Statistical analysis of low-rank binary tensor regression

Miaoyan Wang, first draft on 08/13, updated on 08/21

1 Preliminaries

We use lower-case letters (a, b, ...) for scalars and vectors, upper-case boldface letters $(\boldsymbol{A}, \boldsymbol{B}, ...)$ for matrices, and calligraphy letter $(\mathcal{A}, \mathcal{B}, ...)$ for tensors of order 3 or greater. Let $\mathcal{Y} \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ denote an order-K $(d_1, ..., d_K)$ -dimensional tensor. We say that an event A occurs "with very high probability" if $\mathbb{P}(A)$ tends to 1 faster than any polynomial of $d_{\min} = \min\{d_1, ..., d_K\}$. We use $S^{d-1} = \{\boldsymbol{x} \in \mathbb{R}^d : \|\boldsymbol{x}\|_2 = 1\}$ to denote the Euclidean sphere in dimension d.

Property 1. Let $X \in \mathbb{R}^{d \times p}$ be a full-rank matrix, where $\operatorname{rank}(X) = p \leq d$. The SVD of X can be expressed as $X = P\Delta Q^T$, where $P \in \mathbb{R}^{d \times p}$ and $Q \in \mathbb{R}^{p \times p}$ consist of, respectively, the left and right singular vectors, and $\Delta \in \mathbb{R}^{p \times p}$ is the diagonal matrix consisting of non-zero singular values. The following properties hold:

1.
$$(\mathbf{X}^T \mathbf{X})^{-1/2} = \mathbf{Q} \Delta^{-1}$$
.

2. Let
$$\tilde{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1/2}$$
. Then $\tilde{\mathbf{X}} = \mathbf{P}$.

3.
$$\tilde{\mathbf{X}}^T \mathbf{X} = \Delta \mathbf{Q}^T$$
.

2 Results

Suppose we observe an order-K binary tensor $\mathcal{Y} \in \{0,1\}^{d_1 \times \cdots \times d_K}$, along with a set of covariate matrices $\mathbf{X}_k \in \mathbb{R}^{d_k \times p_k}$ for $k = 1, \dots, K$. Consider a tensor regression model:

$$logit(\mathbb{E}(\mathcal{Y})) = \mathcal{B} \times_1 \mathbf{X}_1 \times_2 \cdots \times_K \mathbf{X}_K, \tag{1}$$

where $\mathcal{B} \in \mathbb{R}^{p_1 \times \cdots \times p_K}$ is a coefficient tensor of interest. Furthermore, the tensor \mathcal{B} is assumed to (i) be entrywise bounded, and (ii) admit a low-rank Tucker decomposition; that is, rank $(\mathcal{B}) = r \equiv (r_1, \ldots, r_K)^T$, where $r_k \leq p_k \leq d_k$. The parameter space we consider is

$$\mathcal{P} = \mathcal{P}(\boldsymbol{r}, \alpha) = \{ \mathcal{B} \in \mathbb{R}^{p_1 \times \dots \times p_K} : \operatorname{rank}(\mathcal{B}) \leq \boldsymbol{r}, \text{ and } \|\mathcal{B}\|_{\infty} \leq \alpha \}.$$

In the following analysis, we assume both the multilinear rank r and entrywise bound α are known. The adaptation of unknown rank will be addressed in the next note.

Remark 1. Model (1) incorporates the following examples as special cases:

(1) Binary tensor decomposition. In the absence of side information, set $X = I_k$ to be identity matrix and $p_k = d_k$ for k = 1, ..., K. Then the model (1) reduces to unsupervised binary tensor

decomposition.

(2) Network link prediction model. Suppose K = 2 and $X_1 = X_2$. Then the model (1) reduced to the matrix logistic model [Baldin and Berthet, 2018] that is commonly used in the network analysis:

$$logit(\mathbb{E}(Y)) = X^T B X$$
, where $rank(B) \le r$.

