Competitive Analysis and the Online Paging Problem

Algorithms in Uncertain Scenarios (097280)

Yuval Emek

Spring 2024/5

- Motivating Story: Ski Rental
- 2 Online Paging
- Competitive Analysis
- Marking Algorithms
- 5 A Lower Bound for Deterministic Algorithms
- 6 Algorithm RandMark
- A Lower Bound for Randomized Algorithms

Rent or buy?

- Going skiing for unknown number of days
 - Call your boss every evening to ask if may stay for another day
- Ski gear costs
 - Renting: 1 EUR per day
 - Buying: **b** > 1 EUR
- Will you buy or rent?
- Exact rules:
 - Every day, input is "continue skiing" or "go home"
 - If input is "continue skiing" and still didn't buy ski gear, then
 - rent for one more day and pay 1 EUR; or
 - buy and pay b EUR
 - Objective: minimize costs in current vacation
 - No prior knowledge on vacation length
 - Aim for worst case scenario
- Online algorithm decides on today's action based on input seen so far

Quality of online algorithms

- How do we measure the quality of an online algorithm?
- Failed attempt: overall cost in worst case
 - Best approach in ski rental is always buy and pay b?
 - Infeasible if overall cost is unbounded
 - Example soon...
- Solution: compare online algorithm to optimal offline algorithm
 - Runs on same input
 - Knows input in advance
- We wish to design online algorithm Alg so that

$$R(\sigma) = Alg(\sigma)/Opt(\sigma)$$

is small for all input instances σ

- Opt = optimal offline algorithm
- Convenient to assume: σ picked by adversary whose aim is to maximize $R(\sigma)$
 - Knows Alg
 - a Collaborator with Or
 - Collaborates with Opt

Ski rental algorithm

- ullet Ski rental instance σ defined by #skiing days
 - Denote by (unknown) variable D
- Opt = $\min\{b, D\}$
- Online Alg fully characterized by parameter t:
 - Rent up to (including) day t-1
 - Buy on day t if vacation did not end beforehand
 - t determined by algorithm designer

$$ullet$$
 Alg $(\sigma) = egin{cases} D, & D < t \ t - 1 + b, & D \geq t \end{cases}$

- Observation: no point for adversary to extend vacation beyond day t
 - May increase $Opt(\sigma)$, but not $Alg(\sigma)$
- Adversary knows $t \Longrightarrow$ w.l.o.g. $D \le t$

Adversary's considerations

- Case 1: D < t
 - $R(\sigma) = \frac{D}{\min\{D, b\}}$
 - ullet Monotone non-decreasing function of D, so adversary sets D=t-1
 - Yields $R(\sigma) = \frac{t-1}{\min\{t-1,b\}} \le \frac{t}{\min\{t,b\}}$
- Case 2: D = t
 - $R(\sigma) = \frac{t-1+b}{\min\{t,b\}}$
- $b > 1 \Longrightarrow$ adversary prefers case 2

Algorithm designer's considerations

- ullet Designer of Alg wishes to minimize $\dfrac{t-1+b}{\min\{t,b\}}$
- If we set t = b, then

$$R(\sigma) \leq \frac{2b-1}{b} = 2 - 1/b$$

• Analysis shows that this upper bound is tight

Comments

- Rare example for establishing upper bound together with lower bound
 - Toy problem
 - Alg's structure is very simple (single parameter)
- Does analysis hold if algorithm is randomized?
 - If adversary is oblivious to Alg's coin tosses, then no: randomized Alg can ensure $R(\sigma) \le \frac{e}{a-1} \approx 1.58$
 - Where does analysis fail?

- Motivating Story: Ski Renta
- Online Paging
- Competitive Analysis
- Marking Algorithms
- 5 A Lower Bound for Deterministic Algorithms
- 6 Algorithm RandMark
- 7 A Lower Bound for Randomized Algorithms

Managing multiple memory layers

- Modern computer memories organized in multiple layers
 - smaller layers faster access
- Paging problem: 2 layer memory
 - Main memory with N pages
 - Cache that stores k < N pages at any given time
- Program can access page only if stored in cache
- Page fault (PF) = requested page not in cache
 - Should be copied to cache, evicting some other page

Online paging — formal definition

- Input: sequence $\sigma \in [N]^*$ of *requests*
 - Each request specifies index $i \in [N]$ of some page
- Algorithm maintains cache configuration $C \subseteq [N]$ of size |C| = k
- On request $i \in [N]$, algorithm should update $C \to C' \ni i$
 - Cost of this operation = |C' C|
- Online computation: algorithm doesn't know future requests
- Do we have to consider arbitrary C'?

Lazy paging algorithm

- Algorithm Alg is lazy if:
 - Evicts exactly one page on PF
 - Does nothing if no PF
- Observation: every paging algorithm can be turned into lazy algorithm without affecting cost
 - Delay non-urgent actions until they become necessary (if at all)
- Concentrate hereafter on lazy algorithms
- Lazy Alg pays 1 cost unit per PF (and nothing else)
- Policy of lazy Alg boils down to: which page to evict from cache on PF?

Relative quality measure

- No natural bound on request sequence length ⇒
 no natural bound on cost of Alg and Opt
 - In contrast to ski rental
- ullet Becomes clear that $Alg(\sigma)$ should be bounded relatively to $Opt(\sigma)$
- What about initial cache configuration?
 - Has bounded effect on both $Alg(\sigma)$ and $Opt(\sigma)$
 - ullet Vanishes in long run as $\mathtt{Alg}(\sigma)$ and $\mathtt{Opt}(\sigma)$ increase

- Motivating Story: Ski Renta
- Online Paging
- Competitive Analysis
- Marking Algorithms
- 5 A Lower Bound for Deterministic Algorithms
- 6 Algorithm RandMark
- A Lower Bound for Randomized Algorithms

The quality measure

Definition

Consider some problem P and a (deterministic) online algorithm Alg. We say that Alg is *c-competitive* for P if there exists some $\alpha \in \mathbb{R}_{\geq 0}$ such that for any instance σ of P, it holds that

$$Alg(\sigma) \leq c \cdot Opt(\sigma) + \alpha$$

if P is a minimization problem; and

$$\mathsf{Alg}(\sigma) \geq \frac{1}{c} \cdot \mathsf{Opt}(\sigma) - \alpha$$

if P is a maximization problem.

- c = competitive ratio (CR)
- $\alpha = additive constant$
- Main algorithmic challenge: design online algorithms with small CR

Role of the additive constant

- Why do we need the additive constant?
- Ignore phenomena that have bounded effect on cost of Alg and Opt
 - E.g., initial configuration in paging
- Concentrate on asymptotic behavior of Alg relative to Opt
- Often makes analysis simpler

- Motivating Story: Ski Renta
- Online Paging
- Competitive Analysis
- Marking Algorithms
- 5 A Lower Bound for Deterministic Algorithms
- 6 Algorithm RandMark
- A Lower Bound for Randomized Algorithms

Phases

- Family of online paging algorithms known as marking algorithms
- Key component: partition request sequence σ into *phases* defined inductively:
 - Phase 0 is an empty subsequence (ends at time 0)
 - Phase $i \ge 1$ is the maximal subsequence following phase i-1 that contains $\le k$ distinct page requests
- Phase i + 1 (if exists) begins on request for (k + 1)th distinct page since beginning of phase i

The marking rule

- Each page associated with a mark bit
 - Page can be marked or unmarked
- Based on partition into phases, impose marking rules:
 - Mark a page every time it is requested
 - At the end of a phase, unmark all pages
- Marking invariant maintained throughout each phase:
 #marked pages = #distinct requested pages
 - By phase definition, $\leq k$ marked pages at any moment
- \bullet Partition of σ into phases and marking scheme do not depend on Alg

The marking algorithms family

Definition

Algorithm Alg is a *marking algorithm* if it never evicts a marked page from the cache.

- Feasible due to aforementioned marking invariant
- A family of algorithms (rather than one algorithm)
 - May exist multiple unmarked pages to choose from
- Examples:
 - Least recently used (LRU)
 - Clock replacement
 - Approximating (implicit) clock of LRU by 1 bit
 - Flush when full (FWF)
 - Strictly speaking, doesn't fit our definition of paging

The Competitive Ratio of Marking Algorithms

Theorem

Let Alg be any online marking algorithm for the paging problem. Then Alg is k-competitive.

- Consider request sequence σ
- Claim: Alg may suffer $\leq k$ PFs during any phase
 - Each page is marked when 1st requested and remains marked until phase ends
 - Alg does not evict marked pages
 - \Longrightarrow Alg cannot fault twice on same page during phase
 - Claim follows since k distinct pages are requested during phase
 - Maybe less if last phase

- Fix some phase i which is not last
- p_i = first requested page in phase i
- t_i = time of request p_i
- Immediately after time t_i , page p_i must be in Opt's cache
 - Leaving room for k-1 other pages
- By phase definition, until (including) time t_{i+1} , Opt receives requests for k distinct pages other than p_i
- → Must suffer > 1 PF
- Summing up: every phase other than last contributes $\leq k$ to $\mathtt{Alg}(\sigma)$ (by Claim) and ≥ 1 to $\mathtt{Opt}(\sigma)$
- Last phase contributes $\leq k$ to $Alg(\sigma)$ (by Claim)
- Therefore $Alg(\sigma) \leq k \cdot Opt(\sigma) + k$
- Demonstrates convenience in introducing additive constant

- Motivating Story: Ski Renta
- Online Paging
- Competitive Analysis
- Marking Algorithms
- 5 A Lower Bound for Deterministic Algorithms
- 6 Algorithm RandMark
- A Lower Bound for Randomized Algorithms

Up-bounding cost of Opt

- Can we do better than that?
 - Recall that marking family is very wide
 - Better non-marking algorithms?
- Establish lower bound on CR of deterministic paging when N = k + 1
- Offline marking algorithm OffMark:
 on PF, evict unique page not requested during current phase
 - Well defined since N = k + 1
 - Not an online algorithm!
- Observation: OffMark makes ≤ 1 PFs per phase
 - Evicted page will not be requested until next phase begins
 - All other (N-1=k) pages are in cache
- \Longrightarrow Total cost of $Opt \le \#$ phases
 - Opt at least as good as OffMark

Bad request sequence

Theorem

Let Alg be any (deterministic) online paging algorithm. Then, the CR of Alg is at least k.

