School of Mathematics and Statistics

MT5836 Galois Theory

Problem Sheet III: Splitting Fields and Normal Extensions (Solutions)

- 1. For each of the following polynomials f(X) and given base field F, determine the splitting field K of f(X) over F and calculate the degree |K:F| of the extension:
 - (a) $X^2 + 1$ over \mathbb{Q} ;
 - (b) $X^2 + 1$ over \mathbb{R} ;
 - (c) $X^2 4$ over \mathbb{Q} ;
 - (d) $X^4 + 4$ over \mathbb{Q} ;
 - (e) $X^4 1$ over \mathbb{Q} ;
 - (f) $X^4 + 1$ over \mathbb{Q} ;
 - (g) $X^6 1$ over \mathbb{Q} ;
 - (h) $X^6 + 1$ over \mathbb{Q} ;
 - (i) $X^6 27$ over \mathbb{Q} .

Solution: (a) The roots of $X^2 + 1$ in \mathbb{C} are $\pm i$. Since $-i \in \mathbb{Q}(i)$, we conclude the splitting field of $X^2 + 1$ over \mathbb{Q} is $\mathbb{Q}(i)$.

The minimum polynomial of i over \mathbb{Q} is $X^2 + 1$, since this polynomial cannot factorize over \mathbb{Q} as it has no roots in \mathbb{Q} . Hence the degree is

$$|\mathbb{Q}(i):\mathbb{Q}|=2.$$

(b) Again the roots of $X^2 + 1$ in \mathbb{C} are $\pm i$ and we conclude the splitting field of $X^2 + 1$ over \mathbb{R} is $\mathbb{R}(i)$; that is, \mathbb{C} (as every element in \mathbb{C} is an \mathbb{R} -linear combination of 1 and i). Hence the degree of the extension is

$$|\mathbb{C}:\mathbb{R}|=2,$$

as we already know (or using the fact that the minimum polynomial of i over \mathbb{R} is X^2+1).

(c) The roots of $X^2 - 4$ are ± 2 , both of which belong to \mathbb{Q} . Hence the splitting field of $X^2 - 4$ over \mathbb{Q} is \mathbb{Q} and the degree of the extension is

$$|\mathbb{Q}:\mathbb{Q}|=1.$$

(d) Note that

$$\left(\sqrt{2}e^{\pi i/4}\right)^4 = 2^2 e^{\pi i} = -4,$$

so $(\sqrt{2}e^{\pi i/4})^4 + 4 = 0$. We conclude that the roots of $X^4 + 4$ over \mathbb{Q} are

$$\sqrt{2} e^{\pi i/4}$$
, $\sqrt{2} e^{3\pi i/4}$, $\sqrt{2} e^{5\pi i/4}$, $\sqrt{2} e^{7\pi i/4}$.

Moreover

$$\sqrt{2} e^{\pi i/4} = \sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i \right) = 1 + i$$

and similarly for the other roots, so we conclude the four roots of $X^4 + 4$ in $\mathbb C$ are

$$\pm 1 \pm i$$
.

From this we conclude that the splitting field of $X^4 + 4$ over \mathbb{Q} is $\mathbb{Q}(i)$, since i = (1+i)-1 belongs to the field obtained by adjoining $\pm 1 \pm i$ to \mathbb{Q} . The degree of the extension is

$$|\mathbb{Q}(i):\mathbb{Q}|=2,$$

as the minimum polynomial of i over \mathbb{Q} is $X^2 + 1$.

(e)
$$X^4 - 1 = (X^2 - 1)(X^2 + 1) = (X - 1)(X + 1)(X^2 + 1),$$

and the roots of $X^2 + 1$ are $\pm i$. Hence the splitting field of $X^4 - 1$ over \mathbb{Q} is $\mathbb{Q}(i)$ and the degree is

$$|\mathbb{Q}(i):\mathbb{Q}|=2.$$

(f) The roots of $f(X) = X^4 + 1$ in \mathbb{C} are $e^{\pi i/4}$, $e^{3\pi i/4}$, $e^{5\pi i/4}$ and $e^{7\pi i/4}$. Note that the second, third and fourth roots are powers of $e^{\pi i/4}$, so the splitting field of $X^4 + 1$ over \mathbb{Q} is $\mathbb{Q}(e^{\pi i/4})$.

Observe

$$f(X+1) = (X+1)^4 + 1$$

= $X^4 + 4X^3 + 6X^2 + 4X + 2$,

which is irreducible over \mathbb{Q} by Eisenstein's Criterion (with p=2). Hence $f(X)=X^4+1$ is irreducible over \mathbb{Q} and this is therefore the minimum polynomial of $e^{\pi i/4}$ over \mathbb{Q} . Thus the degree of the extension is

$$|\mathbb{Q}(e^{\pi i/4}):\mathbb{Q}|=4.$$

(g) The roots of $X^6 - 1$ in \mathbb{C} are

$$e^{\pi i/3}$$
, $e^{2\pi i/3}$, $e^{\pi i} = -1$, $e^{4\pi i/3}$, $e^{5\pi i/3}$, $e^{\pi i} = 1$,

each of which is a power of $e^{\pi i/3}$, so the splitting field of $X^6 - 1$ over \mathbb{Q} is $\mathbb{Q}(e^{\pi i/3})$. Note that $X^6 - 1$ factorizes as

$$X^{6} - 1 = (X^{3} - 1)(X^{3} + 1)$$
$$= (X - 1)(X^{2} + X + 1)(X + 1)(X^{2} - X + 1).$$

Also $(e^{\pi i/3})^3 = e^{\pi i} = -1$, so $e^{\pi i/3}$ is a root of $X^3 + 1 = (X+1)(X^2 - X + 1)$ and hence $e^{\pi i/3}$ is a root of $X^2 - X + 1$. This quadratic polynomial is irreducible over \mathbb{Q} , since its roots are complex (non-real) and so it has no linear factors in $\mathbb{Q}[X]$. Thus $X^2 - X + 1$ is the minimum polynomial of $e^{\pi i/3}$ over \mathbb{Q} and the degree of the extension is

$$|\mathbb{Q}(e^{\pi i/3}):\mathbb{Q}|=2.$$

(h) The roots of $X^6 + 1$ in \mathbb{C} are

$$e^{\pi i/6}$$
, $e^{\pi i/2} = i$, $e^{5\pi i/6}$, $e^{7\pi i/6}$, $e^{3\pi i/2} = -i$, $e^{11\pi i/6}$

each of which is a power of $e^{\pi i/6}$, so the splitting field of $X^6 + 1$ over \mathbb{Q} is $\mathbb{Q}(e^{\pi i/6})$. Note that $X^6 + 1$ factorizes as

$$X^{6} + 1 = (X^{2} + 1)(X^{4} - X^{2} + 1).$$

The roots of the first factor are $\pm i$, so $e^{\pi i/6}$ is a root of $f(X) = X^4 - X^2 + 1$. The roots of f(X) are all complex (non-real) numbers, so f(X) has no linear factors over \mathbb{Q} . Hence if f(X) were reducible over \mathbb{Q} , then it would be reducible over \mathbb{Z} , by Gauss's Lemma, so would factorize as a product of two quadratic polynomials

$$X^4 - X^2 + 1 = (X^2 + \alpha X + \beta)(X^2 + \gamma X + \delta)$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$. Then

$$\alpha + \gamma = 0,$$
 $\alpha \gamma + \beta + \delta = -1,$ $\alpha \delta + \beta \gamma = 0,$ $\beta \delta = 1.$

The fourth equation tells us $\beta = \delta = \pm 1$, while the first tells us $\gamma = -\alpha$. Hence the second equation gives $-\alpha^2 + 2\beta = -1$; that is,

$$\alpha^2 = 2\beta + 1 = -1 \text{ or } 3.$$

This is impossible for $\alpha \in \mathbb{Z}$. In conclusion, $X^4 - X^2 + 1$ is irreducible over \mathbb{Q} , so is the minimum polynomial of $e^{\pi i/6}$ over \mathbb{Q} . Hence the degree of the extension is

$$|\mathbb{Q}(e^{\pi i/6}):\mathbb{Q}|=4.$$

(i) Note $(\sqrt{3})^6 = 3^3 = 27$, so multiplying the roots from part (g) by $\sqrt{3}$ we conclude the roots of $X^6 - 27$ in $\mathbb C$ are

$$\sqrt{3}$$
, $\sqrt{3}e^{\pi i/3}$, $\sqrt{3}e^{2\pi i/3}$, $-\sqrt{3}$, $\sqrt{3}e^{4\pi i/3}$, $\sqrt{3}e^{5\pi i/3}$.

Since $e^{\pi i/3}$ is the quotient of the second by the first, we conclude the splitting field of X^6-27 over $\mathbb O$ is

$$\mathbb{Q}(\sqrt{3}, e^{\pi i/3}).$$

Now $|\mathbb{Q}(\sqrt{3}):\mathbb{Q}|=2$ because X^2-3 is irreducible over \mathbb{Q} by Eisenstein's Criterion and hence is the minimum polynomial of $\sqrt{3}$ over \mathbb{Q} . Furthermore, $\mathrm{e}^{\pi i/3}$ is a root of X^2-X+1 , as observed in part (g), and this does not factorize into linear factors over $\mathbb{Q}(\sqrt{3})$ as its roots are complex (non-real). Hence X^2-X+1 is irreducible over $\mathbb{Q}(\sqrt{3})$ and is the minimum polynomial of $\mathrm{e}^{\pi i/3}$ over $\mathbb{Q}(\sqrt{3})$. Thus

$$|\mathbb{Q}(\sqrt{3}, e^{\pi i/3}) : \mathbb{Q}(\sqrt{3})| = 2$$

and, by an application of the Tower Law, the degree of our splitting field is

$$|\mathbb{Q}(\sqrt{3}, e^{\pi i/3}) : \mathbb{Q}| = 4.$$

- 2. For each of the following polynomials f(X) and given base field F, determine the degree of the splitting field of f(X) over F:
 - (a) X^3-2 over \mathbb{F}_5 ;
 - (b) $X^3 3$ over \mathbb{F}_{13} .

Solution: (a) We first check for roots of $f(X) = X^3 - 2$ in \mathbb{F}_5 . Observe

$$f(0) = -2 = 3,$$
 $f(1) = -1 = 4$
 $f(2) = 1$ $f(3) = 0$
 $f(4) = 2.$

Hence f(X) has a root, namely 3, in \mathbb{F}_5 and therefore has a linear factor. By dividing, we then obtain a factorization

$$f(X) = X^3 - 2 = (X - 3)(X^2 + 3X - 1).$$

Let $g(X) = X^2 + 3X - 1$. Observe

$$q(3) = 2$$

while $g(a) \neq 0$ for a = 0, 1, 2 and 4, as we know $f(a) \neq 0$ for such a. Hence g(X) has no roots in \mathbb{F}_5 and therefore this quadratic polynomial is irreducible over \mathbb{F}_5 .

Let α be a root of g(X) in some extension field. Then g(X) has a root in $\mathbb{F}_5(\alpha)$ and therefore factorizes as a product of two linear polynomials over $\mathbb{F}_5(\alpha)$. Hence the splitting field of f(X) over \mathbb{F}_5 is $\mathbb{F}_5(\alpha)$ and

$$|\mathbb{F}_5(\alpha):\mathbb{F}_5|=\deg g(X)=2,$$

as g(X) is the minimum polynomial of α over \mathbb{F}_5 .

