

							历年	E真	题考		统计	<u>.</u>								
						_														
章节	索引	核心考点	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021		小题考频	大题考频	章节考频	
Ch1	1	计算机系统层次结构	#11				ļ		#12	#12		#12	#12		·····	#18 #20	4		15+2	
0	2	计算机的性能指标		#12	#12		#12 &43	-			#12			#12	#12		8	2		
	3	定点数的表示与运算		&43	&43	&44	#14 &44	#13	#13			#13 #16 #19	#13 &45	#13 &43	#13	#13	10	8		
Ch2	4	C语言中各种数据的转换		#14	&43	#13	ļ	ļ		#13	&43						3	2	28+14	
	5	IEEE 754标准,浮点数运算	#13	#14	#13	#14	#13	#14	#14		&43 &44	#14		#13	#14	#14	11	2		
	6	数据的对齐和大小端存储				1				#14		#15	#15	#14			4			
	7	半导体随机存取存储器		#16	#14	#16	ļ	#15	#17			#17 &44					6	1		
	8	主存储器与CPU的连接	#15	#15	#15	ļ	ļ			#16					#15 &43	#17	6	1		
Ch3	9	低位交叉存储器				&43	ļ		#18		#13			-////			2	1	36+22	
	10	.,	#14 #21			#17 &43	4			#15 &45	#14	&44	&46	#15 &44	#16	#16	12	9		
	11	虚拟存储器		#17	&44	&43	#16 &43	&45	#16	&45		&44	#14 &46	#15 &44	&44	#15	6	9		
	12	磁盘存储器				1	#20 #21		#20				#20			&43	4	1		
	13	指令格式		&43		ļ	&44	&44	&44		#16	#15	&45		&43	#19	3	6		
Ch4	14	指令的寻址方式	#16	&43	#16 #17	1	#17 &44	#17 &44		#17	#15	#18	&45	#16	&43		9	5	13+14	
0	15	CISC与RISC	#17								&44						1	1		
	16	程序的机器级代码表示									&44		&45					2		
	17	CPU的功能和基本结构	Ī	#18	&43	ļ		4.	5章常	在十 0		#19			#17 &43		5	5		
	18	指令执行过程				<u> </u>							#17		#21 &43	&43	2	1		
Ch5	19	数据通路的功能和基本结构		&43		<u> </u>	&44				#19				#18	&43	3	5	28+19	
0.10	20	控制器的功能和工作原理	#19 &44		#19	#18		#18 &45	&43 &44	<u> </u>	#18 &44		#16			&43	6	6	20110	
	21	指令流水线	#18	#19	#18	&44	#18	#16 &44	<u> </u>	#19	#17	#20	#18	#17			10	2		
	22	多处理器的基本概念		\sim			1									#22	2			
	23	总线概念和常见总线标准	#20	#20	#20	#20	#19 &43	·}	#19	#21 &44	#20				#19		9	2		
	24	总线的性能指标			ļ	#19	&43	#19 #20				#21	#19	#19			6	1		
Ch6+Ch7	25	外部设备和I/O接口		#22	ļ	#21	ļ	#21	#21		#21	&43			#20		6	1	41+12	
	26	程序查询方式			#22					ļ		&43					1	1		
	27	程序中断方式	#22 &43	#21	#21	#22	#22	#22	#22	#22 &44	#22	#22 &43		#18 #20 #21	#22	#21	16	3		
	28	DMA方式	&43			&43	#22					&43	#22	#22		&44	3	4		
	29	加法器														&43		1		
其他	30	乘法电路			<u>.</u>	<u> </u>								<u> </u>					0+1	
	31	除法电路				1							\triangle					-		
己删		海明码		<u> </u>		<u> </u>	#15		<u> </u>			1					1		1+0	

2

王道考岍/cskaoyan.com

【复习要点】

- (1) 指令的格式及相关概念,定长与扩展操作码格式。↩
- (2) 常见的寻址方式、特点及其有效地址的计算。↩
- (3) 常用的汇编指令,过程调用、选择语句和循环语句的机器级表示,标志位和使用。
- (4) CISC 和 RISC 的基本概念, CISC 和 RISC 的比较。←

