	L#	Hits	Search Text	DBs
1	L1	1130	(fenc\$3 synch\$ barrier) near10 load near10 (instruction operation)	USPAT; US-PGPUB
2	L2	330	(glob\$4 coheren\$2 consisten\$2) and 1	USPAT; US-PGPUB
3	L3	14	(glob\$4 coheren\$2 consisten\$2) near99 1	USPAT; US-PGPUB
4	L4	311	(post pre) and 1	USPAT; US-PGPUB
5	L5	4	(post pre) near99 1	USPAT; US-PGPUB
6	L6	143	2 and 4	USPAT; US-PGPUB
7	L7	178	2 not (6 3 5)	USPAT; US-PGPUB

FIG. 4

	Docum			T -
	ent ID	ט	Title	Current
1	US 20030 20598 9 A1		Wound field synchronous machine control system and method	322/28
2	US 20030 16738 7 A1	×	Vector transfer system generating address error exception when vector to be transferred does not start and end on same memory page	712/4
3	US 20030 15423 8 A1	☒	Peer to peer enterprise storage system with lexical recovery sub-system	709/201
4	US 20030 13571 7 A1	Ø	Method and apparatus for transferring vector data	712/222
5	US 20030 10638 3 A1	☒	System having a unit for controlling a transmission line	74/336R
6	US 20030 09491 7 A1	☒	WOUND FIELD SYNCHRONOUS MACHINE CONTROL SYSTEM AND METHOD	318/700
7	US 20030 09436 3 A1	⊠	Grounding system for rotating fixtures in electrically conductive mediums	204/198
8	US 20030 08425 9 A1	⋈	MFENCE and LFENCE micro-architectural implementation method and system	711/163
9	US 20030 07906 5 A1	⊠	Methods and apparatus for providing data transfer control	710/22
10	US 20030 07408 8 A1	⊠	Method and apparatus for providing distributed scene programming of a home automation and control system	700/19
11	US 20030 05264 5 A1	☒	Power source circuit, electronic device being equipped with same power source circuit and control method of power source circuit	320/110
12	US 20030 04122 5 A1	☒	Mechanism for handling load lock/store conditional primitives in directory-based distributed shared memory multiprocessors	712/30
13	US 20020 19906 7 A1	⊠	System and method for high performance execution of locked memory instructions in a system with distributed memory and a restrictive memory model	711/145
14	US 20020 12076 1 A1	×	Method and system for executing protocol stack instructions to form a packet for causing a computing device to perform an operation	709/230
15	US 20020 11660 5 A1	Ø	Method and system for initiating execution of software in response to a state	713/1
16	US 20020 11653 2 A1	⊠	Method and system for communicating an information packet and identifying a data structure	709/246
17	US 20020 11647 5 Al	⊠	Method and system for communicating a request packet in response to a state	709/219

Mis do do do Milling of the Missing of the Missing

	Docum ent ID	ט	Title	Current OR
18	US 20020 11639 7 A1	×	Method and system for communicating an information packet through multiple router devices	707/200
19	US 20020 11434 1 A1	⊠	Peer-to-peer enterprise storage	370/428
20	US 20020 11420 0 A1	⊠	System for rapid configuration of a programmable logic device	365/200
21	US 20020 11208 7 A1	⊠	Method and system for establishing a data structure of a connection with a client	709/313
22	US 20020 11208 5 A1	⊠	Method and system for communicating an information packet through multiple networks	709/250
23	US 20020 08784 9 A1	⊠	Full multiprocessor speculation mechanism in a symmetric multiprocessor (smp) System	712/235
24	US 20020 08781 0 A1	☒	System and method for high performance execution of locked memory instructions in a system with distributed memory and a restrictive memory model	711/145
25	US 20020 01085 1 A1	☒	Emulated branch effected by trampoline mechanism	712/244
26	US 20020 01081 4 A1	⊠	Methods and apparatus for providing data transfer control	710/22
27	US 20020 00263 9 A1	×	Methods and apparatus for loading a very long instruction word memory	710/22
28	US 20010 04218 7 A1	⊠	VARIABLE ISSUE-WIDTH VLIW PROCESSOR	712/2
29	US 20010 02749 9 A1	Ø	Methods and apparatus for providing direct memory access control	710/26
30	US 20010 02114 2 A1	⊠	Synchronous semiconductor memory device allowing easy and fast test	365/233
31	US 66657 49 B1	☒	Bus protocol for efficiently transferring vector data	710/29
32	US 66623 64 B1	☒	System and method for reducing synchronization overhead in multithreaded code	718/102
33	US 66511 51 B2	Ø	MFENCE and LFENCE micro-architectural implementation method and system	711/163
34	US 66437 63 B1	⊠	Register pipe for multi-processing engine environment	712/11
35	US 66427 43 B2	Ø	System for rapid configuration of a programmable logic device	326/37
36	US 66369 50 B1	⊠	Computer architecture for shared memory access	711/147

FIG. 2

	Docum ent ID	ט	Title	Current OR
37	US 66257 20 B1	×	System for posting vector synchronization instructions to vector instruction queue to separate vector instructions from different application programs	712/4
38	US 66153 38 B1	☒	Clustered architecture in a VLIW processor	712/24
39	US 66119 00 B2	⊠	System and method for high performance execution of locked memory instructions in a system with distributed memory and a restrictive memory model	711/145
40	US 65913 70 B1	Ø	Multinode computer system with distributed clock synchronization system	713/502
41	US 65534 86 B1	Ø	Context switching for vector transfer unit	712/222
42	US 65131 07 B1	Ø	Vector transfer system generating address error exception when vector to be transferred does not start and end on same memory page	712/4
43	US 65078 77 B1	☒	Asynchronous concurrent dual-stream FIFO	710/53
44	US 65052 96 B2	⊠	Emulated branch effected by trampoline mechanism	712/244
45	US 64842 30 B1	⊠	Method and system for speculatively processing a load instruction before completion of a preceding synchronization instruction	711/100
46	US 64808 18 B1	Ø	Debugging techniques in a multithreaded environment	703/26
47	US 64734 02 B1	⊠	Communications link interconnecting service control points of a load sharing group for traffic management control	370/236
48	US 64669 88 B1	×	Multiprocessor synchronization and coherency control system	709/248
49	US 64635 11 B2	⊠	System and method for high performance execution of locked memory instructions in a system with distributed memory and a restrictive memory model	711/145
50	US 64570 73 B2	⊠	Methods and apparatus for providing data transfer control	710/22
51	US 64533 67 B2	⊠	Methods and apparatus for providing direct memory access control	710/26
52	US 64153 80 B1	☒	Speculative execution of a load instruction by associating the load instruction with a previously executed store instruction	712/217
53	US 63967 68 B2	☒	Synchronous semiconductor memory device allowing easy and fast test	365/233
54	US 63743 70 B1	Ø	Method and system for flexible control of BIST registers based upon on-chip events	714/39
55	US 63706 25 B1	Ø	Method and apparatus for lock synchronization in a microprocessor system	711/152
56	US 63538 29 B1	☒	Method and system for memory allocation in a multiprocessing environment	707/100
57	US 63203 50 B1	⊠	Modulation control type of AC machine	318/811
58	US 63145 60 B1	Ø	Method and apparatus for a translation system that aggressively optimizes and preserves full synchronous exception state	717/153
59	US 63144 71 B1	\boxtimes	Techniques for an interrupt free operating system	710/5

US005442760 14 1-14 1-14 - - - 41 (t) listoT

Document Selected Pages Page Range Copies

Document Listing

81:36:01 :9miT

Date: 01/05/04

Printer: cpk2_2c21_gblrptr

Walk-Up_Printing

Printed by HPS Server for

	Docum ent ID	ט	Title	Current OR
60	US 62860 95 B1	Ø	Computer apparatus having special instructions to force ordered load and store operations	712/216
61	US 62791 00 B1	Ø	Local stall control method and structure in a microprocessor	712/24
62	US 62720 64 B1	Ø	Memory with combined synchronous burst and bus efficient functionality	365/230 .08
63	US 62600 82 B1	☒	Methods and apparatus for providing data transfer control	710/22
64	US 62596 47 B1	⊠	Synchronous semiconductor memory device allowing easy and fast test	365/230 .01
65	US 62566 83 B1	Ø	Methods and apparatus for providing direct memory access control	710/26
66	US 62471 72 B1	Ø	Method for a translation system that aggressively optimizes and preserves full synchronous exception state	717/141
67	US 61890 88 B1	⊠	Forwarding stored dara fetched for out-of-order load/read operation to over-taken operation read-accessing same memory location	712/216
68	US 61784 44 B1	☒	System and method that prevent messages transferred among networked data processing systems from becoming out of sequence	709/208
69	US 61759 30 B1	☒	Demand based sync bus operation	714/3
70	US 61675 09 A	\B	Branch performance in high speed processor	712/237
71	US 61635 00 A	☒	Memory with combined synchronous burst and bus efficient functionality	365/230 .08
72	US 61118 07 A	Ø	Synchronous semiconductor memory device allowing easy and fast text	365/230 .01
73	US 60790 12 A	☒	Computer that selectively forces ordered execution of store and load operations between a CPU and a shared memory	712/216
74	US 60761 58 A	☒	Branch prediction in high-performance processor	712/230
75	US 60650 86 A	☒	Demand based sync bus operation	710/310
76	US 60584 06 A	☒	Variable length fractional bandwidth low-pass filtering	708/313
77	US 60095 39 A	⊠	Cross-triggering CPUs for enhanced test operations in a multi-CPU computer system	714/30
78	US 60031 07 A	☒	Circuitry for providing external access to signals that are internal to an integrated circuit chip package	710/316
79	US 60029 40 A	⊠	Mobile radio station	455/502
80	US 59957 46 A	⊠	Byte-compare operation for high-performance processor	712/220
81	US 59783 52 A	Ø	Multiplex transmission system	370/216
82	US 59783 11 A	×	Memory with combined synchronous burst and bus efficient functionality	365/233

Sheet 1 of 16

	Docum ent ID	σ	Title	Current OR
83	US 59564 77 A	⊠	Method for processing information in a microprocessor to facilitate debug and performance monitoring	714/30
84	US 59564 76 A	Ø	Circuitry and method for detecting signal patterns on a bus using dynamically changing expected patterns	714/30
85	US 59532 35 A	⊠	Method for processing a hardware independent user description to generate logic circuit elements including flip-flops, latches, and three-state buffers and combinations thereof	716/18
86	US 59502 28 A	Ø	Variable-grained memory sharing for clusters of symmetric multi-processors using private and shared state tables	711/148
87	US 59374 35 A	⊠	System and method for skip-sector mapping in a data recording disk drive	711/20
88	US 59335 98 A	☒	Method for sharing variable-grained memory of workstations by sending particular block including line and size of the block to exchange shared data structures	709/21
89	US 59296 15 A	Ø	Step-up/step-down voltage regulator using an MOS synchronous rectifier	323/224
90	US 59128 86 A	☒	Digital mobile communication system capable of establishing mutual synchronization among a plurality of radio base stations	370/350
91	US 59059 67 A	⊠	Timing generator with multiple coherent synchronized clocks	702/118
92	US 58870 03 A	⊠	Apparatus and method for comparing a group of binary fields with an expected pattern to generate match results	714/73
93	US 58840 61 A	×	Apparatus to perform source operand dependency analysis perform register renaming and provide rapid pipeline recovery for a microprocessor capable of issuing and executing multiple instructions out-of-order in a single processor cycle	712/217
94	US 58812 62 A	⊠	Method and apparatus for blocking execution of and storing load operations during their execution	712/216
95	US 58812 24 A	⊠	Apparatus and method for tracking events in a microprocessor that can retire more than one instruction during a clock cycle	714/47
96	US 58812 17 A	×	Input comparison circuitry and method for a programmable state machine	714/30
97	US 58806 71 A	×	Flexible circuitry and method for detecting signal patterns on a bus	340/146 .2
98	US 58676 44 A	×	System and method for on-chip debug support and performance monitoring in a microprocessor	714/39
99	US 58359 98 A	⊠	Logic cell for programmable logic devices	326/40
100	US 58261 09 A	Ø	Method and apparatus for performing multiple load operations to the same memory location in a computer system	710/39
101	US 58025 85 A	Ø	Batched checking of shared memory accesses	711/15
102	US 57933 86 A	Ø	Register set reordering for a graphics processor based upon the type of primitive to be rendered	345/55
103	US 57874 80 A	⊠	Lock-up free data sharing	711/148
104	US 57784 23 A	⊠	Prefetch instruction for improving performance in reduced instruction set processor	711/118

	Docum ent ID	σ	Title	Current OR
105	US 57680 44 A	×	Zoned recording embedded servo disk drive having no data identification fields and reduced rotational latency	360/77. 08
106	US 57617 29 A	×	Validation checking of shared memory accesses	711/148
107	US 57581 83 A	×	Method of reducing the number of overhead instructions by modifying the program to locate instructions that access shared data stored at target addresses before program execution	710/5
108	US 57484 88 A	☒	Method for generating a logic circuit from a hardware independent user description using assignment conditions	716/18
109	US 57427 80 A	☒	Dual pipeline superscalar reduced instruction set computer system architecture	712/206
110	US 57375 74 A	☒	Method for generating a logic circuit from a hardware independent user description using mux conditions and hardware selectors	711/162
111	US 57367 95 A	☒	Solid state AC switch with self-synchronizing means for stealing operating power	307/130
112	US 57245 36 A	☒	Method and apparatus for blocking execution of and storing load operations during their execution	712/216
113	US 56945 74 A	⊠	Method and apparatus for performing load operations in a computer system	711/140
114	US 56921 53 A	⊠	Method and system for verifying execution order within a multiprocessor data processing system	711/141
115	US 56803 18 A	×	Synthesizer for generating a logic network using a hardware independent description	716/18
116	US 56665 06 A	Ø	Apparatus to dynamically control the out-of-order execution of load/store instructions in a processor capable of dispatchng, issuing and executing multiple instructions in a single processor cycle	712/216
117	US 56616 61 A	Ø	Method for processing a hardware independent user description to generate logic circuit elements including flip-flops, latches, and three-state buffers and combinations thereof	716/18
118	US 56363 74 A	Ø	Method and apparatus for performing operations based upon the addresses of microinstructions	712/230
119	US 56257 89 A	⊠	Apparatus for source operand dependency analyses register renaming and rapid pipeline recovery in a microprocessor that issues and executes multiple instructions out-of-order in a single cycle	712/217
120	US 56153 50 A	Ø	Apparatus to dynamically control the out-of-order execution of load-store instructions in a processor capable of dispatching, issuing and executing multiple instructions in a single processor cycle	712/218
121	US 56030 47 A	Ø	Superscalar microprocessor architecture	712/23
122	US 56013 95 A	⊠	Organizer system and method for a rotatable storage structure	414/807
123	US 55817 81 A	×	Synthesizer for generating a logic network using a hardware independent description	716/18
124	US 55686 24 A	⊠	Byte-compare operation for high-performance processor	712/223
125	US 55487 35 A	×	System and method for asynchronously processing store instructions to I/O space	710/7

310	VALID BIT
226	CONTROL FIELD FOR INDIRECT ACCESS OF OTHER REGISTERS
<u>330</u>	OPCODE FIELD
340	SRC1
342	SRC2
344	DEST
<u>350</u>	MMEDIATE
	•

224 \

	Docum ent ID	ט	Title	Current OR
126	US 55353 61 A	⊠	Cache block replacement scheme based on directory control bit set/reset and hit/miss basis in a multiheading multiprocessor environment	711/145
127	US 55308 41 A	Ø	Method for converting a hardware independent user description of a logic circuit into hardware components	716/3
128	US 55239 03 A	Ø	Sector architecture for fixed block disk drive	360/77. 08
129	US 55106 89 A	Ø	Air gap flux measurement using stator third harmonic voltage	318/809
130	US 54695 51 A	☒	Method and apparatus for eliminating branches using conditional move instructions	712/239
131	US 54559 44 A	☒	Method for managing logging and locking of page free space information in a transaction processing system	707/202
132	US 54540 91 A	⊠	Virtual to physical address translation scheme with granularity hint for identifying subsequent pages to be accessed	711/203
133	US 54427 97 A	⊠	Latency tolerant risc-based multiple processor with event driven locality managers resulting from variable tagging	717/149
134	US 54189 73 A	⊠	Digital computer system with cache controller coordinating both vector and scalar operations	712/3
135	US 54106 82 A	Ø	In-register data manipulation for unaligned byte write using data shift in reduced instruction set processor	712/300
136	US 53814 20 A	☒	Decoupled scan path interface	714/731
137	US 53773 36 A	⊠	Improved method to prefetch load instruction data	712/207
138	US 53677 05 A	☒	In-register data manipulation using data shift in reduced instruction set processor	712/41
139	US 53652 28 A	☒	SYNC-NET- a barrier synchronization apparatus for multi-stage networks	340/2.2 1
140	US 53413 18 A	⊠	System for compression and decompression of video data using discrete cosine transform and coding techniques	708/402
141	US 53349 23 A	Ø	Motor torque control method and apparatus	318/805
142	US 52936 31 A	⊠	Analysis and optimization of array variables in compiler for instruction level parallel processor	717/154
143	US 52936 13 A	☒	Recovery control register	714/15
144	US 52724 29 A	Ø	Air gap flux measurement using stator third harmonic voltage and uses	318/808
145	US 52708 32 A	Ø	System for compression and decompression of video data using discrete cosine transform and coding techniques	382/246
146	US 52690 17 A	⊠	Type 1, 2 and 3 retry and checkpointing	714/15
147	US 52689 39 A	×	Control system and method for a nuclear reactor	376/210
148	US 52652 33 A	Ø	Method and apparatus for providing total and partial store ordering for a memory in multi-processor system	711/118

Sheet 4 of 16

	Docum ent ID	ס	Title	Current
149	US 52490 38 A	Ø	System and method for converting component video signals to a composite video signal compatible with the PAL standard	348/453
150	US 51969 46 A	Ø	System for compression and decompression of video data using discrete cosine transform and coding techniques	358/426 .02
151	US 51931 67 A	☒	Ensuring data integrity by locked-load and conditional-store operations in a multiprocessor system	711/163
152	US 51915 48 A	×	System for compression and decompression of video data using discrete cosine transform and coding techniques	708/402
153	US 50559 62 A	☒	Relay actuation circuitry	361/187
154	US 50217 75 A	Ø	Synchronization method and circuit for display drivers	345/213
155	US 49791 91 A	⊠	Autonomous N-modular redundant fault tolerant clock system	375/357
156	US 49759 60 A	Ø	Electronic facial tracking and detection system and method and apparatus for automated speech recognition	704/251
157	US 49758 33 A	×	Multiprocessor system which only allows alternately accessing to shared memory upon receiving read and write request signals	711/152
158	US 48470 39 A	☒	Steam chest crossties for improved turbine operations	376/297
159	US 48354 80 A	⊠	Electronic signal synchronization apparatus for radar and the like	342/135
160	US 47945 21 A	Ø	Digital computer with cache capable of concurrently handling multiple accesses from parallel processors	711/130
161	US 47837 36 A	⊠	Digital computer with multisection cache	711/130
162	US 46912 31 A	Ø	Bottle inspection system	348/127
163	US 46137 60 A	Ø	Power generating equipment	290/1C
164	US 44777 61 A	⊠	Method of and system for minimizing current consumption of one or more A-C motors driving a variable load	318/800
165	US 43862 82 A	☒	Emitter function logic (EFL) shift register	377/81
166	US 42700 54 A	Ø	Power plant	290/4R
167	US 42584 24 A	⊠	System and method for operating a steam turbine and an electric power generating plant	700/290
168	US 42271 44 A	⊠	Error compensation of synchro control transmitters	323/348
169	US 41722 81 A	⊠	Microprogrammable control processor for a minicomputer or the like	712/221
170	US 41532 06 A	⊠	Crushing process for recyclable plastic containers	241/14
171	US 40644 85 A	Ø	Digital load control circuit and method for power monitoring and limiting system	307/39

	Docum ent ID	ט	Title	Current OR
172	US 40578 36 A		Slow scan television scan converter	348/22
173	US 40055 81 A	Ø	Method and apparatus for controlling a steam turbine	60/660
174	US 39400 01 A	Ø	Recyclable plastic containers	215/12. 2
175	US 39315 56 A		System for driving a direct-current motor in synchronism with an external signal	388/812
176	US 39241 40 A	Ø	System for monitoring and controlling industrial gas turbine power plants including facility for dynamic calibration control instrumentation	290/40R
177	US 37725 79 A	Ø	CONTROL MEANS FOR HIGH SPEED HOIST	318/742
178	US 35607 96 A		RELAY CONTROL SYSTEM FOR PREVENTION OF CONTACT EROSION	361/6

 $_{\rm LIC}^{-}$

	Docum ent ID	σ	Title	Current OR
1	US 20030 18246 5 A1		Lock-free implementation of dynamic-sized shared data structure	709/314
2	US 20030 18246 2 A1	⊠	Value recycling facility for multithreaded computations	709/310
3	US 20030 17457 2 A1	×	Non-blocking memory management mechanism for supporting dynamic-sized data structures	365/230 .03
4	US 20030 15402 8 A1	Ø	Tracing multiple data access instructions	702/1
5	US 20030 14029 1 A1	⊠	Method and apparatus for providing JTAG functionality in a remote server management controller	714/724
6	US 20030 14008 5 A1	⊠	Single-word lock-free reference counting	709/107
7	US 20030 07911 3 A1	⋈	High-performance, superscalar-based computer system with out-of-order instruction execution	712/205
8	US 20030 07006 0 A1	⊠	High-performance, superscalar-based computer system with out-of-order instruction execution	712/23
9	US 20030 05608 7 A1	⊠	High-performance, superscalar-based computer system with out-of-order instruction execution	712/207
10	US 20030 05608 6 A1	⊠	High-performance, superscalar-based computer system with out-of-order instruction execution	712/207
11	US 20030 04800 6 A1	Ø	Uninterruptible power supply	307/64
12	US 20030 03351 0 A1	×	Methods and apparatus for controlling speculative execution of instructions based on a multiaccess memory condition	712/235
13	US 20020 15696 2 A1	⊠	Microprocessor having improved memory management unit and cache memory	711/3
14	US 20020 12933 9 A1	Ø	Parallelism performance analysis based on execution trace information	717/127
15	US 20020 11214 6 A1	⊠	Method and apparatus for synchronizing load operation	712/219
16	US 20020 02932 8 A1	Ø	High-performance, superscalar-based computer system with out-of-order instruction execution	712/23
17	US 20020 00264 0 A1	Ø	Methods and apparatus for providing bit-reversal and multicast functions utilizing DMA controller	710/22