- Fix N = k + 1
- ullet Construct arbitrarily long request sequence σ by always requesting the (unique) page missing from Alg's cache
 - $Alg(\sigma) = |\sigma|$
- Each (non-last) phase contains $\geq k$ requests \Longrightarrow cost of Alg in a phase $\geq k$.
- Assertion follows since $Opt(\sigma) \le \#phases$
- How does proof addresses additive constant?
 - ullet By making σ arbitrarily long
- Does lower bound hold if N > k + 1?
 - Adversary can always ignore some pages
- Does proof hold for randomized paging algorithms?

- 1 Motivating Story: Ski Renta
- Online Paging
- Competitive Analysis
- Marking Algorithms
- 5 A Lower Bound for Deterministic Algorithms
- 6 Algorithm RandMark
- 7 A Lower Bound for Randomized Algorithms

Competitive ratio of randomized online algorithms

Definition

Consider some problem P and a randomized online algorithm Alg. We say that Alg is c-competitive for P against an oblivious adversary if there exists some $\alpha \in \mathbb{R}_{\geq 0}$ such that for any instance σ of P, it holds that

$$\mathbb{E}[\mathtt{Alg}(\sigma)] \leq c \cdot \mathtt{Opt}(\sigma) + \alpha$$

if P is a minimization problem; and

$$\mathbb{E}[\mathtt{Alg}(\sigma)] \geq \frac{1}{c} \cdot \mathtt{Opt}(\sigma) - \alpha$$

if P is a maximization problem.

- Expectation over random decisions of online algorithm
 - Do not make any assumptions on input!
- Adversary knows Alg, but oblivious to its coin tosses

Harmonic numbers

• The nth harmonic number is

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

• Well known (and easy to verify):

$$\ln n < H_n \le 1 + \ln n$$

• $H_n = \Theta(\log n)$

Algorithm RandMark

- Online marking algorithm RandMark:
 on PF, evict unmarked page chosen u.a.r.
 - Yet another member of marking algorithms family

Theorem

Algorithm RandMark is $(2H_k)$ -competitive.

- Consider request sequence σ and fix some phase i
 - C_i = cache configuration immediately before beginning of phase
- Page $p \in [N]$ is
 - stale if $p \in C_i$ and p requested during phase i
 - fresh if $p \notin C_i$ and p requested during phase i
 - fading if $p \in C_i$ and p not requested during phase i
- $m_i = \#$ distinct fresh pages requested during phase i
 - $k m_i$ distinct stale pages requested during phase i

- RandMark suffers PF on 1st request for (each) fresh page
- May also suffer PF on 1st request for (each) stale page
 - Depending on coin tosses
- Doesn't suffer PF on any subsequent request for fresh or stale page
- Probabilities for PFs on stale pages maximized if 1st requests for m_i fresh pages arrive before 1st requests for $k m_i$ stale pages
 - Worst possible arrival order from perspective of RandMark
 - Assume hereafter

- $p_j = j$ th requested stale page
 - $1 \le j \le k m_i$
- Upon 1st request for p_j , exactly k (j 1) unmarked stale and fading pages
 - $k (j 1) m_i$ of them are in cache
- RandMark suffers PF on p_i w.p.

$$1 - \frac{k - (j - 1) - m_i}{k - (j - 1)} = \frac{m_i}{k - (j - 1)}$$

Expected #PF during phase i is

$$m_i + \sum_{j=1}^{k-m_i} \frac{m_i}{k - (j-1)} = m_i + m_i \sum_{\ell=m_i+1}^k \frac{1}{\ell}$$

= $m_i (1 + H_k - H_{m_i}) \leq m_i H_k$

- #distinct pages requested during phases i-1 and i is $\geq k+m_i$
 - ullet RandMark is marking algorithm, hence none of fresh pages was requested in phase i-1
- \Longrightarrow #PFs suffered by Opt during phases i-1 and i is $\geq m_i$
 - For each i > 1
- Summing up:

$$ext{RandMark}(\sigma) \leq \sum_{i \geq 1} m_i H_k = H_k \sum_{i \geq 1} m_i$$
 $ext{Opt}(\sigma) \geq rac{1}{2} \sum_{i \geq 1} m_i$

- Charge PFs suffered by RandMark in phase 1 to additive constant
- Can we do better than that?

- 1 Motivating Story: Ski Renta
- 2 Online Paging
- Competitive Analysis
- Marking Algorithms
- 5 A Lower Bound for Deterministic Algorithms
- 6 Algorithm RandMark
- 7 A Lower Bound for Randomized Algorithms

RandMark is asymptotically optimal

Theorem

Let Alg be any randomized online algorithm for the paging problem with N = k + 1 pages. The competitive ratio of Alg is at least H_k .

- Adversary maintains p(j) = probability that page j not in cache
 - For $j \in [N]$
 - Feasible because adversary knows Alg
- At any time, $\sum_{j=1}^{N} p(j) = 1$
 - Exactly 1 page not in cache, so events are disjoint
- Construct bad σ request-by-request based on $(p(1), \ldots, p(N))$
 - Procedural manner
- ullet Procedure maintains partition of σ to phases and marking bits
 - Recall: independent of online algorithm
- Explain how procedure constructs 1 phase
- \bullet σ consists of arbitrarily long sequence of phases

- Phase excluding 1st request consists of k subphases
 - When subphase i begins, k + 1 i unmarked pages
- Each subphase consists of:
 - Prefix: 0 or more requests for marked pages
 - Suffix: 1 request for unmarked page
 - Becomes marked
- Last request of kth subphase = 1st request of next phase
- Show that expected cost of Alg on *i*th subphase is $\frac{1}{k+1-i}$
 - Sums up to expected cost of entire phase =

$$\sum_{i=1}^{k} \frac{1}{k+1-i} = \sum_{\ell=1}^{k} \frac{1}{\ell} = H_{k}$$

• Completes the proof since $Opt(\sigma) \leq \#phases$

- M, U = sets of marked and unmarked pages, respectively, at beginning of ith subphase
 - By definition, $\mathbf{u} = |U| = k + 1 i$
 - So, |M| = i
- χ = variable that counts total expected cost of Alg in *i*th subphase
- Goal: ensure that $\chi \ge 1/u$ when subphase ends
- $\mu = \sum_{j \in M} p(j)$
- If $\mu=0$, then $\sum_{j\in U}p(j)=1$
 - Pigeonhole principle: there exists $j \in U$ such that $p(j) \ge 1/u$
 - ullet Adversary ends subphase by requesting page j which sets $\chi \geq 1/u$
- Note: marking algorithms always satisfy $\mu = 0$
 - Analysis ends here for this family

Proof continues

- Assume $\mu > 0$
- There exists page $\ell \in M$ such that $p(\ell) = \epsilon > 0$
- ullet 1st request in subphase is for page ℓ
- Then, adversary keeps adding requests by executing loop:
 - While $\chi < 1/u$ and $\mu > \epsilon$, add to σ request for page $j \in M$ such that $p(j) > \epsilon/|M|$
 - Loop is feasible:
 - if $\mu > \epsilon$, then there exists $j \in M$ such that $p(j) > \epsilon/|M|$
 - By pigeonhole principle
 - Loop must terminate: χ increases by $\geq \epsilon/|M|$ in each iteration
- When loop terminates, if $\chi \ge 1/u$, then adversary ends subphase by adding request for arbitrary page in U
- Assume $\mu \leq \epsilon$ when loop terminates
- There exists $j \in U$ such that $p(j) \ge \frac{1-\mu}{u} \ge \frac{1-\epsilon}{u}$
 - By pigeonhole principle
- ullet Adversary ends subphase by adding request for page j
- Combined with ℓ 's contribution, we have $\chi \geq \epsilon + \frac{1-\epsilon}{u} \geq \frac{1}{u}$

Constructive proof

- Proof is constructive: procedure that constructs bad request sequence for given Alg
 - Not necessarily efficient (definitely tedious)
- Some lower bound proofs merely establish existence of bad instance
 - Without explicitly specifying it
 - Less desirable in some cases, but still serves purpose of lower bound

Metrical Task Systems

Algorithms in Uncertain Scenarios (097280)

Yuval Emek

Spring 2024/5

- 1 The Online Metrical Task System Problem
- Deterministic algorithms
 - Traversal algorithms
 - General Metric Spaces
- 3 A Randomized Algorithm for Uniform Metric Spaces
- 4 Algorithm Design via Probabilistic Embedding
 - Metric embedding
 - Probabilistic embedding

Metric spaces

Definition

A metric space (MS) \mathcal{M} is a pair $\mathcal{M}=(V,\delta)$, where V is a set of points and $\delta:V\times V\to\mathbb{R}_{\geq 0}$ is a distance function that satisfies the following three conditions for every $x,y,z\in V$:

- $\delta(x, y) = 0$ if and only if x = y (reflexivity, positivity);
- $\delta(x, y) = \delta(y, x)$ (symmetry); and
- $\delta(x,z) \leq \delta(x,y) + \delta(y,z)$ (triangle inequality).

 \mathcal{M} is said to be *finite* if V is finite.

- Fundamental mathematical structure, plays key role in many fields
- Examples:
 - Real vector space with <u>Euclidean</u> norm (infinite)
 - More generally, real vector space with ℓ_p norm, $1 \le p \le \infty$ (infinite)
 - Vertices of finite positively weighted connected undirected graph with pairwise distances (finite)

Serving tasks

- Finite MS $\mathcal{M} = (V, \delta)$
 - Points = system's states
 - Distance function = cost of moving from one state to another
 - For simplicity: V = [n]
- $Task = vector \ r \in (\mathbb{R}_{>0} \cup \{\infty\})^n$
 - $r(i) = \text{cost of serving (a.k.a. processing) task } r \text{ in state } i \in [n]$
 - Forbidden to serve task r in state i if $r(i) = \infty$

Metrical task system

- Instance of metrical task system (MTS) problem consists of:
 - Finite MS M
 - Known in advance (part of problem's definition)
 - Request sequence $\sigma = (r_1, \dots, r_{|\sigma|})$
 - $r_j = \text{task over } \mathcal{M}$, reported at time $1 \leq j \leq |\sigma|$
 - Tasks often taken from (known) finite domain $\subset (\mathbb{R}_{\geq 0} \cup \infty)^n$
- ullet Algorithm Alg determines state sequence $\mathtt{Alg}[1],\ldots,\mathtt{Alg}[|\sigma|]\in[n]$
 - Task r_j served in state Alg[j]
 - Online decisions: Alg[j] determined at time j (in response to r_j)
- Alg's cost components:
 - Processing cost = $\sum_{j=1}^{|\sigma|} r_j(\text{Alg}[j])$
 - Transition $cost = \sum_{j=1}^{|\sigma|} \delta(\mathtt{Alg}[j-1],\mathtt{Alg}[j])$
 - Initial state Alg[0] pre-specified
- Objective: minimize (total) processing cost + (total) transition cost
- Assume hereafter: $\min_{x \neq y \in [n]} \delta(x, y) = 1$
 - WLOG as we can scale distances and processing costs

General framework

- MTS generalizes many online problems
- Paging with N pages and cache size k:
 - States = possible cache configurations
 - Transition cost from cache configuration $C \subseteq [N]$ to cache configuration $C' \subseteq [N]$, |C| = |C'| = k, is

$$\delta(C, C') = |C - C'|$$

• Request for page $i \in [N]$ encoded by task

$$r(C) = \begin{cases} 0, & i \in C \\ \infty, & i \notin C \end{cases}$$

- Not necessarily a "compact representation"
 - In paging, $|V| = \binom{N}{k}$

Switching states along continuous time axis

- ullet Actions of Alg captured by function $ext{Alg[]}: \{1,\ldots,|\sigma|\}
 ightarrow [n]$
 - ullet Determines state of Alg at each integral time $1 \leq j \leq |\sigma|$
- Convenient to allow Alg to switch states along continuous time axis
- ullet Replace aforementioned function by Alg[] : $[1,|\sigma|+1)
 ightarrow [n]$
 - ullet Determines state of Alg at each real time $t \in [1, |\sigma|+1)$
- Interpretation for integer $1 \le j \le |\sigma|$ and real $t \in [j, j+1)$: Alg serves task r_j in state $\mathrm{Alg}[t]$ during time interval [t, t+dt)
 - $r_j(Alg[t]) dt = accumulated processing cost during [t, t + dt]$
- Redefine cost of Alg on σ :
 - Processing cost = $\sum_{i=1}^{|\sigma|} \int_{j}^{j+1} r_{j}(Alg[t]) dt$
 - Charge $\delta(s,s')$ to transition cost whenever Alg switches from state s to state s'
- Generalizes discrete case

Continuous time algorithms are not more powerful

- Transform any continuous time MTS algorithm Alg to ordinary discrete time MTS algorithm Alg':
 - $Alg'[j] = arg \min_{s \in \{Alg[t]: t \in [j,j+1)\}} r_j(s)$
- $Alg'(\sigma) \leq Alg(\sigma)$:
 - Processing cost: by definition of Alg'
 - Transition cost: by triangle inequality

- 1 The Online Metrical Task System Problem
- 2 Deterministic algorithms
 - Traversal algorithms
 - General Metric Spaces
- 3 A Randomized Algorithm for Uniform Metric Spaces
- 4 Algorithm Design via Probabilistic Embedding
 - Metric embedding
 - Probabilistic embedding

- 1 The Online Metrical Task System Problem
- 2 Deterministic algorithms
 - Traversal algorithms
 - General Metric Spaces
- 3 A Randomized Algorithm for Uniform Metric Spaces
- 4 Algorithm Design via Probabilistic Embedding
 - Metric embedding
 - Probabilistic embedding

Periodic state traversals

- Traversal algorithms = family of cont. time online MTS algorithms
- Alg characterized by state sequence $s_0, \ldots, s_{k-1} \in [n]$
 - Repeated periodically to form infinite state sequence s_0, s_1, \ldots
 - $s_i = s_{i \mod k}$
- Rule of Alg for $i = 0, 1, \ldots$:
 - Serve incoming requests from state s_i as long as accumulated processing cost does not exceed threshold $\delta(s_i, s_{i+1})$
 - ② Move to state s_{i+1}
- Observation: processing cost incurred by Alg in each period ≤

$$\sum_{i=0}^{k-1} \delta(s_i, s_{i+1})$$

- ullet < if Alg encounters processing cost ∞ (state changes immediately)
- What is transition cost incurred by Alg in each period?
- Rule attempts to balance between two cost components
- Balancing between different cost components common design pattern in many online algorithms
 - Recalling ski-rental

Warmup: a 2-State MTS

Observation

The traversal algorithm on a 2-point MS is 4-competitive.

- Why "the traversal algorithm"?
- In each period, total cost of Alg $\leq 4 \cdot \delta(1,2) = 4$
- ullet Complete proof by showing that in each period, ${ t Opt}$ pays ≥ 1
- ullet If Opt moves during period, then Opt's transition cost ≥ 1
- Otherwise, Opt stays in state 1 or 2 throughout entire period
- ullet \Longrightarrow Opt's processing cost in period ≥ 1
 - ullet Alg moved from there ullet

- 1 The Online Metrical Task System Problem
- 2 Deterministic algorithms
 - Traversal algorithms
 - General Metric Spaces
- 3 A Randomized Algorithm for Uniform Metric Spaces
- 4 Algorithm Design via Probabilistic Embedding
 - Metric embedding
 - Probabilistic embedding

MTS with *n* states

- Idea behind general traversal algorithm inspired by 2-point case:
 - Partition MS into 2 components
 - Traverse component 1 recursively until accumulated cost reaches crossing transition cost
 - Cross to component 2
 - Traverse component 2 recursively until accumulated cost reaches crossing transition cost
 - Omplete period by crossing back to component 1
- Main challenge: partition of MS
- To design periodic traversal, useful to think of \mathcal{M} as weighted complete undirected graph G = (V, E, w)
 - ullet Edge weights $w:E o\mathbb{R}_{>0}$ obey triangle inequality
 - Rounded weight $w'(e) = 2^{\lceil \lg w(e) \rceil}$
 - Rounded weights do not necessarily obey triangle inequality
- Minimum spanning tree $T \subseteq E$ of G
- Period of traversal = cycle in G
 - Not necessarily simple

The traversal

- Define cycle C recursively
- If $T = \emptyset$, then $\mathcal C$ consists of one node and no edges
- If $T = \{(u, v)\}$, then C = (u, v, u).
- Assume |T| > 1
- Let $e = (u_1, u_2)$ be maximum weight edge in T with $w'(e) = 2^M$
- Removal of e breaks T into trees T_1 and T_2 with u_i in T_i
- C_i = cycle constructed recursively for T_i
- Maximum weight edge in T_i have w'-weight 2^{M_i}
- Cycle \mathcal{C} :
 - \bigcirc Start at u_1
 - 2 Perform 2^{M-M_1} periods of C_1
 - 3 Cross from u_1 to u_2
 - 4 Perform 2^{M-M_2} periods of C_2
 - **6** Complete cycle by crossing from u_2 to u_1

An upper bound on the CR

Theorem

The MTS traversal algorithm on an n-point MS is O(n)-competitive.

• Identify C, C_1 , C_2 with single period

Lemma (Up-bound Alg)

The cost of the traversal algorithm in C is $O(n2^M)$.

Lemma (Low-bound Opt)

If M is defined (i.e., |T| > 0), then the cost of Opt in C is $\Omega(2^M)$.

- Is theorem (asymptotically) tight?
 - Recall: linear lower bound for deterministic paging algorithms established with N = k + 1 pages. . .

Up-bound cost of Alg

- Argue: edge $e' \in T$ with $w'(e') = 2^m$ traversed $O(2^{M-m})$ times in C
 - \Longrightarrow Total transition cost over $e' = O(2^M)$
 - \Longrightarrow Total transition cost over n-1 edges in $T=O(n2^M)$
- Argument established by induction on |T|
- If |T| = 0, then holds vacuously
- Assume |T| > 0 and let $e = (u_1, u_2), T_i, C_i, M_i$ be as in construction
- e traversed exactly $1 = 2^{M-M}$ time in each direction during C
- Ind. hyp.: edge $e' \in T_i$ with $w'(e') = 2^m$ traversed $O(2^{M_i m})$ times in C_i
- C contains 2^{M-M_i} periods of C_i , hence e' traversed

$$2^{M-M_i} \cdot O(2^{M_i-m}) = O(2^{M-m})$$

times

Low-bound cost of Opt

- Proof by induction on |T|
- If |T| = 0, then holds vacuously
- Assume |T| > 0 and let $e = (u_1, u_2), T_i, C_i, M_i$ be as in construction
- If Opt crosses between T_1 and T_2 during C, then Opt pays transition $\cos t \geq w(e) > w'(e)/2 = 2^{M-1}$
 - T is a minimum spanning tree
- ullet Assume (WLOG) that Opt stays in T_1 during entire period ${\cal C}$
- Case 1: $|T_1| = 0$ and u_1 is the only vertex in T_1
 - ullet Opt serves all requests in period from u_1
 - ullet By definition of ${\mathcal C}$, processing cost from state u_1 of subset of period ${\mathcal C}$

$$\geq \delta(u_1, u_2) = w(e) > w'(e)/2 = 2^{M-1}$$

- Case 2: $|T_1| > 0$
 - Ind. Hyp.: cost of Opt for each period of $C_1 = \Omega(2^{M_1})$
 - ullet ${\cal C}$ contains 2^{M-M_1} periods of ${\cal C}_1$, hence cost of Opt for ${\cal C}$

$$\geq 2^{M-M_1} \cdot \Omega(2^{M_1}) = \Omega(2^M)$$
 \blacksquare

- 1 The Online Metrical Task System Problem
- Deterministic algorithms
 - Traversal algorithms
 - General Metric Spaces
- 3 A Randomized Algorithm for Uniform Metric Spaces
- 4 Algorithm Design via Probabilistic Embedding
 - Metric embedding
 - Probabilistic embedding

Aspect ratio and uniform MSs

- Finite MS $\mathcal{M} = (V, \delta)$
- Aspect ratio =

$$\frac{\max_{x,y\in V}\delta(x,y)}{\min_{x,y\in V,x\neq y}\delta(x,y)}$$

- Assuming minimum (positive) distance is 1, aspect ratio = diameter
- MS with aspect ratio 1 is called uniform
- Algorithm UnifMTS = randomized online MTS algorithm for uniform \mathcal{M} with CR $O(\log n)$
 - \mathcal{M} is uniform, but tasks are general...

