1

2

30

CLAIMS

What is claimed is:

3	
4	1. A method of generating a fast-path response to a packet received onto a network interface
5	device, the packet being received over a TCP/IP network connection, the TCP/IP network
6	connection being identified at least in part by a TCP source port, a TCP destination port, an IP
7	source address, and an IP destination address, the method comprising:
8	on the network interface device examining the packet and determining from the packet
9	the TCP source port, the TCP destination port, the IP source address, and the IP destination
10	address;
11	accessing a template header stored on the network interface device, the template header
12	having TCP fields and IP fields;
13	employing a finite state machine that implements both TCP protocol processing and IP
14	protocol processing to fill in the TCP fields and IP fields of the template header, wherein the
15	finite state machine does not realize a TCP protocol processing layer and a discrete IP protocol
16	processing layer where the TCP and IP layers are executed one after another in sequence, but
17	rather the finite state machine covers both TCP and IP protocol processing; and
18	transmitting the fast-path response from the network interface device, the filled in
19	template header forming at least a part of the fast-path response.
20	
21	2. The method of Claim 1, wherein the network interface device comprises a processor, the
22	finite state machine being a software state machine executing on the processor.
23	
24	3. The method of Claim 1, wherein one of the TCP fields is a TCP header checksum, and
25	wherein one of the IP fields is an IP header checksum, wherein the finite state machine updates
26	both the TCP header checksum and the IP header checksum.
27	
28	4. The method of Claim 1, wherein the network interface device is coupled to a host, the host
29	executing a protocol stack, the protocol stack comprising a TCP protocol processing layer and

an IP protocol processing layer, the method further comprising:

1	receiving a slow-path packet from the host, the slow-path packet having been generated
2	by the protocol stack of the host, the slow-path packet including a transport protocol header
3	that is not a TCP header; and
4	slow-path transmitting the slow-path packet from the network interface device.
5	
6	5. The method of Claim 1, wherein the network interface device is coupled to a host, the host
7	executing a protocol stack, the protocol stack comprising a TCP protocol processing layer and
8	an IP protocol processing layer, the method further comprising:
9	receiving a slow-path packet from the host, the slow-path packet having been generated
10	by the protocol stack of the host, the slow-path packet including a network protocol header
11	that is not an IP header; and
12	slow-path transmitting the slow-path packet from the network interface device.
13	•
14	6. The method of Claim 1, wherein the network interface device comprises a processor and a
15	transmit device, the finite state machine being a software state machine that executes on the
16	processor, wherein the processor forms the fast-path response and causes the response to be
17	stored in a memory, and wherein the processor causes a buffer descriptor that points to the
18	fast-path response to be placed onto a transmit queue, and wherein the transmit device
19	retrieves the buffer descriptor from the transmit queue and causes the fast-path response to be
20	transmitted from the network interface device.
21	
22	7. The method of Claim 6, wherein the transmit device comprises a sequencer.
23	
24	8. The method of Claim 6, wherein the network interface device employs a first transmit
25	queue and a second transmit queue, the first transmit queue being of a higher transmission
26	priority than the second transmit queue.
27	
28	9. The method of Claim 1, wherein a transmit device on the network interface device causes
29	the fast-path response to be transmitted from the network interface device, the transmit device
30	retrieving buffer descriptors from a first transmit queue and from a second transmit queue, the
31	first transmit queue having a higher transmission priority than the second transmit queue.

1	10. The method of Claim 9, wherein the transmit device is a sequencer.
2	
3	11. The method of Claim 1, wherein the finite state machine fills in all the TCP fields and all
4	the IP fields in the template header.
5	
6	12. A method of generating a fast-path response to a packet received onto a network interface
7	device, the packet being received over a TCP/IP network connection, the TCP/IP network
8	connection being identified at least in part by a TCP source port, a TCP destination port, an IP
9	source address, and an IP destination address, the method comprising:
10	on the network interface device examining the packet and determining from the packet
≟ 11	the TCP source port, the TCP destination port, the IP source address, and the IP destination
≓11 □ □12	address;
13 13	accessing a template header stored on the network interface device, the template header
TU 14	having TCP fields and IP fields;
14 - - 15	filling in the TCP fields and IP fields of the template header using the determined TCP
16	source port, TCP destination port, IP source address, and IP destination address, the TCP fields
TJ 17	and IP fields being filled in without passing the template header down from any TCP protocol
18	processing stack layer to any IP protocol processing stack layer; and
□ 19 □	transmitting the fast-path response from the network interface device, the filled in
}= 20	template header forming at least a part of the fast-path response.
21	
22	13. A method for generating a third TCP packet from a network interface device, the network
23	interface device being coupled to a network and being coupled to a host, the host executing a
24	network protocol stack comprising a plurality of network processing protocol layers, the
25	network interface device comprising a processor, the method comprising:
. 26	receiving a first TCP packet onto the network interface device from the network, the
27	first TCP packet being received via a first network connection;
28	slow-path processing the first TCP packet such that the stack performs substantial TCP
29	layer processing on the first TCP packet;
30	receiving a second TCP packet onto the network interface device from the network, the
31	second TCP packet being received via a second network connection, the second network
32	connection being a TCP/IP connection; and

1	fast-path processing the second TCP packet such that the stack of the host performs
2	substantially no TCP layer processing on the second TCP packet, wherein in response to said
3	receiving of the second TCP packet the network interface device generates the third TCP
4	packet, the generating of the third TCP packet comprising:
5	accessing a template header stored on the network interface device, the template
6	header having TCP fields and IP fields; and
7	using the processor to fill in the TCP fields and the IP fields in the template
8	header to form the third TCP packet without passing the third TCP packet or the
9	template header down to any lower protocol processing layer in any protocol stack.
10	
11	14. The method of Claim 13, wherein the processor does not execute a network protocol stack
12	comprising a TCP protocol processing layer and an IP protocol processing layer, but rather the
13	processor executes software that implements a finite state machine, the finite state machine
14	performing both TCP and IP protocol processing tasks.
15	
16	15. The method of Claim 14, wherein the network interface device further comprises a
17	transmit device, the fast-path processing further comprising:
18	placing a pointer to the third TCP packet into a first transmit queue; and
19	using the transmit device of the network interface device to retrieve the pointer
20	from the first transmit queue, and to cause the third TCP packet to be output from the
21	network interface device and onto the network.
22	
23	16. The method of Claim 15, wherein the transmit device also retrieves pointers from a
24	second transmit queue, one of the first transmit queue and the second transmit queue having a
25	higher transmission priority than the other.
26	
27	17. The method of Claim 16, wherein the transmit device is a sequencer.
28	