LDA

读书笔记

LDA

- 一、基本介绍
 - 1.1 什么是主题模型?
 - 1.2 什么是LDA?
 - 1.3 LDA 实现步骤
- 二、代码实现
 - 2.1 Ida包
 - 2.2 Gensim
 - 1. 是什么?
 - 2. 怎么用?

一、基本介绍

1.1 什么是主题模型?

- 所有主题模型都基于这样的基本假设:
 - 1. 每个文档包含多个主题
 - 2. 每个主题包含多个词语
- 文档的语义实际上是由一些我们所忽视的隐变量来管理的。因此,主题模型的主要目标就是解释这些潜在变量——**主题**。
- 因此,主题模型是文本挖掘领域中的一种技术。主题模型具有优秀的降维能力,能够从一个文本对象中自动识别它的主题,利用挖掘出的主题能帮助人们理解海量文本背后隐藏的语义。不同于文本摘要技术,主题模型更多聚焦在文本的主题和概念,不仅仅是文本摘要。主题建模可用于:文本分类、话题检测、文本自动摘要、关联判断等文本挖掘任务。

1.2 什么是LDA?

- LDA是一种文档主题生成模型,在上文提到的主题模型基本假设之上,它认为一篇文章的每个词都是以一定概率选择了某个主题,这个主题以一定概率选择了某个词语。
- LDA也称为一个三层贝叶斯概率模型,包含文档、主题和词语三层结构。每篇文档能够由若干主题的概率分布所表示,每个主题也可由若干词语的概率分布所表示。主题分布和词分布都是多项分布且服从Dirichlet分布,主题分布的Dirichlet分布参数为 α ,词分布的Dirichlet分布参数为 β 。
- LDA: Latent Dirichlet Allocation

Dirichlet分布:二项分布的共轭先验分布是Beta分布,多项分布的共轭先验分布是Dirichlet分布。

A. 共轭先验:如果 $p(\theta|x)$ 和 $p(\theta)$ 满足同样的分布律,那么先验分布和后验分布就叫共轭分布,先验分布叫似然函数的共轭先验分布。

$$ullet \ p(heta|x) = rac{p(x| heta)p(heta)}{p(x)} pprox p(x| heta)p(heta)$$

1. 去分母:如果不求 $p(\theta|x)$ 具体值,只看 θ 取何值时, $p(\theta|x)$ 最大,可省去分母。

2. $p(\theta|x)$:后验分布

3. $p(x|\theta)$: 似然概率。给定某个参数情况下, x的概率分布。

4. $p(\theta)$: 先验概率。未看到样本x之前的分布。

B. 二项分布:
$$P(x| heta)= heta^x\cdot(1- heta)^{1-x}$$

C. Beta分布:

1. 概率密度:
$$f(x) = rac{1}{B(lpha,eta)} \, x^{lpha-1} (1-x)^{eta-1}$$
 ,其中

$$x \in [0,1], B(lpha,eta) = \int_0^1 x^{lpha-1} (1-x)^{eta-1} dx$$

2. 期望:
$$E(x)=\int_0^1 xf(x)dx=\ldots=rac{lpha}{lpha+eta}$$

D. Dirichlet分布

1. 概率密度:
$$f(ec{p}|ec{lpha})=rac{1}{\Delta(ec{lpha})}\prod_1^K p_k^{lpha_k-1}$$
,其中

$$p_k \in [0,1]$$
 , $\Delta(ec{lpha}) = rac{\prod_1^K \Gamma(lpha_k)}{\Gamma(\sum_1^K lpha_k)}$

2. 期望:
$$E(p_i) = rac{lpha_i}{\sum lpha_k}$$

1.3 LDA 实现步骤

符号标记	含义
D	文档集合, $D=\{d_1,d_2,\ldots,d_m\}$
m	文档个数
N_m	第 N_i 篇文档有多少个词
V	词典 , 所有词的集合
$oldsymbol{v}$	词的个数
K	每篇文档的主题个数

- 1. $\vec{lpha} o \vec{ heta}_m$: 采样。分别采出 m 篇文档的主题分布 (p_1,p_2,\ldots,p_K) 。(K : 主题个数 ; 服从参数为 lpha 的Dirichlet分布)
- 2. $\vec{\beta} \to \vec{\phi}_k$: 采样。分别采出 k 个主题的词分布 (p_1,p_2,\ldots,p_v) 。(v: 词的个数;服从参数为 β 的Dirichlet分布)
- 3. $ec{ heta}_m o z_{m,n}$: 采主题。在第 m 篇文档中遍历,分别得到第 n 个词的主题编号。
- 4. $\boldsymbol{w_{m,n}}$:根据S3的主题编号,从S2的词分布中找到对应的主题并采样出一个词。
- 5. 不断重复随机生成过程,直到m篇文档全部遍历。

二、代码实现

2.1 Ida包

2.2 Gensim

- 1. 是什么?
- 2. 怎么用?

步骤??