Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS

Matemática Discreta-Teoria de Conjuntos

Professor: Iuri Jauris

1º Semestre de 2022

☐ Lógica x Álgebra de Conjuntos

 No estudo da Álgebra de Conjuntos você poderá observar uma relação direta entre os conectivos lógicos introduzidos e as operações sobre conjuntos, como segue:

Conetivo Lógico	Operação sobre Conjuntos
Negação	tudo o que rão pertence ou conjunto complemento mas está dentro de universo
Disjunção 🗸	união AVB
Conjunção ^	Intersecção * 1 6

 Adicionalmente, as relações lógicas introduzidas também podem ser associadas com as relações sobre conjuntos, como segue:

Relação Lógica	Relação sobre Conjuntos
Implicação	Continência
Equivalência	Igualdade

 Da mesma forma, as propriedades sobre os conectivos lógicos são análogas na teoria de conjuntos, substituindo cada conetivo pela correspondente operação sobre conjuntos:

Conetivo Lógico	Operação sobre conjuntos
Idempotência: ^ e v	Idempotência: intersecção e união
Comutativa: ^ e v	Comutativa: intersecção e união
Associativa: ^ e v	Associativa: intersecção e união
Distributiva: ^ sobre v e v sobre ^	Distributiva: intersecção sobre união e união sobre intersecção
Dupla Negação	Duplo complemento
De Morgan	De Morgan
Absorção	Absorção

- Definição: Dizemos que um elemento x pertence a um conjunto A se x é um elemento de A. Denotamos este fato por $x \in A$.
- Para denotar que x **não pertence a A**, ou seja, que x não é um elemento do conjunto A, escrevemos $x \notin A$.

Axioma da extensão:

- Um conjunto é completamente determinado pelos seus elementos.
- A ordem na qual os elementos são listados é irrelevante.
- Elementos podem aparecer mais de uma vez no conjunto.

☐ Teoria de conjuntos

- Provavelmente você já teve contato com os conceitos básicos da teoria dos conjuntos, como elemento, união, intersecção, etc.. Nesta aula vamos revisar esses conceitos.
- Um conjunto é um conceito primitivo, que informalmente pode ser entendido como uma coleção não ordenada de entidades distintas, chamadas de elementos do conjunto.
- Todos objetos matemáticos podem ser definidos em termos de conjuntos.

> Formas de definir um conjunto:

- Podemos especificar um conjunto de diversas formas. Se um conjunto tem poucos elementos, podemos listá-los, um a um, em qualquer ordem, entre chaves '{}', de modo que {violeta, verde, castanho} é o mesmo que {verde, castanho, violeta}.
- Além disso, cada elemento do conjunto é listado apenas uma vez; é redundante listá-lo de novo.
- Outras maneira de especificar um conjunto são através das propriedades de seus elementos, ou através de operações entre conjuntos ou ainda especificando uma função característica:

i. Usado uma notação { a | P(a) }, onde a é uma variável arbitrária e P(a) uma afirmação matemática que pode ser verdadeira ou falsa dependendo do valor de a. Por exemplo:

$$\left\{a \in \mathbb{Z} \mid -5 < a < 5\right\}$$
$$\left\{x \in \mathbb{Z} \mid x^2 - 2x + 1 < 0\right\}$$
$$\left\{x \in \mathbb{R} \mid x^2 - 2x = 0\right\}$$

ii. Usando operações sobre conjuntos para criar novos conjuntos

$$-S = \{1, 3, 5, 7, 9\} \cup P$$

iii. Especificando uma função característica

$$-\mu_A(x) = \begin{cases} k \text{ para } x = 1, 3, 5, 7, 9\\ 0 \text{ caso contrário} \end{cases}$$

- Alguns conjuntos tem notações convencionais bem estabelecidas, e que o estudante já deve estar familiarizado, como, o conjuntos dos números naturais, inteiros, racionais e reais, respectivamente ($\mathbb{N}; \mathbb{Z}; \mathbb{Q}; \mathbb{R}$).
- Observação: Nem sempre é possível listar todos os elementos do conjuntos, como nos conjuntos numéricos a cima. Também nem sempre é possível utilizar todos os tipos de definição:

Exemplo:
$$S = \{x \in \mathbb{R} | 0 \le x \le 1\}$$

Não é possível definir *S* listando os elementos.