Sheet 7 of 16

	Docum ent ID	Ū	Title	Current OR
18	US 20010 04745 7 A1	⊠	Digital data processor with improved paging	711/141
19	US 20010 03743 4 A1	×	Store to load forwarding using a dependency link file	711/146
20	US 20010 03481 9 A1	⊠	Interleaved data path and output management architecture for an interleaved memory and load pulser circuit for outputting the read data	711/157
21	US 20010 03324 5 A1	⊠	Interleaved memory device for burst type access in synchronous read mode with the two semi-arrays independently readable in random access asynchronous mode	341/200
22	US 20010 02709 6 A1	×	Method for interrupting an idle state of a communication unit in a communication system, especially in a radio communication system	455/343 .1
23	US 66474 85 B2	☒	High-performance, superscalar-based computer system with out-of-order instruction execution	712/23
24	US 66292 07 B1	☒	Method for loading instructions or data into a locked way of a cache memory	711/125
25	US 66256 60 B1	×	Multiprocessor speculation mechanism for efficiently managing multiple barrier operations	709/248
26	US 66222 31 B2	⊠	Method and apparatus for paging data and attributes including an atomic attribute	711/209
27	US 66091 92 B1	⊠	System and method for asynchronously overlapping storage barrier operations with old and new storage operations	712/216
28	US 66067 02 B1	☒	Multiprocessor speculation mechanism with imprecise recycling of storage operations	712/218
29	US 66009 59 B1	⊠	Method and apparatus for implementing microprocessor control logic using dynamic programmable logic arrays	700/7
30	US 65981 28 B1	⊠	Microprocessor having improved memory management unit and cache memory	711/144
31	US 65913 40 B2	⊠	Microprocessor having improved memory management unit and cache memory	711/118
32	US 65913 21 B1	⊠	Multiprocessor system bus protocol with group addresses, responses, and priorities	710/110
33	US 65879 13 B2	×	Interleaved memory device for burst type access in synchronous read mode with the two semi-arrays independently readable in random access asynchronous mode	711/5
34	US 65534 60 B1	Ø	Microprocessor having improved memory management unit and cache memory	711/125
35	US 65499 90 B2	⊠	Store to load forwarding using a dependency link file	711/146
36	US 65464 62 B1	⊠	CLFLUSH micro-architectural implementation method and system	711/135
37	US 65264 81 B1	⊠	Adaptive cache coherence protocols	711/147
38	US 65052 77 B1	⊠	Method for just-in-time delivery of load data by intervening caches	711/158

LIC⁸

	Docum ent ID	σ	Title	Current OR
39	US 64969 40 B1	Ø	Multiple processor system with standby sparing	714/4
40	US 64738 37 B1	Ø	Snoop resynchronization mechanism to preserve read ordering	711/146
41	US 64738 32 B1	×	Load/store unit having pre-cache and post-cache queues for low latency load memory operations	711/118
42	US 64704 31 B2	×	Interleaved data path and output management architecture for an interleaved memory and load pulser circuit for outputting the read data	711/157
43	US 64601 24 B1	×	Method of using delays to speed processing of inferred critical program portions	711/163
44	US 64300 74 B1	Ø	Selective look-ahead match line pre-charging in a partitioned content addressable memory array	365/49
45	US 64271 93 B1	×	Deadlock avoidance using exponential backoff	711/146
46	US 64153 60 B1	Ø	Minimizing self-modifying code checks for uncacheable memory types	711/139
47	US 64120 43 B1	⊠	Microprocessor having improved memory management unit and cache memory	711/118
48	US 63490 49 B1	Ø	High speed low power content addressable memory	365/49
49	US 63321 85 B1	Ø	Method and apparatus for paging data and attributes including an atomic attribute for digital data processor	711/209
50	US 63112 61 B1	Ø	Apparatus and method for improving superscalar processors	712/23
51	US 62726 19 B1	Ø	High-performance, superscalar-based computer system with out-of-order instruction execution	712/41
52	US 62667 44 B1	Ø	Store to load forwarding using a dependency link file	711/146
53	US 62567 20 B1	×	High performance, superscalar-based computer system with out-of-order instruction execution	712/23
54	US 62432 80 B1	Ø	Selective match line pre-charging in a partitioned content addressable memory array	365/49
55	US 62337 02 B1	Ø	Self-checked, lock step processor pairs	714/48
56	US 61579 67 A	×	Method of data communication flow control in a data processing system using busy/ready commands	710/19
57	US 61516 89 A	×	Detecting and isolating errors occurring in data communication in a multiple processor system	714/49
58	US 61417 32 A	Ø	Burst-loading of instructions into processor cache by execution of linked jump instructions embedded in cache line size blocks	711/137
59	US 61287 23 A	×	High-performance, superscalar-based computer system with out-of-order instruction execution	712/23
60	US 61120 19 A	×	Distributed instruction queue	712/214
61	US 61015 94 A	×	High-performance, superscalar-based computer system with out-of-order instruction execution	712/41

LIE

	Docum ent ID	ט	Title	Current OR
62	US 60921 81 A	×	High-performance, superscalar-based computer system with out-of-order instruction execution	712/206
63	US 60887 58 A	×	Method and apparatus for distributing data in a digital data processor with distributed memory	711/100
64	US 60848 09 A	×	Main amplifier circuit and input-output bus for a dynamic random access memory	365/203
65	US 60732 10 A	☒	Synchronization of weakly ordered write combining operations using a fencing mechanism	711/118
66	US 60386 54 A	☒	High performance, superscalar-based computer system with out-of-order instruction execution	712/23
67	US 60162 70 A	⊠	Flash memory architecture that utilizes a time-shared address bus scheme and separate memory cell access paths for simultaneous read/write operations	365/185 .11
68	US 60063 18 A	☒	General purpose, dynamic partitioning, programmable media processor	712/28
69	US 59681 35 A	Ø	Processing instructions up to load instruction after executing sync flag monitor instruction during plural processor shared memory store/load access synchronization	709/400
70	US 59648 35 A	Ø	Storage access validation to data messages using partial storage address data indexed entries containing permissible address range validation for message source	709/216
71	US 59616 29 A	☒	High performance, superscalar-based computer system with out-of-order instruction execution	712/23
72	US 59532 86 A	☒	Synchronous DRAM having a high data transfer rate	365/233
73	US 59336 24 A	⊠	Synchronized MIMD multi-processing system and method inhibiting instruction fetch at other processors while one processor services an interrupt	709/400
74	US 59207 16 A	⊠	Compiling a predicated code with direct analysis of the predicated code	717/141
75	US 59149 53 A	×	Network message routing using routing table information and supplemental enable information for deadlock prevention	370/392
76	US 58840 60 A	×	Processor which performs dynamic instruction scheduling at time of execution within a single clock cycle	712/215
77	US 58812 72 A	×	Synchronized MIMD multi-processing system and method inhibiting instruction fetch at other processors on write to program counter of one processor	709/400
78	US 58729 90 A	⊠	Reordering of memory reference operations and conflict resolution via rollback in a multiprocessing environment	712/24
79	US 58675 01 A	☒	Encoding for communicating data and commands	370/474
80	US 58388 94 A	☒	Logical, fail-functional, dual central processor units formed from three processor units	714/11
81	US 58226 03 A	×	High bandwidth media processor interface for transmitting data in the form of packets with requests linked to associated responses by identification data	712/1
82	US 58093 21 A	⊠	General purpose, multiple precision parallel operation, programmable media processor	712/1
83	US 58092 88 A	☒	Synchronized MIMD multi-processing system and method inhibiting instruction fetch on memory access stall	709/400
84	US 57940 61 A		General purpose, multiple precision parallel operation, programmable media processor	712/1

	Docum	U	Title	Current
	ID		11016	OR
85	US 57940 60 A	⊠	General purpose, multiple precision parallel operation, programmable media processor	712/1
86	US 57907 76 A	⊠	Apparatus for detecting divergence between a pair of duplexed, synchronized processor elements	714/10
87	US 57782 45 A	⊠	Method and apparatus for dynamic allocation of multiple buffers in a processor	712/23
88	US 57655 25 A	☒	Intake system for an internal combustion engine	123/308
89	US 57519 55 A	⊠	Method of synchronizing a pair of central processor units for duplex, lock-step operation by copying data into a corresponding locations of another memory	714/12
90	US 57519 32 A	⊠	Fail-fast, fail-functional, fault-tolerant multiprocessor system	714/12
91	US 57428 40 A	⊠	General purpose, multiple precision parallel operation, programmable media processor	712/210
92	US 57348 21 A	⊠	Method and apparatus for a direct data transmission between a communication network interface and a multimedia data processor	709/200
93	US 56995 38 A	⊠	Efficient firm consistency support mechanisms in an out-of-order execution superscaler multiprocessor	712/23
94	US 56945 77 A	⊠	Memory conflict buffer for achieving memory disambiguation in compile-time code schedule	711/167
95	US 56919 11 A	×	Method for pre-processing a hardware independent description of a logic circuit	716/18
96	US 56897 20 A	⊠	High-performance superscalar-based computer system with out-of-order instruction execution	712/23
97	US 56896 89 A	⊠	Clock circuits for synchronized processor systems having clock generator circuit with a voltage control oscillator producing a clock signal synchronous with a master clock signal	709/400
98	US 56785 21 A	Ø	System and methods for electronic control of an accumulator fuel system	123/447
99	US 56758 07 A	⊠	Interrupt message delivery identified by storage location of received interrupt data	710/260
100	US 56755 79 A	⊠	Method for verifying responses to messages using a barrier message	370/248
101	US 56491 35 A	×	Parallel processing system and method using surrogate instructions	712/200
102	US 56405 88 A	⊠	CPU architecture performing dynamic instruction scheduling at time of execution within single clock cycle	712/23
103	US 56299 50 A	×	Fault management scheme for a cache memory	714/805
104	US 56278 42 A	Ø	Architecture for system-wide standardized intra-module and inter-module fault testing	714/727
105	US 56131 36 A	⊠	Locality manager having memory and independent code, bus interface logic, and synchronization components for a processing element for intercommunication in a latency tolerant multiple processor	712/28
106	US 55748 49 A	×	Synchronized data transmission between elements of a processing system	714/12

	Docum ent ID	σ	Title	Current OR
107	US 55600 29 A	⊠	Data processing system with synchronization coprocessor for multiple threads	712/25
108	US 55532 58 A	☒	Method and apparatus for forming an exchange address for a system with different size caches	711/3
109	US 55530 95 A	Ø	Method and apparatus for exchanging different classes of data during different time intervals	375/222
110	US 55399 11 A	×	High-performance, superscalar-based computer system with out-of-order instruction execution	712/23
111	US 55375 49 A	\boxtimes	Communication network with time coordinated station activity by time slot and periodic interval number	709/224
112	US 54935 71 A	Ø	Apparatus and method for digital communications with improved delimiter detection	370/514
113	US 54915 31 A	⊠	Media access controller with a shared class message delivery capability	375/354
114	US 54887 29 A	⊠	Central processing unit architecture with symmetric instruction scheduling to achieve multiple instruction launch and execution	712/209
115	US 54860 80 A	×	High speed movement of workpieces in vacuum processing	414/217
116	US 54771 03 A	⊠	Sequence, timing and synchronization technique for servo system controller of a computer disk mass storage device	318/601
117	US 54308 50 A	⊠	Data processing system with synchronization coprocessor for multiple threads	709/314
118	US 54106 21 A	×	Image processing system having a sampled filter	382/260
119	US 54003 31 A	⊠	Communication network interface with screeners for incoming messages	370/401
120	US 53414 83 A	×	Dynamic hierarchial associative memory	711/206
121	US 53136 47 A	×	Digital data processor with improved checkpointing and forking	709/102
122	US 52947 91 A	☒	System and a method for controlling position of a magnetic head relative to a servo track of a tape by optical detection of an edge of the tape	250/548
123	US 52822 01 A	⊠	Dynamic packet routing network	370/403
124	US 52513 08 A	⊠	Shared memory multiprocessor with data hiding and post-store	711/163
125	US 52260 39 A	Ø	Packet routing switch	370/405
126	US 51465 85 A	☒	Synchronized fault tolerant clocks for multiprocessor systems	713/400
127	US 50539 83 A	☒	Filter system having an adaptive control for updating filter samples	708/306
128	US 49775 29 A	☒	Training simulator for a nuclear power plant	703/18
129	US 49440 36 A	Ø	Signature filter system	367/43

Sheet 12 of 16

	Docum ent ID	υ	Title	Current OR
130	US 49222 33 A	⊠	Flow sensor and system incorporating the same for monitoring steam turbine drain valves	340/606
131	US 48751 59 A	☒	Version management system using plural control fields for synchronizing two versions of files in a multiprocessor system	707/203
132	US 48507 93 A	⊠	Steam chest modifications for improved turbine operations	415/38
133	US 47930 57 A	☒	Apparatus for mounting power transmission belts on and removing same from pulleys	29/822
134	US 46866 55 A	⊠	Filtering system for processing signature signals	367/59
135	US 45817 15 A	☒	Fourier transform processor	708/403
136	US 45532 21 A	☒	Digital filtering system	708/308
137	US 45532 13 A	⊠	Communication system	332/185
138	US 45518 16 A	⊠	Filter display system	708/422
139	US 44919 30 A	☒	Memory system using filterable signals	708/3
140	US 44357 53 A	Ø	Register allocation system using recursive queuing during source code compilation	717/153
141	US 44266 11 A	Ø	Twelve pulse load commutated inverter drive system	318/803
142	US 42098 43 A		Method and apparatus for signal enhancement with improved digital filtering	708/422
143	US 39341 28 A	☒	System and method for operating a steam turbine with improved organization of logic and other functions in a sampled data control	700/290

	Docum ent ID	ט	Title	Current OR
1	US 20020 11214 6 A1		Method and apparatus for synchronizing load operation	712/219
2	US 20010 01308 6 A1	×	Multiprocessor system and data transmitting method	711/119
3	US 65052 77 B1	⊠	Method for just-in-time delivery of load data by intervening caches	711/158
4	US 62634 06 B1	⊠	Parallel processor synchronization and coherency control method and system	711/141
5	US 60471 22 A	⊠	System for method for performing a context switch operation in a massively parallel computer system	709/108
6	US 57348 21 A	⊠	Method and apparatus for a direct data transmission between a communication network interface and a multimedia data processor	709/200
7	US 56299 50 A	⊠	Fault management scheme for a cache memory	714/805
8	US 55553 82 A	⊠	Intelligent snoopy bus arbiter	710/113
9	US 55532 66 A	⊠	Update vs. invalidate policy for a snoopy bus protocol	711/144
10	US 55532 58 A	⊠	Method and apparatus for forming an exchange address for a system with different size caches	711/3
11	US 53882 24 A	⊠	Processor identification mechanism for a multiprocessor system	710/104
12	US 53612 67 A	⊠	Scheme for error handling in a computer system	714/755
13	US 53197 66 A	Ø	Duplicate tag store for a processor having primary and backup cache memories in a multiprocessor computer system	711/146
14	US 47564 83 A		Jaw crusher with multiple drive means	241/101 .2

2T-91.4

	Docum ent ID	σ	Title	Current OR
1	US 20020 11214 6 A1		Method and apparatus for synchronizing load operation	712/219
2	US 66067 02 B1		Multiprocessor speculation mechanism with imprecise recycling of storage operations	712/218
3	US 66009 59 B1	Ø	Method and apparatus for implementing microprocessor control logic using dynamic programmable logic arrays	700/7
4	US 55880 92 A		Printer control circuit and the printer controlled thereby	358/1.9

Sheet 15 of 16

	L#	Hits	Search Text	DBs
1	L1	1130	(fenc\$3 synch\$ barrier) near10 load near10 (instruction operation)	USPAT; US-PGPUB
2	L2	330	(glob\$4 coheren\$2 consisten\$2) and 1	USPAT; US-PGPUB
3	L4	311	(post pre) and 1	USPAT; US-PGPUB
4	L7	178	2 not (6 3 5)	USPAT; US-PGPUB
5	L6	143	2 and 4	USPAT; US-PGPUB
6	L3	14	(glob\$4 coheren\$2 consisten\$2) near99 1	USPAT; US-PGPUB
7	L5	4	(post pre) near99 1	USPAT; US-PGPUB
8	L8	344	(fenc\$3 synch\$ barrier) near10 load near10 (instruction operation)	EPO; JPO; DERWENT; IBM TDB
9	L10	3	(glob\$4 coheren\$2 consisten\$2) and 8	EPO; JPO; DERWENT; IBM_TDB
10	L11	2	(post pre) and 8	EPO; JPO; DERWENT; IBM TDB
11	L12	527	(fenc\$3 synch\$ barrier) near20 load near20 (instruction operation)	EPO; JPO; DERWENT; IBM TDB
12	L13	4	(glob\$4 coheren\$2 consisten\$2) and 12	EPO; JPO; DERWENT; IBM_TDB
13	L14	4	(post pre) and 12	EPO; JPO; DERWENT; IBM TDB
14	L15	173	(fenc\$3 synch\$ barrier) near10 load near10 (instruction operation)	EPO; DERWENT; IBM_TDB
15	L17	171	8 not 15	EPO; JPO; DERWENT; IBM_TDB

Sheet 16 of 16

	Docum ent ID	σ	Title	Current OR
1	KR 20010 47533 A		Synchronous memory device	
2	US 57519 86 A	⊠	Computer system with self consistent ordering mechanism - cancels first LOAD operation and all subsequent operations based on comparison between address of STORE operation and address of first LOAD operation	
3	US 56110 70 A	⊠	Write-Load cache protocol for maintaining cache coherency and barrier synchronisation in multiprocessor computer system - updates remote cache in response to Write-Load instruction on bus from local processor when data with Write-Load instruction is stored in remote cache, without remote processor when data is not stored in remote cache	
4	EP 27215 7 A		Rock crushing system - has frame floatingly supporting jaws relative to frame structure, eccentric masses impart oscillatory vibration to one jaw	

01/06/2004, EAST Version: 1.4.1

are provided from the microcode sequencing unit. operation flow. Thereafter, a sequence of micro-operations

in one of the alias registers. The system also consumes routine to implement storage of the issued micro-operation subsequent microcode. Such a system requires a microcode registers in the decoder which data can only then be used by sequently, the stored data is routed back to one of the alias after issuance and execution of that micro-operation. Subcode routine that stores data from a micro-operation only Clara, Calif. utilizes a mechanism implemented by a micromicroprocessor available from INTEL Corporation of Santa configuration that has been implemented in the 80960CF to retrieve. In order to address this problem, one decoder decoder, micro-operation fields can be difficult or impossible fields can be problematic because once issued from the operations previously issued in the flow. Obtaining these operation in a long flow may need data fields from microsome instances, additional information is needed: a microextracted fields stored in the alias registers. However, in Microinstructions in such a flow have full access to all

utilized to assemble a complete micro-operation. operation fields at an alias multiplexer, in which they can be vide simultaneous availability of alias fields and micromicro-operations. Such a system could advantageously proof storing micro-operation fields for use by subsequent Such a configuration would provide a straightforward way issued subsequently from the microcode sequencing unit. that this information can be utilized by micro-operations operation in a separate alias register before it is issued, so ration for selectively storing information from a microalias fields, it would be an advantage to provide a configu-In a decoder having alias registers for storing extracted expensive computer time, and is difficult to implement.

SUMMARY OF THE INVENTION

alias fields to form a complete Auop is provided. been removed. Thus, a flexible approach for utilizing stored data to form an Auop in which all aliasing information has to simultaneously utilize micro-alias data and macro-alias tage of the described configuration is the ability for a Cuop sequent micro-operations in the instruction flow. One advanto store information from micro-operations for use by sub-A decoder is disclosed that includes a micro-alias register

one of the Cuops from which to store data into the micromicrocode instruction, to provide a control signal to select sequencing unit includes a control circuit, responsive to a is stored in said micro-alias register. The microcode the Cuop register to select data from one of the Cuops, which alias register is coupled to a multiplexer that is coupled to PLAs in order to store Cuops generated therefrom. A microcoupled to the microcode sequencing unit and the XLAT therein, and a microcode control circuit. A Cuop register is code ROM having micro-operation sequences stored PLAs") and a microcode sequencing unit including a micro-The decoder includes one or more translate PLA ("XLAT

of the microcode ROM. length of microcode and therefore reduces the size and cost Thus, the apparatus and method described herein reduces the after the micro-operation has been completed and issued. out requiring a lengthy routine to store the fields in a register useful for Cuops issued subsequently from microcode, withselect a Cuop and store information therefrom that may be The capability to store information from a previous Cuop

> SIMOLTANEOUSLY BY ONE **LOADED MICRO-ALIAS AND** DECODER HAVING INDEPENDENTLY

MICRO-OPERATION WYCKO-YTIYZ KECIZLEKZ YCCEZZIBLE

filed Mar. I, 1994 now abandoned. This is a continuation of application Ser. No. 08/204,600,

APPLICATIONS CROSS-REFERENCE TO RELATED

which are incorporated by reference herein. ers", filed Mar. 1, 1994, by Brown et al., now abandoned, Instructions from an Instruction Buffer to Multiple Decodentitled "A Method for Steering Multiple Variable Length Mar. I, 1994, by Brown et al.; and Ser. No. 08/204,601, 25 Length Macroinstructions with an Instruction Buffer", filed Apparatus for Aligning an Instruction Boundary in Variable Boggs et al.; Ser. No. 08/204,862, entitled "A Method and Decoder Having an Alias Mechanism", Mar. 1, 1994, by Method for State Recovery During Assist and Restart in a 20 Mar. 1, 1994, by Brown, et al.; Ser. No. 08/204,744, "A Of Single Prefixes in Variable Length Instructions", filed 08/204,593, entitled "A Decoder for Single Cycle Decoding in Parallel", filed Mar. 1, 1994, by Carbine et al.; Ser. No. 602, entitled "A Decoder for Decoding Multiple Instructions 15 assigned copending patent applications: Ser. No. 08/204, Cross-reference is made to the following commonly

BACKGROUND OF THE INVENTION

I. Field of the Invention

long instruction flows. The decoder is useful to supply code sequencing unit for supplying micro-operations during 35 The present invention relates to decoders having a micro-

L Description of Related Art multiple micro-operations in parallel.

of instructions, which may be supplied from a computer Computers process information by executing a sequence

incroprocessor. operations which are executable by the execution units in the each macroinstruction is decoded into one or more microsupplied to a decoder residing within the processor, where decoded and executed. The compiled macroinstructions are tions into macroinstructions having a format that can be a compiler program that translates the higher level instructo run these high level programs, the program is compiled by not directly executable by the computer processor. In order in high level languages such as FORTRAN or "C" which are sequence of operations. Most computer programs are written designed to direct the computer to operate a particular program written in a particular format and sequence

during long micro-operation flows. aliasing mechanisms is the availability of the extracted fields 60 provides a microcode programmer a straightforward way to Carbine et al., on lun. 22, 1993. One advantage of such system is described in U.S. Pat. No. 5,222,244, issued to ing opcodes of that macroinstruction. An exemplary aliasing fields from a macroinstruction while simultaneously decod-Some decoders include aliasing mechanisms that extract 55

must in order to specify the entry point into the microdecoder, which is then supplied to the microcode sequencing macroinstruction generate an output from the PLA of the 65 microcode sequencing unit. Particularly, the opcodes of the decoders have included a microcode memory (ROM) and a In order to provide long micro-operation flows, some

9	Docum ent ID	ט	Title	Current OR
1	JP 04191 204 A		AUTOMATIC WAREHOUSE	
2	JP 04036 672 A	⊠	ELECTRONIC COMPONENT TESTING INSTRUMENT	
3	DD 24755 4 A	\boxtimes	Switching converter into operation - using starting thyristor across inverter and fired synchronously with rectifier thyristors	
4	US 41744 96 A		Monolithic solid state power controller - detects zero voltage crossing in source voltage and pre-selects mode synchronisation	

field can vary between embodiments. tive purposes, for example the number of bits in a particular that the numbers and quantities utilized herein for illustramaterial. Also, it should be apparent to one skilled in the art The chips may be made of silicon or other semiconductor single microprocessor chip, or multiple chips, or in software. ratus and methods described herein can be practiced in a method described therein. For example, the processing appanumbers and quantities associated with the apparatus and invention. The following description may include specific employed without departing from the principles of the of the structures and methods illustrated herein may be from the following discussion that alternative embodiments tration only. One skilled in the art will readily recognize

1990, Section 2.4, available from INTEL Corporation. In 20 (termed "macroinstruction") have the well-known format of implementation, the instructions supplied to the decoder torm a portion of a computer program. In the preferred decoding a sequence of variable length instructions that The system described herein is particularly useful for 15 Discussion of Variable Length Instructions and Prefixes

this format, a macroinstruction can be up to fifteen bytes in in detail in the i486TM Programmers Reference Manual, the INTEL instruction set which is described, for example,

"Instruction Format" on page 26-2 includes such a discusincludes various prefix bytes available. Also, section 26.2 50 instruction format of the INTEL instruction set, which pages 2-15 and 2-16, includes a complete discussion of the evence Manual, 1990, Section 2.4, "instruction format", a certain number of times. The i486TM Programmers Refprehices, which indicate that an instruction is to be repeated 45 override. Furthermore, there may be one or more repeat tion regarding code segment override and data segment information relating to length of data, and control informareference to the INTEL instruction set. Prefixes may include zero to eight. Prefixes, as used herein, are described with The number of opcode bytes ranges from one to three, and a single macroinstruction may vary from zero to fourteen. unknown with any certainty: the number of prefix bytes in The number, and even the existence of certain bytes is bytes, which are followed by operand or other data bytes. sections that may include prefix bytes, followed by opcode format rules; for example, a macroinstruction is divided into third instruction may comprise two bytes. There are certain the second instruction may comprise eight bytes, and the instructions, the first instruction may comprise twelve bytes, have no set fixed length. For example, in one sequence of The length of an instruction is variable; i.e., the instructions which specifies the operation performed by the instruction. Each macroinstruction includes at least one opcode byte,

waivisvO 23 utilized in other processors. however, that the principles described herein could be mentation in a microprocessor. It should be recognized, description includes circuits and methods suitable for imple-60 tion sets other than the INTEL instruction set. The following structures described herein could also be used with instrucmicroprocessors. It should be apparent however, that the 8087, 80286, i38674, 80287, i48674 and the PentiumTM able in the INTEL microprocessors including the 8086, INTEL instruction set, which includes instructions execut-The decoder described herein is designed to decode the

a multiple instruction decoder of the preferred embodiment Reference is first made to FIG. 1 which is an overview of

> which restart can occur. code subsequent to a target that can be mispredicted or at registers and the micro-alias registers are required by micro- 10 LOADMAR and LOADUAR whenever the macro-alias result is accomplished by writing microcode instructions microcode flow, and loading the micro-alias register. This pejqs extracted from the macroinstruction that accesses the includes the steps of loading the macro-alias registers with at a location within a microcode sequence. This technique misprediction or in the event of an error that requires restart of micro-alias register in the event of a micro-branch A technique is also disclosed that correctly stores the state

BRIEF DESCRIPTION OF THE DRAWINGS

macroinstruction and decodes it into one or more microdecoder, and a third decoder, each of which receives a having multiple decoders including a first decoder, a second FIG. I is an overview of a multiple instruction decoder

second decoder and third decoder, that can decode a subset FIG. 2 is a block diagram of a partial decoder, such as the

FIG. 4 is a block diagram of the field extractor and the 25 length. FIG. 3 is a diagram of fields defined in the Cuop register. of all executable macroinstructions.

the macro-alias register. macro-alias registers, illustrating the registers defined within

first decoder that can decode all executable macroinstruc-FIG. 5 is a block diagram of a full decoder, such as the

one of said decoded prefixes, as appropriate, to supply to decoding each byte of an instruction buffer, and selecting FIG. 6 is a diagram of a prefix decoding circuit for

macroinstructions into a plurality of Auops. HG. 7 is a flow chart of operations to decode the each decoder.

tiple decoders. and a steering mechanism for steering instructions to mul- 40 the number of operand and other data bytes can vary from memory for storing instructions, an instruction fetch unit, FIG. 8 is a block diagram of circuitry including a cache

aligned with the first byte of the instruction buffer. stored so that the first byte of a first macroinstruction is buffer with one or more variable length macroinstructions, FIG. 9 is a flow chart of operations to load the instruction

steering multiple variable length instructions from the FIG. 10A is a flow chart that illustrates a procedure for

FIG. 10B is a continuation of the flow chart of FIG. 10A. instruction buffer to multiple decoders.

FIG. II is a flow chart of operation of an assist handling FIG. 10C is a continuation of the flow chart of FIG. 10B.

alias data and the first Cuops supplied from XLAI PLAs in 55 FIG. 12 is a flow chart of operations to restore a macroroutine, including, state recovery.

an instruction flow.

micro-alias data into a micro-alias register. FIG. 13 is a flow chart illustrating operations to restore

FIG. 14 is a flow chart illustrating operations to restart a

micro-operation flow at an actual micro-branch target, such

as may result from a mispredicted micro-branch.

PREFERRED EMBODIMENT DELYITED DESCRIBLION OF THE

embodiments of the present invention for purposes of illus-FIGS. 1 through 14 of the drawings disclose various

	Docum			Q
	ent ID	Ū	Title	Current
1	WO 20527 15 A1		SERVO MOTOR DRIVE CONTROL SYSTEM	
2	DE 19955 406 A1	×	Method for controlling multiple electrical loads operated from one source of power e.g. for motor vehicle, involves synchronizing time point and/or length of pulse triggering for operating current for loads with the operation of other loads	
3	EP 88493 2 A1	Ø	Ballast circuit with stabilised oscillator	
4	EP 82737 0 A2	Ø	Resonance type power converter unit, lighting apparatus for illumination using the same and method for control of the converter unit and lighting apparatus	
5	EP 70977 0 A2	Ø	Apparatus to control load/store instructions	
6	EP 69371 9 A1	☒	Circuit for a household appliance	
7	EP 67999 0 A1	⊠	A computer apparatus having a means to force sequential instruction execution.	
8	EP 64571 5 A1	Ø	System and method for processing store instructions.	
9	EP 49363 4 Al	Ø	Electromagnetic valve control system.	
10	DE 39424 97 A1	Ø	Hydraulic load lifting device - has telescopic hydraulic cylinders designed so that inner and outer parts function simultaneously	
11	EP 42916 7 A1	⊠	Gear change mechanism.	
12	GB 22163 06 A	☒	Load and synchronize computer architecture and process	
13	EP 31369 5 A1	⊠	Crane vessel.	
14	DE 37110 49 A1	Ø	Regulating device for at least two hydrostatic machines connected to a common operating-pressure line	
15	WO 88007 68 A1	⊠	DC TO DC CONVERTER CURRENT PUMP	
16	US 20030 20605 0 A	×	Synchronous load circuit operating apparatus includes frequency responder controlling frequency of clock signal to be above maximum operating frequency, if temperature is below maximum operating temperature	
17	WO 20030 81765 A	⊠	Synchronous reluctance motor control device has position/speed estimation/calculation unit for estimating position/speed of motor, based on predefined three phase voltage equation	
18	US 66256 60 B	⊠	Processor operating method in multiprocessor data processing systems, involves speculatively issuing load request to memory in response to load instruction, while barrier operations on interconnect are pending	
19	US 66091 92 B	⊠	Data processing system has controller at load/store unit to issue load request associated with load instruction which is output after barrier instructions to memory even before completion of barrier operation	
20	US 66067 02 B	⊠	Processor used in multiprocessor data processing system, discards data returned by memory when snoop invalidate affiliated with load request is received and load request is re-issued	

which is incorporated by reference herein. Brown et al Ser. No. 08/204,597, filed of even date herewith, Received Simultaneously from a Parallel Decoder", by entitled "An Output Queue for Multiple Operations in a copending, commonly assigned patent application form. One embodiment for the output queue 140 is described queue 140, which may be constructed in any conventional 132 from the third decoder 130 are supplied to an output

processing units include circuits that perform superscalar that have a high execution rate. In some embodiments, these 🕟 queue 140 supplies the micro-operations to processing units multiple instruction decoder described herein, the output subsequent units. Although not required for practicing the queue 140 helps smooth the flow of micro-operations to issue up to three micro-operations in parallel. The output the output queue 140 holds six micro-operations and can requested by subsequent units. In the preferred embodiment, holds a plurality of Auops, and issues multiple Duops when varies widely from cycle to cycle, the output queue 140 through address. Because the number of micro-operations be included in a Duop such as a macro-branch target or a fall identical with an Auop; however additional information may represents a "decoder-issued Uop". A Duop may have a form output queue 140 may be referred to as a "Duop", a term that from the queue 140. A micro-operation issued from the output queue 140 independent of micro-operation reads micro-operations 112, 122, 132. Auops are written into the execution when those units are ready to receive the issued From the output queue 140, micro-operations 112, 122,

Discussion of Partial Decoder 200 processing and/or out-of-order processing.

The partial decoder 200, as well as the full decoder 500 120 or to the first decoder 110. decodable therein, it can be re-steered to the second decoder tion 202 may be steered to the third decoder 130, and if not tion set, is the first decoder 110. Therefore, a macroinstrucdecoder, that can decode all macroinstructions in the instrucfinally it reaches a decoder that can decode it. The full lowest available decoder during subsequent clocks until tion 202 is nondecodable, it will be resteered to the next which is a full decoder. In other words, if the macroinstrucclock to another decoder, for example the first decoder 110, 202 is not decodable, it may be supplied in a subsequent the macroinstructions $100~\mathrm{(FIG.~I)}$). If the macroinstruction other units, including a steering unit that controls steering determination. The DECALL signal may be supplied to able By All") signal dependent upon the results of this The fast detection logic 210 outputs a DECALL ("Decodpartial decoder 200 can decode the macroinstruction 202. quickly analyzes them, and determines whether or not the instruction, are provided to fast detection logic 210, which which specify the operation to be performed by the macrodetermination, opcodes from the macroinstruction 202, decodable by the partial decoder 200. In order to make this supplied to the partial decoder 200, may or may not be and the third decoder 130. A macroinstruction 202, when embodiment, is implemented within the second decoder 120 diagram of a partial decoder 200 which, in the preferred Reference is now made to FIG. 2, which is a block

The DECALL signal together with all opcodes are pro-5,222,244, issued to Carbine et al. on Jun. 22, 1993. aliasing system is described, for example, in U.S. Pat. No. to be described, include an aliasing system. An exemplary

Logic Array", which is a programmable circuit commonly decoder 200. "PLA" is an acronym for "Programmable 65 vided to a translate (XLAT) PLA 220 within the partial

when needed by the decoders. cache, and then stored in an instruction buffer for steering 10 and I32 are issued to other units for scheduling and eventual instructions may be fetched from memory or the instruction memory or an instruction cache. For example, the macrois loaded by an instruction fetch unit that is coupled to receives inacronstructions from an instruction buller which 101, 10B and 10C. Briefly, the steering mechanism 10I 101, to be described in detail with reference to FIGS. 8, 9, of macroinstructions are supplied via a steering mechanism in a computer environment. As illustrated at 100, a plurality which is a part of a pipeline including other processing units

the buffer, as is described elsewhere in more detail, and receives it. Additional macroinstructions may be stored in 25 a third macroinstruction is available, the third decoder tion is available, the second decoder receives it, and then if first available macroinstruction. If a second macroinstruction buffer. In those instances, the first decoder receives the three macroinstructions may be available within the instruc- 20 third macroinstruction 106. In some instances, less than by the second macroinstruction 104 which followed by the program sequence, the first macroinstruction 102 is followed the program structure. In other words, in the specified structions 102-106 are provided in the sequence specified by 15 tion 104, and a third macroinstruction 106. The macroininclude a first macroinstruction 102, a second macroinstruc-In the described embodiment, the macroinstructions

Instruction scheduling is performed in units subsequent to there are data dependencies between the instructions. configurations which do not issue instructions in parallel if is performed before the macroinstructions 102-106 is sup-In the preferred implementation, no dependency checking anbblied to the decoders in subsequent cycles.

the decoder. plied to the parallel decoders, unlike other superscalar 30

aliasing will be described in more detail subsequently. indirect references have been resolved. The mechanism for fore, the first decoder 110 outputs Auops 112 in which 50 complete), and "uop" represents a micro-operation. Therecapital letter "A" represents "aliasing is resolved" (i.e., fields to supply Auops, which are illustrated at IIZ. The sequently combined with extracted fields and immediate control micro-operations ("Cuops"). These Cuops are sub- 45 macroinstruction is decoded by an XLAT PLA to generate macroinstruction 102 proceeds several stages. First, the discussed subsequently in more detail, decoding of the first struction 102 into one or more micro-operations. As will be decoder 110 includes circuitry to decode the first macroin- 40 the instruction set defined for the microprocessor. The first has the capability of decoding any macroinstruction within quently. Briefly, the first decoder 110 is a "full" decoder that decoder 110 that will be described in more detail subse-The first macroinstruction 102 is supplied to a first 35

Auop 132. second Auop LZZ, and the third decoder 130 produces a third in detail subsequently. The second decoder 120 produces a decoder 130 have an identical structure, which is described preferred embodiment, the second decoder 120 and the third with the first decoder 110, which is a full decoder. In the 60 the second decoder 120 and the third decoder 130, compared within the instruction set, thereby reducing complexity of circuits to decode a subset of all macroinstructions 100 the third decoder 130 are "partial" decoders that contain to a third decoder 130. Briefly, the second decoder 120 and 55 decoder 120, and the third micro-operation 106 is supplied The second macroinstruction 104 is supplied to a second

Auop 122 from the second decoder 120, and the third Auop The first Auops 112 from the first decoder 110, the second

	Docum ent ID	ט	Title	Current OR
21	US 20030 08425 9 A	⊠	Memory fence and load fence micro-architectural implementation method for speech synthesis, involves dispatching load fencing instruction to cache controller, after removing old loads from memory subsystem	
22	RU 22081 13 C	×	Method of automobile parking in multilevel mechanized parking lot, multilevel mechanized parking lot with keeping automobiles on trays, reception-rotary mechanism for multilevel mechanized parking lot with lifting cage	
23	JP 20032 12487 A	×	Forklift truck for cargo handling work has synchronization unit, which performs extrusion, pull-in, reverse and synchronous operations with advance operation of vehicle main body when detected tilt angle of mast is within suitable range	
24	JP 20030 61347 A	×	Switch-mode power supply changes load current supplied from main circuit, and maintains rectification circuit in synchronous rectification state or stop state	
25	JP 20030 28285 A	Ø	Automatic clutch control type vehicle controls connection/interruption of clutch, when power take-off mechanism is connected to transmission	
26	EP 12983 57 A	Ø	Electronic drive transmission control for synchro-shuttle or load switching transmission provides independent operation of switching elements of first and second transmission drive groups	
27	DE 20218 162 U	×	Piezoelectric transformer driver unit e.g. for fluorescent lamps, has pulse width modulation control providing signals of equal phase and frequency for synchronous operation of drivers, transformers, piezoelectric elements and loads	
28	DE 20218 163 U	☒	Piezoelectric transformer-driver unit e.g. for computer LCD light-sources, uses driver unit to synchronously drive transformer units, piezoelectric units and loads	
29	RU 21994 63 C	☒	Cross-country vehicle	
30	US 64502 98 B	☒	Communication control system for elevators, adjusts timing for sending synchronization start data from specific slave to subsequent slave in order, based on specific timing criteria	
31	US 20020 11212 2 A	⊠	Cumulative ordering verification method in multiprocessor data processing system, involves determining whether load memory instruction executed after memory barrier instruction in remaining cache line is identified	
32	US 20020 11214 6 A	⊠	Load operation synchronization apparatus for computer system, has execution unit that executes decoded load fence instruction	
33	JP 20022 23434 A	⊠	Video monitoring system includes video server to transmit video data from camera along with synchronizing signal instruction, for controlling timing of synchronizing signal produced by cameras	
34	US 20020 08115 5 A	⊠	Cable pulling apparatus for use in e.g. pipe pulling operation, has articulating wedge of specified length, to grip or release cable depending on movement direction of adaptor	
35	JP 20020 78949 A	⊠	Pachinko machine has CPU to perform display control of LCD panel and motion control of character presentation mechanism	
36	JP 20020 21950 A	⊠	Speed change gear device for vehicle, has controller that operates main shaft rotation suppressing mechanism in predetermined condition during downshift operation of transmission	
37	JP 20020 10474 A	⊠	Power supply protection device using DC-DC converter, stops operation of DC-DC converter, when abnormal signal from voltage and load current monitors are input to synchronism monitor within prescribed time	
38	WO 20018 3869 A	⊠	Embroidery frame operation of embroidering machine involves synchronizing deceleration of accelerated embroidery frame and application of load to the frame	

bits from the macro-alias data within the alias multiplexers TTT of the merged with the TTT bits and then merged with the TTT included within the macro-alias data. A generic Cuop is extracted by the field extractor (to be described) and Manual, 1992, pages E-4 through E-6. The TIT bits are and are shown in the id86TM Programmers Reference These bits are well known opcode bits of certain operations, bits", are included within the first byte of certain opcodes. opcode can be utilized follows. Three bits, termed "TTT" each group of operations. An example of how a generic

or alternately they may be aliased to indirectly specify a the SRC2 field, and the DEST field can be utilized directly the control fields for the alias multiplexers. The SRCI field, This information can be affected by control information and lar logical register to be utilized either directly or indirectly. 342, and a DEST field 344. These fields specify the particuand register fields including a SRCI field 340, a SRC2 field The Cuop register 224 also includes the opcode field 330, to form a unique Auop.

stored in a constant ROM that is addressed by the immediate a representation of an integer constant 65520, which is constants. For example, the immediate field 350 may include constant stored in a ROM that stores commonly used instances, the immediate field 350 can be used to address a one of the 32-bit alias registers, to be described. In other 350. In some instances, the immediate field 350 can specify The Cuop register 224 also includes an immediate field parucular macro-alias register.

decoding a large and complex instruction set. ing performance while still providing the capability for each Cuop is useful for reducing decoder size, and improv-In summary, the control aliasing information provided in field **350**.

detected in the fast detection logic 210, and the instruction greater than eight bytes, then this circumstance will be length of the instruction beginning with the opcodes is fields will never be used. However, in the event that the some of the fields of the macro-alias registers, but these the last three bytes of the eight supplied bytes may affect opcodes to the end of the macroinstruction is five bytes, then instruction. For example, if the length beginning with the extractor 250, but they will not affect the microcode for that then the remaining bytes are still supplied to the field bytes beginning with the opcodes is less than eight bytes, as in a variable length instruction set, the actual number of supplied regardless of the actual length of the instruction. If, plied to a field extractor 250. These eight bytes will be macroinstruction 202, beginning with the opcodes, are sup-Referring again to FIG. 2, the first eight bytes from the

functions are performed in the instruction steering logic. for subsequent use. However, in one implementation, these decoded), and calculation of actual macroinstruction length operand usage, decoding of prefix bytes (if not previously that perform the following functions: detection of illegal Preferably, the field extractor 250 could also include circuits tion 202 in parallel with operation of the XLAT PLA 220. 55 extracting all aliasable information from the macroinstrucalias registers. The field extractor 250 is responsible for as register specifiers from the operands and steer them to described subsequently in more detail, to extract fields such The field extractor 250 includes circuits, which will be

indicates whether data is interpreted to be 32-bit or 16-bit, how data is to be interpreted, such as a D-bit, which trol information 254 indicative of the mode of operation and opcodes and operands from the macroinstruction 202, con-The field extractor 250 receives, in addition to the

> Predetermined bits from these three bytes are always supbyte, which is considered by some to be an opcode byte). one, two, or three (the third byte is actually the mod r/m INJEL instruction set the number of opcodes bytes may be 10 access) required by that Cuop. It may be noted that in the control information that defines aliasing (indirect data includes a template for a particular micro-operation and a "Cuop" illustrated at 222. As implemented, a Cuop opcodes are decoded into a control micro-operation, termed combinational logic. Within the XLAT PLA 220, the embodiment, the XLAT PLA 220 is implemented as static combinational logic, static or dynamic. In the preferred used for decoders. The PLAs could be implemented as

tion, then they are ignored. For example if only the first bytesupplied bits are not necessary to decode the current instruc- 15 plied to the XLAT PLA 220. If during decoding some of the

supplied with repeat prefix information, a lock indicator, and information. For example, the XLAT PLA 220 may be 20 The XLAT PLA 220 is also supplied with decoded prefix ignored or considered "don't cares" by the XLAT PLA 220. is an opcode byte, then the second and third bytes are

decoder 200, the XLAT PLA 220 includes circuitry to ence thereto. In the described embodiment of the partial illustrated in FIG. 3 and described subsequently with referit is latched by a latch clock signal. The Cuop 222 includes The Cuop 222 is supplied to a Cuop register 224, in which an operand size prefix.

decoded into one Cuop 222. However, in other embodidecode only those macroinstructions 202 that can be is only one XLAT PLA 220, the partial decoder 200 can 30 produce one Cuop 222 per macroinstruction. Because there control fields 226 and a template 228, which are also 25

All Cuop data is stored in the Cuop register 224. The Cuop fields defined by the Cuop 222 within the Cuop register 22A. Reference is now made to FIG. 3, which illustrates the or more Cuops could be supplied in parallel. to include circuitry to produce additional Cuops, so that two 35 and additional XLAT PLAs (not shown) could be provided ments, and particularly if more die space is available, second

described, which includes multiple XLAT PLAs each pro-310 is particularly useful for a full decoder 500 to be not the Cuop to which it is attached is valid. The valid bit The valid bit 310 is a 1-bit field that indicates whether or 310 is asserted. within the register 224 will not be issued unless a valid bit 40

ducing a Cuop, and a microcode sequencing unit. Specifi-

example, in the preferred INTEL implementation one group entries) in the XLAT PLAs can be reduced substantially. For registers, and aliased Cuops, the number of minterms (i.e., provides a substantial advantage because, by use of alias control fields within each Cuop 224 is flexibility. This centain bits can be replaced. One advantage of including the opcode fields need to be decoded to determine whether other places. Furthermore, they may indicate whether or not whether or not to substitute bits from alias registers or from is aliased. For example, the opcode alias bits may tell include opcode alias bits, which signify whether the opcode anch as that to be described. The control field 226 may indirect access to other registers using an alias mechanism so will not be decodable by the partial decoder 200. The control field 226 within each Cuop is useful for particular Cuop is valid before forming an Auop. cally, the valid bit 310 is useful for determining whether a

sliasing within the Cuops allows a single Cuop to be used for by only one Cuop includes ADC and SBB. The use of generic Cuop. Another group of instructions representable 65 XOR, SUB, AND, and OR, which are implemented with one of instructions includes the following operations: ADD

	Docum ent ID	ט	Title	Current
39	KR 20010 54730 A	Ø	Parallel operation synchronizing circuit of uninterruptible power equipment	
40	WO 20014 5242 A	Ø	Method for controlling an high power AC-AC power converters, uses monitoring of load current to drive microprocessor which determines control signals for two double-controlled two-way semiconductor switches	
41	KR 20010 47533 A	Ø	Synchronous memory device	
42	FR 28023 60 A	Ø	Dimmer switch for lighting, comprises chopping transistors and microcomputer which enable a lighting load to be run at low voltage and voltage peaks to be counted to determine mode of operation	
43	DE 19955 406 A	☒	Method for controlling multiple electrical loads operated from one source of power e.g. for motor vehicle, involves synchronizing time point and/or length of pulse triggering for operating current for loads with the operation of other loads	
44	JP 20011 37538 A	⊠	Image generation program recording medium for computer game apparatus, executes image displayed by frame display corresponding to adjusted synchronous time	
45	JP 20011 06482 A	⊠	Synchronization operating procedure for use in cranes, involves correcting number of revolutions of hydraulic motors based on operating characteristics of each hydraulic motor	
46	US 63447 25 B	⊠	Synchronous motor control device using vector control	
47	US 61788 67 B	☒	Independent actuators arrangement for hydraulic or pneumatic control system, has actuators mechanically coupled to gear systems to monitor and provide indication of dissimilarity between operating motions of actuator	
48	JP 20010 02207 A	×	Load transfer device for fork apparatus has common controller which performs synchronous operation control of linear motors for movable forks by synchronous control of inverters connected to linear motors	
49	JP 20003 54399 A	Ø	Excitation control for synchronous machine, involves switching converter from AC excitation of frequency proportional to adjustable speed range of synchronous machine to low frequency excitation, during load cut-off	
50	CN 12742 11 A	×	Supervisory system for a base station in a communications system has supervised circuit cards each with a memory storing failure data and two supervisory cards one being active to read the failure information through a bus	
51	WO 20006 3775 A	×	Instruction scheduling method for processor of computer, involves hoisting instruction to earlier position in instruction list depending on barrier instructions	
52	JP 20002 03794 A	×	Synchronization controller for hydraulic actuator of winch apparatus has controller which drives two hydraulic actuators so that velocity detected by velocity sensor is equal to target	
53	JP 20001 84788 A	×	Synchronous motor controller controls current supply to field pole of each motor by acquiring phase difference of induced voltage and by detecting phase shift of current through field pole of motors	
54	JP 20000 12241 A	×	Remote monitoring and control system for fluorescent lamp lighting fixtures - controls voltage level in light control signal based on monitoring data to control switch operation for illumination control	
55	JP 11239 571 A	⊠	Scanned image synchronization device in magnetic resonance imaging apparatus for medical diagnosis - includes reflector to display scanned time synchronized ECG images which are penetrated based on predetermined synchronized ECG wave	

22A select macro-alias fields from the macro-alias registers 260, and combine them with a Cuop template from the Cuop register 22A. The alias multiplexers 280 include conventional circuity, including a plurality of multiplexers responsive to the control fields 226, that select particular fields and combine them with the template 228 from the Cuop register

224 in order to provide a complete Auop 290. Discussion of Full Decoder 500

Reference is now made to PIC. 5, which is a circuit and block diagram of a full decoder 500 that can decode 200 macroinstructions. In comparison, the partial decoder 200 In the preferred embodiment, the full decoder 500 implements the first decoder 110 shown in FIG. 1.

A macroinstruction 502 having a format of the INTEL instruction set is provided to the full decoder 500, in a manner discussed with reference to FIG. I. Therefore, the macroinstruction 502 includes one or more opcode bytes and sad other bytes following the opcodes. As discussed also with reference to FIG. 2, three bytes, beginning at the first opcode byte are supplied regardless of the actual number of opcode bytes, which may be one, two, or three. If additional bytes are included, for example if only the first byte is an opcode byte, then the second and third bytes may be ignored by the XLAT PLAs 510-516 and the entry point be ignored by the XLAT PLAs 510-516 and the entry point PLAs 530.

a macroinstruction 502 to supply up to four Cuops in Thus, the XLAT PLAs 510-516 decode the opcode bytes of circuitry to decode the opcode bytes into a fourth Cuop. a third Cuop, and the fourth XLAT PLA 516 includes PLA 514 includes circuity to decode the opcode bytes into decode the opcode bytes into a second Cuop, the third XLAT a first Cuop, the second XLAT PLA 512 includes circuitry to PLA 510 includes circuitry to decode the opcode bytes into control fields and a template. In other words, the first XLAT the format described with reference to FIG. 3, including opcodes 504 and responsive thereto to output a Cuop having PLA 510-516 includes conventional circuity to receive the sometimes needed to interpret the opcode bytes. Each XLAT prefix decoder to be described subsequently in detail, is partial decoder 200. The prefix information, supplied by the information, such as that described with reference to the from the macroinstruction 502, as well as some prefix tion. Each XLAT PLA 510-516 receives the opcode bytes to four Cuops simultaneously from a single macroinstruca fourth XLAT PLA 516 that operate in parallel to supply up 510, a second XLAT PLA 512, a third XLAT PLA 514, and The opcode bytes 504 are supplied to a first XLAT PLA

three of the XLAT PLAs 510-516 and their valid bits 310 into three Cuops, then the first three Cuops are supplied from 310 will be asserted. If the macroinstruction 502 is decoded from two of the XLAT PLAs 510-516 and their valid bits Cuops, then the first Cuop and the second Cuop are supplied asserted. If the macroinstruction 502 is decoded into two and the valid bits from the other XLAT PLAs will not be of the PLAs 510-516 and its valid bit 310 will be asserted only one Cuop, then a Cuop output will be supplied from one asserted. If the macroinstruction 502 requires decoding into is not valid, then the valid bit 310 for that Cuop is not macro-alias registers, to be described). If, however, the Cuop is valid (unless there is an outstanding request to load the XLAT PLA that produced it in order to signify that that Cuop bit 310 (see FIG. 3) is asserted in each valid Cuop by the one, two, three, or four Cuops. In one embodiment, the valid The full decoder 500 can decode macroinstructions into

> the field extractor 250 and the XLAT PLA 220. the prefix vector 256 having decoded bits easily usable by 20 the prefix decoding circuit decodes the prefixes to provide prefix decoding circuit will be described separately. Briefly, 250; however, for purposes of the present description, the could be considered to be an element of the field extractor vectors. For some purposes, the prefix decoding circuit 15 decodes each byte in the instruction buffer to supply prefix logic, which will be described with reference to FIG. 6, roinstruction 202 and the operands within it. Prefix decode code following it, particularly the interpretation of a macto fourteen. Generally, prefixes can affect the instruction 10 and if present, the number of prefix bytes can vary from one is that any arbitrary instruction may or may not have a prefix, One difficulty with the prefixes in the INTEL instruction set information that may be prepended to a macroinstruction. instruction set allows use of prefixes, which are bytes of 5 interpretation of the opcodes and operands. The INTEL which includes decoded prefix information that can affect field extractor 250 may also receive a prefix vector 256 and the B-bit, which indicates stack size. Furthermore, the

The alisable information, termed macro-alias data illustrated at 258, is stored in macro-alias registers 260. A latch trated at 258, is stored in macro-alias registers 260. A latch later use. It may be noted that the total data width of the 25 operands and opcodes input into the field extractor 250 is sixty-four bits (8x8) for the partial decoder 200, but a large number of bits (8x8) for the partial decoder 200, but a large number of bits (about 130) of macro-alias data 258 are provided to the macro-alias registers 260. Therefore, it should be apparent that one macroinstruction 202 will not 30 contain every alias field that can be extracted from the field extractor 250.

Reference is now made to FIG. 4, which is a block diagram of the field extractor 250 and the macro-alias registers 260, particularly illustrating fields within the 35 macro-alias registers 260. The width of each register within the macro-alias registers 260 is dependent upon the maximum allowable size of the data stored within that register. For example, if the maximum size of source data is N-bits, then the size of the source register will be N-bits. Displace- 40 ment data to be stored in another register may have a maximum size of 32-bits, and therefore the displacement register will have that size.

As discussed above, all aliasable information is latched decode the discussed above, all aliasable information is latered above, and substituted logical registers, address size, branch stack data size, immediate of alias fields a macro amone combination of the two. Examples of alias fields a macro include logical registers, address size, data size, stack on parallel address and stack data size, immediate and displacement and stack data size, immediate and displacement one, two mined opeodes.

The macro-alias registers 260 include fields such as a XLATP The macro-alias registers 260 include fields such as a XLATP

register segment field 270, a register base field 272, a 55 register index field 274, an immediate data register 276, a displacement data register 278, a stack address size field 280, a data size field 284 which indicates the size of the data as well as some floating point information, and an address size field 286 that indicates whether the data address is 16-60 or 32-bits.

Reference is again made to FIG. 2. The macro-alias fields from the macro-alias registers 260 are provided to alias multiplexers 280, in which they are selectively combined with the Cuop 222 in order to assemble a complete Auop 290 65 in accordance with a predetermined aliasing system. Spein accordance with a predetermined aliasing system. Specifically, control fields that are included in the Cuop register

	Docum			
	ent ID	σ	Title	Current OR
56	US 59432 46 A	⊠	Main AC power supply switching method for uninterruptable power supply	
57	JP 11047 937 A	Ø	Arc welding apparatus - has photoelectric unit for converting arc light generated between electrode and base material into electricity which is used for driving ventilating fan	
58	EP 88493 2 A	×	Ballast circuit for discharge tube e.g. fluorescent lamp - comprises applying AC voltage to resonant circuit, switched by two bridge-connected power semiconductors, and so supplying AC current to discharge tube connected to resonant circuit	
59	US 58327 77 A	⊠	Electromechanical transmission control apparatus - has number of electric motors for shifting gears of transmission, with load on synchroniser being measured by sensor when shifting gears	
60	JP 10136 682 A	Ø	Torque constant synchronous drive control apparatus for e.g. automatic lathe with material-supply machine - has torque control unit which adds component to setting torque command depending on detected acceleration, and regulates torque of torque control shaft	
61	JP 10121 454 A	⊠	Intrusion test device e.g. Swedish type sounding test device for measuring ground hardness and strength - has weight supply mechanism which supplies heavy weight to weight placing stand of load piler elevated by hydraulic cylinder for rod lift to predetermined height	
62	JP 10121 453 A	\boxtimes	Intrusion test device e.g. Swedish type sounding test device for measuring ground hardness and strength - has measuring unit which measures amount of intrusion of rod for intrusion test in apparatus body	۶-
63	US 57519 86 A	⋈	Computer system with self consistent ordering mechanism - cancels first LOAD operation and all subsequent operations based on comparison between address of STORE operation and address of first LOAD operation	
64	JP 33175 03 B	⊠	Operation synchronising method for service control points in load sharing group - generating new control by any one SCP in group, updating list at any one SCP corresponding to itself to add new control, sending add control signal identifying new control to all other SCPs in group to update their control list	
65	JP 10094 290 A	⊠	Load control apparatus e.g. for motor - generates common power supply synchronising with operation of thyristor and varies input impedance of control circuit	
66	EP 82737 0 A	⊠	Resonance-type power converter e.g. for fluorescent and electrodeless lamps - uses NAND drive circuits to operate power MOSFETs in accordance with voltage detecting comparator outputs	
67	JP 10026 026 A	⊠	Spark ignition IC engine - has controller which operates two inlet valves to open suction ports synchronously during high load operation and closes one of ports with valve while allowing other port to open during low load	
68	JP 09331 680 A	☒	Load drive circuit for e.g. fluorescent lamp, liquid crystal back light - synchronises operations of switching transistor and inverter with signal output to switching transistor as chopping drive signal, based on comparison result between AC waveform of inverter and feedback signal	
69	JP 09255 298 A	☒	Clamping apparatus for rolled article e.g. machine glazed paper e.g. newspaper loaded on fork lift - has split arms whose opening and closing operations are synchronised by frictional force of lining pad provided between attachment shafts, at no load condition	
70	JP 09252 541 A	⊠	Individual load operation detector for synchronous generator of power supply distribution system - has reactive power adjustment unit which is connected to output end of synchronous generator	
71	JP 09247 946 A	⊠	Inverter for DC to AC conversion and load current control e.g. for AC synchronous motor - has switching unit into which required ratio, obtained from operation unit, is fed as correction signal to correct ripple voltage included in DC output	

valid bit 310 asserted. 510-516 supply the four Cuops in parallel, each having its is decoded into four Cuops, then the four XLAT PLAs will be asserted. And of course, if the macroinstruction 502

require over a hundred UROM Cuops. The UROM also 20 for long instructions flows, which in some examples may that includes microcode routines to supply UROM Cuops The MS unit 534 includes a microcode ROM ("UROM") responsive to the entry point, generates a series of Cuops. entry point address is supplied to the MS unit 534 that, entry point address into microcode ROM. The generated entry point PLA 530 that decodes the opcodes to generate an obcodes from the macroinstruction 502 are supplied to the circuity to perform the following described functions. The ing ("MS") unit 534 coupled thereto that includes control including an entry point PLA 530 and a microcode sequencdecoder 500 includes circuitry for accessing microcode, not all supplied from the XLAT PLAs 510-516, the full struction 502 is to be decoded into multiple Cuops that are In order to handle the situation in which the macroin-

generated in the XLAT PLAs 510; particularly, the UROM The UROM Cuops have a format similar to that of the Cuops MS unit 534 generates up to three UROM Cuops per cycle. 25 to form an Auop that is issued into the output queue. generated in the entry point PLA 530. As implemented, the Cuops in any one cycle, responsive to the entry point The MS unit 534 is espable of generating multiple UROM includes assist handling routines and other microcode

and other signals which will be discussed subsequently in erate particular signals such as LOADMAR, LOADUAR, MS unit 534. The microcode can, in some instances, gen- 30 The UROM Cuops are generated by microcode within the Cuops include control fields and a template.

state may need to be recovered before microcode at the subsequent units such as the execution units, the decoder of a branch misprediction, which will be determined by operations, which are termed "micro-branches". In the event 35 As implemented, the MS unit 534 allows branching more detail.

second XLAT PLA 512 and the MS unit 534, and the third The second 2:1 multiplexer selects between a Cuop from the from one of the first XLAT PLA 510 and the MS unit 534. Specifically, the first 2:1 multiplexer selects between a Cuop PLAs 510-516, and UROM Cuops from the MS unit 534. TALX sit mori quo a Cuop from the XLAT A Cuop multiplexer unit 540 includes a plurality of 2:1 diction is discussed in more detail with reference to FIG. 13.

scrinal target address can be executed. Micro-branch mispre-

control is required. In other words, when the MS unit 534 multiplexers 540, and maintains it as long as microcode UROM Cuops, it asserts the MSBusy signal to switch the Cuops. When the MS unit 534 wants to begin inserting 55 the Cuops from the XLAI PLAs 510-516 and UROM signal that controls a multiplexer unit that selects between responsive to a valid entry point, to generate a MSBusy MSBusy signal. The MS unit 534 includes control logic, multiplexers 540 is supplied from the MS unit 534 via a 50 and the MS unit 534. Control for the plurality of 2:1 2:1 multiplexer selects between the third XLAT PLA 514

210-216. UROM Cuops instead of the Cuops from the XLAT PLAs signal in order to direct the multiplexers 540 to select the 60 specify the register address of a number to be rounded. Thus, begins supplying UROM Cuops, it asserts the MSBusy

formance at the cost of additional minterms in the XLAT in the micro-operation sequence, which provides high per-PLAs 510-516 into one, two, three, or four of the first Cuops 65 quently-used macroinstructions are decoded by the XLAT In the preferred embodiment, some of the more fre-

grammer has great flexibility to access any register indithe registers are not hard-coded into any routine, the proby any of a number of other microcode programs. Because stored, a common generic microcode routine can be utilized by storing the address of the register in which the data is run, using the contents of the micro-alias register 562 to micro-alias registers 562, and then the rounding routine is number (i.e., the register in which it is stored) in the Therefore, the preceding microcode stores the address of this would not know directly where the information was stored. within the rounding routine, the rounding sequence itself rounded will likely be stored by a microcode instruction not sequences to round a number. Because the number to be routine that is generically used in many different microcode code. For example, the microcode may include a rounding grammer flexibility in retaining information and simplifying long instruction flows, which allows the microcode pro-The micro-alias registers 562 are particularly useful in loaded from the XLAT PLAs 510-516, or from the MS unit UPinUROM signal that indicates whether the Cuop is to be from the MS unit 534. The MS unit 534 supplies a isters 562 can be from either the XLAT PLAs 510-516, or information. The Cuop field stored in the micro-alias regtwo bits to select one of the four Cuops from which to store Register Micro-Instruction Pointer") signal that includes the micro-alias register 562, and a UARUIP ("Micro-Alias

alias register 562. For example, in a microcode flow for a

rectly by accessing the register address within the micro-

LOADUAR ("Load Micro-Alias Register") signal that loads the MS unit 534. Particularly, the MS unit 534 supplies a Control for the micro-alias register 562 is supplied from

field extracted from the selected Cuop. an 8-bit SRC1 field, an 8-bit SRC2 field, and an 8-bit DEST unit 534. The micro-alias register 562 includes three fields: tour Cuops for use by a Cuop subsequently issued by the MS 562 is utilized to hold information extracted from one of the stored therein. The information in the micro-alias registers Cuops, which is supplied to micro-alias registers 562 and to a 4:1 micro-alias multiplexer 560 that selects one of said

The contents of the four Cuop registers 550 are supplied

fields 228. Only if its valid bit 310 is set will a Cuop be used includes a valid bit 310, control fields 226, and template previously with reference to FIG. 3. Specifically, each Cuop contents of each Cuop register include the fields described signal that is supplied by conventional control means. The are latched into the Cuop register unit 550 by a latch clock Cuop directly from the fourth XLAT PLA 516. The Cuops third 2:1 multiplexer, and a fourth Cuop register receives a tiplexer, a third Cuop register receives a third Cuop from the 15 register receives a second Cuop from the second 2:1 mulfirst Cuop from the first 2:1 multiplexer, a second Cuop where the significance of one additional clock is lessened.

