Topological Vector Space

xuascaler

May 3, 2025

1. Local geometry of topological vector space

Let (X, \mathcal{F}) be a topological space.

Remark.

- A base for \mathcal{F} is a subcollection $\mathcal{F}' \subset \mathcal{F}$ s.t. $\forall U \in \mathcal{F}, \exists V \in \mathcal{F}', V \subset U$. A base \mathcal{F}' determines $\mathcal{F} \Leftrightarrow \exists S, \forall U \subset \mathcal{F}, U = \{ \cup e_i \mid i \in S, e_i \in \mathcal{F} \}$.
- A local base of x is a subcollection $\mathcal{F}'_x \subset \mathcal{F}_x$ s.t. $\forall U \subset \mathcal{F}_x, \exists V \in \mathcal{F}'_x$ s.t. $V \subset U$. However, elements in \mathcal{F}_x may be not union of elements in \mathcal{F}'_x .

Example. (X, d) is a metric space.

- $\mathcal{F}' = \{B(x,r) \mid x \in X, r > 0\}$ is a base.
- $\mathcal{F}' = \{B(x,r), |\}$ is a local at x.
- $\mathcal{F}' = \{B(x, \frac{1}{n}) \mid n \in \mathbb{N}\}\$ anohter local base at x, countable elements.

Now let X be topological vector space. Last time we showed that $\forall a \in X, \forall \alpha \neq 0$, the maps

- $T_a: X \to X, x \to x + a$
- $M_a: X \to X, x \to \alpha x$

are both homeomorphism. As a consequence, we see

Corollary. A set $A \subset X$ is open $\Leftrightarrow a+A$ is open, $\forall a \in X \Leftrightarrow \alpha A$ is open, $\forall \alpha \neq 0$

So the topological \mathcal{F} is determined by any local base at 0 whose elements have special gemometric properties for topological vector space.

Definition. X is locally convex if there is a local base whose elements is convex.

Example. Normed Vector Space are locally convex since $\{B(0,r) \mid r > 0\}$ are convex.

Proof.
$$x, y \in B(0, r) \Leftrightarrow ||x|| < r, ||y|| < r \Leftrightarrow ||\alpha x + (1 - \alpha)y|| \le \alpha ||x|| + (1 - \alpha)||y|| \le r$$

A set $E \subset X$ is absorbing if $\forall x \in X, \exists \delta > 0$ s.t. $\delta x \in E \forall |\alpha| < \delta$.(Obviously $0 = 0 * x \in E$)

Property. In a topological vector space, any neighborhood of 0 is absorbing.

Proof. Let U be a neighborhood of 0. $\forall x \in X$, the map $\mathbb{C} \to X : \alpha \to \alpha x$ is continuous. since it is the composition $\mathbb{R} \to \mathbb{R} \times X \to X : \alpha \to (\alpha, x) \to \alpha x$ both of which are continuous.

Remark. The function $F: X \to Y$ is continuous $\Leftrightarrow \forall Y' \subset Y, Y'$ is open set the preimage of Y' is open set.

So the pre-image of U is an open set in \mathbb{R} , which obviously contains 0. So $\exists \delta \text{ s.t. } \forall |\alpha| < \delta, \alpha x \in U.$

Corollary. For any neighborhood of $0, X = \bigcup_{k=1}^{\infty} (kU)$

Proof.
$$\forall x \in X, \exists k, \frac{1}{k} < \delta, \frac{1}{k} x \in U \Rightarrow x \in kU.$$

Definition. A set $E \subset X$ is symmetric if E = -E.

Property. $\forall U, 0 \in U$, one can find a symmetric neighborhood V of 0 s.t. $V+V \subset U$.

Proof. Since 0+0=0, and addition is continuous, for the neigborhood U of 0, one can find neigborhoods U_1, U_2 of 0 s.t. $U_1+U_2\subset U$. Take $V=U_1\cap U_2\cap -U_1\cap -U_2$. V is symmetric and $0\in V$. $V\subset U_1, V\subset U_2, V+V\subset U$. \square

Remark. By iteration, one can find V s.t. $V + V + V + V \subset U$