

## **FlashAttention**

Kun Yuan (袁坤)

**Center for Machine Learning Research @ Peking University** 







$$Q = XW_Q \in \mathbb{R}^{N \times d}$$

N is the sequence length

d is the embedding dimension

$$K = XW_K \in \mathbb{R}^{N \times d}$$

$$V = XW_V \in \mathbb{R}^{N \times d}$$



$$S = QK^{\top} \in \mathbb{R}^{N \times N}$$



Center of Machine Learning Research



$$P = \operatorname{softmax}(S) \in \mathbb{R}^{N \times N}$$

(we ignore the scaling for simplicity)





$$O = PV \in \mathbb{R}^{N \times d}$$



Center of Machine Learning Research

#### **FLOPS**



- The above attention process incurs  $O(N^2d)$  FLOPS computation complexity
- Increases quadratically fast with sequence length N
- Various methods have been developed to reduce  $O(N^2)$  to O(N). These methods are not exact attention, and they typically fail to achieve remarkable acceleration
- The fundamental reason is that they cannot reduce Memory Access Cost (MAC)

Center of Machine Learning Research

#### **Memory in GPU**





Fast but small

Large but slow

Memory Hierarchy with Bandwidth & Memory Size

**Execution Model in GPU.** Load inputs from HBM to SRAM, computes, then writes outputs to HBM.

Since HBM is slow, MAC is primarily composed of HBM reads and writes

#### **MAC** in standard attention implementation



#### Algorithm 0 Standard Attention Implementation

**Require:** Matrices  $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$  in HBM.

- 1: Load  $\mathbf{Q}, \mathbf{K}$  by blocks from HBM, compute  $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top}$ , write  $\mathbf{S}$  to HBM.
- 2: Read S from HBM, compute P = softmax(S), write P to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute  $\mathbf{O} = \mathbf{PV}$ , write **O** to HBM.
- 4: Return **O**.

|                                 | Operation    | MAC        |
|---------------------------------|--------------|------------|
| MAC cost is                     | Load Q and K | 2dN        |
|                                 | Write S      | $N^2$      |
| $4N^2 + 4dN$                    | Read S       | $N^2$      |
|                                 | Write P      | $N^2$      |
|                                 | Load Q and V | $N^2 + dN$ |
| er of Machine Learning Research | Write O      | dN         |

#### MAC consumes significant wall-clock time in transformer



Compute-bound operator: computing time > accessing HBM time

Matrix multiplication; convolution

• **Memory-bound operator:** accessing HBM time > computing time

Element-wise operator (activation, dropout); reduction (sum, softmax)

Transformer includes many memory-bound operators

Reducing MAC cost can significantly accelerate attention





# FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao<sup>†</sup>, Daniel Y. Fu <sup>†</sup>, Stefano Ermon <sup>†</sup>, Atri Rudra <sup>‡</sup>, Christopher Ré <sup>†</sup>

Department of Computer Science, Stanford University

Department of Computer Science and Engineering, University at Buffalo, SUNY

{trid,danfu}@stanford.edu,ermon@stanford.edu,atri@buffalo.edu,chrismre@cs.stanford.edu

#### Core idea in FlashAttention: Kernal fusion





## A simplified attention without softmax

























Write O





## **HBM** accessing comparison



#### **Vanila Attention**

#### **Flash Attention**

| Operation    | MAC        | Operation    | MAC |
|--------------|------------|--------------|-----|
| Load Q and K | 2dN        | Load Q twice | 2dN |
| Write S      | $N^2$      | Load K, V    | 2dN |
| Read S       | $N^2$      | Write O'     | dN  |
| Write P      | $N^2$      | Read O'      | dN  |
| Load Q and V | $N^2 + dN$ | Write O      | dN  |
| Write O      | dN         |              |     |

 $4N^2 + 4dN$ 

**7***dN* 

## Kernal fusion significantly saves MAC



- When  ${\it N}\gg d$ , FlashAttention significantly saves MAC  ${\it 4N}^2+4dN\gg 7dN$
- The longer the sequence length is, the better that FlashAttention is
- The fundamental reason is that we fusion the intermediate operators, e.g., do not store S



## Thank you!

Kun Yuan homepage: <a href="https://kunyuan827.github.io/">https://kunyuan827.github.io/</a>

