$11n_{21} (K11n_{21})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -14361875u^{29} - 161204177u^{28} + \dots + 173956349b - 15107525,$$

$$375600u^{29} + 147247252u^{28} + \dots + 173956349a - 339788391, u^{30} + 2u^{29} + \dots + 5u + 1 \rangle$$

$$I_2^u = \langle -u^4 - u^3 + b + u, u^4 + u^3 + a - u, u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.44 \times 10^7 u^{29} - 1.61 \times 10^8 u^{28} + \dots + 1.74 \times 10^8 b - 1.51 \times 10^7, \ 3.76 \times 10^5 u^{29} + 1.47 \times 10^8 u^{28} + \dots + 1.74 \times 10^8 a - 3.40 \times 10^8, \ u^{30} + 2u^{29} + \dots + 5u + 1 \rangle$$

(i) Arc colorings

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.00215916u^{29} - 0.846461u^{28} + \dots + 4.84191u + 1.95330 \\ 0.0825602u^{29} + 0.926693u^{28} + \dots - 4.61234u + 0.0868466 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0731402u^{29} - 1.07799u^{28} + \dots + 4.44244u + 2.88229 \\ -0.168063u^{29} + 0.837289u^{28} + \dots - 5.13114u - 0.00271663 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0227214u^{29} - 0.966033u^{28} + \dots + 5.16436u + 2.03387 \\ 0.0576797u^{29} + 1.04627u^{28} + \dots - 4.93479u + 0.00627686 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.826022u^{29} + 0.833975u^{28} + \dots + 3.65603u - 0.285408 \\ 0.611170u^{29} + 0.604399u^{28} + \dots + 0.737000u + 0.00440383 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.00440383u^{29} + 0.602363u^{28} + \dots - 0.220539u + 0.714981 \\ -0.818069u^{29} - 1.42476u^{28} + \dots - 4.41552u - 0.826022 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.000185822u^{29} + 1.00303u^{28} + \dots + 2.08683u + 1.72142 \\ -1.43701u^{29} - 2.44140u^{28} + \dots - 6.47987u - 1.44042 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.000185822u^{29} + 1.00303u^{28} + \dots + 2.08683u + 1.72142 \\ -1.43701u^{29} - 2.44140u^{28} + \dots - 6.47987u - 1.44042 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{866077465}{173956349}u^{29} + \frac{1901437249}{173956349}u^{28} + \dots - \frac{2282279651}{173956349}u - \frac{977861386}{173956349}u^{28} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_4	$u^{30} - 7u^{29} + \dots - 6u + 1$
c_2	$u^{30} + 5u^{29} + \dots - 6u + 1$
c_3, c_7	$u^{30} + 3u^{29} + \dots + 256u + 64$
<i>C</i> ₅	$u^{30} - 6u^{29} + \dots + 20580u + 19208$
c_{6}, c_{9}	$u^{30} + 2u^{29} + \dots + u + 1$
c_8, c_{11}	$u^{30} + 2u^{29} + \dots + 5u + 1$
c_{10}	$u^{30} - 18u^{29} + \dots - 5u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{30} - 5y^{29} + \dots + 6y + 1$
c_2	$y^{30} + 47y^{29} + \dots + 6y + 1$
c_3, c_7	$y^{30} - 39y^{29} + \dots - 32768y + 4096$
<i>C</i> ₅	$y^{30} + 50y^{29} + \dots + 17048751888y + 368947264$
c_{6}, c_{9}	$y^{30} - 6y^{29} + \dots - 5y + 1$
c_8, c_{11}	$y^{30} - 18y^{29} + \dots - 5y + 1$
c_{10}	$y^{30} - 10y^{29} + \dots - 65y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.939814 + 0.409006I		
a = 0.542692 + 0.474424I	1.82359 + 1.41916I	4.37114 - 2.58812I
b = -0.070464 - 0.940333I		
u = 0.939814 - 0.409006I		
a = 0.542692 - 0.474424I	1.82359 - 1.41916I	4.37114 + 2.58812I
b = -0.070464 + 0.940333I		
u = -0.079419 + 0.963815I		
a = -0.15218 + 2.05632I	6.25989 + 7.12850I	-1.40582 - 4.37809I
b = -0.176900 - 0.226479I		
u = -0.079419 - 0.963815I		
