Adatbázis-kezelő rendszerek I.

NORMALIZÁCIÓ

Redundáns adattárolás és anomáliák

- Redundancia: többszörös felesleges adattárolás
- Redundáns információ okozhat:
 - Felesleges helyfoglalás
 - Anomáliák:
 - × Beszúrási anomália
 - ▼ Törlési anomália
 - Módosítási anomália
- Adatbázis konzisztencia: Az adatbázis csak valós adatokat tartalmazhat.
 - A redundancia adat inkonzisztenciát okozhat.
 - Az anomáliák inkonzisztens adatbázis állapothoz vezethetnek.

Anomáliák

• Beszúrási anomália:

• Akkor következik be, ha bizonyos attribútumokat nem tudunk beilleszteni az adatbázisba más attribútumok hiányában.

Módosítási anomália:

 Akkor beszélhetünk róla, ha adatmódosítás során a redundánsan tárolt adatok esetében nem minden duplumot módosítunk, s ezáltal ellentmondó információ keletkezik.

Törlési anomália:

 Bizonyos adatok (rekordok) törlése olyan adatok elvesztését eredményezi, melyet nem szerettünk volna törölni.

Két relációs séma, amely felesleges helyfoglalást és anomáliákat hordoz magában

DOLG_OSZT és DOLG_PROJ relációk lehetséges adatbázis állapota

$DOLG_OSZT$			redunds	incia .		
Dnév	Szsz	Szdátum	Lakcím	Oszám	Onév	Ovez_szsz
Kovács László	$1\ 650109\ 0812$	1965. január 9.	4033 Debrecen	5	Kutatás	$2\ 551208\ 2219$
Szabó Mária	$2\ 551208\ 2219$	1955. december 8.	1097 Budapest	5	Kutatás	$2\ 551208\ 2219$
Kiss István	$1\ 680119\ 6749$	1968. január 19.	1172 Budapest	4	Humán erőforrás	$2\ 690329\ 1099$
Takács József	$1\ 410620\ 4902$	1941. június 20.	4027 Debrecen	4	Humán erőforrás	$2\ 690329\ 1099$
Horváth Erzsébet	2 620915 3134	1962. szeptember 15.	1092 Budapest	5	Kutatás	$2\ 551208\ 2219$
Tóth János	1 720731 2985	1972. július 31.	6726 Szeged	5	Kutatás	2 551208 2219
Fazekas Ilona	2 690329 1099	1969. március 29.	3535 Miskolc	4	Humán erőforrás	$2\ 690329\ 1099$
Nagy Zoltán	$1\ 371110\ 4519$	1937. november 10.	1061 Budapest	1	Központ	$1\ 371110\ 4519$

$DOLG_PROJ$		redundancia redundancia		ncia	
Szsz	Pszám	Órák	Dnév	Pnév	Phelyszín
$1\ 650109\ 0812$	1	32.5	Kovács László	X termék	Vác
$1\ 650109\ 0812$	2	7.5	Kovács László	Y termék	Tiszafüred
$2\ 620915\ 3134$	3	40.0	Horváth Erzsébet	Z termék	Budapest
$1\ 720731\ 2985$	1	20.0	Tóth János	X termék	Vác
$1\ 720731\ 2985$	2	20.0	Tóth János	Y termék	Tiszafüred
2 551208 2219	2	10.0	Szabó Mária	Y termék	Tiszafüred
$2\ 551208\ 2219$	3	10.0	Szabó Mária	Z termék	Budapest
$2\;551208\;2219$	10	10.0	Szabó Mária	Komputerizáció	Kecskemét
$2\ 551208\ 2219$	20	10.0	Szabó Mária	Reorganizáció	Budapest
$1\ 680119\ 6749$	30	30.0	Kiss István	Új fejlesztések	Kecskemét
$1\ 680119\ 6749$	10	10.0	Kiss István	Komputerizáció	Kecskemét
2 690329 1099	10	35.0	Fazekas Ilona	Komputerizáció	Kecskemét
2 690329 1099	30	5.0	Fazekas Ilona	Új fejlesztések	Kecskemét
1 410620 4902	30	20.0	Takács József	Új fejlesztések	Kecskemét
$1\ 410620\ 4902$	20	15.0	Takács József	Reorganizáció	Budapest
$1\ 371110\ 4519$	20	NULL	Nagy Zoltán	Reorganizáció	Budapest

Módosítási anomália – Példa

Módosítási anomália:

Példa1: Tekintsük a következő relációt:

DOLG_PROJ(Szsz, Pszám, Órák, Dnév, Pnév, Phelyszín)

Amennyiben a 1-es projekt helyszínét "Vác"-ról áthelyezzük "Budapest"-re, akkor ezt a módosítást minden 1-es projekten dolgozó alkalmazott esetében el kell végezni (lehet akár több 100 is).

- Példa2: A DOLG_OSZT relációban amennyiben megváltoztatjuk az egyik részleg attribútumát (pld: az osztály vezetőjét) módosítanunk kell az összes olyan alkalmazott rekordját, akik azon a részlegen dolgoznak.
- Máskülönben az adatbázis inkonzisztensé válik.

Beszúrási anomália – Példa

Tekintsük a következő relációt:

DOLG_PROJ(Szsz, Pszám, Órák, Dnév, Pnév, Phelyszín)

- Beszúrási anomália:
 - Nem tudunk projektet felvenni, ha nem rendelünk hozzá egy alkalmazottat.
 - Fordítva: Nem tudunk felvenni alkalmazottat, ha nincs hozzárendelve projekthez.

Törlési anomália – Példa

Tekintsük a következő relációt:

DOLG_PROJ(Szsz, Pszám, Órák, Dnév, Pnév, Phelyszín)

Törlési anomália:

- Amikor egy projektet törlünk, az eredményez(het)i az összes alkalmazott törlését is, aki az adott projekten dolgozik.
- Másrészről, ha egy alkalmazott az egyetlen alkalmazott a projekten, az alkalmazott törlésével a szóban forgó projekt törlése is bekövetkezik.

Funkcionális függőségek

Funkcionális függőség (FD)

Definíció:

Az $X \rightarrow Y$ funkcionális függőség olyan korlátozást definiál az R-beli X és Y attribútumhalmazok között, amelynek amelynek minden érvényes R-beli r állapotban teljesülnie kell.

A korlátozás: bármely érvényes r(R) állapot esetén tetszőlegesen választott t_1 és t_2 rekordokra, amennyiben $t_1[X] = t_2[X]$ teljesül, akkor $t_1[Y] = t_2[Y]$ -nak is teljesülnie kell.

Például:

Legyenek A és B egy R reláció attribútumai. B funkcionálisan függ A-tól (jelölése $A \rightarrow B$), Ha R-ben A minden egyes értékéhez B pontosan egy értéke tartozik.

- ▼ A és B lehetnek akár attribútumhalmazok is.
- $X \rightarrow Y$, elnevezések:
 - Y funkcionálisan függ X-től
 - Az X komponens funkcionálisan meghatározza az Y komponenst.
 - *X* : bal oldala a funkcionális függőségnek
 - Y: jobb oldala a funkcionális függőségnek

Funkcionális függőség (folyt.)

- Ha $X \rightarrow Y$ igaz R-ben, akkor $Y \rightarrow X$ -ról nem mondtunk semmit, sem azt hogy igaz, sem azt hogy nem.
- Ha *K* egy kulcs az *R* relációban, akkor a *K* funkcionálisan meghatároz minden attribútumot az *R* relációban.
 - Mivel nem lehet 2 olyan különböző sorunk, ahol t1[K]=t2[K] igaz lenne.

DOLGOZÓ

	Vnév	Knév	Szsz	Szdátum	Lakcim	Nem	Fizetés	Főnök_szsz	Osz
	Kovács	László	1 650109 0812	1965. január 9.	4033 Debrecen	F	390000	$2\ 551208\ 2219$	5
	Szabó	Mária	2 551208 2219	1955. december 8.	1097 Budapest	N	520000	1 371110 4519	5
	Kiss	István	1 680119 6749	1968. január 19.	1172 Budapest	F	325000	1 410620 4902	4
Ŀ	Takács	József	1 410620 4902	1941. június 20.	4027 Debrecen	F	559000	1 371110 4519	4
	Horváth	Erzsébet	$2\ 620915\ 3134$	1962. szeptember 15.	1092 Budapest	N	494000	$2\ 551208\ 2219$	5
	Tóth	János	1 720731 2985	1972. július 31.	6726 Szeged	F	325000	$2\ 551208\ 2219$	5
	Fazekas	Ilona	2 690329 1099	1969. március 29.	3535 Miskolc	N	325000	1 410620 4902	4
	Nagy	Zoltán	1 371110 4519	1937. november 10.	1061 Budapest	F	715000	NULL	1

OSZTÁLY

Onév	Oszám	Vez_szsz	Vez_kezdő_dátum
Kutatás	5	2 551208 2219	1988. május 22.
Humán erőforrás	4	2 690329 1099	1995. január 1.
Központ	1	1 371110 4519	1981. június 19.

