第6章 STC单片机CPU指令系统

何宾 2018.03

SUBB A,Rn

■ 该指令从累加器A中减去寄存器Rn和进位标志CY内的内容,将 结果保存在累加器A中。

SUBB A,Rn 指令的内容

助记符	操作	标志	操作码	字节数	周期数
SUBB A,Rn	(PC) ← (PC) + 1 (A) ← (A) - (C) - (Rn)	CY,AC,OV	10011rrr	1	1

注: rrr为寄存器的编号,因此机器码范围是98H~9FH。

- 口 如果第7位需要一个借位,则设置进位(借位)标志;否则,清除CY标志。
- 口 如果第3位需要一个借位,则设置AC标志;否则,清除AC标志。
- 口 如果第6位需要借位,而7位没有借位时;或者第7位有借位,而第6位 没有借位时,在这两种情况下都会设置OV标志。
- 口 或者可以这样说,当减去有符号的整数时,当一个正数减去一个负数, 产生一个负数结果时;或者一个负数减去一个正数时,产生一个正数 结果时,设置OV标志。

SUBB A,R2

结果:

$$(A) = 74H$$
, $(AC) = 0$, $(CY) = 0$, $(OV) = 1$

计算过程为:

SUBB A, direct

■ 该指令从累加器A中减去直接寻址单元的内容和进位标志CY的内容, 然后结果保存在累加器A中。CY、AC、OV设置如上。

SUBB A, direct 指令的内容

助记符	操作	标志	操作码	字节数	周期数
SUBB A,direct	(PC) ← (PC) + 2 (A) ← (A) - (C) - (direct)	CY,AC,OV	10010101	2	2

注: 在操作码后面跟着一个字节的直接地址。

SUBB A,@Ri

■ 该指令从累加器A中减去间接寻址单元的内容和进位标志CY的内容, 然后结果保存在累加器A中。CY、AC、OV设置如上。

SUBB A,@Ri 指令的内容

助记符	操作	标志	操作码	字节数	周期数
SUBB A,@Ri	$(PC) \leftarrow (PC) + 1$ (A) \leftarrow (A) - (C) - ((Ri))	CY,AC,OV	1001011i	1	2

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

SUBB A,#data

■ 该指令从累加器A中减去一个立即数和进位标志CY的内容,然后结果保存在累加器A中。CY、AC、OV设置如上。

SUBB A,#data 指令的内容

助记符	操作	标志	操作码	字节数	周期数
SUBB A,#data	(PC) ← (PC) + 2 (A) ← (A) - (C) - data	CY,AC,OV	10010100	2	2

注: 在操作码后面跟着一个字节的立即数。

算术指令 --递增指令

INC A

■ 该指令将累加器A的内容加1,结果保存在累加器A中。若累加器的结果为0xFF时,将其内容设置为0。

INC A 指令的内容

助记符	操作	标志	操作码	字节数	周期数
INC A	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (A) + 1$	N	00000100	1	1

INC Rn

■ 该指令将寄存器Rn的内容加1,结果保存在Rn中。若Rn的结果为0xFF时,将其内容设置为0。

INC Rn 指令的内容

助记符	操作	标志	操作码	字节数	周期数
INC Rn	(PC) ← (PC) + 1 (Rn) ← (Rn) + 1	N	00001rrr	1	2

注: rrr为寄存器的编号,因此机器码范围是08H~0FH。

INC direct

■ 该指令将直接寻址单元的内容加1,结果保存在直接地址单元中。 若直接地址单元的结果为0xFF时,将其内容设置为0。

INC direct 指令的内容

助记符	操作	标志	操作码	字节数	周期数
INC direct	$(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow (direct) + 1$	N	00000101	2	3

注: 在操作码后面跟着一个字节的直接地址。

算术指令 --递增指令

INC @Ri

■ 该指令将间接寻址单元的内容加1,结果保存在间接地址单元中。 若间接地址单元的结果为0xFF时,将其内容设置为0。

INC @Ri 指令的内容

助记符	操作	标志	操作码	字节数	周期数
INC @Ri	$(PC) \leftarrow (PC) + 1$ $((Ri)) \leftarrow ((Ri)) + 1$	N	0000011i	1	3

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

INC DPTR

■ 该指令将DPTR的内容加1,结果保存在DPTR中。若DPTR的结果为0xFFFF时,将其内容设置为0x0000。

INC DPTR 指令的内容

助记符	操作	标志	操作码	字节数	周期数
INC DPTR	$(PC) \leftarrow (PC) + 1$ $(DPTR) \leftarrow (DPTR) + 1$	N	10100011	1	1

算术指令 --递增指令

【例】假设寄存器R0中的数据为7EH,内部RAM地址为7EH和7FH单元的数据分别为FFH和40H,即:(7E)=FFH,(7F)=40H,则当执行指令:

INC @R0 ; 内部RAM地址为7EH单元的内容加1, 变成0

INC R0 ; 寄存器R0中的数据变为7FH

INC @R0 ; 内部RAM地址为7FH单元的内容加1, 变成41H

结果:

