

TD 5 – Séries de Fourier

 \triangleright **Exercice 1** (Fonction ζ de Riemann). Soit

$$\zeta(s) = \sum_{n>1} \frac{1}{n^s}, \ s \in]1, +\infty[.$$

Calculer $\zeta(2)$, $\zeta(4)$ et $\zeta(6)$.

- \triangleright **Exercice 2.** Soit $f \in \mathbf{R}^{\mathbf{R}}$, paire et 2π -périodique définie par $f(x) = \pi 2x$ sur $[0, \pi[$.
 - **2.1.** Donner l'expression de la série de Fourier de f sur la base hilbertienne des polynômes trigonométriques.
 - **2.2.** Indiquer la nature de la convergence de la série de Fourier de f.
 - 2.3. En déduire

$$\sum_{p\geq 0} \frac{1}{(2p+1)^2} \text{ et } \sum_{p\geq 0} \frac{1}{(2p+1)^4}.$$

- ightharpoonup Exercice 3. Soit $f \in \mathbf{R}^{\mathbf{R}}$ 2π -périodique définie par $f(x) = e^{ax}$ sur $[0, 2\pi[(a \neq 0)]]$.
 - **3.1.** Donner l'expression de la série de Fourier de f sur la base hilbertienne des polynômes trigonométriques.
 - **3.2.** Indiquer la nature de la convergence de la série de Fourier de f.
 - 3.3. En déduire

$$\sum_{n\geq 1} \frac{a}{a^2 + n^2} \cos nx \text{ et } \sum_{n\geq 1} \frac{n}{a^2 + n^2} \sin nx.$$

3.4. En déduire également

$$\sum_{n\geq 1} \frac{1}{(a^2+n^2)^2} \text{ et } \sum_{n\geq 1} \frac{n^2}{(a^2+n^2)^2}.$$

(Rappel: $ch x = (e^x + e^{-x})/2$ et $sh x = (e^x - e^{-x})/2$.)

 ${\rhd}$ **Exercice 4.** Soit E l'ensemble des (classes de) fonctions mesurables $x:[0,1]\to {\bf R}$ telles que

$$\int_{[0,1]} \frac{|x(t)|^2}{t} dt < \infty.$$

- **4.1.** Montrer que E est un espace vectoriel contenant les fonctions nulles et dérivables à l'origine.
- 4.2. Montrer que

$$(x|y) = \int_{[0,1]} \frac{x(t)y(t)}{t} dt$$

définit un produit scalaire sur E.

4.3. On note $(P_n)_{n\geq 1}$ le SON obtenu par orthonormalisation de $\mathbf{R}[X]\backslash \mathbf{R}$. Calculer $P_i,\ i=1,\ldots,3$.