad (n \to \infty)$$

となることから, Ty_n が T0 に収束しないことがわかる.これは T が原点で連続であることに反する $(y_n \to 0 \ (n \to \infty)$ にもかか わらず Ty_n は T0 に収束しない). よって従う.

ノルム空間 X からノルム空間 Y への有界線型作用素全体を $\mathcal{B}(X,Y)$ で表す. すなわち,

$$\mathscr{B}(X,Y) := \{T: X \to Y \,|\, \exists K \geqslant 0 \quad \text{s.t.} \quad \forall x \in X, \quad \|Tx\|_Y \leqslant K \,\|x\|_X \}$$

である. 特に Y = X のときは $\mathcal{B}(X)$ とかく. $\mathcal{B}(X,Y)$ は次の和・スカラー倍により線型空間をなす:

$$\forall x \in X, \qquad (T+S)x := Tx + Sx, \quad (\alpha T)x := \alpha Tx \qquad (T, S \in \mathcal{B}(X,Y), \ \alpha \in \mathbf{K}).$$

 $[\]overline{f(x)}$ が実数の場合, $f(x)\geqslant 0$ なら lpha=1,f(x)<0 なら lpha=-1 とすればよい.また,f(x) が実数でなかった場合, $lpha=|f(x)|/\left(\operatorname{Re}ig(f(x)ig)+i\operatorname{Im}ig(f(x)ig)
ight)$ と すればよい

また、 $\mathcal{B}(X,Y)$ は次で定めるノルムによって、ノルム空間となる:

$$||T||_{\mathscr{B}(X,Y)} := \sup \left\{ \frac{||Tx||_Y}{||x||_X} \mid x \in X, \ x \neq 0 \right\} = \sup_{x \neq 0} \frac{||Tx||_Y}{||x||_X}$$
 $(T \in \mathscr{B}(X,Y)).$

定理 1.8. X をノルム空間, Y を Banach 空間とする. このとき, $\mathcal{B}(X,Y)$ は Banach 空間である.

定理 1.8 の証明.

 $\{T_n\}_{n=1}^\infty$ を $\mathscr{B}(X,Y)$ 内の任意の Cauchy 列とすると、任意の $\varepsilon>0$ に対して、ある $N\in\mathbf{N}$ が存在して、N 以上のすべての自然数 n,m に対して、 $\|T_n-T_m\|_{\mathscr{B}(X,Y)}<\varepsilon$ が成り立つ。また、任意の $x\in X$ に対して、 $\|T_nx-T_mx\|_Y=\|(T_n-T_m)x\|_Y=\|T_n-T_m\|_{\mathscr{B}(X,Y)}$ は Y 内の Cauchy 列であることがわかる。いま、Y は完備であるから $\{T_nx\}_{n=1}^\infty$ は Y 内の Cauchy 列であることがわかる。いま、Y は完備であるから $\{T_nx\}_{n=1}^\infty$ は収束する。その極限を Tx とかく。う このとき、 $T\in\mathscr{B}(X,Y)$ であり $\|T_n-T\|_{\mathscr{B}(X,Y)}\to 0$ $(n\to\infty)$ であることを示す。まず、T が線型作用素であることを示そう。任意の $x,y\in X$ に対して、

$$\begin{split} \|T(x+y)-(Tx+Ty)\|_{Y} &\leqslant \|T(x+y)-T_{n}(x+y)\|_{Y} + \|T_{n}x+T_{n}y-(Tx+Ty)\|_{Y} & \because T_{n}\mathcal{O}$$
線型性
$$&\leqslant \|T(x+y)-T_{n}(x+y)\|_{Y} + \|T_{n}x-Tx\|_{Y} + \|T_{n}y-Ty\|_{Y} \\ &\longrightarrow 0 \qquad (n\to\infty) & \because \|T_{n}z-Tz\|_{Y} \to 0 \end{split}$$

