

Gateway to the Earth

Quantitative Evaluation of Geological Risk

17 – 18 October 2018

Edward Lewis: Geospatial Analyst, BGS

edlew@bgs.ac.uk

Outline

- Why
- Targeting
- Mineral Systems
- Prospectivity Analysis
 - Requirements
 - Methods
 - Tools
- Data Management

Conclusions

- Prospectivity Targeting
- Decreases risk
- Focuses exploration efforts
- Increase efficiency of exploration spending
- Effects on budgeting

The Reason

- Are you spending your money wisely?
 - How do you test this?

The Reason - Example

 22 years expenditure data

 No spatial correlation between areas of high expenditure and areas of high geological potential (R= 0.14)

 72% licences on unprospective ground

Decreasing Risk?

The Reason - Example

Historical discoveries - Current Methods

- Prior Knowledge
- Field Relationships
- Artisanal/Historical Workings
- Geophysical Anomalies
- Geochemical Anomalies
 - Prospectivity Analysis

Targeting

Targeting - Critical first stage in the exploration business

 A good geoscientist uses the following concepts and processes in their work everyday

Prospectivity Mapping - What can it do for you?

Targeting Process

Simplified

- 1. Business Strategy
- 2. Conceptual targeting model
- 3. Geodatabase to support targeting model
- 4. Generate Targets
- 5. Explore direct testing of mineralised system
- 6. Evaluate Performance

(Hronsky & Groves, 2008)

Opportunity Cost of poor initial targeting is high

Modified from McCuaig and Hronsky (2000) and Hronsky and Groves (2008)

Targeting Science

Mineral Systems – Define key criteria of ore forming processes at different scales

Discern physical properties which are tied to those criteria – practical proxies

Integrate scientific understanding within the economic and practical limits of the exploration industry

Mineral Systems

Focus on processes not characteristics

- Source
- Fluid flow
- Conduits
- Trap/Chemical Scrubber
- Preservation

Target geological features of those processes

Chemical Scrubber > Wallrock reactions > key alt minerals/rocks with favourable chemistry > remote sensing response/solid geology interp

Mineral Systems

Mappable proxies often dependant on scale

Orogenic Gold System vs Komatiite hosted Ni mineral system

Similar critical processes

Prospectivity Analysis

- Integrate knowledge and spatial data
- Can be quantitative
 - Incorporate into commercial risk analysis
 - Potential to aid valuations
- Spatial analysis decreases geological bias & personal bias
- Possible in data poor and data rich areas, at all scales for all deposit types

Prospectivity Approaches – End Members

- Conceptual & Empirical
- Conceptual
 - Uses all data, spatial data, reports, published & unpublished literature
 - Biased by analysts subjective interpretation, proclivity for specific models, personal experience
- Empirical
 - Mathematical models of spatial associations of targeting criteria
 - Using existing deposit locations

Techniques

- Manual
 - GIS
 - Semi Quantitative
- Automated
 - Weights of Evidence
 - Neural Networks
 - Supervised
 - Unsupervised
 - Fuzzy Logic
 - Random Forests
 - Logistic Regression

New Techniques

Cloud based platforms with machine

learning tools

- Hypercube
- Azure platform
 - Decision forests

Techniques - Manual Analysis

- Team Geologists
- Search targeting criteria as defined in Model
- Targets Relatively ranked

$$P_{\text{mineralization}} = P_1 \times P_2 \times P_3 \times P_4$$

 Subjective believe to quantitative Probability – Sherman – Kent Scale (Jones & Hillis, 2003)

Geological Rules

- Statements that guide the process of prospectivity analysis
- Embrace evidence-based geology conceptual approach
 - Geological rules look for evidence of depositional processes
 empirically based

Analysis for Cu-Au porphyry deposits – *Criteria*

Regional scale – permissive areas

- Tectonic criteria (A) (Conduit)
- Magmatic criteria (B) (Source)

District scale – favourable areas/highly favourable areas

- Magmatic criteria(A) (Chemical Scrubber)
- Structural criteria(B) (Trap/Conduit)
- Alteration/mineralization criteria (C) (Chemical Scrubber)

Local scale – prospective areas

- Structural criteria(A)
- Lithological criteria (B)
- Alteration/mineralization criteria (C)

