INDEX TO VOLUME 44

ABEYARATNE, ROHAN, and Hou, Hang-Sheng. On the occurrence of the cavitation instability relative to the asymmetric instability under	
symmetric dead-load conditions	429
Aron, M. A note on a generalized shear deformation	241
Atanackovic, T. M., and Spasic, D. T. Effect of shear and compressibility on stability of a heavy column with an end load	601
Athanasiadis, C. Low-frequency electromagnetic scattering theory for a multi-layered scatterer	55
BANKS, W. H. H., see TAYLOR, C. L.	
BARBER, J. R., see GEORGIADIS, H. G.	
Bassom, A. P., and Hall, P. Concerning the interaction of non-stationary crossflow vortices in a three-dimensional boundary layer	147
BEN AMMAR, F., see GEORGIADIS, H. G.	
BHATT, B. S., see O'NEILL, M. E.	
BOTTEGA, W. J. Peeling and bond-point propagation in a self-adhered elastica	17
BOULANGER, Ph., and Hayes, M. Universal relations for wave propagation in crystals	235
Brattkus, K., and Davis, S. H. The linear stability of plane stagnation-point flow against general disturbances	135
Brutyan, M. A., and Krapivsky, P. L. Collapse of spherical bubbles in viscoelastic liquids	549
CADE, R. Interfacial stress fields and the electrohydrodynamical boundary condition	209
CAVIGLIA, G., and Morro, A. Wave propagation in inhomogeneous viscoelastic solids	45
Davis, A. M. J. A translating disk in a Sampson flow; pressure-driven flow through concentric holes in parallel walls	471
Davis, S. H., see Brattkus, K.	
DAY, W. A. A theorem about work in dynamic linear thermoelasticity	35
DAY, D. A. An asymptotic formula for the maximum work done by a thermoelastic body	357
Drazin, P. G., see Taylor, C. L.	
ENTOV, V. M., and ETINGOF, P. I. Bubble contraction in Hele-Shaw cells	507
ETINGOF, P. I., see ENTOV, V. M.	
FVANS D V see LINTON C M	

GEORGIADIS, H. G., BARBER, J. R., and BEN AMMAR, F. An asymptotic solution for short-time transient heat conduction between two	
dissimilar bodies in contact	303
GLADWELL, G. M. L. Qualitative properties of finite-element models I:	303
Sturm-Liouville systems	249
GLADWELL, G. M. L. Qualitative properties of finite-element models II: The Euler-Bernoulli beam	267
Green, A. E., and Naghdi, P. M. A thermomechanical theory of a Cosserat point with application to composite materials	335
HALL, P., see BASSOM, A. P.	
Hart, V. G., and Shi, Jingyu. Joined dissimilar isotropic elastic cylindrical membranes under internal pressure and longitudinal tension	581
HAYES, M., see BOULANGER, PH.	
HILL, JAMES M., and Wu, Yong-Hong. Kinematically determined axially-symmetric plastic flows of metals and granular materials	451
Hou, Hang-Sheng, see Abeyaratne, Rohan	
Kapoulitsas, George M. The cooling of a slab under continuously varying	
boundary conditions	285
King, A. C. Moving contact lines in slender fluid wedges	173
King, J. R. Asymptotic analysis of an impurity-defect pair-diffusion model	369
Krapivsky, P. L., see Brutyan, M. A.	
LINTON, C. M., and EVANS, D. V. Trapped modes above a submerged horizontal plane	487
McIver, P. Trapping of surface water waves by fixed bodies in a channel	193
Morro, A., see Caviglia, G.	
MOSHCHUK, NICKOLAY K., and SINITSYN, IGOR N. On stationary distributions	
in nonlinear stochastic differential systems	571
Naghdi, P. M., see Green, A. E.	
Odulo, A. A method of obtaining exact particular solutions of a system	
of two first-order quasilinear partial differential equations	323
Olsson, P., and Wilde, P. The null-field approach to boundary-value	
problems for the Stokes equation	69
O'Neill, M. E., and Bhatt, B. S. Slow motion of a solid sphere in the presence of a naturally permeable surface	91
OR, A. C. On the behaviour of a pair of complex eigenmodes near a crossing	559
PIPKIN, A. C. Elastic materials with two preferred states	1
SHI, JINGYU, see HART, V. G.	
SINITSYN, IGOR N., see MOSHCHUK, NICKOLAY K.	
Spasic, D. T., see Atanackovic, T. M.	

Taylor, C. L., Banks, W. H. H., Zaturska, M. B., and Drazin, P. G. Three-dimensional flow in a porous channel	105
VAUGHAN, HENRY, and Wu, QIONG. Stresses in a circular disc containing a radial crack	413
WANG, M. Z., see Xu, X. S.	
WILDE, P., see OLSSON, P.	
Wu, Qiong, see Vaughan, Henry	
Wu, Yong-Hong, see Hill, James M.	
Xu, X. S., and Wang, M. Z. General complete solutions of the equations	
of spatial and axisymmetric Stokes flow	
ZATURSKA, M. B., see TAYLOR, C. L.	