Early-Stage Lithium Recovery (ESLR) for Enhancing Efficiency in Battery Recycling

Paul Sabarny^[1], Lilian Schwich^[1], Marcus Sommerfeld^[1], Christin Stallmeister^[1], Claudia Vonderstein^[1], Bernd Friedrich^[1], [1] IME Process Metallurgy and Metal Recycling - RWTH Aachen University

Motivation

- Robust and flexible battery recycling processes
- Still unsolved challenges in Li-recovery e.g. Li-losses in slags and cross-contaminations in different pyro- and hydrometallurgical extraction paths
- Indispensability for battery technology and rising prices make lithium recovery important
- Maintaining of flexibility for hydro-, and pyrometallurgical processing

Research Targets

- 1. Low energy requirement
- 2. No chemicals needed
- 3. No Co/Ni losses
- 4. Easy and safe process (simple plant construction, minimized offgas treatment)
- 5. Lithium Recovery $\eta_{Li} > 90\%$
- 6. H₂O circulation / near zero waste

Unavoidable occurrence of Lithium in slag and flue dust, due to ignoble and volatile behavior

Unacceptable Lithium losses in different filter cakes due to physical adsorption

Dismantling (to cell level)

With thermal Without thermal pre-treatment pre-treatment (pyrolysis) Shreddering & Al, Cu, Fe Separation

Solution:

Li-Phase transformation into water soluble compounds by methods such as:

- Supercritical CO₂-treatment
- Thermal carbonation

→ Early-Stage Li-Recovery

For more information please follow this QR code. In case of questions please contact

METALLURGEN

psabarny@ime-aachen.de

H₂O/Li

