МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Кафедра програмування

Практичне завдання № 4

СТАТИСТИЧНІ МЕТОДИ ЕКОНОМНОГО КОДУВАННЯ

з курсу "Теорія інформації"

Виконала: студент групи ПМІ-41 Шипка Олена

Варіант <u>**26**</u>

Оцінка

Прийняв: доц. Рикалюк Р.Є. ас. Жировецький В.В.

Завдання 4.1. Значення ймовірностей p_i , з якими дискретне джерело інформації генерує символи алфавіту наступні:

p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9
0.32	0.09	0.05	0.15	0.02	0.22	0.08	0.07	0

Побудувати нерівномірні ефективні коди за алгоритмами Шеннона-Фано та Хаффмена. Порівняти ефективність кодів.

Побудуємо код за алгоритмом Шеннона-Фано. Символ з ймовірністю появи 0 не кодуємо.

Ймовірність p_i	1	2	3	4	5	Код	Довжина коду l_i	
0.32	0		()		00	2	
0.22	0		-	L		01	2	
0.15			0		0		100	3
0.09		U	1			101	3	
0.08	1			0		110	3	
0.07		1		()	1110	4	
0.05		1	1 1		0	11110	5	
0.02				1	1	11111	5	

Обчислимо середню довжину коду $\bar{l}=\sum p_i\,l_i=0.32*2+0.22*2+0.15*3+0.09*3+0.08*3+0.07*4+0.05*5+0.02*5=0.64+0.44+0.45+0.27+0.24+0.28+0.25+0.1=2.67$

Побудуємо код за алгоритмом Хаффмана

Ймовірність p_i	Код	Довжина коду l_i
0.32	00	2
0.22	10	2
0.15	010	3
0.09	110	3
0.08	111	3
0.07	0111	4
0.05	01100	5
0.02	01101	5

Обчислимо середню довжину коду $\bar{l}=0.32*2+0.22*2+0.15*3+0.09*3+0.08*3+0.07*4+0.05*5+0.02*5=0.64+0.44+0.45+0.27+0.24+0.28+0.25+0.1=2.67$

Оскільки середня довжина коду при кодуванні алгоритмом Хаффмана така ж, як і при кодуванні алгоритмом Шеннона-Фано, то алгоритми є однаково ефективними.

Завдання 4.2. Алфавіт дискретного джерела інформації складається з чотирьох символів $X = \{A, B, C, D\}$. Значення ймовірностей виникнення символів наступні:

p(A)	p(B)	p(C)	p(D)
0.42	0.37	0.18	0.03

Побудувати нерівномірні ефективні коди за алгоритмами Шеннона-Фано або Хаффмена для кодування поодиноких символів джерела та слів довжиною у два символи. Оцінити та порівняти ефективність отриманих кодів. Побудованими кодами закодувати фрагмент повідомлення довжиною у 30 символів, що був згенерований джерелом. Фрагмент повідомлення: ВВВСВАВВВААССВССАААСАВВАВАВАВАВА

Побудуємо код за алгоритмом Шеннона-Фано для кодування поодиноких символів:

Символ	Ймовірність p_i	1	2	3	Код	Довжина коду l_i
Α	0.42		0		0	1
В	0.37		(0		2
С	0.18	1	1	0	110	3
D	0.03		1	1	111	3

Обчислимо середню довжину коду $\bar{l}=0.42*1+0.37*2+0.18*3+0.03*3=0.42+0.74+0.54+0.09=1.79$

Ентропія джерела становить $H(X) = -(0.42log_20.42 + 0.37log_20.37 + 0.18log_20.18 + 0.03log_20.03) = 0.5256 + 0.5307 + 0.4453 + 0.1518 = 1.6534$

Відносна різниця між \bar{l} та H(X) становить: $\frac{\bar{l}-H(X)}{H(X)}*100\%=\left(\frac{1,79-1,653}{1,653}\right)*100\%=8,259\%$

Тепер побудуємо код для кодування слів довжиною у два символи:

$$p(AA) = 0.42 * 0.42 = 0.1764$$

 $p(AB) = 0.42 * 0.37 = 0.1554$
 $p(AC) = 0.42 * 0.18 = 0.0756$
 $p(AD) = 0.42 * 0.03 = 0.0126$
 $p(BA) = 0.37 * 0.42 = 0.1554$
 $p(BB) = 0.37 * 0.37 = 0.1369$
 $p(BC) = 0.37 * 0.18 = 0.0666$
 $p(BD) = 0.37 * 0.03 = 0.0111$
 $p(CA) = 0.18 * 0.42 = 0.0756$
 $p(CB) = 0.18 * 0.37 = 0.0666$
 $p(CC) = 0.18 * 0.18 = 0.0324$
 $p(CD) = 0.18 * 0.18 = 0.0054$
 $p(DA) = 0.03 * 0.42 = 0.0126$
 $p(DB) = 0.03 * 0.37 = 0.0111$
 $p(DC) = 0.03 * 0.18 = 0.0054$
 $p(DD) = 0.03 * 0.03 = 0.0009$

