плотностью тепловых источников F(x,t) в точке х в момент t^1). В результате действия этих источников на участке стержня (x,x+dx) за промежуток времени (t,t+dt) выделится количество тепла

$$dQ = SF(x,t)dxdt (1)$$

или в интегральной форме

$$dQ = S \int_{t_1}^{t_2} \int_{x_1}^{x_2} F(x, t) dx dt,$$
 (2)

где Q - количество тепла, выделяющегося на участке стержня (x_1, x_2) за промежуток времени (t_1, t_2) .

Уравнение теплопроводимости получается при подсчете баланса тепла на конкретном отрезке (x_1, x_2) за некоторый промежуток времени (t_1, t_2) . Применяя закон сохранения энергии и пользуясь формулами (5),(7) и (9), можно написать равенство

$$\int_{t_1}^{t_2} \left[k \frac{du}{dx}(x,\tau)|_{x=x_2} - k \frac{du}{dx}(x,\tau)|_{x=x_1} \right] d\tau + \int_{x_1}^{x_2} \int_{t_1}^{t_2} F(\xi,\tau) d\xi d\tau =$$

$$= \int_{x_1}^{x_2} c\rho \left[u(\xi, t_2) - u(\xi, t_1) \right] d\xi \tag{3}$$

которое и представляет уравнение теплопроводности в игтегральной форме. Чтобы получить уравнение теплопроводности в дифференциальной форме, предположим, что функция u(x,t) имеет непрерывные производные u_{xx} и u_t^2).

Пользуясь теоремой о среднем, получаем равенство

$$\left[k \frac{du}{dx}(x,\tau)|_{x=x_2} - k \frac{du}{dx}(x,\tau)|_{x=x_1} \right]_{\tau=t_3} \Delta t + F(x_4, t_4) \Delta x \Delta t =
= \left\{ c\rho[u(\xi, t_2) - u(\xi, t_1)] \right\}_{\xi=x_3} \Delta x \tag{4}$$

которые при помощи теоремы о конечных приращениях можно преобразить к виду

$$\frac{\partial}{\partial x} \left[k \left(x, t \right) \right]_{\substack{x = x_5 \\ t = t_5}} \Delta t \Delta x + F(x_4, t_4) \Delta x \Delta t =$$

$$= \left[c\rho \frac{\partial u}{\partial t}(x,t) \right]_{\substack{x=x_3\\t=t_3}} \Delta x \Delta t, \tag{5}$$

где t_3, t_4, t_5 и x_3, x_4, x_5 - промежуточные точки интервалов (t_1, t_2) и (x_1, x_2) . Отсюда, после сокращения на произведение $\Delta x \Delta t$, находим:

$$\frac{\partial}{\partial x} \left(k \frac{\partial u}{\partial x}\right) \Big|_{\substack{x=x_5 \\ t=t_5}} + F(x,t) \Big|_{\substack{x=x_4 t=t_4}} = c\rho \frac{\partial u}{\partial t} \Big|_{\substack{t=t_5 \\ x=x_5}}$$
 (6)

Все эти рассуждения относятся к произвольным промежуткам (x_1,x_2) и (t_1,t_2) . Переходя к пределу при $x_1,x_2\to x$ и $t_q,t_2\to t$, получим уравнение

$$\frac{\partial}{\partial x}(k\frac{\partial u}{\partial x}) + F(x,t) = c\rho \frac{\partial u}{\partial x},\tag{7}$$

называемое уравнением теплопроводности. Рассмотрим некоторые частные случаи. 1. Если стержень однороден, то κ , c, ρ можно считать постоянными, и уравнение обычно записывают в виде

$$u_t = a^2 u_{xx} + f(x, t),$$

$$a^2 = \frac{\kappa}{c\rho}, f(x,t) = \frac{F(x,t)}{c\rho},$$

где a^2 постоянная, называемая коэффицентом температуропроводности. Если источники отсутствуют, т.е. F(x,t)=0, то уравнение теплопроводности принимает простой вид:

$$u_t = a^2 u_{xx}. (8)$$

2. Плотность тепловых источников может зависеть от температуры. В случае теплообмена с окружающей средой, подчиняющегося закону Ньютона, количество тепла, теряемого стержнем ¹), рассчитаное на единицу длины и времени, равно

$$F_0 = h(u - \Theta),$$