ullet Pick a form for the inner product: $\langle f,g
angle = \int_a^b f(x)g(x)\,dx$

L2 recap

- ullet If $\{\phi_k(x)\}$ is a self-orthogonal set then $\langle \phi_j,\phi_k
 angle=0$ for j
 eq k
- If $\{\phi_k(x)\}$ is a complete set then can write orthogonal expansion of L^2 fcns:

$$f(x) \stackrel{ae}{=} \sum_{k=1}^{\infty} c_k \phi_k(x) \qquad c_k = rac{\langle f, \phi_k
angle}{||\phi_k||^2}$$

ullet Each $\{\phi_{m{k}}(x)\}$ is a set of eigenfunctions from a (self-adjoint) linear operator L

Three examples: The classic Trig Fourier series

1. For $0 \le x \le \pi$, let $\phi_k(x) = \sin(kx)$ with $k = 1, 2, 3, \ldots$ Fourier sine series

$$\langle \phi_j, \phi_k \rangle = \int_0^\pi \sin(kx) \sin(jx) \, dx = 0 \qquad ||\phi_k||^2 = \int_0^\pi \sin^2(kx) \, dx = \frac{\pi}{2}$$

$$f(x) = \sum_{k=1}^{\infty} c_k \sin(kx)$$
 $c_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(kx) dx$

Completeness? (IOU) What L operator do the $\phi_{k}(x)$'s come from? (IOU)

^ajust like eigenvectors $\{ \vec{\phi}_k \}$ from a self-adjoint matrix ${f L}$

(Haberman Chap 3)

2. For $0 \le x \le \pi$, let $\phi_k(x) = \cos(kx)$ with $k = 0, 1, 2, 3, \dots$ Fourier cosine series $\{\phi_k\} = \{1, \cos(x), \cos(2x), \cos(3x), \dots\}$

$$\int_0^\pi \cos(kx)\cos(jx)\,dx=0$$

$$\int_0^\pi \cos^2(kx)\,dx=egin{cases} \pi & k=0 \ rac{\pi}{2} & k=1,2,\cdots \end{cases}$$

$$f(x) = \sum_{k=0}^{\infty} c_k \cos(kx) \qquad c_k = rac{1}{||\phi_k||^2} \int_0^{\pi} f(x) \cos(kx) \, dx$$

(a.k.a.)
$$f(x)=rac{1}{2}\widetilde{c}_0+\sum_{k=1}^\infty\widetilde{c}_k\cos(kx)$$
 $\widetilde{c}_k=rac{2}{\pi}\int_0^\pi f(x)\cos(kx)\,dx$

Completeness? (IOU) These ϕ_k come from a different L, what is it? (IOU)

3. For $-\pi \le x \le \pi$, let $\phi_k = \{\sin(kx), \cos(kx)\}$, $k = 0, 1, 2, \cdots$

The Full Fourier series $f(x) = \frac{1}{2}c_0 + \sum_{k=1}^{\infty} c_k \cos(kx) + d_k \sin(kx)$

$$c_k = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx \qquad d_k = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

Completeness? (IOU again) and a third different $m{L}$ operator (IOU)

Part 2 |: Properties of Fourier series

(Haberman Chap 3)

For
$$L^2$$
 functions: $f(x) \stackrel{ae}{=} \sum_{k=1}^\infty c_k \phi_k(x)$ $c_k = \frac{\langle f, \phi_k \rangle}{||\phi_k||^2}$ $(\phi_k(x) \text{ self-orth. set})$

$$c_k = rac{\langle f, \phi_k
angle}{||\phi_k||^2}$$

Call the
$$N$$
-term partial sum approximation: $S_N(x) = \sum_{k=1}^N c_k \phi_k(x)$

Examples: Use Sine series, $\phi_k(x) = \sin(kx)$ on $0 < x < \pi$

(a)
$$f_a(x) = x$$
: c_k via $\fbox{ Integration By Parts } (IBP)$

$$c_k = \frac{2}{\pi} \int_0^{\pi} \underbrace{x}_u \underbrace{\sin(kx) dx}_{dv} = (-1)^{k+1} \frac{2}{k}$$