DOLGOZIK RAJTA

Dszsz	$\underline{\mathrm{Psz}}$	Órák
$1\ 650109\ 0812$	1	32.5
1 650109 0812	2	7.5
2 620915 3134	3	40.0
$1\ 720731\ 2985$	1	20.0
1 720731 2985	2	20.0
2 551208 2219	2	10.0
$2\ 551208\ 2219$	3	10.0
$2\ 551208\ 2219$	10	10.0
2 551208 2219	20	10.0
1 680119 6749	30	30.0
1 680119 6749	10	10.0
2 690329 1099	10	35.0
2 690329 1099	30	5.0
$1\ 410620\ 4902$	30	20.0
1 410620 4902	20	15.0
1 371110 4519	20	NULL

OSZT HELYSZÍNEK

Oszám	Ohelyszín
1	Budapest
4	Kecskemét
5	Vác
5	Tiszafüred
5	Budapest

PROJEKT

Pnév	Pszám	Phelyszín	Osz
X termék	1	Vác	5
Y termék	2	Tiszafüred	5
Z termék	3	Budapest	5
Komputerizáció	10	Kecskemét	4
Reorganizáció	20	Budapest	1
Új fejlesztések	30	Kecskemét	4

HOZZÁTARTOZÓ

Dszsz	Hozzátartozó_név	Nem	Szdátum	Kapcsolat
2 551208 2219	Anna	N	1986. április 5.	lánya
2 551208 2219	Bence	F	1983. október 25.	fia
2 551208 2219	Máté	F	1958. május 3.	házastársa
1 410620 4902	Viktória	N	1942. február 28.	házastársa
1 650109 0812	Balázs	F	1988. január 4.	fia
1 650109 0812	Anna	N	1988. december 30.	lánya
1 650109 0812	Réka	N	1967. május 5.	házastársa

Példa – VÁLLALAT

A VÁLLALAT relációs adatbázis séma egy lehetséges állapota.

Példák funkcionális függőségekre

- A Szsz értéke meghatározza az alkalmazott vezetéknevét:
 - o Szsz → Vnév

- A projekt száma meghatározza a projekt nevét és helyét:
 - Pszám -> Pnév, Phelyszín
- A dolgozó személyi száma (*Szsz*) és a projekt száma meghatározza, hogy egy dolgozó az adott projekten hetente hány órát dolgozik:
 - {Dszsz, Pszám} -> Órák

A funkcionális függőségek következményei

- Adott *F* funkcionális függőségek halmaza. Ebből a halmazból **levezethetők** további funkcionális függőségek is, amelyek mindakkor igazak lesznek, ha az *F*-beli függőségek igazak.
- Armstrong axiómák:
 - \circ A1. (**Reflexivitás**) Ha *Y⊆X⊆R*, akkor *X→Y*
 - A2. (Bővítés) Ha X→Y teljesül, akkor tetszőleges Z⊆R -ra XZ→YZ is teljesül
 - \times (megj: XZ az X \cup Z-t jelöli)
 - \circ A3. (**Tranzitivitás**) Ha *X*→*Y* és *Y*→*Z* teljesül, akkor *X*→*Z* is igaz.
- Néhány további hasznos következmény:
 - \circ Szétvágási szabály: Ha $X \to YZ$ igaz, akkor $X \to Y$ és $X \to Z$ is teljesülnek
 - \circ **Egyesítési szabály:** Ha $X \to Y$ és $X \to Z$ igaz, akkor $X \to YZ$ is teljesül
 - \circ **Pszeudotranzitivitás:** Ha $X \to Y$ és $WY \to Z$ igaz, akkor $WX \to Z$ is igaz
- Az utolsó 3 következmény (mint egyéb következmények is) levezethetők az A1, A2, és A3 axiómák segítségével (teljességi tétel).

Normalizáció

Normalizáció

• Normalizáció:

- Relációs adatbázis-tervezési folyamat (módszertan).
- A folyamat során a nem megfelelő, "rossz" relációkat attribútumaik mentén kisebb relációkra osztjuk.
- A normalizáció egy felülről lefelé (top-down) haladó dekompozíciós eljárás, amikor azon relációkat, amelyek nem elégítenek ki bizonyos feltételeket – a normál formák tesztje – olyan kisebb relációkká bontjuk szét, amelyek kielégítik ezen feltételeket.
- A normalizáció végrehajtásához azonosítani kell azokat a funkcionális függőségeket amelyek minden érvényes reláció előfordulásban igazak.
- Szekvenciális lépések sorozata, ahol minden egyes lépés egy meghatározott normál formához vezet.

Normál formák (NF-k)

Normál forma:

- O Kulcsokat és funkcionális függőségeket alkalmazó szabályok, melyek segítségével meghatározható, hogy a relációs séma milyen normál formában van.
- O Def: Egy reláció normál formája az a legmagasabb normál forma, melynek feltételeit kielégíti .

• UNF (0NF):

- O A tábla, amely egy vagy több ismétlődő csoportot tartalmaz
- 1NF:
 - A reláció formális definícióján alapul.
- 2NF, 3NF, BCNF
 - A kulcsok és funkcionális függőségek alapján.
- 4NF
 - A többértékű függőségek alapján.
- 5NF
 - Az összekapcsolási függőségek alapján.

Normál formák (folyt.)

A normál formák kapcsolata:

Látható, hogy azok a relációk, ami 2NF-ben vannak 1NF-ben is vannak, azok a relációk amik 3NF-ben vannak, 2NF-ben is vannak, és így tovább.

Nulladik normál forma (0NF, UNF)

Normalizálatlan relációs séma

- A normalizáció előtt:
 - Vegyük az összes mezőt, amelyet az adatbázisnak tartalmaznia kell és tekintsünk erre mint egy nagy táblázatra.
- Nulladik normál forma (UNF): Egy táblázat, amely egy vagy több ismétlődő csoportot tartalmaz.
- Ismétlődő csoport: A táblázaton belül egy ismétlődő attribútum, vagy attribútum csoport, amely egy kulcsjelölt esetében több értéket is felvehet.

Első normál forma (1NF)

• 1 NF:

- o kielégíti a reláció matematikai definícióját ÉS
- o meghatároztuk az elsődleges kulcsot!

• Nem megengedettek:

- o összetett attribútum
- o többértékű attribútum
- beágyazott reláció: olyan attribútum, amelynek értéke egy rekord esetében nem atomi

Normalizáció 1NF-be

Feltételezzük, hogy egyazon osztály a vállalat több telephelyén is jelen lehet.

(a)

OSZTÁLY

Onév	Oszám	Ovez_szsz	Ohelyszínek
•			

(b)

OSZTÁLY

Onév	$\underline{\mathrm{Oszám}}$	Ovez_szsz	Ohelyszínek
Kutatás	5	2 551208 2219	$\{\ V\'{ac},\ Tiszaf\"{u}red,\ Budapest\ \}$
Humán erőforrás	4	2 690329 1099	{ Kecskemét }
Központ	1	1 371110 4518	{ Budapest }

(c)

OSZTÁLY

Onév	Oszám	Ovez_szsz	Ohelyszín
Kutatás	5	2 551208 2219	Vác
Kutatás	5	2 551208 2219	Tiszafüred
Kutatás	5	2 551208 2219	Budapest
Humán erőforrás	4	2 690329 1099	Kecskemét
Központ	1	1 371110 4518	Budapest

Elsődleges kulcs!

Beágyazott relációk normalizációja 1NF-be

(a)

DOLG_PRO	Proje	ktek	
Szsz	Dnév	Pszám	Órák

(b)

DOLG_PROJ

Szsz	Dnév	Pszám	Órák
$1\ 650109\ 0812$	Kovács László	1	32.5
		2	7.5
$2\ 620915\ 3134$	Horváth Erzsébet	3	40.0
$1\ 720731\ 2985$	Tóth János	1	20.0
		2	20.0
$2\ 551208\ 2219$	Szabó Mária	2	10.0
		3	10.0
		10	10.0
		20	10.0
$1\ 680119\ 6749$	Kiss István	30	30.0
		10	10.0
$2\ 690329\ 1099$	Fazekas Ilona	10	35.0
		30	5.0
1 410620 4902	Takács József	30	20.0
		20	15.0
$1\ 371110\ 4519$	Nagy Zoltán	20	NULL

