Problems in Elementary Computer Science – Bài Tập Tin Học Sơ Cấp

Nguyễn Quản Bá Hồng*

Ngày 15 tháng 8 năm 2023

Bài toán 1 ([Tru23], 1., p. 13, HSG Lớp 10 Vĩnh Phúc 2020-2021, Square - Hình vuông). (a) Cho n điểm có tọa độ là các số nguyên trên hệ trục tọa độ Oxy. Tìm diện tích hình vuông nhỏ nhất có các cạnh song song với các trục tọa độ sao cho tất cả các điểm đã cho đều thuộc hình vuông đó (điểm nằm trên cạnh hình vuông cũng được coi là thuộc hình vuông đó).

- Input. Dòng 1: chứa số nguyên dương $n \in \mathbb{N}^*$, $2 \le n \le 20$, là số lượng điểm có tọa độ là các số nguyên. n dòng tiếp theo, mỗi dòng ghi 2 số nguyên $x,y \in \mathbb{Z}, 1 \le x,y \le 100$, là tọa độ của mỗi điểm. [square.inp] 1
- Output. Ghi diên tích hình vuông nhỏ nhất tìm được. [square.out]²
- Sample.

square.inp	square.out
3	16
3 4	
5 7	
4 3	

(b) Mở rộng bài toán từ 'hình vuông' sang 'hình chữ nhật', & từ 'tọa độ nguyên' sang 'tọa độ thực': (i) Cho n điểm có tọa độ là các số thực trên hệ trục tọa độ Oxy. Tìm diện tích hình vuông, hình vuông "nguyên", hình chữ nhật, & hình chữ nhật "nguyên" nhỏ nhất có các cạnh song song với các trục tọa độ sao cho tất cả các điểm đã cho đều thuộc hình chữ nhật đó (điểm nằm trên canh hình chữ nhât cũng được coi là thuộc hình chữ nhât đó), trong đó hình vuông, hình chữ nhât "nguyên" lần lượt là các hình vuông & hình chữ nhật có các toa độ của 4 đính là 8 số nguyên.

Giái. Hình vuông nhỏ nhất chứa n điểm (x_i, y_i) , $i=1, 2, \ldots, n$ trên mặt phẳng tọa độ đã cho là hình vuông mà cạnh của nó sẽ chứa điểm có hoành độ nhỏ nhất $x_{\min} \coloneqq \min_{1 \le i \le n} x_i$ (hoặc hoành độ lớn nhất $x_{\max} \coloneqq \max_{1 \le i \le n} x_i$) & cạnh còn lại sẽ chứa điểm có tung độ nhỏ nhất $y_{\min} \coloneqq \min_{1 \le i \le n} y_i$ (hoặc tung độ lớn nhất $y_{\max} \coloneqq \max_{1 \le i \le n} y_i$). Suy ra cạnh hình vuông nhỏ nhất thỏa mãn sẽ bằng $\max\{x_{\max}-x_{\min},y_{\max}-y_{\min}\}$. Chú ý lý luận này áp dụng cho cả 2 trường hợp: (i) các điểm có tọa độ nguyên, i.e., $x_i, y_i \in \mathbb{Z}$, $\forall i = 1, 2, \dots, n$; (ii) các điểm có tọa độ thực, i.e., $x_i, y_i \in \mathbb{R}$, $\forall i = 1, 2, \dots, n$.

