1 Liczby zespolone

Ponieważ nie istnieje taka liczba rzeczywista x, dla której $x^2 = -1$, więc przyjmijmy oznaczenie $i^2 = -1$. (Innymi słowy, $i = \sqrt{-1}$.) Niech

$$\mathbb{C} = \{a + bi \colon a, b \in \mathbb{R}\}.$$

Określmy w zbiorze \mathbb{C} dodawanie + i mnożenie \cdot w następujący sposób:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

oraz

$$(a+bi)\cdot(c+di) = (ac-bd) + (ad+bc)i.$$

Zbiór \mathbb{C} z tak określonym dodawaniem i mnożeniem jest ciałem, które nazywamy ciałem liczb zespolonych.

Ponieważ

$$(a+bi) + (c+di) = (a+c) + (b+d)i = (c+a) + (d+b)i = (c+di) + (a+bi)$$

oraz

$$((a+bi)+(c+di))+(e+fi) = (a+c)+(b+d)i+(e+fi) =$$

$$= (a+c+e)+(b+d+f)i = (a+bi)+(c+e)+(d+f)i$$

$$= (a+bi)+((c+di)+(e+fi)),$$

więc w zbiorze \mathbb{C} dodawanie jest przemienne i łączne.

0 = 0 + 0i jest elementem neutralnym dodawania, a element -(a + bi) = -a - bi jest elementem przeciwnym do a + bi.

Ponieważ

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i =$$

= $(ca-db) + (da+cb)i = (c+di)(a+bi)$

oraz

$$((a+bi)(c+di))(e+fi) = ((ac-bd) + (ad+bc)i)(e+fi) =$$

$$= (ace-bde-adf-bcf) + (acf-bdf+ade+bce)i =$$

$$= a(ce-df) - b(de+cf) + a(de+cf)i + b(ce-df)i =$$

$$= (a+bi)(ce-df) + (ai-b)(cf+de) = (a+bi)(ce-df) + (a+bi)(cf+de)i =$$

$$= (a+bi)((ce-df) + (cf+de)i) = (a+bi)((c+di)(e+fi)),$$

więc w zbiorze C mnożenie jest przemienne i łączne.

1 = 1 + 0i jest elementem neutralnym mnożenia.

Załóżmy teraz, że $z=a+bi\neq 0$. Aby wyznaczyć element odwrotny do z, należy znaleźć takie liczby rzeczywiste c,d, że

$$(a+bi)(c+di) = 1.$$

Powyższe równanie możemy zapisać w równoważnej postaci

$$(ac - bd) + (ad + bc)i = 1 + 0i,$$

a następnie rozwiązać układ równań

$$\begin{cases} ac - bd = 1 \\ ad + bc = 0. \end{cases}$$

Mnożąc pierwsze równanie układu przez a, a drugie - przez b, otrzymamy

$$\begin{cases} a^2c - abd = a \\ abd + b^2c = 0. \end{cases}$$

Stad, po dodaniu stronami,

$$(a^2 + b^2)c = a$$
$$c = \frac{a}{a^2 + b^2}$$

Mnożąc teraz pierwsze równanie wyjściowego układu przez -b, a drugie - przez a, otrzymamy

$$\begin{cases} -abc + b^2d = -b \\ a^2d + abc = 0. \end{cases}$$

Stad, po dodaniu stronami,

$$(a^2 + b^2)d = -b$$
$$d = \frac{-b}{a^2 + b^2}$$

W rezultacie, elementem odwrotnym do z = a + bi jest

$$z^{-1} = \frac{a}{a^2 + b^2} + \frac{-b}{a^2 + b^2}i = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i.$$

Ponadto,

$$(a+bi)((c+di) + (e+fi)) = (a+bi)((c+e) + (d+f)i) =$$

$$= ac + ae - bd - bf + bci + bei + adi + afi =$$

$$= (ac - bd) + (ad + bc)i + (ae - bf) + (af + be)i =$$

$$= (a+bi)(c+di) + (a+bi)(e+fi).$$

W ten sposób wykazaliśmy, że w zbiorze $\mathbb C$ zachodzi rozdzielność mnożenia względem dodawania.

Jeżeli z = a + bi jest liczbą zespoloną, to a nazywamy częścią rzeczywistą liczby z i oznaczamy Rez, a b nazywamy częścią urojoną liczby z i oznaczamy Imz.

Definicja 1 Definicja Niech z=a+bi będzie liczbą zespoloną. Liczbę $\overline{z}=a-bi$ nazywamy liczbą sprzężoną z liczbą z.

Z definicji sprzężenia otrzymujemy następujące własności:

- $\bullet \ \overline{\overline{z}} = z,$
- $\overline{z} = z \iff z \in \mathbb{R}$,
- $a = \frac{1}{2}(z + \overline{z}), b = \frac{1}{2i}(z \overline{z}),$
- $z\overline{z} = a^2 + b^2$.

Ponadto, dla dowolnych liczb zespolonych z, t

- $\overline{z \pm t} = \overline{z} \pm \overline{t}$,
- $\bullet \ \overline{zt} = \overline{z}\overline{t},$
- $\frac{\overline{z}}{t} = \frac{\overline{z}}{\overline{t}}$ dla $t \neq 0$.

Definicja 2 Niech z = a + bi będzie liczbą zespoloną. Liczbę rzeczywistą $|z| = \sqrt{a^2 + b^2}$ nazywamy modułem liczby zespolonej z.

Z definicji modułu i własności sprzężenia otrzymujemy:

- $\bullet |z| = |-z| = |\overline{z}|,$
- $|z| = \sqrt{z\overline{z}}$,
- $\forall z \in \mathbb{C} \quad |z| \ge 0$,
- $\bullet |z| = 0 \Leftrightarrow z = 0.$

Stwierdzenie 1 Jeżeli z i t są liczbami zespolonymi, to

- $\bullet ||zt| = |z| \cdot |t|,$
- $\left|\frac{z}{t}\right| = \frac{|z|}{|t|} dla \ t \neq 0.$

Dowód. Niech $z, t \in \mathbb{C}$. Wtedy

$$|zt| = \sqrt{zt\overline{z}\overline{t}} = \sqrt{(z\overline{z})(t\overline{t})} =$$
$$= \sqrt{z\overline{z}} \cdot \sqrt{t\overline{t}} = |z| \cdot |t|.$$

Podobnie wykazujemy, że moduł ilorazu liczb zespolonych jest równy ilorazowi ich modułów. $\hfill\Box$

Uwaga

Korzystając z zasady indukcji, można wykazać, że $|z^n| = |z|^n$ dla dowolnej liczby zespolonej z i dla dowolnej liczby całkowitej n. (Jeżeli n < 0, to zakładamy $z \neq 0$.)

Twierdzenie 1 Niech $z, t \in \mathbb{C}$. Wtedy

$$||z| - |t|| \le |z + t| \le |z| + |t|.$$

Dowód. Jeżeli |z+t|=0, to oczywiście $|z+t|\leq |z|+|t|$. Załóżmy, że $z+t\neq 0$ i oznaczmy przez a część rzeczywistą liczby $\frac{z}{z+t}$, a przez a' - część rzeczywistą liczby $\frac{t}{z+t}$. Wtedy

$$a \le \left| \frac{z}{z+t} \right| = \frac{|z|}{|z+t|}$$

oraz

$$a' \le \left| \frac{t}{z+t} \right| = \frac{|t|}{|z+t|}.$$

Dodając obie nierówności stronami, otrzymamy

$$a + a' \le \frac{|z| + |t|}{|z + t|}.$$

Zauważmy, że liczba a+a' jest częścią rzeczywistą liczby $\frac{z}{z+t}+\frac{t}{z+t}$ oraz $\frac{z}{z+t}+\frac{t}{z+t}=1$. Stąd a+a'=1. W rezultacie

$$1 \le \frac{|z| + |t|}{|z + t|}$$

$$|z+t| \le |z| + |t|.$$

Aby udowodnić drugą nierówność zauważmy, że z=(z-t)+t. Korzystając z udowodnionej już części twierdzenia, otrzymujemy

$$|z| \le |z - t| + |t|$$

i stad

$$|z| - |t| \le |z - t|.$$

Powtarzając rozumowanie dla liczby t = (t - z) + z, otrzymamy

$$|t| - |z| \le |t - z| = |z - t|.$$

Ponieważ liczba |z| - |t| jest rzeczywista, więc jej moduł albo jest równy jej samej, albo jest równy |t| - |z|. W obu przypadkach jest on nie większy niż |z + t|.

2 Interpretacja geometryczna

Rozpatrzmy na płaszczyźnie euklidesowej prostokątny układ współrzędnych o początku w punkcie O. Wtedy punkt o współrzędnych (a,b) możemy utożsamiać z liczbą zespoloną z=a+bi.

Łatwo zauważyć, że dodawanie i odejmowanie liczb zespolonych $z,\,t$ odpowiada dodawaniu i odejmowaniu wektorów \vec{Oz} i \vec{Ot} .

Sprzężenie liczby zespolonej odpowiada symetrycznemu odbiciu względem osi Ox. Natomiast moduł liczby zespolonej z, to odległość punktu z od początku układu współrzędnych. Odległość dwóch punktów z i t jest równa |z-t|.

