Supplementary Figures

Supplementary Fig. 1. Figures showing PCA results sorted regionally (Northern = Mexico and Guatemala, Eastern = Honduras, Southern = Nicaragua and Costa Rica).

Comparison of Call Types with Good Statistical Separation

Supplemental Figure 2. A figure showing a comparison of two call types that were statistically distinguishable (Island and Apex), and two call types that were not statistically distinguishable (North and South). All calls are depicted using the same time and frequency axes.

Supplementary Tables

Supplementary Table 1. A comprehensive list of all 47 sites where yellow-naped amazons were recorded. Site names with an asterisk* were removed from the dataset after initial processing because they had fewer than 3 birds. The column "Average number of calls per bird" was calculated by dividing the number of calls included in analysis by the number of birds included in analysis.

Site Name	Country Year		Number of birds isolated	Number of birds	Number of calls isolated	Number of calls	Average number	Number of calls	
			from field	included in	from field	included in	of calls per	excluded	
			recordings	analysis	recordings	analysis	bird	from analysis	
Cuajiniquil	Costa Rica	2016	8	8	68	68	9	0	
Curu	Costa Rica	2016	4	4	41	41	10	0	
Enseñada*	Costa Rica	2016	2	_	19	0	-	19	
Finca Ahogados	Costa Rica	2016	6	6	48	48	8	0	
Hacienda Inocentes	Costa Rica	2016	7	6	57	54	9	3	
Horizontes	Costa Rica	2016	3	3	22	22	7	0	
Las Trancas	Costa Rica	2016	6	6	44	44	7	0	
Murcielago	Costa Rica	2016	7	7	54	54	8	0	
Palenque	Costa Rica	2016	8	4	49	43	11	6	
Palo Verde*	Costa Rica	2016	2	-	21	0	-	21	
Parcelas Santa Elena	Costa Rica	2016	7	7	78	78	11	0	
Pelon Altura	Costa Rica	2016	8	8	83	83	10	0	
Pelon Bajura*	Costa Rica	2016	2	-	23	0		23	
Peñas Blancas	Costa Rica	2016	6	6	76	76	13	0	
Playa Cabuyal	Costa Rica	2016	7	7	61	61	9	0	
Playa Grande	Costa Rica	2016	7	7	63	63	9	0	
Puerto San Pablo	Costa Rica	2016	7	6	51	49	8	2	
San Fidel	Costa Rica	2016	4	4	38	38	10	0	
Santa Rosa	Costa Rica	2016	3	3	26	26	9	0	
Taboga-Cortijo	Costa Rica	2016	6	6	64	64	11	0	

Tarcoles	Costa Rica	2016	3	3	31	31	10	0
Tivives	Costa Rica	2016	9	8	63	61	8	2
Argentina	rgentina Nicaragua		5	4	47	40	10	7
		2016	10	10	100	94	9	6
La Guinea			3	3	57	36	12	21
La Piscina	Nicaragua	2016	3	3	35	34	11	1
Los Placeres	Nicaragua	2016	8	8	91	84	11	7
Merida	Nicaragua	2016	9	8	83	83	10	0
Peña Inculta	Nicaragua	2016	9	6	86	49	8	37
Pul	Nicaragua	2016	9	9	93	63	7	30
San Ramone	Nicaragua	2016	5	5	55	55	11	0
Aztlan site 1	Mexico	2018	6	3	25	17	6	8
Aztlan site 2	Mexico	2018	3	3	18	18	6	0
Aztlan site 3	Mexico	2018	4	4	44	42	11	2
Las Brisas de Hueyate	Mexico	2018	6	6	110	107	18	3
Ponte Duro	Mexico	2018	5	3	51	48	16	3
Rancho el Piñon	Mexico	2018	4	3	30	28	9	2
Roberto Barrios Mapastapec	Mexico	2018	8	8	112	105	13	7
Salto de Agua	Mexico	2018	3	3	48	41	14	7
Aztlan Town Roost	Mexico	2019	7	6	17	58	10	2
Las Palmas	Mexico	2019	6	6	24	80	13	0
Los Tarrales	Guatemala	2019	4	3	59	15	5	2
Pineapple Plantation	Guatemala	2019	6	3	25	20	7	4
Guava Grove	Honduras	2019	6	6	50	59	10	0
Port Royal National Park	Honduras	2019	3	3	86	24	8	1
Sandy Bay	Honduras	2019	6	5	60	48	10	2
Undisclosed					80	_		

Supplementary Table 2. A factor loading table showing the 26 acoustic parameters examined in our PCA, and the first 5 principal components from the analysis. Detailed descriptions of each acoustic parameter can be found in the RDocumentation for the function specan in the warbleR package (version 1.1.9). *Spectral entropy is a product of time and spectral entropy (Araya-Salas & Smith-Vidaurre, 2017).

Variable	PC1	PC2	PC3	PC4	PC5
duration	0.2711	-0.2954	0.0804	-0.0535	0.054
mean frequency	0.2774	0.297	-0.0336	-0.0661	0.029
standard deviation of frequency	0.1399	0.0003	-0.1991	0.1831	-0.4798
median frequency	0.2525	0.2975	-0.0089	-0.0687	0.0782
first quartile frequency	0.2232	0.2861	0.0559	-0.1454	0.2236
third quartile frequency	0.2763	0.2491	-0.0966	0.0191	-0.1752
interquartile frequency	0.1039	-0.0027	-0.1884	0.1898	-0.4805
median time	0.2749	-0.2596	0.102	0.0313	0.0795
first quartile time	0.2671	-0.1909	0.1174	0.1007	0.1257
thrid quartile time	0.2723	-0.303	0.0828	-0.017	0.064
interquartile time	0.2142	-0.3205	0.0372	-0.1041	0.0016
skewness	0.0474	0.0353	0.3741	0.089	-0.3078
kurtosis	0.0507	0.0174	0.3321	0.1	-0.3091
spectral entropy	0.0593	-0.1274	-0.4383	-0.0451	0.096
time entropy	-0.2533	0.2554	-0.065	0.0093	-0.0132
spectral entropy*	-0.0048	-0.0626	-0.4575	-0.0431	0.0928
spectral flatness	0.0349	-0.102	-0.4205	-0.0155	-0.0311
average of dominant frequency	0.2915	0.2347	0.0001	-0.1167	0.0616
minimum of dominant frequency	-0.0166	0.0782	0.0107	-0.4566	-0.1565
maximum of dominant frequency	0.2645	0.1482	-0.1355	0.083	-0.1327
range of dominant frequency	0.2198	0.0672	-0.114	0.3577	-0.0049
modulation index	0.1861	-0.2028	-0.0316	-0.1444	-0.0135
dominant frequency at start	0.0351	0.0132	0.0042	-0.4881	-0.2183
dominant frquency at end	0.0818	0.0999	0.0555	0.141	0.1339
slope of change	-0.0063	0.0956	0.0302	0.4559	0.2551
mean peak frequency	0.2059	0.2197	0.0553	-0.0936	0.1902
% variation explained	26.7	17.6	15.98	8.707	8.412
cumulative variation	26.7	44.3	60.28	68.987	77.399

Supplementary Table 3. P-values generated from Tukey post-hoc tests on the ANOVA for PC1 and PC2. Significant p-values are in bold. All values greater than 0.001 were standardized to three significant decimal figures.

						Tukey t	est p-values	on ANOVA	values fror	n PC1					
		Apex	Branch	Bridge	Concepcion	Consinguina	Fracture	Hill	Island	Jump	Nicaraguan	North	Ometepe	Plantation	South
	Apex	-	0.937	0.906	< .001	<.001	<.001	1.00	< .001	< .001	<.001	< .001	< .001	1.00	< .001
_	Branch	0.131	-	1.00	< .001	<.001	<.001	0.998	< .001	< .001	<.001	< .001	< .001	1.00	< .001
7A0	Bridge	< .001	0.258	-	< .001	<.001	<.001	0.999	< .001	< .001	<.001	< .001	< .001	1.00	< .001
test p-values on ANOVA values from PC2	Concepcion	0.00236	<.001	< .001	-	<.001	<.001	< .001	<.001	< .001	0.998	1.00	0.0250	<.001	1.00
	Consinguina	1.000	0.360	< .001	< .001	-	<.001	< .001	< .001	< .001	<.001	< .001	< .001	0.00350	<.001
	Fracture	0.758	0.763	< .001	<.001	0.994	-	0.698	<.001	< .001	<.001	<.001	< .001	0.875	<.001
	Hill	0.282	1.00	0.915	<.001	0.533	0.834	-	<.001	0.00156	<.001	<.001	< .001	1.00	<.001
	Island	1.00	0.278	< .001	< .001	1.00	0.971	0.438	-	< .001	<.001	< .001	< .001	<.001	<.001
Tukey	Jump	< .001	0.999	0.626	<.001	< .001	0.00132	1.00	<.001	-	0.0603	<.001	< .001	0.0122	< .001
T.	Nicaraguan	0.990	0.00653	< .001	0.276	0.633	0.0346	0.0428	0.917	< .001	-	0.943	< .001	<.001	0.743
	North	< .001	0.457	0.998	< .001	< .001	< .001	0.992	<.001	0.870	<.001	-	< .001	<.001	1.00
	Ometepe	< .001	<.001	< .001	1.00	<.001	<.001	< .001	<.001	< .001	0.0331	<.001	-	<.001	0.00335
	Plantation	0.558	1.00	0.947	0.00121	0.793	0.957	1.00	0.711	1.00	0.164	0.995	< .001	-	<.001
	South	1.00	0.0717	< .001	<.001	1.00	0.242	0.249	1.00	< .001	0.838	< .001	< .001	0.549	-

References

Araya-Salas, M. and Smith-Vidaurre, G. (2017), warbleR: an r package to streamline analysis of animal acoustic signals. Methods Ecol Evol. 8, 184-191.