МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ЛАБОРАТОРНАЯ РАБОТА №3.3.4

Эффект Холла в полупроводниках

выполнил студент 006 группы ФЭФМ Штрайх Роберт **Цель работы:** измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; милливеберметр или миллитесламетр; источник питания (1,5 В), образцы легированного германия.

1 Теоретическое введение

Во внешнем магнитном поле B на заряды действует сила Лоренца:

$$\mathbf{F} = q\mathbf{E} + q\mathbf{u} \times \mathbf{B}.\tag{1}$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с E. Возникновение поперечного тока электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Xолла.

В работе изучаются особенности проводимости проводников в геометрии мостика Холла. Ток пропускается по плоской полупроводниковой пластинке, помещённой в перпендикулярное пластинке магнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется константа Холла, тип проводимости (электронный или дырочный) и на основе соотношения (3) вычисляется концентрация основных носителей заряда.

2 Расчётные формулы

• ЭДС Холла:

$$\mathscr{E}_{\mathbf{x}} = U_{34} - U_0, \tag{2}$$

• Постоянная Холла:

$$R_x = -\frac{\mathscr{E}_{\mathbf{x}}}{B} \cdot \frac{a}{I} = \frac{1}{nq},\tag{3}$$

• Концентрация носителей тока в образце:

$$n = \frac{1}{R_x e},\tag{4}$$

• Удельная проводимость материала образца:

$$\sigma = \frac{IL_{35}}{U_{35}al},\tag{5}$$

• Подвижность носителей тока:

$$b = \frac{\sigma}{en}. (6)$$

3 Экспериментальная установка

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках

4 Ход работы

1. Произведём калибровку магнита - определим связь между индукцией B магнтиного поля в зазоре электромагнита и током I через обмотки магнита. Результаты занесём в таблицу 1 и представим на графике 2.

Таблица 1: Зависимость $B(I_{\scriptscriptstyle \mathrm{M}})$

$I_{\mathcal{M}}, A$	0,15	0,30	0,46	0,60	0,75	0,90	1,05	1,28
B, MTл	179,40	327,95	503,65	$638,\!85$	$772,\!55$	$878,\!55$	952,60	1033,35

2. Проведём измерение ЭДС Холла. Снимем зависимость напряжения U_{34} от тока I через обмотки магнита (с учётом U_0). Выполним серию измерений для различных токов I через образец (от 0,3 до 1 мА). Результаты измерений занесём в таблицу 2 и построим на их основе семейство прямых $\mathscr{E}_{\mathbf{x}} = f(B)$ (рис. 3).

Таблица 2: Зависимость $\mathscr{E}_{\mathbf{x}}(B)$

В, мТл		179,40	327,95	$503,\!65$	638,85	772,55	878,55	952,60	1033,35
I, A		0,15	0,30	0,46	0,60	0,75	0,90	1,05	1,28
U_{34} , м B	I=0,3 MA	-0,100	-0,150	-0,193	-0,235	-0,270	-0,302	-0,325	-0,347
$\mathscr{E}_{\mathrm{x}}, м B$		-0,157	-0,207	-0,250	-0,292	-0,327	-0,359	-0,382	-0,404
U_{34} , м B	I=0,4 м A	-0,143	-0,197	-0,261	-0,315	-0,363	-0,403	-0,432	-0,463
$\mathscr{E}_{\mathrm{x}}, м B$		-0,230	-0,284	-0,348	-0,402	-0,450	-0,490	-0,519	-0,550
U_{34} , м B	I=0,5 м A	-0,118	-0,251	-0,321	-0,392	-0,453	-0,501	-0,540	-0,575
$\mathscr{E}_{\mathrm{x}}, MB$		-0,226	-0,359	-0,429	-0,500	-0,561	-0,609	-0,648	-0,683
U_{34} , м B	I=0,6 MA	-0,212	-0,297	-0,387	-0,468	-0,547	-0,604	-0,647	-0,689
$\mathscr{E}_{\mathrm{x}}, м B$		-0,343	-0,428	-0,518	-0,599	-0,678	-0,735	-0,778	-0,820
U_{34} , м B	I=0,7 м A	-0,251	-0,354	-0,455	-0,549	-0,637	-0,705	-0,759	-0,808
$\mathscr{E}_{\mathrm{x}},\ \mathit{м}B$		-0,404	-0,507	-0,608	-0,702	-0,790	-0,858	-0,912	-0,961
U_{34} , м B	I=0,8 м A	-0,282	-0,402	-0,522	-0,627	-0,725	-0,807	-0,866	-0,921
$\mathscr{E}_{\mathrm{x}},\;$ м B		-0,456	-0,576	-0,696	-0,801	-0,899	-0,981	-1,040	-1,095
U_{34} , м B	I=0,9 м A	-0,322	-0,454	-0,578	-0,703	-0,817	-0,905	-0,973	-1,035
$\mathscr{E}_{\mathrm{x}},\ \mathit{M}B$		-0,518	-0,650	-0,774	-0,899	-1,013	-1,101	-1,169	-1,231
U_{34} , м B	I=1,0 м A	-0,353	-0,500	-0,647	-0,788	-0,907	-1,008	-1,078	-1,149
$\mathscr{E}_{\mathrm{x}}, м B$		-0,571	-0,718	-0,865	-1,006	-1,125	-1,226	-1,296	-1,367
U_{34} , м B	$I = 1, 0 MA^{1}$	-0,047	0,101	0,245	0,384	0,503	0,597	0,676	0,741
$\mathscr{E}_{\mathrm{x}},\ \mathit{MB}$		-0,231	-0,083	0,061	0,200	0,319	0,413	0,492	0,557

¹Здесь поле направлено в обратную сторону

4. Определим по графику 3 угловые коэффициенты прямых и построим график зависимости k = f(I) (рис. 4). По этому графику определим величину постоянной Холла. Погрешность рассчитаем по методу наименьших квадратов, учитывая погрешности приборов:

$$R_{\rm x} = -ka = (9, 1 \pm 0, 1) \cdot 10^{-4} \frac{{\rm M}^3}{{\rm K}_{\rm II}},$$

Относительная погреншность составляет 1,32%.

- 5. Определим знак носителей заряда в образце, зная направление тока в образце, направление магнитного поля и знак ЭДС Холла. Получаем, что проводимость **дырочная**.
 - 6. Рассчитаем концентрацию n носителей тока:

$$n = \frac{1}{R_{\rm x}e} = (6,87 \pm 0,09) \cdot 10^{21} {\rm m}^{-3},$$

7. По формуле 5 рассчитаем удельную проводимость образца. При I=1 мА, $U_{35}=-4,065$ мВ; параметры образца: a=1 мм, l=4 мм, $L_{35}=5$ мм

$$\sigma = (307, 5 \pm 4, 1) \text{Om} \cdot \text{m}^{-1},$$

8. Вычислим по формуле 6 подвижность b носителей тока:

$$b = (2796, 4 \pm 36, 9) \frac{\text{cm}^2}{\text{B} \cdot \text{c}},$$

Относительная погрешность составляет 1,32%. Табличное значение проводимости:

$$b = 3900 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

5 Выводы

В ходе работы был исследован эффект Холла в полупроводнике-германии, выявлено, что в нём преобладает дырочная проводимость. Были вычислены такие величины, как постоянная Холла, концентрация носителей тока, удельная проводимость образца и подвижность носителей тока:

$$R_{\rm x} = (9, 1 \pm 0, 1) \cdot 10^{-4} \frac{{
m M}^3}{{
m K}_{\rm J}},$$

$$\varepsilon_{R_x} = 1,32\%$$

$$n = \frac{1}{R_{\rm x}e} = (6,87 \pm 0,09) \cdot 10^{21} {\rm m}^{-3},$$

$$\varepsilon_n = 1,2\%$$

$$\sigma = (307,5 \pm 4,1) {\rm Om \cdot m}^{-1},$$

$$\varepsilon_\sigma = 1,3\%$$

$$b = (2796,4 \pm 36,9) \frac{{\rm cm}^2}{{\rm B} \cdot {\rm c}},$$

$$\varepsilon_b = 1,32\%$$

Табличное значение проводимости:

$$b = 3900 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

Возможная причина несовпадения табличного и экспериментального значений проводимости в том, что образец является не чистым, а легированным германием.

6 Приложение

Рис. 2: График зависимости $B(I_{\scriptscriptstyle \mathrm{M}})$

Рис. 3: Семейство зависимостей $\mathscr{E}_{\mathbf{x}}(B)$

Рис. 4: График зависимости k(I)