

Detecção de Anomalias em Contêiner: Uma Avaliação Considerando o Nível de Observação das Aplicações no Contêiner

> Anderson Aparecido do Carmo Frasão Departamento de Informática Universidade Federal do Paraná Curitiba, PR, Brasil

Sumário

Introdução

Background

Trabalhos Relacionados

Proposta

Experimentos

Conclusão

Introdução

- Os contêineres representam uma revolução na implementação de aplicativos.
- Algumas vantagens dos contêineres em comparação com máquinas virtuais:
 - Maior desempenho e escalabilidade
 - Uso eficiente de recursos computacionais
 - Menos sobrecarga e maior número de instâncias
- Riscos (Imagem, Contêiner, Sistema Operacional do Host, ...)
- Mitigações (Atualizações regulares, Monitoramento constante, Escolha de imagens confiáveis, ...)

Introdução

- Algumas soluções para Detecção de Intrusão em Contêineres:
 - Integridade de Instâncias de Contêiner (Amazon)
 - Análise de Comportamento (docker)
 - Sistemas de Prevenção de Intrusão (IPS)
- Esse estudo se concentra em:
 - Gerar um sistema de detecção de intrusão.
 - Comparar diferentes pontos de coletas de dados.

Sistema de detecção de intrusão

- Ferramentas para detectar comportamentos intrusivos
- Análise de dados de auditoria
- Prevenir futuros ataques
- Categorias de Detecção de Intrusão
 - Detecção baseada em assinatura (SD)
 - Comparação com padrões conhecidos
 - Identificação de ameaças e comportamentos suspeitos
 - Detecção baseada em anomalia (AD)
 - Comparação de comportamentos com perfis normais
 - Identificação de comportamentos não usuais ou suspeitos
- Sistemas de Detecção de Intrusão de Rede (NIDS) e Host (HIDS)

Virtualização Baseada em Contêiner

- Aproveita recursos do kernel para criar ambientes isolados para processos.
- Diferença estrutural em relação à virtualização baseada em hipervisor.

Trabalhos Relacionados

Trabalho	Estratégia	Objeto alvo		
(Abed et al., 2015b)	BoSC com janela desli- zante em epochs	Contêiner		
(Castanhel et al., 2021)	Strace	Contêiner Docker		
(Du et al., 2018)	cAdvisor, Heapster, InfluxDB e Grafana	Contêiner Kuberne- tes		
(Rocha et al., 2022)	Sysdig	Contêiner Kuberne- tes		

Tabela: Trabalhos Relacionados

- Qual a viabilidade de considerar o isolamento do contêiner e diferentes níveis de observação do ambiente?
- É possível criar uma nova estratégia para a detecção de anomalias em um ambiente de contêiner?
- Requisitos:
 - Se faz necessária uma base representativa de dados para detecção e comparação

- O Sysdig foi a ferramenta escolhida para comparação com o Strace
- A estruturas dessas ferramentas são descritas a seguir:
 - Dados gerados antes da coleta de dados.
 - Resultados da coleta de dados após a interação com a interface de chamada do sistema.
- Destacando a sobrecarga causada pela troca de contexto do strace durante a coleta de dados.

- Este estudo foca em uma aplicação executando em um contêiner
 - Aplicação alvo: Wordpress
- A parte de anomalias do nosso conjunto de dados sysdig apresenta as seguintes vulnerabilidades:
 - Injeção arbitrária de código
 - Falha na validação de extensões de ficheiros, permitindo o upload e execução de arquivos PHP.
 - Injeção de SQL.
 - Download remoto de arquivos...
- Dataset formado por uma sequências de system calls

- Conjunto de dados reunido com strace:
 - Coleta estruturada, 10 comportamentos, 5 execuções cada
 - Totalizando 50 arquivos de log
- Conjunto de dados reunido com sysdig:
 - Coleta estruturada, 20 comportamentos, 10 execuções cada
 - Totalizando 200 arquivos de log

- Algoritmos de Machine Learning utilizados:
 - Ada Boost (AB)
 - Decision Tree (DT)
 - Multilayer Perceptron (MLP)
 - Nu-Support Vector (NuSV)

- Random Forest (RF)
- Stochastic Gradient Descent (SGD)
- XGBoost (XGB)

- Dois experimentos foram definidos:
 - Analise do impacto que as diferentes perspectivas de observação têm nos dados recolhidos por duas soluções heterogêneas de rastreio de syscall (strace e sysdig).
 - Solução de detecção de anomalias possibilitada pelo sysdig.

Analise do impacto de diferentes perspectivas de observação

 Diferença de Chamadas de Sistema de interações normais entre Sysdig (esquerda) e Strace (direita)

Figura: Sysdig | Strace

Analise do impacto de diferentes perspectivas de observação

 Diferença de Chamadas de Sistema de interações anormais entre Sysdig (esquerda) e Strace (direita)

Figura: Sysdig | Strace

Analise do impacto de diferentes perspectivas de observação

- Chamadas de sistema com destaque em interações mal-intencionadas.
- Variação nos conjuntos específicos de chamadas entre as duas perspectivas de observação.
- Complicação no processo de identificação de anomalias

Solução de detecção de anomalias possibilitada pelo sysdig

- Treinamento com 50% dos dados disponíveis e testes com os 50% restantes.
- A curva Receiver
 Operating Characteristic
 (ROC) indica que três dos classificadores alcançam resultados satisfatórios

Classificador	Precision	Recall	F1	ROC
AB	83.67%	83.67%	83.67%	95.84%
MLP	93.33%	85.71%	89.36%	95.88%
NuSV	86.00%	87.76%	86.87%	94.14%
RF	80.39%	83.63%	82.00%	90.84%

Solução de detecção de anomalias possibilitada pelo sysdig

- Em relação ao F1 Score, o MLP foi o melhor classificador e apenas um modelo ficou abaixo do limiar de 80%.
- Apesar das margens de erro nos modelos, os resultados indicam o potencial da proposta para detecção de anomalias, com possíveis aplicações em contextos específicos.

Conclusão

- Nesse trabalho levantamos os seguintes pontos:
 - Qual a viabilidade de considerar o isolamento do contêiner e diferentes níveis de observação do ambiente?
 - É possível criar uma nova estratégia para a detecção de anomalias em um ambiente de contêiner?

Conclusão

- O sysdig destaca-se por um aumento significativo em operações temporais, leitura, gestão de processos e manipulação de dispositivos
- Os dados obtidos do strace revelam maior ênfase em chamadas de sistema relacionadas à comunicação e manipulação do sistema operativo
- É viável monitorar o comportamento de contêineres por meio de análise de system calls utilizando o Sysdig.
- O classificador Multi-Layer Perceptron se destacou para possível implementação.

Obrigado