Практическое занятие №47

Тригонометрические уравнения.

1. **Тригонометрическое уравнение**. В тригонометрическое уравнение входят периодические функции. Поэтому перед решением уравнения полезно определить общий период всех входящих в уравнение функций и затем искать корни на промежутке длиной, равной периоду.

Найдя эти корни и зная период T, ответ можно записать в виде $x = x_i + kT$, где x_i — корни уравнения на промежутке длины T; k — произвольное целое число.

2. Решение уравнения. Оно обычно состоит из двух частей — алгебраических преобразований, приводящих уравнения к стандартным, и записи решений стандартных уравнений.

Под стандартным тригонометрическим уравнением понимается уравнение вида f(kx) = a, где f — одна из основных тригонометрических функций (синус, косинус, тангенс или котангенс).

Примеры

Основной период

$$T = \pi$$
.

Обозначим 2x = t, тогда

$$\sin t = \frac{1}{2}$$
 на промежутке [0; 2π), $t_1 = \frac{\pi}{6}$, $t_2 = \frac{5\pi}{6}$.

Otber:
$$x_1 = \frac{\pi}{12}$$
, $x_2 = \frac{5\pi}{12}$;

Заметим, решение данного уравнения показано на промежутке. Иными словами, это отбор корней тригонометрического уравнения из всех корней данного уравнения. Если в условии при решении тригонометрического уравнения указан промежуток, то необходимо произвести отбор корней уравнения. Отбор корней можно произвести любым способом: с помощью числовой окружности, с помощью графика, решением двойного неравенства и т.п.

$$2(\sin x - 2) = 5\sin x - 3.$$

Проводим алгебраические преобразования: $2\sin x - 4 = 5\sin x - 3$; получим

$$\sin x = -\frac{1}{3}.$$

Наименьший положительный период T для $\sin x$ равен 2π .

Решаем уравнение на промежутке $[0; 2\pi)$:

$$x_1 = \arcsin\left(-\frac{1}{3}\right) = -\arcsin\frac{1}{3};$$

$$x_2 = \pi + \arcsin \frac{1}{3}.$$

Ответ:

$$-\arcsin\frac{1}{3}+2\pi k;$$
 $\arcsin\frac{1}{3}+\pi\big(1+2n\big),\,k\in\mathbf{Z},\,n\in\mathbf{Z}.$

3. Запись решения стандартного уравнения.

1) $\sin x = a$; $\cos x = a$.

Областью значений синуса и косинуса является промежуток [-1; 1], поэтому при |a| > 1 данные уравнения решений не имеют.

Далее полезно помнить корни при $a=0;\pm\frac{1}{2};\pm\frac{\sqrt{2}}{2};\pm\frac{\sqrt{3}}{2};\pm1.$

На промежутке $[0; 2\pi)$ решения уравнений при этих значениях параметра хорошо известны:

sin x	<i>x</i> ₁	<i>x</i> ₂	cos x	<i>x</i> ₁	x ₂
0	0	π	0	$\frac{\pi}{2}$	$\frac{3\pi}{2}$
$\frac{1}{2}$	$\frac{\pi}{6}$	$\frac{5\pi}{6}$	$\frac{1}{2}$	$\frac{\pi}{3}$	$\frac{5\pi}{3}$
$\frac{\sqrt{2}}{2}$	_	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$	$\frac{7\pi}{4}$
$\frac{\sqrt{3}}{2}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\pi}{6}$	$\frac{11\pi}{6}$
1	$\frac{\pi}{2}$		1	0	

При решении уравнений с отрицательным значением параметра можно применять соображения симметрии: если x — решение уравнения $\sin x = a$, то -x — решение уравнения $\sin x = -a$; аналогично, если x — решение уравнения $\cos x = a$, то $\pi - x$ — решение уравнения $\cos x = -a$.

Если a не соответствует ни одному из «знаменитых» углов, то вводят обозначение для одного из решений уравнения $\sin x = a$ или $\cos x = a$.

Пусть $|a| \le 1$. Тогда уравнение $\sin x = a$ имеет единственное решение в промежутке $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. Его обозначают через $\arcsin a$ (арксинус a).

Аналогично для косинуса выбирают промежуток $[0; \pi]$ и обозначают единственное решение уравнения $\cos x = a$ в этом промежутке через arccos a (арккосинус a).

С помощью аркфункций можно записать общий вид решений уравнений $\sin x = a$ и $\cos x = a$. Традиционно это делают в следующей компактной форме:

$$\sin x = a \Leftrightarrow x = (-1)^k \arcsin a + k\pi, k \in \mathbb{Z};$$

 $\cos x = a \Leftrightarrow x = \pm \arccos a + 2k\pi, k \in \mathbb{Z}.$

Примеры

- \blacksquare $\sin x = 0,1 \Leftrightarrow x = (-1)^k \cdot \arcsin 0,1 + k\pi, k \in \mathbf{Z}.$
- $\cos x = -\frac{1}{4} \Leftrightarrow x = \pm \left(\pi \arccos\frac{1}{4}\right) + 2k\pi, \ k \in \mathbf{Z}.$
- \blacksquare ctg $x = 0,2 \Leftrightarrow x = \operatorname{arcctg} 0,2 + k\pi, k \in \mathbf{Z}.$

Арксинус a (при $|a| \le 1$) — это число (угол), лежащее в промежутке $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, синус которого равен a.

Арккосинус a (при $|a| \le 1$) — это число (угол), лежащее в промежутке $[0; \pi]$, косинус которого равен a.

Значения арксинусов и арккосинусов

$$\blacksquare$$
 arcsin 0 = 0;

$$\blacksquare$$
 arcsin1 = $\frac{\pi}{2}$;

$$arcsin(-1) = -\frac{\pi}{2};$$

$$\blacksquare$$
 arccos $0 = \frac{\pi}{2}$;

$$\blacksquare$$
 arccos (-1) = π ;

$$arccos \left(-\frac{1}{2} \right) = \frac{2\pi}{3}.$$

2)
$$tg x = a$$
; $ctg x = a$.

Тангенс и котангенс могут принимать любые значения и в пределах основного периода принимают такое значение ровно один раз. Выберем в качестве основного промежуток $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$ для тангенса и $(0;\pi)$ для котангенса.

x	tg <i>x</i>	х	ctg <i>x</i>
0	0	0	_
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{3}$	$\frac{\pi}{6}$	$\sqrt{3}$
$\frac{\pi}{4}$	1	$rac{\pi}{4}$	1
$\frac{\pi}{3}$	$\sqrt{3}$	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	_	$\frac{\pi}{2}$	0

Значения тангенса и котангенса для «знаменитых» углов известны, поэтому можно легко записать решения этих уравнений при $a=0;\pm\frac{\sqrt{3}}{3};\pm1;\pm\sqrt{3}$. В общем виде вводят обозначения $\arctan a$ и $\arctan a$ (арктангенс и арккотангенс) для чисел, лежащих в промежутках $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$ и $(0;\pi)$ соответственно, тангенс или котангенс которых равен a.

Окончательно общий вид решений можно записать так:

$$\operatorname{tg} x = a \Leftrightarrow x = \operatorname{arctg} a + k\pi, k \in \mathbf{Z};$$

 $\operatorname{ctg} x = a \Leftrightarrow x = \operatorname{arcctg} a + k\pi, k \in \mathbf{Z}.$

4. Алгебраические преобразования. Алгебраические преобразования тригонометрических уравнений, приводящие их к стандартным, мы обсудим на примерах, показывая, как решаются уравнения некоторых типов.

- 1. Уравнения, алгебраические относительно одной из тригонометрических функций.
 - 1) $2 \sin^2 x + 3\sin x 2 = 0$.

Это уравнение является квадратным относительно $\sin x$. Его корни: $\sin x = \frac{1}{2}$, $\sin x = -2$. Второе из полученных простейших уравнений не имеет решений, так как $|\sin x| \le 1$, решения первого можно записать так: $x = \frac{\pi}{6} + 2k\pi$, $x = \pi - \frac{\pi}{6} + 2\pi k = \frac{5\pi}{6} + 2\pi k$, $k \in \mathbf{Z}$.

Если в уравнении встречаются разные тригонометрические функции, то надо попытаться привести их к одной, используя тригонометрические тождества;

2)
$$2\sin^2 x - 5\cos x - 5 = 0$$
.

Так как квадрат синуса легко выражается через косинус, то, заменив $\sin^2 x$ на $1-\cos^2 x$ и приводя уравнение к квадратному относительно $\cos x$, получим $2(1-\cos^2 x)-5\cos x-5=0$, т. е. квадратное уравнение $2\cos^2 x+5\cos x+3=0$, корни которого $\cos x=-1$, $\cos x=-\frac{3}{2}$. Уравнение $\cos x=-\frac{3}{2}$ решений не имеет. Решения уравнения $\cos x=-1$ запишем в виде $x=\pi+2k\pi,\,k\in\mathbf{Z}$.

2. Понижение порядка уравнения. Формулы удвоения позволяют квадраты синуса, косинуса и их произведения заменять линейными функциями от синуса и косинуса двойного угла и таким образом понижать порядок уравнения:

1)
$$\cos 2x + \cos^2 x = \frac{5}{4}$$
.

Можно заменить $\cos 2x$ на $2\cos^2 x - 1$ и получить квадратное уравнение относительно $\cos x$, но проще заменить $\cos^2 x$ на $\frac{1}{2}(1+\cos 2x)$ и получить линейное уравнение относительно $\cos 2x$;

2)
$$\sin^4 x + \cos^4 x = \frac{65}{81}$$
.

Подставляя вместо $\sin^2 x$, $\cos^2 x$ их выражения через $\cos 2x$, получаем

$$\frac{1}{4}(1-\cos 2x)^{2} + \frac{1}{4}(1+\cos 2x)^{2} = \frac{65}{81};$$

$$1 - 2\cos 2x + \cos^{2} 2x + 1 + 2\cos 2x + \cos^{2} 2x = 4 \cdot \frac{65}{81};$$

$$\cos^{2} 2x = 2 \cdot \frac{65}{81} - 1, \cos^{2} 2x = \frac{49}{81};$$

$$\cos 2x = \pm \frac{7}{9}, 2x = \pm \arccos \frac{7}{9} + k\pi;$$

$$x = \pm \frac{1}{2}\arccos \frac{7}{9} + \frac{k\pi}{2}, k \in \mathbf{Z}.$$

Решение тригонометрических уравнений разложением на множители

Выполняем преобразования:

 $\sin x + \sin 2x + \sin 3x = (\sin x + \sin 3x) + \sin 2x = 2\sin 2x \cos x + \sin 2x = \sin 2x (2\cos x + 1).$

Теперь решаем два стандартных уравнения:

$$\sin 2x = 0, x = \frac{\pi k}{2}, k \in \mathbf{Z};$$

$$\cos x = -\frac{1}{2}, x = \pm \frac{2\pi k}{3} + 2\pi k,$$

$$k \in \mathbf{Z}$$
;

 $\sin^4 x - \cos^4 x = 2\cos 2x \sin x.$

Преобразуем левую часть:

$$\sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) = -\cos 2x.$$

Возвращаемся к исходному уравнению: $-\cos 2x = 2\cos 2x \sin x$.

Приравниваем множитель cos 2x нулю и сокращаем на него:

$$\cos 2x = 0, x = \frac{(2k+1)\pi}{4}, k \in \mathbf{Z};$$

$$\sin x = -\frac{1}{2}, x = -\frac{\pi}{6} + 2k\pi, k \in \mathbf{Z}, x = \frac{7}{6}\pi + 2k\pi, k \in \mathbf{Z}.$$

Otbet: $x = -\frac{\pi}{6} + 2k\pi$; $x = \frac{7}{6}\pi + 2k\pi$, $k \in \mathbf{Z}$.

При переходе от уравнения вида $\Box \cdot \bigcirc = 0$ к совокупности двух уравнений вида $\Box = 0$ и $\bigcirc = 0$ надо следить за тем, попадают ли корни одного из них в ОДЗ другого (и тем самым в ОДЗ исходного уравнения).

Изменение ОДЗ при разложении на множители

Приравниваем $\sin x$ к нулю и сокращаем на него: $x = \pi k$, $k \in \mathbf{Z}$. Некоторые из найденных корней не попадают в ОДЗ оставшегося уравнения, в которое входит $\operatorname{tg} \frac{x}{2}$ (например, $\sin \pi = 0$, но $\operatorname{tg} \frac{\pi}{2}$ не существует). Оставить надо лишь $x = 2\pi k$, $k \in \mathbf{Z}$, и после этого решать оставшееся уравнение:

$$\frac{1+2\cos x}{2-\cos x}=\frac{1}{2}\operatorname{tg}\frac{x}{2}.$$

Выполняем замену $\cos x = \frac{1-t^2}{1+t^2}$, где $t=\operatorname{tg}\frac{x}{2}$ (при этой замене могут потеряться корни, если они являются корнями уравнения $\cos x = -1$, однако этого не происходит). После преобразований получим алгебраическое уравнение $3t^3+2t^2+t-6=0$. Один корень t=1 угадывается сразу. Раскладываем на множители: $3t^3+2t^2+t-6=(t-1)(3t^2+5t+6)$. Второй множитель корней не имеет. Получаем $\operatorname{tg}\frac{x}{2}=1\Leftrightarrow \frac{x}{2}=\frac{\pi}{4}+\pi k, x=\frac{\pi}{2}+2\pi k, k\in \mathbf{Z}$.

Ответ: $x = 2\pi k, x = \frac{\pi}{2} + 2\pi k, k \in \mathbf{Z}.$

Решить уравнения:

 $1. \cos 2x - \cos x = 0$

Указать корни, принадлежащие отрезку $\left[0; \frac{5\pi}{2}\right]$

2. $\cos^2 x - \cos 2x = 0.75$

Найти все корни уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$

3. $2\cos 2x + 4\cos\left(\frac{3\pi}{2} - x\right) + 1 = 0$

Указать корни, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$

Глава 12 «Элементы теории вероятности и математической статистики», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. – 4-е изд.,стер. – М.: ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электронно-библиотечной системе.

Список использованных интернет-ресурсов:

- 1. https://23.edu-reg.ru/
- 2. https://www.resolventa.ru/data/metodsch/trig.pdf