

FASIT til KONTINUASJONSEKSAMEN I TMA4100 MATEMATIK

Nynorsk

Laurdag 16. august 2008

$$Kl. 9 - 13$$

Dette er en fasit og oppfyller ikke kravet om at alle svar skal begrunnes! Det tas forbehold om mulige feil.

Oppgåve 1

 $\mathbf{a})$

$$f'(x) = \frac{3x(x^3 + 8)}{(x^3 - 4)^2}.$$

Lokalt maks i (-2,2).

Lokalt min i (0,1).

b) Horisontal asymptote: y = 1.

Vertikal asymptote: $x = 4^{1/3}$.

For skisse av grafen, se egen fil (kommer senere).

Av disse resultatene samt fortegnsdrøfting av f', innsees at

$$f(x) \ge 1 \text{ for } x < 4^{1/3}.$$

Videre er f strengt voksende for $x > 4^{1/3}$, f(2) = -2 < 0 og f(4) = 1/5 > 0. Skjæringssetningen gir da at f har et nullpunkt i intervallet [2, 4] og dette er det eneste.

Oppgåve 2

$$2\ln|x-2| - \ln|x-1| + C = \ln\frac{(x-2)^2}{|x-1|} + C.$$

Oppgåve 3 Konvergensradien r = 1. Rekka konverger for $x = \pm 1$.

Oppgåve 4 Formelen for K følger av at Volum = $1/3x^3$ og Areal av grunnflate = x^2 Siste del følger ved å finne nullpunktet til

$$f(x) = 0.04x^3 + 0.17x^2 - 50.$$

Newtons metode gir rekursjonsformelen:

$$x_{n+1} = \frac{8x_n^3 + 17x_n^2 + 5000}{12x_n^2 + 34x_n}$$

Det er en dårlig ide å starte med x_0 nær 0, men med feks $x_0=10$ får en raskt $x_*=9,53.$

Oppgåve 5

$$y(x) = \frac{1}{2}(x - \sqrt{1 - x^2}) - \frac{1}{2}e^{-\arcsin x}.$$

Oppgåve 6

Gitt ε med $0 < \varepsilon < 1$. Sett $\delta = \varepsilon^2$. Vis at da vil

$$|x| < \delta \implies |\sqrt{1+x} - 1| < \varepsilon.$$