Introduction

Distributed Processing with Hadoop

Apache Spark: An Engine for Large-Scale Data Processing

Spark is a large-scale data processing engine

- General purpose
- Runs on Hadoop clusters and processes data in HDFS

Supports a wide range of workloads

- Machine learning
- Business intelligence
- Streaming
- Batch processing
- Querying structured data
- This course uses Spark for data processing

Hadoop MapReduce: The Original Hadoop Processing Engine

 Hadoop MapReduce is the original Hadoop framework for processing big data

- Primarily Java-based
- Based on the map-reduce programming model
- The core Hadoop processing engine before Spark was introduced
- Still in use in many production systems
 - But losing ground to Spark fast
- Many existing tools are still built using MapReduce code
- Has extensive and mature fault tolerance built into the framework

Apache Spark Basics

What Is Apache Spark?

- Apache Spark is a fast and general engine for large-scale data processing
- Written in Scala
 - Functional programming language that runs in a JVM
- Spark shell
 - Interactive—for learning, data exploration, or ad hoc analytics
 - Python or Scala
- Spark applications
 - For large scale data processing
 - Python, Scala, or Java

The Spark Stack

- Spark provides a stack of libraries built on core Spark
 - Core Spark provides the fundamental Spark abstraction: Resilient Distributed
 Datasets (RDDs)
 - Spark SQL works with structured data
 - MLlib supports scalable machine learning
 - Spark Streaming applications process data in real time
 - GraphX works with graphs and graph-parallel computation

Spark SQL

- Spark SQL is a Spark library for working with structured data
- What does Spark SQL provide?
 - The DataFrame and Dataset API
 - The primary entry point for developing Spark applications
 - DataFrames and Datasets are abstractions for representing structured data
 - Catalyst Optimizer—an extensible optimization framework
 - A SQL engine and command line interface

The Spark Shell

- The Spark shell provides an interactive Spark environment
 - Often called a REPL, or Read/Evaluate/Print Loop
 - For learning, testing, data exploration, or ad hoc analytics
 - You can run the Spark shell using either Python or Scala
- You typically run the Spark shell on a gateway node

Starting the Spark Shell

- On a Cloudera cluster, the command to start the Spark 2 shell is
 - pyspark for Python
 - spark-shell for Scala
- The Spark shell has a number of different start-up options, including
 - master: specify the cluster to connect to
 - jars: Additional JAR files (Scala only)
 - py-files: Additional Python files (Python only)
 - name: the name the Spark Application UI uses for this application
 - Defaults to PySparkShell (Python) or Spark shell (Scala)
 - help: Show all the available shell options

```
pyspark --name "My Application"
```

Lab: Install Spark in centos Linux. (45 Minutes)