Fonction de deux variables

Table des matières

1. Introduction.	1
1.1. Rappels.	1
1.2. Premières définitions.	1
2. La topologie de la norme de \mathbb{R}^2 . \cdots	1
2.1. Norme euclidienne.	1
2.2. Disques ouverts/fermés et sous-ensembles ouverts/fermés.	3
3. Limites de suites. · · · · · · · · · · · · · · · · · · ·	4
4. Points limites et adhérence d'un sous-ensemble.	4

1. Introduction.

1.1. Rappels.

Définition 1.1.1 (fonction d'une variable): Soit A, B deux ensembles. Une application f est la donnée d'un ensemble de départ A et d'un ensemble d'arrivée B et qui, à chaque $x \in A$ associe un unique $f(x) \in B$. On la note $f: A \to \mathbb{B}; x \mapsto f(x)$.

Définition 1.1.2 (Graphe d'une application): Soit $f:A\to B$ une application. On appelle graphe de f l'ensemble suivant $\operatorname{Graphe}(f)=\{(x,f(x))\mid x\in A\}\subset A\times B$

1.2. Premières définitions.

Définition 1.2.1 (fonction de deux variables): Soit A un sous ensemble de \mathbb{R}^2 et B un ensemble. Une application f de deux variables de A dans B est la donnée d'un ensemble de départ A et d'un ensemble d'arrivée B et qui, à chaque $(x,y) \in A$ associe un unique $f(x,y) \in B$. On la note $f: A \to B; x, y \mapsto f(x,y)$.

Définition 1.2.2 (Graphe d'une application): Soit $f:A\to B$ une application de deux variables. On appelle graphe de f l'ensemble suivant $\operatorname{Graphe}(f)=\{(x,y,f(x,y))\in\mathbb{R}^3\mid x,y\in\mathbb{R}\}$

Exemple: L'aire d'un rectangle : $f: \mathbb{R}^2 \to \mathbb{R}$; $(x,y) \mapsto xy$. Soit a un réel fixé et $x,y \in \mathbb{R}$. l'équation associée est $a=xy \Leftrightarrow y=\frac{a}{x}$. On cherche le rectangle d'aire a de côté x,y.

2. La topologie de la norme de \mathbb{R}^2 .

2.1. Norme euclidienne.

Définition 2.1.1 (Norme Euclidienne): Soit $v = \binom{a}{b} \in \mathbb{R}^2$. La norme Euclidienne est la longueur du vecteur v. Elle est donnée par $||v|| = \sqrt{a^2 + b^2}$.

Proposition 2.1.1: Soit $v \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$. Alors $\|\cdot\|$ vérifie: 1. $\|v\| \ge 0$ et $\|v\| = 0 \Leftrightarrow v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

- 2. $\|\lambda v\| = |\lambda| \|v\|$ (homogénéïté).
- 3. $||v + u|| \le ||v|| + ||u||$ (inégalité triangulaire).

i.e la norme Euclidienne est une norme.

Démonstration:

1. Pour tout $x \in \mathbb{R}^2$, $x^2 \ge 0$ d'où $\forall u \in \mathbb{R}^2$, $||u|| \ge 0$.

2. Soit
$$u = {a \choose b} \in \mathbb{R}^2, \lambda \in \mathbb{R}$$
.
On a $\|\lambda u\| = \|(\lambda a, \lambda b)\| = \sqrt{(\lambda a)^2 + (\lambda b)^2} = \sqrt{\lambda^2 (a^2 + b^2)} = |\lambda| \|u\|$.

3.

Corollaire 2.1.1: Soit $v, u \in \mathbb{R}^2$. On a :

$$\|v-u\| \geq |\|v\| - \|u\||.$$

Démonstration: On a $\forall u, v \in \mathbb{R}^2$,

$$\begin{split} v &= (v-u) + u \\ \|v\| &= \|v-u+u\| \leq \|v-u\| + \|u\| \\ \Leftrightarrow \|v-u\| \geq \|v\| - \|u\| \end{split}$$

De même avec u, on obtient par ailleurs $||v - u|| \ge ||u|| - ||v||$ d'où $||v - u|| \ge |||v|| - ||u|||$.

