Self-supervised learning in computer vision

План

- Постановка задачи
- Как начинался SSL
- Современные методы
 - Contrastive learning
 - Joint embedding architectures
 - Clusterization
 - SSL for transformers

Постановка задачи

Проблемы обучения без предобучения:

- Рандомная инициализация
- Малый размер датасетов

Постановка задачи

Большие датасеты:

умеем извлекать информацию из картинок

- разные домены

SSL:

+ тот же домен

+ ещё больше данных

- больше ресурсов

Постановка задачи

Linear Evaluation Protocol - метрика SSL

- 1. Предобучаем метод SSL на ImageNet
- 2. "Замораживаем" feature extractor
- 3. Обучаем линейный классификатор
- 4. Оцениваем качество на ImageNet

Как начинался SSL

Предсказание контекста куска изображения - 2015

Где правое ухо, если мордочка по центру?

Jigsaw (пазл) - 2016

Маскирование изображений - 2016

(a) Input context

(b) Human artist

(c) Context Encoder (L2 loss)

(d) Context Encoder (L2 + Adversarial loss)

Предсказание поворотов - 2018

Contrastive Learning

Идея

 Одинаковые картинки "похожи", а разные "отличаются"

Проблема

• Картинки могут быть похожими, но будут считаться за разные

Contrastive Loss

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^K \exp(q \cdot k_i / \tau)}$$

Momentum Contrast (MoCo) - 2019

MoCo - Momentum Encoder

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

Зачем?

- градиент по всем значениям из memory bank - сложно
- копирование весов даёт результаты хуже

МоСо - результаты

		unsup. pre-train			ImageNet	VO	C detec	tion
case	MLP	aug+	cos	epochs	acc.	AP_{50}	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	✓			200	66.2	82.0	56.4	62.6
(b)		\		200	63.4	82.2	56.8	63.2
(c)	✓	1		200	67.3	82.5	57.2	63.9
(d)	✓	\	\checkmark	200	67.5	82.4	57.0	63.6
(e)	✓	1	1	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials).

Simple Framework for Contrastive Learning of Visual Representations (SimCLR) - 2020

- нет Memory Bank, но большой Batch Size
- модели обучаются параллельно

SimCLR - результаты

Method	Architecture	Param (M)	Top 1	Top 5
Methods using R	esNet-50:			
Local Agg.	ResNet-50	24	60.2	-
MoCo	ResNet-50	24	60.6	17.0
PIRL	ResNet-50	24	63.6	-
CPC v2	ResNet-50	24	63.8	85.3
SimCLR (ours)	ResNet-50	24	69.3	89.0
Methods using o	ther architectures.	•		
Rotation	RevNet-50 (4×)	86	55.4	-
BigBiGAN	RevNet-50 (4×)	86	61.3	81.9
AMDIM	Custom-ResNet	626	68.1	-
CMC	ResNet-50 (2 \times)	188	68.4	88.2
MoCo	ResNet-50 $(4\times)$	375	68.6	-
CPC v2	ResNet-161 (*)	305	71.5	90.1
SimCLR (ours)	ResNet-50 (2 \times)	94	74.2	92.0
SimCLR (ours)	ResNet-50 $(4\times)$		76.5	93.2

Table 6. ImageNet accuracies of linear classifiers trained on representations learned with different self-supervised methods.

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluatio	on:											
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image classification datasets, for ResNet-50 (4×) models pretrained on ImageNet.

Joint embedding architectures

Идея

 Минимизируем расстояние между эмбеддингами аугментаций с одной картинки

Проблема

 Есть тривиальное решение - выдавать всегда константу

Bootstrap Your Own Latent (BYOL) - 2020

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}}$$

BYOL - почему решение не коллапсирует

- ullet двигается **не** в сторону $abla_{\xi} \mathcal{L}^{\mathtt{BYOL}}_{ heta, \xi}$
- немного математики:

$$q^{\star} \triangleq \operatorname*{arg\,min}_{q} \mathbb{E}\Big[\big\| q(z_{\theta}) - z_{\xi}' \big\|_{2}^{2} \Big], \quad ext{where} \quad q^{\star}(z_{\theta}) = \mathbb{E}\big[z_{\xi}' | z_{\theta} \big]$$

$$\nabla_{\theta} \mathbb{E} \Big[\big\| q^{\star}(z_{\theta}) - z_{\xi}' \big\|_{2}^{2} \Big] = \nabla_{\theta} \mathbb{E} \Big[\big\| \mathbb{E} \big[z_{\xi}' | z_{\theta} \big] - z_{\xi}' \big\|_{2}^{2} \Big] = \nabla_{\theta} \mathbb{E} \left[\sum_{i} \operatorname{Var}(z_{\xi,i}' | z_{\theta}) \right]$$

Note that for any random variables X, Y, and $Z, Var(X|Y, Z) \leq Var(X|Y)$

 $\mathrm{Var}(z_{\xi}'|z_{ heta}) \leq \mathrm{Var}(z_{\xi}'|c) \Rightarrow$ решение с константой неустойчиво

BYOL - результаты

Method	Top-1	Top-5
Local Agg.	60.2	=
PIRL [35]	63.6	_
CPC v2 [32]	63.8	85.3
CMC [11]	66.2	87.0
SimCLR [8]	69.3	89.0
MoCo v2 [37]	71.1	-
InfoMin Aug. [12]	73.0	91.1
BYOL (ours)	74.3	91.6

Method	Architecture	Param.	Top-1	Top-5
SimCLR [8]	ResNet-50 (2×)	94M	74.2	92.0
CMC [11]	ResNet-50 $(2\times)$	94M	70.6	89.7
BYOL (ours)	ResNet-50 $(2\times)$	94M	77.4	93.6
CPC v2 [32]	ResNet-161	305M	71.5	90.1
MoCo [9]	ResNet-50 $(4\times)$	375M	68.6	-
SimCLR [8]	ResNet-50 $(4\times)$	375M	76.5	93.2
BYOL (ours)	ResNet-50 $(4\times)$	375M	78.6	94.2
BYOL (ours)	ResNet-200 (2 \times)	250M	79.6	94.8

(b) Other ResNet encoder architectures.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

⁽a) ResNet-50 encoder.

Методы, основанные на кластеризации

Идея

 Давайте сами себе разметим датасет

Проблема

- Тривиальное решение:
 - о все данные в 1 кластере

DeepCluster - 2018

DeepCluster Pipeline

DeepCluster - избегаем тривиальных решений

- Будем пересчитывать кластеры на каждом шаге
- Постараемся, чтобы распределение картинок в датасете было равномерным

DeepCluster - результаты

		Iı	mageN	et				Places		
Method	conv1	conv2	conv3	conv4	conv5	conv1	conv2	conv3	conv4	conv5
Places labels	223	_	<u> </u>	112	1	22.1	35.1	40.2	43.3	44.6
ImageNet labels	19.3	36.3	44.2	48.3	50.5	22.7	34.8	38.4	39.4	38.7
Random	11.6	17.1	16.9	16.3	14.1	15.7	20.3	19.8	19.1	17.5
Pathak et al. [38]	14.1	20.7	21.0	19.8	15.5	18.2	23.2	23.4	21.9	18.4
Doersch et al. [25]	16.2	23.3	30.2	31.7	29.6	19.7	26.7	31.9	32.7	30.9
Zhang et al. [28]	12.5	24.5	30.4	31.5	30.3	16.0	25.7	29.6	30.3	29.7
Donahue et al. [20]	17.7	24.5	31.0	29.9	28.0	21.4	26.2	27.1	26.1	24.0
Noroozi and Favaro [26]	18.2	28.8	34.0	33.9	27.1	23.0	32.1	35.5	34.8	31.3
Noroozi et al. [45]	18.0	30.6	34.3	32.5	25.7	23.3	33.9	36.3	34.7	29.6
Zhang et al. [43]	17.7	29.3	35.4	35.2	32.8	21.3	30.7	34.0	34.1	32.5
DeepCluster	12.9	29.2	38.2	39.8	36.1	18.6	30.8	37.0	37.5	33.1

Table 1: Linear classification on ImageNet and Places using activations from the convolutional layers of an AlexNet as features.

Swapping **A**ssignments between multiple **V**iews of the same image (SwAV) - 2020

ullet Аугментируем изображения батча, получаем $X_t,\,X_s$

• Прогоняем аугментации через модель $f_{ heta}$, получаем эмбеддинги $Z_t,\ Z_s$

• Запоминаем эмбеддинги, прогоняем их через C, нормализуем полученную матрицу с помощью Sinkhorn-Knopp, получаем $Q_t\,,\,Q_s$

Считаем Loss:

$$L(\mathbf{z}_t, \mathbf{z}_s) = \ell(\mathbf{z}_t, \mathbf{q}_s) + \ell(\mathbf{z}_s, \mathbf{q}_t)$$

$$\ell(\mathbf{z}_t, \mathbf{q}_s) = -\sum_k \mathbf{q}_s^{(k)} \log \mathbf{p}_t^{(k)}, \quad \text{where} \quad \mathbf{p}_t^{(k)} = \frac{\exp\left(\frac{1}{\tau} \mathbf{z}_t^{\top} \mathbf{c}_k\right)}{\sum_{k'} \exp\left(\frac{1}{\tau} \mathbf{z}_t^{\top} \mathbf{c}_{k'}\right)}$$

SwAV - Multi-Crop

		Δ	
Method	2x224	2x160+4x96	
Supervised	76.5	76.0	-0.5
SimCLR	68.2	70.6	+2.4
SeLa-v2	67.2	71.8	+4.6
DeepCluster-v2	70.2	74.3	+4.1
SwAV	70.1	74.1	+4.0

SwAV - результаты

Method	Arch.	Param.	Top1
Supervised	R50	24	76.5
Colorization [65]	R50	24	39.6
Jigsaw [46]	R50	24	45.7
NPID [58]	R50	24	54.0
BigBiGAN [15]	R50	24	56.6
LA [68]	R50	24	58.8
NPID++ [44]	R50	24	59.0
MoCo [24]	R50	24	60.6
SeLa [2]	R50	24	61.5
PIRL [44]	R50	24	63.6
CPC v2 [28]	R50	24	63.8
PCL [37]	R50	24	65.9
SimCLR [10]	R50	24	70.0
MoCov2 [11]	R50	24	71.1
SwAV	R50	24	75.3

Figure 2: Linear classification on ImageNet.

Linear Classification			Object Detection				
	Places205	VOC07	iNat18	VOC07+12 (Faster R-CNN R50-C4)	COCO (Mask R-CNN R50-FPN)	COCO (DETR)	
Supervised	53.2	87.5	46.7	81.3	39.7	40.8	
SwAV	56.7	88.9	48.6	82.6	41.6	42.1	

Table 2: Transfer learning on downstream tasks.

SSL for transformers

Masked AutoEncoder (MAE) - 2021

$$\mathcal{L}_{ heta} = MSE$$

MAE - Masking Ratio

MAE

МАЕ - результаты

method	pre-train data	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈
scratch, our impl.	=	82.3	82.6	83.1	-
DINO [5]	IN1K	82.8	-		-
MoCo v3 [9]	IN1K	83.2	84.1	_	2
BEiT [2]	IN1K+DALLE	83.2	85.2	=:	-
MAE	IN1K	83.6	85.9	86.9	87.8

Table 3. Comparisons with previous results on ImageNet-1K. The pre-training data is the ImageNet-1K

		AF	box	AP^{1}	mask
method	pre-train data	ViT-B	ViT-L	ViT-B	ViT-L
supervised	IN1K w/ labels	47.9	49.3	42.9	43.9
MoCo v3	IN1K	47.9	49.3	42.7	44.0
BEiT	IN1K+DALLE	49.8	53.3	44.4	47.1
MAE	IN1K	50.3	53.3	44.9	47.2

Table 4. **COCO object detection and segmentation** using a ViT Mask R-CNN baseline.

Masked Siamese Network (MSN) - 2022

MSN - Masks

Anchor View	Top 1
No Mask	49.3
Focal Mask	39.3
Random Mask	52.3
Random Mask + Focal Mask	59.8

Amakan Viana

(a) No Mask

(b) Random Mask

(c) Focal Mask

MSN - результаты

Table 3: Linear evaluation on ImageNet-1K using 100% of the labels.

Method	Architecture	Params.	Epochs	Top 1
Comparing similar architectures				
SimCLRv2 (Chen et al., 2020c)	RN50	24M	800	71.7
BYOL (Grill et al., 2020)	RN50	24M	1000	74.4
DINO (Caron et al., 2021)	ViT-S/16	22M	800	77.0
iBOT (Zhou et al., 2021)	ViT-S/16	22M	800	77.9
MSN	ViT-S/16	22M	600	76.9
Con	nparing larger architectures	•		
MAE (He et al., 2021)	ViT-H/14	632M	1600	76.6
BYOL (Grill et al., 2020)	RN200 (2×)	250M	800	79.6
SimCLRv2 (Chen et al., 2020c)	RN151+SK (3×)	795M	800	79.8
iBOT (Zhou et al., 2021)	ViT-B/16	86M	400	79.4
DINO (Caron et al., 2021)	ViT-B/8	86M	300	80.1
MoCov3 (Chen et al., 2021)	ViT-BN-L/7	304M	300	81.0
MSN	ViT-L/7	304M	200	80.7

Итог:

- Разобрались, какие есть плюсы и минусы у SSL
- Вспомнили ранние методы SSL
- Рассмотрели основные современные методы SSL и примеры их реализации

Источники:

- Цикл статей на хабре, откуда я брал статьи
- BatchNorm в BYOL