

SmartSensTM

SC1035 设计应用指南

V1.5

2014.11.05

SC1035 Datasheet

目录

版	本历史	<u> </u>	2
1	产品	封装基本信息	4
	1.1	产品脚位信息	4
	1.2	产品脚位图	6
	1.3	产品典型应用电路图	7
	1.4	模组布板设计的注意事项	7
	1.4.	.1 设计模组时电源方案注意事项	7
	1.4.	.2 外围应用注意事项	7
	1.5	封装尺寸图	8
	1.6	成像方向	9
2	寄存	器基本配置	11
	2.1	设备地址	11
	2.2	正常工作时的基本配置	11
	2.3	PLL 配置说明	15
	2.4	RNC 和 BLC	16
3	AEC	T/AGC 配置说明	20

1

版本历史

版本	修改内容以及说明	Own	er/date
1.0	初始版本。	Bill,	20140829
1.1	1, 更新了表 2-2 中寄存器\$3416 的相关说明。其 RNC 值为	Bill,	20140922
	$\{0x3415[6:4], 0x3416\}$		
	2, 更新了表 2-2 中 0x3301, 0x3304 和 0x3631 三个寄存器的		
	配置。		
	3, 更新了表 2-3 和表 2-4 中 TIMING_VOFFS 和		
	TIMING_HOFFS 两个寄存器配置。		
	4, 删除表 2-3 和表 2-4 中所有地址位以 0x50 开头的寄存器,		
	寄存器包括 WINDOW_MAN_EN, AVG_X_START,		
	AVG_Y_START, AVG_X_WIDTH, AVG_Y_HEIGHT。		
	5, 删除了表 2-2 中对{3212, 3213}的配置。		
	6, 删除了表 2-2 中对{3206,3207}的配置,并增加到表 2-3		
	和表 2-4 中。		
	7, 更新 2.3 部分 PLL 的说明。		
	8, 在表 2-3 和表 2-4 中增加了 1280X960@25fps 以及		
	1280X960@30fps 的寄存器配置。		
1.2	1,更新表 2-5 中 PLL 配置寄存器的说明。	Bill,	20140927
	2, 在表 2-3 和表 2-4 中增加了每种配置条件下的输出 pixel		
	clock frequency.		
	3,表 2-2中\$3631寄存器的配置值从\$84改为\$80。		
	4,在 2.4 节中增加对 BLC 和 RNC target 值的使用说明。		
	5,在表 2-6 中增加了 RNC 目标值的说明。		
1.3	1, 更新了表 3-2 中对 AEC 的说明。	Bill,	20140929
	2, 更新了图 3-1 中的笔误, 将 "fine"改为 "final"。		

	3,修改了图 1-3中的注,将"±0.1mm"的偏差更改为"±	
	0.05mm"。	
1.4	1,在表 2-2 中,将\$3304 的设置从\$56 改为\$a0.	Bill, 20141009
	2, 在表 2-2 中增加了{3907,3908}的寄存器配置。	
1.5	1, 在表 2-2 中增加了 3e0f 的寄存器配置。	Bill, 20141105
	2, 更 改 表 2-3 和 表 2-4 中 TIMING_HOFFS 与	
	TIMING_VOFFS 的配置(仅针对 1280x960 的输出)。	

1 产品封装基本信息

SC1035 提供尺寸为 11.43mmX11.43mm 的 PLCC48 的封装。

1.1 产品脚位信息

表 1-1 列出了 SC1035 的信号描述及对应引脚编号。

表 1-1 信号描述

编号	信号名	引脚类型	描述
1	SVDD	电源	3.3V 像素信号采集模块供电电源
2	DGND	地线	数字地
3	DVDD	电源	1.5V 数字电源
4	DVDD	电源	1.5V 数字电源
5	DGND	地线	数字地
6	DGND	地线	数字地
7	DOVDD	电源	1.8V/3.3V IO 电源
8	DOVDD	电源	1.8V/3.3V IO 电源
9	SCL	输入	I2C 接口输入时钟线
10	DGND	地线	数字地
11	OSC	输入	系统时钟输入
12	PIXCLK	输出	像素时钟输出
13	NC	N/A	未连接
14	SDA	I/O	I2C 接口数据线(open drain)
15	FSYNC	I/O	帧同步信号
16	LREF	I/O	行同步信号
17	D11	输出	像素并行数据输出 Bit[11]
18	D10	输出	像素并行数据输出 Bit[10]
19	D9	输出	像素并行数据输出 Bit[9]
20	D8	输出	像素并行数据输出 Bit[8]
21	D7	输出	像素并行数据输出 Bit[7]

22	D6	输出	像素并行数据输出 Bit[6]		
23	D5	输出	像素并行数据输出 Bit[5]		
24	D4	输出	像素并行数据输出 Bit[4]		
25	D3	输出	像素并行数据输出 Bit[3]		
26	D2	输出	像素并行数据输出 Bit[2]		
27	D1	输出	像素并行数据输出 Bit[1]		
28	D0	输出	像素并行数据输出 Bit[0]		
29	DW/DM	<i>t</i> 会)	电源掉电信号输入(内置下拉电		
29	PWDN	输入	阻,高电位有效)		
30	RESET_B	输入	复位信号输入(内置上拉电阻,低		
	KESE1_B	1111八	电位有效)		
31	DGND	地线	数字地		
32	DGND	地线	数字地		
33	NC	N/A	未连接		
34	DVDD	电源	1.5V 数字电源		
35	NC	N/A	未连接		
36	NC	N/A	未连接		
37	NC	N/A	未连接		
38	AGND	地线	模拟地		
39	AGND	地线	模拟地		
40	PIXVDD	电源	3.3V 像素电源		
41	PIXVDD	电源	3.3V 像素电源		
42	AGND	地线	模拟地		
43	AGND	地线	模拟地		
44	AVDD	电源	3.3V 模拟电源		
45	AVDD	电源	3.3V 模拟电源		
46	AVDD	电源	3.3V 模拟电源		
47	AGND	地线	模拟地		
48	AGND	地线	模拟地		

1.2 产品脚位图

1.3 产品典型应用电路图

图 1-2 典型应用

注: SC1035 芯片分五路电源: DOVDD = 1.8V~3.3V, AVDD = 3.3V, SVDD= 3.3V, PIXVDD=3.3V, DVDD=1.5V(默认情况会采用内部LDO提供1.5V电源)。

1.4 模组布板设计的注意事项

1.4.1 设计模组时电源方案注意事项

为了获得更好的图像质量,SVDD、AVDD、PIXVDD 必须使用相互隔离的 3.3V 电源供电。

DVDD 是芯片的 Core 电压,它可以由 DVDD pin 直接提供 1.5V,也可以经由 DOVDD pin 输入的电源,经过内部 LDO 产生 1.5V 电压(需要配置寄存器)。

1.4.2 外围应用注意事项

1. 设计电源模块时, LDO 应尽可能放置在靠近芯片输入引脚处,电源线走线 线宽最小不应该小于 0.1mm; 供给芯片 AVDD, SVDD, PIXVDD 的电源线 要尽可能短;并且在每路电源供给芯片靠近引脚处需要分别放一个 0.1uF 滤波电容。

- 2. 设计地线时,分两路网络处理,AGND 和 DGND 要分开接;参考地线线宽为最小在 0.1mm—0.15mm 之间,在允许布线的条件下应尽可能加宽。
- 3. 各个电容尽可能靠近相应的引脚。并且走线应注意先经过滤波电容后再进 sensor;滤波电容是推荐的,省略可能会影响图像质量;
- 4. 电源走线时,不管采用那种供电方案都建议把 SVDD ,AVDD 和 PIXVDD 分开走线;
- 5. OSC、PIXCLK、FSYNC、LREF 的走线之间最好采用地线屏蔽或远离;
- 6. SCL、SDA 的走线应该尽量远离 OSC、PIXCLK、D0、D1(低位高频数据pin),或用地线屏蔽;
- 7. RESET_B (复位)、PWDN、AVDD 的走线也应该尽量远离 OSC、PIXCLK、D0-D7;
- 8. I2C 走线时必须加 5.1K (5.1K 是推荐值) 的上拉电阻。
- 9. 芯片的 NC 引脚在布线时直接悬空不接;
- 10. 芯片可采用有源晶振,直接由 OSC 输入时钟信号,也可由 ISP 芯片直接提供 CLOCK 信号作为输入。如果想采用无源晶振方案,请和 SmartSens 联系。

1.5 封装尺寸图

SC1035 提供 PLCC48 封装, 封装具体尺寸如下:

TOP VIEW SIDE VIEW 11.43±0.15 玻璃0.5±0.05 But 0.6±0.05 ## 0.6±0.05

BOTTOM VIEW

图 1-3 PLCC44 封装示意图(单位: mm)

注: 感光阵列中心与封装体中心在±0.05mm 误差允许范围内重合。

1.6 成像方向

下图是 sc1035 成像方向示意图。

图 1-4 成像方向示意图(Bottom view)

2 寄存器基本配置

Sc1035 的寄存器地址是 16bit, 寄存器的数据位宽是 8bit。

2.1 设备地址

Sc1035 的设备地址为 7'h30,保存在 0x3008[7:1]中。0x3008[0]为读写控制位。在读操作中,0x3008[7:0]= 8'h61,在写操作中,0x3008[7:0]= 8'h60。

表 2-1 设备地址寄存器

地址	寄存器名	默认值	读/写	描述
0x3008	I ² C SLAVE ID	8'h60	RW	Bit[7:1]: I ² C slave id

在芯片正常上电之后,寄存器 RESET 完成,即可对 I^2C 的读写操作。

2.2 正常工作时的基本配置

需要注意的几个问题:

- 1, \$5000 是 ISP 的功能控制寄存器,如果需要使用外部 ISP,需要关闭内部相应的控制位。
 - 2, \$3416 为 RNC target 值设置寄存器,可以根据需要进行调整。

表 2-2 初始化基本配置

寄存器名称	配置	特别说明		
\$3000	\$01	soft reset		
\$3003	\$01			
\$3400	\$53	bit[0] rnc_en, 1 enable, 0 disable.		

\$3416	\$C0	RNC TARGET 芯片数据输出为 12bit 时, target 值即为 {0x3415[6:4], 0x3416}这两个寄存器值; 如果只取高 10 位作为数据输出,则 target 值 为{0x3415[6:4], 0x3416}这两个寄存器值 除以 4; 如果只取高 8 位作为数据输出,则 target 值为{0x3415[6:4], 0x3416}这两个寄存器值除以 16。
\$3d08	\$00	
\$5000	\$09	isp_ctrl: [0]awb_en, 1 enable, 0 disable. [3] awb_gain_en, 1 enable, 0 disable. (如果需要 awb 功能,需要将 bit[3]和 bit[1] 同时 enable.) [7] lens_en, 1 enable, 0 disable.
\$3e03	\$00	open aec/agc bit<1:0>
\$3928	\$00	
\$3622	\$2e	
\$3630	\$58	
\$3612	\$00	
\$3632	\$41	
\$3635	\$04	
\$3500	\$10	
\$3631	\$80	
\$3620	\$44	
\$3633	\$7c	
\$3780	\$0b	
\$3300	\$33	
\$3301	\$61	
\$3302	\$30	

\$3303	\$56	
\$3304	\$a0	
\$3305	\$72	
\$331e	\$56	
{\$321e, \$321f}	\$000a	
\$3216	\$0a	
\$3115	\$0a	A .
\$3332	\$38	
\$5054	\$82	
{\$3907, \$3908}	\$01c0	
\$3e0f	\$14	

下面两个表格是 smartsens 提供的三种常用配置模式下的寄存器设置。如果需要其他模式的配置,请和 smartsens 联系。-

表 2-3 24MHz 晶振的寄存器配置

寄存器名称	720p	720p	1280x960	1280x960	1280x960	
可好命自彻	@25fps	@30fps	@25fps	@30fps	@45fps	
Output pixel clock frequency	36MHz	48MHz	45MHz	54MHz	81MHz	
PLL_CTRL	\$3146	\$3146	\$0916	\$08e6	¢1056	
$\{0x3010, 0x3011\}$	\$3140	Ф 3140	\$0910	\$0000	\$1856	
SC_REG04	¢04	¢02	\$0.4	ΦΩ4	¢02	
0x 3004	\$04	\$03	\$04	\$04	\$02	
TIMING_HTS	\$0700	¢0740	¢0700	¢0700	\$0700	
{0x 320c,0x 320d}	\$0708	\$07d0	\$0708	\$0708	\$0708	
TIMING_VTS	¢0220	¢0220	ΦΩ2 - Q	ΦΩ2 - Q	ф О 2 - О	
{0x 320e,0x 320f}	\$0320	\$0320	\$03e8	\$03e8	\$03e8	
TIMING_HOFFS	¢00.62	¢00.62	¢00.62	\$00.62	¢0073	
{0x3210,0x3211}	\$0062	\$0062	\$0062	\$0062	\$0062	

TIMING_VOFFS	фооо	фооо	фоооо	Ф0000	Ф0000
{0x3212,0x3213}	\$000a	\$000a	\$0008	\$0008	\$0008
TIMING_X_OUTPUT_SIZE	\$0500	\$0500	\$0500	\$0500	¢0500
{0x 3208,0x 3209}	\$0500	\$0500	\$0500	\$0500	\$0500
TIMING_Y_OUTPUT_SIZE	\$02d0	05502	\$03c0	\$03c0	\$03c0
{0x 320a,0x 320b}	ΦU2 U U	\$02d0	\$0300	φυσου	φυσου
TIMING_Y_START_ADDR	\$0078	\$0078	\$0008	\$0008	\$0008
{0x 3202,0x 3203}	φ0076	φ0076	φυσσο	\$0008	\$000
TIMING_Y_END_ADDR	\$0367	\$03 <i>6</i> 7	\$03cf	\$03cf	\$03cf
{0x 3206,0x 3207}	φ0307	\$0367	φυσζί	ф03С1	φυ301

表 2-4 27MHz 晶振的寄存器配置

Output pixel clock frequency 36MHz 48MHz 45MHz 54MHz 81MHz PLL_CTRL {0x3010, 0x 3011} \$2186 \$2186 \$0766 \$0746 \$11a6 SC_REG04 0x 3004 \$04 \$03 \$04 \$04 \$02 TIMING_HTS {0x 320c,0x 320d} \$0708 \$0708 \$0708 \$0708 \$0708 TIMING_VTS {0x 320e,0x 320f} \$0320 \$0320 \$03e8 \$03e8 \$03e8 TIMING_HOFFS {0x3210,0x3211} \$0062 \$0062 \$0062 \$0062 \$0062 TIMING_VOFFS \$0062 \$0062 \$0062 \$0062 \$0062	寄存器名称	720p @25fps	720p @30fps	1280x960 @25fps	1280x960 @30fps	1280x960 @45fps
\$2186 \$2186 \$0766 \$0746 \$11a6 \$0x3010, 0x 3011} \$C_REG04 0x 3004 \$04 \$03 \$04 \$04 \$02 TIMING_HTS {0x 320c,0x 320d} \$0708 \$0708 \$0708 \$0x 320c,0x 320d} TIMING_VTS {0x 320e,0x 320f} \$0320 \$0320 \$03e8 \$03e8 \$03e8 \$03e8 \$0062 \$0062 \$0062 \$0062 \$0062 \$0062	Output pixel clock frequency	36MHz	48MHz	45MHz	54MHz	81MHz
SC_REG04 0x 3004 TIMING_HTS {0x 320c,0x 320d} TIMING_VTS {0x 320e,0x 320f} TIMING_HOFFS {0x 3210,0x3211} TIMING_VOFFS	PLL_CTRL	\$2186	\$2186	\$0766	\$0746	\$11 ₀ 6
\$04 \$03 \$04 \$04 \$02 TIMING_HTS {0x 320c,0x 320d} TIMING_VTS {0x 320e,0x 320f} \$0320 \$0320 \$0320 \$03e8 \$03e8 \$03e8 \$03e8 TIMING_HOFFS {0x3210,0x3211} TIMING_VOFFS	$\{0x3010, 0x3011\}$	\$2100	\$2100	\$0700	Φ0740	ф11a0
0x 3004 TIMING_HTS {0x 320c,0x 320d} \$0708 \$0708 \$0708 TIMING_VTS {0x 320e,0x 320f} \$0320 \$0320 \$0320 TIMING_HOFFS {0x3210,0x3211} \$0062 \$0062 \$0062 TIMING_VOFFS	SC_REG04	\$04	\$02	\$ 0.4	ድ በ4	\$02
\$0x 320c,0x 320d} TIMING_VTS {0x 320e,0x 320f} \$0320 \$0320 \$03e8 \$03e8 \$03e8 TIMING_HOFFS {0x3210,0x3211} TIMING_VOFFS	0x 3004	\$04	Φ03	Ф 04	Ф 04	Φ02
TIMING_VTS {0x 320e,0x 320f} Solution	TIMING_HTS	\$0700	¢0740	¢0700	¢0700	¢0700
\$0320 \$0320 \$03e8 \$03e8 \$03e8 TIMING_HOFFS {0x3210,0x3211} TIMING_VOFFS	{0x 320c,0x 320d}	\$0708	φυ/αυ	Φ0/0δ	Φ0706	Φ0706
{0x 320e,0x 320f} TIMING_HOFFS {0x3210,0x3211} TIMING_VOFFS \$0062 \$0062 \$0062 \$0062 \$0062	TIMING_VTS	\$0220	¢0220	¢02.0	¢02.0	¢02-0
\$0062 \$0062 \$0062 \$0062 \$0062 {0x3210,0x3211} TIMING_VOFFS	{0x 320e,0x 320f}	\$0320	\$0320	\$0368	\$0368	\$0368
{0x3210,0x3211} TIMING_VOFFS	TIMING_HOFFS	\$0062	\$0062	\$0062	\$0062	\$0062
	{0x3210,0x3211}	\$0062	\$0062	\$0062	\$0062	\$UU02
\$000a \$000a \$0008 \$0008 \$0008	TIMING_VOFFS	\$0000	\$000a	\$0000	\$0000	\$0008
\$000a \$000a \$0008 \$0008 \$0008 \$0008 \$0008	{0x3212,0x3213}	ФОООА	\$000a	\$0008	\$0008	\$0008
TIMING_X_OUTPUT_SIZE	TIMING_X_OUTPUT_SIZE	\$0500	\$0500	\$0500	\$0500	¢0500
\$0500 \$0500 \$0500 \$0500 \$0500 \$0500 \$0500	{0x 3208,0x 3209}	ΦΩΣΟΟ	\$0500	\$0500	\$0500	Φυσυυ

TIMING_Y_OUTPUT_SIZE	¢02.40	\$02d0	\$03c0	\$03c0	\$03c0
{0x 320a,0x 320b}	\$02d0				
TIMING_Y_START_ADDR	\$0078	\$0078	\$0008	\$0008	\$0008
{0x 3202,0x 3203}}	\$0078				
TIMING_Y_END_ADDR	\$0267	\$0267	¢02°t	¢02°t	¢02°t
{0x 3206,0x 3207}	\$0367	\$0367	\$03cf	\$03cf	\$03cf

2.3 PLL配置说明

有了前面的详细配置,PLL 不需要再单独配置。下面的内容只是针对 PLL 做一个详细说明,有兴趣的客户可以参考。

SC1035 PLL 允许的输入时钟频率范围为 $6\sim27$ MHz,其中 VCO 的输出频率(f_s)的范围为 100MHz 到 600MHz。PLL 示意图以及控制寄存器分别在图 2-1 和表 2-5 中展示。

图 2-1 PLL 控制示意图

表 2-5 PLL 控制寄存器

地址	寄存器名	默认值	读/写	描述
	•			Bit[7]: BYPASS PLL
				Bit[6:4]: SYSEL[2:0]
				000~S=0
				001~S=1
				010~S=2
				111~S=7
0x3010		8'h20	RW	Bit[3:1]: PreDiv[2:0]
				000~N=1
				001~N=1.5
				010~N=2
				011~N=3
) '	
				111~N=7
				Bit[0]: PLLDIV[5:0]
	1	7		Bit[7:3]: PLLDIV[4:0]
0x3011		8'h86	RW	M=64-PLLDIV[5:0]
				Bit[2:0]: Reserved

系统时钟频率 F_{sysclk} 通过式 2-1 计算:

$$F_{\text{sysclk}} = F_{\text{xclk}} \times \frac{64 - M}{N \times (S+1)}$$
 (2-1)

Note: 公式中的参数 M, N和 S在图 2-1 中有具体寄存器说明。

2.4 RNC和BLC

像素阵列包含若干条黑列,用来消除行噪声。这个功能称之为 RNC。像素阵列包含 64 条黑色参考列,这些列可以为行噪声消除算法提供数据。RNC 算法可以从黑色参考 列数据中估算出行噪声。对于同一行来说,行噪声是相同的;而不同行之间的行噪声互

