Introduction to Econometrics 2: Recitation 2

Seung-hun Lee

Columbia University

January 29th, 2020

Ordinary Least Squares

• Assume a data generating process

$$y_i = x_i'\beta + e_i, \ x_i = \begin{pmatrix} x_{i1} \\ ... \\ x_{ik} \end{pmatrix}, \ i = 1, ..., n$$

 To show consistency and limiting distributions, we need this set of assumptions

Assumption

- A1 (y_i, x_i) are IID across i's
- A2 $E(x_i e_i) = 0$

A2'
$$E(e_i|x_i)=0$$

- A3 $E(x_i x_i') = Q$ is a positive definite matrix (hereafter PD matrix)
- A4 $E||x_i^4|| < \infty, E||y_i^4|| < \infty$

Consistency and Limiting Distributions

Theorem

- Consistency: Under assumptions A1-A3, $\hat{\beta} \xrightarrow{p} \beta$
- **Limiting Distribution**: Under assumptions **A1-A4**, the limiting distribution of $\hat{\beta}$ is characterized by $\sqrt{n}(\hat{\beta}-\beta) \xrightarrow{d} N(0,Q^{-1}\Omega Q^{-1})$, where $\Omega = E(x_i x_i' e_i^2)$

Proof: On separate pages!

• When we are interested in the limiting distribution of a particular element of β , then we work with

$$\sqrt{n}(\hat{\beta}_j - \beta_j) \xrightarrow{d} N(0, V_{jj})$$
 (V_{jj} is the (j, j) th element of V)

where $V=Q^{-1}\Omega Q^{-1}$ and V_{jj} is the (j,j)th element of V

Hypothesis tests

• Single element: Consider the following setting

$$H_0: \beta_j = \beta_j^0, \quad H_1: \beta_j \neq \beta_j^0$$

From the limiting distribution of β_j , we can show that the test statistic is distributed as a standard normal under H_0 . It is characterized as

$$\frac{\hat{\beta}_j - \beta_j^0}{\sqrt{\hat{V}_{jj}/n}} \stackrel{d}{\to} N(0,1)$$

where \widehat{V} is estimated version of the variance (more on that later).

Hypothesis tests

• Multiple element: We may be interested in the features of the linear combinations of the elements of β , or even multiple restrictions, Let $R \in \mathbb{R}^{k \times r}$ characterize such restrictions. Then we can write

$$H_0: R'\beta = c, H_1: \neg H_0$$

Then from the limiting distribution of $\hat{\beta}$, we can apply Slutsky's theorem to get the necessary limiting distribution

$$\sqrt{n}(R'\hat{\beta} - R'\beta) = \sqrt{n}R'(\hat{\beta} - \beta) \xrightarrow{d} N(0, R'VR)$$

Since $R'\beta = c$ under H_0 , we can obtain the following Wald test statistic. (For convenience, we also assume that V is known)

$$n(R'\hat{\beta}-c)'(R'VR)^{-1}(R'\hat{\beta}-c) \xrightarrow{d} \chi_r^2$$

Notes on \widehat{V}

- ullet The definition of \widehat{V} is $\widehat{V}\equiv \widehat{Q}^{-1}\widehat{\Omega}\widehat{Q}^{-1}$, where
 - \widehat{Q} is a sample analogue of Q, written as $\frac{1}{n} \sum_{i=1}^{n} x_i x_i'$
 - $\widehat{\Omega}$ is a sample analogue of $E(x_i x_i' e_i^2)$, also with the consideration that the true value of e_i is replaced with the residual \hat{e}_i . Therefore, we can write $\frac{1}{n} \sum_{i=1}^n x_i x_i' \hat{e}_i^2$

Motivation and Sources of Endogeneity

- In showing consistency of $\hat{\beta}_{OLS}$, assumption **A2**: $E(x_i e_i) = 0$ was crucial
- However, if this assumption cannot be supported by the data for whatever reasons, OLS estimators may no longer be consistent.
- Sources of Endogeneity
 - (Classical) Measurement Error
 - Simultaneity Bias
 - Omitted Variable Bias (OVB)

Measurement Error

Suppose that the linear model we want to estimate is as follows

$$y_i = x_i^{*'}\beta + e_i$$
 (We assume $E(x_i^*e_i) = 0$)

However, we cannot observe x_i^* .

- Instead, we can observe $x_i = x_i^* + v_i$, where v_i has mean zero and independent of both x_i^* and e_i .
- What we regress:

$$y_i = (x_i - v_i)'\beta + e_i = x_i'\beta \underbrace{-v_i'\beta + e_i}_{=u_i}$$

Measurement Error

• Then, what happens to $E(x_iu_i)$?

$$E(x_i u_i) = E[x_i(-v_i'\beta + e_i)] = E[(x_i^* + v_i)(-v_i'\beta + e_i)] = -E(v_i v_i')\beta$$

- So unless $\beta = 0$ or $E(v_i v_i') = 0$, $E(x_i u_i) \neq 0$
 - $\beta = 0$ implies that x_i^* has no role in determining y_i to begin with
 - $E(v_i v_i') = 0$ implies that $var(v_i) = 0$, so that v_i has mean 0 and has point mass at 0 no measurement error!
- The probability limit of the OLS estimator is no longer β .
 - It converges in probability to $\frac{E(x_i^*x_i^{*'})}{E(x_i^*x_i^{*'})+E(v_iv_i')}\beta$. This is an **attenuation** bias.
 - Proof: separate page!

