TD 2 – Anneaux

Solutions des exercices

Exercice 1.

Exercice 2.

Exercice 3.

Soit *A* intègre, $a \in A \setminus \{0\}$, *A* d'ordre fini. On veut montrer que *a* est inversible.

On considère la suite a, a^2, a^3, \dots des puissances de a.

Püisque $|A| < \infty$, cette suite ne prend qu'un nombre fini de valeurs distinctes.

Il existe donc $k, l \in \mathbb{N}^*$, k < l tels que $a^k = a^l$. On a :

$$a^k a^l \longrightarrow a^l - a^k = (a^{l-k} - 1)a^k = 0$$

On a $a^k \neq 0$. En effet, sinon on aurait $a \cdot a^{k-1} = 0$, donc soit k = 1 et a = 0, ce qui contredit le choix de a, ou k > 2 et $a \neq 0$, donc $a^{k-1} = 0$ par l'intégrité de A. Par récurrence sur k, on montre que $a^k = 0$ est impossible. $\frac{1}{2}$

Donc, puisque A est intègre, $a^{l-k}=1$. Donc $a\cdot a^{l-k-1}=0$ (on a l-k>0, donc on peut écrire a^{l-k-1}), et a^{l-k-1} est l'inverse de a.

On a montré que si $|A| < \infty$,

A intègre \Longrightarrow A est un corps.

La réciproque est vraie même sans l'hypothèse que A est fini.

Exercice 4.

Exercice 5.

Exercice 6.

1) Les idéaux maximaux de C[X]:

L'anneau des polynômes en 1 variable sur un corps est euclidien, donc il est principal : tout idéal est principal. Donc les idéaux de $\mathbb{C}[X]$ sont tous de la forme (P), où P parcourt les polynômes unitaire (plus l'idéal nul, qui est aussi principal).

Un idéal (P) de $\mathbb{C}[X]$ est premier si et seulement si P est irréductible. C'est-à-dire

Un idéal
$$I \subset \mathbf{C}[X]$$
 est premier $\iff \begin{cases} I \neq (1) \text{ et} \\ x, y \in \mathbf{C}[X], xy \in I \Longrightarrow x \in I \text{ ou } y \in I \end{cases}$

Et on sait que (*P*) premier implique *P* irréductible.

Soit P = AB. Alors $AB \in (P)$, donc $A \in (P)$ ou $B \in (P)$. Si, par exemple, $A \in (P)$, il existe un polynôme Q tel que A = QP, donc $\deg A = \deg Q + \deg P \geqslant \deg P$, donc $\deg A = \deg P$, donc $\deg Q = 0$, $Q \in \mathbf{K}^*$, donc $Q \in \mathbf{K}[X]^\times$. On a :

$$P = AB \ A = QP$$
, Q inversible $\Longrightarrow P = Q^{-1}A = AB \Longrightarrow A(B-Q^{-1}) = 0 \Longrightarrow B = Q^{-1}$ par intégrité.

1

Pareil si $B \in (P)$.

On a donc montré le sens direct. On montre facilement la réciproque.

On a montré pour tout K,

$$0 \neq P \in \mathbf{K}[X]$$
 irréductible \iff (P) premier dans $\mathbf{K}[X]$

Les irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1. Donc les idéaux premiers de $\mathbb{C}[X]$ sont les idéaux $(X - \alpha)$, $\alpha \in \mathbb{C}$.

Tous ces idéaux sont maximaux. En effet

$$(P) \subset (O), P \neq 0, O \neq 0 i f f O \mid P$$

$$(P) \subseteq (Q), P \neq 0, Q \neq 0 \iff Q \mid P \text{ et deg} Q < \text{deg} P$$

Si on prend $Q = (X - \alpha)$, alors la seule possibilité pour un polynôme Q de satisfaire à cette condition est la situation où $Q \in \mathbb{C}^*$. Donc $(Q) = (1) = \mathbb{C}[X]$. Cela démontre la maximalité de $(X - \alpha)$.

Une autre façon de le voir :

 $(X - \alpha)$ est maximal dans $\mathbb{C}[X]$ car

$$\mathbb{C}[X]/(X-\alpha) \cong C$$
 un corps

2) Les idéaux maximaux de $\mathbf{R}[X]$:

Les irréductibles de $\mathbf{R}[X]$ sont :

- Les polynômes de degré 1
- Les polynômes de degré 2, avec $\Delta < 0$.

