WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 3:		(11) Int. Publication Number:	WO 80/00676
B31F 1/12, 31/20; B32B 31/08; A1 C08K 5/01; A41D 9/14	(43) Int. Publication Date:	17 April 1980 (17.04.80)	

(21) International Application Number: PCT/US79/00755

(22) International Filing Date: 21 September 1979 (21.09.79)

(31) Priority Application Numbers: 944,845

966,794 36,858

(32) Priority Dates:

22 September 1978 (22.09.78) 6 December 1978 (06.12.78)

7 May 1979 (07.05.79)

(33) Priority Country:

US

(71) Applicant: H.B. FULLER COMPANY [US/US]; 2400 Kasota Avenue, St. Paul, MN 55108 (US).

(72) Inventors: BUNNELLE, William, L.; 703 West Hickory Street, Stillwater, MN 55082 (US). LINDMARK, Richard, C.; 10571 Flora St. N.W. Coon Rapids, MN 55433 (US). (74) Agents: MESHBESHER, Thomas, M. et al.; Suite 1000, Northwestern National Bank Building, St. Paul, MN 55101 (US).

(81) Designated States: AT (European patent), BR, CH (European patent), DE (European patent), DK, FR (European patent), GB (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report With amended claims and statement

(54) Title: HOT MELT ADHESIVE FOR ELASTIC BANDING AND METHOS FOR UTILIZING THE SAME

(57) Abstract

A purpose of the disclosed method is to impart gathers and elasticity to a relatively inelastic film, membrane, or web substrate, through elastic banding with a viscoelastic hot melt pressure-sensitive adhesive (PSA). Typically, the resulting elastic-banded substrate product (e.g. 40) will be cut into discrete units and formed into garments or body-encircling members such as disposable diapers. One step of the preferred method involves extruding a ribbon or band (13 or 113) comprising a viscoeiastic hot melt PSA, which PSA has unusually high cohesion, stretchiness, and elasticity without excessive loss of adhesive bonding strength. (The viscoelastic behavior of the PSA is believed to be determined, at least in part, by the relative size of its crystalline domains and its rubbery domains and the glass transition temperatures and softening points of its components.) A second step of the preferred method involves bringing the band of hot melt (13 or 113) into adherent contact with a surface of a moving continuous substrate (22 or 32 or 132). A typical substrate would be the polyolefin film used in the manufacture of disposable diapers. The band can be bonded to the substrate through a pressure activation technique, wherein the band itself has the necessary inherent adhesive properties.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT

AT	Austria	LU	Luxembourg
BR	Brazil	MC	Monaco
CF	Central African Republic	MG	Mudagascar
CC	Congo	MW	Malaŵi
CH	Switzerland	NL	Notherlands
CM	Cameroon	. RO	Romania
DE	Germany, Federal Republic of	SE	Sweden
DK	Denmurk	SN	Senegal
FR	France	SU	Soviet Union
GA	Gubon	TD	Chad
GB	United Kingdom	TG	Togo
JP	Japan	US	United States of America

HOT MELT ADHESIVE FOR ELASTIC BANDING AND METHOD FOR UTILIZING THE SAME Technical Field

This invention relates to a method for imparting 5 elastic characteristics to materials which are relatively inelastic through the use of a hot melt pressure-sensitive adhesive. An aspect of this invention relates to the formulation of a suitable hot melt pressure-sensitive adhesive composition for 10 the aforementioned method. Still another aspect of this invention relates to the manufacture of garments or body-encircling members provided with an elastic Additional aspects of the invention relate to the elastic banding of such garments or body-encircling 15 members which are cut from a continuously moving film, membrane, or web-like substrate and hot melt pressure-sensitive compositions employed in the elastic banding process which compositions can take the form of extrudates, and elastic banding of discrete 20 articles wherein the hot melt pressure-sensitive adhesive composition can be in the form of a tape.

Description of the Prior Art

In the garment industry, vulcanized rubber in sheet or thread form is typically used for elastic 25 banding purposes. Traditionally, the vulcanized rubber has been sewn, woven, or bonded to the garment or discrete unit of material. Crosslinked synthetic rubbers can be used in place of vulcanized natural rubber for this purpose.

Sewing or weaving or similar attachment techniques are not well suited to modern, high-production processes and may even be inconvenient or cumbersome to use in making homemade garments. A more efficient technique for attaching an elastic band involves the use of a heat-activated coating on the elastic or a separate adhesive, which adhesive can be coextensive in length with the elastic or merely applied in spots. Taking his cue from this more

efficient approach, the patentee of U.S. Patent No. 4,081,301 (Buell), issued March 28, 1978 developed a high-production process particularly well suited to providing disposable diapers with elastic leg According to the Buell patent, glue applicators can apply adhesive along the length of continuous bands of elastic which are applied, in a stretched condition, to the continuous web from which the disposable diapers are made. The patent further suggests that the elastic band or ribbon can be 10 coated with a heat-activated adhesive prior to contact with the web. Still another suggestion relates to the use of a heat-sealable elastic ribbon which can be adhered to the web with the aid of a suitable heating means. 15

Still greater efficiency (with a concurrent simplification of the overall elastic banding process) could theroetically be provided if the adhesion of the elastic band to the substrate did not 20 require either a separate adhesive or a heating means. Unfortunately, there are few guidelines in the prior art for one who would attempt to formulate an adhesive which could itself be an elastic band. It is known that "pressure-sensitive" adhesives do not 25 require heat, solvents, moisture, or the like to form a reasonably strong adhesive bond under normal ambient conditions. It is also known that such adhesives possess a degree of stretchiness, cohesion, and elasticity as well as adhesion characteristics. However, the four-fold balance of adhesion, cohesion, stretchiness, and elasticity is a delicate one, and any substantial increases in the last three of these properties can result in unacceptable losses of adhesion.

35 Since the invention of pressure-sensitive adhesives, literally decades of r_search effort have

gone into the investigation of the aforementioned four-fold balance and the development of tests for reproducibly measuring the desired properties. For example, the adhesive bond strength of a pressure-sensitive adhesive can be measured by 180° peel resistance tests such as PSTC-1. The adhesive tack can be measured, for example, by probe tack tests such as A.S.T.M. D2979. Cohesion and stretchiness of adhesives can be measured with modern tensile testing equipment.

A particularly unusual problem may be encountered when the adhesive is in a temperature environment which is continuously above normal ambient or room temperature. It has been found that some pressure-sensitive adhesives have their four-fold balance significantly altered when the environment is characterized by a modestly elevated temperature. This finding is of great importance in the case of garments or body-encircling members which are continuously exposed to body temperature (e.g. 37° C.).

Most modern pressure-sensitive adhesives ("PSA's") are applied to a substrate by one of three techniques: coating from an organic-solvent based solution (e.g. solvent casting), coating from a suspension or 25 dispersion such as an aqueous latex, and coating or extruding of a hot melt pressure-sensitive composition. The hot melt technique has a number of advantages; for example, thicker layers of adhesive are readily obtainable, solvent recovery is unnecessary, and 30 drying or "setting" time is minimal or nonexistent. Research activity in the field of hot melt pressure-sensitive adhesives has been very extensive, and even a representative citation of references drawn from this field would be difficult to provide. 35 The following selection of patents and literature is believed to be reasonably representative.

	U.S. Patent No.	Patentee	Issue Date
	3,686,107	Russell	August 22, 1972
	3,736,281	Russell	May 29, 1973
	3,827,999	Crossland	August 6, 1974
5	3,935,338	Robertson et al	January 27, 1976
	3,954,692	Downey	May 4, 1976
	4,089,824	Bronstert et al	May 16, 1978
	British Patent	Inventor	Publication Date
	1,405,786	Crossland	September 10, 1975

10 <u>Kirk-Othmer Encyclopedia of Chemical Technology</u>, 2nd Edition, Volume 1, John Wiley & Sons, Inc., New York, New York, 1963, pages 381-384.

"SOLPRENE® 418 in Pressure Sensitive Adhesives",
Bulletin 304 of Phillips Chemical Co., a division of
Phillips Petroleum Company.

Summary of the Invention

It has now been found that a greatly simplified method for imparting elasticity to a relatively inelastic substrate can be provided if one extrudes 20 a band comprising a suitable viscoelastic hot melt pressure-sensitive adhesive, cools the thus-extruded band to a temperature below its softening point but above its glass transition temperature, and brings the thus-cooled band into contact with the 25 substrate to form a pressure-sensitive adhesive (PSA) bond, typically by means of pressure only, although modest amounts of heat can be used also, if desired. The band of hot melt can be pre-extruded and formed into a convoluted roll of hot melt pressure-sensitive 30 adhesive tape. If the pre-extruded technique is used, a cooling step is ordinarily unnecessary, since the roll will ordinarily be stored and unreeled at ordinary ambient temperatures. Extruding the band of hot melt pressure-sensitive adhesive is by far the 35 most practical approach when applying the elastic band to a continuous non-elastomeric film, membrane,

or web substrate which is subsequently cut into portions suitable for use as elastic-banded articles. The convoluted tape approach is very practical when a length of tape is to be applied to an individual article.

In the context of this invention, a suitable hot melt pressure-sensitive adhesive will have viscoelastic behavior because of its glass transition and/or softening point characteristics and 10 particularly because of a microstructure comprising the combination of crystalline domains with rubbery domains. The crystalline domains contribute a pseudo-crosslinked character and greater elasticity and cohesion. High elasticity and elastomeric behavior are typically manifested by a storage modulus (G') which is higher, and a loss tangent (tan dor G"/G') which is lower, than most conventional PSA's. However, the storage modulus values cannot be so high as to preclude viscoelastic behavior in the temperature range of 25-50° C. A viscoelastic solid, under stress, has some of the properties of a highly viscous liquid (e.g. "creep" or "cold . flow") as well as some of the properties of an elastomer. A PSA with suitable "creep" or "cold flow" properties will have some tendency to flow in the temperature range of 25-50° C., but this tendency should be kept within limits, as manifested by a limited range of loss modulus (G") values.

The following are considered to be illustrative values for the G", G', and $\tan \delta$ ($\tan \delta = \frac{G''}{G'}$) of a suitable PSA.

PCT/US79/0075

20

- 6 -

*Values in 10⁴ dynes/cm² at 25-50° C. and 0.01-0.25 Hz

Loss Modulus (G") 5 to 100*

Storage Modulus (G') 65 to 225*

Loss Tangent (tan $\delta = \frac{G''}{G'}$) 0.03 to 1.0 (no units)

5 Some frequency-dependence of these values can be observed, but extreme temperature dependence is not desirable. For example, a loss of more than 50 x 10⁴ dynes/cm² in G' at 50° C., as compared to 25° C. indicates the likelihood of "heat set" or inadequate elastomeric behavior at moderately elevate

inadequate elastomeric behavior at moderately elevated temperatures. Permanent deformation due to elongation should not exceed about 1.5 times the original length of a sample of the PSA (i.e. a permanent increase in length equal to 50% of the original length) throughout the 25-50° C. range, using the dead load creep test

5 the 25-50° C. range, using the dead load creep test described subsequently.

