Practical work Evaluation Summary: LLM-Based Movie Recommendation Systems

Objective

Evaluate how different LLM prompting strategies affect movie recommendation accuracy, diversity, and novelty. The system uses a decoder-based language model to infer top movie suggestions from a user's historical preferences.

Model Configuration

Attribute	Description		
LLM	microsoft/Phi-3.5-mini-instruct		
Architecture	Decoder-based (small LLM, ~1.8B params)		
Platform	Local inference with Hugging Face		
Device	Apple Mac (MPS backend)		

Dataset

- MovieLens 1M
- Interaction Data: test data mllm fullInteraction
- Metadata: df users ml, df items ml
- Evaluation: 10 users × 120 movie candidates (3 inputs, rest for ground truth)

Model Variants

ID	Name	Strategy Description
S1	Baseline	Input history → predict top 10
S2	Genre-Focused	Match user genres
S 3	Genre-Contrast Diversity	Select unseen or unusual genres
S4	Quality + Novelty	Recommend lesser-known high-quality films
S5	Surprise	High deviation from history to induce surprise
S 6	Motivate Reasoning	Thematically motivated recommendations
S7	Chain-of-Thought Reasoning(COT)	Step-by-step reasoning + thematic alignment

Evaluation Metrics Table

Core Metrics (Averaged over First 10 Users)

Model	Hit Rate	Avg. Rank	нні	Entropy	Gini
S1 (Simple)	1.0000	3.00	0.0104	6.6136	0.0285
S2 (Genre-Focused)	0.8333	4.67	0.1000	3.3219	0.2557
S3 (Diversify + xLSTM)	0.7667	4.00	0.1000	3.3219	0.4427
S4 (Diversify + Noise)	0.1000	10.20	0.1000	3.3219	0.0483
S5 (Surprise)	0.3000	9.40	0.1000	3.3219	0.0817
S6 (Motivate Reasoning)	0.1000	10.60	0.1000	3.3219	0.1924
S7 (Chain-of-Thought)	0.1000	2.10	0.1533	0.5907	0.0104

Recall and NDCG Results

Model	Recall@3/	NDCG@3/ 5	
S1 (Simple)	0.0208	0.2346	
S2 (Genre-Focused)	0.0208	0.1461	
S3 (Diversify + xLSTM)	0.0015	0.0301	
S4 (Diversify + Noise)	0.0008	0.0110	
S5 (Surprise)	0.0079	0.0362	
S6 (Motivate Reasoning)	0.0032	0.0073	
S7 (Chain-of-Thought)	0.0125	0.0098	

System-Level Entropy (Across All Recommendations)

Model	System-Level Entropy
S5 (Surprise)	5.2398
S6 (Motivate Reasoning)	6.0461
S7 (Chain-of-Thought)	3.5850

Summary of Experimental Results

Accuracy

- S1 (Simple) remains the most accurate, with perfect Hit Rate and leading Recall@3 and NDCG@3 but lacks diversity.
- S2 (Genre-Focused) and S3 (Diversify + xLSTM) maintain decent hit rates but underperform in Recall and NDCG, suggesting many irrelevant top results.
- **S7** (**Chain-of-Thought**) excels in **ranking relevance** (Avg. Rank = 2.10) but needs improvement in Recall to surface more relevant items in top positions.

Diversity & Novelty

- **S5** (**Surprise**) and **S6** (**Motivate Reasoning**) offer a good balance between novelty and explanation, reflected in higher system-level entropy and moderate Gini scores.
- **S3** suffers from **over-personalization** (Gini = 0.4427), likely reinforcing niche preferences too strongly.
- S7 (CoT) shows potential in both precision and diversity but needs better coverage to improve hit and recall rates.

Explanation Power

- **S6** and **S7** lead in transparency, generating **natural language rationales** that improve user trust and interpretability.
- S5–S7 prioritize explainability, making them well-suited for human-centered or trust-aware applications, even at the expense of pure accuracy.