

MONAQ

Multi-Objective Neural Architecture Querying for Time-Series Analysis on Resource-Constrained Devices

Patara Trirat¹ Jae-Gil Lee²

¹DeepAuto.ai ²KAIST

Motivation — Time-Series Analysis on Edge Devices

- Smartphones and IoT devices that are ubiquitous nowadays provide new potential applications in the resource-constrained environments, such as edge intelligence.
- Efficient models runnable on resource-constrained devices often require a more complicated design process than traditional models run on GPUs.

LLMs as Multi-Objective Optimizers

- LLMs have extensive pre-trained knowledge relevant to neural architecture design.
- LLMs can identify relationships between neural architectures, model complexity, and the resource constraints of specific devices.
- LLMs have been shown to estimate the potential performance of neural networks for a given task.

Related Work

(a) Existing LLM-based NAS.

(b) Our *MONAQ*.

Figure 1: Comparison between (a) existing LLM-based NAS and (b) our proposed MONAQ framework.

Challenges in LLMs with Time Series

RQ1. How to find high-performing architectures without user-defined search spaces?

RQ2. How to make LLM agents accurately understand time-series data and user requirements?

MONAQ : Multimodal Neural Architecture Querying

We propose a novel LLM-based multi-agent NAS framework with an open-ended search space for time-series analysis on resource-constrained devices.

MONAQ : Multimodal Query Generation

This module processes the input time series and natural language queries with constraints, then outputs a multimodal data, representing the original user's query from data and modeling perspectives with different aspects of the input time series.

MONAQ : Multimodal Query Generation

We generate the representative time series from the training set. For example, one image per class (classification), or one image per range (regression).

MONAQ : Data Aspect Query

The rewritten query of the data aspect will be used for the subsequent search process.


```
"task_description": "The user wants to build a
classification model to categorize ECG signals into three
types of atrial fibrillation (AF) for deployment on wearable
devices like Fitbit trackers.",
   "data_aspects": {
        "name": "PhysioNet ECG Dataset",
        "description": "This dataset consists of two-channel
ECG recordings used in the Computers in Cardiology Challenge
2004. It includes 5-second segments of atrial fibrillation,
sampled at 128 samples per second, with class labels 'n',
's', and 't'.",
        "features": "The dataset contains 1-D ECG signals
from two channels. Class 'n' represents non-terminating AF,
class 's' represents self-terminating AF after at least one
minute, and class 't' represents AF terminating
immediately.",
        "context": "The dataset was created for an open
competition aimed at developing automated methods for
predicting spontaneous termination of AF.",
        "patterns": "The time series plots show distinct
patterns for each class, with variations in amplitude and
frequency that can be leveraged for classification.",
     model_aspects": {...},
```


MONAQ : Model Aspect Query

The rewritten query of the model aspect focuses on the key aspects of building efficient models for resource-constrained environments.

We introduce an LLM agent-based multi-objective search module, enabling LLMs to autonomously interact based on the extracted multimodal query.

Design Agent takes the organized multimodal query and generated images as input and design the search space.

Search Agent generates (a set) of candidate models.

If any of the suggested candidates pass the evaluation, the selected network is forwarded to the Code Agent, which generates code to produce a deployable model for the user.

Experimental Setup

Datasets	Length	Feature Dims (# Sensors)	# Train	# Test	# Classes	Application Domain	Missing Values	
		Classification ((Bagnall et	al., 2018	3; Li et al., 20	023)		
AtrialFibrillation	640	2	15	15	3	Health Monitoring N		
BinaryHeartbeat	18530	1	204	205	2	Health Monitoring	No	
Cricket	1197	6	108	72	12	Human Activity Recognition	No	
Fault Detection (A)	5120	1	10912	2728	3	Industrial System Monitoring	No	
UCI-HAR	206	3	7352	2947	6	Human Activity Recognition	No	
P12	233	36	9590	2398	2	Health Monitoring	Yes	
P19	401	34	31042	7761	2	Health Monitoring	Yes	
PAMAP2	4048	17	4266	1067	8	Human Activity Recognition	Yes	
		Reg	ression (T	an et al.,	2021)			
AppliancesEnergy	144	24	96	42		Energy Monitoring	No	
BenzeneConcentration	240	8	3433	5445		Environment Monitoring	Yes	
BIDMC32SpO2	4000	2	5550	2399		Health Monitoring	No	
FloodModeling	266	1	471	202	N/A	Environment Monitoring	No	
LiveFuelMoistureContent	365	7	3493	1510		Environment Monitoring	No	
HouseholdPowerConsumption1	1440	5	746	694		Energy Monitoring	Yes	
HouseholdPowerConsumption2	1440	5	746	694		Energy Monitoring	Yes	

Table 1: Summary of benchmark datasets.

Downstream Task Performance

Results are based on a simulation on EFR32xG24 at 78MHz (1536 kB flash and 256 kB RAM) using MLTK toolkit.

Ablation Study

Agents		Classification			Regression				
	Numerical Time Series	Textual Descriptions	Time Series Images	Latency (ms)	Accuracy	FLASH (kB)	Latency (ms)	RMSE	FLASH (kB)
Single (GPT-4o Backbone)	√			519.159	0.679	3349.453	23.797	13.944	125.445
		\checkmark		1017.267	0.665	4126.024	42.779	13.227	134.901
			✓	593.541	0.690	5971.792	35.859	12.562	193.926
	✓	✓		807.459	0.628	4926.157	40.485	13.556	137.581
	✓	✓	✓	557.665	0.629	3871.910		12.681	90.398
Multiple (GPT-4o Backbone)	✓			149.320	0.434	12.066	54.270	12.284	10.611
		✓		170.461	0.440	15.198	110.751	12.084	12.560
			✓	280.198	0.661	15.638	13.661	11.653	7.885
	✓	✓		205.623	0.517	16.035	28.049	13.207	13.875
	✓	✓	✓	127.260	0.746	257.742	24.729	9.902	10.582

Variations		Classification	1	Regression			
- Variations	Latency (ms)	Accuracy	FLASH (kB)	Latency (ms)	RMSE	FLASH (kB)	
MONAQ	127.260	0.746	257.742	24.729	9.902	10.582	
w/o Query Rewriting	206.871	0.651	17.186	14.623	11.994	10.155	
w/o \mathcal{A}_{design}	863.358	0.647	518.762	95.654	13.512	33.243	
w/o \mathcal{A}_{eval}	540.411	0.641	4775.661	26.335	12.783	109.627	
w/o \mathcal{A}_{eval} & \mathcal{A}_{search}	601.313	0.643	5907.363	188.123	11.261	665.110	
Only \mathcal{A}_{code}	579.876	0.612	4158.205	21.530	12.274	99.638	

- Without query rewriting
 - → -10% accuracy
- Without multi-agent setup
 - → slower and less efficient
- Full MONAQ = best trade-off

Hyperparameter Study

Figure 7: Comparison between (a) LLM backbones, (b) number of candidates per round, and (c) search budget on model performance, as measured by accuracy (higher is better) and RMSE (lower is better).

Cost Breakdown

Conclusions

Key Contributions:

- Reformulated NAS as Neural Architecture Querying
- Introduced Multimodal Query Generation for time-series understanding
- Developed LLM Agent-Based Multi-Objective Search

Results:

- State-of-the-art accuracy under strict device limits
- Fast, low-cost, training-free search

Implications:

- New paradigm for LLM-driven AutoML
- Potential extension to vision, speech, and sensor fusion domains

Thank you!

GitHub: https://github.com/kaist-dmlab/MONAQ

Email: patara@deepauto.ai