Grafos – Busca em Largura - BFS Estrutura de Dados Avançada — QXD0015

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2024

Definições iniciais

Uma árvore enraizada é uma árvore com um vértice especial chamado raiz.

1.
$$d_{in}(r) = 0$$
,

- 1. $d_{in}(r) = 0$,
- 2. $d_{in}(v) = 1$ para todo $v \in V \setminus \{r\}$.

- 1. $d_{in}(r) = 0$,
- 2. $d_{in}(v) = 1$ para todo $v \in V \setminus \{r\}$.

raiz c

Representar uma árvore enraizada com um vetor de predecessores π .

v	a	b	c	d	e	f	g
$\pi[v]$	b	c	NIL	f	c	c	f

ullet usamos o símbolo NIL para indicar a ausência

raiz c

Exemplo com grafo não direcionado

Exemplo com grafo direcionado

Imprimindo caminho entre dois vértices

Imprimindo caminho entre dois vértices

Algoritmo recursivo para imprimir caminho de s a v no grafo:

```
\begin{aligned} & \operatorname{print-path}(\pi,s,v) \\ & 1. & \mathbf{se} \ v == s \ \mathbf{ent\tilde{ao}} \\ & 2. & \operatorname{imprima} \ s \\ & 3. & \mathbf{sen\tilde{ao}} \ \mathbf{se} \ \pi[v] == \operatorname{NIL} \ \mathbf{ent\tilde{ao}} \\ & 4. & \operatorname{imprima} \ \text{``n\tilde{ao}} \ \operatorname{existe} \ \operatorname{caminho} \ \operatorname{de} \ s \ a \ v \text{''} \\ & 5. & \mathbf{sen\tilde{ao}} \\ & 6. & \operatorname{print-path}(\pi,s,\pi[v]) \\ & 7. & \operatorname{imprima} \ v \end{aligned}
```


Problema fundamental em grafos:

Como explorar um grafo de forma sistemática?

- Muitas aplicações são abstraídas como problemas de busca.
- Muitos algoritmos utilizam fundamentos similares.

- Ideia: durante a busca no grafo, evitar passar por um vértice mais de uma vez
 - o quando chegar num vértice pela primeira vez, marcá-lo.

- Ideia: durante a busca no grafo, evitar passar por um vértice mais de uma vez
 - o quando chegar num vértice pela primeira vez, marcá-lo.
 - \circ ao sair de um vértice u e chegar, por meio de uma aresta (u,v), num vértice v nunca visto antes, vamos de alguma forma marcar essa aresta como especial.

- Ideia: durante a busca no grafo, evitar passar por um vértice mais de uma vez
 - o quando chegar num vértice pela primeira vez, marcá-lo.
 - \circ ao sair de um vértice u e chegar, por meio de uma aresta (u,v), num vértice v nunca visto antes, vamos de alguma forma marcar essa aresta como especial.
 - É preciso garantir não só que todos os vértices possíveis de serem alcançados foram alcançados, mas também garantir que todas as arestas incidentes nesses vértices foram analisadas.

• Definir vértice inicial (origem da busca)

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - o Não-explorada: ainda não considerada pela busca.

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - o Não-explorada: ainda não considerada pela busca.
 - o **Explorada:** já foi considerada pela busca.

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - o Não-explorada: ainda não considerada pela busca.
 - o **Explorada:** já foi considerada pela busca.
 - Aresta de árvore: assim que ela foi considerada pela busca, um de seus extremos já tinha sido descoberto, mas o outro ainda não.

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - o Não-explorada: ainda não considerada pela busca.
 - o Explorada: já foi considerada pela busca.
 - Aresta de árvore: assim que ela foi considerada pela busca, um de seus extremos já tinha sido descoberto, mas o outro ainda não.
- Possíveis estágios da marcação de um vértice:

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - Não-explorada: ainda não considerada pela busca.
 - o Explorada: já foi considerada pela busca.
 - Aresta de árvore: assim que ela foi considerada pela busca, um de seus extremos já tinha sido descoberto, mas o outro ainda não.
- Possíveis estágios da marcação de um vértice:
 - Não-descoberto: vértice que ainda não foi encontrado pela busca.

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - Não-explorada: ainda não considerada pela busca.
 - o **Explorada:** já foi considerada pela busca.
 - Aresta de árvore: assim que ela foi considerada pela busca, um de seus extremos já tinha sido descoberto, mas o outro ainda não.
- Possíveis estágios da marcação de um vértice:
 - o Não-descoberto: vértice que ainda não foi encontrado pela busca.
 - Descoberto: vértice foi descoberto (visitado pela primeira vez).

