第15章 函数列与数项级数

15.1 问题的提出

三个问题

和函数的连续性

逐项积分

$$\int_a^b S(x) dx = \sum_{n=1}^\infty \int_a^b u_n(x) dx$$

逐项求导

$$S'(x) = \sum_{n=1}^\infty u'(x)$$

等价于

(1)

 $S_n(x)$ 的极限函数S(x)是否也连续

(2)

$$\int_a^b S(x) dx = \lim_{n o\infty} \int_a^b S_n(x) dx$$

(3)

$$S'(x) = \lim_{n o \infty} S'_n(x)$$

一致收敛可使上述问题成立

15.2 一致收敛

15.2 — 致收敛

15.2.0 函数列

15.2.0.1 逐点收敛

15.2.0.2 一致收敛

15.2.0.3 一致收敛的充分必要条件

15.2.0.4 Cauchy 收敛原理

15.2.1 函数项级数

15.2.1.0 一致收敛

15.2.1.1 Cauchy 收敛原理

15.2.1.2 函数项级数收敛的必要条件

15.2.1.3 Weierstrass 判别法

15.2.1.5 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$

15.2.1.5.0 一致有界

15.2.1.5.1 Dirichlet 判别法

15.2.1.5.2 Abel 判别法

15.2.0 函数列

15.2.0.1 逐点收敛

定义在 [a,b] 的函数列 $\{f_n\}$

若数列 $\{f_n(x_0)\}$ 收敛,则称 $\{f_n\}$ 在 x_0 收敛

 $\{f_n\}$ 在 [a,b] 上 **每一点** 都收敛 则称 $\{f_n\}$ 在 [a,b] 上收敛或 **逐点收敛**

逐点收敛,一个点确定一个数列,一次只看一个点对应的一个数列的敛散性

一个点取一个 N, 故 N 与 x 有关 $N(\varepsilon, x)$

15.2.0.2 一致收敛

所有点一起看敛散性 N 的值对所有 x 都收敛,与 x 无关 $N(\varepsilon)$

$$orall arepsilon > 0$$
 $\exists N(arepsilon), riangle n > N(arepsilon)$ 时 $|f_n(x) - f(x)| < arepsilon$

则称

$$\{f_n\}$$
一致收敛到 f

15.2.0.3 一致收敛的充分必要条件

$$eta_n = \sup_{x \in I} |f(x) - f_n(x)| o 0, \quad n o \infty$$

15.2.0.4 Cauchy 收敛原理

 $\forall \ arepsilon > 0, \exists \ N(arepsilon), riangleq n > N(arepsilon)$

$$|f_{n+p}(x)-f_n(x)|$$

对一切正整数p成立

15.2.1 函数项级数

15.2.1.0 一致收敛

定义: 部分和一致收敛, 函数项级数一致收敛

不是各项一致收敛,而是和函数一致收敛

$$S_n(x) = \sum_{k=1}^n u_k(x)$$

$$S_n(x)$$
一致收敛到 $S(x)$

$$\sum_{n=1}^{\infty} u_n(x)$$
一致收敛到 $S(x)$

15.2.1.1 Cauchy 收敛原理

 $\forall \ arepsilon > 0, \exists \ N(arepsilon), riangleq n > N(arepsilon)$

$$|u_{n+1}(x)+u_{n+2}(x)+\cdots+u_{n+p}(x)|<\varepsilon$$

对一切正整数p成立

15.2.1.2 函数项级数收敛的必要条件

通项 $u_n(x)$ 一致收敛到 0

$$\forall \ arepsilon > 0, \exists \ N(arepsilon), riangleq n > N(arepsilon)$$

$$|u_n(x)-0|$$

15.2.1.3 Weierstrass 判别法

存在 **收敛** 的 **正项** 级数 $\sum_{n=1}^{\infty} a_n$

$$|u_n(x)| < a_n, x \in I$$

$$\sum_{n=1}^{\infty} u_n(x)$$
 在 I 一致收敛

15.2.1.5
$$\sum_{n=1}^{\infty} a_n(x) b_n(x)$$

15.2.1.5.0 一致有界

逐点有界

$$|f_n(x)| < M(x)$$

一致有界

$$|f_n(x)| \leq M$$

15.2.1.5.1 Dirichlet 判别法

- (a) $\{b_n(x)\}$ 对每个 x 单调, **一致收敛** 到 0
- (b) $\sum_{n=1}^{\infty} a_n(x)$ 部分和 $S_n(x)$ 在 I **一致有界**

15.2.1.5.2 Abel 判别法

- (a) $\{b_n(x)\}$ 对每个 x 单调, **一致有界**
- (b) $\sum_{n=1}^{\infty}a_n(x)$ 一致收敛

15.3 极限函数与和函数的性质

15.3 极限函数与和函数的性质

15.3.0 一致收敛

函数列

函数项级数

15.3.1 连续性

函数列

函数项级数

15.3.2 Dini 定理

函数列

函数项级数

15.3.3 可积性

函数列

函数项级数

15.3.4 可导性

函数列

函数项级数

15.3.0 一致收敛

函数列

函数项级数

部分和函数一致收敛,而不是各项收敛

类比,把部分和函数看成函数列,而不是各项

一致收敛才有以下性质

15.3.1 连续性

函数列

$$\left. egin{aligned} f_n(x)$$
连续 $f_n(x)$ 一致收敛到 $f(x) \end{aligned}
ight\} \Rightarrow f(x)$ 连续

函数项级数

$$egin{aligned} u_n(x)$$
连续 $S_n(x)$ 一致收敛到 $S(x)$ $iggrid \Rightarrow S(x)$ 连续 $u_n(x)$ 连续 $\Rightarrow S_n(x)$ 连续

15.3.2 Dini 定理

函数列

有限闭区间
$$[a,b]$$
连续 $\forall x_0 \in [a,b], f_n(x_0)$ 递减趋于 0

函数项级数

$$u_n(x)$$
有限闭区间 $[a,b]$ 连续非负 $S(x)$ 在 $[a,b]$ 也连续 $\Rightarrow \sum_{n=1}^{\infty} u_n(x)$ 一致收敛

15.3.3 可积性

函数列

有限闭区间
$$[a,b]$$
 可积函数列 $\{f_n\}$ \Rightarrow f 也可积 $-$ 变收敛到 f $\}$

函数项级数

有限闭区间
$$[a,b]$$
 $u_n(x)$ 可积 $S_n(x)$ 一致收敛到 $S(x)$ $\Rightarrow S(x)$ 可积 $S_n(x)$ 一致收敛到 $S(x)$ $\Rightarrow S(x)$

$$u_n(x)$$
可积 $\Rightarrow S_n(x)$ 可积

闭区间上的连续函数一定可积分

将上述可积条件改为连续结论同样成立

15.3.4 可导性

函数列

条件:

- (a) 每一个 f_n 在 [a,b] 上有 **连续** 导函数
- (b) 导函数构成函数列 $\{f'_n\}$ 在 [a,b] 上 **一致收敛** 于 g
- (c) 至少在某一点 $x_0 \in [a,b]$ 收敛

结论:

 f_n 在 [a,b] 一致收敛于某个**连续可微** 函数 f

目

$$f'(x) = g(x)$$
 $(\lim_{n \to \infty} f_n(x))' = \lim_{n \to \infty} f'_n(x)$

函数项级数

- (a) $u_n(x)$ 在 [a,b] 上 **连续** 导函数
- (b) 导函数 $u_n'(x)$ 构成的级数 $\sum_{n=1}^\infty u_n'(x)$ 在 [a,b] 上 **一致收敛** 于函数 g(x)
- (c) 至少在某一点 $x_0 \in [a,b]$ 收敛

结论:

 $\sum_{n=1}^{\infty}u_{n}(x)$ 在 [a,b] 一致收敛, 和函数 S(x) 在 [a,b] 连续可导

且

$$S'(x)=g(x) \ (\sum_{n=1}^\infty u_n(x))'=\sum_{n=1}^\infty u_n'(x)$$

15.4 由幂级数确定的函数

15.4 由幂级数确定的函数

15.4.0 幂级数

15.4.1 Abel

15.4.2 Cauchy-Hadamard

15.4.3 收敛区间和收敛半径

15.4.4 收敛区间(-R,R)内闭一致收敛

15.4.5 在收敛区间内任意阶可导

15.4.6 收敛半径内积分,收敛半径不变

15.4.7 Abel 第二定理

15.4.8 Tauber 定理

15.4.8 一个关于幂级数乘积的等式

15.4.0 幂级数

$$\sum_{n=0}^{\infty}a_n(x-x_0)^n$$

简单讨论

$$\sum_{n=0}^{\infty}a_nx^n$$

15.4.1 Abel

1. 如果 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x=x_0$ 处 收敛,它必在 $|x| < x_0$ 绝对收敛

2. 如果 $\sum_{n=0}^{\infty}a_nx^n$ 在 $x=x_1$ 处 **发散** ,它必在 $|x|>x_1$ **发散**

15.4.2 Cauchy-Hadamard

$$R = rac{1}{\limsup_{n o \infty} \sqrt[n]{|a_n|}}$$

(1) R = 0 只在 x = 0 收敛

(2) $R = +\infty$ 在整个数轴 **绝对收敛**

(3) $0 < R < +\infty$ 在 (-R,R) 绝对收敛 ,在 [-R,R] 之外 发散

 $\pm R$ 处不确定

15.4.3 收敛区间和收敛半径

收敛区间: (-R,R)

收敛半径: R

15.4.4 收敛区间(-R,R)内闭一致收敛

15.4.5 在收敛区间内任意阶可导

$$S^{(k)}(x) = \sum_{n=k}^\infty n(n-1)\cdots(n-k+1)a_nx^{n-k}$$

15.4.6 收敛半径内积分,收敛半径不变

$$\int_0^x S(t)dt = \sum_{n=0}^\infty rac{a_n}{n+1} x^{n+1}$$

15.4.7 Abel 第二定理

R 处收敛,在 x=R 处 **左连续** -R 处收敛,在 x=-R 处 **右连续**

15.4.8 Tauber 定理

收敛半径1
$$\left\{ \lim_{x^- \to 1} \sum_{n=1}^{\infty} a_n x^n = A$$
存在 $a_n = o(\frac{1}{n})
ight\} \Rightarrow \sum_{n=1}^{\infty} a_n = A$

15.4.8 一个关于幂级数乘积的等式

$$(\sum_{n=1}^\infty a_n x^n)(\sum_{n=1}^\infty b_n x^n) = \sum_{n=1}^\infty c_n x^n$$

其中 $c_n = \sum_{l=0}^n a_l b_{n-l},$ 收敛半径均为 R

15.5 函数的幂级数展开式

15.5 函数的幂级数展开式

15.5.1 幂级数

15.5.2 Taylor 级数

15.5.3 Maclaurin 级数

15.5.4 余项

15.5.5 收敛的充分必要条件

15.5.6 收敛条件

15.5.7 六个初等函数

15.5.1 幂级数

$$f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$$

15.5.2 Taylor 级数

$$f(x) \sim \sum_{n=0}^{\infty} rac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$

15.5.3 Maclaurin 级数

$$f(x) \sim \sum_{n=0}^{\infty} rac{f^{(n)}(0)}{n!} x^n$$

15.5.4 余项

$$R_n(x) = rac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} \ R_n(x) = rac{f^{(n+1)}(\eta)}{n!}(x-\eta)^n(x-x_0)$$

15.5.5 收敛的充分必要条件

$$\lim_{n o\infty}R_n(x)=0$$

15.5.6 收敛条件

 $\exists M$ 使得对 (x_0-R,x_0+R) 内的所有 x 及一切充分大的 n, 均有

$$|f^{(n)}(x)| \leq M$$

15.5.7 六个初等函数

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \qquad (-\infty < x < +\infty)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1}, \qquad (-\infty < x < +\infty)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} x^{2n}, \qquad (-\infty < x < +\infty)$$

$$\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}, \qquad (-1 < x \le 1)$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2n+1} x^{2n+1}, \qquad (-1 \le x \le 1)$$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \binom{\alpha}{n} x^{n} \qquad \begin{cases} \alpha \le -1 & (-1 < x < 1) \\ -1 < \alpha < 0 & (-1 < x \le 1) \\ \alpha > 0 & (-1 \le x \le 1) \end{cases}$$