CS 6505 - Homework 12

Caitlin Beecham

1

Let c be the branching factor of our nondeterministic turing machine which verifies whether $x \in L$. Namely, the branching factor is the maximum number of transition options ever available at some configuration of the turing machine. Now, to deterministically decide whether $x \in L$ in $O(2^{p|x|})$ time we do the following:

- Explore the tree of configurations breadth first starting from the start configuration.
- Say that p(x) is the number of steps it takes us to reach an accept or reject state non-deterministically on input x (when we verified which we could since this problem is in NP).
- Once we have explored breadth first say p(x)+5 levels from the starting configuration with input x, we can say the following. We know that either $x \in L$ or $x \notin L$. We know that the TM accepts on x if and only if $x \in L$. Thus, we know that once we reach the p(x)th level then the TM will accept if and only if $x \in L$. Likewise it will reject if and only if $x \in L$. Thus, if it accepts, we know $x \in L$. Otherwise, we know that $x \notin L$.

Note: there is definitely a finer point here. Namely, my argument is using the fact that