Equiangular lines with a fixed angle

Lines in IR" (through O) pairwise separated by same angle

Question: maximum site of equi. lines in Rn ?

n 2 3-4 5 6 7-14 ... 23-41 42 ...

max 3 6 10 16 28 ... 276 276-288 ...

$$cn^2 \leq max \leq \binom{n+1}{2}$$

de Caen 2000 Greszon 1973

Question: What if the angle is fixed?

Ed(n) = max size of equiangular lines

with angle arccos & in Rn.

$$E_{1/s}(n) = \left\lfloor \frac{3}{2}(n-1) \right\rfloor$$
 for $n\gg 1$.

$$E_{\infty}(n) \leq 1.93n$$
 if $n \geq n_0(\alpha)$ and $\alpha \neq 1/3$

Conjecture 1 (Bukh): $E_{1/2}(n) \approx \frac{4}{3}n$ $E_{2k-1}(n) \approx \frac{k}{k-1}n$.

Conjecture 2 (J.-Polyanskii)

 $E_{\alpha}(n) \approx \frac{k}{k-1} n$, where $k = k(\alpha)$, $\lambda = \frac{1-\lambda}{2\alpha}$

Spectral radius order

k(λ):= smallest k s.t.] k-verter graph G s.t. λ, (G) = λ. λ1(4) > λ2(6) > ··· > λ4(6) the eigenvalues of adjacency matrix

<u> </u>	λ	G	k	Ea(n)
1/3	1	•	2	2n
1/5	2	\triangle	3	$\frac{3}{2}$ n
1/7	3	\bowtie	4	$\frac{4}{3}$ n

THM (J.-Pohyanskii)

Conj 2 holds for all & \$ \sqrt{2+15.}

- A A M · E Z 3 R Spectral radii of graphs is dense in (\(\frac{12+15}{2+15},00\).

THM (JTYZZ)

Barrier

Ed(n) = [K (n-1)] when kar < 00

n > no(2)

 $E_{\perp}(n) = n + o(n)$ when $k(\lambda) = \infty$

Remark When $2 = \frac{1}{2k-1}$. can show $k(\lambda) = k$,

hence Ed (n) = [k (n-1)], h > n. (d)

Equiangular lines in RM

V:= Ser of unit vectors

(each vector represents a line)

<VI, V2> = £ d

Gram matrix (<Vi, Vj>);,j ≥0

rank (Gram mat.) ≤ n

vin-vertex graph G.

V vertex set $(PSD): \lambda I - A + \frac{1}{2}J \geq 0$ $\frac{1-\alpha}{2\alpha}$ adj mar. all ones matrix $(RANK): rank(\lambda 2-A+\frac{1}{2}J) \leq n$ Think as if $rank(\lambda 1-A) \leq n$

Goal: Given n. find largest m s.x. an m-vtv graph & with (PSD) + (RAVK).

Alternative goal: Given m. find smallest n s.t.

an m-vtv graph G s.t. (PSD) + (RANK).

In other words, given m. minimize rank (XI-A)

() maximize mult (X, G)

(PSD) \Longrightarrow We need to deal with 2 cases (Completely reducible) $G_1 = G_1 \cup \cdots \cup G_C$ where each connected component G_1 satisfies $\lambda(G_1) = \lambda$ mult(λ, G_1) = \sum mult (λ, G_1) = C $\approx \frac{m}{k G_1}$ In this case, it is optimal to take $|G_1| = k(\lambda)$, (Irreducible): G is connected where $\lambda x(x) = \lambda$.

mult (x, G) = o(m)

THM (JTY77). Given an n-vertex connected graph Gr with max deg of $G \subseteq \Delta$. If λ is $\lambda r G G$. then

matt $(\lambda, G_1) \in \overline{\log \log n} = o(n)$.

need: Connectedness.

SRG.

U

max deg $\leq \Delta$

١ = ١٤(٤)

Question Is it true that mult (1,6) & n - 2?