PRF is a efficient and deterministic function that is:

- Easy to compute
- Computationally indistinguishable from a random function

PRF is based on PRG with the only exception that in addition to the internal state they can accept any input data.

Let G be a secure PRG, which on input $\{0,1\}^s$, outputs $\{0,1\}^{2s}$, i.e. double the length of the input. Let G_0 and G_1 be the left and right halves of G, respectively such that $G(x) = G_0(x) \mid\mid G_1(x)$. For any K belonging to $\{0,1\}^s$, define F_k : $\{0,1\}^n -> \{0,1\}^s$ by

$$F_K(x_1...x_n) = G_{xn}(G_{xn-1}(...G_{x1}(K)...))$$

If the PRG G is secure then the function F is also secure.

