Отчёт по проверке гипотез

с использованием случайных графов

Часть I: Stable($\alpha = 1$) vs Normal(0, 1)

Хамаганов Ильдар

Введение

Целью данной части исследования было оценить, насколько топологические характеристики случайных графов позволяют различать выборки из двух распределений:

```
• H_0: Stable(\alpha = 1);
```

• H_1 : Normal(0, 1).

Использовались два типа графов:

KNN-граф: характеристика $T^{\text{knn}} = \max \deg(G)$ (максимальная степень).

Дистанционный граф: характеристика $T^{\text{dist}} = \chi(G)$ (хроматическое число).

1 Настройка окружения и код

Импорт и автозагрузка

```
%load_ext autoreload
%autoreload 2
import sys, os
project_root = os.path.abspath(os.path.join(os.getcwd(),'..'))
sys.path.append(project_root)

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm

from src.data_utils import sample_stable, sample_normal
from src.build_graph import build_knn_graph, build_distance_graph
from src.graph_analyzer import GraphAnalyzer
from src.monte_carlo import monte_carlo_simulation
from src.visualization import plot_distributions, plot_critical_region
```

Параметры экспериментов

• Размер выборки: n = 200.

• Число МС-итераций: $N_{\rm MC} = 500$.

• Параметры KNN-графа: $k \in \{3, 5, 7, 10, 12, 15, 20\}$.

• Параметры дистанционного графа: $d \in \{0.5, 1.0, 1.5, 2.0\}$.

2 Эксперимент 1: зависимость от «»

Описание Для каждой из двух распределений (Stable, Normal) вычисляли

$$\overline{T}^{\mathrm{knn}}(k) = \mathbb{E}\big[\mathrm{max}\deg(G)\big], \quad \overline{T}^{\mathrm{dist}}(d) = \mathbb{E}\big[\chi(G)\big].$$

Рис. 1: Слева: $\overline{T}^{\text{knn}} = \Delta(G)$ vs k. Справа: $\overline{T}^{\text{dist}} = \chi(G)$ vs d.

Результаты

Выводы

- **KNN-граф** (T^{knn}): кривая почти горизонтальна, разрыв между Stable и Normal менее 1%, распределения перекрываются.
- Дистанционный граф ($T^{
 m dist}$): $\chi(G)$ растёт с d, и для Normal значения значительно выше (до $\sim 140~{
 m vs} \sim 103~{
 m при}~d=2$). Статистика хорошо разделяет гипотезы.

3 Эксперимент 2: зависимость от k, d и n

Описание Исследовали:

- 1. Зависимость $\overline{T}^{\mathrm{knn}}(k)$ и $\overline{T}^{\mathrm{dist}}(d)$ при n=200.
- 2. Зависимость при фиксированных k = 10, d = 1.0 от $n \in \{100, 200, 300, 500\}$.

Сводные итоги

Таблица 1: Отношение $\overline{T}^{H_1}/\overline{T}^{H_0}$						
Параметр	KNN(k)	Dist (d)	Dist (n)			
Минимум	0.92×	1.47×	2.30×			
Максимум	$1.06 \times$	$2.80 \times$	$3.10 \times$			

Выводы

- $\Delta(G)$ увеличивается с k, n, но соотношение H_1/H_0 остаётся близким (0.9–1.06).
- $\chi(G)$ показывает высокую чувствительность: отношение до $3 \times$ при росте n.

4 Эксперимент 3: критические области и мощность

Условия n = 500, k = 10, d = 1.0, уровень значимости $\alpha = 0.05$.

Таблица 2: Критические значения и характеристики теста

Граф	CV	FPR	TPR	AUC
KNN (Δ) Distance (χ)			4.8% $100.0%$	0.545 1.000

Результаты

Выводы

- Тест на $\Delta(G)$ практически не различает гипотезы (мощность уровень).
- Тест на $\chi(G)$ обеспечивает идеальное разделение (AUC=1, мощность=100%).

5 Эксперимент 4: подбор параметров

Подход Кросс-валидацией 5-fold искали параметры, максимизирующие AUC при n=100:

- KNN: $k \in \{1, 3, 5, 7, 10\}, k^* = 10, AUC0.996.$
- Distance: $d \in \{0.1, 0.5, 1.0, 1.5, 2.0\}, d^* = 0.1, AUC=1.000.$

Итоги и выводы

- 1. **KNN-граф:**
 - Оптимальное $k^* = 10$.
 - При n = 100, k = 10 AUC0.996, но требуется точная настройка.

2. Дистанционный граф:

- Оптимальное $d^* = 0.1$.
- AUC=1.000 без значительной зависимости от n.

3. Рекомендации:

- Для надёжного критерия использовать $\chi(G)$ дистанционного графа с d=0.1.
- Для KNN-графа рекомендован $k=10,\, n\geq 100$ при контроле стабильности.
- Возможны дальнейшие улучшения: новые признаки (центральность, диаметр) и комбинированные критерии.