A Layman's Introduction to Knots and Jones Polynomials

Junyu Lu

University of Manitoba

Nov 2023

DEFINITIONS

Knot = A piece-wise linear (or smooth) embedding of S^1 into \mathbb{R}^3 or S^3 Link = A p.l. (or smooth) embedding of disjoint circles into \mathbb{R}^3 or S^3

DEFINITIONS

Knot = A piece-wise linear (or smooth) embedding of S^1 into \mathbb{R}^3 or S^3 Link = A p.l. (or smooth) embedding of disjoint circles into \mathbb{R}^3 or S^3

Figure: Illustrations of knots and links, including a trefoil knot, top left, in an 1869 paper by Lord Kelvin on his knotted vortex theory of atoms.

KNOT EQUIVALENCE

Two knots are <u>equivalent</u> if one knot can be pushed about smoothly, without intersecting itself, to coincide with another knot.

Figure: Deformation to an unknot

unknot = the boundary of a simplicial disk

REIDEMEISTER MOVES

Theorem (Reidemeister 1927)

Two knots are equivalent if and only if all their diagrams are connected by a finite sequence of Reidemeister moves of Type I, II or III.

In this case, we also say their diagrams are equivalent.

REIDEMEISTER MOVES

REIDEMEISTER MOVES

Remark

The following moves can be seen (exercise) to be consequences of the three types of Reidemeister move.

Recognition Problem

Given two knots/knot diagrams, determining the (non-)equivalence of two knots.

Unkotting Problem

Given a knot (diagram), determining whether it is the unknot.

- ▶ Both problems are NP.
- ▶ n = the sum of crossing numbers of two diagrams; an upper bound on the number of Reidemeister moves is $2^{2^{2^{2^{-n}}}}$, where where the height of the tower of 2s is $10^{1,000,000n}$ (Coward & Lackenby 2014).
- ▶ c = the sum of crossing numbers of an unknot diagram; an upper bound on the number of Reidemeister moves required to arrive at the standard unknot is $(236c)^{11}$ (Lackenby 2015).

UNKNOTTING PROBLEM

Figure: One of Ochiai's unknot

Figure: Thistlethwaite unknot

KNOT COMPLEMENTS

Knot: $K \subset S^3$

Regular neighbourhood: n(K)

Knot complement: $\overline{S^3 - n(K)}$

$$K_1 = K_2 \implies \overline{S^3 - n(K_1)} = \overline{S^3 - n(K_2)}$$

Invariant of $\overline{S^3 - n(K)} \implies \text{Invariant of } K$

Topological and Geometricl Invariants

- $\pi_1(K) = \pi_1(\overline{S^3 n(K)})$, the knot group of K
- ► Hyperbolic volume of $\overline{S^3 n(K)}$

KNOT COMPLEMENTS

Knot: $K \subset S^3$

Regular neighbourhood: n(K)

Knot complement: $\overline{S^3 - n(K)}$

$$K_1 = K_2 \implies \overline{S^3 - n(K_1)} = \overline{S^3 - n(K_2)}$$

Invariant of $\overline{S^3 - n(K)} \implies \text{Invariant of } K$

Topological and Geometricl Invariants

- $\blacktriangleright \ \pi_1(K) = \pi_1(\overline{S^3 n(K)})$, the knot group of K
- ► Hyperbolic volume of $\overline{S^3 n(K)}$

Fact: The only knot with infinite cyclic knot group is the unknot.

DIAGRAMMATIC INVARIANT

Idea

Knots are equivalent ← Knot diagrams are equivalent

Diagrammatic invariants: invariants that respect Reidemeister moves

DIAGRAMMATIC INVARIANT

Idea

Knots are equivalent ← Knot diagrams are equivalent

Diagrammatic invariants: invariants that respect Reidemeister moves

A diagrammatic polynomial invariant:

Knot:
$$K \subset S^3$$

Knot polynomial:
$$f(K) \in \mathbb{Z}[t]$$
 or $\mathbb{Z}[t, t^{-1}]$

$$f() = f()$$

$$f() = f()$$

$$f() = f()$$

KAUFFMAN BRACKET

Definition

The Kauffman bracket is a function from unoriented link diagrams in the oriented plane to Laurent polynomials $\mathbb{Z}[A,A^{-1}]$. It maps a diagram D to $\langle D \rangle \in \mathbb{Z}[A,A^{-1}]$ and is characterized by

1.
$$\langle \bigcirc \rangle = 1;$$

2.
$$\langle L \cup \bigcirc \rangle = (-A^2 - A^{-2})\langle L \rangle;$$

$$3. \left\langle \middle{} \right\rangle = A \left\langle \middle{} \right\rangle + A^{-1} \left\langle \middle{} \right\rangle \right\rangle.$$

Or if you tilt your head $\frac{\pi}{2}$,

3'.
$$\langle \rangle \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \rangle \rangle$$
.

KAUFFMAN BRACKET

$$\langle \bigcirc \bigcirc \rangle = (-A^2 - A^{-2}) \langle \bigcirc \rangle$$

$$= -A^2 - A^{-2}$$

$$\langle \bigcirc \bigcirc \rangle = A \langle \bigcirc \bigcirc \rangle + A^{-1} \langle \bigcirc \bigcirc \rangle$$

Bad news: The Kauffman bracket does <u>not</u> respect Reidemeister moves of Type I. Good news: The Kauffman bracket respects Reidemeister moves of Type II and III.

