Análise de Algoritmos

Professor: José Carlos Althoff Departamento de Matemática Universidade Regional de Blumenau FURB

O que Você entende por análise de Algoritmos?

A <u>análise de algoritmos</u> estuda a correção e o desempenho de <u>algoritmos</u>.

Em outras palavras, a análise de algoritmos procura respostas para perguntas do seguinte tipo:

- Esse Algoritmo resolve o meu problema?
- Quanto tempo esse algoritmo consome para processar uma entrada de tamanho "n"?

Além disso, a análise de algoritmos estuda certos paradigmas (como divisão e conquista, programação dinâmica, gula, busca local, aproximação, etc.) os quais se mostraram úteis na criação de algoritmos para diversos problemas computacionais.

O que é um Problema?

•Na acepção científica, "problema é qualquer questão não resolvida e que é objeto de discussão, em qualquer domínio do conhecimento" (GIL, 1999, p.49).

•Problema, para Kerlinger (1980, p.35), "é uma questão que mostra uma situação necessitada de discussão, investigação, decisão ou solução".

Exemplo.

Diminuir

Segundo a filosofia, um problema é algo que perturba a paz e a harmonia de aquele(a)s que têm algum.

É importante mencionar que, na grande maioria dos casos, um problema é algo difícil de ser solucionado.

Porém não é impossível, mesmo que isso seja difícil para um ser humano.

Um exemplo Matemático:

Existem cálculos com vários dígitos, que para um ser humano comum, seria praticamente impossível de conseguir resolver, mas mediante á um aparelho, como uma calculadora, pode ser resolvido em questão de segundos.

Já para as ciências matemáticas, um problema é uma questão sobre objetos e estruturas que requer uma explicação e demonstração.

Por outras palavras, um problema matemático consiste na busca de uma determinada entidade matemática que permita satisfazer as condições do problema. Por outro lado, chama-se problema didático ao exercício de raciocínio que se pode resolver com a aplicação da matemática e da lógica.

Desta forma, um problema deste tipo deve contar com três elementos básicos:

- 1 os dados necessários para resolvê-lo;
- 2 o método ou a relação entre os dados;
- 3- o resultado procurado (ao qual se chega depois de seguir certas regras de raciocínio e hipóteses/suposições que surgem dos dados).

Aqui vamos nos ater a problemas que sejam possíveis de serem tratados por algoritmos.

Exemplos:

- 1 A ordenação de um conjunto de entrada;
- 2 Como achar uma melhor rota de entrega de um determinado produto;
- 3 Como proceder o corte de uma placa de metal da melhor maneira, para haver o menor desperdício possível do material, etc.

Problemas e suas instâncias.

Todo problema computacional é uma coleção de casos particulares que chamaremos *instâncias* (= *instances*).

Uma instância é especificada quando atribuímos valores aos parâmetros do problema.

Em outras palavras, uma instância é especificada por um particular conjunto de dados do problema.

Observação

A palavra instância é um neologismo, importado do inglês.

Ela está sendo empregada aqui no sentido de *exemplo*, *exemplar*, *espécime*, *amostra*, *ilustração*.

Veja alguns exemplos:

1) Problema da multiplicação de números naturais: Dados números naturais u e v, encontrar a expansão decimal do produto $u \times v$.

Cada instância do problema é definida por dois números naturais. Por exemplo, os números 3141 e 141421 definem uma instância.

2) Problema da equação inteira do segundo grau: Dados números inteiros a, b e c, encontrar um número inteiro x tal que $ax^2 + bx + c = 0$.

Cada instância do problema é definida pelos valores de a, b e c. Por exemplo, os números 472, -311 e 57281 definem uma instância do problema; essa instância consiste em encontrar um número inteiro x tal que $472x^2 - 311x + 57281 = 0$.

3) Problema da ordenação de vetor inteiro: Rearranjar (ou seja, permutar) os elementos de um vetor A[1..n] de números inteiros de modo que ele fique crescente.

Cada instância do problema é definida por um número natural n e um vetor A[1..n] de inteiros. Por exemplo, o número 5 e o vetor (876, 145, 323, 112, 221) definem uma instância do problema; essa instância consiste em rearranjar o vetor (876, 145, 323, 112, 221) em ordem crescente.

Em geral, nem toda instância de um problema tem solução. Assim, por exemplo, a instância (1, 2, 3) do problema da equação do segundo grau não tem solução, pois não existe um número inteiro x tal que $1x^2 + 2x + 3 = 0$.

A solução de uma instância de um dado problema pode ser um número, um vetor, um valor booleano, etc., dependendo da natureza do problema. Já a solução de um *problema* é sempre um *algoritmo*.

Dizemos que um algoritmo *resolve* um dado problema se, ao receber a descrição de *qualquer instância* do problema, devolve uma solução da instância ou informa que a instância não tem solução.

Essa exigência é deveras pesada, pois obriga o algoritmo a resolver não só as instâncias que aparecem em aplicações práticas como também aquelas instâncias "patológicas" que nem parecem razoáveis.

OBS: Patológicas no sentido de alterações não razoáveis.

Exercícios

- 1. Dê uma solução da instância (1, 2, 1) do problema da equação inteira do segundo grau.
- 2. Dê uma solução da instância (1, ¾, 0) do problema da equação inteira do segundo grau.
- 3. Dê uma solução da instância (4, -2, 8, 6) do problema da ordenação de vetor inteiro.

Então, algoritmos resolvem problemas.

Os algoritmos contribuíram para a solução de problemas, da sociedade, e consequentemente para evolução tecnológica vista nas últimas décadas e são cada vez mais complexos.

 Quando se fala em algoritmo, muitas pessoas pensam rapidamente em computadores, tecnologia e até mesmo códigos difíceis de serem compreendidos. No entanto, o conceito e a aplicação são bem mais simples do que parecem.

Os algoritmos datam de tempos babilônicos, mas tornaram-se mais conhecidos na modernidade, principalmente, quando associados aos computadores e às estratégias de otimização para buscadores.

O que é, e como funciona o algoritmo?

Antes de tudo, vamos compreender o conceito de algoritmo.

O termo pode ser entendido como uma sequência de raciocínios, instruções ou operações para alcançar um objetivo, sendo necessário que os passos sejam finitos e operados sistematicamente.

Ou seja:

Um **algoritmo** é uma sequência de instruções ou comandos realizados de maneira sistemática com o objetivo de resolver um problema ou executar uma tarefa.

Todas as funções dos computadores, smartphones e tablets, por **exemplo**, são resultado de **algoritmos**.

Algoritmo a partir da visão computacional.

Algoritmo é qualquer procedimento computacional bem definido que torna algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores como saída.

Entrada Saída

Resumindo:

Um algoritmo é uma sequência de etapas computacionais que transforma à entrada na saída. É fundamental compreender que o algoritmo se justifica no resultado que ele almeja alcançar, logo, deve ter um objetivo específico.

Uma sequência de instruções simples pode se tornar mais complexa conforme a necessidade de considerar outras situações. Dessa forma, o algoritmo vai crescendo e ficando mais complexo para englobar todos os cenários possíveis.

Quando um programa de computador trava, por exemplo, é porque ele está recebendo informações que não foi programado para processar, ou seja, não foram considerados todos os cenários.

Segundo Edsger Dijkstra (Cientista da computação holandês - Área de algoritmos)

UM ALGORITMO CORRESPONDE A UMA DESCRIÇÃO DE UM PADRÃO DE COMPORTAMENTO, EXPRESSO EM TERMOS DE UM CONJUNTO FINITO DE AÇÕES.

Exercício

- Criar uma algoritmo que resolva o problema abaixo:
 Imagine uma torneira com defeito a qual enche um copo de 180 ml em 12 minutos e 30 segundos.
- 1) Determine a quantidade de água que esta torneira com defeito deixa escapar em 24 horas em litros.
- 2) Este vazamento em relação a uma casa é significativo em 30 dias?
- 3) Apresente sua solução.

Referências

https://www.ime.usp.br/~pf/analise_de_algoritmos/aulas/instance.html

KERLINGER, Fred Nichols. Metodologia da Pesquisa em Ciências Sociais: um tratamento conceitual / Fred N. Kerlinger; [tradução Helena Mendes Rotundo; revisão técnica José Roberto Malufe]. São Paulo: EPU: EDUSP - Editora da Universidade de São Paulo, 1980.