

2ch ULTRA LOW NOISE LOW DROPOUT VOLTAGE REGULATOR**■ GENERAL DESCRIPTION**

The NJM2898 is a 2ch ultra low noise low dropout voltage regulator designed for VCO Applications.

Advanced Bipolar technology achieves low noise, high ripple rejection and low quiescent current.

■ PACKAGE OUTLINE

NJM2898PB1

■ FEATURES

- High Ripple Rejection 75dB typ. ($f=1\text{kHz}$, $V_o=3\text{V}$ Version)
- Output Noise Voltage $V_{no}=19\mu\text{VRms}$ typ. ($C_p=0.01\mu\text{F}$, $C_o=1.0\mu\text{F}$ (Ceramic))
 $V_{no}=12\mu\text{VRms}$ typ. ($C_p=0.1\mu\text{F}$, $C_o=10\mu\text{F}$ (Tantalum))
- Output capacitor with $1.0\mu\text{F}$ ceramic capacitor
- Output Current $I_o(\text{max.})=100\text{mA} \times 2\text{ch}$
- High Precision Output $V_o \pm 1.0\%$
- Low Dropout Voltage 0.10V typ. ($I_o=60\text{mA}$)
- ON/OFF Control (Active High)
- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- Bipolar Technology
- Package Outline FFP12-B1 (2.0×2.0×0.85mm)

■ PIN CONFIGURATION

NJM2898PB1

PIN FUNCTION

1. V_{out2}	7. CONTROL1
2. V_{out2}	8. V_{out1}
3. GND	9. V_{out1}
4. CONTROL2	10. NOISE BYPASS1
5. V_{in2}	11. NC
6. V_{in1}	12. NOISE BYPASS2

■ EQUIVALENT CIRCUIT

NJM2898

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	+14	V
Control Voltage	V _{CONT}	+14(*1)	V
Power Dissipation	P _D	350(*2)	mW
Operating Temperature	T _{opr}	-40 ~ +85	°C
Storage Temperature	T _{stg}	-40 ~ +125	°C

(*1): When input voltage is less than +14V, the absolute maximum control voltage is equal to the input voltage.

(*2): Mounted on glass epoxy board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers)

■ ELECTRICAL CHARACTERISTICS

(1CH/2CH: V_{IN}=V_O+1V, C_{IN}=0.1μF, C_O=1.0μF: V_O≥2.7V (C_O=2.2μF: V_O≤2.6V), C_P=0.01μF, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _O	I _O =30mA	-1.0%	—	+1.0%	V
Quiescent Current	I _Q	I _O =0mA, except I _{cont} , per 1ch	—	120	180	μA
Quiescent Current at Control OFF	I _{Q(OFF)}	V _{CONT} =0V, per 1ch	—	—	100	nA
Output Current	I _O	V _O -0.3V	100	130	-	mA
Line Regulation	ΔV _O /ΔV _{IN}	V _{IN} =V _O +1V ~ V _O +6V, I _O =30mA	—	—	0.10	%/V
Load Regulation	ΔV _O /ΔI _O	I _O =0 ~ 100mA	—	—	0.03	%/mA
Dropout Voltage	ΔV _{I-O}	I _O =60mA	—	0.10	0.18	V
Ripple Rejection	RR	e _{in} =200mVrms, f=1kHz, I _O =10mA, V _O =3V Version	—	75	—	dB
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔT _a	T _a =0 ~ 85°C, I _O =10mA	—	±50	—	ppm/°C
Output Noise Voltage1	V _{NO1}	f=10Hz ~ 80kHz, I _O =10mA, C _P =0.01μF, C _O =1.0μF(Ceramic), V _O =3V Version	—	19	—	μVrms
Output Noise Voltage2	V _{NO2}	f=10Hz ~ 80kHz, I _O =10mA, C _P =0.1μF, C _O =10μF(Tantalum), V _O =3V Version	—	12	—	μVrms
Control Voltage for ON-state	V _{CONT(ON)}		1.6	—	—	V
Control Voltage for OFF-state	V _{CONT(OFF)}		—	—	0.6	V

The above specification is a common specification for all output voltages.

Therefore, it may be different from the individual specification for a specific output voltage.

■ OUTPUT VOLTAGE RANK LIST

Device Name	V _{OUT}	
	CH1	CH2
NJM2898PB1-2828	2.8V	2.8V
NJM2898PB1-JJ	2.85V	2.85V
NJM2898PB1-0303	3.0V	3.0V
NJM2898PB1-0521	5.0V	2.1V

■ TEST CIRCUIT

*3 $V_{o\leq 2.6V}$ version: $C_o=2.2\mu F$ (ceramic)

NJM2898

■ TYPICAL APPLICATION

① In the case where ON/OFF Control is not required:

Connect control terminal to V_{IN} terminal

The quiescent current can be reduced by using a resistance "R". Instead, it increases the minimum operating voltage. For further information, please refer to Figure "Output Voltage vs. Control Voltage".

② In use of ON/OFF CONTROL:

*4 $V_o \leq 2.6V$ version: $C_o = 2.2\mu F$

State of control terminal:

- "H" → output is enabled.
- "L" or "open" → output is disabled.

***Noise bypass Capacitance Cp**

Noise bypass capacitance Cp reduces noise generated by band-gap reference circuit.

Noise level and ripple rejection will be improved when larger Cp is used.

Use of smaller Cp value may cause oscillation.

Use the Cp value of 0.01 μF greater to avoid the problem.

NJM2898

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS

NJM2898

■ ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS

NJM2898

■ ELECTRICAL CHARACTERISTICS

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.