Définition 2.1.2: Soient $u=(a,b), v=(x,y) \in \mathbb{R}^2$. On définit le produit scalaire par $u \cdot v = ax + by.$

Proposition 2.1.2: Soient $u, v, w \in \mathbb{R}^2, \lambda \in \mathbb{R}$.

- 1. $u \cdot v = v \cdot u$ (symétrie).
- 2. $(w+v) \cdot u = w \cdot u + v \cdot u$ (bilinéarité).
- 3. $(v \cdot u)^2 \le ||u||^2 ||v||^2$ (inégalité de Cauchy-Schwartz).

Démonstration: Soient $u, v \in \mathbb{R}, t \in \mathbb{R}$. $\|v + tu\|^2 = (v + tu) \cdot (v + tu) = v \cdot v + 2t(v \cdot u) + (u \cdot v)$ $u)t^2$.

On pose $f(t) = ||v||^2 + 2(v \cdot u)t + ||u||^2t^2$. On peut supposer que $u \neq 0$ sinon l'égalité est évidente. \square

2.2. Disques ouverts/fermés et sous-ensembles ouverts/fermés.

Définition 2.2.1 (disque): Soient $u \in \mathbb{R}^2$, R > 0. On appelle **disque ouvert** de rayon R centré en u l'ensemble:

$$B(u,r) := \{ v \in \mathbb{R} \mid ||v - u|| < R \}.$$

On appelle **disque fermé** de rayon R centré en u l'ensemble:

$$\overline{B}(u,R)\coloneqq \{v\in\mathbb{R}^2\mid \|v-u\|\leq R\}.$$

Définition 2.2.2 (ouvert): Soit U un sous-ensemble de \mathbb{R}^2 . On dit que U est un **ouvert** de \mathbb{R}^2 si

$$\forall u \in U, \exists r_u > 0, B(u, r_u) \subset U.$$

Remarque: L'ensemble de ces sous-ensembles sont notés O_{norm} .

Proposition 2.2.1:

- 1. Les sous-ensembles \emptyset et \mathbb{R}^2 sont des ouverts.
- 2. Soit $\left\{H_i\right\}_{i\in I}\subset O_{\rm norm}.$ Alors leur réunion est un sous-ensemble ouvert de \mathbb{R}^2 i.e,

$$\forall {\{H_i\}}_{i \in I} \subset O_{\mathrm{norm}}, \bigcup_{i \in I} H_i \in O_{\mathrm{norm}}.$$

3. Soit $\{H_i\}_{i\in\{1,-,n\}}\subset O_{\mathrm{norm}}$ alors leur intersection est un sous-ensemble de \mathbb{R}^2 . i.e,

$$\forall \{H_i\}_{i \in \{1,-,n\}} \subset O_{\mathrm{norm}}, \bigcap_{i \in \{1,-,n\}} H_i \in O_{\mathrm{nom}}.$$

Démonstration:

1.

2. On peut supposer la réunion non-vide. Soit $v \in V = \bigcup_{i \in I} H_i$, alors $\exists i_0, v \in H_{i_0}$. D'où

$$\exists v_{i_0}, B\!\left(v, v_{i_0}\right) \subset H_{i_0} \subset \bigcup_{i \in I} H_i$$

Définition 2.2.3: La collection O_{norm} s'appelle la topologie de \mathbb{R}^2 associée avec la norme euclidienne. (ou la topologie de la norme de \mathbb{R}^2).

Définition 2.2.4: Soit $u \in \mathbb{R}^2$. On appelle **voisinage ouvert** de u tout sous-ensemble U de \mathbb{R}^2 qui contient u.