Tożsamość równoległoboku

Dla dowolnych liczb zespolonych z i t

$$|z+t|^2 + |z-t|^2 = 2(|z|^2 + |t|^2).$$

3 Postać trygonometryczna

Niech z = a + bi będzie liczbą zespoloną i niech φ będzie kątem (podanym w mierze łukowej) pomiędzy osią Ox a wektorem \vec{Oz} . Wtedy

$$\frac{a}{|z|} = \cos\varphi \quad \text{oraz} \quad \frac{b}{|z|} = \sin\varphi.$$

Stąd

$$a = |z|\cos\varphi \quad \text{oraz} \quad b = |z|\sin\varphi.$$

W rezultacie

$$z = |z|(\cos\varphi + i\sin\varphi)$$
 (Postać trygonometryczna liczby zespolonej z.)

Kąt φ nie jest wyznaczony jednoznacznie, ponieważ jeżeli kąt φ zastąpimy przez $\varphi+2k\pi$, $k \in \mathbb{Z}$, to otrzymamy tę samą postać trygonometryczną liczby z.

Definicja 3 Definicja Kąt φ pomiędzy osią Ox a wektorem \vec{Oz} nazywamy argumentem liczby z. (Czasami oznaczamy argz.)

Zauważmy, że jeżeli φ jest argumentem liczby z, to $\varphi+2k\pi,\ k\in\mathbb{Z},$ jest także argumentem liczby z.

Twierdzenie 2 Twierdzenie Niech $z \neq 0$, $t \neq 0$ będą liczbami zespolonymi, niech φ będzie argumentem liczby z i niech θ będzie argumentem liczby t. Wtedy $\varphi + \theta$ jest argumentem liczby $z \cdot t$, a $\varphi - \theta$ - argumentem liczby $\frac{z}{t}$.

Dowód. Z założeń wynika, że

$$z = |z|(\cos\varphi + i\sin\varphi)$$

oraz

$$t = |t|(\cos\theta + i\sin\theta).$$

Korzystając ze znanych tożsamości trygonometrycznych, otrzymujemy

$$z \cdot t = |z| \cdot |t|(\cos\varphi + i\sin\varphi)(\cos\theta + i\sin\theta) =$$

$$= |z| \cdot |t|((\cos\varphi\cos\theta - \sin\varphi\sin\theta) +$$

$$+i(\cos\varphi\sin\theta + \sin\varphi\cos\theta)) =$$

$$= |z| \cdot |t|(\cos(\varphi + \theta) + i\sin(\varphi + \theta)) =$$

$$= |z \cdot t|(\cos(\varphi + \theta) + i\sin(\varphi + \theta)).$$

Załóżmy teraz, że

$$\frac{z}{t} = r(\cos\alpha + i\sin\alpha),$$

gdzie
$$r = \frac{|z|}{|t|}$$
. Wtedy

$$z = t \cdot r(\cos\alpha + i\sin\alpha).$$

Na mocy udowodnionej części twierdzenia, liczba $\theta + \alpha$ jest argumentem liczby z. Ponieważ jednym z argumentów liczby z jest φ , więc $\varphi - (\theta + \alpha) = 2k\pi$ dla pewnej liczby całkowitej k. Stąd wynika, że $\alpha = \varphi - \theta - 2k\pi$ jest jednym z argumentów ilorazu $\frac{z}{t}$. Wtedy liczba $\varphi - \theta$ jest również argumentem ilorazu $\frac{z}{t}$.

Uwaga

Jeżeli z_1, \ldots, z_k są niezerowymi liczbami zespolonymi o argumentach $\alpha_1, \ldots, \alpha_k$, odpowiednio, to $\alpha_1 + \cdots + \alpha_k$ jest argumentem iloczynu $z_1 \cdot \cdots \cdot z_k$. Ponadto, jeżeli z jest niezerową liczbą zespoloną o argumencie α , to $k\alpha$ jest argumentem liczby z^k dla dowolnej liczby całkowitej k.

W szczególności zachodzi

Wzór de Moivre'a

$$(|z|(\cos\varphi + i\sin\varphi))^n = |z|^n(\cos n\varphi + i\sin n\varphi) \quad \forall n \in \mathbb{Z}$$

Zauważmy, że ze wzoru Eulera

$$e^{i\varphi} = \cos\varphi + i\sin\varphi,$$

wynika, że liczbę zespoloną z o argumencie φ możemy zapisać w postaci

$$z = |z|e^{i\varphi}.$$

Ponadto,

$$e^{i\varphi} \cdot e^{i\theta} = e^{i(\varphi + \theta)}$$

oraz

$$\frac{e^{i\varphi}}{e^{i\theta}} = e^{i(\varphi - \theta)}.$$

4 Pierwiastkowanie

Niech dana będzie niezerowa liczba zespolona $z=|z|(\cos\varphi+i\sin\varphi)$. Wyznaczmy taką liczbę $t=|t|(\cos\theta+i\sin\theta)$, że $t^n=z$. Korzystając ze wzoru de Moivre'a, a następnie porównując moduły i argumenty po obu stronach równości $t^n=z$, otrzymujemy $|t|^n=|z|$ i $n\theta=\varphi+2k\pi$. W konsekwencji

$$|t| = \sqrt[n]{|z|}$$
 oraz $\theta = \frac{\varphi + 2k\pi}{n}$.

