Title

Ryoma Senda¹, Yoshiaki Takata², and Hiroyuki Seki¹

Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan ryoma.private@sqlab.jp, seki@i.nagoya-u.ac.jp Graduate School of Engineering, Kochi University of Technology, Tosayamada, Kami City, Kochi 782-8502, Japan takata.yoshiaki@kochi-tech.ac.jp

Abstract.

1 Introduction

2 Preliminaries

Let $\mathbb{N} = \{1, 2, \ldots\}$, $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$ and $[n] = \{1, \cdots, n\}$ for $n \in \mathbb{N}$. For a set A, let $\mathscr{P}(A)$ be the power set of A, let A^* and A^{ω} be the sets of finite and infinite words over A, respectively. We denote $A^+ = A^* \setminus \{\varepsilon\}$ and $A^{\infty} = A^* \cup A^{\omega}$. For a word $\alpha \in A^{\infty}$ over a set A, let $\alpha(i) \in A$ be the i-th element of α ($i \geq 0$), $\alpha(i:j) = \alpha(i)\alpha(i+1)\cdots\alpha(j-1)\alpha(j)$ for $i \geq j$ and $\alpha(i:j) = \alpha(i)\cdots$ for $i \geq 0$. Let $\langle u, w \rangle = u(0)w(0)u(1)w(1)\cdots \in A^{\infty}$ for words $u, w \in A^{\infty}$ and $\langle B, C \rangle = \{\langle u, w \rangle \mid u \in B, w \in C\}$ for sets $B, C \subseteq A^{\infty}$. By $|\beta|$, we mean the cardinality of β if β is a set and the length of β if β is a finite sequence.

In this paper, disjoint sets Σ_{i} , Σ_{o} and Γ denote a (finite) input alphabet, an output alphabet and a stack alphabet, respectively, and $\Sigma = \Sigma_{i} \cup \Sigma_{o}$. For a set Γ , let $Com(\Gamma) = \{pop, skip\} \cup \{push(z) \mid z \in \Gamma\}$ be the set of stack commands over Γ .

2.1 Transition Systems

Definition 1. A transition system (TS) is $S = (S, s_0, A, E, \rightarrow_S, c)$ where

- S is a (finite or infinite) set of states,
- $-s_0 \in S$ is the initial state,
- -A, E is (finite or infinite) alphabets such that $A \cap E = \emptyset$,
- $\to_{\mathcal{S}} \subseteq S \times (A \cup E) \times S$ is a set of transition relation, written as $s \to^a s'$ if $(s, a, s') \in \to_{\mathcal{S}}$ and
- $-c: S \to [n]$ is a coloring function where $n \in \mathbb{N}$.

An element of A is an observable label and an element of E is an internal label. A run of TS $S = (S, s_0, A, E, \rightarrow_S, c)$ is a pair $(\rho, w) \in S^{\omega} \times (A \cup E)^{\omega}$ that satisfies $\rho(0) = s_0$ and $\rho(i) \to^{w(i)} \rho(i+1)$ for $i \ge 0$. Let $\min_{i=1}^{\infty} S^{\omega} \to [n]$ be a minimal coloring function such that $\min_{\inf}(\rho) = \min\{m \mid \text{there exist an infinite number of } i \geq 0 \text{ such that } c(\rho(i)) = m\}$. We call S deterministic if $s \to^a s_1$ and $s \to^a s_2$ implies $s_1 = s_2$ for all $s, s_1, s_2 \in S$ and $s \in A \cup E$.

For $w \in (A \cup E)^{\omega}$, let $ef(w) = a_0 a_1 \cdots \in A^{\infty}$ be the sequence obtained from w by removing all symbols belonging to E. Note that ef(w) is not always an infinite sequence even if w is an infinite sequence. We define the language of \mathcal{S} as $L(\mathcal{S}) = \{ef(w) \in A^{\omega} \mid \text{there exists a run } (\rho, w) \text{ such that } \min_{\inf}(\rho) \text{ is even}\}$. For $m \in \mathbb{N}_0$, we call an \mathcal{S} m-TS if for every run (ρ, w) of \mathcal{S} , w contains no consecutive subsequence $w' \in E^{m+1}$.

3 Pushdown Transducers, Automata and Games

3.1 Pushdown Transducers

Definition 2. A pushdown transducer (PDT) over finite alphabets $\Sigma_{\mathbb{I}}$, $\Sigma_{\mathbb{O}}$ and Γ is $\mathcal{T} = (P, p_0, z_0, \Delta)$ where P is a finite set of states, $p_0 \in P$ is the initial state, $z_0 \in \Gamma$ is the initial stack symbol and $\Delta : P \times \Sigma_{\mathbb{I}} \times \Gamma \to P \times \Sigma_{\mathbb{O}} \times Com(\Gamma)$ is a finite set of deterministic transition rules having one of the following forms:

```
 \begin{array}{ll} -(p,a,z) \rightarrow (q,b,pop) & (pop\ rule) \\ -(p,a,z) \rightarrow (q,b,skip) & (skip\ rule) \\ -(p,a,z) \rightarrow (q,b,push(z)) & (push\ rule) \\ where\ p,q \in P,\ a \in \varSigma_{\$},\ b \in \varSigma_{\$} \ and\ z \in \Gamma. \end{array}
```

For a state $p \in P$ and a finite sequence representing stack contents $u \in \Gamma^*$, (p, u) is called a *configuration* or *instantaneous description* (abbreviated as ID) of PDT \mathcal{T} . Let $ID_{\mathcal{T}}$ denote the set of all IDs of \mathcal{T} . Let $\Rightarrow_{\mathcal{T}} \subseteq ID_{\mathcal{T}} \times \Sigma_{\mathbb{I}} \cdot \Sigma_{\mathbb{Q}} \times ID_{\mathcal{T}}$ be the transition relation of \mathcal{T} that satisfies the following conditions. For $u \in \Gamma^+$ and $com \in Com(\Gamma)$, let us define upds(u, com) as upds(u, com) = u(1:), upds(u, skip) = u and upds(u, push(z')) = z'u.

For two IDs $(p, u), (q, u') \in ID_{\mathcal{T}}, a \in \Sigma_{\mathbb{I}}$ and $b \in \Sigma_{\mathbb{O}}, ((p, u), ab, (q, u')) \in \Rightarrow_{\mathcal{T}}$, written as $(p, u) \Rightarrow_{\mathcal{T}}^{ab} (q, u')$, if there exist a rule $(p, a, z) \to (q, b, com) \in \Delta$ such that z = u(0) and u' = upds(u, com). If \mathcal{T} is clear from the context, we abbreviate $\Rightarrow_{\mathcal{T}}^{ab}$ as \Rightarrow^{ab} . By definition, any ID $(p, \varepsilon) \in ID_{\mathcal{T}}$ has no successor. That is, there is no transition from an ID with empty stack. We define a run and the language $L(\mathcal{T}) \subseteq (\Sigma_{\mathbb{I}} \cdot \Sigma_{\mathbb{O}})^{\omega}$ of PDT \mathcal{T} as those of deterministic 0-TS $(ID_{\mathcal{T}}, (q_0, z_0), \Sigma_{\mathbb{I}} \cdot \Sigma_{\mathbb{O}}, \emptyset, \Rightarrow_{\mathcal{T}}, c)$ where c(s) = 2 for all $s \in ID_{\mathcal{T}}$. Let **PDT** be the class of PDT.

Example 3. Let us consider PDT $\mathcal{T} = (\{p\}, p, z_0, \Delta)$ over $\{a, b\}, \{a, b\}$ and $\{z_0, z\}$ where $\Delta = \{(p, a, z_0) \rightarrow (p, b, push(z))(p, b, z_0) \rightarrow (p, a, push(z))(p, a, z) \rightarrow (p, a, push(z))(p, b, z) \rightarrow (p, b, pop)\}$ Let $(\rho, w) \in ID^{\omega}_{\mathcal{T}} \times \{a, b\}^{\omega}$ be a pair of sequences where $\rho = (p, z_0)(p, zzz_0)(p, zzzz_0)\cdots$ and $w = aba^{\omega}$, then (ρ, w) is a run of \mathcal{T} .

Let $\#_a(w), \#_b(w) \in \mathbb{N}_0$ denote the number of a, b appearing in $w \in \{a, b\}^*$, respectively. $L(\mathcal{T})$ is the set of the sequence $w \in \{a, b\}^{\omega}$ that satisfies one of

Fig. 1. An example of run for a sequence $w = t_0 w_0 t_1 w_1 \cdots$

the following conditions: (i) $w = t_0 w_0 t_1 w_1 \cdots \in (\{ab, ba\} \times \{aa, bb\}^*)^{\omega}$ where for all $i \geq 0$, $t_i \in \{ab, ba\}$ and $w_i \in \{aa, bb\}^*$ such that $\#_b(w_i) - \#_a(w_i) = 2$. (ii) $w = t_0 w_0 t_1 w_1 \cdots t_n w_n \in (\{ab, ba\} \times \{aa, bb\}^*)^* \cdot (\{ab, ba\} \times \{aa, bb\}^{\omega})$ where for all $0 \leq i \leq n$, $t_i \in \{ab, ba\}$ and $w_i \in \{aa, bb\}^*$ such that $\#_b(w_i) - \#_a(w_i) = 2$ for $0 \leq i < n$ and $w_n \in \{aa, bb\}^{\omega}$ such that $\#_a(w') - \#_b(w') \geq 0$ for all subsequence w' = w(0:m) of w for all $m \in \mathbb{N}_0$.

