Ecuaciones Diferenciales II

LibreIM

Doble Grado de Informática y Matemáticas Universidad de Granada libreim.github.io/apuntesDGIIM

Este libro se distribuye bajo una licencia CC BY-NC-SA 4.0.

Eres libre de distribuir y adaptar el material siempre que reconozcas a los autores originales del documento, no lo utilices para fines comerciales y lo distribuyas bajo la misma licencia.

creativecommons.org/licenses/by-nc-sa/4.0/

Ecuaciones Diferenciales II

LibreIM

Doble Grado de Informática y Matemáticas Universidad de Granada libreim.github.io/apuntesDGIIM

Índice

I.	Teoría	5
1.	Ecuaciones lineales: teoremas de existencia y unicidad. 1.1. Matriz fundamental principal en un punto	5
2.	Estabilidad en el sentido de Lyapunov. 2.1. Estabilidad de ecuaciones lineales escalares	
3.	Órbitas 3.1. Diagramas de fase planos	11
4.	Ecuaciones no lineales: generalidades sobre existencia y unicidad de la solución	14
II.	Ejercicios	16

Parte I.

Teoría

1. Ecuaciones lineales: teoremas de existencia y unicidad.

Definición 1.1 (Ecuación diferencial lineal). Sea $(\alpha, \beta) \subseteq \mathbb{R}$ un intervalo abierto y sean $A: (\alpha, \beta) \to \mathcal{M}_d(\mathbb{R})$ y $b: (\alpha, \beta) \to \mathbb{R}^d$ funciones continuas. Entonces una ecuación diferencial lineal es de la forma:

$$x' = A(t)x + b(t), \tag{C}$$

y se dice completa, o bien

$$x' = A(t)x, \tag{H}$$

y en este caso se dice homogénea.

Teorema 1.1 (Teorema de existencia y unicidad de la solución). Dados $t_0 \in (\alpha, \beta)$ y $x_0 \in \mathbb{R}^d$ y consideramos el *problema de valores intermedios* (PVI):

$$\begin{cases} x' = A(t)x + b(t), \\ x(t_0) = x_0. \end{cases}$$
 (PVI)

Entonces, existe una única solución $\varphi:(\alpha,\beta)\to\mathbb{R}^d$, con $\varphi\in\mathscr{C}^1(\mathbb{R})$, que verifica

$$\varphi'(t) = A(t)\varphi(t) + b(t) \quad \forall t \in (\alpha, \beta)$$

y que además cumple $\varphi(t_0) = x_0$, es decir, una única solución de PVI.

Aplicando el teorema al PVI

$$\begin{cases} x' = Ax, \\ x(t_0) = e_j. \end{cases}$$
 (PVI_j)

para cada $j=1,\ldots,d$, obtenemos soluciones φ_j . Sea $x_0\in\mathbb{R}^d$, y consideramos $\varphi=\sum_{j=1}^d\langle x_0,e_j\rangle\varphi_j$. Es inmediato comprobar que φ es solución de PVI con b=0. Por tanto, hemos probado:

Corolario 1.1. Las soluciones de H son un espacio vectorial de dimensión d.

Ahora, consideremos φ la solución de PVI, para $x_0 \in \mathbb{R}^d$ arbitrario, es decir, una solución cualquiera de C. Sean φ_c la solución de

1. Ecuaciones lineales: teoremas de existencia y unicidad.

$$\begin{cases} x' = A(t)x + b(t), \\ x(t_0) = x'_0, \end{cases}$$
 (1)

con $x_0' \in \mathbb{R}^d$ arbitrario, y φ_h la de

$$\begin{cases}
 x' = A(t)x, \\
 x(t_0) = x_0 - x'_0,
\end{cases}$$
(2)

y ahora es rutinario comprobar que $\varphi = \varphi_c + \varphi_h$. Además, para cualquier otra solución ψ_h de H, $\varphi_c + \psi_h$ es solución de C. En esta ocasión, hemos probado:

Corolario 1.2. El conjunto S_c de soluciones de $\mathbb C$, dada cualquier solución φ de la misma, es el espacio afín

$$S_c = \varphi + S_h$$

con S_h el conjunto de soluciones de H.

Otra consecuencia inmediata de la aplicación del teorema a PVI, es la siguiente:

Corolario 1.3 (Existencia y unicidad de m.f.p.). Existe una única función de clase $1 \Phi : (\alpha, \beta) \to \mathcal{M}_d(\mathbb{R})$ tal que $\Phi' = A\Phi$, y además $\Phi(t_0) = I_d$.

1.1. Matriz fundamental principal en un punto

Dada una EDO lineal y homogénea con coeficientes constantes:

$$\begin{cases} x' = A(t)x, \\ x(t_0) = x_0, \end{cases}$$
 (PVIH)

La matriz cuya existencia garantiza 1.3 (la matriz fundamental principal (m.f.p.) en t_0) viene dada por:

$$\Phi(t) = e^{A(t-t_0)} \quad \forall t \in (\alpha, \beta)$$

Ahora nos preguntamos cómo se calcula la m.f.p. cuando la matriz A es diagonalizable. En este caso, $\exists P, D \in \mathcal{M}_d(\mathscr{C})$ tales que $det(P) \neq 0$, $D = diag(\lambda_1, ... \lambda_d)$ y $A = P \cdot D \cdot P^{-1}$. En cuyo caso, la matriz fundamental principal será:

$$e^{At} = P \cdot e^{Dt} \cdot P^{-1} = P \cdot \begin{pmatrix} e^{\lambda_1 t} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\lambda_d t} \end{pmatrix} \cdot P^{-1}$$

Cuando A no sea diagonalizable tendremos que utilizar la forma canónica de Jordan. En este caso, $\exists P, J \in \mathcal{M}_d(\mathscr{C})$ tales que $det(P) \neq 0$ y J diagonal por bloques:

$$\begin{pmatrix} J_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & J_r \end{pmatrix}$$

donde $orden(J_k) = 1 \quad \forall = 1, ..., r \implies J_k = (\lambda_k)$ con λ_k valor propio de A o si $orden(J_k) > 1$,

$$J_k = egin{pmatrix} \lambda_k & 1 & \cdots & 0 \\ 0 & \lambda_k & \ddots & dots \\ dots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_k \end{pmatrix}$$

2. Estabilidad en el sentido de Lyapunov.

En esta sección, con arreglo a definir los conceptos básicos de la teoría de estabilidad de Lyapunov, consideramos un problema de valores iniciales más general:

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$
 (P)

con $D \subseteq \mathbb{R} \times \mathbb{R}^d$, $f: D \to \mathbb{R}^d$ continua y tal que haya unicidad de soluciones en P. Notamos, para cada $x_0 \in \mathbb{R}^d$ tal que $(t_0, x_0) \in D$, $\varphi_{x_0} : (\alpha, +\infty) \to \mathbb{R}^d$ a la solución maximal de P.

Definición 2.1. φ_{x_0} es *estable* si, para cada $\varepsilon > 0$, existe $\delta > 0$ tal que

$$(t_0, \bar{x_0}) \in D \text{ y } \|x_0 - \bar{x_0}\| < \delta \implies \begin{cases} \varphi_{\bar{x_0}} \text{ est\'a definida en } (t_0, +\infty), \\ \|\varphi_{x_0}(t) - \varphi_{\bar{x_0}}(t)\| < \varepsilon \text{ para cada } t \ge t_0. \end{cases}$$

 $\varphi_{x_0}[t_0,+\infty)+(-\varepsilon,\varepsilon)$ se llama entorno tubular de φ_{x_0} .

Definición 2.2. Una solución se dice *inestable* si no es estable.