Символ	Ймовірність	1	2	3	4	5	6	7	8	Код	Довжина коду
	p_i							, o			l_i
AA	0.1764					0				00	2
AB	0.1554	0	1			()			010	3
BA	0.1554		1			-	1			011	3
BB	0.1369					()			100	3
AC	0.0756		0	1			0			1010	4
CA	0.0756			1 1						1011	4
ВС	0.0666			0			0			1100	4
СВ	0.0666			0			1			1101	4
CC	0.0324				0		()		11100	5
AD	0.0126	1			0			L		11101	5
DA	0.0126		4			_		0		111100	6
BD	0.0111		1	4		0	1			111101	6
DB	0.0111			1	1		$ \begin{array}{c c} & 0 \\ 1 & 0 \\ 1 & 1 \\ \end{array} $			111110	6
CD	0.0054				1)	1111110	7
DC	0.0054					1			0	11111110	8
DD	0.0009								1	11111111	8

Обчислимо середню довжину коду
$$\bar{l}=(0.1764*2+0.1554*3+0.1554*3+0.1369*3+0.0756*4+0.0756*4+0.0666*4+0.0666*4+0.0324*5+0.0126*5+0.0126*6+0.0111*6+0.0111*6+0.0054*7+0.0054*8+0.0009*8)/2 =$$

$$= (0.3528 + 0.4662 + 0.4662 + 0.4107 + 0.3024 + 0.3024 + 0.2664 + 0.2664 + 0.162 + 0.063 + 0.0756 + 0.0666 + 0.0666 + 0.0378 + 0.0432 + 0.0072)/2 =$$

$$=\frac{3,3555}{2}=1.677775$$

Відносна різниця між \bar{l} та H(X) становить: $\frac{\bar{l}-H(X)}{H(X)}*100\%=\left(\frac{1,67-1,653}{1,653}\right)*100\%=1.028\%$

Закодуємо фрагмент повідомлення *BBBCBABBBAACCBCCAAACABBABADAAA*Кодом для кодування поодиноких символів:

Кодом для кодування слів довжиною у два символи:

 BB
 BC
 BA
 BB
 BA
 AC
 CB
 CC
 AA
 AC
 AB
 BA
 BA
 DA
 AA

 100
 1100
 011
 1010
 11100
 00
 1010
 010
 011
 011
 111100
 00

 Довжина коду — 52
 символи.
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Ефективнішим є кодування кодом для слів довжиною у два символи.

Завдання 4.3. Алфавіт марковського дискретного джерела інформації, що має глибину пам'яті h=1, складається з трьох символів: $X=\{A,B,C\}$. Значення умовних ймовірностей виникнення символів наступні:

$$\begin{pmatrix} 0.01 & 0.75 & 0.24 \\ 0.33 & 0.22 & 0.45 \\ 0.01 & 0.83 & 0.16 \end{pmatrix}$$

- 1. Побудувати нерівномірні ефективні коди за алгоритмом Шеннона-Фано або Хаффмена для кодування поодиноких символів джерела та слів довжиною у два символи.
- 2. Побудувати марковський алгоритм для кодування символів джерела.

- 3. Оцінити та порівняти ефективність отриманих кодів та марковського алгоритму.
- 4. Побудованими кодами закодувати фрагмент повідомлення ACBBABCBBABCCBABCBCB довжиною у 20 символів, що був згенерований джерелом.

Оскільки глибина пам'яті h = 1, то кількість S станів джерела дорівнює потужності його алфавіту, тобто S = 3. Для кожного стану, який визначений попереднім символом на виході джерела будуємо нерівномірний код. Застосовуємо методику Шеннона-Фано. Отримаємо коди:

Після А

Символ	Ймовірність	1	2	Код
В	0.75	C)	0
С	0.24	1	0	10
А	0.01	1	1	11

Середня довжина коду $\overline{l_A}=0.75*1+0.24*2+0.01*2=0.75+0.48+0.02=1.25$

Після В

Символ	Ймовірність	1	2	Код
С	0.45	()	0
А	0.33	1	0	10
В	0.22	1	1	11

Середня довжина коду $\overline{l_B}=0.45*1+0.33*2+0.22*2=0.45+0.66+0.44=1.55$

Після С

Символ	Ймовірність	1	2	Код
В	0.83	()	0
С	0.16	1	0	10
Α	0.01	1	1	11

Середня довжина коду $\overline{l_{\it C}}=0.83*1+0.16*2+0.01*2=0.83+0.32+0.02=1.17$

Середню довжину коду $ar{l}$ можна знайти за формулою

$$\overline{l} = \overline{l_A} * p(A) + \overline{l_B} * p(B) + \overline{l_C} * p(C)$$

де p(A), p(B), p(C) – безумовні ймовірності появи символів A, B, C на виході джерела.

Ці ймовірності знаходимо розв'язавши систему

$$\begin{cases} p(A) = p(A)p(A|A) + p(B)p(A|B) + p(C)p(A|C) \\ p(B) = p(A)p(B|A) + p(B)p(B|B) + p(C)p(B|C) \\ 1 = p(A) + p(B) + p(C) \end{cases}$$

Розв'язком цієї системи є p(A) = 0.159, p(B) = 0.466, p(C) = 0.375

Тоді
$$\bar{l} = 1,25*0,159+1,55*0,466+1,17*0,375=0,199+0,722+0,438=1,36$$

Ентропію марківського джерела з глибиною пам'яті h=1 обчислюється за формулою

$$\begin{split} H_{mem}^{h=1}(X) &= -\sum_{i} p(x_i) \sum_{j} p(x_j|x_i) log_2 p(x_j|x_i) \\ H(X|x_0) &= 0.01 log_2(0.01) + 0.75 log_2(0.75) + 0.24 log_2(0.24) + \\ &= -0.066 + -0.311 + -0.494 + = -0.872 \\ H(X|x_1) &= 0.33 log_2(0.33) + 0.22 log_2(0.22) + 0.45 log_2(0.45) + \\ &= -0.528 + -0.481 + -0.518 + = -1.527 \\ H(X|x_2) &= 0.01 log_2(0.01) + 0.83 log_2(0.83) + 0.16 log_2(0.16) + \\ &= -0.066 + -0.223 + -0.423 + = -0.713 \\ H_{mem}^{h=1}(X) &= -(0.159 * -0.8720.466 * -1.5270.375 * -0.713) \\ &= -(-0.139 + -0.712 + -0.267 +) = 1.117 \end{split}$$

Відносна різниця між \bar{l} та $H_{mem}^{h=1}(\mathsf{X})$ становить: $\frac{\bar{l}-H_{mem}^{h=1}(X)}{H_{mem}^{h=1}(X)}*100\% = \left(\frac{1,36-1,117}{1,117}\right)*100\% = 21,694\%$

Також знайдемо безумовні коди, для кодування першого символу в повідомленні

Символ	Ймовірність	1	2	Код
В	0.466	()	0
С	0.375	1	0	10
Α	0.159	1	1	11

Та побудуємо код для кодування слів довжиною у два символи:

$$p(AA) = 0.159 * 0.159 = 0.025$$

 $p(AB) = 0.159 * 0.466 = 0.074$
 $p(AC) = 0.159 * 0.375 = 0.06$
 $p(BA) = 0.466 * 0.159 = 0.074$
 $p(BB) = 0.466 * 0.466 = 0.217$
 $p(BC) = 0.466 * 0.375 = 0.175$
 $p(CA) = 0.375 * 0.159 = 0.06$
 $p(CB) = 0.375 * 0.466 = 0.175$
 $p(CC) = 0.375 * 0.375 = 0.14$

Символ	Ймовірність p_i	1	2	3	4	Код	Довжина коду l_i
BB	0.217			0		00	2
ВС	0.175	0	1	0		010	3
СВ	0.175		1	1	L	011	3
CC	0.14		0	0		100	3
BA	0.074		U	1		101	3
AB	0.074	1		0	0	1100	4
CA	0.06] 1	1	U	1	1101	4
AC	0.06		1	1	0	1110	4
AA	0.0254				1	1111	4

Застосовуючи отримані коди, закодуємо фрагмент повідомлення *ACBBABCBBABCCBABCBCB*

Безумовним кодом для кодування поодиноких символів:

A C B B A B C B B A B C C B A B C B C B

11 10 0 0 11 0 10 0 0 11 0 10 10 10 10 0 10 0

Довжина коду: 30

Кодом для кодування слів довжиною у два символи:

AC BB AB CB BA BC CB AB CB CB 1110 00 1100 011 101 010 011 1100 011 011

Довжина коду: 32

Із застосуванням марківського алгоритму

Довжина коду: 28

В цьому випадку марківський алгоритм виявився найефективнішим.