Brief Description of the Drawing

Figure 1 is a schematic illustration of a typical apparatus and typical method steps used in a preferred embodiment of this invention.

Figure 2 is a similar schematic illustration of another embodiment of this invention.

When used in this application, the following terms have the indicated meanings.

"Pressure-sensitive adhesive" denotes those adhesives which bond almost instantaneously when contact pressure is applied to force the mating surfaces together. Such adhesives have rather high cohesive strength, such that, if the adhesive is peeled away from a smooth surface to which it has adhered, no apparent offsetting occurs and no appreciable residue remains on the smooth surface. True pressure-sensitive adhesives (PSA's) need not be

in a liquid or molten state in order to have adhesive Similarly, moisture, solvents, heat, or properties. the like are not needed to activate a PSA. PSA's have aggressive tack or "quick stick" at room 5 temperature and tend to bond instantly upon contact. The PSA's of this invention, on the other hand, typically require light pressure to form a bond of appreciable strength. In other words, the tack is relatively non-aggressive and ordinarily would not 10 be sensed until some pressure were applied to the surface of the PSA, causing it to "cold flow" in the manner of most viscoelastic materials. Thus, a PSA of this invention has a rheology which permits sufficient flow under pressure to form a strong adhesive bond while nevertheless maintaining a high level of cohesion, stretchiness, and elasticity.

"Hot melt" refers to thermoplastic solids with reasonably stable properties in the molten state, which are easily melted at modestly elevated

20 temperatures (e.g. temperatures above 65° C.) and/or easily extruded, and which can be melted and resolidified a number of times without excessive degradation of the thermoplastic properties. A "hot melt pressure-sensitive adhesive" or "hot melt PSA" refers to a hot melt adhesive having PSA characteristics at temperatures below the softening point and above the glass transition temperature of the hot melt.

"Softening point" refers to a specific

temperature or range of temperatures which can be determined by any of the standard softening point tests such as the ring and ball ("R & B") test.

Accordingly, the term "softening point" includes and subsumes "softening range".

"Elastomer" and "elastomeric" refer to a material which, in the form of an unsupported film

30

or layer can be elongated to at least 100% of its original length and which will return with force to substantially its original length when permitted to contract spontaneously. Thus, this invention 5 contemplates as "elastomers" those materials which would be defined as "elastomeric" by the American Society for Testing and Materials (A.S.T.M.). "Non-elastomeric" materials are those which exhibit some degree of significant deformation or "set" when elongated 100% of their original length or less; that is, such non-elastomeric materials typically do not provide the elongation-resistant forces of an elastomer.

"Essentially hydrocarbon resin" refers to a resin in the molecular weight range of a few hundred up to 15 several thousand (e.g. 8,000) which is obtained or synthesized from rather basic hydrocarbonaceous materials such as petroleum, coal tar, turpentine, olefins and other unsaturated simple hydrocarbons, and the like. In the context of this invention, an 20 "essentially hydrocarbon resin" need not be a hydrocarbon in the strictest sense of the term and may contain oxygen, nitrogen, or sulfur, e.g. as hetero-atoms or as atoms of functional groups. Thus, an "essentially hydrocarbon resin" can be made 25 from a monomer such as coumarone (also known as benzofuran). And, in industrial practice, coumarone-indene resins are typically referred to as "hydrocarbon resins".

The terms "loss tangent" (tan O or G"/G'), "storage modulus (G'), "loss compliance (J") and "storage compliance" (J') are defined according to established principles of dynamic mechanics. These rheological quantities are measured on samples approximately 2.5 mm in thickness placed between 35 25 cm parallel plate fixtures of a Rheometrics

WO 80/00676 PCT/US79/00755

_ 9 _

Mechanical Spectrometer (RMS). The sample was allowed to equilibrate with the test temperature (e.g. 25° C. or 50° C.). A minicomputer accurately governs the application of a 5% peak-to-peak shear strain to the sample. The frequency of the application can be accurately controlled to a fraction of a Hertz (Hz). The values of the complex modulus (G*) and loss tangent are calculated by the computer from geometry factors, peak-to-peak 10 amplitude of the torque signal, and phase lag of the torque output wave. The definition of loss tangent and the relationship between G*, G', and G" provide two equations in two unknowns which can be solved by the computer to provide G' and G', since 15 G* and loss tangent are both known values calculated as described previously. The value for J' is given by the reciprocal of G' divided by the expression $1 + \tan^2 0$; the value of J' is given by the reciprocal of G" divided by $1 + (\tan^2 \delta)^{-1}$. For 20 any of these values, the frequency in Hz (e.g. 0.25 Hz or 0.01 Hz) must be specified. Other instruments for measuring these rheological properties over a range of frequencies are known, e.g. the "RHEOVIBRON".

The term "dead load deformation" or "dead load creep" refers to a measurement of "cold flow" or permanent deformation at one or more fixed test temperatures, e.g. 23° C. or 25° C., 40 or 41° C., and 49 or 50° C. A sample of known length is suspended vertically in a chamber maintained at the test temperature and a weight (e.g. 1500 grams) is attached to the lower (free) end of the sample. The sample is cut to a size such that the force per unit area is 1500 g/cm². After approximately 3 hours at the test temperature, the sample is removed, the weight is detached, and the sample is allowed to relax

under the influence of its own inherent elastomeric forces. The length of the relaxed sample (L_2) is compared to the original length (L_1) and the "dead load creep" (permanent deformation) is determined according to the formula (L_2 - L_1)/ L_1 x 100%.

Turning now to the Drawing, Figure 1 illustrates the use of a pre-tensioned, cooled band of hot melt PSA to bond two continuous substrates into an assembly having gathers all along the bond line. A hot melt reservoir 11 extrudes an elongated extrudate (referred to herein as a "band") by forcing the hot melt PSA material in reservoir 11 through an extrusion die 12. The hot melt PSA band 13 comes into 15 contact with chill rolls 15 and 16 almost immediately after the extrusion step, so that band 13 will be cooled to a temperature below its softening point, e.g. to a normal ambient temperature such as 20-25° C. (Typically, the hot melt PSA will be formulated 20 to have a glass transition temperature below normal ambient temperatures.) Chill rolls 15 and 16, in addition to cooling band 13, also advance it toward tensioning rolls 17 and 18. Accordingly, the portions 23 and 33 of band 13 which are on either side of tensioning rolls 17 and 18 will be under tension and will be in an essentially elongated state. Tensioning rolls 17 and 18 advance portion 33 of band 13 to nip rolls 27 and 28. Substrates 22 and 32 are all the while being continuously unreeled from storage rolls 21 and 31, so that the pretensioned, cooled band of hot melt PSA 33 and substrates 22 and 32 all enter the nip provided by rolls 27 and 28 to be formed into the composite or assembled product 40 (i.e. the banded substrates). Although nip rolls 27 and 28 can be heated to a moderately elevated temperature, in the preferred embodiment of this

invention, the modest pressure provided by the nip rolls is all that is needed to adhesively bond substrate 22 to substrate 32 with the hot melt PSA band 33. Since the nip rolls 27 and 28 provide only 5 line contact with the composite or assembly comprising substrate 22 and 32 and adhesive 33, it is difficult to express the pressure applied by these rolls in conventional terms such as Kg/m² or the like. Light pressure on the order of tens or hundreds of grams 10 per square centimeter can be sufficient; however, there is almost no upper limit on the pressure applied by nip rolls 27 and 28 so long as the rolls themselves or the substrates 22 and 32 are not damaged. The hot melt PSA in band 13 can be formulated 15 to take into account the amount of pressure available at nip rolls 27 and 28.

Since band 13 is a viscoelastic hot melt PSA which meets the definition of an elastomer, it will tend to contract spontaneously with force if the 20 tension applied to banded substrates 40 is less than the tension on portion 33 of band 13. For example, additional rolls or conveying devices (not shown) can be used on banded substrates 40 merely to move the composite product along toward a cutting station 25 and not exert any significant tension upon the banded substrates. In such a situation, the portion 43 of band 13 on the exit side of nip rolls 27 and 28 will spontaneously cause the formation of gathers 41 all along the line of the adhesive bond between 30 band 43 and substrates 22 and 32.

The banded substrate product 40 can be cut into individual elastic-banded articles such as disposable diapers by techniques known in the art.

In the embodiment of the invention shown in

Figure 2, pre-tensioning of the hot melt PSA band 113
is not required. As in Figure 1, band 113 is extruded

from reservoir 111 through extrusion die 112. A single substrate 132 is continuously unreeled from storage roll 131. Substrate 132 is taken up by vacuum chill roll 127 at a point which permits 5 pre-gathering of the substrate. Teeth-like projections 129 on the surface of vacuum chill roll 127 create the flutes or gathers 141 in substrate 132. The two chill rolls 127 and 128 serve to cool band 113 in a manner analogous to the action of chill rolls 15 10 and 16 of Figure 1; in addition, these chill rolls apply light pressure to the composite of the band 113 and the pre-gathered substrate 132, so that the pressure-sensitive adhesive bond between band 113 and substrate 132 is formed without permanently 15 flattening out gathers 141. This result occurs because, in the composite emerging from the exit side of rolls 127 and 128, band 113 tends to be bonded only to the peaks of gathers 141.

The foregoing methods are particularly well 20 suited to high-volume production techniques using continuous substrates. For low-volume or batch production, the elongation-resistant gathers can be imparted to portions of the substrate by means of a pressure-sensitive adhesive tape. In this technique, 25 the desired length of tape is simply unreeled from a convoluted roll of hot melt pressure-sensitive adhesive, which adhesive has been applied to a flexible continuous backing. For good results in this technique, the pressure-sensitive adhesive 30 tape should have an extruded layer at least 50 micrometers (µM) in thickness, more typically at least 75 or 100 µM in thickness. If the flexible continuous backing is relatively inelastic as compared to the hot melt PSA layer of the tape, the backing 35 should have release characteristics, so that it can be delaminated from the tape structure in the manner

WO 80/00676 PCT/US79/00755

-13 -

of a transfer tape. The cohesive, self-supporting psA layer removed from the tape can be elongated and applied to, for example, a garment in the stretched condition. Gathers will be introduced into the garment all along the lines of the adhesive bond after pressure-sensitive bonding has been completed. A modest amount of pressure can be applied by machine or by hand to insure a strong adhesive bond. A non-sticking coated roller or the like can be used to apply the pressure, particularly superior non-stick properties being obtained with fluoropolymer or, less preferably, silicone coatings.

