

Sistemas Digitais (SD)

Álgebra de Boole

$$\begin{array}{c|cccc}
 & y \\
 & 0 & 1 \\
\hline
 & 0 & 0 & 0 \\
\hline
 & 1 & 0 & 1
\end{array}$$

$$\frac{x}{y}$$
 $x \wedge y$ $\frac{x}{y}$

$$\frac{x}{y}$$
 $\frac{x}{y}$ $\frac{x}{y}$ $\frac{x}{y}$

Aula Anterior

Na aula anterior:

- ▶ Sistemas de numeração
 - Base 10
 - Base 2
 - Base 8 e 16
- Operações aritméticas básicas
- Mudança de sistema de numeração
- Códigos

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

ರ

Sumário

Tema da aula de hoje:

- ▶ Álgebra de Boole
 - Operações básicas
 - Propriedades
 - Portas Lógicas
- ▶ Leis de DeMorgan
 - Simplificação algébrica

Bibliografia:

- M. Mano, C. Kime: Secções 2.1 a 2.2
- G. Arroz, J. Monteiro, A. Oliveira: Secção 2.1

A lógica como um sistema binário:

► Em 1854, George Boole, Professor de Matemática da Universidade de Cork, Irlanda, publicou o livro

"An Investigation on The Laws of Thought, on which are founded the Mathematical Theories of Logic and Probabilities".

► Este trabalho, mais tarde refinado por Jevons (1869, 1890), Peirce (1880), Schröder (1890) e Huntingdon (1904), considera um sistema lógico binário, i.e., com dois objectos que se podem designar por:

sim-não, verdadeiro-falso, ou ainda 1-0

Operações Básicas:

- ▶ Boole define ainda três operações básicas: AND, OR, NOT.
- Considere-se duas variáveis booleanas: x,y ∈ {0,1},i.e., x,y ∈ {falso, verdadeiro}

AND (Produto lógico)			
X	Y	х · ч	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

O resultado é verdadeiro se X for verdadeiro **E** (AND) Y for verdadeiro

OR (Soma lógica)				
Х	Y X+Y			
0	0 0			
0	1 1			
1	0 1			
1	1	1		

O resultado é verdadeiro se X for verdadeiro **OU** (**OR**) Y for verdadeiro

NOT (Complemento)			
x x			
0 1			
1 0			

Negação (NOT) da afirmação.

Operações Básicas:

- ▶ Boole define ainda três operações básicas: AND, OR, NOT.
- ► Considere-se duas variáveis booleanas: x,y ∈ {0,1},

i.e., $x,y \in \{falso, verdadeiro\}$

O resultado é verdadeiro se X for verdadeiro **E** (AND) Y for verdadeiro

OR (Soma lógica)

O resultado é verdadeiro se X for verdadeiro **OU** (**OR**) Y for verdadeiro

NOT (Complemento)

Negação (NOT) da afirmação.

Álgebra de Boole binária:

► A extensão ao trabalho de George Boole por Jevons (1869, 1890), Peirce (1880), Schröder (1890) e Huntingdon (1904), define:

Uma **Álgebra de Boole binária** é um sistema algébrico $B_2 = (A=\{0,1\},..,+,$

- ¬) formado por um conjunto gerador A e por duas operações binárias, . ,
- +, designadas por produto lógico e soma lógica, e por uma operação designada por complemento, tal que:

Propriedade de Fecho: $\forall_{x,y \in A} (x \cdot y \in A) \land (x + y \in A) \land (\overline{x} \in A)$

O resultado da aplicação de uma ou mais operações básicas sobre o conjunto gerador A, é um valor binário pertencente ao espaço do conjunto gerador A.

Propriedades básicas:

Considere-se as variáveis booleanas: x,y,z ∈ A

Identidade	x + 0 = x	$x \cdot 1 = x$
Idempotência	x + x = x	$x \cdot x = x$
Aniquilação	x + 1 = 1	$x \cdot 0 = 0$
Opostos	$x + \overline{x} = 1$	$x \cdot \overline{x} = 0$
Comutatividade	x + y = y + x	$x \cdot y = y \cdot x$
Associatividade	x + (y + z) = (x + y) + z	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$
Distributividade	$x\cdot(y+z)=x\cdot y+x\cdot z$	$x + y \cdot z = (x + y) \cdot (x + z)$
DeMorgan	$\overline{x+y}=\overline{x}\cdot\overline{y}$	$\overline{x\cdot y}=\overline{x}+\overline{y}$
Adjacência	$x\cdot y+x\cdot \overline{y}=x$	$(x+y)\cdot(x+\overline{y})=x$

Princípio da dualidade:

▶ Qualquer expressão válida numa álgebra de Boole tem uma expressão dual, também válida nessa álgebra, que se obtém por troca do símbolo operatório + com o símbolo operatório • e do limite universal 0 com o limite universal 1.

Exemplo:

 $x \cdot 1 = x$ é a expressão dual de x + 0 = x

Outros teoremas:

Considere-se as variáveis booleanas: x,y,z ∈ A

Dupla negação		$\overline{\overline{x}} = x$
Absorção	$x\cdot(x+y)=x$	$x + x \cdot y = x$
Consenso	$x \cdot y + y \cdot z + \overline{x} \cdot z$ $=$ $x \cdot y + \overline{x} \cdot z$	$(x + y) \cdot (y + z) \cdot (\overline{x} + z)$ $=$ $(x + y) \cdot (\overline{x} + z)$
	$(x+y)\cdot(\overline{x}+z)$ $=$ $x\cdot z+\overline{x}\cdot y$	$ \begin{array}{c} x \cdot y + \overline{x} \cdot z \\ = \\ (x + z) \cdot (\overline{x} + y) \end{array} $
	$x \cdot y + x \cdot \overline{y} \cdot z = x \cdot y + x \cdot z$	$(x + y) \cdot (x + \overline{y} + z)$ $=$ $(x + y) \cdot (x + z)$

Demonstração das leis de DeMorgan

$$\overline{x+y} = \overline{x}.\overline{y}$$

$$\overline{x}.\overline{y} = \overline{x} + \overline{y}$$

Verificação por Tabelas da Verdade

x y		x + y	$\overline{x+y}$	
0	0	0	1	
0	1	1	0	
1	0	1	0	
1	1	1	0	

x	у	\overline{x}	\overline{y}	$\overline{x}\cdot \overline{y}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

Generalização para n variáveis:

$$\frac{\overline{x_1 + x_2 + \ldots + x_n} = \overline{x_1} \cdot \overline{x_2} \cdot \ldots \overline{x_n}}{\overline{x_1 \cdot x_1 \cdot \ldots x_n} = \overline{x_1} + \overline{x_2} + \ldots + \overline{x_n}}$$

Aplicação sucessiva das leis de DeMorgan

Exemplo:

$$\overline{a \cdot (b+z \cdot (x+\overline{a}))} = \overline{a} + \overline{(b+z \cdot (x+\overline{a}))}$$

$$= \overline{a} + (\overline{b} \cdot \overline{(z \cdot (x+\overline{a}))})$$

$$= \overline{a} + (\overline{b} \cdot \overline{(z+(x+\overline{a}))})$$

$$= \overline{a} + (\overline{b} \cdot \overline{(z+(x+\overline{a}))})$$

$$= \overline{a} + \overline{b} \cdot \overline{(z+x \cdot a)}$$

Portas Lógicas:

▶ Na prática os sistemas digitais baseiam-se na Álgebra de Boole, sendo implementados a partir de um conjunto de portas lógicas base.

Simbologia (IEC 617):

Nas tecnologias mais comuns, o circuito lógico distingue 2 intervalos distintos de tensão, os quais são interpretados como 'um' ou 'zero'

Função Booleana (exemplo):

$$f = \overline{a}b + c$$

 $\bar{a} b$ e c são os <u>termos</u> da função. \bar{a}, b e c são os <u>literais</u>.

Circuito Lógico:

Tabela da Verdade

а	b	С	ā b	f
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	0	1

Simplificação algébrica

► Exemplo 1:

Realização a 2 níveis (soma de produtos)

$$f = adx + a\overline{e}x + bdx + b\overline{e}x + cdx + c\overline{e}x + y$$

$$= (ad + a\overline{e} + bd + b\overline{e} + cd + c\overline{e}) x + y$$

$$= ((a + b + c) d + (a + b + c) \overline{e}) x + y$$

$$= ((a + b + c) (d + \overline{e})) x + y$$

$$= (a + b + c) \cdot (d + \overline{e}) \cdot x + y$$

Realização Multinível

Simplificação algébrica

► Exemplo 2:

$$f = \overline{x}yz + \overline{x}y\overline{z} + xz$$

$$f = \overline{x}yz + \overline{x}y\overline{z} + xz$$

$$= \overline{x}y(z + \overline{z}) + xz$$

$$= \overline{x}y.1 + xz$$

$$= \overline{x}y + xz$$

Simplificação algébrica:

- A simplificação e manipulação algébrica das funções lógicas tem vários benefícios:
 - Permite reduzir a complexidade de circuitos, o que leva a uma redução no número de erros na montagem do circuito.
 - Permite reduzir o tempo de propagação dos sinais ao longo do circuito de cálculo (ex.: processadores mais rápidos)
 - Permite reduzir a potência consumida (ex: processadores energeticamente mais eficientes)

PRÓXIMA AULA

Próxima Aula

Tema da Próxima Aula:

- ► Elementos de Tecnologia
 - Circuitos integrados
 - Famílias lógicas
- ▶ Funções lógicas
 - Circuitos com portas NAND
 - Circuitos com portas NOR

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás