Computación Numérica

Tema 2. Álgebra lineal numérica (III): métodos iterativos

Irene Parada

irene.parada@upc.edu

Departamento de Matemáticas Universitat Politècnica de Catalunya · BarcelonaTech

11 de marzo de 2024

Repaso

Breve recordatorio del Tema 2.2

- Método de Cramer; número de operaciones.
- Método de Gauss; número de operaciones. Cálculo del rango y determinante.
- Estrategias de pivotamiento en el método de Gauss. Necesidad de pivotar.
- Condicionamiento de un sistema de ecuaciones lineales, vector residuo y acotamiento del error relativo en la solución calculada numéricamente.
- Métodos compactos de resolución de ecuaciones lineales: ejemplos y ventajas.
- Factorización LU; resolución de sistemas, determinante e inversa.
- Factorización LU: métodos, existencia y unicidad.
- Factorización LU de Cholesky.
- Factorización QR: propiedades, unicidad y comparativa de métodos.
- Método QR de Gram-Schmidt.
- Método QR de Householder.
- Método QR de Givens.
- Resolución de sistemas lineales sobredeterminados.

Sistemas de ecuaciones lineales Métodos iterativos

Métodos iterativos

Son métodos que construyen una sucesión de vectores convergentes a la solución exacta con un número finito de operaciones en cada iteración, si no fuera por los errores de redondeo acumulados y las posibles imprecisiones en el conocimiento inicial de la matriz A y el vector \mathbf{b} .

Métodos iterativos

Son métodos que construyen una sucesión de vectores convergentes a la solución exacta con un número finito de operaciones en cada iteración, si no fuera por los errores de redondeo acumulados y las posibles imprecisiones en el conocimiento inicial de la matriz A y el vector \mathbf{b} .

Se consideran adecuados para sistemas lineales grandes y, en particular, para sistemas con matrices dispersas (sparse).

Métodos iterativos

Son métodos que construyen una sucesión de vectores convergentes a la solución exacta con un número finito de operaciones en cada iteración, si no fuera por los errores de redondeo acumulados y las posibles imprecisiones en el conocimiento inicial de la matriz A y el vector \mathbf{b} .

Se consideran adecuados para sistemas lineales grandes y, en particular, para sistemas con matrices dispersas (sparse).

Trabajaremos tres métodos:

- Método de Jacobi.
- Método de Gauss-Seidel.
- Métodos de SOR.

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

Tiene por solución $\mathbf{x}^* = (1, 2, -1, 1)^t$. Si se despeja x_i en cada ecuación i-ésima:

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5}$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{11}x_{3} - \frac{3}{11}x_{4} + \frac{25}{11}$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10}$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}$$

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

Tiene por solución $\mathbf{x}^* = (1, 2, -1, 1)^t$. Podemos iterar:

$$x_1^{(1)} = \frac{1}{10}x_2^{(0)} - \frac{1}{5}x_3^{(0)} + \frac{3}{5}$$

$$x_2^{(1)} = \frac{1}{11}x_1^{(0)} + \frac{1}{11}x_3^{(0)} - \frac{3}{11}x_4^{(0)} + \frac{25}{11}$$

$$x_3^{(1)} = -\frac{1}{5}x_1^{(0)} + \frac{1}{10}x_2^{(0)} + \frac{1}{10}x_4^{(0)} - \frac{11}{10}$$

$$x_4^{(1)} = -\frac{3}{8}x_2^{(0)} + \frac{1}{8}x_3^{(0)} + \frac{15}{8}$$

Se elige la aproximación inicial $\mathbf{x}^{(0)} = \mathbf{0}$ y se genera una sucesión de vectores.

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

Tiene por solución $\mathbf{x}^* = (1, 2, -1, 1)^t$. El método iterativo para $k \geq 0$ es:

$$x_1^{(k+1)} = \frac{1}{10}x_2^{(k)} - \frac{1}{5}x_3^{(k)} + \frac{3}{5}$$

$$x_2^{(k+1)} = \frac{1}{11}x_1^{(k)} + \frac{1}{11}x_3^{(k)} - \frac{3}{11}x_4^{(k)} + \frac{25}{11}$$

$$x_3^{(k+1)} = -\frac{1}{5}x_1^{(k)} + \frac{1}{10}x_2^{(k)} + \frac{1}{10}x_4^{(k)} - \frac{11}{10}$$

$$x_4^{(k+1)} = -\frac{3}{8}x_2^{(k)} + \frac{1}{8}x_3^{(k)} + \frac{15}{8}$$

Se elige la aproximación inicial $\mathbf{x}^{(0)} = \mathbf{0}$ y se genera una sucesión de vectores.

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

La siguiente tabla proporciona las diez primeras iteraciones:

k	0	1	2	3	• • •	8	9	10	
$x_{1}^{(k)}$	0.0000	0.6000	1.0473	0.9326		1.0006	0.9997	1.0001	
$x_{2}^{(k)}$	0.0000	2.2727	1.7159	2.0533	• • •	1.9987	2.0004	1.9998	
$x_{3}^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	• • •	-0.9990	-1.0004	-0.9998	
$x_{4}^{(k)}$	0.0000	1.8750	0.8852	1.1309	• • •	0.9989	1.0006	0.9998	

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

La siguiente tabla proporciona las diez primeras iteraciones:

k	0	1	2	3	• • •	8	9	10
	0.0000	0.6000	1.0473	0.9326	• • •	1.0006	0.9997	1.0001
_		2.2727						
9		-1.1000						
$x_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	• • •	0.9989	1.0006	0.9998

Criterio para parar: $\frac{\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_{\infty}}{\|\mathbf{x}^{(k+1)}\|_{\infty}} < 10^{-3}$; obtenemos $e_a = \|\mathbf{x}^{(10)} - \mathbf{x}^*\|_{\infty} = 0.0002$.

