Ácido base

• Disociación ácido/base débil

- Disólvense 20 cm³ de NH₃(g), medidos a 10 °C e 2 atm (202,6 kPa) de presión, nunha cantidade de auga suficiente para alcanzar 172 cm³ de disolución. A disolución está ionizada nun 4,2 %. Escribe a reacción de disociación.
 - a) Calcula a concentración molar de cada unha das especies existentes na disolución unha vez alcanzado o equilibrio.
 - b) Calcula o pH.
 - c) Calcula a K_b do amoníaco.
 - d) Calcula a Ka do seu ácido conxugado.

Constante dos gases ideais: $R = 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

Problema modelo baseado nas P.A.U. xuño 10 e xuño 11

Rta.: a) $[NH_3]_e = 0,0096 \text{ mol/dm}^3$; $[OH^-]_e = [NH_4^+]_e = 4,2 \cdot 10^{-4} \text{ mol/dm}^3$; b) pH = 10,6; c) $K_b = 1,8 \cdot 10^{-5}$; d) $K_a = 5,6 \cdot 10^{-10}$.

Datos		Cifras significativas: 3
Gas:	Volume	$V = 20.0 \text{ cm}^3 = 2.00 \cdot 10^{-5} \text{ m}^3$
	Presión	$p = 202,6 \text{ kPa} = 2,026 \cdot 10^5 \text{ Pa}$
	Temperatura	$T = 10 ^{\circ}\text{C} = 283 \text{K}$
Volum	e da disolución	$V_{\rm D} = 172 \text{ cm}^3 = 0,172 \text{ dm}^3$
Grao o	le ionización do NH₃ na disolución	α = 4,20 % = 0,0420
Consta	ante dos gases ideais	$R = 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
Produ	to iónico da auga	$K_{\rm w} = 1{,}00 \cdot 10^{-14}$
Incóg	nitas	
Conce	ntración de cada unha das especies presentes na disolución	$[\mathrm{NH_3}]_\mathrm{e},[\mathrm{OH^{\scriptscriptstyle{-}}}]_\mathrm{e},[\mathrm{NH_4^{\scriptscriptstyle{+}}}]_\mathrm{e},[\mathrm{H^{\scriptscriptstyle{+}}}]_\mathrm{e}$
pH da	disolución	рН
Const	ante de basicidade do NH₃	$K_{ m b}$
Outro	s símbolos	
Disolu	ción	D
Conce	ntración (mol/dm³) de base débil que se disocia	x
Cantic	lade da substancia X	n(X)
Cantic	lade ionizada	$n_{ m i}$
Cantic	lade inicial	n_0
Conce	ntración da substancia X	[X]
Ecuac	rións	
Const	ante de basicidade da base: $B(OH)_b(aq) \rightleftharpoons B^{b+}(aq) + b OH^-(aq)$	$K_{b} = \frac{\left[B^{b+}\right]_{e} \cdot \left[OH^{-}\right]_{e}^{b}}{\left[B(OH)_{b}\right]_{e}}$
pН		$pH = -log[H^+]$
pOH		$pOH = -log[OH^{-}]$
Produ	to iónico da auga	$K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ ${\rm p}K_{\rm w} = {\rm pH} + {\rm pOH} = 14,00$
De est	ado dos gases ideais	$p \cdot V = n \cdot R \cdot T$

Ecuacións

Grao de disociación

$$\alpha = \frac{n_{\rm d}}{n_{\rm o}} = \frac{[s]_{\rm d}}{[s]_{\rm o}}$$

Solución:

a) Calcular a cantidade de amoníaco, supoñendo comportamento ideal para o gas:

$$n(NH_3) = \frac{p \cdot V}{R \cdot T} = \frac{2,026 \cdot 10^5 \text{ Pa} \cdot 2,00 \cdot 10^{-5} \text{ m}^3}{8.31 \text{ I} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 283 \text{ K}} = 1,72 \cdot 10^{-3} \text{ mol } NH_3(g)$$

Calcular a concentración da disolución de amoníaco:

$$[NH_3] = \frac{n(NH_3)}{V_D} = \frac{1,72 \cdot 10^{-3} \text{ mol } NH_3}{0,172 \text{ dm}^3 \text{ D}} = 0,010 \text{ 0mol/dm}^3$$

Calcular a concentración de amoníaco ionizado a partir do grao de ionización:

$$\alpha = \frac{[NH_3]_d}{[NH_3]_0} \Longrightarrow [NH_3]_d = \alpha \cdot [NH_3]_0 = 0.0420 \cdot 0.0100 \text{ mol/dm}^3 = 4.20 \cdot 10^{-4} \text{ mol/dm}^3$$

Calcular a concentración do amoníaco no equilibrio:

$$[NH_3]_e = [NH_3]_0 - [NH_3]_d = 0,0100 \text{ mol/dm}^3 - 4,20 \cdot 10^{-4} \text{ mol/dm}^3 = 0,0096 \text{ mol/dm}^3$$

Pérdese unha cifra significativa na resta, porque o <u>resultado non pode ter máis cifras decimais</u> que (4) o que menos ten.

Escribir a ecuación de ionización de amoníaco, que é unha base débil, en auga:

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Calcular a concentración de ións amonio e hidróxido a partir da estequiometría (1:1) da reacción.

$$[OH^{-}]_{e} = [NH_{4}^{+}]_{e} = [NH_{3}]_{d} = 4,20 \cdot 10^{-4} \text{ mol/dm}^{3}$$

Calcular a concentración de ións hidróxeno a partir do produto iónico da auga:

$$[H^{+}]_{e} = \frac{K_{w}}{[OH^{-}]_{e}} = \frac{1,00 \cdot 10^{-14}}{4.20 \cdot 10^{-4}} = 2,38 \cdot 10^{-11} \text{ mol/dm}^{3}$$

b) Calcular o pH:

$$pH = -\log[H^+] = -\log(2.38 \cdot 10^{-11}) = 10.6$$

Análise: Este pH é razoable. Se o amoníaco fose unha base forte, o pH dunha disolución 0,01 mol/dm³ sería pH ≈ 14 + log 0,01 = 12. Unha base débil terá un pH menos básico, máis próximo a 7.

c) Calcular a constante de equilibrio $K_{\rm b}$:

$$K_{b} = \frac{\left[NH_{4}^{+}\right]_{e} \cdot \left[OH^{-}\right]_{e}}{\left[NH_{3}\right]_{e}} = \frac{4,20 \cdot 10^{-4} \cdot 4,20 \cdot 10^{-4}}{0,009 \text{ 6}} = 1,8 \cdot 10^{-5}$$

En <u>multiplicacións e divisións</u>, as cifras significativas do resultado son as do número que menos ten.

d) Escribir a ecuación de ionización do ácido conxugado do amoníaco:

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

Escribir a expresión da constante de acidez do ácido conxugado do amoníaco:

$$K_{a} = \frac{\left[NH_{3} \right]_{e} \cdot \left[H^{+} \right]_{e}}{\left[NH_{4}^{+} \right]_{e}}$$

Demostrar a relación matemática entre a constante de basicidade do amoníoco e a constante de acidez do seu ácido conxugado, multiplicando as expresións de ambas as dúas constantes:

$$K_{b} \cdot K_{a} = \frac{[NH_{4}^{+}]_{e} \cdot [OH]_{e}}{[NH_{3}]_{e}} \cdot \frac{[NH_{3}]_{e} \cdot [H^{+}]_{e}}{[NH_{4}^{+}]_{e}} = [OH]_{e} \cdot [H^{+}]_{e} = K_{w}$$

 $K_{\rm w}$ é a constante de ionización da auga. $K_{\rm w}=1\cdot 10^{-14}$. Calcular a constante de acidez do ión amonio.

$$K_{\rm a} = \frac{K_{\rm w}}{K_{\rm b}} = \frac{1,00 \cdot 10^{-14}}{1,8 \cdot 10^{-5}} = 5,6 \cdot 10^{-10}$$

