SEQUENCE LISTING

<11	ر < 0	Jing,	Shu	qian												
<12	Г <09 Ј	rans Jses	form Ther	ing eof	Grow	th F	actc'	r-Be	ta-R	elat	ed M	olec	ules	and	l	
<13	0> 0	0-65	9-A													
<14 <14																
		0/25 000-														
<16	0 > 2	7														
<17	0> F	aten	tIn	Ver.	2.0											
<21 <21	0> 1 1> 6 2> D 3> H	65	sapi	ens												
	1> C	DS 80).	. (50	2)												
	0> 1 tctc		agag.	acgt	tt g	actg	taca	a ac	ccga	tgct	gcc	ttcc	cac .	ataa	atgaga	60
ttt	tttt	ctg ·	ccag	gcaa	Me	g gt t Va 1	t tt. l Le	a cc u Pr	o Se	a ta r Ty: 5	t tc r Se	a aa r Ly	a aa s Ly	a cces s Pro	c tta o Leu 0	112
atc Ile	tct	aat	a+a	gag	cag	ctg	atc	cta								
	Ser	Asn	Val 15	Glu	Gln	Leu	Ile	Leu 20	Gly 999	atc Ile	ccg Pro	ggc	Gln 25	aat Asn	cgc Arg	160
cgg	gag	Asn ata	Val 15 ggc	Glu	Gln	Leu	Ile	Leu 20 atc	Gly ttt	Ile	Pro	Gly	Gln 25	aat Asn ctc Leu	Arg	160 208
cgg Arg	gag Glu ctg	Asn ata Ile 30 cag	Val 15 ggc Gly gat	Glu cat His	ggc Gly aag	cag Gln gtg	gat Asp 35	Leu 20 atc Ile ctt	Gly ttt Phe	Ile cca Pro	Pro gca Ala gct	gag Glu 40	Gln 25 aag Lys	Asn	tgc Cys	
cgg Arg cat His	gag Glu ctg Leu 45	Asn ata Ile 30 cag Gln	Val 15 ggc Gly gat Asp	cat His cgc Arg	ggc Gly aag Lys	cag Gln gtg Val 50	gat Asp 35 aac Asn	Leu 20 atc Ile ctt Leu agc	ttt Phe cac His	CCa Pro aga Arg	gca Ala gct Ala 55	gag Glu 40 gcc Ala	Gln 25 aag Lys tgg Trp	Asn ctc Leu	tgc Cys gag Glu	208
cgg Arg cat His tgt Cys 60	gag Glu ctg Leu 45 att Ile	ata Ile 30 cag Gln gtt Val	Val 15 ggc Gly gat Asp gca Ala	cat His cgc Arg ccc Pro	ggc Gly aag Lys aag Lys 65	cag Gln gtg Val 50 act Thr	gat Asp 35 aac Asn ctc Leu	Leu 20 atc Ile ctt Leu agc ser cgt	ttt Phe cac His ttc Phe	cca Pro aga Arg tct Ser 70	gca Ala gct Ala 55 tac Tyr	gag Glu 40 gcc Ala tgt Cys	Gln 25 aag Lys tgg Trp cag Gln	Asn ctc Leu ggc Gly	tgc Cys gag Glu acc Thr 75	208