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - o Não-explorada: ainda não considerada pela busca.
 - o Explorada: já foi considerada pela busca.
 - Aresta de árvore: assim que ela foi considerada pela busca, um de seus extremos já tinha sido descoberto, mas o outro ainda não.
- Possíveis estágios da marcação de um vértice:
 - Não-descoberto: vértice que ainda não foi encontrado pela busca.
 - Descoberto: vértice foi descoberto (visitado pela primeira vez).
 - **Descoberto e não-explorado:** vértice foi descoberto, mas possui arestas incidentes que ainda não foram exploradas.

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - Não-explorada: ainda não considerada pela busca.
 - o **Explorada:** já foi considerada pela busca.
 - Aresta de árvore: assim que ela foi considerada pela busca, um de seus extremos já tinha sido descoberto, mas o outro ainda não.
- Possíveis estágios da marcação de um vértice:
 - Não-descoberto: vértice que ainda não foi encontrado pela busca.
 - Descoberto: vértice foi descoberto (visitado pela primeira vez).
 - Descoberto e não-explorado: vértice foi descoberto, mas possui arestas incidentes que ainda não foram exploradas.
 - Explorado: vértice foi descoberto e todas as arestas incidentes no vértice foram exploradas e seus vizinhos foram descobertos.

- Definir vértice inicial (origem da busca)
- Possíveis tipos de arestas durante a busca:
 - Não-explorada: ainda não considerada pela busca.
 - o Explorada: já foi considerada pela busca.
 - Aresta de árvore: assim que ela foi considerada pela busca, um de seus extremos já tinha sido descoberto, mas o outro ainda não.
- Possíveis estágios da marcação de um vértice:
 - o Não-descoberto: vértice que ainda não foi encontrado pela busca.
 - o **Descoberto:** vértice foi descoberto (visitado pela primeira vez).
 - Descoberto e não-explorado: vértice foi descoberto, mas possui arestas incidentes que ainda não foram exploradas.
 - **Explorado:** vértice foi descoberto e todas as arestas incidentes no vértice foram exploradas e seus vizinhos foram descobertos.
- Essa estratégia resulta em um algoritmo genérico para buscas em grafos.

Algoritmo de busca genérico

Dado grafo G = (V, E) (direcionado ou não-direcionado):

- (1) Marcar todos os vértices como não-descobertos
- (2) Escolher um vértice inicial e marcá-lo descoberto
- (3) **Enquanto** houver vértice descoberto e não-explorado:
 - (a) Selecionar vértice descoberto e não-explorado u
 - (b) Considerar aresta não-explorada (u, v)
 - (c) Se v for $n\~{a}o$ -descoberto, marcar v como descoberto e marcar aresta (u,v) como **aresta de árvore**.
 - (d) Se não houver mais arestas incidentes a u a serem exploradas, marcar u como **explorado**.

O algoritmo genérico não estabelece ordem de visita dos vértices e arestas.

 A ordem de visita das arestas geralmente é aleatória e depende da representação do grafo no computador.

- A ordem de visita das arestas geralmente é aleatória e depende da representação do grafo no computador.
- Existem duas abordagens principais para a ordem de visita dos vértices:

- A ordem de visita das arestas geralmente é aleatória e depende da representação do grafo no computador.
- Existem duas abordagens principais para a ordem de visita dos vértices:
 - Explorar o vértice <u>descoberto</u> "mais antigo"
 - Busca em Largura (Breadth-First Search BFS)

- A ordem de visita das arestas geralmente é aleatória e depende da representação do grafo no computador.
- Existem duas abordagens principais para a ordem de visita dos vértices:
 - Explorar o vértice descoberto "mais antigo"
 - Busca em Largura (Breadth-First Search BFS)
 - Explorar o vértice descoberto "mais recente"
 - Busca em Profundidade (Depth-First Search DFS)
 - Já vimos busca em profundidade quando estudamos árvores: pré-ordem, pós-ordem e ordem simétrica.

Busca em largura

Distância entre vértices

- Dado grafo G e dois vértices s e v de G, podem haver diversos caminhos entre s e v.
- **Problema:** Queremos um caminho de s a v com o menor comprimento.

Distância entre vértices

- Dado grafo G e dois vértices s e v de G, podem haver diversos caminhos entre s e v.
- **Problema:** Queremos um caminho de s a v com o menor comprimento.

Definição

A distância de s a v é o comprimento de um caminho mais curto de s a v

- ullet denotamos esse valor por dist(s,v)
- se v não for alcançavel a partir de s, definimos $dist(s,v)=\infty$

Interpretação da busca em largura

- A busca em largura é realizada em níveis.
- Primeiro a raiz é descoberta no nível L_1 . Depois todos os vértices vizinhos da raiz são descobertos no nível L_2 . Depois todos os vértices vizinhos dos vizinhos da raiz são descobertos no nível L_3 , e assim por diante.

