Optimal Control Theory

Robotics - COMS4045

Benjamin Rosman

Fitting things together...

- You've learned how to:
 - determine where the robot is (forward kinematics)
 - determine where you'd like it to be (inverse kinematics)
 - determine how it may move (dynamics)
- Control:
 - Open loop, closed loop
 - Model based
 - PID
- But now:
 - The **best** controller?

- How to reach a cup?
- (Ignore the fact that we're working in joint angles)

 Compute an "error" between hand and cup, and use PID?

- Is this efficient?
- Is this optimal?

What about obstacles?

- Compute a path and use PID control to follow it?
- What path?
- An optimal path?

Optimality

- An optimal controller $u^*(x,t)$ is one such that there does not exist any better u(x,t)
- Controlling the system: $\dot{x}(t) = f[x(t), u(t)]$
- What is "better"?
 - Achieve some goal?
 - E.g. reach a point, follow a trajectory, ...
 - Achieve goal in some desired manner?
 - E.g. energy efficiently, as fast as possible, safely, ...
- Wanting the best controller, implies optimisation
 - Minimise some cost

Expressing a goal

- Scalar cost function J of terminal and continuous costs
- $J = \phi[x(t_f)] + \int_{t_0}^{t_f} L[x(t), u(t)] dt$
- Terminal cost: how good is my final state?
 - Typically only a function of the final state (and final time)

- E.g.
$$\phi[x(t_f)] = ||x(t_f) - x_{goal}||^2$$

- Integral/continuous cost: how good was my trajectory?
 - A function over the entire duration of the trajectory
 - Typically of state and control
 - E.g. $L[x(t), u(t)] = a||x(t)||^2 + b||u(t)||^2$
- Now we can compare trajectories (controllers)

The optimal control formulation

- Minimise scalar function J of terminal and continuous costs
- With respect to control u(t) over time interval (t_0, t_f)
- Subject to dynamic constraints of the system
- Mathematically:

$$\min_{u(t)} J = \min_{u(t)} \left\{ \phi[x(t_f)] + \int_{t_0}^{t_f} L[x(t), u(t)] dt \right\}$$

• Subject to $\dot{x}(t) = f[x(t), u(t)], x(t_0)$ given

Reformulating

- Augment cost function with dynamic constraints using Lagrange multiplier $\lambda(t)$ (same dimension as constraint)
- Constraint = 0 if satisfied

$$J = \phi[x(t_f)] + \int_{t_0}^{t_f} \{L[x(t), u(t)] + \lambda^T(t)[f[x(t), u(t)] - \dot{x}(t)]\} dt$$

Define Hamiltonian:

$$H(x, u, \lambda) = L(x, u) + \lambda^{T}(t)f(x, u)$$

Substitute:

$$J = \phi[x(t_f)] + \int_{t_0}^{t_f} \{H[x(t), u(t), \lambda(t)] - \lambda^T(t)\dot{x}(t)\} dt$$

Necessary conditions for optimality

Optimal cost J*:

$$\min_{u(t)} J = J^* = \phi [x(u(t_f), t_f)] + \int_{u(t)}^{t_f} \{H[x(u(t), t), u(t), \lambda(t)] - \lambda^T(t)\dot{x}(u(t), t)\} dt$$

- Consider perturbations of policy Δu giving rise to trajectories Δx
- For minimum: $\Delta J^* = 0$
- $\Delta J^* = \left\{ \frac{\delta \phi}{\delta x} \lambda^T \right\} \Delta x (\Delta u)|_{t=t_f} + \left[\lambda^T \Delta x (\Delta u) \right]|_{t=t_0} + \int_{t_0}^{t_f} \left\{ \frac{\delta H}{\delta u} \Delta u + \left[\frac{\delta H}{\delta x} + \dot{\lambda}^T \right] \Delta x (\Delta u) \right\} dt = 0$
- Verify this using the chain rule and integration by parts!

Necessary conditions for optimality

- Individual terms stay zero for arbitrary variations in $\Delta x(t)$ and $\Delta u(t)$
- So:

$$1. \quad \left[\frac{\delta \phi}{\delta x} - \lambda^T \right] |_{t=t_f} = 0$$

$$2. \quad \left[\frac{\delta H}{\delta x} + \dot{\lambda}^T\right] = 0$$

3.
$$\frac{\delta H}{\delta u} = 0$$

- Three necessary conditions for optimality
- Defines analytic solution as a BVP

1.
$$\left[\frac{\delta \phi}{\delta x} - \lambda^T \right] |_{t=t_f} = 0$$
2.
$$\left[\frac{\delta H}{\delta x} + \dot{\lambda}^T \right] = 0$$

$$H(x,u,\lambda) = L(x,u) + \lambda^{T}(t)f(x,u)$$
2.
$$\left[\frac{\delta H}{\delta x} + \dot{\lambda}^{T}\right] = 0$$
3.
$$\frac{\delta H}{\delta u} = 0$$

• Find u^* to minimise $J = (x_1(2) - 0.2)^2 + x_2^2(2) + \int_0^2 u^2 dt$

• S.t.
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$
, and $x_1(0) = 0$, $x_2(0) = 0$

$$1. \quad \left[\frac{\delta\phi}{\delta x} - \lambda^{T}\right]|_{t=t_{f}} = 0$$

$$H(x, u, \lambda) = L(x, u) + \lambda^{T}(t)f(x, u)$$

$$2. \quad \left[\frac{\delta H}{\delta x} + \dot{\lambda}^{T}\right] = 0$$

$$3. \quad \frac{\delta H}{\delta x} = 0$$

- Find u^* to minimise $J = (x_1(2) 0.2)^2 + x_2^2(2) + \int_0^2 u^2 dt$
- S.t. $\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$, and $x_1(0) = 0$, $x_2(0) = 0$
- $\phi(x) = (x_1(2) 0.2)^2 + x_2^2(2)$

•
$$H = L + \lambda^T f = u^2 + (\lambda_1 \quad \lambda_2) \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \end{bmatrix}$$

= $u^2 + x_2 \lambda_1 + u \lambda_2$

1.
$$\left[\frac{\delta\phi}{\delta x} - \lambda^T\right]|_{t=2} = 0 = (2(x_1 - 0.2) - \lambda_1 \quad 2x_2 - \lambda_2)|_{t=2}$$

2.
$$\left[\frac{\delta H}{\delta x} + \dot{\lambda}^T\right] = 0 = \begin{pmatrix} 0\\\lambda_1 \end{pmatrix} + \begin{pmatrix} \dot{\lambda}_1\\\dot{\lambda}_2 \end{pmatrix}$$

$$3. \quad \frac{\delta H}{\delta u} = 0 = 2u + \lambda_2$$

•
$$\dot{x}_1 = x_2$$
, $\dot{x}_2 = u$

•
$$2(x_1(2) - 0.2) - \lambda_1(2) = 0$$

•
$$2x_2(2) - \lambda_2(2) = 0$$

•
$$\dot{\lambda}_1 = 0$$

•
$$\dot{\lambda}_2 + \lambda_1 = 0$$

•
$$2u + \lambda_2 = 0$$

•
$$x_1(0) = 0, x_2(0) = 0$$

So:

•
$$\lambda_1 = c$$

•
$$\lambda_2 = -ct + d$$

•
$$u = \frac{ct-d}{2}$$

•
$$\dot{x}_2 = \frac{ct-d}{2}$$

• And so
$$x_2 = \frac{c}{4}t^2 - \frac{dt}{2} + e$$

•
$$x_1 = \frac{c}{12}t^3 - \frac{d}{4}t^2 + et + f$$

Solving (using boundary conditions) gives:

$$c = -0.1714, d = -0.2286, e = 0, f = 0$$

Importance of weighting, e.g.,

$$J = A\phi[x(t_f)] + B\int_{t_0}^{t_f} L[x(t), u(t)] dt$$

And ratio $\frac{A}{B}$

Numerical solutions

- One approach:
- Assume a functional form for u:

$$- \text{ E.g. } u = a_0 + a_1 t + a_2 t^2$$

- Solve for parameters a_i to optimise J
 - Could use a grid search
 - Rather use a built-in optimisation routine

