

Preliminary Design Review

EASE

Electrodynamic Dust Shielding Activated Surface Emitter

INTRODUCTION **ROADMAP**

INTRODUCTION

- Meet the Team
- Competition Overview
- Competition Constraints
- Lunar Dust
- Problem Statement

CONCEPT OVERVIEW

- Quad Chart
- Concept of Operations
- Requirements
- Design Assumptions

MECHATRONICS

- Design Heritage
- How it Works
- Forces Involved
- Layout & Phasing • Controls & Modes
- Circuit Diagram
- Power Requirements

VERIFICATION & VALIDATION

• Testing Program

MISSION INTEGRATION

Risk Assessment

MECHANICAL

- Design Overview
- Trade Study
- Dimensions
- Features
- Panel Composition
- Material Justification
- Material Selection
- Manufacturing

LOGISTICS

- Schedule
- Budget

CONCLUSION

- Feasibility Review
- Supplementary Material
- Quad Chart
- FEA Analysis

INTRODUCTION MEET THE TEAM

Leadership

Branch Lead Luis Pabon MCE & Aero, '22 Houston, TX

Project Lead Malcolm Tisdale MCE & CDS, '22 Los Angeles, CA

Ops. Lead Isabella Dula MCE, '22 Los Angeles, CA

Advisor Dr. Soon-Jo Chung

Mechanical

Lead Polina Verkhovodova MCE & Pl, '22 Pasadena, CA

Lead Leah Soldner MCE & Aero, '24 S Pasadena, CA

Tanmay Gupta MCE , '24 Ph / Astro Kuala Lumpur, Malaysia

Nathan Ng MCE , '24 Santa Clara, CA

Mechatronics

Lead Isabella Dula

Athena Kolli MCE & Aero, '24 Buffalo Grove,

Kemal Pulungan MCE , '24 Troy, NY

Jules Penot MCE & Aero , '24 Valbonne, France

Mission Integration

Lead Calle Junker MCE, '23 Aztec, NM

Kaila Coimbra MCE & Aero , '23 San Diego,

Rithvik Musuku MCE , '24 Gilbert, AZ

Parul Singh MCE , '24 Tallahasee, FL

INTRODUCTION COMPETITION OVERVIEW

Artemis Missions – Feet on the moon by 2024 & sustainable missions by 2028. NASA BIG Idea Challenge Finalists implemented 2026

- University teams of 5 25 students
- Teams submit proposals (Dec 13th 2020) for funding to develop concepts for technical paper and BIG Idea Forum (Nov 15th 2021)
- Awards from \$50,000 \$180,00

Landing Dust
Prevention &
Mitigation - to preclude
or protect from plume/surface
interactions which may result
in damaged landers and
nearby surface assets

Spacesuit Dust
Tolerance &
Mitigation - to limit
dust adherence to spacesuits
and other damaging effects to
its subsystems

Exterior Dust
Prevention,
Tolerance, &
Mitigation - to protect
lunar surface systems or
preclude dust from entering
habitats and landers

Cabin Dust
Tolerance &
Mitigation - to clean
habitable volumes and their
interior surfaces, which helps
prevent dust from making it
back to Gateway and Orion
when the lander returns to
lunar orbit from the surface

INTRODUCTION **COMPETITION CONSTRAINTS**

Constraints

- Able to manage or mitigate lunar dust (~0.5-100 µm)
- Minimal barrier to NASA adoption
 - Cost, power, mass, size ...
- Minimum Technological Readiness Level 4 (->5)
- Lifespan of 15 30 years
- Removes dust "in minutes"
- Lunar environmental conditions
 - South pole temperatures between -232C and -49C
 - Permanently shadowed craters as low as -243C

Lunar Dust Particle

Gene Cernan covered in lunar dust

Considerations

- Aiming for 2026 deployment in lunar missions
- Simplicity of operation and maintenance
- Deployment method from NASA or commercial surface lander
- Effective packaging for launch and Moon landing
- Credible fabrication and material selection

INTRODUCTION LUNAR DUST

Dust Properties

PROPERTY	VALUE	UNITS
Size range	4 to 500	[nm] - [µm]
Volume fraction	< 0.2	%
Relative permittivity	3 - 4	
Relative permeability	~ 1	
Specific gravity	~ 3	[g * cm^-3]
Charge	10^-11 to 10^-13	[C/kg]

