Constructing two-level Q_B -optimal screening designs using mixed integer programming and heuristic algorithms

Alan R. Vazquez

*Supported by the Office of the Provost and the Office of Faculty Affairs.

Department of Industrial Engineering
University of Arkansas

alanv@uark.edu

Spring Research Conference 2023 May 24-26, 2023

Outline

- 1. Introduction: The Q_B criterion
- 2. Mixed integer programming for finding optimal designs

3. A heuristic algorithm for constructing efficient designs

4. Results and conclusions

Vazquez, A. R., Wong, W. K., and Goos, P. (2023). Constructing two-level Q_B -optimal screening designs using mixed-integer programming and heuristic algorithms. *Statistics and Computing*. Published online.

Introduction

Two-level screening designs allow us to identify the active main effects and two-factor interactions of many factors under study, using an economical number of runs.

Some recent applications of these designs include:

- Investigating the regulation of specific cells (Barminko et al., 2014).
- Developing treatments that inhibit tuberculosis (Silva et al., 2016).
- Tuning the hyperparameters of machine learning algorithms (Lujan-Moreno et al., 2018)

Criteria to evaluate two-level designs

Criteria Favors designs that:

A unifying criterion

Criteria

 G_2 -aberration (Tang & Deng, 1999)

D- and A-optimality (Atkinson et al., 2007)

Estimation and Information Capacities (Sun, 1999; Li & Nachtsheim, 2000)

Projection Estimation and Information Capacities (Loeppky et al., 2007)

Among others

 Q_B criterion

(Tsai & Gilmour, 2010; Mee et al., 2017)

Example

Compare two-level screening designs with 24 runs and 7 factors.

Design 1.

Folded-over Plackett-Burman design (Miller & Sitter, 2001)

Design 2.Obtained from

http://neilsloane.com/
hadamard/

X1	X2	Х3	X4	X5	Х6	X7_
-1	-1	1	1	1	1	1
1	-1	1	-1	-1	-1	-1
-1	1	1	1	1	1	-1
-1	-1	-1	-1	-1	-1	-1
1	1	1	1	-1	1	-1
1	1	-1	1	-1	1	1
1	1	1	1	1	-1	1
1	-1	-1	-1	-1	1	1
-1	1	-1	1	-1	-1	-1
1	-1	-1	1	-1	1	-1
1	-1	-1	1	1	-1	-1
-1	1	-1	-1	-1	-1	1
-1	-1	-1	-1	1	1	1
-1	1	1	-1	-1	1	-1
-1	-1	1	-1	1	-1	-1
1	-1	1	-1	1	1	-1
-1	-1	-1	1	1	1	1
-1	-1	1	1	-1	-1	1
1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	1
1	-1	1	1	-1	-1	1
-1	1	1	-1	-1	1	1
1	1	-1	-1	1	1	-1
-1	1	-1	1	1	-1	-1

Measures the efficiency to estimate many potential models.

- 1. Maximal model with the intercept, all main effects and all two-factor interactions.
- 2. Sub-models of interest satisfy functional marginality.

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_{12} X_1 X_2 + \beta_{13} X_1 X_3 + \beta_{23} X_2 X_3 + \varepsilon$$

Measures the efficiency to estimate many potential models.

- Maximal model with the intercept, all main effects and all twofactor interactions.
- 2. Sub-models of interest satisfy functional marginality.
- 3. A_s criterion to measure the estimation efficiency of sub-models.

$$A_s = \sum_{i=1}^{p_s} \operatorname{Var}(\hat{\beta}_i)$$

Measures the efficiency to estimate many potential models.

4. Prior probabilities:

- π_1 : Active main effect.
- π_2 : Active interaction given that <u>both</u> main effects of the factors involved are active too.
- π_3 : Active interaction given that <u>one</u> of the main effects of the factors involved is active.

Under this framework, we can calculate the prior probability that sub-model is the best.

