

An Ontology-Based Approach for Helping to Secure the ETSI Machine-to-Machine Architecture

Amelie Gyrard

- Christian Bonnet (Eurecom, Mobile Communication)
- Karima Boudaoud (I3S, Security)

Semantic-based M2M Architecture

Paper: A Machine-to-Machine Architecture to Merge Semantic Sensor Measurements [Gyrard et al., WWW 2013]

http://www.sensormeasurement.appspot:com/

Motivation

- How to secure IoT architectures and applications?
 - Communications

- Data
- Technologies employed
- Security properties satisfied
- Time-consuming to be familiar with:
 - Attacks
 - Security mechanisms
- "Security by design"
- ⇒Reuse M3 for another purpose: security context
- →A tool to help choose the best security mechanism fitting our needs

Reuse M3 to secure IoT applications or architectures

Security knowledge base

Reusing security knowledge:

- 24 works referenced in various domains:
 - ➤ IDS, Web, Sensor networks, Smart phones, Network communications, Cryptography
- Use semantic web technologies (ontologies)

Razzaq 2013

rules

Security ontologies

Authors	Year	Paper	Url onto	Technologies	Rules	LOV status
	2003-2004, 2013	Thesis: Linked Data for software security concepts and vulnarability descriptions.	Ontology URL Concepts: Vulnerability, Product, Attack, Weakness, Backdoor, virus, trojan, worm, ping of death, mitnick attack, buffer overflow, botnet attack, XSS, Code	Jena, Jena TDB, Jena Fuseki SPARL endpoint, DBPedia, OWL API 3.4.2		Submitted to lov February - review ongoing 20/03/14
Razzaq, Latif et al Web Mail: 08/01/14, 24/02/14, Response: 25/02/14, 08/03/14		Paper: Semantic security against web application attacks	Sent us the OWL files: IDS, securityMain, credentials (online after the next publication) Concepts: Vulnerability (XSS, SQL injection, Cookie Hijacking/Poisoning)	Jena, SWRL, ontoClean, Pellet	Jena rules (malicious attack, infects, malicious request)	
Vincent et al. Mail:	2011	Paper: Privacy Protection for smartphones: an ontology-based firewall 2012		Jena, JAVA, Android, SWRL, RIF (maybe future work), AndroJENA,	1 Jena rule. and 4 Jena rules extracted from the paper	Inserted in LOV. TO DO: add metadata, purl, change uri, link to stac
Vorobiev Mail: 31/10/13, Response: 31/10/13	2006-2010	PhD thesis: An architectural approach to achiving higher-level security for component (service) based software systems.	Do not have the ontology anymore. No differenciation between block cipher and stream cipher	·		

http://www.sensormeasurement.appspot.com/?p=ontologies

The STAC ontology

- STAC (Security Toolbox: Attacks & Countermeasures)
 - Ontology is a vocabulary to describe concepts and properties in a particular domain
 - <u>http://securitytoolbox.appspot.com/stac#</u>
 - Referenced by Linked Open Vocabularies (LOV)

 Help the developer choose security mechanisms to secure IoT applications.

How to secure heterogeneous technologies?

The STAC ontology

Paper: The STAC (Security Toolbox: Attacks & Countermeasures) ontology [Gyrard et al., WWW 2013]

Physical Layer

The STAC application

- A semantic-based application to help the developer to design a secure software:
 - ➤ The STAC ontology
 - The user interface

STAC template

Technologies used in your application?

http://www.sensormeasurement.appspot.com/?p=stac

Security properties

Security properties

- Search methods to ensure the security property: Access Control Method
- Search Methods

- Mandatory Access Control (MAC)
- Discretionary Access Control (DAC)
- Relation Based Access Control (RelBAC)
- Attribute Based Access control (ABAC)
- Role Based Access Control (RBAC)
- Context Aware Role Based Access Control (CA-RBAC)
- Firewall
- Proxy
- Login/Password
- Reverse Proxy
- Satisfy the property authentication: Secure Socket Layer (SSL)
- Internet Security Protocol (Ips Integrity:
- Localized encryption and auti Confidentiality:

STAC to secure communications

Sensor networks

Sensor Protocols:	SPINS	(e.g., choose TinySec) Is composed Of: RC6	
Sensor Attacks:	Sinkhole	(e.g., choose jamming) has security mechanisms	Link-Layer Security Protocol 🗨
Sensor Key mana	gement:	Localized encryption and auti (e.g., choose LEAP) Is composed Of:	Group Key
Sensor security m	echanism	S: Client Puzzle	

http://www.sensormeasurement.appspot.com/?p=sensor

Wi-Fi

Protocol: Wired Equivalent Privacy (WE (e.g., choose WPA2)
 Security Property: Confidentiality/Privacy Feature: Not Scalable
 Attack: Eavesdropping
 Architecture: Access Point (AP)

http://www.sensormeasurement.appspot.com/?p=wireless

Evaluation

Linked Open Vocabularies (LOV)

All > Data & Systems

Security, Network, attacks ans countermeasure

Value

Security - Security

is part of vocabulary space

Metadata:

Description

Methodologies

➤ [Noy et al. 2001]: Ontology development 101:

A guide to creating your first ontology

Semantic web tools

Oops, TripleChecker, RDF Validator, Vapour,

Linked Open Vocabularies (LOV), Linked Open Data (LOD)

24 security ontologies

More than 14 ontologies are online

User form:

- > 24 responses
- Updated STAC with new security domains

STAC evaluation form

Are the concepts intuitive and easy to understand?

Your knowledge in security?

None	2	7%
Low	13	46%
Medium	7	25%
High	6	21%

Yes	11	39%
No	7	25%
I don't know	10	36%

Is STAC a useful application (securitytoolbox.appspot.com/)?

Yes	10	36%
No	1	4%
I don't know	17	61%

What kind of applications do you need to secure?

Web services	9	26%
Web applications	8	23%
Mobile applications	7	20%
Cloud services	1	3%
Other	10	29%

Are you interested in security for wireless networks?

Yes	20	31%
No	6	9%
WiFi	11	17%
Sensor networks	5	8%
2G GSM EDGE GPRS	2	3%
3G UMTS	6	9%
4G LTE	7	11%
Bluetooth	5	8%
Wimax	2	3%
Other	0	0%

https://docs.google.com/forms/d/1NKiMQPVR6X6Reioud0--WBZu1bmo3T1Ah7PZm9De-apk/viewform

Conclusion & Future works

M3 framework:

- Build IoT applications to reason on cross-domain data
- > STAC
 - A security knowledge base
 - Helping developers choose security mechanisms to secure IoT applications.
- Linked Open Rules to share and reuse rules

Thank you!

- We have more demonstrations for:
 - > STAC
 - Linked Open Rules
 - M3 framework
- gyrard@eurecom.fr
- http://www.sensormeasurement.appspot.com/