

Aula 07: Computação Evolutiva e Conexionista – Evoluindo RNA's

Prof. Hugo Puertas de Araújo hugo.puertas@ufabc.edu.br Sala: 509.2 (5º andar / Torre 2)

Agenda

- Redes Neurais Artificiais
 - Modelamento matemático
 - Aprendizado
 - Usos
- Algoritmos Genéticos + RNA's
 - Evolução x Treinamento
 - Representação cromossomial
 - Neuroevolução

Redes Neurais – Inspiração biológica

Modelamento matemático

Função de ativação

Modelamento matemático

Efeito da quantidade de camadas

Efeito da quantidade de camadas

Neural Nets Zoo

Aprendizado supervisionado

Aprendizado supervisionado

- 1. receive new observation $\mathbf{x} = [x_1...x_d]$ and target y^*
- 2. **feed forward:** for each unit g_j in each layer 1...L compute g_j based on units f_k from previous layer: $g_j = \sigma \left(u_{j0} + \sum_k u_{jk} f_k \right)$
- 3. get prediction y and error $(y-y^*)$
- **4. back-propagate error:** for each unit g_i in each layer L...1

(b) for each u_{jk} that affects g_j (i) compute error on u_{jk} (ii) update the weight $\frac{\partial E}{\partial u_{jk}} = \frac{\partial E}{\partial g_{j}} \sigma'(g_{j}) f_{k} \qquad u_{jk} \leftarrow u_{jk} - \eta \frac{\partial E}{\partial u_{jk}}$ do we want g_j to how g_j will change be higher/lower if u_{jk} is higher/lower

Usos para RNA's

- Classificação
- Regressão
- Redução de dimensionalidade

Exercício

Exercício

Algoritmos Genéticos + RNA's

- Evoluir certos aspectos de uma RNA:
 - Pesos sinápticos (p/ estrutura fixa)
 - Estrutura (quantidades de camadas e neurônios por camada)
 - Regra de aprendizado (Learning rule)
 - Hiperparâmetros

Algoritmos Genéticos + RNA's - Características

- Evoluir os parâmetros da RNA implica em substituir o processo de aprendizado
 - As RNA's geradas são testadas em situações de uso e ranqueadas de acordo com algum critério
 - As melhores candidatas passam para a próxima geração via algum mecanismo de GA
 - Crossover
 - Mutação
 - Elitismo

Representação cromossomial direta

Topologia fixa, pesos variáveis

Chromosome: 0.9 -0.3 -0.7 -0.8 0.6 0.3 0.1 -0.2 0.2 0.4 0.5 0.8 -0.6 0.1 -0.2 0.9

Representação cromossomial

Topology part: 2

Weight part: b_1 w_{11} w_{21} w_{31} b_2 w_{12} w_{22} w_{32} b_C w_1 w_2

bias — w_{11} w_{11} w_{12} w_{12} w_{12} w_{13} w_{21} w_{22} w_{22} w_{22} w_{23} w_{24} w_{25} w_{26} w_{27} w_{28} w_{29} w_{29}

W32

Topologia fixa, pesos variáveis

Operadores genéticos

Crossover

Mutação

Representação cromossomial gramatical

- Evolui topologias a partir de regras (gramática)
 - Gramática é o genótipo
 - * RNA gerada é o fenótipo
 - * RNA precisa ser treinada (backpropagation) e depois testada para determinar o seu fitness

Evolução de hiperparâmetros

- Evolui a partir de topologias fixas
 - Cromossomos codificam hiperparâmetros
 - * As RNA's são geradas, treinadas e testadas
 - * Resultado serve p/ determinação do fitness

Neuroevolução

- Mecanismos de evolução baseados em:
 - Algoritmos Genéticos (GA)
 - Estratégias Evolucionárias (ES)
 - Programação Genética (GP)

Neuroevolução – Estratégias Evolutivas

Ajuste do <u>desvio padrão</u> de cada perturbação gaussiana (mecanismo de mutação) de acordo com a <u>função de perda</u> (geralmente MSE). Desse modo, o passo de adaptação é grande enquanto o erro for alto (<u>maior exploração</u>) e diminui conforme o erro cai (<u>maior explotação</u>). Assim, a busca da solução fica mais próxima dos pontos de menor erro.

