

Hadley Wickham and Garrett Grolemund (2016) R for Data Science, O'Reilly Media, Inc.

Part 2: Dr. Masatoshi Katabuchi, July 23
Plant Ecologist @ Xishuangbanna Tropical Botanical Garden

Part 3: Dr. Hyunseung Kang, July 30 Statistician @ University of Wisconsin-Madison

Let's tidy!

Hadley Wickham and Garrett Grolemund (2016) R for Data Science, O'Reilly Media, Inc.

Let's tidy your data!

But what is tidy data?

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

Exercise 1

Download the file "exercise_1.csv":

https://www.dropbox.com/s/68jloxnvdcblfx2/exercise 1.csv?dl=0

- 1. Explain why this data is untidy.
- 2. Rearrange the data frame to make it tidy.

Field	Treatment1	Treatment2	Treatment3
Field_A	124	15	274
Field_B	121	18	312
Field_C	110	25	290
Field_D	119	15	219
Field_E	68	18	241
Field_F	93	24	
Field_G	133	19	203

Let's tidy your data!

Non-tidy data

Field	Treatment_1	Treatment_2
Field_A	124	15
Field_B	121	18
Field_C	110	25

Tidy data

Field	Treatment	Nematode number
Field_A	Treatment_1	124
Field_B	Treatment_1	121
Field_C	Treatment_1	110
Field_A	Treatment_2	15
Field_B	Treatment_2	18
Field_C	Treatment_2	25

Other common mistakes

With comments / titles

	А	В	С	D	Е	F	G H
1			Experiment I	- harvested o	n July 3, 2021		
2	Treatment	Genotype	Block	Pi	Pf		
3	Treatment_A	genotype_1	B1	1000	5000		Comments:
4	Treatment_A	genotype_2	B1	1000	3500		Blah blah blah
5	Treatment_A	genotype_3	B1	1000	1500		
6	Treatment_B	genotype_1	B1	1000	4000		
7	Treatment_B	genotype_2	B1	1000	2500		
8	Treatment_B	genotype_3	B1	1000	1400		

No data entry in the first row / first column

	Α	В	С	D	Е	F
1	S					
2		Treatment	Genotype	Block	Pi	Pf
3		Treatment_A	genotype_1	B1	1000	5000
4		Treatment_A	genotype_2	B1	1000	3500
5		Treatment_A	genotype_3	B1	1000	1500
6		Treatment_B	genotype_1	B1	1000	4000
7		Treatment_B	genotype_2	B1	1000	2500
8		Treatment_B	genotype_3	B1	1000	1400

Variables are combined for one column

	Α	В	С	D
1	Treatment	Block	Pi	Pf
2	treatmentA_genotype1	B1	1000	5000
3	treatmentA_genotype2	B1	1000	3500
4	treatmentA_genotype3	B1	1000	1500
5	treatmentB_genotype1	B1	1000	4000
6	treatmentB_genotype2	B1	1000	2500
7	treatmentB_genotype3	B1	1000	1400

Why learn R?

- Free, open source, cross platform
- 10,000+ "packages"
- Works on many data types
- Produced high-quality graphics
- Reproducibility and repeatability

Introduction of R & R Studio

A popular software to write R scripts and interact with the R software

R Studio

https://www.r-

Tidyverse

Tidying data using {tidyr}

Let's tidy the data from the exercise 1 using {tidyr}!

