Sprawozdanie - Laboratorium 12

Zastosowanie ekstrapolacji Richardsona do całkowania przy użyciu wzorów Simpsona i Milne.

Katarzyna Such, 31.05.2021

1 Wstęp teoretyczny

Ekstrapolacja Richardsona - jest to metoda, która pozawala na rekurencyjne wyznaczenie np. całki lub pochodnej. Tworzy macierz trójkątną dolną wartości całek. Teoretycznie najlepszym przybliżeniem jest $D_{M,M}$, gdzie M to rozmiar macierzy. Kolejne przybliżenia wyznaczamy korzystając ze wzoru (1):

$$D_{w,k} = \frac{4^k D_{w,k-1} - D_{w-1,k-1}}{4^k - 1} \tag{1}$$

Pierwszą kolumnę tablicy wartości całek $D_{n,0}$ wyznaczamy korzystając ze wzoru Simpsona oraz wzoru Milne. Stosowane wzory to kwadratury Newtona - Cotesa.

Kwadratury Newtona - Cotesa - to metody całkowania. Przyjmujemy, że wartości funkcji f(x) są znane w równoodległych węzłach. Funkcję podcałkową przybliżamy (w węzłach) wielomianem Lagrange'a stopnia co najwyżej N. Następnie po dokonaniu obliczeń otrzymujemy współczynniki kwadratury, dzięki którym dostaniemy ostateczne rozwiązanie.

 $\mathbf{Wz\acute{o}r}$ $\mathbf{Simpsona}$ ($\mathbf{parabol}$) - polega na przybliżeniu $\mathbf{f}(\mathbf{x})$ funkcją kwadratową.

Przedział całkowania [a, b] dzielimy na podprzedziały, przybliżamy funkcję f(x) funkcją kwadratową. Następnie obliczamy pola powierzchni pod przybliżeniem i sumujemy wszystkie takie pola. Szerokość podprzedziału:

$$h_w = \frac{b-a}{2^{w+1}}, \quad w = 0, 1, \dots, n$$
 (2)

Liczba podprzedziałów to $N = 2^{w+1}$.

Przybliżenie całki obliczamy korzystając ze wzoru:

$$D_{w,0} = \sum_{i=0}^{N/2-1} \frac{h_w}{3} (f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})), \quad x_j = a + jh_w$$
(3)

 $\mathbf{Wzór}$ \mathbf{Milne} - $\mathbf{f}(\mathbf{x})$ przybliżamy przy pomocy wielomianu 4 stopnia. Postępujemy podobnie jak w metodzie Simpsona. Szerokość podprzedziału:

$$h_w = \frac{b-a}{2^{w+2}}, \quad w = 0, 1, \dots, n$$
 (4)

Liczba podprzedziałów to $N = 2^{w+2}$.

Przybliżenie całki obliczamy korzystając ze wzoru:

$$D_{w,0} = \sum_{i=0}^{N/4-1} \frac{4h_w}{90} \left(7f(x_{4i}) + 32f(x_{4i+1}) + 12f(x_{4i+2}) + 32f(x_{4i+3}) + 7f(x_{4i+4}) \right), \quad x_j = a + jh_w$$
 (5)

Zadanie do wykonania 2

Opis problemu 2.1

W trakcie laboratorium należało obliczyć wartość całki oznaczonej za pomocą kwadratur Newtona-Cotesa (metody Simpsona i Milne'a), każdą z nich rozszerzając o ekstrapolacje Richardsona.

$$I = \int_0^1 f(x) \quad (= -0.186486896), \tag{6}$$

gdzie f(x):

$$f(x) = \ln(x^3 + 3x^2 + x + 0.1)\sin(18x). \tag{7}$$

Dla ustalonego n = 8, tworzymy tablicę D o rozmiarach (n+1)x(n+1) (9x9). Na początku wyznaczaliśmy elementy pierwszej kolumny $D_{w,0}$. W pętli po wierszach $w=0,1,\ldots,n$:

Metoda Simpsona:

Metoda Milne:

- wyznaczamy szerokość podprzedziału (wzór (2)),
- liczba poprzedziałów $N = 2^{w+1}$,
- wzór (3).
- wyznaczamy szerokość podprzedziału (wzór (4)),
- liczba poprzedziałów $N = 2^{w+2}$,
- ullet kolejne elementy tablicy $D_{w,0}$ wyznaczamy stosując ullet kolejne elementy tablicy $D_{w,0}$ wyznaczamy stosując wzór (5).

