PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS SOCIALES ESPECIALIDAD DE ECONOMÍA

PRÁCTICA DIRIGIDA No. 4

CURSO: EST 241 Estadística Inferencial

PROFESOR: Arturo Calderón G.

HORARIO: 0621

FECHA: 01 de junio de 2019

SEMESTRE: 2019-1

Los problemas del 1 a 4 serán tratados durante la práctica. El resto es para el trabajo personal del alumno.

Problema 1

En un estudio sobre costos de transacción, se registró el tiempo X que tarda un expediente en ser tramitado ante una institución pública. Como 'modelo de datos' se asumió que $X \sim U(x; 0.2\theta)$ y se decidió tomar una m.a.

 $(X_1, X_2, ..., X_n)$ de tamaño n para calcular la media muestral \overline{X} y usarla como aproximación de θ .

- a) Si la muestra es de tamaño n=2, ¿Con qué probabilidad el promedio de la muestra será mayor que el 10% del valor de θ ?
- b) Como se usará \overline{X} como aproximación de θ , el "error absoluto de aproximación o estimación" es $|\overline{X} \theta|$ y lo usual es tratar de que este error no pase de una "margen de error" ε predeterminado. Por otra parte, el Teorema del Límite Central establece que cuando el tamaño de muestra n es grande (n > 30), entonces $\overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{n})$. Aplique este teorema y para una m.a. de tamaño n = 36, calcule la probabilidad de que:
 - (1) El promedio de la muestra sea mayor que el 10% del valor de θ .
 - (2) El error absoluto de estimación pase del 25% del valor de θ .
- c) En b), con 95% de probabilidad, si ε se fija como una fracción de θ : $\varepsilon = r\theta$, cuál es el valor de r?
- d) Si se usa una muestra grande y se quiere que $|\overline{X} \theta|$ no pase del 7% del valor de θ con 95% de probabilidad ¿Qué tamaño de muestra n necesitaría usar?

Solución:

a)
$$(X_1, X_2)$$
 m.a. $\Rightarrow f_{X_1 X_2}(x_1, x_2) = f_X(x_1) f_{X_2}(x_2) = \left(\frac{1}{2\theta}\right)^2 \quad 0 < x_1 \le 2\theta, 0 < x_2 \le 2\theta$

$$\begin{split} P(\overline{X} > 0.1\theta) &= P(X_1 + X_2 > 0.2\theta) = \\ 1 - P(X_1 + X_2 \le 0.2\theta) &= 1 - \int_0^{0.2\theta} \int_0^{0.2\theta - x_1} \left(\frac{1}{2\theta}\right)^2 dx_2 dx_1 = \\ 1 - \frac{1}{4\theta^2} \int_0^{0.2\theta} (0.2\theta - x_1) dx_1 = 1 - \frac{1}{4\theta^2} \left[0.2\theta x_1 - \frac{x_1^2}{2} \right]_0^{0.2\theta} = \\ 1 - \frac{1}{4\theta^2} \left[(0.2\theta)^2 - \frac{(0.2\theta)^2}{2} \right] = 1 - 0.005 = 0.995 \end{split}$$

b)
$$n = 36 > 30 \Rightarrow \overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{n}) \text{ y de } X \sim U(x; 0, 2\theta) \Rightarrow \mu_X = \frac{2\theta}{2}, \sigma_X^2 = \frac{(2\theta)^2}{12} = \frac{4\theta^2}{12} = \frac{\theta^2}{3} \text{ entonces}$$

$$\overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{n}) \Rightarrow \overline{X} \sim N(\theta, \frac{\theta^2}{3n}) \Rightarrow Z = \frac{\overline{X} - \theta}{\frac{\theta}{\sqrt{3n}}} \sim N(0, 1)$$

$$(1) P(\overline{X} > 0.1\theta) = P\left(\frac{\overline{X} - \theta}{\frac{\theta}{\sqrt{3n}}} > \frac{0.1\theta - \theta}{\frac{\theta}{\sqrt{3n}}}\right) = P(Z > -0.9\sqrt{3n}) = P(Z > -9.35) = 1$$

(2)
$$P(|\overline{X} - \theta| > 0.25\theta) = P(|Z| > 2.6) = 1 - P(-2.6 \le Z \le 2.6) = 1 - (0.9953 - 0.0047) = 0.0094$$

- c) n = 36 y se pide hallar r tal que $0.95 = P(|\bar{X} \theta| < r\theta) = P\left(|Z| < \frac{r\theta}{\frac{\theta}{\sqrt{2n}}}\right) = P(|Z| < r\sqrt{3n}) =$ $P(|Z| < 10.4r) \Leftrightarrow P(-10.4r < Z < 10.4r) = 0.95 \Rightarrow P(Z < 10.4r) = 0.975 \Rightarrow 10.4r = 1.96 \Rightarrow r = 0.188 \Rightarrow \text{El margen de error } \varepsilon = r\theta \text{ es de } 18.8\% \text{ del valor real de } \theta.$
- d) Se quiere que $|\overline{X} \theta|$ no pase del 7% del valor de θ con 95% de probabilidad, entonces planteamos:

$$0.95 = P(|\overline{X} - \theta| \le 0.07\theta) = P\left(\frac{|\overline{X} - \theta|}{\frac{\theta}{\sqrt{3n}}} \le \frac{0.07\theta}{\frac{\theta}{\sqrt{3n}}}\right) = P(|Z| \le 0.07\sqrt{3n}) = P($$

Problema 2

Sea $X \sim Exp(\beta = 1/\theta)$. Para una muestra aleatoria de tamaño n = 2, (X_1, X_2) , se tiene las estadísticas: $\hat{\theta} = \frac{X_1 + X_2}{2}$ y $\tilde{\theta} = \sqrt{X_1 X_2}$. Halle el valor esperado de estas estadísticas y sus varianzas.

Nota: Recuerde que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ y $\Gamma(p) = (p-1)\Gamma(p-1)$ si p > 1

Solución:

Solution:
$$E(\hat{\theta}) = E\left(\frac{X_1 + X_2}{2}\right) = \frac{1}{2}E(X_1 + X_2) = \frac{1}{2}(E(X_1) + E(X_2)) = \frac{1}{2}(\theta + \theta) = \theta.$$

$$E(\tilde{\theta}) = E(\sqrt{X_1 X_2}) = E(\sqrt{X_1} \sqrt{X_2}) = E(X_1^{1/2} X_2^{1/2}) = E(X_1^{1/2}) E(X_2^{1/2}) = E(X_1^{1/2}) E(X_1^{1/2}) = E(X_1^{1/2}) E$$

$$E(X^{1/2}) = \int_{0}^{\infty} x^{1/2} f_{X}(x) dx = \int_{0}^{\infty} x^{1/2} \frac{1}{\theta} e^{-\frac{x}{\theta}} dx = \frac{1}{\theta} \int_{0}^{\infty} \theta^{1/2} u^{1/2} e^{-u} \theta du = \theta^{1/2} \int_{0}^{\infty} u^{1/2} e^{-u} du = \Gamma(\frac{3}{2}) \theta^{1/2} = (\frac{1}{2}) \underbrace{\Gamma(\frac{1}{2})}_{\sqrt{\pi}} \theta^{1/2} = (\frac{$$

$$= (\frac{1}{2})\sqrt{\pi\theta} \implies E(\widetilde{\theta}) = \left((\frac{1}{2})\sqrt{\pi\theta} \right)^2 = \frac{\pi}{4}\theta$$

En cuanto a las varianzas: para abreviar, como $\hat{\theta} = \frac{X_1 + X_2}{2}$ y la muestra es de tamaño n = 2, es claro que $\hat{\theta} = \bar{X}$, y de \bar{X} , en general sabemos que $E(\bar{X}) = \mu_X$ y $V(\bar{X}) = \frac{\sigma_X^2}{n}$. En este caso $X \sim Exp\left(x; \beta = \frac{1}{\theta}\right) \Rightarrow \mu_X = \theta$; $\sigma_X^2 = \theta^2$ y

$$V(\widehat{\theta}) = V(\widehat{\theta}) = V(\bar{X}) = \frac{\sigma_X^2}{n} = \frac{\theta^2}{n} = \frac{\theta^2}{2}.$$

En el caso de $\tilde{\theta} = \sqrt{X_1 X_2}$, usaremos la identidad $V(\tilde{\theta}) = E(\tilde{\theta}^2) - (E(\tilde{\theta}))^2$. Como $E(\tilde{\theta}) = \frac{\pi}{4}\theta$ ya es conocido, sólo falta $E(\tilde{\theta}^2)$ y $E(\tilde{\theta}^2) = E((\sqrt{X_1X_2})^2) = E(X_1X_2) \stackrel{\times indep}{=} E(X_1)E(X_2) = \theta^2$. El resto es rutina.