となるから、 $\|T(x+y)-(Tx+Ty)\|_{Y}=0$ より T(x+y)=Tx+Ty. 同様に、任意の $\alpha\in\mathbf{K},\ x\in X$ に対して、

$$||T(\alpha x) - \alpha Tx||_Y \leqslant ||T(\alpha x) - T_n(\alpha x)||_Y + ||\alpha T_n x - \alpha Tx||_Y$$

$$= ||T(\alpha x) - T_n(\alpha x)||_Y + |\alpha| ||T_n x - Tx||_Y$$

$$\longrightarrow 0 \qquad (n \to \infty)$$

となることから、 $T(\alpha x) = \alpha Tx$ がわかる. よって、T は線型作用素である. 次に、T が有界であることを示そう. $x \in X$ を任意の固定する. このとき、N 以上のすべての自然数 n,m に対して、

$$\begin{split} \|T_{n}x - Tx\|_{Y} &\leq \|T_{n}x - T_{m}x\|_{Y} + \|T_{m}x - Tx\|_{Y} \\ &= \|(T_{n} - T_{m})x\|_{Y} + \|T_{m}x - Tx\|_{Y} \\ &\leq \|T_{n} - T_{m}\|_{\mathscr{B}(X,Y)} \|x\|_{X} + \|T_{m}x - Tx\|_{Y} \\ &< \varepsilon \|x\|_{X} + \|T_{m}x - Tx\|_{Y} & \therefore T_{n} : \text{Cauchy } \end{split}$$

右辺を $m \to \infty$ とすれば、

$$||T_n x - Tx||_Y \leqslant \varepsilon ||x||_X \tag{1.10}$$

となる. $||Tx||_Y - ||T_nx||_Y \leq ||T_nx - Tx||_Y$ に注意すれば,

$$||Tx||_{Y} \le ||T_{n}x||_{Y} + \varepsilon ||x|| \le ||T_{n}||_{\mathscr{B}(X,Y)} ||x||_{X} + \varepsilon ||x||_{X} = (||T_{n}||_{\mathscr{B}(X,Y)} + \varepsilon) ||x||_{X}$$

が成り立つ. $T_n \in \mathcal{B}(X,Y)$ より $\|T_n\|_{\mathcal{B}(X,Y)} < \infty$ であり、 ε は任意であるから $\varepsilon = 1$ とでもすれば T が有界であることがわかる. よって、 $T \in \mathcal{B}(X,Y)$ である. 最後に、 T_n が T のノルム収束していることを示す。式 (1.10) より、 $x \neq 0$ のとき、両辺を $\|x\|_X$ $(\neq 0)$ で割り、 $x \neq 0$ における sup をとれば、

$$||T_n - T||_{\mathscr{B}(X,Y)} \leqslant \varepsilon$$

であることがわかる。いま、 ε は任意であったから、これは T_n が T にノルム収束していることにほかならない。ゆえに、 $\mathscr{B}(X,Y)$ は Banach 空間である。

1.3 双対空間

線型作用素 $T: X \to Y$ において, $Y = \mathbf{K}$ であるものを**線型汎函数**と呼ぶ。有界線型汎函数全体のなす集合 $\mathcal{B}(X, \mathbf{K})$ を X' で表し, X の**双対空間**と呼ぶ。 \mathbf{K} は完備であるから,ノルム空間 X の双対空間 X' もまた Banach 空間となる.ノルム空間に関する重要な結果として,次の定理がある.これもまた,Hahn-Banach の定理と呼ばれる.

定理 1.9 (Hahn-Banach の拡張定理 3). E を K 上のノルム空間, $G \subseteq E$ を部分空間とする. このとき, 任意の $g \in G'$ に対して, 次を満たす $f \in E'$ が存在する:

$$f|_{G} = g$$
 かつ $||f||_{E'} = ||g||_{G'}$. (1.11)

 $^{^{5)}}$ ここで注意すべきなのが「何か写像 $T:X \to Y$ があって Tx とかける収束先がある」という解釈ではなく「x に依存する収束先y があり,それを x に依存していることを強調して Tx と書きましょう」というものである. もちろん, $x \in X$ に対応する $y \in Y$ なので T は確かに X から Y への写像となっている.

