Avaliação 1

Rafael Jordane de Souza Oliveira

Questão 5

Seja $X_1,...,X_n$ uma a.a.s. de tamanho n de uma população de Bernoulli com probabilidade de sucesso θ (onde $0<\theta<1$) e seja $\hat{\theta}n=\frac{1}{n}\sum_{i=1}^n X_i$ um estimador para θ .

a) Mostrando que $\hat{\theta}n$ é não viesado para θ para todo $n\geq 1$

Esperança de $\hat{\theta}_n$

A esperança do estimador $\hat{\theta}_n$ é dada por:

$$\mathbb{E}[\hat{\theta}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$$

Pela linearidade da esperança, podemos escrever:

$$\mathbb{E}[\hat{\theta}_n] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i]$$

Sendo a esperança de cada X_i igual a $\theta,$ temos:

$$\mathbb{E}[\hat{\theta}_n] = \frac{1}{n} \sum_{i=1}^n \theta$$

Como a soma possui n termos iguais a θ , obtemos:

$$\mathbb{E}[\hat{\theta}_n] = \theta$$

Viés de $\hat{\theta}_n$

O viés de um estimador $\hat{\theta}_n$ é definido como:

$$\mathrm{Vi\acute{e}s}(\hat{\boldsymbol{\theta}}_n) = \mathbb{E}[\hat{\boldsymbol{\theta}}_n] - \boldsymbol{\theta}$$

Substituindo $\mathbb{E}[\hat{\theta}_n]$ pela expressão obtida anteriormente:

$$Vi\acute{e}s(\hat{\theta}_n) = \theta - \theta = 0$$

Portanto, o viés de $\hat{\theta}_n$ é zero, o que significa que $\hat{\theta}_n$ é um **estimador não-viesado** para θ .

b) Mostrando que $\hat{\theta}_n$ é consistente para θ

Encontrando a Variância de $\hat{\theta}_n$:

$$Var[\hat{\theta_n}] = Var[\frac{1}{n} \sum_{i=1}^n X_i]$$

$$Var[\hat{\theta_n}] = \frac{1}{n^2} \sum_{i=1}^n Var[X_i]$$

Sendo a Variância de cada X_n a mesma e igual $Var[X] = \theta(1-\theta)$ ao somarmos essa variância n vezes teremos:

$$Var[\hat{\theta_n}] = \frac{n\theta(1-\theta)}{n^2}$$

$$Var[\hat{\theta_n}] = \frac{\theta(1-\theta)}{n}$$

Para convergência em probabilidade de $\hat{\theta_n}$ em θ podemos aplicar o teorema de Chebyshev, para qualquer $\epsilon \geq 1$:

$$P(|\hat{\theta}_n - \theta| \geq \epsilon) \leq \frac{\mathrm{Var}(\hat{\theta}_n)}{\epsilon^2} = \frac{\theta(1 - \theta)}{n\epsilon^2}.$$

Quando n cresce, $\frac{\theta(1-\theta)}{n\epsilon^2} \to 0$. Portanto:

$$\lim_{n\to\infty}P(|\hat{\theta}_n-\theta|\geq\epsilon)=0.$$

Logo, $\hat{\theta}_n$ converge em probabilidade para θ e portanto $\hat{\theta_n}$ é um estimador consistente para θ .

c) Mostrando que $\hat{\theta}_n$ converge em distribuição em $N(\theta, \frac{\theta(1-\theta)}{n})$

A CDA de $\hat{\theta}n$ é $F\hat{\theta}_n(x)=P(\hat{\theta}_n\leq x)$. Como $\hat{\theta}n=\frac{1}{n}\sum i=1^nX_i$ e os X_i são independentes e identicamente distribuídas com $\mathbb{E}[X_i]=\theta$ e $\mathrm{Var}(X_i)=\theta(1-\theta)$, a variância de $\hat{\theta}_n$ é $\mathrm{Var}(\hat{\theta}_n)=\frac{\theta(1-\theta)}{n}$. Para analisar a convergência, consideramos a transformação padronizada $Z_n=\sqrt{n}\frac{\hat{\theta}n-\theta}{\sqrt{\theta(1-\theta)}}$. Pelo Teorema Central do Limite, Z_n converge em distribuição para N(0,1), o que implica que $FZ_n(z)\to\Phi(z)$, onde $\Phi(z)$ é a CDA da distribuição normal padrão. Ao retornar à escala original de $\hat{\theta}_n$, temos

$$F_{\hat{\theta}_n}(x) = F_{Z_n}\left(\sqrt{n} \frac{x-\theta}{\sqrt{\theta(1-\theta)}}\right).$$

Quando $n \to \infty$, $F_{Z_n}(z)$ converge para $\Phi(z)$, resultando em

$$F_{\hat{\theta}_n}(x) \to \Phi\left(\sqrt{n} \frac{x-\theta}{\sqrt{\theta(1-\theta)}}\right).$$

Como Φ é a CDA da normal $N(\theta, \frac{\theta(1-\theta)}{n})$, conclui-se que $F_{\hat{\theta}_n}(x) \to F_X(x)$, onde $F_X(x)$ é a CDA da $N\left(\theta, \frac{\theta(1-\theta)}{n}\right)$. Portanto, $\hat{\theta}_n \overset{d}{\to} N\left(\theta, \frac{\theta(1-\theta)}{n}\right)$.

d) Escrevendo um algoritmo (ou pseudo-codigo) para simular a lei fraca dos grandes números de Bernoulli.

O pseudocódico pode ser visualizado a seguir:

Input: n_max (número máximo de observações), p (probabilidade de sucesso), (tolerância) Output: Frequência média das simulações e verificação da lei

- 1. Inicializar vetor S de tamanho n_max com zeros
- 2. Para n de 1 até n max faça:
 - a. Gerar n amostras de uma variável aleatória de Bernoulli com parâmetro p (cada amostra é 0 ou 1 com probabilidade 1-p e p, respectivamente)
 - b. Calcular a média das amostras: média n = soma(amostras) / n
 - c. Armazenar média n no vetor S na posição n
- 3. Plotar os valores de S (eixo y) contra n (eixo x) para observar a convergência
- 4. Verificar a tolerância: Para cada n, verificar se |S[n] p| <
- 5. Imprimir o menor n para o qual |S[n] p| <é mantido a partir de um certo ponto

e) Escrevendo um algoritmo (ou pseudo-codigo) para simular o teorema central do limite De Moivre-Laplace.

O pseudocódico pode ser visualizado a seguir:

Input: n (número de ensaios), p (probabilidade de sucesso), num_simulações (número de simulações) Output: Histograma das médias padronizadas e sobreposição da curva da normal padrão

- 1. Inicializar vetor Z de tamanho num_simulações com zeros
- 2. Para i de 1 até num simulações faça:
 - a. Gerar n amostras de uma variável aleatória de Bernoulli com parâmetro p
 - b. Calcular a soma dos sucessos: X = soma(amostras)
 - c. Calcular a padronização: Z[i] = (X np) / sqrt(np*(1-p))
- 3. Plotar histograma dos valores de Z
- 4. Sobrepor à plotagem a densidade da normal padrão (N(0, 1)) para verificar a convergência

f) Rodando o código para simular a lei fraca dos grandes números de Bernoulli.

Adaptando o algoritmo para a linguagem R teremos o seguinte código:

```
n_max <- 1000
p <- 0.5
epsilon <- 0.05
S <- numeric(n_max)

for (n in 1:n_max) {
   amostras <- rbinom(n, size = 1, prob = p)
   S[n] <- mean(amostras)
}

dentro_tolerancia <- abs(S - p) < epsilon
print(paste("Primeiro n onde a média fica dentro da tolerância:", which.max(dentro_tolerancia)</pre>
```

[1] "Primeiro n onde a média fica dentro da tolerância: 2"

Convergência da Média Amostral para p

O código simula a Lei Fraca dos Grandes Números, mostrando que a média amostral de variáveis Bernoulli com probabilidade p converge para p conforme o número de observações aumenta. Ele gera sucessivamente $n=1,2,...,n_{mx}$ amostras de Bernoulli, calcula a média amostral em cada caso e armazena os resultados em um vetor

S. Em seguida, verifica a partir de qual n a diferença entre a média amostral e p permanece dentro de uma tolerância ϵ , plotando a convergência das médias para p.

g) Rodando o código para simular o teorema central do limite De Moivre-Laplace.

Adaptando o algorítmo do exercício e) para a linguagem R temos:

```
n <- 100
p <- 0.5
num_sim <- 1000
Z <- numeric(num_sim)

for (i in 1:num_sim) {
   amostras <- rbinom(n, size = 1, prob = p)
   X <- sum(amostras)
   Z[i] <- (X - n * p) / sqrt(n * p * (1 - p))
}</pre>
```

```
hist(Z, breaks = 30, probability = TRUE, col = "lightblue",
    main = "Teorema Central do Limite",
    xlab = "Valor Padronizado", ylab = "Densidade")
curve(dnorm(x, mean = 0, sd = 1), col = "red", lwd = 2, add = TRUE)
```

Teorema Central do Limite

O código faz uma simulação do Teorema Central do Limite de De Moivre-Laplace, aproximando uma distribuição binomial B(n,p) por uma normal padrão N(0,1) após padronização. Ele realiza múltiplas simulações da soma de n variáveis Bernoulli com probabilidade p, padroniza as somas subtraindo a média teórica $n \cdot p$ e dividindo pelo desvio padrão teórico $\sqrt{n \cdot p \cdot (1-p)}$, e armazena os resultados. O histograma das variáveis padronizadas é comparado graficamente à densidade da normal padrão para verificar a aproximação.