Assorted Algebra Exercises

Exercise 1

Let $K \triangleleft H$ and $H \triangleleft G$. Show that if K is a characteristic subgroup of H (that is, $\phi(K) = K$ for every automorphism ϕ of H), then $K \triangleleft G$.

Exercise 2

Let R be any ring with additive identity 0 and unity 1. Let G be the group of matrices $G = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in R \right\}$ under matrix multiplication.

- a. Show that G is a group and hence construct a nonabelian group H of order 27. That is, explicitly define a group H and prove it is nonabelian and has order 27.
- b. Let H be the group constructed in part (a). Prove that $Z(H) \cong \mathbb{Z}/3\mathbb{Z}$. Then list all the elements of Z(H).

Exercise 3

Prove that $\mathbb{Z} \times G$ is cyclic if and only if G is the trivial group.

Exercise 4

Let C_{13} be the cyclic group of order 13. How many subgroups does $C_{13} \times C_{13}$ have?

Exercise 5

Prove $F = \mathbb{F}_3[X]/\langle X^4 + 1 \rangle$ is a field. Then find the multiplicative order of $X^2 + 1$ in F.

Exercise 6

Let q be a prime power (so \mathbb{F}_q is a field) and $n \in \mathbb{N}$.

- a. By considering the linear independence of columns (or rows) of matrices in $GL(n, \mathbb{F}_q)$, show that $|GL(n, \mathbb{F}_q)| = (q^n 1)(q^n q)(q^n q^2) \dots (q^n q^{n-1})$.
- b. Using the fundamental theorem of group homomorphisms, find the order of $SL(n, \mathbb{F}_a)$.

Exercise 7

Let m, n be integers greater than 1. Prove that $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ is cyclic if and only if gcd(m, n) = 1. Hint: Recall gcd(m, n) lcm(m, n) = mn for positive integers m, n.

Let D_n be the dihedral group of order 2n and let C_n be the cyclic group of order n. You may assume that C_8 , $C_4 \times C_2$, $C_2 \times C_2 \times C_2$, D_4 , and Q_8 are the only groups of order 8 up to isomorphism. Determine how many copies of each of these groups are inside $C_4 \times D_3$ and hence find all order 8 subgroups of $C_4 \times D_3$. Are they normal? Hints are provided below. Challenge: Do not use the Sylow theorems.

Hint 1:

Consider the orders of elements and/or subgroups in $C_4 \times D_3$. In particular, it may help to find all order 4 and order 2 elements in $C_4 \times D_3$.

Hint 2:

Note that Q_8 , D_4 , and C_8 all contain C_4 .

Exercise 9

Recall that the group $\mathbb{Z}/n\mathbb{Z}$ is generated by $k \in \mathbb{Z}/n\mathbb{Z}$ if and only if $\gcd(k,n) = 1$. Use this result to prove the following statement, which is related to Bezout's lemma.

Let m, n be positive integers such that gcd(m, n) = 1. Then there exist integers $a, b \in \mathbb{Z}$ (not necessarily positive) such that am + bn = 1.

Let $g \in G, k \in K$. Consider the inner automorphism $\phi: G \to G, \phi(t) = g^{-1}tg$. Then $\phi|_H$ which we denote φ , is an automorphism of H and thus $\varphi(K) = K$. Note φ^{-1} is also an automorphism of H so $\varphi^{-1}(K) = K$ as well. Then $\varphi(gkg^{-1}) = \varphi(g)\varphi(k)\varphi(g^{-1}) =$ $g(g^{-1}kg)g^{-1}=k$. Applying φ^{-1} to both sides, $gkg^{-1}=\varphi^{-1}(k)\in K$. Hence $K \triangleleft G$.

Exercise 2

Taking a = b = c = 0 we see the identity matrix is in G and is clearly the identity of G. To

prove closure, note
$$\begin{bmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a_2 + a_1 & b_2 + a_1c_2 + b_1 \\ 0 & 1 & c_2 + c_1 \\ 0 & 0 & 1 \end{bmatrix} \in G.$$
 To prove inverse exists, we can take
$$\begin{bmatrix} 1 & a_2 + a_1 & b_2 + a_1c_2 + b_1 \\ 0 & 1 & c_2 + c_1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 in the above matrix equation and solve for a_2, b_2, c_2 to see that
$$\begin{bmatrix} 1 & -a_1 & a_1c_1 - b_1 \\ 0 & 0 & 1 \end{bmatrix} \in G$$
 is the

prove inverse exists, we can take
$$\begin{bmatrix} 1 & a_2 + a_1 & b_2 + a_1c_2 + b_1 \\ 0 & 1 & c_2 + c_1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 in the

above matrix equation and solve for
$$a_2, b_2, c_2$$
 to see that
$$\begin{bmatrix} 1 & -a_1 & a_1c_1 - b_1 \\ 0 & 1 & -c_1 \\ 0 & 0 & 1 \end{bmatrix} \in G \text{ is the}$$

inverse of
$$\begin{bmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{bmatrix}$$
. Matrix multiplication is associative. Hence G is a group.

Now define
$$H = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in \mathbb{F}_3 \right\}$$
, which we now know is a group. Since each

a, b, c could be 0, 1, or 2, we have $|H| = 3 \times 3 \times 3 = 27$.

Now, since [H:Z(H)] divides |H|=27 (by Lagrange's theorem) and [H:Z(H)] is not prime (from class equation), it must be that either $[H:Z(H)] = 9 \Leftrightarrow |Z(H)| = 3$ or $[H:Z(H)] = 27 \Leftrightarrow |Z(H)| = 1$. But $|H| = 3^3$ implies 3 divides |Z(H)| (also from class equation) so in fact we must have $[H:Z(H)]=9 \Leftrightarrow |Z(H)|=3$. It follows that H is nonabelian and $Z(H) \cong \mathbb{Z}/3\mathbb{Z}$. Alternatively, one could show H is nonabelian by noting

The nonabelian and
$$Z(H) \cong \mathbb{Z}/3\mathbb{Z}$$
. Alternatively, one could show H is nonabelian by noting
$$\begin{bmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & a_2 + a_1 & b_2 + a_1c_2 + b_1 \\ 0 & 1 & c_2 + c_1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a_1 + a_2 & b_1 + a_2c_1 + b_2 \\ 0 & 1 & c_1 + c_2 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow a_1c_2 = a_2c_1$$
, so if we pick numbers like $a_1 = c_2 = a_2 = 1$

$$\begin{bmatrix} 1 & a_1 + a_2 & b_1 + a_2c_1 + b_2 \\ 0 & 1 & c_1 + c_2 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow a_1c_2 = a_2c_1, \text{ so if we pick numbers like } a_1 = c_2 = a_2 = 1$$

and $a_2 = 2$, the corresponding matrices will not commute, hence $Z(H) \neq H$ so H is nonabelian.

Then, either by observation or by playing with the equation $a_1c_2=a_2c_1$ from before, we

see that
$$\begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in Z(H)$$
 for all $b \in \mathbb{F}_3$, and there are precisely three matrices of this

form in H. Since we already showed |Z(H)| = 3, we must have

$$Z(H) = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

If G is trivial then clearly $\mathbb{Z} \times G$ is cyclic (since \mathbb{Z} is cyclic). To prove the other implication, let $\mathbb{Z} \times G$ be cyclic and suppose towards a contradiction G is nontrivial. Then any generator of $\mathbb{Z} \times G$ must be of the form (m,g) where $\langle g \rangle = G$ and $\langle m \rangle = \mathbb{Z}$, and to see why, suppose (m,g) generates $\mathbb{Z} \times G$ but either $\langle g \rangle \neq G$ or $\langle m \rangle \neq \mathbb{Z}$. If $\langle g \rangle \neq G$, then there exists some $k \in G$ that is not a power of g, so then (0,k) certainly could not be generated by (m,g), contradicting (m,g) being a generator. If $\langle m \rangle \neq \mathbb{Z}$, the same contradiction arises.

