Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №1 по курсу «Методы оптимизации»

Студентка: А. А. Довженко Преподаватель: Т. И. Короткова

Группа: М8О-307Б

Дата: Оценка: Подпись:

1 Метод сопряженных градиентов

Алгоритм метода:

$$x^{k+1} = x^k + t_k d^k$$

$$d^{0} = -\nabla f(x^{0})$$
$$d^{k} = -\nabla f(x^{k}) + \beta_{k-1}d^{k-1}$$

 t_k — шаг вычисляется из условия наибольшего убывания функции в точках последовательности: $t_k = argmin|f(x^{k+1})|$

Основной критерий окончания метода: $||\nabla f(x^k)|| < \varepsilon$.

Начальные параметры метода: x^0, ε .

Изменяемые параметры метода: отрезок для уточнения шага [a, b].

Расчет окончен

Протокол расчета

Выполнил: Довженко, группа 80-307, 14.05.2019

Квадратичная функция: $f(x_1,x_2)=7x_1^2+-1x_1x_2+7x_2^2+14x_1+-7x_2+13$

Метод сопряженных градиентов

Точность метода: 0.01, N_{max} = 2, Количество итераций: 2

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'x1	$\mathbf{f'}_{\mathbf{x}_2}$	$\ \nabla f(x_1,x_2)\ $
0	0.07689	6	7	601	91	85	124.52309
1	0.06673	-0.9969	0.46443	4.72192	-0.42107	0.49895	0.65287
2	0	-0.96897	0.43098	4.70769	0.00339	0.00273	0.00436

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00033$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Последняя итерация:

Последняя итерация:
$$x_1^0 = N^0 = 6$$

$$x_2^0 = 7$$

$$x^2 = x^1 + t_1 + d^1$$

$$x^1 = \begin{pmatrix} -0.9969 \\ 0.46443 \end{pmatrix}$$

$$t_1 = 0.06673$$

$$d^1 = -(x^1) + B_0 d^0$$

$$d^0 = -(x^0)$$

$$B_0 = \frac{||\nabla f(x^1)||^2}{||\nabla f(x^0)||^2} = \frac{(0.65287)^2}{(124.52309)^2} = 0.0000274$$

$$\nabla f = \begin{pmatrix} 14x_1 - x_2 + 14 \\ 14x_2 - x_1 - 7 \end{pmatrix}$$

$$\nabla f(x^0) = \begin{pmatrix} 91 \\ 85 \end{pmatrix}$$

$$\nabla f(x^1) = \begin{pmatrix} -0.421 \\ 0.4985 \end{pmatrix}$$
Tогда
$$d^1 = \begin{pmatrix} 0.421 \\ -0.4985 \end{pmatrix} + \begin{pmatrix} -0.00249 \\ -0.00232 \end{pmatrix} = \begin{pmatrix} 0.41851 \\ -0.50082 \end{pmatrix}$$

$$x^2 = \begin{pmatrix} -0.9969 \\ 0.46443 \end{pmatrix} + 0.06673 \begin{pmatrix} 0.41851 \\ -0.50082 \end{pmatrix} = \begin{pmatrix} -0.96897 \\ 0.43101 \end{pmatrix}$$

2 Метод конфигураций

Алгоритм метода:

- 1. Задается начальная точка x^0 и начальные значения приращений $dx_1^0, dx_2^0, \dots, dx_n^0$. Точка x^0 назывется точкой старого базиса.
- 2. Проводится исследующий поиск, в результате которого каждая координата новой точки x^{k+1} вычисляется по алгоритму:

$$x^{k+1} = \begin{cases} x^k + dx^k, & \text{если } f(x^k + dx^k, y^k) < f(x^k, y^k) \\ x^k - dx^k, & \text{если } f(x^k - dx^k, y^k) < min|f(x^k, y^k), f(x^k + dx^k, y^k)| \\ x^k, & \text{в противном случае} \end{cases}$$

В результате исследующего поиска получается точка x^{k+1} . Если при этом $x^{k+1} \neq x^k$, то x^{k+1} — точка нового базиса. Если $x^{k+1} = x^k$, то исследующий поиск неудачен. В этом случае необходимо уменьшить значения приращений $dx_1^k, dx_2^k, \ldots, dx_n^k$ и повторить исследующий поиск.

- 3. Из точки нового базиса может быть:
 - продолжен исследующий поиск со старыми или новыми значениями приращений (шаг 2 алгоритма).
 - проведен поиск по образцу по алгоритму: $x^* = x^k + t_{k(x^k x^{k-1})}$

В точке x^* значение не вычисляется, из этой точки проводится исследующий поиск, в результате которого получается точка x^{**} . Если $x^* \neq x^{**}$, то точка $x^{k+1} = x^{**}$ становится точкой нового базиса, а x^k — точкой старого базиса.

Если $x^* = x^{**}$, то поиск по образцу считается неудачным, точки x^*, x^{**} аннулируются, при этом точка x^k остается точкой нового базиса, а x^{k-1} — точкой старого базиса.

4. Процедура 3 повторяется до выполнения критерия окончания счета.

Основной критерий окончания метода: $dx_i^k < \varepsilon, i=1,\dots,n.$

Расчет окончен

Сохранить протокол

Выбрать другой метод

Выход

Протокол расчета

Выполнил: Довженко, группа 80-307, 14.05.2019

Квадратичная функция: f(x₁,x₂)=7x₁²+ -1x₁x₂+ 7x₂²+ 14x₁+ -7x₂+ 13

Метод конфигураций

Точность метода: 0.01, N_{max} = 8, Количество итераций: 9

$N_{\rm HT}$	x ₁	x ₂	$f(x_1,x_2)$	dx ₁	dx ₂	коэф-т k
0	6	7	601	1	1	
1	5	6	438	1	1	0
2	4	5	301	1	1	0
3	3	4	190	1	1	0
4	2	3	105	1	1	0
5	1	2	46	1	1	0
6	0	1	13	1	1	0
7	-1	0	6	0.25	0.25	0
8	-1	0.25	4.9375	0.25	0.25	0
9	-1	0.5	4.75			

Критерий окончания не выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.07576$$

$$|f(x) - f(x^*)| = 0.04231$$

Последняя итерация:

Последняя и терация.
$$x^8 = \begin{cases} x^7 + dx^7, & \text{если } f(x^7 + dx^7, y^7) < f(x^7, y^7) \\ x^7 - dx^7, & \text{если } f(x^7 - dx^7, y^7) < min|f(x^7, y^7), f(x^7 + dx^7, y^7)| \\ x^7, & \text{в противном случае} \end{cases}$$

$$f(x^7, y^7) = 6$$

$$f(x^7 + 0.25, y^7) = f(-0.75, 0) = 4.9375$$

$$f(x^7 - 0.25, y^7) = f(-1.25, 0) = 6.4375$$
 Первое подходит $\Rightarrow x^8 = \begin{pmatrix} -1 \\ 0.25 \end{pmatrix}$

3 Метод Ньютона-Рафсона

Алгоритм метода:

$$x^{k+1} = x^k - t_k H^{-1}(x^k) \nabla f(x^k)$$

 $d^k = -H^{-1}(x^k)$ — направление спуска.

 t_k — шаг выбирается из условия убывания функции в точках последовательности: $f(x^{k+1}) < f(x^k)$.

Основной критерий окончания метода: $||\nabla f(x^k)|| < \varepsilon$.

Начальные параметры метода: x^0, ε .

Изменяемые параметры метода: величина шага t_k .

Расчет окончен

Протокол расчета

Выполнил: Довженко, группа 80-307, 14.05.2019

Квадратичная функция: f(x₁,x₂)=7x₁²+ -1x₁x₂+ 7x₂²+ 14x₁+ -7x₂+ 13

Метод Ньютона-Рафсона

Точность метода: 0.01, N_{max} = 5, Количество итераций: 6

$N_{\rm HT}$	шаг t	x ₁	x ₂	f(x1,x2)	f'_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$\ \nabla f(x_1,x_2)\ $
0	0.5	6	7	601	91	85	124.52309
1	0.5	2.51538	3.71538	153.78077	45.5	42.5	62.26155
2	0.5	0.77308	2.07308	41.97596	22.75	21.25	31.13077
3	0.5	-0.09808	1.25192	14.02476	11.375	10.625	15.56539
4	0.5	-0.53365	0.84135	7.03696	5.6875	5.3125	7.78269
5	0.5	-0.75144	0.63606	5.29001	2.84375	2.65625	3.89135
6	0	-0.86034	0.53341	4.85327	1.42188	1.32813	1.94567

