

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS SINOP

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS

Lista de Exercícios 6 - Álgebra Linear

Larson, R. Elementos de álgebra linear: Tradução da 8^a edição norte-americana. São Paulo: Cengage, 2017.

Espaços vetoriais 4

Conjuntos geradores e independência linear

Combinações lineares Nos Exercícios 1-4, escreva cada vetor como uma combinação linear dos vetores em S (se possível).

1. $S = \{(2, -1, 3), (5, 0, 4)\}$

(a)
$$\mathbf{z} = (-1, -2, 2)$$

(a)
$$\mathbf{z} = (-1, -2, 2)$$
 (b) $\mathbf{v} = \left(8, -\frac{1}{4}, \frac{27}{4}\right)$ (c) $\mathbf{w} = (1, -8, 12)$ (d) $\mathbf{u} = (1, 1, -1)$

(c)
$$\mathbf{w} = (1, -8, 12)$$

(d)
$$\mathbf{u} = (1, 1, -1)$$

3.
$$S = \{(2,0,7), (2,4,5), (2,-12,13)\}$$

(a)
$$\mathbf{u} = (-1, 5, -6)$$
 (b) $\mathbf{v} = (-3, 15, 18)$ (c) $\mathbf{w} = (\frac{1}{3}, \frac{4}{3}, \frac{1}{2})$ (d) $\mathbf{z} = (2, 20, -3)$

(b)
$$\mathbf{v} = (-3, 15, 18)$$

(c)
$$\mathbf{w} = (\frac{1}{3}, \frac{4}{3}, \frac{1}{2})$$

(d)
$$\mathbf{z} = (2, 20, -3)$$

Combinações lineares Nos Exercícios 5-8, para as matrizes

$$A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} 0 & 5 \\ 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 5 \\ 1 & -2 \end{bmatrix}$$

em $M_{2,2}$, determine se a matriz dada é uma combinação linear de A e B.

5.
$$\begin{bmatrix} 6 & -19 \\ 10 & 7 \end{bmatrix}$$
 6.
$$\begin{bmatrix} 6 & 2 \\ 9 & 11 \end{bmatrix}$$
 7.
$$\begin{bmatrix} -2 & 23 \\ 0 & -9 \end{bmatrix}$$
 8.
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{6}. \begin{bmatrix} 6 & 2 \\ 9 & 11 \end{bmatrix}$$

7.
$$\begin{bmatrix} -2 & 23 \\ 0 & -9 \end{bmatrix}$$

$$8. \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Conjuntos geradores Nos Exercícios 9-18, determine se o conjunto S gera \mathbb{R}^2 .

11.
$$S = \{(5,0), (5,-4)\}$$
 12. $S = \{(2,0), (0,1)\}$ **13.** $S = \{(-3,5)\}$

12.
$$S = \{(2,0), (0,1)\}$$

13.
$$S = \{(-3, 5)\}$$

14.
$$S = \{(1,1)\}$$

15.
$$S = \{(-1, 2), (2, -4)\}$$
 16. $S = \{(0, 2), (1, 4)\}$

16.
$$S = \{(0,2), (1,4)\}$$

Conjuntos geradores Nos Exercícios 19-24, determine se o conjunto S gera \mathbb{R}^3 .

19.
$$S = \{(4,7,3), (-1,2,6), (2,-3,5)\}$$
 20. $S = \{(5,6,5), (2,1,-5), (0,-4,1)\}$

20.
$$S = \{(5, 6, 5), (2, 1, -5), (0, -4, 1)\}$$

21.
$$S = \{(-2, 5, 0), (4, 6, 3)\}$$

22.
$$S = \{(1,0,1), (1,1,0), (0,1,1)\}$$

25. Determine se o conjunto $S = \{1, x^2, 2 + x^2\}$ gera P_2 .

26. Determine se o conjunto
$$S = \{-2x + x^2, 8 + x^3, -x^2 + x^3, -4 + x^2\}$$
 gera P_3 .

