Théorème des deux carrés de Fermat

Nous démontrons le théorème des deux carrés de Fermat (qui donne des conditions sur la décomposition en facteurs premiers d'un entier pour que celui-ci soit somme de deux carrés) à l'aide de l'anneau des entiers de Gauss $\mathbb{Z}[i]$.

Lemme 1. Soit $p \ge 3$ un nombre premier. Alors $x \in \mathbb{F}_p^*$ est un carré si et seulement si $x^{\frac{p-1}{2}} = 1$.

[**I-P]** p. 137

Démonstration. On pose $X = \{x \in \mathbb{F}_p \mid x^{\frac{p-1}{2}} = 1\}$, et on note S l'ensemble des carrés de \mathbb{F}_p^* . Comme un polynôme de degré d sur \mathbb{F}_p possède au plus d racines, on a $|X| \le \deg\left(X^{\frac{p-1}{2}} - 1\right) = \frac{p-1}{2}$.

D'autre part, si $x \in S$, on peut écrire $x = y^2$ et on a donc $x^{\frac{p-1}{2}} = y^{p-1} = 1$ car $|\mathbb{F}_p^*| = p-1$. Donc, $S \subseteq X$.

Pour conclure, calculons le cardinal de S. Pour cela, considérons le morphisme

$$\mathbb{F}_p^* \to S \\
x \mapsto x^2$$

dont le noyau est $\{x \in \mathbb{F}_p^* \mid x^2 = 1\} = \{\pm 1\}$ qui est de cardinal 2. En appliquant le premier théorème d'isomorphisme, et en considérant les cardinaux; on obtient $|S| = \frac{p-1}{2}$. Donc S = X.

Introduisons maintenant des notations qui seront utiles pour la suite.

Notation 2. On note

$$N: \begin{array}{ccc} \mathbb{Z}[i] & \to & \mathbb{N} \\ a+ib & \mapsto & a^2+b^2 \end{array}$$

et Σ l'ensemble des entiers qui sont somme de deux carrés.

Remarque 3. $n \in \Sigma \iff \exists z \in \mathbb{Z}[i]$ tel que N(z) = n.

Lemme 4. Voici quelques propriétés sur N et $\mathbb{Z}[i]$ dont nous aurons besoin :

- (i) N est multiplicative.
- (ii) $\mathbb{Z}[i]^* = \{z \in \mathbb{Z}[i] \mid N(z) = 1\} = \{\pm 1, \pm i\}.$
- (iii) $\mathbb{Z}[i]$ est euclidien de stathme N.
- *Démonstration.* (i) On a $\forall z, z' \in \mathbb{C}$, $|zz'|^2 = |z|^2 |z'|^2$ (par multiplicativité de (.)² et de |.|). Et N n'est que la restriction de $|.|^2$ à $\mathbb{Z}[i]$. Il est également tout-à-fait possible de montrer cette propriété par un calcul direct.
 - (ii) Soit $z \in \mathbb{Z}[i]^*$. On a $N(z)N(z^{-1}) = N(zz^{-1}) = N(1) = 1$. Comme N est à valeurs dans \mathbb{N} , on a $N(z) = N(z^{-1}) = 1$. En écrivant z = a + ib, on a $N(z) = a^2 + b^2 = 1$, d'où $a = \pm 1$ ou $b = \pm 1$. Réciproquement, ± 1 et $\pm i$ sont bien inversibles dans $\mathbb{Z}[i]$ et de module 1.

(iii) Soient $z, t \in \mathbb{Z}[i]$. On pose $\frac{z}{t} = x + iy \in \mathbb{C}$ avec $x, y \in \mathbb{R}$. Soient $a, b \in \mathbb{Z}$ tels que :

$$- |x - a| \le \frac{1}{2}.$$

$$- |y - b| \le \frac{1}{2}.$$

(Ces nombres existent bien, ne pas hésiter à faire un dessin pour s'en convaincre.) On pose $q = a + ib \in \mathbb{Z}[i]$, et on a

$$\left| \frac{z}{t} - q \right| = (x - a)^2 + (y - b)^2 \le \frac{1}{4} + \frac{1}{4} < 1$$

On pose alors r = z - qt, et on a bien

$$z = tq + r \text{ et } N(r) = r^2 = |t^2| \left| \frac{z}{t} - q^2 \right| < |t|^2 = N(t)$$

Lemme 5. Soit p un nombre premier. Si p n'est pas irréductible dans $\mathbb{Z}[i]$, alors $p \in \Sigma$.