(b)
$$f_b(x) = egin{cases} x & 0 \leq x \leq rac{\pi}{2} \ \pi - x & rac{\pi}{2} < x \leq \pi \end{cases}$$
 Sub-intervals then IBP $2 \left[\int_0^{\pi/2} \int_0^{\pi} dx \, dx \, dx \right] = 0$

$$c_k = rac{2}{\pi} \left[\int_0^{\pi/2} x \phi_k + \int_{\pi/2}^{\pi} (\pi - x) \phi_k
ight] = rac{4}{\pi k^2} \sin(rac{k\pi}{2})$$

$$(c) \ f_c(x) = egin{cases} rac{1}{2} & 0 \leq x \leq \pi/2 \ 1 & \pi/2 < x \leq \pi \end{cases}$$
 Sub-intervals $c_k = rac{1 + \cos(rac{k\pi}{2}) - 2(-1)^k}{k\pi}$

$$c_k = \frac{1 + \cos(\frac{\kappa \pi}{2}) - 2(-1)^k}{\epsilon}$$

Special properties of Trigonometric Fourier Series

- 1. $\sin(kx), \cos(kx)$ are 2π -periodic functions, $\phi_k(x+2\pi) = \phi_k(x) \quad \forall x$. Most other $\phi_k(x)$ are only defined on an interval $a \leq x \leq b$.
- 2. Sine/Cosine/Full Fourier series describe periodic extensions of the original f(x) piece given on $x \in [-\pi, \pi)$, with

$$f(x+2n\pi)=f(x)$$
 n : all integers

3. If f(x) is given on $x \in [0, \pi)$ then the <u>Sine series</u> gives the expansion of the 2π -periodic odd extension of f(x):

$$f_{ ext{odd}}(x) = egin{cases} f(x) & x \in [0,\pi) \ -f(-x) & x \in [-\pi,0) \end{cases} \qquad f_{ ext{odd}}(x+2n\pi) = f_{ ext{odd}}(x)$$

4. If f(x) is given on $x \in [0, \pi)$ then the <u>Cosine series</u> gives the expansion of the 2π -periodic even extension of f(x):

$$f_{\mathrm{even}}(x) = egin{cases} f(x) & x \in [0,\pi) \ f(-x) & x \in [-\pi,0) \end{cases} \qquad f_{\mathrm{even}}(x+2n\pi) = f_{\mathrm{even}}(x)$$

5. These extensions (periodic and odd/even) can produce discontinuities or changes in the smoothness of the function at the edges of the original base interval.

1. Parseval's theorem: $||f||^2 = \sum_{k=1}^n c_k^2 ||\phi_k||^2$

General Convergence Theory

$$\int_a^b f^2\,dx = \left\langle \sum_k c_k \phi_k, \sum_j c_j \phi_j
ight
angle = \sum_k c_k \left\langle \phi_k, \sum_j c_j \phi_j
ight
angle = \sum_k c_k^2 \langle \phi_k, \phi_k
angle$$

2. L^2 convergence of N-term approx of f(x) as $N \to \infty$: show $S_N \stackrel{ae}{\longrightarrow} f$

$$f(x) = \left[\sum_{k=1}^N c_k \phi_k(x)
ight] + \sum_{k=N+1}^\infty c_k \phi_k(x) \qquad S_N(x) = \sum_{k=1}^N c_k \phi_k(x)$$

Show that the L^2 norm of the remainder o 0 as $N o \infty$

$$\lim_{N o \infty} ||f - S_N||^2 = \lim_{N o \infty} \left\| \sum_{k=N+1}^{\infty} c_k \phi_k(x) \right\|^2 = \lim_{N o \infty} \sum_{k=N+1}^{\infty} c_k^2 ||\phi_k||^2 = 0$$

If $\{\phi_k(x)\}$ not complete set, then error $\not \to 0$

Example: $f_b(x)$: $c_k = rac{4}{\pi k^2} \sin(k\pi/2)$

$$||f - S_N||^2 = \sum_{k=N+1}^{\infty} \frac{8}{\pi^2 k^4}$$

3. Pointwise convergence: If the original fcn f(x) is continuous at a ("good") point x_0 then the Fourier series converges to the fcn's value there

$$\lim_{N\to\infty} S_N(x_0) = f(x_0)$$

4. If f(x) is discontinuous at a ("bad") pt x_0 (has a "jump"), meaning that

$$\lim_{x \to x_0^-} f(x) \neq f(x_0) \neq \lim_{x \to x_0^+} f(x)$$

then Fourier series converges to the avg of the left/right-limit values at the jump

$$\lim_{N \to \infty} S_N(x_0) = \frac{1}{2} [f(x_0^-) + f(x_0^+)]$$

5. **Gibbs phenomenon**: the 8.9% overshoot and "ringing" of the Fourier series approx. at a bad pt x_0 where the extended function f(x) has a discont/jump. Example: Sine series of $f_c(x)$

- 6. Properties of the c_k coefficients (and the smoothness of f(x))
 - (0) If f(x) has jump(s) then its Fourier series will have "<u>coefficients that decay</u> like 1/k as $k \to \infty$ ", meaning that the limit of the ratio satisfies:

$$\lim_{k o\infty}rac{c_k}{(1/k)}=$$
 finite value

- (1) If f(x) is continuous everywhere but it has a <u>corner</u> (so f'(x) has a jump somewhere) then f(x)'s Fourier series c_k 's decay like $1/k^2$ as $k \to \infty$.
- (n) If the $f^{(n)}(x)$ derivative is the first one to have a jump, then the Fourier series for f(x) has coefficients c_k that decay like $1/k^{n+1}$ as $k \to \infty$.

