Temperature & Humidity Sensor Specification

- Relative humidity and temperature sensor
- Pre-calculated temperature and humidity read out, no extra calculation needed
- Dew Point Calculation possible
- Fully Calibrated, Digital Output
- Excellent Long Term Stability

- No Extra Component Required
- Ultra Low Power Consumption
- Fully Interchangeable
- Small Size
- Automatic Power Down

Product Summery

The MTH02 is a MCU based temperature and relative humidity sensor module, comprising one wire interface for direct temperature and humidity read out. The digital output is pre-calculated and no extra calculation is required. The system applied two sensor elements: built in NTC type high precision temperature sensor

and resistor type relative humidity sensor from Japan. With a very unique and patented relative humidity calculation algorithm, the system can assure accurate relative humidity output through fine tuned temperature compensation mechanism. Thus very high accurate reading of humidity in the full temperature range (0-50C) can be assured.

Applications

- HVAC
- Consumer Products
- Weather Stations
- Humidifiers
- Dehumidifiers
- Test and Measurements
- Data Logging
- White Goods

Block Diagram

1. Module Performance Specification

Parameter	Conditions	Min	Тур	Max	Unit				
Humidity									
Resolution				1	%				
Repeatability			1		%				
Accuracy	Temperature at	0	3	5	%				
Uncertainty	0C – 50C range								
Interchangeability		Fully Inter Changeable							
Nonlinearity			1		%				
Range	Temperature at 0C – 50C range	18		98	%				
Response Time	63% slowly move air		60		Second				
Hysterisis	Non-condensate	1		2	%				
Long Term Stability	Non-condensate		2		%/yr				
Temperature									
Resolution			0.1		° C				
Repeatability			0.1	0.2	° C				
Range		-40		70	° C				
Accuracy	25		+/-0.5	+/-1.0	° C				
Response Time	delta T=1.0		60		S				

2. Sensor Interface

Figure 1: Typical Application

2.1 Power Pins

The MTH02 sensor module requires a voltage supply between 2.2 to 5.5. After power up, the sensor needs 20ms to complete its internal reset process. After reset finished, the sensor will make a measurement automatically and if the CS pin is low, then the measured data will be output automatically.

Power pins should be decoupled through a 10-100nF capacitor. Where in those applications with high power noise environment, it is strongly recommended to use a 10uF tantalum capacitor to protect the sensor from interferences.

2.2 Serial Interface

The serial interface is optimized for convenient reading and reducing IO usage. Application engineer should be kept in mind the characteristics of the IO pins for applications where current consumption is critical.

CS, INPUT pin, has 50k pull up resister connected internally, thus during normal application, the pin should not be tied to low unless read operation is really needed. **DATA**, OUTPUT pin in push pull mode. During the power down mode, DATA pin is kept low, and data is modulated through this pin when CS is kept low.

3. Bus Timing

Temperature & Humidity Sensor Specification

To start a data reading, set the CS line low will wake up the sensor module and start

to transfer data through the data line. The bus timing is specified in the following way:

Figure 3: Bus timing

T1: 10ms Nominal

1.5ms - 0 500us - 1

Once CS is set high, sensor module will terminate data transfer process right way, and one extra measurement will start automatically before entering power down mode. The purpose of doing so is that data will be always ready to be transferred once a read command is initiated by pulling low CS pin. This is helpful in reducing waiting time before getting any data back from the sensor module. The imperfect part of this practice is that the data is for previous measured, not up to the current second.

Data output bit stream starts with MSB of temperature (2 byte) data, followed with one byte humidity, two bytes of external sensor temperature and one byte CRC.

T_MSB::T_LSB::RH::EXT_T_MSB::EXT_T_LSB::CRC

3.1Converting output data to temperature and humidity

The temperature value has added an offset value of 40C to avoid negative temperature sign flag problem and multiplied by ten. Thus real temperature can be obtained by deducting 0190(Hex).

For example:

T_offset=0x02B3=691 T_real=691-400=291=29.1C

RH=0x51=81%

EXT_T is not selected through solder option, then 0xFF is output.

CRC=0xFF is not used for the CIR2 project!

Temperature & Humidity Sensor Specification

4. DC Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Power Supply DC		2.2	3	5.5	V
	AD measuring		100	200	uA
Power Supply Current	data transfering		0.2		mA
	standby		0.2		uA
Low Level Output Voltage		0		20%	Vdd
High Level Output Voltage		80%		100%	Vdd
Low Level Input Voltage	Negative Edge	0%		30%	Vdd
High Level Input Voltage	Positive Edge	70%		100%	Vdd
Pads Leakage Current			1		uA
Output High Current	80%VDD		10		mA
Output Low Current	20%VDD		20		mA

5. Package Information

The module is in 10 x 20 mm size, with six pins:

Figure5: outline of the sensor module

5.1 Pin Definition

- 1. VDD
- 2. VSS
- 3. PON
- 4. DATA
- 5. SNSA
- 6. SNSB

Temperature & Humidity Sensor Specification

7. Important Notice

Do not use this product as safety or emergency stop devices or in any other applications where failure of the product could result in personal injury. Failure to comply with this instruction could result in death or fatal injury.

7.1 ESD precautions

To prevent ESD related damage and/or degradation, take normal ESD precautions when handling the device.

7.2 Warranty

We make no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor do we assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages.