

FCC PART 90

TEST AND MEASUREMENT REPORT

For

Canam Technology, Inc.

5318 East 2nd St., #700, Long Beach, CA 90803, USA

FCC ID: TCJ-M4BBDAV

Report Type:

Original Report

Product Type:

MARK-IV VHF (Class-B)
Signal Booster

Samon (le

Simon Ma

Prepared By: Test Engineer

Report Number: R1503301-90 Rev A

Report Date: 2015-06-25

Bo Li

Reviewed By: RF Lead

Bay Area Compliance Laboratories Corp.

1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government.

* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1.	Gen	neral Information	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	MECHANICAL DESCRIPTION	5
	1.3	Objective	
	1.4	RELATED SUBMITTAL(S)/GRANT(S)	
	1.5	TEST METHODOLOGY	
	1.6	MEASUREMENT UNCERTAINTY	
	1.7	TEST FACILITY	6
2	Syst	tem Test Configuration	8
	2.1	JUSTIFICATION	
	2.2	EUT Exercise Software	
	2.3	EQUIPMENT MODIFICATIONS	
	2.4	Internal Configuration	
	2.5	LOCAL SUPPORT EQUIPMENT	
	2.6	LOCAL SUPPORT EQUIPMENT POWER SUPPLY AND LINE FILTERS	
	2.7	EXTERNAL I/O CABLING LIST AND DETAILS	
3	Sun	nmary of Test Results	9
4	FC	C §2.1091 - RF Exposure Information	10
	4.1	APPLICABLE STANDARDS	
	4.2	MPE Prediction.	
	4.3	CONCLUSION	
5	FC	C \$2.1046 & \$90.219(e) – RF Output Power	11
	5.1	APPLICABLE STANDARD	
	5.2	TEST PROCEDURE	
	5.3	TEST EQUIPMENT LIST AND DETAILS	
	5.4	TEST ENVIRONMENTAL CONDITIONS	
	5.5	TEST RESULTS	
6	FC	C §2.1049 & §90.219(e) – Occupied Bandwidth & Emission Mask	13
	6.1	APPLICABLE STANDARD	13
	6.2	TEST PROCEDURE	
	6.3	TEST EQUIPMENT LIST AND DETAILS	
	6.4	TEST ENVIRONMENTAL CONDITIONS	14
	6.5	TEST RESULTS	14
7	FC	C §2.1051 & §90.219(e) - Spurious Emissions at Antenna Terminals	35
	7.1	APPLICABLE STANDARD	35
	7.2	TEST PROCEDURE	35
	7.3	TEST EQUIPMENT LIST AND DETAILS	
	7.4	TEST ENVIRONMENTAL CONDITIONS	
	7.5	TEST RESULTS	35
8	FC	C §2.1053 & §90.219(e) – Field Strength of Spurious Radiation	54
	8.1	APPLICABLE STANDARD	54
	8.2	TEST PROCEDURE	
	8.3	TEST EQUIPMENT LIST AND DETAILS	
	8.4	TEST ENVIRONMENTAL CONDITIONS	
	8.5	TEST RESULTS	55

9 FC	CC §90.219 – Noise Figure	56
9.1	APPLICABLE STANDARD	56
9.2	TEST PROCEDURE	56
9.3	TEST EQUIPMENT LIST AND DETAILS	56
9.4	TEST ENVIRONMENTAL CONDITIONS	56
9.5	TEST RESULTS	57
10 FC	CC §90.219 – Out of Band Rejection	59
10.1	APPLICABLE STANDARD	59
10.2	TEST PROCEDURE	
10.3	TEST EQUIPMENT LIST AND DETAILS	
10.4	TEST ENVIRONMENTAL CONDITIONS	
10.5	TEST RESULTS	60
11 Ex	chibit A - FCC Labeling Requirements	61
11.1	FCC ID LABEL REQUIREMENTS	61
11.2	FCC ID LABEL CONTENT AND LOCATION	62
12 Ex	chibit B - Test Setup Photographs	63
12.1	RADIATED EMISSION BELOW 1 GHZ-FRONT VIEW	63
12.2	RADIATED EMISSION BELOW 1 GHZ-REAR VIEW	
12.3	RADIATED EMISSION ABOVE 1 GHZ–FRONT VIEW	64
12.4	RADIATED EMISSION ABOVE 1 GHZ–REAR VIEW	64
13 Ex	chibit C - EUT Photographs	65
13.1	EUT Front View	65
13.2	EUT REAR VIEW	65
13.3	EUT TOP VIEW	66
13.4	EUT BOTTOM VIEW	66
13.5	EUT SIDE VIEW 1	
13.6	EUT SIDE VIEW 2	
13.7	EUT COVER OFF VIEW	
13.8	IALC MODULE FRONT VIEW	
13.9	IALC MODULE REAR VIEW	
13.10		
13.11		
13.12		
13.13		
13.14	ECM BOTTOM VIEW	71