Numerical solutions

- Define cost_function(u)
 - Take an input u (or parameter vector a)
 - Solve ODE using numerical solver to return trajectory x(t)
 - E.g. In Matlab use *ode45()*
 - E.g. In Python use *ode()* in *scipy.integrate*
 - Compute J using u, x, t
 - Return scalar J
- Optimise cost_function using some initial a
 - E.g. In Matlab use fminunc()
 - E.g. In Python use minimize() in scipy.optimize

Linear Quadratic Regulator

- Special case
 - Objective function quadratic in x and u

$$J = \frac{1}{2}x(t_f)^T S_f x(t_f) + \frac{1}{2} \int_{t_0}^{t_f} (x(t)^T Q x(t) + u(t)^T R u(t)) dt$$

Dynamics are linear

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(t_0) = x_0$$

- Feedback law: linear quadratic regular (LQR)
- Also useful for non-LQ systems in neighbourhood of desired state x*
 - Linearise dynamics around x^*
 - -2^{nd} order approx of J around x^*
 - Use LQR as local controller

LQR

• In this case, optimal control law is linear state feedback:

$$-u(t) = -K(t)x(t)$$

State feedback (gain matrix K) given by:

$$-K(t) = R^{-1}B^TS(t)$$

• S(t) is the solution to the differential Ricatti equation:

$$--\dot{S} = A^T S + SA - SBR^{-1}B^T S + Q$$

$$-S(t_f) = S_f$$

Usually solved numerically

Model learning

What if I don't know my system dynamics or cost function?

- Reinforcement learning
 - f = transition function
 - J = -reward function
- Exploration vs exploitation
 - The multi-armed bandit problem
 - Explore: obtain new samples from f and J
 - Exploit: use approximate optimal controller, so as to improve costs (sample at a later point)

Reinforcement Learning

- Learn to map situations to actions so as to maximise numerical reward (which may be delayed)
- Difference is that the models are unknown. Either:
 - Estimate the models, and then solve (model-based RL)
 - Just learn the best action in each state (model-free RL)

Markov Decision Processes (MDPs)

- Model a decision problem
- Usually discrete system
 Markov
- $M = \langle S, A, T, R, \gamma \rangle$

- Observable
- Policy π

			Wall	+1
	Wall		Wall	
	Wall			
	Wall			
			-1	-1
Start		-1	-1	+1

Multi-agent systems

 What if the system is out to get me (an adversarial agent or environment)?

- Game theory
 - Study of strategic decision making
 - Models of conflict and cooperation between rational decision makers

Game Theory – Basics

- Discrete games
- Consider two players
 - Player 1 maximises
 - Player 2 minimises
- Types of games:
 - Extensive form
 - Normal form
- Can be:
 - Cooperative
 - Adversarial
 - Zero-sum

– ...

- Nash equilibrium: no player can benefit by unilaterally deviating
- E.g. assume column player is maximising:

•
$$\begin{pmatrix} 1 & 3 & -1 & 2 \\ -3 & -2 & 2 & 1 \\ 0 & 2 & -2 & 1 \end{pmatrix}$$
 This is a zero-sum game: what one player loses the other gains. So, a payoff of 1 implies $(1, -1)$

- Nash equilibrium: no player can benefit by unilaterally deviating
- E.g. assume column player is maximising:

Dominance

- Nash equilibrium: no player can benefit by unilaterally deviating
- E.g. assume column player is maximising:

$$\cdot \begin{pmatrix} -2 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$

- Assume P1 picks row 1 w.p. y
- Payoffs to P2:
 - Column 1: -2y + 2(1-y) = 2 4y
 - Column 2: 2y 2(1-y) = -2 + 4y
 - Column 3: y+(1-y) = 1

- P2 will choose to max this, so P1 will choose to min this max
- i.e. P1 will minimise max{2-4y, -2+4y, 1}
- This gives the min of the max is 1, when $y \in \left[\frac{1}{4}, \frac{3}{4}\right]$
 - And P2 chooses the last column

Differential Games

- Can have continuous games, with dynamics as differential equations
 - Differential games
 - Model dynamic adversarial situations
- E.g.
 - The homicidal chauffeur problem

