

TEST REPORT

Test report no.: 1-3272/16-01-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

VIA traffic controlling GmbH

Campusallee 1

51379 Leverkusen / GERMANY
Phone: +49-2171-504930
Fax: +49-2171-504950
Contact: Joachim Geßler
e-mail: j.gessler@viatraffic.de
Phone: +49-2171-504933

Manufacturer

VIA traffic controlling GmbH

Campusallee 1

51379 Leverkusen / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Speed Display Model name: viasis 3003

FCC ID: 2AKXP-VIASIS3003
IC: 22339-VIASIS3003

Frequency: 24.075 GHz – 24.175 GHz

Antenna: Integrated patch antenna

Power supply: 10.6 V to 16.0 V DC by battery

Temperature range: -20°C to +55°C

Radio Communications & EMC

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Karsten Geraldy	Meheza Walla	
Lab Manager	Lab Manager	

Radio Communications & EMC

Table of contents

1	Table of contents2						
2	Gene	al information					
	2.1	Notes and disclaimer					
	2.2	Application details					
	2.3	Test laboratories sub-contracted	3				
3	Test s	standard/s and references	4				
4	Test e	environment					
5		tem					
	5.1	General description					
	5.2 Additional information						
6	Description of the test setup						
	6.1	Shielded semi anechoic chamber					
	6.2	Shielded fully anechoic chamber					
	6.3	Radiated measurements 18 GHz – 50 GHz					
	6.4	Radiated measurements > 50 GHz					
7	Meas	urement uncertainty	12				
8	Seque	ence of testing	13				
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	13				
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	14				
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz					
	8.4	Sequence of testing radiated spurious above 18 GHz					
	8.5	Sequence of testing radiated spurious above 50 GHz with external mixers	17				
9	Sumn	nary of measurement results	18				
10	Mea	surement results	19				
	10.1	Field strength of emissions (wanted signal)	19				
	10.2	Occupied bandwidth (99% bandwidth)					
	10.3	Field strength of emissions (radiated spurious)					
Anr	nex A	Document history	30				
Anr	nex B	Further information	30				
Anr	nex C	Accreditation Certificate	31				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2017-01-09
Date of receipt of test item: 2017-01-23
Start of test: 2017-01-23
End of test: 2017-02-06

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	2016-06	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	•••	T_{nom}	+22 °C during room temperature tests
Relative humidity content			55 %
Barometric pressure			1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	12.0 V DC by Power supply 16.0 V 10.6 V

5 Test item

5.1 General description

Kind of test item	:	Speed Display			
Type identification	:	riasis 3003			
HMN	:	-/-			
PMN	:	viasis 3003			
HVIN	:	COMPACT MINI PLUS PLUS SMILE VARIO VARIO MONO			
FVIN	:	-/-			
S/N serial number	:	16SC1624			
HW hardware status	:	viasis3003M-H4			
SW software status	:	4.34			
Frequency band	:	24.075 GHz – 24.175 GHz			
Type of modulation	:	Unmodulated CW Carrier: 17k8N0N			
Number of channels	:	1			
Antenna	:	Integrated patch antenna			
Power supply	:	10.6 V to 16.0 V DC by Power supply			
Temperature range	:	-20°C to +55°C			

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-3272/16-01-02 AnnexA 1-3272/16-01-02_AnnexB 1-3272/16-01-02_AnnexC Test mode: Normal operation Special software is used to have a continuous transmission Reference documents: Viasis_3003_e.pdf Special test descriptions: ViaGraph Software Configuration descriptions: Using a RS232 interface cable After the start of the "ViaGraph" program you may click "Connect to device". If the connection is established successfully, click "3.Test functions" and push the CRTL key and the W key at the same time Click "4. Amplifier & Transceiver" in the new menu Click "1.Adjust Amplifier"

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	ΕK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specification ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

No.	Equipment	Туре	Manufacturer	Serial No.	INV. No CTC	Kind of Calibration	Last Calibration	Next Calibration
1	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
2	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne		
3	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
4	Analyzer-Reference-System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
6	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
7	Turntable Interface-Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
8	TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
9	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	24.01.2017	24.01.2018
10	Double Ridge Broadband Horn Antenna 1-10 GHz	BBHA9120 B	Schwarzbeck	188	300003896	k	20.05.2015	20.05.2017

6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

No.	Equipment	Туре	Manufacturer	Serial No.	INV. No	Kind of Calibration	Last Calibration	Next Calibration
1	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
3	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
6	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
7	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
8	Band Reject filter	WRCG1855/1910- 1835/1925-40/8SS	Wainwright	7	300003350	ev	-/-	-/-
9	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
10	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
11	TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
12	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	EMI Test Receiver 9kHz- 26,5GHz	ESR26	R&S	101376	300005063	k	01.09.2016	01.09.2017

6.3 Radiated measurements 18 GHz - 50 GHz

No.	Equipment	Туре	Manufacturer	Serial No.	INV. No CTC advanced	Kind of Calibration	Last Calibration	Next Calibration
1	Std. Gain Horn Antenna 39.3-59.7 GHz	2424-20	Flann	75	300001979	ne		
2	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda		300000486	k	10.09.2015	10.09.2017
3	Std. Gain Horn Antenna 26.5 to 40.0 GHz	V637	Narda	82-16	300000510	k	14.08.2015	14.08.2017
4	Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443	Ve	28.10.2016	28.10.2018
5	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev		
6	Cable 107	SF101, 2m	H&S	3054/1	-/-	ev	-/-	-/-

6.4 Radiated measurements > 50 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation:

OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μ W)

Note: conversion loss of mixer is already included in analyzer value.

No.	Equipment	Туре	Manufacturer	Serial No.	INV. No CTC advanced	Kind of Calibration	Last Calibration	Next Calibration
1	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne		
2	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne		
3	Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443	Ve	28.10.2016	28.10.2018
4	Harmonic Mixer 2-Port, 50-75 GHz	FS-Z75	R&S	100099	300003949	k	09.03.2016	09.03.2017
5	Harmonic Mixer 3-Port, 75- 110 GHz	FS-Z110	R&S	101411	300004959	k	09.03.2006	09.03.2017

7 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Field strength	± 3 dB					
Occupied bandwidth	± span/1000					
TX spurious emissions radiated below 30 MHz	± 3 dB					
TX spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's
 whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained	
	There were deviations from the technical specifications ascertained	
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.	

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 15 RSS-210, Issue 9, Annex F	Passed	2017-02-07	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Results (max.)
§15.245(b) RSS-210 F.1 RSS-Gen	Field strength of emissions (wanted signal)	Nominal	Nominal	\boxtimes				109.9 dBµV/m
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal					17.8 kHz
§15.209(a) §15.245 (b)(1)(2)(3) RSS-210 F.2.1 RSS-Gen	Field strength of emissions (spurious & harmonics)	Nominal	Nominal					Complies

Note: NA = Not Applicable; NP = Not Performed

10 Measurement results

10.1 Field strength of emissions (wanted signal)

Description:

Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

Measurement parameter			
Detector:	Pos-Peak		
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	See plots		
Trace-Mode:	Max Hold		

Plot No. 1: Field Strength, Peak detector, T_{nom} / V_{nom}

Result:

Test condition	Maximum field strength [dBμV/m @ 3 m]
T _{nom} / V _{nom}	109.9
Measurement uncertainty	± 3 dB

Limits:

FCC			IC
CFR Part 15.245(b)		RSS - 210, F.1	
Field strength of emissions			
The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:			
Frequency [GHz] Field Streng		th [dBµV/m]	Measurement distance [m]
24.075 – 24.175	12	28	3

Verdict: complies

10.2 Occupied bandwidth (99% bandwidth)

Definition:

The occupied bandwidth is defined as the 99% bandwidth.

Measurement:

The EUT is powered on and set up to transmit its normal signal modulation sequence(s). A spectrum analyzer with the following settings is used:

The test was performed under normal and extreme test conditions.

