ODD SEMESTER EXAMINATION, 2024 – 25

2nd Year (III Sem) B.Tech. E&CE

Advanced Applied Mathematics/Transformation & Numerical Method

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

- Q 1. Answer any two parts of the following. (10x2=20)
 - a) (i) Find the Laplace transform of $f(t) = t \cos at$ (5 marks)
 - (ii) Find the Laplace transform of $f(t) = t e^{-t} \sin 3t$ (5 marks)
 - b) Using Convolution theorem find the inverse Laplace transform of $f(s) = \frac{1}{(s^2+1)(s^2+9)}$ (10 marks)
 - c) Using Laplace transform to solve the differential equation $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^t$ with x(0) = 2 and x'(0) = -1 (10 marks)
- Q 2. Answer any two parts of the following. (10x2=20)
 - a) (i) Find the Fourier transform of:

$$f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$$
 (5 marks)

(ii) Find the Fourier transform of:

$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$
 (5 marks)

- b) Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$. Hence derive Fourier sine transform of $g(x) = \frac{x}{1+x^2}$ (10 marks)
- c) Using finite Fourier transform, solve $\frac{\partial v}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ given u(0,t) = 0, u(4,t) = 0 and u(x,0) = 2x where 0 < x < 4, t > 0. (10 marks)
- Q 3. Answer any two parts of the following. (10x2=20)
 - a) (i) Solve the equation $f(x) = x^3 x 1 = 0$ using the Newton-Raphson method. Perform three iterations starting with the initial guess $x_0 = 1.5$ (5 marks)
 - (ii) Compute the value of f(x) for x = 2.5 from the following table:

x	1	2	3	4
f(x)	1	8	27	64

Using Lagrange's interpolation formula. (5 marks)

b) Find a real root of the equation $x^3 - 2x - 5 = 0$ by the method of false position correct to three decimal places.

(10 marks)

c) Using Newton's forward difference interpolation formula, find the polynomial for the given data:

(10 marks)

x	0	1	2	3	
f(x)	1	2	5	12	

Q4. Answer any two parts of the following. (10x2=20)

a) (i) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using simpson's $1/3^{rd}$ rule.

(5 marks)

(ii) Evaluate $\int_0^2 \frac{dx}{1+x}$ by using Trapezodial rule.

(5 marks)

b) Use Runge-Kutta method to find y(1.2) in step size h=0.1 given that $\frac{dy}{dx} = x^2 + y^2$ with y(1)=1.5.

(10 marks)

c) Given $\frac{dy}{dx} = \frac{1}{x+y}$ with y(0) = 2, y(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493, find y (0.8) by Milne's predictor corrector method.

(10 marks)

Q 5. Answer any two parts of the following. (10x2=20)

a) (i) By the method of least squares, find a straight line that best fits the following data points.

x	0	1	2	3	4
у	1.0	2.9	4.8	6.7	8.6

(5 marks)

- (ii) The regression equations calculated from a given set of observations for two random variables are x = -0.4y + 6.4 and y = -0.6x + 4.6 Calculate $\overline{x}, \overline{y}$ and r. (5 marks)
- b) Calculate coefficient of correlation from the following data:

х	1	3	5	7	8	10
y	8	12	15	17	18	20

(10 marks)

c) Fit a second degree parabola to the following data:

<u> </u>									
	x	1	3	4	6	8	9	11	14
	у	1	2	4	4	5	7	8	9

(10 marks)