Лекционни записки по Математически Анализ

проф. Надежда Рибарска Набрани от Никола Юруков

18 декември $2015\,г.$

Съдържание

1	Лекция 1: Преговор с разширение	3
	1.1 Евклидовото пространство \mathbb{R}^n	3
	1.2 Топология в \mathbb{R}^n	4
	1.3 Основни теореми	7
2	Лекция 2: Кратен Риманов интеграл - въвеждане и основни свойства	8
	2.1 Паралелотопи в \mathbb{R}^n и тяхната мярка	8
	2.2 Въвеждане на Риманов интеграл чрез подхода на Дарбу	10
	2.3 Суми на Риман и граница на суми на Риман	13
	Риман	14
3	Лекция 3: Множества, пренебрежими по Лебег и критерий на Лебег за	
	интегруемост по Риман	17
	3.1 Множества, пренебрежими по Лебег	17
	3.2 Критерий на Лебег за интегруемост по Риман	20
	3.3 Основни свойства на интеграла на Риман върху паралелотоп	22
4		2 4
5		24
6		24
7		24
8	Лице на повърхнина	24
	8.1 Допирателно пространство	25

1 Лекция 1: Преговор с разширение

1.1 Евклидовото пространство \mathbb{R}^n

Като множество \mathbb{R}^n е множеството $\{x=(x_1,x_2,...,x_n): x_i\in\mathbb{R},\ i=1,2,...,n\}$ от нередените n-торки реални числа. Ако го снабдим със стандартните линейни операции събиране на вектори и умножение на вектор с реално число, получаваме реално линейно пространство (спомнете си аксиомите от курса по линейна алгебра). Да напомним формалните дефиниции: сума на векторите $x=(x_1,x_2,...,x_n)$ и $y=(y_1,y_2,...,y_n)$ е векторът $x+y=(x_1+y_1,x_2+y_2,...,x_n+y_n)$ (събирането е покоординатно). Произведение на скалара $\lambda\in\mathbb{R}$ с вектора x е векторът $\lambda x=(\lambda x_1,\lambda x_2,...,\lambda x_n)$ (умножението със скалар също е покоординатно). Ще означаваме с $\mathbf{0}$ нулевия вектор $(0,\ldots,0)$.

За да можем да правим анализ (да говорим за граница, непрекъснатост, производна и т.н.), освен линейната структура ни е необходима и някаква "мярка на близост"в нашето пространство. Както помните от курса по ДИС2, стандартната мярка на близост между два вектора е евклидовото разстояние между тях:

$$\rho(x,y) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}, \text{ където } x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n).$$

Забележете, че в \mathbb{R}^2 това е просто питагоровата теорема. Това разстояние е добре съгласувано с линейната структура в смисъл, че $\rho(x,y) = \|x-y\|$, където в дясната част стои евклидовата норма (или дължината) на вектора x-y:

$$||x|| := \sqrt{\sum_{i=1}^{n} x_i^2}, \ x = (x_1, x_2, ..., x_n).$$

Да напомним, че една функция $\|\cdot\|:\mathbb{R}^n\longrightarrow [0,+\infty)$ се нарича норма, ако за нея са в сила свойствата

- 1. $||x|| = 0 \iff x = \mathbf{0}$
- $2. \|\lambda x\| = |\lambda| \cdot \|x\|$
- 3. ||x+y|| < ||x|| + ||y|| (неравенство на триъгълника)

В курса по ДИС2 е проверено, че евклидовата норма е норма. За упражнение проверете, че

- $\|(x_1,x_2)\|_1 = |x_1| + |x_2|$
- $||(x_1, x_2)||_{\infty} = \max\{|x_1|, |x_2|\}$
- $||(x_1, x_2)||_p = \sqrt[p]{|x_1|^p + |x_2|^p}, 1$

са норми в \mathbb{R}^2 . По-общо, проверете, че

$$\|x\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$
 , $1 \le p < \infty$ е норма в \mathbb{R}^n .

Разбира се, за целта трябва да използвате неравенството на Минковски от курса по ДИС2.

Евклидовата норма има по-хубави геометрични свойства от горните примери, защото е съгласувана със скаларното произведение

$$\langle x,y \rangle = \sum_{i=1}^n x_i y_i$$
 , където $x = (x_1,x_2,...,x_n)$ и $y = (y_1,y_2,...,y_n),$

по стандартния начин $\|x\| = \sqrt{\langle x, x \rangle}$. Да напомним основното неравенство на Коши-Буняковски-Шварц:

$$|\langle x, y \rangle| \le ||x|| ||y||$$
.

Да напомним също означенията

$$B_r(x) := \{ y \in \mathbb{R}^n : ||y - x|| < r \}$$

за отворено кълбо с център x и радиус r и

$$\overline{B}_r(x) := \{ y \in \mathbb{R}^n : ||y - x|| \le r \}$$

за затворено кълбо с център x и радиус r. Като упражнение можете да скицирате кълбата с радиус 1 и център началото на координатната система за нормите $\|\cdot\|_1$ и $\|\cdot\|_\infty$ от предишното упражнение.

1.2 Топология в \mathbb{R}^n

Дефиниция 1.1. Подмножеството U на \mathbb{R}^n се нарича отворено, ако за всяка точка x от U съществува $\varepsilon>0$ такова, че $B_{\varepsilon}(x)\subset U$.

Основните свойства на отворените множества, проверени в курса по ДИС2, са

- 1. \emptyset и \mathbb{R}^n са отворени
- 2. Сечение на краен брой отворени множества е отворено, т.е. ако $U_1, U_2, ..., U_k$ са отворени, то $\bigcap_{i=1}^k U_i$ е отворено.
- 3. Обединение на произволна фамилия от отворени множества е отворено, т.е. ако U_{α} са отворени за всяко $\alpha \in I$, то $\bigcup_{\alpha \in I} U_{\alpha}$ е отворено.

Пример 1.2. Отворените кълба са отворени множества.

Доказателство. Да разгледаме $B_r(x_0)$, r>0. Взимаме си произволно x от кълбото, т.е. растоянието между x и x_0 е по-малко от r. Нека $\varepsilon:=r-\|x_0-x\|>0$. Тогава $B_\varepsilon(x)\subset B_r(x_0)$. Наистина, нека $y\in B_\varepsilon(x)$, т.е. $\|y-x\|<\varepsilon$. Получаваме

$$||x_0 - y|| \le ||x - y|| + ||x - x_0|| < \varepsilon + ||x - x_0||$$

 $||x_0 - y|| < r - ||x_0 - x|| + ||x - x_0||$
 $||x_0 - y|| < r$

Пример 1.3. Нека функцията $g: \mathbb{R}^n \to \mathbb{R}$ е **непрекъсната**. Тогава множеството $U = \{x \in \mathbb{R}^n : g(x) > 0\}$ е отворено.

Доказателство. Взимаме произволна точка $x_0 \in U$, следователно $\varepsilon = g(x_0) > 0$. От непрекъснатостта на функцията получаваме, че съществува положително число δ такова, че $|g(x) - g(x_0)| < \varepsilon$ за всяко $x \in B_\delta(x_0)$. Следователно $g(x) > g(x_0) - \varepsilon = 0$ и оттук $x \in U$ за всяко $x \in B_\delta(x_0)$.

Дефиниция 1.4. Едно подмножество F на \mathbb{R}^n се нарича затворено, ако $\mathbb{R}^n \setminus F$ е отворено множество.

Основните свойства на затворените множества, проверени в курса по ДИС2, са

- 1. \emptyset , \mathbb{R}^n са затворени.
- 2. Обединие на краен брой затворени множества е затворено, т.е. ако $F_1, F_2, ..., F_k$ са затворени, то $\bigcup_{i=1}^k F_i$ е затворено.
- 3. Сечение на произволна фамилия от затворени множества е затворено, т.е. ако F_{α} са затворени за всички $\alpha \in I$, то $\bigcap_{\alpha \in I} F_{\alpha}$ е затворено.

Пример 1.5. Затворените кълба са затворени множества. Доказателството оставяме за упражнение.

Дефиниция 1.6. Контур на множеството $A \subset \mathbb{R}^n$ наричаме множеството

$$\partial A := \{x \in \mathbb{R}^n : \forall U \text{ отворено}, \ x \in U \text{ е в сила } U \cap A \neq \emptyset \text{ и } U \setminus A \neq \emptyset \}$$

Дефиниция 1.7. Затворена обвивка на множеството $A \subset \mathbb{R}^n$ наричаме най-малкото затворено множество, съдържащо A:

$$\overline{A} := \bigcap \{ F \subset \mathbb{R}^n : F \supset A \text{ и } F \text{ е затворено } \}$$

В курса по ДИС2 е доказано, че

$$\overline{A} = \{x \in \mathbb{R}^n : \exists \{x_m\}_{m=1}^{\infty} \subset A, \ x_m \to x\}$$

Лесно се проверява, че едно множество е затворено точно тогава, когато съвпада със затворената си обвивка. Връзките между контур на множество и затворена обвивка на множество са

$$\overline{A} = A \cup \partial A \ , \ \partial A = \overline{A} \cap \left(\overline{\mathbb{R}^n \setminus A}\right) \ .$$

Следователно контурът на произволно множество е винаги затворено множество. Също лесно се проверява, че

$$\partial A = \{ x \in \mathbb{R}^n : \exists \{ x_m \}_{m=1}^{\infty} \subset A, \ x_m \to x \text{ if } \exists \{ y_m \}_{m=1}^{\infty} \subset \mathbb{R}^n \setminus A, \ y_m \to x \}$$

Дефиниция 1.8. Вътрешност на $A \subset \mathbb{R}^n$ наричаме най-голямото отворено множество, съдържащо се в A:

$$\mathring{A} = \bigcup \{U \subset \mathbb{R}^n : \ U \subset A$$
 и U е отворено $\}$

Друго означение за вътрешност на A е int A. Понятието за вътрешност е дуално на понятието за затворена обвивка, т.е.

$$intA = \mathbb{R}^n \setminus \left(\overline{\mathbb{R}^n \setminus A}\right) , \overline{A} = \mathbb{R}^n \setminus (int(\mathbb{R}^n \setminus A)) .$$

Едно от най-важните и често използвани понятия в топологията е понятието за компактност.

Дефиниция 1.9. Едно множество $A \subset \mathbb{R}^n$ се нарича компакт, ако от всяко негово отворено покритие можем да изберем крайно подпокритие, т.е. ако $\{U_{\alpha}\}_{\alpha \in I}$ е фамилия от отворени подмножества на \mathbb{R}^n , за която е в сила $\bigcup_{\alpha \in I} U_{\alpha} \supset A$, то можем да изберем краен брой индекси $\alpha_1, \alpha_2, \ldots, \alpha_k \in I$ такива, че $\bigcup_{i=1}^k U_{\alpha_i} \supset A$.

В курса по ДИС2 са доказани две важни и нетривиални характеризации на компактните полмножества на \mathbb{R}^n :

- 1. Едно подмножество A на \mathbb{R}^n е компакт точно тогава, когато A е ограничено и затворено.
- 2. Едно подмножество A на \mathbb{R}^n е компакт точно тогава, когато от всяка редица от негови елементи може да се избере сходяща подредица, чиято граница е също в множеството.

Сега въвеждаме първото разширение, т.е. понятие, за което не сте учили в курса по ДИС2: множество, релативно отворено в A. Ще го използваме по-нататък, за да говорим за множества, релативно отворени в някаква гладка двумерна повърхнина в тримерното евклидово пространство. Интуицията е, че забравяме за всичко извън множеството A.

Дефиниция 1.10. Нека $A \subset \mathbb{R}^n$. Едно подмножество U на A наричаме релативно отворено в A, ако съществува отворено множество $V \subset \mathbb{R}^n$ такова, че $U = A \cap V$.

Твърдение 1.11. Множеството $U \subset A$ е релативно отворено в A точно тогава, когато за всяка негова точка $x \in U$ съществува $\varepsilon > 0$ такова, че $B_{\varepsilon}(x) \cap A \subset U$.

Доказателство. Нека първо $U \subset A$ е релативно отворено в A и $x \in U$ е произволна. Тогава съществува отворено множество $V \subset \mathbb{R}^n$ с $U = A \cap V$. Тъй като $x \in U \subset V$, съществува $\varepsilon > 0$ с $B_{\varepsilon}(x) \subset V$ и оттук $B_{\varepsilon}(x) \cap A \subset V \cap A = U$. В обратната посока, нека за всяка точка $x \in U$ съществува $\varepsilon_x > 0$ такова, че $B_{\varepsilon_x}(x) \cap A \subset U$. Полагаме $V := \bigcup_{x \in U} B_{\varepsilon_x}(x)$. Очевидно V е отворено множество като обединение на отворени кълбета. Освен това

$$V \cap A = (\bigcup_{x \in U} B_{\varepsilon_x}(x)) \cap A = \bigcup_{x \in U} (B_{\varepsilon_x}(x) \cap A) \subset U$$
.

От друга страна, всяка точка $x \in U$ принадлежи на $B_{\varepsilon_x}(x) \subset V$, следователно $U \subset V$ и от $U \subset A$ следва $U \subset V \cap A$. С това $U = V \cap A$ и доказателството е завършено.

Следното приложение на понятието за релативна отвореност е важно и изключително често използвано:

Твърдение 1.12. Нека $f: D \longrightarrow \mathbb{R}^m$ е изображение с дефиниционна област $D \subset \mathbb{R}^n$ и стойности в \mathbb{R}^m . Твърдим, че f е непрекъсната в D точно тогава когато първообраз на всяко отворено в \mathbb{R}^m множество е релативно отворено в D. Да напомним, че първообраз на $U \subset \mathbb{R}^m$ е множеството $f^{-1}(U) := \{x \in D : f(x) \in U\}$.

Доказателство. Първо ще докажем, че ако първообраз на всяко отворено в \mathbb{R}^m множество е релативно отворено в D, то f е непрекъсната. Избираме произволна точка x от D и произволно $\varepsilon > 0$. Тъй като кълбото $B_{\varepsilon}(f(x))$ е отворено в \mathbb{R}^m , първообразът $f^{-1}(B_{\varepsilon}(f(x)))$ ще е релативно отворен в D. Тогава $f^{-1}(B_{\varepsilon}(f(x))) = D \cap V$ за някое множество V, отворено в \mathbb{R}^n . Тъй като $x \in f^{-1}(B_{\varepsilon}(f(x))) \subset V$, съществува $\delta > 0$ с $B_{\delta}(x) \subset V$. Нека $x' \in D$ е произволна точка с $\|x' - x\| < \delta$. Значи $x' \in D \cap B_{\delta}(x) \subset D \cap V = f^{-1}(B_{\varepsilon}(f(x)))$ и следователно $f(x') \in B_{\varepsilon}(f(x))$, т.е. $\|f(x') - f(x)\| < \varepsilon$.

За да докажем обратната посока, избираме произволно отворено $U \subset \mathbb{R}^m$. Нека $x \in f^{-1}(U)$. Тогава f(x) принадлежи на отвореното множество U и следователно съществува $\varepsilon > 0$ такова, че $B_{\varepsilon}(f(x)) \subset U$. Тъй като f е непрекъсната в x, съществува $\delta > 0$ такова, че $\|f(x')-f(x)\| < \varepsilon$ за всяко $x' \in D$, за което $\|x'-x\| < \delta$. Записано по друг начин това означава, че $f(B_{\delta}(x) \cap D) \subset B_{\varepsilon}(f(x)) \subset U$, следователно $B_{\delta}(x) \cap D \subset f^{-1}(U)$. Така доказахме, че множеството $f^{-1}(U)$ е релативно отворено в D, защото изпълнява условието от предишното твърдение.

1.3 Основни теореми

Теорема 1.13 (Теорема на Вайершрас). Непрекъснат образ на компакт е компакт. Формално записано, ако $f: K \longrightarrow \mathbb{R}^m$ е непрекъснато изображение с дефиниционна област компактното подмножество K на \mathbb{R}^n , то множеството $f(K) := \{f(x) : x \in K\}$ от стойностите на f е компактно подмножество на \mathbb{R}^m .

Доказателство. Нека $\{y_l\}_{l=1}^{\infty} \subset f(K)$ е редица от елементи на f(K). Тогава за всеки елемент y_l на тази редица съществува елемент x_l на K такъв, че $y_l = f(x_l)$. Сега редицата $\{x_l\}_{l=1}^{\infty}$ се съдържа в компактното множество K. Следователно съществува нейна сходяща подредица $\{x_{l_k}\}_{k=1}^{\infty}$, чиято граница x_0 е елемент на K. Тъй като f е непрекъсната, от дефиницията на Хайне за непрекъснатост получаваме, че $f(x_{l_k}) = y_{l_k} \xrightarrow[k \to \infty]{} f(x_0)$. Тъй като очевидно $f(x_0) \in f(K)$, остава да се позовем на характеризацията (2) на компактните множества.

Хубаво упражнение е да се докаже теоремата на Вайерщрас, като се използва дефиницията на компакт и характеризацията на непрекъснатите изображения, която доказахме.

Друго добро упражнение е да се убедите, че теоремата на Вайерщрас от ДИС 1 (една непрекъсната функция върху краен затворен интервал е ограничена и достига своята найголяма и най-малка стойност) е следствие от тази форма на теоремата.

Теорема 1.14 (Теорема на Кантор). Нека $f: D \longrightarrow \mathbb{R}^m$ е дефинирана в $D \subset \mathbb{R}^n$. Нека K е компактно подмножество на D. Ако f е непрекъсната в K, т.е. непрекъсната е във всяка точка от K, то твърдим, че за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всяко $x \in K$ и за всички $x' \in D$, за които е изпълнено $\|x' - x\| < \delta$, е в сила $\|f(x) - f(x')\| < \varepsilon$. Забележете, че заключението е малко по-силно от равномерна непрекъснатост на f върху K.

Доказателство. Отново ще използваме характеризацията (2) на компактността чрез редици. Допускаме противното, т.е. съществува такова $\varepsilon_0 > 0$, че за всички $\delta > 0$ съществуват точки $x_\delta \in K$ и $x_\delta' \in D$ такива, че

$$||x_{\delta} - x_{\delta}'|| < \delta$$
 и $||f(x_{\delta}) - f(x_{\delta}')|| \ge \varepsilon$.

Даваме на δ стойности $1, \frac{1}{2}, \frac{1}{3}, \dots$ и преименуваме $x_{1/m}$ и $x'_{1/m}$ съответно на x_m и x'_m . Така се образуват две редици $\{x_m\}_{m=1}^{\infty} \subset K$ и $\{x'_m\}_{m=1}^{\infty} \subset D$. Знаем, че

$$||x_m - x_m'|| < \frac{1}{m} \text{ if } ||f(x_m) - f(x_m')|| \ge \varepsilon_0 > 0$$

за всяко естествено m. Тъй като K е компакт, съществува сходяща подредица $x_{m_k} \xrightarrow[k \to \infty]{} x_0 \in K$ на $\{x_m\}_{m=1}^{\infty} \subset K$. От неравенствата

$$||x'_{m_k} - x_0|| \le ||x'_{m_k} - x_{m_k}|| + ||x_{m_k} - x_0|| < \frac{1}{m_k} + ||x_{m_k} - x_0||$$

получаваме, че редицата $\{x'_{m_k}\}_{k=1}^\infty$ също клони към точката $x_0 \in K$. Сега използваме непрекъснатостта на f в точката $x_0 \in K$ и получаваме, че

$$f(x_{m_k}) \xrightarrow[k\to\infty]{} f(x_0)$$
 и $f(x'_{m_k}) \xrightarrow[k\to\infty]{} f(x_0)$.

Като извадим тези две редици, получаваме $f(x_{m_k}) - f(x'_{m_k}) \xrightarrow[k \to \infty]{} 0$, което противоречи на $||f(x_m) - f(x'_m)|| \ge \varepsilon_0 > 0$ за всяко естествено m. Теоремата е доказана.

2 Лекция 2: Кратен Риманов интеграл - въвеждане и основни свойства

Конструкцията на Дарбу, с която сте въвели Риманов интеграл в курса по ДИС1, е важна и естествена и ние ще я използваме отново, за да въведем *п*-кратен Риманов интеграл. Геометричната интуиция остава същата. В курса по ДИС1 сте искали да дефинирате по един разумен начин лицето на фигура, заградена от абцисата, две вертикални прави и графиката на ограничена неотрицателна функция. Постигнали сте го чрез оценяване отгоре и отдолу на това лице чрез лицата на стъпаловидни фигури, съставени от краен брой правоъгълници (тези лица са големите и малките суми на Дарбу). Сега за *n*=2 трябва да оценяваме отгоре и отдолу обема на тяло, заградено от равнината на първите две координатни оси, вертикални равнини по границата на даден правоъгълник и графиката на ограничена неотрицателна функция, дефинирана в този правоъгълник. Оценката е чрез обема на тела, състоящи се от краен брой паралелепипеди (за оценка отгоре вземаме обема на такова стъпаловидно тяло, съдържащо нашето, а за оценка отдолу - съдържащо се в нашето). За по-големи размерности идеята и конструкцията остават същите, само че вече не можем да нарисуваме подходяща картинка.

2.1 Паралелотопи в \mathbb{R}^n и тяхната мярка

Първият въпрос, който трябва да решим, е с какво заменяме крайния и затворен интервал от ДИС1, ако размерността е по-голяма от едно. Естественият отговор е: с правоъгълник в равнината, с паралелепипед в тримерното пространство и т.н.

Дефиниция 2.1. Паралелотоп (на английски interval, box) е множество в \mathbb{R}^n , за което всяка координата се мени (независимо от останалите) в краен затворен интервал:

$$\Delta := \{x \in \mathbb{R}^n : a_i < x_i < b_i, i = 1, 2, ...n\}$$
.

За различните размерности (стойности на n) имаме

n	Δ
1	$[a_1,b_1]$ интервал
2	$[a_1, b_1] \times [a_2, b_2]$ правоъгълник

 $[a_1,b_1] imes [a_2,b_2] imes [a_3,b_3]$ парарелепипед

.. ...

Същественото за тези най-прости фигури е, че нямаме съмнения какво трябва да наречем дължина на интервал, лице на правоъгълник, обем на паралелепипед, а за паралелотоп в \mathbb{R}^n естествено въвеждаме мярка в \mathbb{R}^n .

Дефиниция 2.2. За паралелотопа $\Delta = \{x \in \mathbb{R}^n : a_i \leq x_i \leq b_i, i = 1, 2, ...n\}$ дефинираме неговата n-мерна мярка като

$$\mu_n(\Delta) := \prod_{i=1}^n (b_i - a_i) .$$

Забележете, че при n=1 това е дължината $\mu_1([a_1,b_1])=b_1-a_1$ на интервала $[a_1,b_1]$, при n=2 това е лицето $\mu_2([a_1,b_1]\times[a_2,b_2])=(b_1-a_1)(b_2-a_2)$ на правоъгълника $[a_1,b_1]\times[a_2,b_2]$, при n=3 това е обемът $\mu_3([a_1,b_1]\times[a_2,b_2]\times[a_3,b_3])=(b_1-a_1)(b_2-a_2)(b_3-a_3)$ на паралеленинеда $[a_1,b_1]\times[a_2,b_2]\times[a_3,b_3]$.

Един паралелотоп ще наричаме изроден, ако някой от интервалите $[a_i, b_i]$ се изражда в точка, т.е. $a_i = b_i$. В такава ситуация n-мерната мярка на паралелотопа е нула. Например отсечка върху абцисата може да бъде разглеждана като паралелотоп в \mathbb{R}^1 и ще има ненулева дължина, но ако бъде разглеждана като паралелотоп в \mathbb{R}^2 , ще има лице нула.

Следващият етап е да уточним как да разделяме паралелотоп на паралелотопчета по аналогия с разделянето на интервал на подинтервали от ДИС1. Неформално, подразделяне на паралелотоп са краен брой паралелотопи, чието обединение е първоначалният паралелотоп, и които не се припокриват.

Дефиниция 2.3. Подразделение Π на един паралелотоп Δ е крайно множество от паралелотопи $\Pi = \{\Delta_k\}_{k=1}^{k_0}$, за което $\bigcup_{k=1}^{k_0} \Delta_k = \Delta$ и $\mathring{\Delta}_k \cap \mathring{\Delta}_l = \emptyset \ \forall k \neq l$.

Забележете, че вътрешността на паралелотопа $\Delta = \{x \in \mathbb{R}^n : a_i \leq x_i \leq b_i, i = 1, 2, ...n\}$ е множеството $\mathring{\Delta} = \{x \in \mathbb{R}^n : a_i < x_i < b_i, i = 1, 2, ...n\}$. Следното твърдение е геометрически очевидно, но съществено за по-нататъшната ни работа:

Твърдение 2.4. Ако
$$\Pi = \{\Delta_k\}_{k=1}^{k_0}$$
 е подразделяне на Δ , то $\mu_n(\Delta) = \sum_{k=1}^{k_0} \mu_n(\Delta_k)$.

Доказателство. Първо разглеждаме случая на правилно подразделяне, т.е. П се получава като се раздели интервалът, в който се мени i-тата координата, на подинтервали за всяко i, и се вземат всевъзможните декартови произведения на такива подинтервали. За пестене на място и по-прости означения ще изпишем нещата за n=2, в общия случай доказателството е аналогично. И тъй, нека $\Delta = [a_1,b_1] \times [a_2,b_2]$ и делим $[a_1,b_1]$ и $[a_2,b_2]$ на подинтервали:

$$a_1 = x_0 < x_1 < \dots < x_{m_0} = b_1$$
,

$$a_2 = y_0 < y_1 < \dots < y_{l_0} = b_2$$
.

Тогава $\Pi = \{\Delta_{ml}: m = 1, \dots, m_0, l = 1, \dots, l_0\}$, където $\Delta_{ml} = [x_{m-1}, x_m] \times [y_{l-1}, y_l]$. Пресмятаме

$$\sum_{l=1}^{l_0} \sum_{m=1}^{m_0} \mu_2(\Delta_{ml}) = \sum_{l=1}^{l_0} \sum_{m=1}^{m_0} (x_m - x_{m-1})(y_l - y_{l-1})$$

$$= \sum_{l=1}^{l_0} (y_l - y_{l-1}) \sum_{m=1}^{m_0} (x_m - x_{m-1})$$

$$= (b_1 - a_1) \sum_{l=1}^{l_0} (y_l - y_{l-1})$$

$$= (b_1 - a_1)(b_2 - a_2)$$

$$= \mu_2(\Delta)$$

Нека сега да разгледаме произволно подразделяне $\Pi = \{\Delta_k\}_{k=1}^{k_0}$. Можем да намерим правилно подразделяне Π^* на Δ такова, че елементите на $\Pi^* = \{\Delta_l^*\}_{l=1}^{l_0}$, които се съдържат в Δ_k , образуват подразделяне на Δ_k (например при размерност 2 продължаваме вертикалните и хоризонтални страни на правоъгълниците от Π в целите интервали). Тогава, използвайки два пъти предишната стъпка, получаваме

$$\mu_n(\Delta) = \sum_{l=1}^{l_0} \mu_n(\Delta_l^*) = \sum_{k=1}^{k_0} \left(\sum_{\Delta_l^* \subset \Delta_k} \mu_n(\Delta_l^*) \right) = \sum_{k=1}^{k_0} \mu_n(\Delta_k) .$$

В горното доказателство намерихме "подразделяне Π^* на Δ такова, че елементите на $\Pi^* = \{\Delta_l^*\}_{l=1}^{l_0}$, които се съдържат в Δ_k , образуват подразделяне на Δ_k ". В такава ситуация казваме, че Π^* е по-фино (или по-дребно) от Π . Формално

Дефиниция 2.5. Нека $\Pi = \{\Delta_k\}_{k=1}^{k_0}$ и $\Pi^* = \{\Delta_l^*\}_{l=1}^{l_0}$ са две подразделяния на паралелотопа Δ . Казваме, че Π^* е по-фино от Π (или Π^* е вписано в Π) и пишем $\Pi^* \geq \Pi$, ако

$$\{\Delta_l^*: \Delta_l^* \subset \Delta_k\}$$

е подразделяне на Δ_k за всяко $k=1,2,\ldots,k_0$.

2.2 Въвеждане на Риманов интеграл чрез подхода на Дарбу

В целия параграф ще разглеждаме дадена ограничена функция $f: \Delta \to \mathbb{R}$, където Δ е паралелотоп в \mathbb{R}^n .

Нека $\Pi = \{\Delta_i\}_{i=1}^{i_0}$ е произволно подразделяне на Δ . По аналогия с едномерния случай дефинираме

$$s_f(\Pi) = \sum_{i=1}^{i_0} m_i \mu_n(\Delta_i)$$
, където $m_i = \inf\{f(x) : x \in \Delta_i\}$, $i = 1, \dots, i_0$.

Числото $s_f(\Pi)$ наричаме малка сума на Дарбу за функцията f, съответстваща на подразделянето Π . Интуитивно това число е долна оценка за интеграла, който искаме да въведем.

Аналогично

$$S_f(\Pi) = \sum_{i=1}^{i_0} M_i \mu_n(\Delta_i)$$
, където $M_i = \sup\{f(x) : x \in \Delta_i\}$, $i = 1, \dots, i_0$.

Сега числото $S_f(\Pi)$ наричаме *голяма сума на Дарбу* за функцията f, съответстваща на подразделянето Π . Интуитивно това число е горна оценка за търсения "обем".

Следните две леми точно съответстват на доказаните в ДИС1. Интуитивно, първата лема казва, че оценките, съответстващи на по-дребно подразделяне, са по-точни (горната оценка намалява, а долната се увеличава). Втората лема казва, че всяка долна оценка не надминава коя да е горна оценка, както и би трябвало да бъде.

Лема 2.6. Ако
$$\Pi^* \ge \Pi$$
, то $s_f(\Pi^*) \ge s_f(\Pi)$ и $S_f(\Pi^*) \le S_f(\Pi)$.

Доказателство. Без ограничение на общността, нека $\Pi = \{\Delta_i\}_{i=1}^{i_0}$ и $\Pi^* = \{\Delta_1^j\}_{j=1}^{j_0} \cup \{\Delta_i\}_{i=2}^{i_0}$, т.е. Π^* се получава от Π чрез подразделяне $\{\Delta_1^j\}_{j=1}^{j_0}$ на първия елемент Δ_1 на Π . Да означим $m_i = \inf\{f(x): x \in \Delta_i\}$ за $i = 1, \ldots, i_0, m_1^j = \inf\{f(x): x \in \Delta_1^j\}$ за $j = 1, \ldots, j_0$. Забележете, че $m_1 \leq m_1^j$ за всяко $j = 1, \ldots, j_0$, защото $\Delta_1^j \subset \Delta_1$. Оттук получаваме, че

$$s_f(\Pi^*) - s_f(\Pi) = \sum_{j=1}^{j_0} m_1^j \mu_n(\Delta_1^j) + \sum_{i=2}^{i_0} m_i \mu_n(\Delta_i) - \sum_{i=1}^{i_0} m_i \mu_n(\Delta_i)$$

$$= \sum_{j=1}^{j_0} m_1^j \mu_n(\Delta_1^j) - m_1 \mu_n(\Delta_1)$$

$$\geq \sum_{j=1}^{j_0} m_1 \mu_n(\Delta_1^j) - m_1 \mu_n(\Delta_1)$$

$$= m_1 \left(\sum_{j=1}^{j_0} \mu_n(\Delta_1^j) - \mu_n(\Delta_1)\right)$$

$$= 0$$

поради Твърдение 2.4.

Аналогично доказваме, че $S_f(\Pi^*) \leq S_f(\Pi)$.

Лема 2.7. За произволни подразделяния Π_1 и Π_2 на Δ е в сила $s_f(\Pi_1) \leq S_f(\Pi_2)$.

Доказателство. Нека $\Pi^* \geq \Pi_1$, $\Pi^* \geq \Pi_2$ (ясно е, че такова подразбиване Π^* на Δ съществува - например може да се вземе множеството от неизродените паралелотопи, получени като сечение на елемент от Π_1 с елемент от Π_2). Тогава

$$s_f(\Pi_1) \le s_f(\Pi^*) \le S_f(\Pi^*) \le S_f(\Pi_2)$$
,

като първото и последното неравенство се получават от предишната лема, а средното неравенство се получава от очевидното съображение, че инфимумът на множество от реални числа не надминава неговия супремум, и от дефиницията на малка и голяма сума на Дарбу.

Tъй като функцията f е ограничена, множеството от всевъзможните малки суми на Дарбу (както и множеството от всевъзможните големи суми на Дарбу) на f е ограничено и следователно можем да дефинираме долен интеграл на f върху Δ

$$\underline{\int}_{\Delta} f := \sup \left\{ s_f(\Pi) : \Pi \text{ е подразделяне на } \Delta \right\}$$

и горен интеграл на f върху Δ

$$\overline{\int}_{\Delta} f := \inf \left\{ S_f(\Pi) : \Pi \ ext{e} \ ext{подразделяне на } \Delta
ight\} \ .$$

Да отбележим, че от Лема 2.7 следва, че при произволно фиксирано поразделяне Π на Δ е в сила $\underline{\int}_{\Delta} f \leq S_f(\Pi)$, откъдето следва неравенството $\underline{\int}_{\Delta} f \leq \overline{\int}_{\Delta} f$.

Дефиниция 2.8. Функцията f се нарича интегруема по Риман, когато долният и горният интеграл на f върху Δ съвпадат (или еквивалентно съществува единствено число, разделящо малките от големите суми на Дарбу). Тогава общата стойност на долния и горния интеграл на f върху Δ се нарича интеграл на f върху Δ и се означава с $\int_{\Delta} f$ или $\int_{\Delta} f(x) \mathrm{d}x$.

Други разпространени означения в съответните размерности са

 $n = 1 \qquad \int_{[a,b]} f(x) dx = \int_a^b f(x) dx$ $n = 2 \qquad \iint_{\Delta} f(x_1, x_2) dx_1 dx_2$ $n = 3 \qquad \iiint_{\Delta} f(x_1, x_2, x_3) dx_1 dx_2 dx_3$

Следният критерий за интегруемост се формулира и доказва точно като в курса по ДИС1:

Твърдение 2.9. (Първа форма на критерия за интегруемост) Функцията f е интегруема по Pиман върху Δ точно тогава, когато за всяко положително число ε съществуват подразделяния Π_1 и Π_2 на Δ такива, че $S_f(\Pi_1) - s_f(\Pi_2) < \varepsilon$. Еквивалентно, f е интегруема по Pиман върху Δ точно тогава, когато за всяко положително число arepsilon съществува подразделяне Π на Δ такова, че $S_f(\Pi) - s_f(\Pi) < \varepsilon$.

Следващото твърдение е ново (т.е. не сте правили подобно в ДИС1) и ни е необходимо с оглед доказателството на критерия на Лебег.

Твърдение 2.10. (Втора форма на критерия за интегруемост) Функцията f е интегруема по Pиман върху Δ точно тогава, когато за всяко положително число ε и за всяко положително число η съществува подразделяне Π на Δ такова, че сумата от мерките на елементите на Π , в които осцилацията на f е по-голяма или равна на η , е по-малка от ε . Формално записано, за всяко $\varepsilon>0$ и за всяко $\eta>0$ съществува подразделяне $\Pi=\{\Delta_i\}_{i=1}^{i_0},$ за което

$$\sum_{M_i - m_i \ge \eta} \mu_n(\Delta_i) < \varepsilon .$$

Доказателство. Нека f е интегруема по Риман върху Δ и $\varepsilon>0$ и $\eta>0$ са произволни положителни числа. Тогава от първата форма на критерия за интегруемост следва, че

съществува подразделяне Π на Δ такова, че $S_f(\Pi) - s_f(\Pi) < \varepsilon \eta$. Нека $\Pi = \{\Delta_i\}_{i=1}^{i_0}$ и m_i , M_i са дефинирани както обикновено. Тогава

$$\varepsilon \eta > S_f(\Pi) - s_f(\Pi) = \sum_{i=1}^{i_0} M_i \mu_n(\Delta_i) - \sum_{i=1}^{i_0} m_i \mu_n(\Delta_i) = \sum_{i=1}^{i_0} (M_i - m_i) \mu_n(\Delta_i)
= \sum_{M_i - m_i < \eta} (M_i - m_i) \mu_n(\Delta_i) + \sum_{M_i - m_i \ge \eta} (M_i - m_i) \mu_n(\Delta_i)
\ge \sum_{M_i - m_i > \eta} (M_i - m_i) \mu_n(\Delta_i) \ge \sum_{M_i - m_i > \eta} \eta \mu_n(\Delta_i) = \eta \sum_{M_i - m_i > \eta} \mu_n(\Delta_i)$$

Съкращаваме на η и получаваме търсеното неравенство за така намереното подразделяне Π на Δ .

Сега обратно, нека е в сила условието от критерия и искаме да докажем, че f е интегруема. За целта избираме произволно положително число ζ и ще търсим подразбиване Π на Δ , за което разстоянието между съответната голяма и малка сума на Дарбу е по-малка от ζ . Това би решило въпроса според първата форма на критерия за интегруемост. Ще намерим Π от даденото условие с достатъчно малки (зависещи от ζ) $\varepsilon > 0$ и $\eta > 0$. Ще се сетим колко малки трябва да изберем тези числа, след като оценим разликата между съответните голяма и малка сума на Дарбу по подобен начин като преди, само че отгоре:

$$S_f(\Pi) - s_f(\Pi) = \sum_{M_i - m_i < \eta} (M_i - m_i) \,\mu_n(\Delta_i) + \sum_{M_i - m_i \ge \eta} (M_i - m_i) \,\mu_n(\Delta_i)$$

$$\leq \eta \sum_{M_i - m_i < \eta} \mu_n(\Delta_i) + (M - m) \sum_{M_i - m_i > \eta} \mu_n(\Delta_i) < \eta \mu_n(\Delta) + \varepsilon (M - m) ,$$

където $M:=\sup\{f(x):x\in\Delta\}$ и $m:=\inf\{f(x):x\in\Delta\}$. Следователно ако изберем

$$\varepsilon := \frac{\zeta}{2(M-m)} \ \text{и} \ \eta := \frac{\zeta}{2\mu_n(\Delta)} \ ,$$

за подразбиването Π на Δ , получено от даденото условие, е в сила $S_f(\Pi) - s_f(\Pi) < \zeta$. \square

2.3 Суми на Риман и граница на суми на Риман

Сумите на Риман се дефинират точно по същия начин като в курса по ДИС1. Те се различават от сумите на Дарбу по това, мярката на съответното паралелотопче се умножава по стойността на функцията в произволна пробна точка (sample point) от него (а не по супремума или инфимума на стойностите на функцията в паралелотопчето). Да отбележим, че няма проблем да дефинираме суми на Риман и за неограничена функция.

И тъй, нека Δ е паралелотоп в \mathbb{R}^n и $f:\Delta\to\mathbb{R}$.

Фиксираме подразбиване $\Pi=\{\Delta_i\}_{i=1}^{i_0}$ на Δ и избираме пробни точки $\xi=\{\xi_1,\xi_2,\dots,\xi_{i_0}\},$ където $\xi_i\in\Delta_i$ за всяко $i=1,\dots,i_0.$ Тогава числото

$$\sigma_f(\Pi, \xi) := \sum_{i=1}^{i_0} f(\xi_i) \mu_n(\Delta_i)$$

наричаме cyма на Puман на функцията f за подразбиването Π с пробни точки ξ .

Твърдение 2.11. Нека $f:\Delta\to\mathbb{R}$ е ограничена и Π е подразбиване на Δ . Тогава

$$s_f(\Pi) = \inf\{\sigma_f(\Pi, \xi): \xi \text{ са пробни точки за } \Pi\}$$

$$S_f(\Pi) = \sup \{ \sigma_f(\Pi, \xi) : \xi \text{ са пробни точки за } \Pi \}$$

Доказателство. Очевидно $m_i=\inf\{f(x):x\in\Delta_i\}\leq f(\xi_i)\leq\sup\{f(x):x\in\Delta_i\}=M_i$ за всяко $i=1,\ldots,i_0$ и за всеки избор на пробните точки ξ . Умножавайки тези неравенства с $\mu_n(\Delta_i)$ и събирайки ги, получаваме $s_f(\Pi)\leq\sigma_f(\Pi,\xi)\leq S_f(\Pi)$. Следователно малката (голямата) сума на Дарбу за Π е долна (горна) граница за сумите на Риман за същото подразбиване. Да проверим например, че малката сума на Дарбу за Π е точна долна граница за сумите на Риман за Π . Избираме произволно $\varepsilon>0$ и от $m_i+\frac{\varepsilon}{i_0\mu_n(\Delta_i)}>m_i$ намираме $\xi_i\in\Delta_i$ с $f(\xi_i)< m_i+\frac{\varepsilon}{i_0\mu_n(\Delta_i)}$ за всяко $i=1,\ldots,i_0$. За така намерените пробни точки $\xi=\{\xi_1,\xi_2,\ldots,\xi_{i_0}\}$ имаме

$$\sigma_f(\Pi, \xi) = \sum_{i=1}^{i_0} f(\xi_i) \mu_n(\Delta_i) < \sum_{i=1}^{i_0} \left(m_i + \frac{\varepsilon}{i_0 \mu_n(\Delta_i)} \right) \mu_n(\Delta_i) = s_f(\Pi) + \varepsilon ,$$

следователно всяко число, по-голямо от $s_f(\Pi)$, вече не е долна граница за сумите на Риман за Π .

За да можем да пренесем идеята за граница на суми на Риман от едномерния в многомерния случай, се нуждаем от подходяща дефиниция на диаметър на подразбиване. Да напомним, че ако A е ограничено подмножество на \mathbb{R}^n , то диаметър на A наричаме числото

$$diam(A) = sup\{||x - y|| : x \in A, y \in A\}$$
.

