APELLIDOS: NOMBRE:

Ejercicio 1.-

A.- Sean V un espacio vectorial sobre k y $W \subset V$ un subespacio. Razonar si es verdadera o falsa la siguiente afirmación: "Si $\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}\subset V$ es linealmente independiente y, para cada $i=1,\ldots,m,\,\mathbf{u}_i\notin W$, entonces el conjunto $\{\mathbf{u}_1+W,\ldots,\mathbf{u}_m+W\}\subset V/W$ es linealmente independiente".

B.- En el \mathbb{R} -espacio vectorial \mathbb{R}^4 , consideremos los vectores $\mathbf{w}_1 = (3, -8, 0, -3), \mathbf{w}_2 = (0, 1, -1, 0)$ y los subespacios vectoriales

$$V_a = \begin{cases} x_1 - x_2 + ax_3 - 5x_4 = 0 \\ 2x_1 + x_2 + x_3 + 3x_4 = 0 \end{cases}, \quad W = \langle \mathbf{w}_1, \mathbf{w}_2 \rangle.$$

Se pide:

1.- Estudiar, según los valores de a, las dimensiones de los subespacios $V_a \cap W$ y $V_a + W$. Hallar, si existen, los valores de a tales que $V_a \oplus W = \mathbb{R}^4$.

2.- Sean $\mathbf{u}_1 = (1, 0, 0, 0), \mathbf{u}_2 = (0, 0, 0, 1)$. Probar que $\mathcal{C} := {\mathbf{u}_1 + W, \mathbf{u}_2 + W}$ es una base de \mathbb{R}^4/W .

3.- Hallar las coordenadas del vector (1, 2, -2, -3) + W respecto de la base C.

Ejercicio 2.- Sea $a \in \mathbb{Q}$ un parmetro racional indeterminado y $f: \mathbb{Q}^4 \to \mathbb{Q}^4$ el homomorfismo de \mathbb{Q} -espacios vectoriales cuya matriz respecto de la base canónica es

$$A = \left(\begin{array}{cccc} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 6 & -2 & 2 \\ 2 & 2 & 2 & 1 \end{array}\right).$$

1. ¿Para qué valores de $a \in \mathbb{Q}$ es f un homomorfismo diagonalizable?

2. ¿Verdadero o falso? Si $S \subset \mathbb{Q}^4$ es un conjunto linealmente independiente de vectores entonces $f(S) \subset \mathbb{Q}^4$ también lo es.

3. Para a=0, calcula una matriz invertible P y una matriz diagonal D tales que $P^{-1}AP=D$.

4. Obtén para a=0 una base de \mathbb{Q}^4 respecto de la cual la matriz de f sea diagonal.

Ejercicio 3.- Consideremos, en el espacio afín $A^3(\mathbb{R})$, y referidas las coordenadas al sistema de referencia canónico, las siguientes variedades lineales definidas por puntos:

$$L_1 = \langle (0,1,0), (1,-1,-1), (1/2,0,-1/2) \rangle, L_2 = \langle (2,0,0), (1,3,1), (2,2,0) \rangle.$$

Se pide:

1. Estudiar la posición relativa de las dos variedades lineales y tomar puntos, $P_1 \in L_1$ y $P_2 \in L_2$ tales que $d(P_1, P_2) = d(L_1, L_2)$.

2. Hallar unas ecuaciones de una perpendicular común a L_1 y L_2 . ¿Es única?

3. Calcular las variedades $L_2 \cap L$ y $L_2 + L$, con $L = (0,0,0) + L_1$.

Ejercicio 4.- Sea $X = \mathbb{A}^2(\mathbb{R})$ el espacio afín euclídeo de dimensión 2 sobre \mathbb{R} . Consideramos las aplicaciones afines f y g, cuyas ecuaciones respecto de un sistema de referencia métrico \mathcal{R} de X son, respectivamente,

$$M_{\mathcal{R}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}, \qquad M_{\mathcal{R}}(g) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 4 & -1 & 0 \end{pmatrix}.$$

1. Probar que f y g son movimientos.

2. Clasificar los movimientos f y g.

3. El movimiento f se puede descomponer como producto de simetrías axiales. Explicar cual es el mínimo número de simetrías axiales en el que podemos descomponer f.