Online learning in repeated matrix games

Yoav Freund

February 24, 2020

Based on "Adaptive Game Playing Using Multiplicative Weights" Freund and Schapire.

Outline

Repeated Matrix Games

Specific games

Minmax vs. Regret

Fictitious play

Strategy using Hedge

The basic analysis

Proof of minmax theorem

Approximately solving games Fixed Learning rate Variable learning rate

Zero sum games in matrix form

- Game between two players.
- Defined by n x m matrix M
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- ▶ Row player gains $M(i,j) \in [0,1]$
- Column player looses M(i,j)
- Game repeated many times.

Pure vs. mixed strategies

- Choosing a single action = pure strategy.
- Choosing a Distribution over actions = mixed strategy.
- Row player chooses dist. over rows P
- Column player chooses dist. over columns Q
- ► Row player gains M(P, Q).
- ► Column player looses M(P, Q).

Mixed strategies in matrix notation

- ▶ Q is a column vector. P^T is a row vector.
- $\mathbf{M}(\mathbf{P}, \mathbf{Q}) = \mathbf{P}^T \mathbf{M} \mathbf{Q} = \sum_{i=1}^n \sum_{j=1}^m \mathbf{P}(i) \mathbf{M}(i, j) \mathbf{Q}(j)$

The minmax Theorem

When using pure strategies, second player has an advantage.

John von Neumann, 1928.

$$\min_{\textbf{P}} \max_{\textbf{Q}} \textbf{M}(\textbf{P},\textbf{Q}) = \max_{\textbf{Q}} \min_{\textbf{P}} \textbf{M}(\textbf{P},\textbf{Q})$$

In words:

- for pure strategies, choosing second can be better.
- ▶ for mixed strategies, choosing second gives no advantage.
- ► There are min-max optimal mixed Strategies: P*, Q*
- $ightharpoonup M(\mathbf{P}^*, \mathbf{Q}^*)$ is the value of the game.

Online Learning as matrix game

- ► Row = action
- Column = iteration.
- Player chooses mixed strategy P_t
- ▶ adversary chooses pure strategy $\mathbf{Q}_t = \langle \mathbf{0}, \cdots, \mathbf{0}, \mathbf{1}, \mathbf{0}, \cdots, \mathbf{0} \rangle$ the 1 is at position t
- ► Goal minimize regret: $\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}^*, \mathbf{Q}_t)$

	<i>t</i> = 1	<i>t</i> = 2	
expert1	0	1	
expert2	0.2	0.1	
expert3	0.5	0.2	
Master	0.35	0.13	

Boosting as a matrix game (1)

- Row = example (x, y)
- Column = Weak Rule ht
- ▶ Matrix entry for (x, y), h_t is 0 if $h_t(x) = y$, 1 $h_t(x) \neq y$

	h_1	h_2	
example1	0	1	
example2	1	0	
example3	0	0	
•••			

Boosting as a matrix game (2)

- Boosting assumption: for any distribution over examples, there exists a weak rule with weighted error < 1/2</p>
- In game terms: For any mixed strategy of the row player P, there is a pure strategy for column player
 Q = ⟨0, · · · , 0, 1, 0, · · · , 0⟩ such that M(P, Q) < 1/2)</p>
- ► From Min-Max theorem: There exists a column mixed strategy (a distribution over weak rules), that has expected value larger than zero for any row pure strategy (= any example).
- The weighted majority vote over the weak rule is always correct.

Adaboost as a repeated matrix game

- Booster chooses distribution over examples = mixed strategy over rows P_t
- ▶ adversary chooses weak rule $\mathbf{Q}_t = \langle 0, \dots, 0, 1, 0, \dots, 0 \rangle$ the 1 is at position t
- ► Goal 1: produce a weighted majority rule that is highly accurate.
- ► Goal 2: Find a "hard" distribution over the training examples.

	h_1	h_2	
example1	0	1	
example2	1	0	
example3	0	0	

Minmax is weaker than diminishing regret

- ► The minmax theorem proves the existence of an Equilibrium.
- Learning guarantees no regret with respect to the past.
- ► If all sides use learning, then game will converge to minmax equilibrium.
- If opponent is not optimally adversarial (limited by knowledge, computationa power...) then learning gives better performance than min-max.
- Our goal is to minimize regret.

Fictitious play

- also called "Follow the leader"
- Choose the best action with respect to the sum of past loss vectors.
- Might not converge to optimal mixed strategy.
- Consider playing the matching coins game against an adversary that alternates HTHTHTHTHT
- If #H > #T the next element is T
- If #T > #H the next element is H
- follow the leader makes an error on each iteration.

Randomized Fictitious play

- Also called 'Follow the perturbed leader'
- Choose the best action with respect to the sum of past loss vectors plus noise.
- Adding noise allows us to choose responses that are slightly worse than best response.
- Hannan 1957 Randomized ficticus play converges to regret minimizing strategy.
- regret is $O(1/\sqrt{n})$ where *n* is number of actions.

The basic algorithm

Choose an initial distribution P₁

$$\mathbf{P}_{t+1}(i) = \mathbf{P}_t(i) \frac{e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}}{Z_t}$$

- Where $Z_t = \sum_{i=1}^n \mathbf{P}_t(i)e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}$
- $\eta > 0$ is the learning rate.

Generalized regret bound

Regret relative to the best pure strategy i

$$\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \left(\frac{1}{1 - e^{-\eta}}\right) \ \min_{i} \left[\eta \sum_{t=1}^{T} \mathbf{M}(i, \mathbf{Q}_t) - \ln \mathbf{P}_1(i) \right]$$

regret with respect the the best mixed strategy P:

$$\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \left(\frac{1}{1 - e^{-\eta}}\right) \min_{\mathbf{P}} \left[\eta \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_t) + \text{RE}\left(\mathbf{P} \parallel \mathbf{P}_1\right) \right]$$

Where

$$RE(\mathbf{P} \parallel \mathbf{Q}) \doteq \sum_{i=1}^{n} \mathbf{P}(i) \ln \frac{\mathbf{P}(i)}{\mathbf{Q}(i)}$$

Main Theorem

- For any game matrix M.
- Any sequence of mixed strat. Q₁,...,Q_T
- ► The sequence $P_1, ..., P_T$ produced by basic alg using $\eta > 0$ satisfies

$$\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \left(\frac{1}{1 - e^{-\eta}}\right) \min_{\mathbf{P}} \left[\eta \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + \text{RE}\left(\mathbf{P} \parallel \mathbf{P}_{1}\right) \right]$$

Corollary

- ▶ Setting $\eta = \ln\left(1 + \sqrt{\frac{2 \ln n}{T}}\right)$
- the average per-trial loss is

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_t) + \Delta_{T,n}$$

Where

$$\Delta_{T,n} = \sqrt{\frac{2 \ln n}{T}} + \frac{\ln n}{T} = O\left(\sqrt{\frac{\ln n}{T}}\right).$$

Visual intuition

- ▶ Hedge(η) : If M(P_t, Q_t) ≫ M($\tilde{\mathbf{P}}$, Q_t) then: distance between P_{t+1} and $\tilde{\mathbf{P}}$ smaller than distance between P_t and $\tilde{\mathbf{P}}$
- ► RE $\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right)$ RE $\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right)$ ≤ $\eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) (1 e^{-\eta})\mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})$

The minmax Theorem

John von Neumann, 1928.

$$\min_{\textbf{P}} \max_{\textbf{Q}} \textbf{M}(\textbf{P},\textbf{Q}) = \max_{\textbf{Q}} \min_{\textbf{P}} \textbf{M}(\textbf{P},\textbf{Q})$$

In words: for mixed strategies, choosing second gives no advantage.

Proving minmax Theorem using online learning (1)

Row player chooses \mathbf{P}_t using learning alg. Column player chooses \mathbf{Q}_t after row player so that $\mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q})$ Let $\overline{\mathbf{P}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_t$ and $\overline{\mathbf{Q}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{Q}_t$

$$\begin{aligned} \min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} &\leq \max_{\mathbf{Q}} \overline{\mathbf{P}}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \\ &= \max_{\mathbf{Q}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \quad \text{by definition of } \overline{\mathbf{P}} \\ &\leq \frac{1}{T} \sum_{t=1}^{T} \max_{\mathbf{Q}} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \end{aligned}$$

Proving minmax Theorem using online learning (2)

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t} \qquad \text{by definition of } \mathbf{Q}_{t}$$

$$\leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t} + \Delta_{T,n} \quad \text{by the Corollary}$$

$$= \min_{\mathbf{P}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \overline{\mathbf{Q}} + \Delta_{T,n} \quad \text{by definition of } \overline{\mathbf{Q}}$$

$$\leq \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} + \Delta_{T,n}.$$

but $\Delta_{T,n}$ can be set arbitrarily small.

Solving a game

- to solve a game is to find the min-max mixed strategiesP, Q
- ▶ Suppose that $\mathbf{Hedge}(\eta)$ is playing $\mathbf{P_1}$, $\mathbf{P_2}$, against a worst case adversary that playes second: adversary that plays $\mathbf{Q_1}$, $\mathbf{Q_2}$,... such that $\mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q})$.
- Without loss of generality Q_t is a pure strategy (prob. 1 on a single action).
- ▶ Let $\overline{\mathbf{P}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_t$, $\overline{\mathbf{Q}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{Q}_t$

Using average distributions

Von Neumann Min/Max Thm:
v = min_P max_Q M(P, Q) = max_Q min_P M(P, Q)

Fixing
$$T$$
 and letting $\eta = \ln \left(1 + \sqrt{\frac{2 \ln n}{T}} \right)$

Two immediate corrolaries of the proof of the min/max Thm:

$$\max_{\mathbf{Q}} \mathbf{M}(\overline{\mathbf{P}},\mathbf{Q}) \leq v + \Delta_{T,n}.\min_{\mathbf{P}} \mathbf{M}(\mathbf{P},\overline{\mathbf{Q}}) \geq v - \Delta_{T,n}$$

Using the final row distribution vMW

- Can we make the row distribution converge?
- Suppose we have an upper bound on the value of the game $u \ge v$
- ▶ Good Enough: If $M(P_t, Q_t) \le u$ the row player does nothing $P_{t+1} = P_t$
- ▶ Learn: If $M(P_t, Q_t) > u$ set

$$\eta = \ln \frac{(1-u)\mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t)}{u(1-\mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t))}.$$

Bound for vMW

- Let $\tilde{\mathbf{P}}$ be any mixed strategy for the rows such that $\max_{\mathbf{Q}} \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}) \leq u$
- ▶ Then on any iteration of algorithm vMW in which $M(P_t, Q_t) \ge u$ the relative entropy between \tilde{P} and P_{t+1} satisfies

$$\operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) \leq \operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right) - \operatorname{RE}\left(u \parallel \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})\right)$$
.