Welcome to Data Structures (ECE20010/ITP20001)

Youngsup Kim
idebtor@handong.edu
Handong Global University

ITP20001/ECE 20010 Data Structures

Data Structures

Chapter 1

- algorithm specification recursive algorithm
- data abstraction
- performance analysis time complexity

1.3 Algorithm specification (p.8)

- Input
- Output
- Definiteness clear and unambiguous
- Finiteness it terminates after a finite number of steps
- Effectiveness it is carried out and feasible
- Ex. program = algorithms + data structures flowchart is not an algorithm.

Recursion

- When solving a problem using recursion, the idea is to transform a big problem into a smaller, similar problem.
- Eventually, as this process repeats itself and the size of the problem is reduced at each step, we will arrive at a very small, easy-to-solve problem.

Exercise: With five students, compute 4! using recursion.

1.3 Recursive algorithms

Execution sequence of recursive functions:

Exercise: What is the output of the function (num=0)?

```
void recursiveFunction(int num) {
   printf("%d\n", num);
   if (num < 4)
       recursiveFunction(num + 1);
}</pre>
```

1.3 Recursive algorithms

Execution sequence of recursive functions:

Exercise: What is the output of the function (num=0)?

```
execution sequence

void recursiveFunction(int num) {
   printf("%d\n", num);
   if (num < 4)
       recursiveFunction(num + 1);
}</pre>
```

1	recursiveFunction (0)							
2	printf (0)							
3		recursiveFunction (0+1)						
4		printf (1))					
5			recursiveFunction (1+1)					
6			printf (2)					
7				recursiveFunction (2+1)				
8				printf(3))			
9					recursiveFunction (3+1)			
10					printf (4)			

1.3 Recursive algorithms

Execution sequence of recursive functions:

Exercise: What is the output of the function (num=0)?

```
execution sequence

void recursiveFunction(int num) {
   if (num < 4)
        recursiveFunction(num + 1);
   printf("%d\n", num);
}</pre>
```

1	recursiveFunction(0)					
2		recursiveFunction (0+1)				
3			recursiveFunction (1+1)			
4			recursiveFunction (2+1)			
5					recursiveFunction (3+1)	
6					printf (4)	
7				printf (3))	
8			printf (2)			
9		printf(1))			
10 printf (0)						

1.3 Recursive algorithms

Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem (as opposed to iteration).

Four stages in the construction of a **Koch snowflake**. The stages are obtained via a recursive definition.

1.3 Recursive algorithms

Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem (as opposed to iteration).

Recursive algorithm is expressed in terms of

1. base case(s) for which the solution can be stated non-recursively,

Four stages in the construction of a **Koch snowflake**. The stages are obtained via a recursive definition.

1.3 Recursive algorithms

Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem (as opposed to iteration).

Recursive algorithm is expressed in terms of

- 1. base case(s) for which the solution can be stated non-recursively,
- 2. recursive case(s) for which the solution can be expressed in terms of a smaller version of itself.

Four stages in the construction of a **Koch snowflake**. The stages are obtained via a recursive definition.

1.3 Recursive algorithms

Example: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

1.3 Recursive algorithms

Example: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

factorial(n)

function factorial

input: integer *n* such that *n* >= 0

output:
$$[n \times (n-1) \times (n-2) \times ... \times 1]$$

- 1. if n is 0, **return** 1
- 2. otherwise, **return** [$n \times factorial(n-1)$]

end factorial

1.3 Recursive algorithms

Example: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

factorial(n)

function factorial

input: integer *n* such that *n* >= 0

output:
$$[n \times (n-1) \times (n-2) \times ... \times 1]$$

- 1. if n is 0, return 1
- 2. otherwise, **return** [n × factorial(n-1)]

end factorial

factorial (n = 4)

$$f_{4} = 4 * f_{3}$$

$$= 4 * (3 * f_{2})$$

$$= 4 * (3 * (2 * f_{1}))$$

$$= 4 * (3 * (2 * (1 * f_{0})))$$

$$= 4 * (3 * (2 * (1 * 1)))$$

$$= 4 * (3 * (2 * 1))$$

$$= 4 * (3 * 2)$$

$$= 4 * 6$$

$$= 24$$

1.3 Recursive algorithms

Example: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

factorial(n)

function factorial

input: integer *n* such that *n* >= 0

output:
$$[n \times (n-1) \times (n-2) \times ... \times 1]$$

- 1. if n is 0, return 1
- 2. otherwise, **return** $[n \times factorial(n-1)]$

end factorial

factorial (n = 4)

```
f_{4} = 4 * f_{3}
= 4 * (3 * f_{2})
= 4 * (3 * (2 * f_{1}))
= 4 * (3 * (2 * (1 * f_{0})))
= 4 * (3 * (2 * (1 * 1)))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * 6
= 24
```

Exercise: GCD recursively with gcd (x=259, y=111) = ?

1.3 Recursive algorithms

Example: GCD (Great common divisor)

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, \operatorname{remainder}(x,y)) & \text{if } y > 0 \end{cases}$$

1.3 Recursive algorithms

Example: GCD (Great common divisor)

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, \operatorname{remainder}(x,y)) & \text{if } y > 0 \end{cases}$$

gcd(x, y)

function gcd

input: integer x, y such that $x \ge y$, y > 0

output: gcd of x and y

- 1. if y is 0, return x
- 2. otherwise, **return** [gcd(y, x%y)]

end gcd

1.3 Recursive algorithms

Example: GCD (Great common divisor)

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, \operatorname{remainder}(x,y)) & \text{if } y > 0 \end{cases}$$

gcd(x, y)

function gcd

input: integer *x*, *y* such that x >= y, y > 0

output: gcd of x and y

- 1. if y is 0, return x
- 2. otherwise, **return** [gcd(y, x%y)]

end gcd

```
gcd (x=259, y=111)

gcd(259, 111)
= gcd(111, 259% 111)
= gcd(111, 37)
= gcd(37, 111%37)
= gcd(37, 0)
= 37
```

1.3 Recursive algorithms

Example: GCD (Great common divisor)

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, \operatorname{remainder}(x,y)) & \text{if } y > 0 \end{cases}$$

gcd(x, y)

function gcd

input: integer *x*, *y* such that x >= y, y > 0

output: gcd of x and y

- 1. if y is 0, return x
- 2. otherwise, **return** [gcd(y, x%y)]

end gcd

```
gcd (x=259, y=111)
```

gcd(259, 111)

- = gcd(111, 259% 111)
- = gcd(111, 37)
- = gcd(37, 111%37)
- = gcd(37, 0)
- = 37

Exercises: gcd(91, 52)

Exercises: Fibonacci, Binomial coefficients(p.14), Akerman's function(p.17)

1.3 Recursive algorithms

Example: Recursive binary search

It searches a *sorted* array of **int**s for a particular **int**. Let **i** be an array of **int**s sorted from least to greatest. For instance, {-3, -2, 0, 0, 1, 5, 5}. We want to search **the array for the value** "wallly". If we find "wally", we return its array *index*; otherwise, we return FAILURE(-1). Let's suppose "wally" is 1.

1.3 Recursive algorithms

Example: Recursive binary search

It searches a *sorted* array of **int**s for a particular **int**. Let **i** be an array of **int**s sorted from least to greatest. For instance, {-3, -2, 0, 0, 1, 5, 5}. We want to search **the array for the value** "wallly". If we find "wally", we return its array *index*; otherwise, we return FAILURE(-1). Let's suppose "wally" is 1.

Exercise: Base case(s) & recursive case(s):?

int binarySearch(int list[], int wally, int left, int right)

1.3 Recursive algorithms

Example: Recursive binary search

Exercise: Base case(s) & recursive case(s):?

1.3 Recursive algorithms

Example: Recursive binary search

Exercise: Base case(s) & recursive case(s):?

How long does the binarySearch() take?

In one call to binarySearch(), we eliminate at least half the elements from consideration. Hence, it takes $log_2 n$ (the base 2 logarithm of n) binarySearch() calls to pare down the possibilities to one. Therefore binarySearch takes time proportional to $log_2 n$.

1.3 Recursive algorithms

Example: Recursive binary search – revisited

Exercise:

	Stack	Stack	Неар
bSearch()	left[4] right[4] middle[4]	wally[1] list[.]	
bSearch()	left[4] right[6] middle[5]	wally[1] list[.]	
bSearch()	left[0] right[6] middle[3]	wally[1] list[.]	
bSearch()	wally[1]	list[.]	[-3 -2 0 0 1 5 5]
main()		args[.]	args[]

Most operating systems give a program enough stack space for a few thousand stack frames. If you use a recursive procedure to walk through a million-node list, the program will try to create a million stack frames, and **the stack will run out of space**. The result is a run-time error. Refer to p.108, p.111

1.3 Recursive algorithms

Example: Tower of Hanoi (Refer to p.17, Ex11)

Given three pegs, one with a set of N disks of increasing size, determine the minimum (optimal) number of steps it takes to move all the disks from their initial position to a single **stack** on another peg without placing a larger disk on top of a smaller one. Only one disk can be moved at any time.

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **intermediate**.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the **n-1** disks from **intermediate** to **destination**.

1.3 Recursive algorithms

Example: Tower of Hanoi

Recursive algorithm:

- (1) Move the top n-1 disks from source to intermediate.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the **n-1** disks from **intermediate** to **destination**.

1.3 Recursive algorithms

Example: Tower of Hanoi

Recursive algorithm:

(1) Move the top **n-1** disks from **source** to **intermediate**.

(2) Move the remaining (largest) disk from source to destination.

(3) Move the **n-1** disks from **intermediate** to **destination**.

1.3 Recursive algorithms

Exercise: Tower of Hanoi – revisited

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **intermediate**.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the **n-1** disks from **intermediate** to **destination**.

How do you program this to have the output as shown below?

```
Disk 1 from A to C
Disk 2 from A to B
Disk 1 from C to B
Disk 3 from A to C
Disk 1 from B to A
Disk 2 from B to C
Disk 1 from A to C
```

```
hanoi()

void hanoi(int n, char from, char inter, char to) {
  if (n == 1)
    printf ("Disk 1 from %c to %c\n", from, to);
  else {
    hanoi(n - 1 from, to, inter );
    printf("Disk %d from %c to %c\n", n, from, to);
    hanoi(n - 1, inter, from, to );
}
```

1.3 Recursive algorithms

Exercise: How many moves for n disks in Tower of Hanoi, hanoi(n)?

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **intermediate**.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the **n-1** disks from **intermediate** to **destination**.

hanoi(*n*-1) move hanoi(1) move hanoi(*n*-1) move

$$hanoi(n) = \begin{cases} 1 & \text{if } n = 1\\ 2 \cdot hanoi(n-1) + 1 & \text{if } n > 1 \end{cases}$$

hanoi(n = 4)
hanoi(4)
=
$$2*hanoi(3) + 1$$

= $2*(2*hanoi(2) + 1) + 1$
= $2*(2*(2*hanoi(1) + 1) + 1) + 1$
= $2*(2*(2*1 + 1) + 1) + 1$
= $2*(2*(3) + 1) + 1$
= $2*(7) + 1 = 15$

1.3 Recursive algorithms

Q: Is the recursive version usually faster?

A: No -- it's usually slower (due to the overhead of maintaining the stack)

Q: Does the recursive version usually use less memory?

A: No -- it usually uses **more** memory (for the stack).

Q: Then why use recursion?

A: Sometimes it is much simpler to write the recursive version.

How the function call work? See[System Stack] in p.108. Because the recursive version causes an **activation record** to be pushed onto the system stack for every call, it is also more limited than the iterative version (it will fail, with a "stack overflow" error), for large values of N.

Sierpinski Triangle: a confined recursion of triangles to form a geometric lattice

Recursion GNU

see Recursion
GNU's not Unix.

ECE 20010 Data Structures

Data Structures

Chapter 1

- algorithm specification recursive algorithm problem set 03
- data abstraction
- performance analysis time complexity