DEEP LEARNING

Lecture 13

TensorFlow

TensorFlow

- <u>TensorFlow</u> is a popular deep learning framework developed and maintained by Google.
- TensorFlow delegates heavy computation to compiled C and C++ code in the background.
- The Python interface for builds a computational graph and passes it to the back end for execution.
- This means that it is not straightforward to examine the intermediate model states during training.
- We will use a front-end for TensorFlow called keras.

Useful Snippets

A function to list the members of a module

```
def showModuleMembers(module):
    print(*[k for k in vars(module).keys() if not k.startswith("_")], sep="\n")
[1] showModuleMembers(tf.keras.activations)

deserialize, elu, exponential, get, hard_sigmoid, linear, relu, selu, serialize, sigmoid, softmax, softplus, softsign, tanh
```

Get help on a specific module member e.g. relu

```
[1] tf.keras.activations.relu?
Signature: tf.keras.activations.relu(x, alpha=0.0, max_value=None, threshold=0)
Docstring:
Rectified Linear Unit.
With default values, it returns element-wise `max(x, 0)`.
Otherwise, it follows:
`f(x) = max_value` for `x >= max_value`,
`f(x) = x` for `threshold <= x < max_value`,
...
...</pre>
```

Models of Data

- Scientists spend a lot of time modeling data.
- Models allow us to abstract meaningful patterns.
- Models allow us to make predictions.
- Deep learning is not artificial intelligence!
- Deep learning is a very powerful method for building predictive models of complex data.
- In the ideal case, deep learning models generalize well when applied to unseen data.
- Whether deep learning models are meaningful is up for debate!

Linear Models

Linear Models

Nonlinear Models

Models Models

Nonlinear Models

- Linear models are only appropriate for a small subset of real physical processes.
- When linear models are not applicable there are several other options we can consider.

Parametric Models

- If we have a good intuition for how the data should behave, we might be able to specify a parametric model for them.
- Parametric models assume a finite parameter set and are therefore bounded in their complexity.
- This can make them easier to interpret.
- Parametric models may arise from **theory**. For example, we expect that the **measured radioactivity** from a decaying radioisotope **declines exponentially**.
- **Empirically** derived functions can also be used. Recall that the **luminosity function** of galaxies in narrow bins of redshift can be modeled using the **Schechter function**.

Nonparametric models

- Nonparametric models make no assumptions about the number of model parameters.
- In principle, this means that they can represent data of arbitrary complexity.
- However, interpreting nonparametric models can be difficult, particularly when the number of parameters becomes very large!
- Deep Learning is a variant of nonparametric data modeling that allows construction of complex models with millions of parameters!

Artificial Neural Networks

Neural Networks

- Invented to facilitate early experiments in artificial intelligence.
- Designed to mimic the connectivity between neurons in the human brain.
- First implementations used dedicated hardware!
- Construct a complex model by combining many simple subunits - artificial neurons.

Artificial Neurons

A perceptron is an artificial neuron with a Heaviside activation function.

Multilayer Perceptron

Activation Functions

- Activation functions inject nonlinearity, so we can model nonlinear processes and systems!
- The tensorflow keras module implements several common activation functions.

```
[1] showModuleMembers(tf.keras.activations)

deserialize, elu, exponential, get, hard_sigmoid, linear, relu, selu, serialize, sigmoid, softmax, softplus, softsign, tanh
```

 The most commonly encountered are sigmoid, relu, tanh and softmax.

Sigmoid

$$\mathbf{y} = \frac{e^{\mathbf{x}}}{e^{\mathbf{x}} + 1}$$

Also called the logistic function

Used in logistic regression

Varies smoothly and suppresses extrema

Domain is bounded: [0, 1]

Differentiable

Relu

Short for Rectified
Linear Unit

Domain is open [0, ∞]

Optional parameters:

alpha max_value threshold

See the help text.

Not Differentiable

Tanh

$$y = tanh(x)$$

Differentiable

Domain is bounded [-1, 1] includes negative values

Second derivative only zero at origin.

Softmax

Softmax activation is used for classification with more than two classes.

Activation Zoo

Data Preparation

- Deep neural networks often perform better when the input data are rescaled to values in the range [-1,1].
- Very large and/or very small input values can produce numerical instabilities when they are combined in an artificial neuron.
- This instability can be exacerbated when the combined inputs are fed to the activation function.
- This can slow or even prevent model convergence during training.

