Алгебра и мат. анализ (Interview Preparation Kit)

1 Алгебра

1.1 Подстановки

Множество S(U) всех биекций $f:U\to U$ с операцией произведения отображений gf обладает следующими свойствами:

- операция произведения ассоциативна (h(gf) = (hg)f),
- нейтральный элемент тождественное отображение 1_U ($1_U f = f = f 1_U$),
- для всякой биекции f существует обратный элемент f^{-1} ($ff^{-1} = 1_U = f^{-1}f$).

Подстановки – группа биекций S(U) относительно операции произведения отображений. В случае $U = \{1, 2, ..., n\}$ множество $S_n = S(\{1, 2, ..., n\})$ – **группа подстановок** множества $\{1, 2, ..., n\}$. $|S_n| = n!$

Перестановки элементов 1, 2, ..., n – строчки элементов $(i_1, ..., i_n), 1 \le i_j \le n$, где каждый элемент i_j встречается один и только один раз.

Инверсия: в перестановке (...,i,...,j,...) число i расположено левее, но i>j.

Чётность подстановки — чётность суммы числа инверсий в верхней строчке и числа инверсий в нижней строчке.

Траспозиция перестановки $(i_1,...,i_n)$ – перестановка двух элементов i и $j, i \neq j$ (все остальные элементы остаются на своих местах).

Цикл $(i_1i_2...i_r)$ **длины** r в группе подстановок S_n – подстановка, переводящая i_k в i_{k+1} для $1 \le k \le r-1$, i_r в i_1 , и оставляющая остальные элементы из $\{1, 2, ..., n\}$ на месте.

Разложение подстановок в произведение транспозиций. Каждая подстановка $\tau \in S_n$ является произведением $\tau = \tau_r...\tau_1$ конечного числа транспозиций τ_i (циклов длины два).

Орбита цикла $(i_1i_2...i_r)$ – множество $\{i_1,...,i_r\}$.

Разложение подстановок в произведение независимых циклов. Каждая подстановка $\tau \in S_n$ разлагается (и притом единственным образом) в произведение циклов с непересекающимися орбитами.

1.2 Комплексные числа

Комплексные числа – элементы поля $\mathbb{C} = \mathbb{R}^2 = \{(a,b)|a,b \in \mathbb{R}\}$ со следующими операциями сложения и умножения: (a,b)+(c,d)=(a+c,b+d), (ab,cd)=(ac-bd,ad+bc). i=(0,1), $i^2=-1.$

Алгебраическая форма записи: a + bi, $a, b \in \mathbb{R}$.

В **геометрической интерпретации** комплексное число z = a + bi изображается вектором в прямоугольной системе координат, выходящим из точки (0,0) в точку (a,b).

Тригонометрическая форма записи: $z = r(\cos \varphi + i \sin \varphi)$, где z = a + bi, $r = \sqrt{a^2 + b^2}$, $\varphi = \arg z$ – угол между положительной полуосью абсцисс и радиусом-вектором точки (a,b), отсчитываемый против часовой стрелки (аргумент точки 0 = (0,0) не определён).

Извлечение корней из комплексных чисел. Пусть $n \ge 1, \, 0 \ne z \in \mathbb{C}, \, z = r(\cos \varphi + i \sin \varphi), \, r > 0$. Тогда существует ровно n различных корней n-й степени из z:

$$w_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), k = 0, 1, 2, ..., n - 1.$$

Корни из единицы. Так как $1=1(\cos 0+i\sin 0),\ r=1,\ \varphi=0,$ то формула для корней n-й степени из 1 принимает вид

$$w_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}, k = 0, 1, 2, ..., n - 1.$$

1.3 Системы линейных уравнений

Система m линейных уравнений от n переменных $x_1, x_2, ..., x_n$: i-е уравнение, $1 \le i \le m$, записывается в виде $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$, где $m, n \in \mathbb{N}$, $a_{ij}, b_i \in K$.

Матрица коэффициентов системы линейных уравнений – прямоугольная $(m \times n)$ -таблица коэффициентов $a_{ij} \in K$. **Расширенная матрица** системы линейных уравнений – прямоугольная $(m \times (n+1))$ -матрица.

Ступенчатая система линейных уравнений – система линейных уравнений со **ступенчатой матрицей** коэффициентов, т.е.:

- все нулевые строки находятся в матрице ниже ненулевых строк,
- ullet если $a_{ik} \neq 0$ первый ненулевой элемент в i-й строке, то $a_{rs} = 0$ для всех $i < r \leq m, \ 1 \leq s \leq k.$

Элементарное преобразование 1-го типа. При $i \neq k$ к i-му уравнению системы прибавляется k-е уравнение, умноженное на число $c \in K$.

Элементарное преобразование 2-го типа. При $i \neq k$ i-е и k-е уравнения меняются местами, остальные уравнения не изменяются.

Элементарное преобразование 3-го типа. i-е уравнение умножается на ненулевое число $0 \neq c \in K$.

Метод Гаусса. Всякую систему линейных уравнений можно конечным числом элементарных преобразований 1-го и 2-го типов привести к ступенчатому виду.

