D.E Post Mid	2 Notes
Orthogonal	Trajectories
Perpendicular 4	Ly Function Equation
	Ly y=mx+C
	Ly 42+22=42
	J
For y=mx+C	
if[m=1]	
Family of Curves/Lines	
Wirestunes	So the
	Standard Form
	1/-
· if C is Constant and	15 /=mx+C
m Changes	
	2
11	
1	
	Specialis Kind Commission

Q) Find the Orthogonal trajectories of the family of Straight lines your where Cis a parameter.

Gtep 1:-

First, we construct the diffrential equation for the formily of straight lines y= Cx, By diffrentialing the last equation with represent to x, we get:

y' = C = Conct

Since C= y/x

dy = y/x

For 0.7:

dy = -dx

9x x

$-\frac{dx=y}{dy}$
- dy x
-x.dx = y.dy
applying on both sides
$-\chi^2 + C = 4^2$
$\frac{-\chi^2 + C = y^2}{2}$
$\frac{C = y^2 + x^2}{2}$
$C = \chi^2 + \gamma^2$