geometry_scale

几何选型:

A	В	C	D	Е	F
	管长	1000	1200	体积	横截面积m^2
管径	50	20	24	1. 9635E-12	1. 9635E-09
	40	25	30	1. 2566E-12	1. 25664E-09
	25	40	48	4. 9087E-13	4. 90874E-10
	20	50	60	3. 1416E-13	3. 14159E-10

参考文献--微尺度流动研究中的几个问题

陶然,权晓波,徐建中. 微尺度流动研究中的几个问题[J]. 工程热物理学报,2001,22(5):575-577. DOI:10.3321/j.issn:0253-231X.2001.05.015.

boundary_conditions

1 inlet_velocity

1.1 选取微泵类型

引用文献--微泵驱动方式比较研究.pdf

罗玉元,张国贤. 微泵驱动方式比较研究[J]. 液压与气动,2003(7):43-46. DOI:10.3969/j.issn.1000-4858.2003.07.021.

表1 泵的驱动方式及相应特性

驱动方式	流体压力 MPa	位移量 //m	响应时间 ms	可靠性
外致电磁	< 0.05	> 100	1 ~ 1000	好
压电膜片	< 0.05	30 ~ 100	0.1 ~ 1	好
压电堆	> 10	< 10	0.1 ~ 1	好
气动	0.1~10	> 100	> 1000	好
SMA	0.1~10	> 100	> 1000	一般
静电	< 0.05	< 10	< 0.1	极好
热气动	0.1~10	30 ~ 100	1 ~ 1000	好
微致电磁	< 0.05	> 100	0.1 ~ 1	好
双金属片	0.1~10	10 ~ 30	1 ~ 1000	中

故可以使用 可靠性极好的 静电微泵

1.2 确定静电微泵的数据

<u>引用文献--Design and simulation of an electrostatic micropump</u> for drug-delivery applications

Bourouina T, Bossebuf A, Grandchamp J P. Design and simulation of an electrostatic micropump for drug-delivery applications[J]. Journal of Micromechanics and Microengineering, 1997, 7(3): 186.

如上图确定数据为 平均体积流量为:150nL/min

故计算得到不同尺寸下的入口速度为:

管径	入口速度m/s
50	0.00127324
40	0.001989437
25	0.005092958
20	0.007957747

l A	В	C	D	E	F	G	Н	I
	管长	1000	1200	横截面积m^2	体积	原选择体积流量规格规格(纳升/min)	换算后体积流量(m^3/s)	液体流速(m/s)
管径	50	20	24	1. 9635E-09	1. 9635E-12	150	2. 5E-12	0.00127324
	40	25	30	1. 2566E-09	1. 25664E-12	150	2. 5E-12	0.001989437
	25	40	48	4. 9087E-10	4. 90874E-13	150	2. 5E-12	0. 005092958
	20	50	60	3. 1416E-10	3. 14159E-13	150	2. 5E-12	0. 007957747

2 outlet

fluent教学论坛 http://www.lanmaowang.com/?s=%E8%BE%B9%E7%95%8C%E6%9D%A1%E4%BB%B6

由于雷诺数比较小, 且流动工质为水

故该流动为不可压缩层流, 且流动过程中没有明显的密度变化

有两种可选择的边界条件

boundary conditions

outlet_pressure

outflow

2.1 outflow

6, 自由出流(outflow): 该边界条件用以模拟在求解问题之前,无法知道出口速度或者压力;出口流动符合完全发展条件,出口处,除了压力之外,其它参量梯度为零。但并不是所有问题都适合,有三种情况不能用自由出流边界条件:包含压力进口条件;可压缩流动问题;有密度变化的非稳定流动(即使是不可压缩流动)。

六、自由流出边界条件 (outflow)

如果我们在求解问题前,不能知道流出口的压力或者速度,这时候可以选择流出边界条件。这类边界条件的特点是不需要给定出口条件(除非是计算分离质量流,辐射换热或者包括颗粒稀疏相问题)。出口条件都是通过FLUENT内部计算得到。但并不是所有问题都适合,如下列情况,就不能用流出边界条件:

- 1,包含压力进口条件
- 2, 可压速流动问题
- 3, 有密度变化的非稳定流动问题(即使是不可压速流动)

用流出边界条件时,所有变量在出口处扩散通量为零。即出口平面从前面的结果计算得到,并且对上游 没有影响。计算时,如果出口截面通道大小没有变化,采用完全发展流动假设(流动速度(温度等)分布在 流动方向上不变化。当然,在径向允许有梯度存在,只是假定在垂直出口面方向上扩散通量为零。

计算结果(速度云图)可看到

条件为:

 $L = 1000 \mu m$

$$\mathsf{D} = 50 \mu m$$

 $u_m = 0.00127324$

2.2 outlet_pressure

4, 压力出口(pressure-outlet):给定流动出口的静压。对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。该边界条件只能用于模拟亚音速流动。

四、压力出口边界条件 (pressure-outlet)

给定出口的静压(表压)。**该边界条件只能用于模拟亚音速流动**。如果当地速度已经超过音速,则该压力在计算过程中就不采用了。压力根据内部流动计算结果给定。其它量都是根据内部流动外推出边界条件。该边界条件可以处理出口有回流问题,合理的给定出口回流条件,有利于解决有回流出口问题的收敛困难问题。

出口回流条件需要给定:出口静压,回流总温(如果有能量方程),湍流参数(湍流计算),回流组分质量分数(有限速率模型模拟组分输运),混合物质量分数及其方差(PDF计算燃烧)。如果有回流出现,给的表压将视为总压,所以不必给出回流压力。回流流动方向与出口边界垂直。

在出口压力边界条件给定中,需要给定出口静压(表压)。当然,该压力只用于亚音速计算。如果局部变成超音速,则根据前面来流条件外推出口边界条件。需要特别指出的是,这里的压力是相对于前面给定的工作压力。

FLUENT给出了径向平衡出口边界条件供大家选择(适用于三维和轴对称有旋流动)。这时候,只有在 半径很小的区域使用给定的静压边界条件,其它地方,假定径向速度可以忽略而计算得到,压力梯度为:

$$\frac{\partial p}{\partial r} = \frac{\rho v_{\theta}^2}{r}$$

即使是周向旋转速度为零,该边界条件也可以用。

条件为:

 $\mathrm{L} = 1000 \mu m$

 $D = 50 \mu m$

 $u_m = 0.00127324$

计算结果(速度云图)为

2.3 comparison of two results

unit: Pa

	outlet-pressure	
	min	max
	-0. 15130	18. 07411
delta_P		18. 2254127
	outflow	
	min	max
	-17. 860	1. 0476
delta_P		18. 90785

两种出口边界条件压降 Δp 计算结果相差 0.6824373 Pa

2.4 遗留下来的问题

关于两种出口边界条件的选择不是很明确,

• 仿真论坛中提出

FLUENT提供了10种类型的流动进、出口条件,它们分别是:

★一般形式: ★可压缩流动:

压力进口 质量进口

压力出口 压力远场

★不可压缩流动: ★特殊进出口条件:

速度进口 进口通分,出口通风

自由流出 吸气风扇,排气风扇

不可压缩流动推荐使用自由流出(outflow)出口条件

• 对于压力出口条件

压力出口边界条件

用于定义流动出口的静压(在回流中还包括其它的标量)。当出现回流时,使用压力出口边界条件来代替质量出口条件常常有更好的收敛速度。

压力出口边界条件

压力出口边界条件需要在出口边界处指定静(gauge)压。静压值的指定只用于亚声速流动。如果当地流动变为超声速,就不再使用指定压力了,此时压力要从内部流动中推断。所有其它的流动属性都从内部出。在解算过程中,如果压力出口边界处的流动是反向的,回流条件也需要指定。如果对于回流问题指定了比较符合实际的值,收敛性困难就会被减到最小。

而在两次计算中,流动都未出现回流问题

问: 1. 对于两种边界条件的优劣性如何判断; 2. 该选用何种比较合适