ヘッセ構造

1

1.1 ヘッセ構造

定義 1.1. (平坦接続). 接続 ▽ は,

$$T(X,Y) \coloneqq \nabla_X Y - \nabla_Y X - [X,Y], \quad R(X,Y)Z \coloneqq \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

がともに0のとき、平坦接続という。多様体と平坦接続の組 (M,∇) を平坦多様体という。

注意 1.2. 極めて当たり前だが、平坦接続はレビチビタ接続と一致するとは限らない. レビチビタ接続は、捩れがなく、計量と整合的なものである.

定義 **1.3.** (アファイン座標系). 平坦接続 ∇ に対して,

$$\nabla_{\partial_i}\partial_j = 0$$

を満たす局所座標系 $\{x_1, \ldots, x_n\}$ を ∇ のアファイン座標系という.

定義 1.4. 多様体 M 上の平坦接続 ∇ と擬リーマン計量 g の組 (∇,g) は D の任意のアファイン座標 $\{x_1,\dots,x_n\}$ に対して ある関数 f で

$$g_{ij} = \partial_i \partial_j F$$

を満たすものが存在する (すなわち, g=Ddf である) とき, ヘッセ構造であるという. またこのとき, g をヘッセ計量, F を g の ∇ に関するポテンシャル, (M,∇,g) をヘッセ多様体という.

注意 1.5. 以降, g は単にリーマン計量とするが, 諸々の結果は擬リーマン計量でも成立する.

定義 1.6. (コシュール型計量). ヘッセ計量 g は、閉 1 次微分形式 ω で

$$g = D\omega$$

を満たすものが存在する時に、コシュール型であるという.

命題 1.7. (M, ∇^f) を平坦多様体, ∇^L をレビチビタ接続とする.

$$\gamma_X Y \coloneqq \nabla_X^L Y - \nabla_X^f Y$$

によりテンソル γ を定める. $\gamma_{\partial_i}\partial_k=\gamma^i_{jk}\partial_i$ により γ^i_{jk} を定める. このとき,

$$\gamma_{ik}^i = \Gamma_{ik}^i$$

が成り立つ.

証明.

$$\gamma_{\partial_j}\partial_k=
abla_{\partial_j}^L\partial_k-
abla_{\partial_j}^f\partial_k$$
なのだが, $abla_{\partial_i}^f\partial_k=0$ である.

命題 1.8.

$$\gamma_{ijk} (:= \gamma_{ij}^l g_{lk}) = \frac{1}{2} (\partial_k g_{ij} + \partial_j g_{ik} - \partial_i g_{jk})$$

が成り立つ.

証明. クリストッフェル記号に対して

$$\Gamma_{ijk} (\coloneqq \Gamma_{ij}^l g_{lk}) = \frac{1}{2} (\partial_k g_{ij} + \partial_j g_{ik} - \partial_i g_{jk})$$

が成り立つことから従う.

命題 1.9. g がヘッセ計量であることと、

$$\partial_j g_{ij} = \partial_i g_{kj}$$

が成り立つことは必要十分である.

証明・⇒. ポテンシャル F を用いて $g_{ij}=\partial_{ij}F$ と表されることから従う. \Leftarrow . $h_j\coloneqq g_{ij}dx^i$ とおくと、 $dh_j=dg_{ij}\wedge dx^i=\sum_{k< i}(\partial_k g_{ij}-\partial_i g_{kj})dx^k\wedge dx^i=0$ となり閉形式であるので、ポアンカレの補題から局所的に適当な関数 φ_j を用いて $h_j=d\varphi_j$ と表される. $h\coloneqq \varphi_j dx^j$ も同様に計算すると dh=0 となるので、再びポアンカレの補題より、適当な関数 φ を用いて局所的に $h=d\varphi$ と表される. すると、 $\partial_i\partial_j\varphi=\partial_i\varphi_j=g_{ij}$ が成り立つ.

命題 1.10. g がヘッセ計量であるならば、

$$\gamma_{jk}^{i} = \frac{1}{2}g^{ir}\partial_{k}g_{rj}, \quad \gamma_{ijk} = \frac{1}{2}\partial_{k}g_{ij}$$

証明.

$$\partial_j g_{ij} = \partial_i g_{kj}$$

が成り立つから.

1.2 双対ヘッセ構造(工事中)

設定 1.11. \mathbb{R}_n^* を \mathbb{R}^n の双対ベクトル空間とする. \mathbb{R}^n の標準アファイン座標系 $\{x_1,\ldots,x_n\}$ (0 を原点として e_1,\ldots,e_n を大域フレームとするアファイン座標)に関する \mathbb{R}_n^* の双対アファイン座標系 (0 を原点とし, e_1,\ldots,e_n の双対基底を大域フレームとする座標系) を $\{x_1^*,\ldots,x_n^*\}$ とする. \mathbb{R}_n^* の標準平坦接続を ∇^{*f} で表すことにする.

定義 1.12. (勾配写像). 領域 $\Omega \subset \mathbb{R}^n$ 上にヘッセ構造 $(\nabla^f.g)$ が与えられている時, Ω から $(\mathbb{R}_n^*, \nabla^{*f})$ への写像 ι を

$$x^*i \circ \iota = -\partial_i \varphi$$

によって (つまり, 局所表示の i 成分が $-\partial_i \varphi$ であるように) さだめる. これを, (Ω, ∇^f, g) から $(\mathbb{R}_n^*, \nabla^{*f})$ への勾配写像という.