

[12] 发明专利申请公开说明书

[21] 申请号 02139684.1

[43] 公开日 2003年6月25日

[11] 公开号 CN 1425787A

[22] 申请日 2002.10.10 [21] 申请号 02139684.1

[71] 申请人 株洲硬质合金集团有限公司 地址 412000 湖南省株洲市荷塘区钻石路 48

[72] 发明人 徐令斌

[74] 专利代理机构 长沙永星专利事务所 代理人 周 咏

权利要求书1页 说明书4页

[54] 发明名称 碳化钨基硬质合金 [57] 摘要

本发明公开了一种含碳化钨基硬质合金,该合金中含有(Ti, W, Ta, Nb, Zr)C 固溶体。 由于采用了资源较丰富且价格低廉的物质Nb、Zr 替代部分Ta, 使含 Ta 硬质合金的生产成本降低。 并且, NbC 可细化晶粒、ZrC 可提高合金高温性能, 用Nb、Zr 替代部分Ta, 合金性能不会降低。 适用于做切削加工工具。

知识产权出版社出版

- 1、一种碳化钨基硬质合金,其特征在于:其中含有(Ti, W, Ta, Nb, Zr) C 固溶体。
- 2、根据权利要求 1 的碳化钨基硬质合金, 其特征在于: 所述固溶体中重量比 TaC: (NbC+ZrC) = (0.3~18):1。
- 3、根据权利要求 2 的碳化钨基硬质合金, 其特征在于: 所述的固溶体中重量比 NbC:ZrC=(1~5):1。

碳化钨基硬质合金

技术领域

本发明涉及一种碳化钨基硬质合金,特别是用于切削加工工具用的碳化钨基硬质合金。

背景技术

硬质合金是由难熔金属的碳化物与过渡族金属如Fe、Ni、Co,采用粉末冶金方法制备而成。其具有高的硬度,良好的耐磨性,广泛用于制作切削刀具、模具及地质矿山工具。在切削刀具方面多采用WC-TiC-Co硬质合金切削钢材。后来人们发现在这类硬质合金中加入TaC能明显改善刀具的高温性能,如高温强度、高温硬度和抗氧化性等。但是Ta资源贫乏,价格昂贵,使得含Ta的硬质合金的生产成本居高不下。

发明内容

本发明的目的是提供一种含Ta较少的碳化钨基硬质合金,降低切削类硬质合金的生产成本。

为了达到上述目的,本发明的碳化钨基硬质合金中含有 (Ti, W, Ta, Nb, Zr) C固溶体。

作为本发明的进一步改进,所述固溶体中重量比TaC: (NbC+ZrC) = (0.3~18):1。

作为本发明的再进一步改进,所述的固溶体中重量比NbC:ZrC=(1~5):1。

由于采用了资源较丰富且价格低廉的物质Nb、Zr替代部分 Ta,使含Ta硬质合金的生产成本降低。并且,NbC可细化晶粒、 ZrC可提高合金高温性能,用Nb、Zr替代部分Ta,合金性能不会降低。

具体实施方式

本发明的硬质合金采用以下工艺方法制备:

将Ta₂O₅、ZrO₂、Nb₂O₅、TiO₂以及WC、炭黑按表1进行配料。

将配好的料经干磨、压舟,在(1800~2300)℃下碳化, 再经破碎和过筛(工艺制度见表2),制得五元复式碳化物(Ti、 W、Ta、Nb、Zr)C。

将复式碳化物(Ti、W、Ta、Nb、Zr)C粉与WC粉、Co粉按一定比例称量,经湿磨、干燥、制粒和压制,再在(1350~2300) ℃烧结制得含有(Ti、W、Ta、Nb、Zr)C固熔体的WC基硬质合金。

根据本发明硬质合金的化学成分范围,配制了4批合金:YW1-T1,YW1-T2,YW1-T3和YW2-T,其中YW2-T为Co含量8wt%的硬质合金,其余3批为Co含量6wt%的硬质合金。表3提供了制备上述4批硬质合金的混合料的具体化学成分,此外还提供了制备Co含量分别为6wt%和8wt%,且不含NbC、ZrC的硬质合金YW1、YW2的混合料的具体化学成分。

表4提供了前述4批本发明WC基硬质合金以及YW1、YW2硬质合金在常温和高温时的硬度值。

表5提供了前述4批本发明WC基硬质合金以及YW1、YW2硬质合金在常温和高温时的抗弯强度值。

表6提供了前述4批本发明WC基硬质合金以及YW₁、YW₂硬质合金的氧化增重率。

从表4、表5和表6的数值可见,本发明的WC基硬质合金与

Co含量相同的且不含NbC、ZrC的硬质合金相比,在常温和高温时的硬度、抗弯强度以及抗氧化性等方面接近,甚至略有提高。

表 1 复式碳化物炉料配比

单位: wt%

WC	TiO ₂	С	Ta ₂ O ₅	Nb ₂ O ₅₊ ZrO ₂
35~50	25~45	10~25	5~20	5~10

表2 复式碳化物破碎和过筛工艺制度

研 磨 体 球径 (mm) 重量 (Kg)		装料量	球磨时间	过筛网目
		(Kg)	(h)	(目)
15~40	300~500	150	3~4	60~80

表3 混合料化学成分

牌号	Со	TiC	TaC	NbC	ZrC
YW,	6.0	6. 0	4. 0		_
Y₩1-T1	6.0	6.0	3.6	0.7	0. 2
YW ₁ -T ₂	6.0	6.0	2.0	1. 5	0.8
YW ₁ -T ₃	6.0	6.0	1. 2	1. 2	1. 2
Y₩₂	8.0	6.0	4.0	-	
Y₩ ₂ -T	8.0	6.0	2.4	1.0	0.7

注:上表中,余量成分为WC。

表4 常温及高温硬度对照表

单位: N/mm²

牌号	常温	300℃	500℃	800℃
YW ₁	1800	1310	1050	730
YW ₁ -T ₁	1780	1360	. 1140	760
YW ₁ -T ₂	1810	1400	1150	770
YW ₁ -T ₃	1850	1430	1180	800
YW ₂	1650	1200	920	620
YW ₂ -T	1610	1350 -	1110	680

表5	常温	及髙	温抗	弯强度	F

单位: MPa

牌号	常温	300℃	500℃
YW,	1605	1454	1360
YW1-T1	1613	1593.	1510
YW ₁ -T ₂	1600	1540	1490
YW ₁ -T ₃	1608	1520	1475
YW ₂	1755	1687	1477
YW ₂ -T	1827	1705	1625

表6 氧化增重率

单位: g/m²

牌号	YW ₁ -T ₁					
	31	28	23	20	23	19