Дефиниция 2.12. Нека $\Pi = \{\Delta_i\}_{i=1}^{i_0}$ е подразбиване на паралелотопа Δ . Диаметър на Π наричаме най-големия от диаметрите на паралелотопите от Π :

$$d(\Pi) = \max\{diam(\Delta_i) : i = 1, 2, \dots, i_0\}$$

Дефиниция 2.13. Казваме, че сумите на Риман за функцията $f: \Delta \to \mathbb{R}$ имат граница числото I, когато диаметърът на подразбиването клони към нула, и пишем

$$\lim_{d(\Pi)\to 0} \sigma_f(\Pi,\xi) = I ,$$

ако за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всяко подразбиване Π на Δ с $d(\Pi) < \delta$ и при всеки избор на пробните точки ξ за Π е в сила $|\sigma_f(\Pi, \xi) - I| < \varepsilon$.

2.4 Еквивалентност на подхода чрез суми на Дарбу и на подхода чрез суми на Риман

Теорема 2.14. Нека $f: \Delta \to \mathbb{R}$, където $\Delta \subset \mathbb{R}^n$ е паралелотоп, и нека сумите на Риман за f имат граница I, когато диаметърът на подразбиването клони към нула. Тогава функцията f е ограничена, интегруема по Риман и $I = \int_{\Delta} f$.

Доказателство. Нека $\varepsilon=1>0$. Тогава съществува $\delta>0$ такова, че за всички подразбивания Π с $\mathrm{d}(\Pi)<\delta$ и при всеки избор на пробните точки ξ за Π е в сила $I-1<\sigma_f(\Pi,\xi)< I+1$. Да фиксираме произвално подразбиване $\Pi=\{\Delta_i\}_{i=1}^{i_0}$ с диаметър, по-малък от δ . Ще докажем, че функцията е ограничена върху всеки елемент на Π .

Да фиксираме $i\in\{1,\ldots,i_0\}$ и някакви точки $\xi_j\in\Delta_j$ за всяко $j\neq i,\,j\in\{1,\ldots,i_0\}.$ Тогава получаваме, че

$$\frac{(I-1) - \sum_{j \neq i} f(\xi_j) \mu_n(\Delta_j)}{\mu_n(\Delta_i)} < f(\xi_i) < \frac{(I+1) - \sum_{j \neq i} f(\xi_j) \mu_n(\Delta_j)}{\mu_n(\Delta_i)}$$

за всяко $\xi_i \in \Delta_i$. Следователно f е ограничена върху Δ_i , $i \in \{1, \dots, i_0\}$. С това ограничеността на f е доказана, защото подразбиването Π има краен брой елементи.

Нека ε е произволно положително число. Тогава съществува $\delta>0$ такова, че за всяко подразбиване Π на Δ с $\mathrm{d}(\Pi)<\delta$ и при всеки избор на пробните точки ξ за Π е в сила $I-\frac{\varepsilon}{3}<\sigma_f(\Pi,\xi)< I+\frac{\varepsilon}{3}$. Използвайки това и Твърдение 2.11, получаваме

$$I - \frac{\varepsilon}{3} \le s_f(\Pi) \le S_f(\Pi) \le I + \frac{\varepsilon}{3}$$
.

Следователно

$$S_f(\Pi) - s_f(\Pi) \le \left(I + \frac{\varepsilon}{3}\right) - \left(I - \frac{\varepsilon}{3}\right) = \frac{2\varepsilon}{3} < \varepsilon$$

и получаваме интегруемостта на f от първата форма на критерия за интегруемост. Нещо повече, от горните неравенства и от факта, че $\int_{\Delta} f$ се намира между $s_f(\Pi)$ и $S_f(\Pi)$, получаваме, че $I-\frac{\varepsilon}{3} \leq \int_{\Delta} f \leq I+\frac{\varepsilon}{3}$ и тъй като ε беше произволно положително число, то $\int_{\Delta} f = I$.

Теорема 2.15. Нека $f: \Delta \to \mathbb{R}$, където $\Delta \subset \mathbb{R}^n$ е паралелотоп, е интегруема по Риман. Тогава сумите на Риман за f имат граница $\int_{\Delta} f$, когато диаметърът на подразбиването клони към нула.

Доказателство. Нека $\varepsilon>0$ е произволно. Ако докажем, че съществува $\delta>0$ такова, че за всяко подразбиване Π на Δ с $\mathrm{d}(\Pi)<\delta$ е в сила $I-\varepsilon< s_f(\Pi)\leq S_f(\Pi)< I+\varepsilon$, доказателството ще е завършено, защото при произволен избор на представителните точки ξ имаме $s_f(\Pi)\leq \sigma_f(\Pi,\xi)\leq S_f(\Pi)$ и следователно от горните неравенства получаваме $|\sigma_f(\Pi,\xi)-I|<\varepsilon$.

И така $\varepsilon>0$. От дефиницията за интеграл на Риман следва, че съществува $\Pi_1=\{\Box_j\}_{j=1}^{j_0}$ подразделяне на Δ такова, че

$$S_f(\Pi_1) < I + \frac{\varepsilon}{2}$$
.

От f интегруема следва, че f е ограничена. Нека $M = \sup\{|f(x)|: x \in \Delta\}$. Означаваме с P_{Π_1} общата площ на границите на паралелотопчетата от Π_1 , т.е. $P_{\Pi_1} := \sum_{j=1}^{j_0} \mu_{n-1} (\partial \Box_j)$. Полагаме

$$\delta = \frac{\varepsilon}{8MP_{\Pi_1}} > 0 \ .$$

Искаме да оценим $S_f(\Pi)$, където $\Pi = \{\Delta_i\}_{i=1}^{i_0}$ е произволно подразбиване на Δ с диаметър, по-малък от δ .

Нека сега Π_2 да е подразбиване на Δ , съставено от сеченията на елементите на Π и Π_1 , т.е. $\Pi_2 = \{\Box_j \cap \Delta_i\}_{i=1}^{i_0} \stackrel{j_0}{i=1}$ и след това изхвърляме празните множества. Тогава

$$d(\Pi_2) \leq d(\Pi) < \delta$$
.

Тъй като $\Pi_2 \ge \Pi_1$, то

$$S_f(\Pi_2) \le S_f(\Pi_1) < I + \frac{\varepsilon}{2}$$
.

Ще оценим отгоре $S_f(\Pi) - S_f(\Pi_2)$. Делим елементите на Π на две групи - които се секат с границата на някой елемент на Π_1 и които се съдържат изцяло във вътрешността на елемент на Π_1 . Събираемите, съответстващи на елементите от втория вид, участват както в $S_f(\Pi)$, така и в $S_f(\Pi_2)$ и се съкращават. Нека индексите на елементите на Π от първия вид са $I_1 \subset \{1,2,...,i_0\}$.

Тогава

$$S_f(\Pi) - S_f(\Pi_2) = \sum_{i \in I_1} M_i \mu_n(\Delta_i) - \sum_{i \in I_1} \sum_{j=1}^{j_0} M_{ij} \mu_n(\Delta_i \cap \Box_j)$$
,

където, разбира се, $M_i=\sup\{f(x): x\in\Delta_i\}$ и $M_{ij}=\sup\{f(x): x\in\Delta_i\cap\Box_j\}$. Тъй като $\operatorname{diam}(\Delta_i)<\delta$, то $\sum_{i\in I_1}\mu_n(\Delta_i)\leq 2\delta P_{\Pi_1}$ и следователно

$$\left| \sum_{i \in I_1} M_i \mu_n(\Delta_i) \right| \le \sum_{i \in I_1} |M_i| \, \mu_n(\Delta_i) \le M 2 \delta P_{\Pi_1} .$$

Аналогично $\sum_{i \in I_1} \sum_{j=1}^{j_0} \mu_n(\Delta_i \cap \Box_j) \leq 2\delta P_{\Pi_1}$ влече

$$\left| \sum_{i \in I_1} \sum_{j=1}^{j_0} M_{ij} \mu_n(\Delta_i \cap \Box_j) \right| \le M 2 \delta P_{\Pi_1} .$$

Следователно

$$S_f(\Pi) - S_f(\Pi_2) \le \left| \sum_{i \in I_1} M_i \mu_n(\Delta_i) \right| + \left| \sum_{i \in I_1} \sum_{j=1}^{j_0} M_{ij} \mu_n(\Delta_i \cap \Box_j) \right| \le 4M P_{\Pi_1} \delta = \frac{\varepsilon}{2} .$$

Тогава имаме

$$S_f(\Pi) = (S_f(\Pi) - S_f(\Pi_2)) + S_f(\Pi_2) \le \frac{\varepsilon}{2} + S_f(\Pi_2) < \frac{\varepsilon}{2} + I + \frac{\varepsilon}{2} = I + \varepsilon$$
.

Аналогично доказваме, че $s_f(\Pi) > I - \varepsilon$ за всички Π с достатъчно малък диаметър, с което доказателството е завършено.

3 Лекция 3: Множества, пренебрежими по Лебег и критерий на Лебег за интегруемост по Риман

Целта на тази лекция е да докажем необходимо и достатъчно условие за интегруемост по Риман, което свързва интегруемостта с "големината" на множеството от точките на непрекъснатост на функцията. За да можем да формулираме точно критерия, се нуждаем от понятието "множество, пренебрежимо по Лебег". Само по себе си това понятие е изключително важно, затова ще отделим време за неговото изучаване.

3.1 Множества, пренебрежими по Лебег

Дефиниция 3.1. Едно подмножество A на \mathbb{R}^n наричаме $npene bpe эсимо по Лебег в <math>\mathbb{R}^n$, ако за всяко положително ε можем да покрием множеството с изброимо много паралелотопи, чиято сумарна мярка е по-малка от ε . Формално записано, за произволно $\varepsilon > 0$ съществуват $\{\Delta_k\}_{k=1}^{\infty}$ (където Δ_k са затворени паралелотопи в \mathbb{R}^n) такива, че

$$\bigcup_{k=1}^{\infty} \Delta_k \supset A$$
 и $\sum_{k=1}^{\infty} \mu_n(\Delta_k) < \varepsilon$.

Пример 3.2. Изродените паралелотопи са пренебрежими множества. Точките са изродени паралелотопи в \mathbb{R}^n за всяко естествено n и следователно са пренебрежими множества.

Очевидно е, че подмножество на пренебрежимо множество е пренебрежимо. Следващото твърдение съдържа едно от най-важните и често употребявани свойства на множествата, пренебрежими по Лебег:

Твърдение 3.3. Ако $\{A_m\}_{m=1}^{\infty}$ е редица от пренебрежими множества, то обединението им A също е пренебрежимо множество.

