Funktionalanalysis 1

Übungsaufgaben zu:

"Lecture 05 – Schwache Topologien" "Lecture 06 – Beispiele schwacher Topologien"

- 06/1: Man betrachte den Banachraum $L^{\infty}(0,1)$, und erinnere sich dass $L^{\infty}(0,1) = L^{1}(0,1)'$. Damit haben wir auf $L^{\infty}(0,1)$ drei in natürlicher Weise gegebene Topologien: die Normtopologie, die w-Topologie, und die w^* -Topologie.
 - (a) Der Funktionenraum C([0,1]) ist ein Teilraum von $L^{\infty}(0,1)$. In welcher(n) der obigen Topologien ist er abgeschlossen, und in welcher(n) nicht?
 - (b) Zeige, dass die w^* -Topologie verschieden von der w-Topologie ist.
 - (c) Ein Banachraum heißt reflexiv, wenn die kanonische Abbildung $\iota:X\to X''$ surjektiv ist. Zeige, dass $L^1(0,1)$ nicht reflexiv ist.
- 06 / 2:*Sei $(X, \|.\|)$ ein normierter Raum. Da die kanonische Einbettung $\iota: X \to X''$ den Raum X isometrisch und bijektiv auf $\iota(X)$ abbildet, ist sie ein Homöomorphismus von $(X, \|.\|_X)$ auf $(\iota(X), \|.\|_{X''}|_{\iota(X)})$).

Zeige auf zwei Arten, dass ι auch ein Homöomorphismus von $(X, \sigma(X, X'))$ auf $(\iota(X), \sigma(X'', X')|_{\iota(X)})$ ist (hier schreiben wir $\sigma(X'', X')$ für $\sigma(X'', \iota_1(X'))$ wobei $\iota_1 : X' \to X'''$ die kanonische Einbettung ist). Nämlich: (1) betrachte explizit Nullumgebungsbasen der entsprechenden Topologien; (2) argumentiere mittels der Transitivitätseigenschaft initialer Topologien.