

- PyVOLCANS: A Python package to flexibly explore
- 2 similarities and differences between volcanic systems
- Pablo Tierz^{1¶}, Vyron Christodoulou¹, John A. Stevenson¹, and Susan C.
- 4 Loughlin¹
- $_{5}$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ British Geological Survey, The Lyell Centre, Edinburgh, UK. true \P Corresponding author

DOI:

10.21105/test_journal.00019

Software

- Review 🗗
- Repository □
- Archive 🗗

Editor: Juanjo Bazán & Reviewers:

@xuanxu

Submitted: 04 February 2022

Published: 16 February 2022

License

Authors of papers retain 18 copyright and release the work 19 under a Creative Commons
Attribution 4.0 International 20 License (CC BY 4.0). 21

Summary

There are over 1,400 volcanoes on Earth that have either erupted or shown signs of volcanic activity (e.g. fumaroles or hot springs) in, approximately, the last 12,000 years. Of these, around 40-50 are erupting at any given time (Global Volcanism Program, 2013; Siebert et al., 2010). Volcanoes provide a range of economic benefits, such as fertile soils, geothermal energy or valuable mineralisations, create a strong sense of belonging among local populations, and fascinate visitors. However, volcanic systems can also generate hazardous phenomena, which may threaten local inhabitants, tourists and infrastructure at distances of up to tens or hundreds of kilometres.

In order to understand and quantify volcanic hazard, volcano scientists are faced with many questions. How often do eruptions occur? How big are they? What style of eruption is possible (e.g. mainly explosive or effusive)? From where on the volcano is eruptive activity sourced? What areas around the volcanic system may be impacted? Will there be any early warning signals?

Quantitative data to address these questions are scarce (Loughlin et al., 2015). While a handful of volcanoes (e.g. Etna, Italy; Kīlauea, USA; Merapi, Indonesia) have been extensively studied, hundreds of volcanic systems around the world remain poorly-understood. One possible mitigation to the issue of data scarcity in volcanology and volcanic hazard assessment is the use of analogue volcanoes (Newhall et al., 2017; Newhall & Hoblitt, 2002). These are volcanoes with similar characteristics to a data-scarce volcano of interest. Data and insights from the well-studied volcano(es) can be used to provide estimates for important variables, such as the number of eruptions during specific time windows or the size of those eruptions. Such methods have been used for many years, here we present the first tool enabling a structured and harmonised approach that can be applied worldwide.

Statement of need

PyVOLCANS (Python VOLCano ANalogues Search) is an open-source tool that addresses the need for an objective, data-driven method for selection of analogue volcanoes. It is based on the results of VOLCANS (Tierz et al., 2019), a first-of-its-kind method to quantify the analogy (or similarity) between volcanic systems, based on a structured combination of five volcanological criteria: tectonic setting, rock geochemistry, volcano morphology, eruption size, and eruption style. PyVOLCANS provides a command-line interface to make the results from the VOLCANS study easily accessible to a wide audience. PyVOLCANS is a versatile tool for volcano scientists, with potential applications ranging from investigating commonalities between volcanic systems (Cashman & Biggs, 2014) to supporting probabilistic volcanic hazard assessment at local, regional and global scales. Exploring similarities and differences between volcanic systems using PyVOLCANS can also be useful for teaching and scientific outreach purposes.

53

57

61

Users can easily derive data-driven sets of *top* analogue volcanoes (i.e. those with highest analogy) to any volcanic system listed in the reference database for recent global volcanism: the Volcanoes of the World Database, hosted by the Global Volcanism Program of the Smithsonian Institution (Global Volcanism Program, 2013). Users can also choose the number of *top* analogue volcanoes to investigate and can customise the importance (i.e. weight) that is given to each of the five aforementioned volcanological criteria. Additionally, users can select a number of *a priori* analogue volcanoes (i.e. volcanoes deemed as analogues by other means, such as expert knowledge) and assess their values of analogy with the target volcano to see how well they match on different criteria and if other volcanoes could be a better choice (Figure 1).

Figure 1: Values of single-criterion (colours) and total analogy (bar heights) between an example target volcano, Fuego (Guatemala)*, and five *a priori* analogues (please see Tierz et al., 2019, for more details). ATs: Analogy in Tectonic setting; AG: Analogy in rock Geochemistry; AM: Analogy in volcano Morphology; ASz: Analogy in eruption Size; ASt: Analogy in eruption Style. *Number between brackets denotes the unique volcano identifier used by the GVP database.

The results from the VOLCANS study have been used in research to explore the volcanological factors that influence the development of particular volcano morphologies (Philippa White, unpublished thesis); to constrain potential hazardous phenomena and hazard scenarios at a given target volcano, based on its analogue volcanoes (Simmons, 2021); to quantify probability distributions of eruption sizes and probabilities of occurrence of diverse hazardous phenomena (Tierz et al., 2020); or even to explore volcano analogies at regional scales, by generating sets of analogue volcanoes for tens of volcanic systems. The last two example applications have played a key role in developing quantitative hazard analyses for Ethiopian volcanoes, within the RiftVolc project (please see PyV0LCANS documentation for further details on these analyses). Moreover, the future potential of VOLCANS/PyV0LCANS, particularly in the field of volcanic hazard assessment, has also been recognised in recent relevant publications in the area (Marzocchi et al., 2021; Papale, 2021)

We hope that the release of PyV0LCANS will encourage further studies based on data-driven

- selection of analogue volcanoes and that such analyses will continue to grow in number and
- 65 diversity of their scientific purposes.