Issues Posed

- Vision obscuration
- False instrument readings
- Dust coating and contamination
- Seal failures
- Abrasion of materials
- Inhalation and irritation risks
- Loss of foot traction

- Charged through solar emissions

- Trace magnetic elements
- 90% Silicate/Aluminosilicate minerals by volume
- Highly irregular and **sharp**
- Charge density increases with particle size

Size Distribution of Particles

INTRODUCTION PROBLEM STATEMENT

- Problems Caused By Spacesuit Dust Ingress Into Habitable Volumes
 - Increased loads on in-cabin dust mitigation technologies
 - Incorrect readings during in-cabin experiments
 - Performance reduction and possible failure of in-cabin equipment
 - Astronaut health risks
 - Dust brought to Gateway and Orion when lander returns to lunar orbit
- Existing Solutions

FIGURE 3-1. SIMULANT DUST REMOVAL WITH NASA KENNEDY SPACE CENTER'S EDS AT 10-6 KPA (CALLE ET AL. ACTA ASTRONAUT. 69, 2011: 1082-1088).

FIGURE 3-4. WASEDA UNIVERSITY'S MAGNETIC CLEANING DEVICE (KAWAMOTO, H. AND H. INOUE, J. AEROSP. ENG. 2012, 25: 139-142).

CONCEPT OVERVIEW QUAD CHART

Objective:

- Minimize dust ingress into lunar habitat module on astronaut boots
- Increases traction of astronaut boots
- EASE is portable, durable, low SWaPs device
- Clears lunar dust from astronaut boots in < 30 sec and self cleaning
- Increases the state-of-the-art:
 - Largest, most compact, and durable implementation of electrodynamic shielding technology
- Develop and validate to TRL 5

Approach:

Leverages 50-year-old dust mitigation technology currently being tested on ISS

- 3-Phase traveling square wave pushes dust particles off astronaut boots and EASE
- Touch-free operation using strain gauges in the mat
- Extensive validation and verification program though

Mass Estimate: < 4 kg Power Estimate: 50 W max

Key Milestones:

Description	TRL	Deadline
Preliminary Design Review	2	11/18/20
Proposal	2	12/13/20
Functional Prototype	3	4/1/21
Midpoint Report	4	5/20/21
Technical Paper & Verification Demonstration	5	10/27/21

CONCEPT OVERVIEW **CONCEPT OF OPERATIONS**

Astronaut should ensure the surface is relatively flat and cleared DA 1.0

Astronaut lays out E.A.S.E in front of the lunar habitat and connects it to power source DA 2.0

Astronaut leaves. E.A.S.E waits for another astronaut for two minutes, after which it selfcleans for several minutes, removing the dust from its surface by pushing it off its right edge, before entering standby mode until the pressure sensor is activated again.

FR 2.0, 4.0, 5.0

After moonwalk and sample collection, astronaut returns to stand on E.A.S.E, which senses the weight and begins attracting dust off the astronauts' boots and moving it to the center and the left and right edges **DA 5.0, FR 1.0**

CONCEPT OVERVIEW REQUIREMENTS

Functional Requirements	Description
FR 1.0	Remove at least 50% of dust from astronaut boots within 30 seconds
FR 2.0	Self-cleaning after astronaut departure
FR 3.0	Minimum 15-year lifetime on lunar surface
FR 4.0	Capable of enduring forces involved in launch and landing
FR 5.0	Capable of withstanding 400N load applied to surface
FR 6.0	Capable of enduring repeated impacts without loss in performance

CONCEPT OVERVIEW DESIGN ASSUMPTIONS

Design Assumption	Description
DA 1.0	EASE placed on 1 m x 1 m cleared and leveled area
DA 2.0	28 V DC power supplied by lunar habitats and landers
DA 3.0	Lunar regolith compresses under load of mat and astronaut
DA 4.0	Disregard off nominal solar activity
DA 5.0	No more than one astronaut at a time maximum load