1.4 Линейная зависимость и ранг

Линейно зависимая система элементов $v_1, ..., v_r$ линейного пространства V над полем K: найдутся элементы $k_1, ..., k_r \in K$ такие, что $k_1v_1 + ... + k_rv_r = 0$, где хотя бы один элемент k_i отличен от нуля.

Линейно независимая система элементов $v_1, ..., v_r$ линейного пространства V над полем K: система не является линейно зависимой.

Основная теорема о линейной зависимости. Пусть в линейном пространстве V над полем K линейно независимая система элементов $v_1, ..., v_r$ линейно выражается через другую систему элементов $u_1, ..., u_s$. Тогда $r \leq s$.

Максимальная линейно независимая подсистема в S – такая подсистема $v_1, ..., v_r \in S$ (S содержится в линейном пространстве V над полем K), что $v_1, ..., v_r$ – линейно независимая система, а любой элемент $v \in S$ является линейной комбинацией элементов $v_1, ..., v_r$.

Базис — максимальная линейно независимая подсистема $v_1,...,v_r$ в линейном пространстве V над полем K (если в линейном пространстве V существует такая конечная система).

Конечномерное линейное пространство – линейное пространство с конечным базисом.

Ранг системы S – число элементов r(S) в максимальной линейно независимой подсистеме системы S конечномерного линейного пространства V над полем K.

Минор k-го порядка матрицы A – определитель $M_{i_1,...,i_k;j_1,...,j_k}$ квадратной матрицы, состоящей из элементов на пересечении k первых строк и k первых столбцов матрицы

A.

Теорема о ранге матрицы. Следующие четыре числовые характеристики матрицы $A = (a_{ij}) \in M_{m,n}(K)$ совпадают:

- $r(A_1, ..., A_m)$ ранг системы строк в K^n ,
- $r(\hat{A}_1,...,\hat{A}_m)$ ранг системы столбцов в K^n ,
- r(A) наивысший порядок ненулевого минора,
- ullet число ненулевых строк r в ступенчатом виде $ar{A}$ матрицы A.

Это совпадающее число называется **рангом матрицы** A и обозначается r(A).

Теорема Кронекера-Капелли: критерий совместности и определённости системы линейных уравнений в терминах рангов матриц. Пусть $(a_{ij}|b_i)$ – система m линейных уравнений с n неизвестными, A – матрица коэффициентов, A' – расширенная матрица системы линейных уравнений.

- Система линейных уравнений совместна (система имеет решение) $\iff r(A) = r(A')$.
- Система линейных уравнений определённая (система имеет только одно решение) $\iff r(A) = r(A') = n$.

Фундаментальная система решений однородной системы линейных уравнений – любой базис линейного пространства решений однородной системы линейных уравнений. Размерность пространства решений равна числу свободных неизвестных, то есть n-r(A).

1.5 Определители

Определитель квадратной матрицы A – число $|A| = \sum_{\alpha \in S_n} \varepsilon(\alpha) a_{1\alpha(1)} ... a_{n\alpha(n)}$, где α – подстановка из S_n . $\varepsilon(\alpha) = 1$, если подстановка α чётная, $\varepsilon(\alpha) = -1$, если подстановка α нечётная.

Свойство 1. $|E_n| = 1$.

Свойство 2. При перестановке двух строк матрицы A определитель меняет знак.

Свойство 3. $A'_i = cA_i \Longrightarrow |A'| = c|A|$.

Свойство 4. Если A_i представлена суммой двух строк B и C, то |A| = |A'| + |A''|, где A', A'' – матрицы, в которых вместо A_i в A стоят соответственно строки B и C.

Свойство 5. Если $A_i = (0, ..., 0)$, то |A| = 0.

Свойство 6. Если $A_i = A_j$, $i \neq j$, то |A| = 0.

Свойство 7. Если от матрицы A переходим к матрице A' с помощью элементарного преобразования 1-го типа $A'_i = A_i + cA_j, i \neq j, c \in K$, то |A'| = |A|.

Критерий равенства определителя нулю. Строка A_i является линейной комбинацией остальных строк квадратной матрицы $A \iff |A| = 0$.

Минор элемента a_{ij} – определитель M_{ij} матрицы A без i-й строки и j-го столбца.

Алгебраическое дополнение элемента a_{ij} – число $A_{ij} = (-1)^{i+j} M_{ij}$.

Разложение определителя по *i*-й строке и по *j*-му столбцу, $1 \le i, j \le n$:

$$|A| = a_{i1}A_{i1} + \dots + a_{in}A_{in},$$

$$|A| = a_{1j}A_{1j} + \dots + a_{1j}A_{1j}.$$

1.6 Операции над матрицами

Произведение матриц $A = (a_{ij}) \in M_{r,m}(K)$ и $B = (b_{ij}) \in M_{m,n}(K)$:

$$AB = U = (u_{ij}) \in M_{r,n}(K), u_{il} = \sum_{k=1}^{m} a_{ik} b_{kl}.$$

Свойства произведения матриц:

- Умножение матриц некоммутативно.
- Имеются делители нуля (ненулевые элементы, произведение которых равно нулю).
- Умножение матриц ассоциативно: (AB)C = A(BC).
- Умножение матриц дистрибутивно: C(A+B) = CA + CB, (A+B)D = AD + BD.