Phases and saturated states

- UnifMTS works in continuous time
- Consider request sequence σ
- Partition time line $[1, |\sigma| + 1)$ into finite intervals called *phases*
 - Not to be confused with paging problem's phases
- t_i = start time of phase i
- State $s \in [n]$ is saturated (w.r.t. phase i) at time $t > t_i$ if accumulated processing cost of time interval $[t_i, t]$ from state s is ≥ 1
 - Cost we would have paid if served $[t_i, t]$ from s
- ullet Phase i ends (phase i+1 begins) when all states become saturated
- ullet Partition into phases and saturation times depend only on σ
 - Independent of the algorithm

The policy of UnifMTS

- At beginning of phase, move to state chosen u.a.r. from [n]
 - u.a.r. abbreviates uniformly at random
- As long as phase did not end:
 when current state becomes saturated, move to new state chosen
 u.a.r. among unsaturated states

The CR of UnifMTS

Theorem

UnifMTS is $O(\log n)$ -competitive.

- Claim: in each phase (other than last), cost of $\mathtt{Opt} \geq 1$
 - ullet If Opt moves during phase, then its transition cost ≥ 1
 - Otherwise, Opt serves entire phase from some state $s \in [n]$
 - By phase definition, s is saturated when phase ends
 - ullet \Longrightarrow processing cost of Opt ≥ 1
- Assertion established by showing that expected cost of UnifMTS during phase $\leq 2H_n$

Up-bound cost of UnifMTS

- Fix some phase and let s_1, \ldots, s_n be states in non-decreasing order of saturation time
 - Known only in hindsight
- Indicator r.v. X_j , $j \in [n]$: algorithm visits state s_j during phase
- #state transitions of algorithm in phase = $\sum_{j=1}^{n} X_j$
 - Including default transition at beginning of phase
- Fix some $j \in [n]$
- t(j) = latest time in current phase at which algorithm moves and s_j still not saturated
 - Algorithm moves to state 5
- By definition of t(j) and s, we have $X_j = 1 \iff s = s_j$
- $\Pr(s=s_j) \leq \frac{1}{n-j+1}$
 - At time t(j), none of states $s_j, s_{j+1}, \ldots, s_n$ is saturated

Proof continues

• So, expected transition cost of UnifMTS in phase is

$$\mathbb{E}\left[\sum_{j=1}^{n} X_{j}\right] = \sum_{j=1}^{n} \Pr(X_{j} = 1) \leq \sum_{j=1}^{n} \frac{1}{n-j+1} = \sum_{\ell=1}^{n} \frac{1}{\ell} = H_{n}$$

- Processing cost of UnifMTS in phase ≤ transition cost
 - Moving out of state s when it becomes saturated
- Is upper bound (asymptotically) tight?
 - Recall: logarithmic lower bound for randomized paging algorithms established with N = k + 1 pages...
 - Implies in particular uniform MS

- 1 The Online Metrical Task System Problem
- Deterministic algorithms
 - Traversal algorithms
 - General Metric Spaces
- 3 A Randomized Algorithm for Uniform Metric Spaces
- 4 Algorithm Design via Probabilistic Embedding
 - Metric embedding
 - Probabilistic embedding

Background

- Optimization problems often easier when restricted to special cases
- E.g., MTS admits fairly simple algorithm in uniform MSs
- Naturally, complexity of MTS increases drastically when moving to general MSs
 - Do not obey any special structure (other than triangle inequality)
- General technique allowing us to restrict attention to well structured family of MSs
 - Cost: slightly increased CR

- 1 The Online Metrical Task System Problem
- Deterministic algorithms
 - Traversal algorithms
 - General Metric Spaces
- 3 A Randomized Algorithm for Uniform Metric Spaces
- 4 Algorithm Design via Probabilistic Embedding
 - Metric embedding
 - Probabilistic embedding

Embedding, contraction, expansion, and distortion

- MSs $\mathcal{M} = (V, \delta)$, $\mathcal{M}' = (V', \delta')$
- Injection $f:V \to V'$ is called an *embedding* of $\mathcal M$ in $\mathcal M'$
- Contraction of f =

$$\sup_{x,y\in V, x\neq y} \frac{\delta(x,y)}{\delta'(f(x),f(y))}$$

• Expansion of f =

$$\sup_{x,y\in V,x\neq y}\frac{\delta'(f(x),f(y))}{\delta(x,y)}$$

- *Distortion* of f = product of contraction and expansion
 - Denoted by ||f||
- Embedding is
 - *non-contracting* if contraction of $f \leq 1$
 - *non-expanding* if expansion of $f \le 1$
 - *isometric* if ||f|| = 1
- Does isometric means non-contracting/expanding?

Discussion

• Distortion is always ≥ 1 since

$$\sup_{x,y\in V,x\neq y} \frac{\delta(x,y)}{\delta'(f(x),f(y))} \cdot \sup_{x,y\in V,x\neq y} \frac{\delta'(f(x),f(y))}{\delta(x,y)}$$

$$\geq \sup_{x,y\in V,x\neq y} \left[\frac{\delta(x,y)}{\delta'(f(x),f(y))} \cdot \frac{\delta'(f(x),f(y))}{\delta(x,y)} \right] = 1$$

- Distortion is invariant to scaling distances
- ullet Intuitively, the lower the distortion, the better \mathcal{M}' "approximates" \mathcal{M}
 - All distances are similar
- In what follows, restrict attention to finite MSs
- Algorithm designer typically interested in low distortion embeddings of less structured MS families in more structured ones
 - Often makes task of designing algorithms much easier

MSs with bounded aspect ratio

- Observation: n-point MS of aspect ratio ρ can be embedded in n-point uniform MS with distortion ρ
 - How would you construct the embedding?
- Corollary: randomized online MTS algorithm with CR $O(\rho \log n)$ for n-point MS $\mathcal M$ of aspect ratio ρ
 - Embed $\mathcal M$ in *n*-point uniform MS $\mathcal U$ using embedding f
 - Non-expanding
 - Contraction $\leq \rho$
 - Use f to translate incoming requests from \mathcal{M} to \mathcal{U}
 - ullet Run UnifMTS on ${\cal U}$ and use f^{-1} to translate state transition back to ${\cal M}$
 - Contraction of $f \leq \rho \Longrightarrow \mathtt{UnifMTS}(\mathcal{M}) \leq \rho \cdot \mathtt{UnifMTS}(\mathcal{U})$
 - Guarantee of UnifMTS \Longrightarrow UnifMTS(\mathcal{U}) $\leq O(\log n) \cdot \mathsf{Opt}(\mathcal{U})$
 - Non-expanding $\Longrightarrow \mathsf{Opt}(\mathcal{U}) \leq \mathsf{Opt}(\mathcal{M})$

General technique

- General technique for many online problems on MSs:

 - **2** Embed input MS \mathcal{M} in metric space $\mathcal{M}' \in \mathcal{F}$ with distortion **d**
 - 3 Translate request sequence from \mathcal{M} to \mathcal{M}' and run Alg to serve it
 - $oldsymbol{4}$ Translate actions of Alg back to ${\mathcal M}$
- CR of resulting online algorithm is $c \cdot d$
- Applicable also for offline optimization problems on MSs
- General MSs can have large aspect ratio, so family of uniform metric spaces is not good enough in general
 - Embedding MS of aspect ratio ρ in uniform metric space incurs distortion $\geq \rho$

Tree MSs

- Every MS can be realized by distances in undirected weighted graph
- Natural attempt to "impose structure": restrict graph topology

Definition

MS $\mathcal{M}=(V,\delta)$ is said to be a *tree MS* if it can be embedded isometrically in a MS realized by the distances in some tree; that is, there exists some (edge-)weighted tree $T=(V_T,E_T)$ and an embedding $f:V\to V_T$ such that $\delta(x,y)=\delta_T(f(x),f(y))$ for every $x,y\in V$, where $\delta_T(\cdot,\cdot)$ is the distance function of T. The vertices in $V_T-f(V)$ are referred to as *Steiner vertices*.

- Suffices to consider trees in which internal vertices = Steiner vertices
 - f(V) = leaves of T
 - Delete leaf not in f(V)
 - Connect leaf with edge of weight 0 to internal vertex in f(V)

Well separated trees

Definition

Consider a weighted tree T=(V,E,w), $w:E\to\mathbb{R}_{>0}$, rooted at node r with leaf set \mathcal{L} . We say that T is a *hierarchically well separated tree* with parameter k, or k-HST for short, if

- the edge weights increase exponentially by factor $\geq k$ along any leaf-to-root path in T; and
- for every internal vertex $v \in V \mathcal{L}$ and for every two leaves $x, y \in T_v \cap \mathcal{L}$, it holds that $\delta_T(v, x) = \delta_T(v, y)$.

When k > 1 is a constant, we may omit it and write simply HST.

- Distance between any two leaves in $\mathcal L$ fully determined by identity of least common ancestor
 - ullet Often, $k ext{-HST}$ represented as vertex-weighted tree
 - take weight of vertex v to be $\delta_T(v,x)$, where $x \in T_v \cap \mathcal{L}$
- Use term HST also for MS that can be isometrically embedded in leaves of HST

MTS on HSTs

- Tree MSs, in particular HSTs, are well structured and "easy to work with" from algorithmic perspective
 - Many graph theoretic problems become significantly easier on trees

Theorem ([BCLL2021])

There exists an online algorithm for MTS on HSTs with CR $O(\log n)$.

- This algorithm is beyond the scope of the course
- Can we embed any MS in HST with low distortion?

Embedding in tree MSs

Theorem ([RR1998])

Let $\mathcal M$ be the MS resulting from the distances in the (unweighted) n-cycle. If f is an embedding of $\mathcal M$ in a tree MS, then $\|f\| = \Omega(n)$.

- Trivial if attention restricted to spanning trees of *n*-cycle
 - Requires more work for general tree MSs
- So cannot hope to embed any MS in tree MS with low distortion
- But not all hope is lost...

- 1 The Online Metrical Task System Problem
 - Deterministic algorithms
 - Traversal algorithms
 - General Metric Spaces
- 3 A Randomized Algorithm for Uniform Metric Spaces
- 4 Algorithm Design via Probabilistic Embedding
 - Metric embedding
 - Probabilistic embedding

Embedding in a random MS

Definition

Consider some MS $\mathcal{M}=(V,\delta)$. Let C be a collection of pairs of the form $\langle \mathcal{N},f\rangle$, where $\mathcal{N}=(V_{\mathcal{N}},\delta_{\mathcal{N}})$ is a MS and $f:V\to V_{\mathcal{N}}$ is a non-contracting embedding of \mathcal{M} in \mathcal{N} . A distribution \mathcal{D} over C is called a *probabilistic embedding* of \mathcal{M} in C. The *distortion* of the probabilistic embedding \mathcal{D} is the smallest d that satisfies

$$\mathbb{E}_{\langle \mathcal{N}, f \rangle \in \mathcal{D}} \left[\delta_{\mathcal{N}}(f(x), f(y)) \right] \leq d \cdot \delta(x, y)$$

for every $x, y \in V$.

- Often, $V_{\mathcal{N}} = V$ and f is identity function for all $\langle \mathcal{N}, f \rangle \in C$
 - Omit f and refer to C as collection of MSs
 - If $\mathcal N$ is tree MS realized by weighted tree $\mathcal T$, then $\mathcal V_{\mathcal N}=\mathcal V$ doesn't mean $\mathcal T$ cannot include Steiner vertices

Probabilistic embedding in HSTs

Theorem ([FRT2004])

Every n-point MS can be probabilistically embedded in the collection of n-point HSTs with distortion $O(\log n)$. Moreover, the distribution that yields this probabilistic embedding can be sampled efficiently.

- "Breaking" the lower bound of [RR1998]
- ullet Can apply general technique as before with one difference: Instead of embedding ${\mathcal M}$ in deterministically chosen MS ${\mathcal M}'$, embed it in a randomly chosen MS ${\mathcal N}$
 - ullet Called *probabilistically embedding* ${\mathcal M}$ in (random MS) ${\mathcal N}$
 - Resulting online algorithm is randomized even if Alg is deterministic

MTS on general MSs

Corollary

There exists a (randomized) online algorithm for MTS on general MSs with competitive ratio $O(\log^2 n)$.

- Arbitrary input MS $\mathcal{M} = (V, \delta)$
- Preprocessing stage: apply [FRT2004] to probabilistically embed \mathcal{M} in random HST $\mathcal{M}' = (V, \delta')$
- Translate request sequence σ over \mathcal{M} to σ' over \mathcal{M}' :
 - Task $r \in \sigma$ translated to $r' \in \sigma'$ so that r'(x) = r(x) for every $x \in V$
- Alg' = online MTS algorithm of [BCLL2021]
- Run Alg' on σ' over \mathcal{M}' and whenever Alg' moves to x in \mathcal{M}' , move to x in \mathcal{M}
 - Alg = resulting online algorithm (operating on σ over \mathcal{M})

Proof continues

- ullet Processing cost of Alg on $\sigma=$ processing cost of Alg' on σ'
- Embedding of \mathcal{M} in \mathcal{M}' is non-contracting \Longrightarrow transition cost of Alg on $\sigma \leq$ transition cost of Alg' on σ'
- Thus, $Alg(\sigma) \leq Alg'(\sigma')$
- $\pi = \text{(time dependent) trajectory that realizes Opt}(\sigma)$
- $\mathsf{Opt}'(\sigma') = \mathsf{cost}$ of serving σ' over \mathcal{M}' by trajectory π • $\mathsf{Opt}'(\sigma') \geq \mathsf{Opt}(\sigma')$
- Since processing cost component of $Opt'(\sigma') = that of Opt(\sigma)$, [FRT2004] ensures

$$\mathbb{E}[\mathsf{Opt}'(\sigma')] \leq O(\log n) \cdot \mathsf{Opt}(\sigma)$$

- ullet Expectation over random choice of \mathcal{M}'
- Guarantee of Alg': Alg' $(\sigma') \leq O(\log n) \cdot Opt(\sigma') + \beta$

Proof continues

Combining the above,

$$egin{aligned} \mathbb{E}[\mathtt{Alg}'(\sigma')] &\leq \mathbb{E}[\mathtt{Alg}'(\sigma')] \\ &\leq O(\log n) \cdot \mathbb{E}[\mathtt{Opt}(\sigma')] + \mathbb{E}[eta] \\ &\leq O(\log n) \cdot \mathbb{E}[\mathtt{Opt}'(\sigma')] + \mathbb{E}[eta] \\ &\leq O(\log^2 n) \cdot \mathtt{Opt}(\sigma) + \mathbb{E}[eta] \end{aligned}$$

- ullet Assertion follows since $\mathbb{E}[eta]$ doesn't depend on σ
 - Charge to additive constant
- Is upper bound tight?

Theorem ([BCR2023])

There exist n-point MSs for which the CR of any (randomized) MTS algorithm is $\Omega(\log^2 n)$.

Online Steienr Tree

Algorithms in Uncertain Scenarios (097280)

Yuval Emek

Spring 2024/5

1 The Steiner Tree Problem

- 2 A Randomized Online Steiner Tree Algorithm
 - Analysis

- 3 Lower Bound
 - Yao's principle
 - Applying Yao's Principle to Online Steiner Tree

Offline Steiner tree

- Input:
 - Connected undirected graph G with edge cost function $c: E(G) \to \mathbb{R}_{>0}$
 - A set $U \subseteq V(G)$ of terminals
- Output: subgraph H of G that satisfies
 - H is connected
 - $V(H) \supset U$
- Objective: minimize c(H) = c(E(H))
- \bullet V(H) may be a strict superset of U
 - Vertices in V(H) U are called Steiner vertices

Discussion

- Can *H* contain cycles?
 - Remove edges from cycles without affecting connectivity
 - H is a Steiner tree
 - Problem equivalent to minimum spanning tree if U = V
- Problem is known to be NP-hard
 - Decision version is one of Karp's 21 NP-complete problems
 - APX-complete (no PTAS unless P = NP) [Bern, Plassmann 1989]
 - State of the art approximation ratio is $\ln 4 + \epsilon < 1.39$ [Byrka, Grandoni, Rothvoss, and Laura Sanita 2010]
- Can H include non-metric edges?
 - Edge $e \in E(G)$ is metric if $c(e) = \delta_G(e)$
 - Replace non-metric edge (x, y) in H by path realizing $\delta_G(x, y)$

Online Steiner tree

- Graph G and edge cost function c are known in advance
- Terminal set *U* is provided online
 - Terminal u_t is reported at time t for t = 1, ..., k
- Online algorithm Alg grows Steiner tree in online fashion
 - Adding (but not removing) vertices and edges gradually
- At time $1 \le t \le k$, Alg constructs subgraph H_t of G that satisfies:
 - H_t is connected
 - $V(H_t) \supseteq \{u_1, \ldots, u_t\}$
 - H_t is a supergraph of H_{t-1}
- Objective: minimize $c(H_k)$

Discussion

- W.I.o.g. H_t is a tree
 - Remove edges from cycles without affecting connectivity
- Alternative view:
 - Alg maintains (growing) Steiner tree H
 - At time t, Alg augments H with a path P_t connecting it to u_t
 - Lazy algorithm: no point in adding vertices/edges ahead of time
 - $c(P_t) = \frac{\cos t}{\cos t}$ paid by Alg at time t
- Restrict attention to competitiveness without additive constant
 - *n* is inherent upper bound on length of request sequence
 - Additive constant can swallow Alg's whole cost

The Steiner Tree Problem

- 2 A Randomized Online Steiner Tree Algorithm
 - Analysis

- 3 Lower Bound
 - Yao's principle
 - Applying Yao's Principle to Online Steiner Tree

Preprocessing

- Develop randomized online Steiner tree algorithm Alg
- Alg also relies on low distortion prob. embedding in HST, but design (and analysis) follow different approach
- In preprocessing stage, employ FRT to prob. embed G,c in (random) HST T with edge weight function $w: E(T) \to \mathbb{R}_{>0}$
 - leaf set of T is V(G)
 - $\delta_T(x,y) \ge \delta_G(x,y)$ for every $x,y \in V(G)$
 - $\delta_T(\cdot,\cdot)$ dominates $\delta_G(\cdot,\cdot)$
 - $\mathbb{E}(\delta_T(x,y)) \leq O(\log n) \cdot \delta_G(x,y)$ for every $x,y \in V(G)$
- T doesn't even have to be HST: suffices that edge weights increase exponentially along leaf-root paths

Preliminaries

- For vertex $v \in V(T)$, let x(v) be leaf in T_v closest to v
 - Break ties arbitrarily but consistently
- For edge $e = (u, v) \in E(T)$, let M(e) be shortest (x(u), x(v))-path in G
 - Break ties arbitrarily but consistently
 - Extend definition to edge subsets $F \subseteq E(T)$: $M(F) = \bigcup_{e \in F} M(e)$
 - Union in graphical sense (vertices and edges)
 - Refer to M(e) and M(F) as the *mirrors* of e and F, respectively, in G
- For vertices $x, y \in V(G)$, let T(x, y) be unique (x, y)-path in T
 - Recall that x, y are leaves in T
 - Extend definition to vertex subsets $W \subseteq V(G)$: $T(W) = \bigcup_{x,y \in W} T(x,y)$
 - \bullet = unique minimal subtree of T that spans W

Online algorithm

- Subgraph H_t of G defined to be mirror of $E(T(\{u_1, \ldots, u_t\}))$ in G, breaking cycles arbitrarily but consistently
- Alternative description:
 - Alg maintains Steiner tree H in G and upon arrival of terminal u_t :
 - Let Q be unique path in T that connects u_t to $T(\{u_1,\ldots,u_{t-1}\})$
 - Augment H with M(E(Q)), breaking cycles arbitrarily
- Alg is randomized although online component is deterministic
 - Due to random construction of T

1 The Steiner Tree Problem

- 2 A Randomized Online Steiner Tree Algorithm
 - Analysis

- 3 Lower Bound
 - Yao's principle
 - Applying Yao's Principle to Online Steiner Tree

Proof's outline

Theorem

Alg is $O(\log n)$ -competitive.

