

TRABAJO FIN DE GRADO. GRADO EN CIENCIAS MATEMÁTICAS.

DEPARTAMENTO DE MATEMÁTICAS FUNDAMENTALES.

REPRESENTACIONES DE GRUPOS FINITOS.

Alumno:
Angel Blasco Muñoz

Tutor:
Dr. Javier Perez Alvarez

A Mateo, mi hijo,
por enseñarme que lo imposible solo tarda un poco mas.
A Begoña, mi mujer,
por toda la paciencia que tiene conmigo.
A Angel y Juliana, mis padres,
por todas las oportunidades que me han dado, incluso cuando no las he merecido.

Agradecimientos.

Aquí los agradecimientos.

Resumen

Este trabajo versa sobre los grupos finitos y sus representaciones. Es importante destacar que en todo el trabajo al referirnos a *grupo* nos referimos a un **conjunto finito** en el cual se definirá una operación que debe cumplir unos condicionantes, al igual que en los grupos algebraicos propiamente dichos. En los grupos finitos se deben cumplir y respetar las mismas propiedades que en los grupos en general.

Se introducirá el concepto de representación de un grupo finito, haciendo especial énfasis en el concepto de irreducibilidad, asi como en la teoría de caracteres para la determinación de todas las representaciones irreducibles de un grupo dado. Se definirá a su vez la matriz de caracteres y se calcularán las representaciones irreducibles de algunos grupos finitos.

Índice general

Ca	apitu	llos	Pagina
1.	Con	nceptos básicos.	3
	1.1.		3
	1.2.	Subgrupos	
	1.3.	Orden de un elemento.	
	1.4.	Grupos cíclicos.	7
	1.5.	Coclases, índice de un grupo y Teorema de Lagrange	7
	1.6.	Subgrupos normales. Grupo cociente	8
		1.6.1. Subgrupos normales	8
		1.6.2. Grupo cociente	9
	1.7.	Homomorfismos de grupos	10
		1.7.1. Teorema de Cayley	11
		1.7.2. Factorización de homomorfismos	11
		1.7.3. Teoremas de isomorfía	12
	1.8.	Teorema de estructura de los grupos abelianos finitos	13
	1.9.	Automorfismos de grupos	14
		1.9.1. Automorfismos interiores	14
		1.9.2. Acción de un grupo sobre un conjunto	15
		1.9.3. Teorema de Sylow	17
2.	Rep	presentaciones de grupos.	19
	2.1.	Representaciones de grupos	19
	2.2.	Representaciones equivalentes	
	2.3.	Núcleo de una representación	22
3.	Cap	pitulo	23

Introducción.

Hasta el siglo XIX no se tenía claro el concepto de grupo abstracto. Los comienzos llegaron de la mano de Gauss con varios grupos, pero hasta el año 1896 no se introdujo la Teoría de Representaciones en el mundo de las matemáticas. El gran pionero fue Georg Ferdinand Frobenious, quién se centró en el estudio de caracteres de grupos finitos (en particular, grupos no abelianos). Otros nombres a destacar son Hermann Weyl, Michael Artin e Isaai Schur, quienes desarrollaron importantes resultados posteriormente.

Durante el siglo XX se siguió profundizando en esta rama algebraica que consiste en la descripción de un grupo (en general, no necesariamente finito) como grupo concreto de transformaciones (o grupo de automorfismos) de un cierto objeto matemático, obteniendo de esta forma resultados muy significativos sobre cuerpos algebraicamente cerrados. Durante este siglo se han obtenido, a su vez, importantes resultados en las relaciones de ortogonalidad en los caracteres de grupos; estos resultados se extendieron a otros objetos y se usaron para definir las representaciones de álgebras definidas sobre un cuerpo k.

Por otra parte, esta teoría se aplica en distintos ámbitos de las matemáticas como por ejemplo en la teoria de códigos de corrección de errores y en combinatoria. Esta teoría también sirve como aplicación en otras ciencias como por ejemplo la cristalografia.

Capítulo 1

Conceptos básicos.

1.1. Grupos.

Comencemos por definir el concepto de grupo:

Definicion 1.1.1 Un grupo es un conjunto no vacio G en el que está definida una operación que toma dos elementos $a,b \in G$ y nos devuelve otro elemento $ab \in G$

$$G \times G \to G$$

que escribiremos

$$(a,b) \mapsto ab$$

tal que:

- 1. (ab)c = a(bc) para cada terna de elementos a, b y c de G. Se dice que la operación es asociativa.
- 2. Existe un elemento $u \in G$ tal que

$$ua = a = au$$

para todos los elementos a de G. A este elemento le llamaremos elemento neutro o elemento identidad.

3. Para cada elemento $a \in G$ existe $x \in G$ tal que

$$ax = u = xa$$

A este elemento le llamaremos inverso de a.

Diremos que ab es el producto de a por b.

Como ejemplos de grupos (infinitos) podemos citar los conjuntos $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ y \mathbb{C} con la suma usual. Otro ejemplo lo podemos tomar escogiendo un conjunto X no vacio compuesto por las aplicaciones $X \to X$ que son biyectivas, este es un grupo con la operación composición de aplicaciones.

Definicion 1.1.2 Se dice que un grupo G es abeliano si ab = ba para cada par de elementos $a, b \in G$.

Sobre los grupos abelianos es importante enunciar que todo grupo formado por dos elementos es abeliano, pues si u es el elemento neutro y $a \neq u$ es el elemento restante,

$$uu = uu$$
$$aa = aa$$
$$au = u = ua$$

Definicion 1.1.3 El número de elementos de un grupo G se llama orden de G y se denota como o(G). Si o(G) es finito, entonces se dice que G es un grupo finito.

1.2. Subgrupos.

En este apartado se definira el concepto de subgrupo, y como caracterizarlo, y se enunciarán dos importantes operaciones con subgrupos: la intersección de varios subgrupos y el producto de dos subgrupos.

Definicion 1.2.1 Un subconjunto no vacio H de un grupo G es un subgrupo de G si, con la misma operación de G, H es un grupo.

Proposicion 1.2.1 Podemos afirmar que un conjunto no vacio H es un subgrupo de G si y solo si:

- 1. $\forall x, y \in H \rightarrow xy \in H$
- 2. $1_G \in H$, siendo 1_G el elemento neutro de G
- 3. $\forall x \in H \to x^{-1} \in H$

La siguiente proposición puede ser muy util para caracterizar subgrupos:

Proposicion 1.2.2 Un subconjunto no vacio H es un subgrupo de G si y solo si:

$$\forall x, y \in H \to xy^{-1} \in H$$

Trivialmente se tiene que G es subgrupo de G y 1_G es también subgrupo de G. Estos subgrupos se llaman impropios.

Intersección de subgrupos.

Proposicion 1.2.3 La intersección de una cantidad cualquiera de subgrupos de G, es otro subgrupo.

