Informatik S C H U L E Hauptcampus T R I E R

Systemadministration Teil 2

Prof. Dr.-Ing. Jörn Schneider

WIEDERHOLUNG

Was ist ein Betriebssystem?

- ... eine Maschinenerweiterung (der zugrundeliegenden Hardware)
 - Verbirgt die "schmutzigen" Details unter einer definierten Schnittstelle
 - Bietet dem Anwender/Anwendungsentwickler eine leistungsfähige "Maschine", die leichter zu handhaben und mächtiger ist
- ... ein Ressourcenverwalter
 - Programme erhalten Zeit mit der Ressource
 - Programme erhalten Platz auf Ressourcen

Computer Hardware

Components of a simple personal computer

Aufbau Mikroprozessor

Aufbau Mikroprozessor

- Steuerwerk
 - Program Counter
 - Befehlsregister
 - Befehlsdecoder
 - Adressierwerk
- Rechenwerk
 - ALU
 - Zwischenregister
 - Statusregister

ENDE WIEDERHOLUNG

Teil 2

- Was ist ein Rechnersystem?
- Was ist ein Betriebssystem?
- Aufgaben eines Systemadministrators
- Rechneraufbau

Spezialregister: Stack Pointer

Stack = Kellerspeicher
Operationen

Push(X) − lege X auf den Stack
Pop() − Nehme oberstes Element vom Stack

Arbeitsprinzip: LIFO (Last in First Out)
Beispiel:

push (A);
push (B);
push (C);
push (D);
Rx=pop();

Stackpointer → C
B
B

SPEICHERHIERARCHIE

Computer Hardware: Memory Hierarchy

- Typical memory hierarchy
 - numbers shown are rough approximations

Computer Hardware Review (4)

Structure of a disk drive

PIPELINES

Computer Hardware: Pipelines

- (a) A three-stage pipeline
- (b) A superscalar CPU

Typische Pipelinestufen

Fetch

Laden der Instruktion aus Speicher (z.B. Cache)

Decode

Dekodieren des Opcodes der Instruktion

Execute

Ausführen arithmetisch/logischer Berechnungen gemäß Opcode

Write Back

Schreiben des Ergebnisses ins Zielregister

Ausführung in Pipeline (einfach)

Beispiel mit vierstufiger Pipeline (Fetch, Decode, Execute, Write Back)

Inst 1	Fetch	Dec	Ex	WB			
Inst 2		Fetch	Dec	Ex	WB		
Inst 3	'		Fetch	Dec	Ex	WB	
Inst 4				Fetch	Dec	Ex	WB

Hardware für Parallelität auf Taskebene

- Multithreading
- Multicore

Multithreading (Hyperthreading)

- CPU hält Zustand mehrerer Threads (ausgeführte Programme) gleichzeitig
- Sehr schnelle Umschaltung zwischen Threads in der Hardware
- Tatsächlich wird immer nur ein Thread auf dem Prozessorkern ausgeführt (Pseudo-Parallelität)

ERLÄUTERUNGEN ZU ÜBUNGSBLATT 2

Standardeingabe und -ausgabe

Umleitung Standardausgabe

Piping

"Is /etc | more"

POLLING VS. INTERRUPT-DRIVEN COMMUNICATION

Polling

Informatik Hauptcampus H O C H U L E

Polling

- Abfrage basiertes Kommunikationsprinzip
- Daten werden regelmäßig (z.B. in festen Abtastintervallen) aus dem normalen Programmablauf heraus abgefragt.
- Das Einlesen erfolgt also immer synchron zum Kontrollfluss der abfragenden Software.
- Es ist keine besondere Hardwareunterstützung notwendig.
- Zustandsänderungen die sich vollständig zwischen zwei Abfragezeitpunkten abspielen gehen verloren.
- Polling kostet auch dann Rechenzeit, wenn sich nichts geändert hat.

Beispiel

Liegt ein Druckjob vor?

Interrupt-driven

Interrupt-driven / Unterbrechungsgesteuert

- Ausgewählte Zustandsänderungen an Eingangskanälen oder internen Komponenten des Systems werden durch eine Unterbrechung des normalen Programmflusses und Aufruf einer zugeordneten Interrupt Service Routine – ohne auf eine Abfrage zu warten – signalisiert.
- Eine spezielle Hardwareunterstützung ist hierzu erforderlich.
- Auch hier können unter Umständen Zustandsänderungen verloren gehen, etwa wenn die Interrupt Service Routine nicht schnell genug abgearbeitet werden kann. Allerdings ist dies bei vernünftigem Systemdesign in aller Regel vermeidbar.
- Interrupts beeinflussen das zeitliche Verhalten i.d.R. weniger regelmäßig als Polling
 - Vorteil: Geringerer Rechenleistungsbedarf
 - Nachteil: Das Zeitverhalten anderer Systemteile wird gestört und ist schlechter vorhersagbar.

INTERRUPTS

Interrupt getriebene I/O-Kommunikation

- (a) Steps in starting an I/O device and getting interrupt
- (b) How the CPU is interrupted