## **Bryant** Air Conditioning

bryant

# SINGLE PACKAGE GAS HEATING/ ELECTRIC COOLING UNITS

Model 588A Sizes 018-060

11/2 to 5. Tons



#### **DESCRIPTION**

All 588A models feature one piece, compact design and are fully self-contained units that are prewired, prepiped, and precharged for minimum installation expense. Unit is designed for easy use in either downflow (vertical) or horizontal applications.

#### STANDARD FEATURES

FACTORY-ASSEMBLED PACKAGE is a compact, fully selfcontained, gas heating/electric cooling unit that is prewired, prepiped, and precharged for minimum installation expense.

588A units are lightweight and available in a variety of standard heating and cooling sizes with voltage options to meet residential and light commercial requirements. Unit installs easily on a rooftop or a ground-level pad

CONVERTIBLE DUCT CONFIGURATION on the 588A is designed for easy use in either downflow or horizontal discharge applications.

HIGH-EFFICIENCY DESIGN with SEERs (Seasonal Energy Efficiency Ratios) of 10.0.

**DURABLE, DEPENDABLE COMPRESSORS** are designed for high efficiency. Each compressor is hermetically sealed against contamination to help promote longer life and dependable operation. Each compressor also has vibration isolation to provide quiet operation. Rotary, reciprocating, or scroll compressors are used. Compressors have internal high-pressure and overcurrent protection.

DIRECT-DRIVE MULTISPEED, PSC (permanent split capacitor) BLOWER MOTOR is standard on all models

DIRECT-DRIVE, PSC CONDENSER-FAN MOTORS are designed to help reduce energy consumption and provide for cooling operation down to 40 F.

**REFRIGERANT SYSTEM** is designed to provide dependability. Liquid refrigerant strainers are used to promote clean, unrestricted operation. Each unit leaves the factory with a full refrigerant charge. Refrigerant service connections make checking operating pressures easier.

EVAPORATOR AND CONDENSER COILS are computerdesigned for optimum heat transfer and cooling efficiency. Condenser coil is fabricated of copper tube and aluminum fins and is located inside the unit for protection against damage and for long life and reliable operation. The condenser coil is internally mounted and protected by a composite grille

Copper fin coils for condenser coil are also available by special order. These coils are recommended in applications where aluminum fins are likely to be damaged due to corrosion Copper fin coils are ideal for seacoast applications

MONOPORT INSHOT BURNERS produce precise air-to-gas mixture, which provides for clean and efficient combustion. The large monoport on the inshot (or injection type) burners seldom, if ever, needs cleaning

WEATHERIZED CABINETS are constructed of heavy-duty, phosphated, zinc-coated prepainted steel capable of withstanding 500 hours in salt spray. Interior surfaces of the evaporator compartment are insulated with foil-faced fiberglass to help keep the conditioned air from being affected by the outdoor ambient temperature and provide improved air quality. Conforms to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) No 62P Sloped condensate pan permits an external drain.

LOW SOUND RATINGS ensure a quiet indoor and outdoor environment with sound ratings as low as 7.4 bels

EASY TO SERVICE CABINETS provide easy accessibility to serviceable components during maintenance and installation. Rounded corners are an important safety feature, and a highquality finish ensures an attractive appearance

LOW AND HIGH VOLTAGE ELECTRICAL ENTRIES allow low and high voltage to be brought in either through the duct panel or rear flue panel

INTEGRATED GAS CONTROL BOARD provides safe and efficient control of heating and simplifies troubleshooting through its built-in diagnostic function.

OPTIONAL BASE RAILS provide holes for rigging and handling as well as an elevated mounting frame that provides structural support for horizontal installations.

**DOWNFLOW OPTIONS** is converted for downflow at factory for easy vertical ductwork connections.

#### FACTORY-INSTALLED OPTIONS DESCRIPTION AND USAGE

**Unit With Base Rail** — Unit has rigging holes and an elevated mounting frame

#### SUGGESTED USE:

 Rigging holes to provide greater ease in handling. Frame to provide elevation and structural support for horizontal applications. **Downflow Option** — Unit is shipped from factory configured for downflow application Unit is equipped with base rail.

#### SUGGESTED USE

• To provide easy vertical ductwork connections.

#### FIELD-INSTALLED ACCESSORY DESCRIPTION AND USAGE

**Flat Roof Curb** — Consists of galvanized steel support frame in 8-, 11-, and 14-in. high designs. Provides wood nailer to attach roof counter flashing Insulated basepans in curbs are provided to prevent condensation Ductwork attaches to rails provided in the roof curb. A gasket is provided to form an airtight and watertight seal between unit and curb The roof curb design meets the standards of the NRCA (National Roofing Contractors' Association)

#### SUGGESTED USE.

- Slab-mounted applications when elevation of the unit above the slab is necessary
- Rooftop application for downflow discharge.
- Curbs are preassembled and are available for flat or pitched roofs

**Pitched Roof Curb** — Provided in ratios of 1, 2, 3, 4, 5, and 6 to 12 for use on pitched roof applications.

#### SUGGESTED USE

• For when a roof curb is needed on a pitched roof

**Modulating Economizer** — Economizer is available for downflow or horizontal applications, and is designed for easy installation Economizer reduces energy costs and extends equipment life by allowing the use of outdoor air to supply "free" cooling when conditions are favorable

Constant ventilation is recommended for light commercial applications when the conditioned space is occupied.

The economizer is shipped complete with a damper motor and linkage, enthalpy control, low-voltage wiring harness, and a rainhood Adequate wire lengths are provided (additional field-supplied wires are not required) Horizontal economizers are also furnished with a 2-in disposable air filter and gasket material

Modulating economizer package consists of low-leakage dampers with controls. The economizer will allow a fixed percentage of outdoor ventilation air into the unit whenever the evaporator fan is running.

#### SUGGESTED USE:

- Allows outdoor air to be used for "free" cooling whenever the outdoor air is below the enthalpy control setting
- To reduce energy usage. Use whenever the hours of operation at temperatures below 40 F are significant.

Two-Position Damper — In the two-position dampers, the enthalpy control detects when outdoor air is suitable for "free" cooling by measuring the outdoor-air dry bulb temperature and humidity. Whenever the outdoor-air quality is acceptable for "free" cooling, the outdoor-air damper opens fully and the return-air damper closes, allowing outdoor air to enter the building

#### SUGGESTED USE:

 Allows use of outdoor air to cool building without using compressor. Damper closes when evaporator fan is off to prevent cold backdraft, and wasted energy.

**Manual Outdoor-Air Damper** — Package consists of a manually adjustable damper and includes a rainhood and birdscreen. SUGGESTED USE.

To allow a fixed percentage of outdoor air for ventilation under all conditions

 The damper may be used on either downflow or horizontal airflow applications.

**Thermostat and Subbase** — These accessories provide cooling control for unit. Autochangeover and manual changeover types are available

#### SUGGESTED USE:

 To operate and control unit, and to maintain desired building temperature.

The 0° F Low Ambient Kit — Kit permits operation down to 0° F

#### SUGGESTED USE.

When mechanical cooling is required when outdoor-air temperature is between 40 F and 0° F.

**Natural-to-Propane Conversion Kit** — Kit consists of gas orifices and other hardware required to convert the unit for use with LP (liquid propane) gas

#### SUGGESTED USE.

 When natural gas cannot be obtained and liquid propane is used as fuel

Filter Rack — Rack features easy installation and service-ability.

The filter rack housing is constructed of heavy-gage steel and is fully insulated. Both sides of the filter rack are flanged for easy installation

#### SUGGESTED USE

• Kit provides ability to locate filters inside the unit.

**Flexible Duct Kit** — Consists of 2 flexible UL-listed (Underwriters' Laboratories) ducts. The duct construction includes vapor barrier and 1-in. fiberglass insulation. The "K" factor is 0.23. Each duct has a square-to-round snap adapter for attachment to the accessory roof curb on one end, and a round clamp collar for attachment to the concentric diffuser box on the other end.

#### SUGGESTED USE:

For use with accessory roof curb and concentric box to provide an easily-installed concentric system

**Concentric Diffuser Box** — Is aerodynamically designed and equipped with a combination 4-way supply and a center return diffuser. A special core is provided within the diffuser box to provide even 4-way distribution

#### SUGGESTED USE.

For use with accessory roof curb and concentric box to provide an easily-installed concentric system

**Crankcase Heater** — Warms crankcase oil to reduce refrigerant migration and ensure proper compressor lubrication.

#### SUGGESTED USE:

 For use in applications where crankcase is subjected to low outside temperatures. Recommended on 208/230-v, singlephase, 024-042 units only.

**Solid-State Comprotec® Device** — Package consists of a control to be field-wired into the unit controls, and provides a 5-minute delay in compressor operation between cooling cycles.

#### SUGGESTED USE:

 Prevents compressor short cycling when rapid compressor cycles may be a problem

# FIELD-INSTALLED ACCESSORY DESCRIPTION AND USAGE (cont)

**Lifting Bracket Kit** — Provides attachment point for rigging straps.

#### SUGGESTED USE:

 When unit needs to be lifted or moved The kit is not required when unit is equipped with optional base rail or downflow application

**High- and Low-Pressure Switches** — Protect the unit from running at unsuitable pressures.

#### SUGGESTED USE

Provides additional safety features when needed.

### CONTENTS

| Page                                |
|-------------------------------------|
| Model Description                   |
| ARI Cooling Capacities              |
| Heating Capacities and Efficiencies |
| Dimensional Drawings 5-10           |
| Specifications                      |
| Selection Procedure 13              |
| Net Cooling Capacities 14-16        |
| Air Delivery                        |
| Electrical Data 20                  |
| Operating Sequence                  |
| Typical Field Wiring                |
| Typical Installation 25             |
| Application Data                    |
| Engineers' Specification Guide 26   |

#### **MODEL DESCRIPTION**



### **ARI\* COOLING CAPACITIES**

| UNIT 588A | NOMINAL<br>TONS | STANDARD<br>CFM | NET COOLING†<br>CAPACITIES (Btuh) | SEER†** | SOUND RATINGS††<br>(Bels) |
|-----------|-----------------|-----------------|-----------------------------------|---------|---------------------------|
| 018       | 11/2            | 600             | 17,000                            | 10 0    | 7 4                       |
| 024       | 2               | 800             | 24,000                            | 10 0    | 7.6                       |
| 030       | 21/2            | 1000            | 29,200                            | 10.0    | 8.0                       |
| 036       | 3               | 1200            | 36,000                            | 10.0    | 8 0                       |
| 042       | 31/2            | 1400            | 42,500                            | 10 0    | 82                        |
| 048       | 4               | 1600            | 47,000                            | 10 0    | 8.2                       |
| 060       | 5               | 1995            | 59,500                            | 10.0    | 8.2                       |

### **LEGEND**

Sound Levels (1 bel = 10 decibels)dry bulb Bels

dry bulb

SEER - Seasonal Energy Efficiency Ratio

wb wet bulb

\*ARI — Air-conditioning and Refrigeration Institute.
†Rated in accordance with U S. Government DOE (Department of Energy) test procedures and/or ARI (Air Conditioning and Refrigeration Institute) Standard 210/240-89

\*\*All units have factory-installed time-delay relay ††Rated in accordance with ARI Standard 270-84.

NOTE: Ratings are net values, reflecting the effects of circulating fan heat Ratings are based on 80 F db, 67 F wb indoor entering-air temperature and 95 F db air entering outdoor unit.





### OUTDOOR SOUND: ONE-THIRD OCTAVE BAND DATA - DECIBELS

| MODEL NO.      |      |      |      | 588A |      |      |      |
|----------------|------|------|------|------|------|------|------|
| Frequency (Hz) | 018  | 024  | 030  | 036  | 042  | 048  | 060  |
| 63             | 49 8 | 38 1 | 45 7 | 47 8 | 45.5 | 56.0 | 54 3 |
| 125            | 56 5 | 55 0 | 58.1 | 59 3 | 61.2 | 65.6 | 65 1 |
| 250            | 60 3 | 65 3 | 68.7 | 67 4 | 70 4 | 71 5 | 71 5 |
| 500            | 59 8 | 67 2 | 64.7 | 68.8 | 69 9 | 71.4 | 72 7 |
| 1000           | 64 1 | 68 9 | 73 0 | 73.1 | 76.5 | 74.2 | 73 9 |
| 2000           | 64 1 | 65 5 | 70.2 | 69 5 | 71 3 | 73 3 | 73 4 |
| 4000           | 65 2 | 63 8 | 68.8 | 68 2 | 73 7 | 69.6 | 71.7 |
| 8000           | 56 0 | 60 3 | 66 6 | 65.8 | 65.5 | 67 1 | 66.3 |

# **HEATING CAPACITIES AND EFFICIENCIES**

| UNIT 588A                                      | HEATING INPUT<br>(Btuh) | OUTPUT CAPACITY<br>(Btuh) | TEMPERATURE<br>RISE RANGE (°F)                     | AFUE (%)                             | CSE (%)                                      |
|------------------------------------------------|-------------------------|---------------------------|----------------------------------------------------|--------------------------------------|----------------------------------------------|
| 018040<br>024040<br>030040                     | 40,000                  | 32,800                    | 20-50<br>20-50<br>20-50                            | 81.0<br>81.0<br>81 0                 | 76 5<br>76 5<br>76 5                         |
| 024060<br>030060<br>036060<br>042060           | 60,000                  | 48,600                    | 25-55<br>25-55<br>25-55<br>25-55                   | 81 0<br>81 0<br>81 0<br>81 0         | 77.5<br>77 5<br>77 5<br>77 5                 |
| 030080<br>036080<br>042080<br>048080<br>060080 | 80,000                  | 64,800                    | 40-70<br>40-70<br>40-70<br>40-70<br>40-70<br>40-70 | 81 0<br>81 0<br>81.0<br>81.0<br>81.0 | 77 5<br>77 5<br>77 5<br>77 5<br>77 5<br>77 5 |
| 036100<br>042100<br>048100<br>060100           | 100,000                 | 81,000                    | 50-80<br>50-80<br>50-80<br>50-80                   | 81.0<br>81.0<br>81.0<br>81.0         | 78 0<br>78 0<br>78 0<br>78 0<br>78 0         |
| 036120<br>042120<br>048120<br>060120           | 120,000                 | 97,200                    | 60-90<br>60-90<br>60-90<br>60-90                   | 80.0<br>80 0<br>80 0<br>80 0         | 77 5<br>77.5<br>77.5<br>77.5                 |
| 048140<br>060140                               | 140,000                 | 113,000                   | 50-80<br>50-80                                     | 80 0<br>80 0                         | 77 5<br>77.5                                 |

#### **LEGEND**

AFUE — Annual Fuel Utilization Efficiency
CSE — California Seasonal Efficiency

NOTE: Before purchasing this appliance, read important energy cost and efficiency information available from your retailer.





#### **DIMENSIONAL DRAWINGS**

|                | F           | G             | CENTER OF GRAVITY in /mi |           |           |  |
|----------------|-------------|---------------|--------------------------|-----------|-----------|--|
| UNIT           | in./mm      | in /mm        | Х                        | Y         | Z         |  |
| 588A018040     |             |               | 25 07/637                | 20 59/523 |           |  |
| 588A024040     |             |               | 27.07/688                | 23 35/593 |           |  |
| 588A024060     |             |               | 26 98/685                | 23 27/591 |           |  |
| 588A030040     | 16%16/420 7 | 1815/16/481 0 | 26 71/678                | 23 46/596 | 10 85/276 |  |
| 588A030060/080 |             |               | 27.15/689                | 22 36/568 |           |  |
| 588A036060/080 |             |               | 27 50/698                | 22 48/571 |           |  |
| 588A036100/120 |             |               | 27 40/696                | 22 44/570 |           |  |
| 588A042060/080 | 000/ /500 0 | 0015/ /500.0  | 27.01/686                | 22 44/570 | 12 65/321 |  |
| 588A042100/120 | 20%16/522 3 | 2215/16/582 6 | 26 94/684                | 22 44/570 | 12 05/321 |  |

LEGEND

CG — Center of Gr.
COND — Condenser
LV — Low Voltage Center of Gravity

2 5/16<sup>2</sup> (58.0)

1 3/16<sup>4</sup> (29.6)

11 1/2" (292.1)

12 13/1<u>6</u>\* (325.4)

LEFT SIDE VIEW

MAT'L — Material
NEC — National Electrical Code
REQ'D — Required

NOTE: Clearances must be maintained to prevent recirculation of air from outdoor-fan discharge

REQ'D CLEARANCES FOR SERVICING in (mm)

Duct panel Unit top Side opposite ducts Compressor access (Except for NEC requirements) 36 (914) 36 (914) 36 (914)

REQ'D CLEARANCES TO COMBUSTIBLE MATL in (mm)

48 (1219) 14 (356) . 0 Maximum extension of overhangs Unit top
Duct side of unit
Side opposite ducts
Bottom of unit 9 (229) 30 (762) Flue panel

NEC REQ'D CLEARANCES in (mm) Between units, control box side 42 (1067) 36 (914)

Unit and ungrounded surfaces, control box side Unit and block or concrete walls and other grounded surfaces, control box side 42 (1067)



| UNIT           | ELECTRICAL                           | UNIT WEIGHT |     | CORNER WEIGHT<br>(lb/kg) |       |        |       | UNIT HEIGHT<br>(in /mm) |
|----------------|--------------------------------------|-------------|-----|--------------------------|-------|--------|-------|-------------------------|
| 0.1            | CHARACTERISTICS                      | lb          | kg  | Α                        | В     | С      | D     | E                       |
| 588A018040     | 208/230-1-60                         | 272         | 123 | 81/37                    | 62/28 | 76/35  | 53/24 | 24 1/613                |
| 588A024040     | 208/230-1-60                         | 303         | 138 | 97/44                    | 43/20 | 123/56 | 40/18 | 24 1/613                |
| 588A024060     | 208/230-1-60                         | 315         | 143 | 100/45                   | 46/21 | 126/57 | 43/20 | 24 1/613                |
| 588A030040     | 208/230-1-60, 208/230-3-60           | 320         | 145 | 100/45                   | 47/21 | 126/57 | 47/21 | 24 1/613                |
| 588A030060/080 | 208/230-1-60, 208/230-3-60           | 324         | 147 | 94/43                    | 63/29 | 115/52 | 52/24 | 24 1/613                |
| 588A036060/080 | 208/230-1-60, 208/230-3-60, 460-3-60 | 336         | 153 | 86/39                    | 76/35 | 111/50 | 63/29 | 24 1/613                |
| 588A036100/120 | 208/230-1-60, 208/230-3-60, 460-3-60 | 348         | 158 | 89/40                    | 79/36 | 114/52 | 66/30 | 24 1/613                |
| 588A042060/080 | 208/230-1-60, 208/230-3-60, 460-3-60 | 375         | 170 | 95/43                    | 86/39 | 119/54 | 75/34 | 28 1/714                |
| 588A042100/120 | 208/230-1-60, 208/230-3-60, 460-3-60 | 387         | 176 | 98/45                    | 89/40 | 122/55 | 78/35 | 28 1/714                |



10 3/16 1 (258.8) 8 1 (203

1 7/16<sup>±</sup> → 1 (36.3)

REAR VIEW

FLUE PANEL



| UNIT           | ELECTRICAL<br>CHARACTERISTICS        | UNIT WEIGHT |     | CORNER WEIGHT<br>(lb/kg) |       |        |       | UNIT HEIGHT<br>(in /mm) |
|----------------|--------------------------------------|-------------|-----|--------------------------|-------|--------|-------|-------------------------|
|                | CHANACTERISTICS                      | lb          | kg  | Α                        | В     | С      | D     | E                       |
| 588A018040     | 208/230-1-60                         | 296         | 135 | 87/40                    | 68/31 | 82/37  | 59/27 | 27 4/697                |
| 588A024040     | 208/230-1-60                         | 327         | 149 | 103/47                   | 49/22 | 129/59 | 46/21 | 27 4/697                |
| 588A024060     | 208/230-1-60                         | 339         | 155 | 106/48                   | 52/24 | 132/60 | 49/22 | 27 4/697                |
| 588A030040     | 208/230-1-60, 208/230-3-60           | 344         | 157 | 106/48                   | 53/24 | 132/60 | 53/24 | 27 4/697                |
| 588A030060/080 | 208/230-1-60, 208/230-3-60           | 356         | 162 | 102/46                   | 71/32 | 123/56 | 60/27 | 27 4/697                |
| 588A036060/080 | 208/230-1-60, 208/230-3-60, 460-3-60 | 360         | 164 | 92/42                    | 82/37 | 117/53 | 69/31 | 27 4/697                |
| 588A036100/120 | 208/230-1-60, 208/230-3-60, 460-3-60 | 372         | 169 | 95/43                    | 85/39 | 120/55 | 72/33 | 27 4/697                |
| 588A042060/080 | 208/230-1-60, 208/230-3-60, 460-3-60 | 399         | 181 | 101/46                   | 92/42 | 125/57 | 81/37 | 31 4/798                |
| 588A042100/120 | 208/230-1-60, 208/230-3-60, 460-3-60 | 411         | 187 | 104/47                   | 95/43 | 128/58 | 84/38 | 31 4/798                |











**Manual Outdoor-Air Damper** 



**Two-Position Damper** 



Filter Racks and Filters

# **SPECIFICATIONS**

| UNIT SIZE 588A                                    | 018040      | 024040      | 024060          | 030040          | 030060       | 030080       |
|---------------------------------------------------|-------------|-------------|-----------------|-----------------|--------------|--------------|
| NOMINAL CAPACITY (tons)                           | 11/2        | 2           | 2               | 21/2            | 21/2         | 21/2         |
| OPERATING WEIGHT (lb) Without Base Rail           | 272         | 303         | 315             | 320             | 324          | 324          |
| With Optional Base Rail                           | 296         | 327         | 339             | 344             | 356          | 356          |
| COMPRESSOR                                        |             |             |                 |                 |              | .*           |
| Type<br>Quantity                                  | Rotary<br>1 |             |                 | Reciprocating 1 |              |              |
| REFRIGERANT                                       |             |             | R-              |                 |              |              |
| Charge (lb)                                       | 2 60        | 2.75        | 2 75            | 3.40            | 3.40         | 3.40         |
| REFRIGERANT METERING DEVICE                       |             |             | Fixed Orifice M | letering Device |              |              |
| CONDENSER COIL                                    |             |             |                 |                 |              |              |
| Face Area (sq ft)                                 | 5 95        | 5.95        | 5.95            | 5 95            | 5.95         | 5 95         |
| RowsFins/in.                                      | 1. 17       | 1., 17      | 1 . 17          | 217             | 2 . 17       | 217          |
| CONDENSER FAN                                     |             |             |                 | 1000            | 1000         | 1000         |
| Nominal Airflow (cfm)                             | 1700<br>850 | 1700<br>850 | 1700<br>850     | 1900<br>1050    | 1900<br>1050 | 1900<br>1050 |
| Nominal Speed (rpm) QuantityDiameter (in.)        | 1 18        | 1 . 18      | 118             | 1 18            | 1 .18        | 118          |
| Motor Hp                                          | 1/8         | 1/8         | 1/8             | 1/4             | 1/4          | 1/4          |
| EVAPORATOR COIL                                   |             |             |                 |                 |              |              |
| Face Area (sq ft)                                 | 1.83        | 2 29        | 2 29            | 2.29            | 2 29         | 2.29         |
| RowsFins/in.                                      | 315         | 3 .15       | 3 15            | 315             | 3. 15        | 315          |
| EVAPORATOR FAN                                    |             |             |                 | 1.000           | 1000         | 1000         |
| Nominal Airflow (cfm)                             | 600<br>825  | 800<br>1075 | 800<br>1075     | 1000<br>1075    | 1000<br>1075 | 1000<br>1075 |
| Nominal Speed (rpm) Diameter x Width (in.)        | 10 x 10     | 10 x 10     | 10 x 10         | 10 x 10         | 10 x 10      | 10 x 10      |
| Motor Hp (single-phase)                           | 1/4         | 1/4         | 1/4             | 1/4             | 1/4          | 1/4          |
| (three-phase)                                     |             |             |                 | 1/4             | 1/4          | 1/4          |
| FURNACE SECTION*                                  |             |             |                 |                 |              |              |
| Burner Orifice No. (Qtydrill size)                | 1 00        | 1 32        | 238             | 132             | 238          | 232          |
| Natural Gas<br>Burner Orifice No. (Qtydrill size) | 1. 32       | 1 32        | 238             | 132             | 236          | 232          |
| Propane Gas                                       | 141         | 141         | 246             | 1. 41           | 246          | 2 42         |
| RETURN-AIR FILTERS (in.)†                         |             |             |                 |                 |              |              |
| Throwaway                                         | 20 x 20     | 20 x 20     | 20 x 20         | 20 x 24         | 20 x 24      | 20 x 24      |

| UNIT SIZE 588A                                                                                    | 036060                  | 036080                       | 036100                  | 036120                                | 042060                                | 042080                                |
|---------------------------------------------------------------------------------------------------|-------------------------|------------------------------|-------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| NOMINAL CAPACITY (tons)                                                                           | 3                       | 3                            | 3                       | 3                                     | 31/2                                  | 31/2                                  |
| OPERATING WEIGHT (lb)                                                                             |                         |                              |                         |                                       |                                       |                                       |
| Without Base Rail<br>With Optional Base Rail                                                      | 336<br>360              | 336<br>360                   | 348<br>372              | 348<br>372                            | 375<br>399                            | 375<br>399                            |
| COMPRESSOR                                                                                        |                         |                              |                         |                                       |                                       |                                       |
| Type<br>Quantity                                                                                  |                         |                              | Recipro                 | ocating<br>I                          |                                       |                                       |
| REFRIGERANT                                                                                       |                         |                              | R-                      | 22                                    |                                       | ,                                     |
| Charge (lb-oz)                                                                                    | 4.30                    | 4 30                         | 4 30                    | 4 30                                  | 5.20                                  | 5 20                                  |
| REFRIGERANT METERING DEVICE                                                                       |                         |                              | Fixed Orifice M         | etering Device                        |                                       |                                       |
| CONDENSER COIL                                                                                    |                         |                              |                         |                                       |                                       |                                       |
| Face Area (sq ft)<br>RowsFins/in.                                                                 | 5 95<br>217             | 5 95<br>2 17                 | 5 95<br>2 17            | 5 95<br>2 17                          | 7.04<br>2 17                          | 7 04<br>217                           |
| CONDENSER FAN                                                                                     |                         |                              |                         |                                       |                                       |                                       |
| Nominal Airflow (cfm)<br>Nominal Speed (rpm)                                                      | 1900<br>1050            | 1900<br>1050                 | 1900<br>1050            | 1900<br>1050                          | 1900<br>1050                          | 1900<br>1050                          |
| QuantityDiameter (in.) Motor Hp                                                                   | 1 18<br>1⁄4             | 1. 18<br>½                   | 1 18                    | 1 18<br>1⁄4                           | 118<br>½                              | 118<br>½                              |
| EVAPORATOR COIL                                                                                   |                         |                              |                         |                                       |                                       |                                       |
| Face Area (sq ft)<br>RowsFins/in.                                                                 | 3.06<br>3 .15           | 3 06<br>3. 15                | 3 06<br>3 15            | 3.06<br>315                           | 3 33<br>3 15                          | 3.33<br>315                           |
| EVAPORATOR FAN                                                                                    |                         |                              |                         |                                       |                                       |                                       |
| Nominal Airflow (cfm)<br>Nominal Speed (rpm)<br>Diameter x Width (in.)<br>Motor Hp (single-phase) | 1200<br>1100<br>10 x 10 | 1200<br>1100<br>10 x 10<br>½ | 1200<br>1100<br>10 x 10 | 1200<br>1100<br>10 x 10<br>1/2<br>1/2 | 1400<br>1100<br>10 x 10<br>3/4<br>3/4 | 1400<br>1100<br>10 x 10<br>3/4<br>3/4 |
| (three-phase)                                                                                     | 1/2                     | 1/2                          | 1/2                     | 72                                    | 74                                    | 74                                    |
| FURNACE SECTION*                                                                                  |                         |                              |                         |                                       |                                       |                                       |
| Burner Orifice No. (Qtydrill size)<br>Natural Gas                                                 | 2 38                    | 2. 32                        | 3 35                    | 3 32                                  | 2 38                                  | 232                                   |
| Burner Orifice No. (Qtydrill size)<br>Propane Gas                                                 | 2. 46                   | 242                          | 3 .44                   | 3 42                                  | 2 46                                  | 2 42                                  |
| RETURN-AIR FILTERS (in.)† Throwaway                                                               | 20 x 24                 | 20 x 24                      | 20 x 24                 | 20 x 24                               | 24 x 24                               | 24 x 24                               |

<sup>\*</sup>Based on an altitude of 0-2000 ft.

†Required field-supplied filter sizes are based on the larger of the ARI-rated (Air Conditioning & Refrigeration Institute) cooling airflow or the heating airflow at a velocity of 300 ft/min for throwaway type Air filter pressure drop for non-standard filters must not exceed 0.08 in. wg
\*\*Sq inch. Filter is mounted external to unit.

# **SPECIFICATIONS** (cont)

| UNIT SIZE 588A                                 | 042100       | 042120       | 048080          | 048100          | 048120       | 048140       |
|------------------------------------------------|--------------|--------------|-----------------|-----------------|--------------|--------------|
| NOMINAL CAPACITY (tons)                        | 31/2         | 31/2         | 4               | 4               | 4            | 4            |
| OPERATING WEIGHT (lb)                          |              |              |                 |                 | 100          |              |
| Without Base Rail                              | 387<br>411   | 387<br>411   | 414<br>438      | 426<br>450      | 426<br>450   | 426<br>450   |
| With Optional Base Rail                        |              | 711          | 400             | 430             | 450          | 400          |
| COMPRESSOR                                     | Recipr       | ocating      | 1               | Hermet          | ic Scroll    |              |
| Type<br>Quantity                               |              | 1            |                 |                 | 1            |              |
| REFRIGERANT                                    |              |              | R               | -22             |              |              |
| Charge (lb)                                    | 5 20         | 5.20         | 6 50            | 6 50            | 6.50         | 6.50         |
| REFRIGERANT METERING DEVICE                    |              |              | Fixed Orifice I | Metering Device |              |              |
| CONDENSER COIL                                 |              |              |                 |                 |              |              |
| Face Area (sq ft)                              | 7.04         | 7.04         | 8.67            | 8.67            | 8 67         | 8.67         |
| RowsFins/in.                                   | 2 17         | 2 17         | 2 17            | 2.17            | 2.17         | 2 17         |
| CONDENSER FAN                                  | 1900         | 1000         | 0.400           | 0.400           | 0400         | 0.400        |
| Nominal Airflow (cfm) Nominal Speed (rpm)      | 1900         | 1900<br>1050 | 2400<br>1050    | 2400<br>1050    | 2400<br>1050 | 2400<br>1050 |
| Diameter x Width (in.)                         | 1 18         | 1 .18        | 1 20            | 1 20            | 1 20         | 1 . 20       |
| Motor Hp                                       | 1/4          | 1/4          | 1/4             | 1/3             | 1/3          | 1/3          |
| EVAPORATOR COIL                                |              |              |                 |                 |              |              |
| Face Area (sq ft)                              | 3.33         | 3 33         | 4.44            | 4 44            | 4 44         | 4 44         |
| RowsFins/in.                                   | 3 .15        | 3 .15        | 3 15            | 315             | 3 15         | 3 15         |
| EVAPORATOR FAN                                 | 1400         | 1400         | 1000            | 4000            | 4000         | 4000         |
| Nominal Airflow (cfm)<br>Nominal Speed (rpm)   | 1400<br>1100 | 1400<br>1100 | 1600<br>1100    | 1600<br>1100    | 1600<br>1100 | 1600<br>1100 |
| Diameter x Width (in.)                         | 10 x 10      | 10 x 10      | 10 x 10         | 10 x 10         | 10 x 10      | 10 x 10      |
| Motor Hp (single-phase)                        | 3/4          | 3/4          | 3/4             | 3/4             | 3/4          | 3/4          |
| (three-phase)                                  | 3/4          | 3/4          | 3/4             | 3/4             | 3/4          | 3/4          |
| FURNACE SECTION*                               |              |              |                 |                 |              |              |
| Burner Orifice No. (Qtydrill size) Natural Gas | 3 35         | 3 32         | 2. 32           | 335             | 3 32         | 330          |
| Burner Orifice No. (Qtydrill size)             |              | 5 52         | ٤. ٥٤           | 000             | 0 02         | 000          |
| Propane Gas                                    | 344          | 3. 42        | 242             | 3 .44           | 342          | 341          |
| RETURN-AIR FILTERS (in.)†                      |              |              |                 |                 |              |              |
| Throwaway                                      | 24 x 24      | 24 x 24      | 24 x 30         | 24 x 30         | 24 x 30      | 816**        |

| UNIT SIZE 588A                                 | 060080          | 060100          | 060120          | 060140          |
|------------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| NOMINAL CAPACITY (tons)                        | 5               | 5               | 5               | 5               |
| OPERATING WEIGHT (Ib)                          |                 |                 |                 |                 |
| Without Base Rail                              | 453             | 465             | 465             | 465             |
| With Optional Base Rail                        | 477             | 489             | 489             | 489             |
| COMPRESSOR                                     |                 |                 |                 |                 |
| Type Quantity                                  |                 | Hermet          | ic Scroll<br>1  |                 |
| REFRIGERANT                                    |                 | R-              | -22             |                 |
| Charge (lb)                                    | 7 00            | 7.00            | 7.00            | 7.00            |
| REFRIGERANT METERING DEVICE                    |                 | Fixed Orifice N | Metering Device |                 |
| CONDENSER COIL                                 |                 |                 | 3               |                 |
| Face Area (sq ft)                              | 8.67            | 8.67            | 8.67            | 8.67            |
| RowsFins/in.                                   | 2. 17           | 2. 17           | 2 17            | 217             |
| CONDENSER FAN                                  |                 |                 |                 |                 |
| Nominal Airflow (cfm)                          | 2400            | 2400            | 2400            | 2400            |
| Nominal Speed (rpm) QuantityDiameter (in.)     | 1050<br>1, 20   | 1050<br>120     | 1050<br>1 20    | 1050<br>1, 20   |
| Motor Hp                                       | 1/3             | 1/3             | 1/3             | 1, 20           |
| EVAPORATOR COIL                                |                 |                 |                 |                 |
| Face Area (sq ft)                              | 4 44            | 4 44            | 4 44            | 4.44            |
| RowsFins/in.                                   | 4 15            | 415             | 4 15            | 415             |
| EVAPORATOR FAN                                 |                 |                 |                 | ,               |
| Nominal Airflow (cfm)                          | 1995            | 1995            | 1995            | 1995            |
| Nominal Speed (rpm) Diameter x Width (in.)     | 1100<br>10 x 10 | 1100<br>10 x 10 | 1100<br>10 x 10 | 1100<br>10 x 10 |
| Motor Hp (single-phase)                        | 1 10 110        | 10 10           | 10 1 10         | 10 x 10         |
| (three-phase)                                  | 1 1             | 1               | i               | 1               |
| FURNACE SECTION*                               |                 |                 |                 |                 |
| Burner Orifice No. (Qtydrill size)             |                 |                 |                 |                 |
| Natural Gas                                    | 232             | 335             | 332             | 3 30            |
| Burner Orifice No. (Qtydrill size) Propane Gas | 242             | 344             | 3. 42           | 3. 41           |
| RETURN-AIR FILTERS (in.)†                      | 242             | 044             | 0. 42           | 3. 41           |
| Throwaway                                      | 24 x 30         | 24 x 30         | 24 x 30         | 960**           |
| L                                              | L 24 X 30       | 24 X 30         | 24 X 30         | 900             |

<sup>\*</sup>Based on an altitude of 0-2000 ft
†Required field-supplied filter sizes are based on the larger of the ARI-rated (Air Conditioning & Refrigeration Institute) cooling airflow or the heating airflow at a velocity of 300 ft/min for throwaway type Air filter pressure drop for non-standard filters must not exceed 0 08 in. wg

\*\*Sq inch Filter is mounted external to unit

#### **SELECTION PROCEDURE**

### I DETERMINE COOLING AND HEATING REQUIRE-MENTS AT DESIGN CONDITIONS:

#### Given:

| Required Cooling Capacity (TC)       | 34,000 Btuh       |
|--------------------------------------|-------------------|
| Sensible Heat Capacity (SHC)         | 24,000 Btuh       |
| Required Heating Capacity            | . 60,000 Btuh     |
| Condenser Entering-Air Temperature   |                   |
| Indoor-Air Temperature 80            | Fedb, 67 Fewb     |
| Evaporator-Air Quantity              | 1200 cfm          |
| External Static Pressure             | 0 20 in wg        |
| Electrical Characteristics (V-Ph-Hz) | 208-1 <b>-</b> 60 |

# II SELECT UNIT BASED ON REQUIRED COOLING CAPACITY.

Enter Net Cooling Capacities table at condenser entering temperature of 95 F. Unit 588A036 at 1200 cfm and 67 F ewb (entering wet bulb) will provide a total capacity of 36,000 Btuh and an SHC of 26,200 Btuh. Calculate SHC correction, if required, using Note 4 under Net Cooling Capacities tables

# III SELECT HEATING CAPACITY OF UNIT TO PROVIDE DESIGN CONDITION REQUIREMENT.

In the Heating Capacities and Efficiencies table on page 4, note that unit 588A036080 will provide 64,800 Btuh with an input of 80,000 Btuh.

# IV DETERMINE FAN SPEED AND POWER REQUIRE-MENTS AT DESIGN CONDITIONS.

Before entering the air delivery tables, calculate the total static pressure required. From the given, the Wet Coil Pressure Drop table, and the Filter Pressure Drop table on page 19, find at 1200 cfm.

| External static pressure | 0 20 in wg   |
|--------------------------|--------------|
| Wet Coil                 | 0 088 in. wg |
| Filter                   | 0.13 in. wg  |

Total static pressure 0 42 in. wg (rounded)

Enter the table for Dry Coil Air Delivery — Horizontal Discharge for 230 and 460 V on page 17 For 208 v operation, deduct 10% from value given. The fan will deliver 1233 cfm at 0.4 external static pressure (1370 x 0.9) at high speed and 852 cfm at 0.5 external static pressure (946 x 0 9) at low speed. The fan speed should be set at high to satisfy job requirements.

# V SELECT UNIT THAT CORRESPONDS TO POWER SOURCE AVAILABLE.

The Electrical Data table on page 20 shows that the unit is designed to operate at 208-1-60

#### **NET COOLING CAPACITIES**

| 588A | 018 (11/ | 2 TONS         | )                    |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |
|------|----------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|      | Indoor   |                |                      |                      |                      |                      | Outdoor Co           | oil Enterin          | g-Air Te             | mperature (          | (F)                  |                      |                      |                      |
|      | Coil Aiı | r              |                      | 85                   |                      |                      | 95                   |                      |                      | 105                  |                      |                      | 115                  |                      |
| Cfm  | BF       | Ewb            |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>n x 1000)  | Total<br>System      |
|      |          | (F)            | Total                | Sensible             | kW                   |
| 525  | 0.10     | 72<br>67<br>62 | 19 0<br>17 4<br>15 8 | 8 70<br>11.2<br>13 6 | 1 85<br>1 80<br>1 76 | 18.5<br>16.9<br>15.3 | 8 56<br>11 1<br>13 4 | 2 00<br>1.95<br>1.90 | 17 9<br>16 2<br>14 6 | 8 37<br>10 9<br>13.2 | 2 15<br>2.10<br>2.05 | 17 1<br>15 5<br>13 8 | 8 10<br>10.6<br>12.8 | 2 31<br>2.26<br>2 20 |
| 600  | 0.12     | 72<br>67<br>62 | 19 2<br>17 6<br>16 0 | 8 97<br>11 8<br>14 4 | 1 90<br>1 86<br>1 81 | 18 7<br>17 0<br>15 5 | 8 87<br>11 6<br>14 2 | 2.05<br>2 00<br>1 95 | 18 0<br>16 3<br>14 9 | 8.60<br>11 4<br>14.0 | 2 20<br>2.15<br>2.10 | 17.3<br>15.6<br>14.1 | 8 44<br>11 2<br>13 6 | 2 37<br>2.31<br>2.25 |
| 675  | 0.13     | 72<br>67<br>62 | 19 3<br>17 8<br>16 1 | 9 18<br>12 4<br>15 1 | 1 95<br>1 91<br>1 86 | 18 8<br>17 1<br>15 6 | 9 08<br>12 2<br>14 9 | 2 10<br>2 05<br>2.01 | 18 0<br>16 4<br>14 9 | 8 83<br>12 0<br>14.6 | 2 25<br>2 20<br>2 15 | 17 4<br>15 7<br>14 3 | 8 73<br>11.7<br>14.2 | 2.42<br>2.36<br>2.31 |

