
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: Thu Aug 30 16:30:36 EDT 2007

Reviewer Comments:

<210> 1

<211> 2631

<212> DNA

<213> Human neutrophils and monocytes

<400> 1

The above <213> response is invalid, please use a genus/species. FYI, the above response can be inserted into section <220> - <223> as an explanation for the organism response.

Validated By CRFValidator v 1.0.3

Application No: 10590001 Version No: 2.0

Input Set:

Output Set:

Started: 2007-08-20 08:46:58.252

Finished: 2007-08-20 08:46:58.789

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 537 ms

Total Warnings: 2

Total Errors: 0

No. of SeqIDs Defined: 2

Actual SeqID Count: 2

Error code Error Description

 \mathbb{W} 402 Undefined organism found in <213> in SEQ ID (1)

W 402 Undefined organism found in <213> in SEQ ID (2)

SEQUENCE LISTING

<110>	Nash, Norman Scully, Audra Gardell, Luis Olsson, Roger Gustafsson, Magnus										
<120>	USE OF LIPOXIN RECEPTOR, FPRL1, AS A TOOL FOR IDENTIFYING COMPOUNDS EFFECTIVE IN THE TREATMENT OF PAIN AND INFLAMMATION										
<130>	33998-705.831										
<140> <141>	10590001 2007-08-20										
<150> <151>	PCT/US2004/036952 2004-11-04										
<160>	2										
<170>	PatentIn version 3.3										
<210> <211> <212> <213>	1 2631 DNA Human neutrophils and monocytes										
<400> ggcacga	1 agga acaacctatt tgcaaagttg gcgcaaacat	tcctgcctga	caggaccatg	60							
gacacaç	ggtt gtagagatag agatggetet ggetgtgeat	tcagcagatt	ctgtagatag	120							
aattaat	tagg acttggatgg gattgtggtg agagaaagtg	aaatgaaaga	taagttctag	180							
tttggaa	agtt ttaacaactg aatgtttaaa ctcaaataga	cacaaaatat	tggaagagtg	240							
gcaggtt	ttgg gaggatgaga caatcaactg tttggttgag	ccacgttagg	tttgaaatgt	300							
ctacgg	gate eegtggggag aggttatate agaetggage	accagagaga	ggccaaggct	360							
gatagtt	ttag atgaaaagag agcatgatat tttaagccct	gagactggat	aatatcacct	420							
atagaaa	agac tatatagaga taagagaggt ggggaacaag	taaaagctgc	gggacactcc	480							
taaattt	taga gtcaaattta gagcagaaaa tactagcaaa	ggggactgaa	aagcggtggc	540							
caattga	agct tcaaatgcaa gtgaaagtgt gttgtgtgta	catttatcat	ctcatggcac	600							
aggaaaa	aacg tgatttaagg agaaggaagc gatccaatgg	gaagaagaga	tccaatggat	660							
cctctat	tcac gaagatattg agataagaac caatatggat	ttgcacccac	tgcatttgca	720							
gccttga	aggt cataagcatc ctcaggaaaa tgcaccaggt	gctgctggca	agatggaaac	780							

caacttctcc actcctctga atgaatatga agaagtgtcc tatgagtctg ctggctacac 840

tgttctgcgg	atcctcccat	tggtggtgct	tggggtcacc	tttgtcctcg	gggtcctggg	900	
caatgggctt	gtgatctggg	tggctggatt	ccggatgaca	cgcacagtca	ccaccatctg	960	
ttacctgaac	ctggccctgg	ctgacttttc	tttcacggcc	acattaccat	tcctcattgt	1020	
ctccatggcc	atgggagaaa	aatggccttt	tggctggttc	ctgtgtaagt	taattcacat	1080	
cgtggtggac	atcaacctct	ttggaagtgt	cttcttgatt	ggtttcattg	cactggaccg	1140	
ctgcatttgt	gtcctgcatc	cagtctgggc	ccagaaccac	cgcactgtga	gtctggccat	1200	
gaaggtgatc	gtcggacctt	ggattcttgc	tctagtcctt	accttgccag	ttttcctctt	1260	
tttgactaca	gtaactatta	caaatgggga	cacatcatgt	actttcaact	ttgcatcctg	1320	
gggtggcacc	cctgaggaga	ggctgaaggt	ggccattacc	atgctgacag	ccagagggat	1380	
tatccggttt	gtcattggct	ttagcttgcc	gatgtccatt	gttgccatct	gctatgggct	1440	
cattgcagcc	aagatccaca	aaaagggcat	gattaaatcc	agccgtccct	tacgggtcct	1500	
cactgctgtg	gtggcttctt	tcttcatctg	ttggtttccc	tttcaactgg	ttgcccttct	1560	
gggcaccgtc	tggctcaaag	agatgttgtt	ctatggcaag	tacaaaatca	ttgacatcct	1620	
ggttaaccca	acgagctccc	tggccttctt	caacagctgc	ctcaacccca	tgctttacgt	1680	
ctttgtgggc	caagacttcc	gagagagact	gatccactcc	ctgcccacca	gtctggagag	1740	
ggccctgtct	gaggactcag	ccccaactaa	tgacacggct	gccaattctg	cttcacctcc	1800	
tgcagagact	gagttacagg	caatgtgagg	atggggtcag	ggatattttg	agttctgttc	1860	
atcctaccct	aatgccagtt	ccagcttcat	ctacccttga	gtcatattga	ggcattcaag	1920	
gatgcacagc	tcaagtattt	attcaggaaa	aatgcttttg	tgtccctgat	ttggggctaa	1980	
gaaatagaca	gtcaggctac	taaaatatta	gtgttatttt	ttgttttttg	acttctgcct	2040	
ataccctggg	gtaagtggag	ttgggaaata	caagaagaga	aagaccagtg	gggatttgta	2100	
agacttagat	gagatagcgc	ataataaggg	gaagacttta	aagtataaag	taaaatgttt	2160	
gctgtaggtt	ttttatagct	attaaaaaaa	atcagattat	ggaagttttc	ttctattttt	2220	
agtttgctaa	gagttttctg	tttcttttc	ttacatcatg	atgtgacttt	gcattttatc	2280	
aaatgcattt	tctacatgta	ttaagatggt	catattattc	ttcttcttt	atgtaaatca	2340	
ttataaataa	tgttcattaa	gttctgaatg	ttaaactact	cttgaattcc	tggaataaac	2400	
cacacttagt	cctgatgtac	tttaaatatt	tatatctcac	aggagttggt	tagaatttct	2460	
gtgtttatgt	ttatatactg	ttatttcact	ttttctacta	tccttgctaa	gttttcatag	2520	