1NF:

DOLG_PROJ(Szsz, Dnév, Pszám, Órák)

Második normál forma(2NF)

- Az elsődleges kulcs és a funkcionális függőség definíciója alapján
- Definíciók:
 - o Elsődleges attribútum: egy attribútum, amely az elsődleges kulcs része
 - Teljes funkcionális függőség: olyan Y → Z függőség, ahol ha az Y attribútum halmazból bármely attribútumo(ka)t elveszünk, akkor a fennmaradó attribútum halmaz már nem határozza meg funkcionálisan Z-t.
 - Részleges funkcionális függőség: Egy nem elsődleges attribútum az elsődleges kulcsnak csak egy részétől függ funkcionálisan.
- Példák:
 - O {Szsz, $Psz\acute{a}m$ } → $\acute{O}r\acute{a}k$ egy teljes FD, mivel sem Szsz → $\acute{O}r\acute{a}k$, sem $Psz\acute{a}m$ → $\acute{O}r\acute{a}k$ nem igaz
 - $\{Szsz, Psz\acute{a}m\} \rightarrow Vn\acute{e}v$ nem teljes FD (hanem részleges), mivel $Szsz \rightarrow Vn\acute{e}v$ igaz

Második normál forma(2NF) (folyt.)

Definíció:

Egy R relációs séma 2NF-ban van, ha minden nem elsődleges attribútuma *teljesen funkcionálisan függ* R elsődleges kulcsától.

• R 2NF-be hozható a 2NF dekompozíciós eljárás segítségével.

Normalizáció 2NF-be

Harmadik normál forma (3NF)

• Definíció:

o Tranzitív funkcionális függőség: az $X \rightarrow Z$ funkcionális függőség tranzitív, ha létezik olyan Y attribútumhalmaz, amelyre $X \rightarrow Y$ és $Y \rightarrow Z$ is teljesül

Példák:

- o Szsz → Főnök_szsz egy **tranzitív** FD
 - × Mivel Szsz → Oszám és Oszám → Főnök_szsz igaz
- o Szsz → Vnév nem tranzitív FD
 - × Mivel nincs olyan X attribútumhalmaz, ahol: $Szsz \rightarrow X$ és $X \rightarrow Vn\acute{e}v$ igaz lenne

Harmadik normál forma (3NF) (folyt.)

Definition:

Egy R séma 3NF-ben van, ha 2NF-ben van és nincs olyan nem elsődleges attribútuma, ami tranzitív módon függne az elsődleges kulcstól.

R 3NF-be hozható a 3NF dekompozíciós eljárás segítségével

• Megj:

- o Az $X \rightarrow Y$ és $Y \rightarrow Z$ esetében, ahol Xelsődleges kulcs, a tranzitív függőséggel problémájával csak akkor foglalkozunk, ha Y nem kulcsjelölt.
- Ha Y kulcsjelölt, a tranzitív függőség nem okoz problémát.
- o Pl., tekintsük az DOLG(Szsz, Dolgozo_azon, Fizetés) relációt.
 - imes Itt, $Szsz o Dolgozo_azon o Fizetés$ igaz és $Dolgozo_azon$ kulcsjelölt.

Normalizáció 3NF-be

Általános definíciók

• Általános definíciók:

- Első normál forma (1NF)
 - A táblázat első normál formában van, ha:
 - Van elsődleges kulcsa.
 - Egyetlen attribútum sem vesz fel egy cellában több értéket.
 - A nem kulcs attribútumok függnek az elsődleges kulcstól.
- Második normál forma (2NF)
 - A reláció második normál formában van, ha első normál formában van és minden nem elsődleges kulcs attribútuma teljesen funkcionálisan függ <u>bármely kulcsjelölttől</u>.
- Harmadik normál forma (3NF)
 - A reláció harmadik normál formában van, ha második normál formában van és nincs olyan nem elsődleges kulcs attribútuma, amely tranzitív módon függne <u>bármely kulcsjelölttől</u>.

Boyce-Codd normál forma (BCNF)

Definíció:

Az R relációs séma Boyce-Codd normál formában van (BCNF), ha valahányszor egy $X \rightarrow A$ funkcionális függőség teljesül R-ben, akkor X az R relációs séma **szuperkulcsa**.

