ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ – 9° ΕΞΑΜΗΝΟ

Εργασία 2

(Προθεσμία: Τετάρτη 4 Νοεμβρίου 2020)

ΠΙΘΑΝΟΤΗΤΕΣ – ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

- 1. Για 2 ενδεχόμενα Α και Β, βρέθηκε ότι
 - Μόνο το Α συνέβη N1 φορές
 - Μόνο το Β συνέβη Ν2 φορές
 - Το Α και Β συνέβη N3 φορές
 - Ούτε το A ούτε το B συνέβη N4 φορές.

Ποιά είναι η δεσμευμένη πιθανότητα P(A|B) ;

ΒΑΥΕSΙΑΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ

2. Ο ακόλουθος πίνακας μας δίνει τις υπό συνθήκη πιθανότητες μιας τυχαίας μεταβλητής X για τρεις κατηγορίες ω₁, ω₂, και ω₃ (τρία ζάρια). Έστω ότι γνωρίζουμε τις a priori πιθανότητες p(ω₁) = 0.3 και p(ω₂) = 0.3. Δηλαδή, διαλέγουμε ένα ζάρι το ρίχνουμε και προσπαθούμε να μαντέψουμε ποιο ζάρι είχαμε διαλέξει.

Υπολογίστε το ολικό σφάλμα της ταξινόμησης χρησιμοποιώντας τον κανόνα απόφασης Bayes.

$p(X=x \omega)$						
	X=1	X=2	X=3	X=4	X=5	X=6
ω_1	0.3	0.2	0.1	0.1	0.2	0.1
ω_2	0.2	0.2	0.4	0.05	0.1	0.05
ω3	0.1	0.3	0.15	0.05	0.3	0.1

3. Υπολογίστε την εξίσωση της επιφάνειας απόφασης και το ολικό σφάλμα της κατηγοριοποίησης κατά Bayes για δυο κατηγορίες ω₁ και ω₂, με p(ω₁)=0.25, όπου θεωρούμε δείγματα σε 2-διαστάσεις από γκαουσιανές κατανομές που περιγράφονται από τις ακόλουθες πυκνότητες πιθανότητας:

$$p(\overline{x}/\omega_1) = N(\overline{\mu}_1, \overline{\Sigma}_1) \text{ Kal } p(\overline{x}/\omega_2) = N(\overline{\mu}_2, \overline{\Sigma}_2)$$

$$\overline{\mu}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad \Sigma_1 = \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix} \quad \text{Kal} \quad \overline{\mu}_2 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}, \qquad \Sigma_2 = \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix}$$

- **4.** (α) Να ευρεθεί η βέλτιστη λύση (απόφαση), όταν $\Omega = \{\omega_1, \omega_2\}$, $P(x|\omega_1) = N(2, 0.5)$, $P(x|\omega_2) = N(1.5, 0.5)$
 - 0.2), $P(\omega_1)=1/3$, $P(\omega_2)=2/3$ με $\lambda = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$ και να υπολογισθεί το ελάχιστο κόστος.
 - (β) Να προσομοιωθεί η διαδικασία υπολογιστικά, δημιουργώντας τυχαίους αριθμούς που ακολουθούν την κανονική κατανομή με την εντολή randn, και να εκτιμηθεί αριθμητικά το κόστος από την λύση (α).

Ξάνθη, 21/10/2020