## Análise de Risco

Sessão 2 Conceitos de probabilidade

Prof. E.A. Schmitz

PPGI/UFRJ

June 18, 2018

# Espaço amostral

Conjunto de pontos que representa os possíveis resultados de um experimento



Figure: EA para lançamento de um dado

### Probabilidades no EA

A cada ponto i do espaço amostral EA, 1..n associamos um número  $p_i$  tal que:

- 1.  $p_i \ge 0$
- 2.  $\sum_{1}^{n} p_{i} = 1$
- 3.  $p_i$  pode medido pela frequencia relativa do evento i



Figure: Exemplo de EA

#### **Eventos**

Evento: Conjunto de pontos do espaço amostral

Definição: A probabilidade de ocorrência de um evento A é a soma das probabilidades dos pontos do EA associados com o evento.

$$P\{A\} = \sum_{i=1}^{n} p_i$$

#### Teorema da soma

Sejam  $A_1$  e  $A_2$  dois eventos de EA:

 $P\{A_1A_2\}$ : probabilidade da ocorrência conjunta de  $A_1$  e  $A_2$ 

 $P\{A_1+A_2\}$ : probabilidade da ocorrência de ao menos um dentre  $A_1$  e  $A_2$ 

Teorema da soma:

$$P\{A_1 + A_2\} = P\{A_1\} + P\{A_2\} - P\{A_1A_2\}$$

Se: 
$$A_1 \cap A_2 = \emptyset$$
  
 $P\{A_1 + A_2\} = P\{A_1\} + P\{A_2\}$ 

## Teorema da multiplicação

#### Queremos achar:

 $P\{A_1A_2\}$ : probabilidade da ocorrência conjunta de  $A_1$  e  $A_2$ 

 $P\{A_2|A_1\}$  : probabilidade que  $A_2$  ocorra sabendo que  $A_1$  ocorreu Então:

- $P\{A_2|A_1\} = \frac{P\{A_1A_2\}}{P(A_1)}$
- $P\{(A_1A_2) = P\{A_1\} \cdot P\{A_2|A_1\}$

Se: 
$$P\{A_2|A_1\} = P\{A_2\}$$

- os eventos são independentes
- $P\{A_1A_2\} = P\{A_1\} \cdot P\{A_2\}$

# Fórmula de Bayes

Sejam  $A_1, A_2, A_n$  conjunto de eventos mutuamente exclusivos que particionam EA

Seja B evento onde  $P(B) \ge 0$ 

Então: 
$$P(A_i|B) = \frac{P(A_i)*P(B|A_i)}{P(B)}$$

mas

$$P(B) = P(A_1) * P(B|A_1) + P(A_2) * P(B|A_2), \dots P(A_n) * P(B|A_n)$$

$$P(A_i|B) = \frac{P(A_i) * P(B|A_i)}{P(A_1) * P(B|A1) + P(A_2) * P(B|A_2), \dots P(A_n) * P(B|A_n)}$$

## Variáveis aleatórias

Variável Aleatória(VA): é uma variável numérica definida no espaço amostral

 $V\!A: E\!A 
ightarrow \mathbb{R}$ 

Função de probabilidade: retorna a probalidade que uma VA X assuma o valor x, denotado por f(x)

$$f(x) = Prob(X = x)$$

Função de probabilidade cumulativa: retorna a probabilidade que

X assuma o valor  $\leq x$ 

$$F(x) = Prob(X \le x)$$

## Exemplo - lançamento de um dado

#### X=pontos num lançamento de dado



## Exemplo - lançamento de um dado



## Média

## Média de uma VA com fp=f(x):

$$\blacktriangleright \mu = \int_{-\infty}^{\infty} x_i * f(x_i)$$

Média representa o centro de massa do gráfico da função

## Variância

Variância de uma VA com fp=f(x):

 Variância representa o espalhamento ao redor do centro de massa do gráfico da função

## Exemplo moeda

Seja X="valor obtido ao jogar uma moeda"

- ▶  $\{H, T\} \rightarrow \{0, 1\}$
- $f(x) = \{(0,1/2), (1,1/2)\}$
- $\mu = 0 * f(0) + 1 + 1 * f(1) = 1/2$

