Assignment On Case-Study --- Tutorial 26

Annual population of neighborhood country of Pakistan

```
In []:  # import Liberary
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Read CSV file using pandas

```
In [ ]:
    fd = pd.read_csv("Annual_Population.csv")
    fd.head(4)
    # fd.to_numpy()
```

Out[]:		Domain Code	Domain	Area Code (FAO)	Area	Element Code	Element	Item Code	ltem	Year Code	Year	ι
	0	OA	Annual population	2	Afghanistan	511	Total Population - Both sexes	3010	Population - Est. & Proj.	2014	2014	1 pers
	1	OA	Annual population	2	Afghanistan	512	Total Population - Male	3010	Population - Est. & Proj.	2014	2014	1 pers
	2	OA	Annual population	2	Afghanistan	513	Total Population - Female	3010	Population - Est. & Proj.	2014	2014	1 pers
	3	OA	Annual population	2	Afghanistan	551	Rural population	3010	Population - Est. & Proj.	2014	2014	1 pers
	4											•

Drop coloumn from datafram for unwanted data

```
In [ ]:
    population = fd.drop(["Domain Code","Domain","Item","Unit","Year Code","Flag"],axis=
    population = population.drop(["Flag Description","Item Code"],axis=1)
    population.head(3)
```

Out[]:		Area Code (FAO)	Area	Element Code	Element	Year	Value	Note
	0	2	Afghanistan	511	Total Population - Both sexes	2014	33370.794	NaN
	1	2	Afghanistan	512	Total Population - Male	2014	17138.803	NaN
	2	2	Afghanistan	513	Total Population - Female	2014	16232.001	NaN

Change/Replace the value to short meaningful name

```
population["Element"].replace({"Urban population":"Urban", "Rural population":"Rural
population["Note"].replace({"UNDESA, Population Division ? World Urbanization Prospe
population.head()
```

Out[]:	Area Code (FAO)		Area	Element Code	Element	Year	Value	Note
	0	2	Afghanistan	511	Both_Sex	2014	33370.794	NaN
	1	2	Afghanistan	512	Male	2014	17138.803	NaN
	2	2	Afghanistan	513	Female	2014	16232.001	NaN
	3	2	Afghanistan	551	Rural	2014	24703.798	NaN
	4	2	Afghanistan	561	Urban	2014	8054.222	UNDESA

dataframe to excel format

```
In [ ]: population.to_excel("Neighbourhoob Annual Population.xlsx")
```

Find means population and count catogries

```
population.mean()
print(population.value_counts( population["Element"] == "Urban" ))
print(population.value_counts( population["Area"] == "Pakistan" ))
```

Element
False 100
True 25
dtype: int64
Area
False 100
True 25
dtype: int64

Finding means of each group

```
population.groupby(["Area", "Value"]).mean()
population.groupby(["Element", "Value"]).mean()

population[population["Note"] == "UNDESA"].groupby(["Area","Element", "Value"]).mean
```

Out[]: Area Code (FAO) Element Code Year

Area	Element	Value			
Afghanistan	Urban	8054.222	2	561	2014
		8367.571	2	561	2015
		8670.939	2	561	2016
		8971.472	2	561	2017
		9273.302	2	561	2018
Bangladesh	Urban	53455.788	16	561	2014
		55305.132	16	561	2015
		57168.030	16	561	2016
		59046.818	16	561	2017
		60944.245	16	561	2018
India	Urban	419001.673	100	561	2014

			Area Code (FAO)	Element Code	Year
Area	Element	Value			
		429069.459	100	561	2015
		439391.699	100	561	2016
		449963.381	100	561	2017
		460779.764	100	561	2018
Iran (Islamic Republic of)	Urban	57106.555	102	561	2014
		58217.032	102	561	2015
		59308.845	102	561	2016
		60380.188	102	561	2017
		61425.055	102	561	2018
Pakistan	Urban	66461.625	165	561	2014
		68226.783	165	561	2015
		70005.271	165	561	2016

Plots

71795.700

73630.430

165

165

561 2017

561 2018


```
sns.barplot( x = 'Year', y = 'Value' , data = population , hue = 'Area' ) # order ch
plt.show()
```



```
plt.figure(figsize= ( 12, 7))
sns.barplot( x = 'Area', y = 'Value' , data = population , hue = 'Element' , ci=False
plt.title(" Population of neighbour Country w.r.t Element")
plt.show()
```



```
In [ ]: sns.set(style='darkgrid')
    population.head(2)
```

Out[]:	Area Code (FAO)		Area	Element Code	Element	Year	Value	Note
	0	2	Afghanistan	511	Both_Sex	2014	33370.794	NaN
	1	2	Afghanistan	512	Male	2014	17138.803	NaN

```
plt.figure(figsize= ( 8, 7))
sns.boxplot( x = 'Area' , y= 'Value', hue= "Area Code (FAO)" , data = population)
plt.show()
```



```
In []:
    sns.relplot(
        data=population,
        x="Element", y="Value",
        hue="Area", size="Area Code (FAO)", col="Year",
        kind="line", size_order=["T1", "T2"], palette="Set2",
        height=5, aspect=.75, facet_kws=dict(sharex=False),
    )
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x2d4bb7bc160>

In []: sns.pairplot(population, hue="Year")
 plt.show()