Field	Treatment1	Treat	ment2	Treatment3	
Field_A	12	4	15	274	ļ [*]
Field_B	12	1	18	312	2
Field_C	11	0	25	290	
Field_D	11	9	15	219	
Field_E	6	8	18	241	
Field_F	9	3	24	206	5
Field_G	13	3	19	203	3
Field_H	5	8	20	244	1
Field_I	10	1	17	233	3
Field_J	13	8	17	227	7

Spreading

		MAN TELOP
Field	Treatment	Nematode number
Field_A	treatment_1	124
Field_B	treatment_1	121
Field_C	treatment_1	110
Field_D	treatment_1	119
Field_E	treatment_1	68
Field_F	treatment_1	93
Field_G	treatment_1	133
Field_H	treatment_1	58
Field_I	treatment_1	101
Field_J	treatment_1	138
Field_A	treatment_2	15
Field_B	treatment_2	18
Field_C	treatment_2	25
Field_D	treatment_2	15
Field_E	treatment_2	18
Field_F	treatment_2	24
Field_G	treatment_2	19
Field_H	treatment_2	20
Field_I	treatment_2	17
Field_J	treatment_2	17
Field_A	treatment_3	274
Field_B	treatment_3	312
Field C	treatment 3	290

gather()

- Use when column names are not names of variables, but values of a variable.

- Input:

data,key column (created from col names),values column (fill the key variable),A range of columns to gather

subid	Treatment	NematodeCount
	T1	124
	T1	121
	T1	110
	4 T1	119
	T1	68
	T1	93
	T1	133
	T1	58
	T1	101
1	T1	138
	T2	15
	2 T2	18
	3 T2	25
	T2	15
	T2	18
	6 T2	24
	7 T2	19
	T2	20

Key

Value

Demonstration

Tidying data using {tidyr}

```
gather_dat <- spread_dat %>%
gather(key=Treatment,
value=NematodeCount,
"nema_Treatment1":"nema_Treatment3")
gather_dat
```

Let's import your data to R

But before you import... set up a working directory

- Open Rstudio
- File > New project > New directory > Empty project
- Enter a name for this new folder
- Choose a convenient location
- Click "Create project"

Check which the working directory is: **getwd()**Set working directory: **setwd()**

But before you import... create a new R script

- File > New File > R script
- Save it in your project directory
- Look on the top left of the R Studio window to see where it's saved

Importing data

CSV file is probably the best

```
15 read.csv("exercise_1.csv")
```

Default package for importing csv file

```
18 library(readr)
19 read_csv("exercise_1.csv")
```

A function to read csv file

- Require {readr} package

Importing excel file is still possible but not common..

```
21 library(readxl)
22 read_excel("exercise_1.xlsx")
```

A function to read excel file

- Require {readxl} package

Exercise 2

- 1. Create a working directory and a new R script.
- 2. Import the file you tidied in the exercise 1 to R.

Data export

File type	Package	Import function	Export function	
CSV	Default	read.csv()	write.csv()	
CSV	readr	read_csv()	write_csv()	Part of {tidyverse}
Excel	readxl	read_excel()	-	Part of {tidyverse} Import only
Excel	writexl	-	write_excel()	Export only

Tidyverse

Let's install Tidyverse packages for next week session.

10 install.packages("Tidyverse")

R coding practices using {swirl}

```
10 install.packages("swirl")
11 library(swirl)
12 swirl()
```


To familiarize R, {swirl} is a great place to start!

Please install (swirl) and learn the basic R coding as well as data analysis.

Knowing basic codes becomes handy for the following sessions.

- 1: R Programming: The basics of programming in R
- 2: Regression Models: The basics of regression modeling in R
- 3: Statistical Inference: The basics of statistical inference in R
- 4: Exploratory Data Analysis: The basics of exploring data in R
- 5: Don't install anything for me. I'll do it myself.

See you next week!

Thanks to

Functional Programming by Sara Altman, Bill Behrman and Hadley Wickham

https://github.com/dcl-docs/prog

Introduction to Data Handling @TokyoR91 by Masatoshi Katabuchi

https://mattocci27.github.io/assets/TokyoR91/data handling.html#1

BeginnerR Special データの読み書き@TokyoR91 by Osamu Machida

https://docs.google.com/presentation/d/1XQk Gz9Jo660jADxQ78deas5LeRXejqn2z1yHlv2gLQ/edit#slide=id.gc7dee91765 1 10

Data Carpentry R basics by Tobin Magle

https://datacarpentry.org/R-ecology-lesson/

