date: wednesday, march 13, 2024

Fields from Integral Domains

Goal of Ch. 18: Look at properties of integral domains.

Main example: Z

Today: Given an integral domain D, we will construct a field F_D .

Main example: making $\mathbb Q$ from $\mathbb Z$ Recall: $\mathbb D$ an integral domain => $\mathbb D$ is commutative, has $1_{\mathbb D}$, and no zero divisors.

Let $S=\{(a,b)|a,b\in D$, and $b\neq 0$ }. Define an equivalence relation \sim on $S:(a,b)\sim(c,d)<=>ad=bc$.

Lemma: \sim is an equivalence relation.

Proof (transitive) Suppose $(a,b)\sim(c,d)$ and $(c,d)\sim(e,f)$. So ad=bc and

cf=de. So adf=bcf and bcf=bde (note b#0, f#0).
So adf=bde <=> (af-be)d=0. Since d#0 and D an
integral domain, af-be=0. Thus af=be so (a,b)~(e,f).
(reflexive) (a,b)~(a,b) since ab=ba due to D commutative.
(symmetric) Suppose (a,b)~(c,d). So ad=bc. By commutativity,
cb=da. So (c,d)~(a,b).

cb=da. So (c,d) \sim (a,b).

Def^a: [a,b]= $\{(c,d)\in S|(a,b)\sim(c,d)\}$ equivalence class of (a,b).

Def²: $F_0 = \{[a,b]|(a,b)\in S\}$ ²set of all equivalence classes eq. When $D=\mathbb{Z}$, $S=\{(a,b)|a,b\in \mathbb{Z}$, $b\neq 0\}$.

Consider
$$(2.7) \in S$$
. $[2.7] = \frac{2}{2}(c,d)[(2.7) \sim (c,d)]_s = \frac{2}{2}(c,d)[2d=7c]_s = \frac{2}{3} \in \mathbb{Q}[\frac{2}{3} = \frac{2}{3}]_s$ i.e. When we write $\frac{2}{3} \in \mathbb{Q}$, we mean "all ways" to write $\frac{2}{3} \in \mathbb{Q}[\frac{2}{3} = \frac{2}{3}]_s$. We put an addition and multiplication on F_o .

$$[a,b] + [c,d] = [ad+bc,bd]_s$$

$$[a,b][c,d] = [ac,bd]_s$$
Lemma: Both operations well defined.

$$\frac{Proof}{2} \text{ (addition in text)}_s$$
Suppose $[a,b] = [a',b']$ and $[c,d] = [c',d']$. Want to show $[a,b][c,d] = [a',b'][c',d']$
i.e. $[a,b] = [ac',b'd']$.

Given $ab' = a'b$ and $a'b = a'b$ and $a'b$

Suppose $[a,b] \in F_D$ and $a \neq 0$. Then $[b,a] \in F_D$ and this is the inverse since [a,b] [b,a] = [ab,ba] = [2024,2024] = [1,1]. Exercise: Show [a,b] + ([c,d] + [e,f]) = ([a,b] + [c,d]) + [e,f].

Def¹: The field F_D is called the field of fractions of D.

Theorem: Let D be an integral domain. Then D can be embedded into F_D (<=> there exists an injective homomorphism $f:D \rightarrow F_D$).

(ie. F_D has a subring isomorphic to D)

Proof
Let $D' = \mathcal{E}[d,1] | d \in D\mathcal{S} \subseteq F_D < -\text{show } D' \text{ is a subring.}$ Define a map $\Psi: D \to D' \subseteq F_D$ given by $\Psi(d) = [d,1]$. It is a ring homomorphism since $\Psi(d,+d_2) = [d,+d_2,1]$

= $[d_1, 1] + [d_2, 1]$ = $\Psi(d_1) + \Psi(d_2)$

 $= \begin{bmatrix} \text{d.,1} \end{bmatrix} \begin{bmatrix} \text{d.2,1} \end{bmatrix} \\ = \text{P(d.)} \text{P(d.)}$ The map is injective and surjective on D'.

Note: Technically, Z is not a subring of D. But Q has a subring isomorphic to Z.

We are sloppy and write $\mathbb{Z} \subseteq \mathbb{Q}$. $\mathbb{Z} \sim \mathbb{Z}' = \frac{2^2}{2} | \text{ae} \mathbb{Z}_3^2 \subseteq \mathbb{Q} = F_{\mathbb{Z}}$

 $\Phi(d,d_2) = [d,d_2,1]$

Theorem: Suppose E is a field that contains an integral domain D.

Then, there exists a subfield E'⊆E such that Fo≏E'⊆E.

Then, there exists a subfield $E'\subseteq E$ such that $F_{D} \cong E'\subseteq F_{D}$