So any generator of $\mathbb{Z} \times G$ must be $(\pm 1, g)$ where $\langle g \rangle = G$ (since ± 1 are the only generators of \mathbb{Z}). If the generator is (1,g), then consider $(2,g) \in \mathbb{Z} \times G$. So there exists $n \in \mathbb{Z}$ such that $(1,g)^n = (2,g)$, so n(1) = 2 and $g^n = g$. But n(1) = 2 implies n = 2, so $g^2 = g$, which implies g = e. But since $G = \langle g \rangle$, this implies G is trivial, a contradiction. If the generator is (-1,g), then consider $(-2,g) \in \mathbb{Z} \times G$ and the same contradiction will arise.

Incidentally, a slightly stronger result says that if G and H are groups and G is infinite, then $G \times H$ is cyclic if and only if G is cyclic (so $G \cong \mathbb{Z}$) and H is trivial.

Exercise 4

Since $|\mathcal{C}_{13} \times \mathcal{C}_{13}| = 169$, by Lagrange's theorem every nonidentity element must have order 13 and thus generates some copy of \mathcal{C}_{13} (if an element had order 169 then the whole group would be \mathcal{C}_{169} , which is obviously not $\mathcal{C}_{13} \times \mathcal{C}_{13}$). There are 168 nonidentity elements and every copy of \mathcal{C}_{13} has 12 nonidentity elements, so in all there must be 168/12 = 14 copies of \mathcal{C}_{13} inside $\mathcal{C}_{13} \times \mathcal{C}_{13}$. Counting the trivial group and the whole group itself, there are 16 subgroups total. In general, $\mathcal{C}_p \times \mathcal{C}_p$ has p+3 subgroups for p prime.

Exercise 5

To show F is a field, it suffices to show $f(X) = X^4 + 1$ is irreducible over \mathbb{F}_3 . Since f(0) = 1, f(1) = 2, f(2) = 2, there are no roots of f in \mathbb{F}_3 , so if there is a nontrivial factoring of f it must be of two quadratic factors. Any such factoring must be $X^4 + 1 = (X^2 + aX + 1)(X^2 + bX + 1) = X^4 + (a + b)X^3 + (ab + 2)X^2 + (a + b)X + 1$ and equating coefficients leads to a + b = 0 and ab + 2 = 0. Solving simultaneously yields $b^2 = 2$ (or $a^2 = 2$) but it is easily verified that 2 has no square roots in \mathbb{F}_3 , so there is no quadratic factoring of f. Hence f is irreducible over \mathbb{F}_3 , so F is the quotient of a ring by a maximal ideal, so F is a field.

We have $(X^2+1)^2=X^4+2X^2+1=2X^2$ (since $X^4+2X^2+1=f(X)+2X^2$). But we also have $(2X^2)^2=X^4=2$ (since $X^4=f(X)+2$). Then $(X^2+1)^8=((X^2+1)^2)^4=(2X^2)^4=((2X^2)^2)^2=2^2=1$. Then the order of X^2+1 must divide 8. But we just found that $(X^2+1)^2=2X^2\ne 1$ and $(X^2+1)^4=2\ne 1$, so n=8 is indeed the smallest integer such that $(X^2+1)^n=1$. Hence X^2+1 has order 8.

For a matrix A to be in $GL(n, \mathbb{F}_a)$, it must be invertible, so all its columns (or rows, since row rank equals column rank) must be linearly independent. Consider the first column of A. Each entry has q options but we cannot have all entries being zero, so there are a total of $q^n - 1$ possibilties for the first column. The second column must be independent of the first column, which means it cannot be a scalar multiple. There are q scalars in \mathbb{F}_q (including 0) so there are q scalar multiples of the first column (including the zero vector) that we cannot have as the second column, so there are $q^n - q$ possibilities for the second column. The third column cannot be a combination of the previous two columns, but again there are q multiples of each of the previous columns, so there are q^2 different linear combinations of the previous two columns, hence $q^n - q^2$ possibilities for the third column. In general, there are q^k linear combinations of q columns and thus $q^n - q^k$ possibilities for the k^{th} column, so $|GL(n, \mathbb{F}_q)| = (q^n - 1)(q^n - q) \dots (q^n - q^{n-1})$. Consider now the function det: $GL(n, \mathbb{F}_q) \to \mathbb{F}_q^*$. It is well-defined since matrices from $GL(n, \mathbb{F}_q)$ are invertible and thus have nonzero determinant, it is a homomorphism since the det function is multiplicative, and it is onto since for any $k \in \mathbb{F}_q^*$, the $n \times n$ diagonal matrix $(a_{ij}) \in GL(n, \mathbb{F}_q)$ with $a_{11} = k$ and $a_{ii} = 1$ for all $i \neq 1$ has determinant k. Then $A \in \ker(\det) \Leftrightarrow \det(A) = 1 \Leftrightarrow A \in \mathrm{SL}(n, \mathbb{F}_a)$. Then by fundamental theorem of group homomorphism, we have $GL(n, \mathbb{F}_a)/SL(n, \mathbb{F}_a) \cong \mathbb{F}_a^*$, so

$$\left| \operatorname{SL}(n, \mathbb{F}_q) \right| = \frac{\left| \operatorname{GL}(n, \mathbb{F}_q) \right|}{\left| \mathbb{F}_q^* \right|} = \frac{(q^n - 1)(q^n - q) \dots (q^n - q^{n-1})}{q - 1}$$

Exercise 7

must be that gcd(m, n) = 1.

Suppose $\gcd(m,n)=1$. We claim (1,1) generates $\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$. We have $(1,1)^{mn}=(mn) \mod m$, $(mn) \mod n)=(0,0)$ so o((1,1)) divides mn. Then to show o((1,1))=mn it suffices to prove $(1,1)^k\neq 0$ for any divisor k of mn where $k\neq mn$. So let k be such a divisor. If 0< k< m or 0< k< n, then $(1,1)^k=(k,k \mod n)\neq (0,0)$ and $(1,1)^k=(k \mod m,k)\neq (0,0)$ respectively, so we are done. If $k\geq m$ and $k\geq n$, suppose towards a contradiction that $(1,1)^k=(0,0)$. Then $(k \mod m,k \mod n)=(0,0)$, so $k \mod m=k \mod n=0$. Then m|k and n|k. Since $k\geq m$ and $k\geq n$, we can conclude $\mathrm{lcm}(m,n)\leq k< mn$. But $\gcd(m,n)=1$ implies $\mathrm{lcm}(m,n)=mn$, so we have a contradiction. Hence o((1,1))=mn, so $\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$ is cyclic (and thus isomorphic to $\mathbb{Z}/(mn)\mathbb{Z}$ since they are cyclic groups of the same order). Suppose $\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$ is cyclic and generated by (a,b), so o((a,b))=mn. If $\gcd(m,n)>1$, then $\mathrm{lcm}(m,n)=mn/\gcd(m,n)< mn$. But certainly $(a,b)^{\mathrm{lcm}(m,n)}=(0,0)$ since $\mathrm{lcm}(m,n)$ is a multiple of both m and n. But this contradicts o((a,b))=mn. So it

We will use $\mathbb{Z}/4\mathbb{Z}$ to represent C_4 and $D_3 = \langle f,g: f^3 = g^2 = e, gf = f^2g \rangle$. It is apparent enough that $C_4 \times \langle f^k g \rangle$ is a subgroup isomorphic to $C_4 \times C_2$ for k = 0, 1, 2, and there are no other copies of $C_4 \times C_2$ since D_3 has no C_4 subgroups and $\langle f^k g \rangle$, k = 0, 1, 2 are its only C_2 subgroups. So there are precisely three copies of $C_4 \times C_2$ in $C_4 \times D_3$.