Критерий окончания не выполнен

$$||\mathbf{x} - \mathbf{x}^*|| = 0.14965$$

$$|f(x) - f(x^*)| = 0.14558$$

Последняя итерация:

$$x^{5} = x^{4} - t_{4}H^{-1}|x^{4}|\nabla f(x^{4})$$
$$x^{4} = \begin{pmatrix} -0.53365\\ 0.84135 \end{pmatrix}$$

$$t_4 = 0.5$$

$$t_4 = 0.5$$

$$H^{-1}(x^4) = \begin{pmatrix} 0.0717 & 0.0051 \\ 0.0051 & 0.0717 \end{pmatrix}$$

$$\nabla f(x^4) = \begin{pmatrix} 14x_1 - x_2 + 14 \\ 14x_2 - x_1 - 7 \end{pmatrix} = \begin{pmatrix} 5.68755 \\ 5.31255 \end{pmatrix}$$

$$x^5 = \begin{pmatrix} -0.53365 \\ 0.84135 \end{pmatrix} - 0.5 \begin{pmatrix} 0.43488 \\ 0.409906 \end{pmatrix} = \begin{pmatrix} -0.75109 \\ 0.636397 \end{pmatrix}$$

$$||\nabla f(x^5)||\approx 2.2977>\varepsilon$$

4 Метод Нелдера-Мида

Алгоритм метода:

- 1. Задается начальная система точек (многогранник), включающий в себя n+1 точку: $x^{0(1)}, x^{0(2)}, \ldots, x^{0(n+1)}$ (для функции 2-х переменных задается три начальные точки: $x^{0(1)}, x^{0(2)}, x^{0(3)}$).
- 2. Вычисляется значение функции во всех точках многогранника и выбирается: лучшая точка $x^{(l)}: f(x^{(l)}) = \min_i |f(x^{k(i)})|$ (здесь k номер итерации, i номер точки)

худшая точка $x^{(x)}:f(x^{(x)})=\max_i |f(x^{k(i)})|$

Далее заданная система точек перестраивается, для этого:

3. Строится центр тяжести системы заданных точек за исключением худшей:

$$x^{(c)} = \frac{1}{n} \left(\sum_{i=1}^{n=1} x^{k(i)} - x^x \right)$$

(для функции 2-х переменных точка $x^{(c)}$ — середина отрезка, соединяющего точки за исключением худшей).

4. Выполняется операция отражения худшей точки через центр тяжести:

$$x^{(o)} = x^{(c)} + \alpha(x^{(c)} - x^{(x)})$$

здесь $\alpha > 0$ — параметр отражения (рекомендуемое значение $\alpha = 1$).

- 5. Формируется новая система точек (многогранник). Для этого в точке $x^{(o)}$ вычисляется значение функции, полученное значение сравнивается с $f(x^{(l)})$:
 - ullet если $f(x^{(o)}) < f(x^{(l)})$ выполняется операция растяжения:

$$x^{(r)} = x^{(c)} + \gamma(x^{(o)} - x^{(c)})$$

здесь $\gamma>0 (\gamma\neq 0)$ — параметр растяжения (рекомендуемое значение $\gamma\in[2,3]).$

При этом если $f(x^{(r)}) < f(x^{(o)})$, то в новой системе точек точка $x^{(x)}$ будет заменена на $x^{(r)}$, если же $f(x^{(r)}) \ge f(x^{(o)})$, то в новой системе точек точка $x^{(x)}$ будет заменена на $x^{(o)}$.

• если $f(x^{(l)} \ge f(x^{(o)}) < f(x^{(x)})$ выполняется операция сжатия:

$$x^{(s)} = x^{(c)}) + \beta(x^{(x)}) - x^{(c)})$$

здесь $\beta>0 (\beta\neq0)$ — параметр сжатия (рекомендуемое значение $\beta\in[0.4,0.6]).$

При этом если $f(x^{(s)}) < f(x^{(o)})$, то в новой системе точек точка $x^{(x)}$ будет заменена на $x^{(s)}$, если же $f(x^{(s)}) \ge f(x^{(o)})$, то в новой системе точек точка $x^{(x)}$ будет заменена на $x^{(o)}$.

