MASTER I INFORMATIQUE TRAVAIL ENCADRÉ DE RECHERCHE Juin 2018

${\bf Rapport~QuChemPedia}$

Sous titre

 $Auteur \\ {\rm Jules~LEGUY}$

 $\begin{array}{c} \textit{Encadrants} \\ \text{Benoit DA MOTA} \\ \text{Thomas CAUCHY} \end{array}$

Table des matières

1	Intr	roduction	3
2	Con 2.1 2.2	texte et objectifs Projet QuChemPedia	4 4
		2.2.1 Calcul de propriétés moléculaires	4
		2.2.2 Mécanique moléculaire	5
	2.3	2.2.3 Optimisation géométrique quantique	5 5
3	Rep	présentations géométriques moléculaires	6
	3.1	Matrice des coordonnées atomiques	6
	3.2	Matrice réduite des distances inter-atomiques	6
		3.2.1 Motivation	6
		3.2.2 Formalisation	7
		3.2.3 Reconstruction des molécules	8
		3.2.3.1 Formalisation de la méthode de reconstruction	8
		3.2.3.2 Reconstruction automatique des positions en utilisant un solveur	10
	0.0	3.2.3.3 Reconstruction automatique des positions en utilisant des équations de trilatératio	
	3.3	Matrice des distances à des points fixes	13
		3.3.1 Motivation	$\frac{13}{13}$
		3.3.2 Formalisation	14
	3.4	Représentation locale des liaisons covalentes	14
	J. 4	3.4.1 Motivation	14
		3.4.2 Classes positionnelles	14
		3.4.3 Distances aux atomes de la liaison	15
		3.4.4 Restriction au voisinage le plus proche	16
4	Dor	nnées	18
5	Pré	diction de longueurs de liaisons convergées	19
	5.1	Introduction	19
		5.1.1 Motivation	19
		5.1.2 Représentation des données	19
		5.1.2.1 Données en entrée des modèles	19
		5.1.2.2 Homogénéisation de la taille des entrées	20
		5.1.2.3 Représentation d'une liaison en entrée d'un modèle	20
		5.1.3 Méthodologie	20
		5.1.3.1 Précision requise	20
		5.1.3.2 Classes de modèles	21
	٠.	5.1.4 Nomenclature	21
	5.2	Prédiction de longueurs de liaisons carbone-carbone	22
		5.7.1 Modele nait	.,.,

		5.2.2	Restricti	on au voisinage le plus proche	22
		5.2.3	Applicat	ion de fonctions aux distances	22
		5.2.4	Réductio	on de la largeur du réseau	22
		5.2.5		ne par quadrillage des paramètres du modèle naïf	22
	5.3	Génér	alisation of	de la méthode à d'autres liaisons	22
	5.4			autres modèles d'apprentissage automatique	22
6	Pré	diction	ı de géor	nétries moléculaires convergées	23
	6.1				23
		6.1.1		on	23
		6.1.2		ologie	23
		6.1.3		lature	24
	6.2			amètres des modèles	24
	0.2	6.2.1	-		$\frac{24}{24}$
		0.2.1	6.2.1.1	Représentations géométriques	$\frac{24}{24}$
			6.2.1.2	Propriétés atomiques	$\frac{24}{24}$
			6.2.1.3	Bruit	$\frac{25}{25}$
			6.2.1.4	Homogénéisation des tailles de données	26
			6.2.1.5	Unités	$\frac{20}{27}$
			6.2.1.6	Synthèse du flux de données	27
		6.2.2		is d'évaluation	27
		0.2.2	6.2.2.1	Fonctions de coût	$\frac{2}{27}$
			6.2.2.2	Fonctions de validation	28
			6.2.2.3	Erreur introduite par le bruit	28
		6.2.3		tures	28
		6.2.4		ation des paramètres	28
	6.3	Résult	-		$\frac{20}{29}$
	0.0	6.3.1		on des performances lors de l'entraînement	29
		6.3.2		détaillée d'un modèle	$\frac{29}{29}$
		0.5.2	6.3.2.1	Analyse statistique	$\frac{29}{29}$
			6.3.2.1	Distribution de l'erreur absolue	$\frac{23}{30}$
			6.3.2.2	Distribution de l'erreur absolue en fonction des cibles	30
			6.3.2.4	Distribution des prédictions en fonctions des cibles	31
		6.3.3		a de la méthode	$\frac{31}{32}$
		0.5.5	Abandor	i de la methode	32
7	Cor	clusio	\mathbf{n}		34
$\mathbf{A}_{\mathbf{I}}$	ppen	dices			35

Chapitre 1

Introduction

Chapitre 2

Contexte et objectifs

2.1 Projet QuChemPedia

2.2 Enjeux en chimie

2.2.1 Calcul de propriétés moléculaires

Afin de pouvoir prédire les propriétés électroniques d'une molécule, les chimistes ont besoin de connaître avec une grande précision sa géométrie et certaines propriétés énergétiques. La connaissance précise de la position du nuage électronique d'une molécule dans ses différents niveaux d'énergie permet notamment de prédire les longueurs d'ondes absorbées pour un état d'énergie donné et émises lors du passage d'un état d'énergie à un autre, ce qui permet de prédire sa couleur. De plus, la connaissance précise des nuages électroniques d'un couple de molécule dans leurs états fondamentaux et excités permet de prédire leur potentiel photovoltaïque.

Les nuages électroniques moléculaires sont exprimés mathématiquement à partir de fonctions d'ondes, qui sont l'approximation par la somme de fonctions gaussiennes de solutions d'équations dont la résolution analytique est impossible avec les outils mathématiques actuels. Le calcul de ces fonctions d'ondes est donc un enjeu fondamental en chimie, et est malheureusement très coûteux en termes de puissance et de temps de calcul. Le calcul de la fonction d'ondes d'une molécule de taille moyenne (environ 50 atomes) peut en effet prendre plusieurs semaines.

Dans la figure ci-dessous, on représente les iso-niveaux de probabilité de présence des électrons d'une molécule (nuage électronique), calculés à partir de sa fonction d'ondes. On considère que les surfaces de couleurs différentes représentent la même information.

FIGURE 2.1 — Représentation des iso-niveaux de probabilité de présence électronique d'une molécule (Projet QuChemPedia)

Le calcul de la géométrie (position des atomes) et des propriétés énergétiques d'une molécule dépendent des fonctions d'ondes. Dans le cadre de ce stage, nous nous intéressons uniquement à la prédiction de géométries moléculaires optimisées (convergées), c'est pourquoi les deux parties suivantes vont décrire les approches actuellement utilisées en chimie pour calculer ces géométries. L'objectif de ces deux méthodes est de calculer une géométrie optimisée à partir d'une géométrie issue de mesures expérimentales ou de résultats théoriques.

2.2.2 Mécanique moléculaire

La mécanique moléculaire, à travers des outils comme OpenBabel[1] permet d'optimiser la géométrie des molécules selon des règles de distances typiques entre des couples d'atomes et d'angles typiques entre des liaisons. Il s'agit d'une approche simple qui ne permet pas d'obtenir une précision suffisante pour prédire les propriétés moléculaires. Du fait de sa rapidité, elle peut néanmoins être utilisée comme pré-traitement d'une géométrie théorique ou expérimentale et servir d'entrée à une optimisation géométrique quantique.

2.2.3 Optimisation géométrique quantique

L'approche communément utilisée en chimie pour optimiser la géométrie moléculaire s'appuie sur l'optimisation itérative de la densité électronique. Elle est basée sur la *Density Functional Theory* (DFT), qui propose une méthode dans laquelle la densité électronique d'une molécule est optimisée itérativement par la résolution d'équations, jusqu'à atteindre un seuil de cohérence donné. La géométrie moléculaire est alors déduite de la fonction d'onde, elle-même déduite de la densité électronique. Cette méthode est implémentée dans de nombreux programmes de chimie computationnelle, dont notamment Gaussian et Gamess.

L'inconvénient principal de cette approche est le temps de calcul nécessaire, qui limite la possibilité de l'appliquer à un grand nombre de molécules. Si l'on possédait une méthode plus rapide, on pourrait par exemple imaginer l'automatisation de la recherche de couples de molécules ayant un potentiel photovoltaïque élevé et dont la synthèse serait moins polluante que les couples utilisés actuellement, en associant à la recherche une fonction de coût qui représenterait le coût écologique de la synthèse.

Afin de réduire le temps d'optimisation, nous tentons de développer une solution basée sur l'élaboration de modèles d'apprentissage automatique, qui remplaceraient partiellement ou en totalité le calcul itératif de la fonction d'onde.

2.3 Utilisation de modèles d'apprentissage automatique

Chapitre 3

Représentations géométriques moléculaires

3.1 Matrice des coordonnées atomiques

La matrice des coordonnées atomiques est la façon la plus simple de représenter la géométrie d'une molécule. L'intérêt de cette représentation est qu'elle est utilisée par les chimistes (fichiers .mol, .xyz + utilisation dans les logiciels de calcul?). Il s'agit donc pour nous d'une représentation d'entrée et de sortie. Nos données d'apprentissage contiennent pour chaque molécule une matrice des positions, en plus des numéros et masses atomiques, et nous devons être capables de fournir cette représentation en sortie de nos prédictions, pour que nos résultats soient utilisables par les chimistes.

Formellement, la matrice des coordonnées atomiques d'une molécule contient les coordonnées de chaque atome dans un repère cartésien orthonormé à trois dimensions.

x_1	y_1	z_1
x_2	y_2	z_2
:	•••	•••
x_n	y_n	z_n

FIGURE 3.1 – Matrice des coordonnées atomiques (molécule de taille n)

Si cette représentation de la géométrie des molécules est très commode pour les chimistes, elle n'est pas utilisable telle quelle dans nos modèles prédictifs. Nous cherchons en effet à prédire des distances (ou des différences de distances, voir REF DELTA_DIST...) entre des points. Donner les coordonnées brutes aux modèles implique qu'ils devraient apprendre les outils mathématiques permettant de calculer des distances entre des points, ce qui constitue en soi une tâche complexe. C'est pourquoi nous allons définir un ensemble de représentations géométriques, toutes basées sur les distances plutôt que les positions, et adaptées aux différentes prédictions que nous souhaitons effectuer.

3.2 Matrice réduite des distances inter-atomiques

3.2.1 Motivation

Cette représentation est issue du travail qui a été fait précédemment sur ce projet, et consiste à représenter une molécule par ses distances inter-atomiques. L'intérêt de cette représentation est que les réseaux de neurones qui l'utilisent travaillent dans des repères relatifs. Lorsqu'ils effectuent des prédictions, ils n'ont pas besoin de comprendre les notions mathématiques de géométrie permettant de déduire la position d'un point dans un repère à partir de ses distances à d'autres points, contrairement à la représentation décrite en (REF REPR ABS). Cette représentation est donc très commode pour les modèles prédictifs dont l'objectif est de corriger les distances entre deux atomes, puisqu'elle est basée sur les distances entre les paires d'atomes.

De plus, l'utilisation d'une représentation basée sur les distances relatives permet d'offrir une représentation unique pour les molécules ayant des ensembles d'atomes pouvant effectuer des rotations, contrairement aux représentations basées sur les coordonnées (REF REPR COORDS) ou sur des distances à des points fixes (REF REPR DIST ABS).

