Exercise 5.33 (Study of multidimensional Brownian motion) $B_t = (B_t^1, B_t^2, \cdots, B_t^N)$ を $x = (x_1, \cdots, x_N) (\in \mathbb{R}^N)$ スタートの N 次元 (\mathcal{F}_t) -BM とする.ここで N は 2 以上の整数とする.

1. $|B_t|^2$ は連続 semimartingale であり、 $|B_t|^2$ の martingale part が true martingale であることを示せ.

証明. (途中) B_t^1, \cdots, B_t^N は BM より連続 semimartingale なので、伊藤の公式が適用できて、a.s. で任意の $t \geq 0$ に対し

$$|B_{t}|^{2} = |B_{0}|^{2} + \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial}{\partial x_{i}} |B_{s}|^{2} dB_{s}^{i} + \frac{1}{2} \sum_{i,j=1}^{N} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} |B_{s}|^{2} d\langle B^{i}, B^{j} \rangle_{s}$$

$$= |x|^{2} + \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial}{\partial x_{i}} |B_{s}|^{2} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i}^{2}} |B_{s}|^{2} ds \quad (\because i \neq j \implies \langle B^{i}, B^{j} \rangle = 0)$$

$$= |x|^{2} + 2 \sum_{i=1}^{N} \int_{0}^{t} B_{s}^{i} dB_{s}^{i} + Nt.$$

$$\cdots$$
) $|B|^2=\sum_{i=1}^N(B^i)^2$ より $\frac{\partial}{\partial x_i}|B|^2=2B^i, \frac{\partial^2}{\partial x_i^2}|B|^2=2.$

2.

$$\beta_t = \sum_{i=1}^N \int_0^t \frac{B_s^i}{|B_s|} dB_s^i$$

と定める(ただし $|B_s|=0$ のとき $\frac{B_s^i}{|B_s|}=0$ とする)。 β_t の定義に現れる確率積分の定義を正当化し、さらに $(\beta_t)_{t\geq 0}$ が 0 スタートの (\mathcal{F}_t) -BM であることを示せ.

証明. (途中)任意の $1 \leq i \leq N$ に対し $\frac{B^i}{|B|} \leq 1$ より、a.s. で任意の $t \geq 0$ に対し

$$\int_0^t \left(\frac{B_s^i}{|B_s|}\right)^2 d\left\langle B^i, B^i \right\rangle_s \le \int_0^t ds = t < \infty$$

が成り立つので、任意の $1 \leq i \leq N$ に対し $\frac{B^i}{|B|} \in L^2_{\text{loc}}(B^i)$. よって $\int_0^t \frac{B^i_s}{|B_s|} dB^i_s$ は確率積分の意味で well-defined な CLM である.

したがって β は (\mathcal{F}_t) -CLM である $(\leftarrow?)$. ここで

$$\begin{split} \left<\beta,\beta\right>_t &= \left<\sum_{i=1}^N \int_0^{\cdot} \frac{B_s^i}{|B_s|} dB_s^i, \sum_{i=1}^N \int_0^{\cdot} \frac{B_s^i}{|B_s|} dB_s^i \right>_t \\ &= \sum_{i=1}^N \left<\int_0^{\cdot} \frac{B_s^i}{|B_s|} dB_s^i, \int_0^{\cdot} \frac{B_s^i}{|B_s|} dB_s^i \right>_t \\ &= \sum_{i=1}^N \int_0^t \frac{(B_s^i)^2}{|B_s|^2} ds = \int_0^t \frac{|B_s|^2}{|B_s|^2} ds = t \end{split}$$

が成り立つことより、 β は 0 スタートの (\mathcal{F}_t)-BM である.

3.

$$|B_t|^2 = |x|^2 + 2 \int_0^t |B_s| d\beta_s + Nt$$

が成り立つことを示せ.

証明.

$$\frac{d\beta_t}{dB_t^i} = \sum_{i=1}^{N} \frac{d}{dB_t^i} \int_0^t \frac{B_s^i}{|B_s|} dB_s^i = \sum_{i=1}^{N} \frac{B_t^i}{|B_t|}$$

より $deta_t = \sum_{i=1}^N rac{B_t^i}{|B_t|} dB_t^i$ となるので

$$|B_t|^2 = |x|^2 + 2\sum_{i=1}^N \int_0^t B_s^i dB_s^i + Nt$$

$$= |x|^2 + 2\sum_{i=1}^N \int_0^t \frac{B_s^i}{|B_s|} |B_s| dB_s^i + Nt$$

$$= |x|^2 + 2\int_0^t |B_s| \sum_{i=1}^N \frac{B_s^i}{|B_s|} dB_s^i + Nt$$

$$= |x|^2 + 2\int_0^t |B_s| d\beta_s + Nt.$$

4. 以降, $x\neq 0$ を仮定する. $\varepsilon\in (0,|x|), T_{\varepsilon}=\inf\left\{t\geq 0:|B_t|\leq \varepsilon\right\}$ とする. ここで任意の a>0 に対し

$$f(a) = \begin{cases} \log a & (N=2), \\ a^{2-N} & (N \ge 3) \end{cases}$$

と定める. $f(|B_{t \wedge T_s}|)$ が CLM となることを示せ.

証明. (途中)

5. $R > |x|, S_R = \inf\{t \ge 0 : |B_t| \ge R\}$ とする.

$$P(T_{\varepsilon} < S_R) = \frac{f(R) - f(|x|)}{f(R) - f(\varepsilon)}$$

となることを示せ、 また $\varepsilon \to 0$ としたとき $P(T_\varepsilon < S_R) \to 0$ となることを確かめ、a.s. で任意の $t \ge 0$ に対し $B_t \ne 0$ となることを示せ、

証明. (途中)

6. a.s. で任意の t > 0 に対し

$$|B_t| = |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|}$$

となることを示せ.

証明. (途中)

7. $N\geq 3$ を仮定する. a.s. で $t\to\infty$ としたとき $|B_t|\to\infty$ となることを示せ(ヒント: $|B_t|^{2-N}$ が非負 supermartingale であることを確かめよ).

証明. (途中)

8. N=3 を仮定する. Gaussian density の形式を用いて, r.v. の族 $(|B_t|^{-1})_{t\geq 0}$ が L^2 -bdd. であることを確かめよ. また $(|B_t|^{-1})_{t\geq 0}$ が CLM であり, かつ true martingale でないことを示せ.

証明. (途中)