Matematika informatikusoknak 2 – Differenciálszámítás

2. előadás

Korlátos halmazok

Definíció. Az A halmaz felülről (alulról) korlátos, ha létezik olyan m (ill. I) szám, hogy az A minden a elemére

$$a \le m$$
 (ill. $a \ge l$.)

Az A számhalmazt korlátosnak nevezzük, ha alulról is és felülről is korlátos.

Korlátos halmazok

Definíció. Az A halmaz felülről (alulról) korlátos, ha létezik olyan m (ill. I) szám, hogy az A minden a elemére

$$a \le m$$
 (ill. $a \ge l$.)

Az A számhalmazt korlátosnak nevezzük, ha alulról is és felülről is korlátos.

PI.

$$\mathbb{N}, \quad [0,1), \{1,2,5,7,10,12\} \quad \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$$

Ha létezik egy felső (alsó) korlát, akkor végtelen sok létezik.

Végtelen számsorozatok

Definíció. Legyen minden n természetes számhoz hozzárendelve egy $a_n = f(n)$ valós szám, azaz legyen adott egy \mathbb{N} -en értelmezett valós értékű függvény. Ezt így jelöljük:

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$
 vagy $(a_n)_{n=1}^{+\infty}$ vagy (a_n)

és végtelen számsorozatnak, a_n -t a sorozat n-edik elemének, n-t az a_n indexének nevezzük.

$$a_n = \frac{1}{n}, \ n \in \mathbb{N}$$
 $1, \frac{1}{2}, \frac{1}{3}, \dots$

$$a_n=\frac{1}{n}, \ n\in\mathbb{N}$$
 $1,\frac{1}{2},\frac{1}{3},\ldots$

$$a_n = (-1)^{n+1} \frac{1}{n}, \ n \in \mathbb{N}$$
 $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4} \dots$

$$a_n = \frac{1}{n}, \ n \in \mathbb{N}$$
 $1, \frac{1}{2}, \frac{1}{3}, \dots$ $a_n = (-1)^{n+1} \frac{1}{n}, \ n \in \mathbb{N}$ $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4} \dots$ $a_n = (-1)^n, \ n \in \mathbb{N}$ $-1, 1, -1, 1, \dots$

$$a_n = \frac{1}{n}, \ n \in \mathbb{N} \qquad 1, \frac{1}{2}, \frac{1}{3}, \dots$$

$$a_n = (-1)^{n+1} \frac{1}{n}, \ n \in \mathbb{N} \qquad 1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4} \dots$$

$$a_n = (-1)^n, \ n \in \mathbb{N} \qquad -1, 1, -1, 1, \dots$$

$$a_1 = \sqrt{2}, \ a_2 = \sqrt{2 + \sqrt{2}}, \ a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}, \dots}$$

 $a_1 = \sqrt{2}, \quad a_{n+1} = \sqrt{2 + a_n}$

Számsorozatok határértéke

Definíció. Az $(a_n)_{n=1}^{\infty}$ sorozat határértéke a b szám, ha minden pozitív ε -hoz létezik olyan (ε -tól függő) n_0 szám, melyre teljesül, hogy minden $n>n_0$ esetben

$$|a_n-b|<\varepsilon.$$

$$\lim_{n\to\infty}a_n=b$$

Számsorozatok határértéke

Definíció. Az $(a_n)_{n=1}^{\infty}$ sorozat határértéke a b szám, ha minden pozitív ε -hoz létezik olyan (ε -tól függő) n_0 szám, melyre teljesül, hogy minden $n > n_0$ esetben

$$|a_n-b|<\varepsilon.$$

$$\lim_{n\to\infty}a_n=b$$

Ha egy sorozatnak van véges határértéke, akkor *konvergens*nek nevezzük, különben *divergens*nek.

$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$\lim_{n\to\infty}\frac{1}{n}=0$$

Legyen $\varepsilon>0$ adott, rögzített. Milyen "nagy" $\emph{n}\text{-re}$ fog teljesülni, hogy

$$\left|\frac{1}{n}-0\right|<\varepsilon$$
?

$$\lim_{n\to\infty}\frac{1}{n}=0$$

Legyen $\varepsilon>0$ adott, rögzített. Milyen "nagy" $\emph{n}\text{-re}$ fog teljesülni, hogy

$$\left|\frac{1}{n} - 0\right| < \varepsilon?$$

$$\frac{1}{n} < \varepsilon$$

$$n > \frac{1}{\varepsilon}$$

Az ε -hoz tartozó n_0 legyen az a legkisebb természetes szám, mely nagyobb mint $\frac{1}{\varepsilon}$.

