General Cycle

A bike start-up in Washington, DC

Lightning points

- Situation
- Business problem
- Feature selection and modeling
- Prediction tool
- Future improvements
- Coda

Logistics at General Cycle

Baltimore

Annapolis

3am at the Bowie facility

- Is it raining today?
- Which day of the week is it?
- Is it a holiday?

Problem statement

 Business problem: predict the number of bike users in any given day in Washington, DC

 Data science problem: given a set of weather and time variables, predict the number of bike users in a given day

Regression workflow

Data types

Numerical

- temp
- temp_feel
- humidity
- wind_speed
- As-is

Nominal

Categorical

- is_holiday
- is_workingday
- weather
- Dummy-ify

Ordinal

Categorical where order has value

- <none>
- Ordered numerical map

Correlation of features to target

Histogram of errors and evaluation

Linear regression with regularization

R-squared Train: 0.5825 Test: 0.5511

Bias-variance ratio: 0.9461

Catboost

R-squared Train: 0.9427 Test: 0.6257

Bias-variance ratio: 0.6638

Prediction tool

 The operations manager can predict how many additional bikes are needed by providing a set of time and weather variables

Prediction tool

Future improvements

- Data
 - More observations
 - Expanded feature set (demographics, user_type)
 - Transfer learning
- Modeling
 - Ensemble models
 - Deep learning (with expanded dataset and features)

Dradiat at anguifus logations and mare sition

- Tool
 - Flask-based and hosted app