Delamination of the tape is not necessary if the backing of the pressure-sensitive adhesive tape is itself highly elastomeric. Such a tape structure can be provided, for example, by coextruding the backing and the PSA through a single extrusion die. The resulting stretchy tape can be rolled upon itself or convoluted, particularly if the exposed side of the elastomeric backing is treated so as to be essentially non-sticky. Special sizings and the like which prevent the formation of a PSA bond are known in the art and can be employed for this purpose.

Viscoelastic hot melt pressure-sensitive

25 adhesives (PSA's) of this invention preferably
comprise a rubbery block copolymer and at least
two different types of resins which associate with
different parts of the rubbery block copolymer molecule.
The resin which associates with the crystalline vinyl

30 arene end blocks of the block copolymer tends to
increase the size of these crystalline domains,
thereby, it is believed, decreasing the temperature
dependence of the elastic aspect of the viscoelastic
behavior of the PSA. (However, this invention is not

35 bound by any theory.) The adhesive character
of the PSA is believed to be

dependent in part upon the high-viscosity liquid character of the PSA within the 25-50° C. temperature range. A characteristic of a viscous liquid is that it will yield to stress, and at least some strain (in an oscillating stress situation) will be up to 90° out of phase with the stress. By contrast, in a perfectly elastic solid the stress and strain would always be in phase. The previously given broad ranges of G", G', and loss tangent (and particularly 10 the preferred and optimum ranges given subsequently) are believed to indicate a highly effective balance of viscoelastic properties in the 25-50° C. range, whereby at least some elasticity is provided (note the loss tangent <1 and the G' of 65 x 10^4 dynes/cm² or more), but in combination with some ability to flow or "wet out" a substrate (note the loss tangent > 0.03, the $G' < 200 \times 10^4 \text{ dynes/cm}^2$, and $G'' < 100 \times 10^4 \text{ dynes/cm}^2$), without resulting in a viscosity so low as to permit excessive "creep" or cold flow (note the $G'' > 5 \times 10^4$). 20

Although this invention is not bound by any theory, it is believed that enlargement of crystalline or vinyl arene domains will increase the storage modulus (G') and decrease the dead load. creep, but some PSA behavior (e.g. peel strength) may be lost. Conversely, enlargement of midblock domains and/or increased tackifying of these domains may increase PSA behavior but also increase dead load creep and excessively decrease loss modulus (G") and storage modulus (G') data. The ideal PSA for this invention appears to provide a balance of high-viscosity liquid and elastic solid behavior, resulting in low dead load creep, good PSA properties, and properly balanced rheological data. The G', G", loss tangent, J' and J" data can be considered to be "parameters" of the ultimate properties of dead load creep and PSA characteristics.

WO 80/00676 PCT/US79/00755

_ 15 _

A tackifying resin with aliphatic character and relatively minimal aromatic character can associate with the midblock of the block copolymer and, if properly selected, help provide this viscoelastic balance in hot melt PSA behavior. Thus, a suitable viscoelastic hot melt PSA will typically comprise:

(1) a rubbery block copolymer which includes a rubbery midblock portion and which is terminated with crystalline vinyl arene blocks,

10

15

20

25

- (2) 20-150 parts by weight, per 100 parts by weight of said rubbery block copolymer, of a tackifying resin generally compatible with and generally associated with the midblock portion of the block copolymer, and
- (3) 10-150 parts by weight, per 100 parts by weight of the rubbery block copolymer, of an aromatic, essentially hydrocarbon resin having a glass transition temperature and a softening point above those of the tackifying resin and the end blocks of the block copolymer, which aromatic resin is generally compatible with and generally associated with the aforementioned end-blocks.

The hot melt pressure-sensitive adhesive will typically have a ball and ring softening point within the range of 65° to 240° C. It will exhibit elastomeric behavior above its glass transition temperature and particularly for extended periods at body temperature (e.g. 37° C.).

In addition to the block copolymer and resins,
the hot melt PSA can contain the usual antioxidants
or stabilizers and essentially inert ingredients which
do not have a significant effect upon the properties
of the combination of the rubbery block copolymer

and the resins. For example, minor amounts of fillers and pigments can be included in the hot melt PSA, tyipcally in amounts less than 5% by weight of the total hot melt PSA composition. Substantially inert extenders can also be included in the composition, e.g. the typical hydrocarbon process oils. The amount of process oil will typically also be kept below 5 weight-% of the composition, since large amounts of oil can detract from the elastic recovery characteristics of the PSA.

Typical antioxidants useful in PSA's of this invention include the pentaerithritol phosphite ester type (e.g. di[stearyl] pentaerithritol diphosphite), the hindered phenol or polyphenol type, and the like. Typical hindered phenol-type antioxidants include those in which a phenolic (i.e. hydroxyphenyl or hydroxybenzyl) group or groups is or are substituted on a short hydrocarbon chain, and the hydroxy group of the phenolic substituent is hindered by nearby or adjacent alkyl groups substituted on the phenol nucleus. Such structures can be obtained, for example, by alkylating or styrenating hydroxyphenyl compounds such as phenols and cresols.

25 Typical pigments useful in formulating PSA's of this invention include titanium dioxide, typically having a particle size in the sub-micrometer range, and similar finely divided materials. Fillers may tend to be a bit coarser in particle size, though still typically smaller than 40 µM (minus 325 U.S. mesh), e.g. finely ground calcium salts or silicates.

The following description of the preferred ingredients of hot melt PSA's of this invention will concentrate on the block copolymers and the resins.

A number of rubbery block copolymers can be tackified to produce hot melt PSA compositions, as can be seen from the disclosures in the aforementioned U.S. Patent Nos. 3,686,107, 3,736,281, 3,827,999, 5 3,935,338, 3,954,692, and 4,089,824. Additional disclosures of this type can be found in British Patent 1,405,786 and trade literature of Phillips Petroleum Company and Shell Chemical Company. block copolymers used in this invention are rubbery, 10 i.e. elastomeric. Though these copolymers are thermoplastic in the sense that they can be melted, formed, and resolidified several times with little or no change in physical properties (assuming a minimum of oxidative degradation), they exhibit some 15 of the characteristics of cross-linked or vulcanized rubber. The apparent cross-linked character is provided by the aforementioned crystalline domains provided by vinyl arene terminal blocks or end blocks. The block copolymers also include a rubbery midblock portion which can be either 20 linear or branched. In typical examples of a branched midblock, the midblock portion contains at least three branches which can be radiating out from a central hub or can be otherwise coupled together.

One way of synthesizing such rubbery block copolymers is to begin with the polymerization of the vinyl arene blocks which provide the end blocks. Once the vinyl arene blocks have been formed, they can be linked to elastomeric blocks, which elastomeric blocks are typically obtained by polymerizing unsaturated hydrocarbons, e.g. dienes such as butadiene, isoprene, and dienes of higher hydrocarbons. When an end block A is joined to an elastomer block B, an A-B block copolymer unit is formed, which unit can be coupled by various techniques or with various coupling agents to provide a structure such as A-B-A,

which may in reality be two A-B blocks joined together in a tail/tail arrangement.

By a similar technique, a radial block copolymer can be formed having the formula (A-B)_nX, wherein X is the hub or central, polyfunctional coupling agent and n is a number greater than 2. (If n were 2, the polymer would be A-B-X-B-A, which is equivalent to the A-B-A structure described previously and is essentially linear.) Using the coupling agent technique, the functionality of X determines the number of A-B branches.

Preferably, each block A has an average molecular weight between 1,000 and 60,000, and each block B has an average molecular weight between 15 5,000 and 450,000. The total molecular weight of the block copolymer is preferably in excess of 100,000 or 200,000, e.g. 300,000. An extensive discussion of rubbery radial block copolymers can be found in the disclosure of the aforementioned U.S.Patent No. 4,089,824. As pointed out by the '824 patent, 20 the residual unsaturation in the midblock or diene-containing portion of the block copolymer molecule can be hydrogenated selectively so that the content of olefinic double bonds in the radial 25 block copolymers can be reduced to a residual proportion of less than 5% or even less than 2%. Such hydrogenation tends to reduce sensitivity to oxidative degradation and may have beneficial effects

30 Preferred block copolymers used in this invention have styrene end blocks and an isoprene midblock portion. The isoprene typically comprises the major amount of the repeating units in the copolymer and can constitute, for example, 70% by weight or more of the copolymer molecule. The midblock, if branched, can have three or more branches,

upon elastomeric properties.

25

and good results can be obtained with, for example, four, five, or six branches. The midblock can be hydrogenated, if desired.

Linear or A-B-A type block copolymers (including 5 A-B-A-B-A, etc.) are preferably selected on the basis of end block content, large end blocks being preferred. For S-I-S (styrene-isoprene-styrene) block copolymers, a styrene content in excess of 14% by weight is preferred, e.g. 15-30% by weight. A commercially available example of such a linear polymer is KRATONO 1111 rubber, an S-I-S polymer which contains about 21.5% styrene units, essentially the balance being isoprene units. Thus, the optimum styrene content for linear S-I-S copolymers 15 appears to be greater than 20% by weight. As a result of the higher styrene content, the polystyrene end blocks have a relatively high molecular weight. Typical properties of KRATON® llll are reported to include a tensile strength of 2900 psi (2.0 x 10⁶ 20 Kg/m²), a 300% modulus of 200 psi (1.4 x 10^5 Kg/m²), an elongation of 1200% at break, a 10% set at break, and a Shore A hardness of 52; the Brookfield viscosity of a toluene solution is 1300 centipoise at room temperature, less than that of KRATON® 1107.

A variety of resins with tackifying properties are compatible with polymerized diene polymer blocks, including those diene blocks which have been hydrogenated so as to become virtually identical, chemically and physically, to polymerized mono-olefins (e.g. polyethylene, polypropylene, polybutylene, etc.). These "midblock" tackifying resins tend to associate with the rubbery midblock of the linear or radial block copolymer and thereby tend to extend or build up as well as tackify these rubbery domains. Both natural and synthetic "essentially hydrocarbon resins" can be used as "midblock resins", provided

that these resins contain at least some aliphatic character, which character can be provided by the aliphatic portion of rosin acids, repeating isoprene or other diene units (e.g. polymerized 1,3-pentadiene), polymerized cycloaliphatics, and the like.

Although esters of polyhydric alcohols and rosin acids will associate with a rubbery midblock, some of these esters tend to detract from the elastic recovery characteristics of the hot melt PSA and are not preferred. It is generally more preferable to use "essentially hydrocarbon resins", particularly the so-called "terpene" resins, i.e. polymers with repeating C₅H₈ or C₁₀H₁₆ units. These polymers can be natural or synthetic and can be copolymers (including terpolymers, etc.), since isoprene is an olefin which can be copolymerized with other olefins. Terpene-phenols have also been produced.

All terpene resins do not work with equal 20 effectiveness in this invention, and synthetic terpenes having a softening point (ball and ring method) of about 80 to about 115° C. are preferred, particularly the commercially available resin known as "WINGTACK" This commercially available terpene resin is reported to be derived from a mixed olefin feedstock as a by-product of isoprene or polyisoprene production. According to U.S.Patent No. 3,935,338 and South African Patent No. 700,881, "WINGTACK" 95 (trademark of Goodyear Tire and Rubber Company) is a thermoplastic tackifying resin essentially comprising a copolymer of piperylene and 2-methyl-2-butene which results from the cationic polymerization of 60% piperylene, 10% isoprene, 5% cyclopentadiene, 15% 2-methyl-butene, and about 10% dimer. Other 35 tackifying resins of the same general type typically comprise 20-80 weight-% of piperylene and 80-20 weight-% of 2-methyl-butene.

Good elastic memory or elastic recovery characteristics can be obtained with natural hydrocarbon resins such as "PICCOLYTE D-135" (trademark), a natural dipentene terpene resin.

5 However, this resin is not as effective as the "WINGTACK" 95 in providing good adhesive properties, e.g. good PSTC-1 peel.

The naturally occurring terpenes can be classified as monocyclic (dipentene), dicyclic (pinene), or acyclic (micrene). A small amount of cyclic character is not detrimental in the context of this invention. A significant amount of aromatic character in the terpene resin is, however, ordinarily avoided, if such aromatic character is sufficient to interfere with the midblock association properties of the resin.

As explained in British Patent No. 1,405,786,

resins with aromatic character tend to associate with the vinyl arene end blocks. Such "end block" 20 resins include the coumarone-indenes, polystyrene, the polymethylstyrenes, the polyindenes, and other resins containing mono or polycyclic aromatic groups. Such resins are commercially available, e.g. as "PICCOTEX 75" (low molecular weight 25 alpha-methylstyrene-vinyl toluene synthetic copolymer), "PICCOTEX 100" (trademark for higher molecular weight version of "PICCOTEX 75"), "PICCOLASTIC D-150" (trademark for polystyrene resin), and the "CUMAR": resins (trademark for coumarone-indenes). It is particularly desirable that the "end block" resin have a glass transition temperature and a softening point above those of the end block and of the "midblock" resin. For example, it would ordinarily not be desirable for the glass transition and for significant heat softening to occur in the 80-110° C. range; hence, "end block" resins with somewhat

higher molecular weights and softening points above 115° C. are typically selected. From the standpoint of strong elastic recovery (both initial and aged) and good adhesive properties, the high softening point coumarone-indene resins appear to be by far the most effective. Such resins with softening points within the range of 140-160° C. are commercially available.

Considerable skill and knowledge already exist in the PSA art with respect to determining 10 proportions of tackifiers and rubbery block copolymers. However, it has been found that these proportions cannot be selected with blind reliance upon prior experience. Nor can one rely too heavily upon 15 PSTC-1 or probe tack values. Probe tack values and initial (immediate) PSTC-1 values have been found to be unreliable or unreproducible indicators of performance in the context of this invention, whereas PSTC-1 values taken 24 hours after the adhesive bond 20 has been formed are relatively reliable and reproducible. "Dead load deformation" ("creep") and the rheological properties (G', G", loss tangent, J', and J") described previously have also been found to be reliable, reproducible parameters of PSA and elastomeric behavior. 25

Preferred PSTC-1 values determined 24 hours after formation of the PSA bond at room temperature on the standard steel plate using pressure from the standard 2 Kg roller include values in excess of 1 pound per inch width (1 p.i.w.), i.e. more than 450 grams 180° peel force is required to delaminate a tape/steel plate sample wherein the tape sample is 25.4 mm in width. PSTC-1 values in excess of 1500g/25.4 mm-sample or even 3000g/25.4mm-sample can be obtained in practice. These values are believed to indicate a reasonably permanent or semi-permanent bond between a band of PSA and a

15

polymeric film substrate of the type used in disposable diapers.

Tensile strength values for the PSA at 20-25° C. can be determined as a measure of cohesive strength. Values in excess of 3 x 10^4 Kg/m² (e.g. above 33,000 Kg/m²) can be obtained in practice. "Dead load deformation" values (1500 g/cm² for 3 hours at the test temperature) can be well below 100% and even below 50% ($\frac{L_2-L_1}{L_1}$ x 100%) throughout the range of

10 25° C. to 50° C. It is particularly desirable that this deformation remain roughly constant over this temperature range and preferably show a gain of less than 50% (e.g. less than about 35%) at 49° or 50° C., as compared to the room temperature value.

Preferred and optimum rheological parameters are set forth below.

TABLE OF PREFERRED AND OPTIMUM RHEOLOGICAL PROPERTIES

(All values in 10⁴ dynes/cm² for G" and G' and in 10⁻⁸ cm²/dyne for J' and J")

20	and in 10	cm ² /dyn	e for J'	and J")	
		PREFERR		OPTIMUM (at 25-5	0° C.)
		at	at	at	at
	Property	0.01 Hz	0.25 Hz	0.01 Hz	0.25 Hz
25	Loss Modulus (G")	5-25	10-100	8-16	15-35
	Storage Modulus (G')	75-200	75-200	100-175	120-200
30	Loss Tangent (tan δ)	0.053	0.08- 1.0	0.07 0.10	0.01- 0.25
•	Storage Compliance (J')	40-100	40-100	60-80	50-70
	Loss Compliance (J")	2-20	5-40	5-8	5-15

The temperature-dependence of these values over the 25-50° C. range is preferably minor, as indicated below.

5

TABLE OF BROAD AND PREFERRED LIMITS ON VARIATIONS IN RHEOLOGICAL PROPERTIES (All values in 10⁴ dynes/cm², etc.

over the 25-50° C. range)

	Broad Limits		Preferred Limits	
Desport V	0.25 Hz	0.01 Hz	0.25 Hz	0.01 Hz
Property G" (104 dynes/cm2)	+ 70	+ 10	<u>+</u> 25	<u>+</u> 10
G' (10 dynes/cm ²)	+ 40	± 15·	<u>+</u> 25	<u>+</u> 8
Loss tangent	<u>+</u> 0.6	+ 0.2	± 0.5	± 0.15

10 Actual test data indicate that an "ideal" viscoelastic PSA, within the context of this invention, would have the following properties:

		0.01 Hz	0.25 Hz
	G" (dynes/cm ²)	1.1×10^5	3×10^5
15	G' (dynes/cm ²)	1.3×10^{6}	1.75×10^6
13	Loss tangent	0.085	· 0.2
	J' (cm ² /dyne)	7.7×10^{-7}	$.6 \times 10^{-7}$
	J' (cm ² /dyne)	6×10^{-8}	1×10^{-7}
	J. (CM \GAITE)	-	

With these physical properties in mind, proportions

- of rubbery block copolymer and end block and midblock resins can be selected to provide an effective PSA with good elastic recovery or elastic memory characteristics. The following Table of broad, preferred, and optimum proportions assumes that the
- rubbery block copolymer is either (1) "SOLPRENE®
 418", trademark of Phillips Chemical Company for a
 radial isoprene-styrene block copolymer having an
 approximate molecular weight of 300,000, a specific
 gravity of 0.92, an inherent viscosity in toluene
- of 1.16, and an isoprene/styrene ratio of 85/15, or

 (2) KRATON® 1111, trademark of Shell Chemical Co. for
 a polystyrene-polyisoprene-polystyrene (S-I-S)
 block copolymer containing 21.5% styrene, the balance
 being isoprene. This copolymer has the
- previously reported tensile strength, 300%
 modulus, elongation at break,
 set at break, and Shore A hardness.
 The Brookfield viscosity in toluene is 1300 cps.

SOLPRENE® 418 in toluene has a viscosity of 2,900 centipoise at 25° C. Hydrogenated linear block copolymers, including those of the styrene-isoprene-styrene type are available according to U.S. Patent No. 3,827,999; see also U.S. Patent No. 4,089,824, which discloses the hydrogenated butadiene analog. Such hydrogenated block copolymers can be used in the context of this invention. Compounds of the "KRATON® G" series (trademark of Shell Chemical Company) have a saturated or essentially saturated ethylene-butylene midblock and, if used, are preferably used in combination with the KRATON® 1111 or SOLPRENE® 418 type of rubbery block copolymer.

The aforementioned Table of proportions is set forth below.

TABLE OF PROPORTIONS FOR BLOCK COPOLYMER AND RESINS

			A	mount		
20		Broad	Preferred		Optimum	
	Ingredient	phr	wt-%	phr	wt-8	phr
	Rubbery block copolymer	(100)	20-75	(100)	35-45	(100)
	Midblock resin	20-150	15-50	50-125	30-50	70-120
25	End block resin	10-150	10-40	40-65	15-30	40-55
	NOTE: phr = par	ts per h	undred	by weigh	ıt, base	d on 100
	par	ts block	copoly	mer.		

wt-%= percentage by weight of total hot melt PSA composition.

30 The nature of the block copolymer (linear or branched, amount of vinyl arene units, etc.) can have a slight effect upon the optimum formula. The best balance of viscoelastic properties appears to be obtained with 100 parts by weight linear,

35 high-styrene block copolymer (35-45% by weight of the PSA), 70-78 parts by weight of the synthetic polyterpene, and 45-55 parts by weight of a

coumarone-indene resin having a softening point in excess of 145° C. About 0.005-1 part by weight of antioxidant should be added to such a formula.

Similar formulas can provide similar results
with branched block copolymers and low-styrene
linear block copolymers, but it may be useful to
extend the ranges up to 85 phr of polyterpene and
up to 65 phr of coumarone-indene resin.

The most effective criteria for the selection
of amounts and types of ingredients are believed
to be (a) rheological properties such as G', G",
loss tangent, J' and J", and (b) dead load creep
test results. New resins and new block copolymers
are constantly being discovered, and the
formulation of suitable PSA's can be attempted with
new materials by referring to these criteria.

It will be understood that variations in the aforementioned methods and proportions can be made without departing from the spirit and scope of this 20 invention. For example, if the substrate to be elastic banded is heat resistant, the extruded band need not be cooled very much below its softening point and can be applied directly to the substrate while still relatively hot. However, even for such temperature 25 resistant substrates, maintaining the extruded band at or above its softening point is neither necessary nor desirable. In another variation of the method, the extruded band need not be applied as a line or linear bead, but can be "indexed" with a moving web 30 to provide a series of discrete circular or eliptical bands. Such "indexed" bands can provide a hat-banding effect (e.g. for mass-produced surgical caps), a gathered, banded opening for a plastic bag, a waist band, or the like. In the case of disposable 35 diapers, however, it is not necessary for the band to form a complete circle; the essential equivalent

WO 80/00676 PCT/US79/00755

of a circular leg band results when the diaper is pinned or snapped together at the child's hips.

The following non-limiting Examples illustrate the preferred practice of this invention. In these 5 Examples, all parts and percentages are by weight unless otherwise indicated. The following raw materials were used in formulating the hot melt PSA's of the Examples:

"SOLPRENE® 418": trademark for the radial block copolymer described previously.

