<u>Assignment on Classification Algorithms – Chronic Kidney Disease (CKD)</u>

Question:

Problem Statement or Requirement:

A requirement from the Hospital, Management asked us to create a predictive model which will predict the Chronic Kidney Disease (CKD) based on the several parameters. The Client has provided the dataset of the same.

- 1. Identify your problem statement
- 2. Tell basic info about the dataset (Total number of rows, columns)
- 3. Mention the pre-processing method if you're doing any (like converting string to number nominal data)
- 4. Develop a good model with good evaluation metric. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5. All the research values of each algorithm should be documented. (You can make tabulation or screenshot of the results.)
- 6. Mention your final model, justify why u have chosen the same.

Solution:

1. Problem Statement Identification: Predicting Chronic Kidney Disease (CKD).

3 Stages of Problem Identification:

Stage 1: ML

Stage 2 : Supervised Learning

Stage 3 : Classification

- 2. **<u>Dataset Basic Info</u>**: 399 rows × 25 columns
- 3. **Pre-Processing Method**: One Hot Encoding & Ordinal Encoding
- **4.** Good model with r2 score: Refer the algorithm files under the folder named CKD
- 5. Research on best model based on Accuracy, F1-Macro Value & ROC AUC Score:

Refer the document below.

Research on Best Model Via Accuracy, F1-Macro Value & ROC AUC Score

1.SVM

Inference:

```
Accuracy = 0.96
F1 Macro = 0.9625 for Best Parameters = 'C': 10, 'gamma': 'auto', 'kernel': 'linear'
ROC - AUC Score = 0.9966
```


2. Decision Tree

Inference:

```
Accuracy = 0.98
F1 Macro = 0.9774 for Best Parameters = 'criterion': 'entropy', 'max_features': 'log2', 'splitter': 'random'
ROC - AUC Score = 0.9743
```


3. Random Forest

Inference:

```
Accuracy = 0.99
F1 Macro = 0.9925 for Best Parameters = 'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 10
ROC - AUC Score = 1
```


4.Logistic Regression

Inference:

```
Accuracy = 0.98
F1 Macro = 0.9850 for Best Parameters = 'penalty': 'l2', 'solver': 'newton-cg'
ROC – AUC Score = 0.9995
```


<u>5.KNN</u>

Inference:

```
Accuracy = 0.97
F1 Macro = 0.9701 for Best Parameters = 'algorithm': 'auto', 'metric': 'minkowski', 'n_neighbors': 1, 'p': 1, 'weights': 'uniform'
ROC – AUC Score = 0.9756
```


6.NB (Multinomial, Bernoulli, Complement)

Multinomial NB Inference:

Accuracy = 0.82

Bernoulli NB Inference:

Accuracy = 0.92

Complement NB Inference:

Accuracy = 0.82

Summary

Algorithm		HTP	Best	Best F1-	Best ROC-
	_		Accuracy	Macro Value	AUC Score
SVM		'C': 10, 'gamma': 'auto', 'kernel': 'linear'	0.96	0.9625	0.9966
DT		'criterion': 'entropy', 'max_features': 'log2', 'splitter': 'random'	0.98	0.9774	0.9743
RF		'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 10	0.99	0.9925	•
Logistic Regression		'penalty': '12', 'solver': 'newton-cg'	0.98	0.9850	0.9995
KNN		'algorithm': 'auto', 'metric': 'minkowski', 'n_neighbors': 1, 'p': 1, 'weights': 'uniform'	0.97	0.9701	0.9756
	Multinomial NB		0.82		
	Bernoulli NB		0.92		
NB	Complement NB		0.82		
	Categorical NB		-		

Result Analysis:

For the given dataset RF Classification algorithm for HTP criterion = 'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 10 suits the best with a maximum accuracy value = 0.99, F1- Macro Value = 0.9925 & ROC AUC Score = 1 when compared to the models created by other classification algorithms.

Appendix:

Abbreviations	Expansion
SVM	Support Vector Machine
DT	Decision Tree
RF	Random Forest
KNN	K Nearest Neighbour
NB	Naïve Bayes
HTP	Hyper Tuning Parameters

6. Final Model:

For the given dataset RF Classification algorithm for HTP criterion = 'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 10 suits the best with a maximum accuracy value = 0.99, F1- Macro Value = 0.9925 & ROC AUC Score = 1 when compared to the models created by other classification algorithms.