16.3 Triple Integrals

Let \mathcal{B} be a box in 3d-space, that is,

$$\mathcal{B} = \{ (x, y, z) : a \le x \le b, c \le y \le d, p \le z \le q \}.$$
 (16.7)

Then \mathcal{B} can be subdivided into $\ell m n$ subsolids, \mathcal{B}_{ijk} , where $1 \leq i \leq n$, $1 \leq j \leq m$, and $1 \leq k \leq \ell$, that is,

$$a \le x \le b \longrightarrow \Delta x = \frac{b-a}{n}$$
 (n pieces of equal width Δx)
$$c \le y \le d \longrightarrow \Delta y = \frac{d-x}{m}$$
 (m pieces of equal width Δy)
$$p \le z \le q \longrightarrow \Delta z = \frac{q-p}{\ell}$$
 (ℓ pieces of equal width ℓ pieces of equa

The Triple Riemann Sum and the Triple Integral

Let f(x, y, z) be a continuous function over a $box \mathcal{B}$ as in (16.7).

Furthermore, subdivide \mathcal{B} into ℓmn subsolids \mathcal{B}_{ijk} as in (16.8), each with the volume $\Delta V = \Delta x \, \Delta y \, \Delta z$.

Then the **triple Riemann sum** is given by

Riemann sum =
$$\sum_{k=1}^{\ell} \sum_{j=1}^{m} \sum_{i=1}^{n} f\left(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*\right) \Delta x \, \Delta y \, \Delta z,$$

where $(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*)$ is an arbitrary point in the subsolid \mathcal{B}_{ijk} .

The triple integral of f(x, y, z) over the box $\mathcal B$ is defined as

$$\int_{\mathcal{B}} f(x, y, z) dV := \lim_{\ell, m, n \to \infty} \sum_{k=1}^{\ell} \sum_{j=1}^{m} \sum_{i=1}^{n} f(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*) \Delta x \Delta y \Delta z$$

$$= \lim_{\Delta V \to 0} \sum_{\text{all subsolids}} f(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*) \Delta V,$$

if the limit exists.

Fubini's Theorem for Triple Integrals

If f(x, y, z) is continuous on the box $\mathcal{B} = \{(x, y, z): a \le x \le b, c \le y \le d, p \le z \le q\}$, then

$$\int_{\mathcal{B}} f(x, y, z) \, dV = \int_{p}^{q} \int_{c}^{d} \int_{a}^{b} f(x, y, z) \, dx \, dy \, dz = \int_{p}^{q} \int_{a}^{b} \int_{c}^{d} f(x, y, z) \, dy \, dx \, dz$$

$$= \int_{c}^{d} \int_{p}^{q} \int_{a}^{b} f(x, y, z) \, dx \, dz \, dy = \int_{c}^{d} \int_{a}^{b} \int_{p}^{q} f(x, y, z) \, dz \, dx \, dy$$

$$= \int_{a}^{b} \int_{p}^{q} \int_{c}^{d} f(x, y, z) \, dy \, dz \, dx = \int_{a}^{b} \int_{c}^{d} \int_{p}^{q} f(x, y, z) \, dz \, dy \, dx$$

Triple Integral as VOLUME

Suppose f(x, y, z) = 1 > 0 for all the points (x, y, z) in the region \mathcal{B} . Then $1 \cdot \Delta V = \Delta V$, and therefore

Volume
$$(\mathcal{B}) = \int_{\mathcal{B}} 1 \, dV = \int_{\mathcal{B}} dV$$
.

Triple Integral as Average Value

Average Value of
$$f(x, y, z)$$
 on the region $\mathcal{B} = \frac{1}{\text{Volume of } \mathcal{B}} \cdot \int_{\mathcal{B}} f(x, y, z) \, dV = \frac{\int_{\mathcal{B}} f(x, y, z) \, dV}{\int_{\mathcal{B}} dV}$.

Example 6. Evaluate $\int_{\mathcal{B}} f(x, y, z) dV$, where

$$f(x, y, z) = xyz^2$$
 and $\mathcal{B} = \{(x, y, z) : 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$.

Example 7. Let f(x,y,z)=x+y. Find $\int_W f(x,y,z)\,dV$, where W is the solid bounded by the xy-plane, yz-plane, xz-plane, and the plane $\frac{x}{3}+\frac{y}{2}+\frac{z}{6}=1$.

Example 8. Sketch the solid of integration W corresponding to the iterated integral

$$\int_W f(x,y,z) \, dV \; = \; \int_0^1 \int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \int_{-\sqrt{1-y^2-z^2}}^{\sqrt{1-y^2-z^2}} f(x,y,z) \, dx \, dy \, dz \, .$$

16.4 Double Integrals in Polar Coordinates

Review of Polar Coordinates (Calculus II)

In polar coordinates every point P in the xy-plane is described by two coordinates

$$P = (r, \theta),$$

where r is the distance of P from the origin O (called the pole), θ is the angle, in radians, between OP and the positive x-axis (called the polar axis) measured counter-clockwise.

Clearly if we think of the point P in the Cartesian coordinates, that is, P = (x, y), then it is easy to obtain the following relations

$$x = r\cos(\theta), \qquad y = r\sin(\theta),$$

$$r^2 = x^2 + y^2, ag{tan}(\theta) = \frac{y}{x}.$$

Example 9. Convert polar coordinates in the exercises below to Cartesian coordinates. Give the exact answers.

(a)
$$(r, \theta) = \left(\sqrt{2}, \frac{\pi}{4}\right)$$

$$x = \sqrt{2}\cos\left(\frac{\pi}{4}\right) = 1,$$
 $y = \sqrt{2}\sin\left(\frac{\pi}{4}\right) = 1$

(b)
$$(r, \theta) = \left(\sqrt{2}, \frac{5\pi}{4}\right)$$

Solution:

$$x = \sqrt{2}\cos\left(\frac{5\pi}{4}\right) = -1,$$
 $y = \sqrt{2}\sin\left(\frac{5\pi}{4}\right) = -1$

Conversion of Cartesian Coordinates to Polar Coordinates

Recall from before that given the point $P = (x, y) = (r, \theta)$, where $x \neq 0$, we have

$$\tan(\theta) = \frac{y}{x}, \qquad r^2 = x^2 + y^2,$$

and so

$$\theta = \arctan\left(\frac{y}{r}\right), \qquad r = \sqrt{x^2 + y^2}.$$

Note that $\theta = \arctan\left(\frac{y}{x}\right)$ is **not** sufficient to tell in which quadrant θ should be. For example, if P = (x, y) = (1, 1), then

$$\arctan\left(\frac{1}{1}\right) = \arctan(1) = \frac{\pi}{4},$$

as we need the point P to be in the first quadrant. On the other hand, if Q = (x, y) = (-1, -1), then

$$\theta = \arctan\left(\frac{-1}{-1}\right) = \arctan(1) = \frac{5\pi}{4}$$

as we need the point Q to be in the third quadrant.

Finally note that for a given (x, y) there are many choices of θ . For example, a point P = (0, 2) in the rectangular coordinates can be represented in polar coordinates in many ways

$$P = \left(2, \frac{\pi}{2}\right), \text{ or } P = \left(2, \frac{-3\pi}{2}\right), \text{ or } P = \left(2, \frac{5\pi}{2}\right), \text{ or } \dots$$

In fact, if $P = (r, \theta)$, then $P = (r, \theta + 2n\pi)$ where n in any integer.

Curves in Polar Coordinates

Example 10. Describe the curves given by the equations below.

(a)
$$r = 2$$

Solution: This is just a circle of radius 2 centered at the origin since

$$r=2 \implies \sqrt{x^2+y^2}=2 \implies x^2+y^2=2^2$$
.

(b)
$$\theta = \frac{\pi}{3}$$

Solution: This is a half-line with slope $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$ which extends from the origin.

(c)
$$r = \frac{1}{\sin(\theta)}$$

Solution: This is just a horizontal line y = 1 since

$$r \, = \, \frac{1}{\sin(\theta)} \quad \Longrightarrow \quad r \sin(\theta) \, = \, 1 \quad \Longrightarrow \quad y \, = \, 1 \, .$$

(d) $r = 2\cos(\theta)$

Solution: This is a circle of radius 1 centered at (1,0).

To see this, remember that $\cos(\theta) = \frac{x}{r}$, so

$$r \,=\, 2\cos(\theta) \,=\, \frac{2x}{r} \quad \Longrightarrow \quad r^2 \,=\, 2x \,.$$

Combining this relation with the fact that $r^2 = x^2 + y^2$ we obtain

$$x^2 + y^2 = 2x$$
 \iff $x^2 - 2x + y^2 = 0$.

Completing the square gives

$$x^{2} + 2(-1)x + y^{2} = 0$$

$$x^{2} + 2(-1)x + (-1)^{2} - (-1)^{2} + y^{2} = 0$$

$$(x - 1)^{2} - 1 + y^{2} = 0$$

$$(x - 1)^{2} + y^{2} = 1$$

which indeed is the equation of a circle of radius 1 with center at (1,0).

Regions in Polar Coordinates

Example 11. Sketch the regions given by the relations below.

(a) $1 \le r \le 2$

Solution: Annulus (ring) of inner radius 1 and outer radius 2.

(b)
$$0 \le r \le 2$$
 and $0 \le \theta \le \frac{\pi}{4}$

Solution:

(c)
$$1 \le r \le 2$$
 and $\frac{\pi}{6} \le \theta \le \frac{\pi}{3}$

Solution: "Curvy rectangle"

Definition of "RADIAN"

The "radian" measure of a central angle of a circle, θ , is defined as the ratio of the length of the arc the angle subtends, s, and the radius of the circle, r.

$$\theta$$
 (in radians) = $\frac{s}{r}$ \Longrightarrow $s = r \cdot \theta$.

