SEMINAR 13

Problema 1. Calculați caracteristica inelelor $\mathbb{Z}_2 \times \mathbb{R}$, $\mathbb{Z}_4 \times \mathbb{Z}_6$ și $\mathbb{Z}[i]/\langle 2+2i \rangle$.

Soluţie: $car(\mathbb{Z}_2 \times \mathbb{R}) = 0$.

 $\operatorname{ord}(\widehat{1}, \overline{1}) = [\operatorname{ord}(\widehat{1}), \operatorname{ord}(\overline{1})] = [4, 6] = 12 \Rightarrow \operatorname{car}(\mathbb{Z}_4 \times \mathbb{Z}_6) = 12.$

Notăm $L = \mathbb{Z}[i]/\langle 2+2i \rangle$. car $(L) = \operatorname{ord}(1_L)$ în grupul aditiv (L,+). Deci este cel mai mic număr natural a.î. $n \cdot 1_L = 0 \Leftrightarrow n \cdot 1_L \in \langle 2+2i \rangle$. $1_L = 1$. Vrem să găsim $n \in \mathbb{N} \subset \mathbb{Z} \subset \langle 2+2i \rangle$. Fie $(a+bi) \in \mathbb{Z}[i]$ a.î. $(a+bi)(2+2i) \in \mathbb{Z} \Leftrightarrow 2(a-b+(a+b)i) \in \mathbb{Z} \Leftrightarrow a+b=0 \Leftrightarrow b=-a$. Deci elementele întregi din idealul $\langle 2+2i \rangle$ sunt $2 \cdot (a-(-a)) = 2 \cdot 2a = 4a$.

Deci cel mai mic număr natural care aparține idealului < 2 + 2i > este 4.

Avem $1 + 1 + 1 + 1 = 4 = (1 - i)(2 + 2i) \equiv_{\langle 2+2i \rangle} 0$ şi astfel car(L) = 4.

Problema 2. Fie A un inel și $f:\mathbb{Q}\longrightarrow A$ un morfism de inele. Calculați caracteristica inelului A.

Soluție: Pentru orice morfism de inele Ker(f) este ideal în \mathbb{Q} . \mathbb{Q} este corp deci singurele ideale ale sale sunt 0 si \mathbb{Q} .

- Dacă $Ker(f) = \mathbb{Q}$, atunci f este morfismul nul, dar f este morfism de inele și f(1) = 1. O contradicție.
- Deci varianta posibilă este Ker(f) = 0, adică f este injectivă. Astfel pentru orice $n \in \mathbb{N}^*$ $f(n) = f(1+1+\cdots+1) = f(1)+f(1)+\cdots+f(1) = n\cdot 1_A \neq 0$ (f este injectivă și $n \neq 0$). Deci car(A) = 0.

Problema 3. Presupunem cunoscut faptul că inelul factor

$$L = \mathbb{Z}_2[X] / < X^3 + X + \hat{1} >$$

are ordinul 8. Arătați că L este corp și grupul său multiplicativ este generat de \hat{X} .

Soluție: Putem arăta că L este corp în două moduri.

- \bullet Avem următorul rezultat: Fie K un corp și $f(X) \in K[X]$ un polinom ireductibil. Atunci K[X]/(f) este corp.
- $f(X) = X^3 + X + \hat{1}$ este ireductibil peste $\mathbb{Z}_2[X]$ pentru că $f(\hat{0}) = f(\hat{1}) = \hat{1}$ (nu are rădăcini în \mathbb{Z}_2 deci nu poate fi factorizat peste $\mathbb{Z}_2[X]$.)

• În L avem $\widehat{X^3} = -\widehat{X} - \widehat{1} = \widehat{X} + \widehat{1}$ (lucrăm cu coeficienți \mathbb{Z}_2 și $-\widehat{1} = \widehat{1}$). Deci $L = \{a + b\widehat{X} + c\widehat{X}^2 \mid a, b, c \in \mathbb{Z}_2\} = \{\widehat{0}, \widehat{1}, \widehat{X}, \widehat{X}^2, \widehat{X} + \widehat{1}, \widehat{X}^2 + \widehat{1}, \widehat{X}^2 + \widehat{X}, \widehat{X}^2 + \widehat{X} + \widehat{1}\}.$ Arătăm că orice element nenul este inversabil menționând inverul fiecărui element.