15

20

25

30

35

"SOLPRENE® 423": another trademark for essentially the same radial block copolymer in a pellet form.

"KRATON® 1111": trademark of Shell Chemical Co. for the polystyrene-polyisoprene-polystyrene copolymer described previously.

"KRATONO 1107": trademark of Shell Chemical Co. for polystyrene-polyisoprene-polystyrene linear block copolymer having a styrene/isoprene ratio of 14/86.

"WINGTACK 95": trademark for synthetic polyterpene resin described previously.

"KRYSTALEX® 3100": trademark of Hercules
Inc. for low molecular weight thermoplastic
hydrocarbon resin of the alpha-methylstyrene
type having a ring and ball softening point
of 97-103° C., an acid number less than 1.0,
a bromine number which is typically about 2,
a specific gravity at 25° C. of 1.06, and a
melt viscosity of 10,000 centipoise (cps) at
128° C., 1,000 cps at 152° C., and 100 cps
at 190° C. The softening point substantially
below 115° C. (typically not more than 103° C.)
indicates a spectrum of molecular weights, with
a significant number of resin molecules having

5

10

15

20

25

30

35

molecular weights well below those of the relatively pure, narrow-spectrum coumarone-indene resins which are commercially available, e.g. as the "CUMAR" (trademark) series described subsequently. (It has been found that the higher molecular weight, higher softening point, narrow-spectrum aromatic hydrocarbon resins are preferred for use as "endblock" association with the rubbery block copolymers described previously.)

"CUMAR LX-509": trademark of Neville Chemical Company for coumarone-indene resin having a softening point (by the ring and ball technique of A.S.T.M. E-28) of at least about 155° C., a specific gravity at 25/15.6° C. of 1.114, and an average molecular weight (by osmometry) of 1,120.

"EASTMAN® Resin H-100": trademark of Eastman Kodak Company for a hydrocarbon resin produced from petroleum feedstock by polymerization, followed by hydrogenation. This particular hydrocarbon resin has an acid number less than 0.1, a density at 23° C. of 1.04 g/cm³, a Brookfield viscosity at 190° C. of 200 centipoise, a bromine number of 11.1, and a ring and ball softening point (A.S.T.M. E-28) which is reported to be 100° C. and in any event is below 115° C.

"IRGANOX 1010": trademark of Ciba-Geigy for an antioxidant and thermostabilizer of the hindered phenol type.

"SOLPRENE® 420": trademark for a branched, teleblock copolymer having polystyrene terminal blocks and a structure essentially similar to "SOLPRENE® 423", except for a lower molecular weight.

5

10

15

"KRATON® 1102": trademark for S-B-S (styrene-butadiene-styrene) block copolymer having a styrene/butadiene ratio of 28/72, a Brookfield viscosity in toluene solution (25 weight-%) of 1200 centipoise at 25° C., a specific gravity of 0.94, a Shore A hardness of 62, a set at break of 10%, an elongation of 880% (A.S.T.M. method D412 with a tensile tester jaw separation speed of 25.4 cm/min.), a 300% modulus of 281,200 Kg/m², and a tensile strength (same A.S.T.M. method as the elongation determination) of 3.23 x 10⁶ Kg/m² determined on typical films cast from a toluene solution.

"WESTON® 618": trademark of Borg Warner Corporation for an antioxidant described in U.S. Patent Nos. 3,047,608 and 3,205,269, i.e. an antioxidant which is reported to be di(stearyl) pentaerythritol diphosphite.

For convenience of sample preparation, the antioxidants and pigments were sometimes omitted 20 from the exemplary formulations which follow. incompatibility between resins and various portions of the rubbery block copolymer tend to be minimized in the molten state, the order of addition of 25 ingredients is not usually critical. It is generally preferred to begin with one of the relatively larger components such as the rubbery block copolymer and add the tackifiers and other resins to it, e.g. adding the synthetic terpene "midblock" resin next, followed 30 by the "endblock" resin. Samples can be prepared by blending in a solvent medium; however, the data obtained from such samples is believed to be less reliable as compared to samples formulated in the molten state. Samples can be solvent-cast to films ranging from 100 to 200 micrometers for test purposes,

even though the industrial practice of this invention involves extrusion of the hot melt PSA.

Comparative Example A

The following ingredients were blended in a beated mixer in the indicated amounts.

	Wt8	Ingredient
	65.4	Radial isoprene-styrene elastomeric
		block copolymer (SOLPRENE® 423).
	32.7	High softening-point, high molecular
10		weight coumarone-indene resin (CUMAR®
		LX-509).
	0.2	Phosphite ester antioxidant (WESTON®
		618).
	0.2	Hindered phenol antioxidant ("IRGANOX"
15	•	1010).
_	1.5	Titanium dioxide pigment (rutile,
		alumina-treated).

A purpose of this Example was to evaluate the effect upon rheology and room-temperature 180° peel strength when the radial block copolymer/resin blend was provided with large crystalline (vinyl arene) domains and minimally tacklified or plasticized rubbery (elastomeric) domains, in this case no "midblock" resin. According to the scientific and patent literature, the coumarone-indene resin probably became associated with the polystyrene end blocks of the radial elastomeric block copolymer.

Comparative Example B

The following formula is a rubbery block

30 copolymer/tackifier resin blend which would have
low tack and peel and would have significant elastomeric
behavior at normal ambient temperatures. The formula
theoretically contains no "endblock" resin.

	₩t%	Ingredient
•	50	Linear S-B-S (polystyrene-polybutadiene-
٠		polystyrene) elastomeric block
		copolymer (KRATON® 1102).
.5	35	Hydrocarbon resin (EASTMAN® Resin
• •	•	H-100).
	15	Staybelite Ester 10 (HERCULES® glycerol
		ester of hydrogenated rosin, 83° C.
		softening point).
10		Comparative Example C

This formula was similar to that of Example B, except that an S-I-(polystyrene-polyisoprene-) radial block copolymer was blended with a different tackifier.

15	Wt%	<u>Ingredient</u>
50	50	Radial S-I- elastomeric block
		copolymer (SOLPRENE® 418).
	50	Polyterpene resin (WINGTACK® 95).
		Comparative Example D

This formula had both "endblock" resin and "midblock" resin in addition to the S-I-S block copolymer; however, more than 80% by weight of the "endblock" resin was a relatively low molecular weight, low softening point material. The block copolymer was also a relatively lower molecular weight material. Room temperature performance of the formula would be expected to include poor PSA properties and some elastomeric behavior, but at higher temperatures (e.g. 37° C.), performance

	₩t%	Ingredient
	40.0	Low molecular weight, radial, elastomeric
		block copolymer (SOLPRENE® 420).
_	0.1	Phosphite ester antioxidant (WESTON®
5	•	618).
•	0.1.	Hindered phenol antioxidant ("IRGANOX"
		1010).
	1.0	Titanium dioxide pigment)rutile,
		alumina-treated).
10	32.8	Hydrocarbon resin (EASTMAN® Resin
		H-100) -
	4.0	High molecular weight coumarone-indene
		(CUMAR® LX-509).
	22.0	Alpha-methylstyrene resin (typical
15	·	softening point: 100° C.)("KRYSTALEX"
		3100 [trademark]).
		Comparative Example E

This formula appeared to conform to all of the criteria of a formula of this invention, except that the amount of "endblock" resin was relatively high and the amount of polyterpene tackifier was relatively low.

	₩t% 45.0	<pre>Ingredient High molecular weight, radial S-I-</pre>
25		elastomeric block copolymer (SOLPRENE® 418).
	15.0	Polyterpene resin (WINGTACK® 95).
	40.0	High molecular weight, high softening point coumarone-indene (CUMAR®
30	•	LX-509).

Examples 1 - 5

The formulas for Examples 1 through 5 are set forth in the following Table.

INGREDIENTS IN WEIGHT-8

Example	S-I-S Linear Block Copolymer	S-I Radial Block Copolymer	Polyterpene Resin (WINGTACK® 95)	Coumarone- indene (CUMAR® LX-509)	Miscella- neous (1)
,	43.6(2)	1	32.7	21.8	1.9
2	43.6(3)	1	32.7	21.8	1.9
. m	1 1	43.6(4)	32.7	21.8	1.9
4	39.6(3)	!	32.4	26.1	1.9
Ŋ	i i	38.0(5)	45.0	17.0	ŀ
			•		

This "miscellaneous" component consisted of 0.2% WESTON® 618, 0.2% "IRGANOX" 1010, and 1.5% titinium dioxide pigment (rutile, alumina-treated). 3

(2) KRATON® 1111, described previously.

(3) KRATON® 1107, described previously.

15 (4) SOLPRENE® 423, described previously.

(5) SOLPRENE® 418, described previously.

Rheological Testing

The G", G', loss tangent (G"/G'), J", and J'
were determined, as described previously, at 25° and
50° C. and at 0.01 and 0.25 Hz. The results for
the Comparative Examples and Examples 1-5 are set
forth below. All G" and G' data are in 10⁴
dynes/cm², and all J" and J' data are in 10⁻⁸
cm²/dyne. For purposes of comparison, typical data
for natural rubber (at 0.25 Hz) are included.

		·	E1	PELE I	I: Rheol Frequency:	ogica 0.0	Testing	570 77			
		٠	T.	Temperature:		25° C. an	and our c.	:i		-	
•		.5 .5		b		loss	tan	٦	 -	ני	
ស	Example.	25°	50°	25°	50°	25°	500	25°	50°	25°	50°
	A	121	140	89.5	323	1.351	.428	53.4	11.1	39.5	26.2
	Д	16.6	21.7	129	74.5	.129	.290	9.86	35.7	76.3	124
	υ	4.65	6.16	67.4	71.7	690.	980.	10.2	11.9	148	138
	Q	53.3	22.7	173	65.3	.308	.408	16.3	62.9	52.8	131
10	ស	20.2	21.9	345	336	.058	.065	1.66	1.91	28.9	29.6
	1	12.8	9.28	128	131	.100	.071	7.74	5.40	77.4	76.0
-	7	13.6	12.4	146	151	.093	.082	6.31	5.39	61.9	65.8
	ო	14.2	15.6	191	163	. 088	960.	5.41	5.85	61.6	8.09
	. 4	11.4	10.1	130	123	.087	.082	6.59	6.61	76.3	80.8
5	ហ	13,3	5.23	69.7	64.9	191	.081	26.5	12.3	138	153

	•		ABLE II	TABLE II: Rheological Testing	ogical	Testing	•			
		T	rreque Temperature:	임) ပ	50°	ပါ			
	້ອ		19		loss	tan	ם"		ŋ	
Example	25°	50°	25°	50°	25°	50°	25°	50°	25°	500
A	180	173	148	323	1.215	.440	33.1	9.38	27.3	21.3
Ф	31.5	19.3	171	110	.187	.173	10:7	15.1	56.5	88.3
ບ	15.0	5.48	78.9	82.3	.190	.067	23.2	8.16	122	121
Ω.	138	45.7	311	130	.442	.351	11.8	24.0	26.9	68.5
凹	34.3	23.0	386	372	.089	.062	2.29	1.66	25.7	26.8
H	33.1	15.5	164	152	.203	.102	12.0	6.64	58.6	65.1
	25.7	15.6	175	176	.147	.089	8.23	5.03	55.9	56.9
·m	32.1	18.1	197	190	.163	960.	8.06	10.3	49.4	52.2
4	31.3	15.1	167	145	.188	.104	10.9	7.09	57.8	68.
ហ	73.3	9.68	115	76.4	.639	.127	39.6	70.2	61.7	129
Natural	40	40	800	800	. 05	.05	1	!	ł	ì
Rubber	(P	-								

For Example A, the high G' values and the temperature dependency of these values indicate unsuitability, according to the principles of this invention. The high G' may, it is believed, indicate good elastic behavior, but, conversely, poor PSA performance. The rheological parameters were confirmed by 180° peel data (PSTC-1). Even 24 hours after formation of the PSA bond, no PSTC-1 value could be obtained. "Dead load deformation" values were acceptable, ranging from 0% to only 6% throughout the 25-50° C. range.

For Example B, the temperature dependence of G' also indicates unsuitability, which was reflected in the "dead load deformation" data. These data

15 were as follows: 20% at room temperature, 344% at 37.8° C., and 528% at 43.3° C. Cohesive failure occurred at 48.9° C.

For Example C, G" at .01 Hz (25° C.) was marginal, and at .25 Hz (50° C.) was very low; G'

20 data at .01 Hz were marginal. This analysis of the rheological parameters was confirmed by "dead load deformation" data: 6% at room temperature, 44% at 37.8° C., 92% at 43.3° C., and cohesive failure at 48.9° C. The PSTC-1 values after 24 hours were

25 acceptable (2770 g/25.4 mm-width), indicating the ability to wet out a substrate (but inadequate resistance to heat set).

Example D had poor PSA behavior, and performed poorly in the "dead load deformation"

30 test. It is believed that the high G" and, most important, temperature dependence of G' were significant in these regards.

The high coumarone-indene content of Example E was believed to be reflected in the high G' values. The PSA behavior of Example E was marginal (e.g.

35

910 g/25.4 mm-width in PSTC-1), but a sample of Example E performed adequately in the "dead load deformation" test.

Examples 1-4 performed well in terms of both

(1) PSTC-1 (180° peel) values taken at room temperature
after 24 hours PSA bond formation and (2) "dead
load deformation". Example 5 showed excellent
PSTC-1 performance but nearly failed the "dead
load deformation" test. The 24-hour PSTC-1 values
for Examples 1, 3, 4, and 5 are set forth below.
All samples tested were 25.4 mm in width, and the
values are reported in grams per 25.4 mm-width.

Example 1: 2670 g/25.4 mm

Example 3: 2170 g/25.4 mm

Example 4: 2130 g/25.4 mm

Example 5: 3580 g/25.4 mm*

*determined immediately rather than after 24 hours. PSTC-1 values above 4500 g/25.4 mm or even 4000 g/25.4 mm are difficult to obtain in practice without sacrificing other desired properties.

Dead Load Deformation Test

All of the products tested were manufactured using a high shear, double arm mixer heated to 200° C. Inert gas was used throughout processing to minimize degradation.

Samples taken from each batch were pressed between release paper using a Carver laboratory press. The release paper was heated in a forced air oven to 200° C. for 15 minutes to drive out residual moisture.

The press was equipped with heated jaws set at 200° C. and was shimmed to yield an adhesive thickness of 50 micrometers.

A dwell time of approximately 5 seconds at $3.5 \times 10^6 \text{ Kg/m}^2$ was generally sufficient to form an air-free film.

WO 80/00676 PCT/US79/00755

- 39 -

Dumbbell-shaped specimens were cut from the essentially air-free films using a standard striking die.

Marks were placed on the reduced section of a specimen approximately equidistant from its center and perpendicular to its longitudinal axis. The centers of the marks were 25.0 mm ± 0.5 mm apart.

The specimens were fastened in a vertical position at test temperature and weights equalling 1500

10 gms/cm² of cross sectional area were attached. The specimens were conditioned in this mode for a period of 3 hours. After 3 hours, the weights were removed and the specimens allowed to retract and equilibrate at 25° C. for 5 minutes. The distance between marks

15 was remeasured and the percent "dead load creep" or elongation (permanent longitudinal deformation or set) was calculated as follows:

Elongation percent = $L_2-L_1/L_1 \times 100$ wherein L_2 = measured distance between marks on the 20 conditioned specimen, and L_1 = original distance between marks.

This procedure is a modification of A.S.T.M. D-412 (tension testing of vulcanized rubber) and the dumbbell-shaped samples were formed using Die C.

The dead load deformation data for Examples 1, 3, 4, and 5 are set forth below.

<u>TABLE III</u>

PERMANENT DEFORMATION FROM 1500 g/cm²

AT VARIOUS TEMPERATURES

30	Example	Room Temperature	37.8° C.	43.3° C.	48.9° C.
	1	2%	48	8 [.] 8	88
	3	2%	10%	30%	308
	4	2%	10%	24%	36%
35	5	6%	34%	56%	74%

In the case of Example 5, some temperature dependency of G", G', and loss tangent should be noted at 0.25 Hz, and the deformation data are believed to reflect a similar temperature dependency.

5 Furthermore, G' at 0.01 Hz was considered marginal for this formula.

The data for Examples 1-5 are believed to establish that a variety of relatively high molecular weight, relatively high vinyl-arene elastomeric

10 block copolymers can be used in this invention, e.g. both the radial and linear types. Blends of these various types of block copolymers (e.g. 1/99 - 99/1) will provide suitable elastomeric bases for admixture with endblock and midblock resins or other PSA-forming materials. Examples 1-5 are also believed to demonstrate the value of a good balance between high softening point "endblock" resin and "midblock" resin in the preferred compositions.

Samples of Examples 1-5 were tested for tensile strength at 500% elongation at room temperature (20-25° C.). It was found that the tensile strength exceeded 35,000 Kg/m² for all samples. For Examples 1-4, this measurement was significantly higher, generally in excess of 70,000 Kg/m², indicating 25 good cohesiveness.

To provide a further standard of comparison for the rheological data obtained from Examples 1-5, data regarding untackified, unextended, linear A-B-A block copolymers (e.g. of the KRATON® type)

30 were obtained for 0.25 Hz/room temperature conditions. These data indicate that G' is typically above 300 x 10⁴ dynes/cm² and G" is typically above 50 x 10⁴ dynes/cm² and even, in some cases, above 100 x 10⁴ dynes/cm². Like vulcanized natural rubber, these block copolymers exhibit excellent elastomeric behavior but, in the absence of tackifying resins, essentially no PSA behavior.

_41 _

This application is a continuation-in-part of our co-pending application, U.S. Serial No. 966,794, filed December 6, 1978.

WE CLAIM:

- 42 -

- 1. A method for imparting elongation-resistant gathers to portions of a generally non-elastomeric film, membrane, or web substrate, comprising the steps of:
 - viscoelastic hot melt pressure-sensitive adhesive, said hot melt pressure-sensitive adhesive comprising a rubbery block copolymer which includes a rubbery midblock portion and which is terminated with crystalline vinyl arene end blocks, said hot melt pressure-sensitive adhesive having a ball and ring softening point within the range of 65° to 240° C., being elastomeric above its glass transition temperature and at temperatures up to at least 37° C., and having the following rheological properties at 0.01-0.25 Hz and throughout the range of 25-50° C.:

loss modulus: 5×10^4 to 100×10^4 dynes/cm² storage modulus: 65×10^4 to 225×10^4 dynes/cm²

loss tangent: 0.03 to 1.0;

- (b) cooling the thus-extruded band to a temperature below its softening point but above its glass transition temperature;
- (c) bringing the thus-cooled band into contact with a surface of a moveable, flexible, generally non-elastomeric continuous film, membrane, or web substrate having a thickness less than about 3 millimeters and forming a pressure-sensitive adhesive bond generally by means of pressure, whereby the thus-banded substrate can have elongation-resistant gathers at least along the area of the pressure-sensitive adhesive bond between said band and said substrate;

- (d) cutting the resulting banded substrate into portions suitable for use as elastic-banded articles, said articles having elongation-resistant gathers at least along said area of the pressure-sensitive adhesive bond, due to the expandability of said gathers and the elastomeric properties of said band.
- 2. A method according to claim 1 in which said moveable flexible continuous film, membrane, or web substrate is kept continuously moving during said steps (a), (b), and (c).
- 3. A method according to claim 1 wherein said steps (b) and (c) are carried out simultaneously.
- 4. A method according to claim 3 wherein gathers are introduced into said banded substrate by placing said band under tension subsequent to said step (a) and prior to said step (d), whereby said substrate is wrinkled into gathers through contraction of the tensioned band.
- 5. A method according to claim 1, wherein said substrate is a polymeric film less than 0.5 mm thick or a woven or nonwoven web, and wherein said elastic-banded articles of step (d) are garments or body-encircling members.
- 6. A method according to claim 1 wherein said hot melt pressure-sensitive adhesive comprises:
 - (a) said rubbery block copolymer;
 - (b) 20-150 parts by weight, per 100 parts by weight of said rubbery block copolymer, of a tackifying resin generally compatible with and generally associated with said midblock portion; and
 - (c) 10-150 parts by weight, per 100 parts by weight of said rubbery block copolymer, of an aromatic, essentially hydrocarbon resin having

a glass transition temperature and a softening point above those of the said end blocks and said tackifying resin; said aromatic, essentially hydrocarbon resin being generally compatible with and generally associated with said end blocks.

7. A method according to claim 1 wherein the said loss modulus, storage modulus, and loss tangent remain generally constant throughout the temperature range of 25-50° C. with respect to properties determined at both 0.25 and 0.01 Hz, at least within the following limits:

·	0.25 Hertz	0.01 Hertz
loss modulus	$\frac{\pm}{4}$ 70 x 10 ⁴ dynes/cm ²	$\frac{\pm}{\text{dynes/cm}^2}$
storage modulus	$\frac{\pm}{40} \times 10^4$ dynes/cm ²	\pm 15 x 10 ⁴ dynes/cm ²
loss tangent	<u>+</u> 0.6	± 0.2.

8. A method according to claim 7 wherein said pressure-sensitive adhesive has the following rheological properties throughout the temperature range of 25-50° C.:

	0.01 Hz	0.25 Hz
loss modulus, 10 ⁴ dynes/cm ²	5-25	10-100
storage modulus, 104 dynes/cm2	75-200	75-200
loss tangent	0.05-0.3	0.08-1.0
storage compliance, 10-8 cm ² /dyne	40-100	40-100
loss compliance, 10-8 cm ² /dyne	2-20	5-40.

9. A method according to claim 8 wherein said rheological properties are as follows:

		0.01 Hz	0.25 Hz
	loss modulus, 10 ⁴ dynes/cm ²	8-16	15-35
5	storage modulus, 10 ⁴ dynes/cm ²	100-175	120-200
•	loss tangent	0.07-0.10	0.1-0.25
	storage compliance, 10-8 cm ² /dyne	60-80	50-70
10	loss compliance, 10^{-8} cm ² /dyne	5-8	5-15.

- 10. A method according to claim 1 wherein the dead load deformation of said pressure-sensitive adhesive, tested at room temperature, 37.8° C., 43.3° C., and 48.9° C. for 3 hours under 1500g/cm², is less than 50%, where dead load deformation = the increased length minus the original length divided by the original length of a sample at least 25 mm in length.
- 11. A method for imparting elongation-resistant 20 gathers to portions of a generally non-elastomeric substrate by means of a pressure-sensitive adhesive tape, comprising the steps of:
- (a) unreeling a length of pressure-sensitive adhesive tape from a convoluted roll of hot melt pressure-sensitive adhesive tape comprising a hot 25 melt pressure-sensitive adhesive layer adhered to a flexible continuous backing, said roll being maintained at a temperature below the softening point of said hot melt pressure-sensitive adhesive layer; said hot melt pressure-sensitive 30 adhesive layer being an elongated extrudate at least 50 microns in thickness comprising (i) a rubbery block copolymer which includes a rubbery midblock portion and which is terminated with crystalline vinyl arene blocks; (ii) 20-150 parts 35 by weight, per 100 parts by weight of said

15

rubbery block copolymer, of a tackifying resin generally compatible with and generally associated with said midblock portion; and (iii) 10-150 parts by weight, per 100 parts by weight of said rubbery block copolymer, of an aromatic, essentially hydrocarbon resin having a glass transition temperature and a softening point above those of the said end blocks and said tackifying resin; said aromatic, essentially hydrocarbon resin being generally compatible and generally associated with said end blocks; said hot melt adhesive having a ball and ring softening point within the range of 65° to 240° C. and being elastomeric above its glass transition temperature and at temperatures up to at least 37° C.;

- (b) placing said length of the pressure-sensitive adhesive layer of said tape under tension; and
- (c) bringing an exposed surface of the pressure-sensitive adhesive layer into contact with said substrate and forming a pressure-sensitive adhesive band generally by means of pressure; whereby the thus-banded substrate can have elongation-resistant gathers at least along the area of the pressure-sensitive adhesive bond between said band and said substrate.
- 12. A method according to claim 11, wherein the 30 backing of said pressure-sensitive adhesive tape is a generally non-elastomeric release liner which is delaminated from said tape prior to said step (c).
 - 13. A method according to claim 11, wherein the backing of said pressure-sensitive adhesive tape is elastomeric.

- 14. A method according to claim 13 wherein said tape has been formed by coextruding said backing and said pressure-sensitive adhesive layer, and wherein the exposed surface of said backing has been provided with release characteristics.
 - 15. A viscoelastic hot melt pressure-sensitive adhesive consisting essentially of:
 - (a) 20-75% by weight of a rubbery block copolymer which comprises a rubbery polyisoprene midblock portion and a plurality of end blocks comprising a crystalline poly(vinylarene);
 - (b) 50-125 parts by weight, per 100 parts by weight of said block copolymer, of a terpene tackifying resin generally compatible with and generally associated with said midblock portion;
 - (c) 40-65 parts by weight, per 100 parts by weight of said radial block copolymer, of a coumarone-indene resin having a glass transition temperature and a softening point above about 115° C.;

the proportions of said components (a), (b), and (c) being selected to provide the following pressure-sensitive adhesive and rheological properties:

- (i) a tensile strength at 500% elongation, determined at 20-25° C., of at least 50 pounds per square inch;
- (ii) a 190° peel resistance, according to PSTC-1, determined at 20-25° C. 24 hours after formation of the pressure-sensitive adhesive bond, of at least about 450 grams per 25.4 mm-width;
- (iii) a dead load deformation, tested at room temperature, 37.8° C., 43.3° C., and 48.9° C. for 3 hours under 1500 g/cm²,

10

15

20

25

30

35

10

25

is less than 50%, where dead load

deformation = the increased length minus
the original length divided by the

original length of a sample at least 25 mm
in length;

(iv) the following loss modulus, storage modulus, and loss tangent values at 0.01-0.25 Hz throughout the temperature range of 25-50° C.:

loss modulus: 5×10^4 to 100×10^4

dynes/cm²

storage modulus: 65×10^4 to 225×10^4 dynes/cm²

loss tangent: 0.03 to 1.0.

16. A viscoelastic hot melt pressure-sensitive adhesive according to claim 15, wherein said adhesive consists essentially of:

35-55% by weight of said block copolymer; 25-45% by weight of said terpene tackifying resin, said tackifying resin having been synthetically derived from a mixed olefin feedstock;

15-30% by weight of said coumarone-indene resin, said coumarone-indene resin having a softening point of at least about 140° C.;

0-5% by weight of substantially inert extenders, fillers, pigments, and antioxidants; the foregoing proportions being selected to provide the following results for the properties defined in said paragraph (iv):

	•	0.01 Hz	0.25 Hz
	loss modulus, 104 dynes/cm ²	5-25	10-100
5	storage modulus, 104 dynes/cm ²	75-200	75-200
	loss tangent	0.05-0.3	0.08-1.0
	storage compliance, 10 ⁻⁸ cm ² /dyne	40-100	40-100
10	loss compliance,	2-20	5-40.

AMENDED CLAIMS (received by the International Bureau on 20 February 1980 (20.02.80)

- 1. A method for imparting elongation-resistant gathers to portions of a generally non-elastomeric film, membrane, or web substrate, comprising the steps of:
 - viscoelastic hot melt pressure-sensitive adhesive, said hot melt pressure-sensitive adhesive comprising a rubbery block copolymer which includes a rubbery midblock portion and which is terminated with crystalline vinyl arene end blocks, said hot melt pressure-sensitive adhesive having a ball and ring softening point within the range of 65° to 240° C., being elastomeric above its glass transition temperature and at temperatures up to at least 37° C., and having the following rheological properties at 0.01-0.25 Hz and throughout the range of 25-50° C.:

loss modulus: 5×10^4 to 100×10^4 dynes/cm² storage modulus: 65×10^4 to 225×10^4 dynes/cm²

loss tangent: 0.03 to 1.0;

- (b) cooling the thus-extruded band to a temperature below its softening point but above its glass transition temperature;
- (c) bringing the thus-cooled band into contact with a surface of a moveable, flexible, generally non-elastomeric continuous film, membrane, or web substrate having a thickness less than about 3 millimeters and forming a pressure-sensitive adhesive bond generally by means of pressure, whereby the thus-banded substrate can have elongation-resistant gathers at least along the area of the pressure-sensitive adhesive bond between said band and said substrate;

WO 80/00676

- (d) cutting the resulting banded substrate into portions suitable for use as elastic-banded articles, said articles having elongation-resistant gathers at least along said area of the pressure-sensitive adhesive bond, due to the expandability of said gathers and the elastomeric properties of said band.
- 2. A method according to claim 1 in which said moveable flexible continuous film, membrane, or web substrate is kept continuously moving during said steps (a), (b), and (c).
- 3. A method according to claim 1 wherein said steps (b) and (c) are carried out simultaneously.
- 4. A method according to claim 3 wherein gathers are introduced into said banded substrate by placing said band under tension subsequent to said step (a) and prior to said step (d), whereby said substrate is wrinkled into gathers through contraction of the tensioned band.
- 5. A method according to claim 1, wherein said substrate is a polymeric film less than 0.5 mm thick or a woven or nonwoven web, and wherein said elastic-banded articles of step (d) are garments or body-encircling members.
- 6. A method according to claim 1 wherein said hot melt pressure-sensitive adhesive comprises:
 - (a) said rubbery block copolymer;
 - (b) 20-150 parts by weight, per 100 parts by weight of said rubbery block copolymer, of a tackifying resin generally compatible with and generally associated with said midblock portion; and
 - (c) 10-150 parts by weight, per 100 parts by weight of said rubbery block copolymer, of an aromatic, essentially hydrocarbon resin having

- a glass transition temperature and a softening point above those of the said end blocks and said tackifying resin; said aromatic, essentially hydrocarbon resin being generally compatible with and generally associated with said end blocks.
- 7. A method according to claim I wherein the said loss modulus, storage modulus, and loss tangent remain generally constant throughout the temperature range of 25-50° C. with respect to properties determined at both 0.25 and 0.01 Hz, at least within the following limits:

	0.25 Hertz	0.01 Hertz
loss modulus	$\frac{\pm}{4}$ 70 x 10 ⁴ dynes/cm ²	$\frac{\pm}{d}$ 10 x 10 ⁴ dynes/cm ²
storage modulus	$\frac{\pm}{40} \times 10^4$ dynes/cm ²	$\frac{\pm}{4}$ 15 x 10 ⁴ dynes/cm ²
loss tangent	<u>+</u> 0.6	± 0.2.

8. A method according to claim 7 wherein said pressure-sensitive adhesive has the following rheological properties throughout the temperature range of 25-50° C::

•	0.01 Hz	0.25 Hz
loss modulus, 10 ⁴ dynes/cm ²	5-25	10-100
storage modulus, 10 ⁴ dynes/cm ²	75-200	75-200
loss tangent	0.05-0.3	0.08-1.0
storage compliance, 10-8 cm ² /dyne	40-100	40-100
loss compliance, 10^{-8} cm ² /dyne	2-20	5-40.

9. A method according to claim 8 wherein said rheological properties are as follows:

	0.01 Hz	0.25 Hz
loss modulus, 10 ⁴ dynes/cm ²	8-16	15-35
storage modulus, 10 ⁴ dynes/cm ²	100-175	120-200
loss tangent	0.07-0.10	0.1-0.25
storage compliance, 10 ⁻⁸ cm ² /dyne	60-80	50-70
loss compliance, 10 ⁻⁸ cm ² /dyne	5-8	5-15.

