Алгебра 2 2023 Кузнецов

1 Листок 1

1. Для каких натуральных n многочлен $\frac{x^n-1}{x-1}=1+x+\ldots+x^{n-1}$ неприводим? По-видимому, имеется в виду неприводимость над полем $\mathbb Q$. Во-первых, заметим, что при n=ab имеет место равенство

$$1 + x + \dots + x^{n-1} = (1 + x + \dots + x^{a-1})(1 + x^a + \dots + x^{a(b-1)}).$$

Или без разложения:

$$\frac{x^{ab} - 1}{x - 1} = \frac{x^a - 1}{x - 1} \frac{x^{ab} - 1}{x^a - 1}.$$

Отсюда следует, что при составном n многочлен $\frac{x^n-1}{x-1}$ приводим.

Теперь попробуем доказать, что при простом n=p многочлен $\frac{x^n-1}{x-1}$ неприводим. Предположим, что

$$\frac{x^p - 1}{x - 1} = u(x)v(x),$$

где u,v — непостоянные многочлены с рациональными коэффициентами, причём будем считать, что их старшие коэффициенты равны 1, и u — непостоянный многочлен с рациональными коэффициентами наименьшей степени, делящий $\frac{x^p-1}{x-1}$. Тогда, что

$$u(x) = (x - a_1) \dots (x - a_k),$$

где a_1,\dots,a_k — попарно различные нее
единичные корни степени p из единицы. Поэтому все симметрические многочлены от
 $a_1,\dots a_k$

$$a_1 + \ldots + a_k,$$
 $a_1 a_2 + \ldots + a_{k-1} a_k,$
 \ldots
 $a_1 \ldots a_k$

рациональны — они являются коэффициентами многочлена u. Но тогда для любого натурального s

$$u_s(x) = (x - a_1^s) \dots (x - a_k^s)$$

— тоже многочлен с рациональными коэффициентами (поскольку все симметрические многочлены выражаются через элементарные), и он должен быть взаимно прост с u либо совпадать с u, ибо иначе наибольший общий делитель этих многочленов будет степени меньше степени u и будет делить многочлен $\frac{x^p-1}{x-1}$. Рассмотрим множество тех $s \in \{1,\ldots,p-1\}$, для которых

$$\{a_1^s, \dots, a_k^s\} = \{a_1, \dots, a_k\}.$$

Это подгруппа мультипликатиной группы \mathbb{F}_p . Значит, она циклическая, и есть $h \in \{1, \dots, p-1\}$, таких, что она порождена h. Тогда

$$u(x) = (x - a)(x - a^h)(x - a^{h^2})\dots(x - a^{h^t}).$$

Дальше я не знаю, как закончить это рассуждение. Поэтому будем решать по-другому. Попробуем применить критерий Эйзенштейна. $q(x)=rac{x^p-1}{x-1}$ неприводим над $\mathbb Q$ тогда и только тогда, когда неприводим

$$q(x+1) = \frac{(x+1)^p - 1}{x} = x^{p-1} + C_p^{p-1} x^{p-2} + \dots + C_p^2 x + p.$$

И применим критерий Эйзенштейна.

2. $x^n f(\frac{1}{x}) = c_0 x^n + c_1 x^{n-1} + \ldots + c_{n-1} x + c_n$ имеет с f(x) общий корень — тот, который лежит на единичной окружности (если $|\alpha| = 1$ и $f(\alpha) = 0$, то $f(\frac{1}{\alpha}) = f(\overline{\alpha}) = 0$). Значит, эти многочлены не взаимно просты, и в силу неприводимости f должны иметь все корни общие. То есть эти многолены пропорциональны:

$$f(x) = tx^n f\left(\frac{1}{x}\right), t \in \mathbb{Q}.$$

Отсюда $c_k=tc_{n-k}$ для всех k. Отсюда $t^2=1$. Значит, $t=\pm 1$. Если t=-1, то многочлен f имеет корнем 1, что противоречит неприводимости. Значит, t=1. Если n нечётно, n=2m+1, то

$$f(x) = (x^{2m+1} + 1) + c_1(x^{2m} + x) + \dots,$$

и этот многочлен имеет корень -1, что тоже невозможно в силу его неприводимости. Всё доказано.

3. а) Кажется, это известная теорема. Воспользуемсяя тем, что мультипликативная группа поля \mathbb{F}_p циклическая. Значит, она порождается неким $g \in \mathbb{F}_p$. Тогда $\left(\frac{-1}{p}\right) = 1$ тогда и только тогда, когда для некоторого s, 0 < s < p-1 имеет место

$$g^{2s} = -1.$$

Из этого равенства следует $g^{4s} = 1$, и получаем:

2s не делится на p-1, 4s делится на p-1.

Отсюда следует, что p-1 делится на 4. Пусть, напротив, p-1 делится на 4. Тогда возьмём $h=g^{\frac{p-1}{2}}.$ Отсюда $h^2=1.$ Поэтому $h=\pm 1.$ Но h=1 быть не может. так как g — первообразный корень.

б) Очевидно, следующие утверждения равносильны:

- $\left(\frac{-3}{p}\right) = 1$
- Многочлен $x^2 + 3$ приводим над \mathbb{F}_p
- Многочлен $(x+1)^2 + 3 = x^2 + 2x + 4$ приводим над \mathbb{F}_p
- Многочлен $(x-2)(x^2+2x+4)=x^3-8$ разложим над \mathbb{F}_p
- Существует $\varepsilon \in \mathbb{F}_p, \varepsilon \neq 1$, такое, что $\varepsilon^3 = 1$ (поделить на 2 корни уравнения из предыдущего пункта)

Но мультипликативная группа поля \mathbb{F}_p циклическая. Значит, она порождается неким $g \in \mathbb{F}_p$. Тогда $\varepsilon = g^s, 0 < s < p-1$. Но тогда

 $g^{3s} = 1$, и $3s \cdot p - 1$. Если p - 1 не делится на 3, то s делится на p - 1, а такое невозможно в силу 0 < s < p - 1. Значит, p - 1 делится на 3.

И обратно — если p-1 делится на 3, то можно положить

$$\varepsilon = g^{\frac{p-1}{3}}.$$

Звдача решена.

4. K содержит примитивный корень из 1 степени 8. Пусть это корень g. Ясно, что тогда $g^4=-1, g^2=-1/g^2$. Рассмотрев пример поля комплексных чисел, я подобрал такое:

$$(g+1/g)^2 = g^2 + 2 + 1/g^2 = g^2 + 2 - g^2 = 2.$$

Теперь рассмотрим 4 случая:

- $p\equiv 1\pmod 8$. Тогда существует примитивный корень из 1 степени 8. Почему? Как мы помним, мультипликативная группа конечного поля \mathbb{F}_p циклическая. Она порождена элементом $t\in \mathbb{F}_p$. Тогда $t^{\frac{p-1}{8}}$ и есть первообразный корень из 1 степени 8.
- $p \equiv -1 \pmod 8$). Это более сложный случай. По задаче 3a, -1 является квадратичным невычетом в F_p . Значит, многочлен x^2+1 неприводим над F_p , и фактор $G=F_p[x]/(x^2+1)$ является полем из p^2 элементов. Обозначим в этом поле элемент x как $i, i^2=-1$. Итак, $G=\{a+bi\mid a,b\in F_p\}$. Пусть g— первообразный корень в G (то есть порождающий элемент мультипликативной группы поля G). Положим

$$h = g^{(p^2 - 1)/8}.$$

Тогда $h^4=-1,\,h$ — примитивный корень из 1 степени 8 (но. к сожалению, он лежит не в поле F_p , а в его расширении).

Утверждение 1.1. Или h + 1/h, или h - 1/h лежит в F_p .

