Autonomous Operation in Beyond 5G Networks

December 12th, 2022

Yusaku Kaneta

Rakuten Mobile, Inc.

These research results were obtained from the commissioned research (No. 01701) by National Institute of Information and Communication Technology (NICT), Japan

We are

Rakuten Mobile

End-to-End Fully Virtualized Cloud Native Mobile Network

Fully virtualized, cloud native

Introduction of Innovations for Telco Industry

Global

Open RAN Leadership

Efficient Operations through Automation

Introduction of Innovations for Telco Industry

Global

Open RAN Leadership

Highly Advanced Edge Network

What is next?

Introduction of Innovations for Telco Industry

Open RAN Leadership

Highly Advanced Edge Network

What is next?

Autonomous Networks

Background: Closed-loop Controllers in Telco

- ☐ Operational tasks of (5G) networks have been automated at various levels: From MOP to Open-loop controllers to Closed-Loop controllers (CLCs).
- ☐ Focus in 5G: Reducing human intervention for operation of CLCs.
- ☐ Our vision for B5G: Reducing human intervention for design of CLCs is crucial.

Background: Challenge toward Autonomous Network based on CLCs

- ☐ Closed-loop controllers (CLCs) are key to autotomous networks in (Beyond) 5G.
- ☐ However, CLCs tend to live in silos across domains in such a complex network, making only domain experts capable to develop and operate CLCs.
- ☐ Question: Can a unified framework be built for reliable development of CLCs with little human intervention toward realization of autonomous networks?

Background: Challenge toward Autonomous Network based on CLCs

Observation:

- ☐ Create/Validate/Apply are domain-agnostic concepts in development of CLCs.
- ☐ Domain-specific knowledge can be represented as **Modules** + **Experiments**.

Hypothesis:

☐ Controllers can be continuously (re)designed without human/expert intervention in a combination of Create/Validate/Apply and Modules/Experiments.

Our Autonomous Network Framework

Our Autonomous Network Framework

Our Autonomous Network Framework

Our Target

- □ Further automation in development cycle of closed-loop controllers in a unified AN framework based on three domain-agnostic concepts:
 - Create (via Exploratory Evolution)
 - Validate (via Realtime Responsive Experimentation)
 - Apply (via Dynamic Adaptation)

□ Our strategy:

- Standardization (ITU-T FG-AN)
- Academic collaborations
- Government-funded research: B5G (focused in my talk)

NICT B5G Fund

Consortium's Key Deliverable By 2025, End to End Demonstration of coordination between the Autonomous Network prototype OKI's **CDN and Nagoya University's Robot** Network operation is a lot less work network control Internet **Beyond 5G CDN** control The video quality **Autonomous** doesn't drop even DU/CU (Distributed with a number of unit/Centralized unit) mobile robots robots present MEC (Multi-access edge tablet, etc. Cache server Diagram of the aims of R&D into coordinated type autonomous networks

Consortium Research Target

Rakuten

Rakuten is designing the **Autonomous Network framework** for cloud-native mobile architectures that can autonomously adapt to changing traffic patterns and diverse service requirements to provide low-latency CDN experience

OKI

OKI is designing two-way CDN controller for sending and receiving synchronized high-definition video to and from autonomous mobile robots and XR devices over the autonomous network

Nagoya University is designing **Autonomous Mobile Robots** (AMR) with modules necessary for autonomous movements and service modules for realizing real sharing experience between people in real space and the Metaverse

Create a **shared & synchronized experience** through high-quality video and metaverses between people in the real space and the information space.

Dynamically adapt to circumstances to maintain the best possible experience

Stage Gate demo

Overview of R&D Achievement

Autonomous composition of Kubernetes load balancer specialized for latency reduction based on our AN concepts

Our autonomous network PoC in October

Our own metrics-aware Kubernetes load balancer

Our dashboard for Autonomy Engine

- Explored controller designs and their evaluation results,
- Weights (delay, CPU idle, memory, bandwdith),
- Time series variation of metrics observed, etc.

Goal: Develop the *Exploratory Evolution* subsystem and *Online Experimentation* subsystem of our AN concepts and evaluate their capability under use case scenarios for autonomous operation of a container orchestrator.

Result: Developed PoC of the Evolution and Experimentation subsystems and conducted an experiment of autonomous creation of Kubernetes load balancer specialized for delay reduction.

Example execution of our Autonomy Engine

Conclusion

- □ Further automation in development cycle of closed-loop controllers in a unified AN framework based on three domain-agnostic concepts:
 - Create (via Exploratory Evolution)
 - Validate (via Realtime Responsive Experimentation)
 - Apply (via Dynamic Adaptation)

□ Our strategy:

- Standardization (ITU-T FG-AN)
- Academic collaborations
- Government-funded research: B5G

Rakuten Mobile

RMI Research Target

Main Deliverable

Autonomous Network Research Prototype composed of:

- 1 a- Exploratory Evolution subsystem (Create)
- 1 b Real-time Responsive Experimentation subsystem (Validate)
- 1 c Dynamic Adaptation subsystem (Apply)
- 1d End to End Demo including OKI's CDN and Nagoya's Robot

Key Principles

Autonomous Network Research Prototype will:

- Follow ITU-T architecture
- Produce results relevant to RMI deployment and Symworld products
- Build to address use cases relevant to RMI and RS' customers
- Build by outsourcing dev team (fully B5G budget)
- Build a platform to experiment and accelerate research

