

General LPDDR5/LPDDR5X Specifications 2

AC/DC and Interface Specifications

Introduction

The three Micron general LPDDR5/LPDDR5X specifications listed below define minimum requirements for a JEDEC-compliant, x16 or x8, single-channel, LPDDR5/LPDDR5X devices. They include general features, functionality, mode registers, AC and DC characteristics, and other device information.

- General LPDDR5/LPDDR5X Specifications 1: Mode Registers
- General LPDDR5/LPDDR5X Specifications 2: AC/DC and Interface Specifications
- General LPDDR5/LPDDR5X Specifications 3: Features and Functionalities

LPDDR5 and LPDDR5X devices support data rate per pin up to 6400Mb/s and beyond 6400Mb/s, respectively.

For specific device features, specifications, or details, refer to the product data sheets.

Contents

Important Notes and Warnings	7
General Notes	
Absolute Maximum DC Ratings	9
DC Operating Conditions	9
Electrostatic Discharge Sensitivity Characteristics	. 12
Input and I/O Pin Leakage Current	. 12
RESET_n Signaling	. 12
Pull-Up/Pull-Down Output Driver Characteristics and Calibration	. 13
Driver Characteristics and Calibration	. 13
I _{DD} Specification Parameters and Test Conditions	. 14
I _{DD} Measurement Conditions	. 14
Data Pattern DBI Off	. 19
Data Pattern DBI On	
I _{DD} Specifications	. 25
AC and DC Input/Output Measurement Levels	. 27
Driver Output Timing Reference load	. 27
Single-Ended Output Slew Rate	. 28
Differential Output Slew Rate	
AC Overshoot/Undershoot	
Differential Mode Input Voltage for CK	
Differential Input Voltage for CK	. 30
Single-Ended Input Voltage for CK	
Peak Voltage Calculation Method	
Differential Input Slew Rate Definition for CK	
Differential Input Cross Point Voltage for CK	
Differential Mode Input Voltage for WCK	
Differential Input Voltage for WCK	
Single-Ended Input Voltage for WCK	
Peak Voltage Calculation Method	
Differential Input Slew Rate Definition for WCK	
Differential Input Cross Point Voltage for WCK	
Single Ended Mode Input Voltage	
Single-Ended CK Input Definitions	
Single-Ended Input Voltage for WCK	
Operating Temperature Range	
AC Timings	
Core AC Timings	
Core AC Timings for DVFSC Disabled and Write Link ECC Disabled	45
Core AC Timing for DVFSC Disabled and Write Link ECC Enabled	
Core AC Timing for DVFSC Enabled and Write Link ECC Disabled	
Temperature Derating AC Timing	
Self Refresh, Power-Down, and Deep Sleep Related timings	50
Mode Register, VRCG, and Frequency Set Point-Related Timings	
WCK-Related Timings	
ZQ Calibration, Post Package Repair, and Training-Related Timings	56
ODT Related Timing	
V _{DDO} Ramp, DCM, and Write X Timing	
CK and WCK AC Timings	
CK Specifications	
WCK Specifications	
·· r	. 00

Micron Confidential and Proprietary

LPDDR5/LPDDR5X AC/DC and Interface Specifications Introduction

AC Parameters for Single-Ended	70
CA Rx Specification	
CA Rx Mask and Single Pulse Definition	70
CA Rx Single Pulse Definition	
Differential CK Mode Definition	72
^t CA2CA_share Definition	74
CS Rx Specification	
CS Rx Mask and Single Pulse Definition	75
CS Rx Mask and Single Pulse Definition for Synchronous Mode	75
CS Rx Single Pulse Definition	
CS Rx Input Level Definition for Asynchronous Mode	
DQ, DMI, Parity, and DBI Rx Specification	
DQ, DMI, Parity, DBI Rx Mask, and Single Pulse Definition	
DQ and DQS Output Timing	
DQ NUI Tx Jitter Specification	
DQ-to-RDQS Differential Jitter	
Input/Output Capacitance	
Revision History	
Rev. E – 12/2020	
Rev. D – 04/2020	
Rev. C – 02/2020	
Rev. B – 04/2019	
Rev. A – 01/2019	88

List of	Figures	
	DC Voltage Range	10
Figure 2: V	V _{DDO} Tolerance Definition in Allowable Range	
Figure 3: Z	Zprofile/Z(f) of the System at the SDRAM Package Solder Ball (Without DRAM Component)	11
	A Simplified Z(f) System Electrical Model and Frequency Response	
Figure 5:]	Driver Output Reference Load for Timing and Slew Rate	27
	Single-Ended Output Slew Rate	
Figure 7:]	Differential Output Slew Rate	29
Figure 8: (Overshoot and Undershoot Definition	30
	CK Differential Input Voltage Definition	
Figure 10:	Clock Single-Ended Input Voltage	32
Figure 11:	Definition of Differential Clock Peak Voltage	33
Figure 12:	Differential Input Slew Rate Definition for CK_t, CK_c	33
Figure 13:	Differential Input Cross Point Slew Rate Definition for CK_t, CK_c	35
Figure 14:	WCK Differential Input Voltage	36
Figure 15:	WCK Single-Ended Input Voltage	37
	Definition of Differential WCK Clock Peak Voltage	
	Differential Input Slew Rate Definition for WCK_t, WCK_c	
	V _{IX} Definition for WCK_t, WCK_c	
	Single-Ended CK Input Voltage	
	Single-Ended CK Pulse	
Figure 21:	Single-Ended WCK Input Voltage	42
	Single-Ended Mode WCK Pulse	
	CA Rx Mask Definition	
	CA Rx Single Pulse Definition	
Figure 25:	DRAM Pin CA Timings	71
	CK_t Rising Edge CA Mask	
Figure 27:	CK_t Falling Edge CA Mask	75
	Synchronous Mode CS Rx Mask Definition	
	Synchronous Mode CS Rx Single Pulse Definition	
	Synchronous Mode CS Timing at DRAM Pin	
Figure 31:	Asynchronous Mode V _{IHPD} and V _{ILPD} at Power-Down Exit	77
	DQ, DMI, Parity, and DBI Rx Mask Definition	
	DQ to WCK, tWCK2DQI, and tDQ2DQ Timing at the DRAM Pins Referenced from the Internal Latch.	
Figure 34:	DQ, DMI, Parity, and DBI Rx Single Pulse Definition	80
Figure 35:	NUI DQ-to-RDQS Output Timing Definition	83
	^t QW Example of Eye Width per Pin and Relationship of ^t DQSQ(pin) and ^t QH(pin) Across Byte	
_		
	Read Burst Example for Pin DQx Depicting Bits 0 and 5 Relative to the RDQS Edge for 0 UI Mismatch	
Figure 38:	Read Burst Example for Pin DOx Depicting Bits 0 and 5 Relative to the RDOS Edge for 3 UI Mismatch	84

List of Tables

Table 1: Absolute Maximum DC Ratings	9
Table 2: Recommended DC Operating Conditions	9
Table 3: Electrostatic Discharge Sensitivity (ESD) Characteristics	12
Table 4: Input Leakage Current	12
Table 5: Input/Output Leakage Current	12
Table 6: Input Level for RESET_n	
Table 7: Pull-Down Driver Characteristics and ZQ Calibration	13
Table 8: Pull-Up Characteristics With ZQ Calibration	13
Table 9: Valid Calibration Points	13
Table 10: Unterminated Pull-Up Characteristics	
Table 11: Definition of Switching for CA Input Signals	14
Table 12: CA Pattern for I _{DD4R} for BG Mode	14
Table 13: CA Pattern for I _{DD4R} for 16B Mode	
Table 14: CA Pattern for I _{DD4R} for 8B Mode	16
Table 15: CA Pattern for I _{DD4W} for BG Mode	
Table 16: CA Pattern for I _{DD4W} for 16B Mode	17
Table 17: CA Pattern for I _{DD4W} , 8B Mode	17
Table 18: Data Patterns I _{DD4R} at DBI Off	19
Table 19: Data Patterns I _{DD4W} at DBI Off	21
Table 20: Data Patterns I _{DD4R} at DBI On	
Table 21: Data Patterns I _{DD4W} at DBI On	24
Table 22: I _{DD} Specifications	25
Table 23: Output Slew Rate (Single-Ended)	28
Table 24: Differential Output Slew Rate	29
Table 25: AC Overshoot/Undershoot	30
Table 26: AC Overshoot/Undershoot for LVSTL	30
Table 27: CK Differential Input Voltage Timing	31
Table 28: Clock Single-Ended Input Voltage	32
Table 29: Differential Input Slew Rate Definition for CK_t, CK_c	34
Table 30: Differential Input Level for CK_t, CK_c	34
Table 31: Differential Input Slew Rate for CK_t, CK_c	34
Table 32: Cross Point Voltage for Differential Input Signals (CK)	35
Table 33: WCK Differential Input Voltage	36
Table 34: WCK Single-Ended Input Voltage	37
Table 35: Differential Input Slew Rate Definition for WCK_t, WCK_c	39
Table 36: Differential Input Level for WCK_t, WCK_c	39
Table 37: Differential Input Slew Rate for WCK_t, WCK_c	39
Table 38: Cross Point Voltage for Differential Input Signals (WCK_t, WCK_c)	40
Table 39: Clock Single-Ended Input Parameters	41
Table 40: WCK Clock Single-Ended Input Parameters	
Table 41: Operating Temperature Range	43
Table 42: Automotive Operating Temperature Range	43
Table 43: x16 Mode/BG Mode	45
Table 44: x16 Mode/16B Mode	46
Table 45: x16 Mode/8B Mode	46
Table 46: x8 Mode/BG Mode	46
Table 47: x8 Mode/16B Mode	46
Table 48: x8 Mode/8B Mode	46
Table 49: x16 Mode/BG Mode	47
Table 50: x16 Mode/16B Mode	47

Table 51:	x16 Mode/8B Mode	47
Table 52:	x8 Mode/BG Mode	47
Table 53:	x8 Mode/16B Mode	48
Table 54:	x8 Mode/8B Mode	48
Table 55:	x16 Mode/16B Mode	48
Table 56:	x16 Mode/8B Mode	49
Table 57:	x8 Mode/16B Mode	49
	x8 Mode/8B Mode	
Table 59:	Temperature Derating AC Timing	50
	Self Refresh AC Timing	
	Power-Down AC Timing	
	Deep-Sleep Mode AC Timing	
	Mode Register Read/Write AC Timing	
	VRCG Enable/Disable Timing	
	V _{REFCA} Update Timing	
	V _{REFDQ} Update Timing	
	Frequency Set Point AC Timing Parameters	
	^t WCK2DQ AC Timing Parameters	
	WCK Stop AC Timing	
	WCK2CK Leveling Timing Parameters	
	tWCK to CK/DQ Offset Rank-to-Rank Variation	
	WCK Oscillator Matching Error Specification for High-Frequency Mode	
	WCK Oscillator Matching Error Specification for Low-Frequency Mode	
	WCK2DQI/WCK2DQO Interval Oscillator AC Timing	
	Command Bus Training AC Timing Table	
	ZQ Calibration Timing	
	Post-Package Repair Timing Parameters	
	Enhanced WCK Always-On Mode Timing	
	Read/Write-Based RDQS_t Training Mode Entry and Exit Timings	
	Enhanced RDQS Training Mode Entry and Exit Timing	
	Asynchronous ODT Turn On and Turn Off Timing	
	Asynchronous NT ODT Turn On and Turn Off Timing for Write	
Table 85:	NT ODT AC Timing	
	ODT Command/Address AC Timing Parameters	
	V _{DDQ} Ramp Rates	
	DCM Timing Write X AC Timing	
	Clock AC Timing (1 of 3)	
	Clock AC Timing (1 of 3) Clock AC Timing (2 of 3)	
	Clock AC Timing (2 of 3) Clock AC Timing (3 of 3)	
	Write Data Clock AC Timing (Group 1 of 3)	
	Write Data Clock AC Timing (Group 2 of 3)	
	Write Data Clock AC Timing (Group 2 of 3) Write Data Clock AC Timing (Group 3 of 3)	
	SE from/to Differential FSP and Additional Period for MRW AC Timing	
	Single-Ended Delta CK and WCK Specifications	
	CA Rx Specifications	
	CS Rx Specifications	
	DQ, DMI, Parity, and DBI Rx Mask and Single-Pulse Specification	
	READ AC Timing	
Table 100	: DQ and DQS Output Timing	81

LPDDR5/LPDDR5X AC/DC and Interface Specifications Important Notes and Warnings

Important Notes and Warnings

Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAIL-URE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.

LPDDR5/LPDDR5X AC/DC and Interface Specifications General Notes

General Notes

Throughout the data sheet, figures and text refer to DQs as DQ. DQ should be interpreted as any or all DQs collectively, unless specifically stated otherwise.

RDQS, CK, and WCK should be interpreted as RDQS_t, RDQS_c, CK_t, CK_c, and WCK_t, WCK_c respectively unless specifically stated otherwise. CA includes all CA pins used for a given density.

In timing diagrams, CMD is used as an indicator only. Actual signals occur on CA[6:0].

 V_{REF} indicates $V_{REF(CA)}$ and $V_{REF(DO)}$.

Complete functionality is described throughout the entire document. Any page or diagram may have been simplified to convey a topic and may not be inclusive of all requirements.

Any specific requirement takes precedence over a general statement.

Any functionality not specifically stated herein is considered undefined, illegal, is not supported, and will result in unknown operation.

LPDDR5/LPDDR5X AC/DC and Interface Specifications Absolute Maximum DC Ratings

Absolute Maximum DC Ratings

Stresses greater than those listed may cause permanent damage to the device.

The absolute maximum DC rating values are only stress ratings. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Table 1: Absolute Maximum DC Ratings

Parameter/Condition	Symbol	Min	Max	Unit	Note
V _{DD1} supply voltage relative to V _{SS}	V _{DD1}	-0.4	2.1	V	1
V _{DD2H} supply voltage relative to V _{SS}	V _{DD2H}	-0.4	1.4	V	1
V_{DD2L} supply voltage relative to V_{SS}	V _{DD2L}	-0.4	1.4	V	1
V_{DDQ} supply voltage relative to V_{SS}	V_{DDQ}	-0.4	1.4	V	1
Voltage on any ball except V _{DD1} relative to V _{SS}	V _{IN} , V _{OUT}	-0.4	1.4	V	
Storage temperature	T _{STG}	- 55	125	°C	2

Notes:

- See the Power-Up, Initialization, and Power-Off Procedure sections for relationships between power supplies.
- 2. Storage temperature is the case surface temperature on the center/top side of the LPDDR5 device. For the measurement conditions, refer to JESD51-2A.

DC Operating Conditions

Table 2: Recommended DC Operating Conditions

				Frequency Voltage Specification			Z(f) Specification				
		Frequency: DC to 2 MHz			2 to 10 MHz		20 MHz				
DRAM		Symbol	Min	Тур	Max	Unit	Zmax	Unit	Zmax	Unit	Note
Core 1 power		V _{DD1}	1.70	1.80	1.95	V	100	mohm	170	mohm	1, 2, 9
Core 2 power/		V _{DD2H}	1.01	1.05	1.12	V	40	mohm	80	mohm	1, 2, 9
Input buffer	V_{DD2}	_L , Dual VDD2 rail	0.87	0.90	0.97	V	120	mohm	190	mohm	1, 2, 9
power	V _{DD2L}	, Single VDD2 rail	1.01	1.05	1.12	V	120	mohm	190	mohm	1, 2, 9
		SPEC Range 1	0.47	0.5	0.57	V	40	mohm	80	mohm	2, 3, 6, 9
I/O buffer power	V_{DDQ}	SPEC Range 2	0.27	0.3	0.37	V					2, 4, 9
power		Allowable Range 1	0.27	N/A	0.57	V	N/A	-	N/A	-	5, 6, 7, 8

Notes

- 1. V_{DD1} generally uses significantly less current than V_{DD2H} and V_{DD2L} .
- 2. DC to 2 MHz voltage range includes all noise associated with the DRAM ball, both DC and AC ripple fluctuations. This noise is included in the aperture mask as defined by V_{dIVW} .
- 3. SPEC Range 1 is intended for I/O operation with ODT enabled and disabled.
- 4. SPEC Range 2 is intended for I/O operation with ODT disabled.
- I/O operation at V_{DDQ} levels outside SPEC Range 1 or SPEC Range 2 is allowed with ODT disabled.

LPDDR5/LPDDR5X AC/DC and Interface Specifications DC Operating Conditions

- 6. Allowable range is valid only when DVFSQ is enabled.
- 7. 100mV tolerance (-30mV/+70mV) is applied to V_{DDQ} allowable ranges. Refer to the following figure for the V_{DDO} tolerance definition in each allowable range.
- 8. $0.6V V_{DDQ,typ}$ is an optional feature. Because ZQ calibration is optimized at $V_{DDQ} = 0.5V$, the output drive strength may not be guaranteed at $V_{DDQ} = 0.6V$. Refer to each product data sheet.
- 9. Z(f) is BGA pin, per voltage domain, per channel. Z(f) does not include the device package or the silicon die.

Figure 1: DC Voltage Range

Figure 2: V_{DDQ} Tolerance Definition in Allowable Range

LPDDR5/LPDDR5X AC/DC and Interface Specifications DC Operating Conditions

Figure 3: Zprofile/Z(f) of the System at the SDRAM Package Solder Ball (Without DRAM Component)

A simplified electrical system load model for Z(f) with the general frequency response is shown below. The resistance and inductance can be scaled to generalize the specific response to the device pin.

Figure 4: A Simplified Z(f) System Electrical Model and Frequency Response

LPDDR5/LPDDR5X AC/DC and Interface Specifications **Electrostatic Discharge Sensitivity Characteristics**

Electrostatic Discharge Sensitivity Characteristics

Table 3: Electrostatic Discharge Sensitivity (ESD) Characteristics

Parameter	Symbol	Min	Max	Unit	Note
Human body model (HBM)	ESD _{HBM}	1000	-	V	1
Charged-device model (CDM)	ESD _{CDM}	250	-	V	2

1. Refer to ESDA/JEDEC Joint Standard JS-001-2017 for measurement procedures.

2. Refer to JESD22-A115C for measurement procedures.

Input and I/O Pin Leakage Current

Table 4: Input Leakage Current

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input leakage current	Ι _L	-8	8	μΑ	1, 2, 3
CS input leakage current	I _{LCS}	-16	16	μΑ	4, 5

Notes:

- 1. For CK_t, CK_c, WCK_t, WCK_c, CA, and RESET_n. Any input $0V \le V_{IN} \le V_{DDO}$ (all other pins not under test = 0V).
- 2. ODT is disabled for CK_t, CK_c, WCK_t, WCK_c, and CA.
- 3. $V_{DD2L} = V_{DD2H}$.
- 4. I_{LCS} applies to CS ODT support device. For CS ODT non-support device, CS input leakage current shall meet I₁.
- 5. CS ODT is disabled.

Table 5: Input/Output Leakage Current

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output leakage current	I _{OZ}	-10	10	μΑ	1, 2

- Notes: 1. For DQ, RDQS_t, RDQS_c, and DMI. Any I/O $0V \le V_{OUT} \le V_{DDO}$.
 - 2. I/O status is disabled; high impedance and ODTs are off and RESET_n = H.

RESET_n Signaling

Table 6: Input Level for RESET_n

Parameter	Symbol	Min	Max	Unit	Note
RESET_n V _{IH}	V _{IH_RS}	$0.8 \times V_{DD2H}$	V _{DD2H} + 0.2	V	1
RESET_n V _{IL}	$V_{IL_{RS}}$	-0.2	0.2 × V _{DD2H}		

Note: 1. The device uses CMOS with V_{DD2H} RESET_n signaling to ensure a stable RESET operation.

LPDDR5/LPDDR5X AC/DC and Interface Specifications Pull-Up/Pull-Down Output Driver Characteristics and Calibra-

Pull-Up/Pull-Down Output Driver Characteristics and Calibration

Driver Characteristics and Calibration

This section defines the driver characteristics and calibration for all output pins (DQ, DMI, RDQS_t, and RDQS_c).

Table 7: Pull-Down Driver Characteristics and ZQ Calibration

R _{ONPD,nom}	Resistor	Min	Nom	Max	Unit
40 ohm	R _{ON40PD}	0.9	1	1.1	RZQ/6
48 ohm	R _{ON48PD}	0.9	1	1.1	RZQ/5
60 ohm	R _{ON60PD}	0.9	1	1.1	RZQ/4
80 ohm	R _{ON80PD}	0.9	1	1.1	RZQ/3
120 ohm	R _{ON120PD}	0.9	1	1.1	RZQ/2
240 ohm	R _{ON240PD}	0.9	1	1.1	RZQ/1

- Notes: 1. All values are after ZQ calibration. See the Valid Calibration Points table. Without ZQ calibration, R_{ONPD} values are ±30%.
 - 2. R_{ONPD} limits are defined at the same voltage and temperature as when ZQ calibration is

Table 8: Pull-Up Characteristics With ZQ Calibration

V _{OHPU,nom}	V _{OH,nom} (mV)	Min	Nom	Max	Unit
$V_{DDQ} \times 0.5$	250	0.9	1	1.1	$V_{OH,nom}$

- Notes: 1. All values are after ZQ calibration. Without ZQ calibration, V_{OH,nom} values are ±30%.
 - 2. $V_{OH,nom}$ (mV) values are based on a nominal $V_{DDO} = 0.5V$, $V_{DD2H} = 1.05V$.
 - 3. VOHPU limits are defined at the same voltage and temperature as when ZQ calibration is done.
 - 4. V_{OHPU} limits are defined for load termination that matches the SOC ODT setting (in MR17 OP[2:0]) selected at the time ZQ calibration was done. If the selected SOC ODT setting is MR17 OP[2:0] = 000b, then the V_{OHPU} limits are not defined.
 - 5. V_{OHPU} limits are defined as DC levels when all the DQ drivers are driving high.
 - 6. Assume SOC ODT is defined at typical for V_{OHPU nom}.

Table 9: Valid Calibration Points

		ODT Value											
V _{OHPU,nom}	240	120	80	60	48	40							
$V_{DDQ} \times 0.5$	VALID	VALID	VALID	VALID	VALID	VALID							

Note: 1. Once the output is calibrated for a given V_{OH,nom} calibration point, the ODT value may be changed without recalibration.

Table 10: Unterminated Pull-Up Characteristics

R _{ONUNPU,nom}	Resistor	Min	Nom	Max	Unit
40 ohm	R _{ON40UNPU}	0.7	1	1.3	RZQ/6
60 ohm	R _{ON60UNPU}	0.7	1	1.3	RZQ/4
80 ohm	R _{ON80UNPU}	0.7	1	1.3	RZQ/3
120 ohm	R _{ON120UNPU}	0.7	1	1.3	RZQ/2
240 ohm	R _{ON240UNPU}	0.7	1	1.3	RZQ/1

Note: 1. R_{ONUNPU} is defined at $V_{OH} = V_{DDO}/2$

IDD Specification Parameters and Test Conditions

I_{DD} Measurement Conditions

The following definitions are used in the I_{DD} measurement tables unless stated otherwise:

- LOW: $V_{IN} \le V_{IL(DC)}$ (MAX)
- HIGH: $V_{IN} \ge V_{IH(DC)}$ (MIN)
- STABLE: Inputs are stable at a HIGH or LOW level
- SWITCHING: See the following tables.

Table 11: Definition of Switching for CA Input Signals

CK_t																
Edge	R1	F1	R2	F2	R3	F3	R4	F4	R5	F5	R6	F6	R7	F7	R8	F8
CS	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
CA0	Н	L	L	L	L	Н	Н	Н	Н	L	L	L	L	Н	Н	Н
CA1	Н	Н	Н	L	L	L	L	Н	Н	Н	Н	L	L	L	L	Н
CA2	Н	L	L	L	L	Н	Н	Н	Н	L	L	L	L	Н	Н	Н
CA3	Н	Н	Н	L	L	L	L	Н	Н	Н	Н	L	L	L	L	Н
CA4	Н	L	L	L	L	Н	Н	Н	Н	L	L	L	L	Н	Н	Н
CA5	Н	Н	Н	L	L	L	L	Н	Н	Н	Н	L	L	L	L	Н
CA6	Н	L	L	L	L	Н	Н	Н	Н	L	L	L	L	Н	Н	Н

- Notes: 1. CS must always be driven LOW.
 - 2. 50% of CA bus is changing between HIGH and LOW once per clock for the CA bus.
 - 3. The above pattern is used continuously during I_{DD} measurement for I_{DD} values that require switching on the CA bus.

Table 12: CA Pattern for I_{DD4R} for BG Mode

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R0	HIGH	READ	Н	L	L	L	L	L	L	1
F0	LOW		L	Н	Н	L	L	L	L	

Table 12: CA Pattern for I_{DD4R} for BG Mode (Continued)

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R1	HIGH	DES	L	L	L	L	L	L	L	
F1	LOW		L	L	L	L	L	L	L	
R2	HIGH	READ	Н	L	L	L	L	L	L	2
F2	LOW		L	Н	L	Н	L	L	L	
R3	HIGH	CAS (B3)	L	L	Н	Н	L	L	L	
F3	LOW		L	L	L	L	L	L	Н	
R4	HIGH	READ	Н	L	L	Н	Н	Н	Н	3
F4	LOW		L	Н	Н	L	Н	Н	L	
R5	HIGH	CAS (B3)	L	L	Н	Н	L	L	L	
F5	LOW		L	L	L	L	L	L	Н	
R6	HIGH	READ	Н	L	L	Н	Н	Н	Н	4
F6	LOW		L	Н	L	Н	Н	Н	L	
R7	HIGH	DES	L	L	L	L	L	L	L	
F7	LOW		L	L	L	L	L	L	L	

- Notes: 1. Pattern A is applied to DQ.
 - 2. Pattern B is applied to DQ.
 - 3. Pattern A' is applied to DQ.
 - 4. Pattern B' is applied to DQ.
 - 5. The pattern above is applied when WCK to CK frequency ratio (CKR) is 4:1 and bank organization is BG mode.

Table 13: CA Pattern for I_{DD4R} for 16B Mode

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R0	HIGH	READ	Н	L	L	L	L	L	L	1
F0	LOW		L	Н	Н	L	L	L	L	
R1	HIGH	CAS (B3)	L	L	Н	Н	L	L	L	
F1	LOW		L	L	L	L	L	L	Н	
R2	HIGH	READ	Н	L	L	Н	Н	Н	Н	2
F2	LOW		L	Н	Н	L	Н	Н	L	
R3	LOW	DES	L	L	L	L	L	L	L	
F3	LOW		L	L	L	L	L	L	L	

- Notes: 1. Pattern A is applied to DQ.
 - 2. Pattern B is applied to DQ.
 - 3. The pattern above is applied when WCK to CK frequency ratio (CKR) is 4:1 and bank organization is 16B mode. In the case of CKR = 2:1, the number of DES commands is increased to match ^tCCD.

Table 14: CA Pattern for I_{DD4R} for 8B Mode

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R0	HIGH	READ	Н	L	L	L	L	L	L	1
F0	LOW		L	Н	Н	L	L	L	L	
R1	LOW	DES	L	L	L	L	L	L	L	
F1	LOW		L	L	L	L	L	L	L	
R2	LOW	DES	L	L	L	L	L	L	L	2
F2	LOW		L	L	L	L	L	L	L	
R3	HIGH	CAS (B3)	L	L	Н	Н	L	L	L	
F3	LOW		L	L	L	L	L	L	Н	
R4	HIGH	READ	Н	L	L	Н	Н	Н	Н	3
F4	LOW		L	Н	Н	L	Н	Н	L	
R5	LOW	DES	L	L	L	L	L	L	L	
F5	LOW		L	L	L	L	L	L	L	
R6	LOW	DES	L	L	L	L	L	L	L	4
F6	LOW		L	L	L	L	L	L	L	
R7	LOW	DES	L	L	L	L	L	L	L	
F7	LOW		L	L	L	L	L	L	L	

- Notes: 1. Pattern A is applied to DQ.
 - 2. Pattern B is applied to DQ.
 - 3. Pattern A' is applied to DQ.
 - 4. Pattern B' is applied to DQ.
 - 5. The pattern above is applied when WCK to CK frequency ratio (CKR) is 4:1 and bank organization is 8B mode. In the case of CKR = 2:1, the number of DES commands is increased to match ^tCCD.

Table 15: CA Pattern for IDD4W for BG Mode

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R0	HIGH	WRITE	L	Н	Н	L	L	L	L	1
F0	LOW		L	Н	Н	L	L	L	L	
R1	LOW	DES	L	L	L	L	L	L	L	
F1	LOW		L	L	L	L	L	L	L	
R2	HIGH	WRITE	L	Н	Н	L	L	L	L	2
F2	LOW		L	Н	L	Н	L	L	L	
R3	LOW	DES	L	L	L	L	L	L	L	
F3	LOW		L	L	L	L	L	L	L	
R4	HIGH	WRITE	L	Н	Н	Н	Н	Н	Н	1
F4	LOW		L	Н	Н	L	Н	Н	L	
R5	LOW	DES	L	L	L	L	L	L	L	
F5	LOW		L	L	L	L	L	L	L	

Table 15: CA Pattern for I_{DD4W} for BG Mode (Continued)

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R6	HIGH	WRITE	L	Н	Н	Н	Н	Н	Н	2
F6	LOW		L	Н	L	Н	Н	Н	L	
R7	LOW	DES	L	L	L	L	L	L	L	
F7	LOW		L	L	L	L	L	L	L]

Notes: 1. Pattern A is applied to DQ.

2. Pattern B is applied to DQ.

3. The pattern above is applied when WCK to CK frequency ratio (CKR) is 4:1 and bank organization is BG mode.

Table 16: CA Pattern for IDD4W for 16B Mode

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R0	HIGH	WRITE	L	Н	Н	L	L	L	L	1
F0	LOW		L	Н	Н	L	L	L	L	
R1	LOW	DES	L	L	L	L	L	L	L	
F1	LOW		L	L	L	L	L	L	L	
R2	HIGH	WRITE	L	Н	Н	Н	Н	Н	Н	2
F2	LOW		L	Н	Н	L	Н	Н	L	
R3	LOW	DES	L	L	L	L	L	L	L	
F3	LOW		Ĺ	Ĺ	Ĺ	L	L	L	L	

Notes: 1. Pattern A is applied to DQ.

2. Pattern B is applied to DQ.

The pattern above is applied when WCK to CK frequency ratio (CKR) is 4:1 and bank organization is 16B mode. In the case of CKR = 2:1, the number of DES commands is increased to match ^tCCD.

Table 17: CA Pattern for I_{DD4W}, 8B Mode

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R0	HIGH	WRITE	L	Н	Н	L	L	L	L	1
F0	LOW		L	Н	Н	L	L	L	L	
R1	LOW	DES	L	L	L	L	L	L	L	
F1	LOW		L	L	L	L	L	L	L	
R2	LOW	DES	L	L	L	L	L	L	L	2
F2	LOW		L	L	L	L	L	L	L	
R3	LOW	DES	L	L	L	L	L	L	L	
F3	LOW		L	L	L	L	L	L	L	
R4	HIGH	WRITE	L	Н	Н	Н	Н	Н	Н	1
F4	LOW		L	Н	Н	L	Н	Н	L	

Table 17: CA Pattern for IDD4W, 8B Mode (Continued)

Clock Cycle#	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5	CA6	Note
R5	LOW	DES	L	L	L	L	L	L	L	
F5	LOW		L	L	L	L	L	L	L	
R6	LOW	DES	L	L	L	L	L	L	L	2
F6	LOW		L	L	L	L	L	L	L	
R7	LOW	DES	L	L	L	L	L	L	L	
F7	LOW		L	L	L	L	L	L	L]

- Notes: 1. Pattern A is applied to DQ.
 - 2. Pattern B is applied to DQ.
 - 3. The pattern above is applied when WCK to CK frequency ratio (CKR) is 4:1 and bank organization is 8B mode. In the case of CKR = 2:1, the number of DES commands is increased to match ^tCCD.

Data Pattern DBI Off

Table 18: Data Patterns I_{DD4R} at DBI Off

				DQ's	- I _{DD4R} DI	BI Off					
Туре	BL	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1's
Pattern	BL0	1	1	1	1	1	1	1	1	0	8
Α	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	0	0	0	0
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	1	1	0	2
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	1	1	1	1	1	1	0	0	0	6
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	1	1	1	1	1	1	1	1	0	8
	BL9	1	1	1	1	0	0	0	0	0	4
	BL10	0	0	0	0	0	0	0	0	0	0
	BL11	0	0	0	0	1	1	1	1	0	4
	BL12	0	0	0	0	0	0	1	1	0	2
	BL13	0	0	0	0	1	1	1	1	0	4
	BL14	1	1	1	1	1	1	0	0	0	6
	BL15	1	1	1	1	0	0	0	0	0	4
Pattern	BL0	1	1	1	1	1	1	0	0	0	6
В	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	1	1	0	2
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	0	0	0	0
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	1	1	1	1	1	1	1	1	0	8
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	0	0	0	0	0	0	1	1	0	2
	BL9	0	0	0	0	1	1	1	1	0	4
	BL10	1	1	1	1	1	1	0	0	0	6
	BL11	1	1	1	1	0	0	0	0	0	4
	BL12	1	1	1	1	1	1	1	1	0	8
	BL13	1	1	1	1	0	0	0	0	0	4
	BL14	0	0	0	0	0	0	0	0	0	0
	BL15	0	0	0	0	1	1	1	1	0	4

Table 18: Data Patterns I_{DD4R} at DBI Off (Continued)

				DQ's	- I _{DD4R} DI	BI Off					
Туре	BL	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1's
Pattern	BL0	1	1	1	1	1	1	1	1	0	8
A'	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	0	0	0	0
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	1	1	0	2
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	1	1	1	1	1	1	0	0	0	6
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	1	1	1	1	1	1	1	1	0	8
	BL9	1	1	1	1	0	0	0	0	0	4
	BL10	0	0	0	0	0	0	0	0	0	0
	BL11	0	0	0	0	1	1	1	1	0	4
	BL12	0	0	0	0	0	0	1	1	0	2
	BL13	0	0	0	0	1	1	1	1	0	4
	BL14	1	1	1	1	1	1	0	0	0	6
	BL15	1	1	1	1	0	0	0	0	0	4
Pattern	BL0	0	0	0	0	0	0	1	1	0	2
В'	BL1	0	0	0	0	1	1	1	1	0	4
	BL2	1	1	1	1	1	1	0	0	0	6
	BL3	1	1	1	1	0	0	0	0	0	4
	BL4	1	1	1	1	1	1	1	1	0	8
	BL5	1	1	1	1	0	0	0	0	0	4
	BL6	0	0	0	0	0	0	0	0	0	0
	BL7	0	0	0	0	1	1	1	1	0	4
	BL8	1	1	1	1	1	1	0	0	0	6
	BL9	1	1	1	1	0	0	0	0	0	4
	BL10	0	0	0	0	0	0	1	1	0	2
	BL11	0	0	0	0	1	1	1	1	0	4
	BL12	0	0	0	0	0	0	0	0	0	0
	BL13	0	0	0	0	1	1	1	1	0	4
	BL14	1	1	1	1	1	1	1	1	0	8
	BL15	1	1	1	1	0	0	0	0	0	4
# of	1's	32	32	32	32	32	32	32	32	0	

Notes: 1. Pattern A' is defined by B3 ordering change based on pattern A.

2. Pattern B' is defined by B3 ordering change based on pattern B.

Table 19: Data Patterns I_{DD4W} at DBI Off

				DQ's	- I _{DD4W} D	BI Off					
Туре	BL	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1's
Pattern	BL0	1	1	1	1	1	1	1	1	0	8
Α	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	0	0	0	0
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	1	1	0	2
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	1	1	1	1	1	1	0	0	0	6
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	1	1	1	1	1	1	1	1	0	8
	BL9	1	1	1	1	0	0	0	0	0	4
	BL10	0	0	0	0	0	0	0	0	0	0
	BL11	0	0	0	0	1	1	1	1	0	4
	BL12	0	0	0	0	0	0	1	1	0	2
	BL13	0	0	0	0	1	1	1	1	0	4
	BL14	1	1	1	1	1	1	0	0	0	6
	BL15	1	1	1	1	0	0	0	0	0	4
Pattern	BL0	1	1	1	1	1	1	0	0	0	6
В	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	1	1	0	2
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	0	0	0	0
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	1	1	1	1	1	1	1	1	0	8
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	0	0	0	0	0	0	1	1	0	2
	BL9	0	0	0	0	1	1	1	1	0	4
	BL10	1	1	1	1	1	1	0	0	0	6
	BL11	1	1	1	1	0	0	0	0	0	4
	BL12	1	1	1	1	1	1	1	1	0	8
	BL13	1	1	1	1	0	0	0	0	0	4
	BL14	0	0	0	0	0	0	0	0	0	0
	BL15	0	0	0	0	1	1	1	1	0	4
# of	1's	16	16	16	16	16	16	16	16	0	

Data Pattern DBI On

Table 20: Data Patterns I_{DD4R} at DBI On

DQ's – IDD4R DBI On											
Туре	BL	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1's
Pattern	BL0	0	0	0	0	0	0	0	0	1	1
Α	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	0	0	0	0
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	1	1	0	2
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	0	0	0	0	0	0	1	1	1	3
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	0	0	0	0	0	0	0	0	1	1
	BL9	1	1	1	1	0	0	0	0	0	4
	BL10	0	0	0	0	0	0	0	0	0	0
	BL11	0	0	0	0	1	1	1	1	0	4
	BL12	0	0	0	0	0	0	1	1	0	2
	BL13	0	0	0	0	1	1	1	1	0	4
	BL14	0	0	0	0	0	0	1	1	1	3
	BL15	1	1	1	1	0	0	0	0	0	4
Pattern	BL0	0	0	0	0	0	0	1	1	1	3
В	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	1	1	0	2
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	0	0	0	0
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	0	0	0	0	0	0	0	0	1	1
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	0	0	0	0	0	0	1	1	0	2
	BL9	0	0	0	0	1	1	1	1	0	4
	BL10	0	0	0	0	0	0	1	1	1	3
	BL11	1	1	1	1	0	0	0	0	0	4
	BL12	0	0	0	0	0	0	0	0	1	1
	BL13	1	1	1	1	0	0	0	0	0	4
	BL14	0	0	0	0	0	0	0	0	0	0
	BL15	0	0	0	0	1	1	1	1	0	4

Table 20: Data Patterns I_{DD4R} at DBI On (Continued)

				DQ's	- IDD4R D	BI On					
Туре	BL	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1's
Pattern	BL0	0	0	0	0	0	0	0	0	1	1
A'	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	0	0	0	0
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	1	1	0	2
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	0	0	0	0	0	0	1	1	1	3
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	0	0	0	0	0	0	0	0	1	1
	BL9	1	1	1	1	0	0	0	0	0	4
	BL10	0	0	0	0	0	0	0	0	0	0
	BL11	0	0	0	0	1	1	1	1	0	4
	BL12	0	0	0	0	0	0	1	1	0	2
	BL13	0	0	0	0	1	1	1	1	0	4
	BL14	0	0	0	0	0	0	1	1	1	3
	BL15	1	1	1	1	0	0	0	0	0	4
Pattern	BL0	0	0	0	0	0	0	1	1	0	2
В'	BL1	0	0	0	0	1	1	1	1	0	4
	BL2	0	0	0	0	0	0	1	1	1	3
	BL3	1	1	1	1	0	0	0	0	0	4
	BL4	0	0	0	0	0	0	0	0	1	1
	BL5	1	1	1	1	0	0	0	0	0	4
	BL6	0	0	0	0	0	0	0	0	0	0
	BL7	0	0	0	0	1	1	1	1	0	4
	BL8	0	0	0	0	0	0	1	1	1	3
	BL9	1	1	1	1	0	0	0	0	0	4
	BL10	0	0	0	0	0	0	1	1	0	2
	BL11	0	0	0	0	1	1	1	1	0	4
	BL12	0	0	0	0	0	0	0	0	0	0
	BL13	0	0	0	0	1	1	1	1	0	4
	BL14	0	0	0	0	0	0	0	0	1	1
	BL15	1	1	1	1	0	0	0	0	0	4
# of	1's	16	16	16	16	16	16	32	32	16	

Notes: 1. Pattern A' is defined by B3 ordering change based on pattern A.