Grafo G

Grafo G redesenhado

Ideia do algoritmo

1. percorremos os vértices usando uma fila ${\it Q}$

- 1. percorremos os vértices usando uma fila Q
- 2. enfileiramos o vértice de origem \boldsymbol{s}

- 1. percorremos os vértices usando uma fila Q
- 2. enfileiramos o vértice de origem s
- 3. desenfileiramos o próximo vértice u da fila Q e, para cada vizinho v do vértice atual u,

- 1. percorremos os vértices usando uma fila Q
- 2. enfileiramos o vértice de origem s
- 3. desenfileiramos o próximo vértice u da fila Q e, para cada vizinho v do vértice atual u,
 - $\circ\:$ se for a primeira vez que vemos v durante a busca, então adicionamos uma aresta (u,v) à árvore de busca, ou seja, fazemos $\pi[v]=u$

- 1. percorremos os vértices usando uma fila Q
- 2. enfileiramos o vértice de origem s
- 3. desenfileiramos o próximo vértice u da fila Q e, para cada vizinho v do vértice atual u,
 - \circ se for a primeira vez que vemos v durante a busca, então adicionamos uma aresta (u,v) à árvore de busca, ou seja, fazemos $\pi[v]=u$
 - \circ inserimos v na fila de processamento

- 1. percorremos os vértices usando uma fila Q
- 2. enfileiramos o vértice de origem s
- 3. desenfileiramos o próximo vértice u da fila Q e, para cada vizinho v do vértice atual u,
 - \circ se for a primeira vez que vemos v durante a busca, então adicionamos uma aresta (u,v) à árvore de busca, ou seja, fazemos $\pi[v]=u$
 - \circ inserimos v na fila de processamento
- 4. repetimos o passo anterior com o primeiro vértice da fila

A BFS pinta o grafo durante a busca

A BFS pinta o grafo durante a busca

1. cor[v] = branco se não descobrimos v ainda

A BFS pinta o grafo durante a busca

- 1. cor[v] = branco se não descobrimos v ainda
- 2. cor[v] = cinza se já descobrimos, mas não finalizamos v

A BFS pinta o grafo durante a busca

- 1. cor[v] = branco se não descobrimos v ainda
- 2. cor[v] = cinza se já descobrimos, mas não finalizamos v
- 3. cor[v] = preto se já descobrimos e já finalizamos v

 $\bullet\,$ Será computado um vetor de distâncias d

- ullet Será computado um vetor de distâncias d

- ullet Será computado um vetor de distâncias d
- Para todo vértice $v \in V(G)$, a distância do vértice de origem s até v é dada por d[v]
- Por default, d[s] = 0

- ullet Será computado um vetor de distâncias d
- Para todo vértice $v \in V(G)$, a distância do vértice de origem s até v é dada por d[v]
- Por default, d[s] = 0
- A primeira vez que vemos um vértice $v \neq s$, ele é branco e foi descoberto na vizinhança de um vértice cinza u. Então fazemos d[v] = d[u] + 1.

Fila 4 2

Fila 4 2

Fila 2 8

Fila 2 8

Fila 8 3

Fila 8 3 6

Fila 8 3 6

Fila 8 3 6

Fila 3 6 9

Fila 3 6 9 12

Fila 3 6 9 12 13

Fila 3 6 9 12 13

Fila 6 9 12 13

Fila 6 9 12 13 7

Fila 6 9 12 13 7

Fila 9 12 13 7

Fila 9 12 13 7 11

Fila 9 12 13 7 11

Fila 12 13 7 11

Fila 12 13 7 11 5

Fila 12 13 7 11 5 10

Fila 12 13 7 11 5 10

Fila 13 7 11 5 10

Fila 13 7 11 5 10

Fila 7 11 5 10

Fila 7 11 5 10 14

Fila 7 11 5 10 14

Fila 11 5 10 14

Fila 11 5 10 14

Fila 5 10 14

Fila 10 14

Fila 10 14

$\operatorname{BFS}(G,s)$

```
1. para todo u \in V(G) faça
 2. cor[u] \leftarrow BRANCO
 3. \pi[u] \leftarrow \text{NIL}
 4. d[u] \leftarrow \infty
 5. cor[s] \leftarrow CINZA
 6. d[s] \leftarrow 0
 7. cria fila vazia Q = \emptyset
 8. Enqueue(Q, s)
 9. enquanto Q \neq \emptyset faça
10.
     u \leftarrow \mathtt{Dequeue}(Q)
11. para todo v \in Adj(u) faça
                 se \ cor[v] == BRANCO
12.
13.
                       cor[v] \leftarrow \texttt{CINZA}
                       d[v] \leftarrow d[u] + 1
14.
15.
                       \pi[v] \leftarrow u
16.
                       Enqueue(Q, v)
17.
      cor[u] \leftarrow \texttt{PRETO}
```