(b) We first calculate all cubes in \mathbb{F}_{13} :

$$0^{3} = 0,$$
 $1^{3} = 1,$ $2^{3} = 8,$ $3^{3} = 1,$ $4^{3} = 12,$ $5^{3} = 8,$ $7^{3} = 5,$ $8^{3} = 5,$ $9^{3} = 1,$ $10^{3} = 12,$ $11^{3} = 5,$ $12^{3} = 12.$

Since $a^3 \neq 3$ for all $a \in \mathbb{F}_{13}$, we conclude that $X^3 - 3$ has no roots in \mathbb{F}_{13} , hence no linear factors over \mathbb{F}_{13} , and therefore $X^3 - 3$ is irreducible over \mathbb{F}_{13} .

Let α be a root of X^3-3 in some extension. Thus $\alpha^3=3$. Now using the above calculation of cubes,

$$(3\alpha)^3 = 3^3\alpha^3 = \alpha^3 = 3$$

and

$$(9\alpha)^3 = 9^3 \alpha^3 = \alpha^3 = 3.$$

Hence $X^3 - 3$ has three roots in the extension $\mathbb{F}_{13}(\alpha)$, namely α , 3α and 9α . Note these are distinct since $\alpha \neq 0$ and 1, 3 and 9 are distinct in \mathbb{F}_{13} . Thus $X^3 - 3$ splits over $\mathbb{F}_{13}(\alpha)$

$$X^{3} - 3 = (X - \alpha)(X - 3\alpha)(X - 9\alpha).$$

Thus $\mathbb{F}_{13}(\alpha)$ is the splitting field of X^3-3 over \mathbb{F}_{13} and the degree is

$$|\mathbb{F}_{13}(\alpha):\mathbb{F}_{13}|=3,$$

since $X^3 - 3$ is the minimum polynomial of α over \mathbb{F}_{13} .

3. Let p be a prime and $f(X) = X^p - 2$. Find the splitting field of f(X) over \mathbb{Q} and show that the degree of this extension is p(p-1).

Solution: The roots of $X^p - 2$ in \mathbb{C} are the complex pth roots of 2:

$$\sqrt[p]{2}$$
, $\sqrt[p]{2}\omega$, $\sqrt[p]{2}\omega^2$, ..., $\sqrt[p]{2}\omega^{p-1}$

where $\omega = e^{2\pi i/p}$. Since ω is the quotient of the second root by the first, we conclude that splitting field of $X^p - 2$ over \mathbb{Q} is

$$\mathbb{Q}(\sqrt[p]{2},\omega)$$

where $\omega = e^{2\pi i/p}$.

Now X^p-2 is irreducible over $\mathbb Q$ by Eisenstein's Criterion. Hence this is the minimum polynomial of $\sqrt[p]{2}$ over $\mathbb Q$ and therefore

$$|\mathbb{Q}(\sqrt[p]{2}):\mathbb{Q}|=p.$$

Since $X^p - 1 = (X - 1)(X^{p-1} + X^{p-2} + \dots + X + 1)$, we see ω is a root of $X^{p-1} + X^{p-2} + \dots + X + 1$ and we know this polynomial is irreducible over \mathbb{Q} . Hence this is the minimum polynomial of ω over \mathbb{Q} and

$$|\mathbb{Q}(\omega):\mathbb{Q}|=p-1.$$

Since $\mathbb{Q}(\sqrt[p]{2},\omega)$ contains both $\mathbb{Q}(\sqrt[p]{2})$ and $\mathbb{Q}(\omega)$, by two applications of the Tower Law,

$$|\mathbb{Q}(\sqrt[p]{2}):\mathbb{Q}|=p$$
 and $|\mathbb{Q}(\omega):\mathbb{Q}|=p-1$

both divide $|\mathbb{Q}(\sqrt[p]{2},\omega):\mathbb{Q}|$. Since these are coprime, we conclude $|\mathbb{Q}(\sqrt[p]{2},\omega):\mathbb{Q}|$ is divisible by p(p-1), so

