Chapter 9-10 Hypothesis Testing and Confidence Intervals

CI for the mean with known variance

Statistics

Mehmet Güray Güler, PhD

Last updated 24.06.2020

Confidence Interval for the Mean

Confidence interval for μ

- $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}}),$
 - If X is normal, then this follows
 - If X is not normal, then this still follows from Central Limit Theorem.

- Recall
 - $P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 \alpha$
 - $Z = \frac{\bar{X} \mu}{\sigma / \sqrt{n}}$

Figure 9.2: $P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$.

Hence we have

•
$$P(-z_{\alpha/2} < \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} < z_{\alpha/2}) = 1 - \alpha$$

• After some algebra, can be re-written as:

$$P\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Hence we can write the confidence interval as follows:

If \bar{x} is the mean of a random sample of size n from a population with known variance σ^2 , a $100(1-\alpha)\%$ confidence interval for μ is given by

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}},$$

where $z_{\alpha/2}$ is the z-value leaving an area of $\alpha/2$ to the right.

Note that the value of \bar{x} is in fact the \bar{x}_{obs} .

Example:

- A random sample of 100 recorded deaths in Turkey during the past year showed an average life span of 71.8 years.
- Assuming a population standard deviation of 8.9 years, please construct a 95% CI for μ .

Solution: From Table A.3: $z_{\alpha \setminus 2} = z_{0.025} = 1.96$

•
$$71.8 - 1.96 \frac{8.9}{\sqrt{100}} < \mu < 71.8 + 1.96 \frac{8.9}{\sqrt{100}}$$

- => $70.06 < \mu < 73.54$
- We are %95 confident that our real μ lies in this interval.

Example (Ctd): Now construct a 90% confidence interval.

- First find $z_{\alpha \setminus 2} = z_{0.05} = 1.645$
- Then construct the confidence interval:

•
$$71.8 - 1.645 \frac{8.9}{\sqrt{100}} < \mu < 71.8 + 1.645 \frac{8.9}{\sqrt{100}}$$

- => $70.34 < \mu < 73.26$
- compare with
- => $70.06 < \mu < 73.54$
- If you want more confidence, then the interval becomes larger.

Figure 7. Interval Estimates of μ for Different Samples

The upper and lower limits of a confidence interval are random variables, hence **each different sample** will yield a **different confidence interval** for μ .

HT = CI!!!

- Return to our Hypothesis test question:
- Test whether
 - H_0 : $\mu = 70$
 - $H_1: \mu \neq 70$
- In fact, we can draw the same conclusion by looking at the 95% CI:
 - $70.06 < \mu < 73.54$ 70 is not included in this CI.
- Exercise: Do the same thing for $\alpha=0.10$

Error in Estimating μ by $\mathfrak X$

Theorem says: With $(1-\alpha)$ 100% confidence the error e in estimating the population mean μ by using the sample mean can be at most equal to $z_{\alpha/2}\sigma/\sqrt{n}$

$$\overline{x} - z_{\alpha/2} \sigma / \sqrt{n}$$

$$\overline{x} \qquad \mu \qquad \overline{x} + z_{\alpha/2} \sigma / \sqrt{n}$$

Figure 1. Confidence interval and the size of the error in estimating μ .

Estimating the Needed Sample Size for a Given Error Magnitude and Confidence Level

We will now rephrase the previous theorem as follows:

THEOREM. We can be $(1-\alpha)$ 100% confident that the error in estimating the population mean μ by using the sample mean will not exceed a specified amount e when the **sample size** is taken as:

$$n = \left(\frac{z_{a/2} S}{e}\right)^2.$$