	ε	0.1	0.02	0.01	0.0012	0.0001	
ĺ	<i>n</i> ₀	11	51	101	834	10001	

$$\lim_{n\to\infty}\frac{n+3}{n+1}=1$$

$$\lim_{n\to\infty}\frac{n+3}{n+1}=1$$

Legyen $\varepsilon>0$ adott, rögzített. Milyen "nagy" \emph{n} -re fog teljesülni, hogy

$$\left|\frac{n+3}{n+1}-1\right|<\varepsilon?$$

$$\lim_{n\to\infty}\frac{n+3}{n+1}=1$$

Legyen $\varepsilon>0$ adott, rögzített. Milyen "nagy" $\emph{n}\text{-re}$ fog teljesülni, hogy

$$\left|\frac{n+3}{n+1}-1\right|<\varepsilon?$$

$$\left| \frac{n+3-(n+1)}{n+1} \right| < \varepsilon \text{ azaz } \left| \frac{2}{n+1} \right| < \varepsilon$$
$$\frac{2}{n+1} < \varepsilon, \qquad \frac{2}{\varepsilon} < n+1, \qquad \frac{2}{\varepsilon} - 1 < n$$

Az ε -hoz tartozó n_0 legyen az a legkisebb természetes szám, mely nagyobb mint $\frac{2}{\varepsilon}$. (Elegendő megmutatni, hogy ilyen mindig létezik.)

ε	0.1	0.02	0.01	0.0012	0.0001	
n_0	21	1011	201	1667	20001	

$$\lim_{n\to\infty}\sqrt{n+1}-\sqrt{n}=0$$

$$\lim_{n\to\infty}\sqrt{n+1}-\sqrt{n}=0$$

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}}$$

Legyen $\varepsilon>0$ adott, rögzített. Milyen "nagy" \emph{n} -re fog teljesülni, hogy

$$\left|\left(\sqrt{n+1}-\sqrt{n}\right)-0\right|<\varepsilon?$$

azaz

$$\frac{1}{\sqrt{n+1}+\sqrt{n}}<\varepsilon?$$

$$\lim_{n\to\infty}\sqrt{n+1}-\sqrt{n}=0$$

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}}$$

Legyen $\varepsilon>0$ adott, rögzített. Milyen "nagy" \emph{n} -re fog teljesülni, hogy

$$\left|\left(\sqrt{n+1}-\sqrt{n}\right)-0\right|<\varepsilon?$$

azaz

$$\frac{1}{\sqrt{n+1}+\sqrt{n}}<\varepsilon?$$

Mivel $\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n+\sqrt{n}}}=\frac{1}{2\sqrt{n}}$ ezért a fenti egyenlőtlenség teljesül, ha

$$\frac{1}{2\sqrt{n}} < \varepsilon$$

$$\frac{1}{2\sqrt{n}} < \varepsilon$$

$$\frac{1}{4n} < \varepsilon^2$$

$$n > \frac{1}{4\varepsilon^2}$$

Az ε -hoz tartozó n_0 legyen az a legkisebb természetes szám, mely nagyobb mint $\frac{1}{4\varepsilon^2}$.

ε	0.1	0.02	0.01	0.005	0.0001	
n_0	26	1011	2501	10001	250001	

Tétel. Egy konvergens sorozatnak csak egy határértéke van.

Bizonyítás ellentmondással.

Feltételezzük, hogy van olyan (a_n) sorozat, melynek legalább 2 határértéke van. Legyen

$$\lim_{n \to \infty} a_n = b_1 \quad \text{\'es} \quad \lim_{n \to \infty} a_n = b_2 \quad \text{ahol} \quad b_1 < b_2.$$

Legyen $\varepsilon < \frac{b_2-b_1}{2}$.

Akkor van olyan n_1 , hogy minden $n > n_1$ esetben $|a_n - b_1| < \varepsilon$, azaz

$$b_1 - \varepsilon < a_n < b_1 + \varepsilon$$
.

Akkor van olyan n_2 , hogy minden $n > n_2$ esetben $|a_n - b_2| < \varepsilon$, azaz

$$b_2 - \varepsilon < a_n < b_2 + \varepsilon$$
.

Legyen $n_0 = \max\{n_1, n_2\}$. Akkor minden $n > n_0$ esetben

$$a_n < b_1 + \varepsilon < b_2 - \varepsilon < a_n$$
 ami lehetetlen. Ellentmondás.

Definíció. Az (a_n) sorozat határértéke $+\infty$ $(-\infty)$, ha tetszőleges K>0-hoz (L<0-hoz) létezik olyan K-tól (L-től) függő n_0 szám, melyre igaz, hogy minden $n>n_0$ esetben

$$a_n > K$$
 $(a_n < L)$.