aaataagga	acaaagagaa	acttgtaatg	gtctctgaaa	aggaattgag	aagtaattcc	2580

tctgattctg ttttctggtg	ttatatcttt	attaaatatt	cagaaaaatt	C	2631

<210> 2

<211> 351

<212> PRT

<213> Human neutrophils and monocytes

<400> 2

Met Glu Thr Asn Phe Ser Thr Pro Leu Asn Glu Tyr Glu Glu Val Ser 1 5 10 15

Tyr Glu Ser Ala Gly Tyr Thr Val Leu Arg Ile Leu Pro Leu Val Val 20 25 30

Leu Gly Val Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile 35 40 45

Trp Val Ala Gly Phe Arg Met Thr Arg Thr Val Thr Thr Ile Cys Tyr 50 60

Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Ala Thr Leu Pro Phe 65 70 75 80

Leu Ile Val Ser Met Ala Met Gly Glu Lys Trp Pro Phe Gly Trp Phe 85 90 95

Leu Cys Lys Leu Ile His Ile Val Val Asp Ile Asn Leu Phe Gly Ser 100 105 110

Val Phe Leu Ile Gly Phe Ile Ala Leu Asp Arg Cys Ile Cys Val Leu 115 120 125

His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Met Lys 130 135 140

Val Ile Val Gly Pro Trp Ile Leu Ala Leu Val Leu Thr Leu Pro Val 145 150 155 160

Phe Leu Phe Leu Thr Thr Val Thr Ile Pro Asn Gly Asp Thr Tyr Cys 165 170 175

Thr Phe Asn Phe Ala Ser Trp Gly Gly Thr Pro Glu Glu Arg Leu Lys

180 185 190

Val	Ala	Ile 195	Thr	Met	Leu	Thr	Ala 200	Arg	Gly	Ile	Ile	Arg 205	Phe	Val	Ile
Gly	Phe 210	Ser	Leu	Pro	Met	Ser 215	Ile	Val	Ala	Ile	Cys 220	Tyr	Gly	Leu	Ile
Ala 225	Ala	Lys	Ile	His	Lys 230	Lys	Gly	Met	Ile	Lys 235	Ser	Ser	Arg	Pro	Leu 240
Arg	Val	Leu	Thr	Ala 245	Val	Val	Ala	Ser	Phe 250	Phe	Ile	Cys	Trp	Phe 255	Pro
Phe	Gln	Leu	Val 260	Ala	Leu	Leu	Gly	Thr 265	Val	Trp	Leu	Lys	Glu 270	Met	Leu
Phe	Tyr	Gly 275	Lys	Tyr	Lys	Ile	Ile 280	Asp	Ile	Leu	Val	Asn 285	Pro	Thr	Ser
Ser	Leu 290	Ala	Phe	Phe	Asn	Ser 295	Cys	Leu	Asn	Pro	Met 300	Leu	Tyr	Val	Phe
Val 305	Gly	Gln	Asp	Phe	Arg 310	Glu	Arg	Leu	Ile	His 315	Ser	Leu	Pro	Thr	Ser 320
Leu	Glu	Arg	Ala	Leu 325	Ser	Glu	Asp	Ser	Ala 330	Pro	Thr	Asn	Asp	Thr 335	Ala
Ala	Asn	Ser	Ala 340	Ser	Pro	Pro	Ala	Glu 345	Thr	Glu	Leu	Gln	Ala 350	Met	