

Procesamiento de Lenguaje Natural

Olivia Gutú y Julio Waissman

Maestría en Ciencia de Datos Semana 4: Vecinos próximos aproximados

Lo que busco en abstracto, es una función T:

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
vettore $\stackrel{\longleftarrow}{\longrightarrow} \stackrel{T}{\longrightarrow} \text{vectour} \stackrel{\longleftarrow}{\longrightarrow}$
vettore $\stackrel{\frown}{\longrightarrow} \stackrel{T}{\longrightarrow} \text{vectour} \stackrel{\frown}{\longrightarrow}$
vettore $\stackrel{\frown}{\longrightarrow} \stackrel{T}{\longrightarrow} \text{vectour} \stackrel{\frown}{\longrightarrow}$
vettore $\stackrel{\frown}{\longrightarrow} \stackrel{T}{\longrightarrow} \text{vectour} \stackrel{\frown}{\longrightarrow}$

¿Cuál es el tipo de función más sencilla de este tipo?... sí, ¡una matriz!

La aplicación simultánea de esta transformación lineal se puede escribir como una multiplicación de matrices:

T(vettore \red{b}^T vettore \red{b}^T ··· vettore \red{e}^T) = (vectour \red{b}^T vectour \red{b}^T ··· vectour \red{e}^T)
Como quiero que mis vectores sean renglones y no columnas, saco transpuesta de ambos lados:

$$\begin{pmatrix} \text{vettore} & \clubsuit \\ \text{vettore} & \nearrow \\ \vdots \\ \text{vettore} & \clubsuit \end{pmatrix} T^T = \begin{pmatrix} \text{vectour} & \clubsuit \\ \text{vectour} & \nearrow \\ \vdots \\ \text{vectour} & \clubsuit \end{pmatrix}$$

La ecuación

$$\begin{pmatrix} \text{vettore} & \clubsuit \\ \vdots \\ \text{vettore} & \clubsuit \end{pmatrix} T^T = \begin{pmatrix} \text{vectour} & \clubsuit \\ \vdots \\ \text{vectour} & \clubsuit \end{pmatrix}$$

la escribo como XR = Y. El problema es encontrar a la matriz R tal que:

$$XR \approx Y$$

- Se tiene que partir de un «diccionario de palabras tipo Python»
- A partir de este diccionario construir *R*
- Se verifica que tan bien lo hace R
- \blacksquare Si no funciona bien, propongo una nueva R y vuelvo a iterar
- ¿Les suena este razonamiento? ... sí descenso del gradiente.

Universidad de Sonora

Puedo decir que R funciona bien si

$$||XR - Y||$$

es un valor pequeño para alguna norma, de hecho quiero que Loss sea lo más pequeño posible. Entramos entonces al terreno de la optimización.

$$||A||_F^2 = \operatorname{traza}(AA^T)$$

e.g. Si

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

entonces

$$||A||_F^2 = a^2 + b^2 + c^2 + d^2$$

Se considera entonces:

m el número de palabras en el conjunto de entrenamiento

$$Loss = \frac{1}{m} ||XR - Y||_F^2$$

$$\nabla \mathsf{Loss} = \frac{2}{m} (X^T (XR - Y))$$

https://math.stackexchange.com/questions/2128462/derivative-of-squared-frobenius-norm-of-a-matrix

$$vettore_{ciao} R = \hat{y}$$

 \hat{y} es un vector que no está en la lista de vectours, ¿cuál está más cerca? e. g. ¿vectours_{salut} o vectours_{bonjour}?

Vecinos próximos

Universidad de Sonora

Respuesta platónica: pues simplemente calculo la distancia entre todos (norma entre vectores) y tomo el que esté más cerca.

Después de la respuesta naïve, la reflexión: esto es computacionalmente muy costoso.

La idea es buscar en un subconjunto que escogí anticipadamente, descartando los que ya sé que no tienen posibilidad de ser vectores cercanos.

Vecinos próximos

hash function (vector) = hash value

	0	1	2	3	4	5	6	7	8	9
ſ	100		12		24	15			78	69
	10		42			35				99
L			62							

e.g.

$$hash function(v) = v \mod 10$$

Esta tabla no es sensible a la localidad: 69 está muy lejos de 99

Universidad de Sonora

Un plano está definido por un solo vector (el vector normal al plano)

$$p \det v_1 > 0$$

$$p \det v_2 = 0$$

$$p \det v_3 < 0$$

$$\begin{array}{ccccc} p_1 \ \mathsf{dot} \ v & \geq & 0 & \Longrightarrow & h_1 = 1 \\ p_2 \ \mathsf{dot} \ v & \geq & 0 & \Longrightarrow & h_2 = 1 \\ p_3 \ \mathsf{dot} \ v & < & 0 & \Longrightarrow & h_3 = 0 \end{array}$$

$$\begin{array}{cccc} \mathsf{hash} \ \mathsf{value} = 2^0 \times h_1 + 2^1 \times h_2 + 2^2 \times h_3 \end{array}$$

Tablas hash: sensibles a la localidad aproximado

- ¿Cuál es la mejor manera de dividir el espacio por planos?
- *n* opciones aleatorias de divisiones (por cada división una tabla hash)
- Al final nos quedamos con el que tiene la menor distancia de todos