

User Manual

Segway RMP
(Robot Mobile Platform)

RMP Lite 220
©2021 Segway-Ninebot All Rights Reserved

General Information

The Robot Mobile Platform (RMP) provides general or integrated robot chassis solutions for enterprises or third-party developers, versatility, durability and performance are considered in the design. RMP Lite 220 (hereinafter referred to as RMP) is a mobile robot chassis product designed for indoor and outdoor distribution, inspection, service, cleaning, and warehousing AGV. It is designed to provide large-scale and customized services for companies in the robotics field such as special application robots.

Main features of RMP:

- Hardware: compact and equipped with a large-capacity battery, can work continuously for 10 hours;
- · Software: compatible with ROS and Isaac operating systems;
- Hardware modular design, interface with software SDK,
 support secondary development or customized service;
- Support extension kits include: light strips, sensor mounting rods, and so on.

Safety

Incorrect use of RMP may cause loss of control, collision or fall of the RMP, resulting in property damage, personal injury, and even death. Therefore, in order to reduce risks and avoid injury, please read and follow all instructions and warnings in this manual.

The following secure messaging conventions are used in this document:

Warning!	Warns you of operations that may cause serious	
	injury or even death	
Attention!	Warns you of operations that may cause minor or	
	moderate injuries	
Please note	Indicates important information, but does not	

Warning!

- Please keep RMP out of the reach of children and pets.
 Accidental movement of RMP may cause injury or even death.
- Please do not sit, stand or ride on the RMP. Doing so may cause injury or even death.
- Please do not control RMP to hit people or animals. Collision may cause injury or even death.

- When RMP is running, remind people nearby at all times.
 Accidental collision with RMP may cause injury or even death.
- Avoid power failure on slopes. RMP cannot maintain its position on the slope when the power is off. The power off will cause RMP to slide, which may cause injury or even death.
- RMP can accelerate quickly. It is recommended that using low speed to practice until the you are familiar with controlling RMP.
 Accidental movement of RMP may cause injury or even death.
- Please do not try to disassemble the battery, it may cause electric shock, burns or even fire. Attempting to open the battery case will damage the battery case, release toxic and harmful substances, and also render the battery unusable.
- The same with all rechargeable batteries, please do not charge near flammable materials, which may cause a fire.
- If the battery case is damaged or the battery emits peculiar smell, smoke, overheating or leakage, please do not continue to use the battery and do not contact with any substances leaking from the battery to avoid poisoning.
- Strictly observe and follow all safety information on the warning label on the battery. Failure to do so may result in injury or even death.

 Please do not use cables that have been seriously worn or damaged, which may shock yourself or damage the RMP.

Attention!

- The performance parameters should be set correctly and carefully. RMP follows the commands issued to it, users are responsible for implementing correct and safe performance parameters.
- Do not charge the battery may cause permanent damage to the battery.
- Only can use the charger that is provided with RMP Lite 220 to charge the batter.
- Before operating RMP, please be sure to read the user's manual and be familiar with the operation of RMP and various precautions.

Please Note

 If the user modifies the chassis without communication with Segway-Ninebot and causes an accident, Segway-Ninebot does not assume any responsibility.

Table Of Contents

5 / 57

1 Product introduction	7
1.1Product diagram	7
1.2 Component description	8
1.3 Remote control	9
1.3.1 Remote control diagram	9
1.3.2 Receiver pairing	10
1.3.3 Remote control control car instructions	11
1.3.4 Upper computer control car instructions	12
2 Software introduction	16
2.1 Documents provided to users	16
2.2 Interface function introduction	16
2.2.1 C/C++ Interface introduction	16
2.2.2 ROS Interface introduction—SmartCar	20
2.2.3 Error code information table	23
3 Firmware upgrade and version upgrade	25
3.1 Firmware upgrade	25
3.2 Version upgrade	28
Appendix I System parameters and mode switching logic	31
Appendix II Battery replacement instructions	34
Appendix III Connector welding instructions	377
Appendix IV Connector pin angle definition instructions	40
Appendix V C/C++ APIReference documents	41

1 Product introduction

1.1Product diagram

Figure 1

Figure 2

1.2 Component description

Table 1

No.	Component name	Description	
		On: Hold down, when power button, push button and indicator	
		light are always on and accompanied by a beep, chassis boots	
		successfully. At this time, the chassis is in lock mode, and t	
1	Power button	indicator light is steady yellow.	
		Off: Hold down until the prompt sound starts, release the	
		button, chassis shut down successfully. At this time, power	
		button, push button and indicator light are off.	
2	Indicator light	Colors and status of the indicator light represent different	
	maioator light	modes of the product.	
3	Emergency stop	Use to switch the chassis to emergency stop mode in an	
	button	emergency.	
4	Push button	Use to switch the chassis to push mode.	
5	Driving wheel	11 inch high adhesion pneumatic tire with good shock	
	Briving Wricer	absorption and design with drainage tank.	
6	Universal wheel	Super Artificial rubber, lightweight and shock absorption.	
7	Battery compartment	Battery storage area.	
8	Battery compartment door	Need to use the matching key to open.	
9	Charging port	Connect the charger to charge the device.	
10	Electric control box	Use to install circuit module to control the chassis.	
11	Mounting hole	Use to install upper equipment.	
12	Upper computer	It supplies power to the upper computer, with a maximum	
12	power supply port	current of 10A.	
13	Upper computer	Provide communication for the upper computer, including serial	
10	communication port	port, CAN and remote control signal reception.	
14	Control box mounting	The position reserves for the user to install the upper computer	
14	slot	control box.	

1.3 Remote control

1.3.1 Remote control diagram

Figure 3

*The forward or backward of the remote control input (throttle or rudder) can be realized by flipping the enable switch under the T8FB.

Figure 4

*The alarm voltage of the remote control is adaptive to 2S, 3S, 4S lithium batteries and 4 NI-MH batteries. That is, if T8FB is powered by 2S, 3S, 4S lithium batteries or 4 NI-HM batteries, after connecting the battery, T8FB will automatically set the low voltage alarm value according to the battery type.

1.3.2 Receiver pairing

Each transmitter has an independent ID code. Before starting to use the device, receiver must pair the code with the transmitter. After pairing the code, the ID code is stored in the receiver, and there is no need to pair it again, unless the receiver is used with another transmitter. When you have a new receiver, you must pair the code again, otherwise the receiver will not work normally.

7

- (1) Place the remote control and receiver horizontally with a spacing of about 50cm;
- (2) Turn on the power switch of the remote control to supply power to the receiver, and the receiver's LED light starts to flash slowly;
- (3) Press the pairing code button (ID SET) on the side of the receiver for more than 1 second, the LED light starts to flash quickly, that means the code is being paired, and the receiver will look for the nearest remote control to pair the code;
- (4) When the receiver's LED light stops flashing, it means that pairing the code is completed. If the receiver's LED light flashes slowly, it means that pairing the code has failed, the code needs to be paired again.

1.3.3 Remote control control car instructions

(1) Turn on the RMP chassis: press the RMP power button;

Note: Please check the RMP status. Press and hold until the buzzer sounds and there is no continuous beeping, the indicator light is steady yellow.

(2) Turn on the remote control: push up the power switch of the remote control;

Note: ensure that the remote control is not in the emergency stop state and enters the enable state. That is, the emergency stop switch is not at the bottom, and the enable switch is dialed from the top to the bottom.

(3) At this time RMP is in Normal mode, see the table below for specific operations:

Table 2: Car control and remote control operation

Car control	Remote control operation		
Turn left/ right	Rudder lever		
Move forward/backward	Throttle lever		
Emergency stop/ exit emergency stop	Emergency stop switch: At the top: exit the emergency stop; At the bottom: start the emergency stop		
Adjust the maximum	Maximum angular velocity adjustment knob: Turn left: the		
value of angular velocity	maximum angular velocity decreases, Turn right: increases.		
Adjust the maximum	Maximum linear velocity adjustment knob: Turn left: the		
value of linear velocity	maximum linear velocity decreases, Turn right: increases.		
Enable/Disable	Turn the enable switch from the top to the bottom: Enable;		
	Turn the enable switch from the bottom to the top: Disable.		

1.3.4 Upper computer control car instructions

The host computer is the control computer, which can directly issue control commands and display various information changes on

the screen. The upper computer controls the lower computer and provides some necessary operating environment for the lower computer, and extends the man-machine control or demonstration function that the lower computer can provide. The upper computer has the characteristics of leading management, coordinating resources, monitoring agency, and controlling RMP.

- (1) Turn on the RMP chassis: press the RMP power button;

 Note 1: Please check the RMP status. Press and hold until the buzzer sounds and there is no continuous beeping, the indicator light is steady yellow.
- Note 2: When the upper computer controls the car, the remote control cannot be turned on. Or if the remote control is turned on, turn its enable switch upward.
- (2) Ensure that the RMP serial line or CAN line is connected to the upper computer;
- (3) In the upper computer, give permissions to "/sdcard/segway/ hardware_log/" folder, otherwise it will fail to create a new log file; give permissions to all files in the "/catkin_ws/ src/ RosCode/segwayrmp/ lib/" directory (no need to reset after first setup):

`cd /sdcard/segway/hardware_log`

`sudo chmod 777 /sdcard/segway/hardware_log/`

`cd \$PRO_HOME\$/catkin_ws/src/RosCode/segwayrmp/lib/`
`sudo chmod 777 *

(4) In "catkin_ws/src/RosCode/segwayrmp/Cmakelists.txt" file, according to the upper computer in x86_64 or arm platform, select the compilation option,as shown below when compiling in x86_64 platform, comment out "libctrl_arm64-v8a.so" with the symbol "#", (no need to reset after first setup):

`target_link_libraries(SmartCar`

`\${catkin_LIBRARIES}`

`#\${PROJECT_SOURCE_DIR}/lib/libctrl_arm64-v8a.so //in x86_64 platform, comment out this line, in arm platform, do not comment out this line`

`\${PROJECT_SOURCE_DIR}/lib/libctrl_x86_64.so //in arm platform, comment out this line, in x86_64 platform, do not comment out this line`

(5) Enter ROS system, run the following command to compile the "segway_msgs" package message.

cd catkin_ws

catkin_make

- -DCATKIN_WHITELIST_PACKAGES='segway_msgs'
 - (6) Enter ROS system, run the following command to compile


```
the "segwayrmp" package message.
      cd catkin_ws
      catkin make
  -DCATKIN_WHITELIST_PACKAGES='segwayrmp'
    (7) Control car in ROS system:
      1) Create a new terminal, run the following command:
      cd catkin_ws
```

roscore

2) Create a new terminal, run the following command, run

SmarCar node:

cd catkin ws

source devel/setup.bash

rosrun segwayrmp SmartCar

3) Create a new terminal, run the following command, run routine test node:

cd catkin_ws

source devel/setup.bash

rosrun segwayrmp ChassisResponseTest

2 Software introduction

This chapter introduces relevant documents, software interface functions and fault code information provided by RMP.

