MOLAR CONDUCTIVITY OF AQUEOUS HF, HCl, HBr, AND HI

The molar conductivity Λ of an electrolyte solution is defined as the conductivity divided by amount-of-substance concentration. The customary unit is S cm²mol⁻¹ (i.e., Ω^{-1} cm²mol⁻¹). The first part of this table gives the molar conductivity of the hydrohalogen acids at 25°C as a function of the concentration in mol/L. The second part gives the temperature dependence of Λ for HCl and HBr. More extensive tables and mathematical representations may be found in the reference.

REFERENCE

Hamer, W.J., and DeWane, H.J., *Electrolytic Conductance and the Conductances of the Hydrohalogen Acids in Water*, Natl. Stand. Ref. Data Sys.-Natl. Bur. Standards (U.S.), No. 33, 1970.

НІ

c/mol L-1

HF

HCl

HBr

н

HBr

HF

HCl

 $c/\text{mol } \mathbf{L}^{-1}$

C/IIIOI L	***	nei	11111		C/IIIOI L	•	n nor	ш	111
Inf. dil.	405.1	426.1	427.7	426.4	3.5		218.3	217.5	215.4
0.0001		424.5	425.9	424.6	4.0		200.0	199.4	195.1
0.0005		422.6	424.3	423.0	4.5		183.1	182.4	176.8
0.001		421.2	422.9	421.7	5.0		167.4	166.5	160.4
0.005	128.1	415.7	417.6	416.4	5.5		152.9	151.8	145.5
0.01	96.1	411.9	413.7	412.8	6.0		139.7	138.2	131.7
0.05	50.1	398.9	400.4	400.8	6.5		127.7	125.7	118.6
0.10	39.1	391.1	391.9	394.0	7.0		116.9	114.2	105.7
0.5	26.3	360.7	361.9	369.8	7.5		107.0	103.8	
1.0	24.3	332.2	334.5	343.9	8.0		98.2	94.4	
1.5		305.8	307.6	316.4	8.5		90.3	85.8	
2.0		281.4	281.7	288.9	9.0		83.1		
2.5		258.9	257.8	262.5	9.5		76.6		
3.0		237.6	236.8	237.9	10.0		70.7		
$c/\mathrm{mol}\ \mathrm{L}^{-1}$	−20°C	-10°C	0°C	10°	C	20°C	30°C	40°C	50°C
				•					
				Н	Cl				
0.5			228.7	283.	.0	336.4	386.8	436.9	482.4
1.0			211.7	261.	.6	312.2	359.0	402.9	445.3
1.5			196.2	241.	.5	287.5	331.1	371.6	410.8
2.0			182.0	222.	.7	262.9	303.3	342.4	378.2
2.5		131.7	168.5	205.	.1	239.8	277.0	315.2	347.6
3.0		120.8	154.6	188.	.5	219.3	253.3	289.3	319.0
3.5	85.5	111.3	139.6	172.		201.6	232.9	263.9	292.1
4.0	79.3	102.7	129.2	158.		185.6	214.2	242.2	268.2
4.5	73.7	94.9	119.5	145.		170.6	196.6	222.5	246.7
5.0	68.5	87.8	110.3	133.		156.6	180.2	204.1	226.5
5.5	63.6	81.1	101.7	122.		143.6	165.0	187.1	207.7
6.0	58.9	74.9	93.7	112.		131.5	151.0	171.3	190.3
6.5	54.4	69.1	86.2	103.		120.4	138.2	156.9	174.3
7.0	50.2	63.7	79.3	94.		110.2	126.4	143.3	159.7
7.5	46.3	58.6	73.0	86.		100.9	115.7	131.6	146.2
8.0	42.7	54.0	67.1	79.		92.4	106.1	120.6	134.0
8.5	39.4	49.8	61.7	72.		84.7	97.3	110.7	123.0
9.0	36.4	45.9	56.8	67.		77.8	89.4	101.7	112.9
9.5	33.6	42.3	52.3	61.		71.5	82.3	93.6	103.9
10.0	31.2	39.1	48.2	57.		65.8	75.9	86.3	95.7
10.5	28.9	36.1	44.5	52.		60.7	70.1	79.6	88.4
11.0	26.8	33.4	41.1	48.		56.1	64.9	73.6	81.7
11.5	24.9	31.0	38.0	45.		51.9	60.1	68.0	75.6
12.0	23.1	28.7	35.3	42.		48.0	55.6	62.8	70.0
12.5	21.4	26.7	32.7	39.	.0	44.4	51.4	57.9	64.8

$MOLAR\ CONDUCTIVITY\ OF\ AQUEOUS\ HF, HCl, HBr, AND\ HI\ (continued)$

$c/\mathrm{mol}\ \mathrm{L}^{-1}$	-20°C	-10°C	0°C	10°C	20°C	30°C	40°C	50°C
				HBr				
0.5			240.9	295.9	347.0	398.9	453.6	496.8
1.0			229.6	276.0	329.0	380.4	418.6	465.2
1.5			209.5	254.9	298.9	340.6	381.8	421.4
2.0		150.8	188.6	231.3	271.8	314.1	350.5	387.4
2.5		136.8	171.7	208.3	244.8	281.7	316.0	349.1
3.0		125.7	157.2	189.5	222.2	255.0	287.8	318.6
3.5		116.1	144.1	174.6	203.2	234.4	263.7	291.9
4.0	84.0	107.5	132.3	160.2	186.8	214.2	239.7	266.9
4.5	78.0	99.0	123.0	146.4	171.2	195.1	218.8	242.6
5.0	72.3	91.4	112.6	134.0	155.7	178.2	199.6	221.3
5.5	67.0	84.2	103.1	122.7	142.1	162.8	181.4	201.8
6.0	61.8	77.2	94.3	112.0	129.6	148.0	165.4	183.4
6.5	56.8	70.7	86.0	102.0	118.0	134.1	150.5	166.3
7.0	51.9	64.6	78.4	92.6	107.1	121.4	136.3	150.8