3.2 Pushdown Automata

Definition 4. A nondeterministic pushdown automata (NPDA) over finite alphabets $\Sigma_{\mathbb{I}}$, $\Sigma_{\mathbb{O}}$ and Γ is $\mathcal{A} = (Q, Q_{\mathbb{I}}, Q_{\mathbb{O}}, q_0, z_0, \delta, c)$ where $Q, Q_{\mathbb{I}}, Q_{\mathbb{O}}$ are finite sets of states that satisfy $Q = Q_{\mathbb{I}} \cup Q_{\mathbb{O}}$ and $Q_{\mathbb{I}} \cap Q_{\mathbb{O}} = \emptyset$, $q_0 \in Q_{\mathbb{I}}$ is the initial state, $z_0 \in \Gamma$ is the initial stack symbol, $c: Q \to [n]$ is a coloring function where $n \in \mathbb{N}$ is the number of priorities and $\delta: Q \times \Sigma \times \Gamma \to \mathcal{P}(Q \times Com(\Gamma))$ is a finite set of transition rules, having one of the following forms:

```
- (q_{\mathbb{x}}, a_{\mathbb{x}}, z) \to (q_{\overline{\mathbb{x}}}, com) \ (input/output \ rules) 
 - (q_{\mathbb{x}}, \tau, z) \to (q'_{\mathbb{x}}, com) \ (\tau \ rules)
```

where $(\mathbf{z}, \overline{\mathbf{z}}) \in \{(\mathbf{l}, \mathbf{0}), (\mathbf{0}, \mathbf{l})\}, q_{\mathbf{z}}, q'_{\mathbf{z}} \in Q_{\mathbf{z}}, q_{\overline{\mathbf{z}}} \in Q_{\overline{\mathbf{z}}}, a_{\mathbf{z}} \in \Sigma_{\mathbf{z}}, z \in \Gamma \text{ and } com \in Com(\Gamma).$

We define $ID_{\mathcal{A}} = Q \times \Gamma^*$ and a transition relation $\vdash_{\mathcal{A}} \subseteq ID_{\mathcal{A}} \times (\Sigma \cup \{\tau\}) \times ID_{\mathcal{A}}$ as $((q,u),a,(q',u')) \in \vdash_{\mathcal{A}}$ iff there exist a rule $(p,a,z) \to (q,com) \in \delta$ and a sequence $u \in \Gamma^*$ such that z = u(0) and u' = upds(u,com). We write $(q,u) \vdash_{\mathcal{A}}^a (q',u')$ iff $((q,u),a,(q',u')) \in \vdash_{\mathcal{A}}$. We write $\vdash_{\mathcal{A}}^a$ as $\vdash_{\mathcal{A}}^a$ if \mathcal{A} is clear from comtext. We define a run and the language $L(\mathcal{A})$ of \mathcal{A} as those of TS $\mathcal{S}_{\mathcal{A}} = (ID_{\mathcal{A}}, (q_0, z_0), \Sigma, \{\tau\}, \vdash_{\mathcal{A}}, c')$ where c'((q,u)) = c(q) for every $(q,u) \in ID_{\mathcal{A}}$. We call a PDA \mathcal{A} deterministic if $\mathcal{S}_{\mathcal{A}}$ is deterministic. We call \mathcal{A} an m-NPDA (or

Fig. 2. States and transitions of \mathcal{A} . (A label $a, b \to c$ from q to q' means $(q, a, b) \to (q', c) \in \delta$.)

m-DPDA when \mathcal{A} is deterministic) if $\mathcal{S}_{\mathcal{A}}$ is an m-TS. We abbreviate 0-NPDA (0-DPDA) as NPDA (DPDA). Let **DPDA** and **NPDA** be the classes of DPDA and NPDA, respectively.

Example 5. Let us consider DPDA $\mathcal{A} = (\{q_0, q_\perp, q_{\hat{\mathbb{I}}}, q_o\}, \{q_0, q_{\hat{\mathbb{I}}}\}, \{q_\perp, q_o\}, q_0, z_0, \delta, c)$ over $\{a, b\}, \{a, b\}$ and $\{z_0, z\}$ where $c(q_\perp) = 3$, c(p) = 2 for $p = q_0, q_{\hat{\mathbb{I}}}, q_o$ and δ is defined as Fig. 2, in detail, $\delta = \{(p, x, z_0) \rightarrow (q_\perp, push(z)) \mid p \in \{q_0, q_{\hat{\mathbb{I}}}\}, x \in \{a, b\}\} \cup \{(q_\perp, x, z) \rightarrow (q_{\hat{\mathbb{I}}}, push(z)) \mid x \in \{a, b\}\} \cup \{(p, a, z) \rightarrow (p', push(z)), (p, b, z) \rightarrow (p', pop) \mid (p, p') \in \{(q_{\hat{\mathbb{I}}}, q_o), (q_o, q_{\hat{\mathbb{I}}})\}\}$. For example, we can check the sequence $(\rho, w) \in ID^{\omega}_{\mathcal{T}} \times \{a, b\}^{\omega}$ where $\rho = (q_0, z_0)(q_\perp, zz_0)(q_{\hat{\mathbb{I}}}, zzz_0)(q_o, zzzzz_0)(q_o, zzzzzz_0) \cdots$ and $w = aba^{\omega}$ is a run of \mathcal{A} . Because q_\perp appears only one times in $\rho, w \in L(\mathcal{A})$ holds.

 $L(\mathcal{A})$ is the set of the sequence $w \in \{a,b\}^{\omega}$ that satisfies one of the following conditions: (i) $w = t_0 w_0 t_1 w_1 \cdots \in (\{ab,ba\} \times \{a,b\}^*)^{\omega}$ where for all $i \geq 0$, $t_i \in \{ab,ba\}$ and $w_i \in \{a,b\}^*$ such that $\#_b(w_i) - \#_a(w_i) = 2$. (ii) $w = t_0 w_0 t_1 w_1 \cdots t_n w_n \in (\{ab,ba\} \times \{a,b\}^*)^* \cdot (\{ab,ba\} \times \{a,b\}^{\omega})$ where for all $0 \leq i \leq n$, $t_i \in \{ab,ba\}$ and $w_i \in \{a,b\}^*$ such that $\#_b(w_i) - \#_a(w_i) = 2$ for $0 \leq i < n$ and $w_n \in \{a,b\}^{\omega}$ such that $\#_a(w') - \#_b(w') \geq 0$ for all subsequence w' = w(0:m) of w for all $m \in \mathbb{N}_0$. To compare with PDT \mathcal{T} defined in Example 16, we can check $L(\mathcal{T}) \subseteq L(\mathcal{A})$.

Lemma 6. For a given m-DPDA A, we can construct a 0-DPDA A' such that L(A) = L(A')

3.3 Pushdown Games

Definition 7. A pushdown game of DPDA $\mathcal{A} = (Q, Q_{\S}, Q_{\circ}, q_{0}, z_{0}, \delta, c)$ over $\Sigma_{\S}, \Sigma_{\circ}$ and Γ is $\mathcal{G}_{\mathcal{A}} = (V, V_{\S}, V_{\circ}, E, C)$ where $V = Q \times \Gamma^{*}$ is the set of vertices with $V_{\S} = Q_{\S} \times \Gamma^{*}, V_{\circ} = Q_{\circ} \times \Gamma^{*}, E \subseteq V \times V$ is the set of edges defined as $E = \{(v, v') \mid v \vdash^{a} v' \text{ for some } a \in \Sigma_{\S} \cup \Sigma_{\circ}\}$ and $C : V \to [n]$ is the coloring function such that C((q, u)) = c(q) for all $(q, u) \in V$.

The game starts with some $(q_0, z_0) \in V_{i}$. When the current vertex is $v \in V_{i}$, Player I chooses a successor $v' \in V_{o}$ of v as the next vertex. When the current vertex is $v \in V_{o}$, Player II chooses a successor $v' \in V_{i}$ of v. Formally, a finite or

infinite sequence $\rho \in V^{\infty}$ is valid if $\rho(0) = (q_0, z_0)$ and $(\rho(i-1), \rho(i)) \in E$ for every $i \geq 1$. A play of $\mathcal{G}_{\mathcal{A}}$ is an infinite and valid sequence $\rho \in V^{\omega}$. Let PL be the set of plays. A play $\rho \in PL$ is winning for Player I iff $\min\{m \in [n] \mid \text{there exist an infinite number of } i \geq 0 \text{ such that } c(\rho(i)) = m\}$ is even.

By the definition of $\mathcal{G}_{\mathcal{A}}$, the following lemma holds.

Lemma 8. Let $f_1: PL^{\omega} \to (Q \times Com(\Gamma))^{\omega}$ and $f_2: PL^{\omega} \to \Sigma^{\omega}$ be the functions defined as follows. For every play $\rho = (q_0, u_0)(q_1, u_1) \cdots \in PL$ of $\mathcal{G}_{\mathcal{A}}$,

- $f_1(\rho) = (q_0, com_0)(q_1, com_1) \cdots \in (Q \times Com)^{\omega} \text{ where } u_{i+1} = upds(u_i, com_i)$ for all $i \geq 0$ and
- $-f_2(\rho) = w \text{ where } \rho(i) \vdash^{w(i)} \rho(i+1) \text{ for all } i \geq 0.$

Then, f_1 and f_2 are well-defined and both of f_1 and f_2 are injections.

