Rappresentazione dell'informazione

Corso di Elementi di Programmazione

Prof. Salvatore Venticinque

I requisiti

Per realizzare l'esecuzione automatica dell'informazione occorre:

- Disporre di un elaboratore
- Rappresentare l'informazione (dati)
- Rappresentare l'elaborazione (programma)

Informazione

Il numero di telefono di casa di Andrea è 081 7651831

Cos'è l'informazione

- Qualcosa che si può comunicare
- Qualcosa in funzione di cui si possono operare delle scelte
- Qualcosa che si può conservare

• ...

Rappresentazioni e formati

Immagine

 Un foglio pieno di macchie

Testo

Diverse rappresentazioni

Rappresentazione e significato

Necessità della rappresentazione

• L'informazione esiste a prescindere dalla sua rappresentazione:

Il numero 4 astratto esiste a prescindere dal fatto che lo si rappresenti

- Ma senza una rappresentazione non è possibile
 - Elaborarla
 - Memorizzarla
 - Comunicarla

Codifica

La codifica è l'operazione che consente di rappresentare un'informazione definiti:

- Un insieme di simboli
- Una regola di rappresentazione

Un dato è:

 la rappresentazione di un'informazione secondo una determinata codifica.

Codificare l'informazione

- Stabilire un'insieme di simboli
- Stabilire una informazione tra informazione e simboli (il codice)

Informazione binaria

Utilizzo di più simboli binari

Codice MORSE

Lettera	Morse	Lettera	Morse	Lettera	Morse
0		C		O	
1		D		P	
2		E	•	Q	
3		F		R	
4		G		S	
5		Н		T	-
6		I	••	U	
7		J		V	
8		K		W	
9		L		X	
A		M		Y	-,
В		N		Z	

Stringhe di lunghezza assegnata

- Una sequenza di valori appartenenti a un insieme finito R viene detta stringa
- Una stringa è caratterizzata dalla sua lunghezza
- L'insieme delle stringhe di elementi di R di lunghezza m è il prodotto cartesiano

$$R^m = R \times \cdots \times R$$

Binary Digit (bit)

- $R \equiv \{0, 1\}$
- Può rappresentare qualunque informazione a due valori (|D| = 2)
- Una stringa di m bit può assumere 2^m valori diversi
- Esempio:

•	00
•	01
*	10
•	11

$$|D| = 4$$

$$m = 2$$

Codifica con stringhe di bit

• Per un qualunque insieme *D* finito:

$$c: D \rightarrow \{0, 1\} \times \cdots \times \{0, 1\}$$

$$\lceil \log_2 |D| \rceil \text{ volte}$$

• Esempio:

Lunedì	000	111	
Martedì	001	001	
Mercoledì	010	110	
Giovedì	011	000	
Venerdì	100	101	
Sabato	101	100	
Domenica	110	010	

$$|D| = 7$$

$$\left[\log_2 |D| \right] = 3$$

$$2^3 = 8$$

codifica che non usa 111

codifica che non usa 011

Rappresentazione posizionale dei numeri naturali

• Numeri e rappresentazione dei numeri:

quindici

• Rappresentazione posizionale: base di rappresentazione (es. 10), si usano 10 simboli (*cifre*) che rappresentano i numeri da 0 a 9

$$15 = 1 \times 10^{1} + 5 \times 10^{0}$$

• Il numero viene rappresentato dalla lista di cifre

Rappresentazione dei caratteri

- Codice ASCII (American Standard Code for Information Interchange)
- Rappresentazione su 7 bit: 128 combinazioni
 - da 0 a 31: "caratteri" di controllo
 - da 32 a 47: interpunzione e caratteri speciali
 - da 48 a 57: cifre decimali
 - da 58 a 64: interpunzione e caratteri speciali
 - da 65 a 90: lettere maiuscole dell'alfabeto inglese
 - da 91 a 96: interpunzione e caratteri speciali
 - da 97 a 122: lettere minuscole dell'alfabeto inglese
 - da 123 a 127: caratteri speciali

	codice	equivalente	equivalente		codice	equivalente	e quiva lente
carattere	ASCII	esadecimale	numerico	carattere	ASCII	esadecimale	numerico
(a):	01000000	40	64	4	01100000	60	96
A	01000001	41	65	a	01100001	61	97
В	01000010	42.	66	Ъ	01100010	62.	98
С	01000011	43	67	c	01100011	63	99
D	01000100	44	68	d	01100100	64	100
E	01000101	45	69	е	01100101	65	101
F	01000110	46	70	f	01100110	66	102
G	01000111	47	71	ρg	01100111	67	103
Н	01001000	48	72	h	01101000	68	104
I	01001001	49	73	i	01101001	69	105
1	01001010	4A	74	j	01101010	6A	106
K	01001011	4B	75	k	01101011	6B	107
L	01001100	4C	76	1	01101100	6C	108
M	01001101	4D	77	m.	01101101	6D	109
N	01001110	4E	78	n	01101110	6E	110
О	01001111	4F	79	0	01101111	6F	111
P	01010000	50	80	р	01110000	70	112
Q	01010001	51	81	q	01110001	71	113
R	01010010	52	82	r	01110010	72.	114
S	01010011	53	83	S	01110011	73	115
Т	01010100	54	84	t	01110100	74	116
U	01010101	15	85	u	01110101	75	117
V	01010110	56	86	v	01110110	76	118
W	01010111	57	87	w	01110111	77	119
X	01011000	58	88	x	01111000	78	120
Y	01011001	59	89	У	01111001	79	121
Z	01011010	5A	90	z	01111010	7A	122
	01011011	5B	91	{	01111011	7B	123
\	01011100	5C	92		01111100	7C	124
]	01011101	5D	93	}	01111101	7D	125
.^	01011110	5E	94	~	0111 1 1110	7E	126
_	01011111	5F	95		011111111	7F	127

Rappresentazione dei caratteri

Relazioni tra caratteri e numeri

- le stringhe di bit non hanno significato di per se: a ogni carattere corrisponde un numero da 0 a 255
- il valore numerico di una cifra si ottiene sottraendo al numero corrispondente alla cifra quello corrispondente a 0

Ordinamento dei caratteri:

- rispettato l'ordinamento relativo tra: cifre, maiuscole, minuscole
- spazio < cifre < maiuscole < minuscole

Significato della rappresentazione (codice)

- Un codice non ha significato di per sé
- Il valore è stabilito dalla codifica (cioè dalla funzione c)
- L'associazione stringa-codifica (cioè il *tipo*) è data dall'operatore umano
- Ad esempio, la stringa 1000 0101 rappresenta:
 - il numero naturale **133** in binario naturale
 - il numero naturale -123 in complemento a 2
 - il carattere à in codice ASCII esteso

Modello Von Neumann

Supporto

E' necessario un supporto per:

- comunicare
- memorizzare

Memory

Memory Cell Operation

Dynamic RAM Structure

Array of bytes

- Address: byte line
- Value: stored binary array

Binary representation of information:

- Instruction
- Data

Problema: Realizzazione

- Come rappresentare l'informazione?
 - Il mondo è analogico!!!
- Come memorizzare I dati?
 - La migliore tecnologia per la costruzione della memoria!
- Come elaborare I dati?
 - Dipende da come sono rappresentati ...

Grandezze analogiche e digitali

valori.

 Una grandezza analogica varia con continuità in un qualunque intervallogidi

- output microfono
- input speaker

La funzione rappresentata è limitata nei valori e varia con continuità nel tempo e nell'intervallo V1,V2.

Campionamento e quantizzazione

 Una grandezza analogica non è rappresentabile in un calcolatore che possiede una memoria limitata.

Occorre:

- Campionare
- Quantizzare

Campionamento

 Con il campionamento e la quantizzazione si converte la grandezza da analogica in digitale:

Il campionamento consiste nel prelevare solo alcuni campioni al variare del tempo.

Quantizzazione

 Con il campionamento e la quantizzazione si converte la grandezza da analogica in digitale:

La quantizzazione consiste nell'approssimare i valori reali al quello più vicino in un set finito e prefissato.

Campionamento

Unità di misura	simbolo	Equivale a	cioè
byte	В	8 bit	Un carattere alfanumerico
kilobyte	kB	2 ¹⁰ byte	Un terzo di pagina di testo
megabyte	MB	2 ²⁰ byte	Circa 300 pagine di testo
gigabyte	GB	2 ³⁰ byte	Circa 300000 pagine di testo
terabyte	TB	2 ⁴⁰ byte	Circa 300 milioni di pagine di testo