Lorsque les modèles utilisent cette représentation en sortie, ou plus précisément que l'on déduit la matrice réduite des distances inter-atomiques de la sortie du modèle (voir REF SORTIE DELTA_DIST+H), nous devons toutefois trouver une méthode (voir REF PRINC RECONSTRUCT) pour reconstruire les molécules sous la forme d'une matrice de coordonnées (REF REPR COORDS).

3.2.2 Formalisation

Pour ne pas surcharger les modèles d'information, nous ne travaillons pas sur la matrice de distances interatomiques complète, mais sur un sous-ensemble de cardinalité minimale de cette matrice telle que nous pouvons reconstruire sans ambiguïté un ensemble de coordonnées représentant les positions des atomes de la molécule. La matrice des distances étant symétrique et la diagonale étant nulle, toute l'information est contenue dans chaque demi-matrice triangulaire privée de la diagonale.

	a_0	a_1	a_2	a_3	a_4		a_{n-4}	a_{n-3}	a_{n-2}	a_{n-1}	a_n
a_0	$\mathbf{d_{0,0}}$	$\mathbf{d_{0,1}}$	$\mathbf{d_{0,2}}$	$\mathbf{d_{0,3}}$	$\mathbf{d_{0,4}}$		$\mathbf{d_{0,n-4}}$	$d_{0,n-3}$	$\mathbf{d_{0,n-2}}$	$\mathbf{d_{0,n-1}}$	$\mathbf{d_{0,n}}$
a_1	$\mathbf{d_{1,0}}$	$\mathbf{d_{1,1}}$	$\mathbf{d_{1,2}}$	$\mathbf{d_{1,3}}$	$\mathbf{d_{1,4}}$		$\mathbf{d_{1,n-4}}$	$\mathbf{d_{1,n-3}}$	$\mathbf{d_{1,n-2}}$	$\mathbf{d_{1,n-1}}$	$d_{1,n}$
a_2	$\mathbf{d_{2,0}}$	$\mathbf{d_{2,1}}$	$\mathbf{d_{2,2}}$	$\mathbf{d_{2,3}}$	$\mathbf{d_{2,4}}$		$\mathbf{d_{2,n-4}}$	$\mathbf{d_{2,n-3}}$	$d_{2,n-2}$	$\mathbf{d_{2,n-1}}$	$\mathbf{d_{2,n}}$
a_3	$\mathbf{d_{3,0}}$	$\mathbf{d_{3,1}}$	$\mathbf{d_{3,2}}$	$\mathbf{d_{3,3}}$	$\mathbf{d_{3,4}}$		$\mathbf{d_{3,n-4}}$	$d_{3,n-3}$	$d_{3,n-2}$	$\mathbf{d_{3,n-1}}$	$\mathbf{d_{3,n}}$
a_4	$\mathbf{d_{4,0}}$	$\mathbf{d_{4,1}}$	$\mathbf{d_{4,2}}$	$\mathbf{d_{4,3}}$	$\mathbf{d}_{4,4}$		$\mathbf{d_{4,n-4}}$	$\mathbf{d_{4,n-3}}$	$\mathbf{d_{4,n-2}}$	$\mathbf{d_{4,n-1}}$	$\mathbf{d_{4,n}}$
:	:	:	:	:	:	٠.	:	:	:	:	:
$\overline{a_{n-4}}$	$\mathbf{d_{n-4,0}}$	$d_{n-4,1}$	$d_{n-4,2}$	$d_{n-4,3}$	$d_{n-4,4}$		$d_{n-4,n-4}$	$d_{n-4,n-3}$	$\mathbf{d_{n\text{-}4,n\text{-}2}}$	$d_{n\text{-}4,n\text{-}1}$	$d_{n-3,n}$
a_{n-3}	$\mathbf{d_{n-3,0}}$	$\mathbf{d_{n-3,1}}$	$\mathbf{d_{n-3,2}}$	$d_{n-3,3}$	$d_{n-3,4}$		$d_{n-3,n-4}$	$\mathbf{d_{n\text{-}3,n\text{-}3}}$	$d_{n-3,n-2}$	$d_{n-3,n-1}$	$d_{n-3,n}$
a_{n-2}	$\mathbf{d_{n-2,0}}$	$\mathbf{d_{n-2,1}}$	$\mathbf{d_{n-2,2}}$	$d_{n-2,3}$	$d_{n-2,4}$		$\mathbf{d_{n-2,n-4}}$	$d_{n-2,n-3}$	$d_{n-2,n-2}$	$d_{n-2,n-1}$	$\mathbf{d_{n-2,n}}$
a_{n-1}	$\mathbf{d_{n-1,0}}$	$\mathbf{d_{n-1,1}}$	$\mathbf{d_{n-1,2}}$	$d_{n-1,3}$	$d_{n-1,4}$		$\mathbf{d_{n-1,n-4}}$	$\mathbf{d_{n\text{-}1,n\text{-}3}}$	$\mathbf{d_{n\text{-}1,n\text{-}2}}$	$\mathbf{d_{n\text{-}1,n\text{-}1}}$	$d_{n-1,n}$
$\overline{\mathrm{a_{n}}}$	$d_{n,0}$	$d_{n,1}$	$d_{n,2}$	$d_{n,3}$	$d_{n,4}$		$d_{n,n-4}$	$d_{n,n-3}$	$d_{n,n-2}$	$d_{n,n-1}$	$\mathbf{d_{n,n}}$

FIGURE 3.2 – Matrice complète des distances inter-atomiques d'une molécule

De plus, nous n'avons besoin que des distances à quatre points pour retrouver la position de chaque atome (voir REF RECONSTRUCT), nous nous contentons donc de garder les quatre premières distances de chaque ligne de la matrice triangulaire supérieure privée de la diagonale.

	a_0	a_1	a_2	a_3	a_4		a_{n-4}	a_{n-3}	a_{n-2}	a_{n-1}	a_n
$-a_0$	$d_{0,0}$	$\mathbf{d_{0,1}}$	$\mathbf{d_{0,2}}$	$\mathbf{d_{0,3}}$	$\mathbf{d_{0,4}}$		$d_{0,n-4}$	$\mathrm{d}_{0,\mathrm{n-3}}$	$d_{0,n-2}$	$d_{0,n-1}$	$d_{0,n}$
a_1	$d_{1,0}$	$d_{1,1}$	$\mathbf{d_{1,2}}$	$\mathbf{d_{1,3}}$	$\mathbf{d_{1,4}}$		$d_{1,n-4}$	$d_{1,n-3}$	$d_{1,n-2}$	$d_{1,n-1}$	$d_{1,n}$
a_2	$d_{2,0}$	$d_{2,1}$	$d_{2,2}$	$\mathbf{d_{2,3}}$	$\mathbf{d_{2,4}}$		$d_{2,n-4}$	$d_{2,n-3}$	$d_{2,n-2}$	$d_{2,n-1}$	$d_{2,n}$
a_3	$d_{3,0}$	$d_{3,1}$	$d_{3,2}$	$d_{3,3}$	$d_{3,4}$		$d_{3,n-4}$	$d_{3,n-3}$	$d_{3,n-2}$	$d_{3,n-1}$	$d_{3,n}$
a_4	$d_{4,0}$	$d_{4,1}$	$d_{4,2}$	$d_{4,3}$	$\mathbf{d}_{4,4}$		$\mathrm{d}_{4,\mathrm{n-4}}$	$\mathrm{d}_{4,\mathrm{n-3}}$	$d_{4,n-2}$	$\mathrm{d}_{4,\mathrm{n-1}}$	$d_{4,n}$
÷	:	:	:	;	:	***	:	:	:	:	:
$\overline{a_{n-4}}$	$d_{n-4,0}$	$d_{n-4,1}$	$d_{n-4,2}$	$d_{n-4,3}$	d _{n-4,4}		$d_{n\text{-}4,n\text{-}4}$	$d_{n\text{-}4,n\text{-}3}$	$d_{n\text{-}4,n\text{-}2}$	$d_{n\text{-}4,n\text{-}1}$	$d_{n-4,n}$
a_{n-3}	$d_{n-3,0}$	$d_{n-3,1}$	$d_{n-3,2}$	$d_{n-3,3}$	$d_{n-3,4}$		$d_{n\text{-}3,n\text{-}4}$	$\mathrm{d}_{\mathrm{n-3},\mathrm{n-3}}$	$\mathbf{d_{n\text{-}3,n\text{-}2}}$	$\mathbf{d_{n\text{-}3,n\text{-}1}}$	$d_{n-3,n}$
a_{n-2}	$d_{n-2,0}$	$d_{n-2,1}$	$d_{n-2,2}$	$d_{n-2,3}$	$d_{n-2,4}$		$d_{n-2,n-4}$	$d_{n-2,n-3}$	$d_{n-2,n-2}$	$d_{n-2,n-1}$	$d_{n-2,n}$
a_{n-1}	$d_{n-1,0}$	$d_{n-1,1}$	$d_{n-1,2}$	$d_{n-1,3}$	$d_{n-1,4}$		$d_{n\text{-}1,n\text{-}4}$	$\mathrm{d}_{\mathrm{n-1},\mathrm{n-3}}$	$d_{n\text{-}1,n\text{-}2}$	$d_{n-1,n-1}$	$d_{n-1,n}$
a_{n}	$d_{n,0}$	$d_{n,1}$	$d_{n,2}$	$d_{n,3}$	$d_{n,4}$		$d_{n,n-4}$	$d_{n,n-3}$	$d_{n,n-2}$	$d_{n,n-1}$	$d_{n,n}$

FIGURE 3.3 – Matrice réduite des distances inter-atomiques d'une molécule (en gras)

$\mathbf{d_{0,1}}$	$\mathbf{d_{0,2}}$	$\mathbf{d_{0,3}}$	$\mathbf{d_{0,4}}$
$\mathbf{d_{1,2}}$	$ m d_{1,3}$	$\mathbf{d_{1,4}}$	$ m d_{1,5}$
$\mathbf{d_{2,3}}$	$\mathbf{d_{2,4}}$	$\mathbf{d_{2,5}}$	$\mathbf{d_{2,6}}$
$d_{3,4}$	$ m d_{3,5}$	$\mathbf{d_{3,6}}$	$\mathbf{d_{3,7}}$
:	:	:	:
$\mathbf{d_{n\text{-}4,n\text{-}3}}$	$\mathbf{d_{n\text{-}4,n\text{-}2}}$	$\mathbf{d_{n\text{-}4,n\text{-}1}}$	$d_{n-4,n}$
$d_{n-3,n-2}$	$\mathbf{d_{n-3,n-1}}$	$d_{n-3,n}$	0
$d_{n-2,n-1}$	$d_{n-2,n}$	0	0
$d_{n-1,n}$	0	0	0

FIGURE 3.4 – Matrice réduite des distances inter-atomiques d'une molécule

3.2.3 Reconstruction des molécules

Lorsqu'un modèle a pour sortie une matrice réduite des distances inter-atomiques lorsqu'il effectue des prédictions, il faut définir une méthode pour reconstruire une matrice des coordonnées (ref REPR MAT COORDS) de façon automatique à partir de cette sortie, la seule contrainte étant que la distance relative entre chaque paire d'atomes soit respectée. Il ne s'agit pour autant pas d'une tâche triviale, elle s'est en effet avérée impossible en pratique pour les grosses molécules à cause de la propagation des erreurs qu'elle induit (voir REF PROPAG ERREURS).

3.2.3.1 Formalisation de la méthode de reconstruction

Nécessité et limite de l'introduction d'un atome fictif Notre méthode de reconstruction des atomes doit permettre de respecter la chiralité ¹ des molécules. Or, en déduisant uniquement la position d'un atome de ses distances aux quatre atomes précédents, il existe des cas pour lesquels il existe plusieurs solutions pour la position de l'atome (deux si les quatre atomes précédents sur un même plan ou une infinité si les quatre atomes précédents appartiennent à une droite). Pour pallier ce problème, la méthode retenue précédemment a été d'introduire un nouveau point (que l'on nomme atome fictif) et que l'on place arbitrairement dans la molécule, à une position telle qu'il n'appartient pas au plan formé par les trois premiers atomes, ou à la droite formée par les trois premiers atomes s'ils sont alignés. De cette façon, les atomes suivants seront placés sans ambiguïté.

Cependant, on peut imaginer des cas pour lesquels la technique de l'introduction d'un atome fictif ne permet pas de lever l'ambiguïté, notamment pour les molécules possédant une chaîne de carbones liés par des doubles liaisons (et formant donc une droite). La méthode ne permettra pas dans ce cas de déterminer les positions des atomes en bout de chaîne tel que leurs distances relatives soient respectées, cette information étant perdue lors de la création de la matrice réduite des distances inter-atomiques.

Cette représentation n'est donc pas viable en pratique. Cela fait partie des raisons (voir également REF PB SQRT) pour lesquelles nous sommes passés à la représentation par matrice réduite des distances à des points fixes (REF MATR RED FIXES).

Placement de l'atome fictif Puisque l'on définit la position de chaque atome en fonction de ses distances aux quatre atomes précédents, on doit d'abord placer les quatre premiers atomes de façon partiellement arbitraire. Le premier atome de la molécule dans notre représentation étant l'atome fictif a_0 , nous commençons par le placer à la position qui lui a été attribuée.

Placement de l'atome a_1 Une fois l'atome a_0 placé, il existe une infinité de solutions pour la position de l'atome a_1 . On peut en effet le placer à tout point appartenant à la surface de la sphère de centre a_0 et de rayon $d_{0,1}$.

Placement de l'atome a_2 L'atome a_2 appartient au cercle solution de l'intersection entre les sphères de centres a_0 et a_1 et de rayons $d_{0,2}$ et $d_{1,2}$. On choisit donc arbitrairement une position appartenant à ce cercle.

^{1.} Un composé chimique est dit chiral s'il n'est pas superposable à son image dans un miroir. (https://fr.wikipedia.org/wiki/Chiralité (chimie)

FIGURE 3.5 – Placement de l'atome a₁ (image extraite du rapport de N.Roux)

Figure 3.6 – Placement de l'atome a₂ (image extraite du rapport de N.Roux)

Placement de l'atome a₃ Dans le cas général, il existe deux solutions pour le placement de l'atome a₃, l'intersection non nulle de trois sphères étant deux points si tous les points ne sont pas sur un même plan ou une même droite. On choisit arbitrairement un point parmi ces deux solutions, car il n'y a pas à ce stade d'ambiguïté de chiralité de la molécule, une molécule composée de trois atomes ne possédant pas de chiralité (l'atome fictif a₀ ne fait pas partie de la molécule).

FIGURE 3.7 – Placement de l'atome a₃ (image extraite du rapport de N.Roux)

Placement de l'atome a_n Pour placer l'atome a_n (n étant strictement inférieur à la taille de la molécule), nous généralisons la méthode de placement de l'atome a_3 . Plutôt que de travailler sur l'intersection de quatre sphères, nous travaillons toujours sur l'intersection de trois sphères et nous utilisons la dernière distance pour discriminer les deux solutions obtenues. Cela facilite grandement la résolution des équations mathématiques associées et permet d'obtenir des solutions sensiblement équivalentes.

Formellement, nous calculons les positions des deux points solutions de l'intersection des trois sphères de centres a_{n-4} , a_{n-3} , et a_{n-2} et de rayons $d_{n-4,n}$, $d_{n-3,n}$ et $d_{n-2,n}$, et nous discriminons les deux solutions selon la distance

 $d_{n-1,n}$.

Figure 3.8 – Placement de l'atome a_n (image extraite du rapport de N.Roux)

3.2.3.2 Reconstruction automatique des positions en utilisant un solveur

Nous développons ici une méthode permettant de déterminer les coordonnées d'un atome quelconque en utilisant un solveur d'équations non linéaires ². Nous utilisons la bibliothèque Sympy ³.

Tout d'abord, l'atome fictif a_0 doit être placé à la position qui lui a été attribuée (REF PLACEMENT AT FICTIF). Nous plaçons ensuite arbitrairement les trois atomes suivants, de sorte que leurs distances relatives soient respectées. Pour simplifier le problème, nous effectuons une translation temporaire telle que a_0 ' est à l'origine du repère. Nous plaçons alors a_1 ' sur l'axe x, à une distance $d_{0,1}$ de l'origine, et a_2 ' sur le plan tel que z=0, à une position telle que les distances $d_{0,2}$ et $d_{1,2}$ sont respectées. Pour finir, nous plaçons a_3 ' à l'une des deux solutions de l'intersection des sphères associées au problème (REF PLACEMENT A3). Le choix de la solution est arbitraire car la reconstruction de la bonne chiralité de la molécule ne dépend pas du placement des trois premiers atomes non fictifs.

$$a_0' \left\{ \begin{array}{l} x_0' = 0 \\ y_0' = 0 \\ z_0' = 0 \end{array} \right. a_1' \left\{ \begin{array}{l} x_1' = d_{0,1} \\ y_1' = 0 \\ z_1' = 0 \end{array} \right. a_2' \left\{ \begin{array}{l} x_2' = \frac{d_{0,2}^2 - d_{1,2}^2 + x_1^2}{2x_1'} \\ y_2' = \sqrt{d_{2,0}^2 - x_2'^2} \end{array} \right. a_3' \left\{ \begin{array}{l} x_3' = \frac{d_{0,3}^2 + x_1'^2 - d_{1,3}^2}{2x_1'} \\ y_3' = \frac{-2x_3' x_2' + d_{0,2}^2 - d_{2,3}^2 + d_{0,3}^2}{2y_2'} \\ z_2' = 0 \end{array} \right. \\ \left\{ \begin{array}{l} x_3' = \frac{d_{0,3}^2 + x_1'^2 - d_{1,3}^2}{2x_1'} \\ y_3' = \frac{-2x_3' x_2' + d_{0,2}^2 - d_{2,3}^2 + d_{0,3}^2}{2y_2'} \\ z_3' = \sqrt{-x_3'^2 - y_3'^2 + d_{0,3}^2} \end{array} \right.$$

FIGURE 3.9 – Placement des atomes a_0' , a_1' , a_2' et a_3'

Une fois que les quatre premiers atomes sont placés, nous leur appliquons une translation selon le vecteur $\vec{a_0}$, de sorte que l'atome fictif soit à sa position originale, et que les distances relatives des atomes a_0 , a_1 , a_2 et a_3 soient toujours consistantes. Nous faisons alors appel au solveur pour résoudre les équations associées au placement des autres atomes de de la molécule. Pour chaque atome, nous sélectionnons la solution respectant au mieux la distance $d_{n-1,n}$ (REF PLACEMENT AN).

Limites de l'approche par solveur L'utilisation d'un solveur calculant les solutions au cas par cas pose deux problèmes importants. Le premier concerne les performances de la solution. En effet, la résolution des systèmes d'équations consomme beaucoup de ressources et prend donc un temps non négligeable si on souhaite appliquer la méthode à un grand nombre de molécules.

Le second problème est lié à la propagation des erreurs lors de la reconstruction (REF RECONSTRUCT TRI-LAT). À cause du manque de précision de certaines valeurs, certaines intersections de sphères sont vides. Le

^{2.} https://en.wikipedia.org/wiki/Nonlinear system

^{3.} http://www.sympy.org/fr/

$$\begin{cases} d_{n-4,n}^2 = (x_n - x_{n-4})^2 + (y_n - y_{n-4})^2 + (z_n - z_{n-4})^2 \\ d_{n-3,n}^2 = (x_n - x_{n-3})^2 + (y_n - y_{n-3})^2 + (z_n - z_{n-3})^2 \\ d_{n-2,n}^2 = (x_n - x_{n-2})^2 + (y_n - y_{n-2})^2 + (z_n - z_{n-2})^2 \end{cases}$$

FIGURE 3.10 – Équations de sphères permettant d'obtenir la position d'un atome quelconque de la molécule

solveur renvoie alors des solutions imaginaires que nous ne pouvons pas interpréter. Ce problème se manifeste avant tout sur les molécules de taille importante, mais il est impossible de déterminer une taille limite au delà de laquelle nous ne pouvons pas reconstruire les molécules. Cela implique qu'il existe des molécules que nous ne pouvons pas reconstruire, et que nous ne pouvons pas déterminer à l'avance si une molécule donnée peut être reconstruite.

3.2.3.3 Reconstruction automatique des positions en utilisant des équations de trilatération

Afin de pallier les problèmes liés à l'utilisation d'un solveur pour construire l'ensemble des positions des atomes d'une molécule à partir de la matrice réduite des distances inter-atomiques, nous utilisons une méthode permettant de calculer les positions de chaque point à partir d'un ensemble d'équations. Cette méthode est décrite sur Wikipédia⁴. Il s'agit d'une méthode de trilatération de points, c'est à dire que l'on cherche à déterminer la position d'un point en fonction de ses distances à trois points dont les positions sont connues, par opposition à la triangulation ⁵ pour laquelle on détermine la position d'un point en fonction de ses angles à des points dont les positions sont connues.

De même que pour la méthode utilisant un solveur (REF SOLV), nous commençons par placer l'atome fictif a_0 à la position qui lui a été attribuée, puis les atomes a_1 , a_2 et a_3 de façon arbitraire telle que les distances relatives des atomes a_i , $i \in \{0, ..., 3\}$ soient respectées. Nous utilisons pour cela les équations décrites en (REF FIG PLACEMENT).

Une fois les quatre premiers atomes placés, nous cherchons à placer l'atome a_n de la molécule en fonction de ses distances aux quatre atomes précédents. Nous calculons les solutions en considérant que a_{n-4} est à l'origine du repère, que a_{n-3} est sur l'axe x, et que a_{n-2} est sur le plan tel que z=0, puis nous effectuons une translation des solutions dans le système de coordonnées original. Pour cela, nous définissons les quantités et vecteurs suivants.

La notation \hat{u} indique un vecteur u de norme 1, et nous considérons que $\overline{a_i}$ représente le vecteur allant de l'origine au point a_i , dans le but de simplifier l'écriture des équations.