2.1 Documents provided to users

Table 3 Documents provided

Document	Function	
Libctrl_x86_64.so	Provide C/C++ chassis-related	
	interfaces in x86 platform	
Libctrl_arm64-v8a.so	Provide C/C++ chassis-related	
	interfaces in arm platform	
Comm_ctrl_navigation.h	C/C++ API interface header file	
ROS package	Provide chassis control ROS	
	nodes	

2.2 Interface function introduction

2.2.1 C/C++ Interface introduction

Table 4 callback data type

Callback type	Callback No.	Function description	Data structure
Chassis_Data_Speed	1	Chassis speed	typedef struct{

		information	int16_t l_speed; int16_t r_speed; int16_t car_speed; int16_t turn_speed; }chassis_speed_data_ t;
Chassis_Data_Ticks	2	Chassis encoder information	typedef struct{ int32_t l_ticks; int32_t r_ticks; }motor_ticks_t;
Chassis_Data_Odom_ Pose_xy	3	Odom pose information	typedef struct{ float pos_x; float pos_y; }odom_pos_xy_t;
Chassis_Data_Odom_ Euler_xy	4	Odom Euler x/y axis information	typedef struct{ float euler_x; float euler_y; }odom_euler_xy_t;
Chassis_Data_Odom_ Euler_z	5	Odom Euler Z axis information	typedef struct{ float euler_z; }odom_euler_z_t;
Chassis_Data_Odom_ Linevel_xy	6	Odom speed x/y axis information	typedef struct{ float vel_line_x; float vel_line_y; }odom_vel_line_xy_t;
Chassis_Data_Imu_G yr	7	Gyroscope data	typedef struct{ int16_t gyr[3]; }imu_gyr_original_dat a_;
Chassis_Data_Imu_Ac c	8	Accelerometer data	typedef struct{ int16_t acc[3]; }imu_acc_original_dat a_;

Note 1: Odom data: The default heading angle is 0 degrees at start up.

Note 2: IMU (gyroscope and accelerometer) data: the carrier coordinate system XYZ corresponds to the right, front, up.

Table 5 event definition

17 / 57

Event type	Event No.	Function description
ChangisPootDoodyEvent	1	Chassis central control
ChassisBootReadyEvent	'	board start up completed
PadPowerOffEvent	2	Chassis shutdown
OnEmergeStopEvent	3	Enter emergency stop
OutEmergeStopEvent	4	Exit emergency stop
OnLockedRotorProtectEvent	5	Locked rotor event occurs
OutlookedDatarDrataetEvent	6	Locked rotor event
OutLockedRotorProtectEvent		removes
OnLostCtrlProtectEvent	7	Lost control event occurs
OutLostCtrlProtectEvent	8	Lost control event removes
CalibrataCyraSuagas	9	Calibrate the gyroscope
CalibrateGyroSuccess	9	success
CalibrateGyroFail	10	Calibrate the gyroscope fail
CalibratePasheCurrentSuccess	11	Calibrate phase current
Calibraterasi le Cult et il Success	11	success
CalibratePasheCurrentFail	12	Calibrate phase current fail

Table 6 get/set interface

Interface name	Interface description		
get_err_state	Get the error code of the upper computer/central control		
961_611_51416	board/motor board/battery		
get_bat_soc	Get the percentage of battery remaining		
get_bat_charging	Get battery charge status (1: charging; 0: non-charging)		
get_bat_mvol	Get battery voltage (unit: millivolt (mV))		
get_bat_mcurrent	Get battery current (unit: Milliampere(mA))		
get_bat_temp	Get battery temperature (unit: degrees Celsius (° C))		
get_chassis_work_model	Get chassis work model (0: Unload; 1: Onload)		
get_chassis_load_state	Get chassis load state (0: empty; 1: full)		
got obossis mode	Get chassis mode (0: Locked; 1: Control; 2: Push;		
get_chassis_mode	3: Emergency stop; 4: Error)		
get_ctrl_cmd_src	Get the current chassis control source (0: remote		
get_ctri_ctrid_sic	control; 1: upper computer)		
get_vehicle_meter	Get chassis mileage (unit: meter(m))		
get_host_version	Get the upper computer version number		
get_chassis_central_version	Get the control board version number		
get_chassis_motor_version	Get the motor board version number (Reserved)		
got line forward may yel th	Get the forward speed limit value of the chassis (unit:		
get_line_forward_max_vel_fb	meter per hour(m/h))		
get_line_backward_max_vel_fb	Get the backward speed limit value of the chassis (unit:		

