Chapter 7

Introduction to Public-Key Cryptography

7.1 Principle

Quick review of private-key cryptography

Figure 7.1: Private-key model

Two properties of private-key schemes:

- 1. The algorithm requires same secret key for encryption and decryption.
- 2. Encryption and decryption are essentially identical (symmetric algorithms).

Analogy for private key algorithms

Private key schemes are analogous to a safe box with a strong lock. Everyone with the key can deposit messages in it and retrieve messages.

Main problems with private key schemes are:

- 1. Requires secure transmission of secret key.
- 2. In a network environment, each pair of users has to have a different key resulting in too many keys $(n \cdot (n-1) \div 2 \text{ key pairs})$.

New Idea:

Make a slot in the safe box so that everyone can deposit a message, but only the receiver can open the safe and look at the content of it. This idea was proposed in [WD76] in 1976 by Diffie/Hellman.

Idea: Split key.

Figure 7.2: Split key idea

Protocol:

- 1. Alice and Bob agree on a public-key cryptosystem.
- 2. Bob sends Alice his public key.
- 3. Alice encrypts her message with Bob's public key and sends the ciphertext.
- 4. Bob decrypts ciphertext using his private key.

Alice Oscar Bob

$$X \leftarrow K_{pub} \qquad (K_{pub}, K_{pr}) = K$$

3.)
$$Y = e_{K_{pub}} (X) \longrightarrow Y$$

$$X = d_{K_{pr}} (Y)$$

Figure 7.3: Public-key encryption protocol

7.2 One-Way Functions

All public-key algorithms are based on one-way functions.

Definition 7.2.1 A function f is a "one-way function" if: $(a) \ y = f(x) \to is \ easy \ to \ compute,$ $(b) \ x = f^{-1}(y) \to is \ very \ hard \ to \ compute.$

Example: Discrete Logarithm (DL) one-way Function

$$2^x \mod 127 \equiv 31$$
$$x = ?$$

Definition 7.2.2 A trapdoor one function is a one-way function whose inverse is easy to compute given a side information such as the private key.

7.3 Overview of Public-Key Algorithms

There are three families of Public-Key (PK) algorithms of practical relevance:

1. Integer factorization algorithms (RSA, ...)

- 2. Discrete logarithms (D-H, DSA, ...)
- 3. Elliptic curves (EC)
- ⇒ Generally speaking, public-key algorithms are much slower than private-key algorithms.
- ⇒ Public-Key algorithms are mainly used for key establishment and digital signatures and **not** for bulk data encryption.

Algorithm Family	Bit length of the operands
Integer Factorization (RSA)	1024
Discrete Logarithm (D–H, DSA)	1024
Elliptic curves	160
Block cipher	80

Table 7.1: Bit lengths for security level of approximately 2^{80} computations for successful attack.

7.4 Important Public-Key Standards

- a) IEEE P1363. Comprehensive standard of public-key algorithms. Collection of IF, DL, and EC algorithm families, including in particular:
 - Key establishment algorithms
 - Key transport algorithms
 - Signature algorithms

Note: IEEE P1363 does not recommend any bit lengths or security levels.

b) ANSI Banking Security standards.

ANSI#	Subject
X9.30-1	digital signature algorithm (DSA)
X9.30-2	hashing algorithm for RSA
X9.31-1	RSA signature algorithm
X9.32-2	hashing algorithms for RSA
X9.42	key management using Diffe-Hellman
X9.62 (draft)	elliptic curve digital signature algorithm (ECDSA)
X9.63 (draft)	elliptic curve key agreement and transport protocols

c) U.S. Government standards (FIPS)

FIPS#	Subject
FIPS 180-1	secure hash standard (SHA-1)
FIPS 186	digital signature standard (DSA)
FIPS JJJ (draft)	entity authentication (asymetric)

7.5 More Number Theory

7.5.1 Euclid's Algorithm

Basic Form

Given r_0 and r_1 with one larger than the other, compute the $gcd(r_0, r_1)$.

Example 1:

$$r_0 = 22, r_1 = 6.$$

 $gcd(r_0, r_1) = ?$

$$gcd(22, 6) = gcd(6, 4) = gcd(4, 2) = gcd(2, 0) = 2$$

Figure 7.4: Euclid's algorithm example

Example 2:

$$r_0 = 973$$
; $r_1 = 301$.
 $973 = 3 \cdot 301 + 70$.
 $301 = 4 \cdot 70 + 21$.
 $70 = 3 \cdot 21 + 7$.
 $21 = 3 \cdot 7 + 0$.
 $\gcd(973, 301) = \gcd(301, 70) = \gcd(70, 21) = \gcd(21, 7) = 7$.

Algorithm:

input:
$$r_0, r_1$$

$$r_0 = q_1 \cdot r_1 + r_2 \qquad \gcd(r_0, r_1) = \gcd(r_1, r_2)$$

$$r_1 = q_2 \cdot r_2 + r_3 \qquad \gcd(r_1, r_2) = \gcd(r_2, r_3)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$r_{m-2} = q_{m-1} \cdot r_{m-1} + r_m \quad \gcd(r_{m-2}, r_{m-1}) = \gcd(r_{m-1}, r_m)$$

$$r_{m-1} = q_m \cdot r_m + 0 \leftarrow \dagger \quad \gcd(r_0, r_1) = \gcd(r_{m-1}, r_m) = r_m$$

$$\dagger - \text{termination criteria}$$

Extended Euclidean Algorithm

Theorem 7.5.1 Given two integers r_0 and r_1 , there exist two other integers s and t such that $s \cdot r_0 + t \cdot r_1 = \gcd(r_0, r_1)$.

Question: How to find s and t?

Use Euclid's algorithm and express the current remainder r_i in every iteration in the form $r_i = s_i r_0 + t_i r_1$. Note that in the last iteration $r_m = \gcd(r_0, r_1) \stackrel{!}{=} s_m r_0 + t_m r_1 = s r_0 + t r_1$.

index	Euclid's Algorithm	$r_j = s_j \cdot r_0 + t_j \cdot r_1$
2	$r_0 = q_1 \cdot r_1 + r_2$	$r_2 = r_0 - q_1 \cdot r_1 = s_2 \cdot r_0 + t_2 \cdot r_1$
3	$r_1 = q_2 \cdot r_2 + r_3$	$r_3 = r_1 - q_2 \cdot r_2 = r_1 - q_2(r_0 - q_1 \cdot r_1)$
		$= [-q_2]r_0 + [1 + q_1 \cdot q_2]r_1 = s_3 \cdot r_0 + t_3 \cdot r_1$
:	:	:
i	$r_{i-2} = q_{i-1} \cdot r_{i-1} + r_i$	$r_i = s_i \cdot r_0 + t_i \cdot r_1$
i+1	$r_{i-1} = q_i \cdot r_i + r_{i+1}$	$r_{i+1} = s_{i+1} \cdot r_0 + t_{i+1} \cdot r_1$
i+2	$r_i = q_{i+1} \cdot r_{i+1} + r_{i+2}$	$r_{i+2} = r_i - q_{i+1} \cdot r_{i+1}$
		$= (s_i \cdot r_0 + t_1 \cdot r_1) - q_{i+1}(s_{i+1} \cdot r_0 + t_{i+1} \cdot r_1)$
		$= [s_i - q_{i+1}] \cdot s_{i+1}]r_0 + [t_1 - q_{i+1} \cdot t_{i+1}]r_1$
		$= s_{i+2} \cdot r_0 + t_{i+2} \cdot r_1$
•	:	:
m	$r_{m-2} = q_{m-1} \cdot r_{m-1} + r_m$	$r_m = \gcd(r_0, r_1) = s_m \cdot r_0 + t_m \cdot r_1$

Now: $s = s_m$, $t = t_m$

Recursive formulae:

$$s_0 = 1,$$
 $t_0 = 0$
 $s_1 = 0,$ $t_1 = 1$
 $s_i = s_{i-2} - q_{i-1} \cdot s_{i-1}, \ t_i = t_{i-2} - q_{i-1} \cdot t_{i-1}; \ i = 2, 3, 4 \dots$

Remark:

- a) Extended Euclidean algorithm is commonly used to compute the inverse element in Z_m . If $gcd(r_0, r_1) = 1$, then $t = r_1^{-1} \mod r_0$.
- b) For fast software implementation, the "binary extended Euclidean algorithm" is more efficient [AM97] because it avoids the division required in each iteration of the extended Euclidean algorithm shown above.

7.5.2 Euler's Phi Function

Definition 7.5.1 The number of integers in Z_m relatively prime to m is denoted by $\Phi(m)$.

Example 1:

$$m = 6; Z_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\gcd(0, 6) = 6$$

$$\gcd(1, 6) = 1 \leftarrow$$

$$\gcd(2, 6) = 2$$

$$\gcd(3, 6) = 3$$

$$\gcd(4, 6) = 2$$

$$\gcd(5, 6) = 1 \leftarrow$$

$$\Phi(6) = 2$$

Example 2:

 $\Phi(5) = 4$

$$m = 5; Z_5 = \{0, 1, 2, 3, 4\}$$

 $\gcd(0, 5) = 5$
 $\gcd(1, 5) = 1 \leftarrow$
 $\gcd(2, 5) = 1 \leftarrow$
 $\gcd(3, 5) = 1 \leftarrow$
 $\gcd(4, 5) = 1 \leftarrow$

Theorem 7.5.2 If $m = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_n^{e_n}$, where p_i are prime numbers and e_i are integers, then:

$$\Phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_{i-1}})$$

Example:

$$m = 40 = 8 \cdot 5 = 2^{3} \cdot 5 = p_{1}^{e_{1}} \cdot p_{2}^{e_{2}}$$

$$\Phi(m) = (2^{3} - 2^{2})(5^{1} - 5^{0}) = (8 - 4)(5 - 1) = 4 \cdot 4 = 16$$

Theorem 7.5.3 Euler's Theorem

If gcd(a, m) = 1, then:

$$a^{\Phi(m)} \equiv 1 \bmod m$$

Example:

$$m = 6$$
; $a = 5$
 $\Phi(6) = \Phi(3 \cdot 2) = (3 - 1)(2 - 1) = 2$
 $5^{\Phi(6)} = 5^2 = 25 \equiv 1 \mod 6$