Optimization for Deep Learning

Lecture 2: Gradient Descent

Kun Yuan

Peking University

Main contents in this lecture

- Concex sets, functions, and problems
- Strong convexity and smoothness
- Gradient descent
- Convergence analysis
- Forward backward propagation

Convex sets

Definition 1 (Convex set)

A set $\mathcal{X} \subseteq \mathbb{R}^d$ is called convex, if for $\forall x, y \in \mathcal{X}$, it holds that

$$\theta x + (1 - \theta)y \in \mathcal{X}, \quad \forall \theta \in [0, 1].$$

Examples:

- Hyperplane $\{x|a^Tx=b\}$ and hyperspace $\{x|a^Tx\leq b\}$
- Euclidian ball $\{x|||x-x_c|| \le r\}$
- Polyhedron $\{x|a_j^Tx \leq b_j, j=1,\cdots,m, c_j^Tx=d_j, j=1,\cdots,p\}$

Convex sets: illustration

Convex function

Definition 2 (Convex function)

Function $f:\mathcal{X}\to\mathbb{R}$ is said to be convex if $\mathcal{X}\subseteq\mathbb{R}^d$ is a convex set and $\forall x,y\in\mathcal{X}$, it holds that

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall \theta \in [0, 1].$$

Examples:

- ullet Exponential e^{ax} is convex on $\mathbb R$ for any $a\in\mathbb R$
- Norms $||x||_1$ and $||x||_2$ are convex on \mathbb{R}^d
- Linear regression loss function $||Ax b||^2$ is convex on \mathbb{R}^d
- Logistic regression $\frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-b_i a_i^T x))$ is convex on \mathbb{R}^d

Convex function: illustration

Figure: An illustration of a convex function ¹

 $^{^{1}\}mathrm{This}$ figure is from (Boyd and Vandenberghe, 2004)

Convex function: property

Lemma 1 (Convex property)

Suppose $f:\mathcal{X} \to \mathbb{R}$ is differentiable, then f is convex if and only if

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \mathcal{X}.$$

Strongly-convex function

Definition 3 (μ -strongly convex function)

Function $f:\mathcal{X}\to\mathbb{R}$ is μ -strongly convex if there exists a constant $\mu>0$ such that

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2, \quad \forall x, y \in \mathcal{X}.$$

L-smoothness

Definition 4 (*L*-smoothness)

A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be L-smooth if $\forall x, y \in \mathbb{R}^n$,

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$$

where L > 0 is the Lipschitz constant of ∇f .

In other words, the gradient cannnot vary too quckly

It is easy to show that the above inequality is equivalent to (see notes)

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||_2^2$$

which implie that f(y) can be upper bounded by a quadratic function

L-smoothness: illustration

Gradient descent

• Consider the following smooth and unconstrained optimization

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x)$$

• Gradient descent (GD) is very effective to solve the above problem

$$x_{k+1} = x_k - \gamma \nabla f(x_k), \quad \forall k = 0, 1, \cdots$$

where γ is the learning rate (or step size), and x_0 initializes arbitrarily.

Gradient descent: illustration

Stationary solution

Given a differentible function f(x), x^* is the **stationary solution** if and only if

$$\nabla f(x^{\star}) = 0$$

Illustration of the stationary solution²

For convex functions, stationary solutions are global solutions.

²Figure is from Prof. Rong Ge's online post

With small γ , $\{f(x_k)\}$ is a strictly decreasing sequence

Lemma 1 (Decay in function value)

Assume f(x) to be L-smooth. If $\gamma \leq 1/L$, it holds that

$$f(x_{k+1}) \le f(x_k) - \frac{\gamma}{2} \|\nabla f(x_k)\|^2$$

From the above theorem, we conclude that

$$f(x_0) > f(x_1) > \cdots f(x_k) > f(x_{k+1}) > \cdots$$

Illustration:

Illustration:

Theorem 1

Assume f(x) to be L-smooth. If $\gamma \leq 1/L$, gradient descent converges as

$$\frac{1}{K+1} \sum_{k=0}^{K} \|\nabla f(x_k)\|^2 \le \frac{2(f(x_0) - f^*)}{\gamma(K+1)}.$$

If we further set $\gamma = 1/L$, it holds that

$$\frac{1}{K+1} \sum_{k=0}^{K} \|\nabla f(x_k)\|^2 \le \frac{2L(f(x_0) - f^*)}{K+1}.$$

- If the ergotic average converges to 0, then it holds that $\|\nabla f(x_k)\| \to 0$
- ullet Smaller γ leads to slower convergence
- Convergence rate is O(L/K), which implies $O(L/\epsilon)$ iteartions to achieve an ϵ -accurate solution, i.e., the iteraton complexity is $O(L/\epsilon)$.

Experiments: non-convex scenario

We minimize
$$f(x) = \sin(\pi x) + 2x$$

Theorem 2

Suppose f(x) is convex and L-smooth, if $\gamma=1/(2L)$, gradient descent converges as

$$f(x_K) - f^* \le \frac{2L||x_0 - x^*||^2}{K+1}.$$

For convex functions, it holds that $f(x_k) \to f^*$ at rate O(L/K)

The iteartion complexity $O(L/\epsilon)$

Experiments: convex scenario

We minimize

$$f(x) = \begin{cases} \frac{3}{2}x^2, & \text{if } x \le 0\\ \frac{9}{2}x^2, & \text{if } x > 0 \end{cases}$$

Gradient descent is sensitive to the choice of learning rate

Theorem 3

Assume f(x) is L-smooth and μ -strongly convex, if $\gamma=2/(L+\mu)$, gradient descent converges as

$$||x_K - x^*|| \le \left(\frac{L - \mu}{L + \mu}\right)^{K+1} ||x_0 - x^*||$$

For strongly-convex functions, it holds that $x_k \to x^\star$ at rate $O\left((1-\frac{1}{\kappa})^k\right)$ where $\kappa = L/\mu$ is regarded as the condition number of the strongly-convex function

GD converges exponentially (or linearly) fast for strongly-convex problems

The iteartion complexity is $O(\kappa \log(1/\epsilon))$

Experiments: striongly-convex scenario

We minimize

$$f_1(x, y) = x^2 + y^2$$

 $f_2(x, y) = 10x^2 + y^2$

The condition number $\kappa = L/\mu$ has a significant influence on convergence

Experiments: striongly-convex scenario

We minimize

$$f_1(x, y) = x^2 + y^2$$

 $f_2(x, y) = 10x^2 + y^2$

The condition number $\kappa = L/\mu$ has a significant influence on convergence

Convergence analysis: proof details

All proof details are in the notes.

Convergence rate summary

	Convergence rate	Iteration complexity
Non-convex	O(L/K)	$O(L/\epsilon)$
Generally-convex	O(L/K)	$O(L/\epsilon)$
Strongly-convex	$O((1-\frac{\mu}{L})^K)$	$O(\frac{L}{\mu}\log(1/\epsilon))$

Summary

- Gradient descent is very puplar for unconstrained and smooth optimization
- \bullet For non-convex problems, GD converges at rate O(L/K)
- ullet For generally-convex problems, GD converges at rate O(L/K)
- \bullet For strongly-convex problems, GD converges at rate $O((\frac{L-\mu}{L+\mu})^K)$

Advanced topic

• In this lecture, we show that

$$\frac{1}{K+1} \sum_{k=0}^{K} \|\nabla f(x_k)\|^2 \le \frac{2L(f(x_0) - f^*)}{K+1}$$

which implies that GD will converge to the stationary solution

• Will GD converge to the local maximum of saddle point?

ullet No! GD will converge to the local minimum with probability 1

References I

S. P. Boyd and L. Vandenberghe, *Convex optimization*. Cambridge university press, 2004.