# 计算机组成原理

2021春计算机组成原理19级456班

QQ群号: 745575324



扫一扫二维码,加入群聊。

顾崇林 计算机科学与技术学院 guchonglin@hit.edu.cn

## 第二章 计算机的运算方法

- 计算机中数的表示
  - 无符号数和有符号数
  - 定点表示和浮点表示
- 定点运算
- 浮点运算

# 无符号数

• 寄存器的位数反映无符号数的表示范围。





# 有符号数: 真值与机器数

#### 真值: 带符号的数

+ 0.1011或0.1001

-0.1011

+ 1100或1100

-1100

#### 机器数:符号数字化的数



- 注:以后非特殊说明,默认二进制数表示;
  - 二进制数位数不是8的倍数,只是为了讲解方便。

#### 原码表示法:整数

#### 带符号的绝对值表示

$$x = +1110$$
  $[x]_{\mathbb{F}} = 0$  , 1110 用 逗号 将符号位 和数值部分隔开  $x = -1110$   $[x]_{\mathbb{F}} = 1$  , 1110  $[x]_{\mathbb{F}} = 2^4 + 1110 = 1$  , 1110

$$[x]_{\mathbb{R}} = \begin{cases} 0, x & 2^{n} > x \ge 0 \\ 2^{n} - x & 0 \ge x > -2^{n} \end{cases}$$

## 原码表示法: 小数

$$x = +0.1101$$
  $[x]_{\mathbb{F}} = 0.1101$  用小数点将符号位和数值部分隔开  $x = -0.1101$   $[x]_{\mathbb{F}} = 1 - (-0.1101) = 1.1101$   $x = +0.1000000$   $[x]_{\mathbb{F}} = 0.1000000$  用小数点将符号位和数值部分隔开  $x = -0.10000000$   $[x]_{\mathbb{F}} = 1 - (-0.10000000) = 1.10000000$ 

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

# 举例

• 例1. 已知  $[x]_{原} = 1.0011$ ,求 x解: 由定义得  $x = 1 - [x]_{ହ} = 1 - 1.0011 = -0.0011$ 

• 例2. 已知  $[x]_{\mathbb{R}} = 1,1100$ ,求 x解: 由定义得  $x = 2^4 - [x]_{\mathbb{R}} = 10000 - 1,1100 = -1100$ 

#### 举例

- 例4. 求 x = 0 的原码
  解: 设 x = +0.0000 则 [+0.0000]<sub>原</sub> = 0.0000
  x = -0.0000 则 [-0.0000]<sub>原</sub> = 1.0000
  同理,对于整数 [+0]<sub>原</sub> = 0,0000
  [-0]<sub>原</sub> = 1,0000
  ∴ [+0]<sub>原</sub> ≠ [-0]<sub>原</sub>
  注意: x = 0 也是要分成小数和整数分别讨论的

#### 原码的优缺点

• 优点:简单、直观

•缺点:做加减运算时,会出现如下问题:

| 要求 | 数1 | 数2 | 实际操作 | 结果符号 |
|----|----|----|------|------|
| 减法 | 正  | 正  | 减法   | 可正可负 |
| 加法 | 正  | 负  | 减法   | 可正可负 |
| 加法 | 负  | 正  | 减法   | 可正可负 |
| 减法 | 负  | 负  | 减法   | 可正可负 |

- •能否只作加法?
  - 找到与负数等价的正数来代替这个负数,就可变减法为加法

## 补数表示法

- 小明从下午5点学习到凌晨3点,一共学了多少小时?
- 补的概念: 时钟以12为模
  - 逆时针: 5-2 = 3
  - 顺时针: 5+10 = 3 + 12



- 可见 -2 可用 +10 代替
  - 称 +10 是 -2 (以 12 为模)的补数
  - 记作  $-2 \equiv +10 \pmod{12}$ 同理  $-4 \equiv +8 \pmod{12}$  $-5 \equiv +7 \pmod{12}$

减法 — 加法

# 补数——续

- •结论(真值的绝对值小于模)
  - •一个负数加上"模"即得该负数的补数
  - •一个正数和一个负数互为补数时,绝对值之和即为模数

# 补码表示法: 二进制整数

$$[x]_{\dot{A}} = \begin{cases} 0, x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^n \pmod{2^{n+1}} \end{cases}$$
  
其中:  $x$  为真值,  $n$  为二进制整数的位数

$$x = -1011000$$
  
 $x$ 的补数=  $-1011000 + 2^7$   
 $x = +0101000$   
 $[x]_{\stackrel{}{N}} = 0,0101000$   
 $[x]_{\stackrel{}{N}} = 1,0101000$   
用 逗号 将符号位

和数值部分隔开

检验上式为什么是2n+1?

$$[x]_{\frac{1}{7}} = 2^{7+1} + (-1011000)$$

$$= 100000000$$

$$- 1011000$$

$$1,0101000$$

# 补码表示法: 二进制 (纯) 小数

$$[x]_{i} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \\$$
 其中:  $x$  为真值

$$x = +0.1110$$
  $x = -0.1100000$   $[x]_{\stackrel{}{\uparrow}} = 0.1110$   $[x]_{\stackrel{}{\uparrow}} = -0.1100000+2$   $= 10.0000000$   $= 0.1100000$   $= 1.0100000$  和数值部分隔开

## 求补码的快捷方式

当真值为负时,补码可用原码除符号位外每位取反,末位加1求得

# 举例:已知小数补码求真值

已知  $[x]_{i} = 1.0001$ ,求x。

或:  $[x]_{\text{}} \rightarrow [x]_{\text{}}$   $[x]_{\text{}} = 1.1111$ 

 $\therefore x = -0.1111$ 

当真值为负时,已知补码求原码的快捷方法:

补码除符号位外,每位取反,末位加1(需要记住)

补码除符号位外,末位减1,再每位取反

## 练习: 求下列真值的补码

真值

$$[x]_{\nmid h}$$

$$[x]_{\mathbb{R}}$$

$$x = -70 = -1000110$$
 1,0111010 1,1000110  $x = -0.1110$  1.0010 1.1110  $x = 0.00000$  [+ 0]  $= [-0]$  0.0000 1.0000  $= -0.0000$  1.0000 不能表示

由小数补码定义 
$$[x]_{\stackrel{}{\nmid}_{1}} = \begin{cases} x & 1 > x \geq 0 \\ 2+x & 0 > x \geq -1 \pmod{2} \end{cases}$$

$$[-1]_{36} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

#### 反码表示法: 二进制整数

$$x = +1101$$
  $x = -1101$   $[x]_{\overline{\mathbb{Q}}} = 0,1101$   $[x]_{\overline{\mathbb{Q}}} = (2^{4+1}-1)-1101$   $= 11111-1101$  用 逗号 将符号位  $= 1,0010$  和数值部分隔开

## 反码表示法: 二进制小数

$$x = -0.1010$$
  $[x]_{\overline{\mathbb{Q}}} = (2-2^{-4}) - 0.1010$   $= 1.1111 - 0.1010$  用 小数点 将符号位  $= 1.0101$  和数值部分隔开