Cuop registera. Specifically, a first Cuop register receives a into a Cuop register unit 550 that includes a plurality of The Cuop from each of the 2:1 multiplexers 540 is latched frequently used instructions or for long microcode flows lower performance. This trade-off can be useful for less design trade-off that reduces die space at the expense of minterms (entries) in the XLAT PLAs 510-516, which is a mance (i.e., a loss of at least one clock cycle), but can save This second alternative has a disadvantage of lower perfor-Cuops, but simply allow the MS unit 534 to issue all Cuops. macroinstructions, the four XLAT PLAs 510-516 issue no PLAs 510-516. Alternately, for some less frequently-used

	Docum			a
	ent ID	ŭ	Title	Current
72	JP 09138 440 A	×	Opening and closing mechanism for barrier spring for photograph optical system - operates two barrier springs individually by two driving shafts to open and close opening in frame	
73	JP 09135 557 A	×	Brushless excitation appts of variable speed type synchronous motor - has non-contacting type transmitter which transmits field current from stator winding wire to semiconductor element in which current flow is controllable	
74	DE 29704 520 U	☒	Power supply for gas discharge lamp - has controller keeping lamp current constant irrespective of load and reversing current synchronously with operation of shutter	
75	JP 09120 388 A	☒	Information processing system with data synchronization function - has control unit which sends information on whether node is operating synchronously, to mediation unit	
76	JP 09068 737 A	×	Barrier opening=closing mechanism for protecting photograph optical system with lens - has spring provided between notches of barrier ring connecting individually with interlock pins of barrier vane which shuts or opens photograph opening of lens body tube frame	
77	US 56110 70 A	×	Write-Load cache protocol for maintaining cache coherency and barrier synchronisation in multiprocessor computer system - updates remote cache in response to Write-Load instruction on bus from local processor when data with Write-Load instruction is stored in remote cache, without remote processor when data is not stored in remote cache	
78	JP 09016 529 A	Ø	Information processing system - has number of information processors each one having CPU where synchronous operation is performed between them	
79	US 56871 39 A	⊠	Load control and management system for electrical power networks - uses recycle counter to open and close switch in control line of individual units of equipment whilst control signal is present.	
80	US 55663 07 A	×	Data processor contg pipelining system instruction executing - by sync writing value indicated by data load instruction into first stack pointer and second stack pointer when execution of data load instruction is completed	
81	EP 73136 1 A	⊠	Power performance test unit for electric vehicle motor - has test motor linked to load motor both having controller that are fed control data from host computer which measures data	•
82	JP 08205 378 A	⊠	Load control device used in residence and building - includes `OFF' control part which outputs opening instruction to switch based on contents of setting memory pertinent to current detector's output	
83	EP 70977 0 A	×	Pipelined processor for issuing and executing multiple instructions out of order every machine clock cycle - permits load and store instruction to issue and execute out of order and incorporates unique store barrier cache used to dynamically predict whether or not store violation is likely to occur	
84	JP 08103 100 A	×	Operation controller of AC excitation synchronous machine - controls excitation converter based on command such that power load angle is reduced	
85	GB 22936 76 A	Ø	Counter circuit having load function - has at least three counter circuits corresp. to numerical digit, with OR circuit receiving output from load value monitor circuits	
86	JP 08088 980 A	⊠	Independent operation detector for distributed power supply of solar power generation system - outputs independent operation detection signal and continues synchronisation with same timing, when detected phase change in load voltage exceeds set value	
87	RU 20566 98 C	⊠	Elecric power source with non-transforming input - has comparators to form control signals for thyristors of converter and regulator and control connection of source to load	
88	EP 69371 9 A	☒	Domestic washing machine electrical circuit - has control microprocessor for synchronised control and regulation of electrical loads with incorporated voltage monitoring.	

Cuop. Thus, multiple Cuops can be supplied in parallel. XLAT PLAs, each of which can independently supply a because only a single field extractor is required for multiple full range of operands. Thus, an advantage is provided as in the full decoder 500 and may not be able to support the

598 is coupled to the fourth Cuop register, the micro-alias macro-alias registers 580, and the fourth alias multiplexer the third Cuop register, the micro-alias registers 562, and the registers 580. The third alias multiplexer 596 is coupled to register, the micro-alias registers 562, and the macro-alias second alias multiplexer 594 is coupled to the second Cuop alias registers 562, and the macro-alias registers 580. The plexer 592 is coupled to the first Cuop register, the microand the Cuop registers 550. Specifically, a first alias multithe macro-alias registers 580, the micro-alias registers 562, A plurality of alias multiplexers 590 are each coupled to

alias multiplexer 596 supplies a third Auop, and a fourth second alias multiplexer 594 supplies a second Auop, a third cally, a first alias multiplexer 592 supplies a first Auop, a alias multiplexers 590 includes one or more Auops. Specifiby control from Cuop coupled thereto. The output from the registers 580 and/or micro-alias registers 562, as specified thereto is combined with selected data from the macro-alias the Cuops in the Cuop register 550. Within each of the alias Control for the four alias multiplexers is provided within registers 562, and the macro-alias registers 580.

discussion of assists and restarts, and the state recovery has access to macro-data in the full decoder 500. Further assist handling is directed by the MS unit 534 which only instruction and, as necessary, to restart the instruction. Assist handler that has been notified of the error, to assist the instances, the MS unit 534 is directed, by a fault or exception assist handling microcode within the MS unit 534. In those In the event that a micro-operation causes an error, there alias multiplexer 598 supplies a fourth Auop.

reference to FIGS. 11, 12, 13, and 14. necessary to perform them is described in more detail with

tion is provided as illustrated at 604, which indicates which previous instruction. Additionally, steering control informadata 578 which is stored in macro-alias registers 580. The 55 bytes between the first operand byte and the last byte of the instruction, thereby indicating a prefix by the number of byte of each instruction, and the first opcode byte of each by conventional means to designate the positions of the last reference to FIG. 8. The byte marks 602 can also be supplied 50 such as the instruction length decoder 814, discussed with a plurality of byte marks 602 are provided by a predecoder, been separated into individual macroinstructions. However, teen configuous bytes of instruction code, which have not 600. As illustrated, the instruction buffer 600 includes sixinformation 574 is a D-bit, which indicates whether data is 45 unsteered macroinstruction is stored in an instruction buffer both the full decoder 500 and the partial decoder 200. An a prefix decoding circuit that supplies prefix information to Reference is now made to FIG. 6, which is a diagram of Discussion of Prefix Decoding

within the prefix decoding circuit to be described. However, present, or none, then all prefix decoding can be handled 510-516. By reference to FIG. 2, it may be noted that each 65 many prefixes exist in each instruction. If only one prefix is control logic 610 also includes circuitry to determine how the decoder that receives the associated opcodes. The prefix present and if so, to direct the decoded prefix information to information is utilized to determine if a one-byte prefix is 604 are supplied to prefix control logic 610, in which the The byte marks 602 and the steering control information instruction is being provided to each of the decoders.

> the amount of microcode, thereby reducing cost and die 10 provided, which has an advantage of substantially reducing the scratch register via the micro-alias registers 562 is Thus, one generic rounding routine that indirectly accesses value that is to be rounded for the floating point routine. the address within the micro-alias register 562 to specify the the generic rounding routine may be called, which utilizes whose address is stored in the micro-alias register 562. Then, floating point value may be stored in a "scratch" register, floating point routine such as sine or cosine, a temporary

input into the alias multiplexer. field. To implement this, the alias bit can be used as a control micro-alias register indirectly specifies one macro-alias 30 are some instances in which the error can be corrected by used literally, but it is aliased, then the data within the aliased, then the data within the micro-alias register can be micro-alias field is aliased to a macro-alias register. If not alias bit for each field that indicates whether or not the accomplish this, the micro-alias register also includes an 25 field from the designated macro-alias register. In order to fore, the output Auop will receive the contents of its SRCI a macro-alias register 580, described subsequently. Therein the micro-alias registers 562 is aliased to the contents of SRCI in the micro-alias registers 562, while logical SRCI 20 multiplexers, the Cuop template from the Cuop coupled example, a Cuop may have its source aliased to use logical within themselves to provide two levels of indirection. For tional advantage, the micro-alias registers 562 can be aliased which can utilize the micro-alias register 562. As an addiumt that is capable of decoding the complicated instructions 15 only the full decoder 500 includes the microcode sequencing decoder 500, and not in the partial decoder 200, because The micro-alias register 562 is provided within the full

The output of the field extractor 570 includes macro-alias quently with reference to FIG. 6. provided from a prefix decoding circuit described subsetion 502 and the operands within it. The prefix vector 576 is allows prefixes that affect interpretation of the macroinstrucpretation of the opcodes and operands, if the instruction code may also receive a prefix vector 576 that can affect interindicates stack size. Furthermore, the field extractor 570 interpreted to be 32-bit or 16-bit, and the B-bit which cates how data is to be interpreted. An example of control responsive to the mode of operation of the processor indifrom the macroinstruction 502, control information 574 that, extractor 570 receives, in addition to opcodes and operands the opcodes and operands of a macroinstruction. The field 40 receives the entire eleven bytes that is the maximum size of instruction set is fifteen bytes, the field extractor 570 maximum length of a macroinstruction in the preferred any of the macroinstructions in the instruction set, and the field extractor 570. Because the full decoder 500 can decode 35 handling can only occur in the full decoder 500, because operands from the macroinstruction 502 are supplied to a Returning to the upper section of FIG. 5, the opcodes and

of macro-alias registers, although they may not be as large partial decoder 200 also includes a field extractor and a set 580, even though there are multiple (i.e., four) XLAT PLAs one field extractor 570 and one set of macro-alias registers that decoder. Particularly, the full decoder 500 includes only instruction in parallel with operation of the XLAT PLAs in sible for extracting all aliasable information from a macropartial decoder 200, includes a field extractor that is respon-Each decoder, whether it be the full decoder 500 or the described with reference to FIGS. 2 and 3.

structure of the macro-alias registers 580 is identical to that

	Docum ent	U	Title	Current
	ID		11616	OR
89	JP 08009 693 A	⊠	AC synchroniser secondary excitation control method for pumping electric generator - by continuing operation without stopping converter for excitation even when rotational speed of AC excitation synchronous machine and reversible pump	
- 1	JP		turbine increases due to load interruption Pseudo-random number sequence generator e.g. for spread spectrum application - uses pseudo noise mask conversion	
1	07297 685 A	⊠	mechanism with predetermined conversion matrix and calculates pseudo noise mask data and converts comparison value respectively	
91	EP 67999 0 A	☒	Digital computer providing forced sequential instruction execution - maintains process bit and memory attribute bit associated with shared memory page to order, store and load operation	
92	EP 67791 1 A	⊠	Islanding operation prevention appts. of dispersed power generation system for supplementing large scale power plant - comprises circuit breaker between dispersed generators and utility supply, power value detector, synchronous circuit, switch and controller	
93	JP 07253 143 A	☒	Gearchange mechanism for car - arranges synchronisation and engagement mechanism in extension of sun gear and transmits power from planet gear to upstream side of power transmission route	
94	JP 07184 268 A	×	Operation terminal for remote supervisory control system using small data memory - has time multiplexed terminals, which supply operation data in signal return period synchronised with transmission signal, and generates control data for load NoAbstract	
95	US 54249 69 A	⊠	Product sum operation unit for high speed processor - has latch loading instruction on timing signal with second latch loading instruction synchronously with second signal to give control signal to adder unit	
96	JP 07107 542 A	⊠	Synchronised down load system for vehicle telephone - has main memory which returns to synchronised operation after transfer of load module under asynchronous operation	
97	EP 64571 5 A	⊠	Interface system for coupling main processor to bus controller - accepts processor synchronised program input-output operations and asynchronously manages execution of program I/O within I/O system	-
98	JP 07039 161 A	⊠	Synchronised rectifier type switching power supply - uses main switching element in transformer primary MOSFET rectifier elements switched by bipolar transistors on secondary side and synchronises operation of switching and rectifier	
99	RU 20164 62 C	⊠	Synchronising a static frequency converter and AC mains - is by formation of a supplementary signal coinciding in frequency and phase with the output voltage of the static converter	
100	EP 60183 1 A	⊠	Electrical detonator load groups activation system for quarry blasting - has slave auxiliary control units for generating local control signals from master control signals, for initiating operation of electrical delay devices	
101	US 52671 20 A	×	Electromechanical relay control device for domestic appliance - operates relay to supply or remove power from load to preselected interval in AC waveforms and prevents decreasing area of content	
102	KR 93053 81 B	⊠	Controlling parallel operation of inverter - generating instantaneous voltage control value synchronised by common carrier, and compensating difference between reference of load current and output current NoAbstract	
103	RD 34612 2 A	⊠	Handling of load and store multiple operations with source and sink general point register synchronising - turning on inhibit tag CTL trigger field if operation utilises more than two GPR(s), turning field off after completion, and accepting identification tags	
104	SU 17745 29 A	⊠	Electric arc welding and surfacing device - has comparator to synchronise operation of pulse shapers, and uses resistor to shunt thyristor switches forming initial current	

vector illustrated at 662 to the third decoder 130. multiplexer 660, which supplies a third selected prefix The prefix vectors 630 are also coupled to a third 16:1 second selected prefix vector 652 to a second decoder 120. second 16:1 multiplexer 650 that is coupled to supply a 110 (FIG. 1). The prefix vectors 630 are also coupled to a selected prefix vector illustrated as 642 to the first decoder first 16:1 multiplexer 640 that is coupled to supply a first

each of the decoders, and dependent upon the existence of in accordance with the byte marks that are being supplied to mation for the multiplexers 640, 650, and 660. Particularly, The prefix logic 610 is coupled to supply control infor-

instructions is loaded into the instruction buffer 600. From block of instruction code including variable length macromacroinstructions into Auops. Beginning in a box 700, a FIG. 7 is a flowchart that illustrates operations to decode Instruction Decoding 570 for a full decoder 500. extractor 250 for a partial decoder 200 and a field extractor prefix vectors 642, 652, and 662 are supplied to a field with that prefix byte. As discussed previously, the selected supplied to the decoder receiving the opcodes associated a single prefix byte, a prefix vector will be selected and

In parallel with steering as illustrated in the box 710, described in detail with reference to FIGS. 8, 9, 10A, 10B, Steering is performed by steering circuitry 101, to be that a separate macroinstruction is steered to each decoder.

to the field extractor in each decoder. It should be apparent -

opcodes and following bytes including operands are steered

opcodes are steered to the XLAT PLAs in each decoder, and

decoder 120, and the third decoder 130. In the box 710,

including, for example the first decoder 110, the second

which macroinstructions are steered to each of the decoders,

the box 700, operation moves in parallel to a box 710, in

From the box 710, operation moves in parallel to the is hidden behind the steering operations in the box 710. penalty. In other words, the time required for prefix decoding the prefix can be decoded into a prefix vector without a clock 710. Therefore, if there is no more than one prefix byte, then clock cycle as steering to the decoders illustrated in a box and the steering in the box 724 can be performed in the same illustrated in FIG. 7 is that prefix decoding in the box 720 neld extractor for each decoder. An advantage of the system each field extractor. As discussed previously, there is one may be selected and steered, as illustrated in a box 724, to as if it were a prefix. Subsequently, a decoded prefix vector operation moves to a box 720, in which each byte is decoded

box 50 are written into the output queue 140. Subsequently, as illustrated in a box 760, the Auops from the alias registers, as illustrated in a box 750, to create Auops. with information in the macro-alias registers and/or micro-From the boxes 734 and 744, the Cuops are combined 744, macro-alias data is stored in the macro-alias registers. each macroinstruction. Subsequently, as illustrated in a box corresponding macroinstructions, to extract alias data from associated with opcodes and the following bytes of the supplied to field extractors. The selected prefix vectors are box 710 and the selected prefix vectors from the box 724 are opcodes and following bytes including operands from the Cuops are stored in Cuop registers. In the box 740, the Subsequently, operation moves to a box 734 in which the macroinstructions are translated into a plurality of Cuops. to the XLAT PLAs in their respective decoders in which the boxes 730 and 740. In the box 730, the opcodes are supplied

diagram of circuity for retrieving macroinstructions and

Reference is now made to FIG. 8, which is a block

decoders. Particularly, the prefix vector 630 is coupled to a at 630, are supplied to multiplexers that are coupled to the Each of the prefix vectors 622a-p, illustrated collectively 65 Instruction Steering

prefix vector. is determined by the needs of the circuitry receiving the the bits are fully decoded, and which are partially decoded, some of the bits may not be completely decoded. Which of indicate whether the operand size is 16- or 32-bits. However, 60 address size is 16- or 32-bits, and another bit position may one bit position in the prefix vector may indicate whether the indicate the existence of certain prefix bytes. For example, presence of certain prefix types and is directly usable to Each prefix vector 622a-p includes bits indicating the 55

is not available in the 16-byte instruction buffer 600. because, if it is a prefix byte, the remainder of the instruction There is little advantage in decoding the sixteenth byte rather than sixteen prefix decoders 620a-p are implemented. turns out to be true. In the preferred embodiment, fifteen, 50 availability of a prefix vector if the assumption of one prefix decoding of all prefix bytes advantageously ensures the which supplies a sixteenth prefix vector 622p. Parallel forth, up to and including the sixteenth prefix decoder 620p provides a second prefix vector as illustrated at 622b, and so 45 vector as illustrated at 622a, the second prefix decoder 620b Specifically, a first prefix decoder 620a supplies a first prefix as if it were the first and only prefix of an instruction. 620p. Within each prefix decoder 620a-p, a byte is decoded which is supplied in parallel to a sixteenth prefix decoder 40 forth for each byte up to and including a sixteenth byte supplied in parallel to a second prefix decoder 620b, and so supplied to a first prefix decoder 620a, a second byte is coupled to a prefix decoder 620. Specifically, a first byte is

Each byte from the unsteered instruction buffer 600 is 35 including instances where only one prefix is present tions, and decodes all in a serial fashion, one per clock, the PentiumTM processor treats prefixes as separate instrucat a time, until the entire prefix is decoded. In comparison, over, and sequentially decodes each prefix, one prefix byte 30 more prefixes. In such an instance, a state machine takes circuit includes circuitry to detect the presence of two or while still being a valid instruction. The prefix decoding unlikely, that an instruction has up to fourteen prefix bytes decoding more than one prefix. It is possible, although 25 it reaches a full decoder 500 that has the capability of the lowest available decoder during subsequent clocks, until quent operations based on that instruction, and resteer it to will invalidate the decoding of that instruction and subsehas more than one prefix byte, then the steering mechanism 20 matriction were to be aftered to a partial decoder 200 that can handle the rare instance of multiple prefix bytes. If an one prefix byte per macroinstruction. The full decoder 500

As implemented, the partial decoder 200 can handle only turns out that instruction does have only one prefix byte. byte per macroinstruction is particularly advantageous if it to which they are prepended. The assumption of one prefix instruction, but are treated as another byte of the instruction ferred configuration, prefixes are not considered a separate macroinstruction without a clock cycle penalty. In the preand the partial decoder 200 can handle one prefix byte per In the preferred embodiment, both the full decoder 500

	_			
	Docum ent ID	Ū	Title	Current
105	SU 17634 92 A	Ø	Converter tuyeres carriage lifter - with provision for synchronous functioning of both clamps independently giving improved reliability and ease of servicing	
106	JP 04252 631 A	Ø	Synchronisation in switching from one data communication system to other system - loads bus control data for buffer on one system in operation to other system NoAbstract	
107	EP 46855 3 A	Ø	Instrumentation system with down-loading and synchronisation - down loads instructions to instrumentation units and then synchronises in operation by control lines	
108	US 50559 62 A	×	Circuit for sync. relay with power to appliance - has micro-controller between power source and relay to ensure contacts are opened or closed at selected point on power line waveform	
109	DE 39424 97 A	Ø	Hydraulic load lifting device - has telescopic hydraulic cylinders designed so that inner and outer parts function simultaneously	
110	JP 01318 595 A	⊠	AC excitation synchronous machine operation - adjusts slip frequency of sync machine by load increase-reduction command power NoAbstract Dwg 1/3	
111	JP 01318 594 A	Ø	AC excitation synchronous machine operation method - supplies load increase-reduction command power to stabilise system frequency NoAbstract Dwg 3/3	
112	GB 22163 06 A	⊠	Multi-processor load and synchronise computer architecture - has semaphore instruction that can be used in parallel processing environment	
113	EP 40626 8 B	⊠	Integrated warehousing system for storing and retrieving goods - has containers delivered from storage carousel brought to temporary queue and held until operator is prepared to work	
114	JP 01145 755 A	Ø	Car audio data transmission - loading voltage sync. instruction pulse on control line, and sending 8 bit data via microcomputer to processor memory NoAbstract DWg 1/7	
115	EP 31038 7 A	×	Transmission control apparatus for vehicle - has electric motor actuator controlled by device when shifting gears based on stored stroke value	
116	EP 30975 3 A	×	Inductive load monitoring system e.g. for fuel injection valve - evaluates current through series measuring resistance in synch. with operation of load current switch	
117	EP 29789 5 A	×	Main memory updating in multiprocessor system - provides read, mask, add, quad word, interlocked instruction to synchronise loading or augmenting of data elements in main memory	
118	US 49655 00 A	⊠	Industrial robot control appts has robot operated in shared manner depending on task that is loaded so that automatically works under optimum load condition	
119	EP 26758 3 A	☒	Turbine helper drive appts. e.g. for steam turbine - has power converter controlling AC motor for generating either positive or negative torque to turbine	
120	GB 21966 03 A	☒	Movable sheerleg for barge - has pulley at top of sheerleg with cable which extends from winch	
121	US 47315 51 A	☒	Timed auxiliary power adaptor e.g. for automatic street luminaire - has programmable delay timer synchronised with commencement of main load operation	
122	SU 13700 61 A	⊠	Fork lift truck load remover - has load-item pusher cylinder mounted on truck carriages	
123	JP 63016 028 A	☒	Gas drier - has towers switched between dehumidification and regeneration by tower switch controller	
124	US 46879 46 A	⊠	Steam generator controller for electric power generator - has digital computer to generate signals to control steam flow during start up, synchronisation and load operation	
125	DD 24617 8 A	☒	Hydraulic drive for walking conveyor - has several hydraulic motors interconnected by pressure difference valves to allow synchronous operation and no-load operation of individual	
126	SU 12953 79 A	☒	Pulse type DC voltage stabiliser - has outputs of comparators connected to C-inputs or of first and second D-flip=flops	

ignored. by a decoder, then the additional instruction bytes are length of any instruction is less than the full amount received instruction that can be decoded by the third decoder. If the receives eight bytes, which is the maximum size of an the second decoder 120. Similarly, the third decoder 130 maximum size of an instruction that can be decoded within second decoder 120 receives eight bytes, which is the macroinstruction are simply ignored in the decoder 110. The bytes, then the instruction bytes following the end of the case, the actual length of the instruction is less than eleven prefixes) in any macroinstruction. If, as may often be the decoder 110 is equal to the maximum number of bytes (less number of bytes is predetermined for each of the decoders 110, 120, and 130. The eleven bytes received by the first

aligned with an instruction. assumed that the first byte of the instruction buffer 840 is opcode byte mark vector previously described. It is also vectors, including the last byte mark vector and the first of instruction code stored therein and associated byte mark assumption is made that the instruction buffer has 16-bytes procedure starts beginning in a block 900. To start, an which may be either a prefix byte or an opcode byte. The buffer 840 includes the first byte of a macroinstruction, aligned on an instruction boundary when the first byte of the on an instruction boundary. Particularly, the buffer 840 is instruction block within the instruction buffer 840 is sligned code from a 32-bit unaligned byte, so that the 16-byte illustrating operations to align a 16-byte block of instruction Reference is now made to FIG. 9, which is a flow chart

instructions within the instruction buffer 840 have been instruction buffer 840 have been consumed; i.e., all complete 938 which indicates that all complete instructions in the 934. Exiting from the box 934, operation moves to the box 10B, and 10C. The prefix vectors from the box 930 are be described in more detail with reference to FIGS. 10A, procedure for steering instructions is performed, which will In parallel, operation moves to the box 934 in which the with reference to FIG. 6, to supply prefix vectors therefrom. buffer 840 is applied to the prefix decoder described in detail begins in a box 930 in which the entire 16-byte instruction In the second path from the start box 900, operation next 16 bytes are available within that 32-byte buffer 824. 32-byte buffer 824. Finally, as indicated in a block 918, the first byte. These 16 bytes must all be available within the tion code including the next 16 bytes indicated by the known 916 in which the IFU 810 begins operations to fetch instructhat address. Subsequently, operation moves to the block the IFU 810 to request the next sixteen bytes beginning at to a box 914 in which the first byte address is transmitted to the instruction buffer 840 is known. Next, operation moves first byte of the next instruction required to be stored within front of the vector. Therefore, as indicated in a block 912, the which provides a time advantage over scanning from the the end of the last complete instruction in the buffer 840, 910, the last byte mark vector is scanned backwards to locate along two paths. In the first path, beginning with a block From the start block 900, operation proceeds in parallel

required by operations beginning in the block 912), the instruction buffer 840 is aligned with the first byte mark (as loaded with the next 16 bytes of instruction code and byte moves to the box 954 in which the instruction buffer 840 is the box 918. If both operations are complete, then operation A decision box 950 follows operations in the box 938 and