(3) **Semi-supervised decomposition**. Suppose the covariate information is available only for a subset of modes. Without loss of generality, suppose the covariates $X_k \neq I$ are available in modes $1, \ldots, L$, where L < K. Then the model (1) reduces to a semi-supervised decomposition model:

$$\operatorname{logit}(\mathbb{E}(\mathcal{Y})) = \underbrace{\mathcal{B}}_{\in \mathbb{R}^{p_1 \times \dots \times p_L \times d_{L+1} \times \dots \times d_K}} \times_1 \underbrace{X_1}_{\in \mathbb{R}^{d_1 \times p_1}} \times_2 \dots \times_L \underbrace{X_L}_{\in \mathbb{R}^{d_L \times p_L}}.$$

For parsimony, we do not distinguish modes with available side information from those without side information. We focus on the general tensor regression model (1) with mild assumption on $\{X_k\}$. Specifically, the covariates $\{X_k\}$ are assumed to satisfy the following restricted isometry property (RIP) assumption.

Assumption 1 (Restricted Isometry Property). Let $d = \prod_k d_k$. The covariates $\{X_k\}$ are called to satisfy the RIP condition if there exists a positive constant $\delta_{r,\alpha} \in (0,1)$ such that

$$d(1 - \delta_{r,\alpha}) \|\mathcal{B}\|_F^2 \le \|\mathcal{B} \times_1 \boldsymbol{X}_1 \times_2 \cdots \times_K \boldsymbol{X}_K\|_F^2 \le d(1 + \delta_{r,\alpha}) \|\mathcal{B}\|_F^2,$$

holds for all tensors $\mathcal{B} \in \mathcal{P}(r, \alpha)$ in the parameter space.

Remark 2. The RIP assumption requires the covariates at each of the modes are nearly orthonormal, at least when restricted to the desired parameter space.

Proposition 1 (Random design). Suppose $X_k \in \mathbb{R}^{d_k \times p_k}$ consists of i.i.d. standard Gaussian entries for k = 1, ..., K. Then with very high probability, X_k satisfies the RIP condition with $\delta = 2$.

Theorem 1 (Main Results). Consider a tensor regression model (1) with $\mathcal{Y} \in \{0,1\}^{d_1 \times \cdots \times d_K}$ the response and $\mathbf{X}_k \in \mathbb{R}^{d_k \times p_k}$ the mode-k covariates. Let $\hat{\mathcal{B}}_{MLE}$ be the restricted rank- \mathbf{r} maximum likelihood estimate of the coefficient tensor, where $\mathbf{r} = (r_1, \ldots, r_K)'$,

$$\hat{\mathcal{B}}_{MLE} = \mathop{\arg\min}_{\mathcal{B}: \; rank(\mathcal{B}) = \boldsymbol{r}, \|\mathcal{B}\|_{\infty} \leq \alpha} Log\text{-}lik \; (\mathcal{B}; \mathcal{Y}, \{\boldsymbol{X}_k\}).$$

Suppose the covariates X_k are full rank and satisfy the RIP condition with RIP constant $\delta \in (0,1)$. Then, with very high probability,

$$\left\|\hat{\mathcal{B}}_{MLE} - \mathcal{B}_{true}\right\|_{F} \leq \frac{C_{\alpha}}{\prod_{k} d_{k}} \sqrt{\frac{(1 + \delta_{2\boldsymbol{r},2\alpha})}{(1 - \delta_{2\boldsymbol{r},2\alpha})^{2}} \frac{\prod_{k=1}^{K} r_{k}}{r_{\max}}} \sum_{k=1}^{K} p_{k},$$

where $C_{\alpha} > 0$ is a constant independent of the tensor dimension or rank.

Theorem 2 (KL-Divergence and Hellinger Loss). See Zhuoyan's note "Evidence theory on prediction error" (08/09) and Jiaxin's note "Boundaries for different prediction error metrics" (08/09).

3 Proofs

Proof of Theorem 1. Following the similar argument as in [Wang and Li, 2019], we have Log-lik(\mathcal{B}_{true}) \leq Log-lik($\hat{\mathcal{B}}_{MLE}$). By Taylor expansion,

$$\|(\hat{\mathcal{B}}_{\text{MLE}} - \mathcal{B}_{\text{true}}) \times_1 \mathbf{X}_1 \times_2 \dots \times_K \mathbf{X}_K\|_F^2 \le C_\alpha \langle \mathcal{S}, (\hat{\mathcal{B}}_{\text{MLE}} - \mathcal{B}_{\text{true}}) \times_1 \mathbf{X}_1 \times_2 \dots \times_K \mathbf{X}_K \rangle, \quad (2)$$