| 588A0 | 024 (2 1 | rons)          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |
|-------|----------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|       | Indoor   |                |                      |                      |                      |                      | Outdoor Co           | oil Entering         | g-Air Te             | mperature (          | F)                   |                      |                      |                      |
| •     | Coil Aiı | r              |                      | 85                   |                      |                      | 95                   |                      |                      | 105                  |                      |                      | 115                  |                      |
| Cfm I | BF       | Ewb            |                      | pacity<br>1 x 1000)  | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |
|       |          | (F)            | Total                | Sensible             | kW                   |
| 700   | 0.06     | 72<br>67<br>62 | 27 8<br>25 1<br>22 5 | 13 2<br>16 6<br>19 8 | 2 69<br>2 60<br>2 51 | 26 3<br>23 6<br>21 1 | 12 7<br>16 1<br>19.3 | 2 84<br>2 73<br>2.63 | 24 6<br>22 0<br>19 6 | 12 1<br>15 5<br>18 5 | 2 97<br>2 86<br>2.74 | 22 9<br>20.3<br>17 9 | 11 6<br>14 9<br>17 6 | 3.10<br>2.97<br>2.85 |
| 800   | 0.07     | 72<br>67<br>62 | 28.3<br>25 6<br>23 0 | 13 7<br>17 6<br>21 2 | 2 75<br>2 65<br>2 56 | 26 6<br>24 0<br>21 5 | 13 1<br>17 1<br>20 5 | 2 89<br>2.82<br>2 69 | 25 0<br>22 4<br>20 0 | 12 7<br>16 5<br>19 7 | 3 03<br>2 92<br>2 81 | 23 2<br>20 6<br>18 6 | 12 2<br>15 9<br>18 5 | 3 16<br>3 03<br>2 93 |
| 900   | 0.08     | 72<br>67<br>62 | 28 7<br>26 0<br>23 4 | 14.2<br>18 6<br>22 3 | 2.80<br>2.71<br>2.62 | 27 0<br>24 4<br>21.9 | 13 7<br>18 1<br>21 5 | 2 95<br>2 85<br>2 75 | 25 3<br>22 6<br>20 5 | 13 2<br>17 4<br>20 5 | 3 09<br>2 97<br>2 88 | 23.5<br>20 9<br>19 2 | 12 7<br>16 9<br>19 2 | 3 21<br>3 09<br>3 01 |

| 588A0 | 30 (21/2 | TONS)          | )                    |                      |                      |                      |                      |                      |                      | ·····                |                      |                      |                      |                      |
|-------|----------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|       | Indoor   |                |                      |                      |                      |                      | Outdoor Co           | oil Enterin          | g-Air Te             | mperature (          | (F)                  |                      |                      |                      |
| (     | Coil Air | '              |                      | 85                   |                      |                      | 95                   |                      |                      | 105                  |                      |                      | 115                  |                      |
| Cfm   | BF       | Ewb            |                      | pacity<br>1 x 1000)  | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |
|       |          | (F)            | Total                | Sensible             | kW                   |
| 875   | 0.08     | 72<br>67<br>62 | 33 7<br>30 7<br>27 5 | 16.3<br>21 0<br>25 2 | 3 16<br>3 09<br>3 01 | 31 7<br>28 8<br>25 8 | 15 6<br>20 4<br>24.4 | 3 33<br>3 25<br>3 16 | 29 9<br>26 9<br>23 9 | 15.0<br>19 6<br>23 4 | 3.49<br>3.40<br>3.30 | 27.6<br>24.8<br>21 9 | 14 2<br>18 8<br>21 9 | 3 62<br>3 53<br>3.44 |
| 1000  | 0.09     | 72<br>67<br>62 | 34 0<br>31 1<br>28 0 | 16 9<br>22 3<br>26 8 | 3 22<br>3 15<br>3 07 | 32 3<br>29 2<br>26 3 | 16 4<br>21.6<br>25.9 | 3 40<br>3.32<br>3.23 | 30 1<br>27 2<br>24 6 | 15 6<br>20.9<br>24 6 | 3 54<br>3 46<br>3 38 | 28 0<br>25 0<br>22 9 | 15 0<br>20 1<br>22 9 | 3 89<br>3 59<br>3 52 |
| 1125  |          | 72<br>67<br>62 | 34 5<br>31 3<br>28 4 | 17 6<br>23 4<br>28 2 | 3 28<br>3.20<br>3 13 | 32 4<br>29 4<br>26 9 | 16 9<br>22.7<br>26.9 | 3 44<br>3 37<br>3 30 | 30 5<br>27 5<br>25 3 | 16 4<br>22 1<br>25 3 | 3 61<br>3 62<br>3 45 | 28 1<br>25 2<br>23 6 | 15 6<br>21 2<br>23 6 | 3 74<br>3 64<br>3 59 |

#### LEGEND

BF - Bypass Factor
Ewb - Entering Wet-Bulb
SHC - Sensible Heat Capacity (1000 Btuh)

1 Ratings are net; they account for the effects of the indoor-fan motor

power and heat.
Direct interpolation is permissible Do not extrapolate

The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh x 1000)}}{1 10 \text{ x cfm}}$$

 $t_{IWD} = \mbox{Wet-bulb}$  temperature corresponding to enthalpy of air leaving indoor coil  $(h_{IWD})$ 

 $h_{lwb} = h_{ewb} - \frac{total\ capacity\ (Btuh\ x\ 1000)}{4\ 5\ x\ cfm}$ 

Where  $h_{ewb} = Enthalpy of air entering indoor coil$ 

4 The SHC is based on 80 F edb temperature of air entering indoor

Below 80 F edb, subtract (corr factor x cfm) from SHC Above 80 F edb, add (corr factor x cfm) to SHC

Correction Factor =  $1.10 \times (1 - BF) \times (edb - 80)$ 

# **NET COOLING CAPACITIES (cont)**

| 588A0 | 36 (3 T  | ONS)           |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |
|-------|----------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|       | Indoor   |                |                      |                      |                      |                      | Outdoor Co           | oil Enterin          | g-Air Te             | mperature (          | (F)                  |                      |                      |                      |
| (     | Coil Air |                |                      | 85                   |                      |                      | 95                   |                      |                      | 105                  |                      |                      | 115                  |                      |
| Cfm   | BF       | Ewb            |                      | pacity<br>n x 1000)  | Total<br>System      |                      | pacity<br>1 x 1000)  | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |
|       |          | (F)            | Total                | Sensible             | kW                   |
| 1050  | 0.07     | 72<br>67<br>62 | 41 7<br>37.6<br>33.6 | 19 9<br>25 4<br>30.5 | 3 99<br>3 86<br>3 72 | 39 3<br>35 5<br>31 2 | 19 1<br>24 7<br>29 4 | 4 18<br>4.05<br>3 90 | 37 2<br>33 2<br>28.8 | 18 4<br>23 8<br>28 2 | 4 39<br>4 23<br>4 08 | 34 7<br>30 9<br>26 7 | 17 5<br>22 9<br>26 7 | 4 57<br>4 41<br>4 26 |
| 1200  | 0.08     | 72<br>67<br>62 | 42 3<br>38 3<br>34 2 | 20 7<br>27 1<br>32 5 | 4 08<br>3 95<br>3 81 | 40 2<br>36 0<br>31 9 | 20 1<br>26 2<br>31 4 | 4.29<br>4.14<br>3.99 | 37 6<br>33 7<br>30 0 | 19 2<br>25 4<br>30 0 | 4 48<br>4 32<br>4 17 | 35 0<br>31 3<br>28.1 | 18 3<br>24 5<br>28 1 | 4 66<br>4 50<br>4.37 |
| 1350  | 0.09     | 72<br>67<br>62 | 42 6<br>38.7<br>34 8 | 21.4<br>28 5<br>34 2 | 4 15<br>4.03<br>3 90 | 40 4<br>36 4<br>32 8 | 20.8<br>27 7<br>32 8 | 4.36<br>4 22<br>4.09 | 37 9<br>34.0<br>31.1 | 20 0<br>26.8<br>31.0 | 4 56<br>4 41<br>4.29 | 35 2<br>31 6<br>29 2 | 19 0<br>25 9<br>29 2 | 4.73<br>4 58<br>4.48 |

|       | 42 (3½<br>Indoor |                |                      |                      |                      |                      | Outdoor Co           | oil Entering         | g-Air Te             | mperature (          | (F)                  |                      |                      |                      |
|-------|------------------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|       | Coil Air         | •              |                      | 85                   |                      |                      | 95                   |                      |                      | 105                  |                      |                      | 115                  |                      |
| Cfm I | BF               | Ewb            |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>1 x 1000)  | Total<br>System      |
|       |                  | (F)            | Total                | Sensible             | ′kW                  | Total                | Sensible             | kW                   | Total                | Sensible             | kW                   | Total                | Sensible             | kW                   |
| 1225  | 0.11             | 72<br>67<br>62 | 47 9<br>44 2<br>40.3 | 23 5<br>30 0<br>36 1 | 4 57<br>4 43<br>4 28 | 45 3<br>41 8<br>38.0 | 22 5<br>29 2<br>34 9 | 4 81<br>4 67<br>4 50 | 43 0<br>39 3<br>35 7 | 21 8<br>28 2<br>33 8 | 5 08<br>4 90<br>4 73 | 40 1<br>36 7<br>33 3 | 20 7<br>27 2<br>32 5 | 5 30<br>5 12<br>4 94 |
| 1400  | 0.12             | 72<br>67<br>62 | 48.5<br>44 9<br>41 1 | 24 3<br>31 7<br>38 3 | 4.66<br>4.52<br>4.38 | 45.9<br>42.5<br>38.8 | 23 4<br>30 9<br>37.1 | 4 91<br>4 77<br>4.61 | 43.3<br>39 9<br>36 4 | 22 5<br>29 9<br>35 8 | 5 17<br>5 01<br>4 84 | 40 4<br>37 2<br>34 1 | 21 4<br>28 8<br>34 1 | 5 39<br>5 23<br>5 06 |
| 1575  | 0.14             | 72<br>67<br>62 | 49 0<br>45.4<br>41 8 | 25 0<br>33.2<br>40 2 | 4 75<br>4 61<br>4 48 | 46 4<br>43 0<br>39 4 | 24 2<br>32 5<br>38 9 | 5 00<br>4.87<br>4 71 | 43 7<br>40.4<br>37 2 | 23 4<br>31 5<br>37 2 | 5 26<br>5 10<br>4.94 | 40 8<br>37 6<br>35 0 | 22 3<br>30 4<br>35 0 | 5.49<br>5 32<br>5 18 |

