DES Documentation

Made with Love, by Mousa Emarah

- 1. Key Generation Process:
- 1.1 Initial Permutation (PC1):
- The 64-bit key undergoes permutation using the PC1 table
- Results in a 56-bit key
- 1.2 Key Division:
- The 56-bit key is divided into two equal halves:
- Left half (C_o): 28 bits
- Right half (D_o): 28 bits
- 1.3 Subkey Creation:
- Sixteen subkeys are generated through 16 rounds
- Each round applies circular left shifts to both halves
- Shift amounts follow the predefined shift schedule
- Each shifted pair forms a 56-bit intermediate key

- 1.4 Final Subkey Permutation (PC2):
- Each 56-bit intermediate key is permuted using PC2 table
- Produces 16 final 48-bit subkeys (K₁ to K₁₆)
- These subkeys are used in the Feistel network
- 2. Message Encryption Process:
- 2.1 Input Conversion:
- Plaintext message is converted to 64-bit binary representation
- Padding applied if message is not 64 bits
- 2.2 Initial Permutation (IP):
- 64-bit block undergoes permutation using IP table
- Reorders the bits according to IP table specification
- 2.3 Block Division:
- Permuted block is split into:
- Left half (L_o): 32 bits
- Right half (R_o): 32 bits

2.4 Feistel Rounds (16 iterations):

For each round n (1 to 16):

$$2.4.1 L_n = R_{n-1}$$

2.4.2
$$R_n = L_{n-1} \oplus f(R_{n-1}, K_n)$$

Where:

- $\bigoplus = XOR$ operation
- f = Feistel function
- K_n = Subkey for round n

2.5 Expansion (E):

- Right half (R_{n-1}) expanded from 32 to 48 bits
- Uses expansion table E
- Allows combination with 48-bit subkey

2.6 S-box Substitution:

- 48-bit result divided into eight 6-bit groups
- Each group processed through corresponding S-box (S1-S8)
- Each S-box outputs 4 bits
- Total output: 32 bits (8 × 4 bits)

2.7 P Permutation:

- 32-bit S-box output undergoes permutation
- Uses P table to rearrange bits
- Produces final output of Feistel function

2.8 XOR Operation:

- P-permuted result is XORed with L_{n-1}
- Produces new right half R_n
- Left half L_n becomes previous R_{n-1}
- 3. Final Steps:
- 3.1 After 16 rounds:
- Left and right halves are concatenated
- Note: No swap after final round
- 3.2 Final Permutation (FP):
- Combined block undergoes final permutation
- Uses inverse of initial permutation table
- Produces final 64-bit ciphertext

- 4. Decryption Process:
- 4.1 Same algorithm as encryption
- 4.2 Subkeys used in reverse order (K₁₆ to K₁)
- 4.3 Final output is original plaintext

<mark>Always remember:</mark>

1) Key generation:

- 1- permutation using pc1 table.
- 2- divide each key into 2 each of 28 bits.
- 3- now we have 16 subkeys "56 bits"
- 4- therefore apply pc2 on contacanated subkeys to have 48 bits to work in fesitel network.

(These enter the function with RO then XORed with LO to get R1)

2) Message encryption:

- 1-change the message inputed by the user into binary
- 2- apply ip permutation
- 3-divide into 2 halves
- 4- Ln = Rn-1, Rn = Ln-1 + f(Rn-1, Kn), where n is the number of iteration
- 5- use expansion permutation no have 8 groups of 6 bits to have 48 bits with the 48 bits of the keys
- 6-Apply s boxes (now we have 8 groups of 4 bits)
- 7-Apply P permuation which gives us the ifnal value of f
- 8- xor with the Ln-1

Reference:

https://page.math.tu-berlin.de/``kant/teaching/hess/krypto-ws2006/des.htm