Si el capital inicial (en cientos de dólares) de una microempresa es una v.a. continua X con distribución normal $N(\mu, \sigma^2)$ y se toma una m.a. de tamaño n

Halle la función generatriz de momentos $M_{\bar{X}}(t)$ y verifique que corresponde a una distribución $N\left(\mu, \frac{\sigma^2}{n}\right) \forall n$.

- b) Si $\sigma^2 = 1$, n = 9, calcule la probabilidad de que la media \overline{X} de la muestra difiera de la media poblacional μ en menos de 20 dólares
- c) Si $\sigma^2 = 1$ ¿Qué tamaño de muestra garantiza que con 95% de probabilidad la diferencia $|\overline{X} \mu|$ no pasará de 20 dólares?
- d) Si $\sigma^2 = 1$ y μ sólo puede ser $\mu = 1$ o $\mu = 5$, si n = 3 y toda la muestra dio valores entre 2 y 6 cientos de dólares ¿Cuál valor de μ escogería? Use probabilidades para decidir.

Solución:

- a) $M_{\bar{X}}(t) = E\left(e^{t\bar{X}}\right) = E\left(e^{t\frac{1}{n}\sum_{j=1}^{n}X_{j}}\right) = E\left(e^{t\frac{1}{N}\sum_{j=1}^{n}X_{j}}\right) = E\left(e^{t\frac{1}{N}}\times e^{t\frac{1}{N}}\times \dots \times e^{t\frac{1}{N}}\right) \stackrel{(1)}{\cong} E\left(e^{t\frac{1}{N}}\right) \times E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \times \dots \times E\left(e^{t\frac{1}{N}}\right) \stackrel{(2)}{\cong} E\left(e^{t\frac{1}{N}}\right) \stackrel{(2$
 - (1) $\{X_1, X_2, ..., X_n\}$ son independientes; (2) $\{X_1, X_2, ..., X_n\}$ tienen todas la misma distribución que X;
 - (3) $X \sim N(\mu, \sigma^2) \Leftrightarrow M_X(l) = e^{l\mu + \frac{l^2}{2}\sigma^2} \forall l$
- b) Por a), como la muestra se toma de una distribución normal, se cumple $\bar{X} \sim N\left(\mu_X, \frac{\sigma_X^2}{n}\right) \ \forall n$, o sea no es necesario tener tamaño de muestra grande: $\bar{X} \sim N\left(\mu, \frac{1}{9}\right)$ y se pregunta por $P(|\bar{X} \mu| < 0.2)$, que se obtiene estandarizando y usando la tabla Z: $P(|\bar{X} \mu| < 0.2) = P\left(\frac{|\bar{X} \mu|}{\frac{1}{\sqrt{9}}} < \frac{0.2}{\frac{1}{\sqrt{9}}}\right) = P(|Z| < 0.6) = 0.7257 0.2743 = 0.4515$; que es una probabilidad muy baja (confiabilidad de 45.15%)
- c) $0.95 = P(|\bar{X} \mu| < 0.2) = P\left(\frac{|\bar{X} \mu|}{\frac{1}{\sqrt{n}}} < \frac{0.2}{\frac{1}{\sqrt{n}}}\right) = P(|Z| < 0.2\sqrt{n}) \Rightarrow P(Z < 0.2\sqrt{n}) = 0.975 \Rightarrow 0.2\sqrt{n} = 1.96 \Rightarrow n \approx 91$
- d) Se sabe que ocurrió $2 \le X_i \le 6 \ \forall i, y \text{ como } P(2 \le X_i \le 6 \ \forall i) = \prod_{i=1}^3 P(2 \le X_i \le 6) = \left(P(2 \le X \le 6)\right)^3$ $\left(F_X(6) F_X(2)\right)^3 = \left(F_Z(6 \mu) F_Z(2 \mu)\right)^3$. Reemplazando valores posibles de μ , $\mu = 1 \ y \ \mu = 5$ se obtienen las dos probabilidades: $0.0040 \ y \ 0.5927$ respectivamente: Lo más probable es que $\mu = 5$, escogeríamos $\mu = 5$. (Recordar que $X \sim N(\mu, \sigma) \Rightarrow Z = \frac{(X \mu)}{\sigma} \sim N(0, 1)$ y en este caso como $\sigma = 1, Z = (X \mu)$).