 $\hat{1}$ este propriul invers.

 $\hat{X}\cdot(\hat{X^2}+\hat{\hat{1}})=\hat{X}^3+\hat{X}=\hat{X}+\hat{1}+\hat{X}=2\hat{X}+\hat{1}=\hat{1}. \text{ Deci } \hat{X} \text{ și } \hat{X}^2+\hat{1} \text{ sunt inverse unul altuia.}$ $\hat{X}^4 = \hat{X} \cdot \hat{X}^3 = \hat{X}(\hat{X} + \hat{1}) = \hat{X}^2 + \hat{X}.$

 $\hat{X}^2(\hat{X}^2 + \hat{X} + \hat{1}) = \hat{X}^4 + \hat{X}^3 + \hat{X}^2 = \hat{X}^2 + \hat{X} + \hat{1} + \hat{X}^2 = 2\hat{X}^2 + \hat{X} + \hat{1} = \hat{1}. \text{ Deci } \hat{X}^2 \text{ si}$ $\hat{X}^2 + \hat{X} + \hat{1}$ sunt inverse unul altuia. $(\hat{X} + \hat{1})(\hat{X}^2 + \hat{X}) = \hat{X}^3 + \hat{X}^2 + \hat{X}^2 + \hat{X} = \hat{X} + \hat{1} + 2\hat{X}^2 + \hat{X} = 2\hat{X} + \hat{1} = \hat{1}$. Astfel $\hat{X} + \hat{1}$ și

 $\hat{X}^2 + \hat{X}$ sunt inverse unul altuia.

Deci am toate elementele nenule sunt inversabile si astfel L este corp.

SEMINAR 13

Să vedem acum că $L\setminus\{0\}$ este generat de \hat{X} .

Avem \hat{X}^2 ,

 $\hat{X}^3 = \hat{X} + \hat{1},$

 $\hat{X}^{4} = \hat{X}^{2} + \hat{X},$ $\hat{X}^{5} = \hat{X}\hat{X}^{4} = \hat{X}(\hat{X}^{2} + \hat{X}) = \hat{X}^{3} + \hat{X}^{2} = \hat{X} + \hat{1} + \hat{X}^{2} = \hat{X}^{2} + \hat{X} + \hat{1},$ $\hat{X}^{6} = \hat{X}^{3}\hat{X}^{3} = (\hat{X} + \hat{1})(\hat{X} + \hat{1}) = \hat{X}^{2} + 2\hat{X} + \hat{1} = \hat{X}^{2} + \hat{1},$

 $\hat{X}^7 = \hat{X}\hat{X}^6 = \hat{X}(\hat{X}^2 + \hat{1}) = \hat{X}^3 + \hat{X} = \hat{X} + \hat{1} + \hat{X} = 2\hat{X} + \hat{1} = \hat{1}.$

Deci toate elementele nenule sunt obținute ca puteri ale lui \hat{X} . **Problema 4.** Rezolvați în corpul cuaternionilor H ecuația

(1+2i+3j+4k)x = -37+4i+9j+8k.

Soluție: $\mathbb{H} = \{a + b\underline{i} + c\underline{j} + dk \mid a, b, c, d \in \mathbb{R}\}$. În această expresie a este coeficientul matricei

identitate 2×2 . $\underline{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. La seminar am scris ultima intrare din matrice i în loc de -i. Este greşit.

Forma scrisă aici este corectă. Elementul i din matrice este $\sqrt{-1}$. $j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ iar k = 1

 $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Aici $1 = I_2$, este elementul neutru la înmulțirea matricelor. Avem relațiile $\underline{i}^2 = j^2 = I_2$ $k^2 = \underline{i}jk = -1, \ \underline{i}j = k = -\underline{j}\underline{i}, \ jk = \underline{i} = -kj, \ k\underline{i} = \underline{j} = -\underline{i}k.$

De aici voi folosi notația i pentru matricea \underline{i} .

