

Historique:

1940-70 : *Statistiques classiques*. Question associée à une hypothèse expérimentalement réfutable avec $n \approx 30$ observations et p < 10 variables.

1970s : Généralisation des <u>premiers outils informatiques</u>. L'analyse de données explore des données plus volumineuses.

1980s: Les systèmes experts sont supplantés par l'apprentissage automatique.

1990s : 1^{er} changement de paradigme : Les données ne sont plus planifiées mais sont préalablement acquises : From Data Mining to Knowledge Discovery.

2000s : 2^{eme} changement de paradigme : Le nombre de variables p explose, notamment avec les données omiques où p>>n. La qualité de prévision devient plus importante que la réalité du modèle devenu *boîte noire*. Problématique du <u>fléau de la dimension</u>.

2010s : *3*^{eme} changement de paradigme : Le nombre d'observations *n* explose dans le e-commerce, la géo-localisation, Bases de données structurées en *cloud* et moyens de calculs regroupés en *clusters* (big data). La notion de <u>rapidité des algorithmes</u> devient critique.

2020s: Explosion des usages dû à la facilité d'accès à des données massives et à des ressources calcul puissantes. → <u>explicabilité</u> des décisions des algorithmes pour des raisons sociétales — <u>robustesse</u> des décisions dans un cadre critique — <u>embarquabilité</u> des réseaux de neurones — <u>cybersécurité</u> — … les stratégies *anciennes* restent souvent intéressantes sur des <u>données complexes</u> (small data)

Historique:

1940-70 : *Statistiques classiques*. Question associée à une hypothèse expérimentalement réfutable avec $n \approx 30$ observations et p < 10 variables.

1970s : Généralisation des <u>premiers outils informatiques</u>. L'analyse de données explore des données plus volumineuses.

1980s: Les systèmes experts sont supplantés par l'apprentissage automatique.

1990s : 1^{er} changement de paradigme : Les données ne sont plus planifiées mais sont préalablement acquises : From Data Mining to <u>Knowledge Discovery</u>.

2000s : 2^{eme} changement de paradigme : Le nombre de variables *p* explose, notamment avec les données omiques où *p>>n*. La qualité de prévision devient plus importante que la réalité du modèle devenu *boîte noire*. Problématique du <u>fléau de la dimension</u>.

2010s : 3^{eme} changement de paradigme : Le nombre d'observations n explose dans le e-commerce, la géo-localisation, Bases de données structurées en *cloud* et moyens de calculs regroupés en *clusters* (big data). La notion de <u>rapidité des algorithmes</u> devient critique.

2020s: Explosion des usages dû à la facilité d'accès à des données massives et à des ressources calcul puissantes. → <u>explicabilité</u> des décisions des algorithmes pour des raisons sociétales — <u>robustesse</u> des décisions dans un cadre critique — <u>embarquabilité</u> des réseaux de neurones — <u>cybersécurité</u> — … les stratégies *anciennes* restent souvent intéressantes sur des <u>données complexes</u> (small data)

Historique:

1940-70 : *Statistiques classiques*. Question associée à une hypothèse expérimentalement réfutable avec $n \approx 30$ observations et p < 10 variables.

1970s : Généralisation des <u>premiers outils informatiques</u>. L'analyse de données explore des données plus volumineuses.

1980s: Les systèmes experts sont supplantés par l'apprentissage automatique.

1990s : 1^{er} changement de paradigme : Les données ne sont plus planifiées mais sont préalablement acquises : From Data Mining to Knowledge Discovery.

2000s : 2^{eme} changement de paradigme : Le nombre de variables p explose, notamment avec les données omiques où p>>n. La qualité de prévision devient plus importante que la réalité du modèle devenu boîte noire. Problématique du <u>fléau de la dimension</u>.

2010s : *3*^{eme} changement de paradigme : Le nombre d'observations *n* explose dans le e-commerce, la géo-localisation, Bases de données structurées en *cloud* et moyens de calculs regroupés en *clusters* (big data). La notion de rapidité des algorithmes devient critique.

2020s: Explosion des usages dû à la facilité d'accès à des données massives et à des ressources calcul puissantes. → <u>explicabilité</u> des décisions des algorithmes pour des raisons sociétales — <u>robustesse</u> des décisions dans un cadre critique — <u>embarquabilité</u> des réseaux de neurones — <u>cybersécurité</u> — … les stratégies *anciennes* restent souvent intéressantes sur des <u>données complexes</u> (small data)

Historique:

1940-70 : *Statistiques classiques*. Question associée à une hypothèse expérimentalement réfutable avec $n \approx 30$ observations et p < 10 variables.

1970s : Généralisation des <u>premiers outils informatiques</u>. L'analyse de données explore des données plus volumineuses.

1980s: Les systèmes experts sont supplantés par l'apprentissage automatique.

1990s : 1^{er} changement de paradigme : Les données ne sont plus planifiées mais sont préalablement acquises : From Data Mining to Knowledge Discovery.

2000s : 2^{eme} changement de paradigme : Le nombre de variables p explose, notamment avec les données omiques où p>>n. La qualité de prévision devient plus importante que la réalité du modèle devenu *boîte noire*. Problématique du <u>fléau de la dimension</u>.

2010s : 3^{eme} changement de paradigme : Le nombre d'observations n explose dans le e-commerce, la géo-localisation, Bases de données structurées en *cloud* et moyens de calculs regroupés en *clusters* (big data). La notion de <u>rapidité des algorithmes</u> devient critique.

2020s : Explosion des usages dû à la facilité d'accès à des données massives et à des ressources calcul puissantes. → <u>explicabilité</u> des décisions des algorithmes pour des raisons sociétales — <u>robustesse</u> des décisions dans un cadre critique — <u>embarquabilité</u> des réseaux de neurones — <u>cybersécurité</u> — … les stratégies *anciennes* restent souvent intéressantes sur des <u>données complexes</u> (small data)