TTI4A3 Komunikasi Akses Nirkabel

CLO 3 Radio Access Network Dimensioning

Minggu 12: COVERAGE PLANNING AND LINK BUDGET

Outline

CLO 3

Radio Access Network Dimensioning

Minggu 12 Coverage Planning & Link Budget

- Introduction: Coverage & Capacity Planning Approach
- Coverage Planning
- Link Budget

Introduction: Network Planning Processes

Outline

- Introduction
- Software environment
- Network planning processes
- Network planning scope
- Steps:
 - Preliminary network design
 - Initial network design
 - Detailed network design
 - Installation
 - Verification
 - Optimization

Introduction

First Steps and Factors affecting Network Planning

Introduction: Cellular network planning

Radio part design

Radio Network Planning

- evaluation of expected traffic density
- use of CAD network planning tool
- determination of suitable MSC, BSC, BTS sites

Fixed part design: planning transmission

Transmission Planning

- · connection points to the PSTN
- possible leased lines
- frequencies available for microwave links

Introduction: Operator Needs

OPERATOR NEEDS

- Cost efficient total solution
- Enough capacity with optimized reserves
- Optimized network reliability
- Optimized network flexibility

NETWORK PLANNING

- Is the key to respond to the needs
- Has to deal with long term goals and short term targets
- Starts from existing network or from the scratch

- Aim is to find the optimal network structure
- There usually is a tradeoff between
 - Cost
 - Network quality
 - Time

Financial Aspects

- cost of the base station
- engineers evaluation of the area
- local administration permission
- compensation to ground owner
- cablings (power, transmission)
- specialized workers

Introduction: Network Planning Role

Software Environment

Software Environment: Network Planning Tool

Example:

- TEMS Cell Planner (Ericsson)
- NPS/X (Nokia)
- Tornado (Siemens)
- Planet EV

Software Environment: Measurement Software

- TEMS Investigation (Ericsson)
- NMS/X (Nokia)

Network Planning Environment in Practice

Network Planning Process

Radio Network Planning Process

Introduction Cellular Network Life Cycle

Network Planning Targets

- To achieve required radio coverage
- To maximise the network capacity(Erl/km2) with limited frequency band (MHz)
- To reach good Quality of Service (QOS)
- •To minimize the number of network elements and **costs**

Keywords:
Coverage,
Capacity, Quality,
and Cost

Network Planning Scope

Customer requirements

- subscriber forecasts
- coverage requirements
- quality of service
- recommended sites

External information sources

- terrain & morphological data
- population data
- bandwidth available
- frequency co-ordination constraints

Network planning team

- data acquisition
- site survey and selection
- field measurement evaluation
- NW design and analysis
- transmission planning

Interactions with

- external subcontractors
- site hunting teams
- measurement teams
- operator
- switch planning engineers (Core Network engineers)

Network design

- number and configuration of BS
- antenna systems specifications
- BSS topology
- dimensioning of transmission lines
- frequency plan
- network evolution strategy

Network performance

- grade of service (blocking)
- outage calculations
- interference probabilities
- quality observation

Network Planning Phases

Cellular Planning Principle

1. Preliminary Network Design

Network evolution plan

First Step: System requirements

Important input data:

- Cost
- Capacity
- Coverage
- Grade Of Service (GOS)
- Available frequencies
- Speech quality
- System growth capability

Geographical distribution of traffic demand can be calculated by the use of demographical data, such as:

- Population distribution
- Car usage distribution
- Income level distribution
- Land usage data
- Telephone usage statistics
- Other factors, like subscription/call charge and price of mobile stations

Topography

Relevant Topographical Factors:

- Obstacles (mountains,forests,...)
- reflections (mountain walls, water...)
- Traffic density (population density)
- streets, bridges
- local regulations

2. Initial Network Design

BSS evolution plan

3. Detailed Network Planning

4. Installation & Commissioning

Installation → <u>cabling job & see</u> you manual :

- BTS, BSC, MSC installation
- Power supply installation, ...etc

Preliminary Network Design Initial Network
Design

Detailed Network Planning

Installation & Comissioning

Verification

output

But, the network has not optimal yet...

Commisioning → at the first phase: to ensure network function, normal call and data processing

5. Verification

6. Optimization

Commisioning → at the first phase: to ensure network function, normal call

and data processing

At the second phase:

Radio Network Optimization

It is about drive test to collect data, and radio network parameter optimization:

•at the RF side, ...

