Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №4 дисциплины «Алгоритмизация» Вариант 7

Выполнил: Горбунов Данила Евгеньевич 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма обучения (подпись) Руководитель практики: Воронкин Р А., канд. технических наук, доцент кафедры инфокоммуникаций (подпись) Отчет защищен с оценкой _____ Дата защиты_____

Ход работы

1. Написал программу, которая подсчитывает время, затрачиваемое на выполнение алгоритма линейного поиска, предусмотрел варианты среднего (искомый элемент находится где-то в середине массива) и худшего (искомый элемент не найден) случая. (Рисунок 1)

```
| Control plane | Control | Control
```

Рисунок 1. Работа программы

```
#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;
int MaxSearch(int arr[], int n) {
  int max = arr[0];
  for (int i = 0; i < n; i++) {
    if (max < arr[i]) {
      max = arr[i];
    }
  }
  return max;</pre>
```

```
int MinSearch(int arr[], int n) {
  int min = arr[0];
  for (int i = 0; i < n; i++) {
     if (min > arr[i]) {
       min = arr[i];
   }
  return min;
int main() {
  srand(time(0));
  int sizes[50];
  sizes[0] = 100;
  for (int i = 1; i < 50; i++) {
     sizes[i] = sizes[i - 1] + 100;
  cout << "Arr size\ttime (max)\tmax\t\ttime (min)\tmin\n";</pre>
  for (int i = 0; i < sizeof(sizes) / sizeof(sizes[0]); i++) {
     const int size = sizes[i];
     int arr[10001];
     int result1, result;
     for (int i = 0; i < size; i++) {
       arr[j] = rand() \% 1000;
     int min = arr[0];
     int max = arr[0];
     double MaxTime = 0;
     double MinTime = 0;
     for (int i = 0; i < 50; i++); {
       clock_t start = clock();
       for (int j = 0; j < 100000; j++) {
          result = MaxSearch(arr, size);
        clock_t end = clock();
       MaxTime += double(end - start) / CLOCKS_PER_SEC;
        start = clock();
        for (int j = 0; j < 100000; j++) {
          result1 = MinSearch(arr, size);
       end = clock();
       MinTime += double(end - start) / CLOCKS_PER_SEC;
     cout << size << "\t\t" << MaxTime / 50 << " sec\t" << result << "\t\t" << MinTime / 50 << " sec\t" << result 1 <<
"\n";
  return 0;
}
```

Таблица 1. Время работы алгоритмов поиска минимума и максимума

Размер массива (n)	Время для поиска максимума (сек)	Время для поиска минимума (сек)			
100	0,0000033000	0,0000028000			
200	0,0000047000	0,0000062000			

300	0,0000073000	0,000080000					
400	0,0000111000	0,0000127000					
500	0,0000114000	0,0000112000					
600	0,0000152000	0,0000152000					
700	0,0000196000	0,0000186000					
800	0,0000225000	0,0000216000					
900	0,0000223000	0,0000200000					
1000	0,0000272000	0,0000250000					
1100	0,0000304000	0,0000247000					
1200	0,0000275000	0,0000268000					
1300	0,0000305000	0,0000287000					
1400	0,0000317000	0,0000315000					
1500	0,0000343000	0,0000360000					
1600	0,0000352000	0,0000351000					
1700	0,0000376000	0,0000385000					
1800	0,0000401000	0,0000398000					
1900	0,0000425000	0,0000426000					
2000	0,0000444000	0,0000450000					
2100	0,0000475000	0,0000484000					
2200	0,0000488000	0,0000496000					
2300	0,0000514000	0,0000516000					
2400	0,0000530000	0,0000523000					
2500	0,0000572000	0,0000570000					
2600	0,0000589000	0,0000598000					
2700	0,0000601000	0,0000604000					
2800	0,0000636000	0,0000620000					
2900	0,0000640000	0,0000635000					
3000	0,0000691000	0,0000671000					
3100	0,0000691000	0,0000696000					
3200	0,0000705000	0,0000710000					
3300	0,0000759000	0,0000728000					
3400	0,0000760000	0,0000757000					
3500	0,0000797000	0,0000766000					
3600	0,0000801000	0,0000793000					
3700	0,0000845000	0,0000821000					
3800	0,0000849000	0,0000837000					
3900	0,0000868000	0,0000885000					
4000	0,0000878000	0,0000893000					
4100	0,0000926000	0,0000892000					
4200	0,0000933000	0,0000930000					
4300	0,0000950000	0,0000956000					
4400	0,0000991000	0,0000973000					
4500	0,0000981000	0,0000997000					
4600	0,0001047000	0,0001016000					
4700	0,0001034000	0,0001054000					
4800	0,0001071000	0,0001104000					
4900	0,0001097000	0,0001084000					