			95					100					105			
acc Thr	atg Met	gtc Val 110	Arg	ctc Leu	ttc Phe	tcc Ser	ctg Leu 115	Met	gtc Val	cag Gln	gat Asp	gac Asp 120	Glu	cac His	aag Lys	448
atg Met	agt Ser 125	Val	cac His	tat Tyr	gtg Val	aac Asn 130	act Thr	tcc Ser	ttg Leu	gtg Val	gag Glu 135	aag Lys	tgt Cys	ggc	tgc Cys	496
tct Ser 140	tga	gat	accc	caa	agcc [.]	tcct	ac t	ggcc	tcag	g ga	cacc	taag	tct	cagg	act	552
tta	gtag	ggg (gtgg	gatt	ac t	tttc	atag	c aa	gtag	agct	ctt	tgaa	ggg	aggt	gggatt	612
tgg	tttg	ttt	ctca	aagc	ac ag	gcaa	gaag	g tt	ggca	ttat	ggc	agta	aca	aat		665
<210> 2 <211> 140 <212> PRT <213> Homo sapiens																
	0> 2 Val	Leu	Pro	Ser 5	Tyr	Ser	Lys	Lys	Pro 10	Leu	Ile	Ser	Asn	Val 15	Glu	
Gln	Leu	Ile	Leu 20	Gly	Ile	Pro	Gly	Gln 25	Asn	Arg	Arg	Glu	Ile 30	Gly	His	
Gly	Gln	Asp 35	Ile	Phe	Pro	Ala	Glu 40	Lys	Leu	Cys	His	Leu 45	Gln	Asp	Arg	
Lys	Val 50	Asn	Leu	His	Arg	Ala 55	Ala	Trp	Gly	Glu	Cys 60	Ile	Val	Ala	Pro	
Lys 65	Thr	Leu	Ser	Phe	Ser 70	Tyr	Cys	Gln	Gly	Thr 75	Cys	Pro	Ala	Leu	Asn 80	
Ser	Glu	Leu	Arg	His 85	Ser	Ser	Phe	Glu	Cys 90	Tyr	Lys	Arg	Ala	Val 95	Pro	
Thr	Cys	Pro	Trp 100	Leu	Phe	Gln	Thr	Cys 105	Arg	Pro	Thr	Met	Val 110	Arg	Leu	
Phe	Ser	Leu 115	Met	Val	Gln		Asp 120	Glu	His	Lys	Met	Ser 125	Val	His	Tyr	
Val	Asn 130	Thr	Ser	Leu	Val	Glu 135	Lys	Cys	Gly	Cys	Ser 140					
	2210> 3 2211> 810															

<212> DNA <213> Homo sapiens

<220> <221> CDS <222> (61)..(648) <400> 3 actagtgatt ctcagtagag acgtttgact gtcccaaccc gatgctgcct tcccacataa 60 atg aga ttt ttt tct gcc agg caa cat ggt ttt acc ctc ata ttc aaa Met Arg Phe Phe Ser Ala Arg Gln His Gly Phe Thr Leu Ile Phe Lys 10 aag aca aag att cca gcc act gat gtc gct gat gcc agc ctg aat gaa 156 Lys Thr Lys Ile Pro Ala Thr Asp Val Ala Asp Ala Ser Leu Asn Glu 2.0 tgt tcc agt acc gaa agg aaa caa gac gta gtg ttg ctg ttc gtg acc 204 Cys Ser Ser Thr Glu Arg Lys Gln Asp Val Val Leu Leu Phe Val Thr 35 ttg tcc cac aca cag cca cct ctg ttt cac ctg cct tat gtc cag aaa 252 Leu Ser His Thr Gln Pro Pro Leu Phe His Leu Pro Tyr Val Gln Lys 55 300 ccc tta atc tct aat gtg gag cag ctg atc ctg ggg atc ccg ggc cag Pro Leu Ile Ser Asn Val Glu Gln Leu Ile Leu Gly Ile Pro Gly Gln aat cgc cgg gag ata ggc cat ggc cag gat atc ttt cca gca gag aag 348 Asn Arg Arg Glu Ile Gly His Gly Gln Asp Ile Phe Pro Ala Glu Lys ctc tgc cat ctg cag gat cgc aag gtg aac ctt cac aga gct gcc tgg 396 Leu Cys His Leu Gln Asp Arg Lys Val Asn Leu His Arg Ala Ala Trp 105 100 ggc gag tgt att gtt gca ccc aag act ctc agc ttc tct tac tgt cag 444 Gly Glu Cys Ile Val Ala Pro Lys Thr Leu Ser Phe Ser Tyr Cys Gln 120 115 ggg acc tgc ccg gcc ctc aac agt gag ctc cgt cat tcc agc ttt gag 492 Gly Thr Cys Pro Ala Leu Asn Ser Glu Leu Arg His Ser Ser Phe Glu 130 135 540 tgc tat aag agg gca gta cct acc tgt ccc tgg ctc ttc cag acc tgc Cys Tyr Lys Arg Ala Val Pro Thr Cys Pro Trp Leu Phe Gln Thr Cys 150 145 cgt ccc acc atg gtc aga ctc ttc tcc ctg atg gtc cag gat gac gaa 588 Arg Pro Thr Met Val Arg Leu Phe Ser Leu Met Val Gln Asp Asp Glu 165 170 cac aag atg agt gtg cac tat gtg aac act tcc ttg gtg gag aag tgt 636 His Lys Met Ser Val His Tyr Val Asn Thr Ser Leu Val Glu Lys Cys 185 ggc tgc tct tga gataccccaa agcctcctac tggcctcagg gccacctaag 688 Gly Cys Ser 195

totcaggact ttagtagggg gtgggattac ttttcatagc aagtagagct ctttgaaggg 748
aggtgggatt tggtttgttt ctcaaagcac agcaagaagg ttggcattat ggcagtaaaa 808
tc 810