- Különbség a 3NF és BCNF között:
 - o A 3NF megenged olyan $A \rightarrow B$ funkcionális függőséget, ahol B elsődleges kulcs attribútum és A nem kulcsjelölt.
 - Ugyanakkor a BCNF ragaszkodik hozzá, hogy a fenti funkcionális függőség esetében az A-nak kulcsjelöltnek kell lennie.
- Minden BCNF-ben lévő reláció egyben 3NF-ben is van. Ugyanakkor a 3NFben lévő reláció nincs feltétlenül BCNF-ben.
 - A BCNF egy szigorúbb követelmény.

Egy reláció, ami 3NF-ben van, de nincs BCNF-ben

A teniszklubban két pálya van:

Court 1: salakos pálya Court 2: füves pálya

4 árkategória:

• SAVER: a Court 1- re tagoknak

• STANDARD: Court 1-re nem tagoknak

• PREMIUM-A: Court 2-re tagoknak

• PREMIUM-B: Court 2-re nem tagoknak

Today's Court Bookings

Court	Start Time	End Time	Rate Type
1	09:30	10:30	SAVER
1	11:00	12:00	SAVER
1	14:00	15:30	STANDARD
2	10:00	11:30	PREMIUM-B
2	11:30	13:30	PREMIUM-B
2	15:00	16:30	PREMIUM-A

wikipedia

Egy reláció, ami 3NF-ben van, de nincs BCNF-ben

Szuperkulcsok:

 $S_1 = \{Court, Start Time\}$

 $S_2 = \{Court, End Time\}$

 $S_3 = \{\text{Rate Type, Start Time}\}$

 $S_4 = \{\text{Rate Type, End Time}\}\$

 $S_5 = \{\text{Court, Start Time, End Time}\}\$

 $S_6 = \{\text{Rate Type, Start Time, End Time}\}\$

 $S_7 = \{Court, Rate Type, Start Time\}$

 $S_8 = \{Court, Rate Type, End Time\}$

 $S_T = \{Court, Rate Type, Start Time, End Time\} triviális szuperkulcs.$

Today's Court Bookings

Court	Start Time	End Time	Rate Type
1	09:30	10:30	SAVER
1	11:00	12:00	SAVER
1	14:00	15:30	STANDARD
2	10:00	11:30	PREMIUM-B
2	11:30	13:30	PREMIUM-B
2	15:00	16:30	PREMIUM-A

A *Rate Type* → *Court* függőség igaz, de a meghatározó attribútum (*Rate Type*) se nem kulcsjelölt se nem szuperkulcs.

A BCNF elérése dekompozícióval

A nem BCNF-ben lévő relációt szét kell bontani:

RATE

Rate Types

Rate Type	Court
SAVER	1
STANDARD	1
PREMIUM-A	2
PREMIUM-B	2

BOOKING

Today's Bookings

Rate Type	Start Time	End Time
SAVER	09:30	10:30
SAVER	11:00	12:00
STANDARD	14:00	15:30
PREMIUM-B	10:00	11:30
PREMIUM-B	11:30	13:30
PREMIUM-A	15:00	16:30

Mindkét reláció BCNF-ben van.

Egyéb normál formák

- 4NF: Az R relációs séma 4NF-ben van ha valahányszor egy nem triviális (Y nem részhalmaz X-nek, és X ∪ Y nem az összes attribútum) X—→ Y többértékű függőség igaz, akkor X egy szuperkulcs.
- 5NF: ha 4NF-ben van, és nincs nem triviális összekapcsolási függősége.
- Domain-key NF: Minden táblára vonatkozó korlátozás *logikai* következménye a táblázat domain korlátozásainak és kulcs korlátozásainak.
- 6NF: elméleti jelentőségű, nagyon ritka

Normalizáció

Példa – Egyszerűsített autó biztosítási DB

Tárolandó adatok:

- Rendszám
- Alvázszám
- A gépjármű típusa (pl. Ford Focus, Mazda 5)
- Gyártási éve
- A gépjármű színe
- Hengerűrtartalom
- Tulajdonos neve (csak 1 lehet!)
- Tulajdonos szigszáma
- Tulajdonos lakcíme
- Tulajdonos telefonszáma(csak 1-et adhat meg)
- Biztosító neve
- Biztosító központi címe
- Biztosító központi telefonszáma (csak 1)
- Biztosítás típusa (pl. kötelező, casco)
- Éves díj
- Üzletkötő neve

