

Adatbázisok előadás II.

A relációs adatmodell

Most már tudjuk, hogy mi az adatbázis, tervezzünk egyet!

A tervezés lépései

Fogalmi adatmodell

Logikai adatmodell

Fizikai adatmodell

Egyed – kapcsolat modell (ER-modell)

Adatbázisterv

Implementálás terve

Fogalmi adatmodell

Entity-Relationship adatmodell

Tipikusan olyan üzleti igényekkel, folyamatokkal kapcsolatos adatstruktúrát ír le grafikusan, amely relációs adatbázisok segítségével lesz megvalósítva

Jelölésrendszere (leegyszerűsítve):

- ☐ Egyedek Téglalapok
- ☐ Kapcsolatok Rombuszok
- □ Tulajdonságok Ellipszisek

CORVINUS Entity-Relationship diagram létrehozása

- Egyedek meghatározása ezek az attribútumaik által jól körülhatárolhatók
- Kapcsolatok meghatározása többnyire olyan attribútumokat kell keresni, amelyek nem köthetők egy egyedhez
- Megjegyzések
 - Egy egyed sokszor kapcsolattá is alakítható és fordítva
 - Az egyednél mindig adjunk meg kulcsot!

Példa1: galambröptető verseny adatbázisa

Régi hagyomány, hogy minden év tavaszán Ököritófülpösön megrendezik a galambröptető versenyt.

- A versenyen csak több táv is van
- Minden tenyésztő több madarat is nevezhet
- A cél, hogy a galamb minél előbb kézbesítse a küldeményt

Tervezzünk egy egyszerű adatbázist az adatok tárolására!

Mintaadatok

GalambNév	Szín	VersenyNév	Táv	IndulásIdeje	ÉrkezésIdeje	Teljesített Távolság	Helyezés	Tenyésztő Név
Száguldó Sanyi	Barna	Nagy Szárnyak Kihívása	Szárnyas Száguldás	2024-03-15 08:00	2024-03-15 10:30	50 km	3	Kovács János
Száguldó Sanyi	Barna	Nagy Szárnyak Kihívása	Gyors Repülés	2024-03-15 11:00	2024-03-15 13:45	100 km	1	Kovács János
Repülő Rózsa	Fehér	Nagy Szárnyak Kihívása	Szárnyas Száguldás	2024-03-15 08:00	2024-03-15 09:45	50 km	1	Nagy Tamás
Repülő Rózsa	Fehér	Nagy Szárnyak Kihívása	Gyors Repülés	2024-03-15 10:15	2024-03-15 12:30	100 km	2	Nagy Tamás
Pörgő Peti	Fekete	Nagy Szárnyak Kihívása	Szárnyas Száguldás	2024-03-15 08:00	2024-03-15 11:00	50 km	4	Kovács János

Egyedek: Galamb, Verseny, Tenyésztő*

Relációk: Verseny – Galamb, Galamb – Tenyésztő

Tulajdonságok: a táblázat alapján + AZONOSÍTÓK

* A Táv is lehet egyed

CORVINUS Entity-Relationship diagram EGYETEM létrehozása- Egyedek és tulajdonságok

Galamb

- ID
- Név
- Szín ...

Verseny

- ID
- Név
- Dátum

Tenyésztő

- ID
- Név
- Telefonszám ...

A kapcsolatoknak is lehetnek tulajdonságai!

Entity-Relationship diagram létrehozása-Kapcsolatok

Mindig érdemes meggondolni, hogy melyik kapcsolat milyen jellemzőkkel bír (számosság, szorosság stb.)

CORVINUS Kapcsolat tulajdonságai

Akapcsolat számossága (foka, típusa) lehet ...

- 1:1 Ekkor az egyik egyed minden egyes előfordulásához a másik egyed pontosan egy értéke tartozik pl: OSZTÁLY - OSZTÁLYFŐNÖK
- 1: N Ekkor az egyik egyed minden egyes előfordulásához a másik egyed több előfordulása is tartozhat, pl: OSZTÁLY - HALLGATÓ
- M: N Ekkor az egyik egyed minden egyes előfordulásához a másik egyed több előfordulása is tartozhat és fordítva, pl: TANTÁRGY - HALLGATÓ

Az M:N (több-több) kapcsolat felbontása

Általában két 1:N (egy a többhöz) kapcsolatra bontható egy új reláció segítségével, amely tartalmazza az összekapcsolt egyedek kulcsait.

HALLGATÓ(ID, NÉV, CÍM ...) TANTÁRGY(TID, TNÉV, KREDIT...) TANTÁRGY_HALLGATÓ(TID, ID)

CORVINUS A kapcsolat szorossága

Kötelező kapcsolat esetén minden egyed előfordulásnak részt kell vennie legalább egy kapcsolatban. Pl: TANÁR - TANSZÉK

Opcionális kapcsolat esetén lehet olyan egyed előfordulás, amely nem vesz részt kapcsolatban. Pl: HALLGATÓ – FAKULTATÍV TANTÁRGY

Félig kötelező kapcsolat esetén a kapcsolat csak egyik irányban kötelező, a másikban opcionális. Pl: ÓRAADÓ TANÁR - TANTÁRGY

CORVINUS EGYETEM Rekurzív kapcsolat

Egy egyed (példányain keresztül) saját magával áll kapcsolatban

DOLGOZÓ					
ID	NÉV	FELETTES_ID			
1	Kiss Béla	NULL			
2	Nagy Evelin	1			
3	Varga Éva	1			

Térjünk vissza a galambokhoz!

Esetünkben

- a Galamb Verseny között több-több (M: N) kapcsolat van → később fel kell bontani egy-több kapcsolatokra
- a Tenyésztő Galamb között pedig egy-több (1: N)

CORVINUS ER-Diagram példa – Galambok

Egy dvd-kölcsönző számítógépes nyilvántartása tárolja minden egyes dvd fontosabb adatait (cím, stílus, nettó ár stb.).

- A dvd-k a film nyelve szerint külön polcokon vannak tárolva.
- ☐ A dvd-ket csak beiratkozott tagok kölcsönözhetik
- Atagokkal való kapcsolattartás miatt tároljuk minden tag nevét, címét, kedvenc stílusát stb.
- Minden kölcsönzésnél rögzítjük, hogy ki, mikor, melyik dvd-t vette ki, illetve mikor hozta vissza

CORVINUS EGYETEM Mintaadatok

nev	ki_datum	vissza_datum	stilus	nettoar	lang	cim
			történ			
Bartos Kinga	2003.12.11	NULL	elem	4244	magyar	A II. világháború története (1999)
			történ			Az 1848-1849-iki szabadságharc története
Mohai Mónika	2003.12.11	NULL	elem	5700	magyar	(2002)
			ismere			
			tterjesz			
lvicsics Miklós	2003.12.11	NULL	tő	3540	magyar	Ablak zsiráf (1999)
Bakk Csaba			történ			
József	2006.10.01	2006.10.10	elem	5041	angol	3D Dinosaur - adventure
			történ			
Kollár Zsófia	2006.10.02	2006.10.09	elem	5041	angol	3D Dinosaur - adventure

Egyedek: Dvd, Tag, Nyelv

Relációk: Tag – Dvd, Dvd - Nyelv

Tulajdonságok: a táblázat alapján + AZONOSÍTÓK

CORVINUS Entity-Relationship diagram létrehozása-Egyedek és tulajdonságok

Entity-Relationship diagram létrehozása-Kapcsolatok

Érdemes itt is átgondolni, hogy hogy melyik kapcsolat milyen tulajdonságú

CORVINUS ER-Diagram példa – DVD kölcsönző

Logikai modell

- A logikai modell megtervezése esetén
- □Figyelembe kell venni a választott adamodellt (relációs modell lesz)
- □A konkrét adatbázis-kezelő rendszer technikai architektúráját
- ☐Megszorításokat (kényszerek)
- □ Hatékonysági megfontolásokat (később: ld. Normalizálás)

Relációs adatmodell

A Reláció fogalma

A reláció attribútumok Descartes-szorzatának részhalmaza.