<210> 4

<211> 195

<212> PRT

<213> Homo sapiens

<400> 4

Met Arg Phe Phe Ser Ala Arg Gln His Gly Phe Thr Leu Ile Phe Lys
1 5 10 15

Lys Thr Lys Ile Pro Ala Thr Asp Val Ala Asp Ala Ser Leu Asn Glu 20 25 30

Cys Ser Ser Thr Glu Arg Lys Gln Asp Val Val Leu Leu Phe Val Thr 35 40 45

Leu Ser His Thr Gln Pro Pro Leu Phe His Leu Pro Tyr Val Gln Lys 50 55 60

Pro Leu Ile Ser Asn Val Glu Gln Leu Ile Leu Gly Ile Pro Gly Gln 65 70 75 80

Asn Arg Arg Glu Ile Gly His Gly Gln Asp Ile Phe Pro Ala Glu Lys
85 90 95

Leu Cys His Leu Gln Asp Arg Lys Val Asn Leu His Arg Ala Ala Trp
100 105 110

Gly Glu Cys Ile Val Ala Pro Lys Thr Leu Ser Phe Ser Tyr Cys Gln
115 120 125

Gly Thr Cys Pro Ala Leu Asn Ser Glu Leu Arg His Ser Ser Phe Glu 130 135 140

Cys Tyr Lys Arg Ala Val Pro Thr Cys Pro Trp Leu Phe Gln Thr Cys 145 150 155 160

Arg Pro Thr Met Val Arg Leu Phe Ser Leu Met Val Gln Asp Asp Glu 165 170 175

His Lys Met Ser Val His Tyr Val Asn Thr Ser Leu Val Glu Lys Cys 180 185 190

Gly Cys Ser

195

<210> 5

```
<211> 214
<212> PRT
<213> Mus musculus
<400> 5
Gln Glu Pro His Val Trp Gly Gln Thr Thr Pro Lys Pro Gly Lys Met
                                      10
Phe Val Leu Arg Ser Val Pro Trp Pro Gln Gly Ala Val His Phe Asn
                                  25
Leu Leu Asp Val Ala Lys Asp Trp Asn Asp Asn Pro Arg Lys Asn Phe
Gly Leu Phe Leu Glu Ile Leu Val Lys Glu Asp Arg Asp Ser Gly Val
Asn Phe Gln Pro Glu Asp Thr Cys Ala Arg Leu Arg Cys Ser Leu His
Ala Ser Leu Leu Val Val Thr Leu Asn Pro Asp Gln Cys His Pro Ser
Arg Lys Arg Arg Ala Ala Ile Pro Val Pro Lys Leu Ser Cys Lys Asn
Leu Cys His Arg His Gln Leu Phe Ile Asn Phe Arg Asp Leu Gly Trp
        115
                            120
His Lys Trp Ile Ile Ala Pro Lys Gly Phe Met Ala Asn Tyr Cys His
                        135
Gly Glu Cys Pro Phe Ser Leu Thr Ile Ser Leu Asn Ser Ser Asn Tyr
                    150
                                        155
Ala Phe Met Gln Ala Leu Met His Ala Val Asp Pro Glu Ile Pro Gln
                165
                                    170
Ala Val Cys Ile Pro Thr Lys Leu Ser Pro Ile Ser Met Leu Tyr Gln
                                185
Asp Asn Asn Asp Asn Val Ile Leu Arg His Tyr Glu Asp Met Val Val
        195
                            200
Asp Glu Cys Gly Cys Gly
   210
<210> 6
<211> 2940
<212> DNA
<213> Homo sapiens
```

<220>

<221> exon

<222> (380)..(403)

