自补图与 Ramsey 图

谢继国 (兰州师范高等专科学校 甘肃兰州 730070)

摘 要: 讨论了自补图的构造方法、自补图与 Ramsey 图的关系, 给出了顶点数不超过 101 的 所有含 4m+1型素数顶点的自补图.

关键词: 自补图; R(k, k)-Ramsey 图; k-点团; k-独立点集中图分类号: 0157.5 文献标识码: A 文章编号: 1008-9020(2003)02-007-03

自补图是一类强对称的无向简单图. 在二着色 Ramsey 数 R(k,k)的研究中,自补图常被用到 $^{[1]}$. Hong Zhang 利用有限单群的分类方法,给出了存在 n 顶点自补图的充要条件 $^{[2]}$. 本文讨论顶点个数为 $^{[2]}$. 四素数时自补图的构造方法、自补图与 $^{[2]}$ Ramsey 图的关系,进而给出顶点数不超过 $^{[2]}$ 的全部含 $^{[2]}$ 4m+1 型素数个顶点的自补图的结构,并给出了这些自补图在求解 $^{[2]}$ Ramsey 下界数时的地位(若 $^{[2]}$ 见 $^{[2]}$ 几一个 $^{[2]}$ Ramsey 下界图,则 $^{[2]}$ 1为一个 $^{[2]}$ ($^{[3]}$)— Ramsey 下界数).

1. 有关概念

定义 1 设 $G < V_G$, $E_G > \pi$ $H < V_H$, $E_H > \pi$ 是 n 阶标定图. 如果 $|E_G| = |E_H|$,且有双映射 $f:V_G \rightarrow V_H$, $V_i \rightarrow h_i$,i = 1,2,…,n,使得(h_i , h_j) $\in E_H$ 当且仅当(v_i , v_j) $\in E_G$ 成立,则称 f 为 V_G 到 V_H 上的一个同构映射,且称图 G 与 H 同构,记为 $G \cong H$.

定义 2 设 G 是一个 n 阶无向简单图, G_1 、 G_2 都是 G 的子图.如果 G_1 是一个 k ($k \le n$) 阶完全图(即 $G_1 = K_k$),则称 G_1 为 G 的一个 k 一点团.如果 G_2 是 l 个孤立顶点(G_2 中任何两个顶点都不相邻),则称 G_2 为 G 的一个 l 一独立点集(记为 K_l).

定义 3 设 $G < V_G$, $E_G > 和 H < V_G$, $E_H > 都$ 是 n 阶标定图. 如果把图 G 与图 H 的对应顶点互相重合便得到一个 n 阶完全图 K_n , 则称图 H 为图 G 的补图,且记 H = G.

定义 4 设 G 是一个 n 阶标定图. 如果图 G 与它的补图 G 同构 (即 G \cong G),则称图 G 为一个自补图.

定义 5 设 G 是一个无向简单图,如果图 G 中既不含 k一点团、也不含 l 一独立点集,则称图 G

为一个 R(k, l) — Ramsty 下界图,且称自然数 $|V_G|+1$ 为一个 R(k, l) — Ramsey 下界数.

定义 6 设 n 是正整数. 如果所有 n 阶无向简单图都满足: 或者含有 k—点团,或者含有 l—独立点集,但至少存在一个 n— 1 阶的无向单图 G,使得图 G 既不含 k—点团、也不含 l—独立点集,则称 n 为 R (k, l)— R amsey 数,记为 n= R (k, l). 且称图 G 为 R (k, l)— R amsey 图.

根据定义 5,对于给定的正整数对(k, l),R (k, l) — Ramsey 图是指所有的 R (k, l) — Ramsey 下界图中含顶点个数(阶数)最多的图. 例如图 1 中的四个图都是 R (3, 3) — Ramsey 下界图,但只有 G_4 才是 R (3, 3) — Ramsey 图 $I^{[1]}$.

图 1 R (3, 3) - Ramsey 下界图

2. 自补图的性质与构造

定理 1 设 G 是 n 阶的强对称自补图,则 n = 1 (mod 4).

