Ведение в алгебраическую топологию

Задачи дополнительного письменного экзамена 26.12.2020 Решения присылайте на kazarian@mccme.ru

- 1. Определите эйлерову характеристику следующих пространств
 - а) пространство (неориентированных) проективных прямых в $\mathbb{R}P^3$;
 - б) пространство вещественных невырожденных симметричных 2×2 матриц;
 - в) пространство комплексных невырожденных 2×2 матриц.
- 2. Топологическое пространство X получено из несвязного объединения окружности S^1 и цилиндра $S^1 \times [0,1]$ склейкой по отображению границы $f: \partial(S^1 \times [0,1]) \to S^1$, такому что ограничение отображения f на компоненты границы $S^1 \times \{0\}$ и $S^1 \times \{1\}$ имеют степени m и n, соответственно.
 - (a) Вычислите (целочисленные) гомологии пространства X.
 - $(6)^*$ Для каких различных пар значений параметров (m,n) получающиеся пространства являются гомотопически эквивалентными?
- 3. Стандарно вложенные поверхности $\mathbb{R}P^2$ и $\mathbb{C}P^1$ в $\mathbb{C}P^2$ представляют два класса гомологий в $H_2(\mathbb{C}P^2,\mathbb{Z}_2)$. Равны ли эти классы?
- 4. Пусть $X_1 = S^4$, $X_2 = S^2 \times S^2$, $X_3 = \mathbb{C}P^2$. Для каких пар (i,j) существует непрерывное отображение $X_i \to X_j$ степени 2? Если отображение существует, предъявите пример. Если не существует, докажите.
- 5. Найдите число максимумов, минимумов, а также седловых точек функции x+y+z+w, ограниченной на поверхность, заданную уравнениями

$$x^4 + y^4 + z^4 + w^4 = 1,$$
 $x^3 + y^3 + z^3 + w^3 = 0.$

Чему равен род этой поверхности?