$$|\mathbb{Q}(\sqrt[p]{2},\omega):\mathbb{Q}|\geqslant p(p-1).$$

On the other hand, certainly ω is a root of $X^{p-1} + X^{p-2} + \cdots + X + 1$, so the minimum polynomial of ω over $\mathbb{Q}(\sqrt[p]{2})$ has degree at most p-1. Thus, by the Tower Law,

$$\begin{aligned} |\mathbb{Q}(\sqrt[p]{2},\omega) : \mathbb{Q}| &= |\mathbb{Q}(\sqrt[p]{2},\omega) : \mathbb{Q}(\sqrt[p]{2})| \cdot |\mathbb{Q}(\sqrt[p]{2}) : \mathbb{Q}| \\ &\leqslant (p-1)p. \end{aligned}$$

Putting this together, we now conclude the degree of the splitting field $\mathbb{Q}(\sqrt[p]{2},\omega)$ over \mathbb{Q} is indeed

$$|\mathbb{Q}(\sqrt[p]{2},\omega):\mathbb{Q}|=p(p-1).$$

4. Let f(X) be a polynomial over a field F and let K be the splitting field of f(X) over F. If L is an intermediate field (that is, $F \subseteq L \subseteq K$), show that K is the splitting field of f(X) over L.

Solution: Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the roots of f(X) in the splitting field K. Then necessarily

$$K = F(\alpha_1, \alpha_2, \dots, \alpha_n).$$

Now the splitting field of f(X) over L is obtained by adjoining the roots $\alpha_1, \alpha_2, \ldots, \alpha_n$ to L; that is, it is

$$L(\alpha_1, \alpha_2, \ldots, \alpha_n).$$

Note $L \subseteq K$ and $\alpha_1, \alpha_2, \dots, \alpha_n \in K$. Hence

$$K = F(\alpha_1, \alpha_2, \dots, \alpha_n)$$

$$\subseteq L(\alpha_1, \alpha_2, \dots, \alpha_n)$$

$$\subset K$$

and we conclude $K = L(\alpha_1, \alpha_2, \dots, \alpha_n)$; that is, K is the splitting field of f(X) over L.

5. Let ϕ be an automorphism of a field F. Show that the set of fixed-points of ϕ ,

$$\operatorname{Fix}_F(\phi) = \{ a \in F \mid a\phi = a \},\$$

is a subfield of F. Hence deduce that ϕ is a P-isomorphism where P is the prime subfield of F.

Solution: Since ϕ is, in particular, a homomorphism $(F,+) \to (F,+)$ of the additive group of F, it must map the additive identity to itself:

$$0\phi = 0$$
.

Similarly, ϕ induces a homomorphism $F^* \to F^*$ of the multiplicative group, so it maps the multiplicative identity to itself:

$$1\phi = 1$$
.

Hence $0, 1 \in \operatorname{Fix}_F(\phi)$.

Now let $a, b \in \text{Fix}_F(\phi)$. Then, as ϕ is a homomorphism $F \to F$ of the field,

$$(a+b)\phi = a\phi + b\phi = a+b,$$

$$(ab)\phi = (a\phi)(b\phi) = ab,$$

$$(-a)\phi = -a\phi = -a,$$

and, if $a \neq 0$,

$$(1/a)\phi = 1/(a\phi) = 1/a.$$

Hence $\operatorname{Fix}_F(\phi)$ is closed under addition, multiplication, subtraction and under division by non-zero elements.

In conclusion, $\operatorname{Fix}_F(\phi)$ is a subfield of F.

Now consider the prime subfield P of F. Since P is contained in all subfields of F,

$$P \subseteq \operatorname{Fix}_F(\phi);$$

that is,

$$a\phi = a$$
 for all $a \in P$.

Hence ϕ is a P-automorphism of F.