Python:

```
1st solution [Tru23, p. 85]: [square.py]<sup>3</sup>
                                                            2nd solution: [square_1.py]<sup>4</sup>
   inf = 1000
                                                              n = int(input())
   xmin, xmax, ymin, ymax = inf, -inf, inf, -inf
                                                               x = [0]*n; y = [0]*n
   file = open("square.inp", "r")
                                                               for i in range(n):
   n = int(file.readline())
                                                                   x[i], y[i] = map(int, input().split())
   for _ in range(n):
                                                               x.sort(); y.sort()
        x, y = map(int, file.readline().split())
                                                               c = \max(x[n-1] - x[0], y[n-1] - y[0])
        xmin = min(xmin, x)
                                                               print(c*c)
        xmax = max(xmax, x)
        ymin = min(ymin, y)
        ymax = max(ymax, y)
10
   file.close()
11
   file = open("square.out", "w")
   c = max(xmax - xmin, ymax - ymin)
13
   file.write(str(c*c))
   file.close()
```

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

 $^{^1\}mathrm{URL}$: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_computer_science/Cpp/square.inp.

 $^{^2}$ URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_computer_science/Cpp/square.out.

 $^{^3}$ URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_computer_science/Python/square.py.

 $^{^4}$ URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_computer_science/Python/square_1.py.

Lưu ý 1. Sau khi sắp xếp 2 mảng $x=(x_1,x_2,\ldots,x_n)$ \mathcal{E} $y=(x_1,y_2,\ldots,y_n)$ theo thứ tự tăng dần lần lượt thành 2 mảng $x'=(x'_1,x'_2,\ldots,x'_n)$ \mathcal{E} $y'=(y'_1,y'_2,\ldots,y'_n)$, sẽ có $x'_1\leq x'_2\leq \cdots x'_n$ \mathcal{E} $y'_1\leq y'_2\leq \cdots \leq y'_n$, i.e., $x'_1=\min_{1\leq i\leq n}x'_i=\min_{1\leq i\leq n}x_i=\max_{1\leq i\leq n}x_i=\max_{1\leq i\leq n}x_i=\max_{1\leq i\leq n}y'_i=\min_{1\leq i\leq n}y'_i=\min_{1\leq i\leq n}y_i=\max_{1\leq i\leq n}y'_i=\max_{1\leq i\leq n}y'_i=\max_{1\leq i\leq n}y_i=y_{\max}$, nên dòng lệnh c = $\max(x[n-1]-x[0],y[n-1]-y[0])$ sẽ cho c = $\max\{x_{\max}-x_{\min},y_{\max}-y_{\min}\}$ như đã lý luận \mathcal{E} có thể viết dòng lệnh này 1 cách tương đương nhờ sử dụng chỉ số âm duyệt từ cuối mảng thành c = $\max(x[-1]-x[0],y[-1]-y[0])$.

```
C++: [square.cpp]^5
   #include <iostream>
   using namespace std;
   #define N 1000
    int main() {
        int n, x, y, xmin = N, ymin = N, xmax = -N, ymax = -N;
        cin >> n;
6
        for (int i = 1; i \le n; ++i) {
            cin >> x >> y;
            xmin = min(x, xmin);
            xmax = max(x, xmax);
10
            ymin = min(y, ymin);
11
            ymax = max(y, ymax);
12
13
        int c = max(xmax - xmin, ymax - ymin);
14
        cout << c*c << '\n';
   }
16
```

Nhận xét 1. Nếu bài toán trên mở rộng cho hình vuông \mathcal{E} hình chữ nhật có cách cạnh không nhất thiết phải song song với các trục tọa độ thì bài toán sẽ khó hơn. Đặc biệt, nếu tổng quát bài toán thành: "Cho n điểm có tọa độ là các số nguyên/thực trên hệ trục tọa độ Oxy. Tìm diện tích đa giác, đa giác "nguyên" $A_1A_2...A_{n-1}A_n$ nhỏ nhất (i.e., đa giác có tọa độ các đỉnh là các số nguyên) sao cho tất cả các điểm đã cho đều thuộc đa giác đó." thì bài toán này thuộc mảng Tối Ưu Nguyên (Integral Optimization/Programming) \mathcal{E} đặc biệt khó, see, e.g., Wikipedia/integer programming.

Bài toán 2 ([Tru23], 2., pp. 13–14, HSG Lớp 10 Vĩnh Phúc 2020–2021, Divisible by 3 – Chia hết cho 3). Cho dãy a gồm n số nguyên dương. Cho biết có bao nhiều cặp số trong dãy có tổng chia hết cho 3, i.e., đếm xem có bao nhiều cặp chỉ số $i, j, 1 \le i < j \le n$, sao cho $a_i + a_j : 3$.

- Input. Dòng 1: 1 số nguyên duy nhất n, $1 \le n \le 10^5$. Dòng 2: Ghi n số nguyên dương a_1, a_2, \ldots, a_n , $1 \le a_i \le 10^5$, $\forall i = 1, 2, \ldots, n$, là các phần tử của dãy.
- Output. 1 dòng duy nhất ghi số lượng cặp số của dãy a có tổng chia hết cho 3.
- Sample.

div3.inp	div3.out	Giải thích
5	3	3 cặp số tìm được có chỉ số: (1,4),(2,3),(3,5).
$3\ 6\ 9\ 12$		
4	6	6 cặp số tìm được có chỉ số: $(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)$.
$3\ 6\ 9\ 12$		

Bài toán 3 ([Tru23], 3., p. 14, HSG Lớp 10 Vĩnh Phúc 2020–2021, Delete element – Xóa phần tử). Cho dãy gồm n số nguyên a_1, a_2, \ldots, a_n với $1 \le a_i \le 3$, $\forall i = 1, 2, \ldots, n$. Có bao nhiều cách để xóa đi 1 số phần tử của dãy (không xóa phần tử nào cũng được coi là 1 cách) mà vẫn giữ nguyên thứ tự ban đầu để được 1 dãy mới thỏa mãn 2 yêu cầu sau: (i) Dãy còn ít nhất 3 phần tử. (ii) Phần tử đầu tiên của dãy có giá trị 1, tiếp theo là 1 số phần tử có giá trị là 2 (ít nhất có 1 số 2), \mathcal{E} kết thúc bằng đúng 1 phần tử có giá trị là 3. E.g., các dãy 1, 2, 2, 3 \mathcal{E} 1, 2, 3 thỏa mãn yêu cầu, các dãy 1, 2, 3, 3 \mathcal{E} 1, 1, 2, 3 không thỏa mãn yêu cầu.

- Input. Dòng 1: 1 số nguyên dương n ∈ N*, n ≤ 10⁶, là số lượng phần tử của dãy. Dòng 2: Ghi n số nguyên dương a₁, a₂,..., a_n là giá trị của các phần tử của dãy ban đầu.
- Output. Gồm 1 dòng duy nhất là số cách xóa để được dãy mới thỏa mãn yêu cầu của đề bài. Do số lượng cách xóa phần tử có
 thể rất lớn nên chỉ cần ghi ra số lượng cách xóa sau khi chia lấy dư cho 10⁹ + 7.
- Sample.

delete_element.inp	delete_element.out
8	15
1 2 1 2 3 1 2 3	

 $^{^5 \}mathrm{URL}$: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_computer_science/Cpp/square.cpp.

Bài toán 4 ([Tru23], 1., p. 15, HSG Lớp 11 Vĩnh Phúc 2020–2021, Game button – Trò chơi bắm nút). Người chơi đang tham gia 1 trò chơi như sau: Có 2 nút bắm A, B, trên nút A có ghi số m_A , trên nút B có ghi số m_B . Ở mỗi lượt chơi, người chơi phải chọn bắm 1 trong 2 nút & sẽ nhận được số điểm thưởng bằng với số ghi trên nút đó, sau đó số trên nút bắm giảm đi 1 đơn vị. Hỏi sau 2 lượt chơi, số điểm thưởng lớn nhất mà người chơi có thể nhận được là bao nhiêu?

- Input. 1 dòng duy nhất ghi 2 số nguyên dương m_A, m_B với $3 \le A, B \le 20$, tương ứng với 2 số ghi trên 2 nút $A \notin B$.
- Output. Ghi số điểm thưởng lớn nhất mà người chơi có thể nhận được sau 2 lượt chơi.
- Sample.

game_button.inp	game_button.out	Giải thích
5 3	9	Bấm 2 lần nút A & sẽ có tổng điểm thưởng: $5+4=9$.

Bài toán 5 ([Tru23], 2., p. 15, HSG Lớp 11 Vĩnh Phúc 2020–2021, Count number – Đếm số). Cho 4 số nguyên dương a, b, c, d. Đếm xem có bao nhiều số nguyên dương $x \in \mathbb{N}^*$ thỏa mãn các điều kiện sau: (i) $a \le x \le b$. (ii) $x \not : d$.

- Input. 1 dòng duy nhất ghi $4 s \hat{o} a, b, c, d, 1 \le a, b \le 10^{18}, 1 \le c, d \le 10^{9}$.
- Output. 1 dòng duy nhất ghi số lượng số nguyên dương x ∈ N* thỏa mãn điều kiện đề bài.
- Sample.

count_number.inp	count_number.out	Giải thích
4923	2	Chỉ có số 5 & 7 thỏa mãn điều kiện đề bài.

Bài toán 6 ([Tru23], 3., p. 16, HSG Lớp 11 Vĩnh Phúc 2020–2021, Reverse & reverse – Lật qua lật lại). Cho dãy a gồm $n \in \mathbb{N}^*$ phần tử $1, 2, \ldots, n$. Người ta thực hiện trên dãy số này đúng k lần 2 thao tác sau: (i) Đầu tiên, đảo ngược thứ tự (lật đối xứng) đoạn phần tử có chỉ số từ u đến v. (ii) Tiếp theo, đảo ngược thứ tự (lật đối xứng) đoạn phần tử có chỉ số từ u đến v. Với u, v, l, r là các hằng số cho trước. Đưa ra dãy u0 sau khi thực hiện u1 klần u2 thao tác nói trên.

- Input. Dòng 1: 2 số nguyên dương $n, k \in \mathbb{N}^*$, $1 \le n \le 100$, $1 \le k \le 10^9$. Dòng 2: gồm 2 số nguyên dương $u, v, 1 \le u < v \le n$. Dòng 3: gồm 2 số nguyên dương $l, r, 1 \le l < r \le n$.
- Output. Ghi trên n dòng, dòng thứ i ghi giá trị của phần tử thứ i của dãy a sau khi thực hiện k lần 2 thao tác nói trên,
 \(\forall i = 1, 2, ..., n \).
- Sample.

reverse_reverse.inp	reverse_reverse.out	Giải thích
7 2	1	Dãy ban đầu:
2 5	2	$1\ 2\ 3\ 4\ 5\ 6\ 7$
3 7	4	Lần 1:
	3	1 5 4 3 2 6 7
	5	1576234
	7	Lần 2:
	6	1 2 6 7 5 3 4
		$1\ 2\ 4\ 3\ 5\ 7\ 6$

Bài toán 7 ([Tru23], 3., p. 17, HSG Lớp 12 Vĩnh Phúc 2020–2021, Max gift – Chọn quà mắc nhất). Cuối năm công ty tổ chức phát qua cho nhân viên. Có $n \in \mathbb{N}^*$ gói quà với giá trị khác nhau được xếp liên tiếp thành 1 hàng, trong đó gói quà thứ i có giá trị là a_i . Mỗi nhân viên chỉ được chọn 2 gói quà liên tiếp. Mr. Bean là người may mắn được chọn đầu tiên. Giúp Mr. Bean chọn ra 2 gói quà liên tiếp có giá trị lớn nhất.

