PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-199522

(43)Date of publication of application: 27.07.1999

(51)Int.CI.

A61K 47/46 A61K 9/00

A61K 9/70

(21)Application number: 09-369145

(71)Applicant: LION CORP

(22)Date of filing:

26.12.1997

(72)Inventor: ONO YUKO

TAKAHASHI MIYUKI KOIDE TOMOMASA

(54) ENHANCEMENT OF SENSE OF TOUCH AND PREPARATION FOR EXTERNAL USE FOR SKIN

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a preparation for external use for skin which can give a desired sense of touch, for example, enhances a sense of touch by a warm sense—giving substance, and give an enough warm sense to a non-steroidal antiinflammatory agent—containing preparation for external use for skin even if the substance is included at a predetermined amount, by including a substance which gives a desired sense of touch and a substance which gives a contrasting sense of touch at a specific ratio.

SOLUTION: This preparation is obtained by including (A) a substance which gives a desired sense of touch and (B) a substance which gives a contrasting sense of touch at a weight ratio of (1:0.1)–(1:0.0001). Preferably the combination of these senses is a warm sense and a refreshing sense ad/or a cool sense. Preferably the warm sense–giving substance is a combination of at least two substances from red pepper such as capsaicin and capsicoside. Preferably the refreshing sense–giving substance is 1–menthol, isopulegol, or the like. Preferably the combination of the warm sense–giving substance and the refreshing sense– giving substance is a combination of capsaicin and 1–menthol, or the like.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-199522

(43)公開日 平成11年(1999)7月27日

(51) Int.CL ⁶	識別記号	FΙ		
A 6 1 K 47/46		A 6 1 K 47/46	Z	
9/00		9/00	v	
9/70	362	9/70	362	

審査請求 未請求 請求項の数3 FD (全 20 頁)

(21)出願番号	特願平9 -369145	(71) 出願人 000006769
		ライオン株式会社
(22)出顧日	平成9年(1997)12月26日	東京都墨田区本所1丁目3番7号
		(72)発明者 大野 祐子
		東京都墨田区本所1丁目3番7号 ライオ
		ン株式会社内
		(72)発明者 高橋 美由紀
	•	東京都墨田区本所1丁目3番7号 ライオ
		ン株式会社内
		(72)発明者 小出 倫正
		東京都墨田区本所1丁目3番7号 ライオ
٠.		ン株式会社内
		(74)代理人 弁理士 小島 隆司 (外1名)

(54) 【発明の名称】 触感増強方法及び皮膚外用剤

(57)【要約】

【解決手段】 非ステロイド系抗炎症剤を含有する皮膚外用剤に、温感付与物質を外用剤全体の0.0001~5重量%配合すると共に、清涼感及び/又は冷感を付与する清涼化剤を重量比で上記温感付与物質:清涼化剤=1:0.1~1:0.0001となるように配合する。【効果】 非ステロイド系抗炎症剤と共に配合される触感付与物質の配合量が通常よりも低減されていても十分な触感が得られ、これら成分による皮膚刺激性を改善することができる。

【特許請求の範囲】

【請求項1】 所望の触感を付与する物質にそれと相反する触感を付与する他の物質を配合することによって、所望の触感を増強する方法であって、上記触感付与物質に上記他の触感付与物質を重量比で1:0.1~1:0.0001となるように配合することを特徴とする触感増強方法。

【請求項2】 非ステロイド系抗炎症剤を含有する皮膚外用剤に、温感付与物質を外用剤全体の0.0001~5重量%配合すると共に、清涼感及び/又は冷感を付与する清涼化剤を重量比で上記温感付与物質:清涼化剤=1:0.1~1:0.0001となるように配合してなることを特徴とする皮膚外用剤。

【請求項3】 非ステロイド系抗炎症剤を含有する皮膚外用剤に、清涼化剤を外用剤全体の0.1重量%以上、3重量%未満となるように配合すると共に、温感付与物質を重量比で上記清涼化剤:温感付与物質=1:0.1~1:0.0001となるように配合してなることを特徴とする皮膚外用剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、所望の触感を付与する物質にそれと相反する触感を付与する物質を所定割合で添加することによって、所望の触感を増強する触感増強方法、及び温感と清涼感、冷感とのいずれか一方の触感を非ステロイド系抗炎症剤を含有する皮膚外用剤に付与するに当たり、他方の触感付与物質を所定割合で配合することによって目的とする触感が増強された皮膚外用剤に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来より、消炎、鎮痛剤として使用されている非ステロイド系抗炎症剤を含有する皮膚外用剤は、有効性の使用実感を与え、且つ炎症を起こしている適用部位に清涼感や冷感を与えるために清涼化剤を配合したり、逆に適用時に冷たい感じがするのを避けるために温感を付与する物質を配合することが行われている。

【0003】しかしながら、これらの触感を十分に得るためには多量の触感付与物質を配合する必要があるが、その一方で、触感付与物質を多量に配合しようとすると皮膚刺激性の問題や配合組成上の問題が生じるおそれがあり、触感付与物質による触感を増強する技術の開発が望まれていた。

【0004】本発明は上記事情に鑑みなされたもので、 触感付与物質による触感を増強する触感増強方法、及び 該方法によって温感付与物質又は清涼化剤による触感が 増強されて、所定量の温感付与物質又は清涼化剤の配合 であっても、非ステロイド系抗炎症剤含有の皮膚外用剤 に十分な温感又は清涼感、冷感を付与することができる 皮膚外用剤を提供することを目的とする。

[0005]

【課題を解決するための手段及び発明の実施の形態】本 発明者は、上記目的を達成するため鋭意検討した結果、 所望の触感を付与する物質にそれと相反する触感を付与 する物質を所定割合で配合することによって、所望の触 感を増強することができ、従って、非ステロイド系抗炎 症剤を含有する皮膚外用剤に温感を付与する場合、温感 付与物質と共に清涼化剤を所定割合で配合することによって、温感付与物質の配合量を増大することなく、十分 な温感が得られ、逆に清涼感、冷感を付与する場合、清 涼化剤と共に温感付与物質を所定割合で配合することに よって、清涼化剤の配合量を増大することなく、十分な 清涼感、冷感が得られることを見い出し、本発明をなす に至った。

【0006】即ち、本発明は、所望の触感を付与する物 質にそれと相反する触感を付与する他の物質を配合する ことによって、所望の触感を増強する方法であって、上 記触感付与物質に上記他の触感付与物質を重量比で1: 0. 1~1:0. 0001となるように配合することを 特徴とする触感増強方法、非ステロイド系抗炎症剤を含 有する皮膚外用剤に、温感付与物質を外用剤全体の 0. 0001~5重量%配合すると共に、清涼感及び/又は 冷感を付与する清涼化剤を重量比で上記温感付与物質: 清涼化剤=1:0.1~1:0.0001となるように 配合してなることを特徴とする皮膚外用剤及び非ステロ イド系抗炎症剤を含有する皮膚外用剤に、清涼化剤を外 用剤全体の0.1重量%以上、3重量%未満となるよう。 に配合すると共に、温感付与物質を重量比で上記清涼化 剤:温感付与物質=1:0.1~1:0.0001とな るように配合してなることを特徴とする皮膚外用剤を提 供する。

【0007】以下、本発明をより詳細に説明すると、本発明の触感増強方法は、所望の触感を付与する物質に、これと相反する触感を付与する他の物質を所定割合で配合することによって、所望の触感を増強させるものである。

【0008】ここで、相反する触感としては、特に制限されるものではないが、例えば温感と清涼感及び/又は冷感(以下、清涼感等)との組み合わせ等が好適である。

【0009】これらの触感を付与する物質としては、例えば温感付与物質として、カプシコシド、カプサイシン、カプサイシノイド、ジヒドロキシカプサイシン、カプサンチン等のカプサイシン類似体、トウガラシエキス、トウガラシチンキ、トウガラシ末などのトウガラシ由来の温感付与物質、ニコチン酸ベンジル、ニコチン酸 β -ブトキシエチル、N-アシルワニルアミド、ノニル酸ワニルアミド等が挙げられ、これらは1種を単独で又は2種以上を併用して用いることができる。本発明の場合、これらの中でも特にトウガラシ由来のカプシコシ

ド、カプサイシン、カプサイシノイド、カプサイシン類似体、トウガラシエキス、トウガラシチンキ、トウガラシ末等が好適であり、適用時の皮膚刺激性を緩和することを考慮すれば、トウガラシ由来の上記物質を2種以上組み合わせて使用すると、より好適である。なお、カプサイシンの具体的成分としては、8-メチルーNーバニリルー6E-ノネンアミド、Nーバニリルノナンアミド等、カプサイシノイドの具体的成分としては、Nーバニリルー9-オクタデセンアミド等、カプサイシン類似体の具体的成分としては、Nーバニリルーアルカジエンアミド、Nーバニリルーアルカンジエンニル、Nーバニリルーcis-モノ不飽和アルケンアミド等を挙げることができる。

【0010】上記温感付与物質と組み合わせる清凉感等 を付与する清涼化剤としては、テルペン系炭化水素化合 物、メントール類縁化合物等を挙げることができ、具体 的には、テルペン系炭化水素化合物として、例えばリモ ネン、テルピノレン、メンタン、テルピネンなどの p-メンタン及びそれから誘導される単環式モノテルペン系 炭化水素化合物等を挙げることができ、メントール類縁 20 化合物として、例えば1-メントール、イソプレゴー ル, 3, 1ーメントキシプロパン-1, 2ージオール, 1-(2-ヒドロキジフェニル)-4-(3-ニトロフ ェニル) -1, 2, 3, 6-テトラヒドロキシピリミジ ン-2-オン, エチルメンタンカルボキサミド, p-メ ンタン-3,8-ジオール,3,8-ジヒドロキシ-p ーメンタン-3-9-ジオール, トリアルキル置換シク ロヘキサンカルボキシアマイド等が挙げられ、これらは 1種を単独で又は2種以上を併用して用いることができ る。本発明の場合、これらの中でも特に1-メントー ル、イソプレゴール等が好適である。なお、メントール 類縁化合物の光学異性体は特に限定されない。

【0011】また、上記温感付与物質と清凉化剤との特に好適な組み合わせとしては、例えばトウガラシエキスと1ーメントール、トウガラシエキスとイソプレゴール、カプサイシンと1ーメントール等の組み合わせを挙げることができる。

