Algorithm Design and Analysis (Fall 2022) Midterm Exam

Instructions:

- 1. The exam contains 5 pages. Please write your name and student ID on every page.
- 2. Do not start to read the questions until the examination starts.
- 3. This is an open book exam.
- 4. Exam duration: 8:00AM 9:30AM.
- 5. For each question, you can continue your solution on the back of the page.

Name:	Student ID:

Name:	Student ID:
name:	Student ID:

- 1. (35 Points) Consider the special case of the Knapsack problem where each item i's value v_i equals to its weight w_i . Suppose $v_i = w_i$ is a (positive) integer power of 2 for each $i = 1, \ldots, n$, and the capacity constraint K is an integer. Consider the following greedy algorithm:
 - sort the items by descending order of weights (or values);
 - for each item i, if putting i into the knapsack does not make the total weight more than K, put i in.

Does this algorithm always output an optimal solution? If so, prove it. If not, give a counterexample.

Name:	Student ID:

2. (a) (15 Points) Let G be a directed graph with n vertices labeled v_1, \ldots, v_n . The graph contains n-1 edges e_1, \ldots, e_{n-1} , and it is known that e_i can be either (v_i, v_{i+1}) or (v_{i+1}, v_i) . That is, if we ignore the directions of the edges, G is a line. Design an algorithm that finds one vertex with out-degree 0. Your algorithm must run in $O(\log n)$ time. Prove the correctness of your algorithm, and analyze its time complexity.

The adjacency list is used to store the graph, and the indices of the n vertices are stored in an array.

Name:	Student ID:

(b) (15 Points) Let G be a directed graph with n^2 vertices labeled $\{v_{ij}\}_{i=0,1,\dots,n-1;j=0,1,\dots,n-1}$. Each vertex v_{ij} has four neighbors $v_{(i-1)j}, v_{(i+1)j}, v_{i(j-1)}, v_{i(j+1)}$, where we adopt the convention that 0-1=n-1 and (n-1)+1=0 (for example, $v_{(n-1)j}$ is a neighbor of v_{0j}). It is known that the directions of the edges between v_{ij} and the "left" and the "right" neighbors of v_{ij} are the same, i.e., either both edges point towards v_{ij} or both edges point outwards v_{ij} , and the directions of the edges between v_{ij} and the "upper" and the "lower" neighbors of v_{ij} are the same. Specifically, the four edges incident to v_{ij} must be in one of the following four configurations.

Design an algorithm that finds one vertex with out-degree 0 or one directed cycle. Your algorithm must run in $O(\log n)$ time. Prove the correctness of your algorithm, and analyze its time complexity.

The adjacency list is used to store the graph, and the indices of the n^2 vertices are stored in an array.

Name:	Student ID:
Name:	Student ID:

3. (35 Points) Given an undirected (unweighted) graph G = (V, E) and a vertex s, design an efficient algorithm to find a cycle with minimum number of edges that contains s. Notice that a cycle cannot contain an edge more than once. In particular, for a neighbor u of s, s-u-s is not a valid cycle. Prove the correctness of your algorithm and analyze its time complexity. Try to design an algorithm with time complexity as lower as you can.