3.1 – Moments

Raw Moments

$$E[X_k] = u_k' = \begin{cases} \int_{-\infty}^{+\infty} x^k f(x) dx & Continuous \\ \sum_{i} x_i^k p(x_i) & Discrete \end{cases}$$

Central Moments

$$\kappa_{k} = E[(X - \mu)^{k}] = \begin{cases} \int_{-\infty}^{+\infty} (x - \mu)^{k} f(x) dx & Continuous \\ \sum_{i} (x_{i} - \mu)^{k} p(x_{i}) & Discrete \end{cases}$$

Skewness:

$$\gamma_1 = \frac{\kappa_3}{(\kappa_2)^{\frac{3}{2}}}, \kappa_3 = E(X^3) - 3E(X^2)E(X) + 2E(X)^3$$

- Symmetric distributions have 0 skew
- Positive skewness → heavier on the right

Kurtosis:

$$\gamma_2 = \frac{\kappa_4}{\kappa_2^2}$$

- Measures flatness of distribution relative to normal (which has kurtosis of 3)
- Kurtosis > 3 → flatter distribution

PGF & MGF

$$MGF: M_X(t) = E(e^{tX})$$

$$PGF: P_X(t) = E(z^X)$$

$$M_X(t) = P_X(e^t)$$

$$P_X(z) = M_X(\ln z)$$

3.5 - Risk Measures & VaR

Coherent Risk Measure

Subadditivity: $\rho(X+Y) \le \rho(X) + \rho(Y)$ Monotonicity: $X \le Y \to \rho(X) \le \rho(Y)$ Homogeneity: $\rho(cX) = c\rho(X)$ Translation: $\rho(X+c) = \rho(X) + c$

Tail-VAR

Utilized because VaR is not sub-additive. Basically just excess loss.

$$TVar(X) = E[X|X > q] = \frac{\int_{q}^{\infty} xf(x)dx}{S(q)}$$

For an arbitrary loss probability p, and loss quantile q.

4.2a - K-point Mixture

A r.v. Y is a k-point mixture of k r.v.s $X_1...X_k$ if its CDF is given by: $F_Y(y) = p_1 F_{X_1}(y) + p_2 F_{X_2}(y) + ...p_k F_{X_k}(y)$ $p_1 + p_2 + ...p_k = 1$

 $F_{\rm Y}$ is a weighted average of k different distributions. The raw moments of $F_{\rm Y}$ are a weighted average of the raw moments of the constituent CDFs.

4.2b - Variable-Component Mixture

$$F(x) = \sum_{i=1}^{K} a_i F_i(x), \sum_{i=1}^{K} a_i = 1$$

i = 1...K, K = 1, 2...

That is, a k-point mixture, but *K* is not known *a priori*.

Creating New Distributions

Scaling

Y = nX,

$$F_Y(y) = F_X\left(\frac{y}{n}\right), f_Y(y) = \frac{1}{n}f_X\left(\frac{y}{n}\right)$$

Raising to a power

$V = V^{\frac{1}{7}} = 0$	Transformed : $\tau > 0$
$Y = X^{\tau}, \tau > 0,$	Inverse: $\tau = -1$
$F_{Y}(y) = F_{X}(y^{\tau}),$	Inverse-transformed: $\tau < 0$,
$f_Y(y) = \tau y^{\tau-1} f_X(y^{\tau}), y > 0$	but not -1

Exponent

r	
$Y = e^X$	Of which the most famous is
$F_Y(y) = F_X(\ln y),$	the <i>log-normal</i> , though a more apt name would be <i>exp-normal</i> .
$f_Y(y) = \frac{1}{y} f_X(\ln y)$	

Mixing (A Marginal from a Model & Prior)

$$X \sim f_{X|\Theta}(x|\Theta = \theta), \theta = \pi(\Theta)$$

Where θ is a parameter of X, and is itself a r.v. with pdf $f_{\Theta}(\theta)$ Then the unconditional pdf of X is:

$$f_X(x) = \int f_{X|\Theta}(x|\Theta = \theta)\pi(\theta)d\theta$$

Where the integral is taken over all possible values of θ . The 1st moments of the resulting *mixture distribution* are simply LIE and LTV respectively:

$$E(X^{k}) = E[E(X^{k}|\Theta)]$$
$$Var(X) = E[Var(X|\Theta)] + Var[E(X|\Theta)]$$

Frailty Models

A frailty model is first specified by an analytic hazard rate function, then the survival rate function.

$$h_{X|\theta}(x|\Theta) = \theta a(x), \theta = \pi(\Theta)$$

Then:
$$S(x|\Theta) = e^{-\theta A(x)}$$

Splicing (Probit)

$$f_X(x) = \begin{cases} a_1 f_1(x) & c_0 < x < c_1 \\ a_2 f_2(x) & c_1 < x < c_2 \\ \vdots & \vdots \\ a_k f_k(x) & c_{k-1} < x < c_k \end{cases}$$

Linear Exponential Family

Can be expressed as:	<u>Moments</u>
$f(x;\theta) = \frac{a(x)e^{r(\theta)x}}{b(\theta)}$	$E[X] = \frac{b'(\theta)}{r'(\theta)b(\theta)} = \mu(x)$
	$Var(X) = \frac{\mu'(x)}{r'(x)}$