Il linguaggio $L = \{1^{3n+2} : n \geq 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, riempi lo schema di soluzione qui sotto
- se pensi che il linguaggio **non sia regolare**, gira il foglio

Sì, il linguaggio è regolare perché è riconosciuto dall'automa a stati finiti

Sì, il linguaggio è regolare perché è generato dall'espressione regolare

Il linguaggio $L = \{0^n 1^m 0^n : m+n > 0\}$ è regolare?

- \bullet se pensi che il linguaggio sia ${\bf regolare},$ riempi lo schema di soluzione qui sotto
- se pensi che il linguaggio **non sia regolare**, gira il foglio

Sì, il linguaggio è regolare perché è riconosciuto dall'automa a stati finiti

Sì, il linguaggio è regolare perché è generato dall'espressione regolare

Il linguaggio $L = \{0^n 1^m 0^n : m + n > 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, gira il foglio
- se pensi che il linguaggio **non sia regolare**, riempi lo schema di soluzione qui sotto

Suppongo per assurdo che L sia un linguaggio regolare.

- \bullet Sia h la lunghezza data dal Pumping Lemma.
- Considero la parola w= che appartiene al linguaggio L ed è di lunghezza |w|= $\geq h$.
- Sia w=xyz una qualsiasi suddivisione di w tale che $y\neq \varepsilon$ e $|xy|\leq h.$
- Considero l'esponente $k = \underline{\hspace{1cm}}$. Dimostro che la parola xy^kz non appartiene a L:

Il linguaggio $L = \{1^{3n+2} : n \ge 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, gira il foglio
- se pensi che il linguaggio **non sia regolare**, riempi lo schema di soluzione qui sotto

Suppongo per assurdo che L sia un linguaggio regolare.

- \bullet Sia h la lunghezza data dal Pumping Lemma.
- Considero la parola w= che appartiene al linguaggio L ed è di lunghezza |w|= $\geq h$.
- Sia w=xyz una qualsiasi suddivisione di w tale che $y\neq \varepsilon$ e $|xy|\leq h.$
- Considero l'esponente k =_____. Dimostro che la parola xy^kz non appartiene a L:

Il linguaggio $L = \{1^{3n+2} : n \geq 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, riempi lo schema di soluzione qui sotto
- se pensi che il linguaggio **non sia regolare**, gira il foglio

Sì, il linguaggio è regolare perché è riconosciuto dall'automa a stati finiti

Sì, il linguaggio è regolare perché è generato dall'espressione regolare

Il linguaggio $L = \{w \in \{a,b\}^* : numero di a è due volte il numero di b\} è regolare?$

- \bullet se pensi che il linguaggio sia ${\bf regolare},$ riempi lo schema di soluzione qui sotto
- se pensi che il linguaggio non sia regolare, gira il foglio

Sì, il linguaggio è regolare perché è riconosciuto dall'automa a stati finiti

Il linguaggio $L = \{w \in \{a,b\}^* : numero di a è due volte il numero di b\} è regolare?$

- se pensi che il linguaggio sia regolare, gira il foglio
- se pensi che il linguaggio **non sia regolare**, riempi lo schema di soluzione qui sotto

Suppongo per assurdo che L sia un linguaggio regolare.

- Sia h la lunghezza data dal Pumping Lemma.
- Considero la parola w= _____ che appartiene al linguaggio L ed è di lunghezza |w|= $\geq h.$
- Sia w = xyz una qualsiasi suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq h$.
- Considero l'esponente k =_____. Dimostro che la parola xy^kz non appartiene a L:

Il linguaggio $L = \{0^n 1^m 0^p : m + n + p > 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, gira il foglio
- se pensi che il linguaggio **non sia regolare**, riempi lo schema di soluzione qui sotto

Suppongo per assurdo che L sia un linguaggio regolare.

- \bullet Sia h la lunghezza data dal Pumping Lemma.
- Sia w=xyz una qualsiasi suddivisione di w tale che $y\neq \varepsilon$ e $|xy|\leq h.$
- Considero l'esponente k =_____. Dimostro che la parola xy^kz non appartiene a L: