

Aerostack2

Desarrolla tu enjambre de drones desde simulación a real

https://github.com/aerostack2/demo ROSConES24

Rafael Perez-Segui, Pedro Arias-Perez, 19/09/2024, Sevilla

Agenda

- ¿Qué es Aerostack2?
- Arquitectura
- Ejemplos prácticos
 - Control por referencias al controlador
 - Control de ejecución de plan y estructura de un proyecto
 - Paso a real, uso de Crazyflies
 - Misión multi-agente compleja: Drone-convoy

¿Qué es Aerostack2?

Es una evolución de su predecesor Aerostack, usado por nuestro grupo Computer Vision & Aerial Robotics (CVAR) Group desde 2016.

Especificaciones

- 1. Modular y flexible
- 2. Soporte de distintas plataformas
- 3. Manejo de enjambres
- 4. Facilidad en la creación de misiones
- 5. Desarrollo seguro de sistemas
- 6. Soporte de vuelos en interior y exterior

Interfaz con los actuadores y sensores

Interfaz entre las distintas plataformas aéreas y sus sensores con Aerostack2.

- Agnóstica a la plataforma
- Facilita el paso de simulación a real
- Permite trabajar con enjambres heterogéneos
- Emplea los estándares de comunicación de ROS 2

Plataformas soportadas

Bitcraze Crazyflie 2.X

DJI Ryze Tello

DJI Matrice 200/300 series

Gazebo

AS2 Multirotor Simulator

Gazebo Platform

1. Especificar la simulación (world.yaml)

Lanzar simulador de Gazebo

```
ros2 launch as2_gazebo_assets launch_simulation.py
simulation_config_file:=<%= simulation_config_file %>
```

3. Lanzar una plataforma por drone (namespace = model_name)

```
ros2 launch as2_platform_gazebo platform_gazebo_launch.py
namespace:=<%= drone_namespace %>
platform_config_file:=config/config.yaml
simulation_config_file:=<%= simulation_config_file %>
```


State Estimator

Encargado de proporcionar el estado del dron.

- Cargar y seleccionar plugins
- Generar el árbol de TFs
- Conversión entre geodésicas y cartesianas
- Adaptar las entradas y salidas

ros2 launch as2_state_estimator state_estimator_launch.py namespace:=<%= drone_namespace %> config_file:=config/config.yaml

Motion Controller

- Cargar y seleccionar plugins
- Seleccionar el modo de control
- Adaptar las entradas y salidas

ros2 launch as2_motion_controller controller_launch.py namespace:=<%= drone_namespace %> config_file:=config/config.yaml plugin_name:=pid_speed_controller plugin_config_file:=config/pid_speed_controller.yaml

Ejemplos prácticos

- Control por referencias al controlador
- Control de ejecución de plan y estructura de un proyecto
- Paso a real, uso de Crazyflies
- Misión multi-agente compleja: Drone-convoy

Behaviors

- Proporcionar una capa lógica para formular planes de misión de manera uniforme y más simplificada
- Cada comportamiento corresponde a una habilidad específica del robot relacionada
- Cada comportamiento encapsula el control y la supervisión de la ejecución de su tarea
- Se implementan ampliando las acciones de ROS 2 para proporcionar capacidades adicionales

Behaviors


```
# Motion Behaviors
```

- ros2 launch as2_behaviors_motion motion_behaviors_launch.py namespace:=<%= drone_namespace %> config_file:=config/config.yaml
- # Trajectory Generation Behavior
- ros2 launch as2_behaviors_trajectory_generation generate_polynomial_trajectory_behavior_launch.py namespace:=<%= drone_namespace %> config_file:=config/config.yaml
- # Point Gimbal Behavior
- ros2 launch as2_behaviors_perception point_gimbal_behavior.launch.py namespace:=<%= drone_namespace %> config_file:=config/config.yaml

Plan Execution Control

Se encarga de la especificación del plan de misión y la supervisión de su ejecución.


```
A: TakeOff
IN] height 2
[IN] speed 0.5
    A: GoToGps
INI altitude
IN] longitude
IN] max_speed
                0.5
IN] yaw angle
IN] yaw mode
  A: Land
    Land
IN] speed 0.5
```

Behavior Trees

```
import rclpy
from as2 python api.drone interface import DroneInterface
rclpy.init()
drone = DroneInterface(drone id="drone0")
drone.takeoff(height=1.0, speed=0.5)
drone.go to.go to point([1.0, 1.0, 2.0], speed=0.5, frame id="earth")
drone.land(speed=0.5)
drone.shutdown()
rclpy.shutdown()
```

AS2 Mission Interpreter

AS2 Python API

Mission Control

Destinado a facilitar la definición y supervisión de las misiones.

AS2 Keyboard Teleoperation

AS2 GUI

```
- ALPHANUMERIC VIEWER OF AERIAL ROBOTICS DATA -
         Key: M (Summary), S (sensors), N (navigation), P (platform)
Drone id: /drone sim 0
Battery charge: 100 %
IMU MEASUREMENTS
                                                          PLATFORM STATUS
Orientation IMU (ypr):
                          00.00, 00.00, 00.00 rad
Angular speed IMU (ypr): 00.01, 00.01, -00.01 rad/s
                                                          Conected:
                                                                    True
Acceleration IMU (xyz):
                         00.03,-00.09, 09.53 m/s2
                                                          Armed:
                                                                     True
                                                          Offboard: True
LOCALIZATION
Position (xvz):
                                                          Status: FLYING
                          001.00, 001.00, 001.10 m
Linear Speed (xvz):
                          00.00. 00.00. 00.04 m/s
Orientation (vpr):
                          00.00, 00.00, 00.00 rad
Angular Speed (ypr):
                          00.00,-00.05,-00.01 rad/s
CONTROLLER CONTROL MODE
                                         PLATFORM CONTROL MODE
Yaw Mode: YAW ANGLE
                                         Yaw Mode: YAW SPEED
Control Mode: POSITION
                                         Control Mode: SPEED
Frame Mode: LOCAL ENU FRAME
                                         Frame Mode: BODY FLU FRAME
```

AS2 Alphanumeric Viewer

Ejemplos prácticos

- Control por referencias al controlador
- Control de ejecución de plan y estructura de un proyecto
- Paso a real, uso de Crazyflies 3.
- Misión multi-agente compleja: Drone-convoy

Use Cases:

22

Use Cases:

Pedro Arias-Perez¹, Alvika Gautam², Miguel Fernandez-Cortizas¹, David Perez-Saura¹, Srikanth Saripalli² and Pascual Campoy¹

¹CVAR - Universidad Politécnica de Madrid, ²USL - Texas A&M University

ARIAS-PEREZ, Pedro, et al. Exploring Unstructured Environments using Minimal Sensing on Cooperative Nano-Drones. arXiv preprint arXiv:2407.06706, 2024.

Use Cases:

Real World Experiment

Even harder!!

Agradecimientos

Principales autores:

- Miguel Fernandez-Cortizas
- Pedro Arias-Perez
- Rafael Perez-Segui
- Javier Melero-Deza
- David Perez-Saura
- Martin Molina
- Pascual Campoy

Please consider to star and contribute to our project on GitHub!

Gracias por vuestra atención

Aerostack2

Desarrolla tu enjambre de drones desde simulación a real

https://github.com/aerostack2/demo_ROSConES24

Rafael Perez-Segui, Pedro Arias-Perez, 19/09/2024, Sevilla

