CLARK & BRODY Alexandria, VA 22314

DELIVER TO EXAMINER

Telephone: (202) 835-1753 Facsimile: (703) 504-9415

FACSIMILE TRANSMITTAL SHEET

PLEASE DELIVER TO:

EXAMINER MICHAEL J. BOOTH PATENT APPLICATION NO. 10/576,326 FACSIMILE NUMBER: 571-270-8027

COMMENTS:

Dear Examiner Booth:

Further to my telephone message of April 9, 2010, I am attaching my claim amendment proposal to overcome the indefiniteness issues as well as better highlight the inventive features of the claim. Can you please take a look at the proposal and let me know your availability for an interview? We can talk about it over the phone or I can stop by since I am within walking distance of the Office.

Thanks very much in advance for your cooperation. I look forward to hearing from you.

SENDER:

Christopher W. Brody 202-835-1753

DATE:

April 9, 2010

CLIENT NO

12007-0070

NUMBER OF PAGES: (INCLUDING COVER PAGE) ____7_

If all pages are not received, please contact Melissa Garton at (202) 835-1111.

This message is intended solely to be used by the individual or entity to which it is addressed. It may contain information which is privileged, confidential and otherwise exempt by law from disclosure. If the reader of this message is not the intended recipient, or an employee or agent responsible for delivering this message to its intended recipient, you are herewith notified that any dissemination, distribution or copying of this communication is strictly probibited. If you have received this communication in error, please notify us by telephone immediately and return this communication to us at the above address via the United States Postal Service. Thank you.

IN THE CLAIMS:

Please amend claims as follows.

- (currently amended) Lens device for the treatment of visual impairments and designed as a segment of a Fresnel lens and wherein a focal point is generated by one or several convex parts of the lens device comprising:
 - an anterior side of the lens and a posterior side of the lens,
 - a fixation element for fixing in the eye, this device features
- a plurality of wedge-shaped recesses on the posterior side of the lens, and a superposition of spherical and non-spherical segments of one or more several Fresnel lenses on the anterior side of the lens opposite the posterior side,

wherein the plurality of wedge-shaped recesses include inclined areas, which redirect the focal point through the wedge-shaped recesses, the inclined areas are plane areas that are oriented in a parallel direction to each other, the inclined areas and their parallel orientation extending along the entire posterior side of the lens device at least one convex lens element and several wedge shaped recesses, wherein the lens device is designed as a segment of a Fresnel lens and wherein the focal point is generated by one or several convex parts of the lens device, wherein

- a) the focal point is redirected through the wedge shaped recess,
- b) the wedge shaped recesses are characterized by inclined areas, which cause the redirection of the focal point,
- c) the inclined areas are plane areas-aligned in parallel to each other along the whole area of the lens device, and

Application No.: 10/576,326

d) the lens device features on one side several wedge shaped recesses and on the other side a superposition of spherical and non spherical segments of one or more several Fresnel lenses.

canceled

- (currently amended) Lens device according to claim 1, wherein the wedge-shaped 3. recesses can be inclined at feature different angles.
- (currently amended) Lens device according to claim 1, wherein the <u>posterior</u> rear side features a coating or protective layer to fill the recesses preventing the reflection of light on the edges of the lens device after passage through the lens device.
- (currently amended) Lens device according to claim 4, wherein the coating features a refraction index equal to a chamber fluid of the eye of the patient.
- 6. (currently amended) Lens device according to claim 1, wherein the lens device features an anterior chamber and a posterior chamber which are separated by a likewise transparent wall, whereby the anterior chamber is configured to face away from which is not facing the retina and features at least one convex elastic

element, so that by alignment of the curve of this element the focal width of this element is produced to be variable.

- 7. (currently amended) Lens device according to claim 6, wherein the lens device in the posterior chamber which is configured to face [[faces]] the retina features a transparent, elastic coating, and the posterior chamber features a supporting element for the recesses, which is designed to be mounted rotatably against the rest of the posterior chamber, so that the inclination of the recesses is adjustable to the recesses of the suitable surface.
- (previously presented) Lens device according to claim 7, wherein the 8. supporting element is attached to an elastic element which is pre-stressed against rotation.
- (currently amended) Lens device according to claim [[6]] Z, wherein each chamber is connected to a supply and removal canal which, respectively, is assigned at least one pump or volume modification means either directly or indirectly via one or more valves, so that either the elastic, convex element of the anterior chamber and/or the elastic coating undergoes a change of form when the pump or volume modification means is activated, and the supporting element for the recesses undergoes rotation due to the coating changing its form.

- 10. (currently amended) Lens device according to claim 9, wherein, in the posterior chamber which faces the retina, a mobile, transparent and inclined surface, respectively, is assigned to the wedge-shaped recesses which are adapted designed to be mounted rotatably due to rotation elements, whereby an elastic element is assigned to each of these rotatable, inclined surfaces and, the inclined surfaces undergo a rotation when the pump or volume modification means assigned to the anterior chamber is activated, so that the focal point is designed to be redirected on the retina.
- 11. (currently amended) Lens device according to claim 1, wherein each chamber is designed adapted to be filled with a transparent, preferably fluid, medium, whose refraction index is designed adapted to be adjusted to that of the chamber fluid and/or the transparent, elastic coating and/or the wall.
- 12. (previously presented) Lens device according to claim 9, wherein implanted batteries or receivers are provided as means of providing energy for the volume modification means or means of pumping, and/or converters for the energy input from outside of the body of the patient.
- 13. (currently amended) Lens device according to claim 1, wherein at sites without wedge-shaped recesses or convex lens parts or segments of a Fresnel lens, but also in combination with these, further optic means for the correction of the near

field, are provided, whereby these [[-]] due to the reduction of the thickness of the lens device can also be provided in the path of rays before or behind the lens device according to the present invention.

- 14. (previously presented) Lens device according to claim 1, wherein the lens device features at least one UV-protective film for the protection of the retina from UV rays.
- 15. canceled
- 16. canceled
- 17. canceled
- 18. (currently amended) Lens device according to claim 9, whereby the pump or volume modification means feature a characteristic curve, which allows conclusions to be drawn on the counterpressure on the recorded performance of the pump or volume changes, against which the pump or volume modification means work, so that a determination of the pressure in the interior of the eye of the patient is possible via the measurement of the recorded performance.

ADDIICATION NO.: 10/5/6,326

- 19. (currently amended) Lens device according to claim 10, wherein each chamber is adapted designed to be filled with a transparent medium, whose refraction index is adapted designed to be adjusted to that of the chamber fluid and/or the transparent, elastic coating and/or the wall.
- 20. (previously presented) Lens device according to claim 13, wherein the optic means is a lens.
- 21. (previously presented) Lens device according to claim 12, wherein the energy input from the outside of the body of the patient is by electromagnetic and/or magnetic fields.
- 22. (currently amended) Lens device according to claim 1, wherein a material of the fixation element features a refraction index equal to a chamber fluid of the eye of the patient.