Chapitre 1

Endomorphismes remarquables d'un espace euclidien

Dans un espace euclidien E l'objectif est d'étudier les transformations de E qui préservent le produit scalaire. Ainsi on cherche à remplacer les notions de base, équation linéaire, forme linéaire, transposition etc. par les notions pertinentes en géométrie euclidienne à savoir, respectivement, de base orthonormée, de vecteurs normaux, de produit scalaire etc.

Les applications de ces transformations sont multiples :

- résoudre des équations différentielles linéaires, trouver une base orthogonale pour deux formes quadratiques si l'une est définie positive ou de classifier les quadriques,
- en physique, résoudre de nombreuses équations aux dérivées partielles comme celle de la corde vibrante ou exprimer le moment d'inertie d'un solide,
- en apprentissage automatique, calibrer un modèle de régression à l'aide de la méthode des moindres carrés ou étudier un échantillon en réduisant la dimension à l'aide de l'analyse en composantes principales.

Dans ce chapitre, (E, \langle, \rangle) désigne un espace Euclidien de dimension $n \in \mathbb{N}^*$.

I Isométrie vectorielle et matrice orthogonale

A Isométrie vectorielle

Définition 1 (Isométrie vectorielle)

On appelle isométrie vectorielle ou automorphisme orthogonal de \mathbf{E} tout endomorphisme préservant le produit scalaire, i.e. u est orthogonal si

$$\forall \vec{x}, \vec{y} \in E : \langle u(\vec{x}), u(\vec{y}) \rangle = \langle \vec{x}, \vec{y} \rangle.$$

On appelle groupe orthogonal l'ensemble de ces endomorphismes et on le note $\mathcal{O}(E)$.

Proposition I.1 (Conservation de la norme)

 $u\ est\ une\ isom\'etrie\ vectorielle\ si\ et\ seulement\ si$

$$\forall \vec{x} \in E: \quad \|u(\vec{x})\| = \|\vec{x}\|.$$

Démonstration: — Implication: Soit $\vec{x} \in E$. En prenant $\vec{x} = \vec{y}$, on obtient $\langle u(\vec{x}), u(\vec{x}) \rangle = \langle \vec{x}, \vec{x} \rangle$, soit $||u(\vec{x})||^2 = ||\vec{x}||^2$, d'où $||u(\vec{x})|| = ||\vec{x}||$.

— Réciproque : Soit
$$\vec{x}, \vec{y} \in E$$
. On a

$$\langle u(\vec{x}), u(\vec{y}) \rangle \overset{\text{Identité de polarisation}}{=} \frac{1}{4} (\|u(\vec{x}) - u(\vec{y})\| - \|u(\vec{x}) + u(\vec{y})\|)$$

$$\overset{\text{Linéarité}}{=} \frac{1}{4} (\|u(\vec{x} - \vec{y})\| - \|u(\vec{x} - \vec{y})\|)$$

$$\overset{\text{Conservation de la norme}}{=} \frac{1}{4} (\|\vec{x} - \vec{y}\| - \|\vec{x} - \vec{y}\|)$$

$$\overset{\text{Identité de polarisation}}{=} \langle \vec{x}, \vec{y} \rangle$$

Proposition I.2 (Conservation d'une base orthonormale)

u est une isométrie vectorielle si et seulement si l'image d'une base orthonormale quelconque est une base orthonormale.

