$Exercices\ MP/MP^*$ $\'Equations\ diff\'erentielles\ lin\'eaires$ Exercice 1. Résoudre, sur un intervalle à préciser,

$$y'' + 2xy' + (1+x^2)y = 0.$$

On pourra chercher φ de classe C^1 telle que si $u(y) = y' + \varphi y$, alors $u \circ u(y) = y'' + 2xy' + (1+x^2)y$.

Exercice 2. Résoudre, sur un intervalle I à préciser,

$$\begin{cases} tx' = x - 3y + 3z, \\ ty' = -2x - 6y + 13z, \\ tz' = -x - 4y + 8z. \end{cases}$$

Exercice 3. Soit $A \in \mathcal{A}_n(\mathbb{R})$ antisymétrique et V'(x) = AV(x).

- 1. Soit $u \in \mathbb{R}^n$, et V solution de l'équation différentielle telle que V(0) = u. Évaluer $\|V(x)\|_2$.
- 2. Soit (V_1, \ldots, V_n) n solutions de l'équation différentielle. Évaluer

$$\det_B(V_1(x),\ldots,V_n(x))=W(x),$$

où B désigne une base orthonormée directe.

3. À quelle condition nécessaire et suffisante existe-t-il $u \in \mathbb{R}^n$ tel que pour tout $x \in \mathbb{R}$, (u, V(x)) est liée?

Exercice 4. Résoudre, sur un intervalle à préciser, le système différentiel

$$\begin{cases} x' = -4x - 2y + \frac{2}{e^t - 1}, \\ y' = 6x + 3y - \frac{3}{e^t - 1}. \end{cases}$$

Exercice 5. Pour $\lambda \in \mathbb{R}$, on considère l'équation différentielle

$$xf'(x) + \lambda f(x) = \frac{1}{x+1}.$$

- 1. Déterminer les solutions de cette équation différentielle qui ont une limite finie en 0, et les solutions développables en séries entières (au voisinage de 0).
- 2. Calcular $S = \sum_{n \in \mathbb{N}} \frac{(-1)^n}{8^n (3n+1)}$.

Exercice 6. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que pour tout $i \neq j$, $a_{i,j} \geqslant 0$ si et seulement si pour tout $t \in \mathbb{R}_+$, $\exp(tA) \in \mathcal{M}_n(\mathbb{R}_+)$.
- 2. On suppose que l'on est dans ce cas. Soit $f: \mathbb{R}_+ \to (\mathbb{R}_+)^n$, C^0 et soir $x_0 \in (\mathbb{R}_+)^n$. Montrer que l'unique solution du problème de Cauchy

$$\begin{cases} x'(t) = Ax(t) + f(t), \\ x(0 = x_0, \end{cases}$$

prend ses valeurs dans $(\mathbb{R}_+)^n$.

Exercice 7. Soit $n \ge 1$ et f_1, \ldots, f_n n fonctions de [a, b] dans \mathbb{R} , C^0 sur [a, b] et C^{∞} sur [a, b]. On pose

$$W(x) = \begin{vmatrix} f_1(x) & \dots & f_n(x) \\ f'_1(x) & \dots & f'_n(x) \\ \vdots & \vdots & \vdots \\ f_1^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}.$$

Montrer que X ne s'annule pas sur [a,b] si et seulement si $(a_0,\ldots,a_{n-1}) \in \mathcal{C}^0(]a,b[,\mathbb{R})^n$ tel que (f_1,\ldots,f_n) forme une base de solution de $y^{(n)}+a_{n-1}(x)+y^{(n-1)}+\cdots+a_0(x)y=0$.

Exercice 8. Résoudre, en précisant l'intervalle, $y'' + y = |\sin(x)|$.

Exercice 9. Soit $A: A \to \mathcal{A}_n(\mathbb{R})$ continue et $X_0 \in O_n(\mathbb{R})$ et $X: X \to \mathcal{M}_n(\mathbb{R})$ \mathcal{C}^1 solution de X'(t) = A(t)X(t) avec $X(0) = X_0$. Montrer que pour tout $t \in \mathbb{R}$, $X(t) \in O_n(\mathbb{R})$.

Exercice 10. Résoudre 2xy'' + y' - y = 0.

Exercice 11. Résoudre $y'' - y = \frac{1}{\cosh(x)}$.

