WEEK ASSIGNMENT 5

Fatemeh Jafari (10663637)

Emissivity

Emissivity is defined as the ratio of the energy radiated from a material's surface to that radiated from a perfect emitter, known as a blackbody, at the same temperature and wavelength and under the same viewing conditions. It is a dimensionless number between 0 (for a perfect reflector) and 1 (for a perfect emitter). 0

< e < 1

The emissivity of a surface depends not only on the material but also on the nature of the surface.

A surface is said to be diffuse if its properties are independent of direction and gray if its properties are

independent of wavelength.

Absorptivity, Reflectivity, Transmissivity

Irradiation

The radiation flux incident on a surface is called irradiation and is denoted by G.

When radiation strikes a surface, part of it is absorbed, part of it is reflected, and the remaining part, if any,

is transmitted, as illustrated above Figure.

Absorptivity

The fraction of irradiation absorbed by the surface is called the absorptivity (α). It is the ratio of absorbed

radiation (G abs) to incident radiation (G).

Its value: $0 \le \alpha \le 1$

Reflectivity

The fraction of radiation reflected by the surface is called the reflectivity (ρ). It is the ratio of reflected

radiation (G ref) to incident radiation (G).

Its value: $0 \le \rho \le 1$

Transmissivity

The fraction of radiation transmitted is called the transmissivity (τ) . It is the ratio of transmitted radiation (G tr) to incident radiation (G).

Its value: $0 \le \tau \le 1$

The first law of thermodynamics requires that the sum of the absorbed, reflected, and transmitted radiation energy be equal to the incident radiation. That is,

G abs + G ref + G tr = G

Dividing each term of this relation by G yields

 $\alpha + \rho + \tau = 1$

For opaque surfaces, τ =0, and thus

 $\alpha+\rho=1$

This is an important property relation since it enables us to determine both the absorptivity and reflectivity of an opaque surface by measuring either of these properties.

View Factor

The fraction of thermal energy leaving the surface of object 1 and reaching the surface of object 2, determined entirely from geometrical considerations. Stated in other words, F12 is the fraction of object 2 visible from the surface of object 1, and ranges from zero to 1. This quantity is also known as the Radiation Shape Factor. Its units are dimensionless.

The heat exchange between two black Surfaces

Consider two black surfaces of arbitrary shape maintained at uniform temperatures T1 and T2. Recognizing that radiation leaves a black surface at a rate of Eb = sT 4 per unit surface area and that the view factor F1 @ 2 represents the fraction of radiation leaving surface 1 that strikes surface 2, the net rate of radiation heat transfer from surface 1 to surface 2 can be expressed as

This is the desired relation. A negative value for Q1 ® 2 indicates that net radiation heat transfer is from surface 2 to surface 1. Now consider an enclosure consisting of N black surfaces maintained at specified temperatures. The net radiation heat transfer from any surface i of this enclosure is determined by adding up the net radiation heat transfers from surface i to each of the surfaces of the enclosure:

Again a negative value for Q indicates that net radiation heat transfer is to surface i (i.e., surface i gains radiation energy instead of losing). Also, the net heat transfer from a surface to itself is zero, regardless of the shape of the surface.

The heat exchange between two grey surfaces and Radiation resistances

Radiosity J: the total radiation energy leaving a surface per unit time and per unit area.

A gray surface will reflect/absorb a given fraction of the thermal radiation a blackbody surface would absorb. More importantly, the gray body/blackbody fraction is independent of radiation wavelength

Task 2

A=1.5
$$\epsilon_{1,2}$$
 =0.1 σ =5.67*10⁻⁸ T_1 =298 T_2 =308
$$Q1,2 = \frac{A*\sigma(T1^4-T2^4)}{\frac{1}{\epsilon_1}+\frac{1}{\epsilon_2}-1} \qquad F1,2 = \frac{1}{\frac{1}{\epsilon_1}+\frac{1}{\epsilon_2}-1}$$
$$Q1,2 = \frac{1.5*5.67*10^{\circ}-8(298^4-308^4)}{\frac{1}{\epsilon_1}+\frac{1}{\epsilon_2}-1} = -0.466W$$
$$F1,2 = \frac{1}{\frac{1}{0.1}+\frac{1}{0.1}-1} = 0.0526$$

$$Q1,2 = A* F1,2 * \sigma(T1^4 - T2^4)$$

$$Q1,2 = 1.5 * 0.0526 * 5.67*10^{-8} * (298^4 - 308^4) = -4.97$$

The heat transfer between two surfaces is affected by emissivity of each surface