# 例子:已知反码求真值,0的反码

• 已知  $[x]_{\overline{\mathbb{Q}}} = 1,1110$ ,求 x 解: 由定义得  $x = [x]_{\overline{\mathbb{Q}}} - (2^{4+1} - 1)$  = 1,1110 - 11111 = -0001

• 求 0 的反码

解: 设
$$x = +0.0000$$
,  $[+0.0000]_{\overline{\mathbb{Q}}} = 0.0000$   $x = -0.0000$ ,  $[-0.0000]_{\overline{\mathbb{Q}}} = 1.1111$  同理,对于整数  $[+0]_{\overline{\mathbb{Q}}} = 0,0000$ ,  $[-0]_{\overline{\mathbb{Q}}} = 1,1111$   $[+0]_{\overline{\mathbb{Q}}} \neq [-0]_{\overline{\mathbb{Q}}}$ 

## 三种机器数的小结

- •最高位为符号位, 书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- •对于正数,原码 = 补码 = 反码
- •对于负数,符号位为1,其数值部分
  - 原码除符号位外每位取反(反码) 末位加 1 -> 补码
- 当真值为 负 时,已知补码求原码的方法:
  - 补码除符号位外,每位取反,末位加 1
  - 补码除符号位外,末位减 1, 再每位取反

## 例子: 机器数的真值

• 设机器数字长为8位(其中1位为符号位);对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

| 二进制代码    | 无符号数       | 原码对应 | 补码对应 | 反码对应 |
|----------|------------|------|------|------|
|          | 对应的真值      | 的真值  | 的真值  | 的真值  |
| 00000000 | 0          | +0   | ±0   | +0   |
| 00000001 | 1          | +1   | +1   | +1   |
| 00000010 | 2          | +2   | +2   | +2   |
| 01111111 | :<br>127   | ÷127 | +127 | ÷127 |
| 10000000 | 128        | -0   | -128 | -127 |
| 10000001 | 129        | -1   | -127 | -126 |
| :        | <b>253</b> | :    | :    | :    |
| 11111101 |            | -125 | -3   | -2   |
| 11111110 | 254        | -126 | -2   | -1   |
| 11111111 | 255        | -127 | -1   | -0   |

例:已知 $[y]_{i}$ ,求 $[-y]_{i}$ 

解: 设 
$$[y]_{\stackrel{}{\Rightarrow}} = y_0 \cdot y_1 y_2 \cdots y_n$$
  
 $y = 0 \cdot y_1 y_2 \cdots y_n$   
 $-y = -0 \cdot y_1 y_2 \cdots y_n$   
 $[-y]_{\stackrel{}{\Rightarrow}} = 1 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$   

$$[y]_{\stackrel{}{\Rightarrow}} = 1 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$$

$$y = -(0 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n})$$

$$-y = 0 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$$

$$[-y]_{\stackrel{}{\Rightarrow}} = 0 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$$

[y]<sub>补</sub>连同符号位在内, 每位取反,末位加1, 即得[-y]<sub>补</sub>

## 移码表示法

• 补码表示很难直接判断其真值大小

| 如十进制         | 二进制                                     | 补码                               |  |
|--------------|-----------------------------------------|----------------------------------|--|
| x = +21      | +10101                                  | 0,10101<br>1,01011<br>大          |  |
| x = -21      | -10101                                  | 1,01011 大                        |  |
| x = +31      | +11111                                  | 0,11111<br>1,00001<br>大          |  |
| x = -31      | -11111                                  | 1,00001 大                        |  |
| 以上 $x + 2^5$ | +10101 + 10                             | 00000 = 110101<br>00000 = 001011 |  |
|              | -10101 + 10                             | 00000 = 001011                   |  |
|              | $+11111 + 100000 = 111111 $ $\pm$ $\pm$ |                                  |  |
|              | -11111 + 10                             | 00000 = 000001                   |  |

## 移码表示法: 二进制整数

• 定义

$$[x]_{38} = 2^n + x (2^n > x \ge -2^n)$$

其中: x 为真值, n 为 整数的位数

• 移码在数轴上的表示

x = 10100

• 例:



$$[x]_8 = 2^5 + 10100 = 1,10100$$
  
 $x = -10100$  用 逗号 将符号位  
和数值位隔开

$$[x]_{8} = 2^5 - 10100 = 0.01100$$

# 移码和补码的比较

设 
$$x = +1100100$$
  $[x]_{8} = 2^{7} + 1100100 = 1,1100100$   $[x]_{1} = 0,1100100$  设  $x = -1100100$   $[x]_{8} = 2^{7} + (-1100100) = 0,0011100$   $[x]_{1} = 2^{7+1} - 1100100 = 1,0011100$  补码与移码只美一个符号位

# 真值、补码和移码的对照表

| 真值 x (n=5)                                           | $[x]_{ eqh}$                                                                 | [x] <sub>移</sub>                                              | [x] <sub>移</sub> 对应的<br>十进制整数 |
|------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|
| -100000<br>-11111<br>-11110<br>:<br>-00001<br>±00000 | 100000<br>100001<br>100010<br>:<br>111111<br>000000                          | 000000<br>000001<br>000010<br>:<br>011111<br>100000<br>100001 | 0<br>1<br>2<br>:<br>31<br>32  |
| + 00001<br>+ 00010<br>:<br>+ 11110<br>+ 11111        | $egin{array}{cccc} 000001 \ 000010 \ & \vdots \ 011110 \ 011111 \end{array}$ | 100001<br>100010<br>:<br>1111110<br>111111                    | 33<br>34<br>:<br>62<br>63     |

#### 移码的特点

续前表,
$$n=5$$

$$[+0]_{8} = 2^{5} + 0 = 1,00000$$
 $[-0]_{8} = 2^{5} - 0 = 1,00000$ 
 $[+0]_{8} = [-0]_{8}$ 

最小真值  $-2^5 = -100000$ 对应的移码为  $2^5 - 100000 = 000000$ 最小真值的移码为全 0

用移码表示浮点数的阶码,便于判断浮点数的阶码大小

#### 第二章

- 计算机中数的表示
  - 无符号数和有符号数
  - 定点表示和浮点表示
- 定点运算
- 浮点运算

#### 定点表示

- 小数点按约定方式标出
- 定点表示



定点机 小数定点机 整数定点机 原码 
$$-(1-2^{-n}) \sim +(1-2^{-n})$$
  $-(2^n-1) \sim +(2^n-1)$  补码  $-1 \sim +(1-2^{-n})$   $-2^n \sim +(2^n-1)$  反码  $-(1-2^{-n}) \sim +(1-2^{-n})$   $-(2^n-1) \sim +(2^n-1)$ 

#### 浮点表示

```
N = S \times r^{j} 浮点数的一般形式
 S 尾数 i 阶码 r 基数 (基值)
 计算机中 r 取 2、4、8、16 等
                               二进制表示
 当 r=2 N=11.0101
            ✓=0.110101×2<sup>10</sup>规格化数
              = 1.10101 \times 2^{1}
              = 1101.01 \times 2^{-10}
            \checkmark = 0.00110101 \times 2^{100}
计算机中 S 小数、可正可负
          i 整数、可正可负
```

# 浮点数的表示形式



- $S_{\rm f}$  代表浮点数的符号
- n
  其位数反映浮点数的精度
- m 其位数反映浮点数的表示范围
- j<sub>f</sub> 和 m 共同表示小数点的实际位置

#### 浮点数的表示范围



#### 练习

• 设机器数字长为 24 位, 欲表示±3万的十进制数, 试问 在保证数的最大精度的前提下, 除阶符、数符各 取1 位外, 阶码、尾数各取几位?

