MAT 350 ENGINEERING MATHEMATICS

System of First order ODEs

Lecture: 11

Dr. M. Sahadet Hossain (Mth)
Associate Professor
Department of Mathematics and Physics, NSU.

A system such as (1) of *n* first-order equations is called a **first-order system**.

When each of the functions g_1, g_2, \ldots, g_n in (1) is linear in the dependent variables x_1, x_2, \ldots, x_n , we get the normal form of a **first-order system of linear equations**:

$$\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t)
\frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t)
\vdots
\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t).$$
(2)

We refer to a system of the form given in (2) simply as a **linear system**. We assume that the coefficients a_{ij} as well as the functions f_i are continuous on a common interval I.

When $f_i(t)$ = 0, for i= 1, 2, . . . , n, the linear system (2) is said to be homogeneous; otherwise, it is nonhomogeneous.

 \equiv Matrix Form of a Linear System If X, A(t), and F(t) denote the respective matrices

$$\mathbf{X} = \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{pmatrix}, \quad \mathbf{A}(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{pmatrix}, \quad \mathbf{F}(t) = \begin{pmatrix} f_{1}(t) \\ f_{2}(t) \\ \vdots \\ f_{n}(t) \end{pmatrix}, \quad (3)$$

Then the system of linear first-order differential equations (2) can be written as

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

or simply $\mathbf{X}' = \mathbf{AX} + \mathbf{F}$. (4

If the system is homogeneous, its matrix form is then

$$\mathbf{X}' = \mathbf{A}\mathbf{X}.\tag{5}$$

EXAMPLE 1

Systems Written in Matrix Notation

(a) If $X = \begin{pmatrix} x \\ y \end{pmatrix}$, then the matrix form of the homogeneous system

$$\frac{dx}{dt} = 3x + 4y$$

$$\frac{dy}{dt} = 5x - 7y$$
is $\mathbf{X}' = \begin{pmatrix} 3 & 4 \\ 5 & -7 \end{pmatrix} \mathbf{X}$.

(b) If $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, then the matrix form of the nonhomogeneous system

$$\frac{dx}{dt} = 6x + y + z + t$$

$$\frac{dy}{dt} = 8x + 7y - z + 10t \text{ is } \mathbf{X}' = \begin{pmatrix} 6 & 1 & 1 \\ 8 & 7 & -1 \\ 2 & 9 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} t \\ 10t \\ 6t \end{pmatrix}.$$

$$\frac{dz}{dt} = 2x + 9y - z + 6t$$

DEFINITION 8.1.1 Solution Vector

A solution vector on an interval I is any column matrix

$$\mathbf{X} = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

whose entries are differentiable functions satisfying the system (4) on the interval.

Note: The solution X is a vector. Hence, important properties applied to vectors, such as superposition principle, linear combination, linear independence/ dependence, etc., are also applicable here for X.

EXAMPLE 2

Verification of Solution

Verify that on the interval $(-\infty, \infty)$

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} = \begin{pmatrix} e^{-2t} \\ -e^{-2t} \end{pmatrix} \quad \text{and} \quad \mathbf{X}_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t} = \begin{pmatrix} 3e^{6t} \\ 5e^{6t} \end{pmatrix}$$

are solutions of

$$\mathbf{X}' = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \mathbf{X}. \tag{6}$$

SOLUTION From
$$\mathbf{X}_1' = \begin{pmatrix} -2e^{-2t} \\ 2e^{-2t} \end{pmatrix}$$
 and $\mathbf{X}_2' = \begin{pmatrix} 18e^{6t} \\ 30e^{6t} \end{pmatrix}$ we see that

$$\mathbf{A}\mathbf{X}_{1} = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} e^{-2t} \\ -e^{-2t} \end{pmatrix} = \begin{pmatrix} e^{-2t} - 3e^{-2t} \\ 5e^{-2t} - 3e^{-2t} \end{pmatrix} = \begin{pmatrix} -2e^{-2t} \\ 2e^{-2t} \end{pmatrix} = \mathbf{X}_{1}',$$

$$\mathbf{AX}_{2} = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 3e^{6t} \\ 5e^{6t} \end{pmatrix} = \begin{pmatrix} 3e^{6t} + 15e^{6t} \\ 15e^{6t} + 15e^{6t} \end{pmatrix} = \begin{pmatrix} 18e^{6t} \\ 30e^{6t} \end{pmatrix} = \mathbf{X}_{2}^{t}.$$

Initial-Value Problem Let t_0 denote a point on an interval I and

$$\mathbf{X}(t_0) = \begin{pmatrix} x_1(t_0) \\ x_2(t_0) \\ \vdots \\ x_n(t_0) \end{pmatrix} \quad \text{and} \quad \mathbf{X}_0 = \begin{pmatrix} \mathbf{\gamma}_1 \\ \mathbf{\gamma}_2 \\ \vdots \\ \mathbf{\gamma}_n \end{pmatrix},$$

where the γ_i , i = 1, 2, ..., n are given constants. Then the problem

Solve:
$$\mathbf{X}' = \mathbf{A}(t)\mathbf{X} + \mathbf{F}(t)$$

Subject to: $\mathbf{X}(t_0) = \mathbf{X}_0$ (7)

is an initial-value problem on the interval.

THEOREM 8.1.1 Existence of a Unique Solution

Let the entries of the matrices A(t) and F(t) be functions continuous on a common interval I that contains the point t_0 . Then there exists a unique solution of the initial-value problem (7) on the interval.

Superposition Principle The following result is a superposition principle for solutions of linear systems.

THEOREM 8.1.2 Superposition Principle

Let X_1, X_2, \ldots, X_k be a set of solution vectors of the homogeneous system (5) on an interval I. Then the linear combination

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \cdots + c_k \mathbf{X}_k,$$

where the c_i , i = 1, 2, ..., k are arbitrary constants, is also a solution on the interval.

You should practice by verifying that the two vectors

$$\mathbf{X}_{1} = \begin{pmatrix} \cos t \\ -\frac{1}{2}\cos t + \frac{1}{2}\sin t \\ -\cos t - \sin t \end{pmatrix} \quad \text{and} \quad \mathbf{X}_{2} = \begin{pmatrix} 0 \\ e^{t} \\ 0 \end{pmatrix}$$

are solutions of the system

$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \mathbf{X}. \tag{8}$$

By the superposition principle the linear combination

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 = c_1 \begin{pmatrix} \cos t \\ -\frac{1}{2} \cos t + \frac{1}{2} \sin t \\ -\cos t - \sin t \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ e^t \\ 0 \end{pmatrix}$$

is yet another solution of the system.

Linear Dependence and Linear Independence We are primarily interested in linearly independent solutions of the homogeneous system (5).

DEFINITION 8.1.2 Linear Dependence/Independence

Let X_1, X_2, \ldots, X_k be a set of solution vectors of the homogeneous system (5) on an interval I. We say that the set is **linearly dependent** on the interval if there exist constants c_1, c_2, \ldots, c_k , not all zero, such that

$$c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + \cdots + c_k\mathbf{X}_k = \mathbf{0}$$

for every t in the interval. If the set of vectors is not linearly dependent on the interval, it is said to be **linearly independent**.

HOMOGENEOUS LINEAR SYSTEMS

$$X' = AX, (1)$$

where,

$$\mathbf{X} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} e^{\lambda t} = \mathbf{K} e^{\lambda t} \tag{2}$$

where k_1 , k_2 , λ_1 , and λ_2 are constants

 $\mathbf{X}' = \mathbf{K} \lambda e^{\lambda t}$, so the system becomes $\mathbf{K} \lambda e^{\lambda t} = \mathbf{A} \mathbf{K} e^{\lambda t}$.

$$(\mathbf{A} - \mathbf{\mathcal{I}})\mathbf{K} = 0.$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

characteristic equation of the matrix A;

Solve

$$\frac{dx}{dt} = 2x + 3y$$

$$\frac{dy}{dt} = 2x + y.$$
(4)

SOLUTION We first find the eigenvalues and eigenvectors of the matrix of coefficients

From the characteristic equation

$$\det(\mathbf{A} - \mathbf{A}\mathbf{I}) = \begin{vmatrix} 2 - \mathbf{A} & 3 \\ 2 & 1 - \mathbf{A} \end{vmatrix} = \mathbf{A} - 3\mathbf{A} - 4 = (\mathbf{A} + 1)(\mathbf{A} - 4) = 0$$

we see that the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 4$.

Now for $\lambda_1 = -1$, (3) is equivalent to

$$3k_1 + 3k_2 = 0$$

$$2k_1 + 2k_2 = 0.$$

Continue-....

Thus $k_1 = -k_2$. When $k_2 = -1$, the related eigenvector is

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

For $_2 = 4$ we have

$$-2k_1 + 3k_2 = 0$$

$$2k_1 - 3k_2 = 0$$

so $k_1 = \frac{3}{2}k_2$; therefore with $k_2 = 2$ the corresponding eigenvector is

$$\mathbf{K}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
.

Continue-.....

