Numerical Methods

Module 4
Probability, Random Processes and Numerical Methods (MAT 204)

Dr. Umesh P
College of Engineering Thalassery

Intermediate value Theorem: If a function f(x) is continuous in closed interval [a,b] and satisfies f(a)>0 and f(b) < 0 then there exists at least one real root of the equation f(x) = 0 in open interval (a,b).

Find the real root of the equation $\cos x = 3x - 1$, using iteration method.

$$egin{aligned} ext{Let } f(x) &= \cos x - 3x + 1 \ f(0) &= \cos 0 - 0 + 1 = 2 = (+ ext{ ve }) \ f\Big(rac{\pi}{2}\Big) &= 0 - 3rac{\pi}{2} + 1 = (- ext{ ve }) \end{aligned}$$

 \therefore A root lies between 0 and $\frac{\pi}{2}$. The given equation can be written as

$$x=rac{1}{3}(1+\cos x)$$

Find the real root of the equation $\cos x = 3x - 1$, using iteration method.

$$egin{aligned} ext{Let } f(x) &= \cos x - 3x + 1 \ f(0) &= \cos 0 - 0 + 1 = 2 = (+ ext{ ve }) \ f\Big(rac{\pi}{2}\Big) &= 0 - 3rac{\pi}{2} + 1 = (- ext{ ve }) \end{aligned}$$

 \therefore A root lies between 0 and $\frac{\pi}{2}$. The given equation can be written as

$$x = \frac{1}{3}(1 + \cos x)$$

$$x_{n+1} = \frac{1}{3} (1 + \cos x_n)$$

Find the real root of the equation $\cos x = 3x - 1$, using iteration method.

$$egin{aligned} ext{Let } f(x) &= \cos x - 3x + 1 \ f(0) &= \cos 0 - 0 + 1 = 2 = (+ ext{ ve }) \ f\Big(rac{\pi}{2}\Big) &= 0 - 3rac{\pi}{2} + 1 = (- ext{ ve }) \end{aligned}$$

 \therefore A root lies between 0 and $\frac{\pi}{2}$. The given equation can be written as

$$x = \frac{1}{3}(1 + \cos x)$$

$$x_{n+1} = \frac{1}{3} (1 + \cos x_n)$$

Let
$$g(x) = \frac{1}{3}(1 + \cos x)$$

$$g'(x) = -\frac{\sin x}{3}$$

Clearly,

$$\left|g'(x)
ight|=rac{\left|\sin x
ight|}{3}<1 ext{ in }\left[0,rac{\pi}{2}
ight]$$

Hence iteration method can be applied. Let the initial approximation be $x_0 = 0$

The successive approximation are as follows:

$$x_1 = \phi(x_0) = rac{1}{3}(1+\cos x_0) = rac{1}{3}(1+\cos 0) \ = 0.66667$$

Let
$$g(x) = \frac{1}{3}(1 + \cos x)$$

$$g'(x) = -\frac{\sin x}{3}$$

$$x_{n+1} = g(x_n) \quad n \ge 0$$

Clearly,

$$\left|g'(x)
ight|=rac{\left|\sin x
ight|}{3}<1 ext{ in }\left[0,rac{\pi}{2}
ight]$$

Hence iteration method can be applied. Let the initial approximation be $x_0 = 0$

The successive approximation are as follows:

$$x_{n+1} = \frac{1}{3}(1 + \cos x_n) \ x_1 = \phi(x_0) = \frac{1}{3}(1 + \cos x_0) = \frac{1}{3}(1 + \cos 0) = 0.66667$$

$$x_{n+1} = \frac{1}{3} (1 + \cos x_n)$$

$$x_2 = \phi(x_1) = rac{1}{3}(1+\cos x_1) = rac{1}{3}(1+\cos 0.66667)$$
 $= 0.59529$
 $x_3 = \phi(x_2) = rac{1}{3}(1+\cos x_2) = rac{1}{3}(1+\cos 0.59529)$
 $= 0.60933$
 $x_4 = \phi(x_3) = rac{1}{3}(1+\cos x_3) = rac{1}{3}(1+\cos 0.60933)$
 $= 0.60668$

$$x_5 = \phi(x_4) = rac{1}{3}(1+\cos x_4) = rac{1}{3}(1+\cos 0.60668) = 0.60718$$
 $x_6 = \phi(x_5) = rac{1}{3}(1+\cos x_5) = rac{1}{3}(1+\cos 60718) = 0.60709$
 $x_7 = \phi(x_6) = rac{1}{3}(1+\cos x_6) = rac{1}{3}(1+\cos 0.60709) = 0.60710 = 0.60710$

since the values of x_7 and x_8 are equal, the required root is 0.60710.

Solution:
$$x^3$$
- sin x -1 =0......(1)
Let $f(x) = x^3$ - sin x -1

$$f(0) = -1$$
, $f(1) = -0.8415$, $f(2) = 6.0907$

As f(1)f(2) < 0 by Intermediate value Theorem the root of real root of the equation f(x) = 0 lies between 1 and 2

Let us rewrite the equation f(x) = 0 of the form x = g(x) $x = (1 + Sin x_n)^{1/3} = g_1(x)$

Solution:
$$x^3$$
- sin x -1 =0......(1)
Let $f(x) = x^3$ - sin x -1

$$f(0) = -1$$
, $f(1) = -0.8415$, $f(2) = 6.0907$

As f(1)f(2) < 0 by Intermediate value Theorem the root of real root of the equation f(x) = 0 lies between 1 and 2

Let us rewrite the equation
$$f(x) = 0$$
 of the form $x = g(x)$
 $x = (1 + Sin x_n)^{1/3} = g_1(x)$

