Technical Note: ¹¹C Spallation Production Measurement

Hasung Song

October 27, 2025

Abstract

This technical note describes the $^{11}\mathrm{C}$ measurement in KLZ and how the rate is extracted.

Spallation Event Selection

- Standard FBE muon selection cuts
- Standard MoGURA neutron selection cuts
- Neutron Shower Cuts $(N_n = 1)$
- $0\nu\beta\beta$ selection cuts, except for spallation-related cuts
- XeLS ¹¹C Candidate cuts
 - Energy Range : 1.0-1.6 MeV
 - Radius : 0-160 cm
 - dT : 100-18,000 s (5 hours)
- KamLS ¹¹C Candidate cuts
 - Energy Range: 1.4-2.4 MeV
 - Radius : 220-350 cm
 - dT : 100-18,000 s (5 hours)
- dR Cut : < 80 cm

Fit to dT

dT of muon-event pairs where the neutron shower contained 1 observed neutron is shown in Figure 1.

Figure 1: dT of muon-event pairs where the neutron shower contained 1 observed neutron.

Rate Calculation

The calculation of expected number of detected, selected, and correlated $^{11}\text{C-}\mu$ pairs. Not trying to calculate the expected number of background "accidentally correlated muon-event pairs", only the true $^{11}\text{C-}\mu$ pairs.

$$I_{C11} = Y_{C11} \times E_{FBE} \times (1 - dt_{MoG}) \times \epsilon_{dR} \times \epsilon_{dT} \times \epsilon_{FV} \times \epsilon_{E}$$
 (1)

• I_{C11} : Integral of the exponential component of the fit, "Observed μ -11C pairs" [events]

$$I_{C11} = A_{C11} \cdot \tau \cdot \frac{e^{\frac{-100}{\tau}} - e^{\frac{-18000}{\tau}}}{(18000 - 100)/50}$$
 (2)

- XeLS: 10,153 events

- KamLS: 3,794 events

- Used the fit with fixed ^{11}C lifetime

-(18000-100)/50s is the dT histogram bin spacing

• Y_{C11} : Final Result Production rate of ¹¹C in KamLS, XeLS [events/kton · days]

• E_{FBE} : Exposure, Livetime : $[kton \cdot days]$

- XeLS: 16.36 kton-days

- KamLS: 130.68 kton-days

- Volume of the target region, density, Livetime

- LiveTime excludes the first 5 hours of each FBE run

• dt_{MoG} : MoGURA Deadtime Fraction: [unitless]

 $-\ 1.88\%$

- simply scale up based on the deadtime since muons that occur during deadtime will not be able to create accurate pairs.
- Go through the FBE and MoGURA runs and check for overlap.
- ϵ_{dR} : dR < 80 cm cut efficiency (from FLUKA tuned with ¹¹C), for each data period [unitless]

- XeLS : 57%

- KamLS: 56.4%

- Also from Kelly's new FLUKA simulation

- ϵ_{dT} : dT > 100s cut efficiency (from known ¹¹C half-life) [unitless]
 - -94.5%
 - Simply integrate the exponential decay distribution between 100-18,000 s
- ϵ_{FV-E} : Fiducial Volume & Energy Cut Efficiency (KLG4Sim) [unitless]

- XeLS: 79.7%

- KamLS : 40.5%

- Calculate the efficiency from the energy and radius cuts described in the first section.

Simply solve for Y_{C11} :

$$Y_{C11} = \frac{I_{C11}}{E_{FBE} \times (1 - dt_{MoG}) \times \epsilon_{dR} \times \epsilon_{dT} \times \epsilon_{FV-E}}$$
(3)

Systematic Errors

- A_{C11} , exponential amplitude, fit uncertainty : $A_{C11} = 2,181 \pm 87, \frac{87}{2,181} = 4.0\%$
- \bullet Exposure Uncertainty, from 0ν analysis uncertainty $\sim 4\%$
 - 4% uncertainty stated for uncertainty in xenon exposure, mainly driven by FV uncertainty, similar for Carbon?
- Neutron Tagging Efficiency Error: $74.5\% \pm 0.4\%$
- FLUKA simulation Systematic : dR Cut, Neutron Production
- FLUKA simulation Statistical (insignificant)
- Energy Scale Uncertainty : (use 1 sigma of kB, R contour)

Results

• $XeLS: 1,470 \ events/day/kton$

• KamLS: 669 events/day/kton

Previous results from KamLAND: $1{,}106 \pm 178$ events/day/kton 2009 spallation paper, 973 ± 10 events/day/kton from 7Be solar neutrino measurement.

There is a large discrepancy between my results and the previous measurements. Also the trend is inconsistent, XeLS rate is too high, KamLS rate is too low.

Possible Errors

- different livetime for different volume regions?
- Different event selection efficiency for different volume regions? Currently using the standard selection for $0\nu\beta\beta$ analysis.