Цепи Маркова

Пусть последовательность $X_0, X_1, ..., X_n, ...$ состоит из случайных величин, которые принимают значения в конечном числовом множестве \mathcal{X} (обозначим $|\mathcal{X}| = K$).

Определение. Последовательность $X_0, X_1, ..., X_n, ...$ называется конечной цепью Маркова, если для любого n и любых $\{i_0, i_1, ..., i_{n-1}\} \subset \mathcal{X}$

$$P(X_{n+1} = j/X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}, X_n = k) = P(X_{n+1} = j/X_n = k)$$
 (1)

Если условные вероятности

$$p_{kj} = P(X_{n+1} = j/X_n = k)$$

не зависят от n, то цепь называется однородной; матрица

$$\mathbf{P} = \{p_{kj}\}; k, j \in \mathcal{X}$$

в этом случае называется матрицей переходных вероятностей. Для матрицы \boldsymbol{P} справедливо свойство

$$\sum_{j\in\mathcal{X}}p_{kj}=1, \qquad i\in\mathcal{X}$$

(такие матрицы называются стохастическими).

Равенство (1) это **марковское свойство**: при заданном настоящем будущее не зависит от прошлого. Множество \mathcal{X} не обязательно имеет числовую природу, это может быть любое конечное множество, но тогда мы можем пронумеровать его элементы и получим числовое множество. Это множество может быть бесконечным, тогда мы имеем марковскую цепь со счетным числом состояний.

Выведем основные соотношения для цепей Маркова. При этом будут полезны следующие формулы.

Формула полной вероятности для условных вероятностей. Если события A_1, \dots, A_n образуют полную группу $(A_1 \cup A_2 \cup \dots \cup A_n = \Omega; \ A_i \cap A_j = \emptyset)$, то

$$P(A/B) = \sum_{k=1}^{n} P(A/A_k B) P(A_k/B).$$
 (2)

Для доказательства рассмотрим обычную формулу полной вероятности

$$P(A) = \sum_{k=1}^{n} P(A/A_k)P(A_k).$$

и возьмем в ней событие $A \cap B$ вместо A:

$$P(AB) = \sum_{k=1}^{n} P(AB/A_k)P(A_k),$$

Тогда можем записать

$$P(A/B) = \frac{P(AB)}{P(B)} = \frac{1}{P(B)} \sum_{k=1}^{n} P(AB/A_k) P(A_k) = \frac{1}{P(B)} \sum_{k=1}^{n} P(ABA_k)$$

так как

$$P(AB/A_k) = \frac{P(ABA_k)}{P(A_k)}$$

и отсюда получаем

$$P(A/B) = \frac{1}{P(B)} \sum_{k=1}^{n} P(ABA_k) = \sum_{k=1}^{n} \frac{P(ABA_k)}{P(B)} = \sum_{k=1}^{n} \frac{P(ABA_k)}{P(A_kB)} \frac{P(A_kB)}{P(B)};$$

это и есть формула (2).

Формула умножения вероятностей. Для любого набора событий A_1, \dots, A_n справедливо равенство

$$(P(A_1 \cap ... \cap A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1A_2) \cdots P(A_n/A_1 ... A_{n-1})$$

Формула выводится непосредственно.

Определение. Распределение случайной величины X_0 назовем начальным распределением цепи Маркова. Будем обозначать начальное распределение в виде вектора

$$\mathbf{p}(0) = (p_1(0), \dots, p_K(0)), \quad p_i(0) = P(X_0 = i), i \in \mathcal{X}$$

Теорема 1. Для однородной цепи Маркова переходная матрица $P = \{p_{kj}\}$; и вектор начального распределения p(0) полностью определяют все конечномерные распределения.

Доказательство. Рассмотрим конечномерное распределение (совместное распределение набора случайных величин)

$$\begin{split} P(X_r = i_r, \, X_{r-1} = i_{r-1}, \dots, X_1 = i_1) = \\ &= P(\, X_{r-1} = i_{r-1}, \dots, X_1 = i_1) P(X_r = i_r \, / \, X_{r-1} = i_{r-1}, \dots, X_1 = i_1) = \\ &= P(\, X_{r-1} = i_{r-1}, \dots, X_1 = i_1) P(X_r = i_r \, / \, X_{r-1} = i_{r-1}) = \\ &= P(\, X_{r-1} = i_{r-1}, \dots, X_1 = i_1) \, p_{i_{r-1}, i_r} = \dots = p_{i_1}(0) p_{i_1, i_2} p_{i_2, i_3} \dots p_{i_{r-1}, i_r} \, \blacksquare \end{split}$$

Теорема 2. (Уравнение Маркова-Чэпмена-Колмогорова) Рассмотрим вероятности перехода из состояния в состояние за n шагов:

$$p_{ij}(n) = P(X_{k+n} = j / X_k = i)$$

Имеет место равенство

$$p_{ij}(n+m) = \sum_{k} p_{ik}(m) p_{kj}(n) = \sum_{k} p_{ik}(n) p_{kj}(m).$$
 (3)

Доказательство. Заметим, что для однородной цепи Маркова определенные выше вероятности $p_{ij}(n)$ на зависят от k. Применим формулу полной вероятности к условной вероятности:

$$p_{ij}(n+m) = P(X_{m+n} = j / X_0 = i) =$$

$$= \sum_{k} P(X_{m+n} = j / X_0 = i, X_m = k) P(X_m = k / X_0 = i);$$

поскольку

$$P(X_{m+n} = j / X_0 = i, X_m = k) = P(X_{m+n} = j / X_m = k) = p_{kj}(n),$$

 $P(X_m = k / X_0 = i) = p_{ik}(m),$

отсюда и следует уравнение (3).

