Safe Reinforcement Learning Using Advantage-Based Intervention

Georgia **Tech** UNIVERSITY of WASHINGTON Microsoft[®]

Nolan Wagener, Byron Boots, Ching-An Cheng

Research

Safe RL Problem

Reward $r(s, a) \ge 0 \rightarrow \text{Value } V^{\pi}(s)$ Cost $c(s, a) = \mathbf{1}\{s = \text{violation}\} \rightarrow \text{Value } \overline{V}^{\pi}(s)$

Goal: Maximize return while keeping cost below some threshold, including during training.

$$\max_{\pi} V^{\pi}(s_0) \quad \text{subject to} \quad \overline{V}^{\pi}(s_0) \leq \delta$$

Dilemma: Partially optimized RL policy π may be unsafe.

Assumption: Given baseline policy μ which is safe starting

Dilemma: Optimized π needs to be safe and have high returns.

Solution: Augment original MDP with penalizing rewards for

from the initial state s_0 .

Solution: Use μ to prevent unsafe actions from π .

being intervened by μ .

Advantage-Based Intervention

Intervention rule G given by μ and threshold η .

Shielded policy $G(\pi)$ uses advantage $\bar{A}^{\mu}(s,a)$ w.r.t. μ to determine to sample from π or μ .

What if we don't have access to $\bar{A}^{\mu}(s,a)$?

Can learn approximation from data collected from μ .

Why intervene based on advantages instead of Q?

Allows reduction from constrained RL to unconstrained RL.

Safe RL with SAILR

Run shielded policy $G(\pi)$ in real MDP.

From π 's perspective, if intervened it transitions to absorbing state and gets a penalizing reward.

Run regular RL algorithm (e.g., PPO) on surrogate MDP.

Theoretical Results

Theorem (Safety During Training)

Shielded policy $G(\pi)$ is nearly as safe as μ .

$$\overline{V}^{\mathcal{G}(\pi)}(s_0) \le \overline{V}^{\mu}(s_0) + \frac{\eta}{1-\gamma}$$

Theorem (Safety and Returns at Deployment)

SAILR policy $\hat{\pi}$ is nearly as safe as μ and has nearly the same returns as comparator policy π^* .

$$\overline{V}^{\hat{\pi}}(s_0) \leq \overline{V}^{\mu}(s_0) + \frac{\eta}{1 - \gamma}$$

$$V^{\pi^*}(s_0) - V^{\hat{\pi}}(s_0) \leq O\left(\frac{\operatorname{Prob}(\pi^* \text{ is intervened by } \mathcal{G})}{1 - \gamma}\right)$$

Experiments

Point Robot

Reward: move fast in CCW Constraint: don't touch vertical red lines μ : deceleration policy

Half-Cheetah

Reward: run forward fast Constraint: keep "chin" joint in a height range μ : model predictive control

Far fewer safety violations during training

Similar level of safety at deployment

Similar returns at deployment

