Supplemental data

Multiple Machine Learning Comparisons of HIV Cell-Based and Reverse

Transcriptase Datasets

Kimberley M. Zorn^{†, ‡}, Thomas R. Lane^{†, ‡}, Daniel P. Russo^{†, \$}, Alex M. Clark[§], Vadim

Makarov# and Sean Ekins^{†, *}

[†]Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510, Raleigh, NC

27606, USA.

\$The Rutgers Center for Computational and Integrative Biology, Camden, NJ, 08102,

USA.

§Molecular Materials Informatics, Inc., 2234 Duvernay St, Montreal, Quebec, Canada,

H3J2Y3, Canada.

*Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian

Academy of Sciences, Leninsky Prospekt 33-2, Moscow, 119071, Russia

‡ authors contributed equally

*To whom correspondence should be addressed.

E-mail: sean@collaborationspharma.com

Phone: 215-687-1320

Supplemental Tables

Table S1. Correlation of cell-based and RT data from the NIAID ChemDB.

Spearman Correlation										
Filter Applied	Num. of Molecules	Units	R	95% CI	R ²	P value (two-tailed)	Significant			
RT ≤ 10µM	1647	μM	0.5013	0.4631-0.5376	N/A	<0.0001	Y			
	Pearson Correlation									
RT ≤ 10µM	1647	μM	0.1890	0.1420-02352	0.03574	< 0.0001	Y			
RT ≤ 10µM	1647	-logM	0.5009	0.4638-0.5361	0.2509	< 0.0001	Y			
RT ≤ 1µM	1137	-logM	0.4389	0.3908-0.4847	0.1927	<0.0001	Y			
RT ≤ 0.1μM	633	-logM	0.2378	0.1629-0.3100	0.05657	< 0.0001	Y			
RT ≤ 0.01µM	118	-logM	0.2469	0.06922-0.4094	0.06095	0.0070	Y			

Table S2. Individual dataset diversity. Number of Fingerprint Features: The number of unique fingerprints normalized by the number of ligands. Number of Assemblies: The number of unique assemblies normalized by the number of ligands. The type of assembly used is determined by the fragments to generate parameter. Fingerprint Distances: The minimum, maximum, and average distances between all pairs of fingerprints. Property Distances: The average Euclidean distance between all pairs of properties. Diversity_NumAssemblies is defined as the total number of assemblies divided by the number of molecules. Diversity_NumFPFeatures is defined as the total number of fingerprint features divided by the number of molecules. Fingerprint distance is defined as 1 - similarity for every pair of molecules. Property distance is defined as the Euclidean distance of the specified numerical properties for every pair of molecules.

	HIV WC	HIV WC	HIV WC	Training Set	HIV RTase	HIV Rtase	HIV RTase	Training Set
	CHEMBL	CHEMBL	Literature	(WC,	CHEMBL	CHEMBL	Literature	(RTase,
	full test	500MW	test set	nonspecific,	full test set	500MW test	test set	nonspecific,
	set	test set		500WM		set		500WM
				cutoff)				cutoff)
Diversity:	0.258	0.255	0.297	0.295	0.393	0.387	0.359	0.285
Number of								
Assemblies								
Diversity:	6.749	7.530	8.158	5.798	12.213	12.340	9.542	7.151
Fingerprint								
Features								

Diversity:								
Fingerprint								
Distances								
Average	0.869	0.874	0.775	0.900	0.898	0.895	0.772	0.895
Fingerprint								
Distance								
Minimum	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fingerprint								
Distance								
Maximum	0.991	0.990	0.955	1.000	1.000	1.000	0.948	1.000
Fingerprint								
Distance								
Diversity:								
Property								
Distances								

Average	1.304	1.333	1.351	1.317	1.206	1.307	1.353	1.280
Property								
Distance								
Minimum	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Property								
Distance								
Maximum	3.254	3.981	2.823	6.008	8.675	4.952	2.972	7.351
Property								
Distance								

Supplemental Figures

Figure S1. Correlation of whole-cell HIV and reverse transcriptase inhibition using data from the NIAID ChemDB with an RT cut off at A. 10 μ M, B. 0.1 μ M, C. 0.01 μ M.

HIV RTase ≤ 0.01µM Filter vs WC Inhibition

HIV Whole Cell Inhibition (-logM) C.

Figure S2. Whole-cell dataset diversity metrics: Training set (WC nonspecific, 500MW cutoff) vs various test sets Tanimoto Similarity (ECFP6, 2D only).

Figure S3. Diversity metrics: Training set (RTase nonspecific, 500MW cutoff) vs various test sets. Tanimoto Similarity (ECFP6, 2D only).

Figure S4. PCA analysis using AlogP, Molecular weight, Number of Hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, number of rings, number of aromatic rings, molecular fractional polar surface area. A. Whole-cell vs ChEMBL non-specific test set in which 3 principal components explains 78.2% of the variance, B. Whole-cell vs literature test set in which 3 principal components explains 77.2% of the variance. (yellow = test set molecules).

A. B.

Figure S5. PCA analysis using AlogP, Molecular weight, Number of Hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, number of rings, number of aromatic rings, molecular fractional polar surface area. A. RT vs ChEMBL test set in which 3 principal components explains 81.7% of the variance, B. RT vs literature test set in which 3 principal components explains 81.9% of the variance. (yellow = test set molecules)

A. B.