

FCC Part 1 Subpart I FCC Part 2 Subpart J INDUSTRY CANADA RSS 102 ISSUE 5

RF EXPOSURE REPORT

FOR

SPIKE

MODEL NUMBER: IKE-SP02

FCC ID: 2ACBGSP02 IC ID: 11952A-SP02

REPORT NUMBER: 16U22667-E2V1

ISSUE DATE: 5/17/2016

Prepared for ikeGPS 1000 2nd Ave, Suite 1730 Seattle, WA 98104 U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	5/17/2016	Initial issue	C.VERGONIO

TABLE OF CONTENTS

1. A1	TTESTATION OF TEST RESULTS	4
2. TE	EST METHODOLOGY	5
	EFERENCES	
4. F <i>A</i>	ACILITIES AND ACCREDITATION	5
5. M	AXIMUM PERMISSIBLE RF EXPOSURE	6
	FCC RULES	
5.2.	IC RULES	7
5.3.	EQUATIONS	8
<i>5.4</i> .	LIMITS AND IC EXEMPTION	10
6. S1	TANDALONE SAR TEST EXCLUSION CONSIDERATIONS	11
6.1.	FCC	11
62	INDUSTRY CANADA	12

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ikeGPS
EUT DESCRIPTION: SPIKE
MODEL: IKE-SP02

SERIAL NUMBER: 2175294 (Conducted); 2175293 (Radiated)

DATE TESTED: JULY 30 –AUGUST 10, 2015

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J Pass
INDUSTRY CANADA RSS 102 ISSUE 5 Pass

UL Verification Services Inc. calculated the RF Exposure of the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Calculated By:

CHARLES VERGONIO

CONSUMER TECHNOLOGY DIVISION

WISE ENGINEER

UL VERIFICATION SERVICES INC

JONATHAN HSU

CONSUMER TECHNOLOGY DIVISION

LAB ENGINEER

UL VERIFICATION SERVICES INC

2. TEST METHODOLOGY

All calculations were made in accordance with FCC OET Bulletin 65 Edition 97-01 and IC Safety Code 6.

3. REFERENCES

All measurements were made as documented in test report UL Verification Services Inc. Document 15R21104-E1A for operation in the 2.4 GHz band.

Output power, Duty cycle and Antenna gain data is excerpted from the applicable test reports.

Antenna gain data is excerpted from the applicable test reports.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

5. MAXIMUM PERMISSIBLE RF EXPOSURE

5.1. **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)			
(A) Lim	nits for Occupational	I/Controlled Exposu	res				
0.3-3.0 3.0-30 30-300 300-1500 1500-100,000	614 1842# 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6			
(B) Limits for General Population/Uncontrolled Exposure							
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30			

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field Power density (A/m) (mW/cm²)		Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500 1500–100,000			f/1500 1.0	30 30

f = frequency in MHz

^{* =} Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

5.2. IC RULES

For the purpose of this standard, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6.

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

•				
Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Dentisty (W/m²)	Reference Period (minutes)
0.003-10 21	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f 0.5	-	-	6**
10-20	27.46	0.0728	-2	6
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f 0.3417	0.008335 f 0.3417	0.02619 f 0.6834	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f 1.2
150000-300000	0.158 f 0.5	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f1.2

Note: f is frequency in MHz.

^{*} Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

EQUATIONS 5.3.

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm^2

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

5.4. LIMITS AND IC EXEMPTION

VARIABLE LIMITS

For mobile radio equipment operating in the cellular phone band, the lowest power density limit is calculated using the lowest frequency:

824 MHz / 1500 = 0.55 mW/cm² (FCC) S = 0.02619 $f^{0.6834}$ W/m² (IC).

FIXED LIMITS

For operation in the PCS band, the 2.4 GHz band and the 5 GHz bands:

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 4 Table 4 Column 4, S = $0.02619 f^{0.6834}$ W/m²

INDUSTRY CANADA EXEMPTION

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 4.49/f0.5 W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance):
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10-2 f0.6834 W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

6. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS

6.1. **FCC**

SAR test exclusion in accordance with KDB 447498.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] ≤ 3.0 , for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- $f_{(GHz)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

SAR Exclusion Calculations Table for Portable Devices (separation distance < 20cm)

Antenna	Tx	Frequency	Avg Out	put power	Separation	Calculated	
Antenna	1.8	(MHz)	dBm	mW	distances (mm)	Threshold	
BT LE	BT LE	2412	-10.91	0	5	0.0	

Conclusion:

The computed value is < 3; therefore, Bluetooth qualifies for Standalone SAR test exclusion.

6.2. INDUSTRY CANADA

Industry Canada notice 2013 DRS0911 states that the SAR exclusion limits contained in Draft RSS-102 issue 5 will be accepted prior to its release. The SAR exclusion table from Draft RSS-102 issue 5 is reproduced below:

Table 1: SAR evaluation - exemption limits for routine evaluation based on frequency and separation distance.

	Exemption Limits (mW)						
Frequency MHz	At separation distance of ≤5mm	At separation distance of 10mm	At separation distance of 15mm	At separation distance of 20mm	At separation distance of 25mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		

	Exemption Limits (mW)						
Frequency MHz	At separation distance of 30mm	At separation distance of 35mm	At separation distance of 40mm	At separation distance of 45mm	At separation distance of ≥50mm		
≤300	223 mW	254 mW	284 mW	315 mW	345 mW		
450	141 mW	159 mW	177 mW	195 mW	213 mW		
835	80 mW	92 mW	105 mW	117 mW	130 mW		
1900	99 mW	153 mW	225 mW	316 mW	431 mW		
2450	83 mW	123 mW	173 mW	235 mW	309 mW		
3500	86 mW	124 mW	170 mW	225 mW	290 mW		
5800	56 mW	71 mW	85 mW	97 mW	106 mW		

The minimum antenna to user distance that will be encountered in normal use is 0mm. This results in an exemption limit of 4mW at 2450 MHz.

As the maximum output power is 0.08mW (0.02mW EIRP) the DUT qualifies for SAR test exclusion.

END OF REPORT