Транспонирование произведения матриц. $(AB)^* = B^*A^*$.

Определитель произведения квадратных матриц. |AB| = |A||B|.

Ранг произведения матриц. $r(AB) \le r(A), r(AB) \le r(B)$. При умножении на квадратную матрицу $A \in |A| \ne 0$ ранг не меняется.

Матрица $B \in M_n(K)$ – обратная к матрице $A \in M_n(K)$, если AB = E = BA.

Теорема об обратной матрице. $A \in M_n(K)$.

- Существует обратная матрица $B = (b_{ij}) = A^{-1} \iff |A| \neq 0.$
- В этом случае $b_{ij} = \frac{A_{ji}}{|A|}$.
- $|A^{-1}| = \frac{1}{|A|}$.

Нахождение обратной матрицы. Пусть $A \in M_n(K)$ такая, что $|A| \neq 0$. Найдем матрицу $X \in M_n(K)$ такую, что AX = E. Применяя элементарные преобразования строк трёх типов к (A|E), получаем $(A|E) \to ... \to (E|B)$, где $B = A^{-1}$.

1.7 Векторные пространства

Линейное (векторное) пространство над полем K – множество V с операциями сложения векторов и умножения векторов на элементы поля K.

Базис линейного пространства V – всякое линейно независимое подмножество E, через которое пространство V линейно выражается.

Размерность линейного пространства – число векторов произвольного базиса.

Матрица перехода от базиса $(e) = (e_1, ..., e_n)$ к базису $(e') = (e'_1, ..., e'_n)$ – матрица $C = (c_{ij})$ такая, что (e') = (e)C. $(e) = (e')C^{-1}$.

Преобразования координат в векторном пространстве. $x=x_1e_1+...+x_ne_n=x_1'e_1'+...+x_n'e_n',\ (e')=(e)C.$ Тогда $(x_1',...,x_n')=(x_1,...,x_n)(C^{-1})^*.$

Подпространство пространства V – непустое подмножество M линейного пространства V над полем K, если $a+b\in M$, $\alpha a\in M$ для любых $a,b\in M$, $\alpha\in K$.

Подпространства как множества решений систем однородных линейных уравнений. Пространство $L(\Sigma)$ всех решений системы однородных линейных уравнений от n неизвестных является подпространством пространства \mathbb{R}^n .

Формула размерности. M, N – подпространства линейного пространства V. Тогда $\dim(M+N) = \dim(M) + \dim(N) - \dim(M\cap N)$.

Прямая сумма подпространств (определение). $M_1, ..., M_s$ – подпространства линейного пространства V. $V = M_1 \oplus ... \oplus M_s$, если $V = M_1 + ... + M_s$ и для всякого i верно, что $M_i \cap (M_1 + ... + M_{i-1} + M_{i+1} + ... + M_s) = \{0\}.$

Базис и размерность прямой суммы подпространств. $V = M_1 + ... + M_s$. Следующие условия эквивалентны:

- $V = M_1 \oplus ... \oplus M_s$,
- E_i базис в $M_i \Longrightarrow E_1 \cup ... \cup E_s$ базис в V,

• $\dim V = \dim M_1 + \dots + \dim M_s$.

1.8 Линейные отображения и линейные операторы

Линейное отображение – отображение $\varphi: V \to W$ линейных пространств над одним и тем же полем K, при котором для любых $a,b \in V$ и $\alpha \in K$: $\varphi(a+b) = \varphi(a) + \varphi(b)$, $\varphi(\alpha a) = \alpha \varphi(a)$.

Задание линейного отображения образом базиса. Пусть $x = x_1 e_1 + ... + x_n e_n$, где $(e) = (e_1, ..., e_n)$ – базис пространства V. Тогда $\varphi(x) = x_1 \varphi(e_1) + ... + x_n \varphi(e_n)$.

Образ и ядро линейного отображения. $\varphi:V\to W$ — линейное отображение. Ядро Кег φ отображения φ — множество $\{x\in V: \varphi(x)=0\}$. Образ Im φ отображения φ — множество $\varphi(V)$. Множества Кег φ и Im φ являются линейными подпространствами пространств V и W соответственно.

Связь между размерностями образа и ядра. Для всякого линейного отображения $\varphi: V \to W$ справедливо $\dim V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$.

Линейный функционал (ковектор) на пространстве V – линейное отображение $\xi:V\to K.$

Сопряжённое пространство. Пространство V^* , сопряжённое к пространству V, – множество всех функционалов на линейном пространстве V. Сопряжённое пространство является линейным пространством.

Сопряжённый базис. Базис, сопряжённый к базису $e_1,...,e_n$, – базис сопряжённого пространства V^* , состоящий из функционалов $\varepsilon^1,...,\varepsilon^n$, где $\varepsilon^i(e_j)=\delta^i_j$.

