

Trial Examination 2010

VCE Chemistry Unit 4

Written Examination

Data Booklet

Directions to students

This data booklet is provided for your reference.

Any writing, jottings, notes or drawings you make on this data booklet will not be considered in the marking.

You may keep this data booklet.

1. Periodic Table of the elements

		1	1	1	1			
2 He 4.0	10 Ne 20.2	18 Ar 39.9	36 Kr 83.8 krypton	54 Xe 131.3 xenon	86 Rn (222)	118 Uuo		
	9 F 19.0	17 CI 35.5	35 Br 79.9	53 1 126.9	85 At (210)		71 Lu 175.0	103 Lr (260)
	8 0 16.0	16 S 32.1	34 Se 79.0	52 Te 127.6	84 Po (209)	116 Uuh	70 Yb 173.0	102 No (259)
	7 N 14.0	15 P 31.0	33 As 74.9	51 Sb 121.8	83 Bi 209.0		69 Tm 168.9	101 Md (258)
	6 C 12.0	Si 28.1	32 Ge 72.6	50 Sn 118.7	82 Pb 207.2	114 Uuq	68 Er 167.3 erbium	100 Fm (257)
	5 B 10.8	AI AI 27.0	31 Ga 69.7	49 In 114.8	81 T1 204.4		67 Ho 164.9	99 Es (252)
·			30 Zn 65.4	48 Cd 112.4	80 Hg 200.6	112 Uub	66 Dy 162.5 dysprosium	98 Cf (251)
			29 Cu 63.5	47 Ag 107.9	79 Au 197.0	Rg (272)	65 Tb 158.9	97 Bk (247)
	symbol of element name of element		28 Ni 58.7	46 Pd 106.4	78 Pt 195.1	Ds Ds (271)	64 Gd 157.2 gadolinium	96 Cm (251)
	symbol of elemen		27 Co 58.9	45 Rh 102.9	77 	109 Mt (268)	63 Eu 152.0 europium	95 Am (243)
	79 Au 197.0		26 Fe 55.8	44 Ru 101.1	76 0s 190.2	108 Hs (265)	62 Sm 150.3	94 Pu (244)
!	c number nic mass	_	25 Mn 54.9	43 Tc 98.1	75 Re 186.2	107 Bh (264)	61 Pm (145)	93 Np 237.1
	atomic relative atom		24 Cr 52.0 chromium	42 Mo 95.9	74 W 183.8 tungsten	106 Sg (263) seaborgium	60 Nd 144.2	92 U 238.0
	rela					105 Db (262)		91 Pa 231.0
			22 T 47.9	40 2r 91. 2 zirconium	72 Hf 178.5	104 Rf (261)	58 Ce 140.1	90 Th 232.0
			Sc 44.9	39 × 88.9	57 La 138.9			
	Be 9.0	12 Mg 24.3	20 Ca 40.1	38 Sr 87.6 strontium	56 Ba 137.3	88 Ra (226)		
H 1.0 hydrogen		11 Na 23.0 sodium		37 Rb 85.5	55 Cs 132.9	87 Fr (223)		

2. The electrochemical series

	E° in volt
$F_2(g) + 2e^- \Longrightarrow 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \Longrightarrow 2H_2O(1)$	+1.77
$Au^{+}(aq) + e^{-} \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \Longrightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$Br_2(1) + 2e^- \Longrightarrow 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(1) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \Longrightarrow H_2S(g)$	+0.14
$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \Longrightarrow Ni(s)$	-0.23
$Co^{2+}(aq) + 2e^{-} \Longrightarrow Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^{-} \Longrightarrow Fe(s)$	-0.44
$\operatorname{Zn}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Zn}(s)$	-0.76
$2H_2O(1) + 2e^- \Longrightarrow H_2(g) + 2OH^-$	-0.83
$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$	-1.03
$Al^{3+}(aq) + 3e^{-} \Longrightarrow Al(s)$	-1.67
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.34
$Na^{+}(aq) + e^{-} \Longrightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \Longrightarrow K(s)$	-2.93
$\operatorname{Li}^+(\operatorname{aq}) + \operatorname{e}^- \rightleftharpoons \operatorname{Li}(\operatorname{s})$	-3.02