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

Tiene por solución $\mathbf{x}^* = (1, 2, -1, 1)^t$. El método iterativo para $k \geq 0$ es:

$$x_1^{(k+1)} = \frac{1}{10}x_2^{(k)} - \frac{1}{5}x_3^{(k)} + \frac{3}{5}$$

$$x_2^{(k+1)} = \frac{1}{11}x_1^{(k)} + \frac{1}{11}x_3^{(k)} - \frac{3}{11}x_4^{(k)} + \frac{25}{11}$$

$$x_3^{(k+1)} = -\frac{1}{5}x_1^{(k)} + \frac{1}{10}x_2^{(k)} + \frac{1}{10}x_4^{(k)} - \frac{11}{10}$$

$$x_4^{(k+1)} = -\frac{3}{8}x_2^{(k)} + \frac{1}{8}x_3^{(k)} + \frac{15}{8}$$

Se elige la aproximación inicial $\mathbf{x}^{(0)} = \mathbf{0}$ y se genera una sucesión de vectores.

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

Tiene por solución $\mathbf{x}^* = (1, 2, -1, 1)^t$. Usando ahora toda la información nueva:

$$\begin{split} x_1^{(k+1)} &= \tfrac{1}{10} x_2^{(k)} - \tfrac{1}{5} x_3^{(k)} + \tfrac{3}{5} \\ x_2^{(k+1)} &= \tfrac{1}{11} x_1^{(k+1)} + \tfrac{1}{11} x_3^{(k)} - \tfrac{3}{11} x_4^{(k)} + \tfrac{25}{11} & \text{Gauss-Seidel} \\ x_3^{(k+1)} &= -\tfrac{1}{5} x_1^{(k+1)} + \tfrac{1}{10} x_2^{(k+1)} + \tfrac{1}{10} x_4^{(k)} - \tfrac{11}{10} \\ x_4^{(k+1)} &= -\tfrac{3}{8} x_2^{(k+1)} + \tfrac{1}{8} x_3^{(k+1)} + \tfrac{15}{8} \end{split}$$

Se elige la aproximación inicial $\mathbf{x}^{(0)} = \mathbf{0}$ y se genera una sucesión de vectores.

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

Tiene por solución $\mathbf{x}^* = (1, 2, -1, 1)^t$. Usando ahora toda la información nueva:

k	0	1	2	3	4	5
_			1.0300			
			2.0370			
	0.0000	-0.9873	-1.0140	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Este es un ejemplo introductorio de los métodos iterativos de Jacobi y Gauss-Seidel. Si se considera el sistema $A\mathbf{x} = \mathbf{b}$:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

Tiene por solución $\mathbf{x}^* = (1, 2, -1, 1)^t$. Usando ahora toda la información nueva:

k	0	1	2	3	4	5
			1.0300			1.0001
—					2.0003	
$x_{3}^{(k)}$	0.0000	-0.9873	-1.0140	-1.0025	-1.0003	-1.0000
$x_{4}^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000
					$ _{\mathbf{x}}(5) _{\mathbf{x}}(4) $	

Se ha detenido el cálculo tras cinco iteraciones debido a: $\frac{\|\mathbf{x}^{(5)}\| - \mathbf{x}^{(5)}\|}{\|\mathbf{x}^{(5)}\|} \le 4 \cdot 10^{-4}$.

$$\frac{\|\mathbf{x}^{(5)} - \mathbf{x}^{(4)}\|_{\infty}}{\|\mathbf{x}^{(5)}\|_{\infty}} \le 4 \cdot 10^{-4}$$

Transformamos el sistema lineal $A\mathbf{x} = \mathbf{b}$ en $\mathbf{x} = B\mathbf{x} + \mathbf{c}$. Ambos sistemas deben ser consistentes (= que tienen una o más soluciones).

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x}^* = \mathbf{b}$$

$$\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$$

$$\mathbf{x}^* = B\mathbf{x}^* + \mathbf{c}$$

Transformamos el sistema lineal $A\mathbf{x} = \mathbf{b}$ en $\mathbf{x} = B\mathbf{x} + \mathbf{c}$. Ambos sistemas deben ser consistentes (= que tienen una o más soluciones).

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x}^* = \mathbf{b}$$

$$\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$$

$$\mathbf{x}^* = B\mathbf{x}^* + \mathbf{c}$$

Name Algoritmo: Partimos de $\mathbf{x}^{(0)}$ arbitrario, y generamos la sucesión de vectores $\mathbf{x}^{(k)}$ a partir de la recurrencia $\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$.

Transformamos el sistema lineal $A\mathbf{x} = \mathbf{b}$ en $\mathbf{x} = B\mathbf{x} + \mathbf{c}$. Ambos sistemas deben ser consistentes (= que tienen una o más soluciones).

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x}^* = \mathbf{b}$$

$$\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$$

$$\mathbf{x}^* = B\mathbf{x}^* + \mathbf{c}$$

- Name Algoritmo: Partimos de $\mathbf{x}^{(0)}$ arbitrario, y generamos la sucesión de vectores $\mathbf{x}^{(k)}$ a partir de la recurrencia $\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$.
- Coste computacional: En cada iteración hay n^2 sumas y n^2 productos; después de k iteraciones el total es $2n^2k$.

Transformamos el sistema lineal $A\mathbf{x} = \mathbf{b}$ en $\mathbf{x} = B\mathbf{x} + \mathbf{c}$. Ambos sistemas deben ser consistentes (= que tienen una o más soluciones).