Negando la definición de estabilidad, obtenemos:

Proposición 2.1 (Caracterización de soluciones inestables). φ_{x_0} es inestable si, y solo si, existen $\varepsilon_0 > 0$, $\{x_n\} \subseteq \mathbb{R}^d$ con $(t_0, x_n) \in D$, $x_n \to x_0$ y existe, para cada $n \in \mathbb{N}$, $t_n \ge t_0$ tal que

$$\|\varphi_{x_n}(t_n)-\varphi_{x_0}(t_n)\|\geq \varepsilon_0.$$

Definición 2.3 (Atractor). φ_{x_0} es un *atractor* (local) si existe $\mu > 0$ tal que, si $(t_0, \bar{x_0}) \in D$ y $\|x_0 - \bar{x_0}\| < \mu$, entonces $\varphi_{\bar{x_0}}$ está definida en $(t_0, +\infty)$ y

$$\lim_{t \to +\infty} \|\varphi_{\bar{x_0}}(t) - \varphi_{x_0}(t)\| = 0.$$

Definición 2.4 (Estabilidad asintótica). φ_{x_0} es asintóticamente estable (a.e.) si es estable y atractor.

Proposición 2.2. Las siguientes afirmaciones son equivalentes:

- (i) Todas las soluciones de C son atractores.
- (ii) Existe una solución de C que es un atractor.
- (iii) La solución trivial y = 0 de H es un atractor.
- (iv) Todas las soluciones de H convergen hacia el vector 0 cuando $t \to +\infty$.
- (ν) La matriz fundamental de H principal en t_0 converge hacia la matriz 0 cuando $t \to +\infty$.
- **Corolario 2.1.** Los atractores de la ecuación H son asintóticamente estables.
 - **Definición 2.5.** Se dice que la ecuación C es estable si todas su soluciones son estables
 - Se dice que la ecuación C es asintóticamente estable si todas sus soluciones son asintóticamente estables.

No siempre podemos calcular la matriz fundamental, pero nosotros nos centraremos en el caso escalar donde sí podemos calcularla.

2.1. Estabilidad de ecuaciones lineales escalares

Sean $a, b: (\alpha, +\infty) \to \mathbb{R}$ continuas. Se considera la ecuación diferencial lineal escalar \mathbb{C} y sea $t_0 \in (\alpha, +\infty)$. La matriz fundamental principal en t_0 en $\phi(t) = exp(\int_{t_0}^t a(s)ds)$ y por tanto podemos caracterizar la estabilidad de \mathbb{C} controlando una primitiva del coeficiente a(t).

- **Proposición 2.3.** La ecuación de C es estable sii la función a(t) tiene una primitiva acotada superiormente en $[t_0, +\infty]$.
 - La ecuación C es a.e. sii la función a(t) tiene una primitiva que converge hacia $-\infty$ [....]

```
Ejemplo 1: - Inestable - A.E. - estable - - Inestable - estable - estable - Estable - > \lambda <= 0 A.E. -> \lambda < 0 Inestable -> \lambda > 0
```

2.2. Estabilidad de ecuaciones lineales con coeficientes constantes

Sea $A \in \mathcal{M}_d(\mathbb{R})$ una matriz cuadrada. Usaremos la siguiente notación: NOTA-CIÓN:

Definición 2.6 (Espectro de A**).** El espectro de A es el conjunto de valores propios de A, tanto reales como complejos, $\sigma(A) = \lambda_1, ..., \lambda_d$, contados con su multiplicidad en nuestro caso.

Definición 2.7 (Multiplicidad del valor propio λ_i). $m(\lambda_i) \forall \lambda_i \in \sigma A$

Definición 2.8 (Dimensión de cada subespacio propio E_{λ_j}). $dim E_{\lambda_j} = dimker(A-\lambda_{jI}) = d-rango(A-\lambda I)$

Definición 2.9. Los valores propios de A cuya parte real es 0 son: $\sigma_0(A) = \lambda \in \sigma(A)$ $Re(\lambda) = 0$

Consideramos la EDO lineal homogénea y autónoma $x' = Axx \in \mathbb{R}^d$. El principal indicador para determinar la estabilidad de * es el máximo de las partes reales de los valores propios de A: $\mu(A) = \max Re(\lambda : \lambda \in \sigma(A))$

Teorema 2.1. 1. Si $\mu(A) < 0$ entonces la EDO lineal * es A.E.

