대한민국특허청 KOREAN INTELLECTUAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2003-0040550

Application Number

출 원 년 월 일

2003년 06월 23일

Date of Application

JUN 23, 2003

출 원 인

삼성전자주식회사

SAMSUNG ELECTRONICS CO., LTD.

Applicant(s)

2003 Lat 07

16

특 허 청

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2003.06.23

【발명의 명칭】 프리즘 시트, 이의 제조 방법 및 이를 이용한 액정표시장

치

【발명의 영문명칭】 PRISM SHEET, METHOD FOR MANUFACTURING THEREOF AND

LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME

1

【출원인】

【명칭】 삼성전자 주식회사

【출원인코드】 1-1998-104271-3

【대리인】

【성명】 박영우

[대리인코드] 9-1998-000230-2

【포괄위임등록번호】 1999-030203-7

【발명자】

【성명의 국문표기】 한병웅

【성명의 영문표기】HAN, Byung Woong【주민등록번호】730523-1148616

【우편번호】 405-827

【주소】 인천광역시 남동구 구월1동 201-174

【국적】 KR

【발명자】

【성명의 국문표기】 이정환

【성명의 영문표기】LEE, Jeong Hwan【주민등록번호】680702-1069614

【우편번호】 442-708

【주소】 경기도 수원시 팔달구 매탄1동 매탄주공4단지아파트 401동

206호

【국적】 KR

【발명자】

【성명의 국문표기】 박종대

【성명의 영문표기】 PARK, Jong Dae

【주민등록번호】 580916-1058418 【우편번호】 120-180 【주소】 서울특별시 서대문구 창천동 474번지 301호 [국적] KR 【우선권주장】 【출원국명】 KR 【출원종류】 특허 【출원번호】 10-2002-0069777 【출원일자】 2002.11.11 【증명서류】 첨부 【취지】 제42조의 규정에 의하여 위와 같이 출원합니다. 대 특허법 리인 박영 (인) 【수수료】 【기본출원료】 20 면 29,000 원 【가산출원료】 면 27 27,000 원 【우선권주장료】 건 26,000 원 【심사청구료】 항 0 원 0 【합계】 82,000 원 [첨부서류] 1. 요약서·명세서(도면)_1통

【요약서】

[요약]

휘도 및 시야각을 개선한 프리즘 시트, 이의 제조 방법 및 이를 이용한 액정표시장 치가 개시되어 있다. 광을 집광 하여 액정표시장치로 제공하는 기능을 갖는 프리즘 형상의 집광부의 피크 부분의 내각을 둔각의 각도를 갖도록 변경함과 동시에 집광부의 내각의 크기에 대응하여 집광부의 광 굴절률을 변경하여 램프에서 발생한 광의 집광 효율을 증가시킨다. 램프에서 발생한 광의 집광 효율을 증가시켜 디스플레이 장치를 평가하는데 큰 요소로 작용하는 휘도 특성 및 디스플레이 장치를 평가하는데 또 다른 큰 요소로 작용하는 시야각 특성을 향상시킨다.

【대표도】

도 11

【색인어】

프리즘 시트

【명세서】

【발명의 명칭】

프리즘 시트, 이의 제조 방법 및 이를 이용한 액정표시장치{PRISM SHEET, METHOD FOR MANUFACTURING THEREOF AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME}

【도면의 간단한 설명】

도 1은 종래 프리즘 시트를 도시한 개념도이다.

도 2는 종래 프리즘 시트와 입사광의 관계를 도시한 개념도이다.

도 3은 종래 집광부의 피크 부분 사이각이 90°인 프리즘 시트가 적용된 액정표시장 치의 개념도이다.

도 4는 도 3의 확산판의 상면에서 정면 휘도를 측정한 그래프이다.

도 5는 도 4의 90°및 270°절단한 상태에서의 휘도 그래프이다.

도 6은 종래 또 다른 액정표시장치의 개념도이다.

도 7은 종래 에지형 액정표시장치에서 사용되던 프리즘 시트를 직하형 액정표시장 치에 적용하였을 때, 시야각 분포를 도시한 그래프이다.

도 8은 도 7의 90°및 270°부분에서의 휘도를 도시한 그래프이다.

도 9는 본 발명에 의한 프리즘 시트의 부분 절개 사시도이다.

도 10은 도 9의 A 부분 확대도이다.

도 11은 본 발명의 일실시예에 의한 프리즘 시트의 측면도이다.

도 12는 본 발명의 일실시예에 의한 프리즘 시트 중 어느 1 개의 집광부를 도시한 개념도이다.

도 13은 본 발명에 의한 프리즘 시트의 피크 부분에 곡률을 형성한 것을 도시한 개념도이다.

도 14는 본 발명에 의한 프리즘 시트의 후면에 베이스 필름을 형성한 것을 도시한 개념도이다.

도 15는 본 발명의 일실시예에 의해 프리즘 시트를 제조하는 첫 번째 과정을 도시한 개념도이다.

도 16은 광 굴절 박막에 집광부를 형성하는 과정을 도시한 공정도이다.

도 17은 본 발명의 일실시예에 의한 프리즘 시트를 이용한 액정표시장치가 도시되어 있다.

도 18은 프리즘 시트로부터 출사된 광의 시야각을 정면 부분에서 측정한 그래프이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 프리즘 시트, 이의 제조 방법 및 이를 이용한 액정표시장치에 관한 것이다. 특히, 본 발명은 휘도 및 시야각 특성을 크게 향상시킨 프리즘 시트, 이의 제조 방법 및 이를 이용한 액정표시장치에 관한 것이다.

프리즘 시트(prism sheet)는 액정표시장치(Liquid Crystal Display device, LCD)에 사용되는 광학 시트로 널리 알려져 있다. 예를 들면, 미합중국 특허

6,354,709호, "OPTICAL FILM"에는 광을 집광 하는 기능 및 액정표시 패널(LCD panel)의 화소 패턴(pixel pattern)과 간섭되어 발생하는 모아레(moire)를 방지하는 기능을 갖는 프리즘 시트가 설명되어 있다.

- (21) 프리즘 시트는 디스플레이 휘도를 높이기 위해 대부분의 액정표시장치에 적용 될 정도로 폭넓게 사용되고 있다.
- <22> 도 1은 종래 프리즘 시트를 도시한 개념도이다.
- 도 1을 참조하면, 종래 프리즘 시트(100)는 매우 단순한 구성을 갖는다. 프리즘 시트(100)는 매끈한 광입사면(110), 뉘어진 삼각 기둥 형상을 갖는 복수개의 집광부(116)
 가 형성된 광출사면(120) 및 광입사면(110)과 광출사면(120)을 연결하는 측면(130)을 갖는다.
- 이때, 집광부(116) 중 상호 마주보며 연결된 2 개의 면을 제 1 집광면(112) 및 제 2 집광면(114)이라 정의하기로 한다. 종래 프리즘 시트(100)는 제 1 집광면(112) 및 제 2 집광면(114)의 피크 부분에서의 사이각이 90°에서 최적화되어 있다.
- <25> 도 2는 종래 프리즘 시트와 입사광의 관계를 도시한 개념도이다.
- 도 2를 참조하면, 프리즘 시트(100)는 광입사면(110)으로 입사되는 입사광(140)과 제 1 집광면(112) 또는 입사광(140)과 제 2 집광면(114)이 이루는 각도에 따라서 입사광(140)을 반사시키거나 집광 하여 투과시킨다.
- 여를 들면, 프리즘 시트(100)의 집광부(116)의 피크 부분 사이각이 90°이고, 입사 광(140)이 광입사면(110)에 대하여 직각에 가까운 각도로 제 1 집광면(112)에 도달한다고 가정하였을 때, 입사광(140)은 스넬의 법칙에 의해 광입사면(110)을 그대로 통과하여

제 1 집광면(112)에 도달한다. 제 1 집광면(112)에 도달한 입사광(140)은 제 2 집광면(114)으로 직각 반사된다. 이후, 입사광(140)은 제 2 집광면(114)에서 다시 반사된 후 광입사면(110)을 통하여 출사된다.

- <28> 즉, 프리즘 시트(100)의 집광부(116)의 피크 부분 사이각이 90°이고, 입사광(140)이 광입사면(110)과 90°의 각도로 제 1 집광면(112)에 도달할 경우, 입사광(140)은 프리즘 시트(100)를 통과하지 못한다.
- (29) 다르게, 프리즘 시트(100)의 집광부(116)의 피크 부분 사이각이 90°이고, 입사광 (150)이 광입사면(100)에 대하여 예각으로 제 1 집광면(112)에 도달할 경우, 프리즘 시트(100)로 입사된 입사광(150)은 비로소 프리즘 시트(100)로부터 출사될 수 있다.
- 이와 같은 프리즘 시트(100)와 입사광의 관계에 따라서, 프리즘 시트(100)의 집광부(116)의 피크 부분 사이각이 90°로 최적화된 프리즘 시트(100)는 도광판을 사용하는 액정표시장치에 매우 적합하다.
- <31> 도 3은 종래 집광부의 피크 부분 사이각이 90°인 프리즘 시트가 적용된 액정표시장 치의 개념도이다.
- 도 3을 참조하면, 종래 액정표시장치(200)는 램프(210), 도광판(220), 확산판
 (230), 프리즘 시트(100) 및 액정표시패널(250)로 구성된다. 램프(210)에서 발생한 광은 도광판(220), 확산판(230) 및 프리즘 시트(100)를 경유하여 액정표시패널(250)로 공급된다.
- 이때, 램프(210)는 액정표시장치(200)의 부피를 감소시키기 위하여 도광판(220)의 측면(222)쪽에 배치되어 도광판(220)의 측면(222)으로 광을 공급한다. 이와 같은 액정표

시장치(200)는 에지형 액정표시장치라 불린다. 도광판(220)은 공급된 광을 확산판(230)을 향하여 출사하는데, 이때, 도광판(220)으로부터 출사된 광 중 대부분은 도광판(220)의 출사면(224)에 대하여 예각(acute angle)을 갖는다.

- <34> 도 4는 도 3의 확산판의 상면에서 정면 휘도를 측정한 그래프이다. 도 5는 도 4의 90°및 270°를 절단한 상태에서의 휘도 그래프이다.
- 도 4 또는 도 5의 그래프를 참조하면, 도광판(220)의 표면으로부터 출사된 광은 대부분 도광판(220)의 표면에 대하여 수직인 정면 Ø로부터 약 30°정도 기울어진 양쪽 방향으로 출사된다. 도 4에는 최대 휘도가 관측되는 부분에 도면부호 L1 및 L2로 도시되어 있다. 도 5를 참조하면, 도광판의 정면 Ø로부터 약 30°정도 기울어진 2 곳에서 휘도 C가관측된다. 이때, 정면 Ø부분에서는 휘도 C 보다 낮은 휘도 D가 관측된다.
- <36> 이와 같이 정면 휘도가 정면에 대하여 주변부보다 낮을 경우, 디스플레이 품질이 저하되기 때문에 도광판(220)의 상면에는 정면 휘도를 향상하기 위한 확산판(230)이 형 성된다.
- 그러나, 확산판(230)만으로는 정면 휘도를 크게 향상시키기 어렵기 때문에 확산판의 상면에는 프리즘 시트(100)가 배치된다.
- 프리즘 시트(100)는 프리즘 시트(100)의 광입사면(110)에 대하여 예각으로 입사된 광을 굴절시켜 정면 휘도를 크게 향상시킨다. 이처럼 프리즘 시트(100)에 의하여 정면 휘도를 증가시키기 위해서는 프리즘 시트(100)의 제 1 집광면(112) 및 제 2 집광면(114) 의 각도를 90°로 조절하는 것이 바람직하다.
- <39> 도 6은 종래 또 다른 액정표시장치의 개념도이다.

도 6에 도시된 종래 액정표시장치는 복수개의 램프가 병렬 방식으로 배치된 직하형 액정표시장치이다.

- 직하형 액정표시장치(300)는 램프(310), 확산판(320), 도 1에 도시된 프리즘 시트 (100) 및 액정표시패널(330)로 구성된다. 직하형 액정표시장치(300)의 광 경로는 램프 (310), 확산판(320), 프리즘 시트(100) 및 액정표시패널(100)이다.
- (42) 램프(310)는 액정표시패널(330)의 하부에 병렬 방식으로 배치되기 때문에 램프 (310)에서 발생하여 확산판(320)을 통과한 광은 대부분 프리즘 시트(100)의 광입사면에 대하여 수직 방향을 갖고, 나머지 소수 광은 프리즘 시트(100)의 광입사면(110)에 대하여 예각을 갖는다.
- 직하형 액정표시장치는 에지형 액정표시장치와 광 경로가 매우 상이하다. 에지형 액정표시장치의 램프에서 발생한 대부분의 광은 프리즘 시트의 광입사면에 대하여 경사 지게 입사되고, 직하형 액정표시장치의 램프에서 발생한 대부분의 광은 프리즘 시트의 광입사면에 대하여 수직 방향으로 입사된다.
- 직하형 액정표시장치에 사용된 프리즘 시트(100)의 제 1 집광면(112) 및 제 2 집광면(114)의 사이각이 90°일 경우, 확산판(230)으로부터 출사된 광은 프리즘 시트(100)에서 반사된 후, 다시 확산판(230)으로 향한다. 확산판(230)으로 향한 광은 확산판(230)에서 산란되어 소멸되어 손실된다.
- 이는 간단한 실험으로도 입증되는 바, 제 1 집광면(112) 및 제 2 집광면(114)의 사이 이각이 90°인 프리즘 시트(230)의 광입사면에 대하여 90°의 각도로 직진하는 광을 주사

할 경우, 램프(310)에서 발생한 광의 상당량이 프리즘 시트로부터 반사되고 일부만이 프리즘 시트를 통과하는 것을 알 수 있다.