Area in Polar Coordinates

Construction of Double Integrals in Polar Coordinates

Example 12. Let \mathcal{R} be the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

- (a) Sketch the region \mathcal{R} .
- (b) Evaluate $\int_{\mathcal{R}} (3x + 4y^2) dA$.

Example 13. Consider the following iterated integral $\int_0^{\sqrt{2}}$

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} (x y) dx dy$$

- (a) Sketch the region of integration.
- (b) Describe the region of integration in polar coordinates.
- (c) Set up the original integral as an iterated integral in polar coordinates and evaluate it.

Example 14. The density of insects in a circular region

$$100 \le \sqrt{x^2 + y^2} \le 200 \tag{16.9}$$

around a circular lake $0 \le \sqrt{x^2 + y^2} \le 100$, where x and y are in meters, is given by

$$d(x,y) = \frac{1000}{\sqrt{x^2 + y^2}} \frac{\text{insects}}{m^2}.$$
 (16.10)

Find the total number of insects in the region.

16.5 Cylindrical and Spherical Coordinates

Brief Review of Polar and Rectangular Coordinates

From Polar to Cartesian

$$x = r\cos(\theta)$$

$$y = r \sin(\theta)$$

From Cartesian to Polar

$$r^2 = x^2 + y^2$$

$$\tan(\theta) = \frac{y}{x}$$

$$dA = r dr d\theta$$

If f is continuous on a polar region of the form

$$\mathcal{D} = \left\{ (r, \theta) \mid \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta) \right\}$$

then

$$\int_{\mathcal{D}} f(x,y) dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos(\theta), r\sin(\theta)) r dr d\theta.$$

Cylindrical Coordinates

Bounds on r, θ , and z

From Cylindrical to Cartesian

$$x = r\cos(\theta)$$

$$y = r \sin(\theta)$$

$$z = z$$

From Cartesian to Cylindrical

$$r^2 = x^2 + y^2$$

$$\tan(\theta) = \frac{y}{x}$$

$$z = z$$

 $dV = r dz dr d\theta$

If f is continuous on a region \mathcal{E} of the form

$$\mathcal{E} = \left\{ (r, \theta, z) \middle| u_1(r, \theta) \le z \le u_2(r, \theta) , h_1(\theta) \le r \le h_2(\theta) , \alpha \le \theta \le \beta \right\}$$

then

$$\int_{\mathcal{E}} f(x,y,z) \, dV \; = \; \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r,\,\theta)}^{u_2(r,\,\theta)} \, f\!\left(r\cos(\theta),r\sin(\theta),z\right) r \, dz \, dr \, d\theta \, .$$

Example 15. Find $\int_W f(x,y,z) dV$, where $f(x,y,z) = \sin(x^2 + y^2)$, and W is the solid circular cylinder with height 4 units and base of radius 1 unit centered on the z-axis on the place z = -1.

Example 16. Find $\int_W f(x,y,z) dV$ in cylindrical coordinates, where W is the inverted circular cone centered on the z-axis with height 2 units, "tip" of the cone being located at the origin, and with "base" of radius 3.

Spherical Coordinates

Bounds on ρ , θ , and ϕ

From Spherical to Cartesian

$$x = \rho \sin(\phi) \cos(\theta)$$

$$y = \rho \sin(\phi) \sin(\theta)$$

$$z = \rho \cos(\phi)$$

From Cartesian to Spherical

$$\rho^2 = x^2 + y^2 + z^2$$

$$\cos(\phi) = \frac{z}{\rho}$$

$$\cos(\theta) = \frac{x}{\rho \sin(\phi)}$$

$$dV = \rho^2 \sin(\phi) \, d\rho \, d\theta \, d\phi$$

If f(x, y, z) is continuous on a region \mathcal{E} given by

$$\mathcal{E} = \left\{ \left(\rho, \theta, \phi \right) | u_1(\rho, \theta) \le \phi \le u_2(\rho, \theta) , h_1(\rho) \le \theta \le h_2(\rho) , a \le \rho \le b \right\}$$

then

$$\int_{\mathcal{E}} f(x,y,z) \, dV \; = \; \int_a^b \int_{h_1(\rho)}^{h_2(\rho)} \int_{u_1(\rho,\,\theta)}^{u_2(\rho,\,\theta)} f\!\left(\rho\,\sin(\phi)\,\cos(\theta)\,,\,\rho\,\sin(\phi)\sin(\theta)\,,\,\rho\cos(\phi\right) \rho^2 \sin(\phi) \, d\rho \, d\theta \, d\phi \, .$$

Example 17. Evaluate $\int_W f(x,y,z) dV$, where $f(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ and W is the bottom half of the sphere of radius 5 centered at the origin.

Example 18. Give spherical coordinates for the iterated integral over the region bounded between the sphere of radius 1 and the sphere of radius 4 centered at the origin.