- 2. Si $\mu(A) = 0$ y $m(\lambda) = dim E_{\lambda} \forall \lambda \in \sigma_0(A)$, entonces la EDO lineal * es estable (pero no A.E.)
- 3. Si $\mu(A) = 0$ y $\exists \lambda \in \sigma_0(A)$ tal que $m(\lambda)! = dim E_l amb da$, entonces la EDO lineal * es inestable.
- 4. Si $\mu(A) > 0$ entonces la EDO lineal * es inestable.

A continuación, haremos una serie de ejemplos y proseguiremos con un poquito de teoría para poder producir la demostración de este enunciado.

Ejemplo 2.1.

$$\begin{cases} x_1' = 2x_1 + 3x_2 \\ x_2' = 5x_1 - x_2 \end{cases}$$
 (3)

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} -2 & 3 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 (4)

EC. $\lambda^2 - traza(A)\lambda + det(A = 0) \lambda + 3\lambda - 13 = 0$ $\sigma(A) = \frac{-3+\sqrt{61}}{2}, \frac{-3-\sqrt{61}}{2} = 2.4..., 5.4...$ $\mu(A) > 2.4 > 0$ La ecuación es inestable.

Recordemos la forma canónica de Jordan.

Sea $A \in \mathcal{M}_d(\mathbb{R}) \exists P, J \in \mathcal{M}_d(\mathscr{C})$ talesque:

- *P* es regular (invertible)
- *J* es diagonal por bloques:

$$J = diag(J_1, ..., J_k)J_i matrizdiagonal \forall j = 1, ..., k$$
 (5)

- $A = P \cdot J \cdot P^{-1}$ Para calcular J se usan:
- $\sigma(A) = \lambda_1, ... \lambda_d$
- $m(\lambda_i)$
- $dimE_{\lambda_i}$
- $\nu(\lambda_i) = mink \in \mathbb{Z}^+$: BORRA Los bloques de J pueden ser:

2. Estabilidad en el sentido de Lyapunov.

- de orden 1: $J_k = (\lambda_k)\lambda_k \in \sigma(A)$
- de orden mayor que 1: $J_k = diag(\lambda_k,...\lambda_k)(1...1encimadeladiag)con\lambda_k \in \sigma(A)$
- el orden $(J_k) \le v(\lambda_k)$
- la suma de los órdenes de todos los bloques asociados aun mismo valor propio es igual a la multiplicidad de ese valor propio

INSERTE EJEMPLO DE CAJA DE JORDAN

Con estos datos, podemos hacer el siguiente cálculo de la exponencial:

$$A = P \cdot J \cdot P^{-1} \implies A^n = P \cdot J^n \cdot P^{-1} \implies e^A = P \cdot e^J \cdot P^{-1}$$

Y de manera análoga:

- $e^{At} = P \cdot e^{Jt} \cdot P^{-1}$
- $e^{Jt} = diag(e^{J_1t}, ..., e^{J_rt})$

Lema 2.1.

$$|||e^{Jt}|||_1 = \max |||e^{J_1t}|||_1, |||e^J_rt|||_1$$

Lema 2.2. $\exists T \geq 0 \text{ tal que}$:

$$|||e^{Jt}|||_1 = \left(1 + \dots + \frac{t^n}{n!}\right) \cdot e^{\mu t} \qquad \forall t \ge T$$

donde:

$$\mu = \max Re(\lambda_j) : \lambda_j \in \sigma(A)$$

$$n = \max \nu(\lambda_j) - 1 : \lambda_j \in \sigma(A) y Re(\lambda_j) = \mu$$

Usando el lema anterior:

$$|||e^{Jt}|||_1 = \max\left\{ \left(1 + \dots + \frac{t^{\nu(\lambda_j) - 1}}{(\nu(\lambda_j) - 1)!}\right) \cdot e^{Re(\lambda_j)t} : \lambda_j \in \sigma(A) \right\}$$
 (cosarara)