不相同。考虑到色彩滤镜的存在,必须使用两条通道来消除行噪声。如果消除算法(减法)在特定像素得到一个负值,那么将结果置 0。

像素阵列也包含 8 条黑行,这些黑行可以为补偿消除算法提供数据。数字图像处理首先要减去黑电平数据,BLC 算法可以从黑行数据中估算黑电平的补偿值。而彩色像素的值会减去各自色彩通道的黑电平补偿值。如果在一些特定的像素点,这样的减法得到了负值,那么将结果置 0。默认情况下,改变增益值后会重新进行 BLC 操作。

在应用过程中,**RNC 建议打开**(在前面的默认配置中,RNC 已经打开),否则暗光条件下,图像质量明显下降,动态横条纹严重。当 RNC 功能打开的时候,输出图像的 target 值由{0x3415,0x3416}两个寄存器决定。芯片数据输出为 12bit 时,target 值即为{0x3415,0x3416}这两个寄存器值;如果只取高 10 位作为数据输出,则 target 值为{0x3415,0x3416}这两个寄存器值除以 4;如果只取高 8 位作为数据输出,则 target 值为{0x3415,0x3416}这两个寄存器值除以 16。

像素阵列包含 64 条黑色参考列,这些列可以为行噪声消除算法提供数据。RNC 算法可以从黑色参考列数据中估算出行噪声。对于同一行来说,行噪声是相同的;而不同行之间的行噪声互不相同。考虑到色彩滤镜的存在,必须使用两条通道来消除行噪声。如果消除算法(减法)在特定像素得到一个负值,那么将结果置 0。

当 BLC 与 RNC 同时开启(建议), sensor 输出数据的 target 由 RNC target (\$3415[6:4],\$3416) 值决定, BLC target 值(\$3907[4:0],\$3908) 的大小, 只决定用于存储 random row noise 的空间,这个空间如果太小则会导致某些情况下(比如开启高模拟增益)random noise 无法完全保存,最终在输出图像上 row noise 消除地不够彻底。所以,建议{\$3907[4:0],\$3908}设置在\$00c0 左右。

如果需要关闭 RNC(不建议),单独开启 BLC,那么此时 RNC target 无效,sensor 输出的 target 值则由 BLC target 决定(\$3907[4:0],\$3908)。

其控制寄存器如下:

表 2-6 RNC 控制寄存器

功能	寄存器名	描述
		Bit[0]: rnc_enable
RNC 使能	0x3400	0~ bypass blc
		1~ RNC enable

功能	寄存器名	描述	
		Bit[1]: rnc_auto_en	
自动 RNC 使能	0x3400	0~ manual mode	
		1~ auto mode	
		Bit[5]: one channel enable	
RNC 通道选择	0x3400	0∼ use 4 channel mode	
		1~ use 1 channel mode	
RNC_manual00 (B)	{0x3405[4:0],0x3404}	RNC noise for B channel	
RNC_manual01 (GB)	{0x3407[4:0],0x3406}	RNC noise for GB channel	
RNC_manual10 (GR)	{0x3409[4:0],0x3408}	RNC noise for GR channel	
RNC_manual11 (R)	{0x340b[4:0],0x340a}	RNC noise for R channel	
		RNC TARGET	
		芯片数据输出为 12bit 时, target	
		值即为{0x3415[6:4], 0x3416}这	
		两个寄存器值;如果只取高 10	
RNC 目标值	{0x3415[6:4], 0x3416}	位作为数据输出,则 target 值为	
KINC 日你但	{0x3413[0:4], 0x3410}	{0x3415[6:4], 0x3416}这两个寄	
		存器值除以 4; 如果只取高 8 位	
	7	作为数据输出,则 target 值为	
		{0x3415[6:4], 0x3416}这两个寄	
		存器值除以16。	

表 2-7 BLC 控制寄存器

功能	寄存器名	描述
		Bit[0]: blc_enable
BLC 使能	0x3900	0~ bypass blc
		1~ BLC enable

寄存器名	描述
	0x3928[0]:
	0~ use 8 channel offset mode
{0x3928[0],0x3905[6]}	1~ use 4 channel offset mode
	0x3905[6]: one channel enable
	0~ use 8 or 4 channel offset
	1~ use one channel mode
{0x3907[4:0],0x3908}	BLC target
	{0x3928[0],0x3905[6]}