解: 
$$2^{14} = 16384$$
  $2^{15} = 32768$ 

· 15 位二进制数可反映 ±3 万之间的十进制数

$$2^{15}$$
 ×  $0.$  × × × ··· × × × ×  $m = 4$ ,  $5$ ,  $6$ , ···

满足 最大精度 可取 m = 4, n = 18

• 浮点数的规格化形式

r=2 尾数最高位为 1

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高 3 位不全为 0 规格化形式不同

• 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位,阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

• 例13. 设 m = 4, n = 10, r = 2, 求尾数规格化后的浮点数表示范围(阶码与尾数都是**原码**表示)

•例14.将 $+\frac{19}{128}$ 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设
$$x = + \frac{19}{128}$$

二进制形式 x = 0.0010011

定点表示 x = 0.0010011000

浮点规格化形式  $x = 0.1001100000 \times 2^{-10}$ 

定点机中  $[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{Q}} = 0.0010011000$ 

浮点机中  $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$ 

 $[x]_{3} = 1, 1110; 0.1001100000$ 

 $[x]_{\mathbf{x}} = 1, 1101; 0.1001100000$ 

•例15.将-58表示成二进制定点数和浮点数,并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

解: 设x = -58

二进制形式

x = -111010

定点表示

x = -0000111010

浮点规格化形式  $x = -(0.1110100000) \times 2^{110}$ 

#### 定点机中

#### 浮点机中

 $[x]_{\text{ff}} = 1,0000111010$ 

 $[x]_{\mathbb{R}} = 0,0110; 1.1110100000$ 

 $[x]_{36} = 1, 1111000110$ 

 $[x]_{\nmid k} = 0,0110; 1.0001100000$ 

 $[x]_{\overline{\bowtie}} = 1, 1111000101$ 

 $[x]_{\overline{\bowtie}} = 0,0110; 1.0001011111$ 

 $[x]_{\text{mb}, \text{k}} = 1,0110; 1.0001100000$ 

•例16. 写出对应下图所示的浮点数的补码形式。设 n = 10, m = 4, 阶符、数符各取1位。



## 机器零

- 当浮点数尾数为 0 时,不论其阶码为何值,按机器零处理
- 当浮点数阶码小于它所表示的最小数时, 按机器零处理

如 m = 4 n = 10 当阶码和尾数都用补码表示时,机器零为  $\times, \times \times \times;$  0.00  $\cdots$  0 或者阶码 < -16,按照机器零处理

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ··· 0

有利于机器中"判0"电路的实现

## IEEE 754 标准



尾数为规格化表示

非"0"的有效位最高位为"1"(隐含)

|      | 符号位 S | 阶码 | 尾数 | 总位数 |
|------|-------|----|----|-----|
| 短实数  | 1     | 8  | 23 | 32  |
| 长实数  | 1     | 11 | 52 | 64  |
| 临时实数 | 1     | 15 | 64 | 80  |

# IEEE 754浮点数标准

• 单精度 (32-bit)

| 31 | 30 | 29 | 28 | 27  | 26              | 25  | 24 | 23 | 22 ~ 0      |
|----|----|----|----|-----|-----------------|-----|----|----|-------------|
| S  |    | 8  | 位指 | 数(: | 无符 <sup>-</sup> | 号数) |    |    | 23位尾数(无符号数) |

• 双精度 (64-bit)

| 63 | 62 | 61 | 60 | 59 | 58  | 57  | 56  | 55 | 54 | 53 | 52 | 51~0        |
|----|----|----|----|----|-----|-----|-----|----|----|----|----|-------------|
| S  |    |    |    | 11 | 位指数 | 女(无 | 符号数 | ζ) |    |    |    | 52位尾数(无符号数) |

# IEEE 754浮点数: 单精度为例

| 31           | 30 | 29 | 28 | 27 | 26 | 25  | 24          | 23 | 22  | 21 | 20 | 19 | 18 | 17 | 16 |
|--------------|----|----|----|----|----|-----|-------------|----|-----|----|----|----|----|----|----|
| s 8位指数(无符号数) |    |    |    |    |    |     | 23位尾数(无符号数) |    |     |    |    |    |    |    |    |
| 15           | 14 | 13 | 12 | 11 | 10 | 9   | 8           | 7  | 6   | 5  | 4  | 3  | 2  | 1  | 0  |
|              |    |    |    |    | 23 | 3位尾 | 数(          | 无符 | 号数) | )  |    |    |    |    |    |

| 指数       | 尾数 | 表示对象        | 换算方法                                                                                                               |
|----------|----|-------------|--------------------------------------------------------------------------------------------------------------------|
| 0        | 0  | 0           | 规定 (符号位不同, 存在+0.0和-0.0)                                                                                            |
| 0        | 非0 | 正负非规格化<br>数 | 正负非规格化数 = <b>(-1)</b> <sup>S</sup> * <b>(尾数<sub>2</sub>)</b> * <b>2</b> <sup>(0 - 126)</sup><br>(S代表符号位,1为负数,0为正数) |
| [1: 254] | 任意 | 正负浮点数       | 正负浮点数 = (-1) <sup>S</sup> * (1 + 尾数 <sub>2</sub> ) * 2 <sup>(指数 - 127)</sup>                                       |
| 255      | 0  | 正负无穷 (inf)  | 规定                                                                                                                 |
| 255      | 非零 | NaN         | 规定                                                                                                                 |

## IEEE 754浮点数: 正负浮点数

- 正负浮点数 = (-1)<sup>S</sup> \* (1 + 尾数<sub>9</sub>) \* 2<sup>(指数 127)</sup>
- 尾数前加一?
  - 因为规格化二进制数,小数点前要求是1,这个1称为**前导数**。为了打包更多的位到数中,就在二进制表示中省略了前导数,默认小数点前有1。
  - 有效位数: 隐含的1加上尾数共有多少位。对单精度来说,有效位数是 24 位(隐含的1和 23 位尾数);对双精度来说,是 53 位(1 + 52)。
  - 由于 0 (和非规格化数)没有前导数,所以被赋予特殊的指数 0,硬件不会给它附加 1

| 指数       | 尾数 | 表示对象        | 换算方法                                                                                                                 |
|----------|----|-------------|----------------------------------------------------------------------------------------------------------------------|
| 0        | 0  | 0           | 规定                                                                                                                   |
| 0        | 非0 | 正负非规格化<br>数 | 正负非规格化数 = <b>(-1)</b> <sup>S</sup> * <b>(尾数<sub>2</sub>)</b> * <b>2</b> <sup>(0</sup> - 126)<br>(S代表符号位, 1为负数, 0为正数) |
| [1: 254] | 任意 | 正负浮点数       | 正负浮点数 = (-1) <sup>S</sup> * (1 + 尾数 <sub>2</sub> ) * 2 <sup>(指数 - 127)</sup>                                         |
| 255      | 0  | 正负无穷 (inf)  | 规定                                                                                                                   |
| 255      | 非零 | NaN         | 规定                                                                                                                   |

