SPRINT 1 - TEAM ID PNT2022TMID12917

Early Detection of Chronic Kidney Disease using Machine Learning

DATE: 5th November 2022

PROCESSING THE DATASET

1. Importing the necessary libraries

In [1]:

```
import pandas as pd
import numpy as mp
from collections import Counter as c
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
import pickle
```

2. Loading the Dataset

In [2]:

data=pd.read csv(r"C:\Users\archa\Desktop\IBM Datasets\chronickidneydisease.csv")

```
In [3]:
```

```
data.head(5)
```

Out[3]:

	id	age	bp	sg	al	su	rbc	рс	рсс	ba	•••	pcv	wc	rc	
0	0	48.0	0.08	1.020	1.0	0.0	NaN	normal	notpresent	notpresent		44	7800	5.2	
1	1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent		38	6000	NaN	
2	2	62.0	0.08	1.010	2.0	3.0	normal	normal	notpresent	notpresent		31	7500	NaN	
3	3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent		32	6700	3.9	
4	4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent		35	7300	4.6	

5 rows × 26 columns

```
→
```

In [4]:

```
data.tail(5)
```

Out[4]:

	id	age	bp	sg	al	su	rbc	рс	рсс	ba	 pcv	wc	rc
395	395	55.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	 47	6700	4.9
396	396	42.0	70.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	 54	7800	6.2
397	397	12.0	0.08	1.020	0.0	0.0	normal	normal	notpresent	notpresent	 49	6600	5.4
398	398	17.0	60.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	 51	7200	5.9
399	399	58.0	80.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	 53	6800	6.1

5 rows × 26 columns

```
→
```

In [5]:

```
data.drop(["id"],axis=1,inplace=True)
```

In [6]:

```
data.columns
```

Out[6]:

In [9]:

```
In [10]:
```

3. Understanding Data Type And Summary Of Features

```
In [11]:
```

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 25 columns):
#
                              Non-Null Count Dtype
- - -
    _____
                              _____
 0
                              391 non-null
                                              float64
    age
                                              float64
 1
    blood_pressure
                              388 non-null
 2
     specific_gravity
                              353 non-null
                                              float64
 3
     albumin
                              354 non-null
                                               float64
 4
                              351 non-null
                                              float64
    sugar
 5
     red_blood_cells
                              248 non-null
                                               object
 6
    pus_cell
                              335 non-null
                                               object
 7
    pus_cel_clumps
                              396 non-null
                                               object
 8
    bacteria
                              396 non-null
                                               object
                                               float64
    blood glucose random
                              356 non-null
 10
    blood urea
                              381 non-null
                                               float64
 11
    serum_creatinine
                              383 non-null
                                               float64
 12 sodium
                              313 non-null
                                               float64
 13 potassium
                              312 non-null
                                              float64
 14 hemoglobin
                              348 non-null
                                               float64
    packed cell volume
                              330 non-null
                                               object
    white blood cell count
                              295 non-null
                                               object
 17
    red blood cell count
                              270 non-null
                                               object
    hypertension
                              398 non-null
                                               object
    diabetesmellitus
                              398 non-null
                                               object
 20 coronary_artery_disease 398 non-null
                                               object
 21 appetite
                              399 non-null
                                               object
 22
    pedal edema
                              399 non-null
                                               object
 23
    anemia
                              399 non-null
                                               object
 24 class
                              400 non-null
                                               object
dtypes: float64(11), object(14)
```

Target Column

memory usage: 78.2+ KB

```
In [12]:
```

```
data['class'].unique()

Out[12]:
array(['ckd', 'ckd\t', 'notckd'], dtype=object)
```

Rectifying the target column

```
In [13]:
```

```
data['class']=data['class'].replace("ckd\t","ckd")
data['class'].unique()

Out[13]:
array(['ckd', 'notckd'], dtype=object)
```

Categorical Columns

```
In [14]:
```

```
catcols=set(data.dtypes[data.dtypes=='0'].index.values)
print(catcols)
```

```
{'class', 'packed_cell_volume', 'red_blood_cells', 'pus_cell', 'appetite',
'bacteria', 'pedal_edema', 'hypertension', 'red_blood_cell_count', 'white_bl
ood_cell_count', 'anemia', 'pus_cel_clumps', 'diabetesmellitus', 'coronary_a
rtery_disease'}
```

```
In [15]:
```

```
for i in catcols:
   print("Columns :",i)
   print(c(data[i]))
   print('*'*120+'\n')
Columns : class
Counter({'ckd': 250, 'notckd': 150})
**************
Columns : packed cell volume
Counter({nan: 70, '52': 21, '41': 21, '44': 19, '48': 19, '40': 16, '43': 1
4, '45': 13, '42': 13, '32': 12, '36': 12, '33': 12, '28': 12, '50': 12, '3
7': 11, '34': 11, '35': 9, '29': 9, '30': 9, '46': 9, '31': 8, '39': 7, '2
4': 7, '26': 6, '38': 5, '47': 4, '49': 4, '53': 4, '51': 4, '54': 4, '27':
3, '22': 3, '25': 3, '23': 2, '19': 2, '16': 1, '\t?': 1, '14': 1, '18': 1,
'17': 1, '15': 1, '21': 1, '20': 1, '\t43': 1, '9': 1})
**********************************
*************
Columns : red blood cells
Counter({'normal': 201, nan: 152, 'abnormal': 47})
*******************************
**************
Columns : pus_cell
Counter({'normal': 259, 'abnormal': 76, nan: 65})
******************************
****************
Columns : appetite
Counter({'good': 317, 'poor': 82, nan: 1})
**************
Columns : bacteria
Counter({'notpresent': 374, 'present': 22, nan: 4})
*************
Columns : pedal edema
Counter({'no': 323, 'yes': 76, nan: 1})
***********************************
Columns: hypertension
Counter({'no': 251, 'yes': 147, nan: 2})
*************
Columns : red blood cell count
Counter({nan: 130, '5.2': 18, '4.5': 16, '4.9': 14, '4.7': 11, '3.9': 10, '4.8': 10, '4.6': 9, '3.4': 9, '3.7': 8, '5.0': 8, '6.1': 8, '5.5': 8, '5.
9': 8, '3.8': 7, '5.4': 7, '5.8': 7, '5.3': 7, '4.3': 6, '4.2': 6, '5.6': 6,
'4.4': 5, '3.2': 5, '4.1': 5, '6.2': 5, '5.1': 5, '6.4': 5, '5.7': 5, '6.5':
5, '3.6': 4, '6.0': 4, '6.3': 4, '4.0': 3, '4': 3, '3.5': 3, '3.3': 3, '5':
2, '2.6': 2, '2.8': 2, '2.5': 2, '3.1': 2, '2.1': 2, '2.9': 2, '2.7': 2, '3.
0': 2, '2.3': 1, '8.0': 1, '3': 1, '2.4': 1, '\t?': 1})
```

```
Columns : white blood cell count
Counter({nan: 105, '9800': 11, '6700': 10, '9600': 9, '9200': 9, '7200': 9,
'6900': 8, '11000': 8, '5800': 8, '7800': 7, '9100': 7, '9400': 7, '7000':
7, '4300': 6, '6300': 6, '10700': 6, '10500': 6, '7500': 5, '8300': 5, '790
0': 5, '8600': 5, '5600': 5, '10200': 5, '5000': 5, '8100': 5, '9500': 5, '6
000': 4, '6200': 4, '10300': 4, '7700': 4, '5500': 4, '10400': 4, '6800': 4,
'6500': 4, '4700': 4, '7300': 3, '4500': 3, '8400': 3, '6400': 3, '4200': 3,
'7400': 3, '8000': 3, '5400': 3, '3800': 2, '11400': 2, '5300': 2, '8500':
2, '14600': 2, '7100': 2, '13200': 2, '9000': 2, '8200': 2, '15200': 2, '124
00': 2, '12800': 2, '8800': 2, '5700': 2, '9300': 2, '6600': 2, '12100': 1,
'12200': 1, '18900': 1, '21600': 1, '11300': 1, '\t6200': 1, '11800': 1, '12
500': 1, '11900': 1, '12700': 1, '13600': 1, '14900': 1, '16300': 1, '\t840
0': 1, '10900': 1, '2200': 1, '11200': 1, '19100': 1, '\t?': 1, '12300': 1,
'16700': 1, '2600': 1, '26400': 1, '4900': 1, '12000': 1, '15700': 1, '410
0': 1, '11500': 1, '10800': 1, '9900': 1, '5200': 1, '5900': 1, '9700': 1,
'5100': 1})
********************************
***************
Columns : anemia
Counter({'no': 339, 'yes': 60, nan: 1})
***********************************
***************
Columns : pus cel clumps
Counter({'notpresent': 354, 'present': 42, nan: 4})
***********************************
**************
Columns : diabetesmellitus
Counter({'no': 258, 'yes': 134, '\tno': 3, '\tyes': 2, nan: 2, ' yes': 1})
************************
***************
Columns : coronary_artery_disease
Counter({'no': 362, 'yes': 34, '\tno': 2, nan: 2})
***************
```

4. Understanding Data Type And Summary Of Features

Removing the Columns which are not Categorical

