Modeling optimal leaf area and photosynthetic capacity from plant traits and climate

Yujie Wang Frankenberg Lab, Caltech

Friedlingstein et al. (2019)

Stomatal behavior

- Ball-Berry model: G = g0 + g1 * RH * A / Cs
- Leuning model: G = g0 + g1 * A / (Cs Γ) / (1 + VPD/d0)
- Medlyn model: G = g0 + 1.6 * (1 + g1/√D) * A /
 Ca
-

Powell et al. (2013)

5

- PROBLEMS
- Environment is changing
- Plants are changing
- KEYS
- Better modeling of the climate
- Better parameterization of plants

First Step

- Modeling stomatal behaviors using optimization theory
- Maximize (carbon gain carbon risk)

Model	Reference	Water Penalty (Θ or Θ')	Marginal Penalty (dΘ/d E or dΘ'/d E)	I–III	Response Criteria IV–VII DCPK	Fitting parameters
Cowan- Farquhar	(Cowan and Farquhar, 1977)	$\Theta = \frac{E_{\text{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Manzoni	(Manzoni et al., 2013)	$\Theta = \frac{E_{\text{leaf}}}{\Lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\Lambda}$	YNN	NNNN	Λ
Prentice	(Prentice et al., 2014)	$\Theta = A \cdot \left(1 - \frac{1}{c_{\rm E}E_{\rm leaf} + c_{\rm V}V_{\rm cmax}}\right)$	$\frac{d\Theta}{dE} = \frac{A}{E_{\text{leaf}} + \frac{c_{\text{V}}}{c_{\text{T}}} V_{\text{cmax}}}$	YNY	YYNN	$c_{\rm E}$, $c_{\rm V}$
Lu	(Lu et al., 2016)	$\Theta = \frac{E_{\text{leaf}}}{\lambda}$	$\frac{d\Theta}{dE} = \frac{1}{\lambda}$	YNN	NNNN	λ
	(Wolf et al., 2016) (Anderegg et al., 2018)	$\Theta = aP^2 + bP + c$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{2aP + b}{K}$	YYN	NNYY	a, b, K_{rhiz}
Sperry	(Sperry et al., 2017)	$\Theta = A_{\text{max}} \cdot \left(1 - \frac{K}{K_{\text{max}}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A_{\mathrm{max}}}{K_{\mathrm{max}}}$	YYY	YYYY	$K_{ m rhiz}$
Eller	(Eller et al., 2018)	$\Theta = A \cdot \left(1 - \frac{K}{K_{\text{max,0}}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A}{K}$	YYY	YYYN	$K_{ m rhiz}$
New Model		$\Theta = A \cdot \frac{E_{\text{leaf}}}{E_{\text{crit}}}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{crit}} - E_{\mathrm{leaf}}}$	YYY	YYYY	$K_{ m rhiz}$
Hölttä	(Hölttä et al., 2017)	$\Theta' = A_{\text{ww}} \cdot \frac{\text{SC}}{\text{SC}_{\text{max}}}$	$\frac{d\Theta'}{dE} = \frac{A}{SC_{max} - SC} \cdot \frac{dSC}{dE}$	YYY	YYYY	SC _{max} , K _{rhiz} , anatomy
Dewar CAP	(Dewar et al., 2018)	$\Theta' = A_{\rm ww} \cdot \frac{P}{P_{\rm crit}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{K \cdot (P_{\mathrm{crit}} - P)}$	YYY	YYYY	$K_{ m rhiz}$

Second Step

- Predict how plant traits change with the environment
- Optimizing leaf area and photosynthetic capacity

Assumptions

- Leaf biomass costs: LA * invest_C
- Leaf nutrient costs: LA * Vcmax * invest_N
- Total carbon gain: ∫A_{net}(t)
- Maximize ∫A_{net}(t) LA * invest_C LA * Vcmax * invest_N

Difficulties

- Leaf investment is one-time investment
- It includes carbon biomass and nutrient costs
- Both costs are related to metabolism
- Experimentally difficult to tease apart the one-time investment from respiration
- Optimizing two variables from at least two unknowns

Is the model useful?

- investc is unknown
- invest_N is unknown

Conclusions

- Plant hydraulic and leaf traits are important when modeling optimal leaf area
- Leaf traits are key drivers for optimal photosynthetic capacity
- The unknown leaf construction cost parameters can be estimated from known plant trait combinations

Acknowledgments

- University of Utah
- Sperry Lab
- Anderegg Lab

- Caltech
- Frankenberg Lab
- CliMA