# IEEE 754浮点数: 正负浮点数

- 正负浮点数 = (-1)<sup>S</sup> \* (1 + 尾数<sub>9</sub>) \* 2<sup>(指数 127)</sup>
- 指数 127?
  - 使用**移码的思想**。二进制表示中的指数部分是**原码**,可以直接进行大小比较。如果两个数的**符号相同**,那么具有**更大二进制指数的数就更大**。
  - 对于真值而言, 其实际的"指数"范围: [1-127: 254-127] = [-126: 127]

| 指数       | 尾数 | 表示对象        | 换算方法                                                                                                               |
|----------|----|-------------|--------------------------------------------------------------------------------------------------------------------|
| 0        | 0  | 0           | 规定                                                                                                                 |
| 0        | 非0 | 正负非规格化<br>数 | 正负非规格化数 = <b>(-1)</b> <sup>S</sup> * <b>(尾数<sub>2</sub>)</b> * <b>2</b> <sup>(0 - 126)</sup><br>(S代表符号位,1为负数,0为正数) |
| [1: 254] | 任意 | 正负浮点数       | 正负浮点数 = (-1) <sup>S</sup> * (1 + 尾数 <sub>2</sub> ) * 2 <sup>(指数 - 127)</sup>                                       |
| 255      | 0  | 正负无穷 (inf)  | 规定                                                                                                                 |
| 255      | 非零 | NaN         | 规定                                                                                                                 |

### IEEE 754浮点数: 正负非规格化数

- 正负非规格化数 = (-1)<sup>S</sup> \* (尾数<sub>2</sub>) \* 2<sup>(0 126)</sup>
- 什么是非规格化数?
  - 规格化数: 科学计数法中整数部分没有前导 0 的数称为规格化数;
  - 非规格化数:整数部分前导为 0 的数
- 非规格化数的绝对值比浮点数绝对值更小
  - 对于正负浮点数来说,若二进制指数部分为1,则真值指数部分为 -126,和非规格化数相同。但浮点数尾数有前导1,导致浮点数绝对值更大。

| 指数       | 尾数 | 表示对象        | 换算方法                                                                                                            |
|----------|----|-------------|-----------------------------------------------------------------------------------------------------------------|
| 0        | 0  | 0           | 规定                                                                                                              |
| 0        | 非0 | 正负非规格化<br>数 | 正负非规格化数 = <b>(-1)</b> <sup>S</sup> * <b>(尾数<sub>2</sub>)</b> * <b>2</b> <sup>(0 - 126)</sup> (S代表符号位,1为负数,0为正数) |
| [1: 254] | 任意 | 正负浮点数       | 正负浮点数 = (-1) <sup>S</sup> * (1 + 尾数 <sub>2</sub> ) * 2 <sup>(指数 - 127)</sup>                                    |
| 255      | 0  | 正负无穷 (inf)  | 规定                                                                                                              |
| 255      | 非零 | NaN         | 规定                                                                                                              |

### IEEE 754浮点数: 正负非规格化数

- 正负浮点数 =  $(-1)^S * (1 + 尾数_2) * 2^{(指数 127)}$
- 正负非规格化数 = (-1)<sup>S</sup> \* (尾数<sub>2</sub>) \* 2<sup>(0-126)</sup>

最小正浮点数: 
$$S_2 = (1 + 0_2) * 2^{(1-127)} = 2^{-126}$$

第二小正浮点数:  $S_1 = (1 + 0.0...01_2) * 2^{(1-127)} = 2^{-126} + 2^{-149}$ 



最大非规格化数:  $S_3=0.1...11_2*2^{(0-126)}=(1-2^{-23})*2^{-126}=2^{-126}-2^{-149}$ 

•••••

最小非规格化正数:  $S_4=0.0...01_2*2^{(0-126)}=2^{-23}*2^{-126}=2^{-149}$ 

### IEEE 754浮点数: 真值转二进制

- 例题
  - 将十进制 -0.75 转为单精度 IEEE 754格式二进制
- 解

根据十进制小数转二进制小数算法:  $-0.75_{10} = -0.11_2$  规格化:  $-0.11 = -1.1 * 2^{-1}$ ,能够规格化,说明是正负浮点数表示  $-1.1 * 2^{-1} = (-1)^S * (1 + 尾数_2) * 2^{(fat)} = (-1)^T * (1 + 0.1_2) * 2^{(126 - 127)}$ 

符号位: 1; 指数部分: 126; 尾数部分: 0.12

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

IEEE754相关网址: https://www.h-schmidt.net/FloatConverter/IEEE754.html

### IEEE 754浮点数: 二进制转真值

#### • 例题

• 将二进制IEEE754浮点数表示转换为十进制浮点数(空白为0)

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| 0  |    |    |    |    |    |    |    |    |    |    |    |    |    | 0  |    |

#### • 解

符号位为1,指数字段为129,尾数字段为2<sup>-2</sup> = 0.25。是浮点数  $(-1)^S*(1+尾数_2)*2^{(129-127)}=(-1)^1*(1+0.25)*2^{(129-127)}=-1*1.25*2^2$  = -5.0

# 第二章

- 计算机中数的表示
- 定点运算
- 浮点运算

### 移位运算

• 移位的意义

15.m = 1500.cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

• 在计算机中,移位与加减配合,能够实现乘除运算

# 算术移位规则(重要)

#### 符号位不变

| 真值         | 码制           | 添补代码 |
|------------|--------------|------|
| 正数         | 原码、补码、反码     | 0    |
|            | 原码           | 0    |
| 负数         | - <b>≿</b> \ | 左移添0 |
| <b>火</b> 数 | 补 码          | 右移添1 |
|            | 反 码          | 1    |

•例17. 设机器数字长为 8 位(含1位符号位),写出 **A** = +26 时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解: 
$$A = +26 = +11010$$
 则  $[A]_{\mathbb{F}} = [A]_{\mathbb{H}} = [A]_{\mathbb{F}} = \mathbf{0,0011010}$ 

| 移位操作 | 机器数 $[A]_{\mathbb{F}}=[A]_{\mathbb{F}}$ | 对应的真值 |
|------|-----------------------------------------|-------|
| 移位前  | 0,0011010                               | +26   |
| 左移一位 | 0,0110100                               | +52   |
| 左移两位 | 0,1101000                               | +104  |
| 右移一位 | 0,0001101                               | +13   |
| 右移两位 | 0,0000110                               | +6    |

•例18. 设机器数字长为 8 位(含1位符号位),写出 **A** = -26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解: 
$$A = -26 = -11010$$

#### 原码

| 移位操作 | 机器数       | 对应的真值      |
|------|-----------|------------|
| 移位前  | 1,0011010 | <b>-26</b> |
| 左移一位 | 1,0110100 | - 52       |
| 左移两位 | 1,1101000 | - 104      |
| 右移一位 | 1,0001101 | -13        |
| 右移两位 | 1,0000110 | -6         |

