Оценка параметров вероятностной модели в задаче доменной адаптации

Шокоров Вячеслав Александрович

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2021 г.

Доменная адаптация

Задача

Задано два домена. На первом домене ставится задача регрессии, для него известно значение целевой переменной. Требуется решить эту же задачу регрессии на втором домене, на котором нет разметки.

Решение

Предлагается построить функцию преобразования одного домена в другой. Мотивация в том, что данная функция должна сохранять инвариантность на классах и значениях целевых переменных.

Проблема

Подходы обучения без учителя дают недостаточное качество, так как не используют информацию, которую можно получить из первого домена.

Два домена в общем признаковом пространстве

Домен

 \mathcal{D} — называется априорное распределение признакового описания объектов.

 $ar{\Phi}$ ункция преобразования домена \mathcal{D}_1 в домен \mathcal{D}_2

$$f: \operatorname{supp}(\mathcal{D}_1) \to \operatorname{supp}(\mathcal{D}_2)$$

(а) исходная выборка

(b) преобразованная выборка

Литература

- 1. Goodfellow Generative Adversarial Networks, 2014.
- 2 C'edric Villani. *Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften*, Springer, Berlin, 2009.
- Адуенко А. А. Выбор мультимоделей в задачах классификации, 2017.

Функция преобразования

В качестве функции преобразования будем брать нейронную сеть с параметрами θ_f .

Оптимальная функция преобразования

Оптимальной функцией преобразования домена \mathcal{D}_1 в домен \mathcal{D}_2 относительно функции сходства g назовем функцию \hat{f}_g :

$$\hat{f}_g = rg \max_{\theta_f} g\left(\mathcal{D}_2, p(f(x, \theta_f), x \sim \mathcal{D}_1)\right)$$

Функции сходства доменов

Функция предложенная Адуенко А. А. [3]

$$s_0(g_1,g_2) = \frac{\int g_1(\mathsf{w})g_2(\mathsf{w})d\mathsf{w}}{\mathsf{max}_{\mathsf{b}\in\mathbb{R}^n}\int g_1(\mathsf{v})g_2(\mathsf{v}-\mathsf{b})d\mathsf{v}}$$

Расстояние Васерштейна

$$W_p(\mu, \nu) = \left(\inf_{\gamma \in \Gamma(\mu, \nu)} \mathbb{E}_{(x, y) \sim \gamma} \|x - y\|_p\right)^{1/p},$$

 $\Gamma(\mu, v)$ — совокупность всех мер с маргинальными распределениями μ и v для первого и второго параметров соответственно. Из [2]:

$$W_1(\mu, \nu) = \sup_{\|f\|_I \le 1} \mathbb{E}_{x \sim \mu}[f(x)] - \mathbb{E}_{x \sim \nu}[f(x)],$$

супремум берется по всем 1-липшицевым функциям.

Дивергенция Кульбака-Лейблера

$$D_{KL} = \int g_1(x) \log \frac{g_1(x)}{g_2(x)}$$

Постановка задачи оценки параметров функции преобразования

Используется подход предложенный в [1]. C — функция классификатора с параметрами θ_C .

Оптимальная для дивергенции Кульбака-Лейблера

$$\begin{aligned} L_{\mathit{KL}}(\theta_{\mathit{C}}, \theta_{\mathit{f}}) &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{1}}}[\log \mathit{C}(\mathbf{x}, \theta_{\mathit{C}})] + \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{2}}}[\log(1 - \mathit{C}(\mathit{f}(\mathbf{x}, \theta_{\mathit{f}}), \theta_{\mathit{C}}))] \\ & \hat{\theta}_{\mathit{f}}, \hat{\theta}_{\mathit{C}} = \min_{\theta_{\mathit{f}}} \max_{\theta_{\mathit{C}}} \mathit{L}_{\mathit{KL}}(\theta_{\mathit{f}}, \theta_{\mathit{C}}) \end{aligned}$$

Оптимальная для метрики Васерштейна

$$\begin{split} L_W(\theta_f) &= \mathsf{max}_{\theta_C \in W} \, \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{1}}}[C(\mathbf{x}, \theta_C)] - \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{2}}}[C(f(\mathbf{x}, \theta_f), \theta_C)] \\ & \hat{\theta}_f = \min_{\theta_f} L_W(\theta_f) \end{split}$$

Функция Адуенко А. А. как функция сходства

Теорема о необходимости

Пусть дана пара распределений $g_1(\mathsf{w}): \mathbb{R}^{n_1} \to \mathbb{R}^+,$ $g_2(\mathsf{w}): \mathbb{R}^{n_2} \to \mathbb{R}^+,$ где $n_1, n_2 > 0$. Тогда для некоторой последовательности параметрических линейных преобразований $\{f_{\theta}^k\}_{k=1}^{\infty}$, такой что $\|g_1 - f_{\theta}^k \circ g_2\| \to 0$, верно:

$$s_0(g_1, f_\theta^k \circ g_2) \to 1$$

<u>Теорем</u>а о недостаточности

Пусть дана пара распределений $g_1(\mathsf{w}):\mathbb{R}^{n_1}\to\mathbb{R}^+,$ $g_2(\mathsf{w}):\mathbb{R}^{n_2}\to\mathbb{R}^+,$ где $n_1,n_2>0.$ Тогда существует некоторая последовательность параметрических линейных преобразований $\{f_{\theta}^k\}_{k=1}^{\infty}$, такая что $s_0(g_1,f_{\theta}^k\circ g_2)\to 1$, и для нее не верно:

$$\|g_1-f_{\theta}^k\circ g_2\|\to 0$$

Вычислительный эксперимент

Вычислительный эксперимент проводился на отзывах с сайта Amazon. Домену соответствовала категория. Каждому отзыву соответствует оценка, которую поставил пользователь.

Среднеквадратичное отклонение предсказания модели обученной на домене I&S. Домен LB преобразован в пространство домена I&S с помощью функции преобразования, построенной на дивергенции Кульбака-Лейблера, и не участвует в обучении.

Вычислительный эксперимент

Среднеквадратичное отклонение предсказания модели обученной на домене I&S. Домен LB преобразован в пространство домена I&S с помощью функции преобразования, построенной на метрики Васерштейна, и не участвует в обучении.

Анализ ошибки

Результаты эксперимента показывают, что расстояние Васерштейна позволяет строить функцию преобразования домена сохраняющую эквивалентность на классах.

Результаты, выносимые на защиту

- Показано, что функция Адуенко А. А. является необходимой, но недостаточной в качестве меры совпадения распределений.
- Описан метод оценки параметров функции и критерии качества.
- Проведен вычислительный эксперимент.