定理 1.9 の証明. $p:E \to [0,\infty)$ を $p(x):=\|g\|_{G'}\|x\|_E$ で定めると、定理 1.3 の条件を満たすので、ある線型汎函数 $f:E \to \mathbf{K}$ が存在し、

$$f(x) = g(x) \qquad (\forall x \in G) \tag{1.12}$$

$$|f(x)| \le p(x) \qquad (\forall x \in E)$$
 (1.13)

を満たす. (1.13) より $\|f\|_{E'} \leqslant \|g\|_{G'}$ を得る. よって $f \in E'$ である. また, (1.12) より, 任意の $x \in G$ に対して $|g(x)| = |f(x)| \leqslant \|f\|_{E'} \|x\|_E$ となるので, $\|g\|_{G'} \leqslant \|f\|_{E'}$ を得る. ゆえに $\|f\|_{E'} = \|g\|_{G'}$.

系 1.10. E を **K** 上のノルム空間とする. $x_0 \in E \setminus \{0\}$ に対して, 次を満たすような $f \in E'$ が存在する:

$$f(x_0) = \|x_0\|_E$$
 かつ $\|f\|_{E'} = 1.$ (1.14)

系 1.10 の証明. $\mathbf{K}x_0 := \{\alpha x_0 \mid \alpha \in \mathbf{K}\}$ とおくと、 $\mathbf{K}x_0$ は E の部分空間である。ここで、 $G := \mathbf{K}x_0$ とおき G 上の写像 $g: G \to \mathbf{K}$ を $g(\alpha x_0) := \alpha \|x_0\|_E$ で定めると、g は明らかに線型であり、任意の $\alpha x_0 \in \mathbf{K}x_0$ に対して $\|\alpha x_0\|_E = |\alpha| \|x_0\|_E = |\alpha| \|x_0\|_E |= |g(\alpha x_0)|$ より $\|g\|_{G'} = 1$ を得るから $g \in G'$. よって、定理 1.4 により、ある $f \in E'$ が存在して、 $f(x_0) = g(x_0) = \|x_0\|_E$ かつ $\|f\|_{E'} = \|g\|_{G'} = 1$ と なる.

系 1.11. E をノルム空間とする. このとき, 任意の $x \in E$ に対して, 次が成り立つ:

$$||x||_{E} = \sup_{\substack{f \in E' \\ f \neq 0}} \frac{|f(x)|}{||f||_{E'}} = \sup_{\substack{f \in E' \\ ||f||_{E'} = 1}} |f(x)| = \sup_{\substack{f \in E' \\ ||f||_{E'} \leqslant 1}} |f(x)|.$$

$$(1.15)$$

系 1.11 の証明.

 $x\in E$ とする. x=0 のときは明らかであるから $x\neq 0$ とする. いま, 任意の $f\in E'$ に対して, $|f(x)|\leqslant \|f\|_{E'}\|x\|_E$ より

$$\sup_{\substack{f \in E' \\ f \neq 0}} \frac{|f(x)|}{\|f\|_{E'}} \leqslant \|x\|_{E}$$

を得る. また, $x \neq 0$ なので, 系 1.10 により, ある $f \in E'$ が存在して, $f(x) = \|x\|_E$ かつ $\|f\|_{E'} = 1$ が成り立つから,

$$\sup_{\substack{f \in E' \\ f \neq 0}} \frac{|f(x)|}{\|f\|_{E'}} \geqslant \frac{|f(x)|}{\|f\|_{E'}} = |f(x)| = \|x\|_E$$

を得る. ゆえに等号が成り立つ.

1.3.1 双対の記号

以後、ノルム空間 X の元 x とその双対空間 X' の元 f における記号として $f(x) = \langle f, x \rangle = {}_{X'}\langle f, x \rangle_X$ とかく. また、双対空間 X' の元を一般に x' などとかく. 系 1.10 より、任意の $x' \in X'$ に対して、 ${}_{X'}\langle x', x \rangle_X = 0$ ならば x = 0 である.