 $\exists T \geq 0 \text{ tal que:}$

$$(1 + \dots + \frac{t^{\nu(\lambda_j) - 1}}{\nu(\lambda_j - 1)}) \cdot e^{Re(\lambda_j)t} \le (1 + \dots + \frac{t^n}{n!}e^{\mu t})$$
(6)

Finalmente, podemos demostrar el teorema anterior:

Demostración. $\exists P, J \in \mathcal{M}_d(\mathcal{C})$ tales que P es inestable, J es diagonal por bloques y $A = P \cdot J \cdot P^{-1}$. Por tanto

$$e^{At} = P \cdot e^{Jt} \cdot P^{-1}$$

. Defino en $\mathcal{M}_d(\mathscr{C})$ la norma matricial:

$$|||B||| = |||P \cdot J \cdot P^{-1}|||_1$$

. Así, tenemos que:

- 1. Si $\mu < 0 \implies \lim_{t \to \infty} |||e^{At}||| = 0 \implies x' = Ax$ es A.E.
- 2. Si $\mu = 0$ y dim $E_j = m(\lambda)' \forall \lambda \in \sigma_0(A) \implies n = 0 \implies |||e^{At}||| = 1 \implies |||e^{At}|||$ esestable per ono A.E.
- 3. Si $\mu = 0y \exists \lambda \in \sigma_0(A) \nu(A) > 1 \implies n \ge 1 \implies |||e^{At}||| \ge 1 + t$ no es acotada en $\lceil 0, +\infty \rangle$
- 4. Si $\mu > 0$ $|||e^{At}||| \ge e^{\mu t} \to \infty$ no es acotada en $[0, +\infty)$

3. Órbitas

3.1. Diagramas de fase planos

Consideramos la EDO lineal homogénea autónoma en \mathbb{R}^2 :

$$\begin{cases} x_1' = a_{11}x_1 + a_{12}x_2 \\ x_2' = a_{21}x_1 + a_{22}x_2 \end{cases} \iff \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 (7)

- Caso 1: Cuando los valores propios de la matriz A son reales: $\sigma(A) = \lambda_1, \lambda_2 \subset \mathbb{R}$
 - 1. Son reales, positivos y distintos: $0 < \lambda_1 < \lambda_2 \Longleftrightarrow \left\{ \begin{array}{l} \Delta > 0 \\ {\rm tr}(A) > 0 \\ {\rm det}(A) > 0 \end{array} \right.$

Figura 1: Una fuente.

$$x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 \qquad v_j \in E_{\lambda_j}$$

- 2. Sonreales, negativos y distintos: $\lambda_2 < \lambda_1 \iff \begin{cases} \Delta > 0 \\ \operatorname{tr}(A) < 0 \end{cases}$ Inserte dibujito de sumidero (flechas hacia dentro)
- 3. Son reales, no nulos y con distinto signo : $\lambda_1 < 0 < \lambda_2 \Longleftrightarrow \det(A) < 0$ Inserte dibujito de punto hiperbólico o punto silla

3. Órbitas

- 4. Son reales, positivos e iguales : $\lambda_1 = \lambda_2 > 0 \Leftrightarrow \begin{cases} \Delta = 0 \\ tr(A) > 0 \end{cases}$
 - a) Si A es diagonalizable : En este caso tendremos todo el espacio y volveremos a tener una fuente.
 - b) Si A no es diagonalizable : Nos encontramos con una fuente degenerada.
- 5. Son reales, negativos e iguales : $\lambda_1 = \lambda_2 < 0 \Leftrightarrow \begin{cases} \Delta = 0 \\ \operatorname{tr}(A) < 0 \end{cases}$
 - a) Si A es diagonalizable : En este caso tendremos todo el espacio y volveremos a tener un sumidero.
 - b) Si A no es diagonalizable : Nos encontramos con un sumidero degenerado.
- 6. Un valor propio es 0 y el otro positivo: $\lambda > 0$ Inserte dibujito rectas paralelas y perpendiculares a una única recta generada por el 0(Hacia dentro). Rectas de puntos de equilibrio estables
- 7. Un valor propio es 0 y el otro negativo: $\lambda < 0$ Inserte dibujito rectas paralelas y perpendiculares a una única recta generada por el 0(Hacia fuera). Rectas de puntos de equilibrio inestables
- 8. Dos valores propios iguales a 0: $\lambda_1 = \lambda_2 = 0 \Leftrightarrow \begin{cases} \Delta = 0 \\ tr(A) = 0 \end{cases}$ det(A) = 0
 - a) Si A es diagonalizable A = 0
 - b) Si *A* no es diagonalizable.
- Caso 2: Cuando los valores propios de la matriz A no son reales : $\sigma(A) =$ $\lambda_1, \lambda_2 \subset \mathbb{C} - \mathbb{R}, \ \lambda_1 = a + bi \ y \ \lambda_2 = a - bi.$
 - 1. Tiene parte real positiva $\begin{cases} \Delta < 0 \\ tr(A) > 0 \end{cases}$ Fuente en espiral $\begin{cases} \Delta < 0 \\ tr(A) < 0 \end{cases}$ Sumidero en espiral

 - 3. Tiene parte real igual a 0. Diagrama de Poincaré

Ejemplo 3.1.

PREGUNTA EXAMEN PARCIAL: Representar el diagrama de fases

Nota. Recuerda que si $\lambda \in \sigma(A)$ y $\nu \in E_{\lambda}$ tal que $A \cdot \nu = \lambda \cdot \nu$ entonces $\varphi(t) = k \cdot e^{\lambda t}$. $v \quad \forall t \in \mathbb{R}$ es solución de x' = Ax y si $\varphi(t) \in E_{\lambda} \quad t \in \mathbb{R} \implies E_{\lambda}$ es invariante. De manera análoga $E_{\lambda_1} \oplus E_{\lambda_2}$ $k_1 e^{\lambda_1 t} v_1 + k_2 e^{\lambda_2 t} v_2$ es también invariante. El subespacio propio generalizado sería $\lambda \in \sigma(A)$ $\hat{E}_{\lambda} = \bigcup_{k \in \mathbb{N}} Ker(A - \lambda I)^k =$ $Ker(A-\lambda I)^{\nu(\lambda)}$ con dim $\hat{E}_{\lambda}=m(\lambda)$.

12

Se puede hacer la siguiente descomposición de \mathbb{R}^d .

Se definen:

$$E = \bigoplus_{\lambda \in \sigma(A)} \hat{E}_{\lambda}$$

$$Re(\lambda) < 0$$

$$\mho = \bigoplus_{\lambda \in \sigma(A)} \hat{E}_{\lambda}$$

$$Re(\lambda) > 0$$

$$\mathscr{Z} = \bigoplus_{\lambda \in \sigma_0(A)} \hat{E}_{\lambda}$$

entonces para x' = Ax:

$$\mathbb{R}^d = E \oplus \mathscr{Z} \oplus \mho$$

Ejercicio 3.1. Estudia la estabilidad del sistema lineal:

$$\begin{cases} x' = -2tx \\ y' = e^t x - 2ty \end{cases}$$

Ejercicio 3.2. Estudia la estabilidad del sistema lineal:

$$\begin{cases} x' = -2x + 5y \\ y' = -3x + 4y \end{cases}$$

Comenzamos calculando la traza y el determinante de la matriz $A = \begin{pmatrix} -2 & 5 \\ -3 & 4 \end{pmatrix}$. Tenemos entonces que:

$$tr(A) = 2 = \lambda_1 + \lambda_2 = 2Re\lambda_1 > 0$$

 $det(A) = 7 = \lambda_1 \cdot \lambda_2$

 $Re\lambda_1, Re\lambda_2 > 0$ luego si son reales será inestable y como $2Re\lambda_1 > 0$ entonces si son complejos también será inestable.

Ejercicio 3.3.

$$\begin{cases} x' = -2x + y - z \\ y' = 2x - 3y + z \\ z' = 4x - 4y + 2z \end{cases}$$

Tras unos cálculos, tenemos que: $\sigma(A) = -2, -1, 0$ luego es estable pero no asintóticamente estable.

