Лабораторная работа № 3 по радиационной экологии «Прохождение ионизирующих излучений через вещество»

Основные формулы:

1.
$$R_{\alpha} = 1,24E_{0} - 2,62 \text{ (cm)}$$
 5. $d_{1/2} = \frac{\ln(2)}{\mu} \approx \frac{0,693}{\mu}$ 2. $R_{\alpha} = \frac{10^{-4} \sqrt{A_{m} E_{0}^{3}}}{\rho_{x}} \text{ (cm)}$ 6. $\mu_{m} = \frac{\mu}{\rho} \text{ (cm}^{2}/\Gamma)$ 3. $I_{\gamma} = I_{0} e^{-\mu d}$ 7. $K = \frac{P_{x}}{P_{x_{\Pi J}}}$ 8. $P_{x} = \frac{AK_{\gamma}}{R^{2}}$

Пример решения задачи

Задача 1.

<u>Дано</u>. Рассчитать пробег альфа-частиц в воздухе и алюминии в зависимости от энергии частиц E_0 = 4,5 МэВ. Плотность алюминия взять из таблицы.

Решение.

1. Определяем пробег альфа-частиц в воздухе:

$$R_{\alpha} = 1,24E_0 - 2,62 = 1,24 \cdot 4,5 - 2,62 = 2,96$$
 (cm)

2. Определяем пробег альфа-частиц в алюминии:

$$R_{\alpha} = \frac{10^{-4} \sqrt{A_m E_0^3}}{\rho_x} = \frac{10^{-4} \sqrt{27 \cdot 91{,}125}}{2{,}7} = \frac{10^{-4} \cdot 49{,}6}{2{,}7} = 1{,}837 \cdot 10^{-3} \text{ (cm)}$$

Задача 2.

<u>Дано</u>. На свинцовую пластину падает поток гамма-квантов с энергией 1 МэВ. После прохождения пластины интенсивность потока уменьшается на 10%. Определить толщину пластины, слой половинного ослабления и массовый коэффициент ослабления свинца для гамма-квантов этой энергии.

Решение.

1. Находим плотность свинца и значение линейного коэффициента ослабления для $E_{\gamma} = 1$ МэВ. Они равны 11,3 г/см³ и 0,789 см⁻¹, соответственно. Толщину пластины определим из закона поглощения:

$$d = \frac{\ln\left(\frac{I_0}{I_\gamma}\right)}{\mu} = \frac{\ln\left(\frac{1}{0.9}\right)}{0.789} \approx 0.14 \text{ (cm)}$$

2. Толщину слоя половинного ослабления получим:

$$d_{1/2} = \frac{0.693}{0.789} \approx 0.87 \text{ (cm)}$$

3. Определим массовый коэффициент ослабления:

$$\mu_m = \frac{\mu}{\rho} \approx \frac{0.789}{11.3} \approx 0.07 \text{ (cm}^2/\text{r)}$$

Линейный коэффициент ослабления узкого пучка гамма-излучения, см⁻¹

Nº	E_{γ}	Алюминий,	Бетон,	Железо,	Медь,	Олово,	Свинец,
п/п	МэВ	ρ =2,7 г/см ³	ρ =2,35г/см ³	ρ =7,8г/см ³	ρ =8,92 Γ /cm ³		ρ =11,3r/cm ³
1	0,1	0,456	0,397	2,92	3,702	7,15	62,068
2	0,2	0,329	0,291	1,146	1,293	2,228	10,689
3	0,3	0,281	0,251	0,864	0,945	1,114	4,278
4	0,4	0,250	0,224	0,738	0,813	0,801	2,496
5	0,5	0,228	0,204	0,659	0,728	0,757	1,725
6	0,6	0,210	0,189	0,604	0,668	0,572	1,350
7	0,662	0,200	0,178	0,570	0,642	0,541	1ДВ
8	0,8	0,184	0,166	0,525	0,582	0,472	0,983
9	1,0	0,166	0,149	0,470	0,522	0,413	0,789
10	1,25	0,148	0,132	0,408	0,474	0,373	0,655
11	1,5	0,135	0,122	0,381	0,426	0,333	0,592
12	2,0	0,117	0,104	0,333	0,373	0,296	0,525
13	3,0	0,0953	0,0853	0,283	0,319	0,266	0,480
14	4,0	0,0837	0,0745	0,259	0,296	0,259	0,478
15	5,0	0,0761	0,0674	0,246	0,284	0,259	0,483
16	6,0	0,0712	0,0630	0,239	0,276	0,261	0,495
17	8,0	0,0650	0,0571	0,231	0,271	0,269	0,521
18	10,0	0,0618	0,0538	0,231	0,273	0,280	0,555

Задача 3.

<u>Дано</u>. Рассчитать толщину стен помещения из бетона, в котором размещается источник излучения кобальт-60 активностью 3 Кu; энергия излучения E_{γ} = 0,1 МэВ. Расстояние от источника излучения до лиц (не связанных с работой источника), находящихся в соседнем помещении, 5 метров.

Решение.