- Let $T^* = T(\{u_1, \ldots, u_k\})$
 - Recall: $E(H) \subseteq M(E(T^*))$

Lemma (Low-bound Opt)

 $\mathbb{E}(w(T^*)) \leq O(\log n) \cdot c(\mathrm{Opt}).$

Lemma (Up-bound Alg)

$$c(H) \leq O(1) \cdot w(T^*).$$

Theorem established by combining two lemmas:

$$\mathbb{E}(c(\mathtt{Alg})) = \mathbb{E}(c(H)) \leq \mathit{O}(1) \cdot \mathbb{E}(\mathit{w}(\mathit{T}^*)) \leq \mathit{O}(\log n) \cdot c(\mathtt{Opt})$$

Low-bound Opt

Lemma

$$\mathbb{E}(w(T^*)) \leq O(\log n) \cdot c(\mathtt{Opt}).$$

- $Opt_T = \bigcup_{e \in E(Opt)} T(e)$
 - Connected since Opt is connected
 - Spans $\{u_1, ..., u_k\}$
 - Since Opt spans $\{u_1,\ldots,u_k\}$ in G
- $\bullet \Longrightarrow E(\mathsf{Opt}_T) \supseteq E(T^*) \Longrightarrow w(\mathsf{Opt}_T) \ge w(T^*)$
- Construction of T ensures that

$$\mathbb{E}(w(T(e))) = \mathbb{E}(\delta_T(e)) \leq O(\log n) \cdot c(e)$$

for every edge $e \in E(G)$

• Holds in particular for edges $e \in E(0pt)$

Proof continues

• Therefore,

$$\begin{split} \mathbb{E}(w(T^*)) &\leq \mathbb{E}(w(\mathtt{Opt}_T)) \\ &= \mathbb{E}\left(w\left(\bigcup_{e \in E(\mathtt{Opt})} T(e)\right)\right) \\ &\leq \mathbb{E}\left(\sum_{e \in E(\mathtt{Opt})} w(T(e))\right) \\ &= \sum_{e \in E(\mathtt{Opt})} \mathbb{E}\left(w(T(e))\right) \\ &= \sum_{e \in E(\mathtt{Opt})} \mathbb{E}\left(\delta_T(e)\right) \\ &\leq O(\log n) \cdot \sum_{e \in E(\mathtt{Opt})} c(e) \\ &= O(\log n) \cdot c(\mathtt{Opt}) \, \blacksquare \end{split}$$

Up-bound Alg — auxiliary claim

Claim

$$\delta_T(x(u),x(v)) \leq O(1) \cdot w(e)$$
 for every edge $e = (u,v) \in E(T)$.

- W.l.o.g. u = p(v)
- $\delta_T(x(u), u) \leq \delta_T(x(v), u)$
 - By definition of $x(\cdot)$
- $\delta_T(x(v), u) = \delta_T(x(v), v) + w(e) \leq O(1) \cdot w(e)$
 - By exponential growth of edge weights along (x(v), u)-path in T
 - Due to convergence of geometric sums
- Combine together:

$$\delta_{\mathcal{T}}(x(u), x(v)) \leq \delta_{\mathcal{T}}(x(u), u) + \delta_{\mathcal{T}}(x(v), u)$$

$$\leq 2 \cdot \delta_{\mathcal{T}}(x(v), u) \leq O(1) \cdot w(e) \blacksquare$$

• Distance is 0 if x(u) = x(v)

Up-bound Alg

Lemma

$$c(H) \leq O(1) \cdot w(T^*).$$

• Since $\delta_T(\cdot,\cdot)$ dominates $\delta_G(\cdot,\cdot)$, it follows that

$$c(M(e)) = \delta_G(x(u), x(v)) \leq \delta_T(x(u), x(v)) \leq O(1) \cdot w(e)$$

for every edge $e = (u, v) \in E(T)$

- Last transition holds by claim
- Holds in particular for edges $e = (u, v) \in E(T^*)$
- $E(H) \subseteq M(E(T^*))$, thus

$$c(H) \le c(M(E(T^*))) = c \left(\bigcup_{e \in E(T^*)} M(e)\right)$$

$$\le \sum_{e \in E(T^*)} c(M(e)) \le O(1) \cdot \sum_{e \in E(T^*)} w(e) = O(1) \cdot w(T^*) \blacksquare$$

The Steiner Tree Problem

- 2 A Randomized Online Steiner Tree Algorithm
 - Analysis

- 3 Lower Bound
 - Yao's principle
 - Applying Yao's Principle to Online Steiner Tree

The Steiner Tree Problem

- 2 A Randomized Online Steiner Tree Algorithm
 - Analysis

- 3 Lower Bound
 - Yao's principle
 - Applying Yao's Principle to Online Steiner Tree

The two player zero sum game view

- So far, "tailor made" lower bounds for randomized online algorithms
- Today, a more generic approach called Yao's principle
- ullet Consider some online minimization problem ${\cal P}$
 - Can be applied to maximization problems as well
- Fix (arbitrarily large) upper bound n on length of request sequence
- \mathcal{I} = collection of request sequences for \mathcal{P} (length $\leq n$)
- $\mathcal{A} =$ collection of deterministic online algorithms for \mathcal{I}
- Assume \mathcal{I} and \mathcal{A} are finite
 - (Can be made) true for most reasonable online problems
- Two player zero sum game:
 - (Algorithm) designer chooses $\mathtt{Alg} \in \mathcal{A}$
 - Adversary chooses $\sigma \in \mathcal{I}$
 - Designer pays $\chi(\mathrm{Alg}, \sigma) = c(\mathrm{Alg}(\sigma))/c(\mathrm{Opt}(\sigma))$ to adversary
- (Deterministic) Alg is α -competitive iff $\chi(Alg, \sigma) \leq \alpha$ for any $\sigma \in \mathcal{I}$
 - Ignore additive constant for now

Randomized algorithms

- Key observation: randomized algorithm = mixed strategy of designer
 - Probability distribution $p \in \Delta(A)$
- p is α -competitive iff $\chi(p,\sigma) \leq \alpha$ for any $\sigma \in \mathcal{I}$
 - $\chi(p, \sigma) = \sum_{\mathtt{Alg} \in \mathcal{A}} p(\mathtt{Alg}) \cdot \chi(\mathtt{Alg}, \sigma)$
 - $\chi(\text{Alg}, q) = \sum_{\sigma \in \mathcal{I}} q(\sigma) \cdot \chi(\text{Alg}, \sigma)$
- Minimax theorem [von Neumann 1928]: game has value v:

$$\begin{split} & \exists p \in \Delta(\mathcal{A}) \text{ s.t. } \forall \sigma \in \mathcal{I} \,, \quad \chi(p,\sigma) \leq v \\ & \exists q \in \Delta(\mathcal{I}) \text{ s.t. } \forall \texttt{Alg} \in \mathcal{A} \,, \quad \chi(\texttt{Alg},q) \geq v \end{split}$$

- With mixed strategies, each player can guarantee game's value!
 - Doesn't matter who plays first
- [Yao 1977]: If we can find $q \in \Delta(\mathcal{I})$ such that $\chi(\mathtt{Alg},q) \geq \tilde{v}$ for every deterministic Alg, then c.r. of any randomized algorithm $\geq \tilde{v}$
 - Challenge: design bad $q \in \Delta(\mathcal{I})$
 - q = q(n) for arbitrarily large n

Discussion

- What about the additive constant?
 - Cannot "help" algorithm designer as n can be arbitrarily large
- Yao's principle developed originally for randomized RAM algorithms
 - Applied to online algorithms by [Borodin, Linial, Saks 1992]

The Steiner Tree Problem

- 2 A Randomized Online Steiner Tree Algorithm
 - Analysis

- 3 Lower Bound
 - Yao's principle
 - Applying Yao's Principle to Online Steiner Tree

The diamond graph

- [Imase, Waxman 1991]: lower bound for online Steiner tree based on Yao's principle
- Family $\{D_i\}_{i>0}$ of diamond graphs defined inductively:
 - D_0 = graph consisting of 2 vertices and 1 edge
 - Vertices of D₀ are called poles
 - D_{j+1} obtained from D_j by replacing each edge $(x,y) \in E(D_j)$ by paths (x,z_e^1,y) and (x,z_e^2,y)
 - z_e^1 and z_e^2 are fresh vertices
 - x and y are called *parents* of z_e^1 and z_e^2

The diamond graph — cont.

- $|E(D_j)| = 4 \cdot |E(D_{j-1})| = 4^{j}$
- Length of any pole-to-pole path in D_j is 2^j
- Vertices introduced at inductive construction of D_i are of *level i*
 - Parents of level i vertex are of levels i-1 and $\leq i-1$
 - $\leq i-1$ if i>1
- Fix some level 1 < i < j
 - #level i vertices in any pole-to-pole path in D_i is 2^{i-1}
 - = length of pole-to-pole path in D_{i-1}
 - #level i vertices in D_i is $2 \cdot |E(D_{i-1})| = 2 \cdot 4^{i-1}$
- $|V(D_j)| = 2 + \sum_{i=1}^{j} 2 \cdot 4^{i-1} = 2 + \frac{2}{3} (4^j 1) = \Theta(4^j)$
- Assign costs to edges: $c(e) = 2^{-j}$ for every edge $e \in E(D_j)$
 - Cost of each pole-to-pole path in D_i is 1
 - Distance between level i vertex and any of its parents is 2^{-i}
 - Direct edge (of cost 2^{-i}) in D_i
 - Distance remains unchanged in D_j for j > i

A bad probability distribution

- Bad prob. distribution over online Steiner tree instances in D_i:
 - Pick a pole-to-pole path P u.a.r.
 - Instance σ : expose vertices in P by non-decreasing order of levels
 - 2 poles first
 - then 1 level 1 vertex
 - then 2 level 2 vertices
 - then 4 level 3 vertices
 - . . .
- By definition of D_j and cost function $c(\cdot)$, $Opt(\sigma) = 1$
- Prove:

$$\mathbb{E}\left(\mathrm{Alg}(\sigma)\right) \geq \Omega(j) = \Omega(\log|V(D_j)|)$$

for any deterministic online algorithm Alg

- Yao's principle:
 - c.r. of any randomized online Steiner tree algorithm $\geq \Omega(\log n)$