注意 1.12. 上記の下線部の部分は、ノルム空間 X の双対空間 X' の元が豊富にあることを意味する.

1.3.2 二重双対空間

ノルム空間 X の双対空間 X' をノルム空間としての双対空間 (X')'=:X'' を X の二重双対空間と呼ぶ. X から X'' への写像 J_X を $X''\langle J_Xx,x'\rangle_{X'}:=X'\langle x',x\rangle_X$ により定めると、系 1.11 から

$$||J_X x||_{X''} = ||x||_X$$

を得る. よって, J_X は等長線型である. J_X を**標準的単射**あるいは**標準対応**と呼ぶ. また, J_X が全射であるとき, X は**回帰的**あるいは**反射** 的であるという.

1.3.3 双対空間の例

双対空間の例を紹介する前に、Banach 空間の比較的わかりやすいと思われる例を紹介しておく. 微積分学・線型代数学の知識より、 \mathbf{R}^n や \mathbf{C}^n は Banach 空間である。それを自然に拡張した空間がある。数列空間と呼ばれるものである。任意に $1\leqslant p\leqslant\infty$ を固定し、複素数列、あるいは実数列 $x=(\xi_1,\xi_2,\ldots)=(\xi_n)_{n=1}^\infty$ で、

$$||x||_{\ell^p} := \begin{cases} \left(\sum_{n=1}^{\infty} |\xi_n|^p\right)^{1/p} & (1 \leq p < \infty), \\ \sup\{|\xi_n| \mid n \in \mathbf{N}\} & (p = \infty) \end{cases}$$

が有限であるもの全体のなす集合を $\ell^p(\mathbf{N})$ で表す. 演算を

$$(\xi_n)_{n=1}^{\infty} + (\eta_n)_{n=1}^{\infty} := (\xi_n + \eta_n)_{n=1}^{\infty}, \quad \alpha(\xi_n)_{n=1}^{\infty} := (\alpha \xi_n)_{n=1}^{\infty}, \quad (\alpha \in \mathbf{K}, (\xi_n)_{n=1}^{\infty}, (\eta_n)_{n=1}^{\infty} \in \ell^p(\mathbf{N}))$$

により定める. ノルムは上述のとおりである. $\ell^p(\mathbf{N})$ は Banach 空間となる. 証明は, そもそもノルム空間となること自体そんなに自明でないので, ここでは省略する.

例 1.13 (数列空間の双対空間). $1 は <math>p^{-1} + q^{-1} = 1$ により定まる実数とする. このとき, $\ell^p(\mathbf{N})$ の双対空間は $\ell^q(\mathbf{N})$ と 等長同型である. すなわち, $(\ell^p(\mathbf{N})) \stackrel{\mathrm{id}}{=} \ell^q(\mathbf{N})$ である.

2 双対作用素

以後, X,Y を \mathbf{K} 上のノルム空間とする. $T \in \mathcal{B}(X,Y)$ に対して, その双対作用素 $T' \in \mathcal{B}(Y',X')$ を定義する.

2.1 双対作用素の定義

補題 2.1. $T \in \mathcal{B}(X,Y)$ と $y' \in Y'$ に対して, 写像 $f: X \to \mathbf{K}$ を

$$f(x) := {}_{Y'}\langle y', Tx \rangle_Y \qquad (x \in X)$$

で定めると, $f \in X'$ である.

