Simplificações de funções

Rafael B. Schvittz

Revisão

Construímos circuitos desde a Tabela Verdade!

Podemos construir qualquer circuito, simplesmente sabendo o

seu comportamento.

Aula de hoje

Qual a importância de simplificar um circuito?

- Reduzir o número de termos ou variáveis de uma expressão
 - Circuito equivalente, mas com menos portas lógicas
- Circuitos com menos portas
 - Mais baratos (menor área ocupada)

- Reduzir o número de termos ou variáveis de uma expressão
 - Circuito equivalente, mas com menos portas lógicas
- Circuitos com menos portas
 - Mais baratos (menor área ocupada)

Circuitos equivalentes (possuem a mesma tabela verdade)

Como simplificar a função para gerar circuitos menores?

Como simplificar a função para gerar circuitos menores?

-Fatoração booleana

-Mapas de Karnaugh

Fatoração Booleana

- Aplicação dos teoremas para fatoração da função
- Depende muito da inspiração e experiência do usuário
 - Escolha de qual teorema usar é difícil

Método de tentativa e erro

- Fatoração Booleana
 - Exemplo:

Simplifique a função \rightarrow F = A.B.C + A.C' + A.B'

Simplifique a função \rightarrow F = A.B.C + A.C' + A.B'

A.B.C + A.C' + A.B'

=A(B.C+C'+B')

=A(B.C + (C' + B'))

=A(B.C + ((C' + B')')')

=A(B.C + (C.B)')

=A(B.C + (B.C)')

=A(1)

=A

Distributiva

Associativa

DeMorgan

Comutativa

Identidade da adição (X+X'=1)

Identidade da multiplicação

Simplifique a função

Α	В	C	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Resposta: A'B' + BC'

Simplifique a expressão $z = \overline{A}C(\overline{A}BD) + \overline{A}B\overline{C}\overline{D} + A\overline{B}C$.

Simplifique a expressão $z = \overline{AC}(\overline{\overline{ABD}}) + \overline{ABC} \overline{D} + A\overline{BC}$.

$$z = \overline{A}C(A + \overline{B} + \overline{D}) + \overline{A}B\overline{C}\overline{D} + A\overline{B}C$$
 (passo 1)

$$z = \overline{A}CA + \overline{A}C\overline{B} + \overline{A}C\overline{D} + \overline{A}B\overline{C}\overline{D} + A\overline{B}C$$
 (2)

$$z = \overline{A} \ \overline{B}C + \overline{A}C\overline{D} + \overline{A}B\overline{C} \ \overline{D} + A\overline{B}C$$
 (3)

$$z = \overline{B}C(\overline{A} + A) + \overline{A}\overline{D}(C + B\overline{C})$$
 (4)

$$z = \overline{B}C + \overline{A} \overline{D} (B + C)$$
 (5)

Depois da aplicação de vários teoremas em diferentes passos, você pode acabar chegando em uma função que ainda **não** está completamente otimizada*

Como saber qual o teorema é o melhor a aplicar?

- Usado para simplificar uma equação lógica ou para converter uma tabela-verdade no circuito lógico correspondente
 - Processo simples e metódico

- Utilidade prática está limitada a quatro ou cinco variáveis
 - Limitação pela complexidade do mapa

В

 Cada quadrado dentro do mapa possui um índice

Ref	Α	В	Saída
0	0	0	
1	0	1	
2	I	0	
3	1	1	

 Cada quadrado dentro do mapa possui um índice

Ref	Α	В	Saída	В	0	1
0	0	0		A	-	
1	0	14		0		1 6
2	1	0 <				5
3	-	1		18	7	7

 Cada quadrado dentro do mapa possui um índice

Α	В	X
0	0	$1 \rightarrow \overline{AB}$
0	1	0
1	0	0
1	1	1 → AB

 Cada quadrado dentro do mapa possui um índice

Α	В	X
0	0	1 → AB
0	1	0
1	0	0
1	1	1 → AB

 Cada quadrado dentro do mapa possui um índice

Α	В	X
0	0	$1 \rightarrow \overline{AB}$
0	1	0
1	0	0
1	1	1 → AB

 Cada quadrado dentro do mapa possui um índice

Α	В	X
0	0	$1 \rightarrow \overline{AB}$
0	1	0
1	0	0
1	1	$1 \rightarrow AB$

 Cada quadrado dentro do mapa possui um índice

Α	В	X
0	0	$1 \rightarrow \overline{AB}$
0	1	0
1	0	0
1	1	1 → AB

Mapa para 3 variáveis

Ref	ABC	Υ
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

Mapa - Opção I e 2:

AB/C	0	
00	m ₀	m ₁
01	m ₂	m ₃
П	m ₆	m ₇
10	m ₄	m ₅

Mapa para 3 variáveis

Ref	ABC	Υ
0	000	m ₀
1	001	mı
2	010	m ₂
3	011	m ₃
4	100	m ₄
5	101	m ₅
6	110	m ₆
7	111	m ₇

Mapa - Opção I e 2:

Mapa para 3 variáveis

Ref	ABC	Υ
0	000	m ₀
1	001	mı
2	010	m ₂
3	011	m ₃
4	100	m ₄
5	101	m ₅
6	110	m ₆
7	111	m ₇

Ordem das células:

Mapa para 3 variáveis

Ref	ABC	Υ
0	000	m ₀
-	001	mı
2	010	m ₂
3	011	m ₃
4	100	m ₄
5	101	m ₅
6	110	m ₆
7	111	m ₇

Ordem das células:

A ordem segue o código de gray (apenas 1 bit varia de estado entre as linhas/colunas)

Mapa para4 variáveis

Ref	ABCD	Y
0	0000	
Ĭ.	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
10	1010	
П	1011	
12	1100	
13	1101	
14	1110	
15	1111	

Mapa - Opção I:

Mapa - Opção 2:

Mapa para4 variáveis

Ref	ABCD	Υ
0	0000	m ₀
1	0001	mı
2	0010	m ₂
3	0011	m ₃
4	0100	m ₄
5	0101	m ₅
6	0110	m ₆
7	0111	m ₇
8	1000	m ₈
9	1001	m ₉
10	1010	m ₁₀
11	1011	mil
12	1100	m ₁₂
13	1101	m ₁₃
14	1110	m ₁₄
15	1111	m ₁₅

• Mapa - Opção I:

AB\CD	00	01	П	10
00	m ₀	mı	m ₃	m ₂
01	m ₄	m ₅	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m ₉	mii	m ₁₀

Possíveis agrupamentos no mapa

```
Sempre serão:
```

```
2^1 \rightarrow 2 células \rightarrow 1 var. eliminada
```

```
2^2 \rightarrow 4 células \rightarrow 2 var. eliminadas
```

$$2^3 \rightarrow 8$$
 células $\rightarrow 3$ var. eliminadas

Possíveis agrupamentos no mapa

```
Sempre serão: 2^1 \rightarrow 2 células \rightarrow 1 var. eliminada 2^2 \rightarrow 4 células \rightarrow 2 var. eliminadas 2^3 \rightarrow 8 células \rightarrow 3 var. eliminadas
```

IMPORTANTE: Não existem agrupamentos diferentes de potências de 2

	CD	ĒD	CD	CD
ĀĒ	0	0	0	0
ĀB	0	0	0	0
AB	1	1	1	1
ΑĒ	0	0	0	0
(t	D)	X =	AB	

Evitar agrupamentos redundantes!

Evitar agrupamentos redundantes!

Evitar agrupamentos redundantes!

Evitar agrupamentos redundantes!

Não resultam em erro, mas aumentam o circuito

De forma geral:

- Todos os "1"s devem ser "pegos" no mapa
 - A regra é montar o menor número de grupos de "1", ou seja, os maiores grupos possíveis

Exemplo

Ref	ABC	Υ
0	000	1
1	001	1
2	010	1
3	011	0
4	100	1
5	101	1
6	110	1
7	111	0

Resp.: $Y = \bar{B} + \bar{C}$

Exemplo 2

Ref	ABCD	Y
0	0000	0
1	0001	1
2	0010	0
3	0011	0
4	0100	0
5	0101	1
6	0110	0
7	0111	0
8	1000	0
9	1001	0
10	1010	0
11	1011	0
12	1100	0
13	1101	1
14	1110	0
15	1111	1

AB\CD	00	01	11	10
00				
01				
Ш	ĺ			
10				

Exemplo 3

Referências

Leitura obrigatória!

Capítulo 4

1) Projete um circuito lógico com três entradas: A, B e C. A saída será nível lógico ALTO apenas quando a maioria das entradas for nível ALTO

Simplifique a expressão $x = A\overline{B}C + \overline{A}BD + \overline{C}\overline{D}$.

Vamos projetar um circuito para controle da porta de um elevador em um prédio de três andares. O circuito possuirá um sinal M que define se o elevador está em movimento (1) ou parado (0). Além disso, o circuito possuirá outros três sinais que indicam o andar no qual o elevador está localizado, F1, F2 e F3, que são normalmente (0), ou (1) quando o elevador está no respectivo andar.

A saída é um sinal A (abrir), cujo valor é 0 ou 1.

