# CS 5112 - Divide & conquer



### Divide and conquer

#### Class of algorithmic techniques in which:

- 1. Divide input into sub-problems (most often, two halves each of size n/2)
- 2. Solve problem on each sub-problem
- 3. Carefully merge solutions to solve your problem (usually, O(n) time)

Often moves from time  $O(n^2)$  solution using brute-force to  $O(n \log n)$ 



### Sorting a list L

We've assumed several times that you can sort a list in  $O(n \log n)$  time But how can this work?

#### Merge-Sort(*L*)

If |L| = 1 then Return L

Split *L* into two halves *A*, *B* 

A <- Merge-Sort(A)

B <- Merge-Sort(B)</pre>

 $L \leftarrow Merge(A,B)$ 

Return L

### Sorting a list L

We've assumed several times that you can sort a list in  $O(n \log n)$  time But how can this work?

#### Merge-Sort(L)

If |L| = 1 then Return L

Split *L* into two halves *A*, *B* 

A <- Merge-Sort(A)

B <- Merge-Sort(B)</pre>

 $L \leftarrow Merge(A,B)$ 

Return L

### **Run time?** O(n log n)

$$T(n) \leq 2T(n/2) + cn$$

$$\leq 2c(n/2)\log_2(n/2) + cn$$

$$= cn ((\log_2 n) - 1) + cn$$

$$= (cn \log_2 n) - cn + cn$$

$$= cn \log_2 n$$

Consider list of distinct numbers  $L = x_1, ..., x_n$ An inversion is a pair of indices i < j such that  $x_i > x_j$ Count the number of inversions in a list L

Consider list of distinct numbers  $L = x_1, ..., x_n$ An inversion is a pair of indices i < j such that  $x_i > x_j$ Count the number of inversions in a list L

Consider list of distinct numbers  $L = x_1, ..., x_n$ An inversion is a pair of indices i < j such that  $x_i > x_j$ Count the number of inversions in a list L

#### Sort-and-Count (L)

Return  $(r + r_A + r_A, L)$ 

```
If |L| = 1 then Return 0
Divide L into two halves A, B
    A has first ceil(n/2) elements
    B has last floor(n/2) elements
(r<sub>A</sub>, A) <- Sort-and-Count(A)
(r<sub>B</sub>, B) <- Sort-and-Count(B)
(r, L) <- Merge-and-Count(A,B)</pre>
```

Consider list of distinct numbers  $L = x_1, ..., x_n$ An inversion is a pair of indices i < j such that  $x_i > x_j$ Count the number of inversions in a list L

#### Sort-and-Count (L)

If |L| = 1 then Return 0 Divide L into two halves A, BA has first ceil(n/2) elements B has last floor(n/2) elements  $(r_A, A) \leftarrow \text{Sort-and-Count}(A)$  $(r_B, B) \leftarrow \text{Sort-and-Count}(B)$ 

(r, L) <- Merge-and-Count(A,B)

Return  $(r + r_A + r_A, L)$ 

L

$$b_1$$
  $b_2$   $b_3$ 

 $a_1$   $a_2$   $a_3$   $a_4$ 

Consider list of distinct numbers  $L = x_1,..., x_n$ An inversion is a pair of indices i < j such that  $x_i > x_j$ Count the number of inversions in a list L

#### Sort-and-Count (L)

```
If |L| = 1 then Return 0
Divide L into two halves A, B
A has first ceil(n/2) elements
B has last floor(n/2) elements
(r_A, A) \leftarrow \text{Sort-and-Count}(A)
(r_B, B) \leftarrow \text{Sort-and-Count}(B)
(r, L) \leftarrow \text{Merge-and-Count}(A, B)
```

```
Return (r + r_A + r_A, L)
```

```
Merge-and-Count(A,B)
L <- empty list
Count <- 0; i <- 1; j <- 1
While i \leq |A| and j \leq |B|
   If a_i > b_i then
       Append b<sub>i</sub> to L
        Count \leftarrow Count + (|A| - i)
        j < -j + 1
    else
        Append a<sub>i</sub> to L
        i < -i + 1
Return (Count, L)
```

#### Run time?

T(n) = 2T(n/2) + cn for some constant c

Thus: O(n log n)

### Divide-and-conquer so far

- Merge-Sort algorithm for sorting
  - Trick is that we can merge two sorted lists efficiently (linear)

- Sort-and-Count algorithm for counting inversions
  - Trick is that given two sorted lists we can count inversions efficiently (linear)

