4.2 Longth -preserving transformations	
Dynamical system (S, F). If f is length-preserving:	
$m(f^{-n}(B)) = m(B)$ assuming B is a basic set	
"stationar"	
Binary transformation or Borel System:	
$f(x) \begin{cases} 2x & 0 \le x < \frac{1}{2} \\ 2x - 1 & \frac{1}{2} \le x < 1 \end{cases} \Rightarrow is disjoint$	
$\frac{2x-1}{2}\leq x\leq 1$	
$M\left(f^{-1}([a,b])\right) = M\left(\left[\frac{a}{2},\frac{b}{2}\right]\right) + M\left(\left[\frac{a+1}{2},\frac{b+1}{2}\right]\right)$	
$=\frac{b}{2}-\frac{9}{2}+\left(\frac{b+1}{2}-\frac{o+1}{2}\right)$	
$=\frac{b}{2}+\frac{b}{2}-\frac{q}{z}-\frac{q}{z}=b-a\Rightarrow u\left(\left[q,b\right)\right),$	
i.e. $u(f'(B)) = u(B)$ for any basic set/interval B.	
Lenna: Let J = S, J is a subinterval of S.	
=> f (J) basiz subset of S	
Then, if $n(f^{-1}(T)) = n(T)$, f is length-preserving.	
One class of fength-preserving functions: piecewise-linear functions	
One class of fength-preserving functions: piecewise-linear functions	
One class of length-preserving functions: piecewise-linear functions 4.3 Poincaré recurrence	
	91
4.3 Poincaré recurrence	91
4.3 Poincouré recurrence Proposition 4.5 - Let S be a bounded interval, V is basic subset of S W/positive length, and f is length-preserving transformation	91
4.3 Poincaré recurrence	91
4.3 Poincaré recurrence	91
4.3 Poincaré recurrence Proposition 4.5 - Let S be a bounded interval, V is basic subset of S w/positive length, and f is length-preserving transformation then, $\exists x \in U$, $n \in \mathbb{N}$ s.t. $f^n(x) \in V$. Poincaré's recurrence theorem: Not just $\exists x \in U$, but for almost all $x \in U$ excluding some measure zero subset.	91
4.3 Poincaré recurrence Proposition 4.5 - Let S be a bounded interval, V is basic subset of S w/positive length, and f is length-preserving transformation then, $J \times_{\mathcal{L}} U$, $n \in \mathbb{N}$ s.t. $f^n(x) \in V$. Poincaré's recurrence theorem: Not just $J \times G U$, but for almost all $X \in U$ excluding some measure zero subset. 4.4 Recurrent points	91
4.3 Poincaré recurrence Proposition 4.5 - Let S be a bounded interval, V is basic subset of S w/positive length, and f is length-preserving transformation then, $J \times_E U$, $n \in \mathbb{N}$ s.t. $f^n(x) \in V$. Poincaré's recurrence theorem: Not just $J \times G U$, but for almost all $X \in U$ excluding some measure zero subsect. 4.4 Recurrent points Poincaré's recurrence theorem: in a length-preserving dynamical system on some bounded interval, almost	91
4.3 Poincaré recurrence Proposition 4.5 - Let S be a bounded interval, V is basic subset of S w/positive length, and f is length preserving transformation. Then, $J \times_{\mathcal{L}} U$, $n \in \mathbb{N}$ s.t. $f''(x) \in V$. Poincaré's recurrence theorem: Not just $J \times G U$, but for almost all $X \in U$ excluding some measure zero subset. 4.4 Recurrent points Poincaré's recurrence theorem: in a length preserving dynamical system on some bounded interval, almost any point will return to some set of positive measure, but not necessarily.	
4.3 Poincaré recurrence Proposition 4.5 - Let S be a bounded interval, V is basic subset of S w/positive length, and f is length-preserving transformation. Then, $J \times_{\mathcal{Q}} U$, $n \in \mathbb{N}$ s.t. $f^{n}(x) \in V$. Poincaré's recurrence theorem: Not just $J \times G U$, but for almost all $X \in U$ excluding some measure zero subset. 4.4 Recurrent points Poincaré's recurrence theorem: in a length-preserving dynamical system on some bounded interval, almost any point unit return to some set of positive measure, but not necessarily. Original location.	