Análise de complexidade

Analisamos de forma agregada

Análise de complexidade

Analisamos de forma agregada

1. o tempo de inicialização é ${\cal O}(V)$

Análise de complexidade

Analisamos de forma agregada

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez
 - o desenfileiramos cada vértice no máximo uma vez

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez
 - o desenfileiramos cada vértice no máximo uma vez
 - $\circ\,$ cada operação na fila leva tempo O(1)

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez
 - o desenfileiramos cada vértice no máximo uma vez
 - $\circ\,$ cada operação na fila leva tempo O(1)
 - $\circ\,$ o tempo gasto com a fila é O(V)

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez
 - o desenfileiramos cada vértice no máximo uma vez
 - \circ cada operação na fila leva tempo O(1)
 - $\circ\,$ o tempo gasto com a fila é O(V)
- 3. processamos cada vértice uma vez

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez
 - o desenfileiramos cada vértice no máximo uma vez
 - $\circ\,$ cada operação na fila leva tempo O(1)
 - $\circ\,$ o tempo gasto com a fila é O(V)
- 3. processamos cada vértice uma vez
 - o cada lista de adjacências é percorrida uma vez

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez
 - o desenfileiramos cada vértice no máximo uma vez
 - \circ cada operação na fila leva tempo O(1)
 - $\circ\,$ o tempo gasto com a fila é O(V)
- 3. processamos cada vértice uma vez
 - o cada lista de adjacências é percorrida uma vez
 - o no pior caso, percorremos todas as listas

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez
 - o desenfileiramos cada vértice no máximo uma vez
 - \circ cada operação na fila leva tempo O(1)
 - $\circ\,$ o tempo gasto com a fila é O(V)
- 3. processamos cada vértice uma vez
 - o cada lista de adjacências é percorrida uma vez
 - o no pior caso, percorremos todas as listas
 - $\circ\,$ o tempo gasto percorrendo adjacências é O(E)

Analisamos de forma agregada

- 1. o tempo de inicialização é O(V)
- 2. um vértice não volta a ser branco
 - o enfileiramos cada vértice no máximo uma vez
 - o desenfileiramos cada vértice no máximo uma vez
 - $\circ\,$ cada operação na fila leva tempo O(1)
 - $\circ\,$ o tempo gasto com a fila é O(V)
- 3. processamos cada vértice uma vez
 - o cada lista de adjacências é percorrida uma vez
 - o no pior caso, percorremos todas as listas
 - $\circ\,$ o tempo gasto percorrendo adjacências é O(E)

A complexidade da busca em largura é O(V+E)

Corretude do algoritmo

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

1. os vértices $v \in V(G) \backslash \{s\}$ com $\pi[v] \neq NIL$ definem uma árvore enraizada em s

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- 1. os vértices $v \in V(G) \backslash \{s\}$ com $\pi[v] \neq NIL$ definem uma árvore enraizada em s
- 2. d[v] = dist(s, v), para todo $v \in V(G)$.

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- 1. os vértices $v \in V(G) \backslash \{s\}$ com $\pi[v] \neq NIL$ definem uma árvore enraizada em s
- 2. d[v] = dist(s, v), para todo $v \in V(G)$.

A primeira afirmação segue imediatamente do funcionamento do BFS.

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- 1. os vértices $v \in V(G) \backslash \{s\}$ com $\pi[v] \neq NIL$ definem uma árvore enraizada em s
- 2. d[v] = dist(s, v), para todo $v \in V(G)$.

A primeira afirmação segue imediatamente do funcionamento do BFS.

A fim de provar a segunda afirmação, precisamos de dois lemas auxiliares:

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- 1. os vértices $v \in V(G) \backslash \{s\}$ com $\pi[v] \neq NIL$ definem uma árvore enraizada em s
- 2. d[v] = dist(s, v), para todo $v \in V(G)$.

A primeira afirmação segue imediatamente do funcionamento do BFS.

A fim de provar a segunda afirmação, precisamos de dois lemas auxiliares:

ullet Lema 1: o caminho de s a v na árvore tem tamanho d[v]

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- 1. os vértices $v \in V(G) \backslash \{s\}$ com $\pi[v] \neq NIL$ definem uma árvore enraizada em s
- 2. d[v] = dist(s, v), para todo $v \in V(G)$.

