

Capítulo 11: NAT para IPv4

Roteamento e Switching

Cisco Networking Academy® Mind Wide Open™

- 11.0 Introdução
- 11.1 Operação de NAT
- 11.2 Configurando NAT
- 11.3 Identificando e solucionando de NAT
- 11.4 Resumo do capítulo

Capítulo 11: Objetivos

- Descrever as características do NAT e seus tipos
- Descrever as vantagens e desvantagens do NAT
- Configurar NAT estático usando comandos IOS
- Configurar NAT dinâmico usando comandos IOS
- Configurar PAT (NAT Overload) usando comandos IOS
- Configurar o encaminhamento de portas usando CLI
- Configurar NAT-PT (v6 para v4)
- Usar comandos show para verificar a operação do NAT

IPv4 Espaço de endereço privado

- O espaço de endereços IPv4 não é suficientemente grande para atender exclusivamente todos os dispositivos que precisam ser conectados à Internet
- Os endereços privados de rede são descritos no RFC 1918 e foram projetados para uso em apenas uma organização ou um local
- Os endereços privados não são roteados por roteadores da Internet quando os endereços públicos são
- Os endereços privados podem amenizar a escassez de IPv4, mas como não são roteados por dispositivos da Internet, eles precisam ser convertidos primeiro.
- O NAT é um processo usado para executar essa conversão

IPv4 Espaço de endereço privado

Os endereços privados da Internet são definidos no RFC 1918:		
Classe	Intervalo de endereço interno RFC 1918	Prefixo CIDR
Α	10.0.0.0 - 10.255.255.255	10.0.0.0/8
В	172.16.0.0 - 172.31.255.255	172.16.0.0/12
С	192.168.0.0 - 192.168.255.255	192.168.0.0/16

O que é NAT?

- O NAT é um processo usado para converter endereços de rede
- O principal uso do NAT é conservar endereços de IPv4 público
- Geralmente implementado em dispositivos de rede de borda como firewall ou roteadores
- Isso permite que as redes usem endereços privados internamente, apenas convertendo em endereços públicos quando necessário
- Dispositivos dentro da organização podem ser receber endereços privados e operar com endereços exclusivos localmente.
- Quando o tráfego precisar ser enviado/recebido de/para outras organizações ou a Internet, o roteador de borda converterá endereços em um endereço exclusivo público e global

O que é NAT?

Terminologia de NAT

- Na terminologia NAT, a rede interna é o conjunto de dispositivos que usam endereços privativos. As redes externas são todas as outras redes
- O NAT inclui 4 tipos de endereços:
 - Endereço local interno
 - Endereço global interno
 - Endereço local externo
 - Endereço global externo

Terminologia de NAT

- Os termos interno e externo são combinados com os termos local e global para se referir a endereços específicos
- Endereço local interno
- Endereço global interno
- Endereço global externo
- Endereço local externo

Como funciona o NAT

- O NAT estático usa um mapeamento um para um de endereços locais e globais
- Esses mapeamentos são configurados pelo administrador da rede e permanecem constantes
- O NAT estático é particularmente útil quando os servidores hospedados na rede interna devem estar acessíveis da rede externa
- Um administrador de rede pode executar SSH em um servidor na rede interna apontando seu cliente SSH para o endereço global interno apropriado

Tipos de NAT NAT estático

NAT estático

Tabela de NAT estático		
Endereço local interno	Endereço global interno - Endereços alcançáveis através do R2	
192.168.10.10	209.165.200.226	
192.168.10.11	209.165.200.227	
192.168.10.12	209.165.200.228	

- O NAT dinâmico usa um pool de endereços públicos e os atribui por ordem de chegada
- Quando as solicitações internas de um dispositivo acessam uma rede externa, o NAT dinâmico designa um endereço IPv4 público disponível do pool
- O NAT dinâmico exige que endereços públicos suficientes estejam disponíveis para satisfazer o número total de sessões simultâneas de usuário

Tipos de NAT NAT dinâmico

Nat dinâmico

Pool de IPv4 NAT		
Endereço local interno	Pool de endereços globais internos - Endereços alcançáveis através do R2	
192.168.10.12	209.165.200.226	
Disponível	209.165.200.227	
Disponível	209.165.200.228	
Disponível	209.165.200.229	
Disponível	209.165.200.230	

Tipos de NAT

NAT de conversão de endereço de porta (PAT)

- O PAT mapeia vários endereços IPv4 privados para um único endereço IPv4 público ou alguns endereços
- O PAT usa o par endereço de porta de origem e endereço IP de origem para acompanhar qual tráfego pertence a qual cliente interno
- O PAT também é conhecida como sobrecarga de NAT
- Também usando o número da porta, o PAT pode encaminhar os pacotes de resposta ao dispositivo interno correto
- O processo de PAT também verifica se os pacotes de entrada foram solicitados, portanto, a adição de um nível de segurança à sessão

