

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

Corso di Laurea Magistrale in Ingegneria Meccanica

Esame di:

"DINAMICA E CONTROLLO DEI SISTEMI MECCANICI"

MODELLAZIONE E CONTROLLO DI SISTEMI MECCANICI A PIU' GRADI DI LIBERTA'

Studenti:

Elisa Bertozzi 352195 Andrea Meni 353456

Gianluca Montomoli 353452 Roberto Ravaglia 356094

Anno Accademico 2023/24

INTRODUZIONE

Obiettivo del seguente progetto è quello di studiare e controllare la dinamica di sistemi meccanici a più gradi di libertà, partendo dal pendolo semplice ed arrivando a sistemi meccanici complessi, quali pendolo di Furuta e doppio pendolo inverso.

Per raggiungere lo scopo, si utilizzano Matlab e Simulink (con implementazione blocchi Simscape)

PENDOLO SEMPLICE

Massa 1 Kg

Lunghezza 0.7 m

 $9.81 \frac{m}{s^2}$ Accelerazione di gravità

1.5 m Spostamento richiesto

Tempo di fine azionamento 2.5 s

Modello Matematico:

 $ml^{2}\ddot{\theta} + mgl\theta = m\ddot{x}$ $E_{res} = \frac{1}{2}m\dot{\theta}^{2} + \frac{1}{2}k\theta^{2}$ Energia del sistema:

Il ciclo di calcolo incrementerà il numero di step «n» fino a soddisfare tutti i vincoli imposti.

Legge di moto con energia residua minore di $10^{-4}\,$ Valore assoluto della velocità finale minore di $10^{-6}\,$

Legge di moto con energia residua minore di $10^{-32}\,$

Valore assoluto della velocità finale minore di 10^{-16}

Legge di moto con energia residua minore di 10^{-32}

Valore assoluto della velocità finale minore di 10^{-6}

PENDOLO SEMPLICE: MODELLAZIONE TRAMITE SIMULINK

PENDOLO SEMPLICE: LEGGE DEL MOTO

VARIAZIONE PARAMETRI SIGNIFICATIVI

Variazione Tempo di azionamento tf

Variando tf si valuta il comportamento dell'ampiezza delle oscillazioni del pendolo, con $E_{res} < 10^{-16}$.

Figura 19 Confronto al variare del tempo di azionamento

VARIAZIONE PARAMETRI SIGNIFICATIVI

Variazione lunghezza del pendolo L

Variando L senza tener conto dell'energia residua si analizza la seguente funzione:

$$x(t) = \frac{FF}{K1}(1 - \cos(\omega_n t))$$

$$\operatorname{Con} FF = -\frac{1}{L} \text{ e } K1 = \frac{g}{L}.$$

Figura 20 Confronto al varare della lunghezza del pendolo

VARIAZIONE PARAMETRI SIGNIFICATIVI

Variazione lunghezza del pendolo L

Implementando la limitazione sull'energia residua, il comportamento delle oscillazioni non varia come un coseno.

Figura 21 Confronto sulla lunghezza con implementazione del controllo sull'energia residua

MODELLO SIMSCAPE DEL PENDOLO SEMPLICE

È un modello di simulazione avanzato -> analisi multibody

Studio del pendolo semplice collegato a un carrello traslante avente massa definita.

Questa rappresentazione visiva consentirà una comprensione più approfondita del sistema.

Subsystem Simscape

Forzante input

Output spostamento e velocità del carrello Disturbi attivi

I disturbi sono stati inseriti come rumore casuale con ampiezza compresa tra $\pm 0.1 \ m/s^2$

Output spostamento e velocità del carrello Disturbi attivi

CALCOLI PARAMETRI PID

Metodo Ziegler-Nicols

Control Type	K_p	T_i	T_d	K_i	K_d
Р	$0.5K_u$	_	_	_	_
PI	$0.45K_u$	$0.8\overline{3}T_u$	_	$0.54K_u/T_u$	-
PD	$0.8K_u$	_	$0.125T_u$	_	$0.10K_uT_u$
classic PID ^[2]	$0.6K_u$	$0.5T_u$	$0.125T_u$	$1.2K_u/T_u$	$0.075K_uT_u$

	IOLS FLK F	ID PENDO	TO SEIMILLI	CE CON CA	RRELLO
Periodo Tu	9,5				
Ku	5				
	Кр	Ti	Td	Ki	Kd
Р	2,5				
PI	2,25	4		0,284211	
PD	4	2,5	1,1875		4.75
classic PID	(3	2,5	1,1875	0,631579	3,5625
	P PI PD	Ku 5 Kp Kp P 2,5 PI 2,25 PD 4	Ku 5 Kp Ti P 2,5 PI 2,25 4 PD 4 2,5	Ku 5 Kp Ti Td P 2,5 PI 2,25 4 PD 4 2,5 1,1875	Ku 5 Kp Ti Td Ki P 2,5 0,284211 PI 2,25 4 0,284211 PD 4 2,5 1,1875

Successivamente sono state inserite le costanti Kp, Ki e Kd del PID in Simulink

Schema Simulink con PID attivo

Run

SCHEMA A BLOCCHI

Output spostamento e velocità del carrello con **PID attivo**

Run

SCHEMA A BLOCCHI

Output spostamento e velocità del pendolo con **PID attivo**

PENDOLO SEMPLICE: errori di modellazione del sistema con PID attivo

La pulsazione propria del sistema non risulta essere quella calcolata in precedenza ma presenta un'incertezza del ±10%.

Il controllo risulta stabile anche in presenza di piccole incertezze sulla pulsazione propria del sistema.

SIMULAZIONE MULTIBODY 'MECHANICS EXPLORERS'

DOPPIO PENDOLO

Massa 1	0.2 Kg		
Massa 2	0.5 Kg		
Lunghezza 1	1.05 m		
Lunghezza 2	0.35 m		
Accelerazione di gravità	$9.81 \frac{m}{s^2}$		
Spostamento richiesto	1.5 m		
Tempo di fine azionamento	2.7 s		

Dalle seguenti equazioni
$$\begin{split} (m_1+m_2)l_1^2\ddot{\theta_1} + (m_1+m_2)l_1\ddot{x} + m_2l_1l_2\ddot{\theta_2} + (m_1+m_2)gl_1\theta_1 &= 0 \\ m_2l_2^2\ddot{\theta_2} + m_2l_2\ddot{x} + m_2l_1l_2\ddot{\theta_1} + m_2gl_2\theta_2 &= 0 \end{split}$$

è possibile ricavare le leggi di moto sia in forma analitica, sia attraverso un software di calcolo:

$$\ddot{\theta}_1 = -\frac{m_1 \ddot{x} + g(m_1 \theta_1 + m_2 \theta_1 - m_2 \theta_2)}{l_1 m_1} \quad \ddot{\theta}_2 = \frac{g(m_1 + m_2)(\theta_1 - \theta_2)}{l_2 m_1}$$

PENDOLO DOPPIO: EQUAZIONE DEL MOTO

```
syms m1 m2 l1 l2 theta2ddot theta1ddot theta2 theta1 g xddot

M=([(m1+m2)*l1^2,m2*l1*l2;m2*l1*l2,m2*l2^2]); %matrice delle masse

thetaddot=[theta1ddot;theta2ddot]; %matrice delle derivate seconde di
theta1,theta2

G=[(m1+m2)*g*l1,0;0,m2*g*l2]; %matrice della rigidezza

theta=[theta1;theta2]; %matrice dello spostamento angolare theta1,theta2

F=([-(m1+m2)*l1;-m2*l2])*xddot; %matrice della forzante

eqn= M*thetaddot==(F-G*theta); %EQUAZIONE DEL MOTO
C=solve(eqn,thetaddot);
```

C.theta1ddot

val =

```
-(m1*xddot + g*m1*theta1 + g*m2*theta1 - g*m2*theta2)/(11*m1)
```

C.theta2ddot

```
val = ((m1 + m2)*(g*theta1 - g*theta2))/(l2*m1)
```


Legge di moto con energia residua minore di 10^{-4} Valore assoluto della velocità finale minore di 10^{-6}

Legge di moto con energia residua minore di 10^{-29} Valore assoluto della velocità finale minore di 10^{-6}

PENDOLO DOPPIO: LEGGE DEL MOTO, AZIONAMENTO t=10 s

PENDOLO DOPPIO: MODELLAZIONE TRAMITE SIMULINK

PENDOLO DOPPIO: ERRORI DI MODELLAZIONE

PENDOLO DOPPIO: ERRORI DI MODELLAZIONE

MODELLO SIMSCAPE DEL PENDOLO DOPPIO

È un modello di simulazione avanzato → analisi multibody

Studio del pendolo doppio collegato a un carrello traslante avente massa definita.

