#### MGH/HST Athinoula A. Martinos Center for Biomedical Imaging





# Correction for multiple comparisons in FreeSurfer

#### Overview

- The problem of multiple comparisons
- Clusters and Cluster-forming threshold (CFT)
- Parametric Correction
- Inflated False Positive Rates (Eklund, et al, 2016)
- Non-parametric Correction (Permutation)
- Using the software



#### What does a p-value mean?

 $\begin{array}{l} fMRI \\ p < 0.10 \\ \text{Sig} > 1 \end{array}$ 



#### Task

- -- flashing checker board
- -- auditory tone
- -- button press

p-value: probability of a positive under the Null Hypothesis (false positive, eg, background)

#### Problem of Multiple Comparisons



Problem: how can you control false positives adequately while not destroying all your activation?

#### Clustering



- True signal tends to be clustered
- False Positives tend to be randomly distributed in space
- Cluster set of spatially contiguous voxels that are above a given threshold.

#### Voxel-wise Significance in FS



Sig = -log10(pvalue)
Bigger is better

### Cluster-forming Threshold (CFT)



**Spatial Location** 

### Cluster-forming Threshold (CFT)



**Spatial Location** 



#### Raise CFT Cluster 2 Gets smaller Cluster 1 Goes Away Significance (-log10(p)) **CFT** Cluster 2 Size

**Spatial Location** 





#### Lower CFT



**Spatial Location** 





### Cluster-forming Threshold (CFT)



As threshold lowers, clusters may expand or merge and new clusters can form. There is no way to say what the threshold is best.

#### Cluster Table, Uncorrected

CFT>4





38 clusters

| ClusterNo | Area(mm <sup>2</sup> ) | ) X   | Y     | Z    | Structure        |
|-----------|------------------------|-------|-------|------|------------------|
| Cluster 1 | 3738.82                | -11.1 | 34.5  | 27.2 | superiorfrontal  |
| Cluster 2 | 5194.19                | -32.4 | -23.3 | 15.7 | insula           |
| Cluster 3 | 1271.30                | -25.9 | -75.0 | 19.0 | superiorparietal |
| Cluster 4 | 775.38                 | -44.4 | -9.7  | 51.3 | precentral       |
| Cluster 5 | 440.56                 | -33.0 | -36.8 | 37.5 | supramarginal    |
|           |                        |       |       |      |                  |

. . .

How likely is it to get a cluster of a certain size under the null hypothesis?

#### Clusterwise Correction



How likely is it to get a cluster 440.56mm<sup>2</sup> or bigger by chance? How likely is it to get a cluster of a certain size under the null hypothesis?

#### Cluster size under the Null?



Going back to fMRI, the background is the Null How often do you see a cluster of a given size or bigger in the background? That is the p-value of the cluster!

Generally not so easy, especially on the surface.

#### Cluster Table, Corrected

CFT>4

22 clusters out of 38 have cluster p-value < 0.05

| ClusterNo | Area(mm <sup>2</sup> ) | ) X   | Y     | Z    | Structure       | Cluster P |
|-----------|------------------------|-------|-------|------|-----------------|-----------|
| Cluster 1 | 3738.82                | -11.1 | 34.5  | 27.2 | superiorfrontal | .0001     |
| Cluster 2 | 5194.19                | -32.4 | -23.3 | 15.7 | insula          | .0003     |
| Cluster 3 | 1271.30                | -25.9 | -75.0 | 19.0 | superiorparieta | 1 .0050   |
| Cluster 4 | 775.38                 | -44.4 | -9.7  | 51.3 | precentral      | .0100     |
| Cluster 5 | 440.56                 | -33.0 | -36.8 | 37.5 | supramarginal   | .0400     |

. . .

This table would go into your results section.

#### What does a cluster p-value mean?



What does a cluster p-value of .04 mean? If there is no effect (Null) and you were to repeat this experiment 100 times, you would expect to declare a false positive 4 times (4%). Generally, the cluster p-value must be less than .05 for publication.

### value?

How likely is it to get a cluster of a certain size or bigger by chance, ie, under the Null (nothing is really happening)?

- •Parametric:
  - Gaussian Random Field Theory (RFT)
  - Monte Carlo (MC) Simulation (Gaussian smoothness)
- •Non-Parametric:
  - Permutation



#### Monte Carlo Simulations (parametric)

- Traditional method in FreeSurfer
- 1. Synthesize white Gaussian noise (z-map) on surface (fsaverage)
- 2. Smooth by a given FWHM (Gaussian smoothing)
- 3. Threshold at a given CFT
- 4. Record size of largest cluster
- 5. Return to #1, repeat 10,000 times
- Process is the Null Hypothesis



#### Pre-computed and distributed tables with FS

- FWHM=1-30mm
- CFT Sig thresholds (1.3, 2, 2.3, 3.0, 3.3, 4.0)
- Sign (positive, negative, unsigned (abs))
- Application: measure FWHM in data (fwhm.dat)

#### MC Simulations: Application

- Analyze your data (mri\_glmfit)
  - Measures FWHM in data (fwhm.dat, eg 10.4mm)
- Run mri\_glmfit-sim
  - Set CFT threshold (eg, 2) and sign (eg, abs)
  - Gets list of cluster sizes (eg, 440.56mm<sup>2</sup>)
  - Goes to MC table (FWHM, threshold, sign, size)
  - Gets prob of cluster of that size under MC assumptions
  - Eliminates clusters with p>.05
  - Any clusters left? Declare a positive
  - p<.05 means False Positive Rate=5%</li>
- Quick a few seconds
- But ...



#### fMRI: Eklund, et al, 2016 PNAS

- Resting state <u>fMRI</u> analyzed as task data (Null)
- Full fMRI analysis pipeline
- Group analysis (N=20), Clusters p<.05 (RFT)</li>
- Expected False Positive Rate of 5%
- Actual rates were 10-60% (smoothing, CFT/CDT)
- Non-gaussian Smoothness



Cluster Failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Eklund, Nichols, Knutsson, 2016. PNAS

CDT=Cluster Defining Threshold = CFT

#### Greve and Fischl, 2017, NI

- Analyzed 500 young subjects in FS
- Thickness, vertex-wise surface area, and vertex-wise volume
- Randomly chose 20, randomly assigned to two groups
- Test for a group difference (should not be there, Null)
- Use MCSim to declare clusters to be positive (p<.05)
- Elevated false positive rates (Area, Volume worse)
- Non-gaussian Smoothness



#### Permutation Simulations

If there is no effect of group, then group membership can be randomly changed.

- 1.Permute (real) data (ie, randomly change labels) Null
- 2. Analyze using GLM
- 3. Threshold at a given CFT
- 4.Record size of largest cluster
- 5.Return to #1, repeat 1000-10,000 times (table)
- Apply
- 1. Analyze real data using true order in GLM
- 2.Threshold at the given CFT
- 3.Extract clusters, get cluster p-value from table
- 4.Eliminate clusters with p>.05



#### Greve and Fischl, 2017, NI

- Permutation works!
- Takes about 15-30min to run simulation (less if parallel)
- Permutation is complex
  - Exchangeability
  - Shuffling vs Sign Flipping
  - Presence of a covariate (eg, age)



#### How to do this in FreeSurfer

• 2D Cluster-based Correction at p < .05

```
mri_glmfit-sim
```

- --glmdir lh.gender\_age.glmdir
- --perm 1000 2 pos
- --2spaces
- --cwp .05
- --bg N

Patch to allow for non-orthogonal designs using the ter Braak method

# Surface-based Correction for Multiple Comparisons Original Mri\_glmfit command:

• 2D Cluster-based Correction at p < .05

```
mri_glmfit-sim
```

- --glmdir lh.gender age.glmdir
- --perm 1000 2 pos
- --2spaces
- --cwp .05
- --bg N

```
mri_glmfit
--y lh.thickness.sm10.mgh
--fsgd gender_age.txt
--C age.mtx -C gender.mtx
--surf fsaverage lh
--cortex
--eres-save
--glmdir
lh.gender_age.glmdir
```

```
Ih.gender_age.glmdir/
beta.mgh - parameter estimates
rvar.mgh - residual error variance
age/
sig.mgh - -log10(p), uncorrected
gamma.mgh, F.mgh
gender/
sig.mgh - -log10(p), uncorrected
gamma.mgh, F.mgh
```

• 2D Cluster-based Correction at p < .05

```
mri_glmfit-sim
--glmdir lh.gender_age.glmdir
--perm 1000 2 pos
```

- --2spaces
- --cwp .05
- --bg N

- Permutation simulation 1000 iterations
- positive contrast
- Cluster Forming Threshold = 2

• 2D Cluster-based Correction at p < .05

```
mri_glmfit-sim
--glmdir lh.gender_age.glmdir
--perm 1000 2 pos
--2spaces
```

--cwp .05

--bg N

Doing analysis with left hemi but right hemi will be done separately. Need to correct for full search space.

• 2D Cluster-based Correction at p < .05

--cwp .05

--bg N

```
Cluster-wise threshold p<.05
Only report on clusters with p<.05
```

```
mri_glmfit-sim
--glmdir lh.gender_age.glmdir
--perm 1000 2 pos
--2spaces
```

• 2D Cluster-based Correction at p < .05

--bg N

```
mri_glmfit-sim
--glmdir lh.gender_age.glmdir
--perm 1000 2 pos
--2spaces
--cwp .05
```

Speed up by running multiple (N) simulations in parallel. You must have a computer with multiple processors.