Problema 4

En un modelo sobre determinación de precios de comerciantes minoristas se propone que el comerciante agrega una cantidad X de soles al precio mínimo sugerido por el fabricante, con X v.a.c. con función de densidad:

 $f_X(x) = \begin{cases} \theta x & 0 < x \le 1 \\ 1 - \frac{\theta}{2} & 1 < x \le 2 \end{cases}$ donde $\theta > 0$ es parámetro de valor desconocido por estimar o aproximar.

Dada $(X_1, X_2, ..., X_n)$ m.a. se propone como aproximación de θ a $\hat{\theta} = c\left(\frac{3}{2} - \overline{X}\right)$. Halle c de modo que $\hat{\theta}$ "tienda a coincidir" con θ , esto es, de modo que $E(\hat{\theta}) = \theta$.

Solución:

Queremos hallar la constante c tal que la estadística $\hat{\theta}$ definida por $\hat{\theta} = c\left(\frac{3}{2} - \bar{X}\right)$ tenga como valor esperado o de "tendencia en el equilibrio" al parámetro θ , esto es $E[\hat{\theta}] = \theta$. Veamos:

 $E[\hat{\theta}] = E\left[c\left(\frac{3}{2} - \bar{X}\right)\right] = cE\left[\left(\frac{3}{2} - \bar{X}\right)\right] = c\left(\frac{3}{2} - E(\bar{X})\right)$ y por teoría del curso sabemos que $E(\bar{X}) = \mu_X$ y del capítulo 1 del curso, sabemos que

$$\mu_X = \int_0^2 x f_X(x) dx = \int_0^1 x \theta x dx + \int_1^2 x \left(1 - \frac{\theta}{2}\right) dx = \left[\theta \frac{x^3}{3}\right]_0^1 + \left(1 - \frac{\theta}{2}\right) \left[\frac{x^2}{2}\right]_1^2 = \frac{\theta}{3} + \left(1 - \frac{\theta}{2}\right) \frac{3}{2} = \frac{3}{2} - \frac{5}{12}\theta$$

$$\Rightarrow c\left(\frac{3}{2} - E(\overline{X})\right) = c\left(\frac{3}{2} - \frac{3}{2} + \frac{5}{12}\theta\right) = c\frac{5}{12}\theta$$

Reemplazando en $E[\hat{\theta}] = \theta$ tenemos la condición $c \frac{5}{12} \theta = \theta \Rightarrow c \frac{5}{12} = 1 \Rightarrow c = \frac{12}{5}$ es el valor pedido.

Problema 5

- a) Si $X_1, X_2, ..., X_n$ es m.a. tomada de una distribución uniforme $U(0, \theta)$ y sea la estadística $W = \sum_{j=1}^n \alpha_j X_j$. Halle los valores de las constantes $\alpha_1, \alpha_2, ..., \alpha_n$ tales que $E(W) = \theta$ y V(W) sea mínima. (Aplique multiplicadores de Lagrange)
- b) Si $(X_1, X_2, ..., X_n)$ es m.a. tomada de una distribución distribución exponencial $Exp(x, \beta = 1/\theta)$ y se define la variable aleatoria $Y = Min\{X_j\}$, halle P(Y > y) y la distribución acumulativa de Y $F_Y(y) = P(Y \le y)$ y luego, derivando, halle la función de densidad de Y. Si se usara Y para aproximar o estimar el valor de θ , ¿Esperaría que su estimación coincidiera con el parámetro θ ?

Solución:

- a) $(X_1, X_2, ..., X_n)$ es m.a. de una distribución uniforme $U(0, \theta)$ y $W = \sum_{i=1}^n \alpha_j X_j$, donde hay que hallar $\{\alpha_j\}$ tales que $\theta = E(W) = E\left(\sum_{i=1}^n \alpha_j X_j\right) = \sum_{i=1}^n \alpha_j E(X_j) = \sum_{i=1}^n \alpha_j \frac{\theta}{2} \Leftrightarrow \sum_{i=1}^n \alpha_j = 2$ pues $X_j \sim U(0, \theta) \, \forall j$ y por tanto (ver formulario) $E\left(X_j\right) = \frac{\theta}{2}$. Es decir los $\{\alpha_j\}$ deben satisfacer la condición $\sum_{i=1}^n \alpha_j = 2$. Pero además los $\{\alpha_j\}$ deben minimizar $V(W) = V\left(\sum_{i=1}^n \alpha_j X_j\right) = \sum_{i=1}^n \alpha_j^2 V\left(X_j\right) = \sum_{i=1}^n \alpha_j^2 \frac{\theta^2}{12} = \frac{\theta^2}{12} \sum_{i=1}^n \alpha_j^2$, porque habiendo independencia, la varianza de la suma es la suma de varianzas y $V\left(X_j\right) = \frac{\theta^2}{12}$. En consecuencia los coeficientes $\{\alpha_j\}$ minimizan $\sum_{i=1}^n \alpha_j^2$ cumpliendo además la restricción $\sum_{i=1}^n \alpha_j = 2$ (omitimos $\frac{\theta^2}{12}$ porque es positiva y constante, así que minimizar $\frac{\theta^2}{12} \sum_{i=1}^n \alpha_j^2$ equivale a minimizar $\sum_{i=1}^n \alpha_j^2$). Como se trata de una minimización con restricciones, podemos aplicar Multiplicadores de Lagrange: $L(\alpha_1, \alpha_2, ..., \alpha_n, \lambda) = \sum_{i=1}^n \alpha_j^2 + \lambda \left(2 \sum_{i=1}^n \alpha_j\right)$. Resolviendo se obtiene $\alpha_i = \frac{2}{n}$.
- b) $P(Y > y) = P(Min\{X_i\} > y) = P(\bigcap_{i=1}^{n} (X_i > y)) = \prod_{i=1}^{n} P(X_i > y) = \prod_{i=1}^{n} P(X > y) = \left(P(X > y)\right)^n = \left(\int_{y}^{\infty} \frac{1}{\theta} e^{-\frac{X}{\theta}} dx\right)^n = \left(\left[-e^{-\frac{X}{\theta}}\right]_{y}^{\infty}\right)^n = e^{-\frac{n}{\theta}y} \Rightarrow F_Y(y) = 1 e^{-\frac{n}{\theta}y} \Rightarrow f_Y(y) = \left(\frac{n}{\theta}\right) e^{-\left(\frac{n}{\theta}\right)y} \Rightarrow Y \sim Exp(y; \left(\frac{n}{\theta}\right))$ $\Rightarrow E(Y) = \frac{\theta}{n}$

Si usáramos Y como aproximación de θ , sistemáticamente estaríamos obteniendo valores estimados más bajos que el valor verdadero de θ , estaríamos subestimando el parámetro.

Problema 6

- a) Si (X_1, X_2, X_3) es muestra aleatoria de una distribución U(0,1), halle $P([Min\{X_i\} > 0.25] \cap [Max\{X_i\} < 0.75])$
- b) Si $(X_1, X_2, ..., X_n)$ es muestra aleatoria de una distribución U(0,1), halle la media y la varianza de la estadística $P = \prod_{j=1}^{n} X_j$.

Solución:

- a) $P\left(\left(Min\{X_j\} > 0.25\right) \cap \left(Max\{X_j\} < 0.75\right)\right) = P\left(0.25 < X_j < 0.75 \ \forall j\right) = P\left((0.25 < X_1 < 0.75\right) \cap (0.25 < X_2 < 0.75\right) \cap (0.25 < X_3 < 0.75)) = P\left(0.25 < X_1 < 0.75\right) \times P\left(0.25 < X_2 < 0.75\right) \times P\left(0.25 < X_3 < 0.75\right) = \left(P\left(0.25 < X < 0.75\right)\right)^3 = 0.5^3 = 0.125 \text{ pues } P\left(0.25 < X < 0.75\right) = \int_{0.25}^{0.75} 1 dx = 0.5$
- b) $E(P) = E(\prod_{j=1}^{n} X_j) = E(X_1) \times E(X_2) \times ... \times E(X_n) = (E(X))^n = (\frac{1}{2})^n$ (debido a la independencia entre componentes de toda muestra aleatoria).

$$V(P) = E(P^2) - \left(E(P)\right)^2 = E(P^2) - \left(\left(\frac{1}{2}\right)^n\right)^2 = E(P^2) - \left(\frac{1}{2}\right)^{2n} \text{ y como}$$

$$E(P^2) = E[(X_1 \times X_2 \times ... \times X_n)^2] = E[(X_1^2 \times X_2^2 \times ... \times X_n^2)] = E(X_1^2) E(X_2^2) \dots E(X_n^2) = \left(E(X^2)\right)^n \text{ y}$$

$$E(X^2) = \sigma_X^2 + \mu_X^2 = \frac{1}{12} + \frac{1}{4} = \frac{1}{3}, \text{ entonces } E(P^2) = \left(\frac{1}{3}\right)^n \text{ y } V(P) = \left(\frac{1}{3}\right)^n - \left(\frac{1}{2}\right)^{2n} = \left(\frac{1}{3}\right)^n - \left(\frac{1}{4}\right)^n$$

Problema 7

Sea $(X_1, X_2, ..., X_k)$ v.a. de componentes independientes:

a) Si $X_j \sim b(n=1,p)$ j=1,2,...,k; halle la función generatriz de momentos de la suma $T=\sum_{j=1}^k X_j$ y use este resultado verificar que la distribución de T es una Binomial

b) Si $X_j \sim N(0,1)$ j = 1,2,...,k; halle la función generatriz de momentos de la suma $T = \sum_{j=1}^k X_j$ y use este resultado verificar que la distribución de T es Normal

Solución:

Tanto a) como b) se basan el mismo hecho: las $\{X_i\}$ son independientes y con idéntica distribución (son i.i.d), por tanto el esperado de productos es producto de valores esperados y todas tienen la misma función generatriz de momentos. Asimilado esto:

$$\begin{split} M_T(t) &= E(e^{tT}) = E\left(e^{t\sum_{i=1}^k X_i}\right) = E\left(e^{\sum_{i=1}^k tX_i}\right) = E(e^{tX_1} \times e^{tX_2} \times \dots \times e^{tX_k}) = \\ &= E(e^{tX_1}) \times E(e^{tX_2}) \times \dots \times E(e^{tX_k}) = M_{X_1}(t) \times M_{X_2}(t) \times \dots \times M_{X_k}(t) = \left(M_X(t)\right)^k \text{ y lo que va cambiando con } \\ X \text{ es la respectiva función generatriz } M_X(t), \text{ así:} \end{split}$$

En a)
$$X \sim B(n = 1, p) \Leftrightarrow M_X(t) = (pe^t + q)^1 \Rightarrow M_T(t) = (pe^t + q)^k$$
 que corresponde a una distribución binomial $B(n = k, p)$

y en el caso de b)
$$M_T(t) = (e^{\frac{t^2}{2}})^k = e^{\frac{t^2}{2}k}$$
 que corresponde a una $N(0,k)$

Problema 8

Asuma que el gasto mensual X en cabinas de Internet, es una v.a. con distribución $\Gamma(x; \alpha = 1, \beta)$ y se piensa tomar una m.a. **grande** de **n** usuarios de cabinas para aproximar el valor de β , usando para ello la media muestral \overline{X} . Aplique el "Teorema del Límite Central para \overline{X} " y resuelva las siguientes preguntas:

- a) ¿Qué tamaño de muestra garantizaría que con 95% de probabilidad, la media \overline{X} de la muestra diferirá de β en menos de un 20% de β ?.
- b) En a), si sólo hay dinero para tomar una muestra de n = 40 usuarios, calcule la probabilidad de lograr lo deseado. ¿Cuál es la máxima diferencia $|\overline{X} \mu|$ (como % de β) que se puede garantizar con 95% de probabilidad?

Solución:

El contexto general aplicable es que n grande (n > 30) implica que $\overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{n})$ y lo que va cambiando de problema en problema es X y μ_X con σ_X^2 . En este problema $X \sim \Gamma(x; \alpha = 1, \beta) \Rightarrow \mu_X = \beta, \sigma_X^2 = \beta^2$ y por tanto $\overline{X} \sim N(\mu_X = \beta, \frac{\sigma_X^2}{n} = \frac{\beta^2}{n})$ o equivalentemente $Z = \frac{\overline{X} - \beta}{\beta / \sqrt{n}} \sim N(0,1)$.

a) " \overline{X} de la muestra diferirá de β menos de un 20% de β " equivale a $|\overline{X} - \beta| < 0.2\beta$ y se tiene $0.95 = P(|\overline{X} - \beta| < 0.2\beta) = P(|\overline{X} - \beta| < 0.2\beta) = P(|\overline{X} - \beta| < 0.2\beta) = P(|Z| < 0.2\sqrt{n}) = P(-0.2\sqrt{n} < Z < 0.2\sqrt{n})$. No

podemos entrar a la tabla Z con 0.95 de probabilidad porque esta tabla no tiene áreas centrales sino acumuladas, pero dada la simetría de la distribución de Z (graficar las áreas ayudará a entender la probabilidad 0.975) $0.95 = P(+0.2\sqrt{n} < Z < 0.2\sqrt{n}) \Leftrightarrow P(Z < 0.2\sqrt{n}) = 0.975 \Rightarrow 0.2\sqrt{n} = 1.96 \Rightarrow n = 9.8^2 \cong 97$.