Avem de rezolvat ecuația (1+2i+3j+4k)(a+bi+cj+dk) = -37+4i+9j+8k. făcând înmulțirile conform relațiilor de mai sus și adunând termenii asemenea obținem

(a-2b-3c-4d)+(2a+b-4c+3d)i+(3a+4b+c-2d)j+(4a-3b+2c+d)k=-37+4i+9j+8k.

Egalând coeficienții obținem sistemul de 4 ecuații cu 4 necunoscute:

a - 2b - 3c - 4d = -37 $\begin{cases} 2a+b-4c+3d = 4\\ 3a+4b+c-2d = 9\\ 4a-3b+2c+d = 8 \end{cases}$ care are soluția a = 1, b = 3, c = 4, d = 5.

 $\overrightarrow{\text{Deci}} \ x = 1 + 3i + 4j + 5k \in \mathbb{H}.$

Problema 5. Fie includ factor

$$M = \mathbb{Z}[i]/<3>.$$

Arătați că M este corp și grupul său multiplicativ e generat de $\widehat{1+i}$. În această problemă $i = \sqrt{-1}$.

Solutie: $M = \{\hat{0}, \hat{1}, \hat{2}, \hat{i}, \hat{2i}, \widehat{1+i}, \widehat{1+2i}, \widehat{2+i}, \widehat{2+2i}\}.$

Pentru că $1 + 1 + 1 = 3 \in <3>$, deci car(M) = 3.

Arătăm ca și în **problema 3** că fiecare element nenul este inversabil.

 $\hat{2} \cdot \hat{2} = \hat{4} \equiv_{<3>} \hat{1}$, deci $\hat{2}$ este propriul invers.

 $\hat{i}\cdot\hat{2i}=\widehat{-2}\equiv_{<3>}\hat{1}$, de unde deducem că \hat{i} și $\hat{2i}$ sunt inverse unul altuia.

 $\widehat{(1+i)}\cdot\widehat{(2+i)}=\widehat{2}-\widehat{1}+\widehat{i}+\widehat{2}i=\widehat{1}+\widehat{3}i\equiv_{<3>}\widehat{1}$. Am obținut că $\widehat{1+i}$ și $\widehat{2+i}$ sunt inverse unul

 $\widehat{(1+2i)}\cdot\widehat{(2+2i)}=\widehat{2}-\widehat{4}+\widehat{2}i+\widehat{4}i=-\widehat{2}+\widehat{6}i\equiv_{<3>}\widehat{1}$. Deci $\widehat{1+2i}$ și $\widehat{2+2i}$ sunt inverse unul altuia.

SEMINAR 13

Trebuie sămai arătăm că $M\backslash \{\hat{0}\}$ este generat de $\widehat{1+i}$. $(\widehat{1+i})^2=1+\widehat{2i}-1=\widehat{2i},$ $(\widehat{1+i})^3=1+\widehat{3i-3}-i=\widehat{1+2i},$ $(\widehat{1+i})^4=(\widehat{1+i})^2\cdot(\widehat{1+i})^2=\widehat{2i}\cdot\widehat{2i}=\widehat{-4}=-\widehat{1}=\widehat{2},$ $(\widehat{1+i})^5=(\widehat{1+i})\cdot(\widehat{1+i})^4=(\widehat{1+i})\cdot\widehat{2}=\widehat{2+2i},$ $(\widehat{1+i})^6=(\widehat{(1+i)^2})^3=(\widehat{2i})^3=\widehat{-8i}=\widehat{i},$ $(\widehat{1+i})^7=(\widehat{1+i})\cdot(\widehat{1+i})^6=(\widehat{1+i})\cdot(\widehat{i})=(\widehat{i-1})=(\widehat{2+i}).$ $(\widehat{1+i})^8=(\widehat{(1+i)^4})^2=\widehat{2}^2=\widehat{4}=\widehat{1}.$

Problema 6. Explicitați morfismul lui Frobenius pentru corpul M din exemplul precedent.

Soluţie: Am menţionat că car(M)=3. Morfismul Frobenius este $F:M\longrightarrow M, F(x)=x^3$. Deci pentru orice $\widehat{a+bi}\in M, F(\widehat{a+bi})=\widehat{a+bi}^3=a^3+3a^2b\widehat{i+3ab^2}i^2+b^3i^3=a^{\widehat{3}-\widehat{b}^3}i$.