- (46) 결국, 에지형 액정표시장치에서 사용하던 프리즘 시트를 직하형 액정표시장치에 그대로 적용할 경우, 휘도 및 시야각이 크게 저하되고, 휘도 및 시야각이 저하될 경우 직하형 액정표시장치의 디스플레이 성능 또한 크게 저하된다.
- 도 7은 종래 에지형 액정표시장치에서 사용되던 프리즘 시트를 직하형 액정표시장 치에 적용하였을 때, 시야각 분포를 도시한 그래프이다. 도 8은 도 7의 90°및 270°부분 에서의 휘도를 도시한 그래프이다.
- 도 7 또는 도 8을 참조하면, 직하형 액정표시장치의 정면에서는 에지형 액정표시장 치에 비하여 적은 양의 광만이 통과한다. 이는 앞서 언급하였듯이 프리즘 시트에서 대부 분의 광이 반사되었기 때문이다.
- 또한, 도 6 내지 도 8의 그래프를 참조하면, 확산판(320)으로부터 프리즘 시트 (100)에 대하여 수직에 가깝게 입사된 광의 일부는 프리즘 시트와 거의 평행한 방향으로 도 출사된다. 이 부분은 도 7에 도면부호 L3, L4로 도시되어 있고, 도 8에는 도면부호 F 또는 도면부호 G로 도시되어 있다. 프리즘 시트와 거의 평행한 방향으로 출사되는 광은 디스플레이에 이용할 수 없다. 따라서, 프리즘 시트의 집광부의 사이각이 90°인 프리즘 시트는 직하형 액정표시장치에 적용하기 곤란하다.
- (50) 미합중국 특허 6,354,709 "OPTICAL FILM"에는 프리즘 시트의 제 1 집광면 및 제 2 집광면의 각도를 70°~ 110°로 연장한 기술도 개시되어 있다. 그러나, 미합중국 특허 6,354,709에 의하여 프리즘 시트의 광 굴절률을 1.586으로 고정한 상태에서 제 1 집광면

및 제 2 집광면의 각도를 90°에서 110°까지 증가시키더라도 휘도 개선 효과는 극히 작다. 이는 프리즘 시트의 광 굴절률 및 제 1 집광면 및 제 2 집광면에서의 각도가 프리즘 시트의 광학적 특성을 결정하기 때문이다. 그러나, 미합중국 특허 6,354,709에서는 광굴절률을 고려하지 않았기 때문에 여전히 많은 문제점을 갖고 있다.

【발명이 이루고자 하는 기술적 과제】

- 따라서, 본 발명은 이와 같은 종래 기술의 문제점을 감안한 것으로, 본 발명의 제
 1 목적은 광 굴절률 및 집광면의 사이각을 변경하여 시야각 및 휘도를 높인 프리즘 시트
 를 제공한다.
- <52> 본 발명의 제 2 목적은 광 굴절률 및 집광면의 사이각을 변경하여 시야각 및 휘도를 높인 프리즘 시트의 제조 방법을 제공한다.
- <53> 본 발명의 제 3 목적은 광 굴절률 및 집광면의 사이각을 변경한 프리즘 시트를 이용하여 시야각 및 휘도가 개선된 고품질 액정표시장치를 제공함에 있다.

【발명의 구성 및 작용】

이와 같은 본 발명의 제 1 목적을 구현하기 위하여, 본 발명은 광이 입사되는 광입사면, 광입사면과 마주보며 제 1 구간에서는 경사진 제 1 집광면, 제 1 집광면과 연결되며 제 1 구간과 연결된 제 2 구간에서는 역경사진 제 2 집광면을 포함하는 집광부가 반복하여 형성된 광출사면, 광출사면과 광입사면을 연결하는 측면을 포함하며, 집광부의제 1 집광면 및 제 2 집광면이 이루는 사이각은 둔각의 각도를 갖는 프리즘 시트를 제공한다.

또한, 본 발명의 제 2 목적을 구현하기 위하여, 본 발명은 외부에서 가해진 자극에 의하여 경화되는 조건성 경화 물질을 포함하는 유동성 광 굴절 물질을 박막 형태로 가 공하는 단계, 박막에, 제 1 구간에서는 경사진 제 1 집광면, 제 1 구간과 연결된 제 2 구간에서는 역경사진 제 2 집광면이 반복하여 형성되고, 제 1 집광면 및 제 2 집광면의 사이각은 둔각인 집광부를 형성하는 단계 및 조건성 경화 물질을 경화시키는 단계를 포함하는 프리즘 시트의 제조 방법 제공한다.

또한, 본 발명의 제 3 목적을 구현하기 위하여 본 발명은 제 1 광을 발생하는 적어도 1 개의 램프가 병렬 배치된 램프 어셈블리, 제 1 광을 공급받아 확산된 제 2 광을 출사하는 확산 부재, 확산 부재의 상부에 배치되어 제 2 광이 입사되는 광입사면, 제 2 광중 광입사면에 대하여 실질적으로 직각에 가까운 제 3 광을 집광 하여 출사하기 위하여 제 1 구간에서는 경사면을 갖는 제 1 집광면, 제 1 집광면과 연결되며 제 1 구간과 연결된 제 2 구간에서는 역경사면을 갖는 제 2 집광면을 포함하는 집광부가 반복하여 형성되며 제 1 집광면 및 제 2 집광면이 이루는 사이각이 둔각인 광출사면 및 광출사면 및 광업사면을 연결하는 측면을 포함하는 프리즘 시트 및 광출사면으로부터 출사된 제 4 광을 정보가 포함된 제 5 광으로 변환하는 액정표시패널을 포함하는 액정표시장치를 제공한다.

<57> 이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하고자 한다.

도 9는 본 발명에 의한 프리즘 시트의 부분 절개 사시도이다. 도 10은 도 9의 A 부분 확대도이다.

도 10 또는 도 9를 참조하면, 프리즘 시트(400)는 광입사면(410), 광출사면(420) 및 측면(430)으로 구성된다.

- *60> 광입사면(410)은 램프 등에서 발생한 광이 입사되며, 매끄러운 면으로 구성된다. 광출사면(420)은 광입사면(410)과 마주보는 관계를 갖으며, 측면(430)은 광출사면(420) 과 광입사면(410)을 연결한다.
- *61> 광출사면(420)은 광출사면(420)으로부터 연속하여 돌출된 복수개의 집광부(440)를 포함한다. 집광부(440)는 다시 제 1 집광면(442) 및 제 2 집광면(445)으로 구성된다. 제 1 집광면(442) 및 제 2 집광면(445)은 광출사면(420)에 교대로 형성된다.
- <62> 도 11은 본 발명의 일실시예에 의한 프리즘 시트의 측면도이다.
- 도 11을 참조하면, 제 1 집광면(442)은 광출사면(420) 중 제 1 길이를 갖는 제 1 구간에 걸쳐 형성된다. 제 1 집광면(442)은 제 1 높이 H1을 갖으며, 제 1 구간에서는 경 사지도록 형성된다. 이때, 제 1 집광면(442)은 광입사면(410)에 대하여 시계 반대 방향 의 경사각을 갖는다.
- 《64》 제 2 집광면(445)은 제 1 구간으로부터 제 1 길이로 연장된 제 2 구간에 형성된다. 제 2 집광면(445)은 광출사면(420)으로부터 제 1 높이 H1을 갖는 제 1 집광면(442)의 단부와 연결된다. 따라서, 제 2 집광면(445)은 제 1 높이 H1로부터 점차 높이가 낮아져 상기 광출사면(420)에 도달하도록 역경사지게 형성된다. 이때, 제 2 집광면(445)은 광입사면(410)에 대하여 시계 방향의 역경사각을 갖는다. 광입사면(410)에 대하여 제 1 집광면(442)의 경사각 및 광입사면(410)에 대하여 제 2 집광면(445)의 역경사각은 동일하다.