0 1

An API standard for reinforcement learning with a diverse collection of reference environments

Gymnasium is a maintained fork of OpenAl's Gym library. The Gymnasium interface is simple, pythonic, and capable of representing general RL problems, and has a compatibility wrapper for old Gym environments:

```
import gymnasium as gym
# Initialise the environment
env = gym.make("LunarLander-v3", render_mode="human")
# Reset the environment to generate the first observation
observation, info = env.reset(seed=42)
for in range(1808);
```


₹Ã 96

v1.0.0 (latest)

Fig. 2. **Neuroevolution in Existing Games.** (a) NE is able to discover high-performing controllers for racing games such as TORCS 11. (b) NE has also been successfully applied to commercial games, such as Creatures 44. Additionally, NE enables new types of games such as GAR (c), in which players can interactively evolve particular weapons 46, or NERO (d), in which players are able to evolve a team of robots and battle them against other players 119.

The Role of Neuroevolution in Selected Games. ES = evolutionary strategy, GA = genetic algorithm, MLP = multi-layer perceptron, MO = multiobjective, TP = third-person (input not tied to a specific frame of reference, e.g. number edible ghosts), UD = user-defined network topology, PA = performance alone

NE Role	Game	ANN Type	NE Methods	Fitness Evaluation	Input Representation
(Section III)		(Section IV)	(Section V	(Section VI)	(Section VII)
State/action	Checkers [32]	MLP	UD, GA	Coevolution	TP (piece type)
evaluation	Chess 32	MLP	UD, GA	PA (positional values)	TP (piece type)
	Othello [79]	MLP	Marker-based 34	Cooperative coevolution	TP (piece type)
	Go (7×7) 38	CPPN (MLP)	HyperNEAT	PA (score+board size)	TP (piece type)
	Ms. Pac-Man [71]	MLP	UD, ES	PA (average score)	Path-finding
	Simulated Car Racing [74]	MLP	UD, ES	PA (waypoints visited)	Speed, pos, waypoints
Direct action	Quake II 85 86	MLP	UD, GA	PA (kill count)	Visual Input (14×2)
selection	Unreal Tournament [135]	Recurrent, LSTM	UD, GA, NSGA-II	MO (damage&accuracy)	Pie-slice, way point, etc.
	Go (7×7) [118]	MLP	NEAT	Transfer Learning	Roving Eye (3×3)
	Simulated Car Racing [124]	MLP	UD, ES	Incremental Evolution	Rangefinders, waypoints
	Keepaway Soccer [122]	MLP	NEAT	Transfer Learning	Distances
	Battle Domain [105]	MLP	NEAT, NSGA-II	MO+Incremental	Angle, straight line
	NERO [119]	MLP	NEAT	Interactive Evolution	Rangefinders, pie-slice
	Ms. Pac-Man [106]	Modular MLP	NEAT, NSGA-II	MO (pills&ghosts eaten)	Path-finding
	Simulated Car Racing [29]	MLP	UD, GA	PA (distance)	Roving Eye (5×5)
	Atari	CPPN (MLP)	HyperNEAT	PA (game score)	Raw input (16×21)
	Creatures [44]	Modular MLP	GA	Interactive Evolution	TP (e.g. type of object)
Selection between	Keepaway Soccer [142] 143]	MLP	NEAT	PA (hold time)	Angle and distance
strategies	EvoCommander 56	MLP	NEAT	Interactive Evolution	Pie-slice, rangefinder
Modelling opponent	Texas Hold'em Poker 66	MLP	NEAT	PA (%hands won)	TP (e.g. size of pot,
strategy					cost of a bet, etc.)
Content generation	GAR [46]	CPPN (MLP)	NEAT	Interactive Evolution	Model
	Petalz [97]	CPPN (MLP)	NEAT	Interactive Evolution	Model
Modelling player	Super Mario Bros [87]	MLP, Perceptron	UD, GA	PA (player preference)	TP (e.g. gap width,
experience					number deaths, etc.)

