

(PA = 0,76 e)

Modèle de la MCC en régime permanent : relations fondamentales

Fonctionnement en moteur à excitation indépendante

Aimants permanents

Relations:

Modèle de la MCC en régime permanent : relations fondamentales

Fonctionnement en moteur à excitation indépendante

Caractéristique à vide.

La machine est entraînée à vitesse nominale et fonctionne donc en génératrice. On trace $E=f(I_d)$. La vitesse est maintenue constante.

Détermination de la résistance de l'induit

E= 0 : rotor blague, 1=0

(Mesures à chand après l'avoir Foit tarmor à puissance nominale)

$$R_A = \frac{U}{I_A}$$
 over $I_A = I_A$ (nominale)

Modèle de la MCC en régime permanent : relations fondamentales

Caractéristiques Ω =f(la), Cem=f(la), Cem=f(Ω).

Beaucoup de couple à bas régime 1 moteur thermique U = E+RATA $T_A = \frac{U - E}{R_A} = \frac{U - K' \Omega}{R_A}$ ⇒ Cem = KILI - KIZ O

Point de fonctionnement en régime permanent.

Principe fondamental de la dynamique : (a l'arbre)

$$\Sigma C = J.d\Omega/dt$$

$$J \frac{d\Omega}{dt} = C_{ij} - C_{ij}$$

$$Columbe la charge$$

Point de fonctionnement en régime

Fonctionnement en moteur à excitation indépendante

Fonctionnement à vide : le moteur n'entraîne aucune charge

Bilan de puissances :

Variation de vitesse d'un moteur à excitation indépendante

Relation entre vitesse et tension d'alimentation :

$$U = E + RaTa = K'\Omega + RaTa$$

$$\Omega = \frac{U}{K'} - \frac{RaTa}{K'}$$
Pour Faire varier Ω : Faire varier U (si an travaille à comple constant)

