Introduction to Gaussian Processes

Neil D. Lawrence

MLSS 23rd February 2015

Outline

Regression

Gaussian Processes

Gaussian Processes

Neil D. Lawrence

MLSS 23rd February 2015

Outline

Regression

Gaussian Processes

Outline

Regression

Gaussian Processes

Distributions over Functions

Two Point Marginals

Covariance from Basis Functions

An Infinite Basis

Constructing Covariance

Bochner's Theorem

Book

Sampling a Function

Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- ► Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f} = [f_1, f_2 \dots f_{25}]$.
- ▶ We will plot these points against their index.

Figure : A sample from a 25 dimensional Gaussian distribution.

Figure : A sample from a 25 dimensional Gaussian distribution.

Figure : A sample from a 25 dimensional Gaussian distribution.

Figure : A sample from a 25 dimensional Gaussian distribution.

Figure : A sample from a 25 dimensional Gaussian distribution.

Figure : A sample from a 25 dimensional Gaussian distribution.

Figure : A sample from a 25 dimensional Gaussian distribution.

Figure : A sample from a 25 dimensional Gaussian distribution.

► The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.

- ► The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.

- ► The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- ► Conditional density: $p(f_2|f_1 = -0.313)$.

- ► The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- ► Conditional density: $p(f_2|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- ▶ Prediction of f_2 from f_1 requires conditional density.
- Conditional density is also Gaussian.

$$p(f_2|f_1) = \mathcal{N}\left(f_2|\frac{k_{1,2}}{k_{1,1}}f_1, k_{2,2} - \frac{k_{1,2}^2}{k_{1,1}}\right)$$

where covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{2,1} & k_{2,2} \end{bmatrix}$$

► The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.

- ▶ The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.

- ► The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- ► Conditional density: $p(f_5|f_1 = -0.313)$.

- ► The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- ► Conditional density: $p(f_5|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of f* from f requires multivariate conditional density.
- ▶ Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_{*,f}\mathbf{K}_{f,f}^{-1}\mathbf{f}, \mathbf{K}_{*,*} - \mathbf{K}_{*,f}\mathbf{K}_{f,f}^{-1}\mathbf{K}_{f,*}\right)$$

► Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Prediction with Correlated Gaussians

- Prediction of f* from f requires multivariate conditional density.
- ► Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}(\mathbf{f}_*|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\mu} = \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{f}$$
$$\boldsymbol{\Sigma} = \mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f},*}$$

► Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- ► The covariance function is also know as a kernel.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 2.002}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$0.110$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 2.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 2.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$0.110$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$0.110$$

$$1.00$$

$$0.110$$

$$1.00$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$1.00 \quad 0.110$$

$$0.110 \quad 1.00$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

 $x_1 = -3.0$, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$0.110$$

$$0.110$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 2.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$x_3 = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$x_4 = -3.0, x_2 = 1.20, \text{ and } x_3 = 1.40 \text{ with } \ell = 2.00 \text{ and } \alpha = 1.00.$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$0.110 \quad 0.0889$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$0.110 \quad 0.0889$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$0.110 \quad 0.0889$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$x_3 = 1.40, x_3 = 1.40$$

$$0.110 \quad 1.00 \quad 0.995$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995 \quad \boxed{1.00}$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3$$
, $x_1 = -3$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3--3)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{1} = -3, x_{1} = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3 - -3)^{2}}{2 \times 2.0^{2}}\right)$$

 $x_1 = -3$, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_1 = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

 $x_1 = -3$, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_2 = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^2}{2 \times 2.0^2}\right)$$

 $x_1 = -3$, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_2 = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^2}{2 \times 2.0^2}\right)$$

 $x_1 = -3$, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^2}{2 \times 2.0^2}\right)$$

 $x_1 = -3$, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$x_3 = 1.4, x_1 = -3$$

$$0.11 \quad 1.0$$

$$0.089$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$0.11 \quad 1.0$$

$$0.089$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix}
1.0 & 0.11 & 0.089 \\
0.11 & 1.0 \\
0.089 & 1.0
\end{bmatrix}$$

 $x_1 = -3$, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$x_3 = 1.4, x_2 = 1.2$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.089 \quad 1.0$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_3 = 1.4$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.089 \quad 1.0$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_3 = 1.4$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.089 \quad 1.0 \quad 1.0$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$x_4 = 2.0, x_1 = -3$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.089 \quad 1.0 \quad 1.0$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{4} = 2.0, x_{1} = -3$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.089 \quad 1.0 \quad 1.0$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

$$0.044$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix}
1.0 & 0.11 & 0.089 & 0.044 \\
0.11 & 1.0 & 1.0 \\
0.089 & 1.0 & 1.0 \\
0.044
\end{bmatrix}$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix}
1.0 & 0.11 & 0.089 & 0.044 \\
0.11 & 1.0 & 1.0 \\
0.089 & 1.0 & 1.0 \\
0.044
\end{bmatrix}$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix}
1.0 & 0.11 & 0.089 & 0.044 \\
0.11 & 1.0 & 1.0 \\
0.089 & 1.0 & 1.0 \\
0.044 & 0.92
\end{bmatrix}$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix}
1.0 & 0.11 & 0.089 & 0.044 \\
0.11 & 1.0 & 1.0 & 0.92 \\
0.089 & 1.0 & 1.0 \\
0.044 & 0.92
\end{bmatrix}$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$0.044 \quad 0.92$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92 \quad 0.96$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix}
1.0 & 0.11 & 0.089 & 0.044 \\
0.11 & 1.0 & 1.0 & 0.92 \\
0.089 & 1.0 & 1.0 & 0.96 \\
0.044 & 0.92 & 0.96
\end{bmatrix}$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix}
1.0 & 0.11 & 0.089 & 0.044 \\
0.11 & 1.0 & 1.0 & 0.92 \\
0.089 & 1.0 & 1.0 & 0.96 \\
0.044 & 0.92 & 0.96
\end{bmatrix}$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$x_4 = 2.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$x_4 = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$x_4 = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$x_4 = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$x_4 = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$x_4 = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$x_5 = \frac{(2.0 - 2.0)^2}{2 \times 2.0^2}$$

$$x_6 = \frac{(2.0 - 2.0)^2}{2 \times 2.0^2}$$

$$x_7 = \frac{(2.0 - 2.0)^2}{2 \times 2.0^2}$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

 $x_1 = -3$, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - 3.0)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 5.00^2}\right)$$

 $x_1 = -3.0$, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$2.81$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$2.81$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

 $x_1 = -3.0$, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$2.81$$

$$2.81 \quad 4.00$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - -3.0)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$x_3 = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$x_3 = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$x_3 = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{3} = 1.40$$

$$2.81 \quad 2.72$$

$$2.81 \quad 4.00 \quad 4.00$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^{2}}{2 \times 5.00^{2}}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Figure : Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Figure : Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Figure : Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Figure : Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Figure : Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Figure : Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Figure : Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Figure : Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Figure: Examples include WiFi localization, C14 callibration curve.

Figure: Examples include WiFi localization, C14 callibration curve.

Figure : Examples include WiFi localization, C14 callibration curve.

Figure : Examples include WiFi localization, C14 callibration curve.

Figure : Examples include WiFi localization, C14 callibration curve.

Figure : Examples include WiFi localization, C14 callibration curve.

Figure : Examples include WiFi localization, C14 callibration curve.

Figure : Examples include WiFi localization, C14 callibration curve.

Figure : Examples include WiFi localization, C14 callibration curve.

Gaussian Process Fit to Olympic Marathon Data

Can we determine covariance parameters from the data?

$$\mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{K}|^{\frac{1}{2}}} \exp\left(-\frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}\right)$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Can we determine covariance parameters from the data?

$$\mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{K}|^{\frac{1}{2}}} \exp\left(-\frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}\right)$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Can we determine covariance parameters from the data?

$$\log \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}) = -\frac{1}{2} \log |\mathbf{K}| - \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$
$$-\frac{n}{2} \log 2\pi$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Can we determine covariance parameters from the data?

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Eigendecomposition of Covariance

A useful decomposition for understanding the objective function.

$$\mathbf{K} = \mathbf{R} \mathbf{\Lambda}^2 \mathbf{R}^{\mathsf{T}}$$

Diagonal of Λ represents distance along axes.

R gives a rotation of these axes.

where Λ is a *diagonal* matrix and $\mathbf{R}^{\mathsf{T}}\mathbf{R} = \mathbf{I}$.

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

 $|\Lambda| = \lambda_1 \lambda_2$

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \qquad \lambda_2 \begin{bmatrix} |\mathbf{\Lambda}| \\ \lambda_1 \end{bmatrix}$$

 $|\Lambda| = \lambda_1 \lambda_2$

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \hline 0 & 0 & \lambda_3 \end{bmatrix}$$

$$\lambda_2$$
 $|\Lambda|$ λ_1

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \hline 0 & 0 & \lambda_3 \end{bmatrix}$$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2 \lambda_3$$

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \qquad \lambda_2 \begin{bmatrix} |\mathbf{\Lambda}| \\ \lambda_1 \end{bmatrix}$$

 $|\Lambda| = \lambda_1 \lambda_2$

$$\mathbf{R}\mathbf{\Lambda} = \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{bmatrix} \qquad \mathbf{\Lambda}_1$$

$$|\mathbf{R}\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

Data Fit: $\frac{\mathbf{y}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y}}{2}$

Data Fit: $\frac{\mathbf{y}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y}}{2}$

Data Fit: $\frac{\mathbf{y}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y}}{2}$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

20
15
10
5
0
-5
-10
$$10^{-1}$$
100
 10^{1}
length scale, ℓ

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

Can we determine length scales and noise levels from the data?

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

 10^{1}

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

Gene Expression Example

- ► Given given expression levels in the form of a time series from ?.
- ► Want to detect if a gene is expressed or not, fit a GP to each gene (?).

RESEARCH ARTICLE

Open Access

A Simple Approach to Ranking Differentially Expressed Gene Expression Time Courses through Gaussian Process Regression

Alfredo A Kalaitzis* and Neil D Lawrence*

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing that the proposed approach considerably outperforms the current state of the art.

Contour plot of Gaussian process likelihood.

Optima: length scale of 1.2221 and \log_{10} SNR of 1.9654 log likelihood is -0.22317.

Optima: length scale of 1.5162 and log_{10} SNR of 0.21306 log likelihood is -0.23604.

Optima: length scale of 2.9886 and \log_{10} SNR of -4.506 log likelihood is -2.1056.

Basis Function Form

Radial basis functions commonly have the form

$$\phi_k(\mathbf{x}_i) = \exp\left(-\frac{|\mathbf{x}_i - \boldsymbol{\mu}_k|^2}{2\ell^2}\right).$$

 Basis function maps data into a "feature space" in which a linear sum is a non linear function.

Figure : A set of radial basis functions with width $\ell = 2$ and location parameters $\mu = [-4 \ 0 \ 4]^{T}$.

Basis Function Representations

Represent a function by a linear sum over a basis,

$$f(\mathbf{x}_{i,:}; \mathbf{w}) = \sum_{k=1}^{m} w_k \phi_k(\mathbf{x}_{i,:}), \tag{1}$$

▶ Here: *m* basis functions and $\phi_k(\cdot)$ is *k*th basis function and

$$\mathbf{w} = [w_1, \dots, w_m]^\top.$$

► For standard linear model: $\phi_k(\mathbf{x}_{i,:}) = x_{i,k}$.

Random Functions

Functions derived using:

$$f(x) = \sum_{k=1}^{m} w_k \phi_k(x),$$

where **W** is sampled from a Gaussian density,

$$w_k \sim \mathcal{N}(0, \alpha)$$
.

Figure : Functions sampled using the basis set from figure 4. Each line is a separate sample, generated by a weighted sum of the basis set. The weights, **w** are sampled from a Gaussian density with variance $\alpha = 1$.

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-\frac{\left\|x - \mu_i\right\|_2^2}{\ell^2}\right)$$

$$\mu = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-\frac{\left\|x - \mu_i\right\|_2^2}{\ell^2}\right)$$

$$\mu = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

Selecting Number and Location of Basis

- ▶ Need to choose
 - 1. location of centers

Selecting Number and Location of Basis

- Need to choose
 - 1. location of centers
 - 2. number of basis functions

Selecting Number and Location of Basis

- Need to choose
 - 1. location of centers
 - 2. number of basis functions
- Consider uniform spacing over a region:

$$k(x_i, x_j) = \alpha' \Delta \mu \sum_{k=1}^{m} \exp \left(-\frac{x_i^2 + x_j^2 - 2\mu_k(x_i + x_j) + 2\mu_k^2}{2\ell^2}\right),$$

Restrict analysis to 1-D input, x.

Uniform Basis Functions

▶ Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Uniform Basis Functions

▶ Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Specify the basis functions in terms of their indices,

$$k(x_i, x_j) = \alpha' \Delta \mu \sum_{k=0}^{m-1} \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2}\right)$$
$$-\frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}.$$

Uniform Basis Functions

Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Specify the basis functions in terms of their indices,

$$k(x_i, x_j) = \alpha' \Delta \mu \sum_{k=0}^{m-1} \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2}\right)$$
$$-\frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}.$$

► Here we've scaled variance of process by $\Delta\mu$.

Infinite Basis Functions

► Take
$$\mu_0 = a$$
 and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$.

Infinite Basis Functions

- ► Take $\mu_0 = a$ and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$.
- ► Take limit as $\Delta \mu \to 0$ so $m \to \infty$

Infinite Basis Functions

- ► Take $\mu_0 = a$ and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$.
- ▶ Take limit as $\Delta \mu \rightarrow 0$ so $m \rightarrow \infty$

$$k(x_i, x_j) = \alpha' \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2\left(\mu - \frac{1}{2}\left(x_i + x_j\right)\right)^2 - \frac{1}{2}\left(x_i + x_j\right)^2}{2\ell^2}\right) d\mu,$$

where we have used $k \cdot \Delta \mu \rightarrow \mu$.

Result

▶ Performing the integration leads to

$$k(x_{i},x_{j}) = \alpha' \frac{\sqrt{\pi \ell^{2}}}{2} \exp\left(-\frac{\left(x_{i} - x_{j}\right)^{2}}{4\ell^{2}}\right)$$
$$\times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_{i} + x_{j}\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_{i} + x_{j}\right)\right)}{\ell}\right)\right],$$

Result

▶ Performing the integration leads to

$$k(x_{i},x_{j}) = \alpha' \frac{\sqrt{\pi \ell^{2}}}{2} \exp\left(-\frac{\left(x_{i} - x_{j}\right)^{2}}{4\ell^{2}}\right)$$
$$\times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_{i} + x_{j}\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_{i} + x_{j}\right)\right)}{\ell}\right)\right],$$

▶ Now take limit as $a \to -\infty$ and $b \to \infty$

Result

▶ Performing the integration leads to

$$k(x_{i},x_{j}) = \alpha' \frac{\sqrt{\pi \ell^{2}}}{2} \exp\left(-\frac{\left(x_{i} - x_{j}\right)^{2}}{4\ell^{2}}\right)$$
$$\times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_{i} + x_{j}\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_{i} + x_{j}\right)\right)}{\ell}\right)\right],$$

▶ Now take limit as $a \to -\infty$ and $b \to \infty$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where
$$\alpha = \alpha' \sqrt{\pi \ell^2}$$
.

Infinite Feature Space

► An RBF model with infinite basis functions is a Gaussian process.

Infinite Feature Space

- ► An RBF model with infinite basis functions is a Gaussian process.
- ► The covariance function is given by the exponentiated quadratic covariance function.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where $\alpha = \alpha' \sqrt{\pi \ell^2}$.

Infinite Feature Space

- An RBF model with infinite basis functions is a Gaussian process.
- ► The covariance function is the exponentiated quadratic.
- ▶ **Note:** The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different

Similar results can obtained for multi-dimensional input models ??.

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \phi(\mathbf{x})^\top \phi(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-\frac{\left\|x - \mu_i\right\|_2^2}{\ell^2}\right)$$

$$\mu = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-\frac{\left\|x - \mu_i\right\|_2^2}{\ell^2}\right)$$

$$\mu = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- ► The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- ► The covariance function is also know as a kernel.

MLP Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \operatorname{asin} \left(\frac{w\mathbf{x}^{\mathsf{T}}\mathbf{x}' + b}{\sqrt{w\mathbf{x}^{\mathsf{T}}\mathbf{x} + b + 1} \sqrt{w\mathbf{x}'^{\mathsf{T}}\mathbf{x}' + b + 1}} \right)$$

Based on infinite neural network model.

$$w = 40$$

$$b=4$$

MLP Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \operatorname{asin} \left(\frac{w\mathbf{x}^{\mathsf{T}}\mathbf{x}' + b}{\sqrt{w\mathbf{x}^{\mathsf{T}}\mathbf{x} + b + 1} \sqrt{w\mathbf{x}'^{\mathsf{T}}\mathbf{x}' + b + 1}} \right)$$

Based on infinite neural network model.

$$w = 40$$

$$b=4$$

Constructing Covariance Functions

► Sum of two covariances is also a covariance function.