한편, 각각의 집광부(440)에 포함된 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각은 둔각(obtuse angle)을 갖는다. 또한, 프리즘 시트(400)는 집광부(440)의 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각의 크기에 비례하여 증가하는 광 굴절률을 갖는다.

- <66> 이처럼 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 사이각을 둔각으로 형성할 경우, 광입사면(410)에 대하여 실질적으로 90°에 가깝게 입사되는 광은 제 1 집광면(442) 및 제 2 집광면(445)에서 집광 된 후 출사된다.
- 이를 구현하기 위하여, 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각은 90°보다는 크고, 140°보다는 작다. 바람직하게 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각은 110°보다는 크고 140°이하가 되도록 하는 것도 바람직하다. 또한, 집 광부(440)의 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각에 따라서, 집광부 (440)의 광 굴절률은 1.40 ~ 1.70 사이에서 변경된다.
- 도 12는 본 발명의 일실시예에 의한 프리즘 시트 중 어느 1 개의 집광부를 도시한 개념도이다. 도 12에는 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 사 이각에 따라 프리즘 시트(400)의 광입사면(410)에 대하여 직각으로 입사되는 입사광 (450)의 출사각이 도시되어 있다.
- ^{<69>} 도 12를 참조하면, 공기의 광 굴절률 n_a는 1이고, 프리즘 시트의 광 굴절률 n_p는
 1.40에서 1.70 사이에서 선택된다.

<70>이때, 제 1 집광면(442)에 대하여 수직인 법선(Normal, N)과 광입사면(410)에 대하여 90°의 각도로 입사된 입사광(450)이 이루는 각도를 도 12에 도시된 바와 같이 β°라 정의하기로 한다.

- 또한, 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각을 α°라 정의하기로 한다. 또한, 법선 N과 제 1 집광면(442)으로부터 출사된 출사광(455)이 이루는 각도를 γ°(gamma)라 정의하기로 한다. 광입사면(410)에 대하여 수직 방향을 기준으로 제 1 집 광면(442)으로부터 출사된 광이 이루는 각도를 θομν이라 정의하기로 한다.
- <72> 【수학식 1】 프리즘 입사각(β°)= 90°- 2
- <73> 도 12 및 <수학식 1>에서 프리즘 입사각 β° 및 사이각 α°는 모두 도(degree) 단 위이고, 90°는 라디안(radians) 단위로 ^{π/2} 이다.
- <74> 【수학식 2】 프리즘 출사각(γ °)= $\frac{\arcsin(\frac{1}{n_p} \times \sin\beta)}{n_p}$
- 도 12 및 <수학식 2>에서 프리즘 출사각(ɣ°)은 도(degree) 단위이고, n_p는 프리즘 시트(400)의 굴절률이다.
- 이하, <수학식 1>, <수학식 2> 및 <수학식 3>을 통하여 광 굴절률 1.41~1.49, 광 굴절률 1.51~1.59 및 광 굴절률 1.61~1.69에 대하여 도 11 또는 도 12에 도시된 프리 즘 시트(400)의 집광부(440)의 사이각을 79°에서 140°까지 증가시켰을 때, 출사광(455) 과 수직이 이루는 각도 변화를 설명하기로 한다. 이때, 시야각 및 휘도는 출사광(455) 및 수직이 이루는 각도 및 광 굴절률에 따라서 변경된다.

<78> <표 1>은 도 11 또는 도 12에 도시된 프리즘 시트(400)의 광 굴절률을 1.41~1.49
중 어느 하나, 예를 들어, 1.4를 선택하고, 제 1 집광면(442) 및 제 2 집광면(445)의 사이각을 79°에서 140°까지 변경시키면서 프리즘 시트로부터 출사된 광의 분포를 시뮬레이션한 도표이다.

<79> 【丑 1】

프리즘 사이각	프리즘 입사각(β°)	프리즘 출사각(y°)	수직에 대한 출사각(^θ οω)
시-	뮬레이션 조건: 프리즘 굴	절률(n _p) 1.41~1.49, 일	실시예로 1.4
140°	20°	14.14°	5.86°
130°	25°	17.57°	7.43°
125°	27.5°	19.25°	8.24°
122°	29°	20.26°	8.74°
120°	30°	20.92°	9.07°
117°	31.5°	21.91°	9.58°
115°	32.5°	22.56°	9.93°
111°	34.5°	23.86°	10.63°
110°	35°	24.18°	10.81°
105°	37.5°	25.77°	11.72°
103°	38.5°	26.40°	12.09°
101°	39.5°	27.02°	12.47°
100°	40°	27.33°	12.66°
98°	41°	27.94°	13.05°
97°	41.5°	28.25°	13.25°
96°	42°	28.55°	13.44°
90°	45°	30.33°	14.66°
89°	45.5°	30.63°	14.87°
88°	46°	30.92°	15.08°
85°	47.5°	31.78°	15.72°
80°	50°	33.17°	16.82°
79°	50.5°	33.45°	17.05°

전저, <표 1>에서 프리즘 입사각(β°)은 <수학식 1>에서 변수인 사이각(α°)에 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각을 79°에서 140°중에서 선택 된 하나를 대입하여 산출한다. <81> 예를 들면, 사이각(α°)이 110°일 때, 프리즘 입사각(β°)은 90°- (110° 2)에 의하여 35°이다.

- <82> 이어서, <수학식 2>를 이용하여 광입사면(110)에 수직인 방향을 기준으로 프리즘 시트로부터 출사된 광의 각도인 프리즘 출사각(x°)이 산출된다.
- 프리즘 출사각(γ°)을 산출하기 위해서, <수학식 2>에 n_p에 광 굴절률 1.41~1.49
 중 예를 들어, 1.4를 선택하여 대입 및 앞서 산출된 프리즘 입사각(β°)을 대입한다. 예를 들면, 프리즘 출사각(γ°)은 n_p가 1.4이고, 사이각이 110°일 경우,
 arcsin(1/1.4 × sin35°)이고, 이를 계산하면, 24.18°이 산출된다. 이때, 계산은 도(degree)
 단위로 계산한다.
- <84> <수학식 1>에 의하여 프리즘 입사각(β°) 및 프리즘 출사각(γ°)이 산출되면, 수 직에 대한 출사각(θων)을 산출할 수 있다. 수직에 대한 출사각(θων)은 <수학식 3>에 의 하여 산출된다. 예를 들면, 수직에 대한 출사각(θων)은 90°- 110° / 2 -24.18°에 의하여 약 10.81°가 된다.
- 이때, 수직에 대한 출사각(θ_{out})이 0(zero)에 가까울수록 수직 방향 휘도는 크게 증가되고, 수직에 대한 출사각(θ_{out})이 증가할수록 수직 방향 휘도는 감소된다.
- <86> <표 1>을 참조하면, 휘도 분포는 프리즘 시트(400)의 광 굴절률이 1.41~1.49 사이이고, 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각이 60°~90°이내에 포함될 경우, 입사광(450)이 프리즘 시트(400)로부터 출사되기 매우 어렵고, 프리즘 시트(400)로부터 출사되어도 수직과 이루는 각도가 매우 커져 정면시야각 및 정면 휘도가 크게 저하된다.

