Line Assignment

Ginna Shreyani- FWC22006

September 2022

1 Problem:

Diagonal AC of a parallelogram ABCD bisects $\angle A$. Show that

(i) it bisects $\angle C$

2 Construction:

Variable	Point/Length	Description
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Vertex A
В	$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	Vertex B
С	$\begin{pmatrix} 6 \\ 6 \end{pmatrix}$	Vertex C
D	$\begin{pmatrix} 2 \\ 6 \end{pmatrix}$	Vertex D

3 Solution:

3.1 Theory:

Given a diagonal of a parallelogram bisects an angle, we need to prove that the same diagonal bisects the opposite angle of the parallelogram by using vector algebra.

3.2 Mathematical Calculation:

Here the diagonal joining vertices A and C can be represented as

$$\mathbf{C} - \mathbf{A} = (\mathbf{B} - \mathbf{A}) + (\mathbf{C} - \mathbf{B}) \tag{1}$$

The other diagonal joining vertices B and D can be represented as

$$\mathbf{D} - \mathbf{B} = (\mathbf{B} - \mathbf{C}) - (\mathbf{B} - \mathbf{A}) \tag{2}$$

(i) Let the $\angle CAB$ be θ_1 and the $\angle DAC$ be θ_2 and the $\angle DCA$ be θ_3 and $\angle ACB$ be θ_4 Since the diagonal $\mathbf{C} - \mathbf{A}$ bisects $\angle A$, $\angle CAB = \angle DAC$, therefore we get $\theta_1 = \theta_2$

$$cos\theta_{1} = \frac{(\mathbf{B} - \mathbf{A})^{T}(\mathbf{C} - \mathbf{A})}{||\mathbf{B} - \mathbf{A}||.||\mathbf{C} - \mathbf{A}||}$$

$$cos\theta_{3} = \frac{(\mathbf{A} - \mathbf{B})^{T}(\mathbf{A} - \mathbf{C})}{||\mathbf{A} - \mathbf{B}||.||\mathbf{A} - \mathbf{C}||}$$

$$cos\theta_{3} = \frac{-(\mathbf{B} - \mathbf{A})^{T} - (\mathbf{C} - \mathbf{A})}{||-(\mathbf{B} - \mathbf{A})||.||-(\mathbf{C} - \mathbf{A})||}$$

$$cos\theta_{3} = \frac{(\mathbf{B} - \mathbf{A})^{T}(\mathbf{C} - \mathbf{A})}{||\mathbf{B} - \mathbf{A}||.||\mathbf{C} - \mathbf{A}||}$$

$$cos\theta_{1} = cos\theta_{3}$$

$$\theta_{1} = \theta_{3}$$

Therefore, $\angle CAB = \angle DAC = \angle DCA$

Similarly, applying the same process to $\angle DAC$ and $\angle ACB$, we get $\theta_2 = \theta_4$ and as result $\angle DAC = \angle ACB$.

Therefore, $\angle DCA = \angle ACB$

Since both the angles $\angle DCA$ and $\angle ACB$ are equal, we can conclude that the diagonal $\mathbf{C} - \mathbf{A}$ bisects the $\angle C$.