<223> coding portion of exon 1

```
<220>
<221> exon
<222> (1420)..(1671)
<223> exon 2
<220>
<221> exon
<222> (2024)..(2170)
<223> coding portion of exon 3
<400> 6
tgagaaacac aatctgtatt atcacttett geacetecat tetgtaaaca ggagttggta 60
ttgaagttgt tetgggagtg agagtttete teaettgaat ttaatttete ttgaatgegt 120
gatcagctac aagctgtggg gggttagaat agggcctaca gctgggcacg tggatattta 180
aagacagcga aggggaagcc ccgcttctga gagcaggtat gttggagggt ggctgtggga 240
gaagtggcag ctcctggctc attcctgggc tcttggctct gggtctttgg tgcatgtgtt 300
tgagctcagt agagacgttt gactgtccca acccgatgct gccttcccac ataaatgaga 360
tttttttctg ccaggcaac atg gtt tta ccc tca tat tca aaa gtaagtagct
ggagcgctgg tctttgccag ggaaggagtg atccagaagc tgcctggcag cattttgtgg 473
ggctggtcag ggaatggggt gtaaatgaca acagatatta agggctcttg tgagtagagc 533
aaggagttgg gtacagaata ttcttcagct ggtctagcag aaatggaatc tgcttcctgg 593
tttcagctct gcaggcttgg tatgtaggat gtctttaagc tttatggctg atgccctaaa 653
gttctgtgtg taaggatgct ctaaagtgtg aagtacacag ctgctgggct gggcaactat 713
agtgttttgg gagataaaca gggcaagtgg cttgtcttag gtcatggtga ctggaatgat 773
tttcagtact agggcaatca ttctgactta attccagggg tagggtgatg ggagttgagg 833
aacctcagtc catccctggc tgctgtggac taagcactga ctttgacaag ctgagactgc 893
taagtetttg teetgteetg eeeggetggg tagtggggag taagaagetg aaagggaggt 953
gggactttcc acgatagtgg cctcctggag cttccactct tctttcccta caggctcata 1013
gttcctacac agctactggc ttctctgttt tgaggcagtt tccttcttgg gggtttcctt 1073
gataaagtta tgggcttggg tgcccattgt cccccatgcc actgagcttg ttctagagtt 1133
cgaggaccat agaaggggcc tccaaagatt ccttctggga tctttcccca ttatcttttc 1193
atcctaccag tcagagggag ggtcattatt ggatatctac tgtttactca cgtattggat 1253
ggaggtggtg cccaccctct tggcagagac aaagattcca gccactgatg tcgctgatgc 1313
cagectgaat gaatgtteea gtaeegaaag gaaacaagae gtagtgttge tgttegtgae 1373
```

