

_ <i>p</i> _	q	$p \wedge q$	$\neg (p \land q)$	P	q	$\neg p$	~ q	$\neg p \lor \neg q$
V	V	V	F	V	V	F	F	F
V	F	F	V	V	F	F	V	v
F	V	F	V	F	V	v	F	v
F	F	V F F	V	F	F	V	V	F V V
		$(p \land q)$				b) ¬ p		

Figura 4-8

4.7 ÁLGEBRA DE PROPOSICIONES

Las proposiciones satisfacen varias leyes que se listan en la tabla 4-1. (En esta tabla, Vy F se restringen a los valores de verdad "Verdadera" y "Falsa".) El planteamiento formal de este resultado es:

Teorema 4.2: Las proposiciones satisfacen las leyes de la tabla 4-1.

(Observe la semejanza entre esta tabla 4-1 y la tabla 1-1 sobre conjuntos.)

Tabla 4-1 Leves del álgebra de proposiciones

	rabia 4 1 Dejes del algebia de pie	posiciones		
Leyes idempotentes:	$(1a) p \lor p \equiv p$	$(1b) p \wedge p \equiv p$		
Leyes asociativas:	(2a) $(p \lor q) \lor r \equiv p \lor (q \lor r)$	(2b) $(p \land q) \land r \equiv p \land (q \land r)$		
Leyes conmutativas:	$(3a) p \lor q \equiv q \lor p$	$(3b) p \wedge q \equiv q \wedge p$		
Leyes distributivas:	$(4a) p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$(4b) p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$		
Leyes de identidad:	(5a) $p \lor F \equiv p$ (6a) $p \lor V \equiv V$	(5b) $p \wedge V \equiv p$ (6b) $p \wedge F \equiv F$		
Leyes de doble negación:	$(7a) \neg \neg p \equiv p$			
Leyes de complementos:	$(8a) p \lor \neg p \equiv V$ $(9a) \neg V \equiv F$	(8b) $p \land \neg p \equiv V$ (9b) $\neg F \equiv V$		
Leyes de DeMorgan:	$(10a) \neg (p \lor q) \equiv \neg p \land \neg q$	$(10b) \neg (p \land q) \equiv \neg p \lor \neg q$		

I EJEMPLO 4.8 Con las leyes de la tabla 4-1, demostrar que $\neg (p \land q) \lor (\neg q \land q) \equiv \neg q$.

Proposición		Razon
1) $\neg (p \lor q) \lor (\neg$	$(\neg p \land q) \equiv (\neg p \land \neg q) \lor (\neg p \land q)$	Ley de Morgan
2)	$\equiv \neg p \land (\neg q \lor q)$	Ley distributiva
3)	$\equiv \neg p \wedge T$	Ley de complementos
4)	$\equiv \neg p$	Ley de identidad

4.8 PROPOSICIONES CONDICIONALES Y BICONDICIONALES

Muchas proposiciones, en particular las que se hacen en matemáticas, son de la forma "Si p entonces q". Estas proposiciones siciones se denominan condicionales y se denotan por

$$p \rightarrow q$$

La condicional $p \to q$ suele leerse "p implica q" o "p sólo si q".

Otra proposición común es de la forma "p si y sólo si q". Estas proposiciones se denominan bicondicionales y se denotan por

	p	q	¬p	$\neg q$	Condicional $p \rightarrow q$	Reciproca $q \rightarrow p$	Inversa $\neg p \rightarrow \neg q$	Contrapositiva $\neg q \rightarrow \neg p$
-	V	V	F	F	V	V	V	V
	V	F	F	V	F	V	V	F
	F	V	V	F	V	F	F	V
	F	F	V	V	V	V	V	V

Figura 4-10