Vecteur unitaire dans la direction de a_{n-4} à a_{n-3} :

$$\hat{e_x} = \frac{\overline{a_{n-3}} - \overline{a_{n-4}}}{d_{n-4,n-3}}$$

Ordre de grandeur signé de la composante x dans le nouveau système de coordonnées du vecteur $\overline{a_{n-4}a_{n-2}}$:

$$i = \hat{e_x} \cdot (\overline{a_{n-4}} - \overline{a_{n-2}})$$

Vecteur unitaire dans la direction y par rapport à $\hat{e_x}$:

$$\hat{e_y} = \frac{\overline{a_{n-2}} - \overline{a_{n-4}} - i\hat{e_x}}{\|\overline{a_{n-2}} - \overline{a_{n-4}} - i\hat{e_x}\|}$$

Vecteur unitaire dans la direction z par rapport à $\hat{e_x}$ et $\hat{e_y}$:

^{4.} https://en.wikipedia.org/wiki/Trilateration

 $^{5.\} https://fr.wikipedia.org/wiki/Triangulation$

$$\hat{e_z} = \hat{e_x} \times \hat{e_y}$$

Ordre de grandeur signé de la composante y dans le nouveau système de coordonnées du vecteur $\overline{a_{n-4}a_{n-2}}$:

$$j = \hat{e_y} \cdot (\overline{a_{n-4}} - \overline{a_{n-2}})$$

On calcule alors les deux solutions pour a'_n selon les équations suivantes.

$$a'_{n} \begin{cases} x'_{n} = \frac{d_{n-4,n}^{2} - d_{n-3,n}^{2} + d_{n-4,n-3}^{2}}{2d_{n-4,n-2}} \\ y'_{n} = \frac{d_{n-4,n}^{2} - d_{n-2,n}^{2} + i^{2} + j^{2}}{2j} - \frac{i}{j}x'_{n} \\ z'_{n} = \pm \sqrt{d_{n-4,n}^{2} - x'_{n}^{2} - y'_{n}^{2}} \end{cases}$$

Enfin, nous translatons les deux solutions a'_n dans le système de coordonnées original selon le vecteur suivant.

$$\overline{p} = \overline{a_{n-4}} + x_n' \hat{e_x} + y_n' \hat{e_y} + z_n' \hat{e_z}.$$

Nous obtenons alors deux solutions a_n , et nous sélectionnons celle telle que la distance $d_{n-1,n}$ est la plus cohérente.

Performances et limites (propagation des erreurs) Les équations de trilatération permettent de calculer la matrice des coordonnées de façon très rapide. Néanmoins, de même que la méthode utilisant un solveur d'équations, cette méthode souffre d'un problème de propagation des erreurs intrinsèque à la représentation par matrice réduite des distances inter-atomiques. En effet, lorsque l'on calcule les coordonnées d'un atome à partir de ses distances aux quatre atomes précédents, et que l'on compare ces distances aux distances aux mêmes points de la position nouvellement calculée, on s'aperçoit qu'elles ne sont pas parfaitement identiques. L'erreur est très faible (de l'ordre de 10^{-25} m) et est individuellement très au-delà de la précision requise en chimie quantique (environ 10^{-15} m), mais elle finit par devenir trop importante du fait de sa propagation au fil des calculs, la position de chaque atome étant calculée à partir de ses distances aux quatre atomes précédents.

La présence d'une racine carrée dans les équations (calcul de z'_n) accélère la propagation des erreurs. En effet, après quelques itérations et quelques faibles erreurs, les intersections de sphères deviennent vides, ce qui se traduit dans nos équations par le calcul de la racine d'un nombre négatif. Pour parer cela, nous considérons que le contenu de la racine vaut zéro lorsqu'il est négatif, mais cela introduit une erreur importante et augmente donc la fréquence des intersections vides dans le calcul de la position des atomes suivants.

Afin de retarder l'apparition des erreurs dépassant le seuil toléré, nous aurions pu ajuster les valeurs de x'_n et y'_n lorsque l'on considère que le contenu de la racine est nul selon l'équation ci-dessous. Toutefois, cela n'aurait pas constitué une solution viable car le problème aurait été simplement déplacé dans le temps, l'erreur se propageant tout de même.

$$x_n^{\prime 2} = d_{n-4,n}^2 - y_n^{\prime 2}$$

Figure 3.11 – Optimisation de x'_n et y'_n lorsque l'on considère que z'_n est nul

Test de la reconstruction Les tests ont montré que l'on pouvait reconstruire les positions des atomes des molécules avec cette méthode de façon fiable pour les molécules de taille inférieure ou égale à 20 atomes. La méthode de test est la suivante. On génère des coordonnées aléatoirement pour 100000 molécules de taille (nombre d'atomes) variable. On utilise la méthode de reconstruction puis on calcule la nouvelle matrice réduite des

distances inter-atomiques sur les nouvelles positions. On fait la différence des deux matrices de distances pour obtenir les erreurs et on considère que la reconstruction a été un succès si aucune composante de la matrice des erreurs n'est supérieure à un seuil. Ce seuil est choisi à 10^{-15} m, car il correspond à la précision au delà de laquelle les chimistes considèrent qu'il ne s'agit plus d'information mais de bruit. Les résultats sont données dans le tableau suivant.

Taille des molécules	10	15	20	25	30	35	40
Molécules mal reconstruites	0	0	0	18	132	468	1752

FIGURE 3.12 – Test de la méthode de reconstruction pour la matrice des distances inter-atomiques

3.3 Matrice des distances à des points fixes

3.3.1 Motivation

La matrice des distances à des points fixes a pour objectif de corriger les défauts de la représentation géométrique moléculaire par matrice réduite des distances inter-atomiques (REF MATR RED DIST REL). Cette dernière possédait en effet le défaut majeur de ne pas être systématiquement réversible en matrice des coordonnées atomiques (REF REPR MAT COORDS). Ce défaut était dû à la propagation des erreurs induite par le fait que les positions des atomes étaient calculées à partir du calcul de la position des atomes précédents (REF REPR DIST REL RECONSTRUCT). Pour parer cela, nous définissons une représentation telle que la position de chaque atome est définie à partir de distances à quatre points fixes du repère. Les erreurs, même si elles existent toujours à des valeurs minimes (autour de 10^{-25} m), ne se propagent donc plus lors de la reconstruction des positions des atomes.

Un autre problème résolu par cette nouvelle représentation est qu'il n'existe plus de molécule dont on ne peut pas reconstruire les positions à cause d'une géométrie plane ou linéaire (REF AT FICTIF), le calcul de la position de chaque atome dépendant désormais de la distance à quatre points de l'espace que l'on choisit tels qu'ils n'appartiennent pas à un même plan.

3.3.2 Formalisation

Formellement, la matrice contient donc les distances de chaque atome d'une molécule à quatre points fixes du repère. Nous choisissons arbitrairement comme points l'origine du repère, et le point sur chaque axe de distance 1 à l'origine. Ce choix est justifié par le fait que les points ont une distance à l'origine du même ordre de grandeur que les coordonnées des atomes dans les données $(10^0 \text{ à } 10^1)$. Cela permet donc d'avoir suffisamment d'information pour calculer la position des atomes avec une précision suffisante lors de la reconstruction de la matrice des coordonnées atomiques.

$$p_0(0,0,0)$$
 $p_1(1,0,0)$ $p_2(0,1,0)$ $p_3(0,0,1)$

FIGURE 3.13 - Points fixes

$\mathbf{d}_{\mathbf{a_0},\mathbf{p_0}}$	$\mathbf{d_{a_0,p_1}}$	$\mathbf{d_{a_0,p_2}}$	$d_{\mathbf{a_0},\mathbf{p_3}}$
$\mathbf{d_{a_1,p_0}}$	$\mathbf{d_{a_1,p_1}}$	$\mathbf{d_{a_1,p_2}}$	$\mathbf{d_{a_1,p_3}}$
:	:	:	:
$\mathbf{d_{a_n,p_0}}$	$\mathbf{d_{a_n,p_1}}$	$\mathbf{d_{a_n,p_2}}$	$d_{\mathbf{a_n},\mathbf{p_3}}$

FIGURE 3.14 – Matrice des distances à des points fixes (molécule de taille n)

3.3.3 Reconstruction des molécules

De même que pour la représentation par matrice réduite des distances inter-atomiques (REF MAT DIST REL), nous devons être capables de passer d'une matrice des distances à des points fixes à une matrice des coordonnées atomiques, afin que les résultats des modèles prédictifs puissent être utilisés par des chimistes.

La méthode de reconstruction des positions atomiques est très similaire pour les deux représentations. Nous utilisons également les équations de trilatération d'un point à partir des distances à trois points dont les positions sont connues, en utilisant la dernière distance comme un moyen de choisir la bonne solution (voir REF RECONSTRUCT MAT DIST REL). Du fait que la position des quatre points de référence soit fixe et qu'ils suivent les contraintes que nous imposions lors de la translation dans un système de coordonnées plus simple, les équations se trouvent néanmoins simplifiées. En effet, p_0 est à l'origine du repère, p_1 est sur l'axe x et p_2 est sur le plan tel que z=0. Pour rappel, nous résolvons le problème de placement de point dans le système de coordonnées original. Or, nos points de référence se trouvent être les vecteurs unitaires dans chaque direction des deux systèmes de coordonnées. Nous obtenons donc directement les solutions dans le système de coordonnées original.

La méthode complète est décrite sur Wikipedia ⁶. Nous en extrayons les équations suivantes pour le placement général d'un atome d'une molécule.

$$a_n \begin{cases} x_n = \frac{d_{a_n, p_0}^2 - d_{a_n, p_1}^2 + 1}{2} \\ y_n = \frac{d_{a_n, p_0}^2 - d_{a_n, p_2}^2 + 1}{2} \\ z_n = \pm \sqrt{d_{a_n, p_0}^2 - x_n'^2 - y_n'^2} \end{cases}$$

Nous obtenons alors deux solutions a_n , et nous sélectionnons celle telle que la distance d_{a_n,p_3} est la plus cohérente.

3.4 Représentation locale des liaisons covalentes

3.4.1 Motivation

Cette représentation géométrique s'éloigne des représentations précédentes pour plusieurs raisons. Premièrement, elle s'inscrit dans l'idée de formuler des problèmes plus simples (REF MOD DIST REL) suite à l'échec des modèles utilisant les représentations précédentes (REF MOD DELTA DIST). Pour cette raison, nous n'allons plus chercher à représenter des molécules complètes mais uniquement des liaisons covalentes ⁷ entre des paires d'atomes au sein des molécules. Cette représentation doit contenir des informations permettant aux modèles l'utilisant de prédire la longueur de la liaison représentée, sans bien-sûr l'enregistrer directement.

En second lieu, la contrainte majeure de la nécessité d'être capable de reconstruire la matrice des coordonnées atomiques à l'issue des prédictions des modèles utilisant cette représentation disparaît. En effet, si l'on peut imaginer des représentations similaires (REF REPR ANGLES) et un assemblage de modèles (REF MODULES) qui permettraient de reconstruire la matrice de coordonnées atomiques d'une molécule convergée (REF DEF CONVERG), il s'agit d'objectifs hors de notre portée pour le moment, notre objectif étant dans un premier temps de valider notre capacité à prédire des géométries moléculaires.

