

Applications of CM SAF SIS data for solar energy applications

R.W. Mueller & CM SAF Radiation Team German Weather Service

D. Lee University of Marburg

Basics: Geosynchronous satellites

Source: Ducros 2012

Basics: Global vs. direct radiation

Source: State Government of Victoria 2012

Motivation: Solar energy

Production: 1 hour

Consumption: 1 year

Motivation: Solar energy

Global radiation:
Primarily for photoltaics

Direct radiation:

Can be concentrated

Motivation: GEO satellites

Source: Lohmann et al., DLR 2006

GEO satellites

Advantage: Continuous spatial coverage

GEO satellites

Accuracy targets compared to ground measurements

	Global radiation (W/m²)			Direct radiation (W/m²)		
	Threshold	Target	Optimum	Threshold	Target	Optimum
Monthly	15	10	8	20	15	12
Daily	25	20	15	30	25	20

Source: Posselt et al 2012

GEO satellites

Accuracy targets compared to ground measurements

	Global radiation (W/m²)			Direct radiation (W/m²)		
	Threshold	Target	Optimum	Threshold	Target	Optimum
Monthly	15	10	8	20	15	12
Daily	25	20	15	30	25	20

Source: Posselt et al 2012

Validation against BSRN stations

Data source	Bias (W/m²)	Mean absolute difference (W/m²)	Standard deviance (W/m²)	Anomaly correlation (%)	Fraction of time steps above validation target values
CM SAF	4.24	7.76	8.23	0.89	10.71
ERAinterim	5.48	10.41	12.15	0.8	24.6
GEWEX	-2.42	12.03	11.03	0.82	31.89
ISCCP	-0.02	11.56	11.25	0.78	29.16

Source: Posselt et al 2011

Motivation: GEO satellites

• user-friendly data access via the Web User Interface: wui.cmsaf.eu

• all data is freely available in netcdf format & Toolkit (example data +

scripts) available: www.cmsaf.eu/tools

Applications: Macroscale potential evaluation

Applications:

Interactive online tool Raw geodata

Source: JRC 2012

Applications: Mesoscale potential evaluation

Applications: Microscale potential evaluation

Architectural planning

- Window size
- Window positioning
- Tint grade

Applications: Microscale potential evaluation

Architectural planning

Transparent thin film solar cells

Source: Schott Solar 2007

Applications: Near-real time production monitoring

Source: PVSAT, University of Magdeburg 2012

Applications: Power plant profitability analysis

Direct irradiance in Morocco

Source: DLR & SOLEMI 2007

Economic ranking based on irradiance and additional factors

Do it yourself:

2

SolaR:

R package for solar radiation and photoltaic simulations

Example: Solar irradiance in Spain

Source: Lamigueiro 2011

Do it yourself: GRASS GIS

r.sun:

GRASS module for solar radiation

Example: Solar irradiance in urban area of Slovakia

Source: Hofierka & Kaňuk 2006

Great data is available

We are excited to hear what you're doing with it!