Jelölése

$$\lim_{n\to\infty}a_n=+\infty \qquad \left(\lim_{n\to\infty}a_n=-\infty\right)$$

Definíció. Az (a_n) sorozat határértéke $+\infty$ $(-\infty)$, ha tetszőleges K > 0-hoz (L < 0-hoz) létezik olyan K-tól (L-től) függő n_0 szám, melyre igaz, hogy minden $n > n_0$ esetben

$$a_n > K$$
 $(a_n < L)$.

Jelölése

$$\lim_{n\to\infty}a_n=+\infty \qquad \left(\lim_{n\to\infty}a_n=-\infty\right)$$

$$\lim_{n\to\infty}2n=+\infty$$

Definíció. Az (a_n) sorozat határértéke $+\infty$ $(-\infty)$, ha tetszőleges K > 0-hoz (L < 0-hoz) létezik olyan K-tól (L-től) függő n_0 szám, melyre igaz, hogy minden $n > n_0$ esetben

$$a_n > K$$
 $(a_n < L)$.

Jelölése

$$\lim_{n\to\infty} a_n = +\infty \qquad \left(\lim_{n\to\infty} a_n = -\infty\right)$$

$$\lim_{n\to\infty} 2n = +\infty$$

$$\lim_{n\to\infty} -\sqrt{n} = -\infty$$

Tétel. Bármilyen (a_n) sorozatra

a)
$$\lim_{n\to\infty} a_n = b \in \mathbb{R}$$

b)
$$\lim_{n\to\infty} a_n = +\infty$$

c)
$$\lim_{n\to\infty} a_n = -\infty$$

tulajdonságok közül legfeljebb egy teljesülhet.

Definíció. Az $a_1, a_2, a_3, \ldots, a_n \ldots$ sorozatból bizonyos elemek (esetleg végtelen sok) elhagyásával keletkező

$$a_{n_1}, a_{n_2}, a_{n_3}, \ldots, a_{n_k} \ldots$$

 $(n_1 < n_2 < n_3 < \cdots < n_k < \cdots)$ végtelen sorozatot az eredeti részsorozatának nevezzük.

Tétel. Ha létezik a sorozat határértéke, akkor tetszőleges végtelen sok elemet tartalmazó részsorozatának is ugyanaz a határértéke.

Tétel. Ha létezik a sorozat határértéke, akkor tetszőleges végtelen sok elemet tartalmazó részsorozatának is ugyanaz a határértéke.

Fordítva ez nem igaz.

Az $a_n=(-1)^n$ sorozat $(-1,1-1,1,-1,1,\dots)$ határértéke nem létezik, de az (a_{2n+1}) részsorozatának már igen $(-1,-1,-1,-1,\dots)$.

rendőrszabály

Tétel. Ha minden n természetes számra $a_n \leq b_n \leq c_n$ és

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = \alpha, \quad \text{akkor} \quad \lim_{n\to\infty} b_n = \alpha.$$

Bizonyítás. Legyen $\varepsilon > 0$ rögzített.

Mivel $\lim_{n\to\infty} a_n = \alpha$,

ezért létezik olyan n_1 , hogy minden $n > n_1$ esetben

$$\alpha - \varepsilon < a_n < \alpha + \varepsilon$$
.

Mivel $\lim_{n\to\infty} c_n = \alpha$,

ezért létezik olyan n_2 , hogy minden $n > n_2$ esetben

$$\alpha - \varepsilon < c_n < \alpha + \varepsilon$$
.

Legyen $n_0 = \max\{n_1, n_2\}$. Akkor $a_n \le b_n \le c_n$ és

$$\alpha - \varepsilon < a_n \le b_n \le c_n < \alpha + \varepsilon$$
 s ezért $|b_n - \alpha| < \varepsilon$

ami azt jelenti, hogy $\lim_{n\to\infty} b_n = \alpha$.

Tétel. Legyen

$$\lim_{n\to\infty} a_n = \alpha \quad \text{és} \quad \lim_{n\to\infty} b_n = \beta$$

Akkor

$$\lim_{n\to\infty}(a_n+b_n)=(\lim_{n\to\infty}a_n)+(\lim_{n\to\infty}b_n)=\alpha+\beta$$

$$\lim_{n\to\infty} (a_n.b_n) = (\lim_{n\to\infty} a_n).(\lim_{n\to\infty} b_n) = \alpha.\beta$$

továbbá $\alpha \neq 0$ esetben

$$\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{\lim_{n\to\infty}a_n}=\frac{1}{\alpha}.$$