For single thread (N=1), the process can take about 20min

## Correction for Multiple Comparisons Output

```
mri_glmfit-sim
--glmdir
lh.gender_age.glmdir
--perm 1000 2 pos
--cwp .05
--2spaces
```



sig.mgh - pre-existing uncorrected p-values

perm.th20.pos.sig.cluster.mgh - map of significance of

clusters

perm.th20.pos.sig.ocn.annot - annotation of significant

clusters

perm.th20.pos.sig.cluster.summary - text file of cluster table

Only shows clusters p<.05, change - cwp to

a larger value to get more (ie, less sig) clusters

#### **Corrected Outputs**



*cache.th20.pos.sig.ocn.annot* – annotation of significant clusters

cache.th20.pos.sig.cluster.summary -- text file of cluster table

| ClusterNo | Area(mm <sup>2</sup> ) | ) X   | Y     | Z    | Structure       | Cluster P |
|-----------|------------------------|-------|-------|------|-----------------|-----------|
| Cluster 1 | 3738.82                | -11.1 | 34.5  | 27.2 | superiorfrontal | .0001     |
| Cluster 2 | 5194.19                | -32.4 | -23.3 | 15.7 | insula          | .0003     |
| Cluster 3 | 1271.30                | -25.9 | -75.0 | 19.0 | superiorparieta | l .0050   |
| Cluster 4 | 775.38                 | -44.4 | -9.7  | 51.3 | precentral      | .0100     |
| Cluster 5 | 440.56                 | -33.0 | -36.8 | 37.5 | supramarginal   | .0400     |

. . .

#### Permutation Analysis of Linear Models (PALM)

- Toolbox developed by Anderson Winkler
- fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM
- Allows for very elaborate models
- Approximations when using
- Ability to speed up simulations
- Matlab or octave
- FreeSurfer interface: fspalm

fspalm –glmdir glmdir ...

http://surfer.nmr.mgh.harvard.edu/fswiki/FsPalm

#### False Discover Correction Possible

- False Discovery Rate (FDR)
  - Built into QDEC
  - Genovese, et al, NI 2002
- mri\_fdr --help

#### **Tutorial**

#### 1. Command-line Stream

- Create an FSGD File for a thickness study
- Age and Gender
- Run
  - mris\_preproc
  - mri surf2surf
  - mri glmfit
  - mri\_glmfit-sim
- 2. QDEC same data set

#### QDEC - An Interactive Statistical Engine GU

Query - Select subjects based on Match Criteria

Design - Specify discrete and continuous factors

Estimate - Fit Model

Contrast - Automatically Generate Contrast Matrices

Interactive - Makes easy things easy (that used to be hard)

#### Some limitations

- No Query
- Two Discrete Factors (Two Levels)
- Two Continuous Factors
- Surface only
- No correction for multiple comparisons

### -qcache

For QDEC to work interactively, you need to run:

recon-all -s <sid> -qcache

(or as additional flag in your regular processing)

This will map and smooth **thickness** maps to **fsaverage**, use *-target <id>* to specify your own target and *-measure <surfmeas>* to specify curv, area, sulc etc.

#### QDEC - Spreadsheet

qdec.table.dat - spreadsheet with subject information - can be huge!

| fsid             | gender ag | e < | diagnosis   | Left-Cerebral-White-Matter-Vol |
|------------------|-----------|-----|-------------|--------------------------------|
| 011121_vc8048 /F | Female 70 |     | Demented    | 202291                         |
| 021121_62313-2   | Female 71 | L   | Demented    | 210188                         |
| 010607_vc7017 I  | Female 73 |     | Nondemented | 170653                         |
| 021121_vc10557 N |           | - 1 |             | 142029                         |
| 020718_62545 I   | Male 70   | 5   | Demented    | 186087                         |
| 020322_vc8817 I  | Male 77   | 7   | Nondemented | 149810                         |

gender.levels

Female Male diagnosis.levels

Demented Nondemente d Discrete Factors need a factorname.level file



#### **QDEC GUI**

- Load QDEC Table File
  - List of Subjects
  - List of Factors (Discrete and Cont)
- Choose Factors
- Choose Input (cached):
  - Hemisphere
  - Measure (eg, thickness)
  - Smoothing Level
- "Analyze"
  - Builds Design Matrix
  - Builds Contrast Matrices
  - Constructs Human-Readable Questions
  - Analyzes
  - Displays Results

### **End of Presentation**

### Comparisons

- 1. Simulate data under Null Hypothesis:
  - Synthesize Gaussian noise and then smooth (Monte Carlo), like random field theory
  - Permute rows of design matrix (Permutation, orthog.)
- 2. Analyze, threshold, cluster, get MaxClusterSizeNull
- 3. Repeat 10,000 times gives a list of 10000 MaxClusterSizeNulls under the null
- 4. Analyze real data, get ClusterSize (eg, 440.56 mm2)
- 5. Count number of times MaxClusterSizeNull > ClusterSize P(cluster) = #(MaxClusterSizeNull > ClusterSize) /10000



#### Clusterwise Correction



Probability of getting a cluster 440.56mm<sup>2</sup> or bigger by chance is p=.04 This is the clusterwise p-value.