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x}^* = \mathbf{b}$$

$$\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$$

$$\mathbf{x}^* = B\mathbf{x}^* + \mathbf{c}$$

- Name Algoritmo: Partimos de $\mathbf{x}^{(0)}$ arbitrario, y generamos la sucesión de vectores $\mathbf{x}^{(k)}$ a partir de la recurrencia $\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$.
- Coste computacional: En cada iteración hay n^2 sumas y n^2 productos; después de k iteraciones el total es $2n^2k$.
- Convergencia: ¿La sucesión de vectores $\mathbf{x}^{(k)}$ converge a \mathbf{x}^* , solución de $A\mathbf{x} = \mathbf{b}$?

Sea \mathbf{x}^* la solución del problema original $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente.

Sea \mathbf{x}^* la solución del problema original $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente.

► Teorema: Si A es no singular, definimos el vector residuo $\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)}$. Entonces:

$$\lim_{k\to\infty} \mathbf{x}^{(k)} = \mathbf{x}^* \Longleftrightarrow \lim_{k\to\infty} \mathbf{r}^{(k)} = \mathbf{0}.$$

Sea \mathbf{x}^* la solución del problema original $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente.

► Teorema: Si A es no singular, definimos el vector residuo $\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)}$. Entonces:

$$\lim_{k\to\infty} \mathbf{x}^{(k)} = \mathbf{x}^* \iff \lim_{k\to\infty} \mathbf{r}^{(k)} = \mathbf{0}.$$

► Teorema: El método iterativo $\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$ es convergente a la solución \mathbf{x}^* para cualquier $\mathbf{x}^{(0)}$ si y solo si $\rho(B) < 1$.

Sea \mathbf{x}^* la solución del problema original $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente.

► Teorema: Si A es no singular, definimos el vector residuo $\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)}$. Entonces:

$$\lim_{k\to\infty} \mathbf{x}^{(k)} = \mathbf{x}^* \iff \lim_{k\to\infty} \mathbf{r}^{(k)} = \mathbf{0}.$$

► Teorema: El método iterativo $\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{c}$ es convergente a la solución \mathbf{x}^* para cualquier $\mathbf{x}^{(0)}$ si y solo si $\rho(B) < 1$.

Radio espectral

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

$$\mathbf{x}^{(k)} - \mathbf{x}^* = B\left(\mathbf{x}^{(k-1)} - \mathbf{x}^*\right) = \dots = B^k\left(\mathbf{x}^{(0)} - \mathbf{x}^*\right) \Rightarrow \|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \|B\|^k \|\mathbf{x}^{(0)} - \mathbf{x}^*\|$$

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

- $\mathbf{x}^{(k)} \mathbf{x}^* = B\left(\mathbf{x}^{(k-1)} \mathbf{x}^*\right) = \dots = B^k\left(\mathbf{x}^{(0)} \mathbf{x}^*\right) \Rightarrow \|\mathbf{x}^{(k)} \mathbf{x}^*\| \le \|B\|^k \|\mathbf{x}^{(0)} \mathbf{x}^*\|$
- ► Se define el factor de convergencia asintótico $\alpha = \lim_{k \to \infty} ||\mathbf{x}^{(k)} \mathbf{x}^*||^{1/k}$.

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

- $\mathbf{x}^{(k)} \mathbf{x}^* = B\left(\mathbf{x}^{(k-1)} \mathbf{x}^*\right) = \dots = B^k\left(\mathbf{x}^{(0)} \mathbf{x}^*\right) \Rightarrow \|\mathbf{x}^{(k)} \mathbf{x}^*\| \le \|B\|^k \|\mathbf{x}^{(0)} \mathbf{x}^*\|$
- Se define el factor de convergencia asintótico $\alpha = \lim_{k \to \infty} ||\mathbf{x}^{(k)} \mathbf{x}^*||^{1/k}$. Cuanto más pequeño sea α , menores iteraciones necesarias.

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

- $\mathbf{x}^{(k)} \mathbf{x}^* = B\left(\mathbf{x}^{(k-1)} \mathbf{x}^*\right) = \dots = B^k\left(\mathbf{x}^{(0)} \mathbf{x}^*\right) \Rightarrow \|\mathbf{x}^{(k)} \mathbf{x}^*\| \le \|B\|^k \|\mathbf{x}^{(0)} \mathbf{x}^*\|$
- Se define el factor de convergencia asintótico $\alpha = \lim_{k \to \infty} ||\mathbf{x}^{(k)} \mathbf{x}^*||^{1/k}$. Cuanto más pequeño sea α , menores iteraciones necesarias.
- $ightharpoonup \alpha \leq \rho(B)$.

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

- $\mathbf{x}^{(k)} \mathbf{x}^* = B\left(\mathbf{x}^{(k-1)} \mathbf{x}^*\right) = \dots = B^k\left(\mathbf{x}^{(0)} \mathbf{x}^*\right) \Rightarrow \|\mathbf{x}^{(k)} \mathbf{x}^*\| \le \|B\|^k \|\mathbf{x}^{(0)} \mathbf{x}^*\|$
- Se define el factor de convergencia asintótico $\alpha = \lim_{k \to \infty} ||\mathbf{x}^{(k)} \mathbf{x}^*||^{1/k}$. Cuanto más pequeño sea α , menores iteraciones necesarias.
- $ightharpoonup \alpha \leq \rho(B)$.
- ▶ La velocidad de convergencia es $R = -\log(\rho(B))$.

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

Cotas del error: Sea $\beta = ||B|| < 1$.

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

Cotas del error: Sea $\beta = ||B|| < 1$.

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\beta}{1-\beta} \|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|.$$

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

Cotas del error: Sea $\beta = ||B|| < 1$.

 $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\beta}{1-\beta} \|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|.$

Si nuestro criterio de parada es $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| \le \varepsilon$, el error absoluto está acotado por: $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\varepsilon\beta}{1-\beta}$.

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

!\En general, para métodos

 $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\beta}{1-\beta} \|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|.$ iterativos este criterio de parada no es una buena idea.

Si nuestro criterio de parada es $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| \le \varepsilon$, el error absoluto está acotado por: $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \leq \frac{\varepsilon \beta}{1-\beta}$.

Cotas del error

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

Si nuestro criterio de parada es $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| \le \varepsilon$, el error absoluto está acotado por: $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \leq \frac{\varepsilon \beta}{1-\beta}$.

 $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\beta^k}{1-\beta} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|.$

En general, para métodos $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\beta}{1-\beta} \|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|.$ iterativos este criterio de parada no es una buena idea.

Cotas del error

Sea \mathbf{x}^* la solución del problema $A\mathbf{x} = \mathbf{b}$ y sea $\mathbf{x} = B\mathbf{x} + \mathbf{c}$ una formulación equivalente. Consideramos una norma vectorial y la norma matricial asociada.

Cotas del error: Sea $\beta = ||B|| < 1$.

 $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\beta}{1-\beta} \|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|.$

Si nuestro criterio de parada es $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| \leq \varepsilon$, el error absoluto está acotado por: $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \leq \frac{\varepsilon\beta}{1-\beta}$.

 $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\beta^k}{1-\beta} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|.$

Nos permite estimar el número de iteraciones para un error absoluto prefijado.

Para convertir $A\mathbf{x} = \mathbf{b}$ en un sistema de la forma $\mathbf{x} = B\mathbf{x} + \mathbf{c}$, expresamos la matriz $A = (a_{ij})$ como la suma de tres matrices: A = L + D + U tal que

$$\underbrace{\begin{pmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn-1} & 0 \end{pmatrix}}_{L} + \underbrace{\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix}}_{U}$$

Para convertir $A\mathbf{x} = \mathbf{b}$ en un sistema de la forma $\mathbf{x} = B\mathbf{x} + \mathbf{c}$, expresamos la matriz $A = (a_{ij})$ como la suma de tres matrices: A = L + D + U tal que

$$\underbrace{\begin{pmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn-1} & 0 \end{pmatrix}}_{L} + \underbrace{\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix}}_{U}$$

Método de Jacobi:

Para convertir $A\mathbf{x} = \mathbf{b}$ en un sistema de la forma $\mathbf{x} = B\mathbf{x} + \mathbf{c}$, expresamos la matriz $A = (a_{ij})$ como la suma de tres matrices: A = L + D + U tal que

$$\underbrace{\begin{pmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn-1} & 0 \end{pmatrix}}_{L} + \underbrace{\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}}_{L}$$

Método de Jacobi: $D\mathbf{x} = \mathbf{b} - (L+U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J,$ con matriz de iteración $B_J = -D^{-1}(L+U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$.

Para convertir $A\mathbf{x} = \mathbf{b}$ en un sistema de la forma $\mathbf{x} = B\mathbf{x} + \mathbf{c}$, expresamos la matriz $A = (a_{ij})$ como la suma de tres matrices: A = L + D + U tal que

$$\underbrace{\begin{pmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn-1} & 0 \end{pmatrix}}_{L} + \underbrace{\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix}}_{L}$$

Método de Jacobi: $D\mathbf{x} = \mathbf{b} - (L+U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J,$ con matriz de iteración $B_J = -D^{-1}(L+U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$. Converge $\forall \mathbf{x}^{(0)}$ si A es estrictamente diagonal dominante.

Para convertir $A\mathbf{x} = \mathbf{b}$ en un sistema de la forma $\mathbf{x} = B\mathbf{x} + \mathbf{c}$, expresamos la matriz $A = (a_{ij})$ como la suma de tres matrices: A = L + D + U tal que

$$\underbrace{\begin{pmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn-1} & 0 \end{pmatrix}}_{L} + \underbrace{\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix}}_{L}$$

- Método de Jacobi: $D\mathbf{x} = \mathbf{b} (L+U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J,$ con matriz de iteración $B_J = -D^{-1}(L+U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$. Converge $\forall \mathbf{x}^{(0)}$ si A es estrictamente diagonal dominante.
- Método de Gauss-Seidel: $(L+D)\mathbf{x} = \mathbf{b} U\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_G\mathbf{x}^{(k)} + \mathbf{c}_G$, con matriz de iteración $B_G = -(L+D)^{-1}U$ y vector $\mathbf{c}_G = (L+D)^{-1}\mathbf{b}$.

Para convertir $A\mathbf{x} = \mathbf{b}$ en un sistema de la forma $\mathbf{x} = B\mathbf{x} + \mathbf{c}$, expresamos la matriz $A = (a_{ij})$ como la suma de tres matrices: A = L + D + U tal que

$$\underbrace{\begin{pmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn-1} & 0 \end{pmatrix}}_{L} + \underbrace{\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix}}_{L}$$

- Método de Jacobi: $D\mathbf{x} = \mathbf{b} (L + U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J,$ con matriz de iteración $B_J = -D^{-1}(L + U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$. Converge $\forall \mathbf{x}^{(0)}$ si A es estrictamente diagonal dominante.
- Método de Gauss-Seidel: $(L+D)\mathbf{x} = \mathbf{b} U\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_G\mathbf{x}^{(k)} + \mathbf{c}_G,$ con matriz de iteración $B_G = -(L+D)^{-1}U$ y vector $\mathbf{c}_G = (L+D)^{-1}\mathbf{b}$. Converge $\forall \mathbf{x}^{(0)}$ si A es estrictamente diagonal dominante o sim. definida positiva.