일반적으로, 도광판을 사용하는 액정표시장치는 도광판으로부터 출사된 각이 도광판의 표면에 대하여 경사진 방향으로 출사되기 때문에 프리즘 시트의 2 개의 집광면의사이각은 90°에서 최적화된다. 반면, 도광판을 사용하지 않는 액정표시장치는 2 개의 집광면의사이각이 90°인 프리즘 시트를 사용할 경우, 오히려 휘도 및 시야각 특성이 크게저하된다.

본 실시예에 의하면, 도광판을 사용하지 않는 액정표시장치에서는 프리즘 시트의 2개의 집광면의 사이각을 90°보다 크고 140°정도가 되도록 함으로써 휘도 및 시야각 특성을 개선할 수 있다. 바람직하게 프리즘 시트의 2개의 집광면의 사이각을 110°보다는 크고 140°이하로 설정함으로써 휘도 및 시야각을 보다 향상시킬 수 있다.

한편, 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각이 140°이상인 구간에서 출사된 광들은 휘도는 증가되지만, 시야각을 크게 감소시 킴으로 액정 TV 등에 적용하여 사용하기에는 바람직하지 않다. 따라서, 제 1 집광면 (442) 및 제 2 집광면(445)의 피크 부분의 사이각이 140°이상인 프리즘 시트는 시야각 특성 보다 휘도 특성이 중요한 액정표시장치에 적용하는 것이 바람직하다.

(90) 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각이 90°보다는 크고 140°보다는 작은 구간 중에서도 특히 90°~ 120°구간에서는 디스플레이에 필요한 휘도가 보다 많이 증가되고, 정면에서의 시야각 분포도 증가된다.

<91> <표 2>는 프리즘 시트의 광 굴절률을 1.51~1.59 중 어느 하나를 선택하고, 도 11 또는 도 12에 도시된 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각을 79°에서 140°까지 변경시키면서 프리즘 시트(400)로부터 출사된 광의 분포를 시뮬레이션한 표이 다.

<92>【班 2】

프리즘 사이각	프리즘 입사각(β°)	프리즘 출사각(y°)	수직에 대한		
			출사각(^θ οш)		
시뮬레이션 조건: 프리즘 굴절률(n _p) 1.51~1.59, 일실시예로 1.5					
140°	20°	13.18°	6.82°		
130°	25°	16.36°	8.63°		
125°	27.5°	· 17.93°	9.57°		
122°	29°	18.85°	10.14°		
120°	30°	19.47°	10.52°		
117°	31.5°	20.38°	11.11°		
115°	32.5°	20.99°	11.51°		
111°	34.5°	22.18°	12.31°		
110°	35°	22.48°	12.51°		
105°	37.5°	23.94°	13.55°		
103°	38.5°	24.52°	13.97°		
101°	39.5°	25.09°	14.40°		
100°	40°	25.37°	14.62°		
98°	41°	25.93°	15.06°		
97°	41.5°	26.21°	15.28°		
96°	42°	26.49°	15.50°		
90°	45°	28.12°	16.87°		
89°	45.5°	28.39°	17.10°		
88°	46°	28.65°	17.34°		
85°	47.5°	29.44°	18.05°		
80°	50°	30.71°	19.28°		
79°	50.5°	30.96°	19.53°		

(93) 먼저, <표 2>에서 프리즘 입사각(β°)은 <수학식 1>에서 변수인 사이각(α°)에 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각을 79°에서 140°중에서 선택 된 하나를 대입하여 산출한다.

여를 들면, 사이각(α°)이 110°일 때, 프리즘 입사각(β°)은 90°- (110° 2)에 의하여 35°이다.

<95>이어서, <수학식 2>를 이용하여 광입사면(110)에 수직인 방향을 기준으로 프리즘 시트로부터 출사된 광의 각도인 프리즘 출사각(ɣ°)이 산출된다.

프리즘 출사각(γ°)을 산출하기 위해서, <수학식 2>에 n_p에 광 굴절률 1.51~1.59
 중 1.5를 선택하여 대입 및 앞서 산출된 프리즘 입사각(β°)을 대입한다. 예를 들면, 프리즘 출사각(γ°)은 n_p가 1.5이고, 사이각이 110°일 경우, arcsin(1.5 × sin35°)이고, 이를 계산하면, 22.48°이 산출된다. 이때, 계산은 도(degree) 단위로 계산한다.

- <97> <수학식 1>에 의하여 프리즘 입사각(β°) 및 프리즘 출사각(γ°)이 산출되면, 수직에 대한 출사각(θων)을 산출할 수 있다. 수직에 대한 출사각(θων)은 <수학식 3>에 의하여 산출된다. 예를 들면, 수직에 대한 출사각(θων)은 90°- 12.52°가 된다.
- 이때, 수직에 대한 출사각(θοω)이 0(zero)에 가까울수록 수직 방향 휘도는 크게 증가되고, 수직에 대한 출사각(θοω)이 증가할수록 수직 방향 휘도는 감소된다.
- <= <표 2>를 참조하면, 휘도 분포는 프리즘 시트(400)의 광 굴절률이 1.51~1.59 사이이고, 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각이 60°~90°이내에 포함될 경우, 입사광(450)이 프리즘 시트(400)로부터 출사되기 매우 어렵고, 프리즘 시트(400)로부터 출사되어도 수직과 이루는 각도가 매우 커져 정면시야각 및 정면 휘도가 크게 저하된다.
- 의반적으로, 도광판을 사용하는 액정표시장치는 도광판으로부터 출사된 각이 도광판의 표면에 대하여 경사진 방향으로 출사되기 때문에 프리즘 시트의 2 개의 집광면의사이각은 90°에서 최적화된다. 반면, 도광판을 사용하지 않는 액정표시장치는 2 개의 집광면의사이각이 90°인 프리즘 시트를 사용할 경우, 오히려 휘도 및 시야각 특성이 크게저하된다.

본 실시예에 의하면, 도광판을 사용하지 않는 액정표시장치에서는 프리즘 시트의 2개의 집광면의 사이각을 90°보다 크고 140°정도가 되도록 함으로써 휘도 및 시야각 특성을 개선할 수 있다. 바람직하게 프리즘 시트의 2개의 집광면의 사이각을 110°보다는 크고 140°이하로 설정함으로써 휘도 및 시야각을 보다 향상시킬 수 있다.

