Project Arduino A2 Technical Documentation

The Project Arduino A2 Team

October 21, 2025

Contents

1	Overview	2		
2 Repository Structure				
3	Hardware Requirements			
	3.1 Bill of Materials	2		
	3.2 Pin Assignments	2		
4	Software Setup	3		
	4.1 Tooling	3		
	4.2 Dependencies	3		
	4.3 Building and Uploading	3		
5	Module Overview	3		
	5.1 RGB LED Actuator	3		
	5.2 DHT11 Sensor	4		
	5.3 BH1750 Sensor	4		
	5.4 GPS Module	4		
6	Extending the Project	4		
	6.1 Adding a New Sensor or Actuator	4		
	6.2 Testing Suggestions	4		
7	Contribution Guidelines			
8	Licensing			
9	Document Compilation			
10	0 Acknowledgements			

1 Overview

Project Arduino A2 is an open-source embedded application for the Arduino Uno platform. It demonstrates a sensor-rich environment that reads ambient humidity/temperature (DHT11), light intensity (BH1750), and GPS telemetry (GY-GPS6MV2), while driving a multi-colour RGB LED with a non-blocking animation. The code base is organised into reusable modules for each device, enabling the addition or removal of sensors with minimal changes to the firmware entry point.

2 Repository Structure

Path	Description		
platformio.ini	PlatformIO configuration targeting Arduino Uno.		
<pre>src/main.cpp</pre>	Firmware entry point that delegates to module initialisa-		
	tion and update functions.		
<pre>src/actuators/rgb/</pre>	RGB LED actuator module interface and implementation.		
<pre>src/sensors/dht/</pre>	DHT11 temperature and humidity sensor module.		
src/sensors/bh1750/	BH1750 ambient light sensor module.		
<pre>src/sensors/gps/</pre>	GPS (GY-GPS6MV2) module powered by TinyGPS++.		
docs/project_documentation.tex This documentation file.			

3 Hardware Requirements

3.1 Bill of Materials

- Arduino Uno (or compatible ATmega328P board).
- DHT11 temperature and humidity sensor (with $10 \,\mathrm{k}\,\Omega$ pull-up if using the bare element).
- BH1750 digital light sensor (I²C breakout).
- GY-GPS6MV2 GPS module (u-blox NEO-6M based).
- Common-cathode RGB LED (connected via suitable current-limiting resistors).
- Assorted jumper wires and breadboard or PCB.

3.2 Pin Assignments

Device	Arduino Pin	Notes
DHT11 DATA	D2	configured with internal pull-up in
		firmware.
BH1750 SDA	A4	$4.7\mathrm{k}{-}10\mathrm{k}\Omega$ pull-up to VCC typically pro-
		vided on breakout.
BH1750 SCL	A5	shares the pull-up with SDA.
GPS TX	D4	feeds SoftwareSerial RX; keep wiring short.
GPS RX	D3	optional; level-shift to 3.3 V if used.
RGB LED Red	D9	PWM capable.
RGB LED Green	D10	PWM capable.
RGB LED Blue	D11	PWM capable.
VCC / GND	$5\mathrm{V}/\mathrm{GND}$	shared across all modules.

4 Software Setup

4.1 Tooling

- 1. Install PlatformIO IDE or the PlatformIO Core CLI.
- 2. Ensure a recent Arduino toolchain is available via PlatformIO (handled automatically).
- 3. Optionally install a LaTeX distribution (TeX Live, MikTeX) to compile this document.

4.2 Dependencies

Dependencies are declared in platformio.ini under lib_deps:

- adafruit/DHT sensor library@
 - 1.4.6
- adafruit/Adafruit Unified Sensor@
 - 1.1.15
- claws/BH1750@
 - 1.3.0
- mikalhart/TinyGPSPlus@
 - 1.1.0

PlatformIO automatically downloads these libraries during the first build.

4.3 Building and Uploading

- 1. Connect the Arduino Uno via USB.
- 2. From the project root run pio run to compile.
- 3. Upload using pio run -t upload; optionally specify -upload-port if auto-detection fails.
- 4. Launch the serial monitor with pio device monitor -baud 9600 to observe sensor output.

5 Module Overview

5.1 RGB LED Actuator

- Location: src/actuators/rgb/.
- Provides rgbInit() and rgbUpdate(now).
- Implements a colour cycle with configurable on/off timing using PWM outputs 9–11.
- Designed to be non-blocking; timing uses the millis() value supplied by the caller.

5.2 DHT11 Sensor

- Location: src/sensors/dht/.
- Provides dhtInit() and dhtUpdate(now).
- Reads humidity and temperature every two seconds, printing results or reporting read
 failures.
- Uses the internal pull-up and initialises with a warm-up delay to improve stability.

5.3 BH1750 Sensor

- Location: src/sensors/bh1750/.
- Provides bh1750Init() and bh1750Update(now).
- Sets the BH1750 into continuous high-resolution mode and reports lux readings once per second.
- Handles communication errors gracefully by logging failures to Serial.

5.4 GPS Module

- Location: src/sensors/gps/.
- Provides gpsInit() and gpsUpdate(now).
- Uses SoftwareSerial on pins 4/3 to read NMEA sentences and TinyGPS++ to parse them.
- Prints satellite count, HDOP, UTC time, and fix status every second.
- Recommends taking the module outdoors for the first fix.

6 Extending the Project

6.1 Adding a New Sensor or Actuator

- 1. Create a new sub-directory under src/sensors/ or src/actuators/.
- 2. Define a header exposing init and update functions.
- 3. Implement non-blocking behaviour so the main loop stays responsive.
- 4. Include the module header in src/main.cpp and invoke the new functions inside setup() and loop().
- 5. Add any required libraries to platformio.ini.

6.2 Testing Suggestions

- Use PlatformIO unit testing (pio test) for logic that can be abstracted away from hardware.
- For hardware regression, consider logging data to an SD card or host script for repeatable validation.
- When multiple modules print to Serial, prefix each line for easier parsing or use a structured logging format.

7 Contribution Guidelines

- Follow the repository directory conventions when adding new modules.
- Prefer non-blocking code that cooperates with the existing timing strategy.
- Submit pull requests with a summary of changes, hardware tested, and any known limitations.
- Keep comments concise; focus on explaining non-obvious logic or hardware assumptions.

8 Licensing

Choose an open-source license that matches your goals (e.g., MIT, Apache-2.0, GPL-3.0). Place the licence text in a LICENSE file at the repository root and reference it here once selected.

9 Document Compilation

Compile this document with:

pdflatex docs/project_documentation.tex

Run the command twice to ensure references and the table of contents are up to date.

10 Acknowledgements

This project builds on community-maintained libraries from Adafruit, the TinyGPS++ authors, and contributors to the BH1750 driver. We appreciate their work and encourage contributions back to upstream projects when improvements are made.