[Walukiewucz, 2001] proved that we can construct a PDT \mathcal{T} that gives a winning strategy of $\mathcal{G}_{\mathcal{A}}$, that is, $L(\mathcal{T}) = \{f_1(\rho) \mid \rho \text{ is winning for Player I } \}$.

Theorem 9. [Walukiewucz, 2001] If player I has a winning strategy of $\mathcal{G}_{\mathcal{A}}$, we can construct a PDT \mathcal{T} over $Q_{\hat{\mathfrak{g}}} \times Com(\Gamma)$, $Q_{\mathfrak{o}} \times Com(\Gamma)$ and a stack alphabet Γ' that gives a winning strategy of $\mathcal{G}_{\mathcal{A}}$. That is, $\rho \in PL$ is winning for Player I iff $f_1(\rho) \in L(T)$.

By Lemma 8, a winning strategy can be also given as the set of sequences $w \in \Sigma^{\omega}$ such that the play $f_2^{-1}(w)$ is winning. Thus, we can obtain the following lemma in a similar way to Theorem 9.

Lemma 10. If player I has a winning strategy of $\mathcal{G}_{\mathcal{A}}$, we can construct a PDT \mathcal{T} over $\Sigma_{\tilde{i}}, \Sigma_{\circ}$ and Γ' that gives a winning strategy of $\mathcal{G}_{\mathcal{A}}$. That is, $\rho \in PL$ is winning for Player I iff $f_2(\rho) \in L(T)$.

4 Realizability problems for PDA and PDT

For a specification S and an implementation I, we write $I \models S$ if $L(I) \subseteq L(S)$.

Definition 11. Realizability problem REAL(S, \mathcal{I}) for a class of specifications S and of implementations \mathcal{I} : For a specification $S \in S$, is there an implementation $I \in \mathcal{I}$ such that $I \models S$?

Example 12. By Examples 16 and 5, $L(\mathcal{T}) \subseteq L(\mathcal{A})$ holds for PDT \mathcal{T} and DPDA \mathcal{A} defined in the examples. Thus, $\mathcal{T} \models \mathcal{A}$ holds. Let us consider $\mathcal{A}' = (\{q_0, q_\perp, q_{\bar{i}}, q_{o}\}, \{q_0, q_{\bar{i}}\}, \{q_\perp, q_{o}\}, q_0, z_0, \delta, c')$ which is obtained from \mathcal{A} but the coloring function c' is defined as $c'(q_\perp) = 1$ and c'(p) = 2 for $p = q_0, q_{\bar{i}}, q_{o}$. For example, the pair of the sequences $(\rho, w) \in ID^{\omega}_{\mathcal{A}} \times \Sigma^{\omega}$ in Example 5 is a run of \mathcal{A}' but $w \notin L(\mathcal{A})$ because ρ has only one q_\perp in its states. We can check that all sequence $w' \in (\{a\} \cdot \Sigma)^{\omega}$ is not in $L(\mathcal{A}')$ because the run (ρ', w') of w' never visit q_\perp over one times. Then, we can check there are no PDT \mathcal{T} such that $\mathcal{T} \models \mathcal{A}$ because every language $L(\mathcal{T})$ of PDT \mathcal{T} always includes a word $w \in (\{a\} \cdot \Sigma)^{\omega}$, and thus there exists a word $w \in L(\mathcal{T}) \cap \overline{L(\mathcal{A})}$, it means $L(\mathcal{T}) \not\subseteq L(\mathcal{A})$.

Theorem 13. Real(DPDA, PDT) is decidable.

Proof. Let \mathcal{A} be a given DPDA. By Lemma 10, we can construct a PDT \mathcal{T} such that $w \in L(T)$ iff $f_2^{-1}(w)$ is winning play of $\mathcal{G}_{\mathcal{A}}$. By the definition of f_2 , $\rho(i) \vdash^{w(i)} \rho(i+1)$ holds for all $i \geq 0$ where $\rho = f_2^{-1}(w)$. Then, $w \in L(\mathcal{A})$ holds, and thus $\mathcal{T} \models \mathcal{A}$. Hence, we can say $\mathcal{T} \models \mathcal{A}$ iff player I has a winning strategy for the game $\mathcal{G}_{\mathcal{A}}$. Because there is an algorithm for constructing \mathcal{T} in [Walukiewucz, 2001], REAL(**DPDA**, **PDT**) is decidable.

Theorem 14. Real(NPDA, PDT) is undecidable.

Proof. We prove the theorem by a reduction from the universality problem of NPDA, which is undecidable. For a given NPDA $\mathcal{A} = (Q, Q_{\mathbb{I}}, Q_{\circ}, q_{0}, z_{0}, \delta, c)$ over $\Sigma_{\mathbb{I}}, \Sigma_{\circ}$ and Γ , we can construct an NPDA $\mathcal{A}' = (Q \times [2], Q \times \{1\}, Q \times \{2\}, q_{0}, z_{0}, \delta', c')$ over $\Sigma'_{\mathbb{I}}, \Sigma'_{\circ}$ and Γ where $\Sigma'_{\mathbb{I}} = \Sigma_{\mathbb{I}} \cup \Sigma_{\circ}, \Sigma'_{\circ}$ is an arbitrary (nonempty) alphabet, c'((q, 1)) = c'((q, 2)) = c(q) for all $q \in Q$ and δ' satisfies that $((q, 1), a, z) \to ((q', 2), com) \in \delta$ iff $(q, a, z) \to (q', com) \in \delta'$, and $((q', 2), b, z) \to ((q', 1), skip) \in \delta'$ for all $b \in \Sigma'_{\circ}$ and $z \in \Gamma$.

We show $L(\mathcal{A}) = (\Sigma_{\sharp}')^{\omega}$ iff there exists \mathcal{T} such that $\mathcal{T} \models \mathcal{A}$. By the construction of \mathcal{A}' , $L(\mathcal{A}') = \langle L(\mathcal{A}), (\Sigma_{\circ}')^{\omega} \rangle$ holds. If $L(\mathcal{A}) = (\Sigma_{\sharp}')^{\omega}$, then $L(\mathcal{A}') = \langle (\Sigma_{\sharp}')^{\omega}, (\Sigma_{\circ}')^{\omega} \rangle$ and thus $\mathcal{T} \models \mathcal{A}$ holds for every \mathcal{T} . Assume that $L(\mathcal{A}) \neq (\Sigma_{\sharp}')^{\omega}$. Then, there exists a word $w \in (\Sigma_{\sharp}')^{\omega}$ such that $w \notin L(\mathcal{A})$. For any PDT \mathcal{T} and any $u \in (\Sigma_{\sharp}')^{\omega}$, there is $v \in (\Sigma_{\circ}')^{\omega}$ such that $\langle u, v \rangle \in L(\mathcal{A}')$. On the other hand, $\langle w, v \rangle \notin L(\mathcal{A}')$ holds for any $v \in (\Sigma_{\circ}')^{\omega}$. Hence, $\mathcal{T} \not\models \mathcal{A}'$ holds for any PDT \mathcal{T} . This completes the reduction and the realizability problem for PDT and NPDA is undecidable.

5 Register Pushdown Transducers and Register Pushdown Automata

5.1 Data words and registers

We assume a countable set D of data values. For finite alphabets $\Sigma_{\mathbb{I}}, \Sigma_{\mathbb{O}}$, an infinite sequence $(a_1^{\mathbb{I}}, d_1)(a^{\mathbb{O}}, d_1') \cdots \in ((\Sigma_{\mathbb{I}} \times D) \cdot (\Sigma_{\mathbb{O}} \times D))^{\omega}$ is called a data word. We let $DW(\Sigma_{\mathbb{I}}, \Sigma_{\mathbb{O}}, D) = ((\Sigma_{\mathbb{I}} \times D) \cdot (\Sigma_{\mathbb{O}} \times D))^{\omega}$.

For $k \in \mathbb{N}_0$, a mapping $\theta : [k] \to D$ is called an assignment (of data values to k registers). Let Θ_k denote the collection of assignments to k registers. We assume $\bot \in D$ as the initial data value and let $\theta_\bot^k \in \Theta_k$ be the initial assignment such that $\theta_\bot^k(i) = \bot$ for all $i \in [k]$.

We denote $Tst_k = \mathscr{P}([k] \cup \{top\})$ and $Asgn_k = \mathscr{P}([k])$ where $top \notin \mathbb{N}$ is a unique symbol that represents a stack top value. Tst_k is the set of guard conditions. For $tst \in Tst_k$, $\theta \in \Theta_k$ and $d, e \in D$, we denote $(\theta, d, e) \models tst$ if $(\theta(i) = d \Leftrightarrow i \in tst)$ and $(e = d \Leftrightarrow top \in tst)$ hold. In the definitions of register pushdown transducer and automaton in the next section, the data values d and e correspond to an input data value and a stack top data value, respectively. $Asgn_k$ is the set of assignment conditions. For $asgn \in Asgn_k$, $\theta, \theta' \in \Theta_k$ and $d \in D$, let $\theta[asgn \leftarrow d]$ be the assignment θ' such that $\theta'(i) = d$ for $i \in asgn$ and $\theta'(i) = \theta(i)$ for $i \notin asgn$.

