

TD2: Diagonalisation des matrices

Module : Mathématiques de Base 3 Classes : 2^{ème} année AU : 2021 / 2022

Exercice 1:

Soient $A \in \mathcal{M}_3(\mathbb{R})$ et $V_1, V_2 \in \mathbb{R}^3$, définis par :

$$A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix} V_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \text{ et } V_2 = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix}$$

- 1. Calculer $A. V_1$ et $A. V_2$.
- 2. Déterminer les valeurs propres de A et leurs ordres de multiplicité.
- 3. En déduire que le polynôme caractéristique de A est $\chi_A(\lambda) = -\lambda(\lambda 1)(\lambda 2)$.
- 4. Justifier que la matrice A est diagonalisable.
- 5. Déterminer un vecteur V_3 tel que $A. V_3 = (0, 0, 0)$.
 - 6. Diagonaliser la matrice A.

Exercice 2:

Pour $m \in \mathbb{R}$, on définit la matrice :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{pmatrix}$$

- 1. Déterminer les valeurs propres de A.
- 2. Pour quelles valeurs de m la matrice A est-elle diagonalisable?
- 3. On prend m=2.
 - (a) Diagonaliser la matrice A.
 - (b) Pour $n \in \mathbb{N}^*$, calculer A^n .

Exercice 3:

On se propose de résoudre le système différentiel suivant :

(S):
$$\begin{cases} x'(t) = -x(t) + y(t) + z(t) \\ y'(t) = x(t) - y(t) + z(t) \\ z'(t) = x(t) + y(t) - z(t) \end{cases}$$

1. Ecrire le système (S) sous la forme :

$$X'(t) = A. X(t)$$
, avec $A \in \mathcal{M}_3(\mathbb{R})$ et $X = (x, y, z) \in \mathbb{R}^3$

- 2. Calculer le polynôme caractéristique de A.
- 3. Déterminer les valeurs propres de A ainsi que leurs ordres de multiplicité.
- 4. Montrer que A est diagonalisable.
- 5. Déterminer une matrice diagonale D et une matrice inversible P telles ques :

$$A = P D P^{-1}$$

- 6. On pose $Y = P^{-1}X$.
 - (a) Montrer que Y satisfait un système différentiel (S') que l'on déterminera.
 - (b) Résoudre le système (S').
 - (c) Déduire la solution du système (S).