Deep Learning on GPU Clusters

Bryan Catanzaro

Machine Learning

- ML runs many things these days
 - Ad placement / Product Recommendations
 - Web search / image search
 - Speech recognition / machine translation
 - Autonomous driving

Ads (i)

Shop T.J.Maxx® Online

Your Favorite Store Is Now Online! Shop & Save On Designer Brands. www.tjmaxx.tjx.com

Juicy Couture Handbags

Spring Handbags in Must Have Hues. Free Shipping on \$99 & Easy Returns www.lordandtaylor.com/Handbags

Overstock Clearance Sava un ta 00% an Hama

SPONSORED

Modern Bags for MacBooks

booqbags.com

10% off and FREE SHIPPING w/ pron **AR13**

Find the perfect house

zillow.com

You're not just look house, you're look place for your life t happen.

Warm Up to Discounts

statefarm.com

Get stoked! Do a D Double Check® ar

Machine learning in practice

"Mug" Cylinders; handles Machine Learning (Classifier)

Adam Coates

How does ML work?

Learning features

Can we learn "features" from data?

Learning features

 Deep learning: learn multiple stages of features to achieve end goal.

Progress in Al

Iteration latency gates progress

Fastest time from idea to tested model

Deep Learning brings special opportunities and challenges

Adam Coates

The need for scaling

- Dist-Belief [Le et al., ICML 2012]: Up to 1.7 billion parameter networks.
- Unsupervised learning algorithm with > 1 billion parameters able to discover "objects" in high-res images.

1000 machines for 1 week. (16000 cores.)

[Also: Dean et al., NIPS 2012]

What will the rest of us do??

- Millions of \$\$ hardware.
- Extensive engineering to handle node failures and network traffic.
- Hard to scale beyond data center.
 - ...if you had a data center.

Two ways to scale neural networks

- Simple solution: "data parallelism"
 - Parallelize over images in a batch.

- > Need to synchronize model across machines.
- Difficult to fit big models on GPUs.

Two ways to scale neural networks

- "Model parallelism"
 - Parallelize over neurons. (Relies on local connectivity.)

- > Scales to much larger models.
- > Much more frequent synchronization.

The network bottleneck

- On a typical Ethernet cluster:
 - Data parallelism:
 - Synchronize a 1B parameter model = 30 seconds.
 - Model parallelism:
 - Move 1MB of neurons for 100 images = **0.8 seconds**
 - Must do this for every layer.
 - Typically >>10 times slower than computation.
- Problem: communication makes distribution very inefficient for large neural nets.
 - How do we scale out efficiently??

COTS HPC Hardware

- Infiniband:
 - FDR Infiniband switch.
 - 1 network adapter per server.56 Gbps; microsecond latency.

- GTX 680 GPUs
 - 4 GPUs per server.
 - > 1 TFLOPS each for ideal workload.

Model parallelism in MPI

MPI starts a single process for each GPU.

Enables message passing, but this is surprisingly unnatural.

Model parallelism in MPI

MPI starts a single process for each GPU.

Enables message passing, but this is surprisingly unnatural.

HPC Software Infrastructure: Communication

- Moving neuron responses around is confusing.
 - Hide communication inside "distributed array".

HPC Software Infrastructure: Communication

- After some hidden communication, GPU 2 has all the input data it needs.
 - GPU code not much different from 1 GPU.

Results: Scaling

- Implemented 9-layer network from Le et al., 2012.
 - 3 stacks of sparse auto-encoder, pooling, LCN.
 - Compute "fine-tuning" gradient.

- Up to 11.2B parameter networks.
 - Update time similar to 185M parameter network on 1 GPU.

Results: Scaling

Up to 47x increase in throughput:

cuDNN

- Deep Neural Networks rely heavily on BLAS
 - Basic Linear Algebra Subroutines
- However, there are some kernels unique to DNNs
 - Such as convolutions
- cuDNN is a GPU library that provides these kernels
- Available at https://developer.nvidia.com/cudnn

Using Caffe with cuDNN

- Accelerate Caffe layer types by
 1.2 3x
- On average, 36% faster overall for training on Alexnet
- Integrated into Caffe dev branch
 - Official release soon

Overall AlexNet training time

Conclusion

- Deep Learning is increasingly important to Al
- HPC is key to Deep Learning

Interested in applying your HPC skills to AI?
 Talk to us!

bcatanzaro@baidu.com