Példa: Legyenek az attribútumok: Neptunkód, Név és Város

Az attribútumok értékei halmazokat alkotnak

CORVINUS EGYETEM Descartes szorzat és Reláció

NEPTUNKÓD	NÉV	VÁROS
AAAAA	Anna	Budapest
AAAAA	Anna	Pécs
AAAAA	Béla	Budapest
AAAAA	Béla	Pécs
BBBBBB	Anna	Budapest
BBBBBB	Anna	Pécs
BBBBBB	Béla	Budapest
BBBBBB	Béla	Pécs
CCCCCC	Anna	Budapest
CCCCCC	Anna	Pécs
CCCCCC	Béla	Budapest
CCCCC	Béla	Pécs

NEPTUNKÓD	NÉV	VÁROS
AAAAA	Béla	Budapest
BBBBBB	Anna	Budapest
CCCCCC	Béla	Pécs

- Az oszlopok száma a reláció foka
- Az n-ed fokú relációnak n oszlopos tábla feleltethető meg

A Reláció fogalma - másképpen

A reláció attribútumok közötti kapcsolatok olyan halmaza, amelyek egyedeket írnak le

A Neptunkód, Név és Város attribútumok a Hallgató egyedet írják le.

NEPTUNKÓD	NÉV	VÁROS
AAAAA	Béla	Budapest
BBBBBB	Anna	Budapest
CCCCCC	Béla	Pécs

- A sorokat rekordoknak is nevezzük
- Egy konkrét sor az egyed egy előfordulását (példányát) is jelenti

A relációs séma attribútumok névvel nevezett viszonya

Példák:

- □ HALLGATÓ (Neptunkód, Név, Város)
- ☐ TANTÁRGY (Tantárgykód, Megnevezés, Kreditérték)
- □ VIZSGA(Vizsgakód, Tantágykód, Dátum, Teremkód)

A séma a tábla szerkezetét írja le, a reláció pedig a sorok összességét jelenti

Egy relációs adatbázis több, egymással összekapcsolt relációból áll

TAG tábla					
TagID	Név	Cím			
3	Mohai M.	Pasaréti út 23			
5	Ivesics M.	Mészöly u. 4			

KÖLCSÖNZÉS tábla					
<u>Dátum</u>	TagID	DVDID			
2003.12.11	10	5			
2003.12.11	3	2			
2003.12.11	5	6			

	DVD tábla						
_	<u>DVDID</u>	Cím	Stílus	Ár	NyelvID		
	2	A II. vh	történelem	4244	1		
	5	Az 1848-49-es szh.	történelem	5700	1		
	6	Ablak zsiráf	Ism.terj.	3540	1		

Relációs adatmodell -Tulajdonság

- Más néven attribútum
- Azonos típusú és szerepű elemek halmazát jelenti
- A lehetséges tulajdonság értékek halmazát domain-nek is nevezzük
 - Speciális tulajdonságérték: NULL

Osztályzat					
NULL					
1					
2					
3					
4					
5					

Az osztályzat tulajdonság lehetséges értékei

Kényszerek (Megszorítások, Constraints)

A lehetséges adatok halmazát leíró, korlátozó szabályok

Kényszer típusok

- Kulcs
- Domain
- Egyed integritás
- Hivatkozási integritás
- Egyéb (nem sémaalapú) kényszerek

Attribútumok olyan minimális halmaza, amelyek egyértelműen meghatározzák az egyed előfordulásait

NEPTUNKÓD	NÉV	VÁROS
AAAAA	Béla	Budapest
BBBBBB	Anna	Budapest
CCCCCC	Béla	Pécs

Kulcs: NEPTUNKÓD

Ha az egyedet meghatározó attribútumhalmaz nem feltétlenül minimális, akkor azt szuperkulcsnak nevezzük, PI: NEPTUNKÓD + NÉV

Tágabb értelemben minden olyan attribútumhalmaz szuperkulcs, amely tartalmaz kulcsot. Eszerint a kulcs minimális szuperkulcs.