Son una generalización de los dos métodos estudiados. Si sumamos y restamos $x_i^{(k)}$ en la expresión del método de Jacobi:

$$x_i^{(k+1)} = x_i^{(k)} + \underbrace{\frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right)}_{\text{corrección}}, k \ge 0.$$

Son una generalización de los dos métodos estudiados. Si sumamos y restamos $x_i^{(k)}$ en la expresión del método de Jacobi:

$$x_i^{(k+1)} = x_i^{(k)} + \underbrace{\frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right)}_{\text{corrección}}, k \ge 0.$$

El método de relajación consiste en multiplicar la corrección por un parámetro ω , parámetro de relajación, para acelerar la convergencia.

Son una generalización de los dos métodos estudiados. Si sumamos y restamos $x_i^{(k)}$ en la expresión del método de Jacobi:

$$x_i^{(k+1)} = x_i^{(k)} + \underbrace{\frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right)}_{\text{corrección}}, k \ge 0.$$

El método de relajación consiste en multiplicar la corrección por un parámetro ω , parámetro de relajación, para acelerar la convergencia.

- $\sim \omega > 1$: sobrerrelajación.
- $\sim \omega < 1$: subrelajación.

Son una generalización de los dos métodos estudiados. Si sumamos y restamos $x_i^{(k)}$ en la expresión del método de Jacobi:

$$x_i^{(k+1)} = x_i^{(k)} + \underbrace{\frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right)}_{\text{corrección}}, k \ge 0.$$

El método de relajación consiste en multiplicar la corrección por un parámetro ω , parámetro de relajación, para acelerar la convergencia.

 $\triangleright \omega > 1$: sobrerrelajación.

 $\omega=1$: método original

 $\triangleright \omega < 1$: subrelajación.

Son una generalización de los dos métodos estudiados. Si sumamos y restamos $x_i^{(k)}$ en la expresión del método de Jacobi:

$$x_i^{(k+1)} = x_i^{(k)} + \underbrace{\frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right)}_{\text{corrección}}, k \ge 0.$$

El método de relajación consiste en multiplicar la corrección por un parámetro ω , parámetro de relajación, para acelerar la convergencia.

- $\triangleright \omega > 1$: sobrerrelajación.
- ω / 1: Subrelaisción $\omega=1$: método original
- $ightharpoonup \omega < 1$: subrelajación.

El nuevo $x_i^{(k+1)}$ está generado por $x_i^{(k)}$ y por el calculado en este paso $\tilde{x}_i^{(k+1)}$:

$$x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \omega \tilde{x}_i^{(k+1)}.$$

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Jacobi: $D\mathbf{x} = \mathbf{b} - (L + U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J,$ con matriz de iteración $B_J = -D^{-1}(L + U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$.

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Jacobi: $D\mathbf{x} = \mathbf{b} - (L + U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J$, con matriz de iteración $B_J = -D^{-1}(L + U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$.

$$\tilde{\mathbf{x}}^{(k+1)} = -D^{-1}(L+U)\mathbf{x}^k + D^{-1}\mathbf{b}.$$

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Jacobi: $D\mathbf{x} = \mathbf{b} - (L + U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J$, con matriz de iteración $B_J = -D^{-1}(L + U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$.

$$\tilde{\mathbf{x}}^{(k+1)} = -D^{-1}(L+U)\mathbf{x}^k + D^{-1}\mathbf{b}.$$

ightharpoonup SOR: El nuevo $\mathbf{x}^{(k+1)}$ está generado por el anterior $\mathbf{x}^{(k)}$ y el calculado $\tilde{\mathbf{x}}^{(k+1)}$:

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega \tilde{\mathbf{x}}^{(k+1)}.$$

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Jacobi: $D\mathbf{x} = \mathbf{b} - (L + U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J$, con matriz de iteración $B_J = -D^{-1}(L + U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$.

$$\tilde{\mathbf{x}}^{(k+1)} = -D^{-1}(L+U)\mathbf{x}^k + D^{-1}\mathbf{b}.$$

ightharpoonup SOR: El nuevo $\mathbf{x}^{(k+1)}$ está generado por el anterior $\mathbf{x}^{(k)}$ y el calculado $\tilde{\mathbf{x}}^{(k+1)}$:

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega \tilde{\mathbf{x}}^{(k+1)}.$$

$$\mathbf{x}^{(k+1)} = B_{\omega}\mathbf{x}^{(k)} + \mathbf{c}_{\omega}$$

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Jacobi: $D\mathbf{x} = \mathbf{b} - (L + U)\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_J\mathbf{x}^{(k)} + \mathbf{c}_J$, con matriz de iteración $B_J = -D^{-1}(L + U)$ y vector $\mathbf{c}_J = D^{-1}\mathbf{b}$.

$$\tilde{\mathbf{x}}^{(k+1)} = -D^{-1}(L+U)\mathbf{x}^k + D^{-1}\mathbf{b}.$$

ightharpoonup SOR: El nuevo $\mathbf{x}^{(k+1)}$ está generado por el anterior $\mathbf{x}^{(k)}$ y el calculado $\tilde{\mathbf{x}}^{(k+1)}$:

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega \tilde{\mathbf{x}}^{(k+1)}.$$

$$\mathbf{x}^{(k+1)} = B_{\omega}\mathbf{x}^{(k)} + \mathbf{c}_{\omega}$$

- $C = D^{-1}$
- $B_{\omega} = C((1-\omega)D \omega(L+U))$
- $\mathbf{c}_{\omega} = \omega C \mathbf{b}$

Matriz auxiliar.

Matriz de iteración.

Vector de iteración.

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Gauss-Seidel: $(L+D)\mathbf{x} = \mathbf{b} - U\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_G\mathbf{x}^{(k)} + \mathbf{c}_G,$ con matriz de iteración $B_G = -(L+D)^{-1}U$ y vector $\mathbf{c}_G = (L+D)^{-1}\mathbf{b}.$

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Gauss-Seidel: $(L+D)\mathbf{x} = \mathbf{b} - U\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_G\mathbf{x}^{(k)} + \mathbf{c}_G,$ con matriz de iteración $B_G = -(L+D)^{-1}U$ y vector $\mathbf{c}_G = (L+D)^{-1}\mathbf{b}.$

$$\tilde{\mathbf{x}}^{(k+1)} = -(L+D)^{-1}U\mathbf{x}^k + (L+D)^{-1}\mathbf{b}.$$

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Gauss-Seidel: $(L+D)\mathbf{x} = \mathbf{b} - U\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_G\mathbf{x}^{(k)} + \mathbf{c}_G,$ con matriz de iteración $B_G = -(L+D)^{-1}U$ y vector $\mathbf{c}_G = (L+D)^{-1}\mathbf{b}.$

$$\tilde{\mathbf{x}}^{(k+1)} = -(L+D)^{-1}U\mathbf{x}^k + (L+D)^{-1}\mathbf{b}.$$

ightharpoonup SOR: El nuevo $\mathbf{x}^{(k+1)}$ está generado por el anterior $\mathbf{x}^{(k)}$ y el calculado $\tilde{\mathbf{x}}^{(k+1)}$:

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega \tilde{\mathbf{x}}^{(k+1)}.$$

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Gauss-Seidel: $(L+D)\mathbf{x} = \mathbf{b} - U\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_G\mathbf{x}^{(k)} + \mathbf{c}_G,$ con matriz de iteración $B_G = -(L+D)^{-1}U$ y vector $\mathbf{c}_G = (L+D)^{-1}\mathbf{b}$.

$$\tilde{\mathbf{x}}^{(k+1)} = -(L+D)^{-1}U\mathbf{x}^k + (L+D)^{-1}\mathbf{b}.$$

SOR: El nuevo $\mathbf{x}^{(k+1)}$ está generado por el anterior $\mathbf{x}^{(k)}$ y el calculado $\tilde{\mathbf{x}}^{(k+1)}$:

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega \tilde{\mathbf{x}}^{(k+1)}.$$

$$\mathbf{x}^{(k+1)} = B_{\omega}\mathbf{x}^{(k)} + \mathbf{c}_{\omega}$$

En términos matriciales para el sistema $A\mathbf{x} = \mathbf{b}$ y A = L + D + U:

Método de Gauss-Seidel: $(L+D)\mathbf{x} = \mathbf{b} - U\mathbf{x} \Longrightarrow \mathbf{x}^{(k+1)} = B_G\mathbf{x}^{(k)} + \mathbf{c}_G,$ con matriz de iteración $B_G = -(L+D)^{-1}U$ y vector $\mathbf{c}_G = (L+D)^{-1}\mathbf{b}.$

$$\tilde{\mathbf{x}}^{(k+1)} = -(L+D)^{-1}U\mathbf{x}^k + (L+D)^{-1}\mathbf{b}.$$

ightharpoonup SOR: El nuevo $\mathbf{x}^{(k+1)}$ está generado por el anterior $\mathbf{x}^{(k)}$ y el calculado $\tilde{\mathbf{x}}^{(k+1)}$:

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega \tilde{\mathbf{x}}^{(k+1)}.$$

$$\mathbf{x}^{(k+1)} = B_{\omega}\mathbf{x}^{(k)} + \mathbf{c}_{\omega}$$

- $C = (D + \omega L)^{-1}$
- $B_{\omega} = C((1-\omega)D \omega U)$
- $\mathbf{c}_{\omega} = \omega C \mathbf{b}$

Matriz auxiliar.

Matriz de iteración.

Vector de iteración.

No hay una regla general para elegir el valor óptimo del factor de relajación ω .

Teorema: Sea A simétrica definida positiva y tridiagonal en bloques:

$$A = \begin{pmatrix} D_1 & U_1 & 0 & \dots & 0 \\ L_2 & D_2 & U_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & L_{n-1} & D_{n-1} & U_{n-1} \\ 0 & \dots & 0 & L_n & D_n \end{pmatrix} \text{ donde } D_i, \ i=1,\dots,n \text{ son submatrices diagonales, } U_i, \ L_i, \text{ submatrices cualesquiera que satisfacen } L_{i+1} = U_i^T, \ i=1,\dots,n-1.$$

Teorema: Sea A simétrica definida positiva y tridiagonal en bloques:

$$A = \begin{pmatrix} D_1 & U_1 & 0 & \dots & 0 \\ L_2 & D_2 & U_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & L_{n-1} & D_{n-1} & U_{n-1} \\ 0 & \dots & 0 & L_n & D_n \end{pmatrix} \text{ donde } D_i, \ i=1,\dots,n \text{ son submatrices}$$
 diagonales, $U_i, \ L_i, \ \text{submatrices}$ cualesquiera que satisfacen
$$L_{i+1} = U_i^T, \ i=1,\dots,n-1.$$
 Entonces:

Los radios espectrales de las matrices de iteración cumplen $\rho(B_{GS}) = \rho^2(B_J)$. SOR Jacobi convergente \Rightarrow SOR Gauss-Seidel convergente y con factor de convergencia al cuadrado.

Teorema: Sea A simétrica definida positiva y tridiagonal en bloques:

$$A = \begin{pmatrix} D_1 & U_1 & 0 & \dots & 0 \\ L_2 & D_2 & U_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & L_{n-1} & D_{n-1} & U_{n-1} \\ 0 & \dots & 0 & L_n & D_n \end{pmatrix} \text{ donde } D_i, \ i=1,\dots,n \text{ son submatrices}$$
 diagonales, $U_i, \ L_i, \ \text{submatrices}$ cualesquiera que satisfacen
$$L_{i+1} = U_i^T, \ i=1,\dots,n-1.$$
 Entonces:

$$L_{i+1} = U_i^T, i = 1, \dots, n-1.$$

- Los radios espectrales de las matrices de iteración cumplen $\rho(B_{GS}) = \rho^2(B_J)$. SOR Jacobi convergente \Rightarrow SOR Gauss-Seidel convergente y con factor de convergencia al cuadrado.
- ightharpoonup El parámetro de relajación óptimo \overline{w} , que minimiza el radio espectral para $0 < \overline{w} < 2 \text{ es: } \overline{w} = \frac{2}{1 + \sqrt{(1 - \rho(B_{GS}))}}, \rho(B_{GS}) < 1.$

El valor óptimo de $\rho(B_w)$ (para SOR Gauss-Seidel) es $\rho(B_{\overline{w}})=\overline{w}-1$.

Sistemas de ecuaciones lineales

Precondicionadores

Transformar el sistema para mejorar la convergencia y la estabilidad de los métodos iterativos para matrices grandes y dispersas.

- Transformar el sistema para mejorar la convergencia y la estabilidad de los métodos iterativos para matrices grandes y dispersas.
- Un precondicionador P de una matriz A es una matriz no singular tal que $P^{-1}A$ tiene un número de condición bajo.

- Transformar el sistema para mejorar la convergencia y la estabilidad de los métodos iterativos para matrices grandes y dispersas.
- Un precondicionador P de una matriz A es una matriz no singular tal que $P^{-1}A$ tiene un número de condición bajo.
- ightharpoonup Precondicionador ideal: A^{-1} .

- Transformar el sistema para mejorar la convergencia y la estabilidad de los métodos iterativos para matrices grandes y dispersas.
- Un precondicionador P de una matriz A es una matriz no singular tal que $P^{-1}A$ tiene un número de condición bajo.
- ightharpoonup Precondicionador ideal: A^{-1} .
- Precondicionador P:
 - Por la izquierda (más comunes): $P^{-1}A\mathbf{x} = P^{-1}\mathbf{b}$.
 - ightharpoonup Por la derecha: $AP^{-1}(P\mathbf{x}) = \mathbf{b}$.

- Transformar el sistema para mejorar la convergencia y la estabilidad de los métodos iterativos para matrices grandes y dispersas.
- Un precondicionador P de una matriz A es una matriz no singular tal que $P^{-1}A$ tiene un número de condición bajo.
- ightharpoonup Precondicionador ideal: A^{-1} .
- Precondicionador P:
 - Por la izquierda (más comunes): $P^{-1}A\mathbf{x} = P^{-1}\mathbf{b}$.
 - \triangleright Por la derecha: $AP^{-1}(P\mathbf{x}) = \mathbf{b}$.
- ightharpoonup Ejemplo: precondicionador de Jacobi $P = \operatorname{diag}(A)$.

Precondicionamiento en perspectiva

Métodos directos:

Gauss, LU, Cholesky

- + robustos
- secuenciales
- pierden dispersión (sparsity)

Precondicionamiento en perspectiva

Métodos directos:

Gauss, LU, Cholesky

- + robustos
- secuenciales
- pierden dispersión (sparsity)

Métodos iterativos:

Jacobi, Gauss-Seidel, SOR

- + paralelizables
- + mantienen dispersión (sparsity)
 - convergencia a veces lenta

Precondicionamiento en perspectiva

Métodos directos:

Gauss, LU, Cholesky

- + robustos
- secuenciales
- pierden dispersión (sparsity)

Métodos iterativos:

Jacobi, Gauss-Seidel, SOR

- + paralelizables
- + mantienen dispersión (sparsity)
 - convergencia a veces lenta

Precondicionamiento:

Precondicionador invertible P tal que al usar un método iterativo:

- + El sistema esté mejor condicionado.
- + La matriz del sistema resultante sea fácil de manejar en paralelo.
- + El espectro de la matriz del sistema resultatnte esté mejor agrupado.

Sistemas de ecuaciones lineales Métodos iterativos no estacionarios

Los métodos no estacionarios difieren de los métodos estacionarios en que los cálculos involucran información que cambia en cada iteración.

- Los métodos no estacionarios difieren de los métodos estacionarios en que los cálculos involucran información que cambia en cada iteración.
- Normalmente, las constantes se calculan tomando productos internos de residuos u otros vectores derivados del método iterativo.

- Los métodos no estacionarios difieren de los métodos estacionarios en que los cálculos involucran información que cambia en cada iteración.
- Normalmente, las constantes se calculan tomando productos internos de residuos u otros vectores derivados del método iterativo.
- A veces hace falta precondicionar para asegurar la convergencia.