b) Se pregunta ahora, si n = 40 hallar r tal que $0.95 = P(|\overline{X} - \beta| < r\beta)$, que se resuelve con

$$0.95 = P(|\overline{X} - \beta| < r\beta) = P(\frac{|\overline{X} - \beta|}{\beta / \sqrt{40}} < \frac{r\beta}{\beta / \sqrt{40}}) = P(|Z| < r\sqrt{40}) = P(-r\sqrt{40} < Z < r\sqrt{40}) \Rightarrow$$

$$0.975 = P(Z < r\sqrt{40}) \Rightarrow r\sqrt{40} = 1.96 \Rightarrow r = 1.96 / \sqrt{40} = 0.31 \circ 31\% \ de \ \beta$$

Problema 9

Sea X v.a. continua con función de densidad $f_X(x) = \frac{2x}{\theta^2} 0 < x \le \theta$ y sea $(X_1, X_2, ..., X_n)$ muestra aleatoria de esta distribución

- a) Halle la media y la varianza de la estadística \overline{X} , como funciones explícitas de θ
- b) Se desea usar la media \overline{X} de la muestra para aproximar μ , usando una muestra grande de n=36 casos. ¿Con qué probabilidad ocurrirá que el error de aproximación $|\overline{X} \mu|$ no pasará del 5% del valor real de μ ?

c) Sea la estadística $Y = M \acute{a}x\{X_1, X_2, ..., X_n\}$. Halle la función de densidad $f_Y(y)$ de Y y el valor esperado de esta estadística

Sugerencia: Calcule primero la distribución acumulativa $F_Y(y)$ y luego, derivando, obtenga $f_Y(y)$.

Sugerencias:

- a) $E(\bar{X}) = E(X) = \mu_X \text{ y } V(\bar{X}) = \frac{\sigma_X^2}{n}$. Sólo hay que hallar $E(X) = \int_0^\theta x \frac{2x}{\theta^2} dx = \frac{2}{\theta^2} \int_0^\theta x^2 dx = \frac{2}{\theta^2} \left[\frac{x^3}{3} \right]_0^\theta = \frac{2}{3} \theta$, $E(X^2) = \int_0^\theta x^2 \frac{2x}{\theta^2} dx = \frac{2}{\theta^2} \int_0^\theta x^3 dx = \frac{2}{\theta^2} \left[\frac{x^4}{4} \right]_0^\theta = \frac{\theta^2}{2} = \frac{1}{2} \theta^2$; $V(X) = \sigma_X^2 = E(X^2) [E(X)]^2 = \frac{1}{2} \theta^2 \frac{4}{9} \theta^2 = \frac{\theta^2}{18}$
- b) Similar al problema 8b): "el error de aproximación $|\bar{X} \mu|$ no pasará del 5% del valor real de μ " equivale a $|\bar{X} \mu| \le 0.05 \mu$ y de n = 36 > 30 sabemos que $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{36}\right) \Rightarrow Z_{\bar{X}} = \frac{(\bar{X} \mu)}{\frac{\sigma}{6}} \sim N(0,1)$ y en este caso $\mu = \frac{2}{3}\theta$ y $\sigma = \sqrt{\frac{\theta^2}{18}} = \frac{\theta}{3\sqrt{2}}$ de modo que $|\bar{X} \mu| \le 0.05 \mu \Leftrightarrow |\bar{X} \mu| \le 0.05 \frac{2}{3}\theta$ y el resto es rutina.
- c) $F_{Y}(y) = P(M + x_{i} \{X_{i}\} \le y) = P(\bigcap_{i=1}^{n} (X_{i} \le y)) = \prod_{i=1}^{n} P(X_{i} \le y) = (F_{X}(y))^{n} = (\int_{0}^{y} \frac{2x}{\theta^{2}})^{n} = (\frac{1}{\theta^{2}} \int_{0}^{y} 2x)^{n} = (\frac{y^{2}}{\theta^{2}})^{n} = \frac{y^{2n}}{\theta^{2n}} \Rightarrow F_{Y}(y) = \frac{y^{2n}}{\theta^{2n}} \quad 0 < y \le \theta; \text{ derivando se tiene } f_{Y}(y) = \frac{dF_{Y}(y)}{dy} = \frac{d}{dy} \frac{y^{2n}}{\theta^{2n}} = \frac{2ny^{2n-1}}{\theta^{2n}} \quad 0 < y \le \theta, \text{ luego se procede}$ $\text{a calcular } E(Y) = \int_{0}^{\theta} y \frac{2ny^{2n-1}}{\theta^{2n}} dy = \frac{2n}{\theta^{2n}} \int_{0}^{\theta} y \frac{y^{2n-1}}{\theta^{2n}} dy = \frac{2n}{\theta^{2n}} \left[\frac{y^{2n+1}}{2n+1} \right]_{0}^{\theta} = \left(\frac{2n}{2n+1} \right) \theta.$