EDS OVERVIEW DESIGN HERITAGE

Electrodynamic Dust Shielding

- Parent technology developed in 1970s
- Lifts and transports charged and uncharged particles using **electrostatic** and **dielectrophoretic** forces
- Works best for particle size regimes of $5-300~\mu m$ (encompasses size regime for lunar dust particles)
- Technology currently being used in:
 - Solar panel maintenance (dust removal efficiency of 90%)
 - Tested in mock lunar environments
 - In-Situ Experiments on ISS on thermal radiators and solar panels
 - Ongoing; showed that EDS works in vacuum
 - Solar panel effectiveness **22.5**%→**98.4**% after EDS implementation with lunar simulant

Demonstration of EDS on a glass plate; particle size < 20 μ m; time to clear ~30s (Guo, 2018)

EDS
System
mounted
on sim.
Lunar
habitat

dust particle

EDS OVERVIEW **HOW IT WORKS**

• Fringing electric field exerts force on charged dust particles

 3 phased EDS Systems transport dust particles

MECHATRONICS FORCES INVOLVED

Variables:

E = electric field strength

q = particle charge

 ε_m = dielectric permittivity of medium

 ε_o = dielectric permittivity of vacuum

R = particle diameter

 γ = surface energy of adhering surface

Forces exerted by EDS:

FE: Electrostatic force

$$F_E = qE$$

FD: Dielectrophoretic force

$$F_D = 2\pi\varepsilon_o \frac{\varepsilon_m - 1}{\varepsilon_m + 2} R^3 \nabla E^2$$

Forces adhering particles to astronaut:

FE + FD

V : Van der Waals force

$$V = 4\pi R \gamma$$

S : Image-charge static force

$$S = \frac{q}{4\varepsilon_0 (2R)^2}$$

Feasible by analysis and prior implementations

Electr.

Box

MECHATRONICS LAYOUT & PHASING

- Electronics box made of aluminum and Multi-Layer Insulation (MLI) to protect against thermal and radiative environment
- Kapton dielectric rated for -268°C to 399°C

Note: not to scale

DA 4.0

MECHATRONICS CONTROLS & MODES

Operational Modes

Standby Mode: awaiting use,

sensors are active

Astronaut Mode: capacitors are

charged, suit is cleaned

Maintenance Mode: dust is

removed from mat itself

FR 2.0

Note: not to scale

MECHATRONICS CIRCUIT DIAGRAM

Sensors and components to be selected/designed from existing NASA satellite and spacecraft payloads.

MECHATRONICS POWER & PERFORMANCE

Estimates based on finite difference electrostatic simulation

- Obtained mesh grid of electric field strength given electrode lay-out and voltage supply
- Determined electromagnetic field strength necessary to overcome adhesive and coulombic forces for particle sized 50 µm

Operational Mode	Time Estimate	Input Voltage (DC)	Power Requirements (W)
ASTRONAUT	<30 s / astronaut*	28 V	50 W
MAINTENANCE	120 s	28 V	25 W
STANDBY	VARIABLE	28 V	<100 mW

Electric Field Performance	Height
Maximum Effective range	0.5 m
"Deep Clean" Coverage	< 3 cm

FR 1.0, 2.0

Feasible by analysis and prior

implementations

Current estimates predict EASE will have low power requirements

^{*} Time estimate based on time efficacy of current EDS systems, will be verified during prototyping.

MECHANICAL DESIGN OVERVIEW

FR 3.0 - 5.0

Objectives:

- Strong enough to sustain weight
- Easy to transport and use
- Large enough size to comfortably use
- Optimized for weight and volume
- Electronics are secured and protected
- Cost-effective solution
- Protected from the harsh lunar environment
- Use for 15-30 years.

MECHANICAL TRADE STUDY

Metric	Weight	Single Panel	Single Fold Accordion
Use with EDS	10	9	5
Robustness	30	25	20
Weight and Volume	20	20	12
Storage, transportation, deployment	20	20	12
Life Cycle	20	20	16
Total	100	94	65

MECHANICAL DIMENSIONS

Note: Dimensions in centimeters

MECHANICAL DIMENSIONS

MECHANICAL FEATURES

Spikes for security

DA 3.0

EDS System

MECHANICAL ELECTRONICS BOX

Electronics Box:

- Aluminum 2219 for housing
- Multilayered insulation

These materials are commonly used in space applications.