66 Acknowledgements

The research leading to these results has been mainly supported by the UK National Capability Funding (Innovation Flexible Fund programme) and by the Global Geological Risk Platform of the British Geological Survey NC-ODA grant NE/R000069/1: Geoscience for Sustainable Futures. We most sincerely thank reviewers Jamie Farquharson and Meghan Jones, and Associate Editor Jay Hariharan, for the invaluable feedback and suggestions that they have 71 provided on PyVOLCANS. This has certainly resulted in significant improvements to the code, which we hope future users will benefit from. We would like to warmly thank Eliza Calder for 73 all her work during the development of the VOLCANS method, and Sarah Ogburn for being 74 one of the first people who convinced us that we should develop an open-access application 75 of VOLCANS, sooner rather than later. Declan Valters is thanked for support with Python 76 programming, and Fabio Dioguardi for his internal review. Moreover, we would like to sincerely thank a number of colleagues with whom we shared very insightful conversations about 78 analogue volcanoes and/or PyV0LCANS: Chris Newhall, Isla Simmons, Adriano Pimentel, Julia Crummy, Gezahegn Yirgu, Charlotte Vye-Brown, Lara Smale, Karen Fontijn, Ben Clarke, Susanna Jenkins, Elly Tennant, Pierre Barbillon, Elaine Spiller, Philippa White, Teresa Ubide, Sebastián García, Victoria Olivera, Jeremy Pesicek, Vanesa Burgos Delgado, Einat Lev, Jonty Rougier, Willy Aspinall, Paolo Papale, Monse Cascante and Thomas Giachetti. Published with 83 permission of the Executive Director of British Geological Survey (NERC-UKRI).

85 References

- Cashman, K., & Biggs, J. (2014). Common processes at unique volcanoes—a volcanological conundrum. Frontiers in Earth Science, 2, 28. https://doi.org/10.3389/feart.2014.00028
- Global Volcanism Program. (2013). *Volcanoes of the World, v. 4.10.0 (14 May 2021)*. Venzke, E (ed.). Smithsonian Institution. Downloaded 09 Jun 2021. https://doi.org/10.5479/si. GVP.VOTW4-2013
- Loughlin, S. C., Sparks, S., Brown, S. K., Vye-Brown, C., & Jenkins, S. F. (2015). Global
 volcanic hazards and risk. Cambridge University Press. https://doi.org/10.1017/
 CBO9781316276273
- Marzocchi, W., Selva, J., & Jordan, T. H. (2021). A unified probabilistic framework for
 volcanic hazard and eruption forecasting. Natural Hazards and Earth System Sciences,
 21(11), 3509–3517. https://doi.org/10.5194/nhess-21-3509-2021
- Newhall, C., Costa, F., Ratdomopurbo, A., Venezky, D., Widiwijayanti, C., Win, N. T. Z., Tan, K., & Fajiculay, E. (2017). WOVOdat—an online, growing library of worldwide volcanic unrest. *Journal of Volcanology and Geothermal Research*, *345*, 184–199. https://doi.org/10.1016/j.jvolgeores.2017.08.003
- Newhall, C., & Hoblitt, R. (2002). Constructing event trees for volcanic crises. Bulletin of Volcanology, 64(1), 3–20. https://doi.org/10.1007/s004450100173
- Papale, P. (2021). Some relevant issues in volcanic hazard forecasts and management of volcanic crisis. In *Forecasting and planning for volcanic hazards, risks, and disasters* (pp. 1–24). Elsevier. https://doi.org/10.1016/B978-0-12-818082-2.00001-9
- Siebert, L., Simkin, T., & Kimberly, P. (2010). *Volcanoes of the World*. Univ of California Press. https://www.ucpress.edu/book/9780520268777/volcanoes-of-the-world

Simmons, I. (2021). The Quetrupillán Volcanic Complex, Chile: Holocene volcanism, magmatic plumbing system, and future hazards [PhD thesis, University of Edinburgh]. https://doi.org/10.7488/era/1087

Tierz, P., Clarke, B., Calder, E. S., Dessalegn, F., Lewi, E., Yirgu, G., Fontijn, K., Crummy, J. M., Bekele, Y., & Loughlin, S. (2020). Event trees and epistemic uncertainty in long-term volcanic hazard assessment of rift volcanoes: The example of Aluto (Central Ethiopia). *Geochemistry, Geophysics, Geosystems*, 21(10), e2020GC009219. https://doi.org/10.1029/2020GC009219

Tierz, P., Loughlin, S. C., & Calder, E. S. (2019). VOLCANS: An objective, structured and reproducible method for identifying sets of analogue volcanoes. *Bulletin of Volcanology*, 81(12), 76. https://doi.org/10.1007/s00445-019-1336-3

