Exercise Section I (DC circuits analysis)

1. For the circuit of Fig.1 find the currents, in microamperes, if the powers absorbed are : $P_1=27.75~nW,~P_2=-0.3~\mu W$, and $~P_3=1.20~\mu W$. Ans. ~18.5,-200 , 800

- 2. Find the power delivered by the sources in the circuit of Fig.2 Ans. $P_a = 200 \,\mathrm{W}, P_b = -500 \,\mathrm{W}$
- 3. Find voltages V_1 , V_2 , and V_3 in Fig.3, given that the generalized circuit elements have absorbed powers $P_1 = 250$ W, $P_2 = -125$ W, and $P_3 = 100$ W Ans. 50 V, -25 V, -20 V

- 4. In the circuit shown in fig.4 , $V_1 = 20 \ V$ and $V_2 = V_3 = 15 \ V$. What is the total power absorbed in the three circuit elements ? Ans. 50 W
- 5. Three resisters are in series and have a total constant voltage V_T . R_1 has a voltage of 20 V, R_2 has a power of 25 W, and $R_3 = 2 \Omega$. If the constant current is 5 A, find V_T Ans. 35 V
- 6. In the circuit shown Fig.5 , find the power absorbed by the 5 V battery. Ans. $-\,5~\text{W}$
- 7. For the ladder network shown in Fig.6, find the source voltage $\,V_s\,$ which results in a current of 7.5 mA in the 3 Ω resister. Ans. 0.705 V

8. The network shown in Fig. 7, obtain the currents in all the network branches.

Fig.7

Ans. 0.93, 1.39, 2.32, 11.38, 3.79, 7.59 A

9. Obtain the current in each resistor in Fig. 8, using network reduction methods.

Ans.
$$I_A = 1.67$$
, $I_B = 3.33$, $I_C = 2.50$, $I_D = 1.25$, $I_E = 1.25$, $I_F = 2.50$ A

10. Obtain the current $~I_x~$ in the 10- $\!\Omega$ resister in Fig.9, using superposition. Ans. -1~A.

11. Replace the active network to the left of terminal AB in Fig.10 by a thevenin equivalent. Ans. $R_{TH}=50~\Omega$, $~V_{TH}=80~V$

- 12. Obtain the Norton equivalent for the active network of Problem 11. Ans. $R_{TH}=50~\Omega$, $~I_{N}=1.60~A$
- 13. For the network shown in Fig.11, obtain the mesh currents I_1, I_2 and I_3

Fig.11

Ans. 5.0, 1.0, 0.5 A

14. Loop currents are shown in the network of Fig.12. Write the matrix equation and solve for I_1, I_2 and I_3

Fig.12

Ans. 3.55, -1.98, -2.98 A

15. The network of Problem 14 has been redrawn in Fig.13 for solution by the node voltage method. Find the node voltages V_1 and V_2 , and with then verify the three currents obtained in Problem 14.

Ans. 7.11, -3.96 V

16. Obtain the four mesh currents in Fig.14

Fig.14

17. Find the node voltages V_1 , V_2 , V_3 , and V_4

Fig.15