SPRINT - 03

Date :	07 November 2022
Team ID :	PNT2022TMID47905
Project Name	SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFETY

SPRINT GOAL:

Integrate the hardware to be able to access the cloud functions and provide inputs to the same.

POGRAM 01:

AIM: To find the Temperature and Humidity DHT22 and ESP32

PLATFORM: WOKWI

PYTHON CODE:

```
#include <WiFi.h>
#include <PubSubClient.h>
#include "DHT.h"
#define DHTPIN 4
#define DHTTYPE DHT22
#define LED 5
DHT dht (DHTPIN, DHTTYPE);
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength);
#define ORG "lx9rlh"
#define DEVICE TYPE "jerom"
#define DEVICE_ID "1234"
#define TOKEN "12345678"
String data3;
float h, t;
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/Data/fmt/json";
char subscribetopic[] = "iot-2/cmd/test/fmt/String";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
WiFiClient wifiClient;
PubSubClient client(server, 1883, callback ,wifiClient);
void setup()
{
 Serial.begin(115200);
 dht.begin();
 pinMode(LED,OUTPUT);
  delay(10);
 Serial.println();
 wificonnect();
 mqttconnect();
}
void loop()
{
 h = dht.readHumidity();
  t = dht.readTemperature();
  Serial.print("temperature:");
  Serial.println(t);
  Serial.print("Humidity:");
  Serial.println(h);
  PublishData(t, h);
  delay(1000);
```

```
if (!client.loop()) {
    mqttconnect();
  }
}
void PublishData(float temp, float humid) {
 mqttconnect();
 String payload = "{\"temperature\":";
  payload += temp;
 payload += "," "\"humidity\":";
 payload += humid;
  payload += "}";
 Serial.print("Sending payload: ");
 Serial.println(payload);
 if (client.publish(publishTopic, (char*) payload.c_str())) {
    Serial.println("Publish ok");
  } else {
    Serial.println("Publish failed");
  }
}
void mqttconnect() {
  if (!client.connected()) {
    Serial.print("Reconnecting client to ");
    Serial.println(server);
    while (!!!client.connect(clientId, authMethod, token)) {
      Serial.print(".");
      delay(500);
    }
     initManagedDevice();
     Serial.println();
  }
}
void wificonnect()
{
 Serial.println();
 Serial.print("Connecting to ");
 WiFi.begin("Wokwi-GUEST", "", 6);
 while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
 Serial.println("");
```

```
Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}
void initManagedDevice() {
  if (client.subscribe(subscribetopic)) {
    Serial.println((subscribetopic));
    Serial.println("subscribe to cmd OK");
    Serial.println("subscribe to cmd FAILED");
  }
}
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength)
 Serial.print("callback invoked for topic: ");
 Serial.println(subscribetopic);
 for (int i = 0; i < payloadLength; i++) {</pre>
    data3 += (char)payload[i];
  }
 Serial.println("data: "+ data3);
 if(data3=="lighton")
 {
Serial.println(data3);
digitalWrite(LED,HIGH);
  }
 else
  {
Serial.println(data3);
digitalWrite(LED,LOW);
  }
data3="";
}
```

Output link:

https://wokwi.com/projects/348949525922054739

By using this Wokwi we determined the Temperature and Humidity for better road safety.

POGRAM 02

AIM: Write code and connection in Wowki for ultrasonic sensor. Whenever distance is less than 100 cms send "Alert" to IBM cloud and display in device recent events by using ESP32

PYHTON CODE:

```
#include <WiFi.h>
#include <PubSubClient.h>
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength);
#define ORG "lx9rlh"
#define DEVICE TYPE "jerom"
#define DEVICE ID "12345"
#define TOKEN "12345678"
String data3;
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/Data/fmt/json";
char subscribetopic[] = "iot-2/cmd/test/fmt/String";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
WiFiClient wifiClient;
PubSubClient client(server, 1883, callback ,wifiClient);
const int trigpin = 5;
const int echopin = 18;
const int ledpin = 2;
long duration ;
float distance;
#define sound_speed 0.034
void setup() {
  Serial.begin(115200);
  pinMode(trigpin, OUTPUT);
```

```
pinMode(echopin, OUTPUT);
  pinMode(ledpin, OUTPUT);
  wificonnect();
  mqttconnect();
}
void loop() {
  digitalWrite(trigpin, LOW);
  digitalWrite(trigpin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigpin, LOW);
  duration= pulseIn(echopin, HIGH);
  distance = duration * sound_speed /2;
  if(distance<=100){</pre>
    PublishData(distance);
  delay(1000);
  if (!client.loop()) {
    mqttconnect();
  }
    digitalWrite(ledpin, HIGH);
    Serial.println("ALERT....!!!");
    Serial.println(distance);
  }
  else
  {
    digitalWrite(ledpin, LOW);
  }
  delay(10); // this speeds up the simulation
}
void PublishData(float distance) {
  mqttconnect();
  String payload = "{\"ALERT...!! \": ";
  payload += distance;
  payload += "}";
  Serial.print("Sending payload: ");
  Serial.println(payload);
  if (client.publish(publishTopic, (char*) payload.c_str())) {
    Serial.println("Publish ok");
  } else {
    Serial.println("Publish failed");
  }
}
void mqttconnect() {
  if (!client.connected()) {
    Serial.print("Reconnecting client to ");
```

```
Serial.println(server);
    while (!!!client.connect(clientId, authMethod, token)) {
      Serial.print(".");
      delay(500);
    }
     initManagedDevice();
     Serial.println();
  }
}
void wificonnect()
 Serial.println();
 Serial.print("Connecting to ");
 WiFi.begin("Wokwi-GUEST", "", 6);
 while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}
void initManagedDevice() {
  if (client.subscribe(subscribetopic)) {
    Serial.println((subscribetopic));
    Serial.println("subscribe to cmd OK");
  } else {
    Serial.println("subscribe to cmd FAILED");
 }
}
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength)
{
 Serial.print("callback invoked for topic: ");
  Serial.println(subscribetopic);
 for (int i = 0; i < payloadLength; i++) {</pre>
   //Serial.print((char)payload[i]);
    data3 += (char)payload[i];
  }
  Serial.println("data: "+ data3);
  if(data3=="lighton")
  {
      Serial.println(data3);
  }
  else
  {
```

```
Serial.println(data3);
}
data3="";
}
```

Output link:

https://wokwi.com/projects/349037081204359762

Conclusion:

Here I showed the ALERT and DISTANCE in IBM cloud when vehicle has the distance is less than 100 cms