Training and Loss

- The process by which deep learning networks improve their models is called training.
- In training, feature data are presented to the network which then predicts a label based on those features.
- The prediction is used together with a true label, which was provided in conjunction with the feature data, to compute the loss.
- The loss is an arbitrary function that should yield smaller values when the prediction and the true label agree closely and larger values otherwise.
- Approximately, the goal of training is to adjust the network weights such as to minimize the loss function.

Training and Loss

- Some useful definitions related to training.
 - Step/Iteration The sequence of computation required to complete a single update of the network weights.
 - Batch A subset of the input dataset processed by the network during a single iteration.
 - Epoch One cycle through the full training set. Why there is utility in continuing to train for several epochs?
 - Training is iterative. The network weights are adjusted gradually and the loss may not minimize after just one epoch.
 - Training data are often presented in random order. Different data orderings may improve model generality.

- During training the network weights must be adjusted such that the overall loss decreases.
- Adjust each weight using the **partial derivative** of the loss with respect to that weight $(\partial \mathcal{E}/\partial w)$.
- Backpropagation is a computationally efficient algorithm to compute the required partial derivatives.
- It performs part of the computation as it makes its prediction during the forward pass.
- The network is then traversed in reverse to compute the required gradients and update the network weights.

The Reverse Pass - Compute Gradients

- Since we **defined** the **loss function** \mathscr{E} , it is straightforward to compute $\partial \mathscr{E}/\partial y_{\text{out}}$.
- For example,

$$\ell = \frac{1}{2}(\hat{y} - y_{\text{out}})^2 \implies \frac{\partial \ell}{\partial y_{\text{out}}} = \hat{y} - y_{\text{out}}$$

Then apply the chain rule to compute

$$\frac{\partial \ell}{\partial x_6} = \frac{dy_{\text{out}}}{dx_6} \cdot \frac{\partial \ell}{dy_{\text{out}}} = \frac{d}{dx_6} f(x_6) \cdot \frac{\partial \ell}{dy_{\text{out}}}$$

- Now that we have $\partial \mathcal{E}/\partial y_{\text{out}}$ and $\partial \mathcal{E}/\partial x_6$ we can compute the **derivatives with** respect to the weights.
- Again, we can apply the chain rule

$$\frac{\partial \ell}{\partial w_{46}} = \frac{\partial x_6}{\partial w_{46}} \frac{\partial \ell}{\partial x_6} = y_4 \frac{\partial \ell}{\partial x_6}$$
$$\frac{\partial \ell}{\partial w_{56}} = \frac{\partial x_6}{\partial w_{56}} \frac{\partial \ell}{\partial x_6} = y_5 \frac{\partial \ell}{\partial x_6}$$

 Proceeding to the hidden layers, we must now compute

$$\frac{\partial \ell}{\partial x_4}, \frac{\partial \ell}{\partial y_4}, \frac{\partial \ell}{\partial x_5}, \frac{\partial \ell}{\partial y_5}$$

$$\frac{\partial \ell}{\partial y_4} = \frac{\partial x_6}{\partial y_4} \frac{\partial \ell}{\partial x_6} = \frac{\partial \ell}{\partial x_6} w_{46}$$

$$\frac{\partial \ell}{\partial y_4} = \frac{\partial x_5}{\partial y_4} \frac{\partial \ell}{\partial x_5} = \frac{\partial \ell}{\partial x_5} w_{56}$$

 When the units of a hidden layer connect to more than one output, then the derivative becomes a sum over all those outputs.

• In general, if \mathcal{F}_{out} is the set of neurons that receive the outputs of neuron i (in the diagram, $\mathcal{F}_{\text{out}} = \{\alpha, \beta\}$), then

$$\frac{\partial \mathcal{E}}{\partial y_i} = \sum_{j \in \mathcal{I}_{out}} \frac{\partial x_j}{\partial y_i} \frac{\partial \mathcal{E}}{\partial x_j} = \sum_{j \in \mathcal{I}_{out}} w_{ij} \frac{\partial \mathcal{E}}{\partial x_j}$$

 The derivatives with respect to the neuron inputs can be computed as for the output neuron. For the general case.

$$\frac{\partial \ell}{\partial x_i} = \frac{dy_i}{dx_i} \cdot \frac{\partial \ell}{dy_i} = \frac{d}{dx_i} f(x_i) \cdot \frac{\partial \ell}{dy_i}$$

