Topologie

STEP, MINES ParisTech

5 mars 2021 (#72befad)

la distance sur	Soit $C = \{(x_1, x_2) \in C \text{ dérivée de la les points } (-1, 0) \}$	a norme eucl	idienne sur		
$\Box A : 2.$ $\Box B : \pi.$ $\Box C : 2\pi.$					
Question 2	L'ensemble \mathbb{R}^2	étant muni	de la norn	ne euclidienne,	la norme

Question 2 L'ensemble \mathbb{R}^2 étant muni de la norme euclidienne, la norme d'opérateur $\|A\|$ de la matrice

$$A = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \in \mathbb{R}^{2 \times 2}$$

est égale à

- \square A : 0.
- \square B:1.
- \square C: $\sqrt{2}$.

Question 3 (réponse multiple) Dans \mathbb{R} , muni de la norme $\|\cdot\| = |\cdot|$,

- $\hfill \square$ A : l'ensemble [0,1] est fermé.
- \square B : l'ensemble $\{2^{-n} \mid n \in \mathbb{N}\}$ est fermé.
- \Box C: l'ensemble $[0, +\infty[$ est fermé.

Question 4 (réponse multiple) Dans un espace métrique X, un ensemble A est ouvert si et seulement si

- \square A : le complémentaire A^c de A dans X est fermé.
- \square B : sa frontière ∂A est vide.
- $\hfill \square$ C : l'ensemble A n'est pas fermé.

sembles qui sont des voisinages de l'origine
$ \Box \text{ A: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 1 \text{ et } x_2 \ge 1\} \Box \text{ B: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 0 \text{ et } x_2 \ge 0\} \Box \text{ C: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge -1 \text{ et } x_2 \ge -1\} $
Question 6 (réponse multiple) Dans un espace métrique, si $A \subset B$, alors :
$\Box A : \overline{A} \subset \overline{B}$ $\Box B : \partial A \subset \partial B$ $\Box C : A^{\circ} \subset B^{\circ}$
Question 7 Si $f: \mathbb{R}^2 \to \mathbb{R}$ est une fonction continue et $a \in \mathbb{R}$, que peut-on dire de l'ensemble de niveau $A = \{(x_1, x_2) \in \mathbb{R}^2 \mid f(x_1, x_2) = a\}$?
Réponse : l'ensemble A est
Question 8 Si une suite de vecteurs x_k de \mathbb{R}^n vérifie
$ x_{k+2} - x_{k+1} \le 0.5 \times x_{k+1} - x_k ,$
est-ce qu'elle converge nécessairement ?
□ A : oui.□ B : non.
Question 9 Dans le plan euclidien, l'ensemble $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \geq 0 \text{ et } x_2 \geq 0\}$ est-il complet ?
\square A : oui. \square B : non.