МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

ПРАКТИЧЕСКАЯ РАБОТА №1 ПО КУРСУ «ТЕОРИЯ НЕЛИНЕЙНЫХ СИСТЕМ РЕГУЛИРОВАНИЯ»

Вариант №7

Выполнил: студент гр. Б21-215

Воронков Никита Вадиомвич

Содержание

1	Исходные данные	3
2	Полученные аналитические описания КЛФ	4
3	Графики нелинейностей, построенные программно	5
4	Результаты экспериментов в виде графиков прохождения сигналов	9
5	Заключение	12
6	Програмная реализация	12

Цель работы: освоение аналитического описания кусочно-линейных функций и изучение принципов функционирования нелинейностей типа КЛФ.

1 Исходные данные

Рис. 1 – Однозначная КЛФ, заданная графически

Рис. 2 – Двузначная К
Л Φ , заданная графически

2 Полученные аналитические описания КЛФ

Для получения аналитического описания КЛФ воспользуемся готовой формулой:

$$\begin{cases} f(x) = a_0 + a_1 x + \sum_{j=1}^{N} \left\{ b_j | x - x_j | + c_j \operatorname{sgn}(x - x_j) \right\} \\ a_0 = f(0) - \sum_{i=1}^{N} \left\{ b_i | x_i | - c_i \operatorname{sgn} x_i \right\} \\ a_1 = \frac{k_0 + k_N}{2} \\ b_j = \frac{k_j - k_{j-1}}{2} \\ c_j = \frac{f^+(x_j) - f^-(x_j)}{2} \end{cases}$$

$$(1)$$

Здесь N — число узлов, x_j — узлы $(j=1,\ldots,N),\ k_j$ — коэффициенты наклонов $(j=0,1,\ldots,N),\ f^-(x)$ и $f^+(x)$ — пределы функций в точке разрыва, f(0) — значение функции в точке x=0.

Предполагая из графического вида, что однозначная КЛФ имеет узлы $x_1=-2, x_2=-1, x_3=1$ и $x_4=2$, коэффициенты наклонов $k_0=1, k_1=0, k_2=1, k_3=0$ и $k_4=1$, а также обладает непрерывностью, из (1) получаем $a_0=0, a_1=1, b_1=-0.5, b_2=-0.5, b_3=0.5, b_4=0.5$, все $c_i=0$:

$$f_1(x) = x + 0.5(-|x+2| - |x+1| + |x-1| + |x-2|)$$
(2)

Аналогичным образом опишем обе ветви двузначной КЛФ. Начнём с правой ветви, имеющей узлы $x_1=-1,\ x_2=1,\ x_3=2$ и $x_4=4$: предположим, что она имеет коэффициенты наклона $k_0=0,\ k_1=1,$ $k_2=2,\ k_3=1$ и $k_4=0$. Тогда получаем $a_0=0,\ a_1=0$ и $b_1=0.5,\ b_2=0.5,\ b_3=-0.5,\ b_4=-0.5,$ все $c_i=0$:

$$f_{2,1}(x) = 0.5(|x+1| + |x-1| - |x-2| - |x-4|)$$
(3)

Заметим, что левая ветвь - это правая, смещёная по оси x влево на 3. Нужно вместо x подставить x+3. Тогда получаем:

$$f_{2,2}(x) = 0.5(|x+4| + |x+2| - |x+1| - |x-1|)$$
(4)

Существует готовая формула для описания обратной $K \Pi \Phi \kappa$ (2):

$$\begin{cases} f^{-1}(y) = \hat{a}_0 + \hat{a}_1 y + \sum_{j=1}^N \hat{b}_j | y - y_j | \\ \hat{a}_0 = -\hat{a}_1 y_0 - \sum_{i=1}^N \hat{b}_i | y_0 - y_i | \\ \hat{a}_1 = \frac{a_1}{a_1^2 - \left(\sum_{i=1}^N b_i\right)^2} \\ \hat{b}_j = \frac{b_j}{b_j^2 - \left(a_1 + \sum_{i=1}^{j-1} b_i - \sum_{i=j+1}^N b_i\right)^2} \end{cases}$$

$$(5)$$

Здесь она подходит, так как для всех значений найти обратную - невозможно. Для значений в пределах [-1,1] это удаётся сделать:

$$f_1^{-1}(y) = -x (6)$$

3 Графики нелинейностей, построенные программно

Мною была написано программа на языке python с использование библиотек numpy и matplotlib. Ссылка на полный код программы указана в конце отчёта.