> Notação de lógica em teoria de conjuntos

 A notação para a lógica formal, já trabalhada nas aulas anteriores, pode tornar mais claro o que queremos dizer com uma propriedade que caracteriza os elementos de um conjunto. Por exemplo usando a notação de lógica de predicados para o conjunto S = {x | P(x)} significa que:

$$(\forall x) \Big[\Big(\big(x \in S \to P(x) \big) \land \Big(P(x) \to x \in S \Big) \Big) \Big]$$

• ou seja, todos os elementos de S tem propriedade P e tudo que tem propriedade P pertence a S.

Diagramas de Venn

 Os diagramas de Venn são figuras geométricas, em geral representadas no plano para expressar as estruturas da Teoria dos Conjuntos.

Exp: Diagramas de Venn

- um dado conjunto A
- um determinado elemento b∈B
- o conjunto C = { 1, 2, 3 }

Exp: Diagramas de Venn

- { a, b } { a, b, c } • A C B amplemente contide
- para um dado conjunto universo U, um conjunto C⊆U

Em geral

- U é representado por um retângulo
- demais conjuntos por círculos, elipses, etc
- emC⊆U, o conjunto C é destacado, para auxiliar visualmente

Exp: Aplicação dos Diagramas de Venn

Considere que

pode-se intuir que a noção de subconjunto é transitiva, ou seja

$$A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$$

Definição:
$$A \subseteq B \Leftrightarrow (x \in A \to x \in B)$$

$$BCA$$

se $X \in B \longrightarrow X \in A$

Teorema: Transitividade da Continência

Suponha A, B e C conjuntos. Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$

Prova: (direta)

(X⊆Y sss todos os elementos de X também são de Y)

Suponha que A, B e C são conjuntos qq e que A⊆B e B⊆C

- Seja $x \in A$.
- Como $A \subseteq B$, então por definição $(x \in A \rightarrow x \in B)$
- Portanto $x \in B$.
- Porém $B \subseteq C$, então por definição $(x \in B \rightarrow x \in C)$
- Portanto $x \in C$.
- Então como $(x \in A \rightarrow x \in C)$ logo por definição $A \subseteq C$

☐ Relações entre conjuntos

i. Igualdade entre Conjuntos

- Por definição, um conjunto A é igual a um conjunto B se, e somente se, todo elemento de A é elemento de B, e todo elemento de B é elemento de A. Esta condição, denotada por A = B, significa que A, B são o mesmo conjunto.
- Usando a notação de lógica de predicados, temos que A = B significa:

$$(\forall x)[(x \in A) \rightarrow (x \in B)] \land [(x \in B) \rightarrow (x \in A)]$$

• Observe que, como os conjuntos não são ordenados, o conjunto A={1, 2, 3} é igual ao conjunto B={3, 2, 1}.

ii. Conjunto vazio

- É possível definir conjuntos sem elementos. Dizemos que tal conjunto é vazio. Por exemplo: $A = \{x \in \mathbb{R} \mid x = x + 1\}$
- Observação: todos os conjuntos vazios são iguais; ou seja existe um único conjunto vazio, que é geralmente denotado por Ø; É possível denotar o conjunto vazio também como { }.
- Obs: O conjunto $A = \{\Phi\}$ não é vazio, pois ele tem um elemento o conjunto vazio.

y quantidade de elementos

iii. Cardinalidade:

- A cardinalidade está relacionada ao número de elementos de um conjuto. Dizemos que um conjunto A é finito se ele tem um número finito $n \in \mathbb{N}$ de elementos.
- A cardinalidade de A, denotada por |A| ou #A. Observe que |A| = 0 se e somente se $A = \emptyset$.
- Os conjuntos $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ são infinitos.
- Obs: Para o conjunto $A = \{\Phi\}$ temos que |A| = 1, enquanto que $|\Phi| = 0$.

iii. Relação de inclusão

- Sejam A e B dois conjuntos. Dizemos que **A é um subconjunto de B** se, e somente se, todo elemento de **A é um elemento de B**. Neste caso, dizemos também que **A está contido em B**, ou que B contém A. Denotamos esta condição por $A \subseteq B$. A é também dito subconjunto de B.
- Se existe <u>ao menos um elemento de A que não pertence a B,</u> então <u>A não é subconjunto de B.</u>
- De acordo com esta definição, todo conjunto está contido em si próprio e além disso todo conjunto contém o conjunto vazio; ou seja, $A \subseteq A$ e $\varnothing \subseteq A$ para qualquer conjunto A.