|      | Indoor   |                |                      |                              |                              |                      | Outdoor Co           | oil Entering         | g-Air Te             | mperature (          | (F)                  |                      |                      |                      |
|------|----------|----------------|----------------------|------------------------------|------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|      | Coil Air |                |                      | 85                           |                              |                      | 95                   |                      |                      | 105                  |                      |                      | 115                  |                      |
| Cfm  | BF       | Ewb            |                      | pacity<br>n x 1000)          | Total<br>System              |                      | pacity<br>n x 1000)  | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |
|      |          | (F)            | Total                | Sensible                     | ′kW                          | Total                | Sensible             | kW                   | Total                | Sensible             | kW                   | Total                | Sensible             | kW                   |
| 1400 | 0.08     | 72<br>67<br>62 | 52 9<br>48 3<br>43 8 | 25 6<br>32 7<br>39 4         | 4 95<br>4 85<br>4 76         | 50 9<br>46 4<br>41 9 | 24 8<br>32 1<br>38 6 | 5 38<br>5.28<br>5.17 | 48 8<br>44 2<br>39 3 | 24 1<br>31.2<br>37 3 | 5.83<br>5 73<br>5 61 | 46 4<br>41 5<br>36 6 | 23 4<br>30 2<br>35 9 | 6 34<br>6 22<br>6 08 |
| 1600 | 0.10     | 72<br>67<br>62 | 53 7<br>49 1<br>44 5 | 26.4<br>34 6<br>4 <b>1</b> 9 | 5 07<br>4 97<br>4 87         | 51 7<br>47 0<br>42 6 | 25 9<br>33 9<br>41 1 | 5 50<br>5 40<br>5 29 | 49 2<br>44 7<br>40 1 | 25 1<br>33 1<br>39 7 | 5 95<br>5 85<br>5.74 | 47.0<br>42.4<br>37.7 | 24 3<br>32 4<br>37 6 | 6 45<br>6 34<br>6 22 |
| 1800 | 0.11     | 72<br>67<br>62 | 53.9<br>49 6<br>45 1 | 27 1<br>36 4<br>44 1         | 5 <b>1</b> 7<br>5 08<br>4 99 | 52.2<br>47.5<br>43.3 | 26 8<br>35 9<br>43 1 | 5 61<br>5 51<br>5 41 | 49 6<br>45 2<br>41 2 | 26 0<br>35 1<br>41 2 | 6 06<br>5 96<br>5 87 | 47 4<br>42 8<br>39 0 | 25.4<br>34 2<br>39 0 | 6 57<br>6 46<br>6 36 |

## LEGEND

BF - Bypass Factor
Ewb - Entering Wet-Bulb
SHC - Sensible Heat Capacity (1000 Btuh)

#### NOTES:

Ratings are net, they account for the effects of the indoor-fan motor

power and heat.

Direct interpolation is permissible Do not extrapolate
The following formulas may be used

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh x 1000)}}{1.10 \text{ x cfm}}$$

 $t_{IWb} = \mbox{Wet-bulb temperature corresponding to enthalpy of air leaving indoor coil (h_{IWb})}$ 

 $h_{lwb} = h_{ewb} - \frac{total\ capacity\ (Btuh\ x\ 1000)}{4\ F}$ 

4 5 x cfm

Where  $h_{ewb} = Enthalpy of air entering indoor coil$ 

4 The SHC is based on 80 F edb temperature of air entering indoor

Below 80 F edb, subtract (corr factor x cfm) from SHC Above 80 F edb, add (corr factor x cfm) to SHC.

Correction Factor =  $1.10 \times (1 - BF) \times (edb - 80)$ 

# **NET COOLING CAPACITIES (cont)**

| 588A0 | 60 (5 T  | ONS)           |                      |                      |                      |                      |                      |                      |                      |                      |                              |                      |                      |                      |
|-------|----------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------------|----------------------|----------------------|----------------------|
|       | Indoor   |                |                      |                      |                      |                      | Outdoor Co           | oil Entering         | g-Air Te             | mperature (          | (F)                          |                      |                      |                      |
| (     | Coil Air | •              |                      | 85                   |                      |                      | 95                   |                      |                      | 105                  |                              |                      | 115                  |                      |
| Cfm   | BF       | Ewb            |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>x 1000)    | Total<br>System      |                      | pacity<br>n x 1000)  | Total<br>System              |                      | pacity<br>1 x 1000)  | Total<br>System      |
|       |          | (F)            | Total                | Sensible             | kW                   | Total                | Sensible             | kW                   | Total                | Sensible             | kW                           | Total                | Sensible             | kW                   |
| 1750  | 0.03     | 72<br>67<br>62 | 69 4<br>62 0<br>55 0 | 34 2<br>43.7<br>52 4 | 6.53<br>6 33<br>6 14 | 66 2<br>58 8<br>51 8 | 33 2<br>42 4<br>51 0 | 7 05<br>6 82<br>6 62 | 62 9<br>55 1<br>48 7 | 32.1<br>41 1<br>48 7 | 7 60<br>7 37<br>7 17         | 59 5<br>52 0<br>45 8 | 30 9<br>40 0<br>45 8 | 8 19<br>7 94<br>7 77 |
| 2000  | 0.04     | 72<br>67<br>62 | 70 5<br>63 1<br>56 3 | 35 8<br>46 7<br>56 1 | 6 70<br>6 50<br>6 32 | 67 3<br>59 5<br>53.6 | 34 8<br>45 3<br>53 5 | 7 22<br>7 00<br>6 83 | 63 9<br>56 0<br>51 0 | 33 7<br>44.0<br>50.9 | 7 78<br>7 54<br>7 39         | 60 5<br>52 8<br>48 5 | 32 6<br>42 8<br>48 4 | 8 36<br>8 12<br>7 98 |
| 2250  | 0.05     | 72<br>67<br>62 | 71 3<br>63 9<br>58 2 | 37 4<br>49 5<br>58 1 | 6 88<br>6.67<br>6 52 | 68 1<br>60 2<br>55 6 | 36 3<br>48 2<br>55 6 | 7 39<br>7 17<br>7 03 | 64 5<br>56 7<br>53 0 | 35 3<br>46.9<br>52.8 | 7 95<br>7 7 <b>1</b><br>7 59 | 60 8<br>53 4<br>50 4 | 34 1<br>45 6<br>50 3 | 8 53<br>8 29<br>8 18 |

#### **LEGEND**

BF - Bypass Factor
Ewb - Entering Wet-Bulb
SHC - Sensible Heat Capacity (1000 Btuh)

NOTES:

1 Ratings are net, they account for the effects of the indoor-fan motor power and heat.

2 Direct interpolation is permissible Do not extrapolate

3. The following formulas may be used

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh x 1000)}}{1.10 \text{ x cfm}}$$

 $t_{\mbox{lwb}}$  = Wet-bulb temperature corresponding to enthalpy of air leaving indoor coil (h<sub>lwb</sub>)

$$h_{lwb} = h_{ewb} - \frac{total\ capacity\ (Btuh\ x\ 1000)}{4.5\ x\ cfm}$$

Where.  $h_{ewb} = Enthalpy$  of air entering indoor coil

4 The SHC is based on 80 F edb temperature of air entering indoor

Below 80 F edb, subtract (corr factor x cfm) from SHC Above 80 F edb, add (corr factor x cfm) to SHC Correction Factor = 1 10 x (1 - BF) x (edb - 80)

# DRY COIL AIR DELIVERY\* — HORIZONTAL DISCHARGE (Deduct 10% for 208 v)

| UNIT |            |       |      |      |      | 230 AND 4 | 160 VOLT    | HORIZON    | TAL DISC   | HARGE |      |      |     |
|------|------------|-------|------|------|------|-----------|-------------|------------|------------|-------|------|------|-----|
| SIZE | MOTOR      |       |      |      |      | Ex        | ternal Stat | tic Pressu | re (in. wg | )     |      |      |     |
| 588A | SPEED      |       | 0.0  | 0.1  | 0.2  | 0.3       | 0.4         | 0.5        | 0.6        | 0.7   | 0.8  | 0.9  | 1.0 |
|      | 1          | Watts | 230  | 225  | 220  | 210       | 195         | 170        |            | -     | _    |      |     |
| 040  | Low        | Cfm   | 760  | 745  | 725  | 695       | 640         | 540        | 1          |       |      |      |     |
| 018  | 11:        | Watts | _    | _    | _    |           | 270         | 235        | 200        | _     |      |      | _   |
|      | High       | Cfm   |      | _    | _    |           | 850         | 700        | 450        |       |      |      |     |
|      | 1          | Watts | 275  | 275  | 273  | 269       | 260         | 257        | 249        |       | _    |      |     |
|      | Low        | Cfm   | 857  | 835  | 802  | 782       | 745         | 717        | 663        |       |      |      | _   |
| 024, | NAI        | Watts | 371  | 368  | 360  | 349       | 345         | 326        | 319        | 304   | 293  |      |     |
| 030  | Med        | Cfm   | 1079 | 1063 | 1027 | 996       | 978         | 919        | 865        | 783   | 726  |      | _   |
|      | 11:-1-     | Watts | 514  | 493  | 476  | 460       | 443         | 425        | 401        | 378   | 344  |      |     |
|      | High       | Cfm   | 1409 | 1383 | 1324 | 1282      | 1223        | 1156       | 1068       | 984   | 857  |      |     |
|      | ,          | Watts | 473  | 447  | 427  | 418       | 395         | 367        | 346        | 337   | 323  |      |     |
|      | Low        | Cfm   | 1253 | 1253 | 1172 | 1130      | 1047        | 946        | 865        | 829   | 768  |      |     |
|      | <b>N</b> 4 | Watts | 519  | 500  | 478  | 459       | 439         | 410        | 377        | 357   | 340  | _    |     |
| 036  | Med        | Cfm   | 1414 | 1366 | 1287 | 1234      | 1162        | 1074       | 920        | 829   | 743  | _    |     |
|      | 1 12 1-    | Watts | 667  | 634  | 609  | 593       | 564         | 541        | 506        | 469   | 436  | 422  |     |
|      | High       | Cfm   | 1734 | 1639 | 1563 | 1461      | 1370        | 1292       | 1157       | 960   | 829  | 743  |     |
|      | 1          | Watts | 678  | 635  | 604  | 580       | 550         | 520        | 493        | 455   | 430  |      |     |
| 040  | Low        | Cfm   | 1540 | 1515 | 1475 | 1430      | 1375        | 1280       | 1225       | 1128  | 1020 |      |     |
| 042  | 1.8-1-     | Watts | _    | 820  | 785  | 750       | 700         | 680        | 649        | 612   | 570  |      |     |
|      | High       | Cfm   |      | 1825 | 1750 | 1685      | 1610        | 1525       | 1485       | 1335  | 1215 | _    |     |
|      |            | Watts | _    | _    | 854  | 786       | 744         | 706        | 641        | 606   | 557  | 511  |     |
| 040  | Low        | Cfm   | _    | -    | 2026 | 1905      | 1830        | 1752       | 1603       | 1513  | 1367 | 1228 |     |
| 048  | 1 Carlo    | Watts | _    | _    | _    | 905       | 846         | 824        | 804        | 748   | 683  | 637  |     |
|      | High       | Cfm   | _    |      |      | 2025      | 1905        | 1830       | 1752       | 1603  | 1398 | 1228 |     |
|      |            | Watts | 1000 | 991  | 970  | 925       | 904         | 875        | 849        | 830   | 819  | -    |     |
|      | Low        | Cfm   | 2125 | 2110 | 2085 | 2046      | 2009        | 1960       | 1900       | 1845  | 1775 | _    |     |
| 000  | 8.4 - al   | Watts | 1355 | 1315 | 1265 | 1212      | 1158        | 1103       | 987        | 925   | 880  |      |     |
| 060  | Med        | Cfm   | 2480 | 2440 | 2388 | 2336      | 2266        | 2198       | 2050       | 1968  | 1890 | _    |     |
|      | Litaria    | Watts |      |      | 1435 | 1375      | 1310        | 1265       | 1175       | 1108  | 1010 | 915  | _   |
|      | High       | Cfm   |      | _    | 2509 | 2450      | 2380        | 2310       | 2235       | 2160  | 2083 | 1888 |     |