Tipos de NAT

Comparando NAT e PAT

- O NAT converte os endereços IPv4 em uma base 1:1 entre os endereços IPv4 privados e os endereços IPv4 públicos
- O PAT modifica o endereço e o número da porta
- O NAT encaminha os pacotes de entrada ao seu destino interno com referência ao endereço IPv4 de origem de entrada fornecido pelo host na rede pública
- Com o PAT, há normalmente apenas um ou alguns endereços IPv4 publicamente expostos
- O PAT também pode converter protocolos que não usam números de porta, como o ICMP. Cada um desses protocolos é suportado de modo diferente pelo PAT

Vantagens do NAT Vantagens do NAT

Vantagens do NAT

- Conserva o esquema de endereçamento legalmente registrado.
- Aumenta a flexibilidade das conexões à rede pública.
- Oferece consistência de esquemas de endereçamento da rede interna.
- Fornece segurança de rede

Vantagens do NAT

Desvantagens do NAT

Desvantagens de NAT

- O desempenho é prejudicado.
- A funcionalidade de ponta a ponta é prejudicada.
- O rastreamento IP de ponta a ponta é perdido.
- O encapsulamento se torna mais complicado.
- O início das conexões de TCP pode ser interrompido.

Configurar NAT estático

- Há duas tarefas básicas ao configurar conversões de NAT estático:
 - Crie o mapeamento entre os endereços de local interno e local externo
 - Defina qual interface pertence à rede interna e qual pertence à rede externa

Configurar NAT estático

Configurar NAT estático

Exemplo de configuração de NAT estático

Configurando o NAT estático

Analisando o NAT estático

Configurando o NAT estático

Verificar o NAT estático

A conversão estática está sempre presente na tabela de NAT.

```
R2# show ip nat translations
Pro Inside global Inside local Outside local Outside global
--- 209.165.201.5 192.168.10.254 --- ---
R2#
```

A conversão estática durante uma sessão ativa.

```
R2# show ip nat translations
Pro Inside global Inside local Outside local Outside global
--- 209.165.201.5 192.168.10.254 209.165.200.254 209.165.200.254
R2#
```

Configurar o NAT estático

Verificar o NAT estático

```
R2# clear ip nat statistics
R2# show ip nat statistics
Total active translations: 1 (1 static, 0 dynamic; 0 extended)
Peak translations: 0
Outside interfaces:
  Serial0/0/1
Inside interfaces:
  Serial0/0/0
Hits: 0 Misses: 0
<output omitted>
Client PC establishes a session with the web server
R2# show ip nat statistics
Total active translations: 1 (1 static, 0 dynamic; 0 extended)
Peak translations: 2, occurred 00:00:14 ago
Outside interfaces:
  Serial0/1/0
Inside interfaces:
  Serial0/0/0
Hits: 5 Misses: 0
<output omitted>
```

Configurando o NAT dinâmico

Operação do NAT dinâmico

- O pool de endereços IPv4 públicos (pool de endereço global interno) está disponível para qualquer dispositivo na rede interna em uma ordem do tipo primeiro a chegar, primeiro a ser atendido
- Com o NAT dinâmico, um único endereço interno é convertido em um único endereço externo
- O pool precisa ser grande o suficiente para acomodar todos os dispositivos internos
- Um dispositivo n\u00e3o poder\u00e1 se comunicar a nenhuma rede externa se nenhum endere\u00f3o estiver dispon\u00e1vel no pool

Configurando o NAT dinâmico

Etapas de configuração de NAT dinâmico

Etapas de configuração de NAT dinâmico		
Etapa 1	Defina um pool de endereços globais a serem usados para conversão. ip nat pool name start-ip end-ip {netmask netmask prefix-length prefix-length}	
Etapa 2	Configure uma lista de acesso padrão permitindo endereços que devem ser convertidos. access-list access-list-number permit source[source-wildcard]	
Etapa 3	Estabeleça a conversão de origem dinâmica, especificando a lista de acesso e o pool definidos nas etapas anteriores. ip nat inside source list access-list-number pool name	
Etapa 4	Identifique a interface interna. interface type number ip nat inside	
Etapa 5	Identifique a interface externa. interface type number ip nat outside	

Configurando o NAT dinâmico

Analisar o NAT dinâmico

Processo de NAT dinâmico

Configurar o NAT dinâmico

Analisar o NAT dinâmico

Processo de NAT dinâmico

Verificar o NAT dinâmico Verificar o NAT dinâmico

Verificação do NAT dinâmico com show ip nat translations

```
R2# show ip nat translations
Pro Inside global Inside local Outside global
--- 209.165.200.226 192.168.10.10 ---
--- 209.165.200.227 192.168.11.10 ---
R2#
R2# show ip nat translations verbose
Pro Inside global Inside local Outside local Outside global
--- 209.165.200.226 192.168.10.10 ---
   create 00:17:25, use 00:01:54 timeout:86400000, left
23:58:05, Map-Id(In): 1,
   flags:
none, use count: 0, entry-id: 32, lc entries: 0
--- 209.165.200.227 192.168.11.10
    create 00:17:22, use 00:01:51 timeout:86400000, left
23:58:08, Map-Id(In): 1,
   flags:
none, use count: 0, entry-id: 34, lc entries: 0
R2#
```

Configurar o NAT dinâmico

Verificar o NAT dinâmico

Verificação do NAT dinâmico com show ip nat statistics

```
R2# clear ip nat statistics
PC1 and PC2 establish sessions with the server
R2# show ip nat statistics
Total active translations: 2 (0 static, 2 dynamic; 0 extended)
Peak translations: 6, occurred 00:27:07 ago
Outside interfaces:
  Serial0/0/1
Inside interfaces:
  Serial0/1/0
Hits: 24 Misses: 0
CEF Translated packets: 24, CEF Punted packets: 0
Expired translations: 4
Dynamic mappings:
-- Inside Source
[Id: 1] access-list 1 pool NAT-POOL1 refcount 2
pool NAT-POOL1: netmask 255.255.255.224
start 209.165.200.226 end 209.165.200.240
type generic, total addresses 15, allocated 2 (13%), misses 0
Total doors: 0
Appl doors: 0
Normal doors: 0
Oueued Packets: 0
R2#
```

Configurando a Conversão de endereço de porta (PAT)

Configurando PAT: Pool de endereços

Defina um pool de endereços IPv4 públicos com nome NAT-POOL2. R2 (config) # ip nat pool NAT-POOL2 209.165.200.226 209.165.200.240 netmask 255.255.255.224

Defina quais endereços são elegíveis a conversão.

R2(config)# access-list 1 permit 192.168.0.0 0.0.255.255

Bind NAT-POOL2 with ACL 1.

R2(config)# ip nat inside source list 1 pool NAT-POOL2 overload

Identifique a interface serial 0/0/0 como uma interface interna de NAT.

R2(config)# interface Serial0/0/0

R2(config-if)# ip nat inside

Configurando a conversão de endereço de porta (PAT)

Configurando PAT: Endereço único

Etapa 1	Configure uma lista de acesso padrão permitindo endereços que devem ser convertidos. access-list access-list-number permit source [source-wildcard]	
Etapa 2	Estabeleça a conversão de origem dinâmica, especificando a ACL, a interface de saída e opções de sobrecarga. ip nat inside source list access-list-number interface type number overload	
Etapa 3	Identifique a interface interna. interface type number ip nat inside	
Etapa 4	Identifique a interface externa. interface type number ip nat outside	

Configurando a conversão de endereço de porta (PAT)

Analisando PAT

Análise de PAT dos computadores para servidor

Configurar Port Address Translation (PAT)

Analisando PAT

Análise PAT dos servidores para computadores

Verificação de conversões de PAT

```
R2# show ip nat translations
Pro Inside global Inside local Outside local tcp 209.165.200.226:51839 192.168.10.10:51839 209.165.201.1:8 tcp 209.165.200.226:42558 192.168.11.10:42558 209.165.202.129 R2#
```

Encaminhamento de portas

Encaminhamento de portas

- O encaminhamento de portas é o ato de encaminhar uma porta de rede de um nó de rede para outro
- Um pacote enviado para o endereço IP e a porta públicos de um roteador pode ser encaminhado a uma rede IP privada e uma porta na rede interna
- Isso é útil nas situações onde os servidores possuem endereços privados, não acessíveis nas redes externas

Encaminhamento de portas

Exemplo de SOHO

Encaminhamento de portas em um roteador SOHO

Encaminhamento de portas

Configurando o encaminhamento de portas com o IOS

 No IOS, o encaminhamento de portas é essencialmente uma conversão de NAT estático com um número de porta TCP ou UDP especificado


```
R2# show ip nat translations
Pro Inside global Inside local Outside local
tcp 209.165.200.225:8080 192.168.10.254:80 209.165.200.254:460
tcp 209.165.200.225:8080 192.168.10.254:80 ---
R2#
```

Configurando NAT e IPv6

NAT para IPv6?

