

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190902303

FCC REPORT

Applicant: General Procurement, Inc

Address of Applicant: 800 E Dyer Road Santa Ana, CA 92705 United States

Equipment Under Test (EUT)

Product Name: 7.0 inch tablet

Model No.: Koral 7W4X

Trade mark: Hyundai

FCC ID: 2AIOHHT0701W16

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 06 Sep., 2019

Date of Test: 07 Sep., to 17 Oct., 2019

Date of report issued: 18 Oct., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	18 Oct., 2019	Original

Test Engineer
Winner Mang Tested by: 18 Oct., 2019 Date:

Reviewed by: Date: 18 Oct., 2019

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	54
Ω	FUT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014 **Test Method:** ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	General Procurement, Inc	
Address:	ddress: 800 E Dyer Road Santa Ana, CA 92705 United States	
Manufacturer/ Factory: Shen Zhen Cheng Fong Digital-Tech Limited		
Address:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China	

5.2 General Description of E.U.T.

Product Name:	7.0 inch tablet
Model No.:	Koral 7W4X
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20) 7 for 802.11n(HT40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.09 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2400mAh
AC adapter:	Model: K-T100502000U Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 55

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

Report No: CCISE190902303

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	Version: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.09 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz		
Limit:	Frequency range	Limit (d	dBuV)	
	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
			46	
	5-30	60	50	
Test procedure	* Decreases with the log			
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	LISN	E.U.T EMI Receiver	I Her — AC power	
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	7.0 inch tablet	Product model:	Koral 7W4X
Test by:	Yaro	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu₹	dB	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.154	30.11	-0.45	10.78	40.44			Average
2	0.166	42.85	-0.44	10.77	53.18	65.16	-11.98	QP
3	0.176	25.25	-0.43	10.77	35.59	54.68	-19.09	Average
4	0.211	40.74	-0.41	10.76	51.09	63.18	-12.09	QP
5	0.299	32.70	-0.39	10.74	43.05	60.28	-17.23	QP
4 5 6	0.634	18.35	-0.38	10.77	28.74	46.00	-17.26	Average
7	0.665	18.53	-0.38	10.77	28.92	46.00	-17.08	Average
7 8 9	0.679	33.04	-0.38	10.77	43.43	56.00	-12.57	QP
9	0.697	33.29	-0.38	10.77	43.68	56.00	-12.32	QP
10	1.269	12.81	-0.39	10.90	23.32			Average
11	1.939	28.48	-0.41	10.96	39.03		-16.97	
12	1.970	12.19	-0.41	10.96	22.74			Äverage

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	7.0 inch tablet	Product model:	Koral 7W4X
Test by:	Yaro	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.155	22.36	-0.68	10.77	32.45			Average
2	0.181	40.62	-0.69	10.77	50.70	64.46	-13.76	QP
3	0.185	21.06	-0.69	10.76	31.13	54.24	-23.11	Average
4	0.215	18.56	-0.68	10.76	28.64	53.01	-24.37	Average
5	0.272	33.80	-0.64	10.75	43.91	61.07	-17.16	QP
2 3 4 5 6	0.751	18.40	-0.64	10.79	28.55	46.00	-17.45	Average
7	0.775	26.31	-0.64	10.80	36.47	56.00	-19.53	QP
8	0.809	21.93	-0.64	10.81	32.10			Average
7 8 9	0.817	27.01	-0.64	10.82	37.19		-18.81	
10	0.844	17.62	-0.63	10.82	27.81	46.00	-18.19	Average
11	1.106	21.92	-0.64	10.88	32.16		-23.84	
12	3.293	21.37	-0.68	10.91	31.60		-24.40	- 1 A 7

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Max	Limit(dBm)	Result			
Test CH	802.11b	Liffiit(ubifi)	Result			
Lowest	7.85	7.68	7.68	7.01		
Middle	8.21	7.89	7.77	7.11	30.00	Pass
Highest	8.14	7.96	7.69	7.05		

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH		6dB Emission		l imit/k∐z\	Result	
Test CH	802.11b 802.11g 802.11n(HT20) 802.11n(HT40		802.11n(HT40)	Limit(kHz)	Result	
Lowest	8.80	16.56	17.76	36.00		
Middle	9.20	16.48	17.76	36.16	>500	Pass
Highest	9.12	16.48	17.76	35.68		
Test CH		99% Occupy I	Bandwidth (MHz)		Limit/kU=)	Result
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)	Result
Lowest	13.44	17.04	18.16	36.48		
Middle	13.44	17.04	18.00	36.48	N/A	N/A
Highest	13.44	17.04	17.92	36.64		

