1. 개요

- ●목차
- 1)트리 정의 및 표현
 - Definitions
 - Representation: Adjacency (Matrix, List)
- 2)그래프 기본 연산 (Elementary Graph Operation)
 - Breadth First search (넓이우선 탐색)
 - Depth First search (깊이우선 탐색)
- 3) Minimum cost Spanning Tree (MST)
 - Kruskal, Prim, Sollin
- 4) Shortest Path (single source all destination)

1.1 정의

A graph, G, consists of two sets, a finite set of vertices and a finite set of edges.

. G = (V, E) V: set of vertex E: Set of edges

- . Undirected Graph (무방향): G1, G2 (v1, v2) = (v2, v1)
- . Directed Graph (방향): G3 <v1, v2>≠<v2, v1>

$$V(G1) = \{0,1,2,3\} \quad E(G1) = \{(0,1)(0,2)(0,3)(1,2)(1,3)(2,3)\}$$

$$V(G2) = \{0,1,2,3,4,5,6\}$$

$$E(G2) = \{(0,1)(0,2)(1,3)(1,4)(2,5)(2,6)\}$$

$$V(G3) = \{0,1,2,\}$$
 $E(G3) = \{<0,1><1,0><1,2>\}$

- Restriction on a graph: <u>no self-loop</u>, and <u>no Multigraph</u>
 - self-loop: 자기 자신을 가리키는 간선
 - multigraph: 두 정점 사이에 여러 간선 있는 graph

- Complete Graph 란?

 the maximum number of edges 를 갖는 그래프

 (ex. G1 is a complete Graph, G2, G3 is not complete graph)
 - \Rightarrow For undirected graph max number of edges \Rightarrow => n(n-1)/2
 - \Rightarrow For directed graph, max number of edges \Rightarrow **n(n-1)**
 - If (0,1) is an edge in undirected graph, then vertices 0 and 1 are **ADJACENT**, and the edge (0,1) is **INCIDENT** on vertices 0 and 1
- ex) In Graph G2, vertices 3,4,0 are adjacent to vertex 1 and edges (0,1), (1,3), (1,4) are incident on vertex 1
- Subgraph: A subgraph of graph G is G', such that $V(G') \subseteq V(G)$ & $E(G') \subseteq E(G)$
 - ex) in Graph G1, many subgraphs, such as

Cycle and Path

- Path(경로): 정점(간선)들의 연속

- . 경로의 길이: 경로상의 간선 수 . Simple PATH(단순경로): 서로 다른 정점으로 구성된 경로
 - CYCLE: (처음과 끝 정점이 같은 단순경로) Cycle is a simple path in which the FIRST and LAST vertices are the same vertex
- CONNECTED: 0 = (connected) 그래프, G $vi, vj \in V(G) \Rightarrow vi \text{ odd } vj \text{ 로의 경로 존재}$

- Connected Component: number of subgraphs ex) 위 Graph G4 has two components
 - * Diff with Tree and Graph
 - 1) Tree is special case of graph
 - 2) Tree is a graph that is connected
 - 3) Tree is a graph that has no cycle
- DEGREE: number of edges incident to that vertex
 - . Undirected Graph:
 - . Directed Graph: (indegree, outdegree) In G3,

vertex 1: indegree 1

outdegree 2 → degree 3.

- If d_i is degree of vertex i in G, with n vertices and e edges:
 - ⇒ number of edges:

$$e = \left(\begin{array}{c} \sum d_i \end{array} \right) / 2$$

1.2 Graph Representation (3 가지 표현방법)

- 1)인접행렬 (Adjacent matrix)
- 2)인접리스트 (Adjacent list)
- 3)인접다중리스트 (Adjacent multilist)

1) Adjacency Matrix

- Sparse graphs 란? : 간선의 개수가 적은 그래프를 뜻함
- sparse graph 를 adjacency matrix 로 표현하면 memory waste 임. <u>adjacency list 가 적합함.</u>

2) Adjacent List

Replace n rows of adjacency matrix with n linked list, one for each vertex in G (각 정점에 대해 1개의 리스트 존재)

2. Elementary Graph Operations

```
1) DFS (Depth First Search): 깊이 우선탬색
 . visited[MAX_VERTICES]: 배열 (초기치 = FALSE)
 . visited[i] = TRUE : 정점 i 방문
                        . 시작정점 v 방문 (visited[v]=true)
procedure DFS(int v)
                        . For each vertex W adjacent to v do
 {
      Node
                            if not visited[W] then DFS(W);
            *w:
                        . 더이상 없으면 dfs 끝
      visited[v] = true;
      cout << v:
      for (w= graph[v]; w!=NULL; w=w->link)
         if (!visited[w->vertex]) DFS(w->vertex);
     } }
```


2) BFS (Breadth First Search) .Implement with Linked Queue

```
. procedure BFS(int v) {
  Node p; for all (visited[i]='f')
  visited[v] = true;
  addq(Q, v); cout << v;

while (not empty (Q)) {
  v = dequeue(Q);</pre>
```

```
for (p=graph[v]; p; p=p->next);//인접된 모든 노드에대해
                                                //if not visited
           if (!visited[p->vertex]) {
                    enqueue(p->vertex);
                    visited[p] = true;
                    cout << p->vertex;
            }
     }
                              while (flag) {
int ADJM[size][size] ={
     0, 1, 1, 0, 0, 0, 0,
                                  deque(v);
     1, 0, 0, 1, 1, 0, 0,
                                  for (w=graph[v][v]; w < max; w++) {
     1, 0, 0, 0, 0, 0, 1,
                                  if(graph[v][w] !=0) && visited[w]!='t')
                                       addq(w); visited[w]='t'; cout<<w}
     0, 1, 0, 0, 0, 1, 0,
     0, 1, 0, 0, 0, 1, 0,
                                       v++ }
     0, 0, 0, 1, 1, 0, 1,
     0, 0, 1, 0, 0, 1, 0;
```


3) SPANNING TREES (신장트리)

Definition: any tree that includes all the vertices in G

- G=(V,E), G'=(V',E')일때, ST는 (V⊆V', E≤E')
- Spanning Tree -> (n-1) edges (Cycle 없슴)
- 예) 하나의 연결 Graph 는 출발점이나 검색방법에 따라 각기 다른 신장 트리(Spanning Tree)가 만들어진다.

- We can use DFS or BFS to create a spanning tree
 - when DFS is used => the result is DFS spanning tree
 - when BFS is used => the result is BFS spanning tree

- ▶ 접근 방법: Greedy Method
 - 최적의 해를 단계별로 구한다.
 - . 각 단계에서, 판단기준에 따라 최상의 결정을 한다
 - 한번 결정된 해는 번복 불가.
- ▶ cost가 제일 적은 신장트리(spanning tree) => MST

3. Minimum cost spanning trees(MST)

⇒ 대표적인 MST algorithms: Kruskal, Prim, Sollin

1) Kruskal's Algorithm (Greedy method)

- * 한번에 한 개의 간선을 MSTT에 추가.
- *T에 포함될 간선을 비용크기 순으로 선택 → SORT필요.
- *T에 n-1 개의 간선이 포함될 때 까지 간선 추가.

```
Kruskal() {
  sort(); //
  T = { };  // T = MST
  while (T contains <n-1 edges) & (E is not empty) {
    choose a least cost edge (v,w) from E;
    delete (v,w) from E;
    if (v,w) does not create a CYCLE in T  // check cycle
        add(v,w) to T => ACCEPT
    else    discard(v,w); => REJECT
  }
  If T contains fewer than n-1 edges, then "No spanning tree";
```


}

cost	edge	action
10	(0,5)	accept
12	(2,3)	accept
14	(1,6)	accept
16	(1,2)	accept
18	(3,6)	reject => cycle
22	(3,4)	accept
24	(4,6)	reject => cycle
25	(4,5)	accept
28	stop	already (n-1) edges added

Ex) Class Node { char ff; int edges; char ll;