5.2 Register pushdown transducers

Definition 15. A k-register pushdown transducer (k-RPDT) over finite alphabets $\Sigma_{\mathbb{I}}, \Sigma_{\mathbb{O}}$ and an infinite set D of data values is $\mathcal{T} = (P, p_0, \Delta)$ where P is a finite set of states, $p_0 \in P$ is the initial state, $\Delta : P \times \Sigma_{\mathbb{I}} \times Tst_k \to P \times \Sigma_{\mathbb{O}} \times Asgn_k \times [k] \times Com([k])$ is a finite set of deterministic transition rules.

D is used as a stack alphabet. For $u \in D^+$, $\theta' \in \Theta_k$ and $com \in Com([k])$, let us define $upds(u,\theta',com)$ as $upds(u,\theta',pop) = u(1:)$, $upds(u,\theta',skip) = u$ and $upds(u,\theta',push(j')) = \theta'(j')u$. Let $ID_{\mathcal{T}} = P \times \Theta_k \times D^*$ and $\Rightarrow_{\mathcal{T}} \subseteq ID_{\mathcal{T}} \times ((\Sigma_{\mathbb{I}} \times D) \cdot (\Sigma_{\mathbb{Q}} \times D)) \times ID_{\mathcal{T}}$ be the transition relation of \mathcal{T} such that $((p,\theta,u),(a,d^{\mathbb{I}})(b,d^{\mathbb{Q}}),(q,\theta',u')) \in \Rightarrow_{\mathcal{T}}$ iff there exists a rule $(p,a,tst) \to (q,b,asgn,j,com) \in \Delta$ that satisfies the following conditions: $(d^{\mathbb{I}},u(0),\theta) \models tst$, $\theta' = \theta[asgn \leftarrow d^{\mathbb{I}}], \theta'(j) = d^{\mathbb{Q}}$ and $u' = upds(u,\theta',com)$, and we write $(p,\theta,u) \Rightarrow_{\mathcal{T}}^{(a,d^{\mathbb{I}})(b,d^{\mathbb{Q}})} (q,\theta',u')$. If \mathcal{T} is clear from the context, we abbreviate $\Rightarrow_{\mathcal{T}}^{(a,d^{\mathbb{I}})(b,d^{\mathbb{Q}})}$ as $\Rightarrow^{(a,d^{\mathbb{I}})(b,d^{\mathbb{Q}})}$.

A run and the language $L(\mathcal{T})$ of \mathcal{T} are those of deterministic 0-TS $(ID_{\mathcal{T}}, (q_0, \theta_{\perp}^k, \perp), (\Sigma_{\mathbb{I}} \times D) \cdot (\Sigma_{\mathbb{Q}} \times D), \emptyset, \Rightarrow_{\mathcal{T}}, c)$ where c(s) = 2 for all $s \in ID_{\mathcal{T}}$. Let $\mathbf{RPDT}[k]$ be the class of k-RPDT and $\mathbf{RPDT} = \bigcup_{k \in \mathbb{N}_0} \mathbf{RPDT}[k]$.

Example 16. Let us consider 1-RPDT $\mathcal{T} = (\{p, p'\}, p, z_0, \Delta)$ over $\{a\}, \{b\}$ and $\{z_0, z\}$ where $\Delta = \{(p, a, tst) \rightarrow (p', b, \{1\}, 1, push(1))(p', a, \{\}) \rightarrow (p, b, \{1\}, 1, push(1))(p', a, \{1\}) \rightarrow (p, b, \{1\}, 1, push(1))(p, a, \{top\}) \rightarrow (p', b, \{1\}, 1, pop)(p, a, \{1, top\}) \rightarrow (p', b, \{1\}, 1, pop)\}$ Let $(\rho, w) \in ID^{\omega}_{\mathcal{T}} \times \{a, b\}^{\omega}$ be a pair of sequences where $\rho = (p, z_0)(p, zz_0)(p, zzz_0)(p, zzzz_0) \cdots$ and $w = aba^{\omega}$, then (ρ, w) is a run of \mathcal{T} .

Let $\#_a(w), \#_b(w) \in \mathbb{N}_0$ denote the number of a, b appearing in $w \in \{a, b\}^*$, respectively. $L(\mathcal{T})$ is the set of the sequence $w \in \{a, b\}^\omega$ that satisfies one of the following conditions: (i) $w = t_0 w_0 t_1 w_1 \cdots \in (\{ab, ba\} \times \{aa, bb\}^*)^\omega$ where for all $i \geq 0, t_i \in \{ab, ba\}$ and $w_i \in \{aa, bb\}^*$ such that $\#_b(w_i) - \#_a(w_i) = 2$. (ii) $w = t_0 w_0 t_1 w_1 \cdots t_n w_n \in (\{ab, ba\} \times \{aa, bb\}^*)^* \cdot (\{ab, ba\} \times \{aa, bb\}^\omega)$ where for all $0 \leq i \leq n, t_i \in \{ab, ba\}$ and $w_i \in \{aa, bb\}^*$ such that $\#_b(w_i) - \#_a(w_i) = 2$ for $0 \leq i < n$ and $w_n \in \{aa, bb\}^\omega$ such that $\#_a(w') - \#_b(w') \geq 0$ for all subsequence w' = w(0:m) of w for all $m \in \mathbb{N}_0$.

5.3 Register pushdown automata

Definition 17. A nondeterministic k-register pushdown automaton (k-NRPDA) over $\Sigma_{\mathbb{I}}$, $\Sigma_{\mathbb{O}}$ and D is $\mathcal{A} = (Q, Q_{\mathbb{I}}, Q_{\mathbb{O}}, q_0, \delta, c)$, where

- Q is a finite set of states,
- $-Q_{\mathbb{i}} \cup Q_{\mathbb{o}} = Q, Q_{\mathbb{i}} \cap Q_{\mathbb{o}} = \emptyset,$
- $-q_0 \in Q$ is the initial state, and
- $-\delta: Q \times (\Sigma \cup \{\tau\}) \times Tst_k \to \mathscr{P}(Q \times Asgn_k \times Com([k]))$ is a transition function having one of the forms:
 - $(q_{\mathbb{Z}}, a_{\mathbb{Z}}, tst) \rightarrow (q_{\overline{\mathbb{Z}}}, asgn, com) \ (input/output \ rule)$

I/O	State	Stack	
t_0 a, b	<i>p</i>	2	Z ₀
(a, a	> p	Z	Z ₀
$w_0 \neq b, b$	> p	Z Z Z	z_0
$\begin{pmatrix} b, b \\ b, b \end{pmatrix}$	> p	Z 2	Z ₀
t_1 b, a	> n	2	Z ₀
$v_1 \neq b, a$ $w_1 \neq b, b$	> n		\mathbf{z}_0
(> n		\mathbf{z}_0
t_2 b,a	> p	Z 2	Z ₀
$w_2 \begin{cases} a, a \\ \vdots \end{cases}$	p	Z Z Z	z ₀
(.	÷	:	_

Fig. 3. An example of run for a sequence $w = t_0 w_0 t_1 w_1 \cdots$

 $\begin{array}{l} \bullet \ \, (q_{\mathtt{x}},\tau,tst) \to (q'_{\mathtt{x}},asgn,com) \,\, (\tau \,\, rule) \\ where \,\, (\mathtt{x},\overline{\mathtt{x}}) \,\, \in \,\, \{(\mathring{\mathtt{l}},\mathtt{0}),(\mathtt{0},\mathring{\mathtt{l}})\}, \,\, q_{\mathtt{x}},q'_{\mathtt{x}} \,\, \in \,\, Q_{\mathtt{x}},q_{\overline{\mathtt{x}}} \,\, \in \,\, Q_{\overline{\mathtt{x}}},a_{\mathtt{x}} \,\, \in \,\, \varSigma_{\mathtt{x}}, \,\, tst \,\, \in \,\, Tst_k, \\ asgn \,\, \in \,\, Asgn_k \,\, and \,\, com \,\, \in \,\, Com([k]). \end{array}$

 $-c:Q\to [n]$ where $n\in\mathbb{N}$ is the number of priorities.

Let $ID_{\mathcal{A}} = Q \times \Theta_k \times D^*$. We define the transition relation $\vdash_{\mathcal{A}} \subseteq ID_{\mathcal{A}} \times ((\Sigma \cup \{\tau\}) \times D) \times ID_{\mathcal{A}}$ as $((q, \theta, u), (a, d), (q', \theta', u')) \in \vdash_{\mathcal{A}}$, written as $(q, \theta, u) \vdash^{(a, d)} (q', \theta', u')$, iff there exists a rule $(p, a, tst) \to (q, asgn, com) \in \delta$ such that $(d, u(0), \theta) \models tst$, $\theta' = \theta[asgn \leftarrow d]$ and $u' = upds(u, \theta', com)$. We write $\vdash_{\mathcal{A}}^{(a, d)}$ as $\vdash^{(a, d)}$ if \mathcal{A} is clear from the context. For $s, s' \in ID_{\mathcal{A}}$ and $w \in ((\Sigma_{\$} \times D) \cdot (\Sigma_{\circ} \times D))^{m}$, we write $s \vdash^{w} s'$ if there exists $\rho \in ID_{\mathcal{A}}^{m+1}$ such that $\rho(0) = s, \rho(m) = s'$, and $\rho(0) \vdash^{w(0)} \cdots \vdash^{w(m-1)} \rho(m)$.