Solution:
$$x^3$$
- sin x -1 =0......(1)
Let $f(x) = x^3$ - sin x -1

$$f(0) = -1$$
, $f(1) = -0.8415$, $f(2) = 6.0907$

As f(1)f(2) < 0 by Intermediate value Theorem the root of real root of the equation f(x) = 0 lies between 1 and 2

Let us rewrite the equation
$$f(x) = 0$$
 of the form $x = g(x)$
 $x = (1 + Sin x_n)^{1/3} = g_1(x)$

Solution:
$$x^3$$
- $\sin x - 1 = 0$(1)
Let $f(x) = x^3$ - $\sin x - 1$

$$f(0) = -1$$
, $f(1) = -0.8415$, $f(2) = 6.0907$

As f(1)f(2) < 0 by Intermediate value Theorem the root of real root of the equation f(x) = 0 lies between 1 and 2

Let us rewrite the equation f(x) = 0 of the form x = g(x) $x = (1 + Sin x_n)^{1/3} = g_1(x)$

$$x^3$$
- $\sin x - 1 = 0 = x = (1 + \sin x)^{1/3}$ $x_{n+1} = (1 + \sin x_n)^{1/3}$

We use $x_{n+1} = (1 + \sin x_n)^{1/3}$ as the successive formula to find approximate solution (root) of the equation (1).

Let $x_0 = 1.5$ be initial guess to the equation (1).

Then
$$x_1 = (1 + \text{Sin } x_0)^{1/3} = (1 + \text{Sin } 1.5)^{1/3} = 1.963154$$

 $x_2 = (1 + \text{Sin } x_1)^{1/3} = (1 + \text{Sin } 1.963154)^{1/3} = 1.460827$
 $x_3 = (1 + \text{Sin } x_2)^{1/3} = (1 + \text{Sin } 1.460827)^{1/3} = 1.440751$
 $x_4 = (1 + \text{Sin } x_3)^{1/3} = (1 + \text{Sin } 1.440751)^{1/3} = 1.441289$

which is the root of equation (1) correct to two decimal places.

$$x^3$$
- sin x -1 =0 => $x = (1 + \sin x)^{1/3}$ $x_{n+1} = (1 + \sin x_n)^{1/3}$

We use $x_{n+1} = (1 + \sin x_n)^{1/3}$ as the successive formula to find approximate solution (root) of the equation (1).

Let $x_0 = 1.5$ be initial guess to the equation (1).

Then
$$x_1 = (1 + \sin x_0)^{1/3} = (1 + \sin 1.5)^{1/3} = 1.963154$$

 $x_2 = (1 + \sin x_1)^{1/3} = (1 + \sin 1.963154)^{1/3} = 1.460827$
 $x_3 = (1 + \sin x_2)^{1/3} = (1 + \sin 1.460827)^{1/3} = 1.440751$
 $x_4 = (1 + \sin x_3)^{1/3} = (1 + \sin 1.440751)^{1/3} = 1.441289$

which is the root of equation (1) correct to two decimal places.

Newton method / Newton- Raphson method

$$x_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)}$$

Newton method / Newton- Raphson method

$$x_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)}$$

Q. Find the root of $x^3 - 4x - 9 = 0$ correct to 4 decimal places?

Ans:

Here,

$$f(x) = x^{3} - 4x - 9 = 0$$

$$f(0) = -9$$

$$f(1) = -12$$

$$f(1) = -12$$

Consider, |f(2)| & |f(3)|

$$|-9|$$
 |6|
9 6.
9 > 6 \rightarrow f(3)

So choose $x_0 = 3$.

Also
$$f(x) = x^3 - 4x - 9$$
 and $f'(x) = 3x^2 - 4$

Q. Find the root of $x^3 - 4x - 9 = 0$ correct to 4 decimal places?

Also
$$f(x) = x^3 - 4x - 9$$
 and $f'(x) = 3x^2 - 4$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
$$x_{n+1} = x_n - \frac{x_n^3 - 1x_n - 9}{3x_n^2 - 4}$$

Put
$$x_0 = 3$$
,

$$x_1 = 2.739130435$$

$$x_2 = 2.706997997$$

$$x_3 = 2.706528054.$$

$$x_4 = 2.706527954$$

ie
$$x = 2.7065$$

Solve $x^4 - x - 7 = 0$ Newton-Raphson method correct up to 6 significant digits.

Solution:
$$x^4 - x - 7 = 0$$
(4)

Let
$$f(x) = x^4 - x - 7 = 0$$

$$f(0) = -7$$

$$f(1) = -7$$

$$f(2) = 5$$

As f(1)<0 and f(2)>0 by the Intermediate value Theorem the root of the real root of equation f(x) = 0 lies between 1 and 2

Solve $x^4 - x - 7 = 0$ Newton-Raphson method correct up to 6 significant digits.

Solution:
$$x^4 - x - 7 = 0$$
(4)

Let
$$f(x) = x^4 - x - 7 = 0$$

$$f(0) = -7$$

$$f(1) = -7$$

$$f(2) = 5$$

As f(1)f(2) < 0 by Intermediate value Theorem the root of real root of the equation f(x) = 0 lies between 1 and 2

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Let $x_0 = 1.5$ be the initial guess to the equation (2).

Then
$$x_1 = x_0 - [f(x_0) / f'(x_0)] = 1.5 - f(1.5) / f'(1.5) = 1.78541$$

$$x_2 = x_1 - [f(x_1) / f'(x_1)] = 1.7854 - f1.7854) / f'(1.7854) = 1.85876$$

$$x_3 = x_2 - [f(x_2) / f'(x_2)] = 1.85643$$

$$x_4 = x_3 - [f(x_3) / f'(x_3)] = 1.85632$$

which is the root of equation (2) correct to 6S.