Poin	cuné's re	ecurrence	theorem	n (Streigth	eved): For	a leigth	- preser	ving tran	sformati	in f	07 a	bounded	interva	15,	
						iost every									
4.5	Kac's	Theorem,	Average	z Return	T:mes										
Kac'	5 Theorem	n - for	a leyth	ı -preservi	ng trastom	iathon f	on b	onded M	terval	5, an	d subs	et Vo	۰ ۲ 5		
					M(s) $M(u)$)		
		Ţ			INDEPEND										
Exam	ples of K	iacls -	can tossi		a speafir										
					, binang e	1									
4.6	- Applic	ation of	Kac's to	o Kronecke	er and Bo	ન									
4,7	Stendard	. Peviation	of Rea	currence Tx	ne										
Q:	How var	iable one	recurence	e times a	omponed to	average	?								
		la usily													
•				ne is Lons	tent										
					d becnes	0 if m(v)= M(s) os M((v)= ~	1(5) wd	ا دی معا	re cases.			
					, qualifative										
					nversely prop	1				f set.					
	_				ne back or										
				•											
5.1	- Aven	aging in T	ime and S	space - O	lynomizal S	gstens									
					the aver		ege fos	pace ave	ruges f	or almo	st all	Sterting poi	nts.		
					isn [0,1),										
					of sequences	_		10							
	<u> </u>				digits in 1			ber system	ns.						
					soted w/ :			U							
let 1		_			≤S. Orbit			4010							
<i>γ</i> -1 \	(-)1/	5 V/101 40) - 101 /1-	0.21	., 10	1) 1 (1	" J C.	J						

leane	χ_{A}	: 7	χef	1,0	other	wise.														
Time	averag	$e:\frac{1}{n}$	15/2	XA (fi	(x)	- ر <i>م</i> ،	nts the	o vo por	-4701 E	of thre	the or	bit X.	Sperals	m A.						
	- sh												A -							
	۱۰ ر	,00.10(, i o je	10 1	n(s) 1	T 1"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	lo C	7740	J 44. 4		7 1								
F 2	0	141																		
5.2	- Du	fer V16	asure																	
"Mea	swe"-	a f	uction	that	tak	es in	sets	and	return	is the	" (sīze	- so	me 17	3 ≥ 0	-					
											ngth)									
	Pa	pertie	: Д	cR	⇒ >	м(A)	< 41	B)												_
	1.	F 1. C3				then) -	(A)	ı (A									_
												')								_
				/	'	then	w (JA) = .	≥ nl	Ar)									
			, ,																	
		in				(x+)			lation											
			Л	((a, b)) =	b-a		leng	th											
"Out	r Measi	ne v	s. "Me	as une	_															
V	+ (A)	= infe	mun { }	∞ ∑	Ξ _Λ) :	Ik's	disjoi	1+	, A:	ج لگ الا د ا	I, {	— Co	ver s	et wi?	h inter	vals, c	rdd yp	ley the	s, and	
			("	1=1		,	V 5 V	ter vals	,		—	to	ike th	e smalle	St po:	51Bje 1	ralwe.			_
7	= { A		1	for the	complement complement	ervals) is)			,,,											
	- sigma 1			1				7)											_
	to extend						245WE	area,												
c~	R	M	(R)=	(b-,	a)[d-	c)														
	чь								$\overline{}$	<u>D</u>										
Me	asue of	an	orbitran	j shap	e-b	unch 8	of nect	ang)es	ا (_)											
Ss	77 A	c R	, sul	(A) =	infeno	m 8 8	m (6	۱ (۱	Rr 5	ore disj	oint rea	tang le	25							
						L				. V			0							
F.J.	ed to 1	\mathbb{R}^3 –	va Ci	hec	not ~	ر د حمل م	0,			k61N										
⊢ \/\	ר וה	\	ise c	,,,		المرسوا عر	- 7													_