Однозначная КЛФ была задана при помощи кусочной функции из библиотеки numpy:

Пользуясь теперь аналитическим описанием (2), можно задать данную К $\Pi\Phi$ с помощью обычной функции:

```
def f_analytical(x):

return x + 0.5 * (-np.abs(x + 2) - np.abs(x + 1) +

np.abs(x - 1) + np.abs(x - 2))
```


Рис. 3 – График однозначной КЛФ

Зададим аналогично ветви двузначной КЛФ. Для правой ветви была заданая кусочная функции из библиотеки numpy:

```
def f21_klf(x):
    y = np.piecewise(
        x, [x < -1, (-1 <= x) & (x < 1), (1 <= x) & (x < 2),
        (2 <= x) & (x < 4), x >= 4],
        [lambda x: 0 * x - 3, lambda x: 1 * x - 2, lambda x: 2 * x - 3,
        lambda x: 1 * x - 1, lambda x: 0 * x + 3]
    )
    return y
```

А для аналитического описания правой ветки воспользуемся обычной функцией, оответствующей записи (3):

```
def f21_analytical(x):

return 0.5 * (np.abs(x + 1) + np.abs(x - 1) - np.abs(x - 2) - np.abs(x - 4))
```

Для левой ветви была заданая кусочная функции из библиотеки numpy::

```
def f22_klf(x):
    y = np.piecewise(
        x,[x < -4, (-4 <= x) & (x < -2), (-2 <= x) & (x < -1),
        (-1 <= x) & (x < 1), x >= 1],
        [lambda x: 0 * x - 3, lambda x: 1 * x + 1, lambda x: 2 * x + 3,
        lambda x: 1 * x + 2, lambda x: 0 * x + 3]
    )
    return y
```

И также для аналитического описания левой ветки воспользуемся обычной функцией, оответствующей записи (4):

```
def f22_analytical(x):

return 0.5 * (np.abs(x + 4) + np.abs(x + 2) - np.abs(x + 1) - np.abs(x - 1))
```


Рис. 4 – Первая ветвь двузначной КЛФ

Рис. 5 – Вторая ветвь двузначной КЛ Φ

Рис. 6 – Двузначная КЛФ

Теперь зададим обратную к однозначной $K \Pi \Phi$ следующим образом:

```
def y_obr(x):
    if (np.abs(x) < 1):
     return -x
return x</pre>
```

4 Результаты экспериментов в виде графиков прохождения сигналов

Начнём с прохождения синусоидального сигнала через однозначную КЛФ. Эта КЛФ имеет по два симметричных узла на положительной и отрицательной полуосях: $x_3 = -x_2 = 1$ и $x_4 = -x_1 = 2$, так что необходимо рассмотреть прохождение синусоидальных сигналов разных амплитуд. Возьмём амплитуду a = 0.5, a = 1.5, и a = 2.5 и ещё как пример a = 4:

Рис. 7 — Результаты прохождения 1.5sin(x) через однозначную КЛФ

Рис. 8 – Результаты прохождения через однозначную КЛФ рахных сигналов

Теперь убедимся в том, что прохождение полученных сигналов через обратную однозначной КЛФ приведёт к частичной компенсации нелинейности:

Рис. 9 — Результаты прохождения через обратную однозначной КЛФ результатов прохождения через однозначную КЛФ сигналов $x(t)=0.5\sin x$

Рис. 10 — Результаты прохождения через обратную однозначной КЛФ результатов прохождения через однозначную КЛФ сигналов $x(t)=1.5\sin x$

Подтверждается, что синусоидальные сигнали, прошедшие сначала через однозначную $K \Pi \Phi$, а потом через обратную ей, частично восстанавливают свой вид.

Теперь рассмотрим прохождение синусоидальных сигналов через двузначную КЛФ в двух случаях: когда ветви $\dot{x} > 0$ соответствует левая ветвь, а ветви $\dot{x} < 0$ – правая. Рассмотрим прохождение синусов различных амплитуд. Возьмём a = 1 и a = 2, а так же $sin(\frac{x}{0.33})$:

Рис. 11 — Результаты прохождения через двузначную КЛФ (ветви $\dot{x}>0$ соответствует левая ветвь, ветви $\dot{x}<0$ — правая) сигнала $x(t)=\sin t$

Рис. 12 — Результаты прохождения через двузначную КЛФ (ветви $\dot{x}>0$ соответствует левая ветвь, ветви $\dot{x}<0$ — правая) сигнала $x(t)=2\sin t$

Рис. 13 — Результаты прохождения через двузначную КЛФ (ветви $\dot{x}>0$ соответствует левая ветвь, ветви $\dot{x}<0$ — правая) сигнала $sin(\frac{t}{0.33})$ (синяя кривая)

5 Заключение

В ходе выполнения работы были изучены методы задания кусочно-линейных функций, в том числе функции, обратной к заданной. Было рассмотрено поведение синусоидальных сигналов с различными амплитудами через заданные однозначную КЛФ вместе с обратной ей, а также через двузначную КЛФ в двух вариантах распределения ветвей.

6 Програмная реализация

https://github.com/grownike/TNSR_Lab1