多元反函数定理的一个证明

叶卢庆* 杭州师范大学理学院, 浙江 杭州 310036

摘要: 仅利用微分中值定理, 以及微扰不改变一个可逆矩阵的可逆性, 给出了多元反函数定理的一个证明.

关键词: 多元反函数定理; 微分中值定理; 可逆矩阵

中图分类号: 0172.1

多元反函数定理是多元微分学中的核心定理之一. 利用它能直接推出隐函数定理. 其叙述如下:

定理 1 (多元反函数定理 [1]). 设 $E \in \mathbb{R}^n$ 的开集合, 并设 $T: E \to \mathbb{R}^n$ 是在 E 上连续可微的函数. 假设 $\mathbf{x_0} \in E$ 使得线性变换 $f'(\mathbf{x_0}): \mathbb{R}^n \to \mathbb{R}^n$ 是可逆的, 那么存在含有 $\mathbf{x_0}$ 的开集 $U \subset E$ 以及含有 $f(\mathbf{x_0})$ 的开集 $V \subset \mathbb{R}^n$, 使得 f 是从 U 到 V 的双射, 而且逆映射 $f^{-1}: V \to U$ 在点 $f(\mathbf{x_0})$ 处可微, 而且

$$(f^{-1})'(f(\mathbf{x_0})) = (f'(\mathbf{x_0}))^{-1}.$$

现在,笔者来阐述自己发现的证明,这种证明只用到了微分中值定理以及简单的矩阵知识.为此,我们先来看一个引理:

引理 1 (微扰不改变可逆矩阵的可逆性). 设 $A_{n,n}$ 是一个 n 行 n 列的可逆矩阵, 其第 i 行, 第 j 列的项记为 a_{ij} . 则存在 $\varepsilon > 0$, 使得 $\forall 0 \leq \delta_{ij} < \varepsilon$, 矩阵

$$B = \begin{pmatrix} a_{11} + \delta_{11} & a_{12} + \delta_{12} & \cdots & a_{1n} + \delta_{1n} \\ a_{21} + \delta_{21} & a_{22} + \delta_{22} & \cdots & a_{2n} + \delta_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} + \delta_{n1} & a_{n2} + \delta_{n2} & \cdots & a_{nn} + \delta_{nn} \end{pmatrix}$$

可逆.

证明. 由于矩阵可逆和行列式不为 0 等价, 因此我们只用证明矩阵 $A_{n,n}$ 经过任何微小的扰动后行列式不为 0 即可. 我们来看 n^2 元函数 $\det A_{n,n}$, 该函数的 n^2 个自变量分别是矩阵 $A_{n,n}$ 中的各个项, 易得该 n^2 元函数关于各个自变量连续. 当矩阵 A 可逆时, $\det A_{n,n} \neq 0$. 此时对于每个自变量 a_{ij} 来说, 存在 $\varepsilon_{ij} > 0$, 使得 $\forall 0 \leq \delta_{ij} < \varepsilon_{ij}$, 当 a_{ij} 被 $a_{ij} + \delta_{ij}$ 替代时, $\det A_{n,n}$ 依然非零, 而且正负符号和原来的 $\det A_{n,n}$ 相比没有变号.

$$\Leftrightarrow \varepsilon = \min\{\varepsilon_{11}, \varepsilon_{12}, \cdots, \varepsilon_{1n}, \varepsilon_{21}, \varepsilon_{22}, \cdots, \varepsilon_{2n}, \cdots, \varepsilon_{n1}, \varepsilon_{n2}, \cdots, \varepsilon_{nn}\},$$
即可得引理.

引理 1 可以直接得到如下推论:

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:h5411167@gmail.com

推论 1. 存在含有 x_0 的开凸集 U', 使得 f 在 U' 上的每一点处的导数可逆.

下面我们来证明 $f: U' \to f(U')$ 是可逆的.