A primeira afirmação segue imediatamente do funcionamento do BFS.

A fim de provar a segunda afirmação, precisamos de dois lemas auxiliares:

- ullet Lema 1: o caminho de s a v na árvore tem tamanho d[v]
- \bullet Lema 2: os vértices são inseridos na fila Q em ordem crescente de d[v]

Lema 1: Seja T a árvore induzida por π . Se $d[v] < \infty$, então

1. v é um vértice de T,

Lema 1: Seja T a árvore induzida por π . Se $d[v] < \infty$, então

- 1. v é um vértice de T,
- 2. o caminho de s a v em T tem comprimento d[v].

Lema 1: Seja T a árvore induzida por π . Se $d[v] < \infty$, então

- 1. v é um vértice de T,
- 2. o caminho de s a v em T tem comprimento d[v].

Lema 1: Seja T a árvore induzida por π . Se $d[v] < \infty$, então

- 1. v é um vértice de T,
- 2. o caminho de s a v em T tem comprimento d[v].

Demonstração:

• Por indução no número de vezes que executamos enqueue

Lema 1: Seja T a árvore induzida por π . Se $d[v] < \infty$, então

- 1. v é um vértice de T,
- 2. o caminho de s a v em T tem comprimento d[v].

- Por indução no número de vezes que executamos enqueue
- Caso Base: depois que executamos enqueue pela primeira vez

Lema 1: Seja T a árvore induzida por π . Se $d[v] < \infty$, então

- 1. v é um vértice de T,
- 2. o caminho de s a v em T tem comprimento d[v].

- Por indução no número de vezes que executamos enqueue
- Caso Base: depois que executamos enqueue pela primeira vez
 - $\circ \ T \ {\rm continha} \ {\rm apenas} \ s \ {\rm e} \ {\rm valia} \ d[s] = 0 \\$

Lema 1: Seja T a árvore induzida por π . Se $d[v] < \infty$, então

- 1. v é um vértice de T,
- 2. o caminho de s a v em T tem comprimento d[v].

- Por indução no número de vezes que executamos enqueue
- Caso Base: depois que executamos enqueue pela primeira vez
 - $\circ T$ continha apenas s e valia d[s] = 0
 - \circ como d[s] nunca mais muda, isso completa a base

Considere o instante em que enfileiramos \boldsymbol{v}

Considere o instante em que enfileiramos \boldsymbol{v}

ullet então v foi descoberto percorrendo os vizinhos de u

Considere o instante em que enfileiramos \boldsymbol{v}

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante
- pela hipótese de indução

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante
- pela hipótese de indução
 - 1. existe um caminho de s a u em T

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante
- pela hipótese de indução
 - 1. existe um caminho de s a u em T
 - 2. esse caminho tem comprimento d[u]

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante
- pela hipótese de indução
 - 1. existe um caminho de s a u em T
 - 2. esse caminho tem comprimento d[u]
- mais isso implica que

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante
- pela hipótese de indução
 - 1. existe um caminho de s a u em T
 - 2. esse caminho tem comprimento $d[\boldsymbol{u}]$
- mais isso implica que
 - 1. há caminho de s a v em T, pois $\pi[v] = u$

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante
- pela hipótese de indução
 - 1. existe um caminho de s a u em T
 - 2. esse caminho tem comprimento d[u]
- mais isso implica que
 - 1. há caminho de s a v em T, pois $\pi[v] = u$
 - 2. e esse caminho tem comprimento d[v], pois d[v] = d[u] + 1

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante
- pela hipótese de indução
 - 1. existe um caminho de s a u em T
 - 2. esse caminho tem comprimento d[u]
- mais isso implica que
 - 1. há caminho de s a v em T, pois $\pi[v] = u$
 - 2. e esse caminho tem comprimento d[v], pois d[v] = d[u] + 1
- e completamos a indução

Considere o instante em que enfileiramos \boldsymbol{v}

- ullet então v foi descoberto percorrendo os vizinhos de u
- ullet mas u já havia sido enfileirado antes desse instante
- pela hipótese de indução
 - 1. existe um caminho de s a u em T
 - 2. esse caminho tem comprimento $d[\boldsymbol{u}]$
- mais isso implica que
 - 1. há caminho de s a v em T, pois $\pi[v] = u$
 - 2. e esse caminho tem comprimento d[v], pois d[v] = d[u] + 1
- e completamos a indução

Corolário 1: Durante BFS, $d[v] \geq dist(s, v)$ para todo $v \in V$.

Lema 2: Suponha que $\langle v_1, v_2, \dots, v_r \rangle$ seja a disposição da fila Q em alguma iteração do algoritmo. Então

$$d[v_1] \le d[v_2] \le \dots \le d[v_r] \le d[v_1] + 1.$$

Lema 2: Suponha que $\langle v_1, v_2, \dots, v_r \rangle$ seja a disposição da fila Q em alguma iteração do algoritmo. Então

$$d[v_1] \le d[v_2] \le \dots \le d[v_r] \le d[v_1] + 1.$$

Demonstração:

• por indução no número de iterações do laço enquanto

Lema 2

Lema 2: Suponha que $\langle v_1, v_2, \dots, v_r \rangle$ seja a disposição da fila Q em alguma iteração do algoritmo. Então

$$d[v_1] \le d[v_2] \le \dots \le d[v_r] \le d[v_1] + 1.$$

Demonstração:

- por indução no número de iterações do laço enquanto
- ullet antes da primeira iteração, $Q=\langle s \rangle$ e o lema vale

Considere uma nova iteração do laço

Considere uma nova iteração do Iaço

• antes da iteração a fila era $\langle v_1, v_2, \dots, v_r \rangle$ (qual a H.I.?)

Considere uma nova iteração do Iaço

- antes da iteração a fila era $\langle v_1, v_2, \dots, v_r \rangle$ (qual a H.I.?)
- pela H.I. $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r] \leq d[v_1] + 1$.

Considere uma nova iteração do Iaço

- antes da iteração a fila era $\langle v_1, v_2, \dots, v_r \rangle$ (qual a H.I.?)
- pela H.I. $d[v_1] \le d[v_2] \le \cdots \le d[v_r] \le d[v_1] + 1$.
- na iteração, removemos v_1 e inserimos v_{r+1}, \ldots, v_{r+t}

Considere uma nova iteração do Iaço

- antes da iteração a fila era $\langle v_1, v_2, \dots, v_r \rangle$ (qual a H.I.?)
- pela H.I. $d[v_1] \le d[v_2] \le \cdots \le d[v_r] \le d[v_1] + 1$.
- na iteração, removemos v_1 e inserimos v_{r+1}, \ldots, v_{r+t}
- no final da iteração a fila será $\langle v_2, \dots, v_r, v_{r+1}, \dots, v_{r+t} \rangle$

Considere uma nova iteração do laço

- antes da iteração a fila era $\langle v_1, v_2, \dots, v_r \rangle$ (qual a H.I.?)
- pela H.I. $d[v_1] \le d[v_2] \le \cdots \le d[v_r] \le d[v_1] + 1$.
- na iteração, removemos v_1 e inserimos v_{r+1}, \ldots, v_{r+t}
- no final da iteração a fila será $\langle v_2, \dots, v_r, v_{r+1}, \dots, v_{r+t} \rangle$

Inserimos vizinhos de v_1

Considere uma nova iteração do Iaço

- antes da iteração a fila era $\langle v_1, v_2, \dots, v_r \rangle$ (qual a H.I.?)
- pela H.I. $d[v_1] \le d[v_2] \le \cdots \le d[v_r] \le d[v_1] + 1$.
- na iteração, removemos v_1 e inserimos v_{r+1}, \ldots, v_{r+t}
- no final da iteração a fila será $\langle v_2, \dots, v_r, v_{r+1}, \dots, v_{r+t} \rangle$

Inserimos vizinhos de v_1

ullet se v_j é um vértice inserido, então $d[v_j]=d[v_1]+1$

Considere uma nova iteração do Iaço

- antes da iteração a fila era $\langle v_1, v_2, \dots, v_r \rangle$ (qual a H.I.?)
- pela H.I. $d[v_1] \le d[v_2] \le \cdots \le d[v_r] \le d[v_1] + 1$.
- na iteração, removemos v_1 e inserimos v_{r+1}, \ldots, v_{r+t}
- no final da iteração a fila será $\langle v_2, \dots, v_r, v_{r+1}, \dots, v_{r+t} \rangle$

Inserimos vizinhos de v_1

- se v_j é um vértice inserido, então $d[v_j] = d[v_1] + 1$
- pela hipótese de indução

$$d[v_2] \le \dots \le d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$$

Considere uma nova iteração do Iaço

- antes da iteração a fila era $\langle v_1, v_2, \dots, v_r \rangle$ (qual a H.I.?)
- pela H.I. $d[v_1] \le d[v_2] \le \cdots \le d[v_r] \le d[v_1] + 1$.
- na iteração, removemos v_1 e inserimos v_{r+1}, \ldots, v_{r+t}
- no final da iteração a fila será $\langle v_2, \dots, v_r, v_{r+1}, \dots, v_{r+t} \rangle$

Inserimos vizinhos de v_1

- se v_j é um vértice inserido, então $d[v_j] = d[v_1] + 1$
- pela hipótese de indução

$$d[v_2] \le \dots \le d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$$

portanto

$$d[v_2] \le \dots \le d[v_r] \le d[v_{r+1}] = \dots = d[v_{r+t}] \le d[v_2] + 1$$

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

ullet π define árvore com caminho mínimo de s a v em G e

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- π define árvore com caminho mínimo de s a v em G e
- d[v] = dist(s, v), para todo $v \in V(G)$.

