Cinética Química

Cinética — Qual a rapidez da reação química?

 vai depender da variação da concentração temporal de um reagente ou produto

Velocidade de uma reação — variação da concentração de um reagente ou de um produto na unidade de tempo (*M*/s).

 $A \longrightarrow B$

velocidade =
$$\bigcirc \frac{\Delta[A]}{\Delta t}$$

velocidade = $\frac{\Delta[B]}{\Delta t}$

 Δ [A] = variação da concentração de A durante o intervalo de tempo Δt .

 Δ [B] = variação de concentração de B durante o intervalo de tempo Δt .

Porque [A] decresce com o tempo, Δ [A] é negativo.

1

1

Velocidades de Reação e Estequiometria

2A —→B

Por cada mole de B formado são consumidas duas moles de A

velocidade =
$$-\frac{1}{2} \frac{\Delta[A]}{\Delta t}$$
 velocidade = $\frac{\Delta[B]}{\Delta t}$

$$aA + bB \longrightarrow cC + dD$$

velocidade =
$$-\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$$

3

2

1- Apresente a expressão da velocidade para a seguinte reacção:

 $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$

4

3

Lei de velocidade — exprime a relação da velocidade de reacção com a constante de velocidade e com as concentrações dos reagentes.

velocidade = k [Br₂] Para o exemplo anterior :

Para uma reação qualquer $aA + bB \longrightarrow cC + dD$

velocidade = k [AP]

A reacção é de ordem x em relação a A

A reacção é de ordem y em relação a B

A reacção é de ordem global (x + y)

9

11

 $F_2(g) + 2CIO_2(g) \longrightarrow 2FCIO_2(g)$ vel. = $k [F_2]^x [CIO_2]^y$

Se duplicarmos [F₂] com [CIO₂] = constante, a velocidade duplica

x = 1

Se quadruplicarmos [ClO₂] com [F₂] constante, a velocidade quadruplica y = 1

velocidade = k [F₂][ClO₂]

Como se estabelece a equação cinética?

 $F_2(g) + 2CIO_2(g) \longrightarrow 2FCIO_2(g)$ vel. = $k [F_2]^x [ClO_2]^y$

Se duplicarmos $[F_2]$ com $[CIO_2]$ = constante, a velocidade duplica x = 1

10

Leis de Velocidade

- As leis de velocidade são sempre determinadas experimentalmente.
- A ordem de reacção é **sempre** definida em função das concentrações dos reagentes (não dos produtos).
- A ordem em relação a um reagente, não está relacionada com o coeficiente estequiométrico do reagente na equação global acertada.

 $F_2(g) + 2CIO_2(g) \longrightarrow 2FCIO_2(g)$ velocidade = $k[F_2][CIO_2]$

2- Determine a lei de velocidade e calcule a constante de velocidade para a seguinte reacção a partir dos dados:

 $S_2O_8^{2-}(aq) + 3I^-(aq)$ \longrightarrow $2SO_4^{2-}(aq) + I_3^-(aq)$

Experiência	[S ₂ O ₈ ²⁻]	[1-]	Velocidade inicial (M/s)
1	0,08	0,034	2,2 × 10 ⁻⁴
2	0,08	0,017	1,1 × 10 ⁻⁴
3	0,16	0,017	2,2 × 10 ⁻⁴

13

13

Exercício 4 : A decomposição do pentóxido de diazoto é uma reação de 1ª ordem com constante de velocidade de 5,1 x10⁻⁴ s⁻¹ a 45⁰C.

$$2N_2O_5(g)$$
 $4NO_2(g) + O_2(g)$

a)Se a concentração de N₂O₅ for de 0,25 M, qual será a concentração após 3,2 min.? b) Qual o tempo necessário para que a concentração de N₂O₅ diminua de 0,25 M para 0,15 M? c) Qual o tempo necessário à conversão de 62% do material de partida?

$$K=5.1 \times 10^{-4} \text{ s}^{-1}$$

- a) [N₂O₅]₀=0,25M $[N_2O_5]t=?$ t=3,2 min. = 192 s
- b) $[N_2O_5]_0=0,25M$ $[N_2O_5]_t=0,15M$ t=?

Relação entre concentrações e tempo

Reações de Primeira Ordem

A —→produto

velocidade = $-\frac{\Delta[A]}{\Delta t}$ e velocidade = k[A]

 $[A]_0$ = concentração de A quando t = 0

Se a equação for integrada:

[A] = concentração de A no instante t

 $[A] = [A]_0 \exp(-kt)$

14

5- A reacção 2A ----- B é de primeira ordem em A, com uma constante de velocidade de 2,8 × 10⁻² s⁻¹ a 80^oC. Qual o tempo necessário para que a concentração de A diminua de 0,88 M para 0,14 M?