- Input. Dòng 1: chứa số nguyên dương n∈ N*, 2 ≤ n ≤ 10⁶. Dòng 2: Giá trị của n gói quà, 1 ≤ a_i ≤ 10³, ∀i = 1, 2, ..., n, mỗi giá trị cách nhau bởi dấu cách.
- Output. 1 dòng duy nhất chứa tổng giá trị quà lớn nhất chọn được.
- Sample.

max_gift.inp	max_gift.out
5	9
1 3 5 4 2	

Bài toán 8 ([Tru23], 2., pp. 17–18, HSG Lớp 12 Vĩnh Phúc 2020–2021, Decrease value – Giảm giá trị). 1 ngày rảnh rỗi, Mr. Bean chơi trò chơi với các con số. Mr. Bean lấy 1 số nguyên dương $n \in \mathbb{N}^*$ rồi thực hiện không giới hạn số lần thao tác "Chọn 1 chữ số x của n rồi giảm n đi x đơn vị". Hỏi Mr. Bean phải thực hiện ít nhất bao nhiều thao tác như vậy để giảm số n về 0. E.g., n=27, Mr. Bean sẽ thực hiện 5 thao tác để biến đổi: (i) $Chọn \ x=7 \to n=27-7=20$. (ii) $Chọn \ x=2 \to n=20-2=18$. (iii) $Chọn \ x=8 \to n=18-8=10$. (iv) $Chọn \ x=1 \to n=10-1=9$. (v) $Chọn \ x=9 \to n=9-9=0$.

- Input. 1 dòng: 1 số nguyên dương duy nhất n, $1 \le n \le 10^6$.
- Output. 1 dòng duy nhất ghi số thao tác ít nhất để biến đổi n về 0.
- Sample.

decrease_value.inp	decrease_value.out
27	5

Bài toán 9 ([Tru23], 3., p. 18, HSG Lớp 12 Vĩnh Phúc 2020–2021, Difference degree of substrings – Xâu con phân biệt). 1 lần Mr. Bean được bạn gái gửi cho 1 dãy ký tự S độ dài n chỉ gồm các chữ cái in hoa ('A',...,'Z'). Bạn gái nhờ Mr. Bean xác định "độ phân biệt" của dãy ký tự trên. Trong đó độ phân biệt của dãy ký tự là số nguyên dương l nhỏ nhất sao cho tất cả các xâu con của S độ dài l là đôi một phân biệt. E.g., với n=7, S= 'ABCDABC' thì l=4 do tất cả các xâu con độ dài 4 đều phân biệt. G100 G101 G102 G103 G103 G104 G104 G105 G105 G106 G106 G106 G107 G107 G108 G108 G109 G109 G109 G109 G109 G109 G109 G109 G1109 G1109

- Input. Dòng 1: số nguyên dương $n \in \mathbb{N}^*$, $n \leq 100$. Dòng 2: chứa xâu ký tự S.
- Output. Gồm 1 dòng duy nhất ghi 1 số nguyên duy nhất là "độ phân biệt" của dãy ký tự S.
- Sample.

diff_substring.inp	diff_substring.out
7	4
ABCDABC	

Bài toán 10 ([Tru23], 4., p. 18, HSG Lớp 12 Vĩnh Phúc 2020–2021, Ants meet – Kiến tha mồi). Trên đường đi làm về Mr. Bean quan sát thấy 2 ổ kiến cách nhau 1 khoảng l đơn vị. Các con kiến đang tha mồi về 2 tổ trên đường thẳng nối 2 tổ kiến với nhau. Các con kiến khi tha mồi về tổ nào thì ở lại tổ đó. Nếu 2 con kiến gặp nhau trên đường đi thì cả 2 sẽ đổi hướng di chuyển.

