Welding Solutions for Hot-dipped GI Steel & AHSS

Automotive Industry

Trend in automotive industry

As part of the global CO2 reduction plan, regulations on vehicle fuel efficiency are being strengthened, and the application of advanced high strength steel plates is increasing.

USA

- Fuel efficiency regulation to be doubled by 2025
- About 5% improvement in fuel efficiency every year

Europe

- Regulation of Greenhouse gas emission until 2020
- Cumulative penalty of 5 ~ 95 Euro per gram

Advanced high strength steel

The application of AHSS plates is expanded, the thickness of steel plates used in vehicles is decreasing. The thickness of the material becomes thinner due to the high strength of the material, and the demand for corrosion resistance increases further.

Classification	Tensile strength (MPa)	Plate thickness (Mild Steel = 100)
MUL O	< 0.10	400
Mild Steel	≤ 340	100
High Strength Steel	340~780	80
Advanced High Strength Steel	≥ 780	62
Ultra High Strength Steel	≥ 1000	-

Chassis - Welding

GMAW is implemented mainly as a robot in manufacturing car chassis parts.

One of the disadvantages of solid welding is the formation of glass slag.

Unless these slags are removed before painting, it will cause corrosion. It is being removed through grinding.

Chassis - Painting

Chassis parts will be protected with paint to prevent deterioration of durability due to corrosion. If the unremoved slag remains in the weld, the slag will fall with the paint due to differences in the level of thermal expansion of the parent metal and slag.

As paintwork is destroyed, corrosion occurs first in areas exposed to the atmosphere.

Slag in Welding

Role of Deoxidize

CO2 (Shielding Gas) \rightarrow CO + [O]

Fe (Base metal) + [O] \rightarrow FeO

Oxygen removal required to prevent porosity formation

FeO + C (Base metal) → Fe + CO (Main cause of porosity)

* Deoxidizing component of welding wire

2FeO + Si (Deoxidizing) \rightarrow 2Fe + SiO2 (Slag)

FeO + Mn (Deoxidizing) → Fe + MnO (Slag)

2FeO + Ti (Deoxidizing) → 2Fe + TiO2 (Slag)

* De-oxidation : Ti > Si > Mn

Related Key Products

KC-35 Low Slag Solid Wire

The amount of slag generated is reduced by more than 50% compared to conventional products.

The slag is moved along the arc to reduce the area of occurrence.

It is recommended to use high Ar content in order to minimize slag from oxygen in shielding gas.

Chemical composition of KC-35 wire

Section	С	Si	Mn	Р	S
AWS ER70S-3	0.06-0.15	0.45-0.75	0.90-1.40	≤0.025	≤0.035
AWS ER70S-6	0.06-0.15	0.80-1.15	1.40-1.85	≤0.025	≤0.035
KC-35 (ER70S-G)	0.06	0.51	1.15	0.014	0.030

* S: Decrease surface tension and Increase flow rate of molten weld metal

* Si: Reduce silicate island

Surface tension in weld pool

Marangoni effect

This refers to the phenomenon of material transfer due to differences in surface tension between two liquids. If you put water in a plate on the left, sprinkle pepper on the surface, and drop a bubble of soap in the center, pepper powder moves to edge with high surface tension.

This is because the surface tension at the center has been reduced by surfactants.

Bead appearance

Results	Conventional Wire	KC-35
Bead appearance		
EDS	Mn Si O	Mn Si O
Slag behavior	Both flows merge and create single spin	Weld pool Slag island Weld pool Slag island Single large Slag island Slag island Weld crater

Slag behavior

Mechanical Properties

Test specimen according to AWS A5.18

Current(A)	Votage(V)	PASS (LAYER)	Shield Gas	Position	ROOT(mm)	Angle	Welding Machine	Base metal
300	32		Ar+10%CO ₂ Ar+20%CO ₂		13	45°	Daihen 500P	SM-490

Mechanical properties from test specimen

Section	Y.S. (MPa)	T.S. (MPa)	E.I. (%)	I.V (J) at- 20℃	Shielding
AWS ER70S-G	≥ 400	≥ 480	≥ 22	-	Gas
KC - 35	480	550	25.4	80	Ar+10%CO2
(Φ 1.2mm)	485	560	25.0	70	Ar+20%CO ₂

Slag formation

Bead Appearance and Slag amount on galvanized steel

Conventional

Slag Distribution by Mix Gas type

Related Key Products

KC-37 Improve paint durability

Slag generation is reduced compared to conventional products, resulting in fine dispersion.

By replacing the Si component, with other components, the glass slag are extremely reduced.

Reduction of slag removal work and prevention of gradation of corrosion resistance due to slag peel off after painting.

Chemical composition of KC-37 wire

Section	С	Si	Mn	Р	S
AWS ER70S - 3	0.06 - 0.15	0.45 - 0.75	0.90 - 1.40	≤0.025	≤0.035
AWS ER70S - 6	0.06 - 0.15	0.80 - 1.15	1.40 - 1.85	≤0.025	≤0.035
KC - 37 (ER70S - G)	0.08	0.06	1.73	0.011	0.001

Si : Minimize content to reduce glass slag

Mn: Increased content to supplement insufficient Si content

Bead appearance

Results	Conventional Wire	KC-37
Bead appearance		
EDS	Mn Si O	Mn Si O
Slag behavior		Weld pool Slag island
	Both flows merge and create single spin	Slag dispersed widely and thinly

Slag behavior

Slag formation

Welding machine and base metal

Base Metal	Welding joint	Welding machine	Robot	Shielding Gas
Galvanized (2.3T)	Lap	Lincoln	Fanuc R-30iA	Ar + 8% CO ₂

Conventional ER70S-3

KC-37 after welding (Without grinding)

Mechanical properties

Test specimen according to AWS A5.18

Current(A)	Votage(V)	PASS(LAYER)	Shielding Gas	Position	ROOT(mm)	Angle	Welding Machine	Base metal
300	32		Ar+10%CO ₂ Ar+20%CO ₂	Flat	13	45°	Daihen 500P	SM-490

Section	Y.S. (MPa)	T.S. (MPa)	E.I. (%)	I.V (J) at-20℃	Shielding
AWS ER70S-G	≥ 400	≥ 480	≥ 22	-	Gas
KC-35	450	553	32.1	100	Ar+10%CO2
(ф 1.2mm)	485	570	30.8	80	Ar+20%CO2

Cyclic corrosion test

Welding bead of conventional one galvanized steel

Welding bead of KC-37 galvanized steel

After Welding & Painting

After Welding & Painting

After CCT Test

After CCT Test

