Upscaling from DFT to Interatomic Potential

2/16/2022

Heechen E. Cho, Ph.D.

Requirements Defined by Downscaling from Atomic Level

First Order Requirements for EAM/MEAM Potentials (for calibration)

- Lattice parameter: a₀
- Elastic Moduli: C_{11} , C_{22} (C_{11} - C_{22} /2: tetragonal shear modulus), C_{12} , C_{13} , C_{22} , C_{33} , and C_{44} (trigonal shear modulus)
- Cohesive Energy (heat of formation): E_C
- Volume: V_0
- Exponential Decay Factor for MEAM potential: α

Objectives for Optimization of Parameters for EAM/MEAM Potentials (for validation)

- Surface Formation Energies
- Generalized Stacking Fault Curve
- Vacancy Formation Energy
- Atomic Forces
- Lattice ratio: HCP c/a ratio
- Crystal energy differences: E_{fcc} - E_{hcp}
- Crystal energy differences: E_{bcc} - E_{hcp}

Cohesive Energies

$$E_{coh} = \frac{(E_{tot} - NE_{atom})}{N}$$

 E_{coh} : cohesive energy of an atom

 E_{tot} : total energy of the system consisting of N atoms

 E_{atom} : total energy of an isolated atom

- Cohesive energy of an atom is defined as the heat of formation per atom when these atoms are assembled into a crystal structure
- When plotting the cohesive energy vs. the lattice parameter, the minimum of the cohesive energy curve determines the equilibrium lattice constant a_0

Joost et al. (2015)

Elastic Constants

- Number of elastic constants varies in different crystal structures
- Hexagonal crystal have five independent elastic constants: $C_{11},\,C_{12},\,C_{13},\,C_{33},$ and C_{44}
- Cubic crystals have three independent elastic constants: C_{11} , C_{12} , and C_{44}
- The elastic constants are calculated numerically by applying small strains to the lattice

Surface Formation Energies

$$\gamma = \frac{(E_{tot} - N\epsilon)}{A}$$

 γ : Surface formation energy per unit surface area

 E_{tot} : total energy of the system with a surface

N: number of atoms in the system

 ϵ : total energy per atom in the bulk

A: surface area

Vacancy Formation Energies

$$E_{vac} = E_{tot}[N-1] - E_{tot}[N]$$

 E_{vac} : energy cost to create a vacancy

 E_{tot} : total energy of the system with N atoms containing no vacancy

 $E_{tot}[N-1]$: energy of system containing a vacancy in its most stable bulk structure

Surface Adsorption Energies

$$E_{ads} = E_{tot} - E_{surf} - E_{atom}$$

 E_{ads} : adsorption energy of a single adatom

 E_{tot} : total energy of the structure with the adatom adsorped on the surface

 E_{surf} : total energy of the surface without the adatom

 E_{atom} : the energy of an isolated atom

Stacking Fault Energy

$$E_{sf} = \frac{E_{tot} - N\epsilon}{A}$$

 E_{sf} : stacking fault formation energy per unit area

 E_{tot} : total energy of the structure with a stacking fault

N: the number of atoms in the system

 ϵ : the total energy per atom in the bulk

A: the unit cell area that is perpendicular to the stacking fault

Generalized Stacking Fault Energy (GSFE) Curve

- A measure of the energy penalty between two adjacent planes during shear deformation in a specific slip direction on a given slip plane
- It represents the nature of slip and involving the stable (intrinsic, local minima) and unstable (local maxima) stacking and twin fault energies
- The GSFE curve and the associated energy properties can be used to model a vast number of phenomena linked to dislocations, plastic deformation, crystal growth, phase transition and twin–twin interactions (Shang et al., 2014)
- The nature of slip in crystalline metals cannot be described in terms of an absolute value of the stacking fault energy
- A correct interpretation requires the GSFE curve invoving both stable and unstable stacking fault energies
- GSFE is a key parameter to determine the structure and mobility of dislocation

Generalized Stacking Fault Energy (GSFE)

Zhang et al. (2015)

Curve

Kim & Horstemeyer (2012)