PySpark

PySpark DataFrame API

Apache Spark

Что будет на уроке

- 1. RDD: Resilent Data Distribution. Класс DataFrame.
- 2. План запроса. Перемешивание данных (шаффл). Сохранение данных.
- 3. groupBy, join
- 4. Получение плана выполнения запроса.
- 5. Способы оптимизации: push down фильтрация, стратегия исполнения join.
- 6. Pабота со Spark UI
- 7. Сложные случаи: перекос в объеме данных между экзекьюторами. Функции repartition, coalesce
- 8. Агрегирующие функции.
- 9. Агрегирование по синтетическому ключу.
- 10. Pivot

RDD

низкоуровневый API для работы с распределенными данными

```
1 # In Python
2 # Create an RDD of tuples (name, age)
3 dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31), ("Jules", 30),
4 ("TD", 35), ("Brooke", 25)])
5 # Use map and reduceByKey transformations with their lambda
6 # expressions to aggregate and then compute average
7 \text{ agesRDD} = (dataRDD)
8 .map(lambda x: (x[0], (x[1], 1)))
9 .reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
10 .map(lambda x: (x[0], x[1][0]/x[1][1]))
```


DataFrame

Начиная со Spark 1.6 обобщенный API для работы с RDD

```
name|avg(age)|
1 from pyspark.sql import SparkSession
2 from pyspark.sql.functions import avg
                                                                    |Brooke| 22.5|
3 # Create a DataFrame using SparkSession
                                                                     Jules | 30.0|
4 spark = (SparkSession
                                                                         TD| 35.0|
5 .builder
                                                                      Denny | 31.0|
6 .appName("AuthorsAges")
7 .getOrCreate())
8 # Create a DataFrame
9 data_df = spark.createDataFrame([("Brooke", 20), ("Denny", 31), ("Jules", 30),("TD",
  35), ("Brooke", 25)], ["name", "age"])
10 # Group the same names together, aggregate their ages, and compute an average
11 avg_df = data_df.groupBy("name").agg(avg("age"))
12 # Show the results of the final execution
13 avg_df.show()
```

Transformation types

narrow -> in-memory filterswide -> shuffle, write result on disk

Narrow transformations 1 to 1

కస్తి GeekBrains

Wide transformations (shuffles) 1 to N

Transformations and actions as Spark operations

Трансформации копятся до вызова action

Transformations	Actions
orderBy()	show()
<pre>groupBy()</pre>	take()
filter()	count()
select()	<pre>collect()</pre>
<pre>join()</pre>	save()

Spark DataFrame таблица с типизированными колонками

Id (Int)	First (String)	Last (String)	Url (String)	Published (Date)	Hits (Int)	<pre>Campaigns (List[Strings])</pre>
1	Jules	Damji	https:// tinyurl.1	1/4/2016	4535	[twitter, LinkedIn]
2	Brooke	Wenig	https:// tinyurl.2	5/5/2018	8908	[twitter, LinkedIn]
3	Denny	Lee	https:// tinyurl.3	6/7/2019	7659	<pre>[web, twitter, FB, LinkedIn]</pre>
4	Tathagata	Das	https:// tinyurl.4	5/12/2018	10568	[twitter, FB]

Основные типы данных Python значения в колонках

Data type	Value assigned in Python	API to instantiate
ByteType	int	DataTypes.ByteType
ShortType	int	DataTypes.ShortType
IntegerType	int	DataTypes.IntegerType
LongType	int	DataTypes.LongType
FloatType	float	DataTypes.FloatType
DoubleType	float	DataTypes.DoubleType
StringType	str	DataTypes.StringType
BooleanType	bool	DataTypes.BooleanType
DecimalType	decimal.Decimal	DecimalType

Python structured data types in Spark

Data type	Value assigned in Python	API to instantiate
BinaryType	bytearray	BinaryType()
TimestampType	datetime.datetime	TimestampType()
DateType	datetime.date	DateType()
ArrayType	List, tuple, or array	<pre>ArrayType(dataType, [nullable])</pre>
МарТуре	dict	<pre>MapType(keyType, valueType, [nul lable])</pre>
StructType	List or tuple	StructType([fields])
StructField	A value type corresponding to the type of this field	StructField(name, dataType, [nul lable])

Задание schema

и зачем это нужно

- Избегаем приведение типов
- Не нужно считывать файл только для определения схемы данных (существенно для больших файлов)
- Можно отловить несоответствие данных

```
1 from pyspark.sql.types import *
2 schema = StructType([StructField("author", StringType(), False),
3 StructField("title", StringType(), False),
4 StructField("pages", IntegerType(), False)])
5
6 #the same schema using DDL
7 schema = "author STRING, title STRING, pages INT"
```