3AEC/AGC配置说明

AEC/AGC 都是基于图像亮度进行调节的, AEC 调节 exposure time, AGC 调节 Gain 值,最终使图像亮度落在设定亮度阈值范围内。

Sensor 的自动曝光,自动增益功能,其目的在于适应不同光照条件下,所输出图像的正常显示:保证画面既不过曝,也不会偏暗,同时尽可能抑制噪声,提升图像信噪比。目前 0342 采用的方法是这样的:对整个画面亮度求平均,对该均值设定一个阈度范围,当输出图像画面均值在该范围内时(可通过寄存器控制),认为图像已经调好。否则,就调整曝光时间与增益,使得输出图像亮度朝着该阈度范围变化。比如:把该阈值范围设定在 400~600(10bit 数据,对应 8bit 数据则除以 4)之间时,通过自动控制曝光与增益,图像最终平均亮度将处于 400~600 之间的某个值。

在这个过程中, sensor 不是独立的调整曝光时间或者增益。为了达到更低噪声, 更好信噪比, 其调控原则为: 如果图像过暗, 在曝光时间未到上限之前, 不开启任何增益, 直到曝光时间达到上限为止, 如果此时, 图像仍旧偏暗, 达不到设定的阈值范围, sensor 才开始调用自动增益控制。需要明确指出的是: 增益开启, 将直接导致平均噪声呈倍数放大; 曝光时间加大,则有助于提升信噪比。所以自动控制策略总的来说就是: 曝光时间优先,增益不到必须时不开。反之, 当图像过亮时,则优先关闭增益,当所有增益关闭,图像仍旧过亮,才会降低曝光时间。

正是由于上述自动控制的 AEC/AGC 调控策略,由于曝光时间控制的优先性,导致 AEC 可以在关闭 AGC 单独使用,但是 AGC 却不能在关闭 AEC 时单独使用。比如:关闭 AEC,只开启 AGC 时,sensor 的调控策略没变,仍旧会先检测曝光时间是否已经调整到上限,如果此时手动 AEC,却调了一个未达到曝光上限的曝光值,sensor 会优先去调整曝光时间,但是此时 AEC 却已经无效,于是自动控制会出现紊乱,会出现画面闪烁的现象。

