Chapter 7: Dummy variable regression

۷V	hy include a qualitative independent variable?	. 2
Si	mplest model	3
	Simplest case	. 4
	Example (continued)	. 5
	Possible solution: separate regressions	
	Independent variable vs. regressor	. 7
	Common slope model	
	Testing	. 9
M	ore general models	10
	More than one quantitative independent variable	
	Polytomous independent variables	
	Example (continued)	. 13
	Testing with polytomous independent variable	
	R commands	. 15
	More than one qualitative independent variable	. 16
ln	teraction	17
	Definition	
	Interaction vs. correlation	. 19
	Constructing regressors	. 20
	Testing	
	Principle of marginality	
	Polytomous independent variables	
	Hypothesis tests	
	Standardized estimates	
	Interaction between categorical variables	
	- micoraction potition catogorical variables	0

Why include a qualitative independent variable?

- We are interested in the effect of a qualitative independent variable (for example: do men earn more than women?)
- We want to better predict/describe the dependent variable. We can make the errors smaller by including variables like gender, race, etc.
- Qualitative variables may be confounding factors. Omitting them may cause biased estimates of other coefficients.

2 / 26

Simplest model 3 / 26

Simplest case

- Example:
 - ◆ Dependent variable: income
 - ◆ One quantitative independent variable: education
 - ◆ One dichotomous (can take two values) independent variable: gender
- Assume effect of either independent variable is the same, regardless of the value of the other variable (additivity, parallel regression lines) See pictures from book.
- Usual assumptions on statistical errors: independent, zero means, constant variance, normally distributed, fixed X's or X independent of statistical errors.

4 / 26

Example (continued)

- Suppose that we are interested in the effect of education on income, and that gender has an effect on income.
- See pictures from book.
- Scenario 1: Gender and education are uncorrelated
 - ◆ Gender is not a confounding factor
 - ◆ Omitting gender gives correct slope estimate, but larger errors
- Scenario 2: Gender and education are correlated
 - ◆ Gender is a confounding factor
 - ◆ Omitting gender gives biased slope estimate, and larger errors

Possible solution: separate regressions

- Fit separate regression for men and women
- Disadvantages:
 - ◆ How to test for the effect of gender?
 - ◆ If it is reasonable to assume that regressions for men and women are parallel, then it is more efficient to use all data to estimate the common slope.

6 / 26

Independent variable vs. regressor

■ Y=income, X=education, D=regressor for gender:

$$D_i = \left\{ \begin{array}{ll} 1 & \text{for men} \\ 0 & \text{for women} \end{array} \right.$$

- Independent variable = real variables of interest
- Regressor = variable put in the regression model
- In general, regressors are functions of the independent variables. Sometimes regressors are equal to the independent variables.

7 / 26

Common slope model

- For women $(D_i = 0)$:

$$Y_i = \alpha + \beta X_i + \gamma \cdot 0 + \epsilon_i = \alpha + \beta X_i + \epsilon_i$$

■ For men $(D_i = 1)$:

$$Y_i = \alpha + \beta X_i + \gamma \cdot 1 + \epsilon_i = (\alpha + \gamma) + \beta X_i + \epsilon_i$$

- See picture from book.
- What are the interpretations of α , β and γ ?
- What happens if we code D=1 for women and D=0 for men?

Testing

- Test the partial effect of gender:

 - ◆ Same as before: Compute *t*-statistic or incremental F-test
- Test the partial effect of education:
 - $\bullet \quad H_0: \beta = 0, \ H_a: \beta \neq 0$
 - ◆ Same as before: Compute *t*-statistic or incremental F-test
- Cystic fibrosis example.

9 / 26

More general models

10 / 26

More than one quantitative independent variable

- All methods go through, as long as we assume parallel regression surfaces.
- Model: $Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \gamma D_i + \epsilon_i$.
- Women $(D_i = 0)$:

$$Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \gamma \cdot 0 + \epsilon_i$$

= $\alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \epsilon_i$

 $\blacksquare \quad \mathsf{Men} \; (D_i = 1):$

$$Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \gamma \cdot 1 + \epsilon_i$$

= $(\alpha + \gamma) + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \epsilon_i$

■ Interpretation of α , β_1, \ldots, β_k , γ .

Polytomous independent variables

- Qualitative variable with more than two categories
- Example: Duncan data:
 - lacktriangle Dependent variable: Y = prestige
 - Quantitative independent variables: X_1 =income and X_2 =education
 - ◆ Qualitative independent variable: type (bc, prof, wc)
- D_1 and D_2 are regressors for type:

Type	D_1	D_2
Blue collar (bc)	0	0
Professsional (prof)	1	0
White collar (wc)	0	1

■ If there are p categories, use p-1 dummy regressors. What happens if we use p regressors?

