南京大学数学系概率论期末试卷A(2018)

2017/2018		学年	学年第二学期		考试形式 闭卷		课	课程名称		率论		
· 院系		_ 班级 _.	- _班级		学号							
	考试时	闰2018	/06/26	任课教	师_代雄平 赵进			考试成绩				
	题号		\equiv	三	四	五.	六	七	八	九	+	总分
	得分											

下面通设 (Ω, \mathcal{F}, P) 是一个概率空间。

- 一. (10分) 对 $B \in \mathcal{F}$ 满足0 < P(B) < 1,回答问题:
- 1. 1_B是否是随机变量(说明理由)?
- 2. 1_B 的分布函数F(x) = ?并且指出分布函数的三个特征。
- 3.1_B 的概率分布是什么?

- 二. (10分) 设随机向量 $(X,Y,) \sim N(0,0;\sigma_1^2,\sigma_2^2,\rho)$ 。求密度函数:
- 1. $p_X(x) = ?$
- 2. $p_Y(y) = ?$
- 3. $p_X(x|y) = ?$ 该分布的方差 $\sigma^2 = ?$

并且证明: X与Y独立 \Leftrightarrow X与Y不相关 \Leftrightarrow $\rho = 0$ 。

三. (10分) 设(X,Y)有联合密度函数 $p(x,y)=\begin{cases} e^{-(x+y)} & \text{if } 0< x, 0< y; \\ 0 & \text{if otherwise.} \end{cases}$ 求 $\frac{X}{Y}$ 的密度函数并且判断X和Y是否独立。

四. (10分) 计算:

- 1. 若 $X \sim B(n, p)$, 求E[X] = ?, DX = ?
- 2. 若 $Y \sim G(p)$, 求E[Y] = ?, DY = ?
- 3. 若 $Z \sim P(\lambda)$, 求E[Z] =?, DZ =?
- 4. 若 $W \sim \exp(\lambda)$, 求E[W] = ?, DW = ?
- 5. 若 $\xi \sim$ 超几何分布, 求 $E[\xi] = ?, D\xi = ?$

五. (10分) 对 $A, B \in \mathcal{F}$, 利用相关系数的基本性质证明: $|P(AB) - P(A)P(B)| \leq \frac{1}{4}$ 。

六. (10分) 设 ξ , η 是随机变量。证明: 若对任意Borel函数 $f,g: \mathbb{R} \to \mathbb{R}$ 有 $f(\xi)$ 和 $g(\eta)$ 是不相关的, 则 ξ^2 和 η^3 是独立的。

第三页(共六页)

七. (10分) 证明 Chebyshev 弱大数定律: 设 X_1, X_2, X_3, \dots 是一列两两不相关的随机变量满足条件: $-\infty < EX_n < \infty$ 和 $DX_n \le \beta < \infty$ 。则

$$P\left(\left|\frac{X_1+\dots+X_n}{n}-\frac{EX_1+\dots+EX_n}{n}\right|<\varepsilon\right)=1\quad\forall\varepsilon>0.$$

八. (10分) 证明*Khinchine* 弱大数定律: 设 X_1, X_2, X_3, \dots 是一列 i.i.d. 随机变量满足条件: $\mu = EX_n < \infty$ 。则 $P\left(\left|\frac{X_1 + \dots + X_n}{n} - \mu\right| \ge \varepsilon\right) = 0 \quad \forall \varepsilon > 0$ 。

九. (10分) 利用Lindeberg-Lévy中心极限定理证明Demoivre-Laplace中心极限定理。

十. (10分) 若 $\xi \sim \Gamma(10000, \frac{1}{2})$,利用中心极限定理估计概率 $P(\xi \ge 20200)$ 。

第五页(共六页) 第六页(共六页)