03 | pandas

Ivan Corneillet Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Define a data science problem
- Write a Jupyter notebook to import, format, and clean data using pandas

Business Understanding

By asking a good question and setting a clear aim:

- You set yourself up for success
 - "A problem well stated is half solved" –Charles Kettering
- You help other data scientists learn from and reproduce your work
 - You establish the basis for making your analysis reproducible
- You also help them expand on your work in the future

The SMART Goals Framework for Data Science

(https://en.wikipedia.org/wiki/SMART_criteria)

Specific	The dataset and key variables are clearly defined
MEASURABLE	The type of analysis and major assumptions are articulated
ATTAINABLE	The question you are asking is feasible for your dataset and is not likely to be biased
Reproducible	Another person (or you in 6 months!) can read your state and understand exactly how your analysis is performed
TIME-BOUND	You clearly state the time period and population for which this analysis will pertain

Trends often change over time and vary by the population of source of your data. It is important to clearly define who/what you included in your analysis as well as the time period for the analysis

Models, Feature Matrix *X*, Response Vector *y*, and Tidy Data

Before **modeling**, our data needs to be **tidy** and in the form of a **feature matrix** X (i.e., the stimuli, e.g., "ring bell") and a **response vector** y (i.e., the response, e.g., "dog salivates")

Feature Matrix X

Response Vector *y*

	col0	col1	col2	col3		col
row0					row0	
row1					row1	
row2					row2	
row3					row3	

San Francisco Dataset: a dataset we will use throughout this course

Recently Sold Homes (Source: Zillow)

1,000 homes sold in San Francisco between 11/10/2015
 and 2/12/2016

What is Tidy Data?

- Your data is tidy if you follow these three rules:
 - Each **sample** (or **observation**) in the dataset is placed in its own **row**
 - Each feature (or variable) is placed
 in its own column
 - Each value is placed in its own cell

Unfortunately, data will usually come to you raw, i.e., unstructured...

<div class="property-info"</pre> id="yui_3_18_1_1_1456167242885_71870"><strong id="yui_3_18_1_1_1456167242885_71869"><dt class="property-address" id="yui_3_18_1_1_1456167242885_71868">149 Shipley St, San Francisco, CA</dt><dt class="listing-type zsgcontent_collapsed" id="yui_3_18_1_1_1456167242885_71875"><span</pre> class="zsg-icon-recently-sold type-icon">Sold: \$1.18M</dt><dt class="zsg-fineprint" id="yui 3 18 1 1 1456167242885 71877">Price/sqft: \$1,116</dt><dt class="property-data" id="yui_3_18_1_1_1456167242885_71880">3 bds • 2 ba • 1,057 sqft<span</pre> class="built-year" id="yui_3_18_1_1_1456167242885_71879"> • Built 1992</dt><dt class="sold-date zsg-fineprint" id="yui_3_18_1_1_1456167242885_71975">Sold on 2/22/16</dt></div>

(E.g., raw/unstructured scrapped data)

... and/or messy...

Trouble tickets inspect and maintain manholes in New Year
 City

* "Service box," a common piece of infrastructure, had at least 38 variants, including SB, S, S/B, S.B, S?B, S.B., SBX, S/BX, SB/X, S/XB, /SBX, S.BX, S &BX, S?BX, S BX, S/B/X, S BOX, SVBX, SERV BX, SERV-BOX, SERV/BOX, and SERVICE BOX

Source: Big Data: A Revolution That Will Transform How We Live, Work, and Think

Question: What tool can we use to wrangle **raw data** into **tidy data**?

- Answer: pandas
 - pandas is a Python library that provides the ability to index, retrieve, tidy, reshape, combine, slice, tabular and other multidimensional datasets
 - pandas also provides facilities to perform statistical and mathematical analysis which will come handy for exploratory data analysis
- Wrangling data is the most fruitful skill you can learn as a data scientist.
 It will save you hours of time and make your data much easier to visualize, manipulate, and model
- Today, we will use pandas to explore and manipulate the San Francisco housing dataset

pandas

pandas.DataFrame and pandas.Series (cont.)

When reaching the modeling step, our feature matrix \boldsymbol{X} will be modeled as a DataFrame and the response vector \boldsymbol{y} as a Series

Feature Matrix *X*

DataFrame col0 col1 col2 col3 row0 row1 row2 row3

Response Vector *y*

Slides © 2017 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission