# Lecture 2: Equisingularity and Determinantal Singularities

by Terence Gaffney

#### **Notation**



- ▶ The parameter space is Y,  $X^d(0)$  denotes the fiber of the family over  $\{0\}$ .
- $\mathcal{X}^{d+k}$  denotes the total space of the family which is contained in  $Y \times \mathbb{C}^N$ . We always assume  $\mathcal{X}^{d+k}$  is equidimensional with equidimensional fibers.
- ▶ We usually assume  $Y \subset \mathcal{X}^{d+k}$ ,
- $\mathcal{X} = F^{-1}(0), X(y) = f_y^{-1}(0), \text{ where } f_y(z) = F(y, z)$
- S(X) the singular locus of X.



# Introduction: Our Goal, Landscapes and EIDS

▶ In the notes for the ICIS course we showed two theorems.

#### Theorem

(Sufficiency) Let  $\mathcal{X}$  be a family of ICIS over  $Y^k$  as in the basic setup. Suppose e(mJM(X(y),0)) is independent of y. Then X-Y is smooth, and the pair (X-Y,Y) satisfies W.

#### Theorem

(Necessity) Suppose  $\mathcal{X}$  is a family of ICIS, and the pair  $(\mathcal{X} - Y, Y)$  satisfies W at the origin. Then, the  $\mu_*$  sequence of X(y) is independent of y, as is  $e(m_y JM(X(y)))$ .

• The invariants depend only on the members of the family X(y), not

- the family. They also depend only on data at a point of X(y). Can we do this for non-isolated singularities?
- ▶ EIDS are an example where we can. The invariants are independent of family, but do depend on the landscape.
- ► This is a report on a joint work with Maria Aparecida Ruas. (G-Ruas 2021.)

# Introduction: Landscapes and Determinantal Singularities

- ▶ Why non-isolated singularities?
- ► There are many situations in which the set studied has additional structure which force the singularities to be non-isolated in general, and we want to study families which preserve this structure.
- ► For example, the set may be the image of a finite map, and we may want to preserve this property in deformations.
- Deciding on the structure we want to preserve in deformations is the first step in deciding on the landscape of the singularity, and the possible deformations depend on this choice.
- The Whitney umbrella, which is defined by  $z^2 x^2y = 0$ , can be thought of as a hypersurface, the image of a map-germ, or as a hypersurface with smooth singular locus. The allowable deformations depend on the choice of landscape; the last two choices have only trivial deformations, while every hypersurface can be deformed to a smooth manifold.

## The Landscape of Determinantal Singularities

- ▶ We choose to represent a determinantal singularity X, by finding  $f: \mathbb{C}^q, 0 \to \mathbb{C}^{n+k\times n}$ , where  $X = f^{-1}(M^t(n+k,n))$  for some t.
- ▶ The allowable deformations of X are gotten by deforming f and taking minors of size t.
- ▶ The generic objects in our landscape are the transverse sets ie.  $X = f^{-1}(M^t(n+k,n))$ , where f is transverse to the rank stratification of  $M^t(n+k,n)$ .
- Let  $\tilde{F}: U \subset \mathbb{C}^q \times \mathbb{C} \to \mathbb{C}^{n+k\times n}$  be a one parameter deformation of f such that  $\tilde{F}_s$  is transverse to the rank stratification of  $M^t(n+k,n)$ .  $\tilde{F}_s$  is called a stabilization of f for all  $s \neq 0$ ,
- $\widetilde{\mathcal{X}}_s = \widetilde{F}_s^{-1}(M^t)$  an essential smoothing of  $X = F^{-1}(M^t)$  for all  $s \neq 0$ . We call  $\widetilde{F}$  a stabilization family,  $\widetilde{\mathcal{X}}$  an essential smoothing family.



## The Landscape of Determinantal Singularities II

- So every determinantal singularity has a deformation to a transverse set, and if we fix a representative of an EIDS X, 0, the germ X, x is a generic object.
- ▶ Given an allowable deformation of X, 0, it is reasonable to hope that data from X at 0 which measures the failure of the transversality of f, and from the universal object M<sup>t</sup> will determine if the deformation is W equisingular.
- ▶ ICIS case—the universal object was  $0 \in \mathbb{C}^p$ , and e(JM(X)) measured the failure of transversality.

## Sectional Singularities

▶ This suggests a further generalization, considering varieties that arise as non-linear sections of a "universal variety". In the next diagram V is the universal variety and X is the inverse image of V by  $f_0$ .



- ► These sectional singularities include determinantal singularities, symmetric singularities, skew-symmetric singularities, and discriminants of A-finitely determined germs.
- ▶ The adaptation of elements of the Mather theory to non-linear sections of spaces has been done by Damon-87. In the last section we discuss the extension of the material here to this more general situation.

## Return to determinantal singularities: Obstacles

- ▶ What is the module N of infinitesimal deformations of X? (in the ICIS case it was a free  $\mathcal{O}_X$  module.)
- ► How do we measure the difference between JM(X), the infinitesimally trivial deformations, and N? (They should be the same if X is transverse.)
- If X an ICIS,  $\tilde{X}$  a smoothing, I a generic linear form, H defined by I, then the number of critical points of I on a generic fiber of  $\tilde{X}$  is an invariant  $m_d(X)$ , and  $m_d(X) = \mu(X) + \mu(X \cap H) = e(JM(X))$ . How do we relate  $m_d$  to the geometry of X and the modules JM(X) and N?

#### The Determinantal Normal module

- We construct elements of the determinantal normal module of X, N(X), by first deforming X by deforming f, taking minors of the right size, then taking the first order terms in t.
- ▶ The determinantal normal module of  $M^t(n+k,n)$  denoted  $N^t$  is defined using the identity map on  $\mathbb{C}^{n+k\times n}$ . It has some nice properties we explore in an example.

# Example: $N^3$ for M(3,3)

$$det(A(t)) = det \left( \begin{bmatrix} a_{1,1} + t & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} \right)$$

- defines a deformation of  $M^3(3,3)$ .
- ▶ Take the derivative with respect to t and set t to 0; we get the cofactor of  $a_{1,1}$ . This is an element of  $N^3$ .
- ▶ This is also  $\frac{\partial det(A)}{\partial a_{1,1}}$ .

$$det((A \circ f)(t)) = det \left( \begin{bmatrix} a_{1,1} \circ f + t & a_{1,2} \circ f & a_{1,3} \circ f \\ a_{2,1} \circ f & a_{2,2} \circ f & a_{2,3} \circ f \\ a_{3,1} \circ f & a_{3,2} \circ f & a_{3,3} \circ f \end{bmatrix} \right)$$

- defines a deformation of  $_3X = f^{-1}(M^3)$ .
- ▶ Take the derivative with respect to t and set t to 0; we get the cofactor of  $a_{1,1} \circ f$ . This is an element of N(X). So the generators of  $N^t$  pullback to generators of N(X).

## Universal objects for Determinantal Singularities

- ▶ The Universal objects are the  $M^t(n + k, n)$ .
- ▶  $M^t(n+k,n)$  have a locally holomorphically trivial stratification given by rank.
- $N^t = JM(M^t)$ . This is because the process of computing the partial derivatives of the defining equations of  $M^t$  is the same as computing the columns of  $N^t$ . This equality means that every infinitesimal determinantal deformation of  $M^t$  is infinitesimally trivial. We say that  $N^t$  and  $M^t$  are *stable*.
- ▶ If  $_tX$  is defined by  $f: \mathbb{C}^q, 0 \to \mathbb{C}^{n+k\times n}$ ,  $N(X) = f^*(N^t)$ . This follows because f is not involved in the process calculating the elements of  $N^t$  and N(X). Because of this property we say  $N^t$  is *universal*.
- ▶ **Problem** Show  $N(\mathcal{X})(y) = N(\mathcal{X}(y))$  using universality.



EIDS and e(JM(X), N(X))Given the germ of a smooth subspace  $S,x\subset\mathbb{C}^N$ , T is a direct transversal to S, x if it is a transversal to S at x of complementary dimension to S.

#### Lemma Let X be a stratified subset of $(\mathbb{C}^N, x)$ .

at x. Then  $JM(X) \subset JM(X)_T$ .

i) Suppose X has a locally holomorphically trivial stratification. Let  $\mathcal{S}_{\mathsf{x}}$ denote the stratum containing x. Suppose T is a direct transversal to S

m ii) Suppose the stratification is a Whitney stratification. Suppose T is a direct transversal to S, the stratum at x. Then  $JM(X) \subset JM(X)_T$ .

Lemma Suppose  $F: (\mathbb{C}^q, 0) \to (\mathbb{C}^N, x), x \in X, X$  a stratified subset of  $(\mathbb{C}^N, x)$ . i) Suppose X has a Whitney stratification. Let  $S_x$  denote the stratum

containing x. Suppose F is transverse to  $S_x$  at x. Let  $X_F$  denote  $F^{-1}(X)$ . Then  $F^*(JM(X)) \subset JM(X_F)$ . ii) If the stratification is holomorphically trivial, then 🚙 👢 👢 👢 🔊 🦠

 $F^*(JM(X)) \subset JM(X_F)$ .

# EIDS and e(JM(X), N(X)) II

- Sketch of proofs
- ▶ Let *T* is a direct transversal to *S*; move *T* along *S*. By intersecting with *X* this defines a smoothly trivial family.
- ▶ Because the family is smoothly trivial,  $\frac{\partial G}{\partial y_i} \in JM(G)_T$ ,  $y_i$  any coordinate on S, G defines X.
- ▶ Let  $F: (\mathbb{C}^q, 0) \to (\mathbb{C}^N, x)$ ,  $x \in X$ , X a stratified subset of  $(\mathbb{C}^N, x)$ , and let F be transverse to  $S_x$  at x. Then the image of DF(0) contains a direct transversal T.
- ▶ Applying the chain rule to  $G \circ F$  we get  $JM(X) \supset F^*JM(G)_T$  hence  $JM(X) \supset F^*JM(G) = F^*N^t$ .

#### Proposition

If X, 0 is an EIDS defined by  $F : (\mathbb{C}^q, 0) \to (\mathbb{C}^{(n+k)n)}$ , then e(JM(X), N(X)) is well defined.

▶ **Proof** By the lemmas,  $JM(X,x) = F^*N^t$  except possibly for x = 0.



## The invariant $m_d(X^d)$

Let  $\tilde{F}$  be a stabilization family of X,  $\tilde{\mathcal{X}}$  an essential smoothing family of X. p a linear function so that H, kernel of p is not a limiting tangent hyperplane to X at the origin, and that  $p\mid_{(\tilde{\mathcal{X}}_s)_{reg}} \to \mathbb{C}$  is a Morse function for  $s \neq 0$ . Then:

#### Definition

With the above notation  $m_d(X) = n_0$  where  $n_0$  is the number of critical points of  $p \mid_{(\widetilde{\mathcal{X}}_s)_{reg}}$ .

- ▶ In the ICIS case  $m_d(X) = \mu(X) + \mu(X \cap H)$ .
- For simplicity, let  $\chi(X,0)$ ,  $\chi(X\cap H,0)$  denote the Euler Characteristic of a stabilization of X,  $X\cap H$ . Let  $n_{it}=(-1)^{(k)(t-i)}\binom{n-i}{n-t}$ .
- Then, in the determinantal case

$$(-1)^d \chi(X,0) + (-1)^{d-1} \chi(X \cap H,0) = \sum_{i=1}^t n_{it} m_{d_i}({}_i X,0)$$



## The invariant $m_d(X^d)$ II

- ▶ In the ICIS case,  $m_d(X) = e(JM(X))$
- ▶ Then, in the determinantal case

$$m_d(iX) = e(JM(iX, N(iX))) + F(\mathbb{C}^q) \cdot \Gamma_d(M^i)$$

- ▶ The term  $F(\mathbb{C}^q) \cdot \Gamma_d(M^i)$ , the intersection of  $F(\mathbb{C}^q)$  with the polar of  $M^i$  of complementary dimension is a correction term due to the curvature of  $JM(M^t)$ .
- ▶ The image of D(F) does not lie in a limit tangent hyperplane to  $M^t$  at F(0), if and only if  $e(JM(_iX,N(_iX)))=0$ . So this term measures the failure of transversality.
- ► To prove this formula, we need to discuss the polar varieties of a space and of a module, and to describe how the multiplicity changes in a family.



# Recall: Basic Constructions for ideals and modules

- ▶ Given a submodule M of a free  $\mathcal{O}_{X^d}$  module F of rank p, we can associate a subalgebra  $\mathcal{R}(M)$  of the symmetric  $\mathcal{O}_{X^d}$  algebra on p generators called the Rees algebra of M.
- ▶ If  $(m_1, ..., m_p)$  is an element of M then  $\sum m_i T_i$  is the corresponding element of  $\mathcal{R}(M)$ .
- $ightharpoonup \operatorname{Projan}(\mathcal{R}(M))$ , the projective analytic spectrum of  $\mathcal{R}(M)$  is the closure of the projectivised row spaces of M at points where the rank of a matrix of generators of M is maximal.
- $ightharpoonup \operatorname{Projan}(\mathcal{R}(JM(X)))$  is the conormal space of X. It consists of the tangent hyperplanes to  $X_0$  and the closure of this space in  $X \times \mathbb{P}^{n-1}$ ,
- $X\subset\mathbb{C}^n$ .
- ▶ Denote the projection to  $X^d$  by c, or by  $c_M$  where there is ambiguity. ▶ If  $M \subset N$  or  $h \in N$ , then h and M generate ideals on  $\operatorname{Projan}\mathcal{R}(N)$ ;
- denote them by  $\rho(h)$  and  $\mathcal{M}$ . ▶ If we can express h in terms of a set of generators  $\{n_i\}$  of N as  $\sum g_i n_i$ , then in the chart in which  $T_1 \neq 0$ , we can express a generator of  $\rho(h)$  by  $\sum g_i T_i/T_1$ .

# Multiplicity of Pairs of Modules: Intersection

#### Theoretic Definition

▶ The next diagram shows the spaces that come into the definition of e(M, N).

$$B_{\mathcal{M}}(\operatorname{Projan} \mathcal{R}(N)) \stackrel{\pi_N}{ o} \operatorname{Projan} \mathcal{R}(N) \ \downarrow^{\pi_M} \ \downarrow^{\pi_{XN}} \ \operatorname{Projan} \mathcal{R}(M) \stackrel{\pi_{XM}}{ o} X$$

$$e(M,N) = \sum_{j=0}^{d+g-2} \int D_{M,N} \cdot c_M^{d+g-2-j} \cdot c_N^j.$$

- ▶  $D_{M,N}$  the exceptional divisor of  $B_{\mathcal{M}}(\operatorname{Projan}\mathcal{R}(N))$ , g is the generic rank of N and M.  $D_{M,N}$  is compact, since  $\overline{M} = \overline{N}$ , except at 0.
- On the blow up  $B_{\mathcal{M}}(\operatorname{Projan}\mathcal{R}(N))$  we have two tautological bundles which are pullbacks of the bundles on  $\operatorname{Projan}\mathcal{R}(N)$  and  $\operatorname{Projan}\mathcal{R}(M)$ .
- ▶ Denote the corresponding Chern classes by  $c_M$  and  $c_N$ .

# Understanding the Intersection Theoretic Definition

- ▶ We have  $\operatorname{Projan} \mathcal{R}(N) \subset X^d \times \mathbb{P}^{g(N)-1}$ , so  $B_{\mathcal{M}}(\operatorname{Projan} \mathcal{R}(N)) \subset X^d \times \mathbb{P}^{g(N)-1} \times \mathbb{P}^{g(M)-1}$  where g(N) is the number of generators of N.
- ▶ To calculate  $\int D_{M,N} \cdot c_M^{d+g-2-j} \cdot c_N^j$ , intersect  $B_{\mathcal{M}}(\operatorname{Projan}\mathcal{R}(N))$  with j hyperplanes from  $\mathbb{P}^{g(N)-1}$  and d+g-2-j hyperplanes from  $\mathbb{P}^{g(M)-1}$ . This will define a curve. Then the order of a generic element of  $\mathcal{M}$  on this curve will be the intersection number.
- ▶ **Problem** If  $M = \begin{bmatrix} x & y & 0 \\ 0 & x & y \end{bmatrix}$ ,  $N = \mathcal{O}_2^2$ , show e(M) = 3 using the intersection theoretic definition.

#### Polar Varieties of a Module

- ► Teissier defined the polar varieties  $\Gamma_I(X^d)$ ,  $0 \le I < d$ , of an analytic germ  $(X^d,x) \subset \mathbb{C}^n$  of codimension I as follows: take a generic projection  $\pi$  of  $X^d \to \mathbb{C}^{d-l+1}$ , and take the closure of the points where the rank of  $\pi|X_0$  is less than d-l+1.
- Let X be defined by  $F(x,y,z)=z^2-y^2-x^2=0$ . Use the projection  $\pi$  to the y-z plane to define the polar curve,  $\Gamma_1(X)$ , of X,0. Let  $G=(\pi,F)$ .  $\Gamma_1(X)$  is defined by F=0 and  $det(D(G))=F_x=-2x=0$ , so  $\Gamma_1(X)$  is two lines with equations  $x=0,z^2-y^2=0$ .
- ▶ In the example, varying the projection a little does not change the multiplicity of the polar curve. Teissier-'81 showed that for generic projections, the multiplicity of the polar variety is independent of projection.
- ▶  $\Gamma_0(X^d) = X^d$  because the rank of  $\pi < d+1$  at all points.