Условные вероятности $p_{kj} = P(X_{n+1} = j/X_n = k)$, составляющие матрицу переходных вероятностей $\mathbf{P} = \{p_{kj}\}$, есть вероятности перехода за 1 шаг, $p_{kj} = p_{kj}(1)$. Из вероятностей $p_{ij}(n)$ можно составить матрицу вероятностей переходов за n шагов $\mathbf{P}(n)$, она также является стохастической матрицей. Согласно (3),

$$p_{ij}(n) = p_{ij}((n-1)+1) = \sum_{k} p_{ik}(n-1)p_{kj}(1),$$

так что P(n) = P(n-1)P(1) = P(n-1)P, отсюда получаем, что матрица вероятностей переходов за n шагов равна n - й степени матрицы переходных вероятностей,

$$P(n) = P^n$$
.

Если определить **вектор распределения вероятностей** на шаге n,

$$\mathbf{p}(n) = (p_1(n), \dots, p_K(n)), \quad p_i(n) = P(X_n = i), i \in \mathcal{X}$$

то получим

$$p(n) = p(0)P^n$$

Некоторые примеры цепей Маркова.

Пример 1. Случайное блуждание. Точка в дискретные моменты времени совершает скачки вправо или влево в соседние целочисленные значения с переходными вероятностями

$$p_{ij} = \begin{cases} p, & j = i+1 \\ 1-p, & j = i-1 \\ 0, & |i-j| > 1 \end{cases}$$

Блуждание по числам 0, 1, 2, ..., N с поглощением на краях интервала:

$$p_{00} = p_{NN} = 1; p_{i,i+1} = p; p_{i,i-1} = 1 - p$$

Пример 2. Комбинации в испытаниях Бернулли. Обозначим 1 "успех" в последовательности независимых испытаний (вероятность p), а 0 — "неуспех" (вероятность 1-p). В качестве состояний цепи рассмотрим последовательности 11, 10, 01, 00. Тогда получим цепь Маркова с матрицей переходных вероятностей

$$\left| \begin{array}{ccccc}
 p & 1-p & 0 & 0 \\
 0 & 0 & p & 1-p \\
 p & 1-p & 0 & 0 \\
 0 & 0 & p & 1-p \end{array} \right|$$

Пример 3. Винни Пух. Задачка из контрольной работы.

Винни Пух каждый день может находиться только в двух состояниях: бодром и задумчивом. В первый день Винни бодр. Если Винни бодр в некоторый день, то на следующий день он равновероятно бодр или задумчив. А если он задумчив в некоторый день, то на следующий он останется задумчивым с вероятностью 0, 2.

- (а) Какова вероятность того, что Винни будет задумчив в четвёртый день?
- (b) Какова примерная вероятность того, что Винни будет задумчив через 20 лет?

Обозначим состояния 1 – бодр, и 2 – задумчив, тогда последовательность состояний Винни

$$X_0, X_1, \dots, X_n, \dots ; X_t \in \{1, 2\}$$

представляет собой цепь Маркова с матрицей переходных вероятностей

Пример 4. На материале 20 000 знаков "Евгения Онегина" А.Марковым были подсчитаны следующие частоты:

- частота гласной = 0,4319;
- частота гласной после согласной = 0,663;
- частота гласной после гласной = 0,128.

Теорема 3. (Эргодическая теорема для цепей Маркова). Пусть все элементы матрицы переходных вероятностей $P = \{p_{kj}\}$ удовлетворяют условиям:

$$\min_{1 \le k, j \le K} p_{kj} = \lambda > 0$$

Тогда

1) существуют такие неотрицательные числа q_1, \dots, q_K ; $\sum_{j=1}^K q_j = 1$, что

$$p_i(n) \to q_i$$
 при $n \to \infty$;

2) набор чисел q_1, \dots, q_K является единственным решением системы уравнений

$$q_j = \sum_{i=1}^{K} q_i \, p_{ij}, j = 1, ..., K;$$

$$|p_j(n) - q_j \le (1 - K\lambda)^n|.$$

Предельный вектор $\boldsymbol{q}=(q_1,...,q_K)$ является распределением вероятностей, он удовлетворяет матричному уравнению

$$q = qP$$
.

Это распределение называется стационарным распределением вероятностей цепи Маркова с матрицей \boldsymbol{P} .

Несколько простых задач на тему марковских цепей.

В цепи Маркова с двумя состояниями E_1, E_2 начальным состоянием является E_1 ; известные вероятности переходов задаются равенствами $p_{12}=\frac{1}{3}, p_{21}=\frac{1}{4}$.

- (a) Найти вероятности цепочек состояний (E_1, E_1, E_1) , (E_1, E_2, E_2) , (E_1, E_2, E_1) .
- (б) Найти стационарное распределение вероятностей для этой цепи Маркова.

В цепи Маркова с двумя состояниями E_1 , E_2 вектор распределения вероятностей по начальным состояниям и вероятности переходов задаются равенствами $q=\frac{1}{3}, \quad p_{11}=\frac{6}{7},$ $p_{21}=\frac{4}{5}.$

- (a) Найти вероятности цепочек состояний (E_1, E_2, E_1) , (E_1, E_1, E_1) , (E_2, E_2, E_2) .
- (б) Найти стационарное распределение вероятностей для этой цепи Маркова.

Матрица вероятностей перехода цепи Маркова имеет вид

$$P = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$$

Распределение по состояниям в начальный момент времени t=0 задано вектором

- (0,7; 0,2; 0,1). Найти:
- (a) Распределение по состояниям в момент t=2 ;
- (б) Вероятность того, что в моменты t=0,1,2,3 состояниями цепи будут соответственно $E_1,E_3,E_3,E_2;$
- (d) Стационарное распределение.