Algorithms and Data Structures Examples

Edgar Pek

10.10.2008.

Definition (Polynomial)

Polynomial is an expression constructed from one or more variables and constants, using only the operations of addition, subtraction, multiplication, and constant positive whole number exponents.

Example

$$P(x) = x^3 + 3 \cdot x - 16$$

Definition (Univariate polynomial)

$$P(x) = \sum_{k=0}^{n} a_k x^k = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Naive polynomial evaluation algorithm

$$P(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$$

Evaluate
$$P(x) = 2x^3 - 3x^2 + 5x - 7$$
 for $x = 3$.

Evaluate
$$P(x) = 2x^3 - 3x^2 + 5x - 7$$
 for $x = 3$.
$$P(x) = 2 \cdot 3^3 - 3 \cdot 3^2 + 5 \cdot 3 - 7$$
$$= 3^3 + 8$$
$$= 35$$

$$P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

1 Pseudo-code

$$P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Pseudo-code
NAIVE-POLY-EVAL(A, x)

$$P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Pseudo-code

Naive-Poly-Eval(A, x)

1
$$y \leftarrow 0$$

$$P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Pseudo-code

Naive-Poly-Eval(A, x)

- 1 $y \leftarrow 0$
- 2 for $k \leftarrow 1$ to length(A)

$$P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Pseudo-code

NAIVE-POLY-EVAL(A, x)

- 1 $y \leftarrow 0$
- 2 for $k \leftarrow 1$ to length(A)
- 3 do $p \leftarrow 1$

$$P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Pseudo-code

```
NAIVE-POLY-EVAL(A, x)

1  y \leftarrow 0

2  for k \leftarrow 1 to length(A)

3  do p \leftarrow 1

4  for j \leftarrow 1 to k

5  do p \leftarrow p \cdot x

6  y \leftarrow y + a_k \cdot p
```

2 Asymptotic running time

$$P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Pseudo-code

```
NAIVE-POLY-EVAL(A, x)

1  y \leftarrow 0

2  \mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ length(A)

3  \mathbf{do} \ p \leftarrow 1

4  \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ k

5  \mathbf{do} \ p \leftarrow p \cdot x

6  \mathbf{v} \leftarrow \mathbf{v} + \mathbf{a_k} \cdot p
```

2 Asymptotic running time $T(n) = \Theta(n^2)$

Implementation and performance evaluation

- Java
- Python

Horner's Rule Ancient Chinese Wisdom

- William George Horner 1819
- Isaac Newton 1669
- ...
- The Nine Chapters of the Mathematical Art
 - Han Dynasty (202 BC 220 AD)

$$P(x) = a_0 + x(a_1 + x(a_2 + ... + x(a_{n-1} + xa_n)...)$$

We evaluate polynomial at a specific value of x, e.g. x_0 as follows:

$$y_0 = a_n$$

 $y_1 = a_{n-1} + y_0 x_0$
 $y_2 = a_{n-2} + y_1 x_0$
 \vdots
 $y_n = a_0 + y_{n-1} x_0$

At the end, y_n is the value of $P(x_0)$.

Horner's rule

Evaluate
$$P(x) = 2x^3 - 3x^2 + 5x - 7$$
 for $x = 3$.

Horner's rule

Evaluate
$$P(x) = 2x^3 - 3x^2 + 5x - 7$$
 for $x = 3$.

$$P(x) = -7 + x(5 + x(-3 + 2x))$$

Evaluate
$$P(x) = 2x^3 - 3x^2 + 5x - 7$$
 for $x = 3$.

$$P(x) = -7 + x(5 + x(-3 + 2x))$$

$$P(3) = -7 + x(5 + 3x)$$

$$= -7 + 14x$$

$$= 35$$

Horner's rule Algorithm

1 Pseudo-code

1 Pseudo-code

HORNER-POLY-EVAL(A)

1
$$y \leftarrow 0$$

2 $k \leftarrow n$
3 **while** $k \ge 0$
4 **do** $y \leftarrow a_k + x \cdot y$
5 $k \leftarrow k - 1$

2 Asymptotic running time

1 Pseudo-code

HORNER-POLY-EVAL(A)

1
$$y \leftarrow 0$$

2 $k \leftarrow n$
3 **while** $k \ge 0$
4 **do** $y \leftarrow a_k + x \cdot y$
5 $k \leftarrow k - 1$

2 Asymptotic running time $T(n) = \Theta(n)$

Horner's rule

Implementation and performance evaluation

- Java
- Python