

Minimum Rényi Entropy Couplings

Anuj Yadav

Yanina Shkel

Problem Statement

Given: *m* marginal distributions $\{P_i\}_{i=1}^m$. Find: coupling $C^*(X_1, X_2, \dots, X_m) \in \mathscr{C}$.

size of the distributions.

Applications:

Such that:

It is a **NP-Hard** problem in the support

Minimum Entropy functional representation.

1. $X_i \sim P_i$ for every $i \in [m]$.

Lower Bounds - Converse type results.

Entropic Causal Inference.

2. $H_{\alpha}(C^{\star}) = \min_{C \in \mathscr{C}} H_{\alpha}(C), \ \forall \alpha \in [0, \infty).$

Upper Bounds - Achievability type results.

Perfectly secure Steganography.

10

Secure data compression, etc...

-- Upper Bound [Kocaoglu et al. '17]

-Main Result-2 [Yadav-Shkel '23]

-Main Result-1 [Yadav-Shkel '23]

Lower Bound-1

Min-entropy $(\alpha \to \infty)$

Lower Bound-2 [Cicalese et al. '19]

Interlude

Majorization (\leq)

Let $P = (p_1, p_2 \cdots)$ and $Q = (q_1, q_2, \cdots)$ be PMFs in the non-increasing

order. Then, we say : $Q \leq P$ if $\sum_{i=1}^{k} q_i \leq \sum_{i=1}^{k} p_i$ for every $k \geq 1$.

Schur Concavity: $Q \leq P \implies H_{\alpha}(Q) \geq H_{\alpha}(P)$.

Greatest lower bound for $\{P_i\}_{i=1}^m$: $Q \leq \bigwedge^m P_j \leq P_i$ for every $Q, i \in [m]$.

<u>Information-Spectrum Majorization</u> (\leq_i)

We say $Q \leq_{l} P$, if $\mathbb{F}_{l_{Q}}(t) \leq \mathbb{F}_{l_{P}}(t)$ i.e., $\mathbb{P}\left[\iota_{Q} \leq t\right] \leq \mathbb{P}\left[\iota_{P} \leq t\right]$, $\forall t \in [0, \infty)$.

Fact 1: $Q \leq_{l} P \implies Q \leq P$.

Fact 2: Let $\mathcal{F} = \{Q : Q \leq_i P_i \quad \forall i \in [m]\}$. Then, $\exists Q^* \in \mathcal{F}$ such that $Q \leq Q^*$, for every $Q \in \mathcal{F}$.

Greedy Coupling Algorithm [Kocaoglu et al.]

Input: *m* marginal distributions $\{P_i\}_{i=1}^m$.

1.8

Algo: Sort each PMF in the non-increasing order.

Find the min. of the max. of each PMF i.e., $q = \min \{P_i(1)\}$.

Upper Bounds

While q > 0 do

Append q as the next state of \tilde{C} .

Update the max. state of each PMF i.e., $\forall i, P_i(1) := P_i(1) - q$.

Sort each PMF in non-increasing order and compute q.

end while

Return Coupling \tilde{C} .

Lower Bounds

Trivial Lower Bound 1

 $\forall C(X_1, \dots, X_m) \in \mathscr{C}$, we see that $C(X_1, \dots, X_m) \sqsubseteq P_i$, $\forall i \in [m]$.

Aggregation (\sqsubseteq) implies Majorization (\preceq).

Thus, $C^{\star}(X_1, \dots, X_m) \leq P_i$, $\forall i \in [m] \Longrightarrow H_{\alpha}(C^{\star}) \geq \max H_{\alpha}(P_i)$

Existing Lower Bound 2 [Cicalese et al. '19]

 (\leq) is a partial order and forms a compelete lattice.

Thus,
$$C^*(X_1, \dots, X_m) \leq \bigwedge_{j=1}^m P_j \leq P_i$$
, $\forall i \in [m]$.

Consequently, we have $H_{\alpha}(C^{*}) \geq H_{\alpha}(\bigwedge^{m} P_{j})$.

Main Result 1 [Yadav-Shkel '23]

Theorem: $\forall C(X_1, \dots, X_m) \in \mathscr{C}, \mathbb{P}\left[\iota_C > t\right] \ge \max_{i \in [m]} \mathbb{P}\left[\iota_{P_i} > t\right], \forall t \in [0, \infty).$

i.e., $\mathbb{F}_{l_{C\star}}(t) \leq \mathbb{F}_{l_{P}}(t) \implies C^{\star}(X_1, \dots, X_m) \leq_l P_i$, $\forall i \in [m]$.

Therefore, we have

$$H(C^{\star}) = \mathbb{E}[\iota_{C^{\star}}] = \int_0^{\infty} \left(1 - \mathbb{F}_{\iota_{C^{\star}}}(t)\right) dt \ge \int_0^{\infty} \max_{i \in [m]} \left(1 - \mathbb{F}_{\iota_{P_i}}(t)\right) dt$$

Main Result 2 [Yadav-Shkel '23]

Theorem: Let $\mathcal{S} = \{Q : Q \leq_i P_i, \forall i \in [m]\}$. Then, $\exists Q^* \in \mathcal{S}$ such that $Q \leq Q^*, \forall Q \in \mathcal{S}.$

Note that $C^*(X_1, \dots, X_m) \in \mathcal{S}$. Thus, $C^* \leq Q^* \leq_i P_i$, for every $i \in [m]$.

Therefore, we have $H_{\alpha}(C^{\star}) \geq H_{\alpha}(Q^{*})$.

Greedy algo. to construct Q^* with linear complexity in support size of PMFs. This result improves on all the existing lower bounds.

Scan for more details!

Tighter Approximation analysis [Yadav-Shkel '25]

Theorem: Let \hat{C} denote the output of the greedy coupling algorithm on the set of marginal PMFs $\{P_i\}_{i=1}^m$. Then,

$$H_{\alpha}(\tilde{C}) \leq H_{\alpha}(C^{\star}) + F(\alpha, m)$$

where,
$$F(\alpha, m) = \frac{1}{\alpha - 1} \log \left[\max(0, 1 - \tilde{r}(\alpha, m)) \right]$$
 such that

$$\tilde{r}(\alpha, m) := (-1)^{\mathbf{1}(\alpha > 1)} \max_{\substack{w_1 = 0, w_{m+1} = 1 \\ w_1 < w_2 \le \dots \le w_m < w_{m+1}}} \left[(-1)^{\mathbf{1}(\alpha > 1)} \sum_{k=2}^m w_k \left(w_k^{\alpha - 1} - w_{k+1}^{\alpha - 1} \right) \right].$$

No closed form solution of $F(\alpha, m)$ for $m \geq 3$.

 $F(\alpha, m)$ is non-decreasing in m, for every $\alpha \in [0, \infty)$. Thus,

$$H_{\alpha}(\tilde{C}) \leq H_{\alpha}(C^{\star}) + \lim_{m \to \infty} F(\alpha, m) = H_{\alpha}(C^{\star}) + \frac{1}{\alpha - 1} \log \left[\max \left(0, \frac{2\alpha - 1}{\alpha} \right) \right].$$

Best known result - For high values of α i.e., $\alpha \geq \alpha^*(m)$ where $\alpha^*(m)$ is approximately between 0.36 and 0.78.

