ECE 302: Probabilistic Methods in Electrical and Computer Engineering

Spring 2017

Instructor: Prof. Stanley H. Chan

Final

Spring 2017 (May 2, 2017)

Name:		PUID:	
Please copy and write the fol	lowing statement:		
I certify that I	have neither given nor rece	eived unauthorized aid on this exam.	
(Please copy and write the a	bove statement.)		
			(Signature)

Problem	Score
Q1	
Q2	
Q3	
Q4	
Q5	
Q6	
Total	

Problem 1. (10 POINTS)

Determine whether the following statements are TRUE or FALSE. (A statement is true if it is *always* true. Otherwise it is false.) Circle your answer. No partial credit will be given.

(a) Two events A and B are independent if

$$\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B].$$

TRUE or FALSE.

(b) Let X be a random variable with mean $\mathbb{E}[X] = \mu$. Then, the mean of $\frac{1}{X}$ is

$$\mathbb{E}\left[\frac{1}{X}\right] = \frac{1}{\mu}.$$

TRUE or FALSE.

(c) Let A, B, C be three events. Then,

$$\mathbb{P}[A\cap B\cap C] = \mathbb{P}[A\mid B\cap C]\mathbb{P}[B\mid C]\mathbb{P}[C]$$

TRUE or FALSE.

(d) Let $X \sim \mathcal{N}(\mu, \sigma^2)$. Then

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

TRUE or FALSE.

(e) The probability $\mathbb{P}[X=b]$ is determined by

$$\mathbb{P}[X = b] = \lim_{h \to 0} F_X(b+h) - F_X(b).$$

TRUE or FALSE.

(f) Let X be a random variable with a PDF

$$f_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}, & x > 0, \\ 1, & \tau \le x \le 0, \end{cases}$$

Then, $\tau = -1$.

TRUE or FALSE.

(g) Let X and Y be two random variables with correlation coefficient $\rho = 1$. Then, X = Y.

TRUE or FALSE.

Not Required (h) Let X_1, \ldots, X_N be a sequence of i.i.d. random variables with mean $\mathbb{E}[X_n] = \mu$. Weak law of large number says for any $\varepsilon > 0$,

$$\mathbb{P}\left[\lim_{N\to\infty}\left|\frac{1}{N}\sum_{n=1}^{N}X_n-\mu\right|\geq\varepsilon\right]=0$$

TRUE or FALSE.

(i) Let X, Y, Z be three random variables. It is given that X and Y are uncorrelated. Then,

$$Cov(X, Y + Z) = Cov(X, Z).$$

TRUE or FALSE.

Not Required (j) Let X be a random variable and s > 0 be a constant. If $\varepsilon > 0$, then

$$\mathbb{P}[e^{sX} \geq e^{s\varepsilon}] \leq \frac{\mathbb{E}[e^{sX}]}{e^{s\varepsilon}}.$$

TRUE or FALSE.

Problem 2. (15 POINTS)

Circle one and only one answer. If I cannot tell which answer you are circling, I will give you a zero. There is no partial credit for this problem.

- 1. Two dice are tossed. Let X be the absolute difference in the number of dots facing up. For example, if the first dice is 5, the second dice is 6, then X = |5 6| = 1. The probability that $X \le 2$ is
 - (a) $\frac{6}{36}$
 - (b) $\frac{8}{36}$
 - (c) $\frac{10}{36}$
 - (d) $\frac{12}{36}$
 - (e) $\frac{18}{36}$
 - (f) $\frac{20}{36}$
 - (g) $\frac{24}{36}$
 - (h) $\frac{32}{36}$
 - (i) None of the above
 - (j) Problem undefined
- 2. Let X be a random variable with PMF

$$\mathbb{P}[X = k] = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, \dots$$

Let A and B be the events that

- $A = \{X \text{ is even}\}$
- $B = \{X \text{ is a multiple of 5}\}.$

Find $\mathbb{P}[A \cap B]$.

- (a) $\frac{1}{2}$
- (b) $\frac{1}{3}$
- (c) $\frac{1}{4}$
- (d) $\frac{1}{31}$
- (e) $\frac{1}{127}$
- (f) $\frac{1}{511}$
- (g) $\frac{1}{1023}$
- (h) $\frac{1}{2055}$
- (i) None of the above.
- (j) Problem undefined.