補題 2.1 の証明. まず、f は線型である。 実際、任意の $x_1, x_2 \in X$ 、 $\alpha, \beta \in \mathbf{K}$ に対して、 $y' \in Y'$ と $T \in \mathscr{B}(X,Y)$ の線型性より $f(\alpha x_1 + \beta x_2) = {}_{Y'}\langle y', T(\alpha x_1 + \beta x_2)\rangle_Y = \alpha_{Y'}\langle y', Tx_1\rangle_Y + \beta_{Y'}\langle y', Tx_2\rangle_Y = \alpha f(x_1) + \beta f(x_2)$ となる。また、任意の $x \in X$ に対して $|f(x)| = |{}_{Y'}\langle y', Tx\rangle_Y| \leqslant ||y'||_{Y'} ||Tx||_Y \leqslant ||y'||_{Y'} ||T||_{\mathscr{B}(X,Y)} ||x||_X$ より $||f||_{X'} \leqslant ||y'||_{Y'} ||T||_{\mathscr{B}(X,Y)}$ を得る。 $y' \in Y'$ 、 $T \in \mathscr{B}(X,Y)$ より $||y'||_{Y'} < \infty$ かつ $||T||_{\mathscr{B}(X,Y)} < \infty$ となるので $||f||_{X'} < \infty$ である。よって $f \in X'$.

定義 2.2 (双対作用素). $T \in \mathcal{B}(X,Y)$ に対して、その双対作用素 $T':Y' \to X'$ を次で定める:

$$_{X'}\langle T'y',x\rangle_X:={}_{Y'}\langle y',Tx\rangle_Y \qquad (y'\in Y',\ x\in X).$$

補題 2.1 より T' が well-defined であることがわかる.

定理 2.3. $T \in \mathcal{B}(X,Y)$ に対して、双対作用素 T' は $T' \in \mathcal{B}(Y',X')$ であって $\|T'\|_{\mathcal{B}(Y',X')} = \|T\|_{\mathcal{B}(X,Y)}$.

定理 2.3 の証明. 補題 2.1 より、任意の $y' \in Y'$ に対して $\|T'y'\|_{X'} \leqslant \|y'\|_{Y'} \|T\|_{\mathscr{B}(X,Y)}$ なので、 $\|T'\|_{\mathscr{B}(Y',X')} \leqslant \|T\|_{\mathscr{B}(X,Y)}$ を得る. よって $T' \in \mathscr{B}(Y',X')$. 逆向きは、T' の双対作用素 $T'' := (T')': X'' \to Y''$ を考える。まず、任意の $y' \in Y'$ に対して、 $Y''\langle J_Y(Tx), y' \rangle_{Y'} = Y'\langle y', Tx \rangle_Y = X'\langle T'y', x \rangle_X = X''\langle J_Xx, T'y' \rangle_{X'} = Y''\langle T''(J_Xx), y' \rangle_{Y'}$ であるから、

$$J_Y \circ T = T'' \circ J_X \tag{2.1}$$

を得る. 標準対応 J_X, J_Y の等長性より, 任意の $x \in X$ に対して

$$||Tx||_{Y} = ||J_{Y}(Tx)||_{Y''} = ||T''(J_{X}x)||_{Y''} \leqslant ||T''||_{\mathscr{B}(X'',Y'')} ||J_{X}x||_{X''} = ||T''||_{\mathscr{B}(X'',Y'')} ||x||_{X}$$

が成り立つので、 $\|T\|_{\mathscr{B}(X,Y)} \leqslant \|T''\|_{\mathscr{B}(X'',Y'')}$ を得る。また、前半の証明により $\|T''\|_{\mathscr{B}(X'',Y'')} \leqslant \|T'\|_{\mathscr{B}(Y',X')}$ となるので、 $\|T\|_{\mathscr{B}(X,Y)} \leqslant \|T'\|_{\mathscr{B}(Y',X')}$ 。 ゆえに、 $\|T'\|_{\mathscr{B}(Y',X')}$ 。 ゆえに、 $\|T'\|_{\mathscr{B}(X,Y)}$ 。

2.2 Schauder の定理

以下,ノルム空間 E に対して, $B_E:=\{x\in E\mid \|x\|_E\leqslant 1\}$ とする.また,K をコンパクト距離空間とし,K 上の複素数値連続函数全体のなす集合を C(K) で表す.

