# Large Scale Deep Learning for Theorem Proving in HOList: First Results and Future Directions

Sarah Loos

# **HOList**

An Environment for Machine Learning of Higher-Order Theorem Proving

- HOList provides a simple API for ML researchers and theorem prover developers to experiment with using machine learning for mathematics.
- We use deep networks trained on an existing corpus of human proofs to guide the prover.
- We can improve our results by adding synthetic proofs (generated from supervised models and verified correct by the prover) to the training corpus.

Training 60%

1.5K Theorems

10K Theorems

Validation 20%

500 Theorems

3.2K Theorems

Testing 20%

500 Theorems

3.2K Theorems

Complex

Core



#### Training 60%

1.5K Theorems

10K Theorems

#### Validation 20%

500 Theorems

3.2K Theorems

#### Testing 20%

500 Theorems

3.2K Theorems



#### Training 60%

1.5K Theorems

10K Theorems

#### Validation 20%

500 Theorems

3.2K Theorems

#### Testing 20%

500 Theorems

3.2K Theorems



#### Training 60%

1.5K Theorems

10K Theorems

#### Validation 20%

500 Theorems

3.2K Theorems

#### Testing 20%

500 Theorems

3.2K Theorems

Training 60%

Validation 20%

Testing 20%

Core

1.5K Theorems

500 Theorems

500 Theorems

Complex

10K Theorems

3.2K Theorems

3.2K Theorems

**375K** Human Proof Steps

100K Human Proof Steps 100K Human Proof Steps

# Dataset Stats Core

# Training 60%

Validation 20%

Testing 20%

ore 1.5K Theorems

500 Theorems

500 Theorems

Complex 375K Hu

10K Theorems

3.2K Theorems

3.2K Theorems

**375K** Human Proof Steps

100K Human Proof Steps 100K Human Proof Steps

Flyspeck

None

10.5K Theorems

#### **Model Architecture**



#### Results - Imitation Learning on Human Proofs

| Model                                     | Percent of Validation Theorems Closed |
|-------------------------------------------|---------------------------------------|
| Baselines                                 |                                       |
| ASM_MESON_TAC                             | 6.1%                                  |
| ASM_MESON_TAC + WaveNet premise selection | 9.2%                                  |
| Imitation Learning                        |                                       |
| WaveNet                                   | 24.0%                                 |

#### Reinforcement Loop: Setup

- In the reinforcement loop we train on a single GPU
- We simultaneously run search on multiple machines, each using the most recent checkpoint for proof search predictions.
- We run the neural prover in rounds, in each round trying to prove a random sample of theorems in the training set.
- Training examples are extracted from successful synthesized proofs and are mixed in with training examples from original human.
- Hard negatives: We omit arguments that do not change the outcome of the tactic application and store them as "hard negatives" for a specific goal to use during training.

#### Results - Reinforcement Loop



| Dataset Stats |          | Training 60%                         | Validation 20%                       | Testing 20%                          |
|---------------|----------|--------------------------------------|--------------------------------------|--------------------------------------|
|               | Core     | 1.5K Theorems                        | 500 Theorems                         | 500 Theorems                         |
|               | Complex  | 10K Theorems  375K Human Proof Steps | 3.2K Theorems  100 Human Proof Steps | 3.2K Theorems  100 Human Proof Steps |
|               | Flyspeck | None                                 | 10.5K Theorems                       |                                      |

#### **Dataset Stats** Validation 20% Training 60% Testing 20% Core 500 Theorems 1.5K Theorems 500 Theorems 10K Theorems 3.2K Theorems 3.2K Theorems Complex 375K Human 100 Human 100 Human **Proof Steps Proof Steps Proof Steps** 830K Synthesized **Proof Steps** Flyspeck None 10.5K Theorems

#### Results - Reinforcement Loop

| Model                                     | Percent of Validation Theorems Closed |
|-------------------------------------------|---------------------------------------|
| Baselines                                 |                                       |
| ASM_MESON_TAC                             | 6.1%                                  |
| ASM_MESON_TAC + WaveNet premise selection | 9.2%                                  |
| Imitation Learning                        |                                       |
| WaveNet                                   | 24.0%                                 |
| Imitation Learning + Reinforcement Loop   |                                       |
| WaveNet                                   | 36.3%                                 |
| - trained alongside output                | 36.8%                                 |
| Tactic Dependent                          | 38.9%                                 |

