Minimsing the Loss Function for a Binary Classifier

Tom Hardy

July 8, 2025

1 Network Architecture

Consider a linear single-output layer neuron for a binary classifier network. The neuron computes some statistic $f(\mathbf{x}|\mathbf{w})$ given some training data \mathbf{x} and an array of weights \mathbf{w} , which classifies some observation x_i into class A if $f(x_i|\mathbf{w}) > T$, else classifying to \overline{A} , where $\{A, \overline{A}\}$ represents a complete outcome of two mutually exclusive classes. Let there be N items of training data, of which N_A belong to A and $N_{\overline{A}}$ to \overline{A} , such that $N_A + N_{\overline{A}} = N$.

For the sake of Bayesian notation we define the likelihood ratio as

$$lr(\mathbf{x}) \equiv \frac{\mathbb{P}(\mathbf{x}|A)}{\mathbb{P}(\mathbf{x}|\overline{A})},\tag{1}$$

the log-likelihood ratio as

$$llr(x) \equiv log lr(x) \tag{2}$$

$$= \log \frac{\mathbb{P}(\mathbf{x}|A)}{\mathbb{P}(\mathbf{x}|\overline{A})},\tag{3}$$

and the Bayesian posterior, $\mathbb{P}(A|\mathbf{x})$, as

$$\mathbb{P}(A|\mathbf{x}) \equiv \frac{e^{\mathbf{llr}(\mathbf{x})+\rho}}{1+e^{\mathbf{llr}(\mathbf{x})+\rho}} \tag{4}$$

$$= \sigma[\mathsf{llr}(\mathbf{x}) + \rho] \tag{5}$$

for a sigmoid σ and log prior odds ρ , where

$$\rho \equiv \log \left[\frac{\mathbb{P}(A)}{\mathbb{P}(\overline{A})} \right] \tag{6}$$

$$= \log \left[\frac{\mathbb{P}(A)}{1 - \mathbb{P}(A)} \right]. \tag{7}$$

We can also define empirical priors for each dataset

$$p_A = \frac{N_A}{N}, \ p_{\overline{A}} = \frac{N_{\overline{A}}}{N} \tag{8}$$

and we must use a network with some sigmoid activation function, which outputs some posterior

$$\mathbb{P}(A|\mathbf{x}, \boldsymbol{w}) = \sigma[f(\mathbf{x}, \boldsymbol{w}) + \hat{\rho}] \tag{9}$$

with some bias, $\hat{\rho}$, where

$$\hat{\rho} = \log \frac{p_A}{p_{\overline{A}}}.\tag{10}$$

It holds that we are free to pick **any** test statistic $f(\mathbf{x}|\boldsymbol{w})$, but for the most efficient network, we aim to minimise the loss \mathcal{L} : let us therefore find the form of $f(\mathbf{x}|\boldsymbol{w})$ which satisfies $\partial \mathcal{L}/\partial f = 0$.

2 Minimisation

For a binary classifier, we use the binary-cross-entropy loss function \mathcal{L}_{BCE} , which we define as

$$\mathcal{L}_{BCE} \equiv -\sum_{\mathbf{x}} \left[\frac{p_A}{N_A} \log \sigma + \frac{p_{\overline{A}}}{N_{\overline{A}}} \log(1 - \sigma) \right], \tag{11}$$

for some sigmoid $\sigma \to \sigma[f(\mathbf{x}|\mathbf{w})]$ as convenient shorthand. Note that since some individual \mathbf{x}_i element only satisfies one of each element, it becomes convenient to write the sum as

$$\mathcal{L}_{BCE} \equiv -\sum_{\mathbf{x}|A} \left[\frac{p_A}{N_A} \log \sigma \right] - \sum_{\mathbf{x}|\overline{A}} \left[\frac{p_{\overline{A}}}{N_{\overline{A}}} \log(1 - \sigma) \right]$$
 (12)

For large training data sets, these sums can be approximated as continuous integrals: with $\mathbb{E}_A[...]$ denoting the expected value across data $\mathbf{x} \in A$, we now approximate the loss as some continuous

$$\mathscr{L}_{BCE} \simeq -\left[p_A \mathbb{E}_A \left[\log \sigma(f+\hat{\rho})\right] + p_{\overline{A}} \mathbb{E}_{\overline{A}} \left[\log \left[1 - \sigma(f+\hat{\rho})\right]\right]\right]$$
(13)

which holds under sufficiently large \mathbf{x} . In order to find the minimum, we use the method of calculus of variations; we assume there exists some optimum f^* at which $\partial \mathcal{L}/\partial f|_{f=f^*}=0$ and explore around some pertubation $\gamma \varepsilon(\mathbf{x})$ for a small constant γ and arbitrary $\varepsilon(\mathbf{x})$, such that

$$\tilde{\mathscr{L}} \equiv \mathscr{L}[f^* + \gamma \varepsilon(\mathbf{x})]. \tag{14}$$

