Optical Fiber Communications

Chapter XX
Tunable Laser Source

Basic Knowledge (Why Tunable?)

Why Tunable?

FIBEROPTIC NETWORK DENSE WAVELENGTH DIVISION MULTIPLEXING (DWDM)

Green Color Devices:

May use Volume Phase Gratings as the dispersive platform ITU: International Telecommunications Union MUX & DEMUX =Multiplexer & DeMultiplexer OCM=Optical Channel Monitor EDFA=Erbium-Doped Fiber Amplifier DGE=Dynamic Gain Equalizer OADM=Optical Add/Drop Multiplexer (Switch/Router)

Tunable Laser Chip

Hierarchy in Fiber Optics

Tunable Laser Structure

Figure 1 Schematic top view of a conventional distributed Bragg reflector laser and Finisar's modulated grating Y-branch (MG-Y) laser

Operating Principle

Figure 2 Reflectivity spectra of the left and right modulated grating reflector (top) and the aggregate reflectivity spectrum as seen from the input of the MMI splitter (bottom).

Control Method

Figure 3 Emission frequency of an MG-Y laser plotted as a function of the left and right reflector currents. A discontinuous frequency change occurs at the boundaries indicated by the black contours.

Operating Principle with SOA

Integrated SOA

Figure 7 MG-Y laser with integrated semiconductor optical amplifier.

Tunable Laser Package

Hierarchy in Fiber Optics

Tunable Laser Package

Figure 8 Block diagram of the S7500 tunable laser package.

Tunable Laser Transmitter Package

Hierarchy in Fiber Optics

Tunable Laser Transmitter Package

Figure 10 Block diagram of the control electronics for the \$7500 tunable laser.

[Example] Frequency Control

[Example] Frequency Control

[Example] Power Control

[Example] Power Control

