

Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Computação Bacharelado em Ciência da Computação

Sistemas Distribuídos

Comunicação Indireta

Prof. Rodrigo Campiolo

14/09/20

Tópicos

- Introdução
- Comunicação em grupo
- Sistemas publish-subscribe
- Filas de mensagem (message queues)
- Abordagens de memória compartilhada
- Resumo

Introdução

- Comunicação Indireta
 - Comunicação entre entidades em um SD por meio de um intermediário sem ligação direta entre o emissor e receptor.
- Duas propriedades
 - Desacoplamento de espaço
 - Desacoplamento de tempo
- Situações de uso
 - Mudanças são esperadas
 - Notificação de eventos

Introdução

	Acoplamento temporal	Desacoplamento temporal		
Acoplamento espacial	Propriedades: comunicação direcionada para determinado destinatário (ou destinatários); o destinatário (ou destinatários) deve existir nesse momento no tempo.	Propriedades: comunicação direcionada para determinado destinatário (ou destinatários); o remetente (ou remetentes) e o destinatário (ou destinatários) podem ter tempos de vida independentes.		
	Exemplos: passagem de mensagens, invo- cação remota			
Desacoplamento espacial	Propriedades: o remetente não precisa conhecer a identidade do destinatário (ou destinatários); o destinatário (ou destinatários) deve existir nesse momento no tempo.	Propriedades: o remetente não precisa conhecer a identidade do destinatário (ou destinatários); o remetente (ou remetentes) e o destinatário (ou destinatários) podem ter tempos de vida independentes.		
	Exemplos: multicast IP	Exemplos: a maioria dos paradigmas de comunicação indireta abordados neste capítulo.		

Figura: Acoplamento versus desacoplamento de espaço e tempo.

- Comunicação em grupo
 - Mensagem é enviada para um grupo e a mensagem é entregue para todos os membros.
- Abstração sobre comunicação multicast.
- Situações de uso
 - Disseminação confiável
 - Auxílio para aplicações colaborativas
 - Auxílio para estratégias de tolerância a falhas
 - Auxílio para gerenciamento e monitoramento de sistemas.

- Grupos de processos
 - Entidades que se comunicam são processos.
 - Orientada a fluxos de bytes simples.
- Grupos de objetos
 - Entidades que se comunicam são objetos.
 - Nível de abstração mais alto, uso de empacotamento de tipos de dados complexos.
- Exemplo: JGroup http://jgroups.org/

- Grupos
 - Abertos x grupos fechados
 - Sobrepostos x não sobrepostos
 - Sistemas síncronos x assíncronos

Figura: Grupos abertos e grupos fechados.

- Tipos de comunicação multicast
 - multicast básico: mensagem entregue se o processo não falhar, ordem arbitrária de recebimento.
 - multicast confiável: todos recebem a mensagem se um processo receber (integridade, validade e acordo).
 - multicast ordenado: obedece a ordem de entrega.
 - ordem FIFO (ordem de origem)
 - ordem causal (relação causal entre as mensagens)
 - ordem total (atomic ordem de destino)

- Sistemas Publicar/Assinar ou Sistemas distribuídos baseados em eventos.
- Conceitos:
 - Publishers: publicam eventos em um serviço de evento.
 - Subscribers: especificam interesses em eventos por meio de assinaturas (identificadores, padrões, ...).
 - Event notifications: as notificações de evento são enviadas aos assinantes.

Figura: Exemplo de sistemas de notificação de eventos.

- Características
 - Heterogeneidade
 - Assincronismo

 Os eventos devem ser descritos de forma estruturada.

Modelo de programação

Figura: Operações para sistemas publish-subscribe.

- Modelos de assinaturas (Filtros)
 - Channel-based: publicadores publicam em um canal e os assinantes do canal recebem todos os eventos.
 - Topic-based: publicadores publicam um campo tópico e os assinantes do tópico recebem os eventos associados ao tópico.
 - Content-based: publicadores publicam campos e os assinantes recebem eventos segundo critérios considerando os campos.
 - Type-based: publicadores publicam objetos de um tipo e assinantes assinam tipos de objeto de interesse.

