

Faculté des Sciences Exactes Département de Mathématiques /M.I Master 1 (PSA)

Série de TD N 2 de MBCS

Exercice 1. Soit $(B_t, t \ge 0)$ un mouvement brownien réel et (\mathcal{F}_t) sa filtration naturelle.

- 1. Calculer pour tout couple (s;t) les quantités $\mathbb{E}(B_sB_t^2)$, $\mathbb{E}(B_t|\mathcal{F}_s)$ et $\mathbb{E}(B_t|B_s)$.
- 2. On a si X est une v.a. gaussienne centrée de variance σ^2 , alors $\mathbb{E}(X^4) = 3\sigma^4$ (voir Exo6, série 1). Calculer $\mathbb{E}(B_t^2 B_s^2)$.
- **3.** Quelle est la loi de $B_t + B_s$?
- 4. Soit θ_s une variable aléatoire bornée \mathcal{F}_s -mesurable.

Calculer pour $t \geq s$, $\mathbb{E}(\theta_s(B_t - B_s))$ et $\mathbb{E}[\theta_s(B_t - B_s)^2]$

- **5.** Calculer $\mathbb{E}(\mathbf{1}_{B_t \leq a})$ et $\mathbb{E}(B_t \mathbf{1}_{B_t \leq a})$.
- **6.** Calculer $\mathbb{E}(\int_0^t exp(B_s)ds)$ et $\mathbb{E}[\exp(\alpha B_t) \int_0^t \exp(\gamma B_s)ds]$).

Exercice 2. Soit les processus $M_t = B_t^2 - t$ et $N_t = e^{B_t - \frac{t}{2}}, t \ge 0$.

- 1. Montrer que $(M_t)_{t>0}$ et $(N_t)_{t>0}$ sont des martingales.
- 2. Calculer la moyenne et la covariance de ces deux processus. Sont-ils des processus gaussiens?

Exercice 3. Parmi les processus suivants, quels sont ceux qui sont des martingales.

$$M_t = B_t^3 - 3\int_0^t B_s ds, \quad Z_t = B_t^3 - 3tB_t, \quad X_t = tB_t - \int_0^t B_s ds,$$

 $U_t = \sin B_t - \int_0^t B_s(\cos s) ds, \quad V_t = \sin B_t + \frac{1}{2}\int_0^t \sin(B_s) ds \quad Y_t = t^2B_t - 2\int_0^t B_s ds.$

Exercice 4. Soit le processus (X_t) défini par

$$X_t = B_t - tB_1, \quad 0 < t < 1.$$

- 1. Montrer que (X_t) est un processus gaussien, indépendant de B_1 . Préciser $\mathbb{E}(X_t)$ et $Cov(X_t, X_s)$ pour s < t. (Ce processus est appelé un "pont Brownien")
- **2.** Soit $Y_t = (1-t)B_{\frac{t}{1-t}}$, 0 < t < 1. Montrer que (Y_t) a la même loi que (X_t) .

Exercice 5. Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard. On définit les deux processus stochastiques

$$X_t = \int_0^t e^s dB_s \quad \text{et} \quad Y_t = e^{-t} X_t.$$

- **1.** Calculer $\mathbb{E}(X_t)$, $\mathbb{V}(X_t)$, $\mathbb{E}(Y_t)$, $\mathbb{V}(Y_t)$.
- **2.** Quelle est la loi de (X_t) et de (Y_t) .
- 3. Calculer la fonction caractéristique de Y_t . En déduire que $Y_t \longrightarrow Y_{\infty}$, en loi quand $t \to \infty$, dont on précisera la loi.
- 4. Appliquer l'intégration par parties pour X_t puis exprimer dY_t en fonction de Y_t et de B_t .