CLAIMS

What is claimed is.

1	1. A ball-limiting metallurgy (BLM) stack comprising:
2	a metal first layer disposed above and on a metallization;
3	a metal second layer disposed above and on the metal first layer;
4	a metal third layer disposed above and on the metal second layer, wherein the
5	metal third layer is substantially the same composition as the metal first layer;
6	a metal fourth layer disposed above and on the metal third layer, wherein the
7	metal fourth layer is substantially the same composition as the metal second layer; and
8	an electrically conductive bump disposed above the metal fourth layer.
1	2. The BLM stack according to claim 1, wherein the metal first layer comprises a
2	refractory metal selected from Ni, Co, Pd, Pt, Ti, Zr, Hf, Cr, Mo, W, Sc, Y, La, and Ce.
1	3. The BLM stack according to claim 1, wherein the metal second layer comprises a
2	refractory metal or refractory metal alloy.
1	4. The BLM stack according to claim 1, wherein the metal second layer comprises a
2	refractory metal or refractory metal alloy selected from Ni, Co, Pd, Pt, NiV, CoV, PdV, PtV, Ti,
3	Zr, Hf, Cr, Mo, W, Sc, Y, La, and Ce in a solid-solution or stoichiometric ratio.

2	a refractory metal first layer disposed over a metallization, wherein the refractory
3	metal first layer is in a thickness range from about 500 to 2,000 length units;
4	a refractory metal second layer disposed over the refractory metal first layer,
5	wherein the refractory metal second layer is in a thickness range from about from about
6	1,000 to about 4,000 of said length units;
7	a refractory metal third layer disposed over the refractory metal second layer,
8	wherein the refractory metal third layer is in a thickness range from about from about 500
9	to 2,000 of said length units, and wherein the metal third layer is substantially the same
<u> </u>	composition as the refractory metal first layer;
10 10 11 11 12	a refractory metal fourth layer disposed over the refractory metal third layer,
12	wherein the refractory metal fourth layer is in a thickness range from about from about
13	1,000 to about 4,000 of said length units, and wherein the refractory metal fourth layer is
14	substantially the same composition as the refractory metal second layer; and
14	an electrically conductive bump disposed over the refractory metal fourth layer.
andi:	
1	12. The BLM stack according to claim 11, wherein the refractory metal first and third
2	layers comprise Ti.
1	13. The BLM stack according to claim 11, wherein the refractory metal first and third
2	layers comprise Ti and the refractory metal first and third layers have a thickness of about 1,000

11. A ball-limiting metallurgy (BLM) stack comprising:

1

Å.

3

1	14.	The BLM stack according to claim 11, wherein the refractory metal first and third
2	layers compr	ise Ti and the refractory metal first and third layers each have a thickness of about
3	1,000 Å, and	wherein the refractory metal second and fourth layers each have a thickness of
4	about 2,000 Å	Ä.
1	15.	The BLM stack according to claim 11, further comprising:
2		an intermetallic zone disposed between the metallization and the electrically
3	condu	active bump, wherein the intermetallic zone comprises a Sn-refractory metal
4	comp	osition.
T 1	16.	The BLM stack according to claim B11, further comprising:
E 2		an intermetallic zone disposed between the metallization and the electrically
	conne	ective bump.
	∼ 17.	A process comprising:
	•	
⊨ : {		forming a metal/fization;
Z)	forming a metal/ization; forming a refractory metal first layer over the metallization;
Sur) \ ?	
Sub 5))	forming a refractory metal first layer over the metallization;
Sur))) layer,	forming a refractory metal first layer over the metallization; forming a refractory metal second layer over the refractory metal first layer;
Sub 5		forming a refractory metal first layer over the metallization; forming a refractory metal second layer over the refractory metal first layer; forming a refractory metal third layer above and on the refractory metal second

	8	forming a refractory metal fourth layer above and on the refractory metal third					
	layer, wherein the refractory metal fourth layer is substantially the same metal as t						
	10	refractory metal first layer; and					
	11	forming an electrically connective bump above the refractory metal fourth layer.					
	1	18. The process according to claim 17, wherein forming a metallization comprises:					
	2	forming a copper metallization pad over a substrate, wherein the copper					
	3	metallization pad makes contact with a metallization selected from a range of metal-					
	4	(M1) to M6.					
J	1	19. The process according to claim 17, wherein forming a refractory metal first layer					
	2	over the metallization comprises:					
	3	depositing the refractory metal first layer by physical vapor deposition of a					
	4	composition selected from Ni, Co, Pd, Pt, Ti, Zr, Hf, Cr, Mo, W, Sc, Y, La, and Ce.					
	1	20. The process according to claim 17, wherein forming a refractory metal first layer					
F	2	over the metallization comprises:					
	3	sputtering Ti over the metallization to a thickness in a range from about 500 Å to					
	4	about 2,000 Å.					
	,	· · · · · · · · · · · · · · · · · · ·					
	1	21. The process according to claim 17, wherein forming a refractory metal second					
	2	layer over the refractory metal first layer comprises:					

3	depositing the refractory metal second layer by physical vapor deposition of a
4	composition selected from Ni, Co, Pd, Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, V

		•	•			
4	composition selected from Ni	, Co, Pd, Pt, NiV,	CoV,	PdV, PtV,	Ti, Zr, Hf,	Cr, Mo, W
5	Sc, Y, La, and Ce in a solid-so	olution or stoichic	metric	ratio.		

- The process according to claim 17, wherein forming a refractory metal second 22. 1 layer over the refractory metal first layer comprises: 2 sputtering NiV over the refractory metal first layer to a thickness in a range from 3 about 1,000 Å to about 4,000 Å. 4
 - The process according to claim 17, wherein forming a refractory metal third layer 23. over the metallization comprises:
 - depositing the refractory metal third layer by physical vapor deposition.
 - The process according to claim 17, wherein forming a refractory metal third layer 24. over the metallization comprises:
- sputtering NiV over the refractory metal second layer to a thickness in a range 3 from about 500 Å to about 2,000 Å. 4
- The process according to claim 17, wherein forming a refractory metal fourth 1 25. layer over the refractory metal first layer comprises: 2
- depositing the refractory metal fourth layer by physical vapor deposition. 3

COMBIGME, CARIOR

3

1

1	20. The process according to claim 17, wherein forming a refractory metal fourth					
2	layer over the refractory metal first layer comprises:					
3	sputtering NiV over the refractory metal third layer to a thickness in a range from					
4	about 1,000 Å to about 4,000 Å.					
1	27. A process comprising:					
2	forming a metallization;					
3	sputtering a refractory metal first layer over the metallization;					
4	sputtering a refractory metal second layer over the refractory metal first layer,					
5	wherein the refractory metal second layer is a refractory metal alloy;					
5 5 6 1 7 4	sputtering a refractory metal third layer above and on the refractory metal second					
_ 7	layer, wherein the third refractory metal is substantially the same metal as the refractory					
₫ 8	metal first layer;					
□ 9 □ 10	sputtering a refractory metal fourth layer above and on the refractory metal third					
10	layer, wherein the refractory metal fourth layer is substantially the same metal as the					
	refractory metal first layer; and					
12	plating a Sn-containing solder through a mask onto the refractory metal fourth					
13	layer to form an electrically connective bump.					
1	28. The process according to claim 27, further comprising:					
2	etching the first-through-fourth refractory metal layers with an etch recipe that is					
3	selective to the solder; and					
4	reflowing the solder					

1	29.	The process according to claim 27, further comprising
2		first anisotropic etching the first-through-fourth refractory metal layers with an
3	etch re	ecipe that is selective to the solder;
4		second isotropic etching the first-through-fourth refractory metal layers with an
5	etch re	ecipe that is selective to the solder and to the mask; and
6		reflowing the solder.
1	30.	The process according to claim 27, further comprising:
2		anisotropically etching the mask and the first-through-fourth refractory metal
3	layers	by using the bump precursor as a shadow mask; and
4		etching the first-through-fourth refractory metal layers with an etch recipe that is
5	selecti	ve to the solder.
-		