3.4.2 Classes positionnelles

La longueur d'une liaison covalente entre deux atomes dépend du type des atomes formant la liaison, mais également de l'influence des atomes au voisinage de la liaison, qui dépend de leur position relativement aux atomes de la liaison. C'est pour cette raison que nous formalisons la notion de classe positionnelle qui va représenter de quel « côté » de la liaison chaque atome se trouve. Les atomes peuvent donc être « à gauche », « au centre » ou « à droite » de la liaison.

^{6.} https://en.wikipedia.org/wiki/Trilateration

^{7.} Une liaison covalente est une liaison chimique dans laquelle deux atomes se partagent deux électrons (un électron chacun ou deux électrons venant du même atome) d'une de leurs couches externes afin de former un doublet d'électrons liant les deux atomes. (Wikipédia)

Formellement, on compare la position des atomes aux deux plans normaux à la liaison et passant par les atomes de la liaison. Si un atome est entre les deux plans, il est de classe « centre », sinon il est de classe « gauche » ou « droite » en fonction du plan dont il est le plus proche. Puisque l'on se place dans le repère relatif de la liaison et qu'il n'y existe pas de notion absolue de gauche ou de droite, ces deux classes sont interchangeables à condition que les atomes appartenant à une classe soient tous à distance minimale du même plan.

Figure 3.15 – Classes positionnelles au voisinage d'une liaison covalente

3.4.3 Distances aux atomes de la liaison

L'influence des atomes au voisinage de la liaison dépend également de leur distance à chacun des deux atomes de la liaison. Plus l'atome voisin est près, plus son influence est forte. C'est pourquoi notre représentation contient également cette information.

En fonction des modèles qui l'utilisent, on va éventuellement appliquer une fonction à ces distances, afin de mieux rendre compte de l'influence réelle des atomes au voisinage. Si les réseaux de neurones sont capables d'approximer ces fonctions lors de l'apprentissage, d'autres modèles comme les SVM (REF SVM) ne le sont pas et l'application de ces fonctions est donc nécessaire pour espérer obtenir de bons résultats. Ces fonctions sont les suivantes.

- Fonction identité : distance brute
- Fonction inverse : influence inversement proportionnelle à la distance, relation d'ordre identique à la réalité chimique.
- Fonction inverse du carré : influence inversement proportionnelle au carré de la distance, relation d'ordre identique à la réalité chimique et rend mieux compte de l'influence réelle des atomes qui est liée à la loi de Coulomb ⁸ en $\frac{1}{d^2}$.

Notons qu'aucune de ces fonctions ne représente parfaitement l'influence des atomes en fonction de leur distance, elles permettent cependant de s'approcher de la réalité.

^{8.} https://fr.wikipedia.org/wiki/Loi de Coulomb (électrostatique)

FIGURE 3.16 – Distances des atomes à chacun des atomes de la liaison covalente

3.4.4 Restriction au voisinage le plus proche

L'influence des atomes au voisinage de la liaison étant inversement proportionnelle à leur distances aux atomes de la liaison, elle décroît rapidement lorsque l'on s'éloigne de la liaison. L'influence des atomes n'étant pas au voisinage direct est ainsi négligeable. Dans le but de ne pas saturer l'entrée des modèles d'information inutile, nous n'enregistrons alors que les informations (classes positionnelles, distances et autres informations non géométriques spécifiques aux différents modèles) concernant les atomes au voisinage proche de la liaison. Formellement, nous enregistrons ces informations pour les atomes dont la distance à au moins un des atomes de la liaison est inférieure à un seuil ϵ donné.

FIGURE 3.17 – Sélection des atomes au voisinage le plus proche

Un autre avantage de cette sélection est qu'il existe des molécules aux géométries particulières (repliées) telles que des atomes au voisinage d'une liaison ont très peu d'influence sur sa longueur (ne forment aucune liaison covalente avec les deux atomes de la liaison), et dont la proximité va induire les modèles en erreur. La sélection des atomes au voisinage le plus proche de la liaison avec un seuil ϵ bien choisi va permettre de résoudre ces problèmes.

FIGURE 3.18 – Exemple de molécule repliée (CID Pubchem 328310)

Chapitre 4

Données

Chapitre 5

Prédiction de longueurs de liaisons convergées

5.1 Introduction

5.1.1 Motivation

Les modèles décrits dans ce chapitre ont pour objectif de prédire la longueur de liaison optimisée entre des atomes partageant une liaison covalente au sein d'une molécule. L'objectif n'est donc pas de résoudre le problème de prédiction d'une géométrie moléculaire convergée complète, mais plutôt d'en résoudre une version locale simplifiée. Chronologiquement, cette classe de modèles est apparue après l'abandon des modèles tentant de prédire la géométrie optimisée complète d'une molécule (REF ABANDON DELTA DIST).

Puisque l'on résout le problème d'optimisation géométrique entre des couples d'atomes, la question de la façon d'utiliser cette méthode pour optimiser la géométrie complète d'une molécule se pose, nous n'y apportons cependant pas de réponse dans ce chapitre. L'objectif de ces modèles est en effet avant tout de valider notre capacité à effectuer des prédictions d'ordre géométrique de précision suffisante sur certains types de liaisons (REF GENERALISATION). L'élaboration d'une méthode d'optimisation géométrique moléculaire complète basée sur la résolution de sous-problèmes locaux est un problème très complexe, qui fait partie des nouveaux objectifs du projet QuChemPedia (REF PERSPECTIVES MODULES).

5.1.2 Représentation des données

5.1.2.1 Données en entrée des modèles

Les modèles décrits dans ce chapitre utilisent en entrée la représentation géométrique locale des liaisons covalentes (REF GEOM LOCALE), qui permet de représenter les atomes au voisinage d'une liaison. En plus des informations géométriques, on représente la masse et le numéro atomique de chaque atome au voisinage de la liaison. Le numéro atomique est encodé en one-hot encoding, c'est à dire de façon booléenne. La discrétisation des numéros atomiques a pour but de ne pas instaurer de relation d'ordre entre les différents atomes et donc a priori de mieux guider les modèles lors de l'apprentissage. Elle implique toutefois qu'il faut déterminer une limite aux numéros atomiques des atomes acceptés par un modèle. En effet, cet encodage coûte un attribut pour chaque numéro atomique accepté, pour chaque atome au voisinage de la liaison. Afin de travailler sur des modèles de taille raisonnable, ils acceptent les atomes de numéros atomiques inférieurs ou égaux à celui du fluor, ce qui correspond à neuf attributs encodant le numéro atomique pour chaque atome du voisinage.

De même la classe positionnelle (REF CLASSE POS) de chaque atome par rapport à la liaison est représenté en *one-hot encoding*, afin de ne pas représenter cette information sur un ensemble possédant une relation d'ordre.

Le tableau suivant présente le nombre d'attributs utilisés pour représenter chaque atome au voisinage d'une liaison.

Classe positionnelle	Distances	Masse atomique	Numéro atomique	Total
3	2	1	9	15

FIGURE 5.1 – Quantité d'attributs représentant chaque atome au voisinage d'une liaison

5.1.2.2 Homogénéisation de la taille des entrées

Les molécules possédant un nombre variable d'atomes et l'entrée des modèles étant de taille fixe, nous effectuons une procédure de $padding^1$ des données. Cela signifie que l'entrée des modèles est découpée en blocs, représentant chacun un atome au voisinage de la liaison. La taille des blocs dépend des attributs représentant chaque atome, et le nombre de blocs définit le nombre maximal d'atomes au voisinage des liaisons que les modèles peuvent traiter. Nous déduisons cette information de la taille des molécules que l'on choisit d'accepter en entrée des modèles. La grande majorité des molécules étant de taille inférieure à 60 (VOIR DONNEES DISTRIB TAILLES) et les deux atomes composant la liaison n'apparaissant pas dans les entrées, nous choisissons de limiter le voisinage de la liaison à 58 atomes.

La représentation d'une liaison en entrée des modèles est donc composée de 58 blocs de 15 attributs, soit 870 valeurs. Lorsqu'une liaison possède moins de 58 voisins, les blocs correspondant aux atomes non définis valent zéro.

5.1.2.3 Représentation d'une liaison en entrée d'un modèle

Nous détaillons la représentation en entrée d'un modèle prédictif de la liaison imaginaire utilisée comme exemple en (REF REPR LOCALE). On considère que l'atome a_3 est un atome d'azote et que l'atome a_4 est un atome d'oxygène.

FIGURE 5.2 – Représentation schématique d'une liaison imaginaire

L'entrée correspondant à la liaison représentée ci-dessus est donnée dans le tableau suivant.

5.1.3 Méthodologie

5.1.3.1 Précision requise

Les modèles décrits dans ce chapitre travaillent sur des données « parfaites », c'est à dire qu'il prédisent des longueurs de liaisons dans des molécules dont la géométrie a déjà été optimisée. Cela nous permet de confirmer notre capacité à effectuer des prédictions d'ordre géométrique, mais pas de nous assurer que les modèles pourront effectuer de bonnes prédictions sur des données non optimisées issues de mesures ou de résultats théoriques.

^{1.} Rembourrage

Classe pos. Distance		ances	Masse atomique			N	Juméro	aton	nique					
g ?	c ?	d?				H?	He?	Li?	Be?	B ?	C?	N?	O?	F?
1	0	0	d_{13}	d_{23}	14,007	0	0	0	0	0	0	1	0	0
0	0	1	d_{14}	d_{24}	15,999	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
:	:	:		:	:	:	:	:	:	:	:	:	:	:
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FIGURE 5.3 – Représentation des données d'une liaison en entrée d'un modèle prédictif

L'entraînement de modèles travaillant sur des données imparfaites fera l'objet de la suite du projet QuChemPedia (REF PERSPECTIVES). Pour pouvoir espérer obtenir de bonnes prédictions sur des données non optimisées, il faut obtenir de très bons résultats sur des données optimisées, comme on le montre en REF GENERALISATION.

La précision que l'on peut espérer atteindre avec les données sur lesquelles les modèles s'entraı̂nent (REF PUBCHEM) est de l'ordre du picomètre (pm), soit 10^{-12} m. Cette précision dépend des fonctions choisies lors de l'optimisation géométrique quantique des molécules (REF OPTI DFT). Les modèles effectuant des prédictions dont l'erreur est inférieure à 1 pm auront donc confirmé notre capacité à effectuer des prédictions d'ordre géométrique de précision suffisante.

5.1.3.2 Classes de modèles

Nous tentons de prédire les longueurs de liaisons entre plusieurs couples d'atomes, en entraînant un modèle par couple d'atomes formant une liaison. Les liaisons carbone-carbone ne seront alors pas prédites par le même modèle que les liaisons carbone-hydrogène. Cette séparation en sous-problèmes segmentés a pour objectif d'évaluer la précision que peuvent atteindre les modèles sur les problèmes les plus simples que l'on peut leur donner. L'évaluation de leur précision sur des problèmes plus complexes fait partie des futurs objectifs (REF MODULES PLUSIEURS LIAISONS). La prédiction des longueurs de liaisons d'un unique couple donné d'atomes par modèle n'en fait toutefois pas un problème trivial, car elles peuvent sensiblement varier en fonction des atomes impliqués (REF DISTRIB LONGUEURS). Si les liaisons oxygène-hydrogène ont une taille variant en général entre 96 pm et 106 pm soit avec une étendue de 10 pm, la taille des liaisons carbone-carbone varie entre 120 pm et 160 pm, ce qui représente une étendue de 40 pm.

