

	II Solving A= 0 by elimination
	In this section, we will see that elimination can be applied to
	solve problems of the form Ax=0 even if A is an mxn
·	making with my n (i.e. not square), and even if A has
	fewer than a pivota.
	The steps are very similar to what we have seen previously:
	A) Forward elimination to born A into a matrix U which is the man equivalent of a triangular matrix, called an echelon matrix
	men equivalent of a triangular matrix, called an echelon matrix
	B) Turn V into a matrix R which has I's as proto, called
	a reduced row echelon matrix (this step was not necessary
	when we were solving systems previously. It still is not something
	that must be done from a mathematical point of view, but
	it significantly simplifies the analyse.
	C) Solve R2 = 0 by back substitution to find i.
	1) Echelan matries
	Here is how it works in practice. Consider the matrix
	4 [1 2 3 4]
	2 4 5 1
	5 10 11 -8
	Low 2 - 2 fow leads to

[1234]	
0 0 -1 -7	
5 10 11 -8	
Row 3-5 Row leads to:	
[1234	
0 0 -1 -7	
100 -4 -28	
We see that the second column has a zero in the privat	
portion looking below we also hind a zero: row exchanges	
will not change the silvation.	
The Edea here is lo forge ahead and eliminate	
in the third column. from 3-4 how 2 leads to	
1 2 3 4	
0 0 -1 -7 - 0	
- U is the equivalent of an apper trangular matrix	
tor a rectangular nation. Note its storicrose structure	
O is called an echelon natrix.	
Note that the fourth row also has a zero in the	
pirot position the last row gives the equation 0=0	
which is automatically satisfied when the first two	er kan her der der der stat i St. stat i Saat of Armenhere er kan de produktion der St. St. St. St. St. St. St.
are satisfied this was tar from abused in the original	

Copy described	form An = 0, but be comes clear after climination.
	How do we construct any solution A= 0 from the form
	How do we construct any solution $4\vec{x} = \vec{0}$ from the form $U\vec{x} = \vec{0}$? The idea is back substitution, with a little
	twist. Fist, the twist: identify the columns which have pivots, and there which do not.
	girots, and those which do not.
	In our case, columns I and 3 have piroto, columns 2 and
	4 do not If = (2, 22, 23, 24) is the inknown vector.
	we then say that 2, and 2, are pivot variables
	we then say that 2, and 2, are pivot variables and 22 and 24 are free variables
	We get the full solution to AZ- o by choosing
	achitrarily two pairs of numbers for (20, 74). The
	$G' = d \cdot G' = G \cdot G$
	By back substitution, we then obtain the privat variables and re-
	x, and r.
	For (x, x4) = (1,0), the second row -x3-7x4=0 gives x5=
	and the first row, x, + 2x2 + 3x3 + 4x4 = 0 gives x, = -2
	For $(x_0, x_1) = (0, 1)$, the second can gives $x_0 = -7$ and
	the first row gives x = 17
	So [-2] and [17] are two special solutions.
	0 -7
	What is important is that every solution to Aze- 0 is a
	linear combination of the special solutions

The complete solution in our case therefore is:	
V (-2) 7 (17 17 x4-2x2)	1
72	
-7 -7 xu	
10 1 1 1 1 1 1 1 1	
4 4	
special special complete	
solution solution solution	
S ₁ S ₂	
This describes the subspace of R' spanned	
0 1	
Let us emphasize the main point once more:	
every column with a zero in the pivot position	
is called a free column. Every free column	
leads to a special solution, which we can obtain	
by sething the free variable corresponding to that	
column to I and the other free variables to	
O. The remaining uniables are obtained by back	
sabath hitron.	
We are now ready to learn the tral trick,	
which makes back substitution even easier.	
	£

	2) The reduced row echelon matrix R
	The idea is to use linear operations to further simplify
	the echelon matrix U. Specifically, one constructs the
	the echelan matrix U. Specifically, one constructs the reduced row echelan matrix R so that the private equal !
	and so that the matrix has zeros above the private
	SO CHAIR THE MAIS RESIDENCE THE MAISTER
	We had U= [1 2 3 4]
	0 0 -1 - 7
	0000
	Dividing the secrend row by -1, this becremes 1234
	0017
	0000
	The private are now all is. To put a zero above the second private, we do Row 1-3 Row 2, to find
	sement price, we do kow 1- 3 Row 2, he had
	tow reduced 120-17
	R = rref(A) - 0 0 1 7
	11 (111 (111)
·	Note: If A is invertible, ref (A) = I (identify matrix)
1	Now, A= 0 is equivalent to R=0 since linear opera
	Now, $A \stackrel{?}{\times} = \stackrel{?}{O}$ is equivalent to $R \stackrel{?}{\times} = \stackrel{?}{O}$ since linear operations on the rows do not change $\stackrel{?}{O}$, the right bound side.
	R is very convenient for the countriction of the special solutions:
	solutions:

