Затвореност относно регулярните операции

Един език L се нарича автоматен, ако има краен автомат A такъв, че L(A) = L.

Теорема Всеки регулярен език е автоматен.

Д-во идея:

ще построим автомати, разпознаващи основните езици (основните езици са автоматни)

ще покажем, че регулярните операции запазват автоматността

Базов случай

$L_1 \cup L_2$

$$A_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$$
 и $L(A_1)=L_1$ $A_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ и $L(A_2)=L_2$ и БОО $Q_1\cap Q_2=\emptyset$

$$A:=(\{s\}\cup Q_1\cup Q_2,\Sigma,\delta,s,F)$$

 δ е дефинирана като $\delta_{1/2}$ за $Q_{1/2}$

 $\forall a \in \Sigma : \delta(s,a) := \delta(s_1,a) \cup \delta(s_2,a).$

$$F \! := egin{cases} F_1 \cup F_2 \cup \{s\} & ext{ako } s_1 \in F_1 \lor s_2 \in F_2 \ F_1 \cup F_2 & ext{иначе} \end{cases}$$

Нека $w \in L_1 = L(A_1)$ (произволна).

Ako $w = \varepsilon$

$$\longrightarrow s_1 \in F_1 \longrightarrow s \in F \longrightarrow w \in L(A).$$

Ako w = ax:

$$\longrightarrow \exists$$
 път $P_1 = s_1 \stackrel{a}{\Rightarrow} q_1 \stackrel{x}{\Rightarrow} f_1 \in F_1 \subseteq F$

 $\longrightarrow \exists$ път $P = s \stackrel{a}{\Rightarrow} q_1 \stackrel{x}{\Rightarrow} f_1 \in F$

 $\longrightarrow w \in L(A)$.

$$w \in L_2 = L(A_2)$$

 $\longrightarrow \cdots \longrightarrow w \in L(A)$.

Д-во на $L(A) \subseteq L_1 \cup L_2$

Нека w е произволна дума $w \in L(A)$.

Ако $w = \varepsilon \longrightarrow s \in F \longrightarrow s_1 \in F_1 \lor s_2 \in F_2$

 $\longrightarrow \varepsilon \in L_1 \vee \varepsilon \in L_2 \longrightarrow \varepsilon \in L_1 \cup L_2$

Ako w = ax:

 $\longrightarrow \exists$ път $P = s \stackrel{a}{\Longrightarrow} q \stackrel{x}{\Longrightarrow} f \in F$.

Ако $q = q_1 \in Q_1$:

 $\longrightarrow \exists$ път $P_1 = s_1 \stackrel{a}{\Longrightarrow} q_1 \stackrel{x}{\Longrightarrow} f \in F_1$.

(само състояния,

достижими от q_1 са в Q_1 .)

$$\longrightarrow ax = w \in L_1 \subseteq L_1 \cup L_2$$

В противен случай: $\longrightarrow q = q_2 \in Q_2$

$$\longrightarrow \exists$$
 път $P_2 = s_2 \stackrel{a}{\Longrightarrow} q_2 \stackrel{x}{\Longrightarrow} f \in F_2$.

$$\longrightarrow ax = w \in L_2 \subseteq L_1 \cup L_2$$

$$A_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$$
 и $L(A_1)=L_1$ $A_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ и $L(A_2)=L_2$ и $Q_1\cap Q_2=\emptyset$

$$A:=(Q_1\cup Q_2,\Sigma,\boldsymbol{\delta},\boldsymbol{s_1},\boldsymbol{F}), \forall a\in\Sigma:$$

$$\delta(q,a) := egin{cases} \delta_1(q,a) & ext{ako } q \in Q_1 \setminus F_1 \ \delta_1(q,a) \cup \delta_2(s_2,a) & ext{ako } q \in F_1 \ \delta_2(q,a) & ext{иначе} \end{cases}$$
 $F := egin{cases} F_1 \cup F_2 & ext{ako } s_2 \in F_2 \ F_2 & ext{иначе} \end{cases}$

$$F\!:=egin{cases} F_1\cup F_2 & ext{ako } s_2\in F_2\ F_2 & ext{иначe} \end{cases}$$

Позитивна обвивка
$$L^+ = \bigcup_{i > 1} L^i$$

$$A = (Q, \Sigma, \delta, s, F)$$
 и $L(A) = L$

$$A^{+} = (Q, \Sigma, \delta^{+}, s, F) \ \forall a \in \Sigma$$

$$A^+ := (Q, \Sigma, \delta^+, s, F), orall a \in \Sigma:$$
 $\delta^+(q, a) := egin{cases} \delta(q, a) & ext{ako } q \in Q \setminus F \ \delta(q, a) \cup \delta(s, a) & ext{ako } q \in F \end{cases}$
 $A^+ := (Q, \Sigma, \delta^+, s, F), orall a \in \Sigma:$
 $\delta^+(q, a) := egin{cases} \delta(q, a) & ext{ako } q \in F \end{cases}$
 $A^+ := (Q, \Sigma, \delta^+, s, F), orall a \in \Sigma:$

Д-во на $L(A^+) \subseteq L^+$

Нека $\mathbf{w} \in L(A^+)$ е произволна и $\mathbf{w} \neq \boldsymbol{\varepsilon}$ Нека $P = s \stackrel{a_0}{\Longrightarrow} q_0 \stackrel{*}{\Longrightarrow} f$ е приемащ път за w. Декомпозираме P на преходи от вида $f_i \stackrel{a_j}{\Rightarrow} q_i$ by $q_i \notin \delta(f_i, a_i), j \in 1..i, i \geq 0.$ $\longrightarrow f_i \in F, q_i \in \delta(s, a_i).$

$$P = s \xrightarrow{a_0} q_0 \xrightarrow{x_0} f_1 \xrightarrow{a_1} q_1 \xrightarrow{x_1} f_2 \xrightarrow{*} f_i \xrightarrow{a_i} q_i \xrightarrow{x_i} f$$

Дефинираме $P_i := s \stackrel{a_j}{\Rightarrow} q_i \stackrel{x_j}{\Rightarrow} f_{i+1}$ (с $f_{i+1} := f$). $\longrightarrow \forall j \in 0..i : P_i$ е един приемащ път A. $\longrightarrow w \in L^+$

Д-во на
$$L^i \subseteq L(A^+)$$
 за $i \ge 1$

Нека $w = w_1 \cdots w_i \in L^i$ ($\varepsilon \neq w_i \in L$). Да разгледаме $P_i = s \stackrel{a_j}{\Rightarrow} q_i \stackrel{x_j}{\Rightarrow} f_i, \ j \in 1..i, \ f_i \in F$,

които свидетелстват за

$$w_1 \in L, \ldots, w_i \in L.$$

 L^st -звезда на Клини

Построяваме автомат за $\varepsilon \cup L^+ = L^*$.

Пример

(0u1)*0 (0u1)(0u1)

