# Deep Learning (CS 470, CS 570)

Module 2, Lecture 1: Regression

#### Machine Learning Sub-branches

- ☐ Supervised Learning
  - Classification : PLA
  - Regression
- ☐ Unsupervised Learning
  - Clustering : k-mean
  - Dimensionality reduction
- ☐ Semi-supervised Learning
- ☐ Reinforcement Learning
- ☐ Deep Learning: different ML approach
  - Supervised
  - Unsupervised
  - Semi-supervised

#### **Linear Regression**

**Problem:** Given customer income vs. credit card spending data for N customers, a credit card company wants to predict credit limits for the future customers.

**Table:** Customer income vs. spending

| Customer ID | X (income) | Y (spending) |
|-------------|------------|--------------|
| 1           | 90,000     | 40,000       |
| 2           | 1,50,000   | 72,000       |
|             |            |              |
| N           | 67,000     | 33,000       |

#### How?

- Learn if there is any relation between input and output variables.
- Use it for prediction in future.

Some ML problems require to predict a value of a continuous variable in the output. A continuous variable can take any fraction value such as time. These set of problems are called regression. Above is an example of a regression problem.

### Machine Algorithm Steps

**Collect data:**  $(x^1, y^1), (x^2, y^2), \dots, (x^N, y^N)$ 

> Select model: Defining Hypothesis set,

Get to know number of parameters of the function and structure of the function

➤ Model training: Learning the function parameters. Optimization

Learning function  $g: x \to y$ ,  $g \in H$  , where g is an approximation of f

Model validation: Testing accuracy of the model on the test data

#### **Linear Regression**



Given data:  $(x^1,y^1), (x^2,y^2), ..., (x^N,y^N)$ 

Predict: y from the value of x

Learn: h(.) such that  $y \leftarrow h(x)$ 

Borrowing the equation of a line from PLA classifier:

$$h(\mathbf{x}) = w_0 + w_1 x_1$$

In high dimension:  $h(x) = \sum_{i=0}^{d} w_i x_i$ 

In matrix form:  $h(x) = w^T x$ 

 $oldsymbol{x}$  is the independent, and y is the dependent variable

We are trying to fit a straight line to predict the value of y

How to get the best fit of the strait line on the given data set?

#### **Optimization!**

#### Linear Regression: High Dimension



For 2 dimensional input the equation becomes:

$$h(x) = w_0 + w_1 x_1 + w_2 x_2$$

In two dimensional case where each input point is defined by two variables  $\{x_1, x_2\}$ , the regression function h() becomes a plane in a 3D space where the three axis of the 3D space are  $x_1, x_2$ , and y. In the generic d dimensional case h() is a d-1 dimensional hyper-plane.

#### Linear Regression: Non Linear Cases



Transform the data to non linear space:

$$h(x) = w_0 + w_1 x + w_2 x^2$$

In some situations linear  $h(\cdot)$  is not a good approximation of the data point distribution such as the case shown in this slide. In this example a better way approximate the green points is the blue curve which cannot be represented by a linear equation. In these cases, we need a nonlinear equation where there is at least one higher order term (square, cube etc.) for at least one of the input variables. The above equation is an example of a nonlinear equation.

#### Linear Regression: Non Linear Cases



Transform the data points to a nonlinear space:

$$h(x) = w_0 + w_1 x + w_2 x^2$$

Linear regression in a nonlinear space

Non linear equation can be handled by projecting the data point in a space define by the nonlinear variables and solving a linear regression problem in that space. The next slides discuss a technique to solve linear regression problem.

#### Linear Regression: Optimization



Prediction error for  $i_{th}$  point:  $|y_i - h(x_i)|$ 

Prediction error for **N** points:  $\sum_{i=1}^{N} |y_i - h(x_i)|$ 

Sum Square Error (SSE):  $\frac{1}{N} \sum_{i=1}^{N} (y_i - h(x_i))^2$ 

Root Mean Square Error(RMSE):  $\sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i - h(x_i))^2}$ 

**Optimization:** minimize SSE or RMSE

#### Linear Regression: Optimization

SSE: 
$$E = \frac{1}{N} \sum_{i=1}^{N} (h(x_i) - y_i)^2$$

$$E = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_i - y_i)^2 \qquad \text{, as} \qquad h(x) = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

$$\mathbf{X} = \begin{bmatrix} \leftarrow & x_0 & \rightarrow \\ \leftarrow & x_1 & \rightarrow \\ \vdots & & \\ \leftarrow & x_N & \rightarrow \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$\mathbf{Matrix form:} \qquad E = \frac{1}{N} \|(\mathbf{X}\mathbf{w} - \mathbf{y})\|^2$$

This slide derives SSE for N points in the matrix form.

#### Linear Regression: Optimization

Matrix form: 
$$E = \frac{1}{N} ||(\mathbf{X}\mathbf{w} - \mathbf{y})||^2$$

Derivative w.r.t. W and equating to zero:

$$\Delta E = \frac{2}{N} \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$

$$\Rightarrow \mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

$$\Rightarrow w = (X^T X)^{-1} X^T y$$
Pseudo inverse

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X} = 1$$

We know that when the derivative of a function equates to zero, it can represent the function minima. Therefore, we computed the derivative of the error function and solved for  $\boldsymbol{w}$  when the derivative is zero. This gives us the  $h(\cdot)$  that best approximates (lowest error) the training data points. Remember, we need to compute matrix derivation here. We learned this in the first section of the course.

## **Additional Reading**

**Linear Regression**