

Winter Term 2015/16

Exercise Sheet no. 2 - Formal Foundations of Computer Science

(E2.1) [warm-up: equivalence relations]

For a natural number $k \geq 2$, define the relation \equiv_k on \mathbb{Z} by

 $a \equiv_k b$ iff (b-a) is an integer multiple of k.

- (i) Show that this is an equivalence relation.
- (ii) Recall that the *index* of an equivalence relation is the number of equivalence classes. What is the index of \equiv_k ? Describe the equivalence classes of \equiv_k . Give a system of representatives for the equivalence classes of \equiv_k .
- (iii) Is the relation

$$a \sim_k b$$
 iff $|b - a| \le k$

an equivalence relation?

(E2.2) [the equivalence relation \sim_L]

Recall that for a language $L \subseteq \Sigma^*$ we defined the equivalence relation \sim_L on Σ^* by

$$w \sim_L w'$$
 iff $(wx \in L \leftrightarrow w'x \in L \text{ for all } x \in \Sigma^*).$

(i) Let $L \subseteq \{0,1\}^*$ be the language

$$\{w \mid |w|_1 \text{ is a multiple of } 3\}.$$

What is the index of \sim_L for this L? Give a system of representatives. Construct the automaton with this system of representatives as states, as in the lecture.

(ii) Let $L' \subseteq \{a\}^*$ be the language

$${a^{n^2} \mid n \ge 1} = {1, 1111, 1111111111, \ldots}.$$

Show that index($\sim_{L'}$) = ∞ by giving an infinite set of words $\{w_1, w_2, \ldots\}$ such that no pair satisfies $w_i \sim_{L'} w_j$ for $i \neq j$. Can you find a system of representatives for $\sim_{L'}$? Is L' a regular language?

(iii) We know that \sim_L is right-invariant, i.e. if $w \sim_L w'$ and $x \in \Sigma^*$, then $wx \sim_L w'x$. Make sure you understand the proof of this.

Now consider the language $L'' = L(a^*b^*) \subseteq \{a,b\}^*$. Show that $\sim_{L''}$ is not left-invariant, i.e. there are words $u, v, x \in \Sigma^*$ such that

$$u \sim_{L''} v$$
 but $xu \not\sim_{L''} xv$.

(E2.3) [the equivalence relation \sim_A]

Let A be the following DFA:

Recall that we defined \sim_A on Σ^* by

$$w \sim_A w'$$
 iff $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, w')$.

- (i) What is the index of \sim_A for this automaton? Give a system of representatives of \sim_A .
- (ii) Let L = L(A) be the language accepted by A. What is the index of \sim_L ? Give a system of representatives of \sim_L .

$$\mathit{Hint} \colon L = L(0*10*) = \{w \in \{0,1\}^* \ \big| \ |w|_1 = 1\}.$$

(iii) Convince yourself that \sim_A refines \sim_L . Which equivalence classes of \sim_A get merged to equivalence classes of \sim_L ? What does the automaton based on \sim_L (as in the previous exercise) for this language look like?