<103> 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각이 90°보다는 크고 140°보다는 작은 구간 중에서도 특히 90°~ 120°구간에서는 디스플레이에 필요한 휘도가 보다 많이 증가되고, 정면에서의 시야각 분포도 증가된다.

<104> <표 3>은 프리즘 시트의 굴절률은 1.61~1.69 사이에서 선택되고, 제 1 집광면 (442) 및 제 2 집광면(445)의 사이각을 79°에서 140°까지 변경시키면서 프리즘 시트로부터 출사된 광의 분포를 시뮬레이션한 표이다.

<105>

[丑 3]

프리즘 사이각	프리즘 입사각(β°)	프리즘 줄사각(ү°)	수직에 대한
			출사각(^θ out)
시뮬	레이션 조건: 프리즘 굴절	률(n _p) 1.61~1.69, 일실시	예로 1.6
140°	20°	6.82°	12.34°
130°	25°	8.63°	15.13°
125°	27.5°	9.57°	16.77°
122°	29°	10.14°	17.63°
120°	30°	10.52°	18.21°
117°	31.5°	11.11°	19.06°
115°	32.5°	11.51°	19.62°
111°	34.5°	12.31°	20.73°
110°	35°	12.51°	21.00°
105°	37.5°	13.55°	22.36°
103°	38.5°	13.97°	22.89°
101°	39.5°	14.40°	23.42°
100°	40°	14.62°	23.68°
98°	41°	15.06°	24.20°
97°	41.5°	15.28°	24.46°
96°	42°	15.50°	24.72°
90°	45°	16.87°	26.23°
89°	45.5°	17.10°	26.47°
88°	46°	17.34°	26.71°
85°	47.5°	18.05°	27.44°
80°	50°	19.28°	28.60°
79°	50.5°	19.53°	28.83°

전저, <표 3>에서 프리즘 입사각(β°)은 <수학식 1>에서 변수인 사이각(α°)에 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각을 79°에서 140°중에서 선택 된 하나를 대입하여 산출한다.

<107>
예를 들면, 사이각(α°)이 110°일 때, 프리즘 입사각(β°)은 90°- (110°)에 의하여 35°이다.

<108> 이어서, <수학식 2>를 이용하여 광입사면(110)에 수직인 방향을 기준으로 프리즘 시트로부터 출사된 광의 각도인 프리즘 출사각(ɣ°)이 산출된다.

" 프리즘 출사각(γ°)을 산출하기 위해서, <수학식 2>에 n_p에 광 굴절률 1.61~1.69 중 1.6을 선택하여 대입 및 앞서 산출된 프리즘 입사각(β°)을 대입한다. 예를 들면, 프 리즘 출사각(γ)은 n_p가 1.5이고, 사이각이 110°일 경우, arcsin(1.6 × sin35°)이고, 이를 계산하면, 21.00°이 산출된다. 이때, 계산은 도(degree) 단위로 계산한다.

- <110> <수학식 1>에 의하여 프리즘 입사각(β°) 및 프리즘 출사각(γ°)이 산출되면, 수 집에 대한 출사각(θων)을 산출할 수 있다. 수직에 대한 출사각(θων)은 <수학식 3>에 의하여 산출된다. 예를 들면, 수직에 대한 출사각(θων)은 90°- 110° 2 21.00°에 의하여 약 14.00°가 된다.
- 이때, 수직에 대한 출사각(θ_{out})이 0(zero)에 가까울수록 수직 방향 휘도는 크게 증가되고, 수직에 대한 출사각(θ_{out})이 증가할수록 수직 방향 휘도는 감소된다.
- <112> <표 3>을 참조하면, 휘도 분포는 프리즘 시트(400)의 광 굴절률이 1.61~1.69 사이이고, 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각이 60°~90°이내에 포함될 경우, 입사광(450)이 프리즘 시트(400)로부터 출사되기 매우 어렵고, 프리즘 시트(400)로부터 출사되어도 수직과 이루는 각도가 매우 커져 정면시야각 및 정면 휘도가 크게 저하된다.
- (*113> 일반적으로, 도광판을 사용하는 액정표시장치는 도광판으로부터 출사된 각이 도광판의 표면에 대하여 경사진 방향으로 출사되기 때문에 프리즘 시트의 2 개의 집광면의사이각은 90°에서 최적화된다. 반면, 도광판을 사용하지 않는 액정표시장치는 2 개의 집광면의사이각이 90°인 프리즘 시트를 사용할 경우, 오히려 휘도 및 시야각 특성이 크게저하된다.

본 실시예에 의하면, 도광판을 사용하지 않는 액정표시장치에서는 프리즘 시트의 2개의 집광면의 사이각을 90°보다 크고 140°정도가 되도록 함으로써 휘도 및 시야각 특성을 개선할 수 있다. 바람직하게 프리즘 시트의 2개의 집광면의 사이각을 110°보다는 크고 140°이하로 설정함으로써 휘도 및 시야각을 보다 향상시킬 수 있다.

- 전편, 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각이 140°이상인 구간에서 출사된 광들은 휘도는 증가되지만, 시야각을 크게 감소시 킴으로 액정 TV 등에 적용하여 사용하기에는 바람직하지 않다. 따라서, 제 1 집광면 (442) 및 제 2 집광면(445)의 피크 부분의 사이각이 140°이상인 프리즘 시트는 시야각 특성 보다 휘도 특성이 중요한 액정표시장치에 적용하는 것이 바람직하다.
- <116>프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 피크 부분의 사이각이 90°보다는 크고 140°보다는 작은 구간 중에서도 특히 90°~ 120°구간에서는 디스플레이에 필요한 휘도가 보다 많이 증가되고, 정면에서의 시야각 분포도 증가된다.
- <117> 도 13은 본 발명에 의한 프리즘 시트의 피크 부분에 곡률을 형성한 것을 도시한 개념도이다.
- <118> 도 13을 참조하면, 프리즘 시트(400)의 제 1 집광면(445) 및 제 2 집광면(442)이 만나는 피크 부분에는 곡면(444)이 형성된다.
- <119> 곡면(444)은 프리즘 시트(400)로부터 출사되는 광의 휘도 분포를 보다 균일하게 형 성한다.
- <120> 이때, 곡면(444)의 투영 길이 W1은 제 1 집광면(442) 및 제 2 집광면(445)의 전체 투영 길이 W2 의 5% ~ 20% 이내가 되도록 하는 것이 바람직하다.

<121> 도 14는 본 발명에 의한 프리즘 시트의 후면에 베이스 필름을 형성한 것을 도시한 개념도이다.

