Question 1(a) [3 marks]

Define Microprocessor and draw its block diagram.

Answer:

A **microprocessor** is a programmable digital device that performs arithmetic and logical operations on data according to stored instructions.

Block Diagram:

- CPU: Central Processing Unit performs all operations
- Memory: Stores programs and data
- Control Unit: Controls instruction execution sequence

Mnemonic: "My Computer Processes Instructions" (Memory-CPU-Program-Instructions)

Question 1(b) [4 marks]

Explain operand and opcode with proper instruction example.

Answer:

Opcode specifies the operation to be performed. **Operand** specifies the data on which operation is performed.

Example Table:

Instruction	Opcode	Operand	Function
MOV A,B	MOV	A,B	Move B to A
ADD A,#05H	ADD	A,#05H	Add 05H to A

• **Opcode**: Operation code (MOV, ADD, SUB)

• **Operand**: Data or address (A, B, #05H)

• **Format**: Opcode + Operand = Complete Instruction

Mnemonic: "Operation On Data" (Opcode-Operand-Data)

Question 1(c) [7 marks]

Compare Microprocessor and Microcontroller.

Answer:

Parameter	Microprocessor	Microcontroller
Definition	CPU only	CPU + Memory + I/O
Memory	External RAM/ROM	Internal RAM/ROM
I/O Ports	External interface	Built-in ports
Cost	Higher system cost	Lower system cost
Power	Higher consumption	Lower consumption
Speed	Faster processing	Moderate speed
Applications	Computers, laptops	Washing machine, microwave

• Microprocessor: General purpose computing

• Microcontroller: Specific embedded applications

• Integration: Microcontroller has everything on single chip

Mnemonic: "Micro Means More Integration" (Microcontroller-Memory-More-Integration)

Question 1(c OR) [7 marks]

Compare RISC and CISC.

Answer:

Parameter	RISC	CISC
Instructions	Simple, few	Complex, many
Instruction Size	Fixed length	Variable length
Execution Time	Single cycle	Multiple cycles
Memory Access	Load/Store only	Any instruction
Registers	More registers	Fewer registers
Pipeline	Efficient pipelining	Complex pipelining
Examples	ARM, MIPS	x86, 8085

• RISC: Reduced Instruction Set Computer

• CISC: Complex Instruction Set Computer

• Performance: RISC faster, CISC more flexible

Mnemonic: "Reduced Instructions Speed Computing" (RISC-Instructions-Speed-Computing)

Question 2(a) [3 marks]

Explain Bus Organization of 8085 microprocessor.

Answer:

8085 has **three types** of buses for communication with external devices.

Bus Organization Table:

Bus Type	Lines	Function
Address Bus	16 lines (A0-A15)	Memory addressing
Data Bus	8 lines (D0-D7)	Data transfer
Control Bus	Multiple lines	Control signals

• Address Bus: Unidirectional, 64KB memory addressing

• Data Bus: Bidirectional, 8-bit data transfer

• Control Bus: Read, Write, IO/M signals

Mnemonic: "Address Data Control" (ADC)

Question 2(b) [4 marks]

Explain function of ALE signal with diagram.

Answer:

ALE (Address Latch Enable) separates address and data on multiplexed bus.

ALE Timing Diagram:

- **High ALE**: Address is available on AD0-AD7
- Low ALE: Data is available on AD0-AD7
- Function: Latches lower address byte
- **Frequency**: ALE = Clock frequency ÷ 2

Mnemonic: "Address Latch Enable" (ALE)

Question 2(c) [7 marks]

Describe architecture of 8085 microprocessor with the help of neat diagram.

Answer:

Key Components:

- **ALU**: Performs arithmetic and logical operations
- Registers: Store temporary data (A, B, C, D, E, H, L)
- Program Counter: Points to next instruction
- Stack Pointer: Points to stack top
- Control Unit: Generates control signals

Mnemonic: "All Registers Program Stack Control" (A-R-P-S-C)

Question 2(a OR) [3 marks]

Draw Flag Register of 8085 microprocessor & explain it.

