JEGYZŐKÖNYV KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

REAKTOR-ÜZEMELTETÉSI GYAKORLAT

• Mérést végezte : Brindza Mátyás

• Mérőtársak : Kovács Benjamin, Németh Olivér

• Mérés időpontja : 2023.03.31.

Tartalomjegyzék

1.	A mérés célja	3
2.	A reaktorok stabilitása	3
3.	A tanreaktor mérőláncai	4
4.	A mérés menete	5

1. A mérés célja

A mérés célja a BME Nukleáris Technikai Intézetének Tanreaktorával való megismerkedés. A reaktor üzemeltetői imsertették a reaktor felépítését, működését és működtetését.

2. A reaktorok stabilitása

A maghasadáskor keletkező neutronok gyors neutronok, melyek kicsi eséllyel tudnak további hasadásokat előidézni. Ezek egy neutronciklus alatt bekövetkező számbeli sokszorozódását ítja le a sokszorozási tényező (k_{∞}) , melyet a négyfaktor formulával (1) adunk meg. A ∞ index a reaktor méretére utal, ugyanis a neutronok kiléphetnek a reaktorból. Ezt a korrekciót az effektív sokszorozási tényező $(k_{\rm eff})$ veszi figyelembe (2).

$$k_{\text{eff}} = k_{\infty} \cdot P \tag{1}$$

$$k_{\infty} = \epsilon \cdot p \cdot f \cdot \eta \tag{2}$$

- ϵ a gyorshasítási tényező : a gyors neutronok ($\approx 2MeV$) által okozott ²³⁸*U*-hasadások járuléka, értéke kicsit nagyobb, mint 1
- p a rezonancia tényező : annak a valószínűsége, hogy egy gyors neutron nem szenved el hasadás nélküli rezonanciabefogást egy ^{238}U magban, értéke kisebb, mint 1
- f a termikus hasznosítási tényező: a lelassult, termalizálódott neutronok ($\approx 0.025 eV$) mekkora hányada lép reakcióba a hasadó anyag atommagjaival (ahelyett, hogy a szerkezeti anyagban vagy a moderátorban befogódna), értéke kisebb, mint 1
- μ a termikus neutronhozam : egy termalizálódott, és egy hasadó magban befogódott neutron által kiváltott magreakcióban hány új neutron keletkezik, értéke nagyobb, mint 1
- P a kilépési tényező: annak a valószínűsége, hogy egy neutron nem lép ki a reaktorból, értéke kisebb, mint 1

A k_{∞} és a k_{eff} tényezők mellett további fontos jellemzők a reaktivitás (ρ) és a késő neutronok részaránya (β_{eff}), hiszen ezek a reaktor stabilitásáról árulkodnak. A reaktivitás az effektív sokszorozási tényező 1-től való relatív eltérése.

$$\rho = \frac{k_{\text{eff}} - 1}{k_{\text{eff}}} \tag{3}$$

A reaktor kiritikus, ha $k_{\rm eff}=1$, azaz $\rho=0$. A reaktorok akkor működnek jól, hogy időben $\rho=0$ körül ingadozik a reaktivitás, ugyanis ekkor a neutronfluxus időben állandó. Szubkritikus a reaktor $\rho<0$ esetén, ekkor időben lecsengő a neutronfluxus. Szuperkritikus reaktorról beszélünk, ha $\rho>0$, ekkor a neutronfluxus nő az idő függvényében.

Késő neutronoknak nevezzük a hasadványok β^- -bomlása után keletkező magból kilépő neutronokat. Ezek kisebb energiájúak, ezért reaktívabbak is. A reaktorteljesítmény ugrásszerűen megnő $\rho=\beta_{\rm eff}$ környékén, $\rho>\beta_{\rm eff}$ esetén pedig promptkritikussá válik. Ezért a jelen lévő β^- bomló izotópok mennyisége és felezési ideje igen fontos tényező a reaktor akkor biztoságos működtetésében. A reaktor teljesítménye arányos a neutronfluxussal. A teljesítményváltozás $0<\rho<\beta_{\rm eff}$ esetén lassú, de pozitív, mivel a prompt neutronok

önmagukban nem teszik kritikussá a reaktort. Ammennyiben $\rho > \beta_{\rm eff}$, a reaktort pusztán a prompt neutronok is szuperkritikussá teszik. A $\rho/\beta_{\rm eff}$ mennyiséget centtel, illetve \$-ral is szokás kifejezni. Egy cent felel meg $\rho/\beta_{\rm eff} = 1/100$ -nak. A tanreaktor esetén ez névleg 80cent körül van.