Egyszerűsített autó biztosítás DB – 1NF

Tegyünk minden attribútumot bele 1 táblázatba

AUTÓ_BIZTOSÍTÁS(Rendszám, Alvázszám, Típus, Gyártásiév, Szín, Hengerűrtartalom, Tulajdonos, Szigszám, Lakcím Tulajdonos_tel, Biztosító, Biztosító_cím, Biztosító_tel, Biztosítástípus, Évesdíj, Üzletkötő)

Kódoljuk az egyedeket (BiztosítóID, BiztosítástípusID), és keressük meg az elsődleges kulcsot!

1NF:

AUTÓ_BIZTOSÍTÁS(Rendszám, <u>Alvázszám</u>, Típus, Gyártásiév, Szín, Hengerűrtartalom, Tulajdonos, Szigszám, Lakcím Tulajdonos_tel, *BiztosítóID*, Biztosító, Biztosító_cím, Biztosító_tel, <u>BiztosítástípusID</u>, Biztosítástípus, Évesdíj, Üzletkötő)

Egyszerűsített autó biztosítás (folyt.)

Egyszerűsített autó biztosítás DB – 2NF

2NF:

AUTÓ (<u>Alvázszám</u>, Rendszám, Típus, Gyártásiév, Szín,

Hengerűrtartalom, Tulajdonos, Szigszám, Lakcím
Tulajdonos_tel)

AUTÓ_BIZTOSÍTÁS(<u>Alvázszám</u>, <u>BiztosítástípusID</u>, BiztosítóID, Biztosító, Biztosító_cím, Biztosító_tel, Évesdíj, Üzletkötő)

BIZTOSÍTÁSTÍPUS(BiztosítástípusID, Biztosítástípus)

Egyszerűsített autó biztosítás DB – 3NF

3NF:

AUTÓ (Alvázszám, Rendszám, Típus, Gyártásiév, Szín, Hengerűrtartalom, Szigszám)

TULAJDONOS (<u>Szigszám</u>, Tulajdonos, Lakcím, Tulajdonos_tel)

AUTÓ_BIZTOSÍTÁS(<u>Alvázszám</u>, <u>BiztosítástípusID</u>, BiztosítóID, Évesdíj, Üzletkötő)

BIZTOSÍTÁSTÍPUS (BiztosítástípusID, Biztosítástípus)

BIZTOSÍTÓ(<u>BiztosítóID</u>, Biztosító, Biztosító_cím, Biztosító_tel)

Egyszerűsített autó biztosítás DB - Kulcsok

• AUTÓ reláció:

- Elsődleges kulcs: Alvázszám
- o Idegen kulcs: Szigszám hivatkozik a TULAJDONOS relációra

TULAJDONOS reláció:

o Elsődleges kulcs : Szigszám

• AUTÓ_BIZTOSÍTÁS reláció:

- Elsődleges kulcs (összetett): Alvázszám + BiztosítástípusID
- Idegen kulcs 1: Alvázszám hivatkozik az AUTÓ relációra
- o Idegen kulcs 2: BiztosítástípusID hivatkozik a BIZTOSÍTÁSTÍPUS relációra
- o Idegen kulcs 3: BiztosítóID hivatkozik a BIZTOSÍTÓ relációra

• BIZTOSÍTÁSTÍPUS reláció:

o Elsődleges kulcs : *BiztosítástípusID*

• BIZTOSÍTÓ reláció:

Elsődleges kulcs : BiztosítóID

Normalizáció

KÖVETELMÉNYEK

Követelmények a normalizációhoz

- A normalizációhoz ismernünk kell:
 - o a tárolandó adatok körét, és
 - o a rajtuk értelmezett funkcionális függőségeket
 - **×** *Mennyit?*
 - ▼ Milyen típusúakat?

Funkcionális függőség (folyt.)

Tegyük fel, hogy X és Y attribútumhalmazok

- Triviális funkcionális függőség:
 - \circ $X \rightarrow Y$ triviális, ha $Y \subseteq X$
- Nemtriviális funkcionális függőség:
 - \circ $X \rightarrow Y$ nemtriviális, ha $Y \not\subset X$
- Teljesen nemtriviális funkcionális függőség:
 - \circ $X \rightarrow Y$ teljesen nemtriviális, ha $Y \cap X = \emptyset$

Attribútumhalmaz lezártja

- Attribútumhalmaz lezártja {A₁, A₂,..., A_n}+
 - Adott $A=\{A_1, A_2, ..., A_n\}$ attribútumhalmaz
 - o Keressük azon B attribútumokat, melyekre igaz: $A \rightarrow B$

 Az A attribútumhalmaz lezártja azon attribútumok halmaza, amelyeket A funkcionálisan meghatároz.