# An Alternate construction of $\Gamma_l(X)$

- $\bullet$   $\pi: X^d \subset \mathbb{C}^n \to \mathbb{C}^{d-l+1}$ , so dim  $\ker \pi = n-d+l-1$ .
- Apply DF to a basis of  $ker\pi$ . This gives n-d+l-1 generic linear combinations of the generators of JM(X). Put them into a matrix A
- ▶ Take the points on  $X_0$  where the rkA < g, g the generic rank of DF; g = n d, and take the closure. The expected codimension of the set is (n d + l 1) (g 1) = l.
- Use a similar construction for  $\Gamma_I(M)$ , M, a module with generic rank g. Take g+I-1 generic generators of M, put them into a matrix A. Take the points on X, where rk(M)=g, rk(A)< g, and take the closure.
- ▶ **Example:** Let  $M = \begin{bmatrix} x & y & 0 \\ 0 & x & y \end{bmatrix}$ ,  $X = \mathbb{C}^2$ ; for  $\Gamma_1(M)$  we need 2 + 1 1 = 2 generic generators.
- ► Take  $A = \begin{bmatrix} y & x \\ x + ay & by \end{bmatrix}$  for our generic generators, since M has rank
  - 2 except at (0,0) for generic a,b,  $\Gamma_1(M)$  defined by det(A)=0 is a pair of lines intersecting transversely.

## An Alternate construction of $\Gamma_l(M)$

- ▶ Claim:  $\Gamma_I(M)$ , is constructed by intersecting  $\operatorname{Projan}\mathcal{R}(M)$  with  $X \times H_{g+l-1}$  where  $H_{g+l-1}$  is a general plane of codimension g+l-1, then projecting to X.
- ▶ Picking equations of *H* is the same thing as picking linear combinations of the generators of *M*, and asking that they are linearly dependent.
- ▶ **Example** Suppose H is defined by  $T_1 = 0, ..., T_{g+l-1} = 0$ .  $X \times H \cap \operatorname{Projan}\mathcal{R}(M)$  consists of points where some linear combination of the rows of [M] is zero in the first g + l 1 places.
- ▶ If  $\Gamma_I(M,0)$  is empty, then the fiber of  $Projan\mathcal{R}(M)$  over 0 has dimension less than g+I-1.
- ▶ Polar varieties of M control the size of the fibers of  $Projan\mathcal{R}(M)$ .
- ▶ Suppose  $\mathcal{X}$  is a stabilization family for  $X^d$ . Then the degree over Y of  $\Gamma_d(JM_z(\mathcal{X}) = m_d(X)$ .



### Multiplicity Polar Theorem

- ▶  $M \subset N \subset F$ , a free  $\mathcal{O}_X$  module, X equidimensional, a family of sets over Y, with equidimensional fibers, Y smooth.
- $\overline{M} = \overline{N}$  off a set C of dimension k which is finite over Y.
- ▶  $\Delta(e(M, N)) = e(M(0), N(0), \mathcal{O}_{X(0)}, 0) \sum_{x \in p_y^{-1}(y)} e(M(y), N(y), \mathcal{O}_{X(y)}, (y, x))$  is the change in the multiplicity of the pair (M, N) as the parameter changes from 0 to y.
- Formula (MPT, Arxiv '07):

$$\Delta(e(M,N)) = mult_y \Gamma_d(M) - mult_y \Gamma_d(N)$$



## Application to equisingularity

- ▶ A family of determinantal singularities is *good* if there exists a neighborhood U of Y such that  $F_y$  is transverse to the rank stratification off the origin for all  $y \in U$ .
- ▶ The good condition ensures that we only have to control the pairs of strata (V, Y), V some stratum in the canonical stratification of  $\mathcal{X} Y$ .
- ▶ Good implies all strata (except perhaps *Y*) have the expected dimension, and the types of dimension zero are controlled by the colength of the defining ideals.
- ▶  $N(X) = f^*(JM(M^t))$ , and  $\Gamma_I(N(X)) = f^{-1}\Gamma_I(M^t)$ .

