- 1. (10 pts.) The two parts are not related.
 - (a) Use an integral to compute the volume of a ball of radius R in the xyz space.

2. (8 pts.) Suppose we have a lamina that lies on the subset

$$D = \{(x, y) : x^2 + y^2 \ge 1, |y| \le \sqrt{3}x, x \le 3\}$$

of the xy plane and has density function $\rho(x,y) = \frac{1}{x^2+y^2}$. Find its moment about the y axis (the M_y)

So
$$My = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos \theta \left(\frac{3}{\cos \theta} - 1\right) d\theta = \frac{3}{3}$$

$$= 3 \cdot \frac{2\eta}{3} - \int_{2^{-\frac{\pi}{3}}}^{\frac{\pi}{3}} \cos \theta - 2\eta - \sin \theta \frac{1}{3}$$

$$= 2\eta - (\frac{1}{2} + \frac{1}{2}) = 2\eta - 1$$

2. (10 pts.) Write down the equations used to change from Cartesian coordinates to Spherical coordinates (ρ, θ, ϕ) (that is, $x = x(\rho, \theta, \phi)$, $y = y(\rho, \theta, \phi)$ and $z = z(\rho, \theta, \phi)$) and then set up **but do not evaluate** the integral

$$\iiint_E yzdV$$

in **spherical coordinates**, where E is the set below:

E lies inside the sphere $x^2 + y^2 + z^2 = -6z$, under the half cone $z = -\sqrt{x^2 + y^2}$ and satisfies $y \le 0$.

$$x^{2}+y^{2}+z^{2}=-6z$$
 => $p^{2}=-6p\cos \varphi$ => $p=-6\cos \varphi$
 $y=0$ => $\pi = 0 \le 2\pi$

$$7 = -\sqrt{\chi^2 + y^2} \Rightarrow r \cos \varphi = -p \sin \varphi \Rightarrow \varphi = \frac{3\pi}{4}$$

4. (12 pts.) Set up an integral of

$$\iiint_E f(x,y,z)dV$$

in the order dydxdz, where E is the solid satisfying $0 \le x \le 7 - y^2 - z^2$, $0 \le z \le 1$ and $0 \le y \le 2$ (the set E can be seen in the picture).

Equations, solve for y: $y \bigcirc x = 7 - y^2 - z^2 = 7 - x - z^2$ D y= 17-x-22

g appears 3 times =>

(3) y=0 sum of ints.

(4) y=2 write projection on x2

(5) z=0 plane: $(0,3) \Rightarrow 7 = x + z^2 \Rightarrow x = 7 - z^2$ (D, (4) => 2= [7-x-22]

 $x=3-z^2$

Duer $D_1 = \{(x,z) : D \le x \le 3-z^2, 0 \le z \le 1\}$ $x = 7-z^2$ we have $D \le y \le 2$ Over $D_2 = \{(x,z) : 3-z^2 \le x \le 7-z^2, 0 \le z \le 1\}$ $D \le y \le \sqrt{7-x-z^2}$ $D \le y \le \sqrt{7-x-z^2}$

So:
$$\iint f dU = \iint \int_{0}^{1} \int_{0}^{3-2^{3}} \int_{0}^{3} dt$$

 $\iiint f dU = \iint \int_{0}^{3-2^{2}} f(x,y,z) dy dx dz + \iint \int_{2-x^{2}}^{2-x^{2}} \int_{2-x-2^{2}}^{2-x^{2}} f(x,y,z) dy dx dz + \iint \int_{2-x^{2}}^{2-x^{2}} \int_{2-x^{2}}^{2-x^{2}}^{2-x^{2}} \int_{2-x^{2}}^{2-x^{2}} \int_{2-x^{2}}^{2-x^{2}} \int_{2-x^{2}}^{2-x^{2}} \int_{2-x^{2}}^{2-x^{2}}^{2-x^{2}} \int_{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}^{2-x^{2}}$

5. (10 pts.) Use the change of variables $x = \frac{u^2}{v^2}$, $y = \frac{v^2}{u}$ defined on $\{(u,v): u > 0, v > 0\}$, to evaluate $\iint_{R} 4xy^{3}dA$, where R is the region in the first quadrant bounded by $y = \frac{1}{x}$, $y = \frac{2}{x}$, $y = \frac{1}{\sqrt{x}}$ and $y = \frac{2}{\sqrt{x}}$ (the domain R can be seen in the picture). You must show your work clearly, but you don't need to show that the transformation is invertible.

T:
$$x = \frac{u^2}{v^2}$$
 $y = \frac{v^2}{u}$

Think $T'(R)$:

 $y = \frac{1}{x}$
 $y = \frac{1}{x}$

Jacobian:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{2u}{v^2} \\ -\frac{v^2}{u^2} \end{vmatrix}$$

$$\frac{\partial(x_{i}y)}{\partial(u_{i}v)} = \begin{vmatrix} \frac{2u}{v^{2}} & -2\frac{u^{2}}{v^{3}} \\ -\frac{v^{2}}{u^{2}} & \frac{2v}{u} \end{vmatrix} = \frac{4}{v} - 2\frac{1}{v} = \frac{2}{v} \neq 0$$
By Hieorem

By theorem

$$=2\int_{l}^{2} u du$$

$$\iint_{\mathbb{R}} 4 \times y^{3} dx = \int_{1}^{2} \frac{2}{4 u^{2}} \frac{v^{6}}{v^{2}} \frac{2}{u^{3}} \frac{2}{v^{2}} dv du =$$

$$= 2 \int_{1}^{2} u du \int_{1}^{2} 4v^{3} dv = 2 \ln 2 (16-1)$$