

3379.1.ST25.txt SEQUENCE LISTING

The second of the second												
<110>	Kulp, David C. Siani-Rose, Michael A. Williams, Alan J. Harmon, Cyrus L.											
<120>	Nucleic Acids Encoding G Proteins Coupled Receptors											
<130>	3379.1											
<140> <141>	10/038,895 2001-10-24											
<150> <151>	US 60/244,082 2000-10-26											
<160>	20											
<170>	PatentIn version 3.2											
<210> <211> <212> <213>	1 274 PRT Artificial Sequence											
<220> <223>	Synthetic Organism											
<220> <221> <222> <223>	misc_feature (126)(126)											
<220> <221> <222> <223>	misc_feature (146)(146) Xaa can be any naturally occurring amino acid											
<400>	1											
Leu Lei 1	u Ala Pro Thr Gly Ser Leu Phe Arg Asn Cys Thr Gln Asp Gly 5 10 15											
Trp Sei	r Glu Thr Phe Pro Arg Pro Asn Leu Ala Cys Gly Val Asn Val 20 25 30											
Asn Asp	o Ser Ser Asn Glu Lys Arg Ser Tyr Leu Leu Lys Leu Lys Val 35 40 45											
Met Tyr 50	r Thr Val Gly Tyr Ser Ser Ser Leu Val Met Leu Leu Val Ala 55 60											
Leu Gly 65	y Ile Leu Cys Ala Phe Arg Arg Leu His Cys Thr Arg Asn Tyr 70 75 80											
Ile His	s Met His Leu Phe Val Ser Phe Ile Leu Arg Ala Leu Ser Asn Page 1											

Phe Ile Lys Asp Ala Val Leu Phe Ser Ser Asp Asp Val Thr Tyr Cys Asp Ala His Arg Gly Cys Lys Leu Val Met Val Leu Phe Xaa Tyr Cys Ile Met Ala Asn Tyr Ser Trp Leu Leu Val Glu Gly Ser Thr Phe Thr 135 His Xaa Leu Ala Ile Ser Phe Phe Ser Glu Arg Lys Tyr Leu Gln Gly Phe Val Ala Phe Gly Trp Gly Ser Pro Ala Ile Phe Val Ala Leu Trp 165 170 175 Ala Ile Ala Arg His Phe Leu Glu Asp Val Gly Cys Trp Asp Ile Asn 180 185 190 Ala Asn Ala Ser Ile Trp Trp Ile Ile Arg Gly Pro Val Ile Leu Ser Ile Leu Asn Phe Ile Leu Phe Ile Asn Ile Leu Arg Ile Leu Met Arg 210 215 220 Lys Leu Arg Thr Gln Glu Thr Arg Gly Asn Glu Val Ser His Tyr Lys 225 230 Arg Leu Ala Arg Ser Thr Leu Leu Leu Ile Pro Leu Phe Gly Ile His Tyr Ile Val Phe Ala Phe Ser Pro Glu Asp Ala Met Glu Ile Gln Leu 265 Phe Phe <210> 381 <211> <212> DNA

cactectace tgctgaaget gaaagteatg tacacegtgg getacagete etecetggte 1	180											
atgctcctgg tcgcccttgg catcctctgt gctttccgga ggctccactg cactcgcaac 2	40											
tacatccaca tgcacctgtt cgtgtccttc atccttcgtg ccctgtccaa cttcatcaag 3	800											
gacgccgtgc tcttctcctc agatgatgtc acctactgcg atgcccacag ggcgggctgc 3	60											
aagctggtca tggtgctgtt c 3	81											
<210> 3 <211> 447												
<212> DNA <213> Artificial Sequence												
<220> <223> Synthetic Organism												
<220> <221> misc_feature												
<222> (58)(58)												
- , , 3 ,												
<400> 3 tactgcatca tggccaacta ctcctggctg ctggtggaag gctctacctt cacacatntc	60											
ctcgccatct ccttcttctc tgaaagaaag tacctccagg gatttgtggc attcggatgg 1	.20											
ggttctccag ccatttttgt tgctttgtgg gctattgcca gacactttct ggaagatgtt 1	.80											
gggtgctggg acatcaatgc caacgcatcc atctggtgga tcattcgtgg tcctgtgatc 2	40											
ctctccatcc tgattaattt catccttttc ataaacattc taagaatcct gatgagaaaa 3	00											
cttagaaccc aagaaacaag aggaaatgaa gtcagccatt ataagcgcct ggccaggtcc 3	60											
actctcctgc tgatccccct ctttggcatc cactacatcg tcttcgcctt ctccccagag 4	20											
gacgctatgg agatccagct gttttt 4	47											
210 4												
<210> 4 <211> 828												
<212> DNA <213> Artificial Sequence												
<220>												
<223> Synthetic Organism												
<220> <221> misc_feature												
<222> (439)(439) <223> n is a, c, g, or t												
<400> 4												
	60											
ttccccaggc ctaatctggc ctgtggcgtt aatgtgaacg actcttccaa cgagaagcgg $$ $$ $$ $$	20											

3379.1.ST25.txt													
cactcctacc tgctgaagct gaaagtcatg tacaccgtgg gctacagctc ctccctggtc													
atgctcctgg tcgcccttgg catcctctgt gctttccgga ggctccactg cactcgcaac													
tacatccaca tgcacctgtt cgtgtccttc atccttcgtg ccctgtccaa cttcatcaag													
gacgccgtgc tcttctcctc agatgatgtc acctactgcg atgcccacag ggcgggctgc													
aagctggtca tggtgctgtt ctactgcatc atggccaact actcctggct gctggtggaa													
ggctctacct tcacacatnt cctcgccatc tccttcttct ctgaaagaaa gtacctccag													
ggatttgtgg cattcggatg gggttctcca gccatttttg ttgctttgtg ggctattgcc													
agacactttc tggaagatgt tgggtgctgg gacatcaatg ccaacgcatc catctggtgg													
atcattcgtg gtcctgtgat cctctccatc ctgattaatt tcatcctttt cataaacatt													
ctaagaatcc tgatgagaaa acttagaacc caagaaacaa gaggaaatga agtcagccat													
tataagcgcc tggccaggtc cactctcctg ctgatccccc tctttggcat ccactacatc													
gtcttcgcct tctccccaga ggacgctatg gagatccagc tgtttttt													
<210> 5 <211> 320 <212> PRT <213> Artificial Sequence													
<220> <223> Synthetic Organism													
<400> 5													
Pro Thr Phe Ile Leu Phe Ser Phe Gln Pro Gly Asp Lys Arg Thr Lys 1 10 15													
His Ile Cys Val Tyr Trp Glu Gly Ser Glu Gly Gly His Trp Ser Thr 20 25 30													
Glu Gly Cys Ser His Val His Ser Asn Gly Ser Tyr Thr Lys Cys Lys 35 40 45													
Cys Phe His Leu Ser Ser Phe Ala Val Leu Val Ala Leu Ala Pro Lys 50 55 60													
Asp Pro Val Leu Thr Val Ile Thr Gln Val Gly Leu Thr Ile Ser Leu 65 70 75 80													
Leu Cys Leu Phe Leu Ala Ile Leu Thr Phe Leu Leu Cys Arg Pro Ile 85 90 95													
Gln Asn Thr Ser Thr Ser Leu His Leu Glu Leu Ser Leu Cys Leu Phe 100 105 110													

3379.1.ST25.txt Leu Ala His Leu Leu Phe Leu Thr Gly Ile Asn Arg Thr Glu Pro Glu Leu Cys Ser Ile Ile Ala Gly Leu Leu His Phe Leu Tyr Leu Ala Cys 130 135 140 Phe Thr Trp Met Leu Leu Glu Gly Leu His Leu Phe Leu Thr Val Arg Asn Leu Lys Val Ala Asn Tyr Thr Ser Thr Gly Arg Phe Lys Lys Arg Phe Met Tyr Pro Val Gly Tyr Gly Ile Pro Ala Val Ile Ile Ala Val Ser Ala Ile Val Gly Pro Gln Asn Tyr Gly Thr Phe Thr His Cys Trp Leu Lys Leu Asp Lys Gly Phe Ile Trp Ser Phe Met Gly Pro Val Ala 210 225 220 Val Ile Ile Leu Asn Leu Val Phe Tyr Phe Gln Val Leu Trp Ile Leu Arg Ser Lys Leu Ser Ser Leu Asn Lys Glu Val Ser Thr Ile Gln Asp Thr Arg Val Met Thr Phe Lys Ala Ile Ser Gln Leu Phe Ile Leu Gly Cys Ser Trp Gly Leu Gly Phe Phe Met Val Glu Glu Val Gly Lys Thr 275 280 285 Ile Gly Ser Ile Ile Ala Tyr Ser Phe Thr Ile Ile Asn Thr Leu Gln 290 295 300 Gly Val Leu Leu Phe Val Val His Cys Leu Leu Asn Arg Gln Val Arg <210> <211> 969 <212> DNA Artificial Sequence <220> <223>

<400>

cccactttca tactattctc tttccagcct ggtgacaaga gaacaaaaca tatctgtgtc

Synthetic Organism

3379.1.ST25.txt 120 tactgggagg gatcagaggg aggccactgg tccacggagg gctgctctca tgtgcacagc 180 aacggttctt acaccaaatg caagtgcttc catctgtcca gctttgccgt cctcgtggct 240 cttgcccca aggaggaccc tgtgctgacc gtgatcaccc aggtggggct gaccatctct 300 ctgctgtgcc tcttcctggc catcctcacc ttcctcctgt gccggcccat ccagaacacc agcacctccc tccatctaga gctctccctc tgcctcttcc tggcccacct cctgttcctg 360 420 acqqqcatca acagaactga gcctgaggtg ctgtgctcca tcattgcagg gctgctgcac 480 ttcctctacc tggcttgctt cacctggatg ctcctggaag ggctgcacct cttcctcacc gtcaggaacc tcaaggtggc caactacacc agcacgggca gattcaagaa gaggttcatg 540 taccctgtag gctacgggat cccagctgtg attattgctg tgtcagcaat agttggaccc 600 660 cagaattatg gaacatttac tcactgttgg ctcaagcttg ataaaggatt catctggagc 720 ttcatggggc cagtagcagt cattatcttg ataaacctgg tgttctactt ccaagttctg 780 tggattttga gaagcaaact ttcctccctc aataaagaag tttccaccat tcaggacacc agagtcatga catttaaagc catttctcag ctatttatcc tgggctgttc ttggggcctt 840 900 ggttttttta tggttgaaga agtagggaag acgattggat caatcattgc atactcattc accatcatca acaccettca gggagtgttg ctetttgtgg tacaetgtet cettaatege 960 969 caggtaagg <210> 217 Artificial Sequence <220> <223> Synthetic Organism <400> Gln His Ser Asp Ala Val His Asp Leu Leu Leu Asp Val Ile Thr Trp 5 10 15 Val Gly Ile Leu Leu Ser Leu Val Cys Leu Leu Ile Cys Ile Phe Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$ Phe Cys Phe Phe Arg Gly Leu Gln Ser Asp Arg Asn Thr Ile His Lys 35 40 45 Asn Leu Cys Ile Ser Leu Phe Val Ala Glu Leu Leu Phe Leu Ile Gly 50 60

Ile Asn Arg Thr Asp Gln Pro Ala Cys Ala Val Phe Ala Ala Leu Leu 65 70 75 80

3379.1.5725.txt His Phe Phe Leu Ala Ala Phe Thr Trp Met Phe Leu Glu Gly Val 85 90 95													
Gln Leu Tyr Ile Met Leu Val Glu Val Phe Glu Ser Glu His Ser Arg 100 105 110													
Arg Lys Tyr Phe Tyr Leu Val Gly Tyr Gly Met Pro Ala Leu Ile Val 115 120 125													
Ala Val Ser Ala Ala Val Asp Tyr Arg Ser Tyr Gly Thr Asp Lys Val 130 135 140													
Cys Trp Leu Arg Leu Asp Thr Tyr Phe Ile Trp Ser Phe Ile Gly Pro 145 150 160													
Ala Thr Leu Ile Ile Met Asn Val Ile Phe Leu Gly Ile Ala Leu Tyr 165 170 175													
Lys Met Phe His His Thr Ala Ile Leu Lys Pro Glu Ser Gly Cys Leu 180 185 190													
Asp Asn Ile Lys Leu Lys Ile Asn Ile Pro Ile Ile Lys Ser Ile Tyr 195 200 205													
Ile Tyr Met Tyr Ile Cys Met Cys Val 210 215													
<210> 8 <211> 657 <212> DNA <213> Artificial Sequence													
<220> <223> Synthetic Organism													
<400> 8 cagcacagtg atgcggtcca tgacctcctt ctggatgtga tcacgtgggt tggaattttg	60												
ctgtcccttg tttgtctcct gatttgcatc ttcacatttt gctttttccg ggggctccag	120												
agtgaccgta acaccatcca caagaacctc tgcatcagtc tctttgtagc agagctgctc	180												
ttcctgattg ggatcaaccg aactgaccaa ccaattgcct gtgctgtttt cgctgccctg	240												
ttacatttct tcttcttggc tgccttcacc tggatgttcc tggagggggt gcagctttat	300												
atcatgctgg tggaggtttt tgagagtgaa cattcacgta ggaaatactt ttatctggtc	360												
ggctatggga tgcctgcact cattgtggct gtgtcagctg cagtagacta caggagttat	420												
ggaacagata aagtatgttg gctccgactt gacacctact tcatttggag ttttatagga	480												
ccagcaactt tgataattat gcttaatgta atcttccttg ggattgcttt atataaaatg	540												

3379.1.ST25.txt tttcatcata ctgctatact gaaacctgaa tcaggctgtc ttgataacat caagttaaaa													
attaatattc caattataaa atctatttat atctatatgt atatatgcat gtgtgtg													
<210> 9 <211> 304 <212> PRT <213> Artificial Sequence													
<220> <223> Synthetic Organism													
<400> 9													
Gly Asn Val Ala Val Ala Phe Val Tyr Tyr Lys Ser Ile Gly Pro Leu 1 5 10 15													
Leu Ser Ser Asp Asn Phe Leu Leu Lys Pro Gln Asn Tyr Asp Asn 20 25 30													
Ser Glu Glu Glu Arg Val Ile Ser Ser Val Ile Ser Val Ser Met 35 40 45													
Ser Ser Asn Pro Pro Thr Leu Tyr Glu Leu Glu Lys Ile Thr Phe Thr 50 60													
Leu Ser His Arg Lys Thr Asp Arg Tyr Arg Ser Leu Cys Ala Phe Trp 65 70 75 80													
Asn Tyr Ser Pro Asp Thr Met Asn Gly Ser Trp Ser Ser Glu Gly Cys 85 90 95													
Glu Leu Thr Tyr Ser Asn Glu Thr His Thr Ser Cys Arg Cys Asn His 100 105 110													
Leu Thr His Phe Ala Ile Leu Met Ser Ser Gly Pro Ser Ile Ile Lys 115 120 125													
Asp Tyr Asn Ile Leu Thr Arg Ile Thr Gln Leu Gly Ile Ile Ile Ser 130 135 140													
Leu Ile Cys Leu Ala Ile Cys Ile Phe Thr Phe Trp Phe Phe Ser Glu 145 150 155 160													
Ile Gln Ser Thr Arg Thr Thr Ile His Lys Asn Leu Cys Cys Ser Leu 165 170 175													
Phe Leu Ala Glu Leu Val Phe Leu Val Gly Ile Asn Thr Asn Thr Asn 180 185 190													

3379.1.ST25.txt Lys Phe Cys Ser Ile Ile Ala Gly Leu Leu His Tyr Phe Phe Leu Ala 195 200 205 Ala Phe Ala Trp Met Cys Ile Glu Gly Ile His Leu Tyr Leu Ile Val 210 215 220 Val Gly Val Ile Tyr Asn Lys Gly Phe Leu His Lys Asn Phe Tyr Ile 225 230 235 240 Phe Gly Tyr Leu Ser Pro Ala Val Val Gly Phe Ser Ala Ala Leu 245 250 255 Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys Val Cys Trp Leu Ser Thr Glu 260 265 270 Asn Asn Phe Ile Trp Ser Phe Ile Gly Pro Ala Cys Leu Ile Ile Leu Val Cys Ile Tyr Lys Ile Val Ile Thr Ile Gln Lys Ser Asp Asp His 290 295 300 <210> 10 921 DNA Artificial Sequence <220> Synthetic Organism <223> <400> ggcaatgttg cagttgcatt tgtatattat aagagtattg gtcctttgct ttcatcatct 60 120 gacaacttct tattgaaacc tcaaaattat gataattctg aagaggagga aagagtcata tcttcagtaa tttcagtctc aatgagctca aacccaccca cattatatga acttgaaaaa 180 240 ataacattta cattaagtca tcgaaaggtc acagataggt ataggagtct atgtgcattt 300 tggaattact cacctgatac catgaatggc agctggtctt cagagggctg tgagctgaca tactcaaatq agacccacac ctcatgccgc tgtaatcacc tgacacattt tgcaattttg 360 420 atgtcctctq gtccttccat tggtattaaa gattataata ttcttacaag gatcactcaa ctaggaataa ttatttcact gatttgtctt gccatatgca tttttacctt ctggttcttc 480 540 agtgaaattc aaagcaccag gacaacaatt cacaaaaatc tttgctgtag cctatttctt gctgaacttg tttttcttgt tgggatcaat acaaatacta ataagctctt ctgttcaatc 600 660 attgccggac tgctacacta cttcttttta gctgcttttg catggatgtg cattgaaggc 720 atacatctct atctcattgt tgtgggtgtc atctacaaca agggattttt gcacaagaat ttttatatct ttggctatct aagcccagcc gtggtagttg gattttcggc agcactagga 780

3379.1.ST25.txt tacagatatt atggcacaac caaagtatgt tggcttagca ccgaaaacaa ctttatttgg														
agttttatag gaccagcatg cctaatcatt cttgtatgta tatataaaat tgttattaca														
ittcaaaaaa gtgatgatca t														
<210> 11 <211> 203 <212> PRT <213> Artificial Sequence														
<220> <223> Synthetic Organism														
<400> 11														
sly Ala Trp Ala Thr Thr Gly Cys Ser Val Ala Ala Leu Tyr Leu Asp 5 10 15														
ser Thr Ala Cys Phe Cys Asn His Ser Thr Ser Phe Ala Ile Leu Leu 20 25 30														
iln Ile Tyr Glu Val Gln Gly Pro Glu Glu Glu Ser Leu Leu Arg Thr 35 40 45														
eu Ser Phe Val Gly Cys Gly Val Ser Phe Cys Ala Leu Thr Thr 50 60														
The Leu Leu Phe Leu Val Ala Gly Val Pro Lys Ser Glu Arg Thr Thr 55 70 75 80														
al His Lys Asn Leu Thr Phe Ser Leu Ala Ser Ala Glu Gly Phe Leu 85 90 95														
net Thr Ser Glu Trp Ala Lys Ala Asn Glu Ala Cys Val Ala Val Thr 100 105 110														
al Ala Met His Phe Leu Phe Leu Val Ala Phe Ser Trp Met Leu Val 115 120 125														
ilu Gly Leu Leu Trp Arg Lys Val Val Ala Val Ser Met His Pro 130 135 140														
aly Pro Gly Met Arg Leu Tyr His Ala Thr Gly Trp Gly Val Pro Val 45 150 155 160														
aly Ile Val Ala Val Thr Leu Ala Met Leu Pro His Asp Tyr Val Ala 165 170 175														
Pro Gly His Cys Trp Leu Asn Val His Thr Asn Ala Ile Trp Ala Phe 180 185 190 Page 10														

val Gly Pro Val Leu Phe Val Leu Thr Val Ser 195 200											
<210> 12 <211> 615 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic Organism											
<400> 12 ggtgcctggg ccaccacagg ctgctccgtg gctgccctgt acctggactc caccgcctgc	60										
ttctgcaacc acagcaccag ctttgccatc ctgctgcaaa tctatgaagt acagagaggc	120										
cctgaggagg agtcgctgct gaggactctg tcatttgtgg gctgtggcgt gtccttctgc	180										
gccctcacca ccaccttctt gctcttcctg gtggccgggg tccccaagtc agagcgaacc	240										
acagtccaca agaacctcac cttctccctg gcctctgccg agggcttcct catgaccagc	300										
gagtgggcca aggccaatga ggtggcatgt gtggctgtca cagtcgcaat gcacttcctc	360										
tttctggtgg cattctcctg gatgctggtg gaggggctgc tgctgtggag gaaggtggta 4	420										
gctgtgagca tgcacccggg cccaggcatg cggctctacc acgccacagg ctggggcgtg	480										
cctgtgggca tcgtggcggt caccctggcc atgctccccc atgactacgt ggcccccgga	540										
cattgctggc tcaatgtgca cacaaatgcc atctgggcct tcgtggggcc tgtgctcttc	600										
gtgctgactg tgagc	615										
<210> 13 <211> 1339 <212> PRT <213> Artificial Sequence											

<213> Artificial Sequence

<220> <223> Synthetic Organism

<400> 13

Tyr Ser Ser Lys Ala Ala Leu Asn Trp Asn Tyr Glu Ser Thr Ile His $20 \hspace{1cm} 25 \hspace{1cm} 30$

Pro Leu Leu His Glu His Glu Pro Ala Gly Glu Glu Ala Leu Arg Gln 35 40 45

Lys Arg Ala Val Ala Thr Lys Ser Pro Thr Ala Glu Glu Tyr Thr Val 50 55 60

Page 11

Asn Ile Glu Ile Ser Phe Glu Asn Ala Ser Phe Leu Asp Pro Ile Lys 65 70 75 80 Ala Tyr Leu Asn Ser Leu Ser Phe Pro Ile His Gly Asn Asn Thr Asp 85 90 95 Gln Ile Thr Asp Ile Leu Ser Ile Asn Val Thr Thr Val Cys Arg Pro 100 105 110 Ala Gly Asn Glu Ile Trp Cys Ser Cys Glu Thr Gly Tyr Gly Trp Pro 115 120 125 Arg Glu Arg Cys Leu His Asn Leu Ile Cys Gln Glu Arg Asp Val Phe Leu Pro Gly His His Cys Ser Cys Leu Lys Glu Leu Pro Pro Asn Gly 145 150 155 160 Pro Phe Cys Leu Leu Gln Glu Asp Val Thr Leu Asn Met Arg Val Arg 165 170 175 Leu Asn Val Gly Phe Gln Glu Asp Leu Met Asn Thr Ser Ser Ala Leu 180 185 190 Tyr Arg Ser Tyr Lys Thr Asp Leu Glu Thr Ala Arg Lys Gly Tyr Gly
195 200 205 Ile Leu Pro Gly Phe Lys Gly Val Thr Val Thr Gly Phe Lys Ser Gly 210 220 Ser Val Val Val Thr Tyr Glu Val Lys Thr Thr Pro Pro Ser Leu Glu 225 230 235 240 Leu Ile His Lys Ala Asn Glu Gln Val Val Gln Ser Leu Asn Gln Thr 245 250 255 Tyr Lys Met Asp Tyr Asn Ser Phe Gln Ala Val Thr Ile Asn Glu Ser 260 265 270 Asn Phe Phe Val Thr Pro Glu Ile Ile Phe Glu Gly Asp Thr Val Ser 275 280 285 Leu Val Cys Glu Lys Glu Val Leu Ser Ser Asn Val Ser Trp Arg Tyr Glu Glu Gln Gln Leu Glu Ile Gln Asn Ser Ser Arg Phe Ser Ile Tyr 305 310 315 320 Page 12

Thr Ala Leu Phe Asn Asn Met Thr Ser Val Ser Lys Leu Thr Ile His 325 Asn Ile Thr Pro Gly Asp Ala Gly Glu Tyr Val Cys Lys Leu Ile Leu 340 345 350 Asp Ile Phe Glu Tyr Glu Cys Lys Lys Lys Ile Asp Val Met Pro Ile Gln Ile Leu Ala Asn Glu Glu Met Lys Val Met Cys Asp Asn Asn Pro Val Ser Leu Asn Cys Cys Ser Gln Gly Asn Val Asn Trp Ser Lys Val 385 390 395 400 Glu Trp Lys Gln Glu Gly Lys Ile Asn Ile Pro Gly Thr Pro Glu Thr Asp Ile Asp Ser Ser Cys Ser Arg Tyr Thr Leu Lys Ala Asp Gly Thr 420 425 430 Gln Cys Pro Ser Gly Ser Ser Gly Thr Thr Val Ile Tyr Thr Cys Glu
435 440 445 Phe Ile Ser Ala Tyr Gly Ala Arg Gly Ser Ala Asn Ile Lys Val Thr 450 455 460 Phe Ile Ser Val Ala Asn Leu Thr Ile Thr Pro Asp Pro Ile Ser Val Ser Glu Gly Gln Asn Phe Ser Ile Lys Cys Ile Ser Asp Val Ser Asn 485 490 495 Tyr Asp Glu Val Tyr Trp Asn Thr Ser Ala Gly Ile Lys Ile Tyr Gln
500 505 510 Arg Phe Tyr Thr Thr Arg Arg Tyr Leu Asp Gly Ala Glu Ser Val Leu 515 520 525 Thr Val Lys Thr Ser Thr Arg Glu Trp Asn Gly Thr Tyr His Cys Ile 530 540 530 Phe Arg Tyr Lys Asn Ser Tyr Ser Ile Ala Thr Lys Asp Val Ile Val 555 His Pro Leu Pro Leu Lys Leu Asn Ile Met Val Asp Pro Leu Glu Ala Page 13

Thr Val Ser Cys Ser Gly Ser His His Ile Lys Cys Cys Ile Glu Glu 580 585 590 Asp Gly Asp Tyr Lys Val Thr Phe His Thr Gly Ser Ser Ser Leu Pro 595 600 605 Ala Ala Lys Glu Val Asn Lys Lys Gln Val Cys Tyr Lys His Asn Phe 610 620 Asn Ala Ser Ser Val Ser Trp Cys Ser Lys Thr Val Asp Val Cys Cys 625 630 635 640 His Phe Thr Asn Ala Ala Asn Asn Ser Val Trp Ser Pro Ser Met Lys 645 650 655 Leu Asn Leu Val Pro Gly Glu Asn Ile Thr Cys Gln Asp Pro Val Ile 660 670 Gly Val Gly Glu Pro Gly Lys Val Ile Gln Lys Leu Cys Arg Phe Ser 675 680 685 Asn Val Pro Ser Ser Pro Glu Ser Pro Ile Gly Gly Thr Ile Thr Tyr 690 695 700 Lys Cys Val Gly Ser Gln Trp Glu Glu Lys Arg Asn Asp Cys Ile Ser 705 710 715 720 Ala Pro Ile Asn Ser Leu Leu Gln Met Ala Lys Leu Ile Lys Ser Pro 725 730 735 Ser Gln Asp Glu Met Leu Pro Thr Tyr Leu Lys Asp Leu Ser Ile Ser 740 745 750 Ile Asp Lys Ala Glu His Glu Ile Ser Ser Ser Pro Gly Ser Leu Gly 755 760 765 Ala Ile Ile Asn Ile Leu Asp Leu Leu Ser Thr Val Pro Thr Gln Val 770 780 Asn Ser Glu Met Met Thr Val Leu Ser Thr Val Asn Val Ile Leu Gly 800 Lys Pro Val Leu Asn Thr Trp Lys Val Leu Gln Gln Gln Trp Thr Asn

Gln	Ser	Ser	Gln 820	Leu	Leu	нis	Ser			1.ST Arg			Gln 830	Ala	Leu
Gln	Ser	Gly 835	Asp	Ser	Pro	Pro	Leu 840	Ser	Phe	Ser	Gln	Thr 845	Asn	val	Gln
Met	Ser 850	Ser	Met	val	Ile	Lys 855	Ser	Ser	нis	Pro	Glu 860	Thr	Tyr	Gln	Gln
Arg 865	Phe	val	Phe	Pro	Tyr 870	Phe	Asp	Leu	Trp	Gly 875	Asn	val	Val	Ile	Asp 880
Lys	Ser	Tyr	Leu	G1u 885	Asn	Leu	Gln	Ser	Asp 890	Ser	Ser	Ile	val	Thr 895	Met
Ala	Phe	Pro	Thr 900	Leu	Gln	Ala	Ile	Leu 905	Ala	Gln	Asp	Ile	Gln 910	Glu	Asn
Asn	Phe	Ala 915	Glu	Ser	Leu	val	меt 920	Thr	Thr	Thr	val	Ser 925	нis	Asn	Thr
Thr	Met 930	Pro	Phe	Arg	Ile	Ser 935	Met	Thr	Phe	Lys	Asn 940	Asn	Ser	Pro	Ser
Gly 945	Gly	Glu	Thr	Lys	Cys 950	val	Phe	Trp	Asn	Phe 955	Arg	Leu	Ala	Asn	Asn 960
Thr	Gly	Gly	Trp	Asp 965	Ser	Ser	Gly	Cys	туг 970	val	Glu	Glu	Gly	Asp 975	Gly
Asp	Asn	val	Thr 980	Cys	Ile	Cys	Asp	ніs 985	Leu	Thr	Ser	Phe	ser 990	Ile	Leu
Met	Ser	Pro 995	Asp	Ser	Pro	Asp	Pro 1000		· Ser	. Ter	ı Leu	Gly 100	, Il)5	e Le	u Leu
Asp	Ile 1010		e Ser	· Tyr	· val	Gly 101		ıl Gl	y Ph	ne Se		e L 20	.eu S	er L	eu
Ala	Ala 1025		Leu	ı Val	Val	Glu 103		a Va	ıl ∨a	ıl ⊤r		's S 935	er v	al T	hr
Lys	Asn 1040		, Thr	' Ser	Tyr	Met 104	: Ar 5	g Hi	s Th	ır Cy		e v 50	al A	sn I	1e
Ala	Ala 1055		Leu	Leu	Val	Ala 106		n Th	ır Tr	p Ph		e v 65	al v	al A	la

Page 15

Ala	11e 1070	Gln	Asp	Asn	Arg	Tyr 1075	Ile	Leu	Cys	Lys	Thr 1080	Ala	Cys	٧a٦
Ala	Ala 1085	Thr	Phe	Phe	Ile	ніs 1090	Phe	Phe	Tyr	Leu	Ser 1095	val	Phe	Phe
Trp	Met 1100	Leu	Thr	Leu	Gly	Leu 1105	Met	Leu	Phe	Tyr	Arg 1110	Leu	٧a٦	Phe
Ile	Leu 1115	His	Glu	Thr	Ser	Arg 1120	Ser	Thr	Gln	Lys	Ala 1125	Ile	Ala	Phe
Cys	Leu 1130		Tyr	Gly	Cys	Pro 1135	Leu	Ala	Ile	Ser	val 1140	Ile	Thr	Leu
Gly	Ala 1145	Thr	Gln	Pro	Arg	Glu 1150	val	Tyr	Thr	Arg	Lys 1155	Asn	val	Cys
Trp	Leu 1160	Asn	Trp	Glu	Asp	Thr 1165	Lys	Ala	Leu	Leu	Ala 1170	Phe	Ala	Ile
Pro	Ala 1175	Leu	Ile	Ile	val	val 1180	Val	Asn	Ile	Thr	11e 1185	Thr	Ile	val
Val	Ile 1190	Thr	Lys	Ile	Leu	Arg 1195	Pro	Ser	Ile	Gly	Asp 1200	Lys	Pro	Cys
Lys	Gln 1205	Glu	Lys	Ser	Ser	Leu 1210	Phe	Gln	Ile	Ser	Lys 1215	Ser	Ile	Gly
Val	Leu 1220	Thr	Pro	Leu	Leu	Gly 1225	Leu	Thr	Trp	Gly	Phe 1230	Gly	Leu	Thr
Thr	val 1235	Phe	Pro	Gly	Thr	Asn 1240	Leu	val	Phe	His	Ile 1245	Ile	Phe	Ala
Ile	Leu 1250	Asn	val	Phe	Gln	Leu 1255	Phe	Ile	Leu	Leu	Phe 1260	Gly	Cys	Leu
Trp	Asp 1265	Leu	Lys	Gln	Glu	Ala 1270	Leu	Leu	Asn	Lys	Phe 1275	Ser	Leu	Ser
Arg	Trp 1280	Ser	Ser	Gln	His	Ser 1285	Lys	Thr	Ser	Leu	Gly 1290	Ser	Ser	Thr
Pro	Val 1295	Phe	Ser	Met	Ser	Ser 1300	Pro	Ile		Arg e 16	1305	Phe	Asn	Asn

Leu Phe	Gly	Lys	Thr	Gly	Thr	Tyr	Asn	٧a٦	Ser	Thr	Pro	Glu	Ala
1310	-	-		•	1315					1320			

Thr Ser Ser Ser Leu Glu Asn Ser Ser Ser Ala Ser Ser Leu Leu 1325

Asn

<211> <212> /	14 4038 DNA Arti	3 ificial Sequ	uence									
<220> <223> Synthetic Organism												
	14 ccc	caaggagaac	cactttgtgc	ctcatgttta	ttgtgattta	ttcttccaaa	60					
				attcatcctt			120					
ccagctg	gtg	aagaggcact	gaggcaaaaa	cgagccgttg	ccacaaaaag	tcctacggct	180					
gaagaata	aca	ctgttaatat	tgagatcagt	tttgaaaatg	catccttcct	ggatcctatc	240					
aaagccta	act	tgaacagcct	cagttttcca	attcatggga	ataacactga	ccaaattacc	300					
gacattt	tga	gcataaatgt	gacaacagtc	tgcagacctg	ctggaaatga	aatctggtgc	360					
tcctgcg	aga	caggttatgg	gtggcctcgg	gaaaggtgtc	ttcacaatct	catttgtcaa	420					
gagcgtg	acg	tcttcctccc	agggcaccat	tgcagttgcc	ttaaagaact	gcctcccaat	480					
ggacctt	ttt	gcctgcttca	ggaagatgtt	accctgaaca	tgagagtcag	actaaatgta	540					
ggctttca	aag	aagacctcat	gaacacttcc	tccgccctct	ataggtccta	caagaccgac	600					
ttggaaa	cag	cgttccggaa	gggttacgga	attttaccag	gcttcaaggg	cgtgactgtg	660					
acagggt	tca	agtctggaag	tgtggttgtg	acatatgaag	tcaagactac	accaccatca	720					
cttgagt	taa	tacataaagc	caatgaacaa	gttgtacaga	gcctcaatca	gacctacaaa	780					
atggacta	aca	actcctttca	agcagttact	atcaatgaaa	gcaatttctt	tgtcacacca	840					
gaaatca	tct	ttgaagggga	cacagtcagt	ctggtgtgtg	aaaaggaagt	tttgtcctcc	900					
aatgtgt	ctt	ggcgctatga	agaacagcag	ttggaaatcc	agaacagcag	cagattctcg	960					
atttaca	ccg	cacttttcaa	caacatgact	tcggtgtcca	agctcaccat	ccacaacatc	1020					
actccag	gtg	atgcaggtga	atatgtttgc	aaactgatat	tagacatttt	tgaatatgag	1080					
tgcaagaa	aga	aaatagatgt	tatgcccatc	caaattttgg	caaatgaaga	aatgaaggtg	1140					
atgtgcga	aca	acaatcctgt	atctttgaac	tgctgcagtc	agggtaatgt	taattggagc	1200					

aaagtagaat	ggaagcagga	aggaaaaata	aatattccag		gacagacata	1260
gattctagct	gcagcagata	caccctcaag	gctgatggaa	cccagtgccc	aagcgggtcg	1320
tctggaacaa	cagtcatcta	cacttgtgag	ttcatcagtg	cctatggagc	cagaggcagt	1380
gcaaacataa	aagtgacatt	catctctgtg	gccaatctaa	caataacccc	ggacccaatt	1440
tctgtttctg	agggacaaaa	cttttctata	aaatgcatca	gtgatgtgag	taactatgat	1500
gaggtttatt	ggaacacttc	tgctggaatt	aaaatatacc	aaagatttta	taccacgagg	1560
aggtatcttg	atggagcaga	atcagtactg	acagtcaaga	cctcgaccag	ggagtggaat	1620
ggaacctatc	actgcatatt	tagatataag	aattcataca	gtattgcaac	caaagacgtc	1680
attgttcacc	cgctgcctct	aaagctgaac	atcatggttg	atcctttgga	agctactgtt	1740
tcatgcagtg	gttcccatca	catcaagtgc	tgcatagagg	aggatggaga	ctacaaagtt	1800
actttccata	cgggttcctc	atcccttcct	gctgcaaaag	aagttaacaa	aaaacaagtg	1860
tgctacaaac	acaatttcaa	tgcaagctca	gtttcctggt	gttcaaaaac	tgttgatgtg	1920
tgttgtcact	ttaccaatgc	tgctaataat	tcagtctgga	gcccatctat	gaagctgaat	1980
ctggttcctg	gggaaaacat	cacatgccag	gatcccgtaa	taggtgtcgg	agagccgggg	2040
aaagtcatcc	agaagctatg	ccggttctca	aacgttccca	gcagccctga	gagtcccatt	2100
ggcgggacca	tcacttacaa	atgtgtaggc	tcccagtggg	aggagaagag	aaatgactgc	2160
atctctgccc	caataaacag	tctgctccag	atggctaagg	ctttgatcaa	gagcccctct	2220
caggatgaga	tgctccctac	atacctgaag	gatctttcta	ttagcataga	caaagcggaa	2280
catgaaatca	gctcttctcc	tgggagtctg	ggagccatta	ttaacatcct	tgatctgctc	2340
tcaacagttc	caacccaagt	aaattcagaa	atgatgacgc	acgtgctctc	tacggttaat	2400
gtcatccttg	gcaagcccgt	cttgaacacc	tggaaggttt	tacaacagca	atggaccaat	2460
cagagttcac	agctactaca	ttcagtggaa	agattttccc	aagcattaca	gtcgggagat	2520
agccctcctt	tgtccttctc	ccaaactaat	gtgcagatga	gcagcatggt	aatcaagtcc	2580
agccacccag	aaacctatca	acagaggttt	gttttcccat	actttgacct	ctggggcaat	2640
gtggtcattg	acaagagcta	tctagaaaac	ttgcagtcgg	attcgtctat	tgtcaccatg	2700
gctttcccaa	ctctccaagc	catccttgcc	caggatatcc	aggaaaataa	ctttgcagag	2760
agcttagtga	tgacaaccac	tgtcagccac	aatacaacta	tgccattcag	gatttcaatg	2820
acttttaaga	acaatagccc	ttcaggcggc	gaaacgaagt	gtgtcttctg	gaacttcagg	2880
cttgccaaca	acacaggggg	gtgggacagc	agtgggtgct	atgtagaaga	aggtgatggg	2940
gacaatgtca	cctgtatctg	tgaccaccta	acatcattct	ccatcctcat	gtcccctgac	3000
tccccagatc	ctagttctct	cctgggaata	ctcctggata	ttatttctta	tgttggggtg	3060
ggcttttcca	tcttgagctt	ggcagcctgt	ctagttgtgg Page	aagctgtggt 18	gtggaaatcg	3120

gtgaccaaga	accggacttc	ttatatgcgc	cacacctgca	tagtgaatat	cgctgcctcc	3180
cttctggtcg	ccaacacctg	gttcattgtg	gtcgctgcca	tccaggacaa	tcgctacata	3240
ctctgcaaga	cagcctgtgt	ggctgccacc	ttcttcatcc	acttcttcta	cctcagcgtc	3300
ttcttctgga	tgctgacact	gggcctcatg	ctgttctatc	gcctggtttt	cattctgcat	3360
gaaacaagca	ggtccactca	gaaagccatt	gccttctgtc	ttggctatgg	ctgcccactt	3420
gccatctcgg	tcatcacgct	gggagccacc	cagccccggg	aagtctatac	gaggaagaat	3480
gtctgttggc	tcaactggga	ggacaccaag	gccctgctgg	ctttcgccat	cccagcactg	3540
atcattgtgg	tggtgaacat	aaccatcact	attgtggtca	tcaccaagat	cctgaggcct	3600
tccattggag	acaagccatg	caagcaggag	aagagcagcc	tgtttcagat	cagcaagagc	3660
attggggtcc	tcacaccact	cttgggcctc	acttggggtt	ttggtctcac	cactgtgttc	3720
ccagggacca	accttgtgtt	ccatatcata	tttgccatcc	tcaatgtctt	ccagggatta	3780
ttcattttac	tctttggatg	cctctgggat	ctgaaggtac	aggaagcttt	gctgaataag	3840
ttttcattgt	cgagatggtc	ttcacagcac	tcaaagtcaa	catccctggg	ttcatccaca	3900
cctgtgtttt	ctatgagttc	tccaatatca	aggagattta	acaatttgtt	tggtaaaaca	3960
ggaacgtata	atgtttccac	cccagaagca	accagctcat	ccctggaaaa	ctcatccagt	4020
gcttcttcgt	tgctcaac					4038

<210> 15

<211> 460

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Organism

<400> 15

Ile Leu Asn Ser Lys Ser Ile Ser Asn Trp Thr Phe Ile Arg Asp Arg $1 \hspace{1cm} 10 \hspace{1cm} 15$

Asn Ser Ser Tyr Ile Leu Leu His Ser Val Asn Ser Phe Ala Arg Arg 20 25 30

Leu Phe Ile Asp Asn Ile Pro Val Asp Ile Ser Asp Val Phe Ile His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Met Gly Thr Thr Ile Ser Gly Asp Asn Ile Gly Lys Asn Phe Thr 50 55 60

Phe Ser Met Arg Ile Asn Asp Thr Ser Asn Glu Val Thr Gly Arg Val 65 70 75 80

Leu Ile Ser Arg Asp Glu Leu Arg Lys Val Pro Ser Pro Ser Gln Val 85 90 95 Ile Ser Ile Ala Phe Pro Thr Ile Gly Ala Ile Leu Glu Ala Ser Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$ Leu Glu Asn Val Thr Val Asn Gly Leu Val Leu Ser Ala Ile Leu Pro Lys Glu Leu Lys Arg Ile Ser Leu Ile Phe Glu Lys Ile Ser Lys Ser 130 135 140 Glu Glu Arg Arg Thr Gln Cys Val Gly Trp His Ser Val Glu Asn Arg 145 150 155 160 Trp Asp Gln Gln Ala Cys Lys Met Ile Gln Glu Asn Ser Gln Gln Ala Val Cys Lys Cys Arg Pro Ser Lys Leu Phe Thr Ser Phe Ser Ile Leu 180 185 190 Met Ser Pro His Ile Leu Glu Ser Leu Ile Leu Thr Tyr Ile Thr Tyr 195 200 205 Val Gly Leu Gly Ile Ser Ile Cys Ser Leu Ile Leu Cys Leu Ser Ile 210 215 220 Glu Val Leu Val Trp Ser Gln Val Thr Lys Thr Glu Ile Thr Tyr Leu 225 230 235 240 Arg His Val Cys Ile Val Asn Ile Ala Ala Thr Leu Leu Met Ala Asp 245 250 255 Val Trp Phe Ile Val Ala Ser Phe Leu Ser Gly Pro Ile Thr His His 260 265 270 Lys Gly Cys Val Ala Ala Thr Phe Phe Val His Phe Phe Tyr Leu Ser 275 280 285 Val Phe Phe Trp Met Leu Ala Lys Ala Leu Leu Ile Leu Tyr Gly Ile Met Ile Val Phe His Thr Leu Pro Lys Ser Val Leu Val Ala Ser Leu 305 Phe Ser Val Gly Tyr Gly Cys Pro Leu Ala Ile Ala Ala Ile Thr Val 325 330 335 Page 20

Ala Ala Thr Glu Pro Gly Lys Gly Tyr Leu Arg Pro Glu Ile Cys Trp 340 345 350								
Leu Asn Trp Asp Met Thr Lys Ala Leu Leu Ala Phe Val Ile Pro Ala 355 360 365								
Leu Ala Ile Val Val Asn Leu Ile Thr Val Thr Leu Val Ile Val 370 375 380								
Lys Thr Gln Arg Ala Ala Ile Gly Asn Ser Met Phe Gln Glu Val Arg 385 390 395 400								
Ala Ile Val Arg Ile Ser Lys Asn Ile Ala Ile Leu Thr Pro Leu Leu 405 410 415								
Gly Leu Thr Trp Gly Phe Gly Val Ala Thr Val Ile Asp Asp Arg Ser 420 425 430								
Leu Ala Phe His Ile Ile Phe Ser Leu Leu Asn Ala Phe Gln Phe Phe 435 440 445								
Ile Leu Val Phe Gly Thr Ile Leu Asp Pro Lys Val 450 455 460								
<210> 16 <211> 1383 <212> DNA <213> Artificial Sequence								
<pre><220> <223> Synthetic Organism</pre>								
<400> 16 attcttaaca gcaaaagcat ctccaactgg actttcattc gtgacagaaa cagcagctat	60							
atcctgctac attcagtcaa ctcctttgca agaaggctat tcatagataa catccctgtt	120							
gacatatcag atgtcttcat tcatactatg ggcaccacca tatctggaga taacattgga	180							
aaaaatttca ctttttctat gagaattaat gacaccagca atgaagtcac tgggagagtg	240							
ttgatcagca gagatgaact tcggaaggtg ccttcccctt ctcaggtcat cagcattgca	300							
tttccaacta ttggggctat tttggaagcc agtcttttgg aaaatgttac tgtaaatggg	360							
cttgtcctgt ctgccatttt gcccaaggaa cttaaaagaa tctcactgat ttttgaaaag	420							
atcagcaagt cagaggagag gaggacacag tgtgttggct ggcactctgt ggagaacaga	480							
atcagcaagt cagaggagag gaggacacag tgtgttggct ggcactctgt ggagaacaga tgggaccagc aggcctgcaa aatgattcaa gaaaactccc agcaagctgt ttgcaaatgt	480 540 600							

ctgattctga cttacatcac atatgtaggc ctgggcattt ctatttgcag cctgatcctt								
tgcttgtcca ttgaggtcct agtctggagc caagtgacaa agacagagat cacctattta								
cgccatgtgt gcattgttaa cattgcagcc actttgctga tggcagatgt gtggttcatt								
gtggcttcct ttcttagtgg cccaataaca caccacaagg gatgtgtggc agccacattt								
tttgttcatt tcttttacct ttctgtattt ttctggatgc ttgccaaggc actccttatc								
ctctatggaa tcatgattgt tttccatacc ttgcccaagt cagtcctggt ggcatctctg								
ttttcagtgg gctatggatg ccctttggcc attgctgcca tcactgttgc tgccactgaa								
cctggcaaag gctatctacg acctgagatc tgctggctca actgggacat gaccaaagcc								
ctcctggcct tcgtgatccc agctttggcc atcgtggtag taaacctgat cacagtcaca								
ctggtgattg tcaagaccca gcgagctgcc attggcaatt ccatgttcca ggaagtgaga								
gccattgtga gaatcagcaa gaacatcgcc atcctcacac cacttctggg actgacctgg								
ggatttggag tagccactgt catcgatgac agatccctgg ccttccacat tatcttctcc								
ctgctcaatg cattccaggg tttcttcatc ctagtgtttg gaaccatcct ggatccaaag								
gta								
<210> 17 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Organism								
<400> 17								
Gly Thr Thr Gly Asp Trp Ser Ser Glu Gly Cys Ser Thr Glu Val Arg 1 10 15								
Pro Glu Gly Thr Val Cys Cys Cys Asp His Leu Thr Phe Phe Ala Leu 20 25 30								
Leu Leu Pro Thr Leu Asp Gln Ser Thr Val His Ile Leu Thr Arg Ile 35 40 45								
35 40 45 Ser Gln Ala Gly Cys Gly Val Ser Met Ile Phe Leu Ala Phe Thr Ile								

3379.1.ST25.txt Asn Leu Ala Phe Leu Val Asn Val Gly Ser Gly Ser Lys Gly Ser Asp 100 105 110

Ala Ala Cys Trp Ala Arg Gly Ala Val Phe His Tyr Phe Leu Leu Cys 115 120 125

Ala Phe Thr Trp Met Gly Leu Glu Ala Phe His Leu Tyr Leu Leu Ala 130 135 140

Val Arg Val Phe Asn Thr Tyr Phe Gly His Tyr Phe Leu Lys Leu Ser 145 150 155 160

Leu Val Gly Trp Gly Leu Pro Ala Leu Met Val Ile Gly Thr Gly Ser 165 170 175

Ala Asn Ser Tyr Gly Leu Tyr Thr Ile Arg Asp Arg Glu Asn Arg Thr 180 185 190

Ser Leu Glu Leu Cys Trp Phe Arg Glu Gly Thr Thr Met Tyr Ala Leu 195 200 205

Tyr Ile Thr Val His Gly Tyr Phe Leu Ile Thr Phe Leu Phe Gly Met 210 215 220

Val Val Leu Ala Leu Val Val Trp Lys Ile Phe Thr Leu Ser Arg Ala 225 230 235 240

Thr Ala Val Lys Glu Arg Gly Lys Asn Arg Lys Lys Val Leu Thr Leu 245 250 255

Leu Gly Leu Ser Ser Leu Val Gly Val Thr Trp Gly Leu Ala Ile Phe 260 265 270

Thr Pro Leu Gly Leu Ser Thr Val Tyr Ile Phe Ala Leu Phe Asn Ser 275 280 285

Leu Gln Val Asp Phe Tyr Ile Leu Ile Phe Tyr 290 295

<210> 18

<211> 900

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Organism

<400> 18

gggaccactg gagactggtc ttctgagggc tgctccacgg aggtcagacc tgaggggacc

gtgtgctgct	gtgaccacct	gacctttttc	gccctgctcc	tgagacccac	cttggaccag	120
tccacggtgc	atatcctcac	acgcatctcc	caggcgggct	gtggggtctc	catgatcttc	180
ctggccttca	ccattattct	ttatgccttt	ctgaggcttt	cccgggagag	gttcaagtca	240
gaagatgccc	caaagatcca	cgtggccctg	ggtggcagcc	tgttcctcct	gaatctggcc	300
ttcttggtca	atgtggggag	tggctcaaag	gggtctgatg	ctgcctgctg	ggcccggggg	360
gctgtcttcc	actacttcct	gctctgtgcc	ttcacctgga	tgggccttga	agccttccac	420
ctctacctgc	tcgctgtcag	ggtcttcaac	acctacttcg	ggcactactt	cctgaagctg	480
agcctggtgg	gctggggcct	gcccgccctg	atggtcatcg	gcactgggag	tgccaacagc	540
tacggcctct	acaccatccg	tgatagggag	aaccgcacct	ctctggagct	atgctggttc	600
cgtgaaggga	caaccatgta	cgccctctat	atcaccgtcc	acggctactt	cctcatcacc	660
ttcctctttg	gcatggtggt	cctggccctg	gtggtctgga	agatcttcac	cctgtcccgt	720
gctacagcgg	tcaaggagcg	ggggaagaac	cggaagaagg	tgctcaccct	gctgggcctc	780
tcgagcctgg	tgggtgtgac	atgggggttg	gccatcttca	ccccgttggg	cctctccacc	840
gtctacatct	ttgcactttt	caactccttg	caagttgatt	tttacatatt	gatcttctat	900

<210> 19

<211> 468

<212> PRT <213> Artificial Sequence

<220>

<223> Synthetic Organism

<220>

<221> <222> misc_feature (370)..(370)

<223> Xaa can be any naturally occurring amino acid

<400> 19

Asn His Ile Leu Asp Thr Ala Ala Ile Ser Asn Trp Ala Phe Ile Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asn Lys Asn Ala Ser Ser Asp Leu Leu Gln Ser Val Asn Leu Phe Ala

Arg Gln Leu His Ile His Asn Asn Ser Glu Asn Ile Val Asn Glu Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Phe Ile Gln Thr Lys Gly Phe His Ile Asn His Asn Thr Ser Glu Lys

Ser Leu Asn Phe Ser Met Ser Met Asn Asn Thr Thr Glu Asp Ile Leu 70 75 Page 24

Gly Met Val Gln Ile Pro Arg Gln Glu Leu Arg Lys Leu Trp Pro Asn Ala Ser Gln Ala Ile Ser Ile Ala Phe Pro Thr Leu Gly Ala Ile Leu Arg Glu Ala His Leu Gln Asn Val Ser Leu Pro Arg Gln Val Asn Gly Leu Val Leu Ser Val Val Leu Pro Glu Arg Leu Gln Glu Ile Ile Leu 130 Thr Phe Glu Lys Ile Asn Lys Thr Arg Asn Ala Arg Ala Gln Cys Val Gly Trp His Ser Lys Lys Arg Arg Trp Asp Glu Lys Ala Cys Gln Met 165 170 175 Met Leu Asp Ile Arg Asn Glu Val Lys Cys Arg Cys Asn Tyr Thr Ser 180 185 190 Val Val Met Ser Phe Ser Ile Leu Met Ser Ser Lys Ser Met Thr Asp Lys Val Leu Asp Tyr Ile Thr Cys Ile Gly Leu Ser Val Ser Ile Leu Ser Leu Val Leu Cys Leu Ile Ile Glu Ala Thr Val Trp Ser Arg Val 225 230 240 Val Val Thr Glu Ile Ser Tyr Met Arg His Val Cys Ile Val Asn Ile 245 250 255 Ala Val Ser Leu Leu Thr Ala Asn Val Trp Phe Ile Ile Gly Ser His 260 265 270 260 Phe Asn Ile Lys Ala Gln Asp Tyr Asn Met Cys Val Ala Val Thr Phe Phe Ser His Phe Phe Tyr Leu Ser Leu Phe Phe Trp Met Leu Phe Lys Ala Leu Leu Ile Ile Tyr Gly Ile Leu Val Ile Phe Arg Arg Met Met Lys Ser Arg Met Met Val Ile Gly Phe Ala Ile Gly Tyr Gly Cys Pro Page 25

Leu Ile Ile Ala Val Thr Thr Val Ala Ile Thr Glu Pro Glu Lys Gly 340 345 350								
Tyr Ile Arg Pro Glu Ala Cys Trp Leu Asn Trp Asp Asn Thr Lys Ala 355 360 365								
Leu Xaa Ala Phe Ala Ile Pro Ala Phe Val Ile Val Ala Val Asn Leu 370 380								
Ile Val Val Leu Val Val Ala Val Asn Thr Gln Arg Pro Ser Ile Gly 385 390 395 400								
Ser Ser Lys Ser Gln Asp Val Val Ile Ile Met Arg Ile Ser Lys Asn 405 410 415								
Val Ala Ile Leu Thr Pro Leu Leu Gly Leu Thr Trp Gly Phe Gly Ile 420 425 430								
Ala Thr Leu Ile Glu Gly Thr Ser Leu Thr Phe His Ile Ile Phe Ala 435 440 445								
Leu Leu Asn Ala Phe Gln Phe Phe Ile Leu Leu Phe Gly Thr Ile Met 450 460								
Asp His Lys Val 465								
<210> 20 <211> 1407 <212> DNA <213> Artificial Sequence								
<220> <223> Synthetic Organism								
<400> 20 aaccacatcc tcgacacagc agccatttca aactgggctt tcattcccaa caaaaatgcc	60							
agctcggatt tgttgcagtc agtgaatttg tttgccagac aactccacat ccacaataat	120							
tctgagaaca ttgtgaatga actcttcatt cagacaaaag ggtttcacat caaccataat	180							
acctcagaga aaagcctcaa tttctccatg agcatgaaca ataccacaga agatatctta	240							
ggaatggtac agattcccag gcaagagcta aggaagctgt ggccaaatgc atcccaagcc	300							
attagcatag ctttcccaac cttgggggct atcctgagag aagcccactt gcaaaatgtg	360							
agtcttccca gacaggtaaa tggtctggtg ctatcagtgg ttttaccaga aaggttgcaa	420							
gaaatcatac tcaccttcga aaagatcaat aaaacccgca atgccagagc ccagtgtgtt Page 26	480							

ggctggcact	ccaagaaaag	gagatgggat	gagaaagcgt	gccaaatgat	gttggatatc	540
aggaacgaag	tgaaatgccg	ctgtaactac	accagtgtgg	tgatgtcttt	ttccattctc	600
atgtcctcca	aatcgatgac	cgacaaagtt	ctggactaca	tcacctgcat	tgggctcagc	660
gtctcaatcc	taagcttggt	tctttgcctg	atcattgaag	ccacagtgtg	gtcccgggtg	720
gttgtgacgg	agatatcata	catgcgtcac	gtgtgcatcg	tgaatatagc	agtgtccctt	780
ctgactgcca	atgtgtggtt	tatcataggc	tctcacttta	acattaaggc	ccaggactac	840
aacatgtgtg	ttgcagtgac	atttttcagc	cactttttct	acctctctct	gtttttctgg	900
atgctcttca	aagcattgct	catcatttat	ggaatattgg	tcattttccg	taggatgatg	960
aagtcccgaa	tgatggtcat	tggctttgcc	attggctatg	ggtgcccatt	gatcattgct	1020
gtcactacag	ttgctatcac	agagccagag	aaaggctaca	taagacctga	ggcctgttgg	1080
cttaactggg	acaataccaa	agccctttaa	gcatttgcca	tcccggcgtt	cgtcattgtg	1140
gctgtaaatc	tgattgtggt	tttggttgtt	gctgtcaaca	ctcagaggcc	ctctattggc	1200
agttccaagt	ctcaggatgt	ggtcataatt	atgaggatca	gcaaaaatgt	tgccatcctc	1260
actccactgc	tgggactgac	ctggggtttt	ggaatagcca	ctctcataga	aggcacttcc	1320
ttgacgttcc	atataatttt	tgccttgctc	aatgctttcc	agggttttt	catcctgctg	1380
tttggaacca	ttatggatca	caaggta				1407