Group 31 Modeling Notebook

- Ana Margarida Valente, nr 20240936
- Eduardo Mendes, nr 20240850
- Julia Karpienia, nr 20240514
- Marta Boavida, nr 20240519
- Victoria Goon, nr 20240550

Table of Contents

- 0. Import
- 1. Import Datasets
 - 1.1 Encoding Target
- 2. Sampling Datasets
 - 2.1 Undersampling
 - 2.2 Oversampling
- 3. Model
 - 3.1. Logistic Regression
 - 3.2. Decision Tree
 - 3.3. K Nearest Neighbors
 - 3.4. Gaussian Naive Bayes
 - 3.5. Neural Networks
- 4. Ensemble Models
 - [4.1. Boosted Models]
 - 4.1.1. RandomForest
 - o 4.1.2. XGBoost
 - 4.1.3. Gradient Boosted Decision Trees
 - [4.2. BaggingClassifier Models]
 - 4.2.1. Bagging XGBoost
 - 4.2.2. Bagging MLP
 - 4.2.3. Bagging Logistic Regression
 - 4.3. StackingClassifier Models
- 5. Kaggle Submission

O. Import Packages

```
In [1]: ## Import standard data processing libraries
   import numpy as np
   import pandas as pd
   import seaborn as sns
```

```
# Importing encoder
        from sklearn.preprocessing import LabelEncoder
        ## Import models
        from sklearn.model_selection import GridSearchCV
        from sklearn.linear model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive bayes import GaussianNB
        from sklearn.neural network import MLPClassifier
        ## Import ensemble models
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn.ensemble import BaggingClassifier
        from sklearn.ensemble import StackingClassifier
        import xgboost as xgb
        # Import Cross Validation methods
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f
        from sklearn.model_selection import RandomizedSearchCV
        # Import imbalanced data methods
        from imblearn.over_sampling import SMOTE
        # Settings
        sns.set()
        pd.set_option('display.max_rows', None) # Show all rows
        pd.set_option('display.max_colwidth', None) #Show all columns
        ## Supress warnings
        import warnings
        warnings.filterwarnings('ignore')
In [2]: # Code to import imbalaned—learn package for xgboost
        # import sys
```

```
# !{sys.executable} -m pip install imbalanced-learn
```

1. Import Datasets

Importing the datasets that were created and saved from the preprocessing dataset.

```
In [3]: | # # Import the training, valaidation, and test datasets that were saved from
        # train_data = pd.read_csv("train_encoded.csv", low_memory=False)
        # validation data = pd.read csv("validation encoded.csv", low memory=False)
        # test_data = pd.read_csv("test_encoded.csv")
        # Import the training, valaidation, and test datasets that were saved from t
        train_data = pd.read_csv("train_encoded_std_agg_out.csv", low_memory=False)
        validation_data = pd.read_csv("validation_encoded_std_agg_out.csv", low_memc
        test data = pd.read csv("test encoded std agg out.csv")
```

```
In [4]: # Set the Claim Identifiers as the index
    train_data = train_data.set_index("Claim Identifier")
    validation_data = validation_data.set_index("Claim Identifier")
    test_data = test_data.set_index("Claim Identifier")

In [5]: # Seperate target variable from the features in both train and validation
    X_train = train_data.drop('Claim Injury Type', axis = 1)
    y_train = train_data['Claim Injury Type']

X_val = validation_data.drop('Claim Injury Type', axis = 1)
    y_val = validation_data['Claim Injury Type']
```

1.1 Encode Target Variable

Label Encoder for target variable (training and validation):

(This needs to be done in both the proprocessing notebook as well as this modeling notebook to be able to interpret the results properly when a model is tested with the KaggleSubmission csv.)

```
In [6]: #Initiate Label encoder
label_encoder = LabelEncoder()

#Fit the encoder on the training target variable
Y_train_encoded = label_encoder.fit_transform(y_train)

#Transform the training and validation target variable
Y_val_encoded = label_encoder.transform(y_val)

# create a copy of the unencoded target to use when assessing the data - mak
y_val_unencoded = y_val.copy()

#Convert the results back to DataFrames while overriding the previous variable
y_train = pd.DataFrame(Y_train_encoded, columns=['encoded_target'], index=pc
y_val = pd.DataFrame(Y_val_encoded, columns=['encoded_target'], index=pd.Ser
```

2. Sampling Techniques

Below is the WCB dataset class distribution:

CANCELLED: 8723
 NON-COMP: 203607
 MED ONLY: 48132
 TEMPORARY: 100810
 PPD SCH LOSS: 33570
 PPD NSL: 2759

7. PTD: 49 8. DEATH: 328

Class 7 is significantly lower than the others which will cause the models to not fully train. The following cells is to help address this issue.

