Data Mining & Machine Learning

CS37300 Purdue University

Sep 25, 2023

Today's topics

Kernels and Kernel-SVM

Nonlinear Decision Boundaries

Linear separators are simple

But there are many scenarios that are separable, only non-linearly

We want to learn these with optimization based ML (SVM)

Learning Nonlinear Decision Boundaries

- We've already seen some nonlinear separators:
 - Decision Trees, KNN
- Question: How can we learn this example using SVM?

Example:

Learning Nonlinear Decision Boundaries

- We've already seen some nonlinear separators:
 - Decision Trees, KNN
- Question: How can we learn this example using SVM?
 - Map the examples into a higher-dimensional space and learn a linear separator in that space

Example:

Re-represent each $\underline{x} = (x_1, x_2)$ as 3-dimensional vector $\phi(\underline{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

Representing Nonlinear Decision Boundaries

- General strategy: consider a function: $\phi(x) \in \mathbb{R}^N$
 - N may be large, or even infinite
- Then learn a linear separator in the φ space:

$$\hat{h}(x) = \operatorname{sign}(w^{\top}\phi(x)), \quad \text{where } w \in \mathbb{R}^N$$

Representing Nonlinear Decision Boundaries

- General strategy: consider a function: $\phi(x) \in \mathbb{R}^N$
 - N may be large, or even infinite
- Then learn a linear separator in the φ space:

$$\hat{h}(x) = \operatorname{sign}(w^{\top}\phi(x)), \text{ where } w \in \mathbb{R}^N$$

$$\hat{w} = \underset{w \in \mathbb{R}^N: ||w|| = 1}{\operatorname{argmax}} \quad \min_{1 \le i \le n} y_i \left(w^\top \phi(x_i) \right)$$

```
Minimize ||w||^2
subject to y_i(w^{\top}\phi(x_i)) \ge 1, \ \forall i: 1 \le i \le n
```

Representing Nonlinear Decision Boundaries

- General strategy: consider a function: $\phi(x) \in \mathbb{R}^N$
 - N may be large, or even infinite
- Then learn a linear separator in the φ space:

$$\hat{h}(x) = \operatorname{sign}(w^{\top}\phi(x)), \text{ where } w \in \mathbb{R}^N$$

- Two concerns:
 - 1. Computation and memory required to represent $\phi(x)$, w
 - 2. Dimension of linear separators on \mathbb{R}^N is N.
 - → Concerns about overfitting

Today's lecture is mostly about the first concern. Solution: Kernels

The Dual Form of the SVM Optimization Problem

$$\hat{w} = \underset{w:||w||=1}{\operatorname{argmax}} \quad \min_{1 \le i \le n} y_i \left(w^\top x_i \right)$$

Recall: The SVM classifier is the unique solution to a quadratic program:

Minimize
$$||w||^2$$

subject to $y_i(w^\top x_i) \ge 1, \ \forall i: \ 1 \le i \le n$

We can re-express this in Lagrangian dual form:

$$\hat{w} = \sum_{i=1}^{n} \alpha_i y_i x_i$$

where $\alpha_1, \ldots, \alpha_n$ are solutions to:

Maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j x_i^{\top} x_j$$
subject to
$$\alpha_i \ge 0, \ \forall i: \ 1 \le i \le n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

SVM with high-dim mapping

$$\hat{w} = \sum_{i=1}^{n} \alpha_i y_i \phi(\mathbf{x}_i)$$

where $\alpha_1, \ldots, \alpha_n$ are solutions to:

Maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} \phi(\boldsymbol{x_{i}})^{\top} \phi(\boldsymbol{x_{j}})$$
subject to $\alpha_{i} \geq 0, \ \forall i : \ 1 \leq i \leq n$
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

- Notice training only uses ϕ when computing inner product $\phi(x_i)^\top \phi(x_j)$
- Instead of starting by defining ϕ , we could start by defining a function $K(x_i, x_j)$ that computes an inner product, without computing ϕ : $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
- Kernel: way to compute inner products without computing $\phi(x)$!

SVM with high-dim mapping

$$\hat{w} = \sum_{i=1}^{n} \alpha_i y_i \phi(x_i)$$

where $\alpha_1, \ldots, \alpha_n$ are solutions to:

Maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} \phi(\boldsymbol{x_{i}})^{\top} \phi(\boldsymbol{x_{j}})$$
subject to $\alpha_{i} \geq 0, \ \forall i : 1 \leq i \leq n$
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

Notice training only uses
 ψ when computing inner product

$$\overline{\phi(x_i)}^{\top}\phi(x_j)$$

And the classifier also uses an inner product (no need to compute w)

$$h_{\hat{w}}(x) = \operatorname{sign}(\hat{w}^{\top} \phi(x)) = \operatorname{sign}\left(\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})\right)^{\top} \phi(x)\right) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})^{\top} \phi(\mathbf{x})\right)$$

Replace all of these with

$$K(x_i, x) = \phi(x_i)^{\top} \phi(x)$$

Kernel SVM

Training time:

Solve for $\alpha_1, \ldots, \alpha_n$:

Maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} \boldsymbol{K}(\boldsymbol{x_{i}}, \boldsymbol{x_{j}})$$
subject to
$$\alpha_{i} \geq 0, \ \forall i : \ 1 \leq i \leq n$$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

- Test time:
- Classify a new point x with

$$\hat{h}(x) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \boldsymbol{K(x_i, x)}\right)$$

Kernels

Example:

Quadratic kernel:
$$K(\underline{u},\underline{v}) = (\underline{u}^{\top}\underline{v} + 1)^2$$

For $\underline{x} \in \mathbb{R}^d$, implicitly computes an inner product in $\frac{1}{2}d(d-1) + 2d + 1$ dim e.g., For $\underline{x} \in \mathbb{R}^2$, implicitly defined ϕ :

$$\phi(\underline{x}) = \left[1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2\right]^{\top}$$

Check: $\phi(\underline{u})^{\top}\phi(\underline{v})$

$$= \left[1, \sqrt{2}u_1, \sqrt{2}u_2, u_1^2, u_2^2, \sqrt{2}u_1u_2\right] \left[1, \sqrt{2}v_1, \sqrt{2}v_2, v_1^2, v_2^2, \sqrt{2}v_1v_2\right]^{\top}$$

$$= 1 + 2u_1v_1 + 2u_2v_2 + u_1^2v_1^2 + u_2^2v_2^2 + 2u_1u_2v_1v_2$$

$$= (1 + u_1v_1 + u_2v_2)^2 = (1 + \underline{u}^{\top}\underline{v})^2 = K(\underline{u}, \underline{v})$$

The point is that we can compute this higher-dim inner product just by evaluating K(u,v): no need to compute φ

Kernels

- More Examples:
 - Polynomial kernel: $K(\underline{u},\underline{v}) = (\underline{u}^{\top}\underline{v} + 1)^p$
 - Implicitly computes an inner product in $\sim d^p$ dimensions

Gaussian kernel:

$$K(\underline{u},\underline{v}) = e^{-\frac{\|\underline{u} - \underline{v}\|^2}{2\sigma^2}}$$

- Implicitly computes an inner product in infinite dimensions
- Remark: This is the most popular kernel in practice

What are "Legal" Kernels?

- A kernel $K(\cdot,\cdot)$ is a legal definition of an inner product
- Technically, this is called a Mercer kernel
 - A kernel should be a symmetric function: K(u,v)=K(v,u)
 - A kernel should also be positive semi-definite: namely,
 - \circ For any set of data points $x_1, ..., x_n$
 - o And for any values $a_1, ..., a_n \in \mathbb{R}$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j) \ge 0$$

$$K(u,v) = \phi(u)^{\top} \phi(v)$$

In other words: K is a valid kernel

Example: Soft-SVM with Gaussian Kernel

A common choice is to use the Gaussian kernel

$$K(\underline{u},\underline{v}) = e^{-\frac{\|\underline{u} - \underline{v}\|^2}{2\sigma^2}}$$

- σ called the **bandwidth**
- It controls smoothness of the boundary
- Gives a notion of model complexity:

• large $\sigma \to \text{simple boundaries}$, small $\sigma \to \text{complex boundaries}$

What about overfitting?

• If we're using such a high-dimensional representation, won't the dimension be large? Doesn't this lead to overfitting?