Dla obydwu metod elementy pozostałych kolumn $(D_{w,k})$ wyznaczamy ze wzoru (1).

Dla obydwu metod do pliku zapisaliśmy wartości z pierwszej kolumny $(D_{w,0})$ oraz wartości na przekątnej $(D_{w,w})$ dla każdego wiersza $w = 0, 1, \dots, n$.

2.2Wyniki

W	$D_{w,0}$	$D_{w,w}$
0	-0.0971410499	-0.0971410499
1	0.4083851989	0.5768939485
2	-0.2209681412	-0.4979290236
3	-0.1880063997	-0.1547412817
4	-0.1865747211	-0.1872519207
5	-0.1864922827	-0.1864826455
6	-0.1864872311	-0.1864869011
7	-0.1864869169	-0.1864868960
8	-0.1864868973	-0.1864868960

Tabela 1: Wartości z pierwszej kolumny $(D_{w,0})$ oraz wartości na przekątnej $(D_{w,w})$, $w=0,1,\ldots,n$, uzyskane za pomocą metody Simpsona oraz ekstrapolacji Richardsona.

Dla metody Simpsona, uzyskano wynik zbieżny (do 8 miejsc po przecinku) z wynikiem teoretycznym (=-0.186486896) po 8 iteracjach. Po rozszerzeniu tej metody o ekstrapolacje Richardsona wynik identyczny z teoretycznym uzyskaliśmy po 7 iteracjach.

w	$D_{w,0}$	$D_{w,w}$
0	0.4420869488	0.4420869488
1	-0.2629250305	-0.4979290236
2	-0.1858089502	-0.1375818946
3	-0.1864792758	-0.1892838357
4	-0.1864867868	-0.1864321619
5	-0.1864868943	-0.1864871836
6	-0.1864868960	-0.1864868957
7	-0.1864868960	-0.1864868960
8	-0.1864868960	-0.1864868960

Tabela 2: Wartości z pierwszej kolumny $(D_{w,0})$ oraz wartości na przekątnej $(D_{w,w})$, $w=0,1,\ldots,n$, uzyskane za pomocą metody Milne oraz ekstrapolacji Richardsona.

Metoda Milne pozwoliła uzyskać zbieżność z wynikiem teoretycznym już po 6 iteracjach. Po rozszerzeniu jej o ekstrapolacje Richardsona zbieżność wyników uzyskaliśmy dopiero po 7 iteracjach. Taka sytuacja jest dość niespodziewana, ponieważ ekstrapolacja powinna poprawiać zbieżność metody.

3 Wnioski

Dzięki stosowaniu metod Simpsona oraz Milne wyznaczyliśmy całkę oznaczoną. Stosując metodę Simpsona nie uzyskaliśmy idealnego przybliżenia, udało nam się uzyskać przybliżenie do 8 miejsc po przecinku (dla 8 iteracji). Jednak po zastosowaniu ekstrapolacji Richardsona uzyskaliśmy zbieżność z wynikiem teoretycznym dla 7 iteracji. Metoda Milne pozwoliła na uzyskanie poprawnego wyniku już po 6 iteracjach. Zauważamy więc, że zbieżność metody Milne jest lepsza od zbieżności metody Simpsona. Zastosowanie ekstrapolacji Richardsona dla metody Milne opóźniło zbieżność.

Różnice w zbieżności metod wynikają z tego, że dla metody Simsona przybliżamy funkcją kwadratową a dla metody Milne wielomianem 4 stopnia. Wyższy stopień wielomianu to szybsza zbieżność.

Wyniki które otrzymaliśmy są zgodne z wynikami podanymi, co świadczy o poprawnym wykonaniu zadania.