

Llaves

El arquitecto Timothy ha diseñado un juego del tipo cuarto de escape. En este juego, hay n cuartos numerados de 0 a n-1. Inicialmente, cada cuarto contiene exactamente una llave. Cada llave es de un tipo, el cual es un entero entre 0 y n-1, inclusive. El tipo de la llave en el cuarto i ($0 \le i \le n-1$) es r[i]. Nótese que múltiples cuartos pueden contener llaves del mismo tipo, es decir, los valores r[i] no son necesariamente distintos.

También existen m conectores **bidireccionales** en el juego, numerados de 0 a m-1. El conector j ($0 \le j \le m-1$) conecta un par de cuartos distintos u[j] y v[j]. Un par de cuartos pueden ser conectados por múltiples conectores.

El juego es jugado por un solo jugador que recoge las llaves y se mueve entre los cuartos recorriendo los conectores. Decimos que el jugador **recorre** el conector j cuando usa este conector para moverse del cuarto u[j] al cuarto v[j], o viceversa. El jugador solo puede recorrer el conector j si ha recogido una llave de tipo c[j] previamente.

En todo momento del juego, el jugador se encuentra en algún cuarto x y puede realizar dos tipos de acciones:

- recoger la llave del cuarto x, cuyo tipo es r[x] (a menos que ya la haya recogido antes),
- recorrer el conector j, donde u[j] = x o v[j] = x, si el jugador ha recogido una llave de tipo c[j] previamente. Nótese que el jugador **nunca** descarta una llave que haya recogido.

El jugador **empieza** el juego en un cuarto s sin haber recogido ninguna llave. Un cuarto t es **alcanzable** desde un cuarto s, si el jugador que empieza el juego en el cuarto s puede realizar una secuencia de acciones, y alcanzar el cuarto t.

Para cada cuarto i ($0 \le i \le n-1$), el número de cuartos alcanzables desde el cuarto i se denota como p[i]. Timothy quiere saber el conjunto de índices i que obtienen el mínimo valor de p[i] para 0 < i < n-1.

Detalles de implementación

Se debe implementar la siguiente función:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: es un arreglo de tamaño n. Para cada i ($0 \le i \le n-1$), la llave en el cuarto i es de tipo r[i].
- u,v: dos arreglos de tamaño m. Para cada j ($0 \le j \le m-1$), el conector j conecta los cuartos u[j] y v[j].

- c: un arreglo de tamaño m. Para cada j ($0 \le j \le m-1$), el tipo de llave necesaria para recorrer el conector j es c[j].
- Esta función debe retornar un arreglo a de tamaño n. Para cada $0 \le i \le n-1$, el valor de a[i] debe ser 1 si para cada j tal que $0 \le j \le n-1$, $p[i] \le p[j]$. De lo contrario, el valor de a[i] debe ser 0.

Ejemplos

Ejemplo 1

Considere la siguiente llamada:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Si el jugador empieza el juego en el cuarto 0, puede realizar la siguiente secuencia de acciones:

Cuarto actual	Acción
0	Recoger llave de tipo 0
0	Recorrer conector 0 hacia cuarto 1
1	Recoger llave de tipo 1
1	Recorrer conector 2 hacia cuarto 2
2	Recorrer conector 2 hacia cuarto 1
1	Recorrer conector 3 hacia cuarto 3

De modo que el cuarto $\,3\,$ es alcanzable desde el cuarto $\,0\,$. Similarmente, podemos construir secuencias que muestren que todos los cuartos son alcanzables desde el cuarto $\,0\,$, lo que implica que $\,p[0]=4\,$. La tabla inferior muestra los cuartos alcanzables para todos los cuartos iniciales:

Cuarto inicial i	Cuartos alcanzables	p[i]
0	[0, 1, 2, 3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

El mínimo valor de p[i] entre todos los cuartos es 2, el cual se obtiene para i=1 o i=2. Por lo tanto, la función debe retornar [0,1,1,0].

Ejemplo 2

```
find_reachable([0, 1, 1, 2, 2, 1, 2],
        [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],
        [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],
        [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])
```

La tabla inferior muestra los cuartos alcanzables:

Cuarto inicial i	Cuartos alcanzables	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

El mínimo valor de p[i] entre todos los cuartos es 2, el cual se obtiene para $i \in \{1, 2, 4, 6\}$. Por lo tanto, la función debe retornar [0, 1, 1, 0, 1, 0, 1].

Ejemplo 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

La tabla inferior muestra los cuartos alcanzables:

Cuarto inicial i	Cuartos alcanzables	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

El mínimo valor de $\,p[i]\,$ entre todos los cuartos es $\,1,\,$ el cual se obtiene para $\,i=2.\,$ Por lo tanto, la función debe retornar $\,[0,0,1].\,$

Restricciones

- $2 \le n \le 300\,000$
- $1 \le m \le 300\,000$
- $0 \le r[i] \le n-1$ para todo $0 \le i \le n-1$
- $0 \leq u[j], v[j] \leq n-1$ y u[j]
 eq v[j] para todo $0 \leq j \leq m-1$

• $0 \leq c[j] \leq n-1$ para todo $0 \leq j \leq m-1$

Subtareas

```
1. (9 puntos) \,c[j]=0 para todo \,0\leq j\leq m-1 y \,n,m\leq 200
```

- 2. (11 puntos) $n,m \leq 200$
- 3. (17 puntos) $n, m \leq 2000$
- 4. (30 puntos) $c[j] \leq 29$ (para todo $0 \leq j \leq m-1$) y $r[i] \leq 29$ (para todo $0 \leq i \leq n-1$)
- 5. (33 puntos) Sin restricciones adicionales.

Evaluador de ejemplo

El evaluador de ejemplo lee la entrada en el siguiente formato:

- línea 1: n m
- Iínea 2: r[0] r[1] \dots r[n-1]
- If u[j] If

El evaluador de ejemplo imprime el valor retornado por find reachable en el siguiente formato:

• Iínea 1: a[0] a[1] \dots a[n-1]