Pre-U Physics Revision Guide

Westminster School

Contents

\mathbf{C}	ontents	j
In	structure of Assessment	ii i iii
P	art A	3
1	Mechanics Scalars and Vectors	3 3

Introduction

Structure of Assessment

Components	Weighting
Paper 1 Multiple Choice 1 hour 30 minutes	20%
Candidates answer 40 multiple-choice questions based on Parts A	
and B of the syllabus content.	
40 marks	
Paper 2 Written Paper 2 hours	30%
Section 1: Candidates answer structured questions based on Part	
A of the syllabus content.	
Section 2: Candidates answer structured questions related to pre-	
released material.	
100 marks	
Paper 3 Written Paper 3 hours	35%
Section 1: Candidates answer structured questions requiring short	
answers or calculations and some longer answers. The questions	
are focused on Part B of the syllabus content, but may also draw	
on Part A.	
Section 2: Candidates answer three questions from a choice of	
six. Three questions will have a strong mathematical focus and	
three questions will focus on philosophical issues and/or physics	
concepts. Learning outcomes marked with an asterisk (*) will	
only be assessed in this section.	
140 marks	
Practical Investigation 20 hours	15%
Candidates plan and carry out an investigation of a practical prob-	
lem of their own choosing. Candidates are assessed on their ability	
to: plan; make detailed observations of measurements; use a range	
of measuring instruments; use appropriate physics principles; and	
produce a well-organised report.	
30 marks	

Part A

1 Mechanics

Scalars and Vectors

(a) distinguish between scalar and vector quantities and give examples of each

A scalar quantity¹ is one which has only a magnitude whereas a vector has both magnitude and direction. We often use positive and negative values to indicate direction (e.g. $v=-2\ ms^{-1}$) but this does not mean that all negative values are vectors!

Note that there are different ways of multiplying vectors and scalars. Two vectors can be multiplied to give a scalar or a vector. For example, word done is the (scalar) product of force and displacement, both vectors.

(b) resolve a vector into two components at right angles to each other by drawing and by calculation

Vectors can be split into two components using trigonometry. The diagram below shows a velocity vector being split into horizontal and vertical components v_x and v_y .

(c) combine any number of coplanar vectors at any angle to each other by drawing

Vectors can be added by placing them end to end. The resultant vector is the one joining the start of the first vector to the end of the final vector. Its magnitude and direction can be calculated by trigonometry or scale drawing.

¹strictly we are modelling a physical quantity as a mathematical object

Forces and Accelerations

(d) calculate the moment of a force and use the conditions for equilibrium to solve problems (restricted to coplanar forces)