• Se $A \subseteq B$ MAS existe pelo menos um elemento de B que não pertence a A, dizemos que A está contido propriamente em B, ou A está estritamente contido em B, ou seja, \underline{A} é um sub-conjunto próprio de B, que denotamos por $A \subseteq B$.

Exemplo:

A é subconjunto próprio de B, ou A está estritamente contido em B

Inclusão	lgualdade	Inclusão Estrita
amplamente $ \uparrow \text{ contido} $ $ A \subseteq B \Leftrightarrow (x \in A \to x \in B) $	$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$	estritamente contido $A \subset B \Leftrightarrow (x \in A \to x \in B) \land (\exists y \in B \mid y \notin A)$

Exemplo: Continência, Subconjunto;

$$a)\{a,b\}\subseteq\{b,a\}$$
 \vee

$$b)\{a,b\}\subset \{a,b,c\} \ \ {\rm e} \ \ \{a,b\}\subseteq \{a,b,c\} \ \ {\rm v} \ \ ({\rm se} \ {\rm ta} \ {\rm est}_{\it i}{\rm ta} \ {\rm mente} \ {\rm contido}_{\it j}{\rm vai} \ {\rm est}_{\it a}{\rm ta} \ {\rm est}_{\it j}{\rm ta} \ {\rm est}_{\it j$$

$$c$$
) $\{1,2,3\} \subset \mathbb{N} \ e \ \{1,2,3\} \subseteq \mathbb{N} \ \lor$

$$d)\mathbb{N} \subset \mathbb{Z}$$
 e $\mathbb{N} \subseteq \mathbb{Z}$ \vee

$$e)\varnothing \subset \{a,b,c\} \ e \ \varnothing \subseteq \{a,b,c\} \lor$$

$$f)\emptyset \subseteq \mathbb{N} \ \mathbf{e} \ \emptyset \subset \mathbb{N} \ \mathbf{V}$$

Exemplo 2: $A \not\subseteq B$.

Exercício: Sejam os conjuntos: $A = \{1, 7, 9, 15\}$; $B = \{7, 9\}$; $C = \{7, 9\}$ 9, 15, 20}. Quais das afirmações a baixo são verdadeiras e quais são falsas?

$$a)B \subset C; \ \lor$$

e)
$$\{7,9\} \subset B$$
;

$$b)B\subseteq A; \ \lor$$

$$b)B \subseteq A; \ \lor f) \{7\} \subset A; \ \lor$$

$$c)B \subset A; \vee$$

$$c)B \subset A; \lor g) \varnothing \in C; F$$

$$d)A \subseteq C$$
; f

$$g) \varnothing \in C; F$$

n)
$$\{7,9\} \in C$$
; f

Respostas:

h)
$$\{7,9\} \in C$$
; F d) F h) F development of the constraints of the con

Operações sobre conjuntos

Sejam A e B subconjuntos do conjunto universal U.

- União: $A \cup B = \{x \in U | x \in A \text{ ou } x \in B\}$
 - Notação: $A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$
- Intersecção: $A \cap B = \{x \in U | x \in A \ ex \in B\}$
 - Notação: $A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$
- Diferença: $B A = \{x \in U \mid x \in B \ ex \notin A\}$
- Complemento: $A^{\bigcirc} = \{x \in U \mid x \not\in A\}$

> Propriedades de subconjuntos

- Inclusão da intersecção: para todos conjuntos A e B.
 - $-A \cap B \subseteq A$
 - $-A \cap B \subseteq B$
- Inclusão na união: para todos conjuntos A e B.
 - $-A \subseteq A \cup B$
 - $-B\subseteq A\cup B$
- Propriedade transitiva dos subconjuntos: para todos conjuntos A, B e C.
 - se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$

> Identidades de conjuntos

- Sejam todos os conjuntos abaixo subconjuntos do conjunto universal U.
- Comutatividade:

$A \cap B = B \cap A$	$A \cup B = B \cup A$
	9 v P 4 9 v P Zmesma coisa em réglica

Associatividade:

$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$

Distributividade:

nstributividade.	
$A \cup (B \cap C) =$	$A \cap (B \cup C) =$
$(A \cup B) \cap (A \cup C)$	$(A \cap B) \cup (A \cap C)$

