singularities a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then $\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k).$

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated

Theorem 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

continuous function on
$$G^-$$
 which is analytic in G . Then

 $\max\{|f(z)| : z \in G^-\} = \max\{|f(z)| : z \in \partial G\}.$

AΛΔ∇ΒCDΣΕΓΓGHIJΚLΜΝΟΘΩΌΡΦΠΞQRSTUVWXΥΥΨΖ