A run and the language $L(\mathcal{A})$ of k-DRPDA \mathcal{A} are those of TS $\mathcal{S}_{\mathcal{A}} = (ID_{\mathcal{A}}, (q_0, \theta_{\perp}^k, \perp), \Sigma \times D, \{\tau\} \times D, \Rightarrow_{\mathcal{A}}, c')$ where $c'((q, \theta, u)) = c(q)$ for all $(q, \theta, u) \in ID_{\mathcal{A}}$. We call an \mathcal{A} deterministic, or k-DRPDA, if $\mathcal{S}_{\mathcal{A}}$ is deterministic. We call an \mathcal{A} (m, k)-NRPDA (or an (m, k)-DRPDA when \mathcal{A} is deterministic) if $\mathcal{S}_{\mathcal{A}}$ is an m-TS. We abbreviate (0, k)-NRPDA ((0, k)-DPDA) as k-NRPDA (k-DRPDA).

5.4 Visibly RPDA

Let **DRPDA** and **NRPDA** be the unions of k-DRPDA and k-NRPDA for all $k \in \mathbb{N}_0$, respectively. Let $Com_v = \{pop, skip, push\}$ and $v : Com([k]) \to Com_v$ be the function such that v(push(j)) = push for $j \in [k]$ and v(com) = com otherwise. We say that an (m, k)-RPDA \mathcal{A} visibly manipulates its stack (or a visibly RPDA) if its input and output alphabets are $\Sigma_{\mathbb{I}} \times Com_v$ and $\Sigma_{\mathbb{O}} \times Com_v$, respectively, and every rule of \mathcal{A} has the form $(q, (a, v(com)), tst) \to (q', asgn, com)$. Let **DRPDAv** be the union of visibly k-DRPDA for all $k \in \mathbb{N}_0$, respectively.

6 Realizability problems for RPDA and RPDT

6.1 Finite actions

For $k \in \mathbb{N}_0$, we define the set of finite input actions as $A_k^{\S} = \Sigma_{\S} \times Tst_k$ and the set of finite output actions as $A_k^{\circ} = \Sigma_{\circ} \times Asgn_k \times [k] \times Com([k])$. A sequence $w = ((a_0^{\S}, skip), d_0^{\S})((a_0^{\circ}, v(com_0)), d_0^{\circ}) \cdots \in DW(\Sigma_{\S} \times Com_v, \Sigma_{\circ} \times Com_v, D)$ is compatible with a sequence $\overline{a} = (a_0^{\S}, tst_0)(a_0^{\circ}, asgn_0, j_0, com_0) \cdots \in (A_k^{\S} \cdot A_k^{\circ})^{\omega}$ iff there exists a sequence $(\theta_0, u_0)(\theta_1, u_1) \cdots \in (\Theta_k \times D^*)^{\omega}$, called a witness, such that $\theta_0 = \theta_{\bot}^k$, $u_0 = \bot$, $(\theta_i, d_i^{\S}, u_i(0)) \models tst_i, \theta_{i+1} = \theta_i[asgn_i \leftarrow d_i^{\S}], \theta_{i+1}(j_i) = d_i^{\circ}$ and $u_{i+1} = upds(u_i, \theta_{i+1}, com_i)$. Let $Comp(\overline{a}) = \{w \in DW(\Sigma_{\S} \times Com_v, \Sigma_{\circ} \times Com_v, D) \mid w \text{ is compatible with } \overline{a} \}$. For a specification $S \subseteq DW(\Sigma_{\S} \times Com_v, \Sigma_{\circ} \times Com_v, D)$, we define $W_{S,k} = \{\overline{a} \mid Comp(\overline{a}) \subseteq S\}$.

Theorem 18. For a specification $S \subseteq DW(\Sigma_{\mathbb{I}} \times Com_v, \Sigma_{\mathbb{O}} \times Com_v, D)$, the following statements are equivalent.

- There exists a k-RPDT \mathcal{T} such that $L(\mathcal{T}) \subseteq S$.
- There exists a PDT \mathcal{T}' such that $L(\mathcal{T}') \subseteq W_{S,k}$.

For a data word $w \in DW(\Sigma_{\mathbb{I}} \times Com_v, \Sigma_{\mathbb{O}} \times Com_v, D)$ and a sequence $\overline{a} \in (A_k^{\mathbb{I}} \cdot A_k^{\mathbb{O}})^{\omega}$ such that for each $i \geq 0$, there exists $(a, comv) \in \Sigma \times Com_v$ and we can write w(i) = ((a, skip), d) and $\overline{a}(i) = (a, tst)$ if i is even and w(i) = ((a, v(com)), d) and $\overline{a}(i) = (a, asgn, j, com)$ if i is odd, we define $w \otimes \overline{a} \in DW(A_k^{\mathbb{I}} \times Com_v, A_k^{\mathbb{O}} \times Com_v, D)$ as $w \otimes \overline{a}(i) = ((\overline{a}(i), comv), d)$ where w(i) = ((a, comv), d).

6.2 Decidability and undecidability of realizability problems

Lemma 19. $L_k = \{w \otimes \overline{a} \mid w \in Comp(\overline{a})\}$ is definable as the language of a (2, k+2)-DRPDA.

Proof sketch. Let (2, k+2)-DRPDA $\mathcal{A}_k = (Q, Q_{\sharp}, Q \setminus Q_{\sharp}, p, \delta_k, c_k)$ over $A_k^{\sharp}, A_k^{\circ}$ and D where $Q = \{p, q\} \cup (Asgn_k \times [k] \times Com([k])) \cup [k], Q_{\sharp} = \{p\}$ and $c_k(s) = 2$ for every $s \in Q$ and δ_k consists of rules of the form

$$(p, ((a_{\$}, tst), skip), tst \cup tst') \to (q, \{k+1\}, skip)$$

$$\tag{1}$$

$$(q, ((a_{\circ}, asgn, j, com), v(com)), tst'') \rightarrow ((asgn, j, com), \{k+2\}, skip)$$
 (2)

$$((asgn, j, com), \tau, \{k+1\} \cup tst'') \to (j, asgn, com)$$
(3)

$$(j, \tau, \{j, k+2\} \cup tst'') \to (p, \emptyset, skip)$$

$$\tag{4}$$

for all $(a_{\mathbb{i}}, tst) \in A_k^{\mathbb{i}}$, $(a_{\mathbb{o}}, asgn, j, com) \in A_k^{\mathbb{o}}$, $tst' \subseteq \{k+1, k+2\}$ and $tst'' \in Tst_{k+2}$. We can show $L(\mathcal{A}_k) = L_k$.

Lemma 20. For a specification S defined by some visibly k'-DRPDA, $L_{\overline{S},k} = \{w \otimes \overline{a} \mid w \in Comp(\overline{a}) \cap \overline{S}\}$ is definable as the language of a(4, k+k'+4)-DRPDA.

Proof. Let $L_{\overline{S}} = \{w \otimes \overline{a} \mid w \in \overline{S}\}$. We can construct visibly $\mathcal{A}_{\overline{S}}$ be a k'-DRPDA such that $L(\mathcal{A}_{\overline{S}}) = L_{\overline{S}}$. Let \mathcal{A}_k be the (2, k+2)-DRPDA such that $L(\mathcal{A}_k) = L_k$, which is given in Lemma 19. Because $L_{\overline{S},k} = L_k \cap L_{\overline{S}}$ and both L_k and $L_{\overline{S}}$ are visibly DRPDA, it is enough to show that we can construct a visibly (4, k+k'+4)-DRPDA \mathcal{A} such that $L(\mathcal{A}) = L(\mathcal{A}_{\overline{S}}) \cap L(\mathcal{A}_k)$.

We can convert \mathcal{A}_k to a $(2, k_1)$ -DRPDA $\mathcal{A}_1 = (Q_1, Q_1^{\S}, Q_1^{\circ}, Q_1^{\circ}, \delta_1, c_1)$ over $A_{k_1+k_2+2}^{\S} \times Com_v, A_{k_1+k_2+2}^{\circ} \times Com_v$ and $A_{\overline{S}}$ to a visibly k_2 -DRPDA $\mathcal{A}_2 = (Q_2, Q_2^{\S}, Q_2^{\circ}, Q_2^{\circ}, \delta_2, c_2)$ over $A_{k_1+k_2+2}^{\S} \times Com_v, A_{k_1+k_2+2}^{\circ} \times Com_v$ where $c_1(q)$ is even for every $q \in Q_1$ and every rule in δ_1 consists of several groups of three consecutive rules having the following forms:

$$(q_1, (a, v(com_1)), tst_1) \to (q_2, asgn_1, skip)$$
 (15')

$$(q_2, \tau, tst_2) \rightarrow (q_3, asgn_2, com_1) \tag{16'}$$

$$(q_3, \tau, tst_3) \rightarrow (q_4, asgn_3, skip)$$
 (17')

Note that (15'), (16') and (17') correspond to (15), (16) and (17), respectively, and (14) can be treated as the triple sequencial rules by adding meaningless τ rules.

We construct $(4, k_1 + k_2 + 2)$ -DRPDA $\mathcal{A} = (Q_1 \times Q_2 \times [5], Q_1^{i} \times Q_2^{i} \times [5], Q_1^{o} \times Q_2^{o} \times [5], (q_0^1, q_0^2, 1), \delta, c)$ where $c((q_1, q_2, i)) = c_2(q_2)$ for all $(q_1, q_2, i) \in Q$. For all rules

$$(q_1, (a, v(com_1)), tst_1) \to (q_2, asgn_1, skip) \in \delta_1$$

$$(5)$$

$$(q_2, \tau, tst_2) \to (q_3, asgn_2, com_1) \in \delta_1 \tag{6}$$

$$(q_3, \tau, tst_3) \to (q_4, asgn_3, skip) \in \delta_1 \tag{7}$$

$$(q, (a, v(com)), tst) \rightarrow (q', asgn, com) \in \delta_2$$
 (8)

 $(v(com_1) = v(com))$ for $a \in A_{k_1+k_2+2}^{\emptyset} \cup A_{k_1+k_2+2}^{\emptyset}$, let $tst^{+k_1} = \{i+k_1 \mid i \in tst\} \cup \{top \mid top \in tst \setminus [k_1]\}$, $asgn^{+k_1} = \{i+k_1 \mid i \in asgn\}$ and $com^{+k_1} = push(j+k_1)$ if com = push(j) and $com^{+k_1} = com$ otherwise, then δ consists of the rules

$$((q_1, q, 1), \tau, tst' \cup \{top\}) \rightarrow ((q_1, q, 2), \{k_1 + k_2 + 1\}, pop)$$
 (9)

$$((q_1, q, 2), \tau, tst' \cup \{top\}) \rightarrow ((q_1, q, 3), \{k_1 + k_2 + 2\}, push(k_1 + k_2 + 1)) (10)$$

$$((q_1, q, 3), (a, v(com_1)), tst_1 \cup ((tst^{+k_1} \setminus \{top\}) \cup Top))$$

$$\rightarrow ((q_2, q', 4), asgn_1 \cup asgn^{+k_1}, com^{+k_1})$$
 (11)

$$((q_2, q, 4), \tau, tst_2 \cup tst') \rightarrow ((q_3, q', 5), asgn_2, com_1)$$
 (12)

$$((q_3, q', 5), \tau, tst_3 \cup tst') \rightarrow ((q_4, q', 1), asgn_3, skip)$$
 (13)

for all $tst' \in Tst_{k_1+k_2+2}$ where $Top = \{k_1 + k_2 + 2\}$ if $top \in tst$ and $Top = \emptyset$ otherwise. We can show $L(A) = L(A_1) \cap L(A_2)$.

Lemma 21. $W_{S,k} = \overline{Lab(L_{\overline{S},k})}$.

Proof. For every $\overline{a} \in (A_k^{\mathfrak{g}} A_k^{\mathfrak{o}})^{\omega}$, $\overline{a} \notin W_{S,k} \Leftrightarrow Comp(\overline{a}) \not\subseteq S \Leftrightarrow \exists w.w \in Comp(\overline{a}) \cap \overline{S} \Leftrightarrow \exists w.w \otimes \overline{a} \in L_{\overline{S},k} \Leftrightarrow \overline{a} \in Lab(L_{\overline{S},k})$. Thus, $W_{S,k} = \overline{Lab(L_{\overline{S},k})}$ holds.

Theorem 22. For all $k \ge 0$, REAL(**DRPDAv**, **RPDT**[k]) is decidable.

Proof. By Lemma 20, $L_{\overline{S},k}$ is definable by some visibly DRPDA. Because every language recognized by a visibly DRPDA can be converted to the language of visibly DPDA by taking the projection on its label, $W_{S,k}$ is definable by some visibly DPDA by Lemma 21. By Theorem 18, we can check REAL(**DPDA**, **PDT**) for $W_{S,k}$, which is shown to be decidable in Theorem 13, instead of checking REAL(**DRPDAv**, **RPDT**[k]).

Theorem 23. For all $k \geq 0$, Real(NRPDA, RPDT[k]) is undecidable.

Proof. We can easily reduce the problem from Real(NPDA, PDT), whose undecidability is proved in Theorem 14.

7 Conclusion

References

A Appendix

A.1 A full proof of Lemma 6

Lemma 6. For a given m-DPDA A, we can construct a 0-DPDA A' such that L(A) = L(A')

Proof. For a given m-DPDA \mathcal{A} , we can construct an 2m-DPDA \mathcal{A}' such that $L(\mathcal{A}) = L(\mathcal{A}')$ and \mathcal{A}' has no skip rule by replacing every skip rule $(q, a, z) \to (q', skip)$ of \mathcal{A} to a pair of push and pop rules $(q, a, z) \to (q'', push(z')), (q, \tau, z') \to (q', pop)$ of \mathcal{A}' for $a \in \mathcal{E} \cup \{\tau\}$. Thus, we show the lemma for m-DPDA \mathcal{A} that has no skip rule by the induction on m. The case m = 0 is obvious. For an arbitrary m, m-DPDA $\mathcal{A} = (Q, Q_{\$}, Q_{0}, q_{0}, z_{0}, \delta, c)$ over $\mathcal{E}_{\$}, \mathcal{E}_{0}$ and Γ can be converted to an (m-1)-DPDA \mathcal{A}' over $\mathcal{E}_{\$}, \mathcal{E}_{0}$ and $\Gamma \cup \Gamma^{2}$ such that $L(\mathcal{A}) = L(\mathcal{A}')$. Let $\mathcal{A}' = (Q \times (\Gamma \cup \{\bot\}), Q_{\$} \times (\Gamma \cup \{\bot\}), Q_{\circ} \times (\Gamma \cup \{\bot\}), Q_{\circ}, \mathcal{E}')$ such that

- $-(q, a, z_1) \to (q', pop), (q', \tau, z_2) \to (q'', pop) \in \delta \text{ iff } ((q, \bot), a, (z_1, z_2)) \to ((q'', \bot), pop), ((q, z_c), a, (z_c, z_1)) \to ((q'', z_2), pop) \in \delta' \text{ for all } z_c \in \Gamma.$
- $\begin{array}{l} -(q,a,z_1) \rightarrow (q',push(z')) \in \delta', (q',\tau,z') \rightarrow (q'',pop) \in \delta \text{ or } (q,\tau,z_1) \rightarrow \\ (q',push(z')) \in \delta', (q',a,z') \rightarrow (q'',pop) \in \delta \text{ iff } ((q,\bot),a,(z_1,z_2)) \rightarrow \\ ((q'',\bot),skip), ((q,z_c),a,(z_c,z_1)) \rightarrow ((q'',z_c),skip) \in \delta' \text{ for all } z_c,z_2 \in \Gamma. \end{array}$
- $\begin{array}{lll} -(q,\tau,z_1) & \rightarrow & (q',push(z')), (q',a,z') & \rightarrow & (q'',push(z'')) \in \delta & \text{iff} \\ ((q,\bot),a,(z_1,z_2)) & \rightarrow & ((q'',\bot),push((z'',z'))), & ((q,z_c),a,(z_c,z_1)) & \rightarrow & \\ ((q'',z''),pop) \in \delta' & \text{for all } z_c \in \Gamma. \end{array}$

A.2 A full proof of Lemma 19

Lemma 19. $L_k = \{w \otimes \overline{a} \mid w \in Comp(\overline{a})\}$ is definable as the language of a (2, k+2)-DRPDA.

Proof. Let (2, k+2)-DRPDA $\mathcal{A}_k = (Q, Q_{\$}, Q \setminus Q_{\$}, p, \delta_k, c_k)$ over $A_k^{\$}, A_k^{\circ}$ and D where $Q = \{p, q\} \cup (Asgn_k \times [k] \times Com([k])) \cup [k], Q_{\$} = \{p\}$ and $c_k(s) = 2$ for every $s \in Q$ and δ_k consists of rules of the form

$$(p, ((a_{\S}, tst), skip), tst \cup tst') \to (q, \{k+1\}, skip)$$

$$(14)$$

$$(q,((a_0,asgn,j,com),v(com)),tst'') \rightarrow ((asgn,j,com),\{k+2\},skip)$$
 (15)

$$((asgn, j, com), \tau, \{k+1\} \cup tst'') \to (j, asgn, com)$$

$$(16)$$

$$(j, \tau, \{j, k+2\} \cup tst'') \to (p, \emptyset, skip)$$

$$\tag{17}$$

for all $(a_{\emptyset}, tst) \in A_k^{\emptyset}$, $(a_{\emptyset}, asgn, j, com) \in A_k^{\emptyset}$, $tst' \subseteq \{k+1, k+2\}$ and $tst'' \in Tst_{k+2}$.

We show $L(\mathcal{A}_k) = L_k$. For this proof, we redefine compatibility for finite sequences $w \in ((\Sigma_{\hat{a}} \times D) \cdot (\Sigma_{\hat{o}} \times D))^*$ and $\overline{a} \in (A_k^{\hat{a}} \cdot A_k^{\hat{o}})^*$. We show the following claim.

