IESG-BADOU/LYGBA	Devoir surveiller du 2 -ème Semestre	Année scolaire 2022-2023
Durée: 2 h Coef: 1	Epreuve de PCT	Classe de 2 ^{nde} A4

EXERCICE 1 (8 pts)

En vue de proposer un candidat pour le concours d'entrée dans une école d'électricité, un établissement scolaire d'excellence soumet ses meilleurs élèves du niveau 2nde C à un test de présélection.

Le test consiste pour chaque candidat, à identifier trois dipôles de natures différentes : dipôle 1 de bornes A et B, dipôle 2 de bornes C et D. Pour ce faire, chaque candidat dispose en plus des deux dipôles, du matériel suivant : un générateur de tension continue ; un ampèremètre ; un voltmètre ; un potentiomètre.

Chaque candidat effectue ensuite deux expériences.

<u>Expérience</u>: les candidats réalisent un montage qui permet de mesurer pour chaque dipôle, l'intensité I du courant électrique qui le traverse en fonction de la tension électrique U appliquée à ses bornes ; ils obtiennent avec chaque dipôle placé dans un sens puis dans l'autre par rapport au sens de I, les résultats suivants :

Dipôle 1

U _{AB} (V)	-0,45	-0,4	-0,35	-0,3	0	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65
I _{AB} (mA)	0	0	0	0	0	1,7	5	12,5	30	60	100	200	300

Dipôle 2

U _{AB} (V)	-7,5	-5	-4	-3	-2	-1	0	1	2	3	4	5	7,5
I _{AB} (mA)	-350	-276	-245	-208	-166	-113	0	113	166	208	245	276	350

Tu participes à cette présélection et tu souhaites être le candidat de ton établissement.

- 1. Fais le schéma du montage électrique réalisé dans l'expérience.
- 2. Trace la caractéristique intensité-tension ou tension-intensité de chaque dipôle étudié.
- 3. Déduis des tracés précédents, la nature des dipôles

EXERCICE 2 (6 pts)

- 1. Définis les notions suivantes : (2 pts)
 - la mole;
 - la masse molaire atomique;
 - la masse molaire moléculaire.
- 2. Réponds par vrai ou Faux (2 pts)
 - a) La quantité de matière n (nombre de moles) contenue dans un volume V de gaz dans les conditions ou le volume molaire vaut V_m est : $\mathbf{n} = \frac{\mathbf{V}}{\mathbf{V}_m}$
 - b) La masse molaire s'exprime en g.mol⁻¹.

- c) **Un dipôle** est un composant électrique ou une association de composantes électriques possédant deux bornes
- d) Un dipôle passif est un dipôle dont la tension à ses bornes hors d'un circuit est nulle.

3) Complète en utilisant les lettres : (2 pts)

$R_1(\Omega)$	$R_2(\Omega)$	$\mathrm{R}_{\mathrm{eq}}\left(\Omega ight)$	type d'association
680	820	1500	a)
56	b)	28	dérivation
39	68	24,785	c)
470	d)	503	série

EXERCICE 3 (6 PTS)

Suivant un documentaire télévisé, ton voisin de classe, Amavi apprend que le phosgène, aussi nommé dichlorure de méthanoyle, est un gaz de formule COCl₂.

Pour l'usage, l'on a conditionné 10 kg de ce gaz dans une bouteille.

Données: Masses molaires (en g/mol): C: 12; O:16; Cl:35,5; Volume molaire: V_m = 24 L/mol.

Le lendemain en classe, Amavi te sollicite pour connaître le volume occupé et le nombre de molécules de ce gaz contenu dans la bouteille.

- 1- Calcule la masse molaire moléculaire du phosgène.
- 2- Déduis-en
 - 2.1- La quantité de matière que renferme chaque bouteille de phosgène.
 - 2.2- Le volume occupé par ces 10 kg de gaz.
- 3- Détermine le nombre de molécules de phosgène contenues dans cette bouteille.
- 4- Vérifie à partir de la question précédente, la valeur de la masse d'une molécule de phosgène.