A maior parte das respostas obtéñense usando a folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

		Base	Ácido conxuga	ıdo
I	órmula:	NH ₃	NH ₄	
Grao de disociación	α =	4,2	%	
	pH =			
Volume (s)	V =	0,02	dm³ gas	
Volume (D)	V =	172	cm ³	
Presión	P =	202,6	kPa	
Temperatura	T =	10	°C	
Constante	$K_w =$	1,00.10-14	de ionización	da auga

RESULTADOS:

Concentración	NH_3 +	$H_2O \rightleftharpoons$	NH ₄ +	OH-	
inicial:	0,0100				mol/dm^3
en equilibrio:	0,00959		$4,20\cdot10^{-4}$	$4,20\cdot10^{-4}$	mol/dm^3
			$[H_3O^+] =$	2,38·10 ⁻¹¹	mol/dm³
pH = 10,62					
pOH = 3,38	Constante d	de basicidade:	$K_b =$	1,84·10 ⁻⁵	
Constant	e de acidez d	o conxugado:	K2 =	5.43.10-10	

- 2. Para unha disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxipropanoico), calcula:
 - a) A concentración de todas as especies presentes na disolución.
 - b) O grao de ionización do ácido en disolución.
 - c) O pH da disolución.
 - d) Que concentración debería ter unha disolución de ácido benzoico (C₀H₅COOH) para que tivese o mesmo pH?

Datos: $K_a(CH_3CH(OH)COOH) = 3.2 \cdot 10^{-4}$; $(C_6H_5COOH) = 6.42 \cdot 10^{-5}$; $K_w = 1.0 \cdot 10^{-14}$.

Problema modelo baseado no A.B.A.U. xuño 17

Rta.: a) $[CH_3CH(OH)COO^-]_e = [H^+]_e = 0,00784 \text{ mol/dm}^3; [CH_3CH(OH)COOH]_e = 0,192 \text{ mol/dm}^3; [OH^-]_e = 1,28\cdot10^{-12} \text{ mol/dm}^3; b)$ $\alpha = 3,92 \%$; c) pH = 2,11; d) $[C_6H_5COOH]_0 = 0,965 \text{ mol/dm}^3$.

DatosCifras significativas: 3Concentración de ácido láctico $[C_3H_6O_3]_0 = 0,200 \text{ mol/dm}^3$ Constante de acidez do ácido láctico $K_a(C_3H_6O_3) = 3,20\cdot 10^{-4}$ Constante de acidez do ácido benzoico $K_a(C_7H_6O_2) = 6,42\cdot 10^{-5}$ IncógnitaspHGrao de ionización do ácido lácticopH

Incógnitas

Concentración da disolución de ácido benzoico do mesmo pH

Outros símbolos

Concentración (mol/dm³) de ácido débil que se ioniza x

Cantidade de substancia ionizada n_i

Cantidade inicial n_0

Concentración da substancia X [X]

Concentración inicial de ácido benzoico c_0

Ecuacións

Constante de acidez dun ácido monoprótico: HA(aq) ⇌ H⁺(aq) + A⁻(aq)	$K_{\mathbf{a}} = \frac{\left[\mathbf{A}^{-}\right]_{\mathbf{e}} \cdot \left[\mathbf{H}^{+}\right]_{\mathbf{e}}}{\left[\mathbf{H}\mathbf{A}\right]_{\mathbf{e}}}$
рН	$pH = -log[H^{+}]$
рОН	$pOH = -log[OH^{-}]$
Grao de ionización	$\alpha = \frac{n_i}{n_0} = \frac{\left[s \right]_i}{\left[s \right]_0}$

Solución:

a) O ácido láctico é un ácido débil. Escríbese a reacción da súa ionización.

$$CH_3CH(OH)COOH(aq) \rightleftharpoons H^+(aq) + CH_3CH(OH)COO^-(aq)$$

Chámase x á concentración de ácido láctico que se ioniza. Da estequiometría da reacción dedúcese que a concentración de ácido láctico ionizado $[CH_3CH(OH)COOH]_i$ é a mesma (x) que a dos ións hidróxeno $[H^+]$ e a dos ións lactato $[CH_3CH(OH)COO^-]$ producidos.