Intersecção com U:

$$A \cap U = A$$

União com U:

$$A \cup U = U$$

Complemento duplo:

$$(A^c)^c = A$$

Idempotência:

$A \cap A = A$	$A \cup A = A$
----------------	----------------

• De Morgan:

$(A \cap B)^c = A^c \cup B^c$	$(A \cup B)^c = A^c \cap B^c$
$A-(B\cap C)=$	$A - (B \cup C) =$
$(A-B)\cup (A-C)$	$(A-B)\cap (A-C)$

Absorção:

Representação alternativa para diferença de conjuntos:

$$A - B = A \cap B^c$$

> Complementar de um conjunto

Def: Complemento

Complemento de um conjunto A ⊆ U

A' ou
$$\sim A$$

 $\sim A = \{ x \in \mathbb{U} \mid x \notin A \}$

*Alguns autores também utilizam a notação A^c para representar o conjunto complementar de A.

♦ Relacionando com a Lógica

- complemento corresponde à negação
- símbolo ~ é um dos usados para a negação

Exp: Complemento

Dígitos = $\{0, 1, 2, ..., 9\}$ conjunto universo e A = $\{0, 1, 2\}$

$$\bullet \sim A = \{3, 4, 5, 6, 7, 8, 9\}$$

Exp: ...Complemento

N conjunto universo e $A = \{0, 1, 2\}$

•
$$\sim A = \{ x \in \mathbb{N} \mid x > 2 \}$$

Para qualquer conjunto universo U

- $\sim \emptyset = \mathbf{U}$
- ~U = Ø

R conjunto universo

- $\sim \mathbf{Q} = \mathbf{I}$
- $\sim I = Q$

Exp: Complemento, União e Intersecção

U conjunto universo. Para qualquer A⊆U

- A ∪ ~A = **U**
- $A \cap \sim A = \emptyset$

- p v ¬p é tautologia
- p ∧ ¬p é contradição

◆ Propriedade Duplo Complemento

para qualquer A⊆U

$$\sim \sim A = A$$

- relacionamento com lógica
 - ∗ A: todos elementos x tais que x ∈ A
 - * ~A: todos elementos x tais que x ∉ A
 - * $\sim\sim$ A: todos elementos x tais que $\neg\neg(x \in A)$

$$\neg(X \in A)$$

 $X \in A$

complemento é reversível: ~(~A) = A

◆ Propriedade DeMorgan

- relacionada com o complemento
- envolve a união e a intersecção

$$\sim (A \cup B) = \sim A \cap \sim B$$
 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$
 $\sim (A \cap B) = \sim A \cup \sim B$ $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

♦ Essa propriedade permite concluir

intersecção pode ser calculada em termos do complemento e união

$$A \cap B = \sim (\sim A \cup \sim B)$$

• união pode ser calculada em termos do complemento e intersecção

$$A \cup B = \sim (\sim A \cap \sim B)$$

♦ Diferença: derivada da intersecção e complemento

Def: Diferença

A e B conjuntos

$$A-B$$

$$A-B=A\cap \sim B=\{x\mid x\in A \land x\notin B\}$$

Exp: Diferença

```
Dígitos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Vogais = { a, e, i, o, u }

Pares = { 0, 2, 4, 6,... }
```

- Dígitos Vogais = Dígitos
- Dígitos Pares = { 1, 3, 5, 7,9 }

Exp: ...Diferença

$$A = \{x \in \mathbb{N} \mid x > 2\} e B = \{x \in \mathbb{N} \mid x^2 = x\}$$

- $A B = \{3, 4, 5, 6, ...\}$
- $B A = \{0, 1\}$

R (reais), Q (racionais) e I (irracionais)

- $\mathbf{R} \mathbf{Q} = \mathbf{I}$
- $\cdot \mathbf{R} \mathbf{I} = \mathbf{Q}$
- $\bullet Q I = Q$

Universo **U** e A ⊆ **U**

- $\bullet \varnothing \varnothing = \varnothing$
- $\mathbf{U} \emptyset = \mathbf{U}$
- $\mathbf{U} \mathbf{A} = \sim \mathbf{A}$
- $\mathbf{U} \mathbf{U} = \emptyset$

➢ Propriedades de conjuntos que envolve o ∅

Sejam todos os conjuntos abaixo subconjuntos do conjunto universal U.