• In general, if \mathcal{F}_{out} is the set of neurons that receive the outputs of neuron i (in the diagram, $\mathcal{F}_{\text{out}} = \{\alpha, \beta\}$), then

$$\frac{\partial \mathcal{E}}{\partial y_i} = \sum_{j \in \mathcal{I}_{out}} \frac{\partial x_j}{\partial y_i} \frac{\partial \mathcal{E}}{\partial x_j} = \sum_{j \in \mathcal{I}_{out}} w_{ij} \frac{\partial \mathcal{E}}{\partial x_j}$$

 The derivatives with respect to the neuron inputs can be computed as for the output neuron. For the general case.

$$\frac{\partial \mathcal{E}}{\partial x_i} = \frac{dy_i}{dx_i} \cdot \frac{\partial \mathcal{E}}{dy_i} = \frac{d}{dx_i} f(x_i) \cdot \frac{\partial \mathcal{E}}{dy_i}$$

Learning rate

 Finally, the network weights are updated using

$$w_{ij} \to w_{ij} + \lambda \cdot \frac{d\ell}{dw_{ij}}$$

- λ is a tunable hyper-parameter called the **learning rate**.
- If λ is too small then training will be slow.
- If λ is too large, then gradient descent may overshoot the optimal solution.

Learning rate

Live Demo

Convolutional Neural Networks

ANN Downsides

- Deep, fully connected ANNs rapidly become cumbersome for large input feature spaces.
- The number of trainable weights explodes. The networks can be very slow to train and become vulnerable to overfitting.
- ANN input features must often be hand-engineered for best results.

CNNs

- Convolutional Neural Networks (CNNs) are designed to mitigate these shortcomings.
- They are able to learn a set of pertinent features from the data.
- They number of trainable weights decreases rapidly for deeper layers.
- CNNs also provide translational invariance in their response to the features they learn.

Kernel (K) (*k* x *l*)

Kernels replace weights

Input (X) (*m* x *n*)

Output (Y)

Kernel (K) (*k* x *l*)

1	0	1
0	0	0
1	0	1

Kernels replace weights

Input (X) (m x n)

$$Y(0,0) = (0 \times 0) + (0 \times 1) + (0 \times 0)$$

$$+(0 \times 1) + (0 \times 0) + (1 \times 1)$$

$$+(0 \times 0) + (1 \times 1) + (2 \times 0)$$

$$= 2$$

Output (Y)

Activation function operates on convolution result

Kernel (K) (*k* x *l*)

Kernels replace weights

Input (X) (*m* x *n*)

$$Y(0,1) = (0 \times 0) + (0 \times 1) + (1 \times 0)$$

$$+(0 \times 1) + (0 \times 0) + (2 \times 1)$$

$$+(0 \times 0) + (2 \times 1) + (3 \times 0)$$

$$= 4$$

Output (Y)

Activation function operates on convolution result

Kernel (K) (*k* x *l*)

1	0	1
0	0	0
1	0	1

Kernels replace weights

Input (X) $(m \times n)$

$$Y(i,j) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} X(i-k,j-l) \cdot K(k,l)$$

Valid Padding

Output (Y)

Activation function operates on convolution result

Kernel (K) (*k* x *l*)

1	0	1
0	0	0
1	0	1

1	0	1
0	1	0
1	0	1

Kernels replace weights

Input (X) (*m* x *n*)

0	0	0	1	1	0	0	0
0	0	1	2	2	1	0	0
0	1	2	3	3	2	1	0
1	2	0	2	2	0	2	1
1	1	1	1	1	1	1	1
0	0	2	0	0	2	0	0
0	3	0	1	1	0	3	0
1	0	2	0	0	2	0	1

$$Y(i,j) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} X(i-k,j-l) \cdot K(k,l)$$

Valid Padding

Output (Y)

2	4	7	7	4	2
4	5	9	9	5	4
3	7	6	6	7	3
4	4	4	4	4	4
6	1	4	4	1	6
0	8	1	1	8	0

Activation function operates on convolution result

Kernel (K) (*k* x *l*)

1	0	1
0	0	0
1	0	1

1	0	1
0	1	0
1	0	1

Kernels replace weights

Input (X) (*m* x *n*)

0	0	0	1	1	0	0	0
0	0	1	2	2	1	0	0
0	1	2	3	3	2	1	0
1	2	0	2	2	0		1
1	1	1	1	1	1	1	1
0	0	2	0	0	2	0	0
0	3	0	1	1	0	3	0
1	0	2	0	0	2	0	1

$$Y(i,j) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} X(i-k,j-l) \cdot K(k,l)$$

Valid Padding

Output (Y)

. 2	5	6	6	5	2
. 2	6	5	5	6	2
4	6	7	7	6	4
3	4	4	4	4	3
2	6	3	3	6	2
5	0	4	4	0	5

Activation function operates on convolution result

Kernel (K) (*k* x *l*)

1	0	1
0	0	0
1	0	1

Kernels replace weights

Input (X) $(m \times n)$

$$Y(i,j) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} X(i-k,j-l) \cdot K(k,l)$$

Valid Padding

Output (Y)

3D tensor output

Output layers smaller than input.