1. Определяем мощность экспозиционной дозы P_x по формуле:

$$P_{x} = \frac{AK_{\gamma}}{R^{2}}$$

где K_{γ} – гамма-постоянная равна мощности экспозиционной дозы, создаваемой гамма-излучением точечного радионуклидного источника активностью 1 мКи на расстоянии 1 см от него. Гамма-постоянная выражается в $P \cdot \text{см}^2/(\text{мKu} \cdot \text{ч})$.

$$P_{x} = \frac{3 \cdot 10^{3} \cdot 12,93}{(5 \cdot 100)^{2}} = 0,155 \text{ (P/ч)}$$

2. Рассчитываем кратность ослабления из выражения: $K = P_x/P_{x_{\Pi Д}}$, где $P_{x_{\Pi Д}}$ – предел дозы, который согласно нормам радиационной безопасности составляет 0,057 мбэр/ч.

$$K = \frac{P_x}{P_{x_{\Pi / \! I}}} = \frac{0.155 \cdot 10^3}{0.057} \approx 2.7 \cdot 10^3$$

3. По палетке определяем толщину стен помещения, которая составит примерно 18 см.

Характеристики некоторых радиоактивных веществ

				_	
Nº	Вещество	$\left[\frac{\Gamma_{\delta}}{\text{BK} \cdot \text{c}} 10^{-18}\right]$	$\begin{bmatrix} K_{\gamma} \\ P \cdot cM^2 \end{bmatrix}$	$\begin{bmatrix} B_{s\gamma} \\ \frac{3\mathbf{B} \cdot \mathbf{M}^2}{\Gamma} \end{bmatrix}$	$T_{1/2}$
			[мКи • ч]	Бк · с	
1	Аргон-41 (⁴¹ Ar)	43,09	6,6		1,8 ч
2	Бром-82 (⁸² Br)	87,3	14,5		35,3 ч
3	Европий-154 (¹⁵⁴ Eu)	43,04	5,02		16 лет
4	Йод-131 (¹³¹ I)	14,2	2,15	1,93.10-16	8,04 сут.
5	Калий-40 (⁴⁰ Ка)				30 лет
6	Кобальт-60 (⁶⁰ Со)	84,63	12,93	1,15.10-15	5,3 года
7	Лантан-140 (¹⁴⁰ La)	75,6	11,14		40,2 ч
8	Марганец-52 (⁵² Mn)	118,3	18,03		271 сут.
9	Марганец-56 (⁵⁶ Mn)	55,8	2,28		2,6 ч
10	Медь-64 (⁶⁴ Cu)	7,42	1,12		12,7 ч
11	Мышьяк-74 (⁷⁴ As)	16,74	4,43		26 ч
12	Натрий-22 (²² Na)	78,02	11,9		2,6 года
13	Натрий-24 (²⁴ Na)	119,4	18,55		15,005 ч
14	Плутоиий-239 (²³⁹ Pu)			3,73.10-20	24 300 лет
15	Полоний-210 (²¹⁰ Pl)				138,4 сут.
16	Прометий-145 (¹⁴⁵ Pm)				2,6 года
17	Радий-226 (²²⁶ Ra)				1600 лет
18	Ртуть-203 (²⁰³ Hg)				46,8 сут.
19	Рутений-103 (¹⁰³ Ru)			2,68·10-16	39,3 сут.
20	Рутений-106 (¹⁰⁶ Ru)	7,58	1,54	1,03·10-16	1 год
21	Стронций-90 (⁹⁰ Sr)				29,12 года
22	Таллий-204 (²⁰⁴ Tl)				3,6 года
23	Цезий-134 (¹³⁴ Cs)	57,44	8,6	7,83·10-16	2,06 года
24	Цезий-137 (¹³⁷ Cs)	21,33	3,24	2,91·10 ⁻¹⁶	30 лет
25	Цинк-65 (⁶⁵ Zn)				244 сут.

Толщина защиты из бетона ($\rho = 2,3 \, \text{г/см}^3$)

Индекс кривых – E_{ν} (МэВ)

Задача 4.

Дано. Мощность экспозиционной дозы без защиты на рабочем месте равна P_x =280 мР/ч. Рассчитать толщину защиты из железа, если источником излучения является цезий-137 ($E_v = 0,662 \text{ M} \rightarrow \text{B}$), а время работы 25 часов в неделю.

Решение.

1. Рассчитаем предельно допустимую мощность экспозиционной дозы $P_{x \Pi \Pi}$ из выражения:

$$P_{x\Pi \square} = \frac{100}{t}$$

где t –время работы в неделю, ч:

$$P_{x_{\Pi \square \Pi}} = \frac{100}{25} = 4$$

2. Определяем кратность ослабления из выражения $K = \frac{P_x}{P_{x_{\Pi\Pi}}} = \frac{280}{4} = 70$

$$K = \frac{P_x}{P_{x_{\Pi / \! J}}} = \frac{280}{4} = 70$$

- 3. Находим линейный коэффициент ослабления гамма-излучения при E_{ν} = 0,662 МэВ. Он равен 0,57.
- 4. Рассчитаем толщину защиты d из железа, используя соотношение:

$$d = \frac{\ln(K)}{\mu} = \frac{\ln 70}{0.57} \approx 7.5 \text{ (cm)}$$

Задача для самостоятельной работы

Задача 1.

