体論 (第10回)

10. ガロア拡大とガロア群

今回はガロア拡大とガロア群について解説します.

定義 10-1 (ガロア拡大)

L を $\mathbb C$ の部分体とし, L/K を代数拡大とする. 任意の $\alpha \in L$ の K 上共役がすべて L に含まれるとき L/K を**ガロア拡大**と言う.

[注意] 一般的には,代数拡大 L/K に対して,任意の $\alpha \in L$ の K 上共役がすべて L に含まれるとき,L/K を**正規拡大**と言い,さらに分離拡大でもあるとき,ガロア拡大と言う.定理 7-2 から L が $\mathbb C$ の部分体の場合,L/K は常に分離拡大なので,本資料では簡単のためガロア拡大の定義を上記のようにしている.

 $L=\mathbb{Q}(\sqrt{2})$ を考える. $x=a+b\sqrt{2}\in L$ $(a,b\in\mathbb{Q})$ を取る. $x\in\mathbb{Q}$ のとき, x の \mathbb{Q} 上共役は $x=a\in L$. $x\not\in\mathbb{Q}$ のとき, x の \mathbb{Q} 上共役は $a\pm b\sqrt{2}\in L$. どちらの場合でも x の \mathbb{Q} 上共役は L に含まれるので, L/\mathbb{Q} はガロア拡大である.

定理 10-1

K を $\mathbb C$ の部分体とする. $\alpha_1,\ldots,\alpha_n\in\mathbb C$ を K 上代数的な元とし, $L=K(\alpha_1,\ldots,\alpha_n)$ と置く. このとき, 次の二つは同値である.

- (i) *L/K* がガロア拡大.
- (ii) $\alpha_1,...,\alpha_n$ の K 上共役はすべて L に含まれる.

[証明]

- (i)⇒(ii) はガロア拡大の定義から従う.
- (ii)⇒(i) について. $\beta\in L$ とし、その K 上共役 γ を考える. 定理 9-2 より $\sigma(\beta)=\gamma$ となる $\sigma\in \mathrm{Hom}_K(L,\mathbb{C})$ が存在する. σ は K-準同型より

$$\gamma = \sigma(\beta) \in K(\sigma(\alpha_1), \sigma(\alpha_2), ..., \sigma(\alpha_n)).$$

copyright ⓒ 大学数学の授業ノート

各 $\sigma(\alpha_i)$ は α_i の K 上共役より $\sigma(\alpha_i) \in L$. 従って $\gamma \in L$ である.

例 10-1

- (1) $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ はガロア拡大である.
- (2) $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ はガロア拡大でない.

[証明]

- (1) $\sqrt{2}$, $\sqrt{3}$ の \mathbb{Q} 上共役はそれぞれ $\pm\sqrt{2}$, $\pm\sqrt{3}$ である. $\pm\sqrt{2}$, $\pm\sqrt{3} \in \mathbb{Q}(\sqrt{2},\sqrt{3})$ より定理 10-1 から $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ はガロア拡大である.
- (2) $\sqrt[4]{2}$ の \mathbb{Q} 上共役は $\pm\sqrt[4]{2}$, $\pm\sqrt[4]{2}i$ である. $\sqrt[4]{2}i \notin \mathbb{Q}(\sqrt[4]{2})$ より $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ はガロア拡大でない.

問題 10-1 $\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$ はガロア拡大であることを示せ、ただし、 $\omega=e^{\frac{2\pi i}{3}}$ は 1 の原始 3 乗根である。

定理 10-2

L を \mathbb{C} の部分体とし, L/K を有限次ガロア拡大とする.

- (1) $\operatorname{Hom}_K(L,\mathbb{C}) = \operatorname{Hom}_K(L,L)$.
- (2) $\sigma \in \operatorname{Hom}_K(L,L)$ は環の同型写像.

[証明]

- $(1)\subseteq$ を示せば十分である. $\alpha\in L$ とする. $\sigma(\alpha)$ は α の K 上共役で, L/K はガロア拡大より $\sigma(\alpha)\in L$. 従って $\sigma(L)\subseteq L$ となる.
- (2) σ が全単射であることを確認する.
 - (i) L は体より $\ker \sigma$ は $\{0\}$ または L のいずれか. $1 \notin \ker \sigma$ より $\ker \sigma = \{0\}$. 従って σ は単射.
 - (ii) σ は K-線形写像であることに注意する. $\ker \sigma = \{0\}$ より、

 $\dim_K L = \dim_K \sigma(L) + \dim_K (\ker \sigma) = \dim_K \sigma(L).$

 $\sigma(L) \subseteq L$ であるから, $\sigma(L) = L$. 従って σ は全射.