Padding

No input padding

Smaller output

Same Padding

Valid Padding

3x3

Same sized output

Kernel Initialization

Kernels will be updated during training

Random initialization often works well with sufficient training data

Kernel Initialization

Kernels of a trained network (Dieleman et al. 2015)

Pooling

- Designed to aggregate features and reduce the total number of trainable weights.
- Most common variant is max pooling take the maximum value within the pooling filter's receptive field.
- Also produces translation invariance in deep networks.

Pooling

- Designed to aggregate features and reduce the total number of trainable weights.
- Most common variant is max pooling take the maximum value within the pooling filter's receptive field.
- Also produces translation invariance in deep networks.

CNN Carpentry

Convolutional layers - Mainly Feature Extraction

Dense layers - Mainly Inference

Data augmentation

- Pooling layers help to make the features learned by CNNs translation invariant.
- This means that salient features will produce similar responses regardless of their location in the input data e.g. image coordinates.
- Invariance with respect to rotation, scaling and truncation can be engineered by augmenting the training data.
- By adding scaled, rotated, truncated and even blurred copies of the original training data, the network can be taught to associate the original data labels with these modified inputs.

Data augmentation

- Deep learning models have limited utility if they do not generalize to unseen (albeit similar) data.
- A deep learning model can appear to perform very well simply by memorizing its training data. This is called overfitting.
- Without careful attention, deep networks with millions of trainable parameters can fit specific details that are particular to the training data.
- Such models will perform poorly and make bad predictions when applied to data that do not perfectly emulate the training data.

- Validation is a technique that is very commonly applied to truncate training before overfitting occurs.
- Before training begins, a subset of the input data the evaluation set - is isolated and withheld from the training process.
- On a specified schedule commonly after each training epoch - the evaluation set is used to compute the network loss.
- The network weights are not updated during validation.
- Other performance metrics like **accuracy** and **recall** can also be computed.

- The loss
 \$\epsilon_T\$ computed on the training data should decrease until the network has effectively memorized the training data.
- When the training loss plateaus, the network has already overfitted.
- The loss ℓ_V computed **on the validation data** will plateau **earlier** than for the training set.
- ℓ_V may even **begin increasing** as the network tries to match very fine details of the training data.
- Using validation allows overfitting to be diagnosed.

Mitigating Overfitting

- If your network is overfitting, there are several approaches you can try to combat this.
 - Simplifying your network design
 - If there are fewer trainable parameters, then it is more difficult to precisely model the training data.
 - The downside is that your network is less able to model very complicated data.
 - Regularizing your network
 - Fundamentally, this involves adding an extra term in the loss function that penalizes model complexity.
 - Using dropout layers
 - Randomly discarding different subsets of layer outputs during each iteration.

Dropout

- Dropout involves randomly discarding different subsets of layer outputs during each iteration of the training process.
- Effectively this means that a simpler model is trained during each iteration. Each simpler model is less likely to fit fine details of the training data.
- All outputs are reinstated at prediction time, so the final model is an "average" of the simpler models.
- The final model represents robust features that apply to a many random samples of the training data.
- Training using dropout generally requires more epochs to converge, but the computation time for each epoch is lower.

Transfer Learning

- Training reliable deep learning models can require huge labeled training datasets.
- Often, physicists and astronomers cannot assemble the required training examples.
- Transfer learning is an approach that uses a pre-trained deep learning network to extract features from similar data.
- The extracted features can then be provided to a custom inference network to analyze the new data.
- Fine tuning of the feature extraction network requires far fewer training data than training a network from scratch.

Applied Deep Learning

- Deep learning is rapidly being adopted as a tool in astronomy. Some notable applications include:
 - Automated determination of galaxy morphology (<u>Huertas-Company et al. 2015</u>).
 - Improving galaxy photometric redshift accuracy (<u>Pasquet</u> et al. 2018).
 - Detecting outflows from radio galaxies (Wu et al. 2018).
 - Detecting star-forming clumps in SDSS galaxy images (Nico Adams, Private Communication).