	meter per hour(m/h))		
get_angular_max_vel_fb	Get the limit value of chassis angular velocity (unit:		
get_arigular_max_ver_rb	milliradian per second(mrad/s))		
getlapTotalProgress	Get IAP progress		
iapCentralBoard	Upgrade the central control board IAP		
iapMotorBoard	Upgrade the motor board IAP		
isHostlapOver	Check if IAP is over		
get leetles Decult	Get the IAP result (3: completed; 4: failed: 5:		
getHostlapResult	interrupted; 0: meaningless)		
getHostlapErrorCode	Get IAP error code		
get changin hang made	Get whether the chassis is in the hang mode (0: not in		
get_chassis_hang_mode	the hang mode; 1: in the hang mode)		
got charge mas atri status	Get charging MOS status (1: charging MOS is on, 0:		
get_charge_mos_ctrl_status	MOS is off) (temporarily reserved)		
ant and val	Set the chassis linear velocity and angular velocity (unit:		
set_cmd_vel	meter per second(m/s) and radian per second(rad/s))		
act line forward may vol	Set the forward speed limit value of the chassis (unit:		
set_line_forward_max_vel	meter per second(m/s))		
set_line_backward_max_vel	Set the backward speed limit value of the chassis (unit:		
Set_iii le_backwai u_i iiax_vei	meter per second(m/s))		
set_angular_max_vel	Set the limit value of chassis angular velocity (unit: radian		
set_angulal_max_vei	per second(rad/s))		
set_enable_ctrl	Set the enable state of the upper computer control car		
Set_eHable_CtH	on the chassis (1: enable; 0 disable)		
init_control_ctrl	Chassis initialization interface		
exit_control_ctrl	Chassis exit initialization interface		
set smart car social	Set the serial port name used by the upper computer		
set_smart_car_serial	dynamic library		
sot comu interface	Set the communication interface for communication with		
set_comu_interface	the chassis (0: serial port; 1: CAN)		
set_chassis_load_state	Set chassis load state (0: empty; 1: full)		
set_chassis_poweroff	Set chassis shutdown command		
set_remove_push_cmd	Remove chassis push command		
setHostlapCanceled	Cancel the upper computer IAP command		
act chaosia barr mada	Set chassis hang mode (1: enter the hang mode: 0:		
set_chassis_hang_mode	exit the hang mode)		
ant abarga man atri	Set charging MOS switch (1: turn on MOS, 0: turn off		
set_charge_mos_ctrl	MOS) (temporarily reserved)		

2.2.2 ROS Interface introduction—SmartCar

Table 7 news release

Topic Name	Function Description	Message Type	Message Type Info	Freque ncy
Bms_fb	Battery related information	Segway_msgs/ Bms_fb	int16 bat_soc int16 bat_charging int32 bat_vol int32 bat_current int16 bat_temp	1
Chassis_ctrl _src_fb	Chassis control command source	Segway_msgs/ Chassis_ctrl_src_fb	uint16 chassis_ctrl_cmd_sr c	1
Chassis_mil eage_meter _fb	Chassis mileage	Segway_msgs/ Chassis_mileage_meter _fb	uint32 vehicle_meters	1
Chassis_mo de_fb	Chassis mode	Segway_msgs/ Chassis_mode_fb	uint16 chassis_mode	1
Error_code_ fb	Chassis error code	Segway_msgs/ Error_code_fb	uint32 host_error uint32 central_error uint16 left_motor_error uint16 right_motor_error uint32 bms_error	1
Motor_work _mode_fb	Chassis working mode	Segway_msgs/ Motor_work_mode_fb	uint16 motor_work_mode #0: no output torque 1: output torque	1
Speed_fb	Chassis speed	Segway_msgs/ Speed_fb	float32 car_speed float32 turn_speed float32 l_speed float32 r_speed uint64 speed_timestamp	40
Ticks_fb	Chassis encoder information	Segway_msgs/ Ticks_fb	int32 I_ticks int32 r_ticks uint64 ticks_timestamp	40

Odom	Odom data	Nav_msgs/odom	40
lmu	Imu data	Sensor_msgs/imu	40

Table 8 News Subscription

TopicName	Function Description	Message Type	Message Type Info
	Control		Angular 7 //rad/a
Cmd_vel	chassis	Geometry_msgs/twist	Angular.z //rad/s Linear.x //m/s
	movement		Lilleal.X //III/S

Table 9 service client

Service name	Function Description	Message type	Message type info
chassis_se nd_event_s rv	Send time number	Segway_msgs/chas sis_send_event	chassis_send_ev ent_id ros_is_received

Table 10 Service server

Service name	Function Description	Message type	Message type info
ros_get_load_pa ram_cmd_srv	Get load parameter	Segway_msgs/ ros_get_load_par am_cmd	ros_get_load_param get_load_param #0:no_load, 1: full_load
ros_get_charge_ mos_ctrl_status_ cmd.srv	Get chassis charging MOS status (reserved temporarily)	Segway_msgs/ ros_get_charge_ mos_ctrl_status_c md	ros_get_chassis_charge_ctrl _status # 1: MOS opened; 0: MOS closed chassis_charge_ctrl_status
ros_get_sw_vers ion_cmd_srv	Get software version	Segway_msgs/ ros_get_sw_versi on_cmd	ros_get_sw_version_cmd uint16 host_version uint16 central_version uint16 motor_version
ros_get_vel_max _feedback_cmd_ srv	Get the maximum speed limit	Segway_msgs/ ros_get_vel_max_ feedback_cmd	ros_get_vel_max_fb_cmd forward_max_vel_fb backward_max_vel_fb angular_max_vel_fb

ros_set_charge_ mos_ctrl_cmd.sr v	Set chassis charging MOS (reserved temporarily)	Segway_msgs/ ros_set_charge_ mos_ctrl_cmd	ros_set_chassis_charge_ctrl chassis_set_charge_ctrl_res ult # 1: MOS opened; 0: MOS closed
ros_set_chassis _enable_cmd_sr v	Set chassis enable command	Segway_msgs/ ros_set_chassis_ enable_cmd	ros_set_chassis_enable_cm d chassis_set_chassis_enable _result
ros_set_chassis _poweroff_cmd_ srv	Set chassis shutdown command	Segway_msgs/ ros_set_chassis_ poweroff_cmd	ros_set_chassis_poweroff_c md chassis_set_poweroff_result
ros_set_load_par am_cmd_srv	Set chassis load state	Segway_msgs/ ros_set_load_par am_cmd	ros_set_load_param #0:no_load, 1: full_load chassis_set_load_param_res ult
ros_set_remove_ push_cmd_srv	Set remove chassis push command	Segway_msgs/ ros_set_remove_ push_cmd	ros_set_remove_push_cmd chassis_set_revove_push_re sult
ros_set_vel_max _cmd_srv	Set the maximum speed limit	Segway_msgs/ ros_set_vel_max_ cmd_srv	ros_set_forward_max_vel ros_set_backward_max_vel ros_set_angular_max_vel chassis_set_max_vel_result

