Let X be a random variable with PDF given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \quad \text{for } -\infty < x < \infty$$

where $-\infty < \mu < \infty$ and $\sigma > 0$ are parameters.

Notation: $X \sim N(\mu, \sigma^2)$

Where μ is the mean and σ^2 is the variance

We can also write $X \sim G(\mu, \sigma)$

Where σ is the standard deviation

Effects of changing the mean and variance

Changing the mean moves the top of the curve to the left or the right

Changing the variance either makes the curve:

- Shorter at the mean, more spread out (more variance)
- Taller at the mean, less spread out (less variance)

CDF:

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{y-\mu}{\sigma})^2} dy$$

But this is hard to integrate without using numerical methods, so we will use a probability table

As such, if $X \sim N(\mu, \sigma)$, then we can transform X as follows:

$$\frac{\lambda}{2} = \frac{\lambda - \mu}{\sigma}$$

This transforms X into a random variable Z, where $Z \sim N(0,1)$

Normal distribution can now be a distribution of z-scores

Now, the "observed value" z:

- Has no units
- · Represents the number of standard deviations an observation is away from the mean

PDF:

$$f(z) = \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{1}{2}z^2} \longrightarrow \int_{-\infty}^{\infty} f_z(z) = 1$$

The mean of z is equal to its median, since it is a symmetric distribution

As shown by

If X > mean, it's to the right

If X < mean, it's to the left

If z=0, X is the mean

68-95-99.7 rule

- 68% of the population lies within one standard deviation of the mean
- 95% lies within two standard deviations
- 99.7% lies within three standard deviations

Draw picture when calculating normal distributions/quantiles

Ex. P(Z < 0.15)

Ex. P(Z < -1.22) = P(Z > 1.22) since the normal distribution is symmetric

This is equal to 1 - $P(Z \le 1.22)$

Ex.
$$P(Z > -0.73)$$

$$P(Z > -0.73) = 1 - P(Z \le -0.73) = 1 - P(Z \ge 0.73) = 1 - (1 - P(Z < 0.73)) = P(Z < 0.73)$$

Ex.
$$P(Z > d) = 0.90$$
. Find d.

We know that d < 0, since the probability that a certain z-score is greater than d is greater than 0.5

By the quantile table, $P(Z \le 1.2816) = 0.90$

So
$$d = -1.2816$$

So
$$P(Z > -1.2816) = 0.90$$

Ex. Find a number b such that P(-b < Z < b) = 0.95.

- By the 68-95-99.7 rule, 95% of the data is within 2 standard deviations from the mean
- So the answer is around b=2 (probably a little less)

Alternate solution:

The area between b and $+\infty$ is (1-0.95)/2 = 0.025 (since the normal distribution is symmetric)

So P(Z < b) = 0.95 + 0.025 = 0.975

So we can look up the 0.975 quantile: z=1.9600

Thus, b=1.96

And P(-1.96 < Z < 1.96) = 0.95

Ex. Suppose that $X \sim N(10,2)$. Calculate $P(|X-10| \le 3)$.

Let Y = X-10

$$E(Y) = E(X) - 10 = 10 - 10 = 0$$

Var(Y) = Var((X-10)) = Var(X) - Var(10) = Var(X) = 2

So, $Y \sim N(0,2)$. So we now have $P(|Y| \le 3)$.

Transform this into something on the tables:

$$P\left(\left|\frac{Y-\mu}{\sigma}\right| = \frac{3-0}{\sqrt{1}}\right)$$

$$= P(121 = 2.12)$$

$$= p(-1.12 < 2 < 2.12)$$

$$= p(2 < 1.12) - p(2 < -2.12)$$

$$= p(2 < 1.12) - p(2 > 2.12)$$

$$= P(2 < 1.12) - [1 - P(2 < 2.12)]$$

$$= 2P(z < 2.12)$$

Ex. Suppose that a certain mechanical component produced by a company has a width that is normally distributed with mean $\mu = 2600$ and standard deviation $\sigma = 0.6$.

A) What proportion of the components have a width outside the range of 2599 to 2601?

We want P(X < 2599) + P(X > 2601)

$$= p\left(\left|\frac{X-\mu}{\sigma}\right| < \frac{7599-7600}{0.6}\right) + p\left(\left|\frac{X-\mu}{\sigma}\right| > \frac{7601-7600}{0.6}\right)$$

$$= P(z < -1.67) + P(z > 1.67)$$

$$= P(z > 1.67) + P(z > 1.67)$$
 by symmetry

$$= 2P(z > 1.67)$$

$$= 2[1-P(z < 1.67)]$$

Using the table, this is equal to 0.09492

B) If the company needs to be able to guarantee to its purchaser that no more than 1 in 1000 of its components have a width outside the range of 2599 to 2601, by how much does the value of σ need to be reduced?

To solve this, we would need to get the 0.9995 quantile (999/1000 + 1/2000)

But that's not on the table

Instead, search the normal probability table (CDF) for f(z) = 0.9995 -> z=3.29