Detection of machine-generated fragments in text

Anastasiya Voznyuk

Moscow Institute of Physics and Technology

Course: My first scientific paper

Expert: Andrey Grabovoy

2023

Goal of research

Suggest a model, that will detect machine-generated fragments in text and classify them according to their origin model. Number of model is fixed and known.

Problem statement

Let

$$\mathbb{D} = \left\{ \left[t_j \right]_{j=1}^n \mid t_j \in \mathbf{W}, n \in \mathbb{N} \right\}$$

be the space of documents, \mathbf{W} is the alphabet. Given set of N documents

$$\mathbf{D} = igcup_{i=1}^N D^i, D^i \in \mathbb{D}.$$

 ${f C}$ is a set of K+1 labels for classification, where 0 is the label of human-written fragment, $\{1...K\}$ are the labels representing corresponding K language models, participated in generating ${f D}$.

$$\mathbb{T} = \Big\{ \Big[t_{s_j}, t_{f_j}, C_j \Big]_{i=1}^J | t_{s_j} = t_{f_{j-1}}, s_j \in \mathbb{N}_0, f_j \in \mathbb{N}, C_j \in \mathbf{C} \Big\},$$

where J is a number of fragments, t_{s_j} and t_{f_j} are start and end of the j-th fragment.

Problem statement

Our model is

$$\phi: \mathbb{D} \to \mathbb{T} \qquad \phi: \mathbf{g} \circ \mathbf{f},$$

f is mapping, responsible for text segmentation.g is mapping, responsible for classifying obtained fragments.

The **quality criteria** is macro-averaged precision and recall, where S is ground truth fragmentation and R is predicted fragmentation. We compare segments on sentence level.

$$prec(S,R) = \frac{1}{|R|} \sum_{r \in R} \frac{|\bigcup_{s \in S} (s \cap r)|}{|r|},$$
$$rec(S,R) = \frac{1}{|S|} \sum_{s \in S} \frac{|\bigcup_{r \in R} (s \cap r)|}{|s|},$$

Proposed method

Transform feature vectors to minimise the variance within groups by target author label.

Let $(\mathbf{b}_i)_{i=1}^n$ be sequence of basic feature vectors $\mathbf{b}_i \in \mathbb{R}^{n_b}$.

Transformation of vectors:

$$T: \mathbb{R}^{n_{\rm b}} \to \mathbb{R}^{n_{\rm t}} \quad T(x) = \mathbf{W}^{\mathsf{T}} x \quad \mathbf{W} \in \mathbb{R}^{n_{\rm b} \times n_{\rm t}}$$

Number of fragments with author $c \in \mathbf{C}$

$$N_c = \sum_{i=0}^{K+1} [C_i = c]$$

 μ_c is centroid of the transformed feature vectors with label c:

$$\mu_c = \frac{1}{N_c} \sum_{i=1}^{K+1} T(\mathbf{b}_i) [C_i = c].$$

$$L_c = \sum_{c=0}^{C} \frac{1}{N_c} \sum_{i=1}^{K+1} ||T(\mathbf{b}_i) - \mu_c||^2 [C_i = c]$$

Computational experiment

Segmentation Pipeline

Input Tokenization Feature Feature document Tokenization Extraction transformation Clustering

Binary segmentation: 2000 generated documents with 5-6 fragments by human and GPT-2, each consists of 500-600 tokens.

Multiclass segmentation: 2000 generated documents with 5-6 fragments by for 3 authors, each consists of 500-600 tokens. Same for 4 and 5 authors.

Multiclass Classifiaction Take documents with several language model as authors with human among authors. Label all non-human fragments 'machine-generated' and fed them to fine-tuned BERT model to classify the fragments.

Multuclass classification of fragments

	precision	recall	f1-score	support
0 1 2 3 4 5 6	0.27 0.16 0.23 0.16 0.19 0.15 0.26	0.25 0.12 0.28 0.19 0.18 0.15	0.26 0.13 0.25 0.18 0.18 0.15 0.25	267 246 238 252 244 246 264
accuracy macro avg weighted avg	0.17 0.20 0.20	0.17 0.20 0.20	0.17 0.20 0.20 0.20	243 2000 2000 2000

Accuracy is 20%, showing the context is needed when classyfying authors of fragments. Second reason is similarity of language models and their generating style.

Binary segmentation of documents

Only are 2 labels for fragments: human and machine. Both precision and recall don't depend on train size. Precision is around 73%, recall is around 69.75%.

Multiclass segmentation of documents

The best precision is 33% for 3 authors, the worst is 20% for 5 authors.

Multiclass segmentation of documents

The best precision is 92% for 5 authors, the worst is 86% for 3 authors.

Conclusion

New model to detect large machine-generated fragments by different LLM in the documents is suggested;

Results for binary segmentation: 73% precision, 70% recall;

Results for multiclass segmentation : 33% precision, 86% recall for 3 authors;

Results for classification: only 20% accuracy on 8 classes.

Next:

- improving classificator;
- improving the process of segmenting;
- adding CRF to fix problems of very short fragments after segmentation.

11 / 12

Literature

- ► **German Gritsay et al.**, 2022, Automatic Detection of Machine Generated Texts: Need More Tokens
- ➤ **Sebastian Gehrmann et al.**, 2019, GLTR: Statistical Detection and Visualization of Generated Text
- ▶ Mikhail P. Kuznetsov et al., 2016, Methods for intrinsic plagiarism detection and author diarization
- RUATD Competition 2022
- ► Adaku Uchendu et al. Authorship Attribution for Neural Text Generation