Université d'Évry Val d'Essonne 2009-2010 M33 compléments d'algèbre

Feuille 5 — arithmétique dans $\mathbf{Z}/n\mathbf{Z}$

Exercice 1. Quel est le reste dans la division euclidienne de 4725465437 par 9?

Exercice 2. Soient $(a,b) \in \mathbb{Z}^2$ dont les restes modulo 11 sont 7 et 2 respectivement. Donner le reste modulo 11 de $a^2 - b^2$.

Exercice 3. Montrer que si $n \in \mathbb{N}$, $(n+1)^5 \equiv n^5 + 1$ (5).

Exercice 4. Quel est le chiffre des unités de 20082009¹⁰?

Exercice 5. 1. Montrer que si n est un entier naturel impair, alors $10^{3n} + 1$ est divisible par 13.

- 2. En déduire que le nombre 102 102 001 001 est divisible par 13.
- 3. Montrer que si n est un entier naturel impair, alors $10^n + 1$ est divisible par 11.
- 4. En déduire que le nombre 1 343 113 431 est divisible par 121.

Exercice 6. Trouver le reste de la division euclidienne de 100^{1000} par 13.

Exercice 7. Soit $a_r a_{r-1} \dots a_1 a_0$ l'écriture décimale d'un entier n. Montrer que

$$n \equiv \sum_{i=0}^{r} (-1)^{i} a_{i} (11) .$$

En déduire un critère de divisibilité par 11 par analogie avec le critère de divisibilité par 9. Les nombres 6435 et 7812 sont-ils divisibles par 11? Pouvez-vous inventer un critère de divisibilité par 99?

Exercice 8. Montrer que pour tout $n \ge 0$, 13 divise $4^{2n+1} + 3^{n+2}$.

Exercice 9. 1. Montrer que si n est impair alors $n^2 \equiv 1$ (8).

- 2. Montrer de même que tout nombre pair n vérifie $n^2 \equiv 0$ (8) ou $n^2 \equiv 4$ (8).
- 3. Quels sont les entiers x et y tels que $x^2 + y^2 \equiv 2$ (8)?

Exercice 10. 1. Quels sont les entiers congrus à un carré modulo 13?

2. Trouver les entiers relatifs n tels que $n^2 + n + 7$ soient divisible par 13.

Exercice 11. Soient a et b deux entiers tels que $a^2 + b^2$ soit divisible par 11. Montrer que a et b sont divisibles par 11.

Exercice 12. 1. Calculer 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 dans $\mathbb{Z}/9\mathbb{Z}$.

2. Calculer $\sum_{k=1}^{n} k \text{ dans } \mathbf{Z}/n\mathbf{Z}$ pour tout n > 1.

Exercice 13.

Quel est le nombre d'inversibles dans $\mathbb{Z}/521\mathbb{Z}$?

Quel est le nombre d'inversibles dans $\mathbb{Z}/21\mathbb{Z}$?

Exercice 14. 1. La classe de 16 est-elle inversible dans **Z**/57**Z**? Si oui, quel est son inverse?

- 2. La classe de 38 est-elle inversible dans $\mathbb{Z}/77\mathbb{Z}$? Si oui, quel est son inverse?
- 3. La classe de 42 est-elle inversible dans $\mathbb{Z}/135\mathbb{Z}$? Si oui, quel est son inverse?

Exercice 15. Résoudre dans Z les équations suivantes.

- 1. $3x \equiv 2 \ (7)$;
- 2. $2x \equiv 3 (5)$;
- 3. $35x \equiv 7 (4)$;
- 4. $22x \equiv 33 (5)$;
- 5. $3x \equiv 2 (6)$;
- 6. $6x \equiv 27 (45)$.

Exercice 16. Résoudre dans Z les systèmes suivant.

$$\begin{cases} x \equiv 4 \ (9) \\ x \equiv 2 \ (7) \end{cases} \begin{cases} x \equiv 2 \ (6) \\ x \equiv 3 \ (11) \end{cases}$$

Exercice 17. Soit p = 2k + 1 un nombre premier impair. Soit a un entier non divisible par p. Montrer que $a^k \equiv 1$ ou $a^k \equiv -1$ modulo p. Application numérique : faire le tableau des restes des puissances huitièmes modulo 17.

Exercice 18. Montrer qu'il existe dans la suite $u_n = 2^n - 3$ une infinité de termes divisibles par 5 et une infinité de termes divisibles par 13, mais qu'aucun n'est divisible par 65.