- 6. (a) Determine all automorphisms of \mathbb{Q} .
 - (b) Determine all automorphisms of $\mathbb{Q}(\sqrt{2})$.
 - (c) Determine all \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - (d) Show that the only automorphism of \mathbb{R} is the identity.

Solution: (a) By Question 5, if ϕ is an automorphism of \mathbb{Q} , then it must fix all elements in the prime subfield; that is,

$$a\phi = a$$
 for all $a \in \mathbb{Q}$.

Hence the identity map is the only automorphism of \mathbb{Q} .

(b) Consider any automorphism ψ of $\mathbb{Q}(\sqrt{2})$. It must first fix all points in the prime subfield \mathbb{Q} , by Question 5:

$$a\psi = a$$
 for all $a \in \mathbb{Q}$.

Also $\sqrt{2}$ is a root of $X^2 - 2$:

$$(\sqrt{2})^2 - 2 = 0.$$

Applying ψ , we conclude

$$(\sqrt{2}\psi)^2 - 2 = 0;$$

that is,

$$\sqrt{2}\psi = \pm\sqrt{2}.$$

The effect of ψ is now determined: Since $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} , every element of $\mathbb{Q}(\sqrt{2})$ can be uniquely expressed as $a + b\sqrt{2}$ with $a, b \in \mathbb{Q}$ and, for such an element,

$$(a+b\sqrt{2})\psi = a+b(\sqrt{2}\psi).$$

Thus any automorphism ψ of \mathbb{Q} is determined by whether $\sqrt{2}\psi = \sqrt{2}$ or $\sqrt{2}\psi = -\sqrt{2}$. We conclude that there are at most two automorphisms of $\mathbb{Q}(\sqrt{2})$.

On the other hand, if $\beta = \pm \sqrt{2}$, then we can extend the identity map $\mathbb{Q} \to \mathbb{Q}$ to an isomorphism $\psi \colon \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\beta)$ that maps $\sqrt{2}$ to β (by Lemma 3.5 applied to the irreducible polynomial $X^2 - 2$). Note $\mathbb{Q}(\beta) = \mathbb{Q}(\sqrt{2})$ irrespective of whether $\beta = \pm \sqrt{2}$. Hence ψ is an automorphism of $\mathbb{Q}(\sqrt{2})$ and we conclude there are precisely two automorphisms of $\mathbb{Q}(\sqrt{2})$, namely the identity map and the automorphism

$$a + b\sqrt{2} \mapsto a - b\sqrt{2}$$

induced by $\sqrt{2} \mapsto -\sqrt{2}$.

(c) Any automorphism ψ of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ must fix all points in the prime subfield \mathbb{Q} (by Question 5) and, applying ψ to the equations

$$(\sqrt{2})^2 - 2 = 0$$
 and $(\sqrt{3})^2 - 3 = 0$,

it must satisfy $\sqrt{2}\psi = \pm\sqrt{2}$ and $\sqrt{3}\psi = \pm\sqrt{3}$. By use of the Tower Law,

$$|\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}| = 4$$

and $\{1, \sqrt{2}, \sqrt{3}, \sqrt{2} \cdot \sqrt{3}\}\$ is a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} . The effect of ψ is now determined:

$$(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{2} \cdot \sqrt{3})\psi = a + b(\sqrt{2}\psi) + c(\sqrt{3}\psi) + d(\sqrt{2}\psi)(\sqrt{3}\psi).$$

We conclude there are at most four automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Since $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$, the polynomial $f(X) = X^2 - 3$ is irreducible over $\mathbb{Q}(\sqrt{2})$. Consider one of the two automorphisms ϕ of $\mathbb{Q}(\sqrt{2})$ determined in part (b). Note $f^{\phi}(X) = X^2 - 3 = f(X)$ in the notation of Lemma 3.5. Hence if $\gamma = \pm \sqrt{3}$, we can, by that Lemma, extend ϕ to an isomorphism $\psi \colon \mathbb{Q}(\sqrt{2}, \sqrt{3}) \to \mathbb{Q}(\sqrt{2}, \gamma)$ that maps $\sqrt{3}$ to γ . Note $\mathbb{Q}(\sqrt{2}, \gamma) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, so we conclude that we can construct an automorphism ψ of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ mapping $\sqrt{2}$ to either $\sqrt{2}$ or $-\sqrt{2}$ and mapping $\sqrt{3}$ to either $\sqrt{3}$ or $-\sqrt{3}$.