3. Physical constants

Avogadro's constant $(N_{\Delta}) = 6.02 \times 10^{23} \text{ mol}^{-1}$

Charge on one electron = -1.60×10^{-19} C

Faraday constant $(F) = 96500 \text{ C mol}^{-1}$

Gas constant $(R) = 8.31 \text{ J K}^{-1} \text{mol}^{-1}$

Ionic product for water $(K_W) = 1.00 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$ at 298 K (self ionisation constant)

Molar volume (V_m) of an ideal gas at 273 K, 101.3 kPa (STP) = 22.4 L mol⁻¹

Molar volume (V_m) of an ideal gas at 298 K, 101.3 kPa (SLC) = 24.5 L mol⁻¹

Specific heat capacity (c) of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$

Density (d) of water at 25° C = 1.00 g mL^{-1}

1 atm = 101.3 kPa = 760 mmHg

 0° C = 273 K

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	109
mega	M	10 ⁶
kilo	k	10 ³
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10 ⁻⁶
nano	n	10^{-1} 10^{-2} 10^{-3} 10^{-6} 10^{-9} 10^{-12}
pico	p	10 ⁻¹²

5. ¹H NMR data

Typical proton shift values relative to TMS = 0.

These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton	Chemical shift (ppm)
R-CH ₃	0.9
R-CH ₂ -R	1.3
RCH=CH-CH ₃	1.7
R ₃ -CH	2.0
CH ₃ -CO or CH ₃ -CNHR	2.0
R CH ₃	2.1
$R-CH_2-X$ (X = F, Cl. Br or I)	3–4
R-C H₂- OH	3.6
R—C NHCH ₂ R	3.2
R-O-CH ₃ or R-O-CH ₂ R	3.3
O—C—CH ₃	4.1
R—COCH ₂ R	4.1
R-O-H R-NH ₂	1–6 (varies considerably under different conditions) 1–5
RHC=CH ₂	4.6–6.0
ОН	7.0
Н	7.3
R—C_NHCH ₂ R	8.1
R—C H	9–10

Type of proton	Chemical shift (ppm)
R—C_O—H	11.5

6. ¹³C NMR data

Type of carbon	Chemical shift (ppm)
R-CH ₃	8–25
R-CH ₂ -R	20–45
R ₃ -CH	40–60
R ₄ -C	36–45
R-CH ₂ -X	15–80
RC-NH ₂	35–70
R-CH ₂ -OH	50–90
RC≡CR	75–95
RC=CR	110–150
RCOOH	160–185

7. Infrared absorption data

Characteristic range for infrared absorption.

Bond	Wave number (cm ⁻¹)
C-CI	700–800
C-C	750–1100
C-O	1000–1300
c=c	1610–1680
c=o	1670–1750
O-H (acids)	2500–3300
C-H	2850-3300
O–H (alcohols)	3200–3550
N-H (primary amines)	3350–3500

8. 2-amino acids (α -amino acids)

Name	Symbol	Structure
alanine	Ala	CH ₃ H ₂ N—CH—COOH
arginine	Arg	$\begin{array}{c} \text{NH} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{NH}\text{C}\text{NH}_2 \\ \text{H}_2\text{N}\text{CH}\text{COOH} \end{array}$
asparagine	Asn	O CH ₂ -CNH ₂ H ₂ NCHCOOH
aspartic acid	Asp	CH ₂ —COOH H ₂ N—CH—COOH
cysteine	Cys	CH ₂ —SH H ₂ N—CH—COOH
glutamine	Gln	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\$
glutamic acid	Glu	CH ₂ —CH ₂ —COOH H ₂ N—CH—COOH
glycine	Gly	H ₂ N—CH ₂ —COOH
histidine	His	CH ₂ NH H ₂ N—CH—COOH
isoleucine	Ile	CH ₃ —CH—CH ₂ —CH ₃ H ₂ N—CH—COOH
leucine	Leu	CH ₃ —CH—CH ₃ CH ₂ H ₂ N—CH—COOH
lysine	Lys	CH ₂ -CH ₂ -CH ₂ -CH ₂ -NH ₂ H ₂ N-CH-COOH
methionine	Met	CH ₂ -CH ₂ -S-CH ₃

