武汉大学 2014-2015 学年第一学期期末考试

线性代数 B(A卷答题卡)

		考生学号												
姓名	班级													
		[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
	[1]				[]]	[1]			[1]				[1]	
注意事项	1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的考	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
	号信息点。	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]
	2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔作	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]
	解答题:字体工整、笔迹清楚。	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]
	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]
	的答题无效;在草稿纸、试题卷上答题无效。	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]
	4.保持卡面清洁,不要折叠、不要弄破。	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]
		[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]

$$- \text{、(8分) 计算行列式} D_n = \begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix}$$

二、 $(8 \, \oplus)$ 设 $A^2 + 2A - B = 0$,其中 B 是 n 阶矩阵 $|B| \neq 0$,证明矩阵方程 2AX = BX + C 对任意 n 阶矩阵 C 都有唯一的解矩阵 X.

三、(8 分)设 $\alpha_1 = (2,-1,3)^T$, $\alpha_2 = (4,-2,5)^T$, $\alpha_3 = (2,-1,2)^T$,试求一组不全为0的常数 k_1 , k_2 , k_3 ,使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$ 。

四、
$$(10\, 分)$$
 问 λ 为何值时,线性方程组
$$\begin{cases} x_1+x_3=\lambda\\ 4x_1+x_2+2x_3=\lambda+2 \end{cases}$$
 有解,并求出解的一般形式。
$$6x_1+x_2+4x_3=3+2\lambda$$

五、
$$(10\,
eta)$$
 用初等变换求矩阵
$$\begin{bmatrix} 3 & 0 & 5 & -3 & 0 \\ 1 & 0 & -1 & 1 & 1 \\ 0 & 1 & 3 & -2 & -2 \\ 2 & 1 & 1 & 1 & 0 \\ 3 & -1 & 2 & -1 & 2 \end{bmatrix}$$
的秩,并写出行向量组的一个最大线性无关组。

六、
$$(8\,
eta)$$
 设三阶方阵 A 有一特征值是 2 ,其相应的特征向量有 $\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$;另一特征值为 -1 ,其相应的特征向量有

七、(10 分)设A、B是两个三阶矩阵,满足关系: $A^2 - AB - 2B^2 = A - 2BA - B + I$,且 $A - B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$,

I 为三阶单位矩阵,求A.

八、(10分) 用正交变换化二次型 $f = 3x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_3$ 为标准形,写出所用正交变换及 f 的标准形,并判断二次型的正定性。

九、(8 分)证明:线性方程组 $\begin{cases} a_{11}x_1 + a_{1n}x_n = b_1 \\ \vdots & \vdots & \text{对任何 } b_1, b_2, \cdots, b_n \text{ 都有解的充分必要条件是系数行列式} \\ a_{n1}x_1 + \cdots + a_{nn}x_n = b_n \end{cases}$

不为
$$0$$
,即 $\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} \neq 0$

十、(10 分) 已知线性空间 R^3 的基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵为P,且

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}; \quad P = \begin{pmatrix} 2 & 2 & 1 \\ 3 & 2 & -2 \\ 4 & 3 & 0 \end{pmatrix}$$

试求: (1) 基 β_1 , β_2 , β_3 ; (2) 在基 α_1 , α_2 , α_3 与 β_1 , β_2 , β_3 下有相同坐标的全体向量。

十一、(10 分)设 A 为 n 阶矩阵,且 $A^2 - A = 12E$, (1)证明秩 r(A + 3E) + r(A - 4E) = n;

(2) 证明 *A* 可相似于对角阵; (3) 求行列式 | *A* + 4*E* | 。