Functional Analysis: Gradient

Paul Kim

January 30, 2023

1 Gradient on \mathbb{R}^n

For $f: \mathbb{R}^n \to \mathbb{R}$, we may define the gradient ∇f as:

Definition 1. $\nabla f =: v \text{ such that }$

$$\frac{\partial}{\partial \epsilon} f(x + \epsilon y)|_{\epsilon = 0} = \langle v, y \rangle_{\mathbb{R}^n} \tag{1}$$

2 Gradient on L^2

Similarly, for $E:L^2\to\mathbb{R}$ (a functional), we define the gradient ∇E as:

Definition 2. ∇E such that

$$\frac{\partial}{\partial \epsilon} E\left[f + \epsilon g\right]|_{\epsilon=0} = \langle \nabla E, g \rangle_{L^2} \tag{2}$$

2.1 Dirichlet Energy

For Dirichlet energy defined by $E(f) = \int_{\mathbb{R}} |\nabla f|^2 dx$,

$$\frac{\partial}{\partial \epsilon} E \left(f + \epsilon g \right) |_{\epsilon = 0} = \int_{\mathbb{R}} \frac{\delta E}{\delta f} g \tag{3}$$

2.2 Tangent Point Energy

For our tangent point energy defined by $E(\gamma)=\int_{M^{2}}\left(\cdot\right)\,\mathrm{d}x_{\gamma}\,\mathrm{d}y_{\gamma}$

$$\frac{\partial}{\partial \epsilon} E(\gamma + \epsilon \delta)|_{\epsilon=0} = \int_{M^2} \frac{\delta E}{\delta \gamma} \delta \tag{4}$$