章节	索引	核心考点	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	小题考频:	大题考频	章节考频
	13	指令格式		&43			&44	&44	&44		#16	#15	&45		&43	#19	3	6	
	14	指令的寻址方式	#16	&43	#16 #17		#17 &44	#17 &44		#17	#15	#18	&45	#16	&43		9	5	10.11
Ch4	15	CISC与RISC	#17								&44	:					1	1	13+14
	16	程序的机器级代码表示									&44		&45		:		Ĭ	2	

王道考研/CSKAOYAN.COM

3

4

王道考畊/cskaoyan.com

指令格式

【考点笔记】指令的格式

为了区分各种数据寻址方式,在指令字中设一个字段,用来指明属于哪种寻址方式。

操作码 OP 寻址特征 形式	地址 A
----------------	------

操作码的位数决定了指令的条数,寻址特征和形式地址A共同决定了可寻址的范围。

- 若为立即寻址,则形式地址 A 的位数决定了数的范围。
- 若为直接寻址,则形式地址 A 的位数决定了可寻址的范围。
- 若为寄存器寻址,则形式地址 A 的位数决定了通用寄存器的最大数量。
- 若为寄存器间接寻址,则寄存器字长决定了可寻址的范围。

王道考研/CSKAOYAN.COM

10

王道考妍/cskaoyan.com

寄存器寻址 一地址指令 操作码(OP) 寄存器寻址:在指令字中直接给出操作数所在的寄存器编号,即EA =Ri,其操作数在由Ri,所 指的寄存器内。 寻址特征 优点: 一条指令的执行: 取指令 访存1次 指令在执行阶段不访问主存,只访问寄存器, OP 指令字短且执行速度快,支持向量/矩阵运算。 执行指令 访存0次 暂不考虑存结果 R_0 共访存1次 缺点: 寄存器价格昂贵, 计算机中寄存器个数有限。 0...011 寄存器 王道考研/CSKAOYAN.COM

立即寻址

假设指令字长=机器字长=存储字长,操作数为3

一地址指令

操作码(OP)

##

0---011

立即寻址:形式地址A就是操作数本身,又称为立即数,一般采用补码形式。 #表示立即寻址特征。

一条指令的执行:

优点: 指令执行阶段不访问主存, 指令执行时间最短

取指令 访存1次

执行指令 访存**0**次 缺点:

暂不考虑存结果

A的位数限制了立即数的范围。

共访存1次

如A的位数为n,且立即数采用补码时,可表示的数据范围为 $-2^{n-1}\sim 2^{n-1}-1$

王道考研/CSKAOYAN.COM

17

基址寻址

基址寻址:将CPU中基址寄存器(BR)的内容加上指令格式中的形式地址A,而形成操作数的有效地址,即EA=(BR)+A。

 - 寻址特征

 OP
 R₀ A
 R₀为基址寄存器

 主存

 R₁
 ALU

 通用寄存器
 操作数

(a) 采用专用寄存器BR作为基址寄存器

(b) 采用通用寄存器作为基址寄存器

注:基址寄存器是**面向操作系统**的,其内容由操作系统或管理程序确定。在程序执行过程中,基址寄存器的内容不变(作为基地址),形式地址可变(作为偏移量)。 当采用通用寄存器作为基址寄存器时,可由用户决定哪个寄存器作为基址寄存器, 但其内容仍由操作系统确定。

优点:可扩大寻址范围(基址寄存器的位数大于形式地址A的位数);用户不必考虑自己的程序存于主存的哪一空间区域,故**有利于多道程序设计**,以及可用于<mark>编制浮动程序(整个程序在内存里边的浮动)</mark>。

王道考研/CSKAOYAN.COM

变址寻址

变址寻址:有效地址EA等于指令字中的形式地址A与<mark>变址寄存器IX</mark>的内容相加之和,即EA= (IX)+A,其中IX可为变址寄存器(专用),也可用通用寄存器作为变址寄存器。

注:变址寄存器是**面向用户的**,在程序执行过程中,**变址寄存器的内容可由用户改变** (作为偏移量),形式地址A不变(作为基地址)。

优点:在数组处理过程中,可设定A为数组的首地址,不断改变变址寄存器IX的内容,便可很容易形成数组中任一数据的地址,特别<mark>适合编制循环程序</mark>。

王道考研/CSKAOYAN.COM

19

指令的寻址方式

2018_18. 按字节编址的计算机中,某double型数组A的首地址为2000H,使用变址寻址和循环结构访问数组A,保存数组下标的变址寄存器初值为0,每次循环取一个数组元素,其偏移地址为变址值乘以sizeof(double),取完后变址寄存器内容自动加1。若某次循环所取元素的地址为2100H,则进入该次循环时变址寄存器的内容是____。

A. 25

B. 32

C. 64

D. 100

答案:B 解析:

根据变址寻址的公式EA=(IX)+A,则(IX)=2100H-2000H=100H=256, sizeof(double)=8(双精度浮点数用8位字节表示),因此数组的下标为256/8=32,答案选B。

王道考研/CSKAOYAN.COM

指令的寻址方式

2017_15.下列寻址方式中,最适合按下标顺序访问一维数组元素的是。

- A. 相对寻址
- B. 寄存器寻址
- C. 直接寻址
- D. 变址寻址

答案:D

解析

在变址操作时,将计算机指令中的地址与变址寄存器中的地址相加,得到有效地址,指令提供数组首地址,由变址寄存器来定位数据中的各元素。所以它最适合按下标顺序访问一维数组元素。选D。

变址寄存器来定位数据中的各元素。所以它最适合按下标顺序访问一维数组元素,选D。 相对寻址以PC为基地址,以指令中的地址为偏移量确定有效地址。寄存器寻址则是在指令中指出需要使用的寄存器。直接寻址是在指令的地址字段直接指出操作数的有效地址。

王道考研/CSKAOYAN.COM

21

相对寻址

相对寻址:把程序计数器PC的内容加上指令格式中的形式地址A而形成操作数的有效地址,即EA=(PC)+A,其中A是相对于PC所指地址的位移量,可正可负,补码表示。

优点:操作数的地址不是固定的,它随着PC值的变化而变化,并且与指令地址之间总是相差一个固定值,因此便于程序浮动(一段代码在程序内部的浮动)。 相对寻址广泛应用于转移指令。

王道考研/CSKAOYAN.COM

指令的寻址方式

2009_16. 某机器字长为16位,主存按字节编址,转移指令采用相对寻址,由两个字节组成,第一字节为操作码字段,第二字节为相对位移量字段。假定取指令时,每取一个字节PC自动加1。若某转移指令所在主存地址为2000H,相对位移量字段的内容为06H,则该转移指令成功转移后的目标地址是___。

A . 2006H

B. 2007H

C. 2008H

D. 2009H

答案:C

解析:

相对寻址EA=(PC)+A,首先要求的是取指令后PC的值。转移指令由两个字节组成,每取一个字节PC值自动加1,因此取指令后PC值为2000H+2H=2002H,故EA=(PC)+A=2002H+ 06H=2008H。

【易错点】本题易误选A或B。选项A没有考虑PC值的自动更新,选项B虽然考虑了PC值要自动更新,但没有注意到该转移指令是一条两字节指令,PC值仅仅"+1"而不是"+2"。

无条件转移指令: JMP 形式地址

转移类指令通常采用相对寻址,因此执行该指令的结果是 PC = PC + 形式地址。 其中,形式地址用补码表示,可正可负。而原本PC应该指向转移指令的后一条指令

王道考研/CSKAOYAN.COM

23

各种条件转移指令

	指令的助忆符	检测的转移条件	功能描述
	JC	CF = 1	进位位为1,则转移
	JNC	CF = 0	进位位为 0,则转移
<u> 1</u>	JP/JPE	PF = 1	奇偶位为1,则转移
无符号数 条件转移指令	JNP/JPO	PF = 0	奇偶位为 0,则转移
W I.L44 (19.18 A	JE/JZ	ZF = 1	为零/相等,则转移
	JNE/JNZ	ZF = 0	不为零/不相等,则转移
	JA/JNBE	CF = 0 and $ZF = 0$	不低于等于/高于,则转移
	JAE/JNB	CF = 0	不低于/高于等于,则转移
	JB/JNAE	CF = 1	低于/不高于等于,则转移
	JBE/JNA	CF = 1 or AF = 1	低于等于/不高于,则转移

eg: 有无符号整数 a, b if (a == b){

指令1,2,3...

CMP a, b JE 形式地址 (背后实际做了 a-b 的运算) (相对寻址跳转到指令1的地址)

王道考研/CSKAOYAN.COM

PSW寄存器的各个标志位

> 条件码:

OF(Overflow Flag)溢出标志。溢出时为1,否则置0。

SF (Sign Flag) 符号标志。结果为负时置1,否则置0. ZF (Zero Flag)零标志,运算结果为0时ZF位置1,否则置0. CF (Carry Flag)进位/借位标志,进位/借位时置1,否则置0.

AF(Auxiliary carry Flag)辅助进位标志,记录运算时第3位(半 个字节)产生的进位置。有进位时1,否则置0.

PF(Parity Flag)奇偶标志。结果操作数中1的个数为偶数时置1,否 AD6 AD6 则置0.

▶ 控制标志位:

DF (Direction Flag) 方向标志,在串处理指令中控制信息的方向。 IF (Interrupt Flag) 中断标志。

TF (Trap Flag) 陷阱标志。

I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			X		OF	DF	IF	TF	SF	ZF		AF	$\mathcal{P}_{\mathcal{N}}$	PF		CF

- NMI:不可屏蔽中断请求信号。常用于处 理电源掉电紧急情况。
- INTR:可屏蔽中断请求信号。

王道考研/CSKAOYAN.COM

25

各种条件转移指令

分类	指令的助忆符	检测的转移条件	功能描述
)O	OF = 1	溢出,则转移
	JNO	OF = 0	不溢出,则转移
	JS	SF = 1	为负,则转移
	JNS	SF = 0	为正,则转移
有符号数	JE/JZ	ZF = 1	为零/相等,则转移
条件转移指令	JNE/JNZ	ZF = 0	不为零/不相等,则转移
	JG/JNLE	ZF = 0 and SF = OF	不小于等于/大于,则转移
	JGE/JNL	SF = OF	不小于/大于等于,则转移
	JL/JNGE	SF ≠ OF	小于/不大于等于,则转移
	JLE/JNG	$ZF = 1 \text{ or } SF \neq OF$	小于等于/不大于,则转移

转移指令经典题目: 2013年_44题

王道考研/CSKAOYAN.COM

类别 对比项目	CISC	RISC
指令系统	复杂,庞大	简单,精简
指令数目	一般大于 200 条	一般小于 100 条
指令字长	不固定	定长
可访存指令	不加限制	只有 Load/Store 指令
各种指令执行时间	相差较大	多数指令在一个时钟周期内完成
各种指令使用频度	相差很大	都比较常用
通用寄存器数量	较少	多
目标代码	难以用优化编译生成高效的目标代码	采用优化的编译程序,生成代码较为高效
控制方式	绝大多数为微程序控制	绝大多数为组合逻辑控制

RISC 采用指令流水线技术,使大部分指令在一个时钟周期内完成。适合流水线的指令系统的特征有:①指令长度应尽量一致;②指令格式应尽量规整;③保证除 Load/Store 指令外的其他指令都不访问存储器;④数据和指令在存储器中"对齐"存放。

王道考研/CSKAOYAN.COM

29

CISC与RISC

2009_17. 下列关于RISC的叙述中,错误的是____

- A. RISC普遍采用微程序控制器
- B. RISC大多数指令在一个时钟周期内完成
- C. RISC的内部通用寄存器数量相对CISC多
- D. RISC的指令数、寻址方式和指令格式种类相对CISC少

答案:A

解析

相对于CISC,RISC的特点是指令条数少;指令长度固定,指令格式和寻址种类少;只有取数/存数指令访问存储器,其余指令的操作均在寄存器之间进行;CPU中通用寄存器多;大部分指令在一个或者小于一个机器周期内完成;以硬布线逻辑为主,不用或者少用微程序控制。选项B、C、D都是RISC的特点,选项A是错误的,因为RISC的速度快,所以普遍采用硬布线控制器,而非微程序控制器。

王道考研/CSKAOYAN.COM

【复习要点】

- (1) 指令的格式及相关概念,定长与扩展操作码格式。
- (2) 常见的寻址方式、特点及其有效地址的计算。↩
- (3) 常用的汇编指令,过程调用、选择语句和循环语句的机器级表示,标志位和使用。
- (4) CISC 和 RISC 的基本概念, CISC 和 RISC 的比较。←

章节	索引	核心考点	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	小题考频:	大题考频	章节考频
	13	指令格式		&43			&44	&44	&44		#16	#15	&45		&43	#19	3	6	
	14	指令的寻址方式	#16	&43	#16 #17		#17 &44	#17 &44		#17	#15	#18	&45	#16	&43		9	5	10.11
Ch4	15	CISC与RISC	#17								&44	:					1	1	13+14
	16	程序的机器级代码表示									&44		&45		:		Ĭ	2	

王道考研/CSKAOYAN.COM