L'entraînement des modèles est un processus qui prend un temps non négligeable (REF CONTRAINTES MATERIELLES). Pour cette raison, nous n'entraînons pas tous les modèles sur un grand nombre d'exemples et nous définissons deux classes de modèles ayant des objectifs différents.

La première classe de modèles a un objectif d'expérimentation. Les modèles sont entraînés sur un nombre relativement faible d'exemples différents (2770924) sur 150 époques (REF DEF EPOCH), ce qui représente environ 2h de préparation de données et 6h d'entraînement avec le matériel disponible. Ces modèles sont entraînés dans le but d'expérimenter de nouveaux traitements des données d'entrée ou de nouveaux paramètres. Ils ont pour objectif de discriminer la qualité de ces entrées et paramètres, c'est pourquoi ils travaillent sur la prédiction difficile des distances de liaisons carbone-carbone.

La seconde classe de modèles a un objectif de validation des paramètres performants issus de l'entraînement des modèles de la première classe, ainsi qu'un objectif de généralisation des méthodes à différents types de liaisons. Ces modèles s'entraînent donc sur plus d'exemples et sur plusieurs liaisons différentes (carbone-carbone, carbone-hydrogène). L'entraînement des trois modèles de cette classe pour un ensemble d'entrées et de paramètres donné prend environ deux jours.

5.1.4 Nomenclature

Afin d'y faire référence simplement, nous nommons les différents modèles que l'on entraı̂ne. Tous les modèles décrits dans ce chapitre ont pour préfixe $DIST_REL$, issu de leur vocation à prédire la distance relative entre les atomes d'une liaison, et pour suffixe le numéro chronologique de leur entraı̂nement au sein de leur classe. Les modèles de la première classe (resp. seconde) ont pour préfixe $DIST_REL_C$ (resp. $DIST_REL_XY$, où

X et Y désignent les symboles des éléments formant la liaison prédite). La différence de nomenclature entre les deux classes et notamment entre les modèles $DIST_REL_C$ et $DIST_REL_CC$ est discutable, mais a pour avantage de faire apparaître simplement la distinction.

Enfin, les modèles prédictifs n'étant pas des réseaux de neurones artificiels font apparaître leur type dans leur nom.

5.2 Prédiction de longueurs de liaisons carbone-carbone

- 5.2.1 Modèle naïf
- 5.2.2 Restriction au voisinage le plus proche
- 5.2.3 Application de fonctions aux distances
- 5.2.4 Réduction de la largeur du réseau
- 5.2.5 Recherche par quadrillage des paramètres du modèle naïf
- 5.3 Généralisation de la méthode à d'autres liaisons
- 5.4 Ouverture à d'autres modèles d'apprentissage automatique

Chapitre 6

Prédiction de géométries moléculaires convergées

6.1 Introduction

6.1.1 Motivation

L'objectif des modèles prédictifs que l'on décrit dans ce chapitre est de prédire la géométrie convergée (REF GEOM CONVERG) d'une molécule complète, à partir d'une géométrie non convergée. Ils sont issus d'une tentative de reproduction de résultats antérieurs, afin de confirmer la méthode élaborée lors des stages précédents sur le projet QuChemPedIA.

Chronologiquement, ces modèles ont constitué la première partie de mon travail, avant de passer aux modèles tentant de prédire les longueurs de liaisons (REF DIST_REL), à cause de l'impossibilité de produire des prédictions de qualité suffisante (REF RESULTATS).

L'objectif à terme de ces modèles est de pouvoir constituer une alternative au DFT (REF DFT) pour calculer rapidement la géométrie convergée d'une molécule. Cela nécessite de produire des prédictions d'une très grande précision. Cependant, le but ici est avant tout de valider une méthode et notre capacité à produire des prédictions d'ordre géométrique. Nous ne cherchons donc pas à créer un modèle effectuant de très bonnes prédictions, mais plutôt à définir une représentation des données et un ensemble de paramètres permettant d'obtenir de bons résultats.

6.1.2 Méthodologie

Introduction de bruit Afin de prédire des géométries moléculaires convergées à partir de géométries moléculaires non convergées, la situation idéale serait que les modèles apprennent à partir d'un ensemble de géométries non convergées issues de mesures ou d'optimisation par mécanique moléculaire (REF MÉCA MOL), et l'ensemble de géométries convergées par le DFT (REF DFT) associé. Cela constituerait en effet un ensemble de données homogène qui aurait l'avantage d'être comparable aux données que l'on utiliserait dans un cas d'utilisation réel. Malheureusement, nous ne possédons pas de telles données. Nous possédons les géométries convergées issues de la base PubChemQC (REF PUBCHEMQC) mais pas les géométries à partir desquelles elles ont été calculées. S'il est théoriquement possible de calculer la géométrie optimisée en mécanique moléculaire de toutes les molécules de la base PubChemQC en utilisant le programme Open Babel[1], la perte de l'ordre des atomes lors de l'optimisation rend la procédure impossible en pratique.

L'alternative retenue lors des stages précédents est d'introduire du bruit (REF PREP DONNEES BRUIT) dans les coordonnées des géométries optimisées, et d'entraîner les modèles à prédire ce bruit. La différence entre la géométrie bruitée et le bruit prédit permet alors d'obtenir la géométrie optimisée par le modèle. L'introduction de bruit ne garantit donc pas que les modèles se généraliseront aux données réelles, mais semble tout de même raisonnable pour tenter de valider la méthode, puisque nous entraînons des modèles dont l'objectif est de déplacer les atomes d'une molécule de sorte à obtenir une géométrie convergée.

Modèles Cinq modèles différents ont été entraînés. Ils diffèrent par les représentations utilisées en entrée et en sortie, les caractéristiques des molécules dont on tente de prédire la géométrie convergée, et les paramètres propres aux réseaux de neurones comme les fonctions de coût ou la topologie. Dans la section suivante, nous allons répertorier les différentes caractéristiques utilisées de façon non chronologique, puisque aucun ensemble de caractéristiques n'a produit de résultats significativement meilleurs que les autres (REF RESULTATS). Cependant, une table des caractéristiques utilisées modèle par modèle est disponible en annexe (REF CARAC ANNEXES).

6.1.3 Nomenclature

Afin de simplifier leur dénomination, on nomme les différents modèles prédictifs. Tous les modèles décrits dans ce chapitre ont un nom de préfixe « DELTA_DIST_+H », issu de leur vocation à prédire des différences (Δ) de distances pour obtenir des géométries convergées. Le suffixe « +H » indique que les données d'entrée contiennent les informations concernant les atomes d'hydrogène. Initialement, des modèles ne contenant pas les atomes d'hydrogène en entrée devaient être créés par la suite, mais ce projet a été abandonné faute de pouvoir obtenir des résultats satisfaisants avec le modèle actuel (REF RESULTATS). Le nom des modèles possède enfin comme suffixe leur numéro chronologique.

6.2 Données et paramètres des modèles

6.2.1 Données

6.2.1.1 Représentations géométriques

Les modèles que l'on entraîne devant prédire la géométrie des molécules, nous devons leur fournir des données utilisant des représentations synthétisant de la façon la plus simple possible la position des atomes. Nous ne donnons pas les coordonnées brutes aux modèles car ils devraient leur appliquer trop de traitements (REF MAT POS).

Les modèles élaborés lors des stages antérieurs utilisaient la représentation géométrique par matrice réduite des distances inter-atomiques (REF MAT. RED. DIST). Elle est basée sur les distances relatives des atomes et possède donc l'avantage d'être indépendante de tout repère absolu. Cependant, il n'est pas possible de reconstruire systématiquement une matrice des positions atomiques à l'issue des prédictions des modèles utilisant cette représentation en sortie. C'est pourquoi nous avons abandonné cette représentation cette année au profit de la matrice des distances à des points fixes (REF MAT PTS FIXES), qui dépend d'un repère absolu mais dont on peut toujours déduire une matrice des positions atomiques.

Nous avons toutefois entraîné deux modèles de noms DELTA_DIST_+H_03 (resp. DELTA_DIST_+H_04) utilisant comme entrée les deux représentations et comme sortie la représentation par matrice des distances à des points fixes (resp. matrice réduite des distances inter-atomiques). L'entraînement du premier de ces modèles avait pour but de tester si la représentation en repère relatif permettait d'obtenir de meilleurs résultats, et l'entraînement du second avait pour but de vérifier si les mauvaises performances des modèles s'expliquaient par l'utilisation d'une représentation dans un repère absolu. Notons que ce dernier modèle avait uniquement une vocation de test, puisque l'on n'aurait pas été capables de construire la matrice des positons atomiques à l'issue des prédictions, et que l'on n'aurait donc pas pu l'utiliser dans un cas d'utilisation réel.

Nous avons également utilisé une variante de la représentation par matrice des distances à des points fixes comme entrée de l'un des modèles (DELTA_DIST_+H_02). Dans cette variante, les points fixes de référence sont considérés comme des atomes fictifs et leurs distances relatives sont donc données. Elles avaient initialement été ignorées car elles sont constantes et les réseaux de neurones sont donc théoriquement capables de les déduire. Ce modèle permettait de s'assurer que les mauvais résultats ne sont pas dus à cette information manquante.

6.2.1.2 Propriétés atomiques

En plus de la géométrie des molécules, nous donnons aux modèles des informations concernant chaque atome et ayant une influence sur la géométrie convergée. Tous les modèles que l'on a entraînés possèdent en entrée la masse atomique de chaque atome, et un des modèles (DELTA_DIST_+H_05) possède également les numéros atomiques. De même que pour les distances entre les points du repère, il s'agit d'une information que les réseaux

de neurones sont capables de déduire, nous la donnons pour nous assurer que les mauvais résultats ne sont pas dus à son absence.

6.2.1.3 Bruit

L'introduction de bruit dans la géométrie moléculaire convergée et le déplacement des atomes selon les prédictions des modèles pour obtenir la géométrie initiale permet de simuler la prédiction de géométries convergées sur des données réelles (REF INTRODUCT BRUIT). Il nous faut toutefois définir précisément quel type de bruit est introduit, quelles sont les données bruitées et quelle est son intensité.

Nature du bruit Le bruit que l'on introduit est un bruit gaussien de moyenne nulle. Cela semble un choix raisonnable car la symétrie de la distribution permet a priori d'éloigner autant les atomes les uns des autres que de les rapprocher, et le paramètre d'écart-type σ permet de contrôler son amplitude avec précision.

Données bruitées Lors des stages antérieurs, le bruit était introduit sur les distances entre les paires d'atomes, au sein de la matrice réduite des distances inter-atomiques. Cela présentait l'avantage de contrôler précisément ses effets. L'utilisation d'une représentation par matrice des distances à des points fixes rend toutefois impossible l'utilisation de cette méthode, car les distances aux points fixes du repère décrivant un point deviendraient incohérentes entre elles. Cela provoquerait la résolution de nombreuses intersections nulles lors de la reconstruction de la matrice des positions atomiques (REF RECONSTRUCT MAT PT FIXES). Pour pallier ce problème, nous introduisons le bruit sur la matrice des positions atomiques avant de calculer la matrice des distances à des points fixes, ce qui garantie sa cohérence mais nous fait perdre une partie du contrôle des effets du bruit. Le bruit étant ajouté aux coordonnées, on peut en effet difficilement vérifier si le déplacement moyen relatif des atomes est nul et on ne peut donc pas savoir si les atomes sont autant éloignés les uns des autres que rapprochés par le bruit.

