MT09- Préparation pour le TP6

On veut résoudre numériquement une équation différentielle :

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = a \end{cases}, t \in [t_0, t_0 + T],$$
 (1)

où t_0 , T > 0, a sont des réels donnés, f est une fonction connue de $\mathbb{R} \times \mathbb{R}$ dans \mathbb{R} .

On choisit un entier N, on pose $h = \frac{T}{N}$, $(t_i = t_0 + ih, i = 0, ..., N)$. z_i est une approximation de $x(t_i)$.

1. Écrire une fonction Scilab

$$[z] = pointmilieu(a, t0, T, N, f)$$

qui, étant donné les réels a, t_0, T , l'entier N et la fonction f, calcule $z=(z_0\ z_1\ ...\ z_n)\in \mathcal{M}_{1,n+1}(\mathbb{R})$, solution approchée de (1) en utilisant le schéma du point milieu : z_0 donné, puis calculer pour $n=0,1,\ldots,N-1$

$$z_{n+1} = z_n + hK_1$$
, avec $\left\{ egin{array}{l} K_0 = f(t_n, z_n), \ K_1 = f\left(t_n + rac{h}{2}, z_n + rac{h}{2}K_0
ight). \end{array}
ight.$

2. Écrire la fonction f correspondant à l'équation (1) dans le cas de l'équation différentielle

$$y'(t) = y(t) + t^2. (2)$$

- 3. On choisit $a = 0, t_0 = 0, T = 5, N = 10$, calculer z en utilisant la fonction pointmilieu.
- 4. Vérifier que la solution exacte de l'équation (1) est alors dans ce cas $y(t)=2e^t-t^2-2t-2$. Tracer sur une même figure
 - la solution exacte $(t_i, y(t_i)), i = 0, ..., N$,
 - la solution approchée $(t_i, z_i), i = 0, ..., N$,

pour N = 10 puis N = 20, puis N = 50.