Convex Optimization

Using material from Stephen Boyd

Why do we need optimization in robotics?

- Gives us a way to frame robotics problems mathematically
- VERY widely used
- Example: Inverse Optimal Control:

Learning Objective Functions for Manipulation [Kalakrishnan et al., ICRA 2013]

Why do we need optimization in robotics?

Example: Simultaneous Localization and Mapping (SLAM)

Keyframe-Based Visual-Inertial SLAM Using Nonlinear Optimization [Leutenegger et al., RSS 2013]

Convex Optimization

- Convex optimization is a mature field with deep mathematical foundations
- It is so powerful that it's often worth it to
 - Work hard to reformulate your problem as convex
 - Approximate non-convex objective functions as convex
 - Use solution to approximation to start search for solution to the real problem
- It scales well with dimensionality
 - Convex optimization routinely solves problems with 1000s of variables
- Convex optimizers are fast (usually)

Outline

- Calculus Review
- Convex Sets
- Convex Functions

Set Notation

$$X = \{x \mid a^T x \leq b, x \in C, a \in \mathbb{R}^n\}$$

X is 'the set 'of xs' such that $a^T x \leq b$ is true for x in the set C' where a is a vector in a Euclidian space of dimension n

Review: Functions

Functions are defined as:

$$f:A\to B$$

- "f maps elements in the set A to elements in the set B"
- The set A is the domain of f
- The set *B* is the range of f
- Example:

$$f: \mathbf{R}^n \to \mathbf{R}^m$$

"Function f maps n-dimensional vectors to some m-dimensional vectors"

Review: Derivatives

- Derivatives can get complicated!
- Keep this in mind: A derivative is a linear approximation of how a function changes a certain point

The derivative of f(x) is the ratio between an infinitesimal change in an input variable x and the resulting change in the output f(x)

Review: Derivatives

• Recall the definition for a derivative $f: \mathbf{R} \to \mathbf{R}$

$$Df(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• We can write a similar definition for $f: \mathbb{R}^n \to \mathbb{R}^m$

Review: Derivatives

- Suppose $f: \mathbf{R}^n \to \mathbf{R}^m$
- The function f is differentiable at x if there exists a matrix

$$Df(x) \in \mathbf{R}^{m \times n}$$
 that satisfies

This is a matrix

$$\lim_{z \in \text{dom } f, \ z \neq x, \ z \to x} \frac{\|f(z) - f(x) - Df(x)(z - x)\|_2}{\|z - x\|_2} = 0$$

- Df(x) is called the derivative (or Jacobian) of the function
- Df(x) can be computed by computing partial derivatives

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \qquad i = 1, \dots, m, \quad j = 1, \dots, n$$

Review: Gradient

• When f is real-valued $(i.e., f : \mathbb{R}^n \to \mathbb{R})$ the derivative Df(x) is a row vector (a 1 x n matrix)

Range must be 1-dimensional!

The transpose of the derivative is the gradient:

$$\nabla f(x) = Df(x)^T$$

Again, you can compute the gradient by taking partial derivatives:

$$\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}, \quad i = 1, \dots, n.$$

Review: Second Derivative

• When f is real-valued $(i.e., f : \mathbb{R}^n \to \mathbb{R})$ the **second** derivative is called the Hessian Matrix: $\nabla^2 f(x)$

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \qquad i = 1, \dots, n, \quad j = 1, \dots, n,$$

 Recall that the second derivative is the derivative of the first derivative:

$$D\nabla f(x) = \nabla^2 f(x)$$

Questions

- Suppose we have a real-valued function $f: \mathbb{R}^n \to \mathbb{R}$
 - 1. What are the dimensions of the gradient vector $\nabla f(x)$?
 - 2. What are the dimensions of the Hessian matrix $\nabla^2 f(x)$?

