3 Diskrétní rozdělení a spojitá rozdělení

Teorie: Obecné diskrétní rozdělení

Diskrétní veličina nabývá hodnoty x_1, x_2, x_3, \ldots

Diskrétní veličina je popsaná pomocí pravděpodobnostní funkce

$$P(x_i) = P(X = x_i)$$
, kde $i = 1, 2, ...$

Distribuční funkce $F(x) = P(X \le x) = \sum_{x_i \le x} P(X = x_i)$.

Počítání pravděpodobností **respektuje diskrétnost** (uvažujeme $x_{(1)} < x_{(2)} < x_{(3)} < \ldots$)

$$P\left(X \le x_{(i)}\right) = F(x_{(i)}) = P\left(X = x_{(1)}\right) + P\left(X = x_{(2)}\right) + \dots + P\left(X = x_{(i)}\right)$$

$$P\left(X < x_{(i)}\right) = F(x_{(i-1)}) = P\left(X = x_{(1)}\right) + P\left(X = x_{(2)}\right) + \dots + P\left(X = x_{(i-1)}\right)$$

$$P\left(X \ge x_{(i)}\right) = 1 - P\left(X < x_{(i)}\right) = 1 - F(x_{(i-1)})$$

$$P\left(X > x_{(i)}\right) = 1 - P\left(X \le x_{(i)}\right) = 1 - F(x_{(i)})$$

Střední hodnota: $EX = \sum_{i=1}^{\infty} x_i \cdot P(X = x_i).$

Rozptyl: $\text{var} X \stackrel{\text{def}}{=} E (EX - X)^2 = EX^2 - (EX)^2 = \sum_{i=1}^{\infty} x_i^2 \cdot P(X = x_i) - (EX)^2$

- (3.1) Nechť náhodná veličina X nabývá pouze hodnot -1,0,1 a víme, že P(X=-1)=0.25, P(X=0)=0.45 a P(X=1)=1-P(X=-1)-P(X=0)
 - (a) Načrtněte graf pravděpodobnostní funkce a graf distribuční funkce.
 - (b) Určete střední hodnotu a rozptyl.

[
$$P(X = 1) = 0.3$$
, $EX = (-1) \cdot 0.25 + (0) \cdot 0.45 + (1) \cdot 0.3 = 0.05$]
[$varX = (-1)^2 \cdot 0.25 + (0)^2 \cdot 0.45 + (1)^2 \cdot 0.3 - 0.05^2 = 0.5475$]

(3.2) Náhodná veličina X nabývá hodnot $x = \{1, 2, 3\}$ a pravděpodobnosti jsou dány vztahem $P(X = x) = \frac{c}{x!}$. Určete hodnotu c tak, aby se jednalo o pravděpodobnostní funkci. Spočtěte střední hodnotu E(X) a rozptyl varX.

$$[\ P(X=1)=\frac{c}{1!},\ P(X=2)=\frac{c}{2!},\ P(X=3)=\frac{c}{3!}]$$
 [součet pravděpodobností musí být 1 tedy $\frac{c}{1!}+\frac{c}{2!}+\frac{c}{3!}=1$ a $c=6/10$] [střední hodnota $\mathrm{E}(X)=1\cdot\frac{6}{10}+2\cdot\frac{6}{20}+3\cdot\frac{6}{60}=\frac{3}{2}$ a rozptyl $\mathrm{var}(X)=0.45$]

(3.3) Uvažujte pro $n = 1, 2, \dots$ pravděpodobnosti

$$P(X=n) = \begin{cases} \frac{1}{n(1+n)} & pro \ n=1,2,\dots \\ 0 & jinak \end{cases}$$

Rozhodněte, zda se jedná o pravděpodobnostní funkci a spočtěte střední hodnotu.

[jedná se pravděpodobnostní funkci, protože
$$\sum_{n=1}^{\infty} \frac{1}{n(1+n)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots = 1$$
 [střední hodnota neexistuje, protože
$$\sum_{n=1}^{\infty} \frac{n}{n(1+n)} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
 je nekonečno]

- (3.4) Najděte pravděpodobnostní a distribuční funkci pro následující náhodné proměnné, určete jejich střední hodnotu a rozptyl.
 - (a) počet šestek, které padnou při hodu 5 kostkami;

[
$$E(X) = \frac{5}{6}$$
, $var(X) = 5 \cdot \frac{1}{6} \cdot \frac{5}{6}$]

(b) součet bodů na kostkách při hodu 2 kostkami;

[
$$E(X) = 7$$
, $var(X) = \frac{35}{6}$]

(c) počet pokusů nutných k tomu, aby padla šestka;

$$[E(X) = 6, var(X) = 30]$$

(d) počet vadných výrobků ve výběru 10 výrobků z dodávky, která obsahovala 50 výrobků dobrých a 5 vadných;

