2.4 - 2.6

Bernoulli, Binomial, Geometric, Negative Binomial, Hypergeometric, Multinomial, and Poisson Distributions

Bernoulli Experiment

A **Bernoulli experiment** is a random experiment where the outcome can be classified as one of two mutually exclusive ways (Heads/Tails, Pass/Fail)

A sequence of Bernoulli trials occurs when a Bernoulli experiment is performed several independent times, and the success probability, p, remains the same.

Bernoulli experiment examples

Flip a fair coin where "heads" is a success. This is a Bernoulli experiment with p=0.5.

Roll a die. "6" is success, everything else is a failure.

Did a randomly selected student read the entire syllabus? (yes/no)

Bernoulli Distribution $X \sim Bernoulli(p)$

If random variable, X, has a Bernoulli distribution:

$$f(x) = p^x (1-p)^{1-x}, x = \{0,1\}$$

$$E[X] = \sum_{x=0}^{1} x p^{x} (1-p)^{1-x}$$
$$= 0(1-p) + 1(p) = p$$

$$Var[X] = \sum_{x=0}^{1} (x-p)^2 p^x (1-p)^{1-x} = p(1-p)$$

$$SD[X] = \sqrt{p(1-p)}$$

Example

Suppose Anastasia yells 30% of the time if she tries a new food. Let Y be a random variable that denotes whether she yells or not.

What is the distribution of Y?

What is the expected number of times she will yell?

If she tries 5 new foods, what is the probability of observing the outcome, $\{Y^c, Y, Y^c, Y^c, Y^c, Y^c\}$? (in this exact order)

Binomial Distribution

Often, we are interested only in the *total number of* successes, but **not** the actual order of occurrence.

If X = the total # of observed successes in n Bernoulli trials, then X has a binomial distribution.

- For x successes, there are n-x failures.
- The Space of X is 0,1,2,...n.

Binomial Distribution

$$X \sim Binomial(n, p)$$

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x = 0,1,2,...,n$$

$$E[X] = np$$

$$Var[X] = np(1-p)$$

Binomial Distribution (Summary)

X is a binomial random variable if the following are all true

- 1. A Bernoulli (success/fail) experiment is performed a constant number of times, n.
- 2. The random variable, X, is the (total) number of successes in n trials.
- 3. All trials are independent
- 4. The success probability, p, for every trial is constant.
 - (The failure probability, 1 p, is also constant).

$$E(X) = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x}$$

$$x = y+1$$
 and $n = m+1$

$$E(X) = \sum_{y=0}^{m} \frac{(m+1)!}{y!(m-y)!} p^{y+1} (1-p)^{m-y}$$

$$= (m+1) p \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y} (1-p)^{m-y}$$

$$= np \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y} (1-p)^{m-y}$$

Binomial Example

Suppose Anastasia yells 30% of the time if she tries a new food. Let Y be a random variable that denotes the total number of times she yells if she tries 5 new foods.

What is the distribution of Y?

What is the expected number of times she will yell?

If Anastasia tries 5 new foods, what is the probability that she yells exactly twice?

$$f(2) = {5 \choose 2} 0.3^2 (1 - 0.3)^{5-2}$$

Binomial / Bernoulli Relationship

The Binomial distribution is a more *general* case of the Bernoulli distribution.

The Bernoulli Distribution is a more *specific* case of the Binomial distribution. (specifically, when n = 1)

The sum of n independent Bernoulli Random Variables with the same parameter p is $\sim Binomial(n, p)$

2.5 Negative Binomial & Geometric Distribution

Geometric Distribution

Say we observe a sequence of independent Bernoulli trials until the <u>first success</u> occurs.

If X is the number of trials needed to observe the 1^{st} success, then X follows a Geometric Distribution with parameter, p.

Geometric Distribution

$$X \sim Geom(p)$$

$$f(x) = p(1-p)^{x-1}, \qquad x = 1,2,3,...$$

$$E[X] = 1/p$$

$$Var[X] = \frac{1-p}{p^2}$$

Question for home:

Show that the geometric distribution is a valid pmf regardless of p.

Negative Binomial Distribution

More generally, suppose we observe a sequence of independent Bernoulli trials until the $m{r}^{\mathsf{th}}$ success occurs.

If X is the number of trials needed to observe the r^{th} success, then X follows a **Negative Binomial** distribution with parameters r, p.

Negative Binomial Distribution

$$X \sim NB(r, p)$$

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \qquad x = r, r+1, r+2, \dots$$

$$E[X] = r/p$$

$$Var[X] = \frac{r(1-p)}{p^2}$$

Examples

2.4 - 2.5

A magical beer machine vending machine gives a random beer to the customer. It gives a stout 30% of the time and an IPA 70% of the time. Let X be the number of stouts you get out of 20 beers.

What is the distribution of X? What is its pmf?

What is the probability of getting fewer than 7 stouts?

A magical beer machine vending machine randomly gives you a stout 30% of the time and an IPA 70% of the time. Thor gently smashes the machine until it gives him a stout. Let X represent the number of trials required for Thor to get his first stout.

