Algoritmos para decidir definibilidad de relaciones en fragmentos de primer orden

Pablo Ventura

2 de marzo de 2016

Lenguaje Natural

Lenguaje Natural

Restringimos el lenguaje:
«esta arriba o a la misma altura que»

«esta arriba o a la misma altura que» «esta abajo o a la misma altura que»

Lenguaje Natural

A pesar de reflejarlo en espejo se mantiene quien esta abajo o arriba de quien.

Lenguaje Formal

La Lógica de Primer Orden es un lenguaje formal que permite expresar propiedades de estructuras matemáticas.

Lenguaje Formal

- La Lógica de Primer Orden es un lenguaje formal que permite expresar propiedades de estructuras matemáticas.
- Es el lenguaje formal más importante descubierto hasta el día de hoy.

Elementos definibles

Definición

Sean **A** una estructura y $e \in A$. La fórmula $\varphi(x)$ define a e en **A** si e es el único elemento de A que cumple $\varphi(x)$.

Poset
$$\langle \mathbf{2} \times \mathbf{2}, \leq \rangle$$

Elementos definibles

Definición

Sean **A** una estructura y $e \in A$. La fórmula $\varphi(x)$ define a e en **A** si e es el único elemento de A que cumple $\varphi(x)$.

Poset
$$\langle \mathbf{2} \times \mathbf{2}, \leq \rangle$$

 $\blacktriangleright \forall y \ y \leq x \text{ define al } 1$

Elementos definibles

Definición

Sean **A** una estructura y $e \in A$. La fórmula $\varphi(x)$ define a e en **A** si e es el único elemento de A que cumple $\varphi(x)$.

Poset
$$\langle \mathbf{2} \times \mathbf{2}, \leq \rangle$$

- ▶ $\forall y \ y \le x \ \text{define al } 1$
- ▶ $\forall y x \leq y$ define al 0

Refutar definibilidad

Teorema

Si F es un automorfismo de **A** y $\varphi(x)$ es una fórmula, entonces

$$\mathbf{A} \vDash \varphi [\mathbf{a}] \Longleftrightarrow \mathbf{A} \vDash \varphi [F(\mathbf{a})].$$

Refutar definibilidad

Teorema

Si F es un automorfismo de ${\bf A}$ y $\varphi(x)$ es una fórmula, entonces

$$\mathbf{A} \vDash \varphi [\mathbf{a}] \iff \mathbf{A} \vDash \varphi [F(\mathbf{a})].$$

Volviendo al ejemplo:

¿Es definible el elemento 2 en $\langle \mathbf{2} \times \mathbf{2}, \leq \rangle$?

Refutar definibilidad

Teorema

Si F es un automorfismo de ${f A}$ y $\varphi(x)$ es una fórmula, entonces

$$\mathbf{A} \vDash \varphi [a] \iff \mathbf{A} \vDash \varphi [F(a)].$$

Volviendo al ejemplo:

¿Es definible el elemento 2 en $\langle \mathbf{2} \times \mathbf{2}, \leq \rangle$?

Hay $\gamma: \mathbf{A} \to \mathbf{A}$, tal que $\gamma(2) = 3$.

Pero lo interesante es la vuelta

Teorema

Si A es finita y e es punto fijo de todo automorfismo, entonces e es definible.

Pero lo interesante es la vuelta

Teorema

Si A es finita y e es punto fijo de todo automorfismo, entonces e es definible.

Pero lo interesante es la vuelta

Teorema

Si A es finita y e es punto fijo de todo automorfismo, entonces e es definible.

Definibilidad y preservación de relaciones binarias

Definición

Sean **A** una estructura y $R \subseteq A \times A$. Diremos que la fórmula $\varphi(x_1, x_2)$ define a R en **A** si para todo $a_1, a_2 \in A$ vale que

$$(a_1,a_2)\in R\iff \mathbf{A}\vDash \varphi(a_1,a_2).$$

Definibilidad y preservación de relaciones binarias

Definición

Sean **A** una estructura y $R \subseteq A \times A$. Diremos que la fórmula $\varphi(x_1, x_2)$ define a R en **A** si para todo $a_1, a_2 \in A$ vale que

$$(a_1,a_2)\in R\iff \mathbf{A}\vDash \varphi(a_1,a_2).$$

Definibilidad y preservación de relaciones binarias

Definición

Sean **A** una estructura y $R \subseteq A \times A$. Diremos que la fórmula $\varphi(x_1, x_2)$ define a R en **A** si para todo $a_1, a_2 \in A$ vale que

$$(a_1,a_2)\in R\iff \mathbf{A}\vDash \varphi(a_1,a_2).$$

La relación binaria «cubre a» es definible por

$$x \le y \land x \ne y \land$$

$$\nexists z (x \le z \land x \ne z \land z \le y \land z \ne y)$$

Preservación de relaciones binarias

Definición

Sean A,B dos \mathcal{L} -estructuras y $R\in\mathcal{L}$ binaria. Una función $f:A\to B$ preserva a R si

$$(a_1,a_2)\in R^{\mathbf{A}}\Longrightarrow (f(a_1),f(a_2))\in R^{\mathbf{B}}.$$

Teorema semántico de primer orden

Teorema

Sean **A** una estructura finita y $R \subseteq A \times A$. Son equivalentes:

- 1. Hay una fórmula que define a R en A.
- 2. Todo automorfismo $\gamma: \mathbf{A} \to \mathbf{A}$ preserva a R.

Dados:

 $ightharpoonup \mathcal{L}$ un lenguaje de primer orden finito,

Dados:

- L un lenguaje de primer orden finito,
- ▶ A una L-estructura finita,

Dados:

- L un lenguaje de primer orden finito,
- ► A una *L*-estructura finita,
- ▶ un $R \subseteq A \times A$,

Dados:

- L un lenguaje de primer orden finito,
- ► A una *L*-estructura finita,
- ▶ un $R \subseteq A \times A$,
- ightharpoonup un fragmento de primer orden Σ ,

Dados:

- L un lenguaje de primer orden finito,
- ▶ A una L-estructura finita,
- ▶ un $R \subseteq A \times A$,
- ightharpoonup un fragmento de primer orden Σ ,

decidir si hay una fórmula en Σ que define a R en A.

Teorema semántico para abiertas

Teorema

Sean **A** una estructura y $R \subseteq A \times A$. Son equivalentes:

- 1. Hay una fórmula abierta que define a R en A.
- 2. Para todas $B, C \le A$, se tiene que todo isomorfismo $\sigma : B \to C$ preserva R.

Teorema semántico para abiertas

Teorema

Sean **A** una estructura y $R \subseteq A \times A$. Son equivalentes:

- 1. Hay una fórmula abierta que define a R en A.
- 2. Para todas $\mathbf{B}, \mathbf{C} \leq \mathbf{A}$, se tiene que todo isomorfismo $\sigma: \mathbf{B} \to \mathbf{C}$ preserva R.

Representantes para cada tipo de iso

Representantes para cada tipo de iso

 Automorfismos de los representantes

Representantes para cada tipo de iso

- Automorfismos de los representantes
- Solo un isomorfismo de representante en representado

Representantes para cada tipo de iso

- Automorfismos de los representantes
- ➤ Solo un isomorfismo de representante en representado
- Sin morfismos entre subestructuras de subestructuras

Representantes para cada tipo de iso

- Automorfismos de los representantes
- Solo un isomorfismo de representante en representado
- ➤ Sin morfismos entre subestructuras de subestructuras

Generan al resto de morfismos

Algoritmo para definibilidad abierta

▶ Repr = ∅

Algoritmo para definibilidad abierta

- ightharpoonup Repr = \emptyset
- Para cada subestructura B de A, de mayor a menor

Algoritmo para definibilidad abierta

- ▶ Repr = ∅
- Para cada subestructura B de A, de mayor a menor
 - ► Si tiene representante en Repr

- ightharpoonup Repr = \emptyset
- Para cada subestructura B de A, de mayor a menor
 - Si tiene representante en Repr
 - Reviso preservación en el isomorfismo

- ightharpoonup Repr = \emptyset
- Para cada subestructura B de A, de mayor a menor
 - Si tiene representante en Repr
 - Reviso preservación en el isomorfismo
 - ► Salteo las subestructuras de B

- ightharpoonup Repr = \emptyset
- Para cada subestructura B de A, de mayor a menor
 - Si tiene representante en Repr
 - Reviso preservación en el isomorfismo
 - ► Salteo las subestructuras de B
 - No tiene representante en Repr

- ightharpoonup Repr = \emptyset
- Para cada subestructura B de A, de mayor a menor
 - Si tiene representante en Repr
 - Reviso preservación en el isomorfismo
 - ► Salteo las subestructuras de B
 - No tiene representante en Repr
 - Se agrega la subestructura a Repr

- ightharpoonup Repr = \emptyset
- Para cada subestructura B de A, de mayor a menor
 - Si tiene representante en Repr
 - Reviso preservación en el isomorfismo
 - ► Salteo las subestructuras de B
 - No tiene representante en Repr
 - Se agrega la subestructura a Repr
 - Se revisa preservación en los automorfismos

Ejemplo de ejecución

$$\langle \mathbf{3} \times \mathbf{3}, \leq \rangle$$

$$R = \{(x, y) : x \text{ esta a la izquierda de } y\}$$

Ejemplo de ejecución

$$\langle \mathbf{3} \times \mathbf{3}, \leq \rangle$$

$$R = \{(x, y) : x \text{ esta a la izquierda de } y\}$$

Contraejemplo!

$$\gamma$$
 iso de $\langle 0, 1 \rangle^{L}$ en $\langle 0, 2 \rangle^{L}$
 $\gamma(0) = 0$
 $\gamma(1) = 2$
 $(2, 0) \in R$ pero $(1, 0) \notin R$

Desarrollamos algoritmos con ideas similares para los siguientes fragmentos:

Desarrollamos algoritmos con ideas similares para los siguientes fragmentos:

Fórmulas abiertas positivas (Homomorfismos subestructuras)

Desarrollamos algoritmos con ideas similares para los siguientes fragmentos:

- Fórmulas abiertas positivas (Homomorfismos subestructuras)
- Fórmulas existenciales (Automorfismos)

Desarrollamos algoritmos con ideas similares para los siguientes fragmentos:

- Fórmulas abiertas positivas (Homomorfismos subestructuras)
- Fórmulas existenciales (Automorfismos)
- Fórmulas existenciales positivas (Endomorfismos)

Álgebras de relaciones definibles

Las relaciones binarias definibles por Σ en A son cerradas bajo \cup y \cap .

Álgebras de relaciones definibles

- Las relaciones binarias definibles por Σ en A son cerradas bajo ∪ y ∩.
- Forman un reticulado distributivo, llamado Álgebra de Lindenbaum.

Álgebras de relaciones definibles

- Las relaciones binarias definibles por Σ en A son cerradas bajo \cup y \cap .
- Forman un reticulado distributivo, llamado Álgebra de Lindenbaum.
- ► Un reticulado distributivo queda caracterizado por sus elementos join-irreducibles.

Join-irreducibles

Un elemento es join-irreducible si no puede ser expresado como supremo de otros elementos.

Join-irreducibles

Un elemento es join-irreducible si no puede ser expresado como supremo de otros elementos.

Teorema semántico de existenciales positivas

Teorema

Las relaciones definibles por fórmulas existenciales positivas en A son exactamente las preservadas por endomorfismos de A.

Cálculo de las relaciones Join-irreducibles

Lema

Sean **A** una estructura y $r \subseteq A^2$. Son equivalentes:

ightharpoonup r es join-irreducible en $\mathbf{E}^+(\mathbf{A})$

Cálculo de las relaciones Join-irreducibles

Lema

Sean **A** una estructura y $r \subseteq A^2$. Son equivalentes:

- r es join-irreducible en E⁺(A)
- $ightharpoonup r = \{h(p) : h \in Endomorfismos(\mathbf{A})\}$ para algún $p \in A^2$.

Generación del álgebra de Lindenbaum

ightharpoonup Computamos un conjunto ${\cal E}$ generador de los endomorfismos.

Generación del álgebra de Lindenbaum

- lacktriangle Computamos un conjunto ${\cal E}$ generador de los endomorfismos.
- ▶ Para cada $p \in A^2$ calculamos $\{h(p) : h \in \mathcal{E}\}$.

Interpretando la salida:

\(\Delta \)

Interpretando la salida:

- ▶ △
- **>** <

Interpretando la salida:

- ▶ △
- **>** <
- **▶** ≥

Interpretando la salida:

- \[
 \left[\text{\tinit}\\ \text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texit{\text{\ti}\text{\texit{\text{\text{\texi}\text{\texi}\text{\texit{\text{\
- **▶** ≤
- **▶** ≥
- ► L²

$$E^+(3\times3)$$

Teorema

Teorema

▶
$$\{(x,x): x \in L\},$$

Teorema

- ▶ $\{(x,x): x \in L\},$
- ▶ $\{(x,y): x \leq y\}$,

Teorema

- ▶ $\{(x,x): x \in L\},\$
- $\{(x,y): x \leq y\},$
- ▶ $\{(x,y): x \ge y\}$,

Teorema

- ▶ $\{(x,x): x \in L\},\$
- $\{(x,y): x \leq y\},$
- $\{(x,y): x \geq y\},$
- $\{(x,y): x \le y\} \cup \{(x,y): x \ge y\},$

Teorema

- ▶ $\{(x,x): x \in L\},\$
- ▶ $\{(x,y): x \leq y\}$,
- ▶ $\{(x, y) : x \ge y\}$,
- $\{(x,y): x \le y\} \cup \{(x,y): x \ge y\},$
- ► *L* × *L*.

Resultados sobre un conjunto generador para los morfismos a revisar para definibilidad abierta y definibilidad abierta positiva.

- Resultados sobre un conjunto generador para los morfismos a revisar para definibilidad abierta y definibilidad abierta positiva.
- Algoritmos para decidir definibilidad de relaciones, en fórmulas abiertas, abiertas positivas, existenciales y existenciales positivas.

- Resultados sobre un conjunto generador para los morfismos a revisar para definibilidad abierta y definibilidad abierta positiva.
- Algoritmos para decidir definibilidad de relaciones, en fórmulas abiertas, abiertas positivas, existenciales y existenciales positivas.
- Algoritmos para obtener el álgebra de relaciones definibles.

- Resultados sobre un conjunto generador para los morfismos a revisar para definibilidad abierta y definibilidad abierta positiva.
- Algoritmos para decidir definibilidad de relaciones, en fórmulas abiertas, abiertas positivas, existenciales y existenciales positivas.
- Algoritmos para obtener el álgebra de relaciones definibles.
- Se desarrolló una herramienta que implementa dichos algoritmos.

- Resultados sobre un conjunto generador para los morfismos a revisar para definibilidad abierta y definibilidad abierta positiva.
- Algoritmos para decidir definibilidad de relaciones, en fórmulas abiertas, abiertas positivas, existenciales y existenciales positivas.
- Algoritmos para obtener el álgebra de relaciones definibles.
- Se desarrolló una herramienta que implementa dichos algoritmos.
- Caracterización de las relaciones binarias definibles por existenciales positivas en reticulados distributivos.

 Definibilidad por conjunción de atómicas y por primitivas positivas.

- Definibilidad por conjunción de atómicas y por primitivas positivas.
- Interacción entre los diferentes tipos de definibilidad.

- Definibilidad por conjunción de atómicas y por primitivas positivas.
- Interacción entre los diferentes tipos de definibilidad.
- Mejores implementaciones para la generación de subestructuras.

- Definibilidad por conjunción de atómicas y por primitivas positivas.
- Interacción entre los diferentes tipos de definibilidad.
- Mejores implementaciones para la generación de subestructuras.
- Continuar el estudio de la definibilidad existencial positiva en reticulados distributivos.

Introducción Preliminares teóricos Algoritmos de Definibilidad Álgebras de Lindenbaum Conclusiones y trabajo futuro

¿Preguntas?