cttgtcccac acacagccac ctctgtttca cctgccttat gtccag aaa ccc tta 1428 atc tot aat gtg gag cag ctg atc ctg ggg atc ccg ggc cag aat cgc 1476 cgg gag ata ggc cat ggc cag gat atc ttt cca gca gag aag ctc tgc 1524 cat ctg cag gat cgc aag gtg aac ctt cac aga gct gcc tgg ggc gag 1572 tgt att gtt gca ccc aag act ctc agc ttc tct tac tgt cag ggg acc 1620 tgc ccg gcc ctc aac agt gag ctc cgt cat tcc agc ttt gag tgc tat 1668 aag gtaagacatg gagcctcgtt ctttctcttc tggggtcata ttgggatagc 1721 actaagtgct caacteteta ggeetggete ettttgagte aaggaageea ttgaagttgg 1781 taattatgta atctagcact gatgcagtgt gtagcatctt ccccgccctg tgaccttatc 1841 ccttatcttt attcataaga aacatcagct tcctaaagat tgttctgaaa cagccctgat 1901 ccagcagett etecceagge ecteettete cetteccatg tatecetgae aagtetactg 1961 atgecettag atatgagget gtggetatga ggeaeteace attetgeeat ttgtttetge 2021 ag agg gca gta cct acc tgt ccc tgg ctc ttc cag acc tgc cgt ccc 2068 acc atg gtc aga ctc ttc tcc ctg atg gtc cag gat gac gaa cac aag 2116 atg agt gtg cac tat gtg aac act tcc ttg gtg gag aag tgt ggc tgc 2164 tot tga gataccocaa agootootao tggootoagg gooacotaag totoaggact 2220 ttagtagggg gtgggattac ttttcatagc aagtagagct ctttgaaggg aggtgggatt 2280 tggtttgttt ctcaaagcac agcaagaagg ttggcattat ggcagtaacc cctcatagat 2340 gcttctcttt gatgtggcag gggcccccta gtgctgttct cagtcactcc tactactggg 2400 aagctgggcc cattgagatg tetgactate getgteetag attgtgagtg ggetgggett 2460 agtgccacct ctgggatcat ttaggtgggg aaagaggaac tggaattgga cgcatgtcag 2520 ctcttggggt aggggtaaaa ttgttaccag tgttaagctg gctttggact ctttctgagc 2580 cattcagctg ctatcatcct tetetgtace attggeetgg ggetggteea gaactgaeet 2640 cagcatgtac attectecte acctaacact cetggeetet ttagagggag tgaagactet 2700 gtggaagaaa gcattctgtc atgggctagt catgggtaaa gggccccaag gccttcacaa 2760 cctggtgtca gatgggagcc tgagagtaga ggatgttgct tgactgacag agggggcctc 2820 tggcctcatg gaaagtttgt ctcactatca tttaaggaac ttgatattag ctttttcact 2880 atctttaata aaactatagg accattgttg tgggtctctt atgttggata tctattactt 2940

```
<210> 7
<211> 8
<212> PRT
<213> Homo sapiens
<400> 7
Met Val Leu Pro Ser Tyr Ser Lys
<210> 8
<211> 84
<212> PRT
<213> Homo sapiens
<400> 8
Lys Pro Leu Ile Ser Asn Val Glu Gln Leu Ile Leu Gly Ile Pro Gly
Gln Asn Arg Arg Glu Ile Gly His Gly Gln Asp Ile Phe Pro Ala Glu
                                  25
Lys Leu Cys His Leu Gln Asp Arg Lys Val Asn Leu His Arg Ala Ala
                             40
Trp Gly Glu Cys Ile Val Ala Pro Lys Thr Leu Ser Phe Ser Tyr Cys
    50
Gln Gly Thr Cys Pro Ala Leu Asn Ser Glu Leu Arg His Ser Ser Phe
                     70
Glu Cys Tyr Lys
<210> 9
<211> 48
<212> PRT
<213> Homo sapiens
Arg Ala Val Pro Thr Cys Pro Trp Leu Phe Gln Thr Cys Arg Pro Thr
Met Val Arg Leu Phe Ser Leu Met Val Gln Asp Asp Glu His Lys Met
Ser Val His Tyr Val Asn Thr Ser Leu Val Glu Lys Cys Gly Cys Ser
         35
<210> 10
<211> 2940
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> exon
 <222> (355)..(402)
 <223> coding portion of exon 1
<220>
<221> exon
<222> (1282)..(1671)
<223> exon 2
<220>
<221> exon
<222> (2024)..(2170)
<223> coding portion of exon 3
<400> 10
tgagaaacac aatctgtatt atcacttctt gcacctccat tctgtaaaca ggagttggta 60
ttgaagttgt tctgggagtg agagtttctc tcacttgaat ttaatttctc ttgaatgcgt 120
gatcagctac aagctgtggg gggttagaat agggcctaca gctgggcacg tggatattta 180
aagacagcga aggggaagcc ccgcttctga gagcaggtat gttggagggt ggctgtggga 240
gaagtggcag ctcctggctc attcctgggc tcttggctct gggtctttgg tgcatgtgtt 300
tgagctcagt agagacgttt gactgtccca acccgatgct gccttcccac ataa atg
aga ttt ttt tct gcc agg caa cat ggt ttt acc ctc ata ttc aaa
                                                                   402
agtaagtagc tggagcgctg gtctttgcca gggaaggagt gatccagaag ctgcctggca 462
gcattttgtg gggctggtca gggaatgggg tgtaaatgac aacagatatt aagggctctt 522
gtgagtagag caaggagttg ggtacagaat attcttcagc tggtctagca gaaatggaat 582
ctgcttcctg gtttcagctc tgcaggcttg gtatgtagga tgtctttaag ctttatggct 642
gatgccctaa agttctgtgt gtaaggatgc tctaaagtgt gaagtacaca gctgctgggc 702
tgggcaacta tagtgttttg ggagataaac agggcaagtg gcttgtctta ggtcatggtg 762
actggaatga ttttcagtac tagggcaatc attctgactt aattccaggg gtagggtgat 822
gggagttgag gaacctcagt ccatccctgg ctgctgtgga ctaagcactg actttgacaa 882
gctgagactg ctaagtcttt gtcctgtcct gcccggctgg gtagtgggga gtaagaagct 942
gaaagggagg tgggactttc cacgatagtg gcctcctgga gcttccactc ttctttccct 1002
acaggeteat agtteetaca cagetactgg ettetetgtt ttgaggeagt tteettettg 1062
ggggtttcct tgataaagtt atgggcttgg gtgcccattg tcccccatgc cactgagctt 1122
gttctagagt tcgaggacca tagaagggc ctccaaagat tccttctggg atctttcccc 1182
attatetttt cateetacca gteagaggga gggteattat tggatateta etgtttaete 1242
```