Доказателство. Да фиксираме произволно положителното число ε . Тъй като A_1 е пренебрежимо и $\varepsilon/2>0$, то съществуват паралелотопи $\{\Delta_k^1: k=1,2,\dots\}$ такива, че

$$\bigcup_{k=1}^{\infty} \Delta_k^1 \supset A_1 \text{ и } \sum_{k=1}^{\infty} \mu_n(\Delta_k^1) < \frac{\varepsilon}{2} \ .$$

Аналогично постъпваме с множествата $A_2,\,A_3$ и т.н. За да фиксираме означенията, нека m е естествено число. Тъй като A_m е пренебрежимо и $\varepsilon/2^m>0$, то съществуват паралелотопи $\{\Delta_k^m:\,k=1,2,\dots\}$ такива, че

$$\bigcup_{k=1}^{\infty} \Delta_k^m \supset A_m \text{ if } \sum_{k=1}^{\infty} \mu_n(\Delta_k^m) < \frac{\varepsilon}{2^m} .$$

По този начин построихме паралелотопите $\{\Delta_k^m: k=1,2,\ldots,\ m=1,2,\ldots\}$. Те са изброимо много и очевидно

$$\bigcup_{m,k=1}^{\infty} \Delta_k^m = \bigcup_{m=1}^{\infty} \left(\bigcup_{k=1}^{\infty} \Delta_k^m \right) \supset \bigcup_{m=1}^{\infty} A_m = A.$$

От друга страна

$$\sum_{m,k=1}^{\infty} \mu_n\left(\Delta_k^m\right) = \sum_{m=1}^{\infty} \left(\sum_{k=1}^{\infty} \mu_n\left(\Delta_k^m\right)\right) < \sum_{m=1}^{\infty} \frac{\varepsilon}{2^m} = \varepsilon \ .$$

Важна забележка: В последния ред от горното доказателство допуснахме липса на прецизност. За да бъдем точни, трябваше да подредим индексите $\{(m,k): m \in \mathbb{N}, k \in \mathbb{N}\}$ в редица $\{(\pi_1(i),\pi_2(i)): i \in \mathbb{N}\}$ и да разгледаме реда $\sum_{i=1}^{\infty} \mu_n\left(\Delta_{\pi_2(i)}^{\pi_1(i)}\right)$. Всъщност, използвахме следното твърдение: Ако a_k^m са неотрицателни числа за всички естествени индекси m и n и $\{(\pi_1(i),\pi_2(i)): i \in \mathbb{N}\}$ е кое да е подреждане на \mathbb{N}^2 в редица, то

$$\sum_{i=1}^{\infty} a_{\pi_2(i)}^{\pi_1(i)} = \sum_{m=1}^{\infty} \left(\sum_{k=1}^{\infty} a_k^m \right) .$$

Препоръчвам ви да се опитате да си докажете това твърдение сами.

Пример 3.4. Тъй като точките са пренебрежими множества, горното твърдение влече, че множеството от рационалните числа \mathbb{Q} е пренебрежимо в \mathbb{R} . Аналогично \mathbb{Q}^n е пренебрежимо в \mathbb{R}^n .

Твърдение 3.5. Едно подмножество A на \mathbb{R}^n е пренебрежимо по Лебег в \mathbb{R}^n точно тогава, когато за всяко положително ε можем да покрием множеството с вътрешностите на изброимо много паралелотопи, чиято сумарна мярка е по-малка от ε .

Доказателство. В едната посока твърдението е очевидно. Нека сега A е пренебрежимо по Лебег и $\varepsilon > 0$ е произволно. Тогава съществуват $\{\Delta_k\}_{k=1}^{\infty}$ (където Δ_k са затворени паралелотопи в \mathbb{R}^n) такива, че

$$\bigcup_{k=1}^{\infty} \Delta_k \supset A$$
 и $\sum_{k=1}^{\infty} \mu_n(\Delta_k) < \frac{\varepsilon}{2}$.

Да изберем ред с положителни членове $\alpha_k > 0$ и сума $\varepsilon/2$, т.е. $\sum_{k=1}^{\infty} \alpha_k = \varepsilon/2$ (например можем да изберем като в доказателството на предишното твърдение $\alpha_k = \varepsilon/2^{k+1}$). Ясно е, че за всяко $k \in \mathbb{N}$ можем да намерим затворен паралелотоп \square_k , който съдържа Δ_k във вътрешността си $(\mathring{\square}_k \supset \Delta_k)$ и такъв, че $\mu_n(\square_k) \leq \mu_n(\Delta_k) + \alpha_k$ (трябва да раздуем достатъчно малко всеки от координатните интервали). Тогава $\{\square_k\}_{k=1}^{\infty}$ са изброимо много паралелотопи, за които

$$\bigcup_{k=1}^{\infty} \mathring{\Box}_k \supset \bigcup_{k=1}^{\infty} \Delta_k \supset A \text{ и}$$

$$\sum_{k=1}^{\infty} \mu_n(\Box_k) \leq \sum_{k=1}^{\infty} (\mu_n(\Delta_k) + \alpha_k) = \sum_{k=1}^{\infty} \mu_n(\Delta_k) + \sum_{k=1}^{\infty} \alpha_k < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon .$$

Следващата лема е техническа и почти очевидна от геометрична гледна точка.

Лема 3.6. Нека $\{\Delta_i\}_{i=1}^{i_0}$ са краен брой паралелотопи в \mathbb{R}^n , които не се припокриват, т.е. $\mathring{\Delta}_i \cap \mathring{\Delta}_j = \emptyset$ винаги, когато $i \neq j$. Нека $\{\Box_k\}_{k=1}^{k_0}$ са краен брой паралелотопи, за които $\bigcup_{k=1}^{k_0} \Box_k \supset \bigcup_{i=1}^{i_0} \Delta_i$. Тогава $\sum_{k=1}^{k_0} \mu_n(\Box_k) \geq \sum_{i=1}^{i_0} \mu_n(\Delta_i)$.

Доказателство. Нека Π_i е подразбиване на Δ_i , всеки елемент на което се съдържа в някой от паралелотопите $\{\Box_k\}_{k=1}^{k_0}$ (тук $i=1,\ldots,i_0$). Сега за всяко $k\in\{1,\ldots,k_0\}$ можем да построим подразбиване Π^k на \Box_k такова, че

$$\Pi_i^k:=\{\Delta_i\cap\square\ :\ \square\in\Pi^k,\ \Delta_i\cap\square$$
 непразен, неизроден $\}\equiv\Pi_i\ ,\ i=1,\ldots,i_0$.

Да забележим, че $\Pi_i^k \cap \Pi_j^k = \emptyset$ винаги, когато $i \neq j$, защото Δ_i и Δ_j не се припокриват. Тогава, използвайки два пъти Твърдение 2.4, получаваме

$$\sum_{k=1}^{k_0} \mu_n(\square_k) = \sum_{k=1}^{k_0} \left(\sum_{\square \in \Pi^k} \mu_n(\square) \right) \ge \sum_{k=1}^{k_0} \sum_{i=1}^{i_0} \left(\sum_{\square \in \Pi^k_i} \mu_n(\square) \right) \ge \sum_{i=1}^{i_0} \left(\sum_{\square \in \Pi_i} \mu_n(\square) \right) = \sum_{i=1}^{i_0} \mu_n(\Delta_i).$$

Пример 3.7. Неизродените паралелотопи в \mathbb{R}^n не са пренебрежими в \mathbb{R}^n .

Наистина, един паралелотоп Δ в \mathbb{R}^n е неизроден точно тогава, когато $\mu_n(\Delta) > 0$. Сега ако допуснем, че Δ е пренебрежим, то според Твърдение 3.5 съществуват $\{\Delta_k\}_{k=1}^{\infty}$ (където Δ_k са паралелотопи в \mathbb{R}^n) такива, че

$$\bigcup_{k=1}^{\infty} \mathring{\Delta}_k \supset \Delta \text{ и } \sum_{k=1}^{\infty} \mu_n(\Delta_k) < \frac{\mu_n(\Delta)}{2} \ .$$

Тъй като Δ е компакт и $\{\mathring{\Delta}_k\}_{k=1}^{\infty}$ е негово отворено покритие, то съществува $k_0 \in \mathbb{N}$ такова, че

$$\bigcup_{k=1}^{k_0} \mathring{\Delta}_k \supset \Delta .$$

Сега използваме горната лема с Δ единствен елемент на множеството от паралелотопите, които не се припокриват, и с $\square_k := \Delta_k$. Получаваме

$$\mu_n(\Delta) \leq \sum_{k=1}^{k_0} \mu_n(\Delta_k) < \frac{\mu_n(\Delta)}{2}$$
 , противоречие.

Твърдение 3.8. Ако U е непразно отворено множество, то U не е пренебрежимо.

Доказателство. Тъй като U не е празно, можем да изберем точка $x_0 \in U$. Тогава (от отвореността на U) съществува $\varepsilon > 0$ такова, че кълбото $B_{2\varepsilon}(x_0)$ се съдържа в U. Да разгледаме паралелотопа

$$\Delta := \left\{ x \in \mathbb{R}^n : x_i^0 - \frac{\varepsilon}{\sqrt{n}} \le x_i \le x_i^0 + \frac{\varepsilon}{\sqrt{n}}, i = 1, 2, \dots, n \right\}.$$

Ако x е произволна точка от Δ , можем да оценим разстоянието

$$||x - x_0|| = \sqrt{\sum_{i=1}^n (x_i - x_i^0)^2} \le \sqrt{\sum_{i=1}^n (\frac{\varepsilon}{\sqrt{n}})^2} = \sqrt{n \cdot \frac{\varepsilon^2}{n}} = \varepsilon < 2\varepsilon.$$

Следователно $\Delta \subset B_{2\varepsilon}(x_0) \subset U$. Паралелотопът Δ е неизроден и тогава от горния пример следва, че не е пренебрежимо множество. Оттук и от $\Delta \subset U$ следва, че U също не може да е пренебрежимо по Лебег.

3.2 Критерий на Лебег за интегруемост по Риман

Теорема 3.9 (Критерий на Лебег за интегруемост по Риман). Нека Δ е паралелото в \mathbb{R}^n и $f: \Delta \longrightarrow \mathbb{R}$. Твърдим, че функцията f е интегруема по Риман точно тогава, когато е ограничена и множеството от точките ѝ на прекъсване е пренебрежимо по Лебег.