Undersampling

The below code takes the size of the minority class + half of the minority class and randomly creates subsamples of each of the majority classes along with all of the minority class and creates a new dataset from the amalgamation of those datapoints.

```
In [7]: # # add the encoded variables back to the x set
        # training_data_undersampled = pd.concat([X_train, y_train], axis=1)
        # # Separate majority and minority classes
        # majority classes = {}
        # for x in range(0,8):
              if x != 6:
                  majority_classes[x] = training_data_undersampled[training_data_undersampled]
        # minority class = training data undersampled[training data undersampled["en
        # size = int(len(minority_class) + (len(minority_class) * 0.5))
        # print(size)
        # # Perform undersampling
        # undersampled_majority_0 = majority_classes[0].sample(n=size, random_state=
        # undersampled_majority_1 = majority_classes[1].sample(n=size, random_state=
        # undersampled_majority_2 = majority_classes[2].sample(n=size, random_state=
        # undersampled_majority_3 = majority_classes[3].sample(n=size, random_state=
        # undersampled_majority_4 = majority_classes[4].sample(n=size, random_state=
        # undersampled_majority_5 = majority_classes[5].sample(n=size, random_state=
        # undersampled_majority_7 = majority_classes[7].sample(n=size, random_state=
        # # undersampled majority.head()
        # balanced data = pd.concat([undersampled majority 0, undersampled majority
                                      undersampled_majority_3, undersampled_majority_
        #
                                      minority_class, undersampled_majority_7])
        # # Separate features and target
        # X train = balanced data.drop(columns='encoded target')
        # y_train = balanced_data['encoded_target']
        # # Check class distribution after undersampling
        # print("Class distribution after undersampling:", y_train.value_counts())
```

Oversampling

The below cell takes the minority class(es) and created synthetic data for it to match the remaining majority class(es). It uses SMOTE (Synthetic Minority Oversampling

TEchnique).

https://imbalanced-

learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

```
In [8]: # # Initialize SMOTE
# # sampling_strategy=auto : 'not majority' - specifies the class targeted to
# # k_neighbors default set to 5. Tried 3 and 10, but 5 had best f1 scores.
# smote = SMOTE(sampling_strategy='auto', random_state=42) #k_neighbors=3

# # Fit and resample the dataset
# X_train, y_train = smote.fit_resample(X_train, y_train)

# print("Class distribution after oversampling each at:", y_train.value_cour
```

3. Model

Type of Problem: Multiclassification Problem

Metric used:

As a classification problem, we observed the following metrics to determine the effectiveness of our model: - accuracy - precision - recall - macro f1 score

Each point is measured in a different and observing them all allows us to get an accurate view of our model's results.

```
In [9]: # Functions to help display metrics for all models
       # helper method for score model - not to be used seperately
       def print scores(per class):
           for x,y in zip(per_class, np.unique(y_val_unencoded)):
               if str(y) == "7. PTD": # add an extra tab for better alignment
                  else:
                  print("["+str(y)+"]: \t^{"} + str(round(x,2)))
       # displays the scores for Precision, Recall, and F1
       def score_model(y_actual, y_predicted, score_train, score_test):
           print("----")
           f1_per_class = f1_score(y_actual, y_predicted, average=None)
           print_scores(f1_per_class)#, y_actual)
           f1_per_weighted = f1_score(y_actual, y_predicted, average='macro')
           print("\nMacro f1: " + str(round(f1_per_weighted, 3)) + "\n")
           print("----- Individual Score Comparisons ----- ")
           print("Train Score: " + str(score_train))
           print("Test Score: " + str(score_test))
           diff = np.abs(score train - score test)
           print("Difference: " + str(diff))
```

Logistic Regression

Grid Search - Logistic Regression:

```
In [10]: # param_grid = {'C': [0.1, 1, 10], 'solver': ['lbfgs'], 'class_weight': [Nor
# grid_search = GridSearchCV(LogisticRegression(multi_class='multinomial', r
# grid_search.fit(X_train_std_scaler_encoded, Y_train_encoded_df)

# print("Best Parameters:", grid_search.best_params_)
# print("Best Score:", grid_search.best_score_)
```

Model - Logistic Regression:

```
----- F1 -----
[1. CANCELLED]:
                     0.53
[2. NON-COMP]:
                     0.89
[3. MED ONLY]:
                     0.15
[4. TEMPORARY]:
                     0.77
[5. PPD SCH LOSS]:
                     0.6
[6. PPD NSL]:
                     0.01
[7. PTD]:
                     0.0
[8. DEATH]:
                     0.35
```

Macro f1: 0.414

----- Individual Score Comparisons -----

Train Score: 0.7681128102558433 Test Score: 0.7681292390597417 Difference: 1.6428803898405064e-05

----- Accuracy -----

Accuracy Score: 0.7681292390597417

```
----- Precision -----
[1. CANCELLED]:
                     0.66
[2. NON-COMP]:
                    0.84
[3. MED ONLY]:
                    0.33
[4. TEMPORARY]:
                     0.73
[5. PPD SCH LOSS]:
                   0.63
[6. PPD NSL]:
                    0.11
[7. PTD]:
                    0.0
[8. DEATH]:
                     0.72
```

Macro precision: 0.501

	Recall	
[1.	CANCELLED]:	0.44
[2.	NON-COMP]:	0.96
[3.	MED ONLY]:	0.1
[4.	TEMPORARY]:	0.81
[5.	PPD SCH LOSS]:	0.58
[6.	PPD NSL]:	0.01
[7.	PTD]:	0.0
[8.	DEATH]:	0.23

Macro recall: 0.392

DECISION TREE

Gridsearch - decision tree:

```
In [12]: # # Initialize the Decision Tree Classifier
         # dt_classifier = DecisionTreeClassifier(random_state=42)
         # # Define the parameter grid to search
```

```
# param_grid = {
     'criterion': ['gini', 'entropy'],
      'splitter': ['best', 'random'],
      'max_depth': [None, 10, 20, 30],
      'min_samples_split': [2, 5, 10],
#
      'min_samples_leaf': [1, 2, 4],
      'max_features': [None, 'sqrt', 'log2'],
      'max_leaf_nodes': [None, 10, 20, 30],
      'min impurity decrease': [0.0, 0.1, 0.2]
# }
# # Initialize GridSearchCV:
# grid search = GridSearchCV(estimator=dt classifier, param grid=param grid,
# # Fit GridSearchCV on the training data
# grid_search.fit(X_train, y_train)
# print("Best Parameters:", grid_search.best_params_)
# print("Best Score:", grid_search.best_score_)
# best_model = grid_search.best_estimator_
# #Best Parameters: {'criterion': 'gini', 'max_depth': 10, 'max_features': N
# #Best Score: 0.7769977245887005
```

Model - Decision Tree:

```
In [13]: # Test History
         # 0.366
         # (oversampling) - 0.343 - 21s
         # Initialize the Decision Tree Classifier
         decision tree = DecisionTreeClassifier(
             criterion='gini',
             max_depth=10,
             max features=None,
             max leaf nodes=None,
             min_impurity_decrease= 0.0,
             min samples leaf= 1,
             min_samples_split=2,
             splitter='best',
             random state=42
         # Train the model
         decision_tree.fit(X_train, y_train)
         # Determine the scores for the model for both train and validation sets
         score train = decision tree.score(X train, y train)
         score_test = decision_tree.score(X_val, y_val)
         # Make predictions
         dt_y_pred = decision_tree.predict(X_val)
```

```
# Display the model metrics using the score_model function
score_model(y_val, dt_y_pred, score_train, score_test)
```

```
----- F1 -----
[1. CANCELLED]:
                      0.56
[2. NON-COMP]:
                      0.9
[3. MED ONLY]:
                      0.13
[4. TEMPORARY]:
                      0.78
[5. PPD SCH LOSS]:
                      0.5
[6. PPD NSL]:
                      0.0
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.01
```

Macro f1: 0.361

----- Individual Score Comparisons -----

Train Score: 0.7804552010412635
Test Score: 0.7779487596395057
Difference: 0.0025064414017578196
----- Accuracy -----

Accuracy Score: 0.7779487596395057

----- Precision -----[1. CANCELLED]: 0.7 [2. NON-COMP]: 0.85 [3. MED ONLY]: 0.55 [4. TEMPORARY]: 0.68 [5. PPD SCH LOSS]: 0.69 [6. PPD NSL]: 0.09 [7. PTD]: 0.0 [8. DEATH]: 0.17

Macro precision: 0.467

	Recall	
[1.	CANCELLED]:	0.46
[2.	NON-COMP]:	0.96
[3.	MED ONLY]:	0.07
[4.	TEMPORARY]:	0.92
[5.	PPD SCH LOSS]:	0.39
[6.	PPD NSL]:	0.0
[7.	PTD]:	0.0
[8.	DEATH]:	0.01

Macro recall: 0.352

K Nearest Neighbors

Grid Search - KNN

```
'n_neighbors' : [5,10],
      'leaf_size': [30, 50],
      'metric': ['euclidean', 'manhattan'],
# }
# # Initialize RandomizedSearchCV with KNN classifier
# random search = RandomizedSearchCV(
      estimator=KNeighborsClassifier(),
      param distributions=param distributions,
     n iter=5,
#
     cv=2,
     scoring='f1 macro',
     verbose=2,
     random state=42,
     n jobs=-1
# )
# # Fit the random search to the training data
# random_search.fit(X_train, y_train)
# print("Best Parameters:", random_search.best_params_)
# print("Best Score:", random_search.best_score_)
# # Best Parameters: {'n_neighbors': 5, 'metric': 'euclidean', 'leaf_size':
# # Best Score: 0.328445945439427
```

Model - KNN

- KNN will be commented out
- KNN is not appropriate for too large datasets. Too computational expensive due to memorization requirements.
- KNN takes too long to process due to our large dataset.

```
In [15]: # Test History
# # 0.334
# # Initialize the KNN Classifier
# knn_model = KNeighborsClassifier(n_neighbors=5, leaf_size=30, metric='eucl
# # Train the model
# knn_model.fit(X_train, y_train)

# # Determine the scores for the model for both train and validation sets
# score_train = knn_model.score(X_train, y_train)
# score_test = knn_model.score(X_val, y_val)

# # Predict on the validation set
# y_pred = knn_model.predict(X_val)

# # Display the model metrics using the score_model function
# score_model(y_val, y_pred, score_train, score_test)
```

Model - Gaussian Naive Bayes:

- Will be commented out
- Assumes normality, independence, Homogeneity of Variance (Homoskedasticity):

```
In [16]: # # create the model
# model = GaussianNB()

# # fit the model to the training set
# model.fit(X_train, y_train)

# # determine the scores for the model for both train and validation
# score_train = model.score(X_train, y_train)
# score_test = model.score(X_val, y_val)

# # use model to predict on validation set
# y_pred = model.predict(X_val)

# # display the model metrics
# score_model(y_val, y_pred, score_train, score_test)
```

Neural Network (MLPClassifier):

GridSearch - MLPClasssifer:

```
In [17]: # # Define the parameter grid
         # param arid = {
               'hidden layer sizes': [
                          # Larger single-layer model
                   (50),
                   (50, 30), # Moderate two-layer model
(100, 50), # Larger two-layer model
         #
                   (128, 64, 32) # Complex three-layer model
               ],
               'activation': ['relu', 'logistic'],
                'solver': ['adam', 'sgd'],
               'alpha': [0.0001, 0.001],
               'learning_rate': ['adaptive', 'invscaling']
         # }
         # # Initialize the Neural Network model
         # mlp = MLPClassifier(random_state=42)
         # # Initialize Random Search for hyperparameter tuning
         # random search = RandomizedSearchCV(
               estimator=mlp,
               param distributions=param grid, # Using param distributions for rando
               n_iter=10, # Number of random combinations to try
         #
               cv=2, # 3-fold cross-validation
               scoring='f1_macro', # Evaluation metric
               verbose=2, # Display progress logs
               n_jobs=-1, # Use all available processors for parallel computation
               random_state=42 # For reproducibility
         #
```

```
# )
# # Fit the randomized search to the training data
# random_search.fit(X_train, y_train)

# 
# print("Best Parameters:", random_search.best_params_)
# print("Best Score:", random_search.best_score_)

# # Best Parameters: {'solver': 'adam', 'learning_rate': 'adaptive', 'hidden'
# # Best Score: 0.4192846184298069
```

MODEL - MLPClassifier:

```
In [18]: # with agreement reached - 0.389 - 14m 57s
         # # Initialize the Neural Network model
         model = MLPClassifier(hidden_layer_sizes=(50, 30),
                               activation='logistic',
                               solver='adam',
                               alpha=0.0001,
                               learning_rate='adaptive',
                               max_iter=200,
                               random state=42)
         # Train the model
         model.fit(X_train, y_train)
         # Determine the scores for the model for both train and validation sets
         score_train = model.score(X_train, y_train) # Accuracy on training data
         score_test = model.score(X_val, y_val) # Accuracy on validation data
         # Use the model to predict on the validation set
         y_pred = model.predict(X_val)
         # Display the model metrics using the score model function
         score model(y val, y pred, score train, score test)
```

```
----- F1 -----
[1. CANCELLED]:
                     0.58
[2. NON-COMP]:
                     0.9
[3. MED ONLY]:
                     0.18
[4. TEMPORARY]:
                     0.8
[5. PPD SCH LOSS]:
                     0.64
[6. PPD NSL]:
                     0.0
[7. PTD]:
                     0.0
[8. DEATH]:
                     0.4
```

Macro f1: 0.439

----- Individual Score Comparisons -----

Train Score: 0.804612315253607
Test Score: 0.78951616649633
Difference: 0.01509614875727694
------ Accuracy -----

Accuracy Score: 0.78951616649633

	Precision	
[1.	CANCELLED]:	0.68
[2.	NON-COMP]:	0.86
[3.	MED ONLY]:	0.5
[4.	TEMPORARY]:	0.72
[5.	PPD SCH LOSS]:	0.69
[6.	PPD NSL]:	0.18
[7.	PTD]:	0.0
[8.	DEATH]:	0.45

Macro precision: 0.51

	Recall	
[1.	CANCELLED]:	0.51
[2.	NON-COMP]:	0.95
[3.	MED ONLY]:	0.11
[4.	TEMPORARY]:	0.9
[5.	PPD SCH LOSS]:	0.6
[6.	PPD NSL]:	0.0
[7.	PTD]:	0.0
[8.	DEATH]:	0.36

Macro recall: 0.429

Ensemble Models

Random Forest

Fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

```
In [19]: # 0.379
# (oversampling) - 0.433 (overfitting w/ 0.23 diff) - 6m 5s

# Initialize the Random Forest model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

# Train the model
rf_model.fit(X_train, y_train)

# Determine the scores for the model for both train and validation sets
score_train = rf_model.score(X_train, y_train) # Accuracy on training data
score_test = rf_model.score(X_val, y_val) # Accuracy on validation data

# Use the model to predict on the validation set
rf_y_pred = rf_model.predict(X_val)

# Display the model metrics using the score_model function
score_model(y_val, rf_y_pred, score_train, score_test)
```

```
----- F1 ------
[1. CANCELLED]:
                      0.57
[2. NON-COMP]:
                      0.91
[3. MED ONLY]:
                     0.14
[4. TEMPORARY]:
                     0.8
[5. PPD SCH LOSS]:
                     0.62
[6. PPD NSL]:
                      0.0
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.12
Macro f1: 0.394
----- Individual Score Comparisons -----
Train Score: 0.9999773856846358
Test Score: 0.7917286072656322
Difference: 0.20824877841900358
----- Accuracy -----
```

Accuracy Score: 0.7917286072656322

```
----- Precision -----
[1. CANCELLED]:
                     0.74
[2. NON-COMP]:
                    0.86
[3. MED ONLY]:
                   0.57
[4. TEMPORARY]:
                    0.71
[5. PPD SCH LOSS]:
                   0.71
[6. PPD NSL]:
                     0.0
[7. PTD]:
                    0.0
[8. DEATH]:
                     0.82
```

Macro precision: 0.551

	Recall	
[1.	CANCELLED]:	0.46
[2.	NON-COMP]:	0.96
[3.	MED ONLY]:	0.08
[4.	TEMPORARY]:	0.92
[5.	PPD SCH LOSS]:	0.54
[6.	PPD NSL]:	0.0
[7.	PTD]:	0.0
[8.	DEATH]:	0.06

Macro recall: 0.379

XGBoost

Also using decision trees

```
learning_rate=0.2, # Step size shrinkage
    max_depth=7, # Maximum depth of a tree
    random_state=42, # For reproducibility
    use_label_encoder=False, # Avoid warning for encoding
    eval_metric='mlogloss' # Evaluation metric for multi-class classifica
)

# Train the model
    xgb_model.fit(X_train, y_train)

# Determine the scores for the model for both train and validation sets
    score_train = xgb_model.score(X_train, y_train) # Accuracy on training data
    score_test = xgb_model.score(X_val, y_val) # Accuracy on validation dat

# Use the model to predict on the validation set
    xgb_y_pred = xgb_model.predict(X_val)

# Display the model metrics using the score_model function
    score_model(y_val, xgb_y_pred, score_train, score_test)
```

```
----- F1 ------
[1. CANCELLED]:
                     0.58
[2. NON-COMP]:
                     0.91
[3. MED ONLY]:
                     0.15
[4. TEMPORARY]:
                    0.81
[5. PPD SCH LOSS]:
                    0.65
[6. PPD NSL]:
                     0.01
[7. PTD]:
                     0.0
[8. DEATH]:
                     0.42
Macro f1: 0.442
----- Individual Score Comparisons -----
Train Score: 0.8123614873183945
Test Score: 0.8003751277524853
Difference: 0.01198635956590921
----- Accuracy -----
Accuracy Score: 0.8003751277524853
----- Precision -----
[1. CANCELLED]:
                     0.73
[2. NON-COMP]:
                     0.86
[3. MED ONLY]:
                    0.56
[4. TEMPORARY]:
                     0.74
[5. PPD SCH LOSS]:
                   0.68
[6. PPD NSL]:
                     0.31
[7. PTD]:
                    0.0
[8. DEATH]:
                     0.62
Macro precision: 0.562
----- Recall -----
[1. CANCELLED]:
                     0.48
[2. NON-COMP]:
                    0.97
[3. MED ONLY]:
                    0.08
[4. TEMPORARY]:
                    0.91
[5. PPD SCH LOSS]:
                   0.63
[6. PPD NSL]:
                     0.0
[7. PTD]:
                     0.0
```

Macro recall: 0.424

[8. DEATH]:

Gradient Boosted Decision Trees

0.32

```
In [22]: # 16 min = max_depth = 6 - .402 f1

gbdt_model = GradientBoostingClassifier(
    n_estimators=100,  # Number of boosting stages
    learning_rate=0.1,  # Shrinks contribution of each tree
    max_depth=6,  # Limits depth of each tree to prevent overfitti
    random_state=42  # For reproducibility
)
```

```
# Train the model
gbdt_model.fit(X_train, y_train)

# Determine the scores for the model for both train and validation sets
score_train = gbdt_model.score(X_train, y_train) # Accuracy on training dat
score_test = gbdt_model.score(X_val, y_val) # Accuracy on validation da

# Use the model to predict on the validation set
gbdt_y_pred = gbdt_model.predict(X_val)

# Display the model metrics using the score_model function
score_model(y_val, gbdt_y_pred, score_train, score_test)
```

```
----- F1 ------
[1. CANCELLED]:
                      0.58
[2. NON-COMP]:
                      0.91
[3. MED ONLY]:
                     0.15
[4. TEMPORARY]:
                    0.81
[5. PPD SCH LOSS]:
                    0.65
[6. PPD NSL]:
                      0.02
[7. PTD]:
                     0.0
[8. DEATH]:
                      0.12
Macro f1: 0.404
----- Individual Score Comparisons -----
Train Score: 0.8054691465357382
Test Score: 0.796455449224194
Difference: 0.009013697311544222
----- Accuracy -----
```

Accuracy Score: 0.796455449224194

```
----- Precision -----
[1. CANCELLED]:
                     0.71
[2. NON-COMP]:
                    0.86
[3. MED ONLY]:
                   0.54
[4. TEMPORARY]:
                    0.73
[5. PPD SCH LOSS]:
                   0.68
[6. PPD NSL]:
                     0.1
[7. PTD]:
                    0.0
[8. DEATH]:
                     0.09
```

Macro precision: 0.464

	Recall	
[1.	CANCELLED]:	0.49
[2.	NON-COMP]:	0.96
[3.	MED ONLY]:	0.09
[4.	TEMPORARY]:	0.91
[5.	PPD SCH LOSS]:	0.62
[6.	PPD NSL]:	0.01
[7.	PTD]:	0.0
[8.	DEATH]:	0.2

Macro recall: 0.409

Bagging XGBoost

```
use_label_encoder=False, # Avoid warning for encoding
    eval_metric='mlogloss' # Evaluation metric for multi-class classifica
 ), n estimators=10, random state=42)
 bagging_model_xgb.fit(X_train, y_train)
 bagging_y_pred = bagging_model_xgb.predict(X_val)
 score_train = bagging_model_xgb.score(X_train, y_train)
 score_test = bagging_model_xgb.score(X_val, y_val)
 score_model(y_val, bagging_y_pred, score_train, score_test)
----- F1 -----
[1. CANCELLED]:
                      0.58
[2. NON-COMP]:
                     0.91
[3. MED ONLY]:
                    0.15
[4. TEMPORARY]:
                    0.81
[5. PPD SCH LOSS]:
                     0.65
[6. PPD NSL]:
                     0.0
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.36
Macro f1: 0.434
----- Individual Score Comparisons -----
Train Score: 0.8107784852429029
Test Score: 0.801251974356592
Difference: 0.009526510886310846
----- Accuracy -----
Accuracy Score: 0.801251974356592
----- Precision -----
[1. CANCELLED]:
                      0.73
[2. NON-COMP]:
                    0.86
[3. MED ONLY]:
                    0.57
[4. TEMPORARY]:
                     0.74
[5. PPD SCH LOSS]:
                      0.68
[6. PPD NSL]:
                      0.0
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.63
Macro precision: 0.527
----- Recall -----
[1. CANCELLED]:
                      0.48
[2. NON-COMP]:
                      0.97
[3. MED ONLY]:
                      0.08
[4. TEMPORARY]:
                     0.91
[5. PPD SCH LOSS]:
                    0.63
[6. PPD NSL]:
                     0.0
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.26
```