2. Pattern B' is defined by B3 ordering change based on pattern B.

Table 21: Data Patterns I_{DD4W} at DBI On

				DQ's -	- IDD4W [OBI On					
Туре	BL	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1's
Pattern	BL0	0	0	0	0	0	0	0	0	1	1
A	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	0	0	0	0
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	1	1	0	2
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	0	0	0	0	0	0	1	1	1	3
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	0	0	0	0	0	0	0	0	1	1
	BL9	1	1	1	1	0	0	0	0	0	4
	BL10	0	0	0	0	0	0	0	0	0	0
	BL11	0	0	0	0	1	1	1	1	0	4
	BL12	0	0	0	0	0	0	1	1	0	2
	BL13	0	0	0	0	1	1	1	1	0	4
	BL14	0	0	0	0	0	0	1	1	1	3
	BL15	1	1	1	1	0	0	0	0	0	4
Pattern	BL0	0	0	0	0	0	0	1	1	1	3
В	BL1	1	1	1	1	0	0	0	0	0	4
	BL2	0	0	0	0	0	0	1	1	0	2
	BL3	0	0	0	0	1	1	1	1	0	4
	BL4	0	0	0	0	0	0	0	0	0	0
	BL5	0	0	0	0	1	1	1	1	0	4
	BL6	0	0	0	0	0	0	0	0	1	1
	BL7	1	1	1	1	0	0	0	0	0	4
	BL8	0	0	0	0	0	0	1	1	0	2
	BL9	0	0	0	0	1	1	1	1	0	4
	BL10	0	0	0	0	0	0	1	1	1	3
	BL11	1	1	1	1	0	0	0	0	0	4
	BL12	0	0	0	0	0	0	0	0	1	1
	BL13	1	1	1	1	0	0	0	0	0	4
	BL14	0	0	0	0	0	0	0	0	0	0
	BL15	0	0	0	0	1	1	1	1	0	4
# of	[:] 1's	8	8	8	8	8	8	16	16	8	

I_{DD} Specifications

Table 22: IDD Specifications

Parameter/Condition	Symbol	Power Supply	Note
Operating one bank active-precharge current:	I _{DD01}	V _{DD1}	
${}^{t}CK = {}^{t}CK, min; {}^{t}RC = {}^{t}RC, min; CS is LOW between valid commands;$	I _{DD02H}	V_{DD2H}	9
CA bus inputs are switching: Data bus inputs are stable; RDQS_t is	I _{DD02L}	V _{DD2L}	
stable (if Link ECC is enabled) ODT disabled; WCK inputs are stable	I _{DD0Q}	V_{DDQ}	3
Idle power-down standby current:	I _{DD2P1}	V _{DD1}	
^t CK = ^t CK,min; POWER-DOWN command is issued; CS is LOW; All	I _{DD2P2H}	V _{DD2H}	+
banks are idle; CA bus inputs are switching; Data bus inputs are sta-	I _{DD2P2L}	V _{DD2L}	+
ble; RDQS_t is stable (if Link ECC is enabled) ODT is disabled WCK in-		V _{DDQ}	3
puts are stable	I _{DD2PQ}		
Idle power-down standby current with clock stop:	I _{DD2PS1}	V _{DD1}	
CK_t = LOW, CK_c = HIGH; CS is LOW; All banks are idle; CA bus inputs are stable; Data bus inputs are stable; RDQS_t is stable (if Link	I _{DD2PS2H}	V _{DD2H}	
ECC is enabled); ODT is disabled; WCK inputs are stable	I _{DD2PS2L}	V_{DD2L}	
zee is chasteay, ob this disastea, were inputs are stable	I_{DD2PSQ}	V_{DDQ}	3
Idle non power-down standby current:	I _{DD2N1}	V _{DD1}	
^t CK = ^t CK,min; CS is LOW; All banks are idle; CA bus inputs are	I _{DD2N2H}	V _{DD2H}	
switching; Data bus inputs are stable; RDQS_t is stable (if Link ECC is	I _{DD2N2L}	V _{DD2L}	
enabled); ODT is disabled; WCK inputs are stable	I _{DD2NQ}	V _{DDQ}	3
Idle non power-down standby current with clock stop:	I _{DD2NS1}	V _{DD1}	
CK_t = LOW, CK_c = HIGH; CS is LOW; All banks are idle; CA bus in-	I _{DD2NS2H}	V _{DD2H}	+
puts are stable; Data bus inputs are stable; RDQS_t is stable (if Link		V _{DD2L}	+
ECC is enabled); ODT is disabled; WCK inputs are stable	I _{DD2NS2L}	+	3
A stive never device standby surrout	I _{DD2NSQ}	V _{DDQ}	9
Active power-down standby current: tCK = tCK,min; CS is LOW; One bank is active; POWER-DOWN ENTRY	I _{DD3P1}	V _{DD1}	- 9
command is issued; CA bus inputs are switching; Data bus inputs are	I _{DD3P2H}	V _{DD2H}	_
stable; RDQS_t is stable (if Link ECC is enabled); ODT is disabled;	I _{DD3P2L}	V _{DD2L}	
WCK inputs are stable	I_{DD3PQ}	V_{DDQ}	3
Active power-down standby current with clock stop:	I _{DD3PS1}	V _{DD1}	9
$CK_t = LOW$, $CK_c = HIGH$; CS is LOW ; One bank is active; CA bus in-	I _{DD3PS2H}	V _{DD2H}	
puts are stable; Data bus inputs are stable; RDQS_t is stable (if Link	I _{DD3PS2L}	V _{DD2L}	8, 9
ECC is enabled); ODT is disabled; WCK inputs are stable and static	I _{DD3PSQ}	V_{DDQ}	4
Active non power-down standby current:	I _{DD3N1}	V _{DD1}	9
^t CK = ^t CK,min; CS is LOW; One bank is active; CA bus inputs are	I _{DD3N2H}	V _{DD2H}	-
switching; Data bus inputs are stable; RDQS_t is stable (if Link ECC is		V _{DD2L}	8, 9
enabled); ODT is disabled; WCK inputs are stable and static	I _{DD3N2L}	V _{DDQ}	4
Active non power-down standby current with clock stop:	I _{DD3NQ}		9
CK_t = LOW, CK_c = HIGH; CS is LOW; One bank is active; CA bus in-	I _{DD3NS1}	V _{DD1}	9
puts are stable; Data bus inputs are stable; RDQS_t is stable (if Link	I _{DD3NS2H}	V _{DD2H}	
ECC is enabled); ODT is disabled; WCK inputs are stable and static	I _{DD3NS2L}	V _{DD2L}	8, 9
	I _{DD3NSQ}	V_{DDQ}	4

Table 22: IDD Specifications (Continued)

Parameter/Condition	Symbol	Power Supply	Note
Operating burst READ current BG mode:	I _{DD4R1}	V _{DD1}	
^t CK = ^t CK,min; ^t WCK = ^t WCK,min; CS is LOW between valid com-	I _{DD4R2H}	V _{DD2H}	
mands One book in each book every 1 and 3 is active.	I _{DD4R2L}	V _{DD2L}	8
One bank in each bank group 1 and 2 is active; BL = 16 or 32; RL = RL,min; CA bus inputs are switching; 50% data	I _{DD4RQ}	V _{DDQ}	5
change each burst transfer; ODT is disabled	22 mg		
Operating burst READ current 8B/16B mode:	I _{DD4R1}	V _{DD1}	
^t CH = ^t CK,min; ^t WCK = ^t WCK,min; CS is LOW between valid com-	I _{DD4R2H}	V _{DD2H}	
mands		V _{DD2L}	8
One banks is active;	I _{DD4R2L}	V _{DDQ}	5
BL = 16 or 32 for 16B, BL32 for 8B; RL = RL,min; CA bus inputs are switching; 50% data change each burst transfer; ODT is disabled	I _{DD4RQ}	▼ DDQ	
Operating burst WRITE current BG mode:	I _{DD4W1}	V _{DD1}	
^t CK = ^t CK,min; ^t WCK = ^t WCK,min; CS is LOW between valid com-	I _{DD4W2H}	V _{DD2H}	
mands	I _{DD4W2L}	V _{DD2L}	8
One bank in each bank group 1 and 2 is active; BL = 16 or 32; W L= WL,min; CA bus inputs are switching; 50% data	I _{DD4WQ}	V _{DDQ}	4
change each burst transfer; RDQS_t is stable (if Link ECC is enabled); ODT is disabled			
Operating burst WRITE current 8B/16B mode:	I _{DD4W1}	V _{DD1}	
^t CH = ^t CK,min; ^t WCK = ^t WCK,min; CS is LOW between valid com-	I _{DD4W2H}	V _{DD2H}	
mands	I _{DD4W2L}	V _{DD2L}	8
One banks is active; BL = 16 or 32 for 16B, BL32 for 8B; WL = WL,min; CA bus inputs are	I _{DD4WQ}	V _{DDQ}	4
switching; 50% data change each burst transfer; RDQS_t is stable (if	22 4		
Link ECC is enabled); ODT is disabled			
All-bank REFRESH burst current:	I _{DD51}	V _{DD1}	
^t CH = ^t CK,min; CS is LOW between valid commands; ^t RC =	I _{DD52H}	V _{DD2H}	
^t RFCab,min; Burst refresh; CA bus inputs are switching; Data bus in-	I _{DD52L}	V _{DD2L}	8
puts are stable; ODT is disabled; WCK inputs are stable and static	I _{DD5Q}	V_{DDQ}	4
All-bank REFRESH average current:	I _{DD5AB1}	V _{DD1}	
^t CH = ^t CK,min; CS is LOW between valid commands; ^t RC = ^t REFI; CA	I _{DD5AB2H}	V _{DD2H}	
bus inputs are switching; Data bus inputs are stable; RDQS_t is sta-	I _{DD5AB2L}	V _{DD2L}	8
ble (if Link ECC is enabled); ODT is disabled; WCK inputs are stable and static	I _{DD5ABQ}	V _{DDQ}	4
Per-bank REFRESH average current:	I _{DD5PB1}	V _{DD1}	
^t CH = ^t CK,min; CS is LOW between valid commands; ^t RC = ^t REFI/8; CA	I _{DD5PB2H}	V _{DD2H}	
bus inputs are switching; Data bus inputs are stable; RDQS_t is sta-	I _{DD5PB2L}	V _{DD2L}	8
ble (if Link ECC is enabled); ODT is disabled; WCK inputs are stable and static	I _{DD5PBQ}	V _{DDQ}	4
Power-down self refresh current:	I _{DD61}	V _{DD1}	6, 7
CK_t = LOW, CK_c = HIGH; CS is LOW; CA bus inputs are stable; Data	I _{DD62H}	V _{DD2H}	','
bus inputs are stable; Data bus inputs are stable; RDQS_t is stable (if			-
Link ECC is enabled); ODT is disabled; WCK inputs are stable and	I _{DD62L}	V _{DD2L}	167
static	I _{DD6Q}	V_{DDQ}	4, 6, 7

LPDDR5/LPDDR5X AC/DC and Interface Specifications AC and DC Input/Output Measurement Levels

Table 22: IDD Specifications (Continued)

Parameter/Condition	Symbol	Power Supply	Note
Deep-sleep mode current:	I _{DD6DS1}	V _{DD1}	6, 7
CK_t = LOW, CK_c = HIGH; CS is LOW; CA bus inputs are stable; Data	I _{DD6DS2H}	V _{DD2H}	
bus inputs are stable; RDQS_t is stable (if Link ECC is enabled); ODT is disabled; WCK inputs are stable and static	I _{DD6DS2L}	V _{DD2L}	
is also see, were inpute are stable and state	I _{DD6DSQ}	V_{DDQ}	4, 6, 7

Notes:

- 1. Published I_{DD} values are the maximum IDD values considering the worst case conditions of process, temperature, and voltage.
- 2. ODT disabled MR11 op[6:4] = 000b
- 3. IDD current specifications are tested after the device is properly initialized.
- 4. Measured currents are the summation of V_{DDQ} and V_{DD2H}/V_{DD2L} .
- 5. Guaranteed by design with an output load = 5pF and R_{ON} = 40 ohm.
- 6. The 1x self refresh rate is the rate that the LPDDR5 device is refreshed internally during self refresh before going into the elevated temperature range.
- 7. This is the general definition that applies to full-array self refresh.
- 8. When MR13 OP[7] is high, single V_{DD2} rail, V_{DD2L} current shall be added to V_{DD2H} current.
- 9. I_{DD} values can be different according to the bank organization set by MR3 OP[4:3].
- 10. When DVFSC is enabled, the minimum ^tCK shall be set by following the DVFSC operating frequency.

AC and DC Input/Output Measurement Levels

Driver Output Timing Reference load

Timing reference loads are not intended to be precise representations of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions. Generally, one or more coaxial transmission lines are terminated at the tester electronics.

Figure 5: Driver Output Reference Load for Timing and Slew Rate

LPDDR5/LPDDR5X AC/DC and Interface Specifications AC and DC Input/Output Measurement Levels

Single-Ended Output Slew Rate

Figure 6: Single-Ended Output Slew Rate

Table 23: Output Slew Rate (Single-Ended)

Parameter	Symbol	Min	Max	Unit	Note
Single-ended output slew rate	SRQse	TBD	TBD	V/ns	1
Output slew rate matching ratio (rise to fall)	-	TBD	TBD		

Notes:

- 1. Definitions for the table: SR = slew rate, Q = query output (like in DQ, which stands for data-in query output), se = single-ended signals.
- 2. Measured with output reference load.
- 3. The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation.
- 4. The output slew rate for falling and rising edges is defined and measured between V_{OH} × TBD and V_{OH} × TBD.
- 5. Slew rates are measured under average SSO conditions with 50% of DQ signals per data byte switching.
- 6. The parameters for single ended apply to RDQS_t and RDQS_c when either RDQS_t or RDQS_c is disabled.

LPDDR5/LPDDR5X AC/DC and Interface Specifications AC and DC Input/Output Measurement Levels

Differential Output Slew Rate

Figure 7: Differential Output Slew Rate

Table 24: Differential Output Slew Rate

Parameter	Symbol	Min	Max	Unit	Note
Differential output slew rate	SRQdiff	TBD	TBD	V/ns	1, 2, 3

Notes

- The output slew rate for falling and rising edges is defined and measured between -V_{OH} x TBD and V_{OH} x TBD.
- 2. Slew rates are measured using a unit step signal which makes a full swing signal under average SSO conditions, with 50% of DQ signals per data byte switching. Because a high capacitance load reduces V_{OH(AC)} at high frequency close to Fmax, the signal using PRBS data pattern may not achieve a full swing at such conditions.
- 3. These values are measured with output reference load, as shown in the figure below, or guaranteed by design.

AC Overshoot/Undershoot

Table 25: AC Overshoot/Undershoot

Parameter	Min/Max	Value	Unit
Maximum peak amplitude allowed for overshoot area	Max	0.35	V
Maximum peak amplitude allowed for undershoot area	Max	0.35	V
Maximum overshoot area above V _{DD} /V _{DDQ}	Max	0.8	V-ns
Maximum undershoot area below V _{SS}	Max	0.8	V-ns

Table 26: AC Overshoot/Undershoot for LVSTL

		Data Rate (Mb/s)				
Parameter	Min/Max	1600	3200	5500	6400	Unit
Maximum peak amplitude allowed for overshoot area	Max	0.3	0.3	0.3	0.3	V
Maximum peak amplitude allowed for undershoot area	Max	0.3	0.3	0.3	0.3	V
Maximum overshoot area above V _{DD2H} /V _{DDQ}	Max	0.1	0.1	0.1	0.1	V-ns
Maximum undershoot area above V _{SS}	Max	0.1	0.1	0.1	0.1	V-ns

Figure 8: Overshoot and Undershoot Definition

Notes:

- V_{DD} is V_{DD2H} for CA[6:0], CK_t/c, CS, and RESET_n. V_{DD} is V_{DDQ} for DQ, DMI, RDQS_t, and WCK t/c.
- 2. Maximum peak amplitude values are referenced from actual V_{DD} and V_{SS} values.
- 3. Maximum area values are referenced from maximum operating V_{DD} and V_{SS} values.

Differential Mode Input Voltage for CK

Differential Input Voltage for CK

The minimum input voltage needed to satisfy both the V_{indiff_CK} and $V_{indiff_CK}/2$ specification at the input receiver and their measurement period is 1^tCK . V_{indiff_CK} is the peakto-peak voltage centered on 0 volts differential and $V_{indiff_CK}/2$ is max and min peak voltage from 0V.