Name	Symbol	Structure
phenylalanine	Phe	CH ₂ —COOH
proline	Pro	Н СООН
serine	Ser	CH ₂ —OH
threonine	Thr	СН ₃ —СН—ОН Н ₂ N—СН—СООН
tryptophan	Trp	H_2 N—CH—COOH
tyrosine	Tyr	CH ₂ —OH H ₂ N—CH—COOH
valine	Val	CH ₃ —CH—CH ₃ H ₂ N—CH—COOH

9. Formulas of some fatty acids

Name	Formula
lauric	C ₁₁ H ₂₃ COOH
myristic	C ₁₃ H ₂₇ COOH
palmitic	C ₁₅ H ₃₁ COOH
palmitoleic	$C_{15}H_{29}COOH$
stearic	C ₁₇ H ₃₅ COOH
oleic	C ₁₇ H ₃₃ COOH
linoleic	C ₁₇ H ₃₁ COOH
linolenic	C ₁₇ H ₂₉ COOH
arachidic	C ₁₉ H ₃₉ COOH
arachidonic	C ₁₉ H ₃₁ COOH

10. Structural formulas of some important biomolecules

Copyright © 2010 Neap TEVCHEMU4_DS_2010.FM 9

11. Acid-base indicators

Name	pH range	Colour change		$K_{\mathbf{a}}$
		Acid	Base	
thymol blue	1.2–2.8	red	yellow	2×10^{-2}
methyl orange	3.1-4.4	red	yellow	2×10^{-4}
bromophenol blue	3.0-4.6	yellow	blue	6×10^{-5}
methyl red	4.2-6.3	red	yellow	8×10^{-6}
bromothymol blue	6.0–7.6	yellow	blue	1×10^{-7}
phenol red	6.8-8.4	yellow	red	1×10^{-8}
phenolphthalein	8.3–10.0	colourless	red	5×10^{-10}

12. Acidity constants, $K_{\rm a^{\prime}}$ of some weak acids

Name	Formula	K _a
ammonium ion	NH ₄ ⁺	5.6×10^{-10}
benzoic	C ₆ H ₅ COOH	6.4×10^{-5}
boric	H_3BO_3	5.8×10^{-10}
ethanoic	CH ₃ COOH	1.7×10^{-5}
hydrocyanic	HCN	6.3×10^{-10}
hydrofluoric	HF	7.6×10^{-4}
hypobromous	HOBr	2.4×10^{-9}
hypochlorous	HOC1	2.9×10^{-8}
lactic	$HC_3H_5O_3$	1.4×10^{-4}
methanoic	НСООН	1.8×10^{-4}
nitrous	HNO ₂	7.2×10^{-4}
propanoic	C ₂ H ₅ COOH	1.3×10^{-5}

13. Values of molar enthalpy of combustions of some common fuels at 298 K and 101.3 kPa

Substance	Formula	State	$\Delta H_c \text{ (kJ mol}^{-1})$
hydrogen	H_2	g	-286
carbon (graphite)	С	S	-394
methane	CH ₄	g	-889
ethane	C_2H_6	g	-1557
propane	C_3H_8	g	-2217
butane	C ₄ H ₁₀	g	-2874
pentane	C ₅ H ₁₂	1	-3509
hexane	C ₆ H ₁₄	1	-4158
octane	C ₈ H ₁₈	1	-5464
ethene	C_2H_4	g	-1409
methanol	CH ₃ OH	1	-725
ethanol	C ₂ H ₅ OH	1	-1364
1-propanol	CH ₃ CH ₂ CH ₂ OH	1	-2016
2-propanol	CH ₃ CHOHCH ₃	1	-2003
glucose	$C_6H_{12}O_6$	S	-2816

END OF DATA BOOKLET