

State and Action Factorization in Power Grids

Losapio G · Beretta D · Mussi M · Metelli AM · Restelli M

ECML 2024

Machine Learning for Sustainable Power Systems Workshop

Vilnius - September 9th, 2024

Al to support control room operators

Increasingly complex towards carbon neutrality!

Reinforcement learning for power grids

GOAL: "Find remedial actions that human operators are unaware of or unaccustomed to" Lots of papers in the last few years (mainly after the L2RPN competition series)

The curse of dimensionality

Solution: power grid segmentation

Original contribution

Algorithm for data-driven factorization of the state and action space in power grids

• Validation on a power grid benchmark (open-source simulator Grid2Op)

Algorithm

- 1. Collect a dataset of transitions from the original MDP \rightarrow $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_t\}_{t=1}^T$
- 2. Compute the matrix of Mutual Information (MI)

$$= \operatorname{MI}(s_2', s_3)$$

(estimated on the dataset \mathcal{D})

3. Transform it into a pseudo block-diagonal matrix (after applying a threshold) -> block = MDP

Experiment

IEEE case14 benchmark

(Grid2Op open-source simulator) 4 substations · 20 lines · 6 generators · 11 loads

Performance: $\left\|I_{\mathcal{G}}-\widehat{I}_{\mathcal{G}}\right\|_F^2$ approx. by similarity to domain-expert analysis*

Conclusion

- Scaling RL solutions to large power grids can be challenging (curse of dimensionality, ...)
- We introduced a domain-agnostic algorithm for the factorization of state and action spaces in power grids
- Each state/action subset is an MDP that can be solved with distributed RL algorithms
- Promising results on a power grid benchmark (in line with domain-expert analysis)

Future work = { larger grids, hyperparams, correlation metrics, clustering, ... }

Gianvito Losapio
PhD student

Davide Beretta

Master student

Marco Mussi Postdoc

Alberto Metelli Professor

Marcello Restelli

Professor