Exercice 12. Soit $A = \mathcal{M}_n(\mathbb{C})$ telle que pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, $\Re(\lambda) < 0$. Montrer que

$$\lim_{t \to +\infty} \exp(tA) = 0.$$

Exercice 13. Soit f continue périodique de période T > 0. Soit $\omega > 0$. À quelles conditions nécessaires et suffisantes (sur f) existe-t-il une solution T-périodique de $y'' + \omega^2 y = f$?

Exercice 14. Résoudre $x^2y'' - 2x(1-x)y' + 2(1+x)y = 0$.

Exercice 15. Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 telle que $\lim_{t \to +\infty} f'(t) + f(t) = 0$. Montrer que $\lim_{t \to +\infty} f(t) = 0$. Est-ce encore vrai si $\lim_{t \to +\infty} f'(t) - f(t) = 0$?

Exercice 16. Soit $B \in \mathcal{M}_n(\mathbb{K})$ et $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{K})$ solution de pour tout $t \in \mathbb{R}$, A'(t) = A(t)B - BA(t) = [A(t), B] (crochet de Lie). Montrer que pour tout $t \in \mathbb{R}$, A(t) est semblable à A(0).

Exercice 17. Dans $\mathcal{M}_n(\mathbb{K})$, on pose [A, B] = AB - BA. On pose $X_1(t) = \exp(tA)$, $X_2(t) = \exp(tB)X_1(t)$ et $X_3(t) = \exp(-t(A+B))X_2(t)$ pour tout $t \in \mathbb{R}$.

1. Montrer que l'on peut définir $\varphi \colon \mathbb{R} \to \mathcal{M}_n(\mathbb{K})$ de classe \mathcal{C}^1 tel que pour tout $t \in \mathbb{R}$,

$$X_3'(t) = \exp(-t(A+B))\varphi(t)\exp(tB)\exp(tA),$$

et évaluer $\varphi'(t)$.

2. On suppose [A, [A, B]] = [B, [A, B]] = 0. Calculer $\varphi(t)$ puis $X_3(t)$. Montrer enfin que

$$\exp(A+B) = \exp(A)\exp(B)\exp\left(-\frac{1}{2}[B,A]\right).$$

Exercice 18. Soient $p, q: I \to \mathbb{R}$ et y''(x) + p(x)y'(x) + q(x)y = 0. Soit y une solution non nulle de l'équation différentielle. On note $X = \{x \in I | y(x) = 0\}$.

- 1. Montrer que tous les points de X sont isolés.
- 2. Montrer que si I est compact, X est fini.
- 3. Si $I = [a, b[avec \ b \in \mathbb{R} \cup \{+\infty\}, \ si \ X \ est \ infini, \ montrer \ que \ l'on \ peut \ ordonner \ X \ en \ une \ suite \ X = (x_n)_{n \in \mathbb{N}} \ avec \ x_n < x_{n+1}.$

Exercice 19.

- 1. Soient $p, q: I \subset \mathbb{R} \to \mathbb{R}$ continues avec y'' + p(x)y' + q(x)y = 0. Soit (y_1, y_2) une base de solution de l'équation différentielle. Montrer que si a < b sont deux zéros consécutifs de y_1 $(y_1$ ne s'annule pas sur]a, b[), alors y_2 s'annule une seule fois sur]a, b[. Et réciproquement : on dit que les zéros de y_1 et y_2 sont entrelacés.
- 2. Soient $r_1, r_2 : I \to \mathbb{R}$ continues et

$$y'' + r_1 y = 0, y'' + r_2 y = 0.$$

Soit y_1 une solution non nulle de la première équation différentielle. Soient a < b deux zéros consécutifs de y_1 . Soit y_2 une solution de la deuxième équation différentielle. Montrer que y_2 s'annule au moins une fois sur]a,b[.

Application: s'il existe $\omega > 0$ tel que pour tout $t \in I$, $r_1(t) < \omega^2$, montrer que l'écart entre deux zéros consécutifs de y_1 est plus grand que $\frac{\pi}{\omega}$. Et si pour tout $t \in I$, $r_1(t) \geqslant \omega'^2$ avec $\omega' > 0$?

Exercice 20. Soit $p: \mathbb{R} \to \mathbb{R}$ continue T-périodique avec T > 0. Soit l'équation différentielle y'' + py = 0, on note S l'ensemble de ces solutions.