};


```
A 6 B
           B 3 E
B 5 C
           C 6 E
A 1 C
           C 4 F
A 5 D
           D 2 F
C 5 D
           E 6 F
```

```
v[0].ff = 'A'; v[0].edges = 6; v[0].ll = 'B';
v[1].ff = 'B'; v[1].edges = 5; v[1].ll = 'C';
v[2].ff = 'A'; v[2].edges = 1; v[2].ll = 'C';
v[3].ff = 'A'; v[3].edges = 5; v[3].ll = 'D';
v[4].ff = 'C'; v[4].edges = 5; v[4].ll = 'D';
```

2) Prim's Algorithm

Kruskal's form a forest, but Prim's algorithm form a tree at each stage

- 각 단계에서 선택된 간선의 집합은 트리
- MST T에 n-1 개의 간선이 포함될 때까지 간선 추가
- 사이클 형성 않게, (U,V)중 하나만 T에 속한 것 선택

```
Algorithm: {start vertex v} // 시작 정점 필요
```

 $T = \{ \};$ //Prime MST, $TV = \{0\} ->$ start with vertex 0 //v For (i=1 to max)

lowcost[i]= COST[v][i]; //v= start vertex

while (T contains fewer than n-1 edges) {

Find (u,v) be a least cost edge from lowcost[];

Print (v, u) // print least cost edge and mark

if (there is no such edge) break;

else add **u** to TV;

add (u,v) to T;

let **u** to be a <u>new v</u>, and continue

if (T contains fewer than n-1 edges) print "No spanning Tree"; print total value;

ex) starting vertex '0'

- 3) Sollin's Algorithm 각 단계별, T에 포함될 간선을 여러개 선택
 - (i) 그래프의 모든 n 정점을 포함하는 신장트리 구성
 - (ii) forest 내의 각 트리에 대해 하나의 간선 선택, (최소비용선택)

ex) 0
$$0:(0,5)$$
 $0:(0,5)$

- . Tree $\{0,5\}:=> (1,0),(4,5)$, will select (4,5) since cost is 25 (minimum)
- . Tree $\{1,6\}$: => (1,2), (6,3), will select (1,2) since cost is 16 (min)
- . Tree $\{2,3,4\}:=>(2,1),(3,6)(4,6)$, will select (2,1) since cost is 16 (min)

4. Shortest Path (최단경로)

- 1) Single Source All Destination (단일 출발점-> 모든 도착지)
- v0(source)에서 G의 다른 모든 정점(도착지)까지의 최단경로

	45
0 50	10 4
20/) 15	35
10 /	20 30
2	3
15	3

path	length
1) v0 v2	10
2) v0 v2 v3	25
3) v0 v2 v3 v1	45
4) v0 v4	45

< shortest path from v0 to v1,v2,v3,v4> <no path from v0 to v5>

* found[i]: if found[i]=TRUE vi 까지의 최단경로 발견

distance[i]: v0에서 S 내의 정점만을 거친 vi까지의 최단거리

(S=최단경로가 발견된 정점의 집합)

- 초기치 : *distance*[i] = *cost*[0][i]

- cost[i][j] : <i, j>의 가중치

* 그래프 : 비용 인접 행렬(cost adjacency matrix)로 표현

 $\label{lem:costMatrix} void in it \textbf{CostMatrix} (int cost[][]) \quad \{ \ /\!/ initialize \\ int \ I, \ j; \\ \\$

for
$$(i = 0; i < 8; i++)$$

for $(j = 0; j < 8; j++)$
if $(i == j)$ cost $[i][j] = 0;$
else cost $[i][j] = 999;$

// Enter distance value from data file.

Algo (Shortest path) by Dijkstra's algorithm

```
Void Shortestpath (int v, int max) {
    int i,u,w;
    for (i=0; i<max; i++)
                                             O(n)
                                          . found all FALSE
        found[i] = false;
        distance[i] = cost[v, i];
                                          . initial value assign
    found[v]=true;
                         // start vertex mark
    distance[v]=0;
                                // start vertex 0
    for (i=0; i<max-1; i++)
       u = choose(distance, n);
                                       // find min value node
       found[u]= true;
                                           // mark the node
       for (w = 0; w < max; w++) { // and replace if revised value
        if (!found[w]) {
                                 // if not marked
         if (distance[u]+cost[u,w] < distance[w]) //is smaller than org
            distance[w] = distance[u] + cost[u,w]; // value
       }}
      Print "Distance ->", distance ]; print final distance
} }
int choose(distance, max){
   int i, min; // min=max_value 로 초기화
   for (i = 0; i < n; i++)
        if (dist[i] < min && !found[i]) {
             min = distance[i]
             minnode= i;
   return minnode;
}
```


	0	1	2	3	4	5
0	 	50	10		45	
1			15		10	
2	20			15		
3		20			35	
4 5				30		
5				3		
	יו ה	4 J J	-11 →	1		

비용 인접 행렬 - cost

Vertex	0	1	2	3	4	5
Distance	0	50	10	999	45	999
S	1	0	0	0	0	0

1. S = {v0} : 초기는 공백

distance(1) = 50

distance(2) = 10 <= min

distance(3) = 999

distance(4) = 45

distance(5) = 999

Vertex	0	1	2	3	4	5
distance	0	50	10	999	45	999
S	1	0	1	0	0	0

2. $S = S \cup \{v2\} = \{v0, v2\}$

distance(1)<- $\min\{distance(1), distance(2)+(v2,v1,999)\}$ 50 distance(3)<- $\min\{distance(3), distance(2)+(v2,v3,15)\}$ 25 <= \min

 $distance(4) < -min{distance(4), distance(2) + (v2, v4, 999)}$ 45

distance(5)<- min{distance(5), distance(2)+(v2,v5,999)} 999

vertex	0	1	2	3	4	5
distance	0	50	10	25	45	999

S	1	0	1	1	0	0

3. $S = S \cup \{v3\} = \{v0, v2, v3\}$

 $distance(1) < -min{distance(1), distance(3)+<math>v3$,v1,20}} $45 \ll min$ $distance(4) < -min{distance(4), distance(3) + (v3, v4, 35)}$ 45 $distance(5) < -min{distance(5), distance(3)+(v3,v5,999)}$ 999

Vertex	0	1	2	3	4	5
Distance	0	45	10	25	45	999
S	1	1	1	1	0	0

4. $S = S \cup \{v1\} = \{v0, v1, v2, v3\}$

 $distance(4) < -min\{distance(4), distance(1) + (v1, v4, 10)\}$ 45<= min $distance(5) < -min{distance(5), distance(1) + (v1, v5, 999)}$ 999

Vertex	0	1	2	3	4	5
distance	0	45	10	25	45	999
S	1	1	1	1	1	0

5. $S = S \cup \{v4\}$

distance(5) / min [distance(5) distance(1) \(\psi\) \(\psi\) \(\psi\) \(\psi\) \(\psi\) 000 /-

distance(5)	999 <=	min						
Vertex	0	1	2	3	4	5		
Distance	0	45	10	25	45	999		
S	1	1	1	1	1	1		

6.
$$S = S \cup \{v5\}$$

Final Solution:

Distance	0	45	10	25	45	999	

			Distance							
		vertex	LA	SF	DEN	CHI I	BOS	NY	MA	NO
Iteratio	on visited	selected	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
Initia	al -	-	∞	∞	∞	1500	0	<u>250</u>	∞	∞
1	4	5	∞	∞	∞ /	1250	0	250	<u>1150</u>	1650
2	4,5	6	∞	∞	90	1250	0	250	1150	1650
3	4,5,6	3	∞	∞ /	2450	1250	0	250	1150	<u>1650</u>
4	4,5,6,3	7	3350	ø	<u>2450</u>	1250	0	250	1150	1650
5	4,5,6,3,7	2	3350/	<u>3250</u>	2450	1250	0	250	1150	1650
6	4,5,6,3,7,2	1	3350	3250	2450	1250	0 0	250	1150	1650
	{4,5,6,3,7,2,1}									

Chi 1000