- O NAT é uma solução alternativa para a escassez de endereços IPv4
- O IPv6 com um endereço de 128 bits fornece 340 undecilhão de endereços
- O espaço de endereço não é um problema para IPv6
- O IPv6 torna o NAT público-privado de IPv4 desnecessário por projeto
- Contudo, o IPv6 não implementa uma forma de endereços privados e é implementado de forma diferente do IPv4

Configurando NAT e IPv6

Endereços locais exclusivos IPv6

- Os endereços locais exclusivos (ULA) IPv6 são projetados para permitir comunicações IPv6 em um site local
- O ULA não se destina a fornecer o espaço de endereço adicional IPv6
- O ULA têm o prefixo FC00::/7, que resulta em um primeiro intervalo de hextet de FC00 a FDFF
- Os endereços locais exclusivos são definidos no RFC 4193

 Os ULAs também são conhecidos como os endereços locais IPv6 (não devem ser confundidos com os endereços locais de

link IPv6)

- O IPv6 também usa o NAT, mas em um contexto muito diferente
- No IPv6, o NAT é usado para fornecer comunicação transparente entre IPv6 e IPv4
- O NAT64 não deve ser uma solução permanente. Ele deve ser um mecanismo de transição
- O NAT-PT (Conversão de endereço de rede-Conversão de protocolo) era outro mecanismo de transição baseado em NAT para IPv6, mas foi substituído pelo IETF
- O NAT64 é recomendado agora

NAT para IPv6

Configurando NAT e IPv6 Identificando e solucionando de NAT: Comandos show

```
R2# clear ip nat statistics
R2# clear ip nat translation *
R2#
Host 192,168,10,10 telnets to server at 209,165,201,1
R2# show ip nat statistics
Total active translations: 1 (0 static, 1 dynamic; 1 extended)
Peak translations: 1, occurred 00:00:09 ago
Outside interfaces:
  Serial0/0/1
Inside interfaces:
  Serial0/0/0
Hits: 31 Misses: 0
CEF Translated packets: 31, CEF Punted packets: 0
Expired translations: 0
Dynamic mappings:
-- Inside Source
[Id: 5] access-list 1 pool NAT-POOL2 refcount 1
pool NAT-POOL2: netmask 255.255.255.224
start 209.165.200.226 end 209.165.200.240
type generic, total addresses 15, allocated 1 (6%), misses 0
<output omitted>
R2# show ip nat translations
Pro Inside global
                          Inside local Outside local Outside global
tcp 209.165.200.226:19005 192.168.10.10:19005 209.165.201.1:23
                                                                   209.165.201.1:23
R2#
```

Configurando NAT e IPv6

Identificando e solucionando de NAT: Comando debug

```
R2# debug ip nat
IP NAT debugging is on
R2#
*Feb 15 20:01:311.670: NAT*: s=192.168.10.10->209.165.200.226, d=209.165.201.1 [2817]
*Feb 15 20:01:311.682: NAT*: s=209.165.201.1, d=209.165.200.226->192.168.10.10
                                                                               [4180]
*Feb 15 20:01:311.698: NAT*: s=192.168.10.10->209.165.200.226, d=209.165.201.1 [2818]
*Feb 15 20:01:311.702: NAT*: s=192.168.10.10->209.165.200.226, d=209.165.201.1 [2819]
*Feb 15 20:01:311.710: NAT*: s=192.168.10.10->209.165.200.226, d=209.165.201.1 [2820]
*Feb 15 20:01:311.710: NAT*: s=209.165.201.1, d=209.165.200.226->192.168.10.10 [4181]
*Feb 15 20:01:311.722: NAT*: s=209.165.201.1, d=209.165.200.226->192.168.10.10 [4182]
*Feb 15 20:01:311.726: NAT*: s=192.168.10.10->209.165.200.226, d=209.165.201.1 [2821]
*Feb 15 20:01:311.730: NAT*: s=209.165.201.1, d=209.165.200.226->192.168.10.10
                                                                               [4183]
*Feb 15 20:01:311.734: NAT*: s=192.168.10.10->209.165.200.226, d=209.165.201.1 [2822]
*Feb 15 20:01:311.734: NAT*: s=209.165.201.1, d=209.165.200.226->192.168.10.10 [4184]
output omitted
```

Capítulo 11: Resumo

- Este capítulo descreveu como o NAT é usado para ajudar a aliviar a redução do espaço de endereços IPv4.
- O NAT mantém o espaço de endereço público e poupa uma sobrecarga administrativa considerável no gerenciamento de anúncios, movimentações e alterações.
- Este capítulo discutiu o NAT para IPv4, incluindo:
- Características do NAT, terminologia e operações gerais
- Os tipos diferentes de NAT, incluindo o NAT estático, NAT dinâmico e NAT com sobrecarga
- As vantagens e desvantagens do NAT

Capítulo 11: Resumo (continuação)

- A configuração, a verificação e a análise de NAT estático, NAT dinâmico, e NAT com sobrecarga
- Como o encaminhamento de portas pode ser usado para acessar dispositivos internos da Internet
- Identificar e Solucionar Problemas de NAT Usando os Comandos show e debug
- Como o NAT para IPv6 é usado para a conversão entre endereços IPv6 e IPv4

Cisco | Networking Academy® | Mind Wide Open™