Mathematics for Machine Learning

Probabilistic Modeling & Inference

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

Probabilistic Models & Bayesian Inference

2 Latent-Variable Models

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").
 - Define a parameter μ which describes the probability of "heads" (the parameter of a Bernoulli distribution).

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").
 - Define a parameter μ which describes the probability of "heads" (the parameter of a Bernoulli distribution).
 - Then, we can sample an outcome $x \in \{\text{head, tail}\}\$ from the Bernoulli distribution $p(x \mid \mu) = \text{Ber}(\mu)$.

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").
 - Define a parameter μ which describes the probability of "heads" (the parameter of a Bernoulli distribution).
 - Then, we can sample an outcome $x \in \{\text{head, tail}\}\$ from the Bernoulli distribution $p(x \mid \mu) = \text{Ber}(\mu)$.
- Note: μ is unknown in advance and can never be observed directly.

- We are concerned with prediction of future events and decision making.
- We build models that describe the generative process that generates the observed data.
- For example, consider the outcome of a coin-flip experiment ("heads" or "tails").
 - Define a parameter μ which describes the probability of "heads" (the parameter of a Bernoulli distribution).
 - Then, we can sample an outcome $x \in \{\text{head, tail}\}\$ from the Bernoulli distribution $p(x \mid \mu) = \text{Ber}(\mu)$.
- Note: μ is unknown in advance and can never be observed directly.
- We need mechanisms to learn something about μ given observed outcomes of coin-flip.

Probabilistic Models

- The benefit of using probabilistic models:
 - A unified and consistent set of tools from probability theory for modeling, inference, prediction, and model selection.
- $p(\mathbf{x}, \theta)$: the joint distribution of the observed variables \mathbf{x} and the hidden parameters θ .

Probabilistic Models

- The benefit of using probabilistic models:
 - A unified and consistent set of tools from probability theory for modeling, inference, prediction, and model selection.
- $p(x, \theta)$: the joint distribution of the observed variables x and the hidden parameters θ . It encapsulates the information:
 - The prior and the likelihood.
 - The marginal likelihood p(x) (though integrating out the parameters is required.)
 - The posterior (obtained by dividing the joint by the marginal likelihood).

Probabilistic Models

- The benefit of using probabilistic models:
 - A unified and consistent set of tools from probability theory for modeling, inference, prediction, and model selection.
- $p(\mathbf{x}, \boldsymbol{\theta})$: the joint distribution of the observed variables \mathbf{x} and the hidden parameters $\boldsymbol{\theta}$. It encapsulates the information:
 - The prior and the likelihood.
 - The marginal likelihood p(x) (though integrating out the parameters is required.)
 - The posterior (obtained by dividing the joint by the marginal likelihood).
- Therefore, a probabilistic model is specified by the joint distribution of all its random variables.

- ullet We have already learnt two ways of estimating model parameters $oldsymbol{ heta}$:
 - Maximum likelihood estimation (MLE)
 - Maximum a posteriori estimation (MAP)
- We can then obtain a *single-best* value of θ (solving an optimization problem), then we can use them to make predictions.
- Note: These decision-making systems typically have different objective functions than the likelihood (e.g., squared-error loss or a mis-classification error).
- Having the full posterior distribution around can be useful and leads to more robust decisions.

- Bayesian inference: finding such a posterior distribution.
- For a dataset \mathcal{X} , a parameter prior $p(\theta)$, and a likelihood function, the posterior

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})},$$

then by applying Bayes' theorem,

$$p(\mathcal{X}) = \int p(\mathcal{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

- Bayesian inference: finding such a posterior distribution.
- For a dataset \mathcal{X} , a parameter prior $p(\theta)$, and a likelihood function, the posterior

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})},$$

then by applying Bayes' theorem,

$$p(\mathcal{X}) = \int p(\mathcal{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

• Propagate uncertainty from the parameters to the data. Specifically, with a distribution $p(\theta)$, our predictions will be

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

- Bayesian inference: finding such a posterior distribution.
- ullet For a dataset \mathcal{X} , a parameter prior $p(oldsymbol{ heta})$, and a likelihood function, the posterior

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})},$$

then by applying Bayes' theorem,

$$p(\mathcal{X}) = \int p(\mathcal{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

• Propagate uncertainty from the parameters to the data. Specifically, with a distribution $p(\theta)$, our predictions will be

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta}}[p(\mathbf{x} \mid \boldsymbol{\theta})],$$

which no longer depend on the model parameters θ .

- Bayesian inference: finding such a posterior distribution.
- For a dataset \mathcal{X} , a parameter prior $p(\theta)$, and a likelihood function, the posterior

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})},$$

then by applying Bayes' theorem,

$$p(\mathcal{X}) = \int p(\mathcal{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

 Propagate uncertainty from the parameters to the data. Specifically, with a distribution $p(\theta)$, our predictions will be

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta}}[p(\mathbf{x} \mid \boldsymbol{\theta})],$$

which no longer depend on the model parameters θ .

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta}}[p(\mathbf{x} \mid \boldsymbol{\theta})],$$

- $oldsymbol{ ilde{ heta}}$ The prediction becomes an average over all plausible parameter values $oldsymbol{ heta}$.
 - The plausibility is encapsulated by the distribution $p(\theta)$.

Computational Issues

- ullet MLE or MAP yields a consistent point estimate $oldsymbol{ heta}^*$ of the parameters.
 - Key computational problem: optimization.
 - Prediction: straightforward.
- Bayesian inference yields a distribution.
 - Key computational problem: integration.
 - Prediction: solving another integration problem.

Outline

1 Probabilistic Models & Bayesian Inference

2 Latent-Variable Models

Latent Variables

- ullet Sometimes it is useful to have additional variable (besides $oldsymbol{ heta}$) as part of the model.
 - We call them latent variables.
- Latent variables can
 - Describe the data-generation process.
 - Increase the interpretability of the model.
 - Simplify the structure of the model.

Denote data by \mathbf{x} , the model parameter by $\boldsymbol{\theta}$ and the latent variables by \mathbf{z} , we obtain the conditional distribution:

$$p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$$

Denote data by \mathbf{x} , the model parameter by $\boldsymbol{\theta}$ and the latent variables by \mathbf{z} , we obtain the conditional distribution:

$$p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$$

This allows us to generate data for any model parameter and latent variables.

Denote data by \mathbf{x} , the model parameter by $\boldsymbol{\theta}$ and the latent variables by \mathbf{z} , we obtain the conditional distribution:

$$p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$$

This allows us to generate data for any model parameter and latent variables.

• We place a prior p(z) on the given latent variables z.

Denote data by \mathbf{x} , the model parameter by $\boldsymbol{\theta}$ and the latent variables by \mathbf{z} , we obtain the conditional distribution:

$$p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$$

This allows us to generate data for any model parameter and latent variables.

• We place a prior p(z) on the given latent variables z.

A Two-Step Procedure

- **1** Compute the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ (not depending on \mathbf{z}).
- ② Use the likelihood for parameter estimation or Bayesian inference.

Likelihood in Terms of Marginal Distribution

What we already have: a conditional distribution

$$p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$$

We need to marginalize out the latent variables to have the predictive distribution of the data given the model parameters θ :

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \int p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z},$$

Likelihood in Terms of Marginal Distribution

What we already have: a conditional distribution

$$p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$$

We need to marginalize out the latent variables to have the predictive distribution of the data given the model parameters θ :

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \int p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z},$$

Note that p(z) is a prior,

Likelihood in Terms of Marginal Distribution

What we already have: a conditional distribution

$$p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}).$$

We need to marginalize out the latent variables to have the predictive distribution of the data given the model parameters θ :

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \int p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z},$$

Note that p(z) is a prior, and $(x \mid \theta)$ does not depend on z.

Place a prior $p(\theta)$ and use Bayes' theorem to obtain

Place a prior $p(\theta)$ and use Bayes' theorem to obtain

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})}$$

Place a prior $p(\theta)$ and use Bayes' theorem to obtain

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})}$$

 \Rightarrow a posterior distribution over the model parameters given a dataset ${\mathcal X}.$

Place a prior $p(\theta)$ and use Bayes' theorem to obtain

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})}$$

- \Rightarrow a posterior distribution over the model parameters given a dataset $\mathcal{X}.$
 - $p(X \mid \theta)$ requires the marginalization of latent variables **z**.

$$p(\mathbf{z} \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta},$$

$$p(\mathbf{z} \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta},$$

where $p(\mathbf{z})$ is the prior on \mathbf{z} , and $p(\mathcal{X} \mid \mathbf{z})$ requires us to integrate out hte model parameters $\boldsymbol{\theta}$.

$$p(\mathbf{z} \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta},$$

where $p(\mathbf{z})$ is the prior on \mathbf{z} , and $p(\mathcal{X} \mid \mathbf{z})$ requires us to integrate out hte model parameters $\boldsymbol{\theta}$.

Note that it may be difficult to solve the integrals analytically.

$$p(\mathbf{z} \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta},$$

where $p(\mathbf{z})$ is the prior on \mathbf{z} , and $p(\mathcal{X} \mid \mathbf{z})$ requires us to integrate out hte model parameters $\boldsymbol{\theta}$.

- Note that it may be difficult to solve the integrals analytically.
- An easier quantity to compute:

$$p(\mathbf{z} \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathcal{X})}, \quad p(\mathcal{X} \mid \mathbf{z}) = \int p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta},$$

where $p(\mathbf{z})$ is the prior on \mathbf{z} , and $p(\mathcal{X} \mid \mathbf{z})$ requires us to integrate out hte model parameters $\boldsymbol{\theta}$.

- Note that it may be difficult to solve the integrals analytically.
- An easier quantity to compute:

$$p(\mathbf{z} \mid \mathcal{X}, \boldsymbol{\theta}) = \frac{p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})p(\mathbf{z})}{p(\mathcal{X} \mid \boldsymbol{\theta})},$$

• $p(\mathbf{z})$: the prior on \mathbf{z} ; $p(\mathcal{X} \mid \mathbf{z}, \boldsymbol{\theta})$: given.

Example

Consider the set of affine functions.

- Let $\mathbf{x}_i = [1, x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(D)}]^{\top}$
- The corresponding parameter $\theta = [\theta_0, \theta_1, \dots, \theta_D]^{\top}$.
- Consider a more compact form as below:

$$f(\mathbf{x}_i, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x}_i.$$

Example

Consider the set of affine functions.

- Let $\mathbf{x}_i = [1, x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(D)}]^{\top}$
- The corresponding parameter $\theta = [\theta_0, \theta_1, \dots, \theta_D]^{\top}$.
- Consider a more compact form as below:

$$f(\mathbf{x}_i, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x}_i.$$

which is equivalent to

$$f(\mathbf{x}_i, \boldsymbol{\theta}) = \theta_0 + \sum_{d=1}^{D} \theta_d x_i^{(d)}$$

Discussions