Fondamentaux théoriques du machine learning

Risks and risk decompositions

FTML Risks and risk decompositions

Risks and risk decompositions

Deterministic bound on the estimation error

We consider the best estimator in the hypothesis space F.

$$f_a = \underset{h \in F}{\operatorname{arg min}} R(h)$$

Exercice 1: Let us show that

$$R(f_n) - R(f_a) \le 2 \sup_{h \in F} |R(h) - R_n(h)|$$
 (1)

Risks and risk decompositions

Deterministic bound on the estimation error

$$f_{a} = \arg\min_{h \in F} R(h)$$

$$R(f_{n}) - R(f_{a}) = (R(f_{n}) - R_{n}(f_{n}))$$

$$+ (R_{n}(f_{n}) - R_{n}(f_{a}))$$

$$+ (R_{n}(f_{a}) - R(f_{a}))$$

$$\leq |R(f_{n}) - R_{n}(f_{n})|$$

$$+ (R_{n}(f_{n}) - R_{n}(f_{a}))$$

$$+ |R_{n}(f_{a}) - R(f_{a})|$$

$$\leq 2 \sup_{h \in F} |R(h) - R_{n}(h)|$$

$$+ (R_{n}(f_{n}) - R_{n}(f_{a}))$$
(2)

But by definition f_n minimizes R_n , so $\left(R_n(f_n) - R_n(f_a)\right) \le 0$.

Example 1

Exercice 2: We observe the data (1,0). We model these data with a Bernoulli distribution of parameter p.

- \triangleright What is the likelihood of these observations as a function of p?
- ▶ What is the value \hat{p} that maximizes this likelihood?

Example 2

Exercice 3: We observe the data (1,0,1) (same hypotheses)

- \triangleright What is the likelihood of these observations as a function of p?
- ▶ What is the value \hat{p} that maximizes this likelihood?

Link with logistic regression

We consider a binary classification problem, with $\mathcal{Y}=\{0,1\}$. Let us now consider the probabilistic model such that

$$p_{\theta}(1|x) = \sigma(\theta^T x)$$

Equivalently, this model can be written (remember that y=0 or y=1)

$$p_{\theta}(y|x) = \left(\sigma(\theta^T x)\right)^y \left(1 - \sigma(\theta^T x)\right)^{1-y} \tag{3}$$

Exercice 4: Show that the parameter θ with maximum likelihood is the logistic regression estimator θ_{logit} (cross entropy version).

We know that $\forall z \in \mathbb{R}, \sigma(-z) = 1 - \sigma(z)$.

$$R_{n}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log \left(p_{\theta}(y_{i}|x_{i}) \right)$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \log \left(\left(\sigma(\theta^{T}x_{i}) \right)^{y_{i}} \left(1 - \sigma(\theta^{T}x_{i}) \right)^{1-y_{i}} \right)$$

$$= -\frac{1}{n} \sum_{i=1}^{n} y_{i} \log \left(\sigma(\theta^{T}x_{i}) \right) + (1 - y_{i}) \log \left(\sigma(-\theta^{T}x_{i}) \right) \quad (4)$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_{i} \log \left(1 + e^{-\theta^{T}x_{i}} \right) + (1 - y_{i}) \log \left(1 + e^{\theta^{T}x_{i}} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} I(\theta^{T}x_{i}, y_{i})$$

- Y_{pred} is the random variable representing this prediction (proportional)
- Y is the random variable representing the class, in this node (empirical distribution)

$$P(Y_{pred} \neq Y) = \sum_{l=1}^{L} P(Y_{pred} \neq Y | Y = I) P(Y = I)$$

$$= \sum_{l=1}^{L} \left(1 - P(Y_{pred} = Y | Y = I)\right) P(Y = I) \quad (5)$$

$$= \sum_{l=1}^{L} (1 - p_n^l) p_n^l$$

Homogeneity criterion for classification: Gini impurity

$$H(n) = \sum_{l=1}^{L} p_n^l (1 - p_n^l)$$
 (6)

If we predict the classes in node n according to the proportions of the labels in n, then the Gini impurity is the probability of making a mistake, given that we are in node n.