Binary search sometimes called divide-and-conquer

# Integer addition (in binary!)

Given two n-bit integers x, y compute x + y

### Integer multiplication (in binary!)

Given two n-bit integers x, y compute  $x \cdot y$ 

### Integer multiplication (in binary!)

Given two n-bit integers x, y compute  $x \cdot y$ 

Integer addition via grade-school algorithm: O(n²)

Conjecture. [Kolmorogov 1956]

Grade-school algorithm for multiplication is **optimal** 

Disproved by [Karatsuba 1960] who showed faster algorithm: O(n<sup>1.59</sup>)

Best theoretical result to date:

[Harvey, van Der Hoeven 2019] show O(n log n)

Given two n-bit integers x, y compute  $x \cdot y$ 

Given two n-bit integers x, y compute  $x \cdot y$ 

#### Multiply1(*x,y,n*)

If |L| = 1 then Return  $x \cdot y$ m = n/2

 $x_1 = x / 2^m$ ;  $x_0 = x \mod 2^m$ 

 $y_1 = y / 2^m$ ;  $y_0 = y \mod 2^m$ 

a <- Multiply1( $x_1$ ,  $y_1$ ,m)

b <- Multiply1( $x_1, y_0, m$ )

c <- Multiply1( $x_0$ ,  $y_1$ ,m)

 $d \leftarrow Multiply1(x_0, y_0, m)$ 

Return  $a \cdot 2^n + (b + c) \cdot 2^{n/2} + d$ 

Split each of x, y into two halves, each of n/2 bits:

$$x = x_1 \cdot 2^{n/2} + x_0$$

$$y = y_1 \cdot 2^{n/2} + y_0$$

Substitute into equation  $x \cdot y$ 

$$x \cdot y = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$
$$= x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1) \cdot 2^{n/2} + x_0 y_0$$

Now we can compute in 4 n/2-bit multiplications!!

Given two n-bit integers x, y compute  $x \cdot y$ 

#### Multiply1(*x,y,n*)

```
If |L| = 1 then Return x \cdot y

m = n/2

x_1 = x / 2^m; x_0 = x \mod 2^m

y_1 = y / 2^m; y_0 = y \mod 2^m

a \leftarrow Multiply1(x_1, y_1, m)

b \leftarrow Multiply1(x_1, y_0, m)

c \leftarrow Multiply1(x_0, y_1, m)

d \leftarrow Multiply1(x_0, y_0, m)
```

Return  $a \cdot 2^n + (b + c) \cdot 2^{n/2} + d$ 

Does this work to beat O(n<sup>2</sup>)?

### Solving the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 4 \cdot T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

### Master theorem

**Theorem.** Let  $a \ge 1$ ,  $b \ge 2$ , and  $c \ge 0$  and suppose that T(n) is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \Theta(n^c)$$

with T(0) = 0 and  $T(1) = \Theta(1)$ . Then

Case 1: If  $c > \log_b a$ , then  $T(n) = \Theta(n^c)$ 

Case 2: If  $c = \log_b a$ , then  $T(n) = \Theta(n^c \log n)$ 

Case 3: If  $c < \log_b a$ , then  $T(n) = \Theta(n^{\log_b a})$ 

Example from Merge-Sort: a = 2, b = 2, c = 1

### **Back to our recurrence**

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 4 \cdot T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

$$Case 1: \text{ If } c > \log_b a, \text{ then } T(n) = \Theta(n^c)$$

$$Case 2: \text{ If } c = \log_b a, \text{ then } T(n) = \Theta(n^c \log n)$$

$$Case 3: \text{ If } c < \log_b a, \text{ then } T(n) = \Theta(n^{\log_b a})$$

What is run time of our first attempt at multiplication?

Given two n-bit integers x, y compute  $x \cdot y$ 

#### Multiply1(*x,y,n*)

If |L| = 1 then Return  $x \cdot y$ m = n/2

 $x_1 = x / 2^m$ ;  $x_0 = x \mod 2^m$ 

 $y_1 = y / 2^m$ ;  $y_0 = y \mod 2^m$ 

a <- Multiply1( $x_1, y_1, m$ )

b <- Multiply1( $x_1, y_0, m$ )

c <- Multiply1( $x_0$ ,  $y_1$ ,m)

 $d \leftarrow Multiply1(x_0, y_0, m)$ 

Return  $a \cdot 2^n + (b + c) \cdot 2^{n/2} + d$ 

Split each of x, y into two halves, each of n/2 bits:

$$x = x_1 \cdot 2^{n/2} + x_0$$
  $y = y_1 \cdot 2^{n/2} + y_0$ 

$$x \cdot y = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$
$$= x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1) \cdot 2^{n/2} + x_0 y_0$$

Given two n-bit integers x, y compute  $x \cdot y$ 

#### Multiply1(*x,y,n*)

If |L| = 1 then Return  $x \cdot y$ m = n/2

 $x_1 = x / 2^m$ ;  $x_0 = x \mod 2^m$ 

 $y_1 = y / 2^m$ ;  $y_0 = y \mod 2^m$ 

a <- Multiply1( $x_1, y_1, m$ )

b <- Multiply1( $x_1, y_0, m$ )

c <- Multiply1( $x_0$ ,  $y_1$ ,m)

 $d \leftarrow Multiply1(x_0, y_0, m)$ 

Return  $a \cdot 2^n + (b + c) \cdot 2^{n/2} + d$ 

Split each of x, y into two halves, each of n/2 bits:

$$x = x_1 \cdot 2^{n/2} + x_0$$
  $y = y_1 \cdot 2^{n/2} + y_0$ 

$$x \cdot y = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$
$$= x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1) \cdot 2^{n/2} + x_0 y_0$$

$$z_1 = x_1 y_0 + x_0 y_1$$

$$= x_1 y_0 + x_0 y_1 + x_1 y_1 - x_1 y_1 + x_0 y_0 - x_0 y_0$$

$$= (x_1 + x_0) y_0 + (x_0 + x_1) y_1 - x_1 y_1 - x_0 y_0$$

$$= (x_1 + x_0) (y_1 + y_0) - x_1 y_1 - x_0 y_0$$

Given two n-bit integers x, y compute  $x \cdot y$ 

#### Karatsuba(x,y,n)

If |L| = 1 then Return  $x \cdot y$  m = n/2 $x_1 = x / 2^m$ ;  $x_0 = x \mod 2^m$ 

 $y_1 = y / 2^m$ ;  $y_0 = y \mod 2^m$ 

a <- Karatsuba $(x_1, y_1, m)$ 

b <- Karatsuba $(x_1 + x_0, y_1 + y_0, m)$ 

 $d \leftarrow Karatsuba(x_0, y_0, m)$ 

Return  $a \cdot 2^n + (b - a - d) \cdot 2^{n/2} + d$ 

Split each of x, y into two halves, each of n/2 bits:

$$x = x_1 \cdot 2^{n/2} + x_0$$
  $y = y_1 \cdot 2^{n/2} + y_0$ 

$$x \cdot y = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$
$$= x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1) \cdot 2^{n/2} + x_0 y_0$$

$$z_1 = x_1 y_0 + x_0 y_1$$

$$= x_1 y_0 + x_0 y_1 + x_1 y_1 - x_1 y_1 + x_0 y_0 - x_0 y_0$$

$$= (x_1 + x_0) y_0 + (x_0 + x_1) y_1 - x_1 y_1 - x_0 y_0$$

$$= (x_1 + x_0) (y_1 + y_0) - x_1 y_1 - x_0 y_0$$

Given two n-bit integers x, y compute  $x \cdot y$ 

#### Karatsuba(x,y,n)

If |L| = 1 then Return  $x \cdot y$  m = n/2  $x_1 = x / 2^m$ ;  $x_0 = x \mod 2^m$   $y_1 = y / 2^m$ ;  $y_0 = y \mod 2^m$   $a <- \text{Karatsuba}(x_1, y_1, m)$   $b <- \text{Karatsuba}(x_1 + x_0, y_1 + y_0, m)$  $d <- \text{Karatsuba}(x_0, y_0, m)$ 

Return  $a \cdot 2^n + (b - a - d) \cdot 2^{n/2} + d$ 

#### Run time?

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 3 \cdot T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Case 1: If 
$$c > \log_b a$$
, then  $T(n) = \Theta(n^c)$   
Case 2: If  $c = \log_b a$ , then  $T(n) = \Theta(n^c \log n)$   
Case 3: If  $c < \log_b a$ , then  $T(n) = \Theta(n^{\log_b a})$ 

$$T(n) = O(n^{\log_2 3}) = O(n^{1.59})$$

# Integer multiplication



### Integer multiplication algorithms

| year | algorithm             | bit operations                |  |
|------|-----------------------|-------------------------------|--|
| 12xx | grade school          | $O(n^2)$                      |  |
| 1962 | Karatsuba-Ofman       | $O(n^{1.585})$                |  |
| 1963 | Toom-3, Toom-4        | $O(n^{1.465}), O(n^{1.404})$  |  |
| 1966 | Toom-Cook             | $O(n^{1+\varepsilon})$        |  |
| 1971 | Schönhage-Strassen    | $O(n\log n \cdot \log\log n)$ |  |
| 2007 | Fürer                 | $n \log n  2^{O(\log^* n)}$   |  |
| 2019 | Harvey-van der Hoeven | $O(n \log n)$                 |  |
|      | 355                   | O(n)                          |  |

**GNU Multiprecision Arithmetic Library** (GMP) uses 7 different algorithms, choosing one based on size of integers: Karatsuba, variants of Toom and Toom-Cook, Schonhage-Strassen (FFT-based method)

# More D&C algorithms

Textbook discusses some more examples

| Problem                   | Algorithm                 | Approach                                                                                          | Worst case run time   |
|---------------------------|---------------------------|---------------------------------------------------------------------------------------------------|-----------------------|
| Sorting list              | Merge Sort                | Divide in two halves, sort each, and then merge                                                   | O(n log n)            |
| Counting inversions       | Sort-and-<br>Count        | Merge sort plus keeping track of number of inversions efficiently as you merge                    | O(n log n)            |
| Integer<br>multiplication | Karatsuba                 | Divide numbers into low and high order bits, use three recursive multiplications and combine      | O(n <sup>1.59</sup> ) |
| Closest pairs of points   | Closest-Pair              | Divide plane in half and solve on each half, carefully combine by looking at points near division | O(n log n)            |
| Convolutions              | Fast Fourier<br>Transform | Treat inputs as coefficients of polynomials, apply FFT to the polynomials                         | O(n log n)            |

#### Divide-and-conquer recurrences: recursion tree

Suppose T(n) satisfies  $T(n) = a T(n/b) + n^c$  with T(1) = 1, for n a power of b.



Replicated from:

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf <sup>29</sup>

#### Divide-and-conquer recurrences: recursion tree analysis

Suppose T(n) satisfies  $T(n) = a T(n/b) + n^c$  with T(1) = 1, for n a power of b.

Let  $r = a / b^c$ . Note that r < 1 iff  $c > \log_b a$ .

$$T(n) \, = \, n^c \sum_{i=0}^{\log_b n} r^i \, = \, \begin{cases} \, \Theta(n^c) & \text{if } r < 1 \qquad c > \log_b a \, & \longleftarrow \, \text{cost dominated by cost of root} \\ \, \Theta(n^c \log n) & \text{if } r = 1 \, & c = \log_b a \, & \longleftarrow \, \text{cost evenly distributed in tree} \\ \, \Theta(n^{\log_b a}) & \text{if } r > 1 \, & c < \log_b a \, & \longleftarrow \, \text{cost dominated by cost of leaves} \end{cases}$$

#### Geometric series.

- If 0 < r < 1, then  $1 + r + r^2 + r^3 + ... + r^k \le 1/(1-r)$ .
- If r = 1, then  $1 + r + r^2 + r^3 + ... + r^k = k + 1$ .
- If r > 1, then  $1 + r + r^2 + r^3 + ... + r^k = (r^{k+1} 1) / (r 1)$ .

#### Replicated from:

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf

### Claim. $ABL(T)=ABL(T)-f_{\omega}$ Pf.

$$ABL(T) = \sum_{x \in S} f_x \cdot \operatorname{depth}_T(x)$$

$$= f_y \cdot \operatorname{depth}_T(y) + f_z \cdot \operatorname{depth}_T(z) + \sum_{x \in S, x \neq y, z} f_x \cdot \operatorname{depth}_T(x)$$

$$= (f_y + f_z) \cdot (1 + \operatorname{depth}_T(\omega)) + \sum_{x \in S, x \neq y, z} f_x \cdot \operatorname{depth}_T(x)$$

$$= f_\omega \cdot (1 + \operatorname{depth}_T(\omega)) + \sum_{x \in S, x \neq y, z} f_x \cdot \operatorname{depth}_T(x)$$

$$= f_\omega + \sum_{x \in S'} f_x \cdot \operatorname{depth}_{T'}(x)$$

$$= f_\omega + \operatorname{ABL}(T')$$