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

Constructing Covariance Functions

► Product of two covariances is also a covariance function.

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

Multiply by Deterministic Function

- ▶ If f(x) is a Gaussian process.
- $g(\mathbf{x})$ is a deterministic function.
- $h(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$
- ► Then

$$k_h(\mathbf{x}, \mathbf{x}') = g(\mathbf{x})k_f(\mathbf{x}, \mathbf{x}')g(\mathbf{x}')$$

where k_h is covariance for $h(\cdot)$ and k_f is covariance for $f(\cdot)$.

Linear Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^{\top} \mathbf{x}'$$

Bayesian linear regression.

$$\alpha = 1$$

Linear Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^{\mathsf{T}} \mathbf{x}'$$

Bayesian linear regression.

$$\alpha = 1$$

Bochner's Theorem

Given a positive finite Borel measure μ on the real line \mathbb{R} , the Fourier transform Q of μ is the continuous function

$$Q(t) = \int_{\mathbb{R}} e^{-itx} \mathrm{d}\mu(x).$$

Q is continuous since for a fixed x, the function e^{-itx} is continuous and periodic. The function Q is a positive definite function, i.e. the kernel k(x,x') = Q(x'-x) is positive definite.

Bochner's theorem says the converse is true, i.e. every positive definite function Q is the Fourier transform of a positive finite Borel measure. A proof can be sketched as follows.

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|}{2\ell^2}\right)$$

- In one dimension arises from a stochastic differential equation.
 Brownian motion in a parabolic tube.
- ► In higher dimension a Fourier filter of the form $\frac{1}{\pi(1+x^2)}$.

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|}{2\ell^2}\right)$$

- In one dimension arises from a stochastic differential equation.
 Brownian motion in a parabolic tube.
- ► In higher dimension a Fourier filter of the form $\frac{1}{\pi(1+r^2)}$.

Where did this covariance matrix come from?

Matern 3/2 Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha (1 + \sqrt{3}r) \exp(-\sqrt{3}r)$$
 where $r = \frac{||\mathbf{x} - \mathbf{x}'||_2}{\ell}$

- Matern 3/2 is a once differentiable covariance.
- Matern family constructed with Student-t filters in Fourier space.

Where did this covariance matrix come from?

Matern 3/2 Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha (1 + \sqrt{3}r) \exp(-\sqrt{3}r)$$
 where $r = \frac{||\mathbf{x} - \mathbf{x}'||_2}{\ell}$

- Matern 3/2 is a once differentiable covariance.
- Matern family constructed with Student-t filters in Fourier space.

Where did this covariance matrix come from?

Matern 5/2 Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \left(1 + \sqrt{5}r + \frac{5}{3}r^2\right) \exp\left(-\sqrt{5}r\right)$$
 where $r = \frac{\|\mathbf{x} - \mathbf{x}'\|_2}{\ell}$

- Matern 5/2 is a twice differentiable covariance.
- Matern family constructed with Student-t filters in Fourier space.

Where did this covariance matrix come from?

Matern 5/2 Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \left(1 + \sqrt{5}r + \frac{5}{3}r^2\right) \exp\left(-\sqrt{5}r\right)$$
 where $r = \frac{\|\mathbf{x} - \mathbf{x}'\|_2}{\ell}$

- Matern 5/2 is a twice differentiable covariance.
- Matern family constructed with Student-t filters in Fourier space.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- ► The covariance function is also know as a kernel.

References I

- G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. *Genome Research*, 18(6):939–948, Jun 2008. [URL]. [DOI].
- A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. *BMC Bioinformatics*, 12(180), 2011. [DOI].
- R. M. Neal. *Bayesian Learning for Neural Networks*. Springer, 1996. Lecture Notes in Statistics 118.
- J. Oakley and A. O'Hagan. Bayesian inference for the uncertainty distribution of computer model outputs. *Biometrika*, 89(4):769–784, 2002.
- C. E. Rasmussen and C. K. I. Williams. *Gaussian Processes for Machine Learning*. MIT Press, Cambridge, MA, 2006. [Google Books] .
- M. L. Stein. *Interpolation of Spatial Data: Some Theory for Kriging*. Springer-Verlag, 1999. [Google Books].
- C. K. I. Williams. Computation with infinite neural networks. *Neural Computation*, 10(5):1203–1216, 1998.