【0012】本発明の触感増強方法は、所望の触感を付与する物質に対して相反する触感を付与する他の物質を重量比で1:0.1~1:0.0001、好ましくは1:0.1~1:0.001、より好ましくは1:0.01~1:0.005となるように配合するものである。上記範囲以外では、目的とする触感の増強効果が得られない。なお、特に温感の増強を目的とするするときは、温感付与物質の配合割合を消涼化剤より多くし、清涼感等の増強を目的とするするときは配合割合を逆にする。

【0013】本発明の触感増強方法は、その用途が特に制限されるものではなく、各種用途に使用される組成物において所望の触感を増強することができ、また、本発 50

明の効果を妨げない範囲で所望の香料、色素、界面活性 剤等を添加することもできる。

【0014】本発明の皮膚外用剤は、非ステロイド系抗 炎症剤を含有し、貼付剤、クリーム剤、ゲル剤、ローシ ョン剤、軟膏剤等として調製されるものであり、上記触 感増強方法によって、皮膚外用剤の温感又は清涼感及び /又は冷感が増強されたものである。ここで、非ステロ イド系抗炎症剤としては、皮膚外用剤に配合し得るもの であればその種類が特に制限されるものではなく、例え ばアズレン、アセトアミノフェン、アセメタシン、アル クロフェナク、アルミノプロフェン、アンピロキシカ ム、アンフェナク、イソキシカム、イソキセバク、イブ フェナク、イブプロフェン、インドシン、インドプロフ ェン、インドメタシン、エトドラク、エモルファゾン、 オキサプロジン、オキサブロフェン、オキシカム、オキ セビナク、オルセノン、オルトフェナミン酸、カルプロ フェン、クリダナク、クリプロフェン、ケトチフェン、 ケトプロフェン、ケトロラク、アスピリン、サリチル酸 メチル、サリチル酸グリコール等のサリチル酸系薬剤、 ザルトプロフェン、ジクロフェナク、シクロプロフェ ン、ジドメタシン、ジフルニサル、硝酸イソソルビド、 スドキシカム、スプロフェン、スリンダク、ゾメビラ ク、チアプロフェン、チオキサプロフェン、チオビナ ク、テニラック、テノキシカム、トラマドール、トルメ チン、トルフェナム酸、ナプロキセン、ニフルミン酸、 ビルプロフェン、ピロキシカム、フェニドン、フェノプ ロフェン、フェルビナク、フェンクロフェナク、フェン・ チアザク、フェンブフェン、ブクロキシ酸、ブフェキサ マク、プラノプロフェン、フルプロフェン、フルフェナ ミン酸、フルフェニサル、フルルビプロフェン、フルル ビプロフェンアキセチル、フロクタフェニン、プロチジ ン酸、フロフェナク、ベノキサプロフェン、ベノリレー ト、ベンダザク、ミロプロフェン、メクロフェナミン 酸、メピリゾール、メフェナム酸、リシブフェン、ロキ ソプロフェン及びこれらの塩等が挙げられ、これらは1 種を単独で又は2種以上を併用して用いることができ る。本発明の場合、抗炎症作用、安全性等を考慮する と、これらの中でもフルルビプロフェン、フェルビナ ク、ブフェキサマク、スプロフェン、イブプロフェン、 ジクロフェナクナトリウム、ピロキシカム、インドメタ シン、ザルトプロフェン、メフェナム酸等が好適であ り、特にフルルビプロフェン、フェルビナク、ブフェキ サマク、スプロフェン等を含有する場合に効果的であ

【0015】本発明の皮膚外用剤全体に対する上記非ステロイド系抗炎症剤の配合量は特に制限されるものではなく、皮膚外用剤の剤型、使用目的等によって適宜選定することができるが、通常外用剤全体の0.1~10%(重量%、以下同様)、より好ましくは0.2~5%、更に好ましくは0.3~3%が好ましい。非ステロイド

系抗炎症剤の配合量が少なすぎると十分な薬効が得られない場合があり、多すぎると皮膚刺激の副作用が生じる場合がある。

【0016】本発明の皮膚外用剤は、上記非ステロイド系抗炎症剤を含有する皮膚外用剤に温感付与物質又は清涼化剤を配合することによって、温感又は清涼感等を付与するに当たり、温感付与を目的とする場合は、所定量の温感付与物質に所定割合の清涼化剤を併用し、逆に清涼感等の付与を目的とする場合には、所定量の清涼化剤に所定割合の温感付与物質を併用するものであり、温感付与物質及び清涼化剤としては、上述したものを好適に使用することができる。

【0017】本発明の皮膚外用剤が温感付与を目的とす る場合、上記温感付与物質の配合量は皮膚外用剤全体の 0.0001~5%、好ましくは0.001~3%、よ り好ましくは0.01~1%である。温感付与物質の配 合量が少なすぎると十分な温感が得らず、多すぎると本 発明の目的から外れるのみならず、皮膚刺激性が生じる 場合がある。また、同様の理由により上記非ステロイド 系抗炎症剤に対する配合割合は上記非ステロイド系抗炎 症剤:温感付与物質=1:0.0001~1:1(重量 比)、好ましくは1:0.001~1:0.7、より好 ましくは1:0.002~1:0.5とすると好適であ る。そして、上記触感増強方法と同様に上記滑涼化剤を 上記温感付与物質:清涼化剤=1:0.1~1:0.0 001 (重量比) となるように配合することによって、 上記温感付与物質による温感を増強させることができ、 好ましくは1:0.05~1:0.0005、より好ま しくは1:0.01~1:0.001である。清涼化剤 の配合割合が低すぎると十分な温感増強効果が得らず、 高すぎると皮膚刺激性が強くなる。なお、皮膚刺激性等 を考慮すると上記温感付与物質と清凉化剤との合計配合 量は、皮膚外用剤全体の0.001~5%、好ましくは 0.01~4%、より好ましくは0.02~3%とする ことが望ましい。

【0018】本発明の皮膚外用剤が清涼感等の付与を目的とする場合、上記清涼化剤の配合量は皮膚外用剤全体の0.05%以上、且つ3%未満、好ましくは0.1~2.5%、より好ましくは0.2~2%である。清涼化剤の配合量が少なすぎると十分な清涼感等が得らず、多すぎると本発明の目的から外れるのみならず、皮膚刺激性が生じる場合がある。また、同様の理由により上記非ステロイド系抗炎症剤に対する配合割合は上記非ステロイド系抗炎症剤:清涼化剤=1:0.01~1:60(重量比)、好ましくは1:0.02~1:10とすると好適である。そして、上記同様に上記温感付与物質を上記清涼化剤:温感付与物質=1:0.1~1:0.0001(重量比)となるように配合するものであり、好ましくは1:0.1~1:0.001、より好ましくは1:0.

2~1:0.005、更に好ましくは1:0.2~1:0.01である。温感付与物質の配合割合が低すぎると十分な清涼感増強効果が得らず、高すぎると皮膚刺激性が強くなる。なお、皮膚刺激性等を考慮すると上記清涼化剤と温感付与物質との合計配合量は、上記と同様にすることが望ましい。

6

【0019】本発明の皮膚外用剤は、上記必須成分以外に、更に α -シクロデキストリン, β -シクロデキストリン, γ -シクロデキストリン, γ -シクロデキストリン, γ -シクロデキストリン,とドロキシエチル化シクロデキストリン等のシクロデキストリン類の1種又は2種以上を配合すると、温感又は清涼感等の持続性が向上する上、非ステロイド系抗炎症剤の経皮吸収性、持効性が向上するので、より好適であり、この場合、シクロデキストリン類の配合量は、本発明の効果を妨げない範囲で有効量とすることができ、通常皮膚外用剤全体の0.01~10%、特に0.03~5%となるように配合すると好適である。

【0020】本発明の皮膚外用剤には、非ステロイド系 抗炎症剤以外の有効成分、香料、色素等を必要に応じて 適宜配合することができる。なお、上記有効成分等の配 合量は本発明の効果を妨げない範囲で通常量とすること ができる。

【0021】更に、本発明の皮膚外用剤には、その他の 任意成分として剤型に応じた適宜な成分を本発明の効果 を妨げない範囲で通常量添加することができる。例えば 貼付剤として調製する場合には、水系粘着剤として、ポー リアクリル酸、ポリアクリル酸塩、ポリビニルアルコー ル、ポリビニルピロリドン、ポリビニルピロリドン・ビ ニルアセテート共重合体、カルボキシビニル共重合体、 メチルセルロース, カルボキシメチルセルロース, カル ボキシメチルセルロース塩,カルボキシエチルセルロー ス、カルボキシエチルセルロース塩、ヒドロキシプロピ ルセルロース, アルギン酸ナトリウム, ゼラチン, ペク チン, ポリエチレンオキサイド, メチルビニルエーテル ・無水マレイン酸共重合体、カルボキシメチルスターチ 等の1種又は2種以上の水溶性高分子物質(配合量通常 基剤全体の1~15%)、カオリン、ベントナイト、モ ンモリロナイト,酸化チタン,酸化亜鉛,水酸化アルミ ニウム, 無水ケイ酸等の1種又は2種以上の無機粉体 (配合量通常基剤全体の0~10%)、プロピレングリ コール, グリセリン, ソルビトール, ピロリドンカルボ ン酸ナトリウム, 乳酸ナトリウム等の1種又は2種以上 の保湿剤(配合量通常基剤全体の0~20%)及び水を 適宜割合で混合したものなどを使用することができる。 【0022】この場合、このような水系粘着剤としては 金属イオン架橋型含水ゲル基剤、特にポリアクリル酸及 びポリアクリル酸塩を含有し、更にカルボキシメチルセ ルロースナトリウム及び/又はアルギン酸アルカリ金属 塩を含有する非ゼラチン系基剤を好ましく使用し得る。

即ち、上記組成の含水ゲル基剤は粘着力が強く、かつ含 水率も高く、保型性に優れているため、この含水ゲル基 剤を用いることにより、これに上記非ステロイド系抗炎 症剤を配合した場合、この有効成分が皮膚に効率的に吸 収されると共に、良好な温感又は清涼感等の触感が感じ られるものである。なお、上記組成の含水ゲル基剤は、 ポリアクリル酸とポリアクリル酸塩との配合比率を変え ることにより、任意の p Hを有する基剤を得ることがで きるものであるが、この場合ポリアクリル酸とポリアク リル酸塩の配合比は1:9~8:2とすることが好まし く、ポリアクリル酸重量がポリアクリル酸ーポリアクリ ル酸塩重量の1/10より少ないと肌への充分な粘着力 が得られない場合があり、またポリアクリル酸ーポリア クリル酸塩重量の8/10より多いと充分な増粘が行わ れず、膏体(基剤)がダレる場合が生じる。更に、上記 成分からなる含水ゲル基剤を多価金属塩により金属架橋 する場合、多価金属塩としては塩化カルシウム、塩化マ グネシウム、塩化アルミニウム、カリミョウバン、アン モニウムミョウバン、鉄ミョウバン、硫酸アルミニウ ム、硫酸第二鉄、硫酸マグネシウム、エチレンジアミン 四酢酸(EDTA、以下同様)ーカルシウム、EDTA ーアルミニウム、EDTA-マグネシウム、塩化第一錫 等の可溶性塩、水酸化カルシウム、水酸化第二鉄、水酸 化アルミニウム、炭酸カルシウム、炭酸マグネシウム、 リン酸カルシウム、リン酸水素カルシウム、リン酸二水 素カルシウム、ステアリン酸マグネシウム、ステアリン 酸アルミニウム、クエン酸カルシウム、硫酸バリウム、 水酸化パリウム、アルミニウムアラントイネート、酢酸 アルミニウム、アルミニウムグリシネート、水酸化第一 錫, α-錫酸等の微溶性又は難溶性塩などから選ばれる 1種又は2種以上、更に架橋反応の速度調整剤としてE DTA-2ナトリウム、クエン酸、酒石酸、尿素、アン モニア等の金属イオンに対してキレートもしくは配位能 を持つ有機酸、有機酸塩、有機塩基などを配合し得る。 【0023】アクリル系粘着剤では、その粘着性などか ら、特に、炭素数4~18の脂肪族アルコールと(メ タ)アクリル酸とから得られる(メタ)アルキル酸アル キルエステルの(共)重合体及び/又は上記(メタ)ア クリル酸アルキルエステルとその他の官能性モノマーと の共重合体が好適に用いられる。

【0024】上記(メタ)アクリル酸エステルとしては、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸ー2ーエチルヘキシル、アクリル酸イソオクチル、アクリル酸デシル、アクリル酸イソデシル、メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸イソデシル、メタクリル酸イソオクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸ステアリルなどがある。上記官能性モノマーには、

水酸基を有するモノマー、カルボキシル基を有するモノ マー、アミド基を有するモノマー、アミノ基を有するモ ノマーなどが挙げられる。水酸基を有するモノマーとし ては、2-ヒドロキシエチル(メタ)アクリレート、ヒ ドロキシプロピル (メタ) アクリレートなどのヒドロキ シアルキル(メタ)アクリレートがある。カルボキシル 基を有するモノマーとしては、アクリル酸、メタクリル 酸などのα、β不飽和カルボン酸、マレイン酸ブチルな どのマレイン酸モノアルキルエステル、マレイン酸、ク マル酸、クロトン酸などがある。無水マレイン酸もマレ イン酸と同様の(共)重合成分を与える。アミド基を有 するモノマーとしては、アクリルアミド、ジメチルアク リルアミド、ジエチルアクリルアミドなどのアルキル (メタ) アクリルアミド、ブトキシメチルアクリルアミ ド、エトキシメチルアクリルアミドなどのアルキルエー テルメチロール(メタ)アクリルアミド、ジアセトンア クリルアミド、ビニルピロリドンなどがある。アミノ基 を有するモノマーとしては、ジメチルアミノアクリレー トなどがある。上記以外の共重合性モノマーとしては、 酢酸ビニル、スチレン、αーメチルスチレン、塩化ビニ ル、アクリロニトリル、エチレン、プロピレン、ブタジ エンなどが挙げられ、これらが共重合されていてもよ

【0025】ゴム系粘着剤としては、天然ゴム、合成イ ソプレンゴム、ポリイソブチレン、ポリビニルエーテ ル、ポリウレタン、ポリブタジエン、スチレンーブタジ エン共重合体、スチレンーイソプレン共重合体などが用。 いられる。シリコーン樹脂系粘着剤としては、ポリオル ガノシロキサンなどのシリコーンゴムが用いられる。 【0026】更に、本発明においては、基剤に上記成分 に加えて必要に応じ衛体物性(柔軟性、粘着性、保型性 等)の調整剤としてポリブテン,ラテックス,酢酸ビニ ルエマルション、アクリル樹脂エマルション等の高分子 物質、架橋ゲル化剤として種々の多価金属塩、ジアルデ ヒドデンプン等の有機架橋化剤、有効成分の安定配合剤 としてラノリン、流動パラフィン、植物油、豚脂、牛 脂、高級アルコール、高級脂肪酸、活性剤等の適宜成分 を配合することができる。さらに、必要に応じて各種配 合剤、例えばロジン系樹脂、ポリテルペン樹脂、クマロ ンーインデン樹脂、石油系樹脂、テルペンフェノール樹 脂などの粘着性付与剤;液状ポリブテン、鉱油、液状ポ リイソプレン、液状ポリアクリレートなどの可塑剤、充 填剤老化防止剤などが添加される。

【0027】そして、貼付剤の支持体としては、貼付剤に通常使用される支持体が用いられる。この様な支持体の素材としては、酢酸セルロース、エチルセルロース、ポリエチレンテレフタレート、酢酸ビニルー塩化ビニル共重合体、ナイロン、エチレン一酢酸ビニル共重合体、可塑化ポリ塩化ビニル、ポリウレタン、ポリエチレン、ポリ塩化ビニリデン、アルミニウムなどがある。これら

は例えば単層のシート(フィルム)や二枚以上の積層 (ラミネート)体として用いられる。アルミニウム以外 の素材は織布や不織布として利用してもよい。

【0028】本発明の皮膚外用剤として貼付剤を調製する場合、常法に従って製造し得、例えば水性パップ剤であれば、上記各成分を練合してペースト状に調製し、これを上記支持体に塗布し、必要によりポリエチレンフィルム等のフェイシングを被覆することによって得られるものである。更に例えば、アクリル系、ゴム系、シリコーン系粘着剤組成物の場合は上記支持体表面に薬物と界面活性剤とを含有する粘着剤層が形成され貼付剤が得られる。当該粘着剤層を形成するには、溶剤塗工法、ホットメルト塗工法、電子線エマルジョン塗工法などの種々の塗工法が用いられ得る。

【0029】更に、例えば軟膏剤及びローション剤等の 液剤として調製する場合、基剤としての溶媒、油成分、 グリコール類、界面活性剤、水溶性高分子化合物などを 配合することができ、具体的には、溶媒として、例えば 水、エタノール、プロピルアルコール、イソプロピルア ルコール、アセトン、ベンジルアルコール等、油成分と して、例えばラノリン、硬化油、レシチン、プラスチベ ース、流動パラフィン、オレイン酸、ステアリン酸、ミ リスチン酸、パルミチン酸、ミツロウ、パラフィンワッ クス、マイクロクリスタリンワックス、アジピン酸ジイ ソプロピル、ミリスチン酸イソプロピル、セバスチン酸 イソプロピル、パルミチン酸イソプロピル、スクワラ ン, スクワレン, セタノール, ステアリルアルコール, オレイルアルコール, ヘキサデシルアルコール、シリコ ン油等、グリコール類として、例えばグリセリン、プロ ピレングリコール, ポリエチレングリコール, ポリプロ ピレングリコール等、界面活性剤として、例えばポリオ キシエチレン硬化ヒマシ油、ポリオキシエチレンソルビ タン脂肪酸エステル, ポリオキシエチレングリセリン脂 肪酸エステル、ポリオキシエチレングリコール脂肪酸エ ステル, ポリオキシエチレングリコールエーテル. ポリ オキシエチレンアルキルフェニルエーテル、ポリオキシ エチレンポリオキシプロピレンアルキルエーテル、ポリ オキシエチレンフィトステロール、ソルビタン脂肪酸エ ステル、グリセリン脂肪酸エステル等、水溶性高分子化 合物として、例えばカルボキシビニルポリマー、カルボ キシメチルセルロースナトリウム、ポリビニルアルコー ル, メチルセルロース, ヒドロキシエチルセルロース. ヒドロキシプロピルセルロース、ポリビニルピロリド ン、ヒドロキシプロピルメチルセルロース、ポリアクリ ル酸等を配合することができる。

【0030】本発明の皮膚外用剤として軟膏剤又は液剤 を調製する場合、常法によって製造し得、軟膏剤であれ ば、例えば上記各成分を上記溶剤に順次添加し、適宜時 間混練することによって調製することができ、液剤であ れば、例えば上記各成分を上記溶剤に順次添加、溶解す ることによって調製することができる。

【0031】また、ゲル剤の場合、上記液剤の任意成分に加えて、更にカルボキシビニルポリマー、グリセリンモノオレエート等のゲル化剤を添加することができ、ゲル剤を調製する場合、常法によって製造し得、例えばゲル化剤以外の上記各成分を上記溶剤に順次添加、溶解した後、ゲル化剤を添加してゲル化させることによって調製することができる。

【0032】更に、他の皮膚外用剤もその種類に応じた成分を用いて通常の方法で製造することができる。

【0033】なお、本発明の皮膚外用剤は、いずれの剤型であっても製剤 p H を 3.5~7.5、特に 4~6に調整することが必要である。 p H が低すぎても高すぎても皮膚刺激性が生じる。ここで、製剤 p H の調整は、薬学上許容される酸性化合物及びアルカリ性化合物を通常使用量使用して行なうことができる。

【0034】本発明の皮膚外用剤の使用量、使用方法等は特に制限されるものではなく、皮膚外用剤の剤型等に合わせて通常の非ステロイド系抗炎症剤を含有する皮膚外用剤と同様に使用することができる。

[0035]

【発明の効果】本発明の触感増強方法によれば、所望の 触感を付与する物質の配合量を増量しなくても十分な触 感を得ることができるので、例えば皮膚外用剤に温感や 清涼感等の各種触感を付与する際に有用である。

【0036】また、本発明の皮膚外用剤によれば、非ステロイド系抗炎症剤と共に配合される温感付与物質又は清涼化剤の配合量が通常よりも低減されていても十分な温感又は清涼感等が得られ、これら成分による皮膚刺激性を改善することができるので、消炎、鎮痛効果に優れるのみならず、使用感及び安全性にも優れる皮膚外用剤として、幅広く使用することができるものである。

[0037]

【実施例】以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限される ものではない。

【0038】〔実施例1~12及び比較例1~11〕表1及び表2に示す各成分を常法に従いヘンシェルミキサーにより混合撹拌して、実施例1~12及び比較例1~11の貼付基剤を調製した。各基剤を不織布上に100g/m²になるように均一に塗布して、ポリエチレンフィルムのフェーシングを施し、貼付剤を製造した。各貼付剤を健常人20名(パネラー)の肩に貼付し、貼付剤の皮膚貼付時から0.5,1,2,3,4,5時間後毎の温感を各パネラー毎に下記の評価基準に基づいて官能評価し、各パネラーの時間毎の評価点の中でそれぞれの最高点を足した値を人数で割った値を貼付剤の温感の強さの指標とした。結果を表1及び表2に併記する。<評価基準>

0:温感を感じない

11

1:温感は感じるが極めて弱い

2:弱い温感を感じる

3:温感を感じる

4:明らかに温感を感じる

5:強い温感を感じる

6:強すぎる温感を感じる

[0039]

【表1】

しる 【表 1 】 実施例(貼付剤)													
		-	1 2	3	1 4		遊例	(B)	(8)	9	T 10	111	112
\vdash	フルルビブロフェン	1.0	- ا	1 =	1-	-	1 -	 '	-	-	10	12	11.
	フェルビナク	 -	1.0	 -	†=	+	+-	1=	+-	+-	+-	1.0	+
	ブフェキサマク	 _ 	-	1.0	 -	 -	1-	+=	+	+=	+-	-	+-
	スプロフェン	1_	1=	-	1.0	-	+-	+=	+-	 _	+-	-	+-
	イブプロフェン	†=	Ι-	†=	†=	1.0	 _	 -	+-	 -	+-	 _	╁-
	ジクロフェナクナトリウム	-	-	-	-	-	1.0	-	-	-	-	-	1-
	ピロキシカム	 -	-	-	1-	-	† - -	1.0	 -	Ι_	=	† =	†=
	インドメタシン	-	-	-	1-	 	-	T-	1.0	-	1-	-	1-
	ザルトプロフェン	-	-	-	-	-	 -	-	1=	1.0	-	-	-
	メフェナム酸	-	-	-	-	-	-	1-	-	Ι-	1.0	-	1-
	ポリアクリル酸 (ML70万)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	ポリアクリル酸ナトリ <u>ウム</u> (ML300万)	1.0	1.0	1.0	1.0	1,0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
組	ポリピニルアルコール	20	2.0	2.0	2.0	2.0	2.0	-	-	-	-	_	2.0
成	ポリビニルビロリドン	-	-	-	—	-	-	2.0	2.0	2.0	2.0	2.0	-
孟盘	カルポキシメチルセル ロースナトリウム	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
36	カオリン	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
	ケイ酸アルミン酸マグ ネシウム	0.1	-	-	-	0.1	-	-	-	0.1	-	-	0.1
	アルミニウムグリシ ネート	-	0.1	0.1	-	_	0.1	0.1	-		0.1	0.1	_
	塩化カルシウム	_	0.1	-	0.1	-	0.1	_	0.1	ı	0.1	1	_
	塩化マグネシウム	_	_	0.1	0.1		_	0.1	0.1	_	_	0.1	_
	ポリソルベート80	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	エチレンジアミン四酢 酸二ナトリウム	0.03	0.03	0.03	0.03	-	-	-	-	1	-	-	0.03
	トウガラシエキス	0.7	-	-	0.1	_	_	0.1	-	_	0.1	_	0.05
	トウガラシ末	-	8.0	-	-	0.1	_	_	0.1	_	-	0.1	-
	カプサイシン	_	_	0.4	_	_	0.1	-	-	0.1	-	-	0.1
	l ーメントール	0.01	0.01	0.01	_	-	+	0.01	0,01	0.01		_	0.01
	イソプレコール	0.01 0.01 0.01 0.01 0.01 -											
	精製水	パランス											
	<u> </u>						10	00					
	試験結果	4.8	4.9	4.8	4.9	4.5	4.5	4.5	4.3	4.3	4.2	4.9	4.7

[0040]

【表2】

40

						比較	et 78.	科	n				
		1	2	3	4	5	6	7	8	9	10	11	
	フルルピプロフェン	1.0] -	-	-	-	-	_	-	-	-	-	
	フェルビナク	-	1.0	-	-	-	T-	-	[-	-	T -	1.0	
	ブフェキサマク	ΙΞ	-	1.0	-	-	Ι-	_	_	-	-	-	
	スプロフェン	<u> </u>	-	-	1.0	-	<u> </u>	_		-	-	-	
	イブプロフェン	_	<u> </u>	-	-	1.0	-	-	_	-	T =	-	
	ジクロフェナクナトリウム	-	-	-	_	-	1.0	-	[=	_	-	-	
	ピロキシカム	-	-	-	-	<u> </u>	_	1.0	_	-	-	_	
İ	インドメタシン	-	-			-	-	-	1.0	-	-	-	
	ザルトプロフェン	-	-	<u> </u>	_	_	_	_	-	1.0	-	_	
	メフェナム酸	LΞ	Ξ	<u> </u>	_		_	_	_	=	1.0	-	
	ポリアクリル酸 (M.70万)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
40	ポリアクリル酸ナトリウム (ML300万)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
組成	ポリビニルアルコール	2.0	2.0	2.0	2.0	2.0	2.0	1	_	_	-	-	
	ポリビニルピロリドン	1	1	-	ı	1	1	2.0	2.0	2.0	2.0	2.0	
(宝量%)	カルボキシメチルセルロース ナトリウム	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
	カオリン	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
	ケイ酸アルミン酸マグネシウ ム	0.i	-	-	-	0.1	-	-	-	0.1	1	-	
	アルミニウムグリシネート		0.1	0.1	-	1	0.1	0.1	1	-	0.1	0.1	
	塩化カルシウム	-	0.1	_	0.1	-	0.1	_	0.1	1	0.1	_	
	塩化マグネシウム	-	1	0.1	0.1	_	-	0.1	0.1		_	0.1	
	ポリソルベート 80	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	エチレンジアミン四酢酸二ナ トリウム	60.03	0.03	0.03	0.03	-	-	-	1	-	·-	-	
	トウガラシエキス	0.1	-	-	0.1	-	-	0.1	-	-	0.1	-	
	トウガラシ末	_	0.1	-	-	0.1	-1	-	0.1	-	-	0.1	
	カプサイシン	-	_	0.1		-	0.1	_	-	0.1	_	-	
	特製水	パランス											
	合計						100						
	試験結果	4.0	4.0	4.1	4.1	4.0	4,1	4.0	4.0	4.1	4.0	4.1	

【0041】次に、上記実施例1~3及び比較例1~3 30 につき、下記の皮膚刺激試験を行ったところ、実施例1 は4.5、実施例2は4.4、実施例3は4.6であったのに対して、比較例1は4.0、比較例2は4.1、比較例3は4.0であった。

<皮膚刺激性>実施例、比較例の貼付剤を健常人20名の上腕部に貼付し、24時間クローズパッチテストによりその皮膚刺激性を調べた。

<評価基準>

5:皮膚刺激性全くなし 4:皮膚刺激性ほとんどなし 3:皮膚刺激性あまりなし o 2:皮膚刺激性ややあり

1:皮膚刺激性あり

【0042】〔実施例13~24及び比較例12~2 2〕表3及び表4に示す各成分を用いて常法によりクリーム剤を調製した。各クリーム剤の常用量を健常人20名(パネラー)の肩に塗布し、塗布時から0.5,1,2,3,4,5時間後毎の温感を上記と同様にして官能評価し、温感の強さの指標とした。結果を表3及び表4に併記する。

[0043]

40 【表3】

_		実施例(クリーム剤)												
		13	14	15	116	夫/四 17	118	1 19	120	721	122	23	124	
	フルルビブロフェン	1.0	-	-	-	-	-	-	-	-	1 -	-	1.0	
1	フェルビナク	T-	1.0	-	-	-	Ι-	1-	-	-	1 –	1.0	1 -	
	プフェキサマク	-	-	1.0	T -	-	 	-	-	-	1-	-	 -	
	スプロフェン	-	-	-	1.0	-	-	-	-	-	T-	-	-	
	イブプロフェン	-	-	-	-	1.0	-	-	-	-	-	-	-	
	ジクロフェナクナトリ ウム	-	-	-	-	-	1.0	-	-	-	-	-	-	
	ピロキシカム	_	_	-	-	-	-	1.0	-	-	T -	-	-	
ł	インドメタシン	_	-	-	_	_	_	ΙΞ	1.0	-	ΙΞ	-	_	
	ザルトプロフェン	_	_	-		-	-	_	_	1.0	Ι-	_	<u> </u>	
1	メフェナム酸	<u> -</u>	_	_	_	_	_	二	_	_	1.0	_	_	
	流動パラフィン	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	セタノール	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
組	脂肪酸トリグリセライ ド	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
成	ポリステアリン酸ポリ エチレングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
金田	グリセリン	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
%	ポリアクリル酸	8.0	0.8	8.0	0.5	55	0.5	0.8	0.8	0.8	0.5	0.5	0.8	
	キサンタンガム	0.2	0.2	0.2	0.5	0.5	0.5	0.2	0.2	0.2	0.5	0.5	0.2	
	トリエタノールアミン	0.4	0.4	0.4	0.2	0.2	0.2	0.4	0.4	0.4	0.2	0.2	0.4	
	1,3 - ブチレングリコー ル	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
	ポリオキシエチレン (20) セチルエーテル	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
	モノステアリン酸グリ セリン	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
	トウガラシエキス	0.1	_	_	0.1	-	-	0.1	-		0.1	-	0.1	
	トウガラシ末	_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	_	
	カプサイシン	-	_	0.1	-	_	0.1	-	_	0.1	_	_	0.1	
	1ーメントール	0.01	0.01	0.01	_	-	_	0.01	0.01	0.01	_	_	0.01	
	イソプレゴール	_	_	_	0.01	0.01	0.01	_	_	_	0.01	0.001	_	
	精製水						パラ	ンス						
	合計						1	00						
	試験結果	4.2	4.1	4.2	4.2	3.9	3.9	39	3.7	3.7	3.7	4.2	4.5	

[0044]

