Homework #8 solutions

- 1. This is true.
 - a. Proof 1 (directly from the definitions):

b. Proof 2 (Using the rules on the sheet:)

$$(B \cup C) - A = (B \cup C) \cap A^c$$
 [Alternate Representation of set difference] $= (B \cap A^c) \cup (C \cap A^c)$ [Distributive Law] $= (B - A) \cup (C - A)$ [Alternate Representation of set difference]

- 2. This is true.
 - a. Proof 1 (directly from the definitions):

Assume (by way of contradiction) that $(A \cap C) - (C \cup A)$ is *not* empty.

Let
$$x \in (A \cap C) - (C \cup A)$$
.

Then $x \in A \cap C$, but $x \notin C \cup A$. [Defn. of set difference.]

Since $x \in A \cap C$, $x \in A$ and $x \in C$. [Defn. of intersection.]

Therefore $x \in A \cup C$. [Defn. of union.]

But this contradicts the above.

This contradiction shows that $(A \cap C) - (C \cup A)$ is empty.

b. Proof 2 (Using the rules on the sheet:)

$$\begin{array}{lll} (A\cap C)-(C\cup A)&=&(A\cap C)\cap (C\cup A)^c & [\text{Alternate Representation of set difference}]\\ &=&(A\cap C)\cap (C^c\cap A^c) & [\text{DeMorgan's Law}]\\ &=&(A\cap A^c)\cap (C\cap C^c) & [\text{Associative Law.}]\\ &=&\emptyset\cap\emptyset & [\text{Intersection with Compliment}]\\ &=&\emptyset & [\text{Intersection with Empty Set.}] \end{array}$$

- 3. This is true.
 - a. Proof 1 (directly from the definitions):

```
 x \in (A \cap B) \cap C \quad \leftrightarrow \quad x \in A \ \land x \in B \land x \in C. \quad \text{[Defn. of intersection]} \\  \leftrightarrow \quad x \in A \land \sim (x \not\in B \lor x \not\in C) \quad \text{[DeMorgan's Law from propositional logic]} \\  \leftrightarrow \quad x \in A \land \sim (x \in B^c \lor x \in C^c) \quad \text{[Defn. of compliment]} \\  \leftrightarrow \quad x \in A \land \sim (x \in B^c \cup C^c) \quad \text{[Defn. of union]} \\  \leftrightarrow \quad x \in A \ \land x \in (B^c \cup C^c)^c \quad \text{[Defn. of Compliment]} \\  \leftrightarrow \quad x \in A - (B^c \cup C^c) \quad \text{[Defn. of set difference]}
```

b. Proof 2 (using the rules from the sheet):

$$(A \cap B) \cap C = A \cap (B \cap C)$$
 [Associative Property]
= $A \cap (B^c \cup C^c)^c$ [DeMorgan's Law]
= $A - (B^c \cup C^c)$ [Alternate Representation of Set Difference]

4. This is false.

Counterexample: $A=\{1\},\,B=\{1\},\,C=\emptyset.$ Now $((A\cup B)-C)\cup(A\cap B)=\{1\},$ while $((A-B)\cup(B-A))-C=\emptyset$ Any example where $A\cap B$ is non-empty will suffice as a counterexample.

- 5. Counterexample: Let $A = \{1\}$, $B = \{2\}$, $C = \emptyset$ Now the ordered pair $(1,2) \in A \times (B \cup C)$, but $(1,2) \notin (A \times B) \cap (A \times C)$.
- 6. Counterexample: Let A be any set of size 2, and let B=A. Now $|\mathcal{P}(A \times B)| = 16 = |\mathcal{P}(A) \times \mathcal{P}(B)|$
- 7. Counterexample: Let $A = \emptyset$, and let $B = \{1\}$. Now $A - B = \emptyset$, but $A \neq B$.
- 8. Counterexample: Let $A=\emptyset$, let $B=\emptyset$, and let $C=\emptyset$. Now $(A-B)\cup (B-A)=\emptyset$, and $(A\cup B)-(A\cap B\cap C)=\emptyset$.
- 9. This is true.

Assume $A \cap B = A$. [We will show $A \cup B = B$.] Part I: [Show $A \cup B \subseteq B$.]

Let $x \in A \cup B$. By the definition of "Union", that means either $x \in B$, as desired, or else $x \in A$. In the case where $x \in A$, we apply our assumption that $A \cap B = A$, to get $x \in A \cap B$. But now (by the definition of intersection) $x \in A \land x \in B$, hence $x \in B$ (specialization).

Part II: [Show $B \subseteq A \cup B$]

If $x \in B$, then we can apply "generalization" to say $x \in B \lor x \in A$, hence $x \in A \cup B$, by the definition of union.

10. This is true.

Assume $A\cap B=A$, and $B\cap C=B$. [We will show $A\cap C=A$.] Part I: [Show $A\cap C\subseteq A$.]

Let $x \in A \cap C$. $x \in A \land x \in C$, by the definition of intersection. Applying specialization, we get $x \in A$.

Part II: [Show $A \subseteq A \cap C$.]

Let $x \in A$. Since we have assumed $A \cap B = A$, we have $x \in A \cap B$. Since we have assumed $B \cap C = B$, we have $x \in A \cap (B \cap C)$. This means that x is in all three sets, so in particular $x \in A \cap C$ (by the definition of intersection).

11. This is true.

Let $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then either $x \in \mathcal{P}(A)$ or $x \in \mathcal{P}(B)$, so either $x \subseteq A$ or $x \subseteq B$. If $x \subseteq A$ then $x \subseteq A \cup B$ (since $A \subseteq A \cup B$). Similarly, if $x \subseteq B$ then $x \subseteq A \cup B$. So in either case $x \subseteq A \cup B$, hence $x \in \mathcal{P}(A \cup B)$.