Predikcija solarnih ciklusa I procena rizika od solarnih oluja na osnovu vremenskih serija Sunčevih pega

Motivacija za projekat

Solarne oluje, koje proizilaze iz aktivnosti Sunčevih pega, mogu izazvati ozbiljne poremećaje, uključujući oštećenja satelita, prekide GPS signala, smetnje u radiokomunikaciji i kvarove elektroenergetskih mreža. Razumevanje ciklusa Sunčevih pega ključno je za predviđanje ovih događaja i pravovremeno reagovanje kako bi se ublažile posledice. Sunčeve pege su hladnija područja na površini Sunca, koja nastaju usled intenzivnih magnetnih polja. Njihov broj i raspored direktno utiču na solarne cikluse, koji traju u proseku 11 godina i povezuju se sa promenama magnetnog polja Sunca.

Cilj ovog projekta je da, analizom vremenskih serija Sunčevih pega, razvijemo modele koji mogu predvideti periode pojačane aktivnosti i proceniti rizike solarnih oluja, doprinoseći na taj način sigurnosti infrastrukture i tehnologije. Razumevanje dinamike solarnih ciklusa ključno je za ublažavanje posledica solarnih oluja na satelite, komunikacione sisteme i elektroenergetske mreže.

Opis problema

Aktivnost Sunčevih pega ima cikličan karakter sa periodima maksimuma i minimuma, ali nepravilnosti u amplitudi i dužini ciklusa otežavaju tačne prognoze. Solarni ciklusi nastaju kao posledica promena u magnetnom polju Sunca, koje se preuređuje svakih 11 godina. Tokom maksimuma ciklusa, dolazi do povećanja sunčeve aktivnosti, uključujući pojavu koronalnih izbacivanja mase (CME) i solarnih baklji, koje mogu uzrokovati geomagnetne oluje na Zemlji. Ove geomagnetne oluje direktno utiču na infrastrukturu na Zemlji, izazivajući smetnje u telekomunikacijama, navigacionim sistemima i elektroenergetskoj mreži. Pored toga, solarne oluje predstavljaju rizik za satelite, astronaute i visokofrekventne komunikacione sisteme.

S obzirom na značaj predikcije ovih događaja, postavljaju se ključna pitanja: kada će nastupiti sledeći solarni maksimum, koliki intenzitet aktivnosti Sunčevih pega možmo očekivati u narednim ciklusima, da li postoje anomalije u Sunčevim ciklusima koje ukazuju na povećan rizik od solarnih oluja i može li se na osnovu aktivnosti Sunčevih pega proceniti vremenski interval povećane učestalosti koronalnih izbacivanja mase (CME).

Podaci

Glavni skup podataka dolazi iz SILSO baze (Sunspot Index and Long-term Solar Observations), koja sadrži vremenske serije Sunčevih pega od 1700. godine do danas. Ova baza uključuje mesečne i godišnje vrednosti broja Sunčevih pega, kao i serije koje su dodatno glatke (13-mesečni proseci) kako bi se uklonili šumovi i naglasili dugoročni obrasci. Podaci su javno dostupni i mogu se preuzeti na zvaničnom sajtu SILSO: https://www.sidc.be/silso/.

Pored SILSO baze, koristićemo podatke iz NOAA baze (https://www.swpc.noaa.gov/) i NASA Heliophysics System Observatory (https://heliophysicsdata.gsfc.nasa.gov/), koji pružaju informacije o koronalnim izbacivanjima mase (CME) i geomagnetnim olujama. Ovi dodatni podaci omogućavaju dublju analizu veze između aktivnosti Sunčevih pega i uticaja na Zemlju.

Metodologija

Projekat će započeti pripremom i analizom dostupnih podataka. Podaci iz SILSO baze i dopunskih izvora biće pretprocesirani kako bi se uklonile nedostajuće vrednosti i šumovi, dok će se vremenske serije dekomponovati na osnovne komponente: trend, sezonalnost i rezidual. Posebna pažnja biće posvećena identifikaciji obrazaca u ciklusima od 11 godina, koji predstavljaju osnovu solarnih ciklusa.

U drugoj fazi, fokus će biti na razvoju prediktivnih modela. ARIMA i SARIMA modeli biće korišćeni za osnovne prognoze trenda i sezonalnosti, dok će LSTM modeli biti implementirani ukoliko se ukaže potreba za otkrivanjem složenijih obrazaca i nelinearnih zavisnosti. Parametri modela, uključujući broj autogresivnih elemenata, stepen diferenciranja i sezonske komponente, biće optimizovani na osnovu analiza autokorelacije i parcijalne autokorelacije. Podela podataka na trening, validacione i test skupove omogućiće procenu tačnosti modela.

Evaluacija prediktivnih modela ukljućiće metrike poput RMSE (Root Mean Square Error) za merenje prosečne greške, MAE (Mean Absolute Error) za apsolutnu grešku i MAPE (Mean Absolute Percentage Error) za procenu relativne greške u odnosu na stvarne vrednosti. Vizualizacija rezultata će jasno prikazati preklapanje između stvarnih i predikovanih podataka, dok će interpretacija rezultata biti usmerena na praktične implikacije za planiranje infrastrukture i tehnologije.

Tehnologije i alati

Za realizaciju projekta koristiće se Python zbog njegove fleksibilnosti i bogate kolekcije biblioteka. Ključne biblioteke za obradu podataka su Pandas i NumPy, dok će za vizualizaciju biti korišćeni Matplotlib i Seaborn. Statsmodels će se koristiti za implementaciju ARIMA i SARIMA modela, dok će TensorFlow ili Keras biti glavni alati za razvoj i treniranje LSTM modela.

