Different distances

- What is the distance between two points?
- What is the distance between two lines?
- What is the distance between two curves?
- What is the distance between two matrices?
- What is the distance between two clusters?

- What is the distance between two words (strings)?
- What is the distance between two PDFs?
- What is the distance between two species?

What is Kullback_Leibler divergence?

- What is the distance between two PDFs?
- Answer: KLD (relative entropy) can be used
- How one PDF is different from other?

Consider two PDFs – p and q

X ₁	X ₂	X ₃	 	X_n
$p(x_1)$	$p(x_2)$	$p(x_3)$		$p(x_n)$

X ₁	X ₂	X ₃	 	X _n
$q(x_1)$	$q(x_2)$	$q(x_3)$	 	$q(x_n)$

Information content of p and q

$p(x_1)$	$p(x_2)$	$p(x_3)$	 	$p(x_n)$
$Log[1/p(x_1)]$	$Log [1/p(x_2)]$	Log $[1/p(x_3)]$	 	$Log [1/p(x_n)]$

$q(x_1)$	$q(x_2)$	$q(x_3)$	 	$q(x_n)$
$Log [1/q(x_1)]$	Log $[1/q(x_2)]$	Log $[1/q(x_3)]$	 	$Log [1/q(x_n)]$

Information difference between p and q

Log $[1/q(x_1)]$ - Log $[1/p(x_1)]$ =	Log $p(x_1)$ - Log $q(x_1)$
Log $[1/q(x_2)]$ - Log $[1/p(x_2)]$ =	$Log p(x_2) - Log q(x_2)$
Log $[1/q(x_3)]$ - Log $[1/p(x_3)]$ =	Log $p(x_3)$ - Log $q(x_3)$
•••	•••
Log $[1/q(x_n)]$ - Log $[1/p(x_n)]$ =	Log $p(x_n)$ - Log $q(x_n)$

We have n number of differences Make a single number – How? expectation

Find the average information difference

Information difference	Weighting factor
$Log p(x_1) - Log q(x_1)$	$p(x_1)$
$Log p(x_2) - Log q(x_2)$	$p(x_2)$
Log $p(x_3)$ - Log $q(x_3)$	$p(x_3)$
***	•••
Log $p(x_n)$ - Log $q(x_n)$	$p(x_n)$

we are going to sum $(\log(p(x_i)) - \log(q(x_i)))$ which is the weighing factor? $p(x_i)$ $\sum p(x_i) \cdot (\log(p(x_i)) - \log(q(x_i)))$

Relative entropy

- Aka Kullback– Leibler divergence
- Distance between two distributions
 - Measure of how one probability distribution diverges from another distribution

$$D_{KL}(P \parallel Q) = -\sum_{x} P(x) \log \frac{Q(x)}{P(x)}$$
$$= \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Asymetrical

Let $\mathcal{X} = \{0, 1\}$ and consider two distributions p and q on \mathcal{X} . Let p(0) = 1 - r, p(1) = r, and let q(0) = 1 - s, q(1) = s. Then

$$D(p||q) = (1-r)\log\frac{1-r}{1-s} + r\log\frac{r}{s}$$

and

$$D(q||p) = (1-s)\log\frac{1-s}{1-r} + s\log\frac{s}{r}.$$

If r = s, then D(p||q) = D(q||p) = 0. If $r = \frac{3}{4}$, $s = \frac{1}{4}$, we can calculate

$$D(p||q) = \frac{1}{2}\log\frac{\frac{1}{2}}{\frac{3}{4}} + \frac{1}{2}\log\frac{\frac{1}{2}}{\frac{1}{4}} = 1 - \frac{1}{2}\log 3 = 0.2075$$
 bit.

whereas

$$D(q||p) = \frac{3}{4}\log\frac{\frac{3}{4}}{\frac{1}{2}} + \frac{1}{4}\log\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{3}{4}\log 3 - 1 = 0.1887 \text{ bit}$$

J divergence – becomes distance

$$D_{KL}(P \parallel Q) = -\sum_{x} P(x) \log \frac{Q(x)}{P(x)} \qquad D_{KL}(Q \parallel P) = -\sum_{x} Q(x) \log \frac{P(x)}{Q(x)}$$
$$= \sum_{x} P(x) \log \frac{P(x)}{Q(x)} \qquad = \sum_{x} Q(x) \log \frac{Q(x)}{P(x)}$$

 $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ (in general)

We cannot call it as distance measure

$$\sqrt{\frac{1}{2} \left[D_{\mathit{KL}} \left(P \parallel Q\right)\right]^{2} + \frac{1}{2} \left[D_{\mathit{KL}} \left(Q \parallel P\right)\right]^{2}} : J \ \textit{divergence}$$

Triangular distribution

Some body assumes it is Gaussian

Use Gaussian to approximate the triangular (previous slide)

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean = 3; std = 1.5

Mean = 5; std = 2

Mean = 5; std = 2.5

Use Weibull to approximate the triangular

$$\left(\frac{k}{\lambda}\right) \cdot \left(\frac{x}{\lambda}\right)^{(k-1)} \cdot e^{\left(-\left(\frac{x}{\lambda}\right)^k\right)} \quad \text{for} \quad x >= 0$$

$$\lambda = 5; k = 1$$

$$\lambda = 5.5; k = 3$$

Which is good?

 Kullback-Leibler divergence/distance answers this

KLD versus Std (Gaussian)

KLD
0.098153
0.057095
0.021518
0.019576
0.019729
0.021716
0.025309
0.036549
0.116225

KLD versus Lambda (Weibull)

lamda	Kldistance

5 0.173221

5.2 0.105958

5.4 0.066108

5.6 0.048314

5.7 0.046326

5.75 0.046856

5.755 0.046961

5.8 0.048332

6 0.062778

6.5 0.145433

KLD of two matrices-e.g. 1

- Consider the matrices
 A and B
- The matrix elements are from the set {0, 1, 2, 3, 4}
- Find the $E(\epsilon^2)$ where ϵ is the error computed using A-B
- Find KLD(A||B) and KLD(B||A) Γ_1

$$A = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}, \quad and \quad B = \begin{bmatrix} 1 & 4 & 3 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

KLD of two matrices-e.g. 2

- Consider the matrices
 A and B
- The matrix elements are from the set {0, 1, 2, 3, 4}
- Find KLD(A||B) and KLD(B||A)

$$A = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}, \quad and \quad B = \begin{bmatrix} 1 & 4 & 3 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

KLD of two matrices-e.g. 2

- Consider the matrices
 A and B
- The matrix elements are from the set {0, 1, 2, 3, 4}
- Find the E(X²)
- Find KLD(A||B) and KLD(B||A)

$$A = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}, \quad and \quad B = \begin{bmatrix} 2 & 0 & 4 \\ 3 & 1 & 1 \end{bmatrix}$$

Thought on KLD

$$D_{KL}(P||Q) = -\sum P(x) \log \frac{Q(x)}{P(x)}$$

$$= \sum P(x) \log \frac{P(x)}{Q(x)}$$

$$= \sum P(x) \log P(x) - \sum P(x) \log Q(x)$$

= -Shannon's entropy + Cross entropy

Entropy, Relative entropy & cross entropy

Relative entropy = Cross entropy - Shannon's entropy

$$D_{KL}(P||Q) = H(P,Q) - H(P)$$