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	R1503301-90	Original Report	2015-06-25	
1 R1503301-90 Rev A		Revised section 13.2	2015-06-25	

1. General Information

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Canam Technology,Inc*. and their product, FCC ID: TCJ-M4BBDAV, model: M4BBDAV, which will henceforth be referred to as the EUT (Equipment Under Test). The EUT is a uni-directional amplifier.

Specifications				
Frequency Band	150-174 MHz			
Modulation Type	FM, C4FM, CQPSK			
Emission Designator	F1E, F3E, F1D, G1E			
RF Output Power	5 Watts (ERP)			
Channel Spacing	25 kHz			
Necessary/authorized Bandwidth	25 kHz			
Power Source	120 VAC			

1.2 Mechanical Description

The EUT measures approximately 48.9cm (L) x 48.2cm (W) x 17.7cm (H) and weighs 18000 g.

The test data gathered are from production sample. Serial number: 639 provided by the manufacturer.

1.3 Objective

This type approval report is prepared on behalf of *Canam Technology*, *Inc.* in accordance with Part 90 of the Federal Communication Commissions rules.

The objective was to determine the RF output power; Occupied Bandwidth, Spurious Emissions, Band Edge and Emission Mask are in compliance with the FCC rules.

1.4 Related Submittal(s)/Grant(s)

None

1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: KDB 935210 D02 v02r01

All emissions measurement was performed by Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2003, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

1.7 Test Facility

Bay area compliance Laboratories Corp. (BACL) is:

- 1- An independent Commercial Test Laboratory accredited to **ISO 17025: 2005** by **A2LA**, in the fields of: Electromagnetic Compatibility & Telecommunications covering Emissions, Immunity, Radio, RF Exposure, Safety and Telecom. This includes NEBS (Network Equipment Building System), Wireless RF, Telecommunications Terminal Equipment (TTE); Network Equipment; Information Technology Equipment (ITE); Medical Electrical Equipment; Industrial, Commercial, and Medical Test Equipment; Professional Audio and Video Equipment; Electronic (Digital) Products; Industrial and Scientific Instruments; Cabled Distribution Systems and Energy Efficiency Lighting.
- 2- An ENERGY STAR Recognized Laboratory, for the LM80 Testing, a wide variety of Luminares and Computers.
- 3- A NIST Designated Phase-I and Phase-II CAB including: ACMA (Australian Communication and Media Authority), BSMI (Bureau of Standards, Metrology and Inspection of Taiwan), IDA (Infocomm Development Authority of Singapore), IC(Industry Canada), Korea (Ministry of Communications Radio Research Laboratory), NCC (Formerly DGT; Directorate General of Telecommunication of Chinese Taipei) OFTA (Office of the Telecommunications Authority of Hong Kong), Vietnam, VCCI Voluntary Control Council for Interference of Japan and a designated EU CAB (Conformity Assessment Body) (Notified Body) for the EMC and R&TTE Directives.
- 4- A Product Certification Body accredited to **ISO Guide 65: 1996** by **A2LA** to certify:
- 2. Radio Standards Specifications (RSS) in the Category I Equipment Standards List and All Broadcasting Technical Standards (BETS) in Category I Equipment Standards List for Industry Canada.
- 3. Radio Communication Equipment for Singapore.
- 4. Radio Equipment Specifications, GMDSS Marine Radio Equipment Specifications, and Fixed Network Equipment Specifications for Hong Kong.
- 5. Japan MIC Telecommunication Business Law (A1, A2) and Radio Law (B1, B2 and B3).
- 6. Audio/Video, Battery Charging Systems, Computers, Displays, Enterprise Servers, Imaging Equipment, Set-Top Boxes, Telephony, Televisions, Ceiling Fans, CFLs (Including GU24s), Decorative Light Strings, Integral LED Lamps, Luminaires, Residential Ventilating Fans.

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2009, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-D.

The EUT was tested in the normal (native) operating mode to represent *worst*-case results during the final qualification test.

2.2 EUT Exercise Software

The software used was a web based GUI.

2.3 Equipment Modifications

No modifications were made to the EUT.

2.4 Internal Configuration

Manufacturer	Manufacturer Descriptions		Serial Numbers
Canam Technology Power Amplifer		CT-HPAV10	N/A
Canam Technology	Input Automatic Level Control	M4-iALC-VHF	N/A

2.5 Local Support Equipment

Manufacturer Description		Model No.	Serial No.	
Dell	Laptop	PP11L	H5914 A03	

2.6 Local Support Equipment Power Supply and Line Filters

N/A

2.7 External I/O Cabling List and Details

Cable Description	Length (m)	From	То
Cross over Cable	> 1.0	EUT	Laptop
RF Cable	1.0	EUT	Signal Generator
RF Cable	1.0	EUT	PSA

3 Summary of Test Results

FCC Rules	FCC Rules Description of Tests	
§2.1091	RF Exposure	Compliant
§2.1046, §90.219(e)	RF Output Power	Compliant
§2.1051, §90.219(e)	Intermodulation	Compliant
§2.1049, §90.219(e)	Occupied Bandwidth & Emission Mask	Compliant
§2.1051, §90.219(e)	Spurious Emissions at Antenna Terminals	Compliant
§2.1053, §90.219(e)	§2.1053, §90.219(e) Field Strength of Spurious Radiation	
§90.219(e)	§90.219(e) Noise Figure	
§90.219	Out of Band Rejection	Compliant

4 FCC §2.1091 - RF Exposure Information

4.1 Applicable Standards

FCC §2.1091, (a) Requirements of this section are a consequence of Commission responsibilities under the National Environmental Policy Act to evaluate the environmental significance of its actions. See subpart I of this chapter, in particular §1.1307(b).

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for Occupational/Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3-1.34	614	1.63	*(100)	6
1.34-30	1842/f	4.89/f	$*(900/f^2)$	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	f/300	6
1500-100,000	/	/	5	6

f = frequency in MHz

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal (dBm):

Maximum peak output power at antenna input terminal (mW):

Prediction distance (cm):

Prediction frequency (MHz):

Maximum Antenna Gain, typical (dBi):

Maximum Antenna Gain (numeric):

Power density of prediction frequency at 100 cm (mW/cm²):

10.37

MPE limit for controlled exposure at prediction frequency (mW/cm²): 1.0

4.3 Conclusion

The device complies with the MPE requirements by providing a safe separation distance of at least 100 cm between the antenna with maximum 0 dBi gain, including any radiating structure, and any persons when normally operated.

^{* =} Plane-wave equivalent power density

5 FCC §2.1046 & §90.219(e) – RF Output Power

5.1 Applicable Standard

According to FCC §90.219(e), the output power capability of a signal booster must be designed for deployments providing a radiated power not exceeding 5 Watts ERP for each retransmitted channel.

5.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

5.3 Test Equipment List and Details

Manufacturer Description		Description Model		Calibration Due Date	
Agilent	Spectrum Analyzer	E4446A	MY48250238	2015-09-03	
Agilent	Generator, Signal	E4438C	MY45091309	2015-07-15	

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

5.4 Test Environmental Conditions

Temperature:	23.4 °C	
Relative Humidity:	30 %	
ATM Pressure:	101.1 kPa	

The testing was performed by Jin Yang on 2015-06-02 in the RF Site.