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- ullet π define árvore com caminho mínimo de s a v em G e
- d[v] = dist(s, v), para todo $v \in V(G)$.

Demonstração

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- ullet π define árvore com caminho mínimo de s a v em G e
- $\bullet \ \ d[v] = dist(s,v) \text{, para todo } v \in V(G).$

Demonstração

• Sabemos que π define uma árvore enraizada em s e, pelo Lema 1, o caminho de s a v na árvore tem comprimento d[v]

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- ullet π define árvore com caminho mínimo de s a v em G e
- $\bullet \ \ d[v] = dist(s,v) \text{, para todo } v \in V(G).$

Demonstração

- Sabemos que π define uma árvore enraizada em s e, pelo Lema 1, o caminho de s a v na árvore tem comprimento d[v]
- ullet também, se $dist(s,v)=\infty$, então $d[v]=\infty$ pelo Corolário 1

Teorema: Seja G=(V,E) um grafo e s um vértice de G. Então, depois de executar ${\rm bfs}(G,s)$, temos que:

- ullet π define árvore com caminho mínimo de s a v em G e
- d[v] = dist(s, v), para todo $v \in V(G)$.

Demonstração

- Sabemos que π define uma árvore enraizada em s e, pelo Lema 1, o caminho de s a v na árvore tem comprimento d[v]
- ullet também, se $dist(s,v)=\infty$, então $d[v]=\infty$ pelo Corolário 1
- resta provar que se $dist(s,v)<\infty$, então d[v]=dist(s,v)

Considere um vértice v com dist(s, v) = k

Considere um vértice v com dist(s, v) = k

ullet iremos provar que d[v]=k por indução em k

Considere um vértice v com dist(s, v) = k

ullet iremos provar que d[v]=k por indução em k

Caso Base:

Considere um vértice v com dist(s, v) = k

ullet iremos provar que d[v]=k por indução em k

Caso Base:

• se k=0, devemos ter v=s e a afirmação vale.

Considere um vértice v com dist(s, v) = k

• iremos provar que d[v] = k por indução em k

Caso Base:

• se k=0, devemos ter v=s e a afirmação vale.

Hipótese indutiva: Suponha que, para todo u com dist(s,u) < k, temos que d[u] = dist(s,u)

Considere um vértice v com dist(s, v) = k

• iremos provar que d[v] = k por indução em k

Caso Base:

• se k=0, devemos ter v=s e a afirmação vale.

Hipótese indutiva: Suponha que, para todo u com dist(s,u) < k, temos que d[u] = dist(s,u)

Passo indutivo: considere um caminho de s a v de comprimento k

Considere um vértice v com dist(s, v) = k

• iremos provar que d[v] = k por indução em k

Caso Base:

• se k=0, devemos ter v=s e a afirmação vale.

Hipótese indutiva: Suponha que, para todo u com dist(s,u) < k, temos que d[u] = dist(s,u)

Passo indutivo: considere um caminho de s a v de comprimento k

 \bullet chame de u o vértice que antecede v nesse caminho

Considere um vértice v com dist(s, v) = k

• iremos provar que d[v] = k por indução em k

Caso Base:

• se k=0, devemos ter v=s e a afirmação vale.

Hipótese indutiva: Suponha que, para todo u com dist(s,u) < k, temos que d[u] = dist(s,u)

Passo indutivo: considere um caminho de s a v de comprimento k

- ullet chame de u o vértice que antecede v nesse caminho
- daí dist(s, u) = k 1 e portanto d[u] = k 1

Considere o instante em que \boldsymbol{u} foi removido da fila \boldsymbol{Q}

Considere o instante em que u foi removido da fila $\mathcal Q$

ullet suponha por contradição que v seja preto

- Considere o instante em que u foi removido da fila $\mathcal Q$
- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u

Considere o instante em que u foi removido da fila $\mathcal Q$

- ullet suponha por contradição que v seja preto
- daí v foi removido de Q antes de u
- $\bullet \,$ então o Lema 2 implica que $d[v] \leq d[u] < k$