Problema 10

Un economista asume que los salarios, en dólares, de los trabajadores que recién se integran a una corporación, siguen una distribución normal $N(\mu, \sigma^2 = 70^2)$. Para estudiar estos salarios, selecciona al azar una muestra de n de este tipo de trabajadores.

- a) Si se quiere aproximar o estimar el salario medio μ usando la estadística \overline{X} de modo que con 95% de probabilidad o confiabilidad, el error de estimación o aproximación $|\overline{X} \mu|$ no pase de 20 dólares. ¿Qué tamaño de muestra debiera usar?
- b) Si n = 4 y μ fuera 800 ¿qué tan probable es que el salario del que gane menos en la muestra supere los 700 dólares?
- c) Un colega del economista critica la "especificación del modelo de datos" rechazando el supuesto de normalidad y afirma que la distribución de salarios es una distribución exponencial con una media de 800 dólares. Si fuera correcta la crítica, ¿con qué probabilidad, aproximadamente, una muestra de n=64 trabajadores arrojará una media de salarios que supere los 900 dólares?

Soluciones:

a)

Dada la distribución normal de los salarios entonces

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \rightarrow \overline{X} \sim N\left(\mu, \frac{70^2}{n}\right)$$

Luego

$$P\left(\left|\overline{X} - \mu\right| \le 20\right) = 95\%$$

Estandarizando

$$P\left(\frac{\left|\overline{X}-\mu\right|}{\sqrt{\frac{\sigma^2}{n}}} \le \frac{20}{\frac{70}{\sqrt{n}}}\right) = 95\%$$

$$P\left(\left|Z\right| \le \frac{2}{7}\sqrt{n}\right) = 95\% \rightarrow \underbrace{P\left(Z \le \frac{2}{7}\sqrt{n}\right)}_{97.5\%} - \underbrace{P\left(Z \le -\frac{2}{7}\sqrt{n}\right)}_{2.5\%} = 95\% \rightarrow \frac{2}{7}\sqrt{n} = 1,96$$

Por lo tanto

$$n = 47.0596 \rightarrow n \approx 48$$

b)

Dado que hay 4 muestras, y nos piden el salario del que gane menos tendríamos supere los 700 dólares

$$P\left(\min\left\{X_{i}\right\} > 700\right) \ \forall i = 1, 2, 3, 4$$

$$= P\left(X_{1} > 700\right) \cap P\left(X_{2} > 700\right) \cap P\left(X_{3} > 700\right) \cap P\left(X_{4} > 700\right)$$

$$= P\left(\bigcap_{i=1}^{4} P\left(X_{i} > 700\right)\right) = \prod_{i=1}^{4} P\left(X_{i} > 700\right) = \left[P\left(X > 700\right)\right]^{4}$$

$$= \left[1 - P\left(X \le 700\right)\right]^{4} = \left[1 - P\left(\frac{X - \mu}{\sigma} \le \frac{700 - 800}{70}\right)\right]^{4}$$

$$= \left[1 - P\left(Z \le -1, 43\right)\right]^{4} = \left[1 - 0, 0764\right]^{4} = 0,7276$$

Dado que n = 64 > 30 ("n" grande), aplicamos el teorema del límite central, luego

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \rightarrow \mu = \frac{1}{3} = 800, \sigma^2 = \frac{1}{3^2} = 800^2 \rightarrow \overline{X} \sim N\left(800, \frac{800^2}{n}\right)$$

$$P(\overline{X} > 900) = 1 - P(\overline{X} < 900) = 1 - P(\frac{\overline{X} - \mu}{\sigma} < \frac{900 - 800}{800/\sqrt{n}})$$

= $1 - P(Z < \frac{1}{8}n) = 1 - P(Z < 1) = 0.1587$
 $P(\overline{X} > 900) = 0.1587$

ACG./SAMP.