Li et al. (2006):
$$\pi_1 = 0.41$$
, $\pi_2 = 0.33$ and $\pi_3 = 0.045$

Weighted average of the A_s criterion over all sub-models of interest.

Weights: prior probability of a sub-model being the best.

Example (cont.): 24-run 7-factor designs.

Consider $\pi_1 = 0.41$, $\pi_2 = 0.33$ and $\pi_3 = 0.045$.

Design 1

 $Q_R = 0.246$

Design 2

 $Q_B = 0.255$

Minimizing Q_B is equivalent to maximizing the estimation efficiency for the sub-models of the maximal model.

Research question

- + The Q_B criterion unifies several statistical criteria for screening designs.
- + The Q_B criterion seeks for designs that are model-robust.

- The only available algorithm for generating Q_B -optimal designs is the columnwise search algorithm (Tsai et al., 2000), which is computationally-inefficient for moderate and large designs.

In this talk, we introduce two effective algorithms for finding two-level Q_B -optimal designs from scratch.

Outline

1. Introduction: The Q_B criterion

2. Mixed integer programming for finding optimal designs

3. A heuristic algorithm for constructing efficient designs

4. Results and conclusions

Mixed Integer Programming

To construct two-level Q_B -optimal designs, we introduce a Mixed Integer Programming (MIP) algorithm.

The MIP algorithm consists of

- A problem formulation for finding two-level Q_B -optimal designs.
- The use of state-of-the-art optimization software to solve this problem formulation.

Encoding of two-level designs

X_1	X_2	X_3	•••	X_m
-1	-1	-1	•••	-1
-1	-1	-1	•••	1
-1	-1	-1	•••	-1
-1	-1	-1	•••	1
-1	-1	-1	•••	-1
-1	-1	-1	•••	1
-1	-1	-1	•••	-1
•	:	•	•	•
1	1	1	1	-1
1	1	1	1	1

The variables z_u are binary:

- $z_u = 1$ if the test combination is included in the design.
- $z_{y} = 0$ otherwise.

Let n be the desired run size of the design. We have that

$$\sum_{u=1}^{2^m} z_u = n$$

 2^{m}

Calculation of the Q_B criterion I

Consider an *n*-run *m*-factor design given by $\mathbf{z} = (z_1, z_2, ..., z_{2^m})^T$.

Let X_k be the matrix including all k-th factor interaction contrast vectors of the *two-level full factorial design*.

We define the vector $\mathbf{y}_k = \frac{1}{2^m} \mathbf{X}_k^T \mathbf{z}$ and use \mathbf{y}_1 , \mathbf{y}_2 , \mathbf{y}_3 and \mathbf{y}_4 .

```
\mathbf{y}_1^T \mathbf{y}_1 \propto Aliasing between intercept and main effects \mathbf{y}_2^T \mathbf{y}_2 \propto Sum of squared correlations among main effects \mathbf{y}_3^T \mathbf{y}_3 \propto Sum of squared correlation between main effects and interactions \mathbf{y}_4^T \mathbf{y}_4 \propto Sum of squared correlations among interactions
```

Calculation of the Q_B criterion II

For a maximal model including the intercept, all main effects and all two-factor interactions, minimizing the Q_B criterion is equivalent to minimizing

$$w_1 \mathbf{y}_1^T \mathbf{y}_1 + w_2 \mathbf{y}_2^T \mathbf{y}_2 + w_3 \mathbf{y}_3^T \mathbf{y}_3 + w_4 \mathbf{y}_4^T \mathbf{y}_4$$

where w_k 's depend on π_1 , π_2 and π_3 .

The problem formulation

$$\min_{\mathbf{y}_{k},\mathbf{z}} w_{1}\mathbf{y}_{1}^{T}\mathbf{y}_{1} + w_{2}\mathbf{y}_{2}^{T}\mathbf{y}_{2} + w_{3}\mathbf{y}_{3}^{T}\mathbf{y}_{3} + w_{4}\mathbf{y}_{4}^{T}\mathbf{y}_{4}$$

Subject to:

$$\mathbf{y}_k = \frac{1}{2^m} \mathbf{X}_k^T \mathbf{z}$$

(2).
$$\sum_{u=1}^{2^m} z_u = n$$

(3).
$$z_u \in \{0, 1\}$$

Solved by optimization solvers: Gurobi, CPLEX or SCIP.

Attractive features:

- Find high-quality designs.
- Provide certificates of optimality.

Outline

1. Introduction: The Q_B criterion

2. Mixed integer programming for finding optimal designs

3. A heuristic algorithm for constructing efficient designs

4. Results and conclusions

Perturbation-Based Coordinate Exchange (PBCE) algorithm

The algorithm is based on the metaheuristic called Iterated Local Search (Luorenço et al., 2019).

Building blocks:

- 1. Computationally-cheap version of the Q_B criterion.
- 2. Local search algorithm to construct locally-optimal designs.
- 3. Perturbation operator to escape from local optimality.

1. An alternative calculation of Q_B

Let **D** be an *n*-run *m*-factor two-level design matrix. Consider the row-coincidence $\mathbf{T} = \mathbf{D}\mathbf{D}^T$ with elements T_{ij} . We define $M_k = \frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n T_{ij}^k$ (Butler, 2003).

Theorem: For a maximal model including the intercept, all main effects and all two-factor interactions, minimizing the Q_B criterion is equivalent to minimizing

$$w_1 M_1 + w_2 M_2 + w_3 M_3 + w_4 M_4, \tag{1}$$

where the w_k 's depend on π_1 , π_2 and π_3 .

Computing the Q_B criterion using (1) is cheap!

(Vazquez et al., 2022)

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

Example:

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.071$$

12 runs and 6 factors

1	-1	1	1	1	-1
1	-1	-1	1	-1	1
1	-1	1	1	-1	1
1	-1	-1	1	1	-1
1	1	1	-1	1	1
-1	1	1	-1	1	-1
-1	1	1	-1	-1	1
1	1	-1	1	-1	1
1	-1	-1	-1	1	1
-1	1	-1	-1	-1	1
1	1	1	-1	1	-1
1	1	-1	-1	-1	1

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_{R} = 0.064$$

-1	-1	1	1	1	-1
1	-1	-1	1	-1	1
1	-1	1	1	-1	1
1	-1	-1	1	1	-1
1	1	1	-1	1	1
-1	1	1	-1	1	-1
-1	1	1	-1	-1	1
1	1	-1	1	-1	1
1	-1	-1	-1	1	1
-1	1	-1	-1	-1	1
1	1	1	-1	1	-1
1	1	-1	-1	-1	1

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.053$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.051$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.051$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.051$$

-1	-1	1	1	1	-1
-1	-1	-1	1	-1	1
1	-1	1	1	-1	1
1	-1	-1	1	1	-1
1	1	1	-1	1	1
-1	1	1	-1	1	-1
-1	1	1	-1	-1	1
1	1	-1	1	-1	1
-1	-1	-1	-1	1	1
-1	1	-1	-1	-1	1
1	1	1	-1	1	-1
1	1	-1	-1	-1	1

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.023$$

- Local Search.
- One move: Sign switch a coordinate in the design D.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.023$$

3. Perturbation Operator

n = 12 runs and m = 6 factors

Set the value of the tunning parameter $\alpha = 0.1$.

1. Compute the "contribution" of each row to the Q_B criterion value.

$$D^* =$$

2. Select the $\lceil n\alpha \rceil = 2$ rows with the largest contribution.

-1	-1	-1	1	-1	-1	
-1	-1	1	1	1	-1	
1	-1	1	1	-1	1	
1	1	-1	1	1	-1	
1	-1	1	1	1	1	
-1	1	1	-1	1	-1	
-1	1	1	-1	-1	1	
1	1	-1	1	1	1	
-1	-1	-1	-1	1	1	
-1	-1	-1	-1	-1	-1	
1	-1	1	-1	-1	-1	
1	1	-1	-1	-1	1	

3. Perturbation Operator

n = 12 runs and m = 6 factors

Set the value of the tunning parameter $\alpha = 0.1$.

1. Compute the "contribution" of each row to the Q_B criterion value.

$$D' =$$

- 2. Select the $\lceil n\alpha \rceil = 2$ rows with the largest contribution.
- 3. Switch the signs of $\lceil m\alpha \rceil = 1$ randomly chosen coordinates in these rows.

-1	-1	-1	1	-1	-1	0.153
-1	-1	1	1	1	-1	0.169
1	-1	1	1	-1	1	0.168
1	1	-1	1	1	-1	0.140
1	-1	1	1	1	1	0.188
-1	1	1	-1	1	-1	0.115
-1	1	1	-1	-1	1	0.115
-1	1	-1	1	1	1	0.195
-1	-1	-1	-1	1	1	0.088
-1	-1	1	-1	-1	-1	0.203
1	-1	1	-1	-1	-1	0.123
1	1	-1	-1	-1	1	0.141

Summary of the PBCE algorithm

Repeat for a maximum number of iterations without improvement.

Outline

1. Introduction: The Q_B criterion

2. Mixed integer programming for finding optimal designs

- 3. A heuristic algorithm for constructing efficient designs
- 4. Results and conclusions

Numerical comparisons

We obtain design problems with 7 and 11 factors from Mee et al. (2017).

Algorithms:

- MIP algorithm with Gurobi v9 and a maximum search time of 20 min.
- PBCE algorithm with $\alpha=0.1$, Max_Iter = 100, and 5 repetitions.
- Coordinate-exchange algorithm with 1000 iterations (Meyer & Nachtsheim, 1995).
- Restricted columnwise-pairwise algorithm with 1000 iterations (Li, 2006).
- Point-exchange algorithm with 10 iterations (Cook and Nachtsheim, 1980).

Results

Facto	rs Runs	Coordinate- Exchange Algorithm	Restricted Columnwise- Pairwise Algorithm	PBCE Algorithm	Point-Exchange Algorithm	Mixed Integer Programming
			$\pi_1 = 0.5, \pi_2 =$	0.8 and $\pi_3=0.0$		
7	16	0.1050	0.1050	0.1050	0.1050	0.1050
	20	0.0652	0.0652	0.0652	0.0652	0.0652
	24	0.0333	0.0351	0.0333	0.0333	0.0333
	28	0.0203	0.0203	0.0203	0.0203	0.0203
	32	0.0075	0.0075	0.0075	0.0075	0.0075

Conclusions

• The MIP and PBCE algorithms are computationally-effective to construct two-level screening designs that optimize the Q_B criterion.

• For up to 6 factors, our MIP algorithm obtains Q_B -optimal designs.

 For large numbers of factors, our PBCE algorithm outperforms benchmark algorithms in terms of design quality and computing time.

• Data analysis may be conducted using mixed integer programming, along the lines of Vazquez et al. (2021).

Appendix 1: Computing times of heuristics

Average computing times for 10 optimizations performed by the heuristic algorithms.

For the MIP approach, Gurobi did not finish within 20 min.

Appendix 3: Constructing some two-level Q_B -optimal designs

Using Gurobi v9

Priors: $\pi_1 = 0.82$, $\pi_2 = 0.66$ and $\pi_3 = 0.09$

Number of factors	# Coeff. in maximal model	Run size	Computing time (s)
		11	1
4	11	12	1
		13	1
		16	1
5	16	17	1
		18	1
		22	165
6	22	23	1120
		24	4136

Appendix 2: The MIP algorithm in practice

Example:

- Construct a two-level design with 23 runs and 6 factors.
- Number of coefficients in the maximal model is 22.
- Prior probabilities: $\pi_1=0.82, \pi_2=0.66$ and $\pi_3=0.09$.

Benchmark design: A-optimal design for the maximal model constructed using JMP 16.

$A_S(A-opt)/A_S(Q_B-opt)$

