An Introduction to Statistics and Research Design

Chapter 1

Descriptive Statistics

 Distributions are part of descriptive statistics...we are learning how to describe some data by first graphing it in a meaningful way.

Descriptive Statistics

 Frequency distribution – describes the pattern of a set of numbers by displaying a count/percent for the values of the variables.

Frequency Distributions

- Four different ways to visually describe just one variable:
 - Frequency table
 - Grouped frequency table
 - Frequency histograms
 - Frequency polygon

Open up R!

- We are going to use some built in data in R to build frequency tables and histograms.
 - Use data(airquality) to load the airquality dataset
 - At first it will say promise next to it, but once we use it, it will pop up and be viewable in the environment window.

Frequency Tables

- Frequency tables often include:
 - Values (all the possible numbers)
 - Frequency (how many times each number appears)
 - Percent/proportion
- Why percent when we have frequency?

Frequency Tables

- Grouped frequency tables are frequency tables where information has been clumped together.
 - For example, ABCD breakdowns instead of each grade individually. Or income ranges rather than each income separately.
 - Very useful for data with decimals and wide ranges of values.

- Frequency tables:
 - table(column name) function
 - The table function requires you to give it vector/column of data.
 - Remember that if that column of data is in a dataframe, then you have to tell R where the data is stored.

- Don't do this:
 - table(airquality)
 - Airquality is a bunch of columns.
 - table(Temp)
 - R doesn't know that Temp is hiding in airquality
- Do this:
 - table(airquality\$Temp)

- What if you wanted percentages instead of raw frequencies?
 - You can divide the table by N!
 - table(column name) / length(column name) * 100
 - The length() function tells you how many items are in that function.

- table will give you a frequency table of each individual value ... what about grouping them?
- stem(column name, scale = #)
 - Use this function to try making a stem and leaf plot, which will allow you to group like values together.
 - For the scale = #, try playing around with the numbers until you get the grouping you think is best.

Histograms

- Histograms are frequency tables in graph form (basically they are turned on their side and made into a chart).
- Gives you an idea of the shape of the distribution.

Frequency Polygon

- Frequency polygons are histograms that show a smoothed line instead of the bars for a histogram.
 - So why use these?
 - They often give you a better picture of the data, since histograms can be changed based on binwidth (more on this idea in a minute).

Shapes of Distributions

- Unimodal
 - (normal distribution)
- Bimodal
- Multimodal
- Rectangular

Shapes of Distributions

- Normal distributions: Specific frequency distribution
 - Bell shaped
 - Symmetrical
 - Unimodal

The Normal Distribution

Skewed Distributions

- When our data are not symmetrical
 - Positive: tail to the right
 - May represent floor effects
 - Negative: tail to the left
 - May represent ceiling effects
 - Memory hint: skew is where the tail is (the cat!)

Two Kinds of Skew

Kurtotic Distributions

 Kurtosis – how much a distribution deviates from normal by looking at spread

- First, install the ggplot2 package.
 - Click packages in the bottom right window > install > type in ggplot2
 - Wait for it to do its thing...
- Load the library
 - library(ggplot2)
 - Or you won't get very far...

- Ggplot2 is a package that does lots of cool graphing, which we will use a lot in chapter 3.
- It requires several steps to make a plot.
 - Think about it like a transparency.
 - You first tell it what you want to use in your plot.
 - Then you draw the pieces of the plot one line at a time.

- Basic histograms:
 - First, include the variables you want to use.
 - Save the plot.
- Something like this:
 - myplot = ggplot(dataset, aes(column name))
 - Note: here because you have told it the dataset, you do not have to do the \$ thing. In table(), we did because we hadn't mentioned the dataset.

- Now, let's add things to myplot
- myplot + geom_histogram()
 - Geom_histogram creates a histogram.
 - Run!
 - Play with binwidth = X

- Let's try making a frequency polygon
- myplot + geom_freqpoly()

- So what's a good binwidth?
- 5-15? (seems to work for me)