Démonstration: — Implication : Soit $(\vec{e_1}, \dots, \vec{e_n})$ une base orthonormale de E. Comme

Conservation du produit scalaire
$$\langle u(\vec{e_i}), u(\vec{e_j}) \rangle \qquad \stackrel{\frown}{=} \qquad \langle \vec{e_i}, \vec{e_j} \rangle$$

, $(u(\vec{e_1}), \dots, u(\vec{e_n}))$ est bien une base orthonormale de E

— Réciproque : Soit $(\vec{e_1}, \dots, \vec{e_n})$ une base orthonormale de E. Soit $\vec{x} = \sum_{i=1}^n x_i \vec{e_i}, \vec{y} \sum_{i=1}^n y_i \vec{e_i} \in E$. On a

$$\begin{split} \langle u(\vec{x}), u(\vec{y}) \rangle = & \langle u\left(\sum_{i=1}^n x_i \vec{e_i}\right), u\left(\sum_{j=1}^n y_j \vec{e_j}\right) \rangle \\ & \stackrel{\text{bilinéarité}}{=} \sum_{i=1}^n \sum_{j=1}^n x_i y_j \langle u(\vec{e_i}), u(\vec{e_j}) \rangle \\ & \stackrel{(u(\vec{e_1}), \dots, u(\vec{e_n})) \text{BON}}{=} \sum_{i=1}^n x_i y_i \\ & \stackrel{(\vec{e_1}, \dots, \vec{e_n}) \text{BON}}{=} \langle \vec{x}, \vec{y} \rangle \end{split}$$

Proposition I.3 (Groupe)

 $\mathcal{O}(E)$ est un groupe, sous groupe de $\mathcal{GL}(E)$.

Démonstration: $\mathcal{O}(E)$ est un sous groupe de $\mathcal{GL}(E)$.

— $\mathcal{O}(E) \subset \mathcal{GL}(E)$ Soit $u \in \mathcal{O}(E)$ Comme u est un endomorphisme en dimension finie, il suffit de montrer que Ker $u = \{\vec{0_E}\}.$

Soit $\vec{x} \in \text{Ker } u$. Comme $||u(\vec{x})|| \stackrel{\text{def}}{=} ||\vec{x}||$ et $u(\vec{x}) = 0$, on a $||\vec{x}|| = 0$, soit $\vec{x} = \vec{0_E}$.

- Non vide: $Id_E \in \mathcal{O}(E)$
- Stabilité composition : Soit $u, v \in \mathcal{O}(E)$. Soit $\vec{x} \in E$. La norme est conservée car :

$$\|u(v(\vec{x}))\| \stackrel{u \in \mathcal{O}(E)}{=} \|v(\vec{x})\| \stackrel{v \in \mathcal{O}(E)}{=} \|\vec{x}\|.$$

— Stabilité inversion :Soit $u \in \mathcal{O}(E)$. Comme u est un automorphisme, u^{-1} l'est aussi. De plus, la norme est conservée car :

$$\|\vec{x}\| = \|u(u^{-1}(\vec{x}))\| \stackrel{u \in \mathcal{O}(E)}{=} \|u^{-1}(\vec{x})\|.$$

Matrice orthogonale

Définition 2 (Matrice orthogonale)

Une matrice carrée $M \in \mathcal{M}_n(\mathbb{R})$ est dit orthogonal si

$$M^{\mathsf{T}}M = I_n$$
.

On note $\mathcal{O}_n(\mathbb{R})$ est l'ensemble des matrices orthogonales de taille n. Comme $M^{\mathsf{T}}M = I_n$, la matrice M est inversible d'inverse M^{T} et on a aussi $MM^{\mathsf{T}} = I_n$.

Dans \mathbb{R}^2 , la matrice de rotation plane d'angle θ :

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$

ou dans \mathbb{R}^3 , la matrice de rotation autour de l'axe $\vec{e_1} = (1,0,0)$ et d'angle θ ,

$$R_{\vec{e_1}}(\theta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

ou les matrices de permutation, comme

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Proposition I.4

 $O \in \mathcal{O}_n(\mathbb{R})$ est orthogonal si et seulement si la famille des colonnes de O (ou les lignes) est une base orthonormale de l'espace euclidien canonique \mathbb{R}^n .