定義 10-2 (ガロア群)

L を \mathbb{C} の部分体とする. 有限次ガロア拡大 L/K に対して,

$$G(L/K) = \operatorname{Hom}_K(L, L)$$

と置く. このとき, G(L/K) には写像の合成。で群構造が入る. この群を L/K の**ガロア群**と言う. 単位元は Id_L , また $\sigma\in G(L/K)$ の逆元は逆写像 σ^{-1} である.

[補足] 定理 10-2 から, $|G(L/K)| = |\operatorname{Hom}_K(L,\mathbb{C})| = [L:K]$.

 $L=\mathbb{Q}(\sqrt{2})$ を考える. L/\mathbb{Q} は 2 次ガロア拡大で, $G(L/\mathbb{Q})=\{\mathrm{Id}_L,\ \sigma\}$ である. ここで, σ は $\sigma(\sqrt{2})=-\sqrt{2}$ を満たすものとする. σ^2 を計算してみる.

$$\sigma^2(\sqrt{2}) = \sigma(\sigma(\sqrt{2})) = \sigma(-\sqrt{2}) = -\sigma(\sqrt{2}) = \sqrt{2}.$$

従って $\sigma^2 = \operatorname{Id}_L$ である.

定理 10-3

相異なる整数 $m, n \neq 0, 1$ は平方因子を持たず、また互いに素と仮定する. $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$ と置く.

- (1) $\sqrt{n} \notin \mathbb{Q}(\sqrt{m})$.
- (2) $[L:\mathbb{Q}] = 4$.
- (3) $\{1, \sqrt{m}, \sqrt{n}, \sqrt{mn}\}$ は L/\mathbb{Q} の基底である.
- (4) L/\mathbb{Q} はガロア拡大である.
- (5) 次の写像 φ は全単射である.

$$\varphi: G(L/\mathbb{Q}) \to \{\pm \sqrt{m}\} \times \{\pm \sqrt{n}\} \quad (\sigma \mapsto (\sigma(\sqrt{m}), \sigma(\sqrt{n})))$$

- (6) 群の同型 $G(L/\mathbb{Q}) \simeq C_2 \times C_2$ が成り立つ. ここで, C_n は位数 n の巡回群を表す.
- ※ 整数 x がどのような素数 p に対しても $p^2 \nmid x$ を満たすとき, x は**平方因子を持たない**と言う.

[補足] (5) より $G(L/\mathbb{Q})$ の 4 つの元を持ち、それらは次で特徴付けられる.

$$\begin{split} &\sigma_1(\sqrt{m}) = \sqrt{m}, & \sigma_1(\sqrt{n}) = \sqrt{n}, \\ &\sigma_2(\sqrt{m}) = \sqrt{m}, & \sigma_2(\sqrt{n}) = -\sqrt{n}, \\ &\sigma_3(\sqrt{m}) = -\sqrt{m}, & \sigma_3(\sqrt{n}) = \sqrt{n}, \\ &\sigma_4(\sqrt{m}) = -\sqrt{m}, & \sigma_4(\sqrt{n}) = -\sqrt{n}. \end{split}$$

 $G(L/\mathbb{Q})$ の単位元 Id_L は σ_1 である.

[定理 10-3 の証明]

- (1) $\sqrt{n}\in\mathbb{Q}(\sqrt{m})$ と仮定する. $\sqrt{n}=a+b\sqrt{m}$ $(a,b\in\mathbb{Q})$ と表す. $n=(a^2+mb^2)+2ab\sqrt{m}$ より, $a^2+mb^2=n$ および 2ab=0.
 - (i) b=0 のとき, $n=a^2$ となり仮定に矛盾する.
 - (ii) $b \neq 0$ のとき、a = 0 である。b = c/d $(c, d \in \mathbb{Z}, \gcd(c, d) = 1)$ と表すと、 $d^2n = c^2m$. $\gcd(m, n) = \gcd(c, d) = 1$ より $m = \pm d^2$ 、 $n = \pm c^2$ となる。m, n は平方因子を持たないので m = n = -1 となり矛盾.

