Exercise sheet 1

Max Wisniewski, Alexander Steen

Problem 1 Computing the minimum

1. Let $X_i \in \{0,1\}$ be the random variable that indicates whether line (*) is executed in the *i*-th iteration of the for-loop. Show that $E[X] = \sum_{i=2}^{n} E[X_i]$.

Since $X = \sum_{i=2} nX_i$, it holds that

$$E[X] = E\left[\sum_{i=2}^{n} X_i\right] \stackrel{(*)}{=} \sum_{i=2}^{n} E[X_i]$$

$$\tag{1}$$

where (*) holds by linearity of the expected value.

2. Find $E[X_i]$.

Since the numbers are pairwise distinct, the probability that at some fixed position k A[k] is minimal, is given by $Pr[A[k] \text{ minimal}] = \frac{1}{i}$, where i is the number of distinct numbers. It follows that

$$E[X_i] \stackrel{\text{Def.}}{=} \sum_{a \in \{0,1\}} a \cdot Pr[X_i = a]$$

$$= Pr[X_i = 1] = Pr[A[i] \text{ minimal in } i \text{ elements}] = \frac{1}{i}$$
(2)

3. Conclude that $E[X] = O(\log n)$.

$$E[X] \stackrel{(1)}{=} \sum_{i=2}^{n} E[X_i] = \sum_{i=2}^{n} \frac{1}{i}$$

$$\leq \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$
(3)

Problem 2 Induction

Problem 3 O-Notation

1.
$$\log(n!) = \Theta(n \log(n))$$

(1) $\log(n!) = O(n \log(n))$

$$\log(n!) = \sum_{i=1}^{n} \log i \le n \cdot \log n \tag{4}$$

(2) $\log(n!) = \Omega(n\log(n))$

$$TBD$$
 (5)

2. $\log(mn) = O(\log(n+m))$ holds since

$$\log(mn) = \log(m) + \log(n) \le \log(m+n) + \log(n+m)$$
$$= 2\log(n+m) = O(\log(n+m))$$
(6)

3. Let $f, g \ge 2$ and f(n) = O(g(n))

(a)
$$\sqrt{f(n)} = O(\sqrt{g(n)})$$

$$\sqrt{f(n)} = (f(n))^{\frac{1}{2}} \le (c \cdot g(n))^{\frac{1}{2}}
= \sqrt{c} \cdot \sqrt{g(n)} = O(\sqrt{g(n)})$$
(7)

(b)
$$2^f(n) = O(2^g(n))$$

$$TBD$$
 (8)