Cela nous donne la description des idéaux premiers non nuls de $\mathbf{R}[X]$; ce sont les idéaux engendrés par les polynômes irréductibles, qu'on peut supposer unitaires. Oar l'exercice $4)\nu$), ce sont tous les idéaux maximaux de $\mathbf{R}[X]$.

Remarque. L'idéal nul (0) est premier, mais non maximal dans les anneaux $\mathbf{R}[X]$, $\mathbf{C}[X]$

3) Les idéaux maximaux de Z:

Les idéaux sont (n), où n parcourt N.

Les idéaux premiers sont (0) et (p), où p parcourt l'ensemble des nombres premiers. Les idéaux maximaux sont les (p).

- 4) Les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$:
 - Si $n \neq 0$, $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}$. On a décrit les ideaux maximaux de \mathbb{Z} .
 - Si $n = \pm 1$, $\mathbb{Z}/n\mathbb{Z} = \{0\}$, pas d'ideaux maximaux.
 - Soit $n \in \mathbb{Z} \setminus \{0, \pm 1\}$. Les idéaux de $\mathbb{Z}/n\mathbb{Z}$ sont en bijection avec les idéaux de \mathbb{Z} contenant $n\mathbb{Z} = (n)$:

Soit $\pi: \mathbb{Z} \to \mathbb{Z}/(n)$ la surjection canonique. Alors cette bijection est décrite par

 $\{idéaux de \mathbf{Z} contenant (n)\} \cong \{idéaux de \mathbf{Z}/n\mathbf{Z}\}$

$$J \longrightarrow \pi(J)$$

$$\pi^{-1}(K) \longleftarrow K$$

Un idéal $J \subset Z$ est de la forme (m), $m \in \mathbb{N}$;

$$J \supset (n) \iff (m) \supset (n) \supset \exists k \in \mathbb{Z} \mid n = km \iff m \mid n$$

Donc les idéaux de $\mathbb{Z}/n\mathbb{Z}$ sont $(m+n\mathbb{Z})$, où m parcourt les diviseurs positifs de n. Puisque π est surjectif, pour un idéal $K \subset \mathbb{Z}/n\mathbb{Z}$,

$$K \text{ maximal } \iff \pi^{-1}(K) \text{ maximal }$$

Donc les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$ sont les $(p+n\mathbb{Z})$, où p parcourt les diviseurs premiers de n.

Exercice 7. 1) Théorème chinois pour n idéaux : par récurrence sur n. A un anneau, I_1, \ldots, I_n des idéaux tels que $I_i + I_j = A$ pour tous i, j. Alors

$$A/I_1 \cap \cdots \cap I_n = A/I_1 \dots I_n \cong A/I_1 \times \cdots \times I_n$$

- n = 1: rien à démontrer
- n = 2: le cas démontré dans le cours.
- Supposons la propriété vraie pour $n \ge$. Applications le cas 2 aux idéaux $I = I_1 \cdots I_{n-1}$, $J = I_n$. On vérifie d'abord que I + J = A. Par l'hypothèse, $\forall i \in \{1, ..., n-1\}$, $I_i + I_n = A$, donc il existe $x_i \in I_i$ et $y_i \in I_n$ tels que $x_i + y_i = 1$. on a :

$$1 = \prod_{i=1}^{n-1} (x_i + y_i) = x_i \dots x_{n-1}$$

$$+ \sum_{j=1}^{n-1} x_1 \dots x_{j-1} y_j x_{j+1} \dots x_{n+1}$$

$$+ \sum_{1 \le j < k \le n-1} x_1 \dots x_{j-1} y_j x_{j+1} \dots x_{k-1} y_k x_{k+1} \dots x_{n-1} \dots$$

$$+ y_1 \dots y_{n-1}$$

On a montré que $1 \in I + J$, donc I + J = (1) = A. On a donc l'isomorphisme, par (H_2) :

$$A/I_1 \dots I_{n-1} \cap I_n = A/I_1 \dots I_2 \cong A_{I_1} \dots I_{n-1} \times A/I_n$$

Par (H_{n-1}) :

$$A/I_1 \dots I_{n-1} = A/I_1 \cap \dots \cap I_{n-1} \cong A/I_1 \times \dots \times A/I_{n-1}$$

La substitution de cette relation dans la précédente donne (H_n)

2) Avec les mêmes hypothèses, on a :

$$A/I_1^{m_1} \cap \cdots \cap I_n^{m_n} = A/I_1^{m_1} \dots I_n^{m_n} \cong A/I_1^{m_1} \times \cdots \times A/I_n^{m_n}$$

Il sufffit de montrer : si $I_1, ... I_n$ satisfont à l'hypothèse

$$I_i + I_j = A \ \forall i, j, 1 \leq i < j \leq n$$

Alors les idéaux $J_1 = I_1^{m_1}, \dots J_n = I_n^{m_n}$ satisfont à la même hypothèse :

$$J_i + j_j = A \ \forall i, j \ 1 \leq i < j \leq n$$

Par récurrence sur n on réduit cette assertion aux cas de deux idéaux. Soient I, J deux idéaux de A tels que I + J = A, $r \ge 1$, $s \ge 1$, alors, $I^r + J^s = A$. En effet, soient $u \in I$, $v \in J$ tels que u + v = 1. Alors $(u + v)^r = 1$. Or

$$(u+v)^r = u^r + \underbrace{\left(C_r^1 u^{r-1} + \dots + C_r^r v^{r-1}\right) v}_{\in I} \in I^r + J$$

Donc on a trouvé $a \in I^r$, $b \in J$ tels que a + b = 1. Alors $(a + b)^s = 1$, et

$$(a+b)^{s} = a\underbrace{\left(C_{s}^{0}a^{r-1} + \dots + C_{s}^{r-1}b^{r-1}\right)} + C_{s}^{s}b^{s}$$

Donc $1 \in I^r + J^s$ et $I^r + J^s = (1) = A$.

Exercice 8.

1) $\mathbf{Z}/((17) \cap (11) \cap (8)) = \mathbf{Z}/(17 \cdot 11 \cdot 8) \longrightarrow \operatorname{pgcd}(17, 11) = 1$, donc $(17) + (11) = (1) = \mathbf{Z}$. On écrit souvent $\mathbf{Z}/n\mathbf{Z}$ au lieu de $\mathbf{Z}/(n)$.

On se donne $(a_1, a_2, a_3) = (6 + (17), 4 + (11), -3 + (8)) \in \mathbb{Z}/(17) \times \mathbb{Z}/(11) \times \mathbb{Z}/(8)$.

On cherche $x \in \mathbb{Z}$ tel que $f: x + (17 \cdot 11 \cdot 8) \longrightarrow (a_1, a_2, a_3)$.

 $f(x+(17\cdot11\cdot8))=(x+(17),x+(11),x+(8)).$

Donc trouver *x* équivaut à résoudre le système de congruence

$$\begin{cases} x & \equiv 6[17] \\ x & \equiv 4[11] \\ x & \equiv -3[8] \end{cases}$$

Il existe une méthode générale : pour résoudre le système $x \equiv c_1[m_i]$; où les m_i sont deux à deux premiers. (i = 1, ..., n). On commence par trouver les y_i tels que

$$\frac{M}{m_i}y_i \equiv 1[m_i] \ i = 1, \dots n$$

Où $M=m_1\dots m_n=\operatorname{ppcm}(m_1\dots m_n)$. Alors l'unique solution modulo M du système de congruence donné est

$$x = \sum_{i=1}^{n} \frac{M}{m_i} y_i c_i$$

Ici n = 3.

$$\begin{cases} 11 \cdot 8y_i & \equiv 1[17] \\ 17 \cdot 8y_2 & \equiv 1[11] \iff \begin{cases} 3y_1 & \equiv 1[17] \\ 4y_2 & \equiv 1[11] \\ 3y_3 & \equiv 1[8] \end{cases}$$

Une solution est donnée par : $y_1 = 6$, $y_2 = 3$, $y_3 = 3$. On trouve

$$x = 11 \cdot \underbrace{8 \cdot 6 \cdot 6}_{288 = 272 + 16} + \underbrace{17 \cdot 8 \cdot 3 \cdot 4 + 17 \cdot 11 \cdot 11 \cdot (-3)}_{17 \cdot 3 \cdot (8 \cdot 4 - 11 \cdot 3) = -51} [14]$$

$$x = 11 \cdot 16 - 51 = 176 - 51 = 125 [M]$$

$$x = 125 + (1496) = 125 + 1496\mathbf{Z}$$

2) $A = \mathbf{R}[X], I_k = (X - t_k), a_k = y_k + I_k, k = 1, ..., n, \text{ où } (1, ..., t_n), (y_1, ..., y_n) \in \mathbf{R}^n \text{ et les } t_i \text{ sont distincts.}$

Est-ce que $I_i + I_j = A$ si $i \neq j$?

Oui,par exemple, on peut écrire

$$1 = \underbrace{\frac{1}{t_j - t_i}(X - t_i)}_{\in I_i} + \underbrace{\frac{1}{t_i - t_j}(X - t_j)}_{I_j}$$

Les hypothèses du théorème des restes sont vérifiées. On cherche :

$$x = P(x) + I_1 \cdots I_n = P(x) + \underbrace{\left((X - t_1) \dots (X - t_n) \right)}_{\text{id\'eal}} \text{ tel que}$$

$$P(X) \equiv y_i \ [X - t_i] \iff P(t_i) = y_i \ \forall i = 1, \dots, n$$

Une solution de ce problème est donnée par le polynôme d'interpolation de LAGRANGE :

$$P(X) = \sum_{i=1}^{n} \frac{(X - t_1) \cdots (X - t_{i-1})(X - t_{i+1}) \cdots (X - t_n)}{(t_i - t_1) \cdots (t_i - t_{i-1})(t_i - t_{i+1}) \cdots (t_i - t_n)} y_i$$

Exercice 9.

1) $\mathbf{Q}[X]/(X^2-1) \cong \mathbf{Q} \times \mathbf{Q}$? On peut construire un isomorphisme comme suit : On commence par le morphisme

$$f: \begin{cases} \mathbf{Q}[x] \longrightarrow \mathbf{Q} \times \mathbf{Q} \\ P(X) \mapsto (P(1), P(-1)) \end{cases}$$

On applique la propriété universelle :

$$\operatorname{Ker} f = \{ P(X) \in \mathbf{Q}[X] \mid P(1) = 0, P(-1) = 0 \} = (X-1) \cap (X+) = \underbrace{\left(X(-1)(X+1) \right)}_{\text{premiers entre eux, idéal engendré}} = \left((X^2-1) \right)$$

Donc Im $f \cong \mathbb{Q}[X]/(X^2-1)$. Or, f est surjectif car f(X-1)=(0,-2), f(X+1)=(2,0), donc $\forall (a,b) \in \mathbb{Q} \times \mathbb{Q}$, on a

$$(a,b) = f\left(-\frac{b}{2}(X-1) + \frac{a}{2}(X+1)\right)$$

Donc Im $f = \mathbf{Q} \times \mathbf{Q}$ et

$$\mathbf{Q} \times \mathbf{Q} \cong \mathbf{Q}[X]/(X^2 - 1)$$

2) P a n racines donc $P = u(X - \alpha_1) \cdots (X - \alpha_n)$ où $u \in \mathbf{K}^{\times}$ et $\alpha_1, \cdots, \alpha_n \in \mathbf{K}$ distincts racines de P.

On veut construire un isomorphisme explicite

$$\phi: \mathbf{K}[X]/(P) \longrightarrow \mathbf{K}^n$$

On commence par considérer le morphisme

$$\psi: \begin{cases} \mathbf{K}[X] \longrightarrow \mathbf{K}^n \\ Q \mapsto (Q(\alpha_1), \dots, Q(\alpha_n) \end{cases}$$

Alors $Q \in \ker \psi \iff Q(\alpha_i) = 0 \ \forall i = 1, \dots, n \iff X - \alpha_i | Q$.

Puisque les α_i sont distincts, les polynômes $X - \alpha_i$ sont deux à deux premiers. Donc

$$X-\alpha_1|Q,...,X-\alpha_n|Q \iff \operatorname{ppcm}(X-\alpha_1,...,X-\alpha_n) = (X-\alpha_1)\cdots(X-\alpha_n)|Q \iff P|Q \iff Q \subseteq (P)$$

On a montré que $\ker \psi = (P)$. Donc ψ définit, par passage au quotient, l'isomorphisme $\mathbf{K}[X]/(P) \cong \operatorname{Im} \psi = \psi(\mathbf{K}[X])$.

Il reste à vérifier la surjectivité de ψ .

Pour tout $(y_1,...,y_n) \in \mathbf{K}$, on peut donner un antécédent $Q \in \psi^{-1}(y_1,...,y_n)$ comme un polynôme d'interpolation de LAGRANGE :

$$Q = \sum_{k=1}^{n} \frac{(X - \alpha_1) \dots (X - \alpha_{k-1}(X - \alpha_{k+1} \dots (X - \alpha_n))}{(\alpha_k - \alpha_1) \dots (\alpha_k - \alpha_{k-1}(\alpha - \alpha_{k+1} \dots (\alpha_k - \alpha_n))} y_k$$

Remarque : $\psi = (ev_{\alpha_1}, \dots, ev_{\alpha_n}, \text{ où on note } ev_{\alpha} \text{ le morphisme d'évaluation d'un polynôme en } \alpha \in \mathbf{K}$:

$$e\nu_{\alpha} \begin{cases} \mathbf{K}[X] \longrightarrow K \\ Q \mapsto Q(\alpha) \end{cases}$$

Remarque : On peut aussi démontrer le 9b sans présenter une construction explicite de ϕ à l'aide du théorème des restes. On l'applique aux idéaux $I_1 = (X - \alpha_1), \ldots, (X - \alpha_n)$. Il donne immédiatement un isomorphisme $\mathbf{K}[X]/I_1 \ldots I_n = \mathbf{K}[X]/(P) \xrightarrow{\sim} \prod_{k=1}^n \mathbf{K}[X] : (X - \alpha_k)$, et il reste à utiliser l'isomorphisme

$$\mathbf{K}[X]/(X-\alpha) \cong \mathbf{K}$$

dont la construction s'obtient par la considération du morphisme d'évaluation.

Exercice 10.

1) $A = \mathbf{R}[X]/(X^1) B = \mathbf{R}[Y]/(Y^1 + Y + 1)$

Remarque : Pour tout polynôme $P \in \mathbf{R}[X]$ de degré 2 avec discriminant $\delta < 0$, $\mathbf{R}[X]/(P) \simeq \mathbf{C}$.

Construisons un isomorphisme explicite $\varphi: A \longrightarrow B$.

— Approche 1:

On commence par construire un morphisme $\phi : \mathbf{R}[X] \longrightarrow B$ de sorte que $\ker \phi = (X^2 + 1)$.

On sait que $\ker \phi = (X^2 + 1)$

Donc l'image de X doit être une racine de X^2+1 vu comme polynôme de B[X] . On doit alors trouver une racine de X^2+1 dans B. Soit $\overline{Y}=Y+(Y^2+Y+1)\in B$. Tout élément de B se représente sous la forme $a\overline{Y}+b$ avec $a,b\in \mathbf{R}$.

On substitue $a\overline{Y} + b$ dans $X^2 + 1$:

$$(a\overline{Y} + b)^{2} + 1 = a\underbrace{\overline{Y}^{2}}_{\equiv -\overline{Y} - 1} + 2ab\overline{Y} + b^{2} + 1$$
$$= a^{2}\overline{Y} - a^{2} + 2ab\overline{Y} + b^{2} + 1$$
$$= a(2b - a)\overline{Y} + 1 + b^{2} - 1$$

$$\begin{cases} a(2b-a)=0\\ 1+b^2-a^2=0 \end{cases} \iff \begin{cases} (1): \ a=0 \Longrightarrow \text{ pas de solutions réelles}\\ (2): \ a=2b \Longrightarrow b=\pm\frac{1}{\sqrt{3}} \end{cases}$$

Dans le cas (2), on peut choisir le signe "+". On trouve une racine $\alpha = a\overline{Y} + b = \frac{1}{\sqrt{3}}(2\overline{Y} + 1)$. On définit :

$$\phi: \begin{cases} \mathbf{R}[X] \longrightarrow B \\ X \mapsto \alpha \end{cases}$$

Alors $\forall Q \in \mathbf{R}[X]$, $\phi(Q) = Q(\alpha)$. Déterminons $\ker \phi$.