【表4】

			T				(2)			1 22			
		12	13	14	15	16	17	18	19	20	21	22	
	フルルビブロフェン	1.0	_	_	<u> </u>	_	<u> </u>	_	ᅳ			<u> </u>	
l	フェルビナク		1.0	_	二	ഥ	二		-	ニ	ニ	1.0	
	ブフェキサマク		<u> </u>	1.0	-	二	<u> </u>	<u> </u>	_	<u> </u>	_	_	
1	スプロフェン		<u> </u>	_	1.0	_	_	_	_	二	_	_	
	イブプロフェン	_		<u> </u>		1.0	_	_	_	_	<u> </u>	_	
	ジクロフェナクナトリウム	_	_		_	<u> </u>	1.0		_	_	<u> </u>		
	ピロキシカム	_					_	1.0		_	<u> </u>	_	
	インドメタシン	-	-	_	_	<u> </u>		-	1.0	_	_		
	ザルトプロフェン	_	_	-	_	-	-	_	_	1.0	_	-	
	メフェナム酸	_	_	_	_	1	_	1	_		1.0	1	
	流動パラフィン	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
組	セタノール	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
歳	脂肪酸トリグリセライド	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
重量	ポリステアリン酸ポリエチレ ングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
%	グリセリン	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
	ポリアクリル酸	8.0	0.8	0.8	0.5	0.5	0.5	8.0	8.0	0.8	0.5	0.5	
	キサンタンガム	0.2	0.2	0.2	0.5	0.5	0.5	0.2	0.2	0.2	0.5	0.5	
	トリエタノールアミン	0.4	0.4	0.4	0.2	0.2	0.2	0.4	0.4	0.4	0.2	0.2	
	1,3 - ブチレングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
	ポリオキシエチレン (20) セ チルエーテル	3.0	3.0	3.0	3.0	3.0	30	3.0	3.0	3.0	3.0	3.0	
	モノステアリン酸グリセリン	2.0	2.0	2.0	2.0	2.0	20	2.0	2.0	2.0	2.0	2.0	
	トウガラシエキス	0.1	<u> </u>	-	0,1	_	-	0.1	_	-	0.1	_	
	トウガラシ末	-	0.1	-	_	0.1	-	_	0.1	_	-	0.1	
	カプサイシン	_	_	0.1	_	_	0.1	_	_	0.1	_	_	
	特態水	パランス											
	승計						100						
	試験結果	3.5	3.6	3.6	3.5	3.6	3.6	3.5	3.6	3.6	3.5	3.8	

【0045】〔実施例25~36及び比較例23~3 3〕表5及び表6に示す各成分を用いて常法によりゲル 剤を調製した。各ゲル剤について上記と同様にして評価 30 した。結果を表 5 及び表 6 に併記する。 【 0 0 4 6 】 【表 5 】

	実施例(ゲル剤)												
l			1.50	1 22	1 20		-	(<i>ሃ)</i> [31	レ <u>剤)</u> 132	1 22	124	1 25	1 20
\vdash	フルルビブロフェン	25 1.0	26	27	28	29	30	31	32	33	34	35	36
l		1.0	<u> </u>	⊢	ᆮ	一	+-	 _	一	ᆮ	ᅳ	H	1.0
	フェルビナク	드	1.0	<u> </u>	ㅡ	├	1-	 -	 -	ᆮ	<u> </u>	1.0	<u> </u>
1	プフェキサマク	_	二	1.0	上二		ᆣ	二	<u> </u>	_	匚	<u> </u>	_
İ	スプロフェン	二	_	_	1.0	-	-	<u> -</u>	<u> -</u>	1-	_		_
	イブプロフェン	_	<u> </u>		<u> </u>	1.0	<u> </u>	_	_	<u> </u>	<u> </u>	_	_
	ジクロフェナクナトリ ウム	-	-	-	-	-	1.0	_	-	-	-	-	-
	ピロキシカム	—	-	_	-	-	-	1.0	-	-	-	-	-
	インドメタシン	_	-	_	_	<u> </u>	_	-	1.0	-	-	-	-
	ザルトプロフェン	-	-	_	_	-	-	_	_	1.0	-	-	-
	メフェナム酸	_	-	-	-	-	-	<u> </u>	_	-	1.0	-	-
組成	カルボキシビニルボリ マー	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
童	ポリアクリル酸	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
(重量%)	濃グリセリン	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
20	エタノール	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
	ポリオキシエチレン (21) ラウリルエーテル	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	水酸化ナトリウム	鼠鼠	通量	週量	超鼠	通量	阅景	温鼠	風風	通量	量低	選量	通景
	クエン酸	避量	遊量	通量	金郎	遺量	選量	超量	過量	遊量	经底	通量	通量
	トウガラシエキス	0.1	1	-	0.1	-	_	0.1	-	_	0.1	-	0.1
	トウガラシ末	-	0.1	_	ı	0.1		1	0.1	-	-	0.1	-
	カプサイシン	-	-	0.1	_	-	0.1	-	-	0.1	-	-	0.1
	1-メントール	0.01	0.01	0.01	-	-	_	0.01	0.01	0.01	-	_	0.01
	イソプレゴール	-	-	_	0.01	0.01	0.01	-	_	_	0.01	0.001	-
	稍製水	パランス											
	습計						1	00					
	試験結果	4.2	4.2	4.3	4.2	3.9	3.9	3.9	3.7	3.7	3.7	4.2	4.3
					ىب			-			ــــــــــــــــــــــــــــــــــــــ		

[0047]

【表6】 比較例(ゲル剤) | 27 | 28 | 29 | 30 | 31 | 32 | 33 23 24 25 26 フルルビプロフェン 1.0 フェルビナク 1.0 1.0 ブフェキサマク 1.0 スプロフェン 1.0 イププロフェン 1.0 ジクロフェナクナトリウム ピロキシカム インドメタシン 1.0 ザルトプロフェン 1.0 メフェナム酸 1.0 カルポキシビニルポリマー 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ポリアクリル酸 3.0 30 30 30 30 30 30 30 30 30 30 濃グリセリン 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 1.0 | 1.0 | 1.0 | 1.0 エタノール ポリオキシエチレン (21) ウリルエーテル 2.0 2.0 2.0 20 2.0 2.0 20 2.0 2.0 20 20 水酸化ナトリウム クエン酸 通数 经重点 医医性 医医性 医医性 医医性 医医性 医 0.1 トウガラシエキス 0.1 0.1 0.1 トゥガラシ末 0.1 0.1 0.1 0.1 カプサイシン 0.1 Q.I 0.1 特毁水 パランス 100 습앍 試験結果 3.6 3.5 3.6 3.5 3.6 3.6 3.5 3.6 3.6 3.6

【0048】〔実施例37~48及び比較例34~4

ション剤を調製した。各ローション剤について上記と同 4〕表7及び表8に示す各成分を用いて常法によりロー 50 様にして評価した。結果を表7及び表8に併記する。

[0049]

【表7】 実施例(ローション剤) 41 42 43 44 45 46 37 | 38 | 39 | 40 48 47 フルルピプロフェン 1.0 1.0 フェルピナク 1.0 1.0 ブフェキサマク 1.0 スプロフェン イブプロフェン 1.0 ジクロフェナクナトリ 1.0 ピロキシカム 1.0 インドメタシン 1.0 ザルトプロフェン メフェナム酸 1.0 ポリオキシエチレン (10) ノニルフェニル 2.0 20 20 20 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 グリチルリチン酸モノ アンモニウム 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 エタノール 9.0 | 9.0 | 9.0 | 9.0 9.0 9.0 9.0 9.0 | 9.0 | 9.0 9.0 1,3ープチレングリコ 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 ポリアクリル酸 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 水酸化ナトリウム 西国 通武 医医 医医 医医 医医 医医 医医 医医 選量 通应 トウガラシエキス 0.1 0.1 0.1 0.1 0.1 トウガラシ末 0.1 0.1 0.1 0.1 カブサイシン 0.1 0.1 0.1 0.1 lーメントール 0.01 0.01 0.01 0.01 0.01 0.01 0.01 イソプレゴール 0.01 0.01 0.01 0.01 0.0001 精製水 パランス 合計 100 4.2 4.1 4.3 4.2 3.9 3.9 3.9 3.7 3.6 3.7 4.3 4.4 試験結果

[0050]

	【表8】 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・													
			1 0=	1 00						1 10				
⊢	フルルピプロフェン	1.0	35	36	37	38	39	40	41	42	43	44		
	フェルピナク	-	1.0	-	_	 _	-	 _	 _	┢	┢	1.0		
	プフェキサマク	 _ 	-	1.0	-	-	 _	-	-	 	-			
1	スプロフェン	 -	-	-	1.0	-	 -	 -	-	 -	_			
	イププロフェン	_	_	_	-	1.0	_	_	 _	-	 -			
	ジクロフェナクナトリウム	-	-	-	-	-	1.0	-	-	-	_	\vdash		
	ピロキシカム	_	-	-	-	-	-	1.0	_	-	_			
	インドメタシン	-	_	=	-	=	-	_	1.0	-	_	-		
	ザルトプロフェン	-	-	-	-	-	-	-	-	1.0	-	-		
組成	メフェナム酸	_	-	-	-	-	-	-	-	=	1.0	-		
_	ポリオキシェチレン (10) ノ ニルフェニルエーテル	2.0	2.0	2.0	20	2.0	2.0	20	2.0	2.0	2.0	2.0		
量 %	グリチルリチン酸モノアンモ ニウム	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
	エタノール	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0		
	1,3ープチレングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
	ギリアクリル酸	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
	水酸化ナトリウム	全氏	通量	鱼鼓	量数	通量	盘鼓	阿	通量	通量	量数	通量		
	トウガラシエキス	0.1	-	-	0.1	1	-	0.1	_	-	0.1	-		
	トウガラシ末	-	0.1	_	-	0.1	_	_	0.1	_	_	0.1		
	カプサイシン	_	_	0.1	-	_	0.1	-	Ε	0.1	_	-		
	稍製水	パランス												
Ш	合計						100							
	試験結果	3.6	3.6	3.6	3.5	3.5	3.6	3.6	3.6	3.5	3.5	3.6		

【0051】〔実施例49~60及び比較例45~5 5〕表9及び表10に示す各成分を用いて常法により軟 50 齊剤を調製した。各軟膏剤について上記と同様にして評価した。結果を表9及び表10に併記する。

[0052]