Find the value of $(24)^{1/3}$ using Newton-Raphson method.

Let
$$x = (24)^{\frac{1}{3}}$$
; $x^3 = 24$; $x^3 - 24 = 0$.

$$f(x) = x^3 - 24 f(0) = -24.$$

$$f(1) = 1 - 24 = -23$$

$$f(2) = 8 - 24 = -16$$

$$f(3) = 27 - 24 = 3.$$

$$|f(2)| = |-16| = 16$$
, and $|f(3)| = |3| = 3$ we have $|f(3)| < |f(2)|$

So choose $x_0 = 3$

$$f'(x) = 3x^2$$
; $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
 $x_{n+1} = x_n - \left[\frac{x_n^3 - 24}{3x_n^2}\right]$

Put
$$x_0 = 3$$
;
 $x_1 = 2.8888888889$
 $x_2 = 2.884505808$
 $x_3 = 2.884499141$
 $x_4 = 2.884499141$
 $\therefore x = 2.884499141$

Regula Falsi Method.

Consider the equation f(x) = 0. Find two numbers a and b with a < b, such that f(a) & f(b) are of opposite sign. The positive real root in the first approximation is

$$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

The root in Second approximation is

$$x_2 = \frac{x_1 f(b) - b f(x_1)}{f(b) - f(x_1)}$$

Similarly steps follows for the evaluation of $x_3, x_4, ...$

Use Regula-Falsi method to solve the equation $x \log_{10} x = 1.2$ correct to four decimal places.

Answer

$$x\log_{10} x = 1.2$$

$$f(x) = x\log_{10} x - 1.2$$

Hence
$$f(1) = -1.2$$

 $f(2) = 0.231363$
 $f(3) = -0.59794$

Choose a=2 and b=3

Here a = 2, b = 3

$$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{2f(3) - 3f(2)}{f(3) - f(2)}$$

$$x_1 = 2.721015118$$

$$f(x_1) = f(2.7210151) = -0.017090515.$$

Hence the root lies b/w 2.7210151 & 3.

Then a = 2.7210151, b = 3.

$$x_2 = \frac{2.7210151f(3) - 3f(2.7210151)}{f(2.7210151) - f(3) - f(2.7210151)}$$

$$f(x_2) = f(2.7402058) = 0 - 3.839920232 \times 10^{-4}$$
 the root lies between 2.7402058 & 3.

choose a = 2.7402058, b = 3.

$$x_3 = \frac{2.7402058f(3) - 3f(2.7402058)}{f(3) - f(2.7402058)}$$
$$= 2.740636265.$$

Next step choose
$$a = 2.740636265$$
, $b = 3$

$$x_4 = \frac{2.740636265f(3) - 3f(2.740636265)}{f(3) - f(2.740636265)}$$
$$= 2.740645876$$

$$= 2.740205702 \approx 2.7402058$$

Use Regula-falsi method to find an approx. real root of the equation $x^3 - 2x - 5 = 0$.

We have

$$f(x) = x^3 - 2x - 5$$
 ; $f(0) = -5$, $f(1) = -6$; $f(2) = -1$; $f(3) = 16$

Root lies btw 2&3, because f(2)ff(3) are of opposite sign. choose a=2 &b=3

$$x_1 = \frac{2f(3) - 3f(2)}{f(3) - f(2)} = \frac{2 \times 16 - 3 \times -1}{16 - -1} = 2.058823529.$$

$$f(x_1) = f(2.05882) = -0.3908377406 \approx -0.39084.$$

Hence the soot lies btw 2.0588243 and 3.

choose
$$a = 2.05882$$
 and $b = 3$.

$$x_2 = \frac{2.05882f(3) - 3f(2.05882)}{f(3) - f(2.05882)} = 2.081262461$$

$$\approx 2.08126.$$

$$f(x_2) = f(2.08126) = -0.14724$$

is root lies between 2.08126 and 3. choose a = 2.08126 & b = 3

$$x_3 = \frac{2.08126f(3) - 3f(2.08126)}{f(3) - f(2.08126)} = 2.08964$$
$$f(x_3) = -0.0.08964) = -0.05467 \dots$$

The root lies bl 2.08964 and 3. choose a = 2.08964 & b = 3.

$$x_4 = \frac{2.08964f(3) - 3f(2.08964)}{f(3) - f(2.08964)} = 2.09274$$
$$f(x_4) = f(2.09274) = -0.02019$$

is root lies between 2.09274 & 3 choose a = 2.09274 & b = 3.

$$x_5 = \frac{2.09274f(3) - 3f(2.09274)}{f(3) - f(2.09274)} = 2.09388$$
$$f(x_5) = f(2.09388) = -7.49187 \times 10^{-3}$$

Root lies bl 2.09388 & 3. choose a = 2.09388 & b = 3

$$x_6 = \frac{2.09388f(3) - 3f(2.09388)}{f(3) - f(2.09388)} = 2.094304$$

 \therefore The root of the eau, x = 2.094304

Set up a Newton iteration for computing the square root x of a given positive number c and apply it to c = 2.

Solution. We have $x = \sqrt{c}$, hence $f(x) = x^2 - c = 0$, f'(x) = 2x, and (5) takes the form

$$x_{n+1} = x_n - \frac{x_n^2 - c}{2x_n} = \frac{1}{2} \left(x_n + \frac{c}{x_n} \right).$$

For c = 2, choosing $x_0 = 1$, we obtain

$$x_1 = 1.500000, \quad x_2 = 1.416667, \quad x_3 = 1.414216, \quad x_4 = 1.414214, \cdots$$

 x_4 is exact to 6D.