Ha több kulcs is létezik, akkor azt, amelyiket az adatfeldolgozásnál használjuk, elsődleges kulcsnak nevezzük. Ilyenkor a többi kulcs másodlagos kulcs.

<u>NEPTUNKÓD</u>	TAJSZÁM	NÉV	VÁROS
AAAAA	030111999	Béla	Budapest
BBBBBB	030222888	Anna	Budapest
CCCCCC	030333777	Béla	Pécs

Kulcsjelöltek:

- NEPTUNKÓD
- TAJSZÁM

Minden relációs sémának kell, hogy legyen elsődleges kulcsa (PRIMARY KEY).

CORVINUS Egyed integritás kényszer

Az egyed integritás (entity constraint) szerint az elsődleges kulcs értéke nem lehet NULL

TAG tábla		
<u>TagID</u>	Név	Cím
1	KISS BÉLA	Szeged
2	TÓTH LAURA	VÁC
	NAGY IVÓ	Budapest

Aharmadik sorban hiányzik a tag azonosítója!

Összetett kulcs esetén egyik kulcs összetevő sem lehet NULL

CORVINUS Egyszerű és összetett kulcs

Az egyszerű kulcs egyetlen oszlopból, az összetett kulcs több oszlopból áll

PL:

- DOLGOZÓ (AZON, NÉV, CÍM) egyed esetén az AZON egyszerű kulcs
- ELADÁS(Dátum, Termékkód, Mennyiség ...) egyed esetén a Dátum + Termékkód összetett kulcs

CORVINUS Természetes vs mesterséges kulcs

- ☐ A természetes kulcsok a tulajdonságok közül kerülnek kiválasztásra.
- A mesterséges kulcsok lehetnek szekvenciák, automatikusan növekvőek, vagy univerzális azonosítók (UUID). Sokszor helyettesítő (surrogate) szerepük van

PL:

- Természetes kulcs: Neptunkód
- Mesterséges kulcs:
 - Szekvencia: 1, 3, 5, 7 ...
 - Automatikusan növekvő: 1, 2, 3, ...
 - UUID: 99CBAB0D-E05C-47D1-A6A4-394588493ED6

Vajon miért fontosak még a kulcsok?

corvinus egyetem (külső) kulcs

Olyan attribútumhalmaz, amely egy másik reláció elsődleges kulcsára hivatkozik

PI:

ELADÁS(Dátum, Termékkód, Mennyiség ...) és TERMÉK(Termékkód, Egységár ...) esetén a Termékkód idegen kulcs az Eladás táblában

Dátum	Termékkód	Mennyiség
2010.02.02	T001	2
2010.03.03	T002	5
2010.04.01	T002	3

Termékkód	Egységár
T001	240
T002	300
T003	180

ELADÁS tábla TERMÉK tábla

Másodlagos attribútumok

Olyan attribútumok, amelyek nem részei a kulcsnak

Pl: ELADÁS(Dátum, Termékkód, Mennyiség ...) esetén a Mennyiség

Dátum	Termékkód	Mennyiség
2010.02.02	T001	2
2010.03.03	T002	5
2010.04.01	T002	3

Leíró attribútumoknak is nevezik őket

Domain (tartomány) megszorítás

Minden egyes attribútum értéknek egy adott tartományból kell származnia (adattípus + megszorítás)

Példa: Osztályzat attribútumra vonatkozó domain kényszer

Osztályzatok tábla			
TanulóID	TantárgyID	Osztályzat	
1	2	5	
2	4	3	
3	1	9	

Az osztályzat csak 1 és 5 közötti egész szám lehet!

Hivatkozási integritás

A hivatkozási integritás (reference constraint) szerint táblák közötti kapcsolat esetén az idegen kulcs értéknek léteznie kell a hivatkozott táblában, ellenkező esetben NULL értéket kell felvennie

KÖLCSÖNZÉS tábla			
<u>Dátum</u>	<u>TagID</u>	DVDID	
2020.01.01	11	3	
2020.02.03	12	5	
2020.01.11	11	8	

DVD tábla				
DVDID	Cím	Stílus	Ár	NyelvID
3				
4				
5				

A8-as azonosítójú dvd nem létezik a DVD táblában!

