# Energy efficiency assessment in the context of multimodal passenger transport: From 'well' to 'wheels'

Konstantinos N. Genikomsakis University of Deusto









1<sup>st</sup> MOVESMART Workshop - 15<sup>th</sup> October 2015 Bilbao, Spain

### Impact assessment of multimodal routes in relation to the MOVESMART project

### Aim

To support the mobility of individuals by assisting the traveler to **combine** various **means of transportation in an energy-efficient way** 

### Methodological approach

"Well-to-wheels" analysis of energy consumption/emissions over the operational phase of the life cycle









### Challenges in relation to MOVESMART objectives

- Scientific:
  - Consideration of traffic conditions
  - Inclusion of electric vehicles in mobility chains
- Technological:
  - Low response time









### Transport services and standardisation in EU

"The assessment of energy consumption and GHG emissions of a transport service shall include both vehicle operational processes and energy operational processes that occur during the operational phase of the lifecycle."









### Scope of the analysis









### From "well" to "tank": Energy operational processes (1)

- Modeling of upstream stages of the life cycle for:
  - Transport fuels
  - Electricity
- Tool/Database: SimaPro v8/Ecoinvent v3
- Methods and impact categories:
  - Global warming potential (GWP 100a, IPCC 2013)
  - Cumulative energy demand (CED v1.08)
- Determination of upstream energy and emission factors as part of the life cycle analysis, by:
  - fuel type
  - electricity generation technology (composition of electricity mix)



### Example of well-to-tank (WTT) stages of petroleum-based transport fuels



Electricity generation, transmission, transformation and distribution to end users





## From "well" to "tank": Energy operational processes (2)











## From "tank" to "wheels": Vehicle operational processes for passenger cars (PCs)

- Dynamic emission factors from Handbook Emission Factors for Road Transport (HBEFA)
- Integrated in a MongoDB:
  - Inputs:
    - Traffic situation: <area type, road type, speed limit, level of service>
    - Road gradient: 0%, ±2%, ±4%, and ±6%
    - Car engine technology: Diesel, Petrol (4-stroke), Petrol (2-stroke), LPG, Bifuel CNG/Petrol, Flex-fuel E85
    - Engine size class: Small (<1.4 L), Medium (>=1.4 L and <2 L), Large (>=2 L)
    - Emission class: Up to Euro 6
    - Fuel type (for bifuel vehicles)
  - Outputs:
    - Emission factors for CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O
    - Fuel consumption









## From "tank" to "wheels": Vehicle operational processes for electric vehicles (EVs) (1)

Physics-based vehicle model → Estimation of traction power, i.e.
power required to overcome the forces opposing to the movement of
the vehicle and drive it at speed u

$$P_{ts} = F_{ts} * u = (F_{ad} + F_{rr} + F_{hc} + F_{la} + F_{\omega \alpha}) * u$$

 EV components model → Transformation of traction power requirements (at wheels) into EV battery power requirements











## From "tank" to "wheels": Vehicle operational processes for electric vehicles (EVs) (2)

- What's new in modeling of motor operation?
  - Efficiency-load curves based on motor type:
    - Synchronous
    - Induction
  - Normalisation of efficiency based on motor size

- Modeling of "overtorque" conditions













### From "tank" to "wheels": Vehicle operational processes for electric vehicles (EVs) (3)

- What's new in modeling of energy recuperation?
  - Symmetric torque-speed curve:
    - Motor mode
    - Generator mode
  - Maximum torque limitation on energy recuperation
  - Maximum regeneration capability (%) as function of vehicle speed
    - No energy recuperation at low vehicle speeds
    - Maximum energy recuperation for vehicle speeds above a minimum threshold













## From "tank" to "wheels": Vehicle operational processes for electric cars (1)

 Definition of 3 "average" models based on available electric cars in the market

### Low power model

### Based on:

- Citroen C-Zero
- Peugeot Ion
- Mitsubishi i-Miev
- VW e-Up!



### Medium power model

### Based on:

- Renault Zoe
- Renault Fluence ZE
- Nissan Leaf
- KIA Soul



### High power model

### Based on:

- Ford Focus Electric
- BMW i3
- MercedesBenz Class b Electric







## From "tank" to "wheels": Vehicle operational processes for electric cars (2)

• Realistic driving cycles for urban traffic conditions



## From "tank" to "wheels": Vehicle operational processes for electric cars (3)

 Extraction of energy consumption factors: Indicative simulation results for stop and go flow and various road gradients









## From "tank" to "wheels": Vehicle operational processes for electric scooter

- Model: The Core (GG)
- Regenerative braking: No
- Driving cycle: World Motorcycle Test Cycle (WMTC) – part 1
- Road gradient: 0%











## From "well" to "wheels": Full energy/vehicle pathway for PCs and EVs









## From "well" to "wheels": Full energy/vehicle pathway for public transport (PT)









### Energy Efficiency Assessment Module as a MOVESMART web-service

 Purpose: Integration of components for energy efficiency assessment of multimodal routes

• **Challenge**: Low response time











### Concluding remarks

- Worst case scenario:
  - 15 km route with PC in Vitoria-Gasteiz
  - 136 road segments
- Achievement: Response time < 0.6 sec</li>
   with Intel Core i5 and 4GB RAM
- Potential improvements:
  - Current implementation is built with Jersey and runs on Grizzly: Test other frameworks, e.g. Vert.x and Akka
  - Load road network characteristics and energy/consumption databases in memory









### **Questions?**

Dr. Konstantinos N. Genikomsakis

DeustoTech Energy

Researcher

kostas.genikomsakis@deusto.es