Oznacza to, że $\sqrt[n]{z}$ istnieje, ale nie jest wyznaczony jednoznacznie. Ponieważ dla k=nq+r, gdzie $0\leq r\leq n-1$ mamy

$$\theta = \frac{\varphi + 2r\pi}{n} + 2\pi q,$$

więc wszystkie pierwiastki stopnia n z liczby z otrzymamy biorąc $k = 0, 1, \ldots, n-1$.

Twierdzenie 3 Twierdzenie Dla każdej liczby zespolonej $z = |z|(\cos\varphi + i\sin\varphi)$ istnieje pierwiastek n-tego stopnia, $n \in \mathbb{N}$, z liczby z. Jeżeli $z \neq 0$, to pierwiastki n-tego stopnia z liczby z są wierzchołkami n-kąta foremnego wpisanego w okrąg o środku w zerze i promieniu $\sqrt[n]{|z|}$:

$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right), \quad k = 0, 1, \dots, n - 1.$$

5 Zasadnicze twierdzenie algebry

Definicja 4 Definicja Ciało \mathbb{F} nazywamy algebraicznie domkniętym, jeżeli każdy wielomian dodatniego stopnia o współczynnikach z ciała \mathbb{F} rozkłada się nad ciałem \mathbb{F} na czynniki liniowe.

Uwaga

Jeżeli każdy wielomian dodatniego stopnia nad ciałem \mathbb{F} ma w ciele \mathbb{F} co najmniej jeden pierwiastek, to ciało \mathbb{F} jest algebraicznie domknięte.

Istotnie, załóżmy, że każdy wielomian dodatniego stopnia nad ciałem \mathbb{F} ma w ciele \mathbb{F} co najmniej jeden pierwiastek. Niech f będzie wielomianem dodatniego stopnia nad ciałem \mathbb{F} . Wtedy f(x)=(x-a)h(x), gdzie h jest wielomianem nad ciałem \mathbb{F} i $a\in\mathbb{F}$. Jeżeli wielomian h jest dodatniego stopnia, to h ma również co najmniej jeden pierwiastek w ciele \mathbb{F} , tzn. h(x)=(x-b)g(x), gdzie g jest wielomianem nad ciałem \mathbb{F} i $b\in\mathbb{F}$. Kontynuując tę procedurę, otrzymamy rozkład wielomianu f na czynniki liniowe.

Twierdzenie 4 Zasadnicze twierdzenie algebry Ciało liczb zespolonych $\mathbb C$ jest algebraicznie domknięte.

Innymi słowy: Dowolny wielomian stopnia $n \ge 1$ o współczynnikach zespolonych ma dokładnie n pierwiastków zespolonych (liczonych z uwzględnieniem krotności).

Wniosek 1 Wniosek Jeżeli $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, $a_n \neq 0$, $n \geq 1$, jest wielomianem o współczynnikach zespolonych, to istnieją takie liczby zespolone z_1, \ldots, z_n , że

$$f(x) = a_n(x - z_1) \cdot \ldots \cdot (x - z_n).$$

Wniosek 2 Wniosek Jeżeli $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, $a_n \neq 0$, $n \geq 1$, jest wielomianem o współczynnikach rzeczywistych, to

$$f(x) = a_n f_1(x) \cdot \ldots \cdot f_n(x),$$

gdzie każdy z wielomianów f_1, \ldots, f_n ma jedną z dwu postaci:

- $x a, a \in \mathbb{R}$,
- $x^2 + px + q$, $\Delta = p^2 4q < 0$, $p, q \in \mathbb{R}$.

Definicja 5 Definicja Niech f będzie niezerowym wielomianem o współczynnikach wymiernych. Liczbę zespoloną nazywamy liczbą algebraiczną, jeżeli jest ona pierwiastkiem wielomianu f.

Zbiór wszystkich liczb algebraicznych jest podciałem ciała liczb zespolonych.

Definicja 6 Definicja Liczbę zespoloną, która nie jest liczbą algebraiczną nazywamy liczbą przestępną.

Dokument ten stanowi utwór podlegający ochronie na mocy prawa autorskiego. Utwór ten w całości ani we fragmentach nie może być powielany ani rozpowszechniany za pomocą urządzeń elektronicznych, mechanicznych, kopiujących, nagrywających i innych. Ponadto, utwór ten nie może być umieszczany ani rozpowszechniany w postaci cyfrowej zarówno w Internecie, jak i w sieciach lokalnych, bez pisemnej zgody posiadacza praw autorskich.