所以曝光时间与增益是一个交互的调节体系,在调试的时候,应该综合考虑。下面是关于 AEC/AGC 的控制寄存器以及相关的曲线示意图。

表 3-1 AGC 控制寄存器

items	DCG(\$3E09[7])	corse gain(\$3E09[6:4])	fine_gain(\$3E	09[3:0])	final gain	gain step	lsb_step
	, , , , , , , , , , , , , , , , , , , ,		寄存器值: 0	增益: 1	1		
			1	1. 0588	1. 0588	0.0588	30. 544012
			2	1. 1176	1. 1176	0.0588	28. 937008
			3	1. 1765	1. 1765	0.0589	27. 535062
			4	1. 2353	1. 2353	0.0588	26. 179875
			5	1. 2941	1. 2941	0.0588	24. 990341
		增益x1	6	1. 3529	1. 3529	0.0588	23. 904206
			7	1. 4118	1.4118	0.0589	22. 945885
		寄存器值: 0	8	1. 4706	1. 4706	0.0588	21. 991024
			9	1. 5294	1. 5294 1. 5882	0. 0588 0. 0588	21. 145547 20. 362675
			a b	1. 5882 1. 6471	1. 6471	0. 0589	19. 667901
			c	1. 7059	1. 7059	0.0588	18. 957735
			d	1. 7647	1. 7647	0. 0588	
			е	1.8235	1.8235	0.0588	17. 735125
			f	1.8824	1.8824	0.0589	17. 209414
			0	1	2	0. 1176	32. 34
			1	1. 0588	2. 1176		30. 544012
			2 3	1. 1176	2. 2352		28. 937008
			4	1. 1765 1. 2353	2. 353 2. 4706		27. 535062 26. 179875
			5	1. 2941	2. 5882	0.1176	24. 990341
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	6	1. 3529	2. 7058	0.1176	23. 904206
		增益x2	7	1. 4118	2. 8236	0. 1178	22. 945885
		寄存器值: 1	8	1.4706	2. 9412	0.1176	21. 991024
		的, 让地, 臣: 1	9	1. 5294	3. 0588	0.1176	
			a	1. 5882	3. 1764	0.1176	20. 362675
			b	1.6471	3. 2942	0.1178	19. 667901
			c d	1. 7059 1. 7647	3. 4118 3. 5294		18. 957735 18. 326061
			e	1. 8235	3. 647		17. 735125
	DCGX1		f	1. 8824	3. 7648	0.1178	17. 209414
	寄存器值:0		0	. 1	4	0.2352	32.34
			1	1. 0588	4. 2352	0. 2352	30. 544012
			2	1.1176	4. 4704	0. 2352	28. 937008
			3 4	1. 1765	4. 706	0. 2356	27. 535062
			5	1. 2353 1. 2941	4. 9412 5. 1764	0. 2352 0. 2352	26. 179875 24. 990341
AGC			6	1. 3529	5. 4116	0. 2352	23. 904206
		增益x4	7	1. 4118	5. 6472		
		寄存器值:3	8	1.4706	5.8824	0.2352	21. 991024
		可行辞旧: 5	9	1.5294	6. 1176	0. 2352	21. 145547
			a	1. 5882	6. 3528	0. 2352	20. 362675
			b	1.6471	6. 5884	0. 2356 0. 2352	19. 667901
			c	1. 7059 1. 7647	6. 8236 7. 0588	0. 2352	18. 957735 18. 326061
			e	1. 8235	7. 294	0. 2352	17. 735125
			f	1.8824	7. 5296		17. 209414
			0	1	8	0.4704	32. 34
			1				30. 544012
			2	1. 1176	8. 9408		28. 937008
			3	1. 1765	9. 412	0. 4712	27. 535062
			5	1. 2353 1. 2941	9. 8824 10. 3528	0. 4704	26. 179875 24. 990341
		134 14	6	1. 3529	10. 3328		23. 904206
		增益x8	7	1. 4118	11. 2944	0. 4712	
		寄存器值:7	8	1. 4706	11. 7648	0.4704	21. 991024
	1	时 订相臣: (9	1. 5294	12. 2352		21. 145547
			a	1. 5882	12. 7056		20. 362675
			b	1.6471	13. 1768		19.667901
			c d	1. 7059 1. 7647	13. 6472 14. 1176	0. 4704	18. 957735 18. 326061
			e e	1. 8235	14. 1176		17. 735125
			f	1. 8824	15. 0592	0. 4712	
			4	1. 2353	15. 81184	0.75264	
			5	1. 2941	16. 56448	0.75264	
			6	1. 3529	17. 31712	0.75264	
			7	1. 4118	18. 07104		
	DCGx1.6	增益x8	8	1.4706	18. 82368		21. 991024
	寄存器值1		9 a	1. 5294 1. 5882	19. 57632 20. 32896	0. 75264 0. 75264	
	11.11.141.161.1	寄存器值:7	b	1. 6471	21. 08288	0. 75204	19. 667901
			C	1. 7059	21. 83552	0. 75264	
			d	1.7647	22. 58816	0.75264	
			e	1.8235	23. 3408	0.75264	17. 735125
		İ	f	1.8824	24. 09472	0.75392	17. 209414

Note:1, 其中, fine gain 计算公式为: (64-2*(15-N)) /34 = (34+2*N) /34, 其中 N 为寄存器值,最大 15.

2, 假设 AEC 以调节画面均值至 550 (10bit).

表 3-2 AEC 控制寄存器

AEC	最小步长1行	一行时间=行长 X PIXCLK 周期			
AEC		高 8bit 为\$3e01 的 bit[7:0]	最大不得大于(一帧长		
	曝光时间由 12bit 控制	低 4bit 为\$3e02 的 bit[7:4]	度-4个行长)		
Auto AEC 寄存器 0x3ed bit[1:0]	宏方型 0 _v 2。02	Bit[1]:AGC manual	0:auto enable		
	可作品 UX3eU3	Bit[i].AGC manuai	1:manual enable		
	bit[1:0]	Bit[0]:AEC manual	0:auto enable		
		bitloj. AEC manuai	1:manual enable		

下面两幅图为 final gain 和 gain step 在各个配置条件下的变化示意图。

图 3-1 Final gain 各种配置下的变化示意图

图 3-2 Gain step 各种配置的变化示意图