Démonstration: Soit C_1, \ldots, C_n les colonnes de la matrice O. Le coefficient d'indice i, j de la matrice $O^{\mathsf{T}}O$ est famille $C_i^{\mathsf{T}}C_j = \langle C_i, C_j \rangle$. Comme $O^{\mathsf{T}}O = I_n, \langle C_i, C_j \rangle = \delta_{ij}, \operatorname{donc}(C_1, \ldots, C_n)$ une famille orthonormale de \mathbb{R}^n . Du fait de l'égalité $OO^{\mathsf{T}} = I_n$, on a le même résultat sur les lignes.

Exemple 2

Il est facile de vérifier qu'une matrice de permutation est une matrice orthogonal car ses vecteurs colonnes forment une famille orthonormale.

Théorème I.5 (Isométrie vectorielle et matrice orthogonale)

Soit $u \in \mathcal{L}(E)$. Soit \mathcal{B} une base orthonormale de E. u est une isométrie vectorielle si et seulement si $[u]_{\mathcal{B}}$ est une matrice orthogonale.

Démonstration: Soit $\mathcal{B} = (\vec{e_1}, \dots, \vec{e_n})$ une base orthonormale de E. Soit C_1, \ldots, C_n les colonnes de la matrice $[u]_{\mathcal{B}}$. On a $[u(\vec{e_i})]_{\mathcal{B}} = C_i$. Le coefficient de la matrice $[u]_{\mathcal{B}}^{\mathsf{T}}[u]_{\mathcal{B}}$ d'indice i, j est :

$$C_i^{\mathsf{T}} C_j \stackrel{\mathcal{B} \text{ BON}}{\longleftarrow} \langle u(\vec{e_i}), u(\vec{e_j}) \rangle.$$

- Conservation d'une base orthonormale — Si $u \in \mathcal{O}(E)$, alors $\langle u(\vec{e_i}), u(\vec{e_j}) \rangle$ δ_{ij} et donc $[u]_{\mathcal{B}}^{\mathsf{T}}[u]_{\mathcal{B}} = I_n$, d'où $[u]_{\mathcal{B}} \in \mathcal{O}_n(\mathbb{R})$.
- Si $[u]_{\mathcal{B}} \in \mathcal{O}_n(\mathbb{R})$, alors $C_i^{\mathsf{T}} C_j = \delta_{i,j}$, soit $\langle u(\vec{e_i}), u(\vec{e_j}) \rangle = \delta_{ij}$ c'est à dire que l'image d'une base orthonormale et une base orthonormale donc $u \in \mathcal{O}(E)$.

Proposition I.6 (Matrice de passage d'un changement de bases orthonormales)

Soit $\mathcal{B}, \mathcal{B}'$ deux bases orthonormales de E.

Alors la matrice de passage de base \mathcal{B} à la base \mathcal{B}' , $P_{\mathcal{B}\to\mathcal{B}'}$, est une matrice orthogonale. Ainsi, son inverse est $P_{\mathcal{B}'\to\mathcal{B}}=P_{\mathcal{B}\to\mathcal{B}'}^{-1}=P_{\mathcal{B}\to\mathcal{B}'}^{\mathsf{T}}$.

Démonstration: Soit u l'endomorphisme associée à la matrice de passage. Comme l'image d'une base orthonormale est une base orthonormale $f(\mathcal{B}) = \mathcal{B}'$, f est une isométrie vectoriel, donc $P_{\mathcal{B} \to \mathcal{B}'}$ est une matrice orthogonale.

Proposition I.7 (Groupe)

 $\mathcal{O}_n(\mathbb{R})$ est un groupe, sous groupe de $\mathcal{GL}_n(\mathbb{R})$. C'est pourquoi $\mathcal{O}_n(\mathbb{R})$ est appelé le groupe orthogonal.

Démonstration: Pour la démonstration, il suffit de se ramener à u l'endomorphisme associée à la matrice orthogonale qui est une isométrie vectorielle.

C Déterminant

Proposition I.8 (Déterminant)

Soit $O \in \mathcal{O}_n(\mathbb{R})$. Alors det $O = \pm 1$.

Soit $u \in \mathcal{O}(E)$.

Alors det $u = \pm 1$.

Démonstration: Comme $O^{\mathsf{T}}O = I_n$, on a $\det(O^{\mathsf{T}}O) = \det(I_n) = 1$. Or $\det(O^{\mathsf{T}}O) = \det(O^{\mathsf{T}}O) =$

Soit \mathcal{B} une base orthonormée de E. Comme $[u]_{\mathcal{B}} \in \mathcal{O}_n(\mathbb{R})$ et $\det u = \det[u]_{\mathcal{B}}$, on conclut que $\det u = \pm 1$.

Remarque 1

Une matrice ou un endomorphisme de déterminant 1 ou -1 n'est pas nécessairement une matrice orthogonale ou une isométrie vectorielle. Par exemple $\det\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = 1$, mais les colonnes ne forment pas une base orthonormale de \mathbb{R}^2 . Donc $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \notin \mathcal{O}_2(\mathbb{R})$.

Définition 3 (Rotation et groupe spéciale orthogonale)

Une matrice orthogonale [resp. isométrie] est direct(e) si son déterminant est 1, indirect(e) si son déterminant est -1.

Une isométrie vectorielle directe est également appelée rotation.

On note $\mathcal{SO}_n(\mathbb{R})$ l'ensemble des matrices orthogonales directes de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{SO}(E)$ l'ensemble des rotations de E.

Exemple 3

$$\left| \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathcal{SO}_2(\mathbb{R}). \right|$$

Proposition I.9 (Groupe)

 $\mathcal{SO}_n(\mathbb{R})$ [resp. $\mathcal{SO}(E)$] est un groupe, sous-groupe de $\mathcal{O}_n(\mathbb{R})$ [resp. $\mathcal{O}(E)$)] appelé groupe spécial orthogonal de $\mathcal{M}_n(\mathbb{R})$ [resp. E]

Démonstration: — Non vide : $I_n \in \mathcal{SO}_n(\mathbb{R})$.

— Stabilité : Soit $S_1, S_2 \in \mathcal{SO}_n(\mathbb{R})$.

$$\det(S_1 S_2^{-1}) = \det S_1 \det S_2^{-1} = \det S_1 \det S_2 = 1.$$

D Symétrie orthogonale

Définition 4 (Symétrie orthogonale)

On appelle symétrie orthogonale par rapport à F parallèlement à F^{\perp} . Si F est un hyperplan de E, on parle alors de réflexion.

Proposition I.10 (Symétrie orthogonale)

Soit u une isométrie vectorielle.

u est une symétrie orthonormale si et seulement si sa matrice dans une base orthonormale est symétrique.

Démonstration: — \Longrightarrow : Soit une symétrie orthonormale par rapport à F et F^{\perp} . Soit \mathcal{B} une base orthonormale adaptée à décomposition $F \oplus F^{\perp} = E$. La matrice de u dans la base \mathcal{B} est de la forme :

$$[u]_{\mathcal{B}} = \begin{pmatrix} \mathbf{I}_{\dim(F_1)} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I}_{\dim(F_2)} \end{pmatrix}$$

Elle est symétrique. Soit \mathcal{B}' une base orthonormale quelconque. La matrice de passage de BON \mathcal{B} à la base BON \mathcal{B}' est orthogonale donc $P_{\mathcal{B}\to\mathcal{B}'}^{-1}=P_{\mathcal{B}\to\mathcal{B}'}^{\mathsf{T}}$. On a :

$$[u]_{\mathcal{B}'} = P_{\mathcal{B} \to \mathcal{B}'}^\mathsf{T} \begin{pmatrix} \mathbf{I}_{\dim(F_1)} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I}_{\dim(F_2)} \end{pmatrix} P_{\mathcal{B} \to \mathcal{B}'}$$

Donc $[u]_{\mathcal{B}'}$ est symétrique.

— ⇐=: Voir théorème spectral.

E Orientation

Définition 5 (Orientation)

Deux bases \mathcal{B} et \mathcal{B}' de E ont même orientation si $\det_{\mathcal{B}}(\mathcal{B}') > 0$.

Orienter E, c'est choisir une base \mathcal{B} de référence. Une base \mathcal{B}' est directe si elle a la même orientation que \mathcal{B} .

Exemple 4

Sur \mathbb{R}^2 . La base de référence est $(\vec{e_1}, \vec{e_2})$ la base canonique. Soit $\mathcal{B}' = (-\vec{e_1}, \vec{e_2})$. Comme $\det_{\mathcal{B}}(\mathcal{B}') = \det\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = -1$, \mathcal{B}' est une base indirecte.

Proposition I.11

Soit B une base orthonormée directe.

 \mathcal{B}' est une base orthonormée directe si seulement si la matrice de passage de \mathcal{B} à \mathcal{B}' est orthogonale directe.

Démonstration : L'équivalence est due à l'égalité :

$$\det_{\mathcal{B}}(\mathcal{B}') = \det(P_{\mathcal{B} \to \mathcal{B}'})$$

Définition 6 (Orientation d'un hyperplan)

Orienter l'hyperplan H, c'est choisir un vecteur \vec{n} orthogonal à H. Une base $(\vec{e_1},...,\vec{e_{n-1}})$ de H est alors directe si la base $(\vec{u},\vec{e_1},...,\vec{e_{n-1}})$ est directe dans E. Il y a deux orientations possibles de H.

Exemple 5

Soit \mathbb{R}^3 orientée par rapport à la base canonique. Soit H l'hyperplan définie par le vecteur normale (1,1,1). La base ((1,-1,0),(1,0,-1) de H est directe car det $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = 3$.

F Isométrie vectorielle du plan

Proposition I.12 (Classification)

Les matrices de $\mathcal{O}_2(\mathbb{R})$ sont les matrices de la forme :

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}; S_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \text{ où } \theta \in \mathbb{R}.$$

Les matrices de $SO_2(\mathbb{R})$ sont les R_{θ} , $\theta \in \mathbb{R}$. Les matrices indirectes sont les S_{θ} , $\theta \in \mathbb{R}$.

Démonstration: Soit $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$

$$M \in \mathcal{O}_2(\mathbb{R}) \Leftrightarrow M^{\mathsf{T}} M = I_2 \Leftrightarrow \begin{cases} a^2 + b^2 = 1 \\ c^2 + d^2 = 1 \\ ab + cd = 0 \end{cases} \Leftrightarrow \exists \theta, \phi \in \mathbb{R} \begin{cases} a = \cos \theta \text{ et } b = \sin \theta \\ c = \cos \phi \text{ et } d = \sin \phi \\ \cos \theta \cos \phi + \sin \theta \sin \phi = 0 \end{cases}$$

$$\Leftrightarrow \exists \theta, \phi \in \mathbb{R} \begin{cases} a = \cos \theta \text{ et } b = \sin \theta \\ c = \cos \phi \text{ et } d = \sin \phi \end{cases} \Leftrightarrow \exists \theta, \phi \in \mathbb{R}, \exists \epsilon \in \{-1, 1\} \begin{cases} a = \cos \theta \text{ et } b = \sin \theta \\ c = \cos \phi \text{ et } d = \sin \phi \end{cases} \\ \phi = \theta + \epsilon \frac{\pi}{2} [2\pi]$$

$$\cos(\theta + \epsilon \frac{\pi}{2}) = -\epsilon \sin \theta \text{ et } \sin(\theta + \epsilon \frac{\pi}{2}) = \epsilon \cos \theta$$

$$\Rightarrow \qquad \exists \theta \in \mathbb{R} \exists \epsilon \in \{-1, 1\} : \quad M = \begin{pmatrix} \cos \theta & -\epsilon \sin \theta \\ \sin \theta & \epsilon \cos \theta \end{pmatrix}$$

On conclut en remarquant que $\det \begin{pmatrix} \cos \theta & -\epsilon \sin \theta \\ \sin \theta & \epsilon \cos \theta \end{pmatrix} = \epsilon$.

