1. [5 points] Construct a NFA to accept the strings over {0,1}*, containing 101 or 110 as substring.

2. [5 points] Construct a deterministic automaton equivalent to M = ({q0, q1}, {0, 1}, δ , q0, {q0}) State Table is given by,

State/Σ	0	1
→ q ₀	90	91
91	91	90, 91

3. [10 points] Construct a deterministic finite automaton equivalent to M = ({q0, q1, q2, q3}, {0, 1}), δ , q0, {q3}) where δ is given by Table

, $\{0,1\}$), δ , q0, $\{q3\}$) where δ is given by Table					
State/Σ	а	b		α	5
→ q ₀	90, 91	90	-> a	901	9 ~
91	92	91	-> 4 ₆		20
92	93	93	→ 901	9012	901
93		92	G		
			9012	90123	2013
			A 9013	9012	9012
			A 90123	90123	90123
			9,	92	a_1
			9	4 9 3	93
			A G	94	92
			, (3		, Q
			4	(47) (c ₁

4. [10 points] A. Design NFA for the language of all strings over {0, 1} that contain 01011.

B. Design NFA that recognizes the language consisting of all strings over {a, b} that contain a 'b' at either, the third to the last position or the second to last position.

[10 points] A. Let S = {0, 1, 2}. Give an NFA for the language L containing all string in Σ* which have a '0' or a '2' in the last four positions. For example, 110111 and 011121 are both in L, but 0201111 is not. Notice that strings of length four or less are in L exactly when they contain a '0' or a '2'.
B. Let Σ = {a, b}. Design NFA for the language L consisting of strings in which the final

B. Let Σ = {a, b}. Design NFA for the language L consisting of strings in which the final letter has appeared before. Solution: NFA is given in following

6. [10 points] Obtain the DFA equivalent to the following NFA,

States	Input		
	а	b	
→ q0	q1	q2	
q1	q0	q0,q3	
*q2	q0	q3	
q3	q2	q3	

PFA							
	Cl	<u>b</u>					
$\rightarrow q_6$	a_1	92					
q_{1}	96	L03					
903	9,2	923					
* 912	90	963					
A 923	loz	Q 3					
A 902	201	Q 23					
901	961	9023					
A 9023	9012	4 23					
* 9012	Q01	9023					
* 92	a_{6}	α_3					
9 3	$\begin{vmatrix} a_6 \\ a_2 \end{vmatrix}$	93					