(R0) =7FH, 内部RAM地址为7EH和7FH单元的数据变为00H和41H。

算术指令 --递减指令

■ 该指令将累加器A的内容减1,结果保存在累加器A中。如果累加器A中的内容为0,则变为0xFF。

DEC A 指令的内容

助记符	操作	标志	操作码	字节数	周期数
DEC A	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (A) - 1$	Ν	00010100	1	1

DEC Rn

■ 该指令将寄存器Rn的内容减1,结果保存在寄存器Rn中。如果 Rn的内容为0,则变为0xFF。

DEC Rn 指令的内容

助记符	操作	标志	操作码	字节数	周期数
DEC Rn	(PC) ← (PC) +1 (Rn) ← (Rn)–1	N	00011rrr	1	2

注: rrr为寄存器的编号,因此机器码范围是18H~1FH。

DEC direct

■ 该指令将直接寻址单元的内容减1,结果保存在直接地址单元中。如果直接寻址单元的内容为0,则变为0xFF。

DEC direct 指令的内容

助记符	操作	标志	操作码	字节数	周期数
DEC direct	$(PC) \leftarrow (PC) +2$ $(direct) \leftarrow (direct)-1$	N	00010101	2	3

注: 在操作码后面跟着一个字节的直接地址。

算术指令 --递减指令

DEC @Ri

■ 该指令将间接寻址单元的内容减1,结果保存在间接地址单元中。 如果间接寻址单元的内容为0,则变为0xFF。

DEC @Ri 指令的内容

助记符	操作	标志	操作码	字节数	周期数
DEC @Ri	(PC) ← (PC) +1 ((Ri)) ← ((Ri))–1	N	0001011i	1	3

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

算术指令 --递减指令

【例】假设寄存器R0中的数据为7FH,内部RAM地址为7EH和7FH单元的数据分别为00H和40H,即:(7F)=00H,(7E)=40H,则当执行指令:

DEC @R0 ; 内部RAM地址为7FH单元的内容减1, 变成FFH

DEC R0 ;寄存器R0中的数据变为7EH

DEC @R0 ; 内部RAM地址为7EH单元的内容减1, 变成3FH

结果:

(R0) =7EH,内部RAM地址为7EH和7FH单元的数据变为FFH和3FH。

算术指令 --乘法指令

MUL AB

- 该指令将累加器A和寄存器B中的两个无符号8位二进制数相乘,所得的16位 乘积的低8位结果保存在累加器A中,高8位结果保存在寄存器B中。
- 如果乘积大于255,则溢出标志OV置1;否则OV清零。
- 在执行该命令时,总是清除进位标志CY。

MUL AB 指令的内容

助记符	操作	标志	操作码	字节数	周期数
MUL AB	(PC) ← (PC) + 1 (A) ← (A) x (B) 结果第7位到第0位 (B) ← (A) x (B) 结果第15位到第8位	CY,OV	10100100	1	2

50

算术指令 --乘法指令

【例】假设累加器A中的数据为 (80)10=50H, 寄存器B中的数据为 (160)10=A0H, 则执行指令:

MULAB

结果:

乘积为(12800)10=3200H,则

(A) = 00H, (B) = 32H,

(CY) = 0, (OV) = 1.

01010000

× 10100000

0000000

0000000

0000000

0000000

0000000

01010000

0000000

+01010000

0011001000000000

算术指令 --除法指令

DIV AB

- 该指令用累加器A中的无符号整数除以寄存器B中无符号整数。所得的商保存在累加器A中,余数保存在寄存器B中。
- 当除数 (B寄存器的内容) 为0时, 结果不定, 溢出标志OV置1。
- 在执行该指令时,清除进位标志CY。

DIV AB 指令的内容

助记符	操作	标志	操作码	字节数	周期数
DIV AB	(PC) ← (PC) + 1 (A) 15-8 ← (A)/(B) (B) 7-0 ← (A)/(B)	CY,OV	10000100	1	6

算术指令 --除法指令

【例】假设累加器A中的数据为(251)10=FBH,寄存器B中的数据为(18)10=12H,则执行指令:

DIV AB

结果: (A) =0DH, (B) =11H, (CY) =0, (OV) =0

算术指令 --BCD调整指令

DAA

- 该指令的功能是对BCD码的加法结果进行调整。
- 两个压缩型BCD码按十进制数相加后,须经此指令的调整才能得到压缩型 BCD码的和。
- 本指令是根据A的最初数值和程序状态字PSW的状态,决定对A进行加06H、60H或66H操作的。

DAA指令的内容

助记符	操作	标志	操作码	字节数	周期数
DA A	(PC) ← (PC) + 1 如果[[(A₃-₀) > 9] V [(AC) = 1]]则: (A₃-₀) ← (A₃-₀) + 6 如果 [[(A₁-₄) > 9] V [(C) = 1]]则: (A₁-₄) ← (A₁-₄) + 6	CY	11010100	1	3