Then, by using the chain rule it follows that

$$\frac{\partial \tilde{\mathcal{L}}}{\partial \gamma} = -p_A \mathbb{E}_A \left[1 - \sigma [f^* + \gamma \varepsilon + \hat{\rho}] \varepsilon \right] + p_{\overline{A}} \mathbb{E}_{\overline{A}} \left[\sigma [f^* + \gamma \varepsilon + \hat{\rho}] \varepsilon \right]$$
 (15)

recalling that by construction $\partial \tilde{\mathscr{L}}/\partial \gamma|_{\gamma=0}$ (since f^* is the optimal solution), we then have

$$p_A \mathbb{E}_A \left[1 - \sigma[f^* + \gamma \varepsilon + \hat{\rho}] \varepsilon \right] + p_{\overline{A}} \mathbb{E}_{\overline{A}} \left[\sigma[f^* + \gamma \varepsilon + \hat{\rho}] \varepsilon \right] = 0. \tag{16}$$

Explicitly writing out the expectation operator $\mathbb{E}_A[...]$ and factoring the pertubation $\varepsilon(\mathbf{x})$ then gives

$$\int_{\mathbf{x}} \left[-p_A \frac{1}{1 + e^{f^* + \hat{\rho}}} \mathbb{P}(\mathbf{x}|A) + p_{\overline{A}} \frac{e^{f^* + \hat{\rho}}}{1 + e^{f^* + \hat{\rho}}} \mathbb{P}(\mathbf{x}|\overline{A}) \right] d\mathbf{x} = 0.$$
 (17)

These integrals are continuous, so it holds that

$$-p_A \frac{1}{1 + e^{f^* + \hat{\rho}}} \mathbb{P}(\mathbf{x}|A) = p_{\overline{A}} \frac{e^{f^* + \hat{\rho}}}{1 + e^{f^* + \hat{\rho}}} \mathbb{P}(\mathbf{x}|\overline{A}). \tag{18}$$

Simplifying further we have

$$e^{f^* + \hat{\rho}} = \frac{p_A}{p_{\overline{A}}} \frac{\mathbb{P}(\mathbf{x}|A)}{\mathbb{P}(\mathbf{x}|\overline{A})}$$
 (19)

$$f^* + \hat{\rho} = \log \frac{p_A}{p_{\overline{A}}} + \log \frac{\mathbb{P}(\mathbf{x}|A)}{\mathbb{P}(\mathbf{x}|\overline{A})}.$$
 (20)

Finally, recalling from the definition of the network's bias (equation (10)), we are left with

$$f^* = \log \frac{\mathbb{P}(\mathbf{x}|A)}{\mathbb{P}(\mathbf{x}|\overline{A})}$$
 (21)

$$= llr(\mathbf{x}) \blacksquare$$
 (22)

To fully verify the Neyman-Pearson lemma, we must inspect the second derivative $\partial^2 \tilde{\mathscr{L}}/\partial \gamma^2$. We note that this can be expressed, in full

$$\partial^2 \tilde{\mathcal{Z}} / \partial \gamma^2 = \int_{\mathbf{x}} \varepsilon^2(\mathbf{x}) p(\mathbf{x}) \mu(\mathbf{x}, \gamma) d\mathbf{x}$$
 (23)

where the probability density p(x) follows

$$p(\mathbf{x}) = p_A \mathbb{P}(\mathbf{x}|A) + p_{\overline{A}} \mathbb{P}(\mathbf{x}|\overline{A})$$
(24)

and we use $\mu(\mathbf{x})$ as shorthand for

$$\mu(\mathbf{x}, \gamma) = \left[\sigma(\mathbf{1} \mathbf{l} \mathbf{r}(\mathbf{x}) + \gamma \varepsilon(\mathbf{x}) + \hat{\rho}) \right] \left[1 - \sigma(\mathbf{1} \mathbf{l} \mathbf{r}(\mathbf{x}) + \gamma \varepsilon(\mathbf{x}) + \hat{\rho}) \right]. \tag{25}$$

We note that by definition ε^2 is positive; $\mathbb{p}(\mathbf{x})$ integrates to a positive scalar (by definition of a probability density); and by definition of the sigmoid, $\mu \in [0,1]$: we conclude that $\partial^2 \tilde{\mathcal{L}}/\partial \gamma^2 > 0 : \forall \gamma \in \mathbb{R}$ verifying that **the log-likelihood is the optimal loss function for a suitably-sampled BCE neural network.**