- 3. Let X and Y be two independent random variables with PDF $f_X(x)$ and $f_Y(y)$, respectively. Let Z = X Y. Then, $F_Z(z) =$
 - (a) $\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_X(x) f_Y(y) dx dy$
 - (b) $\int_{-\infty}^{\infty} \int_{-\infty}^{y-z} f_X(x) f_Y(y) dx dy$
 - (c) $\int_{-\infty}^{\infty} \int_{-\infty}^{y+z} f_X(x) f_Y(y) dx dy$
 - (d) $\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_X(x) f_Y(y) dy dx$
 - (e) $\int_{-\infty}^{\infty} \int_{-\infty}^{x-z} f_X(x) f_Y(y) dy dx$
 - (f) $\int_{-\infty}^{\infty} \int_{-\infty}^{x+z} f_X(x) f_Y(y) dy dx$
 - (g) (a) and (d)
 - (h) (b) and (f)
 - (i) (c) and (e)
 - (j) None of the above
- 4. Let X be a random variable with CDF $F_X(x)$. Let $Z = 2X^2 + 1$. Then, $F_Z(z) = ?$
 - (a) $F_X(\sqrt{(z-1)/2})$
 - (b) $F_X(\sqrt{(z+1)/2})$
 - (c) $F_X(\sqrt{(z+1)/2}) + F_X(\sqrt{(z-1)/2})$
 - (d) $F_X(\sqrt{(z+1)/2}) F_X(\sqrt{(z-1)/2})$
 - (e) $F_X(\sqrt{-(z+1)/2})$
 - (f) $F_X(\sqrt{-(z-1)/2})$
 - (g) $F_X(\sqrt{(z-1)/2}) + F_X(-\sqrt{(z-1)/2})$
 - (h) $F_X(\sqrt{(z-1)/2}) F_X(-\sqrt{(z-1)/2})$
 - (i) Problem undefined.
 - (j) None of the above.
- Not Required 5. Let θ be an unknown parameter. Let $X_n = \mu + W_n$ where $W_n \overset{i.i.d.}{\sim} \mathcal{N}(0,\theta)$ for $n = 1, \dots, N$, i.e., W_n is i.i.d. Gaussian of mean zero and variance θ . Suppose that we have observed x_1, \dots, x_N . The maximum likelihood estimate of θ is
 - (a) $\hat{\theta}_{ML} = \mu$
 - (b) $\widehat{\theta}_{ML} = \mu^2$
 - (c) $\widehat{\theta}_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$
 - (d) $\widehat{\theta}_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n^2$
 - (e) $\hat{\theta}_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n \mu)$
 - (f) $\hat{\theta}_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n \mu)^2$
 - (g) $\hat{\theta}_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n^2 + \mu^2)$
 - (h) $\widehat{\theta}_{ML} = \frac{1}{N} \sum_{n=1}^{N} \log(x_n)$
 - (i) $\widehat{\theta}_{ML} = \frac{1}{N} \sum_{n=1}^{N} \sqrt{x_n}$
 - (j) None of the above.

Problem 3. (10 POINTS)

Let X be a random variable with

$$\mathbb{P}[X=1] = \mathbb{P}[X=-1] = \frac{1}{2}.$$

Let W be a Gaussian random variable with $W \sim \mathcal{N}(0,1)$. Suppose that X and W are independent, and let Y = X + W.

Find $\mathbb{E}[X \mid Y = 1]$.

 $\mathbb{E}[X \mid Y = 1] =$

Problem 4. (20 POINTS) Let X_1, \ldots, X_N be a sequence of i.i.d. random variables with PDF

$$f_{X_n}(x) = \lambda e^{-\lambda x}, \qquad x \ge 0.$$

Let $Z_N = X_1 + \ldots + X_N$, where N is a fixed constant.

(a) (10 points) Find the PDF of \mathbb{Z}_N . (Hint: Use characteristic function.)

$$f_{Z_N}(z) = \left\{ \right.$$

$$z \geq 0$$

(b) (10 points) Now, suppose that N is a Poisson random variable with mean β , i.e.,

$$\mathbb{P}(N=n) = \frac{\beta^n}{n!}e^{-\beta}.$$

Find $\mathbb{E}[Z_N]$. Show your steps clearly or otherwise no point.

 $\mathbb{E}[Z_N] =$

Problem 5. (25 POINTS)

Let X(t) be a random process defined as

$$X(t) = \cos(\omega_0 t + \Theta),$$

where the random variable $\Theta \sim \text{Uniform}[0, 2\pi]$.

(a) (10 points) Find $\mathbb{E}[X(t)]$ and $\mathbb{E}[X(t+\tau)X(t)]$. Show your steps clearly or otherwise no point.

 $\mathbb{E}[X(t)] =$

 $\mathbb{E}[X(t+\tau)X(t)] =$

(b) (5 points) Is X(t) W.S.S.? Explain your answer or otherwise no point.

 $\mathrm{YES} \; / \; \mathrm{NO}$

(c) (10 points) Suppose that X(t) is sent through a linear time invariant system with input/output relationship

$$2\frac{d^2}{dt^2}Y(t) + 2\frac{d}{dt}Y(t) + 4Y(t) = 3\frac{d^2}{dt^2}X(t) - 3\frac{d}{dt}X(t) + 6X(t).$$

Find $R_Y(\tau)$.

 $R_Y(\tau) =$

Problem 6. (20 POINTS)

Consider a transmission system which sends a binary signal $\{+1,-1\}$ with equal probability $\mathbb{P}[X=+1]=\mathbb{P}[X=-1]=\frac{1}{2}$. Let Z be a noise random variable with PDF

$$f_Z(z) = \begin{cases} \alpha^2 z e^{-\alpha z}, & z \ge 0, \\ 0, & z < 0. \end{cases}$$

Let Y = X + Z be the received signal. The receiver implements a simple detection rule as follows:

- Say X = +1 if $Y \ge \ell$, where ℓ is a parameter that you need to determine;
- Say X = -1 if $Y < \ell$.

Suppose that $\alpha = \ln \sqrt{3}$.

(a) (10 points) Show that the probability of detection error is

$$P_e = C\left(1 - \int_A^B \alpha^2 x e^{-\alpha x} dx\right).$$

What are A, B, C?

(Hint: P_e is defined as $P_e \stackrel{\text{def}}{=} \mathbb{P}[X = +1 \text{ and decide } -1] + \mathbb{P}[X = -1 \text{ and decide } +1]$.)

$$A =$$

$$B =$$

$$C =$$

)	(10 points) Determine ℓ that minimizes the probability of error. Use $\alpha = \ln \sqrt{3}$. Hint: Use the Fundamental Theorem of Calculus.
	$\ell =$

Useful Identities

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \ldots = \frac{1}{1-r}$$

$$4. \sum_{k=1}^{\infty} kr^{k-1}$$

$$\sum_{k=1}^{\infty} kr^{k-1} = 1 + 2r + 3r^2 + \dots = \frac{1}{(1-r)^2}$$

2.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots = \frac{1}{1-r}$$
2.
$$\sum_{k=1}^{\infty} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
3.
$$\sum_{k=1}^{\infty} k^2 = 1^2 + 2^2 + 3^3 + \dots + n^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

3.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$$
 6. $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

6.
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Common Distributions

Bernoulli
$$\mathbb{P}[X=1]=p$$

$$\mathbb{E}[X] = p$$
 $\operatorname{Var}[X] = p(1 - p)$

$$Var[X] = p(1-p)$$
 $M_X(s) = 1 - p + pe^s$

Binomial
$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $\mathbb{E}[X] = np$ $\text{Var}[X] = np(1-p)$ $M_X(s) = (1-p+pe^s)^n$

$$\mathsf{C}[X] = np \qquad \mathsf{Var}[X] = np(1 - 1)$$

$$M_X(s) = (1 - p + pe^s)^r$$

Geometric
$$p_X(k) = p(1 - p)$$

$$\operatorname{Var}[X] = \frac{1}{p}$$
 $\operatorname{Var}[X] = \frac{1}{p}$

$$M_X(s) = \frac{pe^s}{1 - (1 - p)e^s}$$

Poisson
$$p_X(k) = \frac{\lambda^k e^-}{k!}$$

$$V[X] = \lambda$$
 $Var[X] = \lambda$

$$M_X(s) = e^{\lambda(e^s - 1)}$$

Geometric
$$p_X(k) = p(1-p)^{k-1}$$
 $\mathbb{E}[X] = \frac{1}{p}$ $\operatorname{Var}[X] = \frac{1-p}{p^2}$ $M_X(s) = \frac{pe^s}{1-(1-p)e^s}$
Poisson $p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $\mathbb{E}[X] = \lambda$ $\operatorname{Var}[X] = \lambda$ $M_X(s) = e^{\lambda(e^s-1)}$
Gaussian $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\mathbb{E}[X] = \mu$ $\operatorname{Var}[X] = \sigma^2$ $M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$

$$\mathbb{E}[X] = \mu$$
 $\operatorname{Var}[X] = 0$

$$M_X(s) = e^{\mu s + \frac{\sigma}{2}}$$

Exponential
$$f_X(x) = \lambda \exp\{-\lambda x\}$$

$$\mathbb{E}[X] = \mu \qquad \text{Var}[X] = \sigma^2 \qquad M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$$

$$\mathbb{E}[X] = \frac{1}{\lambda} \qquad \text{Var}[X] = \frac{1}{\lambda^2} \qquad M_X(s) = \frac{\lambda}{\lambda - s}$$