Giả sử đường nối giữa 2 tổ kiến được gắn tọa độ từ 0 đến l. Tổ thứ nhất ở vị trí 0 \mathcal{E} tổ thứ 2 ở vị trí l. Ở thời điểm Mr. Bean quan sát có n con kiến đang tha mồi về tổ. Con thứ i xuất phát ở tọa độ x_i , mang lượng mồi khối lượng w_i \mathcal{E} có hướng di chuyển d_i . Nếu $d_i = 1$ thì con kiến thứ i đang di chuyển theo hướng 0 về l, $d_i = -1$ thì con kiến thứ i đang di chuyển theo chiều ngược lại. Tất cả các con kiến có tốc độ di chuyển bằng nhau \mathcal{E} bằng 1 đơn vị đo độ dài trên giây.

Gọi t là thời điểm sớm nhất tính từ thời điểm quan sát mà tổng lượng mồi được tha về 2 tổ đạt ít nhất $\frac{1}{2}$ tổng lượng mồi của đàn kiến. Mr. Bean đếm được trong thời gian đó các con kiến gặp nhau đúng x lần, tính cả lần gặp nhau ở thời điểm t. Hỏi x bằng bao nhiêu?

- Input. Dòng 1: 2 số nguyên dương $n,l \in \mathbb{N}^*$, $1 \le n \le 5 \cdot 10^4$, $1 \le l \le 10^9$. Dòng $2,\ldots,n+1$: Dòng i+1 ghi 3 số nguyên $w_i, x_i, d_i, 1 \le w_i \le 10^3$, $d_i = \pm 1$, $0 \le x_i \le l$, các số $x_i, i = 1, 2, \ldots, n$, đôi một phân biệt. Các số nguyên cách nhau 1 dấu cách.
- Output. 1 dòng duy nhất chứa số nguyên $x \in \mathbb{N}^*$ là số lần gặp nhau của các cặp kiến.
- Sample.

ant_meet.inp	ant_meet.out
3 5	2
111	
2 2 -1	
3 3 -1	

Giải thích: Thời điểm 0.5, kiến 1 gặp kiến 2 ở tọa độ 1.5, kiến 1 đổi hướng thành -1, kiến 2 đổi hướng thành 1. Thời điểm 1, kiến 2 gặp kiến 3 ở tọa độ 2, kiến 2 đổi hướng thành -1, kiến 3 đổi hướng thành 1. Thời điểm 2: kiến 1 về đến tổ ở tọa độ 0. Thời điểm 3: kiến 2 về đến tổ ở tọa độ 0, lúc này lượng mồi đạt được ở 2 tổ là 3, bằng $\frac{1}{2}$ tổng lượng mồi của cả 3 kiến.

Bài toán 11 ([Tru23], 1., p. 20, HSG Lớp 12 Nam Định 2020–2021, Nearly perfect number – Số gần hoàn hảo). 1 số nguyên dương $a \in \mathbb{N}^*$ được gọi là số "gần hoàn hảo" nếu thỏa mãn điều kiện: $2a \le k$ với k là tổng các ước số của a, e.g., 12 là 1 số "gần hoàn hảo" vì $2 \cdot 12 < 1 + 2 + 3 + 4 + 6 + 12$ (24 < 28).

• Input. Dòng đầu tiên chứa số nguyên dương $n \in \mathbb{N}^*$, $1 \le n \le 10^4$. n dòng tiếp theo, mỗi dòng là 1 số nguyên dương có giá trị $\le 10^6$.

- Output. Dòng đầu tiên ghi số lượng số "gần hoàn hảo". Các dòng tiếp theo, mỗi dòng ghi 1 số "gần hoàn hảo", số gặp trước thì viết trước.
- Sample.

near_perfect_number.inp	near_perfect_number.out
5	2
8	12
16	6
12	
6	
7	

Bài toán 12 ([Tru23], 2., pp. 20–21, HSG Lớp 12 Nam Định 2020–2021, Special number – Số đặc biệt). Cho 1 dãy gồm n số $nguyên a_1, a_2, \ldots, a_n$. Đếm $\mathscr E$ đưa ra số đặc biệt trong dãy a. Số đặc biệt là số chỉ xuất hiện đúng 1 lần trong dãy số.

- Input. Dòng đầu tiên là số $n \in \mathbb{N}^*$, $1 \le n \le 10^6$. n dòng tiếp theo, dòng thứ i là số a_i , $|a_i| \le 10^9$, $\forall i = 1, 2, \ldots, n$.
- Output. Dòng đầu tiên ghi số lượng số đặc biệt. Các dòng tiếp theo, mỗi dòng ghi 1 số đặc biệt tính từ đầu dãy a.
- Sample.

special_number.inp	special_number.out
8	3
9	6
9	11
7	5
7	
6	
11	
9	
5	

Bài toán 13 ([Tru23], 3., p. 21, HSG Lớp 12 Nam Định 2020–2021, Game of gifts – Trò chơi tặng quà). 1 công ty có tổ chức trò chơi, tặng $n \in \mathbb{N}^*$ gói quà đã được chuẩn bị theo giá trị phần quà từ thấp đến cao, để tri ân cho n khách hàng. Công ty đó đã chuẩn bị 1 chiếc hộp đựng n mảnh giấy, mỗi mảnh giấy được bí mật ghi 1 mã hóa gồm nhiều ký tự số \mathcal{E} chữ. Mỗi khách hàng được chọn 1 mảnh giấy trong chiếc hộp đó. Viết chương trình tặng quà từ thấp đến cao theo số lượng các ký tự số của mã hóa trong tờ giấy, nếu số lượng ký tự số trong mã hóa bằng nhau thì khách hàng chọn trước được tặng quà trước.

- Input. Dòng đầu tiên chứa số nguyên dương n ∈ N*, 1 ≤ n ≤ 10⁴. n dòng tiếp theo, mỗi dòng chứa 1 mã hóa không dài quá
 255 ký tự tương ứng cho từng khách hàng.
- Output. Thứ tự tặng quà của trò chơi này cho n khách hàng trên.
- Sample.

game_gift.inp	<pre>game_gift.out</pre>
5	G2Chuc
N123456Cao	A89Dat
A89Dat	L512Ket
G2Chuc	E3689Qua
L512Ket	N123456Cao
E3689Qua	

Bài toán 14 ([Tru23], 4., pp. 21–22, HSG Lớp 12 Nam Định 2020–2021, Work – Công việc). Trong 1 dây chuyền làm việc của công ty có n công nhân làm n việc. Người ta đánh số cho công nhân từ 1 đến n theo thứ tự đứng trong dây chuyền. Thời gian hoàn thành 1 công việc của người thứ i là t_i phút. Mỗi người cần làm xong công việc của mình nhưng được quyền làm tối đa 2 việc. Vì thế họ có thể phối hợp với người đứng ngay trước mình cùng làm, nếu người thứ i \mathcal{E} người thứ i+1 phối hợp thì thời gian làm xong việc cho 2 người là p_i . Tìm phương án sao cho n công việc đều hoàn thành với thời gian ít nhất.

- Input. Dòng 1 ghi số n, 1 < n ≤ 10⁶. Dòng 2 ghi thời gian làm xong việc của từng công nhân tương ứng trong dây chuyền t₁, t₂,...,t_n, 1 ≤ t_i ≤ 60, ∀i = 1,2,...,n. Dòng 3 ghi n − 1 số thời gian cùng làm tương ứng cho số cặp công nhân nếu phối hợp p₁, p₂,...,p_{n-1}, 1 ≤ p_i ≤ 100, ∀i = 1,2,...,n.
- Output. 1 số duy nhất ghi tổng thời gian hoàn thành công việc ít nhất của n công nhân.

• Sample.

work.inp	work.out
5	17
$2\ 5\ 7\ 8\ 4$	
3 9 10 10	

Tài liệu

[Tru23] Vương Thành Trung. Tuyển Tập Đề Thi Học Sinh Giỏi Cấp Tỉnh Trung Học Phổ Thông Tin Học. Tài liệu lưu hành nội bộ, 2023, p. 235.