Clustering

Unsupervised learning: describing data

Dimensionality Reduction

Developing new data representations

- Feature subset selection
- Feature projections
- Supervised approaches

2

Density Estimation

Quantifying data distributions

Clustering

Grouping similar data

Other Unsupervised Learning Tools

- Histograms
- Nonparametric density estimation
- Parametric models

- Hierarchical
- Centroid-based
- Distribution-based
- Density-based

- Anomaly detection
- Representation learning
- Generative models

K-Means Gaussian **Mixture** Models (GMMS)

Clustering and Density Estimation (GMMS)

Clustering

Looks like 2 clusters...

Clustering

feature 1

How do we define "similarity"?

How do we choose the number of clusters?

Example Applications

Customer segmentation for market research

Social network analysis and identifying communities

Crime tracking to identify hot spots for certain types of crimes

Types of clustering algorithms

Methods

Distribution-based clustering (e.g. Gaussian mixture model)

Centroid-based clustering (e.g. K-Means)

Density-based clustering (e.g. DBSCAN)

Hierarchical clustering (e.g. agglomerative clustering)

a.k.a. connectivity-based clustering

Cluster assignment

Hard clustering

Soft clustering (a.k.a. fuzzy clustering)

- Select k and randomly initialize k mean values
- Assign observations to the nearest mean

Lecture 19

- Select k and randomly initialize k mean values
- Assign observations to the nearest mean
- Update the mean to be the centroid of the labeled data

feature 1

- Select k and randomly initialize k mean values
- Assign observations to the nearest mean
- Update the mean to be the centroid of the labeled data
- Repeat steps 2 and 3 unti convergence

eature i

- Select k and randomly initial k mean values
- Assign observations to the nearest mean
- Update the mean to be the centroid of the labeled data
- Repeat steps 2 and 3 unti convergence

...Iteration 2

atare i

- Select k and randomly initialize k mean values
- Assign observations to the nearest mean
- Update the mean to be the centroid of the labeled data
- Repeat steps 2 and 3 unti convergence

...Iteration 2

Lecture 19

- Select k and randomly initialize k mean values
- Assign observations to the nearest mean
- Update the mean to be the centroid of the labeled data
- Repeat steps 2 and 3 unti convergence

...Iteration 3

Lecture 19

- Select k and randomly initialize k mean values
- Assign observations to the nearest mean
- Update the mean to be the centroid of the labeled data
- Repeat steps 2 and 3 unti convergence

...Iteration 3

- Select k and randomly initialize k mean values
- Assign observations to the nearest mean
- Update the mean to be the centroid of the labeled data
- Repeat steps 2 and 3 unti convergence

...converged

K-means partitions the space into Voronoi cells

Under the hood, we minimize a cost function

Objective: For our N samples, identify K means, μ_k , such that the set of closest points in feature space are the minimum distance away.

$$r_{ik} = egin{cases} 1 & ext{ if } oldsymbol{x}_i ext{ is closest to the kth mean } oldsymbol{\mu}_k \ 0 & ext{ else} \end{cases}$$
 responsibility $C(oldsymbol{x}_i, oldsymbol{\mu}_1, oldsymbol{\mu}_2, \dots, oldsymbol{\mu}_K) = \sum_{i=1}^N \sum_{k=1}^K r_{ik} \|oldsymbol{x}_i - oldsymbol{\mu}_k \|_2^2$

1. E-step

Re-evaluate r_{ik}

$$r_{ik} = \begin{cases} 1 \text{ if } x_i \text{ is closest to the kth mean } \mu_i \\ 0 \text{ else} \end{cases}$$

Assign new "expected" cluster assignments

2. M-step

Minimize C wrt μ_i

$$\boldsymbol{\mu}_k = \frac{\sum_i r_{ik} \, \boldsymbol{x}_i}{\sum_i r_{ik}}$$

Update the cluster means to maximize the likelihood

Convergence

Bishop, Pattern Recognition, 2006

Relationship to Gaussian distributions

Assumes the clusters are **Gaussians** centered at the mean, each with identical covariance matrices, where all the features are independent:

$$\mathbf{\Sigma}_{\mathbf{k}} = \sigma^2 \mathbf{I} = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}$$

feature 1

Examples: K-Means

Converges very quickly

Sensitive to initialization of means

Struggles when there are **nonlinear** boundaries between clusters

Struggles in situations with variation in cluster variance and correlation between features

Excels with clusters of equal variance

Will divide into k clusters even when there are not k

Relaxing our assumptions on covariance...

What if we don't assume the Gaussian clusters have identical, diagonal covariance matrices?