5000	0,0001124000	0,0001100000
------	--------------	--------------

2. Перенес данные по алгоритму поиска максимума в таблицу Excel и произвел необходимые расчеты.

Рисунок 2. Расчет линейной зависимости

3. Построил график линейной зависимости времени выполнения алгоритма поиска максимума в массиве от размера массива.

Рисунок 3. График для поиска максимума

4. Произвел аналогичные расчеты для получения необходимой функции.

Α	В	C	D	E	F	G	н	1.0	J	K	L	M	N
	n t	ime*1000 ti	me	n*n	t*t	time*n	Y						
	100	0,028	0,0000028000	10000	0,00000000000784	0,00028	0,000002214110968			207850000	45500		4,6179900000000
	200	0,062	0,0000062000	40000	0,00000000003844	0,00124	0,000004436072577			45500	50		0,001010600
	300	0,08	0,0000800000	90000	0,00000000006400	0,0024	0,000006658034185						
	400	0,127	0,0000127000	160000	0,00000000016129	0,00508	0,000008879995794			6,00799E-09	-5,5E-06	a=	2,22196E-0
	500	0,112	0,0000112000	250000	0,00000000012544	0,0056	0,000011101957403			-5,46727E-06	0,02498	b=	-7,85064E-0
	600	0,152	0,0000152000	360000	0,00000000023104	0,00912	0,000013323919012						
	700	0,186	0,0000186000	490000	0,00000000034596	0,01302	0,000015545880621						
	800	0,216	0,0000216000	640000	0,00000000046656	0,01728	0,000017767842230						
	900	0,2	0,0000200000	810000	0,00000000040000	0,018	0,000019989803839						
	1000	0,25	0,0000250000	1000000	0,00000000062500	0,025	0,000022211765448						
	1100	0.247	0.0000247000	1210000	0.00000000061009	0.02717	0.000024433727057						
	1200	0.268	0.0000268000	1440000	0.00000000071824	0.03216	0.000026655688666						
	1300	0.287	0.0000287000	1690000	0.00000000082369	0.03731	0.000028877650275						
	1400	0.315	0.0000315000	1960000	0.00000000099225	0.0441	0.000031099611884						
	1500	0.36	0.0000313000	2250000	0,00000000033223	0.054	0.000033321573493						
	1600	0.351	0.0000351000	2560000	0.00000000123201	0.05616	0.000035543535102						
	1700	0.385	0.0000331000	2890000	0.00000000123201	0.06545	0.000033343333102						
	1800	0,398	0.0000398000	3240000	0.00000000148223	0.07164	0.000037703450711						
	1900	0,426	0.0000338000	3610000	0.00000000138404		0.000039987438320						
	2000	0,426	0.0000420000	4000000	0.00000000181476	0.09	0.000042203413323						
	2100	0.484	0.0000484000	4410000	0.00000000202300	0.10164	0,000044451381557						
	2200	0,484	0,0000484000	4840000			0,000048875304755						
			-,		0,00000000246016	-,	-,						
	2300	0,516	0,0000516000	5290000	0,00000000266256	0,11868	0,000051097266364						
	2400	0,523	0,0000523000	5760000	0,00000000273529	0,12552	0,000053319227973						
	2500	0,57	0,0000570000	6250000	0,00000000324900	0,1425	0,000055541189582						
	2600	0,598	0,0000598000	6760000	0,00000000357604	0,15548	0,000057763151191						
	2700	0,604	0,0000604000	7290000	0,00000000364816	0,16308	0,000059985112800						
	2800	0,62	0,0000620000	7840000	0,00000000384400	0,1736	0,000062207074409						
