MATH255 - Honours Analysis 2

Summary of Results

Winter, 2024 Notes by Louis Meunier Complete notes

1	Point-Set Topology	1
2	Metric Spaces	5
3	Differentiation	7
4	Integration	8
5	Sequences of Functions	8
6	Infinite Series	8

1 Point-Set Topology

Topology is about abstracting openness. It can typically suffice to consider open, closed sets in \mathbb{R} for intuition, but is obviously not all-general.

Definition 1 (Metric Space). A space X equipped with a function $d: X \times X \to [0, \infty)$ is called a metric space and d a metric or distance if

•
$$d(x,y) = d(y,x) \ge 0$$

•
$$d(x, y) = 0 \iff x = y$$

•
$$d(x,y) + d(y,z) \ge d(x,z)$$

for any $x, y, z \in X$.

Definition 2 (Normed Vector Space). A function $||\cdot||: X \to \mathbb{R}$ defined on a vector space X over \mathbb{R} is a norm if

- $||x|| \ge 0$
- $||x|| = 0 \iff x = 0$
- $\bullet ||c \cdot x|| = |c| ||x||$
- $||x + y|| \le ||x|| + ||y||$,

for any $x, y \in X$, $c \in \mathbb{R}$.

Remark 1. We can naturally extend this to arbitary fields, but seeing as this is a course in Real Analysis, we won't.

Proposition 1. For a normed vector space $(X, ||\cdot||)$, d(x, y) := ||x - y|| is a metric on X. We call such a metric the one "induced" by the norm.

Definition 3 (Topological Set). A set X is a topological set if we have a collection τ of subsets of X, called open sets, such that

- $\emptyset \in \tau, X \in \tau$
- For $A_{\alpha} \in \tau$ for α in any I (potentially infinite), $\bigcup_{\alpha \in I} A_{\alpha} \in \tau$
- For $A_{\alpha} \in \tau$ for $\alpha \in J$ where J finite, then $\bigcap_{\alpha \in J} A_{\alpha} \in \tau$

ie, arbitrary unions of open sets are open, and finite intersections of open sets are open.

Remark 2. Keep \mathbb{R} in mind when initially working with these definitions; for instance, the set $A_n := (0, \frac{1}{n})$ open in \mathbb{R} for any $n \in \mathbb{N}$, but $\bigcap_{n \in \mathbb{N}} A_n = \{0\}$ which is closed.

Remark 3. Complemented each of these requirements gives similar definitions for closed sets of *X*.

Definition 4 (Topology on a Metric Space). A subset $A \subseteq X$ open iff $\forall x \in A, \exists r = r(x) \in \mathbb{R}$, where r(x) > 0, such that $B(x, r(x)) := \{y \in x : d(x, y) < r(x)\} \subseteq A$. We call such a B an open ball, and \overline{B} a closed ball with the same definition replacing the strict inequality with \leq .

Remark 4. While many of the spaces we look at our metric spaces that induce a topology as such, **not all topological spaces are metric spaces**. Indeed, "metrizability" (ie, equipping a topological space *X* with a metric that respects the open sets) is not a trivial activity.

Definition 5 (Equivalence of Metrics). We say two metrics on X are equivalent if they admit the same topology; a sufficient condition is that, $\forall x \neq y \in X$, $\exists 1 < C < \infty$ such that $\frac{1}{C} < \frac{d_1(x,y)}{d_2(x,y)} < C$, then d_1, d_2 equivalent, where C independent of x, y.

Definition 6 (Interior, Boundary, Closure). Let *X*-topological space, $A \subseteq X$, $x \in X$.

- If $\exists U$ -open s.t. $x \in U \subseteq A$, then we write $x \in Int(A)$, the interior of A.
- If $\exists V$ -open s.t. $x \in V \subseteq A^C$, then $x \in \text{Int}(A^C)$.
- If $\forall U$ -open s.t. $x \in U$, $U \cap A \neq \emptyset$ and $U \cap A^C \neq \emptyset$, then $x \in \partial A$, the boundary of A.