Figure 9: CK Differential Input Voltage Definition

Table 27: CK Differential Input Voltage Timing

			C	lock Fr	equenc	у			
		266 MHz		z 533 MHz		MHz 800 MHz			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note
CK differential input voltage	V_{indiff_CK}	350	_	350	_	350	-	mV	1, 2

Notes

- 1. Refer to the latency table to match the clock rate to the data rate.
- 2. The peak voltage of differential CK signals is calculated in the following equation.

 $V_{indiff CK} = (Max peak voltage) - (Min peak voltage)$

Max peak voltage = Max(f(t))

Min peak voltage = Min(f(t))

 $f(t) = V_{CK} t - V_{CK} c$

Single-Ended Input Voltage for CK

The minimum input voltage needed to satisfy both V_{inse_CK} , V_{inse_CK} High/Low specification at the input receiver.

Figure 10: Clock Single-Ended Input Voltage

Note: 1. TBD is the LPDDR5 SDRAM internal setting value determined by V_{REF} training.

Table 28: Clock Single-Ended Input Voltage

						Clock Frequency					
		266	266 MHz 533 MHz		800 MHz						
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note		
Clock single-ended input voltage	Vinse_CK	175	-	175	-	175	_	mV			
Clock single-ended input voltage HIGH from TBD	Vinse_CK_High	87.5	-	87.5	-	87.5	_	mV			
Clock single-ended input voltage LOW from TBD	Vinse_CK_Low	87.5	-	87.5	-	87.5	_	mV			

Peak Voltage Calculation Method

The peak voltage of differential clock signals are calculated in the following equation.

- $V_{IH.DIFE,peak}$ voltage = Max(f(t))
- $V_{IL.DIFE,peak}$ voltage = Min(f(t))
- $f(t) = V_{CK} V_{CK} c$

Figure 11: Definition of Differential Clock Peak Voltage

Note: 1. TBD is the LPDDR5 SDRAM internal setting value determined by V_{REF} training.

Differential Input Slew Rate Definition for CK

The input slew rate for differential signals (CK_t, CK_c) is defined and measured in the following figure and tables.

Figure 12: Differential Input Slew Rate Definition for CK_t, CK_c

Notes: 1. The differential signal rising edge slope from V_{ILdiff_CK} to V_{IHdiff_CK} must be monotonic.

2. The differential signal falling edge slope from V_{IHdiff_CK} to V_{ILdiff_CK} must be monotonic.

Table 29: Differential Input Slew Rate Definition for CK_t, CK_c

Parameter	From	То	Defined by
Differential input slew rate for rising edge (CK_t-CK_c)	V_{ILdiff_CK}	V_{IHdiff_CK}	$V_{ILdiff_CK} - V_{IHdiff_CK} / \Delta TRdiff$
Differential input slew rate for falling edge (CK_t-CK_c)	V _{IHdiff_CK}	V_{ILdiff_CK}	$V_{ILdiff_CK} - V_{IHdiff_CK} / \Delta TFdiff$

Table 30: Differential Input Level for CK_t, CK_c

		266	266 MHz		266 MHz 533 N		533 MHz		MHz		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note		
Differential input HIGH	V_{IHdiff_CK}	145	_	145	_	145	-	mV			
Differential input LOW	V_{ILdiff_CK}	_	145	-	145	_	145	mV			

Table 31: Differential Input Slew Rate for CK_t, CK_c

			C	lock Fr	equenc	у					
		266	266 MHz		533 MHz		33 MHz 800 MHz		MHz		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note		
Differential input slew rate for CK	SRIdiff_CK	2	14	2	14	2	14	V/ns			

Differential Input Cross Point Voltage for CK

The cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in the following table. The differential input cross point voltage $V_{\rm IX}$ is measured from the actual cross point of true and complimentary signals to the mid level that is TBD.

Figure 13: Differential Input Cross Point Slew Rate Definition for CK_t, CK_c

Note: 1. The base level of $V_{IX_CK_FR}/V_{IX_CK_RF}$ is TBD that is LPDDR5 SDRAM internal setting value by V_{REF} training.

Table 32: Cross Point Voltage for Differential Input Signals (CK)

			Cl	ock Fi	requen	су			
		266 MHz		266 MHz 533		800 MHz			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note
CK differential input cross point voltage ratio	V _{IX} _CK_ratio	_	25	_	25	_	25	%	1, 2

Notes: 1. V_{IX} _CK_ratio is defined by this equation: V_{IX} _CK_ratio = V_{IX} _CK_FR/[Min(f(t))]

2. V_{IX} _CK_ratio is defined by this equation: V_{IX} _CK_ratio = V_{IX} _CK_RF/Max(f(t))

Differential Mode Input Voltage for WCK

Differential Input Voltage for WCK

The minimum input voltage needed to satisfy both the V_{indiff_WCK} and $V_{indiff_WCK}/2$ specification at the input receiver. Their measurement period is 1^tWCK . V_{indiff_WCK} is the peak-to-peak voltage centered on 0 volts differential and $V_{indiff_WCK}/2$ is max and min peak voltage from 0V.

Figure 14: WCK Differential Input Voltage

Table 33: WCK Differential Input Voltage

			WCK Frequency (MHz)												
		8	00	1066			1600		2133		'50	3200			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Мах	Unit	Note
WCK differential input voltage	V_{indiff_WCK}	300	_	300	-	300	-	280	-	280	-	280	-	mV	1, 2

Notes:

- 1. Refer to the latency table to match the WCK frequency to the data rate.
- 2. The peak voltage of differential WCK signals is calculated in the following equation.

V_{indiff WCK} = (Max peak voltage) - (Min peak voltage)

Max peak voltage = Max(f(t))

Min peak voltage = Min(f(t))

 $f(t) = V_{WCK_t} - V_{WCK_c}$

Single-Ended Input Voltage for WCK

The minimum input voltage needed to satisfy both the Vinse_WCK, Vinse_WCK_High/Low specification at the input receiver.

LPDDR5/LPDDR5X AC/DC and Interface Specifications Differential Mode Input Voltage for WCK

Figure 15: WCK Single-Ended Input Voltage

Note: 1. TBD is the LPDDR5 SDRAM internal setting value by V_{REF} training.

Table 34: WCK Single-Ended Input Voltage

		WCK Rate (MHz)													
		8	00	10	66	16	00	21	33	27	50	32	00		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
WCK Single- ended input Volt- age	Vinse_WCK	150	_	150	_	150	_	140	_	TBD	_	TBD	_	mV	
WCK Single- ended input Volt- age High from TBD	Vinse_WCK_ High	75	-	75	-	75	-	70	-	TBD	-	TBD	-		
WCK Single- ended input Volt- age Low from TBD	Vinse_WCK_ Low	75	-	75	-	75	_	70	_	TBD	-	TBD	-		

Peak Voltage Calculation Method

The peak voltage of Differential Clock signals are calculated in the following equation.

- $V_{IH.DIFEpeak}$ voltage = Max(f(t))
- $V_{IL,DIFE,peak}$ voltage = Min(f(t))
- $f(t) = V_{WCK_t} V_{WCK_c}$

LPDDR5/LPDDR5X AC/DC and Interface Specifications Differential Mode Input Voltage for WCK

Figure 16: Definition of Differential WCK Clock Peak Voltage

Note: 1. V_{cent} is the LPDDR5 SDRAM internal setting value determined by V_{REF} training.

Differential Input Slew Rate Definition for WCK

Input slew rates for differential signals (WCK_t, WCK_c) are defined and measured as shown in the following figure and tables.

Figure 17: Differential Input Slew Rate Definition for WCK_t, WCK_c

Notes: 1. The differential signal rising edge slope from V_{ILdiff_WCK} to V_{IHdiff_WCK} must be monotonic.

LPDDR5/LPDDR5X AC/DC and Interface Specifications Differential Mode Input Voltage for WCK

The differential signal falling edge slope from V_{IHdiff_WCK} to V_{ILdiff_WCK} must be monotonic.

Table 35: Differential Input Slew Rate Definition for WCK_t, WCK_c

Parameter	From	То	Defined by
Differential input slew rate for rising edge (WCK_t-WCK_c)	V_{ILdiff_WCK}	V_{IHdiff_WCK}	V _{ILdiff_WCK} - V _{IHdiff_WCK} /∆TRdiff
Differential input slew rate for falling edge (WCK_t-WCK_c)	V_{IHdiff_WCK}	V_{ILdiff_WCK}	V _{ILdiff_WCK} - V _{IHdiff_WCK} //\DTFdiff

Table 36: Differential Input Level for WCK_t, WCK_c

			WCK Rate (MHz)												
		80	800 1066			1600 2133			27	50	3200				
Parameter	Symbol	Min	Max	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max	Unit	
Differential input HIGH	V_{IHdiff_WCK}	120	-	120	_	120	_	100	-	TBD	_	TBD	_	mV	
Differential input LOW	V_{ILdiff_WCK}	ı	120	-	120	-	120	-	100	-	TBD	_	TBD		

Table 37: Differential Input Slew Rate for WCK_t, WCK_c

			WCK Rate (MHz)												
		8	800 1066 1600 2133 2750 3200												
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Unit	
Differential input slew rate for WCK	SRIdiff_WCK	2	14	2	14	2	14	2	14	2	14	2	14	V/ns	

Differential Input Cross Point Voltage for WCK

The cross point voltage of differential input signals (WCK_t, WCK_c) must meet the requirements shown in the following table. The differential input cross point voltage $V_{\rm IX}$ is measured from the actual cross point of true and complementary signals to the mid level that is TBD.

LPDDR5/LPDDR5X AC/DC and Interface Specifications Single Ended Mode Input Voltage

Figure 18: V_{IX} Definition for WCK_t, WCK_c

Note: 1. The base level of $V_{IX_WCK_FR}/V_{IX_WCK_RF}$ is V_{CENT} .

Table 38: Cross Point Voltage for Differential Input Signals (WCK_t, WCK_c)

			WCK Frequency (MHz)												
		80	00	10	66	1600 2133			2750		3200				
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Мах	Unit	Note
WCK differential input cross point voltage ratio	V _{IX_WCK} ratio	_	20	_	20	_	20	_	20	_	20	_	20	%	1, 2

Notes: 1. $V_{IX_WCK_ratio}$ is defined by this equation: $V_{IX_WCK_ratio} = V_{IX_WCK_FR}/|Min(f(t))|$

2. $V_{IX\ WCK_}$ ratio is defined by this equation: $V_{IX\ WCK_}$ ratio = $V_{IX\ WCK_}$ RF/Max(f(t))

Single Ended Mode Input Voltage

Single-Ended CK Input Definitions

The minimum input voltage needs to satisfy both $V_{inse_CK_SE_High}$ and $V_{inse_CK_SE_Low}$ specification at the input receiver and their measurement period is 1^tCK . $V_{inse_CK_SE}$ is the peak to peak voltage centered on $V_{DDQ}/2$ and $V_{inse_CK_SE_High}$ and $V_{inse_CK_SE_Low}$ is maximum and minimum peak voltage from $V_{DDQ}/2$.

The minimum input voltage needs to satisfy both V_{inse_CK} , $V_{inse_CK_High}/V_{inse_CK_Low}$ specifications at input receiver.

LPDDR5/LPDDR5X AC/DC and Interface Specifications Single Ended Mode Input Voltage

Figure 19: Single-Ended CK Input Voltage

Figure 20: Single-Ended CK Pulse

Note: 1. Single-ended mode CK pulse definitions are defined shown below.

Table 39: Clock Single-Ended Input Parameters

		CK Rate			
		400	MHz		
Parameter	Symbol	Min	Max	Unit	Note
CK single-ended input voltage	V _{inse_CK_SE}	220	_	mV	
CK single-ended input voltage HIGH	V _{inse_CK_SE_High}	110	_	mV	
CK single-ended input voltage LOW	V _{inse_CK_SE_Low}	110	_	mV	
CK single-ended timing window	V _{CKIVW}	190	_	mV	
Clock single-ended CK pulse	^t CKHL	0.26	_	^t CK(avg)	

LPDDR5/LPDDR5X AC/DC and Interface Specifications Single Ended Mode Input Voltage

Table 39: Clock Single-Ended Input Parameters (Continued)

		СК І	Rate		
		400	MHz		
Parameter	Symbol	Min	Max	Unit	Note
CK single-ended slew rate	SRICKSE	1	7	V/ns	1

Note: 1. Single-ended slew rate is measured at $V_{DDO}/2 - V_{CKIVW}/2$ and $V_{DDO}/2 + V_{CKIVW}/2$.

Single-Ended Input Voltage for WCK

The minimum input voltage needed to satisfy both the $V_{inse_WCK_SE_High}$ and $V_{inse_WCK_SE_Low}$ specifications at the input receiver measurement period is 1^tWCK . $V_{inse_WCK_SE}$ is the peak to peak voltage centered on $V_{DDQ}/2$ and $V_{inse_WCK_SE_High}$ and $V_{inse_WCK_SE_Low}$ max and min peak voltage are referenced to $V_{DDO}/2$.

Figure 21: Single-Ended WCK Input Voltage

Figure 22: Single-Ended Mode WCK Pulse

LPDDR5/LPDDR5X AC/DC and Interface Specifications **Operating Temperature Range**

Table 40: WCK Clock Single-Ended Input Parameters

		WCK Frequency			
		800 MHz			
Parameter	Symbol	Min	Max	Unit	Note
WCK single-ended input voltage	V _{inse_WCK_SE}	220	-	mV	
WCK single-ended input HIGH voltage	V _{inse_WCK_SE_High}	110	_	mV	
WCK single-ended input LOW voltage	V _{inse_WCK_SE_Low}	110	_	mV	
WCK single-ended timing window	V _{WCKIVW}	180	_	mV	
Clock single-ended WCK pulse	tWCKHL	0.23	_	^t WCK(avg)	1
WCK single-ended slew rate	SRIWCKSE	1	7	V/ns	

Note: 1. Single-ended slew rate is measured at $V_{DDO}/2 - V_{WCKIVW}/2$ and $V_{DDO}/2 + V_{WCKIVW}/2$.

Operating Temperature Range

Table 41: Operating Temperature Range

Parameter/Condition	Symbol	Min	Max	Unit	Note
Standard	T _{OPER_standard}	-25	85	°C	1, 2, 3
Elevated	T _{OPER_elevated}	-25	105		

- Notes: 1. The operating temperature is the case surface temperature on the center-top side of the device. For the measurement conditions, refer to JESD51-2A.
 - 2. Some applications require operation of the device in the maximum temperature conditions within the elevated temperature range between a 85°C and 105°C case temperature. For the devices, derating may be necessary to operate in this range.
 - 3. Either the device case temperature rating or the temperature sensor may be used to set an appropriate refresh rate, determing the need for AC timing de-rating and/or monitoring the operating temperature. When using the temperature sensor, the actual device case temperature may be higher than the T_{OPER} rating that applies for the standard or elevated temperature ranges. For example, T_{CASE} may be above 85°C when the temperature sensor indicates a temperature of less than 85°C.

Table 42: Automotive Operating Temperature Range

Parameter/Condition	Symbol	Min	Max	Unit	Note
Standard	T _{OPER_standard}	-25	85	°C	1
Automotive Grade 1	T _{OPER_auto_grade1}	-40	125		1, 2, 3, 4
Automotive Grade 2	T _{OPER_auto_grade2}	-40	105		
Automotive Grade 3	$T_{OPER_auto_grade3}$	-40	85		1, 3, 4

- Notes: 1. Operating temperature is the case surface temperature on the center-top side of the device. For the measurement conditions, refer to JESD51-2A.
 - 2. Automotive applications require operation of the device within the maximum temperature conditions over 85°C. For the devices, derating may be necessary to operate in this range (over 85°C).

LPDDR5/LPDDR5X AC/DC and Interface Specifications Operating Temperature Range

- 3. Either the device case temperature rating or the temperature sensor may be used to set an appropriate refresh rate, determining the need for AC timing de-rating and/or monitoring the operating temperature. When using the temperature sensor, the actual device case temperature may be higher than the T_{OPER} rating that applies for the standard or automotive temperature grades. For example, T_{CASE} may be above 85°C when the temperature sensor indicates a temperature of less than 85°C.
- 4. Automotive temperature conditions are only allowed for parts which specify the automotive temperature range guarantee in the data sheet.

AC Timings

Core AC Timings

The two basic core AC timing tables and derived core AC timing tables are included in this section. The SDRAM status for one basic core AC timing table (Table 43) is x16, DVFSC is disabled, and write link ECC is disabled. The SDRAM status for the other basic core AC timing table (Table 55) is x16, DVFSC is enabled, and write link ECC is disabled. When the byte mode (x8) and/or write link ECC are enabled, ^tWR and ^tWTR values change and are described in the derivation tables.

Core AC Timings for DVFSC Disabled and Write Link ECC Disabled

Table 43: x16 Mode/BG Mode

		Min/					CK I	reque	ency (I	VIHz)					
Item	Symbol	Max	67	133	200	266	344	400	467	533	600	688	750	800	Unit
ACTIVATE-to-AC- TIVATE command period (same bank)	^t RC	Min				tRAS +						_			
RAS-to-CAS delay	^t RCD	Min					М	AX(18	ns, 2 <i>n</i> C	CK)					
Row precharge time (all banks)	^t RPab	Min		MAX(21ns, 2nCK)											
Row precharge time (single bank)	^t RPpb	Min					M	AX(18	ns, 2 <i>n</i> C	CK)					
Row active time	^t RAS	Min		MAX(42ns, 3nCK)											
		Max		MIN(9 × ^t REFI × refresh rate, 70.2)								μs			
WRITE recovery time	^t WR	Min					M	AX(34	ns, 3 <i>n</i> C	CK)					
Active bank-A to active bank-B	^t RRD	Min					M	1AX(5r	ns, 2 <i>n</i> Cl	K)					
Four-bank ACTI- VATE window	^t FAW	Min						2	20						ns
READ burst end	^t RBTP	Min				CKR	= 2:1,	MAX(7	.5ns, 4	nCK) -	4nCK				
to PRECHARGE command delay		Min		CKR = 4:1, MAX(7.5ns, $2nCK$) - $2nCK$											
WRITE-to-READ	tWTR_S	Min	_		_	_	MA	X(6.2	5ns, 4 <i>n</i>	CK)					
delay	tWTR_L	Min					M	AX(12	ns, 4 <i>n</i> C	CK)					
PRECHARGE to PRECHARGE De- lay	^t PPD	Min	2							nCK					

Note: 1. 2:1 CKR (WCK to CK frequency ratio) can support up to 3200 Mb/s data transfer.

Table 44: x16 Mode/16B Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
WRITE-to-READ delay	^t WTR	Min	MAX(12ns, 4 <i>n</i> CK)	

Notes: 1. 16B mode uses the same core timing as BG mode. 16B mode can support up to 3200 Mb/s data transfer.

2. The rest of the core AC timing values are the same as Table 43.

Table 45: x16 Mode/8B Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
Active bank-A to active bank-B	^t RRD	Min	MAX(10ns, 2nCK)	_
Four-bank ACTIVATE window	^t FAW	Min	40	ns
WRITE-to-READ delay	tWTR	Min	MAX(12ns, 4nCK)	_

Note: 1. The rest of the core AC timing values are the same as Table 43.

Table 46: x8 Mode/BG Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
WRITE recovery time	^t WR	Min	MAX(36ns, 3 <i>n</i> CK)	_
WRITE-to-READ delay	tWTR_S	Min	MAX(8.25ns, 4nCK)	_
	tWTR_L	Min	MAX(14ns, 4 <i>n</i> CK)	_

Note: 1. The rest of the core AC timing values are the same as Table 43.

Table 47: x8 Mode/16B Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
WRITE recovery time	^t WR	Min	MAX(36ns, 3 <i>n</i> CK)	-
WRITE-to-READ delay	tWTR	Min	MAX(14ns, 4nCK)	_

Note: 1. The rest of the core AC timing values are the same as Table 43.

Table 48: x8 Mode/8B Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
Active bank-A to active bank-B	^t RRD	Min	MAX(10ns, 2 <i>n</i> CK)	_
Four-bank ACTIVATE window	^t FAW	Min	40	ns
WRITE recovery time	^t WR	Min	MAX(36ns, 3 <i>n</i> CK)	-

Table 48: x8 Mode/8B Mode (Continued)

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
WRITE-to-READ delay	^t WTR	Min	MAX(14ns, 4nCK)	_

Note: 1. The rest of the core AC timing values are the same as Table 43.

Core AC Timing for DVFSC Disabled and Write Link ECC Enabled

Table 49: x16 Mode/BG Mode

Item	Symbol	Min/Max	Data Rate (Mb/s) All Operating Points	Unit
WRITE recovery time	^t WR	Min	MAX(38ns, 3 <i>n</i> CK)	_
WRITE-to-READ delay	tWTR_S	Min	MAX(10.25ns, 4 <i>n</i> CK)	_
	tWTR_L	Min	MAX(16ns, 4nCK)	_

Note: 1. The rest of the core AC timing values are the same as Table 43.

Table 50: x16 Mode/16B Mode

Item	Symbol	Min/Max	Data Rate (Mb/s) All Operating Points	Unit
WRITE recovery time	^t WR	Min	MAX(38ns, 3 <i>n</i> CK)	_
WRITE-to-READ delay	tWTR	Min	MAX(16ns, 4 <i>n</i> CK)	-

Note: 1. The rest of the core AC timing values are the same as Table 43.

Table 51: x16 Mode/8B Mode

Item	Symbol	Min/Max	Data Rate (Mb/s) All Operating Points	Unit
Active bank-A to active bank-B	^t RRD	Min	MAX(10ns, 2 <i>n</i> CK)	_
Four-bank ACTIVATE window	^t FAW	Min	40	ns
WRITE recovery time	^t WR	Min	MAX(38ns, 3 <i>n</i> CK)	_
WRITE-to-READ delay	^t WTR	Min	MAX(16ns, 4 <i>n</i> CK)	_

Note: 1. The rest of the core AC timing values are the same as Table 43.

Table 52: x8 Mode/BG Mode

Item	Symbol	Min/Max	Data Rate (Mb/s) All Operating Points	Unit
WRITE recovery time	^t WR	Min	MAX(40ns, 3 <i>n</i> CK)	_

Table 52: x8 Mode/BG Mode (Continued)

Item	Symbol	Min/Max	Data Rate (Mb/s) All Operating Points	Unit
WRITE-to-READ delay	tWTR_S	Min	MAX(12.25ns, 4nCK)	_
	tWTR_L	Min	MAX(18ns, 4nCK)	-

Note: 1. The rest of the core AC timing values are the same as Table 43.

Table 53: x8 Mode/16B Mode

Item	Symbol	Min/Max	Data Rate (Mb/s) All Operating Points	Unit
WRITE recovery time	^t WR	Min	MAX(40ns, 3 <i>n</i> CK)	_
WRITE-to-READ delay	^t WTR	Min	MAX(18ns, 4nCK)	_

Note: 1. The rest of the core AC timing values are the same as Table 43.

Table 54: x8 Mode/8B Mode

Item	Symbol	Min/Max	Data Rate (Mb/s) All Operating Points	Unit
Active bank-A to active bank-B	^t RRD	Min	MAX(10ns, 2 <i>n</i> CK)	_
Four-bank ACTIVATE window	^t FAW	Min	40	ns
WRITE recovery time	^t WR	Min	MAX(40ns, 3 <i>n</i> CK)	-
WRITE-to-READ delay	tWTR	Min	MAX(18ns, 4 <i>n</i> CK)	-

Note: 1. The rest of the core AC timing values are the same as Table 43.

Core AC Timing for DVFSC Enabled and Write Link ECC Disabled

Table 55: x16 Mode/16B Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
ACTIVATE-to-ACTIVATE command period (same bank)	^t RC	Min	^t RAS + ^t RPab with all-bank PRECHARGE ^t RAS + ^t RPpb with per-bank PRECHARGE	-
RAS-to-CAS delay	^t RCD	Min	MAX(19ns, 2nCK)	_
Row precharge time (all banks)	^t RPab	Min	MAX(21ns, 2 <i>n</i> CK)	_
Row precharge time (single bank)	^t RPpb	Min	MAX(18ns, 2 <i>n</i> CK)	_
Row active time	^t RAS	Min	MAX(42ns, 3nCK)	_
		Max	MIN(9 × ^t REFI × refresh rate, 70.2)	μs
WRITE recovery time	tWR	Min	MAX(41ns, 3nCK)	-

Table 55: x16 Mode/16B Mode (Continued)

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
Active bank-A to active bank-B	^t RRD	Min	MAX(5ns, 2 <i>n</i> CK)	_
Four-bank ACTIVATE window	^t FAW	Min	20	ns
READ burst end to	^t RBTP	Min	CKR = 2:1, MAX(8.5ns, 4nCK) - 4nCK	_
PRECHARGE command delay		Min	CKR = 4:1, MAX(8.5ns, 2nCK) - 2nCK	_
WRITE-to-READ delay	^t WTR	Min	MAX(19ns, 4nCK)	_
PRECHARGE to PRECHARGE Delay	^t PPD	Min	2	nCK

Table 56: x16 Mode/8B Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
Active bank-A to active bank-B	^t RRD	Min	MAX(10ns, 2 <i>n</i> CK)	_
Four-bank ACTIVATE window	^t FAW	Min	40	ns

Note: 1. The rest of the core AC timing values are the same as Table 55.

Table 57: x8 Mode/16B Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
WRITE recovery time	^t WR	Min	MAX(43ns, 3 <i>n</i> CK)	-
WRITE-to-READ delay	^t WTR	Min	MAX(21ns, 4nCK)	_

Note: 1. The rest of the core AC timing values are the same as Table 55.

Table 58: x8 Mode/8B Mode

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
Active bank-A to active bank-B	^t RRD	Min	MAX(10ns, 2 <i>n</i> CK)	_
Four-bank ACTIVATE window	^t FAW	Min	40	ns
WRITE recovery time	^t WR	Min	MAX(43ns, 3 <i>n</i> CK)	_
WRITE-to-READ delay	^t WTR	Min	MAX(21ns, 4nCK)	_

Note: 1. The rest of the core AC timing values are the same as Table 55.

Temperature Derating AC Timing

Table 59: Temperature Derating AC Timing

Item	Symbol	Min/Max	CK Frequency (MHz) All Operating Points	Unit
DQ To WCK input offset	tWCK2DQI_HF	Max	TBD	ps
	tWCK2DQI_LF	Max	TBD	ps
WCK to DQ output offset	tWCK2DQO_HF	Max	TBD	ps
	tWCK2DQO_LF	Max	TBD	ps
ACTIVATE-to-ACTIVATE command period (same bank)	^t RC	Min	^t RC + 3.75	ns
RAS to CAS delay	^t RCD	Min	^t RCD + 1.875	ns
Row recharge time (all banks)	^t RPab	Min	^t RPab + 1.875	ns
Row recharge time (single bank)	^t RPpb	Min	^t RPpb + 1.875	ns

Note: 1. Timing derating applies for operation at TBD °C to TBD °C.

Self Refresh, Power-Down, and Deep Sleep Related timings

Table 60: Self Refresh AC Timing

Parameter	Symbol	Min/Max	Value	Unit	Note
Delay from SRE command to PDE	^t ESPD	Min	2	nCK	
Minimum self refresh time (ENTRY to EXIT)	^t SR	Min	MAX(15ns, 2 <i>n</i> CK)	-	1
Exit self refresh to valid commands	^t XSR	Min	^t RFCab + MAX(7.5ns, 2 <i>n</i> CK)	_	1

Note: 1. Delay time has to satisfy both analog time (ns) and clock count (nCK). [†]ESPD will not expire until CK has toggled through at least 2 full cycles (2 × nCK) and 1.75ns has transpired.

Table 61: Power-Down AC Timing

Parameter	Symbol	Min/Max	Data Rate	Unit	Note
Delay time from PDE and PDX	^t CSPD	Min	10ns + 1 ^t CK	ns	1, 2
Delay from valid command to PDE	^t CMDPD	Min	3	nCK	3
Valid clock requirement after PDE	^t CSLCK	Min	MAX(5ns, 3 <i>n</i> CK)	ns	1
Valid clock requirement before PDX	^t CKCSH	Min	2	nCK	
Valid low requirement for CA before PDX	^t CACSH	Min	1.75	ns	
Exit power-down to next valid command delay	^t XP	Min	MAX(7ns, 3 <i>n</i> CK)	ns	1
Minimum CS high pulse width at PDX	^t CSH	Min	3	ns	
Minimum CS low pulse duration at PDX	^t CSL	Min	4	ns	

Table 61: Power-Down AC Timing (Continued)

Parameter	Symbol	Min/Max	Data Rate	Unit	Note
Minimum CA low duration time at PDX	^t CSCAL	Min	1.75	ns	
Delay from MRW command to PDE	^t MRWPD	Min	MAX(14ns, 6nCK)	ns	1, 4
Delay from ZQCAL START command to PDE	^t ZQPD	Min	3	nCK	
Delay from MPC OSC Start/Stop Command to PDE	^t OSCPD	Min	MAX(40ns, 8 <i>n</i> CK)	ns	

- Notes: 1. Delay time has to satisfy both analog time (ns) and clock count (nCK). For example, ^tCSLCK will not expire until CK has toggled through at least three full cycles (3 × ^tCK) and 5ns has transpired.
 - 2. ^tCK value is for the operating frequency at the time the PDE command is issued.
 - 3. SRX command is included the valid command.
 - 4. This MR change results in special delay time. See special timing in Mode Register Write to Power Down Entry figure for details. VREF(CA) setting: MR12 OP[6:0] VREF Current Generator (V_{RCG}): MR16 OP[6]

Table 62: Deep-Sleep Mode AC Timing

Parameter	Symbol	Min/Max	Data Rate	Unit	Note
Minimum interval between deep-sleep mode entry and exit	^t PDN	Min	10ns + 1 ^t CK	ns	1
Minimum deep-sleep mode duration time for DRAM compliance with I _{DDtbd} power specification	^t PDN_DSM	Min	4	ms	
Delay from deep-sleep mode exit to SRX	^t XSR_DSM	Min	200	μs	
Delay from deep-sleep mode exit to power- down exit	^t XDSM_XP	Min	190	μs	
Delay from PD/DSM entry to CS ODT off	^t PDECSODTOFF	Max	10ns + 1 ^t CK	ns	1
Delay from power-down exit to CS ODT on	^t PDXCSODTON	Max	20	ns	

Note: 1. 1^tCK for this timing is the ^tCK value of the operating frequency when the DSM ENTRY command is issued.

Mode Register, VRCG, and Frequency Set Point-Related Timings

Table 63: Mode Register Read/Write AC Timing

Parameter	Symbol	Min/Max	Value	Unit
Additional time after ^t XP has expired until MRR command may be issued	^t MRRI	Min	^t RCD + 2 <i>n</i> CK	ns
MODE REGISTER READ command period	^t MRR	Min	4 at CKR = 4:1 8 at CKR = 2:1	nCK
			8 at CKR = 2:1	
MODE REGISTER WRITE command period	^t MRW	Min	MAX(10ns, 5 <i>n</i> CK)	ns
MODE REGISTER SET command delay	^t MRD	Min	MAX(14ns, 5 <i>n</i> CK)	ns

Table 64: VRCG Enable/Disable Timing

Parameter	Symbol	Min	Max	Unit
V _{REF} high-current mode enable time	^t VRCG_enable	_	150	ns
V _{REF} high-current mode disable time	^t VRCG_disable	_	100	ns

Table 65: V_{REFCA} Update Timing

Parameter	Symbol	Min/Max	All Operating Points	Unit	Note
V _{REF(CA)} update timing	^t VREFCA_short	Min	200 + 0.5 ^t CK	ns	1, 2, 3, 4
	tVREFCA_long	Min	200 + 0.5 ^t CK	ns	1, 2, 5
	tVREFCA_weak	Min	1	ms	6

- Notes: 1. $V_{REF(CA)}$ update timing depends on the value of the $V_{REF(CA)}$ setting: MR12 OP[6:0].
 - 2. This value assumes that VRCG is set to high-current mode: MR16 OP[6] = 1b.
 - 3. ^tCK for this timing is the ^tCK value of the operating frequency when the MRW is issued.
 - 4. V_{REFCA short} is for a single step-size increment/decrement change in V_{REF(CA)} voltage.
 - 5. V_{REFCA_long} is for at least two step-size increment/decrement changes including up to V_{REFmin} to V_{REFmax} or V_{REFmax} to V_{REFmin} changes in $V_{REF(CA)}$ voltage.
 - 6. This value assumes that VRCG is set to normal operation: MR16 OP[6] = 0b.

Table 66: V_{REFDQ} Update Timing

Parameter	Symbol	Min/Max	All Operating Points	Unit	Note
V _{REF(DQ)} update timing	tVREFDQ_Short	Min	200 + 0.5 ^t CK	ns	1, 2, 3, 4
	tVREFDQ_Long	Min	200+ 0.5 ^t CK	ns	1, 2, 5
	tVREFDQ_Weak	Min	1	ms	6

- Notes: 1. V_{REF(DQ)} update timing depends on the value of the V_{REF(DQ)} setting: MR14 OP[6:0] and MR15 OP[6:0].
 - 2. This value assumes that VRCG is set to high-current mode: MR16 OP[6] = 1b.
 - 3. ^tCK for this timing is the ^tCK value of the operating frequency when the MRW is issued.
 - 4. V_{REFDQ_short} is for a single step-size increment/decrement change in $V_{REF(DQ)}$ voltage.
 - 5. V_{REFDQ_long} is for at least two step-size increment/decrement changes including up to V_{REFmin} to V_{REFmax} or V_{REFmax} to V_{REFmin} change in $V_{REF(DQ)}$ voltage.
 - 6. This value assumes that VRCG is set to normal operation: MR16 OP[6] = 0b.

Table 67: Frequency Set Point AC Timing Parameters

Parameter	Symbol	Min/Max	All Operating Points	Unit	Note
Frequency set point (FSP) switching time	^t FC_short	Min	200 + 0.5 ^t CK	ns	1, 2
	^t FC_long	Min	250 + 0.5 ^t CK		
Valid clock requirement after entering FSP change	^t CKFSPE	Min	MAX(7.5ns, 4 <i>n</i> CK)	I	

Table 67: Frequency Set Point AC Timing Parameters (Continued)

Parameter	Symbol	Min/Max All Operating Points		Unit	Note
Valid clock requirement before first valid	^t CKFSPX	Min	MAX(7.5ns, 4nCK)	_	
command after FSP change					

- Notes: 1. FSP switching time depends on the value of the V_{REF(CA)} setting: MR12 OP[6:0] of FSP-OP 0, 1, and 2. The details are shown in the following table. Any FSP change may affect the $V_{REF(DQ)}$ setting. The settling time of the $V_{REF(DQ)}$ level is the same as the $V_{REF(CA)}$ level.
 - 2. ^tCK for this timing is the ^tCK value of the operating frequency when MRW is issued.

WCK-Related Timings

Table 68: ^t**WCK2DQ AC Timing Parameters**

Parameter	Symbol	Min/Max	Value	Unit	Note
DQ to WCK offset (write)	^t WCK2DQI_HF	Min	300	ps	1, 2, 3
		Max	700		
	^t WCK2DQI_LF	Min	300	ps	1, 2, 3
		Max	900		
DQ to WCK Rx offset temperature variation	^t WCK2DQI_temp_HF	Max	0.6	ps/°C	1, 2, 3
write)	tWCK2DQI_temp_LF	Max	0.7		
DQ to WCK Rx offset voltage variation	^t WCK2DQI_volt_HF	Max	25	ps/50mV	1, 2, 3
write)	^t WCK2DQI_volt _LF	Max	50		
Absolute high clock pulse width	^t WCH(abs)	Min	43	^t WCK(avg)	
		Max	57		
Absolute low clock pulse width	tWCL(abs)	Min	43	^t WCK(avg)	
		Max	57		
WCK to DQ offset (read)	tWCK2DQO_HF	Min	650	ps	1, 2, 3
		Max	1600		
	tWCK2DQO_LF	Min	650	ps	1, 2, 3
		Max	1900		
WCK to DQ offset temperature variation	^t WCK2DQO_temp_HF	Max	1.5	ps/°C	1, 2, 3
read)	^t WCK2DQO_temp_LF	Max	1.8	1	
WCK to DQ offset voltage variation (read)	tWCK2DQO_volt_HF	Max	3.0	ps/mV	1, 2, 3
	tWCK2DQO_volt_LF	Max	5.0	1	

- Notes: 1. _HF means high frequency and _LF means low frequency.
 - 2. _LF is used for 3200 Mb/s and below (≤3200 Mb/s). _HF is used for 3200 Mb/s and above(≥3200 Mb/s).
 - 3. WCK2DQ AC parameters (HF/LF) can be selectable by MR18 OP[3]. Refer to MR18.

Table 69: WCK Stop AC Timing

Parameter	Symbol	Min/Max	Value	Unit	Note
Valid write clock requirement after CAS(WS_OFF) command	^t WCKSTOP	Min	MAX(6ns, 2 <i>n</i> CK)		

Table 70: WCK2CK Leveling Timing Parameters

Parameter	Symbol	Min/Max	Value	Unit	Note
WCK_t/WCK_c drive start to WCK2CK leveling mode entry	tWLWCKON	Min	2	^t CK	
First WCK_t/WCK_c edge after WCK2CK leveling mode is programmed	^t WLMRD	Min	MAX(14ns, 5 ^t CK)	ns	
Write leveling output delay	^t WLO	Min	0	ns	
		Max	MAX(20ns, 2 ^t CK)	ns	
WCK toggle interval	tWCK_INT	Min	MAX(25ns, 2.5 ^t WCK)	ns	
WCK off delay after write leveling mode exit	^t WLWCKOFF	Min	MAX(14ns, 5 ^t CK)	ns	
DQ off delay after write leveling mode exit	^t WLDQOFF	Max	MAX(14ns, 5 ^t CK)	ns	
WCK cycle per WCK2CK phase detection	^t WCKTGGL	Min	7.5	tWCK	1
		Max	7.5	tWCK]
WCK to CK phase offset	^t WCK2CK	Min	MAX(–0.5 ^t WCK, TBD)	ps	2
		Max	MIN(0.5 ^t WCK, TBD)		
		Min	MAX(-0.25 ^t WCK, TBD)	ps	3
		Max	MIN(0.25 ^t WCK, TBD)		
WCK2CK leveling phase search range	tWCK2CK_	Min	MAX(-0.5 × ^t WCK, TBD)	ps	4
	leveling	Max	MIN(0.5 × ^t WCK, TBD)	ps	

- Notes: 1. 7.5 WCK cycles are required per WCK2CK phase detection.
 - 2. When MR18 OP[7] = 0: WCK: CK = 4:1.
 - 3. When MR18 OP[7] = 1: WCK: CK = 2:1.
 - 4. The device will return correct ^tWCK2CK phase relation information in the WCK2CK leveling mode within the range specified. However, the maximum WCK to CK phase shift allowed for normal DRAM operation may be limited by tWCK2CK.