5.5 **Test Results**

Mode	Channel	Frequency (MHz)	Input Power (dBm)	Output Power (dBm)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)
FM	Low	150.0625	-25	35.04	-2.15	32.89	37	-4.11
	Middle	162	-25	36.04	-2.15	33.89	37	-3.11
Data	High	173.3875	-25	33.88	-2.15	31.73	37	-5.27
FM	Low	150.0625	-25	34.92	-2.15	32.77	37	-4.23
	Middle	162	-25	35.92	-2.15	33.77	37	-3.23
Voice	High	173.3875	-25	33.77	-2.15	31.62	37	-5.38
	Low	150.0625	-25	34.42	-2.15	32.27	37	-4.73
C4FM	Middle	162	-25	36.34	-2.15	34.19	37	-2.81
	High	173.3875	-25	34.12	-2.15	31.97	37	-5.03
	Low	150.0625	-25	34.97	-2.15	32.82	37	-4.18
CQPSK	Middle	162	-25	36.70	-2.15	34.55	37	-2.45
	High	173.3875	-25	34.43	-2.15	32.28	37	-4.72

Note: Manufacturer's rated power is 5 Watts (37 dBm), 0 dBi antenna gain was used while testing.

 $EIRP = Measured\ Conducted\ Output\ Power\ (dBm) + Antenna\ Gain\ (dBi) \\ ERP = EIRP - 2.15\ (dB)$

dBi = dBd + 2.15

6 FCC §2.1049 & §90.219(e) – Occupied Bandwidth & Emission Mask

6.1 Applicable Standard

According to FCC §90.219 (e): a signal booster must be designed such that all signals that it retransmits meet the following requirement: there is no change in the occupied bandwidth of the retransmitted signals.

Applicable Emission Masks

Frequency Band (MHz)	Mask for equipment with audio low pass filter	Mask for equipment without audio low pass filter
150-174	B, D or E	C, D or E

§90.210 (c) Emission Mask C. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: At least 83 log (fd/5) dB;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log ($f_d^2/11$) dB or 50 dB, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

6.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band ± 100 kHz from the carrier frequency.

EUT does not equipt with audio low pass filter. Operating frequency range falls into 150-174 range and channel bandwidth is 25 kHz, thus emission mask C applied;

6.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Agilent	Spectrum Analyzer	E4446A	MY48250238	2015-09-03
Agilent	Generator, Signal	E4438C	MY45091309	2015-07-15

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

6.4 Test Environmental Conditions

Temperature:	23.4 °C
Relative Humidity:	30 %
ATM Pressure:	101.1 kPa

The testing was performed by Jin Yang on 2015-06-02 in the RF Site.

6.5 Test Results

Mode	Channel	Frequency (MHz)	Output OBW (kHz)	Input OBW (kHz)
FM	Low	150.0625	6.2419	6.2469
	Middle	162	6.2412	6.2452
Data	High	173.3875	6.2402	6.2478
FM Voice	Low	150.0625	4.1105	4.1308
	Middle	162	4.1098	4.1356
	High	173.3875	4.1115	4.1330
C4FM	Low	150.0625	8.3245	8.3210
	Middle	162	8.2817	8.3820
	High	173.3875	8.4194	8.4906
CQPSK	Low	150.0625	4.9335	5.0394
	Middle	162	4.9696	5.0263
	High	173.3875	4.9154	5.0639

Please refer to the following tables and plots.