Properties	Aluminum 2219
Density	2.84 g/cm^3
Tensile Strength	290 MPa
Temperature Range	-250 to 315 (°C)
Coefficient of Thermal Expansion	22.3 to 24.1 (10 ⁻⁶ /°C)

MECHANICAL PANEL COMPOSITION

Total mass estimate: 4 kg

	Alumina Ceramic (structure)	316 Stainless Steel (Bolt)	Kapton (dielectric)
Density	3.9 (g/cm ³)	8.0 (g/cm ³)	1.41 (g/cm ³)
Tensile Strength	260 (MPa)	482 (MPa)	230 (MPa)
Flexural Strength	379 (MPa)	290 (MPa)	120 (MPa)
Compressive Strength	2,600 (MPa)	170 (MPa)	172 (MPa)
Coefficient of Thermal Expansion	8.6 (10 ⁻⁶ /°C)	10.3 (10 ⁻⁶ /°C)	8.1 (10 ⁻⁵ /°C)
Dielectric Constant	9.1 (at 1 MHz)	-	5.42 (at MHz)
Dielectric Strength	16.7 (kV/mm)	-	217 (kV/mm)
Temperature Range	-273.15°C to 1,750°C	-252°C to 871°C	-267°C to 398°C

Note: we will use Cicoil wires

	Alumina Ceramic (structure)	316 Stainless Steel (Bolt)	Kapton (dielectric)
Density	3.9 (g/cm ³)	8.0 (g/cm ³)	1.41 (g/cm ³)
Tensile Strength	260 (MPa)	482 (MPa)	230 (MPa)
Flexural Strength	379 (MPa)	290 (MPa)	120 (MPa)
Compressive Strength	2,600 (MPa)	170 (MPa)	172 (MPa)
Coefficient of Thermal Expansion	8.6 (10 ⁻⁶ /°C)	10.3 (10 ⁻⁶ /°C)	8.1 (10 ⁻⁵ /°C)
Dielectric Constant	9.1 (at 1 MHz)	-	5.42 (at MHz)
Dielectric Strength	16.7 (kV/mm)	-	217 (kV/mm)
Temperature Range	-273.15°C to 1,750°C	-252°C to 871°C	-267°C to 398°C

Note: we will use Cicoil wires

	Alumina Ceramic (structure)	316 Stainless Steel (Bolt)	Kapton (dielectric)
Density	3.9 (g/cm ³)	8.0 (g/cm ³)	1.41 (g/cm ³)
Tensile Strength	260 (MPa)	482 (MPa)	230 (MPa)
Flexural Strength	379 (MPa)	290 (MPa)	120 (MPa)
Compressive Strength	2,600 (MPa)	170 (MPa)	172 (MPa)
Coefficient of Thermal Expansion	8.6 (10 ⁻⁶ /°C)	10.3 (10 ⁻⁶ /°C)	8.1 (10 ⁻⁵ /°C)
Dielectric Constant	9.1 (at 1 MHz)	-	5.42 (at MHz)
Dielectric Strength	16.7 (kV/mm)	-	217 (kV/mm)
Temperature Range	-273.15°C to 1,750°C	-252°C to 871°C	-267°C to 398°C

Note: we will use Cicoil wires

	Alumina Ceramic (structure)	316 Stainless Steel (Bolt)	Kapton (dielectric)
Density	3.9 (g/cm ³)	8.0 (g/cm ³)	1.41 (g/cm ³)
Tensile Strength	260 (MPa)	482 (MPa)	230 (MPa)
Flexural Strength	379 (MPa)	290 (MPa)	120 (MPa)
Compressive Strength	2,600 (MPa)	170 (MPa)	172 (MPa)
Coefficient of Thermal Expansion	8.6 (10 ⁻⁶ /°C)	10.3 (10 ⁻⁶ /°C)	8.1 (10 ⁻⁵ /°C)
Dielectric Constant	9.1 (at 1 MHz)	-	5.42 (at MHz)
Dielectric Strength	16.7 (kV/mm)	-	217 (kV/mm)
Temperature Range	-273.15°C to 1,750°C	-252°C to 871°C	-267°C to 398°C

