Sanjana Sahayaraj Install PySpark Fetch Java and Spark In [1]: !apt-get install openjdk-8-jdk-headless -qq > /dev/null !wget -q https://dlcdn.apache.org/spark/spark-3.2.2/spark-3.2.2-bin-hadoop3.2.tgz Uncompress Spark In [2]: !tar xf spark-3.2.2-bin-hadoop3.2.tgz Install PySpark and set environment variable In [3]: !pip install -q findspark In [4]: import os os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["SPARK_HOME"] = "/content/spark-3.2.2-bin-hadoop3.2" In [5]: **import** findspark findspark.init() **Create Spark Session** In [6]: **from** pyspark.sql **import** SparkSession spark = SparkSession.builder.appName("sample").enableHiveSupport().getOrCreate() Import Pandas In [7]: import pandas as pd Reading data from my google drive Original data link: https://www.kaggle.com/datasets/parisrohan/credit-score-classification In [8]: **from** pydrive.auth **import** GoogleAuth from pydrive.drive import GoogleDrive from google.colab import auth from oauth2client.client import GoogleCredentials In [9]: # Authenticate notebook to read your Google Drive auth.authenticate_user() gauth = GoogleAuth() gauth.credentials = GoogleCredentials.get_application_default() drive = GoogleDrive(gauth) In [14]: # Alternately data can also be ready from github using pandas as follows: # url = 'https://raw.githubusercontent.com/SanjanaSahayaraj/AppliedML/main/Analytics/Data/credit-data/train.csv # pandas_df = pd.read_csv(url, low_memory=False) In [10]: downloaded = drive.CreateFile({'id':'16ca5d_x0B90hfG03AGeroMnqs5QvNqBW'}) #change this to your GDrive location downloaded.GetContentFile('train.csv') The data will be loaded in a datastructure called Dataframe which is a 2D structure to store and operate on tabular data with rows and columns. Differences between pandas and spark dataframe: https://www.geeksforgeeks.org/difference-between-spark-dataframe-andpandas-dataframe/ pandas_df = pd.read_csv('train.csv', low_memory=False) In [12]: spark_df = spark.read.option("header",True).csv('train.csv') Display sample data pandas_df.head(10) #display 10 rows in pandas dataframe Out[14]: ID Customer_ID Month Name Age SSN Occupation Annual_Income Monthly_Inhand_Salary Num_Bank_Acc 821-00-Aaron 0x1602 CUS_0xd40 January 23 Scientist 19114.12 1824.843333 Maashoh 0265 Aaron 821-00-0x1603 CUS_0xd40 February 23 Scientist 19114.12 NaN 0265 Maashoh 821-00-Aaron 0x1604 CUS_0xd40 March Scientist 19114.12 NaN Maashoh 0265 Aaron 821-00-0x1605 CUS_0xd40 23 Scientist NaN April 19114.12 Maashoh 0265 821-00-Aaron 0x1606 CUS_0xd40 23 1824.843333 May Scientist 19114.12 Maashoh 0265 821-00-Aaron 0x1607 CUS_0xd40 23 19114.12 NaN June Scientist 0265 Maashoh 821-00-Aaron 0x1608 CUS_0xd40 Scientist 1824.843333 July 19114.12 Maashoh 0265 0x1609 CUS_0xd40 August NaN #F%\$D@*&8 Scientist 19114.12 1824.843333 Rick 004-07-3037.986667 0x160e CUS_0x21b1 28_ 34847.84 January Rothackerj 5839 Rick 004-07-0x160f CUS_0x21b1 February 28 Teacher 34847.84 3037.986667 5839 10 rows × 28 columns In [16]: spark_df.show(7) # display 7 rows in spark dataframe ID|Customer ID| SSN|Occupation|Annual_Income|Monthly_Inhand_Salary|Num_ Month| Name| Age|

Type_of_Loan|Delay_from_due_date|Num_of_Delayed

80.41529543900253|High_spent_Small_...|312.494088

118.28022162236736|Low_spent_Large_v...|284.629162

81.699521264648|Low spent Medium ...| 331.20986

199.4580743910713|Low_spent_Small_v...|223.451309

41.420153086217326|High_spent_Medium...|341.489231

178.3440674122349|Low_spent_Small_v...| 244.56531

19114.12| 1824.84333333333328|

809.98| 24.797346908844986|22 Year

19114.12| 1824.84333333333328|

1824.8433333333338|

26.822619623699016|22 Year

null|

null|

-1|

3|

28.60935202206993|22 Year

31.377861869582354|22 Year

6|

27.26225871052017|22 Year

3| 22.53759303178384|22 Year

!@9#%8| 340.47921

31.94496005538421|

19114.12|

19114.12|

809.98|

809.98

809.98|

809.98|

809.98|

809.98|

19114.12

19114.12

Applied ML: Data Analytics in Python

In [1

Bank_Accounts|Num_Credit_Card|Interest_Rate|Num_of_Loan|

11.27

11.27

41

4 |

4|

6.27|

11.27

4 |

4 |

Out[17]: Index(['ID', 'Customer_ID', 'Month', 'Name', 'Age', 'SSN', 'Occupation',

'Credit_Utilization_Ratio', 'Credit_History_Age', 'Payment_of_Min_Amount', 'Total_EMI_per_month',

In [19]: spark_df.printSchema() #schema displayed in spark including data types

'Annual_Income', 'Monthly_Inhand_Salary', 'Num_Bank_Accounts', 'Num_Credit_Card', 'Interest_Rate', 'Num_of_Loan', 'Type_of_Loan',

'Amount_invested_monthly', 'Payment_Behaviour', 'Monthly_Balance',

'Num_Credit_Inquiries', 'Credit_Mix', 'Outstanding_Debt',

'Delay_from_due_date', 'Num_of_Delayed_Payment', 'Changed_Credit_Limit',

11.27

9.27|

|0x1602| CUS_0xd40| January|Aaron Maashoh| 23|821-00-0265| Scientist|

|0x1603| CUS 0xd40|February|Aaron Maashoh| 23|821-00-0265| Scientist|

_Balance|Credit_Score|

7 |

3|

NA |

Good

Good |

Good |

Good |

Good

Get shape and column names

'Credit_Score'], dtype='object')

In [18]: pandas_df.shape #shape displayed in pandas

Changed_Credit_Limit

Num_Credit_Inquiries

Credit_Utilization_Ratio

Outstanding Debt

Credit_History_Age

Payment_Behaviour

Monthly_Balance

Credit Score

(100000, 28)

dtype: object

Payment_of_Min_Amount Total_EMI_per_month

Amount_invested_monthly

Credit_Mix

object

object

object float64

object object

float64

object

object

object

object

In [21]: print((spark_df.count(), len(spark_df.columns))) #shape displayed in spark

float64

In [17]: pandas_df.columns #columns displayed in pandas

|0×1604| CUS_0×d40|

|0x1605| CUS_0xd40|

|0x1606| CUS_0xd40|

|0x1607| CUS 0xd40|

|0x1608| CUS_0xd40|

3|

3|

3|

3|

only showing top 7 rows

s and 1 Mo...

null|

7 |

4| s and 4 Mo...|

s and 3 Mo...

49607184

28537912

72736786|

03222177|

null|

s and 5 Mo...

s and 6 Mo...| 17872438|

s and 7 Mo...

67062043|

Out[18]: (100000, 28)

67943663

_Payment|Changed_Credit_Limit|Num_Credit_Inquiries|Credit_Mix|Outstanding_Debt|Credit_Utilization_Ratio| Credi

4|Auto Loan, Credit...|

Good|

Good

Good

Good

Good|

Good

No| 49.57494921489417| 62.430172331195294|

t_History_Age|Payment_of_Min_Amount|Total_EMI_per_month|Amount_invested_monthly| Payment_Behaviour|

4.0

4.01

4.0|

April|Aaron Maashoh| 23|821-00-0265| Scientist|

May|Aaron Maashoh| 23|821-00-0265| Scientist|

June|Aaron Maashoh| 23|821-00-0265| Scientist|

July|Aaron Maashoh| 23|821-00-0265| Scientist|

No| 49.57494921489417|

4.0

4.0|

No| 49.57494921489417|

No| 49.57494921489417|

3|

March|Aaron Maashoh|-500|821-00-0265| Scientist| 19114.12|

No| 49.57494921489417|

No| 49.57494921489417|

No| 49.57494921489417|

3|

|-- ID: string (nullable = true) |-- Customer_ID: string (nullable = true) |-- Month: string (nullable = true) |-- Name: string (nullable = true) |-- Age: string (nullable = true) |-- SSN: string (nullable = true) |-- Occupation: string (nullable = true) |-- Annual_Income: string (nullable = true) |-- Monthly_Inhand_Salary: string (nullable = true) |-- Num_Bank_Accounts: string (nullable = true) |-- Num_Credit_Card: string (nullable = true) |-- Interest_Rate: string (nullable = true) |-- Num_of_Loan: string (nullable = true) |-- Type_of_Loan: string (nullable = true) |-- Delay_from_due_date: string (nullable = true) |-- Num_of_Delayed_Payment: string (nullable = true) |-- Changed_Credit_Limit: string (nullable = true) |-- Num_Credit_Inquiries: string (nullable = true) |-- Credit_Mix: string (nullable = true) |-- Outstanding_Debt: string (nullable = true) |-- Credit_Utilization_Ratio: string (nullable = true) |-- Credit_History_Age: string (nullable = true) |-- Payment_of_Min_Amount: string (nullable = true) |-- Total_EMI_per_month: string (nullable = true) |-- Amount_invested_monthly: string (nullable = true) |-- Payment_Behaviour: string (nullable = true) |-- Monthly_Balance: string (nullable = true) |-- Credit_Score: string (nullable = true) In [20]: pandas_df.dtypes #datatypes of columns displayed in pandas Out[20]: ID object Customer_ID object Month object Name object Age object SSN object Occupation object Annual_Income object Monthly_Inhand_Salary float64 Num_Bank_Accounts int64 Num_Credit_Card int64 Interest_Rate int64 Num_of_Loan object Type_of_Loan object Delay_from_due_date int64 object Num_of_Delayed_Payment