		[表9]											
				T = 4			施例	(k)			T = c		1 00
<u> </u>	·	49	50	51	52	53	54	55	56	57	58	59	60
	フルルビブロフェン	1.0	上		_	二	ᆫ	ᆫ	二	<u> </u>	二	_	1.0
	フェルビナク	_	1.0	-	-	_	ᆫ	<u> </u>	_	<u> </u>	ᆫ	1.0	-
l	プフェキサマク		-	1.0	<u> </u>	. –	<u> </u>	<u> </u>	_	-	<u> </u>	_	
1	スプロフェン	_	_	<u> </u>	1.0	_	_	<u> </u>	_	_	<u> </u>	-	-
	イブプロフェン	<u> </u>	<u> </u>	<u> </u>	_	1.0	_		_	_	-		_
	ジクロフェナクナトリ ウム	-	-	-	-	-	1.0		_	-	-	_	-
	ピロキシカム	_	-	-	_	-		1.0	-	_	-	-	-
	インドメタシン	-	-	_	_		_	_	1.0	_	-	-	_
#1	ザルトプロフェン		-	_	_	_		_	-	1.0	_	_	_
組成	メフェナム酸	_		_	_	_	_	_			1.0	1	_
(重量%)	マクロゴール4000	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
量	マクロゴール400	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
~	パルミチン酸ソルピタ ン	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ポリアクリル酸	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	トウガラシエキス	0.1	-	-	0.1	-	-	0.1	-	_	0.1	1	0.1
	トウガラシ末	-	0.1	_	_	0.1		1	0.1			0.1	1
	カプサイシン	-	1	0.1	1	-	0.1	1	1	0.1	– .	_	0.1
	1ーメントール	0.01	0.01	0.01	_	-	1	0.01	0.01	0.01	_	-	0.01
	イソプレゴール	-	-	-	0.01	0.01	0.01	-	-	_	0.01	0.001	-
	精製水	パランス											
	습計						1	00					
	試験結果	4.2	4.2	4.1	4.1	3.9	3.9	3.9	3.7	3.7	3.7	4.2	4.4

[0053]

	【表10】												
	······································	1				比較的		(音))				
		45	46	47	48	49	50	51	52	53	54	55	
	フルルビプロフェン	1.0	_	-	_	_	-			<u> </u>	_	-	
	フェルビナク	-	1.0	_	_	_	_	_	_	_	_	1.0	
	プフェキサマク	-	_	1.0	_	-	_	_	<u> </u>	_	_	_	
	スプロフェン	_	-	-	1.0	_	-	_		_	_	_	
	イププロフェン	-	-	_	_	1.0	<u> </u>	-	-	_	_	_	
	ジクロフェナクナトリウム	-	_	_	_	_	1.0	<u> </u>	_	<u> </u>	_	<u> </u>	
	ピロキシカム	_	1	_	_	_	_	1.0	_	_			
#1	インドメタシン	<u> </u>	1	_	_	-		_	1.0	_	_	_	
組成	ザルトプロフェン	-	-	_	1	-	ı	-	-	1.0	_	-	
(重量%)	メフェナム酸	_	ı	-	ı	1	1		_	_	1.0	_	
登	マクロゴール4000	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
٦	マクロゴール400	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
1	パルミチン酸ソルビタン	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	ポリアクリル酸	1.0	1.0	1.0	1,0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	トウガラシエキス	0.1	_	-	0.1	+	-	0.1	-	-	0.1	_	
	トウガラシ宋	-	0.1	_	-	0.1	. —	-	0.1	_	-	0.1	
	カブサイシン	-	_	0.1	_	-	0.1	_	_	0.1	_	_	
	精製水					74	ラン	ス					
	슴타						100						
	試験結果	3.6	3.6	3.5	3.6	3.6	3.5	3.5	3.6	3.5	3.6	3.6	

【0054】 (実施例61~72及び比較例56~66] 表11及び表12に示す各成分を常法に従いヘンシェルミキサーにより混合撹拌して、実施例61~72及び比較例56~66の貼付基剤を調製した。各基剤を不織布上に100g/m²になるように均一に塗布して、ポリエチレンフィルムのフェーシングを施し、貼付剤を製造した。各貼付剤を健常人20名(パネラー)の肩に 50

貼付し、貼付剤の皮膚貼付時から0.5,1,2,3,4,5時間後毎の清涼感を各パネラー毎に下記の評価基準に基づいて官能評価し、各パネラーの時間毎の評価点の中でそれぞれの最高点を平均した値を貼付剤の清涼感の強さの指標とした。結果を表11及び表12に併記する。

<評価基準>

26

0:清涼感を感じない

1:清涼感は感じるが極めて弱い

2:弱い清涼感を感じる3:清涼感を感じる

4:明らかに清涼感を感じる

5:強い清涼感を感じる

6:強すぎる清涼感を感じる

【0055】 【表11】

- 201 C	ັ້ວ <u></u>						u no	7600	FF.K				
		61	62	63	64		66	167	例) 68	69	70	71	72
	フルルビブロフェン	1.0	-	-	-	 	-	1 -	-	-	1 -	† - -	1.0
	フェルビナク	1-	1.0	-	 -	 -	-	 -	-	 -	†=	1.0	+
	プフェキサマク	† -	1 =	1.0	†=	1-	 	-	 	 -	 	-	-
ĺ	スプロフェン	1-	-	 	1.0	1-	<u>†</u> –	-	 	-	-	-	-
	イププロフェン	-	-	-	-	1.0	-	-	-	-	-	-	-
	ジクロフェナクナトリ ウム	-	-	-	-	-	1.0	-	-	-	-	-	-
į .	ピロキシカム	-	-	-	-	-	-	1.0	-	-	-	-	-
İ	インドメタシン・	-	-	-	-	-	-	-	1.0	-	-	-	
	ザルトプロフェン	-	_	-	_	-	_	-	-	1.0	_	_	-
	メフェナム酸	-	-	-	-	-	-	-	-	-	1.0	-	-
	ポリアクリル酸 (ML70万)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	ポリアクリル酸ナトリ ウム (ML300万)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
組	ポリピニルアルコール	2.0	2.0	2.0	2.0	2.0	2.0	-	-	_	 	-	2.0
荿	ポリビニルピロリドン		-	-	-	-	-	2.0	2.0	2.0	2.0	2.0	-
金量	カルボキシメチルセル ロースナトリウム	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
56	カオリン	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	8.0
	ケイ酸アルミン酸マグ ネシウム	0.1	-	-	-	0.1	-	-	-	0.1	-	-	0.1
	アルミニウムグリシ ネート	-	0.1	0.1	-	_	0.1	Q.1	-	_	0.1	0.1	_
	塩化カルシウム	<u> </u>	0.1	_	0.1	_	0.1	_	0.1	三	0.1	_	_
	塩化マグネシウム	_	_	0.1	0.1	_	_	Q.1	0.1	_	_	0.1	_
	ポリソルベート80	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	エチレンジアミン四酢 設二ナトリウム	0.03	0.03	0.03	0.03	-	-	-	-		_	<u> </u>	0.03
	トウガラシエキス	0.01	<u> </u>	_	0.01	_		0.01	-	_	0.01	_	0.01
	トゥガラシ末	_	0.01	_	_	0.01	-	_	0.01		_	0.01	_
	カプサイシン	-		0.01	-	-	0.01	_	П	0.01	-	-	_
	1-メントール	0.8	0.7	8.0	-	_	_	1.0	1.0	1.0	_	_	0.5
	イソプレゴール	-		_	1.0	1.0	1.0		_	_	1.0	1.0	0.5
	精製水	パランス											
	合計	100											
	試験結果	5.0	4.9	4.8	4.9	4.8	4.7	4.8	4.7	4.4	4.5	4.8	5.1

[0056]

【表12】

4

							•					
			1	. = -		比較的		付割			,	
<u> — </u>		56	57	58	59	60	61	62	63	64	65	66
	フルルピプロフェン	1.0	<u> </u>	<u> </u>	-	_	二	<u> </u>	ㄴ	<u> </u>	<u> </u>	<u> </u>
	フェルピナク	<u> </u>	1.0	_	ᅳ		<u> </u>	_	-	<u> </u>		1.0
ļ	プフェキサマク	<u> </u>	<u> -</u>	1.0	<u> - </u>	<u> </u>		_	ᆫ		_	上
	スプロフェン	<u> -</u>	<u> -</u>	_	1.0	上	_	_	-	_	_	_
1	イププロフェン	<u> </u>	_	_		1.0	_	_	_	_	-	_
	ジクロフェナクナトリウム	-	<u> </u>	<u> </u>	<u> </u>	_	1.0	<u> </u>	_	_	-	-
ŀ	ピロキシカム	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	_	1.0	<u> </u>	_	_	 ·
	インドメタシン	<u> </u>	_	_	乚	<u> </u>	_	_	1.0	_	-	-
	ザルトプロフェン	_	_	_	_	_	_	-	_	1.0	_	_
	メフェナム酸	<u> </u>	_	<u> </u>	<u> </u>	_	_	_	_	-	1.0	_
	ポリアクリル酸 (ML70万)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
組成	ポリアクリル酸ナトリウム (ML300万)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ポリビニルアルコール	2.0	2.0	2.0	2.0	2.0	2.0	_	-	-	_	-
(重量%)	ポリピニルピロリドン	_			-	ı	1	2.0	2.0	2.0	2.0	2.0
%	カルボキシメチルセルロース ナトリウム	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	カオリン	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
	ケイ酸アルミン酸マグネシウ ム	0.1	-	-	1	0.1	1	1	ı	0.1	1	-
	アルミニウムグリシネート	_	0.1	0.1	1	-	0.1	0.1	-	-	0.1	0.1
	塩化カルシウム	_	0.1	-	0.1	_	0.1	_	0.1	-	0.1	-
	塩化マグネシウム	_	-	0.1	0.1	_	-	0.1	0.1	-	-	0.1
	ポリソルベート80	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	エチレンジアミン四酢酸二ナ トリウム	0.03	0.03	0.03	0.03	-	_	-	_	-	-	
	1ーメントール	1.0	1.0	1.0	_		-	1.0	1.0	1.0	_	_
	イソプレゴール	-	-	-	1.0	1.0	1.0	_	-	-	1.0	1.0
	精製水					14	ラン	Z				
	合計						100					
	試験結果	2.8	2.9	2.7	2.8	2.9	2.8	2.7	2.8	2.8	2.7	2.7
	, , , , , , , , , , , , , , , , , , , ,					-						

【0057】次に、上記実施例61~63及び比較例56~58につき、上記同様の皮膚刺激試験を行ったところ、実施例61は4.4、実施例62は4.8、実施例63は4.5であったのに対して、比較例56は4.0、比較例57は4.0であった。

【0058】〔実施例73~84及び比較例67~77〕表13及び表14に示す各成分を用いて常法により

クリーム剤を調製した。各クリーム剤の常用量を健常人20名(パネラー)の肩に塗布し、塗布時から0.5,1,2,3,4,5時間後毎の清涼感を上記と同様にして官能評価し、各パネラーの時間毎の評価点の中で最高点を平均した値を清涼感の強さの指標とした。結果を表13及び表14に併記する。

【0059】 【表13】

	実施例(クリーム剤)												
		73	74	75	76	天 應 177	78 T		T 80		82	83	T 84
	フルルビプロフェン	1.0	-	 -	-	1-	 -	T -	T -	<u>-</u>	<u>-</u>	<u> </u>	1.0
ŀ	フェルビナク	-	1.0	1-	-	1-	-	-	-	-	-	1.0	-
	ブフェキサマク	-	-	1.0	-	-	-	-	 -	1-	 -	-	-
	スプロフェン	-	-	-	1.0	1-	-	-	-	-	-	-	-
	イブプロフェン	-	_	_	_	1.0	-	_	-	-	-	-	-
	ジクロフェナクナトリウ ム	-	-	-	-	-	1.0	-	-	-	-	-	-
	ピロキシカム	-	-	-	-	-	-	1.0	-	-	-	-	-
	インドメタシン	-	-	<u> </u>	_		_	-	1.0	_	_	-	-
	ザルトプロフェン	_	<u> </u>	_	_	_	<u> </u>	_	_	1.0		_	-
	メフェナム酸	_	上	_	_	_	<u> </u>	<u> </u>		-	1.0	_	i –
	流動パラフィン	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
1	セタノール	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
椒	脂肪酸トリグリセライド	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
成	ポリステアリン酸ポリエ チレングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
(重量%)	グリセリン	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
26	ポリアクリル酸	8.0	8.0	0.8	0.5	0.5	0.5	0.8	8.0	0.8	0.5	0.5	0.8
	キサンタンガム	0.2	0.2	0.2	0.5	0.5	0.5	0.2	0.2	0.2	0.5	0.5	0.2
	トリエタノールアミン	0.4	0.4	0.4	0.2	0.2	0.2	0.4	0.4	0.4	0.2	0.2	0.4
	1,3-プチレングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	ポリオキシエチレン (20) セチルエーテル	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	モノステアリン酸グリセ リン	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	トウガラシエキス	0.01	-	1	0.01	1	-	0.01	_	1	0.01	-	0.01
	トウガラシ末	_	0.01	_	_	0.01	1	-	0.01	_	_	0.01	_
	カプサイシン	-	_	0.01	_	-	0.01	-	_	0.01	_	_	_
	1ーメントール	1.0	1.0	1.0	-		-	1.0	1.0	1.0	-	_	0.5
	イソプレゴール	-	_		1.0	1.0	0.1	_			1.0	1,0	0.5
	符製水	パランス											
	合計						10	00					
	試験結果	4.7	4.7	4.8	4.7	4.6	4.2	4.3	4.0	4.2	4.2	4.7	4.9

[0060]

30 【表14】

	比較例(クリーム剤)												
		67	68	69	元 70	71	72	73	別 74	75	76	77	
	フルルビプロフェン	1.0	-	-	-	Ė-	-	-	-	-	-	 -	
	フェルビナク	-	1.0	=	-	-	-	-	-	-	-	1.0	
	ブフェキサマク	-	-	1.0	-	-	-	-	_	-	-	-	
	スプロフェン	-	-	-	1.0	-	-	-	-	-	-	-	
	イプブロフェン	_	-	_	-	1.0	_	-	-	-	-	-	
	ジクロフェナクナトリウム	_	_	-	_	_	1.0	-	_	_	_	-	
	ピロキシカム	_	_	-	-	_	_	1.0		_	-	-	
	インドメタシン	_	_	_	_	_	_	_	1.0	_	_	-	
	ザルトプロフェン	_	_	_	-	-	_	_	<u> </u>	1.0	-	_	
	メフェナム酸				<u> </u>	-	_	L-		<u> </u>	1.0	-	
	流動パラフィン	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
組成	セタノール	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	脂肪酸トリグリセライド	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
(重量%)	ポリステアリン酸ポリエチレ ングリコール	э.о	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
3	グリセリン	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
	ポリアクリル酸	8.0	8.0	0.8	0.5	0.5	0.5	8.0	0.8	0.8	0.5	0.5	
	キサンタンガム	0.2	0.2	0.2	0.5	0.5	0.5	0.2	0.2	0.2	0.5	0.5	
	トリエタノールアミン	0.4	0.4	0.4	0.2	0.2	0.2	0.4	0.4	0.4	0.2	0.2	
	1,3ープチレングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
	ポリオキシエチレン (20) セ チルエーテル	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
	モノステアリン酸グリセリン	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
	1ーメントール	1.0	1.0	1.0	-	-	+	1.0	1.0	1.0	-	-	
	イソプレゴール	-		-	1.0	1.0	1.0	_	_		1.0	1.0	
	稍製水					74	ラン	ス					
	合計						100						
	試験結果	2.7	2.6	2.7	2.6	2.8	2.7	2.8	2.6	2.7	2.6	2.7	

【0061】〔実施例85~96及び比較例78~8 8〕表15及び表16に示す各成分を用いて常法により ゲル剤を調製した。各ゲル剤について上記と同様にして 評価した。結果を表 1 5 及び表 1 6 に併記する。 【0 0 6 2】

【表15】

30

	実施例(ゲル剤)												
l		85	88	87	88		90	91	92	93	94	95	96
H	フルルビブロフェン	1.0	-	-	-	-	-	-	-	-	-	-	1.0
	フェルビナク	-	1.0	-	_	-	-	-	-	-	-	1,0	-
	ブフェキサマク	-	-	1.0	-	-	-	-	_	-	-	-	-
	スプロフェン	-	-	-	1.0	-	-	_	_	-	 -	-	_
	イブプロフェン	_	-	-	-	1.0	_	_	-	-	-	_	_
	ジクロフェナクナトリウ ム	-	-	-	-	-	1.0	-	_	-	-		_
	ピロキシカム	1	-	_	_	-	_	1.0	_	_	_	_	-
	インドメタシン		1	-		_	_		1.0	-	_	_	_
	ザルトプロフェン	_	_	_	_	_	_	<u> </u>		1.0		<u> </u>	_
	メフェナム酸		_	-	<u> </u>	_	-		二	_	1.0	_	_
組成	カルボキシピニルポリ マー	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
麄	ポリアクリル酸	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
(重量%	濃グリセリン	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2	エタノール	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
	ポリオキシエチレン (21) ラウリルエーテル	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
l	水酸化ナトリウム	通量	景戲	且图	通量	過量	超最	超量	超量	選点	迅量	避量	選員
1	クエン酸	超量	五百	通道	超量	現否	通量	超量	遊量	超层	避量	是逐	遊景
	トウガラシエキス	0.01	_	_	0.01	_	-	0.01	_	_	0.01		0.01
	トウガラシ末	-	0.01	-	_	0.01	_	_	0.01	_	_	10.0	_
	カプサイシン	-		0.01	_	_	0.01	_	_	0.01	_	_	_
	1-メントール	1.0	1.0	1.0	_	_	_	1.0	1.0	1.0	_	_	0.5
	イソプレゴール		_		1.0	1.0	1.0		_	-	1.0	1.0	0.5
	稍塑水							ンス					
	습計						10	00					
	試験結果	4.6	4.8	4.7	4.8	4.2	4.3	4.4	4.0	4.1	4.2	4.6	4.8

[0063]

【表16】

【表16】													
		79	80	81	82	83	84	85	86	87	88		
フルルビブロフェン	1.0	ᆫ			_	_	ᅳ	_	ഥ	_			
フェルビナク	_	1.0	-	1.		_	<u> </u>	<u> </u>	<u> </u>	_	1.0		
ブフェキサマク	-		1.0	1	_	_	_		_		_		
スプロフェン	-	-		1.0	_	_	_	_	_	_	_		
イブプロフェン	ı	-	į:	-	1.0	_	_	_	<u> </u>	<u> </u>	_		
ジクロフェナクナトリウム	1	1	ı	ı	_	1.0	_	_	_	_	_		
ピロキシカム	_	1	ŀ	-	-	ı	1.0	1	-		_		
インドメタシン	1	ı	1	+	-	-	_	1.0	-	_	_		
ザルトプロフェン	1.	1	1	-	-	ı	-	ı	1.0	-	_		
メフェナム酸	1	_	-	-	-	1	-	ı	1	1.0			
カルボキシビニルボリマー	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
ポリアクリル酸	3.0	3.0	3.0	3.0	3.0	30	3.0	3.0	3.0	3.0	3.0		
温グリセリン	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
エタノール	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		
ポリオキシエチレン (21) ラ ウリルエーテル	2.0	2.0	20	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
水酸化ナトリウム	俎齑	通量	通量	通量	通量	通母	母商	通量	造盘	通盘	通量		
クエン酸	遺量	适量	量色	適量	適量	遺	類	草棚	垣	透量	適量		
1-メントール	1.0	1.0	1.0	-	-	-	1.0	1.0	1.0	_	_		
イソプレゴール	-	-	-	1.0	1.0	1.0	-	-	1	1.0	1.0		
辩驳水					74	ラン	ス						
合計						100							
試験結果	2.5	2.6	2.7	2.7	2.6	2.8	2.4	2.7	2.7	2.8	2.4		
	プフェキサマク スプロフェン イプブロフェン ジクロフェナクナトリウム ピロキシカム インドメタシン ポルトプロフェン メフェナム酸 カルボキシピニルボリマー ポリアクリル酸 潤グリセリン エタノール ポリオキシエチレン (21) ラ ウリルエーテル 水酸化ナトリウム クエン酸 Iーメントール イソプレゴール 精製水 合計	フェルビナク ー ブフェキサマク ー スプロフェン ー イププロフェン ー ピロキシカム ー インドメタシン ー ポルトプロフェン ー メフェナム酸 ー カルボキシビニルポリマー 0.5 ポリアクリル酸 3.0 酒グリセリン 1.0 エタノール ボリオキシエチレン (21) ラ カリルエーテル 市 水酸化ナトリウム 適量 1ーメントール ー イソプレゴール ー 神致水 合計	フルルピブロフェン 1.0 ー フェルピナク - 1.0 ブフェキサマク スプロフェン イププロフェン ジクロフェナクナトリウム ピロキンカム インドメタシン ボルトプロフェン メフェナム酸 カルボキシピニルボリマー 0.5 0.5 ボリアクリル酸 3.0 3.0 酒グリセリン 1.0 1.0 エタノール 10.0 10.0 ボリオキシエチレン (21) ラ ウリルエーテル 流量 適量 水酸化ナトリウム 適量 適量 クエン酸 適量 適量 Iーメントール 1.0 1.0 イソプレゴール 特数水 合計	フルルピブロフェン 1.0 フェルピナク - 1.0 - ブフェキサマク 1.0 スプロフェン イプブロフェン ピロキシカム インドメタシン ザルトプロフェン メフェナム酸 カルボキシピニルボリマー 0.5 0.5 0.5 ボリアクリル酸 3.0 3.0 3.0 酒グリセリン 1.0 1.0 1.0 1.0 エタノール 10.0 10.0 10.0 ボリオキシエチレン (21) ラウリルエーテル 2.0 2.0 2.0 水酸化ナトリウム 適量 適量 適量 クエン酸 適量 適量 1ーメントール 1.0 1.0 1.0 1.0 イソプレゴール 特数水	78 79 80 81 フルルビブロフェン 1.0 - - フェルビナク - 1.0 - ブフェキサマク - 1.0 - ブフェキサマク - 1.0 - ズロフェン - - - 1.0 イブブロフェン - - - - ジクロフェナクナトリウム - - - ピロキシカム - - - - インドメタシン - - - - ガルドブロフェン - - - - ガルドブロフェン - - - ガルボキシビニルボリマー 0.5 0.5 0.5 0.5 ボリアクリル酸 3.0 3.0 3.0 3.0 湖グリセリン 1.0 1.0 1.0 1.0 エタノール 10.0 10.0 10.0 10.0 ボリオキシエテレン (21) ラ フリルエーテル 京皇 海皇 海皇 海皇 海皇 海皇 海皇 海皇 海皇 海皇 海皇 海皇 海皇 海皇	大き数 大き	大阪州	大阪村 (ゲル前 78 79 80 81 82 83 84 7ルルビブロフェン 1.0 - - - - - - - -	大枝 (ゲル和) 78 79 80 81 82 83 84 85 85 85 85 85 85 85	大阪門 (ゲル村) 78 79 80 81 82 83 84 85 86 86 7ルルビブロフェン 1.0 - - - - - - - - -	大阪州 インルルビブロフェン 1.0 - - - - - - - - -		

