Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- (currently amended) A bubble cap for use in a reactor in which a gaseous fluid having a vapor density and a liquid fluid having a liquid density flow concurrently downwards in the reactor, the bubble cap comprising:
 - a cap with at least one slot and a riser, configured with a skirt height of at least 4 cm such that 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 7.5, wherein the Exposed Slot Height is determined to equal 44.2 * X^{0.52};
 - wherein X is $Q_v * (W_v * N_s)^{-1} * [\rho_v / (\rho_C \rho_v)]^{0.5}$, wherein Q_v is a vapor volumetric rate flowing through the cap, W_s is mean slot width (cm), N_s is number of slots, ρ_v is the vapor density (kg/m^3) , and ρ_l is the liquid density (kg/m^3) and
 - wherein the bubble cap is disposed such that [a] the liquid fluid and [a] the gaseous fluid flow co-currently upwardly in a space between the riser and the cap.
- (Original) The bubble cap of claim 1, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 15.
- (Original) The bubble cap of claim 1, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 22.5.
- 4. (Original) The bubble cap of claim 1, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 30.
- 5. (currently amended) A bubble cap for use in a reactor in which a gaseous fluid having a vapor density and a liquid fluid having a liquid density flow concurrently downwards in the reactor, the bubble cap comprising:
 - a cap with at least three slots and a riser, configured with a skirt height of at least 4 cm
 such that 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height
 (cm)] ≥ 7.5, wherein the Exposed Slot Height is determined to equal 44.2 * X^{0.52}

- wherein X is $Q_v^* (W_v^* N_s)^{-1} * [\rho_v / (\rho_l \rho_v)]^{0.5}$, wherein Q_v is a vapor volumetric rate flowing through the cap, W_s is mean slot width (cm), N_v is number of slots, ρ_v is the vapor density (kg/m³), and ρ_l is the liquid density (kg/m³); and
- wherein the bubble cap is disposed such that [a] the liquid fluid and [a] the gaseous fluid flow co-currently upwardly in a space between the riser and the cap.
- (Original) The bubble cap of claim 5, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 15.
- (Original) The bubble cap of claim 5, wherein 1.5 * Skiπ Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 22.5.
- (Original) The bubble cap of Claim 5, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 30.
- (currently amended) A bubble cap for use in a reactor in which a gaseous fluid having a
 vapor density and a liquid fluid having a liquid density flow concurrently downwards in
 the reactor, the bubble cap comprising:
 - a cap with at least five slots and a riser, configured with a skirt height of at least 4 cm such that 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 7.5, wherein the Exposed Slot Height is determined to equal 44.2 * X^{0.52}.
 - wherein X is $Q_v * (W_v * N_s)^{-1} * [\rho_v / (\rho_C \rho_v)]^{0.5}$, wherein Q_v is a vapor volumetric rate flowing through the cap, W_v is mean slot width (cm), N_v is number of slots, ρ_v is the vapor density (kg/m³), and ρ_v is the liquid density (kg/m³) and:
 - wherein the bubble cap is disposed such that [a] the liquid fluid and [a] the gaseous fluid flow co-currently upwardly in a space between the riser and the cap.
 - (Original) The bubble cap of claim 9, wherein 1 5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 15.

- (Original) The bubble cap of claim 9, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 22.5.
- (Original) The bubble cap of claim 9, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥30
- 13. (currently amended) A bubble cap for use in a reactor in which a gaseous fluid having a vapor density and a liquid fluid having a liquid density flow concurrently downwards in the reactor, the bubble cap comprising:
 - a cap with at least seven slots and a riser, configured with a skirt height of at least 4 cm such that 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 7.5, wherein the Exposed Slot Height is determined to equal 44 2 * X^{0.52}.
 - wherein X is $Q_v * (W_v * N_s)^{-1} * [\rho_v / (\rho_r \rho_v)]^{0.5}$, wherein Q_v is a vapor volumetric rate flowing through the cap, W_s is mean slot width (cm), N_s is number of slots, ρ_v is the vapor density (kg/m³), and ρ_t is the liquid density (kg/m³) and;
 - wherein the bubble cap is disposed such that [a] the liquid fluid and [a] the gaseous fluid flow co-currently upwardly in a space between the riser and the cap.
- (Original) The bubble cap of claim 13, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 15.
- (Original) The bubble cap of Claim 13, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 22.5.
- (Original) The bubble cap of Claim 13, wherein 1.5 * Skirt Height (cm) + [Slot Length (cm) Exposed Slot Height (cm)] ≥ 30.