Lecture 19

Examples: GMM

Can produce soft clustering

Estimates the density / distribution of the data

Struggles when the clusters are not approximately Gaussian

Excels in situations with variation in cluster variance and correlation between features

Excels with clusters of equal variance

Will divide into k clusters even when there are not k

How to choose k: Elbow method

Run k-means for various k

Choose the value of k at the "elbow" of the curve

Increasing k will improve the fit, but at the cost of potentially overfitting the data

Other approaches: silhouette (graphical approach to evaluating cluster fit), supervised techniques

Cluster evaluation considerations:

- Within-cluster cohesion (compactness)
- Between-cluster separation (isolation)

Image by Robert Gove: https://bl.ocks.org/rpgove/0060ff3b656618e9136b

Silhouette Score

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(i) mean distance between i and all other data points in the **same cluster**

b(i) smallest mean distance of i to all points in any other cluster

$$a(i) = \frac{1}{2}(d_1 + d_2)$$

$$b(i) = d_*$$

 $Image\ source:\ https://scikit-leam.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html$

Process for selecting a clustering approach

- 1. Apply clustering metrics to narrow down model parameter choices
- 2. Visualize the clusters (using dimensionality reduction techniques)
- Use domain knowledge to determine whether the clusters make sense or add information to the business or scientific task
- 4. (optional) Check cluster stability (are the clusters consistent across runs)
- 5. (optional) Consider efficiency (will the model scale with larger datasets)

Types of clustering algorithms

Methods

Distribution-based clustering (e.g. Gaussian mixture model)

Centroid-based clustering (e.g. **K-Means**)

Density-based clustering (e.g. DBSCAN)

Hierarchical clustering (e.g. agglomerative clustering)

Graph-based clustering (e.g. spectral clustering)

Cluster assignment

Hard clustering
Soft clustering (a.k.a. fuzzy clustering)

Agglomerative Clustering

DBSCAN

Spectral Clustering

Hierarchical Clustering

agglomerative (bottom-up) clustering divisive (top-down) clustering

Agglomerative clustering components

Distance metric

How we measure distance/dissimilarity

Euclidean distance (L₂ norm)

$$D(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_2$$

Squared Euclidean distance

$$D(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_2^2$$

Manhattan distance (L₁ norm)

$$D(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_1$$

Maximum distance

$$D(\boldsymbol{a}, \boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_{\infty}$$
$$= \max_{i} |a_{i} - b_{i}|$$

Linkage criterion

How to measure distance/dissimilarity between groups or sets

Complete = maximum intercluster dissimilarity

Single = minimum intercluster dissimilarity

Average = average intercluster dissimilarity (calculate the dissimilarity between all pairs of points, take the average)

Centroid = dissimilarity between cluster centroids

Agglomerative clustering

With complete linkage and Euclidean distance

Algorithm:

- 1. Select a measure of dissimilarity and linkage
- 2. Set each observation as a unique cluster
- 3. Group the two closest clusters together
- 4. Repeat until there is only one cluster

Image from James et al., Introduction to Statistical Learning, 2013

Agglomerative clustering

With complete linkage and Euclidean distance

Algorithm:

- 1. Select a measure of dissimilarity and linkage
- 2. Set each observation as a unique cluster
- 3. Group the two closest clusters together
- 4. Repeat until there is only one cluster

Image from James et al., Introduction to Statistical Learning, 2013

Agglomerative clustering

With complete linkage and Euclidean distance

Algorithm:

- 1. Select a measure of dissimilarity and linkage
- 2. Set each observation as a unique cluster
- 3. Group the two closest clusters together
- 4. Repeat until there is only one cluster

Image from James et al., Introduction to Statistical Learning, 2013

Example of agglomerative clustering

With complete linkage and Euclidean distance

Dendrogram cut for 2 clusters

Dendrogram cut for 3 clusters

Note: colors do not directly map to plot on the left

Image from James et al., Introduction to Statistical Learning, 2013

Examples:Agglomerative clustering

Need to choose where to cut the dendrogram

Can be slow since all pairwise distances between clusters need to be evaluated

Performs well when clusters are well-separated

Struggles when intercluster distance is not sufficient to distinguish between clusters

 Kyle Bradbury
 Clustering

 Lecture 19
 39

DBSCAN Clustering

Density-based spatial clustering of applications with noise

By Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu, 1996

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- **Noise**: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- **Noise**: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- Border: a non-core point that neighbors a core point
- **Noise**: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- Border: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- Border: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

Parameters:

- 1. Distance measure
- 2. The radius of a neighbor, ϵ
- 3. 'minPts': The number of neighbors for a point to be considered a core point

Types of points:

- Core: a point with at least minPts neighbors
- **Border**: a non-core point that neighbors a core point
- Noise: Other points

Algorithm:

- 1. Label core and border points
- 2. Group neighboring core points
- 3. Add border points that are neighbors of core points

