Abhishek Kolekar

abhishek_kolekar@outlook.com

Göteborg, Sweden

Transcript

+46-727777635

(in) /kolekar-abhishek

Have IDP, B-level ongoing

₽ Professional Summary

Passionate engineer with a strong interest in the automotive industry, with multifaceted knowledge in areas of vehicle dynamics and control systems. I hold a Master of Science in Mobility Engineering, focusing on testing, verification and validation (V&V), and data analysis. Through various roles during my Formula Student tenure and projects, I have developed skills and knowledge with a data-driven approach to engineering, with a focus on sustainability and performance. I am eager to bring my expertise and enthusiasm to your company, where I can grow professionally while contributing to shaping the future of mobility.

Education

Chalmers University of Technology

Master of Science (MSc.) in Mobility Engineering

• Coursework: Vehicle Dynamics, Control Systems, Active Safety

PCT's A. P. Shah Institute of Technology

Bachelor of Engineering (BE) in Mechanical Engineering

08/2022 – present | Göteborg, Sweden

08/2018 - 11/2022 | Thane, India

Professional Experience

Master's Thesis 01/2024 - 06/2024

Volvo Car Corporation

Title: Tire Warmup Relation to Rolling Resistance

- Designed an data-driven MATLAB model for calculating transient rolling resistance using tire temperature as a model input, enhancing the precision of energy efficiency assessments and adding insights to the tire selection process.
- Verified and validated (V&V) an existing Thermal-Schuring model for rolling resistance through statistical analysis of experimental data, achieving model accuracy within 5% of measured values.
- Developed **test methodologies** and **conducted on-site rolling resistance tests** on steel drum and full vehicle dynamometer rigs over 4 months; employed **INCA**, **MDA**, **and MATLAB** for comprehensive data analysis.
- Proactively identified opportunities to **improve vehicle efficiency from a rolling resistance perspective**, with modeled rolling energy loss deviating between 3% and 6% from measured values.

Automotive Engineering Project

08/2023 - 01/2024

Volvo Car Corporation

Title: Method to Improve a Wheel Suspension Design using VI-CarRealTime and optimization techniques

- Automated vehicle simulations in VI-CarRealTime by integrating it with a Reinforcement Learning Agent via the MATLAB API.
- Utilized Reinforcement Learning to optimize polynomial curve coefficients of wheel motion splines, consistently achieving specified target ranges.

Projects

Drivetrain Anomaly Troubleshooting and HIL Integration of ECU using CAN Protocol for Formula Student Vehicle

06/2023 - 08/2023

Summer Project at Chalmers REVERE

- Conducted Hardware-in-the-Loop (HIL) testing for motor control.
- Assisted in developing a Python script to **establish communication between the motor controller and the ECU** using the **CAN** protocol.

Virtual Vehicle Control Design & SIL Testing using IPG CarMaker

03/2023 - 05/2023

Vehicle Motion & Control - Course Project

- Designed a **normal force estimator** for model vehicle in IPG-CarMaker and implemented a **low-normal force** warning function.
- Simulated yaw-rate frequency response for model vehicle and validated with a simulation of bicycle model.

- Modeled vehicle motion control functions such as cruise control and lateral acceleration control; executed
 function verification and validation (V&V) and performed Software-in-the-Loop (SIL) testing using IPG
 CarMaker.
- Optimized suspension tuning parameters and compliances, achieving the desired handling characteristics.

Development of a Lap-Time Simulation and Energy Consumption Estimation Software for Electric Vehicles *⊗*

09/2021 - 05/2022

Bachelor's Capstone Project

- Developed a Lap Time Simulation (LTS) with an energy consumption estimation feature for Electric Vehicles in order to maximise vehicle performance and optimize battery design in vehicle's pre-design phase using
- Parameterized a Formula Student prototype vehicle in a Quasi-Static Bicycle model, comparing and validating it against a commercially available Steady-State Point Mass Model.
- Demonstrated that the Bicycle Model, due to its complexity, yields lap times of higher accuracy.

Other Notable Relevant Projects

- Driver Behaviour Analysis & Active Safety Systems in Critical Rear-End Situations
- Microservice Development with CI/CD Integration
- CFD Analysis, Wind Tunnel Testing, and Shape Optimization of a Bus Model.

Positions of Responsibility

Modified Auto Club Racing - Formula Student

02/2021 - 11/2021

Team Manager

- As Team Manager, led the team to a top 10 finish in Formula Bharat Virtuals 2021, showcasing exceptional teamwork and engineering prowess.
- Communicated cross-functional requirements within the team, and ensured progress tracking and collaboration.
- **Prepared design critical documents** like FMEA, Design Verification & Validation Plan, Design Spec Sheet, Production Planning Gantt Chart, and Cost Report of the vehicle.

Modified Auto Club Racing - Formula Student

02/2021 - 11/2021

Powertrain Department Lead

- Led a team in designing a high-performance Formula Student vehicle's drivetrain, achieving a **0-100 km/hr** theoretical time under 3.5 seconds and a top speed of 115 km/hr.
- Optimized drivetrain parameters for performance and energy efficiency, as well as **durability and vibration- freeness** using **MATLAB improving efficiency by 12% from baseline spec.**
- Designed parts and assemblies of the drivetrain subsystem in **SOLIDWORKS** & **CATIA V5**, and carried out structural FEM analysis using **ANSYS Mechanical**.

⚠ Certificates

- Certified SOLIDWORKS Associate Mechanical Design
- Certified SOLIDWORKS Associate Additive Manufacturing ∂
- ENGR2000X: A Hands-on Introduction to Engineering Simulations CornellX EdX ∂

Skillset ?

Python – Expert MATLAB/Simulink – Expert

C++ - Proficient HIL/SIL Testing and Analysis - Proficient

CI/CD (Gitlab, Docker, Jenkins) — Competent

❸ Languages

English — Native/Bilingual Swedish — Conversational

Additional Information

References Available Upon Request