Le dipôle électrostatique

P5 – Chapitre 4

I. Doublet et dipôle électrostatiques

• **Doublet :** Système de deux charges opposées liées rigidement l'une à l'autre.

• **Dipôle**: Doublet vu à grande distance.

Doublet	$V = \frac{q}{4\pi\varepsilon_0} \left[\frac{1}{PM} - \frac{1}{NM} \right]$	$\vec{E} = \frac{q}{4\pi\varepsilon_0} \left[\frac{\overrightarrow{PM}}{PM^3} - \frac{\overrightarrow{NM}}{NM^3} \right]$
Dipôle	$V = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \overrightarrow{OM}}{OM^3}$ $\vec{p} = q \vec{NP}$ moment dipôlaire	$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{3(\vec{p} \cdot \overrightarrow{OM})\overrightarrow{OM} - OM^2\vec{p}}{OM^5}$

II. Action d'un champ extérieur sur un dipôle

 $\bullet \qquad \overrightarrow{\Gamma} = \overrightarrow{p} \wedge \overrightarrow{E}(M)$

• $\vec{f} = (\vec{p} \cdot \overrightarrow{\text{grad}}) \vec{E}(M)$

III. Développement multipolaire

Si $Q \neq 0 \Rightarrow$ monopolaire : $V = \frac{Q}{4\pi\varepsilon_0} \frac{1}{OM}$

Si $Q=0 \Rightarrow$ multipolaire: $V=\frac{1}{4\pi\varepsilon_0}\frac{\vec{\mathcal{P}}\cdot \overrightarrow{OM}}{OM^3}$

 $\vec{\mathcal{P}} = Q^+ \, \overrightarrow{NP}$

IV. Application aux molécules

Dans une molécule, il y a deux types de moments possibles :

• Moment permanent (molécule polaire) : Si les barycentres des charges sont différents.

• Moment induit par un champ \vec{E} : $\vec{p} = \alpha \vec{E}(M)$ ou $\vec{p} = \varepsilon_0 \alpha \vec{E}(M)$

V. Milieux diélectriques linéaires, homogènes, isotropes (LHI)

• Linéaire : Il y a une relation entre les dipôles quand ils sont induits.

• **Homogène**: Mêmes propriétés en tout point.

• **Isotrope :** Directions équivalentes.

$$\varepsilon_0 \to \varepsilon = \varepsilon_0 \varepsilon_r$$

• ε : Permittivité du milieu

• ε_r : Primitivité relative