A concentración de ácido láctico no equilibrio obtense restando a concentración que se disociou da concentración inicial.

$$[CH_3CH(OH)COOH]_e = [CH_3CH(OH)COOH]_0 - [CH_3CH(OH)COOH]_i = 0,200 - x$$

Créase unha táboa que mostra as concentracións de cada especie nas distintas fases:

		CH ₃ CH(OH)COOH	\rightleftharpoons	H ⁺	CH₃CH(OH)COO⁻	
[X] ₀	Concentración inicial	0,200		0	0	mol/dm³
$[X]_i$	Concentración ionizada ou formada	x	\rightarrow	х	x	mol/dm³
[X] _e	Concentración no equilibrio	0,200 - x		х	x	mol/dm³

Emprégase a expresión da constante de acidez e substitúense nela os símbolos polos valores ou expresións das concentracións no equilibrio

$$K_{a} = \frac{[\text{CH}_{3} - \text{CH}(\text{OH}) - \text{COO}^{-}]_{e} \cdot [\text{H}^{+}]_{e}}{[\text{CH}_{3} - \text{CH}(\text{OH}) - \text{COOH}]_{e}} \Rightarrow 3,20 \cdot 10^{-4} = \frac{x \cdot x}{0,200 - x}$$

Suponse, en primeira aproximación, que x é desprezable fronte a 0,200. A ecuación redúcese a:

$$x \approx \sqrt{0.200 \cdot 3.20 \cdot 10^{-4}} = 0.00800 \text{ mol/dm}^3$$

Calcúlase o grao de ionización:

$$\alpha = \frac{[s]_i}{[s]_0} = \frac{0.00800 \text{ mol/dm}^3}{0.200 \text{ mol/dm}^3} = 0.040 \oplus 4.00 \%$$

Un valor inferior ao 5% considérase desprezable, polo que esta solución é aceptable. Ao ser superior ao 1%, o número de cifras significativas redúcese a dúas.

Calcúlase o pH:

$$pH = -log[H^+] = -log(0,0080) = 2,10$$

5

b) A disolución de ácido benzoico que ten o mesmo pH terá a mesma concentración de ión hidróxeno, e tamén de ión benzoato, por ser un ácido monoprótico.

$$C_6H_5COOH(aq) \rightleftharpoons H^+(aq) + C_6H_5COO^-(aq)$$

 $[C_6H_5COO^-]_e = [H^+]_e = 0,0080 \text{ mol/dm}^3$

Chámase c₀ á concentración inicial de ácido benzoico e a *x* á concentración de ácido benzoico que se ioniza, e Créase unha táboa que mostra as concentracións de cada especie nas distintas fases:

		C ₆ H ₅ COOH	\rightleftharpoons	H⁺	C ₆ H ₅ COO⁻	
[X] ₀	Concentración inicial	c_{0}		0	0	mol/dm³
[X] _i	Concentración ionizada ou formada	х	\rightarrow	х	х	mol/dm³
[X] _e	Concentración no equilibrio	$c_0 - x$		0,0080	0,0080	mol/dm³

Dedúcese que:

$$x = 0.0080 \text{ mol/dm}^3$$

Escríbese a expresión da constante de acidez do ácido benzoico cos datos das concentracións no equilibrio:

$$K_{a} = \frac{\left[C_{6} H_{5} COO^{-}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[C_{6} H_{5} COOH\right]_{e}} \Rightarrow 6,42 \cdot 10^{-5} = \frac{0,008 \ 00,008 \ 0}{c_{0} - 0,008 \ 0}$$

Calcúlase a concentración inicial de ácido benzoico:

$$[C_6H_5COOH]_0 = c_0 = \frac{0,008 \ 00,008 \ 0}{6,42 \cdot 10^{-5}} + 0,008 \ C = 1,0 \ mol/dm^3$$

Análise: O resultado ten sentido, porque como o ácido benzoico é máis débil que o ácido láctico (K_a (C₆H₅COOH) = 6,42·10⁻⁵ < 3,2·10⁻⁴ = K_a (CH₃CH(OH)COOH)), a súa concentración ten que ser maior que 0,200 mol/dm³ para dar o mesmo pH.