Table 11 Action server

Action name	Function Description	Message type	Message type info
ros_set_iap_ cmd_action	Upgrade the board firmware IAP	Segway_msg s/ros_set_iap _cmdAction	Bool central_board_iap_enable Int16 iap_result #3: iap_state_complete; 4: iap_state_fail; 5: iap_state_abort Int16 error_code #When iap_result value is 4, this value

represents the error code
Int16 iap_percent

2.2.3 Error code information table

The error code is obtained through:

"uint32_t get_err_state(board_name_e board_name)"

interface, and the corresponding information is as follows:

Table 12 Error code

Board name	Bit	Error info
	0x00000000	No error
host	0x0000001	Loss of control board
11051	0x0000002	Unplug the serial port
	0x0000002	module
	0x0000000	No error
		Control car command
	0x0000001	communication
		interrupted
		Motor board
	0x00000002	communication
		interrupted
	0x0000004	IMU initialization failed
	0x0000008	IMU failed to read
	0x0000008	data
	0x0000010	Lost control
Central	0x00000020	Locked rotor
	0x0000040	Failed to calibrate IMU
	0x00000080	Read Flash failed
	0x0000100	IMU data update failed
	0x00000200	Bms failed to initialize
	0.00000200	into test mode
	0x00000400	Rollover
	0x00000800	Any motor board
	0.00000000	restart is detected
	0x00001000	Left magnetic encoder
	0.00001000	fault
	0x00002000	Right magnetic

		encoder fault
		Battery
	0x00004000	communication
		interrupted
	0x0000000	No error
	0x0000001	Phase current fault
	0x0000002	Phase voltage fault
	0x0000004	Lack of phase
	0x00000008	Under voltage
	0x0000010	Over voltage
	0x00000020	Over current
	0x00000040	Over temperature
Motor	0x0000080	Locked rotor
IVIOLOI	0x00000100	Electrical angle fault
	0x00000200	Excessive power fault
	0x00000400	Over speed fault
	0x00000800	Rotational speed
	0x0000000	sensor fault
	0x00001000	Angle sensor fault
	0x00002000	Current loop fault
	0x00004000	Speed loop fault
	0x00008000	Angle loop fault
	0x00000000	No error
		Discharge over
	0x00000200	temperature
Battery		protection
		Discharge low
	0x00000400	temperature
		protection

3 Firmware upgrade and version upgrade

IAP is a software function module of the system, that is, in application programming, that means upgrade the single chip computer program online. This function uses the upper computer to burn the new version bin file to the single chip computer (including the central control board, the motor drive board, etc.) when the program is running. The premise is that the single chip computer's bin file, which will be burned, needs to be named according to the requirements of the upper computer, and places it under the "/sdcard/firmware/" path of the upper computer. And then the bin file can be upgraded online through the command at the terminal.

3.1 Firmware upgrade

Before the firmware upgrade, it is necessary to test the data communication between the upper computer and each lower computer to check whether the communication is normal. Use the command to test in the shell terminal.

(1) View the path of the upper computer program

Enter the path where the upper computer program is located, and check whether the upper computer executable file exists. As shown in the figure below, they are arm executable file, x86 executable file, arm dynamic library, and x86 dynamic library:

Figure 5

(2) Check the software version of each lower computer board

Check the software version of the lower computer. This step can test the communication between the upper computer and the lower computer at the same time. If the software version of each section of the lower computer can be checked through the upper computer, it indicates that the communication is normal.

Central control board test command:

1) When connecting for the first time, if the serial port's USB port does not have execution permission, the program requires root permission to modify the executable permission of the serial

port's USB port. At this time, you need to enter the system login password, and then hit the enter key, as shown in the figure below:

Figure 6

2) When communication fails, the version number is 0, as shown in the figure below:

Figure 7

3) When the communication is successful, the version number is printed as follows, and it is a non-zero number. At this time, the communication between the upper computer and the single chip computer is normal, and the online upgrade can be performed:

Figure 8

3.2 Version upgrade

(1) Single chip computer bin file placement

Put the board's bin file which will be upgraded into the

"/sdcard/firmware" path of the upper computer, for example,
the central control board's bin file "central.bin", as shown in the
following figure:

```
ubuntu@ubuntu:/sdcard/firmware$ ll
总用量 176
drwxrwxrwx 2 root root 4096 4月 20 17:45 /
drwxrwxrwx 5 root root 4096 6月 30 2020 /
-rwxr-xr-x 1 root root 100660 4月 19 20:06 central.bin*
-rwxr-xr-x 1 root root 65896 4月 19 20:06 motor.bin*
ubuntu@ubuntu:/sdcard/firmware$
```

Figure 9

(2) Online burning of bin file in lower computer

Enter the path where the upper computer program executable file

"ctrl_x86_64" or "ctrl_arm64-v8a" is located, as follows:

```
ubuntu@ubuntu:/home/project/EE_PROJECT_RMP/Project/RMP_1.1/ROS/src/segwayrmp/lib$ ll 总用量 2943
drwxrwxrwx 1 root root 4096 4月 20 17:35 //
drwxrwxrwx 1 root root 4096 12月 23 14:46 //
-rwxrwxrwx 1 root root 1365637 4月 20 17:35 adb*
-rwxrwxrwx 1 root root 407496 4月 20 17:35 ctrl_arm64-v8a*
-rwxrwxrwx 1 root root 376008 4月 20 17:35 ctrl_x86_64*
-rwxrwxrwx 1 root root 435688 4月 20 17:35 libctrl_arm64-v8a.so*
-rwxrwxrwx 1 root root 419352 4月 20 17:35 libctrl_x86_64.so*
ubuntu@ubuntu:/home/project/EE_PROJECT_RMP/Project/RMP_1.1/ROS/src/segwayrmp/lib$
```

Figure 10

The commands for online upgrade of each board are as follows. After entering the upper computer program path, execute the following commands (use 's' when using the serial port; use 'c' when using the CAN port):

Central control board upgrade command:

```
"./ctrl_x86_64 s - iap central"
```

Motor board upgrade command:

```
"./ctrl_x86_64 s - iap motor"
```

Take the central control board as an example, enter the command: "./ctrl_x86_64 s - iap central" to upgrade, as shown in the figure below:

Figure 11

During the upgrading, you can view the upgrade progress.

Progress represents the percentage of the IAP upgrade progress.

When the Progress value reaches 100, it means that the routing board bin file has been programmed into the central control board chip. As shown below:

```
Id:0x38
         version:2.01
                       Iap Progress
                                       99:
                                            status:
Id:0x38
         version:2.01
                       Iap Progress
                                      99:
                                            status:
Td:0x38
         version:2.01
                       Iap
                           Progress
                                      99:
Id:0x38
         version:2.01
                       Iap Progress
                                      99:
Id:0x38
         version:2.01
                       Iap
                           Progress
                                       99:
Id:0x38
         version:2.01
                       Iap
                           Progress
Id:0x38
         version:2.01
                                       99
                       Iap
          version:2.01
Id:0x38
                       Iap
                       Iap
Id:0x38
          version:2.01
                       Iap
Iap
         version:2.01
                           Progress
d:0x38
         version:2.01
d:0x38
d:0x38
         version:2.01 Iap Progress
   tu@ubuntu:/home/project/EE_PROJECT_RMP/Release/RMP_Release/RMP-Release-v1.00.0/HOST$
```

Figure 12

(3) Test the online upgrade result of the IAP version:

Perform step 1, test and check the software version number, enter the command: "./ ctrl_x86_64 s -test central", in the path where the upper computer program is located, as shown below:

At this time, the software version number of the central control board is 0x1000, indicating that the online upgrade has been successful, and the communication between the upper computer and the central control board is good.

Figure 13

Appendix I: System parameters and mode switching logic

Table 1 System parameters

	Size	Length*Width*Height (mm)	
		730*500*280	
	Structural parameters	Wheelbase*Tread*Ground clearance (mm):	
	Time aire	513.5*414*68	
Structural	Tire size	11Inch (280mm) hub motor	
parameter	Dead weight	33kg	
·	Nominal load	50kg	
	Obstacle surmounting	4cm/8° Slope/Deceleration zone	
	Overhang	4mm Rear overhang	
	Gear train structure	Front drive, differential steering	
	Protection level	IPX5	
	Maximum speed	3m/s	
Doufoussesses	Maximum steering	3rad/s	
Performance	speed	Si au/s	
parameter	Minimum turning radius	0m	
	Braking distance	No load: 3m/s 0.95m, Braking acceleration: 0	
	Control mode	Remote control, Upper computer control	
	Braking mode	Electric brake	
	Communication	LIADT CAN	
O	Interface	UART, CAN	
Communication	Support driver、API	C/C++、ROS	
	Feedback data	Magnetic, Hall, IMU	
	Endurance	1152wh Full load 2m/s Endurance 70km	
	Battery	48V 24Ah	
Battery	Charging mathed	Manual line charging/Quick battery change/	
	Charging method	Provide automatic charging electrode interface	
	User power	48V 400W	
	D. #	Emergency stop button, Push button, Power	
	Button	button	
		Power status indicator, Chassis status	
Interactive	0, , , , , , , ,	indicator,	
	Status indication	Control source indication, Battery display,	
		Charging status display	

Table 2 Mode switching logic

	Table 2 Wide Switching logic				
Chassis mode	Enter	Implement	Exit		
Locked car mode	 The default mode of chassis power on The default mode after exiting the push mode Default mode after emergency stop recovery In control car mode, when recoverability abnormality (such as communication timeout, communication disconnection, etc.) occurs, enters the locked car mode. 	0 speed closed loop, shield speed command, and the status indicator light keeps yellow	 An unrecoverable exception errorcode is detected and enters the error mode After receiving the enable command, enter the control car mode Press the push button to enter the push mode Press the emergency stop button to enter the emergency stop mode 		

Control car mode	1. In locked car mode, the enable command is received	Closed loop, accepting control commands. Remote control car: indicator light flashes green; upper computer controls car: indicator light keeps green	 An unrecoverable exception errorcode is detected and enters the error mode when recoverability abnormality (such as communication timeout, communication disconnection, etc.) occurs, enters to locked car mode. Press the push button to enter the push mode Press the emergency stop button to enter the emergency stop mode
Emergency stop mode	In non abnormal mode, press the emergency stop button	Relief force, shield speed and enable command, the status indicator light flashes red	The emergency stop button pops up and enters the locked car mode
Push mode	In non abnormal mode, press the push button	Relief force, shield speed and enable command, the status indicator light flashes white	Receive the push release instruction or long press the push button to enter the locked car mode Press the emergency stop button to enter the emergency stop mode
Error mode	Unrecoverable exception errorcode detected	Braking, releasing force, shielding speed and enable commands. The indicator light is keeps red	Restart Press the push button to enter the push mode

