

Ayudantía 4

Calculo II - MAT1620

Francisco Salinas (fvsalinas@uc.cl)

Teorema: Dada una serie de potencias $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$, hay solo 3 posibilidades:

- i) La serie converge solo cuando x = a.
- ii) La serie converge para toda x.
- iii) Hay un número positivo R (radio de convergencia), tal que la serie converge si |x-a| < R y diverge si |x-a| > R. Verificar en los extremos si converge.

Teorema: Dada una serie de potencias $\sum_{n=0}^{\infty} a_n (x-a)^n$, con radio de convergenciaR>0:

•
$$\frac{d}{dx} \left[\sum_{n=0}^{\infty} a_n (x-a)^n \right] = \sum_{n=0}^{\infty} \frac{d}{dx} \left[a_n (x-a)^n \right] = \sum_{n=1}^{\infty} n a_n (x-a)^{n-1}$$

•
$$\int \left[\sum_{n=0}^{\infty} a_n (x-a)^n\right] dx = \sum_{n=0}^{\infty} \int a_n (x-a)^n dx = \sum_{n=0}^{\infty} \frac{a_n (x-a)^{n+1}}{n+1} + C$$

Serie de Taylor: La serie de Taylor se define de la siguiente manera:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Para a = 0 se denomina **Serie de Maclaurin.**

Teorema: Si $f(x) = T_n(x) + R_n(x)$, donde $T_n(x)$ es el polinomio de Taylor de n-ésimo grado de f en a. Si se cumple:

$$\lim_{n \to \infty} R_n(x) = 0, para |x - a| < R$$

 $\lim_{n \to \infty} R_n(x) = 0, para |x - a| < R$ Entonces $f(x) = T_n(x) para |x - a| < R$. Para demostrar esto se usa la **desigualdad de Taylor.** Si $|f^{(n+1)}(x)| \ll M$, $para |x-a| \ll d$, entonces $R_n(x)$ cumple con:

$$|R_n(x)| \ll \frac{M}{(n+1)!} |x-a|^{n+1}, para |x-a| \ll d$$

Algunas cosas para aprenderse de memoria:

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, para $R = 1$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, para $R = \infty$

•
$$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
, para $R = \infty$
• $cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$, para $R = \infty$

•
$$cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
, para $R = \infty$

•
$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)}$$
, para $R = 1$

•
$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n$$
, para $R=1$

•
$$\lim_{n\to\infty} \frac{x^n}{n!} = 0$$

1. Determine una representación como serie de potencias para las siguientes funciones y determine el radio de convergencia.

a)
$$f(x) = \ln\left(\frac{1+x}{1-x}\right)$$
 b) $f(x) = \frac{1}{x^2 + x - 2}$

2. Encuentre la serie o expansión de Maclaurin de las siguientes funciones:

a)
$$f(x) = sen^2(x)$$
 b) $f(x) = \frac{1}{\sqrt{1 - x^2}}$

3. Utilizando series, obtenga el valor aproximado de la integral definida:

$$\int_0^1 x \cos(x^3) dx$$

con un error menor a 0,01

4. Calcule la suma de la serie:

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (\pi)^{2n}}{6^{2n} (2n)!}$$
 b) $3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} \dots$

5. Determine la serie de Taylor de la función pedida centrada en a.

$$f(x) = sen(x), \qquad a = \frac{\pi}{2}.$$

6. Utilice la serie de potencia de arctan(x) para que la expresión siguiente.

$$\pi = 2\sqrt{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^n}$$

7. Evalúe el siguiente limite sin usar L'Hopital.

$$\lim_{x\to 0}\frac{sen(x)-x}{x^3}$$

8. Demuestre que la función definida por

$$f(x) = \begin{cases} e^{-\left(\frac{1}{x^2}\right)} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

no es igual a la serie de Maclaurin