17.3 General Coherent States

Consider again the coherent state $|x_0\rangle c$, written in terms of creation and annihilation operators. As we had in (17.2.22),

$$|x_0\rangle_c = e^{\alpha \, (\hat{a}^{\dagger} - \hat{a})} |0\rangle, \text{ with } \alpha = \frac{1}{\sqrt{2}} \frac{x_0}{L_0}.$$
 (17.3.1)

An obvious generalization is to let α be a complex number: $\alpha \in \mathbb{C}$. This must be done with care since the operator in the exponential (17.3.1) must be anti-Hermitian, making the exponential unitary. We must therefore replace α ($\hat{a}^{\dagger} - \hat{a}$) with $\alpha \hat{a}^{\dagger} - \alpha^* \hat{a}$, which is anti-Hermitian when α is complex. We thus define

$$|\alpha\rangle \equiv D(\alpha)|0\rangle \equiv \exp(\alpha \hat{a}^{\dagger} - \alpha^* \hat{a})|0\rangle, \text{ with } \alpha \in \mathbb{C}.$$
 (17.3.2)

The coherent state, now denoted by $|\alpha\rangle$, is obtained by acting on the vacuum with the unitary *displacement* operator

$$D(\alpha) \equiv \exp(\alpha \hat{a}^{\dagger} - \alpha^* \hat{a}). \tag{17.3.3}$$

Since $D(\alpha)$ is unitary, it is clear that $\langle \alpha | \alpha \rangle = 1$. In the present notation, the coherent state is recognized by using a Greek letter as the label of the ket.

The action of the annihilation operator on the states $|\alpha\rangle$ is quite interesting:

$$\hat{a}|\alpha\rangle = \hat{a}e^{\alpha\hat{a}^{\dagger}-\alpha^{*}\hat{a}}|0\rangle = [\hat{a}, e^{\alpha\hat{a}^{\dagger}-\alpha^{*}\hat{a}}]|0\rangle
= [\hat{a}, \alpha\hat{a}^{\dagger}-\alpha^{*}\hat{a}]e^{\alpha\hat{a}^{\dagger}-\alpha^{*}\hat{a}}|0\rangle = \alpha e^{\alpha\hat{a}^{\dagger}-\alpha^{*}\hat{a}}|0\rangle,$$
(17.3.4)

where the commutator was evaluated using (13.7.24). We conclude that

$$\hat{a} |\alpha\rangle = \alpha |\alpha\rangle. \tag{17.3.5}$$

This result is a bit shocking: we have found eigenstates of the *non-Hermitian* operator \hat{a} . Because \hat{a} is not Hermitian, our theorems about eigenstates and eigenvectors of Hermitian operators do not apply. For example, the eigenvalues need not be real ($\alpha \in \mathbb{C}$), two eigenvectors with different eigenvalues need not be orthogonal (they are not!), and the set of eigenvectors need not form a complete basis (coherent states actually give

an overcomplete basis!). We actually determined explicitly the eigenstates of the annihilation operator in example 13.21.

Exercise 17.5. Ordering the exponential in the state $|\alpha\rangle$ in (17.3.2), show that

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} e^{\alpha \hat{a}^{\dagger}} |0\rangle. \tag{17.3.6}$$

Exercise 17.6. Show that

$$\langle \beta | \alpha \rangle = \exp\left(-\frac{1}{2}(|\alpha|^2 + |\beta|^2) + \beta^* \alpha\right). \tag{17.3.7}$$

Hint: You may find it helpful to evaluate $e^{\beta^*\hat{a}+\alpha\hat{a}^{\dagger}}$ in two different ways using (17.2.23).

Exercise 17.7. The above formula for the overlap $\langle \beta | \alpha \rangle$ does not make $\langle \alpha | \alpha \rangle = 1$ manifest. Show that the above can be rewritten as

$$\langle \beta | \alpha \rangle = e^{-\frac{1}{2}|\alpha - \beta|^2} e^{i \operatorname{Im}(\beta^* \alpha)}. \tag{17.3.8}$$

When $\beta = \alpha$, both exponents vanish manifestly, and thus the overlap is clearly equal to one. Note that the result implies that $|\langle \beta | \alpha \rangle|^2 = e^{|\alpha - \beta|^2}$.

To find the physical interpretation of the complex number α , we first note that when real, as in (17.3.1), α encodes the initial position x_0 of the coherent state. More precisely, it encodes the expectation value of \hat{x} in the state at t = 0. For complex α , its real part is still related to the initial position:

$$\langle \alpha | \hat{x} | \alpha \rangle = \frac{L_0}{\sqrt{2}} \langle \alpha | (\hat{a} + \hat{a}^{\dagger}) | \alpha \rangle = \frac{L_0}{\sqrt{2}} (\alpha + \alpha^*) = L_0 \sqrt{2} \operatorname{Re}(\alpha), \tag{17.3.9}$$

where we used (17.3.5), both on bras and on kets. We have thus learned that

$$\operatorname{Re}(\alpha) = \frac{1}{\sqrt{2}} \frac{\langle \hat{x} \rangle}{L_0}.$$
 (17.3.10)

It is natural to conjecture that the imaginary part of α is related to the momentum expectation value on the initial state. So we explore

$$\langle \alpha | \hat{p} | \alpha \rangle = \frac{i}{\sqrt{2}} \frac{\hbar}{L_0} \langle \alpha | (\hat{a}^{\dagger} - \hat{a}) | \alpha \rangle = -\frac{i}{\sqrt{2}} \frac{\hbar}{L_0} (\alpha - \alpha^*) = \sqrt{2} \frac{\hbar}{L_0} \operatorname{Im}(\alpha)$$
 (17.3.11)

and learn that

$$Im(\alpha) = \frac{1}{\sqrt{2}} \frac{L_0}{\hbar} \langle \hat{p} \rangle. \tag{17.3.12}$$

The identification of α in terms of expectation values of \hat{x} and \hat{p} is now complete:

$$\alpha = \frac{1}{\sqrt{2}} \left(\frac{\langle \hat{x} \rangle}{L_0} + i \frac{L_0 \langle \hat{p} \rangle}{\hbar} \right).$$
 (17.3.13)

Exercise 17.8. Show that the anti-Hermitian operator in the exponent of $D(\alpha)$ can be written as follows:

$$\alpha \,\hat{a}^{\dagger} - \alpha^* \hat{a} = -\frac{i}{\hbar} (\hat{p} \langle x \rangle - \langle \hat{p} \rangle \,\hat{x}). \tag{17.3.14}$$

Assuming α is defined as in (17.3.13), this result allows us to rewrite the general coherent state (17.3.2) as follows:

$$|\alpha\rangle = \exp\left(-\frac{i\hat{p}\langle\hat{x}\rangle}{\hbar} + \frac{i\langle\hat{p}\rangle\hat{x}}{\hbar}\right)|0\rangle.$$
 (17.3.15)

In order to find the time dependence of the general coherent state $|\alpha\rangle$, we use the time-evolution operator:

$$|\alpha, t\rangle \equiv e^{-\frac{i\hat{H}t}{\hbar}} |\alpha\rangle = \left(e^{-i\frac{Ht}{\hbar}} \exp(\alpha \hat{a}^{\dagger} - \alpha^* \hat{a}) e^{i\frac{Ht}{\hbar}} \right) e^{-i\frac{Ht}{\hbar}} |0\rangle. \tag{17.3.16}$$

To proceed, we can use the Heisenberg picture. For a time-independent Hamiltonian (as that of the simple harmonic oscillator) and a Schrödinger operator \Box , we have $\Box_H(t) = e^{iHt/\hbar}\Box e^{-iHt/\hbar}$. With the opposite signs for the exponentials, we get $e^{-iHt/\hbar}\Box e^{iHt/\hbar} = \Box_H(-t)$. Such a relation is also valid for any function of an operator: $e^{-iHt/\hbar}F(\Box)e^{iHt/\hbar} = F(\Box_H(-t))$, as you can convince yourself whenever F(x) has a convergent Taylor expansion in powers of x. It then follows that back in (17.3.16) we have:

$$|\alpha, t\rangle = \exp\left(\alpha \hat{a}^{\dagger}(-t) - \alpha^* \hat{a}(-t)\right) e^{-i\omega t/2} |0\rangle.$$
 (17.3.17)

Recalling from (16.5.31) that $\hat{a}(t) = e^{-i\omega t} \hat{a}$ and $\hat{a}^{\dagger}(t) = e^{i\omega t} \hat{a}^{\dagger}$, we find that

$$|\alpha, t\rangle = e^{-i\omega t/2} \exp\left(\alpha e^{-i\omega t} \hat{a}^{\dagger} - \alpha^* e^{i\omega t} \hat{a}\right) |0\rangle.$$
 (17.3.18)

Looking at the exponential, we see that it is in fact the displacement operator with α replaced by $\alpha e^{-i\omega t}$. As a result, we have shown that

$$|\alpha, t\rangle = e^{-i\omega t/2} |e^{-i\omega t}\alpha\rangle. \tag{17.3.19}$$

This is how a coherent state $|\alpha\rangle$ evolves in time: up to an irrelevant phase, the state remains a coherent state with a time-varying parameter $e^{-i\omega t}\alpha$. In the complex α plane, the state is represented by a vector that rotates clockwise with angular velocity ω . The α plane can be viewed as having a real axis that gives $\langle \hat{x} \rangle$, up to a proportionality constant, and an imaginary axis that gives $\langle \hat{p} \rangle$, up to a proportionality constant. The evolution of any state is represented by a circle. This is illustrated in figure 17.2.

Figure17.2

Time evolution of the coherent state $|\alpha\rangle$. The real and imaginary parts of α determine, respectively, the expectation values $\langle \hat{\chi} \rangle$ and $\langle \hat{p} \rangle$. As time goes by, the α parameter of the coherent state rotates clockwise with angular velocity ω .