15

Reacções de Primeira Ordem

Tempo de meia-vida, $t_{/4}$ — tempo necessário para que a concentração de um reagente diminua para metade do seu valor inicial.

$$ln[A] = ln[A]_0 - kt$$

$$t_{\frac{1}{2}} = t$$
 quando [A] = [A]₀/2

$$t_{\frac{1}{2}} = \frac{\ln \frac{LA_{0}}{LA_{0}/2}}{k} = \frac{\ln 2}{k} = \frac{0,693}{k}$$

Calcule o tempo de meia-vida para a decomposição do N_2O_5 com uma constante de velocidade de $5,7\times 10^{-4}~\rm s^{-1}$.

$$t_{\frac{1}{2}} = \frac{\ln 2}{k} = \frac{0.693}{5.7 \times 10^{-4} \text{ s}^{-1}} = 1200 \text{ s} = 20 \text{ minutos}$$

Como é que sabe que a decomposição é de primeira ordem?

unidades de k (s-1)

17

Relação entre concentrações e tempo Reacções de ordem zero

A —→produto

velocidade =
$$-\frac{\Delta[A]}{\Delta t}$$

e velocidade = $k [A]^0 = k$

$$k = \frac{\text{velocidade}}{1} = M/s$$

$$-\frac{\Delta[A]}{\Delta t} = k$$
 Integrando:

$$[A] = [A]_0 - kt$$

[A] = concentração de A no instante t

 $[A]_0$ = concentração de A quando t = 0

$$t_{1/2} = t$$
 quando [A] = [A]₀/2

$$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$$

19

Relação entre concentrações e tempo

Reacções de Segunda Ordem

A —→produto

velocidade =
$$-\frac{\Delta[A]}{\Delta t}$$

e velocidade = $k [A]^2$

$$k = \frac{\text{velocidade}}{[A]^2} = \frac{M/s}{M^2} = M^{-1} \cdot s^{-1}$$

$$-\frac{\Delta[A]}{\Delta t} = k [A]^2$$
 Integrando:

$$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$$

[A] = concentração de A no instante t

 $[A]_0$ = concentração de A quando t = 0

$$t_{\frac{1}{2}} = t \text{ quando [A]} = [A]_0/2$$

$$t_{1/2} = \frac{1}{k[A]_0}$$

18

Resumo da Cinética de Reacções de Primeira e de Segunda Ordem e de Ordem Zero

<u> Ordem</u>	velocidade	-rempo	<u>ivieia-vida</u>
0		$[A] = [A]_0 - kt$	t. = [A] ₀
	velocidade = k	[A] - [A] ₀ - At	2k
			ln2

Lei de

$$ln[A] = ln[A]_0 - kt$$

Equação

Concentração-

$$t_{\frac{1}{2}} = \frac{1}{k}$$

velocidade =
$$k [A]^2$$
 $\frac{1}{[A]}$

$$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$$
 $t_{1/2} =$

20

19

Teoria das colisões

-A velocidade da maioria das reações aumenta com a temperatura

$$A + B \rightarrow C + D$$

-As reações químicas ocorrem como resultado de colisões

=> v α nº colisões/min

- a velocidade da reação é maior quando aumenta o nº de moléculas

$$\Rightarrow$$
 $\mathbf{v} \alpha [A].[B]$

- A teoria das colisões assume que sempre que há colisão ocorre reação

- o que não é verdade porque:

21

21

Constante de Velocidade vs. Temperatura

Em 1889 Svante Arrhenius estabelece a relação entre k e T

 $k = A \cdot \exp(-E_a/RT)$

Equação de Arrhenius

E_a = energia de activação (J/mol)

R = constante dos gases (8,314 J/K · mol)

T = temperatura absoluta

A = factor de frequência

$$\ln k = -\frac{E_a}{R} \frac{1}{T} + \ln A$$

Temperatura

22

23

Constante de velocidade

Uma equação que relacione as constantes k₁ e k₂ às temperaturas

T₁ e T₂ pode ser usada para calcular E_a.

$$\ln k_1 = -\frac{E_a}{R} \frac{1}{T_1} + \ln A$$
 $\ln k_2 = -\frac{E_a}{R} \frac{1}{T_2} + \ln A$

$$\ln k_2 = -\frac{E_a}{R} \frac{1}{T_2} + \ln A$$

Subtraindo uma à outra

In
$$k_1 - \ln k_2 = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

25

Na catálise heterogénea, os reagentes e o catalisador encontram-se em fases diferentes.

- Síntese do amoníaco
- $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$
- -Reação muito lenta à t.a.
 - => é necessário: velocidade elevada
 - rendimento elevado
- Síntese do amoníaco pelo processo de Haber

$$N_2(g) + 3H_2(g) \xrightarrow{\text{Fe/Al}_2O_3/K_2O} 2NH_3(g)$$

Catalisador — substância que aumenta a velocidade de uma reacção química, sem ser consumido durante essa reacção.

Velocidade_{reac, catalisada} > velocidade_{reac, não catalizada}

 E_a < E_a

26

Na catálise homogénea os reagentes e o catalisador estão dispersos numa única fase, geralmente líquida.

- Catálise ácida
- Catálise básica

Reação muito lenta na ausência de catálise

$$CH_3COOEt + H_2O \xrightarrow{H^+} CH_3COOH + EtOH$$

27

