Department of Electrical Engineering, University of Hawaii

EE 342: Probability and Statistics

Fall 2016

Homerwork Set 5

Due date: Sep 28, 2016

- (1) a) Chapter 4, problem 14
 - b) Chapter 4, problem 19
 - c) Chapter 4, problem 22
 - d) Chapter 4, problem 25
 - e) Chapter 4, problem 38
 - f) Chapter 4, problem 58
 - g) Chapter 4, theoretical exercise 4
 - h) Chapter 4, theoretical exercise 8

(2) Matlab exercise:

- a) Use Matlab to make plots of the PMF and CDF of a binomial random variable when n=20 and p=0.5. For plots of discrete random variables use "stem" for the PMF and "stairs" for the CDF. Use Matlab to compute the mean and variance of these 2 random variables. Repeat for n=20 and p=0.2.
- b) Use Matlab to generate 5000 random numbers drawn from the binomial random variable with parameters n=20 and p=0.5. From these random numbers, generate plots of the sample PMF and CDF. Also, find the sample mean and variance. Compare to problem 2a). Repeat for n=20 and p=0.2.

[Hint: Binomial random variables can be generated from Bernoulli random variables as discussed in class.]

(3) Matlab exercise:

- a) Repeat 2) for a geometric random variable with p=0.5.
- b) Repeat 2) for a geometric random variable with p=0.2.

[Hint: Geometric random variables can be generated from Bernoulli random variables as discussed in class.]

4.19. If the distribution function of X is given by

$$F(b) = \begin{cases} 0 & b < 0 \\ \frac{1}{2} & 0 \le b < 1 \\ \frac{3}{5} & 1 \le b < 2 \\ \frac{4}{5} & 2 \le b < 3 \\ \frac{9}{10} & 3 \le b < 3.5 \\ 1 & b \ge 3.5 \end{cases}$$

calculate the probability mass function of X.

4.14. Five distinct numbers are randomly distributed to players numbered 1 through 5. Whenever two players compare their numbers, the one with the higher one is declared the winner. Initially, players 1 and 2 compare their numbers; the winner then compares her number with that of player 3, and so on. Let X denote the number of times player 1 is a winner. Find $P\{X = i\}, i = 0, 1, 2, 3, 4$.

4.58. Compare the Poisson approximation with the correct binomial probability for the following cases:

(a) Find
$$P\{X = 1\}$$

(b) Determine
$$E[X]$$
.

4.38. If
$$E[X] = 1$$
 and $Var(X) = 5$, find **(a)** $E[(2 + X)^2]$; **(b)** $Var(4 + 3X)$.

(a)
$$P\{X = 2\}$$
 when $n = 8, p = .1$;
(b) $P\{X = 9\}$ when $n = 10, p = .95$;
(c) $P\{X = 0\}$ when $n = 10, p = .1$;
(d) $P\{X = 4\}$ when $n = 9, p = .2$.

(b)
$$P\{X = 9\}$$
 when $n = 10, p = .95$

(c)
$$P\{X = 0\}$$
 when $n = 10, p = .15$

4.4. For a nonnegative integer-valued random variable N, show that

$$E[N] = \sum_{i=1}^{\infty} P\{N \geq i\}$$

$$Hint: \sum_{i=1}^{\infty} P\{N \ge i\} = \sum_{i=1}^{\infty} \sum_{k=i}^{\infty} P\{N = k\}.$$
 Now interchange the order of summation.

4.8. Find Var(X) if

$$P(X = a) = p = 1 - P(X = b)$$