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

Test CH		Power Spectral Density (dBm)					
rest on	802.11b	Limit(dBm)	Result				
Lowest	0.95	-4.99	-5.12	-8.46			
Middle	-0.61	-4.88	-4.90	-8.28	8.00	Pass	
Highest	-0.47	-5.10	-5.48	-8.35			

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission Method							
Т	est Requirement:	FCC Part 15 C S	Section 15.2	209 and 15.205				
Т	est Frequency Range:	2.3GHz to 2.5G	Hz					
T	est Distance:	3m						
R	eceiver setup:	Frequency	Detector	RBW	VBW	Remark		
		Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		Eroguana	RMS	1MHz .imit (dBuV/m @	3MHz	Average Value Remark		
L	imit:	Frequency	y L	54.00	3111)	Average Value		
		Above 1GF	Hz —	74.00		Peak Value		
	est Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
	est setup:	Horn Antenna Tower AE EUT Ground Reference Plane Test Receiver Ampdier Controller						
Т	est Instruments:	Refer to section	5.9 for deta	nils				
	est mode:	Refer to section						
Т	est results:	Passed						
		<u> </u>						

802.11b mode:

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∀	dB/m	<u>d</u> B	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	R Freq Le		Antenna Factor						
	MHz	dBu∜	dB/m	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Product Name: 7.0 inch tablet Product model:			
Test By:	Yaro	Test mode:	802.11b Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

			Read	Ant enna	Cable	Preamp		Limit	Over		
		Freq	Level	Factor	Loss	ss Factor Level I		Line Limit Remar		Remark	k
		MHz	dBu∇	dB/m	d <u>B</u>	<u>d</u> B	dBuV/m	dBu√/m	<u>dB</u>		
1 2		2483.500 2483.500									
~	•	2400.000	13.23	21.30	4.01	0.00	41.10	04.00	-0.90	vacrage	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X		
Test By:	Yaro	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500				0.00 0.00				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	7.0 inch tablet	Koral 7W4X		
Test By:	Yaro	Test mode:	802.11g Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq		Antenna Factor						
	MHz	dBu∜		<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 31 of 55

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X		
Test By:	Yaro	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor					
	MHz	dBu∜		 <u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X		
Test By:	Yaro	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor					
	MHz	dBu∇	$-\overline{dB}/\overline{m}$	 <u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X		
Test By:	Yaro	Test mode: 802.11g			
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq MHz		Antenna Factor					
		dBu₹	dB/m dB	 $\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	<u>d</u> B		
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X		
Test By:	By: Yaro Test		802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

			eadAntenna Cable Preamp vel Factor Loss Factor Level BuV dB/m dB dB dBuV/m					
		dBu₹		dBuV/m	<u>dB</u>			
1 2	2390.000 2390.000				57.72 46.87			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X		
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq				Cable Preamp Loss Factor				
	MHz	dBu∇	$-\overline{dB}/\overline{m}$	dB	<u>d</u> B	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor							
MHz	MHz dBuV dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B			
2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			Antenna Factor						
		−dBuV	dB/m	<u>dB</u>	<u>ab</u>	$\overline{dB} \overline{uV/m}$	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	dB	<u>d</u> B	dBu√/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					
	MHz	dBu∜	dB/m	 <u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000				57.47 46.65			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq MHz		Antenna Factor						
		dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X		
Test By:	Yaro	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Freq		Antenna Factor					
MHz	dBu∇	dB/m	<u>d</u> B	 $\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

