Periodic Inscription of Isosceles Trapezoids

Ali Naseri Sadr

Abstract

We prove that a pair of continuous disjoint periodic curves in \mathbb{C} inscribes an isosceles trapezoid with any similarity type. The case of smooth curves can be identified with a Lagrangian intersection problem for a pair of Lagrangian cylinders in $\mathbb{R} \times S^1 \times \mathbb{C}$, and the continuous case follows from the smooth one by a standard convergence argument.

1 Introduction

Let $\gamma_1, \gamma_2 \colon \mathbb{R} \to \mathbb{C}$ be two continuous embeddings of the real line into \mathbb{C} that satisfy the periodicity condition

$$\gamma_i(t+1) = \gamma_i(t) + \sqrt{-1}$$

for every t and i = 1, 2. Furthermore, assume the images of γ_1 and γ_2 are disjoint. Tao conjectured in [10] that there exist four points in $\gamma_1(\mathbb{R}) \cup \gamma_2(\mathbb{R})$ which are vertices of a square; this is a variation of the Toeplitz square peg problem for periodic curves, and Hugelmeyer proved it in [5].

For any given isosceles trapezoid Q, we show there are four points in $\gamma_1(\mathbb{R}) \cup \gamma_2(\mathbb{R})$ that are vertices of a quadrilateral similar to Q. The approach of [5] does not directly generalize even to the case of rectangles. By contrast, in this article, we use a different approach to prove not only that every pair of periodic curves inscribes every similarity type of rectangles, but also every similarity type of isosceles trapezoids.

Definition 1.1. Assume Q is an isosceles trapezoid. We say that the pair (γ_1, γ_2) admits a balanced inscription of Q if there exist $p_1, p_2 \in \gamma_1(\mathbb{R})$ and $p_3, p_4 \in \gamma_2(\mathbb{R})$ such that the quadrilateral formed by p_1, p_2, p_3, p_4 is similar to Q, the line segments $\overline{p_1p_2}$ and $\overline{p_3p_4}$ are parallel, and $|\overline{p_1p_2}| \leq |\overline{p_3p_4}|$.

Note that our definition depends on the order of the pair (γ_1, γ_2) unless Q is a rectangle.

Theorem 1.2. Suppose γ_1 and γ_2 are two continuous disjoint periodic embeddings of the real line into the plane, and suppose Q is an isosceles trapezoid. Then (γ_1, γ_2) admits a balanced inscription of Q. Furthermore, there is a generic subset of smooth disjoint periodic pairs such that each pair in this set admits at least two balanced inscriptions of Q that are not related under translation by $\sqrt{-1}$.

Corollary 1.3. Let $\theta \in (0, \frac{\pi}{2}]$; then every pair of continuous disjoint periodic curves in the plane inscribes a rectangle with angle θ between its two diagonals.

We conjecture that Theorem 1.2 is optimal, in the following sense.

Conjecture 1.4. Let Q be a quadrilateral that admits an inscription in any pair of disjoint periodic curves in \mathbb{C} . Then Q is an isosceles trapezoid.