Soit $Q \in \ker \phi$. Alors $Q(\alpha) = 0$, $X - \alpha | Q$ dans B[X].

Rappel: *B* est un corps isomorphe à **C**.

 $-\alpha$ est une racine de $X^2 + 1$, $X^2 + 1 = (X - \alpha)(X + \alpha)$.

On veut montrer:

$$X - \alpha | Q \text{ dans } B[X] \Longrightarrow X + \alpha | Q \text{ dans } B[X]$$

On le démontre comme suit :

$$X - \alpha | X^2 + 1$$
, $X - \alpha | Q$ dans $B[X]$

Donc,

$$X - \alpha | \operatorname{pgcd}(X^2 + 1, Q) \operatorname{dans} B[X]$$

Or, $\operatorname{pgcd}(X^2+1,Q)$ peut être calculé comme le dernier reste non nul de l'algorithme d'EUCLIDE appliqué à la paire $(Q,X^2+1)\in \mathbf{R}[X]^2$. Puisque les deux polynômes sont à coefficients réels, leurs pgcd est aussi à coefficient réel et le pgcd de Q et de X^2+1 est à la fois dans B[X] et dans $\mathbf{R}[X]$.

Dans $\mathbf{R}[X]$, X^2+1 est irréductible, donc le fait que $\operatorname{pgcd}(Q,X^2+1)$ soit $\neq 1$ entraı̂ne

^{1.} Il n'y a pas d'erreur. C'est bien un anneau de polynôme sur un quotient d'anneaux de polynômes.

qu'il est égal à $X^2 + 1$. Donc $X^2 + 1|Q$.

En fait, on a montré que pour un polynôme $Q \in \mathbf{R}[X]$,

$$Q(\alpha) = 0 \iff X^2 + 1|Q$$

Donc

$$\ker \phi = (X^2 + 1)$$

Alors ϕ induit l'isomorphisme $\varphi : A \xrightarrow{\sim} \operatorname{im} \phi \subset B$

Montrons la surjectivité.

Les deux anneaux $A, B \supset \mathbf{R}, \phi, \varphi$ sont **R**-linéaires;

$$\dim_{\mathbf{R}} A = \dim_{\mathbf{R}} B \simeq Z$$

Cela entraîne que φ est un isomorphisme de plans vectoriels sur \mathbf{R} , donc surjectif, donc isomorphismes d'anneaux. (et même de corps)

— Approche 2:

On peut passer par les isomorphismes sur C:

$$\begin{aligned} ev_i : \overline{X} \in \mathbf{R}[X]/(X^2 + 1) &\longrightarrow i \in \mathbf{C} \\ ev_j : \overline{Y} \in \mathbf{R}[Y]/(Y^2 + Y + 1) &\longrightarrow j \in \mathbf{C} \\ i = e^{i\frac{\pi}{2}} \\ j = e^{i\frac{2\pi}{2}} \end{aligned}$$

Un isomorphisme $\phi: B \longrightarrow A$ peut être donné par $\phi(\overline{Y}) = -\frac{1}{2} + \frac{\sqrt{3}}{2}\overline{X}$, où

$$\forall a + b\overline{Y} \in b, \ \phi(a + b\overline{Y}) = a + b\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\overline{X}\right)$$

2) $A = \mathbb{C}[X]/(X-1)^2$, $B = \mathbb{C}[X]/(X^2-1)$.

 $A \neq B$ car A contient un nilpotent et B n'en possède pas.

Rappel : Un élément a d'un anneau A est dit nilpotent si $a \ne 0$ et il existe $n \in \mathbb{N}, n \ge 2, \ a^n = 0$

Ici, pour $a = \overline{X} - 1 = X - 1 + (X - 1)^2$ est nilpotent car $a \neq 0$ mais $a^2 = 0$. Or, $B \cong \mathbb{C} \times \mathbb{C}$ (par l'exo 9), et $\mathbb{C} \times \mathbb{C}$ n'a pas de nilpotents.

3)

Exercice 11.

Exercice 12.

Exercice 13.

Exercice 14.

Exercice 15.

Exercice 16.