Proposition I.13

 $R_{\theta}R_{\theta'}=R_{\theta+\theta'}$ ($\mathcal{SO}_2(\mathbb{R})$ est un sous-groupe commutatif)et $R_{\theta}^{-1}=R_{-\theta}$. Démonstration: On a :

$$R_{\theta}R_{\theta'} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta' & -\sin\theta' \\ \sin\theta' & \cos\theta' \end{pmatrix} = \begin{pmatrix} \cos\theta\cos\theta' - \sin\theta\sin\theta' & -(\cos\theta\sin\theta' + \sin\theta\cos\theta') \\ \cos\theta\sin\theta' + \sin\theta\cos\theta' & \cos\theta\cos\theta' - \sin\theta\sin\theta' \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\theta + \theta') & -\sin(\theta + \theta') \\ \sin(\theta + \theta') & \cos(\theta + \theta') \end{pmatrix} = R_{\theta + \theta'}.$$
$$R_{\theta}R_{-\theta} = R_{\theta - \theta} = I_2 \text{ donc } R_{\theta}^{-1} = R_{-\theta}.$$

On considère \mathcal{P} un plan vectoriel orienté et \mathcal{B} une base orthonormale directe de \mathcal{P} .

Définition 7 (Rotation)

L'endomorphisme de \mathcal{P} dont la matrice dans \mathcal{B} est R_{θ} est appelé rotation d'angle θ et est noté r_{θ} .

Définition-Proposition 1 (Angle d'une rotation)

La matrice de r_{θ} dans toute BOND est R_{θ} . θ s'appelle l'angle de la rotation, il est défini modulo 2π .

Démonstration: Soit P la matrice de passage de la BOND \mathcal{B} à une base BOND \mathcal{B}' . Comme P appartient $\mathcal{SO}_2(\mathbb{R})$, il existe θ' tel que $P = R_{\theta'}$. La matrice de r_{θ} dans la base \mathcal{B}' est : $R_{\theta'}^{-1}R_{\theta}R_{\theta'} = R_{-\theta'}R_{\theta}R_{\theta'} = R_{-\theta'+\theta+\theta'} = R_{\theta}$.

Proposition I.14 (Expression complexe d'une rotation)

Soit r_{θ} la rotation d'angle $\theta \in \mathbb{R}$. Pour $\vec{x} \in \mathcal{P}$, on note z l'affixe de M et z? celle de $r_{\theta}(\vec{x})$. On a:

$$z? = e^{i\theta}z$$
.

Démonstration: Soit (x, y) les coordonnées du vecteur \vec{x} . D'une part, on a :

$$[r_{\theta}(\vec{x})]_{\mathcal{B}} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} = \begin{pmatrix} \cos \theta x - \sin \theta y \\ \sin \theta x + \cos \theta y \end{pmatrix}$$

d'autre part,

$$z? = e^{i\theta}z = e^{i\theta}(x + iy) = (\cos\theta x - \sin\theta y) + i(\sin\theta x + \cos\theta y).$$

On conclut en identifiant la partie réel et imaginaire aux cordonnées de $[r_{\theta}(\vec{x})]_{\mathcal{B}}$.

Définition-Proposition 2 (Angle géométrique)

Soit $(\vec{x}, \vec{y}) \in E^2$ deux vecteurs non nuls. Alors il existe un unique $\theta \in [0, \pi]$ tel que

$$\langle \vec{x}, \vec{y} \rangle = \|\vec{x}\| \|\vec{y}\| \cos \theta,$$

et ce θ s'appelle l'angle géométrique entre les vecteurs \vec{x} et \vec{y} .