Macro recall: 0.416

Bagging MLPClassifier

```
In [24]: \# (hidden layer sizes=(13,), max iter=500, random state=42) - 0.395 (no over
         # (hidden_layer_sizes=(15,), max_iter=500, random_state=42) - 0.407 (no over
         # (hidden_layer_sizes=(20,), max_iter=500, random_state=42) - 0.407 (no over
         # (hidden_layer_sizes=(10,), max_iter=500, random_state=42) - 0.389 (no over
         # (hidden layer sizes=(10,), max iter=1000, random state=42) - 0.389 (no ove
         base_model = MLPClassifier(hidden_layer_sizes=(64, 32), # Two hidden layers
                               activation='relu',
                                                             # ReLU activation function
                               solver='adam',
                                                            # Adam optimizer
                                                             # Regularization term (L2
                               alpha=0.0001,
                               learning_rate_init=0.001,
                                                           # Initial learning rate
                                                             # Maximum number of itera
                               max iter=200,
                               random_state=42)
                                                             # For reproducibility)
         bagging_model_mlpc = BaggingClassifier(estimator=base_model, n_estimators=10)
         bagging_model_mlpc.fit(X_train, y_train)
         bagging_y_pred = bagging_model_mlpc.predict(X_val)
         score train = bagging model mlpc.score(X train, y train)
         score_test = bagging_model_mlpc.score(X_val, y_val)
         score_model(y_val, bagging_y_pred, score_train, score_test)
```

```
----- F1 ------
[1. CANCELLED]:
                      0.58
[2. NON-COMP]:
                      0.91
[3. MED ONLY]:
                     0.18
[4. TEMPORARY]:
                     0.8
[5. PPD SCH LOSS]:
                      0.66
[6. PPD NSL]:
                      0.0
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.37
Macro f1: 0.439
----- Individual Score Comparisons -----
Train Score: 0.820809190457764
Test Score: 0.7939120133791694
Difference: 0.026897177078594625
----- Accuracy -----
Accuracy Score: 0.7939120133791694
----- Precision -----
[1. CANCELLED]:
                      0.74
[2. NON-COMP]:
                     0.86
[3. MED ONLY]:
                    0.52
[4. TEMPORARY]:
                      0.73
[5. PPD SCH LOSS]:
                    0.66
[6. PPD NSL]:
                      0.0
[7. PTD]:
                     0.0
[8. DEATH]:
                     0.57
Macro precision: 0.511
```

```
----- Recall -----
[1. CANCELLED]:
                     0.48
[2. NON-COMP]:
                     0.96
[3. MED ONLY]:
                   0.11
[4. TEMPORARY]:
                    0.89
[5. PPD SCH LOSS]:
                   0.66
[6. PPD NSL]:
                     0.0
[7. PTD]:
                     0.0
[8. DEATH]:
                     0.28
```

Macro recall: 0.422

Bagging Logistic Regression

```
In [25]: # 13m - 0.372 - overfit by 0.1 diff
         base_model_lr = LogisticRegression(multi_class='multinomial', solver='lbfgs'
         bagging_model_lr = BaggingClassifier(estimator=base_model_lr, n_estimators=1
         bagging model lr.fit(X train, y train)
         bagging y pred = bagging model lr.predict(X val)
         score train = bagging model lr.score(X train, y train)
         score_test = bagging_model_lr.score(X_val, y_val)
```

```
score_model(y_val, bagging_y_pred, score_train, score_test)
        ----- F1 -----
        [1. CANCELLED]:
                               0.53
        [2. NON-COMP]:
                               0.89
        [3. MED ONLY]:
                               0.15
        [4. TEMPORARY]:
                               0.77
        [5. PPD SCH LOSS]:
                               0.61
        [6. PPD NSL]:
                               0.01
        [7. PTD]:
                               0.0
        [8. DEATH]:
                               0.37
       Macro f1: 0.417
       ----- Individual Score Comparisons -----
       Train Score: 0.7678489765765947
       Test Score: 0.7679085756759267
       Difference: 5.9599099332063865e-05
       ----- Accuracy -----
       Accuracy Score: 0.7679085756759267
        ----- Precision -----
                               0.66
        [1. CANCELLED]:
        [2. NON-COMP]:
                               0.84
        [3. MED ONLY]:
                               0.32
        [4. TEMPORARY]:
                               0.73
        [5. PPD SCH LOSS]:
                               0.63
        [6. PPD NSL]:
                               0.11
        [7. PTD]:
                               0.0
        [8. DEATH]:
                               0.69
       Macro precision: 0.498
        ----- Recall -----
        [1. CANCELLED]:
                               0.44
        [2. NON-COMP]:
                               0.96
        [3. MED ONLY]:
                               0.1
        [4. TEMPORARY]:
                               0.81
        [5. PPD SCH LOSS]:
                               0.59
        [6. PPD NSL]:
                               0.01
        [7. PTD]:
                               0.0
        [8. DEATH]:
                               0.26
       Macro recall: 0.395
         Stacking
In [26]: \# 0.440 - LR -> XGB -> MLP w/ a 0.015 difference in scores (3m 55s)
         # 0.425 - LR -> MLP -> XGB w/ a 0.0099 difference in scores (37m)
         # 0.410 - MLP -> XGB -> GBC w/ a 0.011 difference in scores (93m 35s)
         base_models = [
```

```
('lr', LogisticRegression(multi_class='multinomial', solver='lbfgs', C=1
    ('xgb', xgb.XGBClassifier(
    n_estimators=110, # Number of trees
    learning_rate=0.2, # Step size shrinkage
   max_depth=7,  # Maximum depth of a tree
random_state=42,  # For reproducibility
    use_label_encoder=False, # Avoid warning for encoding
    eval_metric='mlogloss' # Evaluation metric for multi-class classifica
) )
1
nn = MLPClassifier(hidden_layer_sizes=(64, 32), # Two hidden layers: 64 and
                      activation='relu',
                                                  # ReLU activation function
                      solver='adam',
                                                  # Adam optimizer
                                                  # Regularization term (L2
                      alpha=0.0001,
                      learning_rate_init=0.001, # Initial learning rate
                      max_iter=200,
                                                  # Maximum number of itera
                      random_state=42)
stacked_model = StackingClassifier(estimators=base_models, final_estimator=r
stacked_model.fit(X_train, y_train)
y_pred = stacked_model.predict(X_val)
score_train = stacked_model.score(X_train, y_train)
score test = stacked model.score(X val, y val)
score_model(y_val, y_pred, score_train, score_test)
```

```
----- F1 ------
[1. CANCELLED]:
                      0.58
[2. NON-COMP]:
                      0.91
[3. MED ONLY]:
                      0.14
[4. TEMPORARY]:
                      0.81
[5. PPD SCH LOSS]:
                      0.66
[6. PPD NSL]:
                      0.0
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.51
Macro f1: 0.452
----- Individual Score Comparisons -----
Train Score: 0.8127258290659283
Test Score: 0.801466830809254
Difference: 0.011258998256674313
----- Accuracy -----
Accuracy Score: 0.801466830809254
```

```
----- Precision -----
[1. CANCELLED]:
                     0.74
[2. NON-COMP]:
                     0.86
[3. MED ONLY]:
                    0.58
[4. TEMPORARY]:
                     0.75
[5. PPD SCH LOSS]:
                     0.67
[6. PPD NSL]:
                     0.0
[7. PTD]:
                     0.0
[8. DEATH]:
                     0.55
```