In conclusion, there are precisely four automorphisms ψ of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ determined by the choices

$$\sqrt{2}\psi = \pm\sqrt{2}, \quad \sqrt{3}\psi = \pm\sqrt{3}.$$

(d) Let ϕ be an automorphism of \mathbb{R} . If x is a positive real number, then $x=z^2$ for some non-zero $z\in\mathbb{R}$, so

$$x\phi = (z\phi)^2 > 0.$$

Hence x > 0 implies $x\phi > 0$.

Now if $x, y \in \mathbb{R}$ with x < y, then by the previous step $y\phi - x\phi = (y - x)\phi > 0$, so $x\phi < y\phi$; that is, ϕ is an increasing function.

Furthermore, by Question 5, $q\phi = q$ for all $q \in \mathbb{Q}$. Let $x \in \mathbb{R}$. If $x\phi \neq x$, then either $x < x\phi$ or $x > x\phi$.

If $x < x\phi$, choose a rational number $q \in \mathbb{Q}$ with $x < q < x\phi$. Then, as ϕ is increasing,

$$x\phi < q\phi = q < x\phi,$$

which is a contradiction. Similarly if $x\phi < x$, choose $q \in \mathbb{Q}$ with $x\phi < q < x$ and then

$$x\phi < q = q\phi < x\phi$$
,

which is also a contradiction.

In conclusion, $x\phi = x$ for all $x \in \mathbb{R}$, so ϕ is the identity map.

7. Suppose that f(X) is an arbitrary polynomial over a field F, K is the splitting field for f(X) over F, and α and β are roots of f(X) in K. Does there exist an automorphism of K that maps α to β ?

Solution: Consider the polynomial f(X) = X(X - 1) over \mathbb{Q} . It is already a product of linear factors over \mathbb{Q} , so the splitting field for f(X) over \mathbb{Q} is \mathbb{Q} itself. The only automorphism of \mathbb{Q} is the identity (by Question 6(a)) and this does not map 0 to 1.

Hence, in general, if f(X) is a polynomial over a field F, with splitting field K, and $\alpha, \beta \in K$ are roots of f(X), there does not necessarily exist an automorphism of K mapping α to β .

- 8. Which of the following fields are normal extensions of Q? [As always, justify your answers.]
 - (a) $\mathbb{Q}(\sqrt{2})$;
 - (b) $\mathbb{Q}(\sqrt[4]{2});$
 - (c) $\mathbb{Q}(\sqrt{2},\sqrt{3});$
 - (d) $\mathbb{Q}(\theta)$, where $\theta^4 10\theta^2 + 1 = 0$.

Solution: (a) The field $\mathbb{Q}(\sqrt{2})$ is the splitting field of $X^2 - 2$ over \mathbb{Q} (as it is obtained by adjoining the roots to \mathbb{Q}). Hence $\mathbb{Q}(\sqrt{2})$ is a normal extension of \mathbb{Q} .

(b) Consider the polynomial X^4-2 over \mathbb{Q} . It is irreducible over \mathbb{Q} , by Eisenstein's Criterion. It also has a root in $\mathbb{Q}(\sqrt[4]{2})$, namely $\sqrt[4]{2}$, but it does not split over $\mathbb{Q}(\sqrt[4]{2})$, since two of the roots of X^4-2 are complex (non-real) so do not belong to $\mathbb{Q}(\sqrt[4]{2})$.

Hence, by definition, $\mathbb{Q}(\sqrt[4]{2})$ is not a normal extension of \mathbb{Q} .