Линейный оператор в линейном пространстве V – линейное отображение $\varphi:V\to V$.

Матрица оператора. $(e)=(e_1,...,e_n)$ – базис линейного пространства V. Для оператора $\varphi:V\to V$ пусть $\varphi(e_j)=a_{1j}e_1+...+a_{nj}e_n,\ j=1,...,n$. Матрица $A_{\varphi}^{(e)}$, в j-м столбце которой стоят координаты $\varphi(e_j)$, – матрица оператора φ в базисе (e). $(\varphi(e_1),...,\varphi(e_n))=(e_1,...,e_n)A_{\varphi}^{(e)}$.

Изменение матрицы линейного оператора при переходе к другому базису. Пусть C – матрица перехода от базиса $(e)=(e_1,...,e_n)$ пространства V к базису $(e')=(e'_1,...,e'_n)$. Тогда для произвольного оператора $\varphi:V\to V$ его матрицы в базисах (e) и (e') связаны соотношением $A_{\varphi}^{(e')}=C^{-1}A_{\varphi}^{(e)}C$.

1.9 Билинейные и квадратичные функции

Билинейная функция на пространстве V – отображение $\xi: V \times V \to K$, при котором для каждого фиксированного значения одного аргумента оно линейно по другому аргументу.

Симметрическая билинейная функция: $\xi(x,y) = \xi(y,x)$ для любых векторов $x,y \in V$.

Матрица билинейной функции ξ в базисе (e). ξ — билинейная функция на пространстве $V, (e) = (e_1, ..., e_n)$ — базис этого пространства. Положим $b_{ij} = \xi(e_i, e_j)$. Матрица $B_{\xi}^{(e)}$ — матрица билинейной функции ξ в базисе (e). Элементы b_{ij} — коэффициенты функции ξ в базисе (e).

Изменение матрицы билинейной функции при переходе к другому базису. Пусть C – матрица перехода от базиса $(e)=(e_1,...,e_n)$ пространства V к базису $(e')=(e'_1,...,e'_n)$. Тогда для любой билинейной функции $\xi:V\times V\to K$ её матрицы в этих базисах связаны соотношением $B_{\varepsilon}^{(e')}=C^*B_{\varepsilon}^{(e)}C$.

Ранг билинейной функции – число $r(\xi)$, равное рангу $r(B_{\xi})$ её матрицы в некотором базисе.

Левое ядро билинейной функции ξ – множество $\mathrm{Ker}_{\xi}^{\mathrm{neb}} = \{x \in V : \xi(x,y) = 0$ для всех $y \in V\}$. Левое ядро является линейным подпространством пространства V.

Ортогональное дополнение к подпространству относительно симметрической билинейной функции. Для любой билинейной функции ξ на n-мерном пространстве V размерности левого и правого ядра равны $n-r(\xi)$. Для симметрической билинейной функции ξ левое и правое ядра равны.

Квадратичная функция – отображение $b: V \to K$, для которого существует такая билинейная функция ξ , что $b(x) = \xi(x, x)$ для любого вектора $x \in V$.

Связь между симметрическими билинейными и квадратичными функциями. Для любой квадратичной функции b существует единственная симметрическая билинейная функция ξ , удовлетворяющая условию $b(x) = \xi(x,x)$ для любого вектора $x \in V$.

Существование ортогонального базиса для симметрической билинейной функции. Пусть V – линейное пространство над K, ξ – симметрическая билинейная функция на V. Если $\dim V \geq 1$, то в V существует ортогональный базис ($\xi(e_i, e_i) = 0$).

Функция, полярная к квадратичной фукнции b, – билинейная симметрическая функция $\xi_b(x,y) = \frac{1}{2}[b(x+y) - b(x) - b(y)].$

Матрица квадратичной функции b в базисе $(e)=(e_1,...,e_n)$ – матрица B_{ξ_b} полярной к ней симметрической билинейной функции ξ_b .

Канонический базис для квадратичной функции $b: V \to K$ – базис $(e) = (e_1, ..., e_n)$ пространства V, для которого матрица функции b диагональна. Для каждой квадратичной функции существует канонический базис.

Канонический вид квадратичной функции – запись квадратичной функции b в каноническом базисе $b(x) = \lambda_1 x_1^2 + ... + \lambda_n x_n^2$.

Нормальный вид вещественной квадратичной функции. Всякая квадратичная функция в вещественном пространстве может быть приведена к нормальному виду $b(x) = y_1^2 + ... + y_p^2 - y_{p+1}^2 - ... - y_r^2$. Нормальный базис – базис вещественного пространства V, в котором квадратичная функция b принимает нормальный вид. Положительный индекс инерции – число p положительных членов в формуле, отрицательный индекс инерции – число q = r - p отрицательных членов в формуле.

Закон инерции. Положительный и отрицательный индексы инерции вещественной квадратичной функции не зависят от выбора нормального базиса.

1.10 Евклидовы пространства

Скалярное произведение на пространстве V – положительно определённая симметрическая билинейная функция $\xi: V \times V \to \mathbb{R}$.