Proof. h является корнем многочлена x^4+1 . Вот 4 корня этого многочлена: h,-h,1/h,-1/h. Легко видеть, что они все разные (если, например, h=-1/h, то $h^2=-1$, а это противоречит равенству $h^4=-1$). Итак,

$$x^4 + 1 = (x - h)(x + h)(x - 1/h)(x + 1/h).$$

Но $F_p[h]$ — поле, которое строго больше F_p . но содержится в G. Значит, оно совпадает с G, ведь нет поля характеристики p с количеством элементов между p и p^2 . Значит, любой элемент поля G представляется в виде $\alpha h + \beta, \alpha, \beta \in F_p$. Поэтому

$$h^2 = \alpha h + \beta, \alpha, \beta \in F_p$$
.

Значит, многочлены x^4+1 и $x^2-\alpha x-\beta$ не взаимно просты. Поэтому x^4+1 делится на какой-то многочлен степени 2 с коэффициентами в F_p . Возможны лишь такие разложения x^4+1 в произведение многочленов второй степени (с коэффициентами из F_p):

$$x^{4} + 1 = (x^{2} - h^{2})(x^{2} - 1/h^{2}),$$

$$x^{4} + 1 = (x^{2} - (h + 1/h)x + 1)(x^{2} + (h + 1/h)x + 1),$$

$$x^{4} + 1 = (x^{2} - (h - 1/h)x - 1)(x^{2} + (h - 1/h)x - 1).$$

Первый вариант не подходит, поскольку h^2 не может лежать в F_p , ведь его квадрат равен -1. Во втором и третьем вариантах либо h+1/h, либо h-1/h лежит в F_p , Выяснить, какой же из этих вариантво реализуется, у нас получится позже.

Покажем, что не может быть $h-1/h \in F_p$. Пусть $g=u+vi, u,v \in F_p$. Тогда

$$\frac{1}{g} = \frac{u - vi}{u^2 + v^2}.$$

Имеем

$$h - 1/h = (u + vi)^{(p^2 - 1)/8} - \frac{(u - vi)^{(p^2 - 1)/8}}{(u^2 + v^2)^{(p^2 - 1)/8}}$$

Пусть $h = U + Vi = (u + vi)^{(p^2 - 1)/8}, U, V \in F_p$. Тогда

$$h-1/h=U+Vi-\frac{U-Vi}{(u^2+v^2)^{(p^2-1)/8}}=U+Vi+\frac{-U+Vi}{(u^2+v^2)^{(p^2-1)/8}}.$$

Это может лежать в F_p , только если

$$V + \frac{V}{(u^2 + v^2)^{(p^2 - 1)/8}} = 0.$$

V=0 быть не может, ведь U+Vi=h, а h не лежит в F_p — потому что $h^4=-1,$ а -1 у нас квадратичный невычет. Значит, на V можно сократить, и

$$(u^2 + v^2)^{(p^2 - 1)/8} = -1.$$

Но у нас $(p^2-1)/8$ чётное, и из этого равенства следует. что -1- квадратичный вычет по модулю p. А это неверно. Итак, h-1/h не может лежать в F_p , и остаётся $h+1/h \in F_p$. Поскольку

$$(h+1/h)^2 = 2,$$

то всё доказано.

• $p \equiv -3 \pmod{8}$. Предположим,

$$s^2 \equiv 2 \pmod{p}$$
.

По задаче 3a есть $j \in \mathbb{F}_p$, такое, что

$$j^2 \equiv -1 \pmod{p}.$$

Рассмотрим $z = s \frac{1+j}{2}$. Тогда

$$z^2 = s^2 \frac{j}{2} = j.$$

Отсюда ясно, что z — первообразный корень из 1 степени 8. Мультипликативная группа поля \mathbb{F}_p циклическая. Она порождена элементом $t \in \mathbb{F}_p$. Тогда $z = t^k, 0 < k < p-1$. Отсюда $t^{8k} = 1, 8k$ делится на p-1. Но p-1 не делится на 8. Значит, 4k делится на p-1, и $z^4 = 1$. Противоречие с первообразностью p.

