

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

P2P SYSTEMS

Lecture C

GNUTELLA

GNUTELLA

- Eliminate the servers
- Client machines search and retrieve amongst themselves
- Clients act as servers too, called **servents**
- [3/00] release by AOL, immediately withdrawn, but 88K users by 3/03
- Original design underwent several modifications

GNUTELLA

Connected in an **overlay** graph
(== each link is an implicit Internet path)

How do I search for my Beatles file?

- Gnutella *routes* different messages within the overlay graph
- Gnutella protocol has 5 main message types
 - Query (search)
 - QueryHit (response to query)
 - Ping (to probe network for other peers)
 - Pong (reply to ping, contains address of another peer)
 - Push (used to initiate file transfer)
- We'll go into the message structure and protocol now
 - All fields except IP address are in little-endian format
 - Ox12345678 stored as 0x78 in lowest address byte, then 0x56 in next higher address, and so on.

How do I search for my Beatles file?

How do I search for my Beatles file?

Query (0x80)

```
Minimum Speed | Search criteria (keywords)
```

Payload Format in Gnutella Query Message

GNUTELLA SEARCH

GNUTELLA SEARCH

QueryHit (0x81): successful result to a query

Payload Format in Gnutella QueryHit Message

GNUTELLA SEARCH

AVOIDING EXCESSIVE TRAFFIC

- To avoid duplicate transmissions, each peer maintains a list of recently received messages
- Query forwarded to all neighbors except peer from which received
- Each Query (identified by DescriptorID) forwarded only once
- QueryHit routed back only to peer from which Query received with same DescriptorID
- Duplicates with same DescriptorID and Payload descriptor (msg type) are dropped
- QueryHit with DescriptorID for which Query not seen is dropped

AFTER RECEIVING QUERYHIT MESSAGES

- Requestor chooses "best" QueryHit responder
 - Initiates HTTP request directly to responder's ip+port

```
GET/get/\!\!<\!\!File\ Index>/\!\!<\!\!File\ Name>/\!\!HTTP/1.0\backslash r\backslash n
```

Connection: Keep-Alive\r\n

Range: bytes= $0-\r$

User-Agent: Gnutella\r\n

r n

• Responder then replies with file packets after this message:

HTTP 200 OK\r\n

Server: Gnutella\r\n

Content-type:application/binary\r\n

Content-length: 1024 \r\n

r n

AFTER RECEIVING QUERYHIT MESSAGES (2)

- HTTP is the file transfer protocol. Why?
 - Because it's standard, well-debugged, and widely used.
- Why the "range" field in the GET request?
 - To support partial file transfers.
- What if responder is behind firewall that disallows incoming connections?

DEALING WITH FIREWALLS

Requestor sends Push to responder asking for file transfer

DEALING WITH FIREWALLS

Push (0x40)

DEALING WITH FIREWALLS

• Responder establishes a TCP connection at ip_address, port specified. Sends

GIV <File Index>:<Servent Identifier>/<File Name>\n\n

- Requestor then sends GET to responder (as before) and file is transferred as explained earlier
- What if requestor is behind firewall too?
 - Gnutella gives up
 - Can you think of an alternative solution?

PING-PONG

```
Ping (0x00)
no payload
```

Pong (0x01)

Port	ip_address	Num.	files	shared	Num.	KB	shared
------	------------	------	-------	--------	------	----	--------

- Peers initiate Ping's periodically
- Ping's flooded out like Query's, Pong's routed along reverse path like QueryHit's
- Pong replies used to update set of neighboring peers
 - To keep neighbor lists fresh in spite of peers joining, leaving and failing

GNUTELLA SUMMARY

- No servers
- Peers/servents maintain "neighbors," this forms an overlay graph
- Peers store their own files
- Queries flooded out, ttl restricted
- QueryHit (replies) reverse path routed
- Supports file transfer through firewalls
- Periodic ping-pong to continuously refresh neighbor lists
 - List size specified by user at peer: heterogeneity means some peers may have more neighbors
 - Gnutella found to follow **power law** distribution:

P(#links =
$$L$$
) ~ L^{-k} (k is a constant)

PROBLEMS

- Ping/Pong constituted 50% traffic
 - Solution: Multiplex, *cache* and reduce frequency of pings/pongs
- Repeated searches with same keywords
 - Solution: *Cache* Query, QueryHit messages
- Modem-connected hosts do not have enough bandwidth for passing Gnutella traffic
 - Solution: use a central server to act as proxy for such peers
 - Another solution:
 - → FastTrack System (soon)

PROBLEMS (CONTD.)

- Large number of freeloaders
 - 70% of users in 2000 were freeloaders
 - Only download files, never upload own files
- Flooding causes excessive traffic
 - Is there some way of maintaining metainformation about peers that leads to more intelligent routing?
 - → Structured peer-to-peer systems e.g., Chord System (coming up soon)