Some Comments on Measurement errors

- If there exists another noisy, but unbiased measure of x_i^* , namely $w_i = x_i^* + \delta_i$, we can use w_i to instrument for x_i . The condition is that η_i has mean zero and uncorrelated with $(x_i^*, e_i.v_i)$. Try verifying that this satisfies all IV conditions.
- If there is a measurement error in y_i , the only this it does is to change the component of e_i . Assuming all the old assumptions hold, this does not pose as much problem as having a measurement error in the regressor.

Simultaneity Bias

 A classic example of this would be a supply and demand system type of setting:

$$q_i = \beta_1 p_i + u_i$$
 (Supply)
 $q_i = -\beta_2 p_i + v_i$ (Demand)

I will assume $e_i = (u_i \ v_i)'$ is IID, $E(e_i) = 0$, $E(e_i e_i') = I_2$ When you do some algebra, the equilibrium of this system is

$$p_i = \frac{v_i - u_i}{\beta_1 + \beta_2}, q_i = \frac{\beta_1 v_i + \beta_2 u_i}{\beta_1 + \beta_2}$$

So for both supply and demand equations, we have $E(p_iu_i) \neq 0$ and $E(p_iv_i) \neq 0$

Simultaneity Bias

• When naively applying OLS to this equation, the result is as follows.

$$q_i = \beta^* p_i + \eta_i, \ E(p_i \eta_i) = 0$$

$$\implies \hat{\beta}^* = \frac{E(p_i q_i)}{E(p_i^2)} = \frac{\beta_1 - \beta_2}{2}$$

Thus, OLS estimators does not converge to either one of β_1 or β_2 , resulting in a **simultaneity bias**.

Omitted Variable Bias

• Suppose that we are interested in the determinant of wages (y_i) . Also assume that education, x_i , and innate ability, a_i , determine wages in the following manner

$$y_i = x_i \beta_1 + a_i \beta_2 + e_i, \quad E(x_i e_i) = 0, E(a_i e_i) = 0$$

• However, instead of observing (y_i, x_i, a_i) , we can only observe (y_i, x_i) . the best we can do at the moment is to estimate the following equation

$$y_i = x_i \beta_1 + u_i$$
, where $u_i = a_i \beta_2 + e_i$

Omitted Variable Bias

• Then $E(x_iu_i)$ becomes

$$E(x_iu_i) = E(x_i(a_i\beta_2 + e_i)) = E(x_ia_i)\beta_2 + 0 = E(x_ia_i)\beta_2$$

- Therefore, when
 - x_i and a_i are correlated and
 - $\beta_2 \neq 0$,

 x_i is endogenous with respect to u_i .

• Moreover, the OLS estimator acquired here has a probability limit of

$$\hat{\beta}_{OLS} = \beta_1 + E(x_i^2)^{-1} E(x_i u_i) = \beta_1 + E(x_i^2)^{-1} E(x_i a_i) \beta_2$$

So if both conditions occur, the above does not converge in probability to β_1 .

• we can determine the direction of the bias by the sign of $E(x_ia_i)$ and β_2 .

IV Estimator

Assume that the data generating process is as follows

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + e_i$$

where
$$E(x_{1i}e_i) = 0, E(x_{2i}e_i) \neq 0$$

- OLS estimators of β_2 and β_1 will not be consistent.
- Let $z_i \in \mathbb{R}^I = \begin{pmatrix} z_{1i} \\ z_{2i} \end{pmatrix} = \begin{pmatrix} x_{1i} \\ z_{2i} \end{pmatrix}$, where dim $(z_{2i}) = I k_1$.
- Valid IV should satisfy

IV Conditions

- **1** Exogeneity: $E(z_i e_i) = 0$
 - **10 Exclusion**: $E(z_iy_i) = \beta_1 E(z_ix_{1i}) + \beta_2 E(z_ix_{2i})$, in other words, z_i should impact y_i through x_{1i} and x_{2i}
- **2 Relevancy**: $rank[E(z_ix_i')] = dim(x_i) = k$
- **3 PD**: $E(z_i z_i') > 0$

Reduced Form

• In this approach, we assume that z_i is a least squares projection. So we can write

$$x_{i} = \Gamma' z_{i} + u_{i} \ (\Gamma \in \mathbb{R}^{l \times k})$$

$$\implies z_{i} x'_{i} = z_{i} z'_{i} \Gamma + z_{i} u'_{i}$$

$$\implies E(z_{i} x'_{i}) = E(z_{i} z'_{i}) \Gamma + E(z_{i} u'_{i})$$

- Since z_i is a least squares projection, $E(z_iu_i) = 0$
- As a result, $\Gamma = E(z_i z_i')^{-1} E(z_i x_i')$ and the estimator for Γ would be its sample analogue,

$$\widehat{\Gamma} = \left(\frac{1}{n} \sum_{i=1}^{n} z_i z_i'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} z_i x_i'\right) = (Z'Z)^{-1} (Z'X)$$

