Long-Short Term Memory

Authors: Hochreiter Sepp, Jürgen Schmidhuber

Presented by: Zihang Dai

Outline

- Motivation
- LSTM
- Experiments

Recurrent Neural Network

Back-Propagation Through Time (BPTT)

Temporal term

$$\delta_t^l = \frac{\partial}{\partial c_t^l} \sum_{j=t}^T L_j = \frac{\partial L_t}{\partial c_t^l} + \frac{\partial}{\partial c_t^l} \sum_{j=t+1}^T L_j$$

Spatial term

Spatial term:
$$\frac{\partial L_t}{\partial c_t^{l+1}} \cdot \frac{\partial c_t^{l+1}}{\partial c_t^{l}} = \delta_t^{l+1} \cdot \frac{\partial c_t^{l+1}}{\partial c_t^{l}}$$

Temporal term:
$$\frac{\partial \sum_{j=t+1}^{T} L_{j}}{\partial c_{t+1}^{l}} \cdot \frac{\partial c_{t+1}^{l}}{\partial c_{t}^{l}} = \delta_{t+1}^{l} \cdot \frac{\partial c_{t+1}^{l}}{\partial c_{t}^{l}}$$

Vanishing Gradient Problem

$$\frac{\partial L_{t+n}}{\partial c_t^l} = \frac{\partial L_{t+n}}{\partial c_{t+n}^l} \cdot \frac{\partial c_{t+n}^l}{\partial c_{t+n-1}^l} \cdot \dots \cdot \frac{\partial c_{t+1}^l}{\partial c_t^l}$$

$$= \frac{\partial L(t)}{\partial c_{t+n}^l} \cdot \prod_{\tau=t}^{t+n} \frac{\partial c_{\tau+1}^l}{\partial c_{\tau}^l}$$

Sequential Jacobian

$$\frac{\partial c_{\tau+1}^{l}}{\partial c_{\tau}^{l}} = W_{h}^{T} \sigma'(c_{\tau}^{l}) \qquad \qquad \left\| \frac{\partial c_{\tau+1}^{l}}{\partial c_{\tau}^{l}} \right\| \leq \|W_{h}\| \|\sigma'(c_{\tau}^{l})\| \leq 1/4$$

- Exponential decayed error message
- Long-term dependency cannot be learned

Weight Conflict Problem

Two **conflict** roles of W_{in}

- **Absorb** useful signal x_t
- **Reject** harmful noise x_{t+1}

Two **conflict** roles of W_{out}

- **Reject** useless memory of x_t for p_{t+2}
- Retrieve useful memory of x_t for p_{t+n}

 $(x_{t} \text{ is noise}) \quad (x_{t} \text{ is signal})$ $p_{t} \quad p_{t+1} \quad p_{t+2} \quad p_{t+n}$ W_{out} W_{out} W_{in} $x_{t} \quad x_{t+1} \quad x_{t+2} \quad x_{t+n}$

Treating Vanishing Gradient: Constant Error Carrousel (CEC)

Error signal doesn't vanish
$$\frac{\partial c_{\tau+1}^l}{\partial c_{\tau}^l} = W_h^T \sigma'(c_{\tau}^l) \approx \mathbf{I}$$

$$\stackrel{\text{e.g.}}{\longrightarrow} \text{Let } W = I, f(c_{\tau}^l) = c_{\tau}^l$$

$$\text{Then, } W_h^T \sigma'(c_{\tau}^l) = \mathbf{I}$$

Problem with this idea

No non-linearity (network won't be powerful)

Treating Wight Conflict: Gating Function

Core Idea

Learn

- 1. what to store in the memory
- 2. what to retrieve from the memory

Gated Input

$$in_t = f_t^{in} \otimes x_t$$

Gated Output

$$out_t = f_t^{out} \otimes c_t$$

- f_t^{in} is the input gating function
- $[f_t^{in}]_i \in [0,1]$ (each element within [0,1])
- f_t^{out} is the output gating function
- $[f_t^{out}]_i \in [0,1]$ (each element within [0,1])

CEC + Gates → Long-Short Term Memory (LSTM)

① Constant Error Carrousel (CEC) ⊗ Element-wise multiplication

Input gate

Output gate

Why LSTM solves the problem

$$i_{t+1} = \sigma(M_{ix}x_{t+1} + M_{ih}h_t)$$

$$o_{t+1} = \sigma(M_{ox}x_{t+1} + M_{oh}h_t)$$

$$a_{t+1} = \phi(M_{cx}x_{t+1} + M_{ch}h_t)$$

$$c_{t+1} = c_t + i_{t+1} \otimes a_{t+1}$$

$$h_{t+1} = o_{t+1} \otimes \phi(c_{t+1})$$
Gated Error

$$\frac{\partial L_{t+n}}{\partial c_t^l} = \frac{\partial L_{t+n}}{\partial c_{t+n}^l} \prod_{\tau=t}^{t+n} \frac{\partial c_{\tau+1}^l}{\partial c_{\tau}^l} = \frac{\partial L_{t+n}}{\partial c_{t+n}^l} \prod_{j=1}^n (I + i_{t+1} \dots f_t \dots)$$

Experiment 3: two-sequence problem

Experiment 4 & 5: adding/multiplication problem

Second dimension used as a marker

Adding Problem: $... \begin{bmatrix} X_1 \\ -1 \end{bmatrix} ... \begin{bmatrix} R \\ 1 \end{bmatrix} ... \begin{bmatrix} X_2 \\ -1 \end{bmatrix} ... \begin{bmatrix} R \\ 1 \end{bmatrix} ...$ $0.5 + \frac{X_1 + X_2}{4.0}$ Multiplication Problem: $... \begin{bmatrix} X_1 \\ -1 \end{bmatrix} ... \begin{bmatrix} R \\ 1 \end{bmatrix} ... \begin{bmatrix} X_2 \\ -1 \end{bmatrix} ... \begin{bmatrix} R \\ 1 \end{bmatrix} ...$ $X_1 \times X_2$

Input: $X \in \mathbb{R}^{2 \times T}$

Output: $y \in R$

Experiment 6: temporal order problem

Problem

Input
$$\vec{x} \in R^T$$

Output
$$y = \{Q, R, S, U\}$$

Model

Introducing Forget Gate

$$i_{t+1} = \sigma(M_{ix}x_{t+1} + M_{ih}h_t)$$

$$f_{t+1} = \sigma(M_{fx}x_{t+1} + M_{fh}h_t)$$

$$o_{t+1} = \sigma(M_{ox}x_{t+1} + M_{oh}h_t)$$

$$a_{t+1} = \phi(M_{cx}x_{t+1} + M_{ch}h_t)$$

$$c_{t+1} = f_{t+1} \otimes c_t + i_{t+1} \otimes a_{t+1}$$

$$h_{t+1} = o_{t+1} \otimes \phi(c_{t+1})$$

Thanks & Questions