• $p \equiv 3 \pmod 8$. Это самый сложный случай. Поначалу можно рассуждать, как в случае $p \equiv -1 \pmod 8$. По задаче 3a, -1 — квадратичный невычет в F_p . Поэтому так же рассматриваем расширение $G = F_p[x]/(x^2+1)$. В нём выбираем элемент g, порождающий мультипликативную группу G. Полагаем

$$h = g^{(p^2 - 1)/8}.$$

Как и раньше, $h^4=-1$. Снова получаем, что либо h+1/h, либо h-1/h лежит в F_p . И нам надо показать, что в этом случае $h-1/h\in F_p$ (тогда получается. что -2 — квадратичный вычет в F_p , а раз -1 — невычет, то 2 — невычет).

Итак, покажем, что $h+1/h \notin F_p$.

Пусть $g = u + vi, u, v \in F_p$. Тогда

$$\frac{1}{g} = \frac{u - vi}{u^2 + v^2}.$$

Имеем

$$h + 1/h = (u + vi)^{(p^2 - 1)/8} + \frac{(u - vi)^{(p^2 - 1)/8}}{(u^2 + v^2)^{(p^2 - 1)/8}}.$$

Пусть $h = U + Vi = (u + vi)^{(p^2 - 1)/8}, U, V \in F_p$. Тогда

$$h + 1/h = U + Vi + \frac{U - Vi}{(u^2 + v^2)^{(p^2 - 1)/8}}.$$

Это может лежать в F_p , только если

$$V - \frac{V}{(u^2 + v^2)^{(p^2 - 1)/8}} = 0.$$

V=0 быть не может, ведь U+Vi=h, а h не лежит в F_p — потому что $h^4=-1,$ а -1 у нас квадратичный невычет. Значит, на V можно сократить, и

$$(u^2 + v^2)^{(p^2 - 1)/8} = 1.$$

На первый взгляд, тут нет никакого противоречия. Но добавим ещё такое замечание: u^2+v^2 должно быть первообразным корнем в F_p . Действительно, в поле G норма $\|a+bi\|=a^2+b^2\in F_p$ мультипликативна (легко проверить). Чтобы порождать мультипликативную группу поля $G,\ g=u+vi$ должно обладать таким свойством, что $(u^2+v^2)^k, k\geq 0$ должно пробегать все элементы в F_p вида $a^2+b^2, a,b\in F_p$. Поскольку $a^2+b^2,a,b\in F_p$ пробегает все вычеты $\operatorname{mod} p$ (см. утвержение ниже), то $u^2+v^2-\operatorname{порождает}$ мультипликативную группу F_p . А тогда $(u^2+v^2)^{(p-1)/2}=-1$, и в силу нечётности $\frac{p+1}{4}$

$$(u^2 + v^2)^{(p^2 - 1)/8} = -1.$$

Противоречие.

Утверждение 1.2. $a^2 + b^2, a, b \in F_p$ пробегает все элементы F_p .

Proof. Ясно, что в виде a^2+b^2 можно представить любой квадратичный вычет в F_p (надо взять b=0). Осталось показать, что в таком виде можно представвить хотя бы один квадратичный невычет $c \in F_p$ — ведь любой другой квадратичный невычет представляется в виде $cz^2, z \in F_p$ (потому что частное двух квадратичных невычетов — квадратичный вычет). Ясно. что есть квадратичный вычет s, такой, что s+1 — квадратичный невычет (если бы это было не так, то по индукции бы получили, что s=1, s=1, s=1, и мы представили квадратичный невычет s=1, в виде суммы двух квадратов. Доказательство окончено.

5. Ясно, что $K(\sqrt{a} + \sqrt{b}) \subseteq K(\sqrt{a}, \sqrt{b})$. Покажем, что

$$K(\sqrt{a}, \sqrt{b}) \subseteq K(\sqrt{a} + \sqrt{b}).$$

Имеем

$$\sqrt{a} - \sqrt{b} = \frac{a-b}{\sqrt{a} + \sqrt{b}} \in K(\sqrt{a} + \sqrt{b}).$$

Ну а тогда

$$\sqrt{a} = \frac{1}{2}((\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})) \in K(\sqrt{a} + \sqrt{b}).$$

И аналогично для \sqrt{b} . А всё потому, что в поле характеристики, отличной от 2, элемент 2 обратим. А если характеристика поля равна 2, то это не обязательно так. Пример:

2 Листок 2

- 1. Не буду решать.
- 2. Степень расширения $[\mathbb{Q}[\sqrt{n_1},\dots,\sqrt{n_m}]:\mathbb{Q}]$ равна произведению степеней $[\mathbb{Q}[\sqrt{n_1},\dots,\sqrt{n_{s+1}}]:\mathbb{Q}[\sqrt{n_1},\dots,\sqrt{n_s}]]$. А каждая из этих степеней —

1 или 2. Поэтому степень расширения $[\mathbb{Q}[\sqrt{n_1},\dots,\sqrt{n_m}]:\mathbb{Q}]$ — это степень двойки. Если бы там был $\sqrt[3]{2}$, то было бы

$$[\mathbb{Q}[\sqrt{n_1},\ldots,\sqrt{n_m}]:\mathbb{Q}]=[\mathbb{Q}[\sqrt{n_1},\ldots,\sqrt{n_m}]:\mathbb{Q}[\sqrt[3]{2}]][\mathbb{Q}[\sqrt[3]{2}]:\mathbb{Q}].$$

Но $[\mathbb{Q}[\sqrt[3]{2}]:\mathbb{Q}]$ — это 3. А слева степень двойки, она на 3 не делится. Противоречие.

3. Работаем в поле разложения многочлена $x^3 - x - a$. Имеем

$$x^3 - x - a = (x - \alpha)(x - \beta)(x - \gamma).$$

Отсюда, приравнивая коэффициенты, получаем

$$\alpha + \beta + \gamma = 0,$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = -1,$$

$$\alpha\beta\gamma = a.$$

Далее, из предыдущих равенств

$$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma) = 2,$$

$$\alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 = (\alpha\beta + \beta\gamma + \alpha\gamma)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma) = 1.$$

Теперь имеем

$$(3\alpha^2-1)(3\beta^2-1)(3\gamma^2-1) = 27\alpha^2\beta^2\gamma^2 - 9(\alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2) + 3(\alpha^2+\beta^2+\gamma^2) - 1 = 27a^2 - 4.$$

Из равенств $\alpha\beta\gamma = a$, $\alpha^3 - \alpha = a$ получаем

$$\alpha\beta\gamma = \alpha^3 - \alpha,$$
$$\beta\gamma = \alpha^2 - 1.$$

Аналогично, $\alpha\beta = \gamma^2 - 1$, $\alpha\gamma = \beta^2 - 1$. Имеем

$$(\alpha - \beta)(\beta - \gamma) = \alpha \beta - \beta^2 - \alpha \gamma + \beta \gamma = (\alpha + \gamma)\beta - \beta^2 - \alpha \gamma = -2\beta^2 - \alpha \gamma = -2\beta^2 - (\beta^2 - 1) = 1 - 3\beta^2.$$

Аналогично, $(\beta - \gamma)(\gamma - \alpha) = 1 - 3\gamma^2$, $(\gamma - \alpha)(\alpha - \beta) = 1 - 3\alpha^2$. Итак,

$$4 - 27a^2 = (1 - 3\alpha^2)(1 - 3\beta^2)(1 - 3\gamma^2) = (\alpha - \beta)^2(\beta - \gamma)^2(\gamma - \alpha)^2.$$

Осталось показать, что $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$ лежит в F_p . Рассмотрим в поле разложения многочлена x^3-x-a , то есть $F_p[\alpha,\beta,\gamma]$, автоморфизм Фробениуса $x\to x^p$. Как известно, он оставляет на местах элементы F_p и только их. Кроме того, ясно, что корни многочлена x^3-x-a переходят в его же корни, поэтому α,β,γ переставляются этим автоморфизмом. Но поскольку эти корни не лежат в F_p , ни один из них не переходит в себя. А все перестановки множества из трёх элементов, не оставляюющие на месте ни один из них, чётные. Поэтому наш автоморфизм производит чётную перестановку α,β,γ , а значит, переводит $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$ в себя. А кто переходит в себя, тот лежит в F_p . Всё доказано.