Twierdzenie. Rodziny $\binom{[n]}{\lfloor \frac{n}{2} \rfloor}$ i $\binom{[n]}{\lceil \frac{n}{2} \rceil}$ to jedyne antyłańcuchy w \mathcal{B}_n świadczące jego szerokości.

Dowód. Rozważmy największy antyłańcuch \mathcal{A} . Jeśli zawiera jakieś elementy z innych poziomów niż $\binom{[n]}{n/2}$, to bierzemy najbardziej oddalony od środka (w górę lub w dół) poziom i zastępujemy go jego cieniem (górnym lub dolnym), który będzie większy niż zastępowany zbiór. Rodzina pozostanie antyłańcuchem, bo jeśli jakiś element cienia jest porównywalny z czymś w nowej rodzinie, to zastąpiony element byłby z tym porównywalny w oryginalnym antyłańcuchu. Wystarczy więc rozważyć tylko \mathcal{A} zawierające elementy ze środkowych poziomów.

Jeśli $2 \mid n$, to jest tylko jeden taki poziom i koniec, inaczej rozważamy środkowe poziomy k i k+1, niech \mathcal{A} nie będzie pełnym poziomem, czyli są takie $A, B \in \binom{[n]}{k+1}$, że $A \in \mathcal{A}$ i $B \notin \mathcal{A}$. Numerujemy elementy $A \cup B$: najpierw idą elementy, które są w $A \setminus B$ (w dowolnej kolejności), potem te z $A \cap B$, na koniec te z $B \setminus A$, czyli mamy $A = \{x_0, \ldots, x_k\}$ i $B = \{x_i, \ldots, x_{k+i}\}$ dla pewnego i. Istnieje j < i takie, że $P = \{x_j, \ldots, x_{k+j}\} \in \mathcal{A}$ i $Q = \{x_{j+1}, \ldots, x_{k+j+1}\} \notin \mathcal{A}$ (zaczynamy od A i przesuwamy się po elementach, w końcu trafimy na zbiór nie w A – może to być B albo coś wcześniej). Łańcuch maksymalny C zawierający $P \cap Q$ i Q nie ma w sobie elementu A (na obu poziomach środkowych wybraliśmy coś, co nie jest w A), więc nierówność LYM jest ostra i A nie ma potrzebnej wielkości - sprzeczność.

Twierdzenie. Jeśli \mathcal{F} jest rodziną podzbiorów [n] taką, że nie istnieją $A,B,C\in\mathcal{F}:A\subsetneq B\subsetneq C$, to zachodzi

$$|\mathcal{F}| \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} + \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor + 1}.$$

Dowód. Dla nieparzystego n twierdzenie dualne do Dilwortha mówi, że można podzielić \mathcal{F} na 2 antyłańcuchy, a więc rozmiar \mathcal{F} jest nie większy niż dwa największe antyłańcuchy. Dla n=2k powtarzając dowód nierówności LYM dostajemy $\sum_{A\in\mathcal{F}}\frac{1}{\binom{n}{|A|}}\leq 2$, biorąc największe możliwe \mathcal{F} wiemy, że $\mathcal{F}\geq \binom{n}{k}$ (wystar-

czy wziąć maksymalny antyłańcuch) oraz \mathcal{F} nie może mieć więcej niż $\binom{n}{k}$ elementów wielkości k, czyli $\sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}} \geq \binom{n}{k} \cdot \frac{1}{\binom{n}{k}} + \left(|\mathcal{F}| - \binom{n}{k}\right) \frac{1}{\binom{n}{k+1}}$, co z poprzednią nierównością kończy dowód.

Twierdzenie. Najmniejsza rozróżniająca rodzina \mathcal{F} podzbiorów [n] ma $\lceil \log_2 n \rceil$ elementów.

Dowód. Funkcja $f:[n]\ni x\to \{F\in\mathcal{F}:x\in F\}\in 2^{\mathcal{F}}$ jest injekcją, więc $n\le 2^{|\mathcal{F}|}$ i $|\mathcal{F}|\ge \lceil\log_2 n\rceil$. Konstrukcja: $F_1=\{1,\ldots,\frac{n}{2}\}$ rozróżnia połowy między sobą, $F_2=\{1,\ldots,\frac{n}{4}\}\cup \{\frac{n}{2}+1,\ldots,\frac{3}{4}n\}$ ćwiartki i tak dalej.

Twierdzenie. Niech $s, r, n \in \mathbb{N}_1$ oraz s < r < n i niech \mathcal{F} będzie rodziną podzbiorów r-elementowych [n] taką, że dla dowolnych $A \neq B \in \mathcal{F}$ jest $|A \cap B| \leq s$. Zachodzi

$$|\mathcal{F}| \le \frac{\binom{n}{s+1}}{\binom{r}{s+1}}.$$

Dowód. Zauważamy, że żadne dwa elementy \mathcal{F} nie posiadają takich samych podzbiorów rozmiaru s+1 (inaczej przecięcie byłoby za duże), więc $|\mathcal{F}| \cdot \binom{r}{s+1} \leq \binom{n}{s+1}$.