UNIVERSIDAD NACIONAL DE LUJÁN

<u>ANÁLISIS MATEMÁTICO I</u> (11081). LICENCIATURA EN SISTEMAS DE INFORMACIÓN

EXAMEN FINAL

12 DE JULIO DE 2013

1-Escribir la ecuación de la recta tangente a la curva $y=tan^3(4x)$ en el punto de abscisa $x=\frac{\pi}{16}$

- 2-Trazar esquemáticamente la gráfica de la función $y = e^{\frac{1}{2x+4}}$
- 3-Calcular el área limitada por las curvas $y=-\log x,\ y=2,\ x=e^4.$ Esbozar la figura
- 4-Calcular, si existe, la integral impropia $\int_1^\infty x^3 e^{-x} \ dx$

5-Hallar el volumen del sólido generado por la rotación alrededor del eje x del rectanguloide relativo a la función $f(x) = \frac{1}{\sqrt{x^2 + 3x + 2}}, \quad 1 \le x \le 4$

6-Estudiar la convergencia o divergencia de las siguientes series

a)
$$\sum \frac{k^{k+1}}{(3k)!}$$
 b) $\sum \frac{2^k}{\log(k+4)}$

7-Hallar todos los valores de x para los cuales la siguiente serie de potencias converge

$$\frac{x}{3^2} + \frac{x^2}{2.3^3} + \frac{x^3}{3.3^4} + \frac{x^4}{4.3^5} + \frac{x^5}{5.3^6} + \cdots$$

8- Determinar el valor de a para que la siguiente función sea continua en todo el eje real

$$f(x) = \begin{cases} 2x^2 + x + a , si \ x \le -1 \\ 5x^3 - a , si \ x > -1 \end{cases}$$

9-Sólo para alumnos libres

Demostrar $\int \sin^2 x \, dx = \frac{1}{2}(x - \sin x \cos x) + c$