Práctica 6 ACSIC

Marc Llobera Villalonga Grupo 202

El objetivo de esta parte es la comprensión del concepto de caracterización de la carga. Para ello, se hará uso de la herramienta Weka.

De la monitorización de un sistema de almacenamiento, se ha obtenido se proporciona un fichero de datos llamado "data.txt". En el fichero se almacenan tres columnas con la siguiente información:

- El tamaño del fichero accedido (en MB). Los valores que correspondan con "-1" quieren decir que el acceso al fichero ha fallado.
- La hora a la que se hizo el acceso. El valor 22 representan las 22h, el valor 01 representan las 1h (a.m.), etc.
- El ancho de banda consumido (en MS/s). Los valores de esta columna están entre 453 y 1355, por lo tanto, los valores de esta columna deberán ser tratados. Es decir, el valor crudo de "1258.84,", corresponde con "1258,84".

Con los datos proporcionados se pide caracterizar la carga haciendo uso del algoritmo de K- means y responder a las siguientes preguntas:

- Aplicando el algoritmo con 100 iteraciones y agrupando los datos en 3 clases, ¿qué resultados se obtienen? Muéstralo gráficamente.

En los datos proporcionados y procesados tenemos tres características que son la hora, el tamaño del fichero, y el ancho de banda, de estas tres características la hora es la única que no nos proporciona ninguna información relevante por lo que a partir de ahora no trabajaremos con ella. Así caracterizando la carga como se nos pide y solamente haciendo caso de el tamaño (SIZE) y del ancho de banda (MBS) nos sale el siguiente gráfico.

Donde los colores muestran la diferencia del ancho de banda de cada muestra y dividiendo los ficheros en 3 clases que podríamos nombrar ficheros de velocidad lenta, media y rápida. A su vez podemos ver también en el eje del tamaño que hay 3 clases de ficheros bien diferenciados como son ficheros de tamaño pequeño, de gran tamaño, y de tamaño grande.

Representantes	antes ficheros rápidos ficheros lentos		ficheros intermedios	
SIZE	4805.7748	4754.1331	4624.8436	
MBS	1204.1454	602.7856	902.8461	

- Con el mismo número de iteraciones y agrupando los datos en 5 clases, ¿qué resultados se obtienen? ¿Cómo difieren de los anteriormente obtenidos?

La única diferencia que nos da es la clasificación en clases obviamente ya que ahora tenemos 5 clases diferentes para la diferencia de ancho de banda de cada fichero y clasificando estos según 5 tipos de velocidades. Aún podemos ver también la diferencia clara de grupos de ficheros según el tamaño de estos.

Representantes	ficheros	ficheros	ficheros	ficheros	ficheros
	rápidos	intermedios-rápidos	intermedios	intermedios-lentos	lentos
SIZE	4648.5732	4792.8688	4755.7865	4604.4884	4839.2968
MBS	1265.0141	1084.9059	904.2082	724.1673	543.2424

- ¿Hay alguna característica especial en la carga proporcionada? Explícala con detalle.

Podemos ver desde un principio que para el SIZE tenemos una enorme cantidad de ficheros que pesan muy poco, cerca de 0 incluso muchos directamente tienen tamaño 0 y después se ve como hay un gran salto hasta otro grupo de ficheros cuyo tamaño es intermedio en comparación al tamaño

máximo de fichero que podemos encontrar en los datos por lo que sin necesidad de hacer *clustering* podemos hacer una clasificación clara de ficheros pequeños, medianos, y grandes en cuanto a tamaño, por lo que podemos separarlos en 3 ficheros de datos y realizar *cluster* sobre cada uno por separado y conseguir una mejor clasificación según las velocidades (MBS) sabiendo que unos ficheros son de tamaño menor (0 - 963961), otros de tamaño intermedio (963962 - 1927923), y finalmente un pequeño grupo de ficheros de gran tamaño (1927924 - 2891887). Así, nos quedarían estos gráficos para 3 clusters:

<u>Tamaño pequeño (0 - 963961)</u>

Representantes	ficheros	Ficheros	ficheros	
ficheros tamaño pequeño	rápidos	intermedios	lentos	
SIZE	3650.2762	3570.3511	3609.7	
MBS	1204.2039	902.9535	602.8424	

<u>Tamaño medio (963962 – 1927923)</u>

Representantes	ficheros	Ficheros	ficheros
ficheros tamaño medio	rápidos	intermedios	lentos
SIZE	1519992.9568	1506484.6762	1497968.6308
MBS	1121.5611	912.3837	658.894

<u>Gran tamaño (1927924 - 2891887)</u>

Representantes	ficheros	Ficheros	ficheros
ficheros tamaño grande	rápidos	intermedios	lentos
SIZE	2085105.4375	2082105.3913	2093981.625
MBS	1127.383	991.8393	658.8919

Para 5 clusters:

<u>Tamaño pequeño (0 - 963961)</u>

Representantes	ficheros	ficheros	ficheros	ficheros	ficheros
fichero tamaño pequeño	rápidos	intermedios-rápidos	intermedios	intermedios-lentos	lentos
SIZE	3655.9247	3631.3665	3563.9358	3565.4655	3634.1404
MBS	1265.0126	1084.8939	904.2081	724.1745	543.2435

<u>Tamaño medio (963962 – 1927923)</u>

Representantes	ficheros	ficheros	ficheros	ficheros	ficheros
fichero tamaño medio	rápidos	intermedios-rápidos	intermedios	intermedios-lentos	lentos
SIZE	1603990.8514	1496885.4894	1315432.6579	1515713.0833	1517701.6071
MBS	1124.5908	1115.4407	1021.6486	659.0917	655.9049

<u>Gran tamaño (1927924 - 2891887)</u>

Representantes	ficheros	ficheros	ficheros	ficheros	ficheros
fichero tamaño grande	rápidos	intermedios-rápidos	intermedios	intermedios-lentos	lentos
SIZE	2041996	2337459.6364	2045823.9167	2055392.0909	2034378.5
MBS	1182.2457	1088.6163	826.5108	677.3882	675.3232