

Relational Algebra

Molina, Ullman, Widom

Database Management: Complete Book,

Chapters 2 & 5

Algebra

- 2 "fathers of algebra":
 - where algebra ≡ theory of equations
 → Greek *Diophantus*
 - where algebra ≡ rules for manipulating & solving equations
 - → Persian al-Khwarizmi
- Source: Wikipedia

Xorazm, Usbekistan

JACOBS UNIVERSITY

What is "Algebra"?

- Mathematical system consisting of:
 - Operands variables or values from which new values can be constructed
 - Operators symbols denoting procedures that construct new values from given values
 - Ex: ((x + 7)/(2 3)) + x
- Algebra A = (C,OP)
 - -- "simplest" mathematical structure:
 - C nonempty carrier set (=value set)
 - OP nonempty operation set
 - C closed under OP expressions

Selection

- R1 := $\sigma_{\rm C}$ (R2)
 - C : condition on attributes of R2.
 - R1 is all those tuples of R2 that satisfy C.

sid	name	login	gpa
53688	Smith	jones@cs smith@eecs smith@math	

$\sigma_{gpa<3.8}(Students)$:

sid	name	login	gpa
		jones@cs smith@eecs	

Selection: Observations

- unary operation: 1 table
- conditions apply to each tuple individually
 - condition cannot span tuples (how to do that?)
- degree of $\sigma_{C}(R) = \text{degree of } R$
 - Cardinality?
- Select is commutative: $\sigma_{C1}(\sigma_{C2}(R)) = \sigma_{C2}(\sigma_{C1}(R))$

Projection

- R1 := $\pi_{attr}(R2)$
 - attr: list of attributes from R2 schema
- For each tuple of R2:
 - extract attributes from list attr in order specified (!) → R1 tuple
- Eliminate duplicate tuples

sid	name	login	gpa
53688	Smith	<pre>jones@cs smith@eecs smith@math</pre>	

```
π<sub>name,login</sub>(Students) =
name login
----
Jones jones@cs
Smith smith@eecs
```


Projection: Observations

- Unary operation: 1 table
- removes duplicates in result
 - Cardinality?
 - Degree?
- Project is not commutative
- Sample algebraic law: π_{L1} ($\pi_{L2}(R)$) = $\pi_{L1}(R)$ if L1 \subseteq L2
 - else incorrect expression, syntax error

Exercises

• $\pi_{\text{Name,login}}(\sigma_{\text{gpa=3.8}}(\text{Students})) = ?$

sid	name	login	gpa
53666	Jones	jones@cs	3.4
		smith@eecs	3.2
53650	Smith	smith@math	3.8

- "name and rating for sailors with rating > 8"
 - Note explicit operation sequence!

JACOBS UNIVERSITY

Cartesian Product

- project, select operators operate on single relation
- Cartesian product combines two:

$$R3 = R1 \times R2$$

- Pair each tuple t1 ∈ R1 with each tuple t2 ∈ R2
- Concatenation t1,t2 is a tuple of R3
- Schema of R3 = attributes of R1 and then R2, in order
- beware attribute A of the same name in R1 and R2: use R1.A and R2.A

Cross Product ("Cartesian Product")

Example U := R x S

A	B_{\perp}
1	2
3	4

(a) Relation R

B	C	D_{\perp}
2	5	6
4	7	8
9	10	11

(b) Relation S

A	R.B	S.B	C	D
1	2	2	5	6
1	2 2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

(c) Result R × S

Natural Join

- T=R ⋈ S
 - Ex: Reserves ⋈_{bid} Sailors
- connect two relations:
 - Equate attributes of same name, project out redundant attribute(s)

(a) Relation R

(b) Relation S

<u>A</u>	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2 4	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

$$\begin{array}{c|c|c|c}
A & B & C & D \\
\hline
1 & 2 & 5 & 6 \\
3 & 4 & 7 & 8
\end{array}$$

$$R \bowtie S$$

Generalizing Join

- $T = R \bowtie_C S$
 - First build R \times S, then apply σ_C
- Generalization of equi-join: A θ B where θ one of =, <, ...
 - Today, more general: σ_C can be any predicate
- Common join types:
 - Left join, right join, natural join, self join, ...

Relational Algebra: Summary

- = Mathematical definition of relations + operators
 - Query = Algebraic expression
- Relational algebra A = (R,OP) with relation R = $A_1 \times ... \times A_n$, OP= $\{\pi,\sigma,\times\}$
 - Projection: $\pi_{attr}(R) = \{ r.attr \mid r \in R \}$
 - Selection: $\sigma_p(R) = \{ r \mid r \in R, p(r) \}$
 - Cross product: $R_1 \times R_2 = \{(r_{11}, r_{12}, ..., r_{21}, r_{22}, ...) \mid (r_{11}, r_{12}, ...) \in R_1, (r_{21}, r_{22}, ...) \in R_2 \}$
 - Further: set operations, join, ...

Relational Calculus

- Tuple variable = variable over some relation schema
- Query Q = { T | T∈R, p(T) }
 - R relation schema, p(T) predicate over T
- Example 1: "sailors with rating above 8"
 - Sailors = sid:int × sname:string × rating:int × age:float
 - = $\{ S \mid S \in Sailors \land S.rating > 8 \}$
- Example 2: "names of sailors who have reserved boat #103":
 - Reserves = sid:int × bid:int × day:date
 - = { S.sname | ∃S∈Sailors ∃R∈Reserves: R.sid=S.sid ∧ R.bid=103 }

Comparison of Relational Math

Relational algebra

- set-based formalization of selection, projection, cross product (no aggregation!)
- Operation oriented = procedural = imperative; therefore basis of optimization

Relational calculus

- Same, but in predicate logic
- Describing result = declarative; therefore basis of SQL semantics

Equally powerful

proven by Codd in 1970