```
In [16]:
```

```
catcols.remove('red_blood_cell_count')
catcols.remove('packed_cell_volume')
catcols.remove('white_blood_cell_count')
print(catcols)

{'class', 'red_blood_cells', 'pus_cell', 'appetite', 'bacteria', 'pedal_edem
a', 'hypertension', 'anemia', 'pus_cel_clumps', 'diabetesmellitus', 'coronar
y_artery_disease'}
```

Numerical Columns

```
In [17]:
```

```
contcols=set(data.dtypes[data.dtypes!='0'].index.values)
print(contcols)
{'blood_urea', 'age', 'potassium', 'hemoglobin', 'sodium', 'sugar',
n', 'blood glucose random', 'specific_gravity', 'serum_creatinine', 'blood_p
ressure'}
In [18]:
for i in contcols:
    print("Continuous Columns :",i)
    print(c(data[i]))
   print('*'*120+'\n')
CONTESTIDOUS COSTUMNIS . DECOU ESTUCOSE FAMILIONI
Counter({99.0: 10, 100.0: 9, 93.0: 9, 107.0: 8, 117.0: 6, 140.0: 6, 92.0:
6, 109.0: 6, 131.0: 6, 130.0: 6, 70.0: 5, 114.0: 5, 95.0: 5, 123.0: 5, 12
4.0: 5, 102.0: 5, 132.0: 5, 104.0: 5, 125.0: 5, 122.0: 5, 121.0: 4, 106.0:
4, 76.0: 4, 91.0: 4, 129.0: 4, 133.0: 4, 94.0: 4, 88.0: 4, 118.0: 4, 139.
0: 4, 111.0: 4, 113.0: 4, 120.0: 4, 119.0: 4, 74.0: 3, 108.0: 3, 171.0: 3,
137.0: 3, 79.0: 3, 150.0: 3, 112.0: 3, 127.0: 3, 219.0: 3, 172.0: 3, 89.0:
3, 128.0: 3, 214.0: 3, 105.0: 3, 78.0: 3, 103.0: 3, 82.0: 3, 97.0: 3, 81.
0: 3, 138.0: 2, 490.0: 2, 208.0: 2, 98.0: 2, 204.0: 2, 207.0: 2, 144.0: 2,
253.0: 2, 141.0: 2, 86.0: 2, 360.0: 2, 163.0: 2, 158.0: 2, 165.0: 2, 169.
0: 2, 210.0: 2, 101.0: 2, 153.0: 2, 213.0: 2, 424.0: 2, 303.0: 2, 192.0:
2, 80.0: 2, 110.0: 2, 96.0: 2, 85.0: 2, 83.0: 2, 75.0: 2, nan: 1, 423.0:
1, 410.0: 1, 380.0: 1, 157.0: 1, 263.0: 1, 173.0: 1, nan: 1, nan: 1, nan:
1, 156.0: 1, 264.0: 1, nan: 1, 159.0: 1, 270.0: 1, nan: 1, nan: 1, nan: 1,
162.0: 1, nan: 1, 246.0: 1, nan: 1, nan: 1, nan: 1, nan: 1, 182.0: 1, 146.
0: 1, nan: 1, 425.0: 1, 250.0: 1, nan: 1, nan: 1, nan: 1, 415.0: 1, 251.0:
1, 280.0: 1, 295.0: 1, 298.0: 1, 226.0: 1, 143.0: 1, 115.0: 1, 297.0: 1, 2
33.0: 1, 294.0: 1, nan: 1, nan: 1, nan: 1, nan: 1, 323.0: 1, nan: 1, nan:
1, 90.0: 1, 308.0: 1, 224.0: 1, nan: 1, 268.0: 1, nan: 1, 256.0: 1, nan:
1, 84.0: 1, nan: 1, 288.0: 1, 273.0: 1, 242.0: 1, 148.0: 1, nan: 1, 160.0:
```

Removing the Columns which are not Numerical

In [19]:

```
contcols.remove('specific_gravity')
contcols.remove('albumin')
contcols.remove('sugar')
print(contcols)
```

{'blood_urea', 'age', 'potassium', 'hemoglobin', 'sodium', 'blood glucose ra ndom', 'serum_creatinine', 'blood_pressure'}

5. Understanding Data Type And Summary Of Features

Adding the Columns which are continuous

In [20]:

```
contcols.add('red_blood_cell_count')
contcols.add('packed_cell_volume')
contcols.add('white_blood_cell_count')
print(contcols)
```

```
{'blood_urea', 'packed_cell_volume', 'age', 'potassium', 'hemoglobin', 'sodi
um', 'blood glucose random', 'red_blood_cell_count', 'white_blood_cell_coun
t', 'serum_creatinine', 'blood_pressure'}
```

Adding the Columns which are categorical

In [21]:

```
catcols.add('specific_gravity')
catcols.add('albumin')
catcols.add('sugar')
print(catcols)
```

```
{'class', 'red_blood_cells', 'pus_cell', 'appetite', 'bacteria', 'albumin',
'pedal_edema', 'sugar', 'hypertension', 'anemia', 'specific_gravity', 'pus_c
el_clumps', 'diabetesmellitus', 'coronary_artery_disease'}
```

Rectification of categorical columns

In [22]:

```
data['coronary_artery_disease']=data.coronary_artery_disease.replace('\tno','no')
c(data['coronary_artery_disease'])
```

```
Out[22]:
```

```
Counter({'no': 364, 'yes': 34, nan: 2})
```

```
In [23]:
```

```
data['diabetesmellitus']=data.diabetesmellitus.replace(to_replace={'\tno':'no','\tyes':'yes
c(data['diabetesmellitus'])
```

Out[23]:

Counter({'yes': 136, 'no': 261, ' yes': 1, nan: 2})

6. Handling the Missing Values

In [24]:

```
data.isnull().any()
```

Out[24]:

age	True				
blood_pressure	True				
specific_gravity	True				
albumin	True				
sugar	True				
red_blood_cells	True				
pus cell	True				
pus_cel_clumps	True				
bacteria	True				
blood glucose random	True				
blood_urea	True				
serum_creatinine	True				
sodium	True				
potassium	True				
hemoglobin	True				
<pre>packed_cell_volume</pre>	True				
white_blood_cell_count	True				
red_blood_cell_count	True				
hypertension	True				
diabetesmellitus	True				
coronary_artery_disease	True				
appetite	True				
pedal_edema	True				
anemia	True				
class	False				
dtype: bool					

```
In [25]:
```

```
data.isnull().sum()
Out[25]:
                               9
age
                              12
blood_pressure
                              47
specific_gravity
                              46
albumin
                              49
sugar
red_blood_cells
                             152
pus cell
                              65
                               4
pus_cel_clumps
bacteria
                               4
blood glucose random
                              44
                              19
blood_urea
serum_creatinine
                              17
sodium
                              87
                              88
potassium
hemoglobin
                              52
                              70
packed cell volume
white_blood_cell_count
                             105
red_blood_cell_count
                             130
hypertension
                               2
diabetesmellitus
                               2
                               2
coronary_artery_disease
appetite
                               1
                               1
pedal_edema
anemia
                               1
                               0
class
dtype: int64
In [26]:
```

```
data.packed_cell_volume = pd.to_numeric(data.packed_cell_volume, errors='coerce')
data.white_blood_cell_count = pd.to_numeric(data.white_blood_cell_count, errors='coerce')
data.red_blood_cell_count = pd.to_numeric(data.red_blood_cell_count, errors='coerce')
```

7. Replacing the Missing (Null) Values

In [40]:

```
data['blood glucose random'].fillna(data['blood glucose random'].mean(),inplace=True)
data['blood_pressure'].fillna(data['blood_pressure'].mean(),inplace=True)
data['blood_urea'].fillna(data['blood_urea'].mean(),inplace=True)
data['hemoglobin'].fillna(data['hemoglobin'].mean(),inplace=True)
data['packed_cell_volume'].fillna(data['packed_cell_volume'].mean(),inplace=True)
data['potassium'].fillna(data['potassium'].mean(),inplace=True)
data['red_blood_cell_count'].fillna(data['red_blood_cell_count'].mean(),inplace=True)
data['sodium'].fillna(data['sodium'].mean(),inplace=True)
data['white_blood_cell_count'].fillna(data['white_blood_cell_count'].mean(),inplace=True)
```

In [43]:

```
data['age'].fillna(data['age'].mode()[0],inplace=True)
data['hypertension'].fillna(data['hypertension'].mode()[0],inplace=True)
data['appetite'].fillna(data['appetite'].mode()[0],inplace=True)
data['albumin'].fillna(data['albumin'].mode()[0],inplace=True)
data['pus_cell'].fillna(data['pus_cell'].mode()[0],inplace=True)
data['red_blood_cells'].fillna(data['red_blood_cells'].mode()[0],inplace=True)
data['coronary_artery_disease'].fillna(data['coronary_artery_disease'].mode()[0],inplace=True)
data['anemia'].fillna(data['bacteria'].mode()[0],inplace=True)
data['sugar'].fillna(data['sugar'].mode()[0],inplace=True)
data['diabetesmellitus'].fillna(data['diabetesmellitus'].mode()[0],inplace=True)
data['pedal_edema'].fillna(data['pedal_edema'].mode()[0],inplace=True)
data['specific_gravity'].fillna(data['specific_gravity'].mode()[0],inplace=True)
```

In [47]:

```
data['pus_cel_clumps'].fillna(data['pus_cel_clumps'].mean(),inplace=True)
```

In [48]:

```
data.isnull().any()
```

Out[48]:

```
False
blood_pressure
                             False
                             False
specific_gravity
albumin
                             False
sugar
                             False
red_blood_cells
                            False
pus cell
                             False
pus_cel_clumps
                            False
bacteria
                             False
                            False
blood glucose random
                             False
blood_urea
serum_creatinine
                             False
sodium
                             False
potassium
                             False
hemoglobin
                            False
packed cell volume
                             False
white_blood_cell_count
                            False
red blood cell count
                             False
hypertension
                             False
diabetesmellitus
                             False
coronary_artery_disease
                            False
appetite
                             False
pedal_edema
                             False
anemia
                             False
class
                             False
dtype: bool
```

8. Label Encoding

```
In [49]:
```

```
for i in catcols:
  print("Label Encoding of: ",i)
  LEi = LabelEncoder()
  print(c(data[i]))
  data[i]=LEi.fit_transform(data[i])
  print(c(data[i]))
  print("*"*100)
Label Encoding of: class
Counter({0: 250, 1: 150})
Counter({0: 250, 1: 150})
*********
Label Encoding of: red blood cells
Counter({1: 353, 0: 47})
Counter({1: 353, 0: 47})
********
Label Encoding of: pus cell
Counter({1: 324, 0: 76})
Counter({1: 324, 0: 76})
********************************
********
Label Encoding of: appetite
Counter({0: 318, 1: 82})
Counter({0: 318, 1: 82})
  ***************************
*********
Label Encoding of: bacteria
Counter({0: 378, 1: 22})
Counter({0: 378, 1: 22})
               **********************
*********
Label Encoding of: albumin
Counter({0: 245, 1: 44, 2: 43, 3: 43, 4: 24, 5: 1})
Counter({0: 245, 1: 44, 2: 43, 3: 43, 4: 24, 5: 1})
******************
                                  **********
********
Label Encoding of: pedal_edema
Counter({0: 324, 1: 76})
Counter({0: 324, 1: 76})
                ********
Label Encoding of: sugar
Counter({0: 339, 2: 18, 3: 14, 4: 13, 1: 13, 5: 3})
Counter({0: 339, 2: 18, 3: 14, 4: 13, 1: 13, 5: 3})
*********************************
********
Label Encoding of: hypertension
Counter({0: 253, 1: 147})
Counter({0: 253, 1: 147})
               **********************
********
Label Encoding of: anemia
Counter({0: 340, 1: 60})
Counter({0: 340, 1: 60})
**********
```

```
Label Encoding of: specific_gravity
Counter({3: 153, 1: 84, 4: 81, 2: 75, 0: 7})
Counter({3: 153, 1: 84, 4: 81, 2: 75, 0: 7})
*****************************
*********
Label Encoding of: pus_cel_clumps
Counter({0: 354, 1: 42, 2: 4})
Counter({0: 354, 1: 42, 2: 4})
**********************************
Label Encoding of: diabetesmellitus
Counter({1: 263, 2: 136, 0: 1})
Counter({1: 263, 2: 136, 0: 1})
***********************************
********
Label Encoding of: coronary_artery_disease
Counter({0: 366, 1: 34})
Counter({0: 366, 1: 34})
*********
```

9. Splitting The Dataset Into Dependent And Independent Variable

```
In [50]:

selcols=['red_blood_cells','pus_cell','blood glucose random','blood_urea','pedal_enema','an
x=pd.DataFrame(data,columns=selcols)
y=pd.DataFrame(data,columns=['class'])
print(x.shape)
print(y.shape)

(400, 8)
(400, 1)
```

10. Splitting The Dataset Into Train Set And Test Set

```
In [53]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=2)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

(320, 8)
(320, 1)
(80, 8)
(80, 1)
```

In []:		