SEGWAY ROBOTICS

Appendix II Battery replacement instructions

1. Tools: 1 key, as shown in the figure below;

Figure 1

2. Steps:

- Tip: Before operation, please make sure that the RMP is turned off and the emergency stop button is pressed.
- (1) Insert the key into the key hole of the battery compartment door and turn it 90° to the right to open the battery compartment door.

35 / 57

Figure 2

Figure 3

(2) Unplug the battery power cord.

Figure 4

36 / 57

Figure 5

(3) Pull out the battery.

Figure 6

Note: Reverse the above steps during installation.

Appendix III Connector welding instructions

- (I) Preparatory work
- 1、Tools Electric soldering iron, solder wire
- 2、Materials

8pin connector, 2pin connector, 2 AWG16 cables, 8 AWG26 cables, as shown in Figure 1.

Figure 1

- (II) Welding instructions (take 8pin connector as an example)
- Figure 2 shows the 8pin connector received by the customer.
 Screw the connector from the position shown by the red arrow to disassemble it into the state shown in Figure 3;

Figure 2

Figure 3

2. Take out the part shown in Figure 4, which is the part that needs to be welded;

Figure 4

3. As shown in Figure 5, the pin angle number of the connector can be seen from one side of the component, and then rotate it 180 $^{\circ}$, which is the part needs to be welded;

Figure 5

4. Use the AWG 26 cables to weld according to the pin angle definition in the welding manual (see appendix IV for details). After the welding is completed, as shown in Figure 6;

Figure 6

5. Take out the two parts shown in Figure 7 and put them on the welded parts, as shown in Figure 8;

Figure 7

Figure 8

6. Take out the part shown in Figure 9, put them on the previously assembled parts, and tighten them, as shown in Figure 10;

Figure 9

Figure 10

7. Then connect the remote control receiver and serial port, as shown in Figure 11;

Figure 11

8. The welding method of 2pin connector is the same as that of 8pin connector.

Appendix IV Connector pin angle definition instructions

Connector	Pin angle No.	Definition	Cable No.	Comment
	1	CANH	AWG26	CAN port
	2	CANL	AWG26	CAN port
	3	TX	AWG26	
8pin	4	RX	AWG26	Serial port
Connector	5	GND	AWG26	
	6	5V	AWG26	Remote
	7	GND	AWG26	control
	8	S.B PPM	AWG26	receiver

2pin Connector	1	Power+	AWG16	Upper computer
	2	Power-	AWG16	power supply

Appendix V C/C++ APIReference documents

int Init_Comcore(void)

Function: initialization of host computer dynamic link library

Parameter: none

Return value: 0: initialization succeed;

Other: initialization fail

void exit_Comcore(void)

Function: exit initialization of host computer dynamic link library

Parameter: none

Return value: none

void aprctrl_datastamped_ini_register(saprctrl datastampedt* f)

Function: registration via the callback function provided by parameter, and this callback function conducts the sensor data processing.

Parameter: f is a struct pointer, and this struct includes the unique function pointer member variables.

Return value: none

void aprctrl_eventcallback_ini_register(saprctrlevent* f)

Function: registration via the callback function provided by parameter, and this callback function conducts the processing of event code.

Parameter: f is a struct pointer, and this struct includes the unique function pointer member variables.

uint16 t get_err_state(boardhame e boardhame)

Function: acquire the software/firmware runtime error code

Parameter: board name refers to the software/firmware ID

Parameter is one of the following values:

Host computer ID

Motor board ID

Central board ID

BMS ID

Return value: error code

int16 t get_bat_soc(void)

Function: acquire percentage of battery remaining capacity

Parameter: none

Return value: percentage of battery remaining capacity (1~100)

int16*t get_*bat_charging(void)

Function: inquire whether the battery is in charging state

Parameter: none

Return value: 0: not in charging state

1: in charging state

int16*t get_*bat_mvol(void)

Function: acquire real-time voltage of battery

Parameter: none

Return value: voltage value, unit mV

int16*t get*_bat_mcurrent(void)

Function: acquire real-time current of battery

Parameter: none

Return value: current value, unit mA

int16 t get_bat_temp(void)

Function: acquire battery temperature
44 / 57

Parameter: none

Return value: temperature value, unit degree Celsius

int16*t get_*chassis_*work_*model(void)

Function: acquire working state of chassis motor

Parameter: none

Return value: 1: motor in augmentation;

0: motor not in augmentation

int16 t get_chassis_load_state(void)

Function: acquire setting value of chassis based on controlling parameter of different loading

Parameter: none

Return value: 0: no-load control parameter;

1: full load controlling parameter

int16 t get_chassis_mode(void)

45 / 57

Function: acquire working mode of chassis finite state machine (FSM) Parameter: none Return value: 0 locking mode; 1 vehicle control mode; 2 pushing mode; 3 emergency stop mode; 4 error mode int16 t get ctrl cmd src(void) Function: acquire command origin of motor chassis control Parameter: none Return value: 0: control vehicle with remote controller; 1: control vehicle with host computer int16 t get_vehicle_meter(void)

