Listing of Claims

1. (Previously presented) A compound of formula (I)

or a pharmaceutically acceptable salt, solvate or derivative thereof, wherein:

R⁰ is absent or C₁-C₆ alkylene;

 R^1 is phenyl substituted by $-SO_yR^5, \ (C_1-C_6 \ alkylene)-SO_yR^5, \ -SO_yCF_3, \ -(C_1-C_6 \ alkylene)-SO_yCF_3, \ -CO_2R^5, \ -(C_0-C_6 \ alkylene)-CO_2R^5, \ OCF_3, \ a \ five \ or \ six-membered \ aromatic \ heterocyclic \ group \ containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen \ or 1 sulphur heteroatom (said heterocyclic group being optionally substituted by halo, oxo, -CN, -COR^5, -CO_2R^5, -CONR^5R^5, -SO_yR^5, -SO_yCF_3, -SO_2NR^5R^5, -NR^5SO_2R^5, -OR^5, -OCF_3, -NR^5R^5, -(C_1-C_6 \ alkylene)-NR^5R^5, C_1-C_6 \ alkyl, fluoro(C_1-C_6)alkyl or C_3-C_7 \ cycloalkylor); or, when <math display="inline">R^0$ is C_1-C_6 alkylene, R^1 may also be a five or six-membered aromatic heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally substituted by halo, oxo, -CN, -COR^5, -CONR^5R^5, -SO_2NR^5R^5, -NR^5SO_2R^5, -OR^5, -OR^5, -OR^{11}, -NR^5R^5, -(C_1-C_6 \ alkylene)-NR^5R^5, R^7 \ or \ R^{11}; \ said \ phenyl \ being \ optionally \ additionally \ substituted \ by halo, -CN, -COR^5, -CONR^5R^5, -NR^5SO_2R^5, -NR^5R^5, -(C_1-C_6 \ alkylene)-NR^5R^5, C_1-C_6 \ alkyl, \ halo(C_1-C_6)alkyl \ or C_3-C_7 \ cycloalkyl;

 R^2 is H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkenyl, phenyl, benzyl, R^8 or R^9 , said C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, $-OR^5$, $-OR^{10}$, -CN, $-CO_2R^7$, $-OCONR^5R^5$, $-CONR^5R^5$, $-C(=NR^5)NR^5OR^5$, $-CONR^5NR^5R^5$, $-NR^6R^6$, $-NR^5R^{10}$, $-NR^5COR^5$, $-NR^5COR^8$, $-NR^5COR^{10}$, $-NR^5CO_2R^5$, $-NR^5CONR^5R^5$, $-SO_2NR^5R^5$, $-NR^5SO_2R^5$, $-NR^5SO_2NR^5R^5$, $-R^8$ or $-R^9$;

 R^3 is H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl, benzyl, halo, -CN, -OR 7 , -CO $_2$ R 5 , -CONR 5 R 5 , R 8 or R^9 , said C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR 5 , -CO $_2$ R 5 , -CONR 5 R 5 , -OCONR 5 R 5 , -NR 5 CO $_2$ R 5 , -NR 5 COR 5 , -SO $_2$ NR 5 R 5 , -NR 5 COR 5 , -SO $_2$ R 5 , R 8 or R 9 ;

 R^4 is phenyl, naphthyl or pyridyl, each being optionally substituted by R^8 , halo, -CN, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_7 cycloalkyl, C_1 - C_6 alkoxy, -CONR $^5R^5$, OR 11 , SO_xR 6 , O-(C₁-C₆ alkylene)-CONR $^5R^5$, O-(C₁-C₆ alkylene)-NR $^5R^5$, or O-(C₁-C₆ alkylene)-OR 6 ;

each R^5 is independently either H, C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl or, when two R^5 groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached represent azetidinyl, pyrrolidinyl, piperidinyl, homopiperazinyl, homopiperazinyl or morpholinyl, said azetidinyl, pyrrolidinyl, piperidinyl, homopiperazinyl and morpholinyl being optionally substituted by C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl;

each R⁶ is independently either H, C₁-C₆ alkyl or C₃-C₇ cycloalkyl;

R⁷ is C₁-C₆ alkyl or C₃-C₇ cycloalkyl;

 R^8 is a five or six-membered, aromatic heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally substituted by halo, oxo, -CN, -COR 5 , -CONR 5 R 5 , -SO $_2$ NR 5 R 5 , -NR 5 SO $_2$ R 5 , -OR 5 , -NR 5 R 5 , -(C $_1$ -C $_6$ alkylene)-NR 5 R 5 , C $_1$ -C $_6$ alkyl, fluoro(C $_1$ -C $_6$)alkyl or C $_3$ -C $_7$ cycloalkyl;

 R^9 is a four to seven-membered, saturated or partially unsaturated heterocyclic group containing (i) 1 or 2 nitrogen heteroatom(s) or (ii) 1 nitrogen heteroatom and 1 oxygen or 1 sulphur heteroatom or (iii) 1 oxygen or sulphur heteroatom, said heterocyclic group being optionally substituted by oxo, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, $-SO_2R^5$, $-CONR^5R^5$, $-COOR^5$, $-CO-(C_1$ - C_6 alkylene)- OR^5 or $-COR^5$ and optionally substituted on a carbon atom which is not adjacent to a heteroatom by halo, $-OR^5$, $-NR^5R^5$, $-NR^5COR^5$, $-NR^5COR^5$, $-NR^5COR^5$, $-NR^5SO_2R^5$ or -CN;

 $R^{10} \text{ is } C_1\text{--}C_6 \text{ alkyl substituted by } R^8, \, R^9, \, -OR^5, \, -CONR^5R^5, \, -NR^5COR^5 \text{ or } -NR^5R^5;$

 R^{11} is phenyl optionally substituted by halo, -CN, -COR⁵, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁵, -OR⁵, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆ alkyl, halo(C₁-C₆)alkyl or C₃-C₇ cycloalkyl; and

x and y are independently 0, 1 or 2.

- 2. (Previously presented) A pharmaceutical composition comprising a compound according to claim 1 together with one or more pharmaceutically acceptable excipients, diluents or carriers.
- 3. (Previously presented) A pharmaceutical composition according to claim 2 comprising one or more additional therapeutic agents.

4-13. (Cancelled)

- 14. (Currently amended) A method of treating an HIV or a genetically-related retroviral infection, or a resulting acquired immune deficiency syndrome (AIDS), comprising administering an effective amount of a compound of formula (I) according to claim 1, or a pharmaceutically acceptable salt[[,]] or solvate or derivative thereof, or a pharmaceutical composition according to claim 2.
- 15. (Currently amended) A method of treating an HIV or a genetically-related retroviral infection, or a resulting acquired immune deficiency syndrome (AIDS), comprising administering an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt, solvate or derivative thereof, or a pharmaceutical composition according to claim 3.
- 16. (Currently amended) A process for preparing the compound of formula (I)

or a <u>pharmaceutically acceptable</u> salt[[,]] <u>or</u> solvate or pharmaceutically acceptable derivative thereof, which comprises:

(A) reaction of a compound of formula (V)

$$R^3$$
 N
 R^0
 Lg^2
 N
 R^2
 (V)

with an alcohol of formula (IV),

R¹-OH (IV),

under conventional conditions; or

(B) reaction of an alcohol of formula (III)

with a compound of formula (II),

Lg-R¹ (II),

under conventional conditions; or

- (C) reaction of a compound of formula (III) with an alcohol of formula (IV) under dehydrating conditions; <u>or</u>
- (D) for the preparation of a compound of formula (I)

in which R3 is halo, halogenating a compound of formula (X)

$$R^4$$
 R^0
 R^1
 R^2
 R^2

under conventional conditions[[;]],

- (E) interconversion of a compound of formula (I) into another compound of formula (I); or
- (F) deprotecting a protected derivative of compound of formula (I); and

optionally converting a compound of formula (I) prepared by any one of processes (A) to (F) into pharmaceutically acceptable salt, solvate or derivative thereof.

wherein:

each R⁰ is absent or C₁-C₆ alkylene;

each R^1 is phenyl substituted by $-SO_yR^5$, $(C_1-C_6$ alkylene)- SO_yR^5 , $-SO_yCF_3$, $-(C_1-C_6$ alkylene)- SO_yCF_3 , $-CO_2R^5$, $-(C_0-C_6$ alkylene)- CO_2R^5 , OCF_3 , a five or six-membered aromatic heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom (said heterocyclic group being optionally substituted by halo, oxo, -CN, $-COR^5$, $-CO_2R^5$, $-CONR^5R^5$, $-SO_yR^5$, $-SO_yCF_3$, $-SO_2NR^5R^5$, $-NR^5SO_2R^5$, $-OR^5$, $-OCF_3$, $-NR^5R^5$, $-(C_1-C_6$ alkylene)- NR^5R^5 , C_1-C_6 alkyl, fluoro(C_1-C_6)alkyl or C_3-C_7 cycloalkylor); or, when R^0 is R^0 is R^0 may also be a five or six-membered aromatic heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally substituted by halo, oxo, -CN, $-COR^5$, $-CONR^5R^5$, $-SO_2NR^5R^5$, $-NR^5SO_2R^5$, $-OR^5$, $-OR^5$, $-OR^{11}$, $-NR^5R^5$, $-(C_1-C_6$ alkylene)- $-NR^5R^5$, $-SO_2NR^5R^5$, $-NR^5SO_2R^5$, $-OR^5$

each R^2 is H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkyl, phenyl, benzyl, R^8 or R^9 , said C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, $-OR^5$, $-OR^{10}$, -CN, $-CO_2R^7$, $-OCONR^5R^5$, $-CONR^5R^5$, $-C(=NR^5)NR^5OR^5$, $-CONR^5NR^5R^5$, $-NR^6R^6$, $-NR^5R^{10}$, $-NR^5COR^5$, $-NR^5COR^6$,

each R^3 is H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl, benzyl, halo, -CN, -OR 7 , -CO $_2$ R 5 , -CONR 5 R 5 , R^8 or R^9 , said C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, phenyl and benzyl being optionally substituted by halo, -CN, -OR 5 , -CO $_2$ R 5 , -CONR 5 R 5 , -OCONR 5 R 5 , -NR 5 CO $_2$ R 5 , -NR 5 COR 5 , -SO $_2$ NR 5 R 5 , -NR 5 COR 5 , -NR 5 SO $_2$ R 5 , R 8 or R 9 ;

each R^4 is phenyl, naphthyl or pyridyl, each being optionally substituted by R^8 , halo, -CN, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_7 cycloalkyl, C_1 - C_6 alkoxy, -CONR 5 R 5 , OR 11 , SO_xR 6 , O-(C_1 - C_6 alkylene)-CONR 5 R 5 , O-(C_1 - C_6 alkylene)-NR 5 R 5 , or O-(C_1 - C_6 alkylene)-OR 6 ;

each R^5 is independently either H, C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl or, when two R^5 groups are attached to the same nitrogen atom, those two groups taken together with the nitrogen atom to which they are attached represent azetidinyl, pyrrolidinyl, piperidinyl, homopiperazinyl, homopiperazinyl or morpholinyl, said azetidinyl, pyrrolidinyl, piperidinyl, homopiperazinyl and morpholinyl being optionally substituted by C_1 - C_6 alkyl or C_3 - C_7 cycloalkyl;

each R⁶ is independently either H, C₁-C₆ alkyl or C₃-C₇ cycloalkyl;

each R⁷ is C₁-C₆ alkyl or C₃-C₇ cycloalkyl;

each R^8 is a five or six-membered, aromatic heterocyclic group containing (i) from 1 to 4 nitrogen heteroatom(s) or (ii) 1 or 2 nitrogen heteroatom(s) and 1 oxygen or 1 sulphur heteroatom or (iii) 1 or 2 oxygen or sulphur heteroatom(s), said heterocyclic group being optionally substituted by halo, oxo, -CN, -COR 5 , -CONR 5 R 5 , -SO $_2$ NR 5 R 5 , -NR 5 SO $_2$ R 5 , -OR 5 , -NR 5 R 5 , -(C $_1$ -C $_6$ alkylene)-NR 5 R 5 , C $_1$ -C $_6$ alkyl, fluoro(C $_1$ -C $_6$)alkyl or C $_3$ -C $_7$ cycloalkyl;

each R⁹ is a four to seven-membered, saturated or partially unsaturated heterocyclic group containing (i) 1 or 2 nitrogen heteroatom(s) or (ii) 1 nitrogen heteroatom and 1 oxygen or 1 sulphur heteroatom or (iii) 1 oxygen or sulphur heteroatom, said heterocyclic group being optionally

substituted by oxo, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, $-SO_2R^5$, $-CONR^5R^5$, $-COOR^5$, $-CO-(C_1-C_6)$ alkylene)- OR^5 or $-COR^5$ and optionally substituted on a carbon atom which is not adjacent to a heteroatom by halo, $-OR^5$, $-NR^5R^5$, $-NR^5COR^5$, $-NR^5COR^5$, $-NR^5COR^5$, $-NR^5SO_2R^5$ or -CN;

each R¹⁰ is C₁-C₆ alkyl substituted by R⁸, R⁹, -OR⁵, -CONR⁵R⁵, -NR⁵COR⁵ or -NR⁵R⁵;

each R^{11} is phenyl optionally substituted by halo, -CN, -COR⁵, -CONR⁵R⁵, -SO₂NR⁵R⁵, -NR⁵SO₂R⁵, -OR⁵, -NR⁵R⁵, -(C₁-C₆ alkylene)-NR⁵R⁵, C₁-C₆ alkyl, halo(C₁-C₆)alkyl or C₃-C₇ cycloalkyl;

x and y are independently 0, 1 or 2;

Lg is sulphonyl chloride; and

Lg² is a sulphonic ester group.

17. (Cancelled)