Définition 2.2.5 (fermé): Soit $F \subset \mathbb{R}^2$. On dit que F est un fermé si le complémentaire de F dans \mathbb{R}^2 est un ouvert de \mathbb{R}^2 , i.e, F est un fermé $\Leftrightarrow F^c \in O_{\text{norm}}$

Remarque: L'ensemble de ces sous-ensembles sont notés F_{norm} .

Proposition 2.2.2:

- 1. Les sous-ensembles \emptyset et \mathbb{R}^2 sont des fermés.
- 2. Soit $\left\{H_i\right\}_{i\in I}\subset F_{\rm norm}.$ Alors leur réunion est un sous-ensemble fermé de \mathbb{R}^2 i.e,

$$\forall {\{H_i\}}_{i \in I} \subset F_{\text{norm}}, \bigcup_{i \in I} H_i \in F_{\text{norm}}.$$

3. Soit $\{H_i\}_{i\in\{1,-,n\}}\subset F_{\mathrm{norm}}$ alors leur intersection est un sous-ensemble de \mathbb{R}^2 . i.e,

$$\forall \big\{H_i\big\}_{i\in\{1,-,n\}} \subset F_{\mathrm{norm}}, \bigcap_{i\in\{1,-,n\}} H_i \in F_{\mathrm{nom}}.$$

3. Limites de suites.

Définition 3.1 (limite): Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de \mathbb{R}^2 . On dit que $(x_n)_{n\in\mathbb{N}}$ admet une **limite** si

$$\exists L \in \mathbb{R}, \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow \|x_n - L\| \leq \varepsilon.$$

Dans ce cas on dit que la suite converge vers L. Sinon, on dit qu'elle diverge.

Proposition 3.1: Soit $x_n=\binom{a_n}{b_n}, n\in\mathbb{N}$ une suite dans \mathbb{R}^2 . Alors $L=\binom{a}{b}$ est la limite de x_n si et seulement si on a

$$\lim_{n\to +\infty} a_n = a \text{ et} \lim_{n\to +\infty} b_n = b.$$

4. Points limites et adhérence d'un sous-ensemble.

Définition 4.1 (point isolé): Soit $A \subset \mathbb{R}^2$ un ensemble, $a \in A$. On dit que a est un point isolé s'il existe un voisinage ouvert V_a dans \mathbb{R}^2 tel que $V_a \cap A = \{a\}$.

Définition 4.2 (point intérieur): Soit $A \subset \mathbb{R}^2$ un ensemble, $a \in A$. On dit que a est un point intérieur s'il existe un voisinage ouvert de V_a dans \mathbb{R}^2 tel que $V_a \subset A$.

Le sous-ensemble des points intérieurs de A est noté $\operatorname{int}(A)$ et on l'appelle l'intérieur de A.

Proposition 4.1: Soit $A \subset \mathbb{R}^2$ un ensemble. Alors son intérieur est le plus grand sous-ensemble ouvert contenu dans A.

Remarque: L'intérieur d'un ensemble A est une approximation de A par un sous-ensemble ouvert.

Définition 4.3 (point limite): Soit $A \subset \mathbb{R}^2$ un ensemble, $x \in \mathbb{R}^2$. On dit que x est un point limite de A s'il existe une suite inifie $\{a_n\}_n \in \mathbb{N}$ de points deux-à-deux distincts dans A telle que $a_n \xrightarrow[n \to +\infty]{} x$.

Définition 4.4 (Adhérence): L'ensemble des points limites s'appelle l'adhérence de A et on la designe par \overline{A}

Proposition 4.2: Soit $A \subset \mathbb{R}^2$ un ensemble. Alors son adhérence est le plus petit sous-ensemble fermé qui contient A.

Remarque: Tout ouvert $A \subset \mathbb{R}^2$ est encadré de la manière suivante: $\mathrm{Int}(A) \subset A \subset \mathsf{overline}\ A$.