Convex Sets

Convex sets and functions

- Convexity is a restriction on shapes and functions
 - Convex optimization only works when everything is convex!
- We will cover definitions of convexity for shapes and functions and convexity-preserving operations
- You can use these to build convex functions for the problems you care about
- You can also use them to check if a function is convex.
 - If f can be decomposed into convex functions and convexity-preserving operators, f is convex

A convex set

A convex function

Convex Sets

 Convex set: contains line segment between any two points in the set. C is a convex set if:

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

Examples:

Important Types of Convex Sets: Hyperplane

Hyperplane: A set of points that have a constant inner product with vector a

$$\{x \mid a^T x = b\} \ (a \neq 0)$$

same as $a \cdot 1$

Another way to define it:

$$\{x \mid a^T(x - x_0) = 0\}$$

Important Types of Convex Sets: Halfspace

Halfspace: A hyperplane with an inequality

$$\{x \mid a^T x \le b\} \ (a \ne 0)$$

Another way to define it :

$${x \mid a^T(x - x_0) \le 0}$$

Important Types of Convex Sets: Convex Cone

Convex Cone: A set C is a convex cone if

$$\theta_1 x_1 + \theta_2 x_2 \in C$$
 $x_1, x_2 \in C \text{ and } \theta_1, \theta_2 \ge 0$

Important Types of Convex Sets: Ellipsoid

• Ellipsoid: Set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

- P is a symmetric (i.e. $P = P^T$) positive definite matrix
 - Matrix P is positive definite if z^TPz is positive for any non-zero z

Important Types of Convex Sets: Polyhedron

Polyhedron: The intersection of a finite number of halfspaces

and hyperplanes

 Another way to define it: The set of solutions to a set of linear inequalities and equalities:

$$Ax \leq b$$

$$Cx = d$$

Important Convexity-Preserving Operations on Sets

Intersection preserves convexity

If S_1 and S_2 are convex, then $S_1 \cap S_2$ is convex

- It follows that the intersection of any number of convex sets is convex
- Affine functions preserve convexity

$$f: \mathbf{R}^n \to \mathbf{R}^m \qquad f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, \ b \in \mathbf{R}^m$$

- Examples of affine functions
 - Scaling
 - Translation
 - Projection

How do we know a polyhedron is always convex?

Separating Hyperplane Theorem

• If C and D are disjoint (i.e. $C \cap D = \emptyset$) convex sets, then there exists $a \neq 0$, b such that

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$

C and D are separated by the hyperplane

$$\{x \mid a^T x = b\}$$

Supporting Hyperplane Theorem

If $a \neq 0$ satisfies $a^T x \leq a^T x_0$ for all $x \in C$, then the hyperplane $\{x \mid a^T x = a^T x_0\}$ is called a *supporting hyperplane* to C at the point x_0 .

Supporting Hyperplane Theorem: If C is convex, then there exists a supporting hyperplane at every boundary point of C.

Break

Convex Functions

Convex Functions

The domain of the function

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

• I.e. the line segment between (x, f(x)) and (y, f(y)) lies above the graph of f

Advantage of convex functions

- Convex functions have only one local minimum!
 - That means local methods can find the global optimum!
 - (More on this in the next lecture)

Concave Functions

Concave functions are convex functions that are "upside down"

- If f(x) is convex, -f(x) is concave.
- Some f(x) are **both** concave and convex
 - Example?

Common Convex and Concave Functions

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Convexity-Preserving Operations for Functions

Non-negative multiplication

$$\alpha f$$
 is convex if f is convex, $\alpha \geq 0$

Sum (extends to infinite sums and integrals)

$$f_1+f_2$$
 convex if f_1,f_2 convex

Point-wise Maximum

if
$$f_1, \ldots, f_m$$
 are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

Convexity-Preserving Operations

Composition with affine functions

f(Ax + b) is convex if f is convex

Composition in general

composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$: f(x) = h(g(x)) f is convex if g convex, h convex, \tilde{h} nondecreasing g concave, h convex, \tilde{h} nonincreasing

"Extended-value extension of h" We won't worry about it, just assume this is h

How do we use these functions/operators?

Can use them to build convex functions for the problems you care about

- Can use them to check if a function is convex.
 - If f can be decomposed into convex functions and convexity-preserving operators, f is convex

Summary

 Convex sets are sets where a line segment between any two points is part of the set

 Convex functions are functions where the line segment between any two points is above the graph of the function

- Certain operators can be used to transform convex sets/functions while preserving convexity
 - Use them to assemble/decompose more complex functions

Homework

- Reading from optimization book
 - Descent Methods (Ch. 9.1-9.1.1, 9.2, 9.3-9.3.1, 9.5-9.5.2, 9.5.4)
- Subgradients

https://see.stanford.edu/materials/lsocoee364b/01-subgradients_notes.pdf (everything except Section 4)

Numerical differentiation

https://en.wikipedia.org/wiki/Numerical_differentiation
(up to "Complex-variable Methods")