Questa rappresentazione visiva consentirà una comprensione più approfondita del sistema.

Subsystem Simscape

SCHEMA A BLOCCHI

Forzante

SCHEMA A BLOCCHI

CALCOLI PARAMETRI PID

Metodo Ziegler-Nicols

Control Type	K_p	T_i	T_d	K_i	K_d
Р	$0.5K_u$	_	_	_	_
PI	$0.45K_u$	$0.8\overline{3}T_u$	_	$0.54K_u/T_u$	_
PD	$0.8K_u$	_	$0.125T_u$	_	$0.10K_uT_u$
classic PID ^[2]	$0.6K_u$	$0.5T_u$	$0.125T_u$	$1.2K_u/T_u$	$0.075K_uT_u$

CALCOLI ZIEGLER-NICHOLS PER PID PENDOLO DOPPIO CON CARRELLO										
	Periodo Tu	5								
	Ku	2								
		Кр	Ti	Td	Ki	Kd				
	Р	1								
	PI	0,9	4,15		0,216					
	PD	1,6		0,625		4,75				
	classic PID	1,2	2,5	0,625	0,48	0,75				

Successivamente sono state inserite le costanti Kp, Ki e Kd del PID in Simulink

SCHEMA A BLOCCHI

Schema Simulink con PID attivo

Il controllore PID entra in azione a fine azionamento (tf = 2.7s)

Run

SCHEMA A BLOCCHI

Output spostamento e velocità del carrello con **PID attivo**

Run

SCHEMA A BLOCCHI

Output spostamento angolare dei pendoli con **PID attivo**

SIMULAZIONE MULTIBODY 'MECHANICS EXPLORERS'

PENDOLO DOPPIO INVERSO: MODELLAZIONE TRAMITE SIMSCAPE

MODELLAZIONE IMMEDIATA,
CONDIVISA CON IL PENDOLO DOPPIO
CLASSICO

$$m_1 = m2 = 0.2 kg$$

 $l_1 = l_2 = 0.2 m$
 $m_{carrello} = 0.5 kg$

APPROFONDIMENTI

Nella sezione degli Approfondimenti ci concentriamo principalmente sullo studio di due sistemi:

- Doppio pendolo inverso
- Pendolo di Furuta

Entrambi i sistemi vedono schema Simulink e Simscape con controllo PID.

PENDOLO DOPPIO INVERSO: MODELLAZIONE TRAMITE SIMSCAPE

PENDOLO DOPPIO INVERSO: LEGGE DEL MOTO

PENDOLO DOPPIO INVERSO: SPOSTAMENTO ANGOLARE

PENDOLO DOPPIO INVERSO: SPOSTAMENTO ANGOLARE

Il sistema preso in esame ha 2 gradi di libertà rotazionali, mostrati in figura. L'obbiettivo dell'analisi è quello di implementare un controllo delle vibrazioni del pendolo e/o del motore (blocco verde).

Il procedimento seguito per la realizzazione dei modelli è lo stesso utilizzato per i sistemi precedenti.

L'analisi è stata effettuata riferendosi al moto dei due giunti.

In primo approccio, è stata implementata una coppia al J1 che simulasse quella di un motore elettrico durante un posizionamento.

Figura 56 Curva di coppia motore elettrico

C = Cmax./(1+exp(a*(w/w0)));

Figura 57 Posizione e velocità di J1 e J2

Caso con singolo controllo

Si è passati, poi, ad un doppio controllo della velocità su entrambi i revolute joint.

Al joint tra motorependolo è stata applicata una forzante random.

L'efficacia del modello è verificata poiché, anche in presenza di forzante random, le vibrazioni del pendolo sono trascurabili.

Figura 61 Grafici ottenuti con coppia nulla dopo intervallo di 10 secondi

Caso con doppio controllo

GRAZIE PER

L'ATTENZIONE