#### Results - Reinforcement Loop

|                                           | Percent of Validation |
|-------------------------------------------|-----------------------|
| Model                                     | Theorems Closed       |
| Baselines                                 |                       |
| ASM_MESON_TAC                             | 6.1%                  |
| ASM_MESON_TAC + WaveNet premise selection | 9.2%                  |
| Imitation Learning                        |                       |
| WaveNet                                   | 24.0%                 |
| Imitation Learning + Reinforcement Loop   |                       |
| WaveNet                                   | 36.3%                 |
| - trained alongside output                | 36.8%                 |
| Tactic Dependent                          | 38.9%                 |

#### Flyspeck: On a sample of 2000 proofs from the flyspeck dataset

37.6%

#### Tactics Distribution - Human Proofs



#### Most commonly used human tactics:

- REWRITE TAC
- RAW\_POP\_TAC
- LABEL\_TAC
- MP\_TAC
- X\_GEN\_TAC

#### Tactics Distribution - Reinforcement Loop



Tactics used in Reinforcement Loop:

- ASM MESON TAC
- REWRITE\_TAC
- ONCE\_REWRITE\_TAC
- MP TAC
- SIMP\_TAC

#### **Tactics Comparison**



#### Most increased:

- ASM MESON TAC
- ONCE\_REWRITE\_TAC

#### Most decreased:

- LABEL TAC
- RAW\_POP\_TAC
- MP\_TAC
- X\_GEN\_TAC

#### **Tactics Comparison**



#### Most increased:

- ASM MESON TAC
- ONCE\_REWRITE\_TAC

#### Most decreased:

- LABEL TAC
- RAW\_POP\_TAC
- MP\_TAC
- X GEN TAC

#### Soundness is Critical

ITPs motivated by concerns around correctness of natural mathematics.

HOL Light relies on only ~400 trusted lines of code.

You should not need to trust more than that:

- Environment optimizations: startup cheats-ins and proof search code are now in the critical core (!) -- we must have a proof checker.
- Reinforcement learning reinforces soundness problems.

#### **Proof Checker**

We provide a proof checker that compiles proof logs into OCaml code

- Human-readable format
- Can be checked with HOL Light's core

To be sure that the proofs work, the proof checker replaces HOL Light's built-in proofs by the imported synthetic proofs.

Same soundness guarantees as HOL Light.

## Proof Checker - Example

Goal: |-!x y. exp (x - y) = exp x / exp y

#### Proof Checker - Example

Goal: |-!x y. exp (x - y) = exp x / exp y

# Hard Negative Mining

- During training, we can simultaneously mine hard negatives by ranking all theorems and adding extra training on negative examples ranked just above positives.
- This is an early result, but it seems to help a lot for imitation learning.
- Next step: Try it in the reinforcement loop.

## Results - Hard Negative Mining

| Model                                     | Percent of Validation Theorems Closed |
|-------------------------------------------|---------------------------------------|
| Baselines                                 |                                       |
| ASM_MESON_TAC                             | 6.1%                                  |
| ASM_MESON_TAC + WaveNet premise selection | 9.2%                                  |
| Imitation Learning                        |                                       |
| WaveNet                                   | 24.0%                                 |
| With Hard Negative Mining                 | 37.2%                                 |
| Imitation Learning + Reinforcement Loop   |                                       |
| WaveNet                                   | 36.3%                                 |
| - trained alongside output                | 36.8%                                 |
| Tactic Dependent                          | 38.9%                                 |

# Challenges: Learning for Theorem Proving

- Infinite, very heterogeneous action space
- Extremely sparse reward
- Unbounded, growing knowledge base
- Infeasibility of self-play/self-play is not obviously employed (the way it is known from chess or go)
- Slow evaluation

#### Discussion

- RL Loop Zero shot learning.
- Suggestions from other work (e.g. imitation learning, from AlphaStar).
- Opportunities for the community.
- <a href="http://deephol.org">http://deephol.org</a> (Code is on GitHub. Training data, checkpoints, docker images also being made available.)
- Arxiv preprint: <a href="https://arxiv.org/abs/1904.03241">https://arxiv.org/abs/1904.03241</a>, "HOList: An Environment for Machine Learning of Higher-Order Theorem Proving"