

Institutt for matematiske fag

sort/hvit ⊠

skal ha flervalgskjema

farger  $\square$ 

| Eksamensoppgave i TMA4135 Matematikk 4D                                     |                                                    |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------|--|--|--|
| Faglig kontakt under eksamen: Morten A<br>Tlf: 90 84 97 83                  | ndreas Nome                                        |  |  |  |
| Eksamensdato: 13. desember 2017                                             |                                                    |  |  |  |
| Eksamenstid (fra-til): 09:00 - 13:00                                        |                                                    |  |  |  |
| <b>Hjelpemiddelkode/Tillatte hjelpemidler:</b> It tematisk formelsamling    | Kode C: Bestemt, enkel kalkulator. Rottmann: Ma-   |  |  |  |
| Annen informasjon:<br>Denne eksamenen består av 10 delpunkt s<br>Lykke til. | om alle teller like mye. Alle svar skal begrunnes. |  |  |  |
| Målform/språk: bokmål Antall sider: 2                                       |                                                    |  |  |  |
| Antall sider vedlegg: 2                                                     |                                                    |  |  |  |
| Informasjon om trykking av eksamensoppgave                                  | Kontrollert av:                                    |  |  |  |
| Originalen er:                                                              |                                                    |  |  |  |
| 1-sidig □ 2-sidig ⊠                                                         |                                                    |  |  |  |

Merk! Studenter finner sensur i Studentweb. Har du spørsmål om din sensur må du kontakte instituttet ditt. Eksamenskontoret vil ikke kunne svare på slike spørsmål.

Sign

Dato

Oppgave 1 La f være definert ved

$$f(x) = \frac{\pi}{4} - \frac{x}{2}$$
, for  $0 < x < \pi$ .

- a) Finn Fourier-cosinus-rekken til f.
- **b)** Bruk resultatet til å beregne summen  $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ .

Oppgave 2 Løs integralligningen

$$\int_{-\infty}^{\infty} f(x-t)e^{-|t|} dt = e^{\frac{-x^2}{2}}$$

ved hjelp av fouriertransform.

Oppgave 3 Betrakt den ordinære differensialligningen

$$y'' - 3y' + 2y = 0,$$

med initialbetingelsene

$$y(0) = 1$$
 og  $y'(0) = 0$ .

- a) Løs ligningen ved hjelp av laplacetransform.
- b) Skriv ligningen om til et ligningsystem, og finn en approksimasjon til y(0.1) ved å beregne ett steg med Eulers eksplisitte metode. Bruk 6 siffer i beregningene.

**Oppgave 4** Ligningen  $e^{\frac{x}{3}} - x = 0$  har en entydig løsning på intervallet (0,3). Finn en tilnærming til denne ved å sette  $x_0 = 1$ , og beregne tre fikspunktiterasjoner. Bruk 5 siffer i dine beregninger.

Oppgave 5 Gitt ligningssystemet

Beregn to iterasjoner av Jacobis metode med  $\mathbf{x}_0 = (1, 1, 1)$  som startverdi. Bruk 5 siffer i dine beregninger.

**Oppgave 6** La u(x,t) være temperaturen ved tid t i en stav med lengde 3 som ligger langs x-aksen. Den tilfredsstiller varmeligningen

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \qquad 0 \leq x \leq 3, \quad t \geq 0,$$

med randbetingelser

$$u(0,t) = u(3,t) = 0, t \ge 0.$$

- a) Finn alle løsninger på formen u(x,t) = F(x)G(t) som tilfredsstiller randbetingelsene.
- b) Ved tiden t=0 er temperaturen gitt ved  $f(x)=2\sin\left(\frac{\pi x}{3}\right)$ . Finn løsningen som også tilfredsstiller denne initialbetingelsen.
- c) Bruk Crank-Nicolsons metode med k=0.5 og h=1 for å approksimere verdien av u(1,0.5). Bruk 5 siffer i dine beregninger.

## Fourier Transform

| $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} d\omega$ | $\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$ |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| f * g(x)                                                                                     | $\sqrt{2\pi}\hat{f}(\omega)\hat{g}(\omega)$                                             |
| f'(x)                                                                                        | $i\omega\hat{f}(\omega)$                                                                |
| $e^{-ax^2}$                                                                                  | $\frac{1}{\sqrt{2a}}e^{-\omega^2/4a}$                                                   |
| $e^{-a x }$                                                                                  | $\sqrt{\frac{2}{\pi}} \frac{a}{\omega^2 + a^2}$                                         |
| $\frac{1}{x^2 + a^2}$                                                                        | $\sqrt{\frac{\pi}{2}} \frac{e^{-a \omega }}{a}$                                         |
| f(x) = 1 for $ x  < a$ , 0 otherwise                                                         | $\sqrt{\frac{2}{\pi}} \frac{\sin \omega a}{\omega}$                                     |

## Laplace Transform

| f(t)                   | $F(s) = \int_0^\infty e^{-st} f(t)  dt$ |
|------------------------|-----------------------------------------|
| f'(t)                  | sF(s) - f(0)                            |
|                        | -F'(s)                                  |
| $e^{at}f(t)$           | F(s-a)                                  |
| $\cos(\omega t)$       | $\frac{s}{s^2 + \omega^2}$              |
| $\sin(\omega t)$       | $\frac{\omega}{s^2 + \omega^2}$         |
| $t^n$                  | $\frac{n!}{s^{n+1}}$                    |
| $e^{at}$               | $\frac{1}{s-a}$                         |
| f(t-a)u(t-a)           | $e^{-sa}F(s)$                           |
| $\frac{}{\delta(t-a)}$ | $e^{-as}$                               |
| f * g(t)               | F(s)G(s)                                |

## **Numerics**

- Newton's method:  $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$ .
- Newton's method for system of equations:  $\vec{x}_{k+1} = \vec{x}_k JF(\vec{x}_k)^{-1}F(\vec{x}_k)$ , with  $JF = (\partial_j f_i)$ .
- Lagrange interpolation:  $p_n(x) = \sum_{k=0}^n \frac{l_k(x)}{l_k(x_k)} f_k$ , with  $l_k(x) = \prod_{j \neq k} (x x_j)$ .
- Interpolation error:  $\epsilon_n(x) = \prod_{k=0}^n (x x_k) \frac{f^{(n+1)}(t)}{(n+1)!}$ .
- Chebyshev points:  $x_k = \cos\left(\frac{2k+1}{2n+2}\pi\right)$ ,  $0 \le k \le n$ .
- Newton's divided difference:  $f(x) \approx f_0 + (x x_0) f[x_0, x_1] + (x x_0)(x x_1) f[x_0, x_1, x_2] + \dots + (x x_0)(x x_1) \dots (x x_{n-1}) f[x_0, \dots, x_n],$  with  $f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] f[x_0, \dots, x_{k-1}]}{x_k x_0}.$
- Trapezoid rule:  $\int_a^b f(x) dx \approx h\left[\frac{1}{2}f(a) + f_1 + f_2 + \dots + f_{n-1} + \frac{1}{2}f(b)\right]$ . Error of the trapezoid rule:  $|\epsilon| \leq \frac{b-a}{12}h^2 \max_{x \in [a,b]} |f''(x)|$ .
- Simpson rule:  $\int_a^b f(x) dx \approx \frac{h}{3} [f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 2f_{n-2} + 4f_{n-1} + f_n].$ Error of the Simpson rule:  $|\epsilon| \leq \frac{b-a}{180} h^4 \max_{x \in [a,b]} |f^{(4)}(x)|.$
- Gauss–Seidel iteration:  $\mathbf{x}^{(m+1)} = \mathbf{b} \mathbf{L}\mathbf{x}^{(m+1)} \mathbf{U}\mathbf{x}^{(m)}$ , with  $\mathbf{A} = \mathbf{I} + \mathbf{L} + \mathbf{U}$ .
- Jacobi iteration:  $\mathbf{x}^{(m+1)} = \mathbf{b} + (\mathbf{I} \mathbf{A})\mathbf{x}^{(m)}$ .
- Euler method:  $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(x_n, \mathbf{y}_n)$ .
- Improved Euler method:  $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{2}h[\mathbf{f}(x_n, \mathbf{y}_n) + \mathbf{f}(x_n + h, \mathbf{y}_{n+1}^*)],$  where  $\mathbf{y}_{n+1}^* = \mathbf{y}_n + h\mathbf{f}(x_n, \mathbf{y}_n).$
- Classical Runge–Kutta method:  $\mathbf{k}_1 = h\mathbf{f}(x_n, \mathbf{y}_n)$ ,  $\mathbf{k}_2 = h\mathbf{f}(x_n + h/2, \mathbf{y}_n + \mathbf{k}_1/2)$ ,  $\mathbf{k}_3 = h\mathbf{f}(x_n + h/2, \mathbf{y}_n + \mathbf{k}_2/2)$ ,  $\mathbf{k}_4 = h\mathbf{f}(x_n + h, \mathbf{y}_n + \mathbf{k}_3)$ ,  $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{6}\mathbf{k}_1 + \frac{1}{3}\mathbf{k}_2 + \frac{1}{3}\mathbf{k}_3 + \frac{1}{6}\mathbf{k}_4$ .
- Backward Euler method:  $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(x_{n+1}, \mathbf{y}_{n+1})$ .
- Finite differences:  $\frac{\partial u}{\partial x}(x,y) \approx \frac{u(x+h,y)-u(x-h,y)}{2h}, \frac{\partial^2 u}{\partial x^2}(x,y) \approx \frac{u(x+h,y)-2u(x,y)+u(x-h,y)}{h^2}$ .
- Crank-Nicolson method for the heat equation:  $r = \frac{k}{h^2}$ ,  $(2+2r)u_{i,j+1} r(u_{i+1,j+1} + u_{i-1,j+1}) = (2-2r)u_{i,j} + r(u_{i+1,j} + u_{i-1,j})$ .