Techniques - Manual Analysis

Target	Pathway	Justification for ranking	Physical throttle	Justification for ranking	Chemical scrubber	Justification for ranking	Relative ranking
1	0.7	Minor D _{GTG2} fault	0.7	D _{GTO1} anticline	0.7	Stubbins	0.34
2	0.9	D _{GTG2} fault related to D _{GTGe} thrust fault	0.75	D _{GTO1} anticline/Footwall of D _{GTO2} -e fault	0.7	Stubbins	0.47
3	0.75	D _{GTG2} fault	0.8	NE-SW D _{GTO2} fault	0.7	Stubbins	0.42
4	0.9	D _{GTG2} fault related to D _{GTGe} thrust fault	0.8	NE-SW D _{GTO2} fault	0.7	Stubbins	0.50
5	0.9	D _{GTG2} fault related to D _{GTGe} thrust fault	0.9	D _{CTC2} anticline	0.7	Stubbins	0.57
6	0.8	D _{GTOe} fault	0.8	Hangingwall of D _{ctro2} fault	0,5	Killi Killi	0,32
7	0,9	D _{GTG2} fault related to D _{GTGe} thrust fault	0,85	End of the D _{GTO2} anticline	0,5	Killi Killi	38

- Gold in the Tanami

 Areas defined manually
- Quantitative ranking

Numerical probability value	Subjective probability estimates		
0.98-1.00	Proven; definitely true		
0.90-0.98	Virtually certain; convinced		
0.75-0.90	Highly probable; strongly believe; highly likely		
0.60-0.75	Likely; probably true; about twice as likely		
	to be true as untrue; chances are good		
0.40-0.60	Chances are slightly better than even or		
	slightly less than even		
0.50-0.50	Chances are about even; it can be true or not		
0.20-0.40	Could be true but more probably not; unlikely;		
	chances are fairly poor; two or three times more		
	likely to be untrue than true		
0.02-0.20	Possible but very doubtful; only a slight chance;		
	very unlikely indeed; very improbable		
0.00-0.02	Proven untrue; impossible		

(Jones & Hillis, 2003)

- Developed for medical diagnosis
 - Adapted to exploration in late 80'S
 - Mineral system process = symptoms
 - Mineral deposit = disease
- Quantitative ranking probability based

Method

- Generate binary or multiclass maps of data relevant to mineral systems process
- Use training data to establish spatial correlation (known occurrences/mines)
- Combine maps to produce probability map


```
W+ = natural log = <u>Proportion of deposits on theme</u>
Proportion of total area occupied by theme
```

```
W- = natural log = <u>Proportion of deposits not on theme</u>
Proportion of total area not occupied by theme
```

```
W+ > 0 indicates positive association with theme
W- < 0 indicates negative association with non - theme
```

```
C > 3.0 Strong correlation 1.0 < C < 3.0 Moderate correlation C < 1.0 Weak to poor correlation Theme = Lithology/distance from structure/geochemical/geophysical response > X
```


Details of the WofE analysis of gold prospectivity analysis for the West GTO. See text for discussion.

Data Required

- Minimum
 - Geological Map
- All data useful and can be integrated
 - Geochemistry
 - Geophysics (Ground/Airborne Magnetic, Gravity, Radiometric/inversion models)
 - Geochronology
 - Land Use/Restricted Areas
 - Drillholes/Water bores
 - Seismic
 - Mines Operating/Historical
 - Remote Sensing
 - Exploration reports
 - Hyperspectral Remote sensing/Hylogger

Data Availability

- Always a challenge
- However 45% global exploration spending is in
- Australia, Canada, US, Mexico or Europe
- All have excellent government geodata
- Often also have access to industry data

No excuses!

Tools available

GIS – for manual semi-quantitative

Plug-ins for ArcGIS – Arc Spatial Data Modeller

Proprietary solutions – Often use same maths as above but repackaged

Libraries for R or Python

Risk Analysis

Link geologic potential

– probability adjusted
financial value

Consistent ranking and evaluation

Plan exploration based on EV (NPV of a drill decision)

Other Comments – Open Standards

Software

QGIS - http://qgis.org/en/site/

Data Storage
Using proprietary data formats costs time = \$\$\$

There are open international standards

- Geopackage/Spatialite vs ESRI Geodatabase
- Spatialite vs Shapefiles
- SDL vs ESRI lyr files
- PostGIS vs Aquire/Oracle

Any Questions?

Edward Lewis, Geospatial Analyst, BGS edlew@bgs.ac.uk

Any Questions?

Edward Lewis, Geospatial Analyst, BGS edlew@bgs.ac.uk

