

Progetto - Ingegneria del Software

IdP con protocollo OAuth2.0 e 2FA

DOCUMENTAZIONE UML - Gruppo 14

Corso <u>Ingegneria del Software e Fondamenti Web</u>

Docente Mongiello Maria

Mentore progetto Dell'Olio Giacomo Alberto

Componenti

Putignano Gianluca	MAT – 588237	mail – g.putignano11@studenti.poliba.it
Raimondi Federico	MAT - 587660	mail - f.raimondi@studenti.poliba.it
Salluce Luca	MAT - 587863	mail – <u>l.salluce@studenti.poliba.it</u>
Troilo Stefano	MAT - 588045	mail - <u>s.troilo2@studenti.poliba.it</u>
Volpe Antonio	MAT - 588757	mail - a.volpe18@studenti.poliba.it

DOCUMENTAZIONE UML - Gruppo 14

Scopo della documentazione

Lo scopo del nostro progetto (Identity Provider e OAuth2.0) è quello descrivere le funzionalità del sistema 2FA mostrando anche la dinamicità del design, evidenziando:

- Come gli utenti si autenticano utilizzando le credenziali e un secondo fattore di riconoscimento:
- La struttura tecnica delle componenti del sistema;
- Il flusso di comunicazione tra i moduli;

Obiettivi principali

1. Sicurezza avanzata

- 1.1. aggiunge un secondo livello di verifica oltre alla tradizionale password;
- 1.2. migliora la protezione contro attacchi comuni come phishing, brute force ecc.

2. Identificazione robusta

2.1. autentica l'identità in base qualcosa che l'utente conosce o possiede;

Funzionalità principali

1. Gestione credenziali

- a. Registrazione e memorizzazione di username e password
- b. Hashing delle password (con algoritmi come BCRYPT)

2. Integrazione secondo fattore

- a. Invio OTP
- b. E-mail
- c. Validazione OTP inserito dall'utente

Benefici del sistema

1. Maggiore protezione degli account

a. Anche se un utente ha una password facilmente ricavabile, il secondo fattore riduce comunque il rischio di comprometterla

2. Facilità d'utilizzo

- a. L'uso del 2FA è reso accessibile anche ad utenti meno esperti
- 3. Riduzione delle violazioni di sicurezza

a. La combinazione di credenziali e un secondo fattore rende il sistema più difficile da aggirare

4. Flessibilità e scalabilità

a. Il sistema può esser integrato in molteplici contesti come il semplice accesso ai siti web, applicazioni aziendali, piattaforme bancarie ecc.

Tipologie di diagrammi UML

- 1. Il **diagramma dei casi d'uso** descrive le interazioni tra gli attori e il sistema. Gli elementi principali sono:
 - Attori:
 - Client (Utente)
 - o Database
 - Server di autenticazione
 - Server delle risorse
 - Casi d'uso:
 - o Registrazione
 - o Accesso con verifica delle credenziali tramite 2FA
 - o Invio e-mail di conferma
 - o Assegnazione token
 - o Accesso alle risorse

- 2. Il **diagramma delle classi** mostra la struttura del sistema, rappresentando le entità coinvolte e le relazioni che intercorrono tra di esse. È costituito da:
 - Classi principali:
 - o Authentication Server:
 - attributi (credenziali, twoFactors)
 - metodi (login, recupero password, aggiungi utente, protocollo 2FA, ottieni OTP, genera token d'accesso, genera token di refresh)
 - O User:
 - attributi (nome, cognome, username, password, mail)
 - o OTP:
 - attributi (OTP)
 - Token:
 - attributi (idToken, life-time)
 - metodi (refresh token)
 - o Mail:
 - attributi (destinatario, oggetto, testo)
 - metodi (registrazione completata, invio OTP)
 - Relazioni:
 - L'utente è associato alla classe server 2FA
 - o Il server 2FA è associato alle classi OTP, Token e Mail

- 3. Il **diagramma di attività** rappresenta il flusso di processo per l'autenticazione 2FA. Le attività principali sono:
 - L'utente inserisce le credenziali
 - Le credenziali vengono verificate dal sistema
 - Il sistema invia il codice OTP
 - Viene effettuata la validazione del codice
 - Viene consentito o negato l'accesso
- 4. Il **diagramma delle sequenze** descrive l'interazione temporale tra le componenti del sistema durante l'autenticazione. Il diagramma delle componenti invece associa alle componenti i propri moduli

- Utente: inserisce le informazioni richieste
- Front-end: riguarda il modulo di login
- Back-end: contiene la logica di autenticazione
- Database: mantiene in memoria le credenziali e le configurazioni
- Risorse: qualsiasi applicazione esterna
- 5. Il **diagramma architetturale** è una rappresentazione grafica che descrive la struttura, le componenti principali e le relazioni interne del sistema. Serve ad

osservare come le varie parti del sistema comunicano tra loro e come sono organizzate. Il diagramma prevede:

- **Chiarezza**: aiuta a spiegare il funzionamento del sistema a diversi stakeholder (sviluppatori o progettisti) in modo semplice e intuitivo.
- **Pianificazione**: aiuta ad individuare i problemi e i conflitti prima della costruzione
- **Documentazione**: serve come forma di documento per manutenzione future o passaggi di consegne.
- Analisi e Miglioramento: permette di identificare le aree di miglioramento e può essere utilizzato per analizzare la scalabilità, la sicurezza e le prestazioni.
- **Complessità**: divide il sistema in parti più piccole, quindi più semplici, per evitare errori.

Appendici

- Glossario:
 - o OTP: One Time Password
 - o 2FA: Autenticazione a 2 fattori
- Risorse esterne:
 - Modulo Python: mail Service (SMTP)
 - o MySQL connection
 - o FLASK-Cors
 - o Modulo BCRYPT
 - o Modulo SMTPLIB