2.2.1 コンパクト作用素

ノルム空間 X,Y に対し、線型作用素 $T:X\to Y$ が**コンパクト**であるとは、 $T(B_X)$ の閉包 $\overline{T(B_X)}$ が Y についてコンパクト集合であることをいう。 X から Y へのコンパクト作用素全体のなす集合を $\mathscr{K}(X,Y)$ で表すと、コンパクト集合は有界なので、 $\mathscr{K}(X,Y)\subset\mathscr{B}(X,Y)$ である。線型作用素 $T:X\to Y$ がコンパクトであるための必要十分条件は、X の任意の有界点列 $\{x_n\}_{n\in\mathbb{N}}$ に対し、Y の点列 $\{Tx_n\}_{n\in\mathbb{N}}$ が収束部分列をもつことである。これは距離空間におけるコンパクト集合の特徴づけ(距離空間におけるコンパクト性は点列コンパクトと同値)と対角線論法によって示される(入来さんの卒論あるいはゼミノート参照)。

2.2.2 Ascoli-Arzelà **の定理**

C(K) の部分集合 S が**同程度連続**であるとは、任意の $y \in K, \varepsilon > 0$ に対して、y を含む開集合 U が存在して、任意の $f \in S$ に対して、 $x \in U$ のとき、 $|f(x) - f(y)| < \varepsilon$ が成り立つことである。また、S が一様有界であるとは、ある定数 M > 0 が存在し、任意の $f \in S$ に対して、 $\sup\{|f(x)| \mid x \in K\} \leqslant M$ が成り立つことである。C(K) に関する重要な結果として次の定理が知られている。

事実 2.4 (Ascoli-Arzelà の定理). K をコンパクト距離空間とする. C(K) の部分集合 S が一様有界かつ同程度連続ならば, S 内の任意の函数列 $\{f_n\}_{n\in \mathbb{N}}$ は K 上で一様収束する部分列をもつ.

2.2.3 双対作用素のコンパクト性

 $T \in \mathcal{B}(X,Y)$ の双対作用素 $T' \in \mathcal{B}(Y',X')$ のコンパクト性についての結果が次である.

定理 2.5 (Schauder の定理). X をノルム空間, Y を Banach 空間とする. このとき, 以下が成り立つ:

$$T \in \mathcal{K}(X,Y) \iff T' \in \mathcal{K}(Y',X').$$

定理 2.5 の証明.

(⇒) $K := \overline{T(B_X)}$ とおくと, $T \in \mathcal{X}(X,Y)$ より K はコンパクト集合である.また,集合 $\left\{y'|_K \mid y' \in B_{Y'}\right\}$ を $B_{K'}$ と表すと, $B_{K'}$ は C(K) の部分集合である.このとき, $B_{K'}$ は一様有界である.実際,任意の $z' \in B_{K'}$ 、 $z \in K$ に対して, $|_{Y'}\langle z', z\rangle_Y| \leqslant \|z'\|_{Y'} \|z\|_Y \leqslant \|z\|_Y$ となる.いま, $z \in K = \overline{T(B_X)}$ より, B_X の点列 $\left\{x_n\right\}_{n \in \mathbb{N}}$ が存在し,任意の $\varepsilon > 0$ に対して,自然数 n を十分大きくとれば $\|z\|_Y - \|Tx_n\|_Y \leqslant \|z - Tx_n\|_Y < \varepsilon$ が成り立つ.すなわち, $\|z\|_Y < \varepsilon + \|Tx_n\|_Y \leqslant \|T\|_{\mathscr{B}(X,Y)} + \varepsilon$ が成り立つ. $\varepsilon > 0$ は任意だったので $\|z\|_Y \leqslant \|T\|_{\mathscr{B}(X,Y)}$ となる.よって, $\|z'\|_{Y'} \leqslant \|T\|_{\mathscr{B}(X,Y)}$ となり, $\|T\|_{\mathscr{B}(X,Y)}$ は z' に依らないので, $B_{K'}$ は一様有界であることがわかる.また, $B_{K'}$ は同程度連続である.実際,任意の $z_1 \in K$ と $\varepsilon > 0$ に対して,K の開集合 $B(z_1;\varepsilon)$ を取ると, $z_1 \in B(z_1;\varepsilon)$ であり,任意の $z' \in B_{K'}$ に対して, $z_2 \in B(z_1;\varepsilon)$ のとき, $|_{Y'}\langle z', z_1\rangle_Y - |_{Y'}\langle z', z_2\rangle_Y| = |_{Y'}\langle z', z_1 - z_2\rangle_Y| \leqslant \|z'\|_{Y'} \|z_1 - z_2\|_Y \leqslant \|z_1 - z_2\|_Y < \varepsilon$ となる.ここで, $B_{Y'}$ の任意の点列を $\left\{y'_n\right\}_{n \in \mathbb{N}}$ が存在する.よって,