- 10. A method according to claim 1 wherein the dead load deformation of said pressure-sensitive adhesive, tested at room temperature, 37.8° C., 43.3° C., and 48.9° C. for 3 hours under 1500g/cm², is less than 50%, where dead load deformation = the increased length minus the original length divided by the original length of a sample at least 25 mm in length.
- 11. A method for imparting elongation-resistant gathers to portions of a generally non-elastomeric substrate by means of a pressure-sensitive adhesive tape, comprising the steps of:
 - (a) unreeling a length of pressure-sensitive adhesive tape from a convoluted roll of hot melt pressure-sensitive adhesive tape comprising a hot melt pressure-sensitive adhesive layer adhered to a flexible continuous backing, said roll being maintained at a temperature below the softening point of said hot melt pressure-sensitive adhesive layer; said hot melt pressure-sensitive adhesive layer being an elongated extrudate at least 50 microns in thickness comprising (i) a rubbery block copolymer which includes a rubbery midblock portion and which is terminated with crystalline vinyl arene blocks; (ii) 20-150 parts by weight, per 100 parts by weight of said

rubbery block copolymer, of a tackifying resin generally compatible with and generally associated with said midblock portion; and (iii) 10-150 parts by weight, per 100 parts by weight of said rubbery block copolymer, of an aromatic, essentially hydrocarbon resin having a glass transition temperature and a softening point above those of the said end blocks and said tackifying resin; said aromatic, essentially hydrocarbon resin being generally compatible and generally associated with said end blocks; said hot melt adhesive having a ball and ring softening point within the range of 65° to 240° C. and being elastomeric above its glass transition temperature and at temperatures up to at least 37° C.;

- (b) placing said length of the pressure-sensitive adhesive layer of said tape under tension; and
- (c) bringing an exposed surface of the pressure-sensitive adhesive layer into contact with said substrate and forming a pressure-sensitive adhesive band generally by means of pressure; whereby the thus-banded substrate can have elongation-resistant gathers at least along the area of the pressure-sensitive adhesive bond between said band and said substrate.
- 12. A method according to claim 11, wherein the backing of said pressure-sensitive adhesive tape is a generally non-elastomeric release liner which is delaminated from said tape prior to said step (c).
- 13. A method according to claim 11, wherein the backing of said pressure-sensitive adhesive tape is elastomeric.

- 14. A method according to claim 13 wherein said tape has been formed by coextruding said backing and said pressure-sensitive adhesive layer, and wherein the exposed surface of said backing has been provided with release characteristics.
- 15. A viscoelastic hot melt pressure-sensitive adhesive consisting essentially of:
 - (a) 20-75% by weight of a rubbery block copolymer which comprises a rubbery polyisoprene midblock portion and a plurality of end blocks comprising a crystalline poly(vinylarene);
 - (b) 50-125 parts by weight, per 100 parts by weight of said block copolymer, of a terpene tackifying resin generally compatible with and generally associated with said midblock portion;
 - (c) 40-65 parts by weight, per 100 parts by weight of said radial block copolymer, of an aromatic, essentially hydrocarbon resin having a glass transition temperature and a softening point above about 115° C.;

the proportions of said components (a), (b), and (c) being selected to provide the following pressure-sensitive adhesive and rheological properties:

- (i) a tensile strength at 500% elongation, determined at 20-25° C., of at least 50 pounds per square inch;
- (ii) a 180° peel resistance, according to PSTC-1, determined at 20-25° C. 24 hours after formation of the pressure-sensitive adhesive bond, of at least about 450 grams per 25.4 mm-width;
- (iii) a dead load deformation, tested at room temperature, 37.8° C., 43.3° C., and 48.9° C. for 3 hours under 1500 g/cm²,

is less than 50%, where dead load deformation = the increased length minus the original length divided by the original length of a sample at least 25 mm in length;

(iv) the following loss modulus, storage modulus, and loss tangent values at 0.01-0.25 Hz throughout the temperature range of 25-50° C.:

loss modulus: 5×10^4 to 100×10^4 dynes/cm²

storage modulus: 65 x 10⁴ to 225 x 10⁴ dynes/cm²

loss tangent: 0.03 to 1.0.

16. A viscoelastic hot melt pressure-sensitive adhesive according to claim 15, wherein said adhesive consists essentially of:

35-55% by weight of said block copolymer;
25-45% by weight of said terpene tackifying resin, said tackifying resin having been synthetically derived from a mixed olefin feedstock;

15-30% by weight of said aromatic, essentially hydrocarbon resin, said aromatic, essentially hydrocarbon resin having a softening point of at least about 140° C.;

0.5% by weight of substantially inert extenders, fillers, pigments, and antioxidants; the foregoing proportions being selected to provide the following results for the properties defined in said paragraph (iv):

- 17. A viscoelastic hot melt pressure-sensitive adhesive consisting essentially of:
 - (a) about 35 to about 55% by weight of a rubbery block copolymer which comprises a rubbery polyisoprene midblock portion and a plurality of end blocks comprising a crystalline poly(vinylarene);
 - (b) about 25 to 45% by weight of a terpene tackifying resin generally compatible with and generally associated with said midblock portion;
 - (c) about 10 to about 30% by weight of an aromatic, essentially hydrocarbon resin having a glass transition temperature and a softening point above about 115° C., said essentially hydrocarbon resin being generally compatible with said end blocks of said rubbery block copolymer;

the proportions of said components (a), (b), and (c) being selected to provide the following pressure-sensitive adhesive and rheological properties:

- (i) a tensile strength at 500% elongation, determined at 20-25° C., of at least 50 pounds per square inch;
- (ii) a 180° peel resistance, according to PSTC-1, determined at 20-25° C. 24 hours after formation of the pressure-sensitive adhesive bond, of at least about 1500 grams per 25.4 mm-width;
- (iii) a dead load deformation, tested at room temperature, 37.8° C., 43.3° C., and 48.9° C. for 3 hours under 1500 g/cm², of less than 100%, where dead load deformation = the increased length minus the original length divided by the original length of a sample at least 25 mm in length;
- (iv) the following loss modulus, storage modulus, and loss tangent values at 0.01 and 0.25 Hz throughout the temperature range of 25-50° C.:

•		
	0.01 Hz	0.25 Hz
loss modulus,	5-100	0-100
10 ⁴ dynes/cm ²		
storage modulus,	65-225	75-200
10 ⁴ dynes/cm ²		
loss tangent	0.03-1.0	0.08-1.0
wherein the said values	remain ger	nerally within
the following limits, the	roughout s	said
temperature range, at 0.	25 Hz:	
loss modulus	\pm 70 x 10 ⁴	dynes/cm ²
storage modulus	± 40 x 10 ⁴	dynes/cm ²
loss tangent	<u>+</u> 0.6.	

18. A viscoelastic hot melt pressure-sensitive adhesive according to claim 17, wherein said adhesive consists essentially of:

up to 85 parts by weight, per 100 parts by weight of said block copolymer, of said terpene tackifying resin, said tackifying resin having been synthetically derived from a mixed olefin feedstock;

up to 65 parts by weight, per 100 parts by weight of said block copolymer, of said essentially hydrocarbon resin having a softening point of at least about 140° C.;

0-5% by weight of substantially inert extenders, fillers, pigments, and antioxidants;

the foregoing proportions being selected to provide the following loss modulus, storage modulus, loss tangent, storage compliance, and loss compliance values, throughout the temperature range of 25-50° C., at 0.01 Hz:

loss modulus, 10^4 dynes/cm² 5-25 storage modulus, 10^4 dynes/cm² 75-200 loss tangent 0.05-0.3 storage compliance, 10^{-8} cm²/dyne 40-100 loss compliance, 10^{-8} cm²/dyne 2-20

and the following storage compliance and loss compliance values, throughout said temperature range at 0.25 Hz:

storage compliance, 10^{-8} cm²/dyne 40-100 loss compliance, 10^{-8} cm²/dyne 5-40.

19. A viscoelastic hot melt pressure sensitive adhesive according to claim 18, wherein said aromatic, essentially hydrocarbon resin is a coumarone-indene resin.

STATEMENT UNDER ARTICLE 19

The changes in claims 15 and 16 are based upon original claim 6, paragraph (c); see the paragraph bridging pages 44 and 45 of the application. New claims 17-19 are based upon original claims 15 and 16 and also original claims 6 (paragraph [c]) and the last six lines of claim 7. New language and numerical limits in paragraph (c) of new claim 17 are based upon original claim 16, original claim 6, paragraph (c), and page 25, line 25 (page 26 in the original page numbering) of the instant specification. value in claim 17, paragraph (c) (ii) is based upon page 22, line 34 (originally numbered page 23) of the instant specification. The "dead load deformation" value of "less than 100%" is based upon page 23, line 8 (page 24 in the original numbering) of the instant specification. per hundred (phr) limits for the terpene resin and the essentially hydrocarbon resin in claim 18 are based upon page 26, lines 4-8 (originally numbered page 27) of the instant specification.

1/1

INTERNATIONAL SEARCH REPOR

International Application No

PCT/US79/00755 i. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) * According to international Patent Classification (IPC) or to both National Classification and IPC INT. Cl. B31 F1/12, 31/20; B32B 31/08; C08K5/01; A410 9/14 U.S. Cl. 156/84, 183, 205, 210, 244.19, 244.27, 269; 260/29.8 525/96 98: Minimum Documentation Searched 4 Classification System Classification Symbols U.S. 156/84,5205, 210, 244.19, 244.27, 269, 260/29.8 .525/96, 98; 2**/**401 **Documentation Searched other than Minimum Documentation** to the Extent that such Documents are Included in the Fields Searched 5 None III. DOCUMENTS CONSIDERED TO BE RELEVANT 14 Category * Citation of Document, 16 with indication, where appropriate, of the relevant passages 17 Relevant to Claim No. 18 US, A, 3,917,607, Published 4, November 1975 15, 16 Crossland US, A, 3,242,038, Published 22, March 1966, Α 15, 16 Dallas et al. A US, A, 3,239,478, Published 8, March 1966, 15, 16 Harlan, Jr. A US, A, 4,096,203, Published 20, June 1978, 15, 16 St. Clair Α US, A, 3,935,338, Published 27, January 1976 15, 16 Robertson et al. US, A, 3,828,367, Published 13, August 1974, Α 1-14 Bourgeois Α US, A, 3,600,250, Published 17, August 1971, 1-14 Evans Α US, A, 2,559,649, Published 10, July 1951, 11,12,13, Little Α US, A, 3,976,530, Published 24, August 1976, 13 Callan Α US, A, 2,022,852, Published 3, December 1935 1 Galligan et al. US, A, 3,932,328, Published 13, January 1976, Α 15-16 Korpman Special categories of cited documents: 15 "A" document defining the general state of the art document published prior to the international filing date but on or after the priority date claimed "E" earlier document but published on or after the international filing date later document published on or after the international filing date or priority date and not in conflict with the application, but cited to understand the principle or theory underlying "L" document cited for special reason other than those referred to in the other categories "O" document referring to an oral disclosure, use, exhibition or other means "X" document of particular relevance IV. CERTIFICATION Date of the Actual Completion of the International Search * Date of Mailing of this International Search Report 3 January 2, 1980 International Searching Authority 1 Signature of Authorized Officer

Michael W. Ball

ISA/US