Arquiteturas

Figura: Arquitetura de sistemas publish-subscribe.

System (and further reading)	Subscription model	Distribution model	Event routing
CORBA Event Service (Chapter 8)	Channel-based	Centralized	-
TIB Rendezvouz [Oki et al. 1993]	Topic-based	Distributed	Ffiltering
Scribe [Castro et al. 2002b]	Topic-based	Peer-to-peer (DHT)	Rendezvous
TERA [Baldoni et al. 2007]	Topic-based	Peer-to-peer	Informed gossip
Siena [Carzaniga et al. 2001]	Content-based	Distributed	Filtering
Gryphon [www.research.ibm.com]	Content-based	Distributed	Filtering
Hermes [Pietzuch and Bacon 2002]	Topic- and content-based	Distributed	Rendezvous and filtering
MEDYM [Cao and Singh 2005]	Content-based	Distributed	Flooding
Meghdoot [Gupta et al. 2004]	Content-based	Peer-to-peer	Rendezvous
Structure-less CBR [Baldoni et al. 2005]	Content-based	Peer-to-peer	Informed gossip

Figura: Exemplos de sistemas publish-subscribe.

Filas de Mensagens

- Filas de mensagens (Message queues)
 - Comunicação em sistemas distribuídos por meio de filas.
 - Possibilita comunicação ponto-a-ponto por meio do uso de filas de mensagens.
 - Exemplos: IBM WebSphere MQ e Java Messaging Service (JMS).
- Mensagens s\u00e3o persistentes
- Modelo: Produtor/Consumidor

Filas de Mensagens

Figura: Modelo de programação usando Filas de Mensagens.

- Memória compartilhada distribuída (Distributed Shared Memory – DSM)
 - Compartilhar dados entre computadores que não compartilham memória física.
 - Processos acessam e atualizam memórias definidas para seus espaços.
 - Comumente usada em programação paralela.

Figura: Abordagem de memória compartilhada distribuída.

- Espaço de tuplas (*Tuple spaces*)
 - Processos comunicam indiretamente colocando tuplas em um espaço de tuplas enquanto outros processos podem ler e remover essas tuplas.
 - Operações: read, write, take
 - Processos buscam especificações de tuplas e o espaço de tuplas retornam as tuplas com as especificações (tipo de endereçamento associativo).
 - Exemplo: Linda, JavaSpaces

Figura: Abordagem de espaço de tuplas.

Resumo

	Grupos	Sistemas publicar- -assinar	Filas de mensagem	DSM	Espaços de tuplas
Desacoplado no espaço	Sim	Sim	Sim	Sim	Sim
Desacoplado no tempo	Possível	Possível	Sim	Sim	Sim
Estilo de serviço	Baseado em comunicação	Baseado em comunicação	Baseado em comunicação	Baseado em estado	Baseado em estado
Padrão de comunicação	Um para muitos	Um para muitos	Um para um	Um para muitos	Um para um ou um para muitos
Principal objetivo	Computação distribuída	Disseminação de informações ou EAI; sistemas móveis e ubíquos	Computação distribuída Disseminação de informações ou EAI; processamento de transações comerciais	Computação paralela e distribuída	Computação paralela e distribuída; sistemas móveis e ubíquos
Escalabilidade	Limitada	Possível	Possível	Limitada	Limitada
Associativo	Não	Somente publicar- -assinar baseada em conteúdo	Não	Não	Sim

^{*} EAI: Enterprise Application Integration

Atividades

 Dividir trabalhos práticos na turma sobre os modelos de comunicação indireta.

Referências

COULOURIS, George F; DOLLIMORE, Jean; KINDBERG, Tim; BLAIR, Gordon. **Sistemas distribuídos: conceitos e projeto**. 5. ed. Porto Alegre: Bookman, 2013.