```
Homomorphisms
```

Def: Suppose (G, \circ) and (H, *) are groups. A map $\phi: G \rightarrow H$ which satisfies $\phi(x \circ y) = \phi(x) * \phi(y)$, $\forall x, y \in G$, is called a

homomorphism from G to H.

A homomorphism \$: G -> H is called:

- · a monomorphism if it is injective
- · on epimorphism if it is surjective
- ° an isomorphism if it is bijective

 Notation: G≅H.

An isomorphism Ø: G -> G is called an automorphism of G.

Exs:

O) For any groups G and H, the map $\phi: G \rightarrow H$ defined by $\phi(g) = e_H$, $\forall g \in G$, is a homomorphism. (trivial homomorphism) $\forall x, y \in G$, $\phi(xy) = e_H = e_H \cdot e_H = \phi(x) \cdot \phi(y)$.

(positive reals)

1)
$$G = (\mathbb{R}, +), H = (\mathbb{R}, 0, \cdot)$$

Def. $\phi: G \rightarrow H$ by $\phi(x) = e^x$.

Then, $\forall x, y \in \mathbb{R}$, $\phi(x+y) = e^{x+y} = e^x e^y = \phi(x) \cdot \phi(y)$.

(bin. op. in G) (bin. op. in H)

Also, & is a bijection, so it is an isomorphism.

Def.
$$\phi: G \rightarrow H$$
 by $\phi(A) = def(A)$.

Def.
$$\phi: G \to H$$
 by $\phi(A) = \det(A)$.

(props. of det)

Then $\forall A, B \in G$, $\phi(AB) = \det(AB) = \det(A) \cdot \det(B) = \phi(A) \cdot \phi(B)$.

(mult. of 2×2)

(mult. of real)

numbers

Here, ϕ is an epimorphism, but it is not injective.

Def.
$$\phi: G \rightarrow H$$
, $\phi(k) = nk$.

Then,
$$\forall k, l \in \mathbb{Z}$$
, $\phi(k+l) = n(k+l) = nk+nl = \phi(k) + \phi(l)$.

So \$ is a homomorphism:

- · If n=0 it is neither injective nor surjective.
- · If n=+1 it is an automorphism.
- · If In1=2 it is a monomorphism, but not surjective

Then
$$\forall k, l \in \mathbb{Z}$$
, $\phi(k+l) = \overline{k+l} = \overline{k} + \overline{l} = \phi(k) + \phi(l)$.

(def. of + in H)

Here, \$\phi\$ is an epimorphism, but it is not injective.

5)
$$G = C_n = \langle x \mid x^n = e \rangle$$
, $H = \frac{72}{nZ}$ Recall (Subgroups video):

Def. $\phi: G \rightarrow H$ by $\phi(x^k) = \overline{k}$.

(well defined) $\leftarrow x^i = x^j$ for $i, j \in \mathbb{Z}$ iff $i = j \mod n$

Then
$$\phi(\chi^k \chi^l) = \phi(\chi^{k+l}) = \overline{k+l} = \overline{k} + \overline{l} = \phi(\chi^k) + \phi(\chi^l)$$
.

Also, ϕ is a bijection, so $C_n \cong \mathbb{Z}/n\mathbb{Z}$.

(This shows that any two finite cyclic groups of the same order are isomorphic)

6)
$$G=H=\frac{72}{n}\frac{7}{n}$$
, $a\in\mathbb{Z}$, $\phi:G\to H$, $\phi(k)=ak \mod n$.

Then
$$\phi(k+l) = a(k+l) = ak+al = \phi(k)+\phi(l)$$
.

Note that \$ is:

If k, l ∈ G then
$$\phi(k) = \phi(l) \iff ak = al \mod n$$

If (a,n)=1 then YleH, IkeG s.t. ak=1 mod n.

If (a,n)>1 then the equation ak=1 mod n has no solution.

Therefore: • If $(a_i n)=1$ then ϕ is an automorphism.

7) Let G be a group and Yg∈G define
$$\tau_g: G \rightarrow G$$

by $\tau_g(h) = ghg^{-1}$. Then, Yg∈G, τ_g is:

(conjugation by g)

· a homomorphism /

$$\forall h_{1}, h_{2} \in G$$

$$\tau_{g}(h_{1}h_{2}) = g(h_{1}h_{2})g^{-1} = gh_{1}(g^{-1}g)h_{2}g^{-1}$$

$$= (gh_{1}g^{-1})(gh_{2}g^{-1}) = \gamma_{g}(h_{1})\tau_{g}(h_{2}).$$

· injective /

· surjective /

Then
$$\gamma_{g}(h) = ghg^{-1} = g(g^{-1}kg)g^{-1} = (gg^{-1})k(gg^{-1}) = k.$$

Therefore, YgeG, 7g is an automorphism of G.