Math 255B Lecture 7 Notes

Daniel Raban

January 22, 2020

1 Introduction to Unbounded Operators

1.1 Motivation from quantum mechanics

In this part of the course, we will discuss spectral theory of self-adjoint operators. We are most interested in unbounded operators, the background of which comes from quantum mechanics.

Classical mechanics: The classical phase space is $\mathbb{R}^{2n} = \mathbb{R}^n_x \times \mathbb{R}^n_\xi$, where x is position and ξ is momentum. Classical observables are, for example, $C^{\infty}(\mathbb{R}^{2n})$ functions.

Example 1.1. The Hamiltonian is

$$p(x,\xi) = |\xi|^2 + V(x),$$

where V(x) is a potential.

In classical dynamics, we have the Hamilton equations

$$\begin{cases} x(t) = p'_{\xi}(x,\xi) \\ \xi(t) = -p'_{x}(x,\xi) \end{cases}$$

Quantum mechanics: We have a Hilbert space $H = L^2(\mathbb{R}^n)$. Quantum observables are self-adjoint operators on H.

Example 1.2. Quantum observables corresponding to x_j and ξ_j are M_{x_j} , multiplication by x_j , and $D_{x_j} = \frac{1}{i}\partial_{x_j}$. These can not be defined on the whole space, so they will come with their own domains. Associated to p is the **Schödinger operator**

$$P = -\Delta + V(x)$$
.

Quantum dynamics is given by the Schrödinger equation

$$i\frac{\partial u}{\partial t} = Pu, \qquad u|_{t=0} = u_0 \in L^2.$$

Formally,

$$u(t) = e^{-itP}u.$$

Interpreting what it means to exponentiate an unbounded operator will be one of the points of our theory.

1.2 Unbounded operators

Let H be a complex, separable Hilbert space, let $S \subseteq H$ be a linear subspace, and let $T: D \to H$ be a linear map. Then D = D(T) is the **domain** of T. We shall always assume that T is **densely defined**, so that D(T) is dense in H. Associated to T is the **graph**¹ of $T: G(T) = \{(x, Tx) : x \in D(T)\} \subseteq H \times H$.

Definition 1.1. We say that T is **closed** if G(T) is closed subspace of $H \times H$.

Definition 1.2. The operator T is **closable** if $\overline{G(T)}$ is the graph of an linear operator $\overline{T}: D(T) \to H$, called the **closure** of T.

Note that

$$D(\overline{T}) = \{x \in H : \exists x_i \in D(T) \text{ s.t. } x_i \to x, Tx_i \text{ conv. in } H, \overline{T}x = \lim Tx_i \}.$$

So

T is closed \iff if $x_n \in D(T), x_n \to X$, and $Tx_n \to y$, then $x \in D(T)$ and Tx = y.

On the other hand,

T is closable
$$\iff$$
 $G(T)$ contains no element of the form $(0,y)$ with $y \neq 0$ \iff if $x_n \in D(T), x_n \to 0$, and $Tx_n \to y$, then $y = 0$.

Example 1.3. Let $T = -\Delta$ on $L^2(\mathbb{R}^n)$, with $D(T) = C_0^{\infty}(\mathbb{R}^n)$. Then T is densely defined and closable: If $\varphi_n \in C_0^{\infty}$ are s.t. $\varphi \to 0$ in L^2 and $\Delta \varphi_n \to \psi \in L^2$, we want $\psi = 0$. For any $f \in C_0^{\infty}$, $\int \varphi_n f \to 0$, and integrating by parts gives $\int \Delta \varphi_n f = \int \varphi_n \Delta f \to 0$. On the other hand, $\int \Delta \varphi_n f \to \int \psi f$. We get that $\int \psi f = 0$ for all $f \in C_0^{\infty}$. So $\psi = 0$. In the language of distributions, $\varphi_n \to 0$ in $D'(\mathbb{R}^n)$, so $\Delta \varphi_n \to 0$ in D'. So $\psi = 0$.

We claim that $\overline{T} = -\Delta$ with $D(\overline{T}) = H^2(\mathbb{R}^n) = \{u \in L^2 : \partial^{\alpha}u \in L^2, |\alpha| \leq 2\}$, a **Sobolev space**. Here, $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ is a multi-index, $\partial^{\alpha} = \partial^{\alpha_1}_{x_1} \cdots \partial^{\alpha_n}_{x_n}$, and $|\alpha| = \sum_{j=1}^n \alpha_j$. Here, $\partial^{\alpha}u \in L^2$ means that there exists some $f_{\alpha} \in L^2$ such that $\partial^{\alpha}u = f_{\alpha}$; that is,

$$(-1)^{|\alpha|} \int u \partial^{\alpha} \varphi = \int f_{\alpha} \varphi \qquad \forall \varphi \in C_0^{\infty}.$$

¹The idea of thinking about unbounded operators in terms of their graphs goes back to von Neumann.

We have

$$D(\overline{T}) = \{ u \in L^2 : \exists \varphi_n \in C_0^{\infty} \text{ s.t. } \varphi_n \xrightarrow{L^2} u, \Delta \varphi_n \text{conv. in } L^2 \}, \qquad \overline{T}u = \lim(-\Delta \varphi_n).$$

Hence, if $u \in D(\overline{T})$, then $\Delta u = \lim_n \Delta \varphi_n \in L^2$. Then

$$D(\overline{T}) \subseteq \{ u \in L^2 : \Delta u \in L^2 \} = H^2(\mathbb{R}^n),$$

as taking the Fourier transform, this is

$$D(\overline{T}) \subseteq \{u \in L^2 : (|\xi|^2 + 1)\widehat{u} \in L^2\}.$$

We also have $H^2(\mathbb{R}^n) \subseteq D(\overline{T})$, as $C_0^{\infty}(\mathbb{R}^n)$ is dense in $H^2(\mathbb{R}^n)$ (the norm on H^2 is given by $\|u\|_{H^2} = \sum_{|\alpha| \leq 2} \|\partial^{\alpha} u\|_{L^2}$.) This is the same proof that $C_0^{\infty}(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n)$. We get that $T = -\Delta$ with $D(T) = H^2(\mathbb{R}^n)$ is closed and densely defined.

Next time, we will define what it means for a densely defined operator to be self-adjoint, and we will see that this operator is indeed self-adjoint.