Matemática IV- 2020 TP5 - Números

1. Demostrar las siguientes propiedades para a,b,c números enteros :

(b) Si a|b entonces a|-b; -a|b y -a|-b

(c) a(a+1) es par

el procedimiento.

(d) $a b$ entonces $a bc$
(e) $a b \ y \ a c$ entonces $a b+c$
(f) $a b+c$ y $a b$ entonces $a c$
2. Analizar si las siguientes afirmaciones son verdaderas o falsas:
(a) $a b \ y \ b a \ \text{entonces} \ a = b $
(b) $a b \ y \ c b$ entonces $ac b$
(c) $a b+c$ entonces $a c$ ó $a b$
3. Si a un número se lo divide por 4, el resto es 2 y si se lo divide por 3, el resto es 1. ¿Cuál es el resto si se lo divide por 12 ?
4. Calcular el máximo común divisor entre:
(i) $(16,38)$ (ii) $(120,50)$ (iii) $(31,57)$ (iv) $(120,245)$ (v) $(9834,1430)$
(vi) $(-60, 45)$ (vii) $(187, 77)$ (viii) $(-187, 77)$
5. * Intente codificar (en el lenguaje que Ud prefiera) el algoritmo de Euclides. Pruebe que funciona con alguno de los ejemplos del ejercicio anterior
que funciona con aiguno de los ejempios del ejercicio amerior
6. Probar que si a y b son enteros:
(a) $(a,1) = 1$
(b) si a es no nulo, $(a,0) = a $
(c) $(a, a) = a $

8. Probar que para cualquier a entero se cumple que a y a+1 son coprimos

7. * Investigue que dice La criba de Eratóstenes y trate de escribir un código que realice

- 9. Sean a y b dos enteros coprimos, demostrar que :
 - (a) a + b es coprimo con a
 - (b) a + b y ab son coprimos
 - (c) $a|c \ y \ b|c$ entonces ab|c
- 10. Si p es primo, calcular (a, p) para cualquier $a \in Z$
- 11. Sean $a,b\in Z$ y sea p primo. Demostrar que si p|ab entonces p|a ó p|bMostrar que ésto no se cumple si p no es primo.
- 12. Sean u y v números racionales. Probar que:
 - (a) $u + v \in Q \ y \ u v \in Q$
 - (b) $u.v \in Q$
 - (c) Si u es no nulo, $u^{-1} \in Q$
- 13. Demostrar que dados a y b en Q tales que a < b, existe otro número racional x tal que a < x < b.
- 14. Probar que no existe un número racional cuyo cuadrado sea 2
- 15. Escriba en la forma binómica los siguientes números:
 - a) $\sqrt{-49}$; b) $\sqrt{-20}$; c) $\sqrt{-\frac{9}{16}}$
- 16. Encuentre el conjugado de los siguientes números:

$$z_1 = -8 + 15i;$$
 $z_2 = 5 - 7i;$ $z_3 = 5i;$ $z_4 = 9;$ $z_5 = m + ni;$

- 17. Indique la parte real Re(z) y la parte imaginaria Im(z) de los siguientes complejos:
 - a) z = -8 + 15i
- b) z = 7
- c) z = (3+i) + (5-4i) d) z = 3i (5-2i)
- 18. La suma de un número complejo y su conjugado es -8 y la suma de sus módulos es 10. De qué números complejos se trata?

19. Expresar los siguientes números complejos en forma binómica :

a)
$$\frac{1+3i}{3-i}$$
 b) $\frac{2-5i}{4+2i}$

b)
$$\frac{2-5i}{4+2i}$$

20. Encuentre x e y tales que:

a)
$$x - 15i = 9 + 5yi$$
; b) $\frac{x+2i}{1-i} + yi = 1$

b)
$$\frac{x+2i}{1-i} + yi = 1$$

- 21. Encontrar el valor de k para que el complejo $\frac{2-(1+k)i}{1-ki}$ sea un n úmero real.
- 22. Calcular las siguientes potencias:

a)
$$i^{489}$$

a)
$$i^{489}$$
 b) $-i^{1026}$ c) $(3i)^{168}$

c)
$$(3i)^{168}$$

23. Encontrar las formas de par ordenado, trigonométrica y exponencial de los siguientes complejos en forma binómica:

$$z_1 = 3 + 3i$$

$$z_2 = -1 + i$$

$$z_4 = 9$$

$$z_5 = 5i$$

$$z_6 = -$$

24. Realizar las siguientes operaciones con los complejos del punto anterior:

a)
$$z_1 + z_2$$

a)
$$z_1+z_7$$
 b) z_5-z_3 c) $z_9.z_6$ d) z_8/z_{10} e) z_3+z_6 f) z_2-z_6 g) $z_3.z_{10}$ h) z_1^3 i) z_9^9 j) z_5^{15} k) z_{10}^3

c)
$$z_9.z_6$$

d)
$$z_8/z_{10}$$

e)
$$z_3 + z_6$$

$$(z_2 - z_6)$$

g)
$$z_3.z_{10}$$

j)
$$z_5^1$$

k)
$$z_{10}^3$$

- l) hallar las raíces cuartas de z_2
- m) hallar las raíces cúbicas de z_4
- n) hallar las raíces séptimas de i

Ejercicios Adicionales

1. Sean a y b dos números enteros que tienen restos 4 y 7 respectivamente en la división por 11. Hallar los restos de la división por 11 de los siguientes enteros:

(a)
$$3a$$

(b)
$$a + b^2$$

- 2. $a|c \ y \ b|c$ entonces ab|c
- 3. Dados $a,b,c,d\in Z$, suponiendo que los denominadores no se anulen y que $\frac{a}{b}=\frac{c}{d}$ no es cero, probar:

(a)
$$\frac{a}{c} = \frac{b}{d}$$
 y $\frac{b}{a} = \frac{d}{c}$

(a)
$$\frac{a}{c} = \frac{b}{d}$$
 y $\frac{b}{a} = \frac{d}{c}$
(b) $\frac{a+b}{b} = \frac{c+d}{d}$ y $\frac{a-b}{b} = \frac{c-d}{d}$

- (c) $\frac{a+c}{a-b} = \frac{c+d}{c-d}$
- (d) $\frac{a}{b} = \frac{a+c}{b+d}$
- 4. Demostrar que si p es primo y $n \in N$, entonces $\sqrt[n]{p}$
- 5. La suma de dos números complejos es 6, el módulo del primero es $\sqrt{13}$ y el del segundo es 5. De qué números complejos se trata?
- 6. Encontrar el valor de h para que el complejo $\frac{1+3hi}{7+(h-2)i}$ sea un imaginario puro.
- 7. Realizar las operaciones con los complejos del último ejercicio:
 - *) hallar las raíces cúbicas de z_5
 - **) hallar las raíces quintas de z_6
 - ***) hallar las raíces séptimas de z_8