União com Ø:

$$A \cup \emptyset = A$$

Intersecção e união com o complemento:

$$A \cap A^c = \emptyset \qquad \qquad A \cup A^c = U$$

Intersecção com ∅:

$$A \cap \emptyset = \emptyset$$

Complementos de U e ∅:

$$U^c = \emptyset$$
 $\emptyset^c = U$

> Conjunto de conjuntos

Conjuntos podem ser elementos de outros conjuntos. Por exemplo, o conjunto A = { Φ , {2, 3} , {2, 4} , {2, 4, 7}} é um conjunto com quatro elementos.

Obs: {2, 3} é um elemento de A mas não é sub-conjunto de A , ou seja temos que $\{2,3\} \in A$.

Para que tenhamos um subconjunto contido A temos que escrever por exemplo, o conjunto do elemento {2, 3}, ou seja: $\{\{2,3\}\}$ \bigcirc A

relación de conjuntal n usar com exmentes

- > Conjuntos das Partes de um conjunto
- O Conjuntos das partes de um conjunto A, denotado por P(A),
 é um conjunto de todos os subconjuntos contidos em A, ou seja

$$\mathbf{P}(A) = \{ X \mid X \subseteq A \}$$

Exp: Conjunto das Partes

```
A = {a}, B = {a, b} e C = {a, b, c}

• P(Ø) = {Ø}

• P(A) = {Ø, {a}}

• P(B) = {Ø, {a}, {b}, {a, b}}

• P(C) = {Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
```

Quantos elementos existem em cada conjunto das partes? $|P(\Phi)| = 1$; |P(A)| = 2; |P(B)| = 4; |P(C)| = 8;

Exp: ...Conjunto das Partes

$$D = \{a, \emptyset, \{a, b\}\}\$$

• **P**(D) = {∅, {a}, {∅}, {{a, b}}, {a, ∅}, {a, {a, b}}, {∅, {a, b}}, {∅, {a, b}}}

Quantos elementos existem no conjunto das partes de D? |P(D)| = 8;

♦ Número de elementos de P(X)

- número de elementos de
 - * Xén
 - * P(X) é 2ⁿ
- justifica a notação 2^X
 - prova por indução introduzida adiante

☐ Produto Cartesiano entre dois conjuntos

Definição:

- Sejam A e B conjuntos. O produto cartesiano de A e B é o conjunto formado por pares ordenados cujo primeiro elemento é proveniente de A e o segundo, de B. Este conjunto é denotado por A x B.
- Em notação lógica: $A \times B = \{(x, y) | x \in A \land y \in B\}$
- Observação: O plano cartesiano é dado pelo produto cartesiano entre dois conjuntos reais, ou seja \mathbb{R} x \mathbb{R} . Uma outra notação para \mathbb{R} x \mathbb{R} é \mathbb{R}^2 .

Exemplos:

(a). Sejam A = { 1, 2, 3 } e B = { 4, 5 }. Então:

$$A \times B = \{ (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5) \}$$

 $B \times A = \{ (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3) \}$

Representação por tabela:

AxB	4	5
1	(1,4)	(1,5)
2	(2,4)	(2,5)
3	(3,4)	(3,5)

BxA	1	2	3
4	(4,1)	(4,2)	(4,3)
5	(5,1)	(5,2)	(5,3)

Representação por gráficos:

Observação: Sejam A = Ø e B = [2, 3]. Então:

$$A \times B = \emptyset$$

$$B \times A = \emptyset$$

- Produto Cartesiano de Três Conjuntos
- Sejam A, B e C conjuntos. O produto cartesiano de A, B e C é o conjunto formado por <u>ternas ordenadas cujo primeiro</u> <u>elemento é proveniente de A, o segundo, de B e o terceiro, de C.</u>
- Em notação lógica:

$$A \times B \times C = \{(x, y, z) / x \in A \land y \in B \land z \in C\}$$

O produto cartesiano pode ser estendido para n conjuntos A₁, A₂, A₃, ..., A_n: $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, a_3, ..., a_n) \mid a_i \in A_i\}$

Propriedades

Sejam A, B, C e D conjuntos. Então são válidas as seguintes propriedades:

- Ax(B∪C)=(AxB)∪(AxC)
- Ax(B∩C)=(AxB)∩(AxC)
- $A \subseteq B \Rightarrow A \times C \subseteq B \times C$
- (AxB)∩(CxD)=(A∩C)x(B∩D)
- AxB=Ø⇔(A=Ø)∨(B=Ø)
- AxB=BxA⇔(A=Ø)∨(B=Ø)∨(A=B)