#### Proposition

Suppose  $\mathcal{X}$  is a one parameter stabilization of an EIDS  $_tX^d$ . Then  $f(\mathbb{C}^q) \cdot \Gamma_d(M^t) = m_{\mathbb{C}}(\Gamma_d(N(\mathcal{X})))$ .



#### Proof

- ▶ Let F be the map from  $\mathbb{C} \times \mathbb{C}^q \to \mathbb{C}^{(n+k)n}$  which defines  $\mathcal{X}$ .
- Arrange for  $f_y$  and  $\Gamma_d(M^t)$  to be transverse,  $y \neq 0$ .
- ▶  $f(\mathbb{C}^q) \cdot \Gamma_d(M^t)$  is the number of points in which  $f_y$  intersects  $\Gamma_d(M^t)$ .
- ► This is the multiplicity over  $\mathbb{C}$  of  $\Gamma_d(N(\mathcal{X}))$  at the origin, as  $F^{-1}(\Gamma_d(M^t)) = \Gamma_d(N(\mathcal{X}))$

$$m_d(X)$$
 and  $e(JM(X), N(X))$ 

#### Proposition

Suppose  $\mathcal{X}$  is a one parameter stabilization of an EIDS  $_{t}X^{d}$  then

$$e(JM(X), N(X)) + f(\mathbb{C}^q) \cdot \Gamma_d(M^t) = m_d(X).$$

- The proof is an application of the Multiplicity-Polar Theorem.
- Let F be the map from  $\mathbb{C} \times \mathbb{C}^q \to \mathbb{C}^{(n+k)n}$  which defines  $\mathcal{X}$ ,  $f_y$  and  $\Gamma_d(M^t)$  transverse,  $y \neq 0$ .
- For  $y \neq 0$ ,  $JM(\tilde{X}(y)) = f_y^*(JM(M^t))$ . So  $e(JM(\tilde{X}(y)), N(\tilde{X}(y))) = 0, y \neq 0$ . Then,
- $e(JM(X), N(X)) + mult_C\Gamma_d(N(X)) = mult_C\Gamma_d(JM_z(X)) = m_d(X)$ .
- $\qquad \qquad e(JM(X),N(X))+f(\mathbb{C}^q)\cdot \Gamma_d(M^t)=m_d(X).$

# A family of examples

ightharpoonup The singularities  $X_l$  are a space curves defined by the minors of

$$F_{X_l} = \begin{bmatrix} z & x \\ y & z \\ x^l & y \end{bmatrix}$$

We assume l-1 is not divisible by 3.

► Then  $m_1(X_l) = e(JM(X_l), N(X_l)) + f(\mathbb{C}^3) \cdot \Gamma_1(M^2) = 2l - 2 + 4 = 2l + 2.$ 

# W equisingularity of a good family of EIDS

#### Theorem

Suppose  $\mathcal{X}^{d+k}$  is a good k-dimensional family of EIDS. Then the family is Whitney equisingular if and only if the invariants

$$e(m_Y JM(_i\mathcal{X}(y)), N(_i\mathcal{X}(y))) + \tilde{F}(y)(\mathbb{C}^q) \cdot \Gamma_{d_i}(M^i)$$

are independent of y.

- ▶ Proof: Since the family is good we only need to control the pairs of strata (V, Y), V some stratum in the canonical stratification of  $\mathcal{X} Y$ .
- Condition W holds for each open stratum if and only if the fiber of the blow-up of  $Projan\mathcal{R}(JM_z(i\mathcal{X}))$  by  $m_Y$  is equidimensional over Y. (Teissier -1981, G-Rangachev -2016).
- ▶ The bound on the fiber of Y holds iff  $\Gamma_{d_i}(m_Y JM_z(iX))$  is empty, iff all  $m_{d_i}(mJM(iX(y)))$  are independent of y.



# The expansion formula and a corollary

### Corollary

Suppose  $\mathcal{X}^{d+k}$  is a good k-dimensional family of EIDS. Then the family is Whitney equisingular if and only if the polar multiplicities at the origin of  ${}_{i}\mathcal{X}(y)$  and the invariants

$$e(JM(_{i}\mathcal{X}(y)),N(_{i}\mathcal{X}(y)))+\tilde{F}(y)(\mathbb{C}^{q})\cdot\Gamma_{d(i)}(M^{i})$$

are independent of y.

