МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ТОЭ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Математические основы электротехники» Тема: " ИССЛЕДОВАНИЕ УСТАНОВИВШЕГОСЯ СИНУСОИДАЛЬНОГО РЕЖИМА В ПРОСТЫХ ЦЕПЯХ"

Студентка гр. 1384	Усачева Д.В.
Студент гр. 1384	 Бобков В.Д.
Преподаватель	

Санкт-Петербург

Цель работы.

Практическое ознакомление с синусоидальными режимами в простых RL-, RC- и RLC-цепях.

Подготовка к работе.

При анализе электрических цепей в установившемся синусоидальном режиме важно твердо усвоить амплитудные и фазовые соотношения между токами и напряжениями элементов цепи. Необходимо помнить, что ток в Rэлементе совпадает по фазе с напряжением, ток в Lэлементе отстает, а в Сэлементе опережает напряжение на четверть периода (90°).

Следует учитывать, что комплексные сопротивления индуктивности и емкости есть функции частоты:

$$Z_L = j\omega L = \omega L e^{j90^{\circ}}; \ Z_C = \frac{1}{j\omega C} = \frac{1}{\omega C} e^{-j90^{\circ}}.$$

Функциями частоты являются, следовательно, и комплексные сопротивления RL-, RC- и RLC-цепей. Так, для RLC-цепи, изображенной на рис. 6.1, в, комплексное сопротивление:

$$Z = \dot{U}_0 / \dot{I} = R + Z_L + Z_C = R + j \left[\omega L - 1 / (\omega C) \right].$$

Реактивная составляющая этого сопротивления равна разности модулей индуктивного и емкостного сопротивлений и поэтому может принимать различные знаки: если она положительна, реакция цепи имеет индуктивный характер, если отрицательна — емкостный, если обращается в нуль (т. е. $\omega L = 1/\omega C$), цепь будет находиться в состоянии резонанса.

Рис. 6.1

Рис. 6.2

Как модуль и аргумент комплексного сопротивления

$$|Z| = \sqrt{R^2 + \left[\omega L - 1/(\omega C)\right]^2}; \ \varphi = \operatorname{arctg} \frac{\omega L - 1/(\omega C)}{R},$$

так и определяемые ими по закону Ома действующее значение и начальная фаза тока

$$I = \frac{U_0}{\sqrt{R^2 + \left[\omega L - 1/(\omega C)\right]^2}}; \ \alpha_i = \alpha_u - \varphi$$

существенно зависят от соотношения значений индуктивного и емкостного сопротивлений.

Токи и напряжения цепи в установившемся синусоидальном режиме наглядно представляют с помощью ВД. Такая диаграмма для RLC-цепи приведена на рис. 6.2, а, где рассматривается случай $\phi = -45^{\circ}$, т. е. ток I

опережает напряжение U_0 на 45° , что соответствует емкостной реакции и временной диаграмме, представленной на рис. 6.2, б.

Основные расчетные формулы.

1) Расчетная формула для определения емкости RC цепях:

Комплексное сопротивление конденсатора:

$$Z_{C} = \frac{1}{j\omega C}$$

$$C = \frac{1}{\omega Z_{c}} = \frac{I}{\omega U_{c}} = \frac{I}{\omega U_{c}} = \frac{I}{2\pi f U_{c}},$$

где f – установленная частота, U_C – установленное напряжение.

2) Расчетная формула для определения индуктивности в RL цепях: Комплексное сопротивление катушки:

$$Z_L = j\omega L$$

$$L = \frac{\mathit{UL}}{\omega} = \frac{\mathit{UL}}{\omega I} = \frac{\mathit{UL}}{2\pi \mathit{fI}}.$$

3) Расчетная формула для определения угла сдвига напряжений в RC цепи

$$\varphi_{\text{BJ}} = -\arctan\left(\frac{U_{C}}{U_{R}}\right),$$

аналогично для RL цепи

4) Расчетная формула для определения угла сдвига напряжений в RLC цепи

$$\varphi_{\mathrm{B}\mathrm{A}} = arctg\left(\frac{U_L + U_C}{U_R}\right)$$

Обработка результатов.

1) Исследование установившегося синусоидального режима в RL- и RCцепях.

Таблица 1. (RC измерения)

Устанав	ливают	Измеряют			Вычисляют			
f, кГц	U ₀ , B	І, мА	U_R , B	U _c , B	$\phi_{\text{осц}},^{\circ}$	R, Om	С, мкФ	φ _{вд} ,°
7,5	2,00	3,78	0,78	1,81	-67,4	160,7	0,0438	-68,52
15	2,00	6,16	1,23	1,48	-45,00	207,4	0,0465	-47,75

Рисунок 3 - Схема установки для исследования установившегося синусоидального режима в RC цепи

Вычисления:

Рисунок 4 — Векторная диаграмма токов и напряжений для цепи рис. 3

Таблица 2. (RL измерения)

Устанав	ливают	Измеряют			Вычисляют			
f, кГц	U_0 , B	І, мА	U_R , B	U_L , B	ф _{осц} ,°	R, Om	L, Гн	$\phi_{\rm BД}$, $^{\circ}$
7,5	2,00	4,92	1,00	1,67	58,4			
3,75	2,00	7,56	1,53	1,10	40,5			

Рисунок 5 - Схема установки для исследования установившегося синусоидального режима в RL цепи

Вычисления:

Рисунок 6 – Векторная диаграмма токов и напряжений для цепи рис. 5

Исследование установившегося синусоидального режима в RLC-цепи.
 Таблица 3. (RLC измерения)

Устанавливают		Измеряют				Вычисляют	
f, кГц	U ₀ , B	І, мА	U_R , B	U _C , B	U _L , B	ф _{осц} ,°	φвд,°
8	2,00	8,77	1,75	3,63	3,58	0	
16	2,00	3,21	0,65	0,67	2,56	67,5	
4	2,00	2,43	0,48	2,34	0,41	-78	

Рисунок 7 - Схема установки для исследования установившегося синусоидального режима в RLC- цепи

Вычисления:

Рисунок 8 - Векторная диаграмма токов и напряжений для цепи рис. 7

Контрольные вопросы.

1) Почему $U_0 \neq U_R + U_C$?

Ток емкостного элемента опережает напряжение. Общее напряжение вычисляется по формуле: $U_0 = \sqrt{U_R^2 + U_C^2}$

2) Почему с ростом частоты значения I и U_R увеличились, а U_C и $|\varphi|$ уменьшились? Изменились ли R и C?

 $Z_{\mathcal{C}}$ обратно пропорционально частоте, поэтому при увеличении частоты уменьшается $Z_{\mathcal{C}}$, что ведёт к уменьшению $U_{\mathcal{C}}$ и увеличению $U_{\mathcal{R}}$, ток I увеличивается и уменьшается угол $|\phi|$ опережения напряжения. R и C – константы.

3) Почему $U_0 \neq U_R + U_L$?

Ток индуктивного элемента отстаёт напряжение и общее напряжение вычисляется по формуле: $U_0 = \sqrt{U_R^2 + U_C^2}$

4) Почему с уменьшением частоты значения I и U_R увеличились, а U_L и $|\boldsymbol{\varphi}|$ уменьшились? Изменились ли R и L?

 Z_L прямо пропорционально частоте, поэтому при уменьшении частоты уменьшается Z_L , что ведёт к уменьшению U_L и увеличению U_R , ток I увеличивается и уменьшается угол $|\phi|$ отставания от напряжения. R и L — константы.

5) Почему
$$U_0 \neq U_R + U_L + U_C$$
?

Ток индуктивного элемента отстаёт напряжение, а ток и емкостного элемента опережает напряжение и общее напряжение вычисляется по формуле:

$$U_0 = \sqrt{U_R^2 + (U_L - U_C)^2}$$

Вывод.

В ходе выполненной работы мы установили соответствие между значениями собственных частот и формой свободного процесса: если собственные частоты вещественные – наблюдается апериодический режим, комплексно-сопряженные – колебательный режим, кратные – критический апериодический режим. Также научились экспериментально определять собственные частоты и добротности RLC-контура по осциллограмме.