• если $f(x^{(o)}) \ge f(x^{(x)})$ выполняется операция редукции: при этом формулируется новый многогранник, содержащий точку $x^{(l)}$ с уменьшенными вдвое сторонами:

$$x^{k+1(i)} = x^{(l)} + 0.5(x^{k(i)} - x^{(l)}), i = 1, \dots, n+1$$

.

Т.о. в результате выполнения этого пункта алгоритма формируется новая система точек (многогранник), причем в случае возникновения операций растяжения и сжатия перестраивается только одна точка — $x^{(x)}$, в случае возникновения операции редукции — все точки, за исключением $x^{(l)}$.

6. Процедуры 2-5 повторяются до выполнения критерия окончания счета.

Основной критерий окончания метода: $\sqrt{\frac{1}{n+1}\sum_{i=1}^{n+1}|f(x^{k(i)})-f(x^{(c)})|^2}\leq \varepsilon$ Начальные параметры метода: $x^{0(1)},x^{0(2)},\ldots,x^{0(n+1)},\varepsilon$.

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Довженко, группа 80-307, 14.05.2019

Квадратичная функция: f(x₁,x₂)=7x₁²+ -1x₁x₂+ 7x₂²+ 14x₁+ -7x₂+ 13

Метод Нелдера-Мида

Точность метода: 0.01, N_{max} = 5, Количество итераций: 6

N _{HT}	α	операция	коэффициент	x ₁	x ₂	$f(x_1,x_2)$
0	1	редукция		-3 -3 6	-2 3 7	70 85 601
1	1	редукция		-3 -3 1.5	0.5 -2 2.5	33.75 70 72.25
2	1	редукция		-0.75 -3 -3	1.5 0.5 -0.75	12.8125 33.75 40.9375
3	1	растяжение	2.8	-1.875 -0.75 -1.875	0.375 1.5 1	10.42188 12.8125 13.23438
4	1	редукция		-0.75 -1.875 -0.75	0.875 0.375 1.5	6.32813 10.42188 12.8125
5	1	растяжение	2.8	-1.3125 -0.75 -0.75	0.625 0.875 1.1875	5.86328 6.32813 8.88672
6				-1.3125 -1.3125 -0.75		5.58984 5.86328 6.32813

Критерий окончания не выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.36307$$

$$|f(x) - f(x^*)| = 0.88215$$

5 Метод Марквардта

Метод Марквардта (метод Ньютона с переменной матрицей) повторяет метод Ньютона. Отличие заключается в том, что точки строятся по закону: $x^{k+1} = x^k - |H(x^k) + \mu^2 E|^{-1} \nabla f(x^k)$, где μ^2 — последовательность чисел (больших нуля), обеспечивающих положительную определенность матрицы $|H(x^k) + \mu^2 E|$. Обычно μ^2 назначается как минимум на порядок больше, чем самый большой элемент матрицы $H(x^0)$.

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Довженко, группа 80-307, 14.05.2019

Квадратичная функция: $f(x_1,x_2)=7x_1^2+-1x_1x_2+7x_2^2+14x_1+-7x_2+13$

Метод Марквардта

Точность метода: 0.01, N_{max} = 5, Количество итераций: 4

N _{HT}	шаг μ	xı	x ₂	f(x ₁ ,x ₂)	f'x1	$\mathbf{f}'_{\mathbf{x}_2}$	$\ \nabla f(x_1,x_2)\ $
0	0	6	7	601	91	85	124.52309
1	0	-0.38237	0.988	8.96509	7.65884	7.2144	10.52166
2	0	-0.91979	0.47801	4.73809	0.64491	0.61199	0.88906
3	0	-0.96506	0.43477	4.70791	0.05433	0.05189	0.07513
4	0	-0.96888	0.43111	4.70769	0.00458	0.0044	0.00635

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00049$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^{\star})| = 0$$

Последняя итерация:
$$x^5 = x^4 - |H(x^4) + \mu^4 E|^{-1} \nabla f(x^4)$$

$$x^4 = x^3 - |H(x^3) + \mu^3 E|^{-1} \nabla f(x^3)$$

$$x^4 = \begin{pmatrix} -0.96506 \\ 0.43477 \end{pmatrix} - 0.07513 \begin{pmatrix} 0.0717 & 0.0051 \\ 0.0051 & 0.0717 \end{pmatrix} = \begin{pmatrix} -0.96888 \\ 0.43111 \end{pmatrix}$$