伏安法测电阻

Aozhe Zhang 2313447

2024年5月27日

目录

1	实验目的							
2	2 实验仪器							
3	213577313	件和非线性元件	2					
		路的选取						
4	实验内容和步	ら 骤	3					
5	5 实验数据分析							
	5.1 数据呈	现	3					
	5.1.1	金属膜电阻实验数据	3					
	5.1.2	晶体二极管实验数据	4					
	5.1.3	参考值	4					
	5.2 数据处	理	5					
	5.2.1	金属膜	5					
	5.2.2	晶体二极管	5					
6	分析与讨论		5					
	6.1 欲测导	线电阻 (约 0.05Ω), 给定直流电流表 $(15{\rm mA}, 2.4\Omega)$, 甲电池, 滑线电阻 ((100					
	$\Omega, 1.5 A)$), 画出电路图并说明测量方法。	5					

1 实验目的

- 1. 学会设计用伏安法测电阻的实验电路。
- 2. 掌握各种电阻元件伏安特性曲线的测量方法。
- 3. 学会用作图法处理实验数据。

2 实验仪器

待测电阻 R_x (约 110 Ω),待测晶体二极管、直流电压表 (指针式电压表或台式数字万用表),直流电流表 (指针式电流表或手持数字万用表),滑动变阻器 (BX7-11),手持式万用表 (UT61B),直流稳压电源。

3 实验原理

3.1 线性元件和非线性元件

当一电阻元件两端加上不同的直流电压 U 时,元件内则有相应的电流 I 流过,以电流 I 为纵坐标,电压 U 为横坐标,作出 I-U 关系曲线,这便是该电阻元件的伏安特性曲线。通常情况下,导电金属丝、碳膜电阻、金属膜电阻等,其伏安特性曲线是一条通过原点的直线,如下左图所示。这类元件称为线性元件,其阻值是一个不随 I、U 变化的常数。对于像晶体二极管、热敏电阻等类元件,它们的伏安特性曲线不是一条直线,这类元件称为非线性元件,其阻值不是常数。如下右图所示为某一晶体二极管的伏安特性曲线。

图 1: 线性元件和二极管的伏安特性曲线

3.2 测量电路的选取

由于电流表的内阻已知,本次实验采用分压-电压表外接电路测定带测电阻的伏安特性曲线,如 图所示。

图 2: 分压电路

图 3: 电压表外接

这种由连接方法引入的误差通常称为方法误差,电压表外接的方法误差为

$$\rho_{\rm F} = \frac{{\rm R}_{\rm A}}{R_{\rm X}}$$

对结果进行修正

$$R_x = \frac{U}{I} - R_A$$

4 实验内容和步骤

1. 测量金属膜电阻的阻值

根据"仪器用具"栏目所给实物的参数,选择适当的电路,并画好电路图。在电表量程范围内,均匀地选测十组 U、I 数据,作 I-U 伏安特性曲线。如为直线,可在直线两端选两组 U、I 值,由直线斜率即可算出 Rr 值。要求修正掉方法误差,算出测量误差。

2. 测量晶体二极管的伏安特性曲线

晶体二极管由于其 PN 结具有单向导电性, 故正、反向电阻差异很大。小功率晶体二极管其正向电阻一般只有几十到几百欧姆, 而反向电阻则在几百千欧姆 (10Ω) 以上。选择适当电路, 测出十组 U、I 值, 作出伏安特性曲线。在 2.00 mA 和 8.00 mA 电流下, 分别算出电阻值 (即 U/I 值)。

5 实验数据分析

5.1 数据呈现

5.1.1 金属膜电阻实验数据

U (V)	0.0189	0.1202	0.1501	0.3581	0.4352	0.5068	0.5595	0.7594	0.8317	1.0284
I (mA)	0.16	1.05	1.3	3.13	3.77	4.39	4.85	6.57	7.22	8.95

图 4: I-U 图

5.1.2 晶体二极管实验数据

U(V)	0.3885	0.4658	0.4919	0.5295	0.5454	0.5657	0.5979	0.6552	0.7057
I(mA)	0.03	0.31	0.64	1.38	1.86	2.76	4.19	7.79	10.7

5.1.3 参考值

$$R_A = 2\Omega \quad R_V = 10^7 \Omega$$

5.2 数据处理

5.2.1 金属膜

选取拟合直线上较远的点(1.0284, 8.95),(0.1202, 1.05),注意要减去电流表的内阻,求得

$$R_x = 114.9620 - 2 = 112.9620\Omega$$

保留的数字还要根据绝对误差来确定,根据相对误差的公式

$$\rho_X = \sqrt{\rho_U^2 + \rho_I^2} = \sqrt{\left(\frac{\Delta U}{U_2 - U_1}\right)^2 + \left(\frac{\Delta I}{I_2 - I_1}\right)^2}$$

$$\Delta U = \pm (0.02\% U_x \pm 0.0004) = \pm (0.000206 \pm 0.0004)V$$

$$\Delta I = \pm (0.12\% I_x \pm 0.03) = \pm (0.01074 \pm 0.03)mA$$

取较大的 $\Delta U = 0.000606V$ 和 $\Delta I = 0.01374mA$, 得

$$\rho_X = 0.0017405$$

则绝对误差为

$$\Delta R = R_x \times \rho_X = 0.19\Omega$$

最终结果表示为

$$R_x = (112.96 \pm 0.19)\Omega$$

5.2.2 晶体二极管

在 2.0mA 下的阻值为

$$\frac{U_a}{I_a} \approx 275\Omega$$

在 8.0mA 下的阻值为

$$\frac{U_a}{I_a} \approx 82.5\Omega$$

6 分析与讨论

6.1 欲测导线电阻 (约 0.05Ω), 给定直流电流表 ($15mA,2.4\Omega$), 甲电池, 滑线电阻 ($100~\Omega,1.5A$), 画出电路图并说明测量方法。

先闭合Si,将看动爱阻器调节至适合的位置使 图表的示数适中。此时II示数。再断开Si,其余部分不动,此时I示数。再算得 Rx = IIRA - RA.