Project: Predictive Analytics Capstone

Task 1: Determine Store Formats for Existing Store

1. What is the optimal number of store formats? How did you arrive at that number?

K	-Means Cluster Assessmen	t Report	
Summary Statistics			
Adjusted Rand Indices:			
	2	3	4
Minimum	-0.010301	0.105996	0.1420
1st Quartile	0.110724	0.290955	0.29778
Median	0.428735	0.411022	0.409202
Mean	0.409553	0.440623	0.410116
3rd Quartile	0.714527	0.580392	0.51712
Maximum	1	0.85143	0.7173
Calinski-Harabasz Indices:			
	2	3	4
Minimum	9.056197	8.594103	11.10884
1st Quartile	17.485413	15.481045	14.09839
Median	19.901347	17.173811	14.87037
Mean	18.543358	16.554277	14.87413
3rd Quartile	20.917592	18.032112	15.87772
Maximum	21.992647	19.089004	16.77123

Based on the, Adjusted Rand and Calinski-Harabasz indices of the K-means Cluster Assessment

report, the optimal number of store formats is 3 since both indices have fairly high medians with small spreads (the interquartile range is compact).

2. How many stores fall into each store format?

Cluste	er Information:				
	Cluster	Size	Ave Distance	Max Distance	Separation
	1	23	2.320539	3.55145	1.874243
	2	29	2.540086	4.475132	2.118708
	3	33	2.115045	4.9262	1.702843

Cluster 1 has 23 stores, cluster 2 has 29 stores and cluster 3 has 33 stores.

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

Clus	ter Information:							
Cius		01		A DI I		M 51.1		0 !!
	Cluster	Size		Ave Distance		Max Distance		Separation
	1	23		2.320539		3.55145		1.874243
	2	29		2.540086		4.475132		2.118708
	3	33		2.115045		4.9262		1.702843
Sum	vergence after 12 iteration of within cluster distance	es: 196.83135.) I D - I D)	D. I'
PE	ercentage.Dry.Grocery	PE		ntage.Frozen.Food Per	rcentage.Meat i			-
1	0.327833		-0.761016	-0.389209	-0.086176	-0.509185	-0.301524	-0.23259
2	-0.730732		0.702609	0.345898	-0.485804	1.014507	0.851718	-0.554641
3	0.413669		-0.087039	-0.032704	0.48698	-0.53665	-0.538327	0.64952
	Percentage.Bakery Percentage.General.Merchandise							
1	-0.894261		1.208516					
2	0.396923		-0.304862					
3	0.274462		-0.574389					

While Cluster 2 has the highest average distance, which are less compact and might show more variability, Cluster 3 has the smallest average distance which are the most compact of the clusters. Cluster 1 has the highest total sales for General Merchandise in terms of percentage while Cluster 2 has the highest total sales for Produce.

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

https://public.tableau.com/profile/dolly.yu#!/vizhome/FinalProject 710/Map

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

Model Comparison Report

Fit and error measures					
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3
Decision Tree	0.7059	0.7685	0.7500	1.0000	0.5556
Forest_Model	0.8235	0.8426	0.7500	1.0000	0.7778
Boosted_Model	0.8235	0.8889	1.0000	1.0000	0.6667

Model: model names in the current comparison.

Accuracy: overall accuracy, number of correct predictions of all classes divided by total sample number.

Accuracy_[class name]: accuracy of Class [class name] is defined as the number of cases that are correctly predicted to be Class [class name] divided by the total number of cases that actually belong to Class [class name], this measure is also known as recall.

AUC: area under the ROC curve, only available for two-class classification.

F1: F1 score, 2 * precision * recall / (precision + recall). The precision measure is the percentage of actual members of a class that were predicted to be in that class divided by the total number of cases predicted to be in that class. In situations where there are three or more classes, average precision and average recall values across classes are used to calculate the F1 score.

Confusion matrix of Boosted_Model					
	Actual_1	Actual_2	Actual_3		
Predicted_1	4	0	1		
Predicted_2	0	4	2		
Predicted_3	0	0	6		

Confusion matrix of Decision Tree					
	Actual_1	Actual_2	Actual_3		
Predicted_1	3	0	2		
Predicted_2	0	4	2		
Predicted_3	1	0	5		

Confusion matrix of Forest_Model					
	Actual_1	Actual_2	Actual_3		
Predicted_1	3	0	1		
Predicted_2	0	4	1		
Predicted_3	1	0	7		

The model comparison report shows comparison between Decision Tree, Forest Model and Boosted Model. **Boosted Model** is chosen since it has the highest accuracy with a higher F1 value than the Forest Model.

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	3
S0087	2
S0088	1
S0089	2
S0090	2
S0091	1
S0092	2
S0093	1
S0094	2
S0095	2

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

Based on the time series decomposition plot above, ETS(M,N,M) with no dampening is chosen. For Error, we see the remainder plot fluctuating between large and small errors over time, so we apply multiplicatively (M). For Trend, there is no clear trend, so no trend component is included (N). For Seasonal, size of the seasonal fluctuations tends to increase with the level of time series, so we apply it multiplicatively (M).

Original time series plot without differencing

Seasonal difference

Seasonal first difference

For the ARIMA model, the model is set to calculate automatically and **ARIMA(1,0,0)(1,1,0)12** is used

Method: ARIMA(1,0,0)(1,1,0)[12]

Call:
auto.arima(Sum_Produce)

Coefficients:

ar1 sar1
Value 0.79852 -0.700441
Std Err 0.126448 0.140181

sigma^2 estimated as 1671079042075.49: log likelihood = -437.22224

Information Criteria:

AIC AICc BIC
880.4445 881.4445 884.4411

In-sample error measures:

 ME
 RMSE
 MAE
 MPE
 MAPE
 MASE
 ACF1

 -102530.8325034 1042209.8528363 738087.5530941 -0.5465069 3.3006311 0.4120218 -0.1854462

 Actual and Forecast Values:

Actual and Forecast Values:

Actual ETS
26338477.15 26907095.61191
23130626.6 22916903.07434
20774415.93 20342618.32222
20359980.58 19883092.31778
21936906.81 20479210.4317
20462899.3 21211420.14022

Actual ARIMA 26338477.15 27997835.63764 23130626.6 23946058.0173 20774415.93 21751347.87069 20359980.58 20352513.09377 21936906.81 20971835.10573 20462899.3 21609110.41054

Accuracy Measures:

odel ME RMSE MAE MPE MAPE MASE ETS 210494.4 760267.3 649540.8 1.0288 2.9678 0.3822 Model ME RMSE MAE MPE MAPE MASE ARIMA -604232.3 1050239 928412 -2.6156 4.0942 0.5463

Accuracy Measures:

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

Month	New Stores	Existing Stores
1	2587450.851495	21539936.007499
2	2477352.892393	20413770.60136
3	2913185.23625	24325953.097628
4	2775745.609767	22993466.348585
5	3150866.835326	26691951.419156
6	3188922.00336	26989964.010552
7	3214745.646251	26948630.764764
8	2866348.663392	24091579.349106
9	2538726.84886	20523492.408643
10	2488148.287462	20011748.6686
11	2595270.386448	21177435.485838
12	2573396.62905	20855799.10961

https://public.tableau.com/profile/dolly.yu#!/vizhome/FinalProjectTask3Forecast/Sheet1?publish=yes

Alteryx Workflow

Task 1: Store Format

Task 2: New Stores

Task 3: Forecasting