 $= -A^{-3}$

 $= A \cdot 1 + A^{-1}(-A^2 - A^{-2})$

WRITHE

Oriented Link

A link with a choice of orientation for each complement

Definition

The writhe w(D) of a diagram D of an <u>oriented</u> link is the sum of signs of the crossings of D, where each crossing has sign +1 or -1 according to the following:

Property of Writhe

The writhe w(D) does not change if D is changed under Reidemeister moves of type II or III; the writhe w(D) does change by +1 or -1 if D is changed under a Reidemeister move of type I. And the writhe of a knot diagram does <u>not</u> depend on the choice of orientation.

For example:

$$w(\bigcirc)) = +2$$

$$w(\bigcirc)) = -2$$

$$w(\bigcirc)) = -3$$

JONES POLYNOMIAL

Theorem

Let D be a diagram of an oriented link L. Then the expression

$$(-A)^{-3w(D)}\langle D\rangle$$

is an invariant of the oriented link L.

Definition-Theorem

The Jones polynomial V(L) of an oriented link L is the Laurent polynomial in $t^{1/2}$ with integral coefficients, defined by

$$V(L) = \left((-A)^{-3w(D)} \langle D \rangle \right)_{t^{1/2} = A^{-2}} \in \mathbb{Z}[t^{1/2}, t^{-1/2}],$$

where D is any oriented diagram for L.

HOPF LINK

LEFT TREFOIL KNOT

$$\left\langle \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \right\rangle = A \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle + A^{-1} \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$$

$$= A(-A^3)^2 + A^{-1}(-A^{-4} - A^4) = A^7 - A^3 - A^{-5}$$

$$w(\begin{array}{c} \\ \\ \end{array} \right) = -3$$

$$V(\begin{array}{c} \\ \\ \end{array} \right) = \left(-A^{16} + A^{12} + A^4\right)_{t^{1/2} = A^{-2}} = -t^{-4} + t^{-3} + t^{-1}$$

A Layman's Introduction to Knots and Jones Polynomials

RIGHT TREFOIL KNOT

3 A Layman's Introduction to Knots and Jones Polynomials

MIRROW IMAGE

Mirror Image

Put a mirror aside a knot and the image of the knot is known as the mirror image of the knot, or mathematically, the knot obtained by a refection in a plane.

Figure: The left-handed and right-handed trefoil knots are not equivalent

PROPERTIES OF JONES POLYNOMIALS

Theorem

The Jones polynomial of the mirror image \bar{L} of an oriented link L is the conjugate under $t \leftrightarrow t^{-1}$ of the polynomial of L.

PROPERTIES OF JONES POLYNOMIALS

Theorem

The Jones polynomial of the mirror image \bar{L} of an oriented link L is the conjugate under $t \leftrightarrow t^{-1}$ of the polynomial of L.

Proof.

The mirror image negates the writhe of any oriented diagram by exchange the positive and negative crossings. The mirror effect on the Kauffman bracket is that A is replaced by A^{-1} .

$$V(\text{left-handed trefoil knot}) = -t^{-4} + t^{-3} + t^{-1}$$

 $V(\text{right-handed trefoil knot}) = -t^4 + t^3 + t^1$

CONNECTED SUM

Connected sum of (oriented) knots $K_1 + K_2$:

PROPERTIES OF JONES POLYNOMIALS

Theorem

Let K_1 , K_2 be two (oriented) knots. Then we have

$$V(K_1 + K_2) = V(K_1)V(K_2).$$

Sketch of proof

Consider a calculation if the polynomial of $K_1 + K_2$ and operate firstly on the crossings of just one summand.

YET ANOTHER APPROACH

Definiton-Theorem

The Jones polynomial invariant is a function

$$V: \{ \text{Oritented links in } S^3 \} \to \mathbb{Z}[t^{1/2}, t^{-1/2}]$$

such that

I.
$$V(()) = 1$$

II. whenever three oriented links L_+, L_- and L_0 are the same, except in the neighbourhood of a point where they are shown as in the next slide, then

$$t^{-1}V(L_{+}) - tV(L_{-}) + (t^{-1/2} - t^{1/2})V(L_{0}) = 0.$$

SKEIN RELATION

$$t^{-1}V(L_{+}) - tV(L_{-}) + (t^{-1/2} - t^{1/2})V(L_{0}) = 0$$

$$L_{+}: \qquad L_{-}: \qquad L_{0}: \qquad C$$

Skein Relation

In general, a skein relationship requires three link diagrams that are identical except at one crossing. To recursively define a knot (link) polynomial, a function F is fixed and for any triple of diagrams and their polynomials labelled as above,

$$F(L_+, L_-, L_0) = 0.$$

Unlink

$$L_{+}$$
: L_{-} : L_{0} : L

But L_+ and L_- are the unknot, so $V(L_+) = V(L_-) = 1$.

$$V(L_0) = -\frac{t^{-1} - t}{t^{-1/2} - t^{1/2}}$$
$$V(L_0) = -t^{-1/2} - t^{1/2}$$

YET MORE APPROACHES

CONJECTURE

COLOURED JONES POLYNOMIALS

Whatever ite means

CONJECTURES

AJ Conjecture Volume Conjecture