【0064】 〔実施例97~108及び比較例89~9 ローション剤を調製した。各ローション剤について上記9〕 表17及び表18に示す各成分を用いて常法により 50 と同様にして評価した。結果を表17及び表18に併記

36

する。

[0065]

【表17】

		実施例(ローション剤) 97 [98 99 100 101 102 103 104 105 106 107 108												
	·	97	98	99	100						106	107	108	
	フルルピプロフェン	1.0	_	_	_	_	-	-	_	<u> </u>	_	-	1.0	
	フェルビナク	_	1.0	-	-	-	-	-	-	-	_	1.0	-	
	プフェキサマク	-	-	1.0	-	-	-	-	-	<u> </u>	_	-	-	
	スプロフェン	-	-	-	1.0	-	Γ-	-	-	-	-	-	-	
	イブプロフェン	_	-		_	1.0	 -	-	-	_	_	_	-	
	ジクロフェナクナトリウ ム	-	-	-	-	-	1.0	-	-	-	-	-	-	
	ピロキシカム	-	-	_	_	_	-	1.0	-	_	_	-	-	
	インドメタシン	_	_	_	_	_	_	_	1.0	_		-	-	
	ザルトプロフェン	_	_	_	_	_	-		_	1.0		-	-	
457	メフェナム酸		-	_		_		_	-	-	1.0	_	_	
組成(ポリオキシエチレン (10) ノニルフェニルエーテル	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
(選量%)	グリチルリチン酸モノア ンモニウム	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
`	エタノール	9.0	0.8	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	
	1,3-プチレングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
	ポリアクリル酸	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
	水酸化ナトリウム	組品	虽应	且ق	金田田	量膨	是底	超量	迅压	通量	量監	迅量	温鼠	
	トウガラシエキス	0.01	1	ł	0.01	1	-	0.01	_	_	0.01	_	0.01	
	トウガラシ末	_	0.01	Ī	_	0.01	1	-	0.01	_	_	0.01		
	カプサイシン	-	_	0.01	_	-	0.01	-	-	0.01	-	_	_	
	1ーメントール	1.0	1.0	1.0	-	-	-	1.0	1.0	1.0	_	-	0.5	
	イソプレゴール	_	_	_	1.0	1.0	1.0	-	-	-	1.0	1.0	0.5	
	精製水	パランス												
Ш	合計 ·						10	00						
	試験結果	4.7	4.8	4.9	4.8	4.7	4.6	4,4	4.1	4.0	4,1	4.7	4.9	

[0066]

[表18]

		【表 1 8】 上枚例 (ローション剤)												
			T 44	1 24						·	T ==			
\vdash	フルルピプロフェン	89	90	91	92	93	94	95	96	97	98	99		
		1.0	1	⊢	二	ᅳ	<u> </u>	ļ.—	ᆣ	ட	<u> </u>			
	フェルビナク	<u> </u>	1.0		<u> </u>	<u> </u>	ᆫ	<u> </u>		<u> </u>	三	1.0		
	プフェキサマク	_	_	1.0	느	ᆫ		_	<u> </u>	_	ニ	_		
	スプロフェン	_	_	_	1.0	_	_	_	匚	L	_	_		
	イブプロフェン			-		1.0	-	-	L -	-	-	_		
	ジクロフェナクナトリウム	-	_	_	-	_	1.0	_	-	_	-	-		
	ピロキシカム	_		-	-	-	_	1.0	-	<u> </u>	-	_		
1	インドメタシン	-	_	-	=	-	-	-	1.0	-	_	_		
+=	ザルトプロフェン	-	-	_	-	-	-	—	-	1.0	-	-		
雄成	メフェナム酸	-	-	_	ı	ı	_	-	-	_	1.0	-		
重量	ポリオキシエチレン (10) ノ ニルフェニルエーテル	2.0	2.0	2.0	2.0	20	2.0	2.0	2.0	2.0	20	2.0		
<u>%</u>	グリチルリチン酸モノアンモ ニウム	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
	エタノール	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0		
	1,3ープチレングリコール	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
	ポリアクリル酸	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
	水酸化ナトリウム	金色	通量	量数	登丘	遊盘	造量	金色	通量	超量	盘险	超盘		
	1ーメントール	1.0	1.0	1.0	_	_	-	1.0	1.0	1.0	_	-		
	イソプレゴール	-	-	-	1.0	1.0	1.0	-	-	-	1.0	1.0		
	精製水					74	ラン	ス						
	合計						100							
	試験結果	2.5	2.6	2.5	2.4	2.5	2.3	2.4	2.5	2.6	2.4	2.5		

により軟膏剤を調製した。各軟膏剤について上記と同様

[0068]

にして評価した。結果を表19及び表20に併記する。

							【表19】									
		100	1110	1111	1112		拖例	(教育	剤)	1117	1110	1110	Linn			
	フルルビプロフェン	1.0	110	111	112	113	114	1112	110	117	1118	119	1.0			
	フェルビナク	-	1.0	-	 -	 -	-	-	-	+-	-	1.0	-			
İ	ブフェキサマク	 -	-	1.0	-	 -	-	 	=	 	 -	-	 -			
	スプロフェン	-	=	-	1.0	-	-	-	-	 -	 _	-	=			
	イブプロフェン	-	-	-	-	1.0	-	-	-	1 –	-	_	-			
	ジクロフェナクナトリウ ム	-	-	-	-	-	1.0	-	-	-	-	-	-			
	ピロキシカム	-	-	-	T =	-	-	1.0	-	-	-	-	-			
	インドメタシン	-	-	-	-	-	-	-	1.0	-	-	=	-			
組成	ザルトプロフェン	<u> </u>	-	_	-	-	-	-	-	1.0	_	Ī —	-			
	メフェナム酸	_		=	-	_	-	-	-	-	1.0	_	-			
(重量%)	マクロゴール4000	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0			
<u>%</u>	マクロゴール400	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0			
İ	パルミチン酸ソルピタン	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
ł	ポリアクリル酸	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
	トウガラシエキス	0.01	1	1	0.01	P	-	0.01	1	-	0.01	-	0.01			
	トウガラシ末	-	10.0	1	-	0.01	1	1	0.01	-	ı	0.01	-			
	カプサイシン	1	-	0.01	-	-	0.01	_	_	0.01	-	-	_			
ĺ	1-メントール	1.0	1.0	1.0	-	-	-	1.0	1.0	1.0	-	_	0.5			
	イソプレゴール	1	-	-	1.0	1.0	1.0	-	-	_	1.0	1.0	0.5			
	親劉水						バラ	ンス								
	合針						10	00								
	試験結果	4.8	5.0	4.9	4.8	4.5	4.4	4.4	4.0	4.0	4.2	4.9	4.9			

[0069]

	【表20】												
		100	1 4 4 4	1+00	1100	比較的	4 (4)	THE P)	1100	1400	14.0	
⊢		-	101	102	103	104	105	106	107	108	109	1110	
	フルルビプロフェン	1.0	_		<u>し</u>	ᆫ	二	_		<u> </u>	_	_	
	フェルビナク	<u> </u>	1.0	_	_	_	_	-	<u> </u>	_	-	1.0	
١.	プフェキサマク	-	_	1.0	-	_	_	1	_	-	-	<u> </u>	
	スプロフェン	-	_	_	1.0	-	_	-	 -	-	-	-	
	イブプロフェン	-	-	-	-	1.0		-	-	-	-	<u> </u>	
	ジクロフェナクナトリウム	_	_	_	_	_	1.0	-	-	-	-	_	
	ピロキシカム	Γ-	_	_	-	-	-	1.0	-	 	-	_	
組成	インドメタシン	-	-	-	-	-	-	-	1.0	-	-	-	
	ザルトプロフェン	-	-	_	-	-	_	-	<u> </u>	1.0	-	_	
(重量%)	メフェナム酸	-	-	-	1	-	-	-	_	-	1.0	-	
%	マクロゴール4000	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
	マクロゴール400	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
	パルミチン酸ソルビタン	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	ポリアクリル酸	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	1-メントール	1.0	1.0	1.0	,	-	-	1.0	1.0	1.0	-	_	
	イソプレゴール	-	_	_	1.0	1.0	1.0	-	_	- 1	1.0	1.0	
	稍製水					74	ラン	2					
	습計	. 100											
	試験結果	2.8	2.7	2.6	2.8	2.7	2,9	2.7	2.8	2.7	2.5	2.6	