[
$$E(X) = 10\frac{5}{55} = 0.91$$
, $var(X) = 10\frac{5}{55}\frac{50}{55}\frac{45}{54} = 0,69$]

(e) počet kontrolovaných výrobků, pokud ppst., že výrobek projde kontrolou je 0,8 a kontrolu končíme v okamžiku, kdy najdeme dva vadné výrobky.

$$[E(X) = 9, var(X) = 40]$$

(3.5) Dva hráči hrají následující hru: každý z hráčů vsadí předem dohodnutý obnos S=5 Kč a pak hráči hodí dvěma kostkami, v případě,

že součet bodů na kostkách je 6 a méně obnos 2S=10 Kč se dělí v poměru 2:8 že součet bodů na kostkách je 7 a více obnos 2S=10 Kč se dělí v poměru 7:3

(a) Pro kterého z hráčů je hra výhodnější ?

[
$$X$$
 označuje součet bodů na kostkách, $P(X \le 6) = \frac{15}{36}$, $P(X \ge 7) = \frac{21}{36}$] [střední hodnota výhry hráče A je $EX_A = 2 \cdot \frac{15}{36} + 7 \cdot \frac{21}{36} = 4.916$] [střední hodnota výhry hráče B je $EX_B = 8 \cdot \frac{15}{36} + 3 \cdot \frac{21}{36} = 5.083$] [hra je výhodnější pro hráče B]

(b) Navrhněte jiné poměry dělení vkladu tak, aby hra byla spravedlivá.

 $\left[\right.$ například vždy poměr 1:1 $\left]\right.$

Teorie: Obecné spojité rozdělení

Spojitá veličina nabývá nekonečně hodnot z intervalu $(a, b) \subseteq \mathbf{R}$.

Popsaná pomocí funkce hustoty f(x), kde $\int_a^b f(x) dx = 1$.

Distribuční funkce $F(x) = P(X \le x) = \int_{-\infty}^{x^{\alpha}} f(t) dt$.

Počítání pravděpodobností

$$P(X = a) = 0$$

 $P(X \le a) = P(X < a) = F(a)$
 $P(X \ge a) = P(X > a) = 1 - F(a)$
 $P(a < X < b) = F(b) - F(a)$

 $\alpha\%$ kvantil je číslo x_{α} , pro které platí $F(x_{\alpha}) = \alpha$

Speciální kvantily jsou: medián $x_{0.5}$, dolní kvartil $x_{0.25}$, horní kvartil $x_{0.75}$, dolní decil $x_{0.1}$, horní decil $x_{0.9}$, ...

Střední hodnota: $\mathbf{E}X = \int_a^b x \cdot f(x) \mathrm{d}\,x$. a rozptyl: $\mathbf{var}X = \mathbf{E}X^2 - (\mathbf{E}X)^2 = \int_a^b x^2 \cdot f(x) \mathrm{d}\,x - (\mathbf{E}X)^2$

(3.6) Rozdělení náhodné veličiny X je dáno hustotou f(x) = 2x + 2, na intervalu (-1,0) a nulovou jinde. Najděte $P(-2 \le X \le -0,5)$, $P(-2 \le X \le -1)$ a EX.

[
$$P(-2 \le X \le -0.5) = \int_{-1}^{-1/2} f(x) dx = 1/4, P(-2 \le X \le -1) = 0, EX = -1/3$$
]

(3.7) Náhodná veličina X má distribuční funkci $x^2/4$ na (0,2), nulovou pro x < 0 a jednotkovou pro x > 2. Najděte její hustotu, medián, střední hodnotu a $P(0,5 \le X < 1,5)$.

[
$$f(x) = x/2, x \in (0,2), x_{0.5} = \sqrt{2}, EX = 4/3, P(0,5 \le X < 1,5) = 1/2$$
]

(3.8) Náhodná veličina X je dána následující funkcí hustoty $f(x) = \begin{cases} bx & \text{pro } x \in (0,1), \\ 0 & \text{jinak.} \end{cases}$

Určete hodnotu parametru b, nakreslete funkci hustoty, určete a nakreslete odpovídající distribuční funkci F(x), určete střední hodnotu EX a rozptyl náhodné veličiny varX.

[
$$b = 2$$
, $F(x) = x^2$, $x \in (0, 1)$, $EX = 2/3$, $varX = 1/18$]

(3.9) Náhodná veličina X je dána následující funkcí hustoty $f(x) = \begin{cases} a - x/2 & \text{pro } x \in (3,5), \\ 0 & \text{jinak.} \end{cases}$

Určete hodnotu parametru a, nakreslete funkci hustoty, určete a nakreslete odpovídající distribuční funkci F(x), určete medián a kvantily $x_{0.05}$ a $x_{0.95}$.

[
$$a = 5/2$$
, $F(x) = -x^2/4 + 5/2x - 21/4$, $x \in (3,5)$, $x_{0.5} = 3.586$, $x_{0.05} = 3.051$, $x_{0.95} = 4.553$]