Ezeket a folyamatokat ún. moderátorokkal¹ lehet kontrollálni, melyek lelassítják a gyors neutronokat, ezzel megnövelve a maghasadások gyakoriságát. Azonban a neutronok el is nyelődhetnek a moderátorban. Túl kevés moderátor esetén a moderátor telítődik, lassul le elég neutron további maghasadások fenntartásához. Túl sok moderátor esetén túl sok neutron nyelődik el, így csökkentve a neutronfluxust. Az alul- és felülmoderált állapotok között van egy globális maximum. Ennél a $V_{\rm moderátor}/V_{\rm üzemanyag}$ aránynál lesz a legnagyobb $k_{\rm eff}$.

A reaktivitás pozitívvá válása teljesítménynövekedéshez vezet, mely hőmérsékletnövekedéshez is. Víz-moderátoros reaktorokban ez a $V_{\rm moderátor}/V_{\rm üzemanyag}$ csökkenésével jár. A felülmoderált reaktorok teljesítménye ilyenkor megnő, ugyanis közelebb viszi a reaktort a k_{max} állapothoz - öngerjesztő folyamat. Alulmoderált reaktorok esetén a $V_{\rm moderátor}/V_{\rm üzemanyag}$ arány a teljesítmény csökkenésével jár, ezért ezek önszabályozó, ún. belső biztonságú reaktorok - ilyen a BME tanreaktora is.

Az üzemanyag hőmérsékletének növekedésével növekszik a rezonanciabefogás valószínűsége, mivel kiszélesednek az ²³⁸U rezonanciacsúcsai. Ezt nevezzük Doppler-visszacsatolásnak, mely stabilizáló hatással van a reaktorra.

3. A tanreaktor mérőláncai

Reaktorok a teljesítmény arányos a az aktív zóna átlagos neutronfluxusával, így az állandó teljesítményre való szabályozással is fenn tudjuk tartani a reaktor stabilitását. Alacsony teljesítményen hasadási kamrákkal mérhető a neutronok időegységenkénti beütésszáma, míg magasabb teljesítményen 10 B(n, α) 2 Li reakción alapuló, gamma kompenzált egyenármú ionizációs ionizációs kamrák használatosak. A gamma kompenzált detektorokban két azonos geometriájú gáztér van, melyek egyike a gamma-beütéseket méri, míg a másik a gamma és a neutron beütések összegét - pontosabban az ezek által keltett egyenáramot. Ezzel egyételműen meghatározható a neutronfluxus. A BME tanreaktorában található mérőláncok is e két elv alapján működnek

- Impulzus üzemű detektorok : I1 és I2, hasadási kamrák
- Egyenáramú mérőláncok :
 - E3: periódusidő mérésére
 - E4 és E5 : teljesítmény korlátozására
 - E6 : teljesítmény mérésére (+ a többi lánc kalibrációjára) és (automatikus) szabályozására

A reaktorba épített redundáns elektronika gondoskodik arról, hogy a periódus határéték túllépésekor automatikusan leálljon a reaktor. A moderátorokat tartó elektromágnesek elengednek, így szubkritikussá téve a reaktort. Ez egy igen jó megoldás, mivel esetleges áramszünet esetén is automatikusan leáll a reaktor.

 $^{^1\}mathrm{Alacsony}$ atomszámú anyagok, mely sok energiát vesznek át a neutronoktól rugalmas ütközéskor.

4. A mérés menete

Az irányítópultot bekapcsolás után alaphelyzetbe állítjuk, majd beállítjuk és ellenőrizzük a műszereket. A reaktorban található üzemanyag önmagában nem tud láncreakciót fenntartani, ezért az indító neutronforrást be kell vinni a zónába. A reaktorban négy moderátor célt ellátó rúd található, egy-egy kézi illetve automatikus vezérlésű, illetve két biztonsági rúd. A biztonságvédelmi rudak kihúzása után a szabályozórudak beállításai alapján következtetünk a reaktor energetikai állapotaira, illetve a rudak értékességére, és ezek rúd-pozíció függésére. Teljesítmény növelésekor ügyelni kell a műszerek méréshatárainak beállítására, ugyanis amint kilép a mért érték a méréshatár tartományából, automatikusan leáll a reaktor². A teljesítményt fokozatosan növeljük, az indító neutronforrás 1 W teljesítményen eltávolítható. Amikor a teljesítmény 10 kW körül jár, már szemmel látható a Cherenkov-sugárzás, és még biztonságos a reaktor tetején tartózkodni (ld. 1. ábra).

1. ábra. A reaktor tetejéről megfigyelhető Cherenkov-sugárzás

Automata üzemmóddban megfigyelhető az automata szabályzó rendszer működése is. Mérés végeztével visszaengedjük a rudakat a zónába, és kikapcsoljuk a berendezéseket.

²Ez a reaktorba integrált bizontonsági eljárás gondoskodik arról, hogy a reaktor ne üzemeljen emberi felügyelet nélkül.