MalikovDO 17092024-192953

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=1.51\text{--}0.26\mathrm{i}$.

Рисунок 1 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.539	162.8	5.450	72.5	0.055	56.8	0.269	-44.5
1.5	0.555	149.0	4.004	61.8	0.071	55.3	0.255	-49.1
1.9	0.575	136.6	3.146	52.1	0.087	52.6	0.244	-56.1
2.3	0.601	125.8	2.587	42.9	0.102	49.3	0.234	-64.8
2.7	0.633	116.1	2.181	33.9	0.116	45.6	0.224	-74.8
3.1	0.660	107.7	1.882	25.7	0.129	41.9	0.215	-86.1
3.5	0.691	100.0	1.641	17.4	0.141	38.3	0.212	-98.4
3.9	0.716	93.5	1.452	10.3	0.153	34.4	0.213	-111.7
4.3	0.737	87.5	1.292	3.1	0.164	30.7	0.219	-125.0

и частоты $f_{\scriptscriptstyle \rm H}=1.5$ ГГц, $f_{\scriptscriptstyle \rm B}=4.3$ ГГц.

 ${\bf Ha\ddot{u}ru}$ обратные потери по входу $\,$ на $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.9	0.482	175.9	7.221	62.5	0.056	51.9	0.251	-99.5
4.0	0.484	174.6	7.029	61.3	0.058	51.8	0.249	-100.4
4.1	0.485	173.4	6.866	60.3	0.059	51.6	0.247	-101.5
4.2	0.487	172.2	6.706	59.3	0.060	51.3	0.244	-102.7
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
4.4	0.492	169.9	6.393	57.0	0.062	50.9	0.239	-105.1
4.5	0.494	168.7	6.240	55.8	0.064	50.7	0.237	-106.3
4.6	0.496	167.6	6.102	54.9	0.065	50.4	0.235	-107.4
4.7	0.497	166.6	5.965	53.9	0.066	50.2	0.232	-108.5
4.8	0.499	165.6	5.831	52.8	0.067	49.9	0.229	-109.7
4.9	0.501	164.5	5.698	51.7	0.068	49.6	0.227	-110.9

и частоты $f_{\mbox{\tiny H}}=4.3$ ГГц, $f_{\mbox{\tiny B}}=4.8$ ГГц.

Найти модуль $s_{21}\,$ в дБ на частоте $f_{\scriptscriptstyle \rm B}\,$.

Варианты ОТВЕТА:

- 1) -23.4 дБ
- 2) 15.3 дБ
- 3) -12.8 дБ
- 4) -6.0 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.8	0.482	170.5	7.557	61.8	0.056	56.6	0.220	-105.1
3.9	0.483	169.3	7.357	60.8	0.057	56.5	0.218	-105.9
4.0	0.484	168.2	7.159	59.6	0.059	56.3	0.217	-106.8
4.1	0.486	167.1	6.992	58.6	0.060	55.9	0.215	-108.0
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
4.4	0.492	164.0	6.503	55.5	0.064	54.8	0.209	-111.8
4.5	0.494	163.0	6.345	54.3	0.066	54.5	0.208	-113.1
4.6	0.496	162.1	6.204	53.4	0.067	54.1	0.206	-114.3
4.7	0.497	161.2	6.065	52.4	0.068	53.7	0.203	-115.5
4.8	0.499	160.3	5.928	51.4	0.069	53.4	0.201	-116.7

и частоты $f_{\mbox{\tiny H}}=4.2$ $\Gamma\Gamma\mbox{\scriptsize II},$ $f_{\mbox{\tiny B}}=4.6$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B},$ используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 2.1 дБ 2) 0.4 дБ 3) 0.4 дБ 4) 0.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Найти точку (см. рисунок 3), соответствующую s_{11} на частоте 2.8 ГГц.

Рисунок 3 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Задан двухполюсник на рисунке 4, причём R1 = 78.08 Ом.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.