- ▶ There is an expansion formula for  $e(m_Y JM(_i\mathcal{X}(y)), N(_i\mathcal{X}(y)))$  as a sum of terms with the polar multiplicities of  $_i\mathcal{X}(y)$  with combinatorial coefficients, and the term  $e(JM(_i\mathcal{X}(y)), N(_i\mathcal{X}(y)))$ .
- ▶ So W implies the polar multiplicities are constant, and  $e(m_Y JM(_i\mathcal{X}(y)), N(_i\mathcal{X}(y)) + \tilde{F}(y)(\mathbb{C}^q) \cdot \Gamma_{d_i}(\Sigma^i)$  is constant.
- ▶ So the terms  $e(JM(_i\mathcal{X}(y)), N(_i\mathcal{X}(y)) + \tilde{F}(y)(\mathbb{C}^q) \cdot \Gamma_{d_i}(\Sigma^i)$  are independent of y as well.



## Two examples

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ x_2 & x_3 & x_4 & x_1 + x_5^2 + t_{10}x_3 \end{pmatrix}. \tag{1}$$

$$\begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_4 \\ x_3 & x_4 & x_1 + x_5^2 + t_{10}x_3 \end{pmatrix}. \tag{2}$$

#### pause

- ▶ Both families give deformations of the same determinantal surface singularity, *X*.
- Both are W equisingular,
- ▶ value of  $m_2(X)$  depends on the landscape. (8 in the rectangular case, 6 in the symmetric case.)

# Epilogue: ESSI

Given the diagram:



- ▶ Suppose V is stable and N(V) is universal. V has a minimal Whitney stratification by Teissier 1981. If  $f_0$  is transverse to this minimal Whitney stratification of V, except perhaps at the origin, we say that X is an Essentially Isolated Sectional Singularity or EISS.
- Stabilizations exist.
- $\triangleright$  Since  $f_0$  is transverse to the Whitney stratification of V, it follows that  $JM(X) = f_0^*(JM(V))$  except at the origin, hence  $e(JM(X), f_0^*(JM(V)), 0)$  is well defined.

#### Definition

Suppose  $X^d$  is an EISS, and F is a stabilization family with base  $\mathbb C$ .

## Epilogue II

#### Proposition

The invariant  $m_d(X)$  is independent of the choice of F.

▶ **Proof:** Apply the multiplicity polar theorem to  $e(JM(X), f_0^*(JM(V)), 0)$ , and  $\Gamma^1(JM_z(F))$ , and  $\Gamma^1(F^*(JM(V)))$ . We get as before:

$$m_d(X) = e(JM(X), f_0^*(JM(V)), 0) + m_{\mathbb{C}}(\Gamma^1(F^*(JM(V)))$$
  
=  $e(JM(X), f_0^*(JM(V)), 0) + (f_0(\mathbb{C}^q) \cdot \Gamma_q(V).$ 

- ▶ In the right-hand side of the last equality, the terms are independent of *F*.
- ▶ Define a good family of EISS as before. Define a filtration of V by  $V_i$ , the union of all strata of V of dimension  $\leq i$ . Each  $V_i$  is equidimensional. Let  $i_X$  denote  $f^{-1}(V_i)$ .

# W Equisingularity of ESSI

#### Theorem

Suppose  $\mathcal{X}^{d+k}$  is a good k-dimensional family of EISS. Then the following are equivalent:

- 1. The family is Whitney equisingular.
- 2. The invariants

$$e(m_Y JM(_i\mathcal{X}(y)), N(_i\mathcal{X}(y))) + \tilde{F}(y)(\mathbb{C}^q) \cdot \Gamma_{d_i}(V_i)$$

are independent of y.

3. The polar multiplicities at the origin of  ${}_{i}\mathcal{X}(y)$  and the invariants

$$e(JM(i\mathcal{X}(y)), N(i\mathcal{X}(y))) + \tilde{F}(y)(\mathbb{C}^q) \cdot \Gamma_{d(i)}(V_i)$$

are independent of y.

- ► Since all of the actors are on stage, the proof is a reprise of the ideas of the lecture.
- ▶ Challenge Problem Relate  $m_{d_ii}(X)$  to the topology of V.