Exercice 3B, Circuits et Systèmes Electroniques I

Conception d'un ampli BF de puissance classe A-B à composants discrets

Cahier des charges:

Puissance de sortie nominale en régime sinus $$: $60\,W$ sur une charge de $4\,\Omega$.

Gain en tension en boucle fermée : $\approx 30 \text{ dB}$

On propose le schéma suivant :

Types de transistors bipolaires à disposition :

Q₇ & Q₈: BDV65A: darlington NPN, BDV64A: darlington PNP

 $|V_{CEmax}| = 80 \text{ V} \quad I_{Cmax} = 20 \text{ A} \quad P_{max} = 125 \text{ W} \quad \beta \approx 1500 \quad |V_{CEsat}| \approx 1.3 \text{ V}$

 $Q_3 \& Q_6$: BC 337A: NPN, BC 327A: PNP $|V_{CEmax}| = 60 \text{ V}$ $I_{Cmax} = 1 \text{ A}$ $P_{max} = 625 \text{ mW}$ $\beta \approx 200$ $|V_{CEsat}| \approx 0.2 \text{ V}$ $V_{Early} \approx 80 \text{ V}$

 $\begin{aligned} Q_1, \, Q_2, \, Q_5: \quad & BC \; 557B: PNP \\ & V_{ECmax} = 45 \; V \quad & I_{Cmax} = 0.2 \; A \quad & P_{max} = 500 \; mW \quad & \beta \approx 300 \quad & V_{ECsat} \approx 0.2 \; V \quad & V_{Early} \approx 50 \; V \end{aligned}$

M: BCM61 : NPN double transistors $V_{CEmax} = 30 \ V \quad I_{Cmax} = 100 \ mA \quad P_{max} = 220 \ mW \quad \beta \approx 300 \quad V_{CEsat} \approx 0.2 \ V \quad V_{Early} \approx 30 \ V$

 Q_4 : BD 239, NPN $\beta \approx 50$ à $I_C = 10$ mA choisi pour son boîtier TO126

LED : rouge 640 nm : HLMP 1000, $V_F \approx 1.6~V$ à $I_F = 15~mA$ $\Delta V_F/\Delta T \approx -2~mV/^\circ$

Questions:

- a) Déterminer la tension V_{out,crête} et le courant I_{out,crête} à la puissance de sortie nominale en régime sinus.
- b) Avec $R_E = 0.22 \ \Omega \ (\approx 0.05 \cdot R_L)$, déterminer la puissance que doit pouvoir dissiper chacune des deux résistances.
- c) Déterminer la tension d'alimentation minimum requise pour obtenir la puissance nominale désirée en régime sinus.

Pour la suite, on considérera une tension d'alimentation nominale $V_{CC} = 27 V$.

- Estimer la valeur de la tension $|V_{CE}|_{max}$, du courant I_{Cmax} , et de la puissance instantanée maximale que doivent supporter les transistors Q_7 et Q_8 .
- e) Calculer le courant moyen et la puissance que doit pouvoir délivrer chacune des deux alimentations en régime sinus à la puissance nominale.
- f) Calculer la puissance que doit pouvoir dissiper l'étage de sortie en régime sinus. Comparer avec le cas où le signal amplifié est un "carré".
- g) Estimer les courants $I_{B7,\text{crête}}$ et $I_{B8,\text{crête}}$, en déduire le courant I_2 minimum requis.

Pour la suite, on considérera un courant nominal $I_2 = 6 \text{ mA}$.

- h) Estimer la valeur des tensions $|V_{CE}|_{max}$, des courants I_{Cmax} , et la puissance instantanée maximale que doivent supporter les transistors Q_3 et Q_6 .
- i) Estimer le courant $I_{B3,repos}$, choisir le courant I_1 en conséquence.

Pour la suite, on considérera un courant nominal $I_1 = 2 \text{ mA}$.

- Estimer la valeur de la tension V_{ECmax} , du courant I_{Cmax} , et de la puissance instantanée maximale que doivent supporter les transistors Q_1, Q_2 et Q_5 .
- k) Calculer les valeurs de toutes les résistances du circuit, sauf R_g.
- En supposant un gain en tension en boucle ouverte très élevé, calculer les valeurs de R_g, C_{in} et C_g pour avoir un gain en boucle fermée de 30 dB, avec une bande passante à -3 dB commençant à environ 20 Hz.