Claim. Assume $n \in \mathbb{N}_0$ and let $w \otimes \overline{a} = (((a_0^{\mathfrak{g}}, tst_0), skip), d_0^{\mathfrak{g}})(((a_0^{\mathfrak{g}}, asgn_0, j_0, com_0), v(com_0)), d_0^{\mathfrak{g}}) \cdots \in ((A_k^{\mathfrak{g}} \times D) \cdot (A_k^{\mathfrak{g}} \times D) \cdot (A_k^{\mathfrak{g}}$

 $(A_k^{\circ} \times D)$)* whose length is 2n and $\rho = (\theta_0, u_0)(\theta_1, u_1) \cdots \in (\Theta_k \times D^*)$ * whose length is n+1 and $(\theta_0, u_0) = (\theta_{\perp}^k, \perp)$. Then, ρ is a witness of the compatibility between w and \overline{a} iff $(p, \theta'_0, u_0) \vdash^{w \otimes \overline{a}(0:1)(\tau, d_0^{\sharp})(\tau, d_0^{\circ})} (\theta'_1, u_1) \vdash^{w \otimes \overline{a}(2:3)(\tau, d_1^{\sharp})(\tau, d_1^{\circ})} \cdots \vdash^{w \otimes \overline{a}(2n-2:2n-1)(\tau, d_{n-1}^{\sharp})(\tau, d_{n-1}^{\circ})} (p, \theta'_n, u_n)$ where $\theta'_i \in \Theta_{k+2}$ $(i \in [n])$ satisfies $\theta'_i(j) = \theta_i(j)$ for $j \in [k]$.

(Proof of the claim) We show the claim by induction on n. The case of n = 0 is obvious. We show the claim for arbitrary n > 0 with the induction hypothesis.

We first show left to right. By the induction hypothesis, $(p, \theta'_0, u_0) \vdash^{w \otimes \overline{a}(0:1)(\tau, d_0^{\flat})(\tau, d_0^{\flat}) \cdots w \otimes \overline{a}(2n-4:2n-3)(\tau, d_{n-2}^{\flat})(\tau, d_{n-2}^{\flat})} \quad (p, \theta'_{n-1}, u_{n-1})$ holds. By the assumption, because ρ is the witness, (a) $\theta_{n-1}, d_{n-1}^{\flat}, u_{n-1}(0) \models tst_{n-1}$, (b) $\theta_n = \theta_{n-1}[asgn_{n-1} \leftarrow d_{n-1}^{\flat}]$, (c) $\theta_n(j_{n-1}) = d_{n-1}^{\flat}$ and (d) $u_n = upds(u_{n-1}, \theta_n, com_{n-1})$. By the condition (a), \mathcal{A}_k can do a transition $(p, \theta'_{n-1}, u_{n-1}) \vdash^{w \otimes \overline{a}(2n-2)} (q, \theta_{n-1}^1, u_{n-1})$ for unique $\theta_{n-1}^1 \in \Theta_{k+2}$ by the rule $(p, ((a_{n-1}^{\flat}, tst_{n-1}), skip), tst_{n-1} \cup tst') \rightarrow (q, \{k+1\}, skip)$ of the form (14). We can also say $(q, \theta_{n-1}^1, u_{n-1}) \vdash^{w \otimes \overline{a}(2n-1)} ((asgn_{n-1}, j_{n-1}, com_{n-1}), \theta_{n-1}^2, u_{n-1})$ by the rule of the form (15). Note that $\theta_{n-1}^2(j) = \theta_{n-1}(j)$ if $j \in [k], \theta_{n-1}^2(k+1) = d_{n-1}^{\flat}$ and $\theta_{n-1}^2(k+2) = d_{n-1}^{\flat}$. $((asgn_{n-1}, j_{n-1}, com_{n-1}), \theta_{n-1}^2, u_{n-1}) \vdash^{(\tau, d_{n-1}^{\flat})} (j_{n-1}, \theta_{n-1}^3, u_n)$ is also valid transition of \mathcal{A}_k of the form (16) by the conditions (b) and (d) where $\theta_3^{n-1}(j) = \theta_n(j)$ for $j \in [k]$ and $\theta_{n-1}^3(k+2) = d_{n-1}^{\flat}$. By the condition $(c), \theta_3^{n-1}(j_{n-1}) = \theta_3^{n-1}(k+1) = d_{n-1}^{\flat}$ holds. Thus, a transition $(j_{n-1}, \theta_{n-1}^3, u_n) \vdash^{(\tau, d_{n-1}^{\flat})} (p, \theta_n', u_n)$ is valid with the rule of the form (17). In conclusion, $(p, \theta'_{n-1}, u_{n-1}) \vdash^{w \otimes \overline{a}(2n-2:2n-1)(\tau, d_{n-1}^{\flat})(\tau, d_{n-1}^{\flat})} (p, \theta'_n, u_n)$ holds, and with the induction hypothesis, we obtain the left to right of the claim.

Next, we prove right to left. By the assumption, $(p, \theta'_{n-1}, u_{n-1}) \vdash^{w \otimes \overline{a}(2n-2:2n-1)(\tau, d^{\sharp}_{n-1})(\tau, d^{\circ}_{n-1})} (p, \theta'_{n}, u_{n})$ holds. By checking four transition rules that realize the above transition relation, we can obtain that $\rho(n-1), \rho(n), w \otimes \overline{a}(2n-2)$ and $w \otimes \overline{a}(2n-1)$ satisfies the conditions (a) to (d) described in the previous paragraph. Thus, by the induction hypothesis, we obtain ρ is a witness of the compatibility between w and \overline{a} .

(end of the proof of the claim)

By the claim, $w \otimes \overline{a} \in L_k \Leftrightarrow \text{there exists a witness } (\theta_0, u_0)(\theta_1, u_1) \cdots \in (\theta_k \times D^*)^{\omega} \text{ of } w \text{ and } \overline{a} \Leftrightarrow \text{there exists a run } (p, \theta'_0, u_0) \vdash^{w \otimes \overline{a}(0:1)(\tau, d_0^{\overline{b}})(\tau, d_0^{\overline{o}})} (\theta'_1, u_1) \vdash^{w \otimes \overline{a}(2:3)(\tau, d_1^{\overline{b}})(\tau, d_1^{\overline{o}})} \cdots \text{ of } \mathcal{A} \Leftrightarrow w \otimes \overline{a} \in L(\mathcal{A}_k) \text{ holds for all } w \otimes \overline{a} \in DW(A_k^{\overline{b}}, A_k^{\overline{o}}, D).$

A.3 A full proof of Lemma 20

Lemma 20. For a specification S defined by some visibly k'-DRPDA, $L_{\overline{S},k} = \{w \otimes \overline{a} \mid w \in Comp(\overline{a}) \cap \overline{S}\}$ is definable as the language of a(4, k+k'+4)-DRPDA.

Proof. Let $L_{\overline{S}} = \{w \otimes \overline{a} \mid w \in \overline{S}\}$ and let $\mathcal{A}_{\overline{S}}$ be a visibly k'-DRPDA such that $L(\mathcal{A}_{\overline{S}}) = L_{\overline{S}}$ and \mathcal{A}_k be the (2, k+2)-DRPDA such that $L(\mathcal{A}_k) = L_k$, which is

given in Lemma 19. Because $L_{\overline{S},k} = L_k \cap L_{\overline{S}}$ and both L_k and $L_{\overline{S}}$ are visibly DRPDA, it is enough to show that we can construct a visibly (4, k + k' + 4)-DRPDA \mathcal{A} such that $L(\mathcal{A}) = L(\mathcal{A}_{\overline{S}}) \cap L(\mathcal{A}_k)$.

We can convert \mathcal{A}_k to a $(2, k_1)$ -DRPDA $\mathcal{A}_1 = (Q_1, Q_1^{\S}, Q_1^{\circ}, Q_1^{\circ}, \delta_1, c_1)$ over $A_{k_1+k_2+2}^{\S} \times Com_v, A_{k_1+k_2+2}^{\circ} \times Com_v$ and $\mathcal{A}_{\overline{S}}$ to a visibly k_2 -DRPDA $\mathcal{A}_2 = (Q_2, Q_2^{\S}, Q_2^{\circ}, q_2^{\circ}, \delta_2, c_2)$ over $A_{k_1+k_2+2}^{\S} \times Com_v, A_{k_1+k_2+2}^{\circ} \times Com_v$ where $c_1(q)$ is even for every $q \in Q_1$ and every rule in δ_1 consists of several groups of three consecutive rules having the following forms:

$$(q_1, (a, v(com_1)), tst_1) \rightarrow (q_2, asgn_1, skip)$$

$$(15)$$

$$(q_2, \tau, tst_2) \to (q_3, asgn_2, com_1) \tag{16'}$$

$$(q_3, \tau, tst_3) \rightarrow (q_4, asgn_3, skip)$$
 (17')

Note that (15'), (16') and (17') correspond to (15), (16) and (17), respectively, and (14) can be treated as the triple sequencial rules by adding meaningless τ rules.

We construct $(4, k_1 + k_2 + 2)$ -DRPDA $\mathcal{A} = (Q_1 \times Q_2 \times [5], Q_1^{\mathbb{I}} \times Q_2^{\mathbb{I}} \times [5], Q_1^{\mathbb{O}} \times Q_2^{\mathbb{O}} \times [5], (q_0^1, q_0^2, 1), \delta, c)$ where $c((q_1, q_2, i)) = c_2(q_2)$ for all $(q_1, q_2, i) \in Q$. For all rules

$$(q_1, (a, v(com_1)), tst_1) \to (q_2, asgn_1, skip) \in \delta_1$$

$$(18)$$

$$(q_2, \tau, tst_2) \to (q_3, asgn_2, com_1) \in \delta_1 \tag{19}$$

$$(q_3, \tau, tst_3) \to (q_4, asgn_3, skip) \in \delta_1 \tag{20}$$

$$(q, (a, v(com)), tst) \rightarrow (q', asgn, com) \in \delta_2$$
 (21)

 $(v(com_1) = v(com))$ for $a \in A_{k_1+k_2+2}^{\emptyset} \cup A_{k_1+k_2+2}^{\emptyset}$, let $tst^{+k_1} = \{i+k_1 \mid i \in tst\} \cup \{top \mid top \in tst \setminus [k_1]\}$, $asgn^{+k_1} = \{i+k_1 \mid i \in asgn\}$ and $com^{+k_1} = push(j+k_1)$ if com = push(j) and $com^{+k_1} = com$ otherwise, then δ consists of the rules

$$((q_1, q, 1), \tau, tst' \cup \{top\}) \rightarrow ((q_1, q, 2), \{k_1 + k_2 + 1\}, pop)$$
 (22)

$$((q_1, q, 2), \tau, tst' \cup \{top\}) \rightarrow ((q_1, q, 3), \{k_1 + k_2 + 2\}, push(k_1 + k_2 + 1))$$
 (23)

$$((q_1, q, 3), (a, v(com_1)), tst_1 \cup ((tst^{+k_1} \setminus \{top\}) \cup Top))$$

$$\rightarrow ((q_2, q', 4), asgn_1 \cup asgn^{+k_1}, com^{+k_1})$$
 (24)

$$((q_2, q, 4), \tau, tst_2 \cup tst') \rightarrow ((q_3, q', 5), asgn_2, com_1)$$
 (25)

$$((q_3, q', 5), \tau, tst_3 \cup tst') \rightarrow ((q_4, q', 1), asqn_3, skip)$$
 (26)

for all $tst' \in Tst_{k_1+k_2+2}$ where $Top = \{k_1 + k_2 + 2\}$ if $top \in tst$ and $Top = \emptyset$ otherwise.

For two assignments $\theta_1 \in \Theta_{k_1}$ and $\theta_2 \in \Theta_{k_2}$, let $[\theta_1, \theta_2, d, d'] \in \Theta_{k_1 + k_2 + 2}$ be the assignment such that $[\theta_1, \theta_2, d, d'](i) = \theta_1(i)$ if $i \in [k_1]$, $[\theta_1, \theta_2, d, d'](i) = \theta_2(i)$ if $k_1 + 1 \le 1 \le k_2$, $[\theta_1, \theta_2, d, d'](k_1 + k_2 + 1) = d$ and $[\theta_1, \theta_2, d, d'](k_1 + k_2 + 2) = d'$. To prove $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$, we show the following claim.

Claim. For all $n \in \mathbb{N}_0$ and $w \in ((A_{k_1}^{\sharp} \cup A_{k_1}^{\mathfrak{o}}) \times D)^n$, there exists sequences of transitions $(q_0^1, \theta_0^1, u_0^1) \vdash_{A_1}^{w(0)(\tau, d_0)(\tau, d'_0)}$

$$\begin{array}{ll} (q_1^1,\theta_1^1,u_1^1) & \vdash_{\mathcal{A}_1}^{w(1)(\tau,d_1)(\tau,d_1')} & \cdots & \vdash_{\mathcal{A}_1}^{w(n-1)(\tau,d_{n-1})(\tau,d_{n-1}')} & (q_n^1,\theta_n^1,u_n^1) \text{ and } \\ (q_0^2,\theta_0^2,u_0^2) \vdash_{\mathcal{A}_2}^{w(0)} & (q_1^2,\theta_1^2,u_1^2) \vdash_{\mathcal{A}_2}^{w(1)} & \cdots \vdash_{\mathcal{A}_2}^{w(n-1)} & (q_n^2,\theta_n^2,u_n^2) \text{ iff } (q_0,\theta_{\perp}^{\mathcal{A}},\bot) \vdash_{\mathcal{A}}^{(\tau,\bot)} \\ ((q_0^1,q_0^2,1),[\theta_0^1,\theta_0^2,d_0^1,d_0^2],\langle u_0^1,u_0^2\rangle) & \vdash_{\mathcal{A}}^{(\tau,u_0^1(0))(\tau,u_0^2(0))w(0)(\tau,d_0)(\tau,d_0')} \\ ((q_1^1,q_1^2,1),[\theta_1^1,\theta_1^2,d_1^1,d_1^2],\langle u_1^1,u_1^2\rangle) & \vdash_{\mathcal{A}}^{(\tau,u_1^1(0))(\tau,u_1^2(0))w(1)(\tau,d_1)(\tau,d_1')} \\ \cdots \vdash_{\mathcal{A}}^{(\tau,u_{n-1}^1(0))(\tau,u_{n-1}^2(0))w(n-1)(\tau,d_{n-1})(\tau,d_{n-1}')} & ((q_n^1,q_n^2,1),[\theta_n^1,\theta_n^2,d_n^1,d_n^2],\langle u_n^1,u_n^2\rangle) \\ \text{holds where } b \in \{1,2\}, i \in [n], \ \theta_0^b = \theta_{\perp}^{k_b}, u_0^b = \bot, \ q_i^b \in Q_b, \ \theta_i^b \in \Theta_{k_b}, \ u_i^b \in D^* \text{ and } \\ d_{i-1}, d_{i-1}' \in D. \end{array}$$

(Proof of the claim) We show the claim by the induction on n. The case n_0 is

We first show left to right. By induction hypothesis, $(q_0, \theta_{\perp}^{\mathcal{A}}, \perp) \vdash_{\mathcal{A}}^{(\tau, \perp)}$ $[q_0, q_0^2, 1), [\theta_0^1, \theta_0^2, d_0^1, d_0^2], \langle u_0^1, u_0^2 \rangle)$ $\vdash_{\mathcal{A}}^{(\tau, u_0^1(0))(\tau, u_0^2(0))w(0)(\tau, d_0)(\tau, d_0')}$ used in these transitions.

$$(q_{n-1}, (a, v(com_1)), tst_1) \to (q', asgn_1, skip) \in \delta_1$$

$$(18)$$

$$(q', \tau, tst_2) \rightarrow (q'', asgn_2, com_1) \in \delta_1$$
 (19')

$$(q'', \tau, tst_3) \to (q_n, asgn_3, skip) \in \delta_1$$
 (20')

$$(q_{n-1}, (a, v(com)), tst) \rightarrow (q_n, asgn, com) \in \delta_2$$
 (21')

We can check

$$\begin{array}{llll} \text{We can check} \\ & ((q_{n-1}^1,q_{n-1}^2,1),[\theta_{n-1}^1,\theta_{n-1}^2,d_{n-1}^1,d_{n-1}^2],\langle u_{n-1}^1,u_{n-1}^2\rangle) & \vdash_{\mathcal{A}}^{(\tau,u_{n-1}^1(0))(\tau,u_{n-1}^2(0))} \\ & ((q_{n-1}^1,q_{n-1}^2,3),[\theta_{n-1}^1,\theta_{n-1}^2,u_{n-1}^1(0),u_{n-1}^1(0)],\langle u_{n-1}^1,u_{n-1}^2\rangle) & \vdash_{\mathcal{A}}^{w(n-1)} \\ & ((q_{n-1}^1,q_{n-1}^2,4),[\theta_{n}^1,\theta',u_{n-1}^1(0),u_{n-1}^1(0)],\langle u_{n-1}^1,u_{n}^2\rangle) & \vdash_{\mathcal{A}}^{(\tau,d_{n-1})} \\ & ((q_{n-1}^1,q_{n-1}^2,5),[\theta_{n}^1,\theta'',u_{n-1}^1(0),u_{n-1}^1(0)],\langle u_{n}^1,u_{n}^2\rangle) & \vdash_{\mathcal{A}}^{(\tau,d'_{n-1})} \\ & ((q_{n}^1,q_{n}^2,1),[\theta_{n}^1,\theta_{n}^2,u_{n-1}^1(0),u_{n-1}^1(0)],\langle u_{n}^1,u_{n}^2\rangle) & & \vdash_{\mathcal{A}}^{(\tau,d'_{n-1})} \end{array}$$

, and thus the right side of the claim holds. In a similar way, we can also show right to left.

(end of the proof of the claim)

By the claim, $w \in L(\mathcal{A}_1) \cap L(\mathcal{A}_2) \Leftrightarrow$ there exists runs $(q_0^1, \theta_0^1, u_0^1) \vdash_{\mathcal{A}_1}^{w(0)(\tau, d_0)(\tau, d_0')} (q_1^1, \theta_1^1, u_1^1) \vdash_{\mathcal{A}_1}^{w(1)(\tau, d_1)(\tau, d_1')} \cdots$ and $(q_0^2, \theta_0^2, u_0^2) \vdash_{\mathcal{A}_2}^{w(0)} (q_1^2, \theta_1^2, u_1^2) \vdash_{\mathcal{A}_2}^{w(1)} \cdots$ that satisfies the minimum number appearing in the sequence that satisfies the minimum number appearing in the sequence

 $(q_0^1,q_0^2,1),(q_0^1,q_0^2,2)\cdots,(q_1^1,q_1^2,1),\cdots$ infinitely is even. $\Leftrightarrow w\in L(\mathcal{A})$ holds for all $w\in DW(A_{k_1}^{\sharp},A_{k_1}^{\circ},D)$.