Low-bounding expected payment of Alg

- H =Steiner tree of D_j maintained by Alg
- Vertices x and x' of levels i and i' are well-connected in H if all internal vertices of unique (x,x')-path in H are of levels $> \max\{i,i'\}$
 - Must be a shortest (x, x')-path in D_i
- Fix some $1 \le i \le j$
- Consider arrival of some level i vertex z with parents x and y
- If x and y are not well-connected in H, then Alg well-connects z to one of them, paying 2^{-i}
- Assume: when z arrives, x and y are well-connected by path Q
- Key observation: $\mathbb{P}(z \in V(Q)) = 1/2$
 - If $z \notin V(Q)$, then Alg well-connects z to x or y, paying 2^{-i}
- In both cases, expected payment of Alg when z arrives is $\Omega(2^{-i})$
- Summing over all levels $1 \le i \le j$:

$$\mathbb{E}(\mathtt{Alg}(\sigma)) \, \geq \, \sum_{i=1}^{j} 2^{i-1} \cdot \Omega(2^{-i}) \, = \, \Omega(j) \, lacksquare$$

Online Algorithms with Machine Learned Predictions

Algorithms in Uncertain Scenarios (097280)

Yuval Emek

Spring 2024/5

Beyond worst case analysis

- Worst case nature of competitive analysis may be too harsh
- In practice, many online algs outperform theoretical guarantees
 - Rarely encounter pitfalls that realize competitiveness lower bounds
- Extensive research on "beyond worst case" analysis of online algs
 - Restrict power of adversary
 - random arrival order
 - locality of reference
 - access graph
 - smoothed analysis
 - diffused adversaries
 - Relax definition of competitive analysis
 - resource augmentation
 - loose competitiveness
 - Modify computational model
 - lookahead
 - small advice
- This lecture: augment online algs with machine learned predictions [Lykouris, Vassilvitskii 2021]

Machine learned predictions

- ML successful in many application domains
- Good on average assuming test distribution = train distribution
 - Almost no worst case guarantees
- Can ML help online algs?
- Idea: provide online alg with ML predictions on future requests
 - Likely to encounter prediction errors
- Goal (informally):
 - Small competitive ratio when predictions are correct
 - Competitive ratio deteriorates slowly as prediction error increases

- Online Paging with Predictions
 - A χ -Assisted Online Paging Algorithm
 - Analysis of PredMark
 - Bounding Expected Suffix' Length
 - Bounding Prefix' Length

Machine learning preliminaries

- Prediction model defined over
 - feature space \mathcal{X}
 - ullet label space ${\cal Y}$
- Example = pair $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- **Assumption:** if $\mathcal{D} \in \Delta(\mathcal{X} \times \mathcal{Y})$ is training/test distribution, then $(x, y), (x, y') \in \text{support}(\mathcal{D})$ implies y = y'
- Predictor (a.k.a. hypothesis) = mapping $h: \mathcal{X} \to \mathcal{Y}$
- Performance of predictor measured w.r.t. loss function

$$\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$$

- This lecture: restrict attention to absolute loss $\ell(y, y') = \|y y'\|_1$
 - ullet ${\cal Y}$ assumed to be vector space
- **Goal**: if h trained on \mathcal{D} , then $\mathbb{E}_{(x,y)\sim\mathcal{D}}(\ell(h(x),y))$ is small
 - Does not provide guarantees for all $(x, y) \in \text{support}(\mathcal{D})$
 - Does not provide any guarantees if h trained on $\mathcal{D}' \neq \mathcal{D}$

Online Algorithms with predictions

- ullet Online (minimization) problem ${P}$ defined over universe ${\cal Z}$ of elements
- ullet Prediction model defined over feature space ${\mathcal X}$ and label space ${\mathcal Y}$
- Request sequence $\sigma = (\sigma_1, \dots, \sigma_{|\sigma|})$
- ullet Each request σ_t associated with
 - element $z(\sigma_t) \in \mathcal{Z}$
 - paging: requested page
 - feature $x(\sigma_t) \in \mathcal{X}$
 - captures info available to predictor
 - paging: e.g., process from which σ_t arrives and its state
 - label $y(\sigma_t) \in \mathcal{Y}$
 - captures info sufficient to solve P (almost) optimally
 - paging: next arrival time of $z(\sigma_t)$
- Online alg has (oracle) access to predictor $h: \mathcal{X} \to \mathcal{Y}$
 - Provides predicted label $h(\sigma_t) = h(x(\sigma_t))$ for each request σ_t
- $Alg_h(\sigma) = (expected) cost of Alg on <math>\sigma$ using h's predictions

Prediction error

• Define *error* of predictor h on request sequence σ (w.r.t. ℓ) as

$$\eta(h,\sigma) = \sum_{t=1}^{|\sigma|} \ell(h(\sigma_t), y(\sigma_t))$$

• Predictor h is χ -accurate for P if

$$\eta(h,\sigma) \leq \chi \cdot \mathsf{Opt}(\sigma)$$

for every request sequence σ

- Bounding error relatively to $Opt(\sigma)$
- Relatively to $Opt(\sigma)$ rather than $|\sigma|$?
 - $|\sigma|$ can be extended "artificially"
 - Alg(σ) is also bounded w.r.t. Opt(σ)
- $\mathcal{H}_P(\chi)$ = class of χ -accurate predictors for P
- Online alg is χ -assisted if Alg's predictor $\in \mathcal{H}_P(\chi)$
 - ullet Alg's designer typically oblivious to χ

The competitive ratio of χ -assisted algorithms

Define

$$\operatorname{Alg}_{\chi}(\sigma) = \sup_{h \in \mathcal{H}_{P}(\chi)} \operatorname{Alg}_{h}(\sigma)$$

ullet χ -assisted Alg is c-competitive if

$$\mathsf{Alg}_\chi(\sigma) \leq c \cdot \mathsf{Opt}(\sigma) + \alpha$$

for any request sequence σ

- $\alpha \in \mathbb{R}_{\geq 0}$ is additive constant
 - independent of σ and χ
- \bullet CR of $\chi\text{-assisted Alg}$ as function of $\chi=\mathit{robustness}$ (function) of Alg
 - Denote by $\varrho(\chi)$
- Holy grail:
 - $\varrho(\chi)$ grows slowly
 - $\varrho(0)$ is small constant
 - a.k.a. consistency
 - $\limsup_{\chi \to \infty} \varrho(\chi)$ not (asymptotically) larger than best CR of P
 - a.k.a. robust Alg

- Online Paging with Predictions
 - A χ -Assisted Online Paging Algorithm
 - Analysis of PredMark
 - Bounding Expected Suffix' Length
 - Bounding Prefix' Length

The setting

- Paging over N pages with cache size k
- Request sequence $\sigma = (\sigma_1, \dots, \sigma_{|\sigma|})$
- $z(\sigma_t)$ = page associated with σ_t
- For $1 \le t \le |\sigma|$ and $p \in [N]$, define $\mathsf{NAT}(p,t) = \min \left(\{t < t' \le |\sigma| : z(\sigma_{t'}) = p\} \cup \{|\sigma| + 1\} \right)$

•
$$y(\sigma_t)$$
 = label associated with $\sigma_t = NAT(z(\sigma_t), t)$

- $h(\sigma_t) = h(x(\sigma_t)) = \text{predicted label associated with } \sigma_t$
- C_t = cache configuration of Alg at time t
- Simplifying assumption: $C_1 = \emptyset$
 - Alg holds prediction for each page in cache
- For $1 \le t \le |\sigma|$ and $\rho \in [N]$, define

$$\mathsf{NAT}_h(p,t) = h(\sigma_{t'}),$$

where $t' \leq t$ is largest index satisfying $z(\sigma_{t'}) = p$

- If no such t' exists, then $\mathsf{NAT}_h(p,t) = \bot$
- Notice: $\mathsf{NAT}_h(p,t) \neq \bot$ for every $1 \leq t \leq |\sigma|$ and $p \in C_t$
- Prediction errors may cause $NAT_h(p, t) \le t$
- Restrict attention to lazy algs (act only on PFs)

Following the predictions blindly

- Belady rule: on PF at time t, evict $\operatorname{argmax}_{p \in C_t} \operatorname{NAT}_h(p, t)$
- If $\eta(h, \sigma) = 0$, then following Belady rule is optimal [Belady 1966]
- Should we "blindly follow" Belady rule if $\eta(h, \sigma)$ may be positive?
 - Variants depending on treatment of NAT_h $(p, t) \le t$
- ullet Simple examples demonstrate that robustness is $\Omega(1+\chi)$
 - Unattractive dependency on χ (see later)
 - Not robust (take $\chi \gg \log k$)

- 2 Online Paging with Predictions
 - A χ -Assisted Online Paging Algorithm
 - Analysis of PredMark
 - Bounding Expected Suffix' Length
 - Bounding Prefix' Length

Recalling marking algorithm

- Request sequence σ (inductively) partitioned into *phases*
 - each phase is maximal subsequence that includes $\leq k$ distinct pages
- All pages are unmarked at beginning of phase
- Page is *marked* upon request
- Alg never evicts marked page
- $C_1 = \emptyset$ implies trivial first phase (no PFs)

Stale vs. fresh vs. fading

- Consider page $p \in [N]$ and phase $\phi > 1$
 - ullet p is stale if p requested in (both) phases $\phi-1$ and ϕ
 - ullet p is fresh if p not requested in phase $\phi-1$ and requested in phase ϕ
 - ullet p is fading if p requested in phase $\phi-1$ and not requested in phase ϕ
 - Cf. definitions in paging presentation
 - Does not depend on Alg
- PF request σ_t in phase $\phi > 1$ is stale/fresh if $z(\sigma_t)$ is stale/fresh
 - Fading pages not requested at all
 - Does depend on Alg
- In each phase $\phi > 1$
 - #stale pages + #fresh pages = k
 - #fresh pages = #fading pages

