CPSC 340: Machine Learning and Data Mining

Admin

- Assignment 1
 - Due last night
 - Solutions coming Thursday
- Assignment 2: coming soon.
 - If you want to work with a partner, open the issue ASAP (ideally today!)
- Private posts
 - Disabled to avoid repeated questions
 - But you need a way of asking about code
 - For hw2 onwards, open an issue in your hw repo
 - Make sure to tag @cpsc340/staff
 - We can't guarantee we'll get to all of them, depending on volume
- End of class today: informal course evaluation

Norms in 1-Dimension

We can view absolute value, |x|, as 'size' or 'length' of a number:

- It satisfies three intuitive properties of 'length':
 - 1. Only '0' has a 'length' of zero.
 - 2. Multiplying 'x' by constant ' α ' multiplies length by $|\alpha|$:
 - "Absolute homogeneity": $|\alpha x| = |\alpha||x|$.
 - "If will twice as long if you multiply by 2".
 - 3. Length of 'x+y' is not more than length of 'x' plus length of 'y':
 - "Triangle" inequality: $|x + y| \le |x| + |y|$.
 - Think of "how far you travel".

Norms in 2-Dimensions

- In 1-dimension, only scaled absolute values satisfy the 3 properties.
- In 2-dimensions, there is no unique function satisfying them.
- We call any function satisfying them a norm:
 - Measures of "size" or "length" in 2-dimensions.
- Three most common examples:

Norms as Measures of Distance

By taking norm of difference, we get a "distance" between vectors:

$$||x-y||_2 = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}$$

$$||x-y||_1 = |x_1-y_1| + |x_2-y_2|$$

"Number of blocks you need to walk to get from x to y."

11x-yllos = max { |x1-y1/1 |x2-y2|} "Most number of blocks in any direction you would have to walk."

Norms in d-Dimensions

We can generalize these common norms to d-dimensional vectors:

L:
$$||r||_2 = \sqrt{\frac{2}{5}} \frac{r_j^2}{r_j^2}$$
 L: $||r||_1 = \frac{2}{5} |r_j|$ Lo: $||r||_2 = (||r||_2)^2$
E.g., in 3-dimensions: $||r||_2 = (||r||_2)^2$
 $||r||_2 = \sqrt{r_j^2 + r_j^2 + r_j^2}$ = $(\sqrt{\frac{5}{5}} r_j^2)$

L₁: all values are equal.

 $||r||_2 = \sqrt{r_1^2 + r_2^2 + r_4^2}$

in 4-dimensions:

- L₂: bigger values are more important (because of squaring).
- $-L_{\infty}$: only biggest value is important.

Last Time: K-Means Clustering

- We want to cluster data:
 - Assign objects to groups.
- K-means clustering:
 - Define groups by "means"
 - Assign objects to nearest mean.
 (Then update means during training.)
- Also used for vector quantization:
 - Use means as prototypes of groups.

K-Means Initialization

K-means is fast but sensitive to initialization.

- Classic approach to initialization: random restarts.
 - Run to convergence using different random initializations.
 - Choose the one that minimizes average squared distance of data to means.

- Newer approach: k-means++
 - Random initialization that prefers means that are far apart.
 - Yields provable bounds on expected approximation ratio.

- Steps of k-means++:
 - 1. Select initial mean w_1 as a random x_i .
 - 2. Compute distance d_{ic} of each object x_i to each mean w_c .

$$d_{ic} = \sqrt{\frac{2}{2}(x_{ij} - w_{cj})^2} = ||x_i - w_c||_2$$

3. For each object 'i' set d_i to the distance to the closest mean.

4. Choose next mean by sampling an example 'i' proportional to $(d_i)^2$.

Expected approximation ratio is O(log(k)).

Pi
$$\propto d_1^2 = \gamma p_i = d_i^2$$
 Can be we k-means.

Sig(k)).

Probability that we choose x_i as next mean

In this case: just 2 iterations!

Shape of K-Means Clusters

K-Means with Non-Convex Clusters

K-Means with Non-Convex Clusters

K-means cannot separate non-convex clusters

K-Means with Non-Convex Clusters

K-means cannot separate non-convex clusters

Though over-clustering can help (next class)

Application: Elephant Range Map

- Find habitat area of African elephants.
 - Useful for assessing/protecting population.
- Build clusters from observations of locations.
- Clusters are non-convex:
 - affected by vegetation, mountains, rivers, water access, etc.
- We don't want to "partition" data:
 - Some points have no cluster.

Motivation for Density-Based Clustering

- Density-based clustering:
 - Clusters are defined by all the objects in "dense" regions.
 - Objects in non-dense regions don't get clustered.
- It's a non-parametric clustering method:
 - Clusters can become more complicated the more data we have.
 - No fixed number of clusters 'k'.

Other Potential Applications

- Where are high crime regions of a city?
- Where should taxis patrol?
- Which products are similar to this one?
- Which pictures are in the same place?
- Where can protein 'dock'?

- Density-based clustering algorithm (DBSCAN) has two parameters:
 - Radius: minimum distance between points to be considered 'close'.
 - Objects within this radius are called "reachable".

- Density-based clustering algorithm (DBSCAN) has two parameters:
 - Radius: minimum distance between points to be considered 'close'.
 - Objects within this radius are called "reachable".

- Density-based clustering algorithm (DBSCAN) has two parameters:
 - Radius: maximum distance between points to be considered 'close'.
 - Objects within this radius are called "reachable".
 - MinPoints: number of reachable points needed to define a cluster.
 - If you have minPoints "reachable points", you are called a "core" point.

Density-Based Clustering in Action

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

- Each "core" point defines a cluster:
 - Consisting of "core" point and all its "reachable" points.
- Merge clusters if "core" points are "reachable" from each other.

Pseudocode for DBSCAN:

- For each example x_i :
 - If x_i is already assigned to a cluster, do nothing.
 - Test whether x_i is a 'core' point (less than minPoints neighbours with distances \leq 'r').
 - If x_i is not core point, do nothing.
 - If x_i is a core point, "expand" cluster.
- "Expand" cluster function:
 - Assign all x_i within distance 'r' of core point x_i to cluster.
 - For each newly-assigned neighbour x_i that is a core point, "expand" cluster.

Density-Based Clustering Issues

- Some points are not assigned to a cluster.
 - Good or bad, depending on the application.
- Ambiguity of "non-core" (boundary) points:

- Sensitive to the choice of radius and minPoints.
 - Otherwise, not sensitive to initialization (except for boundaries).

- If you get a new example, finding cluster is expensive.
 - Need to compute distances to training points.
- In high-dimensions, need a lot of points to 'fill' the space.

Summary

Norms:

Ways to measure "size" in higher dimensions.

K-means++:

- Randomized initialization of k-means with good expected performance.
- Shape of K-means clusters:
 - Intersection of half-spaces, which forms convex sets.
- Density-based clustering:
 - "Expand" and "merge" dense regions of points to find clusters.
 - Useful for finding non-convex connected clusters.

Next time:

• Discovering the tree of life.