Potencias de um conjunto

Se todos os conjuntos $A_i = A$, então usamos a notação: $A^n = A \times A \times ... \times A$ Assim, temos:

$$A^0 = \{ () \}$$
, onde () é a tupla vazia
 $A^1 = \{ (a) \mid a \in A \}$
 $A^2 = \{ (a_1, a_2) \mid a_1, a_2 \in A \}$
 $A^n = \{ \{ (a_1, a_2, a_3, ..., a_n) \mid a_i \in A \}$

Obs. $A^1 \neq A$ e $A^0 \neq \emptyset$

Exercícios

- 1. Determine $\{x \in \mathbb{N} / (x-1)(x-3) = 0\} x \{x \in \mathbb{N} / (x-2)(x-3) = 0\}$.
- Encontre o valor lógico da proposição (∀ A, B, C)(A x C = B x C → A = B)
 ✓ v se c≠Ø (beto)
- 3. Represente graficamente o subconjunto do produto cartesiano \mathbb{R}^2 definido por $S = \{ (x, y) / x + y \ge 1 \}.$

- 4. Se A = Ø e B = {0, 1}, determine AxB. [€]
- Determine as potencias Aⁿ para n = 0, 1, 2 e 3, se: a) A={a}
 b) A = {a, b}

Soluções:

- 1. $\{1,3\}$ x $\{2,3\}$ = $\{(1,2),(1,3),(3,2),(3,3)\}$
- 2.Seja (x, y) ∈ A x C. Então x ∈ A e y ∈ C.
- Como A x C = B x C, então (x, y) E B x C.
- Assim, $x \in B \in y \in C$. Portanto, A = B.
- Logo, a proposição é verdadeira.

• 3.

- $4.AxB = \emptyset$
- 5. a) $A_0 = \{()\}; A_1 = \{(a)\}; A_2 = \{(a, a)\}; A_3 = \{\{(a, a, a)\}\}$
- b) $A_0 = \{()\}; A_1 = \{(a), (b)\}; A_2 = \{(a,a), (a,b), (b,a), (b,b)\}; A_3 = \{(a,a,a),(a,a,b),(a,b,a),(a,b,b),(b,a,a),(b,a,b),(b,b,a)(b,b,b)\}$

- Podemos efetuar diversas operações aritméticas com elementos de conjunto, como por exemplo os inteiros, Z. Poderíamos subtrair dois inteiros, ou considerar o negativo de um inteiro. Operações como a soma ou subtração que agem em dois inteiros; são ditas operações binárias em Z. Operações como a negação, que age em um inteiro, são chamadas de operações unárias em Z.
- Para ver exatamente o que é uma operação binária, vamos considerar a subtração. Definidos dois inteiros x e y quaisquer (exemplo x = 5 e y = 2), x y gera uma resposta, e apenas uma, e essa resposta sempre será um número inteiro.

- Para além disso observe que a subtração é efetuada em um par ordenado de números. Por exemplo, 7 5 não produz o mesmo resultado que 5 7. Um par ordenado é denotado por (x, y), onde x é a primeira componente e y é a segunda. Como vimos a ordem é importante em um par ordenado; assim, os conjuntos {1, 2} e {2, 1} são iguais, mas os pares ordenados (1, 2) e (2, 1) não são.
- Vamos generalizar as propriedades de inteiros para definir uma operação binária ° em um conjunto S.
- O símbolo ° marca, simplesmente, o lugar; e será substituído pelo símbolo apropriado para a operação, como o símbolo para a subtração, por exemplo.

- Então uma operação binária o, descreve o fato de que x o y existe e é único. Nesse caso dizemos que a operação binária o está bem definida. Além disso, como na operação binária x o y sempre deve pertencer a S dizemos então que S é fechado em relação à operação o.
- A unicidade não significa que o resultado de uma operação binária ocorre apenas uma vez; e sim significa que, dados x e y, existe apenas um resultado para x o y.
- Por exemplo, para a subtração, existem muitos valores de x e y para os quais x - y = 7, mas, para x e y dados, como x = 5 e y = 2, existe apenas uma resposta possível para x - y.

