2019~2020 (I) 线性代数 (理工) 期末试卷 A 参考解答

一、填空题 (每小题 3 分,共 18 分)

1.
$$\underline{-1}$$
; 2. $\underline{3}$; 3. $\underline{6}$; 4. $\underline{0}$; 5. $\underline{-8}$; 6. $\underline{y_1^2 - 3y_2^2 + 2y_3^2}$

二、(14分)解: (1)
$$(\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)$$
 $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k-1 \end{pmatrix}$,

因
$$\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k-1 \end{vmatrix} = -4 \neq 0$$
 , $\beta_1, \beta_2, \beta_3$ 也是 R^3 的一个基。(4分)
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k-1 \end{pmatrix}$$
 是基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵。(2分)

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k-1 \end{pmatrix}$$
 是基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵。(2分)

(2) 设非零向量 ξ 在两组基下的坐标都是 $x = (x_1, x_2, x_3)^T \neq 0$,则

$$(\alpha_1,\alpha_2,\alpha_3)x = (\beta_1,\beta_2,\beta_3)x = (\alpha_1,\alpha_2,\alpha_3)Ax.$$

由坐标唯一性,有

$$Ax = x$$
(3分)

整理得线性方程组:
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2k & 0 & k-2 \end{pmatrix} x = 0$$
 存在非零解,可得 $k = -2$.

此时方程组化为
$$\begin{cases} x_1+x_3=0 \\ x_2=0 \end{cases}$$
,可求得通解为 $x=\left(c,0,-c\right)^T,c\in R$,

故
$$\xi = c\alpha_1 - c\alpha_3, c \in R$$
.

.....(3分)

三、(14分)解:
$$(A,B) \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & a+2 & 3 & -3 & a-4 \\ 0 & 0 & a-1 & 1-a & b+2 \end{pmatrix}$$

(1)
$$|A| \neq 0$$
,即 $a \neq 1$ 且 $a \neq -2$ 时,有唯一解。

(2)
$$|A| = 0$$
时, $a = 1$ 或 $a = -2$.

$$\stackrel{\text{NL}}{=} a = -2 \; , \quad (A,B) \to \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & 0 & 3 & -3 & -6 \\ 0 & 0 & 0 & b - 4 \end{pmatrix} ,$$

故当
$$a=-2,b=4$$
时,有无穷多解,

此时
$$(A,B) \rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,全部解为 $X = \begin{pmatrix} k_1 & k_2 \\ k_1 & k_2 \\ -1 & -2 \end{pmatrix}$, $k_1, k_2 \in R$.

.....(3分)

$$\stackrel{\text{def}}{=} a = 1, \quad (A, B) \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & 3 & 3 & -3 & -3 \\ 0 & 0 & 0 & b + 2 \end{pmatrix},$$

故当a=1,b=-2时,方程组有无穷多解,

.....(2分)

此时
$$(A,B)$$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$,全部解为 $X = \begin{pmatrix} 1 & 1 \\ -k_1 & -k_2 \\ k_1 - 1 & k_2 - 1 \end{pmatrix}$, $k_1, k_2 \in R$.

.....(3分)

四、(10 分)解:
$$\begin{bmatrix} 2 & 1 & 4 & 2 \\ 3 & 2 & 7 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 2 & 5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 3 & 1 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \dots (6 分)$$

故保留配方 1,2,4, 且配方 3 可由 1 份配方 1 和两份配方 2 组合出来。... (4 分)

五、(12分)解: (1)由己知,
$$A\begin{bmatrix}1\\1\\0\end{bmatrix}=\begin{bmatrix}1\\1\\0\end{bmatrix}$$
, $A\begin{bmatrix}1\\-1\\0\end{bmatrix}=\begin{bmatrix}-1\\1\\0\end{bmatrix}=-\begin{bmatrix}1\\-1\\0\end{bmatrix}$,

所以 $\lambda=1$ 是A的特征值, $\alpha_1=(1,1,0)^T$ 是A属于1的特征向量;

 $\lambda = -1$ 是 A 的特征值, $\alpha_2 = (1, -1, 0)^T$ 是 A 属于 -1 的特征向量。

.....(2分)

由r(A)=2知|A|=0,所以 $\lambda=0$ 是A的特征值,(2分)

设 α_3 是 A 属于 0 的特征向量,因实对称矩阵不同特征值的特征向量相互正交,可取 $\alpha_3 = (0,0,1)^T$(2分)

故矩阵 A 的特征值为 1,-1,0,特征向量依次为 $k_1(1,1,0)^T$, $k_2(1,-1,0)^T$, $k_3(0,0,1)^T$, 其中 k_1,k_2,k_3 均是不为零的任意实数。(2分)

(2)
$$\Leftrightarrow P = (\alpha_1, \alpha_2, \alpha_3) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} 1 & & \\ & -1 & \\ & & 0 \end{bmatrix}, \quad \emptyset P^{-1} \Lambda P = \Lambda.$$

故
$$A = P\Lambda P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
(4分)

六、(12分)解法 I:
$$A = \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$
,

求解特征方程可得 A 的特征值为 $\lambda_1 = 0$, $\lambda_2 = \lambda_3 = 6$(2分)