- <122> 도 14를 참조하면, 프리즘 시트(400)는 1. 40 내지 1.70 사이의 광 굴절률을 갖는 물질로 제작하는 것이 바람직하지만, 이와 다르게 프리즘 시트(400)의 후면에 투명하면 서 프리즘 시트(400)와 유사한 광 굴절률을 갖는 베이스 필름(460)을 형성하여도 무방하다.
- 이와 같은 구성을 갖는 프리즘 시트(400)는 폴리카보네이트(polycarbonate), 폴리에스터(polyester), 폴리에틸렌테레프탈레이트(polyethyleneterphthalate, PET) 등의 재질 또는 이들을 혼합한 재질로 이루어질 수 있다.
- <124> 이하, 이와 같은 구성을 갖는 프리즘 시트를 제조하는 과정을 첨부된 도면을 참조
 하여 설명하기로 한다.
- <125> 도 15는 본 발명의 일실시예에 의해 프리즘 시트를 제조하는 첫 번째 과정을 도시한 개념도이다.
- 도 15를 참조하면, 먼저, 베이스 몸체(460)에는 외부에서 가해진 자극에 의하여 경화되는 조건성 경화 물질을 포함하는 유동성 광 굴절 물질(443)이 박막 형태로 도포된다. 이하, 베이스 몸체(460)에 도포된 광 굴절 물질을 광 굴절 박막이라 칭하기로하며, 도면부호 443을 부여하기로 한다.
- 이때, 조건성 경화 물질은 자외선에 의하여 경화되는 자외선 경화 물질을 사용하는 것이 바람직하다. 유동성 광 굴절 물질은 폴리카보네이트(polycarbonate), 폴리에스터 (polyester), 폴리에틸렌테레프탈레이트(polyethyleneterphthalate) 등의 재질 또는 이

들을 혼합한 재질로 이루어진다. 이때, 광 굴절 물질의 광 굴절률은 1.40 ~ 1.70 사이에서 선택하는 하는 것이 바람직하다.

<128> 도 16은 광 굴절 박막에 집광부를 형성하는 과정을 도시한 개념도이다.

- <129> 도 16을 참조하면, 광 굴절 박막(443)의 표면은 도 11에 도시된 집광부의 형상과 반대 형상의 패턴(510)이 표면에 형성된 원통형 스탬퍼(515)에 의하여 가압 된다. 이로 인해, 광 굴절 박막(443)의 표면에는 제 1 길이를 갖는 제 1 구간에서는 경사지고 제 1 높이를 갖는 제 1 집광면(442), 제 1 집광면(442)과 연결되며 제 1 구간으로부터 제 1 길이만큼 연장되고 역경사진 제 2 집광면(445)이 형성된다. 원통형 스탬퍼(515)는 광 굴 절 박막(443)의 표면을 회전하면서 가압 하여 광 굴절 박막(443)의 표면에는 집광부 (440)가 연속적으로 형성된다.
- 신통형 스탬퍼(515)에 의하여 가공된 집광부(440)에는 다시 자외선 주사 장치(530)에 의하여 자외선(535)이 주사된다. 자외선(535)에 의하여 집광부(440)에 포함된 자외선경화 물질은 경화되어 도 11에 도시된 바와 같은 프리즘 시트(400)가 제작된다.
- <131>이때, 프리즘 시트(400)의 제 1 집광면(442) 및 제 2 집광면(445)의 사이각은 둔각이며, 바람직하게 제 1 집광면(442) 및 제 2 집광면(445)의 사이각은 90°보다는 크고 140°보다는 작은 각을 갖는다.
- <132> 도 17은 본 발명의 일실시예에 의한 프리즘 시트를 이용한 액정표시장치가 도시되어 있다.
- <133> 도 17을 참조하면, 액정표시장치(700)는 전체적으로 보아, 램프 어셈블리(710), 확 산판(720), 프리즘 시트(400) 및 액정표시패널 어셈블리(730)로 구성된다.

<134> 램프 어셈블리(710)는 광을 발생시키는 적어도 1 개의 램프(714)로 구성된다. 램프 어셈블리(710)는 복수개의 램프로 구성하는 것이 바람직하며, 각 램프(714)들은 병렬배치된다.

- <135> 이와 같은 구성을 갖는 램프 어셈블리(710)에서 발생한 광은 램프(714)의 사이가 이격 되어 있어 불균일한 휘도를 갖는다. 구체적으로, 휘도는 램프(714)에 가까이 접근 할수록 높으며, 램프(714)와 램프(714)의 사이에서는 상대적으로 낮은 휘도를 갖는다.
- <136>이에도 불구하고 램프(714)들의 상부에서 균일한 휘도를 갖도록 하기 위해, 램프 어셈블리(710)의 상부에는 확산판(720)이 설치된다.
- 확산판(720)은 램프 어셈블리(710)에서 발생한 광을 확산 및 확산판(720)에 대하여
 수직에 가까운 방향을 갖도록 광의 경로를 변경시킨다.
- 확산판(720)의 상부에는 확산판(720)에서 발생한 광을 집광하기 위한 프리즘 시트
 (400)가 설치된다.
- <139> 프리즘 시트(400) 및 이의 제조 방법은 앞서 도 9 이하의 도면을 참조하여, 상세하 게 설명하였음으로 그 중복된 설명은 생략하기로 한다. 이하, 프리즘 시트(400)와 관련 한 부분에 대해서는 앞서 설명한 바와 동일한 명칭 및 도면부호를 사용하기로 한다.
- ~140> 프리즘 시트(400)의 광입사면(410)으로 입사되는 광은 대부분이 확산판(720)에 대하여 직각에 가까운 광학 분포를 갖는다. 프리즘 시트(400)는 집광부(440)의 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각이 둔각, 바람직하게 90°보다는 크고 140°보다는 작게 구성되어 확산판(720)으로부터 출사된 광의 대부분을 집광 하여 출사한다.

이와 다르게 프리즘 시트(400)는 집광부(440)의 제 1 집광면(442) 및 제 2 집광면(445)이 이루는 사이각이 바람직하게 110°보다는 크고 140°보다는 작게 구성될 수 있다.

- <141> 도 18은 프리즘 시트로부터 출사된 광의 시야각을 정면 부분에서 측정한 그래프이다.
- <142> 도 18을 참조하면, 직하형 액정표시장치에서 집광부(440)의 사이각을 조절함으로써, 종래 도 7 또는 도 8에 도시된 바와 같이 프리즘 시트로부터 프리즘 시트 와 거의 평행한 방향으로 출사되는 광들이 존재하지 않고, 이로 인해 도 17에 도시된 프 리즘 시트(400)에서 출사한 광의 휘도는 향상되며, 시야각 또한 개선된다.
- <143> 액정표시패널(700)은 프리즘 시트(400)로부터 출사된 광을 영상이 포함된 이미지광으로 변경한다. 이때, 액정표시패널(700)로 입사되는 광은 액정표시패널(700)에 대하여 직각에 가까운 광이 입사되기 때문에 정면 시야각은 뛰어나며, 휘도가 크게 증가하여 고품질 디스플레이를 수행하게 된다.

【발명의 효과】

- <144> 이상에서 상세하게 설명한 바에 의하면, 프리즘 시트에 형성된 집광부의 사이각 및 사이각에 따라 광 굴절률을 변경하여, 보다 높은 휘도 및 보다 향상된 시야각으로 영상 을 디스플레이 할 수 있도록 하는 효과를 갖는다.
- 소145> 앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖 는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나

지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

【특허청구범위】

【청구항 1】

광이 입사되는 광입사면, 상기 광입사면과 마주보며 제 1 구간에서는 경사진 제 1 집광면, 상기 제 1 집광면과 연결되며 상기 제 1 구간과 연결된 제 2 구간에서는 역경사진 제 2 집광면을 포함하는 집광부가 반복하여 형성된 광출사면, 상기 광출사면과 상기 광입사면을 연결하는 측면을 포함하며, 상기 집광부의 상기 제 1 집광면 및 제 2 집광면이 이루는 사이각은 둔각인 것을 특징으로 하는 프리즘 시트.