- (c) The field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of $(X^2 2)(X^2 3)$ over \mathbb{Q} , and hence $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a normal extension of \mathbb{Q} .
- (d) Let $\varepsilon, \eta \in \{\pm 1\}$. Then

$$(\varepsilon\sqrt{2} + \eta\sqrt{3})^2 = 2 + 2\varepsilon\eta\sqrt{6} + 3$$
$$= 5 + 2\varepsilon\eta\sqrt{6}$$

and

$$(\varepsilon\sqrt{2} + \eta\sqrt{3})^4 = (5 + 2\varepsilon\eta\sqrt{6})^2$$
$$= 25 + 20\varepsilon\eta\sqrt{6} + 24$$
$$= 49 + 20\varepsilon\eta\sqrt{6}.$$

Hence

$$(\varepsilon\sqrt{2} + \eta\sqrt{3})^4 - 10(\varepsilon\sqrt{2} + \eta\sqrt{3})^2 + 1 = 49 + 20\varepsilon\eta\sqrt{6} - 50 - 20\varepsilon\eta\sqrt{6} + 1$$

We conclude that the four roots of $X^4 - 10X^2 + 1$ are $\pm \sqrt{2} \pm \sqrt{3}$. We observed (in Example 2.18 in the lecture notes) that

$$\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

and hence $|\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}|=4$. Thus the minimum polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q} is of degree 4 and consequently it must be X^4-10X^2+1 . This shows that this polynomial is irreducible over \mathbb{Q} . Now if θ is a root of the polynomial, then $|\mathbb{Q}(\theta):\mathbb{Q}|=4$ and $\mathbb{Q}(\theta)\subseteq\mathbb{Q}(\sqrt{2},\sqrt{3})$ since $\theta=\pm\sqrt{2}\pm\sqrt{3}$. Hence $\mathbb{Q}(\theta)=\mathbb{Q}(\sqrt{2},\sqrt{3})$, which is a normal extension of \mathbb{Q} by part (c).

- 9. Let $F \subseteq K \subseteq L$ be field extensions where L is a finite extension of F. Prove, or give a counterexample, to each of the following assertions:
 - (a) If L is a normal extension of K, then L is a normal extension of F.
 - (b) If L is a normal extension of F, then L is a normal extension of K.
 - (c) If L is a normal extension of F, then K is a normal extension of F.

Solution: (a) Take $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt[3]{2})$ and $L = \mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$. Then L is the splitting field of $\sqrt{3}$ over K, so is a normal extension of K. However, L is not a normal extension of F, since $X^3 - 2$ is an irreducible polynomial over $F = \mathbb{Q}$ which has a root $\sqrt[3]{2}$ in L, but does not split over L (as two of the roots of $X^3 - 2$ are complex (non-real)).

[One could, for example, also obtain a counterexample by taking $F = \mathbb{Q}$ and $K = L = \mathbb{Q}(\sqrt[3]{2})$.]

- (b) Suppose L is a normal extension of F. Then L is the splitting field of some polynomial f(X) over F. Now the coefficients of f(X) belong to F, so we can view f(X) as a polynomial over K. We obtain L from F by adjoining the roots of f(X) to F, so we also obtain L from K by adjoining the roots of f(X) to K; that is, L is also the splitting field for f(X) over K. (See also the solution to Question 4.) Hence L is a normal extension of K.
- (c) Take $F=\mathbb{Q},\ K=\mathbb{Q}(\sqrt[3]{2})$ and $L=\mathbb{Q}(\sqrt[3]{2},\mathrm{e}^{2\pi i/3})$. Then L is the splitting field of X^3-2 over \mathbb{Q} , so is a normal extension of \mathbb{Q} . On the other hand, K is not a normal extension of \mathbb{Q} , since X^3-2 is an irreducible polynomial over \mathbb{Q} that has a root (namely $\sqrt[3]{2}$) in K, but does not split as its other two roots are complex (non-real).