Demostracion: Sea $\Lambda \neq \emptyset$ un conjunto cualquiera y sea $\{H_{\lambda}\}_{{\lambda} \in \Lambda}$ una familia de subgrupos de G. Entonces,

$$x, y \in \cap_{\lambda \in \Lambda} H_{\lambda} \to x, y \in H_{\lambda}, \forall \lambda \in \Lambda \to$$
$$\to xy^{-1} \in H_{\lambda}, \forall \lambda \in \Lambda \to xy^{-1} \in \cap_{\lambda \in \Lambda} H_{\lambda}.$$

En particular, dados H, K subgrupos de G, se tendra que $H \cap K$ es subgrupo de G.

Producto de dos subgrupos.

Dados dos subconjuntos no vacíos H y K de un grupo G, el conjunto

$$HK = \{g = xu \mid x \in H, u \in K\}$$

de todos los resultados de operar un elemento de H con otro de K, se nombra como el producto de H por K.

Suponiendo que H y K sean subgrupos, en general HK no va a ser otro subgrupo.

Vamos a desarrollar una de las condiciones suficientes para que HK sea subgrupo, y vamos a señalar una propiedad que poseé HK en caso de ser subgrupo.

Proposicion 1.2.4 Si H y K son subgrupos de un grupo abeliano G, se cumple que HK es otro subgrupo de G.

Demostracion: Sea g=xu, h=yv, donde $x,y\in H$ y $u,v\in K,$ dos elementos de HK. Entonces, aplicando las propiedades asociativa y conmutativa, tenemos

$$gh^{-1} = (xu)(yv)^{-1} = (xu)(v^{-1}y^{-1}) = (xy^{-1})(uv^{-1}) \in HK$$

porque, al tratarse de subgrupos, sabemos que

$$x, y \in H \to xy^{-1} \in H, uv \in K \to uv^{-1} \in K$$

A su vez, la relación $gh^{-1} \in HK$ implica que HK es subgrupo.

Proposicion 1.2.5 Supongamos dos subgrupos H y K de G tales que HK también sea subgrupo. Sea L un tercer subgrupo. Entonces,

- 1. $H \cup K \subseteq HK$.
- 2. $H \cup K \subseteq L \rightarrow HK \subseteq L$.

Demostracion:

1. Todo elemento $x \in H$ se puede escribir de la forma xe, con $e \in K$ (recordemos que e representa el elemento neutro), luego $x \in HK$. Igualmente, si $u \in K$ escribiendo u = eu con $e \in H$, vemos que $u \in HK$. Así HK contiene a H y contiene a K, y, por ello,

$$H \cup K \subseteq HK$$

2. Sea L un subgrupo tal que $H \cup K \subseteq L$. Dado un elemento $g \in HK$, se tendrá g = xu, donde $x \in H$ y $u \in K$. Como los dos factores pertenecen a $H \cup K$, pertenecerán a L. Siendo L subgrupo, su producto también. Así queda probado que $HK \subseteq L$.

Esta proposición significa que si HK es subgrupo, tiene la propiedad de ser el mínimo subgrupo (para la relación de contenido) que contiene a la unión.

Subgrupo generado.

Definicion 1.2.2 Si S es un subconjunto no vacío de un grupo G, el conjunto

$$\langle S \rangle = \{ s_1^{h_1} \dots s_n^{h_n} : n \in \mathbb{N}, s_i \in S, h_i \in \mathbb{Z}, 1 \le i \le n \}$$

es un subgrupo de G que contiene a S, llamado subgrupo generado por S.

Un caso particular y muy importante es aquel en que $S = \{a\}$ para algún $a \in G$. Obviamente

$$\langle a \rangle = \{ a^k : k \in \mathbb{Z} \}$$

y se le llama subgrupo generado por a.

Definicion 1.2.3 Un subconjunto no vacío S de un grupo G se llama sistema generador de G si $G = \langle S \rangle$

Conjunto conjugado.

Si S es un subconjunto no vacío de un grupo G y $a \in G$, se llama conjugado de S por a al conjunto

$$S^a = \{ a^{-1} x a : x \in S \}$$

Este conjunto tiene las siguientes propiedades que pasaremos a enunciar:

- 1. $S \to S^a : x \mapsto a^{-1}xa$ es biyectiva.
- 2. $(S^a)^b = S^{ab}$ para cualesquiera $a, b \in G$.
- 3. $S = S^1$
- 4. Si S es subgrupo de G, tambien lo es S^a .
- 5. Si $S \subset T$, entonces $S^a \subset T^a$.

Normalizador.

Si S es un subconjunto no vacío de un grupo G, se llama normalizador de S en G a

$$N_G(S) = \{ a \in G : S^a = S \}$$

que es un subgrupo de G.

1.3. Orden de un elemento.

Sea a un elemento de un grupo G de orden g y consideremos la sucesión de potencias de a

$$1_G, a, a^2, a^3, \dots$$

todas las cuales son, por supuesto, elementos de G. Como G es finito, estos elementos no pueden ser todos distintos, debemos tener la igualdad:

$$a^k = a^l$$

en la que podemos suponer k > l, por ejemplo. Por consiguiente,

$$a^{k-l} = 1_C$$

lo que demuestra que en un grupo finito cada elemento tiene alguna potencia igual al elemento unidad.

Definicion 1.3.1 El menor entero positivo h, para el que a^h es igual al elemento unidad se llama orden de a.

De modo que si h es el orden de a entonces $a^h = 1_G$, mientras que $a^x \neq 1_G$ cuando 0 < x < h. Ademas, si m es multiplo de h, es decir m = hq, tenemos que:

$$a^m = (a^h)^q = 1_G^q = 1_G$$

6

Si a es de orden h, entonces $a^m = 1_G$ si y solo si, m es multiplo de h.

Las siguientes propiedades, referentes al orden de un elemento, son de uso frecuente:

- 1. El único elemento de orden 1 es el elemnto unidad.
- 2. Los elementos $a y a^{-1}$ tienen siempre el mismo orden.
- 3. Si $b = p^{-1}ap$, en donde p es un elemento arbitrario, entonces a y b son del mismo orden. Porque

$$b^2 = (p^{-1}ap)(p^{-1}ap) = p^{-1}a1_G ap = p^{-1}a^2 p$$

y, en general,

$$b^k = p^{-1}a^k p$$

de modo que si $a^k = 1_G$, tenemos $b^k = p^{-1}1_G p = 1_G$, y reciprocamente.

1.4. Grupos cíclicos.

Definicion 1.4.1 Se llama grupo cíclico aquel cuyos elementos pueden expresarse por las potencias de uno solo de ellos.

La forma general de un grupo cíclico G de orden c es:

$$G = \{1_G, a, a^2, \dots, a^{c-1}\}\$$

en donde c es el menor entero positivo que verifica la igualdad $a^c = 1_G$. Y decimos que a genera el grupo G o que es el elemento generador del grupo.

El orden de un grupo cíclico es igual al del elemento generador; reciprocamente, si un grupo de orden c contiene un elemento también de orden c, entonces el grupo es cíclico. El elemento generador no está unívocamente determinado; en efecto, si e es un entero cualquiera primo con c y 0 < e < c, entonces se puede tomar a^e por elemento generador del grupo.

Todos los grupos cíclicos del mismo orden son isomorfos como se ve haciendo que se correspondan sus elementos generadores; en efecto, existe un grupo cíclico (abstracto) y solo uno para cada orden dado.

Proposicion 1.4.1 Todos los grupos cíclicos son abelianos.

Demostracion: Sea $G = \langle a \rangle$ un grupo cíclico. Dados $x, y \in G$, seran $x = a^k$, $y = a^l$, para ciertos enteros k y l. Por lo tanto

$$xy = a^{k+l} = yx$$

lo que implica que G es abeliano.

1.5. Coclases, índice de un grupo y Teorema de Lagrange.

Definicion 1.5.1 Sea H un subgrupo de un grupo G, y sea x un elemento de G. El subconjunto de G formado por los productos hx ($h \in H$) se denomina coclase derecha de H en G y se denota por Hx. La coclase izquierda de H en G, xH, se define de forma similar.

Definicion 1.5.2 El número de las distintas coclases derechas de H se llama índice de H en G y se denota por [G:H]

Para cada subconjunto S de G, S^{-1} será el conjunto de los elementos inversos de S:

$$S^{-1} = \{s^{-1} : s \in S\}$$

Si S es una coclase derecha de H, entonces S=Hx para algún $x\in G$. La inversa de un elemento de hx de S es $x^{-1}h^{-1}$, así que S^{-1} coincide con la coclase izquierda $x^{-1}H$. De igual forma $(yH)^{-1}=Hy^{-1}$. Así que, el número de las distintas coclases derechas de H es igual al numero de las distintas coclases izquierdas de H.

Podriamos haber definido el índice usando las coclases izquierdas de igual manera.

A continuación se enunciarán las propiedades básicas de las coclases: Sea H un subgrupo de G,

- 1. Todo elemento $g \in G$ esta contenido en una y solo una coclase de H. Esta coclase es Hg.
- 2. Dos coclases distintas de H no tienen elementos comunes.
- 3. El grupo G esta particionado en una unión disjunta de coclases de H.
- 4. La función $h \to hx$ tiene una correspondencia uno-a-uno entre los elementos del conjunto H y los de la coclase Hx. Al tratarse H de un subgrupo finito cada coclase de H tiene el mismo número de elementos que H.
- 5. Dos elementos $x, y \in G$ están contenidos en la misma coclase de H si y solo si $xy^{-1} \in H$.

Pasemos ahora a enunciar y demostrar el Teorema de Lagrange:

Teorema 1.5.1 (Teorema de Lagrange) Sean G un grupo y H un subgrupo de G, tenemos que $o(G) = o(H) \cdot [G:H]$. En particular, el orden de H y el indice de H en G dividen al orden de G.

Demostracion: Utilizando las propiedades básicas de las coclases, en concreto por 3) y 4), el conjunto G está particionado en una unión disjunta de [G:H] conjuntos que contienen, cada uno, o(H) elementos. Contando el número de elementos en G, obtenemos que:

$$o(G) = o(H) \cdot [G:H].$$

El teorema de Lagrange implica los siguientes corolários que no demostraremos:

Corolario 1.5.1 El orden de un elemento de un grupo finito G divide a o(G).

Corolario 1.5.2 Si el orden de un grupo finito G es n, entonces todo elemento $x \in G$ satisface $x^n = 1_G$.

1.6. Subgrupos normales. Grupo cociente.

1.6.1. Subgrupos normales.

Dado un grupo G y un subgrupo H de G, formaremos un nuevo grupo cuyos elementos son las clases laterales izquierdas de H en G. Estos subgrupos los denominaremos subgrupos normales y su definición es:

Definicion 1.6.1 Sea G un grupo. Un subgrupo H de G es un subgrupo normal si

$$ghg^{-1} \in H, \forall g \in G, h \in H$$

Si H es un subgrupo normal de G se representa como $H \triangleleft G$.

Teorema 1.6.1 Si G es un grupo abeliano y H es un subgrupo de G, entonces H es un subgrupo normal de G.

Demostracion: Como G es abeliano, $ghg^{-1} = hgg^{-1} = h \in H$ para todo $g \in G$ y todo $h \in H$, luego $H \triangleleft G$.

Sea G un grupo. Sea $H \triangleleft G$. Recordemos que, para $g \in G$, las clases laterales izquierda y derecha son, respectivamente,

$$gH = \{gh : h \in H\}$$

$$Hg = \{hg : h \in H\}$$

Para un subgrupo normal estas clases son iguales pues si $h \in H$, entonces $ghg^{-1} \in H$, luego $ghg^{-1} = h_1$ para algún $h_1 \in H$, luego $gh = h_1g$. Esto muestra que gH = Hg. Notar también que gH = Hg significa que para cada $h \in H$ hay $h_1 \in H$ tal que $gh = gh_1$. Lo anterior no ocurre cuando H no es subgrupo normal.

1.6.2. Grupo cociente.

Sea $H \triangleleft G$ (no usamos un símbolo especial para la operación). Denotamos por G/H el conjunto de las clases laterales izquierdas de H en G, es decir

$$G/H = \{gH : g \in G\}$$

Observar que gH=Hg pues H es un subgrupo normal. Definiremos una operación en este conjunto de clases.

Teorema 1.6.2 Sea $H \triangleleft G$. Dados $a, b \in G$ sea

$$(aH)(bH) = (ab)H$$

Esto define una operación en G/H.

Demostracion: Si aH = cH y bH = dH, queremos probar que (ab)H = (cd)H. Como $a \in aH = cH$, entonces $a = ch_1$, algún $h_1 \in H$. De $b \in bH = dH$ obtenemos $b = dh_2$, algún $h_2 \in H$. Ahora $ab = ch_1dh_2$ y ya que dH = Hd, hay $h_3 \in H$ tal que $h_1d = dh_3$, luego $ch_1dh_2 = cdh_3h_2 = cdh_4$, donde $h_4 = h_3h_2$. Tenemos entonces que $ab = cdh_4$ y por lo tanto $(ab)H = (cdh_4)H = (cd)H$.

Sea $H \triangleleft G$. El conjunto G/H es un grupo con la operación

$$(aH)(bH) = (ab)H$$

1.7. Homomorfismos de grupos.

Definicion 1.7.1 Sean G_1 y G_2 grupos, y sea $f: G_1 \to G_2$ una aplicación entre ellos. Se dice que f es un homomorfismo de grupos si

$$f(xy) = f(x)f(y)$$

Un homomorfismo inyectivo recibe el nombre de monomorfismo; un homomorfismo suprayectivo recibe el nombre de epimorfismo; un homomorfismo biyectivo recibe el nombre de isomorfismo; y un isomorfismo de G en si mismo es un automorfismo.

Si existe un isomorfismo entre G_1 y G_2 se dice que ambos grupos son isomorfos.

Proposicion 1.7.1 Sean G y H grupos, y sea $f: G \to H$ un homomorfismo entre ellos. Entonces, para todo $x, y \in G$

$$f(xy^{-1}) = f(x)f(y)^{-1}$$

$$f(y^{-1}x) = f(y)^{-1}f(x)$$

Demostracion: Utilizando que f es un homomorfismo,

$$f(xy^{-1})f(y) = f((xy^{-1})y) = f(x)$$

y basta componer con $f(y)^{-1}$ por la derecha. La demostración de la segunda igualdad es análoga.

Proposicion 1.7.2 Sean G y H grupos, y sea $f: G \to H$ un homomorfismo entre ellos. Entonces,

$$1. f(1_G) = 1_H$$
$$2. f(g^{-1}) = f(g)^{-1}, \forall g \in G$$

Demostracion: Para 1) basta aplicar la proposición anterior al caso x = y. Para 2) basta aplicar la proposición anterior al caso $x = 1_G$, y = g.

Definicion 1.7.2 Sean G y H grupos, y sea $f:G \to H$ un homomorfismo entre ellos. Se llaman núcleo e imagen de f a los conjuntos:

$$ker f = \{g \in G : f(g) = 1_G\}$$

$$\operatorname{im} f = \{h \in H \, : \, \exists g \in G \, : \, f(g) = h\}$$

Es importante indicar que el nucleo de f es un subgrupo de G, mientras que la imagen de f es un subgrupo de H.

Proposicion 1.7.3 Sean G y H grupos, y $f: G \to H$ un homomorfismo. Si G es abeliano, f(G) es abeliano.

Demostracion:

$$f(x)f(y) = f(xy) = f(yx) = f(y)f(x)$$

1.7.1. Teorema de Cayley.

Este teorema afirma que todo grupo finito es isomorfo a un subgrupo de un grupo S_n para algún natural n. Primero a cada elemento de un grupo G le asociaremos una función biyectiva.

Teorema 1.7.1 Dado un conjunto no vacío X, el conjunto S_x de todas las funciones biyectivas de X en X es un grupo con la operación \circ de composición de funciones.

La demostración es trivial usando las condiciones que debe cumplir un grupo.

Teorema 1.7.2 Dado un grupo G,

- 1. Para cada $g \in G$ la función $\alpha_q : G \to G$, $\alpha_q(x) = gx$ es biyectiva.
- 2. La función inversa de α_g es α_g^{-1} .
- 3. Dados $a, b \in G$, $\alpha_a \circ \alpha_b = f_{ab}$.
- 4. El conjunto $\{\alpha_q : g \in G\}$ es un grupo de S_G con la operación composición.

Teorema 1.7.3 (Teorema de Cayley.) Si G es un grupo finito de orden n, entonces G es isomorfo a un subgrupo del grupo simétrico S_n .

Demostracion: La función $\alpha: G \to S_G$, $\alpha(g) = \alpha_g$ es un homomorfismo. Si $g \in \ker \alpha$, entonces $\alpha(g)$ es la identidad de S_G , luego $\alpha_g(x) = gx = x$, todo $x \in G$, de donde $g = 1_G$. Así α es inyectiva y G es isomorfo con $\alpha(G)$, que es un subgrupo de S_G .

Ahora si G es un grupo de orden n veremos que S_G es isomorfo con S_n . Si o(G) = n, entonces existe una función biyectiva $\beta: G \to N_n$ y también $\beta^{-1}: N_n \to G$ es biyectiva. Dado $\sigma \in S_n$, la función $\beta^{-1} \circ \sigma \circ \beta: G \to G$ es una biyección y la función $S_n \to S_G: \sigma \mapsto \beta^{-1} \circ \sigma \circ \beta$ es un isomorfismo.

1.7.2. Factorización de homomorfismos.

Sean G y G' grupos arbitrarios y $\varphi:G\to G'$ un homomorfismo de grupos. Sea H un subgrupo de $ker(\varphi)$; observar que H es subgrupo normal de G porque el núcleo es normal. Sea $\pi:G\to G/H$ la proyección al cociente. Entonces existe un único homomorfismo de grupos $\overline{\varphi}:G/H\to G'$ que hace conmutar el siguiente diagrama:

Es decir, para todo $x \in G$ dicho homomorfismo cumple que $\varphi(x) = \overline{\varphi}(\pi(x))$.

Demostracion: Existencia. Sea $\varphi: G/H \to G'$ la aplicación dada por $\overline{x} \to \varphi(x)$. Está bién definida porque si $\overline{x} = \overline{y}$, entonces $1 = \overline{x}\overline{y}^{-1}$, con lo cual $xy^{-1} \in H \subseteq \ker(\varphi)$. Por lo tanto $\varphi(xy^{-1}) = 1$, y entonces $\varphi(x) = \varphi(y)$. Además, define un homomorfismo porque $\overline{\varphi}(\overline{x}\overline{y}) = \varphi(xy) = \varphi(x)\varphi(y) = \overline{\varphi}(\overline{x})\overline{\varphi}(\overline{y})$. Para ver que hace conmutar el diagrama, notar que para todo $x \in G$ se cumple $\varphi(x) = \overline{\varphi}(\overline{x}) = \overline{\varphi}(\pi(x))$.

Unicidad. Para la unicidad, basta observar que la manera en que fue definido el homomorfismo $\overline{\varphi}$ es la única manera de definirlo de tal manera que conmute con el diagrama. Es decir, si se tiene un homomorfismo ψ que conmuta con el diagrama, $\psi(\overline{x}) = \varphi(x)$ para todo $x \in G$, y entonces $\psi = \overline{\varphi}$.

1.7.3. Teoremas de isomorfía.

Primer teorema de isomorfía.

Teorema 1.7.4 Sean G y G' grupos arbitrarios y sea $\varphi: G \to G'$ Un homomorfismo de grupos. Entonces $G/\ker(\varphi) \simeq im(\varphi)$.

El simbolo \simeq indica que los dos elementos son isomorfos.

Demostracion: Usando la factorización de homomorfismos de grupos sobre el núcleo $ker(\varphi)$, se tiene que existe un único homomorfismo $\overline{\varphi}: G/ker(\varphi) \to G'$ tal que $\varphi = \overline{\varphi} \cdot \pi$.

Si consideramos dicho homomorfismo $\overline{\varphi}$ restringiendo su dominio a $im(\varphi)$ tendriamos un epimorfismo, porque por definición de la imagen, para todo $y \in im(\varphi)$ existe un $x \in G$ tal que $\varphi(x) = y$, y por lo tanto $\overline{\varphi}(\overline{x}) = y$.

Ademas, es un monomorfismo, porque $\overline{\varphi}(\overline{x}) = \varphi(x)$. Entonces si, $\overline{\varphi}(x) = 0$ se tiene que $x \in ker(\varphi)$, con lo cual $\overline{x} = 0$.

Así,
$$\overline{\varphi}: G/ker(\varphi) \to im(\varphi)$$
 resulta un isomorfismo.

Segundo teorema de isomorfía.

Teorema 1.7.5 Sean N y H subgrupos normales de un grupo G, tales que $N \subset H$. Entonces $H/N \triangleleft G/N$ y

$$(G/N)/(H/N) \simeq G/H$$

Demostracion: Consideramos la aplicación

$$f: G/N \to G/H: aN \mapsto aH$$

que sabemos que esta bien definida, pues si aN=bN, entonces $a^{-1}b\in N\subset H,$ por lo que aH=bH.

Como f((aN)(bN)) = f(abN) = abH = (aH)(bH) = f(aN)f(bN), f es homomorfismo.

Cada $aH \in G/H$ es aH = f(aN), luego f es sobreyectiva. Finalmente $aN \in ker(f)$ si y solo si aH = f(aN) = H, esto es,

$$ker(f) = \{aN \in G/N : a \in H\} = H/N$$

Como f es un homomorfismo de gupos, aplicando el primer teorema de isomorfia tenemos que

$$(G/N)/ker(f) \simeq im(f)$$

esto es,

$$(G/N)/(H/N) \simeq G/H$$

Tercer teorema de isomorfía.

Teorema 1.7.6 Sean G un grupo y S, T subgrupos de G. Sea S un subgrupo normal de G. Entonces se tiene que $ST/S = T/(S \cap T)$.

Demostracion: Para empezar, se debe verificar que las expresiones del enunciado están bién definidas. Por un lado ST es subgrupo de G porque S es normal en G. Teniendo esto en cuenta se cumple también que S es subgrupo normal de ST, por que dado cualquier $x \in ST$, en particular $x \in G$, y por lo tanto $xSx^{-1} = S$. Por último $S \cap T$ es subgrupo normal de T. Para

ello, dados $t \in T$ y $s \in S \cap T$, se debe ver que $tst^{-1} \in S \cap T$. En efecto, $tst^{-1} = S$ porque S es normal, y está en T porque todos sus factores lo están.

Para el isomorfismo, vamos a considerar primero la aplicación $\varphi: T \to ST/S$ definida por $t \mapsto \overline{t} = 1tS$. Se tiene que φ es un homomrfismo de grupos porque $\varphi(tt') = \overline{tt'} = \varphi(t)\varphi(t')$.

Por un lado, φ es un epimorfismo. Para ver esto, considerar un elemento $stS \in ST/S$ arbitrario. Por ser S normal, se sabe que st se escribe como $t\widetilde{s}$ para algún $\widetilde{s} \in S$. Se tiene entonces que $stS = t\widetilde{s}S = tS = \varphi(t)$.

Por otro lado, el núcleo ker(varphi) es el conjunto $\{t \in T : tS = S\}$, es decir, $T \cap S$.

Resumiendo, $\varphi: T \to ST/S$ es un epimorfismo cuyo núcleo es $T \cap S$. Por el primer teorema de isomorfia se concluye entonces que $T/(T \cap S) \simeq ST/S$.

1.8. Teorema de estructura de los grupos abelianos finitos.

El teorema de estructura de los grupos abelianos finitos constituye, por su naturaleza, una primera aproximación a la clasificación de los grupos, en nuestro caso de los grupos abelianos finitos.

Apuntemos que todo grupo cíclico es abeliano, pero no todo grupo abeliano es ciclico, ademas, los grupos abelianos finitos son producto directo de grupos ciclicos.

Enunciamos a continuación el teorema de estructura de los grupos abelianos finitos, del cual omitiremos su demostracion:

Teorema 1.8.1 (Estructura de los Grupos Abelianos Finitos.) Si G es un grupo abeliano finito, existen enteros positivos m_1, \ldots, m_r tales que:

$$G \simeq Z/m_1 Z \times \ldots \times Z/m_r Z$$

 $y \ cada \ m_i \ divide \ a \ m_{i-1}.$

Queda claro que $o(G) = m_1 \dots m_r$. Ademas, los numeros r, m_1, \dots, m_r son únicos con esta propiedad. Se dice que m_1, \dots, m_r son los coficientes de torsión de G.

Este teorema nos permite calcular el numero de grupos abelianos finitos no isomorfos de un orden dado.

Pongamos un ejemplo aclarador de aplicación de este teorema:

Supongamos que deseamos calcular cuantos grupos abelianos no isomorfos existen de orden 200. El teorema de estructura reduce la cuestión a obtener todas las -uplas (r, m_1, \ldots, m_r) tales que $m_1 \ldots m_r = 200$ con m_i divide a m_{i-1} . Asi tenemos que para:

$$r=1$$
:
$$m_1=200$$
 para $r=2$:
$$m_1=100\,;\,m_2=2$$

$$m_1=40\,;\,m_2=5$$

$$m_1=20\,;\,m_2=10$$
 para $r=3$:
$$m_1=50\,;\,m_2=2\,;\,m_3=2$$

$$m_1=10\,;\,m_2=10\,;\,m_3=2$$

ya no es posible encontrar mas -uplas que cumplan las condiciones del teorema. Por lo tanto hay 6 grupos abelianos, no isomorfos, de orden 200 que son:

$$Z/200Z$$

$$Z/100Z \times Z/2Z$$

$$Z/400Z \times Z/5Z$$

$$Z/20Z \times Z/10Z$$

$$Z/500Z \times Z/2Z \times Z/2Z$$

$$Z/10Z \times Z/10Z \times Z/2Z$$

por lo tanto, todos los grupos abelianos de orden 200 son isomorfos a alguno de ellos.

1.9. Automorfismos de grupos.

Los homomorfismos biyectivos de un grupo G en si mismo se conocen como los automorfismos de G. Estas funciones conforman un grupo que tiene información importante relativa al grupo G.

1.9.1. Automorfismos interiores.

Veremos la relación entre los automorfismos de un grupo, sus automorfismos interiores y su centro.

Si H es un subgrupo de un grupo G, se llama centralizador de H en G a

$$C_G(H) = \{x \in G : ax = xa \ \forall a \in H\}$$

Al centralizador de G en G, simbolizado por Z(G) y llamado centro de G, es un grupo normal de G el cual esta definido como

$$Z(G) = \{ x \in G : xa = ax, \forall a \in G \}$$

Notese que G es abeliano si y solo si G = Z(G).

Definicion 1.9.1 Sea G un grupo, un **automorfismo** de G es un homomorfismo biyectivo de G en si mismo. Sea $x \in G$ la función definida por

$$\phi_x:G\to G$$

$$a \mapsto x^{-1}ax$$

es un automorfismo de G y se denomina **automorfismo interior** de G determinado por x. El conjunto de los automorfismos interiores de G lo denotaremos como Int(G).

Enunciamos ahora la siguiente proposición que nos sera de utilidad para demostrar el próximo teorema:

Proposicion 1.9.1 Sean G un grupo y H un subgrupo de G. La aplicación

$$\phi: N_G(H) \to Aut(H): a \mapsto \phi_a$$

es homomorfismo de grupos con imagen Int(H) y núcleo $C_G(H)$.

Teorema 1.9.1 Sea G un grupo, Aut(G) su colección de automorfismos y sea Int(G) el conjunto de automorfismos interiores de G. Entonces:

- 1. Aut(G) es un subgrupo de grupo S_G de funciones biyectivas de G en G.
- 2. $Int(G) \triangleleft Aut(G)$

Demostracion: 1) La primera afirmación es evidente. 2) Por comodidad, llamando K = Int(G) se trata de probar, como vimos en la definición 1.6.1, que:

$$K^f \subset K, \ \forall f \in Aut(G)$$

Sea pues $g \in K^f$. Asi $f \circ g \circ f^{-1} \in K$, luego existe $a \in G$ tal que $f \circ g \circ f^{-1} = \phi_a$, donde ϕ_a es un automorfismo interior, y asi $g = f^{-1} \circ \phi_a \circ f$. Entonces, dado $x \in G$ y llamando $b = f^{-1}(a)$ se tiene

$$g(x) = (f^{-1} \circ \phi_a)(f(x)) = f^{-1}(af(x)a^{-1}) = bxb^{-1} = \phi_b(x)$$

por tanto, $g = \phi_b \in K$.

Por último, de la proposición 1.9.1 se deduce que la aplicación

$$\phi: G \to Int(G) : a \mapsto \phi_a$$

es homomorfismo sobreyectivo con núcleo Z(G), y por ello

$$G/Z(G) \cong Int(G)$$

1.9.2. Acción de un grupo sobre un conjunto.

El concepto de grupo tomó importancia en la matemática cuando Lagrange y luego Galois consideraron las sustituciones de las raices de una ecuación polinomial; los patrones de intercambios de las raices aportan información sobre la solubilidad de la ecuación mediante fórmulas explícitas. Posteriormente, Felix Klein enfatizó la importancia de las simetrias admisibles en la clasificación de las geometrias. En los dos casos, los elementos de un grupo aparecen como transformación de otros objetos (raices de una ecuación algebraica; o puntos de un plano) y los objetos transformados no son menos importantes que las propias transformaciones.

Definicion 1.9.2 Una acción (a la izquierda) de un grupo G sobre un conjunto X es una función $\phi: G \times X \to X$ tal que:

- 1. $\phi(g,\phi(h,x)) = \phi(gh,x)$ para todo $g,h \in G$, $x \in X$.
- 2. $\phi(1_G, x) = x \text{ para todo } x \in X$.

Se acostumbra a escribir $g \cdot x$ en lugar de $\phi(g, x)$; con esta notación, las propiedades de una acción son:

$$g \cdot (h \cdot x) = (gh) \cdot x$$
$$1_G \cdot x = x$$

Definicion 1.9.3 Una acción de grupo define una relación de equivalencia sobre $X: x \sim y$ si y solo si $x = q \cdot y$ para alqún $q \in G$.

La **órbita** de $x \in X$ bajo la acción de G es la clase de equivalencia de x bajo esta relación:

$$G \cdot x = \{g \cdot x \in X : g \in G\} \subseteq X$$

Una acción de un grupo G en un conjunto X se dice que es transitiva si para todo par de elementos $x, y \in X$ existe un $g \in G$ tal que $g \cdot x = y$.

Anteriormente (teorema 1.7.3) enunciamos el teorema de Cayley, y dimos una prueba de el, ahora estamos en condiciones de puntualizar aún mas este teorema y ofrecer una nueva demostración.

Teorema 1.9.2 (Teorema de Cayley.) Cualquier grupo G es isomorfo a un grupo de permutaciones. Si G es finito, con o(G) = n, entonces G es isomorfo a S_n

Demostracion: Considérese la acción de G sobre si mismo por traslaciones por la izquierda, en cuyo caso se toma X=G y se define $g\cdot h=gh$ para $g,h\in G$. Las propiedades de acción son consecuencias de la asociatividad del producto y el papel de 1_G como elemento neutro de G. (La existencia de inversos, que implica $g\cdot (g^{-1}\cdot x)=gg^{-1}\cdot x=1\cdot x=x$ para $g,x\in G$, indica que la acción es transitiva). Esta acción se llama **acción regular a la izquierda** del grupo G. La función $\lambda_g:G\to G:h\mapsto gh$ es una biyección de G en si mismo, esto es, una permutación del conjunto G. El homomorfismo asociado $\lambda:G\to S_G:g\mapsto \lambda_g$ es inyectivo, porque $\lambda_g=\lambda_h$ implica que gk=hk para todo $k\in G$, asi que g=h por cancelación. Por lo tanto, λ es un isomorfismo de G en un subgrupo $\lambda(G)\leq S_G$.

En particular, si o(G) = n, de modo que $G = \{g_1, g_2, \dots g_n\}$, hay un isomorfismo de grupos $\psi : S_G \to S_n$ que lleva cualquier permutación de elementos $g_i \mapsto g_j$ es la permutación correspondiente $i \mapsto j$ del conjunto $\{1, 2, \dots n\}$. Luego $\psi \circ \lambda : G \to S_n$ es un homorfismo inyectivo cuya imagen es un subgrupo de S_n .

Definicion 1.9.4 Sea $\phi: G \times X \to X$ una acción de un grupo sobre un conjunto. El **subgrupo** estabilizador para un elemento $x \in X$ es el subgrupo

$$G_X = \{g \in G : g \cdot x = x\} \le G$$

Proposicion 1.9.2 Dada una acción de un grupo G sobre un conjunto X, el número de elementos de la órbita $G \cdot x$ coincide con el índice $[G : G_X]$.

Demostracion: Si $h, g \in G$ y $x \in X$, entonces

$$g \cdot x = h \cdot x \Longleftrightarrow g^{-1}h \cdot x = x \Longleftrightarrow g^{-1}h \in G_X \Longleftrightarrow gG_X = hG_X \in G/G_X$$

luego la aplicación $g \cdot x \mapsto gG_X$ es una biyección de la órbita $G \cdot x$ en el conjunto cociente G/G_X . Por lo tanto $o(G \cdot x) = o(G/G_X) = [G : G_X]$

Definicion 1.9.5 Una acción $\phi: G \times X \to X$ es **eficaz** (o **fiel**) si el homomorfismo $\psi: G \to S_X$ es inyectivo. Una acción es eficaz si $g \cdot x = x$ para todo $x \in X$ implica $g = 1_G$. Una acción $\phi: G \times X \to X$ es **libre** para algún $x \in X$ implica $g = 1_G$. Si la acción $\phi: G \times X \to X$ es eficaz, libre y transitiva, entonces X es un espacio homogéneo principal de G.

La acción de un grupo regular sobre si mismo, por traslaciones a la izquierda es un ejemplo de una acción eficaz, libre y transitiva. La utilidad del concepto de espacio homogéneo principal consiste en "olvidar" la posición del elemento neutro.

Un grupo G también actúa por conjugación sobre el conjunto de todos sus subgrupos, $X = \{H : H \leq G\}$. Esta acción está dada por la fórmula $g \cdot H = gHg^{-1}$. La órbita de H bajo esta

acción es la familia de subgrupos conjugados de H.

El subgrupo estabilizador de H en este caso es el **normalizador** de H, definido como:

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}$$

Se puede observar que $N_G(H)$ es un subgrupo de G, no necesariamente normal, pero H es un subgrupo normal de él: $H \triangleleft N_G(H)$.

1.9.3. Teorema de Sylow.

Antes de enunciar los teoremas de Sylow debemos introducir el concepto de p-grupo y el Teorema de Cauchy.

Definicion 1.9.6 Sea p un número primo. Un grupo finito G se denomina p-grupo si $o(G) = p^r$, con $r \in \mathbb{Z}^+$.

Teorema 1.9.3 (Teorema de Cauchy) Sea G un grupo finito de orden n y p un número primo que divide a n. Entonces G tiene un elemento (y por lo tanto un subgrupo) de orden p.

Demostracion: Sea $X = \{(x_1, \dots, x_p) \in G^p : x_1 \dots x_p = 1\}$. Si $k \in \mathbb{Z}_p$, la relación

$$k(x_1, \ldots, x_p) = (x_{k+1}, \ldots, x_p, x_1, \ldots, x_k)$$

define una acción de \mathbb{Z}_p en X. Como \mathbb{Z}_p es un p-grupo y $o(X) = n^{p-1}$, se tiene que $o(X_0)$ es multiplo de p, siendo

$$X_0 = \{(x, \dots, x) : x \in G, x^p = 1\}$$

Dado que X_0 contiene el elemento $(1,1,\ldots,1)$, resulta que G tiene un elemento de orden p.

Sea G un grupo finito, ante el problema de estudiar los subgrupos de G es natural empezar con los p-subgrupos, para cada primo p. El conocimiento de estos subgrupos es muy útil para determinar la estructura de G.

Con los teoremas de Sylow podremos conocer, si, dado un grupo finito G y un primo p que divida a o(G), si existen p-subgrupos de cualquier orden permitido por el teorema de Lagrange, cuantos hay, y que relación hay entre ellos.

Teorema 1.9.4 (Primer teorema de Sylow) Sea G un grupo finito, p un número primo y r > 0 un número entero tales que p^r divide a o(G). Entonces existen subgrupos H_1, \ldots, H_r de G tales que $o(H_i) = p^i$ para $i = 1, \ldots, r$ y de modo que $H_i \triangleleft H_{i+1}$ para $i = 1, \ldots, r-1$.

Demostracion: Si r=1 el resultado es consecuencia directa del teorema de Cauchy. Supongamos pues que $r \geq 2$. Entonces existen, por inducción, subgrupos H_1, \ldots, H_{r-1} de G tales que $o(H_i = p^i (1 \leq i \leq r-1)$ y con H_i normal en $H_{i+1} (1 \leq r \leq r-2)$. Como p divide a $[G: H_{r-1}]$, por la congruencia del normalizador, vemos que p divide a $[N(H_{r-1}): H_{r-1}]$. Por el teorema de Cauchy el grupo cociente $N(H_{r-1})/H_{r-1}$ tiene un subgrupo H_r/H_{r-1} de orden p, o lo que es lo mismo, H_r es un subgrupo de $N(H_{r-1})$ que contiene a H_{r-1} como subgrupo normal. Como H_r tiene orden p^r , por el teorema de Lagrange, la demostración es completa.

Si p es un divisor del orden n, de un grupo finito G, entonces existen p-subgrupos de Sylow de G. Basta con observar que si $n = p^r m$, m primo con p, los p-subgrupos de Sylow de G son los subgrupos de orden p^r . Si G posee un único p-subgrupo de Sylow H, entonces $H \triangleleft G$.

Teorema 1.9.5 (Segundo teorema de Sylow) Sea G un grupo finito, H un p-subgrupo de G y S un p-subgrupo de Sylow de G. Entonces existe $x \in G$ tal que

$$H \subseteq xSx^{-1}$$

en particular, dos p-subgrupos de Sylow de G son conjugados.

Demostracion: Consideremos la acción de H en X = G/S por traslaciones por la izquierda. Una clase $xS \in X$ es invariante por la acción anterior si y solo si hxS = xS para todo $h \in H$, es decir, si y solo si $x^{-1}hx \in S$ para todo $h \in H$. Como esta relación es equivalente a $H \subseteq xSx^{-1}$, vemos que

$$X_0 = \{ xS \in X : H \subseteq xSx^{-1} \}$$

Ahora bien, como H es un p-grupo y o(X) = [G:S], la congruencia de puntos fijos nos da

$$o(X_0) \equiv [G:S] \pmod{p}$$

Como p no divide a [G:S], concluimos que X_0 no es divisible por p y por tanto que X_0 no es vacío.

El segundo teorema de Sylow se deduce trivialmente que la condición de que G posea un único p-subgrupo de Sylow es equivalente a que G posea un p-subgrupo de Sylow normal.

Teorema 1.9.6 (Tercer teorema de Sylow) Sea G un grupo finito, y n_p el número de psubgrupos de Sylow de G. Entonces $n_p = [G : N(S)]$, para todo p-subgrupo de Sylow S de G.

Puesto que [G : N(S)] divide a [G : S], en particular tenemos que n_p divide a [G : S] para todo p-subgrupo de Sylow S de G. Por último, se verifica que $n_p \equiv 1 \pmod{p}$.

Demostracion: Por el segundo teorema de Sylow, n_p es el cardinal de la órbita de un p-subgrupo de Sylow S por la acción de G (por conjugación) en el conjunto de subgrupos de G. De ello se deduce que

$$n_p = [G:N(S)]$$

dado que el grupo estabilizador de S es N(S). La primera parte del enunciado se sigue de la relación

$$[G:S] = [G:N(S)][N(S):S]$$

Sea ahora X el conjunto de p-subgrupos de Sylow de G. Consideremos la acción de S en X por conjugación. Entonces

$$X_0 = \{T \in X : sTs^{-1} = T, \forall s \in S\} = \{T \in X : S \subseteq N(T)\}\$$

Veamos que $X_0 = \{S\}$. En efecto, si $T \in X_0$, entonces S y T son p-subgrupos de Sylow de N(T) y $T \triangleleft N(T)$, de donde, por el segundo teorema de Sylow, T = S. Como $o(X) = n_p$ y $o(X_0 = 1)$, obtenemos la congruencia enunciada usando la congruencia de puntos fijos.

Capítulo 2

Representaciones de grupos.

Una representación de un grupo finito G nos proporciona una manera de visualizar G como un grupo de matrices. Para ser mas preciso diremos que una representación es un homomorfismo de G en el grupo de matrices invertibles.

La estructura de estos homomorfismos y sus propiedades seran objeto de estudio en este capitulo.

2.1. Representaciones de grupos.

Sea V un espacio vectorial sobre el cuerpo \mathbb{C} de los números complejos, y sea GL(V) el grupo de isomorfismos de V. Un elemento $a \in GL(V)$ es, por definición, una aplicación lineal de V en V que admite inversa a^{-1} ; a^{-1} es también lineal. Si V admite una base finita (e_i) de n elementos, toda aplicación lineal $a:V\to V$ se representa por una matriz cuadrada (a_{ij}) de orden n. Los coeficientes a_{ij} son números complejos; se calculan expresando $a(e_j)$ en la base (e_i) :

$$a(e_j) = \sum_{i} a_{ij} e_i$$

Decir que a es un isomorfismo equivale a decir que el determinante de a es no nulo. El grupo GL(V) se identifica así como el grupo de matrices cuadradas invertibles de orden n. En algunas ocasiones escribiremos GL(n, V).

Definicion 2.1.1 Sea G un grupo finito. Una representación de G en V es un homomorfismo ρ del grupo G en el grupo GL(V):

$$\rho: G \to GL(V)$$

de modo que:

$$\rho(st) = \rho(s)\rho(t)$$

cualesquiera que sean $s, t \in G$.

Supongamos que V es de dimensión finita, y sea n su dimensión; se dice también que n es el grado de la representación considerada.

Ejemplo 2.1.1 Sea G el grupo dihedral $D_8 = \langle a, b : a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$. Definimos las matrices A y B como:

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), B = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

se comprueba que:

$$A^4 = B^2 = I, B^{-1}AB = A^{-1}$$

la función

$$\rho: G \to GL(2,V)$$

definida como $\rho: a^ib^j \to A^iB^j$ para $0 \le i \le 3, \ 0 \le j \le 1$, es una representación de D_8 sobre V. Es una representación de grado 2.

En la siguiente tabla se representan las imágenes de ρ para cada elemento de D_8 :

g	$\rho(g)$		
1	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$		
a	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$		
a^2	$\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$		
a^3	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$		
b	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$		
ab	$\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)$		
a^2b	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$		
a^3b	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$		

Cuadro 2.1: Representación del grupo dihedral 8.

Ejemplo 2.1.2 Sea G un grupo cualquiera. Definimos $\rho: G \to GL(n, V)$ como $\rho(g) = I_n$ para todo $g \in G$, donde I_n es la matriz identidad $n \times n$. Entoces:

$$\rho(gh) = I_n = I_n I_n = \rho(g)\rho(h)$$

para todo $g, h \in G$, por lo tanto, ρ es una representación de G. Esto nos indica que todo grupo tiene representaciones de cualquier grado.

2.2. Representaciones equivalentes.

Sean ρ y ρ' representaciones lineales de un grupo G en espacios vectoriales V y V' respectivamente. Se dice que estas representaciones son equivalentes (o isomorfas) si existe un isomorfismo lineal $\tau: V \to V'$ que transforma ρ en ρ' , es decir, que verifica la identidad:

$$\tau \cdot \rho(s) = \rho'(s) \cdot \tau$$

para todo $s \in G$.

Si ρ y ρ' se dan en forma matricial por R y R' respectivamente, el isomorfismo se traduce en una matriz invertible T tal que:

$$T \cdot R = R' \cdot T$$

o, equivalentemente, tal que:

$$R' = TRT^{-1}$$

Sea $\rho:G\to GL(V)$ una representación, Y sea T una matriz invertible $n\times n$ de V. Para todas las $n\times n$ matrices A y B tenemos:

$$(T^{-1}AT)(T^{-1}BT) = T^{-1}(AB)T$$

Usamos esto para crear una reprsentación σ desde ρ ; definimos

$$\sigma(g) = T^{-1}\rho(g)T$$

para todo $g \in G$. Por lo tanto, para todo $g, h \in G$, tenemos:

$$\sigma(gh) = T^{-1}\rho(gh)T$$

$$= T^{-1}\rho(g)\rho(h)T$$

$$= T^{-1}\rho(g)T \cdot T^{-1}\rho(h)T$$

$$= \sigma(g)\sigma(h)$$

por lo que, σ es, en efecto, una representación.

Con esto podemos ya dar la siguiente definición:

Definicion 2.2.1 Sean $\rho: G \to GL(m,V)$ y $\sigma: G \to GL(n,V)$ representaciones de G sobre V. Decimos que ρ es equivalente a σ si n=m y existe una matriz invertible $n \times n$ T tal que, para todo $q \in G$,

$$\sigma(g) = T^{-1}\rho(g)T$$

Dadas las representaciones ρ , σ y τ de G sobre V, se tiene que:

- 1. ρ es equivalente a ρ . (Prop. Reflexiva).
- 2. si ρ es equivalente a σ , entonces σ es equivalente a ρ . (Prop. Simétrica).
- 3. si ρ es equivalente a σ y σ es equivalente a τ , entonces ρ es equivalente a τ . (Prop. Transitiva).

Esto nos indica que ser equivalentes es una relación de equivalencia.

Demostracion: Sean ρ , σ y τ representaciones de G sobre V, y sea $g \in G$. Tenemos:

1. Prop. Reflexiva:

Sea I la matriz identidad, que ademas es una matriz cuadrada e invertible, siempre podemos poner

$$\rho(q) = I^{-1}\rho(q)I$$

por lo que ρ es equivalente a ρ .

2. Prop. Simétrica:

Por ser ρ equivalente a σ , tenemos que existe una matriz cuadrada invertible T que cumple:

$$\sigma(g) = T^{-1}\rho(g)T$$

$$T\sigma(q) = \rho(q)T$$

$$T\sigma(g)T^{-1} = \rho(g)$$

lo que concluye que σ es equivalente a ρ .

3. Prop. Transitiva.

Por ser ρ equivalente a σ , tenemos que existe una matriz cuadrada invertible T que cumple:

$$\sigma(g) = T^{-1}\rho(g)T$$

Del mismo modo, por ser σ equivalente a $\tau,$ tenemos que existe una matriz cuadrada invertible P que cumple:

$$\tau(g) = P^{-1}\sigma(g)P$$

Sustituyendo tenemos que:

$$\tau(g) = P^{-1}T^{-1}\rho(g)TP$$

$$\tau(g) = (TP)^{-1}\rho(g)TP$$

por lo que ρ es equivalente a τ .

2.3. Núcleo de una representación.

Capítulo 3

Capitulo

Bibliografía

- [1] E. Bujalance, J. J. Etayo, J. M. Gamboa, *Teoría elemental de grupos*, Publicaciones UNED, Madrid, 2007.
- [2] W. Lederman, Grupos finitos, Editorial Dossat, Manchester, 1952.
- [3] W. Fulton, J. Harris, Representation theory, Springer-Verlag, 1991.
- [4] D. Griffiths, D. Higham, *Learning LaTex*, Society for Industrial and Applied Mathematics, Filadelfia, 1997.
- [5] G. James, M. Liebeck, Representations and characters of groups, Cambridge University Press, Londres, 2001.
- [6] J. P. Serre, Representaciones lineales de los grupos finitos, Omega, Barcelona, 1970.
- [7] J. C. Varilly, Grupos y anillos, Escuela de Matemática, Universidad de Costa Rica, 2014.
- [8] M. Suzuki, Group theory I, Springer-Verlag, 1982.
- [9] S. Xambó, F. Delgado, C. Fuertes, *Introducción al álgebra*, Editorial Complutense, Madrid, 1993.