Table 71: tWCK to CK/DQ Offset Rank-to-Rank Variation

Parameter	Symbol	WCK Frequency mode	Min/Max	Value	Unit	Note
WCK to CK offset rank-to-	tWCK2CK_	All modes	Min	0	ps	
rank variation	rank2rank		Max	100		

Table 71: tWCK to CK/DQ Offset Rank-to-Rank Variation (Continued)

Parameter	Symbol	WCK Frequency mode	Min/Max	Value	Unit	Note
WCK to DQ input offset	tWCK2DQI_	High-frequency	Min	0	ps	1, 2, 3,
rank-to-rank variation	rank variation rank2rank mode	mode	Max	150		4
Low-frequency	Min	0				
		mode	Max	250		
WCK to DQ output offset	tWCK2DQO_	High-frequency	Min	0	ps	1, 2, 3,
rank-to-rank variation	rank2rank	mode	Max	400		4
	Low-frequency	Min	0	1		
		mode	Max	650	1	

Notes

- The same voltage and temperature are applied to ^tWCK2DQI_rank2rank and ^tWCK2DQO_rank2rank AC parameters.
- 2. ^tWCK2CK_rank2rank, ^tWCK2DQI_rank2rank, and ^tWCK2DQO_rank2rank AC parameters are applied to multiple ranks per channel within a package consisting of the same design die.
- 3. ^tWCK2CK_rank2rank, ^tWCK2DQI_rank2rank, and ^tWCK2DQO_rank2rank AC parameters are applied to multi-byte mode die per channel that shares the same CK input within a package consisting of the same design die.
- MR18 OP[3] = 0b in WCK low-frequency mode; MR18 OP[3] = 1b in WCK high-frequency mode.

Table 72: WCK Oscillator Matching Error Specification for High-Frequency Mode

Parameter	Symbol	Min	Max	Unit	Note
Write WCK oscillator matching error: voltage variation	WOSC _{match_volt}	-7.5	7.5	ps	1, 2, 3, 5
Write WCK oscillator matching error: temperature variation	WOSC _{match_temp}	-7.5	7.5	ps	1, 2, 3, 5
Write WCK oscillator offset: voltage variation	WOSC _{offset_volt}	-100	100	ps	2, 5
Write WCK oscillator offset: temperature variation	WOSC _{offset_temp}	-100	100	ps	2, 5
Read WCK oscillator matching error: voltage variation	ROSC _{match_volt}	-20	20	ps	1, 2, 3, 6
Read WCK oscillator matching error: temperature variation	ROSC _{match_vtemp}	-20	20	ps	1, 2, 3, 6
Read WCK oscillator offset: voltage variation	ROSC _{offset_volt}	-200	200	ps	2, 6
Read WCK oscillator offset: temperature variation	ROSC _{offset_temp}	-200	200	ps	2, 6

Notes

- 1. WOSC_{match} or ROSC_{match} is the matching error between the actual WCK and WCK interval oscillator for voltage and temperature.
- 2. This parameter is characterized or guaranteed by design.
- 3. The input stimulus for ^tWCK2DQ is consistent for voltage and temperature conditions.
- 4. tWCK2DQ(V,T) delay is the average of WCK to DQ delay over the runtime period.
- 5. The matching error and offset of WOSC are from the WCK2DQI interval oscillator.
- 6. The matching error and offset of ROSC are from the WCK2DQO interval oscillator.

Table 73: WCK Oscillator Matching Error Specification for Low-Frequency Mode

Parameter	Symbol	Min	Max	Unit	Note
Write WCK oscillator matching error: voltage variation	WOSC _{match_volt}	TBD	TBD	ps	1, 2, 3, 5
Write WCK oscillator matching error: temperature variation	WOSC _{match_temp}	TBD	TBD	ps	1, 2, 3, 5
Write WCK oscillator offset: voltage variation	WOSC _{offset_volt}	TBD	TBD	ps	2, 5
Write WCK oscillator offset: temperature variation	WOSC _{offset_temp}	TBD	TBD	ps	2, 5
Read WCK oscillator matching error: voltage variation	ROSC _{match_volt}	TBD	TBD	ps	1, 2, 3, 6
Read WCK oscillator matching error: temperature variation	ROSC _{match_vtemp}	TBD	TBD	ps	1, 2, 3, 6
Read WCK oscillator offset: voltage variation	ROSC _{offset_volt}	TBD	TBD	ps	2, 6
Read WCK oscillator offset: temperature variation	ROSC _{offset_temp}	TBD	TBD	ps	2, 6

- Notes: 1. The WOSC_{match} or ROSC_{match} is the matching error between the actual WCK and WCK interval oscillator for voltage and temperature.
 - 2. This parameter is characterized or guaranteed by design.
 - 3. The input stimulus for tWCK2DQ is consistent for voltage and temperature conditions.
 - 4. tWCK2DQ(V,T) delay is the average of the WCK to DQ delay over the runtime period.
 - 5. The matching error and offset of WOSC are from WCK2DQI interval oscillator.
 - 6. The matching error and offset of ROSC are from WCK2DQO interval oscillator.

Table 74: WCK2DQI/WCK2DQO Interval Oscillator AC Timing

Parameter	Symbol	Min/Max	Value	Unit	Note
Delay time from STOP WCK2DQI INTERVAL OSCILLATOR command to mode register readout	^t OSCODQI	Min	MAX(40ns, 8 <i>n</i> CK)	ns	
Delay time from STOP WCK2DQ0 INTERVAL OSCILLATOR command to mode register readout	^t OSCODQO	Min	MAX(40ns, 8 <i>n</i> CK)	ns	
Delay time from MPC OSC STOP command to MPC OSC START command	^t OSCINT	Min	MAX(40ns, 8 <i>n</i> CK)	ns	

ZQ Calibration, Post Package Repair, and Training-Related Timings

Table 75: Command Bus Training AC Timing Table

Parameter	Symbol	Min/Max	WCK Frequency (MHz) All Operating Points (266 MHz to 3200 MHz)	Unit	Note
Static WCK period	^t CBTWCKPRE	Min	MAX(20ns, 2nCK)	ns	
(CBT entry to WCK toggling start)	_static				
Set-up margin between DQ7 and WCK	^t WCK2DQ7H	Min	MAX(5ns, 12nWCK)	ns	
Hold margin between DQ7 and WCK	^t DQ7HWCK	Min	MAX(5ns, 12nWCK)	ns	
Clock and command valid after DQ7 HIGH	^t DQ7HCK	Min	MAX(5ns, 3 <i>n</i> CK)	ns	
ODT CA change latency after DQ7 HIGH	^t DQ7FSP	Min	20	ns	

Table 75: Command Bus Training AC Timing Table (Continued)

			WCK Frequency (MHz) All Operating Points		
Parameter	Symbol	Min/Max	(266 MHz to 3200 MHz)	Unit	Note
DQ7 HIGH to valid DQ[6:0] input for V _{REF(CA)} setting	^t DQ72DQ	Min	250	ns	
Valid clock requirement before CS HIGH	^t CKPRECS	Min	$2^{t}CK + {}^{t}XP$ (${}^{t}XP = MAX(7.5ns, 3nCK)$)	ns	
Valid clock requirement after CS HIGH	^t CKPSTCS	Min	MAX(7.5ns, 3nCK)	ns	
Delay time from DQ[7] HIGH to CA bus training	^t CAENT	Min	250	ns	
V _{REF} step time-long	^t VREF(CA)_long	Max	250	ns	3
V _{REF} step time-short	tVREF(CA)_short	Max	200	ns	4
Data setup for V _{REF} training mode	^t DStrain	Min	MAX(5ns, 12nWCK)	ns	
Data hold for V _{REF} training mode	^t DHtrain	Min	MAX(5ns, 12nWCK)	ns	
Asynchronous data read	^t ADR	Max	20	ns	
CBT command input to DMI LOW	^t CA2DMIL	Min	30	ns	
DMI LOW to DQ driver off	^t MRZ	Min	1.5	ns	
DMI LOW to valid DQ input for V _{REF(CA)} setting	^t CBTRTW	Min	MAX(20ns, 12nWCK)	ns	
CA BUS TRAINING command to CA BUS TRAINING command delay	^t CACD	Min	RU(^t ADR/ ^t CK)	ns	2
Valid clock requirement before DQ7 LOW	^t DQ7LCK	Min	MAX(5ns, 3 <i>n</i> CK)	ns	
DQ7 LOW to static WCK	^t DQ7LWCK	Min	MAX(5ns, 12nWCK)	ns	
Exit Command Bus Training Mode to next valid command delay	^t XCBT	Min	MAX(250ns, 5 <i>n</i> CK)	ns	
Stable time for WCK ODT	^t CBTWCKODTFIX	Max	20	ns	
Turn off time for DQ ODT	^t CBTODTOFF	Max	20	ns	
Turn off time for NT-ODT	^t CBTINTODTOFF	Max	20	ns	

- Notes: 1. WCK_t has to retain a low level with WCK_c at a high level during the ^tWCK2DMI peri-
 - 2. If ^tCACD is violated, the data for samples which violate ^tCACD may not be available except for the last sample (where ^tCACD after this sample is met). Valid data for the last sample is available after ^tADR.
 - 3. V_{REF(CA)_long} is for at least a two step-size increment/decrement change including: $V_{REF,min}$ to $V_{REF,max}$ or $V_{REF,max}$ to $V_{REF,min}$ change in V_{REF} voltage.
 - 4. $V_{REF(CA)_short}$ is for a single step-size increment/decrement change in V_{REF} voltage.

Table 76: ZQ Calibration Timing

Parameter	Symbol	Min/Max	Value	Unit
ZQ CALIBRATION Command to latch time, NZQ ≤ 4	^t ZQCAL4	Min	1.5	μs
ZQ CALIBRATION Command to latch time, NZQ ≤ 8	^t ZQCAL8	Min	3	μs

Table 76: ZQ Calibration Timing (Continued)

Parameter	Symbol	Min/Max	Value	Unit
ZQ CALIBRATION Command to latch time, NZQ ≤ 16	tZQCAL16	Min	6	μs
ZQ calibration latch time	^t ZQLAT	Min	MAX(30ns, 4nCK)	ns
ZQ calibration reset time	^t ZQRESET	Min	MAX(50ns, 3 <i>n</i> CK)	ns
Delay time from ZQ Stop bit set to ZQ resistor available	^t ZQSTOP	Max	30	ns
Background calibration interval	^t ZQINT	Max	Programmable, 32, 64, 128, or 256	ms
Maximum number of LPDDR5 devices (die) connected to a single ZQ resistor	NZQ	Max	16	Die
Maximum capacitive load on ZQ network	CZQ	Max	TBD	pF

Table 77: Post-Package Repair Timing Parameters

Parameter	Symbol	Min	Max	Unit
PPR programming clock	^t CKPGM	1.25	200	ns
PPR programming time	^t PGM	2000	_	ms
PPR exit time	^t PGM_exit	15	_	ns
New address setting time	^t PGMPST	500	-	μs

Table 78: Enhanced WCK Always-On Mode Timing

Parameter	Symbol	Min	Мах	Unit
Delay from CAS WCK SUSPEND command to next	^t WCKSUS	4	-	nCK
READ, WRITE, or MASKED WRITE command				

Table 79: Read/Write-Based RDQS_t Training Mode Entry and Exit Timings

Parameter	Symbol	Min/Max	Value	Unit
Read/Write-based RDQS_t training mode entry	^t RDQSTFE	Min	MAX(35ns, 4 <i>n</i> CK)	ns
Read/Write-based RDQS_t training mode exit	^t RDQSTFX	Min	MAX(35ns, 4nCK)	ms

Table 80: Enhanced RDQS Training Mode Entry and Exit Timing

Parameters	Symbol	Min/Max	Value	Unit
Enhanced RDQS toggle mode entry	^t ERQE	Max	MAX(35ns, 4nCK)	ns
Enhanced RDQS toggle mode exit	^t ERQX	Max	MAX(35ns, 4nCK)	ns
ODT disable from enhanced RDQS toggle mode entry	^t RDQE_OD	Max	MAX(35ns, 4 <i>n</i> CK)	ns

Table 80: Enhanced RDQS Training Mode Entry and Exit Timing (Continued)

Parameters	Symbol	Min/Max	Value	Unit
ODT enable from enhanced RDQS toggle	tRDQX_OD	Max	MAX(35ns, 4nCK)	ns
mode exit				

ODT Related Timing

Table 81: Asynchronous ODT Turn On and Turn Off Timing

Parameter	All Operating Points	Unit
^t ODTon,min	1.5	ns
^t ODTon,max	3.5	ns
^t ODToff,min	1.5	ns
^t ODToff,max	3.5	ns

Table 82: Asynchronous NT ODT Turn On and Turn Off Timing for Write

Parameter	All Operating Frequencies	Unit
^t ODT_on,min	1.5	ns
^t ODT_on,max	3.5	ns
^t ODT_off,min	1.5	ns
^t ODT_off,max	3.5	ns

Table 83: NT ODT AC Timing

Parameter	Symbol	Min/Max	Value	Unit	Note
Delay from MRW command to NT ODT	^t NTODT	Min	Max (14ns, 5 <i>n</i> CK)		1
switching					

Note: 1. ^tNTODT is defined as the delay time from MRW-2 command (the falling edge of the CK_t) to start point of ^tODTon/^tODToff. Which ^tODTon or ^tODToff applies depends on the previous NT ODT status.

Table 84: ODT Command/Address AC Timing Parameters

Parameters	Symbol	All Operat	Unit	
Parameters	Зупівої	Min	Max	Onit
ODT C/A value update time	^t ODTUP	250	_	ns

V_{DDO} Ramp, DCM, and Write X Timing

Table 85: V_{DDO} Ramp Rates

Parameter	Symbol	Min/Max	Value	Unit
V _{DDQ} slew rate V _{RCG} enabled	V _{DQSR1}	Max	20	mV/μs
V _{DDQ} slew rate V _{RCG} disabled	V_{DQSR2}	Max	4.8	mV/μs

Table 86: DCM Timing

Parameter	Symbol	Min/Max	WCK Frequency (MHz) All Operating Points (800 MHz to 3200 MHz)	Unit
Duty cycle monitor measurement time	^t DCMM	Min	2	μs

Table 87: Write X AC Timing

Parameter	Symbol	Min/Max	Value	Unit
Valid WCK requirement after write with write X	^t WR2WCK	Max	1.25	ns

CK and WCK AC Timings

CK Specifications

The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the minimum/maximum values may result in malfunction of the device.

Definition of ^tCK(avg) and nCK

^tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge.

t
CK(avg) = $\left(\sum_{j=1}^{N} {}^{t}$ CLj /N Where N = 200

Unit " ${}^{t}CK(avg)$ " represents the actual clock average ${}^{t}CK(avg)$ of the input clock under operation. Unit " ${}^{n}CK$ " represents one clock cycle of the input clock, counting the actual clock edges. ${}^{t}CK(avg)$ may change by up to $\pm 1\%$ within a 100 clock cycle window, provided that all jitter and timing specs are met.

Definition of ^tCK(abs)

^tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next consecutive rising edge.

^tCK(abs) is not subject to production test.

Definition for ^tCH(avg) and ^tCL(avg)

^tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses.

$$_{\text{CH(avg)}}^{\text{t}_{\text{CH}(avg)}} = \left(\sum_{j=1}^{N} _{j=1}^{\text{t}_{\text{CH}j}}\right) / N \times _{j=1}^{\text{t}_{\text{CK}(avg)}}$$
Where N = 200

^tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.

$$^{t}CL(avg) = \left(\sum_{j=1}^{N} {}^{t}CL_{j}\right) / N x {}^{t}CK(avg)$$
Where N = 200

Definition for tCH(abs) and tCL(abs)

^tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.

^tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.

Both^tCH(abs) and ^tCL(abs) are not subject to production test.

Definition for ^tJIT(per)

 t JIT(per) is the single period jitter defined as the largest deviation of any signal t CK(avg).

 t JIT(per) = MIN/MAX of (t CKi - t CK(avg)) where i = 1 to 200.

^tJIT(per), act is the actual clock jitter for a given system.

^tJIT(per), allowed is the specified allowed clock period jitter.

^tJIT(per) is not subject to production test.

Definition for tJIT(cc)

^tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles.

 t JIT(cc) = MAX|{ t CK(i+1) - t CK(i)}|.

^tJIT(cc) defines the cycle to cycle jitter.

^tJIT(cc) is not subject to production test.

Table 88: Clock AC Timing (1 of 3)

		5 M	Hz	10 I	VIHz	67 I	ИHz	133	MHz	200	MHz	267	MHz	344	MHz	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Average clock period	tCK(avg)	200	200	100	200	14.93	200	7.5	200	5	200	3.75	200	2.9	200	ns
Average high pulse width	^t CH(avg)	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	^t CK(avg)
Average low pulse width	^t CL(avg)	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	^t CK(avg)
Absolute clock period	^t CK(abs)					Min	: ^t CK(a	vg)min Max:	•	er)min						ns
Absolute high pulse width	^t CH(abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	^t CK(avg)
Absolute low pulse width	^t CL(abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	^t CK(avg)
Clock period jitter	^t JIT(per)	-11,200	11,200	-5600	5600	-840	840	-430	430	-280	280	-210	210	-170	170	ps
Maximum clock Jitter between consecutive cycles	^t JIT(cc)	-	22,400	_	11,200	-	1680	-	860	-	560	-	420	-	340	ps

Table 89: Clock AC Timing (2 of 3)

		400	MHz	467	MHz	533	MHz	600	MHz	688	MHz	750	MHz	800	MHz	
Parameter	Symbol	Min	Max	Min	Мах	Min	Max	Min	Max	Min	Max	Min	Max	Min	Мах	Unit
Average clock period	tCK(avg)	2.5	200	2.15	200	1.875	200	1.667	200	1.453	200	1.333	200	1.25	200	ns
Average high pulse width	^t CH(avg)	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	^t CK(avg)
Average low pulse width	^t CL(avg)	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	^t CK(avg)
Absolute clock period	^t CK(abs)					N	lin: ^t CK	(avg)mi Ma	n + ^t JIT x: –	(per)mi	n					ns
Absolute high pulse width	^t CH(abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	^t CK(avg)
Absolute low pulse width	^t CL(abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	^t CK(avg)
Clock period jitter	^t JIT(per)	-140	140	-120	120	-110	110	-95	95	-85	85	-75	75	-70	70	ps
Maximum clock jitter between consecutive cycles	tJIT(cc)	_	280	_	240	_	220	_	190	_	170	_	150	_	140	ps

LPDDR5/LPDDR5X AC/DC and Interface Specifications CK and WCK AC Timings

Table 90: Clock AC Timing (3 of 3)

		937.5 MHz		1066.	5 MHz	
Parameter	Symbol	Min	Max	Min	Max	Unit
Average clock period	^t CK(avg)	1066.7	200000	937.6	200000	ps
Average high pulse width	^t CH(avg)	0.46	0.54	0.46	0.54	^t CK(avg)
Average low pulse width	^t CL(avg)	0.46	0.54	0.46	0.54	^t CK(avg)
Absolute clock period	^t CK(abs)	N	ps			
			Ma	x: –		
Absolute high pulse width	^t CH(abs)	0.43	0.57	0.43	0.57	^t CK(avg)
Absolute low pulse width	^t CL(abs)	0.43	0.57	0.43	0.57	^t CK(avg)
Clock period jitter	tJIT(per)	TBD	TBD	TBD	TBD	ps
Maximum clock jitter between consecutive cycles	^t JIT(cc)	_	TBD	-	TBD	ps

WCK Specifications

The jitter specified is a random jitter meeting a Gaussian distribution. Input write clocks violating the min/max values may result in malfunction of the LPDDR5 device.