A maior parte das respostas obtéñense usando a folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

RESULTADOS: As concentracións, o grao de disociación e o pH aparecen na táboa:

Para resolver o apartado d) anote o valor do pH, borre os datos, facendo clic no botón Borrar datos, e escriba os novos datos.

		Ácido	Base conxugada		
Fór	mula:	HC₀H₅COO	C ₆ H ₅ COO ⁻		
Constante	$K_a =$	$6,42 \cdot 10^{-5}$	de acidez		
	pH =	2,11			

RESULTADOS:

Concentración $HC_6H_5COO + H_2O \rightleftharpoons C_6H_5COO^- + H_3O^+$ inicial: 0,946 mol/dm^3

O resultado é diferente polo número de cifras significativas do primeiro cálculo. Se tivese elixido 4 cifras, o pH houbese sido 2,106. Con ese dato a concentración inicial sería 0,964 mol/dm³.

Mesturas ácido base

1. Calcula:

- a) O pH dunha disolución de hidróxido de sodio de concentración 0,010 mol/dm³.
- b) O pH dunha disolución de ácido clorhídrico de concentración 0,020 mol/dm³.
- c) O pH da disolución obtida ao mesturar 100 cm³ da disolución de hidróxido de sodio de concentración 0,010 mol/dm³ con 25 cm³ da disolución de ácido clorhídrico de concentración 0,020 mol/dm³.

Dato: $K_{w} = 1,0.10^{-14}$. (A.B.A.U. xuño 18)

Rta.: a) pH = 12; b) pH = 1,7; c) pH = 11,6.

Datos	Cifras significativas: 3
Concentración da disolución de NaOH	$[NaOH] = 0.0100 \text{ mol/dm}^3$
Volume que se mestura da disolución de NaOH	$V_{\rm b} = 100 \ {\rm cm}^3 = 0{,}100 \ {\rm dm}^3$
Concentración da disolución de HCl	[HCl] = 0.0200 mol/dm^3
Volume que se mestura da disolución de HCl	$V_{\rm a}$ = 25,0 cm ³ = 25,0·10 ⁻³ dm ³
Incógnitas	
pH da disolución de NaOH	pH_b
pH da disolución de HCl	pH_a
pH da mestura	pH_3
Ecuacións	
pH	$pH = -log[H^+]$
pOH	$pOH = -log[OH^{-}]$
Produto iónico da auga	$K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ ${\rm p}K_{\rm w} = {\rm pH} + {\rm pOH} = 14,00$

Solución:

a) O hidróxido de sodio é unha base forte que se ioniza totalmente:

$$NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

O pOH da disolución de NaOH valerá:

$$pOH = -log[OH^{-}] = -log[NaOH] = -log(0,0100) = 2,000$$

(O número de díxitos na mantisa do logaritmo debe ser igual ao número de cifras significativas). Por tanto o seu pH será:

$$pH = 14,000 - pOH = 14,000 - 2,000 = 12,000$$

b) O ácido clorhídrico é un ácido forte que se ioniza totalmente:

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

O pH da disolución de HCl valerá:

$$pH = -log[H^+] = -log[HCl] = -log(0,0200) = 1,700$$

c) Estúdase a reacción entre o HCl e o NaOH para ver que reactivo está en exceso,

En 25 cm³ da disolución de HCl hai: $n=0.0250~\rm dm^3\cdot 0.0200~\rm mol/dm^3=5.00\cdot 10^{-4}~\rm mol~HCl$ En 100 cm³ da disolución de NaOH hai: $n'=0.100~\rm dm^3\cdot 0.0100~\rm mol/dm^3=1.00\cdot 10^{-3}~\rm mol~NaOH$ Supoñendo volumes aditivos:

 $V_{\rm t} = 25,0~{\rm cm^3~D~HCl} + 100~{\rm cm^3~D~NaOH} = 125~{\rm cm^3} = 0,125~{\rm dm^3~de~mestura}.$

		HCl	NaOH	\rightarrow	Na⁺	Cl-	H ₂ O	
n_0	Cantidade inicial	5,00.10-4	1,00.10-3		0	0		mol
$n_{ m r}$	Cantidade que reacciona ou se forma	5,00.10-4	5,00.10-4		5,00.10-4	5,00.10-4	5,00.10-4	mol
$n_{ m f}$	Cantidade ao final da reacción	0	5,0.10-4		5,00.10-4	5,00.10-4		mol

A concentración final de hidróxido de sodio é:

$$[NaOH] = 5,0\cdot10^{-4} \text{ mol NaOH} / 0,125 \text{ dm}^3 \text{ D} = 4,0\cdot10^{-3} \text{ mol/dm}^3$$

O pOH da disolución final valerá:

$$pOH = -log[OH^{-}] = -log[NaOH] = -log(4,0\cdot10^{-3}) = 2,40$$

Por tanto o seu pH será:

$$pH = 14,00 - pOH = 14,00 - 2,40 = 11,60$$

A maior parte das respostas obtéñense usando a folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

				F	Reactivos →			Produ	utos		
	NaOH		HCl			NaCl		H ₂ O			
	Calcular:	a)	рН		disolución	NaOH					
		b)	рН		disolución	HCl					
		c)	рН		mestura		←				
que	se precisa	_	para reaccio	nar	con						
	100		cm ³		disolución	NaOH		[NaOH] =	0,01	mol/dm³	
	25		cm ³		disolución	HCl		[HCl] =	0,02	mol/dm³	
RESU	JLTADOS:										
	NaC	Ή	+ I	HCl			\rightarrow	NaCl	+	H_2O	
mol 5,00·10 ⁻⁴ 5,00·10 ⁻⁴								$5,00 \cdot 10^{-4}$		$5,00 \cdot 10^{-4}$	
					a)	1	bH =	12,0 1	NaOH	[
					b)	1	bH =	1,70]	HCl		

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

pH =

11,6

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 03/10/24

Sumario

Á	\sim 1	\mathbf{D}	\mathbf{c}	D	٨	CT	,
А	(.			ĸ	А	5 F	١.

Diso	ciación ácido/base débil 1
1.	Disólvense 20 cm³ de $NH_3(g)$, medidos a 10 °C e 2 atm (202,6 kPa) de presión, nunha cantidade de auga suficiente para alcanzar 172 cm³ de disolución. A disolución está ionizada nun 4,2 %. Escribe a reacción de disociación
	a) Calcula a concentración molar de cada unha das especies existentes na disolución unha vez al- canzado o equilibrio
	b) Calcula o pH
	c) Calcula a K _b do amoníaco
	d) Calcula a K _a do seu ácido conxugado
2.	Para unha disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxipro-
	panoico), calcula:3
	a) A concentración de todas as especies presentes na disolución
	b) O grao de ionización do ácido en disolución
	c) O pH da disolución
	d) Que concentración debería ter unha disolución de ácido benzoico (C ₆ H₅COOH) para que tivese o mesmo pH?
Mest	uras ácido base6
	Calcula: 6
	a) O pH dunha disolución de hidróxido de sodio de concentración 0,010 mol/dm³
	b) O pH dunha disolución de ácido clorhídrico de concentración 0,020 mol/dm³
	c) O pH da disolución obtida ao mesturar 100 cm³ da disolución de hidróxido de sodio de concentración 0,010 mol/dm³ con 25 cm³ da disolución de ácido clorhídrico de concentración
	0,020 mol/dm ³