Valid operations on converging Fourier series that can be done term-by-term:

- ullet Scalar multiplication: $af(x) = \sum_{k} (ac_k) \phi_k(x)$
- Addition: $f(x) + g(x) = \sum_k (c_k + d_k) \phi_k(x)$
- Integration: $\int f(x) \, dx = \sum_{k} c_{k} \left(\int \phi_{k}(x) \, dx \right)$

BUT | **Differentiation** | might lead to series that do not converge (i.e. are **wrong!**)

Example: $f_a(x) = x$ then call g(x) = f'(x) = 1

$$\frac{d}{dx}\left[x=\sum_{k=1}^{\infty}(-1)^{k+1}\frac{2}{k}\sin(kx)\right] \qquad \rightarrow \qquad 1\neq \sum_{k=1}^{\infty}2(-1)^{k+1}\cos(kx)$$

$$1 \neq \sum_{k=1}^{\infty} 2(-1)^{k+1} \cos(kx)$$

- ullet The cosine series of g(x)=1 is $g(x)=1+\sum_k 0\cos(kx)$
- $ullet c_k=\pm 2$ does not satisfy $|c_k| o 0$ as $k o \infty$ $(n^{ ext{th}}$ term convergence test)
- $\frac{d}{dx}$ (sine series of f(x)) DOES NOT converge to the cosine series for f'(x) (!?!)

A big issue for Math 551 is understanding how to work around this problem to obtain guaranteed-correct Fourier series for solutions of differential equations.

Part 3: Extending Linear Algebra Theory to Linear Differential Eqns

Solutions/domains:

$$\mathbf{u} \in \mathbb{R}^n \qquad o \qquad u(x) \; ext{on} \; a \leq x \leq b$$

Inner products:

$$\mathrm{u}\cdot\mathrm{v} \qquad o \qquad \int_a^b u(x)v(x)\,dx$$

Orthogonality:

$$\mathrm{u}\cdot\mathrm{v}=0\qquad o \qquad \int_a^b uv\,dx=0$$

Linear operators:

matrix
$$\mathbf{L} \longrightarrow$$

matrix
$$\mathbf{L}$$
 \rightarrow $\mathbf{L} = \underline{\mathsf{LHS}}$ of ODE

Example: $Lu(x) \equiv p \frac{d^2u}{dx^2} + q \frac{du}{dx} + ru$

• Problems:

$$Lu = b$$
 -

$$\mathrm{Lu} = \mathrm{b} \qquad o \qquad Lu(x) = f(x)$$

Boundary value problems (BVP) for ODE's have four basic parts:

- 1. Domain $a \leq x \leq b$
- 2. Linear operator L: LHS of eqn Lu=f
- 3. Inhomogeneous forcing function f(x): RHS of eqn Lu=f
- 4. Hom./Inhomogeneous Boundary Conditions (BC) at x=a and x=b

Without BC's, Lu=f has many solns. Adding BC's picks one final solution

- L without specific BC's = "Formal Linear Operator" (LHS only)
- $m{L}$ with specific Homogeneous BC's = "Complete Linear Operator"

Eigenvalue problems: overview

Matrix:
$$\mathbf{L}\vec{\phi} = \lambda\vec{\phi}$$
 \rightarrow ODE BVP: $L\phi(x) = -\lambda\phi(x)$

- Historical tradition: ODE eigenvalue equation has an extra minus sign
- ullet Matrix eigenvalues for $\mathbf{L}_{n \times n}$: determinant $|\mathbf{L} \lambda \mathbf{I}| = 0$ has n eig-vals
- ODE BVP eigenvalues: has an infinite number of eig-vals. (How? IOU)

Adjoint problems: needed to calculate c_k 's (need ψ 's for $\langle f, \psi \rangle$ and $\langle \phi, \psi \rangle$)

- Matrix case: Make the adjoint L^* from original L:

 if L real, then $L^* = L^T$ if L complex, then $L^* = L^H$
- ODE BVP: How do you make the complete adjoint operator?

$$oldsymbol{L}^*$$
 from $oldsymbol{L}$ and $oldsymbol{BC}^*$ from $oldsymbol{BC}$

ullet The complete adjoint L^* is always defined by the Inner product adjoint relation:

$$\langle v(x), Lu(x)
angle = \langle L^*v(x), u(x)
angle$$
 for all u,v 's

For differential equations, this relation is also called the Lagrange identity or <u>Green's formula</u> in some books.