Model-Based Learning

The other learning technic

Guillaume Lozenguez

@imt-nord-europe.fr

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

Model-based learning

Main Idea:

- ► Random trajectories (a lot)
- Until each transition is visited several times.
- Compute an optimal policy.

Potentially:

- Require driving exploration
- Only incomplete exploration can be performed2

But first the Model

Markov Descision Process

A framework for modeling stockastic evolution of system to control.

Bellman equation

Recurciv evaluation of states to compute exepected gains.

Solving algorythms

- ► Value iteration
- Policy iteration

Markov Decision Process

MDP: $\langle S, A, T, R \rangle$:

S: set of system's states

A : set of possible actions

 $T: S \times A \times S \rightarrow [0, 1]$: transitions

 $R: S \times A \rightarrow R: cost/rewards$

Optimal policy:

 π : a function returning the action to perform in each crossed states.

 π^* : the optimal policy maximizing the gains (expected cumulated rewards).

Choosing: building a policy of action

Example of policy in 421:

 π^{421} : Always target a 4-2-1 (keep only one **4**, one **2** and one **1**).

$$s$$
 $\pi^{421}(s)$ s $\pi^{421}(s)$ h-1-1-1 keep-roll-roll ...
h-2-1-1 keep-keep-roll h-4-2-1 keep-keep-keep
h-3-1-1 roll-keep-roll ...
h-4-1-1 keep-keep-roll h-6-6-5 roll-roll-roll
...

(Invariant over the horizon h)

Bellman Equation

State evaluation for a given policy π :

$$V^\pi(s) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') imes V^\pi(s')$$

with : $a = \pi(s)$ and $\gamma \in [0, 1]$ the discount factor (typically 0.99)

As a sum of gains:

- ightharpoonup The immediate reward: R(s,a).
- lacksquare The future gains $V^\pi(s')$, for all possible next states $s'\in S$,
- ightharpoonup proportionally to the probability to reach them $T(s,a,s^\prime)$

Solving MDP: Value Iteration

Input: an **MDP:** $\langle S, A, T, R \rangle$; precision error: ϵ ; discount factor: γ ; initial **V(s)**

- 1. Repeat until the *maximal delta < ϵ
 - For each state $s \in S$
 - Search the action a^* maximizing the Bellman Equation on s
 - Update $\pi(s)$ and **V()** by considering action a^*
 - Compute the delta value between the previous and the new **V(S)**

Output: an optimal π^* and associated V-values

Value-Iteration: 7^{th} iteration

Solving MDP: Policy Iteration

Input: an **MDP:** $\langle S, A, T, R \rangle$; precision error: ϵ ; discount factor: γ ; initial **V(s)**

- 1. Compute $\pi(s)$ according to V(s) , for each state $s \in S$
- 2. Repeat until $\pi(s)$ is stable:
 - Update V(s) with $\pi(s)$ at ϵ error, for each state $s \in S$
 - Update $\pi(s)$ according to V(s), for each state $s \in S$

Output: an optimal π^* and associated V-values

Ok now learn the model...

- Define the state-space (small but covering).
- Define the action-space.
- Explore the system:
 - Compute the average rewards R(s,a).
 - Compute all transition probability $T(s,a,s^\prime)$

Learn the transition

The transition function is the core object to learn.

It is a 3-dimention structure of floating point values (probabilities).

$$|S|^2 \times |A|$$
 values.

A simble game as **421** with **168** states and **8** actions would requires **225 792** values.

Luky for us, in application, most of the transitions are null (ie. imposible), and there are some similarity in the 'value flow'.

let try it on 421 game