Interpolation

Suppose were given the following values of y = f(x) for a set of values of

$$x: \quad x_0 \quad x_1 \quad x_2 \quad \cdots \quad x_n$$

 $y: \quad y_0 \quad y_1 \quad y_2 \quad \cdots \quad y_n.$

Then the process of finding the values of y, corresponding to any value of $x = x_i$ between $x_0 \& x_n$ is called interpolation.

Interpolation with unequal interval

Lagrange interpolation

Interpolation (Lagrange)For Unequal intervals

interpolation is a type of estimation, a method of constructing new data points within the range of a discrete set of known data points

$$x: \quad x_o \quad x_1 \quad x_2 \quad x_3 \quad - \quad - \quad x_n$$

$$y: y_0 y_1 y_2 y_3 - - y_n$$

Interpolation (Lagrange)

For Unequal intervals

interpolation is a type of estimation, a method of constructing new data points within the range of a discrete set of known data points

$$x: \quad x_o \quad x_1 \quad x_2 \quad x_3 \quad - \quad - \quad x_n$$

$$y: y_0 y_1 y_2 y_3 - - y_n$$

Day	Height (mm)
1	0
3	4
5	8
7	12
9	16

Lagrange interpolation

Let y = f(x) takes (n + 1) pairs of values $(x_0, y_0), (x_1, y_1), \cdots (x_n, y_n)$ for x + y. Here f(x) can be expressed as

Given f(2) = 5, f(2,5) = 6. Find the linear interpolating. polynomial. using Lagranger's formula & so find f(2,2)

$$f(2) = 5; f(2.5) = 6$$

$$= 2; y_0 = 5$$

$$= 2.5; y_1 = 6$$

$$x_1$$

$$f(x) = \frac{(x-x_1)}{(x_0-x_1)}y_0 + \frac{(x-x_0)}{(x_1-x_0)}y_1 = 5 \times \frac{(x-2.5)}{(2-2.5)} + \frac{(x-2)}{(2.5-2)} \times 6$$

$$= \frac{5x-12.5}{-0.5} + \frac{6x-12}{0.5} = \frac{12.5-5x+6x-12}{0.5}$$

$$= \frac{x+0.5}{0.5} = 2x + 1$$

$$f(x) = 2x + 1$$

$$f(x) = 2x + 1$$

$$f(x) = 5$$

Using Lagranges Interpolation method find value of y at x = 10, from the following data.

x: 5 6 9 11

y: 12 13 14 16

$$P_n(x) = rac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \ rac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1 + \ rac{(x-x_0)(x-x_1)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_2 + rac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$$

$$= \frac{(x-6)(x-9)(x-11)}{(5-6)(5-9)(5-11)} \times 12 + \frac{(x-5)(2-9)(x-1)}{(6-5)(6-9)(6-11)} \times 13$$

$$+ \frac{(x-5)(x-6)(x-11)}{(9-5)(9-6)\cdot(9-11)} \times 14 = \frac{(x-5)(x-6)(x-9)}{(11-5)(11-6)(11-9)} \times 16$$

$$= \frac{(x-6)(x-9)(x-11)}{(5-6)(5-9)(5-11)} \times 12 + \frac{(x-5)(2-9)(x-1)}{(6-5)(6-9)(6-11)} \times 13$$

$$+ \frac{(x-5)(x-6)(x-11)}{(9-5)(9-6)\cdot(9-11)} \times 14 = \frac{(x-5)(x-6)(x-9)}{(11-5)(11-6)(11-9)} \times 16$$

$$egin{array}{l} ext{at } x = 10, \ P_n(10) = \left(rac{10-6)(10-9)(10-11)}{-24} imes 12 + rac{(10-5)(10-6)(10.9)}{15} imes 13
ight. \ & + rac{(10-5)(10-6)(10-11)}{-24} imes 14 + rac{(10-5)(10-6)(10-9)}{60} imes 16: \end{array}$$

$$f(x) = 2x + 1$$

$$f(2 \cdot 2) = (2 \times 2 \cdot 2) + 1 = 5.4$$

Find the unique polynomial $P_3(x)$ of degree 3 or less, the graph of which passes through the points (-1,3), (0,-4), (1,5), (2,-6).

$$x_0 = -1;$$
 $y_0 = 3$
 $x_1 = 0;$ $y_1 = -4$
 $x_2 = 1;$ $y_2 = 5$
 $x_3 = 2$; $y_3 = -6$

$$f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

$$\frac{(x-0)(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)} \times 3 + \frac{(x+1)(x-1)(x-2)}{(0+1)(0-1)(0-2)} \times -4$$

$$= + \frac{(x+1)(x-0)(x-2)}{(1+1)(1-0)(1-2)} \times 5 + \frac{(x+1)(x-0)(x-1)}{(2+1)(2-0)(2-1)} \times -6$$

$$= \frac{-1}{2}[x^3 - 3x^2 + 2x] - 2[x^3 - x - 2x^2 + 2]$$

$$-\frac{5}{2}[x^3 - x^2 - 2x] - [x^3 - x].$$

$$= x^3 \left[\frac{-1}{2} - 2 - \frac{5}{2} - 1 \right] + x^2 \left[\frac{3}{2} + 4 + \frac{5}{2} \right]$$

$$+x[-1 + 2 + 5 + 1] + (-4)$$

$$= -6x^3 + 8x^2 + 7x - 4$$

Apply Lagrangar's interpolation retd to find the value of y when x=10. Given the following table of values of x and y

	x_0	x_1	x_2	x_3
x	5	6	9	11
	y_0	y_1	y_2	y_3
y	13	14	16	16

$$f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

$$= \frac{(x-6)(x-9)(x-11)}{(5-6)(5-9)(5-11)} \times 12 + \frac{(x-5)(x-9)(x-11)}{1 \times -3 \times -5} \times 13 + \frac{(x-5)(x-6)(x-11)}{4 \times 3 \times -2} \times 14 + \frac{(x-5)(x-6)(x-9)}{6 \times 5 \times 2} \times 16$$

$$= \frac{[4 \times 1 \times -1]}{-1 \times -4 \times -6} \times 12 + \frac{5 \times 1 \times -1}{+15} \times 13 + \frac{[5 \times 4 \times -1] \times 7}{-12} + \frac{[5 \times 4 \times 1] \times 8}{30}$$

$$== 14.67$$

Newton's divided difference interpolation.

Newton's divided difference formula can be applied for arbitrarily positioned values of inept variable 'x'.

Newtons divided difference formula is

$$f(x) = y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x_3] + \cdots$$

Using Newton's divided difference interpolating polynomial estimate, f(7) from the following data

$$x$$
: 5 6 9 11 $y = f(x)$: 12 13 14 16

х	у	$[x_0, x_1]$	$[x_0, x_1, x_2]$	$[x_0, x_1, x_2, x_3]$
5	12	$\frac{13-12}{6-5} = 1$		
6	13		$\frac{\frac{1}{3}}{9-5} = \frac{1}{6}$	
9	14	$\frac{14-13}{9-6} = \frac{1}{3}$	$\frac{1-\frac{1}{3}}{\frac{1}{3}} = \frac{2}{1-\frac{1}{3}}$	$\frac{\frac{2}{15} - \frac{-1}{6}}{11 - 5} = \frac{1}{20}$
11	16	$\frac{16-14}{11-9} = 1$	<u></u>	

$$f(x) = y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x_3].$$

х	у	$[x_0, x_1]$	$[x_0, x_1, x_2]$	$[x_0, x_1, x_2, x_3]$
5	12	$\frac{13-12}{6-5} = 1$		
6	13		$\frac{\frac{1}{3}}{9-5} = \frac{1}{6}$	
9	14	$\frac{14-13}{9-6} = \frac{1}{3}$	$\frac{1-\frac{1}{3}}{\frac{1}{3}} = \frac{2}{3}$	$\begin{vmatrix} \frac{2}{15} - \frac{-1}{6} \\ 11 - 5 \end{vmatrix} = \frac{1}{20}$
11	16	$\frac{16-14}{11-9} = 1$	11-6 15	

$$f(x) = y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x_3]$$

$$= 12 + (x - 5)[1] + (x - 5)(x - 6)\left[\frac{-1}{6}\right] + (x - 5)(x - 6)(x - 9)\left[\frac{1}{20}\right]$$

$$f(7) = 12 + 2 + \frac{-1}{3} + \frac{-1}{5} = 13,467$$

Using Newtons divided difference interpolating formulas find the missing value from the following data.

x: 1 2 3 4 5 6

y: 14 15 - 5 6 19.

Answer

 x:
 1
 2
 4
 5
 6

 y:
 14
 15
 5
 6
 19

Since value of 3 is not given

so its not taken. unequal interval \rightarrow so using Newtons interpolation

х	У	$[x_0, x_1]$	$[x_0, x_1, x_2]$	$[x_0, x_1, x_2, x_3]$	$[x_0, x_1, x_2, x_3, x_4]$
1	14	$\frac{15-14}{2-1}=1$			
2	15		$\left \frac{-5-1}{4-1} \right = -2$	$\frac{22}{5-1}=1$	
4	5	$\frac{5-15}{4-2} = -5$	$\frac{15}{5-2} = 2$	$\frac{6-2}{6-2} = 1$	$\frac{1-1}{6-1} = 0$
5	6	$\frac{6-5}{5-4} = 1$	13-1 _ 6	6-2	
6	19	$\frac{19-6}{6-5} = 13$	$\frac{13-1}{6-4} = 6$		

$$f(x) = y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x_3] + (x - x_0)(x - x_1)(x - x_2)(x - x_3)[x_0, x_1, x_2, x_3, x_4].$$

$$f(3) = 14 + (3 - 1)[1] + (3 - 1)(3 - 2)[-2] + (3 - 1)(3 - 2)(3 - 4)[1]$$

$$= 10$$

Newton's forward interpolation

Equal intervals

First forward difference

$$\Delta y_0 = y_1 - y_0$$

$$\Delta y_1 = y_2 - y_1$$

• • • • •

• • • • • • • • •

$$\Delta y_{n-1} = y_n - y_{n-1}$$

Second forward difference

$$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$$

Newton's forward interpolation formula

$$y(x) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 y_0 + ----$$

Where

$$u = \frac{x - x_0}{h}$$

х	8	10	12	14	16	18
У	10	19	32.5	54	89.5	154

Х	у	Δу	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
8	10					
10	19	9	4.5	3.5		
12	32.5	13.5	8	6	2.5	6.5
14	54	21.5	14	15	9	
16	89.5	35.5	29			
18	154	64.5				

х	8	10	12	14	16	18
У	10	19	32.5	54	89.5	154

х	у	Δу	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
8	10					
10	19	9	4.5	3.5		
12	32.5	13.5	8	6	2.5	6.5
14	54	21.5	14	15	9	
16	89.5	35.5	29			
18	154	64.5				

х	8	10	12	14	16	18
У	10	19	32.5	54	89.5	154

Х	У	Δу	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
8	10					
10	19	9	4.5	3.5		
12	32.5	13.5	8	6	2.5	6.5
14	54	21.5	14	15	9	
16	89.5	35.5	29			
18	154	64.5				

х	8	10	12	14	16	18
У	10	19	32.5	54	89.5	154

Х	у	Δу	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
8	10					
10	19	9	→ ^{4.5}	3.5		
12	32.5	13.5	→ 8	6	2.5	6.5
14	54	21.5	14	15	9	
16	89.5	35.5	29			
18	154	64.5				

х	8	10	12	14	16	18
У	10	19	32.5	54	89.5	154

 $\Delta^2 y$ $\Delta^3 y$ $\Delta^4 y$ $\Delta^5 y$ Δy X y 8 10 9 19 10 4.5 3.5 13.5 2.5 **12** 32.5 8 6.5 6 9 21.5 14 54 14 15 89.5 **16** 35.5 29 18 154 64.5

х	8	10	12	14	16	18
У	10	19	32.5	54	89.5	154

х	У	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
8	10					
10	19	9	4.5	3.5 🗾		
12	32.5	13.5	8	6	2.5	6.5
14	54	21.5	14	15) ₉ _)
16	89.5	35.5	29			
18	154	64.5				

X	8	10	12	14	16	18
	J					
у	10	19	32.5	54	89.5	154

Х	У	Δу	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
8	10					
10	19	9	4.5	3.5		
12	32.5	13.5	8	6	2.5	6.5
14	54	21.5	14	15	9	
16	89.5	35.5	29			
18	154	64.5				

$$u = \frac{x - x_0}{h} = (9-8)/2 = 0.5$$

х	8	10	12	14	16	18
У	10	19	32.5	54	89.5	154

х	У	Δу	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
8	10) Q	7 7	, B & (
10	19	9	4.5	3.5	Dy	, 7220
12	32.5	13.5	8	6	2.5	6.5
14	54	21.5	14	15	9	
16	89.5	35.5	29			
18	154	64.5				

$$u = \frac{x - x_0}{h}$$
 = (9-8)/2 = 0.5

$$y(x) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 y_0 + ----$$

Х	8	10	12	14	16	18
У	10	19	32.5	54	89.5	154

х	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
8	10	040	ج ر ح	2		
10	19	9	4.5	330	470	1520
12	32.5	13.5	8	6	2.5	6.5
14	54	21.5	14		9	
16	89.5	35.5		15		
18	154	64.5	29			

$$y(x) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 y_0 + \frac{u(u-1)(u-2)(u-3)}{4!}\Delta^4 y_0 + \frac{u(u-1)(u-2)(u-3)(u-4)}{5!}\Delta^5 y_0$$

$$y(9) = 10 + 0.5 \times 9 + \frac{0.5(0.5 - 1)}{2!} \times 4.5 + \frac{0.5(0.5 - 1)(0.5 - 2)}{3!} 3.5 + \frac{0.5(0.5 - 1)(0.5 - 2)(0.5 - 3)}{4!} \times 2.5 + \frac{0.5(0.5 - 1)(0.5 - 2)(0.5 - 3)(0.5 - 4)}{5!} \times 6.5 = 14.2323$$

Newton's Backward interpolation formula

Backward difference

$$\nabla y_1 = y_1 - y_0$$

$$\nabla y_2 = y_2 - y_1$$

• • • • •

• • • • • • • •

$$\nabla y_{n-1} = y_n - y_{n-1}$$

Second Backward difference

$$\nabla^2 y_2 = \nabla y_2 - \nabla y_1$$

Newton's backward interpolation formula

$$y(x) = y_n + v\nabla y_n + \frac{v(v+1)}{2!}\nabla^2 y_n + \frac{v(v+1)(v+2)}{3!}\nabla^3 y_n + \frac{v(v+1)(v+2)(v+3)}{4!}\nabla^4 y_n$$

$$v = \frac{x - x_n}{h}$$

Use the following Data to calculate value for 1996?

Year	1961	1971	1981	1991	2001
Population	46	66	81	93	101

Х	У	∇y	$\nabla^2 y$	$\nabla^3 y$	$ abla^4 y$
1961	46				
1971	66	20	-5		
1981	81	15	-3	2	-3
1991	93	12		-1	
2001	101	8	-4		

Year	1961	1971	1981	1991	2001
Population	46	66	81	93	101

Х	У	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
1961	46				
1971	66	→ ₂₀	-5		
1981	81	>> 15	-3	2	-3
1991	93) 12		-1	
2001	101	8	-4		

Year	1961	1971	1981	1991	2001
Population	46	66	81	93	101

Year	1961	1971	1981	1991	2001
Population	46	66	81	93	101

Year	1961	1971	1981	1991	2001
Population	46	66	81	93	101

Year	1961	1971	1981	1991	2001
Population	46	66	81	93	101

X	У	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
1961	46				
1971	66	20	-5		
1981	81	15	-3	2	
1991	93	12		-1	-3
2001	101	8	-4	_	

$$v = \frac{x - x_n}{h}$$
 = $\frac{1996 - 2001}{10}$ = **-0.5**

$$y(x) = y_n + v\nabla y_n + \frac{v(v+1)}{2!}\nabla^2 y_n + \frac{v(v+1)(v+2)}{3!}\nabla^3 y_n + \frac{v(v+1)(v+2)(v+3)}{4!}\nabla^4 y_n$$

$$y(x) = y_4 + v\nabla y_4 + \frac{v(v+1)}{2!}\nabla^2 y_4 + \frac{v(v+1)(v+2)}{3!}\nabla^3 y_4 + \frac{v(v+1)(v+2)(v+3)}{4!}\nabla^3 y_4$$

Year	1961	1971	1981	1991	2001
Population	46	66	81	93	101

Х	У	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
1961	46				
1971	66	20	-5		
1981	81	15	-3	2	
1991	93	12		-1	-3
2001	101	8	-4	∇^3	9

$$v = \frac{x - x_n}{h}$$
 = $\frac{1996 - 2001}{10}$ = **-0.5**

$$y(x) = y_n + v\nabla y_n + \frac{v(v+1)}{2!}\nabla^2 y_n + \frac{v(v+1)(v+2)}{3!}\nabla^3 y_n + \frac{v(v+1)(v+2)(v+3)}{4!}\nabla^4 y_n$$

$$y(x) = y_4 + v\nabla y_4 + \frac{v(v+1)}{2!}\nabla^2 y_4 + \frac{v(v+1)(v+2)}{3!}\nabla^3 y_4 + \frac{v(v+1)(v+2)(v+3)}{4!}\nabla^3 y_4$$

Year	1961	1971	1981	1991	2001
Population	46	66	81	93	101

Х	у	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
1961	46				
1971	66	20	-5		
1981	81	15	-3	2	
1991	93	12		-1	-3
2001	101	8	-4	1	

$$v = \frac{x - x_n}{h}$$
 = $\frac{1996 - 2001}{10}$ = -0.5

$$y(x) = y_4 + v\nabla y_4 + \frac{v(v+1)}{2!}\nabla^2 y_4 + \frac{v(v+1)(v+2)}{3!}\nabla^3 y_4 + \frac{v(v+1)(v+2)(v+3)}{4!}\nabla^3 y_4$$

$$101 + (-0.5) \times 8 + \frac{(-0.5)(-0.5-1)}{2!}(-4) + \frac{(-0.5)(-0.5-1)(-0.5-2)}{3!}(-1) + \frac{(-0.5)(-0.5-1)(-0.5-2)(-0.5-3)}{4!}(-3)$$
=97.6796

Numerical integration

Numerical integration

Trapezoidal rule

$$\int_{0}^{b} f(x)dx \approx \frac{h}{2} [y_0 + y_n + 2(y_1 + y_2 + - - - - + y_{n-1})]$$

$$h = \frac{b - a}{n}$$

$$v - f(h) \qquad v - f(q) \qquad \qquad v = f(r)$$

$$y_n = f(b) \qquad y_0 = f(a) \qquad y_i = f(x_i)$$

Find
$$\int_{-3}^{3} x^4 dx$$
 Using Trapezoidal rule

$$x_0 = -3$$
 $x_n = 3$
 $x = -3$
 $x = -3$
 $x = 3$
 $x = 3$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} [y_0 + y_n + 2(y_1 + y_2 + - - - - + y_{n-1})]$$

$$\int_{-3}^{3} x^4 dx = \frac{1}{2} [81 + 81 + 2(16 + 1 + 0 + 1 + 16)] = 115$$

Find $\int_{-3}^{3} x^4 dx$ Using Trapezoidal rule

	$x_0 = -3$						$x_n = 3$
\mathcal{X}	-3	-2	-1	0	1	2	3
$y = x^4$	81	16	1	0	1	16	81

$$h = \frac{b-a}{n} = \frac{3--3}{6} = 1$$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} [y_0 + y_n + 2(y_1 + y_2 + ---- + y_{n-1})]$$

$$\int_{-3}^{3} x^4 dx = \frac{1}{2} [81 + 81 + 2(16 + 1 + 0 + 1 + 16)] = 115$$

Find $\int_{-3}^{3} x^4 dx$ Using Trapezoidal rule

	$x_0 = -3$						$x_n = 3$
\mathcal{X}	-3	-2	-1	0	1	2	3
$y = x^4$	81	16	1	0	1	16	81

$$h = \frac{b-a}{n} = \frac{3--3}{6} = 1$$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} [y_0 + y_n + 2(y_1 + y_2 + ---- + y_{n-1})]$$

$$\int_{-3}^{3} x^4 dx = \frac{1}{2} [81 + 81 + 2(16 + 1 + 0 + 1 + 16)] = 115$$

Simpson's 1/3 rule

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[y_0 + y_n + 4(y_1 + y_3 + - - - + y_{n-1}) + 2(y_2 + y_4 + - - - + y_{n-2}) \right]$$

Find
$$\int_{-3}^{3} x^4 dx$$
 Using Simpson's 1/3 rule

$$x_0 = -3$$
 $x_n = 3$
 $x = 3$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[y_0 + y_n + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \right]$$

$$\int_{-3}^{3} x^4 dx = \frac{1}{3} [81 + 81 + 4(16 + 0 + 16) + 2(1 + 1)] = 98$$

Euler's Method

Given the initial value problem,

$$y' = f(x, y)$$
 $y(x_0) = y_0$
 $x_1 = x_0 + h$ $x_2 = x_1 + h$
 $y_{n+1} = y_n + hf(x_n, y_n)$
 $n = 0.1, 2 ----$

