

Knotenklassifikation in dynamischen Graphen mit Texten

Martin Thoma | 25. Februar 2014

INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

Zitationsdatenbanken

- Publikationen oder Autoren können Knoten sein,
- Zitate oder Mehrautorenschaftkönnen Kanten sein und
- Kategorien können Beschriftungen sein

Problem: Nicht alle Knoten sind beschriftet **Anwendungsideen**:

- Kategorievorschläge bei neuen Einträgen
- Korrekturvorschläge für alte Einträge

Herausforderungen

- Große Graphen,
- Dynamische Graphen,
- Texte sollen verwendet werden

Name	Knoten	davon beschriftet	Kanten	Beschriftungen
CORA	19 396	14814	75 021	5
DBLP	806 635	18 999	4 414 135	5

DYCOS is

- effizient,
- einfach,
- und nutzt Struktur und Texte

Szenano
00000
Martin TI

Herausforderungen

- Große Graphen,
- Dynamische Graphen,
- Texte sollen verwendet werden

Name	Knoten	davon beschriftet	Kanten	Beschriftungen
CORA	19 396	14814	75 021	5
DBLP	806 635	18 999	4 414 135	5

DYCOS ist

- effizient,
- einfach,
- und nutzt Struktur und Texte

Zitationsdatenbanken

The Development of the C Language Interprocess Communication in the Ninth Edition Unix System

Computer Science

The C Programming Language digital restoration and typesetter

Computer Science

The Identity
Thesis for
Language and
Music

Linguistics

Social Network

Szenario 000000 Vokabular

Sprungtypen

Evaluation

Zusammenfassung

Ende

Überblick

Partially labeled network

Szenario 0000•0 Vokabular 000 Sprungtypen 00 Evaluation 00 Zusammenfassung

Ende 0000 6/25

Überblick

Partially labeled network with content

Szenario 00000●

Überblick

Vokabular 000 Sprungtypen 00 Evaluation 00

Zusammenfassung

ssung Ende

Überblick

- Graph ist gegeben
- Knoten sind teilweise beschriftet
- Fehlende Beschriftungen sollen berechnet werden

Idee: Homophilie nutzen Nahe Knoten sind ähnlich

⇒ Random Walks zur Klassifizierung nutzen

Überblick

- Graph ist gegeben
- Knoten sind teilweise beschriftet
- Fehlende Beschriftungen sollen berechnet werden

Idee: Homophilie nutzen

Nahe Knoten sind ähnlich

⇒ Random Walks zur Klassifizierung nutzen

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

N / :	т.
00000	0
Szenanc	,

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szeriario
000000
Mantin T

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

٥,	zenanc	,
0	0000	0
	4	-

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

N / :	т.
00000	0
Szenanc	,

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

	4	-
0	0000	0
32	enan	J

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenano	
000000	
Manager	-

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenano	
000000	
Manager	

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenano	
000000	
Manager	

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenano
000000
Manager TI

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

_	Zenani)
(00000	0
		-

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenano
000000
Mantin Ti

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

_	Zenani)
(00000	0
		-

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

000000
000000
Mantin Th

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $3 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Wortknoten

- Bisher wurden keine Texte genutzt
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

Erweiterter, semi-bipartiter Graph

Ende

- Füllwörter: und, oder, im, in, ...

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- Hier: $g \in (0,1]$
- $lue{g}$ nahe bei $1 \Rightarrow \text{Wort}$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizien

Ende

- statistisches Maß für Ungleichverteilung
- $q = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- Hier: $q \in (0,1]$
- \bullet g nahe bei $1 \Rightarrow$ Wort ist stark ungleich verteilt

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- Hier: $g \in (0,1]$
- $lue{g}$ nahe bei $1 \Rightarrow \text{Wort}$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizien

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- Hier: $g \in (0,1]$
- g nahe bei $1 \Rightarrow Wort$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- Hier: $g \in (0,1]$
- g nahe bei $1 \Rightarrow Wort$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

in der Schule in dem Jahr

Beispiel: "in"

■ Vorkommen insgesamt: 5×

• Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{5}$

• Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$

• Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$

• Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

in der Schule in dem Jahr

(Geschichte)

Beispiel: "in"

- Vorkommen insgesamt: 5×
- Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{\epsilon}$
- Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

in der Schule in dem Jahr

Beispiel: "in"

- Vorkommen insgesamt: 5×
 - Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{\epsilon}$
 - Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

in der Schule in dem Jahr

(Mathematik)

Geschichte

Beispiel: "in"

■ Vorkommen insgesamt: 5×

• Vorkommen in "Informatik" $2 imes \Rightarrow p_1=rac{2}{5}$

• Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$

• Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$

• Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

in der Schule in dem Jahr

Mathematik

Geschichte

Beispiel: "in"

- Vorkommen insgesamt: $5 \times$
- Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{5}$
- Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

in der Schule in dem Jahr

Mathematik

Geschichte

Beispiel: "in"

- Vorkommen insgesamt: $5 \times$
- Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{5}$
- Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$

Sprungtypen

in der Schule in dem Jahr

hematik) (

Geschichte

Beispiel: "in"

- Vorkommen insgesamt: 5×
- Vorkommen in "Informatik" $2 \times \Rightarrow p_1 = \frac{2}{5}$
- Vorkommen in "Mathematik" $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte" $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient: $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

Sprungtypen

Überblick 00000 Vokabular 000 Sprungtypen ●○ Evaluation 00 Zusammenfassung

ung Ende

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v^\prime
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-*q*-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davon

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-*q*-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davon

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-*q*-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davon

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-q-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davor

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
 - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
 - Nehme Top-q-Knoten (Anzahl der Pfade)
 - Wähle zufällig einen davon

Name	Knoten	davon beschriftet	Kanten	Beschriftungen
CORA	19 396	14814	75 021	5
DBLP	806 635	18 999	4 414 135	5

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

Performance:

- Klassifizierung aller Knoten
- Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
- DBLP: < 25 s
- CORA: < 5s

Klassifikationsgüte:

- CORA: 82% 84%
- DBLP: 61% 66%

Performance:

- Klassifizierung aller Knoten
- Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kerr
- DBLP: < 25 s
- CORA: < 5s
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - \bullet CORA: < 5 s
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5 s</p>
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

Performance:

- Klassifizierung aller Knoten
- Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
- DBLP: < 25 s
- CORA: < 5s</p>
- Klassifikationsgüte:

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5s</p>
- Klassifikationsgüte:

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5 s</p>
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

- Performance:
 - Klassifizierung aller Knoten
 - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
 - DBLP: < 25 s
 - CORA: < 5 s</p>
- Klassifikationsgüte:
 - CORA: 82% 84%
 - DBLP: 61% 66%

Wichtige Ideen

- Random Walk
- Inhaltlicher Zweifachsprung

Wichtige Ideen

- Random Walk
- Gini-Koeffizient
- Inhaltlicher Zweifachsprung

Wichtige Ideen

- Random Walk
- Gini-Koeffizient
- Inhaltlicher Zweifachsprung

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

- DYCOS ist nur von der lokalen Situation abhängig

Überblick

- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach
- ⇒ Der Graph darf dynamisch sein; DYCOS funktioniert dennoch

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach
- ⇒ Der Graph darf dynamisch sein; DYCOS funktioniert dennoch

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach
- ⇒ Der Graph darf dynamisch sein; DYCOS funktioniert dennoch

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

Danke!

Gibt es Fragen?

Ende •000

Bildquellen

Crystal_Clear_app_personal.png von Wikipedia Commons

Literatur

- Charu C. Aggarwal, Nan Li: On Node Classification in Dynamic Content-based Networks
- Smriti Bhagat, Graham Cormode und S. Muthukrishnan. Node Classification in Social Networks.
- M. F. Porter. Readings in Information Retrieval. Kapitel An Algorithm for Suffix Stripping.
- Jeffrey S. Vitter. Random Sampling with a Reservoir.

Folien, LaTeXund Material

Der Foliensatz sowie die LATEX und TikZ-Quellen sind unter github.com/MartinThoma/LaTeXexamples/tree/master/presentations/Datamining-Proseminar Kurz-URL: tinyurl.com/thoma-ps