> described in more detail. 10C, operation of the circuitry shown in FIG. 8 will be with reference to the flow charts of FIGS. 9, 10A, 10B, and steering them to each of the three decoders. Subsequently,

INSCIOUNSITISCHOIL. whether or not its associated byte is the last byte of a supplies a last byte vector in which each bit indicates its associated byte is a first opcode byte. The ILD 814 also first opcode vector in which each bit indicates whether or not macroinstruction within the block. The ILD 814 supplies a 15 determines the first opcode byte and the last byte of each examines each block of instruction code supplied to it, and referred to as an "ILD" or a "predecoder". The ILD 814 ("IFU") that includes an instruction length decoder 814, and the memory 800 are coupled to an instruction fetch unit 10 with any conventional cache storage routine. The cache 804 stores instructions in a plurality of eache lines, in accordance The memory 800 is coupled to an instruction cache 804 that computer memory element, is provided to store instructions. A memory 800, which may comprise any conventional

marked in a last byte mark vector. byte mark vector, and the last byte of a macroinstruction is 30 opcode byte of each instruction is marked in a first opcode that define each byte in the cache line. Specifically, the first 814, which analyzes the code, and creates byte mark vectors code. After it is fetched, each cache line is applied to the ILD lines, which in the preferred embodiment, is in 16 bytes of 25 tion is normally fetched from the eache 804 in units of eache 800 in which the instruction is to be fetched. Each instrucfetch unit 810, in order to provide an address in the memory An instruction pointer 820 is coupled to the instruction

instruction code, the location between adjoining macroinstructions in the first byte lies on an instruction boundary, which is defined as will be described, the 16-byte window is selected so that its a 16-byte window from the 32-bytes in the buffer 824. As rotator 830. The rotator 830 includes circuitry for selecting 40 32-bytes of code and byte mark vectors are applied to a tions within a cache line is arbitrary. From the buffer 824, the instruction. In other words, the position of the macroinstrucbyte of a cache line may correspond to a middle byte of an may not be aligned with an instruction. For example, the first 35 with eache lines. It may be appreciated that each eache line tors are stored in a buffer 824 within the IFU 810, aligned The instructions from the eache 804 and associated vec-

tions of Variable Length" by Gupta et al., filed of even date 50 a Bypass Bus and Rotator for a Decoder of Multiple Instruc-Ser. No. 08/205,022 entitled "Dual Instruction Buffers with more detail in a commonly assigned, copending application The rotator 830 and associated circuitry is described in

10B, and 10C. ticularly with reference to the flow charts of FIGS. 9, 10A, that includes circuitry to be described in more detail par- 55 utilized by the steering and decoding procedure in the box to supply the byte mark vectors to a steering control unit 844 instruction buffer 840. The instruction buffer 840 is coupled The 16-byte window from the rotator 830 is applied to an

supplies it to the third decoder 130. In this embodiment, the to the second decoder 120, and takes a third eight bytes and the first decoder 110, it selects eight bytes and supplies them 65 marks. Because the requested information loaded into the steering circuit 848 selects eleven bytes and applies them to 840 and supply them to the decoders. Particularly, the response thereto, to select bytes from the instruction buffer instructions from the steering control unit 844, and in The steering circuit 848 includes circuitry to receive control 60 decoded. cucint 848 that selects blocks of instruction bytes therefrom The instruction buffer 840 is also coupled to a steering

1	Docum	-		Current
	ent	U	Title	OR
	ID U		Self loading vehicle - has pivoting jibs for load handling	
	2848	\boxtimes	and additional spring damped levers for control of load	
6	50 A	_	oscillation	
)E		Gear changing method for automatic gearbox - using double	İ
	34476	\boxtimes	clutch operation taking loading on synchronising gearing into	<u> </u>
	10 A		account	
	SU	_	Alternator reactive load distribution and compensation appts.	
1	12200 6 A	\bowtie	- has self-adjusting system with reactive power sensor in	
	IP		series with memory-comparator and integrating unit	
1 -	1049	Ø	Current instruction generator for sync. motor - corrects load angle instruction to achieve high-precision load angle	
	81 A		control and high response torque control NoAbstract Dwg 1/4	
5	U		Control system for stepper motor - with phases divided into	
1	2118	\boxtimes	two groups, control pulse being applied to two phases, only	
4	14 A	_	one being connected	
J	ΙP	***************************************	Protective-relay for synchronous power generator - determines	
	1010	\boxtimes	plane-coordinates of active and reactive powers in load	
	12 A		operation by judging in-out sides NoAbstract Dwg 11/16	
	U		Crane load suspension with crab and pulley ropes - has	
	2030	\boxtimes	additional large dia. pulleys coaxial with main crossbar	
<u>_</u>	10 A		pulleys and specified rope path for rope break protection	
	JS 15368	(5)	Machine operation monitor to prevent tool breakage - responds	
I	19 A	\boxtimes	to synchronisation signals to maintain correspondence between load level samples from successive cycles	
	JS		Synchronisation between gas turbine and power system - has	
1 -	5361	\boxtimes	computer program and external logic circuitry operating in	
	6 A		control loop	
	Œ		Single phase induction motor with AC electromagnetic stator -	
136 3	34203	\boxtimes	has inner freely rotting permanent magnet synchronous rotor	72
7	70 A		and outer load connected asynchronous cage rotor	··
1-	SU		Loading device for conveyor load carrier - has fixed cam	_
	1569	\boxtimes	acting with roller on scoop reloader which is mounted on	.د
	38 A		running screw of drive mechanism	
1-	SU		Chainless haulage for face machines - has rotating housings	
,	1557 18 A	\boxtimes	of drive sprockets connected together by pin and bush	
	JS		Snubber circuit for uninterruptable power supply - has MOSFET	·
1 -	4880	\boxtimes	whose gate electrode is connected to transformer receiving	
	8 A		control signals to dissipate current transient	
Ë	EP		Synchronous motor having pole outer surface length -	·
140 1	2896	\boxtimes	determined w.r.t. slots per pole per phase ratio and slot	
1	L A		pitch	
1-	ÞΕ		Load switching between mains and back-up supply - has	<u> </u>
	2469	\boxtimes	synchronised operation of switches for mains and back-up	
	80 A		supply	
	3B	~	Time switch for electricity meter - has synchronous operation	
	21304 19 A	\boxtimes	with two tariff supply to control load, e.g. water heater, and use off-peak power	
		***************************************	Multiprocessor control synchronisation and instruction	ļ
	EP	_	down-loading - provides input-output processor with immediate	
	10385	\boxtimes	access to timing and sync. signals for prompt response to	
1	L A		control of master processor	
Ï	Œ	***************************************	Synchronisation control for load raising elements - uses	
144 3	3036	\boxtimes	microprocessor monitoring effected lift and controlling	
)7 A		operation of individual raising elements	
_	JS	_	Gas turbine electric power plant control system - uses	
	3801	\boxtimes	programmed digital computer control system during sequenced	
	16 A		start=up, synchronising, load and shut=down operations	
	EP		Gear shift for vehicle - has main change speed gear with	
	73280	\boxtimes	simultaneously actuated hydraulic clutch	
P	SU			
	8498	\boxtimes	Wheeled loader - has synchronised bucket and chute with	
	7 A		adjustment for increased output	
	DE DE	***************************************	Intermittent driving device for e.g. manufacturing machines -	
	2117	\boxtimes	has computer to control speed of second load of two-load	
- 1-	7 C	ات	system according to speed and position of first load	1

decoder 130. instruction in the instruction buffer 840 is steered to the third to the second decoder 120, and any subsequent undecoded the first decoder 110, the former third instruction is steered therein are repeated to steer the former second instruction to 1000 which is the start of the procedure. The operations the box 1072 which illustrates that operation returns to box 5 the second decoder 120. Subsequently, operation moves to be decoded, and the second instruction is not decodable by Therefore, to get to the box 1070, the first instruction must The operation box 1070 also is coupled to the box 1060. decodable, then operation moves to the operation box 1070.

instructions have been decoded. to box 1086, which shows that the first, second and third fore, from the boxes 1064, 1080, and 1082, operation moves which illustrates that the third instruction is decoded. Therethird decoder 130, then operation moves to the box 1082 the decision 1062, if the third instruction is decodable by the box 1080, a usable micro-operation will be provided. From illustrates that the second instruction is decoded. From the decoder 120, then operation moves to a block 1080 which that the second instruction is decodable by the second However, if from the decision box 1060, it is determined

840 have been consumed by the decoder and the next words, all complete instructions within the instruction buffer steering procedure is stopped and is now complete. In other operation moves to the box 1096 which indicates that the from the box 1092 all instructions have been decoded, then tion is repeated for all undecoded instructions. However, if which operation returns to the start, and the steering operabeen decoded. If not, then operation moves to a box 1094 in whether all instructions in the instruction buffer 840 have tion buffer 840. Particularly, the decision box 1092 asks when additional instructions must be supplied to the instrucmoves to a decision 1092, which is useful for determining valuable Cuops), as illustrated in a box 1086, then operation If all instructions have been decoded (each have provided streered to the second decoder 120 and the third decoder 130. coded instructions in the instruction buffer 840 are then instruction to the first decoder 110. Any subsequent undethen return to the start of the procedure, to steer the third operation moves to a box 1090, which shows that operations tion is not decodable by the third decoder 130. Subsequently, second instructions have been decoded, but the third instrucmoves to the box 1088, which illustrates that the first and However, if from the decision box 1062, the third instruc-

routines, recovery of decoder state will be necessary. For Operation then moves to the box 1105. For some assist issuing assist handling micro-operations from the MS unit. 1102, the assist routine begins executing. Execution includes such as faults or exceptions. Next, as illustrated in blocks after execution of a micro-operation. This includes errors in microcode as a result of an error that has been recognized block 1100, operation starts when an assist routine is called associated with macroinstruction restart. Beginning in a start chart of FIG. II also illustrates decoder state recovery illustrating assist handling including state recovery. The flow Reference is now made to FIG. II which is a flow chart

tion code is loaded into the instruction buffer 840 when the FIG. 9, which shows that another 16-byte block of instruc-

instruction buffer 840. Reference is again briefly made to

16-byte block of instruction code can be loaded into the

gnilbash isizeA

steering procedure is complete.

causing macroinstruction, then state recovery begins by

example, if the assist routine requires data from an error-

aligned with the first macroinstruction. instruction block within the instruction buffer 840 is now

steering instructions to the decoder. which together are a flow chart illustrating the procedure for Reference is now made to FIGS. 10A and 10B, and 10C

Simultaneously with steering the instruction code, the the third decoder 130, as illustrated in an operation 1024. at the first opcode byte of the third instruction is steered to the third decoder, the 8 bytes of instruction code beginning the first opcode byte of the second instruction. Similarly, for 20 are steered to the second decoder, the 8 bytes beginning at opcode byte. From the box 1012, 8 bytes of instruction code are steered to the first decoder, beginning at the located first moves to block 1020 in which 11 bytes of instruction code at the first opcode byte from the block 1010, operation locate the first opcode byte of a third instruction. Beginning 1014 in which the first opcode byte marks are scanned to instruction. Also in parallel, operation moves to a block marks are scanned to locate the first opcode byte of a second operation moves to block 1012 in which the first opcode byte locate the first opcode byte of a first instruction. In parallel, 1010, in which the first opcode byte marks are scanned to steering instructions begins. Operation moves to a block Beginning with a start block 1000, the procedure for

third decoder 130. tion, and then a box 1039 the prefix vector is supplied to the 35 vector is associated with a box 1038 with the third instruclarly, for the third decoder, from the box 1014 and a prefix prefix vector is supplied to the second decoder 120. Simiassociated with the second instruction, and in a box 1036 the tion moves to the box 1034 in which a prefix vector is 30 the first decoder 110. Similarly, from the block 1012, operain a block 1032, the associated prefix vector is supplied to tion, as illustrated in a box 1030. Subsequently, as illustrated appropriate prefix vector is associated with the first instrucprefixes are decoded (see box 930 of FIG. 9 and FIG. 6). The 25 tion is not decodable by the third decoder, then operation

decoding operation proceeds as described in detail previdecode the first instruction in multiple decode cycles. The 55 therefrom Subsequently, operations are performed to therein flushed to prevent micro-operations being issued the second and third decoders is stopped and the instructions to a block 1052 which indicates that instruction decoding in in one cycle, then operation moves from the decision 1050 so to respond. Therefore, if the first instruction is not decodable illegal opcode, which requires at least two cycles in which which to perform its operations. Another example is an into microcode, which requires at least two clock cycles in include, for example, an instruction that requires an entry 45 the first instruction are not decodable in one decode cycle decodable in one decode cycle. Macroinstructions for which 1050 determines whether or not that first instruction is decoder 110, then the decision defined in the decision box has been steered from the boxes 1020 and 1032 to the first 40 happens in subsequent operations. When the first instruction the ability to resteer instructions, dependent upon what One feature of the steering mechanism described herein is

From the decision 1060, if the second instruction is not the first instruction is decoded as illustrated in a box 1064. decodable by the third decoder 130. Furthermore, in parallel, decision 1062 which queries whether the third instruction is instruction is decodable by the second decoder 120, and a parallel to a decision 1060 which queries whether the second that instance, operation moves from the decision 1050 in third decoder 130 can provide useful micro-operations. In 60 decodable in one cycle, then the second decoder 120 and However, if from the box 1050, the first instruction is

	Docum			Curren
	ent ID	U	Title	OR
	EP		Pipelined micro-instruction generator for digital processor -	
	25087		has pipeline register responsive to branch instruction to	
	25067 A	\boxtimes	prevent loading for execution of aborted sequential	1
	A		instruction	
	SU		Two synchronised cylinders for load lifting device - has	1
	79392	Ø	hydraulically controlled two-position, two-line distributor,	
	4 B		with hydraulic lines connected to cylinders chambers	
	SU		Load-lifting grab for traversing crane - has operations	
	77925	Ø	synchroniser as two rollers and two intersecting rods with	
	2 B		their ends attached to rollers	
			<u> </u>	ļ
	SU	5 2	Steam turbine regulator system with steam bleeding - has	
	77535	\boxtimes	synchroniser slide valve linked in series to speed regulator	
	2 B		slide valve for faster operation	
	SU		Observation device with pulse phase regulator - has phase	
1	76599	\boxtimes	comparator to synchronise synchronisation generator with	
	6 B		mains frequency	
	SU		Two hydraulic cylinder rods synchroniser - has distributors	1
.54	75412	\boxtimes	in pressure lines which connect cylinder piston spaces to	
	8 B		drains and include additional manually closed distributors	
	DE		Voltage regulation system with load distribution in parallel	
	29047	Ø	inverters - uses derived control parameter by comparison with	
	86 B		reference and impedance	
				ļ
	DE		Synchromesh gearbox for road vehicle - has supporting	
	29459	\boxtimes	elements inside holes for synchronising cone springs to	
	67 A		prevent them distorting	
	DE	_	Synchromesh motor vehicle gearbox - has holes for	
	29459	\boxtimes	synchronising cone springs passing through deeper part of hub	
]	66 A		to provide greater support	:
	SU		Transformer load antiparallel thyristors control appts has	†
58	73152	\boxtimes	current sensor in magnetic memory to operate trigger so that	
	3 B	_	thyristor is turned on by synchronising signal	
	US		Monolithic solid state power controller - detects zero	1
	41744	Ø	voltage crossing in source voltage and pre-selects mode	
	96 A		synchronisation	
	SU			.
			Single-phase thyristor inverter control - by returning	
	65757	\boxtimes	reactive load current with advance w.r.t. high voltage supply	
	2 A		by thyristor reset angle	<u> </u>
	su		Ship shaft generators parallel operation switching - by	
61	61999	\boxtimes	distributing electrical power to mechanical load, actuating	
	4 A		decoupling clutch and equalising fuel and electrical power	١.
	• ••		supplies	
	NL		Lift truck independent transmissions - is for load carrier	1
62	77051	\boxtimes	rotation and translation coupled to permit phase synchronised	-
	99 A		operation	
	บร		Electric power plant operating system - has hybrid subsystem	<u> </u>
	40314	\boxtimes	including computer and external phase detection circuitry for	
	07 A		automatic synchronization	
				ļ
	US	(2)	Gas turbine power plant control - includes temp. reset	
	40193	\boxtimes	starting and ignition pressure control systems with digital	
	15 A		function capability	ļ
	SU	_	Single phase contact welder - with automatic phasing of	
	54161	\boxtimes	current switching by thyristors for stabilisation of loading	
	6 A		bulleton surrenting by environments for scapiffication of fodding	
	US		Real time control for digital computer - uses real time clock	1
	39991	\boxtimes	placed in central processor and modifiable with memory	
	69 A		reference instructions	
	SU		Mine heading machine tooling - has vee rollers on shafts	<u> </u>
	51856	Ø	linked through gear and centre shaft to main cutter drum	
	6 A		drive	
			MITIAE	ļ
	US	.	System for operating steam turbine - has digital computer	
	39596	\boxtimes	control with improved automatic startup control features	
	35 A			
	DE		Optional operation of electrical loads - selector circuit	1
.69	25435	\boxtimes	produces pulse of certain length synchronously with hand	
	86 A	_	switch operation	
	SU			
	49065	⊠	Circular loaf slicer - with rotary table linked by shaft and	
			lever to overrun clutch	1

method is particularly advantageous if, for example, the third and fourth Cuops will be executed during a restart, but the first and second Cuops will not. Therefore, the described method is useful for restarting at any Cuop in the flow from a macroinstruction.

If from the decision 1130, restart begins at one of the Cuops within the MS unit 534, then operation moves from the decision 1130 to the block 1140 in which Cuops are supplied from the MS unit 534 to restart the assisted

macronnstruction.

Reference is now made to HG. I.S. which illustrates operations to restore the macro-alias data. The operation illustrated in HG. I.2 is termed "restore MAR". Operation begins in a box I.200 which indicates the start of the restore MAR operation to restore macro-alias data in the macro-alias registers, including restoring the first Cuops that can be energisters, including restoring the first Cuops that can be respected in the XI AT PI AS

generated in the XLAT PLAs.

Following start, operation moves to a box 1210 in which a signal is supplied from the MS unit 534 to fetch the designated macroinstruction. This signal may include a LOADMAR ("Load Macro-Alias Register") signal. In the event an assist is in process, the designated macroinstruction will be the macroinstruction that originated the micro-operation sequence for which the assist is required. If the restore MAR operation is occurring as a result of a misprecistor and MAR operation is occurring as a result of a mispredicted micro-branch, then the designated macroinstruction is dicted micro-branch, then the designated macroinstruction is the macroinstruction that supplied the micro-operation

sequence in which the mispredicted branch occurred. From the box 1210, operation moves to the box 1220 in which the designated macroinstruction is supplied to the decoder 500. In the preferred implementation, the decoder in which this operation can be performed is the full decoder more than the full decoder microcode sequencing unit.

From the box 1220, operation moves in parallel to the box 1230 in which the opcodes from designated macroinstruction are decoded in the XLAT PLAs and then, as illustrated in a box 1232, the Cuops resulting therefrom are supplied to the Cuops register with their valid bit unasserted. If a valid bit is unasserted (i.e., marked "invalid"), the Cuops will not be issued into subsequent units.

From the box 1220, operation also moves to a box 1240 in which fields are extracted within the field extracted 570, and then, as illustrated in a box 1242 macro-alias data 578 is supplied to macro-alias register.

