Chapter-8

Matrix Eigenvalue Problems

8.1 Eigenvalues and Eigenvectors

Eigen values:

Let $A = [a_{jk}]$ be an $n \times n$ matrix and λ be a scalar. Then $D(\lambda) = \det(A - \lambda I) = |A - \lambda I| = 0$ is called characteristic equation of A.

A root of the characteristic equation, $|A - \lambda I| = 0$ is called an eigenvalue of characteristic value of A.

Here,
$$|A - \lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$
.

Note: An $n \times n$ matrix A has at least one eigenvalue and at most n numerically different eigenvalues.

Examples:

Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$.

Solution: The characteristic equation of A is $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 1 - \lambda & 3 \\ 4 & 5 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1 - \lambda)(5 - \lambda) - 12 = 0$$

$$\Rightarrow \lambda^2 - 6\lambda - 7 = 0$$

$$\Rightarrow (\lambda - 7)(\lambda + 1) = 0$$

 $\Rightarrow \lambda = -1, 7$ Hence the eigenvalues of A are -1, 7.

Example:

Find the eigen values of the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{bmatrix}$. **Solution:** The characteristic equation of A is $\begin{vmatrix} A - \lambda I \end{vmatrix} = 0$

$$\Rightarrow \begin{vmatrix} 1 - \lambda & -1 & 0 \\ 1 & 2 - \lambda & -1 \\ 3 & 2 & -2 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1 - \lambda)\{-(2 - \lambda)(2 + \lambda) + 2\} + 1(-2 - \lambda + 3) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda^2 - 2) + (1 - \lambda) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda^2 - 1) = 0$$

$$\Rightarrow \lambda = 1, 1, -1$$

Hence the eigenvalues of A are 1, 1-1.

Eigen Vectors:

Let A be an $n \times n$ matrix. A non-null vector X which is a solution of the vector equation $AX = \lambda X$, is called an eigenvector or characteristic vector of A. Here λ is a scalar.

Example:

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$

Solution: The characteristic equation of A is $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow \dot{\lambda}^2 + 7\lambda + 6 = 0$$

$$\Rightarrow \lambda = -1, -6$$

Let $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be an eigen vector corresponding to $\lambda = -1$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow -4x_1 + 2x_2 = 0, \quad 2x_1 - x_2 = 0$$

$$\Rightarrow 2x_1 - x_2 = 0$$

$$\Rightarrow -4x_1 + 2x_2 = 0, \quad 2x_1 - x_2 = 0$$

$$\Rightarrow 2x_1 - x_2 = 0$$
Let $x_1 = k$, then $x_2 = 2k$ where, $k \neq 0$.
So,
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} k \\ 2k \end{bmatrix} = k \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Hence the eigenvector corresponding to $\lambda = -1$ is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Similarly, let $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be an eigenvector corresponding to $\lambda = -6$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -6 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow x_1 + 2x_2 = 0, \ 2x_1 + 4x_2 = 0$$

$$\Rightarrow x_1 + 2x_2 = 0$$

Let
$$x_1 = k$$
, then $x_2 = -k/2$ where, $k \neq 0$.
So, $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} k \\ -k/2 \end{bmatrix} = k/2 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Hence the eigenvector corresponding to $\lambda = -6$ is $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

Example:

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$

Solution: The characteristic equation of A is $|A - \lambda I| =$

$$\Rightarrow \begin{vmatrix} 1 - \lambda & 1 & -2 \\ -1 & 2 - \lambda & 1 \\ 0 & 1 & -1 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1-\lambda)\{(2-\lambda)(-1-\lambda)-1\}-1(\lambda+1-0)-2(-1-0)=0$$

$$\Rightarrow (1 - \lambda)\{(2 - \lambda)(-1 - \lambda) - 1\} + (1 - \lambda) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda^2 - \lambda - 2) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda - 2)(\lambda + 1) = 0$$

$$\Rightarrow \lambda = 1, 2, -1$$

Let $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ be an eigenvector corresponding to $\lambda = 1$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow 0x_1 + x_2 - 2x_3 = 0, \qquad \dots (1)$$

$$-x_1 + x_2 + x_3 = 0, (2)$$

Solving Eqs.(1) and (2) by cross multiplication method, we get
$$\frac{x_1}{1+2} = \frac{x_2}{2-0} = \frac{x_3}{0+1}$$

$$\Rightarrow \frac{x_1}{3} = \frac{x_2}{2} = \frac{x_3}{1} = k \text{ (say)}$$

Then $x_1 = 3k$, $x_2 = 2k$, $x_3 = k$.

You can easily verify that this solution is also satisfied Eq. (3).

So,
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3k \\ 2k \\ k \end{bmatrix} = k \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

Hence the eigenvector corresponding to $\lambda = 1$ is $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Let $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ be an eigen vector corresponding to $\lambda = 2$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 2 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow -x_1 + x_2 - 2x_3 = 0, \tag{1}$$

$$-x_1 + 0x_2 + x_3 = 0,$$

Solving Eqs.(1) and (2) by cross multiplication method, we get
$$\frac{x_1}{1-0} = \frac{x_2}{2+1} = \frac{x_3}{0+1}$$

$$\Rightarrow \frac{x_1}{1} = \frac{x_2}{3} = \frac{x_3}{1} = k \text{ (say)}$$

Then $x_1 = k$, $x_2 = 3k$, $x_3 = k$.

You can easily verify that this solution is also satisfied Eq. (3).

So,
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} k \\ 3k \\ k \end{bmatrix} = k \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

Hence the eigenvector corresponding to $\lambda = 2$ is $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$.

Similarly, you can obtain the eigen value corresponding to $\lambda = -1$.

The eigenvalue corresponding to $\lambda = -1$ will be $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$