Comme $20 = 2^2 \cdot 5$, un nombre est premier avec 20 si et seulement s'il n'est divisible ni par 2 ni par 5.

Ainsi l'ensemble des éléments inversible de $\mathbb{Z}/20\mathbb{Z}$ est :

$$(\mathbb{Z}/20\mathbb{Z})^* = \{\overline{1}; \overline{3}; \overline{7}; \overline{9}; \overline{11}; \overline{13}; \overline{17}; \overline{19}\}$$

Bien sûr
$$\overline{1}^{-1} = \overline{1}$$
, car $1 \cdot 1 = 1$.

La congruence $3 \cdot 7 = 21 \equiv 1 \mod 20$ entraı̂ne $\overline{3}^{-1} = \overline{7}$ et $\overline{7}^{-1} = \overline{3}$.

Attendu que $9 \cdot 9 = 81 \equiv 1 \mod 20$, on a $\overline{9}^{-1} = \overline{9}$.

Comme $11 \cdot 9 = 99 \equiv -1 \mod 20$, on trouve $\overline{11}^{-1} = \overline{-9} = \overline{11}$.

Puisque $13 \cdot 3 = 39 \equiv -1 \mod 20$, il suit que $\overline{13}^{-1} = \overline{-3} = \overline{17}$.

Par conséquent, $\overline{17}^{-1} = \overline{13}$.

 $19 \equiv -1 \mod 20$ délivre $\overline{19}^{-1} = \overline{19}$.