定理 2. $f: U' \to f(U')$ 是可逆的.

证明. f 是从 \mathbf{R}^n 的子集 U' 到 \mathbf{R}^n 的子集 f(U') 的函数, 我们将 f 看成 (f_1, \dots, f_n) , 其中 $\forall 1 \leq i \leq n, f_i$ 是从 \mathbf{R}^n 的子集 U' 到 \mathbf{R} 的子集的函数, 具体地, 若 $f((a_1, \dots, a_n)) = (b_1, \dots, b_n)$, 则 $f_i((a_1, \dots, a_n)) = b_i$. 由于 f 在 U' 上连续可微, 因此 f_i 在 U' 上亦连续可微. 由于 f 在 U' 上的导数处处可逆, 因此 f_i 在 U' 上任意一点处的导数必定不是一个零映射.

假若 $f: U' \to f(U')$ 不是可逆的, 则存在 $\mathbf{m} \neq \mathbf{n} \in U'$, 使得

$$f(\mathbf{m}) = f(\mathbf{n}).$$

则

$$f_i(\mathbf{m}) = f_i(\mathbf{n}).$$

根据微分中值定理, 存在 $\xi = \lambda \mathbf{m} + (1 - \lambda)\mathbf{n} \in U'$, 其中 $0 < \lambda < 1$, 使得

$$f_i'(\xi) = 0.$$

这与 f_i 在 U' 上任意一点处的导数不是一个零映射矛盾. 可见假设不成立, 因此 $f:U'\to f(U')$ 是可逆的.

下面我们来证明 f(U') 也是 \mathbb{R}^n 中的一个开集. 为此, 我们先证明如下结论:

引理 2. 若 $f: A \to f(A)$ 是连续的可逆函数, 其中 $A \subset \mathbf{R}^n, f(A) \subset \mathbf{R}^n$, 则 $f^{-1}: f(A) \to A$ 也是连续可逆函数.

证明. 证明仅仅是依据定义进行简单的验证, 留给读者.

引理 3. 若 $f: \mathbf{R}^n \to \mathbf{R}^n$ 是连续函数, 则对于 \mathbf{R}^n 中的开集 B 来说, $f^{-1}(B)$ 也是 \mathbf{R}^n 中的开集.

引理证明. 证明仅仅是简单的验证, 但是读者可以参见文献 [2].

引理 2 和引理 3 合起来有如下推论:

推论 2. 若 $f: A \to f(A)$ 是连续的可逆函数, 其中 $A \subset \mathbf{R}^n, f(A) \subset \mathbf{R}^n$, 则 f 把 \mathbf{R}^n 中的开集 $K \subset A$ 映射成 \mathbf{R}^n 中的开集 f(K).

下面我们来证明多元反函数定理.

证明. 由于 $f: U' \to f(U')$ 可微, 因此连续, 且我们在定理 2 里表明了 $f: U' \to f(U')$ 可逆, 且 U' 是 \mathbf{R}^n 中的开集, 因此根据推论 2, f(U') 是 \mathbf{R}^n 中的开集. 令 U' = U, f(U') = V, 即可得到从 U 到 V 的双射 f. 至于 f^{-1} 的可微性, 只是寻常的验证, 此处从略, 读者可参看文献 [1].

参考文献

- [1] Terence Tao. 陶哲轩实分析 [M]. 王昆扬, 译. 北京: 人民邮电出版社,2008:376
- [2] Michael Spivak. 流形上的微积分 [M]. 齐民友, 路见可, 译. 北京: 人民邮电出版社,2006:11

A proof of the inverse function theorem

 ${\bf Luqing\ Ye}$ College of Science, Hangzhou Normal University, Hangzhou 310036, China

Abstract

By using the differential mean value theorem and a small perturbation does not affect the invertibility of an invertible matrix, we give a proof of the inverse function theorem.

Keywords:inverse function theorem;differential mean value theorem;invertible matrix