Occupied Bandwidth

FM Data, Input, Low Channel – 150.0625 MHz

FM Data, Output, Low Channel – 150.0625 MHz

FM Data, Input, Middle Channel – 162 MHz

FM Data, Output, Middle Channel – 162 MHz

FM Data, Input, High Channel – 173.3875 MHz

FM Data, Output, High Channel – 173.3875 MHz

FM Voice, Input, Low Channel – 150.0625 MHz

FM Voice, Output, Low Channel – 150.0625 MHz

FM Voice, Input, Middle Channel – 162 MHz

FM Voice, Output, Middle Channel – 162 MHz

FM Voice, Input, High Channel – 173.3875 MHz

FM Voice, Output, High Channel – 173.3875 MHz

C4FM, Input, Low Channel – 150.0625 MHz

C4FM, Output, Low Channel – 150.0625 MHz

C4FM, Input, Middle Channel – 162 MHz

C4FM, Output, Middle Channel – 162 MHz

C4FM, Input, High Channel – 173.3875 MHz

C4FM, Output, High Channel – 173.3875 MHz

CQPSK, Input, Low Channel – 150.0625 MHz

CQPSK, Output, Low Channel – 150.0625 MHz

CQPSK, Input, Middle Channel – 162 MHz

CQPSK, Output, Middle Channel – 162 MHz

CQPSK, Input, High Channel – 173.3875 MHz

CQPSK, Output, High Channel – 173.3875 MHz

Emission Mask

CW, Low Channel – 150.0625 MHz

FM Data, Low Channel – 150.0625 MHz

FM Voice, Low Channel – 150.0625 MHz

C4FM, Low Channel – 150.0625 MHz

CQPSK, Low Channel – 150.0625 MHz

CW, Middle Channel – 162 MHz

FM Data, Middle Channel – 162 MHz

FM Voice, Middle Channel – 162 MHz

C4FM, Middle Channel – 162 MHz

CQPSK, Middle Channel – 162 MHz

CW, High Channel – 173.3875 MHz

FM Data, High Channel – 173.3875 MHz

FM Voice, High Channel – 173.3875 MHz

C4FM, High Channel – 173.3875 MHz

CQPSK, High Channel – 173.3875 MHz

7 FCC §2.1051 & §90.219(e) - Spurious Emissions at Antenna Terminals

7.1 Applicable Standard

According to FCC §90.219 (e), spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth.

7.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

7.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Agilent	Spectrum Analyzer	E4446A	MY48250238	2015-09-03
Agilent	Generator, Signal	E4438C	MY45091309	2015-07-15

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

7.4 Test Environmental Conditions

Temperature:	23.4 °C
Relative Humidity:	30 %
ATM Pressure:	101.1 kPa

The testing was performed by Jin Yang on 2015-06-02 in the RF Site.

7.5 Test Results

Please refer to the following plots.

Spurious Emissions

FM Data, Low Channel – 150.0625 MHz

FM Data, Middle Channel – 162 MHz

FM Data, High Channel – 173.3875 MHz

FM Voice, Low Channel – 150.0625 MHz

FM Voice, Middle Channel – 162 MHz

FM Voice, High Channel – 173.3875 MHz

C4FM, Low Channel – 150.0625 MHz

C4FM, Middle Channel – 162 MHz

C4FM, High Channel – 173.3875 MHz

CQPSK, Low Channel – 150.0625 MHz

CQPSK, Middle Channel – 162 MHz

CQPSK, High Channel – 173.3875 MHz

Intermodulation

FM Data, Input, Low Channel

FM Data, Output, Low Channel

FM Data, Input, Middle Channel

FM Data, Output, Middle Channel

FM Data, Input, High Channel

FM Data, Output, High Channel

FM Voice, Input, Low Channel

FM Voice, Output, Low Channel

FM Voice, Input, Middle Channel

FM Voice, Output, Middle Channel

FM Voice, Input, High Channel

FM Voice, Output, High Channel

C4FM, Input, Low Channel

C4FM, Output, Low Channel

C4FM, Input, Middle Channel

C4FM, Output, Middle Channel

C4FM, Input, High Channel

C4FM, Output, High Channel

CQPSK, Input, Low Channel

CQPSK, Output, Low Channel

CQPSK, Input, Middle Channel

CQPSK, Output, Middle Channel

CQPSK, Input, High Channel

CQPSK, Output, High Channel

8 FCC §2.1053 & §90.219(e) – Field Strength of Spurious Radiation

8.1 Applicable Standard

According to FCC §90.219 (e), spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth.