•RAN side ... via OMC → adjust some UMTS RAN parameters

But, the network has not optimal yet...

Cell Dimensioning

Coverage & Capacity Approach

Definisi

- Dimensioning:
 - menghitung "dimensi' atau ukuran
- Network Dimensioning
 - Menghitung dimensi / ukuran jaringan -> jumlah elemen-elemen jaringan dalam suatu jaringan
- Radio Network Dimensioning
 - Menghitung jumlah elemen-elemen jaringan pada sisi jaringan radio akses → menghitung jumlah BTS, jumlah cell/sector

Cell Dimensioning Principle from Capacity Requirement

Cell Dimensioning Principles from Coverage Requirements

Capacity Calculations

Erlang-B Table

	Blocking Probability				Blocking Probability				
Channels	1%	2%	3%	5%	Channels	1%	2%	3%	5%
1	0,01	0,02	0,03	0,05	21	12,80	14,00	14,90	16,20
2	0,15	0,22	0,28	0,38	22	13,70	14,90	15,80	17,10
3	0,46	0,60	0,72	0,90	23	14,50	15,80	16,70	18,10
4	0,87	1,09	1,26	1,52	24	15,30	16,60	17,60	19,00
5	1,36	1,66	1,88	2,22	25	16,10	17,50	18,50	20,00
6	1,91	2,28	2,54	2,96	26	17,00	18,40	19,40	20,90
7	2,50	2,95	3,25	3,75	27	17,80	19,30	20,30	21,90
8	3,13	3,63	3,99	4,54	28	18,60	20,20	21,20	22,90
9	3,78	4,34	4,75	5,37	29	19,50	21,00	22,10	23,80
10	4,46	5,08	5,53	6,22	30	20,30	21,90	23,10	24,80
11	5,16	5,84	6,33	7,08	31	21,20	22,80	24,00	25,80
12	5,88	6,61	7,14	7,95	32	22,00	23,70	24,90	26,70
13	6,61	7,40	7,97	8,83	33	22,90	24,60	25,80	27,70
14	7,35	8,20	8,80	9,73	34	23,80	25,50	26,80	28,70
15	8,11	9,01	9,65	10,60	35	24,60	26,40	27,70	29,70
16	8,88	9,83	10,50	11,50	36	25,50	27,30	28,60	30,70
17	9,65	10,70	11,40	12,50	37	26,40	28,30	29,60	31,60
18	10,40	11,50	12,20	13,40	38	27,30	29,20	30,50	32,60
19	11,20	12,30	13,10	14,30	39	28,10	30,10	31,50	33,60
20	12,00	13,20	14,00	15,20	40	29,00	31,00	32,40	34,60

Typical Site Configurations

R = Cell Range

S = **Site** Area

Omni

Road

Three Sectorized

Luas Sel =
$$K \times R^2$$

Basic Cell Types and Models

Power Budget (PBGT) Principles

$$\begin{split} P_T = Threshold + FM + L_{fR} \\ -G_R + L_P - G_T + L_{fT} \end{split}$$

Ukuran sel didesain

MAPL = Maximum Allowable PathLoss

$$MAPL = EIRP_{maks} - P_{R_Min}$$

Ukuran sel maksimum

Power Budget: Downlink

Power Budget: Uplink

Power Budget & Cell Sizes

RADIO LINK POWER BUDGET

GENERAL INFO

Frequency (MHz):

RECEIVING END:

RX RF-input sensitivity Interference degrad. margin Cable loss + connector

Rx antenna gain

Diversity gain

Isotropic power

Field strength

TRANSMITTING END:

TX RF output peak power

(mean power over RF cycle)

Isolator + combiner + filter

RF-peak power, combiner output

Cable loss + connector

TX-antenna gain

Peak EIRP

(EIRP = ERP + 2dB)

Isotropic path loss

RF LINK BUDGET

RELINK RUDGET

Ty DE Output

KI LINK DUL	OLI	CL	DL
TRANSMITTING	END	MS	BTS

TIT

22 dD.

DI

42 dPm

1x Kr Output	33 dbiii	45 apm
Body Loss	-2.0dB	0dB
Combiner Loss	0dB	0dB
Feeder Loss (@2dB/100m)	0dB	1.5dB
Connector Losses	0dB	2dB
Tx Antenna Gain	0dB	17.5dB
EIRP	31dBm (A)	57dBm (C)

RECEIVING END B'	S MS
------------------	------

Rx sensitivity	-107 dBm	-102 dBm

17.5dB	0dB
3dB	0dB
2dB	0dB
1.5dB	0dB
3dB	3dB
0dB	3dB
0dB	0dB
-121dBm	-96dBm
4dB	4dB
	3dB 2dB 1.5dB 3dB 0dB 0dB -121dBm

Required Isotropic Rx .Power		-117dBm (B)		-92dBm (D)
Maximum	Permissible	Path	148dB	149dB

	DU	U	SU	F	0
	1.5	1.5	1.5	1.5	1.5
	30.0	30.0	30.0	45.0	45.0
	7.0	7.0	7.0	7.0	7.0
	15.0	12.0	10.0	6.0	6.0
	10.0	10.0	10.0	10.0	10.0
	DU	U	SU	F	О
	3.0	0.0	-6.0	-10.0	-15.0
	DU	U	SU	F	О
	30.0	30.0	30.0	30.0	30.0
	90.0	90.0	90.0	90.0	90.0
	40.0	40.0	40.0	40.0	40.0
	30.0	30.0	30.0	30.0	30.0
	DU	U	SU	F	О
	OH	OH	OH	OH	OH
	22.8	19.8	17.8	13.8	13.8
	65.1	62.1	60.1	56.1	56.1
	-77.2	-80.2	-82.2	-86.2	-86.2
):	90.0%	90.0%	90.0%	90.0%	90.0%
ange (km):	0.37	0.55	0.94	1.89	2.65
	DU	\mathbf{U}	\mathbf{SU}	F	O
	OH	OH	OH	OH	OH
	4.5	4.5	4.5	4.5	4.5
	46.8	46.8	46.8	46.8	46.8
	-95.5	-95.5	-95.5	-95.5	-95.5
):	90.0%	90.0%	90.0%	90.0%	90.0%
ange (km):	1.24	1.51	2.24	3.55	4.97

Coverage Planning

Coverage Mindset

- MAXIMUM ALLOWABLE PATHLOSS (MAPL)
- MAXIMUM COVERAGE

Design requirements:

- Coverage availability /Cell Edge Reliablity
- Karakteristik propagasi: Urban, Sub-urban, Rural

Coverage Parameters: Coverage Availability vs Cell Edge Reliability

75%at edge of area

- Titik-titik disamping adalah lokasi yang mendapatkan sinyal di atas threshold
- Untuk mencapai 90% cakupan sel memiliki sinyal di atas level threshold (coverage availability), maka cell edge reliability yang harus dicapai adalah 75%
- Angka 90% / 75% tersebut umum dipakai sebagai obyektif perencanaan

<u>Catatan:</u> Coverage Availability sebagai fungsi Cell Edge Reliability akan kita lihat pada slide berikutnya

6. Fading Mitigation

Cell Edge Reliability Vs Coverage Availability

Cell Edge Reliability

Probabilitas sinyal terukur ditepi sel (jarak R) mendapatkan sinyal di atas level threshold, dinyatakan oleh fungsi berikut:

$$P_{Th}(R) = P(m \ge Th) = \int_{Th}^{\infty} p(m) dm = \frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(\frac{Th - \overline{m}}{\sigma_{m} \sqrt{2}}\right)$$

Coverage Availability

Prosentase daerah sel yang menerima sinyal lebih besar dari level threshold. Jika misalkan availabilitas cakupan dinyatakan sebagai F., maka:

$$F_{\rm u} = \frac{1}{\pi R^2} \int P_{\rm Th}(R) dA$$

$$P_{Th}(R) = \frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(\frac{Th - \overline{m}}{\sigma_{m} \sqrt{2}}\right) \quad \text{dinyatakan}: \\ \overline{m} = \alpha - 10\gamma \log \frac{d}{R}$$

dimana sinyal rata-rata \overline{m}

$$\overline{m} = \alpha - 10\gamma \log \frac{d}{R}$$

$$P_{Th}(R) = \frac{1}{2} - \frac{1}{2} \operatorname{erf} \left(\frac{\operatorname{Th} - \alpha + 10\gamma \log(\frac{d}{R})}{\sigma_{m} \sqrt{2}} \right)$$

