Ejemplo 7

La fuerza gravitatoria sobre una masa unidad m situada en (x, y, z) producida por una masa M situada en el origen de \mathbb{R}^3 , de acuerdo con la ley de gravitación de Newton, está dada por

$$\mathbf{F} = -\frac{GmM}{r^2}\mathbf{n},$$

donde G es una constante; $r = ||\mathbf{r}|| = \sqrt{x^2 + y^2 + z^2}$, es la distancia de (x, y, z) al origen; y $\mathbf{n} = \mathbf{r}/r$, el vector unitario en la dirección de $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, que es el vector de posición desde el origen a (x, y, z).

Obsérvese que $\mathbf{F} = \nabla(GmM/r) = -\nabla V$; es decir, \mathbf{F} es el opuesto del gradiente del potencial gravitatorio V = -GmM/r. Esto se puede verificar como en el Ejemplo 1. Obsérvese que \mathbf{F} está orientado hacia el origen. Además, las superficies de nivel de V son esferas. El campo vectorial gradiente \mathbf{F} es normal a estas esferas, lo que confirma el resultado del Teorema 14.

Ejemplo 8

Hallar un vector unitario normal a la superficie S dada por $z = x^2y^2 + y + 1$ en el punto (0,0,1).

Solución

Sea $f(x,y,z) = x^2y^2 + y + 1 - z$ y consideremos la superficie de nivel definida por f(x,y,z) = 0. Dado que esto es el conjunto de puntos (x,y,z) que cumplen $z = x^2y^2 + y + 1$, vemos que este conjunto de nivel coincide con la superficie S. El gradiente es

$$\nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$
$$= 2xy^2 \mathbf{i} + (2x^2y + 1)\mathbf{j} - \mathbf{k},$$

y por tanto

$$\nabla f(0,0,1) = \mathbf{j} - \mathbf{k}.$$

Este vector es perpendicular a S en (0, 0, 1), por lo que para hallar un vector normal unitario \mathbf{n} dividimos este vector entre su longitud para obtener

$$\mathbf{n} = \frac{\nabla f(0,0,1)}{\|\nabla f(0,0,1)\|} = \frac{1}{\sqrt{2}}(\mathbf{j} - \mathbf{k}).$$

Ejemplo 9

Consideremos dos conductores, uno cargado positivamente y el otro negativamente. Se establece un potencial eléctrico entre ellos . Este potencial es una función $\phi \colon \mathbb{R}^3 \to \mathbb{R}$ (un ejemplo de campo escalar). El campo eléctrico está dado por $\mathbf{E} = -\nabla \phi$. Por el Teorema 14 sabemos que \mathbf{E} es perpendicular a las superficies de nivel de ϕ . Estas superficies de nivel se denominan superficies equipotenciales, porque el potencial es constante sobre ellas (véase la Figura 2.6.6).