Stanford CS229 ps0 sol

Shuifan Wang

June 2025

1 Gradients and Hessians

(a) Note that A is symmetric, we have

$$\frac{\partial}{\partial x_i} \frac{1}{2} x^T A x = \frac{\partial}{\partial x_i} \left(\sum_{j \neq i} (a_{ij} + a_{ji}) x_i x_j + a_{ii} x_i^2 \right) / 2 = \sum_{j=1}^n a_{ij} x_j,$$

$$\nabla f(x) = Ax + b.$$

(b)
$$\frac{\partial}{\partial x_i} g(h(x)) = \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x_i} = g'(h(x)) \frac{\partial h(x)}{\partial x_i},$$

$$\nabla f(x) = g'(h(x)) \nabla h(x).$$

(c)
$$\frac{\partial^2}{\partial x_i^2} f(x) = a_{ii}, \frac{\partial^2}{\partial x_i x_i} f(x) = \frac{a_{ij} + a_{ji}}{2} = a_{ij}, \nabla^2 f(x) = A$$

(d)
$$\nabla f(x) = q'(a^T x)a.$$

$$\frac{\partial^2}{\partial x_i^2} f(x) = \frac{\partial}{\partial x_i} g'(a^T x) a_i = g''(a^T x) a_i^2, \frac{\partial^2}{\partial x_j x_i} f(x) = \frac{\partial}{\partial x_j} g'(a^T x) a_i = g''(a^T x) a_i a_j,$$

$$\nabla^2 f(x) = g''(a^T x) a a^T.$$

$\mathbf{2}$ Positive definite matrices

- (a) Since $x^Tzz^Tx = x^Tz(x^Tz)^T = (x^Tz)^2 \ge 0$ for any $x, A = zz^T$ is positive
- (b) $\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\} = \{x \in \mathbb{R}^n : zz^Tx = 0\} = \{x \in \mathbb{R}^n : z^Tx = 0\},\$
- $\operatorname{rank}(A) = n \dim(\mathcal{N}(A)) = 1$ (c) Since $BAB^T = BA^TB^T = (BAB^T)^T$, B^TAB is symmetric. Then $x^TBAB^Tx = (B^Tx)^TA(B^Tx) \ge 0$ and BAB^T is PSD.

3 Eigenvectors, eigenvalues, and the spectral theorem

(a)
$$A[t^{(1)}\cdots t^{(n)}] = AT = T\Lambda = [t^{(1)}\cdots t^{(n)}]\operatorname{diag}(\lambda_1,\ldots,\lambda_n),$$

So that $At^{(i)} = \lambda_i t^{(i)}, i = 1, \dots, n$ and they form eigenvalues/eigenvector pairs. (b) Since $U^T U = I, U^{-1} = U^T$. Follow (a) we can derive the result. (c) Since $Au^{(i)} = \lambda u^{(i)}, A$ is PSD, $\lambda_i = \lambda_i (u^{(i)})^T u^{(i)} = (u^{(i)})^T Au^{(i)} \geq 0$.