Astrological prediction for stock market

Artem Chuprov Sudarut Kasemsuk Waralak Pariwatphan

Table Contents

<u>01</u>	Introduction
<u>02</u>	Background
<u>03</u>	Methods
<u>04</u>	Results
<u>05</u>	Conclusion

Introduction

Skoltech

Introduction

Time Series Analysis can apply **Topological methods** to understand the patterns inside the data.

Why do we need TDA with time series data?

- To **constructing graph** that captures the relationships between data points
- Persistent homology identifies topological structures, providing insights into the connectedness, holes, and voids present in the data
- Visualize the topological features to gain insights into the structure and patterns of the time series data

Background

Technical analysis in stock prices

Japanese Candlestick Patterns

The exchange market contains four parameters: open, high, low, and close. These are represented by "Japanese candles" in the image (5D points).

Topological data analysis (TDA)

Topological data analysis (TDA) is the tool that looks at the **shape of data**. It consists of various approaches with an underlying theme of extracting structure from unstructured data.

Data → Shape. The basic idea of TDA is to extract shape from data

https://towardsdatascience.com/topological-data-analysis-tda-b7f9b770c951

Persistent Homology

Measuring topological characteristics of shapes and functions is referred to as **persistent homology**. It turns data into simplicial complexes and describes the topology of a space at various spatial resolutions.

Figure: The filtration process applied to a 2-dimensional point cloud.

https://christian.bock.ml/posts/persistent_homology/

01 Introduction

02 Background

03 Methods

04 Results

05 Conclusion

Methods

Our Method

Filtration distance of each point index (window=30)

Here the intensity represents the order of simplex formed. The max order used was 1.

Our method

Results

Results

Stock: BTCUSDT price from 2019-09-08 to 2023-06-01

Results

Accuracy of model (10 epochs)

Model	Accuracy
Our method	0.5135

 $Source\ code:\ \underline{https://github.com/ArtemChuprov/TopologicalProject/blob/main/main.ipynb}$

01 Introduction 02 Background 03 Methods **04 Results** 05 Conclusion

Conclusion

Conclusion

16

Topological Data Analysis (TDA) can provide valuable insights by applying TDA techniques to time series data, we **gain a deeper understanding** of the underlying structure and patterns and TDA can **improve time series prediction** with predictive models by using a **convolutional neural network (CNN).**

Although our test accuracy may seem poor, for stock market this is a result. As long as test data contained **about 4000 hour time steps**, our result is statistically significant and may mean that this technique has predictive power.

References

16

https://github.com/SamirMoustafa/Time-Series-Classification

https://arxiv.org/pdf/1909.10604.pdf

https://giotto-ai.github.io/gtda-docs/0.3.0/notebooks/time_series_classification.html

01 Introduction 02 Background 03 Methods 04 Results **05 Conclusion**

Thank You!