ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

Teorema da Probabilidade Total

T1 (Teorema da probabilidade total) Se E_1 , E_2 , ..., E_n são eventos <u>exclusivos</u> (satisfazem $E_iE_j = \emptyset$ pra todo $i \neq j$) e <u>exaustivos</u> ($E_1 + E_2 + ... + E_n = \Omega$), então a probabilidade de qualquer evento A pode ser calculada como segue

$$P(A) = \sum_{i=1}^{n} P(A \mid Ei).P(Ei)$$

(Para provar o teorema basta notar que A = AE₁ + AE₂ + ... + AE_n e que se trata da união de eventos mutuamente excludentes)

Teorema de Bayes

T2 : (teorema da Bayes) Sejam A e B eventos quaisquer e P(B) > 0, então:

$$P(A|B) = \frac{P(B \mid A).P(A)}{P(B)}$$

 Sabendo que a bola selecionada é azul. Qual a probabilidade de que ela saiu da Urna número 1. Ou seja: P(U¹|A)

Teorema de Bayes

- Três máquinas A, B e C produzem botões, respectivamente, 15%, 25% e 60% da produção total.
- As percentagens de botões defeituosos fabricados por estas máquinas são respectivamente 5%, 7% e 4%. Se ao acaso, da produção total de botões, for encontrado um defeituoso, qual a probabilidade de ele ter sido produzido pela máquina B?

Teorema de Bayes

De acordo com o enunciado, temos as seguintes probabilidades: P(A)=0.15, P(B)=0.25, P(C)=0.6, P(D|A)=0.05, P(D|B)=0.07 e P(D|C)=0.04.

Pretende-se determinar P(B|D). Usando o Teorema de Bayes, obtemos:

$$P(B|D) = \frac{P(D|B)P(B)}{P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)} = \frac{175}{490} \simeq 36\%.$$

Logo a afirmação está correcta, isto é, a probabilidade de um botão defeituoso ter sido produzido

0,0175/0,049 = 0,3571

 João vai ao médico e este desconfia da doença A. Toma várias providências: examina João, observa os sintomas e faz exames de rotina.

Seja θ o indicador da doença A em João

O médico assume que $P(\theta = 1|H) = 0,7$

Exame de laboratório X do tipo +/- relacionado com θ

$$\begin{cases} P(X = 1 \mid \theta = 0) = 0,40, \\ P(X = 1 \mid \theta = 1) = 0,95, \end{cases}$$

João faz o teste e o resultado é X=1

$$P(\theta = 1 \mid X = 1) \propto l(\theta = 1; X = 1)P(\theta = 1)$$

 $\propto (0, 95)(0, 7) = 0, 665$
 $P(\theta = 0 \mid X = 1) \propto (0, 40)(0, 30) = 0, 120$

$$P(\theta = 1 \mid X = 1) = 0,665/0,785 = 0,847 \text{ e}$$

 $P(\theta = 0 \mid X = 1) = 0,120/0,785 = 0,153$

Médico pede a João teste Y, também, do tipo +/-

$$\begin{cases} P(Y=1 \mid \theta=1) = 0,99 \\ P(Y=1 \mid \theta=0) = 0,04 \end{cases}$$
 Usando a priori $p(\theta|x)$

$$p(y \mid x) = \sum_{\theta \in \Theta} p(y \mid \theta) p(\theta \mid x)$$
e portanto,

$$P(Y = 1 \mid X = 1)$$
 = $P(Y = 1 \mid \theta = 1)P(\theta = 1 \mid X = 1) +$
 $+P(Y = 1 \mid \theta = 0)P(\theta = 0 \mid X = 1)$
 = $(0,99)(0,847) + (0,04)(0,153) = 0,845$ e
 $P(Y = 0 \mid X = 1)$ = $1 - P(Y = 1 \mid X = 1) = 0,155$

João faz o teste Y e observa-se Y=0

$$P(\theta = 1 \mid X = 1, Y = 0) \propto l(\theta = 1; Y = 0)P(\theta = 1 \mid X = 1)$$

$$\propto (0,01)(0,847) \doteq 0,0085$$

$$P(\theta = 0 \mid X = 1, Y = 0)$$
 $\propto (0, 96)(0, 155) = 0, 1466$

ou

$$P(\theta = 1 \mid Y = 0, X = 1) = 0,0085/0,1551 = 0,055$$

 $P(\theta = 0 \mid Y = 0, X = 1) = 0,1466/0,1551 = 0,945.$

Resumindo

$$P(\theta=1) = \begin{cases} 0,7, & \text{antes de X e Y} \\ 0,847, & \text{ap\'os X e antes de Y} \\ 0,055, & \text{ap\'os X e Y} \end{cases}$$

 Considere o experimento que consiste no lançamento simultâneo de duas moedas honestas e individualmente identificáveis. Estamos interessados em medir a probabilidade do evento A: " aparecimento de ao menos uma cara"

Se c denota o evento "cara" e k o evento "coroa" então temos:

$$\Omega = \{ (c,c); (c,k); (k,c); (k,k) \}$$

$$A = \{ (c,c); (c,k); (k,c) \}$$

Pela definição clássica tem-se P(A) = ¾ pois trata-se de um espaço amostral equiprovável.

Diagrama de árvore do experimento:

Ω	P_{rob}
cc	1/4
ck	1/4
kc	1/4
kk	1/4

- Ana , Beatriz e Clarisse disputam a rodada final de um torneio de tênis. Seja P(a), P(b) e P(c) as probabilidades de que Ana, Beatriz ou Clarisse vença uma partida, respectivamente. Sem perda de generalidade, vamos admitir que entre elas não há favoritas; isto é, todas as probabilidades de vitória em uma partida são de ½. O torneio declara vencedora a primeira tenista que vencer 2 partidas. Definemse os seguintes eventos:
 - A Ana vence o campeonato
 - B Beatriz vence o campeonato
 - C Clarisse vence o campeonato
 - D A rodada final terá exatamente 3 partidas
 - E A rodada final terá no máximo três partidas

- Calcule as probabilidades desses eventos e também a condicional P(E|A).
- Diagrama de árvore (notar que não se trata mais de um espaço amostral equiprovável!)

- Sabe-se que a eficácia de uma vacina é de 80%. Um grupo de 3 indivíduos é selecionado para vacinação e a imunização de cada um deles pode ser modelada como visto abaixo.
 - I= Imunizado
 - Ic=Não Imunizado
 - Denotando por X o número de indivíduos imunizados.
- Qual a probabilidade de ter pelo menos uma pessoa imunizada?

Denotando por X o número de indivíduos imunizados, obtemos: Evento prob. 0.8^{3} $0,8^2 \times 0,2$ 2 III^{c} $0,8^2 \times 0,2$ $II^{C}I$ II^cI^c 0.8×0.2^{2} $0,8^2 \times 0,2$ I^c11 $0, 8 \times 0, 2^2$ 1 I^cII^c Iclc1 $0,8 \times 0,2^2$ 1 0.2^{3}

 $I_cI_cI_c$

A probabilidade de ter pelo menos uma pessoa imunizada é de 99,2%