Démonstration. On suppose que p n'est pas irréductible dans $\mathbb{Z}[i]$. On peut donc écrire p = uv avec $u, v \in \mathbb{Z}[i]$ non inversibles. Ainsi,

$$p^2 = N(p) = N(uv) = \underbrace{N(u)}_{\neq 1} \underbrace{N(v)}_{\neq 1} \stackrel{\text{p premier}}{\Longrightarrow} N(u) = N(v) = p$$

Par la Remarque 3, $p \in \Sigma$.

Théorème 6 (Deux carrés de Fermat). Soit $n \in \mathbb{N}^*$. Alors $n \in \Sigma$ si et seulement si $v_p(n)$ est pair pour tout p premier tel que $p \equiv 3 \mod 4$ (où $v_p(n)$ désigne la valuation p-adique de n).

Démonstration. Sens direct : On écrit $n = a^2 + b^2$ avec $a, b \in \mathbb{Z}$. Soit $p \mid n$ tel que $p \equiv 3 \mod 4$. Montrons que $p \notin \Sigma$. On suppose par l'absurde que l'on peut écrire $p = c^2 + d^2$ avec $c, d \in \mathbb{Z}$. On va discerner les cas :

- Si $c \equiv \pm 1 \mod 4$, alors $c^2 \equiv 1 \mod 4$ (et de même pour d^2).
- Si $c \equiv \pm 2 \mod 4$, alors $c^2 \equiv 0 \mod 4$ (et de même pour d^2).

Donc $p=c^2+d^2\equiv 0,1$ ou $2\mod 4$: absurde. En particulier, par le Lemme 5 (en prenant la contraposée), p est irréductible dans $\mathbb{Z}[i]$. Comme $\mathbb{Z}[i]$ est euclidien (cf. Lemme 4), p est un élément premier de $\mathbb{Z}[i]$. Mais, $p\mid n=(a+ib)(a-ib)$. Donc $p\mid a+ib$ ou $p\mid a-ib$. Dans les deux cas, on a $p\mid a$ et $p\mid b$. Ainsi,

$$\left(\frac{a}{p}\right)^2 + \left(\frac{b}{p}\right)^2 = \frac{n}{p^2}$$

donc de deux choses l'une; on a :

$$p^2 \mid n \text{ et } \frac{n}{p^2} \in \Sigma$$

П

Il suffit alors d'itérer le processus (en remplaçant n par $\frac{n}{p^2}$) k fois jusqu'à ce que p ne divise plus $\frac{n}{p^{2k}}$. On a alors $n=p^{2k}u$ avec $p\nmid u$. D'où $v_p(n)=2k$.

<u>Réciproque</u>: Soit p premier diviseur de n tel que $p \equiv 3 \mod 4$. Alors $p^{\nu_p(n)} = \left(p^{\frac{\nu_p(n)}{2}}\right)^2$ est un carré, donc $p^{\nu_p(n)} \in \Sigma$.

Soit maintenant p premier tel que p=2 ou $p\equiv 1\mod 4$. Alors en conséquence du Lemme 1 (le cas p=2 étant trivial), -1 est un carré de \mathbb{F}_p ie. $\exists a\in \mathbb{Z}$ tel que $-1\equiv a^2\mod p$. Donc $p\mid a^2+1=(a-i)(a+i)$. Oui mais, p ne divise ni a-i, ni a+i. Donc p n'est pas un élément premier de $\mathbb{Z}[i]$ et n'est donc pas irréductible dans $\mathbb{Z}[i]$ (toujours parce que $\mathbb{Z}[i]$ est euclidien, cf. Lemme 4). En vertu du Lemme 5, $p\in \Sigma$.

Comme N est multiplicative, par la Remarque 3, on en déduit que Σ est stable par multiplication. Donc $n \in \Sigma$ (en décomposant n en produit de facteurs premiers).

Remarque 7. Le fait qu'un élément irréductible d'un anneau euclidien est premier est une conséquence directe du lemme d'Euclide, vrai dans les anneaux factoriels (donc à fortiori aussi dans les anneaux euclidiens).

[PER] p. 48

Bibliographie

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529.html.