Answer:

Flag Register Format:

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+
| S | Z | 0 | AC | 0 | P | 1 | C |
+---+---+---+---+
```

Flag Functions:

• **S (Sign)**: Set if result is negative

• **Z (Zero)**: Set if result is zero

• AC (Auxiliary Carry): Set for BCD operations

• P (Parity): Set for even parity

• C (Carry): Set when carry/borrow occurs

Mnemonic: "Some Zero Auxiliary Parity Carry" (SZAPC)

Question 2(b OR) [4 marks]

Explain De-multiplexing of Address and Data buses for 8085 Microprocessor.

Answer:

De-multiplexing separates address and data signals from AD0-AD7 lines.

De-multiplexing Circuit:

- ALE High: Address latched in external latch
- ALE Low: Data flows through buffer
- 74LS373: Common latch IC used
- Benefit: Separate address and data buses

Mnemonic: "Address Latch External Demultiplex" (ALED)

Question 2(c OR) [7 marks]

Describe Pin diagram of 8085 microprocessor with the help of neat diagram.

Answer:

DECEM	2	20	III Dă
RESET			HLDA
SOD		37 -	CLK
SID	5	36	RESET
TRAP	6	35	READY
RST7.5	7	34	IO/M
RST6.5	8	33	S1
RST5.5	9	32	RD
INTR	10	31	WR
INTA	11	30	ALE
AD0	12	29	S0
AD1	13	28	A15
AD2	14	27	A14
AD3	15	26	A13
AD4	16	25	A12
AD5	17	24	A11
AD6	18	23	A10
AD7	19	22	A9
	20	21 .	A8

Pin Categories:

• Power: VCC, VSS

• Clock: X1, X2, CLK

• Address/Data: AD0-AD7, A8-A15

• Control: ALE, RD, WR, IO/M

• Interrupt: INTR, INTA, RST7.5, RST6.5, RST5.5, TRAP

Mnemonic: "Power Clock Address Control Interrupt" (PCACI)

Question 3(a) [3 marks]

Write a function of DPTR and PC.

Answer:

Functions Table:

Register	Function	Size
DPTR	Data Pointer	16-bit
PC	Program Counter	16-bit

DPTR Functions:

- External Memory: Access external data memory
- Addressing: 16-bit address for MOVX instructions

PC Functions:

- Instruction Pointer: Points to next instruction
- Auto Increment: Increments after each instruction fetch

Mnemonic: "Data Program Counter" (DPC)

Question 3(b) [4 marks]

Draw PCON SFR of 8051and Explain function of each bit.

Answer:

PCON Register (87H):

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+---+
|SMOD| - | - | - |GF1|GF0|PD |IDL|
+---+---+---+---+---+
```

Bit Functions:

- **SMOD**: Serial port baud rate doubler
- **GF1, GF0**: General purpose flags
- **PD**: Power Down mode control
- IDL: Idle mode control

Power Management:

- IDL = 1: CPU stops, peripherals run
- PD = 1: Complete power down

Mnemonic: "Serial General Power Idle" (SGPI)

Question 3(c) [7 marks]

Explain architecture of 8051 microcontroller with the help of neat diagram.

Answer:

Major Blocks:

• CPU: 8-bit processor with ALU

• Memory: 4KB ROM, 128B RAM

• Timers: Two 16-bit timers

• Serial Port: Full duplex UART

• I/O Ports: Four 8-bit ports

• Interrupts: 5 interrupt sources

Mnemonic: "CPU Memory Timer Serial IO Interrupt" (CMTSII)

Question 3(a OR) [3 marks]

List common features of 8051 microcontroller.

Answer:

Common Features:

• CPU: 8-bit microcontroller

• Memory: 4KB ROM, 128B RAM

• I/O Ports: 32 I/O lines (4 ports)

• Timers: Two 16-bit timers/counters

• Serial Port: Full duplex UART

• Interrupts: 5 interrupt sources

• Clock: 12MHz maximum frequency

Mnemonic: "CPU Memory IO Timer Serial Interrupt Clock" (CMITSIC)

Question 3(b OR) [4 marks]

Draw IP SFR of 8051 and Explain function of each bit.