<sup>\*</sup>Air delivery values are based on operating voltage of 230 v or 460 v, dry coil, without filter Deduct wet coil and filter pressure drops to obtain external static pressure available for ducting

<sup>NOTES:
1. Do not operate the unit at a cooling airflow that is less than 350 cfm for each 12,000 Btuh of rated cooling capacity. Evaporator coil frosting may occur at airflows below this point
2. Dashes indicate portions of table that are beyond the blower motor capacity or are not recommended.</sup> 

# DRY COIL AIR DELIVERY\* — VERTICAL DISCHARGE (Deduct 10% for 208 v)

| UNIT |                |       |      |      |      | 230 AN | D 460 VO   | LT VERTI   | CAL DISC   | HARGE | _    |      |      |
|------|----------------|-------|------|------|------|--------|------------|------------|------------|-------|------|------|------|
| SIZE | MOTOR<br>SPEED |       |      |      |      | E      | kternal St | atic Press | ure (in. w | g)    |      |      |      |
| 588A | 0, 225         |       | 0.0  | 0.1  | 0.2  | 0.3    | 0.4        | 0.5        | 0.6        | 0.7   | 0.8  | 0.9  | 1.0  |
|      | Low            | Watts | _    | 295  | 251  | 223    | 201        | 176        | 149        | 124   |      |      | _    |
| 018  | LOW            | Cfm   | _    | 821  | 817  | 753    | 665        | 536        | 343        | 164   | _    |      | _    |
| 010  | High           | Watts | 401  | 376  | 346  | 322    | 294        | 272        | 250        | 229   | 219  | _    | _    |
|      | High           | Cfm   | 1334 | 1253 | 1128 | 996    | 816        | 658        | 461        | 246   | 167  |      |      |
|      | Low            | Watts | -    | 285  | 284  | 282    | 278        | 274        | 270        | 261   | 251  | 244  | 230  |
|      | LOW            | Cfm   |      | 798  | 761  | 727    | 682        | 634        | 581        | 525   | 450  | 371  | 304  |
| 024, | Med            | Watts |      | 378  | 371  | 368    | 362        | 357        | 343        | 332   | 315  | 301  | 283  |
| 030  | ivied          | Cfm   |      | 1011 | 982  | 948    | 906        | 858        | 771        | 703   | 597  | 492  | 387  |
|      | Lliab          | Watts | _    | 520  | 511  | 487    | 472        | 451        | 431        | 411   | 385  | 362  | 341  |
|      | High           | Cfm   |      | 1342 | 1289 | 1237   | 1181       | 1106       | 1007       | 892   | 745  | 610  | 471  |
|      | Low            | Watts | _    | 460  | 439  | 423    | 898        | 379        | 349        | 322   | 297  | 270  | 246  |
|      | LOW            | Cfm   |      | 1191 | 1136 | 1081   | 1005       | 907        | 795        | 687   | 579  | 471  | 349  |
| 036  | Med            | Watts |      | 511  | 492  | 470    | 450        | 420        | 392        | 364   | 332  | 308  | 275  |
| 636  | ivied          | Cfm   | _    | 1316 | 1244 | 1178   | 1104       | 1005       | 891        | 784   | 657  | 535  | 389  |
|      | High           | Watts | _    | 655  | 631  | 603    | 584        | 552        | 522        | 492   | 459  | 433  | 398  |
|      | l nigri        | Cfm   | _    | 1541 | 1458 | 1367   | 1292       | 1178       | 1053       | 920   | 806  | 662  | 509  |
|      | Low            | Watts |      | 637  | 612  | 587    | 560        | 536        | 493        | 455   | _    | _    | _    |
| 042  | Low            | Cfm   |      | 1500 | 1450 | 1405   | 1350       | 1290       | 1200       | 1105  | _    | _    | _    |
| 042  | High           | Watts | _    | 790  | 750  | 700    | 699        | 639        | 608        | 574   | 547  |      | _    |
|      | nign           | Cfm   | -    | 1750 | 1625 | 1604   | 1509       | 1421       | 1323       | 1221  | 1094 |      |      |
|      | Low            | Watts | _    | 847  | 784  | 746    | 708        | 646        | 609        | 563   | 516  | _    | _    |
| 048  | LOW            | Cfm   |      | 1995 | 1901 | 1822   | 1730       | 1580       | 1477       | 1319  | 1178 |      |      |
| 046  | High           | Watts | _    | _    | 909  | 852    | 820        | 801        | 751        | 687   | 639  | _    | _    |
|      | riign          | Cfm   | _    | _    | 2018 | 1896   | 1814       | 1729       | 1582       | 1380  | 1220 | _    |      |
|      | Low            | Watts | _    | 970  | 952  | 928    | 905        | 880        | 847        | 804   | 760  | _    |      |
|      | LOW            | Cfm   | _    | 2075 | 2054 | 2024   | 1994       | 1945       | 1890       | 1830  | 1762 | _    | _    |
| 060  | Med            | Watts | _    | _    | 1291 | 1247   | 1195       | 1076       | 1025       | 970   | 921  | 833  | 810  |
| 000  | ivieu          | Cfm   | -    | _    | 2395 | 2348   | 2291       | 2164       | 2099       | 2022  | 1950 | 1827 | 1804 |
|      | Lliab          | Watts |      | 1490 | 1400 | 1312   | 1270       | 1219       | 1161       | 1104  | 1045 | 985  | 930  |
|      | High           | Cfm   | _    | 2530 | 2475 | 2420   | 2355       | 2289       | 2223       | 2150  | 2079 | 2008 | 1932 |

<sup>\*</sup>Air delivery values are based on operating voltage of 230 v or 460 v, dry coil, without filter Deduct wet coil and filter pressure drops to obtain external static pressure available for ducting

Do not operate the unit at a cooling airflow that is less than 350 cfm for each 12,000 Btuh of rated cooling capacity Evaporator coil frosting may occur at airflows below this point
 Dashes indicate portions of table that are beyond the blower motor capacity or are not

recommended

# **WET COIL PRESSURE DROP**

| UNIT SIZE<br>588A | AIRFLOW<br>(cfm) | PRESSURE DROP<br>(in. wg) |
|-------------------|------------------|---------------------------|
|                   | 600              | 0 069                     |
| 040               | 700              | 0 082                     |
| 018               | 800              | 0.102                     |
|                   | 900              | 0.116                     |
|                   | 600              | 0.039                     |
| 004               | 700              | 0 058                     |
| 024               | 800              | 0.075                     |
|                   | 900              | 0.088                     |
|                   | 900              | 0.088                     |
| 030               | 1000             | 0 095                     |
|                   | 1200             | 0 123                     |
|                   | 1000             | 0 068                     |
| 000               | 1200             | 0 088                     |
| 036               | 1400             | 0 108                     |
|                   | 1600             | 0.123                     |
|                   | 1000             | 0.048                     |
| 040               | 1200             | 0 069                     |
| 042               | 1400             | 0 088                     |
|                   | 1600             | 0 102                     |
|                   | 1400             | 0 068                     |
| 048               | 1600             | 0 075                     |
|                   | 1800             | 0 088                     |
|                   | 1700             | 0 082                     |
| 060               | 1900             | 0.095                     |
| UOU               | 2100             | 0 108                     |
|                   | 2300             | 0 123                     |

# FILTER PRESSURE DROP (in. wg)

| UNIT SIZE | FILTER     |      |      |      |      |      |      |      |      |      | CFN  | 1    |      |      |      |      |      |      |      |      |
|-----------|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 588A      | SIZE (in.) | 500  | 600  | 700  | 800  | 900  | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | 2300 |
| 018, 024  | 20 x 20    | 0 05 | 0 07 | 0 08 | 0 10 | 0 12 | 0 13 |      | _    | _    |      | _    |      | _    | _    |      |      | -    | _    |      |
| 030, 036  | 20 x 24    | _    |      |      |      | 0 09 | 0.10 | 0 11 | 0 13 | 0 14 | 0 15 | 0 16 | _    | -    |      | _    |      |      | _    |      |
| 042       | 24 x 24    | -    | 1    | _    | _    |      | ì    |      | _    | 0 11 | 0 12 | 0 14 | 0 15 |      |      |      | _    | -    |      |      |
| 048, 060  | 24 x 30    | _    |      | -    | _    | _    | _    |      | -    | _    | 0 09 | 0 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 16 | 0 17 | 0 18 |

#### **ELECTRICAL DATA**

| UNIT<br>588A                                  | V-PH-HZ      | VOLTAGE<br>RANGE |     | COMPRESSOR                                          |                                           | COND.<br>FAN<br>MOTOR                         | INDOOR<br>FAN                           | POWER SUPPLY                                         |                                  | AWG 60 C<br>MIN WIRE<br>SIZE   | MAX WIRE<br>LENGTH                  |
|-----------------------------------------------|--------------|------------------|-----|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------|--------------------------------|-------------------------------------|
|                                               |              | Min              | Max | RLA                                                 | LRA                                       | FLA                                           | FLA                                     | MCA                                                  | MOCP*                            | JILL                           | (ft)                                |
| 018<br>024<br>030<br>036<br>042<br>048<br>060 | 208/230-1-60 | 187              | 253 | 7.6<br>12 4<br>14 4<br>18 0<br>20.4<br>26 4<br>32 1 | 45<br>61<br>82<br>96<br>104<br>129<br>169 | 0 7<br>0 7<br>1 4<br>1 4<br>1 4<br>2 1<br>2 1 | 1.8<br>20<br>20<br>28<br>40<br>50<br>68 | 12 0<br>18 2<br>21 8<br>26 7<br>30 9<br>40 1<br>49 0 | 15<br>30<br>30<br>40<br>50<br>60 | 14<br>12<br>10<br>10<br>8<br>6 | 75<br>80<br>100<br>90<br>100<br>100 |
| 030<br>036<br>042<br>048<br>060               | 208/230-3-60 | 187              | 253 | 9.4<br>11.7<br>14.0<br>15.0<br>19.3                 | 66<br>75<br>91<br>99<br>123               | 1 4<br>1 4<br>1 4<br>2 1<br>2 1               | 2 0<br>2 8<br>4 0<br>5.0<br>6 8         | 15 5<br>18 8<br>22 9<br>25 9<br>33 0                 | 25<br>30<br>35<br>40<br>50       | 12<br>12<br>10<br>10<br>8      | 80<br>65<br>85<br>75<br>90          |
| 036<br>042<br>048<br>060                      | 460-3-60     | 414              | 506 | 5 6<br>6 4<br>8 2<br>10 0                           | 40<br>42<br>50<br>62                      | 08<br>08<br>11<br>1.1                         | 1 4<br>2 0<br>2 3<br>3 2                | 92<br>108<br>137<br>168                              | 10<br>15<br>20<br>25             | 14<br>14<br>14<br>12           | 100<br>100<br>100<br>100            |

### LEGEND

AWG

American Wire Gage
Canadian Standards
Full Load Amps
Heating, Air Condition CSA

Canadian Standards Association
Full Load Amps
Heating, Air Conditioning and Refrigeration
Locked Rotor Amps
Minimum Circuit Amps
Maximum Circuit Amps HACR

LRA

MCA MOCP Maximum Overcurrent Protection (fuses or HACR-type

circuit breaker)

NEC National Electrical Code RLA Rated Load Amps

\*Fuse or HACR breaker.

†Minimum wire size is based on 60 C copper wire If other than 60 C is used, determine size from NEC Voltage drop of wire must be less than 2% of rated voltage

In compliance with NEC requirements for multimotor and combina-tion load equipment (refer to NEC Articles 430 and 440), the over-current protective device for the unit shall be fuse or HACR breaker The CSA units may be fuse or circuit breaker

2 Unbalanced 3-Phase Supply Voltage

Never operate a motor where a phase imbalance in supply voltage is greater than 2% Use the following formula to determine the percent of voltage imbalance

% Voltage Imbalance

max voltage deviation from average voltage = 100 xaverage voltage

Example Supply voltage is 460-3-60 AB = 452 v BC = 464 v



Average Voltage = 
$$\frac{452 + 464 + 455}{3}$$
$$= \frac{1371}{2}$$

Determine maximum deviation from average voltage

$$(AB) 457 - 452 = 5 v$$

Maximum deviation is 7 v.

Determine percent of voltage imbalance

% Voltage Imbalance = 
$$100 \times \frac{7}{457}$$

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

**IMPORTANT:** If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately





#### **OPERATING SEQUENCE**

#### **HEATING**

On a call for heating, terminal "W" of the thermostat is energized, starting the induced-draft motor. When the hall-effect sensor on the induced-draft motor senses that it has reached the required speed, the burner sequence begins. This sequence is performed by the integrated gas control board (IGC). The indoor-fan motor is energized 45 seconds after flame is established. When the thermostat is satisfied and "W" is deenergized, the indoor-fan motor stops after a 45-second time-off delay.

#### COOLING

With the room thermostat SYSTEM switch in the COOL position and the FAN switch in the AUTO. position, the cooling sequence of operation is as follows

When the room temperature rises to a point that is slightly above the cooling control setting of the thermostat, the thermostat completes the circuit between thermostat terminal R to terminals Y and G. These completed circuits through the thermostat connect contactor coil (C) (through unit wire Y) and blower relay coil (BR) (through unit wire G) across the 24-v secondary of transformer (TRAN)

The normally-open contacts of energized contactor (C) close and complete the circuit through compressor motor (COMP) to condenser (outdoor) fan motor (OFM). Both motors start instantly

The set of normally-open contacts of energized relay BR close and complete the circuit through evaporator blower (indoor) fan motor (IFM). The blower motor starts instantly

**NOTE:** Once the compressor has started and then has stopped, it should not be started again until 5 minutes have elapsed

The cooling cycle remains "on" until the room temperature drops to point that is slightly below the cooling control setting of the room thermostat. At this point, the thermostat "breaks" the circuit between thermostat terminal R to terminals Y and G These open circuits deenergize contactor coil C and relay coil BR. The condenser and compressor motors stop. After a 30-second delay, the blower motor stops The unit is in a "standby" condition, waiting for the next "call for cooling" from the room thermostat

#### TYPICAL FIELD WIRING



#### **TYPICAL FIELD WIRING (cont)**



### **TYPICAL FIELD WIRING (cont)**



#### TYPICAL INSTALLATION



#### **APPLICATION DATA**

- 1 Condensate trap A 2-in. condensate trap must be field supplied.
- Ductwork Secure downflow discharge ductwork to roof curb. For horizontal discharge applications, attach ductwork to unit with flanges
  - Units are equipped with factory-installed duct covers on both the downflow and horizontal openings. Remove appropriate duct panel covers for intended discharge application. Units utilizing downflow option do not require duct panel cover removal.
- 3 Thermostat To achieve simultaneous economizer cooling and mechanical cooling, use of 2-stage cooling thermo-

- stat is recommended for all units equipped with accessory economizer
- 4 Airflow Units are draw-thru on cooling and blow-thru on heating
- 5 Maximum cooling airflow To minimize the possibility of condensate blow-off from evaporator, airflow through units should not exceed 450 cfm/ton.

Minimum cooling airflow is 350 cfm/ton.

Minimum ambient operating temperature for standard units is 40 F With accessory low ambient temperature kit, units can operate at temperatures down to 0° F.

#### **ENGINEERS' SPECIFICATION GUIDE**

GENERAL Furnish and install single-package, outdoor heating and cooling unit utilizing a rotary, reciprocating, or scroll hermetic compressor for cooling and gas combustion for heating duty. Unit shall discharge supply air either in downflow or horizontal application as shown on the contract drawings. Unit shall be capable of starting and running at 125 F ambient outdoor temperature per maximum load criteria of ARI Standard 210/240-89. Unit shall be provided with fan time-delay to prevent cold air delivery before heat exchanger warms up. Unit shall be provided with 30-second fan time-delay after the thermostat is satisfied.

Nominal unit electrical characteristics shall be

| ph, 60 Hz The unit shall be capable of satisfactory operation within voltage limits of to v. All unit power wiring shall enter unit cabinet at a single location.                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COOLING CAPACITY: Total cooling capacity of the unit shall be Btuh or greater, and sensible capacity shall be Btuh or greater at conditions of cfm evaporator entering air of F dry bulb, F wet bulb, and condenser entering air of F dry bulb Total design conditions shall be a minimum of Btuh/Watt. The unit shall be capable of cooling operation down to 40 F |
| HEATING CAPACITY Total heating capacity of the unit shall                                                                                                                                                                                                                                                                                                           |

CABINET: The cabinet shall be constructed of heavy duty, phosphated, zinc-coated, prepainted steel capable of withstanding 500 hours in salt spray. Cabinet panels shall be easily removable for servicing Unit shall be equipped with factory-supplied condensate drain connection for evaporator coil. Indoor (evaporator) blower compartment interior cabinet surfaces shall be insulated with a minimum ½-in thick, flexible fiberglass insulation, coated on the air side Aluminum foil-faced fiberglass insulation shall be used to meet ASHRAE standard no. 62P.

Btuh or greater with a gas input of

COMPRESSOR. Compressor shall be welded, fully hermetic type with factory-installed vibration isolation. Compressor motor shall be of the refrigerant-cooled type with line break thermal and current overload protection. Rotary compressors shall be standard on unit size 018. Reciprocating compressors shall be standard on unit sizes 024-042. Scroll compressors shall be standard on unit sizes 048 and 060.

CONDENSER SECTION: The condenser coils shall have aluminum-plate fins mechanically bonded to seamless copper tubes with all joints brazed. Condenser fan wheel shall be dynamically balanced Fan-motor bearings shall be sealed and

permanently lubricated. Condenser-fan motor shall have inherent automatic-reset thermal overload protection and shall be totally enclosed

EVAPORATOR SECTION: Evaporator coils shall have aluminum plate fins mechanically bonded to seamless copper tubes with all joints brazed. Evaporator fan shall be of the forward-curved, centrifugal, direct-driven type. Fan wheel shall be made from steel, be double-inlet type with forward curved blades with corrosion resistant finish and be dynamically balanced. Fanmotor bearings shall be sealed and permanently lubricated. Evaporator-fan motor shall have inherent automatic-reset thermal overload protection and shall be open drip-proof.

HEATING SECTION: The unit shall be equipped with an induced-draft combustion system with energy saving direct spark ignition system and redundant main gas valve. The heat exchanger shall be constructed of aluminized steel for corrosion resistance. Burners shall be of the inshot type constructed of aluminum coated steel. An integrated gas control board shall provide control of heating and simplify troubleshooting through its built-in diagnostics. All gas piping and electric supply shall enter the unit cabinet at a single location.

REFRIGERANT SYSTEM. Refrigerant system shall include a fixed orifice metering device.

CONTROLS Unit shall be complete with self-contained control system. Unit staging shall be minimum one-cool, one-heat. In the event of a power failure, unit control system shall sequence the unit to restart. Thermostat set points shall have adjustable deadband between heat and cool. Compressors shall be provided with inherent internal line break safety feature, and also overcurrent and overtemperature protection.

AGENCY CERTIFICATIONS AND STANDARDS. The unit shall be UL listed and CSA certified for safety requirements All wiring shall be in accordance with NEC. The unit shall be rated in accordance with ARI Standards 210/240-89 and 270-84 Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation

OPTIONS Factory-installed options shall include base rail and downflow application

ACCESSORIES Field-installed accessories shall include. flat roof curb (8, 11, or 14 in.), pitched roof curb, modulating economizer, 2-position damper, thermostat and subbase, low-ambient kit (Weatherprobe<sup>™</sup> II device), natural-to-propane conversion kit, manual outdoor-air damper, filter rack, flexible duct kit, high- and low-pressure switches, Comprotec<sup>®</sup> kit, crankcase heater, lifting brackets, and concentric diffuser box.



SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
UNIT MUST BE INSTALLED IN ACCORDANCE
WITH INSTALLATION INSTRUCTIONS

Copyright 1994 Carrier Corporation Printed in U S A 8/94 CATALOG NO BY-3258-803