

Greedy Algorithms

A Scheduling Application: Problem Definition

A Scheduling Problem

Setup:

- One shared resource (e.g., a processor).
- Many "jobs" to do (e.g., processes).

Question: In what order should we sequence the jobs?

Assume: Each job has a:

- weight w_j ("priority")
- length l_J

Completion Times

Definition: The completion time C_i of job i = Sum of job lengths up to and including j.

Example: 3 jobs,
$$l_1 = 1, l_2 = 2, l_3 = 3$$
.

Schedule:

$$#1 \mid #2 \mid #3$$
 $0 \rightarrow$
(time)

Question: What is C_1 , C_2 , C_3 ?

C)
$$1, 3, 6$$

The Objective Function

Goal: Minimize the weighted sum of completion times: $\min \sum_{j=1}^{n} w_j C_j$.

Back to example: If $w_1 = 3$, $w_2 = 2$, $w_3 = 1$, this sum is $3 \cdot 1 + 2 \cdot 3 + 1 \cdot 6 = 15$.

Greedy Algorithms

A Scheduling Application: The Algorithm

Intuition for Algorithm

Recall: Want to $\min \sum_{j=1}^{n} w_j$. Cj

Goal: Devise correct greedy algorithm.

Question:

- 1. With equal lengths, schedule larger or smaller-weight jobs earlier?
- 2. With equal weights, schedule shorter or longer jobs earlier?
 - A) Larger/shorter C) Larger/longer
 - B) Smaller/shorter D) Smaller/longer

Resolving Conflicting Advice

Question: What if $w_i > w_j$ but $l_i > l_j$?

Idea: Assign "scores" to jobs that are:

- inscreasing in weight
- decreasing in length

Guess (1): Order jobs by decreasing value of $w_i - l_i$.

Guess (2): Order w_i/I_i .

Breaking a Greedy Algorithm

To distinguish (1) & (2): Find example where the two algorithms produce different outputs. (At least one will be incorrect.) Example:

$$I_1 = 5, w_1 = 3$$
 (longer ratio) W1 = 3, I1 = 5
 $I_1 = 2, w_1 = 1$ (larger difference) W2 = 1, I2 = 2

Question: What is the sum of weighted completion times of algorithms (1) & (2) respectively?

Alg#1:
$$#2 | #1 | \rightarrow 1 \cdot 2 + 3 \cdot 7 = 23$$

Alg#2: $#1 | #2 | \rightarrow 3 \cdot 5 + 1 \cdot 7 = 22$

The Story So Far

So: Alg#1 not (always) correct.

Claim: Alg#2 (order by decreasing ratio w_j/l_j 's) is always correct. [not obvious! - proof coming up next]

Running time: $O(n \log n)$. [just need to sort]

Greedy Algorithms

A Scheduling Application: Correctness Proof Part I

Correctness Claim

Claim: Algorithm #2 (order jobs according to decreasing ratios w_j/l_j) is always correct.

Proof: By an Exchange Argument.

Plan: Fix arbitrary input of n jobs. Will proceed by contradiction. Let $\sigma =$ greedy schedule, $\sigma^* =$ optimal schedule. (With σ^* better than σ .)

Will produce schedule even better than σ^* , contradicting purported optimality of σ^* .

Correctness Proof

Assume: All w_j/l_j 's distinct.

Assume: [Just by renaming jobs] $w_1/l_1 > w_2/l_2 > ... > w_n/l_n$.

Thus: Greedy schedule σ is just $1, 2, 3, \ldots, n$.

Thus: If optimal schedule $\sigma^* \neq \sigma$, then there are consecutive jobs i, j with i > j.

[Only schedule where indices always go up is $1, 2, 3, \ldots, n$]

Correctness Proof (con'd)

So far:

- 1. $w_1/I_1 > w_2/I_2 > \ldots > w_n/I_n$
- 2. In optimal σ^* , \exists consecutive jobs i, j with i > j.

Thought experiment: Suppose we exchange order of i&j in σ^* (leaving other jobs unchanged):

Greedy Algorithms

A Scheduling Application: Correctness Proof Part II

Cost-Benefit Analysis, Part I

Question: What is the effect of this exchange on the completion time of (1) a job k other than i or j, (2) the job i, (3) the job j?

- A) Not enough info/goes up/goes down
- B) Not enough info/goes down/goes up by
- C) Unaffected/ goes up / goes down
- D) Unaffected/goes down/goes up

Cost-Benefit Analysis, Part II

Upshot:

- 1. Cost of exchange $w_i I_i$. [C_i goes up by I_i]
- 2. Benefit of exchange is $w_i l_i$. $[C_i \text{ goes down by } l_i]$

Note: $i > j \Rightarrow w_i/l_i < w_j/l_j \Rightarrow w_il_j < w_jl_i \Rightarrow COST < BENEFIT$ \Rightarrow Swap improves σ^* , contradicts optimality of σ^* .

QED!

Greedy Algorithms

A Scheduling Application: Handling Ties

Correctness Claim

Claim: Algorithm #2 (order jobs in nonincreasing order of ratio w_j/l_j) is always correct. [Even with ties]

New Proof Plan: Fix arbitrary input of n jobs. Let $\sigma =$ greedy schedule, let $\sigma^* =$ any other schedule.

Will show σ at least as good as $\sigma^* \Rightarrow$ Implies that greedy schedule is optimal.

Correctness Proof

Assume: [Just by renaming jobs] Greedy schedule σ is just 1, 2, 3, ..., n (and so $w_1/l_1 > w_2/l_2 > ... > w_n/l_n$).

Consider arbitrary schedule σ^* . If $\sigma^* = \sigma$, done.

Else recall \exists consecutive jobs i, j in σ^* with i > j. (From last time)

Note: $i > j \Rightarrow w_i/l_i \le w_j/l_j \Rightarrow w_il_j \le w_jl_i$.

Recall: Exchanging i&j in σ^* has net benefit of $w_jl_i - w_il_j \ge 0$.

Correctness Proof

Upshot: Exchanging an "adjacent inversion" like i, j only makes σ^* better, and it decreases the number of inverted pairs .

Jobs i, j with i > j and i scheduled earlier

- \Rightarrow After at most $\binom{n}{2}$ such exchanges, can transform σ^* into σ .
- $\Rightarrow \sigma$ at least as good as σ^* .
- \Rightarrow Greedy is optimal.

QED!