	2900	0,635	0,0000635000	8410000	0,00000000403225	0,18415	0,000064429036018						
	3000	0,671	0,0000671000	9000000	0,00000000450241	0,2013	0,000066650997627						
	3100	0,696	0,0000696000	9610000	0,00000000484416	0,21576	0,000068872959236						
	3200	0,71	0,0000710000	10240000	0,00000000504100	0,2272	0,000071094920845						
	3300	0,728	0,0000728000	10890000	0,00000000529984	0,24024	0,000073316882454						
	3400	0,757	0,0000757000	11560000	0,00000000573049	0,25738	0,000075538844063						
	3500	0,766	0,0000766000	12250000	0,00000000586756	0,2681	0,000077760805672						
	3600	0,793	0,0000793000	12960000	0,00000000628849	0,28548	0,000079982767280						
	3700	0,821	0,0000821000	13690000	0,00000000674041	0,30377	0,000082204728889						
	3800	0,837	0,0000837000	14440000	0,00000000700569	0,31806	0,000084426690498						
	3900	0,885	0,0000885000	15210000	0,00000000783225	0,34515	0,000086648652107						
	4000	0,893	0,0000893000	16000000	0,00000000797449	0,3572	0,000088870613716						
	4100	0,892	0,0000892000	16810000	0,00000000795664	0,36572	0,000091092575325						
	4200	0,93	0,0000930000	17640000	0,00000000864900	0,3906	0,000093314536934						
	4300	0,956	0,0000956000	18490000	0,00000000913936	0,41108	0,000095536498543						
	4400	0,973	0,0000973000	19360000	0,00000000946729	0,42812	0,000097758460152						
	4500	0,997	0,0000997000	20250000	0,00000000994009	0,44865	0,000099980421761						
	4600	1,016	0,0001016000	21160000	0,0000001032256	0,46736	0,000102202383370						
	4700	1,054	0,0001054000	22090000	0,00000001110916	0,49538	0,000104424344979						
	4800	1,104	0,0001104000	23040000	0,00000001218816	0,52992	0,000106646306588						
	4900	1,084	0,0001084000	24010000	0,00000001175056	0,53116	0,000108868268197						
	5000	1,1	0,0001100000	25000000	0,00000001210000	0,55	0,000111090229806						
mma	45500	10.106	0.0010106000	207850000	0.00000010262282	4.61799	,						

Рисунок 4. Расчет функции линейной зависимости для поиска минимума

5. Построил график линейной зависимости времени выполнения алгоритма поиска минимума в массиве от размера массива.

Рисунок 6. График для поиска минимума

6. Рассчитал коэффициенты парной корреляции для поиска максимума $(r=0,999905146) \ \text{и минимума} \ (r=0,999873533).$

Рисунок 7. Расчет коэффициента парной корреляции для поиска максимума

Рисунок 8. Расчет коэффициента парной корреляции для поиска минимума

Вывод: в ходе выполнения лабораторной работы был проведен анализ алгоритмов поиска минимума и максимума в массиве. Поскольку эти алгоритмы подразумевают перебор всех членов массива, можно предположить, что время работы алгоритма напрямую зависит от размера массива, что было подтверждено экспериментальным и статистическим методами. Из полученных результатов, а также из расчета коэффициента парной корреляции, можно сделать вывод о том, что данные алгоритмы действительно линейно зависят от размера массива, в котором производится поиск.