Stage■11 / Step■1 Experimental Protocol (Lab Sheet)

Warp → Detect → Denoise — first■pass validation once a dominant cognition well is established.

1) Objective

Confirm that the warped manifold exhibits a single dominant cognition well and that the Stage \blacksquare 11 pipeline (Warp \rightarrow Detect \rightarrow Denoise) improves precision while keeping recall \approx 1.0 on a small, representative slice.

2) Prerequisites

- 1 Calibration set available for the target domain (≈100–5,000 prompts/items).
- 2 Tap layer chosen (mid∎late block, e.g., L-3..L-1).
- 3 Warp fit computed: PCA(3)+whitener and funnel profile (depth φ and slope g).
- 4 Benchmark script ready (consolidated Stage■11 runner).

3) Required Assets

Asset	Example / Notes		
Script	stage11-benchmark-consolidated-latest.py		
Specs	stage11_doctrine.pdf, stage11_math.pdf (for thresholds/knobs)		
Data	Calibration prompts/items + small evaluation slice (50–200).		
Outputs	Well renders, phantom index, margin, run JSON/CSV logs.		

4) Setup Checklist (tick as you go)

- [] Calibration set identified and loaded.
- [] Tap layer fixed (record layer index).
- [] PCA(3) + whitener fitted; funnel $\phi(r\blacksquare)$, $g(r\blacksquare)$ computed; plots rendered.
- [] Null calibration settings chosen (e.g., # of circular shifts K).
- [] Logging paths set for JSON/CSV + renders.

5) Tap Scan (optional but recommended)

If the dominant well is uncertain, scan 4–6 late layers. For each layer: fit PCA/whitener, render the well, compute Phantom Index (PI) and Margin (Δ). Choose the layer with the lowest PI and highest Δ .

6) Warp Verification (shadow run, no interventions)

- 1 Run with Warp enabled only; collect radius trace r

 (t) and well score S(t).
- 2 Expect r**■**(t) to trend \downarrow (few rebounds) and median S(t) \geq 0.6 over reasoning spans.
- 3 Record Phantom Index (PI) ≤ 0.07 and Margin $\Delta \geq 0.04$ as Go criteria (tune if borderline).

7) Step■1 Procedure

- 1 A. Detect enable Stage 10 parser with null calibrated dual thresholds; run on the evaluation slice; log precision/recall.
- 2 B. Denoise enable EMA+median smoothing, confidence gate, phantom■guard probes, and jitter averaging; rerun the slice.
- 3 C. (Optional) Light Touch Rescoring if S(t) is stable, set small α (\leq 0.5) with top K lookahead (K \leq 16); ensure phantom guard is active.

Example Commands (adapt to your CLI)

Shadow (Warp only):

```
python3 stage11-benchmark-consolidated-latest.py --mode shadow --tap L-3 --calib
calib.jsonl --eval eval_small.jsonl --render_well 1 --out_json run_shadow.json
```

Detect:

python3 stage11-benchmark-consolidated-latest.py --mode detect --null_shifts 64 --rel_gate
0.6 --abs_z 3.0 --out_json run_detect.json

Denoise:

```
python3 stage11-benchmark-consolidated-latest.py --mode denoise --ema 0.85 --med_k 3
--phantom_guard 1 --jitters 2 --out_json run_denoise.json
```

8) Pass/Fail Gates

Metric	Pass (Proceed)	Borderline (Tune)	Fail (Re∎warp)
Phantom Index (PI)	≤ 0.07	0.07-0.10	> 0.10
Margin ∆	≥ 0.04	0.02-0.04	< 0.02
Recall	≥ 0.98	0.95-0.98	< 0.95
Precision	≥ 0.80 (or ↑ vs baseline)	0.70-0.80	< 0.70
Hallucination	≤ 0.26 and trending ↓	0.26-0.35	> 0.35
Abstain rate	Stable (no runaway)	Slight ↑	Runaway ↑

9) Troubleshooting

- 1 Tap selection: rescan L-5..L-1; pick the lowest PI / highest Δ .
- 2 Warp shape: increase core deepening; re■isotropize the XY plane; refit funnel quantiles.
- 3 Nulls: raise absolute z**■**gate; increase circular shifts; apply FDR control.
- 4 Denoiser: reduce EMA decay or median window if oversmoothing; adjust confidence gate.
- 5 Rescoring: lower α or disable rescoring until S(t) is consistently high.

Run Record — fill for each Step■1 session

Field	Value	Field	Value
Model		Tap Layer	
Calibration Set (N)		Eval Slice (N)	
PI		Margin ∆	
Recall		Precision	
Hallucination		Abstain Rate	
Median S(t)		r ≡ (t) Trend	
Notes			