- Los métodos no estacionarios difieren de los métodos estacionarios en que los cálculos involucran información que cambia en cada iteración.
- Normalmente, las constantes se calculan tomando productos internos de residuos u otros vectores derivados del método iterativo.
- A veces hace falta precondicionar para asegurar la convergencia.
- ► Algunos de estos métodos son: Método del gradiente conjugado (CG) y variantes: MINRES, SYMMLQ, CGNE, GMRES, BiCG, QMR, Bi-CGSTAB.

- Los métodos no estacionarios difieren de los métodos estacionarios en que los cálculos involucran información que cambia en cada iteración.
- Normalmente, las constantes se calculan tomando productos internos de residuos u otros vectores derivados del método iterativo.
- A veces hace falta precondicionar para asegurar la convergencia.
- Algunos de estos métodos son: Método del gradiente conjugado (CG) y variantes: MINRES, SYMMLQ, CGNE, GMRES, BiCG, QMR, Bi-CGSTAB.
 - Gradiente conjugado (CG): para $A\mathbf{x} = \mathbf{b}$ con A simética definida positiva.
 - Equivalentemente, para optimizar un función cuadrática convexa.
 - Para sistemas dispersos demasiado grandes para los métodos directos.
 - Surgen a menudo al resolver ecuaciones en derivadas parciales (EDPs).

- Los métodos no estacionarios difieren de los métodos estacionarios en que los cálculos involucran información que cambia en cada iteración.
- Normalmente, las constantes se calculan tomando productos internos de residuos u otros vectores derivados del método iterativo.
- A veces hace falta precondicionar para asegurar la convergencia.
- ➤ Algunos de estos métodos son: Método del gradiente conjugado (CG) y variantes: MINRES, SYMMLQ, CGNE, GMRES, BiCG, QMR, Bi-CGSTAB.
 - Gradiente conjugado (CG): para Ax = b con A simética definida positiva.
 - Equivalentemente, para optimizar un función cuadrática convexa. siguiente
 - Para sistemas dispersos demasiado grandes para los métodos directos.
 - Surgen a menudo al resolver ecuaciones en derivadas parciales (EDPs).

- Los métodos no estacionarios difieren de los métodos estacionarios en que los cálculos involucran información que cambia en cada iteración.
- Normalmente, las constantes se calculan tomando productos internos de residuos u otros vectores derivados del método iterativo.
- A veces hace falta precondicionar para asegurar la convergencia.
- ► Algunos de estos métodos son: Método del gradiente conjugado (CG) y variantes: MINRES, SYMMLQ, CGNE, GMRES, BiCG, QMR, Bi-CGSTAB.

Gradiente conjugado (CG): para Ax = b con A simética definida positiva.

- Equivalentemente, para optimizar un función cuadrática convexa. siguiente
- Para sistemas dispersos demasiado grandes para los métodos directos.
- Surgen a menudo al resolver ecuaciones en derivadas parciales (EDPs).

An introduction to the conjugate gradient method without the agonizing pain.

Sistema $A\mathbf{x} = \mathbf{b}$, con A simétrica definida positiva.

Sistema $A\mathbf{x} = \mathbf{b}$, con A simétrica definida positiva.

Resolver el sistema lineal $A\mathbf{x} = \mathbf{b}$ es equivalente al problema de minimizar la función definida por:

Sistema $A\mathbf{x} = \mathbf{b}$, con A simétrica definida positiva.

Resolver el sistema lineal $A\mathbf{x} = \mathbf{b}$ es equivalente al problema de minimizar la función definida por:

 $\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^t A \mathbf{x} - \mathbf{x}^t \mathbf{b}$

Sistema $A\mathbf{x} = \mathbf{b}$, con A simétrica definida positiva.

Resolver el sistema lineal $A\mathbf{x} = \mathbf{b}$ es equivalente al problema de minimizar la función definida por:

 $\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^t A \mathbf{x} - \mathbf{x}^t \mathbf{b}$

► El gradiente de esta función es $\nabla \phi(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$.

Sistema $A\mathbf{x} = \mathbf{b}$, con A simétrica definida positiva.

Resolver el sistema lineal $A\mathbf{x} = \mathbf{b}$ es equivalente al problema de minimizar la función definida por:

 $\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^t A \mathbf{x} - \mathbf{x}^t \mathbf{b}$

- ► El gradiente de esta función es $\nabla \phi(\mathbf{x}) = A\mathbf{x} \mathbf{b}$.
- La función $\phi(x)$ es estrictamente convexa si y solo si A es definida positiva.

Sistema $A\mathbf{x} = \mathbf{b}$, con A simétrica definida positiva.

Resolver el sistema lineal $A\mathbf{x} = \mathbf{b}$ es equivalente al problema de minimizar la función definida por:

 $\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^t A \mathbf{x} - \mathbf{x}^t \mathbf{b}$

- ► El gradiente de esta función es $\nabla \phi(\mathbf{x}) = A\mathbf{x} \mathbf{b}$.
- La función $\phi(x)$ es estrictamente convexa si y solo si A es definida positiva.
- ightharpoonup El mínimo es la solución \mathbf{x} de $A\mathbf{x} \mathbf{b}$.

Guia de estudio

Libro Càlcul numèric: teoria i pràctica de M. Grau Sánchez y M. Noguera Batlle.

- Conceptos y ejercicios resueltos: Capítulo 4, páginas restantes.
- Problemas propuestos: restantes.
- Prácticas propuestas: Secciones 4.6.1 y 4.6.2.

Libro Cálculo numérico de M. Grau Sánchez y M. Noguera Batlle.

- Conceptos y ejercicios resueltos: Capítulo 4, páginas restantes.
- Problemas propuestos: restantes.
- Prácticas propuestas: Secciones 4.6.1 y 4.6.2.