Since the matrix of coefficients A is a 2×2 matrix and since we have found two linearly independent solutions of (4),

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$$
 and $\mathbf{X}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{4t}$,

we conclude that the general solution of the system is

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{4t}.$$
 (5)

EXAMPLE 2

Distinct Eigenvalues

Solve

$$\frac{dx}{dt} = -4x + y + z$$

$$\frac{dy}{dt} = x + 5y - z$$

$$\frac{dz}{dt} = y - 3z.$$
(6)

SOLUTION Using the cofactors of the third row, we fin

$$\det(\mathbf{A} - \mathbf{A}\mathbf{I}) = \begin{vmatrix} -4 - \mathbf{A} & 1 & 1 \\ 1 & 5 - \mathbf{A} & -1 \\ 0 & 1 & -3 - \mathbf{A} \end{vmatrix} = -(\mathbf{A} + 3)(\mathbf{A} + 4)(\mathbf{A} - 5) = 0,$$

and so the eigenvalues are $\lambda_1 = -3$, $\lambda_2 = -4$, and $\lambda_3 = 5$.

For $\lambda_1 = -3$ Gauss-Jordan elimination gives

$$(\mathbf{A} + 3\mathbf{I} | \mathbf{0}) = \begin{pmatrix} -1 & 1 & 1 | 0 \\ 1 & 8 & -1 | 0 \\ 0 & 1 & 0 | 0 \end{pmatrix} \xrightarrow{\text{row operations}} \begin{pmatrix} 1 & 0 & -1 | 0 \\ 0 & 1 & 0 | 0 \\ 0 & 0 & 0 | 0 \end{pmatrix}.$$

Therefore $k_1 = k_3$ and $k_2 = 0$. The choice $k_3 = 1$ gives an eigenvector and corresponding solution vector

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad \mathbf{X}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{-3t}. \tag{7}$$

Similarly, for $\lambda_2 = -4$

$$(\mathbf{A} + 4\mathbf{I}|\mathbf{0}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 9 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{\text{row operations}} \begin{pmatrix} 1 & 0 & -10 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

implies that $k_1 = 10k_3$ and $k_2 = -k_3$. Choosing $k_3 = 1$, we get a second eigenvector and solution vector

$$\mathbf{K}_2 = \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix}, \qquad \mathbf{X}_2 = \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} e^{-4t}. \tag{8}$$

Finally, when $\lambda_3 = 5$, the augmented matrices

$$(\mathbf{A} + 5\mathbf{I} | \mathbf{0}) = \begin{pmatrix} -9 & 1 & 1 | 0 \\ 1 & 0 & -1 | 0 \\ 0 & 1 & -8 | 0 \end{pmatrix} \xrightarrow{\text{row operations}} \begin{pmatrix} 1 & 0 & -1 | 0 \\ 0 & 1 & -8 | 0 \\ 0 & 0 & 0 | 0 \end{pmatrix}$$

yield

$$\mathbf{K}_3 = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix}, \qquad \mathbf{X}_3 = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} e^{5t}. \tag{9}$$

The general solution of (6) is a linear combination of the solution vectors in (7), (8), and (9):

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} e^{-4t} + c_3 \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} e^{5t}.$$

Homework

Solve
$$\mathbf{X}' = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{X}.$$

REPEATED EIGENVALUES

In general, if m is a positive integer and $(\lambda - \lambda_1)^m$ is a factor of the characteristic equation while $(\lambda - \lambda_1)^{m+1}$ is not a factor, then λ_1 is said to be an eigenvalue of multiplicity m. The next three examples illustrate the following cases:

(i) For some $n \times n$ matrices A it may be possible to find m linearly independent eigenvectors $\mathbf{K}_1, \mathbf{K}_2, \ldots, \mathbf{K}_m$ corresponding to an eigenvalue λ_1 of multiplicity $m \le n$. In this case the general solution of the system contains the linear combination

$$c_1\mathbf{K}_1e^{\lambda t} + c_2\mathbf{K}_2e^{\lambda_1 t} + \cdots + c_m\mathbf{K}_m e^{\lambda_1 t}$$

 (ii) If there is only one eigenvector corresponding to the eigenvalue λ₁ of multiplicity m, then m linearly independent solutions of the form

$$\begin{split} \mathbf{X}_{1} &= \mathbf{K}_{11} e^{\lambda_{1} t} \\ \mathbf{X}_{2} &= \mathbf{K}_{21} t e^{\lambda_{1} t} + \mathbf{K}_{22} e^{\lambda_{1} t} \\ &\vdots \\ \mathbf{X}_{m} &= \mathbf{K}_{m1} \frac{t^{m-1}}{(m-1)!} e^{\lambda_{1} t} + \mathbf{K}_{m2} \frac{t^{m-2}}{(m-2)!} e^{\lambda_{1} t} + \cdots + \mathbf{K}_{mm} e^{\lambda_{1} t}, \end{split}$$

where K_{ij} are column vectors, can always be found.