Attribútumhalmaz lezártjának kiszámítása

ALGORITMUS:

- Egy attribútumhalmazból kiindulva az attribútumhalmazt kiterjesztjük azon funkcionális függőségek jobb oldalával, amely funkcionális függőségek bal oldalát már tartalmazza az attribútumhalmaz.
- Ha a halmaz tovább már nem bővíthető, akkor az eredményhalmaz a lezárt.
- Jelölje X a lezárt halmazt. Inicializáljuk X-et a következőképpen: $X = \{A_1, A_2, ..., A_n\}$.
- Ismételjük minden funkcionális függőségre S-ben:
 B₁B₂...B_m→C, ahol B-k már benne vannak X-ben, de C nem:
 Adjuk C-t X-hez.
- 3 Ismételjük a 2-es lépést addig amíg nem lehet több attribútumot hozzáadni X-hez.
- Az eredményhalmaz X amelyhez már nem tudunk több attribútumot adni tartalmazza az $\{A_1, A_2, ..., A_n\}$ halmaz lezártját.

Attribútumhalmaz lezártjának kiszámítása – Példa

- Tekintsünk egy relációt a következő attribútumokkal: A, B, C, D, E és F. A reláción a következő funkcionális függőségek igazak:
 - \circ AB \rightarrow C,
 - \circ BC \rightarrow AD,
 - \circ D \rightarrow E,
 - \circ CF \rightarrow B.
 - \circ Mi lesz $\{A,B\}^+$?
- Iterációk:

- X = {A,B} Használjuk: AB→C

- $X = \{A,B,C\}$ Használjuk : $BC \rightarrow AD$

- X = {A,B,C,D} Használjuk : D→E

- $X = \{A,B,C,D,E\}$ Nincs több lehetséges változás, ezért: $X = \{A,B\}^+$.

 Az CF→B funkcionális függősége nem használható fel, mivel a teljes bal oldalát sohasem tartalmazza X.

Lezárások és kulcsok

- Adott az R reláció a következő attribútumokkal: $\{A_1, A_2, \dots, A_n\}^+$.
- $\{A_1, A_2, ..., A_n\}^+$ = minden attribútum, akkor és csak akkor, ha $\{A_1, A_2, ..., A_n\}$ az R reláció szuperkulcsa.

- A_1, A_2, \dots, A_n a reláció kulcsa? Ellenőrizzük, hogy:
 - **először**, hogy $\{A_1, A_2, \dots, A_n\}^+$ tartalmazza-e az összes attribútumot,
 - **és nincs** olyan **S** részhalmaza $\{A_1, A_2, ..., A_n\}^+$ -nak, hogy S⁺ az összes attribútumot adja.

Funkcionális függőségi halmazok lezárása

- Adott a funkcionális függőségek 2 halmaza: S_1 és S_2
- Az S_2 funkcionális függőségek halmaza levezethető (következik) az S_1 funkcionális függőségek halmazából, ha minden relációelőfordulás, ami kielégíti az S_1 összes funkcionális függőségét kielégíti egyben az összes S_2 -beli funkcionális függőséget is.
- Példa :
 - \circ S2: {Szigsz → Részleg_neve}
 - $S1: \{Szigsz \rightarrow RészlegID, RészlegID \rightarrow Részleg_neve\}$
 - S2 levezethető S1-ből
- Hogyan teszteljük?
 - $\{A1, A2, ..., An\}$ → $\{B1, B2, ..., Bm\}$ levezethető S-ből?
 - Számítsuk ki {A1, A2, ..., An}+-t S alapján, és ellenőrizzük, hogy {B1, B2, ..., Bm}
 benne van-e a lezárt halmazban.

Funkcionális függőségek meghatározása a relációs tervezéshez

Meg kell határozni:

A teljesen nemtriviális függőségeknek egy olyan minimális halmazát, amelyre igaz, hogy belőle minden olyan funkcionális függőség levezethető, ami igaz a reláción.