Macro precision: 0.519

```
----- Recall -----
[1. CANCELLED]:
                     0.47
[2. NON-COMP]:
                     0.98
[3. MED ONLY]:
                   0.08
[4. TEMPORARY]:
                    0.89
[5. PPD SCH LOSS]:
                   0.64
[6. PPD NSL]:
                     0.0
[7. PTD]:
                     0.0
[8. DEATH]:
                     0.48
```

Macro recall: 0.443

Weighted Averaging

```
In [27]: ## lr_y_pred_f1 = fl_score(y_val, lr_y_pred, average='macro')
         # # dt_y_pred_f1 = f1_score(y_val, dt_y_pred, average='macro')
         # # knn_y_pred_f1 = f1_score(y_val, knn_y_pred, average='macro')
         # mplc y pred f1 = f1 score(y val, mplc y pred, average='macro')
         # # rf_y_pred_f1 = f1_score(y_val, rf_y_pred, average='macro')
         # xgb_y_pred_f1 = f1_score(y_val, xgb_y_pred, average='macro')
         # gbdt_y_pred_f1 = f1_score(y_val, gbdt_y_pred, average='macro')
         # # f1_score(y_actual, y_predicted, average='macro')
```

```
# # Assign weights based on F1 scores
# #weights = [lr y pred f1, dt y pred f1, knn y pred f1, mplc y pred f1, rf
# weights = [mplc_y_pred_f1, xgb_y_pred_f1, gbdt_y_pred_f1]
# weights = np.array(weights) / np.sum(weights) # Normalize weights
# # Make weighted predictions
# # lr_probs = lr_model.predict_proba(X_val)[:, 1]
# # dt probs = decision tree.predict proba(X val)[:, 1]
# # knn_probs = knn_model.predict_proba(X_val)[:, 1]
# mplc_probs = mlpc_model.predict_proba(X_val)[:, 1]
# # rf probs = rf model.predict proba(X val)[:, 1]
# xgb_probs = xgb_model.predict_proba(X_val)[:, 1]
# gbdt_probs = gbdt_model.predict_proba(X_val)[:, 1]
# # Aggregate predictions using weights
# weighted_probs = (
                     # weights[0] * lr_probs +
                 # weights[1] * dt probs +
                     weights[2] * knn_probs +
                   weights[0] * mplc_probs +
                    weights[4] * rf probs +
                   weights[1] * xgb_probs +
                   weights[2] * gbdt_probs)
# # Final predictions (threshold = 0.5)
# final_predictions = (weighted_probs >= 0.2).astype(int)
# # Evaluate the ensemble
# final_f1 = f1_score(y_val, final_predictions, average='macro')
# print(f"Weighted Ensemble F1 Score: {final f1:.2f}")
```

5. Kaggle Submission

```
In [28]: # get the model prediction
    # y_pred_test = bagging_model_lr.predict(test_data)

In [29]: ## decode the prediction labels back to their original values
    # decoded_labels = label_encoder.inverse_transform(y_pred_test)

In [30]: # # # combine the prediction values with their claim identifiers into a data
    # kaggle_submission = pd.DataFrame({"Claim Identifier": test_data.index, "Cl
    # kaggle_submission.head()

In [31]: # Compile the resulting dataframe into a csv file named "Kaggle_submission
    # # this will be found in the directory the file is currently running from
    # # if a file exists with the same name, it will overwrite it with the new c
    # kaggle_submission.to_csv("Kaggle_Submission.csv", index=False)
```