Да отбележим, че тази теорема е нова за вас и в едномерния случай (n=1). Спомнете си твърденията, доказани в ДИС1 за "някои класове интегруеми функции". Всички те са директно следствие от критерия на Лебег. Наистина, ако една функция е непрекъсната в [a,b], то тя е ограничена (Вайерщрас) и множеството от точките ѝ на прекъсване е празно, значи пренебрежимо. Ако една ограничена функция има краен брой точки на прекъсване, то тя е интегруема по критерия на Лебег, защото крайните множества са пренебрежими. Тъй като монотонните функции в [a,b] са ограничени (стойностите им са между f(a) и f(b)) и имат най-много изброимо много точки на прекъсване, твърдението за тяхната интегруемост също е следствие от горната теорема.

С R_f ще означаваме множеството от точките на прекъсване на функцията f.

Доказателство. Ще използваме и в двете посоки на доказателството втората форма на критерия за интегруемост (Твърдение 2.10).

Нека функцията f е интегруема по Риман. Тогава тя, разбира се, е ограничена, и трябва да докажем пренебрежимостта на множеството R_f . Фиксираме произволно $\varepsilon>0$. Избираме сходящ ред с положителни членове и сума $\varepsilon\colon \sum_{m=1}^\infty \alpha_m = \varepsilon, \, \alpha_m>0$ за всяко естествено m. Прилагаме втората втората форма на критерия за интегруемост за положителните числа α_m и 1/m. Получаваме подразбиване Π_m на Δ такова, че

$$\sum_{M_k^m - m_k^m \ge \frac{1}{m}} \mu_n(\Delta_k^m) < \alpha_m .$$

Да означим с Π'_m множеството от онези елементи на подразбиването Π_m , в които осцилацията на f е по-голяма или равна на 1/m (т.е. знаем, че $\sum_{\square \in \Pi'_m} \mu_n(\square) < \alpha_m$). Да означим с P_m множеството от делящите стени на Π_m (т.е. P_m е множеството от паралелотопите, от които се състои $\bigcup_{\square \in \Pi_m} \partial \square$). Ясно е, че P_m е крайно множество от изродени паралелотопи. Тогава

$$\left(\bigcup_{m=1}^{\infty} \Pi'_{m}\right) \cup \left(\bigcup_{m=1}^{\infty} P_{m}\right)$$

е изброимо множество от паралелотопи в \mathbb{R}^n със сумарна мярка, по-малка от ε . Наистина

$$\sum_{m=1}^{\infty} \left(\sum_{\square \in \Pi'_m} \mu_n(\square) + \sum_{\square \in P_m} \mu_n(\square) \right) < \sum_{m=1}^{\infty} (\alpha_m + 0) = \varepsilon.$$

Остава да се убедим, че обединението на паралелотопите от $(\bigcup_{m=1}^{\infty}\Pi'_m)\cup(\bigcup_{m=1}^{\infty}P_m)$ покрива R_f . Да изберем произволна точка

$$x \in \Delta \setminus \left(\bigcup \left\{ \Box : \Box \in \left(\bigcup_{m=1}^{\infty} \Pi'_m \right) \cup \left(\bigcup_{m=1}^{\infty} P_m \right) \right\} \right) .$$

Сега за произволно естествено m съществува паралелотоп $\Delta_x^m \in \Pi_m$ такъв, че $x \in \Delta_x^m$. При това $x \in \mathring{\Delta}_x^m$, защото x не принадлежи на $\bigcup_{\Pi \in \Pi_m} \partial \Pi$ (това множество се покрива от елементите на P_m) и осцилацията на f в $\mathring{\Delta}_x^m$ е по-малка от 1/m, защото $\Delta_x^m \not\in \Pi_m'$. Следователно |f(y) - f(x)| < 1/m за всяко $y \in \mathring{\Delta}_x^m$ (заради осцилацията). И тъй, за произволно естествено m намерихме околност $\mathring{\Delta}_x^m$ на x такава, че |f(y) - f(x)| < 1/m за всяко $y \in \mathring{\Delta}_x^m$. Следователно функцията f е непрекъсната в x, т.е. $x \not\in R_f$. С това завършихме доказателството на пренебрежимостта на R_f .

Сега се обръщаме към доказателството на обратната посока. Предполагаме, че f е ограничена и множеството от точките ѝ на прекъсване е пренебрежимо по Лебег. Ще доказваме, че f е интегруема, като използваме втората форма на критерия за интегруемост. За целта избираме произволни $\varepsilon > 0$ и $\eta > 0$ и ги фиксираме.

Тъй като R_f е пренебрежимо и $\varepsilon > 0$, от Твърдение 3.5 съществуват изброимо много паралелотопи $\{\Delta_k\}_{k=1}^\infty$ такива, че

$$\bigcup_{k=1}^{\infty} \mathring{\Delta}_k \supset R_f \ \text{и} \ \sum_{k=1}^{\infty} \mu_n(\Delta_k) < \varepsilon \ .$$

Да означим

$$C := \Delta \setminus \left(\bigcup_{k=1}^{\infty} \mathring{\Delta}_k \right) .$$

Множеството C е компакт (ограничено е, защото се съдържа в Δ , а е затворено, защото е сечение на затвореното Δ и допълнението на $\bigcup_{k=1}^{\infty}\mathring{\Delta}_k$, което е отворено като обединение на отворени). При това $C\cap R_f=\emptyset$, следователно f е непрекъсната във всяка точка на C. Прилагаме обобщената теорема на Кантор, която доказахме в първата лекция (Теорема 1.14), към функцията f. Следователно съществува $\delta>0$ такова, че за всяко $x\in C$ и за всяко $y\in \Delta$, за което $\|y-x\|<\delta$, е в сила $|f(x)-f(y)|<\eta/4$. Да изберем произволно подразбиване П на Δ , чийто диаметър е по-малък от δ . Ще докажем, че за това подразбиване е в сила неравенството от втората форма на критерия за интегруемост.

Нека $\Pi = \{\Box_i\}_{i=1}^{i_0}$. Да проверим, че ако някой от паралелотопите от Π има непразно сечение с C, то осцилацията на f върху него е по-малка от η . Наистина, нека $\Box_i \cap C \neq \emptyset$ за някое $i \in \{1, 2, \ldots, i_0\}$. Фиксираме $x \in \Box_i \cap C$ (такава има) и нека $y \in \Box_i$ е произволна. Тъй като $\dim \Box_i \leq d(\Pi) < \delta$, получаваме, че $\|x - y\| < \delta$. Сега от избора на δ от теоремата на Кантор и от $x \in C$ имаме $|f(x) - f(y)| < \eta/4$. Следователно

$$M_i := \sup \{ f(y) : y \in \square_i \} \le f(x) + \frac{\eta}{4} ,$$

$$m_i := \inf \{ f(y) : y \in \square_i \} \ge f(x) - \frac{\eta}{4}$$
.

Оттук получаваме, че

$$M_i - m_i \le \left(f(x) + \frac{\eta}{4} \right) - \left(f(x) - \frac{\eta}{4} \right) = \frac{\eta}{2} < \eta.$$

И тъй, ако осцилацията на f върху даден елемент от Π е по-голяма или равна на η , то този елемент се съдържа в $\Delta \setminus C$. Да означим

$$K := \bigcup \{ \Box_i \in \Pi : M_i - m_i \ge \eta \} \subset \Delta \setminus C = \bigcup_{k=1}^{\infty} \mathring{\Delta}_k.$$

Тъй като K е компакт като обединение на краен брой затворени паралелотопи, то съществува $k_0 \in \mathbb{N}$ такова, че

$$K \subset \bigcup_{k=1}^{k_0} \mathring{\Delta}_k \subset \bigcup_{k=1}^{k_0} \Delta_k$$
.

Сега можем да приложим Лема 3.6, защото K е крайно обединение на паралелотопи, които не се припокриват, и да получим

$$\sum_{M_i - m_i \ge \eta} \mu_n(\square_i) \le \sum_{k=1}^{k_0} \mu_n(\Delta_k) \le \sum_{k=1}^{\infty} \mu_n(\Delta_k) < \varepsilon .$$

С това доказателството е завършено.

3.3 Основни свойства на интеграла на Риман върху паралелотоп

Критерият на Лебег за интегруемост по Риман улеснява много доказателствата на твърдения за интегруемост. Следното следствие е добър пример за това:

Следствие 3.10. Нека Δ е паралелотоп в \mathbb{R}^n и нека $f,g:\Delta\longrightarrow\mathbb{R}$ са интегруеми по Риман. Тогава

- (a) Сумата f+g и произведението $f\cdot g$ им са интегруеми по Риман;
- (б) Ако съществува $\varepsilon_0 > 0$ такова, че $|g(x)| \ge \varepsilon_0$ за всички $x \in \Delta$, то частното $\frac{f}{g}$ е функция, интегруема по Риман;
- (в) По-общо, ако $\Phi: \mathbb{R}^k \longrightarrow \mathbb{R}$ е непрекъсната и $f_1, \dots, f_k: \Delta \longrightarrow \mathbb{R}$ са интегруеми по Риман, то $\Phi(f_1, \dots, f_k)$ е интегруема по Риман.

Доказателство. Ще започнем с доказателството на (в), понеже е ясно, че (а) е частен случай на (в). Тъй като композиция на непрекъснати функции е непрекъсната, веднага получаваме, че ако в дадена точка $x \in \Delta$ функциите f_1, \ldots, f_k са непрекъснати, то $\Phi(f_1, \ldots, f_k)$ също е непрекъсната в x. Следователно

$$\Delta\setminus (R_{f_1}\cup R_{f_2}\cup\ldots\cup R_{f_k})\subset \Delta\setminus R_{\Phi(f_1,\ldots,f_k)},$$
 което влече $R_{\Phi(f_1,\ldots,f_k)}\subset R_{f_1}\cup R_{f_2}\cup\ldots\cup R_{f_k}$.

Сега от интегруемостта на f_1,\ldots,f_k следва пренебрежимостта на множествата $R_{f_1},R_{f_2},\ldots,R_{f_k}$ и тогава горното включване показва, че $R_{\Phi(f_1,\ldots,f_k)}$ също е пренебрежимо. За да довършим доказателството на (в), остава да проверим ограничеността на $\Phi(f_1,\ldots,f_k)$. Наистина, тъй като f_1,\ldots,f_k са ограничени, то множеството от стойностите $\{(f_1(x),\ldots,f_k(x))\in\mathbb{R}^k:x\in\Delta\}$ се съдържа в паралелотоп в \mathbb{R}^k , който е компакт. Остава да приложим теоремата на Вайерщрас за Φ .

Остава да проверим (б). Аналогично на горното получаваме, че $R_{\frac{f}{g}} \subset R_f \cup R_g$ и следователно $R_{\frac{f}{g}}$ е пренебрежимо. Нека $|f(x)| \leq M$ за всяко $x \in \Delta$ (f е инрегруема, значи е ограничена). Частното е ограничено, защото

$$\left| rac{f(x)}{g(x)}
ight| \leq rac{M}{arepsilon_0}$$
 за всяко $x \in \Delta$.

Ще завършим тази лекция с основните свойства на римановия интеграл върху паралелотоп Δ в \mathbb{R}^n :

1. **Линейност.** Нека $f,g:\Delta\longrightarrow\mathbb{R}$ са интегруеми функции и $\lambda\in\mathbb{R}$. Тогава f+g и λf са интегруеми функции и

$$\int_{\Delta} (f+g) = \int_{\Delta} f + \int_{\Delta} g \ , \quad \int_{\Delta} (\lambda f) = \lambda \int_{\Delta} f \ .$$

Доказателство. Интегруемостта я имаме наготово от предишното следствие. Остава да забележим, че за произволно подразбиване Π на Δ и за произволни пробни точки ξ за Π имаме

$$\sigma_{f+g}(\Pi,\xi) = \sigma_f(\Pi,\xi) + \sigma_g(\Pi,\xi)$$
 и $\sigma_{\lambda f}(\Pi,\xi) = \lambda \sigma_f(\Pi,\xi)$,

да напишем горните равенства за редица от подразбивания $\{\Pi_m\}_{m=1}^{\infty}$ с диаметър, клонящ към нула $(d(\Pi_m) \longrightarrow_{m \to \infty} 0)$ и да направим граничен преход.

2. **Адитивност.** Нека $\Pi = \{\Delta_i\}_{i=1}^{i_0}$ е подразделяне на Δ и $f:\Delta \longrightarrow \mathbb{R}$. Твърдим, че f е интегруема точно тогава, когато $f \upharpoonright_{\Delta_1}, f \upharpoonright_{\Delta_2}, \ldots, f \upharpoonright_{\Delta_{i_0}}$ са интегруеми. При това

$$\int_{\Delta} f = \int_{\Delta_1} f + \int_{\Delta_2} f + \dots \int_{\Delta_{i_0}} f.$$

Доказателство. Очевидно f е ограничена точно тогава, когато $f \upharpoonright_{\Delta_1}, f \upharpoonright_{\Delta_2}, \ldots, f \upharpoonright_{\Delta_{i_0}}$ са ограничени. Тъй като $R_{f \upharpoonright_{\Delta_i}} \subset R_f$ за всяко $i = 1, 2, \ldots, i_0$, от интегруемостта на f следва интегруемостта на $f \upharpoonright_{\Delta_i}, i = 1, 2, \ldots, i_0$. Обратната импликация се получава от включването $R_f \subset R_{f \upharpoonright_{\Delta_1}} \cup R_{f \upharpoonright_{\Delta_2}} \cup \ldots \cup R_{f \upharpoonright_{\Delta_{i_0}}}$.

За да получим равенството, вземаме редица от подразбивания $\{\Pi^m\}_{m=1}^\infty$ с диаметър, клонящ към нула, като $\Pi^m \geq \Pi$ за всяко естедвено m. Нека ξ^m са пробни точки за Π^m . Означаваме

$$\Pi_i^m := \{ \Box \in \Pi^m : \Box \subset \Delta_i \}, \ i = 1, 2, \dots, i_0 .$$

Нека ξ_i^m са пробните точки от ξ^m , които са в паралелотопите от Π_i^m . Тогава

$$\sigma_f(\Pi^m, \xi^m) = \sigma_f(\Pi_1^m, \xi_1^m) + \sigma_f(\Pi_2^m, \xi_2^m) + \dots + \sigma_f(\Pi_{i_0}^m, \xi_{i_0}^m)$$
.

Тъй като сме сигурни, че всяко събираемо има граница при $m \to \infty$ и тя е съответният интеграл, правим граничен преход и получаваме търсеното равенство.

3. Монотонност. Нека $f:\Delta\longrightarrow\mathbb{R}$ е интегруема и $f(x)\geq 0$ за всяко $x\in\Delta$. Тогава $\int_{\Delta}f\geq 0$.

(Директно от факта, че малките суми на Дарбу за f са неотрицателни.)

Следствие 1. Нека $f,g:\Delta\longrightarrow\mathbb{R}$ са интегруеми функции и $f(x)\geq g(x)$ за всяко $x\in\Delta$. Тогава $\int_\Delta f\geq \int_\Delta g$.

(Наистина, $\int_{\Delta} f - \int_{\Delta} g = \int_{\Delta} (f-g) \geq 0$ от линейността и монотонността.) **Следствие 2.** Ако $f: \Delta \longrightarrow \mathbb{R}$ е интегруема, то |f| е интегруема и $|\int_{\Delta} f| \leq \int_{\Delta} |f|$. (Интегруемостта е директна от критерия на Лебег, а неравенството от $-|f| \leq f \leq |f|$ и предишното следствие.)

4

5

6

7

8 Лице на повърхнина

Една двумерна повърхнина в \mathbb{R}^3 може да бъде зададена като:

- 1. Уравнение $F(x_1, x_2, x_3) = 0$
- 2. Параметризация (x, y, z,) = F(u, v)

В този раздел (курс?) ние ще се фокусираме върху подхода с параметризации.

Нека имаме повърхнина S, зададена чрез параметризацията $\alpha(\Omega)$, $\alpha \in C^1(\Omega)$, $\Omega \subset \mathbb{R}^2$ (Алфа е от класа фукнции с непрекъснати частни производни в омега). $\alpha(u,v) = (\alpha_1(u,v),\alpha_2(u,v),\alpha_3(u,v))$.

Дефиниция 8.1.
$$\alpha'(u,v) = \begin{pmatrix} \frac{\partial \alpha_1}{\partial u} & \frac{\partial \alpha_1}{\partial v} \\ \frac{\partial \alpha_2}{\partial u} & \frac{\partial \alpha_2}{\partial v} \\ \frac{\partial \alpha_3}{\partial u} & \frac{\partial \alpha_3}{\partial v} \end{pmatrix} (u,v)$$

За да е α валидна параметризация на повърхнина, ще искаме $rg(\alpha')=2$ в Ω . Това е достатъчно условие за съществуване на допирателно пространство.

Пример 8.2. Цилиндрична повърхност.

Нека имаме $\alpha:(\Delta\subset\mathbb{R})\to\mathbb{R}^2$, която е гладка, регулярна параметризация на крива в равнината. Тогава $\varphi(t,z)=\begin{pmatrix} \alpha_1(t)\\ \alpha_2(t)\\ z \end{pmatrix}$, където $t\in\Delta$, $z\in\mathbb{R}$, е възможна параметризация на

цилиндрична повърхност. Нека проверим ранга на $\alpha'(t,z)=\begin{pmatrix} \alpha_1' & 0\\ \alpha_2' & 0\\ 0 & 1 \end{pmatrix}$, който е $rg(\alpha')=2$

от $(\alpha'_1, \alpha'_2)! = \mathbf{0}$. Това означава, че дадената е валидна параметризация на повърхност.

Пример 8.3. Ротационна повърхнина.

Ще се добави по-късно.

Пример 8.4. Сфера.

Ще се добави по-късно.

8.1 Допирателно пространство

Ако имаме параметризация на повърхнина $S=\varphi(\Omega),\ \varphi:\Omega\to\mathbb{R}^2,\ \varphi\in C^1,\ rg(\varphi')=2$ и вземем точка $p \in S$, нека разгледаме $S_p := \{(p;v): VNIMANIE\exists \alpha: \Delta \to S, \Delta = S, \Delta \in S, \Delta$ 0 в \mathbb{R}' }, $\alpha(0) = p, \alpha'(0) = vVNIMANIE$

Дефиниция 8.5. Производна в точката u по направление v. $d\varphi(u)(v):=(\varphi(u)\;;\; \frac{\partial \varphi}{\partial u_1}(u)\cdot v_1+\frac{\partial \varphi}{\partial u_2}(u)\cdot v_2).$

$$d\varphi(u)(v) := (\varphi(u); \frac{\partial \varphi}{\partial u_1}(u) \cdot v_1 + \frac{\partial \varphi}{\partial u_2}(u) \cdot v_2).$$

Още малко конструкции ще направим. Нека имаме регулярна крива в Ω , зададена параметрично $\alpha(t), t \in \Delta$. Нека тази крива се изобразява, след прилагането на φ в кривата $\beta(t) = \varphi(\alpha(t)), \ \beta(\Delta) \subset S.$ Сега ще покажем, че $(\beta(t), \beta'(t)) = d\varphi(\alpha(t))(\alpha'(t)).$

Наистина смятайки производната на
$$\beta(t) = \begin{pmatrix} \varphi_1(\alpha_1(t), \alpha_2(t)) \\ \varphi_2(\alpha_1(t), \alpha_2(t)) \\ \varphi_3(\alpha_1(t), \alpha_2(t)) \end{pmatrix}$$
, получаваме $\beta'(t) = \begin{pmatrix} \varphi_1(\alpha_1(t), \alpha_2(t)) \\ \varphi_2(\alpha_1(t), \alpha_2(t)) \\ \varphi_3(\alpha_1(t), \alpha_2(t)) \end{pmatrix}$

$$\begin{pmatrix} \frac{\partial \varphi_1(\alpha(t))}{\partial u_1} \alpha_1'(t) + \frac{\partial \varphi_1(\alpha(t))}{\partial u_2} \alpha_2'(t) \\ \frac{\partial \varphi_2(\alpha(t))}{\partial u_1} \alpha_1'(t) + \frac{\partial \varphi_2(\alpha(t))}{\partial u_2} \alpha_2'(t) \\ \frac{\partial \varphi_3(\alpha(t))}{\partial u_1} \alpha_1'(t) + \frac{\partial \varphi_3(\alpha(t))}{\partial u_2} \alpha_2'(t) \end{pmatrix} = \frac{\partial \varphi(\alpha(t))}{\partial u_1} \alpha_1'(t) + \frac{\partial \varphi(\alpha(t))}{\partial u_2} \alpha_2'(t). \text{ Toba e.}$$

За да направим доказателството строго ще използваме следната лема.

Лема 8.6. Ако имаме гладка параметризация φ и точка от нея $p = \varphi(u_0), u_0 \in \Omega$, тогава $\exists U$ отворено множество в \mathbb{R}^2 , $u_0 \in U$ и $V \subset \mathbb{R}^3$, $p \in V$ отворено множество, ...