We put $\overline{A} := \operatorname{Int}(A) \cup \partial A$, the closure of A. Equivalently, $x \in \overline{A} \iff$ for every open set $U : x \in U$, $U \cap A \neq \emptyset$. We call $x \in \overline{A}$ the limit points of A.

Remark 5. The limit point interpretation of the closure can be more intuitive; the points that we can get "arbitrary close to" are the closure. For instance, $\overline{(a,b)} = [a,b] \subseteq \mathbb{R}$ with the standard topology.

Proposition 2. Let $A \subseteq X$ -topological space. Then, Int(A) is open, the largest open set contained in A, the union of all open sets contained in A, and Int(Int(A)) = Int(A). Also, \overline{A} closed, the smallest closed set that contains A, \overline{A} the intersection of all closed sets that A is contained in, and $\overline{A} = \overline{A}$.

Corollary 1. A open \iff A = Int(A) and A closed \iff $A = \overline{A}$

Remark 6. Remark that these are not exclusive, nor indeed the only possibilities.

Definition 7 (Basis). A basis for a topology X with open sets τ is a collection $B \subseteq \tau$ such that every $U \in \tau$ a union of sets in B.

Remark 7. Don't think about bases for vector spaces in this regard - there is no "minimality" requirement.

Keep in mind $\{(a, b) : -\infty < a < b < \infty\}$, a basis of topology on \mathbb{R} .

Proposition 3. For a metric space (X, d), $\{B(x, r) : x \in X, r > 0\}$ a basis of topology.

Definition 8 (Subspace Topology). For a subset $Y \subseteq X$ -topological space, we define the subspace topology on Y as $\tau_Y := \{Y \cap U : U \in \tau\}$.

Definition 9 (Continuous). For X, Y-topological spaces, a function $f: X \to Y$ is continuous iff $\forall V$ -open in Y, $f^{-1}(V)$ -open in X.

Remark 8. One can verify that this is consistent with the $\varepsilon - \delta$ definition of continuity for functions on \mathbb{R} .

Theorem 1 (Continuity of Composition). *If* $f: X \to Y$, $g: Y \to Z$ *continuous*, $g \circ f$ *continuous*.

Remark 9. Note how much easier this is to prove via toplogical spaces than the ε – δ definition.

Definition 10 (Product Space). For an index set I and X_{α} , $\alpha \in I$, we define $\prod_{\alpha \in I} X_{\alpha}$ as a product space; I may be finite or infinite.

Proposition 4. A basis for the product space is given by cyliders of the form $A = \prod_{\alpha \in J} A_{\alpha} \times \prod_{\alpha \notin J} X_{\alpha}$ for A_{α} -open in X_{α} , where $J \subseteq I$ -finite.

Definition 11 (Compact). A set $A \subseteq X$ is compact if every cover has a finite subcover, that is

$$A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$$
-open $\Longrightarrow \exists \{\alpha_1, \dots, \alpha_n\} \subseteq I \text{ s.t. } A \subseteq \bigcup_{i=1}^n U_{\alpha_i}.$

Proposition 5. Closed intervals [a,b] compact in \mathbb{R} .

Proposition 6. $A \subseteq \mathbb{R}^n$ compact \iff closed and bounded.

Definition 12 (Connected). X is said to not be connected if $X = U \cup V$ for U, V open, nonempty, disjoint. If X cannot be written as such, X is said to be connected.

Theorem 2. If X connected and $f: X \to Y$, then f(X) connected in Y.

Proposition 7. *Intervals in* \mathbb{R} *are connected.*

Theorem 3 (Intermediate Value Theorem). If X connected, $f: X \to \mathbb{R}$ continuous, then f takes intermediate value; if a = f(x), b = f(y) for $x, y \in X$ with a < b, then for any a < c < b $\exists z \in X \text{ s.t. } f(z) = c$.

