Output tables for the test of Multiple comparisons.

March 30, 2022

1 Average rankings of Friedman test

Average ranks obtained by applying the Friedman procedure

Algorithm Slime-mould Grey-wolf Dragon-fly	Ranking	2	3.2333	2.7667	. 2
	${ m Algorithm}$	Slime-mould	Grey-wolf	Dragon-fly	OnantumEigensolver

Table 1: Average Rankings of the algorithms

Friedman statistic considering reduction performance (distributed according to chi-square with 3 degrees of freedom: 19.96. P-value computed by Friedman Test: 1.7301339599196108E-4. Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with 3 and 87 degrees of freedom: 8.26442.

2 Post hoc comparisons

Results achieved on post hoc comparisons for $\alpha=0.05,\,\alpha=0.10$ and adjusted p-values.

2.1 P-values for $\alpha = 0.05$

$\cdot i$	algorithms	$z = (R_0 - R_i)/SE$	d	Holm
9	Slime-mould vs. Grey-wolf	3.7	0.000216	0.008333
23	Grey-wolf vs. Quantum Eigensolver	3.7	0.000216	0.01
4	Slime-mould vs. Dragon-fly	2.3	0.021448	0.0125
3	Dragon-fly vs. Quantum Eigensolver	2.3	0.021448	0.016667
2	Grey-wolf vs. Dragon-fly	1.4	0.161513	0.025
П	Slime-mould vs. Quantum Eigensolver	0	1	0.05

Table 2: P-values Table for $\alpha = 0.05$

Holm's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.0125 .

2.2 P-values for $\alpha = 0.10$

\dot{i}	algorithms	$z = (R_0 - R_i)/SE$	d	$_{ m Holm}$
9	Slime-mould vs. Grey-wolf	3.7	0.000216	0.016667
2	Grey-wolf vs. Quantum Eigensolver	3.7	0.000216	0.02
4	Slime-mould vs. Dragon-fly	2.3	0.021448	0.025
33	Dragon-fly vs. Quantum Eigensolver	2.3	0.021448	0.033333
7	Grey-wolf vs. Dragon-fly	1.4	0.161513	0.02
П	Slime-mould vs. Quantum Eigensolver	0	1	0.1

Table 3: P-values Table for $\alpha = 0.10$

Holm's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.05 .

	hypothesis	unadjusted p	p_{Holm}
1	Slime-mould vs .Grey-wolf	0.000216	0.001294
2	Grey-wolf vs .Quantum Eigensolver	0.000216	0.001294
က	Slime-mould vs .Dragon-fly	0.021448	0.085793
4	Dragon-fly vs .Quantum Eigensolver	0.021448	0.085793
20	Grey-wolf vs .Dragon-fly	0.161513	0.323027
9	Slime-mould vs .QuantumEigensolver	П	П

Table 4: Adjusted p-values