What is the distribution of X? What is its pmf?

What is the probability of getting a stout on the 5th trial?

What is the probability of getting a stout within the first 5 trials?

A random variable $X \sim$ has a binomial distribution with $\mu = 6$, $\sigma^2 = 3.6$.

What is the distribution of X?

Find
$$P(X = 4)$$
.

Find F(2).

4 Jacqueline hits her free throws with p = 0.9.

What is the probability that she has her first miss on the 7th free throw?

What is the probability that she has her first miss on the 12th attempt or later?

What is the probability that she has her 3rd miss on the 30th free throw?

The Hypergeometric & Multinomial Distributions

Hypergeometric Distribution

Out of a population of size N, suppose we have N_1 successes and N_2 failures.

```
(note, N_1 + N_2 = N, the probability of a success, p = N_1 / N)
```

Define a random variable *X*:

the number of successes in a random sample of size n.

If sampling is done without replacement, X follows a hypergeometric distribution.

Hypergeometric Distribution

$$X \sim HG(N, N_1, n)$$

(remember: $N = N_1 + N_2$)

$$f(x) = \frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}},$$

$$x \le n$$
, $x \le N_1$, $n - x \le N_2$

$$E[X] = n \frac{N_1}{N}$$

$$Var[X] = n \frac{N_1}{N} \frac{N_2}{N} \frac{N-n}{N-1}$$

Hypergeometric vs Binomial

If instead, sampling is done one at a time with replacement, $X \sim Binomial(n, p)$ e.g.

- Binomial: A magical beer machine gives the user a stout 30% of the time and an IPA 70% of the time. Let X be the number of stouts you get out of 20 beers.
- Hypergeometric: A nice minibar has 9 stouts and 21 IPAs. Let X be the number of stouts you get if you randomly select 20 beers.
 - What is the pmf of X? $f(x) = \frac{\binom{9}{x}\binom{21}{20-x}}{\binom{30}{20}}, \ x \le 9$

Multinomial Distribution

Similar to binomial distribution, but for more than 2 groups. E.g.

- Color Red/Green/Blue
- Your Major Stats/Math/Engineering/Other

Multinomial Distribution

$$X = (X_1, X_2, ... X_k) \sim Multinomial(n, p_1, p_2, ..., p_k)$$

$$f(x_1, x_2, \dots x_k) = \frac{n!}{x_1! x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$$

- $E[X_i] = \overline{np_i}$
- $\neg Var[X_i] = np_i(\overline{1-p_i})$

Examples

2.4

A deck of cards contains 20 cards: 6 red cards and 14 black cards. 5 cards are drawn randomly without replacement.

What is the probability that exactly 4 red cards are drawn?

What is the probability that at least 2 black cards are drawn?

2 Suppose the majors of students taking Stat 400 can be broken down as follows:

级分布

Math	Statistics	Other
10%	20%	70%

Out of 10 randomly sampled students, calculate the probability that this group contains:

A) 2 Math, 2 Stats, and 6 Other

$$\frac{|o|}{2! \, 2! \, 6!} \, \times (o \cdot |) \times (o \cdot 2) \times (o \cdot 7)^{b} = C_{10}^{2} \, C_{8}^{2} \cdots$$

B) At least one Stats student

3 When Iron Man and Captain America play Connect 4 against each other, Iron Man wins 40% of the time, loses 35% of the time and draws 25% of the time. Assume results of games are independent.

If they play 12 games, what is the probability that Iron Man wins 7, loses 2, and draws 3 games?

$$f(x_1, x_2, \dots x_k) = \frac{n!}{x_1! x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k} = \frac{12!}{7! 2! 3!} \times 40^7 \times 35^2 \times 25^3 = 0.0248$$

If they play 12 games, what is the expected value of the number of games that they will tie?

$$E[X_3] = n \cdot P_3 = 12 \times 0.25 = 3$$

2.6 The Poisson Distribution

Poisson Process 海粒过程

Definition 2.6-1

Let the number of occurrences of some event in a given continuous interval be counted. Then we have an **approximate Poisson process** with parameter $\lambda > 0$ if the following conditions are satisfied:

- (a) The numbers of occurrences in nonoverlapping subintervals are independent.
- (b) The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh .
- (c) The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.

Poisson Process Examples

- # of cell phone calls passing through a relay tower between 9 and 11 a.m.
- Number of customers that show up to Oberweis between 5-6pm.
- Number of defects in a 100-foot roll of aluminum screen that is 2 feet wide.

Poisson Distribution

$$X \sim Poisson(\lambda)$$

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \qquad x = 0,1,2,...$$

- $E[X] = \lambda$
- $\neg Var[X] = \lambda$

Note: λ is the Poisson rate.

Poisson Parameter Scaling

If events occur according to a Poisson process with rate λ , then the rate for a Poisson process in an interval of length t is λt .

Every minute, cars pull up to a drive-through according to a Poisson process with rate $\lambda = 3$.

In an interval of length 1 hour, the rate is $\lambda=180$.

