LOCAL SEARCH FOR CSPs

R&N: Chap. 6

LOCAL SEARCH FOR CSPs

- In the CSP formulation as a search problem, path is irrelevant, so we can use complete-state formulation
- State
 - An assignment of values to variables
- Successors(s)
 - All states resulted from by choosing a new value for a variable
- Cost-function(s)
 - Number of violated constraints
- Global minimum
 - h(s) = 0

MIN-CONFLICTS

- Min-conflicts heuristic
 - Select the value that results in the minimum number of conflicts with other variables

```
function MIN-CONFLICTS(csp, max steps) returns a solution or failure inputs: csp, a constraint satisfaction problem max steps, the number of steps allowed before giving up current ← an initial complete assignment for csp for i = 1 to max steps do

if current is a solution for csp then return current var←a randomly chosen conflicted variable from csp.VARIABLES value←the value v for var that minimizes CONFLICTS(var,v, current, csp) set var = value in current return failure
```

8-Queens example

- For the n-queens problem, if you don't count the initial placement of queens, the run time of min-conflicts is roughly independent of problem size.
 - It solves even the million-queens problem in an average of 50 steps (after the initial assignment)
 - N-queens is easy for local search because solutions are densely distributed throughout the state space.

If the constraint graph contains several components, then solve one independent CSP per component

- Suppose each sub-problem has c variables out of n
 - Worst-case solution cost is $O((n/c) \cdot d^c)$
- •Example: n = 80, d = 2, c = 20
 - ■280 = 4 billion years at 10 million nodes/sec
 - •4.2²⁰ = 0.4 seconds at 10 million nodes/sec

If the constraint graph is a tree, then:

If the constraint graph is a tree, then:

Order the variables from the root to the leaves (Topological sort)
 → (X₁, X₂, ..., X_n)

If the constraint graph is a tree, then:

1. Order the variables from the root to the leaves (Topological sort) $\rightarrow (X_1, X_2, ..., X_n)$

2. For j = n, n-1, ..., 2 call REMOVE-VALUES(X_j, X_i) where X_i is the parent of X_j

If the constraint graph is a tree, then:

- 1. Order the variables from the root to the leaves (Topological sort) $\rightarrow (X_1, X_2, ..., X_n)$
- 2. For j = n, n-1, ..., 2 call REMOVE-VALUES(X_j, X_i) where X_i is the parent of X_j
- 3. Assign any valid value to X_1

If the constraint graph is a tree, then:

- 1. Order the variables from the root to the leaves (Topological sort) $\rightarrow (X_1, X_2, ..., X_n)$
- 2. For j = n, n-1, ..., 2 call REMOVE-VALUES(X_j, X_i) where X_i is the parent of X_j
- 3. Assign any valid value to X_1
- 4. For j = 2, ..., n do

 Assign any value to X_j consistent with the value

 assigned to X_i , where X_i is

 the parent of X_i

10

Reduction of general graphs into trees

Removing nodes

Collapsing nodes together

Cut-set conditioning

Find a subset S such that the remaining graph becomes a tree

For each possible consistent assignment to S

remove inconsistent values from domains of remaining variables
solve the remaining CSP which has a tree structure

Cut-set size c gives runtime

 $d^{c}.(n-c)d^{2}$ For each combination

we must solve a tree

Combinations of values for the variables in 5

problem of size n - c

- Very fast for small c
- c can be as large as n 2

Tree Decomposition

- Create a tree-structured graph of overlapping subproblems (each sub-problem as a mega-variable)
 - Every variable in the original problem appears in at least one of the subproblems
 - If two variables are connected by a constraint in the original problem, they must appear together (along with the constraint) in at least one of the subproblems
 - If a variable appears in two subproblems in the tree, it must appear in every subproblem along the path connecting those subproblems
- Solve each sub-problem (enforcing local constraints)
- Solve the tree-structured CSP over mega-variables

Tree Decomposition

Applications of CSP

- CSP techniques are widely used
- Applications include:
 - Crew assignments to flights
 - Management of transportation fleet
 - Flight/rail schedules
 - Job shop scheduling
 - Task scheduling in port operations
 - · Design, including spatial layout design
 - Radiosurgical procedures

Radiosurgery

Minimally invasive procedure that uses a beam of radiation as an ablative surgical instrument to destroy tumors

Problem

Burn tumor without damaging healthy tissue

The CyberKnife

linear accelerator robot arm cameras

X-Ray

Inputs

1) Regions of interest

Inputs

2) Dose constraints

Beam Sampling

Constraints


```
\begin{array}{llll} & 2000 \leq Tumor \leq 2200 \\ 2000 \leq B2 + B4 \leq 2200 \\ 2000 \leq B4 \leq 2200 \\ 2000 \leq B3 + B4 \leq 2200 \\ 2000 \leq B3 \leq 2200 \\ 2000 \leq B1 + B3 + B4 \leq 2200 \\ 2000 \leq B1 + B4 \leq 2200 \\ 2000 \leq B1 + B2 + B4 \leq 2200 \\ 2000 \leq B1 + B2 + B4 \leq 2200 \\ 2000 \leq B1 + B2 \leq 2200 \\ 2000 \leq B1 + B2 \leq 2200 \\ 2000 \leq B1 + B2 \leq 2200 \\ \end{array}
```

• 0 ≤ Critical ≤ 500 0 ≤ B2 ≤ 500

```
2000 < Tumor < 2200
```

```
2000 < B2 + B4 < 2200

2000 < B4 < 2200

2000 < B3 + B4 < 2200

2000 < B3 < 2200

2000 < B1 + B3 + B4 < 2200

2000 < B1 + B4 < 2200

2000 < B1 + B2 + B4 < 2200

2000 < B1 < 2200

2000 < B1 + B2 < 2200
```


2000 < Tumor < 2200

```
2000 < B3
B1 + B3 + B4 < 2200
B1 + B2 + B4 < 2200
2000 < B1
```

Case Results

50% Isodose Surface

80% Isodose Surface

THE POWER OF T4 TECHNOLOGY

Cyberknile* Tight-to-the-Tumor (T*) Radiosurgery with Ultimate Conformality

broanid lollouges

Skil No Policippy

hed & Solt Editorphy

Sein Holescope.

ing/hitholphi

Replic Referency

States Lived Relayings

Sivini America Subangsy

FULL-BODY

100% Frameless T' Radiosurgery

freely Epitography

REVOLUTIONARY TECHNOLOGIES

Proprietary Image-Guidance System Texts and set fer, turner leagues to evable automatic con paradical for turner in consensal.

Multi-Jointed Robotic Arm

Subjections to provide annufally times and relices damage to surranding silter latitudes.

Integration of these unique technologies allows physicians to treat complex-shaped terrors with clinically proven corprepy that has been demonstrated to be comparable, If not superior, to frame-based radiesurgical systems."

Simple Outpatient Treatment Process

Planning: (I scaning and crimered treatment planning are efficied.) Positioning: The patent his one table with only a few mark or body notif used for immubilization. Wardfination: The image-galance rystem verifies tunor location and company it to previously stund date. Torqueling: When times resembnt is detected, the solute com's repositional within a frustian of a second.

Treatments: Rushed of Feels collected radiation becauseoism precises reducingers to the honor. Compile tilgen Following CyberColle" treatment, the parton gots have. There is ben recovery time.

> CyberKnife" T" Redissurgery A new standard in WAE controlled

Tit's brevis. Albitro school combined words

beauty y policies to borner forcing for LM performance / united