Создаем статический DataFrame

```
1 from pyspark.sql import SparkSession
3 schema = "`Id` INT, `First` STRING, `Last` STRING, `Url` STRING,
4 `Published` STRING, `Hits` INT, `Campaigns` ARRAY<STRING>"
5 # Create our static data
6 data = [
7 [1, "Jules", "Damji", "https://tinyurl.1", "1/4/2016", 4535, ["twitter", "LinkedIn"]],
8 [2, "Brooke", "Wenig", "https://tinyurl.2", "5/5/2018", 8908, ["twitter", "LinkedIn"]]
10
11 # Create a DataFrame using the schema defined above
12 blogs_df = spark.createDataFrame(data, schema)
13 # Show the DataFrame; it should reflect our table above
14 blogs_df.show()
15 # Print the schema used by Spark to process the DataFrame
16 print(blogs_df.printSchema())
```


Count, countDistinct агрегирующие функции могут вызываться по всему набору данных

```
1 from pyspark.sql.functions import count
2 df.select(count("StockCode")).show()
3
4 from pyspark.sql.functions import countDistinct
5 df.select(countDistinct("StockCode")).show()
6
7 from pyspark.sql.functions import approx_count_distinct
8 df.select(approx_count_distinct("StockCode", 0.1)).show()
```


Column alias

меняем название колонки

```
1 from pyspark.sql.functions import sum, count, avg, expr
2 df.select(
    count("Quantity").alias("total_transactions"),
3
    sum("Quantity").alias("total_purchases"),
    avg("Quantity").alias("avg_purchases"),
    expr("mean(Quantity)").alias("mean_purchases"))\
     .selectExpr(
    "total_purchases/total_transactions",
    "avg_purchases",
    "mean_purchases")\
10
11 .show()
```


Считываем данные для дальнейших упражнений

```
1 # in Python
2 df = spark.read.format("csv")\
3 .option("header", "true")\
4 .option("inferSchema", "true")\
5 .load("/data/retail-data/by-day/2010-12-01.csv")
6 df.printSchema()
7 df.createOrReplaceTempView("dfTable")
```


Booleans

Фильтрация по значению в колонке

```
1 # in Python
 2 from pyspark.sql.functions import col
 3 df.where(col("InvoiceNo") != 536365)\
 4 .select("InvoiceNo", "Description")\
 5 .show(5, False)
1 from pyspark.sql.functions import instr
3 priceFilter = col("UnitPrice") > 600
4 descripFilter = instr(df.Description, "POSTAGE") >= 1
6 df.where(df.StockCode.isin("DOT"))\
7 .where(priceFilter | descripFilter).show()
```


SQL для создания колонок и логических выражений через expr

```
1 from pyspark.sql.functions import expr
2 df.withColumn("isExpensive", expr("NOT UnitPrice <= 250"))\
3 .where("isExpensive")\
4 .select("Description", "UnitPrice").show(5)</pre>
```


Численные значения

```
1 from pyspark.sql.functions import expr, pow
 2 fabricatedQuantity = pow(col("Quantity") * col("UnitPrice"), 2) + 5
 3
 4 df.select(expr("CustomerId"), \
             fabricatedQuantity.alias("realQuantity"))\
 5
 6 \cdot \text{show}(2)
8 # либо через SQL
 9 df.selectExpr("CustomerId",
10 "(POWER((Quantity * UnitPrice), 2.0) + 5) as realQuantity")\
11 \cdot \text{show}(2)
```


Spark jobs, stage, task shuffle occurs between every two stages

Spark executors, partitions

Relationship of Spark tasks, cores,

partitions

df.cache()

store as many of the partitions in memory across Spark executors as memory allows

When to Cache and Persist:

- DataFrames commonly used during iterative machine learning training
- DataFrames accessed commonly for doing frequent transformations during ETL or building data pipelines

When Not to Cache and Persist:

- DataFrames that are too big to fit in memory
- An inexpensive transformation on a DataFrame not requiring frequent use, regardless of size

Spark UI DAG, resources

Details for Job 0

Status: SUCCEEDED
Associated SQL Query: 0
Completed Stages: 1

- ▶ Event Timeline
- ▼ DAG Visualization

Практика

Zeppelin -> Lecture 2

Оптимизатор запросов

Lazy исполнение трансформаций позволяет оптимизировать план

Catalyst Optimizer transformational phases

- 1. Analysis
- 2. Logical optimization
- 3. Physical planning
- 4. Code generation

Logical plan

1) проверка наличия таблиц, колонок 2) pushing down predicates or selections

Physical Planning Использует знание о размере и распределении партиций

Планы запроса из примера

Broadcast Hash Join

Shuffle Sort Merge Join

Ссылки

catalyst-optimizer

deep-dive-into-spark-sqls-catalyst-optimizer

high-performance-spark/ch04.html

towardsdatascience.com/the-art-of-joining-in-spark

https://itnext.io/handling-data-skew-in-apache-spark-9f56343e58e8

https://blog.clairvoyantsoft.com/optimize-the-skew-in-spark-e523c6ee18ac

Спасибо! Каждый день вы становитесь лучше:)