Hivatkozási integritás

Milyen problémákat vethet fel? Két gyakori példa:

- ☐ Töröljük a 3-as azonosítójú dvd-t a DVD táblából
- Megváltoztatjuk az 5-ös dvd azonosítóját 6-ra

KÖLCSÖNZÉS tábla		
<u>Dátum</u>	<u>TagID</u>	DVDID
2020.01.01	11	3
2020.02.03	12	5
2020.01.11	11	8

DVD tábla				
DVDID	Cím	Stílus	Ár	NyelvID
3				
4				
5				

Egyéb (nem sémaalapú) kényszerek

Ilyenek pl. a szemantikus megszorítások, üzleti szabályok

- Egy vevő egy adott termékből egyszerre maximum 5 db-ot vásárolhat
- Naponta az első 50 vásárló részesül kedvezményben

Dátum	Termékkód	Mennyiség	Vevőkód	Kedvezmény?
2010.02.02	T001	2	V01	Igen
2010.03.03	T002	5	V02	Igen
2010.03.03	T002	3	V03	Nem

Kényszer példák a gyakorlatból

- ☐ ANév mező kötelezően kitöltendő (NOT NULL)
- ☐ A Fizetés mező értéke pozitív szám (CHECK)
- □ Az ID mező minden dolgozóra egyedi (UNIQUE)
- ☐ A Fizetés alapértelmezett értéke legyen 250000 (DEFAULT)

DOLGOZÓ tábla			
ID	Név	Fizetés	
1	Kiss László	230000	
2	Nagy Ivó	420000	
3	Balogh Béla	-250000	

Afizetés nem lehet negatív!

Relációs modell előnyök - hátrányok

- ✓ Egyszerű, könnyen használható
- Matematikai alap
- ✓ Adatfüggetlenség
- ✓ Könnyen lekérdezhető

- Nem strukturált adatok tárolása, lekérdezése
- Nagy mennyiségű adat (big data) tárolása, kezelése

ER-Diagram -> Relációs adatmodell

Az átírás szabályai

- ☐ Először az egyedeket képezzük le reláció sémába
 - ☐ Atáblanév az egyed nevéből adódik
 - ☐ Atábla attribútumai a tulajdonság nevek
- Utána a kapcsolatokkal tesszük meg ugyanezt
 - Az M:N kapcsolat mindig külön táblába kerül
 - □ Az 1:1 vagy 1:N kapcsolat többnyire beágyazható valamelyik meglévő sémába

Gyakorlat: ER-Diagram → Relációs adatmodell

Adatbázisterv – hol tartunk?

- □Technikai architektúra (MS SQL):
- **□Megszorításokat (kényszerek)**
- □ Hatékonysági megfontolásokat (később: ld. Köv. előadás)

Példa: megszorítások a DVD adatbázisban

Egyed	Attribútu m	Lehetséges értékek	Kényszer
DVD	DvdID	1, 2, 3	Egyed integritás Hivatkozási integritás (Kolcsonzesek)
DVD	Cím	Karaktersorozat	Maximum 255 karakter, kötelező
DVD	Stílus	Karaktersorozat	Maximum 65 karakter, nem kötelező
DVD	Nettoár	Valós számok	A nettóár pozitív legyen, kötelező
DVD	Nyelv	1, 2, 3	Hivatkozási integritás (Nyelvek)
Kolcsonzesek	Ki	1, 2, 3	Hivatkozási integritás (DVD), kötelező

Példa: megszorítások a DVD adatbázisban

Egyéb kényszerek

Sorszám	Kényszer
1	Egy tag egy nap maximum 3 DVD-t kölcsönözhet
2	A dvd-ket 30 napon belül vissza kell hozni
3	Minden 10-ik kölcsönzés adott tag esetén ingyenes
4	Minden dvd-nek legalább 2 nyelven elérhetőnek kell lennie
5	Egy tag csak akkor kölcsönözhet újabb dvd-t, ha a régieket már visszavitte
•••	

Köszönöm a figyelmet!