Réflexion d'une onde électromagnétique sur des plans métalliques en incidence oblique

On considère une onde plane progressive se propageant dans le vide, selon le vecteur d'onde $\vec{k} = k \cos \theta \vec{u_x} + k \sin \theta \vec{u_y}$ et à la pulsation ω . Elle arrive sur un plan métallique infiniment conducteur situé sur le demi-espace x>0. On notera $\vec{E_i}$ et $\vec{B_i}$ respectivement le champ électrique et le champ magnétique incidents. Le champ électrique est polarisé rectilignement selon Oz et son amplitude est E_0 .

- ♡ Retrouver l'équation de propagation des champs électrique et magnétique. Quelle est la relation de dispersion associée ?
- \heartsuit Expliciter les expressions des champs $\vec{E_i}$ et $\vec{B_i}$.

En arrivant sur l'interface, les relations de passage du champ électromagnétique imposent l'apparition d'une onde réfléchie, dont on notera $\vec{E_r}$ et $\vec{B_r}$ les champ électrique et magnétique. On supposera que $\vec{E_r}$ s'écrit sous la forme :

$$\vec{E_r} = \vec{E_0'} \exp(i\vec{k_r} \cdot \vec{r} - \omega t)$$

- \heartsuit Que valent les champs \vec{E} et \vec{B} à l'intérieur de la plaque ? Justifier.
- \heartsuit En utilisant les relations de passage, écrire $\vec{E_r}$ en fonction de E_0 , k, ω et θ . En déduire l'expression du champ magnétique réfléchi, $\vec{B_r}$.
- \heartsuit Quelle est alors l'expression du champ électrique \vec{E} résultant pour x<0 ? De quel type d'onde s'agit-il ?
- \heartsuit On place une seconde plaque métallique en x=-L. Montrer que la présence de la seconde plaque impose une discrétisation du spectre, c'est-à-dire que seules des fréquences ω discrètes peuvent se propager pour un angle θ donné. Tracer les valeurs prises par ω en fonction de θ .
- \heartsuit Quelle est la valeur minimale que peut prendre ω ? Justifier.
- \heartsuit Démontrer que $k_y = \vec{k} \cdot \vec{u_y}$ vérifie l'équation dite de dispersion des modes d'une onde transverse électrique :

$$k_y^2 = \frac{\omega^2}{c^2} - \left(\frac{n\pi}{a}\right)^2 \tag{1}$$

- ♥ Quel est le courant surfacique à la surface de la plaque ?
- \heartsuit Calculer l'expression du champ magnétique résultant \vec{B} entre les deux plaques et en déduire l'expression du vecteur de Poyting. Commenter.

Propagation d'une onde radio dans un plasma en présence d'un champ magnétique longitudinal

Le plasma ionosphérique est assimilé à un milieu conducteur ionisé de temps de relaxation infini, c'est-à-dire qu'il n'y a pas de collisions. Le plasma est supposé neutre et sa densité électronique est n_0 . On tient compte ici du champ magnétostatique terrestre désigné par $\vec{B}_{ext} = B_{ext}\vec{u_z}$, dirigé selon la direction de propagation Oz d'une OPPM électromagnétique de pulsation ω , dont le champ est représenté par :

$$(\vec{E}, \vec{B}) = (\vec{E}_0, \vec{B}_0) \exp[j(\omega t - kz)]$$

On note $\omega_p = \sqrt{n_0 e^2/m\varepsilon_0}$ la pulsation de plasma du milieu et $\omega_c = eB_{ext}/m$ la pulsation cyclotron.

♠ Montrer que le champ magnétique terrestre intervient dans la conduction électrique du milieu, qui peut être représenté par une relation linéaire :

$$\vec{i} = [\gamma] \vec{E}$$

où $[\gamma]$ est une matrice de conductivité complexe, à exprimer en fonction de ω , ω_c et ω_p .

Une onde est polarisée circulairement lorsque les composantes transverses sont déphasées de $\pm \pi/2$, c'est-à-dire dans notre cas, en notation réelle :

$$\vec{E} = E_0 \cos(\omega t - kz)\vec{e_x} \pm E_0 \sin(\omega t - kz)\vec{e_y}$$
 (2)

Un signe "+" correspond à une onde polarisée circulairement "gauche" et le signe "-" à une onde polarisée circulaire "droite". On cherche à comprendre la propagation de ces ondes dans le plasma.

- ♠ Pourquoi appelle t-on cette polarisation "circulaire"?
- ♠ Montrer que l'étude de la propagation des OPPM électromagnétiques peut être ramenée à celle d'ondes polarisées circulairement qui satisfont des relations de dispersion à préciser.

On appelle permittivité relative d'un milieu la quantité complexe ε_r que l'on peut définir ici à travers la relation $k^2 = \varepsilon_r \varepsilon_0 \mu_0 \omega^2 = \varepsilon_r \omega^2/c^2$.

 \spadesuit On note ε_{rg} et ε_{rd} les permittivités relatives équivalentes associées respectivement à la propagation des ondes circulaires gauche et des ondes circulaires droites, dont les graphes sont donnés ci-dessous. Préciser les domaines du spectre électromagnétique pour lesquels les ondes étudiées se propagent effectivement dans le plasma.

Une onde métrique traverse une épaisseur L de plasma dans les conditions de l'étude effectuée. A l'entrée de la couche de plasma, l'onde est polarisée rectilignement.

- ♠ Montrer, dans le cas général, qu'un onde polarisée rectilignement peur s'écrire comme la superposition d'une onde polarisée circulaire droite et circulaire gauche.
- \spadesuit Justifier alors que l'effet du plasma consiste, aux hautes fréquences, en une rotation de la direction de polarisation de l'onde. Préciser la valeur de cet angle si L=1 km et $\lambda_0=30 \text{cm}$.

Ondes électromagnétiques dans un métal conducteur

On s'intéresse à la propagation des ondes électromagnétiques dans un conducteur métallique, en fonction de leur fréquence et des caractéristiques du métal. Plus particulièrement, on souhaite savoir pourquoi un métal peut être transparent à très basse fréquence, réfléchissant sur sur une certaine bande de fréquences, puis de nouveau transparent à très haute fréquence.

On considère donc que le demi-espace z > 0 est rempli d'un métal, sur lequel arrive une onde plane progressive monochromatique à la fréquence ω et polarisée suivant $\vec{e_x}$.

 \Diamond Retrouver l'équation de propagation des ondes électromagnétiques dans le vide. A l'aide des données de l'énoncé, donner l'expression du champ \vec{E} et du champ \vec{B} .

Pour décrire le métal, on adopte un modèle d'électrons libres, de masse m, de charge -e et de densité particulaire N_0 , soumis au champ électromagnétique, et subissant des collisions en moyenne au bout d'un temps $\tau = 1/\omega_c$. On modélise alors le comportement des électrons par l'équation de mouvement (aussi appelé modèle de Drude) :

$$m\vec{a} = -e\vec{E} - m\frac{\vec{v}}{\tau} \tag{3}$$

Pour un métal très conducteur, on a $N_0 \simeq 10^{29} \mathrm{m}^{-3}$ et $\tau \simeq 10^{14}$.

- \Diamond En utilisant l'équation 3, définir une conductivité γ complexe qui dépend de la pulsation ω . Commenter.
- \diamondsuit En utilisant les équations de Maxwell, trouver une équation vérifiée par le champ \vec{B} . En déduire une relation de dispersion des OPPM dans le métal. On fera apparaître la pulsation plasma $\omega_p = \sqrt{N_0 e^2/m\varepsilon_0}$.
- \Diamond Comparer $\omega_c = 1/\tau$ et ω_p . Justifier de l'existence de 3 régimes de propagation dans le métal que nous allons étudier par la suite.

On se place dans le cas où $\omega \ll \omega_c$.

- \Diamond Que devient la relation de dispersion dans ce cas-là? Trouver les solutions possibles pour k.
- \diamondsuit Écrire l'expression du champ \vec{E} dans le métal, puis celle du champ \vec{B} . Comment appelle t-on ce régime et le phénomène associé ?

On se place dans le cas où $\omega \gg \omega_c$.

- \Diamond Que devient la relation de dispersion dans ce cas-là? Trouver les solutions possibles pour k.
- \diamondsuit Écrire l'expression du champ \vec{E} dans le métal, puis celle du champ \vec{B} . On distinguera les cas $\omega < \omega_p$ et $\omega > \omega_p$. Décrire alors le comportement de l'onde dans ces 2 situations.

Bilan

- ♦ Finalement, résumer les 3 situations rencontrées et justifier les observations décrites dans l'énoncé.
- \diamondsuit Quelle est la différence fondamentale entre un plasma vu en cours et un métal comme décrit ici ?