EITHER:

To show there are no copies of $C_2 \times C_2 \times C_2$, note that all seven nonidentity elements of $C_2 \times C_2 \times C_2$ have order 2. We find that $(2,e), (2,f^kg), (0,f^kg), k=0,1,2$ are the only order 2 elements in $C_4 \times D_3$ and there are seven of them, so any $C_2 \times C_2 \times C_2$ must consist of these seven elements and (0,e). But the collection of those seven elements is not closed since composing any two distinct reflections f^kg leads to a rotation, for instance, we have $(0,g)*(0,fg)=(0,f^2)$. Hence there are no copies of $C_2 \times C_2 \times C_2$ in $C_4 \times D_3$. Of course, there are other methods.

To show there are no copies of Q_8 , D_4 , or C_8 , note that Q_8 , D_4 , and C_8 all contain C_4 . But any C_4 inside $C_4 \times D_3$ must be $C_4 \times H$ for some $H \leq D_3$ since D_3 has no elements of order 4. If $C_4 \times H$ were to equal Q_8 , D_4 , or C_8 , then H would have to be order 2 for $C_4 \times H$ to have order 8, so $H = C_2$, but $C_4 \times C_2$ is not equal to Q_8 , D_4 , or C_8 . So there are no copies of Q_8 , D_4 , or C_8 in $C_4 \times D_3$. Of course, C_8 can also be handled by arguing there are no elements of order 8 in $C_4 \times D_3$ (since C_4 and C_8 in particular can be handled with relative ease by considering its elements of order 4.

OR:

Since $|C_4 \times D_3| = 24$, the order 8 subgroups $C_4 \times \langle f^k g \rangle$, k = 0, 1, 2 are all Sylow 2-subgroups. Since Sylow p-subgroups are conjugate (and thus isomorphic under some inner automorphism), there can be no order 8 subgroups that are not isomorphic to $C_4 \times C_2$.

THEN:

Consequently, the only order 8 subgroups of $C_4 \times D_3$ are $C_4 \times \langle f^k g \rangle$ for k = 0, 1, 2, all isomorphic to $C_4 \times C_2$. None of them are normal as $(0, f^{k+1}g)(C_4 \times \langle f^k g \rangle)(0, f^{k+1}g)^{-1} = (0, f^{k+1}g)(C_4 \times \langle f^k g \rangle)(0, gf^{-k-1})$ which contains $(0, f^{k+1}gf^k ggf^{-k-1}) = (0, f^{k+2}g)$, but $(0, f^{k+2}g) \notin C_4 \times \langle f^k g \rangle$.

Exercise 9

Let $\gcd(m,n)=1$. If m=n, then the condition $\gcd(m,n)=1$ forces m=n=1, upon which 1m+0n=1 and we are done. So suppose $m\neq n$, and without loss of generality suppose n>m (so $m\in\mathbb{Z}/n\mathbb{Z}$). By Euclidean division we can write m=qn+r for $q\in\mathbb{Z}$ and $0\leq r< n$. Now consider $r+1\in\{1,2,...,n\}$. If r+1=n, then m=qn+n-1, so -m+(q+1)n=1 and we are done. If $r+1\in\{1,2,...,n-1\}$ then $r+1\in\mathbb{Z}/n\mathbb{Z}$, but $\gcd(m,n)=1$ and $m\in\mathbb{Z}/n\mathbb{Z}$ together imply m generates $\mathbb{Z}/n\mathbb{Z}$, so there exists $a\in\mathbb{Z}$ such that am=r+1. Then m=qn+am-1, so (a-1)m+qn=1 and we are done. Incidentally the converse statement is true and the proof is as follows: let d be a divisor of m and n. Then d|m and d|n, so d divides am+bn=1, so d=1. Then $\gcd(m,n)=1$.