acgtattgga tggaggtggt gcccaccctc ttggcagag aca aag att cca gcc 1296 act gat gtc gct gat gcc agc ctg aat gaa tgt tcc agt acc gaa agg 1344 aaa caa gac gta gtg ttg ctg ttc gtg acc ttg tcc cac aca cag cca 1392 cct ctg ttt cac ctg cct tat gtc cag aaa ccc tta atc tct aat gtg 1440 gag cag ctg atc ctg ggg atc ccg ggc cag aat cgc cgg gag ata ggc 1488 cat ggc cag gat atc ttt cca gca gag aag ctc tgc cat ctg cag gat 1536 cgc aag gtg aac ctt cac aga gct gcc tgg ggc gag tgt att gtt gca 1584 ccc aag act ctc agc ttc tct tac tgt cag ggg acc tgc ccg gcc ctc 1632 aac agt gag etc egt cat tec age ttt gag tge tat aag gtaagacatg 1681 gagectegtt etttetette tggggteata ttgggatage aetaagtget caacteteta 1741 ggcctggctc cttttgagtc aaggaagcca ttgaagttgg taattatgta atctagcact 1801 gatgcagtgt gtagcatctt ccccgccctg tgaccttatc ccttatcttt attcataaga 1861 aacatcagct teetaaagat tgttetgaaa cageeetgat eeageagett eteeceagge 1921 cetectiete cetteceatg tatecetgae aagtetaetg atgeeettag atatgagget 1981 gtggctatga ggcactcacc attctgccat ttgtttctgc ag agg gca gta cct 2035 ace tgt eee tgg ete tte eag ace tge egt eee aee atg gte aga ete 2083 tto too otg atg gto cag gat gao gaa cao aag atg agt gtg cao tat 2131 gtg aac act tcc ttg gtg gag aag tgt ggc tgc tct tga gataccccaa 2180 agcctcctac tggcctcagg gccacctaag tctcaggact ttagtagggg gtgggattac 2240 ttttcatagc aagtagagct ctttgaaggg aggtgggatt tggtttgttt ctcaaagcac 2300 agcaagaagg ttggcattat ggcagtaacc cctcatagat gcttctcttt gatgtggcag 2360 gggcccccta gtgctgttct cagtcactcc tactactggg aagctgggcc cattgagatg 2420 tctgactatc gctgtcctag attgtgagtg ggctgggctt agtgccacct ctgggatcat 2480 ttaggtgggg aaagaggaac tggaattgga cgcatgtcag ctcttggggt aggggtaaaa 2540 ttgttaccag tgttaagctg gctttggact ctttctgagc cattcagctg ctatcatcct 2600 tetetgtace attggeetgg ggetggteea gaactgaeet eageatgtae attecteete 2660 acctaacact cctggcctct ttagagggag tgaagactct gtggaagaaa gcattctgtc 2720 atgggctagt catgggtaaa gggccccaag gccttcacaa cctggtgtca gatgggagcc 2780 tgagagtaga ggatgttgct tgactgacag agggggcctc tggcctcatg gaaagtttgt 2840

ctcactatca tttaaggaac ttgatattag ctttttcact atctttaata aaactatagg 2900 accattgttg tgggtctctt atgttggata tctattactt 2940