Answer:

IP Register (B8H):

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+---+
| - | - | PS | PT1 | PX1 | PT0 | PX0 |
+---+---+---+---+----+
```

Bit Functions:

- **PS**: Serial port interrupt priority
- PT1: Timer 1 interrupt priority
- PX1: External interrupt 1 priority
- PT0: Timer 0 interrupt priority
- PX0: External interrupt 0 priority

Priority Levels:

- 1: High priority
- 0: Low priority

Mnemonic: "Priority Serial Timer External" (PSTE)

Question 3(c OR) [7 marks]

With the help of neat diagram explain Pin diagram of 8051 microcontroller.

Answer:

```
8051 Microcontroller
  P1.0-- 1
                       40 |--VCC
  P1.1-- 2
                      39 |--P0.0/AD0
  P1.2-- 3
                      38 |--P0.1/AD1
                      37 |--P0.2/AD2
  P1.3-- 4
  P1.4-- 5
                      36 |--P0.3/AD3
                      35 |--P0.4/AD4
  P1.5-- 6
  P1.6-- 7
                      34 |--P0.5/AD5
  P1.7-- 8
                      33 |--P0.6/AD6
  RST -- 9
                      32 |--P0.7/AD7
                      31 |--EA/VPP
P3.0/RXD| 10
P3.1/TXD | 11
                      30 |--ALE/PROG
P3.2/INT0 | 12
                      29 |--PSEN
P3.3/INT1 | 13
                      28 |--P2.7/A15
P3.4/T0-| 14
                      27 |--P2.6/A14
                      26 |--P2.5/A13
P3.5/T1-| 15
P3.6/WR-| 16
                      25 |--P2.4/A12
P3.7/RD-| 17
                      24 |--P2.3/A11
XTAL2 -- 18
                      23 |--P2.2/A10
XTAL1 -- | 19
                      22 |--P2.1/A9
  VSS -- 20
                       21 |--P2.0/A8
       +----+
```

Pin Groups:

• Power: VCC (40), VSS (20)

• Clock: XTAL1 (19), XTAL2 (18)

• **Reset**: RST (9)

• Ports: P0, P1, P2, P3

• Control: ALE, PSEN, EA

Mnemonic: "Power Clock Reset Ports Control" (PCRPC)

Question 4(a) [3 marks]

Explain arithmetic instructions with example.

Answer:

Arithmetic Instructions:

Instruction	Function	Example
ADD	Addition	ADD A,#10H
SUBB	Subtraction	SUBB A,R0
MUL	Multiplication	MUL AB
DIV	Division	DIV AB
INC	Increment	INC A
DEC	Decrement	DEC R1

• ADD A,#10H: Add 10H to accumulator

• Flags: Affected by arithmetic operations

Mnemonic: "Add Subtract Multiply Divide Increment Decrement" (ASMIDI)

Question 4(b) [4 marks]

Write an 8051 Assembly Language Program to Find 2's complement of a value stored at memory location 65H. Put the result on same location.

Answer:

```
ORG 0000H ; Program start address

MOV A,65H ; Load value from location 65H

CPL A ; Complement the value (1's complement)

