

It can be observed that the area ABCD is symmetrical about x-axis.

Area of ABC =
$$\int_{\frac{a}{\sqrt{2}}}^{a} y \, dx$$
=
$$\int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2} - x^{2}} \, dx$$
=
$$\left[\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right]_{\frac{a}{\sqrt{2}}}^{a}$$
=
$$\left[\frac{a^{2}}{2} \left(\frac{\pi}{2} \right) - \frac{a}{2\sqrt{2}} \sqrt{a^{2} - \frac{a^{2}}{2}} - \frac{a^{2}}{2} \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) \right]$$
=
$$\frac{a^{2}\pi}{4} - \frac{a}{2\sqrt{2}} \cdot \frac{a}{\sqrt{2}} - \frac{a^{2}}{2} \left(\frac{\pi}{4} \right)$$
=
$$\frac{a^{2}\pi}{4} - \frac{a^{2}}{4} - \frac{a^{2}\pi}{8}$$
=
$$\frac{a^{2}}{4} \left[\pi - 1 - \frac{\pi}{2} \right]$$
=
$$\frac{a^{2}}{4} \left[\frac{\pi}{2} - 1 \right]$$

$$\Rightarrow Area~ABCD = 2 \left[\frac{a^2}{4} \left(\frac{\pi}{2} - 1 \right) \right] = \frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)$$

Therefore, the area of smaller part of the circle, $x^2+y^2=a^2$, cut off by the line, $x=\frac{a}{\sqrt{2}}$,

$$\int_{\text{is}}^{\frac{a^2}{2}} \left(\frac{\pi}{2} - 1\right)_{\text{units.}}$$

Question 8:

The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

Answer

The line, x=a, divides the area bounded by the parabola and x=4 into two equal parts.

∴ Area OAD = Area ABCD

It can be observed that the given area is symmetrical about x-axis.

Area
$$OED = \int_0^a y \, dx$$
$$= \int_0^a \sqrt{x} \, dx$$

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^a$$

$$=\frac{2}{3}(a)^{\frac{3}{2}} \qquad ...(1)$$

Area of $EFCD = \int_0^4 \sqrt{x} dx$

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4}$$

$$= \frac{2}{3}\left[8 - a^{\frac{3}{2}}\right] \qquad \dots (2)$$

From (1) and (2), we obtain

$$\frac{2}{3}(a)^{\frac{3}{2}} = \frac{2}{3} \left[8 - (a)^{\frac{3}{2}} \right]$$

$$\Rightarrow 2 \cdot (a)^{\frac{3}{2}} = 8$$

$$\Rightarrow (a)^{\frac{3}{2}} = 4$$

$$\Rightarrow a = (4)^{\frac{2}{3}}$$

Therefore, the value of a is $(4)^{\frac{2}{3}}$.

Question 9:

Find the area of the region bounded by the parabola $y = x^2$ and y = |x|

The area bounded by the parabola, $x^2=y$ and the line, $y=\left|x\right|$, can be represented as

The given area is symmetrical about y-axis.

∴ Area OACO = Area ODBO

The point of intersection of parabola, $x^2=y$, and line, y=x, is A (1, 1). Area of OACO = Area \triangle OAB - Area OBACO

Area of OACO = Area MOAD - Area OBACO

$$\therefore \text{ Area of } \triangle OAB = \frac{1}{2} \times OB \times AB = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$

Area of OBACO =
$$\int_{0}^{1} y \, dx = \int_{0}^{1} x^{2} \, dx = \left[\frac{x^{3}}{3} \right]_{0}^{1} = \frac{1}{3}$$

⇒ Area of OACO = Area of ΔOAB - Area of OBACO

$$=\frac{1}{2} - \frac{1}{3}$$

 $=\frac{1}{6}$

Therefore, required area =
$$2\left[\frac{1}{6}\right] = \frac{1}{3}$$
 units

Question 10

Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2

Answer

The area bounded by the curve, $x^2 = 4y$, and line, x = 4y - 2, is represented by the shaded area OBAO.

Let A and B be the points of intersection of the line and parabola.

A are
$$\left(-1, \frac{1}{4}\right)$$

Coordinates of point

Coordinates of point B are (2, 1).

We draw AL and BM perpendicular to x-axis.

It can be observed that,

Area OBAO = Area OBCO + Area OACO ... (1)

Then, Area OBCO = Area OMBC - Area OMBO

$$= \int_0^2 \frac{x+2}{4} dx - \int_0^2 \frac{x^2}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^2}{2} + 2x \right]_0^2 - \frac{1}{4} \left[\frac{x^3}{3} \right]_0^2$$

$$= \frac{1}{4} [2+4] - \frac{1}{4} \left[\frac{8}{3} \right]$$

$$= \frac{3}{2} - \frac{2}{3}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= \frac{5}{2}$$

Similarly, Area OACO = Area OLAC - Area OLAO

$$= \int_{-1}^{0} \frac{x+2}{4} dx - \int_{-1}^{0} \frac{x^{2}}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x \right]_{-1}^{0} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{-1}^{0}$$

$$= -\frac{1}{4} \left[\frac{(-1)^{2}}{2} + 2(-1) \right] - \left[-\frac{1}{4} \left(\frac{(-1)^{3}}{3} \right) \right]$$

$$= -\frac{1}{4} \left[\frac{1}{2} - 2 \right] - \frac{1}{12}$$

$$= \frac{1}{2} - \frac{1}{8} - \frac{1}{12}$$

$$= \frac{7}{24}$$

Therefore, required area =
$$\left(\frac{5}{6} + \frac{7}{24}\right) = \frac{9}{8}$$
 units

Question 11:

Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3

Answer

The region bounded by the parabola, $y^2 = 4x$, and the line, x = 3, is the area OACO.

The area OACO is symmetrical about x-axis.

∴ Area of OACO = 2 (Area of OAB)

Area OACO =
$$2\left[\int_0^3 y \, dx\right]$$

= $2\int_0^3 2\sqrt{x} \, dx$
= $4\left[\frac{x^{\frac{3}{2}}}{3}\right]^3$

$$= \frac{8}{3} \left[(3)^{\frac{3}{2}} \right]$$
$$= 8\sqrt{3}$$

Therefore, the required area is $8\sqrt{3}$ units.

Question 12:

Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$ and the lines x=0 and x=2 is

****** END *******