1. Montrer qu'il existe $A \in \mathbb{R}$ tel que pour tout $y \in S$, pour tout $x \in \mathbb{R}$, y(x+2T) - 2Ay(x+T) + y(x) = 0. On pourra étudier

$$\mathcal{T}_T: S \to \mathcal{C}^2(\mathbb{R}, \mathbb{R})$$

$$y \mapsto \mathcal{T}_T(y): \mathbb{R} \to \mathbb{R}$$

$$x \mapsto y(x+T)$$

vérifier que $\mathcal{T}_T \in \mathcal{L}(S)$ et déterminer $\chi_{\mathcal{T}_T}$.

- 2. Montrer que si |A| < 1, alors toutes les solutions de E sont bornées.
- 3. Examiner le cas $|A| \geqslant 1$.

Exercice 21. Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{|x| \to +\infty} f(x) = 0$. Soit y'' - y = f.

- 1. Montrer que l'équation différentielle admet une unique solutions bornée y_0 .
- 2. Évaluer $\lim_{|x|\to+\infty} y_0(x)$.

Exercice 22. Soit $q: [a, +\infty[\to \mathbb{R} \text{ continue et } p[a, +\infty[: \mathbb{R}_+^* \text{ de classe } C^1, \text{ et l'équation différentielle}]$

$$p(t)x'' + p'(t)x'(t) + q(t)x = 0.$$

1. Soit $x: [a, +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ telle que pour tout } t \in [a, +\infty[, (x(t), x'(t)) \neq (0, 0).$ Montrer qu'il existe $r, \theta: [a, +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ telle que pour tout } t \in [a, +\infty[,$

$$p(t)x'(t) = r(t)\cos(\theta(t)),$$

$$x(t) = r(t)\sin(\theta(t)).$$

2. Montrer que l'équation différentielle équivaut à un système

$$\begin{cases} r' = f(r, \theta, t), \\ \theta' = g(r, \theta, t). \end{cases}$$

3. Si p = 1, q > 0 et $\int_a^{+\infty} q(t) dt$ diverge, montrer que x est solution de l'équation différentielle non nulle s'annulant une infinité de fois.

Exercice 23. Soit E un sous-espace vectoriel de dimension $n \in \mathbb{N}^*$ de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$. Montrer l'équivalence

- (i) E est stable par dérivation,
- (ii) il existe $(a_0, \ldots, a_{n-1}) \in \mathbb{C}^n$ tel que E est l'ensemble solution de l'équation différentielle $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = 0$,
- (iii) E est stable par translation, c'est-à-dire que pour tout $a \in \mathbb{R}$, pour tout $f \in E$,

$$\mathcal{T}_a(f): \mathbb{R} \to \mathbb{C}$$

 $x \mapsto f(x+a)$

est dans E.

Exercice 24. Soit

$$E = \{E \in \mathcal{C}^{\infty}([0,1], \mathbb{R}) | f(0) = f(1) = 0\}.$$

Soit $\Delta \in \mathcal{C}^{\infty}([0,1], \mathbb{R}_+^*)$ et

$$v: E \rightarrow \mathcal{C}^{\infty}([0,1], \mathbb{R})$$

 $f \mapsto \frac{1}{\Lambda}f'' = v(f)$

Notons que si $v(f) = \lambda f$ alors $v(f) \in E$.

- 1. Montrer que s'il existe $\lambda \in \mathbb{R}$ et $v \in E \setminus \{0\}$ tel que $v(f) = \lambda f$, alors $\lambda < 0$. Définir un produit scalaire $\langle \cdot, \cdot \rangle$ sur E tel que si $v(f) = \lambda f$ et $v(g) = \mu g$ et $\lambda \neq \mu$ alors $\langle f, g \rangle = 0$.
- 2. On prolonge Δ en $\widetilde{\Delta} \in \mathcal{C}^{\infty}(\mathbb{R}_{+}^{*}, \mathbb{R})$ tel que $\Delta(x) = 1$ pour tout $x \geq 2$. Montrer que pour tout $\gamma < 0$, il existe un unique $f_{\gamma} \in \mathcal{C}^{\infty}(\mathbb{R}_{+}, \mathbb{R})$ tel que $f_{\gamma}(0) = 0$.
- 3. Montrer que f_{γ} admet une suite (dénombrable) de racines simples notées

$$x_0(\gamma) = 0 < x_1(\gamma) < \dots < x_n(\gamma) < \dots,$$

et telle que $\lim_{n\to+\infty} x_n(\gamma) = +\infty$.

4. Montrer que pour tout $n \ge 1$, $\lim_{\gamma \to 0} x_n(\gamma) = +\infty$.