College

A First Course in Differential Equations with Modeling Applications, 11th Edition

11th Edition | ISBN: 9781305965720 / 1305965728

1,694 expert-verified solutions in this book

Buy on Amazon.com

< Prev

Exercise 8 ▼

Next >

52

GO

5.0

$$e^{x}y\frac{dy}{dx} = e^{-y} + e^{-2x-y}$$

Rewrite
$$e^{a+b} = e^a e^b \implies e^{-2x-y} = e^{-2x} e^{-y},$$
So
$$e^x y \frac{dy}{dx} = e^{-y} + e^{-2x} e^{-y}$$

Factor so
$$e^{x}y\frac{dy}{dx} = e^{-y}(1 + e^{-2x})$$

Separate the variables

$$y\frac{dy}{e^{-y}} = \frac{(1+e^{-2x})}{e^x}dx$$

Apply $\frac{1}{e^{-n}} = e^n$ and distribute the right side

$$ye^{y}dy = \left(\frac{1}{e^{x}} + \frac{e^{-2x}}{e^{x}}\right)dx$$

Simplify
$$ye^{y}dy = (e^{-x} + e^{-3x})dx$$

Integrating by parts
$$\int ye^y dy$$

$$u = y \Rightarrow du = dy$$

$$dv = e^y dy \Rightarrow v = e^y$$

$$\int ye^y dy = ye^y - \int e^y dy$$

$$\int ye^y dy = ye^y - e^y + C$$
For $\int e^{-x} dx$ and $\int e^{-3x} dx$

$$Apply $\int e^{\pm ax} dx = \pm \frac{1}{a} e^{-ax} + C$
So
$$e^y (y - 1) = -e^{-x} - \frac{1}{3} e^{-3x} + C$$$$

RESULT

$$e^{y}(y-1) = -e^{-x} - \frac{1}{3}e^{-3x} + C$$

seanpcrowley0408

reply ▲ 0 ▼

this was super

Enter your comment here

X²

SUBMIT

We have textbooks in many subjects. Find yours

Search textbooks

1	$e^x y \frac{dy}{dx} = e^{-y} (1 + e^{-2x})$	Rearranging
2	$ye^y dy = \frac{1 + e^{-2x}}{e^x} dx$	Separate the variable
3	$\int y e^y dy = \int \frac{1 + e^{-2x}}{e^x} dx$	Integrate both sides
4	$\int ye^y dy = ye^y - e^y + C$	Use integration by parts to find the integral of $\int ye^y dy$
5	$\int \frac{1 + e^{-2x}}{e^x} dx = \int (e^{-x} + e^{-3x}) dx$ $= -e^{-x} - \frac{1}{3}e^{-3x} + c$	Finding $\int \frac{1+e^{-2x}}{e^x} dx$
6	$e^{y}(y-1) = -e^{-x} - \frac{1}{3}e^{-3x} + C$	Therefore, the solution to the differential equation is as follows
RESHLT		

RESULT

$$e^{y}(y-1) = -e^{-x} - \frac{1}{3}e^{-3x} + C$$

Enter your comment here

x²

SUBMIT

3.7

) 🗩

1

RESULT

see solution

Enter your comment here

x²

SUBMIT

About Terms of Use

>

Meet Our Experts Do Not Sell My Info

Academic Integrity Advertise

Help Center Site Map

Get Slader on

Copyright Slader 2021