M1 UE2

Espaces préhilbertiens : exercices du chapitre 7)

Résultats dans un espace préhilbertien

1. * Soit E un espace préhilbertien réel et n points x_1, x_2, \dots, x_n de E $(n \ge 2)$. Établir la formule

$$\sum_{1 \le i < j \le n} \|x_i - x_j\|^2 = n \sum_{i=1}^n \|x_i\|^2 - \|\sum_{i=1}^n x_i\|^2.$$

- **2.** *** Soit *E* euclidien et $\mathcal{A} = \{\alpha/\forall (x,y) \in E^2, \|x\| + \|y\| \le \alpha \max(\|x-y\|, \|x+y\|)\}.$
- $\overline{a)}$ Montrer que \mathcal{A} est un intervalle inclus dans $[1, +\infty[$.
- b) Si dimE = 1, montrer que $A = [1, +\infty[$.
- c) Si dim $E \ge 2$, montrer que $\mathcal{A} = [\sqrt{2}, +\infty[$.
- **3.** * Soit E euclidien, F un sous-espace vectoriel de E et $x \in E$. Montrer que x est orthogonal à F si, et seulement si, $||x|| \le ||x y||$ pour tout $y \in F$.
- **4.** *** Soit, dans E préhilbertien, (e_1, \dots, e_n) libre et telle que, pour tout $x \in E$, $||x||^2 = \sum_{i=1}^{n} |(e_i|x)|^2$. Montrer que cette famille est une base orthonormale de E.
- **5.** ** Soit E euclidien et e_1, \ldots, e_n des vecteurs de E tels que $||x||^2 = \sum_{i=1}^n (x|e_i)^2$ pour tout $x \in E$.
- a) On suppose que les e_i sont unitaires : montrer que (e_1, \ldots, e_n) est une base orthonormale de E.
 - b) On suppose que $\dim(E) = n$.
- i) Montrer que (e_1, \ldots, e_n) est une base de E. En déduire que la matrice $[(e_i|e_j)]_{1 \leq i,j \leq n}$ est inversible.
- ii) Montrer que, pour tout $(x,y) \in E^2$, $(x|y) = \sum_{i=1}^n (x|e_i)(y|e_i)$. En déduire que (e_1,\ldots,e_n) est une base orthonormale de E.
- **6.** * Soit E un espace vectoriel euclidien de dimension n et soit $(a_i)_{1 \leq i \leq p} \in E^p$. Soit $f: E \to E, \ x \mapsto \sum_{i=1}^p (x|a_i)a_i$. Montrer que f est bijective si et seulement si $(a_i)_{1 \leq i \leq p}$ est génératrice.
- 7. ** Soit E un espace préhilbertien réel et (e_1, \dots, e_p) une famille d'éléments de E telle que $p \geq 2$ et $(e_i|e_j) < 0$ pour $1 \leq i < j \leq p$. Montrer que toute sous-famille à p-1 termes de

cette suite est libre [on pourra commencer par montrer que $\sum_{k=1}^{p-1} \lambda_k e_k = 0 \text{ implique } \sum_{k=1}^{p-1} |\lambda_k| e_k = 0].$

8. *** Soit E euclidien et $f \in \mathcal{L}(E)$ tel que $||f(x)|| \le ||x||$ pour tout $x \in E$. Montrer que $E = \ker(f - id_E) \oplus \operatorname{im}(f - id_E).$

Produits scalaires, familles orthonormalisées

- **9.** * Soit $n \ge 2$ et $E = \{P \in \mathbb{R}_n[X]/P(0) = P(1) = 0\}.$
- a) Montrer que E est un sous-espace vectoriel de $\mathbb{R}_n[X]$, et en donner la dimension.
- b) Soit, pour $P \in E$, $\phi(P) = -\int_{[0,1]} PP''$. Montrer que $\sqrt{\phi}$ est une norme euclidienne.
- 10. ** Soit $E = \mathcal{C}^{\infty}([a, b], \mathbb{R})$.
- a) Montrer que $(f,g)\mapsto \int_{[a,b]}[fg+f'g']=(f|g)$ est un produit scalaire sur E.
- b) Trouver les orthogonaux des deux sous-espaces vectoriels suivants :
- i) $F = \{ f \in E / \int_{[a,b]} f = 0 \}.$ ii) $G = \{ f \in E / f(a) = f(b) = 0 \}.$
- 11. * Soit $\varphi: (\mathbb{R}[X])^2 \to \mathbb{R}, (f,g) \mapsto f(0)g(0) + \int_0^1 f'(t)g'(t)dt$.
- a) Montrer que φ est un produit scalaire.
- b) Trouver 3 polynômes P_0 , P_1 , P_2 de degrés respectifs 0, 1, et 2 formant une base orthonormale pour φ .
 - c) Cette base est-elle orthonormale pour $\psi(f,g) = \int_{0}^{1} f(t)g(t)dt$?
 - **12.** ** Soit $E = \{ f \in \mathcal{F}([-1,1], \mathbb{R}) / f_{|[-1,0]} \text{ et } f_{|[0,1]} \text{ soient affines } \}.$
- a) Montrer que E est un sous-espace vectoriel de $\mathcal{F}([-1,1],\mathbb{R})$, qui est de dimension 3 et dont une base est $\mathcal{B} = (e_1, e_2, e_3)$, où $e_1(x) = 1$, $e_2(x) = x$ et $e_3(x) = |x|$.
- b) Montrer que $(f,g) \mapsto \int_{[-1,1]} fg$ est un produit scalaire sur E et orthonormaliser \mathcal{B} pour ce produit scalaire.

Projecteurs orthogonaux

- **13.** * On se place dans l'espace vectoriel euclidien \mathbb{R}^3 . Soit $V_t = \text{vect}((1,1,1),(1,t,t^2)), P_t$ la projection orthogonale sur V_t et M_t la matrice qui lui est canoniquement associée.
 - a) Que dire de $tr(M_t)$?
 - b) Calculer M_t en distinguant deux cas.
- **14.** * Dans \mathbb{R}^4 euclidien canonique, soit $F\left\{\begin{array}{l} x_1+x_2+x_3+x_4=0\\ x_1+2x_2+3x_3+4x_4=0 \end{array}\right.$. Donner $\dim F$ et une base orthonormale de F, ainsi que $p_F(x)$ pour $x \in \mathbb{R}^n$
- 15. * Trouver la matrice canoniquement associée au projecteur orthogonal de \mathbb{R}^3 sur le plan engendré par les vecteurs (2,1,0) et (1,0,-1).

Problèmes de distance

16. * Soit
$$F = \{P \in \mathbb{R}_3[X]/P(0) = P'(0) = 0\}$$
. Trouver $\inf_{P \in F} \int_0^1 [2 + 3t - P(t)]^2 dt$ et $\inf_{P \in F} \int_{-1}^1 [2 + 3t - P(t)]^2 dt$.

- 17. ** Soit $E = \mathcal{M}_2(\mathbb{R})$, muni de $(A|B) = \operatorname{tr}({}^t\!AB)$. Pour $A \in E$, trouver d(A,F) dans les deux cas suivants :
 - a) $F = \mathbb{R}I_2$.
 - b) $F = S_2(\mathbb{R})$, sous-espace vectoriel des matrices symétriques.

18. * Trouver
$$\inf_{(a,b)\in\mathbb{C}^2} \int_0^1 |x^2 + ax + b|^2 dx$$
.

19. * Trouver
$$m = \min_{(a,b) \in \mathbb{R}^2} \int_0^{\pi} [\sin(t) - at^2 - bt]^2 dt$$
.

20. * Trouver
$$\min_{(a,b)\in \mathbb{R}^2} \int_0^1 [t \ln t - at - b]^2 dt$$
.

Inégalités

21. * Soit
$$A \in \mathcal{M}_n(\mathbb{R})$$
. Montrer que $\operatorname{tr}({}^t A A) \geq 0$ et $|\operatorname{tr} A| \leq \sqrt{n \operatorname{tr}^t A A}$. Cas d'égalité ?

22. ** Pour
$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$$
, on pose $||A||_2 = \sum_{i,j} |a_{ij}|^2$.

- a) Montrer que, pour $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$, $||AB||_2 \le ||A||_2 ||B||_2$.
- b) Trouver les matrices pour lesquelles $||AB||_2 = ||A||_2 ||B||_2$.

23. ** a) Soit
$$a \in \mathbb{R}$$
. Justifier l'existence d'un unique $P_a \in \mathbb{R}_3[X]$ tel que $P(a) = \int_{-1}^1 P(t)P_a(t) dt$ pour tout $P \in \mathbb{R}_3[X]$ et calculer P_a .

b) Soit
$$P \in \mathbb{R}_3[X]$$
 tel que $\int_{-1}^1 P(t)^2 dt = 1$. Montrer que $\sup_{x \in [-1,1]} |P(x)| \le 2\sqrt{2}$.