12 / 26

Example (continued)

- Blue collar $(D_{i1} = 0 \text{ and } D_{i2} = 0)$:

$$Y_{i} = \alpha + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \gamma_{1} \cdot 0 + \gamma_{2} \cdot 0 + \epsilon_{i}$$
$$= \alpha + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \epsilon_{i}$$

■ Professional ($D_{i1} = 1$ and $D_{i2} = 0$):

$$Y_{i} = \alpha + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \gamma_{1} \cdot 1 + \gamma_{2} \cdot 0 + \epsilon_{i}$$

= $(\alpha + \gamma_{1}) + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \epsilon_{i}$

■ White collar $(D_{i1} = 0 \text{ and } D_{i2} = 1)$:

$$Y_{i} = \alpha + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \gamma_{1} \cdot 0 + \gamma_{2} \cdot 1 + \epsilon_{i}$$

= $(\alpha + \gamma_{2}) + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \epsilon_{i}$

Testing with polytomous independent variable

- Test partial effect of type, i.e., the effect of type controlling for income and education.
- $\blacksquare \quad H_0: \gamma_1 = \gamma_2 = 0$
- H_a : at least one $\gamma_j \neq 0$, j = 1, 2.
- Incremental F-test:
 - ◆ Null model:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

◆ Full model:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma_1 D_1 + \gamma_2 D_2 + \epsilon$$

- What do the individual p-values in summary(lm()) mean?
- First look at F-test, then at individual p-values

14 / 26

R commands

- Creating dummy variables by hand:
 - D1 <- (type=="prof")*1
 - D2 <- (type=="wc")*1
 - m1 <- lm(prestige~education+income+D1+D2)</pre>
- Letting R do things automatically:
 - m1 <- lm(prestige~education+income+type)</pre>
 - m1 <- lm(prestige~education+income+factor(type))</pre>
- The use of factor():
 - factor() is not needed in this example, because the coding of the categories is in words: "bc", "prof", "wc".
 - ♦ It is essential to use factor() if the coding of the categories is numerical!
 - ◆ To be safe, you can always use factor.
- Example R-code

More than one qualitative independent variable

■ Example: Y=prestige, X_1 =income, X_2 =education,

Туре	D_1	D_2
Blue collar	0	0
Professional	1	0
White collar	0	1
and		

$$\begin{array}{c|c} \text{Gender} & D_3 \\ \hline \text{Women} & 0 \\ \hline \text{Men} & 1 \\ \hline \end{array}$$

- What is the equation for men with professional jobs? And for women with white collar jobs?

16 / 26

Interaction 17 / 26

Definition

- Two variables are said to interact in determining a dependent variable if the partial effect of one depends on the value of the other.
- So far we only studied models without interaction.
- Interaction between a quantitative and a qualitative variable means that the regression surfaces are not parallel. See picture.
- Interaction between two qualitative variables means that the effect of one of the variables depends on the value of the other variable. Example: the effect of type of job on prestige is bigger for men than for women.
- Interaction between two quantitative variables is a bit harder to interpret, and we may consider that later.

18 / 26

Interaction vs. correlation

- First, note that in general, the independent variables are not independent of each other.
- Independent variables are statistically related to each other.
- Interaction:
 - Effect of one independent variable on the dependent variable depends on the value of the other independent variable.
- Two independent variables can interact whether or not they are correlated.

Constructing regressors

- \blacksquare Y=income, X=education, D=dummy for gender
- Note $X \cdot D$ is a new regressor. It is a function of X and D, but not a linear function. Therefore we do not get perfect collinearity.
- Women $(D_i = 0)$:

$$Y_i = \alpha + \beta X_i + \gamma \cdot 0 + \delta(X_i \cdot 0) + \epsilon_i = \alpha + \beta X_i + \epsilon_i$$

 \blacksquare Men $(D_i = 1)$

$$Y_i = \alpha + \beta X_i + \gamma \cdot 1 + \delta(X_i \cdot 1) + \epsilon_i$$

= $(\alpha + \gamma) + (\beta + \delta)X_i + \epsilon_i$

■ Interpretation of α , β , γ , δ .

20 / 26

Testing

- Testing for interaction is testing for a difference in slope between men and women. $H_0: \delta = 0$ and $H_a: \delta \neq 0$.
- What is the difference between:
 - ◆ The model with interaction
 - Fitting two separate regression lines for men and women

21 / 26

Principle of marginality

- If interaction is significant, do not test or interpret main effects:
 - First test for interaction effect.
 - If no interaction, test and interpret main effects.
- If interaction is included in the model, main effects should also be included.
- See pictures of models that violate the principle of marginality.

Polytomous independent variables

- Create interaction regressors by taking the products of all dummy variable regressors and the quantitative variable.
- Example:
 - Y= prestige, $X_1=$ education, $X_2=$ income
 - D_1, D_2 =dummies for type of job

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma_1 D_1 + \gamma_2 D_2 + \delta_{11} X_1 D_1 + \delta_{12} X_1 D_2 + \delta_{21} X_2 D_1 + \delta_{22} X_2 D_2 + \epsilon$$

■ Interpretation of parameters

23 / 26

Hypothesis tests

- When testing for main effects and interactions, follow principle of marginality
- Use incremental F-test
- Examples in R-code

24 / 26

Standardized estimates

- Do not standardize dummy-regressor coefficients.
- Dummy regressor coefficient has clear interpretation.
- By standardizing it, this interpretation gets lost. Therefore we don't standardize dummy regressor coefficients.
- Also, don't standardize interaction regressors. You can standardize the quantitative independent variable before taking its product with the dummy regressor.

Interaction between categorical variables

- Example: Does reproduction reduce lifespan of male fruitflies?
- Experiment:
 - ◆ male flies with 1 pregnant (not receptive) female per day
 - ◆ male flies with 8 pregnant females per day
 - ◆ male flies with 1 virgin (receptive) female per day
 - ◆ male flies with 8 virgin females per day
 - male flies without females
- Each group contains 25 fruitflies
- Available information:
 - ◆ Thorax length in mm
 - ◆ Percentage of time sleeping
 - ♦ Longevity in days
- See plots