Proiect KR 2025

Miruna-Andreea Zăvelcă

Săptămânile 1-7

1 Muntele Olimp

Considerăm 24 de orașe distribuite în jurul Muntelui Olimp conform schemei de mai jos:

Distanța între orașe este distanța între coordonatele punctelor pe grafic. Deci $\cot(1, 2) > \cot(4, 5) > \cot(7, 8)$.

Programul va primi un nod start, o lista de noduri scop, numărul de pași n pe care îi va efectua și algoritmul pe care să îl folosească $(A^* \text{ sau IDA}^*)$:

Nod start	Noduri scop	Nr. pași	Algoritm
12	[1, 20]	1	A*

În funcție de acești parametri modelul va returna lista open după n pași, care va conține ID-ul nodului și \hat{f} -ul acestuia. Dacă între timp a ajuns la un nod scop, în locul liste open vom afisa doar ID-ul acestuia

Output cu rol de exemplu: [7 (5), 16 (6)), 11 (4)]

Output pentru nr pași 5: 1

Evaluare:

Problema valorează 50p împărțite astfel:

- (20p) Utilizarea unei euristici admisibile eficiente. Se acordă doar 10p pentru o euristică admisibilă ineficientă
- (20p) Diferențierea și utilizarea corectă a algoritmilor A* și IDA*
- (10p) Justificarea euristicii alese

2 Nine men's morris (Țintar)

Instrucțiuni joc. Se poate alege orice variație a jocului.

Considerăm că noi mereu mutăm cu x (i.e. x este MAX) iar starea dată este validă. Programul va primi o stare a jocului, un tuplu (n_x,n_0) , unde n_x reprezinta numărul de pioni pe care x îi mai are de pus pe tablă și n_0 numărul de pioni pe care 0 îi mai are de pus pe tablă, algoritmul pe care să îl folosească (MinMax sau AlphaBeta) și adâncimea până la care să aplice acest algoritm. Exemplu pentru tabla de pe Wikipedia:

Stare joc	Piese de pus	Algoritm	Adâncime
[",",",",",",",",",",",",",",",",",",",	(3, 4)	AlphaBeta	3

Programul va returna starea în care ajunge jocul după efectuarea celei mai bune mutări conform restricțiilor date, formatată într-un mod lizibil pentru un om.

Outputul neformatat cu rol de exemplu: [",",",",",'x',",",'0',",'x','v','0','x',",",",'0','x','0','x',",'0',"]

Evaluare:

Problema valorează 50p împărțite astfel:

- (20p) Utilizarea unei euristici admisibile eficiente. Se acordă doar 10p pentru o euristică admisibilă ineficientă
- (20p) Diferențierea și utilizarea corectă a algoritmilor MinMax și AlphaBeta
- (10p) Justificarea euristicii alese

3 Bayesian approach

Aceeași problemă ca mai sus, doar că următoarea mutare trebuie stabilită conform unei Rețele Bayesiene.

Evaluare:

Problema valorează 20p împărțite astfel:

- (10p) Utilizarea corectă a unei rețele Bayesiene
- (10p) Justificarea ponderilor alese

Punctajul maxim este 120 (12) puncte. Nota va fi trunchiată la 9.

Deadline: 13 Aprilie ora 23.59

Documentație

Va trebui să scrieți o documentație scurtă de cel mult o pagină în care să justificați euristicile / ponderile folosite.