

10A、400V N沟道增强型场效应管

描述

SVF740T/MJ N沟道增强型高压功率 MOS 场效应晶体管采用士兰微电子的 F-CellTM 平面高压 VDMOS 工艺技术制造。先进的工艺及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于 AC-DC 开关电源,DC-DC 电源转换器,高压 H 桥 PWM 马达驱动。

特点

- ◆ 10A, 400V, R_{DS(on)(典型值)}=0.45Ω@V_{GS}=10V
- ◆ 低栅极电荷量
- ◆ 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装
SVF740T	TO-220-3L	SVF740T	无铅	料管
SVF740MJ	TO-251J-3L	SVF740MJ	无卤	料管

极限参数(除非特殊说明, T_c=25°C)

62 MJ 67 Th		符号	参数范围		
	参数名称		SVF740T	SVF740MJ	单位
漏源电压	漏源电压		400		V
栅源电压	栅源电压		±30		V
足扭击法	T _C =25°C		10		
漏极电流	T _C =100°C	l _D	6.3		A
漏极脉冲电流	漏极脉冲电流		40		А
耗散功率(1	耗散功率(T _C =25℃)		130	98	W
	- 大于 25℃ 每摄氏度减少		1.04	0.78	W/°C
单脉冲雪崩能量(注 1)		E _{AS}	517		mJ
工作结温范围		T_J	-55∼+150		°C
贮存温度范围		T_{stg}	<i>-</i> 55∼+150		°C

热阻特性

4 WL 57 Th	符号	参数范围		
参数名称		SVF740T	SVF740MJ	单位
芯片对管壳热阻	$R_{ heta JC}$	0.96	1.28	°C/W
芯片对环境的热阻	$R_{ heta JA}$	62.5	62.0	°C/W

电气参数(除非特殊说明, T_c=25°C)

参数名称	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250μA	400			V
漏源漏电流	I _{DSS}	V _{DS} =400V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I _{GSS}	$V_{GS}=\pm30V$, $V_{DS}=0V$			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0	-	4.0	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =5.0A		0.45	0.60	Ω
输入电容	C _{iss}			801		
输出电容	C _{oss}	V_{DS} =25V, V_{GS} =0V,		118.5		pF
反向传输电容	C _{rss}	f=1.0MHz		5.06		
开启延迟时间	t _{d(on)}			15.44		
开启上升时间	t _r	V_{DD} =200V, R_{G} =25 Ω , I_{D} =10A		38.60		
关断延迟时间	$t_{d(off)}$	(注 2, 3)		35.12		ns
关断下降时间	t _f			28.16		
栅极电荷量	Q_{g}			16.18		
栅极-源极电荷量	Q _{gs}	V_{DD} =320V, I_{D} =10A, V_{GS} =10V		4.77		nC
栅极-漏极电荷量	Q_{gd}	(注 2, 3)		7.18		

源-漏二极管特性参数

参数名称	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的反偏			10	
源极脉冲电流	I _{SM}	P-N 结			40	Α
源-漏二极管压降	V_{SD}	I _S =10A, V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	I _S =10A, V _{GS} =0V,		255.6		ns
反向恢复电荷	Q _{rr}	dI _F /dt=100A/µs (注 2)		2.15		μC

注:

- 1. L=30mH, I_{AS} =5.30A, V_{DD} =100V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300µs,占空比≤2%;
- 3. 基本上不受工作温度的影响。

版本号: 2.0 共7页 第2页

典型特性曲线

典型特性曲线 (续)

典型测试电路

栅极电荷量测试电路及波形图

开关时间测试电路及波形图

EAS测试电路及波形图

封装外形图

TO-220-3L 单位: 毫米

SYMBOL	MIN	MOM	MAX
Α	4. 30	4.50	4.70
A1	1.00	1.30	1.50
A2	1.80	2.40	2. 80
b	0.60	0.80	1.00
b1	1.00	_	1.60
С	0.30	_	0.70
D	15. 10	15.70	16. 10
D1	8. 10	9. 20	10.00
E	9.60	9. 90	10. 40
е		2.54BSC	
H1	6.10	6. 50	7.00
L	12.60	13.08	13.60
L1	_	_	3.95
ΦP	3. 40	3. 70	3.90
Q	2.60	_	3. 20

TO-251J-3L 单位: 毫米

SYMBOL	MIN	NOM	MAX	
Α	2.18	2,30	2.39	
A1	0.89	1.00	1.14	
b	0.56		0.89	
b4	4.95	5.33	5.46	
b5	1		1.05	
С	0.46		0.61	
D	5.97	6.10	6.27	
Е	6.35	6.60	6 . 73	
e	2.29 BCS			
L	8.89	9.30	9.65	
L1	0.95		1.50	
L2	0.89		1.27	

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整 机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

产品名称: SVF740T/MJ 说明书 文档类型: 版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn 版 本: 2.0 修改记录: 1. 删除 TO-220F-3L 封装外形图 版 本: 1.9 修改记录: 1. 更新 TO-251J-3L 封装外形图 版 本: 修改记录: 1. 修改曲线注解 版 本: 1.7 修改记录: 1. 修改产品规格分类 版 本: 1.6 修改记录: 1. 修改产品规格分类 版 本: 1.5 修改记录: 1. 增加 TO-251J-3L 封装信息 版 本: 1.4 修改记录: 1. 修改 TO-220F-3L 封装信息 2. 修改 TO-220-3L 封装信息 版 本: 1.3 修改记录: 1. 修改热阻特性 版 本: 1.2 修改记录: 1. 修改产品规格分类 版 本: 1.1 修改记录: 1. 修改 MOS 管符号的示意图

1.0

版 本:

修改记录:

1. 原版