EECE 2322: Fundamentals of Digital Design and Computer Organization Lecture 10_3: Finite State Machine

Xiaolin Xu Department of ECE Northeastern University

Sequential Logic

- Sequential circuits: all circuits that aren't combinational
- A problematic circuit:

- No inputs and 1-3 outputs
- Un-stable circuit, always oscillating

- Period depends on the number of inverters and their delay
- It has a *cyclic path*: output fed back to input

Synchronous Sequential Logic Design

- Breaks cyclic paths by inserting registers
- Registers contain state of the system
- State changes at clock edge: system synchronized to the clock
- Rules of synchronous sequential circuit composition:
 - Every circuit element is either a register or a combinational circuit
 - At least one circuit element is a register
 - All registers receive the same clock signal
 - Every cyclic path contains at least one register
- Two common synchronous sequential circuits
 - Finite State Machines (FSMs)
 - Pipelines

Finite State Machine (FSM)

- Consists of:
 - State register
 - Stores current state
 - Loads next state at clock edge
 - Combinational logic (CL)
 - Computes the next state
 - Computes the outputs

Logic

Finite State Machines (FSMs)

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - Moore FSM: outputs depend only on current state
 - Mealy FSM: outputs depend on current state and inputs

Moore FSM

Mealy FSM

Moore State Machine

output = G(current state)

Mealy State Machine

- * next state = F(input, current state)
- output = G(input, current state)

Mealy State Machine with Pipelined Outputs

Revisiting an FSM Example

- Traffic light controller
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)
 - Lights: L_A , L_B

FSM Black Box

- Inputs: CLK, Reset, T_A , T_B
- Outputs: L_A , L_B

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

State Transition Table

Current State	Inp	Next State	
S	T_A	T_B	S'
S0	0	X	
S0	1	X	
S1	X	X	
S2	X	0	
S2	X	1	
S3	X	X	

FSM State Transition Table

Current			Next
State	Inp	outs	State
S	T_A	T_B	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

FSM Encoded State Transition Table

Current State		Inputs		Next State	
S_1	S_0	T_A	T_B	S' ₁	S'_0
0	0	0	X		
0	0	1	X		
0	1	X	X		
1	0	X	0		
1	0	X	1		
1	1	X	X		

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM Encoded State Transition Table

Curren	t State	Inp	uts	Next	State
S_1	S_0	T_A	T_B	S' ₁	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

$$S'_1 = ?$$

 $S'_0 = ?$

$$S'_0 = ?$$

FSM Encoded State Transition Table

Curren	t State	Inp	uts	Next	State
S_1	S_0	T_A	T_B	S' ₁	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

$$S'_{1} = S_{1} \oplus S_{0}$$

$$S'_{0} = \overline{S_{1}S_{0}T_{A}} + S_{1}\overline{S_{0}T_{B}}$$

FSM Output Table

Current State			Out	outs	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0				
0	1				
1	0				
1	1				

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S}_1 S_0$$

$$L_{B1} = \overline{S}_1$$

$$L_{B0} = S_1 S_0$$

Curren	t State		Outr	outs	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

FSM Schematic: State Register

$$S'_1 = S_1 \oplus S_0$$

$$S'_0 = \overline{S_1} \overline{S_0} \overline{T_A} + S_1 \overline{S_0} \overline{T_B}$$

state register

FSM Schematic: Next State Logic

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S}_1 S_0$$

$$L_{B1} = \overline{S}_1$$

$$L_{B0} = S_1 S_0$$

inputs

next state logic

state register

FSM Schematic: Output Logic

EECE2322 Xiaolin Xu

FSM Timing Diagram

Xiaolin Xu

FSM Timing Diagram

FSM State Encoding Methods

• Binary encoding:

- i.e., for four states, 00, 01, 10, 11
- One-hot encoding
 - One state bit per state
 - Only one state bit HIGH at once
 - i.e., for 4 states, 0001, 0010, 0100, 1000
 - Requires more flip-flops
 - Often next state and output logic is simpler