以上より $\sqrt{n} \notin \mathbb{Q}(\sqrt{m})$ が示せた.

- (2) $K=\mathbb{Q}(\sqrt{m})$ と置く. $\sqrt{n} \notin K$ より, x^2-n が \sqrt{n} の K 上の最小多項式である. よって $[L:\mathbb{Q}]=[L:K][K:\mathbb{Q}]=[K(\sqrt{n}):K][K:\mathbb{Q}]=4.$
- (3) dim_Q L=4 より、 $\{1,\sqrt{m},\sqrt{n},\sqrt{mn}\}$ が Q 上 1 次独立であることを示せば十分である.

$$a + b\sqrt{m} + c\sqrt{n} + d\sqrt{mn} = 0 \ (a, b, c, d \in \mathbb{Q})$$

とすると,

$$a + b\sqrt{m} + \sqrt{n}(c + d\sqrt{m}) = 0.$$

 $\{1,\sqrt{n}\}$ は K 上 1 次独立であるから、

$$a + b\sqrt{m} = 0$$
, $c + d\sqrt{m} = 0$.

従って a=b=c=d=0. 以上より $\{1,\sqrt{m},\sqrt{n},\sqrt{mn}\}$ は \mathbb{Q} 上 1 次独立である.

- (4) \sqrt{m} , \sqrt{n} の $\mathbb Q$ 上共役はそれぞれ $\pm \sqrt{m}$, $\pm \sqrt{n}$ である. $\pm \sqrt{m}$, $\pm \sqrt{n} \in L$ より, 定理 10-1 から $L/\mathbb Q$ はガロア拡大である.
- (5) φ が単射であることを示す. $\sigma, \tau \in G(L/\mathbb{Q})$ ($\varphi(\sigma) = \varphi(\tau)$) とする. このとき,

$$\sigma(\sqrt{m}) = \tau(\sqrt{m}), \quad \sigma(\sqrt{n}) = \tau(\sqrt{n}).$$

 $x \in L$ とし, $x = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{mn} \ (a, b, c, d \in \mathbb{Q})$ で表すと,

$$\begin{split} \sigma(x) &= a + b\sigma(\sqrt{m}) + c\sigma(\sqrt{n}) + d\sigma(\sqrt{m})\sigma(\sqrt{n}) \\ &= a + b\tau(\sqrt{m}) + c\tau(\sqrt{m}) + d\tau(\sqrt{m})\tau(\sqrt{n}) \\ &= \tau(x). \end{split}$$

よって $\sigma = \tau$ であり, φ は単射である. また $|G(L/\mathbb{Q})| = [L:\mathbb{Q}] = 4$ より φ は全射でもある.

(6) $G(L/\mathbb{Q})$ は位数 4 の群より $C_2\times C_2$ または C_4 と同型である. 任意の $\sigma\in G(L/\mathbb{Q})$ に対して, $\sigma(\sqrt{m})=\pm\sqrt{m},\ \sigma(\sqrt{n})=\pm\sqrt{n}$ であるから

$$\sigma^2(\sqrt{m}) = \sqrt{m}, \quad \sigma^2(\sqrt{n}) = \sqrt{n}.$$

従って $\sigma^2 = \mathrm{Id}_L$. これより $G(L/\mathbb{Q}) \simeq C_2 \times C_2$ である.

問題 10-2 定理 10-3 とその補足の記号のもとで考える.

- (1) $\sigma_2 \circ \sigma_3$, σ_3^2 , σ_4^{-1} はそれぞれ σ_1 , σ_2 , σ_3 , σ_4 のいずれかを答えよ.
- (2) $\beta = \sqrt{m} + \sqrt{n} + \sqrt{mn}$ の Q 上共役をすべて求めよ.

問題 10-3 $\alpha = \sqrt{2 + \sqrt{2}}$ とする.

- (1) αの ℚ上の最小多項式を求めよ.
- (2) α の \mathbb{Q} 上共役をすべて求めよ.
- (3) $\mathbb{Q}(\alpha)/\mathbb{Q}$ がガロア拡大であることを示せ.
- (4) $G(\mathbb{Q}(\alpha)/\mathbb{Q}) \simeq C_4$ を示せ.