energy management at the Kazán Community House

Benjamin Márkus, energy coordinator of the facilities team, ACRED

overview

- community-oriented:
 - 1) broad-based decision making
 - 2) long term stability instead of profit maximization
- electricity: 36 kWp PV system since this year's start
- insulation state: poor, with slight improvements recently
- heating:
 - gas-fired central heating (with occasional space heating), plan to switch to a central heat pump in the future
 - smartified one year ago

planning and results so far

2022-23: energy task force, comprehensive long-term energy development roadmap:

- 1) first lessen heat need and consumption
- 2) then switch to heat pumps run on PV (yearly net metered)

since then:

- 1) stalled PV installation pushed to finish line, in operation since Jan with a dedicated energy improvement fund founded on the savings
- 2) smart heating system developed in house with comprehensive data gathering and evaluation
- 3) localized improvements of insulation at points deemed the most critical ...4) currently applying for 0 interest loan to do a full insulation

PV system overview

- 36.08 kWp, 400 Wp Hyundai panels, 30 kW Huawei inverter
- E-W dual orientation to stretch out daily peak
- sized to produce just about the yearly consumption of the building
- yearly net metering for 10 years
 - (but at the mercy of energy traders)
- production, feed in, take up and overall consumption data for the past year with 15 mins granularity

PV system overview

PV system: the first 10 months of operation

PV system: the first 10 months of operation

PV system: the first 10 months of operation

- yearly consumption so far: 44.5 MWh
- ... production: 27.9 MWh
- ... grid net: 16.6 MWh
- estimated income for the energy improvement fund this year:

 $2.3-2.4M \text{ HUF} \approx 5700 - 6000 \text{ EUR}$

(how? tenants chose to pay market price for electricity produced in house)

(already spent on insulation)

heating: smartified gas-fired central heating

- four heating cycles, about 1700 sq. meters heated, served by 2 Ariston gas boilers
- most of the rooms (10) are temperature-controlled:
 - smart thermometers and a central heating control logic running on a RasPi switching the boilers and cycles
 - web-based user interface and dashboard (<u>snapshot from</u> <u>last year</u>)
 - intensive data gathering at each stage: gas, heating energy, heating state, temperatures
- but only the cycles can be switched → overheating of rooms

heating: analysis of first season's dataset

- aims:
 - determining the financial cost of various deficiencies at the most detailed level (room) and as precisely as possible
 - identification of hidden issues
 - general evaluation, comparison to previous seasons
 - smart heating evaluation

heating: analysis of first season's dataset - cost assignment

heating: analysis of first season's dataset - cost assignment

from HUF to burnt gas

from HUF to burnt gas

from HUF to burnt gas

from <u>burnt gas</u> to <u>heat delivered on cycles</u>

but: hot water production

if we are there: estimation of boiler efficiency

2) estimation of boiler efficiency

2) estimation of boiler efficiency

2) estimation of boiler efficiency

from <u>burnt gas</u> to <u>heat delivered on cycles</u>

3) relative weight of cycles

3) relative weight of cycles

3) relative weight of cycles

from heat delivered on cycles to heat taken up by rooms

from heat delivered on cycles to heat taken up by rooms

daily temps for Fri 26 Jan

take cooling periods & model heat dynamics with:

$$(T_{
m ext} - T_{
m room}) \cdot U_{
m env} =
ho_{
m air} \cdot c_{p_{
m air}} \cdot V_{
m room} \cdot \left(rac{\Delta T_{
m room}}{\Delta t}
ight)$$

daily temps for Fri 26 Jan

$$(T_{
m ext} - T_{
m room}) \cdot U_{
m env} =
ho_{
m air} \cdot c_{p_{
m air}} \cdot V_{
m room} \cdot \left(rac{\Delta T_{
m room}}{\Delta t}
ight)$$

daily temps for Fri 26 Jan

take cooling periods & model heat dynamics with:

$$(T_{
m ext} - T_{
m room}) oldsymbol{\cdot} U_{
m env} =
ho_{
m air} \cdot c_{p_{
m air}} \cdot V_{
m room} \cdot \left(rac{\Delta T_{
m room}}{\Delta t}
ight)$$

then take warming periods and add heater:

$$(T_{
m ext} - T_{
m room}) \cdot U_{
m env} + (T_{
m heater} - T_{
m room}) \cdot U_{
m heater} =
ho_{
m air} \cdot c_{p_{
m air}} \cdot V_{
m room} \cdot \left(rac{\Delta T_{
m room}}{\Delta t}
ight)$$

— vendégtér — kisterem — Oktopusz — Lahmacun

daily temps for Fri 26 Jan

take cooling periods & model heat dynamics with:

$$(T_{
m ext} - T_{
m room}) oldsymbol{\cdot} U_{
m env} =
ho_{
m air} \cdot c_{p_{
m air}} \cdot V_{
m room} \cdot \left(rac{\Delta T_{
m room}}{\Delta t}
ight)$$

then take warming periods and add heater:

$$(T_{ ext{ext}} - T_{ ext{room}}) \cdot U_{ ext{env}} + (T_{ ext{heater}} - T_{ ext{room}}) \cdot U_{ ext{heater}} =
ho_{ ext{air}} \cdot c_{p_{ ext{air}}} \cdot V_{ ext{room}} \cdot \left(rac{\Delta T_{ ext{room}}}{\Delta t}
ight)$$

— vendégtér — kisterem — Oktopusz — Lahmacun

4) evaluation of rooms based on cooling and warming data: thermal conductivity of envelope and insulation state

4) evaluation of rooms based on cooling and warming data: thermal conductivity of envelope and insulation state

from heat delivered on cycles to heat taken up by rooms

from heat delivered on cycles to heat taken up by rooms

measured

estimated heat takeup of each room on a cycle for selected heating periods based on temp. change

estimated heat takeup of each room on a cycle for selected heating periods based on temp. change

finally: cost per room

6) how much did it cost to heat each room?

how did the smart heating perform? -- gas consumption

how did the smart heating perform? -- gas consumption

how did the smart heating perform? -- comfort

how did the smart heating perform? -- comfort

how did the smart heating perform? -- cost of cycle based switching

how did the smart heating perform? -- cost of cycle based switching

how did the smart heating perform? -- lack of comfort

- unresponsive (room is below set, but no heating for at least 30 minutes)
- insufficient (heating is on for at least an hour but room is still below set)

misc -- room response curves

misc -- room response curves

misc -- room response curves

comments & suggestions?