

Mathématiques

Classe: BAC

Chapitre: Fonctions Exponentielles

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 40 min

6 pt

Soit f la fonction définie sur IR par: $f(x) = \frac{x}{x + e^{-x}}$.

On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- **1°)** Soit *g* la fonction définie sur *IR* par $g(x) = e^{-x} + x 1$.
 - a) Dresser le tableau de variation de g.
 - **b)** Montrer que pour tout réel x, $g(x) \ge 0$.
- **2°) a)** Montrer que $\lim_{x \to +\infty} f(x) = 1$ et $\lim_{x \to +\infty} f(x) = 0$. Interpréter graphiquement les résultats.
 - **b)** Montrer que pour tout réel x, $f'(x) = \frac{(x+1)e^{-x}}{(x+e^{-x})^2}$.
 - c) Dresser le tableau de variation de f.
- **3°) a)** Montrer que la droite T: y = x est la tangente à \mathscr{C} au point O.
 - **b)** Vérifier que $x f(x) = \frac{x g(x)}{g(x) + 1}$.
 - c) En déduire la position relative de \mathscr{C} et T.
- **4°)** Dans l'annexe ci-jointe on a tracé la courbe Γ représentative de la fonction u définie sur $]-\infty,0]$ par :

- a) Construire le point $A\left(-1,\frac{1}{1-e}\right)$, ainsi que la tangente à $\mathscr C$ au point A.
- **b)** Tracer \mathscr{C} et T.
- **5°)** Soit *h* la restriction de *f* à l'intervalle $[-1,+\infty]$.
 - **a)** Montrer que h admet une fonction réciproque h^{-1} définie sur $\left[\frac{1}{1-e},1\right[$.
 - **b)** Tracer dans le même repère la courbe \mathscr{C} de h^{-1} .

Exercice 2

(\$ 30 min

6 pt

Soit f une fonction définie sur IR par $f(x) = \frac{x}{e^x + 1}$. On désigne par $\mathscr C$ sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.

On a représenté la courbe Γ , ci-joint, d'une fonction g définie sur IR par $g(x) = (1-x)e^x + 1$.

La courbe Γ coupe l'axe des abscisses en un seule point d'abscisses α.

- **1°)** Par lecture graphique déterminer le signe de g(x).
- **2°) a)** Calculer $\lim_{x \to +\infty} f(x)$. Interpréter graphiquement le résultat.
 - **b)** Montrer que la droite $\Delta : y = x$ est une asymptote à \mathscr{C} au voisinage de $-\infty$.
 - c) Étudier la position de $\mathscr C$ par rapport à Δ .
- **3°) a)** Montrer que pour tout réel x, f(-x) = f(x) x.
 - **b)** Vérifier que $f(\alpha) = \alpha 1$ et que $f(-\alpha) = -1$.
- **4°) a)** Montrer que pour tout réel x, on a : $f'(x) = \frac{g(x)}{(e^x + 1)^2}$, puis dresser le tableau de variation de f.
 - **b)** Vérifier que $f'(-\alpha)=1$, et écrire une équation de la tangente T à $\mathscr C$ au point $B(-\alpha;-1)$.
- **5°) a)** Calculer f'(0).
 - b) Pour tout réel x non nul, soient les points M et M' de C d'abscisses respectives x et -x. Montrer que pour tout réel x non nul la droite (MM') est parallèle à une tangente à C que l'on précisera.
- 6°) Sur le même repère :
 - a) Construire les points $A(\alpha, \alpha-1)$ et $B(-\alpha, -1)$.
 - b) Construire la tangente T.
 - c) Tracer la courbe ℰ et la droite Δ.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000