Single Node general distribution theory

Thomas Lowbridge School of Mathematical Sciences University of Nottingham

October 10, 2018

Contents

1 Introduction to Problem	1
Appendices	i
A First appendix section	i

1 Introduction to Problem

We have some attack time distribution at a single node, X, with support, $\Pi = [0, \pi]$, and $B = \lceil \pi \rceil$. We also have the room cap size, b, we also have a cost c and arrival rate, λ .

This gives us the state space, (s, v) for $0 \le s \le B + 1$ and $0 \le v \le b$.

We will consider the Cost to Progress matrix, $\mathbf{C} = \mathbf{A} + \mathbf{O}$, where \mathbf{A} is the cost to not act due to arrival process and \mathbf{O} is the cost to not act due to the observed process.

Some Basic Properties Because the arrival process is not dependent on the observed number, $A_{i,j} = A_{i,1}$, that is **A** can be represented by a vector **a** = $a_i = A_{i,1}$.

If b = 0, we have $\mathbf{O} = \mathbf{0}$, then $\mathbf{C} = \mathbf{A}$.

Because the observed process is dependent on s and v just multiples the answer by v. We can summarize the matrix \mathbf{O} by $\mathbf{o} = O_{i,2}$. We can also note this is only possible if $b \geq 1$.

Then we can redefine, $C_{i,j} = a_i + jo_i$.

By our current definition $a_i = c\lambda \int_{i-1}^i F_X(x) dx$ and $o_i = c(F_X(i) - F_X(i-1))$.

So a_i is increasing.

If we want to decide when $C_{i,j}$ is increasing (non-decreasing) in i, j, by definition it is non-decreasing in j. so we will only look at it from the point of non-decreasing in i.

If o_i is non-decreasing then clearly it is non-decreasing.

However if o_i is decreasing then we must look closer. If once o_i becomes decreasing it has all $c_{i,j} \geq c\lambda$, then we can avoid the problem.

We could also restrict the problem to some $b = b^*$. For each decreasing row, we can restrict the column to only allow $c_{i,j} \geq c\lambda$.

We can define $b_i^+ = \left\lfloor \frac{a_i - c\lambda}{o_i} \right\rfloor$ and a set $\chi = \{i \mid o_i < 0\}$ and define our limit by $b^* = \min_{i \in \chi} \{b_i^+\}$

Let us consider the difference in $c_{i,j}$'s, $c_{i,j} - c_{i-1,j} = a_i - a_i + j(o_i - o_{i-1})$

We can define $c_{i,j} = c \int_{i-1}^{i} \lambda F_X(x) + j f_x(x) dx$. We can say this is non-decreasing if $\lambda F_X(x) + j f_x(x)$ is non-decreasing, i.e $\lambda f_X(x) + j f_X'(x) \geq 0$.

so trying to solve $\frac{\lambda}{j}f(x) \geq -f'(x)$. In regions where the function is non-decreasing, this is most definitely true as $f'(x) \geq 0$. In a region of x, say

 $R = [x_1, x_2]$ where it is decreasing then we need to solve the inequality, $\frac{\lambda}{j} f(x) \ge |f'(x)|$.

Using Gronwell's inequality theorem we can get that the answer must be $f(x_3)e^{-\frac{\lambda}{j}|x-x_3|} \le f(x) \le f(x_3)e^{\frac{\lambda}{j}|x-x_3|}$ where x_3 is some point in the region R. As f(x) is decreasing in these regions f() So in these regions we must check this condition

As we are dealing with a function of $f_X(x)$ which is not non-decreasing.

Appendices

A First appendix section