6.7.1 Conducted Ellission	Wethod						
Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limit based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under the paragraph shall be 30 dB instead of 20 dB.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	etnoa								
Test Requirement:	FCC Part 15 C S	ection 15.20	9 and 15.205						
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz							
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VI	BW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300)KHz	Quasi-peak Value			
	Above 1CHz	Peak	1MHz	3N	ЛHz	Peak Value			
	Above 1GHz	RMS	1MHz	31	ЛHz	Average Value			
Limit:	Frequency	Li	mit (dBuV/m @3	m)		Remark			
	30MHz-88MH		40.0			uasi-peak Value			
	88MHz-216MH		43.5			uasi-peak Value			
	216MHz-960M		46.0			uasi-peak Value			
	960MHz-1GH	Z	54.0			uasi-peak Value			
	Above 1GHz	:	54.0		4	Average Value			
Test Procedure:	1. The EUT wa		74.0 the top of a rot	4 !	4-1-1-0	Peak Value			
	highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground the ground the Both horizon make the meters and the limit specified Bath of the EUT whave 10dB meters and the limit specified Bath of the EUT whave 10dB meters and the limit specified Bath of the EUT whave 10dB meters and the limit specified Bath of the EUT whave 10dB meters and the limit specified Bath of the EUT whave 10dB meters and the EUT whave 10dB meters and the EUT whave 10dB meters and the EUT who was antennal to	ation. as set 3 meter ich was mouter a height is var o determine atal and vertice easurement. spected emister the antent the rota table aximum reace eiver system andwidth with on level of the cified, then to vould be rep- margin would	ers away from to inted on the top ried from one rethe maximum vocal polarization assion, the EUT has was turned from the was turned from the was set to Peronal Maximum Howele EUT in peak esting could be orted. Otherwis	he into of a meter value is of the was a o heigh om 0 de stopped the byene bye	erferent variable to four of the factor arrange of the factor for	re-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees unction and 10dB lower than d the peak values ions that did not sing peak, quasi-			
Test setup:	Below 1GHz EUT Turn Table Ground I		lm						

Measurement Data (worst case):

Below 1GHz:

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	<u>ab</u>	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>ab</u>	
1	40.276	52.19	12.40	1.22	29.90	35.91	40.00	-4.09	QP
2	95.427	54.29	11.48	2.01	29.55	38.23	43.50	-5.27	QP
3	158.668	53.55	9.24	2.57	29.14	36.22	43.50	-7.28	QP
4	199.286	52.61	10.58	2.86	28.83	37.22	43.50	-6.28	QP
5	304.610	43.17	13.71	2.95	28.46	31.37	46.00	-14.63	QP
6	528.246	39.27	18.31	3.77	29.04	32.31	46.00	-13.69	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq			ReadAntenna C Freq Level Factor					Limit Line	Over Limit	Remark
_	MHz	—dBu∀			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>db</u>			
1	97.456	46.40	11.95	1.98	29.54	30.79	43.50	-12.71	QP		
2 3 4 5	167.237	55.47	9.54	2.64	29.07	38.58	43.50	-4.92	QP		
3	199.286	53.75	10.58	2.86	28.83	38.36	43.50	-5.14	QP		
4	264.746	44.12	12.99	2.85	28.51	31.45	46.00	-14.55	QP		
5	381.249	39.25	15.04	3.09	28.70	28.68	46.00	-17.32	QP		
6	793.396	38.55	21.39	4.35	28.23			-9.94			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz													
				802.11b									
	Test channel: Lowest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4824.00	47.83	30.94	6.81	41.82	43.76	74.00	-30.24	Vertical					
4824.00	47.93	30.94	6.81	41.82	43.86	74.00	-30.14	Horizontal					
Detector: Average Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4824.00	40.24	30.94	6.81	41.82	36.17	54.00	-17.83	Vertical					
4824.00	40.46	30.94	6.81	41.82	36.39	54.00	-17.61	Horizontal					
				nannel: Mido									
		_		tector: Peak	Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	47.15	31.20	6.85	41.84	43.36	74.00	-30.64	Vertical					
4874.00	47.26	31.20	6.85	41.84	43.47	74.00	-30.53	Horizontal					
			Dete	ector: Averaç	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	40.38	31.20	6.85	41.84	36.59	54.00	-17.41	Vertical					
4874.00	40.29	31.20	6.85	41.84	36.50	54.00	-17.50	Horizontal					
				annel: High									
I				tector: Peak	Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	47.61	31.46	6.89	41.86	44.10	74.00	-29.90	Vertical					
4924.00	47.18	31.46	6.89	41.86	43.67	74.00	-30.33	Horizontal					
			Dete	ector: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	40.26	31.46	6.89	41.86	36.75	54.00	-17.25	Vertical					
4924.00	40.85	31.46	6.89	41.86	37.34	54.00	-16.66	Horizontal					

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g									
Test channel: Lowest channel													
	Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4824.00	47.24	30.94	6.81	41.82	43.17	74.00	-30.83	Vertical					
4824.00	47.16	30.94	6.81	41.82	43.09	74.00	-30.91	Horizontal					
Detector: Average Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4824.00	40.36	30.94	6.81	41.82	36.29	54.00	-17.71	Vertical					
4824.00	40.89	30.94	6.81	41.82	36.82	54.00	-17.18	Horizontal					
				nannel: Midd									
I				tector: Peak	Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	47.52	31.20	6.85	41.84	43.73	74.00	-30.27	Vertical					
4874.00	47.69	31.20	6.85	41.84	43.90	74.00	-30.10	Horizontal					
			Dete	ctor: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	40.18	31.20	6.85	41.84	36.39	54.00	-17.61	Vertical					
4874.00	40.22	31.20	6.85	41.84	36.43	54.00	-17.57	Horizontal					
				annel: High									
				tector: Peak	k Value		I						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	47.86	31.46	6.89	41.86	44.35	74.00	-29.65	Vertical					
4924.00	47.69	31.46	6.89	41.86	44.18	74.00	-29.82	Horizontal					
			Dete	ector: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	40.63	31.46	6.89	41.86	37.12	54.00	-16.88	Vertical					
4924.00	40.27	31.46	6.89	41.86	36.76	54.00	-17.24	Horizontal					
Remark:			–										
 Final Lev 	rel = Receive	r Read level +	- Antenna Fa	ctor + Cable	Loss – Pream	inlitier Factor							

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20)												
	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	47.22	36.06	6.81	41.82	48.27	74.00	-25.73	Vertical				
4824.00	47.67	36.06	6.81	41.82	48.72	74.00	-25.28	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	40.85	36.06	6.81	41.82	41.90	54.00	-12.10	Vertical				
4824.00	40.13	36.06	6.81	41.82	41.18	54.00	-12.82	Horizontal				
				nannel: Midd								
		1		tector: Peak	Value		I					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	47.58	36.32	6.85	41.84	48.91	74.00	-25.09	Vertical				
4874.00	47.26	36.32	6.85	41.84	48.59	74.00	-25.41	Horizontal				
			Dete	ctor: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.97	36.32	6.85	41.84	42.30	54.00	-11.70	Vertical				
4874.00	40.86	36.32	6.85	41.84	42.19	54.00	-11.81	Horizontal				
			Test ch	annel: High	est channel							
				tector: Peak								
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
` '	(dBuV)	(dB/m)	(dB)	(dB)	40.04	74.00		\/omtion!				
4924.00	46.73	36.58	6.89	41.86	48.34	74.00	-25.66	Vertical				
4924.00	47.16	36.58	6.89	41.86	48.77	74.00	-25.23	Horizontal				
	Deed	A		ctor: Averaç	ge value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	40.25	36.58	6.89	41.86	41.86	54.00	-12.14	Vertical				
4924.00	40.18	36.58	6.89	41.86	41.79	54.00	-12.21	Horizontal				
Remark:					_							
1 Finalla	al - Popoino	r Dood loval	Antonno Eo	otor , Cabla	Loca Droom	polifica Ecotor						

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	40)							
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4844.00	47.58	36.06	6.81	41.82	48.63	74.00	-25.37	Vertical				
4844.00	47.39	36.06	6.81	41.82	48.44	74.00	-25.56	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4844.00	40.83	36.06	6.81	41.82	41.88	54.00	-12.12	Vertical				
4844.00	40.48	36.06	6.81	41.82	41.53	54.00	-12.47	Horizontal				
				nannel: Midd								
				tector: Peak	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	47.53	36.32	6.85	41.84	48.86	74.00	-25.14	Vertical				
4874.00	47.62	36.32	6.85	41.84	48.95	74.00	-25.05	Horizontal				
			Dete	ctor: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.15	36.32	6.85	41.84	41.48	54.00	-12.52	Vertical				
4874.00	40.26	36.32	6.85	41.84	41.59	54.00	-12.41	Horizontal				
			Test ch	annel: High	est channel							
				tector: Peak	v Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4904.00	47.98	36.45	6.87	41.85	49.45	74.00	-24.55	Vertical				
4904.00	47.47	36.45	6.87	41.85	48.94	74.00	-25.06	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4904.00	40.22	36.45	6.87	41.85	41.69	54.00	-12.31	Vertical				
4904.00	40.67	36.45	6.87	41.85	42.14	54.00	-11.86	Horizontal				
Remark:												
 Final Lev 	el = Receive	r Read level +	- Antenna Fa	ctor + Cable	Loss - Pream	onlifier Factor						

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.