where $S \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ is a random tensor consisting of i.i.d. bounded random entries. Applying the RIP condition to $(\hat{\mathcal{B}}_{\text{MLE}} - \mathcal{B}_{\text{true}}) \in \mathcal{P}(2r, 2\alpha)$ in the inequality (2) yields

$$(1 - \delta_{2\mathbf{r},2\alpha}) \| (\hat{\mathcal{B}}_{\text{MLE}} - \mathcal{B}_{\text{true}}) \|_F^2$$

$$\leq \| (\hat{\mathcal{B}}_{\text{MLE}} - \mathcal{B}_{\text{true}}) \times_1 \mathbf{X}_1 \times_2 \dots \times_K \mathbf{X}_K \|_F^2$$

$$\leq C_\alpha \times \| \hat{\mathcal{B}}_{\text{MLE}} - \mathcal{B}_{\text{true}} \|_F \times \sqrt{(1 + \delta_{2\mathbf{r},2\alpha}) \frac{\prod_k r_k}{r_{\text{max}}} \sum_k p_k},$$

where the last line uses the Lemma 2. Therefore,

$$\|\hat{\mathcal{B}}_{\text{MLE}} - \mathcal{B}_{\text{true}}\|_F \le C_{\alpha} \sqrt{\frac{(1 + \delta_{2\boldsymbol{r},2\alpha})}{(1 - \delta_{2\boldsymbol{r},2\alpha})^2} \frac{\prod_k r_k}{r_{\text{max}}} \sum_k p_k}.$$

Lemma 1. Suppose the matrices $\{X_k\}$ satisfy the RIP condition with constant $\delta_{r,\alpha} \in (0,1)$. Then the matrices $\{\tilde{X}_k^T X_k\}$ also satisfy the RIP condition with the same RIP constant.

Proof. Let $X_k = P_k \Delta_k Q_k^T$ be the SVD of X_k , and by Property 1, $\tilde{X}_k^T X_k = \Delta_k Q^T \in \mathbb{R}^{p_k \times p_k}$. Note that the F-norm is invariant under orthonormal transformation. Hence,

$$\|\mathcal{B} \times_1 \boldsymbol{X}_1 \times_2 \dots \times_K \boldsymbol{X}_K\|_F = \|\mathcal{B} \times_1 (\boldsymbol{P}_1 \Delta_1 \boldsymbol{Q}_1^T) \times_2 \dots \times_K (\boldsymbol{P}_K \Delta_K \boldsymbol{Q}_K^T)\|_F$$

$$= \|\mathcal{B} \times_1 (\Delta_1 \boldsymbol{Q}^T) \times_2 \dots \times_K (\Delta_K \boldsymbol{Q}^T)\|_F$$

$$= \|\mathcal{B} \times_1 (\tilde{\boldsymbol{X}}_1 \boldsymbol{X}_1^T)^{1/2} \times_2 \dots \times_K (\tilde{\boldsymbol{X}}_K \boldsymbol{X}_K)^{1/2}\|_F.$$

The proof is complete by invoking the Assumption 1.

Lemma 2. Let $\mathcal{B} \in \mathcal{P}(r, \alpha)$ be a fixed tensor in the parameter space $\mathcal{P}(r, \alpha)$ and $\mathcal{S} \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ be a random tensor with i.i.d. bounded random entries. Suppose $\{X_k\}$ satisfy the RIP condition with

RIP constant $\delta_{r,\alpha}$. Then, with very high probability,

$$\langle \mathcal{S}, \ \mathcal{B} \times_1 \mathbf{X}_1 \times_2 \cdots \times_K \mathbf{X}_K \rangle \leq \|\mathcal{B}\|_F \times \sqrt{(1 + \delta_{r,\alpha}) \frac{\prod_{k=1}^K r_k}{r_{\max}} \sum_{k=1}^K p_k}.$$

Proof. Let $\tilde{X}_k = X_k (X_k^T X_k)^{-1/2} = P_k$, where P_k consists of left singular vectors of X. By the definition of inner product,

$$\langle \mathcal{S}, \ \mathcal{B} \times_{1} \mathbf{X}_{1} \times_{2} \cdots \times_{K} \mathbf{X}_{K} \rangle$$

$$= \left\langle \underbrace{\mathcal{S} \times_{1} \tilde{\mathbf{X}}_{1}^{T} \times_{2} \cdots \times_{K} \tilde{\mathbf{X}}_{K}^{T}}_{:=\mathcal{E} \in \mathbb{R}^{p_{1} \times \cdots \times p_{K}} \text{ is a sub-Gaussian}(1) \text{ tensor by Lemma 3}} , \ \mathcal{B} \times_{1} (\tilde{\mathbf{X}}_{1}^{T} \mathbf{X}_{1}) \times_{2} \cdots \times_{K} (\tilde{\mathbf{X}}_{K}^{T} \mathbf{X}_{K}) \right\rangle.$$

$$\leq \|\mathcal{E}\|_{\sigma} \times \left\| \mathcal{B} \times_{1} (\tilde{\mathbf{X}}_{1}^{T} \mathbf{X}_{1}) \times_{2} \cdots \times_{K} (\tilde{\mathbf{X}}_{K}^{T} \mathbf{X}_{K}) \right\|_{*}$$

$$\leq \|\mathcal{E}\|_{\sigma} \times \sqrt{\frac{\prod_{k} r_{k}}{r_{\max}}} \times \left\| \mathcal{B} \times_{1} (\tilde{\mathbf{X}}_{1}^{T} \mathbf{X}_{1}) \times_{2} \cdots \times_{K} (\tilde{\mathbf{X}}_{K}^{T} \mathbf{X}_{K}) \right\|_{F}$$

$$\leq \sqrt{\frac{\prod_{k} r_{k}}{r_{\max}}} \times \|\mathcal{E}\|_{\sigma} \times \sqrt{1 + \delta_{r,\alpha}} \|\mathcal{B}\|_{F},$$

where the last line comes from the RIP condition of $\{\tilde{X}_k^T X_k\}$ by Lemma 1. Combining with the fact that $\|\mathcal{E}\|_{\sigma} \simeq \mathcal{O}(\sqrt{\sum_k p_k})$ (c.f. Theorem 1 in Tommioka and Suzuki, 2014], we have

$$\langle \mathcal{S}, \ \mathcal{B} \times_1 \mathbf{X}_1 \times_2 \cdots \times_K \mathbf{X}_K \rangle \leq \|\mathcal{B}\|_F \times \sqrt{(1 + \delta_{r,\alpha}) \frac{\prod_k r_k}{r_{\max}} \sum_k p_k}.$$

Lemma 3. Let S be an $sG(\sigma)$ tensor of dimension (d_1, \ldots, d_K) and $\tilde{\boldsymbol{X}}_k \in \mathbb{R}^{d_k \times p_k}$ be column-wise orthogonal matrices. Then $\mathcal{E} = S \times_1 \tilde{\boldsymbol{X}}_1^T \times_2 \cdots \times_K \tilde{\boldsymbol{X}}_K^T$ is an $sG(\sigma)$ tensor of dimension (p_1, \ldots, p_K) .

Proof. (Extended from Zhuoyan's note version 4.0) To show \mathcal{E} is an sG tensor, it suffices to show that the $\mathcal{E}(\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_K) \stackrel{\text{def}}{=} \langle \mathcal{E}, \boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_K \rangle$ is a sub-Gaussian random variable with parameter σ , where $\boldsymbol{u}_k \in \boldsymbol{S}^{p_k-1}$ for all $k = 1, \dots, K$.

Note that,

$$\mathcal{E}(\boldsymbol{u}_1, \cdots, \boldsymbol{u}_K) = \mathcal{S}(\tilde{\boldsymbol{X}}_1 \boldsymbol{u}_1, \ldots \tilde{\boldsymbol{X}}_K \boldsymbol{u}_K).$$

Because $\tilde{X}_k \in \mathbb{R}^{d \times p}$ are column-wise orthogonal matrices, so $\|\tilde{X}_k u_k\|_2 = \|u_k\|_2 = 1$. By definition of sub-Gaussian tensor, $\mathcal{S}(\tilde{X}_1 u_1, \ldots \tilde{X}_K u_K)$ is a sub-Gaussian random variable with parameter σ , so is the $\mathcal{E}(u_1, \ldots, u_K)$.