Superinoe AY nopedka 11>2 $x(t)=!F(t, x, x', ..., x^{(n)})=0-AY mpsidka h$ $L x(t) := a_0(t) x^{(n)} + a_1(t) x^{(n-1)} + ... + a_{n-1}(t) x' + a_n(t) x = f(t) (1)$ (шнейное неоднородное ЛУ порядка п) (миейное однородное ДУ порядка и) Mespena 1 Tyers prynkism a1(t),..., au(t), s(t) Henseporbnéss na unsophase (d, B). Morga zadara Komu (2) | x = f(t),(2) $| x (t_0) = Z_0, x'(t_0) = Z_1, ..., x^{(n-1)}(t_0) = Z_{n-1}$ uneet eduncatennoe pemenne na (d, ß) 918 $| t_0 \in (d, \beta) = Z_1, ..., Z_{n-1} \in \mathbb{R}^n$.

Thungun cynephozumu: L(\(\(\gexi\) ci\(\cap\)=\(\xi\)(t) Dougeseischo L(\(\Sigma_i(t))= $\sum_{j=0}^{n} a_{j}(t) \left(\sum_{i} c_{i} x_{i}(t) \right)^{(j)} = \sum_{i,j} a_{j}(t) \left(i x_{i}^{(j)}(t) = \sum_{i,j} a_{j}(t) \right)^{(i)} = \sum_{i,j} a_{i}(t) \left(i x_{i}^{(j)}(t) = \sum_{i,j} a_{j}(t) \right)^{(i)}$ $\leq c_i x_i^{(j)}(t)$ $= \sum_{i} c_{i} \left(\sum_{j=0}^{h} a_{j}(t) x_{i}^{(j)}(t) \right) = \sum_{i} c_{i} L x_{i}(t)$

Lxi(t)

Mesperia 2 (0 cspyrogre pemerius $\Delta Y(1)$) $X_{0H}(t) = X_{0O}(t) + X_{2act}(t)$ (3)

(obuse pemeriue $\Delta Y(1)$ ecto obuse femeriue $\Delta Y(1_0)$ none raction femeriue $\Delta Y(1)$). Corracno (3), roson nautra osusce femenne AY (1), nado Marion: 1) x00(+) 2) Xrach (t). Dane yrunca nakoduto Xoolt)-Suree pemenne odhopoduro
yrabneme (10).

Ognopodhoe uneipoe AV nopadka N=2. Tyer E- moxecho pemerin AY (10). E- une monspancibo, dim E=h. Corração respense 3, osusee pensenue AY (16) unest bug $x(t) = c_1 x_1(t) + \dots + c_n x_n(t),$ ye 1x1(t),..., x4(t)?, - dazuc B €; c1,..., c4 ∈ R

Bonjec: Kak Haxodurs PCP 91e AY (16)?

Наполинание (о минейной независимост) Unp. 1 Pyrkum X1(t), ..., Xn(t) - MHETHO Zabucunes (KA (2, B)), ecm] Hadop Konciani C1,..., Cn, Takon 270 Ci+...+Cn =0, $C_1 x_1(t) + \dots + C_n x_n(t) = 0 \quad \forall t \in (d_1\beta). \quad (*)$ Oup. 2. Pyukum $x_1(t),...,x_n(t)$ _ whenho Hezabucus (ha(d, β)), ест равенство (ж) возможно мув при С=...=Си=0. Oup. 3 Pyukum x1(t),..., xh(t) - Sazuc & F (um PCP),

grange agenting; ecm (i) $x_1(t),...,x_n(t)$ - muhetino Hezabucuna; (ii) que V 2H) & IF uneer neuro hedercheene: X(t)= 2C, Xi(t) дле некоторого набора констант Сп., Сп. 39 neranne Ecule uneet ne 40 yerobre (i), to (ii) borhorneno abountwecky.

Kak hodpour PCP que AY (10)? Рассмотрим задачи Кошч $\frac{1}{2n} \left(\frac{1}{2n} \times \frac{1}{n} = 0 \right)$ $\frac{x_{1}(t_{0}) = 0}{x_{1}(t_{0}) = 0}$ $\frac{x_{1}(t_{0}) = 0}{x_{1}(t_{0}) = 1}$ $\begin{cases} L x_1 = 0 \\ x_1(t_0) = 1 \\ x_1'(t_0) = 0 \end{cases}$ $\begin{cases} L x_2 = 0 \\ x_2(t_0) = 0 \\ x_2'(t_0) = 1 \\ x_2''(t_0) = 1 \end{cases}$ $\begin{cases} x_1'(t_0) = 0 \\ x_2''(t_0) = 0 \end{cases}$ отмающиеся в данных Кои стелбуами значений $E_{l}=\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}, E_{2}=\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}, \dots, E_{m}=\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$ 3 agam (21), ..., (24) une est édunchembre pemerme no Th1. Toys } x1(t),..., x4(t)} - in HEAND HEZabrumon u nopomidant Mosse hemenne $\Delta Y(10)$ no gropingue $x(t) = \sum_{i=1}^{n} C_i x_i(t)$, $ye \begin{pmatrix} \chi(to) \\ \vdots \\ \chi(u-1)(to) \end{pmatrix} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \sum_{i=1}^n c_i E_i.$