Solve the Differential equation y' = 2xy + 1 with y(0) = 0 and h=0.02

$$x_0 = 0$$
, $y_0 = 0$ $f(x, y) = 2xy + 1$

Step 1 n=0,
$$x_1 = x_0 + h = 0 + 0.02 = 0.02 \qquad \text{Given}$$

$$y_{n+1} = y_n + h f(x_n, y_n)$$

$$y_1 = y_0 + hf(x_0, y_0)$$

$$y_1 = y(x_1) = y(0.02)$$

$$y_1 = 0 + 0.02 f(0,0) = 0 + 0.02 [2 \times 0 \times 0 + 1] = 0.02$$

Solve the Differential equation y' = 2xy + 1 with y(0) = 0 and h=0.02

$$x_0 = 0$$
, $y_0 = 0$ $f(x, y) = 2xy + 1$

Step 1 n=0,
$$x_1 = x_0 + h = 0 + 0.02 = 0.02 \qquad \text{Given}$$

$$y_{n+1} = y_n + hf(x_n, y_n)$$

$$y_1 = y_0 + hf(x_0, y_0)$$

$$y_1 = y(x_1) = y(0.02)$$

$$y_1 = 0 + 0.02 f(0,0) = 0 + 0.02 [2 \times 0 \times 0 + 1] = 0.02$$

Solve the Differential equation

$$y' = 2xy + 1$$
 with $y(0) = 0$ and h=0.02

$$x_0 = 0, y_0 = 0$$
 $f(x, y) = 2xy + 1$
 $x_1 = 0.02, y_1 = 0.02$

Step 2 n=1,

$$x_2 = x_1 + h = 0.02 + 0.02 = 0.04$$

$$y_2 = y_1 + hf(x_1, y_1)$$

$$y_2 = y(x_2) = y(0.04)$$

$$= 0.02 + 0.02 f(0.02, 0.02)$$

$$= 0.02 + 0.02[2 \times 0.02 \times 0.02 + 1] = 0.04$$

Solve the Differential equation y' = 2xy + 1 with y(0) = 0

$$x_0 = 0, \ y_0 = 0$$

 $x_1 = 0.02, \ y_1 = 0.02$
 $x_2 = 0.04, \ y_2 = 0.04$
Step 3 n=2,
 $x_3 = x_2 + h = 0.04 + 0.02 = 0.06$
 $y_3 = y_2 + hf(x_2, y_2)$
 $y_3 = 0.04 + 0.02f(0.02, 0.02)$
 $= 0.04 + 0.02[2 \times 0.04 \times 0.04 + 1] = 0.06$

Solve the Differential equation y' = 2xy + 1 with y(0) = 0

$$x_0 = 0, y_0 = 0$$

 $x_1 = 0.02, y_1 = 0.02$
 $x_2 = 0.04, y_2 = 0.04$
 $x_3 = 0.06, y_3 = 0.06$
 $f(x, y) = 2xy + 1$

Step 4 n=3,
$$x_4 = x_3 + h = 0.06 + 0.02 = 0.08$$

$$y_4 = y_3 + hf(x_3, y_3)$$

$$y_4 = 0.06 + 0.02 f(0.06, 0.06)$$

$$= 0.06 + 0.02 [2 \times 0.06 \times 0.06 + 1] = 0.08$$

Solve the Differential equation y' = 2xy + 1 with y(0) = 0

$$x_0 = 0, y_0 = 0$$

 $x_1 = 0.02, y_1 = 0.02$
 $x_2 = 0.04, y_2 = 0.04$

$$x_3 = 0.06$$
, $y_3 = 0.06$
 $x_4 = 0.08$, $y_4 = 0.08$

Step 5 n=4,
$$x_5 = x_4 + h = 0.08 + 0.02 = 0.1 \text{ y}(0.1)$$

$$y_5 = y_4 + hf(x_4, y_4)$$

$$y_5 = y(0.1) = 0.08 + 0.02f(0.08, 0.08)$$

$$= 0.08 + 0.02[2 \times 0.08 \times 0.08 + 1] = 0.1$$

f(x, y) = 2xy + 1

Runge-Kutta method

$$\frac{dy}{dx} = f(x, y) \qquad y(x_0) = y_0$$

The approximate values of

$$y_1, y_2, y_3 ---- x_1 = x_0 + h$$

 $x_2 = x_1 + h$

The solution y(x) is computed by

$$y_{n+1} = y_n + \frac{1}{6} \left[K_1 + 2K_2 + 2K_3 + K_4 \right] \qquad K_1 = hf\left(x_n, y_n\right)$$

$$K_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{K_1}{2}\right)$$

$$K_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{K_2}{2}\right)$$

$$K_4 = hf\left(x_n + h, y_n + K_3\right)$$

Using Rage Kutta method with h=0.1 to find y(0.2) given $\frac{dy}{dx} = e^x + y$ with y(0)=0

Given
$$f(x, y) = e^x + y$$
 $x_0 = 0$, $y_0 = 0$

$$x_1 = x_0 + h = 0 + 0.1 = 0.1$$

$$K_1 = hf(x_0, y_0) = 0.1 \times e^0 + 0 = 0.1$$

$$K_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{K_1}{2}\right)$$

$$K_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{K_1}{2}\right) = 0.1 \times f\left(0 + \frac{0.1}{2}, 0 + \frac{0.1}{2}\right)$$

$$= 0.1 \times f(0.5, 0.5) = 0.1 \times e^{0.5} + 0.5 = 0.1101$$

Using Rage Kutta method with h=0.1 to find y(0.2) given $\frac{dy}{dx} = e^x + y$ with y(0)=0

Given
$$f(x, y) = e^x + y$$
 $x_0 = 0$, $y_0 = 0$

 $K_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{K_2}{2}\right) = 0.1 \times f\left(0 + \frac{0.1}{2}, 0 + \frac{0.1101}{2}\right)$

$$= 0.1 \times f(0.5, 0.055) = 0.1 \times e^{0.5} + 0.055 = 0.1106$$

$$K_4 = hf(x_0 + h, y_0 + K_3) = 0.1 \times f(0 + 0.1, 0.1106)$$

$$= 0.1 \times f(0.1, 0.1106) = 0.1 \times e^{0.1} + 0.1106 = 0.1216$$

$$y_1 = y(x_1) = y(0.1)$$

$$y_1 = y_0 + \frac{1}{6} [K_1 + 2K_2 + 2K_3 + K_4]$$

$$= 0 + \frac{1}{6} [0.1_1 + 2 \times 0.1101 + 2 \times 0.1106 + 0.1216]$$

$$= 0.1105$$

Thank You!!!