对 $\lambda_1 = 0$,解(0E - A)x = 0,得一个基础解系 $p_1 = (1, -2, 1)^T$,

单位化得
$$q_1 = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^T$$
.(2分)

对 $\lambda_2 = \lambda_3 = 6$,解 (6E - A)x = 0 ,即 $x_1 - 2x_2 + x_3 = 0$,得一个基础解系 $p_2 = \begin{pmatrix} -1,0,1 \end{pmatrix}^T, p_3 = \begin{pmatrix} 2,1,0 \end{pmatrix}^T, (直接取正交基础解系 \begin{pmatrix} -1,0,1 \end{pmatrix}^T, (1,1,1)^T$ 亦可)

正交单位化得
$$q_2 = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^T$$
, $q_3 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T$(4分)
$$\Rightarrow \mathbb{E}$$
 $\Rightarrow \mathbb{E}$ $\Rightarrow \mathbb$

则二次型 $f(X) = X^T A X$ 经正交变换 X = Q Y 化为标准形 $6y_1^2 + 6y_2^2$(2分)

解法 Π : 由 α , β 的正交性,有 $A\alpha = 6\alpha$, $A\beta = 6\beta$,故 α , β 是 A 的属于 6 的特征向量。(2 分)

注意到 A 的形式, A 的秩不超过 2 (等于 2),故 0 是 A 的特征值。

.....(2分)

因为A实对称,故 0 的特征向量与 α,β 正交,可取 $\gamma=(1,-2,1)^T$.

$$P_{2} = (0, 1, 2)^{T}, \quad f_{3} = (1, 0, -1)^{T} \qquad \dots (25)$$

$$q_{1} = (0, \frac{1}{17}, \frac{2}{17}), \quad q_{3} = (\frac{5}{150}, \frac{2}{150}, \frac{1}{150})^{T}$$

对 α , β , γ 单位化得

$$q_{1} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T}, q_{2} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T}, q_{3} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right).$$
.....(2 \(\frac{1}{2}\))

令正交阵
$$Q = [q_1, q_2, q_3] = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$
,(2分)

则
$$A = Q \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix} Q^T$$
,或 $Q^T A Q = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

故二次型 $f(X) = X^T \Lambda X$ 经正交变换 X = QY 化为标准形 $6y_1^2 + 6y_2^2$(2分)解法 III: 注意到 Λ 的形式和 α, β 的正交性,

对
$$\alpha, \beta$$
 单位化得 $q_1 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T, q_2 = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^T,$ (2分)

并求得与
$$\alpha$$
, β 正交的单位向量为 $q_3 = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$(2分)

有
$$A = 2\alpha\alpha^{T} + 3\beta\beta^{T} = 6q_{1}q_{1}^{T} + 6q_{2}q_{2}^{T} = \begin{bmatrix} q_{1}, q_{2}, q_{3} \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_{1}^{T} \\ q_{2}^{T} \\ q_{3}^{T} \end{bmatrix}$$
.(4分)

令正交阵
$$Q = [q_1, q_2, q_3] = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$
,(2分)

则
$$A = Q \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix} Q^T$$
,或 $Q^T A Q = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

故二次型 $f(X) = X^T A X$ 经正交变换 X = Q Y 化为标准形 $6y_1^2 + 6y_2^2$(2分)

七、证明题 (每小题 7分, 共 14分)

1. 证明:
$$B = BE_m = BAC = E_nC = C$$
.(3分)

$$r_A \ge r_{BA} = n$$
, $r_A \ge r_{AC} = m$, 故 $r_A \ge \max\{m, n\}$(2分)

又
$$r_A \leq \min\{m,n\}$$
, 故 $m=n$(2分)

2. 证明: 因
$$(B^TAB)^T = B^TA^T(B^T)^T = B^TAB$$
, 故 B^TAB 为 r 阶对称阵......(2分)

任意
$$r$$
维向量 $x \neq 0$,有 $Bx \neq 0$,(否则由 $r_B = r$ 有 $x = 0$)(2分)

则
$$x^T B^T A B x = (B x)^T A (B x) > 0$$
,故 $B^T A B$ 正定。(3分)

八、(6分)(1)证明:由已知, $\Lambda\alpha_1=\alpha_1$, $\Lambda\alpha_2=-\alpha_2$, $\Lambda\alpha_3=\alpha_1+\alpha_3$.

设
$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$$
, (1)

用 A 左乘并化简得 $(k_1 + k_3)\alpha_1 - k_2\alpha_2 + k_3\alpha_3 = 0$,

两式相减得 $2k_1\alpha_1 + k_3\alpha_2 = 0$,

因为 α_1,α_2 分属于A的不同特征值,故线性无关,所以 $k_1=k_3=0$,

代入(1)式,由
$$\alpha_2 \neq 0$$
,可得 $k_2 = 0$. 故 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。(4分)

(2) 由己知,
$$A(\alpha_1,\alpha_2,\alpha_3) = (\alpha_1,\alpha_2,\alpha_3) \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,即 $AP = P \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

因为
$$P$$
可逆,故 $P^{-1}AP = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$(2分)