Theorem 4. For X compact, $f: X \to Y$ continuous, f(X) compact in Y.

Proposition 8. For X compact and $f: X \to \mathbb{R}$, f attains both max and min on X.

Definition 13 (Path Connected). A set $A \subseteq X$ is path connected if for any $x, y \in A, \exists f : [a,b] \to X$ continuous such that $f(a) = x, f(b) = y f([a,b]) \subseteq A$.

Theorem 5. Path connected \implies connected.

For open sets in \mathbb{R}^n , the converse holds too.

Definition 14 (Connected Component, Path Component). For $x \in X$, the connected component of x is the largest connected subset of X containing x and the path component of x is the largest path connected subset of X containing x.

2 Metric Spaces

We discuss mostly the metric on ℓ_p space and notions of completeness, as well as some topological results specific to metric spaces, namely compactness.

Definition 15 (ℓ_p) . For $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $1 \le p \le +\infty$, we define

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \quad ||x||_{\infty} := \max_{i=1}^n |x_i|,$$

and similarly, for sequences $x = (x_1, ..., x_n, ...)$,

$$||x||_p := \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}, \quad ||x||_{\infty} := \sup_{i=1}^{\infty} |x_i|,$$

and define $\ell_p := \{x : ||x||_p < +\infty\}$. It can be shown that these are well-defined norms on their respective spaces.

Theorem 6 (Holder, Minkowski's Inequalities). For $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ and p, q such that $\frac{1}{p} + \frac{1}{q} = 1$, then

Holder's:
$$\langle x, y \rangle = \left| \sum_{i=1}^{n} x_i y_i \right| \le ||x||_p ||y||_q$$

and

Minkowski's:
$$||x + y||_p \le ||x||_p + ||y||_p$$
.

The identical inequalities hold for infinite sequences.

Definition 16 (Completeness). We say a metric space is complete if every Cauchy sequence converges to a limit point in the space.

Proposition 9. For $\{x_n\}_{n\in\mathbb{N}}$, ℓ_p complete for any $1 \leq p \leq +\infty$.

Proposition 10. *If* p < q, $\ell_p \subseteq \ell_q$.

Definition 17 (Contraction Mapping). For a metric space (X, d), a function $f: X \to X$ is a contraction mapping if there exists 0 < c < 1 such that

$$d(f(x), f(y)) \le c \cdot d(x, y)$$

for any $x, y \in X$.

Theorem 7. Let (X, d) be a complete metric space, $f: X \to X$ a contraction. Then, there exist a unique fixed point z of f such that f(z) = z; ie $\lim_{n \to \infty} f^n(x) = \lim_{n \to \infty} f \circ f \circ \cdots \circ f(x) = z$ for any $x \in X$.

Theorem 8. ℓ_p *complete.*

Remark 10. It can be kind of funky to work with sequences in ℓ_p , since the elements of ℓ_p themselves sequences so we have "sequences of sequences".

Definition 18 (Totally bounded). A metric space X is said to be totally bounded if $\forall \varepsilon > 0 \exists x_1, \dots, x_n \in X$, $n = n(\varepsilon)$ such that $\bigcup_{i=1}^n B(x_i, \varepsilon) = X$.

Definition 19 (Sequentially compact). A metric space *X* is said to be sequentially compact if every sequence has a convergent subsequence.

Theorem 9 (\star Equivalent Notions of Compactness in Metric Spaces). *Let* (X, d) a metric space. *TFAE*:

- *X compact*
- *X complete and totally bounded*
- *X sequentially compact*

Remark 11. This is for a metric space, not a general topological space! Hopefully this is clear because some of the requirements necessitate a distance.

3 Differentiation

Definition 20 (Differentiable). f(x) differentiable at c if $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists, and if so we denote the limit f'(c).

Theorem 10. Differentiable \implies continuous.

- 4 Integration
- 5 Sequences of Functions
 - 6 Infinite Series