Intensité du bruit Le déplacement relatif des atomes doit être suffisamment important pour que la tâche d'optimisation de la géométrie moléculaire soit difficile et comparable à des cas d'utilisation réels, mais suffisamment modérée pour que l'on n'inverse pas la position de couples d'atomes, ce qui constituerait une perte d'information trop importante car cela conduirait à tenter d'optimiser des molécules différentes et dans la plupart des cas impossibles selon les lois de la chimie. Un compromis raisonnable semble de déplacer les atomes de 5 pm (5.10^{-12} m) en « moyenne », ou plus précisément d'appliquer un déplacement tel que 68% des atomes sont déplacés de 5 pm ou moins. Cela revient à utiliser le paramètre d'écart-type σ de la loi normale solution de l'équation suivante, exprimant le déplacement d'un atome en pm en fonction de σ . On note (x, y, z) la position d'un atome dans une géométrie convergée et (x', y', z') sa position après déplacement.

$$5 = \sqrt{(x'-x)^2 + (y'-y)^2 + (z'-z)^2}$$

$$5 = \sqrt{\Delta_x^2 + \Delta_y^2 + \Delta_z^2}$$

$$5 = \sqrt{\sigma^2 + \sigma^2 + \sigma^2}$$

$$5 = \sqrt{3\sigma^2}$$

$$\sigma = 2,88675$$

Certains modèles sont entraı̂nés avec un bruit plus important, tel que 68% des atomes sont déplacés de 30 pm ou moins. On trouve alors avec la même méthode une valeur pour σ de 17,32051. Dans la table des paramètres des modèles en annexe, le bruit faible est noté « + » et le bruit élevé est noté « ++ ».

6.2.1.4 Homogénéisation des tailles de données

Les modèles prédictifs possédant une entrée de taille fixe et les molécules une taille (nombre d'atomes) variable, nous devons adapter la représentation des molécules dont on tente de prédire la géométrie convergée pour fournir une représentation homogène de taille fixe.

Le nombre de caractéristiques (features) pour chaque atome d'une molécule et un modèle donné est fixe et dépend de la représentation utilisée. Nous ne décrivons ici en détail que la procédure de $padding^1$ pour le modèle $DELTA\ DIST\ +H\ 01$ car elle est semblable pour tous les modèles.

La représentation géométrique par matrice des distances à des points fixes (REF MAT DIST PT FIXES) est composée de quatre valeurs par atome. Nous ajoutons en outre les masses atomique, ce qui fait un total de cinq caractéristiques par atome. Pour obtenir une entrée de taille fixe, nous devons déterminer une taille maximale des atomes que l'on accepte dans le modèle. Cette borne est ici fixée à 200. La taille de l'entrée du modèle est alors le produit du nombre de caractéristiques et de la taille maximale des molécules soit ici 1000. Lorsqu'une molécule est de taille inférieure à la taille maximale, les caractéristiques des atomes non définis sont fixées à zéro. Une schématisation de cette entrée est donnée dans la figure suivante.

d_{a_1,p_0}
d_{a_1,p_1}
d_{a_1,p_2}
d_{a_1,p_3}
m_{a_1}
:
d_{a_n,p_0}
d_{a_n,p_1}
d_{a_n,p_2}
d_{a_n,p_3}
m_{a_n}
0
:
0

FIGURE 6.1 – Entrée du modèle DELTA DIST +H $\theta 1$ pour une molécule de taille n

De même, la sortie du modèle est de taille fixe, mais n'est composée que des valeurs propres à la matrice de distances à des points fixes. À la différence de l'entrée, nous n'attendons pas que les valeurs concernant les atomes non définis soit nulles (REF EVALUATION). Une schématisation de la sortie est donnée dans la figure suivante.

d_{a_1',p_0}
d_{a_1',p_1}
$d_{a'_{1},p_{2}}$
d_{a_1',p_3}
:
$d_{a'_n,p_0}$
$d_{a'_n,p_1}$
$d_{a'_n,p_2}$
$d_{a'_n,p_3}$
?
:
?

Figure 6.2 – Sortie du modèle $DELTA_DIST_+H_01$ pour une molécule de taille n

^{1.} rembourrage

6.2.1.5 Unités

De même que pour les modèles prédisant les longueurs de liaisons (REF UNITES DIST_REL), les modèles décrits ici effectuent leurs prédictions en mÅ, afin d'évaluer des prédictions dans un ordre de grandeur de 10^2 et d'éviter que la fonction d'évaluation (REF EVALUATION) contenant un carré ne soit influencée par la présence de valeurs proches de zéro.

6.2.1.6 Synthèse du flux de données

Le flux de données général des modèles est donc le suivant. On extrait les caractéristiques d'une molécule (géométrie et différentes propriétés atomiques des atomes), on ajoute du bruit à la géométrie puis on tente de prédire le vecteur bruit. La différence entre la géométrie bruitée et le vecteur bruit donne enfin la géométrie convergée prédite par le modèle. Ce flux est synthétisé dans le schéma suivant.

FIGURE 6.3 – Flux de données des modèles DELTA DIST+H pour une molécule de taille 4

6.2.2 Fonctions d'évaluation

6.2.2.1 Fonctions de coût

Afin d'évaluer la qualité des prédictions et pour guider les modèles lors de la procédure d'optimisation des poids (REF DEEP LEARNING), nous devons définir une fonction de coût. Pour chaque prédiction évaluée, celle-ci doit renvoyer une valeur évaluant sa qualité. Par définition, plus la prédiction est bonne et plus le coût associé doit être faible. Pour évaluer la sortie des modèles qui est constituée de multiples valeurs, nous utilisons la métrique Root Mean Square Error (RMSE). Celle-ci consiste à calculer la moyenne du carrés des erreurs (différence entre le vecteur prédit et le vecteur attendu), puis à appliquer une racine carrée pour remettre le résultat dans l'ordre de grandeur des données d'entrée.

Ce RMSE (que l'on qualifie de total) est toutefois trop simpliste pour nos modèles car il considère toutes les valeurs du vecteur bruit prédit, alors que certaines valeurs correspondant à des atomes non définis en entrée doivent être ignorées (REF HOMOGEN TAILLE DONNEES). C'est pourquoi nous définissons une métrique que l'on nomme RMSE partiel et qui utilise un masque pour ne calculer le RMSE que sur les valeurs prédites correspondant à des valeurs non nulles en entrée.

Sans l'utilisation du RMSE partiel, les résultats d'évaluation des modèles seraient trompeurs à cause du fait que la plupart des vecteurs cibles (bruit à prédire) contiennent de nombreux zéros du fait de la nécessité d'avoir des entrées et sorties de taille fixe (REF HOMOGEN TAILLE DONNEES) et de la distribution des tailles de

molécules (REF DONNEES TAILLES MOL). En effet, le RMSE total évaluerait en grande partie la capacité des modèles à prédire des valeurs nulles, ce qui constitue une tâche très simple et éloignée de nos objectifs.

Si tous les modèles ont été entraînés avec le RMSE partiel comme fonction de coût, un des modèles (voir table des paramètres en annexe) a été entraîné une seconde fois avec le RMSE total comme fonction de coût. Cela avait pour but de tester si le changement de fonction de coût le guidait vers de meilleures solutions. Toutefois, afin d'avoir une mesure objective des performances, l'opposé du RMSE partiel était alors utilisé comme fonction de validation.

6.2.2.2 Fonctions de validation

En plus des fonctions de coût qui permettent de guider les modèles vers de bonnes solutions lors de l'entraînement, nous utilisons deux fonctions de validation qui ont pour objectif d'évaluer les performances des modèles sur les jeux de test (REF DONNEES JEUX TEST). Les premiers modèles utilisaient le score R2², défini comme le quotient de la somme du carré des erreurs par la somme du carré de l'écart des valeurs cibles à la moyenne. Le score R2 a peu à peu été abandonné au profit de l'opposé du RMSE partiel, notamment dans le but d'uniformiser l'évaluation des modèles entre leur entraînement et leur test sur des données inconnues.

6.2.2.3 Erreur introduite par le bruit

Afin d'évaluer les bénéfices des prédictions des modèles par rapport aux données géométriques bruitées, nous calculons le RMSE (REF FONCT COUT) des données bruitées. Formellement, nous calculons la moyenne des RMSE partiels des vecteurs bruit sur tout le jeu de données. Cela nous donne une idée précise de l'erreur introduite par le bruit. Tout modèle possédant un RMSE partiel inférieur à cette valeur sur le jeu de test aura donc prédit une partie du bruit et mené à une amélioration de la géométrie. Le RMSE du bruit introduit « faible » est d'environ 2,8 pm et celui du bruit « fort » est de 17,2 pm (REF BRUITS).

6.2.3 Architectures

Les modèles décrits dans ce chapitre sont tous des réseaux de neurones possédant des architectures simples. Ils sont composés d'une entrée et d'une sortie dont la taille dépend des données qu'ils doivent traiter (REF DONNEES), et d'un certain nombre de couches internes de taille fixe et entièrement connectées, c'est à dire que chaque neurone d'une couche est connecté à tous les neurones de la couche suivante.

Le nombre de couches et le nombre de neurones par couche varie en fonction des modèles. Les premiers modèles possédaient des couches internes plus larges que les entrées et sorties, ce qui pouvait potentiellement apporter un gain de performances mais qui augmentait de manière significative le temps d'entraînement. C'est pourquoi le dernier modèle est composé de couches internes de même taille que la couche d'entrée. Le détail est disponible dans la table des paramètres en annexe (REF TABLE ANNEXE).

6.2.4 Optimisation des paramètres

En plus du choix des données d'entrée, la performance des réseaux de neurones dépend de nombreux paramètres (REF PARAMS RN). Les résultats des modèles décrits dans ce chapitre étant peu probants (REF RESULTATS), j'ai effectué une recherche par quadrillage (REF RECHERCHE QUADRI) large des différents paramètres pour le modèle $DELTA_DIST_+H_05$, avec l'objectif de trouver un ensemble de paramètres menant à de meilleures performances. De même que pour les modèles décrits dans le chapitre précédent (REF QUADRI DIST REL), le temps d'exécution de l'entraînement d'un modèle limite grandement la possibilité d'entraîner des modèles avec des jeux de paramètres variés et un nombre élevé de validations croisées (REF VALID CROISEE) en un temps raisonnable. Il faut donc effectuer un compromis entre la quantité de modèles différents entraînés et le nombre d'entraînements de chacun de ces modèles. L'objectif ici étant de trouver un jeu de paramètres menant à de bonnes performances, dans l'idée de le perfectionner et de le valider par la suite s'il existe, la priorité est donnée au nombre de jeux de paramètres différents plutôt qu'au nombre de validations de chacun de ces jeux.

Cette recherche par quadrillage est toutefois relativement large car elle est composée d'une grille décrivant les paramètres de 576 modèles différents avec deux validations croisées, soit un total de 1152 entraînements pendant environ cinq jours. La grille se veut également large car elle fait varier la plupart des paramètres avec des amplitudes relativement élevées.

 $^{2.\} https://en.wikipedia.org/wiki/Coefficient_of_determination$

Paramètres	Valeurs				
Taux d'apprentissage (learning rate)	0.1, 0.0001, 0.00001				
Epsilon	1000, 0.0001				
Initialisation poids	0.2, 0.002				
Fonction d'activation couches cachées	elu, crelu				
Fonction d'activation couche de sortie	linéaire				
Dégradation des coefficients (weight decay)	0.1, 0.01, 0.001				
Largeur	500				
Profondeur	7, 3				
Taille de lot (batch)	500, 2000				
Époques d'entraînement	3				

Figure 6.4 – Grille de recherche par quadrillage pour le modèle $DELTA_DIST_+H_05$

À l'issue de la recherche, aucun ensemble de paramètres n'a mené à de meilleures performances que les modèles précédemment entraînés.

6.3 Résultats

6.3.1 Estimation des performances lors de l'entraînement

Lors de l'entraînement d'un modèle, la sortie texte de tensorflow et la sortie graphique de tensorboard (REF SORTIE TENSOR) permettent d'avoir une estimation de la valeur de la fonction de coût (REF RMSE) sur des données qui lui sont inconnues. Cela permet d'avoir une idée de la performance relative des modèles, sans faire d'analyse détaillée comme dans la section suivante. Tous les modèles décrits dans ce chapitre (en dehors des modèles les moins performants de la recherche par quadrillage REF QUADRI) ont des performances très similaires pendant l'entraînement. Les modèles travaillant sur des données ayant un bruit de RMSE (REF ERREUR BRUIT) 2,8 pm (resp. 17.2 pm) effectuent des prédictions de RMSE 1,8 pm (resp. 10,7 pm). Dans les deux cas, cela revient à réduire l'erreur à environ 63% de sa valeur initiale, et donc à prédire 37% du bruit. Il s'agit d'un gain que l'on pourrait qualifier de non négligeable, mais nous allons montrer dans la sous-partie suivante qu'il s'agit en réalité d'un apprentissage en « moyenne » qui n'améliore que très faiblement la géométrie moléculaire.

6.3.2 Analyse détaillée d'un modèle

Nous allons ici analyser les prédictions du modèle $DELTA_DIST_+H_05$. Tous les modèles ayant des performances similaires (REF ESTIM PERF ENTRAIN), nous supposons que l'analyse de leurs résultats est similaire à celle que l'on développe ici.

Le modèle ayant une sortie composée de multiples valeurs, nous allons décomposer ses prédictions afin de pouvoir les analyser. Ce que l'on va nommer par la suite prédictions est l'ensemble des composantes de tous les vecteurs de sortie du modèle sur le jeu de test après l'application d'un masque ne sélectionnant que les composantes de sortie correspondant à des atomes définis en entrée (REF HOMOG TAILLES). De même, ce que l'on nomme cibles est l'ensemble des valeurs attendues en sortie sur tous les exemples du jeu de test après sélection des valeurs correspondant à des atome définis, et le vecteur erreurs est alors la valeur absolue de la différence entre ces deux vecteurs.

6.3.2.1 Analyse statistique

Dans un premier temps, nous allons effectuer une analyse statistique des valeurs présentes dans les vecteurs cibles, prédictions et erreurs.

Les cibles correspondent au déplacement des atomes de la molécule par le bruit relativement à quatre points fixes du repère (REF DONNEES REPR GEOM). Le bruit étant gaussien, la moyenne et la médiane sont comme attendu très proches. L'écart-type des déplacements est très proche de la valeur donnée comme paramètre lors de l'introduction du bruit (REF INTENSITE BRUIT), ce qui est également prévisible. Le fait d'ajouter le bruit sur les coordonnées et non les distances (REF DONNEES BRUITEES) a cependant déplacé le déplacement moyen

Moyenne	-0,8216
Médiane	-0,8198
Écart-type	17,3062
Minimum	-94,7950
Maximum	97,2401

Figure 6.5 – Analyse statistique des valeurs cibles (en pm)

de zéro vers une valeur légèrement négative, c'est à dire que les atomes ont en moyenne été plus rapprochés de l'origine du repère qu'éloignés.

Moyenne	-0,2328
Médiane	-0,1346
Écart-type	10,4515
Minimum	-9,5675
Maximum	1,2347

FIGURE 6.6 – Analyse statistique des prédictions (en pm)

La moyenne et la médiane des prédictions étant décalées, elles ne suivent pas une distribution gaussienne comme attendu. L'intervalle des valeurs prédites n'est pas centré sur zéro mais est nettement déplacé vers les valeurs négatives. Cela s'explique par le centrage des cibles sur une valeur légèrement négative. L'écart-type n'étant pas comparable avec l'écart-type des valeurs cibles car la distribution n'est pas gaussienne, il est difficile d'estimer la dispersion des prédictions. Elles semblent toutefois très proches de zéro, comparativement aux valeurs attendues. En effet, les prédictions s'étendent entre -9,6 et 1,2, alors qu'on souhaiterait qu'elles s'étendent entre -94,8 et 97,2 dans les cas extrêmes, et qu'elles soient comprises entre -30,0 et 30,0 dans le cas général (REF INTENSITE BRUIT). Le modèle n'arrive donc pas à suffisamment déplacer les atomes pour obtenir les géométries convergées.

Moyenne	13,8335
Médiane	11,6937
Écart-type	10,4515
Minimum	$6,\!5565.10^{-7}$
Maximum	97.7970

FIGURE 6.7 – Analyse statistique des erreurs absolues (en pm)

On souhaiterait que les erreurs soient de l'ordre de 1 pm, alors qu'elles sont en moyenne de 13,9 pm. Cette erreur moyenne importante est prévisible puisque les prédictions sont dans un intervalle d'amplitude environ vingt fois plus faible que l'amplitude de l'intervalle des valeurs cibles.

6.3.2.2 Distribution de l'erreur absolue

Afin de comprendre la façon dont les erreurs sont distribuées, nous représentons graphiquement leur représentation en fonction de leur valeur.

L'erreur semble suivre une distribution gaussienne. L'erreur présentée ici étant l'erreur absolue, nous ne voyons qu'une demi courbe de Gauss. Cela montre que le bruit a été en partie « absorbé » par la prédiction (37%, REF ESTIM PERF) mais qu'il est resté intact.

6.3.2.3 Distribution de l'erreur absolue en fonction des cibles

La représentation de la distribution de l'erreur absolue en fonction des cibles montre que la majorité des prédictions sont très proches de zéro, et que les autres sont proches de -9. Il s'agit probablement d'une méthode pour le modèle de minimiser « en moyenne » la fonction de coût. Les prédictions autour de -9 font probablement partie des raisons pour laquelle la fonction de coût diminue de 37% par rapport à l'erreur introduite par le bruit.

Figure 6.8 – Distribution des erreurs du modèle DELTA DIST +H 05

Le modèle semble en effet ici apprendre une règle d'ordre géométrique qui lui permet de minimiser l'erreur dans certains cas.

Figure 6.9 – Erreur en fonction des cibles pour le modèle DELTA DIST +H 05

6.3.2.4 Distribution des prédictions en fonctions des cibles

La droite tracée correspond aux valeurs attendues. Les prédictions du modèle ont une intersection avec la droite limitée aux prédictions proches de zéro et de -9.

Lorsque l'on regarde de plus près les prédictions, on s'aperçoit qu'elles prennent des valeurs discrètes. Cette

FIGURE 6.10 – Prédictions en fonction des cibles pour le modèle DELTA DIST +H 05

FIGURE 6.11 - Prédictions en fonction des cibles pour le modèle DELTA DIST +H 05 (zoom)

subtilité peut en partie expliquer la capacité du modèle à prédire partiellement le bruit.

6.3.3 Abandon de la méthode

Le fait que le modèle effectue des prédictions constantes et l'impossibilité de produire de meilleurs résultats à l'issue de la recherche par quadrillage (REF QUADRI) ont mené à l'abandon de la méthode pour prédire des géométries moléculaires convergées, au profit d'une méthode moins ambitieuse (REF DIST REL).

Il est démontré qu'il existe une fonction permettant d'optimiser la géométrie moléculaire, et que les réseaux

de neurones sont des approximateurs universels de fonctions[2]. La tâche que nous avons tenté d'accomplir avec ces modèles est donc théoriquement possible. Nous pouvons toutefois trouver quelques explications possibles à notre incapacité à entraîner un modèle suffisamment efficace.

Premièrement, les modèles que nous avons entraînés sont des modèles aux architectures relativement simples, avec un nombre de neurones et de connexions limité par les capacités matérielles. Des architectures plus complexes auraient pu mener à de meilleures performances pour les mêmes données.

Un autre écueil pourrait être le manque de données. Même si nous travaillons sur un jeu de données contenant 3,7 millions de molécules (REF DONNES), il s'agit peut-être d'une quantité insuffisante pour approximer correctement une fonction aussi complexe. De même, il est possible qu'il manque certains descripteurs des molécules en entrée des modèles.

Enfin, il est possible que le problème soit lié à notre méthodologie, et notamment au fait que l'on génère un jeu d'entraînement en ajoutant du bruit sur les données à prédire. Peut-être la tâche de prédiction est-elle impossible à réaliser à cause du caractère aléatoire et par définition imprédictible du bruit gaussien, même si on peut raisonnablement imaginer que si un modèle est capable de prédire une géométrie convergée, il est capable de soustraire la géométrie convergée d'une géométrie bruitée.

Chapitre 7

Conclusion

Bibliographie

- [1] O'Boyle et al. : Open Babel : An open chemical toolbox. Journal of Cheminformatics 2011 3 :33.
- [2] K. Hornik, M. Stinchcombe, and H. White, Multi-layer feedforward networks are universal approximators, preprint, 1988.

Annexes

Modèle	Tailles molécules	Repr. géom. entrée	Repr. géom. sortie	Numéros atomiques	Masses atomiques	Distances inter at. fictifs	Fonction de coût	Profondeur	Largeur	Taille entrée	Bruit
DELTA_DIST+H_01	0 - 200	Matr. dist. pts. fixes	Matr. dist. pts. fixes	Non	Oui	Non	$rac{ m RMSE}{ m partiel/total}$	4	8650	1000	+/++
DELTA_DIST+H_02	0 - 200	Matr. dist. pts. fixes	Matr. dist. pts. fixes	Non	Oui	Oui	RMSE partiel	4	8650	1020	+
DELTA_DIST+H_03	0 - 200	Matr. dist. pts. fixes + Matr red. dist. inter- at.	Matr. dist. pts. fixes	Non	Oui	Non	RMSE partiel	3	9000	1800	++
DELTA_DIST+H_04	0 - 200	Matr. dist. pts. fixes + Matr red. dist. inter- at.	Matr red. dist. inter- at.	Non	Oui	Non	RMSE partiel	3	9000	1800	++
DELTA_DIST+H_05	2 - 60	Matr. dist. pts. fixes	Matr. dist. pts. fixes	Oui	Oui	Non	RMSE partiel	3	360	360	++