ADD A,#01H ; Add 1 to get 2's complement

MOV 65H,A ; Store result back to 65H

SJMP $ ; Stop program

END
```

Program Steps:

• Load: Get value from memory location 65H

• Complement: Generate 1's complement using CPL

• Add 1: Convert to 2's complement

• Store: Put result back to same location

Mnemonic: "Load Complement Add Store" (LCAS)

Question 4(c) [7 marks]

List Addressing Modes of 8051 Microcontroller and explain them with example.

Answer:

Addressing Modes Table:

Mode	Description	Example	Usage
Immediate	Data in instruction	MOV A,#25H	Constant data
Register	Data in register	MOV A,R0	Fast access
Direct	Memory address	MOV A,30H	RAM access
Indirect	Address in register	MOV A,@R0	Pointer access
Indexed	Base + offset	MOVC A,@A+DPTR	Table access
Relative	PC + offset	SJMP LOOP	Branch instructions
Bit	Bit address	SETB P1.0	Bit operations

Examples:

• MOV A,#25H: Load immediate value 25H

• MOV A,@R0: Load from address in R0

• **SJMP LOOP**: Jump relative to current PC

Mnemonic: "Immediate Register Direct Indirect Indexed Relative Bit" (IRDIIRB)

Question 4(a OR) [3 marks]

Explain logical instruction with example.

Answer:

Logical Instructions:

Instruction	Function	Example
ANL	AND operation	ANL A,#0FH
ORL	OR operation	ORL A,R1
XRL	XOR operation	XRL A,#55H
CPL	Complement	CPL A
RL	Rotate left	RL A
RR	Rotate right	RR A

• ANL A,#0FH: AND accumulator with 0FH (mask operation)

• **Applications**: Bit masking, data manipulation

Mnemonic: "AND OR XOR Complement Rotate" (AOXCR)

Question 4(b OR) [4 marks]

Write an 8051 Assembly Language Program to Multiply the number in register R3 by the number in register R0 and put the result in internal RAM location 10h(MSB) and 11h(LSB).

Answer:

```
ORG 0000H ; Program start address

MOV A,R3 ; Move R3 to accumulator

MOV B,R0 ; Move R0 to B register

MUL AB ; Multiply A and B

MOV 10H,B ; Store MSB (B) to location 10H

MOV 11H,A ; Store LSB (A) to location 11H

SJMP $ ; Stop program

END
```

Program Flow:

• Load: Move multiplicand and multiplier to A and B

• Multiply: Use MUL AB instruction

• Store: MSB in B register, LSB in A register

• Result: 16-bit result stored in two locations

Mnemonic: "Load Multiply Store Result" (LMSR)

Question 4(c OR) [7 marks]

Explain data transfer instruction with example.

Answer:

Data Transfer Instructions:

Category	Instruction	Example	Function
Register	MOV	MOV A,R0	Register to register
Immediate	MOV	MOV A,#25H	Immediate to register
Direct	MOV	MOV A,30H	Memory to register
Indirect	MOV	MOV A,@R0	Indirect addressing
External	MOVX	MOVX A,@DPTR	External memory
Code	MOVC	MOVC A,@A+DPTR	Code memory
Stack	PUSH/POP	PUSH ACC	Stack operations

Examples:

• MOV A,RO: Move R0 content to accumulator

• MOVX A,@DPTR: Read from external data memory

• PUSH ACC: Push accumulator to stack

Data Movement:

• Internal: Within 8051 memory space

• External: To/from external memory

• Code: From program memory

Mnemonic: "Move Data Between Locations" (MDBL)

Question 5(a) [3 marks]

Explain the 8051 flags with the help of PSW format.

Answer:

PSW Register (D0H):

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+---+
| C | AC | F0 | RS1 | RS0 | OV | - | P |
+---+---+---+---+----+----+
```

Flag Functions:

- C (Carry): Set when carry/borrow occurs
- AC (Auxiliary Carry): For BCD arithmetic
- OV (Overflow): Set when signed overflow
- P (Parity): Even parity of accumulator
- RS1, RS0: Register bank select bits

Mnemonic: "Carry Auxiliary Overflow Parity Register" (CAOPR)

Question 5(b) [4 marks]

Draw and explain diagram Interfacing 7 segment with microcontroller.

Answer:

7-Segment Interface Circuit:

Components:

• ULN2003: Current driver IC

• **Resistors**: Current limiting (330Ω)

• **Display**: Common cathode type

Working: Port data drives display segments through current driver

Mnemonic: "Port Driver Display Ground" (PDDG)

Question 5(c) [7 marks]

Interface 8 LEDs with microcontroller and write a program to turn on and off.