Considere o instante em que u foi removido da fila $\mathcal Q$

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- ullet então o Lema 2 implica que $d[v] \leq d[u] < k$
- $\bullet \,$ mas o Corolário 1 implica que $k = dist(s,v) \leq d[v]$

Considere o instante em que u foi removido da fila $\mathcal Q$

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- ullet então o Lema 2 implica que $d[v] \leq d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \leq d[v]$
- ullet isso é uma contradição, então v não pode ser preto

Considere o instante em que u foi removido da fila Q

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- ullet então o Lema 2 implica que $d[v] \leq d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \le d[v]$
- ullet isso é uma contradição, então v não pode ser preto

Considere o instante em que u foi removido da fila Q

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- ullet então o Lema 2 implica que $d[v] \leq d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \leq d[v]$
- ullet isso é uma contradição, então v não pode ser preto

Portanto, nesse instante, v era branco ou cinza

ullet se v era branco

Considere o instante em que u foi removido da fila Q

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- $\bullet \,$ então o Lema 2 implica que $d[v] \leq d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \leq d[v]$
- ullet isso é uma contradição, então v não pode ser preto

- se v era branco
 - $\circ\ v$ será inserido na fila nessa iteração

Considere o instante em que u foi removido da fila $\mathcal Q$

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- $\bullet \,$ então o Lema 2 implica que $d[v] \leq d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \leq d[v]$
- ullet isso é uma contradição, então v não pode ser preto

Portanto, nesse instante, \boldsymbol{v} era branco ou cinza

- se v era branco
 - $\circ v$ será inserido na fila nessa iteração
 - \circ e teremos d[v] = d[u] + 1 = k

Considere o instante em que u foi removido da fila Q

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- $\bullet \,$ então o Lema 2 implica que $d[v] \leq d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \leq d[v]$
- ullet isso é uma contradição, então v não pode ser preto

Portanto, nesse instante, \boldsymbol{v} era branco ou cinza

- se v era branco
 - $\circ\ v$ será inserido na fila nessa iteração
 - \circ e teremos d[v] = d[u] + 1 = k
- ullet se v era cinza

Considere o instante em que u foi removido da fila $\mathcal Q$

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- $\bullet \,$ então o Lema 2 implica que $d[v] \leq d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \leq d[v]$
- ullet isso é uma contradição, então v não pode ser preto

Portanto, nesse instante, \boldsymbol{v} era branco ou cinza

- se v era branco
 - $\circ\ v$ será inserido na fila nessa iteração
 - \circ e teremos d[v] = d[u] + 1 = k
- se v era cinza
 - $\circ v$ já estava na fila nesse instante

Considere o instante em que u foi removido da fila Q

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- $\bullet \,$ então o Lema 2 implica que $d[v] \leq d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \leq d[v]$
- ullet isso é uma contradição, então v não pode ser preto

- se v era branco
 - $\circ\ v$ será inserido na fila nessa iteração
 - \circ e teremos d[v] = d[u] + 1 = k
- se v era cinza
 - $\circ v$ já estava na fila nesse instante
 - $\circ\,$ então o Lema 2 implica $d[v] \leq d[u] + 1 = k$

Considere o instante em que u foi removido da fila Q

- ullet suponha por contradição que v seja preto
- ullet daí v foi removido de Q antes de u
- então o Lema 2 implica que $d[v] \le d[u] < k$
- ullet mas o Corolário 1 implica que $k=dist(s,v)\leq d[v]$
- ullet isso é uma contradição, então v não pode ser preto

- se v era branco
 - $\circ\ v$ será inserido na fila nessa iteração
 - \circ e teremos d[v] = d[u] + 1 = k
- se v era cinza
 - $\circ v$ já estava na fila nesse instante
 - \circ então o Lema 2 implica $d[v] \leq d[u] + 1 = k$
 - \circ como $k \leq d[v]$, temos d[v] = k

Considere o instante em que u foi removido da fila Q

- ullet suponha por contradição que v seja preto
- daí v foi removido de Q antes de u
- então o Lema 2 implica que $d[v] \le d[u] < k$
- mas o Corolário 1 implica que $k = dist(s, v) \le d[v]$
- ullet isso é uma contradição, então v não pode ser preto

- se v era branco
 - $\circ\ v$ será inserido na fila nessa iteração
 - \circ e teremos d[v] = d[u] + 1 = k
- se v era cinza
 - $\circ v$ já estava na fila nesse instante
 - \circ então o Lema 2 implica $d[v] \leq d[u] + 1 = k$
 - \circ como $k \leq d[v]$, temos d[v] = k
- em qualquer caso, concluímos a indução

FIM