ANKIT V. MANERIKAR

West Lafayette, Indiana, USA

Contact: +1765 602 6962 | Email ID: amanerik@purdue.edu | Web: ankitvm.github.io

PROFESSIONAL SUMMARY

A PhD candidate with a wide research and industry experience in the field of Tomographic Image Processing, Computer Vision, Robotics and Machine Learning spanning a period of ten years, with authorship in multiple publications and encompassing contribution to over ten labs and companies.

EDUCATION

Purdue University, USA	Doctor of Philosophy (PhD) Electrical and Computer Engineering	3.79/4.00	May 2022
Purdue University, USA	Master of Science Electrical and Computer Engineering	3.84/4.00	Aug 2017
Mumbai University, India	Bachelor of Engineering <i>Electronics Engineering (First Class with Distinction)</i>	81.52% (1 st Rank)	July 2015
SBM Polytechnic, India	Pre-University Course (Engineering Diploma) Industrial Electronics (First Class with Distinction)	89.26% (1 st Rank)	July 2012

RESEARCH EXPERIENCE

Robot Vision Lab, Purdue University

Advisor: Dr Avinash Kak

Title: Graduate Research Assistant

Jan 2017 - Present

West Lafayette

Major Projects:

• BAA-1703 Contract on Dual Energy ATR for Airport Security:

A DoHS (Department of Homeland Security) project to research deep learning and adaptive boosting methods for threat detection in airport checkpoint security using Dual Energy CT security screeners.

Contributions:

o BagGAN-HQ – A StyleGAN-based Data Synthesis Tool for Baggage CT Scans:

This research focuses on a mitigating the data availability problem for threat detector design by using adversarial networks for annotated data synthesis of baggage CT scans for explosives detection.

o DEBISim – A Simulation Pipeline for Dual Energy CT-Based baggage Inspection Systems:

The initiative aims at designing a physics-based CT simulation framework for X-ray data generation to aid the testing/training of machine learning algorithms for threat detection with Single-/Dual-energy CT screening.

• Classifier Design for 3D Segmentation using Dual Energy X-ray Tomography:

This project involves the design of improved classifier frameworks for X-ray based object detection using density and atomic number data from Dual Energy CT.

• ALERT TO-7 Adaptive ATR Initiative:

An ALERT-sponsored project on Adaptive Automatic Target Recognition (AATR) for CT-based Threat Object Detection Systems for airport baggage screening.

Contributions:

• Adaptive Automatic Target Recognition (AATR) for CT-Based Object Detection Systems:

This project was a part of the ALERT TO-7 AATR Initiative and involved the design of an Automatic Target Recognition System for adaptively segmenting and identifying target objects of varying specifications. The design involves a hierarchical supervoxel segmenter coalesced with an AdaBoost classifier for threat object detection.

• Hierarchical Visual SLAM for Hospital Robotics:

A robot navigation project in collaboration with Botzee Inc., a robotic think-tank aiming at building dense visual maps for modular robot navigation in hospital environments.

Major Publications:

- Manerikar, Ankit, Fangda Li, and Avinash C. Kak. "DEBISim: A simulation pipeline for dual energy CT-based baggage inspection systems." *Journal of X-Ray Science and Technology* 29.2 (2021): 259-285. [pdf][code]
- Manerikar, Ankit, Tanmay Prakash, and Avinash C. Kak. "Adaptive target recognition: A case study involving airport baggage screening." *Anomaly Detection and Imaging with X-Rays (ADIX) V.* Vol. 11404. International Society for Optics and Photonics, 2020. [pdf]
- Manerikar, Ankit, Fangda Li, and Avinash Kak. "A Spectrum-Adaptive Decomposition Method for Effective Atomic Number Estimation using Dual Energy CT." IS&T Electronic Imaging: *Computational Imaging VIII, IS&T International Symposium on Electronic Imaging*, 2020. [pdf]
- Li, Fangda, Ankit Manerikar, Tanmay Prakash, and Avinash Kak. "A Splitting-Based Iterative Algorithm for GPU-Accelerated Statistical Dual-Energy X-Ray CT Reconstruction." IS&T Electronic Imaging: Computational Imaging VIII, IS&T International Symposium on Electronic Imaging, 2020. [pdf]
- Li, Fangda, Ankit Manerikar, and Avinash C. Kak. "RMPD—A Recursive Mid-Point Displacement Algorithm for Path Planning." In *Twenty-Eighth Intl. Conference on Automated Planning and Scheduling*. 2018. [pdf]

Digital Photogrammetry Research Group, Purdue University

Jun 2016 – May 2017

Advisors: Dr Ayman Habib, Dr Melba Crawford **Title**: Graduate Researcher (Master's Degree)

West Lafayette

Major Projects:

• SLAM-Assisted Coverage Path Planning for Lidar Mapping Systems:

The research for this project was centred on the development of an efficient Coverage Path Planner for Mapping Vehicles. The developed planner uses a variant of the Exact Cellular Decomposition Method using MSA optimality criterion to implement a routing algorithm to be used with online SLAM.

• Pseudo-GNSS/INS Systems for Terrestrial/Aerial Photogrammetry Using Online SLAM:

This implementation encompasses a SLAM-based Pseudo-GNSS/INS system for a Mapping Vehicle equipped with LiDARs and Cameras to operate in GPS-devoid environments. The system has been successfully implemented for indoor terrestrial Lidar Mapping Systems on a prototype Roomba ICreate2 and using Velodyne 3D LiDARs.

Major Publications:

- Shamseldin, Tamer, Ankit Manerikar, Magdy Elbahnasawy, and Ayman Habib. "SLAM-based Pseudo-GNSS/INS localization system for indoor LiDAR mobile mapping systems." In 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 197-208. IEEE, 2018. [pdf]
- Manerikar, Ankit, Tamer Shamseldin, and Ayman Habib. "SLAM-Assisted Coverage Path Planning for Indoor LiDAR Mapping Systems." *arXiv preprint arXiv:1811.04825* (2018). [pdf]

TEACHING EXPERIENCE

Purdue University – West Lafayette

Terms

Title: Graduate Teaching Assistant

Course: ECE 404 Introduction to Computer Security Jan 2021 – May 2021
 Course: ECE 382 Feedback System Analysis and Design Jan 2016 – May 2017

PUBLICATIONS:

• Manerikar, Ankit, Fangda Li, and Avinash C. Kak. "**DEBISim: A simulation pipeline for dual energy CT-based baggage inspection systems**." *Journal of X-Ray Science and Technology* 29.2 (2021): 259-285. [pdf] [code]

- Manerikar, Ankit, Tanmay Prakash, and Avinash C. Kak. "Adaptive target recognition: A case study involving airport baggage screening." Anomaly Detection and Imaging with X-Rays (ADIX) V. Vol. 11404. International Society for Optics and Photonics, 2020. [pdf]
- Manerikar, Ankit, Fangda Li, and Avinash Kak. "A Spectrum-Adaptive Decomposition Method for Effective Atomic Number Estimation using Dual Energy CT." IS&T Electronic Imaging: Computational Imaging VIII, IS&T International Symposium on Electronic Imaging, 2020. [pdf]
- Li, Fangda, Ankit Manerikar, Tanmay Prakash, and Avinash Kak. "A Splitting-Based Iterative Algorithm for GPU-Accelerated Statistical Dual-Energy X-Ray CT Reconstruction." IS&T Electronic Imaging: Computational Imaging VIII, IS&T International Symposium on Electronic Imaging, 2020. [pdf]
- Li, Fangda, Ankit V. Manerikar, and Avinash C. Kak. "**RMPD—A Recursive Mid-Point Displacement Algorithm for Path Planning.**" In *Twenty-Eighth International Conference on Automated Planning and Scheduling*. 2018. [pdf].
- Shamseldin, Tamer, Ankit Manerikar, Magdy Elbahnasawy, and Ayman Habib. "**SLAM-based Pseudo-GNSS/INS localization system for indoor LiDAR mobile mapping systems**." In 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 197-208. IEEE, 2018. [pdf]
- Manerikar, Ankit, Tamer Shamseldin, and Ayman Habib. "SLAM-Assisted Coverage Path Planning for Indoor LiDAR Mapping Systems." arXiv preprint arXiv:1811.04825 (2018). [pdf]
- Manerikar, Ankit, and Anandpara, Tanvi. "Design of a Practical Cat-righting Reflex (CRR) Model." *Procedia Computer Science* 45 (2015): 514-523. [pdf][GitHub]

HONORS AND AWARDS

• J.R.D. Tata Trust Scholarship Award Scholarship for Undergraduate Engineering

(Years: 2012-13, 2013-14)

Best Student Paper Award "Particle Swarm Optimization in Control Systems Design",

IEEE Technomania 2013,

Student Award for Academic Merit 1st Rank in B.E. (Electronics, DJSCoE),

6th Rank in University of Mumbai.

Juhu Lions Club Scholarship Award

1st Rank in Industrial Electronics

(Years: 2008-09, 2009-10, 2010-11, 2011-12)

PROFESSIONAL EXPERIENCE

• Gade Autonomous Systems

Title: Intern: Machine Learning, Firmware & Robotics

June 2016 - July 2016 Mumbai/Frankfurt

- Headed the Firmware team for development of smart devices for fitness/automotive applications.
- Designed HMM Machine Learning Algorithms for smart networks with inertial and IR sensing systems.

• Citizen Scales India (P) Ltd.

Title: Research Intern/Co-op

Dec 2011 - May 2012 SEEPZ, Mumbai

- Collaborated with a team of Firmware Engineers for design of a Moisture Analysis Device on an ARM7 platform.
- Implemented Regression-based algorithms for Temperature Compensation in Micro-Precision Weighing Scales.

• Technophilia Systems

June 2010 – Nov 2010

Mumbai

Title: Robotics Intern /Co-op

- Designed a Partial Gait Model for the Autonomous Navigation of a Biped.
- Designed navigation algorithms on an Atmega-XX platform and with a centroid-based object-tracking algorithm.
- Consultancy Projects:
- Rollform Equip. Pvt. Ltd. (Delhi, India): "Shear Measurement System for Rotary Blade Cutter" A. Choudhury.
- S M Technocrats Pvt. Ltd. (Delhi, India): "Efficiency Analysis for HF Induction Tube Welding" A. Choudhury.

LIST OF OTHER SELECTED PROJECTS:

• HMM based Smart Gesture Recognition using Wearable Inertial Sensors:

(Gade Autonomous Systems, Mumbai)

- Developed a Machine-Learning algorithm using Hidden Markov Models to perform Gesture Recognition using wearable inertial sensors for adaptively learning a set of repetitive gestures made by an individual.

• Indoor Place Categorization for Visual SLAM: [video] [GitHub]

(Course Project: BME595 (Deep Learning), Fall 2017 – Purdue University)

- Developed a Place Recognition Classifier using ResNet CNNs and inductive transfer learning to learn indoor visual landmarks during mobile robot navigation.

• Optimal Constrained Coverage Path Planning for a Mobile Robot: [pdf] [GitHub]

(Course Project: AAE568 (Applied Optimal Control & Estimation), Spring 2016 – Purdue University)

- Developed a Pseudospectral Optimal Control based method for a Coverage Path Planning by a Mobile Robot.
- Simulated a MATLAB model to generate Optimal CPP Trajectory for obstacle avoidance and complex boundaries.

• Position Control Using Ultrasonic Levitation Assembly: [video]

(Undergraduate Senior Project, University of Mumbai.)

- Designed a Contactless Precision Position Control system harnessing sound waves to suspend particles in mid-air.
- Developed digital controller code for the levitation system using a Tiva C-series ARM processor.

• A Portable Soil Health Monitoring System for Dynamic Soil Mapping: [video]

(Presented at Texas Instruments IIADC, 2014)

- Implemented a portable UV-VIS spectrophotometer system allowing on-field spectral analysis of soil.
- Developed a sensing mechanism for measurement of soil OC (Organic Carbon) content using NIR Spectral Peaks.
- Designed an optoelectronic system as well as signal conditioning circuits for system operation.

SKILLS:

• Core Programming

• Computer Vision

• Machine Learning

• Computer Graphics/Simulation

Robotics

• Developer Tools/IDEs

Cloud Computing

Python (Expert), C++ (Proficient), C (Proficient), Matlab (Proficient).

OpenCV, PCL, PyTorch3D.

PyTorch (Expert), TensorFlow, scikit-learn.

Qt, MayaVi, ASTRA, Simulink.

ROS (Expert), Gazebo, ARIA

VSCode, PyCharm, Eclipse IDE, AVR-gcc. Openstack (Expert), Eucalyptus, AWS.

REFERENCES:

(Available upon request.)