Blame chains

- ullet Consider marking Alg and phase $\phi>1$
- ullet During ϕ , maintain blame chains that record evicted pages
 - Blame chains of ϕ , deleted when ϕ ends
 - Page evicted exactly once, hence assigned to unique blame chain
- Invariant:

throughout ϕ , evicted pages not requested yet = tails of blame chains

- Upon arrival of fresh (PF) request σ_t
 - ① create (empty) blame chain $B = B(\sigma_t)$
 - 2 $B_1 \leftarrow \text{page evicted in } \sigma_t$
- Upon arrival of stale (PF) request σ_t
 - **1** Let *B* be blame chain such that $B_{|B|} = z(\sigma_t)$
 - well defined by invariant as σ_t is stale
- When B is completed
 - B_i is stale for every $1 \le j < |B|$
 - $B_{|B|}$ is fading
- Important: blame chains can be maintained online

The χ -assisted online algorithm

- Marking alg PredMark
 - M_t = set of marked pages at time t
 - Maintaining blame chains implicitly
- **1** let σ_t be PF request
- ② if σ_t is fresh, then evict $\operatorname{argmax}_{p \in C_t M_t} \operatorname{NAT}_h(p, t)$
- \bullet if σ_t is stale, then
 - **1** let B be blame chain such that $B_{|B|} = z(\sigma_t)$
 - well defined by invariant
 - ② if $|B| < H_k$, then evict $\operatorname{argmax}_{p \in C_t M_t} \operatorname{NAT}_h(p, t)$
 - $H_k = k$ th harmonic number
 - **3** else, evict $p \in_R C_t M_t$

Theorem

The robustness of PredMark is (up-bounded by) $\varrho(\chi) = O\left(\min\left\{1 + \sqrt{\chi}, \log k\right\}\right)$.

- Online Paging with Predictions
 - A χ -Assisted Online Paging Algorithm
 - Analysis of PredMark
 - Bounding Expected Suffix' Length
 - Bounding Prefix' Length

Global view

- F = #fresh requests throughout σ
 - PredMark has exactly F blame chains

Lemma

$$F/2 \leq \mathrm{Opt}(\sigma) \leq F$$
.

- 1st inequality: established in analysis of RandMark
- 2nd inequality: offline marking alg that evicts only fading pages
- $\operatorname{PredMark}_h(\sigma) = \operatorname{expected}$ total length of blame chains throughout σ
- **Goal:** bound PredMark $_h(\sigma)$ w.r.t. F

Blame chain's prefix and suffix

- Consider blame chain B
- Partition B into
 - prefix B^p of length $L^p = \min\{|B|, \lceil H_k \rceil\}$
 - (possibly empty) suffix B^s of length $L^s = |B| L^p$
 - $L^s = \max\{|B| \lceil H_k \rceil, 0\}$
- Intuitively: deterministic B^p vs. probabilistic B^s
- Request σ_t affects B^p if $q = z(\sigma_t)$ appended to B^p at time $t^* > t$ and $z(\sigma_{t'}) \neq q$ for all $t < t' \le t^*$
 - $NAT_h(q, t^*) = h(\sigma_t)$
 - σ_t necessarily belongs to earlier phase
- $\pi(B)$ = total error of h on requests that affect B^p

Outline

Proposition (prefix' length)

If $\pi(B) \leq \pi$, then $L^p \leq 1 + \sqrt{5\pi}$.

Proposition (expected suffix' length)

$$\mathbb{E}(L^s \mid \pi(B) \leq \pi) \leq \lceil H_k \rceil.^a$$

^aBound on $\mathbb{E}(L^s)$ holds regardless of $\pi(B)$.

Corollary

$$\mathbb{E}(L^p + L^s \mid \pi(B) \le \pi) \le 2 \cdot \min \{1 + \sqrt{5\pi}, \lceil H_k \rceil \}.$$

- If $1 + \sqrt{5\pi} < [H_k]$, then follows from 1st proposition
 - Implies $L^p < \lceil H_k \rceil \Longrightarrow L^s = 0$
- If $1 + \sqrt{5\pi} \ge \lceil H_k \rceil$, then follows from 2nd proposition
 - Recall $L^p \leq \lceil H_k \rceil \blacksquare$

Outline — cont.

Corollary

If the total error of h on σ is η , then

$$\operatorname{PredMark}_h(\sigma) \leq 2F \cdot \min \left\{ 1 + \sqrt{5\eta/F}, \lceil H_k \rceil \right\}.$$

- $g(\pi) = 2 \cdot \min \{1 + \sqrt{5\pi}, \lceil H_k \rceil \}$ is concave, hence $\operatorname{PredMark}_h(\sigma)$ is maximized by dividing η equally over F blame chains
- Theorem follows by plugging $2 \cdot \text{Opt} \to F$ and $1/\text{Opt} \to 1/F$

- Online Paging with Predictions
 - A χ -Assisted Online Paging Algorithm
 - Analysis of PredMark
 - Bounding Expected Suffix' Length
 - Bounding Prefix' Length

Proving the proposition

- Consider phase φ > 1 and blame chain B of PredMark in φ
 prefix B^p of length L^p; suffix B^s of length L^s
- Show: $\mathbb{E}(L^s \mid \pi(B) \leq \pi) \leq \lceil H_k \rceil$
- For stale page q, let $\tau(q)$ be 1st arrival time of q in ϕ
- $f = \# fresh pages of \phi$
- $D = \text{set of fading pages of } \phi$
- If $B^p \cap D \neq \emptyset$, then $L^s = 0$ w.p. 1
- Assume $B^p \cap D = \emptyset$ and let $t_0 = \tau(B_{\lceil H_k \rceil})$
 - time of first random choice made for B
- $ullet \{q_1,\ldots,q_w\} = ext{set} ext{ of stale pages } q_i \in \mathcal{C}_{t_0} ext{ with } au(q_i) > t_0$
 - ullet ordered so that $au(q_i) < au(q_{i+1})$
 - stale pages candidates for inclusion in B^s
 - $w \leq k f$

Key lemma

Lemma

$$\mathbb{P}(q_i \in B^s \mid \pi(B) \leq \pi) \leq \frac{1}{w+2-i}$$
 for each $1 \leq i \leq w$.

- Consider page q_i for $1 \le i \le w$
- Let $t \geq t_0$ be the latest time $< au(q_i)$ such that $z(\sigma_t) = B_{|B|}$
 - If q_i not evicted in σ_t , then $q_i \notin B^s$
- Any page $q \in \{q_j \mid j \geq i\} \cup D$ may be evicted in σ_t as long as $q \in C_t$
 - one such page picked u.a.r.
- **Observation:** $|(\{q_j \mid j \geq i\} \cup D) C_t| \leq f 1$
 - ullet Each blame chain B'
 eq B "steals" ≤ 1 page from $\{q_j \mid j \geq i\} \cup D$
 - \bullet f-1 such blame chains
- |D| = f, hence $|(\{q_j \mid j \ge i\} \cup D) \cap C_t| \ge w + 1 i + f (f 1) = w + 2 i \blacksquare$
- Prop. follows as $\mathbb{E}(L^s \mid \pi(B) \le \pi) \le 1 + \sum_{i=1}^w \frac{1}{w+2-i} = H_{w+1} \le \lceil H_k \rceil$

- 2 Online Paging with Predictions
 - A χ -Assisted Online Paging Algorithm
 - Analysis of PredMark
 - Bounding Expected Suffix' Length
 - Bounding Prefix' Length

Proving the proposition

- ullet Consider phase $\phi>1$ and blame chain ${\color{red}B}$ of PredMark in ϕ
 - prefix B^p of length L^p with error $\pi(B)$
- Show: if $\pi(B) \leq \pi$, then $L^p \leq 1 + \sqrt{5\pi}$

Lemma (spread of absolute loss [Lykouris, Vassilvitskii 2021])

Let

$$\mathcal{R}_n = \{(r_1, \ldots, r_n) \in \mathbb{Z}_{>0} \mid r_1 < \cdots < r_n\}$$

and

$$\mathcal{S}_n = \{(s_1, \ldots, s_n) \in \mathbb{R}_{>0} \mid s_1 \geq \cdots \geq s_n\}.$$

For any $\gamma \geq 0$ and $n > 1 + \sqrt{5\gamma}$, if $(r_1, \dots, r_n) \in \mathcal{R}_n$ and $(s_1, \dots, s_n) \in \mathcal{S}_n$, then

$$\sum_{j=1}^{n} |r_j - s_j| > \gamma.$$

Proving the proposition — cont.

- Let $q_j = B_j$ for $1 \le j \le L^p$
- q_0 = fresh page whose arrival responsible for creating B
- $t_{\phi} = \text{time right before } \phi \text{ starts}$
- For $0 \le j \le L^p$, define
 - $\psi(j) = NAT(q_i, t_\phi)$
 - first arrival time of page q_j in ϕ for $0 \le j < L^p$
 - page q_j may be fading (not arriving during ϕ) for $j = L^p$
 - $\bullet \ \psi_h(j) = \mathsf{NAT}_h(q_j, t_\phi)$
- Observation 1:

$$\psi(j) < \psi(j+1)$$
 for every $0 \le j < L^p$

- q_{j+1} evicted by marking algorithm in $\sigma_{\psi(j)}$
- Observation 2:

$$\mathsf{NAT}_h(q_{j+1}, \psi(j)) \ge \mathsf{NAT}_h(q_i, \psi(j))$$
 for every $0 \le j < i \le L^p$

- q_{j+1} selected for eviction by $\operatorname{PredMark}_h(\sigma)$ in $\sigma_{\psi(j)}$
- Observation 3:

$$NAT_h(q_i, \psi(j)) = \psi_h(i)$$
 for every $0 \le j < i \le L^p$

ullet prediction on q_i does not change during $(t_\phi,\psi(j)]$

Proving the proposition — cont.

- So,
 - $\psi(1) < \cdots < \psi(L^p)$
 - $\psi_h(1) \geq \cdots \geq \psi_h(L^p)$
- $\sum_{j=1}^{L^p} |\psi(j) \psi_h(j)| = \pi(B) \le \pi$
 - total error of h on requests affecting B^p
- Spread of absolute loss lemma: $L^p \le 1 + \sqrt{5\pi}$