$$M_X(s) = \frac{\lambda}{\lambda - s}$$

Uniform
$$f_X(x) = \frac{1}{b_x}$$

$$\mathbb{E}[X] = \frac{a+b}{2} \quad \text{Var}[X] = \frac{(b-a)^2}{12} \qquad M_X(s) = \frac{e^{sb} - e^{sa}}{s(b-a)}$$

$$M_X(s) = \frac{e^{sb} - e^{sa}}{s(b-a)}$$

Fourier Transform Table

$$f(t) \longleftrightarrow F(w)$$

$$f(t) \longleftrightarrow F(w)$$

1.
$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+jw}, a>0$$

$$\operatorname{sinc}^2(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$$

2.
$$e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, a > 0$$

$$f(t) \longleftrightarrow F(w)$$

$$1. \qquad e^{-at}u(t) \longleftrightarrow \frac{1}{a+jw}, \ a > 0$$

$$10. \qquad \operatorname{sinc}^{2}(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$$

$$2. \qquad e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, \ a > 0$$

$$11. \qquad e^{-at}\operatorname{sin}(w_{0}t)u(t) \longleftrightarrow \frac{w_{0}}{(a+jw)^{2}+w_{0}^{2}}, \ a > 0$$

$$3. \qquad e^{-a|t|} \longleftrightarrow \frac{2a}{a^{2}+w^{2}}, \ a > 0$$

$$12. \qquad e^{-at}\operatorname{cos}(w_{0}t)u(t) \longleftrightarrow \frac{a+jw}{(a+jw)^{2}+w_{0}^{2}}, \ a > 0$$

$$4. \qquad \frac{a^{2}}{a^{2}+t^{2}} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$$

$$13. \qquad e^{-\frac{t^{2}}{2\sigma^{2}}} \longleftrightarrow \sqrt{2\pi} \sigma e^{-\frac{\sigma^{2}w^{2}}{2}}$$

$$5. \qquad te^{-at}u(t) \longleftrightarrow \frac{1}{(a+jw)^{2}+w_{0}^{2}}, \ a > 0$$

$$14. \qquad \delta(t) \longleftrightarrow 1$$

3.
$$e^{-a|t|} \longleftrightarrow \frac{2a}{a^2 + w^2}, a > 0$$

12.
$$e^{-at}\cos(w_0t)u(t) \longleftrightarrow \frac{a+jw}{(a+jw)^2+w_0^2}, a>0$$

4.
$$\frac{a^2}{a^2+t^2} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$$

13
$$e^{-\frac{t^2}{2\sigma^2}} \longleftrightarrow \sqrt{2\pi}\sigma e^{-\frac{\sigma^2 w^2}{2\sigma^2}}$$

5.
$$te^{-at}u(t) \longleftrightarrow \frac{1}{(a+jw)^2}, \ a>0$$

$$\delta(t) \longleftrightarrow 1$$

6.
$$t^n e^{-at} u(t) \longleftrightarrow \frac{n!}{(a+jw)^{n+1}}, a > 0$$

$$1 \longleftrightarrow 2\pi\delta(w)$$

7.
$$\operatorname{rect}(\frac{t}{\tau}) \longleftrightarrow \tau \operatorname{sinc}(\frac{w\tau}{2})$$

$$\delta(t-t_0)\longleftrightarrow e^{-jwt_0}$$

8.
$$\operatorname{sinc}(Wt) \longleftrightarrow \frac{\pi}{W} \operatorname{rect}(\frac{w}{2W})$$

9. $\Delta(\frac{t}{2}) \longleftrightarrow \frac{\tau}{2} \operatorname{sinc}^2(\frac{wt}{4})$

17.
$$e^{jw_0t} \longleftrightarrow 2\pi\delta(w-w_0)$$

Some definitions:

$$\operatorname{sinc}(t) = \frac{\sin(t)}{t} \qquad \operatorname{rect}(t) = \begin{cases} 1, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases} \qquad \Delta(t) = \begin{cases} 1 - 2|t|, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases}$$

14.

15.

16.

Basic Trigonometry

$$e^{j\theta} = \cos\theta + j\sin\theta$$
, $\sin 2\theta = 2\sin\theta\cos\theta$, $\cos 2\theta = 2\cos^2\theta - 1$.

$$\cos A \cos B = \frac{1}{2}(\cos(A+B) + \cos(A-B)) \quad \sin A \sin B = -\frac{1}{2}(\cos(A+B) - \cos(A-B))$$
$$\sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B)) \quad \cos A \sin B = \frac{1}{2}(\sin(A+B) - \sin(A-B))$$