

Temporal Convolutional Network & Recurrent Neural Network

COMP90051 Statistical Machine Learning

Qiuhong Ke

Copyright: University of Melbourne

Sit down or stand up?

We need the learn the temporal information to understand the action

temporal information: temporal evolution (changes) of the human pose

Temporal information does matter

Change the order: different actions

What is the next word?

This game is really fun

This cookie is really tasty

Like? Dislike? Sentiment analysis

I bought this charger in Jul 2003 and it worked OK for a while. The design is nice and convenient.
However, after about a year, the batteries would not hold a charge. Might as well just get alkaline disposables, or look elsewhere for a charger that comes with batteries that have better staying power.

It is important to understand the context the sentence

Outline

- Temporal convolutional network (TCN)
- Recurrent neural network (RNN)

Recap: 2D Convolution

RNN

Recap: 1D Convolution

RNN

Recap: 1D Convolution

a is input vector

RNN

Recap: 1D Convolution

a is input vector

RNN

Recap: 1D Convolution

a is input vector

RNN

Recap: 1D Convolution

RNN

Temporal convolution: 1D convolution (on the temporal dimension)

1D input feature vector: special case of sequence data

A sequence that consists of 7 time-steps: One feature in each step

Temporal convolution on a sequence of feature vectors

Input:

- a sequence of N=4 time-steps
- Each time-step is a feature vector (dimension: d=2 (2 features))

Kernel: a weight matrix (dxK)

- One dimension is the same as d
- Another dimension: size of temporal convolutional window K

Output: A sequence

- Each time-step is a scalar (1 kernel)
- The number of time-steps (same as 2D):
 - No padding: ceiling (N-K+1)/stride
 - With padding: ceiling (N/stride)

Temporal convolution on a sequence of feature vectors

If there are m kernels in the layer Output: m sequences==

- a sequence of feature vectors:
- The number of time-steps:
 - No padding: ceiling (N-K+1)/stride
 - With padding: ceiling (N/stride)
- Each time-step is a vector
 - Dimension of each vector ==
 kernel number m

Temporal convolution for text

I bought this charger in Jul 2003 and it worked OK for a while. The design is nice and convenient. However, after about a year, the batteries would not hold a charge. Might as well just get alkaline disposables, or look elsewhere for a charger that comes with batteries that have better staying power.

How to represent words at each time-step before temporal convolution

- One-hot encoding
- Word embeding

One-hot encoding

- Create a feature vector
- Dimension of the vector == size of vocabulary
- If the word is the i^{th} word in the vocabulary, then the i^{th} element of the vector is 1, all the others are 0
- Sparse and high-dimensional

```
dic={"the","cat","sat","on","mat",".",
"these","are","other","words"}
```


Word embedding: learn low-dimensional embedding from data

One-hot word vectors:

- Sparse
- High-dimensional
- Hardcoded

Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

Text
"The cat sat on the mat."

Tokens
"the", "cat", "sat", "on", "the", "mat", "."

Vector encoding of the tokens
0.0 0.0 0.4 0.0 0.0 1.0 0.0
0.5 1.0 0.5 0.2 0.5 0.5 0.0
1.0 0.2 1.0 1.0 1.0 0.0 0.0
the cat sat on the mat .

Figure 6.3 in Deep learning with python by Francois Chollet

Figure 6.1 in Deep learning with python by Francois Chollet

Word embedding: learn low-dimensional embedding from data

Emb_layer = tf.keras.layers.Embedding(vocabulary_size, emb_dim)

Word index - Embedding layer - Corresponding word vector

Embedding layer:

- Create a weight matrix of d (emb_dim) rows, N (vocabulary_size) columns
- Return the i^{th} column as the feature vector for the i^{th} word
- Learn word embeddings jointly with the main task or load pretrained word embeddings

Figure 6.4 in Deep learning with python by Francois Chollet

Example

Input:

Word embedding

	love	deep	learning
0.1	0.4	0.2	-0.5
0.3	0.3	0.1	0.3

Kernel:

1	0	0
0	0	1

Output:

multiplication and sum

element-wise

0.2

Example

Input:

Word embedding

1	love	deep	learning
0.1	0.4	0.2	-0.5
0.3	0.3	0.1	0.3

Kernel:

1	0	0
0	0	1

Output:

0.2

element-wise

multiplication

and sum

Example

Input:

Word embedding

1	love	deep	learning
0.1	0.4	0.2	-0.5
0.3	0.3	0.1	0.3

2 Kernels:

Output:

Example

Input:

Word embedding

1	love	deep	learning
0.1	0.4	0.2	-0.5
0.3	0.3	0.1	0.3

2 Kernels:

Output:

element-wise

multiplication

and sum

TCN for Sentence Classification

Recap of Convolution on Multiple-channel input

Kernel: same channel (depth)

* K(Channel 2) Element-wise sum

One channel

* K(Channel 3)

A special version: Dilated casual convolution Dilated: expand the alignment of the kernel weights by dilation factor

Dilation factor (d): step between every two adjacent filter taps.

Larger dilation factor: the weights are placed more far away (i.e., more sparse),

RNN

Dilated convolution in 2D

Increasing receptive fields

- Stacking multiple convolutional layers
- max-Pooling layer
- Dilated convolution

Dilated casual convolution

Causal: The output at at time-step t does not depend on the input information after time-step t (e.g., real-time recognition, prediction)

We perform padding between time step features where the current features are only depending on historical data and current data

Networks with loops

Process sequence step by step

Recurrent connection: the output hidden feature vector (state) of each step is connected to the next step

RNN

RNN: Process sequence step by step

At each step t: combine current tilmestep x_t (feature vector of input sequence at tilmestep t) and historical information, i.e., state s_t (feature vector) to generate o_t

RNN

A simple RNN

Figure 6.13 in Deep learning with python by Francois Chollet

Example: RNN for sentiment analysis

works

Input: review (a piece of text) e.g., "It works well"

output: 1: like or 0: dislike

well

Recap of Chain rule

Given
$$z = g(u)$$
 $u = f(x)$
$$\frac{dz}{dx} = \frac{dz}{du} \frac{du}{dx}$$

$$\frac{dz}{dx} = \frac{dz}{du} \frac{du}{dx}$$

Example: $z = \sin(x^2)$

$$z = sin(u)$$

$$\downarrow$$

$$u = x^2$$

$$\frac{dz}{du} = \cos(u)$$

$$\frac{dz}{dx} = \frac{dz}{du} \frac{du}{dx} = 2x \cos(u)$$
34

Recap of Multi-layer perceptron: Function composition

Forward prediction

$$z = f(s) = sigmoid(s) = \frac{1}{1 + e^{-s}}$$

$$s = \sum_{j=0}^{p} w_{j}u_{j}$$

$$u_{j} = f(r_{j}) = sigmoid(r_{j}) = \frac{1}{1 + e^{-r_{j}}}$$

$$r_{j} = \sum_{i=0}^{m} x_{i}v_{ij}$$

$$x \rightarrow r \rightarrow u \rightarrow s \rightarrow z$$

f: activation functions

Recap of Multi-layer perceptron: Chain rule

Backward propagation:

$$\frac{\partial L}{\partial v_{ij}} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_j} \frac{\partial u_j}{\partial r_j} \frac{\partial r_j}{\partial v_{ij}}$$

$$s = \sum_{j=0}^{p} u_{j}w_{j}$$

$$u_{j} = sigmoid(r_{j}) = \frac{1}{1 + e^{-r_{j}}}$$

$$r_{j} = \sum_{i=0}^{m} x_{i}v_{ij}$$
Forward

BackPropagation Through Time

RNN

A special RNN: Long short-term memory (LSTM)

Figure 6.14 in Deep learning with python by Francois Chollet

A special RNN: Long short-term memory (LSTM)

Figure 6.15 in Deep learning with python by Francois Chollet

A special RNN: Long short-term memory (LSTM)

Forget gate: $f_t = sigmoid(W_f \cdot x_t + U_f \cdot s_t + b_f)$

Input gate: $i_t = sigmoid(W_i \cdot x_t + U_i \cdot s_t + b_i)$

$$\tilde{c}_{t+1} = tanh(W_c \cdot x_t + U_c \cdot s_t + b_c)$$

$$c_{t+1} = c_t * f_t + \tilde{c}_{t+1} * i_t$$

Applications

Activity Recognition
Sequences in the Input

RNN

Applications

Image Captioning

Sequences in the Output

Summary

- How does temporal convolution work?
- How does dilated casual convolution work?
- How does recurrent neural network work?
- How does LSTM work?

Next: Graph Convolution Network (Guest lecture)