

Théorie des Graphes Codage & Représentation

Fabrice Theoleyre

theoleyre@unistra.fr http://www.theoleyre.eu

REPRÉSENTATIONS

Comment représenter un graphe ?

- Codage
 - On met de côté les multigraphes (plus compliqués)
 - Visuellement :

Et formellement ?

Matrice d'adjacence

- Matrice: sommets x sommets
 - booléen qui décrit l'existence de la relation entre les sommets
 - Limite
 - place mémoire (n^2) si peu d'arrêtes
 - R() une application faisant correspondre un sommet à un nombre

•
$$A = \{A_{ij}\}_{i,j \in [1..|V|]} | A_{ij} = 1 \text{ ssi } (R^{-1}(i), R^{-1}(j)) \in E$$

- Graphe pondéré : les valeurs notées représentent le poids des arêtes
 - 0 si elles n'existent pas

1	1				
		1			
	1		1		
1				1	
					1
			1		

Matrice d'adjacence

• Quelle propriété pour un graphe non orienté ?

Liste d'adjacence

2 listes

- Application R faisant correspondre chaque sommet à un entier positif ou nul
- Liste des sommets successeurs (i.e. liste des arêtes, ordonnées par leur sommet de départ)
 - Une case par arête
- Liste des sommets de tête, case pointant sur le début de la liste de leurs arêtes
 - Une case par sommet
- Atout: compacité si peu d'arêtes O(N + M)
- Coût d'une recherche d'existence d'arrête?
 - Algo ExisteArete(i,i) (succ[*], head[*])

Matrice d'incidence

- Matrice d'incidence (sommets * arrêtes)
 - Si orienté
 - -1 arc sortant
 - +1 arc entrant
 - Non orienté
 - 1 si le sommet est une extrémité
 - si une boucle
 - +2 pour le sommet correspondant

Α	-1				1			
В	1	-1	1					
С		1	-1	-1				
D				1	-1	-1		1
Ε						1	-1	
F							1	-1

Multigraphes / hypergraphes ?

Matrice Laplacienne

- Soit un graphe G(S,A), sans boucle
 - Matrice Laplacienne non normalisée
 - Eléments de la diagonale : degré du sommet
 - ❖ Elément (i,j) = -1 ss'il existe un arc de i à j 0 sinon
 - $M_{laplacienne} = M_{degre} M_{adjacence}$

a	2	-1		-1		
b	-1	2	-1			
С		-1	2	-1		
d	-1		-1	4	-1	-1
е				-1	2	-1
f				-1	-1	2

NB : Si le graphe est orienté, considère le degré entrant ou sortant

Matrice Laplacienne

Calcul de la matrice Laplacienne

- Dans un graphe non-orienté :
 - $Alpha M_{laplace} = M_{incidence} * M_{incidence}^t$

-1	1				
	1	-1			
1			-1		
		-1	1		
			-1	1	
			1		-1
				-1	1

а	-1		1				
b	1	1					
С		-1		-1			
d			-1	1	-1	1	
е					1		-1
f						-1	1

2	-1		-1		
-1	2	-1			
	-1	2	-1		
-1		-1	4	-1	-1
			-1	2	-1
			-1	-1	2

Matrice Laplacienne

- Utilisation
 - Analyse spectrale & partitionnement
 - Spectre du graphe

- Théorème de Kirchoff pour calculer le nombre d'arbres couvrants
 - Cofacteur = déterminant de la laplacienne en enlevant n'importe quelle paire de colonne / ligne
 - Cofacteur = nombre d'arbres couvrants

Matrice de transition (graphe proba.)

Matrice stochastique

- Probabilité de passer du sommet A à B
- Triplet (S,A,P)
 - $P: A \to \mathbb{R}$ application de pondération des arêtes

♦
$$\forall u \in S, \sum_{e^+ = \{u,v\}_{v \in S \land (u,v) \in A}} P(e^+) = 1$$

Évènements complémentaires

Utilité

- Modélisation des déplacements d'une foule
- Modélisation du comportement d'un utilisateur

Chaines de Markov

 Processus sans mémoire, dont l'état futur ne dépend que de l'état actuel

Matrice de transition (graphe proba.)

4 états

• 0: couché

1: assis

• 2: debout

3: en mouvement

State diagram

Matrix

Probability distribution

Start. (1, 0, 0, 0) 1. (0, 2/3, 1/3, 0) 2. (0, 0, 0, 1) 3. (1/2, 0, 0, 1/2) 4. (1/4, 1/3, 1/6, 1/4)

Agoston Torok ©

CALCULS MATRICIELS

Composition

- Composition de fonctions
 - g() puis f() -> fog()
 - **❖** f[g(x)]

1			1		
1	1		1	1	
	1	1	1	1	1

Soit R1 et R2 deux relations sur S, alors la composée de R2 par R1 se note et se définit de la manière suivante :

$$R_1 \circ R_2 = \{(a, b) \in S \times S | \exists c \in S, (a, c) \in R_1 \land (c, b) \in R_2\}$$

- En particulier on a $R^2 = \{(a,b) \in S^2 | \exists c \in S, (a,c) \in R \land (c,b) \in R\}$
- D'un point de vue matriciel
 - matrice d'adjacence R
 - On a R² qui correspond à un produit de matrice R*R
 - $R^2(a,b)=1$ ssi il existe $c \in S$ tel que R(a,c)=1 et R(c,b)=1
 - ❖ R²(a,b)= 0 sinon
 - ❖ Remarque : 1+1+...=1

Visualisation d'une composition par produit matriciel

$$c_{12} = \sum_{r=1}^{2} a_{1r}b_{r2} = a_{11}b_{12} + a_{12}b_{22}$$

Composition et calcul matriciel

• Que fait A^2 ?

 $A^2 = \begin{array}{c} 01100 & 00021 \\ 00011 & 00010 \\ 00010 & 00000 \\ 00000 & 00000 \\ 00010 & 00000 \end{array}$

00000

00010

MULTIPLICITÉ DE VISUALISATION

Homomorphisme

Isomorphisme

- Opération bijective qui préserve la structure (et sa réciproque également)
- En graphe : G ≃ H
 - ❖ Bijection entre les deux ensembles de sommets
 - Préservation des arrêtes

- Problème décisionnel dans la Classe NP
 - Pas de preuve de NP-complétude dans le cas général
 - Pas d'algorithme polynomial dans le cas général
- Si G et H sont le même graphe
 - Automorphisme
 - Ex ? Graphe cycle

wikipedia