<210> 11

<211> 16

<212> PRT

<213> Homo sapiens

<400> 11

Met Arg Phe Phe Ser Ala Arg Gln His Gly Phe Thr Leu Ile Phe Lys

1 5 10 15

<210> 12

<211> 131

<212> PRT

<213> Homo sapiens

<400> 12

Lys Thr Lys Ile Pro Ala Thr Asp Val Ala Asp Ala Ser Leu Asn Glu
1 5 10 15

Cys Ser Ser Thr Glu Arg Lys Gln Asp Val Val Leu Leu Phe Val Thr 20 25 30

Leu Ser His Thr Gln Pro Pro Leu Phe His Leu Pro Tyr Val Gln Lys
35 40 45

Pro Leu Ile Ser Asn Val Glu Gln Leu Ile Leu Gly Ile Pro Gly Gln 50 55 60

Asn Arg Arg Glu Ile Gly His Gly Gln Asp Ile Phe Pro Ala Glu Lys
65 70 75 80

Leu Cys His Leu Gln Asp Arg Lys Val Asn Leu His Arg Ala Ala Trp
85 90 95

Gly Glu Cys Ile Val Ala Pro Lys Thr Leu Ser Phe Ser Tyr Cys Gln
100 105 110

Gly Thr Cys Pro Ala Leu Asn Ser Glu Leu Arg His Ser Ser Phe Glu 115 120 125

Cys Tyr Lys 130

<210> 13

<211> 48

<212> PRT

<213> Homo sapiens

<400> 13

Arg Ala Val Pro Thr Cys Pro Trp Leu Phe Gln Thr Cys Arg Pro Thr

1			3					10					15		
Met V	al Arg	Leu 20	Phe	Ser	Leu	Met	Val 25	Gln	Asp	Asp	Glu	His 30	Lys	Met	
Ser V	al His 35	Tyr	Val	Asn	Thr	Ser 40	Leu	Val	Glu	Lys	Cys 45	Gly	Cys	Ser	
<210><211><212><212><213>	11	immu	unode	efici	iency	/ vi	cus 1	type	1						
<400> Tyr G	14 ly Arg	Lys	Lys 5	Arg	Arg	Gln	Arg	Arg 10	Arg						
<210><211><212><213>	15	icial	l Sed	quenc	ce										
<220> <223>	Descr domai:									nteri	nali	zing			
<400> Gly G	15 ly Gly	Gly	Tyr 5	Gly	Arg	Lys	Lys	Arg 10	Arg	Gln	Arg	Arg	Arg 15		
<210><211><211><212><213>	25	icial	l Sec	quenc	ce										
<220> <223>	Descr: 2445-		on of	Ē Art	cific	ial	Seqı	ıence	e: P(CR pi	rime	2			
<400> ctcata	16 attca a	aaato	cagag	jg ga	aggg										25
<210><211><212><213>	26	icial	Seç	quenc	ce										
<220> <223>	Descr: 2445-2		on of	Art	ific	ial	Seqı	ience	e: P(CR pı	rimer	<u>-</u>			
<400> gtttad	17 ctcac g	gtatt	ggat	g ga	ıggtg	ſ									26

	<210> 18 <211> 22 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: PCR primer 2445-29	
	<400> 18 ctctaatgtg gagcagctga tc	22
	<210> 19 <211> 24	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: PCR primer 2450-21	
	<400> 19 cagcagagaa gctctgccat ctgc	24
	<210> 20 <211> 27 <212> DNA <213> Artificial Sequence	
:=:	<220> <223> Description of Artificial Sequence: PCR primer 2445-30	
	<400> 20 gagcagccac acgggttctc caccaag	27
	<210> 21 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: PCR primer 2445-31	
	<400> 21 gaagtgttca catagtgcac actc	24
	<210> 22 <211> 23	
	<212> DNA	

<213>	Artificial Sequence				
<220> <223>	Description of Artificial 2445-32	Sequence:	PCR pri	mer	
<400> ctcato	22 Ettgt gttcgtcatc ctg				23
<210><211><211><212><213>	24				
<220> <223>	Description of Artificial 2445-22	Sequence:	PCR pri	mer	
<400> gaccat	23 ccagg gagaagagtc tgac				24
<210><211><212><213>	29				
<220> <223>	Description of Artificial 1916-83	Sequence:	RACE pr	imer	
<400> ggctcc	24 gtatg ttgtgtggaa ttgtgagcg				29
<210><211><212><213>	29				
<220> <223>	Description of Artificial 1916-80	Sequence:	RACE pr	imer	
<400> tgcaag	25 ggcga ttaagttggg taacgccag				29
<210><211><211><212><213>	29				
<220> <223>	Description of Artificial 1916-82	Sequence:	RACE pr	imer	

<pre><400> 26 catgattacg ccaagctcta ata</pre>	acgactc	29
<210> 27 <211> 28 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Arti 1916-81	ficial Sequence: RACE primer.	
<400> 27 tcacgacgtt gtaaaacgac ggc	ccagtg	28