Validation of small-signal analysis of an IBR connected to an infinite bus ($V_{\!\scriptscriptstyle S}=1 \angle 0^\circ$ pu)

1 Grid following (GFL)

1.1 Model

1.2 GFL with P-Q control

ω_0	314 rad/s	SCR	2	$K_{p-\mathrm{PLL}}$	-20.65
V_{S}	1.0 pu	BW _{PLL}	4.74 Hz	K_{i-PLL}	-234.82
P_r	1.0 pu	BW _P	10.17 Hz	K_{p-P}	1.37
Q_r	0.23 pu	BWQ	10.17 Hz	K_{i-P}	88.42
$X/_R$	5.0	BWI	500 Hz	K_{p-Q}	-1.08
B_f	0.02 pu	$T_{\underline{m}}$	50 ms	K_{i-Q}	-46.13

$$BW_I = \frac{1}{\tau}$$

$$SCR = \frac{1}{Z}$$

where Z is the impedance of the network

1.3 GFL in P-V control

ω_0	314 rad/s	SCR	2	$K_{p-\mathrm{PLL}}$	-18.4
V_{S}	1.0 pu	BW _{PLL}	4.08 Hz	$K_{i-\text{PLL}}$	-180.25
P_r	1.0 pu	BW _P	10.66 Hz	K_{p-P}	1.39
V_r	1.0 pu	BWQ	10.66 Hz	K_{i-P}	99.42
$X/_R$	5.0	BWI	500 Hz	K_{p-V}	-2.19
B_f	0.02 pu	T_m	50 ms	K_{i-V}	-101.83

2 Grid forming (GFM) with droop

2.1 Model

ω_0	314 rad/s	SCR	2	D_{ω}	$0.05\times\omega_0$
V_{S}	1.0 pu	BW_V	33.3 Hz	D_V	0.05
P_r	1.0 pu	BWI	500 Hz		
Q_r	0.23 pu	T_m	50 ms		
$X/_R$	5.0	K_{p-V}	0.00853		
B_f	0.02 pu	K_{i-V}	0.3062		

SCR 5.00
$$\to$$
 1.30 $\frac{X}{R} = 5, P = 1.0 \text{ pu}$