a = -0.15218 - 2.05632I	6.25989 - 7.12850I	-1.40582 + 4.37809I
b = -0.176900 + 0.226479I		
u = 0.948805 + 0.110135I		
a = -0.59398 - 3.17124I	-0.022599 + 0.465680I	-0.6583 + 18.0648I
b = 0.79360 + 2.74868I		
u = 0.948805 - 0.110135I		
a = -0.59398 + 3.17124I	-0.022599 - 0.465680I	-0.6583 - 18.0648I
b = 0.79360 - 2.74868I		
u = -0.888281 + 0.295107I		
a = -0.490268 + 1.053800I	-1.43852 - 2.74440I	-4.63093 + 6.84564I
b = 0.855371 + 0.237317I		
u = -0.888281 - 0.295107I		
a = -0.490268 - 1.053800I	-1.43852 + 2.74440I	-4.63093 - 6.84564I
b = 0.855371 - 0.237317I		
u = 0.067859 + 0.917018I		
a = 0.32834 - 2.10309I	6.87113 - 0.27513I	-0.474969 - 0.176413I
b = -0.294181 + 0.136537I		
u = 0.067859 - 0.917018I		
a = 0.32834 + 2.10309I	6.87113 + 0.27513I	-0.474969 + 0.176413I
b = -0.294181 - 0.136537I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.482665 + 0.751757I		
a = 0.385867 + 0.449128I	-2.54830 + 1.34696I	-0.63180 - 2.11664I
b = 0.051447 + 0.180666I		
u = -0.482665 - 0.751757I		
a = 0.385867 - 0.449128I	-2.54830 - 1.34696I	-0.63180 + 2.11664I
b = 0.051447 - 0.180666I		
u = -1.106080 + 0.345735I		
a = 0.366766 - 0.102627I	2.47975 - 4.75519I	1.98342 + 7.46905I
b = -1.27946 + 0.98293I		
u = -1.106080 - 0.345735I		
a = 0.366766 + 0.102627I	2.47975 + 4.75519I	1.98342 - 7.46905I
b = -1.27946 - 0.98293I		
u = 1.147400 + 0.208094I		
a = 0.820240 - 0.163414I	2.43554 + 0.65273I	3.45718 + 1.02785I
b = -1.308780 - 0.210878I		
u = 1.147400 - 0.208094I		
a = 0.820240 + 0.163414I	2.43554 - 0.65273I	3.45718 - 1.02785I
b = -1.308780 + 0.210878I		
u = -1.048800 + 0.622313I		
a = -0.115184 - 0.254628I	-0.88587 - 6.54449I	1.05094 + 8.02230I
b = 0.719820 + 0.562730I		
u = -1.048800 - 0.622313I		
a = -0.115184 + 0.254628I	-0.88587 + 6.54449I	1.05094 - 8.02230I
b = 0.719820 - 0.562730I		
u = 1.259670 + 0.512922I		
a = -1.61777 + 0.59362I	10.48680 + 5.40724I	2.16131 - 3.05902I
b = 2.96205 - 0.85782I		
u = 1.259670 - 0.512922I		
a = -1.61777 - 0.59362I	10.48680 - 5.40724I	2.16131 + 3.05902I
b = 2.96205 + 0.85782I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.288280 + 0.437041I		
a = 1.53135 - 0.01716I	11.06130 - 4.48245I	2.83304 + 3.34080I
b = -2.97750 - 0.42856I		
u = -1.288280 - 0.437041I		
a = 1.53135 + 0.01716I	11.06130 + 4.48245I	2.83304 - 3.34080I
b = -2.97750 + 0.42856I		
u = -1.279100 + 0.527426I		
a = -1.74729 - 0.21786I	9.9411 - 12.4680I	1.30463 + 7.11505I
b = 3.14462 + 0.29801I		
u = -1.279100 - 0.527426I		
a = -1.74729 + 0.21786I	9.9411 + 12.4680I	1.30463 - 7.11505I
b = 3.14462 - 0.29801I		
u = 1.319740 + 0.433091I		
a = 1.46018 - 0.24476I	10.66180 - 2.21335I	2.28824 + 1.71320I
b = -2.67173 + 0.83307I		
u = 1.319740 - 0.433091I		
a = 1.46018 + 0.24476I	10.66180 + 2.21335I	2.28824 - 1.71320I
b = -2.67173 - 0.83307I		
u = -0.478422 + 0.109834I		
a = 0.278840 + 0.367495I	-2.42930 + 0.00568I	-5.08011 + 0.98851I
b = 1.50012 - 0.16483I		
u = -0.478422 - 0.109834I		
a = 0.278840 - 0.367495I	-2.42930 - 0.00568I	-5.08011 - 0.98851I
b = 1.50012 + 0.16483I		
u = -0.032239 + 0.476446I		
a = 1.50239 - 0.16654I	-0.41356 + 1.51532I	-2.56801 - 4.55893I
b = 0.251989 - 0.423836I		
u = -0.032239 - 0.476446I		
a = 1.50239 + 0.16654I	-0.41356 - 1.51532I	-2.56801 + 4.55893I
b = 0.251989 + 0.423836I		
· · · · · · · · · · · · · · · · · · ·		