Jake's Curves

• Jika dimisalkan $\overline{m}=Th$ pada d=R, maka : didapatkan persamaan untuk **Jake's Curves** yang sering digunakan untuk prediksi availabilitas cakupan :

$$F_{u} = \frac{1}{2} \left\{ 1 + e^{\left(\frac{1}{b}\right)^{2}} \left[1 - erf\left(\frac{1}{b}\right) \right] \right\} \qquad \text{dimana,} \qquad b = \frac{10\gamma \log\left(\frac{d}{R}\right)}{\sigma_{m}\sqrt{2}}$$

<u>Catatan</u>: penurunan lengkap dapat dilihat pada buku Vijay K Garg, Wilker, E Joseph, " *Principles and Applications of GSM* ", Prentice Hall, 1999

6. Fading Mitigation

Jake's Curves

Didapatkan kurva berikut ini, yang biasa disebut Jake's

Curves, dari kurva dapat diketahui nilai Coverage Availability yang dicapai dengan Cell Edge Reliability tertentu

Dari kurva disamping diketahui, bahwa Coverage Availability adalah fungsi dari *mean* pathloss **exponent** dan **SDEV** untuk Cell Edge Reliability tertentu

Meningkatkan Coverage Probability Dengan Fade Margin

Review Pengukuran Pathloss: Mendapatkan Mean dan Standar Deviasi

- Pengukuran dilakukan pd tipe-tipe daerah:
 - Urban, suburban, dan open / rural area
- Pengukuran pada radius konstan dari BTS menghasilkan pathloss yang berbeda (random) -> terdistribusi Lognormal
- Dengan regresi linear, didapatkan trend mean pathloss dan standar deviasi disekitar nilai rata-rata
- Contoh untuk urban path loss
 - → Slope = 33.2 (dB/decade) dan
 - \rightarrow Std dev. = 7 dB

Distribusi Lognormal Pada Pathloss

- Contoh misalkan untuk jarak d₂ = 4 km (urban area). Misal path loss pada 4 km adalah 79 dB
 → Pathloss ini didesain untuk suatu nilai ratarata dengan tingkat keyakinan 50 %
- Dengan STDev untuk urban adalah 7 dB,
 Maka, untuk mendapatkan tingkat keyakinan (confidence level) 84 % (1σ) membutuhkan margin 7 dB, dan untuk tingkat keyakinan 97.7 % (2σ) membutuhkan margin 14 dB

Rumus distribusi Lognormal

$$p(m) = \frac{1}{\sigma_m \sqrt{2\pi}} e^{-\left[\frac{(m-\overline{m})^2}{2\sigma_m^2}\right]}$$

m

 $\overline{\boldsymbol{m}}$

 σ_{m}

= normal random variabel kuat sinyal (dBm)

= rata-rata (mean) kuat sinyal (dBm)

= standar deviasi

Review: Okumura-Hata Model

$$L = A + B \times \log(f) - 13.82 \times \log(Hb) - a(Hm)$$
$$+ (44.9 - 6.55 \times \log(Hb)) \times \log(R)$$

f [MHz] A B 150-1500 69.55 26.16 1500-2000 46.30 33.90

f Frequency [MHz], range 150-2000 Hb BS effective antenna height [m], range 30-200 Hm MS antenna height [m], range 1-10 R Distance [km], range 1-20 a(Hm) Correction factor for MS antenna height $1.1 \times \log(f) - 0.7) \times Hm - (1.56 \times \log(f) - 0.8), \text{ large city}$ $3.2 \times (\log(11.75 \times Hm))^2 - 4.97 , \text{ small city}$

Review: COST-231 Walfish-Ikegami

$$\begin{split} L &= 42.6 + 26 \times log(d) + 20 \times log(f) &, LOS \\ L &= 32.4 + 20 \times log(d) + 20 \times log(f) + L_{rts} + L_{msd}, NLOS \end{split}$$

- Frequency Range = 800 2000 MHz
- 0.02 0.2 km for LOS
- 0.02 5 km for NLOS

Coverage Threshold (MAPL) Basics

- Based on the calculated maximum allowed path loss in PBGT, the coverage threshold can be defined
- Coverage threshold depends on margins related to
 - Location probability (= slow fading)
 - Fast fading / Interference degradation
 - Polarization / Antenna orientation loss
 - Body loss
 - Penetration losses (vehicle or building)

Composite Probability of Service & Fade Margin

Composite Probability of Service & Fade Margin

Example :