Measurement parameter			
Detector:	Pos-Peak		
Sweep time:	Appropriate		
Resolution bandwidth:	1 kHz		
Video bandwidth:	3 kHz		
Span:	100 kHz		
Trace-Mode:	Max-Hold		

Plot No. 2: Occupied Bandwidth, T_{nom} / V_{nom}

Limits:

Ī	24.075 GHz – 24.175 GHz	100 MHz
	24.070 0112 - 24.170 0112	100 1011 12

Results:

Test conditions	Occupied bandwidth (kHz)		
100100110110	99%		
T _{nom} / V _{nom}	17.8		
Measurement uncertainty	± span/1000		

Verdict: complies

10.3 Field strength of emissions (radiated spurious)

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

Measurement parameter				
Detector:	F < 1 GHz: Quasi-Peak F > 1 GHz: Average			
Sweep time:	Auto			
Video bandwidth:	Auto			
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz			
Frequency range:	30 MHz to 100 GHz			
Trace-Mode:	Max-Hold			

Limits:

FCC	IC
CFR Part 15.209(a)	RSS - GEN

Radiated Spurious Emissions

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

FCC		IC					
CFR Part 15.245(a)		RSS-GEN					
Field strength of harmonics							
The field strength of harmonics from intentional radiators shall comply with the following:							
Frequency [GHz]	Field Strength [mV/m // dBµV/m]		Measurement distance [m]				
24.075 – 24.175	25 // 88		3				

Results:

TX Spurious Emissions Radiated [dBµV/m]								
EUT		-/-			-/-			
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [GHz]	Detector	Level [dBµV/m]	Frequency [GHz]	Detector	Level [dBµV/m]
67.5	QuasiPeak	8.08						
166.0	QuasiPeak	30.65						
178.0	QuasiPeak	21.02						
192.0	QuasiPeak	30.33						
200.0	QuasiPeak	27.79						
232.4	QuasiPeak	26.17						
Measurement uncertainty ± 3 dB								

Verdict: complies

Plot No. 4: 30 MHz to 1 GHz, horizontal / vertical polarization

Plot No. 5: 1 GHz to 7 GHz, (Pos-Peak Trace) horizontal / vertical polarization

Plot No. 6: 7 GHz to 18 GHz, (Pos-Peak Trace) horizontal / vertical polarization

Plot No. 7: 17.7 GHz to 18 GHz (Pos-Peak/AVG Trace), horizontal / vertical polarization

Plot No. 8: 18 GHz to 26 GHz, horizontal / vertical polarization

Note: Markers show wanted signal

Plot No. 9: 26 GHz to 40 GHz, horizontal / vertical polarization

Plot No. 10: 40 GHz to 50 GHz, horizontal / vertical polarization

Plot No. 11: 50 GHz to 75 GHz, horizontal / vertical polarization

Plot No. 12: 75 GHz to 110 GHz, horizontal / vertical polarization

Annex A Document history

Version	Applied changes	Date of release	
	DRAFT	2017-02-07	
	Editorial changes based due to minor errors	2017-02-07	

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

OBW Occupied Bandwidth OC Operating Channel

OCW Operating Channel Bandwidth

OOB Out Of Band

Annex C Accreditation Certificate

first page

DAkkS

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Funk
Mobilfunk (GSM / DCS) + OTA
Elektromagnetische Verträglichkeit (EMV)
Produktsicherik
SAR / EMF
Umwelt
Smart Card Technology
Bluetooth*
Automotive
WF-FI-Services
Kanadische Anforderungen
US-Anforderungen
Austik

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsmummer D-PL-12076-01 und ist giltig bis 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 63 Seiten.

Frankfurt, 25.11.2016

last page

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Standort Braunschwe Bundesallee 100 38116 Braunschweig

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI, I.S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 Weber die Vorschriften für die Akkrediterung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. L218 vom 9. Juli 2008, S. 30). Die DAKS ist Unterzeicherin die Wultilateralen Absommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.nu

Note:

The current certificate including annex can be received on request.