II. $I_2^u = \langle -u^4 - u^3 + b + u, \ u^4 + u^3 + a - u, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$

(i) Arc colorings

Are colorings
$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} - u^{3} + u \\ u^{4} + u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} - u^{3} + u + 1 \\ u^{4} + u^{3} - u^{2} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{4} - u^{3} + u \\ u^{4} + u^{3} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} + u^{2} - 1 \\ u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} + u^{2} - 1 \\ u^{4} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -5u^4 2u^3 + 5u^2 + 6u 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^6$
c_2, c_4	$(u+1)^6$
c_3, c_7	u^6
c_5	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$
c_6, c_{11}	$u^6 + u^5 - u^4 - 2u^3 + u + 1$
c_{8}, c_{9}	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
c_{10}	$u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_{10}	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$
c_6, c_8, c_9 c_{11}	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -0.23185 - 1.65564I	0.245672 + 0.924305I	1.66012 - 2.42665I
b = 0.23185 + 1.65564I		
u = 1.002190 - 0.295542I		
a = -0.23185 + 1.65564I	0.245672 - 0.924305I	1.66012 + 2.42665I
b = 0.23185 - 1.65564I		
u = -0.428243 + 0.664531I		
a = -0.659772 + 0.298454I	-3.53554 + 0.92430I	-8.55174 - 0.47256I
b = 0.659772 - 0.298454I		
u = -0.428243 - 0.664531I		
a = -0.659772 - 0.298454I	-3.53554 - 0.92430I	-8.55174 + 0.47256I
b = 0.659772 + 0.298454I		
u = -1.073950 + 0.558752I		
a = -0.108378 + 0.818891I	-1.64493 - 5.69302I	-3.10838 + 3.92918I
b = 0.108378 - 0.818891I		
u = -1.073950 - 0.558752I		
a = -0.108378 - 0.818891I	-1.64493 + 5.69302I	-3.10838 - 3.92918I
b = 0.108378 + 0.818891I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{30}-7u^{29}+\cdots-6u+1)$
c_2	$((u+1)^6)(u^{30}+5u^{29}+\cdots-6u+1)$
c_3, c_7	$u^6(u^{30} + 3u^{29} + \dots + 256u + 64)$
C ₄	$((u+1)^6)(u^{30} - 7u^{29} + \dots - 6u + 1)$
c_5	$(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)$ $\cdot (u^{30} - 6u^{29} + \dots + 20580u + 19208)$
c_6	$ (u6 + u5 - u4 - 2u3 + u + 1)(u30 + 2u29 + \dots + u + 1) $
c_8	$ (u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{30} + 2u^{29} + \dots + 5u + 1) $
c_9	$ (u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{30} + 2u^{29} + \dots + u + 1) $
c_{10}	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)(u^{30} - 18u^{29} + \dots - 5u + 1)$
c_{11}	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)(u^{30} + 2u^{29} + \dots + 5u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_4	$((y-1)^6)(y^{30}-5y^{29}+\cdots+6y+1)$
c_2	$((y-1)^6)(y^{30} + 47y^{29} + \dots + 6y + 1)$
c_3, c_7	$y^6(y^{30} - 39y^{29} + \dots - 32768y + 4096)$
c_5	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)$ $\cdot (y^{30} + 50y^{29} + \dots + 17048751888y + 368947264)$
c_6, c_9	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{30} - 6y^{29} + \dots - 5y + 1)$
c_8, c_{11}	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{30} - 18y^{29} + \dots - 5y + 1)$
c_{10}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)(y^{30} - 10y^{29} + \dots - 65y + 1)$