Note: we will use Cicoil wires

DA 5.0 FR 3.0 - 5.0

MECHANICAL MATERIAL JUSTIFICATION

Alumina	Kapton
Electrical insulator	Stability across wide temperature range
Low dielectric constant	Durability
Low thermal conductivity	Good dielectric qualities
Hardness	Used in spacecraft applications (Apollo launcher, Curiosity rover)
Strength	
Sufficient temperature range	
Abrasion resistant	
Used in many spacecraft applications	

FR 3.0 - 5.0

MECHANICAL MANUFACTURING

Top Plate:

- 3-axis CNC milling
- Bottom Plate:
- 3-axis CNC milling
- Electronics Box:
- 3-axis CNC milling
- Design considerations: 0.5 mm tolerance, large external and internal fillets

MISSION INTEGRATION RISK ASSESSMENT

AIAA Caltech Student Branch - 11/18/20 EASE Preliminary Design Review

RISK MITIGATION STRATEGIES:

- Impact of radiation and cold temp on electronics:
 - The likelihood of single particle upsets is very low
 - MLI (multi-layered insulation) should protect the electronics from cold temperatures
- EDS field not strong enough to clean all the way up the boots
 - EDS geometry and electronics are easily altered to increase the field strength
- Abrasion of surface, materials or electrodes due to long-term use
 - Ceramic has high abrasion resistance

	Negligible	Minor	Moderate	Significant	Severe
Very Likely					
Toty Entry			-Abrasion of surface, materials, or electrodes due to long- term use -Wear on bottom of EASE		
Likely		-Dust penetration between layers -Materials expand at different rates due to difference in thermal expansion constants		-EDS field not strong enough to clean all the way up the boots	-Concentrated force application onto E.A.S. E by rocks, etc on surface of moon
Unlikely		-Impact of radiation and cold temperatures on panel materials -Difficulty in manufacturing ceramics	-Moves out of correct positon - Impact of EDS system on suit electronics -Kapton does not withstand full range of lunar temperatures	-Impact of radiation and cold temperatures on electronics	
Very Unlikely					

MISSION INTEGRATION RISK ASSESSMENT

AIAA Caltech Student Branch - 11/18/20 EASE Preliminary Design Review

RISK MITIGATION STRATEGIES CONT'D:

- Dust penetration between layers
 - Kapton is being compressed between two ceramic panels and acts as a gasket
- Concentrated force application onto EASE by rocks on the surface of the moon
 - Not a problem if astronauts clear the area
- Wear on bottom of EASE, as well as moving out of position:
 - The spikes on the bottom of EASE secure it to the surface, limiting slipping and abrasion by loose particles underneath it

	Negligible	Minor	Moderate	Significant	Severe
Very Likely					
			-Abrasion of surface, materials, or electrodes due to long- term use -Wear on bottom of EASE		
Likely		-Dust penetration between layers -Materials expand at different rates due to difference in thermal expansion constants		-EDS field not strong enough to clean all the way up the boots	-Concentrated force application onto E.A.S. E by rocks, etc on surface of moon
Unlikely		-Impact of radiation and cold temperatures on panel materials -Difficulty in manufacturing ceramics	-Moves out of correct positon - Impact of EDS system on suit electronics -Kapton does not withstand full range of lunar temperatures	-Impact of radiation and cold temperatures on electronics	
Very Unlikely					

TEST PROGRAM

VERIFICATION

Operational Test^*†

Goal: Validate to TRL4

Implement safety factor of 1.2 - 1.5

Abrasion Test*!

Simulated Abrasion Test*

Dust Exposure Test

Vibration Test for Deployment †

EMI Test for EDS System^*†

Electronic Life Test for 45 years^*

Miscellaneous

Mechanical Load Tests

Key:

^ Under vacuum conditions

* Under thermal conditions

! Destructive test

† Full prototype needed

Maximum Load Test*!

600 N Pulsating Fatigue Test*!

Sharp Impact Test Simulating Micrometeorites*!