8.2 Test Procedure

The transmitter was placed on Styrofoam on the turntable, and it was normal transmitting with 50ohm termination which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

8.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Eaton	Antenna, Horn	96001	2617	2015-11-18
EMCO	Antenna, Horn	3115	9511-4627	2016-01-15
НР	Pre- Amp	8447D	2944A06639	2015-09-06
HP/ Agilant	Pre Amplifier	8449B OPT HO2	3008A0113	2016-03-11
Sunol Sciences	Antenna, Biconi-Log	JB3	A020106-2	2015-09-17
APREL	Anttenna dipole	ALS-D-1800-S-2	200-00664	2016-10-27
Agilent	Spectrum Analyzer	E4446A	MY48250238	2015-09-03
Agilent	Generator, Signal	E4438C	MY45091309	2015-07-15
Sunol Science Corp	System Controller	SC99V	122303-1	N/R

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

8.4 Test Environmental Conditions

Temperature:	23.4 °C
Relative Humidity:	30 %
ATM Pressure:	101.1 kPa

The testing was performed by Jin Yang on 2015-06-02 in the 5 meter chamber 2.

8.5 Test Results

Worst Margin: -40.181 dB at 1126.83 MHz in the Horizontal polarization.

Please see following table for detailed results.

CW, Low Channel – 150.0625 MHz

Indi	cated		Test Ar	ntenna	Substituted						
Freq. (MHz)	Amp. (dBuV)	Azimuth Degrees	Height (cm)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Antenna Cord. (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1041.5	52.24	290	165	V	1041.5	-58.67	5.595	0.35	-53.425	-13	-40.425
1183.83	51.09	322	159	Н	1183.83	-59.23	5.324	0.37	-54.276	-13	-41.276

Note: All other emissions at noise floor level.

CW, Middle Channel – 162 MHz

Indic	cated		Test Aı	ntenna	Substituted						
Freq. (MHz)	Amp. (dBuV)	Azimuth Degrees	Height (cm)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Antenna Cord. (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1043.3	51.84	293	161	V	1043.3	-58.82	5.595	0.35	-53.575	-13	-40.575
1126.83	52.10	322	159	Н	1126.83	-58.02	5.189	0.35	-53.181	-13	-40.181

Note: All other emissions at noise floor level.

CW, High Channel – 173.3875 MHz

Indi	cated		Test Aı	ntenna	Substituted						
Freq. (MHz)	Amp. (dBuV)	Azimuth Degrees	Height (cm)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Antenna Cord. (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1048.62	52.15	287	161	V	1048.62	-59.29	5.595	0.35	-54.045	-13	-41.045
1103.67	50.96	320	164	Н	1103.67	-59.09	5.189	0.35	-54.251	-13	-41.251

Note: All other emissions at noise floor level.

9 FCC §90.219 – Noise Figure

9.1 Applicable Standard

According to FCC §90.219 (e), the noise figure of a signal booster must not exceed 9 dB in either direction.

9.2 Test Procedure

Connect the EUT and Noise Source to the Noise Figure Analyzer as the measurement set-up diagram shown below,

Set the Noise Figure Analyzer to measured frequency and record the reading.

9.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Agilent	Smart Noise Source	AT/N4002A	US41130571	04-30-2016
Agilent	Noise Figure Analyzer	AT/N8973A	GB41111016	04-30-2016

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	24 °C
Relative Humidity:	31 %
ATM Pressure:	101 kPa

The testing was performed by Simon Ma on 2015-05-15 in the RF Site.

9.5 Test Results

Frequency (MHz)	Noise Figure (dB)	Limit (dB)
150.0625	2.764	9
162	3.195	9
173.3875	2.684	9

Please refer to the following plots

Low Channel - 150.0625 MHz

Middle Channel - 162 MHz

High Channel – 173.39 MHz

10 FCC §90.219 - Out of Band Rejection

10.1 Applicable Standard

According to FCC KDB 935210 D02 v02r01, appendix D section3, test for rejection of out of band signals. Filter frequency response plots are acceptable.

10.2 Test Procedure

KDB 935210 D05, Section 4.3.

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The span of the spectrum analyzer was set to be wide enough in order to capture the spectrum of entire operating band.

10.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Agilent	Spectrum Analyzer	E4446A	MY48250238	2015-09-03
Agilent	Generator, Signal	E4438C	MY45091309	2015-07-15

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	23.4 °C
Relative Humidity:	30 %
ATM Pressure:	101.1 kPa

The testing was performed by Jin Yang on 2015-06-02 in the RF Site.

10.5 Test Results

Please refer to the following plot,