证明 设 $G = G < V_G$, $E_G > .$ 因为 $G \in R$ 的

自补图,所以 $V_G = V_G$, $|V_G| = n$ 且 $|E_G| = |E_G|$. 由于 $E_{K_n} = E_G \cup E_G$, $E_G \cap E_G = \phi$, $|E_{K_n}| = \frac{n \cdot (n-1)}{2}$,且 K_n 中每个顶点的度数均为 $\frac{n-1}{2}$,所以 $|E_G| = |E_G| = \frac{n \cdot (n-1)}{4}$.注意到图 G 的强对称性,图 G 的每个顶点的度数均相等,且为 $\frac{n-1}{4}$. $\frac{n-1}{4} \in N^*$.故 $n \equiv_1 \pmod{4}$.

定理 2 设 n=4m+1 $(m \in N^*)$ 是一个素数,则存在含 n 个顶点的循环图 G,使得 $G \cong G$ (即 G 是自补图).

证明 证明过程可分三步:

1) 4m+1 型的素数确定一个 4m 级排列 π_{4m} = $j_1 j_2 \cdots j_{4m}$.

因为 n=4m+1 $(m\in N^*)$ 是一个素数,所以模 n 的剩余类环 $Z_n=\{[0],[1],\cdots,[4m]\}$ 对剩余类的加法和乘法构成一个有限素域。令 $Z_n^*=\{[1],[2],\cdots,[4m]\},$ 则 Z_n^* 对于剩余类的乘法构成一个 4m 阶的循环群^[3]. 即存在 $l\in N^*$, $2\leqslant l\leqslant 4m$,使得 $Z_n^*=\leqslant l>=\{[l],[l^2],\cdots,[l^{4m}]\}$.

令 $j_i \in N^*$, $1 \le j_i \le 4m$, 使得 $j_i \equiv l \pmod n$, $i = 1, 2, \dots, 4m$, 则由循环群生成元的性质, $j_1 j_2 \dots j_{4m}$ 构成数码 $1, 2, \dots, 4m$ 的一个 4m 级排列,且 $j_{4m} = 1$. 我们记 4m 级排列 $j_1 j_2 \dots j_{4m}$ 为 π_{4m} .

2) 4m 级排列 π_{4m} 确定一个 n 阶 0-1 循环矩阵 A.

对 4m 级排列 $\pi_{4m}=j_1j_2\cdots j_{4m}$ 用 0、 1 交错赋值,然后按自然排列 $12\cdots 4m$ 的顺序调整 0、 1 的位置,并在该序列前加数 0, 便得到 n 元 0-1 序列 s=0 $a_1a_2\cdots a_{4m}$,而且 S 中每个元素 a_i 都唯一地对应着一个自然数 p $(1\leqslant p\leqslant 4m)$,使得 j_p 赋值 a_i . 因为 $n-i\in N^*$,且 $1\leqslant n-i\leqslant 4m$ $(1\leqslant i\leqslant 4m)$,所以对 a_{n-i} 来说,也有唯一的自然数 q $(1\leqslant q\leqslant 4m)$,使得 j_q 赋值 a_{n-i} . 从而有 $i=j_p$, $n-i=j_q$,推出 $j_q=n-j_p$.

因为 $j_q \equiv l^q \pmod n$,即 $n \mid (l^q - j_q)$,所以 $n \mid (l^q - n + j_p)$,而 $n \mid (l^p - i_p)$,所以 $n \mid (l^p + l^q - n)$,从而有 $n \mid (l^p + l^q)$.不妨设 $1 \leqslant q \leqslant p \leqslant 4m$,则 $n \mid l^q \mid (l^{p-q} + 1)$.由于 $l^q = j_q \pmod n$, $1 \leqslant j_q \leqslant 4m \leqslant n$,所以 $n \mid l^q$,从而

$$\mathbf{n} \mid (l^{\mathbf{p}-\mathbf{q}} + 1) \tag{1}$$

此外,因为 $l^{4m} \equiv 1 \pmod{n}$,即 $n \mid (l^{4m}-1)$,所以 $n \mid (l^{4m}+l^{p-q})$ 即 $n \mid l^{p-q} (l^{4m-p+q}+1)$. 由于 $n \mid l^{p-q}$,故

$$n | (l^{4m-p+q}+1)$$
 (2)

由(1)、(2)两式,有

$$l^{p-q} \equiv l^{4m-p+q} \equiv n-1 \pmod{n}$$
.