Nota. El polinomio característico de $A \in \mathcal{M}(\mathbb{C})$ es $-\lambda^3 + tr(A)\lambda^2 - tr(adj(A))\lambda + det(A)$.

Ejercicio 3.4. Estudia la estabilidad (FALTA)

Ejercicio 3.5. Representa el diagrama de fases de la EDO lineal:

$$\begin{cases} x' = -x + 3y \\ y' = 2x - 4y \end{cases}$$

Solución. Sus valores propios son:

$$\lambda_1 = \frac{1}{2}(-5 - \sqrt{33}) \approx -5.37$$

$$\lambda_2 = \frac{1}{2}(-5 + \sqrt{33}) \approx 0.37$$

Y sus vectores propios serían:

$$v_1 = \begin{pmatrix} -0.68 \\ 1 \end{pmatrix}$$

$$v_2 = \begin{pmatrix} 2.19 \\ 1 \end{pmatrix}$$

4. Ecuaciones no lineales: generalidades sobre existencia y unicidad de la solución

Definición 4.1 (Solución de una EDO). Dados un conjunto abierto $D \subset \mathbb{R} \times \mathbb{R}^d$ y una función continua $f: D \to \mathbb{R}^d$, consideramos la ecuación diferencial ordinaria (EDO):

$$x' = f(t, x) \tag{EDO}$$

Una solución de una EDO en un intervalo abierto $\varphi: J \to \mathbb{R}^d$ que verifica:

- φ continua y derivable en J
- $\varphi'(t) = f(t, \varphi(t)) \quad \forall t \in J$

Definición 4.2 (Solución Prolongable). Una solución $\varphi: J \to \mathbb{R}^d$ es *prolongable* si existe otra solución $\hat{\varphi}: \hat{J} \to \mathbb{R}^d$ tal que:

- $J \subsetneq \hat{J}$.
- $\hat{\varphi}_{|J} = \varphi$.

4. Ecuaciones no lineales: generalidades sobre existencia y unicidad de la solución

Definición 4.3 (Solución Maximal). Una solución que no es prolongable recibe el nombre de *maximal*.

Dadas dos soluciones de la EDO:

$$\varphi_1: J_1 \to \mathbb{R}^d \qquad \varphi_2: J_2 \to \mathbb{R}^d$$

tales que existe $\tau \in J_1 \cap J_2$ tal que $\varphi_1(\tau) = \varphi_2(\tau)$ y se verifica que la función definida a trozos:

$$\phi: J_1 \bigcup J_2 \to \mathbb{R}^d, \quad \phi(t) = \left\{ egin{array}{ll} arphi_1(t) & si & t \leq \tau \\ arphi_2(t) & si & t \geq \tau \end{array}
ight.$$

también es solución de la EDO. Dados un conjunto abierto $D \subset \mathbb{R} \times \mathbb{R}^d$, un punto $(t_0, x_0) \in D$ y una función continua $f: D \to \mathbb{R}^d$, consideramos el problema de valores iniciales:

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0. \end{cases}$$
 (PVI)

Definición 4.4 (Solución de un PVI). Es una función $\varphi: J \to \mathbb{R}^d$ donde:

- 1. $J \subset \mathbb{R}$ es un intervalo abierto tal que $t_0 \in J$,
- 2. $\varphi(t_0) = x_0$,
- 3. φ es solución de la EDO x' = f(t, x).

Existen varios conceptos de unicidad:

Definición 4.5 (Unicidad Global). El EDO verifica la propiedad de *unicidad glopal* si para cualquier par de solución del PVI

$$\varphi_1: J \to \mathbb{R}^d \qquad \varphi_2 \to \mathbb{R}^d$$

se cumple $\forall t \in J_1 \cap J_2$ que $\phi_1(t) = \phi_2(t)$.

Definición 4.6 (Unicidad Local).

Faltan más conceptos de unicidad.

Parte II. Ejercicios