3 * 60 (minutes in an hour) = 180

Examples

2.6

Suppose Albert receives spam mail every day according to a Poisson Process with an expected value of 10.

What is the distribution of X?

What is the probability that Albert receives 8 items of spam in a given day? $f(s) = \frac{e^{0.10^{8}}}{10^{8}} = 0.112$

What is the probability that Albert receives 10 items of spam in a given

day?
$$f(10) = \frac{e^{-10} \cdot 10^{10}}{10!} = 0.125$$
0 items of spam?
$$f(0) = \frac{e^{-10} \cdot 10^{10}}{10!} = 0.125$$

2 Suppose Albert receives spam mail every day according to a Poisson Process with an expected value of 10.

Find P[Albert receives 10 items of spam in a given day].

Find P_{0 items of spam in a given day]?

Y-
$$\frac{1}{24}$$
 Find P[Albert receives 1 item of spam in a given hour]?
$$\int_{1}^{1} \frac{1}{24} = \frac{1}{24} \cdot \left(\frac{1}{24}\right)$$

R functions

Prefixes:

d to generate the probability mass or density function

Example: dnorm(x,mean,sd)

p to generate the probability $P(X \leq x)$ (the cdf)

Example: pnorm(q,mean,sd)

q to generate the quantile $P(X \leq x) > q$ (inverse cdf)

Example: qnorm(p,mean,sd)

r to generate a random variable having the specified distribution

Example: rnorm(n,mean,sd)

Distribution	Functions	Specifications
beta	dbeta pbeta qbeta rbeta	shape parameters $lpha$ and $oldsymbol{eta}$
binomial	dbinom pbinom qbinom rbinom	number of trials and probability of success on each trial
cauchy	dcauchy pcauchy qcauchy rcauchy	location $lpha$ and scale $oldsymbol{eta}$ parameters
chi-square	dchisq pchisq qchisq rchisq	degrees of freedom
exponential	dexp pexp qexp rexp	rate λ
F	df pf qf rf	numerator and denominator degrees of freedom
gamma	dgamma pgamma qgamma rgamma	shape $lpha$ and scale $oldsymbol{eta}$ parameters
geometric	dgeom pgeom qgeom rgeom	probability of success
hypergeometric	dhyper phyper qhyper rhyper	number in group $1 (n)$, number in group $2 (m)$, number drawn (k)
logistic	dlogis plogis qlogis rlogis	location and scale parameters
lognormal	dlnorm plnorm qlnorm rlnorm	mean μ and standard deviation σ on the log scale
negative binomial	dnbinom pnbinom qnbinom rnbinom	number of trials and probability of success on each trial
normal	dnorm pnorm qnorm rnorm	mean μ and standard deviation σ
poisson	dpois ppois qpois rpois	rate parameter λ
t	dt pt qt rt	degrees of freedom
uniform	dunif punif qunif runif	min and max $(heta_1$ and $ heta_2)$ of the distribution
weibull	dweibull pweibull qweibull rweibull	shape $lpha$ and scale eta parameters

Source: https://meredithfranklin.github.io/R-Probability-Distributions.html

R functions			Prefixes:	
Distribution	Functions	Specifications	d to generate the probability mass or density function	
beta	dbeta pbeta qbeta rbeta	shape parameters $lpha$ and eta	<pre>Example: dnorm(x, mean, sd)</pre>	
binomial	dbinom pbinom qbinom rbinom	number of trials and probability of success on each trial	p to generate the probability $P(X \leq x)$ (the cdf) Example: pnorm(q,mean,sd)	
cauchy	dcauchy pcauchy qcauchy rcauchy	location $lpha$ and scale eta parameters	${f q}$ to generate the quantile $P(X \le x) > q$ (inverse cdf)	
chi-square	dchisq pchisq qchisq rchisq	degrees of freedom	Example: qnorm(p,mean,sd)	
exponential	dexp pexp qexp rexp	rate λ		
F	df pf qf rf	numerator and denominator degrees of freedom	r to generate a random variable having the specified distribution Example: rnorm(n,mean,sd)	
gamma	dgamma pgamma qgamma rgamma	shape $lpha$ and scale eta parameters		
geometric	dgeom pgeom qgeom rgeom	probability of success		
hypergeometric	dhyper phyper qhyper rhyper	number in group 1 (n), number in group 2 (n)	dnorm pnorm qnorm rnorm mean μ and standa	

binomia cauchy

logistic

lognormal

negative binomial

dlnorm plnorm qlnorm rlnorm

dnbinom pnbinom qnbinom rnbinom

dlogis plogis qlogis rlogis

m), number drawn (k)location and scale parameters

on each trial

mean μ and standard

deviation σ on the \log

scale

number of trials and weibull probability of success

poisson uniform

dt pt qt rt dunif punif qunif runif

dpois ppois qpois rpois

deviation σ

rate parameter λ

degrees of freedom

min and max ($heta_1$ and θ_2) of the distribution shape α and scale β dweibull pweibull qweibull rweibull parameters