After the above operations have been completed, the restore MAR operations is complete as illustrated in a box 1250. As a result of the restored, and the Cuops are also restored so that the initial Cuops from the XLAT PLAs are stored therein, but with their valid bits remaining unasserted stored therein, but with their valid bits remaining unasserted (i.e., marked invalid).

Reference is now made to FIG. 13, which is a flow chart that illustrates operations to restore the micro-alias register.

This operation is termed "restore UAR". The restore UAR operation begins in a box 300, which indicates that the micro-alias data is to be restored in a micro-alias register.

This routine is particularly useful for writing generic assist of fax-en microcode routines. For example, a routine that or fax-up microcode routines. For example, a routine that a fax-en microcode routines. For example, a routine that a fax-en microcode routines. For example, a routine that a fax-en micro-alias data from a size registers from the problematic Cuop and reference its alias registers from the problematic Cuop and reference its sources and destination fields to repair the result. The restore sources and destination fields to repair the result. The restore unicro-operation is useful to restore micro-alias data from any unicro-operation that can then be referenced in generic routines that save microcode space.

From the operation 1300 to start the restore UAR routine, operation moves to the box 1310, in which microcode is

if not required by the assist). beginning of the assist handling routine (or not done at all, occur before such instructions, and possibly as early as the lliw 2011 xod adt ni noisraqo AAM aroteat ot enoisraqo data is needed by the assist handling routine, then the 15 of the assist handling routine. However, if the macro-alias restore MAR in the box 1105 can be delayed until the end use of the macro-alias data until subsequent restart, then the For example, if the assist handling routine does not require dling routine at a location in which can be properly utilized. 10 the restore MAR operation is inserted into the assist hansuch as restarted code, as will be described. For this purpose, sequent code in the assist handling routine or other code, assisted macroinstruction so that it can be utilized by subthe macro-alias registers with fields extracted from the Briefly, the effect of the restore MAR operation is to reload "restore MAR", is discussed with reference to FIG. 12. first Cuops to the Cuop registers. This operation, termed restoring macro-alias data to macro-alias registers and the

Additional state recovery may also be necessary to restore 30 the state of the micro-alias registers. For example, operations to recover decoder state may be required if a micro-alias operation subsequent to the restart target uses micro-alias data from previous micro-operations. If necessary for use by subsequent code, the restore UAR routine, illustrated in FIG. 32 subsequent code, the restore thereto, is called to restore the contents of micro-alias data for use by subsequent micro-operations.

After the macro-alias data and the micro-alias data has been restored, as necessary, in the box 1105, then control is 30 transferred back to the MS unit as illustrated in a box 1106, to continue the assist handling routine and, in some instances, to restart, as will be described.

After the assist handling sequence has performed its operations, it may be advantageous to restart the assisted 35 macroinstruction. Restart is then directed by the last step of the assist handling routine, which will then transfer control to the microcode beginning at the restart target.

The restart decision is illustrated in a box 1110. If no further restart is desired at the end of the assist handling 40 sequence, then operation moves to the box 1112 which indicates that the assist handling routine is exited and therefore operations continue wherever indicated by the assist handling sequence.

If restart is desired from the decision box 1110, then 45 operation moves to the box 1120 which illustrates that the decoder state has been recovered in the box 1105. However, if additional state recovery were to be required, then the sppropriate operations, discussed above, could be performed.

The restart target can be at any micro-operation within the micro-operation flow, which may be one of the first several Cuops issued from the XLAT PLAs, or it may be the microcode within the MS unit 534. From the box 1L30 branches the state has been recovered, a decision box 1L30 branches 55 depending upon whether restart is desired at one of the Cuops in the Cuop register, or from the MS unit 534.

If restart is to begin at one of the Cuops supplied from the XLAT PLAs 510-516 in the Cuop registers, then operation moves to a box 1132 in which the MS unit 534 indicates the position of the first Cuop that will eventually be issued from the decoder. The decoder then asserts the valid bit for the target Cuop and subsequent Cuops in the Cuop register, which then allows these Cuops to be issued to restart the assisted macroinstruction.

If necessary, the MS unit 534 will supply subsequent micro-operations to continue the micro-operation flow. This

	Docum ent ID	ט	Title	Current OR
1	US 39241 41 A	\boxtimes	Gas turbine power plant control apparatus - system has monitoring and protective sub systems functioning through all operational stages	
	DE 21040 76 B	\boxtimes	Step transformer thyristor load switching circuit - has logic to synchronise antiparallel thyristor ignition to series and parallel circuit breakers operations	
	DE 21040 75 B		Step transformers thyristor load switching circuit - has logic to synchronise antiparallel thyristor ignition to series and parallel circuit breaker operations	

the steps of: 3. A method of decoding a macroinstruction, comprising

operations including a source control micro-operation micro-operation flow, the plurality of control microinto a plurality of control micro-operations in a control a) decoding at least one opcode of the macroinstruction

micro-operation; b) selecting at least one field from the source control suq s snpsedneur courtoj micro-operation;

micro-alias data, wherein the micro-alias data is indemicro-operation in a micro-alias storage device as c) storing the at least one field from the source control

the subsequent control micro-operation with the microd) assembling an aliased micro-operation by combining beuqeur of any operand of the macroinstruction;

array to provide the source control micro-operation; i) supplying the opcode to a translate programmable logic 4. The method of claim 3 wherein step a) comprises:

alias data.

that the entry point logic device supplies an entry point ii) supplying the opcode to an entry point logic device so

operation flow, the microcode control micro-operations code control micro-operations in the control microcode sequencing unit to generate a plurality of microiii) supplying the entry point address signal to a microaddress signal; and

including the subsequent control micro-operation.

i) supplying the opcode to an entry point logic device so 5. The method of claim 3 wherein step a) comprises:

address signal; and that the entry point logic device supplies an entry point

the source control micro-operation and the subsequent flow, the microcode control micro-operations including control micro-operations in the control micro-operation sequencing unit to generate a plurality of microcode ii) supplying the entry point address signal to a microcode

for use by a subsequent second Cuop in the Cuop flow, said from a first control micro-operation (Cuop) of a Cuop flow 6. A computer processing method for storing information control micro-operation.

logic array (XLAT PLA) in response to a macroinstruca) supplying the first Cuop from a translate programmable method comprising the steps of:

a) to a field extractor which extracts macro-data fields b) applying the macroinstruction in parallel with the step tion supplied to the XLAT PLA;

register, wherein the micro-alias data is independent of mined fields from the first Cuop in a micro-alias c) storing micro-alias data corresponding to predeter-

d) supplying the first Cuop and said macro-alias data to an any operand of the macromstruction;

assemble a first output micro-operation (Auop); and alias multiplexer to resolve aliases in the first Cuop to

the alias multiplexer to resolve aliases in the second es supplying the second Cuop and the micro-alias data to

if a restart is required at an actual micro-target address, then 7. The computer processing method of claim 6, wherein, Cnop to assemble a second Auop.

target microcode flow having a first microcode Cuop beginning of a micro-target microcode flow, the microa) transferring control to the micro-target address at the performing the following steps:

and subsequent microcode Cuops, wherein at least one

micro-alias register. Then, the restore UAR operation is micro-slias data from that micro-operation is saved into the Then, operation moves to the box 1330 in which the generated by the restore MAR operation discussed above. XLAT PLAs. In the latter case, the micro-operations are be generated by microcode or it can be generated in the decoder but not issued therefrom. The micro-operation can the box 1320, the micro-operation is generated by the to be stored in the micro-alias register. Subsequently, from retrieved that generated the micro-operation having the data

complete, and the micro-alias data is restored for use by

Reference is now made to FIG. 14 which illustrates subsequent micro-operations.

herein, a micro-branch is a branch made by microcode. micro-branch target. The operations illustrated herein typioperations to restart a micro-operation flow at an actual

indicates that the control goes to the target address at the actual target. Operation then moves to the box 1410 which 20 micro-branch target is known and restart is desired at that Operation begins in a box 1400 in which an actual

by restoring the macro-alias registers if necessary and by first instructions at the target microcode flow restore the state to FIG. 12. If either macro-alias data or micro-alias data or both may be used by subsequent micro-operations, then the restore the macro-alias registers, as described with reference Subsequent operations illustrated in boxes 1420 and 1430 beginning of the target microcode flow.

From the box 1430, operation then moves to execute the subsequent micro-operations. restoring the micro-alias registers if necessary for use by

slias data to assemble a complete Auop. then the subsequent micro-operations may utilize the micromicro-alias registers have been restored in the box 1430, micro-operations, as illustrated in a box 1440. Typically, if subsequent microcode in the target flow and subsequent

I. A method for assembling a micro-operation in a What is claimed is:

a decoding a macroinstruction into a plurality of inter- 40 decoder, comprising the steps of:

nncro-operation; diste micro-operation and a subsequent intermediate mediate micro-operations including a source interme-

tion is independent of any operand of the macroinstrucselected field of the source intermediate micro-operamicro-operation in a micro-alias register, wherein the 45 b. storing a selected field of the source intermediate

c. assembling an aliased micro-operation from the subse-

field stored in the micro-alias register. quent intermediate micro-operation and the selected 50

the steps of: 2. A method of decoding a macroinstruction, comprising

micro-operation; diate micro-operation and a subsequent intermediate mediate micro-operations including a source intermea. decoding the macroinstruction into a plurality of inter-

macro-alias register as macro-alias data; b. storing a selected field of the macroinstruction in a

data, wherein the micro-alias data is independent of any micro-operation in a micro-alias register as micro-alias c. storing a selected field of the source intermediate

sequent intermediate micro-operation and both the d. assembling an aliased micro-operation from the sub- 65

operand of the macroinstruction;

micro-alias data and the macro-alias data.

	Docum ent ID	σ	Title	Current
1	JP 20031 09381 A		BOOSTING POWER SOURCE GENERATING CIRCUIT	
2	JP 20031 02194 A	Ø	PRIVE DEVICE FOR BRUSHLESS MOTOR	
3	JP 20030 87995 A	⊠	AUXILIARY POWER SUPPLY DEVICE	
4	JP 20030 70293 A	⊠	CONTROLLER OF PERMANENT MAGNET SYNCHRONOUS MACHINE	
5	JP 20030 61347 A	×	SWITCHING POWER SUPPLY	
6	JP 20022 84363 A	⊠	PAPER FEEDING DEVICE AND IMAGE FORMING DEVICE	
7	JP 20022 23434 A	×	VIDEO MONITORING SYSTEM AND VIDEO MONITORING METHOD	F.
8	20022 09344 A	09344 MONCONTACT POWER TRANSMISSION APPARATUS		
9	JP 20021 56037 A	Ø	TRANSMISSION MODE SWITCHING CONTROL DEVICE OF TRANSMISSION WITH INFINITE CHANGE GEAR RATIO	
10	JP 20020 13427 A	⊠	SPEED CONTROLLER OF ENGINE FOR GENERATOR	·
11	JP 20013 39997 A	☒	AUTOMATIC REGULATOR OF SYNCHRONOUS GENERATOR	
12	JP 20013 27187 A	⊠	METHOD FOR CONTROLLING BRUSHLESS MOTOR	
13	JP 20013 00794 A	Ø	SYNCHRONOUS DRIVE CONTROL METHOD OF PRESS, AND PRESS USED THEREFOR	
14	JP 20013 00793 A		SYNCHRONOUS DRIVE CONTROL METHOD FOR PRESS, AND THE PRESS USED THEREFOR	
15	JP 20013 00792 A		SYNCHRONOUS DRIVE CONTROL METHOD FOR PRESS, AND THE PRESS USED THEREFOR	
16	JP 20012 32853 A		IMAGE FORMING APPARATUS, METHOD OF CONTROLLING SIGNAL AND MEMORY MEDIUM	
17	JP 20012 04192 A		CONTROL UNIT OF BRUSHLESS MOTOR AND SELF-PRIMING PUMP USING THE SAME	

the microcode sequencing unit supplies the subsequent supplies a first control micro-operation in a first cycle and micro-operations, the translate programmable logic array macroinstruction that is decoded into a plurality of control tion from the macroinstruction, such that for at least one memory for generating the subsequent control micro-operamicrocode sequencing unit includes a microcode read only 10. The macroinstruction decoder of claim 9 wherein the

first control micro-operation in a first cycle and the subsemicro-operations, the microcode sequencing unit supplies a macroinstruction that is decoded into a plurality of control tion from the macroinstruction, such that for at least one memory for generating the subsequent control micro-operamicrocode sequencing unit includes a microcode read only II. The macroinstruction decoder of claim 9 wherein the control micro-operation in a second cycle.

alias data, the macro-alias data extracted from the macrothe micro-slias data will be used to indirectly access macromicro-alias data includes an alias bit indicative of whether 12. The macroinstruction decoder of claim 9 wherein the quent control micro-operation in a subsequent cycle.

includes one or more opcode bytes, said decoder comprisformat defined by a predetermined instruction set that decoder coupled to receive a macroinstruction having a 13. A micro-operation (Uop) aliasing mechanism for a INSTRUCTION

of a predetermined set of opcode bytes; entry point signal if the macroinstruction includes one including circuity responsive thereto to generate an the opcodes in parallel with the XLAT PLAs and opcode bytes; an entry point PLA coupled to receive control micro-operation (Cuop) in response to the circuit for supplying a programmable logic array (PLA) macroinstruction, each of the XLAT PLAs including a PLAs) coupled to receive the opcode bytes from the a plurality of translate programmable logic arrays (XLAT

curly point signal; rality of microcode Cuops in parallel in response to the read only memory (ROM), the MSU supplying a plua microcode sequencer unit (MSU) including a microcode

s micro-sliss Cnop from the plurality of selected selected Cuops; a micro-alias multiplexer for selecting a plurality of Cuop registers for storing the plurality of PLA Cuops in response to a first MSU control signal; associated XI.AT PLA Cuop of the plurality of XLAT Cuop of the plurality of microcode Cuops and an selected Cuop from one of an associated microcode a plurality of multiplexers, each multiplexer selecting a

data is independent of any operand of the macroindata in the micro-alias register, wherein the micro-alias fields of the micro-alias Cuop and stores the micro-alias ROM, selects micro-alias data from predetermined micro-alias register that, responsive to the microcode circuitry coupled to the micro-alias multiplexer and the a micro-alias register, wherein the MSU includes control

and responsive thereto to supply macro-alias data; circuit for extracting fields from the macroinstruction point PLA, the field extraction circuit including a struction in parallel with the XLAT PLAs and the entry a held extraction circuit coupled to receive the macroin-

selected Cuops with a selected one of the macro-alias an alias multiplexer for combining at least one of the circuit for storing the macro-alias data; and a macro-alias register coupled to the field extraction

of the subsequent microcode Cuops has an unresolved

following steps: b) restoring the micro-alias register by performing the

alias register, having micro-alias data to be stored in the microbi) retrieving microcode that generated a selected Cuop 5

into the micro-alias register; and biii) saving the micro-alias data from the selected Cuop bii) generating the selected Cuop,

the unresolved alias utilizes the micro-alias data to Cuops, wherein the subsequent microcode Cuop having micro-target microcode flow to supply the subsequent c) executing the subsequent microcode Cuops of the

flow produced in response to a predetermined macroinstruc-Cuops following subsequently in the Cuop flow, the Cuop during a control micro-operation (Cuop) flow for use by 8. A method of storing micro-operation (Uop) information provide a corresponding Auop.

PLA including a circuit for supplying a first Cuop; late programmable logic array (XLAT PLA), the XLAT a) applying the predetermined macroinstruction to a transtion, the method comprising the steps of:

inacromstruction; entry point signal in response to the predetermined the entry point PLA including a circuit for supplying an b) applying the macroinstruction to an entry point PLA,

sequencer unit (MSU); c) applying the entry point signal to a microcode

d) supplying the Cuop flow from the MSU in response to 30

e) selecting a selected Cuop from the Cuop flow to be the entry point signal;

mined fields from the selected Cuop into the micro- 35 1) storing micro-alias data corresponding to predeterstored in a micro-alias register,

g) supplying a subsequent Cuop in the Cuop flow that dent of any operand of the macroinstruction; and alias register, wherein the micro-alias data is indepen-

9. A macroinstruction decoder for decoding a macroinalias register. utilizes the micro-alias data stored within the micro-

struction having at least one opcode, comprising:

mined set of opcodes; instruction, if the opcode belongs to a first predeterone control micro-operation in response to the macroa translate programmable logic array for supplying at least

struction, if the opcode belongs to a second predetercontrol micro-operation in response to the macroina microcode sequencing unit for supplying at least one

micro-operation is loaded into the micro-alias register wherein a micro-alias data from the selected control array and the microcode sequencing unit in response to operation from one of the translate programmable logic a micro-alias register selecting a selected control micromined set of opcodes;

pendent of any operand of the macroinstruction; and sequencing unit, wherein the micro-alias data is indein response to a load signal from the microcode a control signal from the microcode sequencing unit, 55

microcode sequencing unit. of the translate programmable logic array and the subsequent control micro-operation provided from one 65 response to the subsequent control micro-operation, the micro-alias data to form an aliased micro-operation in pines a subsequent control micro-operation with the an alias multiplexer, wherein the alias multiplexer com-

	Docum ent ID	ט	Title	Current OR
18	JP 20011 96193 A	Ø	POWER EQUIPMENT, DISCHARGE LAMP LIGHTING EQUIPMENT AND LIGHTING SYSTEM	
19	JP 20011 78184 A	Ø	INVERTER DEICE AND ELECTRIC WASHING MACHINE INCORPORATING THE SAME	
20	JP 20010 89094 A	×	FORKLIFT	
21	JP 20010 03864 A	Ø	AIR CONDITIONER	
22	JP 20003 54399 A	⊠	SECONDARY EXCITATION CONTROL METHOD FOR AC EXCITED SYNCHRONOUS MACHINE	
23	JP 20002 67850 A	☒	CONTROLLER DEALING WITH INTERACTIVE	
24	JP 20001 65228 A	⋈	LOGIC CIRCUIT	z z
25	JP 20001 30463 A	⋈	SYNCHRONIZING DEVICE FOR GEAR TRANSMISSION	- · •
26	JP 11316 019 A	Ø	ENERGIZING CIRCUIT FOR COMBUSTOR	,
27	JP 11314 675 A	☒	CONTAINER FOR VACUUM PACKAGING, AND VACUUM PACKAGING METHOD USING IT	·
28	JP 11311 583 A	☒	VIBRATING DEVICE	
29	JP 11211 078 A JP	☒	CURRENT APPLICATION CIRCUIT OF COMBUSTOR	
30	11167 557 A JP	☒	SHARED MEMORY ACCESS SEQUENCE ASSURANCE METHOD AND MULTIPROCESSOR SYSTEM	
31	11103 599 A JP	Ø	STARTER FOR GENERATOR	
32	11002 441 A JP	☒	METHOD AND DEVICE FOR OPERATION OF FLOOR HEATING SYSTEM	
33	10326 274 A JP	⊠	DIGITAL CONTENT EDITION METHOD AND DEVICE THEREFOR AND RECORDING MEDIUM FOR RECORDING DIGITAL CONTENT EDITION PROGRAM	
34	10299 893 A JP	☒	TRANSMISSION-OPERATING BOOSTER	
35	10286 000 A JP	☒	CONTROLLER FOR SYNCHRONOUS MOTOR	
36	10230 659 A JP	⊠	IMAGE RECORDER	
37	10226 106 A	⊠	APPARATUS AND METHOD FOR FORMING IMAGE	

a macro-alias register for storing the macro-alias data; a micro-code sequencing unit for supplying at least one control micro-operation in response to the macroinstruction, if the opcode belongs to a second predeter-

mined set of opcodes;

a micro-alias register selecting a selected control microarray and the microcode sequencing unit in response to
a control signal from the microcode sequencing unit,
wherein a micro-operation is loaded into the micro-operation is loaded into the micro-alias register
micro-operation is loaded into the micro-alias register
in response to a load signal from the microcode
sequencing unit, wherein the micro-alias data is indesequencing unit, wherein the micro-alias are indesequencing unit, wherein the micro-alias is indesequence of the micr

peacen of the micro-operation the alias multiplexer combines a subsequent control micro-operation with at least one of the micro-alias data from the micro-alias register to form an aliased micro-operation in accordance with the subsequent control micro-operation, the subsequent control micro-operation in accordance with the subsequent control micro-operation, the subsequent control micro-operation in accordance with sequencing unit.

data and the micro-alias data to resolve aliases in the selected Cuop to provide an output micro-operation

(Auop).

14. The micro-operation aliasing mechanism of claim 13 nertin, for at least one macroinsfruction that is decoded

wherein, for at least one macroinstruction that is decoded into a plurality of Cuops including a first Cuop and subsequent Cuops, the XLAT supplies the first Cuop from the macroinstruction and the microcode ROM supplies the subsequent Cuops so that, in a first cycle, the first Cuop is subsequent Cuops so that, and in a second cycle, the 10 supplied from the XLAT PLA, and in a second cycle, the

subsequent Cuops are supplied from the MSU.

15. The micro-operation aliasing mechanism of claim 14

Entre mercoberation anabile mechanism of claim

a micro-alias register storing means responsive to at least one of the subsequent Cuops for loading the micro-alias 15 register with the micro-alias data from the first Cuop.

16. A macroinstruction decoder for decoding a macroinstruction having at least one opcode, comprising:

a translate programmable logic array for supplying at least one control micro-operation in response to the macro-instruction, if the opcode belongs to a first predeter-

mined set of opcodes; a field extraction circuit coupled to receive the macroinstruction in parallel with the translate programmable logic array, the field extraction circuit extracting macro-alias data from the macroinstruction;

* * *

	Docum ent ID	ט	Title	Current
38	JP 10214 073 A	Ø	DISPLAY DEVICE	
39	JP 10149 888 A	Ø	LIGHTING DEVICE FOR ILLUMINATION AND ITS CONTROL METHOD	
40	JP 10136 682 A	Ø	CONSTANT TORQUE SYNCHRONOUS DRIVE CONTROL EQUIPMENT	
41	JP 10127 088 A	☒	STARTER AND STARTING METHOD FOR DC BRUSHLESS MOTOR	
42	JP 10106 786 A	⊠	POWER SUPPLY DEVICE	
43	JP 10094 290 A	⊠	LOAD CONTROL APPARATUS	
44	JP 10054 753 A	⊠	CARRYING LOAD RECORDING DEVICE	
45	JP 10032 350 A	⊠	DRIVING CIRCUIT	
46	JP 09331 680 A	⊠	LOAD DRIVING CIRCUIT	
47	JP 09261 628 A	⊠	IMAGE COMPRESSOR, IMAGE EXPANDER, AND IMAGE COMPANDER	
48	JP 09217 828 A	☒	BOOSTING DEVICE FOR OPERATING TRANSMISSION	
49	JP 09215 371 A	☒	SYNCHRONOUS CONTROLLER	
50	JP 09214 464 A	Ø	SYNCHRONISM DETECTION DEVICE FOR ORTHOGONAL FREQUENCY DIVISION MULTIPLEX RECEIVER	
51	JP 09201 098 A	Ø	AUTOMATIC VOLTAGE REGULATION APPARATUS OF PARALLEL COMPENSATION TYPE	
52	JP 09138 209 A	×	METHOD AND APPARATUS FOR DETECTION OF GAS	
53	JP 09120 388 A	Ø	METHOD AND SYSTEM FOR INFORMATION PROCESSING	
54	JP 09077 272 A	Ø	SHEET MATERIAL CONVEYING DEVICE	
55	JP 09068 737 A	Ø	BARRIER OPENING AND CLOSING MECHANISM	
56	JP 09019 109 A	Ø	OVERHEAT PROTECTOR FOR FIELD COIL	
57	JP 08322 285 A	⊠	CONTROL METHOD OF BRUSHLESS MOTOR	
58	JP 08289 539 A	Ø	SWITCHING POWER SUPPLY SYSTEM	
59	JP 08147 016 A	×	SERVO DEVICE FOR MULTI-AXIS OPERATION	
60	JP 08132 336 A	×	PRODUCTION INSTRUCTING DEVICE	

:IzsiiA

Attesting Officer

Commissioner of Potents and Trademarks

BRUCE LEHMAN

Eleventh Day of March, 1997

Signed and Sealed this

In column 16 at line 64 delete "50" and insert --750--

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Boggs et al.

INVENTOR(S):

: September 24, 1996

DATED

EVIENT NO. : 5,559,974

CERTIFICATE OF CORRECTION NAILED STATES PATENT AND TRADEMARK OFFICE

	Docum ent ID	ט	Title	Current OR			
61	JP 08121 315 A	Ø	PELTON WHEEL				
62	JP 08009 693 A	×	SECONDARY EXCITATION CONTROL METHOD OF AC EXCITATION SYNCHRONOUS MACHINE				
63	JP 07301 136 A	×	ETHOD AND ARRANGEMENT FOR CONTROLLING INTERNAL COMBUSTION NGINE				
64	JP 07248 847 A	Ø	METHOD AND DEVICE FOR ADJUSTING CLOCK SIGNAL				
65	JP 07164 358 A	Ø	ROBOT CONTROL DEVICE				
66	JP 07107 542 A	☒	SYSTEM FOR DOWN LOAD DURING SYNCHRONOUS OPERATION				
67	JP 07053 100 A	⊠	WINDING TENSILE FORCE CONTROL DEVICE	•			
68	JP 07030 619 A	☒	SYNCHRONIZING CONTROL METHOD FOR SEMI-DUAL COMMUNICATION TEST				
69	JP 07028 602 A	⊠	DIGITAL ARITHMETIC UNIT FOR ANALOG INPUT				
70	JP 06284 798 A	×	SECONDARY EXCITER FOR AC EXCITED SYNCHRONOUS MACHINE				
71	JP 06101 670 A	×	ROTOR MOLDING METHOD FOR UNLUBRICATED SCREW COMPRESSOR				
72	JP 06028 319 A	×	LOGICAL SIMULATOR				
73	JP 06028 187 A	☒	DATA LOADING METHOD AND ARITHMETIC PROCESSOR USING THE SAME				
74	JP 06019 708 A	⊠	INSTRUCTION STRING SWITCHING METHOD AND ARITHMETIC PROCESSOR USING THE METHOD				
75	JP 05345 450 A	☒	RECORDING DEVICE				
76	JP 05292 736 A	☒	DC POWER SOURCE				
77	JP 05273 813 A	×	IMAGE FORMING DEVICE				
78	JP 05260 796 A	☒	FIELD CONTROL METHOD FOR SYNCHRONOUS MOTOR				
79	JP 05176 258 A	☒	POWER SUPPLY EQUIPMENT FOR TELEVISION RECEIVER				
80	JP 05104 943 A	☒	CONTROLLER OF VEHICLE				
81	JP 05088 667 A	☒	OPERATION CONTROLLER				
82	JP 05033 608 A	⊠	METHOD AND DEVICE FOR CONTROLLING POWER RECOVERY DEVICE				
83	JP 04191 204 A	⊠	AUTOMATIC WAREHOUSE				

Date of Patent:

Apr. 4, 2000 SII'L+0'9

Patent Number:

United States Patent [19]

Mohan et al.

[54]

.ct–t Logic Emulators", Jonathan Babb, et al. Jan. 26, 1993, pp. tual Wires: Overcoming Pin Limitations in FPGA-based Computing Machines, FCCM '93, Apr. 1993 entitled "Vir-Paper presented at IEEE Workshop on FPGA's for Custom

.50£-4 of 162-4 qq ,42129 published by Xilinx, Inc., 2100 Logic Drive, San Jose, CA "The Programmable Logic Data Book" copyright 1996,

Logic Simulation", Department of Electrical Engineering, David M. Lewis, "Hierarchical Compiled Event-Driven

Jul. 1993, pp. 1030–1041. and Applications," Proceedings of the IEEE, vol. 81, No. 7, Trimberger, Stephen M., "A Reprogrammable Gate Array University of Toronto, IEEE, 1989, pp. 498-501.

(List continued on next page.)

Primary Examiner-Kevin J. Teska

Attorney, Agent, or Firm-Adam H. Tachner; Jeanette S. Assistant Examiner-Vuthe Siek

VBSTRACT

sequence of instructions. tion. A virtual computation may be accomplished by a locations to create the pattern required by the next instrucinstructions move the local data into different memory pre-defined local memory pattern. Pattern manipulation tions perform some computation with data stored in some pattern manipulation instructions. Computational instructwo different types of virtual instructions: computational and provides a virtual instruction. The present invention uses memory planes in one cycle. Each FPGA configuration memory can be simultaneously transferred to/from other logic plane at very high speed. Typically, all the local thereby transferring data to/from the storage elements in the (memory plane) to another with no external memory access, amounts of data to pass from one FPGA configuration called local memory. This local memory allows large tile has associated storage elements on each memory plane, tiles on a logic plane and a plurality of memory planes. Each A dynamically reconfigurable FPGA includes an array of

9 Claims, 6 Drawing Sheets

Inventors: Sundararajarao Mohan, Cupertino; Stephen M. Trimberger, San Jose,	[5]
HYBDMYBE COWLULVION WEWOKL LEVES LOK AIKLUYF WELHOD LOK CONLICUKING LLCY	[+5]

UOV GOVIVIC	40000	3 3	[CO]
712/10; 712/11; 712/14; 712/15	:77/77 <i>L</i>		
\$81.002/26£ ;T1.002/26£		us.cr.	[25]
C06F 17/00	•••••	Int. CL7	[15]
L661.	462 YBM	Filed:	[22]
98	£ ' \$98/80 :	.oM .lqqA	[17]
Inc., San Jose, Calif.	XuiliX,	Assignee:	[٤८]
M. Trimberger, San Jose, Calif.	Stephen Jo thod		

\$1 '\$1 'II '00\$ '\L'00\$\\$6\$ '06\$\\\$9\$	
Field of Search364/488, 489,	[88]
712/22; 712/10; 712/11; 712/14; 712/15	
U.S. Cl. 395/500.17; 395/500.18;	[52]

U.S. PATENT DOCUMENTS	
References Cited	[95]

E/8L1			
006/198			
2.271/0 1 5	Balser	EL61/11	9 <i>\$L</i> ' <i>\$LL</i> 'E

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

. nagal 8791/01 752121-52

OTHER PUBLICATIONS

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. "The Programmable Logic Data Book" copyright 1994, nect Architiecture," IEEE, pp. 61-67, Jan. 1995. Li et al "Routability Improvement Using Dynamic Intercon-22-28. Jan. 1997, Trimberger et al "A Time-Multiplexed FPGA," IEEE, pp.

ing Company, 1988, pp. 160-164. tive", \dot{N} . Weste & K. Eshraghian, Addison–Wesley Publish-"Principles of CMOS VLSI Design, A Systems Perspec-

tality of Vermal lan

	Docum ent ID	ט	Title	Current OR
84	JP 04133 682 A	⊠	POWER CONTROL CIRCUIT	
85	JP 04030 910 A	×	NUMERICALLY CONTROLLED DEVICE PROVIDED WITH SYNCHRONOUS TAPPING FUNCTION	
86	JP 04018 657 A	⊠	MICROCOMPUTER I/O BUS	
87	JP 03290 710 A	Ø	INDUSTRIAL ROBOT CONTROLLER	
88	JP 03212 191 A	☒	CONTROLLER FOR CYCLOCONVERTER	
89	JP 03154 514 A	☒	SEMICONDUCTOR INTEGRATED CIRCUIT	
90	JP 03119 588 A	☒	BLOCK SYNCHRONOUS COUNTER CIRCUIT	
91	JP 03078 254 A	Ø	P-TYPE MOS TRANSISTOR	
92	JP 03052 566 A	☒	POWER SUPPLY CONTROLLING CIRCUIT OF INVERTOR	
93	JP 03036 602 A	⊠	DUAL CONTROL SYSTEM	
94	JP 03026 804 A	⊠	STEAM TURBINE CONTROLLER	-
95	JP 02277 938 A	⊠	FUEL FEED CONTROL DEVICE OF INTERNAL COMBUSTION ENGINE	
96	JP 02241 936 A	Ø	ENGINE CONTROLLER FOR VEHICLE WITH AUTOMATIC TRANSMISSION	
97	JP 02228 252 A	×	PWM DEVICE	
98	JP 02193 593 A	Ø	OPERATING METHOD FOR SYNCHRONOUS MOTOR	
99	JP 02086 234 A	Ø	FRAME SYNCHRONIZING CIRCUIT	
100	JP 02048 396 A	Ø	BELT HOIST	
101	JP 02041 694 A	Ø	SYNCHRONOUS OPERATION CONTROLLER FOR MAIN SHAFT	
102	JP 02041 693 A	⊠	SYNCHRONOUS OPERATION CONTROLLER FOR MAIN SHAFT	
103	JP 01311 829 A	⊠	OPERATION CONTROLLER FOR GENERATING EQUIPMENT	
104	JP 01273 854 A	Ø	CONTROLLER FOR ENGINE	
105	JP 01219 593 A	☒	PROTECTIVE BARRIER OF NUCLEAR FUSION DEVICE	
106	JP 01206 890 A	⊠	CRANE OPERATION CONTROLLER	

Page 2 SII'L#0'9

mation Conference, 1987, Paper 2.1, pp 2-8. Compiled-Code Simulator", 24th ACM/IEEE Design Auto-Laung-Terng Wang, et al. "SSIM: A Software Levelized

Conference, 1987, Paper 2.2, pp 9-16. for MOS Circuits", 24th ACM/IEEE Design Automation Randal E. Bryant, et al. "COSMOS: A Compiled Simulator

.291-181 qq ,1991 actions on Computer-Aided Design, vol. 10, No. 2, Feb. piled Simulation of Combinational Circuits", IEEE Trans-Peter M. Maurer, "Scheduling Blocks of Hierarchical Com-

California, Berkeley, Jun. 1, 1993. Research Laboratory, College of Engineering, University of ture for a Field Programmable Logic Device", Electronic "Performance-Oriented Fully Routable Dynamic Architec-Narasimba B. Bhat, Kamal Chaudhary, and Ernest S. Kuh,

Technology Square, Cambridge, MA 02139, 10 pages, Jan. modity ICs for the Early 21st Century", NE43-791, 545 Andre DeHon, "DPGA-Coupled Microprocessors: Com-

pp 276-177, 425, Feb. 27, 1987. erators; IEEE International Solid State Circuits Conference, Interconnection Chip" Session XX: Special Purpose Accel-Chi-Yuan Chin, et al., "A Dynamically Reconfigurable

U.S. PATENT DOCUMENTS

	Саѕъесітап	8661/6	5,802,290
	Trimberger et al	866T/L	£1£' 1 8L'S
8E/9ZE	Trimberger et al	L66T/L	S t S'9 t 9'S
£6/9ZE		L661/S	LE9'6Z9'S
	Trimberger et al	L661/Z	2,600,263
14/92£	Trimberger et al	15/1666	024,582,2
88t/t9E	Takahashi	9661/9	\$\$30 ` 025 ` S
68t/t9E	Cox et al	9661/9	9LZ'9ZS'S
68t/t9E	rəgrədmirT	9661/5	5,521,835
	Trimberger et al	9661/4	\$213°154
925/250	Eng et al	5661/11	<i>LLS</i> '69 1 'S
914/198	mulloDoM	5661/01	11 9'LS1'S
04/92£	Crafts et al	S66T/L	5,432,388
SLE/S6E	Sawase et al	S661/9	<i>\$</i> \$\$\$`144
SLZ/S6E	Ong	S661/9	8£ L '9 Z †'S
6E/9ZE	gaO	S661/9	87£,624,2
SZE/S6E	Drerup et al	15/1664	tee'lle's
8E/9ZE	Parlour et al	t 661/6	849,248
06t/t9E	Zeilenga et al Chene et al	£66T/9	9 50'tZZ' S
324/312	ls tə agaəliəS	7661/6	2+2'441'5
£84/49£	ээЛ	1661/5	966'610'S
£0Z/S9E	Hsieh	686T/\$	4,821,233
	Hsieh	8861/9	551 ' 05 <i>L</i> 'ŧ
364/200	пич	5/1984	19 b 'b£b'b

OTHER PUBLICATIONS

Conference, pp. 91-94. Based Partitioning, for Lookup-Table-Based FPGAs," IEEE, Computer Design—ICCD '92, 1992 International Trimberger, Stephen M. and Chene, Mon-Ren, "Placement-

	Docum ent ID	Ū	Title	Current
107	JP 01131 867 A	⊠	ICE-MAKING DEVICE OF REFRIGERATOR OR THE LIKE	
108	JP 01100 696 A	☒	HOME CONTROLLER	
109	JP 01092 550 A	⊠	AIR-FUEL INJECTION CONTROL AMOUNT DEVICE FOR INTERNAL COMBUSTION ENGINE	
110	JP 01078 127 A	×	SHIFT FEELING EVALUATING METHOD	
111	JP 01004 155 A	⊠	CHANNEL SYNCHRONIZING CONTROL SYSTEM	
112	JP 63314 351 A	X	ELECTRONIC CONTROL FUEL INJECTOR OF INTERNAL COMBUSTION ENGINE	
113	JP 63253 878 A	⊠	SWITCHING POWER-SUPPLY DEVICE	
114	JP 63235 734 A	⊠	ROLLER SYNCHRONIZING TYPE ONE-WAY CLUTCH	
115	JP 63228 970 A		METHOD OF CONTROLLING CURRENT TYPE INVERTER	
116	JP 63225 139 A		METHOD OF EVALUATING FEELING OF SHIFT	
117	JP 63225 138 A		METHOD OF EVALUATING FEELING OF SHIFT	
118	JP 63152 729 A	⊠	SYNCHROMESH DEVICE	
119	JP 63152 728 A	⊠	SYNCHROMESH DEVICE	4
120	JP 63016 028 A	☒	GAS DRYER	•
121	JP 62233 837 A	⊠	MICROPROGRAM CONTROLLER	
122	JP 62195 426 A	⊠	FUEL SUPPLY CONTROL DEVICE OF ENGINE	
123	JP 62128 236 A	×	RECEPTION FRAME SYNCHRONIZING CONTROL SYSTEM	
124	JP 62101 838 A	⊠	CONTROL DEVICE FOR AUXILIARY MACHINE OF ENGINE	
125	JP 62048 267 A	⊠	SYNCHRONOUS CHANGEOVER SYSTEM FOR INVERTER	
126	JP 62023 212 A	⊠	SYNCHRONIZING DETECTION TYPE AMPLITUDE DETECTION CIRCUIT	
127	JP 62006 455 A	Ø	HELICAL SCAN WORKING DEVICE FOR LOWER CYLINDER OF ROTARY HEAD TYPE MAGNETIC RECORDING AND REPRODUCING DEVICE	
128	JP 61193 579 A	⊠	PICTURE ELEMENT POSITION RECOGNITION OF SOLID-STATE IMAGE PICK-UP DEVICE	
129	JP 61144 932 A	☒	DECODING CIRCUIT	

Figure 1

	Docum ent ID	σ	Title	Current
130	JP 61116 996 A	Ø	CONTROLLER OF SYNCHRONOUS MOTOR	
131	JP 61109 499 A	Ø	POWER SYSTEM STABILIZER	
132	JP 61084 441 A	Ø	CONTROL DEVICE IN SYNCHROMESH TYPE SPEED CHANGE GEAR UNIT	
133	JP 61051 526 A	☒	LOAD CELL BALANCE	
134	JP 61009 185 A	☒	CONTROLLER OF SYNCHRONOUS MOTOR	
135	JP 60147 575 A	☒	STARTING OF MULTI-NOZZLE PELTON TURBINE	
136	JP 60055 466 A	☒	SYNCHRONIZATION SYSTEM BETWEEN PLURAL PROCESSORS	
137	JP 60026 113 A	☒	ENGINE WITH VARIABLE NUMBER OF OPERATING CYLINDER	
138	JP 60011 754 A	☒	CONTROLLING METHOD OF AUTOMATIC TRANSMISSION	
139	JP 59136 071 A	Ø	FLICKER COMPENSATING DEVICE	
140	JP 59041 608 A	⊠	RANKINE GENERATOR	
141	JP 58222 797 A	⊠	DEFECT DIAGNOSING DEVICE FOR INVERTER	
142	JP 58205 008 A	⊠	COMBUSTION APPARATUS	
143	JP 58193 398 A	Ø	DEVICE FOR USING SURPLUS POWER OF DC POWER SOURCE USEFUL FOR TREATMENT OF METAL SURFACE OR THE LIKE	
144	JP 58110 811 A	⊠	INTAKE DEVICE OF ENGINE WITH SUPERCHARGER	
145	JP 58107 135 A	Ø	STEAM HEATING TYPE TEA LEAF FINE ROLLING MACHINE	
146	JP 58010 993 A	Ø	CONTROL SYSTEM FOR SYNCHRONIZING MEMORY	
147	JP 57193 803 A	Ø	CONTROLLING DEVICE	
148	JP 57170 100 A	Ø	LOAD CONTROLLING SYSTEM USING SYNCHRONOUS PHASE MODIFIER FOR USE WITH SHAFT GENERATING DEVICE	
149	JP 57142 093 A	Ø	DIGITAL CHROMINANCE SIGNAL GENERATOR	
150	JP 57126 263 A	Ø	WIND POWER GENERATING APPARATUS	
151	JP 57105 519 A	Ø	COMBUSTION CHAMBER FOR INTERNAL COMBUSTION ENGINE	
152	JP 57084 366 A	Ø	APPARATUS FOR INDICATING EFFECTIVE POWER AND REACTIVE POWER OF SYNCHRONOUS MACHINE ON 2-DIMENSIONAL PLANE	

Sheet 2 of 6

Figure 2

D£ ərugiH

	Docum ent ID	υ	Title	Current OR
153	JP 57052 606 A	×	AUTOMATIC CONTROL SYSTEM FOR TURBINE	
154	JP 57032 885 A	Ø	EVACUATING DEVICE OF ELECTRON BEAM WELDING DEVICE	
155	JP 56098 506 A	☒	METHOD OF FOLLOW-UP CONTROL OF SYNCHRONIZING MEANS FOR CONTROLLING GOVERNOR LOAD RESTRICTOR OF TURBINE	
156	JP 56049 689 A	☒	SYNCHRONOUS STARTING DEVICE FOR DC MOTOR	
157	JP 55142 977 A	☒	OPERATION OF WATER WHEEL OR PUMP WATER WHEEL	
158	JP 55109 094 A	⊠	LOAD SHARING SYSTEM	
159	JP 55100 067 A	Ø	CONTROLLING METHOD OF POWER TRANSISTOR	
160	JP 55093 913 A	☒	TURBINE CONTROL SYSTEM	
161	JP 55074 618 A	⊠	OPERATING FREQUENCY SELECTOR FOR DIGITAL COMPUTER	
162	JP 55060 868 A	⊠	CIRCUIT FOR MEASURING CONTACT RESISTANCE OF CONTACT MEMBER DURING ITS OPENING AND CLOSING	
163	JP 55032 104 A	Ø	METHOD AND APPARATUS FOR SPEED CONTROL IN INTERMITTENT LOAD OPERATION	
164	JP 55018 247 A	⊠	CENTRIFUGAL DEHYDRATOR	
165	JP 54158 502 A	⊠	ROTOR STRESS ESTIMATING TURBINE CONTROLLER	
166	JP 54150 642 A	Ø	ENERGY STORAGE SYSTEM	
167	JP 54087 840 A	⊠	NOISELESS POWER CONTROL SYSTEM	
168	JP 54082 501 A	⊠	ROTOR STRESS FORECASTING TURBINE CONTROL SYSTEM	
169	JP 54076 913 A	⊠	HYSTERESIS MOTOR	
170	JP 53083 019 A	☒	LOAD SELECTOR CIRCUIT FOR PLURALITY OF INVERTERS	
171	JP 52091 277 A		APPARATUS FOR EQUALIZING OPERATION SPEED	

Sheet 3 of 6

A£ ərugiH

Figure 3B