Programme de khôlles ECG1-B

Semaines 15 et 16 —

Intégration, Espaces vectoriels

• Énoncés / notions à connaitre :

Intégration sur un segment

- Notion de primitives d'une fonction continue sur un intervalle. Primitives de fonctions et d'expressions usuelles.
- Définition de l'intégrale d'une fonction continue sur un segment, et propriétés élementaires : relation de Chasles, linéarité, positivité, croissance, "stricte positivité", inégalité triangulaire, inégalité de la moyenne.
- "Calcul direct" d'intégrales (via la recherche de primitives).
- Intégration par parties, changement de variable
 - (N.B : les changements de variables non affines seront indiqués!)
- Intégrale d'une fonction paire/impaire sur un segment [-a, a].
- Convergence des sommes de Riemann.
- Définition d'une fonction continue par morceaux sur un segment. Intégrale d'une telle fonction.

Introduction aux espaces vectoriels

- Définition d'espace vectoriel réel. (On ne demandera pas de lister toutes les propriétés...) Exemples fondamentaux : \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[X]$, $\mathbb{R}^{\mathbb{N}}$, $\mathcal{F}(D,\mathbb{R})$.
- Notion de sous-espace vectoriel.
- Sous-espace vectoriel engendré par une famille de vecteurs (v_1, \ldots, v_p) .
- Notion de famille génératrice de E. Recherche d'une famille génératrice d'un EV ou d'un SEV.
- Notion de famille libre, famille liée.
- Une famille est libre et génératrice de E est appelée base de E. Unicité de la décomposition dans une base. Matrice colonne des coordonnées d'un vecteur $v \in E$ dans une base \mathcal{B} . Bases canoniques de \mathbb{R}^n , $\mathbb{R}_n[X]$ et $\mathcal{M}_{n,p}(\mathbb{R})$.

• Démonstrations à connaitre :

- "Positivité" de l'intégrale + cas d'égalité (Proposition 9)
- Intégrale d'une fonction paire/impaire sur [-a, a] (Prop. 12).
- "Vecteur redondant" : Une famille est liée SSI l'un des vecteurs peut s'écrire comme combinaison linéaire des autres (Proposition 6)
- Si \mathcal{B} est une base (=famille libre et génératrice), tout vecteur de E se décompose de manière unique comme combinaison linéaire de vecteurs de \mathcal{B} . (Théorème 3)