^tWCK(avg) is calculated as the average write clock period across any consecutive 200 cycle window, where each write clock period is calculated from rising edge to rising edge.

Definition of tWCK(avg) and nWCK

t
WCK(avg) = $\left(\sum_{j=1}^{N} {}^{t}$ WCKj $\right)$ /N

Unit "tWCK(avg)" represents the actual write clock average tWCK(avg) of the input write clock under operation. Unit "nWCK" represents one write clock cycle of the input write clock, counting the actual write clock edges. tWCK(avg) may change by up to $\pm 1\%$ within a 100 write clock cycle window, provided that all jitter and timing specs are met.

Definition of tWCK(abs)

^tWCK(abs) is defined as the absolute write clock period, as measured from one rising edge to the next consecutive rising edge.

^tWCK(abs) is not subject to production test.

Definition for tWCH(avg) and tWCL(avg)

^tWCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses.

^tWCH(avg) =
$$\left(\sum_{j=1}^{N} {}^{t}WCH_{j}\right)$$
 / (N x ^tWCK(avg))

^tWCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.

^t WCL(avg) =
$$\left(\sum_{j=1}^{N} {}^{t}WCL_{j}\right) / N x^{t} WCK(avg)$$

Where N = 200

Definition for tWCH(abs) and tWCL(abs)

^tWCH(abs) is the absolute instantaneous write clock high pulse width, as measured from one rising edge to the following falling edge.

^tWCL(abs) is the absolute instantaneous write clock low pulse width, as measured from one falling edge to the following rising edge.

Both tWCH(abs) and tWCL(abs) are not subject to production test.

Definition for ^tJIT(per)

^tJIT(per) is the single period jitter defined as the largest deviation of any signal ^tWCK from ^tWCK(avg).

 t JIT(per) = MIN/MAX of (t WCKi - t WCK(avg)) where i = 1 to 200.

^tJIT(per), act is the actual write clock jitter for a given system.

^tJIT(per), allowed is the specified allowed write clock period jitter.

^tJIT(per) is not subject to production test.

Definition for ^tJIT(cc)

^tJIT(cc) is defined as the absolute difference in write clock period between two consecutive write clock cycles.

 t JIT(cc) = MAX|{ t WCK(i+1) - t WCK(i)}|.

^tJIT(cc) defines the cycle to cycle jitter.

^tJIT(cc) is not subject to production test.

Definition for tERR(2per)

^tERR(2per) is defined as the cumulative error across 2 consecutive cycles from ^tWCK(avg). ^tERR(2per) is not subject to production test.

$$t_{ERR(nper)} = \left(\sum_{j=i}^{i+N-1} t_{WCKj}\right) - (N \times^{t} WCK(avg))$$
Where N = 2

Definition for tERR(3per)

^tERR(3per) is defined as the cumulative error across 3 consecutive cycles from ^tWCK(avg). ^tERR(3per) is not subject to production test.

$$t_{ERR(nper)} = \left(\sum_{j=i}^{i+N-1} t_{WCKj}\right) - (N \times^{t} WCK(avg))$$
Where N = 3

Definition for ^tERR(4per)

^tERR(4per) is defined as the cumulative error across 4 consecutive cycles from ^tWCK(avg). ^tERR(3per) is not subject to production test.

$$^{t}_{ERR(nper)} = \left(\sum_{j=i}^{i+N-1} {}^{t}_{WCKj}\right) - (N \times^{t} WCK(avg))$$
Where N = 4

Table 91: Write Data Clock AC Timing (Group 1 of 3)

		WCK Frequency (MHz)												
		20	266		566		800		1067		75	1600		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Average write clock period	^t WCK(avg)	3.76	50	1.877	50	1.25	50	0.938	50	0.728	50	0.625	50	ns
Average high pulse width	tWCKH(avg)	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	^t WCK(avg)
Average low pulse width	^t WCKL(avg)	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	^t WCK(avg)
Absolute write clock period	tWCK(abs)		•		Min	: tWCk	(avg)n	nin + ^t J	IT(per)	min	•			ns
							Ma	x: –						
Absolute high write clock pulse width	^t WCKH(abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	^t WCK(avg)
Absolute low write clock pulse width	tWCKL(abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	^t WCK(avg)
Write clock period jitter ^t JIT(per)	Clock period jitter ^t JIT(per)	-190	190	-95	95	-70	70	-56	56	-46	46	-40	40	ps
Maximum write clock jitter between consecutive cycles	tJIT(cc)	-	380	-	190	-	140	_	112	_	92	-	80	ps
Cumulative error across 2 cycles	^t ERR(2per)	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ps
Cumulative error across 3 cycles	^t ERR(3per)	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ps
Cumulative error across 4 cycles	^t ERR(4per)	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ps

Table 92: Write Data Clock AC Timing (Group 2 of 3)

			WCK Frequency (MHz)											
		18	1867		34	2400		2750		3000		3200		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Average write clock period	^t WCK(avg)	0.536	50	0.469	50	0.417	50	0.364	50	0.334	50	.0313	50	ns
Average high pulse width	tWCKH(avg)	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	^t WCK(avg)
Average low pulse width	^t WCKL(avg)	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	^t WCK(avg)
Absolute write clock period	tWCK(abs)		•	•	Mir	: tWCK	(avg)n	nin + ^t J	IT(per)	min	•			ns
			Max: –											
Absolute high write clock pulse width	^t WCKH(abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	^t WCK(avg)
Absolute low write clock pulse width	tWCKL(abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	^t WCK(avg)
Write clock period jitter ^t JIT(per)	Clock period jitter ^t JIT(per)	-34	34	-30	30	-28	28	-26	26	-24	24	-22	22	ps
Maximum write clock jitter between consecutive cycles	^t JIT(cc)	_	68	_	60	_	56	-	52	-	48	-	44	ps
Cumulative error across 2 cycles	^t ERR(2per)	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ps
Cumulative error across 3 cycles	^t ERR(3per)	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ps
Cumulative error across 4 cycles	^t ERR(4per)	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ps

Table 93: Write Data Clock AC Timing (Group 3 of 3)

		W	/CK Frequ	ency (MH	z)	
		37	'50	426	6.5	
Parameter	Symbol	Min	Max	Min	Max	Unit
Average write clock period	^t WCK(avg)	266.7	50000	234.4	50000	ps
Average high pulse width	^t WCKH(avg)	0.46	0.54	0.46	0.54	^t WCK(avg)
Average low pulse width	^t WCKL(avg)	0.46	0.54	0.46	0.54	^t WCK(avg)
Absolute write clock period	tWCK(abs)	Min: t\	NCK(avg)n	nin + ^t JIT(p	er)min	ps
			Ma	x: –		
Absolute high write clock pulse width	tWCKH(abs)	0.43	0.57	0.43	0.57	^t WCK(avg)
Absolute low write clock pulse width	tWCKL(abs)	0.43	0.57	0.43	0.57	^t WCK(avg)
Write clock period jitter ^t JIT(per)	Clock period jitter	TBD	TBD	TBD	TBD	ps
	tJIT(per)					
Maximum write clock jitter between consecutive cycles	tJIT(cc)	-	TBD	_	TBD	ps
Cumulative error across 2 cycles	^t ERR(2per)	TBD	TBD	TBD	TBD	ps
Cumulative error across 3 cycles	tERR(3per)	TBD	TBD	TBD	TBD	ps
Cumulative error across 4 cycles	^t ERR(4per)	TBD	TBD	TBD	TBD	ps

LPDDR5/LPDDR5X AC/DC and Interface Specifications CK and WCK AC Timings

LPDDR5/LPDDR5X AC/DC and Interface Specifications CA Rx Specification

AC Parameters for Single-Ended

The AC timing shown in the following table is applied under conditions of single-ended (SE) mode.

Table 94: SE from/to Differential FSP and Additional Period for MRW AC Timing

			Data Rate	
Parameter	Symbol	Min/Max	Equal or less than 1600 Mb/s	Unit
Frequency set point parameters for switching fr	om/to differentia	l clock		
Valid clock requirement after entering FSP, when changing between SE and differential modes	^t CKFSPE_SE	Min	MAX(15ns, 8 <i>n</i> CK)	-
Valid clock requirement before first valid command after an FSP change between SE and differential modes	^t CKFSPX_SE	Min	MAX(15ns, 8 <i>n</i> CK)	-
Additional period for after an MRW command				
Post clock for MRW	^t MRW_PST	Min	2	nCK

Table 95: Single-Ended Delta CK and WCK Specifications

		Data Rate		
Parameter/Symbol	Min/Max	≤1600 Mb/s	Unit	Note
V _{REF} for single-ended CK	_	V _{DD2} /2	_	
V _{REF} for single-ended WCK	_	V _{DD2} /2		
^t CIVW1	Min	0.52	UI	UI = 0.5 ^t CK
^t CIVW2	Min	0.35	UI	UI = 0.5 ^t CK
^t DIVW1	Min	0.52	UI	UI = 0.5 ^t WCK
^t DIVW2	Min	0.35	UI	UI = 0.5 ^t WCK
^t QSH	Min	^t WCH - 0.10	tWCK(avg)	
^t QSL	Min	^t WCL - 0.10	tWCK(avg)	
tWCK2CK	Min	MAX(-0.25 × ^t WCK - 100ps, TBD)	ps	At WCK = 800
	Max	MIN(0.25 × ^t WCK +100ps, TBD)		MHz, 2:1 mode WCK/CK asymmet- rical

CA Rx Specification

CA Rx Mask and Single Pulse Definition

The CA Rx mask is defined as hexagonal mask shape as shown below. All CA signals apply to the same compliance mask and operate in double-data rate mode.

The receiver mask (Rx Mask) defines the area that the input signal must not encroach on for the DRAM input receiver to successfully capture a valid input signal.

LPDDR5/LPDDR5X AC/DC and Interface Specifications CA Rx Specification

Figure 23: CA Rx Mask Definition

CA Rx Single Pulse Definition

Figure 24: CA Rx Single Pulse Definition

Notes: 1. Single pulse includes any cycle of the pulse.

2. $V_{REF(CA)}$ is the calculated value based on V_{DDQ} and MR12.

Figure 25: DRAM Pin CA Timings

Minimum CA eye should be V_{REF(CA)} aligned.

LPDDR5/LPDDR5X AC/DC and Interface Specifications **CA Rx Specification**

Differential CK Mode Definition

All of the CA timings associated with DRAM pins are measured from CK t/CK c (differential mode)/CK (single-ended mode) to the center (midpoint) of the ^tCIVW1 and ^tCIVW2 window taken at the midpoint and vCIVW voltage level. The CA Rx mask window center is around the CK t/CK c cross point (differential mode)/CK (single-ended mode).

Table 96: CA Rx Specifications

			CK Frequency (MHz)																
Item	Symbol	Min/ Max	678	133	200	266	344	400	467	533	600	889	750	800	937 E	C. /CC	1006.5	Unit	Note
Rx mask																			
CA Rx mask width at V _{REF(CA)}	^t CIVW1	Min								0.3								UI	1, 2
CA Rx mask width at vCIVW	^t CIVW2	Min							(0.18								UI	1, 2
CA Rx mask height	vCIVW	Min								155								mV	1, 2, 3
Rx single pulse																			
CA Rx pulse width	tCIPW	Min								0.6								UI	4
CA Rx pulse amplitude	vCIHL_A C	Min								190								mV	3, 5
CA V _{REF}																			•
CA V _{REF}	V _{REF(CA)}	Min								75								mV	
		Max								350								mV	
CA mask offset																			
CA to CA offset	tCA2CA	Max								100								ps	6
CA to CA offset shared CA	tCA2CA_ share	Max								150								ps	7

- Notes: 1. The CA Rx mask voltage and timing parameters at the pin include temperature drift and voltage AC noise impact for frequencies >TBD MHz and max voltage of TBD mV pk-pk from DC-TBD MHz at a fixed temperature on the package. The voltage supply noise has to comply to the component Min-Max DC operating conditions.
 - 2. Rx mask voltage vCIVWI (MAX) must be centered around V_{REF(CA)}.
 - 3. The CA single input pulse signal amplitude into the receiver must meet or exceed vCIHL AC at any point over the total UI. No timing requirement above that level. vCIIHL AC is the peak-to-peak voltage centered around V_{REF(CA)} such that vCIHL_AC/2 min must be met both above and below $V_{REF(CA)}$.
 - 4. The CA only minimum input pulse width is defined at the V_{REF(CA)}.
 - 5. vCIHL_AC does not have to be met when no transitions are occurring.
 - 6. ^tCA2CA is defined as the fastest CA[x] mask center to the slowest CA[y] mask center.
 - 7. tCA2CA offset shared CA is the (per channel) offset for shared CA and is defined for die that share the same package and power supplies.

Micron Confidential and Proprietary

LPDDR5/LPDDR5X AC/DC and Interface Specifications CA Rx Specification

8. The Rx voltage and absolute timing requirements apply for all CA operating frequencies at or below 67 for all speed bins. For example ^tCIVW1 (ns) = 2.24ns at or below 67 MHz CK frequencies.

LPDDR5/LPDDR5X AC/DC and Interface Specifications CA Rx Specification

^tCA2CA_share Definition

For cases where the CA signals are shared between two die in the same package that utilize the same power supplies (byte mode), ^tCA2CA_share is required.

^tCA2CA share R Definition

$$\begin{split} & CA2CA_share_R = MAX(CA2CA_CAi_Die_R) \text{ if MIN}(CA2CA_CAi_Die_R) \geq 0 \mid \\ & MAX(CA2CA_CAi_Die_R) - MIN(CA2CA_CAi_Die_R) \mid \text{if MAX}(CA2CA_CAi_Die_R) \geq 0 \\ & \text{and MIN}(CA2CA_CAi_Die_R) < 0 \mid MIN(CA2CA_CAi_Die_R) \mid \text{if MAX}(CA2CA_CAi_Die_R) < 0 \\ & < 0 \end{split}$$

Figure 26: CK_t Rising Edge CA Mask

LPDDR5/LPDDR5X AC/DC and Interface Specifications CS Rx Specification

^tCA2CA_share_F Definition

 $CA2CA_share_F = MAX(CA2CA_CAi_Die_F) \ if \ MIN(CA2CA_CAi_Die_F) \ge 0 \ | \ MAX(CA2CA_CAi_Die_F) - MIN(CA2CA_CAi_Die_F)| \ if \ MAX(CA2CA_CAi_Die_F) \ge 0 \ and \ MIN(CA2CA_CAi_Die_F) < 0 \ | MIN(CA2CA_CAi_Die_F)| \ if \ MAX(CA2CA_CAi_Die_F) < 0$

Figure 27: CK_t Falling Edge CA Mask

CS Rx Specification

CS Rx Mask and Single Pulse Definition

CS Rx is defined as either asynchronous or synchronous mode. The asynchronous mode Rx spec applies during power down/deep sleep mode and exit from power down/deep sleep mode. Synchronous mode applies when not in exit mode.

CS Rx Mask and Single Pulse Definition for Synchronous Mode

CS Rx mask for synchronous mode is defined as a hexagonal mask shape as shown below. CS signals apply the same compliance mask and operate in single data rate mode.

The receiver mask (Rx Mask) defines the area that the input signal must not encroach on for the DRAM input receiver to successfully capture a valid input signal.

LPDDR5/LPDDR5X AC/DC and Interface Specifications CS Rx Specification

Figure 28: Synchronous Mode CS Rx Mask Definition

CS Rx Single Pulse Definition

Figure 29: Synchronous Mode CS Rx Single Pulse Definition

Note: 1. Single pulse includes any cycle of pulse.

LPDDR5/LPDDR5X AC/DC and Interface Specifications CS Rx Specification

Figure 30: Synchronous Mode CS Timing at DRAM Pin

Note: 1. Timing terms are measured from CK_t/CK_c (differential mode)/CK (single-end mode) to the center (midpoint) of the ^tCSIVW1 and ^tCSIVW2 window taken at the midpoint and vCSIVW voltage levels.

CS Rx Input Level Definition for Asynchronous Mode

The CS Rx specification for power-down mode is defined and shown in the following figure. CS has to be lower than $V_{\rm ILPD}$ to remain in power-down mode or deep-sleep mode. To exit from power-down or deep-sleep mode, CS must satisfy $V_{\rm IHPD}$ and power-down/deep-sleep timing specifications.

Figure 31: Asynchronous Mode VIHPD and VILPD at Power-Down Exit

Table 97: CS Rx Specifications

			CK Frequency (MHz)															
Item	Symbol	Min/ Max	67 ⁶	133	200	266	344	400	467	533	009	688	750	800	937.5	1006.5	Unit	Note
Rx mask																		
CS Rx mask height	vCSIVW	Min						18	80						TBD		mV	2

LPDDR5/LPDDR5X AC/DC and Interface Specifications DQ, DMI, Parity, and DBI Rx Specification

Table 97: CS Rx Specifications (Continued)

								CK I	requ	iency	y (MI	łz)						
Item	Symbol	Min/ Max	67 ⁶	133	200	266	344	400	467	533	009	889	750	800	937.5	1006.5	Unit	Note
CS Rx mask width at V _{REF} CS	tCSIVW1	Min						0	.3						TBD		UI	1
CS Rx mask width at VCSIVW	tCSIVW2	Min		0.22 TBD									UI	1				
Rx single pulse															•		•	
CS Rx pulse amplitude	vCSIHL_ AC	Min		240 TBD								mV	3					
CS reference voltage	^v REFCS			V _{DD2H} /3							mV							
CS Rx pulse width	^t CSIPW	Min						0	.6						TBD		UI	
Power down															•		•	
CS V _{IL} during power down/ deep sleep	V _{ILPD}	Max		130							mV	4						
CS V _{IH} during	V _{IHPD}	Min								550							mV	5
power down/ deep sleep		Max							V _{DD2}	_{2H} + 2	200							

- Notes: 1. CS Rx mask voltage and timing parameters at the pin include temperature drift and voltage AC noise impact based on Z(f) specification at a fixed temperature on the package. The voltage supply noise must comply to the component min/max DC operating conditions.
 - 2. CS single-pulse signal amplitude into the receiver must meet or exceed vCSIHL_AC at any point over the total UI; no timing requirement above a certain level. vCSIIHL_AC is the peak-to-peak voltage centered around V_{REF} CS such that vCSIHL_AC/2 min has to be met both above and below V_{RFF} CS.
 - 3. vCSIHL_AC does not have to be met when no transitions are occurring.
 - 4. The input voltage presented to the CS Rx pin during power down should be 0V nominally to minimize leakage current.
 - 5. V_{IHPD} is only applied for POWER DOWN and DEEP SLEEP EXIT operations.
 - 6. The Rx voltage and absolute timing requirements apply for all CS operating frequencies at or below 67 for all speed bins. For example, ${}^{t}CSIVW1$ (ns) = 4.477ns at or below 67 MHz CK frequency.

DQ, DMI, Parity, and DBI Rx Specification

DQ, DMI, Parity, DBI Rx Mask, and Single Pulse Definition

LPDDR5 DQ, DMI, Parity, and DBI Rx mask is defined as the hexagonal mask shown below. The mask (vDIVW, tDIVW1, tDIVW2) defines the area that the input signal must not encroach on for the DQ input receiver to successfully capture an input signal.

LPDDR5/LPDDR5X AC/DC and Interface Specifications DQ, DMI, Parity, and DBI Rx Specification

Figure 32: DQ, DMI, Parity, and DBI Rx Mask Definition

Figure 33: DQ to WCK, ^tWCK2DQI, and ^tDQ2DQ Timing at the DRAM Pins Referenced from the Internal Latch.

Notes: 1. tWCK2DQI is measured at the center (midpoint) of the tDIVW window.

- 2. DQIz represents the max tWCK2DQI in this example.
- 3. DQly represents the min ^tWCK2DQI in this example.

DQ, DMI, Parity and DBI Rx single pulse definition is shown below.

LPDDR5/LPDDR5X AC/DC and Interface Specifications DQ, DMI, Parity, and DBI Rx Specification

Figure 34: DQ, DMI, Parity, and DBI Rx Single Pulse Definition

Notes: 1. Single pulse includes any cycle of pulse.

2. $V_{REF(DQ)}$ is a calculated value based on V_{DDQ} and MR14/MR15.

Table 98: DQ, DMI, Parity, and DBI Rx Mask and Single-Pulse Specification

		Min						WCK	Freq	uency	(MH	z)						
Item	Sym- bol	/Ma x	2665	533	800	1067	1375	1600	1867	2134	2400	2750	3000	3200	3750	2201	Uni t	Note
Rx mask																		
DQ Rx mask height	vDIVW	Min	14	0		12	20				10	00			TI	BD	mV	1, 2
DQ Rx mask width at V _{REF(DQ)}	^t DIVW 1	Min						0	.35						ТІ	BD	UI	1
DQ Rx mask width at vDIVW	^t DIVW 2	Min						0	.18						ТІ	BD	UI	1
Rx single puls	e																	
DQ Rx pulse amplitude	vDIHL _AC	Min								140							mV	3
DQ Rx pulse width	^t DIPW	Min							().45							UI	4
DQ Rx pulse width above/below vDIVW	^t DIHL	Min							().25							UI	4
DQ V _{REF}																		
DQ V _{REF}	V _{REF(D}	Max			35	0						2	25				mV	
	Q)	Min								75							mV	

Notes: 1. Data Rx mask voltage and timing parameters are applied per pin and include the DRAM DQ-to-DQS voltage AC noise impact for frequencies greater than TBD MHz and maximum voltage of TBDmV peak to peak from DC-TBD MHz at a fixed temperature on the

LPDDR5/LPDDR5X AC/DC and Interface Specifications DQ and DQS Output Timing

- package. The voltage supply noise must comply with the component min/max DC operating conditions.
- 2. Rx mask voltage vDIVW must be centered around $V_{REF(DQ)}$.
- 3. DQ single-input pulse amplitude into the receiver has to meet or exceed vDIHL_AC at any point over the total UI. vDIHL AC is the peak-to-peak voltage centered around $V_{REF(DQ)}$ such that the vDIHL_AC/2 minimum has to be met both above and below $V_{REF(DQ)}$.
- 4. The DQ-only minimum input pulse width is defined at the V_{REF(DQ)}.
- 5. The Rx voltage and absolute timing requirements apply for all DQ operating frequencies at or below 266 MHz for all speed bins. For example ^tDIVW1 (ns) = 656.7ps at or below 266 MHz WCK frequency.

DQ and DQS Output Timing

Table 99: READ AC Timing

Parameter	Symbol	Min/Max	Value	Unit
RDQS_c low-impedance time from CK_t, CK_c	^t LZ(RDQS)	Min	$(RL \times {}^{t}CK) + {}^{t}WCK2CK (Min) + {}^{t}WCK2DQO (Min) - {}^{t}RPRE (Max) \times {}^{t}CK) - TBD$	ps
RDQS_c high-impedance time from CK_t, CK_c	^t HZ(RDQS)	Max	(RL × ^t CK) + ^t WCK2CK (Max) + BL/n_min + (RPST (Max) × ^t CK) - TBD	ps
DQ low-impedance time from CK_t, CK_c	^t LZ(DQ)	Min	(RL × ^t CK + ^t WCK2CK (Min) + ^t DQSQ (Min) - TBD	ps
DQ high-impedance time from CK_t, CK_c	^t HZ(DQ)	Max	(RL x ^t CK) + ^t WCK2CK (Max) + ^t WCK2DQO (Max) + BLn_min - TBD	ps

Table 100: DQ and DQS Output Timing

Notes 1 applies to entire table.

		3200/550	0/6400	7500/8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Note
RDQS_t/_c to DQ skew per byte group	^t DQSQ	-	0.26	-	0.33	UI	2, 3, 8, 9
DQ eye width per pin	^t QW	^t WCKH/L(abs) (Min) – 0.17	-	^t WCKH/L(abs) (Min) – TBD	-	UI	2, 3, 4, 5, 8, 9
Average 1UI jitter of RDQS (Duty-Cycle jit- ter)	^t jitRDQS_1UI(av g)	-0.017	0.017	-0.017	0.017	UI	6, 7, 8,
Absolute 1UI jitter of RDQS	^t jitRDQS_1UI(ab s)	-0.039	0.039	-0.039	0.039	UI	6, 7, 8, 9
Absolute 2UI jitter of RDQS	^t jitRDQS_2UI(ab s)	-0.03	0.03	-0.03	0.03	UI	6, 7, 8, 9

LPDDR5/LPDDR5X AC/DC and Interface Specifications DQ and DQS Output Timing

Table 100: DQ and DQS Output Timing (Continued)

Notes 1 applies to entire table.

		3200/550	0/6400	7500/8			
Parameter	Symbol	Min	Max	Min	Мах	Unit	Note
Absolute 3UI jitter of RDQS	^t jitRDQS_3UI(ab s)	-0.056	0.056	-0.056	0.056	UI	6, 7, 8, 9
Absolute 4UI jitter of RDQS	^t jitRDQS_4UI(ab s)	-0.035	0.035	-0.035	0.035	UI	6, 7, 8, 9
Remainder of absolute 1UI jitter of RDQS with average 1UI jitter re- moved	^t jitRDQS_1UI	-0.022	0.022	-0.022	0.022	UI	6, 7, 8, 9, 10
Remainder of absolute 3UI jitter of RDQS with average 1UI jitter re- moved	^t jitRDQS_3UI	-0.039	0.039	-0.039	0.039	UI	6, 7, 8, 9 , 11

Notes

- 1. These parameters are defined over voltage and temperature after DCA.
- 2. These parameters are a function of WCK input clock jitter ^tWCKH and ^tWCKL. Note for ^tWCKL(abs)min of 0.43tck = 0.86 UI
- 3. These parameters are defined as min/max across all DQ pins per byte group. This includes the across pin variation within a byte group.
- 4. These parameters are defined per DQ pin where ^tQW= ^tQH(pin)-^tDQSQ(pin) for the eye width.
- 5. Equation applies to ${}^{t}WCKH/L(abs)$ MIN = 0.43 ... 0.46 ${}^{t}CK$. If ${}^{t}WCKH/L(abs)$ MIN \geq 0.46 ${}^{t}CK$ then ${}^{t}QW$ = 0.75UI

Example1: If ${}^{t}WCKH/L(abs)$ MIN is 0.43 ${}^{t}WCK$ then ${}^{t}QW$ MIN = ${}^{t}WCKH/L(abs)$ MIN – 0.17 UI = 0.86 UI – 0.17UI = 0.69UI.

Example2: If ${}^tWCKH/L(abs)$ MIN is $0.46{}^tWCK$ then tQW MIN = ${}^tWCKH/L(abs)$ MIN – 0.17 UI = 0.92 UI – 0.17UI = 0.75UI.

Example3: If ^tWCKH/L(abs) MIN is 0.48^tWCK then ^tQW MIN = 0.75UI.

- 6. This parameter is defined as ^tjitRDQS_NUI = ^tRDQS_NUI N*UI where N= 1,2,3,4 and UI is the unit interval. Example ^tjitRDQS_2UI= ^tRDQS_2UI 2*UI.
- 7. These parameters are a function of VDD2H Zmax. When VDD2H Zmax is below 10 mohms from 2-10MHz and 20 mohms at 20MHz the min and max spec values will reduce by 0.005UI.

Example: tjitRDQS_3UI MIN = -0.0385 and tjitRDQS_3UI MAX = 0.0385

- 8. When operating in WCK low frequency mode (MR18 OP[3]=0b), <3200 data rate timing parameters are applied.
- 9. When operating in WCK high frequency mode (MR18 OP[3]=1b), 3200/5500/6400 data rate timing parameters are applied.
- 10. ^tjitRDQS_1UI MAX = ^tjitRDQS_1UI(abs) MAX ^tjitRDQS_1UI(avg) MAX; ^tjitRDQS_1UI MIN = ^tjitRDQS_1UI(abs) MIN ^tjitRDQS_1UI(avg) MIN
- 11. [†]jitRDQS_3UI MAX = [†]jitRDQS_3UI(abs) MAX [†]jitRDQS_1UI(avg) MAX; [†]jitRDQS_3UI MIN = [†]jitRDQS_3UI(abs) MIN [†]jitRDQS_1UI(avg) MIN

LPDDR5/LPDDR5X AC/DC and Interface Specifications DQ NUI Tx Jitter Specification

DQ NUI Tx Jitter Specification

DQ-to-RDQS Differential Jitter

The DRAM DQ-to-RDQS differential jitter is defined to support both SOC matched and unmatched DQ-RDQS input receiver (Rx) types over number of UI (NUI) of mismatch. All output timings are referenced to RDQS for source synchronous timing relationships. The appropriate RDQS preamble mode must be selected to support the unmatched SOC Rx. It is the responsibility of the SOC and the system to ensure that the advanced RDOS preamble edges are robust for system operation.

The NUI DQ-to-RDQS output timing is defined as ^tRDQS_NUI in conjunction with ^tQH and ^tDQSQ, where NUI defines the number of UI that RDQS shifts from the corresponding DQ as shown in the figure below.

Figure 35: NUI DQ-to-RDQS Output Timing Definition

The effective eye width available at the DRAM per byte for an unmatched Rx will be ^tQH - ^tDQSQ - |^tjitRDQS_NUI| where ^tjitRDQS_NUI=^tRDQS_NUI - N*UI with N= 1,2,3,4 and UI is the unit interval.

The effective eye width available at the DRAM per pin will be ${}^tQW - |{}^tJitRDQS_NUI|$ where ${}^tJitRDQS_NUI - {}^*UI$ with N=1,2,3,4 and UI is the unit interval and ${}^tQW = {}^tQH(pin) - {}^tDQSQ(pin)$.

LPDDR5/LPDDR5X AC/DC and Interface Specifications DQ NUI Tx Jitter Specification

Figure 36: ^tQW Example of Eye Width per Pin and Relationship of ^tDQSQ(pin) and ^tQH(pin) Across Byte Group

The figures below include examples of 0 and 3UI mismatch using the 4 tWCK RDQS read preamble of 2tWCK static + 2tWCK toggle.

Figure 37: Read Burst Example for Pin DQx Depicting Bits 0 and 5 Relative to the RDQS Edge for 0 UI Mismatch

Note: It is the responsibility of the SOC and system to ensure the advanced RDQS preamble edges are robust for system operation.

Figure 38: Read Burst Example for Pin DQx Depicting Bits 0 and 5 Relative to the RDQS Edge for 3 UI Mismatch

Micron Confidential and Proprietary

LPDDR5/LPDDR5X AC/DC and Interface Specifications DQ NUI Tx Jitter Specification

Note: It is the responsibility of the SOC and system to ensure the advanced RDQS preamble edges are robust for system operation.

LPDDR5/LPDDR5X AC/DC and Interface Specifications Input/Output Capacitance

Input/Output Capacitance

Table 101: Input/Output Capacitance

		Min/	D					
Parameter	Symbol	Max	533-5500	6400	7500-8533	Unit	Note	
Input capacitance, CK_t and	CCK	Min	0.3	0.3	0.3	pF	1, 2	
CK_c		Max	1.4	0.8	0.8			
Input capacitance delta, CK_t	CDCK	Min	0.0	0.0	0.0	pF	1, 2, 3	
and CK_c		Max	0.09	0.09	0.09			
Input capacitance, WCK_t and	CWCK	Min	0.3	0.3	0.3	pF	1, 2	
WCK_c		Max	1.0	0.9	0.8			
Input capacitance delta,	CDWCK	Min	0.0	0.0	0.0	pF	1, 2, 4	
WCK_t and WCK_c		Max	0.09	0.09	0.09			
Input capacitance, all other input-only pins	Cl	Min	0.3	0.3	0.3	pF	1, 2, 5	
		Max	1.4	0.8	0.8			
Input capacitance delta, all	CDI	Min	-0.1	-0.1	-0.1	pF	1, 2, 6	
other input-only pins		Max	0.1	0.1	0.1			
Input/output capacitance, DQ	CIO	Min	0.3	0.3	0.3	pF	1, 2, 7	
and DMI		Max	1.0	0.9	0.8			
Input/output capacitance	CDIO	Min	-0.1	-0.1	-0.1	pF	1, 2, 9	
delta, DQ and DMI		Max	0.1	0.1	0.1			
Output capacitance, RDQS_t	COO	Min	0.3	0.3	0.3	pF	1, 2	
and RDQS_c		Max	1.0	0.9	0.8			
Output capacitance delta,	CDOO	Min	0.0	0.0	0.0	pF	1, 2, 8	
RDQS_t and RDQS_c		Max	0.1	0.1	0.1			
Input/output capacitance, ZQ	CZQ	Min	0.0	0.0	0.0	pF	1, 2	
pin		Max	5.0	5.0	5.0			

- Notes: 1. This parameter applies to the die device including IO capacitance and RDL if needed (does not include package capacitance, such as the bond wire).
 - 2. This parameter is not subject to production tests. It is verified by design and characterization. The capacitance is measured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with V_{DD1}, V_{DD2}, V_{DD0}, V_{SS}, V_{SS} applied and all other pins floating).
 - 3. Absolute value of CCK_t-CCK_c.
 - 4. Absolute value of CWCK_t-CWCK_c.
 - 5. CI applies to CS CA[6:0].
 - 6. $CDI = CI 0.5 \times (CCK_t + CCK_c)$.
 - 7. DMI loading matches DQ.
 - 8. Absolute value of CRDQS_t-CRDQS_c.
 - 9. CDIO = CIO Average(CDQn, CDMI) in byte-lane.

LPDDR5/LPDDR5X AC/DC and Interface Specifications Revision History

Revision History

Rev. E - 12/2020

Update to reflect latest JEDEC or adding LPDDR5X parameters

- Absolute Maximum DC rating table update
- Recommended DC operating conditions table update
- Deleteing tFC_middle parameter
- tWCK2DQ AC timing Parameters table update
- New table: WCK stop AC timing
- New Table: NT-ODT AC timing
- Clock AC timing table update
- Write Data Clock AC timing table update
- CA Rx specifications table update
- DQ, DMI, Parity, and DBI Rx Mask and Single-Pulse Specification table update
- · DQ and DQS Output Timing table update
- Input/Output Capacitance table update

Rev. D - 04/2020

- Core AC timings: Text change from Link ECC to Write Link ECC
- Input leakage current table update
- Added tOSCPD to power down AC timing table
- tPDN spec. update
- Changed tWCK2DQI_LF max value from 900ps to TBD
- tWCK2DQI rank2rank max, tWCK2DQO rank2rank max LF mode spec update
- Added Table: WCK2DQI/WCK2DQO Interval Oscillator AC Timing
- Typo correction for tWR2WCK: Min spec to Max spec
- Typo correction for tWCK(avg) max value
- DQ and DQS Output timing table update

Rev. C - 02/2020

All the updates are based on JEDEC JESD209-5A except Temperature Derating AC Timing Table.

- Recommended DC operating condition table
- Added ESD specification table
- Added Differential Output Slew Rate table
- Updated Temperature Derating AC Timing Table. (JEDEC spec. is still TBD)
- Added Notes to Table 59
- Added tXDSM_XP, tPDECSODTOFF, tPDXCSODTON in Table60
- Added VREFCA update timing table
- Added VREFDQ update timing table
- Updated WCK2CK Leveling Timing Parameters Table
- Updated WCK Oscillator Matching Error Specification for HF Mode Table
- Updated WCK Oscillator Matching Error Specification for LF Mode Table

LPDDR5/LPDDR5X AC/DC and Interface Specifications Revision History

- Updated Command Bus Training AC Timing Table
- Added Enhanced WCK Always On Mode Timing Table
- VREFCA value update
- tQW value update
- Updated legal status to Production

Rev. B - 04/2019

- Typo correction: VREFCAmax 350-->367mV
- Typo correction: VDQSR2 0.5-->4.8 mV/us
- data pattern correction for IDD4R DBI off Pattern B BL1
- Unit correction SRIdiff WCK
- Unit correction VWCKIVW,tWCKHL,SRIWCKSE
- tPDN spec TBD-->10ns,1nCK
- correction tWLDQOFF min-->max
- tWCK to CK/DQ offset rank to rank variation table update
- 4 new spec added to CBT: tXCBT,tCBTWCKODTFIX,tCBTODTOFF,tCBTNTODTOFF
- DQ and DQS output timing: TBD spec fixed
- Added single ended CK/WCK input voltage specification for differential mode and reorganized section order.

Rev. A - 01/2019

· Initial release

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.