DA 5.0

Equipment and Testing Conditions

Three-Body Abrasive Wear Test Rig

- We will use NTS for thermal vacuum chamber testing
- Lunar Simulant JSC-1A will be used for EDSrelated testing
- Lunar Simulants OB-1 and Chenobi are the most recommended simulants for abrasion and dust exposure testing
- We will test from -260°C to 140°C to simulate lunar thermal conditions

LOGISTICS **SCHEDULE**

Phase	Details	December	January	February	March	April	May	June	July	August	September	October	November
Proposal	Writing	TRL 2											
Preparation	Supplier and facility acquisition												
	Subsystem prototypes												
	Full functional prototype												
	Testing prototypes												
Prototyping	Final prototype												
Mid-Project Report	Writing						TRL 3						
	Mechanical load tests												
	Operational Tests								TRL 4				
Verification	Lifetime Test											TRL 5	
Technical Paper	Writing												

Category	Constituents	Subtotal
Prototyping	Materials (for multiple prototypes)	\$5,000.00
	Electronics ("")	\$5,000.00
	Final device	\$5,000.00
Manufacturing	Services	\$4,000.00
Testing	Dust simulant	\$1,000.00
	Vacuum & cryo chamber rental	\$10,000.00
	Abrasion Testing	\$1,500.00
Labour	Graduate Students	\$20,000.00
	Total	\$51,500.00

Raw Material Costs Est.

- 4 prototypes without EDS System
- 1 complete prototype
 - Costs will increase if a need for iteration arises

Cost Breakdown

- Materials (for multiple prototypes) Electronics ("")
- Final device
- Services

Dust simulant

■ Vacuum & cryo chamber rental

Abrasion Testing

Graduate Students

Function / Characteristic	Solution	Feasible?
Transport dust	EDS	YES
Touch-free operation	Strain Gauge	YES
Rugged housing	Ceramic	YES

Thank you for listening!

We appreciate any feedback through:

- Email
- Feedback form
- Q&A

Points of Contact:

Branch Lead Luis Pabon Ipabonma@caltech.edu

Project Lead Malcolm Tisdale mtisdale@caltech.edu

Ops. Lead Isabella Dula imdula@caltech.edu

Advisor Dr. Soon-Jo Chung sjchung@caltech.edu

CONCEPT OVERVIEW QUAD CHART

·

Objective:

- Minimize dust ingress into lunar habitat module on astronaut boots
- Increases traction of astronaut boots
- EASE is portable, durable, low SWaPs device
- Clears lunar dust from astronaut boots in < 30 sec and self cleaning
- Increases the state-of-the-art:
 - Largest, most compact, and durable implementation of electrodynamic shielding technology
- Develop and validate to TRL 5

Approach:

Leverages 50-year-old dust mitigation technology currently being tested on ISS

- 3-Phase traveling square wave pushes dust particles off astronaut boots and EASE
- Touch-free operation using strain gauges in mat
- Extensive validation and verification program though

Mass Estimate: < 4 kg Power Estimate: 50 W max

Key Milestones:

Description	TRL	Deadline
Preliminary Design Review	2	11/18/20
Proposal	3	12/13/20
Functional Prototype	3	4/1/21
Midpoint Report	4	5/20/21
Technical Paper & Verification Demonstration	5	10/27/21

FEA ANALYSIS

Name: Alumina

Model type: Linear Elastic Isotropic
Default failure Mohr-Coulomb Stress

criterion:

Tensile strength: 2.17185e+07 N/m^2 Compressive 2.99922e+07 N/m^2

strength:

Elastic modulus: 3e+11 N/m^2

Poisson's ratio: 0.22

Mass density: 2,075.99 kg/m^3 Thermal expansion 7.02e-06 /Kelvin

coefficient:

Load name	oad name Load Image	Load Details		
Force-1		Entities: Type: Value:	Apply normal force	
Gravity-1			Face< 1 > 0 0-9.81 m/s^2	

Maximum Displacement: 0.0597 mm

LOAD VALIDATION FEA ANALYSIS

Name: Alumina

Model type: Linear Elastic Isotropic

Default failure Mohr-Coulomb Stress

criterion:

Tensile strength: 2.17185e+07 N/m^2 Compressive 2.99922e+07 N/m^2

strength:

Elastic modulus: 3e+11 N/m^2

Poisson's ratio: 0.22

Mass density: 2,075.99 kg/m^3 Thermal expansion 7.02e-06 /Kelvin

coefficient:

Load name	ad name Load Image	Load Details		
Force-1		Entities: Type: Value:	Apply normal force	
Gravity-1			Face< 1 > 0 0-9.81 m/s^2	

Minimum FOS: 2.67 (Load includes a 1.5 FOS already, so there is room for mass reduction)