# Algumas fps usadas em AR

- Uniforme: valores contínuos dentro de um intervalo
- Discreta: conjunto de valores discretos
- Triangular: continua (mínimo, mais provável e máximo)
- Normal: curva do sino (média, desvio padrão)
- Binomial: sorteio de eventos com probabilidade p

## Uniforme

- VA assume valores numa faixa, todos igualmente prováveis
- ightharpoonup R: runif(n, min = 0, max = 1)
- Uniforme(0,1): base da geração das outras distribuições

$$\mu = \int_0^1 x * 1 dx = 1/2$$

$$\sigma^2 = \int_0^1 (x - 1/2)^2 * 1 dx = 1/12$$

## Triangular

- ► VA segue uma estimativa de 3 pontos: minimo (a) , mais provável (m) e máximo (b)
- R: rtriangle(min,max, mprov) Package:triangle
- $\mu = (a + b + m)/3$

## Normal 1

- ▶ VA expressa variabilidade de muitos fenomenos naturais
- R: rnorm(mu,sd)
- $f(x) = \frac{1}{2*\pi} * e^{-\frac{(x-\mu)^2/\sigma^2}{2}}$
- ightharpoonup média $=\mu$
- ightharpoonup variancia=  $\sigma^2$

## Normal 2

Normal reduzida:  $\mu = 0, \sigma^2 = 1$ 

Alguns números importantes:

- ▶  $Prob(-1 \le X \le 1) = 0.68$
- ▶  $Prob(-2 \le X \le 2) = 0.95$
- ►  $Prob(-2.3 \le X \le 2.3) = 0.98$
- ►  $Prob(-3 \le X \le 3) = 0.995$

Teorema 1:Transformação linear de VAs Sejam  $\mu, \sigma^2$  os parâmetros de X: Se X1 = a\*X + b então seus parâmetros são:  $\mu_1 = a*\mu + b$   $\sigma_1^2 = a^2*\sigma$ 

Teorema 2:Soma de n VAs Seja

$$Z=\sum_{1}^{n}X_{i}$$

Se os parâmetros de  $X_i = (\mu_i, sigma_i^2)$  então os parâmetros de Z são:

$$\mu_z = \sum_{1}^{n} \mu_i$$

$$\sigma_z^2 = \sum_{1}^{n} \sigma_i^2$$

Teorema 3:Uso da normal reduzida

Sejam 
$$X \sim \textit{Normal}(\mu, \sigma^2)$$
 e  $\Phi \sim \textit{Normal}(0, 1)$ 

$$P(a < X \le b) = F(b) - F(a) = \Phi((b - \mu)/\sigma) - \Phi((a - \mu)/\sigma)$$

Teorema 4: Soma de n VAs normais independentemente distribuidas

Sejam  $X_i \sim Normal(\mu_i, \sigma_i^2), i \in 1..n$ 

$$Z=\sum_{1}^{n}X_{i}$$

#### então:

- $ightharpoonup Z \sim Normal(\mu_z, \sigma_z^2)$
- $\blacktriangleright \ \mu_z = \sum_{1}^n \mu_i$
- $ightharpoonup \sigma_z = \sum_1^n \sigma_i^2$

Teorema 5: Teorema central do limite (TCL) Sejam  $X_i, i \in 1..n$ , independentemente distribuidas com  $(\mu_i, \sigma_i^2)$ 

$$Z=\sum_{1}^{n}X_{i}$$

então se  $n \to \infty$ 

- $ightharpoonup Z 
  ightarrow \textit{Normal}(\mu_{z}, \sigma_{z}^{2})$
- $\blacktriangleright \ \mu_{z} = \sum_{1}^{n} \mu_{i}$

### Monte Carlo

- Conseguir soluções aproximadas para funções complexas através de amostragem computacional.
- ightharpoonup Exemplo: algoritmo para calcular valor de  $\pi$  por amostragem:
  - ► Lançar N dardos ao acaso dentro do quadrado de lado = 2
  - Contar o número de acertos A dentro do círculo inscrito
  - $\blacksquare$   $\pi \sim 4 * (A/N)$