SITUATION

La courbe représentative d'une fonction f peut admettre une asymptote horizontale en $+\infty$ et/ou en $-\infty$. Une même droite peut être asymptote horizontale à la fois en $+\infty$ et $-\infty$.

ÉNONCÉ

On considère la fonction f définie sur $]4;+\infty[$ par :

$$f\left(x\right) = \frac{2x - 3}{x - 4}$$

Déterminer les éventuelles asymptotes horizontales de $\,C_f\,.$

Etape 1

Déterminer la limite de f en $+\infty$

On détermine tout d'abord $\lim_{x o +\infty} f\left(x
ight)$.

APPLICATION

Pour déterminer la limite de f en $+\infty$, on factorise numérateur et dénominateur par le terme de plus haut degré. On a donc :

$$orall x \in \left]4; +\infty
ight[, f\left(x
ight) = rac{x\left(2-rac{3}{x}
ight)}{x\left(1-rac{4}{x}
ight)} = rac{2-rac{3}{x}}{1-rac{4}{x}}$$

Or:

$$ullet \lim_{x o +\infty} \left(2-rac{3}{x}
ight) = 2$$

•
$$\lim_{x \to +\infty} \left(1 - \frac{4}{x}\right) = 1$$

Donc:

$$\lim_{x
ightarrow+\infty}f\left(x
ight) =2$$

Etape 2

Conclure sur l'existence d'une asymptote horizontale

- Si la limite trouvée est un réel a, on en déduit que la droite d'équation y=a est asymptote horizontale à C_f en $+\infty$.
- ullet Si la limite trouvée est $+\infty$ ou $-\infty$, alors C_f n'admet pas d'asymptote horizontale en $+\infty$.

APPLICATION

On a:

$$\lim_{x
ightarrow+\infty}f\left(x
ight) =2$$

On en déduit que la droite d'équation y=2 est asymptote horizontale à C_f en $+\infty$.

Etape 3

Répliquer éventuellement le procédé en $-\infty$

Si le domaine de définition de la fonction le permet, on procède de la même manière pour déterminer l'existence d'une asymptote en $-\infty$.

APPLICATION

La fonction f étant définie sur $]4;+\infty[$, sa courbe représentative ne peut pas admettre d'asymptote horizontale en $-\infty$.