CE-210 Digital Systems I Assignment #4 – Solution

1- Use K-maps to obtain a minimal SOP and a minimal POS for the following function. Which realization, SOP or POS, is more cost-effective?

$$Y = \prod A, B, C(0, 1, 4, 5, 7)$$

Less HW Y = B.(A' + C') 2 terms

2- For each of the following functions obtain

all on-set prime implicants and all off-set prime implicants,

all distinguished 1-cells and all distinguished 0-cells,

all essential on-set prime implicants and all essential off-set prime implicants,

a minimal SOP and a minimal POS.

Also determine which realization, SOP or POS, needs less hardware.

Note: For each function, draw a K-map to show all the on-set prime implicants and another K-map to show the minimal SOP. If these two K-maps are identical, then one K-map is sufficient. Similarly, draw a K-map to show all the off-set prime implicants and another K-map to show the minimal POS. Again, if these two K-maps are identical, then one K-map is sufficient.

 $Y = \Sigma_{A,B,C,D}$ (0, 1, 4, 11, 12, 13, 15)

On-set prime implicants (write p-terms) = { ACD, A'B'C', BC'D', ABD, A'C'D', ABC'}

Distinguished 1-cells (write cell numbers) = {1, 11}

Essential on-set prime implicants (write p-terms) = {A'B'C', ACD}

Minimal SOP = ACD + A'B'C' + BC'D' + ABD 4 terms

Off-set prime implicants (write s-terms) = $\{(A+C'), (A+B'+D'), (A'+B+C), (C'+D), (A'+B+D)\}$

Distinguished 0-cells (write cell numbers) = {3, 5, 9, 14}

Essential off-set prime implicants (write s-terms) = $\{(A+C'), (A+B'+D'), (A'+B+C), (C'+D)\}$

Minimal POS = (A+C'). (A+B'+D'). (A'+B+C). (C'+D) 4 terms

Which realization (SOP or POS) needs less hardware? POS.

 $Y = \Sigma_{A, B, C, D} (0, 1, 2, 3, 4, 5, 6, 7, 14, 15)$

CD	B 00	01	11	10		
00	0	4	0		(a)	
01	1	5	13 0		9	Y
11	3	7	15		11 0	
10	2	6	14	1	0	

Off-set prime implicants (write s-terms) = $\{(A' + C), (A' + B)\}$

Distinguished 0-cells (write cell numbers) = {10, 11, 12, 13}

Essential off-set prime implicants (write s-terms) = {(A' + C), (A' + B)}

Minimal POS = $(A' + C) \cdot (A' + B)$ 2 terms

Less HW

On-set prime implicants (write p-terms) = {A', BC}

Distinguished 1-cells (write cell numbers) = {0, 1, 2, 3, 4, 5, 14, 15}

Essential on-set prime implicants (write p-terms) = {A', BC}

Minimal SOP = A' + BC 2 terms

Which realization (SOP or POS) needs less hardware? SOP

 $Y = \prod_{A, B, C, D} (0, 2, 9, 10, 11, 12, 13, 14, 15)$

Off-set prime implicants = $\{(A + B + D), (A' + D'), (A' + C'), (B + C' + D), (A' + B')\}$

Distinguished 0-cells (write cell numbers) = $\{0,9,12\}$

Essential off-set prime implicants (write s-terms) = {(A + B + D), (A' + B'), (A' + D')}

Minimal POS =
$$(A + B + D) \cdot (A' + B') \cdot (A' + D') \cdot (A' + C')$$
 4 terms

All the prime implicants

On-set prime implicants (write p-terms) = {A'D, A'B, AB'C'D'}

Distinguished 1-cells (write cell numbers) = {1, 3, 4, 6, 8}

Essential on-set prime implicants (write p-terms) = {A'D, A'B, AB'C'D'}

Minimal SOP = A'D + A'B + AB'C'D' 3 terms

Which realization (SOP or POS) needs less hardware? SOP; additionally SOP has fewer terms.

3- Use K-maps to obtain a minimal SOP and a minimal POS for each of the following incompletely specified functions. Which realization, SOP or POS, is more cost-effective?

 $Y = \prod_{A, B, C, D} (0, 3, 10, 11, 14) . D(2, 4, 5, 8, 15)$

Y = A'B + C'D + AC'3 terms

The same number of terms.

$$Y = (B+D) \cdot (A'+C') \cdot (B+C')$$

3 terms

 $Y = \Sigma_{A, B, C, D} (2, 6, 10) + D(1, 5, 9, 11, 13, 14)$

Y = CD' 1 term

SOP & POS are the same

Y = CD' 1 term