Title

Contents

1	Tues	Tuesday, October 20	
	1.1	Gluing Two Opens	4
	1.2	More General Gluing	9

1 Tuesday, October 20

1.1 Gluing Two Opens

Recall that a prevariety is a ringed space that is locally isomorphic to an affine variety, where we recall that (X, \mathcal{O}_X) is locally isomorphic to an affine variety iff there exists an open cover $U_i \rightrightarrows X$ such that (U_i, \mathcal{O}_{U_i}) .

We found one way of producing these: the gluing construction. Given two ringed spaces (X_1, \mathcal{O}_{X_1}) and (X_2, \mathcal{O}_{X_2}) and open sets $U_{12} \in X_1$ and $U_{21} \in X_2$ and an isomorphism $(U_{12}, \mathcal{O}_{U_{12}}) \xrightarrow{f} (U_{21}, \mathcal{O}_{U_{21}})$, we defined

- The topological space as $X_1 \coprod_f X_2$
- The sheaf of rings as $\mathcal{O}_X = \{ \varphi : U \to k \mid \varphi|_{U \cap X_i} \text{ is regular for } i = 1, 2 \}.$

Example 1.1.1.

 $\mathbb{P}^1/k = X_1 \cup X_2$ where $X_1 \cong \mathbb{A}^1, X_2 \cong \mathbb{A}^2$. Take $U_{12} = D(x)$ and $U_{21} = D(y)$ with

$$f: U_{12} \to U_{21}$$
$$x \mapsto \frac{1}{x} = y.$$

Figure 1: Supposing char $(k) \neq 2$. Note that for \mathbb{C} this recovers S^2 in the classical topology.

Example 1.1.2.

Let
$$X_i = \mathbb{A}^1$$
 and $U_{12} = D(x), U_{21} = D(y)$ with

$$f: U_{12} \to U_{21}$$
$$x \mapsto x = y.$$

Figure 2: Line with the doubled origin.

Then $\mathcal{O}_X = \{ \varphi : X \to k \mid \varphi|_{X_i} \text{ is regular} \} \cong k[x].$

1.2 More General Gluing

Now we want to glue more than two open sets. Let I be an indexing set for prevarieties X_i . Suppose that for an ordered pair (i,j) we have open sets $U_{ij} \subset X_i$ and isomorphisms $f_{ij}: U_{ij} \xrightarrow{\sim} U_{ji}$ such that

a.
$$f_{ji} = f_{ij}^{-1}$$

b. $f_{jk} \circ f_{ij} = f_{ik}$ (cocycle condition)

Figure 3: Opens with isomorphisms.

Then the gluing construction is given by

1.
$$X := \coprod X_i / \sim \text{ where } x \sim f_{ij}(x) \text{ for all } i, j \text{ and all } x \in U_{ij}$$
.

2.
$$\mathcal{O}_x(U) := \{ \varphi : U \to k \mid \varphi|_{U \cap X_i} \in \mathcal{O}_{X_i} \}.$$

Every prevariety arises from the gluing construction applied to X_i affine varieties, since a prevariety (X, \mathcal{O}_X) by definition has an open affine cover $X_i \rightrightarrows X$ and X is the result of gluing the X_i s by the identity.

Example 1.2.1.

Let $X_1 = X_2 = X_3 = \mathbb{A}^2/k$. Glue by the following instructions:

Figure 4: The map not shown is whatever formula is necessary to make the diagram commute.

Here

- $(y_1, y_2) = (1/x_1, x_2/x_1)$
- $(z_1, z_2) = (1/x_2, x_1/x_2)$ $U_{12} = D(x_1)$ $U_{21} = D(x_2)$.

Figure 5: Yields \mathbb{P}^2

Here $X_1 = [1: y/x: z/x], X_2 = [x/y: 1: z/y].$

Example 1.2.2.

From Gathmann 5.10, open and closed subprevarieties. Let X be a prevariety and suppose $U \subset X$ is open. Then (U, \mathcal{O}_U) is a prevariety where $\mathcal{O}_U = \mathcal{O}_X|_U$. How can we write U as (locally) an affine variety?

Since the U_i are covered by distinguished opens D_{ij} in X_i where $X = \bigcup X_i$ with X_i affine varieties, we can write $U = \bigcup_i U_i = \bigcup_{i,j} D_{ij}$.

Example 1.2.3.

Let $Y \subset X$ be a closed subset of a prevariety X. We need to define $\mathcal{O}_Y(U)$ for all $U \subset Y$ open, so we set

$$\mathcal{O}_Y(U) = \left\{ \varphi : U \to k \mid \forall p \in U, \exists V_p \text{ with } p \in V_p \subset_{\text{open}} X \text{ and } \psi \in \mathcal{O}_X(V_p) \text{ s.t. } \psi|_{U \cap V} \varphi \right\}.$$

What's the picture?

Figure 6: Sheaf for a closed subset.