Евклидово пространство – пространство V с заданным на нём скалярным произведением.

Неравенство Коши-Буняковского. V – евклидово пространство \Longrightarrow для любых векторов x и y верно $-\sqrt{\langle x,x\rangle\langle y,y\rangle} \le \langle x,y\rangle \le \sqrt{\langle x,x\rangle\langle y,y\rangle}$. Векторы x и y неотрицательно пропорциональны $\Longleftrightarrow \langle x,y\rangle = \sqrt{\langle x,x\rangle\langle y,y\rangle}$.

Ортогональная система ненулевых векторов – система попарно ортогональных векторов ($\langle x,y\rangle=0$).

Ортогональный базис. Во всяком конечномерном евклидовом пространстве существует ортогональный базис.

Ортогонализация Грама-Шмидта. Пусть в евклидовом пространстве V дана линейно независимая система векторов $(x) = (x_1, ..., x_r)$. Тогда существует единственная такая ортогональная система векторов $(e) = (e_1, ..., e_r)$, которая получается из системы (x) посредством преобразования с единично треугольной матрицей C, т.е. $(e_1, ..., e_r) = (x_1, ..., x_r)C$. Процесс:

$$e_1 = x_1,$$

$$e_k = \beta_1 e_1 + \dots + \beta_{k-1} e_{k-1} + x_k, \ \beta_i = -\frac{\langle x_k, e_i \rangle}{\langle e_i, e_i \rangle}.$$

Ортогональный оператор в евклидовом пространстве V – линейный оператор φ :

 $V \to V$, сохраняющий скалярное произведение, т.е. $\langle x,y \rangle = \langle \varphi(x),\varphi(y) \rangle$ для любых векторов $x,y \in V$.

1.11 Собственные векторы и собственные значения

Собственный вектор оператора $\varphi: V \to V$ — ненулевой вектор $x \in V$, для которого существует такое число $\lambda \in K$ (собственное значение), что $\varphi(x) = \lambda x$.

Собственное подпространство оператора φ (отвечающее собственному значению λ) – пространство $M_{\lambda} = \{x \in V : \varphi(x) = \lambda x\}.$

Линейная независимость собственных подпространств. Пусть $\lambda_1, ..., \lambda_s$ — попарно различные собственные значения оператора φ , соответствующие собственным векторам $x_1, ..., x_s$. Тогда векторы $x_1, ..., x_s$ линейно независимы, а сумма собственных подпространств $M_{\lambda_1} + ... + M_{\lambda_s}$ является прямой.

Диагонализируемый оператор $\varphi: V \to V$ — оператор, матрица которого диагональна в некотором базисе. Очевидно, этот базис состоит из собственных векторов оператора φ .

Условие диагонализируемости оператора. Оператор $\varphi: V \to V$ диагонализируем $\iff V = M_{\lambda_1} \oplus ... \oplus M_{\lambda_s}$, где $\{\lambda_1, ..., \lambda_s\}$ – спектр оператора φ (множество всех его собственных значений).

2 Математический анализ

2.1 Пределы и непрерывность

Бесконечно малая последовательность $\{x_n\}$: $\forall \ \varepsilon > 0 \ \exists \ n_0 = n_0(\varepsilon)$ такое, что $\forall n > n_0 \Longrightarrow |x_n| < \varepsilon$.

Сходящаяся последовательность $\{a_n\}$: $\exists \ l \in \mathbb{R}$ такое, что $\forall \ \varepsilon > 0 \ \exists \ n_0 = n_0(\varepsilon)$ такое, что $\forall n > n_0 \Longrightarrow |a_n - l| < \varepsilon$. В этом случае говорят, что $\{a_n\}$ имеет предел $\lim_{n \to \infty} a_n = l$.

Предел функции f(x) в точке x_0 : $l=\lim_{x\to x_0}f(x)$, если $\forall\ \varepsilon>0\ \exists\ \delta=\delta(\varepsilon)>0$ такое, что $\forall\ x:(x\in A,\,0<|x-x_0|<\delta)\Longrightarrow |f(x)-l|<\varepsilon$. $A\subset\mathbb{R}$ – область определения f(x).

Правый предел функции f(x) в точке x_0 : $l = \lim_{x \to x_0 +} f(x)$, если $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0$ такое, что $\forall \ x : (x \in A, \ 0 < x - x_0 < \delta) \Longrightarrow |f(x) - l| < \varepsilon. \ A \subset \mathbb{R}$ – область определения f(x).

Левый предел функции f(x) в точке x_0 : $l=\lim_{x\to x_0-}f(x)$, если $\forall\ \varepsilon>0\ \exists\ \delta=\delta(\varepsilon)>0$ такое, что $\forall\ x:(x\in A,-\delta< x-x_0<0)\Longrightarrow |f(x)-l|<\varepsilon$. $A\subset\mathbb{R}$ – область определения

f(x).

Предел функции f(x) при $x \to \infty$: $l = \lim_{x \to \infty} f(x)$, если $\forall \ \varepsilon > 0 \ \exists \ c = c(\varepsilon) > 0$ такое, что $\forall \ x : (x \in A, \ |x| > c) \Longrightarrow |f(x) - l| < \varepsilon. \ A \subset \mathbb{R}$ — область определения f(x).

Предел функции f(x) при $x \to +\infty$: $l = \lim_{x \to +\infty} f(x)$, если $\forall \ \varepsilon > 0 \ \exists \ c = c(\varepsilon) > 0$ такое, что $\forall \ x : (x \in A, \ x > c) \Longrightarrow |f(x) - l| < \varepsilon. \ A \subset \mathbb{R}$ — область определения f(x).

Предел функции f(x) при $x \to -\infty$: $l = \lim_{x \to -\infty} f(x)$, если $\forall \ \varepsilon > 0 \ \exists \ c = c(\varepsilon) < 0$ такое, что $\forall \ x : (x \in A, \ x < c) \Longrightarrow |f(x) - l| < \varepsilon. \ A \subset \mathbb{R}$ — область определения f(x).

Непрерывная в точке x_0 функция f(x): $\lim_{x \to x_0} f(x) = f(x_0)$.

Непрерывная справа в точке x_0 функция f(x): $\lim_{x \to x_0 +} f(x) = f(x_0)$.

Непрерывная слева в точке x_0 функция f(x): $\lim_{x \to x_0 -} f(x) = f(x_0)$.

f(x) – непрерывная в точке $x_0 \iff f(x)$ – одновременно непрерывная справа и слева в точке x_0 .

2.2 Ряды

Числовой ряд — формальная бесконечная сумма вида $S = a_1 + a_2 + a_3 + ... = \sum_{n=1}^{\infty} a_n$. Числовой ряд сходится, если последовательность его частичных сумм имеет предел.

Признак Даламбера. $p_n > 0$ начиная с некоторого n_0 . Если при $n \ge n_0$ выполнено $\frac{p_{n+1}}{p_n} \le q, 0 < q < 1$, тогда $\sum p_n$ сходится. Если при $n \ge n_0$ выполнено $\frac{p_{n+1}}{p_n} \ge 1$, тогда $\sum p_n$ расходится.

Признак Коши. $p_n \ge 0$ начиная с некоторого n_0 . Если при $n \ge n_0$ выполнено $p_n^{1/n} \le q, q < 1$, тогда $\sum p_n$ сходится.

Несобственный интеграл первого рода функции f(x) на промежутке $[a, +\infty)$ – предел $I = \lim_{A \to +\infty} F(A)$, где $F(A) = \int\limits_a^A f(x) dx$ (для любого A > a функция f(x) интегрируема по Риману по отрезке [a, A]). Несобственный интеграл сходится, если этот предел существует.

Интегральный признак Коши-Маклорена. f(x) определена на промежутке $[1, +\infty)$ и убывает на нем. Если $0 \le p_n \le f(n)$ начиная с некоторого n_0 и несобственный интеграл $\int\limits_1^\infty f(x)dx$ сходится, то $\sum p_n$ сходится. Если $p_n \ge f(n) \ge 0$ начиная с некоторого n_0 и несобственный интеграл $\int\limits_1^\infty f(x)dx$ расходится, то $\sum p_n$ расходится.

Абсолютно сходящийся числовой ряд $\sum a_n$: $\sum |a_n| - \text{сходится}$. При перестановке слагаемых сумма абсолютно сходящегося ряда не изменяется.

Условно сходящийся числовой ряд $\sum a_n : \sum a_n - \text{сходится}, \sum |a_n| - \text{расходится}.$

Признак Лейбница. $\sum a_n$ – знакочередующийся ряд, $|a_n| \ge |a_{n+1}|$ начиная с некоторого $n_0, \lim_{n\to\infty} |a_n| = 0.$ $\sum a_n$ сходится.

Функциональный ряд – формальная бесконечная сумма вида $a_1(x) + a_2(x) + a_3(x) + \dots = \sum_{n=1}^{\infty} a_n(x)$, где $\{a_n(x)\}$ – функциональная последовательность, определенная на множестве D.

$$\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}=\ln 2$$
и другие изестные ряды

2.3 Дифференцирование

Производная функции f(x) – выражение $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.

Правила нахождения производной.

- $\bullet (uv)' = u'v + v'u$
- $(\frac{u}{v})' = \frac{u'v uv'}{v^2}$
- $y_x' = y_u' u_x'$, если $y = f(u), \ u = \varphi(x)$ имеют производные

Основные формулы.

- $\bullet \ (x^n)' = nx^{n-1}$
- $(\sin x)' = \cos x$
- $\bullet \ (\cos x)' = -\sin x$
- $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$
- $\bullet \ (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$
- $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$
- $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$
- $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$

- $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$
- $(a^x)' = a^x \ln a, \ a > 0$
- $(\log_a x)' = \frac{1}{x \ln a}, \ a > 0$
- $\bullet \ (\operatorname{sh} x)' = \operatorname{ch} x$
- $(\operatorname{ch} x)' = \operatorname{sh} x$
- $(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$
- $(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}$

Формула Тейлора. Если на [a,b] f(x) определена и имеет непрерывные производные $f'(x),...,f^{(n-1)}(x)$, а на (a,b) существует конечная производная $f^{(n)}(x)$, то

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n)}(a+\theta(x-a))}{n!} (x-a)^n \ (a \le x \le b, 0 < \theta < 1).$$

- $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$
- $\sin x = x \frac{x^3}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$
- $\cos x = 1 \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$
- $(1+x)^m = 1 + mx + \frac{m(m+1)}{2!}x^2 + ... + \frac{m(m+1)...(m-n+1)}{n!}x^n + ..., |x| < 1, m \in \mathbb{C}$
- $\ln(1+x) = x \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots, -1 < x \le 1$

Необходимое условие экстремума. В точке экстремума производная $f'(x_0) = 0$, если она существует.

Достаточные условия экстремума. Если f(x) имеет вторую производную f''(x) и в некоторой точке x_0 $f'(x_0) = 0$ и $f''(x_0) \neq 0$, то в этой точке f(x) имеет экстремум: максимум при $f''(x_0) < 0$, минимум при $f''(x_0) > 0$.

2.4 Функции многих переменных

Частные производные. Результат частного дифференцирования функции нескольких переменных не зависит от порядка дифференцирования, если все производные, входящие в вычисление, непрерывны.

Градиент функции u = f(x, y, z) – вектор $\nabla u = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z})$. Градиент определяет скорость наибольшего роста функции в данной точке. $|\nabla u| = \sqrt{(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 + (\frac{\partial u}{\partial z})^2}$.

Гессиан функции $f(x_1,...,x_n)$, дважды дифференцируемой в точке $x \in \mathbb{R}^n$, – симметрическая квадратичная форма $H(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$, где $a_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$. Определитель Гессе – определитель матрицы (a_{ij}) .

Метод градиентного спуска. $F(x): \mathbb{X} \to \mathbb{R}$. Задача оптимизации: $F(x) \to \min_{x \in \mathbb{X}}$. Идея метода – идти в направлении наискорейшего спуска, т.е. $-\nabla F$.

- Задать начальное приближение и точность расчета: $x^{[0]}, \varepsilon$.
- Рассчитать $x^{[j+1]} = x^{[j]} \lambda^{[j]} \nabla F(x^{[j]}).$
- Условие остановки: $|x^{[j+1]} x^{[j]}| \le \varepsilon, |F(x^{[j+1]}) F(x^{[j]})| \le \varepsilon \Longrightarrow x = x^{[j+1]}.$

Необходимое условие экстремума. Точки экстремума удовлетворяют системе уравнений $f'_{x_i}(x_1,...,x_n)=0 \ (i=1,...,n).$

Достаточное условие экстремума. Функция f(P) в точке P_0 имеет максимум (минимум), если $df(P_0) = 0$, $d^2f(P_0) < 0$ (> 0) при $\sum_{i=1}^n |dx_i| \neq 0$.

2.5 Интегрирование

Неопределенный интеграл. f(x) определена и непрерывна на интервале (a,b), F'(x) = f(x) при $a < x < b \Longrightarrow \int f(x) dx = F(x) + C$, a < x < b, где C – произвольная постоянная.

Определенный интеграл функции f(x) на отрезке [a,b] – число

$$\int_{a}^{b} f(x)dx = \lim_{\max |\Delta x_i| \to 0} \sum_{i=0}^{n-1} f(\xi_i) \Delta x_i,$$

где $x_i \le \xi_i \le x_{i+1}$, $\Delta x_i = x_{i+1} - x_i$, $a = x_0 < x_1 < \dots < x_n = b$.

Методы интегрирования функций.

- Метод введения нового аргумента: если $\int f(x)dx = F(x) + C$, то $\int f(u)du = F(u) + C$, где $u = \varphi(x)$ непрерывно дифференцируемая функция.
- Метод подстановки: если f(x) непрерывна, $x = \varphi(t)$, где $\varphi(t)$ непрерывна вместе со своей производной, то $\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt$.

• Метод интегрирования по частям: u, v – дифференцируемые функции от x, тогда $\int u dv = uv - \int v du$.

Первообразные различных элементарных функций.

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \ (n \neq -1)$$

•
$$\int \frac{dx}{x} = \ln|x| + C \ (x \neq 0)$$

•
$$\int \frac{dx}{1+x^2} = \begin{cases} \arctan x + C \\ -\arctan x + C \end{cases}$$

$$\bullet \int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$

•
$$\int \frac{dx}{\sqrt{1-x^2}} = \begin{cases} \arcsin x + C \\ -\arccos x + C \end{cases}$$

•
$$\int a^x dx = \frac{a^x}{\ln a} + C \ (a > 0, a \neq 1)$$

•
$$\int \sin x dx = -\cos x + C$$

•
$$\int \cos x dx = \sin x + C$$

•
$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

•
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

$$\bullet \int \sin x dx = \cot x + C$$

•
$$\int \operatorname{ch} x dx = \operatorname{sh} x + C$$

•
$$\int \frac{dx}{\sinh^2 x} = -\coth x + C$$

•
$$\int \frac{dx}{\cosh^2 x} = \tanh x + C$$

Двойной интеграл от непрерывной функции f(x,y), распространенным на ограниченную замкнутую квадрируемую область Ω , называется число

$$\iint\limits_{\Omega} f(x,y)dxdy = \lim_{\substack{\max |\Delta x_i| \to 0 \\ \max |\Delta y_j| \to 0}} \sum_{i} \sum_{j} f(x_i, y_j) \Delta x_i \Delta y_j,$$

где $\Delta x_i = x_{i+1} - x_i$, $\Delta y_j = y_{j+1} - y_j$ и сумма распространяется на те значения i и j, для которых $(x_i, y_j) \in \Omega$.

Если область Ω задана неравенствами $a \leq x \leq b$, $y_1(x) \leq y \leq y_2(x)$, где $y_1(x)$ и $y_2(x)$ – непрерывные функции на сегменте [a,b], то соответствующий двойной интеграл может быть вычислен по формуле

$$\iint\limits_{\Omega} f(x,y)dxdy = \int\limits_{a}^{b} dx \int\limits_{y_{1}(x)}^{y_{2}(x)} f(x,y)dy.$$

Тройной интеграл. Если функция f(x,y,z) непрерывна и область V ограничена и определяется следующими неравенствами: $x_1 \le x \le x_2, y_1(x) \le y \le y_2(x), z_1(x,y) \le z \le z_2(x,y)$, где $y_1(x), y_2(x), z_1(x,y), z_2(x,y)$ – непрерывные функции, то тройной интеграл от функции f(x,y,z), распространенный на область V, может быть вычислен по формуле

$$\iiint\limits_{V} f(x,y,z) dx dy dz = \int\limits_{x_{1}}^{x_{2}} dx \int\limits_{y_{1}(x)}^{y_{2}(x)} dy \int\limits_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz.$$

Иногда удобно также применять формулу

$$\iiint\limits_V f(x,y,z)dxdydz = \int\limits_{x_1}^{x_2} dx \iint\limits_{S(x)} f(x,y,z)dydz,$$

где S(x) – сечение области V плоскостью x=const.

Замена переменных в тройном интеграле. Если ограниченная кубируемая замкнутая область V пространства Oxyz взаимно однозначно отображается на область V' пространства O'uvw с помощью непрерывно дифференцируемых функций x=x(u,v,w),y=y(u,v,w),z=z(u,v,w), причем $I=\frac{D(x,y,z)}{D(u,v,w)}\neq 0$ при $(u,v,w)\in V',$ то справидлива формула

$$\iiint\limits_V f(x,y,z)dxdydz = \iiint\limits_{V'} f(x(u,v,w),y(u,v,w),z(u,v,w))|I|dudvdw.$$

Цилиндрическая система координат φ, r, h : $x = r \cos \varphi, y = r \sin \varphi, z = h$ и $\frac{D(x,y,z)}{D(r,\varphi,h)} = r$. Сферическая система координат φ, ψ, r : $x = r \cos \varphi \cos \psi, y = r \sin \varphi \cos \psi, z = r \sin \psi$ и $\frac{D(x,y,z)}{D(r,\varphi,\psi)} = r^2 \cos \psi$.

2.6 Элементы функционального анализа

Метрика множества X – функция $\rho: X \times X \to \mathbb{R}_+$, такая, что $\rho(x,y) = \rho(y,x)$ при всех $x,y \in X$, $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ при всех $x,y,z \in X$, $\rho(x,y) = 0 \Longleftrightarrow x = y$.

Метрическое пространство – пара (X, ρ) .

Норма в линейном пространстве E над полем \mathbb{F} – функция $p:E\to\mathbb{R}_+$, такая, что $p(\lambda x)=|\lambda|p(x)$ при всех $\lambda\in\mathbb{F}$ и $x\in E,\ p(x+y)\leq p(x)+p(y)$ при всех $x,y\in E,\ p(x)=0\Longleftrightarrow x=0.$

Нормированное пространство – пара (E, p).

Ограниченная функция f на множестве X – функция $f: X \to \mathbb{F}$, такая, что существует c > 0, что $|f(x)| \le c$ при всех $x \in X$.

Пространство ограниченных функций – нормированное пространство B(X, состоящее из всех ограниченных функций $f: X \to \mathbb{F}$ с нормой $||f|| = \sup_{x \in X} |f(x)|$.

Непрерывная функция f на метрическом пространстве X – функция $f: X \to \mathbb{F}$, такая, что для любого $x \in X$ и для любого $\varepsilon > 0$ существует такое $\delta > 0$, что $|f(x) - f(y)| < \varepsilon$ при всех $y \in X$, $\rho(x,y) < \delta$.

Пространство непрерывных функций – нормированное пространство C(X), состоящее из всех ограниченных и непрерывных функций $f: X \to \mathbb{F}$ с нормой $\|f\| = \sup_{x \in X} |f(x)|$.