<u>Дано</u>. Рассчитать пробег альфа-частиц в веществе (среде) N в зависимости от их энергии E_{γ} и плотности вещества ρ_{x} . Исходные данные для расчёта приведены в таблице.

Папамотр	Номер варианта								
Параметр	1	2 3 4		4	5	6			
Вещество (среда), <i>N</i>	Алюминий	Воздух	Алюминий	Воздух	Алюминий	Воздух			
Энергия E_{γ} , МэВ	4,0	4,0	5,0	5,0	6,0	6,0			
ρ_{x} , Γ/cm^3	2,7	1,0	2,7	1,0	2,7	1,0			
Попоможн	Номер варианта								
Параметр	7	8	9	10	11	12			
Вещество (среда), <i>N</i>	Алюминий	Воздух	Алюминий	Воздух	Алюминий	Воздух			
Энергия E_{γ} , МэВ	7,0	7,0	8,0	8,0	8,5	8,5			
ρ_{x} , Γ/cm^3	2,7	1,0	2,7	1,0	2,7	1,0			

Задача 2.

<u>Дано</u>. На пластину M падает поток гамма-квантов с энергией E_{γ} , МэВ. После прохождения пластины интенсивность потока уменьшается на n%. Определить толщину пластины, слой половинного ослабления и массовый коэффициент ослабления пластины для гамма-квантов этой энергии. Исходные данные для расчёта приведены в таблице.

Папамотр		Но	мер вари	ианта			
Параметр	1	2	3	4	5	6	
Пластина М	Алюминий	Бетон	Железо	Медь	Олово	Свинец	
Энергия E_{γ} , МэВ	1,0	0,5	1,25	1,5	0,4	1,0	
n, %	25	20	30	50	10	15	
Панала	Номер варианта						
Параметр	7	8	9	10	11	12	
Пластина М	Алюминий	Бетон	Железо	Медь	Олово	Свинец	
Энергия E_{γ} , МэВ	1,5	1,25	2,0	1,25	1,0	2,0	
n, %	40	20	60	20	10	50	

Задача 3.

<u>Дано</u>. Рассчитать толщину стен помещения из бетона, в котором размещается источник излучения N активностью A, энергия излучения которого E_{γ} , МэВ. Расстояние от источника излучения до лиц, находящихся в соседнем помещении (не связанных с работой источника), R метров. Исходные данные для расчёта приведены в таблице.

Папамата	Номер варианта						
Параметр	1	2	3	4	5	6	
Hamayyyy ya nyyayya N	Натрий	Иод	Бром	Мышьяк	Цезий	Ртуть	
Источник излучения, <i>N</i>	²² Na	131 I	⁸² Br	⁷⁴ As	¹³⁴ Cs	$^{203}\mathrm{Hg}$	
Активность источника <i>A</i> , Ku	2	1	3	4	5	6	
Энергия излучения E_{γ} МэВ	0,1	0,6	0,3	0,2	0,5	0,4	
Расст. от ист. до РМ <i>R,</i> м	5	6	7	4	5	4	

Папаматр	Номер варианта							
Параметр	7	8	9	10	11	12		
Hamayyyyy ya nyyayya N	Аргон	Кобальт	Цезий	Рутений	Европий	Медь		
Источник излучения, <i>N</i>	⁴¹ Ar	⁶⁰ Co	¹³⁷ Cs	¹⁰⁶ Ru	¹⁵⁴ Eu	⁶⁴ Cu		
Активность источника <i>A</i> , Ku	1	4	5	3	6	2		
Энергия излучения E_{γ} , МэВ	ОД	0,2	0,4	0,5	0,6	0,3		
Расст. от ист. до РМ <i>R,</i> м	5	7	4	6	7	4		

Задача 4.

<u>Дано</u>. Мощность экспозиционной дозы без защиты на рабочем месте равна P_x , мР/ч. Рассчитать толщину защиты из вещества M, если источником является цезий-137 (E_y , МэВ), а время работы t часов в неделю. Исходные данные для расчёта приведены в таблице.

Полого		Нс	мер вари	ер варианта		
Параметр	1	2	3	4	5	6
Вещество М	Алюминий	Бетон	Железо	Медь	Олово	Свинец
Энергия E_{γ} , МэВ	0,662	0,6	0,8	1,0	0,5	1,25
Время работы, t	7	10	13	5	10	11
P_{x_r} мР/ч	280	220	140	250	240	220
Парамотр						
Параметр	7	8	9	10	11	12
Вещество М	Алюминий	Бетон	Железо	Медь	Олово	Свинец
Энергия E_{γ} , МэВ	1,0	8,0	1,0	0,662	1,5	0,662
Время работы, t	8	7	4	6	5	9
P_{x} , м $P/$ ч	240	280	250	320	250	270