Reduced Form

• Then we get to the structural equation

$$y_i = x_i'\beta + e_i \iff y_i = (z_i'\Gamma + u_i')\beta + e_i \iff y_i = z_i'\underbrace{\Gamma\beta}_{=\lambda} + \underbrace{u_i'\beta + e_i}_{=v_i}$$

• From the assumptions, we can show that $E(z_i v_i) = 0$. As such,

$$\lambda = E(z_i z_i')^{-1} E(z_i y_i)$$

with its sample analogue being

$$\hat{\lambda} = \left(\frac{1}{n} \sum_{i=1}^{n} z_i z_i'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} z_i y_i\right) = (Z'Z)^{-1} Z' y$$

Reduced Form

• In case where k=I, Z itself becomes invertible. Then we can show that $\beta=\Gamma^{-1}\lambda$ and thus

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'y$$

ullet If otherwise, We note that $\widehat{\Gamma}eta+{
m error}=\hat{\lambda}$ and show that

$$\hat{\beta}_{IV} = (\widehat{\Gamma}'\widehat{\Gamma})^{-1}\widehat{\Gamma}'\hat{\lambda}$$

2SLS Estimator

 Suppose the structural equation and the first-stage regression is as follows.

$$y = X\beta + e$$
 (Structural)
 $X = Z\Gamma + u$ (First Stage)

where $Z \in \mathbb{R}^{n \times l}$, $\Gamma \in \mathbb{R}^{l \times k}$

- We still maintain the least square projection assumption
- We proceed as follows
 - **1** Regress the first stage and obtain $\widehat{\Gamma} = (Z'Z)^{-1}Z'X$. Then the predicted value of X, denoted as $\widehat{X} = Z(Z'Z)^{-1}Z'X = P_ZX$.
 - 2 In the structural equation, replace X with \hat{X} and obtain

$$\hat{\beta}_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'y = (X'P_Z'P_ZX)^{-1}(X'P_Z'y) = (X'P_ZX)^{-1}X'P_Zy = (\hat{X}'X)^{-1}\hat{X}'y$$

which is effectively replacing Z in the previous approach with \widehat{X} .

Consistency and the Limiting Distribution of 2SLS Estimator

• To proceed, we need these assumptions

2SLS Assumptions

- T1 (y_i, x_i, z_i) are IID
- T2 Finite second moments: $E||y_i^2|| < \infty, E||x_i^2|| < \infty, E||z_i^2|| < \infty$
- T3 $E(z_i z_i') > 0$
- T4 $rank[E(z_ix_i')] = k$
- T5 $E(z_i e_i) = 0$
- T6 Finite fourth moments: $E||y_i^4|| < \infty, E||x_i^4|| < \infty, E||z_i^4|| < \infty$
- **T7** $E(z_i z_i' e_i^2) = \Omega > 0$

Consistency and the Limiting Distribution of 2SLS Estimator

Theorem

- Consistency: Under assumptions T1-T5, $\hat{\beta}_{2SLS} \xrightarrow{p} \beta$
- **Limiting Distribution**: Under assumptions **T1-T7**, the limiting distribution of $\hat{\beta}$ is characterized by $\sqrt{n}(\hat{\beta} \beta) \xrightarrow{d} N(0, V_{\beta})$, where

$$V_{\beta} = (Q'_{ZX}Q_{ZZ}^{-1}Q_{ZX})^{-1}Q'_{ZX}Q_{ZZ}^{-1}\Omega Q_{ZZ}^{-1}Q_{ZX}(Q'_{ZX}Q_{ZZ}^{-1}Q_{ZX})^{-1}$$

Proof: On separate pages!

Remarks

• Correct Standard Errors When estimating $\Omega = E(z_i z_i' e_i^2)$, we are not aware of the true error. So we need to estimate this as well. Note that we need to use a proper residual. Namely, we must use

$$\hat{e}_i = y_i - x_i' \hat{\beta}_{2SLS}$$

This is correct, as $\hat{\beta}_{2SLS} \xrightarrow{p} \beta$. However, we frequently make a mistake of using

$$\tilde{e}_i = y_i - \hat{x}_i' \hat{\beta}_{2SLS}$$

Since \hat{x}_i is not exactly x_i , this converges in probability to something else.

Try this on STATA

Remarks

- **Nonlinear Extension**: If we are instead interested in the properties of $g(\hat{\beta}_{2SLS})$, where $g(\cdot)$ is not necessarily nonlinear, we can apply delta method here.
- **Too Many IV**?: In practice, when we have too many IV's (large dimension for z_i), it may be possible for the instruments to 'perfectly' predict x_i . In other words, \hat{x}_i becomes nearly identical to x_i . This can become a problem because the endogeneity bias that plagued original structural equation may not be mitigated.
 - One way of getting around this is to use a regression method that involves penalty mechanism like LASSO, for instance. We will also formally treat this issue when we learn over-identification tests in the near future.