MATH 171: HOMEWORK 1

J. EMMANUEL FLORES

Problem 1. Let $f: X \to Y$ be a function and $A, B \subset Y$.

- (1) Prove that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- (2) If f is injective and $y \in Y$, then $f^{-1}(y) = f^{-1}(\{y\})$ contains at most one point.
- (3) If f is surjective and $y \in Y$, then $f^{-1}(y) = f^{-1}(\{y\})$ contains at least one point.

Solution. Let *X* and *Y* be sets, $f: X \to Y$ a function and $A, B \subset X$.

(1) By definition, the inverse image is given by

$$f^{-1}(B) = \{x, f(x) \in B\},\$$

thus, let

$$x \in f^{-1}(A \cup B) \iff x \in X, f(x) \in A \cup B$$

it follows that

$$x \in X, f(x) \in A, \text{ or } f(x) \in B,$$

 $\iff x \in X, f(x) \in A \text{ or } x \in X, f(x) \in B,$

thus, we have the

$$f^{-1}\left(A\cup B\right)\subset f^{-1}\left(A\right)\cup f^{-1}\left(B\right),$$

and

$$f^{-1}\left(A\right)\cup f^{-1}\left(B\right)\subset f^{-1}\left(A\cup B\right),$$

leaving us with

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
.

On the other hand, let

$$x \in f^{-1}(A \cap B) \iff x \in X, f(x) \in A \cap B$$

 $\iff x \in X, f(x) \in A \text{ and } f(x) \in B,$

thus

$$x \in f^{-1}(A) \cap f^{-1}(B)$$
.

(2) Let's assume that f is injective, $y \in Y$, and we consider $x_1, x_2 \in X$ such that

$$x_1, x_2 \in f^{-1}(\{y\}) \implies f(x_1) = y \& f(x_2) = y,$$

 $\implies f(x_1) = y = f(x_2) \implies f(x_1) = f(x_2),$

but *f* is injective, thus it follows that

$$x_1 = x_2$$
,

therefore, $f^{-1}(\{y\})$ contains at most one point.

(3) Let *f* be a surjective function, this is

$$\forall y \in Y, \exists x \in X \text{ s.t. } y = f(x),$$

thus if $y \in Y$, and we consider $f^{-1}(\{y\})$, there exists, at least one $x \in X$ such that

$$y = f(x)$$
,

thus $f^{-1}(\{y\})$ contains at least one point.

Problem 2. Prove that the union of countably many countable sets is countable.

Solution. Let's consider the family $\{E_n\}$ where E_n is countable, for each $n \in \mathbb{N}$. Thus we want to prove that

$$\bigcup_{n\in\mathbb{N}}E_n$$
,

is also countable. Now, because each E_n is countable, then, there exist a bijection between E_n and \mathbb{N} , for each $n \in \mathbb{N}$, this is, we can enumerate all the elements of E_n , in particular we can make that enumeration as follows

$$E_n = \{x_{nk} : k = 1, 2, \dots \},$$

for all $n \in \mathbb{N}$, and now, let's make an enumeration of $\bigcup_{n \in \mathbb{N}} E_n$, as follows

this is, we have an enumeration

$$x_{11}$$
; x_{21} , x_{21} ; x_{31} , x_{22} , x_{13} ; x_{41} , x_{32} , x_{23} , x_{14} ; · · · ,

in which all the elements of $\cup_{n\in\mathbb{N}}E_n$ have a tag, thus we have constructed a bijection between $\cup_{n\in\mathbb{N}}E_n$ and \mathbb{N} , and therefore the union of countably many countable sets is countable.

Problem 3. For a subset A of \mathbb{R} , let $\delta(A) = \sup\{|x - y|, x, y \in A\}$ be the diameter of A. Prove that $\delta(A) < \infty$ if and only if A is bounded.

Solution. Let $A \subset \mathbb{R}$, such that $A \neq \emptyset$, and let's consider

$$\delta(A) = \sup \{|x - y|, x, y \in A\}.$$

(\iff)Let's suppose that A is bounded, and in particular that implies that A is bounded from above, that is,

$$\exists M/2 \in \mathbb{R}$$
 s.t $x \leq M/2, \forall x \in A$,

on the other hand, we have that

$$|x - y| = |x - 0 + 0 - y| \le |x - 0| + |0 - y|,$$

 $\le |x| + |-y|,$
 $\le |x| + |y| \le M/2 + M/2,$
 $\le M,$

thus, we have that

$$|x-y| \leq M$$
, $\forall x, y \in A$,

in other words the set

$$\{|x-y|, x, y \in A\},\$$

is bounded from above, and is not empty, which implies that the sup $\{|x - y|, x, y \in A\}$ exists, and from that it follows that

$$\delta(A) < \infty$$
.

 (\Longrightarrow) Now, let's suppose that $\delta(A)$ < ∞, this is

$$\delta(A) = \sup\{|x - y|, x, y \in A\} < \infty,$$

thus, there exist $M \in \mathbb{R}$ such that

$$|x - y| \le M$$
,
 $|x - 0 + 0 - y| \le M$,
 $|x - 0| + |0 - y| \le M$,
 $|x| + |-y| \le M$,

and from this it follows that

$$|x| \leq M - |y|$$

if M - |y| < M, then M - |y| is not an upper bound of A, thus

$$|x| \leq M$$

and therefore *A* is bounded.

Problem 4. Let $\{x_n\}$ be a Cauchy sequence of real numbers. In this problem we prove that this sequence converges. For each $n \ge 1$, let $A_n = \{x_k : k \ge n\}$.

- (1) Prove that the sequence of diameters $\{\delta(A_n)\}$ is decreasing and tends to 0.
- (2) Justify why $\alpha_n = \inf A_n$ and $\beta_n = \sup A_n$ exist, and that $\{\alpha_n\}$ is increasing while $\{\beta_n\}$ is decreasing with $\alpha_n \leq \beta_n$.

- (3) Conclude that $\alpha = \lim \alpha_n$ and $\beta = \lim \beta_n$ both exist, and that $\alpha, \beta \in [\alpha_n, \beta_n]$ for all n > 1.
- (4) Conclude that $\alpha = \beta = \lim x_n$.

Solution. Let's consider $\{x_n\}$ be a Cauchy sequence of real numbers and

$$A_n = \{x_k : k \ge n\} \quad \forall n \ge 1.$$

(1) Now, for each A_n we have that

$$A_{n+1} \subset A_n$$
, $\forall n \in \mathbb{N}$,

thus we have that the sequence is decreasing, this is

$$\delta(A_{n+1}) < \delta(A_n)$$
.

On the other hand, using the condition of Cauchy sequence, $\{x_n\}$, there exist $\epsilon > 0$, and $N \in \mathbb{N}$, such that for all m, n > N, we have

$$|x_n-x_m|<\epsilon$$
,

and we and from this it follows that the diameters

$$\delta\left(A_{n}\right)=\sup\left\{ \left|x_{k_{i}}-x_{k_{j}}\right|;k_{i},k_{j}>n\right\} ,$$

tend to zero.

(2) Now, because of the Cauchy sequence property it follows that A_n is a non-empty bounded set of real numbers which implies that the infimum α_n and supremum β_n exist. We also have that

$$A_{n+1} \subset A_n, \forall n \in \mathbb{N}$$

which implies that

$$\alpha_n \leq \alpha_{n+1}$$
 & $\beta_{n+1} \leq \beta_n$

from this we have that

$$\{\alpha_n\}$$
 is increasing,

whereas

$$\{\beta_n\}$$
 is decreasing,

is decreasing, but we due to the fact that α_n and β_n are the infimum and supremum of A_n , respectively, it follows that

$$\alpha_n \leq x_k \leq \beta_n, \quad \forall k \geq n.$$

(3) Because $\{\alpha_n\}$ is increasing and bounded from above by any β_n , it follows that it has a limit, and let's call it α . On the other hand, because $\{\beta_n\}$ is decreasing and bounded from below by any α_n , it also follows that it has a limit, and let's call it β . Thus we have

$$\forall n \in \mathbb{N}, \quad \alpha_n \leq \alpha \leq \beta \leq \beta_n,$$

which implies that

$$\alpha \in [\alpha_n, \beta_n]$$
 & $\beta \in [\alpha_n, \beta_n]$ $\forall n$.

(4) Now, we have

$$\alpha_n \leq x_n \leq \beta_n, \quad \forall n \in \mathbb{N},$$

if we take the limit as $n \to \infty$, we get

$$\alpha \leq \lim_{n \to \infty} x_n \leq \beta$$
,

but α and β are both limits of the sequence $\{x_n\}$, and the limit is unique, thus it follows that

$$\alpha = \beta = \lim_{n \to \infty} x_n,$$

which completes the proof.

Problem 5. Show why the intersection of an infinite number of open sets in a topological space (X, \mathcal{T}) is not necessarily open.

Solution. Let's consider the topological space (\mathbb{R}, τ) , where τ is the usual topology in the real line, in this case the open sets are open intervals, that is, let $x, y \in \mathbb{R}$,

$$(x,y)$$
 is open,

and now, let's consider the collection of open sets; let $n \in \mathbb{N}$

$$\mathcal{U}_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 is open $\forall n \in \mathbb{N}$.

