Model uncertainty and variable selection in Bayesian lasso regression

Chris Han 2009

Outline

- Assessing model uncertainty using marginal likelihood
 - The purpose of this paper
 - Apply to Data set

2 Model uncertainty in higher dimensions

Outline

- Assessing model uncertainty using marginal likelihood
 - The purpose of this paper
 - Apply to Data set

2 Model uncertainty in higher dimensions

The purpose of this paper

- Introduce analytic and computation approaches for handling model uncertainty under the Bayesian lasso regression.
- How to find posterior marginal inclusion probabilities for the Bayesian lasso.
 - Exact ML vs. MCMC
 - Application to dataset

Bayesian lasso

 Park and Casella (2008) consider the Bayesian lasso regression model

$$y|\beta,\sigma^2 \sim N(X\beta,\sigma^2I)$$

ullet The double-exponential prior for p-vector of regression coefficients $oldsymbol{eta}$

$$eta_j | \sigma^2, au \stackrel{\textit{iid}}{\sim} \textit{DE}\left(au/\sigma
ight), \qquad j = 1, ..., p.$$

where y is an n-vector of observations and X is an $n \times p$ matrix of predictor variables

• $DE(au/\sigma)$ is the double-exponential distribution with density function

$$p\left(eta_j| au,\sigma^2
ight)=rac{ au}{2\sigma}e^{- au\left|eta_j
ight|/\sigma}.$$

The marginal likelihood for model γ

• For given model γ with k_{γ} predictor variables, the key to assessing model uncertainty is the ability to evaluate

$$\begin{split} m_{\gamma}\left(y|\sigma^{2},\tau\right) &= \int N\left(y|X_{\gamma}\beta_{\gamma},\sigma^{2}I_{n}\right)\pi\left(\beta_{\gamma}|\sigma^{2},\tau\right)d\beta_{\gamma} \\ &= \int\left(2\pi\sigma^{2}\right)^{-n/2}\exp\left(-\frac{1}{2\sigma^{2}}\left(y-X_{\gamma}\beta_{\gamma}\right)^{T}\left(y-X_{\gamma}\beta_{\gamma}\right)\right) \\ &\times \left(\frac{\tau}{2\sigma}\right)^{k_{\gamma}}\exp\left(-\tau\left|\left|\beta_{\gamma}\right|\right|_{1}\right)d\beta_{\gamma} \end{split}$$

where $||\beta||_1$ is the L_1 -norm of β and we assume σ^2 and τ are known values for now.

Exact marginal likelihood calculation

 The integral in the previous slide can be re-expressed as follows:

$$m_{\gamma}(y|\sigma^{2},\tau) = \omega_{\gamma}\left(\frac{\tau}{2\sigma}\right)^{k_{\gamma}}N\left(y|0,\sigma^{2}I_{n}\right)$$

where $k_{\gamma} = \sum_{l=1}^{p} \gamma_{l}$ is the number of variables included in model γ and

$$\omega_{\gamma} = \sum_{z \in \mathcal{Z}_{k_{\gamma}}} \frac{P\left(z, \left(X_{\gamma}^{T} X_{\gamma}\right)^{-1} \left(X_{\gamma}^{T} y - \tau \sigma z\right), \sigma^{2} \left(X_{\gamma}^{T} X_{\gamma}\right)^{-1}\right)}{N\left(0 \mid \left(X_{\gamma}^{T} X_{\gamma}\right)^{-1} \left(X_{\gamma}^{T} y - \tau \sigma z\right), \sigma^{2} \left(X_{\gamma}^{T} X_{\gamma}\right)^{-1}\right)}.$$

when $k_{\gamma} = 0$, then the weight defined to be 1.

Posterior probability of the regression model

• If we assume that the prior distribution on the model space is

$$\gamma_j \stackrel{\textit{iid}}{\sim} \textit{Bernoulli} \, (
ho = 0.5)$$

all models are a priori equally likely.

 Thus, the posterior probability of the regression model are simply normalized marginal likelihood

$$\pi(\gamma|y) = \frac{m_{\gamma}(y) \pi(\gamma)}{\sum_{\gamma' \in \Gamma} m_{\gamma}(y) \pi(\gamma')}$$

$$\stackrel{aspt.}{=} \frac{m_{\gamma}(y)}{\sum_{\gamma' \in \Gamma} m_{\gamma'}(y)}$$

Outline

- Assessing model uncertainty using marginal likelihood
 - The purpose of this paper
 - Apply to Data set

2 Model uncertainty in higher dimensions

Computational limitations

• To calculate the marginal likelihood, we need 2^p marginal likelihood calculation and for given model size k_{γ} , $2^{k\gamma}$ ratios must be computed. Thus,

$$\sum_{k=0}^{p} \binom{p}{k} 2^k = 3^p$$

ratios must be computed for the calculation.

Model uncertainty in higher dimensions

• Assuming $\gamma_j |
ho \stackrel{iid}{\sim} \textit{Bernoulli}\left(
ho
ight)$

$$\pi\left(eta_{j}|\sigma^{2}, au,
ho
ight)=\left(1-
ho
ight)\delta_{0}\left(eta_{j}
ight)+
horac{ au}{2\sigma}e^{- au\left|eta_{j}
ight|/\sigma}$$

Equivalently,

$$eta_j | \gamma_j \sim egin{cases} ext{point mass at 0} & \gamma_j = 0 \ ext{double} - ext{exponential} & \gamma_j = 1 \end{cases}$$

Then model indicator γ is embedded in β .

Full conditional distribution of eta_i

• An iteration of the Gibbs sampler cycles through the full conditional distributions $\beta_i | \beta_{-i}, \sigma^2, \tau, y, \quad j = 1, ..., p$

$$egin{aligned} \pi\left(eta_{j}|eta_{-j},oldsymbol{\sigma}^{2}, au,y
ight) &= \phi_{0j}\delta_{0}\left(eta_{j}
ight) + \left(1-\phi_{0j}
ight) imes \ \left\{\phi_{j}oldsymbol{\mathsf{N}}^{+}\left(eta_{j}|\mu_{j}^{+},s_{j}^{2}
ight) + \left(1-\phi_{j}
ight)oldsymbol{\mathsf{N}}^{-}\left(eta_{j}|\mu_{j}^{-},s_{j}^{2}
ight)
ight\} \end{aligned}$$

where

$$\begin{cases} \phi_{0j} \equiv Pr(\beta_{j} = 0 | \beta_{-j}, \sigma^{2}, \tau, \rho, y) \\ \phi_{j} \equiv \begin{cases} \frac{\Phi(\mu_{j}^{+}/s_{j})}{N(0|\mu_{j}^{+}, s_{j}^{2})} \end{cases} / \begin{cases} \frac{\Phi(\mu_{j}^{+}/s_{j})}{N(0|\mu_{j}^{+}, s_{j}^{2})} + \frac{\Phi(-\mu_{j}^{-}/s_{j})}{N(0|\mu_{j}^{-}, s_{j}^{2})} \end{cases} \end{cases}$$

• Full conditional distribution is a three component mixture: a point mass at 0, a positive normal distribution and a negative normal distribution with weights ϕ_{0j} , $(1-\phi_{0j})$ ϕ_j and $(1-\phi_{0j})(1-\phi_i)$ respectively.

Full conditional distributions of σ^2, au, ho

Prior:

$$\sigma^2 \sim IG(a,b)$$
 $\tau \sim Gamma(r,s)$
 $\rho \sim Beta(g,h)$

Full conditionals

$$\pi \left(\sigma^{2}|\beta,\rho,y\right) \propto \left(\sigma^{2}\right)^{-\left(a^{*}+1\right)} exp\left(-b^{*}/\sigma^{2}-\tau ||\beta||_{1}/\sigma\right)$$

$$\tau |\beta,\sigma^{2},y \sim Gamma\left(k_{\gamma}+r,\sigma^{-1}||\beta||_{1}+s\right)$$

$$\rho |\beta,\sigma^{2},\tau,y \sim Beta\left(g+k_{\gamma},h+p-k_{\gamma}\right)$$

Computational results

Fixed Parameters	Method	AGE	SEX	BP	S1	S2	S3	S4	S6	Time
$\sigma^2 = 1, \tau = 4.25,$	ML	.192	.776	.983	.519	.372	.696	.402	.251	8.57
ho=0.5	MCMC	.192	775	.983	.560	.372	.695	401	251	1.32
$\sigma^2 = .492, \tau = 4.25,$	ML	.191	.991	1.000	.658	.435	.797	473	.307	8.19
ho=0.5	MCMC	.191	991	1.000	.658	.436	.796	.473	.307	1.39
$\tau = 4.25, \rho = 0.5$	ML	191	987	1.000	.650	.432	.795	.470	.304	*
	MCMC	.191	.990	1.000	.660	.435	.793	.476	.307	1.51
ho = 0.5	MCMC	.130	.989	1.000	.659	.429	.696	414	.217	1.52
	MCMC	381	.995	1.000	816	.658	781	651	.503	1.72

Table: Posterior marginal inclusion probabilities

Additional approaches to model space MCMC

• Construct a Markov chain directly on the model indicator γ by marginalizing over β .

$$Pr\left(\gamma_{j}=1|\gamma_{-j},\sigma^{2}, au,y
ight)=\left(1+rac{1-
ho}{
ho} imesrac{m_{\gamma0}\left(y|\sigma^{2}, au
ight)}{m_{\gamma0}\left(y|\sigma^{2}, au
ight)}
ight)^{-1}$$

- Advantage: β is never sampled.
- Disadvantage: Computing of marginal likelihoods are expensive.

Comments

- This paper address the regression model uncertainty for the Bayesian LASSO.
- In the MCMC method, model indicator γ is embedded in β instead of use γ explicitly.
- By setting a non-zero probability of β_j being zero in prior distribution, it allows β_j to be exactly zero the sample of posterior distribution.
- A mixture of point mass and truncated normal distributions are used for posterior distribution of β .

Comments

- The paper didn't show the equivalence of $\beta_j=0$ and $\gamma_j=0$ and $\beta_j\neq 0$ and $\gamma_j=1$.
- ullet The problem of choosing the value of tuning parameter au remains to be solved.
- Although the algorithm gives the marginal probabilities of each β_j being non-zero, what set of predictors should be in the model is still not clear.

Thank you!