Predicting UK Racehorses'
Risk of Injury Based on
Historical Race and Biometric
Data

Topic: Predicting UK Racehorses' Risk of Injury and Performance Decline

- **Problem**: Racehorses undergo intense physical strain during races, leading to frequent injuries and performance decline.
- Opportunity: By predicting injuries, trainers, jockeys, and owners can optimize training schedules, reduce injury risks, and improve performance.
- Affected Stakeholders:
 - **Horse Trainers**: Better training management.
 - **Jockeys**: Understand horse performance on race day.
 - Owners: Reduce costs and increase success rates.

Introduction to the Dataset, Data Quality Concerns, and Preliminary EDA

Dataset Overview:

- Pre-Race Parameters: Information collected before the race (odds, trainer data, horse statistics)
- Race Parameters: Data on race conditions, times, and prize money.
- Horse Parameters: Horse-specific data (weight, jockey, race positions, historical performance)

Data Quality Concerns:

- Missing Data
- Inconsistent Data: Variability in how data is recorded and labelled
- Both Race & Horse csv files separated by years (which years to choose and how many)

Preliminary Findings from EDA:

11% DNF for conditions:
12 soft to heavy
10 good to soft
5 soft condition

"Horses with sensitive **tendons**, will feel more at ease on **hard surfaces** because they facilitate their locomotion. Other horses, such as those with **joint** problems, will move more smoothly on **soft surfaces**."

Winter Months:

- 1. Muscle Stiffness
- 2. Reduced Flexibility
- 3. Slippery
- 4. Longer Warm-Ups
- 5. Reduced Training

Baseline Models & Evaluations:

- **Objective 1**: Develop a model to classify <u>injury risk</u> by analyzing performance trends and biometric data.
- 1. <u>Logistic Regression</u> (injury risk classification)
- 2. <u>Random Forest</u> (injury risk classification)

Model		Training Accuracy	Test Accuracy	Precision (0/1)	Recall (0/1)	F1-Score (0/1)	Macro Avg (F1)	Weighted Avg (F1)
Basic Logi	stic Regression	0.8262	0.9229	0.93 / 0.57	0.99 / 0.09	0.96 / 0.16	0.56	0.90
LogReg 2 Params)	(Grid Search C	0.7191	0.7568	0.98 / 0.23	0.75 / 0.86	0.85 / 0.36	0.60	0.81
Standard	Random Forest	0.99998	0.95168	0.96 / 0.76	0.98 / 0.57	0.97 / 0.65	0.81	0.95
Random F Search Pa	orest 2 (Grid rams)	0.9234	0.9532	0.96 / 0.78	0.99 / 0.56	0.97 / 0.65	0.81	0.95

Next Steps:

- Adjust class weights to give even more importance to injuries.
- Work with other models like **XG Boost** or including **SMOTE** to handle class imbalance.

Main Takeaway:

My goal for this model is to be able to predict and thus **prevent horse injuries**. Because of this, I want a model that **maximizes its' positive rates** even if that means the losing some accuracy by classifying low-risk horses as high-risk.

LogReg 2 (Grid Search C Params = 0.01)

Thank You!