- The number of clusters is chosen as part of the algorithm
- Can find arbitrarily shaped clusters
- Robust to outliers

- Cannot handle significant variation in cluster density
- Not entirely deterministic (border points reachable from more than one cluster may be assigned to either)

Examples: DBSCAN

Need to choose the density parameters

Does not require selecting the number of clusters beforehand

Graph-based clustering based on data similarity

Focuses on **connectedness** instead of compactness

The location alone does not determine **similarity** or "**affinity**"

These two points are likely connected by a cluster

These two points are NOT likely connected by a cluster

feature 1

Concept from Sebastian Thrun and Peter Norvig

feature 2

Define **similarity** or **affinity** as the opposite of distance:

$$A(\boldsymbol{a},\boldsymbol{b}) = -d(\boldsymbol{a},\boldsymbol{b})$$

For example, using Euclidean distance, we could define affinity as:

$$A(a, b) = -\|a - b\|_2$$

feature 1

Concept from Sebastian Thrun and Peter Norvig

Affinity Matrix (A)

	x_1	x_2	x_3	x_4	x_5	x_6
x_1	0	1	1	0	0	0
x_2	1	0	1	0	0	1
x_3	1	1	0	1	0	0
x_4	0	0	7	0	7	1
x_5	0	0	0	1	0	1
x_6	0	1	0	1	1	0

If distance between points < threshold, consider there to be an "edge" connecting them in the graph

A vertex is not connected to itself

Degree Matrix (D)

	x_1	x_2	x_3	x_4	x_5	x_6
x_1	2	0	0	0	0	0
x_2	0	3	0	0	0	0
x_3	0	0	3	0	0	0
x_4	0	0	0	က	0	0
x_5	0	0	0	0	2	0
x_6	0	0	0	0	0	3

The sum of edges connected to each vertex

Concept from Sebastian Thrun and Peter Norvig

Degree Matrix (D)

	x_1	x_2	x_3	x_4	x_5	x_6
x_1	2	0	0	0	0	0
x_2	0	ന	0	0	0	0
χ_3	0	0	ന	0	0	0
χ_4	0	0	0	3	0	0
x_5	0	0	0	0	3	0
x_6	0	0	0	0	0	2

Affinity Matrix (A)

	x_1	x_2	x_3	x_4	x_5	x_6
x_1	0	1	1	0	0	0
x_2	1	0	1	0	0	1
x_3	1	1	0	7	0	0
χ_4	0	0	1	0	1	1
x_5	0	0	0	1	0	1
<i>x</i> ₆	0	1	0	1	1	0

Graph Laplacian Matrix (L)

D

A

Graph Laplacian Matrix (L)

x_2 x_3 x_4 x_5 x_6 x_1 0 3 χ_2 0 x_3 3 0 0 3 χ_4 x_5 0 ()3 χ_6 0

Eigenvectors of L

\mathbf{u}_1	\mathbf{u}_2	\mathbf{u}_3	\mathbf{u}_4	\mathbf{u}_5	\mathbf{u}_6
0.4	0.6	0.0	0.6	0.3	0.0
0.4	0.3	0.4	-0.4	-0.5	0.5
0.4	0.3	-0.4	-0.4	-0.1	-0.6
0.4	-0.3	-0.5	-0.1	0.3	0.6
0.3	-0.4	-0.2	0.5	-0.6	-0.1
0.5	-0.5	0.5	-0.1	0.4	-0.3

$$\lambda_i = \begin{bmatrix} -0.1 & 1.0 & 2.7 & 3.3 & 4.1 & 4.8 \end{bmatrix}$$

Eigenvalues of L

Get the eigenvectors of the Laplacian matrix, cluster points based on the eigenvectors (typically using k-means)

feature

Algorithm

- Construct a graph representation of your data
- 2. Perform clustering based on the eigenvalues of the Laplacian matrix (often with K-means)

feature 1

Concept from Sebastian Thrun and Peter Norvig

Examples: Spectral Clustering

Makes few assumptions about data, so often produces good clustering results

Slow for large datasets

Requires specifying number of clusters

DBSCAN

K-Means

Types of clustering algorithms

Methods

Distribution-based clustering (e.g. Gaussian mixture model)

Centroid-based clustering (e.g. **K-Means**)

Density-based clustering (e.g. **DBSCAN**)

Hierarchical clustering (e.g. agglomerative clustering)

Graph-based clustering (e.g. spectral clustering)

Cluster assignment

Hard clustering
Soft clustering (a.k.a. fuzzy clustering)

Clustering choices:

- 1. How should the data be scaled?
- 2. How many clusters to estimate?
- 3. How do we measure dissimilarity?
- 4. How do we evaluate "fit" of the clusters?