注意到 $1 \le p - q \le 4m$ 且 $1 \le 4m - p + q \le 4m$,可推得 p - q = 4m - q + p,即 p - q = 2m.所以 p = q 具有相同的奇偶性.从而在 4m 级排列 $\pi_{4m} = j_1 j_2 \cdots j_q$ $\cdots j_p \cdots j_{4m}$ 的 0×1 赋值中, $j_p = j_q$ 具有相同的赋值.利用 $j_p = i$, $j_q = n - i$ 便知,在 0 - 1 序列 $S = 0a_1 \cdots a_{4m}$ 中,对于每一个 $1 \le i \le 4m$ 有 $a_{n-i} = a_i$,从而以 0 - 1 序列 S 为生成元,可以生成 n 阶循环矩阵 A,使得 A 作为某一 n 阶循环图 G 的邻接矩阵 G A

3) 以 A 为邻接矩阵的循环图 G 是一个 n 阶 自补图.

如果把序列 $S=0a_1a_2\cdots a_{4m}$ 中的每一个 a_i 都进行 0 和 1 的对换(若 $a_i=0$,则令 $b_i=1$,否则令 $b_i=0$),则得到新的 n 元 0-1 序列 $S'=0b_1b_2\cdots b_{4m}$,且由 S'生成的 n 阶循环矩阵 B 必为图 G 的补图 G 的邻接矩阵 G G

此外,如果把图 G 的顶点标号 0、1、2、…、4m 依次换为 0、 j_1 、 j_2 、…、 j_4 m,则图 G 的邻接矩阵 A 就变成了矩阵 B,说明 G \cong G,即 G 为自补图.

定理 2 的证明过程,给出了含 4m+1 型素数个顶点的自补图的构造方法:

- 1° 对给定素数 n=4m+1,求有限素域 Z_n 对应的 4m 阶循环乘群 $Z_n^*=\{\ [\ 1],\ [\ 2],\ ...,\ [\ 4m]\}$ 的生成元 l ,使得 $Z_n^*=< l> .$
- 2° 利用同余式 l^{i} $\equiv_{j_{i}} \pmod{n}$,求数码 1,2,…,4m 的 4m 级排列 π_{4m} = $j_{1}j_{2}$ \cdots j_{4m} .
- 3° 对排列 π_{4m} ,用 0、1 交错赋值并调整 0、1 的排列次序,求 n 阶循环矩阵 A 的生成序列 $S=0a_1a_2\cdots a_{4m}$.
 - 4°利用 S 求与之对应的自补图 G.
 - 3. 自补图与 Ram sev 图的关系

证明 因为 G 是 n 阶对称自补图,所以 $G \cong G$ 且 G 的每个顶点度数均为 $\frac{n-1}{4}$,因此 G 的点团最

多含 $\frac{n+3}{4}$ 个顶点. 令 $k \in N^*$, $k > \frac{n+3}{4}$, 则 G 不 含 k 点团.

此外, G 与 G 同构, 因而对上述 k, G 也不含 k 点团即 G 不含 k—独立点集. 故 G 是一个 R (k,k) -Ramsey 下界图.

反之, 如果 G 是一个 R(k, k) - Ramsey 下 界图,则不妨取 k=3,n=4,使得图 1 中的图 G_3 便满足 G 的条件,但显然,图 G_3 的补图是图 1 中 的 G₂. 并不与 G₃ 同构. 说明 G₃ 不可能是自补图.

定理 3 说明 R(k, k) - Ramsey 下界图未必 是自补图. 但到目前为止, 我们能够证明的 R(k, k) 图只有两个: R(3, 3) 图和 R(4, 4) 图, 且这两个图都是自补图. 这就说明 R(k, k)— Ramsey 图倒有可能是自补图.

利用自补图的构造方法,对于不大于 101 的所 有 4m+1 型素数 n, 可构造出对应的自补图 G 及 其在 Ram sey 理论中的地位,为确定 Ramsey 数提 供依据:

n=5, l=2, $\pi_4=2431$, S=01001. 自补图 G =C₅ (1), 且G为R (3, 3) — Ram sev 图.

n=13, l=2, S=0101100001101. 自补图 G $=C_{13}$ (1, 3, 4),且G为R (4, 4) -Ramsey下 界图.

n=17, l=3, S=01101000110001011. 自补 图 G = C₁₇ (1, 2, 4, 8), 且 G 为 R (4, 4) -Ramsev 图.

n=29, l=2, S=0100111101000100100101111001. 自补图 $G = C_{29}$ (1, 4, 5, 6, 7, 9, 13), 且 G 为 R (5, 5) — Ramsey 下界图.

n=37, l=2, S=0.1011001011111000100001000111101001101. 自补图 G=C37 (1, 3, 4, 7, 9, 10, 11, 12, 16), 且G为R (5, 5) — Ramsey下 界图.

n=41, l=7, S=01101100111000001010110101000001110011011. 自补图 G=C₄₁(1, 2, 4, 5, 8, 9, 10, 16, 18, 20), 且 G 为 R (6, 6) -Ram sev 下界图. (值得注意的是,对于 n=41, 存在 R (5, 5) - Ramsey 下界图 C41 (1, 3, 5, 8, 12, 13, 16, 17, 18, 19), 但它并非自补图).

n=53, l=2, S=0.1001011011101011100000011001100000011101011101101001. 自补图 G=C53 (1, 4, 6, 7, 9, 10, 11, 13, 15, 16, 17, 24, 25), 且 G 为 R (6, 6) — Ramsey 下界图.

n=61, l=2, S=0.101110001001111100110100101000000101001011001111100100011101. 自补 $\mathbf{g} = \mathbf{g} = \mathbf{g}_{61}$ (1, 3, 4, 5, 9, 12, 13, 14, 15, 16, 19, 20, 22, 25, 27), 且G为R(6, 6)— Ramsey 下界图.

n=73, l=5, S=0111101011001000101100011111. 自补图 $G = C_{73}$ (1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 19, 23, 24, 25, 27, 32, 35, 36), 且 G 为 R (6, 6) — Ramsey 下界图.

n=89, l=3, S=011011001111000011101110 $01\,0000\,0010\,10100\,1101\,0110\,1011\,0010\,1010\,00000\,1001$ 110111000011110011011. 自补图 G=C89 (1, 2, 4, 5, 8, 9, 10, 11, 16, 17, 18, 20, 21, 22, 25, 32, 34, 36, 39, 40, 42, 44), 且 G 为 R (6, 6) — Ramsey 下界图.

n=97, l=5, S=01111010110110001010001011010001110110000001100111100110000001101110 00101101000101000110110101111. 自补图 G=C₉₇ (1, 2, 3, 4, 6, 8, 9, 11, 12, 16, 18, 22, 24, 25, 27, 31, 32, 33, 35, 36, 43, 44, 47, 48), 且 G 为 R (6, 6) — Ramsey 下界图.

n=101, l=2, S=01001110010001101101111 $11\,1000\,0110\,10011\,0000\,0101\,0101\,0010\,1010\,10000\,011$ 001011000011111111011011000100111001. 自补图 $G = C_{101}$ (1, 4, 5, 6, 9, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 30, 31, 33, 36, 37, 43, 45, 47, 49), 且G是R (6, 6) — Ramsev 下 界图.

参考文献:

[1] R. L. Graham. Ramsey Theory. New York: A Wiley - Interscience Publication, 1980.

[2] H. Zhang. Self—complementary symmetric graphs. J. Graph Theory, 1992 (16).

[3] 辛未. 抽象代数. 郑州: 河南大学出版社, 1988.

[4] N. Biggs. Algebraic Graph Theory. London: Cambridge University Press. 1973.

责任编辑: 蒋德璋