$$\begin{split} \left\|T'y_{n_{j}}'-T'y_{n_{k}}'\right\|_{X'} &=\sup_{x\in B_{X}}\left|{}_{X'}\!\!\left\langle T'\left(y_{n_{j}}'-y_{n_{k}}'\right),x\right\rangle_{X}\right| \quad \odot \ T' \text{ Ø 線型性}. \\ &=\sup_{x\in B_{X}}\left|{}_{Y'}\!\!\left\langle y_{n_{j}}'-y_{n_{k}}',Tx\right\rangle_{Y}\right| \qquad \odot \ T' \text{ Ø 定義}. \\ &\leqslant\sup_{y\in K}\left|{}_{Y'}\!\!\left\langle y_{n_{j}}'-y_{n_{k}}',y\right\rangle_{Y}\right| \qquad \odot \ T(B_{X})\subseteq\overline{T(B_{X})}=K. \\ &\longrightarrow \quad 0 \quad (j,k\to\infty) \qquad \qquad \odot \ \left\{y_{n_{j}}'\right\}_{j\in\mathbf{N}} \ \text{は $C(K)$ } \bot \text{ Ø Cauchy } \mathcal{H}. \end{split}$$

を得る. したがって, $\left\{T'y'_{n_j}\right\}_{j\in \mathbf{N}}$ は X' の Cauchy 列である. また, X' の完備性より, $\left\{T'y'_{n_j}\right\}_{j\in \mathbf{N}}$ は収束列となる. ゆえに, T の双対作用素 T' はコンパクト作用素である.

(秦三) X の任意の有界点列を $\{x_n\}_{n\in \mathbb{N}}$ とすると、標準対応 J_X の等長性より、 $\{J_Xx_n\}_{n\in \mathbb{N}}$ は有界点列となる。いま、T' の双対作用素 $T'': X'' \to Y''$ を考えると、前半の証明により、T'' はコンパクト作用素となるので、 $\{T''J_Xx_n\}_{n\in \mathbb{N}}$ は収束部分列 $\{T''J_Xx_{n_j}\}_{j\in \mathbb{N}}$ をもつ。また、定理 2.3 の証明中の式(2.1)により、 $\{J_YTx_{n_j}\}_{j\in \mathbb{N}}$ は収束列であるから、Cauchy 列となる。さらに、標準対応 J_Y の 等長性から、 $\{Tx_{n_j}\}_{j\in \mathbb{N}}$ も Cauchy 列となる。仮定より Y は完備であったから $\{Tx_{n_j}\}_{j\in \mathbb{N}}$ は収束する。ゆえに、T はコンパクト 作用素である。

参考文献

- [1] Haïm Brezis 著・藤田宏監訳・小西芳雄訳,「関数解析 その理論と応用に向けて」,産業図書.
- [2] 荷見守助・長宗雄・瀬戸道生共著、「関数解析入門 線型作用素のスペクトル」、内田老鶴圃.
- [3] 宮島静雄著,「関数解析」,横浜図書.
- [4] 内田伏一著,「集合と位相」,裳華房.