Answer:

LED Interface Circuit:

```
8051 Current Limiting LEDs
P1.0 -----> 330Ω -----> LED0 ----> +5V
P1.1 -----> 330Ω -----> LED1 ----> +5V
P1.2 -----> 330Ω -----> LED2 ----> +5V
P1.3 -----> 330Ω -----> LED3 ----> +5V
P1.4 -----> 330Ω -----> LED4 ----> +5V
P1.5 -----> 330Ω -----> LED5 ----> +5V
P1.6 -----> 330Ω -----> LED5 ----> +5V
P1.7 -----> 330Ω -----> LED6 ----> +5V
```

Assembly Program:

```
ORG 0000H ; Start address

MAIN:

MOV P1,#0FFH ; Turn on all LEDs (logic 0)

CALL DELAY ; Call delay subroutine

MOV P1,#00H ; Turn off all LEDs (logic 1)

CALL DELAY ; Call delay subroutine
```

```
DELAY:

MOV R2,#250 ; Outer loop counter

D1: MOV R3,#250 ; Inner loop counter

D2: DJNZ R3,D2 ; Decrement R3 until zero

DJNZ R2,D1 ; Decrement R2 until zero

RET ; Return from subroutine

END
```

Mnemonic: "Light Emitting Display Interface" (LEDI)

Question 5(a OR) [3 marks]

List Applications of microcontroller in various fields.

Answer:

Applications by Field:

Field	Applications
Home	Washing machine, Microwave, AC
Automotive	Engine control, ABS, Airbag
Industrial	Process control, Robotics
Medical	Pacemaker, Blood pressure monitor
Communication	Mobile phones, Modems
Security	Access control, Burglar alarm
Entertainment	Gaming consoles, Remote control

Mnemonic: "Home Auto Industrial Medical Communication Security Entertainment" (HAIMCSE)

Question 5(b OR) [4 marks]

Draw and explain diagram interfacing of DC motor with 8051.

Answer:

DC Motor Interface:

Components:

• L293D: Dual H-bridge driver IC

• Motor: 12V DC motor

• Control: Direction and speed control

Control Logic:

Forward: P1.1=1, P1.2=0
 Reverse: P1.1=0, P1.2=1

• **Stop**: P1.1=0, P1.2=0

Mnemonic: "Driver Control Motor Direction" (DCMD)

Question 5(c OR) [7 marks]

Interface LCD with microcontroller and write a program to display "Microprocessor and Microcontroller".

Answer:

LCD Interface:

```
8051 16x2 LCD

P2.0 -----> RS (Register Select)

P2.1 ----> EN (Enable)

P1.0-P1.7 ----> D0-D7 (Data lines)

GND ----> VSS, RW

+5V ----> VDD, VEE (via 10kΩ pot)
```

Assembly Program:

```
ORG 0000H

CALL LCD_INIT ; Initialize LCD

MOV DPTR,#MSG1 ; Point to message

CALL DISPLAY_MSG ; Display message

SJMP $ ; Stop

LCD_INIT:

MOV P1,#38H ; Function set: 8-bit, 2-line

CLR P2.0 ; RS=0 (command)
```

```
SETB P2.1
                      ; EN=1
    CLR P2.1
                       ; EN=0 (pulse)
    CALL DELAY
   MOV P1,#01H ; Clear display
   CLR P2.0
    SETB P2.1
   CLR P2.1
    CALL DELAY
    RET
DISPLAY_MSG:
   MOV P1,A
SETB P2.0
SETB P2.1
CLR P2.1
   MOV P1,A
                      ; Send character
                      ; RS=1 (data)
                      ; EN=1
   CLR P2.1
                      ; EN=0
   CALL DELAY
   RET
MSG1: DB "Microprocessor and Microcontroller",0
DELAY:
   MOV R1,#50
D1: MOV R2,#255
D2: DJNZ R2,D2
   DJNZ R1,D1
   RET
END
```

Mnemonic: "Liquid Crystal Display Interface" (LCDI)