- Standar deviasi Loss Building Penetration : 9 dB
- Standar deviasi Outdoor loss: 10 dB
- Composite : $(9^2 + 10^2)^{1/2} = 13.45$
- Pada distribusi normal, probabilitas 75% adalah 0.675σ diatas median.
- Fading margin yang dibutuhkan = 0.675 * 13.45 = 9 dB

WCDMA UMTS Link Budget Parameters

UMTS Link Budget Overview

Input Categories

Modul 4 - UMTS Link Budget

Power Budget Calculations

- The calculation is done for each service (bit rate) separately
- The link budget must be balanced (U/L and D/L)

WCDMA Link budget

Data Rate in UL and DL depends on service, can be asymmetric

Maximum Load needs to be defined for Dimensioning:

- should not exceed 70%
- should be at least 30% to avoid excessive cell breathing
- typically higher in DL than in UL

WCDMA Link budget

Thermal noise density:

- theoretical Limit for Sensitivity
- depends on Bandwidth and temperature
- Thermal Noise density [dBm/Hz] is defined as:

Thermal
$$_$$
 Noise $_$ Density = $10*$ Log (kT)

Where:

k is Boltzman's constant T is the temperature in Kelvin

in normal +20 C⁰ conditions the thermal noise density is -173.98 dBm/Hz

Receiver Noise Figure:

 Requirement from specifications for BTS and MS performance

WCDMA Link budget

Receiver Noise Density [dBm/Hz]

- Receiver noise density is the sum of the thermal noise density and the receiver noise figure.
- Thermal Noise density [dBm/Hz] + Receiver noise figure [dB] = Receiver Noise Density [dBm/Hz]

In order to calculate the *Noise power of the* receiver (minimum base band signal strength at the receiver i.e. the receiver sensitivity for the non loaded network) the receiver noise density has to be scaled to the WCDMA carrier bandwidth.

receiver noise power [dBm] = = Receiver Noise Density [dBm/Hz] + $10\log_{10}(3.84*10^6)$ = -170.98 + 65.84 = -105.14 dBm

LTE Link Budget: Uplink

LTE Link Budget: Downlink

Example of LTE Link Budget: Uplink & Downlink

Table 9.2 LTE radio link budget example in the downlink direction.

Transmitter, eNodeB	Unit	Value
Transmitter power	W	40.0
Transmitter power (a)	dBm	46.0
Cable and connector loss (b)	dB	2.0
Antenna gain (c)	dBi	11.0
Radiating power (EIRP) (d)	dBm	55.0
Receiver, terminal	Unit	Value
Temperature (e)	K	290.0
Bandwidth (f)	Hz	10 000 000.0
Thermal noise	dBW	-134.0
Thermal noise (g)	dBm	-104.0
Noise figure (h)	dB	7.0
Receiver Boise floor (i)	dBm	-97.0
SINR (j)	dB	-10.0
Receiver sensibility (k)	dBm	-107.0
Interference margin (1)	dB	3.0
Control channels share (m)	dB	1.0
Antenna gain (n)	dBi	0.0
Body loss (o)	dB	0.0
Minimum received power (p)	dBm	-103.0
Maximum allowed path loss, downlink	dB	158.0
Indoor loss	dB	15.0
Maximum path loss for indoors, DL	dB	143.0

Table 9.3 The LTE radio link budget in the uplink direction.

Transmitter, terminal	Unit	Value
Transmitter power	w	0.3
Transmitter power (a)	dBm	24.0
Cable and connector loss (b)	dB	0.0
Antenna gain (c)	dBi	0.0
Radiating power (EIRP) (d)	dBm	24.0
Receiver, eNodeB	Unit	Value
Temperature (e)	K	290.0
Bandwidth (f)	Hz	360 000.0
Thermal noise	dBW	-148.4
Thermal noise (g)	dBm	-118.4
Noise figure (h)	dB	2.0
Receiver noise floor (i)	dBm	-116.4
SINR (j)	dB	-7.0
Receiver sensibility (k)	dBm	-123.4
Interference margin (1)	dB	2.0
Antenna gain (m)	dBi	11.0
Mast head amplifier (n)	dB	2.0
Cable loss (o)	dB	3.0
Minimum received power (p)	dBm	-131.4
Maximum allowed path loss, uplink		155.4
Smaller of the path losses (UL and DL):	dB	155.4
Indoor loss	dB	15.0
Maximum path loss in indoors, UL	dB	140.4
Smaller of the path losses in indoors (UL and DL):		140.4

Which Link is Limiting? Uplink dan Downlink

End