Question 1 [20 marks]

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ a & b & c & d \end{pmatrix}$$
 be a 4×4 matrix where a, b, c, d are some real numbers.

- (i) (4 marks) Find det \mathbf{A} and write down the condition in terms of a, b, c, d such that the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has non-trivial solutions.
- (ii) (4 marks) Let $S = \{(a, b, c, d) \mid \mathbf{A}\mathbf{x} = \mathbf{0} \text{ has only the trivial solution}\}$. Is S a subspace of \mathbb{R}^4 ? Why?
- (iii) (4 marks) Given rank A = 3, find the general solution of Ax = 0. Show your working.
- (iv) (4 marks) Given that $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ is an eigenvector of \boldsymbol{A} , find the condition satisfied by a,b,c,d.
- (v) (4 marks) If a, b, c, d are all equal, find a basis for the column space of \mathbf{A} in terms of a. Explain how you derive your answer.

Question 2a [12 marks]

Let $S = \{(1, 1, 2, 0), (2, 2, 4, 0), (0, 0, 1, 3), (1, 1, 3, 3), (1, 1, 1, -3)\}$ and V = span(S).

- (i) (4 marks) Find a basis S' for V such that $S' \subseteq S$ and write down $\dim V$.
- (ii) (4 marks) Is $V = \text{span}\{(2,2,5,3), (2,2,3,-3), (1,1,0,-6)\}$? Justify your answer.
- (iii) (4 marks) Let $W = \{(x, y, z, w) \mid x y + z w = 0\}$. Find $W \cap V$. Give your answer as a linear span.

Question 2b [8 marks]

Let W be a subspace of \mathbb{R}^n and $W^{\perp} = \{ \boldsymbol{w} \in \mathbb{R}^n \mid \boldsymbol{w} \cdot \boldsymbol{v} = 0 \text{ for all } \boldsymbol{v} \in W \}.$

- (i) (2 marks) Show that $W \cap W^{\perp} = \{\mathbf{0}\}.$
- (ii) (6 marks) Show that every vector $\mathbf{v} \in \mathbb{R}^n$ can be written uniquely as $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ where $\mathbf{v}_1 \in W$ and $\mathbf{v}_2 \in W^{\perp}$.

(You may assume in part (ii) that W and W^{\perp} are associated to the row space and nullspace of certain matrix.)

Question 3a [14 marks]

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$.

(i) (4 marks) Let
$$S = \{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}$$
 where $\boldsymbol{u}_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$, $\boldsymbol{u}_2 = \begin{pmatrix} -3\\1\\1\\1 \end{pmatrix}$, $\boldsymbol{u}_3 = \begin{pmatrix} 0\\-2\\1\\1 \end{pmatrix}$.

Show that S is an orthogonal basis for the column space V of A

- (ii) (2 marks) Normalise S to get an orthonormal basis $T = \{v_1, v_2, v_3\}$ for V.
- (iii) (4 marks) Find the least squares solutions of Ax = b.
- (iv) (4 marks) Extend the basis T in part (ii) to an orthonormal basis $T' = \{v_1, v_2, v_3, v_4\}$ for \mathbb{R}^4 without using Gram-Schmidt.

Question 3b [6 marks]

Let $S = \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_m \}$ and $T = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m \}$ be two orthonormal bases for a proper subspace V of \mathbb{R}^n .

Let $C = (\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \cdots \ \boldsymbol{u}_m)$ and $D = (\boldsymbol{v}_1 \ \boldsymbol{v}_2 \ \cdots \ \boldsymbol{v}_m)$ be matrices formed using the basis vectors of S and T as their columns respectively.

Determine whether the following are true or false. Justify your answers.

- (i) (2 marks) \boldsymbol{C} and \boldsymbol{D} are orthogonal matrices.
- (ii) (2 marks) If the reduced row echelon form of $(D \mid C)$ is given by $(I \mid P)$, then P is the transition matrix from S to T.
- (iii) (2 marks) C^TD is the transition matrix from T to S.

Question 4a [12 marks]

Let
$$C = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
.

- (i) (4 marks) Find the characteristic polynomial and all the eigenvalues of C. Show your working.
- (ii) (4 marks) Find a basis for each eigenspace of C. Show your working.
- (iii) (4 marks) Find a matrix P that orthogonally diagonalizes C and write down the corresponding diagonal matrix D. Explain how your answers are derived.

Question 4b [8 marks]

Let M is an $n \times n$ matrix such that $M^2 = M$ and both 0 and 1 are eigenvalues of M.

- (i) (4 marks) Show that the column space of M is the eigenspace E_1 associated to eigenvalue 1.
- (ii) (4 marks) Show that \boldsymbol{M} is diagonalizable

Question 5a [12 marks]

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T\begin{pmatrix}0\\1\\2\end{pmatrix} = \begin{pmatrix}0\\1\\2\end{pmatrix}, \ T\begin{pmatrix}1\\0\\2\end{pmatrix} = \begin{pmatrix}2\\0\\4\end{pmatrix}, \ T\begin{pmatrix}1\\2\\0\end{pmatrix} = \begin{pmatrix}0\\2\\4\end{pmatrix}.$$

- (i) (3 marks) Find the standard matrix of T. Show how your answer is derived.
- (ii) (3 marks) Find the kernel of T. Give your answer as a linear span.
- (iii) (3 marks) Find the largest possible subspace V of \mathbb{R}^3 such that every vector $\mathbf{v} \in V$ maps to itself under T. Explain how your answer is derived.
- (iv) (3 marks) Are there any vector $\mathbf{v} \in \mathbb{R}^3$ such that $T(\mathbf{v}) = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$? Justify your answer.

Question 5b [8 marks]

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and R(T) is the range of T. Denote $T^1 = T$ and $T^{k+1} = T \circ T^k$ for all (integers) $k \geq 1$.

- (i) (2 marks) Show that $R(T^{k+1}) \subseteq R(T^k)$ for all $k \ge 1$.
- (ii) (6 marks) Suppose T^m is the zero transformation for some m > n. Show that T^n must be the zero transformation. (Note that T itself need not be the zero transformation.) <u>Hint</u>: Show that if $R(T^k) = R(T^{k+1})$ for some $k \ge 1$, then $R(T^k) = R(T^h)$ for all $h \ge k$.