- Exemplo: A soma, a subtração e a multiplicação são operações binárias em \mathbb{Z} . Por exemplo, ao efetuar a soma em um par de inteiros (x, y), x + y existe um único inteiro como solução e x+y pertence a \mathbb{Z} .
- Exemplo: As operações lógicas de conjunção, disjunção, condicional e equivalência são operações binárias no conjunto das fbfs proposicionais. Se P e Q são fbfs proposicionais, então $P \land Q, P \lor Q, P \rightarrow Q$ e $P \leftrightarrow Q$ são fbfs proposicionais únicas.
- Um candidato ∘ pode deixar de ser uma operação binária em um conjunto S se qualquer uma entre três coisas acontecer: (1) se existirem elementos x, y ∈ S para os quais x ∘ y não existe; (2) se existirem elementos x, y ∈ S para os quais x ∘ y tem mais de um resultado; ou (3) se existirem elementos x, y ∈ S para os quais x ∘ y não pertence a S.

- Exemplo: A divisão não é uma operação binária em \mathbb{Z} , pois $x \div 0$ não existe.
- Exemplo: A subtração não é uma operação binária em N, pois N não é fechado em relação à subtração. (Por exemplo, 1 10 ∉ N.
- Definição: Para que # seja uma operação unária em um conjunto S, x[#] tem que estar bem definida para todo x em S, e S tem que ser fechado em relação a #; em outras palavras, qualquer que seja x ∈ S, x[#] existe, é único e pertence a S. Não teremos uma operação unária se qualquer dessas condições falhar.

- Exemplo: Seja $x^{\#}$ definida por $x^{\#} = -x$, de modo que $x^{\#}$ é o negativo de x. Então # é uma operação unária em \mathbb{Z} , mas não em \mathbb{N} , pois $\mathbb N$ não é fechado em relação a #, (5 pertence a $\mathbb N$ mas $5^{\#} = -5$ não pertence a \mathbb{N}).
- Exemplo: O conectivo lógico de negação é uma operação unária no conjunto das fbfs proposicionais.
- Exercício: Quais das expressões a seguir não definem operações
- binárias nem unárias nos conjuntos dados? Por que não?

 a) $x^{\circ}y = x \div y$; S = conjunto de todos os inteiros positivos
- b) $x^\circ y = x \div y$; S = conjunto de todos os números racionais positivos
- C) $X^{\circ}Y = X^{y}$; $S = \mathbb{R}^{2} (2)^{3} = 8$ $z^{1} = \sqrt{2}$ $z^{\frac{1}{2}} = \sqrt{2}$ $z^{\frac{1}{2}} = 2^{\frac{1}{2}} (-2)^{\frac{1}{2}} = 2^{\frac{1}{2}} \sqrt{2}$ $z^{\frac{1}{2}} = 2^{\frac{1}{2}} \sqrt{2}$
- d) $x \circ y = \text{máximo entre } x e y \text{ distintos; } S = \mathbb{N}$
- e) $x^{\#} = \sqrt{x}$; S = conjunto de todos os números reais positivos

□ Apêndice- Demonstrações em teoria de Conjuntos

Teorema: Associatividade da União

Suponha que A, B e C são conjuntos quaisquer. Então:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Solução: Temos que demonstrar 2 casos;

- AU(BUC)⊆(AUB)UC
- $(A \cup B) \cup C \subseteq A \cup (B \cup C)$

Caso 1. Suponha $x \in A \cup (B \cup C)$

- $x \in A \cup (B \cup C) \Rightarrow$
- $x \in A \lor x \in (B \cup C) \Rightarrow$
- $x \in A \lor (x \in B \lor x \in C) \Rightarrow$
- $(x \in A \lor x \in B) \lor x \in C \Rightarrow$
- $x \in (A \cup B) \lor x \in C \Rightarrow$
- x∈(A∪B)∪C
- Portanto, $A \cup (B \cup C) \subseteq (A \cup B) \cup C$

pela definição união pela definição união pela associatividade do conetivo v pela definição união

pela definição união

Caso 2. Suponha $x \in (A \cup B) \cup C$

- $x \in (A \cup B) \cup C \Rightarrow$
- $x \in (A \cup B) \lor x \in C \Rightarrow$
- $(x \in A \lor x \in B) \lor x \in C \Rightarrow$
- $x \in A \lor (x \in B \lor x \in C) \Rightarrow$
- $x \in A \lor x \in (B \cup C) \Rightarrow$
- $x \in A \cup (B \cup C)$
- Portanto, (A∪B) ∪ C⊆A∪(B∪C)

pela definição união pela definição união pela associatividade do conetivo v pela definição união pela definição união Ex: Prove que: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- Solução:
- Temos que mostrar então que $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ e que $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.
- Para mostrar que $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$, seja x um elemento arbitrário de $A \cup (B \cap C)$, podemos então prosseguir da seguinte maneira.:

$$x \in A \cup (B \cap C) \rightarrow x \in A \text{ ou } x \in (B \cap C)$$

 $\rightarrow x \in A \text{ ou } (x \in B \text{ e } x \in C)$
 $\rightarrow (x \in A \text{ ou } x \in B) \text{ e } (x \in A \text{ ou } x \in C)$
 $\rightarrow x \in (A \cup B) \text{ e } x \in (A \cup C)$
 $\rightarrow x \in (A \cup B) \cap (A \cup C)$

• Para mostrar que $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ basta repetir o procedimento anterior de trás para a frente.

- Exemplo: Prove que dados dois conjuntos A e B quaisquer, então A − B = A ∩ B^c.
- Lembre que para fazer uma demonstração como esta precisamos mostrar que $A-B\subseteq A\cap B^C$ e $A\cap B^C\subseteq A-B$
- Prova de $A B \subseteq A \cap B^C$
- Suponha $x \in A B$
- Pela definição de diferença de conjuntos, x ∈ A e x ∉ B.
- Utilizando isso, pela definição de complemento temos então que x E A e x E B^C.
- Pela definição de intersecção, isso é equivalente a $x \in A \cap B^C$
- Assim, pela definição de subconjunto $A-B \subseteq A \cap B^C$

- Prove que $A \cap B^C \subseteq A B$
- Suponha que $x \in A \cap B^C$
- Pela definição de intersecção, x E A e x E B^C.
- Pela definição de complemento, x ∈ A e x ∈ B.
- Pela definição de diferença de conjuntos, $x \in A B$
- Assim, pela definição de subconjunto, $A \cap B^C \subseteq A B$
- Logo $A B \subseteq A \cap B^C$ e $A \cap B^C \subseteq A B$ e portanto $A B = A \cap B^C$.

- **Exercício 1**: Prove que $\varnothing \subseteq A$. Prove por absurdo (contradição)
- Exercício 2: Use as identidades para provar que

$$[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$$

• Exercício 3: Use as identidades para provar que

$$[C \cap (A \cup B)] \cup [(A \cup B) \cap C'] = A \cup B$$

- Solução-Exercício 1:
- Prova: Um dos métodos para fazer uma prova ou demonstração de uma afirmação, consiste em prová-la através de uma contradição.
- Nesse caso negamos a afirmação inicial dada, o que deverá nos levar em alguma contradição. Seja então uma afirmação inicial simbolizada por P. Se ao fazermos ~P a proposição se tornar F, ou uma contradição, logo P deverá ser V.
- Vejamos para o exercício 1: Suponha portanto $\varnothing \subseteq A$ seja F, ou seja, que exista um conjunto \emptyset com nenhum elemento e um conjunto A tal que $\emptyset \not\subseteq A$.

- Neste caso, deve haver um elemento de Ø que não é um elemento de A [pela definição de subconjunto].
- Mas não pode haver tal elemento já que Ø não tem nenhum elemento. Isto é uma contradição.
- Portanto A suposição que existem conjuntos Ø e A, onde Ø não tem nenhum elemento e Ø ⊈ A é F e, assim, o teorema inicial é V.
- Exercício 4: Prove por contradição (absurdo) que dados dois conjuntos quaisquer A e B, então (A – B) e B são disjuntos

- Demonstração:
- Suponha que existam conjuntos A e B tais que (A B) e B não sejam disjuntos. [Deve-se deduzir uma contradição.]
- Neste caso, $(A B) \cap B \neq \emptyset$ e, desta forma, existe um elemento x em $(A-B) \cap B$.
- Então pela definição de intersecção se x ∈ (A-B)∩B, logo x ∈ (A-B) e
 x ∈ B.
- Pela definição de diferença x ∈ (A B) quer dizer que x ∈ A e x ∉ B.
 Acabou-se de mostrar que x ∈ B e x ∉ B, o que é uma contradição.
- A suposição que existem conjuntos A e B tais que (A B) e B não são disjuntos é F e a proposição inicial é portanto V.