 Margin: If we can find a solution with large margin, we can still avoid overfitting.

This is true even with kernels

What about overfitting?

Margin for kernel SVM:

geometric margin of classifier w:

$$\gamma = \min_{1 \le i \le n} y_i \left(\frac{w^{\top}}{\|w\|} \phi(x_i) \right)$$

Recall: The \hat{w} solution of SVM primal problem satisfies $||\hat{w}|| = \frac{1}{\gamma}$

For kernel SVM, this means

$$\frac{1}{\gamma^2} = \|\hat{w}\|^2 = \hat{w}^\top \hat{w} = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j K(x_i, x_j) \qquad \text{Solve for } \gamma \text{ to compute the margin}$$

So we can also calculate the margin without computing ϕ , using K

Summary

- Kernel methods are a convenient family of algorithms
- They allow us to specify a non-linear representation for the classifier just by providing a kernel function, and the rest is automatic
- In this sense, they are "plug-and-play": very easy to use
- We need to be careful that the implicit high-dimensional representation doesn't lead to overfitting
- If the solution has large margin, it can avoid overfitting
- Recall that SVM is designed to maximize the margin, so it is well-suited to this type of guarantee

Gradient descent

SEARCH/OPTIMIZATION

Logistic regression learning

$$\begin{aligned} \min imize & \sum_{i=1}^{N} (-y_i w^T x_i + log(1 + e^{w^T X_i})) \\ & \frac{dlogL(w|D)}{dw_j} = \sum_{i=1}^{N} (-y_i x_{ij} + \frac{1}{1 + e^{w^T X_i}} e^{w^T X_i} i x_{ij}) \\ & = \sum_{i=1}^{N} (-y_i + \frac{1}{1 + e^{w^T X_i}} e^{w^T X_i}) x_{ij} \\ & = \sum_{i=1}^{N} (-y_i + P(y_i = 1|w)) x_{ij} \end{aligned}$$

Convex!

But no closed form solution!

Convex optimization problems

```
minimize f(x)
subject to x \in C
```

- x is the optimization value (e.g., ...eters)
 f (e.g., score function) is a convex function
 C is a convex set (e.g., constraints on model parameters)
- For convex optimization problems, all locally optimal points are globally optimal

Convex functions

▶ In graph of convex function *f*, the line connecting two points must lie above the function:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
 for all $0 \le \alpha \le 1$

▶ Practical test for convexity: a twice differentiable function f of a variable is convex on an interval if an only if for any x in the interval: $f''(x) \ge 0$

- Strictly convex if f''(x) > 0
- Sum of convex functions is convex; max of convex functions is convex

Convex set

• A set C is convex if for any $x, y \in C$ and any θ with $0 \le \theta \le 1$ we have

$$\theta x + (1 - \theta)y \in C$$

Concave vs convex

Maximizing a concave function is equivalent to minimizing a convex function

Solve convex optimization problem

- Minimize a convex function without any constraints on the variables
 - ▶ If f'(x)=0 then x is a stationary point of f
 - If f'(x)=0 and f''(x) is not negative then x is a local minimum of f (for convex function, this is also a global minimum)
 - ▶ If f is a strictly convex function, any stationary point of *f* is the unique global minimum of f

Gradient descent

For some convex functions, we may be able to take the derivative, but it may be difficult to directly solve for parameter values

- ► Solution:
 - Start at some value of the parameters
 - Take derivative and use it to move the parameters in the direction of the negative gradient
 - Repeat until stopping criteria is met (e.g., gradient close to 0)

Gradient Descent Rule:

 $\underline{\mathbf{w}}_{\text{new}} = \underline{\mathbf{w}}_{\text{old}} - \boldsymbol{\eta} \Delta (\underline{\mathbf{w}})$

where

 Δ (w) is the gradient and η is the learning rate (small, positive)

Notes:

- 1. This moves us downhill in direction Δ (w) (steepest downhill direction)
- 2. How far we go is determined by the value of η

Slides adapted from CS175, UCIrvine, Padhraic Smyth

Slides adapted from CS175, UCIrvine, Padhraic Smyth

Slides adapted from CS175, UCIrvine, Padhraic Smyth