Oup. Orfedeniren Bronckow cucrenor apyrkum
$$x_1(t),...,x_n(t)$$
 -

 $W(t) = W_{x_1(t),...,x_n(t)} = \begin{vmatrix} x_1(t) & \dots & x_n(t) \\ x_1(t) & \dots & x_n(t) \end{vmatrix}$

$$\mathcal{D}_{x_{1}(t)} = W_{x_{1}(t),...,x_{n}(t)} = \begin{vmatrix} x_{1}(t) & \dots & x_{n}(t) \\ x_{1}'(t) & \dots & x_{n}'(t) \\ x_{1}''(t) & \dots & x_{n}''(t) \end{vmatrix}$$

Thurse
$$W_{1,t} = \begin{vmatrix} 1 & t \\ 0 & 1 \end{vmatrix} = 1$$
, $W_{1,t^2} = \begin{vmatrix} t & t^2 \\ 1 & 2t \end{vmatrix} = t^2$

Theorema 4 Thyon $x_1(t), ..., x_n(t) \in \mathbb{E}\left(7.e. x_i(t) - \text{pemerue}(10)\right)$ Hoga Okbuba seurna ysteps denus: 1° $x_1(t), ..., x_n(t)$ – suneino zabucumo; 2° $W(t) = W_{\chi_1(t),...,\chi_k(t)} = 0 \quad \forall t \in (d,\beta);$ 3° ∃to ∈ (d, β), Takoe 250 W(to) = 0. Dorgzasenscho.

1° => 2° Treopena 5 Bycnobia x Teopena 4

Dububa neuthor ysteps demina: a) $x_1(t),...,x_n(t)$ - meneri HO He zabrumon; 8) $W(t) \neq 0 \forall t \in (d,\beta)$; b) $\exists to$, Take $270 \quad W(t_0) \neq 0$. Dona zasenscho. a) \Rightarrow 8) (в прозивном смучае прозиврение с 3°=>1°); 8) \Rightarrow в) (очевидно); в) \Rightarrow а) (в прозивном смучае прозиворение с 1° \Rightarrow 2°) Megeng 6 (anoiepnatula) Bychobusx Teopener 4 Borromeno odko uz dbyx: mão $W(t) = W_{\chi_1(t), \dots, \chi_n(t)} \equiv 0$, $t \in (d, \beta)$, " X1(t),..., X4(t) - mHerto zabnen men; moo W(t) = W_{x₁(t),...,} x₁(t) ≠0 + € ∈ (d,β) n $x_1(t),...,x_n(t)$ - superito pezabucusos.

 $1^{\circ} = 72^{\circ}$ Nych $x_1(t), ..., x_n(t)$ - intention zabnemum. Toya 7 G,..., Ch, Terme 270 C1+...+ (2 +0 " $(C_1 x_1(t) + ... + C_n x_n(t) = 0$ (credetine runeitois zab-tu) (*) $C_1 x_1'(t) + ... + C_n x_n'(t) = 0$ } (pergretation grapopereusup-ug) $C_4 x_1^{(n-1)}(t) + ... + C_n x_n^{(n-1)}(t) = 0$ } (pergretation grapopereusup-ug) $\forall t$ que cuplanters using the confidence (AAY(*)) que $(1,...,C_n)$ $(x_1(t)....x_n(t))$ $(x_1(t)....x_n(t))$ = $W_{X_1(t)},...,X_n(t)$ = W[t)CIAY (*) uneer Hetpubus 1840c penneme (1,..., C4 => W(t)=0 2°⇒3° (orebugno)

Paccuoipus CAAY (*) npu t=to 3°=>1° Nyon W/to)=0. $\left(C_1 X_1(t_0) + \dots + C_n X_n(t_0) = 0\right)$ $C_{1}x_{1}'(t_{0})+...+C_{h}x_{h}'(t_{0})=0$ $C_{1}x_{1}'(t_{0})+...+C_{h}x_{h}'(t_{0})=0$ $C_{1}x_{1}^{(h-1)}(t_{0})+...+C_{h}x_{h}''(t_{0})=0$ $C_{1}x_{1}^{(h-1)}(t_{0})+...+C_{h}x_{h}''(t_{0})=0$ Nockousky W(to) = 0, To] He Hyreboe pemenue ((1,...,(4) Paccuogram grynkywo $x(t) = \sum_{i=1}^{n} c_i x_i(t).(3)$ Toya (1x(t))=0 (no upunyuny cynephozusum) $x(t_0) = \sum_i c_i x_i(t_0) = 0$ $x'(t_0) = \sum_i c_i x_i'(t_0) = 0$ b cury (1AY(*))no Regene 1 $x^{(4-1)}(t_0) = \sum_{i} c_i x_i^{(4)}(t_0) = 0$ $\begin{cases} Pophysia (3) & \text{unlet big} \\ 0 = \sum_{i=1}^{n} c_i x_i(t) = 7 x_1(t), ..., x_n(t) - \frac{3n}{3ab}. \end{cases}$

Deopens 7 (luy bussa - Octporpadoroso) Pacemoguna W/t) = Wx1(t), x1(t), rge x1(+),..., xu(+) - pemerus 1 Y $x^{(4)} + a_1(t) x^{(4-1)} + ... + a_n(t) x = 0.$ (10) $\{W'(t) = -a_1(t) W(t)\}\$ (4) U_3 (4) credyem $\frac{dW}{dt} = -a_1 W$, $\frac{dW}{W} = -a_1 dt$ $\int dW = -\int a_1 dt, \quad \ln |W| = -\int a_1 dt, \quad |W| = \pm e$ $\int dW = -\int a_1 dt, \quad |W| = \pm e$ $\int dV = -\int a_1 dt, \quad |W| = \pm e$ $\int dV = +$ $\int dV =$ \int