## Топология слоения Лиувилля биллиарда в области, ограниченной двумя софокусными эллипсами, в потенциальном поле

 $C.E. \ \Pi y cmo so \~umo s \\ ({\bf Mockba}; \ pustovoitovse 1@mail.ru\ )$ 

Биллиардом называется динамическая система на компактном подмножестве плоскости, описывающая движение материальной точки внутри области с абсолютно-упругим отражением на её границе. Рассмотрим биллиард в области, ограниченной двумя софокусными эллипсами, принадлежащими софокусному семейству, заданному формулой:  $\frac{x^2}{a+\lambda}+\frac{y^2}{b+\lambda}=1$ , где a>b>0. Добавим в систему центральное поле сил. Следующие функции являются независимыми первыми интегралами данной системы:  $H=\frac{k(x^2+y^2)}{2}+\frac{\dot{x}^2+\dot{y}^2}{2}$  и  $F=\frac{\dot{x}^2}{a^2}+\frac{\dot{y}^2}{b^2}+\frac{(x\dot{y}-\dot{x}y)^2}{ab}-k(1-\frac{x^2}{a^2}-\frac{y^2}{b^2})$  [2]. Значит система вполне интегрируема.

**Теорема 1.** Бифуркационная диаграмма для данной системы при k > 0 изображена на рисунке M1. На рисунке M2 представленны грубые молекулы Фоменко-Цишанга [1], описывающие топологию изоэнергетических поверхностей  $Q^3$ , соответствующих уровням энергии 1, 2 и 3 интеграла H.

**Теорема 2.** Бифуркационная диаграмма для данной системы при k < 0 изображена на рисунке  $\mathbb{N}^3$ . На рисунке  $\mathbb{N}^4$  представленны грубые молекулы Фоменко-Цишанга [1], описывающие топологию изоэнергетических поверхностей  $Q^3$ , соответствующих уровням энергии 1, 2, 3, 4 и 5 интеграла H.

## Литература

- 1. Интегрируемые гамильтоновы системы. Геометрия, топология, классификация.// А.В. Болсинов, А.Т. Фоменко том 1. Ижевск НИЦ "Регулярная и хаотическая динамика 1999
- 2. Некоторые интегрируемые обобщения задачи Якоби о геодезических на эллипсоиде/ Козлов В.В. // Прикладная математика и механика, том 59, вып.1, 1995

**Пустовойтов Сергей Евгеньевич**, студент Московского государственного университета им. М.В. Ломоносова, г. Москва.



Рис. 1: Бифуркационная диаграмма для случая k>0 (притяжение)

| 1   | 2              | 3              |
|-----|----------------|----------------|
| A A | A A            | A A            |
| 1.1 | \ /            | \ /            |
| ÁÁ  | C <sub>2</sub> | C <sub>2</sub> |
|     | / \            | / \            |
|     | A A            | A A            |

Рис. 2: Грубые молекулы для случая k>0 (притяжение)



Рис. 3: Бифуркационная диаграмма для случая k < 0 (отталкивание)

|   | 1   | 2              | 3              | 4              | 5              |
|---|-----|----------------|----------------|----------------|----------------|
|   | АА  | A A            | AAAA           | AAAA           | A A            |
|   | 1.1 | \ /            | \ / \ /        | \ / \ /        | \ /            |
|   | ÀÀ  | C <sub>2</sub> | В В            | ВВ             | C <sub>2</sub> |
|   |     | / \            | \ /            | \ /            | / \            |
|   |     | A A            | C <sub>2</sub> | C <sub>2</sub> | A A            |
|   |     |                | / \            | / \            |                |
| l |     |                | A A            | A A            |                |

Рис. 4: Грубые молекулы для случая k < 0 (отталкивание)