【청구항 2】

제 1 항에 있어서, 상기 광입사면에 대하여 실질적으로 직각에 가까운 각도로 입사되는 상기 광을 투과시키기 위해, 상기 사이각은 90°보다는 크고 140°보다는 작으며, 상기 사이각의 크기에 비례하여 상기 집광부의 광 굴절률은 증가되는 것을 특징으로 하는 프리즘 시트.

【청구항 3】

제 2 항에 있어서, 상기 집광부의 상기 광 굴절률은 1.4 ~ 1.7인 것을 특징으로 하는 프리즘 시트.

【청구항 4】

제 1 항에 있어서, 상기 광입사면에 대하여 실질적으로 직각에 가까운 각도로 입사되는 상기 광을 투과하고, 휘도를 보다 향상시키기 위해, 상기 사이각은 90°보다는 크고 140°이하이고, 상기 집광부의 상기 광 굴절률은 1.41 ~ 1.49인 것을 특징으로 하는 프리즘 시트.

【청구항 5】

제 1 항에 있어서, 상기 광입사면에 대하여 실질적으로 직각에 가까운 각도로 입사되는 상기 광을 투과시키기 위해, 상기 사이각은 90°보다는 크고 140°이하이고, 상기 광 굴절률은 1.50 ~ 1.59 사이인 것을 특징으로 하는 프리즘 시트.

【청구항 6】

제 1 항에 있어서, 상기 광입사면에 대하여 실질적으로 직각에 가까운 각도로 입사되는 상기 광을 투과시키기 위해, 상기 사이각은 90°보다는 크고 140°이하이고, 상기 광물률은 1.60 ~ 1.70인 것을 특징으로 하는 프리즘 시트.

【청구항 7】

제 1 항에 있어서, 상기 광입사면에 대하여 실질적으로 직각에 가까운 각도로 입사되는 상기 광을 투과시키기 위해, 상기 사이각은 110°보다는 크고 140°보다는 작으며, 상기 사이각의 크기에 비례하여 상기 집광부의 광 굴절률은 증가되는 것을 특징으로 하는 프리즘 시트.

【청구항 8】

제 1 항에 있어서, 상기 광입사면에는 상기 집광부와 동일한 광 굴절률을 갖는 베이스 몸체가 더 배치되는 것을 특징으로 하는 프리즘 시트.

【청구항 9】

제 1 항에 있어서, 상기 제 1 집광면 및 상기 제 2 집광면의 경계는 곡면 가공된 것을 특징으로 하는 프리즘 시트.

【청구항 10】

제 9 항에 있어서, 상기 곡면 가공된 길이는 상기 집광부의 바닥면 폭에 대하여 5% ~ 20% 인 것을 특징으로 하는 프리즘 시트.

【청구항 11】

제 1 항에 있어서, 상기 집광부는 폴리카보네이트(polycarbonate), 폴리에스터 (polyester), 폴리에틸렌테레프탈레이트(polyethyleneterphthalate)로 구성된 그룹으로 부터 선택된 재질로 이루어지는 것을 특징으로 하는 프리즘 시트.

【청구항 12】

외부에서 가해진 자극에 의하여 경화되는 조건성 경화 물질을 포함하는 유동성 광 굴절 물질을 박막 형태로 가공하는 단계;

상기 박막에, 제 1 구간에서는 경사진 제 1 집광면, 상기 제 1 구간과 연결된 제 2 구간에서는 역경사진 제 2 집광면이 반복하여 형성되고, 상기 제 1 집광면 및 제 2 집 광면의 사이각은 둔각인 집광부를 형성하는 단계; 및

상기 조건성 경화 물질을 경화시키는 단계를 포함하는 것을 특징으로 하는 프리즘 시트의 제조 방법.

【청구항 13】

제 12 항에 있어서, 상기 집광부를 형성하는 단계는 상기 사이각을 90°보다는 크고 140°이하로 형성하는 것을 특징으로 하는 프리즘 시트의 제조 방법.

【청구항 14】

제 12 항에 있어서, 상기 집광부를 형성하는 단계는 상기 사이각을 110°보다는 크고 140°이하로 형성하는 것을 특징으로 하는 프리즘 시트의 제조 방법.

【청구항 15】

제 12 항에 있어서, 상기 조건성 경화 물질을 포함하는 상기 유동성 광 굴절 물질 을 박막 형태로 가공하는 단계 이전에는 상기 유동성 광 굴절 물질의 상기 광 굴절률을 1.4 ~ 1.7 사이에서 조절하는 것을 특징으로 하는 프리즘 시트의 제조 방법.

【청구항 16】

제 12 항에 있어서, 상기 집광부를 형성하는 단계는 상기 사이각을 90°보다는 크고 120°보다는 작게 형성하는 것을 특징으로 하는 프리즘 시트의 제조 방법.

【청구항 17】

제 1 광을 발생하는 적어도 1 개의 램프가 병렬 배치된 램프 어셈블리;

상기 제 1 광을 공급받아 확산된 제 2 광을 출사하는 확산 부재;

상기 확산 부재의 상부에 배치되어 상기 제 2 광이 입사되는 광입사면, 상기 제 2 광 중 상기 광입사면에 대하여 실질적으로 직각에 가까운 제 3 광을 집광 하여 출사하기 위하여 제 1 구간에서는 경사면을 갖는 제 1 집광면, 상기 제 1 집광면과 연결되며 상기 제 1 구간과 연결된 제 2 구간에서는 역경사면을 갖는 제 2 집광면을 포함하는 집광부가 반복하여 형성되며 상기 제 1 집광면 및 제 2 집광면이 이루는 사이각이 둔각인 광출사면 및 상기 광출사면 및 광입사면을 연결하는 측면을 포함하는 프리즘 시트; 및

상기 광출사면으로부터 출사된 제 4 광을 정보가 포함된 제 5 광으로 변환하는 액 정표시패널을 포함하는 것을 특징으로 하는 액정표시장치.

【청구항 18】

제 17 항에 있어서, 상기 사이각은 90°보다는 크고 140°이하인 것을 특징으로 하는 액정표시장치.

【청구항 19】

제 17 항에 있어서, 상기 사이각은 90°보다는 크고 120°이하인 것을 특징으로 하는 액정표시장치.

【청구항 20】

제 17 항에 있어서, 상기 사이각은 110°보다는 크고 140°이하인 것을 특징으로 하는 액정표시장치.

【도면】

[도 1]

[도 2]

[도 3]

【도 4】

[도 5]

[도 6]

[도 7]

[도 8]

[도 9]

1020030040550

【도 10】

【도 11】

【도 12】

1020030040550

출력 일자: 2003/7/16

[도 14]

[도 18]