#### 补码

| 移位操作 | 机器数       | 对应的真值      |
|------|-----------|------------|
| 移位前  | 1,1100110 | <b>-26</b> |
| 左移一位 | 1,1001100 | - 52       |
| 左移两位 | 1,0011000 | - 104      |
| 右移一位 | 1,1110011 | -13        |
| 右移两位 | 1,1111001 | <b>-7</b>  |

### 反码

| 移位操作 | 机器数       | 对应的真值       |
|------|-----------|-------------|
| 移位前  | 1,1100101 | <b>- 26</b> |
| 左移一位 | 1,1001011 | - 52        |
| 左移两位 | 1,0010111 | - 104       |
| 右移一位 | 1,1110010 | - 13        |
| 右移两位 | 1,1111001 | -6          |

### 3. 算术移位的硬件实现

6.3



## 算术移位和逻辑移位的区别

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110 逻辑右移 01011001

算术左移 00100110 算术右移 11011001 (补码)

10110010

高位1移丢



### 加减法运算

• 补码加减运算公式

(1) 加法

整数 
$$[A]_{\nmid h} + [B]_{\nmid h} = [A+B]_{\nmid h} \pmod{2^{n+1}}$$

小数 
$$[A]_{\stackrel{>}{\nmid} \downarrow} + [B]_{\stackrel{>}{\nmid} \downarrow} = [A+B]_{\stackrel{>}{\nmid} \downarrow} \pmod{2}$$

(2) 减法

$$A-B = A+(-B)$$

整数 
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2^{n+1}}$$

小数 
$$[A - B]_{\dot{\uparrow}\dot{\uparrow}} = [A + (-B)]_{\dot{\uparrow}\dot{\uparrow}} = [A]_{\dot{\uparrow}\dot{\uparrow}} + [-B]_{\dot{\uparrow}\dot{\uparrow}} \pmod{2}$$

补码加减,连同符号位一起相加,符号位产生的进位自然丢掉

• 例 19. 设 
$$A = 0.1011$$
,  $B = -0.0101$ , 求  $[A+B]_{\stackrel{}{N}}$  解:  $[A]_{\stackrel{}{N}} = 0.1011$  验证  $+[B]_{\stackrel{}{N}} = 1.1011$   $-0.0101$   $[A]_{\stackrel{}{N}} + [B]_{\stackrel{}{N}} = 10.0110 = [A+B]_{\stackrel{}{N}}$ 

A + B = 0.0110

• 例21. 设机器数字长为 8 位(含 1 位符号位)且 A =15, B = 24, 用补码求 A - B解: A = 15 = 0001111B = 24 = 0011000 $[A]_{k} = 0,0001111$   $[B]_{k} = 0,0011000$  $+ [-B]_{\stackrel{>}{\approx}} = 1,1101000$  $[A]_{\nmid h} + [-B]_{\nmid h} = 1,1110111 = [A-B]_{\nmid h}$ A - B = -1001 = -9练习1 设 $x = \frac{9}{16}$   $y = \frac{11}{16}$  ,用补码求x+y $x + y = -0.1100 = -\frac{12}{16}$  错 练习2 设机器数字长为8位(含1位符号位) 且 A = -97, B = +41, 用补码求 A - BA - B = +1110110 = +118 错

### 一位符号位判溢出

- 一位符号位判溢出
  - ·参加操作的两个数(减法时即为被减数和"求补"以后的减数) 符号相同,其结果的符号与原操作数的符号不同,即为溢出
- 硬件实现
  - •最高有效位的进位⊕符号位的进位 = 1, 溢出

### 两位符号位判溢出

$$[x]_{\nmid |\cdot|} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda | \cdot} + [y]_{\lambda | \cdot} = [x + y]_{\lambda | \cdot} \pmod{4}$$

$$[x-y]_{\not=h'} = [x]_{\not=h'} + [-y]_{\not=h'} \pmod{4}$$

最高符号位 代表其 真正的符号

## 乘法运算

• 分析笔算乘法

$$A \times B = \frac{0.1101}{\times 0.1011}$$

$$\frac{1101}{1101}$$

$$\frac{101}{0.10001111}$$

$$A = -0.1101$$
  $B = 0.1011$ 

$$A \times B = -0.10001111$$
 乘积的符号心算求得

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

#### • 笔算乘法改进

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1}\{A + 2^{-1}[0 \cdot A + 2^{-1}(A + 2^{-1}(A + 0))]\}$$
第一步 被乘数 $A + 0$ 
①
第二步 右移一位,得新的部分积
②
第三步 部分积+被乘数
:
第八步 右移一位,得结果

### • 改进后的笔算乘法过程(竖式)

| 部分积      | 乘数              | 说明           |
|----------|-----------------|--------------|
| 0.0000   | 1011            | 初态,部分积=0     |
| +0.1101  | Ш               | 乘数为1,加被乘数    |
| 0.1101   |                 |              |
| 0.0110   | 1101            | →1,形成新的部分积   |
| +0.1101  | =               | 乘数为1,加被乘数    |
| 1.0011   | 1               |              |
| 0.1001   | $1 \ 1 \ 1 \ 0$ | → 1, 形成新的部分积 |
| + 0.0000 |                 | 乘数为0,加0      |
| 0.1001   | 11              |              |
| 0.0100   | 1111            | → 1, 形成新的部分积 |
| +0.1101  | Ш               | 乘数为1,加被乘数    |
| 1.0001   | 111             |              |
| 0.1000   | 1111            | →1,得结果       |

### 小结

- 乘法运算可用 加和移位 实现
  - n = 4, 加 4 次, 移 4 次
- •由乘数的末位决定被乘数是否与原部分积相加,然后->1 位形成新的部分积,同时乘数->1位(末位移丢),空出 高位存放部分积的低位。

•被乘数只与部分积的高位相加

硬件: 3个寄存器,具有移位功能

1个全加器

### 原码乘法

• 原码一位乘运算规则

以小数为例 设
$$[x]_{\mathbb{R}} = x_0. x_1 x_2 \cdots x_n$$
 
$$[y]_{\mathbb{R}} = y_0. y_1 y_2 \cdots y_n$$
 
$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0).(0. x_1 x_2 \cdots x_n)(0. y_1 y_2 \cdots y_n)$$
 
$$= (x_0 \oplus y_0). x^* y^*$$
 式中  $x^* = 0. x_1 x_2 \cdots x_n$  为  $x$  的绝对值 
$$y^* = 0. y_1 y_2 \cdots y_n$$
 为  $y$  的绝对值

乘积的符号位单独处理  $x_0 \oplus y_0$  数值部分为绝对值相乘  $x^* \cdot y^*$ 

### 原码一位乘递推公式

$$x^* \cdot y^* = x^* (0.y_1 y_2 \dots y_n)$$

$$= x^* (y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n})$$

$$= 2^{-1} (y_1 x^* + 2^{-1} (y_2 x^* + \dots 2^{-1} (y_n x^* + 0) \dots))$$

$$z_0 = 0$$

$$z_1 = 2^{-1} (y_n x^* + z_0)$$

$$z_2 = 2^{-1} (y_n x^* + z_1)$$

$$\vdots$$

$$z_n = 2^{-1} (y_1 x^* + z_{n-1})$$

•例21. 已知 x = -0.1110, y = 0.1101, 求 $[x \times y]_{\mathbb{R}}$ 

解: 第1步: 写出原码、绝对值和符号位

$$[x]_{\mathbb{R}} = 1.1110$$
, $x^* = 0.1110$ (为绝对值), $x_0 = 1$ 

$$[y]_{\mathbb{R}} = 0.1101$$
,  $y^* = 0.1101$  (为绝对值),  $y_0 = 0$ 

第2步: x\*• y\*计算过程,见下页PPT

# 第2步: x\*· y\*计算过程

| 部分积                                     | 乘数                             | 说 明                         |
|-----------------------------------------|--------------------------------|-----------------------------|
| 0.0000                                  | 1101                           | 部分积 初态 $z_0 = 0$            |
| + 0.1110                                |                                | + x*                        |
| 逻辑右移 0.1110                             |                                |                             |
| 这两石砂 0.0111                             | $0 \; 1 \; 1 \; \underline{0}$ | <b>→1</b> ,得 z <sub>1</sub> |
| + 0.0000                                | =                              | + 0                         |
| 逻辑右移 0.0111                             | 0                              |                             |
| 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1011                           | →1, 得 z <sub>2</sub> + x*   |
| + 0.1110                                |                                | $+x^*$                      |
| 1.0001                                  | 10                             |                             |
| 逻辑右移 0.1000                             | $110\underline{1}$             | →1, 得 z <sub>3</sub> + x*   |
| + 0.1110                                |                                | + x*                        |
| 四根 1.0110                               | 110                            |                             |
| 逻辑右移 0.1011                             | 0110                           | →1, 得 z <sub>4</sub>        |

### •第3步: 计算结果

- ① 乘积的符号位  $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则 
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点 绝对值运算 用移位的次数判断乘法是否结束 逻辑移位

### 补码乘法

• 补码一位乘运算规则

以小数为例 设被乘数  $[x]_{i} = x_0 \cdot x_1 x_2 \cdot \cdot \cdot \cdot x_n$  乘数  $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot \cdot y_n$ 

- ①被乘数任意,乘数为正同原码乘但加和移位按补码规则运算乘积的符号自然形成
- ② 被乘数任意,乘数为负 乘数[y]<sub>补</sub>,去掉符号位,操作同① 最后加[-x]<sub>补</sub>,校正

## Booth 算法(被乘数、乘数符号任意)

## Booth 算法递推公式

$$\begin{split} [z_{0}]_{\nmid h} &= 0 \\ [z_{1}]_{\nmid h} &= 2^{-1} \{ (y_{n+1} - y_{n})[x]_{\nmid h} + [z_{0}]_{\nmid h} \} \qquad y_{n+1} = 0 \\ \vdots \\ [z_{n}]_{\nmid h} &= 2^{-1} \{ (y_{2} - y_{1})[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \} \end{split}$$

如何实现  $y_{i+1}$ - $y_i$ ?

 $[x \cdot y]_{\nmid k} = [z_n]_{\nmid k} + (y_1 - y_0)[x]_{\nmid k}$ 

| $y_i y_{i+1}$ | $y_{i+1}$ $-y_i$ | 操作                                          |
|---------------|------------------|---------------------------------------------|
| 0 0           | 0                | →1                                          |
| 0 1           | 1                | $+[x]_{k} \rightarrow 1$                    |
| 1 0           | -1               | $+[-x]_{\uparrow \downarrow} \rightarrow 1$ |
| 1 1           | 0                | <b>→</b> 1                                  |

最后一步不移位

•例22. 已知 x = +0.0011, y = -0.1011, 求[ $x \times y$ ]<sub>补</sub>

| 解: 00.0000<br>+11.1101                                     | 1.0101                  | <u>0</u> | <br> +[- <i>x</i> ] <sub>ネト</sub>              | $[x]_{\nmid h} = 0.0011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------|-------------------------|----------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 补码     11.1101       右移     11.1101       + 00.0011        | 1 1010                  | 1        | $\begin{array}{c} -1 \\ +[x]_{ih} \end{array}$ | $[y]_{\begin{subarray}{l} \label{eq:y} \label{eq:y} \label{eq:x} \label{eq:y} \lab$ |
| 补码     00.0001       右移     00.0000       +11.1101         | 1<br>11 10 <u>1</u>     | 0        | $\rightarrow 1$<br>+ $[-x]_{\nmid h}$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 补码     11.1101       右移     11.1110       + 00.0011        | 1 1<br>1 1 1 1 <u>0</u> | 1        | $\rightarrow 1$<br>+ $[x]_{\not \uparrow h}$   | $∴ [x \cdot y]_{\not{\nmid} h}$ =1.11011111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 补码       00.0001         右移       00.0000         +11.1101 | 111<br>1111 <u>1</u>    | <u>0</u> | $\rightarrow 1$<br>+ $[-x]_{\nmid h}$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11.1101                                                    | 1111                    |          | 最后一步                                           | 不移位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

• 例23. 已知  $[x]_{\uparrow h} = 1.0101$ ,  $[y]_{\uparrow h} = 1.0011$ , 求 $[x \times y]_{\uparrow h}$ 

# 乘法小结

- 整数乘法与小数乘法完全相同
  - 可用 逗号 代替小数点

• 原码乘: 符号位 单独处理

补码乘: 符号位 自然形成

• 原码乘去掉符号位运算, 即为无符号数乘法

• 不同的乘法运算需有不同的硬件支持

# 除法运算

• 分析笔算除法

$$x = -0.1011$$
  $y = 0.1101$   $\Re x \div y$ 

- ✓商符单独处理
- ?心算上商
- ?余数不动低位补"0" 减右移一位的除数
- ?上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得  
余数  $-0.0000111$ 

# 笔算除法和机器除法的比较

#### 笔算除法

商符单独处理

心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器

上商位置 不固定

#### 机器除法

符号位异或形成

|x|-|y|>0上商1

|x| - |y| < 0上商 0

余数 左移一位 低位补 "0" 减 除数

1倍字长加法器

在寄存器 最末位上商

# 原码除法

• 以小数为例

$$[x]_{\mathbb{F}} = x_{0}. x_{1}x_{2} \dots x_{n}$$

$$[y]_{\mathbb{F}} = y_{0}. y_{1}y_{2} \dots y_{n}$$

$$[\frac{x}{y}]_{\mathbb{F}} = (x_{0} \oplus y_{0}). \frac{x^{*}}{y^{*}}$$
式中  $x^{*} = 0. x_{1}x_{2} \dots x_{n}$  为  $x$  的绝对值  $y^{*} = 0. y_{1}y_{2} \dots y_{n}$  为  $y$  的绝对值

商的符号位单独处理  $x_0 \oplus y_0$  数值部分为绝对值相除  $\frac{x^*}{y^*}$ 

约定 小数定点除法  $x^* < y^*$  整数定点除法  $x^* > y^*$  被除数不等于 0 除数不能为 0

# 恢复余数法

• 例 23. 
$$x = -0.1011$$
,  $y = -0.1101$ , 求  $\left[\frac{x}{y}\right]_{\mathbb{R}}$   $[x]_{\mathbb{R}} = 1.1011$   $[y]_{\mathbb{R}} = 1.1101$   $[y^*]_{\mathbb{A}} = 0.1101$   $[-y^*]_{\mathbb{A}} = 1.0011$ 

① 
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

| ② 被除数(余数)   | 商      | 说明                            |
|-------------|--------|-------------------------------|
| 0.1011      | 0.0000 |                               |
| + 1.0011    |        | +[- <i>y</i> *] <sub>*\</sub> |
| 1.1110      | 0      | 余数为负,上商 0                     |
| + 0.1101    |        | 恢复余数 +[y*] <sub>补</sub>       |
| 0.1011      | 0      | 恢复后的余数                        |
| 逻辑左移 1.0110 | 0      | <b>←</b> 1                    |
| + 1.0011    |        | +[-y*] <sub>ネト</sub>          |
| 0.1001      | 0 1    | 余数为正,上商1                      |
| 逻辑左移 1.0010 | 01     | <b>←</b> 1                    |
| + 1.0011    |        | $+[-y^*]_{\lambda}$           |

| 被除数(余数)     | 商     | 说明                      |
|-------------|-------|-------------------------|
| 0.0101      | 011   | 余数为正,上商1                |
| 逻辑左移 0.1010 | 011   | ←1                      |
| + 1.0011    |       | $+[-y^*]_{ eqh}$        |
| 1.1101      | 0110  | 余数为负,上商0                |
| + 0.1101    |       | 恢复余数 +[y*] <sub>补</sub> |
| 0.1010      | 0110  | 恢复后的余数                  |
| 逻辑左移 1.0100 | 0110  | ←1                      |
| + 1.0011    |       | $+[-y^*]_{ eqh}$        |
| 0.0111      | 01101 | 余数为正,上商1                |

 $\frac{x^*}{y^*} = 0.1101$   $\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$ 

余数为正 上商 1 余数为负 上商 0,恢复余数

如果题目要求写出x/y的真值,则:

真值:  $\frac{x}{v}$  = +0.1101, 余 -0.0111 × 2<sup>-4</sup>

上商 5 次 第一次上商判溢出 移 4 次

在恢复余数法中,每当余数为负时,都 需恢复余数,这就延长了机器除法的时间,操作也很不规则,对线路结构不利。 加减交替法可克服这些缺点。 85

# 不恢复余数法(加减交替法)

• 恢复余数法运算规则

余数 
$$R_i > 0$$
 上商 "1",  $2R_i - y^*$  余数  $R_i < 0$  上商 "0",  $R_i + y^*$  恢复余数  $2(R_i + y^*) - y^* = 2R_i + y^*$ 

• 不恢复余数法运算规则

上商"1" 
$$2R_i - y^*$$
 加減交替上商"0"  $2R_i + y^*$ 

• 例 24. x = -0.1011, y = -0.1101, 求  $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 

| 解: 0.1011 | 0.0000 |                    |
|-----------|--------|--------------------|
| +1.0011   |        | $+[-y^*]_{ eqh}$   |
| 逻辑 1.1110 | 0      | 余数为负,上商 0          |
| 左移 1.1100 | 0      | <b>←</b> 1         |
| +0.1101   |        | +[y*] <sub>补</sub> |
| 逻辑 0.1001 | 0 1    | 余数为正,上商1           |
| 左移 1.0010 | 0 1    | ←1                 |
| +1.0011   |        | $+[-y^*]_{ eqh}$   |
| 逻辑 0.0101 | 011    | 余数为正,上商1           |
| 左移 0.1010 | 011    | ←1                 |
| +1.0011   |        | $+[-y^*]_{ eqh}$   |
| 逻辑 1.1101 | 0110   | 余数为负,上商 0          |
| 左移 1.1010 | 0110   | ←1                 |
| +0.1101   |        | +[y*] <sub>补</sub> |
| 0.0111    | 01101  | 余数为正,上商1           |

$$[x]_{\text{g}} = 1.1011$$

$$[y]_{\mathbb{R}} = 1.1101$$

$$[x^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

$$- [y^*]_{ab} = 0.1101$$

$$[-y^*]_{ab} = 1.0011$$

• 例24. 结果

② 
$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore [\frac{x}{y}]_{\mathbb{R}} = 0.1101$$

如果题目要求写出x/y的真值,则:

商的真值符号取决于 $x_0$ 与 $y_0$  异或 真值:  $\frac{x}{v}$  = +0.1101, 余 -0.0111 ×  $2^{-4}$  余数的真值符号取决于被除数符号

特点 上商 n+1 次

第一次上商判溢出

移位 n 次, 加 法n+1 次

用移位的次数判断除法是否结束

# 原码一位除——加减交替法(n+2次加法情况) 作业题4: X=-0.10101 Y=0.11011,用原码加减交替法计算 X÷Y

#### 解:

| 1                                     |
|---------------------------------------|
| $[x]_{\text{@}} = 1.10101$            |
| $[y]_{\text{$\mathbb{R}$}} = 0.11011$ |
| $[x^*]_{\not= h} = 0.10101$           |

$$[y^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

$$[-y^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}$$

最后, 当余数是负数, 需要加[y\*]<sub>补</sub> 此时不需要移位

|                          | •                                                       |                                                 |
|--------------------------|---------------------------------------------------------|-------------------------------------------------|
| 逻辑                       | 0.00000                                                 | +[- y*] <sub>补</sub>                            |
| 左移<br>1.11010<br>1.10100 | 0                                                       | 余数为负,上商 <b>0</b><br>← 1                         |
| 逻辑 +0.11011              | U                                                       | +[y*] <sub>* </sub>                             |
| 左移<br>0.01111<br>0.11110 | $\begin{array}{c} 01 \\ 01 \end{array}$                 | 余数为正,上商 1<br>← 1                                |
| 逻辑 +1.00101              | <b>V 1</b>                                              | +[-y*] <sub>* </sub>                            |
| 左移 0.00011               | $\begin{array}{c} 011 \\ 011 \end{array}$               | 余数为正,上商 1<br>← 1                                |
|                          |                                                         | +[- <i>y</i> *] <sub>补</sub>                    |
| 左移 1.01011 0.10110       | $\begin{array}{c} 0\ 1\ 1\ 0 \\ 0\ 1\ 1\ 0 \end{array}$ | 余数为负,上商 0<br>← 1                                |
| 逻辑 +0.11011              |                                                         | +[y*] <sub>* </sub>                             |
| 左移 1.10001               | $\begin{array}{c} 01100 \\ 01100 \end{array}$           | 〜 余数为负,上商 <b>0</b><br>← 1                       |
| +0.11011                 |                                                         | +[y*] <sub>*h</sub>                             |
| $1.11101 \\ +0.11011$    | 011000                                                  | 余数为负,上商 <b>0</b><br>+[ <i>y</i> *] <sub>补</sub> |
| 0. 11000 -               |                                                         |                                                 |

#### 注意

商的真值符号取决于 $x_0$ 与 $y_0$  异或 余数的真值符号取决于被除数符号

$$x_0 \bigoplus y_0 = 1 \bigoplus 0 = 1$$

$$\left[\frac{x}{v}\right]_{\mathbb{R}} = 1.11000$$

$$\frac{x}{y} = -0.11000$$

# 乘法器硬件



- 被乘数寄存器128位:
  - 被乘数64位,要进行64次左移一位
- 存在的问题:被乘数寄存器存储空间浪费、128位ALU浪费



图 3-4 第一种乘法算法,采用了图 3-3 所示的硬件。如果乘数的最低有效位为 1,则将乘数加到积上。如果不是,则执行下一步。在下两步中将被乘数左移和乘数右移。将这三个步骤重复 64 次

# 改良版乘法器硬件



- 积寄存器129位
  - 右64位: 乘数
  - 左65位: 全0,多的一位用于保存加法器的进位
- 若乘数最右端为1
  - 将积寄存器[128:65]位取出 (时间不计)
  - 取出的值和被乘数进行加法 运算;同时,积寄存器进行 右移一位运算(一个时钟周 期)
  - · 加法运算结果写入积寄存器 [128:64] (时间不计)
- 若乘数最右端为0
  - 积寄存器整体右移一位
- 最后结果在积寄存器[128:1]

# 第二章

- 计算机中数的表示
- 定点运算
- 浮点运算

# 6.4 浮点四则运算

#### •一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

#### 1. 对阶

(1) 求阶差

(1) 氷所差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \begin{cases} x \text{向 } y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \text{ 向 } x \text{ 看齐} \checkmark S_y \rightarrow 1, j_y + 1 \end{cases} \\ < 0 & j_x < j_y \begin{cases} x \text{ 向 } y \text{ 看齐} \checkmark S_x \rightarrow 1, j_x + 1 \\ y \text{ 向 } x \text{ 看齐} \end{cases} \quad S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

• 例如:  $x = 0.1101 \times 2^{01}$ ,  $y = (-0.1010) \times 2^{11}$ , 求x + y

解:  $[x]_{*} = 00,01;00.1101$   $[y]_{*} = 00,11;11.0110$ 

#### 1. 对阶

① 求阶差 
$$[\Delta j]_{\stackrel{}{\mathbb{A}}} = [j_x]_{\stackrel{}{\mathbb{A}}} - [j_y]_{\stackrel{}{\mathbb{A}}} = 00,01$$

$$+ 11,01$$

$$11,10$$
阶差为负 (-2)  $: S_x \longrightarrow 2 \quad j_x + 2$ 

② 对阶  $[x]_{k'} = 00, 11; 00.0011$ 

#### 2. 尾数求和

$$[S_x]_{h'}$$
 = 00.0011 对阶后的 $[S_x]_{h'}$  +  $[S_y]_{h}$  = 11.0110   
 11.1001   
 ∴  $[x+y]_{h}$  = 00, 11; 11. 1001

#### 3. 规格化

• (1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

• (2) 规格化数的判断

| S>0 | 规格化形式                             | S < 0 | 规格化形式                             |
|-----|-----------------------------------|-------|-----------------------------------|
| 真值  | $0.1 \times \times \cdots \times$ | 真值    | $-0.1\times\times\cdots\times$    |
| 原码  | $0.1 \times \times \cdots \times$ | 原码    | $1.1 \times \times \cdots \times$ |
| 补码  | $0.1 \times \times \cdots \times$ | 补码    | $1.0 \times \times \cdots \times$ |
| 反码  | $0.1 \times \times \cdots 	imes$  | 反码    | $1.0 \times \times \cdots \times$ |

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

#### 特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{\nmid h} = \boxed{1.1} 0 0 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{i}$  不是规格化的数

$$S = -1$$

$$[S]_{\nmid h} = 1.000 \cdots 0$$

∴ [-1] → 是规格化的数

#### • (3)左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例 
$$[x+y]_{\stackrel{?}{\uparrow}} = 00, 11; 11.1001$$
  
左规后  $[x+y]_{\stackrel{?}{\uparrow}} = 00, 10; 11.0010$   
 $\therefore x + y = (-0.1110) \times 2^{10}$ 

• (4)右规

当尾数溢出(>1)时,需右规

即尾数出现 01.×× ···×或 10.×× ···×时

尾数右移一位,阶码加1

• 例27.  $x = 0.1101 \times 2^{10}$ ,  $y = 0.1011 \times 2^{01}$ , 求 x + y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解:  $[x]_{\stackrel{}{\uparrow}} = 00, 010; 00.110100$   $[y]_{\stackrel{}{\uparrow}} = 00, 001; 00.101100$ 

① 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1  $\therefore S_y \rightarrow 1, j_y + 1$ 

$$\therefore [y]_{\stackrel{?}{\Rightarrow}} = 00,010;00.010110$$

② 尾数求和

$$[S_x]_{\stackrel{}{ ilde{\wedge}}}=00.\ 110100$$
  $+[S_y]_{\stackrel{}{ ilde{\wedge}}}=00.\ 010110$  对阶后的 $[S_y]_{\stackrel{}{ ilde{\wedge}}}$  尾数溢出需右规

#### ③ 右规

$$[x+y]_{*} = 00, 010; 01.001010$$

#### 右规后

$$[x+y]_{36} = 00, 011; 00. 100101$$

$$\therefore x+y=0.100101\times 2^{11}$$

#### • 4. 舍入

- 在 **对阶** 和 **右规** 过程中,可能出现尾数末位丢失引起误差,需考虑舍入
  - (1)0 舍 1 入法
  - (2)恒置"1"法

• **原例13延展**. 设 m = 4, n = 10, r = 2, 求<mark>尾数规格化</mark>后的浮点数表示范围(阶码与尾数都是**补码**表示)

最大负数 
$$2^{10000} \times (-0.1000000001) = -2^{-16} \times (2^{-1} + 2^{-10})$$

最小负数 
$$2^{01111} \times (-1.000000000) = -2^{15} \times 1$$

•例28.
$$x = (-\frac{5}{8}) \times 2^{-5}$$
,  $y = (\frac{7}{8}) \times 2^{-4}$ , 求  $x - y$  (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解: 
$$x = (-0.101000) \times 2^{-101}$$
  $y = (0.111000) \times 2^{-100}$   $[x]_{\dag} = 11,011;11.011000$   $[y]_{\dag} = 11,100;00.111000$ 

① 对阶

$$[\Delta j]_{\uparrow h} = [j_x]_{\uparrow h} - [j_y]_{\uparrow h} = 11,011 + 00,100 11,111$$

阶差为 
$$-1$$
 :  $S_x \longrightarrow 1$ ,  $j_x+1$ 

$$\therefore$$
  $[x]_{*} = 11, 100; 11. 101100$ 

### ② 尾数求和

#### ③右规

$$[x-y]_{3} = 11, 100; 10. 110100$$

#### 右规后

$$[x-y]_{\nmid h} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

# 溢出判断

• 设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该 补码在数轴上的表示为

