

COMP2212 PROGRAMMING LANGUAGE CONCEPTS

Dr Julian Rathke

TYPE RULES FOR TOY

REMINDER: GRAMMAR OF THE TOY LANGUAGE

The grammar for the Toy language we are using is as follows:

REMINDER: TYPE DERIVATION RULES AND TREES

The general form of a type derivation rule is

$$\frac{\vdash E_1 : T_1 \quad \vdash E_2 : T_2 \quad \dots \quad \vdash E_n : T_n}{\vdash E : T}$$

"If the relation holds for the things above the line then the relation holds for things below the line also".

In order to show that $\vdash E : T$ holds, the rules must be formed in to a tree such that the leaf nodes of the tree have no premises. For example

$$\begin{array}{|c|c|c|c|c|}\hline & \vdash E_4 : T_4 & \vdash E_5 : T_5 \\ \hline \vdash E_0 : T_0 & \vdash E_3 : T_3 \\ \hline \vdash E_1 : T_1 & \vdash E_2 : T_2 \\ \hline \vdash E : T \\ \hline \end{array}$$

RULES FOR THE TOY LANGUAGE

Let's write type derivation rules for our toy language, one construct at a time, then. First, rules for the values:

$$\overline{\vdash n : \mathsf{Int}}$$
 TINT $\overline{\vdash b : \mathsf{Bool}}$ TBOOL

It can be useful to give the each type derivation rule a name (cf. Tlnt and TBool).

Let's look at conditional expressions:

$$\frac{\vdash E_b : \mathsf{Bool} \quad \vdash E_1 : T \quad \vdash E_2 : T}{\vdash \mathsf{if} \ E_b \ \mathsf{then} \ E_1 \ \mathsf{else} \ E_2 : T}$$

TYPING RULES FOR LET EXPRESSIONS

Consider the local variable construct: let (x : T) = E in E

let
$$(x : T) = E in E$$

What type does this whole expression have?

As a first guess at a type rule we could write:

$$\frac{\vdash E_1 : T \vdash E_2 : U}{\vdash \mathsf{let} (x : T) = E_1 \mathsf{in} E_2 : U} \mathsf{TLET}?$$

This is hopelessly wrong!

Environment: map env with type

TYPING EXPRESSIONS WITH FREE VARIABLES

Consider the following example:

let
$$(x : Int) = 10 in x + 1$$

An instantiation of the broken rule on the previous slide to this example is

$$\frac{\vdash 10 : \mathsf{Int}}{\vdash \mathsf{let} \; (x : \mathsf{Int}) \; = \; 10 \; \mathsf{in} \; x + 1 : U} \mathsf{TLET}?$$

But how can we show that $\vdash x + 1 : Int$ holds without knowing anything about \times ?

TYPE ENVIRONMENTS

In order to give a type to expression E, we need to have assumptions about the types of the free variables in E. We call these assumptions **Typing Environments** and we use the greek letter Γ to represent them.

Formally, a type environment Γ is a mapping from variable names to Types. We write entries in this mapping comma-separated

e.g. x: Int, y: Bool, z: Int, ...

A CORRECT RULE FOR LET EXPRESSIONS

Our type relation \vdash E : T needs to be modified to include the type environment.

We will write $\Gamma \vdash E$: T to mean, in environment Γ , expression E has type T.

Is this better?
$$\frac{\Gamma \vdash E_1 : T \quad \Gamma \vdash E_2 : U}{\Gamma \vdash \mathsf{let}\ (x : T) \ = \ E_1 \ \mathsf{in}\ E_2 : U} \mathsf{TLET}?$$

Not quite, we need to enlarge the environment in which E2 is typed

$$\frac{\Gamma \vdash E_1 : T \quad \Gamma, x : T \vdash E_2 : U}{\Gamma \vdash \mathsf{let} (x : T) = E_1 \mathsf{in} E_2 : U} \mathsf{TLET}$$

This means extend the mapping with a distinct new entry

We will always need to do this for constructs that bind variables.

Think about the scope of x!

Is x in scope in $E_{2,}$? Yes. So, enlarge the type environment with it.

Is x in scope in E_1 ? No. So don't. Unless we want recursive expressions ...

NEARLY THERE

We still need a type rule for comparisons:

$$\frac{\Gamma \vdash E_1 : \mathsf{Int} \quad \Gamma \vdash E_2 : \mathsf{Int}}{\Gamma \vdash E_1 < E_2 : \mathsf{Bool}} \mathsf{TLT}$$

And a type rule for addition:

$$\frac{\Gamma \vdash E_1 : \mathsf{Int} \quad \Gamma \vdash E_2 : \mathsf{Int}}{\Gamma \vdash E_1 + E_2 : \mathsf{Int}} \mathsf{TADD}^{\mathsf{so}} \mathsf{In \, Gamma, \, a \, has \, type \, T}$$

And type rules for variables:

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \text{ TVAR}$$

Gamma is the environment (set of variables)

x with type T belongs to the set Gamma

In env Gamma, x is of type T

where a is x and Int is type T,

e.g. a = Int.

Gamma >>

a : Int, tax : float ... > is a set of variables

so a: T e Gamma

And that's it. All we need to do now is ask that \vdash is the smallest relation that satisfies all of the type rules for this language. By the induction principle, this defines the relation for every program of the language!