

Jeff Borowitz, PhD

Lecturer

Sam Nunn School of International Affairs

Software Architecture for Big Data

MapReduce

- MapReduce is a programming framework developed by Google, and released in a paper in 2003
- It allows the splitting of work among an arbitrary number of computers
- Programming model
 - Start with a list of (key, value) pairs
 - Apply a "map" function
 - The result is a new list of different (key, value) pairs
 - Then, collect all the pairs with the same key together, so you have (key, list of values)
 - Then call the "reduce" function on this list, which produces a list of values corresponding to each key
- The Master node role (called "TaskTracker") Dole out list to follower ("JobTracker") nodes which do "map"
 - Collect and aggregate by second key
 - Collect final list

MapReduce Picture

Source: https://www.edureka.co/blog/mapreduce-tutorial/

Hadoop

- Hadoop is an open source, commonly used system which can be used for MapReduce.
- Visit this module's resource list to find related web links there
 you will find more than you likely wanted to know
- Strengths
 - Parallelizes very parallel tasks very cheaply
 - Can be very redundant

Hadoop's Weaknesses

- No partial data reuse
 - What if you want the word counts again, on a slightly larger bit of text?
- Fundamentally, it parallelizes very parallel tasks
- There's a fair amount of overhead with every map reduce job.
- MapReduce is very low level

Spark: The Big Data Platform

- Visit module 2 resources for a web link to Spark
- "Directed acyclic graph" computations
- Resilient distributed data stores
 - (Checks if computation is complete, if not, knows how to repeat)

What's the Next Step?

- What do social scientists/data scientists/data analysts do with "big data"?
 - Data transformation (Extract, transform, load)
 - SQL-like queries, one off for an analysis or for a dashboard
 - Several versions of regressions

Spark has Higher Level Tools and Is Accessible in Many Languages

Source: https://mapr.com/products/apache-spark/

Spark and Other Languages

- Spark supports Java, Scala, and Python already
- R users can access Spark using sparklyr.
- Dataframes are key data constructs for analysis
 - It's like a spreadsheet, and exists in R and Python.
- In sum: tooling is getting good so more and more people could use Spark

Who Needs Spark?

- One important question: Which sorts of questions really need to be answered on such large data?
- Let's think about our biggest data sets we need to analyze?
 - Census bureau data: about 1,000 questions about 15M households
 - Micro-data on all health insurance customers for a company: about 50M people, with interactions
- People who do need Spark:
 - Drone service checking for broken infrastructure
 - E.g. Google, other web-scale companies.
 - Cybersecurity folks!

Spark and Cybersecurity

- loT devices create a lot of data, but could be compromised. Is a given loT device being maliciously controlled?
- For moderately sized computer systems, computers do tons of actions and create all kinds of technical logs.
- Is there evidence of malicious stuff in there? For a moderately sized computer system, there are likely tons of external requests for information which of these is malicious?

In Summary

- MapReduce was created to distribute simple, parallel work amongst computers
 - Core example is processing web text
 - Hadoop is an open source platform one can use MapReduce on
- Spark is more practical for data analytics
 - It has higher level tools and works in many languages for those who need it