Function: acquire the mileage since the chassis is power up

Parameter: none

Return value: mileage value, unit meter

uint16 t get_host_version(void)

Function: acquire the host computer software version

Parameter: none

Return value: host computer software version number

uint16 t get_chassis_central_version(void)

Function: acquire the central board firmware version

Parameter: none

Return value: the central board firmware version number

uint16 t get_chassis_motor_version(void)

Function: acquire the motor board firmware version

Parameter: none

Return value: the motor board firmware version number
47 / 57

int16_t get_line_forward_max_vel_fb (void)

Function: acquire the forward speed limiting feedback value of the chassis

Parameter: None

Return value: the forward speed limiting feedback value of the chassis

int16 t get_line backward max_vel_fb (void)

Function: acquire the backward speed limiting feedback value of the chassis

Parameter: None

Return value: the backward speed limiting feedback value of the chassis

int16_t get_angular_max_vel_fb (void)

Function: acquire the angular speed limiting feedback value of the chassis

Parameter: None

Return value: the angular speed limiting feedback value of the

chassis

int16_t getlapTotalProgress (void)

Function: Get the progress of IAP upgrades

Parameter: None

Return value:

-1: IAP upgrade failed

0: IAP upgrades are idle or started or interrupted

100: IAP upgrade completed

Other: Percentage of IAP upgrade progress

void iapCentralBoard (void)

Function: IAP upgrade of the central board firmware of the chassis

Parameter: None

Note: You need to place the central board firmware "central.bin" in the path of "/sdcard/firmware/" in advance.

void iapMotorBoard (void)

Function: IAP upgrade of the motor board firmware of the chassis

Parameter: None

Return value: none

Note: You need to place the motor board firmware "motor.bin" in the path of "/sdcard/firmware/" in advance.

bool isHostlapOver (void)

Function: Query if the IAP upgrade process has ended

Parameter: None

Return value: true: the IAP completes or fails or is interrupted

False: IAP not started or in progress

Int16_t getHostIapResult (void)

Function: acquire the reason for the end of IAP

Parameter: None

Return value: 3: IAP completes

4: IAP fails

5: IAP is interrupted

Others: IAP not started or in progress

Int16_t getHostlapErrorCode (void)

Function: Gets the error code for IAP failure

Parameter: None

Return value: the error code for IAP failure

int16_t get_chassis_hang_mode(void)

Function: Gets the setting state of chassis hang_mode

Parameter: None

Return value: 1: The chassis is in hang_mode

0: The chassis is not in hang_mode 51 / 57

int16_t get_charge_mos_ctrl_status (void)

Function: Gets the status of switch for charging MOS on the central

board.

Parameter: None

Return value: 1: The MOS opened

0: The MOS closed

void set_amd_vel(double linearx,double angularz)

Function: set up the command value of chassis target speed, which needs to be regular transmit once the chassis is enabled. It will be determined as communication failure if the chassis can't receive the command value in continuous 150ms in controlling mode.

Parameter: linear x: linear velocity command value, unit m/s;

angular_z: angular velocity command value, unit rad/s

void set_line_forward_max_vel(double linearforwardmax_x)

Function: set up the max forward linear velocity value of chassis.

Parameter: linearforwardmax_x: max forward linear velocity value of chassis, unit m/s, range 0-3

Return value: none

void set_line_backward_max_vel(double linearbackwardmax_x)

Function: set up the max backward linear velocity value of chassis.

Parameter: linearbackwardmax_x: max backward linear velocity value of chassis, unit m/s, range -2-0

Return value: none

void set_angular_max_vel(double angularmax_z)

Function: set up the max angular velocity command value of chassis.

Parameter: angularmaxz: the max angular velocity command value, unit rad/s, range 0-3

void set_enable_ctrl(uint16 t enableflag)

Function: set up to enable the chassis to control the vehicle.

Parameter: enable_flag:

1 enable the vehicle control;

0 exit the vehicle control

Return value: none

void set_smart_car_serial(const char * serialno)

Function: set up the terminal name of serial port of host computer, e.g. ttyUSB0.

Parameter: serial_no: terminal name of serial port, under the path

/dev/ by default, e.g. "ttyUSB0"

Return value: none

void set_comu_interface (comu_choice_e comu_choice)

7

Function: Set up the communication interface between the host computer and the chassis, including serial communication and CAN communication

Parameter: comu_choice: 'comu_serial' Use a serial port for communication

'comu_can' Use a CAN port for communication

Return value: none

void set_chassis_load_state(int16t newLoadSet)

Function: set up the parameter of chassis control based on the different chassis load.

Parameter: newLoadSet:

0: no-load parameter;

1: full load parameter

Return value: none

void set_chassis_poweroff (void)

Function: chassis power off controlled by host computer. Parameter: none Return value: none void set_remove_push_cmd(void) Function: when the chassis is in the pushing mode, it can exit this mode under the control of host computer. Parameter: none Return value: none void setHostIapCanceled (void) Function: Interrupt the IAP upgrade process. Parameter: none Return value: none void set_chassis_hang_mode(int16_t enterHand)

Function: The chassis is configured to be in hang test mode. When in hang_ode, the chassis can be controlled normally.

Parameter: enterHand: 1: Config the chassis to be in hang_mode;

0: Config the chassis to be in non hang_mode.

Return value: none

void set_charge_mos_ctrl (bool on)

Function: Sets the switch for charging MOS on the central board.

Parameter: enterHand: 1: Turn on the charging MOS switch;

0: Turn off the charging MOS switch.

