COMP 3031 Assignment 3

Logic Programming

Fall 2019

Due: 5PM on Nov 29 Friday

Instructions

- There are five problems in this assignment. Each problem counts for two points.
- Write your prolog program according to the problem definition, with the same predicate name and number of arguments as specified. Write all the solutions in a single file named "ass3.pl". You can use any helper predicates, including built-in predicates available on the lab computers, but *not* any external modules that require downloading.
- Submit your code through Canvas.
- No late submissions will be accepted.
- Your submission will be run on a lab 2 machine with the following command: "?- [ass3].".

Please make sure your submission is executable. If it is not, a significant number of points will be deducted.

An $H \times W$ matrix consists of H rows and W columns. In this assignment, we use a list of H lists each of which consists of W numbers to represent an $H \times W$ matrix. You can assume all input are valid in the PROLOG interpreter.

1. Get

Define a relation $mat_get(M, I, J, R)$ where R is the number located at the i-th row and j-th column of matrix M.

Examples:

```
?- mat_get([[1,2],[3,4]],0,1,R). 

R = 2. 

?- mat_get([[1,2],[3,4]],0,0,R). 

R = 1. 

?- mat_get([[1,2,5],[3,4,7]],1,2,R). 

R = 7. 

?- mat_get([[1,2,5],[3,4,7]],1,2,7). 

true. 

?- mat_get([[1,2,5],[3,4,7]],1,2,6). 

false.
```

2. Mean

Define a relation mat mean(M, R) in which R is the mean value of a matrix M.

Examples:

3. Transpose

 $Define \ a \ relation \ \texttt{mat_trans} \ (\texttt{M}, \texttt{R}) \quad \text{where matrices} \ M \ and \ R \ are \ the \ transpose \ of \ each \ other.$

```
?- mat_trans([[1,2]],R).
R = [[1], [2]].
?- mat_trans(R, [[1],[2]]).
R = [[1, 2]].
?- mat_trans([[1,2,3]],[[1],[2],[3]]).
true.
?- mat_trans([[1,2,3]],[[3],[2],[1]]).
false.
```

4. Blend

Define a relation mat_blend (A, B, W, C) in which C is the blending result of two given matrices A and B with the weight W, i.e., C = W*A + (1-W)*B where each element C(i,j) is the sum of W*A(i,j) and (1-W)*B(i,j).

Examples:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

5. Dot product

Define a relation $mat_dot(A, B, C)$ where matrix C is the dot product of two given matrices A and B. Specifically, in the output matrix $C = A \times B$, each element C(i,j) is the dot product of the i-th row of A and the j-th column of B.

Examples:

 $?- mat_dot([[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]],[[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]], R).$

R = [[30.0, 36.0, 42.0], [66.0, 81.0, 96.0], [102.0, 126.0, 150.0]].

 $?-mat_dot([[0.0,1.0,1.0],[2.0,2.0,2.0]],[[1.0,3.0,1.0],[2.0,2.0,0.0],[3.0,1.0,1.0]],R).$

R = [[5.0, 3.0, 1.0], [12.0, 12.0, 4.0]].

 $?-mat_dot([[0.0,1.0,1.0],[2.0,2.0,2.0]],[[1.0,3.0,1.0],[2.0,2.0,0.0],[3.0,1.0,1.0]],[[5.0,3.0,1.0],[12.0,12.0,4.0]]).$

true.

 $?-mat_dot([[0.0,1.0,1.0],[2.0,2.0,2.0]],[[1.0,3.0,1.0],[2.0,2.0,0.0],[3.0,1.0,1.0]],[[5.0,3.0,1.0],[12.0,12.0,3.0]]).$

false.