If we allow that the arbitrary intersection of open sets is also an open set, we can make

$$\cap_{n\in\mathbb{N}}\mathcal{U}_n=\{0\}$$
,

which is not open.

Problem 6. Recall that the Euclidean distance of \mathbb{R}^n is given by

$$d(x,y) = \left(\sum_{k=1}^{n} (x_k - y_k)^2\right)^{1/2}, \quad \text{for } x, y \in \mathbb{R}^n.$$

The standard topology \mathcal{T}_{std} of \mathbb{R}^n is defined as follows $\mathcal{U} \subset \mathbb{R}^n$ is open if and only if for each $p \in \mathcal{U}$ there exist $\epsilon_p > 0$ such that

$$B(p,\epsilon_p) = \{x \in \mathbb{R}^n : d(x,p) < \epsilon_p\} \subset \mathcal{U}.$$

Prove that (\mathbb{R}^n , \mathcal{T}_{std}) is a topological space.

Solution. In order to prove that $(\mathbb{R}^n, \mathcal{T}_{std})$ is a topological space we need to prove that \emptyset , $\mathbb{R}^n \in \mathcal{T}_{std}$, the arbitrary union of open sets is open and the finite intersection of open sets is open.

(1) Let's suppose that $\emptyset \notin \mathcal{T}_{std}$, which implies that $\exists x \in \emptyset$ with some property, but this is a contradiction, therefore

$$\emptyset \in \mathcal{T}_{std}$$
,

on the other hand, let $x \in \mathbb{R}^n$, we can always find an $\epsilon > 0$, such that

$$B(p,\epsilon) \subset \mathbb{R}^n$$
,

therefore

$$\mathbb{R}^n \in \mathcal{T}_{std}$$
.

(2) Let \mathcal{U}_{α} be a family of open sets, indexed by $\alpha \in \lambda$ and let's consider

$$\cup_{\alpha\in\lambda}\mathcal{U}_{\alpha}$$
,

if $\bigcup_{\alpha \in \lambda} \mathcal{U}_{\alpha} = \emptyset$, then, there's nothing to prove, because $\emptyset \in \mathcal{T}$, thus, let's assume that $\bigcup_{\alpha \in \lambda} \mathcal{U}_{\alpha} = \emptyset$, and let

$$x \in \bigcup_{\alpha \in \lambda} \mathcal{U}_{\alpha}$$
,

it follows that there exist an $i \in \lambda$ such that

$$x \in \mathcal{U}_i \implies \exists \epsilon_i > 0 \quad \text{s.t.} \quad x \in B(x, \epsilon_i) \subset \mathcal{U}_i$$

and from this it follows that

$$x \in B(x, \epsilon_i) \subset \mathcal{U}_i \subset \cup_{\alpha \in \lambda} \mathcal{U}_{\alpha}$$
,

thus

$$B(x, \epsilon_i) \subset \cup_{\alpha \in \lambda} \mathcal{U}_{\alpha}$$
,

therefore, the arbitrary union of open sets is open.

(3) Now, let's consider the following finite collection of sets

$$\{U_i: i \in \{1,2,\cdots,n\}, U_i \in \mathcal{T}_{std}\},$$

and let's consider the intersection

$$\bigcap_{i=1}^n \mathcal{U}_i$$
,

if

$$\bigcap_{i=1}^n \mathcal{U}_i = \emptyset$$
,

then, there's nothing to prove, because \emptyset is open. Then, let's consider that $\bigcap_{i=1}^n \mathcal{U}_i \neq \emptyset$, and let

$$x \in \cap_{i=1}^n \mathcal{U}_i$$
,

thus, it follows that for each $U_i \in \mathcal{T}$, there is an epsilon ball $B(x, \epsilon_i)$, such that

$$x \in B(x, \epsilon_i) \subset \mathcal{U}_i$$

now, let be $\epsilon > 0$, such that

$$\epsilon = \min \{ \epsilon_i : i \in \{1, 2, \cdots, n\} \},$$

and let's consider $B(x, \epsilon)$, thus, it follows that $x \in B(x, \epsilon)$, and

$$B(x,\epsilon) \subset B(x,\epsilon_i) \subset \mathcal{U}_i,$$

$$\implies B(x,\epsilon) \subset \mathcal{U}_i, \quad \forall i \in \{1,2,\cdots,n\},$$

$$\implies B(x,\epsilon) \subset \bigcap_{i=1}^n \mathcal{U}_i,$$

therefore $\bigcap_{i=1}^{n} \mathcal{U}_i$ is open.